AD-A095 957 STEPHEN F AUSTIN STATE UNIV NACOGDOCHES TX F/6 8/6 ECOLOGICAL SURVEY DATA FOR ENVIRONMENTAL CONSIDERATIONS ON THE --ETC(U) JUL 73 C D FISHER, D D HALL, H L JONES DACW63-73-C-0016 UNCLASSIFIED NL 1 or 7 AD Anghir

Ecological Survey Data for Environmental Considerations on the Trinity River and Tributaries, Texas

AD A 0 9 5 9 5 7

STEPHEN F. AUSTIN STATE UNIVERSITY NACOGDOCHES. TEXAS

81 3 05 039

SECURITY CLASSIFICATION OF THIS PAGE (Ynon Date Milered)

REPORT DOCUMENTATION PAGE '	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. AD-A095 957	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Ecological survey data for environmental considerations on the Trinity River and	5. TYPE OF REPORT & PERIOD COVERED preliminary
tributaries, Texas	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(*) Charles D. Fisher Jack D. McCullough Darrell D. Hall Elray S. Nixon Hershel L. Jones	B. CONTRACT OR GRANT NUMBER(*) DACW63-73-C-0016 (*)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Stephen F. Austin State University Nacogdoches, Texas 75962	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Fort Worth District, Corps of Engineers	July 1973
Engineering Division, Plng Br, SWFED-P PO Box 17300, Ft Worth, TX 76102	13. NUMBER OF PAGES 586
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) NA	15. SECURITY CLASS. (of this report) unclas
	154. DECLASSIFICATION/DOWNGRADING SCHEDULE

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report):

18. SUPPLEMENTARY NOTES

C

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Environmental aspects

Environmental aspects Cultural resources Ecological resources Trinity River and tributaries, Texas Tennessee Colony Reservoir

20 ABSTRACT (Continue on reverse side if necessary and identify by block number)

The general objective of the study was to provide a base of scientific data to be used in evaluating the ecological significance of future water development plans on the Trinity River. The specific objectives were:(1) to determine the degree of existing eutrophication and water pollution;(2) to study ecological factors influencing the distribution and abundance of fishes, birds, and mammals;(3) to describe and analyse representative plant communities;(4) to describe and analyze terrestrial and aquatic macroinvertebrate

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. communities; (5) to locate geological structures of ecological and economic significance and to analyze their present and potential effects on biotic communities; (6) to analyze certain lignite deposits for heavy metals and sulfur and analyze their potential effects on biotic communities.

Accession For	
NTIS GREET	
DTIC T'B	۳.,
Unannounced	
Justification	·
Distribution/ Availability as	
Activities .	. <u></u>
Dist Land	-
Λ	
H	
, ,	

Ecological Survey Data for Environmental Considerations on the Trinity River and Tributaries, Texas

STEPHEN F. AUSTIN STATE UNIVERSITY

6 ECOLOGICAL SURVEY DATA FOR ENVIRONMENTAL CONSIDERATIONS ON THE TRINITY RIVER AND TRIBUTARIES, TEXAS.

Charles D./Fisher
Darrell D./Hall
Hershel L./Jones
Jack D./McCullough
Elray S./Nixon

Jack B. Coster, Project Director

El Deimer of pt.

Stephen F. Austin State University
Nacogdoches, Texas

Propared For

U. S. Army Corps of Engineers Fort Worth District Fort Worth, Texas

In Accordance with Contract No. DACW 63-73-C-9016
PRELIMINARY

This report does not necessarily constitute the final project concept to be adopted by the U.S. Army Corps of Engineers.

11) 1 301

12)54

now

1112 - .-

ACKNOWL EDGEMENTS

The authors are grateful for the support of many administrators and faculty members of Stephen P. Austin State University. In particular, Dr. C. R. Voigtel, Director of Development, and Mr. Ben W. Jarboe, Manager of Systems and Operations at the University Computer Center, were most helpful.

Mars. J. H. Blackaller and W. Gallaher of the Port Worth District, U. S. Army Engineers, provided many useful suggestions and these are appreciated.

To the many landowners along the Trinity River who permitted access to the river, the study team extends their thanks. The Fin and Feather Club near Dallas was most gracious in connection with bird, mammal, and plant aspects of the study.

Mrs. Susan Plorence performed all of the typing, key-punching, and assembling of the report. Her patience and hard work are greatly appreciated.

This document was produced by PORMAT on an IBM System/360 Model 50 using a 1403 Printer equipped with a TW print train. The program was developed by Gerald M. Berns at the Washington Scientific Center, IBM, Wheaton, Maryland 20902.

TABLE OF CONTENTS

CHAPTER	I, INTRODUCTION	1
CHAPTER	II, BIOLOGICAL ELEMENTS	4
CHAPTER	III, LIMNOLOGIC-AQUATIC ELEMENTS 9	3
CHAPTER	IV, GEOLOGIC ELEMENTS	7
	V, ZOOLOGICAL ELEMENTS	
. Mai	mmals and Birds 23	4
Fis	shes	1

CHAPTER I

INTRODUCTION

by

Jack E. Coster Project Leader

INTRODUCTION

In September, 1971 Stephen F. Austin State University began a project to survey the environmental and cultural impact of water resource development activities proposed for the Trinity River by the U.S. Army Engineers. The initial study, performed through U.S. Army contract DACW 63-72-0005, consisted of two phases: the first phase was a survey of the site of the proposed Tennessee Colony Reservoir and the second phase was a survey of the remainder of the river from Fort Worth to the headwaters of the proposed Wallisville Lake below Liberty. The final report of the first phase ("Environmental and cultural impact of the proposed Tennessee Colony Reservoir, Trinity River, Texas", 5 vols.) Was submitted to the Army Engineers on January 31, 1972. The final report for phase two of the initial study ("A survey of the environmental and cultural resources of the Trinity River", 398 pp) was submitted on September 1, 1972.

The environmental and cultural surveys indicated the need for in-depth studies in order to provide more complete data for water development plans on the river. On September 1,1972 Stephen F. Austin State University began in-depth ecological studies under the terms of U.S. Army contract DACW 63-73-C-0016. The general objective of the study was to provide a base of scientific data to be used in evaluating the ecological significance of future water development plans on the Trinity River. To accomplish this general goal, the following specific objectives were set forth:

- 1. To determine the degree of existing eutrophication and water pollution.
- 2. To study ecological factors influencing the distribution and abundance of fishes, birds, and mammals.
- 3. To describe and analyze representative plant communities.
- 4. To describe and analyze terrestrial and aquatic macroinvertebrate communities.
- 5. To locate geological structures of ecological and economic significance and to analyze their present and potential effects on biotic communities.

miles and a second

6. To analyze certain lignite deposits for heavy metals and sulfur and analyze their potential effects on biotic communities.

The Trinity River Basin is easily delineated from its surrounding land areas and, at any given time, is occupied by a particular grouping of plants and animals. It is, therefore, an ecosystem in the classical sense. An ecosystem as large and diverse as the Trinity River Basin is extremely difficult to study, even for only a few parameters. Field ecology studies are costly, placing further restraints on ecosystem sampling. If, however, the biological and deological operations of a river are observed at a variety of carefully selected, typical cross-sections of the stream a total picture of the ecosystem may result. Such an approach has the additional advantage of serving as a monitor of biological and chemical conditions of the river when carried out over a long period of time.

Using the "cross-section" approach, 10 study areas were selected. Criteria for establishing the study areas were: (1) type of plant covers; (2) proximity to major sources of water pollution; (3) type of existing land use patterns; (4) nearness to major geological structures or geological deposits of economic value; (5) location of proposed Corps projects (channel alignment, reservoirs, and locks); (6) presence of known fish and bird breeding grounds; (7) and general accessibility.

Beginning at the uppermost study area and proceeding south they are described briefly as follows (see enclosed maps):

- 1. Between Fort Worth and Dallas, west of the highway 360 crossing.
- 2. South of Dallas near Loop 12 crossing.
- 3. West of Rosse: at confluence of Trinity and old channel of the East Pork.
- 4. Northeast of Kerens at the large horseshoe bend at the Bruce Smith Ranch in Henderson County (in Tennessee Colony Reservoir Site).
- 5. South of Highway 287 at Richland Creek (in Tennessee Colony Reservoir Site).

The state of the s

mile folia area a

- 6. Southwest of Pale tine, north of Highway 79 crossing.
- 7. Northeast of Madisonville, southeast of Highway 21 crossing.
- 8. Between Livingston Dam and Highway 59 crossing.
- 9. Northwest of Moss Hill, at Tanner Bayou.
- 10. North of Willisville, at Chambers-Liberty county line.

This report presents the results of the investigation carried out between September 1, 1972 and June 30, 1973.

CHAPTER II

BOTANICAL ELEMENTS

by

Elray S. Nixon and Richard Garry Willett

with the assistance of:

Charles in Burandt, Jr. W. Garland Willett
Jack E. Bailey
Nichael L. Butts
Nichael McCrary

TABLE OF CONTENTS

Introduction
Object: ves
Methods & Procedures
Study Area 2
Introduction
Land Use
Methods & Procedure
Description of Study Sites
Results
Study Area 5
Introduction
Land Use
Methods & Procedure
Description of Study : ites
Results
Study Area 7
Introduction
Land Use
Methods & Procedure
Description of Study Sites
results
Study Area 8
Introduction 4
I and Use
Methods & Procedure
Description of Study Sites 4
Results
Study Area 9
1 troduction 6
land Use
M thods & Procedure
Description of Study Sites
Results
Literature Cited
Appendix
uhhaunry

The state of the same of

INTRODUCTION

Vegetatively, the Trinity River Basin is associated with several areas or types. Gould (1969) divides Toxas into ten vegetational areas. The Trinity River transects the Pineywoods, Gulf Prairies and Marshes, Post Oak Savannah, Blackland Prairies and Cross Timbers and Prairies vegetational areas (Fig. II-01). Following are brief descriptions of these areas as generally characterized by Gould (1969).

The Trinity River, within the confines of this study, transects only a small portion of the Cross Timbers and Prairies area. The area is very variable from standpoints of rainfall, soils and land use. The vegetation, however, is generally rather uniform. Predominant native grasses in the prairies are little bluestem (Schizachyrium <u>scoparium),</u> biy bluestem <u>(Andropogon gerardi)</u>, Indiangrass (Sorghastrum avenaceum), switchgrass (Panicum virgatum) and Canada wild-rye (Elymus canadensis). The Cross Timbers areas are dominated by trees such as post oak 10uercus stellata) and blackjack oak (Quercus marilandica) with understory species including hairy tridens nerbaceous [Bouteloua (Erioneuron pilosum) and Texas grama under natural Blackland Prairies, <u>riqidiseta</u>). The conditions, would be dominated by grasses such as little big bluestem, switchgrass, Indiangrass and bluestem, sideoats grama (Bouteloua curtipendula). The soils are generally dark-colored calcareous clays.

In general, the Post Oak Savanneh vegetational area is characterized by the presence of upland trees such as post oak, blackjack oak and sandjack oak (Quercus incana) and of marginal bottomland species including southern red oak (Quercus falcata), white oak (Quercus alba), hickory (Carya spp.) and elm (Ulmus spp.) (Bray, 1906). The upland soils of the Post Oak Savannah area are light colored, generally acid and are texturally classed as either sands or sandy loams. Bottomland soils are darker in color, acid, and range from sandy loams to clays.

The Pineywoods vegetation area is depicted by trees such as shortleaf pine (Pinus echinata), loblolly pine (Pinus taeda), post oak, blackjack oak, red oak, sweetgum (Liquidambar styraciflua) and black hickory (Carya texana) in the uplands and by overcup oak (Quercus lyrata), willow oak (Quercus Phellos), Texas sugarberry (Celtis laevigata), cedar elm (Ulmus crassifolia) and bush palmetto (Sabal)

militaria de la como dela como de la como de

- 1. Pineywoods
- 2. Gulf Prairies and Marshes
- 3. Post Oak Savannah
- 4. Blackland Prairies
- 5. Cross Timbers and Prairies

Figure II-QL.Map positioning the Trinity River in relation to surrounding vegetational areas. Vegetational areas after Gould, 1969. Study areas are also shown.

⊕ Study ar as

- The state of the

minor) in the bottomlands (Tharp, 1926, 1939, 1952; Braun, 1950). The soils are usually light-colored, acid, and sands or sandy-loams.

The climax vegetation of the flat Gulf Prairies and Marshes area is largely grassland or post oak savannah. Tall bunch grasses such as big bluestem, Indiangrass, eastern gamagrass (Tipsacum dactyloides) and gulf muhly Muhlenbergia capillaris var. filipes) are characteristic. Soils are generally acid sands, sandy loams and clays.

Although the Trinity River is associated with the above vegetational areas, the vegetation type of great concern in this study was that of bottcmland hardwood forests. Bottomland forests associated with the Sabine, Neches, Trinity, and San Jacinto river systems occupy large areas and, as a result, have been classified by Bray (1906) and Collier (1964) as listinct vegetational types. These bottomland forests are considered to be westward extensions of hardwood forests typical of river bottom areas to the southeast (Bray, 1906; Braun, 1950).

OBJECTIVES

The major objectives of this study were to describe and analyze representative plant communities in association with the Trinity River Basin in Texas. In addition, notes on rare, endemic or endangered species were to be made.

METHODS AND PROCEDURES

The scope of the botanical studies is limited to community analyses in five of the previously described study areas. We studied areas 2, 5, 7, 8, and 9. The approximate geographical locations of the botanical study areas are shown in Figure II-01.

Quantitative data were acquired for woody shrubs and trees with diameters at breast height (dbh) greater than 1/2 cm whereas vine and herbaceous plants were collected, identified, and incorporated in a checklist. The woody vegetation of all areas was analyzed by the plot method. Each plot was 5m^2 and situated in a belt transect. Each belt transect, in turn, was composed of two rows of plots following a compass line. Transects were generally 250 meters in length and composed of 100 plots. Woody species in each plot were identified, measured (dbh) and counted. From this data, frequency, density, dominance and importance value figures were obtained. Dominance,

therefore, is based upon importance value (importance value is equal to the sum of relative frequency, relative density and relative dominance) when used in this study. Nomenclature for plant species followed Correll and Johnston (1970).

