

Non-Parametric Cluster-Based Permutation Tests for Analysing Neural Time-Series

Mikkel C. Vinding, PhD

Assistant Professor

NatMEG, CNS, Karolinska Insitituet

Email: mikkel.vinding@ki.se

NatMEG

The Swedish National Facility for Magnetoencephalography

Program

• 15:00-15:45 lecture

• **15:45-16:00** Short Q&A

16:00-17:00 Hands-on tutorial

■ 17:00-17:30 Virtual mingle

Why statistics?

- Estimation of parameter values
- Prediction of data values
- Model comparison

Why statistics?

- Estimation of parameter values
- Prediction of data values
- Model comparison / hypothesis testing

Non-parametric clusterbased permuation tests

Is
$$x = y$$
?

Inferential statistics

Is
$$x = y$$
?

$$t = \frac{m - m_{H0}}{S / \sqrt{N}}$$

Null hypothesis significance testing

- Assume H0 is true (X = Y)
- Calculate likelihood of observing the value of the test statistics (or more extreme values) under H0
- If likelihood is low, we reject H0 (and accept H1)

Statistical inference

The critical α: decision threshold

- 1. Reject the null hypothesis and accept the alternative hypothesis
- 2. Conclude that the null hypothesis could not be rejected

Statistical inference

The critical α: decision threshold

- 1. Reject the null hypothesis and accept the alternative hypothesis
- 2. Conclude that the null hypothesis could not be rejected

False positive rate

Test 1: FPR = 0.05

Test 2: FPR = 0.05

Test 3: FPR = 0.05

Test 4: FPR = 0.05

$$1 - (0.95 * 0.95 * 0.95 * 0.95) * 100 \approx 19\%$$

False positive rate

Realistic estimate:

- 200 time-points
- Expect on average 10 positives

$$1 - (0.95)^{200} * 100 \approx 99.99\%$$

How do we deal with the multiple comparisons problem?

- 200 time-points
- 30 frequency bins
- 6 000 independent tests
 - → Expect 300 positves by chance

- 200 time-points
- 124 electrodes
- 24 800 independent tests
 - → Expect 1 240 positives by chance ...

. . .

- 200 time-points
- 30 frequency bins
- 124 electrodes
- 744 000 independent tests
 - → Expect 37 200 positves by chance

How do we deal with the multiple comparisons problem?

 $\alpha_{bonferroni} = critical \alpha / N tests$

 $\alpha_{bonferroni} = 0.05 / 6000 = 0.000008$

 $\alpha_{\text{bonferroni}} = 0.05 / 744000 = 6.7 * 10^{-8}$

Select only the part of the signal we are interested in

(A PRIORI) FEATURE SELECTION

Feature selection

Pro

- Simple
- No need for multiple comparison*
- Strong hypothesis driven

Cons

- Limited interpretation
- Feature selection procedure
- Invites HARKing

Statistics neural time-series (M/EEG)

CLUSTER-BASED PERMUTATION TESTS

Features of MEG/EEG data

Temporal autocorrelation

Features of MEG/EEG data

Spatial autocorrelation

Cluster statistics

How big *T* would we expect under the null hypothesis?

Permutation tests

H0: X = Y

Monte Carlo simulation

Permutation tests

. .

Distribution of "x" can take any shape

Non-parametric statistics

- Randomization of independent variable
- Hypothesis is about data, not about the specific parameter
- Randomization distribution of the statistic of interest "x" is approximated using Monte-Carlo approach
- H0 is tested by comparing the observed statistic against the randomization distribution

Cluster statistics

How big *T* would we expect under the null hypothesis?

Use Monte Carlo simulation to estimate a null distribution of *T* values

Cluster based permutation tests

Cluster-based permutation tests

P1

Avoid the multiple comparison problem

- The statistic "x" can be anything
- Rather than testing everything, only test the most extreme observation (i.e. the max statistic)
- Compute the randomization distribution for the most extreme statistic
- Note that often we compute two extrema, one for each tail

Toy example: Original observation

Toy example: 1st permutation

Toy example: 1st permutation

Toy example: 2nd permutation

Toy example: 3rd permutation

Toy example: Nth permutation

Interpretation

- Decision to keep or H0 depends on the permutation disribution
- Depends on what you used to create the permutation disribution

Does the *data of interest* come form the same distribution?

- 1. Find clusters in data of interest
- 2. Calculate permuation distribution

Interpretation

Data of interest

Time-window [0:2.0 s]

Interpretation

Cluster-based permutation tests

Data of interest

Conclusion

- Mind your hypotheses
 - → Where and when do you expect an effect = your data of interest!
 - → H0: your data of interest come from same distribution
 - → Flexible specificity
- A formal hypothesis can be tested with randomization test
 - → control the chance of false positives
 - → reduce the false negative rate
- Multiple comparison problem
 - → one hypothesis for all data
 - → Based on assumption of correlated data (true for MEG/EEG signals.
- Increase sensitivity
 - → using clusters to capture the structure in the data

Litterature

Cluster-based permutation tests

- Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190. https://doi.org/10.1016/j.jneumeth.2007.03.024
- Maris, E. (2012). Statistical testing in electrophysiological studies. *Psychophysiology*, 49(4), 549–565. https://doi.org/10.1111/j.1469-8986.2011.01320.x

Interpretation of cluster-based permutation tests

Sassenhagen, J., & Draschkow, D. (2019). Cluster-based permutation tests of MEG/EEG data do not establish significance of effect latency or location. *Psychophysiology*, *56*(6), e13335. https://doi.org/10.1111/psyp.13335

Feature selection approach

- Kilner, J. M. (2013). Bias in a common EEG and MEG statistical analysis and how to avoid it. Clinical Neurophysiology. https://doi.org/10.1016/j.clinph.2013.03.024
- Luck, S. J. (2014). An introduction to the event-related potential technique (Second edition).
 The MIT Press.

Acknowledgement

- Daniel Lundqvist, Head of NatMEG, Karolinska Institutet: support for the workshop
- Robert Oostenveld, Donders: discussion and advice.
 - → Thanks to Oostenveld & Stolk for permission to use figures from the FieldTrip workshop at Donders.
- Lau Andersen, Aarhus University: previous iteration of the statistics lecture on the NatMEG MEG/EEG course.