

Methods of Artificial Intelligence: Lecture

6. Session: Knowledge Representation I

Kai-Uwe Kühnberger, Nohayr Muhammad Winter Term 2022/2023 December 9th, 2022

Overview

- Philosophical Remarks
- Recap of Classical Logic
- Ontologies
- Representing Time
- Representing Space

Philosophical Remarks

What is Knowledge?

What is Knowledge?

- There is no generally accepted definition of what knowledge is
 - Different disciplines analyze knowledge differently
 - The common sense concept of knowledge is not a technical term
- Philosophical basis:
 - Traditionally the important question in the enlightenment era of philosophy was concerned with what can be known
 - In the 20th century, knowledge became a technical notion in different disciplines
 - New interest because of the rise of computer science
- Traditional usage in AI:
 - Content of the knowledge base of a system
 - Clearly, this approach is quite naïve, but it is probably the only possibility to avoid philosophical problems

What is Knowledge Representation?

- Knowledge Representation (KR)
 - Field of AI dedicated to represent information in a formal way
 - Goal: Allow automated reasoning on such information
 - It plays a key role in many Al problems
 - Several KR formalisms used
 - Predicate logic, Non-classical logic Prolog, statistical models, neural networks, diagrams
 - Key trade-off: Expressivity vs. Practicality

	Hamburg	Berlin			
Bielefeld	253.6	384.4			
Giessen	442.0	468.2			

Document grammar

```
<!ELEMENT table (tr*)>
<!ELEMENT tr (td*)>
<!ELEMENT td (#PCDATA)>
```

Why Do We Need Knowledge Representation?

- Probably every application for which you can use a computer needs a knowledge representation formalism.
 - In symbolic approaches: relatively clear and transparent
 - In subsymbolic approaches: sometimes hidden
- Some examples:
 - Expert systems (IBM's Watson).
 - Background knowledge for semantic web applications.
 - Usually modeled in form of ontologies / terminological systems.
 - In linguistics, the formalism coding linguistic and world knowledge.
 - HPSG, transformational grammars, Montague semantics, DRT etc.
 - Cognitive modeling.
 - Find a representation for competence and performance issues.

Recap Classical Logic

The formal Basis of Reasoning

Repetition: Propositional Logic

Formulas:

- Given is a countable set of atomic propositions AtProp = {p,q,r,...}. The set of well-formed formulas Form of propositional logic is the smallest class such that it holds:
 - $\forall p \in AtProp$: $p \in Form$
 - $\forall \varphi, \psi \in Form$: $\varphi \land \psi \in Form$
 - $\forall \varphi, \psi \in Form$: $\varphi \lor \psi \in Form$
 - $\forall \varphi \in Form$: $\neg \varphi \in Form$

Semantics:

- Truth tables
 - A formula φ is valid if φ is true for all possible assignments of the atomic propositions occurring in φ .
 - A formula φ is satisfiable if φ is true for some assignment of the atomic propositions occurring in φ .
 - Models of propositional logic are specified by Boolean algebras.

Repetition: Predicate Logic

- We need signature
 - $\Sigma = (c_1, ..., c_n, f_1, ..., f_m, R_1, ..., R_n)$
- Defines the vocabulary of a logical language
 - $c_1,...,c_n$ refer to constants / names
 - $f_1,...,f_m$, refer to functions / function symbols (+ *arity*)
 - $R_1,...,R_l$ refer to relations / relation symbols (+ *arity*)
- We can view arity as a function
 - arity: $\{f_1,...,f_m,R_1,...,R_l\} \to N$
- The set T_{Σ} of Terms is the smallest class such that:
 - A variable $x \in Var$ is a term (Var is a countable set of variables)
 - A constant $c_i \in \{c_1,...,c_n\}$ is a term.
- If $f_i \in \{f_1,...,f_n\}$ is a function symbol of arity r and $t_1,...,t_r$ are terms, then $f_i(t_1,...,t_r)$ is a term.

Repetition: Predicate Logic

- The set F_{Σ} of Formulas is the smallest class such that:
 - If R_j is a predicate symbol of arity r and $t_1, ..., t_r$ are terms, then $R_j(t_1, ..., t_r)$ is a formula (atomic formula or literal).
 - For all formulas φ and ψ : $\varphi \wedge \psi$, $\varphi \vee \psi$, $\neg \varphi$, $\varphi \rightarrow \psi$, $\varphi \leftrightarrow \psi$ are formulas.
 - If $x \in Var$ and φ is a formula, then $\forall x \varphi$ and $\exists x \varphi$ are formulas.
- Notice that "term" and "formula" are rather different concepts. Terms are used to define formulas and not vice versa.

