DATASHEET

AXP209

Enhanced single Cell Li-Battery and Power System Management IC

Table of Contents

1. Overview	
2. Features	4
3. Typical Application	5
4. Absolute Maximum Ratings	6
5. Electrical Characteristics	6
6. Typical Characteristics	9
7. Pin Definition	12
8. Functional Block Diagram	14
9. Control and Operation	15
9.1 Power On / Off & Reset	
9.2 Power path management (IPS)	17
9.3 Adaptive PWM Charger	19
9.4 Backup battery	22
9.5 Multi-channel power outputs	23
9.6 Default Voltage / Timing Settings	24
9.7 Signal Acquisition System	25
9.8 Multifunction Pin Description	25
9.9 Timer	
9.10 Decryption	26
9.11 HOST Interface and interrupt(TWSI and IRQ)	26
9.12 Register	28
10. Package	45

1. Overview

AXP209 is designed to be a highly-integrated power system management IC that is optimized for applications requiring single-cell Li-battery (Li-lon/Polymer) and multiple output DC-DC converters. It is offering an easy-to-use and flexible complete solution which can fully meet the increasingly complexity of accurate power control required by modern application processor system.

AXP209 Incorporates an adaptive USB-Compatible PWM Charger, 2 Buck DC-DC converters,5 Linear regulators (LDOs), Voltage/Current/Temperature and other multi-channel 12-Bit ADC, as well as 4 Configurable GPIOs. To ensure power system safety and stability, the AXP209 also integrates over/under (OVP / UVP), Over temperature(OTP), and Overcurrent (OCP) Protection circuits.

With Intelligent Power Select, IPS™ circuits, the AXP209 can distribute power safely and transparently among external AC-adapter, Li-battery and application system load. It can still work normally when there is no battery (e.g. deeply discharged/defective battery) but only external input power source.

The AXP209 provides a small, simple solution for obtaining power from three different power sources; single-cell Li-lon battery, USB port, and AC-adapter. It can also support a rechargeable backup battery too.

To ensure compatibility with a wide range of system processors, AXP209 uses a Two Wire Serial Interface (TWSI), through which application processor is capable of enabling/disabling power rails, programming voltages, accessing internal registers, as well as measurement data (including Fuel Gauge). With the power monitoring results of high precision (1%, determined by the 1% BIAS resistance), end users will always know the real-time power consumption, which can bring them an unprecedented experience of power management.

AXP209 Provided 6mm x 6mm 48-pin QFN Package.

Applications

receivers

- Handheld mobile devices
 Smart mobile phones, PMP / MP4, Number of
 Cameras, Digital cameras, Handheld
 guide, Air Equipment, GPS, PDA,
 Handheld digital Radio and television
- Mobile Internet Devices, xPad
- Digital photo frame, portable DVD
 Player Ultra-Mobile PCs UMPC and UMPC-like, Learning machine
- Should With Department Li Device Power Road Department EC
- Application Processor systems
 Other batteries and multi-power applications

Pin Definition

Confidential Page 3/45

2. Features

- Intelligent Power Select (IPS)
- Wide input voltage range: 2.9V ~ 6.3V (AMR:-0.3V ~ 11V)
- o Configurable Intelligent Power Delect
 "IPS™" System
- Adaptive USB (Support USB3.0) Or AC adapter with current limiting (4.4V / 900mA / 500mA / 100mA)
- Battery path is less than equivalent resistance of 75m
- Fully Integrated **PWM** Charger
- o Maximum charge current to 1.8A
- Support battery temperature monitoring
- Full support of USB compatible chargers (including USB 3.0)
- High charging accuracy error of less than 0.5%
- Supports 4.1V/4.15V/4.2V/4.36V and other battery voltages
- Automatic charging process control and management
- Can directly drive LED to indicate charging status
- The system automatically adjusts the charge current to suit the system load
- Backup battery support
- Provision for a backup battery input supply an RTC Module
- Supports backup battery charging, with adjustable charging current.
- 2 Synchronous Buck Converters
- o DC-DC1: The PWM charger
- DC-DC2: 1.6A 0.7-2.275V, adjustable 25mV / step, supporting VRC (Voltage ramp control)
- DC-DC3: 1.2A 0.7-3.5V, adjustable 25mV / step.
- 5 Linear regulators (LDO)
 - o LDO1:30mA Always one
 - LDO2: 200mA Low Noise LDO,1.8V
 ~3.3V, Adjustable 100mV / step
 - LDO3: 200mA 0.7-3.5V Adjustable, 25mV / step
 - LDO4: 200mA Low Noise LDO,1.8V ~
 3.3V Adjustable 100mV / step
 - LDO5: 50mA Low Noise LDO, 1.8-3.3V Adjustable, 100mV / step.
- Timer (Timer)
 - o 7bit Timer, Timing range 1 ~ 127

minutes

- Timer Interrupt Output
- Signal Acquisition System (Signal Capture)
 - o Built-in 12-channel 12 Bit ADC
 - o Accept two external analog signal inputs
 - Provide battery and external power supply voltage and current data
 - Built-Precision Coulomb Counter and Fuel gauge system
 - Provide a wealth of power management information, such as instantaneous power (mA or mW), the remaining battery capacity (% or mAh), The state of charge (%) and remaining battery or charging time
 - Two-level low-battery warning and protection
 - o Provides chip die temperature data

• Application Processor Interface (Host Interface)

- Host can exchange data through the TWSI (I2C)
- Flexible interrupt and sleep management
- Flexible pin function, multiple GPIO can be set as IO, ADC and other functions
- Built-in configurable timer
- Provide 12 sets of registers that can retain data when the system is shut down.
- System Management (System Management)
 - Support soft and hard reset
 - Support for soft and hard shutdown
 - Support for external wakeup triggers
 - Supports output voltage monitoring and self-diagnostic function
 - Output PWROK indication for system reset or shutdown
 - External power detection (insertion/removal/sufficient current capacity)
 - Supports soft power on via GPIOs
 - Over / under voltage protection (OVP / LIVP)
 - Overcurrent protection (OCP)
 - o Over-temperature protection (OTP)
 - Support OTG VBUS power state setting / monitoring
- Highly Integrated
 - Internal precision voltage reference (0.5%)
 - o Built-in MOSFET
 - Timing and the output voltages can be customized
 - Decryption module (Decryption)
 - o 128bit OTP password storage
 - o Dynamic real-time decryption algorithm

Confidential Page 4/45

3. Typical Application

4. Absolute Maximum Ratings

Symbol	Description	Value	Units
ACIN	Input Voltage	-0.3 To 11	V
VBUS	Input Voltage	-0.3 To 11	V
T_{J}	Operating Temperature Range	-40 To 130	${\mathbb C}$
Ts	Storage Temperature Range	-40 To 150	$^{\circ}$
TLEAD	Maximum Soldering Temperature (at leads, 10sec)	300	$^{\circ}$ C
Vesd	Maximum ESD stress voltage, Human Body Model	> 4000	V
P_{D}	Internal Power Dissipation	2100	mW

5. Electrical Characteristics

 $V_{IN} = 5V$, BAT = 3.8V, $T_A = 25$ °C

SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
ACIN						
$V_{\rm IN}$	ACIN Input Voltage		3.8		6.3	V
Іоит	V _{OUT} Current Available Before Loading BAT	500mV Voltage Drop		2500		mA
Vuvlo	ACIN Under Voltage Lockout			3.8		V
Vout	IPS Output Voltage		2.9		5.0	V
RACIN	Internal Ideal Diode On Resistance	PIN to PIN, ACIN to IPSOUT			170	m
VBUS						
V _{IN}	VBUS Input Voltage		3.8		6.3	V
Іоит	V _{OUT} Current Available Before Loading BAT			500	900	mA
Vuvlo	VBUS Under Voltage Lockout			3.8		V
Vout	IPS Output Voltage		2.9		5.0	V
Rvbus	Internal Ideal Diode On Resistance	PIN to PIN, VBUS to IPSOUT			300	m
Battery Cha	ırger					
VTRGT	BAT Charge Target Voltage		-0.5%	4.2	+ 0.5%	V
Ichrg	Charge Current			1200	1800	mA
Itrkl	Trickle Charge Current			10%		Ichrg

Confidential Page 6/45

AXP209

Enhanced single Cell Li-Battery and Power System Management IC

						mA
Vtrkl	Trickle Charge Threshold Voltage			3.0		V
Vrechg		Threshold Voltage Relative to V _{TARGET}		-100		mV
Ttimeri	Charger Safety Timer Termination Time			40		Min
Ttimer2	Charger Safety Timer Termination Time	CC Mode		480		Min
IEND	End of Charge Indication Current Ratio	CV Mode		10%	15%	Ichrg mA
Backup Bat	tery					
Vtrgt	Backup Battery Charge Target Voltage		2.5	3.0	3.1	V
Ichrg	Backup Battery Charge Current		50	200	400	uA
IBackup	Current when use Backup Battery			10	15	uA
NTC						
VTL	Cold Temperature Fault Threshold Voltage	Charge Discharge	0	2.112 3.226	3.264	V
VTH	Hot Temperature Fault Threshold Voltage	Charge Discharge	0	0.397 0.282	3.264	V
V _{TE}	NTC Disable Threshold Voltage	Falling Threshold Hysteresis		0.2		V
Ideal Diode	·					
Rds (on)	On Resistance (BAT to IPSOUT)				75	m

SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS		
Off Mode C	Off Mode Current							
Ibatoff	OFF Mode Current	BAT = 3.8V		27		μΑ		
Isuspend	USB VBUS suspend Mode	BAT = 3.8V,		86		μΑ		
	current	VBUS = 5V,						
		N_VBUSEN = 1						
Logic								
VIL	Logic Low Input Voltage			0.3		V		
V _{IH}	Logic High Input Voltage			2		V		
TWSI								
Vcc	Input Supply Voltage			3.3		V		
ADDRESS	TWSI Address			0x68				
fsck	Clock Operating Frequency			400	1200	kHZ		
t_{f}	Clock Data Fall Time	2.2Kohm Pull up		60		ns		

Confidential Page 7/45

AXP209

Enhanced single Cell Li-Battery and Power System Management IC

t _r	Clock Data Rise Time	2.2Kohm Pull up		100		ns
DCDC						
fosc	Oscillator Frequency	Default		1.5		MHz
DCDC2						
ILIM2	PMOS Switch Current Limit	PWM Mode		2300		mA
Idc2out	Available Output Current	PWM Mode			1800	mA
VDC2OUT	Output Voltage Range		0.7		2.275	V
DCDC3						
ILIM3	PMOS Switch Current Limit	PWM Mode		1400		mA
Ірсзоит	Available Output Current	PWM Mode			1000	mA
V _{DC3OUT}	Output Voltage Range		0.7		3.5	V

SYMBOL	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNITS
LDO1						
V_{LDO1}	Output Voltage	$I_{LDO1} = 1 \text{mA}$	-1%	1.3	1%	V
			-,,	3.3	- 7,0	
Ildoi	Output Current			30		mA
LDO2						
V _{LDO2}	Output Voltage	I _{LDO2} = 1mA	1.8		3.3	V
Ildo2	Output Current			200		mA
PSRR	Power Supply Rejection Ratio	I _{LDO2} = 60mA, 1KHz		TBD		dB
e_N	Output Noise, 20-80KHz	Vo = 3V, Io = 150mA		28		μVrms
LDO3						
V _{LDO3}	Output Voltage	I _{LDO3} = 1mA	0.7		3.5	V
Ildo3	Output Current			200		mA
PSRR	Power Supply Rejection Ratio	I _{LDO3} = 10mA, 1KHz		TBD		dB
		Vo = 1.8V, Io =				
e _N	Output Noise, 20-80KHz	150mA		TBD		μVrms
LDO4	1	1		1	<u> </u>	
V _{LDO3}	Output Voltage	I _{LDO3} = 1mA	1.8		3.3	V
Ildo3	Output Current			200		mA
PSRR	Power Supply Rejection Ratio	I _{LDO3} = 10mA, 1KHz		TBD		dB
	0	Vo = 1.8V, Io =		10		* 7
e _N	Output Noise, 20-80KHz	150mA		18		μVrms
LDO5	1	1		1	1	
V _{LDO5}	Output Voltage	I _{LDO5} = 1mA	1.5		3.3	V
Ildo5	Output Current			50		mA
PSRR	Power Supply Rejection Ratio	$I_{LDO5}=10$ mA, 1KHz		TBD		dB
e_N	Output Noise, 20-80KHz	Vo = 1.8V, Io = 30mA		18		μVrms

Confidential Page 8/45

6. Typical Characteristics

DC-DC Efficiency vs. Load (3.8Vin)

DC-DC Load Transient (Typical)

Confidential Page 9/45

DC-DC Ripple

V_{REF} vs Temperature

Confidential Page 10/45

V_{TRGT} vs Temperature

Off Mode Current vs V_{BAT}

Confidential Page 11/45

7. Pin Definition

Num	Name	Туре	Condition	Function Description
1	SDA	IO		Data pin for serial interface, normally it connect a 2.2K
				resistor to 3.3V I / O power
2	SCK	I		it is the Clock pin for serial interface, normally it connect
				a 2.2K resistor to 3.3V I / O power
3	GPIO3	IO	REG9EH [7]	GPIO 3
4	N_OE	I		Power output on / off switch
				GND: on; IPSOUT: off
5	GPIO2	IO	REG92H [2: 0]	GPIO 2
6	N_VBUSEN	I		VBUS to IPSOUT Selection
				GND: IPSOUT select VBUS
				High: IPSOUT do not select VBUS
7	VIN2	PI		DCDC2 input source
8	LX2	Ю		Inductor Pin for DCDC2
9	PGND2	G		NMOS Ground for DCDC2
10	DCDC2	I		DC-DC2 feedback pin
11	LDO4	0		Output Pin of LDO4
12	LDO2	О		Output Pin of LDO2

Confidential Page 12/45

AXP209

Enhanced single Cell Li-Battery and Power System Management IC

13	LDO24IN	PI		Input to LDO2 and LDO4
14	VIN3	PI		DCDC3 input source
15	LX3	IO		Inductor Pin for DCDC3
16	PGND3	G		NMOS GND for DCDC3
17	DCDC3	I		Feed back to DCDC3
18	GPIO1	IO	REG93H [2: 0]	GPIO 1
			KEG9311 [2, 0]	ADC Input
19	GPIO0	IO		GPIO 0
			REG90H [2: 0]	Low noise LDO / Switch
				ADC Input
20	EXTEN	О		External Power Enable
21	APS	PI		Internal Power Input
22	AGND	G		Analog Ground
34	BIAS	IO		External 200Kohm 1% resistor
24	VREF	О		Internal reference voltage
25	PWROK	0		Power Good Indication OutPut
26	VINT	РО		Internal logic power, 2.5V
27	LDO1SET	I		It set the LDO1 default voltage.
28	LDO1	О		LDO1 output, for Host RTC block
29	DC3SET	I		It set the DCDC3 default voltage
30	BACKUP	IO		Backup battery pin
31	VBUS	PI		USB VBUS input
32, 33	ACIN	PI		Adapter input
34, 35	IPSOUT	IO		Main Battery
36	CHGLED	О		charger status indication
37	TS	I		Battery Temperature sensor input or an external ADC
				input
38, 39	BAT	PO		System power source
40	LDO3IN	0		LDO3 input source
41	LDO3	I		Output Pin of LDO3
42	BATSENSE	I		Current sense port1
43	CHSENSE	0		Current sense port2
44	VIN1	PI		DCDC1 input source
45	LX1	IO		Inductor Pin for DCDC1
46	PGND1	G		NMOS Ground for DCDC1
47	PWRON	I		Power On-Off key input, Internal 100k pull high to APS
48	IRQ /	Ю		IRQ output or wakeup
	WAKEUP			
49	EP	G		Exposed Pad, need to connect to system ground

Confidential Page 13/45

8. Functional Block Diagram

9. Control and Operation

When AXP209 powers on and TWS interface SCK / SDA pins are pulled to host IO voltage source, the host can then adjust and monitor the AXP209. This provides flexible adjustment and monitoring options, and a wealth of information.

Note: "Host" Referring to the main application processor

Note: "External power supply" refers to ACIN And VBUS Inputs.

9.1 Power On / Off & Reset

Button(PEK)

AXP209 PWRON Pin can be connected to GND through a button, as a Power Enable Key (PEK) or hibernation/wake button. The AXP209 can automatically identify long and short button presses and react accordingly.

Power on Sources:

- 1. ACIN, VBUS, and battery
- 2. N_OE transition from high to low.
- 3. PEK press

Power On

System power-on is initiated whenever the following conditions occur:

- When N_OE is low, and upon connection of a power supply that meets the requirements (ACIN Or VBUS > 3.8V, and the battery voltage is higher than the shutdown voltage), AXP209 will automatically boot (Automatic booting on power supply connection can be configured by the developer).
- N_OE is low and the system is powered off, press PEK can power on AXP209. If required the Host
- 3. When there is a valid external power source or battery present and N_OE changes from high to low, AXP209 will be turned on.

After power on, DC-DC and LDO will be soft booted in a preset timing sequence, and then either the Host or PWREN the pin can enable/disable power.

Shutdown (Power off)

When you push-and-hold PEK longer than IRQLEVEL, HOST can write "1" into "REG32H [7]" to inform AXP202 to shutdown, which can disable all power output except LDO1.

System power-off is initiated whenever the following conditions occur:

- 1. Input voltage is too low(Low-Power Protection)
- 2. Power output voltage is too low due to overload (Overload Protection)

Confidential Page 15/45

- 3. Input voltage is too high(Overvoltage Protection)(See more details in chapter "Intelligent Power Select"
- 4. Have waited more than 2S(default) when N_OE changes from hight to low
- 5. Push PEK longer more than OFFLEVEL(Default 6S), and system will cut off all power output except LDO1(there is no need for an extra RESET key)

Note: With the automatic protection mechanism, AXP209 can protect the whole system by preventing components suffering from irreversible damage due to system abnormality.

