

AMERICAN INTERNATIONAL UNIVERSITY-BANGLADESH FACULTY OF SCIENCE AND TECHNOLOGY

Assignment Title:	FoodSavvy: A Digital Solution for Efficient Food Waste Management		
Assignment No:	Exercise-7,8,9	Date of Submission:	02 May, 2024
Course Title:	Software Engineering		
course Time.	Software Engineering		
Course Code:	CSC 3112	Section:	I

^{*} Student(s) must complete all details except the faculty use part.

^{**} Please submit all assignments to your course teacher or the office of the concerned teacher.

No	Name	ID	Program
1	DIP ACHORJEE SHOKAL	22-46788-1	BSc [CSE]
2	SIRAJUS SALEKEEN	21-45262-2	BSc [CSE]
3	SHUVO SARKER JOY	22-47148-1	BSc [CSE]
4	PALASH SEN	20-42969-1	BSc [CSE]

Faculty use only		
FACULTY COMMENTS		
	Marks Obtained	
	Total Marks	

Exercise-7

WBS and Effort Estimation

Work Breakdown Structure (WBS) and Effort Estimation: In the realm of software development, a WBS serves as a foundational tool for organizing and delineating project tasks. It systematically breaks down the software project into manageable components, from high-level objectives to granular tasks, facilitating a comprehensive understanding of project scope. Effort estimation, closely tied to WBS, involves predicting the time, resources, and costs required for each task. Accurate effort estimation relies on a deep understanding of the project requirements, historical data, and the capabilities of the development team. Together, WBS and effort estimation provide the groundwork for realistic project planning and resource management.

Gantt Chart

Effort Estimation:

Using COCOMO (Constructive cost model):

Project type: Organic

Coefficient = 2.4 P=1.05 T=0.38 SLOC = 5000

Effort = PM = Coefficient<Effort factor»* (SLOC/1000)^P

= 2.4*(5000/1000)^1.05

= 13

Development time = DM = 2.5* (PM)T

= 2.5*13*0.38= 6.626 ~ 26 Weeks

Required number of people = ST = PM/DM

= 13/6.626

 $=1.96\sim2$

Exercise-8

Activity Scheduling and Resource Allocation

Activity Scheduling and Resource Allocation: Activity scheduling involves sequencing project tasks in a logical order to ensure efficient progression towards project milestones. In software engineering, this entails scheduling software development, testing, and deployment activities, considering dependencies between tasks and project deadlines. Resource allocation complements activity scheduling by assigning the necessary resources, including human resources, equipment, and budget, to each task. Effective resource allocation maximizes productivity while minimizing bottlenecks and resource conflicts, ultimately contributing to timely project completion.

Exercise-9

Risk Analysis

Risk Analysis: Risk analysis is integral to mitigating uncertainties inherent in software projects. It involves identifying, assessing, and prioritizing potential risks that could impact project objectives. In software engineering, risks may include technical challenges, changes in requirements, resource constraints, and external dependencies. By conducting risk analysis early in the project lifecycle, software teams can develop proactive risk mitigation strategies to minimize the likelihood and impact of adverse events. Regular monitoring and reassessment of risks throughout the project ensure that mitigation efforts remain relevant and effective, safeguarding project success.

	Α	В	С	D	Е	F	G	Н	1	J	K
1	Risk ID 💌	Risk description 🔻	Risk category	Probability 🔻	Impact 💌	Severity 💌	Risk response 💌	Contingency plan	Risk owner 🔻	Risk status 🔻	Risk monitoring 🔻
2	R1	Scope creep	Scope	4	5	20	Minimize	Regular scope reviews	Project manager	Ongoing	Weekly
3	R2	Technology compatibility issues	Technical	3	4	12	Minimize	Conduct through tests	Technical lead	Ongoing	Biweekly
4	R3	Inadequate user training	Resource	3	3	9	Avoid	Implement robust training program	Training specialist	Ongoing	Monthly
5	R4	Regulatory changes	External	1	5	5	Accept	Stay updated on regulations	Compliance officer	Ongoing	As required
6	R5	Server downtime	Technical	1	3	3	Accept	Establish backup servers	IT administrator	Ongoing	Daily
7	R6	Data security breach	Security	1	5	5	Transfer	Secure data with encryption	Cybersecurity expert	Ongoing	As required
8	R7	Insufficient budget	Cost	4	5	20	Minimize	Seek additional funding	Finance manager	Ongoing	Biweekly

	Α	В	С	D	Е	F	G	Н	I	J
1										
2				Ri	sk Matı	rix				
3		5	5	10	15	20	25		Color code	Score
4	Probability	4	4	8	12	16	20		High	>12
5	abi	3	3	6	9	12	15		Medium	5 to 12
6	rob	2	2	4	6	8	10		Low	1 to 4
7	Ь	1	1	2	3	4	5			
8			1	2	3	4	5			
9					Impact					
10										