Ibn Tofail University

Analysis II — Normal Exam Year: 22-23

Exercise 1:

Consider the function $f:[1,3] \to \mathbb{R}$ defined by:

$$f(x) = \frac{1}{x}$$

- 1. Justify that f is integrable (in the Riemann sense) on [1,3].
- 2. Calculate the Darboux sums (lower and upper) $D_S^-(f)$ and $D_S^+(f)$ of f with respect to the subdivision S of [1,3] defined by $S = \{1,2,3\}$.
- 3. State (without proving) the inequalities between $D_S^-(f)$, $D_S^+(f)$ and $\int_1^3 f(x)dx$.
- 4. Deduce an approximation of ln 3 by rational numbers.

Answer Area

Exercise 2:

Consider the function $G: \mathbb{R} \to \mathbb{R}$ defined by:

$$G(x) = \int_{x}^{2x} \frac{dt}{\sqrt{t^2 + 1}}$$

- 1. Justify that G is defined on \mathbb{R} . Also show that G is an odd function.
- 2. Verify that G is differentiable on \mathbb{R} , and calculate its derivative G'(x). (Hint: use any primitive F of the function $t \mapsto \frac{1}{\sqrt{t^2+1}}$).
- 3. Deduce that G is strictly increasing on \mathbb{R} .
- 4. Verify that $t^2 \le t^2 + 1 \le (t+1)^2$ for all t > 0. Deduce the following inequality:

$$\forall x > 0, \ln(2x+1) - \ln(x+1) \le G(x) \le \ln 2$$

- 5. Deduce the limit $\lim_{x\to+\infty} G(x)$.
- 6. Solve the equation G(x) = 0.

Answer Area

Exercise 3:

For all $n \in \mathbb{N}$, let:

$$I_n = \int_0^1 (1 - t^2)^n dt$$

- 1. Justify the existence of the integral I_n for all $n \in \mathbb{N}$.
- 2. Show that $\forall n \in \mathbb{N}, I_{n+1} = \frac{2n+2}{2n+3} \cdot I_n$.
- 3. Deduce that $\forall n \in \mathbb{N}, I_n = \frac{2^n (n!)^2}{(2n+1)!}$.
- 4. Using Newton's binomial formula, show that $\forall n \in \mathbb{N}, I_n = \sum_{k=0}^n \binom{n}{k} \cdot \frac{(-1)^k}{2k+1}$.

Answer Area