Práctica 4: Neural networks

Tatsiana Palikarpava, Juan José Valenzuela Gómez

1.1. Segmentation of images by colour. K-means algorithm.

		Quantization time		Image
		k-means	clustered image	
3 colours	Sample: 100%	3.856169	2.140518	100 200 300 400 500 600 700 800 200 400 600 800 1000
	Sample: 50%	2.295598	17.650084	100 200 300 400 500 600 700 800 200 400 600 800 1000
	Sample: 20%	1.031012	20.59451	100 200 300 400 500 600 700 800 200 400 600 800 1000
	Sample: 5%	0.439968	22.574565	100 200 300 400 500 600 700 800 200 400 600 800 1000

8 colours	Sample: 100%	7.591781	2.063228	100 200 300 400 500 600 700 800 200 400 600 800 1000
	Sample: 50%	4.547850	58.645375	100 200 300 400 500 600 700 800 200 400 600 800 1000
	Sample: 20%	1.718256	58.175427	100 200 300 400 500 600 700 800 200 400 600 800 1000
	Sample: 5%	0.769762	59.339386	100 200 300 400 500 600 700 800 200 400 600 800 1000

20 colours	Sample: 100%	20.299833	5.252725	100 200 300 400 500 600 700 800 200 400 600 800 1000
	Sample: 50%	20.237967	84.275172	100 200 300 400 500 600 700 800 200 400 600 800 1000
	Sample: 20%	8.227148	169.315643	100 200 300 400 500 600 700 800 200 400 600 800 1000
	Sample: 5%	1.289883	170.274501	100 200 300 400 500 600 700 800 200 400 600 800 1000

64 colours	Sample: 100%	94.593572	4.329579	100 200 300 400 500 600 700 800 200 400 600 800 1000
	Sample: 50%	52.686457	309.788127	100 200 300 400 500 600 700 800 200 400 600 800 1000
	Sample: 20%	19.261886	518.145636	100 200 300 400 500 600 700 800 200 400 600 800 1000
	Sample: 5%	2.498916	260.829819	100 200 300 400 600 700 800 200 400 600 800 1000

		Segmentation time	Image
Point at the sky	nc = 500	3.699569	100 200 300 400 500 600 700 800
	nc = 1500	4.088753	100 200 300 400 500 600 700 800
	nc = 5000	5.667161	100 200 300 400 500 600 700 800
Point at the sea	nc = 500	3.973287	100 200 300 400 500 600 700 800
	nc = 1500	4.150364	

	nc = 5000	4.268857	100 200 300 400 500 600 700 800 200 400 600 800 1000	
Point at the building	nc = 500	3.982355	100 200 300 400 500 600 700 800 200 400 600 800 1000	
	nc = 1500	4.001334	100 200 300 400 500 600 700 800	
	nc = 5000	4.061879	100 200 300 400 500 600 700 800 200 400 600 800 1000	

Conclusions:

The difference in behavior between these two programs is that for the first one k-means works longer, because we use all the data instead of sampling, but on the other hand, time consumed by the second one for creating an image is also greater than for the first, because it uses function most_similar to understand which class each point belongs to. You can see that total time used by the second program is usually greater. We expected that the quality of images obtained by using the second program will be significantly lower, but in reality it is almost the same even for small training samples (sometimes sky region is not so detailed, but it does not matter too much). For segmentation we used initial image. We noticed that the time of segmentation is almost equal for different values of nc, but results obtained with nc = 5000 were the most natural.