

Aichemist Train Session

CHAP 03 평가

실습 목차

01. 시작하기 전에

01-1. Guide-Line

01-2. 자료 다운

02. 피마 인디언 당뇨병 예측

Guide-Line

- Github에서 Notebook file 다운 & Kaggle 사이트 참고하기
- 조원과 PPT 내 질문에 답하기
- 평가 챕터의 각 모듈과 기능 숙지하기
- 총 4팀 발표 🖟

자료 다운

UCI MACHINE LEARNING AND 1 COLLABORATOR · UPDATED 7 YEARS AGO

New Notebook

Pima Indians Diabetes Database

Predict the onset of diabetes based on diagnostic measures

Usability (i)

Not specified

Diabetes

Healthcare

Tags

CC0: Public Domain

Earth and Nature

Expected update frequency

8.82 License

Data Card Code (2844) Discussion (51) Suggestions (0)

About Dataset

Context

This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage.

Content

The datasets consists of several medical predictor variables and one target variable, Outcome . Predictor variables includes the number of pregnancies the patient has had, their BMI, insulin level, age, and so on.

Acknowledgements

Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., & Johannes, R.S. (1988). Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In Proceedings of the Symposium on Computer Applications and Medical Care (pp. 261--265). IEEE Computer Society Press.

Inspiration

Can you build a machine learning model to accurately predict whether or not the patients in the dataset have diabetes or not?

캐글 데이터셋 다운:

https://www.kaggle.com/datasets/uciml/pima-indians-

diabetes-database

깃허브 주피터 노트북 다운:

Data 살펴보기

```
In [2]:
        diabetes_data = pd.read_csv('diabetes.csv')
        print(diabetes_data['Outcome'].value_counts())
        diabetes_data.head(3)
```

500 268

Name: Outcome, dtype: int64

Q1. 레이블 값 분포를 보고, 주의해야 할 점? 레이블 값이 불균형하기 때문에 정확도를 성능 평가 지표로 사용할 때 주의해야 한다. 0번 지표와 1번 지표가 거의 2배나 차이남

Out[2]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1

2번 지표에서 SkinThickness가 0인 게 의심스럽다. Insulin 수치가 0인 것도 의심스럽다 Q2. 의심스러운 데이터가 있나?

Q2-1. 그 데이터에 고려해볼 수 있는 전처리 방식?

결손값을 드랍 Drop 시킨 다, 아니면 평균값으로

- Pregnacies: 임신 횟수
- Glucose: 포도당 부하 검사 수치
- BloodPressure: 혈압(mm Hg)
- SkinThickness: 팔 삼두근 뒤쪽의 피하지방 측정값(mm)
- Insuline: 혈청 인슐린(mu U/Hg)

- BMI: 체질량지수(체중(kg)/(키(m))^2)
- DiabetesPedigreeFunction: 당뇨 내력 가중치 값
- Age: 나이
- Outcome: 클래스 결정 값(0 또는 1)

Data 살펴보기

```
In [3]: diabetes_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

Q3. 고려해볼 수 있는 전처리 방식?

피처는 숫자형과 문자형이 있음.

Q3-1. 고려하지 않아도 되는 전처리 방식?

문자형이 아니라 숫자형 데이터이기 때문에 Label Encoding은 필요없을 것이다. Pregnancies, Glucose 등 데이터 범위가 다르기 때문에 피처 스케일링을 통해 표준화할 수 있을것.

Logistic Regression 학습/예측/평가

```
In [4]: X = diabetes_data.iloc[:,:-1] Q4. DataFrame의 구조에서 iloc[:,:-1]은 무엇을 의미?

맨 마지막 outcome 칼럼, 즉 레이블 값을 제외한다

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 156, stratify=y)

lr_clf = LogisticRegression(solver='liblinear')
lr_clf.fit(X_train, y_train)
pred = lr_clf.predict(X_test)
pred_proba = lr_clf.predict_proba(X_test)[:, 1]

get_clf_eval(y_test, pred, pred_proba)

오차 행렬
[[87 13]
[22 32]]
정확도: 0.7727, 정밀도: 0.7111, 개현율: 0.5926, F1: 0.6465, AUC: 0.8083
```

Q5. stratify 매개변수는 교차검증의 'stratified K 폴드' 처럼 원본 데이터셋에서 클래스의 분포가 어떤 비율로 구성되어 있 는지를 고려하여, 그 비율을 유지하도록 분할합니다. 그 이유는?

예측 성능을 높이기 위해서

pred_proba_c1 = lr_clf.predict_proba(X_test)[:, 1]
precision_recall_curve_plot(y_test, pred_proba_c1)

Q6. 현재 정밀도, 재현율의 문제점?

상호보완적 관계가 깨져 있다. 두 지표의 값이 낮다.

피처 값 분포도 확인

In [6]: diabetes data.describe()

Q7. describe()의 역할?

Out[6]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

Q8. 현재 데이터 세트의 문제점?

0이 일정 수준 존재하고 있다. Glucose, BloodPressure, SkinThickness, Insulin, BMI 등은 0이 절대 뜰 수 없는 값들이다

In [7]: plt.hist(diabetes_data['Glucose'], bins=100) plt.show()

Q9. 위 데이터 분포로 생각해볼 수 있는 전처리 방식?

피쳐 스케일링 이용. 데이터 분포가 가우시안 분포가 아니므로 데이터 값을 MinMaxScaler를 이용해 0과 1 사이의 범위로 변환할 수 있다.

피처 값 분포도 확인

