04.03.2021 Week 2

Exercise 1 Let $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \Sigma)$ a multivariate Gaussian random vector in \mathbb{R}^p . We consider the partition $\mathbf{X} = (\mathbf{X}_1', \mathbf{X}_2')'$ where $\mathbf{X}_1 \in \mathbb{R}^k$, for $1 \le k < p$ and $\mathbf{X}_2 \in \mathbb{R}^{p-k}$.

- 1. Derive the conditional density of $\mathbf{X}_1 \mid \mathbf{X}_2 = \mathbf{x}_2$.
 - $\mathit{Hint}:$ It might be easier to consider the precision matrix $\Sigma^{-1} = \Psi = \begin{pmatrix} \Psi_{11} & \Psi_{12} \\ \Psi_{21} & \Psi_{22} \end{pmatrix}$ when writing the Gaussian densities above.
- 2. Derive the marginal density of X_1 .

Exercise 2 We consider $\mathbf{X} \sim N_p(\boldsymbol{\mu}_X, \Sigma_X)$ and $\mathbf{Y} \mid \mathbf{X} = \mathbf{x} \sim N_q(\boldsymbol{\alpha} + \beta \mathbf{x}, \Sigma)$ where $\boldsymbol{\mu} \in \mathbb{R}^p$, $\Sigma_X \in R^{p \times p}$, $\boldsymbol{\alpha} \in \mathbb{R}^q$, $\boldsymbol{\beta} \in \mathbb{R}^{q \times p}$ and $\Sigma \in \mathbb{R}^{q \times q}$.

1. Prove that $(\mathbf{X}', \mathbf{Y}')' \sim N_{p+q}$, compute its mean and show that

$$V(\mathbf{X}', \mathbf{Y}')' = \begin{pmatrix} \Sigma_X & \Sigma_X \beta' \\ \beta \Sigma_X & \Sigma + \beta \Sigma_X \beta' \end{pmatrix}$$

Hint: Start by setting $\mathbf{U} = \mathbf{Y} - \boldsymbol{\alpha} - \beta \mathbf{X}$ and showing that \mathbf{X} and \mathbf{U} are independent, then find a matrix A and a vector \mathbf{c} such that $(\mathbf{X}', \mathbf{Y}')' = A(\mathbf{X}', \mathbf{U}')' + \mathbf{c}$.

2. Show that the conditional distribution of $\mathbf{X} \mid \mathbf{Y} = \mathbf{y}$ is Gaussian with

$$E[\mathbf{X} \mid \mathbf{Y} = \mathbf{y}] = \boldsymbol{\mu}_X + \beta \Sigma_X (\Sigma + \beta \Sigma_{\mathbf{X}} \beta')^{-1} (\mathbf{y} - \boldsymbol{\alpha} - \boldsymbol{\mu}_X \beta),$$

$$V[\mathbf{X} \mid \mathbf{Y} = \mathbf{y}] = \Sigma_X - \Sigma_X \beta' (\Sigma + \beta \Sigma_X \beta')^{-1} \beta \Sigma_X,$$

assuming that the matrices $\Sigma, \Sigma_X, (\Sigma + \beta \Sigma_X \beta')$ are invertible.

Exercise 3 Let $\mathbf{X}_1, \dots, \mathbf{X}_n$ be i.i.d. random vectors in \mathbb{R}^p with mean $\boldsymbol{\mu}$ and covariance matrix Σ . Consider the sample mean $\bar{\mathbf{X}}$ and the sample variance-covariance matrix S and show that $T_0^2 = n(\bar{\mathbf{X}} - \boldsymbol{\mu})' S^{-1}(\bar{\mathbf{X}} - \boldsymbol{\mu})$ is invariant under all the afine transformations $\mathbf{Y}_i = A\mathbf{X}_i + \mathbf{b}$, where A is an invertible matrix of constants and \mathbf{b} is a vector of constants.

Exercise 4 (Simulation of Gaussian random vectors in R)

We consider the random vector **X** in \mathbb{R}^2 from a standard gaussian distribution $N_2(\mathbf{0}, \mathbf{1})$.

- 1. Generate N = 1000 independent random replicates $\mathbf{X}_1, \dots, \mathbf{X}_n$ of \mathbf{X} . Hint: The function rnorm(n) generates n independent replicates of a univariate random distribution.
 - a) Estimate the sample mean and covariance matrix.
 - b) plot the sample and draw diagnostic plots of the marginal distributions.
- 2. We define another Gaussian vector \mathbf{Y} satisfying : $\mathbb{E}[Y_1] = 5$, $\mathbb{E}[Y_2] = 5$, $\operatorname{Var}(Y_1) = 1$, $\operatorname{Var}(Y_2) = 1$ and $\operatorname{Cov}(Y_1, Y_2) = 0.9$.
 - a) Generate N=1000 independent replicates $\mathbf{Y}_1,\ldots,\mathbf{Y}_n$ starting from $\mathbf{X}_1,\ldots,\mathbf{X}_n$. Hint: The function chol computes the Choleski factorization of Σ and returns \mathbf{A} such that $\mathbf{A}'\mathbf{A}=\Sigma$.
 - b) plot the sample and draw visual diagnostic plots of the marginal distributions.