Sleep and wakeup

When the running system needs to enter Sleep mode, REG31H [3] will determine whether one or several power rails should be disabled or change to other voltage. Wakeup can be trigged by either PEK signal, or the rising/falling edge of GPIO0, GPIO1, GPIO2, GPIO3 (To be the rising or falling edge, or both can be programmed by REG90H[7:6], REG92H[7:6], REG93H[7:6], and REG95H[7:6]), with all power rails resume to default voltage in default power on timing sequence.

NOTE: PEK IRQ (REG42H[1]), GPIO0 INPUT Edge IRQ (REG44H[0]), GPIO1 INPUT Edge IRQ (REG44H[1]), GPIO2 INPUT Edge IRQ (REG44H[2]), GPIO3 INPUT Edge IRQ (REG44H[3]) should be enabled to notify the processor to exit Sleep Mode via IRQ PIN.

See control process under sleep and wakeup modes as below:

Confidential Page 16/45

System reset function and output monitoring (PWROK)

The PWROK in AXP209 can be used as the reset signal for the application system. During AXP209 startup, PWROK outputs low level, which will then be pulled high to startup and reset the system after all output voltage reaches the regulated value.

Under normal operation, the AXP209 will be always monitoring the voltage and load status. If overload or under-voltage occurs, the PWROK will instantly be driven low to reset the system and prevent data losses.

9.2 Power path management (IPS)

The AXP209 power input can come from lithium battery (BAT), USB VBUS Input, external power supply (ACIN). The IPS will select an appropriate power source depending on the battery and external power conditions.

- O When only the battery is available, no external power input, the battery powers the system;
- O When there is a valid external power source(VBUS Or ACIN), is is the preferred power supply.
- O When the external power is removed, the IPS will seamlessly switch over to battery power.
- O When both VBUS and ACIN are available, ACIN will be used to power the system and recharge the lithium battery;
- O If the ACIN cannot provide sufficient current, VBUS is also connected to source more current:
- O If the drive capacity is still insufficient, then the charge current is reduced to zero, the battery is used to power the system.

Therefore, compatibility of the system with external powers of different drive ability can be dramatically improved, and no special customized adapters are required to be provided on the part of manufacturers.

Please refer to the following diagram.

As shown above, when ACIN provides insufficient load ability, IPSOUT voltage will fall, and BAT will change from charge to discharge to supply load current together with ACIN.

Confidential Page 17/45

The Host can set IPS parameters and read the feedback by using internal registers in AXP209 via TWSI.

Voltage Limiting/Current Limiting mode and Direct Mode

In order not to affect the USB communication, VBUS is always working under Voltage-Limit mode by default. In this mode, AXP209 ensures that VBUS voltage remains above a configurable reference voltage VHOLD which can meet the USB specification. The default VHOLD is 4.4V, adjustable in Reg30H [5:3] register.

If the system has limit on current obtained from USB VBUS, a current-limit mode is provided (See REG30H[1] register), with 900mA/500mA/100mA (Reg30H [0]) selectable.

If the system just utilizes the USB for power supply rather than communication, or the USB power adapter is utilized, AXP209 can be set to "VBUS Direct Mode" by modifying register REG30H[6], and then AXP202 will give priority to the application power demand. When the drive ability of USB Host is insufficient or system power consumption is large then the VBUS voltage is lower than VHOLD, AXP202 will release IRQ to indicate the weak power supply ability of Host VBUS, which may affect USB communication, and then Host software will follow up.

AXP209's Reaction to External Power Supply Connection

AXP209 can automatically detect the connection of external power and judge whether the power is usable or not. The result will be set in corresponding registers, and IRQ will be asserted to inform the Host at the same time.

The following table has listed the status bits and meanings of external power registers:

Status register bits	Description			
Register REG00H [7]	Indicates the presence of external ACIN			
Register REG00H [6]	Indicates whether the external ACIN is usable or not			
Register REG00H [5]	Indicates the presence of external VBUS			
Register REG00H [4]	Indicates whether the external VBUS is usable or not			
Register REG00H [3]	Indicates whether the VBUS voltage is above VHOLD when used			
Register REG00H [1]	Indicates whether ACIN/VBUS short circuits on PCB or not			
Register REG00H [0]	Indicates whether the system is triggered to startup by ACIN/VBUS			

The status bit indicating "whether the VBUS voltage is above VHOLD or not when used" allows the Host to judge when it receives IRQ7 (indicating weak supply ability) whether VBUS is pulled low by system load input or the external power itself is below VHOLD, which may facilitate Host software to decide either to keep on working in Voltage-Limit mode or switch to Direct Mode.

When to Select VBUS as Input Power

N_VBUSEN and register REG30H[7]: is used to determined when shall VBUS be used as the power supply

N_VBUSEN	REG30H [7]	Input Power	Description
			Select if VBUS is valid and no ACIN is
Low	0	VBUS	available
Low	1	VBUS	Select if VBUS is valid

Confidential Page 18/45

High	1	VBUS	Select if VBUS is valid
High	0	ACIN / BAT	Don't select VBUS

Low-Power Warning and Low-Power Protection (Automatic Poweroff)

The value of VWARNING (low-power warning voltage) and Voff (automatic shutdown voltage) can be configured. If the system power is found to be lower than VWARNING, IRQ19/IRQ20 will be released. If APS is lower than VOFF, AXP202 will automatically enter Shutdown Mode, and disable all other outputs except LDO1.

There are two-levels in VWARNING, namely, LEVEL 1 and LEVEL 2, which can be defined differently in applications. For example, use LEVEL1 to indicate insufficient power while LEVEL 2 can be used to indicate the oncoming shutdown.

The default values of Vwarning and Voff can be respectively set in registers REG3AH REG3BH and REG31H[2:0].

Over-Voltage Protection

If the external power voltage exceeds 6.3V, AXP209 will send IRQ1/4 for indication. If the external power voltage exceeds 7V, AXP209 will automatically shutdown the system.

9.3 Adaptive PWM Charger

The AXP209 integrates a constant current/voltage PWM charger to automatically control the charge cycle, with a built-in safety clock capable of automatic charge termination without host processor intervention. This charger features automatic charge current scaling in accordance with the system power consumption, as well as battery detection, trickle charge and activation. In addition, the built-in temperature detection circuit can automatically decrease the charge current when the temperature is too high or too low. Compared with traditional linear chargers, this PWM charger features dramatic efficiency increase and power consumption decrease in systems that require large power consumption and fast battery charging, and thus greatly improve the system temperature performance.

Adaptive Charging Startup

The default state of the charger is "Enabled". (It can be programmed via registers. Refer to register REG33H.) When external power is plugged in, AXP209 will firstly judge whether it is suitable. If the charger is suitable for the power, and the charge function is allowed, AXP209 will automatically start the charge, and send IRQ to Host. At the same time, GHGLED pin will output low level to drive external LED to indicate the charging state.

Charging voltage and current:

Confidential Page 19/45

VTRGT = charge target voltage. The VTRGT is 4.2V by default, which can be set via a register (Refer to "REG33H[6:5]") . At the same time, AXP209 will automatically adjust the charge target voltage when external power voltage is low.

VRCH = automatic recharge voltage. VRCH=VTRGT-0.1V

Charging current

The charge current is 500mAor 1200mA by default, which can be set by REG33H [3:0].

Charging Process

If the battery voltage is lower than 3.0V, the charger will automatically enter the pre-charge mode, with charge current being 1/10 of the preset value. If the battery voltage is still below 3.0V 40 minutes later (adjustable, see "REG34H"), the charger will automatically enter the battery activate mode. Refer to "Battery Activate Mode" section for details.

Once the battery voltage exceeds 3.0V, the charger enters constant current mode. If the charge current is below 65% of the preset value, the system will send IRQ17 to indicate that "drive ability of external power is insufficient", as a result, the charge current is lower than the preset value, which may lead to longer charge time, so stronger power is preferred, or power-consuming functions should be disabled to shorten the charge time.

When the battery voltage reaches the VTRGT, the charger will switch from the constant current mode to constant voltage mode, and the charge current will taper off.

When the charge current is lower than 10% or 15% (adjustable, see register "REG33H") of the preset value, a charge cycle ends, and AXP202 will release IRQ18 while the CHGLED pin will stop indicating the charging state. When the battery voltage is below V_{RCH} again, the automatic charge will restart, and IRQ17 will be issued.

Confidential Page 20/45

In non-precharge mode, if the charge cycle is not ending after 480 minutes (adjustable, refer to register "REG34H"), the charger will automatically enter the battery activate mode.

Battery activation mode

At the entering the battery activation mode from either pre-charge mode or constant current mode (the timer expires), AXP209 will issue IRQ10 in both cases to indicate that the battery may be damaged/faulty. In battery activate mode, the charger always inputs relatively low current to batteries. AXP209 will exit activate mode and release IRQ11 only if the battery voltage has reached VRCH. AXP209 will indicate whether the charger is in battery activate mode or not in register REG01H.

