TEMA 5 NO-MBRES RACIONALS

1 INTRODUCCIÓ 1.1 JUSTIFICACIÓ DE L CONTINGUT 1.2. CONEIX MENIS PREVIS	
2. CONSTRUCCIÓ DE Q 21 COUSUM DELS ELONS	
2 SUMA DE NOMBRES BACIONALS 4 PRODUCIE DE NOMBRES PACIONALS	
DE TIEND	
3 6. EL (OS ORDENAT DEL NºS Q Material DE Q MATERIALICA Nº RALIONAL BRANCE AL ALACAT INTERPRETACIÓNO RALIONAL	

1. INTRODUCCIÓ

1.1. JUSTIFICACIO DEL CONTINGUT.

El contingut d'aquest tema s'estructura en quatre parts.

En una primera part construirem, ampliant l'anell dels enters, el conjunt Q dels nombres racionals.

A la segona part definirem les operacions de suma i producte i estudiarem les seves proprietats, dotant a Q d'estructura de cos!

A la terara partestudianau l'ordre eu Q i veurem que és numetable.
Per acabar, a la quanta part, analitzarem la interpretació
dels mombres πacionals i la seva aplicació a l'aula.

La construcció d'aquest tema es basa ou la legislació vigent, especialment, en el deviet 175/2022 i en l'actual canvocatària d'aposicions.

1.2. UBICACIÓ I CONEIXEMENTS PRÈVIS.

Emmarquem els contingunts d'aquest tema dintre del blec de salvers de sentit numeric i els podem introduir al curs de l'de l'Eso i ampliar a 2".

Pel desenvolupament d'aquest tema necessitem coneixements premis sobre els mambres enters (tema 4) i sobre els conjunts numèrics i les dosses d'equivalencia (tema 11).

2. CONSTRUCCIÓ DE D

El conjunt dels nombres racionals (Q) sorgerix de la necessitat d'ampliar els nombres enters (21) per a que l'equació a.x+b=0, a=0, sempre tingués salució.

da relació que definim a continuació té com a objective estendre els enters de forma matural i verificar que ZEQ de jorma conónica.

2.1. RELACIÓ D'EQUIVALENCIA ALS RACIONALS.

Simbalitzem II = II hol i considerem

IXIX:= h(a,b) / a & II i b & II }

que rep el nom del conjunt de les fraccions.

Definim a II I una relació ~ de forma que:

anc a ad=b.c

Aquesta relació és d'equivalencia ja que verifica les propietats: Reflexiva: an a danad que a.b=b.a

· Gimètrica: and Hana ja que a d=b.c > cb=da.

Mansitiva: ancai ane → a.d=bcicf=de

→ a·df=b·cf=b·de → adf=bde i com d +0

= af=b.e = an ef.

2.2. CONJUNT QUOUENT I PROPIETATS

Definim Q com el conjunt quocient Q:= IL Z n l'anomenem canjunt dels nombres racionals, els elements que el formen son les danses d'équivalencia que representem per:

Cadascuna de les classes d'equivalencia s'anomena nombre racional. Veiem algunes paropietals immediates de la definició de mombre racional:

PROPIETAT 1.

Vh € Zx > a ~ a.h (Amplificació / Reducció de fraccions)

deul - a vah sob h=bah ert ja que b.h #0.

CONSEQUENCIES -

- i) tot nambre racional te representant amb denominadar paritin danat que a ~ a.(-1)
- Donat das nombres racionals sempre teren representants umb el mateix denominador (reduir a denominador comei).

Em efecte, si a i a són dos mambres racionals i

mcm (b,d) = m = m = b.b' i m = d.d' amb mcdib'ol')=1.

Llavois, an a.b' nai i c ~ c.d' n Ci

Aquest representant se l'anomena fracció irreductible.

PROPIETAT 2. - 4 & 4 & be Z formen una classe, il nombre ravianal anomenat zera.

deux - 0 ~ a les o c = a · b les a = 0 danat que b + 0

i Il és domini d'integritad.

