

© International Baccalaureate Organization 2023

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2023

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2023

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Physique Niveau moyen Épreuve 3

2 mai 2023

Zone A après-midi | Zone B matin | Zone C matin

Instructions destinées aux candidats

Nun	néro de	ses	sion	du c	andi	dat	

1 heure

- Écrivez votre numéro de session dans les cases ci-dessus.
- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Rédigez vos réponses dans les cases prévues à cet effet.
- Une calculatrice est nécessaire pour cette épreuve.
- Un exemplaire non annoté du **recueil de données de physique** est nécessaire pour cette épreuve.
- Le nombre maximum de points pour cette épreuve d'examen est de [35 points].

Section A	Questions
Répondez à toutes les questions.	1 – 2

Section B	Questions
Répondez à toutes les questions d'une des options.	
Option A — Relativité	3 – 5
Option B — Physique de l'ingénieur	6 – 7
Option C — Imagerie	8 – 10
Option D — Astrophysique	11 – 13

2223-6524

-2-

après

Section A

Répondez à **toutes** les questions. Rédigez vos réponses dans les cases prévues à cet effet.

1. Un élève étudie le rapport entre la pression dans une balle et la force maximum que cette balle produit lorsqu'elle rebondit.

Un manomètre mesure une différence Δp entre la pression atmosphérique et la pression dans la balle. Un capteur de force mesure la force maximum F_{\max} exercée sur lui par la balle pendant le rebondissement.

mesure de la pression manométrique

mesure de la force maximum

manomètre

balle

capteur de force

avant

(Suite de la question à la page suivante)

(Suite de la question 1)

L'élève recueille les données suivantes.

Pression manométrique ∆p / kPa	Force maximum F _{max} / N
10	108
20	133
30	158
40	170
50	188
60	192
70	206
80	220

L'élève émet initialement l'hypothèse que F_{\max} est proportionnelle à Δp .

(D)		qu									•							•		•	110	55	u	aı	5	ie	lc	וטו	ie.	au		,I-	ue	;5;	Su	15,			[3]
			 -												 																						-		
	-							٠							 				٠				٠										٠		٠		-		
		-				 •		•		•			 ٠	 •	 		•		•				•						•		•						-		

(Suite de la question à la page suivante)

Tournez la page

(Suite de la question 1)

L'élève propose alors que $F_{\rm max}^3 = k\Delta p$.

L'élève trace alors sur un graphique la variation de $F_{\rm max}^3$ en fonction de Δp .

(c) (i) Exprimez l'unité pour k.

[1]

.....

(ii) Tracez sur le graphique la position du point manquant pour la valeur Δp de 40 kPa. [1]

(Suite de la question à la page suivante)

[3]

(Suite de la question 1)

Le pourcentage d'incertitude dans $F_{\rm max}$ est $\pm 5\,\%$. Les barres d'erreur $F_{\rm max}^3$ lorsque $\Delta p=10\,{\rm kPa}$ et $\Delta p=80\,{\rm kPa}$ sont montrées.

(d)	(1)	Calculez l'incertitude absolue dans F_{max}° lorsque $\Delta p = 30 \text{kPa}$. Exprimez un nombre approprié de chiffres significatifs dans votre réponse.

Ī		•	•	 Ī	•	•	•			Ī	•	•		•	•	•	•	•	•	 •	•	•	•	 •	•	•	•	•	•	•	 •	•	 •	•	•	 •	•	•	 •	•	•		 Ī	
								 					 													-																		

(ii)	Tracez l'incertitude absolue déterminée dans la question (d)(i) comme une barre
	d'erreur sur le graphique.

(iii)	Expliquez pourquoi	la nouvelle	hypothèse est	soutenue
-------	--------------------	-------------	---------------	----------

ГА	٦.
11	

[1]

-6-

2.