CHGLED

CHGLED pin is used to indicate charge state and warning. There are four states, namely, charging, not charging, battery abnormal warning, and external power over-voltage warning. CHGLED is NMOS Open Drain output, so a LED can be directly driven by a current-limit resistor to show the four states.

The following table has displayed its two operation modes.

Ĭ	REG34H [4]	Status	CHGLED State	Comments
ľ	0	Charging	Low	
		Not charging	Hi Z	
		Battery abnormal		The charger enters the battery activate mode, or the battery temperature is too high/low.
		Overvoltage	4Hz Flashing	External power input voltage is too high
	1	Charging	1Hz Flashing	
		Can not be charged	Hi	No external power supply
		Not charging	Low	
		Overvoltage	4Hz Flashing	External power input voltage is too high, or the battery temperature is too high, too low

Battery temperature detection

The AXP209 can connect a temperature-sensitive resistor via the TS pin to monitor the battery temperature when the battery is charging or discharging. The diagram is shown below.

Confidential Page 21/45

In the diagram above, VTH/VTL refers to the high temperature threshold and low temperature threshold, which is programmable via registers REG38H/39H/3CH/3DH respectively. VTE=0.2V. The temperature sensitive resistor suggested is a NTC temperature-sensitive resistor, which is 10Kohm and 1% accuracy at 25°C. The AXP209 will send a constant current via TS pin, and the current can be set as 20uA, 40uA, 60uA, and 80uA (See registerREG84H) to adapt to different NTC resistors. When the current goes through the temperature-sensitive resistor, a voltage is generated, which will be measured by ADC, and compared with regulated value to release corresponding IRQ or suspend the charge.

If the resistance value of temperature-sensitive resistor is too high or too low, extra resistors can be placed in series or parallel to expand the detect extent. If the battery does not incorporate a themistor, the TS pin can be linked to the ground, and in that case, AXP209 will automatically disable the battery temperature monitoring function.

Battery Detection

AXP209 will automatically detect the battery presence, record the result in registers (refer to REG01H) and send IRQ13, IRQ14.

Battery detection can be enabled and disabled by the Host. (Refer to register REG32H.)

9.4 Backup battery

The AXP209 supports backup battery charging and discharge. When no main power(BAT/ACIN/VBUS) is available, LDO1 will choose the backup battery to support the operation of some circuits, such as the system real-time clock, etc.

When there is a main power, REG35H[7] can be set to charge the backup battery, whose target voltage is 3.0V by default (adjustable via REG35H[6:5]) and charge current is 200uA by default (adjustable via REG35H[1:0]).

Confidential Page 22/45

9.5 Multi-channel power output

AXP209 provides multiple Output voltages as follows:

Output path	Type	Default voltage	Application examples	Drive capability
DCDC2	BUCK	Configurable	1.25Vcore	1600 mA
DCDC3	BUCK	Configurable	2.5Vddr	700 mA
LDO1	LDO	Configurable	RTC	30 mA
LDO2	LDO	Configurable	Analog / FM	200 mA
LDO3	LDO	Configurable	1.3V PLL	200 mA
LDO4	LDO	Configurable	1.8V HDMI	200 mA
LDO5	LDO	Configurable	Vmic	50 mA

AXP209 comes with two synchronous step-down DC-DCs, five LDOs, as well as multiple timing and controlling methods. The operating frequency of DC-DC converters is 1.5MHz by default, which is adjustable via registers. External small inductors and capacitors can be connected as well. In addition, both DC-DCs can be set in PWM mode or auto mode (automatically switchable according to the AXP209 load). See register REG80H.

DC-DC2 / 3

DCDC3 output voltage ranges from 0.7 V to 3.5V, and output voltage of DCDC2 is ranged from 0.7-2.275V, which can be programmed via registers.(refer to "Register REG23H 27H").

DCDC2/3 output capacitor is recommended to use small ESR ceramic capacitors above 10uF X7R; when the output voltage is set above 2.5V, 2.2uH inductors is recommended; when the output voltage is set under 2.5V, 4.7uH inductors is recommended. Besides, the inductor saturation current should be more than 50% of the largest demanded current.

The following is a list of recommended inductor-capacitor:

Inductor	Inductor					
Model	Current specifications	DC resistance				
Murata LQH55PN2R2NR0	2100mA@2.2uH	30mOhm				
Murata LQH55PN4R7NR0	1400mA@4.7uH	60mOhm				
Murata LQH44PN2R2MP0	2000mA@2.2uH	49mOhm				
Murata LQH44PN4R7MP0	1700mA@2.2uH	80mOhm				
TDK VLF5010ST-2R2M2R3	2700mA@2.2uH	41mOhm				
TDK VLF5014ST-4R7M1R7	1700mA@4.7uH	98mOhm				
TDK SLF6045T-4R7N2R4-3PF	2400mA@4.7uH	27mOhm				
Capacitor						
Model	Temperature characteristics	Tolerance				
TDK C2012X5R0J475K	X5R / X7R	10%@4.7uF				
TDK C2012X5R0J106K	X5R / X7R	10% @ 10uF				
Murata GRM31E71A475K	X7R	10%@4.7uF				
Murata GRM21E71A106K	X7R	10% @ 10uF				
Murata GRM31E71A106K	X7R	10% @ 10uF				

Confidential Page 23/45

LDO1

LDO1 is always on and can be used to supply continuous power for application RTC with 30mA drive ability of 30mA.

LDO2/3/4

LDO2/4 output noise is as low as 18uVrms, and can be used to supply power for analog circuits of application system. LDO3 can supply power for systems like SRAM or PLL with 200mA drive ability.

LDO5

LDO5 also features the low noise design, and its drive ability is 50mA.

Soft Start

All DC-DCs and LDOs support soft start which can avoid the impact of dramatic current change on the input path in system boot stage.

Self-diagnosis: Load monitoring and current limiting

All DC-DCs and LDOs support load monitoring and current-limit functions. When the load current exceeds its drive ability, all output voltages will decrease to protect the internal circuits. When the two DC-DCs output voltage is lower than 85% of the set voltage, AXP209 will automatically shutdown. At the same time, the system will record the detailed output voltage that has lead to automatic shutdown (refer to register REG46H[5:2]) and issue a corresponding IRQ.

All DC-DCs do not require external Schottky diodes and resister divider feedback circuits. If a certain DC-DC is unnecessary in the application, just float the corresponding LX pins.

9.6 The default voltage/Start timing settings(Default Voltage / Timing Setting)

The AXP209 provides customizable default voltage settings of each power supply and start up timing.

Boot Timing: includes 8 levels, and the interval between each level can be set, from 1, 4, 16, 32 ms.

Default voltage setting: Each DC-DC / LDO can be set from the lowest to the highest voltage of the range.

LDO1SET PIN For setting **LDO1** initial voltage:

LDO1SET LDO1SET = GND LDO1SET = VINT LDO1 Voltage 1.3V 3.3V

DC3SET PIN For setting DC-DC3 initial voltage:

DC3SET = GND DC3SET = APS DC3SET = floating DC-DC3 Voltage 1.8V 3.3V / 2.5V 1.2V / 1.5V

For more information, see "The default configuration instructions" section.

Confidential Page 24/45

9.7 Signal Acquisition System

Simple battery monitors estimate the battery energy by measuring the battery voltage. However, the multiple 12-bit ADCs in the AXP209 can measure battery voltage, as well as battery current and external power voltage and current. It integrates battery charge and discharge coulomb counter. Using this data, the Host is capable of calculating accurately the battery energy and other battery data, such as the system real-time consumption, remaining battery energy, battery charge progress, remaining battery using time and charge time, etc.

The enabled state and sampling rate of each ADC can be set via registers REG82H, 83H, 84H. The sampling results will be saved in corresponding registers, and reference can be made to the ADC data in Register Instruction section. The input range of GPIO[1:0] can be set via register REG85H, while register REG00H[2] is used to indicate the battery charge/discharge current directions.

Channel	000Н	STEP	FFFH
Battery Voltage	0mV	1.1mV	4.5045V
Bat discharge current	0mA	0.5mA	4.095A
Bat charge current	0mA	0.5mA	4.095A
ACIN voltage	0mV	1.7mV	6.9615V
ACIN current	0mA	0.625mA	2.5594A
VBUS voltage	0mV	1.7mV	6.9615V
VBUS current	0mA	0.375mA	1.5356A
Internal temperature	-144.7C	0.1C	264.8C
APS voltage	0mV	1.4mV	5.733V
TS pin input	0mV	0.8mV	3.276V
GPIO0	0 / 0.7V	0.5mV	2.0475 / 2.7475V
GPIO1	0 / 0.7V	0.5mV	2.0475 / 2.7475V

9.8 Multifunction Pin Description(Multi-Function Pin Description)

GPIO [3: 0]

GPIO[3:0] Can be defined as ADC Input (monitoring external signals), or LDO, etc. Please refer to REG90H-96H Instruction for details.

CHGLED

Features charge state indication, over-temperature/over-voltage warning, and GPO. Please refer to REG32H Instruction section for details.