Repetition: Predicate Logic

- Semantics (meaning) of FOL formulas
 - Expressions of FOL language of a given signature Σ are interpreted in structures of the same signature (or algebra)
 - $\mathcal{M} = (\mathcal{U}, (c'_1, ..., c'_n, f'_1, ..., f'_m, R'_1, ..., R'_n))$ where
 - c'_i is an element of the universe \mathcal{U}
 - f'_{i} is a function and R'_{i} is a relation
- An interpretation function [[.]] maps:
 - terms to elements of the universe: [[.]]: $T_{\Sigma} \to \mathcal{U}$
 - formulas to truth-values: [[.]]: $F_{\Sigma} \rightarrow \{true, false\}$
- Recursive definition for interpreting terms and formulas:
 - for $c \in \{c_1,...,c_n\}$: [[c]] = c', for $x \in Var$. $[[x]] \in \mathcal{U}$
 - $[[f_i(t_1,...,t_r)]] = f_i'([[t_1]],...,[[t_r]])$
 - $[[R(t_1,...,t_r)]] = \text{true}$ iff $<[[t_1]],...,[[t_r]]> \in R'$
 - $[[\phi \land \psi]] = \text{true}$ iff $[[\phi]] = \text{true}$ and $[[\psi]] = \text{true}$
 - $[[\phi \lor \psi]] = \text{true}$ iff $[[\phi]] = \text{true}$ or $[[\psi]] = \text{true}$
 - $[[\neg \phi]] = true$ iff $[[\phi]] = false$
 - $[[\forall x \varphi(x)]] = \text{true iff}$ for all $d \in \mathcal{U} : [[\varphi(x)]]_{x|d} = \text{true}$
 - $[[\exists x \varphi(x)]] = \text{true iff exists } d \in \mathcal{U}: [[\varphi(x)]]_{x|d} = \text{true}$

Ontologies

Representing Concepts as Hierarchies

Ontologies

- There is no generally accepted definition of an ontology
 - "Representation of the categories, properties and relations between concepts that can refer to one, many or all domains of discourse"
 (Adapted from Wikipedia)
 - "An ontology is an explicit specification of a conceptualization" (Gruber, 1993)
 - "An ontology is a shared understanding of some domain of interest" (Uschold & Gruninger, 1996)
- Formally: a tuple $\mathbf{O} = \langle C, \text{is}_a, R, \sigma \rangle$ where:
 - C is a set of concepts,
 - is_a ⊆ C × C is a partial order relation on C,
 - R is a set of relations,
 - σ is a function that assigns to each relation an arity

(Stumme & Maedche, 2001)

Ontologies: an Old Example

Tree of Porphyry (III Century)

Domain-Specific vs. General-Purpose Ontologies

- Domain-specific ontologies
 - Domain ontologies refer to a specific part of the world
 - E.g., biology, politics...
 - Easier to create domain-specific ontologies
- Question: Is it possible to get to a general-purpose ontology?
 - Desirable properties
 - Still applicable in any special-purpose domain
 - 2. Different areas of knowledge need to be unified
 - Reasoning might involve several areas simultaneously

Ontological Engineering

- Existing ontologies have been created along four routes:
 - 1. By a team of trained ontologists or logicians
 - E.g., CYC system, university's FIS (research information system)
 - 2. By importing categories, attributes, and values from existing databases
 - E.g., DBpedia from Wikipedia
 - 3. By extracting information from text documents
 - E.g., TextRunner from a large corpus of web documents
 - 4. By enticing amateurs to enter commonsense knowledge
 - E.g., OpenMind built by volunteers who proposed facts in English

Ontology Engineering at UOS

Upper Ontology

- We will try to sketch a general-purpose ontology
- Focus on general concepts that occur in several domains
 - Events
 - Time
 - Physical Objects
 - Beliefs
- We cannot represent everything in the world
 - E.g., we will define what it means to be a physical object
 - Details of different object types (television, book, etc.) can be filled in later
- We call such a general framework upper ontology
 - Graphical representation
 - General concepts at the top
 - Specific concepts below

Upper Ontology

Representing Time

Relational Properties instead of Exact Measurements

Knowledge about Space and Time

Crucial questions are:

How is our conceptualization of space and time related to planning and acting?

How is knowledge about space and time represented? Which inference mechanisms exist for this domain?

