Diabetes Prediction - Project 2

Kaashi Srinivasulu

MeriSKILL!

- This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases.
- The objective of the dataset is to diagnostically predict whether a patient has diabetes based on certain diagnostic measurements included in the dataset.
- Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage

The accuracy and f1_score is considered as the evaluation metrics

```
In [1]:
         # importing libraries
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         %matplotlib inline
         import seaborn as sns
         from sklearn.preprocessing import StandardScaler
         from sklearn.model selection import train test split
         from sklearn.linear model import LogisticRegression
         from sklearn.metrics import f1_score,accuracy_score
In [2]:
         data = pd.read csv('diabetes.csv')
In [3]:
         data.head()
Out[3]:
            Pregnancies
                        Glucose
                                BloodPressure
                                              SkinThickness Insulin
                                                                    BMI DiabetesPedigreeFunction A
         0
                     6
                            148
                                           72
                                                         35
                                                                 0
                                                                    33.6
                                                                                            0.627
         1
                     1
                             85
                                                         29
                                                                    26.6
                                                                                            0.351
                                           66
                                                                 0
         2
                     8
                            183
                                           64
                                                          0
                                                                    23.3
                                                                                           0.672
                                                                 0
                                                                                            0.167
         3
                     1
                             89
                                           66
                                                         23
                                                                94
                                                                    28.1
                     0
                            137
                                           40
                                                         35
                                                               168 43.1
                                                                                            2.288
In [4]:
         # dataset information
         data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

- The total number of observations are **768**
- The shape of the data is 768*9
- There are no null values present in the dataset

In [5]: # more details of data
 data.describe()

Out[5]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPe
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
	std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
	max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
						_		

- The range of pregnancies is from 0 to 17 with 3.84 as mean value
- The age group of the dataset is from 21 years to 81 years
- We can observe that columns like Glucose, BloodPressure, Skin,Thickness,Insulin and BMI are having 0 as their minimum value, which is not appropriate

In [6]: data.isnull().sum()

```
Pregnancies
                                       0
Out[6]:
         Glucose
                                       0
         BloodPressure
                                       0
         SkinThickness
                                       0
         Insulin
                                       0
         BMI
                                       0
         DiabetesPedigreeFunction
                                       0
         Age
                                       0
         Outcome
                                       0
         dtype: int64
```

 There are no null values but the values are taken as 0 hence let us change the values to NaN

```
data_copy = data.copy(deep = True)
In [7]:
        data_copy[['Glucose','BloodPressure','SkinThickness','Insulin','BMI']] = data_copy[
         # Showing the Count of NANs
        print(data_copy.isnull().sum())
                                       0
        Pregnancies
        Glucose
                                       5
        BloodPressure
                                      35
                                     227
        SkinThickness
        Insulin
                                     374
        BMI
                                      11
        DiabetesPedigreeFunction
                                       0
                                       0
        Age
                                       0
        Outcome
        dtype: int64
```

 Now we can see the null values in the columns like Glucose, BloodPressure, SkinThickness, Insulin and BMI

```
In [8]: data.hist(figsize=(20,20))
   plt.show()
```



```
data_copy['SkinThickness'].fillna(data_copy['SkinThickness'].median(),inplace=True)
```

data_copy.hist(figsize=(20,20)) In [10]: plt.show()

data_copy['Outcome'].value_counts()

500 Out[11]: 268

Name: Outcome, dtype: int64

• From above visulaization the Outcome is imbalaced, the patients who are diabetic are only half of non-diabetic patients

```
In [12]: plt.figure(figsize=(15,10))
    sns.heatmap(data_copy.corr(),annot=True)
    plt.show()
```


In [13]: sns.pairplot(data_copy,hue='Outcome')
 plt.show()

Model Building

