

(19) RU (11) 2149166 (13) C1

(51) 7 C08L27/06, C08K13/02, C09J127/06, C08L27/06, C08L13:02, C08K13/02, C08K3:22, C08K3:26, C08K3:36, C08K5:02, C08K5:31, C08K5:11, C08K5:12

РОССИЙСКОЕ АГЕНТСТВО
ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ

к патенту Российской Федерации

- (14) Дата публикации: 2000.05.20
- (21) Регистрационный номер заявки **198102275/04**
- (22) Дата подачи заявки: 1998.02.06
- (24) Дата начала действия патента: 1998.02.06
- (46) Дата публикации формулы изобретения: 2000.05.20
- (56) Аналоги изобретения: SU 1669949 A1, 15.08.1991. RU 2074214 C1, 27.02.1997. SU 1770341 A1, 23.10.1992. SU 1134590 A, 15.01.1985.
- (71) Имя заявителя: ОАО Чапаевский "Средне-Волжский завод химикатов"
- (72) Имя изобретателя: Фомин В.А.; Кретов В.А.; Гришин В.А.; Щеглова Л.С.
- (73) Имя патентообладателя: ОАО Чапаевский "Средне-Волжский завод химикатов"
- (98) Адрес для переписки: 443099, г.Самара, ул. Степана Разина 134, Самарский областной совет ВОИР

(54) ПЛАСТИЗОЛЬ

Изобретение относится к составам поливинилхлоридных (ПВХ) пластизолей, применяемых в качестве клеев для масляных, топливных и воздушных фильтров автомобилей. Описывается пластизоль, включающий эпоксидную диановую смолу, поливинилхлорид, диоктилфталат, бентон, дициандиамид, гексаметилендиаминадипинат, наполнитель, отличающийся тем, что он содержит в качестве наполнителя мел тонкодисперсный и дополнительно оловоорганический термостабилизатор, пластификатор - хлорпарафин, водосвязующий компонент - оксид кальция и уайт-спирит при следующем соотношении компонентов, мас.ч: поливинилхлорид 100, диоктилфталат 45-50, оловоорганический термостабилизатор 3,0-4,0, мел тонкодисперсный 30-40, эпоксидная диановая смола 25-35, гексаметилендиаминадипинат 3,0, дициандиамид 7,0-8,0, уайт-спирит 9,0-11,0, бентон 6,0, хлорпарафин 20,0, окись кальция 1,0. Технический результат - снижение токсичности пластизоля и снижение затрат на его изготовление. Новый пластизоль позволяет получить прочность крепления крышки фильтроэлемента 400-600 кГс, адгезионную прочность при сдвиге 5,5-7,7 МПа, вязкость 15-30 Па●с, уменьшить токсичность и снизить себестоимость на 15-20%. 1 табл.

Изобретение относится к составам поливинилхлоридных (ПВХ) пластизолей, применяемых в качестве клеев для масляных, топливных и воздушных фильтров автомобилей.

Известен пластизоль на основе поливинилхлорида или сополимера винилхлорида с винилацетатом, содержащий пластификатор, свинцовый термостабилизатор, наполнитель - карбонат кальция, окись кальция, анилинофенолформальдегидную смолу - продукт конденсации фенола и анилина с формальдегидом, взятых в - соотношении 80:20:44,4, который дополнительно содержит капролактам или низкомолекулярные полиамидные смолы - продукты реакции димеризованных эфиров жирных кислот растительного масла с полиэтиленполиамином при следующем соотношении компонентов, мас. ч.: поливинилхлорида или сополимер винилхлорида с винилацетатом - 100, пластификатор - 85 - 110, свинцовый термостабилизатор 3 - 7, карбонат кальция - 45 - 150, окись кальция - 5 - 15, анилино-фенолформальдегидная смола - 5 - 25, капролактам или указанные низкомолекулярные полиамидные смолы - 5 - 25. В качестве ПВХ используют пастообразующий ПВХ марок МС 6602С, ЕП 6602С, в качестве пластификаторов используют эфиры фталевой кислоты (ДОФ), в качестве свинцового термостабилизатора используют двухосновной фталат свинца, в качестве наполнителя используют мел тонкодисперсной для норпластов и карбонат кальция, окись кальция используется тонкодисперсная, в качестве анилино-фенолформальдегидной смолы используется фенолформальдегидная смола СФ 342А, в качестве низкомолекулярных полиамидных смол используют продукты реакции димеризованных эфиров жирных кислот растительного масла с диэтилентриамином (Л - 18), с триэтилентетрамином (Л - 19) или с тетраэтиленпентамином (Л - 20). Пластизоль может также содержать 2 - 10 мас.ч., уйат-спирта, 15 - 25 мас.ч., эпоксидной диановой смолы марки ЭД-16 или ЭД-20, 2 - 10 мас.ч. смеси аэросила А-175 с глицерином (патент РФ N 2074214, MПK 6: C 09 J 127/06, C 08 L 27/06, C 08 K 13/02, (C 09 J 127/06, 161:14), (C 08 L 27/06, 61:14), (C 08 K 13/02, 3:20, 3:26, 5:20), заявка N 94020207/04, от 31.05.94 г., опубликовано 27.02.97 г., Бюл. N 6).

