- Key Pair in HASHING DATA STRUCTURE
- ☐ Given an array Arr of N positive integers and another number X

Example 1:

```
Input:
N = 6, X = 16
Arr[] = {1, 4, 45, 6, 10, 8}
Output: Yes
```

Explanation: Arr[3] + Arr[4] = 6 + 10 = 16

- Key Pair in HASHING DATA STRUCTURE
- ☐ Given an array Arr of N positive integers and another number X
- Example 2:

```
Input:
N = 5, X = 10
Arr[] = {1, 2, 4, 3, 6}
Output: Yes
Explanation: Arr[2] + Arr[4] = 4 + 6 = 10
```

Logics

Sum = a + b

Sum = 16

Example 1:

Input:

N = 6, X = 16

 $Arr[] = \{1, 4, 45, 6, 10, 8\}$

Output: Yes

Explanation: Arr[3] + Arr[4] = 6 + 10 = 16

- Logics
- Sum = a + b
- Arr[] = { 1, 4, 45, 6, 10, 8 }

First You Tell?

Is There is any pair

10,6

Sum = 16

Logics

Iterate all elements from unordered_set

$$\square$$
 Sum = a + b

{ 1, 4, 45, 6, 10, 8 }

Sum = 16

Sum =
$$a + b$$

First You Tell?

Is There is any pair

$$Sum = 8$$

Not Any pair

Logics

Iterate all elements from unordered_set

 \square Sum = a + b

First = 1 Sum = 8 Second = 7

First = 4

Sum = 8 Sec

Second = 4

Arr[] = { 1, 4, 45, 10, 5 }

 $unordered_set$

{ 1, 4, 45, 5, 10 }

Sum = 8

Logics

Iterate all elements from unordered_map

$$\square$$
 Sum = a + b

First = 4 Sum = 8 Second =
$$4$$

First =
$$45$$
 Sum = 8 Second = -37

$$Sum = 8$$

First =
$$10$$
 Sum = 8 Second = -2

Sum = 8

Hence, there is not any pair whose sum is 8

First = 5