9.9 Timer

AXP209 Contains a 7 bit Internal timer, the value is set by register REG8AH [6: 0]. If the register is set to 0, the timer is disabled. If REG8AH [6: 0] = A, The timer starts count from 0 to A and sets REG8AH [7], also

Confidential Page 25/45

issuing a timer interrupt. Write 1 in register REG8AH [7] to clear the flag and re-start timing. Clearing interrupt flag will not re-start counting. The minimum step size for the timer is 1 minute, and the timing range 1 ~ 127 Minutes.

9.10 Decryption

AXP209 Contains a decryption module. The Host writes data to REG300-REG30F to be decrypted, and then writes 1 to the register REGB8H [1] to start decryption. After the decryption is complete, status bit REGB8 [0] is set to 1. Then the Host can read back the decrypted data from REG31x. Starts again automatically when the decryption AXP209 status bits are clared.

9.11 HOST Interface timing and interrupt (TWSI and IRQ)

Figure 1: Single Read and Write

Confidential Page 26/45

Figure 2: Multi Read and Write

Host can access the AXP209 registers via the TWSI interface, and the operation timing is shown above. Standard 100KHz or 400KHz frequency is supported, and the highest rate can reach 1.2MHz. In addition, multi read and write operation is supported, and the device addresses are 69H (READ) and 68H (WRITE).

When certain events occur, AXP209 will inform the Host by pulling down the IRQ interrupt line, and the interrupt state will be stored in interrupt state registers (See registers REG48H, REG49H, REG4AH, REG4BH and REG4CH). The interrupt can be cleared by writing 1 to corresponding state register bit. When there is no interrupt, IRQ output will be pulled high (by 51K external pull-up resistor). Each interrupt can be masked via interrupt control registers (Refer to registers REG40H, REG41H, REG42H, REG43H, and REG44H).

Location	Interrupt	Meaning	Location	Interrupt	Meaning
		Power supply ACIN			DCDC3 Voltage is too
Register 48H [7]	IRQ1	over voltage	Register 4AH [3]	IRQ20	low
		Power supply ACIN			
Register 48H [6]	IRQ2	Inserted	Register 4AH [2]		Reservations
		Power supply ACIN			
Register 48H [5]	IRQ3	Removed	Register 4AH [1]	IRQ22	PEK Short press
		Power supply VBUS			
Register 48H [4]	IRQ4	Overvoltage	Register 4AH [0]	IRQ23	PEK Press
		Power supply VBUS			
Register 48H [3]	IRQ5	Inserted	Register 4BH [7]	IRQ24	N_OE Boot
		Power supply VBUS			
Register 48H [2]	IRQ6	Removed	Register 4BH [6]	IRQ25	N_OE Shutdown
		VBUS Voltage is less			
Register 48H [1]	IRQ7	than VHOLD	Register 4BH [5]	IRQ26	VBUS Effective
Register 48H [0]		Reserved	Register 4BH [4]	IRQ27	VBUS Invalid
Register 49H [7]	IRQ8	Battery access	Register 4BH [3]	IRQ28	VBUS Session Valid
Register 49H [6]	IRQ9	Remove the battery	Register 4BH [2]	IRQ29	VBUS Session End
		Into the battery			Low battery warning
Register 49H [5]	IRQ10	activation mode	Register 4BH [1]	IRQ30	LEVEL1

Enhanced single Cell Li-Battery and Power System Management IC

D	IDO44	Exit battery activation	D - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	10.004	Low battery warning	
Register 49H [4]	IRQ11	mode	Register 4BH [0]	IRQ31	LEVEL2	
Register 49H [3]	IRQ12	Charging	Register 4CH [7]	IRQ32	Timer interrupt	
					PEK Rising	
Register 49H [2]	IRQ13	Charging complete	Register 4CH [6]	IRQ33	edge	
		Battery temperature is			PEK Falling	
Register 49H [1]	IRQ14	too high	Register 4CH [5]	IRQ34	edge	
		Battery temperature is				
Register 49H [0]	IRQ15	too low	Register 4CH [4]		Reserved	
		IC Internal over-			GPIO3 Edge trigger	
Register 4AH [7]	IRQ16	temperature	Register 4CH [3]	IRQ35	input	
		Charging current			GPIO2 Edge trigger	
Register 4AH [6]	IRQ17	shortage	Register 4CH [2]	IRQ36	input	
		DCDC1 Voltage is too			GPIO1 Edge trigger	
Register 4AH [5]	IRQ18	low	Register 4CH [1]	IRQ37	input	
	•	DCDC2 Voltage is too			GPIO0 Edge trigger	
Register 4AH [4]	IRQ19	low	Register 4CH [0]	IRQ38	input	

10 Registers

Group 1: Power Control

Address	Register Description	R/W	Default value
00	Power Status Register	R	Doladit value
01	Power Mode/Charging Status Register	R	
02	OTG VBUS Status Register	R	
04-0F	Data buffer register	R/W	00H
12	DC-DC2 / 3 & LDO2 / 3/4 & EXTEN Control Register	R/W	XXH
23	DC-DC2 Voltage setting register	R/W	XXH
25	DC-DC2/LDO3 Voltage ramp parameter	R/W	00H
27	DC-DC3 Voltage setting register	R/W	XXH
28	LDO2 / 3 Voltage setting register	R/W	XXH
30	VBUS-IPSOUT Path setting register	R/W	60H
31	V _{OFF} Shutdown voltage setting register	R/W	ХЗН
32	Shutdown, battery detection, CHGLED Control	R/W	46H
33	Charge control register 1	R/W	CXH
34	Charge control register 2	R/W	41H
35	Backup battery charging control register	R/W	22H
36	PEK Parameter setting register	R/W	5DH
37	DCDC Converter operating frequency setting	R/W	08H
38	Battery charging low temperature alarm setting	R/W	A5H
39	Battery charging temperature alarm setting	R/W	1FH
3A	APS Low Power Level1 Setting register	R/W	68H
3B	APS Low Power Level2 Setting register	R/W	5FH
3C	Battery discharge and low temperature alarm setting register	R/W	FCH
3D	Battery discharge temperature alarm setting	R/W	16H
80	DCDC Work mode setting register	R/W	E0H
82	ADC Enable setting register 1	R/W	83H

Confidential Page 28/45

Enhanced single Cell Li-Battery and Power System Management IC

83	ADC Enable setting register 2	R/W	80H
	ADC Sample rate settings, TS pin		
84	Control Register	R/W	32H
85	GPIO [1: 0]Input range setting register	R/W	X0H
	GPIO1 ADC IRQ Rising edge threshold		
86	setting	R/W	FFH
	GPIO1 ADC IRQ Falling threshold		
87	setting	R/W	00H
8A	Timer control register	R/W	00H
8B	VBUS Monitoring setting register	R/W	00H
8F	Over temperature shutdown control	R/W	01H

Group 2:GPIO Control

Address	Register Description	R/W	Default value
90	GPIO0 Control Register	R/W	07H
91	LDO5 Output voltage setting register	R/W	A0H
92	GPIO1 Control Register	R/W	07H
93	GPIO2 Control Register	R/W	07H
94	GPIO [2: 0]Signal Status Register	R/W	00H
95	GPIO3 Control Register	R/W	00H

Group 3: Interrupt Control

Address	Register Description	R/W	Default value
40	IRQ Enable Control Register 1	R/W	D8H
41	IRQ Enable Control Register 2	R/W	FFH
42	IRQ Enable Control Register 3	R/W	3BH
43	IRQ Enable Control Register 4	R/W	C1H
44	IRQ Enable Control Register 5	R/W	00H
48	IRQ Status Register 1	R/W	00H
49	IRQ Status Register 2	R/W	00H
4A	IRQ Status Register 3	R/W	00H
4B	IRQ Status Register 4	R/W	00H
4C	IRQ Status Register 5	R/W	00H

Group 4: ADC Data

Address	Register Description	R/W
56 [7: 0]	ACIN Voltage ADC Data High 8 Bit	R
57 [3: 0]	ACIN Voltage ADC Data Low 4 Bit	R
58 [7: 0]	ACIN Current ADC Data High 8 Bit	R
59 [3: 0]	ACIN Current ADC Data Low 4 Bit	R
5A [7: 0]	VBUS Voltage ADC Data High 8 Bit	R
5B [3: 0]	VBUS Voltage ADC Data Low 4 Bit	R
5C [7: 0]	VBUS Current ADC Data High 8 Bit	R

Confidential Page 29/45

Enhanced single Cell Li-Battery and Power System Management IC

5D [3: 0]	VBUS Current ADC Data Low 4 Bit	R
5E [7: 0]	AXP209 Internal temperature monitoring ADC Data High 8 Bit	R
5F [3: 0]	AXP209 Internal temperature monitoring ADC Data Low 4 Bit	R
62 [7: 0]	TS Input ADC Data High 8 Bit, the default monitor battery temperature	R
63 [3: 0]	TS Input ADC Data Low 4 Bit, the default monitor battery temperature	R
64 [7: 0]	GPIO0 Voltage ADC Data High 8 Bit	R
65 [3: 0]	GPIO0 Voltage ADC Data Low 4 Bit	R
66 [7: 0]	GPIO1 Voltage ADC Data High 8 Bit	R
67 [3: 0]	GPIO1 Voltage ADC Data Low 4 Bit	R
70 [7: 0]	High instantaneous power battery 8 Bit	R
71 [7: 0]	Instantaneous power in the battery 8 Bit	R
72 [7: 0]	Instantaneous battery power is low 8 Bit	R
78 [7: 0]	Battery voltage is high 8 Bit	R
79 [3: 0]	Battery voltage is low 4 Bit	R
7A [7: 0]	Battery charge current high 8 Bit	R
7B [3: 0]	Battery charge current low 4 Bit	R
7C [7: 0]	Battery discharge current high 8 Bit	R
7D [4: 0]	Battery discharge current low 5 Bit	R
7E [7: 0]	System IPSOUT High Voltage 8 Bit	R
7F [3: 0]	System IPSOUT Voltage Low 4 Bit	R

Note: The battery-powered power calculation method

Pbat = 2 * Register values * Voltage LSB * Current LSB / 1000.

