III - Signaux et convolution

Exercice 1

Donner une expression synthétique pour chacun des signaux suivants (carreaux-unités) :

Plusieurs réponses possibles, par exemple :

a)
$$sg(t) sin(2\pi t)$$

b)
$$-1 + 2H(t+1) - H(t-2)$$
 ou $-H(-t-1) + \prod_{\frac{3}{2}}(t-\frac{1}{2})$

c)
$$1 - 2(t+1)H(t+1) + 4tH(t) - 2(t-\frac{1}{2})H(t-\frac{1}{2})$$
 ou $H(-t-1) - (2t+1)\Pi_1(t+\frac{1}{2}) + (2t-1)\Pi_{\frac{1}{2}}(t-\frac{1}{4})$

Exercice 2

Évaluer et représenter graphiquement les produits de convolution suivants :

En évaluant directement les intégrales dans la définition de la convolution, on trouve :

a) H(t) * H(t), où H est l'échelon unité,

Une rampe infinie
$$tH(t) = \begin{cases} 0 & \text{si } t \leq 0 \\ t & \text{si } t \geqslant 0 \end{cases}$$

b) $H(t) * \Pi_a(t)$, où $\Pi_a(t)$ désigne une porte unité de largeur $a \ge 0$,

une rampe finie
$$\begin{cases} 0 & \text{si } t \leqslant -\frac{a}{2} \\ t + \frac{a}{2} & \text{si } -\frac{a}{2} \leqslant t \leqslant \frac{a}{2} \\ a & \text{si } t \geqslant \frac{a}{2} \end{cases}$$

c) $\Pi_a(t) * \Pi_b(t)$ pour $a \ge b \ge 0$,

$$\text{un trapèze} \begin{cases} 0 & \text{si } t \leqslant -\frac{a+b}{2} \\ t + \frac{a+b}{2} & \text{si } -\frac{a+b}{2} \leqslant t \leqslant -\frac{a-b}{2} \\ b & \text{si } -\frac{a-b}{2} \leqslant t \leqslant \frac{a-b}{2} \\ -t + \frac{a+b}{2} & \text{si } \frac{a-b}{2} \leqslant t \leqslant \frac{a+b}{2} \\ 0 & \text{si } t \geqslant \frac{a+b}{2} \end{cases}$$

d) $\sin(t) * \Pi_a(t)$ (que dire lorsque $a \equiv 0$?),

$$\cos(t-\frac{a}{2})-\cos(t+\frac{a}{2})=\sin t\cdot\sin\frac{a}{2}$$
, identiquement nulle lorsque $a\equiv0$

e) $e^{-at}H(t) * e^{-bt}H(t)$.

$$H(t)\frac{e^{-at}-e^{-bt}}{b-a}$$
 si $b \neq a$, $H(t) t e^{-at}$ si $a = b$

Exercice 3

En supposant que les fonctions impliquées satisfont toutes les hypothèses techniques nécessaires (qu'il faudrait préciser si l'on voulait être rigoureux), établir les propriétés suivantes du produit de convolution.

a) Retard:

$$x(t - t_0) * y(t) = (x * y)(t - t_0) = x(t) * y(t - t_0).$$

Pour les signaux $z(t) := x(t - t_0)$ et y(t), on a

$$(z*y)(t) = \int_{-\infty}^{+\infty} x(u-t_0) y(t-u) dt = \int_{-\infty}^{+\infty} x(v) y(t-t_0-v) dt = (x*y)(t-t_0)$$

en faisant dans l'intégrale le changement de variables $v := u - t_0$, ce qui montre la première égalité. La deuxième s'établit de la même façon (ou en utilisant la commutativité du produit de convolution).

b) Dérivée :

$$x' * y = (x * y)' = x * y'.$$

$$(x * y)'(t) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{+\infty} x(u) y(t - u) \, \mathrm{d}t = \int_{-\infty}^{+\infty} x(u) y'(t - u) \, \mathrm{d}t = (x * y')(t)$$

en dérivant à travers l'intégrale, ce qui établit la deuxième égalité.

c) Intégrale totale :

$$\int_{-\infty}^{\infty} (x * y)(t) dt = \left(\int_{-\infty}^{\infty} x(t) dt \right) \left(\int_{-\infty}^{\infty} y(t) dt \right).$$

En posant v = t - u (changement de variables de déterminant 1 dans l'intégrale double) + Fubini :

$$A(x * y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(u) y(t - u) du dt = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(u) y(v) du dv = A(x) \cdot A(y)$$

Exercice 4

En supposant, bien entendu, que x * y existe, montrer que

a) Si x et y sont de même parité, alors x * y est pair;

Soit $\varepsilon = \pm 1$ pour lequel on a $x(-t) = \varepsilon x(t)$ et $y(-t) = \varepsilon y(t)$. Alors

$$(x * y)(-t) = \int_{-\infty}^{+\infty} x(u) y(-t - u) du = \int_{-\infty}^{+\infty} x(u) \varepsilon y(t + u) du$$

$$= \int_{-\infty}^{+\infty} x(-u) y(t + u) du = \int_{-\infty}^{+\infty} x(v) y(t - v) dv = (x * y)(t).$$

b) si x et y sont de parités contraires, x * y est impair.

Pareil en rajoutant un signe – de temps en temps

c) Que dire de x * y si x ou y est périodique?

Si x est T-périodique (c'est pareil si c'est y), x*y l'est aussi car :

$$(x\ast y)$$
 retardée de $T=(x$ retardée de $T)\ast y=x\ast y.$

Exercice 5

Dans la colonne de gauche, vous avez des paires de signaux : x(t) et y(t) numérotés de \mathbf{a} à \mathbf{f} . À droite, vous trouvez leur produit de convolution : (x*y)(t), dans le désordre, numérotés de $\mathbf{1}$ à $\mathbf{6}$.

Repérer le maximum d'indices afin d'associer chacune des paires de signaux (x, y) à son produit de convolution x * y. Justifiez vos choix et expliquer pourquoi l'on observe tel ou tel phénomène.

On remarque (vérifie) que tous ces signaux causaux donnent des convolutions causales.

Les figures a, c, 2 et 3 sont les seules à faire apparaı̂tre des valeurs négatives.

On associe		car
a	2	seule figure où il y a 6 cas à étudier; la figure 2 est celle qui a le plus large support
b	6	seul signal qui ne soit pas de degré 1 par morceaux
c	3	seule figure prenant des valeurs négatives ayant 5 cas à étudier; y étant la différence de 2 portes, $x*y$ est donc la différence de 2 triangles.
d	4	cas particulier de l'exercice 2 avec deux portes de même largeur ; résultat qui a le plus petit support
e	1	cas particulier de l'exercice 2, résultat toujours positif, avec 5 cas à étudier; présente un plateau quand le support de y est \subset support de x
f	5	seul support non borné; convoluer avec Heaviside revient à primitiver (Cf cours); seule figure où il n'y a que 3 cas à étudier