```
In [14]: # splitting the data into features and target variables
         X = data_copy.drop('Outcome',axis=1)
         y = data_copy['Outcome']
In [15]: # splitting the data into test and train columns
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_sta
In [16]: # scaling the data using Standard scalar
         scalar = StandardScaler()
         X_train_scaled = scalar.fit_transform(X_train)
         X_test_scaled = scalar.transform(X_test)
In [17]:
         # shape of x train and X test datasets
         X_train_scaled.shape,X_test_scaled.shape
         ((537, 8), (231, 8))
Out[17]:
         # creating an instance of Logistic regression
In [18]:
         logistic_model = LogisticRegression(random_state=101)
         logistic_model.fit(X_train_scaled,y_train)
         LogisticRegression(random_state=101)
Out[18]:
```

```
In [19]: # predicting on the test data by logistic regression
   test_predict_log=logistic_model.predict(X_test_scaled)
   print('The accuracy score on test data is',accuracy_score(y_test,test_predict_log))
```

The accuracy score on test data is 0.7662337662337663

In [20]: print('The f1 score on test data is',f1_score(y_test,test_predict_log))

The f1 score on test data is 0.6301369863013698

In [21]: # imporiting libraries
 from sklearn.ensemble import GradientBoostingClassifier
 from sklearn.tree import DecisionTreeClassifier
 from sklearn.ensemble import RandomForestClassifier

Decision Tree Classifier

```
In [22]: # decision tree classifier model for prediction
    decision_tree = DecisionTreeClassifier(random_state=101)
    decision_tree.fit(X_train_scaled,y_train)
    test_predict_decision = decision_tree.predict(X_test_scaled)
```

In [23]: print('The accuracy score for decision tree classifier is',accuracy_score(y_test,test_print('The f1_score for decision tree classifier is',f1_score(y_test,test_predict_c

The accuracy score for decision tree classifier is 0.7316017316017316 The f1_score for decision tree classifier is 0.6265060240963856

Gradient Boost Classifier

```
In [24]: # gradient boost classifier model for prediction
    gradient_boost =GradientBoostingClassifier(random_state=101)
    gradient_boost.fit(X_train_scaled,y_train)
    test_predict_gradient = gradient_boost.predict(X_test_scaled)
```

In [25]: print('The accuracy score for gradient boost classifier is',accuracy_score(y_test,t
 print('The f1_score for gradient boost classifier is',f1_score(y_test,test_predict_

The accuracy score for gradient boost classifier is 0.7489177489177489
The f1 score for gradient boost classifier is 0.6506024096385542

Random Forest Classifier

```
In [26]: # random forest classifier model for prediction
    random_forest = RandomForestClassifier(random_state=101)
    random_forest.fit(X_train_scaled,y_train)
    test_predict_rf = random_forest.predict(X_test_scaled)
```

In [27]: print('The accuracy score for gradient boost classifier is',accuracy_score(y_test,t
 print('The f1_score for gradient boost classifier is',f1_score(y_test,test_predict_

The accuracy score for gradient boost classifier is 0.7575757575757576 The f1_score for gradient boost classifier is 0.6455696202531646

• The accuracy score of
Logistic Regression is 0.766
Decision Tree classifier is 0.731
Gradient Boost Classifier is 0.748
Random Forest Classifier is 0.7575

- The F1_score of Logistic Regression is 0.630
 Decision Tree classifier is 0.626
 Gradient Boost Classifier is 0.650
 Random Forest Classifier is 0.645
- The accuracy score is best for logistic model and f1 score is best for gradient boost classifier model

Grid Search

```
In [28]: from sklearn.model_selection import GridSearchCV
In [29]: def grid_search(classifier, param_grid, X, y, scoring = 'f1_weighted'):
             # split the data in training and testing sets
             X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, randometric)
             # Scaling the train data by Standard scalar
             scalar = StandardScaler()
             X_train_scaled = scalar.fit_transform(X_train)
             X test scaled = scalar.transform(X test)
             # Perform Grid Search
             grid search = GridSearchCV(classifier, param grid, cv=5, scoring=scoring, n jot
             grid_search.fit(X_train_scaled, y_train)
             # Print the Best Parameters
             print("Best Parameters:", grid_search.best_params_)
         def model_evaluation(ml_model,X,y):
              # Split the data into training and testing sets
             X train, X test, y train, y test = train test split(X, y, test size=0.25, rando
             # Scaling the train data by Standard scalar
             scalar = StandardScaler()
             X_train_scaled = scalar.fit_transform(X_train)
             X_test_scaled = scalar.transform(X_test)
             # creating a model instance
             model = ml_model
             model.fit(X_train_scaled,y_train)
             # Make Predictions
             y_train_pred = model.predict(X_train_scaled)
             y_test_pred = model.predict(X_test_scaled)
             # Evaluate the Model
             train_accuracy = accuracy_score(y_train, y_train_pred)
             test_accuracy = accuracy_score(y_test, y_test_pred)
             train_f1_score = f1_score(y_train, y_train_pred, average='weighted')
```

