BIOASPEKTY RADIOAKTIVITY

VELIČINY A JEDNOTKY

POČET AKTIVITA = ROZPADŮ ZA ČAS

JEDNOTKA 1 Becquerel (Bq)

DÁVKA =

ABSORBOVANÁ ENERGIE NA HMOTNOST

JEDNOTKA 1 J/kg = 1 Gray (Gy)

DÁVKOVÝ PŘÍKON= DÁVKA ZA ČAS JEDNOTKA 1 Gy/s resp. 1 Gy/h

RADIAČNÍ FAKTOR =
KOREKČNÍ FAKTOR PRO
EKVIVALENTNÍ DÁVKU
JEDNOTKA 1

RADIAČNÍ FAKTOR

*

Tab. 2. Doporučené radiační váhové faktory.

Typ záření	Radiační váhový faktor, w _R		
Fotony	1		
Elektrony ^a a mezony	I		
Fotony a nabité piony	2		
Částice alfa, štěpné fragmenty, těžké ionty	20		
Neutrony	spojitá závislost na energii neutronů viz obr. 1		

Všechny hodnoty se vztahují k záření dopadajícímu na tělo, nebo v případě vnitřních zdrojů záření k záření vysílanému z inkorporovaných radionuklidů.

EKVIVALENTNÍ DÁVKA =RADIAČNÍ F. × DÁVKA JEDNOTKA 1 Sievert (Sv)

EKVIVALENÍ DÁVKOVÝ PŘÍKON= EKVIVALENTNÍ DÁVKA ZA ČAS

JEDNOTKA 1 Sv/s resp. 1 Sv/h

PRONIKAVOST

I s neutrony je problém

EFEKTIVNÍ DÁVKOVÝ EKVIVALENT

STŘEDOVÁNÍ PŘES ORGÁNY

Tab. 3. Doporučené tkáňové váhové faktory.

Tkáň	$w_{\mathbf{T}}$	$\Sigma w_{\rm T}$
Kostní dřeň (červená), tlusté střevo, plíce, žaludek, mléčná žláza, zbytek tkání*	0,12	0,72
Gonády	0,08	0,08
Močový měchýř, jicen, játra, štítná žláza	0,04	0,16
Povrch kostí, mozek, slinné žlázy, kůže	0,01	0,04
	Celkem	1,00

^{*} zbytek tkání: nadledvinky, horní cesty dýchací (Extrathoracic Region – ET), žlučník, srdce, ledviny, lymfatické uzliny, svalstvo, sliznice dutiny ústní, slinivka, prostata (♂), tenké střevo, slezina, brzlík, děloha/hrdlo (♀).

DÁVKOVÉ LIMITY

Tab. 6. Doporučené dávkové limity v plánovaných expozičních situacích^a.

Typ limitu	Profesionálové	Obyvatelé		
Efektívní dávka	20 mSv za rok jako průměr 1 mSv za rok ^f definovaného období 5 let ^e			
Roční efektivní dávka v:				
oční čočce ^b	150 mSv	15 mSv		
kůži ^{e,d}	500 mSv	50 mSv		
rukou a nohou	500 mSv	=		

^a Limity efektivní dávky představují sumu relevantních efektivních dávek ze zevní expozice v konkrétním časovém období a úvazku efektivních dávek z příjmů radionuklidů v témže období. Pro dospělé je úvazek efektivní dávky vypočítáván z 50-letého období po příjmu, zatimco pro děti je vypočítáván za dobu do věku 70 let.

^b Tento limit je v současné době přezkoumáván pracovní skupinou ICRP.

^e Limitování efektivní dávky představuje dostatečnou ochranu kůže proti stochastickým účinkům.

^d Zprůměrňováno přes plochu 1 cm² bez ohledu na exponovanou plochu.

