Scilab Textbook Companion for Fundamentals of Optics by F. A. Jenkins and H. E.white¹

Created by
Reshma Sunil Konjari
M.Tech
Electrical Engineering
VIT
College Teacher
None
Cross-Checked by
Lavitha

July 11, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fundamentals of Optics

Author: F. A. Jenkins and H. E. white

Publisher: McGraw-Hill

Edition: 3

Year: 1957

ISBN: 0-07-256191-2

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
3	Spherical Surfaces	5
4	Thin Lenses	8
5	Thick lenses	10
6	Spherical Mirrors	13
8	Ray Tracing	15
11	Vibrations and waves	18

List of Scilab Codes

Exa 3.1	Position of image
Exa 3.2	Primary secondary and final image
Exa 3.3	Power and position of image
Exa 3.4	Image distance
Exa 4.1	Image formation
Exa 4.2	Find the image
Exa 4.3	Radius of curvature
Exa 4.4	Find power
Exa 5.1	Position of final image
Exa 5.2	Principal points
Exa 5.3	Nodal point
Exa 5.4	Power of lenses
Exa 6.1	focal length and position of image and lateral magnifi-
	cation
Exa 6.2	power of mirror and magnification
Exa 6.3	Focal length and principal point
Exa 8.1	Convex spherical surface
Exa 8.2	Double convex lens
Exa 11.1	Energy in vibrations
Exa 11.2	Displacement

Spherical Surfaces

Scilab code Exa 3.1 Position of image

```
1 //Example 3.1, page 69
2 clc;
3 n1=1.5
4 r=1//in cm
5 n=1//in cm
6 a=4//in cm, air
7 s=.5-(1/a)
8 s1=n1/s
9 printf("\n The image is formed at %d cm",s1)
```

Scilab code Exa 3.2 Primary secondary and final image

```
1 //Example 3.2, page 71
2 clc
3 n=1
4 n1=1.5
5 r=-4//in cm
6 s=10//in cm
```

```
7 f=(n*r)/(n1-n)
8 f1=(n1*r)/(n1-n)
9 s_temp=(1/-8)-(1/s)
10 s1=n1/s_temp
11 printf("\n The primary focal length is %d cm",f)
12 printf("\n The secondary focal length is formed at %d cm",f1)
13 printf("\n The image distance is %f cm",s1)
```

Scilab code Exa 3.3 Power and position of image

```
1 //Example 3.3, page 77
2 clc
3 n=1
4 n1=1.5
5 r=10//in cm
6 s=40//in cm
7 p=(n1-n)/.1
8 v1=n/.4
9 s1=n1/v1
10 printf("\n The power of image is %dD",p)
11 printf("\n The image distance is %f m",s1)
```

Scilab code Exa 3.4 Image distance

```
1 //Example 3.4, page 78
2 clc
3 n=1
4 n1=1.5
5 r=2//in cm
6 s=12//in cm
7 f=r/(n1-n)
8 printf("\n The focal length is %d cm",f)
```


Thin Lenses

Scilab code Exa 4.1 Image formation

```
1 //example 4.1, page 86
2 clc
3 s=6//in cm
4 f=10//in cm
5 s1=(s*f)/(s-f)
6 m=s1/s
7 printf("\n The magnification obtained is %fX",m)
```

Scilab code Exa 4.2 Find the image

```
1 //example 4.2, page 86  
2 clc  
3 s=12//in cm  
4 f=-6//in cm  
5 s1=(s*f)/(s-f)  
6 m=s1/s  
7 printf("\n The magnification obtained is %fX",m)
```

Scilab code Exa 4.3 Radius of curvature

```
1 //Example 4.3, page 89
2 clc
3 n=1.520
4 f=25//in cm
5 r2=-(f*(n-1))
6 printf("\n The radius of curvature is %f cm",r2)
```

Scilab code Exa 4.4 Find power

```
1 //example 4.4, page 92
2 clc
3 n=1.6
4 r1=.080//in cm
5 r2=-0.080
6 P=(n-1)*((1/r1)-(1/r2))
7 printf("\n The power is %f D",P)
```

Thick lenses

Scilab code Exa 5.1 Position of final image

```
1 //Example 5.1, page no 101
2 clc
3 n_air=1//refractive index of air
4 n_glass=1.5//refractive index of glass
5 n_water=1.33//refractive index of water
6 s1=n_glass/(((n_glass-n_air)/2)-(n_air/5))
7 s2=n_water/(((n_water-n_glass)/-2)-(n_glass/-28))
8 printf("\n The value of s1 is +%f cm",s1)
9 printf("\n The value of s2 is +%f cm",s2)
```

