INFR2810 - Tutorial May 22, 2025

O NI	May 22, 2025					
Q.No.	Question					
1	Binary—Decimal with Fractional Part:					
	1101.10112					
_						
2	Convert the 12-bit binary number 101101101)112 it	nto O	ctal,	Hexa	adecimal and Decimal
3	You must transmit the 8-bit data word 101011					
	a. What parity bit would you append for even					
	b. If a single-bit error flips bit 3, show how ea	ch scl	neme	dete	cts it	(or not).
4	Compute the Hamming distance between 110	10012	and	101	11002	2
5	The minimum Hamming distance between an	y two	code	word	ls in a	a code is 5.
	a. How many errors can that code detect?					
	b. How many can it correct?					
6	Symbols {A,B,C,D,E} have probabilities {0.4	0, 0.2	$5, \overline{0.2}$	$20, \overline{0}$.10, 0	0.05}.
	If you used a fixed-length code, how many bits/symbol? What's the average length?					
7	For a 4-bit binary input WXYZ ($W = MSB$), output 1 iff the decimal value > 6 .					
		-				
	a. List the minterms for all values 7–15.					
	b. Simplify via Boolean algebra or a 4-variable K-map.					
	c. Draw the final comparator circuit with logi					
8	Given the Huffman table					
	$A \rightarrow 0, B \rightarrow 10, C \rightarrow 110, D \rightarrow 111$					
	a. Decode the bit-string 011011110.					
	b. Using the same table, encode the message "DABAC".					
9	Draw a 4-input OR gate using only 2-input O	R gate	s.			
	b. Provide its truth-table for the input combinations (all $0 \rightarrow$ output; all $1 \rightarrow$ output).					
	1				1	, , ,
	In general, an n-input OR built from 2-input ORs requires n-1 gates, so for n=4 you can't do it with					
	fewer than 3.					
10	Simplify the expression A·(B + A'·C) + A·B + A·	C to it:	s min	imal	form	. showing each algebraic step.
11	For the 4-variable function given by the following map, derive both:					
	A minimal Sum-of-Products expression					
	A minimal Froduct-of-Sums expression					
	A Hilling 1 Todaet-of-Sums expression AB\CD 00 01 11 10					
	00	1	0	1	1	
	01	1	1	1	0	
	11	1	0	0	1	
		1	1	1	1	
	10	1	l	l	1	