Natural Language Processing

Lecture VII. Word Embedding – a 30-year journey

Forrest Sheng Bao, Ph.D.

Dept. of Computer Science lowa State University Ames, IA 50011

October 20, 2022

Something about graduate school

"The path to real success is not to compete, but to invent a new game, and then master it." Reid Hoffman,

https://www.linkedin.com/pulse/dont-just-compete-invent-new-game-master-reid-hoffman

Salute to the NLP pioneers, including but not limited to: Elman (1990), Bengio (2003), Collobert & Weston (2008, look-up table), Mnih & Hinton (2007 & 2009, tree).

- ▶ BOW or unigram: no order of words
- N-gram where N > 1: a sequence of words, some structura information.
- A classical language model estimates a cost function (e.g., likelihood) of word sequences.
- ▶ Problem?
 - "curse of dimensionality"

- Too many probabilities!
- What about unseen combinations (not just words)? Smoothing is not arough.
- How to plug into neural networks?

- BOW or unigram: no order of words
- N-gram where N > 1: a sequence of words, some structural information.
- A classical language model estimates a cost function (e.g., likelihood) of word sequences.
- ► Problem?
 - $\frac{1}{1} P(w_1 | w_1, \dots, w_{i-1}) \approx \frac{1}{1} P(w_1 | w_1, \dots, w_{i-1}) \text{ Too many probabilities of that about unseem combinations (not just words)? Smoothing is not$
 - How to plug into neural networks?

- BOW or unigram: no order of words
- ▶ N-gram where *N* > 1: a sequence of words, some structural information.
- A classical language model estimates a cost function (e.g., likelihood) of word sequences.
- Problem?

- BOW or unigram: no order of words
- N-gram where N > 1: a sequence of words, some structural information.
- A classical language model estimates a cost function (e.g., likelihood) of word sequences.
- Problem?
 - "curse of dimensionality" $P(w_1,\ldots,w_n)=P(w_2|w_1)\times P(w_3|w_1,w_2)\times \cdots \times P(w_n|w_1,\ldots,w_{n-1})=\prod_{i=2}^n P(w_i|w_1,\ldots,w_{i-1})\approx \prod_{i=2}^n P(w_i|w_{1-\tau-1},\ldots,w_{i-1})$ Too many probablities
 - What about unseen combinations (not just words)? Smoothing is not enough.
 - How to plug into neural networks?

- ▶ BOW or unigram: no order of words
- ▶ N-gram where *N* > 1: a sequence of words, some structural information.
- A classical language model estimates a cost function (e.g., likelihood) of word sequences.
- Problem?
 - "curse of dimensionality"

$$P(w_1, \dots, w_n) = P(w_2|w_1) \times P(w_3|w_1, w_2) \times \dots \times P(w_n|w_1, \dots, w_{n-1}) = \prod_{i=2}^n P(w_i|w_1, \dots, w_{i-1}) \approx \prod_{i=2}^n P(w_i|w_{i-\tau-1}, \dots, w_{i-1})$$
 Too many probablities!

- What about unseen combinations (not just words)? Smoothing is not enough.
- How to plug into neural networks?

- BOW or unigram: no order of words
- N-gram where N > 1: a sequence of words, some structural information.
- A classical language model estimates a cost function (e.g., likelihood) of word sequences.
- Problem?
 - "curse of dimensionality"

$$P(w_1, \dots, w_n) = P(w_2|w_1) \times P(w_3|w_1, w_2) \times \dots \times P(w_n|w_1, \dots, w_{n-1}) = \prod_{i=2}^n P(w_i|w_1, \dots, w_{i-1}) \approx \prod_{i=2}^n P(w_i|w_{i-\tau-1}, \dots, w_{i-1})$$
 Too many probablities!

- What about unseen combinations (not just words)? Smoothing is not enough.
- ► How to plug into neural networks?

- ▶ BOW or unigram: no order of words
- ▶ N-gram where *N* > 1: a sequence of words, some structural information.
- A classical language model estimates a cost function (e.g., likelihood) of word sequences.
- Problem?
 - "curse of dimensionality"

$$P(w_1, \dots, w_n) = P(w_2|w_1) \times P(w_3|w_1, w_2) \times \dots \times P(w_n|w_1, \dots, w_{n-1}) = \prod_{i=2}^n P(w_i|w_1, \dots, w_{i-1}) \approx \prod_{i=2}^n P(w_i|w_{i-\tau-1}, \dots, w_{i-1})$$
 Too many probablities!

- What about unseen combinations (not just words)? Smoothing is not enough.
- How to plug into neural networks?

- ► A very good explanation from TF v1 tutorial about why word needs to be vectorized. https://github.com/tensorflow/docs/blob/r1.15/site/en/tutorials/representation/word2vec.md
- ▶ How do we send sequences of words into an NN?
- ▶ Using ASCII code? Using UTF code?
- Turning words into vectors (the simple ways):

- ► A very good explanation from TF v1 tutorial about why word needs to be vectorized. https://github.com/tensorflow/docs/blob/r1.15/site/en/tutorials/representation/word2vec.md
- ▶ How do we send sequences of words into an NN?
- ► Using ASCII code? Using UTF code?
- Turning words into vectors (the simple ways):

- ► A very good explanation from TF v1 tutorial about why word needs to be vectorized. https://github.com/tensorflow/docs/blob/r1.15/site/en/tutorials/representation/word2vec.md
- ▶ How do we send sequences of words into an NN?
- ▶ Using ASCII code? Using UTF code?
- Turning words into vectors (the simple ways):
 - one-hot encoder (Finding Structure in Time, Elman, 1990, Table 5, each word is a 31-bit vector)

4日 > 4月 > 4目 > 4目 > 目 ≪94○

- ➤ A very good explanation from TF v1 tutorial about why word needs to be vectorized. https://github.com/tensorflow/docs/blob/r1.15/site/en/tutorials/representation/word2vec.md
- How do we send sequences of words into an NN?
- Using ASCII code? Using UTF code?
- Turning words into vectors (the simple ways):
 - one-hot encoder (Finding Structure in Time, Elman, 1990, Table 5, each word is a 31-bit vector)
 - co-occurrence matrix (e.g., P("fox", "jump"), P("lazy", "dog"))
 - factorization on the co-occurrence matrix (to reduce dimensionality) such as SVD

- ► A very good explanation from TF v1 tutorial about why word needs to be vectorized. https://github.com/tensorflow/docs/blob/r1.15/site/en/tutorials/representation/word2vec.md
- How do we send sequences of words into an NN?
- Using ASCII code? Using UTF code?
- Turning words into vectors (the simple ways):
 - one-hot encoder (Finding Structure in Time, Elman, 1990, Table 5, each word is a 31-bit vector)
 - co-occurrence matrix (e.g., P("fox", "jump"), P("lazy", "dog"))
 - factorization on the co-occurrence matrix (to reduce dimensionality) such as SVD

- ► A very good explanation from TF v1 tutorial about why word needs to be vectorized. https://github.com/tensorflow/docs/blob/r1.15/site/en/tutorials/representation/word2vec.md
- How do we send sequences of words into an NN?
- Using ASCII code? Using UTF code?
- Turning words into vectors (the simple ways):
 - one-hot encoder (Finding Structure in Time, Elman, 1990, Table 5, each word is a 31-bit vector)
 - co-occurrence matrix (e.g., P("fox", "jump"), P("lazy", "dog"))
 - factorization on the co-occurrence matrix (to reduce dimensionality) such as SVD

- ► A very good explanation from TF v1 tutorial about why word needs to be vectorized. https://github.com/tensorflow/docs/blob/r1.15/site/en/tutorials/representation/word2vec.md
- How do we send sequences of words into an NN?
- Using ASCII code? Using UTF code?
- Turning words into vectors (the simple ways):
 - one-hot encoder (Finding Structure in Time, Elman, 1990, Table 5, each word is a 31-bit vector)
 - co-occurrence matrix (e.g., P("fox", "jump"), P("lazy", "dog"))
 - factorization on the co-occurrence matrix (to reduce dimensionality) such as SVD

Word representation

- "A word representation is a mathematical object associated with each word, often a vector." [1]
- "Each dimension's value corresponds to a feature and might even have a semantic or grammatical interpretation, so we call it a word feature."
- One-hot (aka 1-of-N) encoding is one, but obviously not good.
- Word embedding: a distributed representation Ref [1]: Turian, Ratinov, and Bengio, Word representations: A simple and general method for semi-supervised learning, ACL 2010

- Intuition: Semantically (dis)similar/(un)related words should co-occur in documents (in)frequently.
- A word-document co-occurence matrix can be considered as a composition of a series of transforms.

- ▶ This is the idea behind Singular Vector Decomposition (SVD): $M = U\Sigma V$, where all rows of U or all columns of V are orthoronal, and Σ a diagnoal matrix of signular values (importances of semantic dimensions).
- The dimension of U is high. Usually we zero out some dimensions in Σ to focus on only the important ones. And thus, the resulting U is no longer orthornormal.
- ▶ SVD on word-document co-occurence [2]. Note that the SVD in this tutorial is called compact SVD.
- The co-occurence counts can be further weighted into other quantities, such as point-wise mutual information (Slide 37 of [2]).

