### SOFTWARE QUALITY

**CPTS 583** 

Software Quality Planning

### **Outline**

- Software quality management
  - Quality planning
  - Product quality in relation to process quality
- Software quality plan
  - Elements
  - Planning steps
- Quality planning in practice
  - For small projects
  - Reduced plan versus no plan

# Software Quality Management





# Quality Planning

Quality Assurance

**Quality Control** 

# Quality Management Activities

- Quality planning
  - selecting and modifying applicable quality
    standards and procedures for a particular project
- Quality assurance
  - establishing organizational quality standards and procedures
- Quality control
  - ensuring quality standards and procedures are followed by development team

# **Quality Management Activities**



# Quality Management along the way



### Process and product quality

- The quality of a developed product is influenced by the quality of the production process
- Particularly important in software development as some product quality attributes are hard to assess
- Relationship between software processes and product quality: complex yet poorly understood

### Process-based quality

- Straightforward link between process and product in manufactured goods
- More complex for software because:
  - The application of individual skills and experience is particularly important in software development
  - External factors such as the novelty of an application or the need for an accelerated development schedule may impair product quality
- Care must be taken not to impose inappropriate process standards

# Process-based quality



### Quality planning

- A quality plan sets out the desired product qualities and how these are assessed and define the most significant quality attributes
  - set out which organisational standards should be applied and, if necessary, define new standards

define the quality assessment process



### Elements of a software quality plan

Product introduction/description

√Quality goals

√Review activities

√ Tests

✓ Configuration tools/procedures

### **Quality Goals**

#### Quality requirements of the developed software.

- Safety
- Security
- Reliability
- Resilience
- Robustness
- Understandability
- Testability
- Adaptability

- Modularity
- Complexity
- Portability
- Usability
- Accessibility
- Reusability
- Efficiency
- Learnability

### **Quality Goals**

- Quantitative measures usually preferred to qualitative measures when choosing goals
  - Deasier to assess objectively during testing.
- Quality goals should reflect the major acceptance criteria found in the requirement's document (i.e. RFP)
  - correctness, reliability, robustness, maintainability....
- RFP is often used to measure successful achievement of the customer's quality requirements.

### **Product Quality Goals**

• **Example**: a warehouse safety monitoring system

#### Quality requirements

- The system needs to work continuously
- The system should be highly user-friendly
- The system must be very reliable
- The system should provide highly quality service
- The System must be very efficient

#### Quality goals

- If the system fails, it must recover within <5 minutes</li>
- A new user should be able to learn how to operate the system in 3 days
- The system must be working correctly 98% of the time
- The system should provide right results with 99% accuracy
- The system should respond to safety condition changes and send reports in 2 seconds

### **Process Quality Goals**

**Purpose:** To (characterize, evaluate, predict, monitor, etc.) the (process, product, model, metric, etc.) in order to (understand, plan, assess, manage, control, engineer, learn, improve, etc.) it.

**Example:** To evaluate the maintenance procedure in order to improve it.

**Perspective:** Examine the (cost, effectiveness, correctness, defects, changes, product measures, etc.) from the viewpoint of the (developer, manager, customer, etc.)

**Example:** Examine the *effectiveness* from the viewpoint of the *customer*.

**Environment:** The environment consists of the following: process factors, people factors, methods, tools, constraints, etc.

**Example:** The maintenance staff are poorly motivated programmers who have limited access to tools.

### Review Activities

- □ Design reviews (DR)
- Design inspections
- Managerial reviews
- □ Code inspections



### Review Activities

- □ Scope what does it cover
- Type emphasis managerial, technical, super detailed...
- Schedule often based on previous reviews and outcomes
- □ Procedures action lists; present and discuss
- Reviewers who will participate in the review
- Responsibilities what each reviewer would be supposed to do for the review; what documents would be needed, by when...

### **Tests**



- □ Test Scope unit, integration, system, subsystem....
- Type of test may include computer-generated tests and their application via test suites, and more
- Test Schedule prioritized and follow up
- □ Test procedure (for different types of tests...)
- □ Tester Who is responsible for carrying out tests
  - □ Notification, time, date, materials, facilities, etc.
  - □ Different people responsible at different times

### **Tests**

#### Acceptance Tests for External Software/Components

- run in parallel with internally-developed software tests
- □ in the plan, list
  - □ software/component purchased
  - □ software/component developed by subcontractors
  - □ customer-supplied software/component
- □ for each acceptance test
  - □ similar per-test info

### Configuration tools / procedures

- Configuration Management
  - Tools to be used
  - □E.g., version control tools□ Procedures to be followed



# Quality planning in practice

- · Preparing plans can be a hassle
  - Too many
  - Too bureaucratic
- Agile versus heavy-weight planning
  - · Avoid being "plan-centric"
  - · Heavy-weight plan may be unnecessary or infeasible



# Quality planning for small projects

- A project of short duration (e.g., 10 days)
- A project to be worked on by a small team (e.g., 3 professionals)
- A project that would not cost much even timeline failed to be observed

•

# Quality planning for small projects

- Simplified/reduced quality plan
  - Quality goals

- Reduction is NOT dismissal
  - Advantages of quality planning
    - Even for small projects!

- · General advantages over 'no plan'
- 1. Gaining a more comprehensive / thorough understanding of quality assurance/control tasks
- Assigning greater responsibility for meeting obligations
- 3. Easier to share control of the project and identify unexpected delays
- 4. Better understanding of requirements and timetable



- Benefits for customers
- smaller deviations from planned completion dates
- 2. smaller budget overruns
- better control over development process - problems can be addressed locally
- 4. Fewer delay damages



· Benefits for software business/organization

- 1. reduced risk of market loss
- reduced risk of litigation (late arrival; non-compliance)
- 3. reduced risk of impairing a firm's reputation
- 4. reduced risk of requesting a budget supplement.



- · Problems with no plan
- Product/process errors
- 2. cost overruns
- 3. finger pointing
- 4. missed dates
- 5. internal friction among cooperating parties



### Summary

- Software quality management: overview
  - planning, assurance, control
  - difference and connection
- Quality planning strategies: what and how
  - Product and process introduction/description
  - Quality goals
  - Review activities
  - Software tests
  - Configuration management
- Practical issues in quality planning
  - · Reducing, but not dismissing, the plan even for small projects