1. הוכיחו/הפריכו:

$$\Gamma^{orall} \vDash A^{orall}$$
 אז אם $^{rac{1}{2}} R
ceil = \Gamma^{rac{1}{2}}$ אז

$$\Gamma^{\exists} \models A^{\exists}$$
 אז $\Gamma^{\forall} \models A^{\forall}$ ב. אם

.2

- . מתפרשת כפונקציית העוקב $N=(\mathbb{N},\{s\})$ א. נתבונן במבנה $N=(\mathbb{N},\{s\})$ א. מתרו את כל האיזומורפיזמים של N לעצמו.
- ?(עם הפירושים הרגילים) איזומורפיים (עם הפירושים הרגילים) ו $(\mathbb{R},\{+,\times,=\})$ ב. האם המבנים
 - ?(עם הפירושים הרגילים) איזומורפיים ($\mathbb{R}, \{+, =\}$) ו $(\mathbb{R}, \{+, =\})$ ג.
 - ד. עבור המילון $\{E,=\}$ האם הגרפים הבאים איזומורפיים

כאשר E יחס דו מקומי המתפרש בתור קשת.

- .(סקולמיזציות שלהם) $A'\coloneqq Sk(A), B'\coloneqq Sk(B)$ יהיו .3 פסוקים ויהיו הכיחו/הפריכו:
 - א. $A' \lor B'$ ספיקה אם"ם $A \lor B$
 - ב. $A \wedge B'$ ספיקה אם"ם $A \wedge B$
 - ג. A' ספיקה אם"ם $\neg A'$
 - A' ד. אם A תקפה אז גם
 - A ה. אם A' תקפה אז גם

.4

- $arLambda arLambda \cup \{A\}$ מעל מבנה מילון M וקבוצת מבנה מילון מבנה מילון .
 - אם פסוקים. $\Gamma \models_t A$ אז $\Gamma \models_t A$ אם א. אם $\Gamma \models_t A$ אם א.
 - ב. $\Gamma \not\models_t A$ אם"ם $\Gamma \not\models_t A$ ספיקה.
 - $. \varGamma \vDash_t A o B$ אם"ם $\varGamma \cup \{A\} \vDash_t B$...
 - $\models_t B o A$ או $\models_t A o B$ אז $B^{orall}$ או ד. אם $A^{orall}$ שקול לוגית ל