DISKRETNA MATEMATIKA

- PREDAVANJE -

Jovanka Pantović

Svako distribuiranje celog ili delova ovih slajdova ZABRANJENO je i predstavlja povredu autorskog prava.

- Definicija grafa
- Neke specijalne vrste grafova
- Jednakost i izomorfizam
- Operacije sa/na grafovima

Primer - mapa linija metroa

Primer - Ojlerov graf

Primer - planaran graf

Tema 1

Definicija grafa

Neusmeren graf

Definicija

(Multi) graf je uređena trojka $G = (V, E, \psi)$, gde je

- (i) $V \neq \emptyset$ konačan skup čvorova,
- (ii) E je skup grana, pri čemu je $V \cap E = \emptyset$ i
- (iii) $\psi: E \to \{\{u,v\}: u,v \in V, u \neq v\}$ funkcija incidencije.

Definicija

(Prost, neusmeren) graf je uređen par G = (V, E), gde je

- (i) $V \neq \emptyset$ konačan skup čvorova i
- (ii) $E \subseteq \binom{V}{2}$ je skup grana.

Primer - prost graf

$$\begin{array}{rcl} V & = & \{a,b,c,d,e\} \\ \\ E & = & \{\{a,b\},\{a,e\},\{b,c\},\\ \\ & \{b,d\},\{c,d\},\{d,e\}\} \end{array}$$

Primer - multigraf

$$V = \{A, B, C, D\}$$

$$\begin{array}{rcl} V & = & \{A,B,C,D\} \\ \\ E & = & \{a,b,c,d,e,f,g\} \end{array}$$

Z	þ	a	b	c	d	e	f	g
		$\{A,B\}$	$\{A,B\}$	$\{A,C\}$	$\{A,C\}$	$\{A,D\}$	$\{B,D\}$	$\{C,D\}$

Usmeren graf

Definicija

Usmeren multigraf je uređena trojka $G = (V, E, \psi)$, gde je

- (i) $V \neq \emptyset$ konačan skup čvorova,
- (ii) E je skup grana, pri čemu je $V \cap E = \emptyset$ i
- (iii) $\psi: E \to \{(u,v): u,v \in V, u \neq v\}$ funkcija incidencije.

Definicija

Usmeren prost graf je uređen par G = (V, E), gde je

- (i) $V \neq \emptyset$ konačan skup čvorova i
- (ii) $E \subseteq \{(u, v) : u, v \in V, u \neq v\}$ je skup grana.

Neka je G graf i $v \in G$.

- Ako je $\psi(e)=\{u,v\},$ kažemo da je grana e **incidentna** sa u i v ili da spaja u i v.
- Čvorovi u i v su krajevi grane i kažemo da su u i v susedni čvorovi.
- Dve ili više grana koje su incidentne sa istim parom čvorova kažemo da su paralelne.

Neke oznake

- ullet $\omega_G(v)$ skup čvorova grafa G koji su susedni sa v
- ullet $d_G(v)$ stepen čvora v, broj grana koje su incidentne sa v
- $\delta(G) = \min_{v \in V(G)} d_G(v)$ minimalan stepen grafa
- $\Delta(G) = \max_{v \in V(G)} d_G(v)$ maksimalan stepen grafa

U prostom grafu je

$$|\omega_G(v)| = d_G(v)$$

Primer - prost graf

$$\omega_G(b) = \{a, c, d\}$$

$$d_G(v) = 3$$

$$\delta(G) = 2$$

 $\Delta(G) = 3$

Teorema ("handshaking")

Zbir stepena čvorova grafa jednak je dvostrukom broju grana, tj.

$$\sum_{v \in V} d_G(v) = 2|E|.$$

Teorema ("handshaking")

Zbir stepena čvorova grafa jednak je dvostrukom broju grana, tj.

$$\sum_{v \in V} d_G(v) = 2|E|.$$

Svaka grana je incidentna sa 2 čvora. To znači da sabiranjem stepena čvorova dva puta brojimo svaku granu.

Graf ima paran broj čvorova neparnog stepena.

Graf ima paran broj čvorova neparnog stepena.

Neka je G=(V,E) i $V=V_1\cup V_2,$ gde su V_1 i V_2 redom skupovi čvorova parnog i neparnog stepena.