STUDY AREA 2

Introduction

Study Area 2 was situated in the floodplain of the Trinity River in the southeast corner of Dallas County. More specifically it was located southeast of the junction of Interstate Highways 45 and 635 in the vicinity of the Pin and Peather Club and Dallas Hunting and Pishing Club lakes. Field analyses were accomplished during the spring of 1973.

Topography of the immediate study sites was generally flat with occasional depressions and small creeks. Geologically the area is composed of Alluvium deposits of Recent origin within the Quaternary Period. Indistinct low terrace deposits may also be included. Soils in Study Area 2 are comprised of Trinity Clay. This soil type is poorly suited for dwellings, septic tanks, streets, light industry, and camp areas and most other recreational use (U.S. Department of Agriculture, Soil Conservation Service, 1972).

The study sites were forested whereas surrounding areas were generally cleared for pasture, housing and gravel pit usage. Grazing by cattle was evident in one study site and it is likely that the other study sites have been used for domestic grazing in the past.

Land Use

Dallas County, in which is situated the State's second largest metropolitan center, had a population in 1970 of 1,327,321, up sharply from 951,527 in 1960 (Texas Almanac, 1971). Forty-eight percent of the county's total area is classified urban and built-up (Table II-01) (Dallas County Conservation Needs Inventory Committee, 1970). While slightly over half of the total area is farm and forest land, its contribution to the income of the county is comparatively small--about \$11 million annually out of a total income in excess of \$5 billion.

Between 1958 and 1967, over 43,000 acres were put into urban development (Table II-01) (Dallas County Conservation

The Market Ing.

Table II-01. Dallas County land area (in acres) (from Dallas County Conservation Needs Inventory Committee, 1970.)

Land Use	1958	1967	1
Less Less Less Less Tota Otal Crop	552,040 1,307 221,398 223,233 347,687 198,394 37,451 60,291	552,040 1,223 264,637 580 266,440 285,600 138,232 96,273 28,594	•
Other land	47,614	7,613	

to * The failure of these two figures to add up to total area is due discrepancies in original data.

** Part of decrease in rangeland and (especially) forest land acreages is due to difference in interpretation of land uses in 1958.

Needs Inventory Committee, 1970). Over 60,000 acress were taken out of row crop cultivation during this time, and pastureland increased by nearly 59,000 acres. Rangeland decreased by nearly 32,000 acres and forest land by almost 35,000 acres. "Other lands", including farmsteads and rural land for residences, increased nearly 6,000 acres.

An appraisal of potential for outdoor recreational developments in Dallas County (Anonymous, 1967a) stated that the large population of the county causes potential to be high for some outdoor recreational enterprises. At the same time, however, the dense population and urban build-up adversly affect other enterprises which depend to a great extent or the natural environment. A high potential was judged to exist for play and target areas, bicycling, picnicking, golf courses, and riding stables. Fishing and water sports have only medium potential due to the limited lakes and impoundment sites and the already heavy use of existing areas. Medium potential is said to exist for vacation homes, limited mainly by the few available water areas. Overall, Dallas County is a consumer rather than a supplier of outdoor recreation.

Methods and Procedures

Three study sites comprised Study Area 2 (Pig. II-02). The more undisturbed plant communities were selected to represent the woody vegetation of this area. The position of study transects is presented in Figure II-02. A total of 600 plots (5m²) were analyzed with two hundred being located in each study site.

Description of Study Sites

Site 1 was located east of the Trinity River between the river and Dowdy Ferry Road (Fig. II-02). It was a flat, poorly drained site in the vicinity of a small creek. Water stands in much of the area after heavy rains. Site 2 was characterized by a greater habitat diversity as a result of a slightly elevated and better drained area bordering a wet flat. This site was located just east of the junction of Dowdy Ferry Road and the Trinity River (Fig. II-02). The forest has not been logged for many years as a result of its preservation by the Dallas Hunting and Fishing Club. Site 3 was a forest within the Pin and Peather Club area and was located between the northern end of the Fin and Peather Club Lake and the Trinity River (Fig. II-02). The was flat with occasional, shallow, water-filled depressions. These depressions are probably dry during most of the summer and fall. The area was selectively logged in 1972 resulting in the removal of many large trees.

The state of the s

The state of the state of the

<u>Results</u>

Site 1

The forest comprising the 1 was rather uniform in species composition with only 10 species being recorded. Texas sugarberry (Celtis laevigata), codar elm (Ulmus crassifolia), swamp privet Forestiera accusinata) and green ash (Fraxinus pensylvanica) were by far the dominant species (Table II-02). Onage orange (Maclura pomifera), soapberry (Sapindus saponaria) and honey locust were only occasionally observed. Most trees in the area were less than 30 cm in diameter at breast height (Table II-03). Some large cedar elm and green ash trees were present. Except for a few dense populations of cedar elm, the shrub layer was generally open. Empirical observation indicates that the herb layer was composed primarily of sedges (Carex spp) with frequently occurring plants of buttercup (Ranunculus carolinianus) and crow poison (Nothos:ordus bivalve).

Site 2

The habitat diversity at Site 2 resulted in a greater species diversity as indicated by the recording of 30 species. Understory vegetational layers were also more dense and diversified. The principal tree species in the area were green ash, cedar elm, deciduous folly (Ilex decidua) and roughleaf dogwood (Cornus Drummondii) (Table II-04). Shumard red oak (Quercus Shumardii), pecan (Carya illinoinensis), eastern red cedar (Juniperus virginiana) and elm (Ulmus spp.) were prevalent associated species. Tree diameters were generally less than 50 cm although a few larger trees were recorded (Table II-05).

Site 3

Pecan was the dominant species at Site 3 associated with cedar elm, deciduous holly, Texas sugarberry and roughleaf dogwood (Table II-06). The forest understory was somewhat open and contained a rather uniform herb layer of sedges and violets (Viola spp.). Large trees present were mostly pecan (Table II-07). There was a fairly good species diversity at Site 3 with 25 species being recorded.

STUDY AREA 5

Introduction

Study Area 5 was situated on the floodplain of Richland Creek in south-central Navarro County west of the Trinity River. Hore exactly, it was located south of the

Total Statement Selection (

Table II-02. Prequency, density and dominance data for plant species located in Site 1.

					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ļ
Species	Kreauency K	Relative Frequency	Density No./Plot	Relative Density	Relative Dominance	Importance Value*	
1tis_1a	58.0	6	3. 19	п 6п	10 6		•
LBUS_CEASSIfoli	47.5	24.5	1.27	19.7	33.6	200,	
orestrer	42.5	- :	1.24		12.6	, . , .	
Fax I Dus Pensy I van i	30.0	Š.	0.48		24.8) = 1) L	
dCLUE DOBLIEFA	7.0	3.6	0.09				
erimenodes Saponeria	2.0	2.6	0.14		3,0		
Legitsia triacan	2.0	1.0	0.03		0 -	, c	
	1.0	0.5	0.01		1 0	n a	
dds sner	0.5	0.3	0.01	0.1	* *) a	
	0.5		0.01		***	, a 	
Total	· · · · · · · · · · · · · · · · · · ·	100.1	6.47	100.1	100.0	300.2	
							,

* Sun of relative frequency, relative density, and relative dominance.

** May include Ulaus americana and U. rubra.

*** Value less than 0.1%.

Table II-03. Size classes (ubn) of plant species Located in Sate ...

Species	i 1 1 1 1 1	(Size	Classes (cm)	(CB)			
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	7:1-80	81-90	06<
Celtis laevigata Uless Crassifolia Forestiera acuminata Eratinus pensilvanica Baclura Pomifera Sapindus Saponaria Gleditsia triacanta Cleus Spp.*	579 278 278 27 27 27	220000000000000000000000000000000000000	91000	6 N	7 -		-	·		
Total	1063	145	55	=	m	2	-	! ! !		

* May include UlBus_americana and U_Eubra.

? Site species located in plant Table II-04. Prequency, density and dominance data for

1

ŧ

ресі	Frequency	Relative Prequency	Density No./Plot	Relative Density	Relative Dominance	Importance Walue*	
Prakinus Pensylvanica Ulaus Crassifolia Ller decidua Cornus Drumandii Cuercus Shumardii Curra illipoinensis Juniperus Wirginiana Ulaus Spp. **	29 420 51.5 63.5 80 90 17.5	32-20-00-00-00-00-00-00-00-00-00-00-00-00	2. 70 0. 83 1. 68 0. 10 0. 12 0. 12 0. 12 0. 12 0. 12 0. 12	26.7 16.6 19.7 10.7 1.1 1.2 18.5	6.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0	80.55 9.50 9.50 9.50 9.50 9.50	
Total		100.0	10.15	99.5	3.00.	C.882	
							}

Sum of relative frequency, relative density, and relative dominance.

** May include Ulmus americana and U.rubra.

Cercis canadensis. Populus deltoides. Quercus spp. (includes Quercus stellata and Q similis). <u>Tratinus americana. Morus rubra. Quercus macrocarpa. Sapindus Saponaria, Ulmus alata. Callicarpa americana. Morus rubra. Quercus macrocarpa. Sapindus Saponaria. Ulmus alata. Callicarpa americana. Diospyros virginiana, Viburnum rufidulum, Carya texana, Bumelia lanuqinosa, Gleditsia triacanthos, Amorpha fruticosa, Prunus mexicana, Treex agons castus, Zanthoxylum clava-ferculis, Rhamnus lanceolata.</u> species present listed in order *** Other

Table II-05. Size classes (dbh) of plant species located in Site 2.

Sutpads					Size	Classes	S (CB)			
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	06<
Praxinus pensylvanica Ulmus crassifolia	531	0#	15	3	2 1		i f l i		 	
	335 397	-	a "	\$ \(\frac{1}{2} \)	S		-			
ां जिल	15 12 12		. ~ ~ 1 m	, m=	· -	, ,				
0 0 0 0 0 0 0 0 0 0	41 330	L 2	4	٢	~	C!	-		-	
Total	1823	06	5.8	26	12	=	2		-	

* May include Ulaus americana and Ucrubra.

** See Table II-04 for a list of other species present.

Site بر: د: species located plant dominance data for Table II-06. Prequency, density and

Species	Frequency *	Relative Prequency	Density No./Plot	Relative Density	Relative Dominance	Importance Value*	! !
이 에 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	34.0 43.0 57.0 39.5 17.5 12.0 5.5	9.6 1.6.1 1.0.0 1.	0.40 0.67 1.14 0.80 1.39 0.18 0.23 0.30 0.30	222.22.22.22.22.22.22.22.22.22.22.22.22	86.0 2.0 6.0 6.0 7.1 8.1 8.1 8.1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
Tota1		99.8	6.26	6.66	100.0	299.7	! 1

and relative dominance. relative frequency, relative density, **4** E:

Hay include Ulaus americana and U_rubra.

Shumardila Sapindus Saponaria, Maclura pomitera, Bumella lanuganosa, ACSA ACSA Reservations americana, Viburnum rufidulum, Prunus mexicana, Amorpha fruticosa, Diosellos Virginiana, Gleditsia triacanthos, Cercis canadensis, Ligustrum sore, Porestiera acuminata, Populus deltoides.

rable II-07. Size classes (dbh) of plant species located in Site 3.

Species					Size	Classes (CE)	S (CB)			
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	06 <
Carra illinoipensis Ulans crassifolia	9	11	36 13	≅ iv	v -	3				
Liber designed of the Collins of the	107 107	89	.	1						
ed rectarday and	- 41	8 4 4 4	75	888	t 0		-			
FEBX1048_Peb871730153 E0548_54058 Others**	14.2 14.2	0 TT 00	~ •	-	-		-	-		
fotal	959	162	69	30	13	3	2	-		

* May include Ulmus_americana and urubra.

** See Table II-06 for a list of other species present.

THE PROPERTY OF THE PARTY OF TH

junction of the Chicago, Burlington, Rock Island and Pacific Railroad and Richland Creek at an elevation of about 295 feet above sea level. Pield data were collected in the spring of 1973.

The immediate study sites had a flat topography intersected by several smaller creeks and drainages. Geologically, the area was composed of Alluvium deposits of Recent origin within the Quaternary Period. Trinity (lay comprised the soil of the study area. The soil, because of its frequent flooding, is poorly suited for dwellings or intensive recreational use. It is well suited for pind reservoir areas, and has fair suitability for wildlife, woodland and pasture or range (U.S. Department of Agriculture, unpublished data).

The study sites are forested whereas surrounding, more elevated areas have been cleared for pasture. Cattle grazed within the study area.

Land_Use

Navarro County had a 1970 population of 31,150, coun from the 1960 population of 34,423 (Texas Almanac, 1971). Over half of the county's population (19,972 inhabitarts) lived in Corsicana, the largest town and the county scat. Some 4500 more people lived in smaller towns of less than 1,000 inhabitants. The economy of the county is based chiefly on agribusiness, industry, and oil. Of the county's \$82,430,000 total income, \$14,500,000 was farm income. Eighty percent of this was derived from beef cattle and poultry, while grain sorghums, cotton and hay were the leading crops.

Only about 6% (39,865 acres) of the county's total 695,488 acres were classified as non-commercial (Table II-08) (Navarro County Conservation Needs Committee, 19.7). Between 1958 and 1967 about 10,000 acres changed from commercial to the non-commercial classification, chiefly due to the acquisition of about 8500 acres by the Pederal government. In this same period, there was an approximately 42% (over 225,000 acres) decline in cropland acrese. Forestland area in this period declined from over 110,000 acres to less than 39,000, a drop of about 71,400 acres or almost 65%. At the same time, the classification mother land increased by 1200 acres from 2,620 to 3,816 acres. Pasture, however, made striking gains, increasing from a relatively small acreage of 27,199 acres in 1958 to 314,671 acres in 1967, an increase of about 287,500 acres or

(from Navarro County Conservation Needs Committee, 1967.) Table II-08. Navarro County land area (in acres).