(a)	Exprimez une autre mesure que l'élève devra prendre.	F.4.5
		[1]
(b)	Suggérez une modification que l'élève peut faire pour réduire l'incertitude relative pour le changement de température du cube en métal.	[1]
(c)	De l'eau venant du bécher est transférée accidentellement avec le cube. Discutez comment cela affectera la valeur de la chaleur massique calculée du cube.	[2]
		le changement de température du cube en métal. (c) De l'eau venant du bécher est transférée accidentellement avec le cube.

Section B

Répondez à **toutes** les questions d'**une** des options. Rédigez vos réponses dans les cases prévues à cet effet.

Option A — Relativité

3. Un fil transporte un courant électrique. Un électron mobile e se déplace avec la vitesse de dérive *v* des électrons dans le fil. L'observateur O est au repos par rapport au fil.

(a)	Exprimez ce qu'on entend par système de référence.	[1]
(b)	Exprimez et expliquez la nature de la force électromagnétique agissant sur un électron e dans le système de référence de	
	(i) l'observateur O.	[2]
	(ii) l'électron e.	[2]

(Suite de l'option A)

4. Une étoile A et une étoile B sont séparées par une distance fixe de 4,8 années-lumière telle que mesurée dans le système de référence dans lequel elles sont immobiles. Un observateur P au repos dans une station spatiale se déplace vers la droite avec une vitesse de 0,78c par rapport aux étoiles. Une navette S se déplace de l'étoile A vers l'étoile B à une vitesse de 0,30c par rapport aux étoiles.

(a)	dans n'importe quel système de référence.	[1]
(b)	Écrivez la vitesse de la navette S par rapport à l'observateur P en utilisant la	
	relativité galiléenne	[1]

٠.	•	٠.	•	٠.	•	٠.	•	•	٠.	•	٠.	•	•	•	٠.	•	 ٠.	•	•	٠.	٠.	•	•	•	 •	•	•	٠.	٠.	•	 ٠.	•	•	٠.	•	 ٠.	•	٠.	•	•	٠.	•	•	•	٠.	•	٠.	•	•	•	

(C)		С	al	CU	ıle	z	la	C	lis	ta	ın	CE	9 6	en	ıtr	е	ľ	éto	oil	le	Α	е	t I	'é	to	ile	e E	3	oa	ırı	ra	pŗ	00	rt	à	ľc	b	se	rv	at	eι	ır	P.				[2]
																																							-							 		
		•		•							•								•			•			-		•				•						•		-							 		

otion A	, suite de la question 4)	
(d)	Montrez que la vitesse de la navette S par rapport à l'observateur P est environ 0,6c.	
(e)	Calculez le temps, selon l'observateur P, que prend la navette S pour se déplacer de l'étoile A jusqu'à l'étoile B.	
(f)	Identifiez et expliquez le système de référence dans lequel le temps propre pour que la navette S se déplace de l'étoile A jusqu'à l'étoile B peut être mesuré.	
		_
•		

Tournez la page

[2]

(Suite de l'option A)

5. Le diagramme d'espace-temps montre le système de référence de la Terre avec la ligne d'univers d'un vaisseau spatial S s'écartant de la Terre. ct' = 0 lorsque ct = 0.

(a) Déterminez la vitesse du vaisseau spatial par rapport à la Terre. [1]

Un éclair de lumière envoyé par un observateur sur la Terre à $ct = 2,0 \, \text{km}$ est dirigé vers le vaisseau spatial.

(b) Estimez, en utilisant le diagramme espace-temps, le temps en secondes lorsque l'éclair de lumière atteint le vaisseau spatial selon l'observateur sur la Terre.

.....

