НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені ІГОРЯ СІКОРСЬКОГО" ФАКУЛЬТЕТ ІНФОРМАТИКИ ТА ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ

Кафедра інформатики та програмної інженерії

Звіт до лабораторної роботи №2

з курсу

«Методи ШІ»

студента 2 курсу групи IT-02 Макарова Іллі Сергійовича

Викладач:

ЛАБОРАТОРНА РОБОТА №2

«Моделювання функції з двох змінних засобами нечіткої математики»

Мета роботи: Промоделювати засобами нечіткої логіки функцію з двох змінних. Провести дослідження форми функції приналежності на якість моделювання..

ЗАВДАННЯ

Варіант 10:

$$z = \sin(x) + \cos(y/2)$$

ВИКОНАННЯ

В нас 6 вхідних та 9 вихідних значень, тобто 36 правил, таким чином:

Ви написали, що треба більше коментувати роботу, тож тут я просто буду підставляти значення х та у у функцію мого варіанта, та отримані значення записувати в табличку, нічого складного.

```
x_values = np.arange(0, 1.2, 0.2)
y_values = np.arange(0, 1.2, 0.2)

def my_function(a, b):
    return np.sin(a) + np.cos(b/2)

for x in x_values:
    for y in y_values:
        print(round(my_function(x, y), 5), end=', ')
    print()

1.0, 0.995, 0.98007, 0.95534, 0.92106, 0.87758,
1.19867, 1.19367, 1.17874, 1.15401, 1.11973, 1.07625,
1.38942, 1.38442, 1.36948, 1.34475, 1.31048, 1.267,
1.56464, 1.55965, 1.54471, 1.51998, 1.4857, 1.44223,
1.71736, 1.71236, 1.69742, 1.67269, 1.63842, 1.59494,
1.84147, 1.83648, 1.82154, 1.79681, 1.76253, 1.71905,

Add Code Cell | Add Marketanger | Add Code Cell | Add Marketa
```

X / Y	0	0.2	0.4	0.6	0.8	1
0	1	0.995	0.98007	0.95534	0.92106	0.87758
0.2	1.19867	1.19367	1.17874	1.15401	1.11973	1.07625
0.4	1.38942	1.38442	1.369480	1.34475	1.31048	1.267
0.6	1.56464	1.55965	1.54471	1.51998	1.4857	1.44223
8.0	1.71736	1.71236	1.69742	1.67269	1.63842	1.59494
1	1.84147	1.83648	1.82154	1.79681	1.76253	1.71905

Відповідно рахуємо виходи.

X/Y	my1	my2	my3	my4	my5	my6	
mx1	mf1	mf1	mf1	mf1	mf1	mf1	
mx2	mf3	mf2	mf2	mf2	mf2	mf1	
mx3	mf4	mf4	mf4	mf4	mf3	mf2	
mx4	mf5	mf5	mf5	mf5	mf5	mf4	

Ось тепер це все у коді:

```
r_1 = ctrl.Rule(
    antecedent=(
        mx["mx1"] & my["my1"]
        mx["mx1"] & my["my2"]
        mx["mx1"] & my["my3"]
        mx["mx1"] & my["my4"]
        mx["mx1"] & my["my5"]
mx["mx1"] & my["my6"]
        mx["mx2"] & my["my6"]
    ),
    consequent=mf["mf1"],
    label='mf1'
)
r 2 = ctrl.Rule(
    antecedent=(
        mx["mx2"] & my["my2"]
        mx["mx2"] & my["my3"]
        mx["mx2"] & my["my4"]
        mx["mx2"] & my["my5"]
        mx["mx3"] & my["my6"]
    ),
    consequent=mf["mf2"],
    label='mf2'
)
r 3 = ctrl.Rule(
    antecedent=(
        mx["mx2"] & my["my1"] |
        mx["mx3"] & my["my5"]
    consequent=mf["mf3"],
    label= "mf3"
)
r_4 = ctrl.Rule(
    antecedent=(
        mx["mx3"] & my["my1"]
        mx["mx3"] & my["my2"]
        mx["mx3"] & my["my3"]
        mx["mx3"] & my["my4"]
        mx["mx4"] & my["my6"]
    ),
    consequent=mf["mf4"],
    label="mf4"
r_5 = ctrl.Rule(
    antecedent=(
```

```
mx["mx4"] & my["my1"]
                     & my["my2"]
         mx["mx4"]
         mx["mx4"] & my["my3"]
mx["mx4"] & my["my4"]
         mx["mx4"] & my["my5"]
    ),
    consequent=mf["mf5"],
    label="mf5"
)
r_6 = ctrl.Rule(
    antecedent=(
         mx["mx5"] & my["my4"] |
mx["mx5"] & my["my5"] |
         mx["mx5"] & my["my6"]
    consequent=mf["mf6"],
    label="mf6"
)
r_7 = ctrl.Rule(
    antecedent=(
         mx["mx5"] & my["my1"]
         mx["mx5"] & my["my2"]
         mx["mx5"] & my["my3"]
         mx["mx6"] & my["my4"]
mx["mx6"] & my["my5"]
         mx["mx6"] & my["my6"]
    ),
    consequent=mf["mf7"],
    label="mf7"
r 8 = ctrl.Rule(
    antecedent=(
         mx["mx6"] & my["my1"] |
mx["mx6"] & my["my2"] |
         mx["mx6"] & my["my3"]
    consequent=mf["mf8"],
    label="mf8"
```