```
test_f1_score = f1_score(y_test, y_test_pred, average='weighted')

print("Training Accuracy:", train_accuracy)
print("Testing Accuracy:", test_accuracy)
print('-'*50)
print("Training F1 Score (weighted):", train_f1_score)
print("Testing F1 Score (weighted):", test_f1_score)

return train_accuracy,test_accuracy,train_f1_score,test_f1_score
```

Decision Tree

```
In [30]: X = data_copy.drop('Outcome',axis=1)
         y = data_copy['Outcome']
         # Define the Decision Tree Classifier and hyperparameter grid for grid search
         decision tree = DecisionTreeClassifier(random state=101)
         param_grid = {
             'criterion': ['gini', 'entropy'],
             'max_depth': [5, 10, 20, 30, 40],
             'min_samples_split': [2, 5, 10, 15, 20],
             'min_samples_leaf': [1, 2, 4, 8, 10]
         grid_search(classifier=decision_tree,param_grid=param_grid,scoring='f1_weighted',X=
         Best Parameters: {'criterion': 'gini', 'max depth': 5, 'min samples leaf': 8, 'min
         samples split': 2}
In [31]: | dt_score = model_evaluation(DecisionTreeClassifier(criterion='gini', max_depth=5, min
         Training Accuracy: 0.822916666666666
         Testing Accuracy: 0.7447916666666666
         Training F1 Score (weighted): 0.8252848487977833
         Testing F1 Score (weighted): 0.7492527167476717
```

Random Forest

```
In [32]: X = data_copy.drop('Outcome',axis=1)
         y = data_copy['Outcome']
         # Define the Random Forest Classifier and hyperparameter grid for grid search
         rf_classifier = RandomForestClassifier(random_state=101)
         param_grid = {
              'n_estimators': [100, 200, 300],
              'max_depth': [5, 10, 20],
             'max_features': ['auto', 'sqrt']
         # qrid_search function
         best_random_search = grid_search(rf_classifier, param_grid, X, y)
         Best Parameters: {'max_depth': 10, 'max_features': 'auto', 'n_estimators': 100}
In [33]: rf_score = model_evaluation(RandomForestClassifier(max_depth=10, max_features='auto')
         Training Accuracy: 0.987847222222222
         Testing Accuracy: 0.765625
         Training F1 Score (weighted): 0.9878254495174441
         Testing F1 Score (weighted): 0.7634681531545123
```

Gradient Boost

```
In [34]: X = data_copy.drop('Outcome',axis=1)
         y = data_copy['Outcome']
          # Define the Gradient boosting Classifier and hyperparameter grid for grid search
          gbm_classifier = GradientBoostingClassifier(random_state=101)
          param_grid = {
              'n_estimators': [100, 200, 300],
              'max_depth': [5, 10, 20],
              'max_features': ['auto','sqrt']
          # grid_search function
          best_gradient_boost = grid_search(gbm_classifier, param_grid, X, y)
         Best Parameters: {'max depth': 20, 'max features': 'sqrt', 'n estimators': 100}
In [35]:
         gb_score = model_evaluation(GradientBoostingClassifier(n_estimators=100,max_depth=2
         Training Accuracy: 1.0
         Testing Accuracy: 0.7395833333333334
         Training F1 Score (weighted): 1.0
         Testing F1 Score (weighted): 0.7395833333333334
In [36]: scores_data = pd.DataFrame({'dt score':dt_score,'rf score':rf_score,'gb score': gb_
                                     index=['train accuracy','test accuracy','train f1','test
          scores data
Out[36]:
                                rf score gb score
                       dt score
          train accuracy 0.822917 0.987847 1.000000
          test accuracy 0.744792 0.765625 0.739583
               train f1 0.825285 0.987825 1.000000
                test f1 0.749253 0.763468 0.739583
          score_plot=scores_data.plot(y=['dt score','rf score','gb score'],kind='bar',rot=0)
In [37]:
          score plot.legend(loc='upper left', bbox to anchor=(1.0, 0.5))
          plt.show()
```


• From above graph the Gradient boost model is best performer on the training data and Random Forest is best performer on testing data

