Billiards

Jonathan Allen, John Wang

Massachusetts Institute of Technology

November 22nd, 2013

Introduction

- Billiard ball bouncing in a square
- Assume no gravity or friction
- Examine sequence of side collisions

Example

Example

Examine the sequence: 'abab'

Another Example

Example

Examine the sequence: 'aaabaaab'

Presentation Outline

- Introduction
 - Examples
 - Outline
 - Notation and Problem Statement
- 2 Lemmas
 - Tiling
 - 1-dimensional Problem
- Future Research
 - Tileable Polygons
 - Non-Tileable Polygons
 - Circles

Definition

A table T is the unit square in \mathbb{R}^2 . A particle $p \in T$ begins at position $\bar{x}_0 \in T$ with velocity \bar{v} . When the particle reaches an edge of the table, velocity is reflected about the line perpendicular to the table's edge.

Definition

Opposite sides of the table are named a and b. **Primary side** (most collisions) is a, **secondary side** is b.

7 / 23

Definition

Collision string consists of the sides of the table that have been collided with for a given starting position and velocity.

Definition

Collision string consists of the sides of the table that have been collided with for a given starting position and velocity.

Definition

Primary substring is a subsequence from the collision string which contains the primary side collisions that occur between consecutive secondary side collisions.

Definition

Collision string consists of the sides of the table that have been collided with for a given starting position and velocity.

Definition

Primary substring is a subsequence from the collision string which contains the primary side collisions that occur between consecutive secondary side collisions.

Example

Collision string: 'aabaaabaabaaba', Primary substrings: 'aa', 'aaa'

Problem Statement

Problem: Characterize the properties of collision sequences.

- Given a sequence of a's and b's, determine if it is a valid collision sequence.
- Given a valid collision sequence, determine a possible starting position and velocity.

- Reflect squares about each side to create a tiling
- Solutions become lines in the plane
- Intersections become places where collisions occur

Example

Example

Example

Example

Example

Example

Example

Example

Sequence Characterization

Sequence Characterization

Extensions to Tileable Polygons

Other Tileable Polygons:

Figure: Regular Hexagons

Figure: Equilateral Triangles

Extensions to Non-Tileable Polygons

- Irregular triangles
- Pentagons
- Octagons

Extensions to Circles

- Characterize how particle bounces around circle
- Analog to a, b might be sequence of collision points as you move around circle.