(Option A, suite de la question 5)

(0	;)				rn al																										е	a	tte	eir	nt	le	V	aı	SS	e	au		[2]	l
•	٠.	•	•	 •		٠	 	•	 •	•	 •	•		 •	•	•	 	•	•	•	 •	•	•	 •	-	 •	 	٠	 •	•	 ٠	•		•		٠	٠.	•	٠.	•	• •	•		
							 							 -			 	-									 														٠.			
•		•	•	 •		•	 •	•	 •	•	 •	•	•	 •	•	•	 	•	•	•	 •	•	•	 •	•	 •	 	•	 •	•	 •	•		•	•	•		•	•	•	•	•		
•		٠	-	 ٠		٠	 	٠	 ٠	•	 ٠	•		 •	•		 	•	•		 •	•	•	 ٠		 •	 	٠		٠	 •			٠		•	٠.	•				•		

Fin de l'option A

- 12 - 2223-6524

Option B — Physique de l'ingénieur

6. Un élève fabrique un modèle d'une danseuse qui tourne en utilisant un système qui consiste en un cylindre vertical, une tige horizontale et deux sphères.

Le cylindre tourne depuis l'état de repos autour de l'axe vertical central. Une tige passe à travers le cylindre avec une sphère de chaque côté du cylindre. Chaque sphère peut se déplacer le long de la tige. Initialement, les sphères sont proches du cylindre.

Une force horizontale de 50 N est appliquée perpendiculairement à la tige à une distance de 0,50 m de l'axe central. Une autre force horizontale de 40 N est appliquée dans la direction opposée à une distance de 0,20 m de l'axe central. La résistance de l'air est négligeable.

(Opt	ion B	, suite de la question 6)	
	(a)	Montrez que le couple net sur le système autour de l'axe central est environ 30 Nm.	[1]
	(b)	Le système tourne depuis l'état de repos et atteint une vitesse angulaire maximum de 20 rad s ⁻¹ dans un temps de 5,0 s. Calculez l'accélération angulaire de ce système.	[1]
	(c)	Déterminez le moment d'inertie du système autour de l'axe central.	[2]

Tournez la page

[2]

(Option B, suite de la question 6)

(d) Lorsque le système a atteint sa vitesse angulaire maximum, les deux forces sont enlevées. Les sphères se déplacent alors vers l'extérieur, s'écartant de l'axe central.

(i)	Résumez pourquoi la vitesse angulaire ω diminue lorsque les sphères se
	déplacent vers l'extérieur.

(ii)	Montrez que l'énergie cinétique de rotation est $\frac{1}{2}L\omega$, L étant le moment cinétique du système.	[1]

(iii)	Lorsque les sphères se déplacent vers l'extérieur, la vitesse angulaire diminue	
	de 20 rad s ⁻¹ à 12 rad s ⁻¹ . Calculez le changement en pourcentage dans l'énergie	
	cinétique de rotation qui se produit lorsque les sphères se déplacent vers l'extérieur.	[2]

	•	•					٠	•	•	•	٠						-	 		٠	•	•	٠	•	٠	•	٠	•	•	٠	•				٠	•	٠	•	٠			-	 •	•	٠	٠				•	•	•	٠				٠	٠	٠	•	٠	•	
•	•	•	•	•	•	•	•	•	•	•	•		•	•		•		 	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•		 •	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	
•	•	•	•			•	•	•	•	•				•	•	•	•	 	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	 •	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	

(Option Β, sι	iite de la	question	6)
---------------	------------	----------	----

(e)	Résumez une raison pour laquelle ce modèle d'une danseuse est irréaliste.	[1]

Tournez la page

(Suite de l'option B)

7. Un piston sans frottement emprisonne une masse fixe d'un gaz parfait. Ce gaz subit trois transformations thermodynamiques dans un cycle.

Les conditions initiales de ce gaz en A sont :

$$volume = 0,330 \, m^3$$

$$pression = 129 \, kPa$$

$$temp\'erature = 27,0 \, ^{\circ}C$$

La transformation AB est un changement isothermique, comme le montre le diagramme pression/volume (pV), dans lequel le gaz se dilate jusqu'à trois son volume initial.