Land Use	1958	1967
Total land area* Less: Federal non-cropland Less: Urban and built-up Less: Small water areas Total non-commercial area	693,760 0 21,873 7,900 29,773	695,488 8,492 22,973 8,400
Total commercial farm and forest area Cropland Pasture Range Forest Other land	663,987 524,049** 27,199** 110,119** 110,119**	655,623 298,545** 314,671** 27,989** 38,591**

different Total land * The acreage difference in total land area is due to a system of measuring land use by the Bureau of the Census. area excludes water areas over 40 acres in size. ** The failure of these figures to conform to their respective totals is a result of discrepancies in the original data.

approximately 1157%. Rangeland acreage also increased from 8,565 acres in 1958 to 27,989 by 1967, up some 19,400 acres or about 325%. In 1967, pasture and rangeland together made up about 49% of Navarro County's total land area.

An appraisal of potential for outdoor recreational developments (Anonymous, 1967c) concluded that Navarro County offers moderate attractions to recreation seekers. An asset is the county's location within an hour's drive of both Dallas and Waco. Unfavorable factors include a hot summer climate, the relatively small area of woodland and wildlife habitat, and the heavy clay soils which make off-pavement access almost impossible after heavy rains.

Due to the presence of a number of reservoirs and flood control impoundments, fishing headed the list of potential recreational pursuits with a high medium rating. Medium potential was seen for vacation cabins and homesites, camping grounds, picnicking and field sports, standard and par-3 golf courses, small game hunting, scenic and historic areas, vacation farms, and water sports areas.

Navarro County cannot offer the quality of recreation that draws visitors to Polk, San Jacinto and Liberty counties along the lower Trinity River. According to local residents, however, Dallasites are buying land for vacation homes in Navarro County and land prices have risen noticeably as a result.

Methods and Procedures

Three study sites comprised Study Area 5. The more undisturbed plant communities representing the woody vegetation of the area were selected for analysis. Positions of transects are presented in Figure II-03. A total of 700 plots (5m²) were analyzed, 300 in Site 1 and 200 each in Sites 2 and 3.

Description of Study Sites

All three study sites were located on a flat floodplain subject to occasional overflow. Howing water 1 to 2 feet deep covered the entire Study Area when sampling was begun but receded within 4 or 5 days. Plooding is controlled to an extent by the Navarro Hills Reservoir on upper Richland Creek. Selective cutting of large trees, mainly bur oak (Quercus macrocarpa), for barrel staves about 25 or 30 years ago represent: the latest logging operation.

Figure II-03. Showing sites 1,2, and 3 and the position of transects within these sites.

1.000

Site 1 was located west of the railroad tracks and south of Richland Creek (Fig. II-03). Water stands in occasional depressions following flooding. Site 2 was characterized by the presence of a shallow swamp as well as somewhat better drained areas with an occasional wet depression. This site was located across a small creek south of Site 1 (Fig. II-03). Site 3 was east of the railroad tracks opposite Site 2 (Fig. II-03). It had water standing in depressions and was transected by an intermittant creek.

Results

Site 1

Only eleven woody plant species were recorded at Site 1. This forest contained a preponderance of Texas sugarberry (Celtis laevigata) associated with occasional trees of cedar elm (Ulmus crassifolia) (Table II-09). Green ash (Fraxinus pensylvanica) and swamp privat (Forestiera acuminata) were mostly confined to wet locations. Probably as a result of flooding and grazing, the forest showed comparatively little regeneration with most species having fewer trees in the 1-10 cm size class (Table II-10). Only occasional trees of cedar elm, green ash and bur oak had diameters at breast height greater than 40 cm. The shrub layer was generally lacking, allowing for a good growth of herbaceous plants. Ground cover was mostly wild rye (Elymus sp.) And wild onion (Allium sp.).

Site 2

At Site 2, Texas sugarberry was still by far the dominant species (Table II-11). Cedar elm was only occasionally observed. Green ash and swamp privet were common in the wetter areas. Only nine woody species were recorded at Site 2. Wild rye and wild onion were prevalent as a result of an open understory. The forest was composed mostly of medium-sized trees in the 11-20 and 21-30 cm size classes (Table II-12). Tree density was low as indicated by the presence of only 2.4 trees per plot.

Site 3

Site 3 was somewhat more open than Sites 1 and 2. Only 1.16 trees were recorded per plot (Table II-13). Twelve woody species were recorded in this study site. Texas sugarberry was the dominant species but less strongly so than in the other two sites. Cedar elm and green ash were relatively more abundant (Table II-13). Wild rye and wild onion comprised most of the ground cover. Most trees present were of medium size (Table II-14).

Table II-09. Prequency, density and dominance data for plant species located at Site

Species	Frequency S	Relative Frequency	Density No./Plot	Relative Density	Relative Dominance	Importance Value*
Celtis laevigata	61.3	62.0	1.00	# 09	5	188.2
Ulaus crassifolia	11.7	11.8	0.13	80	20.2	39.8
Porestiera acuminata	4.3	3. 4	0.24	14.5	-	20.0
Praxinus_pensylvanica	2.0	5.1	0.08	9.4	4.7	16.4
Bunelia lanuginosa	5.7	5.7	0.08	5.0		13.5
Sapindus Saponaria	3.3	3.4	0.04	2.6	1.3	7.3
Crataegus spp.	3.7	3.7	0.0	2.2	0.5	4.9
Proling abelicana	2.3	2.4	0.02	1.4	1. 8	5. 6
OROLCUS BACLOCALDA	0.7	0.7	0.01	a.0	•	2.7
Borus rubra	0.7	0.7	0.01	7. 0	0.1	1.2
Gleditsia_triacanthos	0.3	0.3	*	0.2	*	0.5
Total		100.2	1.65	99.5	6.66	299.6

* Sum of relative frequency, relative density, and melative dominance.

** Value less than 0.01.

*** Value less than 0.1.

Table II-10. Size classes (dbh) of plant species located at Site 1.

	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	>90
Celtis laevigata Ulaus crassifolia	24	154	107	17 16	5					
Porestiera acuminata Pratinus pensylvanica Bumelia lanudinosa Sapindus Saponaria	F 9 7 3		70 t		-				÷	
Crataegus spp. Rearinus americana Quercus macrocarpa Horus rubra Gleditsia triacanthos	9	w m	«		-			-		
Total	127	193	134	36	,					İ
	1	1	!						!	

Table II-11. Prequency, density and dominance data for plant species located at Site 2.

Í

Species	Frequency	Relative Frequency	Density No./Plot	Relative Density	Relative Dominance	Importance Value*
Celtis laevigata	1	55.1	1.40	58.9	61.4	175.4
Fraxinus pensylvanica	24.5	19.8	## 0	18.4	21.4	59.6
Vlaus crassifolia		10.1	0.17	7.2	10.4	27.7
Forestiera acuminata	Ġ	5.3	0.25	10.3	0.8	16.4
Bunelia lanudinosa	s.	4.5	90.0	2.5	7.4	7.0
Quercus Bacrocarpa		2.0	0.03	1.1	3.6	6.7
Sapindus Saponaria	2.	1.6	0.02	0.8		3.0
Crataeque spp.		1.2	0.02	9.0		2.2
Gleditsia triacanthos	•	0.4	0.01	0.2	*	9•0
Total		100.0	2.40	100.0	100.0	300.0

* Sum of relative frequency, relative density, and relative dominance.

** Value less than 0.1.

Table II-12. Size classes (dbh) of plant species located at Site 2.

Species					Size	Size Classes (cm)	(CB)			I
	1-10	1-10 11-20 21-30 31-40	21-30	31-40	41-50	51-60	51-60 61-70	71-80	81-90	^
Celtis laevigata	24	160	81	14		9 1 1 1 1	i 1 1 1 1 1	† † 1 1	 	
Tratings pensylvanica Ulmus crassifolia	34	9 2 5	21	<u></u> 5	7					
Porestiera acuminata Bumelia labuginosa	+	122	. ~	•						
OBSECTS BSCLOCALPS		. ~	•	v						
Crataegus spp. Gleditsia_triacanthos	** *	~								
Total	118	204	114	36	2					

Table II-13. Prequency, density and dominance data for plant species located at Site 3.

							- 1
Species	Frequency	Relative Frequency	Density No./Plot	Relative Density	Relative Dominance	Importance Walue*	
Celtis laevigata Ulmus rissifolia Etaxinus pensylvanica Bumelia lanuginosa Overcus macrocarpa Crataegus SPP: Gleditsia triacanthos Motus rubra Maclura pomifera Sapindus Saponaria	000 000 000 000 000 000 000 000 000 00	234 199.7 199.7 199.7 199.7 199.7 199.7	0.022882335	80 00 00 00 00 00 00 00 00 00 00 00 00 0	37. 29.7. 47.66. 7.7. 7.7. 60.8.	111.8 56.2 119.1 10.2 3.6 3.6 1.0	
Total		6.66	1.16	8.66	100.0	299.7	: :

* Sum of relative frequency, relative density, and relative dominance.

** Value less than 0.1.

Ilex deciduat *** Other species present listed in order of decreasing importance values: Porestiera_acuminata.

Table II-14. Size classes (dbb) of plant species located at Site 3.

					Size	Size Classes (cm)	(CB)			
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	064
Celtis laevigata Ulaus Crassifolia Frazinus Pensylvanica Ouercus macrocafpa Graficala triacanthos Graficala triacanthos Grafical triacanthos Sanindus Saponaria Others*	N440 085454	212 212 212 212 212 212 212 212 212 212	27 12 20 20 6	10 10 10 10 10 10 10 10 10 10 10 10 10 1	m	8	•			
Total	age.	95	67	25	m	8	1			
	1									

* See Table II-13 for a list of other species present.

STUDY AREA 7

Introduction

Study Area 7 was located in southeastern Leon County just west and north of the junction of Lower Keechi Creek and the Trinity River (Fig. II-04). Study sites were situated within the floodplain of the Trinity River, on the adjacent slope to upland, and on the more level upland. Collection of data was accomplished during the spring of 1973.

Topographically, the study sites varied from nearly flat, poorly drained floodplain to the more elevated slope and ridge areas. Geologically, the area is composed of Alluvium deposits of Recent origin within the Quaternary Period. Included perhaps are some Deweyville deposits as well as a few small inliers of Tertiary formations. Pluviatile terrace deposits of Pleistocene origin within the Quaternary Period were also present.

In the vicinity of the junction of Lower Keechi Creek and the Trinity River, the major soil types are the Tuscumbia, Travis and Bienville loamy fine sand. Probably the most extensive soil is the Tuscumbia, which is similar to Kaufman Clay. This soil occupies nearly level, slightly concave bottomland flood plains. This somewhat slowly drained soil is poorly suited for dwellings, sewage systems, local roads, most recreational uses, and cropland. It is well suited for woodland and wetland wildlife and for pond reservoir areas and is fairly well suited for grassland and woodland (U.S. Department of Agriculture, unpublished lata).

The Travis soil occupies the slope area between the low, poorly drained Tuscumbia soil adjoining the creek and the more elevated and level Bienville loamy fine sand soil. The degree of slope (5-12%) hinders the utility of this soil for some uses.

The Bienville loamy fine sand soil occupies the most elevated portions of the study area, occurring on the broad, nearly level to gently sloping crests west of Lower Keechi Creek. This soil is somewhat excessively drained as a result of a low moisture holding capacity and is seasonally droughty during the summer and fall months. It is well suited for dwellings, septic tank filter beds, local roads and streets, and light industry. It has fair suitability for camp and picnic areas, playgrounds, most

3 and the position of transects within Figure II-04. Showing sites 1,2, and these sites.

and the second

wildlife and woodland. Although the Bienville loamy fine sand soil was classified as poorly suited for cropland and grassland, some parts have been cleared for pasture in the vicinity of the study area.

The three study sites were forested, but some nearby land has been cleared for pasture. Grazing by cattle of the entire area was evident.

Land_Use

The number of inhabitants of sparsely populated Leon County dropped from 9,951 in 1960 to 8,738 in 1970 [Texas Almanac, 1971]. Buffalo, the largest town in the county, had a population of 1,242 in 1970 while Centerville, the county seat, had 831. Less than 3400 people lived in towns in 1970 in Leon County. The economy is based on agriculture. Of the \$16,724,000 total income, \$10,000,000 was farm income, while minerals, chiefly oil and gas, contributed \$4,645,000. Eighty percent of the agricultural income is derived from livestock. Cotton, grain, melons and peas are the main crops.

Of the more than 693,000 acres of land in Leon County, less than 12,000 acres were classified as non-commercial in 1970 (Table II-15) (Leon County Conservation Weeds Committee, 1970). Between 1958 and 1967, non-commercial area increased from 9,865 acres to 11,556. Most of the increase was in the urban and built-up category, representing fringe growth of the small towns and an influx of people, mainly from Houston, into recreation areas.

of the county's total area, over 48% was in pasture and range in 1970. Between 1958 and 1967, pastureland acreage increased from 99,177 acres to 320,100 acres while range jumped from 4,115 to 17,075 acres. Most of the gain was at the expense of cropland, which fell from 150,593 to 61,292 acres, and of forest, which dropped from 434,363 acres in 1958 to 292,800 acres in 1967. The classification "other land" dropped almost 50%, from 5,208 acres to 2,189 acres. With the county's loss of population and the trend away from intensive row cropping and toward cattle raising, the number of farmsteads has apparently declined.

Leon County can be expected to see future development of certain areas for outdoor recreation. An appraisal of potential for outdoor recreational development in Leon County (Anonymous, 1967b) predicts a high potential for picnicking and field sports, transient camping, fishing,

The second second second

Land IIse	1958	1967
Total land area	703,320	705,012
Less: Pederal non-cropland	0	0
Less: Urban and built-up	8,824	10,156
Less: Small water areas	1,040	1,400
Total non-commercial area	198'6	11,556
Total commercial farm and forest area	693, 456	693,456
Cropland	150,593	61,292
Pasture	99, 177	320,100
Bange	4,115	17,075
Porest	434,363	292,800
Other land	5,208	2,189

deer hunting, riding stables, and shooting preserves. Vacation cabins and homesites, as well as water sports areas, received a high medium rating. Perhaps due to the lack of proximity to large reservoirs for fishing and boating, weekend home building has not yet experienced the boom as witnessed in Polk, San Jacinto and Liberty counties along the lower Trinity River.