Scilab code Exa 5.2 Principal points

```
1 //Example 5.2, page 107
2 clc
3 r1=1.5//in cm
4 r2=1.5//in cm
5 d=2//in cm
6 n=1//in cm
```

```
7 \text{ n1=1.60}//\text{in cm}
8 \text{ n11=1.30//in cm}
9 n_by_f1=(n1-n)/r1
10 n1_by_f21 = (n11-n1)/r2
11 f1=n/n_by_f1
12 f11=n1/n_by_f1
13 f21=n1/n1_by_f21
14 f211=n11/n1_by_f21
15 disp("Part a")
16 printf("\n The focal length f1 is +\%f cm",f1)
17 printf("\n The focal length f11 is +\%f cm", f11)
18 printf("\n The focal length f21 is -\%f cm", f21)
19 printf("\n The focal length f211 is -\%f cm", f211)
20 \text{ n_by_f} = (n1/f11) + (n11/f211) - ((d*n11)/(f11*f211))
21 f=1/n_by_f
22 f11=n11/n_by_f
23 A1_f = (-f) * (1 - (d/f21))
24 \quad A2_f211=f11*(1-(d/f11))
25 disp("Part b")
26 printf("\n The primary focal length is %f cm", A1_f)
27 printf("\n The secondary focal length is %f cm",
      A2_f211)
28 \quad A1_h = f*(d/f21)
29 \quad A2_h11 = -f11*(d/f11)
30 disp("Part c")
31 printf("\n The primary point is \%f cm", A1_h)
32 printf("\n The secondary point is %f cm", A2_h11)
```

Scilab code Exa 5.3 Nodal point

```
1 //Example 5.3, Page 111
2 clc
3 n=1
4 n11=1.3
5 f11=4.333//in cm
```

```
6 HN=f11*((n11-n)/n11)
7 printf("Nodal length is %f cm",HN)
```

Scilab code Exa 5.4 Power of lenses

```
1 //Example 5.4, page 113
2 clc
3 n1=1.50
4 n2=1.60
5 n_dash=1.33
6 n_doubledash=1
7 p1 = ((n1-n_doubledash)/.04) + ((n_dash-n1)/-0.04)
8 p2=((n2-n_dash)/-.06)+((n_doubledash-n2)/.06)
9 p=p1+p2+(-.015*p1*p2)
10 printf("The power is %f D", p)
11 // Part b
12 \, f = 1/p
13 f_doubledash=1/p
14 printf("\nThe focal length f is %f m",f)
15 printf("\n The focal length f'' is %f m",
      f_doubledash)
16 // Part c
17 A1f = -(1/p)*(1+(.015*14.45))
18 A2H = -(1/p) * ((.015*-4.45))
19 A2f11 = -(1/p) * (1 - (.015 * 16.67))
20 printf("\nThe focal point A1F is %f m", A1f)
21 printf("\nThe focal point A2H is %f m", A2H)
22 printf("\nThe focal point A2F11 is \%f m", A2f11)
23 // Part d
24 A2H11=(1/p)*0.015*16.67
25 printf("\nThe principal point is %f m", A2H11)
```

Spherical Mirrors

Scilab code Exa 6.1 focal length and position of image and lateral magnification

```
//Example 6.1, Page 125
clc
y=2//in cm
s=10//in cm
r=-16//in cm
//Part a
f=-r/2
printf("\n The focal length is %f cm",f)
s1=1/((1/f)-(1/s))
printf("\n The position of image is formed at %f cm",s1)
//part c
m=-(s1/s)
printf("\n The inveted position of image is formed at %f cm",m)
```

Scilab code Exa 6.2 power of mirror and magnification

```
1 //Example 6.2, page 126
2 clc
3 k=1/.5
4 v=1/.2
5 v1=-4-5
6 p=-2*k
7 s1=-(1/v1)
8 m=-(5/v1)
9 printf("The power is %f D", p)
10 printf("\n The position of image is formed at %f m", s1)
11 printf("\n The magnification of image is %f cm",m)
```

Scilab code Exa 6.3 Focal length and principal point

```
1 //Example 6.3, page 129
2 clc
3 n1=1.50
4 \text{ r1} = .5 // in \text{ m}
5 \text{ r2} = -.5 // \text{in m}
6 \, d = .1 // in \, cm
7 r = -0.5 / / radius in cm
8 p1=(n1-1)*((1/r1)-(1/r2))
9 p2=-2*(1/r2)
10 c=d/1
11 p=(1-(c*2))*(8-.8)
12 f = 1/p
13 H1H=(c)/(1-(c*2))
14 printf("The power is %f D", p)
15 printf("\nThe focal length f is %f m",f)
16 printf("\nThe principal point is %f m", H1H)
```