Graf ima paran broj čvorova neparnog stepena.

Neka je G=(V,E) i $V=V_1\cup V_2,$ gde su V_1 i V_2 redom skupovi čvorova parnog i neparnog stepena. Tada je

$$\sum_{v \in V} d_G(v) = \sum_{v \in V_1} d_G(v) + \sum_{v \in V_2} d_G(v)$$

Graf ima paran broj čvorova neparnog stepena.

Neka je G=(V,E) i $V=V_1\cup V_2$, gde su V_1 i V_2 redom skupovi čvorova parnog i neparnog stepena. Tada je

$$\sum_{v \in V} d_G(v) = \sum_{v \in V_1} d_G(v) + \sum_{v \in V_2} d_G(v)$$

$$2|E| = \sum_{v \in V_1} d_G(v) + \sum_{v \in V_2} d_G(v)$$

Graf ima paran broj čvorova neparnog stepena.

Neka je G=(V,E) i $V=V_1\cup V_2$, gde su V_1 i V_2 redom skupovi čvorova parnog i neparnog stepena. Tada je

$$\sum_{v \in V} d_G(v) = \sum_{v \in V_1} d_G(v) + \sum_{v \in V_2} d_G(v)$$

$$2|E| = \sum_{v \in V_1} d_G(v) + \sum_{v \in V_2} d_G(v)$$

$$2|E| - \sum_{v \in V_1} d_G(v) = \sum_{v \in V_2} d_G(v)$$

Graf ima paran broj čvorova neparnog stepena.

Neka je G=(V,E) i $V=V_1\cup V_2,$ gde su V_1 i V_2 redom skupovi čvorova parnog i neparnog stepena. Tada je

$$\sum_{v \in V} d_G(v) = \sum_{v \in V_1} d_G(v) + \sum_{v \in V_2} d_G(v)$$

$$2|E| = \sum_{v \in V_1} d_G(v) + \sum_{v \in V_2} d_G(v)$$

$$2|E| - \sum_{v \in V_1} d_G(v) = \sum_{v \in V_2} d_G(v)$$

Kako je zbir (razlika) dva parna broja paran broj, suma sa desne strane mora biti paran broj, odakle tvrđenje direktno sledi.

Posledica

Ako su svi čvorovi neparnog stepena, onda je broj čvorova paran.

Posledica

Ako su svi čvorovi neparnog stepena, onda je broj čvorova paran.

Posledica

Ako je broj čvorova grafa neparan, onda postoji bar jedan čvor parnog stepena.

Posledica

Ako graf ima n čvorova i manje od n grana onda postoji čvor v sa osobinom $d_G(v) \leq 1$.

Posledica

Ako graf ima n čvorova i manje od n grana onda postoji čvor v sa osobinom $d_G(v) \leq 1$.

Pretpostavimo suprotno, da za svaki čvor $v \in G$ važi $d_G(v) \geq 2$.

Posledica

Ako graf ima n čvorova i manje od n grana onda postoji čvor v sa osobinom $d_G(v) \leq 1$.

Pretpostavimo suprotno, da za svaki čvor $v\in G$ važi $d_G(v)\geq 2.$ Tada, na osnovu prethodnih tvrđenja, važi

$$2n > 2|E| = \sum_{v \in V} d_G(v) \ge \sum_{v \in V} 2 = 2 \cdot |V| = 2n$$

tj. 2n > 2n što je kontradikcija.

Neka je G=(V,E) prost graf i $|V|\geq 2$. Tada postoje bar dva čvora jednakih stepena.

Neka je G=(V,E) prost graf i $|V|\geq 2$. Tada postoje bar dva čvora jednakih stepena.

Mogući stepeni čvorova pripadaju skupu $\{0, 1, \dots, n-1\}$.

Neka je G=(V,E) prost graf i $|V|\geq 2$. Tada postoje bar dva čvora jednakih stepena.

Mogući stepeni čvorova pripadaju skupu $\{0,1,\ldots,n-1\}$. Imamo sledeće mogućnosti:

(a) Ako postoji izolovan čvor, onda ne postoji čvor stepena n-1. Tada se n čvorova raspoređuje na n-1 stepeni ($\{0,1,\ldots,n-2\}$).

