Package 'longitudinalDynamics'

September 13, 2021

Description An implementation of the longitudinal data analysis platform in R. It allows to identify intra-donor, inter-donor variations over longitudinal time points. The analysis can be done on bulk expression dataset without known to be a superior of the longitudinal time points.

time points. The analysis can be done on bulk expression dataset without known celltype information or single cell with celltype information or known groups. It allows to identify stable and variable features in given donor and each celltype (or user defined group). The outlier in intra-donor can be performed to identify perturbed or change in sample currespnding to donor/participant. The stable and variable gene signature helps to identify gene signatures in dataset and perturbation specific featureset.

Depends R (>= 3.5.0), methods, grid, graphics, stats, grDevices, knitr

```
Imports ggplot2 (>= 3.3),
      reshape 2 (>= 1.4),
      tidyverse (>= 1.3),
      Seurat (>= 3.9),
      ggrepel (>= 0.9),
      ComplexHeatmap (>= 2.4),
      circlize (>= 0.4),
      gridExtra (>= 2.3),
      cowplot (>= 1.1),
      factoextra (>= 1.0),
      SAGx (>= 1.62),
      pheatmap (>= 1.0),
      Rtsne (>= 0.15),
      phapply (>= 1.4),
      lme4 (>= 1.1),
      ggforce (>= 0.3)
Suggests ArchR (>= 1.0),
      MAST (>= 1.14),
```

biocViews Data analysis, Longitudinal data, Single cell, scRNA, scATAC, Software, Visualization

2 avgExpCalc

License MIT + file LICENSE
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.1
VignetteBuilder knitr

R topics documented:

avgExpCalc
cvCalcBulk
cvCalcSC
cvSampleprofile
dimUMAPPlot
genecircosPlot
genecircosPlot_combined
genePlot
iqrBulk
iqrSC
lmeVariance
longitudinalDynamics
longitudinalDynamics_bulk_analysis
longitudinalDynamics_scatac_analysis
longitudinalDynamics_scrna_analysis
scatac_archr_genescore
StableFeatures
VarFeatures

avgExpCalc

A avgExpCalc Function

Description

This function allows you to calculate average gene expression on long-normalized data by group defined by user

Usage

```
avgExpCalc(dataObj, group.by)
```

Arguments

dataObj scRNA object with log-normalized data group.by Calculate average expression by given group

```
##Input Expression data
#avgExpCalc(dataObj, group.by)
```

cvCalcBulk 3

cvCalcBulk A cvCalcBulk Function

Description

This function allows to calculate Intra-donor variations over longitudinal timepoints. The coefficient of variation (CV) is calculated in Bulk data without group information. CV calculated across samples. It requires longitudinal data matrix/data frame and annotation file.

Usage

```
cvCalcBulk(
  mat = NULL,
  ann = NULL,
  meanThreshold = NULL,
  cvThreshold = NULL,
  housekeeping_genes = NULL,
  fileName = NULL,
  filePATH = NULL
)
```

Arguments

mat	Expression matrix or data frame. Rows represents gene/proteins column represents participant samples (same as annotation table Sample column)
ann	Annotation table. the must consist column Sample, Participant sample name; PTID, participant; Time, longitudinal time frame
meanThreshold	Average expression threshold to filter lowly expressed genes Default is $0.1 \ (\log 2 \ scale)$
cvThreshold	Coefficient of variation threshold to select variable and stable genes Default is 5 for bulk olink data
housekeeping_genes	
	Optional list of housekeeping genes to focus on. Default is NULL
fileName	User-defined file name, Default outputFile
filePATH	User-defined output directory PATH Default, current directory

cvCalcSC A cvCalcSC Function

Description

This function allows to calculate Intra-donor variations over longitudinal timepoints. The coefficient of variation is calculated in single cell data. It requires longitudinal data matrix/data frame and annotation file.

