Adversarial Attacks and Defense Strategies on Image Classification -PRD

⊀ Project Overview

Product: Adversarial Attack
Evaluation and Defense System for
Image Classification Neural Networks

Prepared By: Bhumika Chopra

Objective

What are you trying to build and why?

- High-level goal: Develop a comprehensive system to evaluate vulnerabilities of deep neural networks (DNNs) to adversarial attacks and implement effective defense mechanisms for image classification models
- Problem it solves: Addresses the critical security vulnerability where imperceptible
 perturbations to input images can cause DNNs to make incorrect classifications with
 potentially catastrophic consequences
- Business alignment: Enhances the reliability, security, and trustworthiness of AI systems
 deployed in critical applications such as autonomous vehicles, medical diagnosis, and
 cybersecurity

1 User Personas

Who are you building this for?

Primary audience:

- ML Engineers & Researchers: Need to evaluate and improve model robustness against adversarial attacks
- Security Teams: Responsible for AI system security and vulnerability assessment
- Model Developers: Building production-ready image classification systems

Secondary audience:

- Academic Researchers: Studying adversarial machine learning
- Compliance Teams: Ensuring AI systems meet security standards
- Product Teams: Deploying AI in safety-critical applications

✓ Success Metrics / KPIs

How will we measure success?
Model Robustness: Achieve >85% accuracy on adversarial examples with epsilon ≤ 0.1
☐ Attack Detection Rate: Successfully identify >90% of adversarial examples
☐ Defense Effectiveness: Reduce successful attack rate by >70% across different attack methods
☐ Transferability Analysis: Document attack success rates across ResNet and MobileNet architectures
☐ Performance Preservation: Maintain >95% accuracy on clean images after defense implementation

Key Features / Requirements

What exactly needs to be built?

Core Components:

1. Adversarial Attack Generation Module

- FGSM (Fast Gradient Sign Method) implementation
- · Black-box attack capabilities
- Configurable perturbation levels (epsilon values)

2. Defense Strategy Implementation

- · Adversarial training pipeline
- Input preprocessing and transformation
- · Model architecture modifications

3. Evaluation Framework

- · Robustness assessment tools
- · Transferability analysis across model architectures
- · Performance benchmarking suite

4. Visualization Dashboard

- Side-by-side comparison of clean vs adversarial examples
- Attack success rate analytics
- · Defense effectiveness metrics

User Stories

Written from the user's perspective.

- As an ML engineer, I want to generate adversarial examples using different attack methods so I can test my model's robustness
- As a security researcher, I want to evaluate attack transferability between ResNet and MobileNet so I can understand cross-architecture vulnerabilities
- As a model developer, I want to implement defense mechanisms so I can deploy more secure image classification systems
- As a researcher, I want to visualize adversarial perturbations so I can understand attack patterns and effectiveness
- As a team lead, I want to generate robustness reports so I can make informed decisions about model deployment

WWW Design

Include any design constraints or brand guidelines.

Interface Requirements:

- · Clean, academic-focused interface suitable for research environments
- Side-by-side image comparison views for original vs adversarial examples
- · Interactive parameter controls for epsilon values and attack configurations
- Exportable visualizations and reports for academic publication
- Jupyter notebook integration for research workflows

Design Notes:

- Prioritize clarity and scientific accuracy over visual aesthetics
- Include confidence score displays and classification labels
- · Support batch processing visualization for large-scale experiments

Scope of Work

What's in scope and what's out

In Scope:

- FGSM and black-box adversarial attack implementation
- ResNet-50 and MobileNetV2 model evaluation
- ImageNet dataset integration
- Basic defense mechanisms (adversarial training, input preprocessing)
- Transferability analysis across the two model architectures
- Performance evaluation and visualization tools

Out of Scope:

- · Advanced attack methods (PGD, C&W, etc.) future iteration
- · Real-time attack detection in production systems
- · Integration with cloud ML platforms
- · Video or sequential data adversarial attacks
- · Adversarial training on custom datasets beyond ImageNet

Technical Requirements

For the engineering team

Platforms:

- Python-based research environment
- Jupyter notebook compatibility
- · Support for both CPU and GPU execution

Backend Dependencies

- TensorFlow/Keras for model implementation
- NumPy, PIL for image processing
- Matplotlib for visualization
- Pre-trained ResNet-50 and MobileNetV2 models

APIs Needed:

- ImageNet dataset access
- Model inference endpoints
- · Gradient computation interfaces

Tech Constraints:

- · Memory requirements for large batch processing
- GPU availability for efficient adversarial example generation
- · Reproducible research environment setup

Dependencies

What needs to happen before this can be built?
■ Dataset Access: Secure ImageNet dataset licensing and access
Computing Resources: GPU infrastructure setup for model training/evaluation
■ Model Weights: Download pre-trained ResNet-50 and MobileNetV2 weights
Literature Review: Complete analysis of current adversarial attack/defense methods
☐ Environment Setup: Establish reproducible Python environment with required libraries

Open Questions / Risks

Technical Uncertainties:

- Optimal epsilon values for different attack scenarios may require extensive experimentation
- Computational resources needed for comprehensive adversarial training may exceed available capacity
- · Defense mechanism effectiveness may vary significantly across different attack types

Potential Blockers:

- ImageNet dataset access restrictions or licensing issues
- · GPU availability limitations affecting experiment scale
- Model training time constraints for adversarial training implementation

Research Risks:

- · Limited transferability findings may reduce research contribution significance
- Defense mechanisms may not generalize well beyond tested attack methods

Supporting Documents

Research Foundation:

- Existing literature survey on adversarial attacks (documented in project report)
- ImageNet classification benchmark standards
- ResNet and MobileNet architecture specifications

Technical References:

- FGSM original paper implementation details
- Adversarial training methodology papers
- · Model robustness evaluation frameworks

Project Documentation:

- Complete technical report (referenced document)
- Experimental methodology and results
- Code repository with implementation details