Στόχοι

Όταν ολοκληρώσετε αυτή την ενότητα, θα πρέπει να είστε σε θέση:

- Να εργάζεστε με τις ιδιότητες τριγωνομετρικών συναρτήσεων
- Να λύνετε τριγωνομετρικές εξισώσεις
- Να σχεδιάζετε γραφήματα τριγωνομετρικών συναρτήσεων

Κύρια ιδέα

- Οι τριγωνομετρικές συναρτήσεις συνδέουν **γωνίες** ορθογωνίων τριγώνων με **πλευρές**
- Είσοδος: γωνία
- Έξοδος: μήκος πλευράς

Κύρια ιδέα

- Οι τριγωνομετρικές συναρτήσεις συνδέουν **γωνίες** ορθογωνίων τριγώνων με **πλευρές**
- Είσοδος: γωνία
- Έξοδος: μήκος πλευράς

Κύρια ιδέα

- Οι τριγωνομετρικές συναρτήσεις συνδέουν **γωνίες** ορθογωνίων τριγώνων με **πλευρές**
- Είσοδος: γωνία
- Έξοδος: μήκος πλευράς

Περιεχόμενα

- Σύστημα μέτρησης γωνιών σε ακτίνια
- Επισκόπηση των τριγωνομετρικών συναρτήσεων
 - \checkmark Ημίτονο: sin,
 - √Συνημίτονο: *cos*,
 - ✓ Εφαπτομένη: *tan*,
 - ✓ Συνεφαπτομένη: *cot*,
 - √Τέμνουσα: *sec*,
 - ✓ Συντέμνουσα: *csc*

• Πυθαγόρειο θεώρημα

Αν ένα ορθογώνιο τρίγωνο έχει κάθετες πλευρές μήκους x και y και υποτείνουσα μήκους z, τότε $x^2 + y^2 = z^2$

• Πυθαγόρειο θεώρημα

Αν ένα ορθογώνιο τρίγωνο έχει κάθετες πλευρές μήκους x και y και υποτείνουσα μήκους z, τότε $x^2 + y^2 = z^2$

• Ο Τριγωνομετρικός Κύκλος

Το γράφημα της εξίσωσης $x^2+y^2=1$ είναι ένας κύκλος με ακτίνα 1 και κέντρο (0,0)

• Πυθαγόρειο θεώρημα

Αν ένα ορθογώνιο τρίγωνο έχει κάθετες πλευρές μήκους x και y και υποτείνουσα μήκους z, τότε $x^2 + y^2 = z^2$

• Ο Τριγωνομετρικός Κύκλος

Το γράφημα της εξίσωσης $x^2+y^2=1$ είναι ένας κύκλος με ακτίνα 1 και κέντρο (0,0)

• Πυθαγόρειο θεώρημα

Αν ένα ορθογώνιο τρίγωνο έχει κάθετες πλευρές μήκους x και y και υποτείνουσα μήκους z, τότε $x^2 + v^2 = z^2$

• Ο Τριγωνομετρικός Κύκλος

Το γράφημα της εξίσωσης $x^2+y^2=1$ είναι ένας κύκλος με ακτίνα 1 και κέντρο (0,0)

Περιφέρεια μοναδιαίου κύκλου: 2π

Μοιρογνωμόνιο

Μοιρογνωμόνιο

Μοιρογνωμόνιο

Μοναδιαίος Κύκλος

Μοναδιαίος Κύκλος

Μοναδιαίος Κύκλος

Μοναδιαίος Κύκλος

$$\theta + 2\pi$$

$$\theta + 4\pi$$

$$\theta + 2\pi$$
, $\theta + 4\pi$, $\theta + 6\pi$, ..., $\theta + k2\pi$, ...

$$\theta + k2\pi$$
, ...

$$\theta - 2\pi$$
,

$$\theta - 4\pi$$
,

$$\theta-2\pi$$
, $\theta-4\pi$, $\theta-6\pi$,..., $\theta-k2\pi$,...

$$\theta - k2\pi$$
, ...

