Experiment - 4

Student Name: Gurshaan Singh UID: 23BCS14195

Branch: BE-CSE Section/Group: KRG_1-B

Semester: 5 **Date:** 09-11-25

Subject Name: ADBMS Subject Code: 23CSP-333

Aim:

Q1. Consider a relation R having attributes as R(ABCD), functional dependencies are given below:

Identify the set of candidate keys possible in relation R. List all the sets of prime and non-prime attributes.

Q2. Relation R(ABCDE) having functional dependencies as:

Identify the set of candidate keys possible in relation R. List all the sets of prime and non-prime attributes.

Q3. Consider a relation R having attributes as R(ABCDE), functional dependencies are given below:

Identify the set of candidate keys possible in relation R. List all the sets of prime and non-prime attributes.

Q4. Consider a relation R having attributes as R(ABCDEF), functional dependencies are given below:

Identify the set of candidate keys possible in relation R. List all the sets of prime and non-prime attributes.

Q5. Designing a student database involves certain dependencies, which are listed below:

 $WZ \rightarrow X$

 $WZ \rightarrow Y$

Y ->W

 $Y \rightarrow X$

$Y \rightarrow Z$

The task here is to remove all the redundant FDs for efficient working of the student database management system.

Q6. Debix Pvt Ltd needs to maintain a database with dependent attributes ABCDEF. These attributes are functionally dependent on each other, for which the functional dependency set F is given as:

$$A \rightarrow BC, D \rightarrow E, BC \rightarrow D, A \rightarrow D$$

Consider a universal relation R1(A, B, C, D, E, F) with functional dependency set F; also, all attributes are simple and take atomic values only. Find the highest normal form along with the candidate keys with prime and non-prime attributes.

Objective:

1:

To analyse functional dependencies of relation R(ABCD) and determine candidate keys, along with the classification of prime and non-prime attributes.

2:

To evaluate the given FDs in relation R(ABCDE) and identify all possible candidate keys, prime, and non-prime attributes.

3:

To apply the closure method on functional dependencies of R(ABCDE) for finding candidate keys and distinguishing prime from non-prime attributes.

4:

To determine candidate keys of R(ABCDEF) by analysing given dependencies and classify attributes as prime or non-prime.

5:

To minimize the functional dependency set by eliminating redundant FDs for efficient design of the student database system.

6:

To identify the candidate keys, prime/non-prime attributes, and the highest normal form of relation R1(ABCDEF) using the given FD set.

Answers:

Q1:

Relation: R(A, B, C, D)

FDs: $AB \rightarrow C, C \rightarrow D, D \rightarrow A$

Closures / reasoning (brief):

- $AB^+ = \{A, B\} \rightarrow C \text{ (from } AB \rightarrow C) \rightarrow D \text{ (from } C \rightarrow D) \rightarrow A \text{ (from } D \rightarrow A). So, } AB^+ = \{A, B, C, D\} \Rightarrow AB \text{ is a key.}$
- $C^+ = \{C\} \rightarrow D \rightarrow A \Rightarrow \{A, C, D\} \text{ (missing B)} \rightarrow \text{not a key.}$
- $BC^+ = \{B, C\} \rightarrow D(C \rightarrow D) \rightarrow A(D \rightarrow A) \Rightarrow \{A, B, C, D\} \Rightarrow BC \text{ is a key.}$
- $BD^+ = \{B, D\} \rightarrow A (D \rightarrow A)$ and then $AB \rightarrow C \Rightarrow \{A, B, C, D\} \Rightarrow BD$ is a key.
- No single attribute alone gives all attributes.

Candidate keys: {AB, BC, BD}

Prime attributes: attributes that appear in any candidate key = $\{A, B, C, D\}$ (all)

Non-prime attributes: □

Q2:

Relation: R(A, B, C, D, E)

FDs: $A \rightarrow D$, $B \rightarrow A$, $BC \rightarrow D$, $AC \rightarrow BE$

Closures / reasoning (brief):

- AC⁺: AC \rightarrow B,E (given). With B we get A (already) and A \rightarrow D gives D. So AC⁺ = {A,B,C,D,E} \Rightarrow AC is a key.
- BC⁺: BC \rightarrow D (given). B \rightarrow A gives A, then AC \rightarrow B,E gives E (and B). So BC⁺ = {A,B,C,D,E} \Rightarrow BC is a key.
- Check minimality: A, B, C individually are not keys; AC and BC are minimal.

