

planetmath.org

Math for the people, by the people.

one-parameter subgroup

Canonical name OneparameterSubgroup Date of creation 2013-03-22 14:54:01

Last modified on 2013-03-22 14:54:01

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771)
Entry type Definition
Classification msc 22E15
Classification msc 22E10

Synonym 1-parameter subgroup

Let G be a Lie Group. A one-parameter subgroup of G is a group homomorphism

$$\phi \colon \mathbb{R} \to G$$

that is also a differentiable map at the same time. We view \mathbb{R} additively and G multiplicatively, so that $\phi(r+s) = \phi(r)\phi(s)$.

Examples.

1. If G = GL(n, k), where $k = \mathbb{R}$ or \mathbb{C} , then any one-parameter subgroup has the form

$$\phi(t) = e^{tA},$$

where $A = \frac{d\phi}{dt}(0)$ is an $n \times n$ matrix over k. The matrix A is just a tangent vector to the Lie group $\mathrm{GL}(n,k)$. This property establishes the fact that there is a one-to-one correspondence between one-parameter subgroups and tangent vectors of $\mathrm{GL}(n,k)$. The same relationship holds for a general Lie group. The one-to-one correspondence between tangent vectors at the identity (the Lie algebra) and one-parameter subgroups is established via the exponential map instead of the matrix exponential.

- 2. If $G = O(n, \mathbb{R}) \subseteq GL(n, \mathbb{R})$, the orthogonal group over R, then any one-parameter subgroup has the same form as in the example above, except that A is skew-symmetric: $A^{T} = -A$.
- 3. If $G = \mathrm{SL}(n,\mathbb{R}) \subseteq \mathrm{GL}(n,\mathbb{R})$, the special linear group over R, then any one-parameter subgroup has the same form as in the example above, except that $\mathrm{tr}(A) = 0$, where tr is the trace operator.
- 4. If $G = \mathrm{U}(n) = \mathrm{O}(n,\mathbb{C}) \subseteq \mathrm{GL}(n,\mathbb{C})$, the unitary group over C, then any one-parameter subgroup has the same form as in the example above, except that A is http://planetmath.org/SkewHermitianMatrixskew-Hermitian: $A = -A^* = -\overline{A}^{\mathrm{T}}$ and $\mathrm{tr}(A) = 0$.