 $\theta + 2k\pi$, yia $k \in \mathbb{Z}$

Αν κάποιο σημείο πάνω στον τριγωνομετρικό κύκλο βρίσκεται στα θ ακτίνια, τότε είναι και στα $\theta + 2k\pi$ ακτίνια για $k \in \mathbb{Z}$

Μετατροπή από μοίρες d σε ακτίνια r

$$\frac{r}{\pi} = \frac{d}{180}$$

Λύνοντας ως προς r:

$$r = d \frac{\pi}{180}$$

Λύνοντας ως προς d:

$$d = r \frac{180}{\pi}$$

Παράδειγμα

• Ποιο θα είναι το μέτρο σε ακτίνια μιας γωνίας 75°;

$$\frac{r}{\pi} = \frac{d}{180} \rightarrow r = 75 \frac{\pi}{180} = \frac{5\pi}{12} \ rads$$

• Ποιο θα είναι το μέτρο σε μοίρες μιας γωνίας $\frac{2\pi}{3}$ rads;

$$\frac{r}{\pi} = \frac{d}{180} \to d = \frac{2\pi}{3} \frac{180}{\pi} = 120^{\circ}$$

Οι συναρτήσεις *sin* και *cos*

Ορισμός: Έστω ένας πραγματικός αριθμός θ και έστω P το σημείο πάνω στον τριγωνομετρικό κύκλο σε απόσταση θ ακτίνια. Ορίζουμε το ημίτονο $sin(\theta)$ και το συνημίτονο $cos(\theta)$ της γωνίας θ ως $sin(\theta) = η τεταγμένη y του σημείου P$ $cos(\theta)$ = η τετμημένη x του σημείου P.

Οι συναρτήσεις *sin* και *cos*

Ορισμός: Έστω ένας πραγματικός αριθμός θ και έστω P το σημείο πάνω στον τριγωνομετρικό κύκλο σε απόσταση θ ακτίνια. Ορίζουμε το ημίτονο $sin(\theta)$ και το συνημίτονο $cos(\theta)$ της γωνίας θ ως $sin(\theta) = η τεταγμένη y του σημείου P$ $cos(\theta)$ = η τετμημένη x του σημείου P.

Αφού ο θ είναι οποιοσδήποτε πραγματικός αριθμός, το πεδίο ορισμού των συναρτήσεων sin και cos είναι όλο το $\mathbb R$

Οι συναρτήσεις *sin* και *cos*

Ορισμός: Έστω ένας πραγματικός αριθμός θ και έστω P το σημείο πάνω στον τριγωνομετρικό κύκλο σε απόσταση θ ακτίνια. Ορίζουμε το ημίτονο $sin(\theta)$ και το συνημίτονο $cos(\theta)$ της γωνίας θ ως

 $sin(\theta) = η τεταγμένη y του σημείου P$

 $cos(\theta)$ = η τετμημένη x του σημείου P.

Αφού ο θ είναι οποιοσδήποτε πραγματικός αριθμός, το πεδίο ορισμού των συναρτήσεων sin και cos είναι όλο το $\mathbb R$

Παραδείγματα

$$\cos(0) = 1, \qquad \sin(0) = 0$$

$$\cos\left(\frac{\pi}{2}\right) = 0, \qquad \sin\left(\frac{\pi}{2}\right) = 1$$

$$\cos(\pi) = -1, \qquad \sin(\pi) = 0$$

$$\cos\left(\frac{3\pi}{2}\right) = 0, \qquad \sin\left(\frac{3\pi}{2}\right) = -1$$

$$\cos(2\pi) = 1, \qquad \sin(2\pi) = 0$$

Τριγωνομετρικοί αριθμοί βασικών τόξων

Μοίρες	Ακτίνια	Ημίτονο	Συνημίτονο
0°	0	0	1
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
90°	$\frac{\pi}{2}$	1	0

Γραφική παράσταση της συνάρτησης *sin*

Πεδίο Ορισμού: $-\infty < x < +\infty$

Σύνολο τιμών: $-1 \le y \le 1$

Περίοδος: 2π

Γραφική παράσταση της συνάρτησης *cos*

Πεδίο Ορισμού: $-\infty < x < +\infty$

Σύνολο τιμών: $-1 \le y \le 1$

Περίοδος: 2π

Σχέση μεταξύ *cos, sin*

$$\cos(x) = \sin\left(x + \frac{\pi}{2}\right)$$

Οι έξι τριγωνομετρικές συναρτήσεις

Ημίτονο: sin(x),

Συνημίτονο: cos(x),

Τέμνουσα: $sec = \frac{1}{\cos(x)}$,

Συντέμνουσα: $csc = \frac{1}{\sin(x)}$

Εφαπτομένη: $tan(x) = \frac{sin(x)}{cos(x)}$,

Συνεφαπτομένη: $cot = \frac{\cos(x)}{\sin(x)}$

Γραφικές Παραστάσεις

$$\sec(x) = \frac{1}{\cos(x)}$$

Πεδίο Ορισμού: $x \neq \pm \frac{\pi}{2} \cdot \pm \frac{3\pi}{2}$, ... Σύνολο τιμών: $y \leq -1$ και $y \geq 1$

