Министерство науки и высшего образования Российской Федерации ФГБОУ ВО АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Институт цифровых технологий, электроники и физики Кафедра вычислительной техники и электроники (ВТиЭ)

УДК: 004.94

Работа защищена

«___» ____ 2024 г.

Оценка ____
Председатель ГЭК, д.т.н., проф.
 ____ С. П. Пронин

Допустить к защите

«___» ____ 2024 г.
Заведующий кафедрой ВТиЭ,
к.ф.-м.н., доцент
 ____ В. В. Пашнев

ПРОГРАММНЫЙ ГЕНЕРАТОР СИГНАЛОВ НА ОСНОВЕ МИКРОКОНТРОЛЛЕРА STM32F103

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЕ

БР 09.03.01.506.294 ПЗ		
Студент группы:	506	Д.С.Вебер
Руководитель работы:	ст. преп.	П.Н. Уланов
Консультанты:		
Нормоконтролер:	к.фм.н., доцент	А.В. Калачёв

РЕФЕРАТ

Полный объём работы составляет 17 страниц, включая 7 рисунков и 0 таблиц.

В первой главе были рассмотрены семейства микроконтроллеров, различные среды разработки и изучены методы программной генерации сигналов.

Во второй главе был спроектирован генератор. Проведено моделирование выбранного метода генерации, разработан алгоритм работы и создана схема электрическая принципиальная.

В третьей главе была произведена сборка макета, написана и протестирована результирующая программа.

Ключевые слова: генератор сигналов, микроконтроллер.

Дипломная работа оформлена с помощью системы компьютерной вёрстки Т_ЕX и его расширения X_ДТ_ЕX из дистрибутива *TeX Live*.

ABSTRACT

The total amount of work is 17 page's, include 7 image's and 0 table's.

In the first chapter, families of microcontrollers, various development environments were considered and methods of software signal generation were studied.

In the second chapter, a generator was designed. The simulation of the selected generation method was carried out, an algorithm of operation was developed and an electrical circuit was created.

In the third chapter, the layout was assembled, the resulting program was written and tested.

Keyword: signal generator, microcontroller.

Thesis is framed using the computer layout system T_EX and its extension $X_{\overline{H}}T_EX$ from the distribution TeX Live.

СОДЕРЖАНИЕ

Введение	4
1 Начало разработки	5
1.1 Развитие генераторов сигналов	5
1.2 Обзор существующих генераторов на рынке	6
1.2.1 Генераторы синусоидальных сигналов	6
1.2.2 Генераторы импульсов	6
1.2.3 Функциональные генераторы	6
1.2.4 Генераторы сигналов произвольной формы	7
1.3 Методы программной генерации сигнала	7
2 Проектирование	10
2.1 Моделирование прямого цифрового синтеза	10
2.2 Алгоритм работы	12
2.3 Схема генератора	12
3 Реализация	14
	14
3.2 Кодовые фрагменты	14
3.3 Тестирование на осциллографе	14
Заключение	15
Список использованной литературы	16
Приложение 1	17

ВВЕДЕНИЕ

В ходе эксплуатации электронных устройств регулярно возникает необходимость в настройке или ремонте. Для калибровки и отладки приборов необходимы колебания разных форм и периодов. Формирование требуемых электрических колебаний может обеспечить специализированное устройство — генератор сигналов.

Генератор сигналов — это неотъемлемый инструмент для любого специалиста в области электроники. На сегодняшний день разрабатывается достаточно много генераторов сигналов, но не все генераторы, которые есть на рынке, обладают компактными размерами, лёгкостью транспортировки и доступностью в цене.