- Intuition: Semantically (dis)similar/(un)related words should co-occur in documents (in)frequently.
- A word-document co-occurence matrix can be considered as a composition of a series of transforms.

- quantities, such as point-wise mutual information (Slide 37 of [2]).

- Intuition: Semantically (dis)similar/(un)related words should co-occur in documents (in)frequently.
- A word-document co-occurence matrix can be considered as a composition of a series of transforms.
 - Each word is a distribution over given semantic dimensions, e.g., "water" covers "liquid", "clear", and "oderless".
 - A document is generated by sampling words in different semantic dimensions, thus transform the word probabilities to their distributions in documents.
 - Some semantic dimensions are more important
- ▶ This is the idea behind Singular Vector Decomposition (SVD): $M = U\Sigma V$, where all rows of U or all columns of V are orthorgonal, and Σ a diagnoal matrix of signular values (importances of semantic dimensions).
- The dimension of U is high. Usually we zero out some dimensions in Σ to focus on only the important ones. And thus, the resulting U is no longer orthornormal.
- SVD on word-document co-occurence [2]. Note that the SVD in this tutorial is called compact SVD.
- ► The co-occurence counts can be further weighted into other quantities, such as point-wise mutual information (Slide 37 of [2]).

- Intuition: Semantically (dis)similar/(un)related words should co-occur in documents (in)frequently.
- A word-document co-occurence matrix can be considered as a composition of a series of transforms.
 - 1. Each word is a distribution over given semantic dimensions, e.g., "water" covers "liquid", "clear", and "oderless".
 - 2. A document is generated by sampling words in different semantic dimensions, thus transform the word probabilities to their distributions in documents.

- quantities, such as point-wise mutual information (Slide 37 of [2]).

- Intuition: Semantically (dis)similar/(un)related words should co-occur in documents (in)frequently.
- A word-document co-occurence matrix can be considered as a composition of a series of transforms.
 - 1. Each word is a distribution over given semantic dimensions, e.g., "water" covers "liquid", "clear", and "oderless".
 - 2. A document is generated by sampling words in different semantic dimensions, thus transform the word probabilities to their distributions in documents.
 - 3. Some semantic dimensions are more important.
- ▶ The dimension of *U* is high. Usually we zero out some dimensions in
- quantities, such as point-wise mutual information (Slide 37 of [2]).

- Intuition: Semantically (dis)similar/(un)related words should co-occur in documents (in)frequently.
- A word-document co-occurence matrix can be considered as a composition of a series of transforms.
 - 1. Each word is a distribution over given semantic dimensions, e.g., "water" covers "liquid", "clear", and "oderless".
 - 2. A document is generated by sampling words in different semantic dimensions, thus transform the word probabilities to their distributions in documents.
 - 3. Some semantic dimensions are more important.
- This is the idea behind Singular Vector Decomposition (SVD): $M = U\Sigma V$, where all rows of U or all columns of V are orthorgonal, and Σ a diagnoal matrix of signular values (importances of semantic dimensions).
- ▶ The dimension of *U* is high. Usually we zero out some dimensions in
- ▶ SVD on word-document co-occurrence [2]. Note that the SVD in this
- quantities, such as point-wise mutual information (Slide 37 of [2]),

- Intuition: Semantically (dis)similar/(un)related words should co-occur in documents (in)frequently.
- A word-document co-occurence matrix can be considered as a composition of a series of transforms.
 - Each word is a distribution over given semantic dimensions, e.g., "water" covers "liquid", "clear", and "oderless".
 - A document is generated by sampling words in different semantic dimensions, thus transform the word probabilities to their distributions in documents.
 - 3. Some semantic dimensions are more important.
- ➤ This is the idea behind Singular Vector Decomposition (SVD):
 - $M=U\Sigma V$, where all rows of U or all columns of V are orthorgonal, and Σ a diagnoal matrix of signular values (importances of semantic dimensions).
- ▶ The dimension of U is high. Usually we zero out some dimensions in Σ to focus on only the important ones. And thus, the resulting U is no longer orthornormal.
- ▶ SVD on word-document co-occurence [2]. Note that the SVD in this tutorial is called compact SVD.
- ► The co-occurence counts can be further weighted into other quantities, such as point-wise mutual information (Slide 37 of [2]).

- Intuition: Semantically (dis)similar/(un)related words should co-occur in documents (in)frequently.
- A word-document co-occurence matrix can be considered as a composition of a series of transforms.
 - Each word is a distribution over given semantic dimensions, e.g., "water" covers "liquid", "clear", and "oderless".
 - A document is generated by sampling words in different semantic dimensions, thus transform the word probabilities to their distributions in documents.
 - 3. Some semantic dimensions are more important.
- ▶ This is the idea behind Singular Vector Decomposition (SVD): $M = U\Sigma V$, where all rows of U or all columns of V are orthorgonal, and Σ a diagnoal matrix of signular values (importances of semantic dimensions).
- ▶ The dimension of U is high. Usually we zero out some dimensions in Σ to focus on only the important ones. And thus, the resulting U is no longer orthornormal.
- SVD on word-document co-occurence [2]. Note that the SVD in this tutorial is called compact SVD.
- ► The co-occurence counts can be further weighted into other quantities, such as point-wise mutual information (Slide 37 of [2]).

- Intuition: Semantically (dis)similar/(un)related words should co-occur in documents (in)frequently.
- A word-document co-occurence matrix can be considered as a composition of a series of transforms.
 - Each word is a distribution over given semantic dimensions, e.g., "water" covers "liquid", "clear", and "oderless".
 - A document is generated by sampling words in different semantic dimensions, thus transform the word probabilities to their distributions in documents.
 - 3. Some semantic dimensions are more important.
- ▶ This is the idea behind Singular Vector Decomposition (SVD): $M = U\Sigma V$, where all rows of U or all columns of V are orthorgonal, and Σ a diagnoal matrix of signular values (importances of semantic dimensions).
- ▶ The dimension of U is high. Usually we zero out some dimensions in Σ to focus on only the important ones. And thus, the resulting U is no longer orthornormal.
- ➤ SVD on word-document co-occurence [2]. Note that the SVD in this tutorial is called compact SVD.
- The co-occurence counts can be further weighted into other quantities, such as point-wise mutual information (Slide 37 of [2]).

Problems of factorization-based embedding

- You have to re-create the co-occurrence matrix when updating or fine-tuing.
- ► A large sparse matrix.
- ► Starting from scratch in computing SVD each time. Cannot reuse previous results, i.e., fine-tuning.

Problems of factorization-based embedding

- You have to re-create the co-occurrence matrix when updating or fine-tuing.
- A large sparse matrix.
- Starting from scratch in computing SVD each time. Cannot reuse previous results, i.e., fine-tuning.

Problems of factorization-based embedding

- You have to re-create the co-occurrence matrix when updating or fine-tuing.
- A large sparse matrix.
- Starting from scratch in computing SVD each time. Cannot reuse previous results, i.e., fine-tuning.

- "A Neural Probabilistic Language Model", Bengio et al, JMLR, 2003
- "Three New Graphical Models for Statistical Language Modelling", Mnih & Hinton, ICML 2007
- "A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning", Collobert and Weston, ICML 2008
- "Neural network based language models for higly inflective languages", Mikolov et al., ICASSP 2009, separating the training of embeddings and that of the LM/task NN.
- Finally, Word2vec, "Distributed Representations of Words and Phrases and their Compositionality", Mikolov et al., NIPS 2013
- And, "GloVe: Global Vectors for Word Representation", Pennnington et al., EMNLP 2014

- "A Neural Probabilistic Language Model", Bengio et al, JMLR, 2003
- "Three New Graphical Models for Statistical Language Modelling", Mnih & Hinton, ICML 2007
- "A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning", Collobert and Weston, ICML 2008
- "Neural network based language models for higly inflective languages", Mikolov et al., ICASSP 2009, separating the training of embeddings and that of the LM/task NN.
- Finally, Word2vec, "Distributed Representations of Words and Phrases and their Compositionality", Mikolov et al., NIPS 2013
- And, "GloVe: Global Vectors for Word Representation", Pennnington et al., EMNLP 2014

- "A Neural Probabilistic Language Model", Bengio et al, JMLR, 2003
- "Three New Graphical Models for Statistical Language Modelling", Mnih & Hinton, ICML 2007
- "A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning", Collobert and Weston, ICML 2008
- "Neural network based language models for higly inflective languages", Mikolov et al., ICASSP 2009, separating the training of embeddings and that of the LM/task NN.
- Finally, Word2vec, "Distributed Representations of Words and Phrases and their Compositionality", Mikolov et al., NIPS 2013
- And, "GloVe: Global Vectors for Word Representation", Pennnington et al.. EMNLP 2014

- "A Neural Probabilistic Language Model", Bengio et al, JMLR, 2003
- "Three New Graphical Models for Statistical Language Modelling", Mnih & Hinton, ICML 2007
- "A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning", Collobert and Weston, ICML 2008
- "Neural network based language models for higly inflective languages", Mikolov et al., ICASSP 2009, separating the training of embeddings and that of the LM/task NN.
- Finally, Word2vec, "Distributed Representations of Words and Phrases and their Compositionality", Mikolov et al., NIPS 2013
- And, "GloVe: Global Vectors for Word Representation", Pennnington et al., EMNLP 2014

