Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий

Кафедра компьютерных систем и программных технологий

РАСЧЕТНОЕ ЗАДАНИЕ

Курс: Методы оптимизации и принятия решений

Тема: Оптимизация ССМО

Выполнил студент группы 13541/3	Д.В. Круминьш (подпись)
Преподаватель	А.Г. Сиднев (подпись)

Оглавление

3 Поиск оптимальных параметров сети систем массового обслуживания					
	3.1	Постановка задачи	3		
	3.2	Решение	3		
	3.3	Вывод	11		

Глава 3

Поиск оптимальных параметров сети систем массового обслуживания

3.1 Постановка задачи

Вариант: задача 4, вариант 144.

№ вар	$Q = \{q_{ij}\}_{i = \overline{0, n}}$ $j = \overline{0, n}$					ca_0	λ_0	L_r	μ	$\{cs_j\}$
144	$ \begin{array}{r} 0 \\ \hline 0.1 \\ 0.6 \\ \hline 0 \\ 0.5 \end{array} $	0.2 0 0.2 0.5 0.3	0.2 0 0.1	0.2 0.6 0.1 0 0.1	0.3 0.1 0.1 0.4 0	0.16	8	-	10	0.04 0.04 0.04 0.04

Найти:

$$minL(\mu) = \sum_{j=1}^{n} L_j$$

При условии:

$$\sum_{j=1}^{n} \mu_j = \mu$$

3.2 Решение

Вычислим мощность $\mu>\mu_j^1, cs$ и ca для каждой станции.

Скорость прихода задач в узел j: $\lambda_j = \lambda_{0j} + \sum_{i=0}^n q_{ij} \lambda_i, j = 0, ..., n$

$$Q = \begin{pmatrix} 0 & 0.2 & 0.3 & 0.2 & 0.3 \\ 0.1 & 0 & 0.2 & 0.6 & 0.1 \\ 0.6 & 0.2 & 0 & 0.1 & 0.1 \\ 0 & 0.5 & 0.1 & 0 & 0.4 \\ 0.5 & 0.3 & 0.1 & 0.1 & 0 \end{pmatrix}$$

```
\begin{split} \lambda_0 &= 8 \\ \lambda_1 &= 0.2\lambda_0 + 0\lambda_1 + 0.2\lambda_2 + 0.5\lambda_3 + 0.3\lambda_4 \\ \lambda_2 &= 0.3\lambda_0 + 0.2\lambda_1 + 0\lambda_2 + 0.1\lambda_3 + 0.1\lambda_4 \\ \lambda_3 &= 0.2\lambda_0 + 0.6\lambda_1 + 0.1\lambda_2 + 0\lambda_3 + 0.1\lambda_4 \\ \lambda_4 &= 0.3\lambda_0 + 0.1\lambda_1 + 0.1\lambda_2 + 0.4\lambda_3 + 0\lambda_4 \end{split}
```

```
A = [1 0 0 0 0;

0.2 -1 0.2 0.5 0.3;

0.3 0.2 -1 0.1 0.1;

0.2 0.6 0.1 -1 0.1;

0.3 0.1 0.1 0.4 -1];

b=[8; 0; 0; 0; 0];

lambdaj=A\b
```

Листинг 3.1: Код Matlab

```
lambdaj =
    8.0000
    9.1128
    5.7833
    8.3697
    7.2375
```

Листинг 3.2: Результат

Проверим полученный результат:

```
>> [ 0 0.1 0.6 0 0.5] * lambdaj

ans =
8.0000
```

Листинг 3.3: Проверка

Как и ожидалось, была получена λ_0 .

Вычислим ca_j . Для этого, сперва найдем все λ_{ij} , где $\lambda_{ij}=\lambda_i*q_{ij}$.

```
N=5;
Q = [0 0.2 0.3 0.2 0.3;
    0.1 0 0.2 0.6 0.1;
    0.6 0.2 0 0.1 0.1;
0 0.5 0.1 0 0.4;
0.5 0.3 0.1 0.1 0];
lambdaij=[];
for i = 1:N
    for j = 1:N
    lambdaij(i,j) = lambdaj(i)*Q(i, j);
    end
end
lambdaij
```

Листинг 3.4: Код Matlab

```
lambdaij =

0 1.6000 2.4000 1.6000 2.4000
0.9113 0 1.8226 5.4677 0.9113
3.4700 1.1567 0 0.5783 0.5783
0 4.1849 0.8370 0 3.3479
3.6188 2.1713 0.7238 0.7238 0
```

Листинг 3.5: Результат

$$\lambda = \begin{pmatrix} 0 & 1.6 & 2.4 & 1.6 & 2.4 \\ 0.91 & 0 & 1.82 & 5.47 & 0.91 \\ 3.47 & 1.16 & 0 & 0.58 & 0.58 \\ 0 & 4.18 & 0.84 & 0 & 3.35 \\ 3.62 & 2.17 & 0.72 & 0.72 & 0 \end{pmatrix}$$