4 cvSampleprofile

Usage

```
cvCalcSC(
  mat = NULL,
  ann = NULL,
  meanThreshold = NULL,
  cvThreshold = NULL,
  housekeeping_genes = NULL,
  fileName = NULL,
  filePATH = NULL
)
```

Arguments

mat Expression matrix or data frame. Rows represents gene/proteins column repre-

sents participant samples (same as annotation table Sample column)

ann Annotation table. the must consist column Sample, Participant sample name;

PTID, participant; Time, longitudinal time frame; group, name of the group;

group_donor, combined string using group:Sample

meanThreshold Average expression threshold to filter lowly expressed genes Default is 0.1 (log2

scale)

cvThreshold Coefficient of variation threshold to select variable and stable genes Default is

10 for single cell RNA (100*SD/mean)

housekeeping_genes

Optional list of housekeeping genes to focus on. Default is NULL

fileName User-defined file name, Default outputFile

filePATH User-defined output directory PATH Default, current directory

cvSampleprofile A cvSampleprofile Function

Description

This function allows to calculate Intra-donor variations over longitudinal timepoints. The coefficient of variation is calculated in single cell data. It requires longitudinal data matrix/data frame and annotation file.

```
cvSampleprofile(
  mat,
  ann,
  meanThreshold = NULL,
  cvThreshold = NULL,
  fileName = NULL,
  filePATH = NULL
)
```

dimUMAPPlot 5

Arguments

mat	Expression matrix or data frame. Rows represents gene/proteins column represents participant samples (same as annotation table Sample column)
ann	Annotation table. the must consist column Sample, Participant sample name; PTID, participant; Time, longitudinal time frame; group, name of the group; group_donor, combined string using group:Sample
meanThreshold	Average expression threshold to filter lowly expressed genes Default is $0.1 \ (log2 \ scale)$
cvThreshold	Coefficient of variation threshold to select variable and stable genes Default is 10 for single cell RNA (100*SD/mean)
fileName	User-defined file name, Default outputFile
filePATH	User-defined output directory PATH Default, current directory

dimUMAPPlot

A dimUMAPPlot Function

Description

This function allows you to perform UMAP visualization of gene of interest list.

Usage

```
dimUMAPPlot(
  ann = NULL,
  rnaObj = NULL,
  countMat = NULL,
  nPC = 30,
  gene_oi = NULL,
  groupName = NULL,
  plotname = NULL,
  filePATH = NULL,
  fileName = NULL)
```

Arguments

ann	Optional. Annotation table used in case of count/genescore matrix. It must consist column Sample, Participant sample name; PTID, participant; Time, longitudinal time frame; group, name of the group; group_donor, combined string using group:Sample
rnaObj	The seurat scRNA object in case of single cell RNA data (optional).
countMat	Expression matrix or data frame. Rows represents gene/proteins column represents participant samples (same as annotation table Sample column), in case count matrix for expression data (optional).
nPC	Number of PCAs to be used for UMAP, Default is 30
gene_oi	Genes of interest to explore, required
groupName	User-defined group name column from annotation table or seurat annotation

column, required

6 genecircosPlot

```
plotname User-defined output file name, required

filePATH User-defined output directory PATH Default, current directory

fileName User-defined file name, Default outputFile
```

Examples

```
##Count/genescore matrix data
#dimUMAPPlot(ann=annotation, countMat=countData, nPC=15, gene_oi=var_gene,
#groupName="celltype", plotname="variable", filePATH=filePATH, fileName="ATAC")
##Single cell RNA data
#dimUMAPPlot(rnaObj=SeuratObj, nPC=15, gene_oi=var_gene, groupName="celltype",
#plotname="variable", filePATH=filePATH, fileName="scRNA")
```

 ${\tt genecircosPlot}$

A genecircosPlot Function

Description

This function allows you to Circos Plot for gene list of interest by group

Usage

```
genecircosPlot(
  data,
  geneList,
  groupColumn = NULL,
  group_oi = NULL,
  colorThreshold = NULL
)
```

