#### Курсовая работа

# Оптимизация ClickHouse под современный набор инструкций CPU

Ковальков Дмитрий Андреевич, БПМИ 175

Научный руководитель: Руководитель группы разработки ClickHouse,

Миловидов Алексей Николаевич



# Современные наборы инструкций



Большое количество SIMD инструкций, позволяющих обрабатывать множество данных за одну операцию

- SSE4.2
- AVX
- AVX2
- AVX512
- NEON



# Актуальность задачи



#### Особенности ClickHouse:

- Скорость работы
- Колоночное хранение данных
- Используются векторные инструкции до SSE4.2







- Наборов инструкций много под каждый нужна своя реализация
- Старые и дешевые процессоров не поддерживает все современные наборы инструкций
- Платформо-зависимый код сложен в разработке и поддержке, легко ошибиться
- Включение платформо-зависимого кода специфично для каждого компилятора

# Цели и задачи



#### Необходимо разработать:

- Механизмы включения платформо-зависимого кода в проект
- Механизм генерации кода под разные платформы
- Механизм выбора между реализациями во время исполнения
- Реализации некоторых функций с использованием современных наборов инструкций

# Реализация



Вставка и генерация платформо-зависимого кода с помощью макросов.

Все специфичные для каждой платформы объекты и функции находятся в специальных пространствах имен.

В случае, если код не имеет смысла для какой-либо архитектуры, он автоматически удаляется

```
DECLARE MULTITARGET CODE(
int myFunc() {
    return 0;
    DECLARE MULTITARGET CODE
DECLARE AVX2 SPECIFIC CODE(
int myFunc2() {
    return 1;
 //DECLARE AVX2 SPECIFIC CODE
DECLARE_AVX512F_SPECIFIC_CODE(
int myFunc2() {
    return 2;
    DECLARE_AVX512F_SPECIFIC_CODE
```

# Реализация



Класс ImplementationSelector для выбора подходящей реализации.

Проверка текущей платформы происходит автоматически

Выбор из доступных реализаций происходит с помощью метода Байесовских многоруких бандитов.

```
class MyFunc
public:
    MyFunc()
        selector.registerImplementation<TargetArch::Default,
            TargetSpecific::Default::MyFunc>();
        selector.registerImplementation<TargetArch::AVX2,</pre>
            TargetSpecific::AVX2::MyFunc>();
    void execute(Block & block)
        selector.selectAndExecute(block);
private:
    ImplementationSelector<IFunction> selector;
```





SELECT count() FROM numbers(100000000) WHERE NOT ignore(intHash32(number))

|                         | Время, default | Время, AVX2 | Относительное<br>ускорение |
|-------------------------|----------------|-------------|----------------------------|
| intHash32, gcc, remote  | 0.1837 c       | 0.1357 c    | 26.2%                      |
| intHash32, gcc, local   | 0.3885 c       | 0.2739 c    | 29.5%                      |
| intHash32, clang, local | 0.4610 c       | 0.3028 c    | 34.3%                      |
| intHash64, gcc, remote  | 0.1557 c       | 0.1285 c    | 17.5%                      |
| intHash64, gcc, local   | 0.3802 c       | 0.3095 c    | 18.6%                      |
| intHash64, clang, local | 0.3225 c       | 0.2903 c    | 10.0%                      |
| rand, gcc, remote       | 0.0504 c       | 0.0390 c    | 22.7%                      |
| rand, gcc, local        | 0.1235 c       | 0.1110 c    | 10.1%                      |
| rand, clang, local      | 0.1205 c       | 0.1073 c    | 10.9%                      |

# Результаты



Были реализованы механизмы, упрощающие разработку платформозависимого кода в ClickHouse.

С помощью данных механизмов была произведена оптимизация ряда функций.



# Спасибо за внимание