```
decision tree = DecisionTreeClassifier(criterion='gini', max depth=5, min samples lea
In [38]:
          decision_tree.fit(X_train_scaled,y_train)
          decision_tree.feature_importances_
         array([0.00281798, 0.51609451, 0.03144362, 0.0343589, 0.03943707,
Out[38]:
                 0.11887285, 0.06917896, 0.18779611])
          gradient boost = GradientBoostingClassifier(n estimators= 100, max depth= 20, max f
In [39]:
          gradient_boost.fit(X_train_scaled,y_train)
          gradient_boost.feature_importances_
         array([0.07670188, 0.24598665, 0.08622578, 0.08799447, 0.09185457,
Out[39]:
                 0.15884433, 0.11162447, 0.14076784])
In [40]:
          random forest =RandomForestClassifier(n estimators = 100, max depth = 10, max featur
          random_forest.fit(X_train_scaled,y_train)
          random_forest.feature_importances_
         array([0.07755259, 0.26504731, 0.07670062, 0.08288426, 0.09660141,
Out[40]:
                0.15315546, 0.11825831, 0.12980004])
          importance_df = pd.DataFrame({"Feature": X.columns,
In [41]:
                                         "Decision Tree": decision_tree.feature_importances_,
                                        "Random Forest": random_forest.feature_importances_,
                                        "Gradient Boost": gradient boost.feature importances
                                        })
          importance_df
```

Out[41]:

	Feature	Decision Tree	Random Forest	Gradient Boost
0	Pregnancies	0.002818	0.077553	0.076702
1	Glucose	0.516095	0.265047	0.245987
2	BloodPressure	0.031444	0.076701	0.086226
3	SkinThickness	0.034359	0.082884	0.087994
4	Insulin	0.039437	0.096601	0.091855
5	ВМІ	0.118873	0.153155	0.158844
6	DiabetesPedigreeFunction	0.069179	0.118258	0.111624
7	Age	0.187796	0.129800	0.140768

```
In [42]: # Important features by Decision tree classifier
    plt.figure(figsize=(10,7))
    sns.barplot(x=importance_df['Feature'], y=importance_df['Decision Tree'], palette=
    plt.xticks(rotation=45)
    plt.ylabel(None)
    plt.title('Decision Tree Feature Importance')
    plt.show()
```



```
In [43]: # Important features by Random forest classifier
    plt.figure(figsize=(15,7))
    sns.barplot(x=importance_df['Feature'], y=importance_df['Random Forest'], palette='
    plt.xticks(rotation=45)
    plt.ylabel(None)
```

```
plt.title('Random Forest Feature Importance')
plt.show()
```



```
# Important features by Gradient boost classifier
plt.figure(figsize=(15,7))
sns.barplot(x=importance_df['Feature'], y=importance_df['Gradient Boost'], palette=
plt.xticks(rotation=45)
plt.ylabel(None)
plt.title('Gradient Boost Feature Importance')
plt.show()
```


- From above graphs it is clear that, in decision tree the more importance is given to Glucose itself resulting in less f1_score
- In the Random forest the importance is distributed according to features weights

• In Gradient boost the importance is of features is increased by decreasing the Glucose which resulting in less f1 score

Tn I I •		
TII .		
L 1		