Universität Augsburg Institut für Informatik Lehrstuhl für Organic Computing Prof. Dr. Jörg Hähner Ansprechpartner

Dominik Rauh, M. Sc. dominik.rauh@informatik.uni-augsburg.de
Eichleitnerstr. 30, Raum 502

Wintersemester 2018/2019

Peer-to-Peer und Cloud Computing

Lösungsvorschläge zu Aufgabenblatt 2

1 Verständnisfragen zu Graphentheorie (9 Punkte)

1. Warum sind in P2P-Netzwerken hohe Clustering-Koeffizienten oft erstrebenswert? Geben Sie mehrere Gründe an und erklären Sie diese! (3 Punkte)

Lösung

- C_v ~ Anzahl der Verbindungen unter den Nachbarn eines Knotens
- $C_v = 1 \Leftrightarrow$ Nachbarn von v sind eine *Clique*, also ein total vernetzter Teilgraph
- $C_v = 0 \Leftrightarrow$ Nachbarn von v haben keine Verbindungen zueinander
- niedriger $C_v \Rightarrow$ Zufallsgraph um v herum
- hoher $C_v \Rightarrow$ Small-World–Netzwerk um v herum
- Gründe:

höhere Fehlertoleranz redundante Verbindungen ⇒ geringere Wahrscheinlichkeit für "Auseinanderbrechen" des Graphen bei Knotenausfall (danach wären Knoten und ihre Ressourcen im jeweils anderen Segment nicht mehr auffindbar!)

geringere Routing-Komplexität lokal mehr mögliche Pfade ⇒ effizienter Zugriff auf nahe Long-Distance–Links etc.

Performanz durchschnittliche Pfadlänge kürzer ⇒ geringere Latenz, schnellere Suche, ...

effizientes Bootstrapping neu hinzugefügte Knoten sind schnell gut eingebunden

2. Weshalb teilt man bei der Berechnung von L_G durch den Term |V|*(|V|-1)/2? Kombinatorik könnte bei der Erklärung helfen! (1 Punkt)

Lösung

- L_G ist durchschnittliche Pfadlänge des Graphen G
- die Summe der Längen aller minimalen Pfade (Distanzen) geteilt durch die Anzahl aller minimalen Pfade
- Interpretation von $\frac{|V|\;(|V|-1)}{2}$: Anzahl aller minimalen Pfade = Anzahl der Knotenpaare
- "Händeschüttel-Problem"
 - Wähle einen Knoten v aus |V| Knoten aus.
 - Wähle einen zweiten Knoten aus den verbliebenen |V-1| Knoten aus (v wird nicht mehr betrachtet, da keine Selbstreferenzen).
 - Eigentlich bidirektionale Kanten wurden jetzt doppelt gezählt ⇒ Faktor $\frac{1}{2}$.
- klassische Kombinatorik: Ziehe zwei Knoten aus |V| ohne Beachtung der Reihenfolge (Bidirektionalität) und ohne Zurücklegen (keine Selbstreferenz)!

$$\binom{|V|}{2} = \frac{|V|!}{2! \; (|V|-2)!} = \frac{|V| \; (|V|-1) \; (|V|-2)!}{2 \; (|V|-2)!} = \frac{|V| \; (|V|-1)}{2}$$

- Problem: Inseln
 - wenn ein Knoten u nicht von v aus erreichbar ist, dann $d_{v,u}=\infty$
 - somit L_G = ∞
 - \Rightarrow Aussagekraft von L_G nur bei *verbundenen Graphen* (\neq total/vollständig vernetzt!): Es existiert mindestens ein Pfad zwischen jedem möglichen Paar (v, w) von Knoten
- 3. In P2P-Netzwerken fehlt es oft an globalem Wissen; jeder Teilnehmer kennt nur die Entfernung zu seinen unmittelbaren Nachbarn. Um L_G zu berechnen, benötigt man aber die Entfernung für jedes Paar von Knoten.
 - Angenommen, man hat bereits für jeden Knoten die Entfernung zu seinen unmittelbaren Nachbarn (dies könnte z. B. die zentrale Einheit in einem zentralisierten P2P-Netzwerk wissen). Welche beiden berühmten Algorithmen eignen sich für die genaue Ermittlung der für die Berechnung von L_G benötigten Entfernung für jedes Paar von Knoten? (1 Punkt)

Lösung

- Dijkstra und Floyd-Warshall

- aber auch: Bellman-Ford
- Breitensuche eher nicht (entspricht Dijkstra mit 1-gewichteten Kanten)
- Welchen Zusammenhang gibt es zwischen der Anzahl von Kanten im Graphen und der Laufzeit dieser Algorithmen? (3 Punkte)

Lösung

- Floyd-Warshall ist besser in dichten (*dense*) Graphen, die fast alle möglichen Kanten haben (denn $O(|V|^3)$)
- Dijkstra ist besser in dünn besetzten (*sparse*) Graphen, die nur wenige Kanten haben. Dijkstra muss wiederholt durchlaufen (da er immer nur einen Knoten festhält), somit $O(|E| |V| + |V|^2 \log |V|)$ (wenn man Fibonacci-Heaps benutzt); bei dünn besetzten Graphen, ist $|E| \ll |V|^2$, somit ist Dijkstra besser.
- Bellman-Ford: in etwa $O(|E||V|^2)$, vielleicht etwas besser mit Anpassung an "alle Knoten"
- 4. Ist ein Graph mit |V| = 1 und |E| = 0 wirklich ein Graph? (1 Punkt)

Lösung

Ja, denn die Definition schränkt die Anzahl an Elementen von V und E nicht ein.

