Machine Learning 2018-19 Final Exam

12 December 2018

Name	
t (on 1: 2 points In linear regression, the <i>hat matrix</i> $H = X(X^{T}X)^{-1}X^{T}$ puts the "hat" on the rue output \mathbf{y} , i.e. the estimated output equals $\hat{\mathbf{y}} = H\mathbf{y}$. Show that a) $H^{T} = H$; b) $H^{2} = H$; c) $(I - H)^{2} = (I - H)$. Hints: For any multiplicable matrices A and B, $(AB)^{T} = B^{T}A^{T}$, and for any equare matrix C , $(C^{-1})^{T} = (C^{T})^{-1}$.
	on 2: 2 point Which are the components of supervised learning? Which of these components can be controlled by a machine learning practitioner?

l	1 point What is overfitting? Name three factors that increase the amount of overfitting.
	1 point What is regularization? Explain how regularization is defined theoretically, and rization is usually implemented in practice. Why is there a difference?
Question 5: algorith	1 point In decision tree learning, how is information gain defined? Describe the start hm for learning decision trees.
Question 6:	1 point Explain how recurrent neural networks differ from feedforward neural netw
	be one advantage and one disadvantage of recurrent neural networks, compared to feedfor
	networks.

NT																				
Name:	 	 	 	 . . .	 															

Question 7: 1 point Write down the Bayes Theorem. Describe two possible uses of this theorem in Machine Learning. For each use, describe precisely each term in the formula.

Question 8: 2 point

A belief network models the relation between the variables oil (oil), inflation (inf), economy health (eh), British petroleum stock price (bp), and retailer stock price (rt). Each variable takes the states $\{low, high\}$ except for bp which has states $\{low, high, normal\}$. The Bayesian network model for these variables has tables

```
p(eh = low) = 0.2
p(bp = low|oil = low) = 0.9
p(bp = low|oil = high) = 0.1
p(oil = low|eh = low) = 0.9
p(rt = low|inf = low, eh = low) = 0.9
p(rt = low|oil = high, eh = low) = 0.1
p(inf = low|oil = high, eh = low) = 0.1
p(inf = low|oil = high, eh = low) = 0.1
p(inf = low|oil = high, eh = low) = 0.1
p(inf = low|oil = high, eh = low) = 0.1
p(inf = low|oil = high, eh = high) = 0.1
p(inf = low|oil = high, eh = high) = 0.1
p(inf = low|oil = high, eh = high) = 0.1
```

- 1. (1pt) Draw the corresponding Bayesian network for this distribution.
- 2. **(0.5pt)** Use the D-Separation algorithm to argue whether the following conditional independences are satisfied or not.
 - (a) Is *eh* independent of *bp* if no evidence is provided? Why?
 - (b) Is eh independent of bp if we observe that the oil is high? Why?
 - (c) Is rt independent of bp if we observe that eh is low? Why?
- 3. (0.5pt) Given that the British stock price is normal (bp = normal) and the retailer stock price is high (rt = high), what is the probability that inflation is high (inf = high)?

(answers on next page)

Name:
Question 9: 1 point In the context of discounted Markov decision processes, define the value function V^{π} associated with a deterministic policy $\pi: \mathcal{X} \to \mathcal{A}$.
Hint: give either the basic definition involving an infinite sum, or the Bellman equations.
Question 10: 1 point The Policy Iteration algorithm for discounted Markov decision processes iteratively computes a sequence of value functions and policies $V_1, \pi_1, V_2, \pi_2 \dots, V_k, \pi_k$. In a given iteration k of
the algorithm, what is the relation between V_k and π_k (i.e., the policy computed right after computing V_k)?
Question 11: 2 point Describe the SARSA and the Q-learning algorithms for discounted Markov decision processes. What are the respective behavior and target policies of the two algorithms?