- "A Neural Probabilistic Language Model", Bengio et al, JMLR, 2003
- "Three New Graphical Models for Statistical Language Modelling", Mnih & Hinton, ICML 2007
- "A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning", Collobert and Weston, ICML 2008
- "Neural network based language models for higly inflective languages", Mikolov et al., ICASSP 2009, separating the training of embeddings and that of the LM/task NN.
- ► Finally, Word2vec, "Distributed Representations of Words and Phrases and their Compositionality", Mikolov et al., NIPS 2013
- ► And, "GloVe: Global Vectors for Word Representation", Pennnington et al., EMNLP 2014

- "A Neural Probabilistic Language Model", Bengio et al, JMLR, 2003
- "Three New Graphical Models for Statistical Language Modelling", Mnih & Hinton, ICML 2007
- "A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning", Collobert and Weston, ICML 2008
- "Neural network based language models for higly inflective languages", Mikolov et al., ICASSP 2009, separating the training of embeddings and that of the LM/task NN.
- ► Finally, Word2vec, "Distributed Representations of Words and Phrases and their Compositionality", Mikolov et al., NIPS 2013
- And, "GloVe: Global Vectors for Word Representation", Pennnington et al., EMNLP 2014

First neural language model

- Bengio et al., NIPS 2003, A neural probablistic language model
- Joint probability as a function of words:

```
P(\underbrace{w_i}_{target} | \underbrace{w_{i-\tau-1}, \dots, w_{i-1}}_{context}) = f(\underbrace{w_i}_{target}, \underbrace{w_{i-\tau-1}, \dots, w_{i-1}}_{context}) in 2 steps:
```

each word w_{i∈[i=x=1,j]} into a vector C(w_i) ∈ R" thru a look-up table C which is also a function, and

2. a function $g(-C(w_0))$, $C(w_0, \dots, 1)$, ..., $C(w_0, \dots)$) such that $w_0 = \max_{w \in S} g(w_0, \dots, 1)$ and the same some

 \triangleright \mathcal{V} is the vocabulary. For computing sake, g is simplified into $g(x, C(w_{i-\tau-1}), \ldots, C(w_{i-1}))$ where x is the index of the target word (correct or fake) in the vocabulary.

- Bengio et al., NIPS 2003, A neural probablistic language model
- Joint probability as a function of words:

$$P(\underbrace{w_i}_{target} | \underbrace{w_{i-\tau-1}, \dots, w_{i-1}}_{context}) = f(\underbrace{w_i}_{target}, \underbrace{w_{i-\tau-1}, \dots, w_{i-1}}_{context}) \text{ in 2 steps:}$$

- 1. each word $w_{j \in [i-\tau-1...i]}$ into a vector $C(w_j) \in \mathbb{R}^D$ thru a look-up table C, which is also a function, and
- 2. a function $g(C(w_x), C(w_{i-\tau-1}), \dots, C(w_{i-1}))$ such that $w_i = \operatorname{argmax} g$,

```
any word w_x, given the same context  g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "penguin''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "wheel''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "homework''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "homework''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "homework''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ lazy'') > g(\ "alog''\ | \ "a \ brown fox jumps over a \ laz
```

- Bengio et al., NIPS 2003, A neural probablistic language model
- Joint probability as a function of words:

$$P(\underbrace{w_i}_{target} | \underbrace{w_{i-\tau-1}, \dots, w_{i-1}}_{context}) = f(\underbrace{w_i}_{target}, \underbrace{w_{i-\tau-1}, \dots, w_{i-1}}_{context}) \text{ in 2 steps:}$$

1. each word $w_{j \in [i-\tau-1...i]}$ into a vector $C(w_j) \in \mathbb{R}^D$ thru a look-up table C, which is also a function, and

```
any word w_x, given the same context

e.g.,

g("dog'') ["a brown fox jumps over a lazy") > g("penguin'') ["a brown fox jumps over a lazy")

g("dog'') ["a brown fox jumps over a lazy") > g("wheel') ["a brown fox jumps over a lazy")

g("dog'') ["a brown fox jumps over a lazy") > g("homework'') ["a brown fox jumps over a lazy")

g("dog'') ["a brown fox jumps over a lazy") > g("homework'') ["a brown fox jumps over a lazy")
```

- Bengio et al., NIPS 2003, A neural probablistic language model
- Joint probability as a function of words:

$$P(\underbrace{w_i}_{target} | \underbrace{w_{i-\tau-1}, \dots, w_{i-1}}_{context}) = f(\underbrace{w_i}_{target}, \underbrace{w_{i-\tau-1}, \dots, w_{i-1}}_{context}) \text{ in 2 steps:}$$

1. each word $w_{j \in [i-\tau-1..i]}$ into a vector $C(w_j) \in \mathbb{R}^D$ thru a look-up table C, which is also a function, and

```
2. a function g(\underbrace{C(w_x)}_{\text{any word }w_x},\underbrace{C(w_{i-\tau-1}),\ldots,C(w_{i-1})}_{\text{given the same context}}) such that w_i = \operatorname*{argmax}_x g, e.g.,
```

```
\begin{array}{lll} g(\ "dog''\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") &>& g(\ "benguin''\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "dog''\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") &>& g(\ "homework'\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "dog''\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") &>& g(\ "homework'\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "dog''\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") &>& g(\ "homework'\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "dog''\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") &>& g(\ "homework'\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "dog''\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") &>& g(\ "homework'\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "dog''\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") &>& g(\ "homework'\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "dog''\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") &>& g(\ "a\ home\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "dog''\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") &>& g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") &=& g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") &=& g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") &=& g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "home\ brown\ fox\ jumps\ over\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") &=& g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "home\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\
```


- Bengio et al., NIPS 2003, A neural probablistic language model
- Joint probability as a function of words:

$$P(\underbrace{w_i}_{target} | \underbrace{w_{i-\tau-1}, \dots, w_{i-1}}_{context}) = f(\underbrace{w_i}_{target}, \underbrace{w_{i-\tau-1}, \dots, w_{i-1}}_{context})$$
 in 2 steps:

1. each word $w_{j \in [i-\tau-1...i]}$ into a vector $C(w_j) \in \mathbb{R}^D$ thru a look-up table C, which is also a function, and

```
2. a function g(\underbrace{C(w_x)}_{\text{any word } w_x}, \underbrace{C(w_{i-\tau-1}), \ldots, C(w_{i-1})}_{\text{given the same context}}) such that w_i = \underset{x}{\operatorname{argmax}} g, e.g.,
```

```
\begin{array}{lll} g(\ "dog''\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") &>& g(\ "benguin'\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "dog''\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") &>& g(\ "bomevork'\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "dog''\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") &>& g(\ "salar)'\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "dog''\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") &>& ug\ ("bomevork'\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "salar)'\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") &>& ug\ ("bomevork'\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") \\ g(\ "salar)'\ |\ "a\ brown\ fox\ jumps\ over\ a\ lazy") &>& ug\ on\ ay\ constructed\ fake/negative\ examples\ ... \end{array}
```


First neural language model (cont.)

Note the subscripts are different.

- ► Maximize the probablities of correct examples, e.g., g("dog"|"a brown fox jumps over a lazy")
- Minimize those of all fake exampels, e.g., g("penguin"|"a brown fox jumps over a lazy"), g("homework"|"a brown fox jumps over a lazy"
- Put them all together: $J = \sum g(\text{correct target}, context) \sum g(\text{fake target}, context) \text{ Max it}$
- ▶ During the training, the *g* for correct targets grow, while the *g* for fake targets drop, because the *C* for them is being updated.
- ▶ Bengio et al. 2003 has only the first term, lack of the part for fake targets.
- ightharpoonup For computational stablity, usually $\log g$.
- ► How to generate fake samples? Let all words but "dog" to pair with context "a brown fox jumps over a lazy"?

- Maximize the probablities of correct examples, e.g., g("dog"|"a brown fox jumps over a lazy")
- Minimize those of all fake exampels, e.g., g("penguin"|"a brown fox jumps over a lazy"), g("homework"|"a brown fox jumps over a lazy")
- Put them all together: $J = \sum g(\text{correct target}, context) \sum g(\text{fake target}, context) \text{ Max it}$
- During the training, the g for correct targets grow, while the g for fake targets drop, because the C for them is being updated.
- Bengio et al. 2003 has only the first term, lack of the part for fake targets.
- ▶ For computational stablity, usually $\log g$.
- ► How to generate fake samples? Let all words but "dog" to pair with context "a brown fox jumps over a lazy"?

