

Question descriptions

Question analyzations

Directory

Architecture design

04 Summary

Fault Localization of Loop Network Devices

Alarm logs:

The logs is about the MEC(Multi-access Edge Computing) which is a kind of communication cloud. In order to improve MEC operation ability, there should have some methods, such as rapid discovery, positioning, prediction, self-healing, etc.

Original data

The alarm log is unstructured text information, contains log level (level 8), module, details, etc..

TimeStamp HostName %% dd ModuleName/Severity/Brief(I)[Count]:Description

1 2 3 4 5 6 7 8 9 10

Apr 10 2020 06:07:32+08:00 CSG %%01NTP/4/STRATUM_CHANGE(I)[23279]:System stratum changes from 16 to 10.

Fault Localization of Loop Network Devices

Alarm data analyzation

Deal with the alarm log and extract some useful information

Delivery network determination

the alarm transmission network

Root alarm determination

determine the root alarm and subordinate alarm

Architecture

Alarm preprocessing

Extract information Add brief name Eliminate alarm using regularization Use natural language Delete duplicate alarms rules → standard data. processing Delete the high Add year information. Extract the first five frequency data keywords Deal with some Delete low level alarm incomplete data Regularization method

Time window planning

time window

The time window is set to 1 minutes

sliding step

Slide one alarm at a window time

Neighbors

Add own neighbors to each device

Frequent items

Get frequent items from time window

Traditional Eclat algorithm:

- Generate all subsets
 - Takes up a lot of memory
 - Waste running time
- Have no any direction for each pair alarm
 - {A, B} and {B, A} are the same frequent terms.

Our method:

- Device neighbors :
 - The alarms will spread through the adjacent equipment
 - Set adjacent equipment as neighbors for each device
- Special Eclat algorithm :
 - Do not generate subsets, and directly generate the probability/score that forward item leads to backward item.
 - Just calculate the score between items and their neighbor
- Advantages:
 - Ensure the sequence between alarms
 - Reduce running time and memory

CSG-8&VFS&MIB_OPERATE_PUT_FILE => CSG-8&HWCM&CFGCHANGE

Subordinate alarm

network topology

Drawing the network topology by the relation rule

node score

Calculate input radio
Additional rate:
1> alarm level
2> port
relationship

root device

- Highest score is the root alarm
- Locates the alarm on original data

subordinate equipment

 With time window, find the subordinate alarm, equipment, etc..

CSG-8&VFS&MIB_OPERATE_PUT_FILE => CSG-8&HWCM&CFGCHANGE

The results are showed that:

A-dataset:

- The root node obtained is CSG-8
- Subordinate nodes are ASG-1 and CSG-7.
- Verify these nodes with answer and check the interface flow in the data set.
- Therefore, the port of CSG-8 is down.

time	position	module	level	Brief	description
2019-03-27 19:41:20	CSG-8	LSPM	2	MPLSTUNPRIDOWN	OID 1.3.6.1.4.1.2011.5.25.121.2.1.47 The prima
2019-03-27 21:57:43	CSG-8	LSPM	2	MPLSTUNPRIDOWN	OID 1.3.6.1.4.1.2011.5.25.121.2.1.47 The prima
2019-03-28 07:35:29	CSG-8	LSPM	2	MPLSTUNPRIDOWN	OID 1.3.6.1.4.1.2011.5.25.121.2.1.47 The prima

B-dataset:

- The root node obtained is CSG-2
- The subordinate nodes are CSG-3, CSG-4, ASG-2.
- Combined with topology, subordinate nodes, original alarm logs.
- CSG-1 does not have any current alarm.
- CSG-1 equipment must be lost.

level	time	position	module	description
1	2019-08-06 20:31:50	CSG-2	SSM	Loss Of Timing Inputs panel:4 port:1

Advantages:

- better adaptable
 - Just have some common preprocessing algorithm.
 - Eclat algorithm do not depend on business scenario.
- alarm association rule base
 - There are precise alarms relationship.
- Alarm network propagation topology
 - Help to locate root fault accurately and fast.

Future ideas:

- Add more data preprocessing methods.
- Improve the calculate method of node score in the final stage.

For listening

Qi Zhang | GuoChuang ChapterIX | Dec 2020

Reference:

[1] 陆斌,华楠,郑小平,等. 基于人工智能的网络告警关联分析处理的应用 [J] . 邮电设计技术, 2018 (12) : 1-6.

Lu Bin1, Hua Nan1, Zheng Xiaoping1, Chen Wenjun2. Application of Network Alarm Association Analysis Processing Based on Artificial Intelligence[J]. Intelligent Network, 2018 (12): 1-6.

[2]李金凤,王怀彬.基于关联规则的网络故障告警相关性分析[J].计 算 机 工 程,2012(3):44-46. LI Jin-feng, WANG Huai-bin.Network Fault Alarm Correlation Analysis Based on Association Rule[J].Computer Engineering,2012(3):44-46.

[3]徐前方1, 肖波2, 郭军1.一种基于相关度统计的告警关联规则挖掘算法[J],北京邮电大学学报,2007(2):66-70.

XU Qian-fang 1, XIAO Bo 2, GUO Jun 1,A Mining Algorithm with Alarm Association Rules Based on Statistical Correlation[J], Journal of Beijing University of Posts and Telecommunications, 2007(2):66-70.