Arguments

Expression matrix or data frame. Rows represents gene/proteins column represents group:donor (group and donor separated by :)

geneList Genes of interest to explore

groupColumn Default 1, use 2 when columns are donor:group format

group_oi Optional, User-defined groups to consider colorThreshold User-defined color threshold in colorspace

```
##Circos Plot for genes expression in a group
#geneList <- c("IL32","CCL5","TCF7","IL7R","LEF1")
#res <- genecircosPlot(data=cv_res, geneList=geneList)</pre>
```

```
genecircosPlot_combined
```

A genecircosPlot_combined Function

Description

This function allows you to Circos Plot for gene list of interest by group

Usage

```
genecircosPlot_combined(
  data,
  geneList,
  groupColumn = NULL,
  group_oi = NULL,
  colorThreshold = NULL
)
```

Arguments

data Expression matrix or data frame. Rows represents gene/proteins column repre-

sents group:donor (group and donor separated by :)

geneList Genes of interest to explore

groupColumn Default 1, use 2 when columns are donor:group format

group_oi Optional, User-defined groups to consider colorThreshold User-defined color threshold in colorspace

Examples

```
##Circos Plot for genes expression in a group
#geneList <- c("IL32","CCL5","TCF7","IL7R","LEF1")
#res <- genecircosPlot(data=cv_res, geneList=geneList)</pre>
```

genePlot

A genePlot Function

Description

This function allows you to perform UMAP visualization of gene of interest list.

```
genePlot(ann = NULL, data = NULL, geneName = NULL, groupName = NULL)
```

8 iqrBulk

Arguments

ann Optional. Annotation table used in case of count/genescore matrix. It must

consist column Sample, Participant sample name; PTID, participant; Time, longitudinal time frame; group, name of the group; group_donor, combined string

using group:Sample

data Average Expression matrix or data frame. Rows represents gene/proteins col-

umn represents participant samples with group (optional).

geneName User-defined gene name

groupName User-defined group name column from annotation table

Examples

#plot <- genePlot(ann=annotation, data=ExpressionData, geneName="FOLR3", groupName="Time")</pre>

iqrBulk A iqrBulk Function

Description

This function allows you to perform outlier analysis using defining IQR in bulk dataset. Outlier genes defined as exp > mean +/- 2SD.

Usage

```
iqrBulk(ann, mat, SD_threshold = NULL, fileName = NULL, filePATH = NULL)
```

Arguments

ann Annotation table. the must consist column Sample, Participant sample name;

PTID, participant; Time, longitudinal time frame

mat Expression matrix or data frame. Rows represents gene/proteins column repre-

sents participant samples (same as annotation table Sample column)

SD_threshold Standard devaition limit to find outlliers (Eg. SD_threshold= 2, equals to Mean+/-

2SD)

fileName User-defined file name, Default outputFile

filePATH User-defined output directory PATH Default, current directory

```
#filePATH <- getwd()
#IQR_res <- iqrBulk(ann=metadata, mat=datamatrix, fileName="olink", filePATH=filePATH)</pre>
```

iqrSC 9

|--|

Description

This function allows you to perform outlier analysis on single cell based average expression matrix by defining IQR. Outlier genes defined as $\exp > \max +/-2SD$.

Usage

```
iqrSC(
  ann,
  mat,
  groupName = NULL,
  SD_threshold = NULL,
  fileName = NULL,
  filePATH = NULL
)
```

Arguments

ann	Annotation table. the must consist column Sample, Participant sample name; PTID, participant; Time, longitudinal time frame
mat	Expression matrix or data frame. Rows represents gene/proteins column represents participant samples (same as annotation table Sample column)
groupName	Group label used to calculate average gene expression and check for outliers
SD_threshold	Standard devaition limit to find outlliers (Eg. SD_threshold= 2, equals to Mean+/-2SD)
fileName	User-defined file name, Default outputFile
filePATH	User-defined output directory PATH Default, current directory