Neka je G=(V,E) prost graf i $|V|\geq 2$. Tada postoje bar dva čvora jednakih stepena.

Mogući stepeni čvorova pripadaju skupu $\{0,1,\dots,n-1\}$. Imamo sledeće mogućnosti:

- (a) Ako postoji izolovan čvor, onda ne postoji čvor stepena n-1. Tada se n čvorova raspoređuje na n-1 stepeni $(\{0,1,\ldots,n-2\})$.
- (b) Ako ne postoji izolovan čvor, onda ne postoji čvor stepena 0. Tada se n čvorova raspoređuje na n-1 stepeni $(\{1,\ldots,n-1\})$.

Neka je G=(V,E) prost graf i $|V|\geq 2$. Tada postoje bar dva čvora jednakih stepena.

Mogući stepeni čvorova pripadaju skupu $\{0,1,\dots,n-1\}$. Imamo sledeće mogućnosti:

- (a) Ako postoji izolovan čvor, onda ne postoji čvor stepena n-1. Tada se n čvorova raspoređuje na n-1 stepeni $(\{0,1,\ldots,n-2\})$.
- (b) Ako ne postoji izolovan čvor, onda ne postoji čvor stepena 0. Tada se n čvorova raspoređuje na n-1 stepeni $(\{1,\ldots,n-1\})$.

U oba slučaja tvrđenje sledi na osnovu Dirihleovog principa.

Tema 2

Neke specijalne vrste grafova

Regularan graf

Definicija

Graf je regularan ako su svi njegovi čorovi istog stepena.

Graf je k-regularan ako su svi njegovi čvorovi stepena k.

Neke specijalne vrste grafova

K_n - kompletan graf

$$K_n = (V, E), V = \{1, 2, \dots, n\}, E = {V \choose 2}$$

Neke specijalne vrste grafova

bipartitan graf

$$G = (V, E)$$

$$V = V_1 \cup V_2, V_1 \cap V_2 = \emptyset$$

$$E \subseteq \{\{u, v\} : u \in V_1, v \in V_2\}$$

kompletan bipartitan graf

$$G = (V, E)$$

 $V = V_1 \cup V_2, V_1 \cap V_2 = \emptyset$
 $E = \{\{u, v\} : u \in V_1, v \in V_2\}$

 $K_{3,3}$

Tema 3

Jednakost i izomorfizam

Jednakost grafova

Definicija

Neka su $G_1=(V_1,E_1)$ i $G_2=(V_2,E_2)$ prosti grafovi. Kažemo da su grafovi G_1 i G_2 jednaki, u oznaci $G_1=G_2$, ako važi

$$V_1 = V_2$$
 i $E_1 = E_2$.

G_2

$$V(G_1) = \{a, b, c, d, e, f\} = \{a, b, c, d, e, f\} = V(G_2)$$

 G_2

$$V(G_1) = \{a, b, c, d, e, f\} = \{a, b, c, d, e, f\} = V(G_2)$$

$$E(G_1) = \{\{a, b\}, \{b, c\}, \{c, d\}, \{d, e\}, \{e, a\}\} = \{\{a, b\}, \{b, c\}, \{c, d\}, \{d, e\}, \{e, a\}\} = E(G_2)$$

$$G_1 = G_2$$

$$V(G_1) = \{a, b, c, d, e, f\} \neq \{1, 2, 3, 4, 5, 6\} = V(G_2)$$
$$G_1 \neq G_2$$

Izomorfizam grafova

Definicija

Neka je $G_1=(V_1,E_1)$ i $G_2=(V_2,E_2)$. Kažemo da su grafovi G_1 i G_2 izomorfni, u oznaci $G_1\cong G_2$ ako postoji bijekcija $f:V_1\to V_2$ sa osobinom

$$\{u,v\} \in E_1 \Leftrightarrow \{f(u),f(v)\} \in E_2$$

Izomorfizam grafova

Definicija

Neka je $G_1=(V_1,E_1)$ i $G_2=(V_2,E_2)$. Kažemo da su grafovi G_1 i G_2 izomorfni, u oznaci $G_1\cong G_2$ ako postoji bijekcija $f:V_1\to V_2$ sa osobinom

