MATH370 HW1

Garrett Peuse

January 2022

Contents

1	Inti	roduction
2	Pro	bblem 2.1.1
	2.1	Problem 2.1.1.a
		2.1.1 Scratch work
		2.1.2 Formal Proof
	2.2	Problem 2.1.1.b
		2.2.1 Scratch work
		2.2.2 Proof
3	Pro	bblem 2.1.2
	3.1	Problem 2.1.2.a
		3.1.1 Work
		3.1.2 Proof
	3.2	Problem 2.1.2.b
	J	3.2.1 2.1.2.b Thoughts, scratch work
		3.2.2 Proof
4	\mathbf{Pro}	bblem 2.1.4 Bounded
	4.1	Problem 2.1.4.a
		4.1.1 Initial thoughts
		4.1.2 Proof way1?
		4.1.3 Proof way2?
	4.2	Problem 2.1.4.b
		4.2.1 Problem 2.1.4.b thoughts
5	Pro	oblem 2.1.5 Let sequence b_n be ϵ for sequence x_n converging to a
-		Proof?
6	Pro	oblem 2.1.6 Constant Sequence Converge
-	6.1	thoughts
	-	Proof

CONTENTS

7	Problem 2.1.7			
	7.1	Part A	1	
	7.2	Part B	1	
	7.3	Thoughts	1	
	7.4	Proof	1	
	7.5	Part C	1	
		7.5.1 Thoughts	1	
		7.5.2 Proof	1	

1 Introduction

 ${\bf Defintion}\ 2.1$

A sequence of real numbers $\{x_n\}$ is said to converge to a real number $a \in \mathbf{R}$ if and only if for every $\epsilon > 0$ there is an $N \in \mathbf{N}$ (Which in general depend on ϵ) such that $\mathbf{N} \leq n$ implies $|x_n - a| < \epsilon$

2 Problem 2.1.1

Prove that the following limits exist

2.1 Problem 2.1.1.a

$$2 - \frac{1}{n} \to 2$$
 as $n \to \infty$

2.1.1 Scratch work

$$\begin{aligned} & \text{Given } |(2-\frac{1}{n})-a| < \epsilon \\ & |(2-\frac{1}{n})-2| < \epsilon \\ & |\frac{1}{n}| < \epsilon \end{aligned}$$

$$\begin{array}{c} \frac{1}{n}<\epsilon\\ \frac{1}{\epsilon}>n\\ |2-\frac{1}{n}|-a<2<|2+\frac{1}{n}|+a \end{array}$$

2.1.2 Formal Proof

Let $\epsilon > 0$

Note, $2-\frac{1}{n}\to 2$ can be $\frac{1}{n}\to 0$ Choose a natural number N such that $N>\frac{1}{\epsilon}$

We now verify that this choice of N has the desired property. Let n>N. Then, $n>\frac{1}{\epsilon}$ implies $\frac{1}{n}<\frac{1}{N}<\epsilon$ and hence $|2-(\frac{1}{n})-2|<\epsilon$

2.2 Problem 2.1.1.b

$$1 + \frac{\pi}{\sqrt{n}} \to 1 \text{ as } n \to \infty$$

2.2.1 Scratch work

$$|1 + \frac{\pi}{\sqrt{n}} - 1| < \epsilon \text{ as } n \to \infty$$

$$\left|\frac{\pi}{\sqrt{n}}\right| < \epsilon$$

$$\left(\frac{\pi}{\sqrt{n}}\right)^2 < \epsilon^2$$

$$\frac{\pi^2}{\sqrt{n^2}} < \epsilon^2$$

$$\frac{\pi^2}{\sqrt{n^2}} < \epsilon^2$$

$$\frac{1}{\sqrt{n^2}} < \frac{\epsilon^2}{\pi^2}$$

$$\sqrt{n^2} < \frac{\pi^2}{\epsilon^2}$$

$$n > \frac{\pi^2}{\epsilon^2}$$

2.2 Problem 2.1.1.b 2 PROBLEM 2.1.1

2.2.2 **Proof**

Let $\epsilon>0$ Note, $1+\frac{\pi}{\sqrt{n}}\to 1$ can be $\frac{\pi}{\sqrt{n}}\to 0$ Using the ARCHMEDIAN PRINCIPLE, choose a natural number N such that $N>\frac{\pi^2}{\epsilon^2}$

We now verify that this choice of N has the desired property. Let n>N. Then, $n>\frac{\pi^2}{\epsilon^2}$ implies $|\frac{\pi}{\sqrt{n}}|<|\frac{\pi}{\sqrt{N}}|<\epsilon$ and hence $|1-\frac{\pi}{\sqrt{n}}-1|<\epsilon$

3 Problem 2.1.2

For the following 2.1.2 problems:

- 1. the sequence of x_n converges to one.
- 2. Use definition 2.1 to prove the following limits exist.

