

Subtle Skeletal Differences Rest Poses (design of a skeleton) Zero Pose / Base Pose Dress or Binding pose Frankenstein Pose Da Vinci Pose Rest Pose (real pose of actor) Need to figure out how to get between these

Motion Editing

Recap on motion!

- Motion is a function of time
 - Given time, provide a pose
 - Often represented as samples
- Sparse samples + interpolation
 - Dense samples (at frames)
 - How to manipulate sets of samples?

7

The General Challenge

What you get is not what you want!

- You get observations of the performance
 - A specific performer
 - A real human
 - Doing whatever they did
 - With the noise and "realism" of real sensors
- Want something else
 - But need to preserve original
 - But we don't know what to preserve
 - Can't characterize motion well enough

Three Problems

- Where does X live in the data?
 - Where $X \in \{style, personality, emotion, ...\}$
 - The things to keep or add
- Small artifacts can destroy realism
 - Eye is sensitive to certain details
- How to specify what you want

ito 1

Manipulating motion

- Manipulate time: Motion slower or faster
 - = m(t) = m0(f(t))
 - f : R > R "time warp"
- Time scaling
 - f(t) = k t
- Time shifting
 - = f(t) = t + k
- Time warping
 - Interpolate a table
 - Align events

Manipulating motion

- Manipulate value
 - = m(t) = f(m0(t))
 - f : Rn- > Rn
- Scale?
 - For instance each angles x 2 → Exagerate motion
- Shift?
- Convole (linear filter)
- "Add" to another motion
 - m(t) = m(t) + a(t)

M2

Motion Blending

- "Add" two motions together
 - Really interpolate
- m(t) = a m0(t) + (1-a) m1(t)
 - Note: this is a per-frame operation
- It works only if poses are similar!!!
- Very useful!
 - Often get small pieces of motion
 - Need to connect
 - Easy if motions are similar

Noise Removal: Signal Processing

- Noise comes from errors in process
 - Sensor errors
 - Fitting errors
 - Bad movements
- Nose is "data" that we don't want

Where's the Noise?

- Sometimes identification is easy:
 - Clearly wrong (foot through floor)
 - Marked wrong (missing data gaps)
- More often, need to guess
 - Might be a subtle twitch...
 - Might be person shaking...
 - Might be sensor errors...
 - →simply apply a filter ?

Important Intuition

- High Frequencies are Important!
- Always significant
 - Impact
 - Rapid, sudden movement

Signal processing [Unuma95]

- Fourier series
 - Coefficient motion parameters (emotion, gait)

Exaggerate jump by scaling low frequency

Motion Signal Processing [Bruderlin95] [Motion Signal Processing, Siggraph95 Bruderlin & Williams]

Motion Graph

Kovar, Gleicher, Pighin '02

21

Idea: Put Clips Together

- New motions from pieces of old ones!
- Good news:
 - Keeps the qualities of the original (with care)
 - Can create long and novel "streams" (keep putting clips together)
- Challenges:
 - How to decide what clips to connect?
 - How to connect clips?

Connecting Clips: Transition Generation

- Transitions between motions can be hard
- Motion interpolation works sometimes
 - Blends between aligned motions
 - Cleanup footskate artifacts
- Just need to know when is "sometime"
 - Need a distance between pose

Idea: Motion Graph

Find Matching States in Motions

What are motion graphs?