Examples

```
#filePATH <- getwd()
#IQR_res <- iqrSC(ann=metadata, mat=datamatrix, fileName="olink", filePATH=filePATH)</pre>
```

|--|

Description

This function allows you to calculate inter-donor variation between participants over longitudinal time points. It uses linear mixed model to calculate variance contribution from each given feature list

Usage

```
lmeVariance(
  ann,
  mat,
  features,
  meanThreshold = NULL,
  fileName = NULL,
  filePATH = NULL
)
```

Arguments

ann Annotation table. the must consist column Sample, Participant sample name;

PTID, participant; Time, longitudinal time frame

mat Expression matrix or data frame. Rows represents gene/proteins column repre-

sents participant samples (same as annotation table Sample column)

features Variance analysis carried out for the features provided such as c("PTID", "Time",

"Sex")

meanThreshold Average expression threshold to filter lowly expressed genes/features Default is

0

fileName User-defined file name, Default outputFile

filePATH User-defined output directory PATH Default, current directory

Examples

```
##Input Expression data
#filePATH <- getwd()
#lmem_res <- lmeVariance(ann=metadata, mat=datamatrix,
#features=c("PTID", "Time", "Sex"),
#meanThreshold=0.1, fileName="RNA", filePATH=filePATH)</pre>
```

longitudinalDynamics A longitudinalDynamics Function

Description

This function allows you to perform analysis of longitudinal dataset. It requires longitudinal data matrix/data frame and annotation file.

```
longitudinalDynamics(
  metadata = NULL,
  datamatrix = NULL,
  scrnaObj = NULL,
  atacObj = NULL,
  datatype = NULL,
  omics = NULL,
  fileName,
  features = NULL,
```

```
meanThreshold = 1,
  cvThreshold = 5,
  coding_genes = NULL,
  avgGroup = NULL,
  housekeeping_genes = NULL,
  group_oi = NULL,
  nPC = 30,
  donorThreshold = NULL,
  groupThreshold = NULL,
  topFeatures = 25,
  method = NULL,
  outputDirectory = NULL)
```

Arguments

metadata	Annotation table must consist column Sample, Participant sample name; PTID, participant; Time, longitudinal time frame
datamatrix	Expression matrix or data frame. Rows represents gene/proteins column represents participant samples (same as annotation table Sample column)
scrnaObj	Single cell RNA Seurat object, if datatype is single cell RNA
atacObj	Single cell ATAC genematrix or data frame, if datatype is single cell ATAC
datatype	Data input can be bulk or singlecell
omics	User defined name like RNA, ATAC, Proteomics, FLOW
fileName	User defined filename
features	Variance analysis carried out for the features provided such as c("PTID", "Time", "Sex")
meanThreshold	Average expression threshold to filter lowly expressed genes Default is $0.1 \ (log2 \ scale)$
cvThreshold	Coefficient of variation threshold to select variable and stable genes Default is 10 for single cell RNA (100*SD/mean)
coding_genes	Selecting protein coding/user-defined gene list only
avgGroup	Group label to be used to calculate average gene expression by group label
housekeeping_ge	enes
	Optional list of housekeeping genes to focus on Default is NULL
group_oi	Group of interest to focus on, Default is NULL
nPC	Number of PCAs to be used for UMAP, Default is 30
${\tt donorThreshold}$	Donor threshold number to be used, Default is number of participants
groupThreshold	Group label threshold number to be used, Default is (number of participants x group labels)/2 $$
topFeatures	Number of features to be selected from each group, Default is 25
method	Type of variations to be analyzed, c("intra-donor", "inter-donor", "iqr"), Default is all
outputDirectory	