Недостатком известного пластизоля является его токсичность, обусловленная наличием свинцового термостабилизатора и анилино-фенолформальдегидной смолы, а также высокая стоимость вследствие большого расхода дорогостоящего пластификатора диоктилфталата.

Наиболее близкой к заявленному изобретению (прототипом) является клеевая композиция, включающая эпоксидную диановую смолу, поливинилхлорид, отвердитель, сложноэфирный пластификатор и наполнитель при следующем соотношении компонентов, мас. %: поливинилхлорид 36 - 40, эпоксидная диановая смола 7,6 - 9,0, дициандиамид 2,15 - 2,50, сложноэфирный пластификатор 22 - 24, эпоксидированное растительное масло 7,5 - 9,0, наполнитель 16,5 - 22,15, гексаметилендиминадипинат 0,75 - 0,85. (авт. св. СССР N 1669949, кл.: С 08 L 127/06 от 15.09.88 г., заявка N 4482427/05 опублик. 15.08.91 г. Бюл. N 30).

Недостатком известной клеевой композиции является недостаточная прочность склеивания при сдвиге и высокая стоимость.

Целью изобретения является повышение прочности склеивания при сдвиге и снижение стоимости пластизоля.

Указанная цель достигается тем, что в пластизоле, содержащем поливинилхлорид, эпоксидную смолу, диоктилфталат, бентон, дициандиамид, гексаметилендиаминадипинат, наполнитель, в качестве наполнителя использован мел тонкодисперсный и дополнительно введены оловоорганический стабилизатор, пластификатор - хлорпарафин и водосвязующие компоненты - оксид кальция и уайт-спирит при следующем соотношении компонентов пластизоля, мас.ч.: поливинилхлорид 100, диоктилфталат - 45 - 50, оловоорганический термостабилизатор 3 - 4, мел тонкодисперсный - 30 - 40, эпоксидная смола - 22 - 35, соль АГ - 3, дициандиамид - 7 - 8, уайт-спирит - 9 - 11, бентон - 6, хлорпарафин 20, окись кальция 1.

В качестве поливинилхлорида используют пастообразующий ПВХ марки МС 6602 С (ТУ 6-012-533-80).

В качестве первичного стабилизатора используют эфир фталевой кислоты ДОФ (ГОСТ 5728-76).

В качестве вторичного стабилизатора - хлорпарафин ХП-470 (ТУ 6-01-568-76).

В качестве наполнителя используют мел тонкодисперсный для норпластов (ТУ 6-18-10-9-82).

В качестве отвердителя используют соль АГ (гексаметилендиаминадипинат) (ТУ 6-03-418-80).

В качестве растворителя и водосвязующего компонента используют уайт-спирит (ГОСТ 3134-78).

В качестве смолы используют эпоксидную диановую смолу ЭД-20 (ГОСТ - 10587-76).

В качестве загустителя используют бентон 34.

В качестве ускорителя отверждения используют дициандиамид (ГОСТ 6988-73).

В качестве водосвязующего компонента используют окись кальция.

В качестве оловоорганического термостабилизатора может использоваться, например, диоктилкарбоксилат олова или диалкилтиокарбоксилат олова.

Сущность изобретения заключается в том, что совместное применение в составе пластизоля оловоорганического термостабилизатора, например диактилкарбоксилата олова или диалкилтиокарбоксилата олова, тонкодисперсного мела, хлорпарафина, окиси кальция и уайт-спирита приводит к повышению прочности склеивания при сдвиге и снижению стоимости пластизоля по сравнению с прототипом.

Пример (по изобретению). В реактор загружаются 27 мас.ч. эпоксидной смолы ЭД-20, 7 мас.ч. дициандиамида, 3 мас.ч. соли АГ, 1 мас.ч. окиси кальция, 31,5 мас. ч. тонкодисперсного мела и 9 мас.ч. диоктилфталата, перемешивают 10 мин. Затем смесь пропускают через краскотерку до дисперсности 50 - 70 микрон. В полученную пасту при перемешивании загружают: диоктилфталат 36 мас.ч.; хлорпарафин 20 мас.ч., ПВХ - 100 мас.ч., уайтспирит - 9 мас.ч., оловоорганический термостабилизатор (в данном примере - диоктилкарбоксилат олова) - 3 мас.ч., бентон - 6 мас.ч., перемешивают 30 мин. Смесь пропускают через краскотерку до дисперсности 50 - 70 микрон.

Полученный пластизоль вакуумируют в течение 1,5 часов при постоянном перемешивании.

Прочность крепления крышки фильтра, а также адгезионную прочность и вязкость пластизоля определяют известными способами.