- Directed graph representing a roadmap of motion data for a character
 - Vertex represent a pose in a motion clip
 - Vertex=(motion clip name, pose number)
 - Edges are pose transitions

A simple motion graph

Clip₁ P₁ P₂ P₃ P₄ ... P_n

Clip₂ P₁ P₂ P₃ P₄ ... P_n

... P_n

Building motion graphs

- Identify transition candidates
- Select transition points
- Eliminate problematic edges

Identify transition candidates: pose distance

 For each pose A of clip C_j, calculate its distance to each other pose B of all other clip by basically measuring volume displacement

2) Extract windows: frame before and after

4) Align point clouds and sum squared distances

Identify transition candidates: pose distance

- For each frame/pose A, calculate its distance to each other frame/pose B by basically measuring volume displacement
- Use a weighted point cloud formed over a window of k frames ahead of A and behind B, ideally from the character mesh
- Calculate the minimal weighted sum of squared distances between corresponding points, given that a rigid 2D transformation may be applied to the second point cloud

$$\min_{\theta, \mathbf{x_0}, \mathbf{z_0}} \sum_i w_i \|\mathbf{p_i} - \mathbf{T}_{\theta, \mathbf{x_0}, \mathbf{z_0}} \mathbf{p_i'}\|^2$$

Select transition/edge

- The previous step gave us all the local minima of the distance function for each pair of points
- Now we simply define a threshold and cut transition candidates with errors above it
- May be done with or without intervention
- Threshold level depends on type of motion eg. walking vs. ballet

 (B_{i+2})

We define transition only between pose with significant similitude

Eliminate problematic edges

- We want to get rid of:
 - Dead ends not part of a cycle
 - Sinks part of one or more cycles but only able to reach a small fraction of the nodes
 - Logical discontinuities eg. boxing motion forced to transition into ballet motion
- Goal is to be able to generate arbitrarily long streams of motion of the same type

Using a motion graph

- Any walk on the graph is a valid motion
 - Generate walks to meet goals
 - Random walks (screen savers)
 - Search to meet constraints
- Other Motion Graph- like projects elsewhere
 - Differ in details, and attention to detail

Transitions

- When need to make the transition between frames A_i and B_j blend A_i through A_{i+k-1} with B_j through B_{j-k+1}
 - Align frames with appropriate rigid 2D transformation
 - Use linear interpolation to blend root positions
 - Use spherical linear interpolation to blend joint rotations

2 36

Edition with constraints Inverse Kinematics Motion Retargeting

39

VOIR LE COURS CONSACREE ENTIEREMENT A LA CINEMATIQUE INVERSE

VOIR LE COURS CONSACREE ENTIEREMENT A LA CINEMATIQUE INVERSE VOIR LE COURS CONSACREE ENTIEREMENT A LA CINEMATIQUE INVERSE

Retargeting

- capture motion on performer
 - positions of markers are recorded
- retarget motion on a virtual character
- motion is usually applied to a skeleton
 - a skeleton is hierarchical linked joints need rotation data!
- need to convert positions to rotations

$performer {\rightarrow}\ actor\ {\rightarrow}\ character$

- the actor is used to convert marker positions to rotational data
 - markers are handles on the actor
 - actor should have similar proportions as the **performer**
- joint rotations of the actor are applied to the character
- there are still issues with proportions

Alias Motionbuilder: actor and markers

Retargeting problems: hand problem

Problem of Hand or foot position!

Often hand or foot positions do not match

- Need to find a position with hands on the box and feet in concordance with skeleton morphology
- → Quick overview of inverse kinematic

Inverse Kinematics

- Inverse Kinematics
 - Given effectors positions, find a posture(=angles)
- Non-linear problem (position vs. angles)
 - Possibility of no or multiple solutions

Forward Kinematics

We will use the vector:

$$\Phi = \begin{bmatrix} \varphi_1 & \varphi_2 & \dots & \varphi_M \end{bmatrix}$$

to represent the array of M joint DOF values

We will also use the vector:

$$\mathbf{e} = \begin{bmatrix} e_1 & e_2 & \dots & e_N \end{bmatrix}$$

to represent an array of N DOFs that describe the end effector in world space. For example, if our end effector is a full joint with orientation, **e** would contain 6 DOFs: 3 translations and 3 rotations. If we were only concerned with the end effector position, e would just contain the 3 translations.