- A secondary question is what the objective nature of space and time is
 - This is a question for physicists
- Here are some differences between space and time

Space	Time
3-dimensional	1-dimensional
In all directions the same properties	There is a designated direction
Localization of objects	Localization of events
Direct perception possible	No direct perception possible

Knowledge about Space and Time

Knowledge about Space and Time

- What frameworks exist to represent space and time?
- Time: Allen's tense logic (time intervals), time point logics (e.g. Since and Until Tense Logic), time series of feature-value pairs etc.
 - What about recurrent connections in NNs?
- Space: RCC-calculi, cross and double-cross calculus, cardinal direction calculus etc.
 - What about Euclidean geometry?
- Many of these approaches are based on (relational) algebra and/or logic.

7 basic logical relations of time intervals

- Before(t₁,t₂)
- Meets(t₁,t₂)
- Overlaps(t₁,t₂)
- During (t_1, t_2)
- Starts(t₁,t₂)
- Finishs(t₁,t₂)
- Equals (t_1,t_2)

- STARTS (t1,t2)
 - t1 has the same beginning as t2, but ends before the end of t2
- FINISHES (t1,t2)
 - t1 has the same end as t2, but starts after the start of t2
- DURING (t1,t2)
 - t1 is completely contained in t2
- BEFORE (t1,t2)
 - t1 is before t2 and t1 and t2 do not overlap
- OVERLAP (t1,t2)
 - t1 starts before t2 and ends after the beginning of t2, but before the end of t2
- MEETS (t1,t2)
 - t1 is before t2 and there is no interval between t1 and t2, i.e. t1 ends when t2 starts
- EQUAL (t1,t2)
 - t1 and t2 are the same interval

IS-STARTED-BY (t2,t1)

- IS-ENDED-BY (t2,t1)
- CONTAINS (t2,t1)
- AFTER (t2,t1)
- IS-OVERLAPED-BY (t2,t1)
- IS-MET-BY (t2,t1)

- How is it possible to reason in this interval structure?
- We need the composition table of relations:
- Given intervals I1, I2, I3
- and relations R1(I1,I2), R2(I2,I3)
- what are the possible relations between I1 and I3?

Allen's Tense Logic: Composition Table

	В	M	0	S	D	F	EQ	IF	С	IS	Ю	IM	A
В	В	В	В	В	B,M,O, S,D	B,M,O, S,D	В	В	В	В	B,M,O ,S,D	B,M,O ,S,D	*
M	В	В	В	M	O,S,D	O,S,D	M	В	В	M	O,S,D	F,E, IF	C,IS,I O.IM, A
0	В	В	B,M,O	0	O,S,D	O,S,D	0	B,M,O	B,M,O ,IF,C	O,IF,C			
S	В	В	В,М,О	S	D	D	S						Α
D	В	В		D	D	D	D					Α	Α
F	В	М		D	D	F	F					Α	Α
EQ	В	М	0	S	D	F	EQ	IF	С	IS	Ю	IM	Α
IF	В	М	0	0			IF	IF	С	С			
С	B,M,O, C						С	С	С	С			
IS	B,M,O, C					Ю	IS	С	С	IS	Ю	IM	Α
Ю	B,M,O, C					Ю	Ю				A,IM, IO	Α	Α
IM	B,M,O, C					IM	IM	IM	Α	Α	Α	Α	Α
Α	*					Α	Α	Α	Α	Α	Α	Α	Α

Possible transitions between basic relations

Some Further Remarks

- Temporal Reasoning is studied in a variety of disciplines
 - Philosophy
 - Interest: Syntax and semantics of tense logic
 - Important example: S and U tense logic (Kamp, Burgess) (with operators since and until)
 - Aspects of branching time
 - Artificial Intelligence
 - Planning
 - Interest: practical applications, synchronizing processes
 - Linguistics
 - Interest: Models for time in natural language expressions
 - Notice that temporal relations coded in natural language can be quite complex
 - Usually connected with intentional logic

The Rochester Door (Allen 1991)

- The Rochester Door is taken from Allen 1991:
 - The door to the computer science building in Rochester is designed that it requires both hands to open it
 - A spring lock must be held open (with one hand), while the door is pulled open (with the other)
 - Notice: the effect of doing both actions (at the same time) is different from the sum of their individual effects
- How can we model this situation using time intervals?
- The following two slides give a solution to the problem formulated in Allen 1991

The Rochester Door (Allen 1991)

Actions, Preconditions, and Effects

HoldLatch (E2):

TurnLatch(E1,T1) HoldLatch(E2,T2) LatchOpen(pre1(E2)) LatchOpen(eff1(E2))

PullOpen (E3):

The Rochester Door (Allen 1991)

Allen shows how a logical framework can be developed to make these intuitions precise, e.g. we get the following 'simple' qualitative temporal relations:

Meets[T1,T2]

Overlap[T2,T3]

QUESTIONS?