- Maximize the probablities of correct examples, e.g., g("dog"|"a brown fox jumps over a lazy")
- Minimize those of all fake exampels, e.g., g("penguin"|"a brown fox jumps over a lazy"), g("homework"|"a brown fox jumps over a lazy")
- Put them all together:
 - $J = \sum g(\text{correct target}, context) \sum g(\text{fake target}, context) \text{ Max it!}$
- During the training, the g for correct targets grow, while the g for fake targets drop, because the C for them is being updated.
- ▶ Bengio et al. 2003 has only the first term, lack of the part for fake targets.
- ► For computational stablity, usually log g.
- ► How to generate fake samples? Let all words but "dog" to pair with context "a brown fox jumps over a lazy"?

- Maximize the probablities of correct examples, e.g., g("dog"|"a brown fox jumps over a lazy")
- Minimize those of all fake exampels, e.g., g("penguin"|"a brown fox jumps over a lazy"), g("homework"|"a brown fox jumps over a lazy")
- Put them all together: $J = \sum g(\text{correct target}, context) \sum g(\text{fake target}, context)$ Max it!
- ▶ During the training, the *g* for correct targets grow, while the *g* for fake targets drop, because the *C* for them is being updated.
- Bengio et al. 2003 has only the first term, lack of the part for fake targets.
- ▶ For computational stablity, usually $\log g$.
- ► How to generate fake samples? Let all words but "dog" to pair with context "a brown fox jumps over a lazy"?

- Maximize the probablities of correct examples, e.g., g("dog"|"a brown fox jumps over a lazy")
- Minimize those of all fake exampels, e.g., g("penguin"|"a brown fox jumps over a lazy"), g("homework"|"a brown fox jumps over a lazy")
- Put them all together: $J = \sum g(\text{correct target}, context) \sum g(\text{fake target}, context)$ Max it!
- ▶ During the training, the *g* for correct targets grow, while the *g* for fake targets drop, because the *C* for them is being updated.
- Bengio et al. 2003 has only the first term, lack of the part for fake targets.
- For computational stablity, usually $\log g$.
- ► How to generate fake samples? Let all words but "dog" to pair with context "a brown fox jumps over a lazy"?

- Maximize the probablities of correct examples, e.g., g("dog"|"a brown fox jumps over a lazy")
- Minimize those of all fake exampels, e.g., g("penguin"|"a brown fox jumps over a lazy"), g("homework"|"a brown fox jumps over a lazy")
- Put them all together: $J = \sum g(\text{correct target}, context) \sum g(\text{fake target}, context)$ Max it!
- ▶ During the training, the *g* for correct targets grow, while the *g* for fake targets drop, because the *C* for them is being updated.
- Bengio et al. 2003 has only the first term, lack of the part for fake targets.
- ▶ For computational stablity, usually $\log g$.
- How to generate fake samples? Let all words but "dog" to pair with context "a brown fox jumps over a lazy"?

- Maximize the probablities of correct examples, e.g., g("dog"|"a brown fox jumps over a lazy")
- Minimize those of all fake exampels, e.g., g("penguin"|"a brown fox jumps over a lazy"), g("homework"|"a brown fox jumps over a lazy")
- Put them all together: $J = \sum g(\text{correct target}, context) \sum g(\text{fake target}, context)$ Max it!
- ▶ During the training, the *g* for correct targets grow, while the *g* for fake targets drop, because the *C* for them is being updated.
- Bengio et al. 2003 has only the first term, lack of the part for fake targets.
- ▶ For computational stablity, usually $\log g$.
- How to generate fake samples? Let all words but "dog" to pair with context "a brown fox jumps over a lazy"?

Negative sampling

- ▶ Too many fake samples. For each correct target (e.g., "a quick brown fox jumps over a lazy dog"), we can have $|\mathcal{V}|-1$ fake/negative samples (e.g., "a quick brown fox jumps over a lazy cat/penguin/car/code…").
- A better strategy is to just sample some of them.

Negative sampling

- ▶ Too many fake samples. For each correct target (e.g., "a quick brown fox jumps over a lazy dog"), we can have $|\mathcal{V}| 1$ fake/negative samples (e.g., "a quick brown fox jumps over a lazy cat/penguin/car/code...").
- A better strategy is to just sample some of them.

- Words are represented into vectors using a look-up table (embedding matrix)
- The look-up table is updated using backpropgragation (thus word embeddings are updated)
- Context words are mapped together into the output layer
- Forward (not to be confused with feedforward): using history words to predict next word

- Words are represented into vectors using a look-up table (embedding matrix)
- The look-up table is updated using backpropgragation (thus word embeddings are updated)
- Context words are mapped together into the output layer
- Forward (not to be confused with feedforward): using history words to predict next word

- Words are represented into vectors using a look-up table (embedding matrix)
- The look-up table is updated using backpropgragation (thus word embeddings are updated)
- Context words are mapped together into the output layer
- Forward (not to be confused with feedforward): using history words to predict next word

- Words are represented into vectors using a look-up table (embedding matrix)
- The look-up table is updated using backpropgragation (thus word embeddings are updated)
- Context words are mapped together into the output layer
- Forward (not to be confused with feedforward): using history words to predict next word

▶ The goal is still to use left history words w_1 to w_{n-1} to predict the n-th word w_n

$$E(w_n; w_{1:n-1}) = -\left(\sum_{i=1}^{n-1} v_i^T R C_i\right) R^T v_n - bias$$

- ► *R* is the embedding matrix while *C_i*'s are the weights of the language model.
- ▶ Bi-linear: embeddings of context words $v_i^T R$ are linear projected by C_i 's, and then the summation of projections dot product with the embedding of the target word $R^T v_n$.
- ▶ Purely linear: faster than tanh used in Bengio 2003

► The goal is still to use left history words w_1 to w_{n-1} to predict the n-th word w_n

$$E(w_n; w_{1:n-1}) = -\left(\sum_{i=1}^{n-1} v_i^T R C_i\right) R^T v_n - bias$$

- ► *R* is the embedding matrix while *C_i*'s are the weights of the language model.
- ▶ Bi-linear: embeddings of context words $v_i^T R$ are linear projected by C_i 's, and then the summation of projections dot product with the embedding of the target word $R^T v_n$.
- ► Purely linear: faster than tanh used in Bengio 2003

▶ The goal is still to use left history words w_1 to w_{n-1} to predict the n-th word w_n

$$E(w_n; w_{1:n-1}) = -\left(\sum_{i=1}^{n-1} v_i^T R C_i\right) R^T v_n - bias$$

- R is the embedding matrix while C_i's are the weights of the language model.
- ▶ Bi-linear: embeddings of context words $v_i^T R$ are linear projected by C_i 's, and then the summation of projections dot product with the embedding of the target word $R^T v_n$.
- ▶ Purely linear: faster than tanh used in Bengio 2003.

► The goal is still to use left history words w_1 to w_{n-1} to predict the n-th word w_n

$$E(w_n; w_{1:n-1}) = -\left(\sum_{i=1}^{n-1} v_i^T R C_i\right) R^T v_n - bias$$

- R is the embedding matrix while C_i's are the weights of the language model.
- ▶ Bi-linear: embeddings of context words $v_i^T R$ are linear projected by C_i 's, and then the summation of projections dot product with the embedding of the target word $R^T v_n$.
- ▶ Purely linear: faster than tanh used in Bengio 2003.

▶ The goal is still to use left history words w_1 to w_{n-1} to predict the n-th word w_n

$$E(w_n; w_{1:n-1}) = -\left(\sum_{i=1}^{n-1} v_i^T R C_i\right) R^T v_n - bias$$

- R is the embedding matrix while C_i's are the weights of the language model.
- ▶ Bi-linear: embeddings of context words $v_i^T R$ are linear projected by C_i 's, and then the summation of projections dot product with the embedding of the target word $R^T v_n$.
- Purely linear: faster than tanh used in Bengio 2003.

- Lookup-table layer: embedding layer
- Convolutional layers to extract features
- ► TDNNs to deal with variable lengths of sentences.
- Position encoding: encode the distance between every word in the sentence and the word to be predicted

- Lookup-table layer: embedding layer
- Convolutional layers to extract features
- TDNNs to deal with variable lengths of sentences.
- Position encoding: encode the distance between every word in the sentence and the word to be predicted

- Lookup-table layer: embedding layer
- Convolutional layers to extract features
- TDNNs to deal with variable lengths of sentences.
- Position encoding: encode the distance between every word in the sentence and the word to be predicted

- ► Lookup-table layer: embedding layer
- Convolutional layers to extract features
- TDNNs to deal with variable lengths of sentences.
- Position encoding: encode the distance between every word in the sentence and the word to be predicted

Separating word embeddings and language models

- ► All work up to this point tries to learn word embeddings and language models together: one network with both the projection/LUT layer and the language model layer (for the task).
- ► In Mokolov et al., ICASSP 2009, "Neural network based language models for higly inflective languages", the authors noticed that separating the two can be better.
- ► This becomes the foundation of the word2vec.

Separating word embeddings and language models

- ➤ All work up to this point tries to learn word embeddings and language models together: one network with both the projection/LUT layer and the language model layer (for the task).
- ► In Mokolov et al., ICASSP 2009, "Neural network based language models for higly inflective languages", the authors noticed that separating the two can be better.
- This becomes the foundation of the word2vec.