(8	a)		Са	lc	ule	eΖ	la	p	re	SS	sic	n	d	u	ga	ЭZ	е	n	В																				[2]
	٠.	٠.	٠.			٠.		٠.	٠	٠.		٠.				•			٠.	٠	 ٠	٠.	٠	٠.		٠	 	٠.	٠	 ٠.	٠	 	 	٠	٠.	٠			

(Option B, suite de la question 7)

Le gaz subit alors une compression adiabatique BC jusqu'à ce qu'il retourne au volume initial. Pour compléter le cycle, le gaz retourne à A via la transformation isovolumétrique CA. Représentez, sur le diagramme pV, les deux transformations restantes BC et CA que (b) le gaz subit. [2] (c) Montrez que la température du gaz en C est environ 350 °C. [2] (d) Expliquez pourquoi le changement d'entropie pour le gaz pendant la transformation BC est égal à zéro. [1] Expliquez pourquoi le travail effectué par le gaz pendant la détente isothermique AB (e) est moins que le travail effectué sur le gaz pendant la compression adiabatique BC. [1] La quantité de gaz emprisonné est 53,2 mol. Calculez l'énergie thermique enlevée du (f) gaz pendant la transformation CA. [2]

Fin de l'option B

[2]

Option C — Imagerie

8. Un objet est placé devant un miroir concave avec le foyer f comme montré.

(a) Construisez un diagramme de rayons pour situer la position de l'image produite.

(Option C, suite de la question 8)

(b)	Décrivez	les caract	éristiques d	le l'image p	oroduite.		[1]
		 .				 	

(c) Des rayons de lumière parallèles sont incidents sur un miroir sphérique concave comme montré.

Exprimez le problème illustré par le schéma et comment il est corrigé dans les télescopes réflecteurs. [2]

(Suite de l'option C)

9. L'œil d'un observateur a un punctum proximum de 25 cm. Un crayon est placé au punctum proximum. Une lentille convexe d'une distance focale de 8 cm est alors placée entre le crayon et l'observateur comme montré. Le crayon est positionné au foyer de la lentille.

(a) Déterminez le grossissement angulaire de la lentille lorsque l'image du crayon est vue à l'infini.

[1]

(b) Un élève augmente le grossissement du crayon en utilisant deux lentilles convexes d'une distance focale de 8 cm placées à 25 cm l'une de l'autre. Le crayon est placé à 14 cm d'une de ces lentilles.

(Option C, suite de la question 9)

	(i)	Montrez que la grandeur du grossissement du crayon produit par la lentille la plus proche du crayon est environ 1,3.	[2]
	(ii)	Calculez le grossissement total observé par l'élève en utilisant les deux lentilles comme montré.	[2]
(c)	cons	utilise alors les deux lentilles convexes d'une distance focale de 8 cm pour struire un télescope au réglage normal. Le diamètre des lentilles est beaucoup plus d que le diamètre de la pupille de l'œil. Exprimez, par comparaison avec l'œil nu,	
	(i)	un avantage de l'utilisation de ce télescope pour des observations astronomiques.	[1]
	(ii)	un désavantage de l'utilisation de ce télescope pour des observations astronomiques.	[1]

(L'option C continue sur la page 23)

- 22 - 2223-6524

Veuillez ne pas écrire sur cette page.

Les réponses rédigées sur cette page ne seront pas corrigées.

32FP22

(Option C, suite de la question 9)

(d)	Décrivez comment une collaboration internationale peut améliorer la qualité de l'image de radiotélescopes en réseau.	[

Tournez la page

[2]

(Suite de l'option C)

10. Des signaux dans une fibre optique ont besoin d'une amplification lorsque les niveaux d'intensité dans la fibre sont tombés à 1,5% du signal d'origine. Un signal lumineux d'une intensité initiale I_0 est envoyé le long de la fibre optique.

(a)	La fibre a une atténuation par unité de longueur de 0,30 dB km ·. Déduisez que la		
	longueur de la fibre est environ 60 km avant que le signal n'ait besoin d'être amplifié.	[2]	

Un signal est envoyé le long d'une fibre à saut d'indice de 27 km et il est reçu conformément au graphique intensité—temps ci-dessous.

intensité

(b)	Calculez	l'indice	de	réfraction	de l	a fihre
(D)	Calculez	HILLICE	uc	TEHRUM	UC I	a iivic.