PROPIETAT 8 - 4 b 4 b 6 ZZ Joinnen una dans que defineix el mombre racional de.

dem - 6 ~ a >> b c = b a >> c = a ja que b.c +0.

3 EL (05 Q DELS RACIONALS

3. 1 SUMA DE RACIONALS

Signim d: 4 a 7 i B=4 a 4 des nombres nouverals

definim la sura suma (addicio) cam l'aplicació.

Les pad compravas jàcilment que aquesta aplitació està ben definida, es a dir, que mo depón dels representants escallits des proprietats dementals de l'operació suma son.

- · Es Mai de composição interma: baise Q saise Q
- . Associativa: 0+ (B+8) = (0+B) + 8
- · Commudativa : 0+ B= B+ d
- · Existència i unicitat de d'element meutre, el 18/46. I'
- Existència i unicital de l'apparal de tet element de Q.
 L'apasad de d= 4 = 4 = 4 en x = 4 = 4

 Obvien en aguest cas les demostracions.

Aixi, siguim d. B das mombres nacionals, l'oquació d'+x= B admot salució en Q, x=(-d)+B, que s'anomena diferincia entre Bidi es representa B-d. L'operació diferència també està bon definida può, en aquest as mo es commutativa

3.2. PRODUCTE DE RACIONALS

Danate d:= 1 a 4 : 10: = 4 a 4 das membres racionals, definim el ocu producte com l'aplicació:

D'igual manera que al cas anterior, orquesta aplicació està ben definida, no depen dels representants escallits.

Les proprietats elementals de l'aperació suma san:

- · dlei de composició interna: ∀x, Be Q → x. Be Q
- · Association: d. (B.) = (d.B). 8
- · Commutativa: X.B=B.8
- · Existència i unicitat de l'element neutr, el 15406 I
- · Existència i unicitat de l'invers de tot racional distint de zero.

 L'invers de α = μ α μ e's α 1 = μ α μ sempre i quan a ≠0.
- · Distributiva respecte de la suma: α·(β+δ)=αβ+αδ=(α+β)·δ.

 No realitzem les prouss, que s'obtenon directament de la definició.

 Aixi, si α, β sóm dos nombres πacionals, l'equació
 α· X = β, amb d = 0, admet solució en Q, doncs

 multiplicant la equal-tat per l'invers de d, α-1, tenim:
 α· α-1. X = α-1. β=β·α-1 → X = β·α-1.

Per tant, la divisió en Q sempre és possible, exepte quan el divisor és O, ho escrivim X = B: x.

Amb totes aguestes propietals tenim que (Q,+) es un grup aditiu abelià i (Q, .), sent Q= Q 404, es un grup multiplication amb propietal distributivo. Per lant, (Q,+,.) té estructura de cos commutation.

4 IMMERSIO DE ZEN Q

Veiem, en aquest apartat, que Qamplia de manera gectiva a Z, e's a dir, que existeix un isomarfisme entre (Z,+,·) i una part de Q. Definim l'aplicació:

$$f: \mathbb{Z} \longrightarrow \mathbb{Q}$$

$$\times \longrightarrow \left\{ \frac{\times}{4} \right\}$$

Veien que e's un isomorfisme.

• f e's homomorphisme: Donats $a, b \in \mathbb{Z}$ llawars: $f(a+b) = \left\{ \frac{a+b}{1} \right\} = \left\{ \frac{a}{1} \right\} + \left\{ \frac{b}{1} \right\} = f(a) + f(b).$ $f(a \cdot b) = \left\{ \frac{a \cdot b}{1} \right\} = \left\{ \frac{a}{1} \right\} \cdot \left\{ \frac{b}{1} \right\} = f(a) \cdot f(b).$

· f e's bijectiva:

· fés injectiva: siguin a, b ∈ I / f(a): f(b) llavous:

· fér sobrejectiva per definició.

Aixi, f és un isomar jisme, pel qual podem identificar el mombre enter x com el mombre racional ().