2 Rechenaufgaben zu Graphentheorie (12 Punkte)

Beachten Sie bei der Bearbeitung der folgenden Aufgaben diesen Hinweis: Bei den Graphen (c) und (d) gilt, dass – mithilfe von Modulo – mögliche Verbindungen über den "letzten" Knoten v_8 (Graph (c)) bzw. v_{31} (Graph (d)) hinaus betrachtet werden sollen. Beispielsweise wird das Ziel der Kante $\{v_n, v_{n+2^4}\}$ für n=25 wie folgt berechnet: $v_{(25+2^4)\mod 32}=v_9$.

- 1. Berechnen Sie folgende Werte für die Knoten v_3 und v_4 des Graphen (a), die Knoten v_2 und v_8 des Graphen (b), den Knoten v_1 des Graphen (c) sowie den Knoten v_1 des Graphen (d) (6 Punkte):
 - Grad k_v ,
 - Nachbarschaft N_v und
 - Clustering-Koeffizient C_v .

Lösung

Graph (a)

• $k_{v_3} = 3$

•
$$N_{v_3} = \{2, 4, 5\}$$

•
$$C_{v_3} = \frac{2}{3*(3-1)*\frac{1}{2}} = \frac{2}{3}$$

•
$$k_{v_4} = 4$$

•
$$N_{v_4} = \{1, 3, 5, 6\}$$

•
$$C_{v_4} = \frac{1}{4*(4-1)*\frac{1}{2}} = \frac{1}{6}$$

Lösung

Graph (b)

•
$$k_{v_2} = 2$$

•
$$N_{v_2} = \{1, 3\}$$

•
$$C_{v_2} = \frac{0}{...} = 0$$

•
$$k_{v_8} = 4$$

•
$$N_{v_8} = \{3, 7, 9, 10\}$$

•
$$C_{v_8} = \frac{1}{4*(4-1)*\frac{1}{2}} = \frac{1}{6}$$

Lösung

Graph (c)

•
$$k_{v_1} = 2$$

•
$$N_{v_1} = \{2, 8\}$$

•
$$C_{v_1} = 0$$

Lösung

Graph (d)

•
$$k_{v_1} = 9$$

•
$$N_{v_1} = \{0, 2, 3, 5, 9, 17, 25, 29, 31\}$$

•
$$|N_{v_1}| = 9$$

•
$$C_{v_1} = \frac{12}{(9*(9-1)*\frac{1}{2})} = \frac{1}{3}$$

Siehe auch Abbildung 1.

						25			
$2^0 = 1$									
$2^1 = 2$									
$2^2 = 4$									
$2^3 = 8$									
$2^4 = 16$	18	19	21	25	1	9	13	15	16

Abbildung 1: Nachbarschaftstabelle für Graph (d). Anzahl der blauen Felder entspricht Anzahl der Verbindungen zwischen Nachbarn von v_1 . Die Knoten v_{25} , v_{29} , v_{31} und v_0 besitzen ihrerseits Verbindungen zu v_1 (gelb); aufgrund der Bidirektionalität des Graphen müssen diese Knoten ebenfalls als Nachbarn von v_1 betrachtet werden. Die Verbindung von v_9 zu v_{25} darf nur einmal gezählt werden (Bidirektionalität, rot markiert).

2. Welchen Durchmesser haben die jeweiligen Graphen? (4 Punkte)

Lösung

Durchmesser: Der längste aller kürzesten Wege.

- $D_{(a)} = |p(2,7)| = 4$
- $D_{(b)} = \infty$ (wegen v_{16})
- $D_{(c)} = 4$
- $D_{(d)} = 3$ (siehe Abbildung 2)
- 3. Berechnen Sie für die Graphen (a) und (b) den Wert L_G . (2 Punkte)

Lösung

- $L_{(a)} = \frac{39}{7*(7-1)*\frac{1}{2}} = 1,86$ (siehe Abbildung 3)
- $L_{(b)} = \infty$

Abbildung 2: Lösungsweg für die Berechnung von ${\cal D}_{(d)}.$

Abbildung 3: Distanzen aller Knotenpaare in Graph (a).

steht aus 32 Knoten (0 bis 31). Jeder Knoten v_n hat neben der Ringverbindung eine zusätzliche direkte *bidirektionale* Verbindung zu den Knoten v_{n+2^0} , v_{n+2^1} , v_{n+2^2} , v_{n+2^3} , v_{n+2^4} . Achtung: "Doppelte" Kanten werden in Mengen als eine einzige Kante gezählt!

Abbildung 4: Graphen für Aufgabe 2