Methods and Procedures

Study Area 7 was comprised of three study sites (Fig. II-04). The more undisturbed plant communities were selected to represent the woody vegetation of the area. Transects were positioned as shown in Figure II-04. A total of 800 plots (5m²) were analyzed, 300 each at Sites 1 and 2 and 200 at Site 3.

Description of Study Sites

Site 1 was located on a slope and level ridge west of Lower Keechi Creek and north of its junction with the Trinity River (fig. II-04). Transects were located along contours on the ridge and one-third and two-thirds of the way down the slope. The area was well drained and supported a greater habitat diversity than the other two study sites. Site 2 was in a cedar elm flat west of Lower Keechi Creek and north of the Trinity River (fig. II-04). The site was poorly drained and showed evidence of flooding. Several permanently ponded or excessively moist areas were present. Site 3 was composed of a more rolling topography traversed by several drainages and an intermittant creek. It was located adjacent to the river west of Lower Keechi Creek (Fig. II-04).

Results

Site 1

The forest at Site 1 had a more varied habitat than the other two sites at Study Area 7 and, with 34 woody species recorded, the greatest diversity of species. American beautyberry (Callicarpa americana) dominated the understory shrubs on both slope and ridge areas. Along the ridge, post oak (Quercus stellata) and black hickory (Carya texana) were dominant tree species while farkleberry (Vaccinium arboreum). Indian cherry (Rhamnus caroliniana), sweetgum (Liquidambar Styraciflua) and flowering dogwood (Cornus florida) were less abundant woody species. Post oak was still dominant on the upper portion of the slope.

-

Alundant associated species were black walnut (Juglans nigra) and sweetgum. Black hickory was less frequent. Two-thirds of the way down the slope, eastern redbud (Cercis canadensis), winged elm (Ulmus alata), black walnut, sweetgum and red oak (Quercus falcata) occurred with nearly equal abundance.

Table II-16 is a summary of the woody vegetational data gathered at Site 1. Overall, American beautyberry was the dominant understory species and post oak the dominant overstory species (Table II-16). Black hickory, sweetgum and black walnut were also prevalent. Host individuals were less than 40 cm in diameter at breast height (Table II-17). Only two recorded trees of post oak and one of sweetgum exceeded 50 cm in diameter.

Site 2

Site 2 was strongly dominated by cedar elm (Ulmus <u>crassifolia</u>) in the overstory and by deciduous holly (llex decidual in the understory (Table II-18). Buch abundant were willow oak (Quercus Phellos), honey locust (Cleditsia triacanthos), hawthorn (Crataegus spp.) and Texas sugarberry (Celtis laevigata). Permanently ponded or excessively wet areas were dominated by swamp privet (<u>Forestiera acuminata)</u>, overcup oak (<u>Quercus lyrata)</u>, green ash (Praxinus pensylvanica) and water locust (Gleditsia aquatica). Except for thickets of swamp privet in portions of the wet areas, the forest was open. Sedges (Carer spp) comprised much of the herbaceous layer. Host trees at Site 2 were less than 40 cm in dbh (Table II-19). There were, however, a few widely scattered individuals of cedar elm, willow oak and overcup oak with larger diameters. Seventeen woody species were recorded at Site 2.

Site 3

Fourteen woody species were recorded at Site 3, with Texas sugarberry, cedar elm and pecan (Carya illinoinensis) being the principal species (Table II-20). Deciduous holly and swamp privet were the dominant understory species. Swamp privet, green ash and waterlocust dominated the occasional wet areas. The forest was generally open except along the river where greenbriar (Smilax spp.) and blackberry (Rubus spp.) formed dense clumps. Host trees had dbh less than 50 cm (Table II-21). Only 1.87 trees per plot were recorded.

Table II-16. Preguency, density and dominance data for plant species located in Site

	100000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11 11 11 11 11 11 11 11 11 11 11 11 11		1 1 2 2 4 5 1 1 1	į
Species	Frequency	Relative Frequency	Density No./Plot	Relative Density	Relative Dominance	Importance Value*	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			• • • • • • • • • • • • • • • • • • •			i
ail	0.48	31.4		48.2	1.9	81.5	
3	14.7	5.5		3.5	29.4	38.4	
-	13.7	5.1		3.0	12.7	20.8	
.~	9.3	3.5		2.5	12.5	18.5	
uqlans nigra	15.0	5. 6			6.9	15.9	
ĭ	15.7	5.9		5.9	1.2	13.0	
Cercis canadensis	14.0	5.2	0.24		1.5	11.6	
Oi	17.3	6.5		t, 5	9.0	11.6	
ä	F 0 *	ਂ ਹ			2.0		
ă	7.0	5.6			9.4		
┰		24.5			26.8		
	t 1 1 1 1 1 1 1 1						
lotal	\$ \$	99.8	£. 49	- 200		300.0	

relative frequency, relative density, and relative dominance. Sum of

Ulaus crassifolia, Fraxinus americana, Rhamnus caroliniana, Quercus marilandica, Sassafras albidum, Celtis laevigata, Ulmus spp. (includes U. americana and U. rubra), Bumelia lanugimosa, Tilia americana (includes T. Caroliniana and T. floridana), Carya cordiformis, Jlex decidua, Nyssa sylvatica, Fraxinus pensylvanica, Ilex vomitoria, Horus rubra, Quercus pigra, Platanus occidentalis, Hyrica cerifera, Crataegus spathulata, Crataegus spp., Zanthoxylum Clava-herculis, Crataegus Harshalli, Diospylos virginlana. florida of decreasing importance values: Cornus Other species present listed in order

Table II-17. Size classes (dbh) of plant species located at Site 1.

						111111				
Species					Size	Classes (cm)	s (cm)			
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	>90
Callicarpa americana	7			•	1	 	,	# # # # # # # # # # # # # # # # # # #	: - - - -	
Quercus stellata	10	13	æ	19	-	7				
Carra texana		6	16	#						
Liguidambar Styraciflua		æ	S	Ŋ	-	,-				
Juglans nigra		6	đ	7						
Vaccinium arboreum			•							
Cercis canadenses		J								
Forestiera liqustrina		7								
Ulmus alata		₽	_							
Ouercus falcata		7	-	_	7					
	198	20	7 (80	••					
	+++		9			-	, , ,			
Total	1305	16	20	39	S	m				
		1								

* See Table II-16 for a list of other species present.

Table II-18. Frequency, density and dominance data for plant species located in Site 2.

	Frequency	Relative Prequency	Density No./Plot	Relative Density	Relative Dominance	Importance Value*
- 비의 의 의 의 리 의 의 의 의 의 의 의	223 213 223 223 223 233 233	22 27 27 27 27 27 27 20 27 20 20 20 20 20 20 20 20 20 20 20 20 20	0.30 0.10 0.10 0.18 0.03 0.03	122 17.1 13.0 13.0 13.0 14.1	60. 13.22 20.03 4.10 20.03 7.11	15.2 16.9 17.7 10.1 15.9 15.2 15.2
Total		6*66	1.35	100.0	100.0	299.9

Sum of relative frequency, relative density, and relative dominance.

Bunelia Planera aquatica, density of 0.01 values: decreasing importance Carra illinoinensis, Sophora affinis, not included in column totals, had a order of in lanuginosa, Diospyros virginiana, Crataegus spathulata, Sabal minor, individuals per plot. present listed ** Other species

Table II-19. Size classes (dbh) of plant species located at Site 2.

Species					Size	Classes (CB)	s (cm)			
	1-10	11-20	21-30	31-40	4 1- 50	51-60	61-70	71-80	81-90	¢64
Ulbus crassifolia	11	10	37	29	9					
Weercus Phellos Gleditsia triacanthos	56	- 50	-	-	-	7	-			
Crataeque spp. Forestiera acuminata Ouercus lyrata	2,0	ഗ	4	m	gen-					
reatous pensylvanica Celtis lagatigata Gleditsia aguatica Others*	1306	.1 04.	· · • · · · · · · · · · · · · · · · · ·	1010						
Total	291	26	# #	39	S	2	-			

* See Table II-18 for a list of other species present.

Table II-20. Frequency, density and dominance data for plant species located at Site 3.

bec	Prequency %	Relative Frequency	Density No./Plot	Relative Density	Belative Dominance	Importance Value*	
Celtis laevidata	30.5	31.0	0.61	33.3	17.7	82.0	!
Ulaus Crassifolia	18.5	18.8	0.29	15.8	33.2	67.8	
Carva illinoinensis	5.5	5.6	0.07	3.8	25.3	34.7	
a acumina	7.5	7.6	0.39	21.3	3.1	32.0	
dua	15.5	15.7	0.23	12.3	2.1	30.1	
Praxinus pensylvanica	O .	t.,	0.04	2.2	11.0	17.3	
aquatica	7.0	7.1	0.08	4.1	3.5	14.7	
spp.	0.4	4.1	0.05	2.5	9.0	7.2	
	2.5	2.5	70.0	1.9	9.0	5.0	
	C)	O	0.02	-	2.3	3. 3	
		2.5	0.05	1.7	9.0	æ •	
Total		100.0	1.87	100.0	100.0	300.0	1

Sum of relative frequency, relative density, and relative dominance.

** Other species present listed in order of decreasing importance values: <u>Ulbus</u> (includes <u>U. americana</u> and <u>U. rubral. Sophora affinis. Acer. negundo. Vaccinium arboneum.</u>

* See Table II-20 for a list of other species present.

Table II-21. Size classes (dbh) of plant species located at Site 3.

	1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-				 	
Species	1-10	11-20	21-30	31-40	Size 41-50	Classes 51-60	s (cm) 61-70	71-80	81-90	064
Celtis laevigata Ulmus crassifolia Carra illinoinensis Porestiera acuminata	97 74	<u> </u>	m 6	2 6 6	. 4		-		2	
Iler decidue Tratinus pensylvanica Gleditsia aquatica Crataequs spp.	a V ഗ സ ത	- 77	-	~	N	-				
Gleditsia triacanthos Bumelia lanuginosa Others*	ഗനയ	7 7	#		~					
fotal	280	07	11	19	9	-	-		2	

STUDY AREA 8

Introduction

The objective of this phase of the study was to analyze the woody vegetation of two swamps and associated terrestrial forests located in the vicinity of the Trinity River. Field work was accomplished during the fall of 1972. The study area was situated within San Jacinto County in southeast Texas. More specifically, it is located in the extreme eastern part of San Jacinto County between Shepherd, Texas and the Trinity River (Fig. II-05).

The topography of the area is flat to very gently rolling and occasionally characterized by the presence of depressions, sloughs and creeks. Geologically the area is composed of Alluvium deposits of Recent origin within the Quaternary Period. There are many small inliers of Tertiary along minor streams outcroppings of formations and Deweyville and Pleistocene formations occur. The Deweyville Formation lies along the western edge of the stady area. There are three soils present, the Tuckerman loam, Bernaldo fine sandy loam, and the Kaufman clay (U.S. Department of Agriculture, unpublished data). The Tuckerman soils eccupy nearly level concave areas and are generally poorly drained and ponded. They are poorly suited for dwellings, general recreation use, cropland or grassland but are suited for pond reservoir areas and woodland and wetland wildlife. The fine sandy loam soils occupy well-drained, Bernaldo slightly sloping sites generally adjacent to Tuckerman soils in our study area. They are suited for dwellings, woodland, grassland, cropland and wildlife. The Kaufman clay soils occupy the somewhat poorly drained bottomland tloodplain areas. They are slightly better drained than the Tuckerman soils but are suited primarily for pond reservoir areas and woodland and wetland wildlife. They have some potential for grassland.

The vegetation of the study area was mostly woodland occupying both aquatic and terrestrial sites. Cleared sites within the study area were generally associated with roads and pipelines but more upland surrounding areas contain larger acreages of pasture and cropland. Grazing by cattle was evident and it appeared that all of the study area had been logged. Some swamp areas have not been logged since the early 1920's but other areas have been selectively logged within recent years.

Showing the study area in relation to the Trinity River. Figure II-05.

Land_Use

San Jacinto County is mainly a rural area, with less than 1900 people living in the two largest towns in the county. Most of the land is forested (Table II-22). Out of 399,360 acres, some 258,100 acres were in commercial forest in 1967, with an additional 58,59, acres of National Forest within the county. Between 1958 and 1967, cropland acreage declined by over 75%, while tores area declined about 10%. Pastureland acreage increased six times over, however, from 10,625 acres to 67,117 acres (Conservation Needs Committee, 1967).

Within easy driving distance of Houston and the coastal population concentrations, bordering Lake Livingston, and containing part of San Houston Mational Forest, San Jacinto County can expect to be increasingly affected by demands for outdoor recreation. An appraisal of potential for outdoor recreational developments in San Jacinto County (Miller, et al., 1367) indicated that water and fishing, vacation cabins, cottages and homesites, small and big game hunting, and campgrounds for transient camping and vacation sites have especially high potential for development.

The area of land used for pasture will probably slowly increase at the expense of cropland and forest. The major change will probably be in land ceveloped for weekend and retirement homes. Polk and Liberty counties are already experiencing such a boom.

Within the study area, only the Bernaldo fine sandy loam soil, making up about a fourth of the total area, favors diversion of the land from forest to grassland, cropland, or housing developments. It is probably inevitable that suitable land of this type near the river will eventually be developed for weekend and retirement homes as has already been done in Polk County on the opposite bank. Large scale development might include almost all of this well-drained soil. The Kaufman clay and Tuckerman loam soils, however do not lend themselves to uses more intense than timber, grazing, and wildlife. The current practice of grazing sattle beneath the forest during drier periods will likely remain the chief use of most of the area in the near future.

distante dependent visit

Table II-22. San Jacinto County land area (in acres). (from Conservation Needs Committee, 1967.)