User-defined output directory Default, output

Examples

```
##Bulk data
#load("data/data_Annotation.Rda")
#load("data/Olink_NPX_log2_Protein.Rda")
#longitudinalDynamics(metadata=ann, datamatrix=data, datatype="bulk", omics="Protein",
#fileName="olink", features=c("PTID", "Time", "Sex"), meanThreshold=1, cvThreshold=5,
#outputDirectory="output")
##Single cell RNA data
#load("data/pbmc1-subset.Rda")
#load("data/data_Annotation.Rda")
#metadata=ann
#long_res <- longitudinalDynamics(metadata=ann, scrnaObj=pbmc,</pre>
#datatype="singlecell", omics="rna",
#fileName="scrna", features=c("PTID",
                                      "Time"),
#meanThreshold=0.1, cvThreshold=10,
#coding_genes=FALSE, avgGroup="celltype",
#housekeeping_genes=housekeeping_genes,
#donorThreshold=4, groupThreshold=40, topFeatures=25,
#method=c("intra-donor","inter-donor","iqr"),
#outputDirectory="output")
```

longitudinalDynamics_bulk_analysis

A longitudinalDynamics_bulk_analysis Function

Description

This function allows you to perform analysis of longitudinal data from bulk dataset. It requires longitudinal bulk data matrix/data frame at sample level and annotation file.

Usage

```
longitudinalDynamics_bulk_analysis(
  metadata = NULL,
  datamatrix = NULL,
  datatype = NULL,
  omics = NULL,
  fileName = NULL,
  filePATH = NULL,
  features = NULL,
  method = NULL,
  meanThreshold = NULL,
  cvThreshold = NULL
```

Arguments

metadata

Annotation table must consist column Sample, Participant sample name; PTID, participant; Time, longitudinal time frame

datamatrix	Expression matrix or data frame. Rows represents gene/proteins column represents participant samples (same as annotation table Sample column)
datatype	Data input can be bulk or singlecell
omics	User defined name like RNA, ATAC, Proteomics, FLOW
fileName	User defined filename
filePATH	User-defined output directory path
features	Variance analysis carried out for the features provided such as c("PTID", "Time", "Sex")
method	Type of variations to be analyzed, $c("intra-donor", "inter-donor", "iqr")$, Default is all
meanThreshold	Average expression threshold to filter lowly expressed genes Default is 0.1 (log2 scale)
cvThreshold	Coefficient of variation threshold to select variable and stable genes Default is 10 for single cell RNA (100*SD/mean)

Examples

```
##Bulk data
#longitudinalDynamics(metadata=ann, datamatrix=data, datatype="bulk", omics="Protein",
#fileName="olink", features=c("PTID", "Time", "Sex"), meanThreshold=1, cvThreshold=5,
#outputDirectory="output")
```

longitudinalDynamics_scatac_analysis

 $A\ longitudinal Dynamics_scatac_analysis\ Function$

Description

This function allows you to perform analysis of longitudinal dataset from single cell atac based genescore matrix.

```
longitudinalDynamics_scatac_analysis(
 metadata = NULL,
 genescore = NULL,
 datatype = NULL,
 omics = NULL,
 fileName = NULL,
 filePATH = NULL,
 features = NULL,
 meanThreshold = 0.1,
 cvThreshold = 10,
 coding_genes = NULL,
 avgGroup = NULL,
 housekeeping_genes = NULL,
 group_oi = NULL,
 nPC = NULL,
 method = NULL,
```

```
donorThreshold = NULL,
  groupThreshold = NULL,
  topFeatures = 25
)
```