Separating word embeddings and language models

- ➤ All work up to this point tries to learn word embeddings and language models together: one network with both the projection/LUT layer and the language model layer (for the task).
- ► In Mokolov et al., ICASSP 2009, "Neural network based language models for higly inflective languages", the authors noticed that separating the two can be better.
- ► This becomes the foundation of the word2vec.

- Did not refer to Bengio's or Hinton's models at all.
- ▶ Words like "embedding" or "look-up table" do not appear in this paper.
- ▶ Just brutal force: one-hot encoding as the input, which does the propose of embedding layer (maybe) unintentionally.
- Per the authors, they did so hoping to form a clustering of word representations at the hidden layer, e.g., "see", "saw", "seen" would be mapped to similar vectors.
- Separating the training of word embeddings and language models.
- ► First train word embeddings by predicting the next word based on the previous word, called bigram network in the paper.
- ► Then train n-gram LM using the word embeddings just trained.

- Did not refer to Bengio's or Hinton's models at all.
- ▶ Words like "embedding" or "look-up table" do not appear in this paper.
- ▶ Just brutal force: one-hot encoding as the input, which does the propose of embedding layer (maybe) unintentionally.
- ▶ Per the authors, they did so hoping to form a clustering of word representations at the hidden layer, e.g., "see", "saw", "seen" would be mapped to similar vectors.
- Separating the training of word embeddings and language models
- ► First train word embeddings by predicting the next word based on the previous word, called bigram network in the paper.
- ▶ Then train n-gram LM using the word embeddings just trained.

- Did not refer to Bengio's or Hinton's models at all.
- ▶ Words like "embedding" or "look-up table" do not appear in this paper.
- ▶ Just brutal force: one-hot encoding as the input, which does the propose of embedding layer (maybe) unintentionally.
- Per the authors, they did so hoping to form a clustering of word representations at the hidden layer, e.g., "see", "saw", "seen" would be mapped to similar vectors.
- Separating the training of word embeddings and language models
- ► First train word embeddings by predicting the next word based on the previous word, called bigram network in the paper.
- ▶ Then train n-gram LM using the word embeddings just trained.

- Did not refer to Bengio's or Hinton's models at all.
- ▶ Words like "embedding" or "look-up table" do not appear in this paper.
- ▶ Just brutal force: one-hot encoding as the input, which does the propose of embedding layer (maybe) unintentionally.
- ▶ Per the authors, they did so hoping to form a clustering of word representations at the hidden layer, e.g., "see", "saw", "seen" would be mapped to similar vectors.
- Separating the training of word embeddings and language models.
- First train word embeddings by predicting the next word based on the previous word, called bigram network in the paper.
- ► Then train n-gram LM using the word embeddings just trained.

- Did not refer to Bengio's or Hinton's models at all.
- ▶ Words like "embedding" or "look-up table" do not appear in this paper.
- ▶ Just brutal force: one-hot encoding as the input, which does the propose of embedding layer (maybe) unintentionally.
- ▶ Per the authors, they did so hoping to form a clustering of word representations at the hidden layer, e.g., "see", "saw", "seen" would be mapped to similar vectors.
- Separating the training of word embeddings and language models.
- First train word embeddings by predicting the next word based on the previous word, called bigram network in the paper.
- ► Then train n-gram LM using the word embeddings just trained.

- Did not refer to Bengio's or Hinton's models at all.
- ▶ Words like "embedding" or "look-up table" do not appear in this paper.
- ▶ Just brutal force: one-hot encoding as the input, which does the propose of embedding layer (maybe) unintentionally.
- ▶ Per the authors, they did so hoping to form a clustering of word representations at the hidden layer, e.g., "see", "saw", "seen" would be mapped to similar vectors.
- Separating the training of word embeddings and language models.
- ► First train word embeddings by predicting the next word based on the previous word, called bigram network in the paper.
- ► Then train n-gram LM using the word embeddings just trained.

Mokolov et al., ICASSP 2009, Neural network based language models for higly inflective languages

- Did not refer to Bengio's or Hinton's models at all.
- ▶ Words like "embedding" or "look-up table" do not appear in this paper.
- Just brutal force: one-hot encoding as the input, which does the propose of embedding layer (maybe) unintentionally.
- ▶ Per the authors, they did so hoping to form a clustering of word representations at the hidden layer, e.g., "see", "saw", "seen" would be mapped to similar vectors.
- Separating the training of word embeddings and language models.
- ► First train word embeddings by predicting the next word based on the previous word, called bigram network in the paper.
- ► Then train n-gram LM using the word embeddings just trained.

- Mikolov et al. used extremely simple networks in their ICASSP 2009 paper.
- Nothing fancy like bi-linear interactions.
- Their terminology differs from those appearing in Bengio's or Hinton's
- Their InterSpeech 2010 paper "Recurrent neural network based language model" is just Elman's network. Again, one-hot encoding as input.
- Hypothetically, if they submitted the papers to ACL/NAACL/EMNLP/COLING, what feedback would they receive? "Trivial model," "nothing new," "lack of comparison with X,Y,Z".
- ► The beauty of science is to make things simple.

- Mikolov et al. used extremely simple networks in their ICASSP 2009 paper.
- Nothing fancy like bi-linear interactions.
- ▶ Their terminology differs from those appearing in Bengio's or Hinton's
- Their InterSpeech 2010 paper "Recurrent neural network based language model" is just Elman's network. Again, one-hot encoding as input.
- Hypothetically, if they submitted the papers to ACL/NAACL/EMNLP/COLING, what feedback would they receive? "Trivial model," "nothing new," "lack of comparison with X,Y,Z".
- ► The beauty of science is to make things simple.

- Mikolov et al. used extremely simple networks in their ICASSP 2009 paper.
- Nothing fancy like bi-linear interactions.
- Their terminology differs from those appearing in Bengio's or Hinton's.
- Their InterSpeech 2010 paper "Recurrent neural network based language model" is just Elman's network. Again, one-hot encoding as input.
- Hypothetically, if they submitted the papers to ACL/NAACL/EMNLP/COLING, what feedback would they receive? "Trivial model," "nothing new," "lack of comparison with X,Y,Z".
- ► The beauty of science is to make things simple.

- Mikolov et al. used extremely simple networks in their ICASSP 2009 paper.
- Nothing fancy like bi-linear interactions.
- Their terminology differs from those appearing in Bengio's or Hinton's.
- Their InterSpeech 2010 paper "Recurrent neural network based language model" is just Elman's network. Again, one-hot encoding as input.
- Hypothetically, if they submitted the papers to ACL/NAACL/EMNLP/COLING, what feedback would they receive? "Trivial model," "nothing new," "lack of comparison with X,Y,Z".
- ▶ The beauty of science is to make things simple.

- Mikolov et al. used extremely simple networks in their ICASSP 2009 paper.
- Nothing fancy like bi-linear interactions.
- Their terminology differs from those appearing in Bengio's or Hinton's.
- Their InterSpeech 2010 paper "Recurrent neural network based language model" is just Elman's network. Again, one-hot encoding as input.
- ► Hypothetically, if they submitted the papers to ACL/NAACL/EMNLP/COLING, what feedback would they receive? "Trivial model," "nothing new," "lack of comparison with X,Y,Z".
- ► The beauty of science is to make things simple.

- Mikolov et al. used extremely simple networks in their ICASSP 2009 paper.
- Nothing fancy like bi-linear interactions.
- Their terminology differs from those appearing in Bengio's or Hinton's.
- Their InterSpeech 2010 paper "Recurrent neural network based language model" is just Elman's network. Again, one-hot encoding as input.
- ► Hypothetically, if they submitted the papers to ACL/NAACL/EMNLP/COLING, what feedback would they receive? "Trivial model," "nothing new," "lack of comparison with X,Y,Z".
- ► The beauty of science is to make things simple.

- ► Two models: CBOW (similar to Bengio et al. 2003) and Skip-gram.
- CBOW: use context to predict target word.
- Skip-gram: use target word to predict context words:
- Very simple network architecture: For CBOW, see https://www.tensorflow.org/tutorials/representation/word2vec For Skip-gram, see http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
- ► For math, see https://papers.nips.cc/paper/ 5021-distributed-representations-of-words-and-phrases-apdf

- ▶ Two models: CBOW (similar to Bengio et al. 2003) and Skip-gram.
- CBOW: use context to predict target word.
- Skip-gram: use target word to predict context words:
- Very simple network architecture: For CBOW, see https://www.tensorflow.org/tutorials/representation/word2vec For Skip-gram, see http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
- ► For math, see https://papers.nips.cc/paper/ 5021-distributed-representations-of-words-and-phrases-apdf

- ▶ Two models: CBOW (similar to Bengio et al. 2003) and Skip-gram.
- CBOW: use context to predict target word.
- Skip-gram: use target word to predict context words:
- Very simple network architecture: For CBOW, see https://www.tensorflow.org/tutorials/representation/word2vec For Skip-gram, see http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
- ► For math, see https://papers.nips.cc/paper/ 5021-distributed-representations-of-words-and-phrases-apdf