Forward Kinematics

- The forward kinematic function f() computes the world space end effector DOFs from the joint DOFs:
 - Forward kinematic is often easy to compute

$$\mathbf{e} = f(\mathbf{\Phi})$$

Inverse Kinematics

- The goal of inverse kinematics is to compute the vector of joint DOFs that will cause the end effector to reach some desired goal state
- In other words, it is the inverse of the forward kinematics problem
 - f⁻¹() usually isn't easy to compute

$$\mathbf{\Phi} = f^{-1}(\mathbf{e})$$

Inverse Kinematics

Inverse Kinematics: many approaches

- Analytic method [IKAN, Badler]
 - Geometric based, fast
 - Ok only for few joints
- Numeric solution
 - Iterative process
 - Expensive
 - Flexible (constraints)
 - Minimization problem

Iterative Inverse Kinematics (Gradient Descent)

Iterative IK

- Initial Position

$$\bullet \mathbf{e}^0 = f(\boldsymbol{\varphi}_1^0, ..., \boldsymbol{\varphi}_n^0)$$

■ The partial derivative of f is defined as:

$$\begin{split} \frac{df}{d\varphi_{\mathbf{i}}} &= \lim_{\Delta\varphi_{\mathbf{i}} \to 0} \frac{\Delta f}{\Delta\varphi_{\mathbf{i}}} = \lim_{\Delta\varphi_{\mathbf{i}} \to 0} \frac{f\left(\varphi_{\mathbf{i}} + \Delta\varphi_{\mathbf{i}}, ..., \varphi_{n}\right) - f\left(\varphi_{\mathbf{i}}, ..., \varphi_{n}\right)}{\Delta\varphi_{\mathbf{i}}} \\ &\approx \frac{f\left(\varphi_{\mathbf{i}} + \Delta\varphi_{\mathbf{i}}, ..., \varphi_{n}\right) - f\left(\varphi_{\mathbf{i}}, ..., \varphi_{n}\right)}{\Delta\varphi_{\mathbf{i}}} \end{split}$$

Iterative IK

- Let's say we have a simple 2D robot arm with two 1-DOF rotational joints
- And a target hand position e_{target}
- d = distance between the hand and the hand target

Jacobian Inverse Kinematics

Jacobians

The Jacobian matrix J(e,Φ) shows how each component of e varies with respect to each joint angle

$$J(\mathbf{e}, \mathbf{\Phi}) = \begin{bmatrix} \frac{\partial e_x}{\partial \phi_1} & \frac{\partial e_x}{\partial \phi_2} \\ \frac{\partial e_y}{\partial \phi_1} & \frac{\partial e_y}{\partial \phi_2} \end{bmatrix}$$

Jacobians

Consider what would happen if we increased ϕ_1 by a small amount. What would happen to ${\bf e}$?

$$\frac{\partial \mathbf{e}}{\partial \phi_{\mathbf{i}}} = \begin{bmatrix} \frac{\partial e_{x}}{\partial \phi_{\mathbf{i}}} & \frac{\partial e_{y}}{\partial \phi_{\mathbf{i}}} \end{bmatrix}$$

$$\phi_{1}$$

Jacobians

 $\,\blacksquare\,$ What if we increased $\phi_2\,$ by a small amount?

$$\frac{\partial \mathbf{e}}{\partial \phi_2} = \begin{bmatrix} \frac{\partial e_x}{\partial \phi_2} & \frac{\partial e_y}{\partial \phi_2} \end{bmatrix}$$

$$\phi_2$$

Jacobian for a 2D Robot Arm

Jacobian Matrices

- Just as a scalar derivative df/dx of a function f(x) can vary over the domain of possible values for x, the Jacobian matrix J(e,Φ) varies over the domain of all possible poses for Φ
- For any given joint pose vector Φ, we can explicitly compute the individual components of the Jacobian matrix

