

Classe: **Bac Maths**

Série: Intégrales

Nom du Prof: Mohamed Hedi Ghomriani

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

© 25 min

5 pts

- 1) Calculer l'aire de la région limitee par la courbe Cf de la fonction f définie par $\mathbf{f}(\mathbf{x}) = \mathbf{x}^2 6\mathbf{x} + 4$ et les droites $\Delta : \mathbf{y} = 4 \mathbf{x}$, $\mathbf{x} = 0$ et $\mathbf{x} = 6$
- 2) Calculer l'aire de la région colorée

Exercice 2

(5) 25 min

4 pts

Soit $n \in \mathbb{N}$, on pose $I_n = \int_0^1 x^n \sqrt{1 - x^2} dx$.

1)

- a) Le plan étant muni d'un repère orthonormé, interpréter graphiquement \mathbf{I}_0 et donnez sa valeur exacte.
- b) Calculer I₁.

2)

- a) Montrer que : (I_n) est décroissante.
- b) En déduire que (I_n) est convergente.

3)

a) En utilisant une intégration par parties, montrer que, pour tout $\mathbf{n} \in \mathbb{N}^* - \{1\}$

On a:
$$I_n = \frac{n-1}{n+2} I_{n-2}$$
.

b) Calculer $\int_0^1 \mathbf{x}^3 \sqrt{1-\mathbf{x}^2} \, d\mathbf{x}$.

Exercice 3

(\$ 30 min

5 pts

Soit 11 un entier ≥ 2 . On pose : $U_{_{n}}=\int_{_{0}}^{\frac{\pi}{4}}\tan^{n}\left(x\right).$

1) Calculer: U₂

2)

- a) Montrer que, pour tout entier $n \ge 2$, $U_n \ge 0$.
- b) Montrer que la suite $\left(\mathbf{U}_{\mathbf{n}}\right)$ est décroissante.

3)

- a) Montrer que, pour tout entier $n \ge 2$, $\mathbf{U}_{n+2} + \mathbf{U}_n = \frac{1}{n+1}$.
- b) En déduire $\lim_{n\to +\infty} U_n$.
- 4) On pose, pour tout entier $n \ge 2$, $\mathbf{V_n} = \mathbf{U_{n+4}} \mathbf{U_n}$ et $\mathbf{S_n} = \sum_{k=1}^{n} \mathbf{V_{4k-2}}$.
 - a) Montrer que, pour tout entier $n \ge 2$, $\mathbf{V_n} = \frac{1}{\mathbf{n} + 3} \frac{1}{\mathbf{n} + 1}$.

Maths

b) Montrer que, pour tout entier $n \ge 2$, $S_n = U_{4n+2} - U_2$.

c) En déduire
$$\lim_{n \to +\infty} \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots - \frac{1}{4n-1} + \frac{1}{4n+1} \right)$$
.

Exercice 4

(\$ 35 min

5 pts

Soit $n \in \mathbb{N}^*$. On pose: $\mathbf{I}_n = \int_0^1 (1 - \mathbf{x}^2)^n d\mathbf{x}$.

1) Vérifier que : $I_1 = \frac{2}{3}$ et que $I_2 = \frac{2}{3} \times \frac{4}{5}$.

2) Vérifier que : $\mathbf{I}_{n} - \mathbf{I}_{n+1} = \int_{0}^{1} \mathbf{x}^{2} (1 - \mathbf{x}^{2})^{n} d\mathbf{x}$.

3)

a) Montrer par intégration par partie que : $I_{n+1} = \frac{2n+2}{2n+3}I_n$.

b) Déduire par récurrence que $n \in \mathbb{N}^*$, $\mathbf{I_n} = \frac{2}{3} \cdot \frac{4}{5} \cdot \frac{6}{7} \cdot \dots \cdot \frac{2\mathbf{n}}{2\mathbf{n}+1}$.

4) On considère les deux fonctions F et G définies sur \mathbb{R} par :

$$\mathbf{F}(\mathbf{x}) = \int_0^{\sin \mathbf{x}} (1 - \mathbf{t}^2)^{\mathbf{n}} d\mathbf{t} \quad \text{et} \quad \mathbf{G}(\mathbf{x}) = \int_0^{\mathbf{x}} \cos^{2\mathbf{n} + 1}(\mathbf{t}) d\mathbf{t}.$$

a) Montrer que \mathbf{F} et G sont dérivables sur \mathbb{R} puis déterminer $\mathbf{F}'(\mathbf{x})$ et $\mathbf{G}'(\mathbf{x})$.

b) Déduire que pour tout $x \in \mathbb{R}$, $\mathbf{F}(\mathbf{x}) = \mathbf{G}(\mathbf{x})$.

c) Montrer alors que : $I_n = \int_0^{\frac{\pi}{2}} \cos^{2n+1} t \ dt$.