MTH 532 Homework 4

Roy Howie

February 16, 2017

Exercise 7

Let $f: X \to Y$ with X compact and dim $X = \dim Y$. Let y be a regular value of f. We wish to show $f^{-1}(y) = \{x_1, \dots, x_n\}$ is finite and that there is a neighborhood U of y such that $f^{-1}(U)$ is equal to the disjoint union of V_1 through V_n , where V_i is a neighborhood of x_i and diffeomorphic to U.

First, apply the Inverse Function Theorem, which says each $x_i \in f^{-1}(y)$ has an open neighborhood $O(x_i)$ diffeomorphic to a neighborhood $O_i(y)$ of y. Since diffeomorphisms are bijective, we must have $O(x_i) \cap O(x_i) = \emptyset$ for all $i \neq j$. $f^{-1}(y)$ is finite as X is compact.

Next, apply the hint. Note that $O' = X - \bigcup O(x_i)$ is closed, so it is compact. Hence, f(O') is compact and does not contain y. Let U = Y - f(O') and let $\tilde{O}(x_i) = O(x_i) \cap f^{-1}(U)$, as desired.

Exercise 9

Consider the map $f: M(2,\mathbb{R}) \to S(n)$, where S(n) is the set of symmetric $n \times n$ matrices, defined by $A \mapsto AA^T$. Note that $O(n) = f^{-1}(I_n)$. Since f is continuous, O(n) is closed.

Next, we take the hint by "flattening" O(n) into \mathbb{R}^{n^2} . Note that, for $x \in \mathbb{R}^{n^2}$, we have $||x||^2 = \sum_{i=1}^{n^2} x_i^2$. Hence, for $A \in O(n)$, we have $||A||^2 = \sum_{i=1}^n \sum_{j=1}^n a_{ij}^2 = \sum_{i=1}^n 1 = n$, so A is bounded. Since O(n) is analogous to a subset of \mathbb{R}^{n^2} and since it is closed and bounded, by Heine-Borel it is also compact.

Exercise 12

Consider the maps $f \colon M(2,\mathbb{R}) \to \mathbb{R}^4$ and $\det \colon \mathbb{R}^4 \to \mathbb{R}$ defined by $\binom{a}{c} \binom{b}{d} \mapsto (a,b,c,d)$ and $(a,b,c,d) \mapsto ad-bc$, respectively. Let $A \in M(2,\mathbb{R})$, then $d \det_{f(A)} = (d,-c,-b,a)$, which is surjective iff $f(A) \neq 0$. But a 2×2 matrix of rank 1 has at least one nonzero entry, so $d \det_{f(A)}$ is indeed onto, implying det is a submersion on any matrix of rank 1. Note that the only matrix of rank 0 is the zero matrix and that $\det^{-1}(0) = \{A \in M(2,\mathbb{R}) \mid \operatorname{rank}(A) < 2\}$. Hence, det is a submersion on $M(2,\mathbb{R}) - \{0\}$ and, therefore, a submanifold of \mathbb{R}^4 .

Exercise A1

Note that $M(n,\mathbb{C}) \cong \mathbb{C}^{n^2}$ and that det: $M(n,\mathbb{C}) \to \mathbb{C}$ is a smooth function. Since \mathbb{C} is Hausdorff, $0 \in \mathbb{C}$ is closed. Likewise, because of the continuitity of det, $\det^{-1}(0)$ is closed too. Note that $GL(n,\mathbb{C}) = M(n,\mathbb{C}) - \det^{-1}(0)$, so $GL(n,\mathbb{C})$ is open and, therefore, a smooth manifold.

Furthermore, $GL(n, \mathbb{C})$ is a group under matrix multiplication with identity I_n . Matrix multiplication is smooth, as it is a polynomial function in the entries of the product; matrix inversion is smooth because it is a rational function (Cramer's rule), as the determinant is non-vanishing in $GL(n, \mathbb{C})$.

 $GL(n,\mathbb{C})$ is thus a Lie group of dimension $2n^2$, as its basis consists of matrices with one element in $\{1,i\}$. \square

Exercise A2

Consider the map det: $M(n, \mathbb{C}) \to \mathbb{C}$. Note that $SL(n, \mathbb{C})$ is equal to the kernel of the determinant, i.e., $SL(n, \mathbb{C}) = \det^{-1}(1)$. If 1 is a regular value of det, then $\dim SL(n, \mathbb{C}) = \dim GL(n, \mathbb{C}) - \dim \mathbb{C} = 2n^2 - 2$. Thus, we wish to show that 1 is a regular value. We do this by showing 0 is the only critical value:

$$d \det_{0}(h) = \lim_{t \to 0} \frac{\det(0 + th) - \det 0}{t}$$

$$= \lim_{t \to 0} \frac{\det(th)}{t}$$

$$= \lim_{t \to 0} t^{n-1} \det(h)$$

$$= 0$$

Indeed, 0 is a critical value. Next, consider $A \in GL(n, \mathbb{C})$:

$$d \det_{A}(A) = \lim_{t \to 0} \frac{\det(A + tA) - \det(A)}{t}$$

$$= \lim_{t \to 0} \frac{(1 + t)^{n} \det(A) - \det(A)}{t}$$

$$= \det(A) \lim_{t \to 0} \frac{(1 + t)^{n} - 1}{t}$$

$$= \det(A)n$$

Which is nonzero, as $det(A) \neq 0$. Hence, 1 is a regular value of det.

