National Institute of Electronics & Information Technology (NIELIT), Gorakhpur राष्ट्रीय इलेक्ट्रॉनिकी एवं सूचना प्रौद्योगिकी संस्थान ,गोरखपुर

Course Name: A Level (1st Sem)

Topic: **DB Normalization – Dependency Preserving**

Decomposition (Part 13)

Subject: Introduction to DBMS

Date: **01-June-2020**

Database Normalization – Dependency Preserving Decomposition

Suppose R is a relational schema and F is the set of functional dependencies on R.

If R is decomposed into relations R1, R2, \dots Rn , each holding functional dependencies F1, F2, \dots Fn respectively.

We can say, $F' = F1 \cup F2 \cup ... \cup Fn$

Now this decomposition will be considered as **dependency preserving decomposition** if and only if

Every dependency in F is logically implied by F^* i.e. $F^{*+} = F^{+}$

It is obvious that $F1 \subseteq F^+$, $F2 \subseteq F^+$, and so on

If we verify that F is satisfied in R, we have verified that decomposition is dependency preserving decomposition i.e. $F1 \cup F2 = F$

Suppose R (A B C D) and set of functional dependencies

$$F: AB \rightarrow CD$$

$$D \rightarrow A$$

If R is decomposed into following two relations

R1 (A D),

R2 (BCD)

Identify that this decomposition is dependency preserving or not?

Solution:

$$R (A B C D)$$

$$F: AB \longrightarrow CD$$

$$D \longrightarrow A$$

Since there are two attributes in R1 i.e. A, D

so find A⁺, D⁺

[Closure must be calculated using FD set in R]

$$A^{+} = A$$
 [It concludes trivial FD A \rightarrow A]
 $D^{+} = AD$ [It concludes FD D \rightarrow A]

The closure of attributes concludes, following FD exist in R1

$$F1 \{ D \rightarrow A \}$$

R2 (B C D)

Since there are three attributes in R2 i.e. B, C, D

so find B⁺,C⁺, D⁺, BC⁺, CD⁺, BD⁺

[Closure must be calculated using FD set in R]

$$B^+=B$$
 [trivial]

$$C^+ = C$$
 [trivial]

$$BC^+=BC$$
 [trivial]

R2]

$$BD^+=BDAC$$
 [It concludes FD, BD \rightarrow C

A is not included at right side of FD because A is not

attribute in R2]

The closure of attributes concludes, following FD exist in R2

$$F2 \{ BD \rightarrow C \}$$

Now
$$F' = F1 \cup F2 = \{ D \rightarrow A, BD \rightarrow C \}$$

and original F in $R = \{AB \rightarrow CD, D \rightarrow A\}$

National Institute of Electronics & Information Technology (NIELIT), Gorakhpur राष्ट्रीय इलेक्ट्रॉनिकी एवं सूचना प्रौद्योगिकी संस्थान ,गोरखपुर

It can be seen that while decomposing, the functional dependency AB → CD has been lost.

To understand, calculate $AB^+ = AB$ [Using FD in F`] while in F, AB can determine CD but this dependency is lost in F`.

Therefore, this decomposition is not dependency preserving decomposition.

Exercise:

Suppose R (A B C D) and set of functional dependencies

$$F: AB \rightarrow C$$

$$C \rightarrow D$$

$$D \rightarrow A$$

If R is decomposed into following two relations

Identify that this decomposition is dependency preserving or not?