Land Use	1958	1967
Total land area	396, 160	399,360
Less: Federal non-cropland (Sam Houston National Forest)	58, 592	58,592
Less: Urban and built-up Less: Small water areas	1,200	1,380
	63,076	63,362
Total commercial farm and forest area	333,084	335,998
Cropland Pasture	36, 281 10, 625	8,853 67, 117
Forest Other land	284,463	258,100 1,928

Methods and Procedures

Six study sites composed the study area (Figs. II-06 and II-07). The more unique and undisturbed plant communities were selected for analysis. Transects were positioned within each study site as indicated in Figures II-06 and II-07. Plots in swamp areas were established with the use of twine strands transecting the swamp and marked at five meter intervals. A total of 2070 plots (5m²) were analyzed. Three hundred plots were analyzed in each study site with the exception of Site 1 (550 plots) and Site 2 (320 plots).

Description of Study Sites

Sites 1 and 2 included two swamp areas referred to locally as The Break and Smith Break respectively. Water prevails year-round in these swamps and they are located on Tuckerman loam soils. Water depth was generally less than four feet. Sites 3, 4, 5, and 6 were more terrestrial although portions of these sites may be temporarily inundated. Sites 3 and 4 were located east of The Break, Site 5 was situated north of Smith Break and Site 6 was established west of Brushy Lake near the Trinity River (Figs. II-06 and (I-07) . Site 3 was located on Kaufman clay and Bernaldo fine sandy loam soils. Site 4 probably transected all three soil types mentioned. Site 5 was situated on Kaufman clay soils and Site 6 on Tuckerman soils.

Results

Site 1 (The Break)

The Break is a swamp maintained by two creeks flowing incessently through its length. Big Creek, entering from the north, and Coley Creek, entering from the southwest, unite within The Break (Fig. II-06). Based on importance value, tupelo (Nyssa aquatica) was the overwhelmingly dominant tree species in the swamp (Table II-23). Bald cypress (Taxodium distichum) was somewhat prevalent. Both of these species showed good size-class distribution (Table II-24). Subdominants in The Break were Carolina ash (Fraxinus caroliniana) and red maple (Acer rubrum). Sweet-spire (Itea virginica) was the most abundant shrub. These latter three species contained representatives mostly in the size-class 1-10 cm (Table II-24).

position of transects within these sites. the and 4 and sites 1,3, Showing II-06. Figure

- -

within these sites. Showing sites 2,5, and 6 and the position of transects Figure II-07.

species density and dominance data for plant (The Break). Prequency, in Site 1 located Table II-23.

Species	Frequency	Relative Frequency	Density No./Plot	Relative Density	Relative Dominance	Importance Value*	
Hyssa aquatica	81.3	36.7	2.43	49.6	72.6	1 .	ļ
Taxodium distichum	34	15.8	0.51	10.3	24.0	0	
Fraxinus caroliniana	31	14.1	0.53	10.8	9.0	S.	
Itea virginica	77	10.9	0.61	12.3	0.1	۳.	
Acer rubrum	15	6.8	0.38	7.7	0.9	5	
Planera aquatica	2	\$* 1	0.13	2.6	0.5	•	
Liguidambar Styraciflua		1.6	0.04	0.0	1.1	3.6	
Fraxinus pensylvanica	e	1.9	0.07	1. 4	0.2	•	
Carra aquatica	7	1.3	90.0	1.2	0.1	•	
Quercus lyrata	3.6	1.6	90°0	0.8	0.2		
Others**		6. 4	0.17	2.0	0.1	•	
Total		100.1	4.97	9.66	1001	299.8	1
					1		ļ

Sum of relative frequency, relative density, and relative dominance.

Celtis lagvigata, Quercus Phellos, Cornus racemosa, Diospyros virginiana, Quercus falcata, Caldicara, Calcata, Caldicara, Calcata, Caldicara, Carcinia, Caldicara, Coercus Shumardii, Ulmus crassifolia, Sabal minor, not included in column totals, had a density of 0.07 individuals per plot. importance values: Ulmus Cephalanthus occidentalis. decreasing and U. rubral. Styrax americana. of ** Other species present listed in order U. americana (Includes

Table II-24. Size classes (dbh) of plant species located at Site 1 (The Break).

						• • • •				
Species					Size	Classes (cm)	s (cm)		; ; ; ; ;	
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	06<
MYSSa aquatica	"	318	122	74	5.4	3,4			,	
Takodaum distichum Etakinus caroliniana	•	63	4.1	78	5 dt	7 9	12	<u>.</u> 0	o - -	5 -
Acer robres	333 188	12	ع	~						
Liquidambar Styraciflua		n n	~ #	7	7	2				
Carva aquatica		∾ ~		-	ı	1				
Quercus Irrata Others*	18 61	01 M		-						
			-							
Iotal .	1787	415	174	109	80	52	31	23	7	20

* See Table II-23 for a list of other species present.

Site 2 (Smith Break)

The water in Smith Break (Pig II-07) was more stagnant than that in The Break. Smith Break was not transected by a creek but instead appeared to be spring fed with drainage into Big Creek. A drainage ditch has also been excavated from the east end of Smith Break to the Trinity River. Dominant woody species in Smith Break were tupelo and bald cypress (Table II-25). Each of these species showed good size class distribution (Table II-26). Subdominants in this site were water elm (Planera aquatica) and common buttonbush (Cephalanthus occidentalis).

Both Smith Break and The Break were dominated by tupelo and bald cypress but subdominant species varied in the two sites (Tables II-23 and II-25). In the areas studied, The Break had a greater species diversity as indicated by the larger number of species recorded (27 species as compared to 10 in Smith Break). The Break, in addition, averaged 4.97 plants per plot whereas Smith Break averaged 1.53.

Site 3 (Palmetto area near The Break)

A forested area east of The Break with a rather uniform population of palmetto was analyzed (Piq. II-06). The palmettos had a frequency of 81.7% and a density of 4.76 plants per plot. This species, as a result, dominated the shrub layer of vegetation in this community. Dominant upper-layer species were water oak (Ouercus nigra) . sweetgum and southern red oak (Table II-27). These species were generally represented in the higher size classes (Table II-28). sugarberry Texas and pecan illinoinensis) were also prevalent. Mid-layer subdominants included deciduous holly (Ilex decidua) and snowdrop-tree (<u>Halesia diptera)</u>. Thirty-eight woody species were recorded in plots in this area. It should be noted that a honey locust tree measuring 78 inches in circumference and 88 feet in height and having a crown spread of 57 feet is a possible state champion. Its index is 180 as compared to the present state champion's index of 147-1/2.

Site 4 (Wooded area near The Break)

Site 4 was a fairly open wooded area dominated by hawthorn (Crataegus spp.) and cedar elm (Fig. II-06) (Table II-29). Cedar elm trees were less than 40 cm in dbh and hawthorn trees were, with two exceptions, entirely within the 1-10 cm size class (Table II-30). Willow oak, Texas sugarberry, black oak (Quercus velutina) and overcup oak

Table II-25. Frequency, density and dominance data for plant species located in Site 2 (Smith Break).

Species	Frequency	Relative Frequency	Density No./Plot	Relative Density %	Relative Dominance	Importance Value*
Wyssa aquatica Taxodium distichum Planera aquatica Cepbalanthus occidentalis Restanus pensylvanica Sestanta prummondii Forestiera acuminata Gleditsia aquatica Ouercus lyrata	250.3 255.3 16.9 25.0 3.8 2.2 0.3	19 24.2 24.2 124.2 13.6 14.5 10.3 10.3	0.32 0.32 0.03 0.04 0.07 0.07	122 125 125 125 125 125 125 125 125 125	70.9 26.7 10.3 00.3 4 + 00.3	11.3 21.0 35.0 8.9 0.5 0.5
lotal		100.1	1.53	100.0	6*66	300.0

* Sum of relative frequency, relative density, and relative dominance.

** Walue less than 0.1.

*** Value less than 0.01.

Table II-26. Size classes (dbh) of plant species located in Site 2 (Smith Break).

					Size	Classes (cm)	s (cm)			
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	0 6
Myssa aquatica Taxodium distichum		10	9	11 18	10	100	17	<i>-</i>		16 2
Planera aquatica Cephalanthus occidentalis	108	13	-							
Fratinus Pensilvanica Sesbania Drumondii	13	9								
Forestiera acuminata Gleditsia aquatica Onercus lerata	21		7							
Ouercus Phellos	· 									
Total	27g	43	39	29	22	21	23	12	5	13
	***************************************			1		1	 			

species located about one-half mile east of The Break (Site 3). density and dominance data for plant in a palmetto area Table II-27. Frequency,

Species	Prequency %	Relative Prequency %	Density No./Plot	Relative Density	Relative Dominance K	Importance Value*
Quercus nigra Liguidambar Styraciflua Quercus falcata Ilex decidua Celtis laevigata Celtis laevigata Carva illinoinensis Halesia diptera Gleditsia triacanthos Ulaus alata Ulaus spp. **	12.0 11.3 17.3 14.3 11.7	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.13 0.14 0.17 0.17 0.15 0.15 0.07	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	21.6 16.4 11.3 1.0 7.9 2.7 2.7 2.3	333.0 222.4 122.6 14.7 15.9 14.7 2.0
Total		100.2	2.46	6*66	100.2	300.3

and relative dominance. Sum of relative frequency, relative density,

** Includes U. americana and U. rubra.

Vibutnum dentatum. Prazinus pensylvanica. Sambaçus canadensis. Diospyros virginiana. Crataegus spathulata, Spp. Gornus racemosa. Horus rubra. Mosa Mosa Mosa Mosa Mosa Mosa Marshallii, Cercis canadensis, Halesia carolina, Carya Cordiformis, Aralia spinosa, Bunella lanuginosa, Prazinus americana, Prunus mericana, Prazinus americana, Prunus mericana, Prazinus americana, Prazinus americana, Prazinus americana, Prazinus americana, Prazinus americana, Ouercus lyrata, Quercus Shumardii, Ulmus crassifolia, Zanthoxylum clava-Herculis, Sabal minor, not included in column totals, had a density of u.76 individuals per plot and a frequency of Callicarpa americana, Quercus velutina, Ilex vomitoria, Carpinus caroliniana, Ilex opaca, Quercus Prinust importance values: 0 present listed in decreasing order species Other

Table II-28. Size classes (dbh) of plant species located in Site 3 (palmetto area) about one-half mile east of Site 1 (The Break).

	1 1 1	1))) (1 1 1 1		•				
Species					Size	Classes (CB)	S (CM)			
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	06<
Quercus nigra	21	9	2	3	2	-	-	-	7	
Liquidambar Styraciflua	21	12	11	S	-	7	-			
<u>Quercus falcata</u> Ilex decidua	22 66	=	m	7			m			
Celtis laevigata	25	9	٣	9		-				
Carra illinoinensis		13	(~	*-						
	58	_								
Gleditsia triacanthos		S	7	7						
		12	7							
Ulaus spp.*	13		7	S	7					
Others*	235	26	#	₹	7			-	•	
			*****			***************************************		***************************************		
Total	551	92	9 #1	28	7	٠	S	7	m	
	; \$ 8 8	\$ \$ \$ \$	1			; ; ;		\$		

^{*} Includes U. americana and U. rubra.

^{**} See Table II-27 for a list of other species present.

of Table II-29. Frequency, density and dominance data for plant species located east the southern end of The Break (Site 4).

Species	Preguency *	Relative Frequency	Pensit; Wo./Plot	Relative Density	Relati, e Dominance	iaportance Value*	-
Crataeque spp. Ulbus crassifolia Ilex decidua Gleditsia triacanthos Quercus Phellos Coltis laevigata Quercus Velutina Quercus lyrata Others**	51.7 33.3 33.3 29.3 8.0 11.7 20.7	13.5 13.5 12.0 12.0 13.5 18.0 18.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	30.5 10.4 13.1 13.3 13.3 13.3 13.3 13.3	2.7.2 2.7.3 12.8 12.0 9.8 9.8	55.0 30.4 29.8 24.7 19.5 11.2	
Total		6*66	00 - 4	100.0	9.66	299.7	

Sum of relative frequency, relative density, and relative dominance.

Llex vomitoria, Ulmus spp. (includes U.ameticana and U.kubtal, Notus rubra, Crataequs spathulata, Quercus nigra, Liquidambar Strracitlua, Balesia diptera, Carra illinoinensis, Crataequs Marshallii, Acer rubrum, Bumelia lanuqinosa, Carpinus caroliniana, Sapindus Saponeria, Citrus trifoliata, Taxodium distichum, Pinus taeda, Quercus falcata, Sabal Carya aquatica, had a density of 1.74 individuals per plot. of decreasing importance values: present listed in order totals Citrus trifoliata, included in column ** Other species minor, not

Table II-30. Size classes (dbh) of plant species located east of the southern end of The Break (Site 4).

	1 1 1 1 1 1	1 1 1 1 1 1 1								-
species					Size	Classes (cm)	S (CB)			
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	06<
				*			# 1 1 1	4 8 1 1		! ! !
	# 6 7 8	7 9	Ļ	•						
State testing	; (C	?	C 7	<u>•</u>						
Gleditsia triacanthos	141	13	7	-						
	20		_		7	∌	8	-		
Celtis laevigata	16		18	7	7					
Disspros virginiana	117	-								
 	9	_			7	m	-			
Fraxinus pensylvanica	32			7						
	7	- -		m	7	m				
Others*	108	2	7	٣						
	!	 -	1	:						
0	1031	ħ9	9.3	34	σο	10	3	-		
	 	 		i { 1 1			! ! !			1 1 5 1 1 1

* See Table II-29 for a list of other species present.

trees were prevalent and representatives of these species were the only ones with diameters greater than 40 cm. There were 27 species of trees and shrubs recorded at this site with an average of 4.0 plants per plot.

Site 5 (Adjacent to Smith Break)

Site 5, located adjacent to Smith Break (Pig. II-07), contained a fairly open forest with little underbrush. Trees were generally scattered as indicated by the presence of 1.95 individuals per plot. In addition, the study plots transected a slough as evidenced by the occurrence of water hickory (Carya aquatica), water locust (Gleditsia aquatica), swamp privet (Porestiera acuminata), and water elm (Planera aquatica).