- ▶ Two models: CBOW (similar to Bengio et al. 2003) and Skip-gram.
- CBOW: use context to predict target word.
- Skip-gram: use target word to predict context words:
- Very simple network architecture: For CBOW, see https://www.tensorflow.org/tutorials/representation/word2vec For Skip-gram, see http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
- ► For math, see https://papers.nips.cc/paper/ 5021-distributed-representations-of-words-and-phrases-apdf

- ▶ Two models: CBOW (similar to Bengio et al. 2003) and Skip-gram.
- CBOW: use context to predict target word.
- Skip-gram: use target word to predict context words:
- Very simple network architecture: For CBOW, see https://www.tensorflow.org/tutorials/representation/word2vec For Skip-gram, see http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
- ► For math, see https://papers.nips.cc/paper/ 5021-distributed-representations-of-words-and-phrases-ampdf

- Separating word embedding learning and language model learning.
- A super simple linear layer faster training
- Skip-gram updating the embedding of only one word each time.
- Bidirectional context: forward and backword

- Separating word embedding learning and language model learning.
- A super simple linear layer faster training.
- Skip-gram updating the embedding of only one word each time.
- ► Bidirectional context: forward and backword

- Separating word embedding learning and language model learning.
- A super simple linear layer faster training.
- Skip-gram updating the embedding of only one word each time.
- Bidirectional context: forward and backword

- Separating word embedding learning and language model learning.
- A super simple linear layer faster training.
- Skip-gram updating the embedding of only one word each time.
- Bidirectional context: forward and backword

- lt only uses local context information.
- ► However, some local context words do not contain much semantics of the center word, e.g., "the" in "The cat sat on the mat," because they have lots co-occurrence with other words.
- Solution: remove stop words from the corpus.
- But that's arbitrary and relies on manual rules.
- Better solution: make use of word-word co-occurence in a global scope.

- It only uses local context information.
- However, some local context words do not contain much semantics of the center word, e.g., "the" in "The cat sat on the mat," because they have lots co-occurrence with other words.
- Solution: remove stop words from the corpus
- But that's arbitrary and relies on manual rules.
- Better solution: make use of word-word co-occurence in a global scope.

- lt only uses local context information.
- However, some local context words do not contain much semantics of the center word, e.g., "the" in "The cat sat on the mat," because they have lots co-occurrence with other words.
- Solution: remove stop words from the corpus.
- But that's arbitrary and relies on manual rules.
- Better solution: make use of word-word co-occurence in a global scope.

- lt only uses local context information.
- However, some local context words do not contain much semantics of the center word, e.g., "the" in "The cat sat on the mat," because they have lots co-occurrence with other words.
- Solution: remove stop words from the corpus.
- But that's arbitrary and relies on manual rules.
- Better solution: make use of word-word co-occurence in a global scope.

- It only uses local context information.
- However, some local context words do not contain much semantics of the center word, e.g., "the" in "The cat sat on the mat," because they have lots co-occurrence with other words.
- Solution: remove stop words from the corpus.
- But that's arbitrary and relies on manual rules.
- Better solution: make use of word-word co-occurence in a global scope.

- We have seen two approaches to word embedding: factorization on co-cooccurence matrixes and neural network-based embedding using local context.
- GloVe combines the benefit of the two
- Key observation: ratios of co-occurrence probabilities revea semantics better than co-occurence probabilities.

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

- "water" and "fashion" both have little power to tell the difference between "ice" and "steam": ratios around 1. They are both about water and have little connection with fashion. But "solid" and "gas" can: ratios much larger or smaller than 1.
- P(k|ice)P(k|steam) >> 1 if k is closer to "ice", and << 1 if k is closer to "steam".</p>
- Challenge: how to define a loss function to train the embeddings?
- Starting point: Instead of modeling $g(w_1, w_2)$, let's model $g(w_1, w_2, w_k)$

- We have seen two approaches to word embedding: factorization on co-cooccurence matrixes and neural network-based embedding using local context.
- GloVe combines the benefit of the two.
- Key observation: ratios of co-occurrence probabilities revea semantics better than co-occurence probabilities.

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

- "water" and "fashion" both have little power to tell the difference between "ice" and "steam": ratios around 1. They are both about water and have little connection with fashion. But "solid" and "gas" can: ratios much larger or smaller than 1.
- ▶ P(k|ice)P(k|steam) >> 1 if k is closer to "ice", and << 1 if k is closer to "steam".</p>
- Challenge: how to define a loss function to train the embeddings?
- Starting point: Instead of modeling $g(w_1, w_2)$, let's model $g(w_1, w_2, w_k)$

- We have seen two approaches to word embedding: factorization on co-cooccurence matrixes and neural network-based embedding using local context.
- GloVe combines the benefit of the two.
- Key observation: ratios of co-occurrence probabilities reveal semantics better than co-occurence probabilities.

Probability and Ratio				
P(k ice)	1.9×10^{-4} 2.2×10^{-5}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

- "water" and "fashion" both have little power to tell the difference between "ice" and "steam": ratios around 1. They are both about water and have little connection with fashion. But "solid" and "gas' can: ratios much larger or smaller than 1.
- P(k|ice)P(k|steam) >> 1 if k is closer to "ice", and << 1 if k is closer to "steam".</p>
- Challenge: how to define a loss function to train the embeddings?
- Starting point: Instead of modeling $g(w_1, w_2)$, let's model $g(w_1, w_2, w_k)$

- We have seen two approaches to word embedding: factorization on co-cooccurence matrixes and neural network-based embedding using local context.
- GloVe combines the benefit of the two.
- Key observation: ratios of co-occurrence probabilities reveal semantics better than co-occurence probabilities.

Probability and Ratio				
P(k ice)	1.9×10^{-4} 2.2×10^{-5}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

- "water" and "fashion" both have little power to tell the difference between "ice" and "steam": ratios around 1. They are both about water and have little connection with fashion. But "solid" and "gas" can: ratios much larger or smaller than 1.
- P(k|ice)P(k|steam) >> 1 if k is closer to "ice", and << 1 if k is closer to "steam".</p>
- ► Challenge: how to define a loss function to train the embeddings?
- Starting point: Instead of modeling $g(w_1, w_2)$, let's model $g(w_1, w_2, w_k)$

- We have seen two approaches to word embedding: factorization on co-cooccurence matrixes and neural network-based embedding using local context.
- GloVe combines the benefit of the two.
- Key observation: ratios of co-occurrence probabilities reveal semantics better than co-occurence probabilities.

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
$P(k \mathit{ice})/P(k \mathit{steam})$	8.9	8.5×10^{-2}	1.36	0.96

- "water" and "fashion" both have little power to tell the difference between "ice" and "steam": ratios around 1. They are both about water and have little connection with fashion. But "solid" and "gas" can: ratios much larger or smaller than 1.
- ▶ P(k|ice)P(k|steam) >> 1 if k is closer to "ice", and << 1 if k is closer to "steam".</p>
- ► Challenge: how to define a loss function to train the embeddings?
- Starting point: Instead of modeling $g(w_1, w_2)$, let's model $g(w_1, w_2, w_k)$ where w_k can be any word.

- We have seen two approaches to word embedding: factorization on co-cooccurence matrixes and neural network-based embedding using local context.
- GloVe combines the benefit of the two.
- Key observation: ratios of co-occurrence probabilities reveal semantics better than co-occurence probabilities.

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

- "water" and "fashion" both have little power to tell the difference between "ice" and "steam": ratios around 1. They are both about water and have little connection with fashion. But "solid" and "gas" can: ratios much larger or smaller than 1.
- ▶ P(k|ice)P(k|steam) >> 1 if k is closer to "ice", and << 1 if k is closer to "steam".</p>
- Challenge: how to define a loss function to train the embeddings?
- Starting point: Instead of modeling $g(w_1, w_2)$, let's model $g(w_1, w_2, w_k)$ where w_k can be any word.

- We have seen two approaches to word embedding: factorization on co-cooccurence matrixes and neural network-based embedding using local context.
- GloVe combines the benefit of the two.
- Key observation: ratios of co-occurrence probabilities reveal semantics better than co-occurence probabilities.

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

- "water" and "fashion" both have little power to tell the difference between "ice" and "steam": ratios around 1. They are both about water and have little connection with fashion. But "solid" and "gas" can: ratios much larger or smaller than 1.
- ightharpoonup P(k|steam) >> 1 if k is closer to "ice", and << 1 if k is closer to "steam".
- ► Challenge: how to define a loss function to train the embeddings?
- Starting point: Instead of modeling $g(w_1, w_2)$, let's model $g(w_1, w_2, w_k)$ where w_k can be any word.

- We have seen two approaches to word embedding: factorization on co-cooccurence matrixes and neural network-based embedding using local context.
- GloVe combines the benefit of the two.
- Key observation: ratios of co-occurrence probabilities reveal semantics better than co-occurence probabilities.

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

- "water" and "fashion" both have little power to tell the difference between "ice" and "steam": ratios around 1. They are both about water and have little connection with fashion. But "solid" and "gas" can: ratios much larger or smaller than 1.
- ightharpoonup P(k|steam) >> 1 if k is closer to "ice", and << 1 if k is closer to "steam".
- ► Challenge: how to define a loss function to train the embeddings?
- Starting point: Instead of modeling $g(w_1, w_2)$, let's model $g(w_1, w_2, w_k)$ where w_k can be any word.