Arguments

metadata Annotation table must consist column Sample, Participant sample name; PTID, participant; Time, longitudinal time frame Genescore Expression matrix or data frame derived from scATAC. Rows repregenescore sents genes and column represents participant samples (same as annotation table Sample column) Data input can be bulk or singlecell datatype User defined name like RNA, ATAC, Proteomics, FLOW omics User defined filename fileName filePATH User-defined output directory path features Variance analysis carried out for the features provided such as c("PTID", "Time", "Sex") meanThreshold Average expression threshold to filter lowly expressed genes Default is 0.1 (log2 scale) cvThreshold Coefficient of variation threshold to select variable and stable genes Default is 10 for single cell RNA (100*SD/mean) coding_genes Selecting protein coding/user-defined gene list only Group label to be used to calculate average gene expression by group label avgGroup housekeeping_genes Optional list of housekeeping genes to focus on Default is NULL Group of interest to focus on, Default is NULL group_oi nPC Number of PCAs to be used for UMAP, Default is 30 method Type of variations to be analyzed, c("intra-donor", "inter-donor", "iqr"), Default is all donorThreshold Donor threshold number to be used, Default is number of participants groupThreshold Group label threshold number to be used, Default is (number of participants x group labels)/2 topFeatures Number of features to be selected from each group, Default is 25

```
##Single cell ATAC data
#longitudinalDynamics(metadata=ann, atacObj=atacObj,
#datatype="singlecell", omics="atac",fileName="scatac",
#features=c("PTID", "Time", "group"),
#meanThreshold=0.1, cvThreshold=10,
#housekeeping_genes=NULL, group_oi=NULL,
#nPC=30, donorThreshold=4, groupThreshold=40, topFeatures=25,
#method=c("intra-donor","inter-donor","iqr"),
#outputDirectory="output")
```

```
longitudinalDynamics_scrna_analysis
```

 $A\ longitudinal Dynamics_scrna_analysis\ Function$

Description

This function allows you to perform analysis of longitudinal dataset from single cell RNA.

Usage

```
longitudinalDynamics_scrna_analysis(
 metadata = NULL,
 dataObj = NULL,
 datatype = "singlecell",
 omics = "scRNA",
 fileName = NULL,
 filePATH = NULL,
 features = NULL,
 meanThreshold = 0.1,
 cvThreshold = 10,
 coding_genes = NULL,
 avgGroup = NULL,
 housekeeping_genes = NULL,
 group_oi = NULL,
 nPC = NULL,
 method = NULL,
 donorThreshold = NULL,
 groupThreshold = NULL,
  topFeatures = 25
```

Arguments

metadata	Annotation table must consist column Sample, Participant sample name; PTID, participant; Time, longitudinal time frame
dataObj	Single cell Expression data. The scRNA data should be seurat object. To get more information visit https://cran.r-project.org/web/packages/SeuratObject/SeuratObject.pdf
datatype	Default singlecell
omics	Default scRNA
fileName	User defined filename
filePATH	User-defined output directory path
features	Variance analysis carried out for the features provided such as c("PTID", "Time", "Sex")
meanThreshold	Average expression threshold to filter lowly expressed genes Default is 0.1 (log2 scale)
cvThreshold	Coefficient of variation threshold to select variable and stable genes Default is 10 for single cell RNA (100*SD/mean)
coding_genes	Selecting protein coding/user-defined gene list only

avgGroup Group label to be used to calculate average gene expression by group label housekeeping_genes

Optional list of housekeeping genes to focus on Default is NULL

group_oi Group of interest to focus on, Default is NULL

nPC Number of PCAs to be used for UMAP, Default is 30

method Type of variations to be analyzed, c("intra-donor", "inter-donor", "iqr"), Default

is all

donorThreshold Donor threshold number to be used, Default is number of participants

groupThreshold Group label threshold number to be used, Default is (number of participants x

group labels)/2

topFeatures Number of features to be selected from each group, Default is 25

Examples

```
##Single cell RNA data
#load("data/pbmc1-subset.Rda")
#load("data/data_Annotation.Rda")
#metadata=ann
#long_res <- longitudinalDynamics(metadata=ann, scrnaObj=pbmc,
#datatype="singlecell", omics="rna",
#fileName="scrna", features=c("PTID", "Time"),
#meanThreshold=0.1, cvThreshold=10,
#coding_genes=FALSE, avgGroup="celltype",
#housekeeping_genes=housekeeping_genes,
#nPC=15,
#donorThreshold=4, groupThreshold=40, topFeatures=25,
#method=c("intra-donor", "inter-donor", "iqr"),
#outputDirectory="output")</pre>
```

scatac_archr_genescore

A scatac_archr_genescore Function

Description

This function allows you to calculate genescore matrix from scATAC archR object. This function requires archR package installed and scATAC object created.