Dominant trees in the area were cedar elm, willow oak, hawthorn and honey locust (Gleditsia triacanthos) (Table II-31). Trees of overcup oak and Texas sugarberry were also prevalent. Willow oak, overcup oak and green ash were the only species with representatives having diameters greater than 50 cm (Table II-32). There were 24 species recorded in plots at this site.

Site 6 (Adjacent to Brushy Lake)

Ot the sites studied, Site 6 is nearest the Trinity River (Fig. II-07). The topography of Site 6 is generally flat with an occasional slough. The area was fairly evenly dominated by hawthorn, southern red oak, cedar elm, water oak (Quercus nigra) and honey locust (Table II-33). Trees of winged-elm (Ulmus alata) and Texas sugarberry were also occasionally encountered. Trees were generally less than 50 cm in diameter (Table II-34). Thirty species were recorded at this site and there was an average of 2.62 trees or shrubs per plot.

Combined Swamp Sites (Sites 1 and 2)

When data from The Break and Smith Break were combined, tupelo, bald cypress, Carolina ash and sweet-spire emerged as dominants (Table II-35). Tupelo and bald cypress were by far the dominant species in both areas. In Smith Break, however, Carolina ash and sweet-spire were lacking and water elm and common buttonbush replaced these species as subdominants (Tables II-23 and II-25). There were a total of 29 species recorded in both areas.

The state of the same of the same

a species located Table II-31. Frequency, density and dominance data for plant Site 5 adjacent to and north of Smith Break.

Species	Frequency	Relative Frequency	Density Wo./Plot	Relative Density	Relative Dominance	Importance Walue*
Ulaus crassifolia Quercus Phellos	26.3	18.5	0.36	18.5	23.8	60.8
Edtaeque spp.	25.0	17.6	94.0	73.6	41.3	58.4
	20.0	14.1	0.32	16.0	2	33.5
	- "	L. 4	0.08	6 ° 6	11.4	20.0
lex_decidue	7.6	ο α • • •) (o	.	16.3
Erra aguatica	6.7	4.7	0.07	د چي اړ	ر. د. ۷	ιτ (γ·· (
TSUBE DEDE	t. 3	3.1	0.05	5.6	0 7	•
	5.0	3.5	90.0	2,9	0	•
		٠	(O	3.5	7.3	7 71 10
					!	
Total	!	8*66	1.95	99.8	100.1	293.7

relative frequency, relative density, and relative dominance. Sum of

Marshallii, Quercus falcata, Carya illinoinensis, Gleditsia aquatica, Quercus crataeque spp. (includes U.americana der Values: Crataeque Liquidamba, Cincludes U.americana and U.rubra), Morus au Ulmus diata, Crataeque, Spathulata, Liquidamba, Sytraciflua, Quercus Prinus, Morus rubra, Ulmus alata, Crataeque, Spathulata, Drumeongii. importance o£ order decreasing ìΠ species present listed ** Other

· Alexandre

Table II-32. Size classes (dbh) of plant species located at Site 5 adjacent to and north of Smith Break.

Species					Size	Classes (cm)	s (ca)			
	1- 10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	>30
Ulmus crassifolia	50	22	23	10	m	† 	! ! ! ! !			
Quercus Phellos	-	S	6	†	m	9	m	-		
Crataeque spp.	135	7	_							
Gleditsia_triacanthos	87	7	7	-						
Quercus lyrata	7	וו	m	a	_	-	-			
Celtis laevigata	13	9	0							
Ilex decidua	38									
Carra aquatica	0	11	-							
Praxinus pensylvanica	9	m	7	7		_				
Diospyros virginiana	16	-								
Ot hers*	4 1	10	-	7	m					
							1	1		!
Total	398	78	25	33	10	60	#	-		
	† - - - - -		 			1	1			• • •

* See Table II-31 for a list of other species present.

Table II-33. Prequency, density and dominance data for plant species located at Site 6 near the Trinity River west of Prushy Lake.

Species	Frequency	Belative Frequency	Density No./Plot	Relative Density	Relative Dominance	Importance Value*	!
Crataequs spp.	27.0	14.4		19.2	0.7	34.3	1
Quercus_falcata	0.0	۳° ه		e ;	24.3	31.9	
Ulbus_crassifolia	23.7	12.6	0.36	13.7	S. 4.	30.8	
Ogercus nagra	6.10	5.2		6 ° (19.3	28.4	
Gleditsia triacanthos	24.0	12.8		13.5	9.	27.9	
CTERS PERC	16.7	ۍ ۳۰		D (٠. د د د	23.3	
Celtis_Laevigata	12.3	9-9		5.2	6.6	21.7	
Crataegus_spathulata	15.7	8 °3		8. 3	0.5	16.8	
Quercus velutina	0.4	2.1		2.2	†. 9	10.7	
Ilex decidua	7.7	t. 1		3.8	9.0	8.5	
Others**		20.9		17.0	28.0	65.9	
Total		100.2	2.62	100.0	100.0	300.2	1
							1

Sum of relative frequency, relative density, and relative dominance.

Cephalanthus U. spericana and U.rubra), Quercus Prinus, ** Other species present listed in decreasing order of importance values: Quercus_sinuata. Styraciflua, Borus rubra, (includes Crataegus Barshallii Quercus lyrata, Praxinus americana. Tilia americana caroliniana and T. floridanal. Quercus Phellos, Planera aquatica. occidentalis, Zanthoxylum Clava-Herculis, Buwelia lanuginosa, Liguidambar Cornus racemosa, Diospyros virginiana, Carya illinolnensis, Carya aquatica, (includes spp. Pensylvanica. Ilex vonitoria. Praxinus.

Table II-34. Size classes (dbh) of plant species located at Site 6 near the Trinity River west of Brushy Lake.

Species					Size	Classes (cm)	s (cm)			
	1-10	11-20	21-30	31-40	41-50	51-60	51-60 61-70	71-80	81-90	06<
Cratabane ess			*	1		1				•
OBSECUS_falcata) -	r 3	C	_	¥	r	•	(
Ulaus crassifolia	10	10	4 vo	-	0	~	_	7		
Quercus nigra		E	-	- ~	90	2				
CLECATURA TELACANTHOS	ტ (ტ	9 u	- - ,		•	•				
Celtis laevigata	9 9	0 7	- 1	~						
Crataequs spathulata	65	2	2	1						
Quercus velutina		3	æ	a	-					
Photosp xaff	27	_	~ ~	•	•					
Others*	9	27	29	80	3					
Total	556	76	16	30	19	5	-	2		

^{*} See Table II-33 for a list of other species present.

.

II-35. Summary of frequency, density, and dominance data for plant species located in Sites 1 and 2 (The Break and Smith Break). Summary of frequency, Table II-35.

							Í
Species	Frequency	Relative Frequency	Density No./Plot	Relative Density	Relative Dominance	Importance Value*	
Ersea aguatica Tarodium distichum Eraxinus caroliniana Itea virginica Planera aguatica Acer rubrum Cephalanthus occidentalis Fraxinis rensvivanica Liguidambar Styraciflua Others***	88 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	92.0 177.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	0.03 0.22 0.22 0.03 0.03 0.03	40 00 00 00 00 00 00 00 00 00 00 00 00 0	272 242 000 000 000 000 000 000 000 000 00	150.2 200.6 190.0 12.4 7.1 2.8 11.3	į
Total		100.2	3.65	99.7	99.9	299.8	! !

* Sum of relative frequency, relative density, and relative dominance.

** Value less than 0.1.

Sesbania Drummondii, Porestiera acuminata, Ulmus spp. (includes U.americana and U.rubral. Gleditsia aguatica, Celtis laevigata, Quercus Phellos, Cornus racemosa, Quercus falcata, Diospyros virginiana, Callicarpa americana, Carpinus caroliniana, Ilex opaca, Ilex vomitoria, Quercus nigra, Quercus Shumardii, Ulmus crassifolia, Sabal minor, not included in column totals, had a density of O.OS individuals per plot. *** Other species present listed in order of decreasing importance values: Carra aquatica.

Combined Terrestrial Sites (Sites 3, 4, 5, and 6)

The overall dominant species within the land communities studied were hawthorn, cedar elm and honey locust. Willow oak, deciduous holly, Texas sugarberry, water oak and southern red oak were also prevalent (Table II-36). Cedar elm and hawthorn were among the top three dominants in three of the study sites. Honey locust, while not among the first three dominants on any site, was nevertheless a significant component of all four plant communities (Tables II-27, II-29, II-31, and II-33). Piftytwo woody species were found in the terrestrial communities studied.

STUDY AREA 9

Introduction

The objective of this phase of the study was to characterize the woody vegetation associated with the Tanner Bayou and Capers Ridge areas (Fig. II-08). Field work was accomplished during the fall of 1972. The study area was situated within Liberty County in southeast Texas near the junction of State Highway 162 and the Trinity River. The study area was located on the west side of the river (Fig. II-08).

Topographically, the study area is generally flat. Several lakes, swamps, and sloughs were present, the most obvious of which were Gaylor Lake and Mud Lake. The area is drained by Tanner Bayou, Little Bayou and Gaylor Creek. The river terrace extends from near Gaylor Lake southward to Capers Ridge where it projects eastward along Capers Ridge almost to the Trinity River.

Geologically, most of the study area is composed of Alluvium deposits of Recent origin. Marginal elevated areas were part of the Deweyville Pormation whereas outcrops of the Beaumont Pormation comprised the crest of Capers Ridge. The Deweyville Pormation is of Recent or Pleistocene origin while the Beaumont Pormation is of Pleistocene origin. All deposits are within the Quaternary Period.

Soil surveys were incomplete in regard to the study area and, as a result, some extrapolations have been made. Based on available information, there appeared to be four major soil types present. These were Kaufman clay, Forestdale silt loam, Acadia silt loam and Tuckerman loam. The most extensive soil was the Kaufman clay. The Kaufman clay soils occupy the somewhat poorly drained bottomland

density, and dominance data for plant species located in Sites 3, 4, 5, and 6 (land areas associated with Smith Break, and Brushy Lake). freduency, Summary of The Break, rable II-36.

Species	Frequency %	Relative Prequency	Density No./Plot	Relative Density %	Relative Dominance	Importance Value*	<u>l</u>
Crataequs spp.	27.0	14.1	0.56	20.3	1.2	35.6	ŀ
Ulaus_crassifolia	20.6	10.8	0.29	10°	7.6	34.5	
Gleditsia triacanthos	21.5	11.3	0.34	12.2	2.9	26.4	
Quercus Phellos	5.8	3.0	90.0	2.3	14.7	20,0	
Ilex decidua	17.0	8.9	0.26	9.5	6.0	19.3	
Celtis laevidata	10.8	5.6	0.13	9.4	8.9	19.1	
Ouercus nigra	0.9	3.1	90.0	2.3	11.1	16.5	
Ogercus falcata	5.2	2.7	90.0	2.1	10.3	15.1	
Fraxinus pensylvanica	5.8	3.1	90.0	2.2	7.7	9.7	
Ulaus alata	7.3	3.8	0.10	3.8	1.9	9.5	
Others**		33,1	0.84	30.0	29.8	92.9	
Total		99.5	2.76	9.66	99.5	298.6	1

1

and relative dominance. Sum of relative frequency, relative density, Diospyros occidentalis, Zanthoxylum Clava-Pinus taela Halesia diptera, Llex vomitoria, Crataegus Barshallii. Iler opaca Morus rubra, Iler Fraxinus americana, Liquidambar Streachtlua. Uleus mensis. Crataeque spathulata. values: Sapindus Gleditsia aquatica, Bunclia lanuginosa, Cephalanthus occidentalis, Zabtho Herrulis, Cercis canadensis, Halesia carolina, Taxodium distichum, Sapindus Aralia spinosa, Carya cordiformis, Citrus trifoliata, Porestlera acuminata not BINOF, decreasing importance Carpinus caroliniana, Quercus sinuata, Horus r , Viburnum dentatum, Cornus racemosa, Fraxinus T caroliniana and I floridiana, Nyssa sylvatica, Sabal illinoinensis. 1.33 individuals per plot Sesbania Drummondil. Quercus Irrata of CAELA order (includes <u>U_americana</u> and <u>U_rubral.</u> i. u Aralia spinosa, Carya cordiformis, Printus mexicana, Quercus, Shumardii, Quercus __veluting. column totals, had a density of ** Other species present listed Prinus. Callicarpa americana, Sambycus canadensis, preficana (includes T Quercus <u> Vieginiana</u> aguatica.

in relation to the Trinity River. Showing the study area Figure II-08.

tloodplain areas. They are suited primarily for pond reservoir areas and woodland and wetland wildlife (U.S. Department of Agriculture, unpublished data). They have some potential for grassland. The Forestdale silt loam soils were slightly elevated above and generally bordering the Kaufman clay soils. Drainage is slow and ponding occurs in depressions. They are poorly suited for dwellings but offer a fair potential for cropland and grassland. Woodland production is favorable. The most elevated sites in the study area contained Acadia silt loam soils. The Acadia soils are highly productive for woodland, suited for wildlife but exhibit only a fair potential for cropland and pasture. They are poorly suited for dwellings. Tuckerman soils occupy nearly level concave areas and are generally poorly drained and ponded. They are poorly suited dvellings. general recreation use, cropland or grassland but are suited for pond reservoir areas and wetland wildlife.

The vegetation of the study area was mostly bottomland hardwood forest. Bordering, higher elevated areas supported some pines and other upland species. Cleared areas were few and generally associated with roads and pipelines. Cattle grazed most of the area and past logging was evident.

Land Use

Liberty County had a population of 33,014 in 1970, about half of which resided in the county's four largest towns (Texas Almanac, 1971). The economy is based on agribusiness, varied light industry, tourism, and employment in the Houston metropolitan area. Oil, gas, sulfur, sand and gravel are produced within the county. Agriculture, based mainly on rice and cattle, contributes \$15 million annually to the economy. Sales of timber within the county total about \$2 million annually.