Предлагаемый пластизоль прошел испытания на ОАО Чапаевский "Средне-Волжский завод химикатов", при этом прочность крепления крышки фильтра составила 400 - 600 кГс при сохранении вязкости пластизоля в необходимых для производства пределах, достигнута адгезионная прочность при сдвиге 5,5 - 7,7 МПа, себестоимость пластизоля снизилась на 5 - 10%. В таблице представлены рецептуры и сравнительные свойства пластизолей, в пересчете с мас.ч. на мас. %.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Пластизоль, включающий эпоксидную диановую смолу, поливинилхлорид, диоктилфталат, бентон, дициандиамид, гексаметилендиаминадипинат, наполнитель, отличающийся тем, что он содержит в качестве наполнителя мел тонкодисперсный и дополнительно оловоорганический термостабилизатор, пластификатор - хлорпарафин, водосвязующий компонент - оксид кальция и уайт-спирит при следующем соотношении компонентов, мас.ч.:

Поливинилхлорид - 100

Диоктилфталат - 45 - 50

Оловоорганический термостабилизатор - 3,0 - 4,0

Мел тонкодисперсный - 30 - 40

Эпоксидная диановая смола - 25 - 35

гексаметилендиаминадипинат - 3,0

Дициандиамид - 7,0 - 8,0

Уайт-спирит - 9,0 - 11,0

Бентон - 6,0

Хлорпарафин - 20,0

Окись кальция - 1,0

Показатели,	Композиции по примеру				
компоненты	прототип	по изобретению			
		J	2	3	
Состав мас.%:					
1.Эпоксидная смола ЭД-20	8,6	10	12,5	14	
2.ПВХ марки Волговинил ЕП -	38	34	35,7	38	

1 4 W 4 1	2	3	4	5
6602C				1
3.ДОФ	23	16	17,9	19
4. Дициандиамид	2.3	3,0	2,86	2,5
5 Эпоксидированное раститель-	8,6	-	-	_
ное масло				
6.Бентон	2,3	2,5	2,15	2,0
7.Каолин	16,4	-	_	-
8.Соль АГ	0,8	1,3	1,07	0,9
9.Хлорпарафин ХП - 470	-	.8	7,15	5,6
10. Уайт - спирит	-	3,5	3,9	4,0
11.Мел тонкодисперсный		19,3	15,0	12,6
12.Окись кальция	-	0,4	0,36	0,3
13.Оловоорганический термо-	· <u>-</u>	2,0	1,41	1,1
стабилизатор				
(диоктилкарбоксилат олова)				
Свойства:			į	
14. Жизнеспособность при 25*С,	120	120	120	120
сут.				
15.Прочность склеивания образ-				
ца из стали 08 КП при сдвиге;				
МПа				
150*С, 30 мин.	1,8	2,0	3,2	2,8
170*С, 30 мин.	3,0	4,1	5,1	4,9
190*С, 45 мин.	3,5	5,7	7,7	6,3
16.При сдвиге при 80*С после				
				

1	2	3	4	5
отверждения при 170*С в тече-	1,1	1,1	1,1	1,1
ние 30 мин.(теплостойкость),				
МПа.		·		

.

(19) **RU** (11) **2149166** (13) **C1** (51) 7 C08L 27/06, C08K 13/02, C09J 127/06, C08L 27/06, C08L 13:02, C08K 13/02, C08K 3:22, C08K 3:26, C08K 3:36, C08K 5:02, C08K 5:31, C08K 5:11, C08K 5:12

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) SPECIFICATION

to Russian Federation Patent

(14) Date of publication: 2000.05.20

(21) Registration No. of the Application: 98102275/04

(22) Filing date of the Application: 1998.02.06

(24) Date of patent: 1998.02.06

(46) Date of publication of the set of claims: 2000.05.20

(56) Analogs of the invention: SU 1669949 A1, 15.08.1991. RU 20742.14 C1, 27.02.1997. SU 1770341 A1, 23.10.1992. SU 113450 A, 15.01.1985.

(71) Applicant(s): OAO Chapaevskij "Sredne-Volzhskij Zavod Khimikatov"

(72) Inventor(s): Fomin V.A.; Kretov V.A.; Grishin V.A; Shcheglova L.S.

(54) PLASTISOL

The invention relates to compositions of polyvinyl chloride (PVC) plastisols used as adhesives for oil, fuel and air filters of automotive vehicles. A plastisol is described, which comprises an epoxy diane resin, polyvinyl chloride, dioctyl phthalate, bentone, dicyandiamide, hexamerthylenediamineadipate, and a filler, characterized in that as the filler it comprises fine-dispersed chalk and it further comprises an organotin heat-stabilizing agent, chloroparaffin as plasticizer, calcium oxide as water-binding component and white spirit, with the following ratio of the components, in weight parts: polyvinyl chloride, 100; dioctyl phthalate,

45-50; organotin heat-stabilizing agent, 3.0-4.0; fine-dispersed chalk, 30-40; epoxy diane resin, 25-35; hex-amethylenediamineadipate, 3.0; dicyandiamide, 7.0-8.0; white spirit, 9.0-11.0; benton, 6.0; chloroparaffin, 20.0; calcium oxide, 1.0. Technical result: reduction of the toxicity and production costs of the plastisol by 15-20%. The new plastisol allows obtaining the attachment of the filter element cover of 400-600 kgF, shear adhesive strength of 5.5-7.7 MPa, viscosity of 15-30 Pa•s.