Ранее практически все лабораторные генераторы были аналоговыми и конструировались на различных схемах. К их достоинствам можно отнести простоту и надёжность, но у них есть существенные недостатки в виде меньшей стабильности и более тщательной настройке. Сейчас практически все генераторы, которые есть на рынке создаются на основе цифровых методов синтеза аналоговых сигналов, т. к. они стабильные и точные. Такого рода генераторы могут найти применение и в промышленности, но не всем пользователям требуются такие высокие характеристики. Разработанный в данной работе генератор претендует на применение в домашней лаборатории в качестве простого и функционального дешёвого генератора сигналов.

Применением такого генератора может быть генерация сигналов разных форм, работа с аналоговыми системами для исследования влияния сигналов на них, изучение методов обработки сигнала или основ электроники.

Цель выпускной квалификационной работы состоит в разработке программного генератора сигналов на микроконтроллере STM32F103.

Задачи

- 1. Рассмотреть семейства микроконтроллеров и осуществить выбор.
- 2. Выбрать среду разработки.
- 3. Исследовать методы генерации сигналов и осуществить выбор.
- 4. Спроектировать генератор.
- 5. Сконструировать макет.
- 6. Разработать и протестировать программу.

1. НАЧАЛО РАЗРАБОТКИ

1.1. Развитие генераторов сигналов

История развития генераторов сигналов начинается с аналоговых устройств, которые использовались для генерации различных форм сигналов, включая низкочастотные, высокочастотные, сверхвысокочастотные и импульсные. «Во времена СССР потребности в новых средствах генерации сигналов удовлетворялись разработкой огромного числа всевозможных аналоговых генераторов сигналов» [1]. Однако, с развитием технологий и потребностями в более сложных и модулируемых сигналах, стало очевидно необходимость в универсальных генераторах сигналов, способных генерировать сигналы типовых форм, такие как синусоидальные, прямоугольные, пилообразные и треугольные.

В результате развития технологий и потребностей в более сложных и модулируемых сигналах, появились новейшие разработки генераторов сигналов на основе прямого цифрового синтеза частот и форм сигналов. Эти генераторы сигналов используют минимальное количество аналоговой элементной базы и основываются на стандартных и специализированных сверхскоростных цифровых микросхемах, а также аналого-цифровых (АЦП) и цифро-аналоговых (ЦАП) преобразователях. Это позволяет легко интегрировать такие генераторы с цифровыми системами и современными компьютерами, открывая широкие возможности их применения в испытании и отладке различных электронных и радиотехнических систем и устройств.

В современной измерительной технике генераторы сигналов играют ключевую роль, особенно в области электронно-оптических приборов, видеоимпульсных и ультразвуковых локаторов, гео- и подповерхностных радаров, а также в системах цифровой связи, включая мобильные системы. Несмотря на то, что в прошлом развитие в этой области было активно, в настоящее время наблюдается отставание от многих передовых направлений применения электронных устройств, включая микропроцессоры, работающие на частотах в единицы ГГц и выше.

Важно отметить, что развитие генераторов сигналов тесно связано с развитием полупроводниковой технологии элементной базы. В частности, были проведены значительные исследования в области германиевых и крем-

ниевых транзисторов в лавинном режиме работы, что позволило разработать уникальные импульсные устройства и генераторы мощных импульсов. Однако, после распада СССР, многие из этих разработок были прерваны, и на рынок начали поступать зарубежные разработки. В целом, история развития генераторов сигналов отражает эволюцию технологий, потребностей в модулируемых сигналах и влияние глобальных изменений в науке и технике.

1.2. Обзор существующих генераторов на рынке

Сейчас на рынке присутствуют несколько видов генераторов:

- 1. Генераторы синусоидальных сигнал.
- 2. Генераторы импульсов.
- 3. Функциональные генераторы.
- 4. Генераторы сигналов произвольной формы.

1.2.1. Генераторы синусоидальных сигналов

Генераторы таких сигналов широко применяются при тестировании различных радиоэлектронных устройств. «Достоинством обычных генераторов синусоидальных сигналов является возможность получения синусоидальной формы выходного сигнала с малыми нелинейными искажениями. А главным недостатком — низкая стабильность частоты.» [1].