Usage

```
scatac_archr_genescore(ArchRProj, groupBy)
```

Arguments

ArchRProj archR scATAC object for input single cell ATAC longitudinal data

groupBy Group label to be used to calculate average gene expression by group label, Eg.

"celltype"

```
##Input scATAC data
#genescore <- scatac_archr_genescore(ArchRProj=proj, groupBy="celltype")</pre>
```

StableFeatures 17

StableFeatures	A StableFeatures Function

Description

This function allows you to identify stable genes in a participant across longitudinal timepoints in single cell dataset. The coefficient of variation (CV) obtained from 'cvCalcSC' function used to filter genes/features by CV threshold (cvThreshold). User can identify cvThreshold in different datasets using housekeeping genes CV distribution. The minimum expression of gene (mean-Threshold) used to remove lowly expressed genes (spike CV).

Usage

```
StableFeatures(
   ann = NULL,
   group_oi = NULL,
   meanThreshold = NULL,
   cvThreshold = NULL,
   donorThreshold = NULL,
   groupThreshold = NULL,
   topFeatures = 25,
   filePATH = NULL,
   fileName = NULL
)
```

Arguments

ann	Annotation table must consist column Sample, Participant sample name; PTID, participant; Time, longitudinal time frame
group_oi	Group of interest to focus on, Default is NULL
meanThreshold	Average expression threshold to filter lowly expressed genes Default is 0.1 (log2 scale)
cvThreshold	Coefficient of variation threshold to select variable and stable genes Default is 10 for single cell RNA ($100*SD/mean$)
donorThreshold	Donor threshold number to be used, Default is number of participants
groupThreshold	Group label threshold number to be used, Default is (number of participants x group labels)/2 $$
topFeatures	Number of features to be selected from each group, Default is 25
filePATH	User-defined output directory path to load the CV result obtained from cv-CalcSC function
fileName	User defined filename

```
##Single cell RNA data
#stablegene <- StableFeatures(ann=metadata, meanThreshold=0.1, cvThreshold=10,
#donorThreshold=donorThreshold, groupThreshold=groupThreshold,
#topFeatures=25, fileName="scRNA", filePATH=filePATH)</pre>
```

18 VarFeatures

VarFeatures

A VarFeatures Function

Description

This function allows you to identify variable genes in a participant across longitudinal timepoints in single cell dataset. The coefficient of variation (CV) obtained from 'cvCalcSC' function used to filter genes/features by CV threshold (cvThreshold). User can identify cvThreshold in different datasets using housekeeping genes CV distribution. The minimum expression of gene (mean-Threshold) used to remove lowly expressed genes (spike CV).

Usage

```
VarFeatures(
   ann = NULL,
   group_oi = NULL,
   meanThreshold = NULL,
   cvThreshold = NULL,
   donorThreshold = NULL,
   groupThreshold = NULL,
   topFeatures = 25,
   filePATH = NULL,
   fileName = NULL
)
```

Arguments

ann	Annotation table must consist column Sample, Participant sample name; PTID, participant; Time, longitudinal time frame
group_oi	Group of interest to focus on, Default is NULL
meanThreshold	Average expression threshold to filter lowly expressed genes Default is 0.1 (log2 scale)
cvThreshold	Coefficient of variation threshold to select variable and stable genes Default is $10 \text{ for single cell RNA (} 100*\text{SD/mean)}$
${\tt donorThreshold}$	Donor threshold number to be used, Default is number of participants
groupThreshold	Group label threshold number to be used, Default is (number of participants x group labels)/2 $$
topFeatures	Number of features to be selected from each group, Default is 25
filePATH	User-defined output directory path to load the CV result obtained from cv-CalcSC function
fileName	User defined filename

```
#Single cell RNA data
#vargenes <- VarFeatures(ann=metadata, meanThreshold=0.1, cvThreshold=10,
#donorThreshold=donorThreshold, groupThreshold=groupThreshold,
#topFeatures=25, fileName="scRNA", filePATH="output/")</pre>
```