Моделювання Triangle:

Таким чином, наша модель:

Формула для вирахування похибки:

Похибка:

Для розрахунку похибки застосовують формулу:

$$\varepsilon = (|Xe - X_{\pi}|/X_{\Im}) * 100\%,$$

де Хэ – еталонне значення величини; Хд – дійсне значення величини.

```
z = np.zeros_like(x)
x_{for\_graphic} = np.arange(0,1, 0.05)
z_r = np.sin(x) + np.cos(x / 2)
z_g = np.sin(x_for_graphic) + np.cos(x_for_graphic / 2)
for i in range(len(x)):
    simulation.input['mx'] = x[i]
    simulation.input['my'] = x[i]
    simulation.compute()
    z[i] = simulation.output['mf']
e = abs(z_r - z) / z_r
print(f"ERROR: {round(np.mean(e) * 100, 3)} %")
plt.plot(x, z, color = 'm')
plt.plot(x_for_graphic, z_g, color = 'c')
plt.title("Original and computed Triangle")
plt.xlabel("mx == my")
plt.ylabel("mf")
plt.show()
 ERROR: 2.376%
              Original and computed Triangle
   1.2
   1.1
```

Моделювання за допомогою Трапеція

Моделювання за ФП Гауса

Спробуємо зменшити кількість правил, та подивимось як це повпливає на обчислення.

X/Y	my1	my2	my3	my4	my5	my6	
mx1	mf1	mf1	mf1	mf1	mf1	mf1	
mx2	mf3	mf2	mf2	mf2	mf2	mf1	
mx3	mf4	mf4	mf4	mf4	mf3	mf2	
mx4	mf5	mf5	mf5	mf5	mf5	mf4	
mx5	mf7	mf7	mf7	mf6	mf6	mf6	
mx6	mf8	mf8	mf8	mf7	mf7	mf7	

Нові правила:

```
r_1 = ctrl.Rule(antecedent=(mx["mx1"] & my["my1"]), consequent=mf["mf1"],
label = 'rule mf1')

r_2 = ctrl.Rule(antecedent=(mx["mx2"] & my["my2"]), consequent=mf["mf2"],
label = 'rule mf2')

r_4 = ctrl.Rule(antecedent=(mx["mx3"] & my["my3"]), consequent =
mf["mf4"], label = "rule mf4")

r_5 = ctrl.Rule(antecedent=(mx["mx4"] & my["my4"]), consequent =
mf["mf5"], label = "rule mf5")
```

```
r_6 = ctrl.Rule(antecedent=(mx["mx5"] & my["my5"]), consequent =
mf["mf6"], label = "rule mf6")

r_7 = ctrl.Rule(antecedent=(mx["mx6"] & my["my6"]), consequent =
mf["mf7"], label = "rule mf7")
```

НОВІ РОЗРАХУНКИ

Висновок:

Ну то щож, в цій лабі я навчився моделювати контроллери за домогоую елементів fuzzy logic. Я зробв об'єкт управління з двома входами і одним виходом. Провів дослідження як на якість моделі впливає ФП. Перевірив, чи достатньо для моделі тільки діагональних правил. Таким чином можна зменшити кількість правил, шляхом вилучення деяких з обчислень.