Решим уравнения по формулам:

$$ca_j = \frac{\lambda_{0j}}{\lambda_j} ca_{0j} + \sum_{i=1}^n \frac{\lambda_{ij}}{\lambda_j} ca_{ij} = \sum_{i=0}^n \frac{\lambda_{ij}}{\lambda_j} ca_{ij}$$

$$cd_{ij} = q_{ij}cd_{ij} + 1 - q_{ij}$$

```
caA = 0;
caB = [0 0 0 0 0];
for j = 1:N
  for i = 1:N
  caA(j,i) = lambdaij(i,j)/lambdaj(j)*Q(i, j);
  caB(j)=caB(j)+lambdaij(i,j)/lambdaj(j)*(1-Q(i,j));
  end
end
  caA = caA-eye(5);
  caA(1,:) = [1 0 0 0 0];
  caA;
  caA;
  caA-1;
  caB = -caB';
  caB(1)=0.49;
  caj = (caA-1)*caB
```

Листинг 3.6: Код Matlab

```
caj =
    0.1600
    0.9486
    0.8902
    0.9461
    0.9049
```

Листинг 3.7: Результат

Вычислим L_i и P_i

$$p_j = \frac{\lambda_j}{\mu_j m_j}$$

$$L_j(\lambda_j, ca_j, \mu_j, cs_j) = \frac{(\frac{\lambda_j}{\mu_j})^2 (ca_j + cs_j) * g(\lambda_j, ca_j, \mu_j, cs_j)}{2(1 - \frac{\lambda_j}{\mu_j})} + \frac{\lambda_j}{\mu_j}$$

$$PI_j(\mu_j) = -V_j \frac{\partial L_j(\mu_j)}{\partial (\mu_j)}$$

Где:

$$\lambda_j = 9.1128, ca_0 = 0.16, cs_1 = 0.04$$

Для этого был написан скрипт matlab.

```
for i = 2:N
 [Lj(i-1), Pj(i-1)] = params(lambdaj(i), caj(i), m(i-1), cs(i-1));
end
Lϳ
Рj
L = sum(Lj)
function [ fLj, fPj ] = params( fl, fca, fm, fcs )
Lj = (1/m)^2*(ca+csj)*exp(-2*(1-1/m)*(1-ca)^2/(3*(1/m)*(ca+csj))
  \hookrightarrow )/(2*(1-1/m))';
 syms m;
 syms 1;
 syms ca;
 syms csj;
 fLj = subs(Lj,l, fl);
 fLj = subs(fLj,m, fm);
 fLj = subs(fLj,ca, fca);
 fLj = subs(fLj,csj, fcs);
 fLj = vpa(fLj);
 P_i = '-((1)/(1-m)^2)';
 fPj = subs(Pj,1, fl);
 fPj = subs(fPj,m, fm);
 fPj = -1*vpa(fPj);
 end
```

Листинг 3.8: Код Matlab

- \hookrightarrow 3.1492188330322032096928472738867,
- \hookrightarrow 0.948388050645080158377890828676621

L =

8.0038237817260317063411718875679

Листинг 3.9: Результат

Воспользуемся следующей формулой:

$$PI_j(\mu_j, (\lambda_j + \varepsilon_j)) = max\{PI_j(\mu_j), j \in J_0\}$$

Чем выше загрузка узла J, тем больше $PI_j=-rac{\partial L(\mu_j)}{\partial \mu_j}$ Для узла **M/M/1** имеем $PI_j=-rac{\partial L(\mu_j)}{\partial \mu_j}=rac{\lambda_j}{(\lambda_j-\mu_j)^2}$. Благодаря расчётам по этой формуле, можно понять в каких узла нужно увеличивать или уменьшать интенсивность входного потока.

Далее, применим следующий алгоритм:

Найти:
$$j_2 = \arg\max_{(j)} PI_j(\mu_j)\;;$$

$$j_1 = \arg\min_{(j)} PI_j(\mu_j)\;;$$
 если:
$$j_1 \in J_1, \text{ выполнить } J_0 \leftarrow J_0 - \{j_1\};$$

$$j_2 \in J_2, \text{ выполнить } J_0 \leftarrow J_0 - \{j_2\};$$

$$j_1 \not\in J_1 \text{ и } j_2 \not\in J_2, \text{ найти } \Delta_1 = \min\{\Delta, \ \mu_{j_1} - \lambda_{j_1} - \epsilon_{j_1}\} \text{ и}$$
 выполнить $\mu_{j_2} \leftarrow \mu_{j_2} + \Delta_1, \ J_1 \leftarrow J_1 \cup \{j_2\} \text{ и } J_2 \leftarrow J_2 \cup \{j_1\},$ идти к шагу 4. Если J_0 есть пустое множество или $PI_{j_1} = PI_{j_2}$,

Как значение Δ возьмем 0.5.