Where the voltage LSB is 1.1mV; Current LSB is 0.5mA, Calculated in units of mW.

Address	Register Description	R/W	Default value
В0	Coulomb charging the battery meter data register[31:24]	R/W	00H
DU	Coulomb charging the battery meter data	K / W	ООП
B1	register[23:16]	R/W	00H
	Coulomb charging the battery meter data register[15:		
B2	8]	R/W	00H
В3	Coulomb charging the battery meter data register[7: 0]	R/W	00H
B4	Coulomb gauge battery discharge data register[31:24]	R/W	00H
B5	Coulomb gauge battery discharge data register[23:16]	R/W	00H
В6	Coulomb gauge battery discharge data register[15: 8]	R/W	00H
В7	Coulomb gauge battery discharge data register[7: 0]	R/W	00H
B8	Coulomb gauge and encryption module control register	R/W	00H
B9	Power measurement result register	R/W	00H

Coulomb calculation method:

C= 65536 * current LSB * (charge coulomb counter value - discharge coulomb counter value) / 3600 / ADC sample rate.

Refer to REG84H setting for ADC sample rate; the current LSB is 0.5mA; unit of the calculation result is mAh.

Confidential Page 30/45

10.1 REG 00H:Input power status

Bit	Description	R/W
7	ACIN presence indication	R
	0: ACIN Does not exist;1: ACIN Exist	
6	Instructions ACIN Is available	R
5	VBUS presence indication	R
	0: VBUS Does not exist;1: VBUS Exist	
4	Indicates if VBUS is useable	R
3	Indicating whether the VBUS voltage is above VHOLD before used.	R
2	Indicates that the battery current direction	R
	0:Battery discharging; 1:The battery is charging	
1	Indicating whether ACIN and VBUS input short circuit on PCB	R
0	Indicating whether the boot source is ACIN or VBUS 0: Boot source isn't ACIN/VBUS; 1: Boot source is ACIN/VBUS.	R

10.2 REG 01H:Power mode and charge status indication

Bit	Description	R/W
7	Indicates AXP209 over-temperature	R
	0:Not too hot; 1:Over Temperature	
6	Charging indicator 0:Not charging or charging has been completed; 1:Charging	R
5	Battery connected indicator 0:No battery is connected to the AXP209; 1:The battery is connected to the AXP209	R
4	Reservations can not be changed	R
3	Indicate whether the battery charger entered into activation mode 0:Did not enter the cell activation mode; 1:Has entered the cell activation mode	R
2	Indicates the charging current is less than the expected current 0:The actual charge current equal to the desired current; 1:The actual charge current is less than the desired current	R
1-0	Reserved, can not be changed	R

10.3 REG 02H: USB OTG VBUS Status Indication

Bit	Description	R/W
7-3	Reserved, can not be changed	
2	Indicating whether VBUS is valid or not, 1 means "valid"	R
1	Indicating whether VBUS is valid or not, 1 means "valid"	R
0	Indicating Session End status, 1 means "valid"	R

Confidential Page 31/45

10.4 REG 04-0FH: Data Cache

Note: As long as the external power supply, battery or backup battery power exists, this data will not be lost.

10.5 REG 12H:Power Output Control

The default value: XXH

Bit		Description	R/W	Default value
7	Reserved, can not be changed		RW	Χ
6	LDO3 Switch Control	0:Shut down; 1:Turn on	RW	Χ
5	Reserved, can not be changed		RW	Χ
4	DC-DC2 Switch Control	0:Shut down; 1:Turn on	RW	Χ
3	LDO4 Switch Control		RW	Χ
2	LDO2 Switch Control		RW	Χ
1	DC-DC3 Switch Control		RW	Χ
0	EXTEN Switch Control		RW	Х

10.6 REG 23H: DC-DC2 output voltage setting

The default value: XXH

Bit	Description		R/W	Default value
7-6	Reserved, can not be changed			
5-0	DC-DC2 The output voltage is set	0.7-2.275V,25mV / step	RW	Х
		Vout = [0.7+ (Bit5-0) * 0.025] V		

10.7 REG 25H: DC-DC2 / LDO3 Dynamic voltage scaling parameter settings

The default value: 00H

Bit		Description	R/ W	Default value
7-4	Reserved, can not be changed			
3	LDO3 VRC Enable Control		RW	0
	0:Turn on; 1:Shut down			
2	DC-DC2 VRC Enable Control		RW	0
	0:Turn on; 1:Shut down			
1	LDO3 VRC soft start control	0: 25mV / 15.625us = 1.6mV / us	RW	0
		1: 25mV / 31.250us = 0.8mV / us		
0	DC-DC2 VRC soft start control	0: 25mV / 15.625us = 1.6mV / us	RW	0
		1: 25mV / 31.250us = 0.8mV / us		

Confidential Page 32/45

10.8 REG 27H: DC-DC3 output voltage setting

The default value: XXH

Bit	Description		R/W	Default value
7	Reserved, can not be changed			
6-0	DC-DC3 output voltage setting	0.7-3.5V, 25mV / step	RW	Х
		Vout = [0.7+ (Bit6-0) * 0.025] V		

10.9 REG 28H: LDO2 / 4 output voltage setting

The default value: XXH

Bit		Description	R/W	Default value
7-4	LDO2 output voltage setting	1.8-3.3V, 100mV / step	RW	Х
		Vout = [1.8+ (Bit7-4) * 0.1] V		
3-0	LDO4 output voltage setting	1.25, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.5, 2.7, 2.8, 3.0, 3.1, 3.2, 3.3	RW	Х

10.10 REG 29H: LDO3 output voltage setting

The default value: XXH

Bit	Description		Default value
7	LDO3 Mode selection:	RW	0
	0:LDO Mode, the voltage is set by [6: 0]		
	1: enable/disable control mode, voltage is determined by LDO3IN.		
6-0	DO3 output voltage setting 0.7-2.275V,25mV / step Vout = [0.7+ (Bit6-0) * 0.025] V	RW	×

10.11 REG 30H: VBUS-IPSOUT Power Path Management

The default value: 6XH

Bit		Description	R/ W	Default value
7	VBUS-IPSOUT Path selection contr	ol signal source	RW	0
	0:By N_VBUSEN pin controls wheth	ner to enable this path		
	1: VBUS-IPSOUT enabled, regardle	ess of N_VBUSEN State		
	VBUS V _{HOLD} voltage limiting control		RW	1
	0: No voltage drop limit; 1: Limit the	voltage drop		
5-3	VHOLD Set	V _{HOLD} = [4.0+ (Bit5-3) * 0.1] V	RW	100
2	Reserved, can not be changed			
1-0	VBUS current-limit selection when 00:900mA; 01:500mA; 10:100mA;		RW	0

Confidential Page 33/45

10.12 REG 31H: Voff Shutdown voltage setting

The default value: X3H

			- //	Default
Bit		Description	R/W	value
7-4	Reserved, can not be changed			
3	Sleep Mode PEK or GPIO edge wal	keup enable settings:		
	0: Disable			
	1: Enable			
	This bit will be automatically cleare rewritten whenever entering Sleep	ed to 0 after writing, so "1 "should be mode.		
2-0	V _{OFF} Setting	V _{OFF} = [2.6+ (Bit2-0) * 0.1] V	RW	011
		Default: 2.9V		

10.13 REG 32H:Shutdown settings, battery detection, and CHGLED Pin control

The default value: 46H

	Flault value. 4011			Defects
Dia		Doggrintion	D / W/	Default
Bit		Description	R/W	value
7	Shutdown Control		RW	0
	This bit is write 1 will shutdown the A	XP209 outputs		
6	Battery monitoring function setting b	it: 0:Shut down; 1:Turn on	RW	1
5-4	CHGLED Pin function setting	00: Hi	RW	00
		01: 25% 1Hz Flashing		
		10: 25% 4Hz Flashing		
		11: Output Low		
3	CHGLED Pin control settings	0: Controlled by charging	RW	0
		1: Controlled by REG 32H [5: 4]		
2	Output off timing sequence control	Shutdown simultaneously Shutdown in reverse sequence to startup	RW	0
1-0	Shutdown delay time after N_OE changes from low to high	00: 128mS; 01: 1S; 10: 2S; 11: 3S	RW	10