- ▶ GloVe wants to archive a relation F of two words w_i and w_j and a context word w'_k (' indicating the context word, not an operation) such that $F(w_i, w_j, w'_k) = P_{ik}/P_{jk}$ where P_{ik} and P_{jk} are the co-occurring probability of w_i and w'_k and that of w_j and w'_k .
- First, the difference between w_i and w_j is expected to be characterized linearly. The simplest linear difference is vector subtraction. Hence, $F(w_i w_i, w'_k) = P_{ik}/P_{jk}$. F is overloaded.
- ▶ Second, the difference $w_i w_j$ with respect to the context word w'_k to be linearly characterized as well. The simplest form is dot product. Hence, $F((w_i w_i)^T w'_k) = P_{ik}/P_{ik}$. F is overloaded again.
- ► Third, we want to characterize the difference between any two words using their co-occourence, regardless of whether a word is a context word or not. Hence, we want
 - $F((w_i w_j)^T w_k') = F(w_i^T w_k' + (-w_j^T w_k')) = F(w_i^T w_k') \circ F(-w_j^T w_k')$ where \circ is an operation to be found. Such an F is known as a group homomorphism in discrete math.

- ▶ GloVe wants to archive a relation F of two words w_i and w_j and a context word w'_k (' indicating the context word, not an operation) such that $F(w_i, w_j, w'_k) = P_{ik}/P_{jk}$ where P_{ik} and P_{jk} are the co-occurring probability of w_i and w'_k and that of w_j and w'_k .
- ► First, the difference between w_i and w_j is expected to be characterized linearly. The simplest linear difference is vector subtraction. Hence, $F(w_i w_j, w'_k) = P_{ik}/P_{jk}$. F is overloaded.
- ▶ Second, the difference $w_i w_j$ with respect to the context word w'_k to be linearly characterized as well. The simplest form is dot product. Hence, $F((w_i w_i)^T w'_k) = P_{ik}/P_{ik}$. F is overloaded again.
- ► Third, we want to characterize the difference between any two words using their co-occourence, regardless of whether a word is a context word or not. Hence, we want $F((w_i w_j)^T w_k') = F(w_i^T w_k' + (-w_j^T w_k')) = F(w_i^T w_k') \circ F(-w_j^T w_k')$ where \circ is an operation to be found. Such an F is known as a group homomorphism in discrete math.

- ▶ GloVe wants to archive a relation F of two words w_i and w_j and a context word w'_k (' indicating the context word, not an operation) such that $F(w_i, w_j, w'_k) = P_{ik}/P_{jk}$ where P_{ik} and P_{jk} are the co-occurring probability of w_i and w'_k and that of w_j and w'_k .
- ► First, the difference between w_i and w_j is expected to be characterized linearly. The simplest linear difference is vector subtraction. Hence, $F(w_i w_j, w'_k) = P_{ik}/P_{jk}$. F is overloaded.
- Second, the difference $w_i w_j$ with respect to the context word w'_k to be linearly characterized as well. The simplest form is dot product. Hence, $F((w_i w_j)^T w'_k) = P_{ik}/P_{jk}$. F is overloaded again.
- Third, we want to characterize the difference between any two words using their co-occourence, regardless of whether a word is a context word or not. Hence, we want $F((w_i w_j)^T w_k') = F(w_i^T w_k' + (-w_j^T w_k')) = F(w_i^T w_k') \circ F(-w_j^T w_k') \text{ where } \circ \text{ is an operation to be found. Such an } F \text{ is known as a group homomorphism in discrete math.}$

- ▶ GloVe wants to archive a relation F of two words w_i and w_j and a context word w'_k (' indicating the context word, not an operation) such that $F(w_i, w_j, w'_k) = P_{ik}/P_{jk}$ where P_{ik} and P_{jk} are the co-occurring probability of w_i and w'_k and that of w_j and w'_k .
- ► First, the difference between w_i and w_j is expected to be characterized linearly. The simplest linear difference is vector subtraction. Hence, $F(w_i w_j, w'_k) = P_{ik}/P_{jk}$. F is overloaded.
- Second, the difference $w_i w_j$ with respect to the context word w'_k to be linearly characterized as well. The simplest form is dot product. Hence, $F((w_i w_j)^T w'_k) = P_{ik}/P_{jk}$. F is overloaded again.
- ▶ Third, we want to characterize the difference between any two words using their co-occourence, regardless of whether a word is a context word or not. Hence, we want $F((w_i w_j)^T w_k') = F(w_i^T w_k' + (-w_j^T w_k')) = F(w_i^T w_k') \circ F(-w_j^T w_k') \text{ where } \circ \text{ is an operation to be found. Such an } F \text{ is known as a group homomorphism in discrete math.}$

- ▶ We can make \circ to be super simple, just multiplication. Thus, $F((w_i w_j)^T w_k') = F(w_i^T w_k') \cdot F(-w_j^T w_k')$ Then F is a homomorphism between groups $(\mathbb{R}, +)$ and (\mathbb{R}^+, \times) .
- Exponential functions are such homomorphism, i.e., $e^{a+b} = e^a \cdot e^b$, thus $F = \exp$.
- ▶ Based on the definition, $F((w_i w_j)^T w_k') = P_{ik}/P_{jk}$ and $F((w_j w_i)^T w_k') = P_{jk}/P_{ik}$ (i and j flipped in the second equation). Their product $F(x)F(-x) = \frac{P_{ik}}{P_{ik}} \frac{P_{jk}}{P_{ik}} = 1$ or $F(-x) = \frac{1}{F(x)}$.
- Using this property, we have $F(w_i w_j)^T w_k') = F(w_i^T w_k') \cdot F(-w_j^T w_k') = \frac{F(w_i^T w_k')}{F(w_i^T w_k')}$

- ▶ We can make \circ to be super simple, just multiplication. Thus, $F((w_i w_j)^T w_k') = F(w_i^T w_k') \cdot F(-w_j^T w_k')$ Then F is a homomorphism between groups $(\mathbb{R}, +)$ and (\mathbb{R}^+, \times) .
- Exponential functions are such homomorphism, i.e., $e^{a+b} = e^a \cdot e^b$, thus $F = \exp$.
- ▶ Based on the definition, $F((w_i w_j)^T w_k') = P_{ik}/P_{jk}$ and $F((w_j w_i)^T w_k') = P_{jk}/P_{ik}$ (i and j flipped in the second equation). Their product $F(x)F(-x) = \frac{P_{ik}}{P_{ik}}\frac{P_{jk}}{P_{ik}} = 1$ or $F(-x) = \frac{1}{F(x)}$.
- Using this property, we have $F(w_i w_j)^T w_k') = F(w_i^T w_k') \cdot F(-w_j^T w_k') = \frac{F(w_i^T w_k')}{F(w_i^T w_k')}.$

- ▶ We can make \circ to be super simple, just multiplication. Thus, $F((w_i w_j)^T w_k') = F(w_i^T w_k') \cdot F(-w_j^T w_k')$ Then F is a homomorphism between groups $(\mathbb{R}, +)$ and (\mathbb{R}^+, \times) .
- Exponential functions are such homomorphism, i.e., $e^{a+b} = e^a \cdot e^b$, thus $F = \exp$.
- ▶ Based on the definition, $F((w_i w_j)^T w_k') = P_{ik}/P_{jk}$ and $F((w_j w_i)^T w_k') = P_{jk}/P_{ik}$ (i and j flipped in the second equation). Their product $F(x)F(-x) = \frac{P_{ik}}{P_{ik}}\frac{P_{jk}}{P_{ik}} = 1$ or $F(-x) = \frac{1}{F(x)}$.
- Using this property, we have $F(w_i w_j)^T w_k') = F(w_i^T w_k') \cdot F(-w_j^T w_k') = \frac{F(w_i^T w_k')}{F(w_i'' w_k')}$

- ▶ We can make \circ to be super simple, just multiplication. Thus, $F((w_i w_j)^T w_k') = F(w_i^T w_k') \cdot F(-w_j^T w_k')$ Then F is a homomorphism between groups $(\mathbb{R}, +)$ and (\mathbb{R}^+, \times) .
- Exponential functions are such homomorphism, i.e., $e^{a+b} = e^a \cdot e^b$, thus $F = \exp$.
- ▶ Based on the definition, $F((w_i w_j)^T w_k') = P_{ik}/P_{jk}$ and $F((w_j w_i)^T w_k') = P_{jk}/P_{ik}$ (i and j flipped in the second equation). Their product $F(x)F(-x) = \frac{P_{ik}}{P_w} \frac{P_{jk}}{P_w} = 1$ or $F(-x) = \frac{1}{F(x)}$.
- Using this property, we have $F(w_i w_j)^T w_k') = F(w_i^T w_k') \cdot F(-w_j^T w_k') = \frac{F(w_i^T w_k')}{F(w_j^T w_k')}.$

- ▶ Recalling that $F((w_i w_j)^T w_k') = P_{ik}/P_{jk}$, we have $F(w_i^T w_k') = \exp(w_i^T w_k') = P_{ik} = X_{ik}/Xi$ where X_{ik} is the global cooccurence of w_i and w_k and X_i is the global occurence of w_i .
- Log on both sides, we have $w_i^T w_k' = \log X_{ik} \log X_i$ where $\log X_i$ has nothing to do with w_k' and hence is absorbed into a bias: $w_i^T w_k' = \log X_i k + b_i$.
- Last tuning: the authors want the formula above to be symmetric to both w'_k and w_i , thus the bias term is not only there for non-context word. Hence they add a bias for the context word: $w_i^T w'_k = \log X_{ik} + b_i + b'_k$.
- ▶ Then the loss function is $(\log X_{ik} w_i^T w_k' b_i b_k')^2$ and the goal is to minimize it.
- Not really. One more thing.

