Homework: Week 7

Joseph Ismailyan

Math 100

Due: November 17, 2017

Professor Boltje MWF 9:20a-10:25a

Chapter 9

12

Proposition:

If $a, b, c \in \mathbb{N}$ and ab, bc and ac all have the same parity, then a, b, and c all have the same parity.

Proof. Suppose $a, b, c \in \mathbb{N}$ and ab, bc and ac all have the same parity. Then we can use the following example: $a=2,\ b=4,\ c=3$. We know that the product of any two natural numbers with opposite parity will be even, so ab, bc and ac are all even. But a, b and c do not all have the same parity.

14

Proposition:

If A and B are sets, then $\mathscr{P}(A) \cap \mathscr{P}(B) = \mathscr{P}(A \cap B)$.

Proof. Let $Y \in \mathcal{P}(A \cap B)$. Then $Y \subseteq (A \cap B)$, so $Y \subseteq A$ and $Y \subseteq B$, and by definition of a power set, $Y \subseteq \mathcal{P}(A)$ and $Y \subseteq \mathcal{P}(B) \to Y \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$. Now let $Y \subseteq \mathcal{P}(A)$ and $Y \subseteq \mathcal{P}(B)$. So $Y \in A$ and $Y \in B \to Y \in (A \cap B) \to Y \subseteq \mathcal{P}(A \cap B)$. So $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

18

Proposition:

If $a, b, c \in \mathbb{N}$, then at least one of a - b, a + c and b - c is even.

Proof. Suppose $a, b, c \in \mathbb{N}$. The in order for a-b, a+c, b-c to all have odd outcomes, the operands must all have a parity opposite that of the other operand. So then if a is odd then b must be even, but c must be even to make a+c odd, but then c must be odd to make b-c odd. So we can see that c must simultaneously have two parities, which would be the case no matter what parity a and b are. It's impossible for a, b, and c to have opposite parities. Therefore, at least one of a-b, a+c and b-c is even.

28

Proposition:

Suppose $a, b \in \mathbb{Z}$. If a|b and b|a then a = b.

Proof. Let a = 1 and b = -1, then $b = an, n = -1 \in \mathbb{Z}$ so a|b, alternatively $a = bm, m = 1 \in \mathbb{Z}$ so b|a, but $a \neq b$.

34

Proposition:

If $X \subseteq A \cup B$, then $X \subseteq A$ or $X \subseteq B$. Proof. Let $A = \{1, 2, 3\}, B = \{3, 4, 5\}, X = \{1, 4\}$. Then $X \subseteq (A \cup B)$ but $X \not\subseteq A$ and $X \not\subseteq B$.