МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ Кафедра програмних систем і технологій

Дисципліна «Ймовірнісні основи програмної інженерії»

Лабораторна робота № 5

Виконав:	Коваленко Владислав Олександрович	Перевірила:	Марцафей А. С.
Група	ІПЗ-22(2)	Дата перевірки	
Форма навчання	денна	Оцінка	
Спеціальність	121		
2022			

Назва роботи: Дискретні розподіли ймовірностей

Мета: Навчитись використовувати на практиці набуті знання про центральні тенденції та міри.

Постановка задачі:

- 1. Аналітичним шляхом розв'язати вказані задачі.
- 1. Ймовірність знаходження в кожному прибулому потязі вагонів на дане призначення 0,2. Визначити ймовірність того, що в трьох із п'яти потягів, які прибувають протягом однієї години, будуть вагони на дане призначення.
- 2. Знайти ймовірність того, що в п'яти незалежних випробуваннях подія А відбудеться: а) рівно 4 рази; б) не менше 4 разів, якщо в кожному випробуванні ймовірність появи події становить 0,8.
- 3. На кондитерській фабриці 20% всіх цукерок складають льодяники. Знайти ймовірність того, що серед 400 вибраних навмання цукерок буде рівно 80 льодяників.
- 4. На автомобільному заводі у звичному режимі роботи з конвеєра сходить 100000 автомобілів. Ймовірність бракованого автомобіля дорівнює 0,0001. Знайти ймовірність того, що з конвеєра зійшло 5 бракованих автомобілів.
- 5. Ймовірність того, що пара взуття, яка взята навмання з виготовленої партії виявиться вищого ґатунку дорівнює 0,4. Чому дорівнює ймовірність того, що серед 600 пар, які поступили на контроль, виявиться від 228 до 252 пар взуття вищого ґатунку?
- 6. Банк обслуговує 100 клієнтів, від кожного з яких може надійти вимога на проведення фінансової операції на наступний день з ймовірністю 0,4. Знайти найімовірніше число вимог клієнтів кожного дня, та його ймовірність.
- 7. Завод випускає в середньому 4% нестандартних виробів. Яка ймовірність того, що число нестандартних виробів у партії з 4000 штук не більше 170?.
- 8. Яка ймовірність того, що при 10000 незалежних киданнях монети герб випаде 5000 разів?
- 9. Фірма відправила на базу 1000 якісних виробів. Ймовірність того, що вироби в дорозі пошкодяться дорівнює 0,002. Знайти ймовірність того, що на базу прибуде 5 пошкоджених виробів.

10. Нехай ймовірність того, що грошовий приймальник автомату при опусканні монети скидає неправильно дорівнює 0,03. Знайти найімовірніше число випадків правильної роботи автомату, якщо буде кинуто 150 монет.

Побудова математичної моделі:

Для розв'язання даних задач ми будемо використовувати формулу Бернуллі, Муавра-Лапласа та Гаусса.

Формула Бернуллі:

$$P_{k(n)} = C_n^k p^k q^{n-k}_{,\text{de}}$$

р - це імовірність події в одному випробуванні

q = 1 - р - це імовірність не відбування події в одному випробуванні

 $C^k_{\ n}$ - це спосіб вибору декількох речей з більшої групи

k - це кількість випробувань

n - це кількість шуканих результатів

Формула Муавра-Лапласа:

$$P_n(k) \approx \frac{1}{\sqrt{npq}} \cdot \varphi(x),$$

де
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}}$$
 — функція Гаусса, $x = \frac{k - np}{\sqrt{npq}}$.

,де

р - це імовірність події в одному випробуванні

q = 1 - p - це імовірність не відбування події в одному випробуванні

n - це кількість випробувань

т - це кількість шуканих результатів.

Для знаходження найімовірнішого числа випадкових подій, потрібно скористатися формулою:

$$np - q \le m_0 \le np + p$$
 as $(n+1)p - 1 \le m_0 \le (n+1)p$

,де

р - це імовірність події в одному випробуванні

q = 1 - p - це імовірність не відбування події в одному випробуванні

n - це кількість випробувань

т - це кількість шуканих результатів.

Псевдокод алгоритму:

```
import math
  def Gauss(x):
      return(1/math.sqrt(2*math.pi))*(math.e **(-(x**2)/2))
⊡def Moivre_Laplace(p,n,m):
      q=1-p
      x = (m-n*p)/math.sqrt(n*p*q)
      return Gauss(x)/math.sqrt(n*p*q)
⊡def C(n,m):
      c = math.factorial(n)/(math.factorial(m)*math.factorial(n-m))
      return c
⊡def Bern(p,i,j):
      P = C(i,j)*(math.pow(p,j))*(math.pow(1-p,(i-j)))
⊡def Task1():
      p = 0.2
      all = 5
      true = 3
      Probability = Bern(p,all,true)
      print("Task №1: "+str(Probability*100)+"%")
⊡def Task2():
      p = 0.8
      all = 5
      true = 4
      Probability = Bern(p,all,true)
      print("Task №2: "+"\na)"+str(Probability*100)+"%")
      Probability += Bern(p,all,5)
      print("b)"+str(Probability*100)+"%")
```

```
⊡def Task3():
     p = 0.2
     all = 400
     true = 80
     Probability = Bern(p,all,true)
     print("Task №3: "+str(Probability*100)+"%")
⊡def Task4():
     p = 0.0001
     all = 100000
     true = 5
     Probability = Bern(p,all,true)
     print("Task №4: "+str(Probability*100)+"%")
⊡def Task5():
     p = 0.4
     all = 600
     Probability = 0
     for i in range(228,252):
          Probability += Bern(p,all,i)
     print("Task №5: "+str(Probability*100)+"%")
⊡def Task6():
     p = 0.04
     q = 1 - p
     all = 100
     m1 = all*p - q
     m2 = all*p + q
     Answer = math.ceil(m1)
     print("Task №6: "+str(Answer))
```

```
⊡def Task7():
     p = 0.04
     all = 4000
     Probability = 0
     for i in range(0,170):
         Probability += Bern(p,all,i)
     print("Task №7: "+str(Probability*100)+"%")
□def Task8():
     p = 0.5
     all = 10000
     true = 5000
     Probability = Moivre_Laplace(p,all,true)
     print("Task №8: "+str(Probability*100)+"%")
□def Task9():
     p = 0.002
     all = 1000
     true = 5
     Probability = Bern(p,all,true)
     print("Task №9: "+str(Probability*100)+"%")
⊡def Task10():
     p = 0.03
     q = 1 - p
     all = 150
     m1 = all*p - q
     m2 = all*p + q
     Answer = math.ceil(m1)
     print("Task №10: "+str(Answer))
```

Випробування алгоритму:

```
Task №1: 5.1200000000000003%

Task №2:
a)40.96%
b)73.72800000000001%

Task №3: 4.981327224985551%

Task №4: 3.7829491291769455%

Task №5: 68.23871711056604%

Task №6: 4

Task №7: 77.98496013940583%

Task №8: 0.7978845608028653%

Task №9: 3.601702517738661%

Task №10: 4
```

Висновок:

Виконавши цю лабораторну роботу, я навчився використовувати на практиці набуті зання про центральні тенденції та міри