Ray Tracing

Scilab code Exa 8.1 Convex spherical surface

```
1 //Example 8.1, page 157
2 clc
3 \text{ r=} 5 // \text{in cm}
4 n=1//in cm
5 \text{ n1=1.67200}//\text{in cm}
                          //the calculations for h=0 is 0,
6 	 for h = 1:3
       the textbook ans is wrong
7
       sin_ph=h/r
       sin_ph_1 = (sin_ph)*(n/n1)
8
9
       ph=asind(sin_ph)
       ph_1=asind(sin_ph_1)
10
       theta=ph_1-ph
11
       angle=sin(theta) // the textbook ans is
12
          wrong
          printf("\n \n")
13
       printf("\n For h=%d, \sin_-ph=%f",h,sin_ph)
14
       printf("\n\n")
15
        printf("\n For h=\%d, \sin_p h 1=\%f",h,sin_ph_1)
16
             printf("\n \n")
17
           printf("\n\\n")
18
          printf("\n For h=\%d, ph=\%f",h,ph)
19
```

Scilab code Exa 8.2 Double convex lens

```
1 / Example 8.2
2 clc
3 \text{ r1} = 15 // \text{in cm}
4 \text{ r2} = -15 // \text{in cm}
5 d=3//in cm
6 n=1//in cm
7 \text{ n1=1.62500}//\text{in cm}
8 n2=1//in cm
9 \text{ for } h = 2:2:7
                             //the calculations for h=0 is
      0, the textbook ans is wrong
10
        sin_ph=h/r1
        sin_ph1=(sin_ph)*(n/n1)
11
        ph= asind(sin_ph)
12
        ph_1=asind(sin_ph1)
13
        theta=ph_1-ph
14
        angle=r1*(sin_ph/sin(theta))
15
16
        s1=sin_ph/sin(theta)
17
        s2=d-s1
        sin_ph2=(1+(s2/r2))*sin(theta)
18
        sin_ph3=(sin_ph2)*(n1/n2)
19
        ph_2=asind((1+(s2/r2))*sin(theta))
20
21
        ph_3=asind((sin_ph2)*(n1/n2))
        theta1=ph_3+theta-ph_2
22
23
        angle1=r2*(sin_ph3/sin(theta))
```

```
24
          printf(" \ n \ n")
25
        printf("\n For h=\%d, \sin_{-}ph=\%f ",h,\sin_{-}ph)
        printf("\n\n")
26
        printf("\n For h=\%d, \sin_p h 1 = \%f",h,sin_ph1)
27
28
             printf("\n \n")
           printf("\n \n")
29
          printf("\n For h=\%d, ph=\%f",h,ph)
30
             printf("\n \n")
31
32
           printf ("\n For h=\%d, ph_1=\%f ",h,ph_1)
               printf("\n \n")
33
            printf("\n For h=\%d, theta=\%f ",h,theta)
34
                printf("\n \n")
35
36
             printf("\n For h=\%d, angle=\%f",h,angle)
             printf("\n\\n")
37
             printf ("\n For h=\%d, s2=\%f",h,s2)
38
             printf("\n \n")
39
                 printf ("\n For h=\%d, \sin_{-}ph 2=\%f ",h,
40
                     sin_ph2)
        printf("\n \n")
41
         printf("\n For h=\%d, \sin_p h 3 = \%f",h,sin_ph3)
42
             printf("\n\n")
43
           printf("\n\n")
44
          printf ("\n For h=\%d, ph_2=\%f ",h,ph_2)
45
             printf("\n \n")
46
           printf ("\n For h=\%d, ph_3=\%f",h,ph_3)
47
               printf("\n\\n")
48
            printf("\n For h=\%d, theta1=\%f ",h,theta1)
49
                printf("\n \n")
50
             printf("\n For h=\%d, angle1=\%f",h,angle1)
51
52
53
  end
```

Vibrations and waves

Scilab code Exa 11.1 Energy in vibrations

```
1 clc
2
3 \text{ m=4} //\text{kg}
4 x = 0.180 / m
5 \text{ g=9.80 } //\text{m/s}^2
7 //solution a:
8 F = m * g
9 k=F/x
10 disp(k," the spring constant k in N/m is=")
11
12 //sloution b:
13 T=2*%pi*sqrt(m/k)
14 disp(T, "the period T in sec is=")
15
16 //solution c:
17 v = 1/T
18 disp(v,"the frequency v in hz is")
19
20 //solution d:
21 \ W=0.5*k*x^2
```

Scilab code Exa 11.2 Displacement

```
1 clc
2
3 T=5// sec
4 a=3// cm
5 alpha=%pi/3
6 w = (2 * \%pi/T)
7 //solution a:
8 // for
9 t=0//sec
10 y=a*sin(w*t+alpha)
11 disp(y,"y in cm is=")
12
13 //solution b:
14 // for
15 t=12//sec
16 \quad y=a*sin(w*t+alpha)
17 disp(y,"y in cm is=")
```