With no National Porests or other reserved land within its boundaries, less than one-thirtieth of Liberty County's 756,480 acres was classified in 367 as urban and other non-commercial area (Table II-37) (Liberty County Conservation Needs Committee, 1970). Of the commercial land area, 60% is forested. Between 1958 and 1967, the acreage of forest within the county increased slightly, probably as a result of a change in the loundary with Harris County which increased the total land area of Liberty County.

Table II-37. Liberty County land area (in acres). (from Liberty County Conservation Weeds Committee, 1970.)

Land Use	1958	1967
Total land area*	750, 590	756.480
Less: Pederal non-cropland	0	0
Less: Urban and built-up	24, 366	24,666
Less: Small water areas	9	136
Total non-commercial area	24,372	24,802
Total commercial farm and forest area	726,218	731,678
Cropland	164,293	144,465
Pasture**	110,462	125,539
Potest	450,280	453,600
Other land	1, 183	8,074

* Different acreage because of boundary change between Liberty and Harris counties.

** Includes 18,349 acres of open range in 1958, none in 1967.

- A STANCES

of the approximately 270,000 acres devoted to agriculture about 54% is in cropland. In 1958, cropland acreage was predicted to increase roughly 9,000 acres by 1975, but by 1967 had declined 20,000 acres (Liberty County Conservation Heeds Committee, 1958 and 1970). Pastureland, predicted to increase only 4,000 acres between 1958 and 1975, had already jumped 15,000 acres by 1967. The classification "other land", including building sites, lawns, barnyards, farm roads, etc., was expected to increase from about 1,200 acres in 1958 to slightly less than 1,800 acres in 1975. Land devoted to these uses, however, had increased spectacularly to just under 8,100 acres by 1967.

While it will remain an important major land use, cropland acreage will likely continue to decrease in the near future. Harginal and fallow cropland will probably be converted to improved pasture, a pattern common to all of Bast Texas. It appears that forests will decline, generally being converted to improved pasture and weekend home sites.

Although the 8,074 acres devoted to "other land" uses in 1967 was hardly more than 1% of the county's area, its jump from only 1,183 acres in 1958 was unexpected, and the trend visibly continues. The boom in vacation and weekend home construction, with attendent roads and other facilities, accounts for most of the increase. Larger and more elaborate levelopments will continue to draw permanent residents willing to commute to jobs in Houston and Beaumont. The concentration of new housing developments on the limited amount of land along the Trinity River and nearby oxbow lakes magnifies the impact beyond that indicated by acreage figures alone.

Development has also begun in the Tanner Bayou-Capers Ridge vicinity. Weekend houses have already been built on Gaylor Lake. A large, expensive development just across Highway 162 is the fastest growing in Liberty County. Across the river from Capers Bidge is Knight's Porest, another large development. In addition, construction has been started on a road which will eventually parallel and open for development a portion of the riverfront to the east of Gaylor Lake.

The county's appraisal of potential for outdoor recreational development (Anonymous, 1966) rates it mediumhigh for vacation cabins, cottages, and homesites. It has high potential for picnic and field sport use, as well as some appeal for campers. Despite poorly drained soils,

terrain too flat for water impoundments, frequent rain and the abundance of mosquites, the heavily wooded scenery along the Trinity River within an hour's drive of Houston and Beaumont appeals to outdoor recreation seekers.

Methods and Procedures

Seven study sites were selected within the Tanner Bayou and Capers Ridge areas (Figs. II-09, II-10, and II-11). The more undisturbed plant communities were selected representing variable vegetative types present. Transects were positioned within each study site as indicated in Figures II-09, II-10, and II-11. A total of 1,700 plots (5m²) were analyzed. Three hundred plots were analyzed in each study site with the exceptions of Site 6 (100 plots) and Site 7 (100 plots).

Description of Study Sites

Sites 1 and 2 were located near the junction of Highway 162 and the Trinity River (Fig. II-09). These sites were on Kaufman clay soils and were generally flat. Site 3 was situated north of a slough near the river (Pig. II-09). The topography was flat to slightly rolling and the soils were Kaufman clay. Site 4 was located in a vegetational ecotone associated with a terrace area west of Gaylor Lake II-10). Topography varied from steeply sloping ravines to generally flat conditions. Soils included Porestdale silt loam, Acadia silt loam and Kaufman clay. Site 5 comprised transects in association with Capers Ridge (Fig. II-11). One transect followed the ridge whereas the other two transects were on north- and south-facing slopes respectively. The soils were probably Forestdale silt loam and Acadia silt loam. The ridge gently slopes from an elevation of 99 feet to an elevation of 35 feet. Site 6 was a flat bottomland at the north base of Capers Ridge and Site 7 was a swamp at the foot of the south slope (Fig. II-11). Site 6 was probably situated on the Kaufman clay soil and Site 7 on the Tuckerman loam soil.

Results

Site 1

The predominant woody species at Site 1 based on importance value, were Texas sugarberry (Celtis laevigata) and pecan (Carva illinoinensis) (Table II-38). Both were well distributed and displayed good size class distribution (Table II-39). Dogwood (Cornus racenosa), swamp privet (Forestiera acuminata), and water elm (Planera aquatica)

igure II-09. Showing sites 1,2, and 3 and the position of transects within these sites.

Figure II-10. Showing site 4 and positions of transects within that site.

Figure II-11. Showing sites 5,6, and 7 and the position of transects within these sites.

were also prevalent. Stem size (dbl) for these species, however, was generally between 1 and 20 cm. Larger trees of sweetgum (Liquidambar Styraciflua) and sycamore (Platanus Occidentalis) were frequently observed (Table II-39). There were 27 species of woody plants with dbh of 1 cm or greater recorded within this study site.

Site 2

Cedar elm (Ulmus crassifolia). Texas sugarberry and water oak (Quercus nigra) were the principal woody species at Site 2 (Table II-40). Other associated dominant species were winged-elm (Ulmus alata), deciduous holly (Ilex decidua) and bastard oak (Quercus sinuata). The forest at Site 2 was generally composed of trees with dbh less than 40 cm (Table II-41). Only occasionally were larger trees observed and these were usually representatives of Texas sugarberry, water oak, bottomland post oak and southern red oak (Quercus falcata). There were 28 species of woody plants recorded at Site 2.

Site 3

The overstory woody vegetation in Site 3 consisted chiefly of Texas sugarberry and sweetgum (Table II-42). Trees of these species ranged up to 60 cm in diameter (Table II-43). Pecan, bald cypress (Taxodium distichum) and water oak were also prevalent and showed good size class distribution. The largest trees recorded were those of water oak. Other dominant species including deciduous holly, dogwood, cedar elm, winged-elm and elm (Ulmus spp.) were generally small in size with most plants representative of the 1-10 cm size class (Table II-43). A total of 37 species occurred at Site 3.

Site 4

There were 54 species recorded at Site 4. The more varied topography of this area is the likely cause of its greater species diversity. Two transects were run on a slope and one on a flat bottomland. The upper part of the slope was dominated by yaupon (Ilex vomitoria), sweetgum and eastern hophornbeam (Ostrya virginiana). Associated prevalent species were American Deautyberry (Callicarpa americana), blue beech (Carpinus caroliniana), southern magnolia (Magnolia grandiflora) and loblolly pine (Pinus taeda). The middle-slope area was composed primarily of blue beech. Other principal species were sweetgum, southern magnolia, American beautyberry, yaupon, eastern

- White House But

dominance data for plant species located in the Tanner Bayou area near Highway 162, Site 1. density and Frequency, Table II-38.

Species	Frequency	Relative Frequency	Density No./Plot	Relative Density K	Relative Dominance	Importance Value*
Celtis lasyidata		21.9	0.53	19.7	2.	63.8
Carra illinoinensis	26.3	16.4	0.32	11.9	34.2	62.5
COLDUS LACCEDOSA		9.3	0.30	11.1		22.8
Porestiera acuminata		7.5	0.27	10.2		20.5
Planera aquatica		æ•	0.31	11.5		18.3
Liquidambar Styraciflua		3.7	0.09	3.5		16.7
Iler decidua		9.9	0.19	7.1		14.7
Crataeque spp.		6.8	0.15	5.5		12.8
Ulbus crassifolia		6.2	0.14	5.1	•	12.8
KLACABUS OCCIDENCALIS			() ()	7.	30	11.7
Others*		15.1	0.34	12.6	15.0	42.7
fotal		100.0	2.67	99.4	99.9	299.3
	J					******

Sus of relative frequency, relative density and telative dosinance.

Pensylvanica, Ulaus app. (includes U. americana and U.rubral, Sambucus canadensis, Acer Bequndo, Diosprios virginiana, Quercus velutina, Gleditsia triacanthos, Quercus lyrata, Quercus nigra, Quercus falcata, Ulaus alata, Tarodium distichum, Cephalanthus Occidentalis, Tilia americana (includes T. caroliniana and T. floridana), Ostrya Praxinas values: importance decreasing of order in listed ** Other species present

Table II-39. Size classes (dbh) of plant species located in the Tanner Bayou area near Highway 162, Site 1.

Species					Size	Classes	S (CB)			
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	> 00
Celtis leevigata	29	89	33	9	-					
Carra illinoinensis	œ	28	25	22	10	7				
COLDUS LECEBOSA	75	13								
Porestiera acuminata	73	6								
Planera aquatica	9 ¢	œ								
Liquidambar Styraciflua	ŝ	Ś	11	m	7	7				
Llex decidua	52	7								
Crataegus sop.	0 7	3								
Ulaus crassifolia	32	7	7							
Platenus occidentalis		_		#	m		7			
Otherst	80	13	7	m	#	-	~	-		
							! !			
Total	£89 1	179	74	38	20	ın	m	g a-		
										,

* See Table II-38 for a list of other species present.

dominance data for plant species located in the 162, Site 2. Tanner Bayou area near Highway Table II-40. Prequency, density and

1

!

							i
Species	Frequency	Relative Frequency	Density No./Plot	Relative Density	Relative Dominance	Importance Value*	
Ulaus crassifolia	55.7	15.0	1.28	18.8	800		İ
LEALLS LEGITLGES OBOICUS Digles	23.7		9 . O	 	23.8	35.2	
Ulbus slata	36.7	6.6	09.0		5		
Ilex_decidue	32.7	æ •	0.64		•		
Unercus siguata	13.7	3.7	0.22		•		
Crataeque spp.	22.0	5.9	0.50	7.4	•		
Overcus falcata	12.0	3.2	0.18				
Gleditsia triacanthos	19.0	5.1	0.28	4.1			
Crataeque Barshallii	21.0	5.6	0.37	5.5			
Others**		25.4	1.64	23.8	•		
Total		99.8	6.81	99.9	8.66	299.5	1

Sum of relative frequency, relative density and relative dominance.

1

Pratinus americana, Pratinus pensylvanica, Ulbus spp. (includes Ulbus and Sapindus Sapondus S ince values: <u>Arupdiparia</u> (includes <u>Urapericana</u> and caroliniana (includes importance Cornus racemosa, Ougrous vell decreasing ö ** Other species present listed in order Actus Fubra, Prunus caroliniana, Cornus and T. floridana), Crataeque spathulata. qiqantea. C. rubral.

Table II-41. Size classes (dbh) of plant species located in the Tanner Bayou area near highway 162, Site 2.

Species					Size	Classes	s (cs)			
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	>90
		i 1 1	1			-				
Uleus crassifolia	352	19	6 0	#						
Celtis leevigata	162	27	29	σ0		-		•		
OU OCCUS DIGES	35	30	15	15	5	-				
Ulaus alata	148	26	'n))	•				
Ilex_decidua	189	7	ı							
Quercus sinuata	45	-	S	3		-		-		
Crataeque spp.	148	7)	•		-		-		
Quercus falcata	35	1	ø	ĸ	8					
Gleditsia triacanthos	73	ស	'n	·	•					
Crataegus Barshallii	112			•						
Otherse	423	35	18	=	#					
Total	1722	164	91	81	11	-		-		
	! •		•	?	<u>-</u>	1		-		
					·	•				

** See Table II-40 for a list of other species present.

data for plant species located in the 3. dominance Tanner Bayou area near Highway 162, Site Frequency, density and Table II-42.

Species	Frequency	Relative Frequency	Density Mo./Plot	Relative Density	Relative Dominance	Importance Value*	
Celtis laevidata Liguidambar Styraciflua Carva illinoinensis Ller decidua Ouercus nigra Cornus racemosa Tarodium distichum Ulmus crassifolia Ulmus spr. **	33.3 27.3 17.3 25.3 6.0 10.0 10.3 9.0	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.044 0.022 0.0333 0.040 0.040 0.07 0.07 0.033	25.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	24. 16.0 13.0 19.0 19.0 19.0 19.0	256. 200. 200. 112.8 110.8 9.9	
Tota1		100.0	2.82	100.0	100.1	300.1	

relative dominance. relative frequency, relative density and Sum of

** Includes V. abericana and U. rubra.

Fratinus pensylvanica, Planera aquatica, Quercus velutina, Planera, Tillia Cephalanthus pensylvanica, Planera aquatica, Liska Cephalanthus occidentalis, Brundinaria quantea, Lera Cephalanthus occidentalis, Brundinana and Liloridana), Carra quatica, Gleditsia aquatica, Gleditsia aquatica, Salis nigra, Gleditsia aquatica, Porestiera acuainata, Nyssa *** Other species present listed in order of decreasing importance values: Crataggus Spathulatas Acer Negundo, Quercus Prinus, Salix nigra, sylvatica, Zanthoxylum Clava-Herculis, canadensis

Table II-43. Size classes (dbh) of plant species located in the Tanner Bayou area near Highway 162, Site 3.

Species					Size	Size classes (cm)	s (cm)		I	
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	06<
Celtis laevigata	67	38	34	=======================================		2				
Liquidambar Styraciflua	6 1	36	5 6	σ	7					
CALVA ALLINOIDEDSIS	121	22	2	•	3	7				
LANGE LEAKANG QUGECUS DAGES	5	~	7	**		-	,- -		7	
COLDUSTERCOROSA	5 2	.	•	1	•	•				
Iskodius distichus Ulsus crassifolia	3 2 3	⇒	M	'n	F \$44	~				
Ulaus spp. *	33				•	-				
Ulaus alata		S	y -							
Othersee		22	7	9	ιυ	m				
Total	55.R	130	06	4.2	20	11				
		2	2	•	ì	•	•		•	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								

* Includes V. Areticana and V. Lubra .