По приведенному выше алгоритму определяем множества J_0, J_1, J_2 . Результаты приведены в таблице 3.2.

No	J_0	J_1	J_2	Действия
1	1,2,3,4	-	-	$J_1 \leftarrow 1$ $J_2 \leftarrow 2$
2	1,2,3,4	1	2	$J_1 \leftarrow 1$ $J_2 \leftarrow 2$
3	1,2,3,4	1	2	$J_1 \leftarrow 3$ $J_2 \leftarrow 2$
4	1,2,3,4	1,3	2	$J_1 \leftarrow 1$ $J_2 \leftarrow 2$
5	1,2,3,4	1,3	2	$J_1 \leftarrow 3$ $J_2 \leftarrow 4$
6	1,2,3,4	1,3	2,4	$J_1 \leftarrow 1$ $J_2 \leftarrow 2$
7	1,2,3,4	1,3	2,4	$J_0 \leftarrow J_0 - 1$ $J_0 \leftarrow J_0 - 2$ $J_1 \leftarrow 2$ $J_2 \leftarrow 1$
8	3,4	1,2,3	1,2,4	$J_1 \leftarrow 4$ $J_2 \leftarrow 3$
9	3,4	1,2,3,4	1,2,3,4	$J_0 \leftarrow J_0 - 3$ $J_0 \leftarrow J_0 - 4$ $J_1 \leftarrow 3$ $J_2 \leftarrow 4$
10	-	1,2,3,4	1,2,3,4	-

Таблица 3.2: Формирование множеств J

Результаты перераспределения мощностей представлено в таблице 3.3.

Nō	μ_1	μ_2	μ_3	μ_4	Действия
1	10	10	10	10	$\mu_2 - \Delta$ $\mu_1 + \Delta$
2	10.5	9.5	10	10	$\mu_2 - \Delta$ $\mu_1 + \Delta$

3	11	9	10	10	$\mu_2 - \Delta$ $\mu_3 + \Delta$
4	11	8.5	10.5	10	$\mu_2 - \Delta$ $\mu_1 + \Delta$
5	11.5	8	10.5	10	$\mu_4 - \Delta$ $\mu_3 + \Delta$
6	11.5	8	11	9.5	$\mu_2 - \Delta$ $\mu_1 + \Delta$
7	12	7.5	11	9.5	$\mu_1 - \Delta$ $\mu_2 + \Delta$
8	11.5	8	11	9.5	$\mu_3 - \Delta$ $\mu_4 + \Delta$
9	11.5	8	10.5	10	$\mu_4 - \Delta$ $\mu_3 + \Delta$
10	11.5	8	11	9.5	-

Таблица 3.3: Перераспределение мощностей

Пересчитаем значения PI_j, L_j . Результаты вычисления PI_j приведены в таблице 3.4 и 3.5.

Nº	PI_1	PI_2	PI_3	PI_4
1	11.5768	0.3252	3.1492	0.9483
2	4.7354	0.4186	3.1492	0.9483
3	2.5586	0.5589	3.1492	0.9483
4	2.5586	0.7835	1.8443	0.9483
5	1.5990	1.1769	1.8443	0.9483
6	1.5990	1.1769	1.2098	1.4138
7	1.0931	1.9623	1.2098	1.4138
8	1.5990	1.1769	1.2098	1.4138
9	1.5990	1.1769	1.8443	0.9483
10	1.5990	1.1769	1.2098	1.4138

Таблица 3.4: Пересчитанное PI_j

Nō	L_1	L_2	L_3	L_4	L
1	4.6255	0.3665	2.1179	0.8937	8.0038
2	2.8172	0.4381	2.1179	0.8937	6.2669
3	1.9765	0.5347	2.1179	0.8937	5.5229
4	1.9765	0.6709	1.5434	0.8937	5.0845
5	1.4944	0.8743	1.5434	0.8937	4.8059
6	1.4944	0.8743	1.1930	1.1491	4.7109
7	1.1840	1.2051	1.1930	1.1491	4.7313
8	1.4944	0.8743	1.1930	1.1491	4.7109
9	1.4944	0.8743	1.5434	0.8937	4.8059
10	1.4944	0.8743	1.1930	1.1491	4.7109

Таблица 3.5: Пересчитанное L_j и L

3.3 Вывод

В данной работе была произведена оптимизация ССМО, в частности перераспределение мощностей в системе, для уменьшения очереди.

Начальные значения:

$$\mu = (10, 10, 10, 10)$$

L = 8.0038

 $L_i = (4.6255, 0.3655, 2.1179, 0.8937)$

После оптимизации:

$$\mu = (10.5, 8, 11, 9.5)$$

L = 4.7109

 $L_i = (1.4944, 0.8743, 1.1930, 1.1491)$

Как и ожидалась, после оптимизации сети, загруженность системы понизилась.