3.1 Problem 2.1.2.a

$$1 - 2x_n \to 3$$
 as $n \to \infty$

3.1.1 Work

So we want $|1-2x_n-3|<\epsilon$ which is $|-2-2x_n|<\epsilon$ $2|-1-x_n|<\epsilon$ $|-1-x_n|>\frac{\epsilon}{2}$ $1+x_n>\frac{\epsilon}{2}$ $x_n>\frac{\epsilon}{2}-1$

3.1.2 **Proof**

Let > 0.

Then for $N \in \mathbf{N}$ with $N > \frac{1}{2} - 1$

To verify that the choice of \tilde{N} is appropriate, let $n \in \mathbb{N}$ satisfy n > N.

Then, n > N implies $n > \frac{1}{2} - 1$, which is the same as saying (n + 1)/2 < 1. Finally this means

$$|1 - 2x_n - 3| <$$

Thus $|1-2x_n-3| <$, meaning as x_n approaches $1, 1-3x_n$ approaches 3

3.2 Problem 2.1.2.b

$$\frac{\pi x_n - 2}{x_n} \to \pi - 2 \text{ as } n \to \infty$$

3.2.1 2.1.2.b Thoughts, scratch work

- ullet So we need to find the formula where this is always right for ϵ
- $\bullet \ \frac{\pi x_n 2}{x_n} = \pi \frac{2}{x_n}$
- $\pi \frac{2}{x_n} \to \pi 2$ and by subtracting π from each side.... $-\frac{2}{x_n} \to -2$
- $\bullet \mid -\frac{2}{x_n} (-2) \mid < \epsilon$
- $\bullet \ |-\frac{2}{x_n}+2|<\epsilon$
- $2|-\frac{1}{x_n}+1|<\epsilon$

3.2 Problem 2.1.2.b 3 PROBLEM 2.1.2

- $\bullet \ |-\tfrac{1}{x_n}+1|<\tfrac{\epsilon}{2}$
- $|-\frac{1}{x_n}+1| \le |-\frac{1}{x_n}|+|1| < \frac{\epsilon}{2}$
- $\bullet \ \frac{1}{x_n} < \frac{\epsilon}{2} 1$
- $1 < (\frac{\epsilon}{2} 1)x_n$
- $\bullet \ \frac{1}{(\frac{\epsilon}{2}-1)} > x_n$
- $\bullet \ \frac{1}{(\frac{\epsilon}{2}} 1) > x_n$
- $\bullet \ \frac{2}{\epsilon} 1 > x_n$

3.2.2 Proof

• Let $\epsilon > 0$ be an arbitrary positive number. Choose a natural number N satisfying $\frac{2}{\epsilon} - 1 > N$. We now verify that this choice of N has the desired property. Let $n \geq N$. Then, $n > \frac{2}{\epsilon} - 1$ implies $2|-\frac{1}{x_n}+1|<\epsilon$, hence $|\pi-\frac{2}{x_n}-(\pi-2)|<\epsilon$.

4 Problem 2.1.4 Bounded

4.1 Problem 2.1.4.a

4.1.1 Initial thoughts

I am a little confused because it seems to me that they are asking to prove the definition of something is bounded or not? I guess this is a proof by contradiction?

4.1.2 Proof way1?

Suppose that bounded and $|x_n|$ is not $\leq C$ for all $n \in \mathbb{N}$, but that is a contradiction because $|x_n| \leq C$ for C > 0 must be by definition of being bounded.

4.1.3 **Proof way2?**

Choose a max from sequence so that $M = max(x_n)$ Then we see that $x_n \leq M \ \forall n \in \mathbb{N}$ and M > 0. By definition we have a bounded function.

Reflection on above, note for self, not grader I guess the above works. I am getting a little confused for $n \forall \in \mathbb{N}$. Note to self, really re-read the example and definition, I think there is a nuance I am missing/not understanding.

4.2 Problem 2.1.4.b

Suppose that $\{x_n\}$ is bounded. Prove that $\frac{x_n}{n^k} \to 0$, as $n \to \infty$ for all $\in \mathbb{N}$.

4.2.1 Problem 2.1.4.b thoughts

- 1. Knowing n goes to infinity and $\{x_n\}$ is bounded, we can use the definition bound so that $C = max(x_n)$ bounds $x_n \ \forall n \in \mathbf{N}$.
- 2. Since we know that the largest number is C, we could write $\frac{x_n}{n^k} \leq \frac{C}{n^k}$
- 3. From here we would use the definition of a limit of sequence.
- 4. The equation we would use in the proof to make that happen is $\frac{C}{n^k} < \epsilon$ and to solve for n, it would be $\sqrt[k]{\frac{C}{\epsilon}} < n$.
- 5. So let > 0 be an arbitrary positive number. Choose a natural number that satisfies $N > \sqrt[k]{\frac{C}{\epsilon}}$. We can see that choice of N has our desired property. Let $N \le n$. Then, $\sqrt[k]{\frac{C}{\epsilon}} < n$ implies $\frac{C}{n^k} < \epsilon$ that implies that $\frac{1}{n^k} < \frac{\epsilon}{C}$ and hence $|\frac{x_n}{n^k} 0| = |x_n| |\frac{1}{n^k}| < C\frac{\epsilon}{C} < \epsilon$