Exercise A3

Consider the map $f: M(n, \mathbb{C}) \to H(n)$ defined by $A \mapsto AA^*$, where H(n) is the set of all $n \times n$ Hermitian matrices and A^* is the conjugate transpose. Note that $f^{-1}(I_n)$, where I_n is the identity matrix, equals U(n).

Next, denote AA^* as C, then $C^* = (AA^*)^* = A^*(A^*)^* = A^*A = C$, so C is Hermitian. Then, observe that Hermitian matrices are of the form

$$\begin{bmatrix} a & c & \cdots & x \\ \bar{c} & b & \cdots & y \\ \vdots & \vdots & \ddots & \vdots \\ \bar{x} & \bar{y} & \cdots & z \end{bmatrix}$$

Note that there are n real-valued elements along the diagonal. The elements in the upper half of the matrix are dependent on those in the lower half, hence the rest of the matrix has $1+2+\cdots+(n-1)$ free complex variables. Thus, H(n) has dimension $2*[1+2+\cdots+(n-1)]+n=n^2$.

Next, we wish to show that I_n is a regular value of f:

$$df_A(h) = \lim_{t \to 0} \frac{f(A+th) - f(A)}{t}$$

$$= \lim_{t \to 0} \frac{(A+th)(A+th)^* - AA^*}{t}$$

$$= \lim_{t \to 0} \frac{AA^* + thA^* + tAh^* + t^2hh^* - AA^*}{t}$$

$$= \lim_{t \to 0} hA^* + Ah^* + thh^*$$

$$= hA^* + Ah^*$$

 I_n is then a regular value iff df_A is surjective for all $A \in U(n)$. Let $C \in U(n)$, then $C = \frac{1}{2}C + \frac{1}{2}C^*$. Then, solving for h in $hA^* = \frac{1}{2}C$ yields $h = \frac{1}{2}CA$. This checks out, as

$$hA^* + Ah^* = (\frac{1}{2}CA)A^* + A(\frac{1}{2}CA)^*$$
$$= \frac{1}{2}C(AA^*) + \frac{1}{2}A(A^*C^*)$$
$$= \frac{1}{2}CI_n + \frac{1}{2}I_nC$$
$$= C$$

So df_A is indeed surjective for all $A \in U(n)$.

Exercise A4

Let U(1) be the unitary group and let S^1 be the circle group, then $f : U(1) \to S^1$ defined by $(a+ib) \mapsto (a,b)$ is a diffeomorphism. Suppose $x \in U(1)$, then $x\bar{x} = 1$. Recall, for complex z, $||z||^2 = z\bar{z}$. Therefore, ||x|| = 1, which implies $x \in S^1$. The reverse direction is no different.

SU(2) is the set $\{A \in U(2) \mid \det A = 1\}$. Suppose $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SU(2)$, then we have that $A^{-1} = \bar{A}^T$, or that $\begin{pmatrix} \frac{d}{c} & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} \frac{\bar{a}}{\bar{b}} & \bar{d} \end{pmatrix}$. Thus, A must be of the form $\begin{pmatrix} a & -\bar{b} \\ b & \bar{a} \end{pmatrix}$ for $a, b \in \mathbb{C}$. Since $\det A = 1$, note that $a\bar{a} + b\bar{b} = 1$.

Next, consider the smooth maps $\sigma \colon \mathbb{R}^4 \to \mathbb{C}^2$ and $\phi \colon \mathbb{C}^2 \to M_2\mathbb{C}$ defined by $(x, y, z, w) \mapsto (x + iy, z + iw)$ and $(a, b) \mapsto \left(\begin{smallmatrix} a & -\bar{b} \\ \bar{a} \end{smallmatrix} \right)$, respectively. Let $m = \phi \circ \sigma$.

Suppose $s=(x,y,z,w)\in S^3$, then $x^2+y^2+z^2+w^2=1$. Denote $\sigma(s)$ as (a,b)=(x+iy,z+iw). Recall, for z=x+iy, one has $z\bar{z}=x^2+y^2$. Hence, $a\bar{a}+b\bar{b}=1$, so $m(s)\in SU(2)$. Since σ and ϕ are both smooth and invertible, S^3 is diffeomorphic to SU(2) via m.