Math 397

Homework 1

Name: Gianluca Crescenzo

Exercise 1. Let V be a vector space, and suppose $\{W_i\}_{i\in I}$ is a family of subspaces of V.

- (1) Show that $\bigcap_{i \in I} W_i$ is the largest subspace of V contained in every W_i .
- (2) Show that:

$$\sum_{i \in I} W_i = \left\{ \sum_{i \in F} w_i \mid w_i \in W_i, F \subseteq I \text{ finite} \right\}$$

is the smallest subspace containing each W_i .

- (3) We say that V is the internal direct sum of the family $\{W_i\}_{i\in I}$ and we write $V=\bigoplus_{i\in I}W_i$ if:
 - (i) $V = \sum_{i \in I} W_i$;
 - (ii) For each $j \in I$, $W_j \cap \sum_{i \neq j} W_i n\{0\}$.

If $V = \bigoplus_{i \in I} W_i$, show that every $v \in V$ has a unique expression $v = \sum_{i \in F} w_i$ where $F \subseteq I$ is finite and $0 \neq w_i$ for each $w_i \in W_i$.

Proof. (1) Let U be a subspace of V with $U \subseteq W_i$ for each $i \in I$. Then clearly $U \subseteq \bigcap_{i \in I} W_i$.

- (2) Let $W = \sum_{i \in I} W_i$ and let U be a subspace of V with $U \supseteq W_i$ for each $i \in I$. If $x \in W$, then $x = \sum_{i \in I} W_i$. But since W_i is a subspace, it is closed under addition. Whence $x \in W_i$ for each $i \in I$. By inclusion then, $x \in U$. Hence $W \subseteq U$.
- (3) By the definition of internal direct sums $V = \sum_{i \in I} W_i$, whence each $v \in V$ can be written as $v = \sum_{i \in F} w_i$. It remains to show that this expression is unique. Suppose $v = \sum_{i \in F} w_i = \sum_{i \in F} u_i$ with $w_i, u_i \in W_i$. For each j we have:

$$w_j - u_j = \sum_{\substack{i \in F \\ i \neq j}} (w_i - u_i)$$

But notice that $w_j - u_j \in W_j$ and $\sum_{i \in F, i \neq j} (w_i - u_i) \in \sum_{i \neq j} W_i$. So $w_j - u_j \in W_j \cap \sum_{i \neq j} W_i$. By the definition of internal direct sums this gives $w_j - u_j = 0$, which simplifies to $w_j = u_j$.

Exercise 2.

Proof. Suppose towards contradiction there exists $c \in \text{span}(S) \setminus \bigcap$...

Exercise 3. Let V be a vector space with subspaces $W_i \subseteq V$ for i = 1, 2. If $W_1 \cup W_2 \subseteq V$ is a subspace, show that $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Proof. Suppose towards contradiction $W_1 \nsubseteq W_2$ and $W_2 \nsubseteq W_1$. Then there exists $w_1 \in W_1 \setminus W_2$ and $w_2 \in W_2 \setminus W_1$. Let $v = w_1 + w_2$. Then $v \in W_1 \cup W_2$. But this means $w_2 = v - w_1 \in W_2$. Whence $w_1 \in W_2$, which is a contradiction.

Exercise 4. Let V be a vector space over F and suppose $W \subset V$ is a subspace.

(1) Show that the quotient space $V/W = \{ [v]_w \mid v \in V \}$ is a subspace with operations:

$$[u]_W + [v]_W = [u + v]_W$$
; $\alpha[v]_W = [\alpha v]_W$.

(2) Suppose $\|\cdot\|$ is a norm on V. Show that:

$$\|[v]_W\|_{V/W} := \inf_{w \in W} \|v - w\|$$

is a seminorm.