1.2.2. Генераторы импульсов

Генерация импульсов необходима для тестирования и отладки импульсных систем. Это может быть радиолокатор или устройства и цифровые системы различного назначения. Такого рода генераторы находят большое применение в качестве источников несинусоидальных сигналов.

1.2.3. Функциональные генераторы

Данные устройства генерируют сигналы разной формы. Их простота и плавная регулировка частоты в большом диапазоне привела к массовому применению генераторов такого типа.

1.2.4. Генераторы сигналов произвольной формы

Достаточно новое направление в генераторах сигналов, которое основывается на прямом цифровом синтезе различных сигналов, по сути произвольных форм.

1.3. Методы программной генерации сигнала

Основные методы цифровой генерации сигналов — метод аппроксимации и табличный метод.

Метод аппроксимации подразумевает собой вычисление отсчётов функции с заданным интервалом. В памяти хранятся только параметры сигнала. Поэтому данный метод позволяет затратить небольшой объём памяти, но его недостаток это затраты на вычисления, что ограничивает максимальную частоту сигнала.

В табличном методе генерации сигналов предполагается, что заранее вычисленные отсчёты хранятся в памяти. То есть никаких вычислений не требуется и генерация сводится к тому, что в порт цифро-аналогового преобразователя нужно вывести ячейку по заданному адресу. Таким образом, время на формирование отсчёта становится меньше и появляется возможность генерировать сигнал с более высокой частотой. Недостатком же является большие затраты памяти.

Будем рассматривать табличный метод синтеза. Для начала потребуется таблица отсчётов, чтобы её вычислить используем готовый инструмент.

Рис. 1.1 Программа для вычисления значений сигнала.

У таблицы есть 4 параметра:

- 1. Разрядность ЦАП: 8 или 12 бит.
- 2. Максимальное значение.
- 3. Количество значений.
- 4. Смещение от нуля.

Использовать мы будем 12-битные значения в количестве 256 чисел. Максимальное значение амплитуды сигнала может быть 4095, но так как для улучшения генерации будет задействован встроенный в цифро-аналоговый преобразователь выходной буфер, то он будет срезать сигнал сверху и снизу на 0.2В, поэтому значения тоже следует срезать на эту же величину для корректной генерации.

В документе от ST про работу с цифро-аналоговым преобразователем есть формула для расчета выходного напряжения.

$$DAC_{output} = V_{REF} * rac{DOR}{DAC_{MaxDigitalValue} + 1}$$
, где DOR — цифровое значение.

Нам нужно найти какое значение соответствует напряжению 0.2В. Выразим DOR и подставим имеющиеся значения.

$$DOR = \frac{V_{REF}}{DOR}*DAC_{MaxDigitalValue} + 1 = \frac{3.3}{0.2}*(4095+1) = 248$$
 Укажем смещение от нуля 248, а максимальное значение 4095 меньше

Укажем смещение от нуля 248, а максимальное значение 4095 меньше на 248, то есть 3847 и сгенеририуем таблицу отсчётов для синусоиды.

Рис. 1.2 Вычисление таблицы сигнала.

Теперь у нас есть данные для генерации сигнала, но теперь нужно продумать как передавать их в цап и как вообще работать с цапом.

2. ПРОЕКТИРОВАНИЕ

2.1. Моделирование прямого цифрового синтеза

Смоделируем алгоритм метода прямого цифрового синтеза на языке Си для дальнейшей реализации на микроконтроллере.

Листинг 2.1 Метод DDS.

```
int main() {

uint16_t p_acc, p_step;

uint8_t addr = 0; // адрес ячейки

p_acc = 0; // аккумулятор фазы

p_step = 128; // код частоты

while(1)

addr = p_acc >> 8; // выделение старшей части

аккумулятора фазы

p_acc += p_step; // шаг

printf("%d 0x%X\n", addr, sinus[addr]); // вывод

отсчёта

return 0;

return 0;
```

Алгоритм программы представлен следующей блок-схемой.

