

EXERCISE 3 **DOMAIN ADAPTATION**

Teaching Assistant:

Leonardo Iurada

leonardo.iurada@polito.it

OVERVIEW

- 1. Description of the problem: **Domain Shift**
- 2. Description of the solution: **Domain Adaptation** through **DANN/GRL**
- 3. Dataset: PACS
- 4. Tools: Google Colab
- 5. Required steps:
 - a. Implement DANN/GRL architecture
 - b. Train on Cartoon, test on Sketch without adaptation
 - c. Train on Cartoon, test on Sketch **with** adaptation (using DANN/GRL)
 - d. Change the values of some hyperparameters

DOMAIN SHIFT

Training Set (Source Domain)

GTA 5 (Synthetic)

Test Set (Target Domain)

Cityscapes (Real)

UNSUPERVISED DOMAIN ADAPTATION (UDA)

DOMAIN-ADVERSARIAL ADAPTATION (DANN/GRL)

We will note the prediction loss and the domain loss respectively by

$$\mathcal{L}_{y}^{i}(\theta_{f}, \theta_{y}) = \mathcal{L}_{y}(G_{y}(G_{f}(\mathbf{x}_{i}; \theta_{f}); \theta_{y}), y_{i}),$$

$$\mathcal{L}_{d}^{i}(\theta_{f}, \theta_{d}) = \mathcal{L}_{d}(G_{d}(G_{f}(\mathbf{x}_{i}; \theta_{f}); \theta_{d}), d_{i}).$$

Training DANN then parallels the single layer case and consists in optimizing

$$E(\theta_f, \theta_y, \theta_d) = \frac{1}{n} \sum_{i=1}^n \mathcal{L}_y^i(\theta_f, \theta_y) - \lambda \left(\frac{1}{n} \sum_{i=1}^n \mathcal{L}_d^i(\theta_f, \theta_d) + \frac{1}{n'_{i=n+1}} \sum_{j=1}^N \mathcal{L}_d^i(\theta_f, \theta_d) \right)$$

PACS

PACS is an image classification dataset:

- 7 object categories

(Dog, Elephant, Giraffe, Guitar, Horse, House, Person)

- 4 visual domains

(Photo, Art Painting, Cartoon, Sketch)

Source Domain (Cartoon) Target Domain (Sketch)

SETUP THE ENVIRONMENT

- You can find the starter Google Colab Notebook <u>here</u> (or at https://t.ly/oEqEU)
- Click "Copy on Drive" to clone the notebook on your Google Drive
- Now you should be able to connect to a GPU Runtime and edit the code ("Runtime" dropdown menu → "Change runtime type" → Select "T4 GPU" and click "Save")

a. IMPLEMENT DANN/GRL ARCHITECTURE

Starting from the initial code, modify the architecture:

- Modify the __init__ function of the AlexNet class to add a new classifier that performs domain discrimination
- Initialize the weights of AlexNet pre-trained on ImageNet
- Extend the forward pass & the loss calculation:
 - **Source** domain data (**labeled**) passes through the **class discriminator:**

$$\mathcal{L}_{y}^{i}(\theta_{f}, \theta_{y}) = \mathcal{L}_{y}(G_{y}(G_{f}(\mathbf{x}_{i}; \theta_{f}); \theta_{y}), y_{i})$$

- **Source** domain data passes through the **domain discriminator:**

$$\mathcal{L}_d^i(\theta_f, \theta_d) = \mathcal{L}_d(G_d(G_f(\mathbf{x}_i; \theta_f); \theta_d), d_i)$$

- **Target** domain data passes through the **domain discriminator**:

$$\mathcal{L}_d^i(\theta_f, \theta_d) = \mathcal{L}_d(G_d(G_f(\mathbf{x}_i; \theta_f); \theta_d), d_i)$$

b. TRAIN WITHOUT ADAPTATION

For this exercise you have to consider as:

- **Source Domain**: Cartoon

Target Domain: <u>Sketch</u>

- Implement the Dataset class, build the Dataset and DataLoader objects
- Setup the optimizer (SGD) and the learning rate scheduler (StepLR)
- Write the **training loop** and the **test loop**

On the Target Domain, you should obtain an accuracy of ~50% at test time

c. TRAIN WITH ADAPTATION

For this exercise, again, you have to consider as:

Source Domain: <u>Cartoon</u>Target Domain: <u>Sketch</u>

- Write a new **training loop** that uses the Domain Classifier with the Gradient Reversal Layer (DANN/GRL architecture)

[HINT 1: you can zip train & test dataloaders together, when iterating over the data]

[HINT 2: source examples have domain label "0", while target examples have domain label "1"]

On the Target Domain, you should obtain an increase in the accuracy at test time (+2/3%)

d. CHANGE THE VALUE OF SOME HPs

Analyze the behavior of the training, by changing the value of some hyperparameters (e.g. **Lambda** or **LR**) – You can perform a **grid search** of their values

Optionally, you may <u>perform at least **3 runs** with each set of hyperparameters</u> and report in a spreadsheet (e.g. it is suggested to use Google Sheets) the **mean** and **standard deviation** of the runs

LR	λ	CARTOON ACC	SKETCH ACC	AVG ACC
0.1	None	0.163	0.191	0.177
0.01	None	0.313	0.310	0.312
0.005	None	0.262	0.261	0.261
0.001	None	0.250	0.199	0.224
0.1	0.5	0.163	0.191	0.177
0.01	0.5	0.162	0.191	0.176
0.005	0.5	0.165	0.192	0.178
0.001	0.5	0.162	0.192	0.177
0.1	0.1	0.163	0.192	0.177
0.01	0.1	0.520	0.191	0.356
0.005	0.1	0.468	0.191	0.330
0.001	0.1	0.277	0.198	0.237
0.1	0.05	0.164	0.191	0.177
0.01	0.05	0.507	0.171	0.339
0.005	0.05	0.339	0.583	0.461
0.001	0.05	0.253	0.362	0.308