10.14 REG 33H:Charge Control 1

The default value: CXH

Bit	Description		Default value
7	Charging function enable control bit		1
	0:Disable, 1:Enable		
	Charging target voltage		
6-5	setting 00: 4.1V; 01: 4.15V; 10: 4.2V; 11: 4.36V	RW	10

Confidential Page 34/45

4	Charge termination current settings		0
	0:End when charging current is less than 10% of the set value		
	1:End when charging current is less than 15% of the set value		
3-0	Charge current setting	RW	Х
	I _{charge} = [300+ (Bit3-0) * 100] mA		

10.15 REG 34H:Charge Control 2

The default value: 45H

Bit		Description	R/W	Default value
7	Pre-charge timeout setting Bit 1	00: 40 min; 01: 50min;	RW	0
6	Pre-charge timeout setting Bit 0	10: 60min; 11: 70min	RW	1
5	Reserved, can not be changed			
4	CHGLED Mode Selection		RW	0
	0:Constant on when Charging			
	1:Flashes when charging			
3-2	Reserved, can not be changed			
1-0	Constant current mode timeout setting Bit 1-0	00: 6Hours; 01: 8Hours; 10: 10Hours; 11: 12Hours	RW	01

10.16 REG 35H:Backup battery charge control

The default value: 22H

				Default
Bit		Description	R/W	value
7	Backup battery charge enable control		RW	0
	0:Disable; 1:Enable			
6-5	Backup battery voltage target setting		RW	01
	00: 3.1V; 01: 3.0V; 10: 3.6V; 11: 2.5V			
4-2	Reserved, can not be changed			
1-0	Spare battery charging current is set	00: 50uA; 01: 100uA; 10: 200uA;	RW	10
		11: 400uA		

10.17 REG 36H: PEK Key parameter settings

The default value: 9DH

			Default
Bit	Description	R/W	value

Confidential Page 35/45

7-6	Startup press time settings	00: 128mS; 01: 3S; 10: 1S; 11: 2S.	RW	01
5-4	Long press time setting	00: 1S; 01: 1.5S;10: 2S; 11: 2.5S.	RW	01
3	Automatic shutdown on long press t	time exceeding the shutdown time	RW	1
	0:Disable; 1:Enable			
2	PWROK Signal Delay after power-up completed		RW	1
	0: 8mS; 1: 64mS			
1-0	Shutdown time setting	00: 4S; 01: 6S; 10: 8S; 11: 10S.	RW	01

10.18 REG 37H: DC-DC Operating frequency settings

The default value: 08H

Bit		Description	R/W	Default value
7-4	Reserved, can not be changed			
3-0	DC-DC switching frequency	Each level changes by 5% The default value 1.5MHz	RW	1000
		F = [1 +/- (Bit3-0) * 5%)] * 1.5MHz		

10.19 REG 38H: VLTF-charge Battery charging low temperature threshold settings

The default value: A5H

Bit		Description	R/W	Default value
	Battery Under-temperature threshold setting when the battery is charging, M	M*10H, When M=A5H, corresponding voltage is 2.112V Voltage range 0V ~ 3.264V	RW	A5H

 $V_{LTF\text{-charge}} = M * 10H * 0.0008V$

10.20 REG 39H: VHTF-charge Battery charging high temperature threshold setting

The default value: 1FH

Bit		Description	R/W	Default value
7-0	When charging the battery temperature threshold setting,N	N*10H, When N=1FH, the corresponding voltage is 0.397V	RW	1FH
		Voltage range 0V ~ 3.264V		

 $V_{HTF-charge} = N * 10H * 0.0008V$

10.21 REG 3AH: System IPSOUT Vwarning Level1

The default value: 68H

Bit	Description	R/W	Default value
7-0	System IPSOUT Vwarning Level1	RW	68H

Confidential Page 36/45

10.22 REG 3BH: System IPSOUT Vwarning Level2

The default value: 5FH

Bit	Description	R/W	Default value
	System IPSOUT Vwarning		
7-0	Level2	RW	5FH

REG3AH, REG3BHVoltage corresponding to the following relationship (where the register value is n):

Vwarning = 2.8672 + 1.4mV * n * 4

10.23 REG 3CH: VLTF-discharge Battery discharge under temperature threshold settings

The default value: FCH

Bit		Description	R/W	Default value
	pattery under-temperature	M*10H, when M=FC, corresponding voltage is 3.226V; Voltage ranges from 0V~3.264	RW	FCH

 $V_{LTF\text{-discharge}} = M * 10H * 0.0008V$

10.24 REG 3DH: VHTF-discharge Battery discharge over temperature threshold settings

The default value: 16H

Bit		Description	R/W	Default value
7-0	When discharging the battery under temperature threshold setting,N	N*10H, when N=16H, corresponding voltage is 0.282V; Voltage ranges from 0V~3.264V	RW	16H

 $V_{LTF\text{-discharge}} = N * 10H * 0.0008V$

10.25 REG 80H: DC-DC Operating mode selection

The default value: E0H

Bit	Description		R/W	Default value
7-3	Reserved, can not be changed			
2	DC-DC2 Control mode	0: PFM / PWM Automatic switching	RW	0
1	DC-DC3 Control mode	1:Fixed PWM	RW	0
0	Reserved, can not be changed			

10.26 REG 82H: ADC Enable 1

The default value: 83H

			Default
Bit	Description	R/W	value

Confidential Page 37/45

7	Battery voltage ADC Enable	0:Disable, 1:Enable	RW	1
6	Battery current ADC Enable		RW	0
5	ACIN Voltage ADC Enable		RW	0
4	ACIN Current ADC Enable		RW	0
3	VBUS Voltage ADC Enable		RW	0
2	VBUS Current ADC Enable		RW	0
1	APS Voltage ADC Enable		RW	1
0	TS Pin ADC Function is enabled		RW	1

10.27 REG 83H: ADC Enable 2

The default value: 80H

Bit	Description		R/W	Default value
	AXP209 Internal temperature			
7	monitoring ADC Enable	0:Disable, 1:Enable	RW	1
6-4	Reserved, can not be changed			
3	GPIO0 ADC Function is enabled	0:Disable, 1:Enable	RW	0
2	GPIO1 ADC Function is enabled		RW	0
1-0	Reserved, can not be changed			

10.28 REG 84H: ADC Sampling rate settings, TS Pin control

The default value: 32H

Bit		Description	R/W	Default value
7-6	ADC Sampling rate settings	25 × 2 ⁿ	RW	0
		Sampling rates is 25, 50, 100, 200Hz		
5-4	TS Pin output current setting:		RW	11
	00: 20uA; 01: 40uA; 10: 60uA; 11: 80uA			
3	Reserved, can not be changed			
2	TS Pin function select		RW	0
	0:Battery temperature monitoring function,1:External independent ADC			
1-0	TS Current output setting	00:Disabled	RW	1
		01:Output current only when charging	RW	0
		10: Only when ADC is sampling input		
		11:Always enabled		

10.29 REG 85H: ADC Input Range

The default value: X0H

Confidential Page 38/45

Bit		Description	R/W	Default value
7-2	Reserved, can not be changed			
1	GPIO1 ADC Input Range	0: 0-2.0475V	RW	0
0	GPIO0 ADC Input Range	1: 0.7-2.7475V	RW	0

10.30 REG 86H: GPIO1 ADC IRQ Rising edge threshold setting

The default value: FFH

Bit	Description	R/W	Default value
7-0	One LSB is 8mV	RW	FF

10.31 REG 87H: GPIO1 ADC IRQ Falling edge of the threshold setting

The default value: 00H

Bit	Description	R/W	Default value
7-0	A LSB For 8mV	RW	00

10.32 REG 8AH:Timer Control

The default value: 00H

Bit	Description	R/W	Default value
7	Timer expired	RW	0
	Write 1 Clear this state		
6-0	Set the time, in minutes	RW	0000000
	Write all 0's to disable this timer		

10.33 REG 8BH: VBUS Pin Monitoring and SRP Function Control

The default value: 00H

Bit	Description	R/W	Default value
7-6	Reserved, can not be changed		
5-4	VBUS valid voltage setting	RW	00
	00: 4.0V; 01: 4.15V; 10: 4.45V; 11: 4.55V		
3	VBUS Valid Detection feature: 0:Disable,1:Enable	RW	0
2	VBUS Session Detection feature: 0:Disable, 1:Enable	RW	0
	Discharge VBUS discharge function setting 0: to disable the VBUS discharge resistance; 1: to enable the VBUS discharge resistance	RW	0

Charge VBUS charge function setting 0: disable the VBUS charge resistance; 1: enable the VBUS charge	RW	0
resistance and charge the VBUS		

10.34 REG 8FH:Over-temperature shutdown feature set

The default value: 21H

D :4		D / 114/	Default
Bit	Description	R/W	value
7-3	Reserved, can not be changed	RW	0
2	AXP209 Internal over-temperature shutdown feature set	RW	0
	0:Not shut down; 1:Shutdown		
1-0	Reserved, can not be changed		