```
In [8]: zero_features = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']

total_count = diabetes_data['Glucose'].count()

for feature in zero_features:
    zero_count = diabetes_data[diabetes_data[feature] == 0][feature].count()
    print('{0} 0 건수는 {1}, 퍼센트는 {2:.2f}%'.format(feature, zero_count, 100*zero_count/total_count))
```

Glucose 0 건수는 5, 퍼센트는 0.65% BloodPressure 0 건수는 35, 퍼센트는 4.56% SkinThickness 0 건수는 227, 퍼센트는 29.56% Insulin 0 건수는 374, 퍼센트는 48.70% BMI 0 건수는 11, 퍼센트는 1.43%

Q10. 0의 비율을 보고 고려할 수 있는 전처리 방식?

SkinThickness나 Insulin같은 피처들 중 Null 값이 많으므로 Glucose, BloodPressure, BMI는 drop할 수 있지만 앞의 두 레이블은 평균값으로 대체하는 전처리 방식을 사용한다.

전처리 후 학습/예측/평가

```
In [9]: mean_zero_features = diabetes_data[zero_features].mean()
    diabetes_data[zero_features]=diabetes_data[zero_features].replace(0, mean_zero_features)
```

정확도: 0.7987, 정밀도: 0.7674, 재현율: 0.6111, F1: 0.6804, AUC: 0.8433

오차 행렬 [[90 10]

[21 33]]

Q11. 0의 비율이 많은 피처도 평균값으로 대체한 이유는?

```
In [10]: X = diabetes_data.iloc[:, :-1]
y = diabetes_data.iloc[:, -1]

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size = 0.2, random_state = 156, stratify = y)

lr_clf = LogisticRegression()
lr_clf.fit(X_train, y_train)
pred = lr_clf.predict(y_test)
pred_proba = lr_clf.predict(x_test)
pred_proba = lr_clf.predict(x_test)[:, 1]

get_clf_eval(y_test, pred, pred_proba)
```

Q13. 전처리 후 성능 변화?

전체적으로 평가 지표가 올라간 것으로 보아 성능이 좋아진 듯하다.

임곗값에 따른 평가 수치

```
In [11]: thresholds = [0.3, 0.33, 0.36, 0.39, 0.42, 0.45, 0.48, 0.50]
        pred_proba = lr_clf.predict_proba(X_test)
        get_eval_by_threshold(y_test, pred_proba[:, 1].reshape(-1, 1), thresholds)
         임곗값: 0.3
                                                                                임곗값: 0.42
         오차 행렬
                                                                                오차 행렬
         [[67 33]
                                                                                [[84 16]
         Γ11 43]]
                                                                                [18 36]]
         정확도: 0.7143, 정밀도: 0.5658, 재현율: 0.7963, F1: 0.6615, AUC: 0.8433
                                                                                정확도: 0.7792, 정밀도: 0.6923, 재현율: 0.6667, F1: 0.6792, AUC: 0.8433
         임곗값: 0.33
                                                                                임곗값: 0.45
         오차 행렬
                                                                                오차 행렬
         [[72 28]
                                                                                [[85 15]
         Γ12 42]]
                                                                                 Г18 36]]
         정확도: 0.7403, 정밀도: 0.6000, 재현율: 0.7778, F1: 0.6774, AUC: 0.8433
                                                                                정확도: 0.7857, 정밀도: 0.7059, 재현율: 0.6667, F1: 0.6857, AUC: 0.8433
         임곗값: 0.36
                                                                                임곗값: 0.48
         오차 행렬
                                                                                오차 행렬
         [[76 24]
                                                                                [[88 12]
         Γ15 39]]
                                                                                [19 35]]
         정확도: 0.7468, 정밀도: 0.6190, 재현율: 0.7222, F1: 0.6667, AUC: 0.8433
                                                                                정확도: 0.7987, 정밀도: 0.7447, 재현율: 0.6481, F1: 0.6931, AUC: 0.8433
         임곗값: 0.39
                                                                                임곗값: 0.5
         오차 행렬
                                                                                오차 행렬
         [[78 22]
                                                                                [[90 10]
         Γ16 38]]
                                                                                [21 33]]
         정확도: 0.7532, 정밀도: 0.6333, 재현율: 0.7037, F1: 0.6667, AUC: 0.8433
                                                                                정확도: 0.7987, 정밀도: 0.7674, 재현율: 0.6111, F1: 0.6804, AUC: 0.8433
```

Q14. 어떤 임곗값으로 설정하면 좋을까? 그 이유는?

임곗값 0.48이 전체적인 성능 평가 지표를 유지하면서 재현율을 약간 향상시키는 좋은 임곗값으로 보인다. F1 스코어가 1에 가까운 것을 기준으로

임곗값 설정 후 예측/평가

```
In [12]: binarizer = Binarizer(threshold = 0.48)

pred_th_048 = binarizer.fit_transform(pred_proba[:, 1].reshape(-1, 1))

get_clf_eval(y_test, pred_th_048, pred_proba[:, 1])

오차 행렬
[[88 12]
[19 35]]
정확도: 0.7987, 정밀도: 0.7447, 재현율: 0.6481, F1: 0.6931, AUC: 0.8433
```

Q15. Binarizer 클래스 사용한 이유?

기존의 predict() 메서드는 임곗값을 마음대로 변환할 수 없으므로 별도의 로직인 0.48을 설정해 Binarizer 클래스를 이용해 변경된 임곗값에 따른 예측 클래스 값을 구할 수 있다.

수고하셨습니다