(Option C, suite de la question 10)

(c)	Discutez comment l'utilisation d'une fibre à gradient d'indice pourrait réduire la dispersion de guidage.	[2]

Fin de l'option C

Option D — As	strophy	/sique
---------------	---------	--------

11.	(a)	Le fa	ıntôme de Ju	ipiter est une nébuleuse.		
		(i)	Résumez c	e qu'on entend par nébu	leuse.	[1
		(ii)	-	hysiciens ont déduit la na comment ils peuvent faire	ature de cette nébuleuse à partir de ces déductions.	e la Terre. [1
	(b)	à de	s étoiles très		ore galaxie. Elles semblent bouger regarde depuis la Terre pendant un fournies.	
				Angle de parallaxe	Brillance stellaire apparente	
			Étoile X	0,019 secondes d'arc	$8,4 \times 10^{-9} \text{W m}^2$	
			Étoile Y	0,038 secondes d'arc	$3.1 \times 10^{-9} \text{W m}^2$	
		(i)	Déduisez q	uelle étoile semblera bou	uger plus.	[2
		(ii)	Calculez, e	n m, la distance de l'étoil	e X.	[1

(Option D, suite de la question 11)

(iii) Déterminez le rapport luminosité de l'étoile X luminosité de l'étoile Y	[2]
	• • •

Tournez la page

(Suite de l'option D)

12. Trois étoiles A, B et C sont légendées sur le diagramme de Hertzsprung–Russell (HR). L_{\odot} est la luminosité du soleil.

(8	a)	E	Χļ	ori	m	ez	: l'	él	ér	ne	en	tβ	ori	in	ci	pa	al	qι	ui	S	uk	oit	U	ın	е	fu	ısi	OI	ו ר	าน	ıcl	é	aiı	re	d	ar	s	ľé	éto	oile	е	C.						[1]
											_																																_						_

(b)	Expliquez pourquoi l'étoile B a une aire plus grande que l'étoile A.	[2]

(Option D, suite de la question 12)

(c) Des naines blanches avec des volumes similaires les unes aux autres sont montrées sur le diagramme HR.

Construisez une ligne, sur le diagramme HR, pour montrer les positions possibles d'autres étoiles naines blanches avec des volumes similaires à ceux marqués sur le diagramme HR.

[2]

[2]

(d) Certaines étoiles sur le diagramme HR sont susceptibles d'évoluer en des étoiles à neutrons.

Résumez pourquoi le rayon d'une étoile à neutrons atteint une valeur stable.

Tournez la page

(Suite	de	l'option	D)
--------	----	----------	----

13.	La galaxie D a un decalage vers le rouge $z = 0,13$.													
	(a)		ulez, en Mpc, la distance de D en utilisant une valeur de constante de Hubble de m s ⁻¹ Mpc ⁻¹ .	[2]										
	(b)	com	valeur de constante de Hubble de 73 km s ⁻¹ Mpc ⁻¹ donne un âge de l'univers me étant 13,4 × 10 ⁹ années lorsqu'on suppose qu'une vitesse d'expansion stante s'est produite.											
		(i)	Déterminez, en années, l'âge de l'univers lorsque la lumière détectée sur la Terre maintenant a été émise initialement à partir de D.	[3]										
		(ii)	Des preuves basées sur des observations de supernovae de type la affectent le résultat de la question (b)(i). Exprimez la conclusion pertinente faite à partir de ces observations.	[1]										

Fin de l'option D

Références :

© Organisation du Baccalauréat International 2023

Veuillez ne **pas** écrire sur cette page.

Les réponses rédigées sur cette page ne seront pas corrigées.

Veuillez ne pas écrire sur cette page.

Les réponses rédigées sur cette page ne seront pas corrigées.

32FP32