- ▶ Recalling that $F((w_i w_j)^T w_k') = P_{ik}/P_{jk}$, we have $F(w_i^T w_k') = \exp(w_i^T w_k') = P_{ik} = X_{ik}/Xi$ where X_{ik} is the global cooccurence of w_i and w_k and X_i is the global occurence of w_i .
- Log on both sides, we have $w_i^T w_k' = \log X_{ik} \log X_i$ where $\log X_i$ has nothing to do with w_k' and hence is absorbed into a bias: $w_i^T w_k' = \log X_i k + b_i$.
- Last tuning: the authors want the formula above to be symmetric to both w'_k and w_i , thus the bias term is not only there for non-context word. Hence they add a bias for the context word: $w''_k = \log X_{ik} + b_i + b'_k$.
- ► Then the loss function is $(\log X_{ik} w_i^T w_k' b_i b_k')^2$ and the goal is to minimize it.
- Not really. One more thing.

- ▶ Recalling that $F((w_i w_j)^T w_k') = P_{ik}/P_{jk}$, we have $F(w_i^T w_k') = \exp(w_i^T w_k') = P_{ik} = X_{ik}/Xi$ where X_{ik} is the global cooccurence of w_i and w_k and X_i is the global occurence of w_i .
- Log on both sides, we have $w_i^T w_k' = \log X_{ik} \log X_i$ where $\log X_i$ has nothing to do with w_k' and hence is absorbed into a bias: $w_i^T w_k' = \log X_i k + b_i$.
- Last tuning: the authors want the formula above to be symmetric to both w'_k and w_i , thus the bias term is not only there for non-context word. Hence they add a bias for the context word: $w_i^T w'_k = \log X_{ik} + b_i + b'_k$.
- ► Then the loss function is $(\log X_{ik} w_i^T w_k' b_i b_k')^2$ and the goal is to minimize it.
- Not really. One more thing.

- ▶ Recalling that $F((w_i w_j)^T w_k') = P_{ik}/P_{jk}$, we have $F(w_i^T w_k') = \exp(w_i^T w_k') = P_{ik} = X_{ik}/X_i$ where X_{ik} is the global cooccurence of w_i and w_k and X_i is the global occurence of w_i .
- Log on both sides, we have $w_i^T w_k' = \log X_{ik} \log X_i$ where $\log X_i$ has nothing to do with w_k' and hence is absorbed into a bias: $w_i^T w_k' = \log X_i k + b_i$.
- Last tuning: the authors want the formula above to be symmetric to both w'_k and w_i , thus the bias term is not only there for non-context word. Hence they add a bias for the context word: $w_i^T w'_k = \log X_{ik} + b_i + b'_k$.
- ► Then the loss function is $(\log X_{ik} w_i^T w_k' b_i b_k')^2$ and the goal is to minimize it.
- Not really. One more thing.

- ▶ Recalling that $F((w_i w_j)^T w_k') = P_{ik}/P_{jk}$, we have $F(w_i^T w_k') = \exp(w_i^T w_k') = P_{ik} = X_{ik}/Xi$ where X_{ik} is the global cooccurence of w_i and w_k and X_i is the global occurence of w_i .
- Log on both sides, we have $w_i^T w_k' = \log X_{ik} \log X_i$ where $\log X_i$ has nothing to do with w_k' and hence is absorbed into a bias: $w_i^T w_k' = \log X_i k + b_i$.
- Last tuning: the authors want the formula above to be symmetric to both w'_k and w_i , thus the bias term is not only there for non-context word. Hence they add a bias for the context word: $w_i^T w'_k = \log X_{ik} + b_i + b'_k$.
- ► Then the loss function is $(\log X_{ik} w_i^T w_k' b_i b_k')^2$ and the goal is to minimize it.
- Not really. One more thing.

- Word pairs have different frequencies in a corpus. So they should have different contributions to the loss function.
- ▶ Two goals of the weight function W: $W(X_{i,j})$ cannot be too large if $X_{i,j}$ is small whereas it cannot be too large also for frequenty w_i and w_j pairs.
- ► An implementation:

$$W(X_{i,j}) = \begin{cases} (X_{i,j}/X_{max})^{\alpha} & \text{if } X_{i,j} < X_{max} \\ 1 & \text{o/w} \end{cases}$$

- ▶ Empirical study finds that $\alpha = 3/4$ is a good number.
- ► See also: http://mlexplained.com/2018/04/29/ paper-dissected-glove-global-vectors-for-word-represent and http://text2vec.org/glove.html

- Word pairs have different frequencies in a corpus. So they should have different contributions to the loss function.
- $J = \sum_{i,j=1}^{|\mathcal{V}|} W(X_{i,j}) (\log X_{ij} w_i^T w_j b_i b_j)^2$
- ▶ Two goals of the weight function W: $W(X_{i,j})$ cannot be too large if $X_{i,j}$ is small whereas it cannot be too large also for frequenty w_i and w_j pairs.
- ► An implementation:

$$W(X_{i,j}) = \begin{cases} (X_{i,j}/X_{max})^{\alpha} & \text{if } X_{i,j} < X_{max} \\ 1 & \text{o/w} \end{cases}$$

- ▶ Empirical study finds that $\alpha = 3/4$ is a good number.
- ► See also: http://mlexplained.com/2018/04/29/ paper-dissected-glove-global-vectors-for-word-represent and http://text2vec.org/glove.html

- Word pairs have different frequencies in a corpus. So they should have different contributions to the loss function.
- $J = \sum_{i,j=1}^{|\mathcal{V}|} W(X_{i,j}) (\log X_{ij} w_i^T w_j b_i b_j)^2$
- ▶ Two goals of the weight function W: $W(X_{i,j})$ cannot be too large if $X_{i,j}$ is small whereas it cannot be too large also for frequenty w_i and w_j pairs.
- ► An implementation:

$$W(X_{i,j}) = \begin{cases} (X_{i,j}/X_{max})^{\alpha} & \text{if } X_{i,j} < X_{max} \\ 1 & \text{o/w} \end{cases}$$

- ▶ Empirical study finds that $\alpha = 3/4$ is a good number.
- ► See also: http://mlexplained.com/2018/04/29/ paper-dissected-glove-global-vectors-for-word-representant http://text2vec.org/glove.html

- Word pairs have different frequencies in a corpus. So they should have different contributions to the loss function.
- ▶ Two goals of the weight function W: $W(X_{i,j})$ cannot be too large if $X_{i,j}$ is small whereas it cannot be too large also for frequenty w_i and w_j pairs.
- An implementation:

$$W(X_{i,j}) = \begin{cases} (X_{i,j}/X_{max})^{\alpha} & \text{if } X_{i,j} < X_{max} \\ 1 & o/w \end{cases}$$

- Empirical study finds that $\alpha = 3/4$ is a good number.
- ➤ See also: http://mlexplained.com/2018/04/29/ paper-dissected-glove-global-vectors-for-word-represent and http://text2vec.org/glove.html

- Word pairs have different frequencies in a corpus. So they should have different contributions to the loss function.
- ▶ Two goals of the weight function W: $W(X_{i,j})$ cannot be too large if $X_{i,j}$ is small whereas it cannot be too large also for frequenty w_i and w_j pairs.
- An implementation:

$$W(X_{i,j}) = \begin{cases} (X_{i,j}/X_{max})^{\alpha} & \text{if } X_{i,j} < X_{max} \\ 1 & o/w \end{cases}$$

- ▶ Empirical study finds that $\alpha = 3/4$ is a good number.
- ➤ See also: http://mlexplained.com/2018/04/29/ paper-dissected-glove-global-vectors-for-word-represent and http://text2vec.org/glove.html

- Word pairs have different frequencies in a corpus. So they should have different contributions to the loss function.
- ▶ Two goals of the weight function W: $W(X_{i,j})$ cannot be too large if $X_{i,j}$ is small whereas it cannot be too large also for frequenty w_i and w_j pairs.
- An implementation:

$$W(X_{i,j}) = \begin{cases} (X_{i,j}/X_{max})^{\alpha} & \text{if } X_{i,j} < X_{max} \\ 1 & o/w \end{cases}$$

- ▶ Empirical study finds that $\alpha = 3/4$ is a good number.
- ➤ See also: http://mlexplained.com/2018/04/29/ paper-dissected-glove-global-vectors-for-word-representa and http://text2vec.org/glove.html

Sentence embedding

- DAN
- Skip-thought
- Transformer