 2π Περίοδος:

Κατακόρυφες ασυμπτωτες:

$$x = k \frac{\pi}{2}, \ k \in \mathbb{Z}^*$$

Γραφικές Παραστάσεις

$$csc(x) = \frac{1}{sin(x)}$$

Πεδίο Ορισμού: $x \neq 0, \pm \pi, \pm 2\pi, ...$

Σύνολο τιμών: $y \le -1$ και $y \ge 1$

Περίοδος: 2π

Κατακόρυφες

ασυμπτωτες: $x = k\pi$

Η συνάρτηση εφαπτομένη tan x

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

Πεδίο Ορισμού:
$$x \neq \pm \frac{\pi}{2} \cdot \pm \frac{3\pi}{2}$$
, ...

Σύνολο τιμών:
$$-\infty < y < +\infty$$

Κατακόρυφες ασυμπτωτες:

$$x = k \frac{\pi}{2}, \ k \in \mathbb{Z}^*$$

Η συνάρτηση συνεφαπτομένη cot x

$$\cot(x) = \frac{\cos(x)}{\sin(x)}$$

Πεδίο Ορισμού: $x \neq 0, \pm \pi, \pm 2\pi, ...$

Σύνολο τιμών: $-\infty < y < +\infty$

Περίοδος: π

Κατακόρυφες

ασυμπτωτες: $x = k\pi$

Ιδιότητες άρτιων και περιττών τριγωνομετρικών συναρτήσεων

- Οι συναρτήσεις ημιτόνου, εφαπτομένης, συνεφαπτομένης και συντέμνουσας είναι περιττές και συνεπώς η γραφική τους παράσταση έχει κέντρο συμμετρίας την αρχή των αξόνων
- Οι συναρτήσεις συνημίτονου και τέμνουσας είναι άρτιες και συνεπώς η γραφική της παράσταση έχει άξονα συμμετρίας τον άξονα *yy*'

Τριγωνομετρικές Εξισώσεις

- Τριγωνομετρική είναι μια εξίσωση στην οποία ο άγνωστος βρίσκεται μέσα σε τριγωνομετρική συνάρτηση
- Η εξίσωση

$$3 \tan x = -2$$

είναι τριγωνομετρική εξίσωση

• Ενώ η εξίσωση

$$x + 2 = \tan\left(\frac{\pi}{3}\right)$$

δεν είναι τριγωνομετρική εξίσωση

Επίλυση απλών τριγωνομετρικών εξισώσεων

Εξίσωση	Λύσεις
$\sin x = \sin \theta$	$x = 2k\pi + \theta \ \dot{\eta} \ x = (2k+1)\pi - \theta$
$\cos x = \cos \theta$	$x = 2k\pi + \theta \ \dot{\eta} \ x = 2k\pi - \theta$
$\tan x = \tan \theta$	$x = k\pi + \theta, \qquad k \in \mathbb{Z}$
$\cot x = \cot \theta$	$x = k\pi + \theta, \qquad k \in \mathbb{Z}$

Επίλυση απλών τριγωνομετρικών εξισώσεων

Βήματα επίλυσης τριγωνομετρικής εξίσωσης

- 1. Απομόνωση της τριγωνομετρικής συνάρτησης που περιέχει τον άγνωστο στο ένα μέλος
- 2. Εντοπισμός λύσης που ικανοποιεί την εξίσωση στο διάστημα 0 έως 2π
- 3. Χρήση των τύπων του παραπάνω πίνακα

Παράδειγμα:

$$2\cos x - 1 = 0$$
$$\Rightarrow \cos x = \frac{1}{2}$$

$$\cos x = \cos \frac{\pi}{3}$$

$$x = 2k\pi + \frac{\pi}{3} \ \ \dot{\eta} \ \ x = 2k\pi - \frac{\pi}{3}$$