Jacobian as a Vector Derivative

Once again, sometimes it helps to think of:

$$J(\mathbf{e}, \mathbf{\Phi}) = \frac{d\mathbf{e}}{d\mathbf{\Phi}}$$

because $J(e,\Phi)$ contains all the information we need to know about how to relate changes in any component of Φ to changes in any component of e

Incremental Change in Pose

- Lets say we have a vector ΔΦ that represents a small change in joint DOF values
- We can approximate what the resulting change in e would be:

$$\Delta \mathbf{e} \approx \frac{d\mathbf{e}}{d\mathbf{\Phi}} \cdot \Delta \mathbf{\Phi} = J(\mathbf{e}, \mathbf{\Phi}) \cdot \Delta \mathbf{\Phi} = \mathbf{J} \cdot \Delta \mathbf{\Phi}$$

Incremental Change in Effector

What if we wanted to move the end effector by a small amount Δe. What small change ΔΦ will achieve this?

$$\Delta e \approx \mathbf{J} \cdot \Delta \mathbf{\Phi}$$

so:

$$\Delta \Phi \approx \mathbf{J}^{-1} \cdot \Delta \mathbf{e}$$

Notice: J-1 maybe approximate by J^T

See this survey: http://math.ucsd.edu/~sbuss/ResearchWeb/ikmethods/iksurvey.pdf

Incremental Change in e

 Given some desired incremental change in end effector configuration Δe, we can compute an appropriate incremental change in joint DOFs ΔΦ

Incremental Changes

- Remember that forward kinematics is a nonlinear function (as it involves sin's and cos's of the input variables)
- This implies that we can only use the Jacobian as an approximation that is valid near the current configuration
- Therefore, we must repeat the process of computing a Jacobian and then taking a small step towards the goal until we get to where we want to be

End Effector Goals

If Φ represents the current set of joint DOFs and e represents the current end effector DOFs, we will use e_{target} to represent the goal DOFs that we want the end effector to reach

Choosing Δe

 $\begin{tabular}{ll} \blacksquare & We want to choose a value for Δe that will move e closer to e target. A reasonable place to start is with e that e is the place of the p$

$$\Delta \mathbf{e} = \mathbf{e}_{\text{target}} - \mathbf{e}$$

- We would hope then, that the corresponding value of $\Delta \Phi$ would bring the end effector exactly to the goal
- Unfortunately, the nonlinearity prevents this from happening, but it should get us closer
- Also, for safety, we will take smaller steps:

$$\Delta \boldsymbol{e} = \beta (\boldsymbol{e}_{target} - \boldsymbol{e})$$

where 0≤ β ≤1

Basic Jacobian IK Technique while (e is too far from g) { Compute J(e, Φ) for the current pose Φ Compute J-1 // invert the Jacobian matrix $\Delta e = \beta(e_{target} - e)$ // pick approximate step to take $\Delta \Phi = J^{-1} \cdot \Delta e$ // compute change in joint DOFs $\Phi = \Phi + \Delta \Phi$ // apply change to DOFs Compute new e vector // apply forward // kinematics to see // where we ended up } + DEMO BLENDER

Papers classification

Iterative IK : gradient descent

```
Repeat  \begin{aligned} & \text{ForEach joint i Do} \\ & \text{grad}_i = (\text{df } / \, \text{d}\phi_i) \\ & = (f(\phi_0, \, ..., \, \phi_i \text{+d} \, , \, ..., \, \phi_n) \text{-} \, f(\phi_0, \, ..., \, \phi_i, \, ..., \, \phi_n)) / \text{d} \\ & \text{EndForEach} \end{aligned}   \begin{aligned} & \text{ForEach joint i do} \\ & \phi_i \rightarrow \phi_i - \beta^* \text{grad}_i \end{aligned}   \begin{aligned} & \text{Adapt(d);} \\ & \text{Adapt(\beta);} \\ & \text{Until d<0.01 (meaning while } \mathbf{e} \text{ is too far from } \mathbf{e}_{\text{target}}) \end{aligned}
```