Proof. (1) Since V is an abelian group and $W \subseteq V$ is normal, V/W is an abelian group. It only remains to show that $\alpha[v]_W = [\alpha v]_W$ satisfies the vector space axioms. We have that:

$$\alpha([u]_W + [v]_W) = \alpha[u + v]_W$$

$$= [\alpha(u + v)]_W$$

$$= [\alpha u + \alpha v]_W$$

$$= [\alpha u]_W + [\alpha v]_W,$$

$$\alpha(\beta[v]_W) = \alpha[\beta v]_W$$

$$= [\alpha(\beta v)]_W$$

$$= [\alpha(\beta v)]_W$$

$$= [(\alpha\beta)[v]_W,$$

$$1_F[v]_W = [1_F v]_W$$

$$= [v]_W.$$

Whence V/W is a vector space.

(2) We must first show that $\|\cdot\|_{V/W}: V/W \to F$ is well-defined. Let $[\nu_1]_W = [\nu_2]_W$. Then $\nu_2 - \nu_1 \in W$. Observe that:

$$\begin{split} \|[v_1]_W\|_{V/W} &= \inf_{w \in W} \|v_1 - w\| \\ &= \inf_{w - (v_2 - v_1) \in W} \|v_1 - (w - (v_2 - v_1))\| \\ &= \inf_{w - (v_2 - v_1) \in W} \|v_1 - w + v_2 - v_1\| \\ &= \inf_{w \in W} \|v_2 - w\| \\ &= \|[v_2]_W\|_{V/W} \,. \end{split}$$

We also have that:

$$\begin{split} \|\alpha[v]_{W}\|_{V/W} &= \|[\alpha v]_{W}\|_{V/W} \\ &= \inf_{w \in W} \|\alpha v - w\| \\ &= \inf_{w' \in W} \|\alpha v - \alpha w'\| \\ &= \inf_{w' \in W} \|\alpha(v - w')\| \\ &= |\alpha| \inf_{w' \in W} \|v - w'\| \\ &= |\alpha| \|[v]_{W}\|_{V/W} \,. \end{split}$$

Whence $\|\cdot\|_{V/W}$ is homogenous. Finally, we can see that:

$$\begin{split} \|[u]_W + [v]_W\|_{V/W} &= \|[u + v]_W\|_{V/W} \\ &= \inf_{w \in W} \|u + v - w\| \\ &= \inf_{w, w' \in W} \|u + v - (w + w')\| \\ &= \inf_{w, w' \in W} \|u - w + v - w'\| \\ &\leq \inf_{w, w' \in W} (\|u - w\| + \|v - w'\|) \\ &= \inf_{w \in W} \|u - w\| + \inf_{w' \in W} \|v - w'\| \\ &= \|[u]_W\|_{V/W} + \|[v]_W\|_{V/W} \,. \end{split}$$

Thus $\|\cdot\|_{V/W}$ is a seminorm.

Exercise 5. Show that the quantity:

$$||f||_1 := \int_0^1 |f(t)| dt$$

defines a norm on C([0,1]) with $\|f\|_1 \le \|f\|_u$. Are $\|\cdot\|_1$ and $\|\cdot\|_u$ equivalent norms?

Proof. $\|\cdot\|_1$ is homogenous because:

$$\|\alpha f\|_1 = \int_0^1 |(\alpha f)(t)| dt$$
$$= \int_0^1 |\alpha f(t)| dt$$
$$= |\alpha| \int_0^1 |f(t)| dt$$
$$= |\alpha| \|f\|_1.$$

Note that $|f(t) + g(t)| \le |f(t)| + |g(t)|$. Integrating both sides gives:

$$\int_{0}^{1} |f(t) + g(t)| dt = \int_{0}^{1} |(f + g)(t)| dt$$

$$= \|f + g\|_{1}$$

$$\leq \int_{0}^{1} (|f(t)| + |g(t)|) dt$$

$$= \int_{0}^{1} |f(t)| dt + \int_{0}^{1} |g(t)| dt$$

$$= \|f\|_{1} + \|g\|_{1}.$$

Whence our norm satisfies the triangle inequality.