МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Функциональный анализ

Лабораторная работа №8

(Банаховы пространства)

Студентки 3 курса 3 группы

Домановой Татьяны Алексеевны

Работа сдана 13.12.2013 г.		
Зачтена _		_ 2013 г

Преподаватель

Дайняк Виктор Владимирович

Доцент кафедры МФ

канд. физ.-мат. наук

Задание 1

Постановка задачи

Определите, являются ли нормы $\|x\|_{C^2[a,b]}$ и $\|x\| = |x(a)| + |x'(a)| + \|x''(a)\|_{c[a,b]}$ эквивалентными в нормированом пространстве два раза дифференцируемых на отрезке [a,b] функций $C^2[a,b]$

Решение

Две нормы являются эквивалентными, если они подчинены друг другу. Норма $\|\cdot\|_1$ подчинена $\|\cdot\|_2$, если $\exists \alpha > 0$, такое что $\|x\|_1 \le \alpha \|x\|_2$ для всех $x \in \mathcal{C}^2[a,b]$.

$$||x||_1 = \max_{a \le t \le b} |x(t)| + \max_{a \le t \le b} |x'(t)| + \max_{a \le t \le b} |x''(t)|$$
$$||x||_2 = \max_{a \le t \le b} |x''(t)| + |x(a)| + |x'(a)|$$

Очевидно, что $\|x\|_2 \leq \|x\|_1$, так как $\max_{a \leq t \leq b} |x(t)| \geq |x(a)|$, и $\max_{a \leq t \leq b} |x'(t)| \geq |x'(a)|$.

Оценим $||x||_1$:

$$\begin{split} \|x\|_1 &= \max_{a \leq t \leq b} |x(t)| + \max_{a \leq t \leq b} |x'(t)| + \max_{a \leq t \leq b} |x''(t)| \\ &\leq x(a) + \int_a^b |x'(s)| ds + x'(a) + \int_a^b |x'(s)| ds + \max_{a \leq t \leq b} \left|x''^{(t)}\right| \leq 2\|x\|_2 \end{split}$$

Таким образом, нормы эквивалентны.

Задание 2

Постановка задачи

Проверить, является ли пространство $C^1[0,1]$ банаховым по норме $||x|| = \max_{0 \le t \le 1} |x(t)| + \int_0^1 |x'(t)| dt$. Если пространство не полно, то указать его поплнение.

Решение

Пространство является банаховым, если любая последовательность Коши в нем сходится. По определению, последовательность является последовательность Коши, если $\|x_n - x_m\| \to 0$ при $n, m \to \infty$.

$$||x_n - x_m|| = \max_{0 \le t \le 1} |x_n - x_m| + \int_0^1 |x'_n - x'_m| dt \to_{n,m \to \infty} 0$$

А значит $\max_{0 \le t \le 1} |x_n - x_m| \to_{n,m \to \infty} 0$ и $\int_0^1 |x_n' - x_m'| \, dt \to_{n,m \to \infty} 0$ одновременно.

Так как пространство $\mathrm{C}^1[0,1]$ принадлежит пространств $\mathrm{C}[0,1]$, которое является банаховым по норме $\|x\|=\max_{0\leq t\leq 1}|x(t)|$, то $\max_{0\leq t\leq 1}|x_n-x_m|\to_{n,m\to\infty}0$

Покажем, что норма $\|x\| = \max_{0 \le t \le 1} |x(t)| + \int_0^1 |x'(t)| dt$ эквивалентна норме $\|x\|^* = \max_{0 \le t \le 1} |x(t)| + \max_{0 \le t \le 1} |x'(t)|$, по которой пространство $\mathcal{C}^1[0,1]$ является банаховым.

$$||x|| = \max_{0 \le t \le 1} |x(t)| + \int_0^1 |x'(t)| dt \le \max_{0 \le t \le 1} |x(t)| + \max_{0 \le t \le 1} |x'^{(t)}| (1 - 0) \le ||x||^* = \alpha ||x||^*, \qquad \alpha = 1$$

$$\int_a^b |x'(t)| dt \ge |x(b) - x(a)|$$

$$||x||^* = \max_{0 \le t \le 1} |x(t)| + \max_{0 \le t \le 1} |x'(t)| \le \alpha ||x||$$

Задание 3

Постановка задачи

Проверить, сходится ли ряд $\sum_{n=1}^{\infty} x_n$ в нормированном пространстве l_2 .

$$x_n = \left(\underbrace{\frac{(-1)^n}{n}, \dots, \frac{(-1)^n}{n}}_{n}, 0, \dots, 0 \right)$$

Решение

Пространство l_2 является банаховым. Покажем, что последовательность x_n является фундаментальной, тогда искомый ряд сходится.

Для этого необходимо, чтобы $\|x_n\|$ сходился.

$$||x_n|| = \left(\sum |x_n|^2\right)^{\frac{1}{2}} = \sum_{k=1}^n \frac{1}{n^2} \to_{n \to \infty} \frac{\pi^2}{6}$$

А значит исходный ряд сходится.