10.35 REG 90H: GPIO0 function settings

The default value: 07H

Bit	Description		R/W	Default value
7	GPIO0 Rising edge IRQ Or Wakeup Function	0:disable	RW	0
6	GPIO0 Falling edge IRQ Or Wakeup Function	1:enable	RW	0
5-3	Reserved, can not be changed		RW	0
2	GPIO0 Pin feature set Bit 2-0	000:Output Low	RW	1
		001:Output High (3.3V)		
1		010:Universal input function	RW	1
0		011:Low Noise LDO5 100: ADC Input	RW	1
		1XX:Floating		

10.36 REG 91H: LDO5 Output voltage and EXTEN / GPIO high level settings

The default value: A5H

		_ ,,,,,	Default
Bit	Description	R/W	value
7-4	LDO5 The output voltage is set	RW	1010
	Vout = [1.8 + (Bit7-4)* 0.1] V; default = 1.8 + 10 * 0.1 = 2.8V		
3	Reserved, can not be changed		
2-0	EXTEN and GPIO [1: 0] output high level setting 000: 1.8V; 001: 2.5V; 010: 2.8V; 011: 3.0V; 100: 3.1V; 101: 3.3V; 110: 3.4V; 111: 3.5V	RW	101

Confidential Page 40/45

10.37 REG 92H: GPIO1 Feature setttings

The default value: 07H

Bit	Description		R/W	Default value
7	GPIO1 Rising edge IRQ Or Wakeup Function	0:disable	RW	0
	GPIO1 Rising edge IRQ Or	U.disable	KVV	0
6	Wakeup Function	1:enable	RW	0
5-3	Reserved, can not be changed		RW	0
2-0	GPIO1 Pin feature set	000:Output Low	RW	111
		001:Output High (3.3V)		
		010:Universal input function		
		011:Low Noise LDO		
		100: ADC Input		
		1XX:Floating		

10.38 REG 93H: GPIO2 Feature set

The default value: 07H

Bit	Description		R/W	Default value
7	GPIO2 Rising edge IRQ Or Wakeup Function	0:disable	RW	0
6	GPIO2 Falling edge IRQ Or Wakeup Function	1:enable	RW	0
5-3	Reserved, can not be changed		RW	0
2-0	GPIO2 Pin feature set	000:Output Low 001:Floating	RW	111
		010:Universal input function XXX:Floating		

10.39 REG 94H: GPIO [2: 0] Setting and monitoring of signal status

The default value: 00H

Bit		Description	R/W	The default value
7	Reserved, can not be changed		R	
6	GPIO2 Input Status	0:Input low level	R	
5	GPIO1 Input Status	1:Input high level	R	
4	GPIO0 Input Status		R	
3-0	Reserved, can not be changed			

10.40 REG 95H: GPIO3 Settings

The default value: 00H

Confidential Page 41/45

Bit	Description		R/W	Default value
7	GPIO3 Rising edge IRQ Or Wakeup Function	0:disable	RW	0
6	GPIO3 Falling edge IRQ Or Wakeup Function	1:enable	RW	0
5-3	Reserved, can not be changed			
2	GPIO3 Feature set	0:NMOS Open Drain Output	RW	0
		1: Digital Input Function		
1	GPIO3 Output Settings	0:Output low,NMOS Turn on	RW	1
		1:Float,NMOS Shut down		
0	GPIO3 Input Status	0: Input High	R	
		1: Input Low		

10.41 REG 40H And 48H: IRQ Enable 1 And IRQ Status 1

IRQ Enable 1,REG40H: Default: D8H

Bit	Description	R/W	Default value
7	ACIN Over-voltage IRQ Enable	RW	1
6	ACIN Connection IRQ Enable	RW	1
5	ACIN Disconnection IRQ Enable	RW	0
4	VBUS Over-voltage IRQ Enable	RW	1
3	VBUS Connection IRQ Enable	RW	1
2	VBUS Disconnection IRQ Enable	RW	0
1	VBUS Available but less than V _{HOLD} IRQ Enable	RW	0
0	Reserved, can not be changed	RW	0

IRQ State 1,REG48H: Default: 00H

Bit	Description	R/W	Default value
7-0	The description of each status bit respectively matches each bit of 40H above; For example:Bit7 Is ACIN Over-voltage IRQ Status bit	RW	0

10.42 REG 41H And 49H: IRQ Enable 2 And IRQ Status 2

IRQ Enable 2,REG41H: Default: FFH

			Default
Bit	Description	R/W	value
7	Battery connected IRQ Enable	RW	1
6	Battery is removed IRQ Enable	RW	1
5	Battery in activation charge mode IRQ Enable	RW	1
4	Exit battery activation mode IRQ Enable	RW	1
3	Charging IRQ Enable	RW	1
2	Charging complete IRQ Enable	RW	1
1	Battery over-temperature IRQ Enable	RW	1
0	Battery low temperature IRQ Enable	RW	1

Confidential Page 42/45

IRQ State 2,REG49H: Default: 00H

Bit	Description	R/W	The default value
7-0	Meaning of the status bits correspond to each bit of 41H listed above	RW	0

10.43 REG 42H And 4AH: IRQ Enable 3 And IRQ Status 3

IRQ Enable 3,REG42H: Default: 03H

Bit	Description	R/W	Default value
7	AXP209 Internal over-temperature IRQ Enable	RW	0
6	Charging current is less than the set current IRQ Enable	RW	0
5	Reserved, can not be changed		
4	DC-DC2 The output voltage is less than the set value IRQ Enable	RW	0
3	DC-DC3 The output voltage is less than the set value IRQ Enable	RW	0
2	LDO3 The output voltage is less than the set value IRQ Enable		
1	PEK Short press IRQ Enable	RW	1
0	PEK Long press IRQ Enable	RW	1

IRQ State 3,REG4AH: Default: 00H

Bit	Description	R/W	Default value
7-0	Meaning of the status bits correspond to each bit of 42H above	RW	0

10.44 REG 43H And 4BH: IRQ Enable 4 And IRQ Status 4

IRQ Enable 4,REG43H: Default: 01H

Bit	Description	R/W	Default value
7	N_OE startup IRQ Enable	RW	0
6	N_OE Shutdown IRQ Enable	RW	0
5	VBUS Valid IRQ Enable	RW	0
4	VBUS Invalid IRQ Enable	RW	0
3	VBUS Session A / B IRQ Enable	RW	0
2	VBUS Session End IRQ Enable	RW	0
1	APS Low voltage IRQ Enable (LEVEL1)	RW	0
0	APS Low voltage IRQ Enable (LEVEL2)	RW	1

IRQ State 4,REG4BH: Default: 00H

Bit	Description	R/W	Default value
7-0	Meaning of the status bits correspond to each bit of 43H above	RW	0

10.45 REG 44H And 4C: IRQ Enable 5 And IRQ Status 5

IRQ Enable 5,REG44HThe default value: 00H;

Confidential Page 43/45

Bit	Description	R/W	Default value
7	Timer expires IRQ Enable	RW	0
6	PEK Button on the rising edge IRQ Enable	RW	0
5	PEK Button on the falling edge IRQ Enable	RW	0
4	Reserved, can not be changed	RW	0
3	GPIO3 Edge trigger input IRQ Enable	RW	0
2	GPIO2 Edge trigger input IRQ Enable	RW	0
1	GPIO1 input edge-trigger or ADC Input IRQ Enable	RW	0
0	GPIO0 Edge trigger input IRQ Enable	RW	0

IRQ State 5,REG4CH: Default: 00H

Bit	Description	R/W	Default value
7-0	Meaning of the status bits corresponds to each bit 44H above	RW	0

Note: Writing 1 to all IRQ status register bits will clear corresponding status.

10.51 REG B8H:Coulomb Counter Control

The default value: 00H

			Default
Bit	Description	R/W	value
7	Coulomb gauge enable/disable	RW	0
	Coulomb counter suspend control. Writing "1" to this bit will suspend the		
6	Coulomb counter, and this bit will be automatically cleared to 0 as well	RW	0
	Coulomb counter clear control. Writing "1" to this bit will clear the coulomb		
5	counter, and this bit will automatically be cleared to 0.	RW	0
4-2	Reserved, can not be changed	RW	0
1-0	Decrypt the start bit. Automatically clear to 0 after the decryption.	RW	0
0	Decryption is complete:	RW	0
	0: Not finished		
	1: Finished		

10.52 REG B9H:Fuel Gauge

The default value: 7FH

Bit	Description	R/W	Default value
7	Fuel Gauge Control	RW	0
	0: Normal operating mode		
	1: Suspended		
6-0	Fuel gauge percentage	R	7F

Confidential Page 44/45

11. Package

© 2010 X-Powers Limited - All rights reserved

X-Powers can not assume responsibility for use of any circuitry other than circuitry entirely embodied in a X-Powers product. No circuit patent licenses, copyrights, or other intellectual property rights are implied. X-Powers reserves the right to make changes to the specifications and products at any time without notice.

Confidential Page 45/45