■

5 Problem 2.1.5 Let sequence b_n be ϵ for sequence x_n converging to a

let C be a fixed, positive constant. If $\{b_n\}$ is a sequence of non-negative numbers that converges to 0; and $\{x_n\}$ is a real sequence that satisfies $|x_n - a| \leq Cb_n$ for large n, prove that x_n converges to a.

5.1 Proof?

- Note that since $\{b_n\}$ converges to 0 then therefore, $\forall \epsilon > 0$, thus there $\exists m \in \mathbb{N}$ such that $|b_n 0| = |b_n| \le 0$ whenever $m \le n$.
- Since $|x_n a| \le Cb_n \ \forall n \in \mathbb{N}, \ |x_n a| \le \epsilon$ whenever $n \ge m$
- this implies that x_n converges to a.

6 Problem 2.1.6 Constant Sequence Converge

Let a be a fixed real number and define $x_n := a$ for $n \in \mathbb{N}$. Prove that the constant sequence converges.

6.1 thoughts

- 1. so intuitively, at first read, this seems like I should be bounding this from bottom and above.
- 2. so first I would show it is bounded above then show it was bounded below? Could I show that it is bounded in one swoop.
- 3. I think that would be an over complicating things. I could do this easily with just definition 2.1. As by the definition you can easily say that $|x_n a| < \epsilon$

6.2 Proof

• Since $x_n := a$, then $|x_n - a| < \epsilon = 0$ for all $n \in \mathbb{N}$. Thus, by definition 2.1 x_n converges.

7 Problem 2.1.7

- (a) Suppose that $\{x_n\}$ and $\{y_n\}$ converge to the same real number. Prove that $x_n-y_n\to 0$ and $n\to\infty$
- (b) Prove that the sequence $\{n\}$ does not converge.
- (c) Show that there exist unbounded sequences $x_n \neq y_n$ which satisfy the conclusion of part (a).

7.1 Part A

- Since we know $\{x_n\}$ and $\{y_n\}$ converge to the same number we can say:
- For all $n \ge N$ implies $|x_n a| < \epsilon$.
- and for all $m \ge M$ implies $|y_m a| < \epsilon$.
- Then by choosing the larger of n or m we can say(for example sake we will say n is larger)
- Then for all $n \geq N$ (and $n \geq M$) implies $|x_n y_n| = 0 < \epsilon$.

7.2 Part B

7.3 Thoughts

- 1. Doesn't this converge to infinity?
- 2. Okay for a curtain point, yes it doesn't converge.
- 3. So we can use the definition, say that not for every n there is an epsilon.
- 4. I assume there are a multiple ways to prove this. Some easier than others and some cleaner than others and some more related to what we are doing in this class.
- 5. My first thought is using the definition of bound to show it is not bounded or breaking definition 2.1 with a proof of contradiction.
- 6. $|x-a| < \epsilon$

7.4 Proof

- 1. To show this converges we must show the sequence will converge to a real number $a \in \mathbf{R}$ if and only if for every $\epsilon > 0$ there is an $N \in \mathbf{N}$ such that $\mathbf{N} \le n$ implies $|x_n a| < \epsilon$.
- 2. The problem with this is that the sequence $\{x\}$, as $|x_n a| < \epsilon$ for an n > N, is that, $|x_n a| < |x_{n+1} a| < |x_{n+2} a| < \ldots$ There is no choice of N, where $|x_n a| < \epsilon$ for all n > N, as when n grows so does $|x_n a|$. Thus $|x_n a| < \epsilon$ will never be true, but rather $|x_n a| \ge \epsilon$, which means our sequence diverges.

7.5 Part C 7 PROBLEM 2.1.7

7.5 Part C 7 PROBLEM 2.1.7

7.5.1 Thoughts

- 1. This problem is tricky.
- 2. The first time I did this problem I did something stupid, and basically used the definition of a convergent function for x_n and y_n without thinking that implies they are bounded.
- 3. I guess unbounded function would be something that goes to infinity. Or something semi-peculiar.
- 4. After a google search on examples of unbounded functions, that I like.

7.5.2 **Proof**

- Let sequence x_n be defined as $x_n sin(x_n^2)$ and sequence y_n be defined as $y_n sin(y_n^2) \frac{1}{y_n}$.
- Obviously $x_n \neq y_n$ and $|x_n y_n| = \frac{1}{y_n}$. Thus as y_n and y_n goes to infinity, $|x_n y_n|$ goes to zero.