Per tant, podem considerar II com un subconjunt de Q, IICQ, i com que Mes pot identificar com IX tenim que NCIICQ.

4.1. PROPIETATS DEL COS Q

d'integritat, e's a dir, no té divisors de zero no trivials:

V α, β ∈ Q α. β = 0 ⇔ α = 0 V β = 0

ii) Tota equació ax=b, a + 0, a, b + Q te saluió x = a1. b

els impropis, e's a dir, l'ideal 404 i'el mateix Q.

iv) Q és el cos de les fraccions de l'anell II.

5. ORDRE A Q

Anem a establir una relació d'ardre total en Q: Sigui α= { a } € Q

Def Direm que « és un racional positiu si a b e II.

En cas contrari, « e's un racional negatiu. Considerem

Qt. Q, respectivament, els conjunts dels racionals positius

i negatius.

Notem que si « Qt 1404, el sur aposal - « Q i uiceversa. A meis, en (Q,+, ·) la suma i el producte de dos racionals positives e's altre racional positive.

Def. - Danals das mambres racionals, $\alpha, \beta \in \mathbb{Q}$, direm que $\alpha \in \mathbb{R}$ menor que β , i ha escriurem $\alpha < \beta$, si $\beta - \alpha \in \mathbb{Q}^{\frac{1}{2}}$ ho scriurem $\alpha < \beta$, si $\beta - \alpha \in \mathbb{Q}^{\frac{1}{2}}$ ho scriurem $\alpha < \beta$, si $\beta - \alpha \in \mathbb{Q}^{\frac{1}{2}}$ ho escriurem $\alpha < \beta$, si $\beta - \alpha \in \mathbb{Q}^{\frac{1}{2}}$ ho escriurem $\alpha < \beta$ si $\beta - \alpha \in \mathbb{Q}^{\frac{1}{2}}$, e's a dir, si $\beta - \alpha > 0$ o $\beta - \alpha = 0$

da relació ¿ és d'ardre total en a danal que verifica les propietats:

- · Reflexiva: Yat Q a so donat que d-a=0 = Q+
- · Simetruca: SidEBiBEX => d= B
- · Transitiva: SidEBiBEY => OLEY.
- · Tots els elements de Q són comparables: Yai p = Q: X = B = B = 8.

Per tant, el conjunt (Q, \(\sigma\) és totalment ardenat. Tanmateix, ma defineix un ban ardre donat que na existeix cap element que sigui anterior als demés i tot nombre racional ma poseeix posterior.

Com a consequiencies de la relació ¿ a Q tenim que:

- tat πacional position en major que zero: Hαερ 1604, α>0
- tot πacional megative és menar que el zero: ∀x∈Q x10.
- I tot nacional megatice és menoir que tot nacional positive: $\forall \alpha \in \mathbb{Q}^-, \ \forall \ \beta \in \mathbb{Q}^+ \Longrightarrow \alpha \angle \beta.$

6.1. PROPIETATS DE LA RELACIÓ D'ORDRE:

- a) La relació d'ordre ¿ és compatible amb la suma de racionals: Si d ≤ B. H Y ∈ Q ⇒ x+Y ≤ B+Y a + ambé Si d ≤ x' i B ≤ B' ⇒ x+ x' ≤ B+ B'

Amb aguestes propietals diem que (Q,+,0,6) és un cos totalment ordenat.

C) Es verifica la propietat arguimediana: Si OZXZB ⇒ ∃n∈/N/n·X>B Aixi (Q,+,·, ∠) e's un cos ordenat arquimedià.

d) si a ∠ c i d ∈ Q / 0 ≤ x ≤ 1, llavors:

Com a consequiència, els racionals $\frac{1}{m}$, en ser 050/4 L estan en l'interval [0,1].

e) Entre dos nombres racionals existeixen infinits nombres racionals (tants com hi ha a l'interval [0,1]).

Diem, doncs, que Q és dens en tota la recta.