S další podmínkou, že efektivní dávka nesmí překročit 50 mSv v žádném jednotlivém roce. Další omezení se vztahují na profesionální expozici těhotných žen.

f Ve zvláštních případech jsou dovoleny vyšší hodnoty efektivní dávky v jednotlivém roce s podmínkou, že průměr za pět let nepřesáhne 1 mSv za rok.

OZÁŘENÍ

Roční příspěvky k ozáření průměrného jednotlivce z obyvatelstva z přírodních zdrojů:

kosmické záření	terestriální záření (záření ze zemské kůry)	vnitřní ozáření, přírodní radioizotopy obsažené v potravě	radon, uvolňovaný do ovzduší z hornin nebo stavebních materiálů
0,30 mSv	0,35 mSv	0,30 mSv	1–3 mSv

/ Umělé zdroje se podílejí cca 20 % na hodnotě ozáření průměrného jednotlivce.

Roční příspěvky k ozáření průměrného jednotlivce z obyvatelstva z umělých zdrojů:

ČR ≈ 3.5 mSv/a

RADON

Asi 2.5% bytů má aktivitu vyšší než 400 Bq/m³ to odpovídá cca 20 mSv/a

JINDE MŮŽE BÝT HŮŘE

Průměry a maxima v mSv/a Světový průměr 2.7 mSv/a

LÉKAŘSKÁ DIAGNOSTIKA

Mamografie 0.5 mSv

RTG břicha ≈ 6 mSv

CT celotělní 9 mSv

Scintigrafie štítné žlázy 2 mSv

Scinigrafie skeletu 3.5 mSv

Scintigrafie myokardu 7.5 mSv

ÚČINKY

DETERMINISTICKÉ Důsledky poškození nebo zabití buněk

STOCHASTICKÉ

Rakovina a dědičné
choroby

PŘEŽITÍ BUNĚK

PŘEŽITÍ LIDÍ

$$LD 50/60 = 4 SV$$

Kdy 50 % zemře do 60 dnů

NEMOC Z OZÁŘENÍ

Mírná cca od 0.5 Sv Střední 1 ÷ 2 Sv (10% úmrtnost) Vážná nad 2 Sv

KOEFICIENTY RIZIKA

Tab. 1. Nominální koeficienty rizika (10⁻² Sv⁻¹) vztažené k újmě pro stochastické účinky pro expozicí záření s malým dávkovým příkonem.

Exponovaná Populace	Rakovin	a	Dědičné	Dědičné účinky		Celkem	
	Nyní¹	Publ.60	Nyní ¹	Publ.60	Nyni	Publ.60	
Celá populace	5,5	6,0	0,2	1,3	5,7	7.3	
Dospělí	4,1	4,8	0,1	0,8	4,2	5,6	

% úmrtí při expozici 1 Sv

Založeno na lineární bezprahové teorii

Ale zdá se, že existuje HORMEZE

Činnost	očet úmrtí v 1 milion vatel za rok	
Dobrovolná rizika		
Kouření (20 cigaret denně)	5 000	
Pití (jedna láhev vína denně)	75	
Jizda na motocyklu	20 000	
Automobilové závody	1 200	
Horolezectví	140	
Řízení automobilu	170	
Používání antikoncepčních pilulek	20	
Nedobrovolná rizika		
Přejetí automobilem (Velká Británie)	60	
Povodně (USA)	2,2	
Zemětřesení (Kalifornie)	1,7	
Tornáda (střední západ USA)	2,2	
Bouře (USA)	0,8	
Přírodní katastrofy celkem	1	
Zřícení letadla (Velká Británie)	0,02	
Výbuch tlakových nádob (USA)	0,05	
Únik z jaderných elektráren (na hranici pozemku elektrárny -USA	0,1	
Emise oxidu siřičitého	3	
Protržení hrází (Holandsko)	0,1	
Chřipka	200	

Tabulka 1: Dobrovolná a vnucená rizika

Data označená * jsou převzata z Doporučení ICRP 2007