$$\{u,v\} \in E_1 \Leftrightarrow \{f(u),f(v)\} \in E_2$$

 G_1 a b c

 G_2

Izomorfizam grafova

Definicija

Neka je $G_1=(V_1,E_1)$ i $G_2=(V_2,E_2)$. Kažemo da su grafovi G_1 i G_2 izomorfni, u oznaci $G_1\cong G_2$ ako postoji bijekcija $f:V_1\to V_2$ sa osobinom

$$\{u,v\} \in E_1 \Leftrightarrow \{f(u),f(v)\} \in E_2$$

 G_2

$$h = \left(\begin{array}{cccc} a & b & c & d & e \\ 1 & 3 & 5 & 2 & 4 \end{array}\right)$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ a & d & b & e & c & f \end{pmatrix} \quad f_2 = \begin{pmatrix} a & b & c & d & e & f \\ * & \otimes & \odot & \oplus & \times & \triangle \end{pmatrix}$$

 $f_3 = f_2 \circ f_1$

Različiti i neizomorfni grafovi

Teorema

Izomorfizam \cong je relacija ekvivalencije na skupu svih grafova.

Međusobno različiti grafovi sa 3 čvora:

Međusobno neizomorfni grafovi sa 3 čvora:

Relacija ekvivalencije

Theorem

Relacija "je izomorfan" je relacija ekvivalencije na skupu grafova.

Osobine

Theorem

Neka su dati izomorfni grafovi $G_1 = (V_1, E_1)$ i $G_2 = (V_2, E_2)$. Tada je

- $|V_1| = |V_2|,$
- $|E_1| = |E_2|, i$
- **3** $d_{G_1}(v) = d_{G_2}(h(v))$, za svaki čvor $v \in V_1$.

Grafički nizovi

Definition

Za niz nenegativnih celih brojeva (d_1,\ldots,d_n) kažemo da je grafički niz ako postoji graf G=(V,E) sa osobinom $V=\{v_1,\ldots,v_n\}$ i $d_i=d_G(v_i)$ za svako $v_i\in V$.

$$|V_1| = |V_2| = 8$$
 $|E_1| = |E_2| = 10$ $(3, 3, 3, 3, 2, 2, 2, 2).$
 $G_1 \not\cong G_2$

Zadatak

Ako su data dva grafa sa n čvorova. Koliko ima bijektvinih preslikavanja jednog u drugi?

Zadatak

Koliko ima (po parovima) različitih prostih grafova sa n čovorova?

Tema 4

Operacije sa/na grafovima

Podgrafovi

Definicija

Neka je $G_1=(V_1,E_1)$ i $G_2=(V_2,E_2)$. Kažemo da je G_1 podgraf grafa G_2 , ako važi

$$V_1 \subseteq V_2 \qquad E_1 \subseteq E_2$$

Definicija

Neka je $G_1=(V_1,E_1)$ i $G_2=(V_2,E_2)$ i $V_2\subseteq V_1$. Kažemo da je G_2 podgraf grafa G_1 indukovan skupom čvorova V_2 ako važi

$$\{u,v\} \in E_2$$
 akko $\{u,v\} \in E_1$.

Definicija

Neka je $G_1=(V_1,E_1)$ i $G_2=(V_2,E_2)$. Kažemo da je G_1 pokrivajući podgraf grafa G_2 , ako važi

$$V_1 = V_2$$
 $E_1 \subseteq E_2$

Indukovan graf

Na slici je prikazan podgraf grafa K_6 koji je indukovan skupom čvorova $\{a,c,d,f\}$.

Dodavanje/oduzimanje čvorova i grana

Neka je
$$G_1 = (V_1, E_1)$$
 i $G_2 = (V_2, E_2)$.

- $G_2 = G_1 v :$ $V_2 = V_1 \setminus \{v\} \text{ i } E_2 = E_1 \setminus \{\{u,v\} : u \in V_1\}$
- ② $G_2 = G_1 e$: $V_2 = V_1 \text{ i } E_2 = E_1 \setminus \{e\}$

Oduzimanje čvora i grane

Na slici su prokazani grafovi $K_6 - \{a, b\}$ i $K_6 - a$.

$$K_6 - \{a, b\}$$

$$K_6 - a$$