6. VALOR ABSOLUT D'UN NOMBRE RACIONAL Signi α= \\ \frac{a}{b}\\ \valence \Q definim el valor absolut d'\(\alpha\), (om: \(\alpha\):=\\ \frac{|\alpha|}{|\beta|}

PROPIETATS. - (les mateixes que es verifiquen a II)

(iii) |- x = [x]

iv) Si Idlea, a & Q = - a & d & a

w) | a.B|= | x | . | B |.

7. EL CONJUNT DELS RACIONALS ÉS NUMERABLE Diem que un conjunt és numerable si es pot posar com a contrespondència bijectiva amb el conjunt dels naturals M. Aixi, per demostrar que Q és numerable bastarà en definir una bijecció entre Q i M.

Per jer-ho, els representen els racionals pels seus representants canòmics i s'ardenen tenint en compte la suma dels valors absoluts del num erador e del denominador, aplicant el criteri de & per als que tinguin la mateixa suma.

Obtenim, d'aquesta manera, la seguient successió de racionals:

$$\frac{0}{1}, \frac{1}{1}, \frac{1}{1}, \frac{2}{1}, \frac{1}{2}, \frac{1}{2}, \frac{2}{1}, \frac{3}{1}, \frac{1}{3}, \frac{3}{3}, \dots$$

Aixi, establim la bijecció de Q a IV associant a cada terme de la successió els valors materals co, 1,2,3... respectivament. Per tant, Q és numerable. Es diu que el cardinal dels conjuirts numerables en Xo (aleph zero, primera lletra de l'alfabet hebreu)

8. INTERPRTACIO DELS NOMBRE RACIONALS APLICACIO A L'AULA sujenició l'imal ples mombres racionals es poden interpetrar déaltres manuai mes intuitives i practicular, utils a l'hara d'introduirles a l'estudiant 8.1 RACIONAL COM A DIVISIO Als mombres enters, dien que la divideix a si ZKCZ/OKKO a regulate (quoueut de la diviri) unlua de b entre a), ha podem aprena ran a: b= K, perà també amb motorió de nombres rovonals &. dixi, ina fracció (es pot interpetran com la divisio d'a entre b, a:b, per exemple 2: 8:4=2. 8.2 RACIONAL COM A DECIMAL Els mombres decimals songeixen de generalitzar el concepte de racional com a divisió qua o questa no e's excula. - Para Una fracci segous els resultats de la divisió, els decimals es poden d'anifirar en exactes (\$\frac{1}{2}=0'5), periodics purs $\left(\frac{1}{3} = 0^{\prime}3\right)$ o periodics mixts $\left(\frac{127}{13} : 103\right)$. 8. B RACIONAL COM A FRACCO nacionals a l'aula es com un "totio total" (murlos) dividits en pails iguals La fraçais indira la relour que existeix entre un mambre de parts i il nombre total de parts

Agusta Java d'inter

12/13

Aixi, el simbol a designa, respecte a aquesta interpriti, "a" parts entre "b" parts ignals ear que es dividerx la mulad, per exemple

3 de les 5 = 3

1 murla + 3 de les 4 parts - 1+3=7 of greater forma d'interpretar un rovoired is modivited put calculat robalit de 8.4. RACIONAL COM A RAO est percentages. 3.4. RACIONAL COMARAO.

Em utilitzar un nacional com ma franci el que hem fet e's company ma part and in tat. Aixi, lebs membres racional sim lu " inder compacte" entre das quantilits d'una mognital, in a les, sin noons que indique la releva pent-part a tal-tal, p. e

Etter Les dimens d'Asan 3 de les de B La rad enti les bals blaves i

Aquestris aprosunt en les Aquesta interpretauci in malt empoda en l'eralet de mores => (our aub deheux

> Realisas didarlis - chaul postuseis, quodo dels divides en reclasses, i é, identificar praccions i jiguis, joi de contes. Jugar aurò les moter musicals => imfuditujua aut la mire (rodouer, juser, semifuser)