Рис. 2.1 Алгоритм метода DDS.

Код частоты задаёт выходную частоту генератора. При значении 256 вывод будет следующий:

```
kenny@desktop:~/workspace/vkr/dds

gcc dds.c -o dds && ./dds

0 0x800

1 0x82C

2 0x858

3 0x884

4 0x8B0
```

Рис. 2.2 Формирование отсчётов при коде частоты 256.

Увеличим код частоты в два раза и получим следующее:

```
kenny@desktop:~/workspace/vkr/dds

gcc dds.c -o dds && ./dds

0 0x800

2 0x858

4 0x8B0

6 0x908

8 0x95F
```

Рис. 2.3 Формирование отсчётов при коде частоты 512.

Как можно заметить отсчёты стали формироваться через один, соответственно частота вырастит в два раза. Теперь уменьшим частоту в два раза выставив код частоты 128.

Рис. 2.4 Формирование отсчётов при коде частоты 128.

Программа стала выводить каждый отсчёт по два раза тем самым, понизив частоту.

В данном виде модуляции код частоты просто абстрактное число, которое добавляется к аккумулятору фазы и узнать реальную частоту проблематично. Результат синтеза будет проверен опытным путём на микроконтроллере.

2.2. Алгоритм работы

2.3. Схема генератора

Рис. 2.5 Схема электрическая принципиальная.

3. РЕАЛИЗАЦИЯ

3.1. Сборка макета

- 1. Пример ссылки на литературу.
- 2. Пример ссылки на литературу [2].
- 3. Пример ссылки на литературу [3].

3.2. Кодовые фрагменты

3.3. Тестирование на осциллографе

ЗАКЛЮЧЕНИЕ

В результате выполнения данной выпускной квалификационной работы была достигнута поставленная цель — разработан программный генератор сигналов на микроконтроллере STM32F103RCT6, позволяющий генерировать сигналы разной формы, со следующими характеристиками:

- Формы сигналов: синус, треугольник, прямоугольник, пилообразная, обратная пилообразная.
- Частота сигнала: 125 50000 Гц.
- Амплитуда: 3 В.
- Шаг по частоте: 125, 250, 500, 1000 Гц.

Помимо микроконтроллера генератор состоит из дисплея с разрешением 128 на 64 пикселя, работающего по интерфейсу I2C, и пяти кнопок управления.

Для достижения поставленной цели были выполнены все задачи, а именно:

- 1. Выбран микроконтроллер.
- 2. Выбрана среда разработки.
- 3. Выбран метод генерации сигналов.
- 4. Спроектирован генератор.
- 5. Сконструирован макет.
- 6. Разработана и протестирована программа.

Реализованный генератор сигналов отличается простотой, так как использует встроенный цифро-аналоговый преобразователь микроконтроллера и тем самым компактен, а также доступные элементы периферии ввиду этого также его плюсом является невысокая стоимость.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. *Дьяконов В. П.* Генерация и генераторы сигналов. Москва : ДМК Пресс, 2009. 384 с. (Учебное пособие). ISBN 978-5-94074-493-1.
- 2. [Электронный ресурс] Id Software Википедия. URL: https://ru.wikipedia.org/wiki/Id_Software (дата обр. 31.03.2020).
- 3. [Электронный ресурс] GitHub Википедия. URL: https://ru.wikipedia. org/wiki/GitHub (дата обр. 28.03.2020).

ПРИЛОЖЕНИЕ 1

ПОСЛЕДНИЙ ЛИСТ ВКР

Выпускная квалификационная работа выполнена мной совершенно самостоятельно. Все использованные в работе материалы и концепции из опубликованной научной литературы и других источников имеют ссылки на них.

«»	 2024 г.
	Л.С. Вебер