Candidate keys: {AC, BC} Prime attributes: {A, B, C} Non-prime attributes: {D, E}

Q3:

Relation: R(A, B, C, D, E)

FDs: $B \rightarrow A, A \rightarrow C, BC \rightarrow D, AC \rightarrow B E$

Closures / reasoning (brief):

- $B^+: B \to A \to C$; with A,C we get AC $\to B,E \to gives E$; BC $\to D$ (with B,C) gives D. So $B^+ = \{A,B,C,D,E\} \Rightarrow B$ is a key.
- A^+ : $A \to C$; $AC \to B$, E gives B and E; $BC \to D$ gives D. So $A^+ = \{A, B, C, D, E\} \Rightarrow A$ is a key.

Candidate keys: {A, B} (both are single-attribute keys)

Discover. Learn. Empower.

Prime attributes: {A, B}

Non-prime attributes: {C, D, E}

Q4:

Relation: R(A, B, C, D, E, F)

FDs: $A \rightarrow B C D, BC \rightarrow D E, B \rightarrow D, D \rightarrow A$

Closures / reasoning (brief):

- A^+ : $A \to B,C,D$. From $BC \to D,E$ (we have B,C) get E. So $A^+ = \{A,B,C,D,E\}$ (missing F).
- $B^+: B \to D \to A \to B,C,D$ and then $BC \to E$ gives $E \Rightarrow B^+ = \{A,B,C,D,E\}$ (missing F).
- D^+ : $D \to A \to B$,C,D and $BC \to E$ gives $E \Rightarrow D^+ = \{A,B,C,D,E\}$ (missing F). Thus any of A, B, or D together with F will give all attributes.
- AF^+ : A gives $\{A,B,C,D,E\} + F \Rightarrow all \Rightarrow AF$ is a key.
- BF⁺: B gives $\{A,B,C,D,E\} + F \Rightarrow all \Rightarrow BF$ is a key.
- DF⁺: D gives $\{A,B,C,D,E\} + F \Rightarrow all \Rightarrow DF$ is a key.

No smaller combination without F is a key.

Candidate keys: {AF, BF, DF} Prime attributes: {A, B, D, F} Non-prime attributes: {C, E}

O5:

Given Fds:

$$X \rightarrow Y$$

$$WZ \rightarrow X$$

$$WZ \rightarrow Y$$

$$Y \rightarrow W$$

$$Y \rightarrow X$$

$$Y \rightarrow Z$$

Goal: remove redundant FDs (find a minimal cover).

Step 1 — RHS already singletons.

Step 2 — test redundancy / implication (brief):

- From Y \rightarrow W and Y \rightarrow Z we get Y \rightarrow WZ. With WZ \rightarrow X, Y \rightarrow X follows. So Y \rightarrow X is implied by Y \rightarrow W, Y \rightarrow Z, WZ \rightarrow X \Rightarrow Y \rightarrow X is redundant.
- From WZ \rightarrow X and X \rightarrow Y we get WZ \rightarrow Y. So WZ \rightarrow Y is implied by WZ \rightarrow X and X \rightarrow Y \Rightarrow WZ \rightarrow Y is redundant.
- After removing those, remaining FDs are necessary (none is derivable from the others).

Minimal (non-redundant) cover:

$$X \rightarrow Y$$
 $WZ \rightarrow X$
 $Y \rightarrow W$
 $Y \rightarrow Z$

(Optionally combine last two as Y -> WZ.)

Final answer: The redundant FDs are removed; the minimal cover is shown above.

Q6:

Relation: R1(A, B, C, D, E, F)

FDs (F): $A \rightarrow B C, D \rightarrow E, BC \rightarrow D, A \rightarrow D$

Assumptions: All attributes atomic.

Step 1 — candidate key(s):

- $A^+: A \to B, C \text{ and } A \to D \text{ (given)}$. From $BC \to D$ we already have D; $D \to E \text{ gives } E$. So $A^+ = \{A, B, C, D, E\}$ (missing F). A alone does not reach F.
- AF⁺: A gives B,C,D,E and plus F gives all attributes ⇒ AF⁺ = {A,B,C,D,E,F} ⇒ **AF** is a key.

No FD derives A from other attributes, so every key must include A. F is not derivable, so AF is minimal. Therefore **AF** is the only candidate key.

Prime attributes: attributes that appear in any candidate key = $\{A, F\}$

Non-prime attributes: {B, C, D, E}

Step 2 — highest normal form:

- Relation is in **1NF** (attributes atomic).
- Candidate key is composite (AF). There are FDs with a proper subset of the key on the LHS:
 - o $A \rightarrow B C$ and $A \rightarrow D$ are dependencies from **A**, which is a proper subset of the key AF, to non-prime attributes (B, C, D, E). These are **partial dependencies** on part of a candidate key \Rightarrow **violates 2NF**.
- Therefore the highest normal form is **1NF**.