TITLE OF PRESENTATION

This is a more detailed subtitle

ROBERT MOSS STANFORD UNIVERSITY

mossr@cs.stanford.edu

TITLE OF SLIDE

Example equation and algorithmblock with juliaverbatim in a slide.¹

estimate of optimal discounted value

$$\underbrace{V(s)}_{\text{state value}} \leftarrow \max_{a} \underbrace{\left(\underbrace{R(s,a)}_{\text{reward}} + \underbrace{\gamma V(s')}_{\text{of next state}}\right)}_{\text{reward discounted value}}$$

 $^{^1\}mathrm{Mykel}$ J. Kochenderfer and Tim A. Wheeler. Algorithms for Optimization. MIT Press, 2019.

JULIA CONSOLE

```
Example Julia code executing at LaTeX compilation time.
julia> using LinearAlgebra

julia> A = Matrix{Int}(I, 3, 3)
3×3 Array{Int64,2}:
    1    0    0
    0    1    0
    0    0    1
```

PLOTTING

Plot using PGFPlots.jl² directly in the TeX file.

²https://github.com/JuliaTeX/PGFPlots.jl

TIKZ FIGURES

For a neural network with one hidden layer, the intermediate hidden units are $h_j = \sigma(\mathbf{v}_j \cdot \phi(x))$ where $\sigma(z) = (1 + e^{-z})^{-1}$, producing output score = $\mathbf{w} \cdot \mathbf{h}$:

Figure: A one-layer neural network with $\phi(x) \in \mathbb{R}^3$ and $\mathbf{h} \in \mathbb{R}^2$ using the logistic activation function σ .

```
\begin{split} \sigma(z) &= 1/(1 + \exp(-z)) \ \# \ sigmoid \\ &\text{function neural_network}(x, \ \boldsymbol{V}, \ \boldsymbol{w}, \ \phi, \ g:: \text{Function} = \sigma) \\ & \ \boldsymbol{h} &= \ \text{map}(\boldsymbol{v}_i \ -> \ g(\boldsymbol{v}_i \ \cdot \ \phi(x)), \ \boldsymbol{V}) \\ & \ \boldsymbol{w} \ \cdot \ \boldsymbol{h} \end{split}
```

ALGORITHMS

- Monte Carlo tree search (MCTS) is an anytime algorithm that uses rollouts of a random policy to estimate the value of each state-action node in the tree.³
- ullet There are four main stages in each simulation: selection, expansion, rollout (or simulation), and backpropagation.
- The tree \mathcal{T} is iteratively expanded and the policy improves over time as the algorithm balances exploration with exploitation of the state and action spaces.

Algorithm 1 Top-level Monte Carlo tree search algorithm.	Algorithm 2 Monte Carlo tree search simulation.	
$ \begin{aligned} & \textbf{function} \ \ \mathbf{MONTECARLOTREES} \\ & \textbf{loop} \\ & \mathbf{SIMULATE}(s,d) \\ & \textbf{return} \ & \text{arg} \max_{\bar{a} \in A(s)} Q(s,\bar{a}) \end{aligned} $	$ \begin{aligned} & \textbf{function} \ \text{SIMULATE}(s,d) \\ & \textbf{if} \ d = 0 \\ & \textbf{return} \ 0 \\ & \textbf{if} \ s \not\in \mathcal{T} \\ & \mathcal{T} \leftarrow \mathcal{T} \cup \{s\} \\ & N(s) \leftarrow N_0(s) \\ & \textbf{return} \ \text{ROLLOUT}(s,d) \end{aligned} $	
	$\begin{split} N(s) &\leftarrow N(s) + 1 \\ \bar{a} &\leftarrow \text{SelectAction}(s) \\ (s', r) &\leftarrow \text{DeterministicStep}(s, \bar{a}) \\ q &\leftarrow r + \gamma \text{Simulate}(s', d - 1) \\ N(s, \bar{a}) &\leftarrow N(s, \bar{a}) + 1 \\ Q(s, \bar{a}) &\leftarrow Q(s, \bar{a}) + \frac{q - Q(s, \bar{a})}{N(s, \bar{a})} \end{split}$	$ \qquad \qquad \triangleright \mbox{ selection} \\ \qquad \triangleright \mbox{ expansion} \\ \qquad \triangleright \mbox{ simulation/rollout} \\ \qquad \triangleright \mbox{ backpropagation} $

³Rémi Coulom. "Efficient selectivity and backup operators in Monte-Carlo tree search". In: *International Conference on Computers and Games*. Springer. 2006, pp. 72–83.

DEFINITION BLOCKS

Example use of a definitionblock environment with accompanying Julia code.

Definition: score. The score on an example (x, y) is $\mathbf{w} \cdot \phi(x)$, how *confident* we are in predicting +1. Score is a weighted combination of features:

$$\mathbf{w} \cdot \phi(x) = \sum_{j=1}^{d} w_j \phi(x)_j$$

 $score(x, w, \phi) = w \cdot \phi(x)$

TABLES

Example table with footnotes.

Table: Algorithm Hyperparameters

Hyperparameter	Value
episodes *	5000
maximum tree depth d_{max} (i.e. number of waypoints) *	12
rollout depth d^{\dagger}	12
exploration constant c	10
progressive widening k	10
progressive widening α	0.3

^{*} Used by all algorithms.

 $^{^{\}dagger}$ Used by MCTS and direct Monte Carlo.

EXAMPLE: BULLET POINTS

- Bullet point
 - Sub-bullet point
- Another bullet point
 - Another sub-bullet point
 - ► Another level

REFERENCES

Coulom, Rémi. "Efficient selectivity and backup operators in Monte-Carlo tree search". In: *International Conference on Computers and Games.* Springer. 2006, pp. 72–83. Kochenderfer, Mykel J. and Tim A. Wheeler. *Algorithms for Optimization*. MIT Press, 2019.