DM 12 Éléments de correction

	Un télescope	
1	Pour la lumière visible $\lambda \in [400 \text{ nm } 800 \text{ nm}]$	
2	La longueur d'onde est plus grande que l'intervalle visible, il s'agit	
	donc d'une radiation infra-rouge.	
	Intérêt des miroirs sphériques comparé aux lentilles	
3	copiage, tracé de l'axe optique et placer le point focal objet côté	
	objet et le point focal image côté image	
4	Rayons passant par le point focal image sont parallèle à l'axe	
	optique du côté objet. D'après le théorème de Malus les surfaces	
	d'onde avant la lentille sont des plans perpendiculaires à l'axe	
	optique.	
5	on prend un rayon passant par le centre de la lentille, il n'est	
	pas dévié, puis on fait distance fois indice en ajoutant la partie	
	dans le verre avec le bon indice et en la soustrayant de l'air donc	
	$(FF') = f + f' - e + n_{verre}e = 2f + (n_{verre} - 1)e.$	
6	Comme le rayon passe par l'extrémité de la lentille il fait tout	
	son chemin dans l'air donc on ajoute la distance tout droit et la	
	distance inclinée : $(MF') = f + \sqrt{f'^2 + D^2} = f + \sqrt{f^2 + D^2}$	
7	D'après une propriété du théorème de Malus comme M et F ap-	
	partiennent à la même surface d'onde et que les rayons passent	
	par le même système optique on a $(MF') = (FF')$ donc $f +$	
	$\sqrt{f'^2 + D^2} = 2f + (n_{verre} - 1)e \text{ donc } e = \frac{\sqrt{f^2 + D^2} - f}{n_{verge} - 1}$. Puis appli-	
	cation numérique $e = 1,09 \text{ m}.$	
8	On peut chercher le volume d'une calotte sphérique par exemple	
	$V = \frac{\pi e^3}{6} \left(1 + 3 \left(\frac{D}{e} \right)^2 \right)$ puis calculer la masse de la lentille $m = 1$	
	$d\rho_{eau}V$. L'application numérique donne 2, 9.10 ⁵ kg!	