** See Table II-42 for a list of other species present.

hophornbeam, winged-elm and southern red oak. The dominant tree species in the flat bottomland area were blue beech, cedar elm, chestnut oak (Quercus Prinus) and sweetgum. Other prevalent species included water oak, Texas sugarberry, southern red oak, red maple (Acer rubrum) and honey locust (Gleditsia triacanthos).

Table II-44 is a summary of the slope and bottomland transect results at Site 4 and indicates that blue beech, sweetgum, yaupon and southern magnolia were the overall dominants. Eastern hophornbeam, American beautyberry, and cedar elm were also prevalent. Tree diameters were generally within the 1-10 cm size class (Table II-45). Large trees of sweetgum, southern magnolia, southern red oak, chestnut oak, water oak and loblolly pine were occasionally encountered.

Site 5

The predominant species along the crest of Capers Ridge was yaupon. Trees of sweetgum, Texas sugarberry, and winged-elm were also quite abundant. American beautyberry, which is a shrub, was also frequently encountered. The north slope of Capers Ridge contained a preponderance of giant cane <u>[Arundinaria qiqantea]</u>. Sweetgum was also dominant. Of lesser abundance was water oak, Texas sugarberry, winged-elm and American beautyberry. Devil's-walking-stick (<u>Aralia spinosa</u>), water oak and black walnut (<u>Juglans nigra</u>) were occasionally observed. Yaupon was the dominant woody species on the south slope, and along with American beautyberry, dominated the shrub layer. Prevalent tree species comprising the mid- and upper-layers were sweetgum, Texas sugarberry and winged-elm.

The overall dominants of Site 5 as summarized in Table II-46 were yaupon, sweetgum, giant cane, and Texas sugarberry. Winged-elm, water oak, and American beautyberry were prevalent but less frequently encountered. Host woody plants on Capers Ridge had stem diameters between 1 and 10 cm (Table II-47). Occasionally, however, large trees of sweetgum, Texas sugarberry, water oak, black walnut, and sycamore (Platanus occidentalis) were observed. There was a good species diversity at Site 5 with 45 woody tree and shrub species being recorded.

Site 6

The bottomland vegetation at Site 6 consisted chiefly of overcup oak (Overcus lyrata), green ash (Praxinus

Table II-44. Prequency, density and dominance data for plant species located in the Tanner Bayou area west of Gaylor Lake, Site 4.

Species	Frequency	Relative Frequency	Density No./Plot	Relative Density	Relative Dominance	Importance Value*
Carpinus caroliniana Liquidambar Strraciflua Llex Vomitoria Gagnolia grandiflora Ostrva virginiana Callicarpa americana Ulmus crassifolia Cuercus falcata Cuercus Prinus Others**	59.0 34.7 40.0 6.0 26.3 31.0 22.3 7.3	13.6 8.0 9.2 7.1 5.1 5.5 7.5	2.61 0.02 0.03 0.05 0.05 0.05 0.08 0.08	18. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	10.7 17.7 18.6 3.7 0.0 0.6 9.9	43.0 24.9 26.9 16.0 11.9 11.9
Total		100.0	8.61	100.0	100.1	300.1

Sum of relative frequency, relative density, and relative dominance.

Quercus nigra, Pinus taeda, Arundinaria gigantea, Crataegus spp., Sambucus canadensis, Ilex decidua, Juglans nigra, Ulaus spp., (includes U. americana and U. rubral, Praxinus pensylvanica, Ilex Opaca, Praxinus americana, Sassafras albidua, Crataegus Barshallii, Carta agustica, Horus rubra, Gleditsia triacanthos, Quercus velutina, Quercus alba, Tilia americana (includes T. caroliniana and T. floridana), Myssa sylvatica, Cornus florida, Diospyros virginiana, Carya tomentosa, Quercus lyrata, Quercus Phellos, Zanthoxylum Clava Herculis, Porestiera ligustrina, Crataegus spathulata, Viburnum dentatum, Vaccinium arboreum, Cornus racemosa, Bunella lanuginosa, Aralia spinosa, Platanus occidentalis, Cornus sacemosa, Bunella lanuginosa, Aralia spinosa, Porestiera acuminata, Cornus similis, Taxodium distichum, Rhus copallina, Porestiera acuminata, Cornus a Crataegus spathulata Viburnum dentatum Vaccinium ia lanuginosa Aralia spinosa Platanus occidentalisa stichum Rhus copallina Porestiera acuminata Cornus Persea Borbonia Acer rubrum Symplocos tinctoria. values: importance ** Other species present listed in order of decreasing linoi nensis, Drummondi

Table II-45. Size classes (dbh) of plant species located in the Tanner Bayou area west of Gaylor ake, Site 4.

Species					Size	Classes (CB)	S (CB)			
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	06 <
Carpinus caroliniana	!	34	21	-		i 1 1 1 1		• • • •	\ 	
Liquidasbar Styraciflua Llex vomitoria	109 351	78	5	9	7					
Bagnolia grandiflora			7	m	S	7	7			
Ostrva virginiana	_	19	S	_)	1			
Callicarpa americana	-									
ULBUS CERSSICOLLS	-	*								
Quercus falcata		_	7		7	7				
Onerces Prines					-	7	7			
Others*	727	23	=	12	•	•	~		•	
					-					į
Total	2334	115	67	58	21	12	•	-	-	

^{*} See Table II-44 for a list of other species present.

Table II-46. Prequency, density and dominance data for plant species located on Capers Ridge, Site 5.

							į
Species	Frequency	Relative Frequency	Density No./Plot	Relative Density %	Relative Dominance	Importance Value*	
Ilex vomitoria		14.1	2.32	20.6	9.1	43.8	ļ
Liquidambar Styraciflua		7.3	0.63	5.6	28.9	41.8	
Arundinaria qiqantea		5.1	2.48	22.1	-0	28.2	
Celtis laevigata	47.3	10.1	0.89	7.9	8.8	26.8	
Ulmus alata		0.6	0.88	7.9	2.5	19.4	
Overcus nigra		4.7	0.34	3.0	10.4	18.1	
Callicarpa americana		9.5	0.85	7.6	7.0	17.2	
Juglans nigra		2.1	0.12	1.1	5.9	9.1	
Ulaus spp. **		t . 3	0.25	2.2	1.6	. t	
Aralia spinosa		3.1	0.39	3.4	1.4	7.9	
Othersto		30.7	2.07	18.6	30.2	79.5	
Total		7.66	11.22	100.0	100.2	299.9	1
							•

Sum of relative frequency, relative density, and relative dominance.

U. rubra ** Includes U. americana and

Platanus occidentalis. Horus rubra. Nagnolia grandiflora, Gleditsia triacanthos, Prunus Platanus occidentalis. Horus rubra. Nagnolia grandiflora, Gleditsia triacanthos, Prunus caroliniana, Ilex decidua, Cornus florida, Ulaus crassifolia, Quercus similis, Nyssa stlvatica, Persea Borbonia, Diospyros virginiana, Vaccinium arboreum, Zanthoxylum Clava-Herculis, Viburnum rufidulum, Quercus alba, Praxinus pensylvanica, Carya illinoinensis, Crataequs spp., Sassafras albidum, Carya aquatica, Prunus serotina, Crataequs spathulata, Prunus mexicana, Rhus copallina, Helia azedarach, Chionanthus virginicus. Fraxinus Ilex opaca, Bumelia lanuginosa, Quercus falcata, Tilia values: importance decreasing of order Sambucus canadensis, *** Other species present listed abericana.

Table II-47. Size classes (dbh) of plant species located on Capers Ridge, Site 5.

Species					Size	Classes	S (CB)			
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	>
Ilex Youitoria	!	6					! ! !		}	
Liguidambar Styraciflua Arundimaria gigantea		45	11	11	•	7	7			
Celtis laevigata Ulbus alata		m m	7 -	ن	m	-				
Onercas pigga Callicarda asaricana		8	n vo	~ თ	7		-			
Juglans nigra	9	E 7	00	8 8	-					
177777777		~ %	22		a	.	•			
Total	3115	145	53	33	17	7	=	† 		† 1 1

* Includes <u>U.americana</u> and <u>U.rubra</u>. ** See Table II-46 for a list of other species present.

pensylvanica), hawthorn (Crataegus spp.), water hickory (Carya aquatica) and deciduous holly (Table II-48). This site is quite wet during spring and early summer but often is dry during late summer and fall. Twenty-three species were found at Site 6 with representatives generally having stem diameters less than 40 cm (Table II-49).

Site 7

Site 7 was a small shallow persistent swamp with water depths usually less than 2 feet. Green ash was the predominant species in the swamp (Table II-50). Overcup oak and water elm were also frequently recorded. Other associated species were bald cypress and water locust (Gleditsia aquatica). Green ash, overcup oak, bald cypress, and water hickory were the only species with representatives having stem diameters greater than 30 cm (Table II-51). Sixteen species were recorded at Site 7.

Table II-48. Prequency, density and dominance data for plant species located in a bottomland area north of Capers Ridge, Site 6.

Species	Frequency	Relative Frequency	Density No./Plot	Relative Density	Relative Dominance	Importance Value*	
Quercus lyrata	40.0	10.2		7.2	26.1	43.5	
Featings Pensylvanica	0 - 11 11	11.2	1.27	16.8	11.4	39.4	
Crataeque spp.	46.0	11.7		16.8	4.1	32.6	
Carra aguatica	21.0	5.4		3.2	22.4	31.0	
Llex_decidua	0.64	12.5		12.5	1.5	26.5	
Uleus crassifolia	29.0	7.4		8.1	4.3	19.8	
Gleditsia aquatica	13.0	3.3		4.5	•	15.0	
OMECUS Velutina	18.0	4.6		3.6	5.9	14.1	
Cephalanthus occidentalis		5.4		6.2	2.3	13.9	
		5.6		9.4	3.3	13.5	
Others**	5	23.1		16.2	11.7	51.0	
Total	! ! !	100.4	7.54	99.7	100.2	300.3	
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				ı

* Sum of relative frequency, relative density, and relative dominance.

Terigeta, Planera aquatica, Amorpha fruticosa, Ulmus spp. (includes Ugmericana and U. rubra,) Tarodium distichum, Gleditsia triacanthos, Overcus Phellos, Forestiera acuminata, Pinus taeda, Liquidambar Styraciflua, Ulmus alata, Bumelia lanuginosa, Morus rubra. values: importance decreasing of order in present listed species ** Other

STEPHEN F AUSTIN STATE UNIV NACOSDOCHES TX F/6 8/6 ECOLOBICAL SUVEY DATA FOR ENVIRONMENTAL CONSIDERATIONS ON THE --ETC(U) JUL 73 C D FISHER, D D HALL, H L JONES DACM63-73-C-0016 AD-A095 957 UNCLASSIFIED NL 2 of 7

Table II-49. Size classes (dbh) of plant species located in a bottomland area north of Capers Ridge, Site 6.

Species					Size	Classes	s (ca)			
	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80	81-90	06 <
Overcus lyrata	35	\$	6	3			2			
Fratings pensylvanica	121	 -		m	7		ı			
Crataegus spp.	126	_								
Carra aquatica	#	#	9	2						
Llex decidua										
Ulaus crassifolia	28		~	7						
Gleditsia aquatica		13	7		·					
Owercus velutina	70	'n	ļ	-	-					
Cephalanthus occidentalis		-			•					
Diospyros virginiana	5 6	0								
Ot hers*	_	o	•		-					
		,								
Total	629	6 0	22	19	a		7			

* See Table II-48 for a list of other species present.

Table II-50. Frequency, density and dominance data for plant species located in a swamp south of Capers Ridge, Site 7.

A CONTRACTOR OF THE PARTY OF TH

Species	Prequency K	Relative Frequency	Density Wo./Plot	Relative Density	Relative Dominance	Importance Value*
Kraxinus pensylvanica	56.0	21.0	1.42	32.8	55.8	109.6
<u>Quercus, lrata</u> Planera aquatica	0°09	17.2	0.73 0.84	16.9	12.1	46.2 41.4
Taxodian distichus	19.0	7.1	0.20	9.	10.4	22.1
Stepately aguatica Ouercus velutina	25.0 25.0	7.8 8.6	0.34	0.0 7.9	5. 0	19.6
Carra aquatica	11.0	4.1	0.12	2.8	7.5	75.5
Capbalanthus_occidentalis		5. 6	0.17	3.9	0.1	9.6
Office species	10.0	3.7	0.11	2.5	0.2	7.9
<u>Vlospykos vleginjana</u> Ot be rs***	o •		0.02 0.03	1.9	1.1	6 N 0
Total	1	100.0	4.33	6.66	6.66	299.8
					!	

* Sun of relative frequency, relative density, and relative dominance.

** Includes U. americana and U. rubra.

order of decreasing importance values: Styrax Amorpha fruticosa, ilex decidua, Quercus falcata, *** Other species present listed in americana, Liquidambar streaciflua. Celtis laevigata.

Table II-51. Size classes (dbh) of plant species located in a swamp south of Capers Ridge, Site 7.

Species					Size	Size Classes (CB)	(CB)			
	1-10	11-20	21-30	31-40	41-50	51-60	51-60 61-70	71-80	81-90	06<
Fratinus pensylvanica Ogercus lyrata Planera aggatica	118 63 80	77 W W	m 77	97	10	77	-			
Secure distichus Seditsia aquatica Overcus velutina		ဖြစ်ဖ	- w					-		
Cephalanthus occidentalis		\	/**	7						
Plosprios virginismo Others**	ကထ		-					•	•	
Total	358	27	:							
		;	2	2	9	m	-	-		

* Includes U. smericana and U. rubra.

** See Table II-50 for a list of other species present.

-

LITERATURE CITED

- Anonymous. 1966. An appraisal of potential for outdoor recreational developments in Liberty County, Texas.
- Anonymous. 1967a. An appraisal of potential for outdoor recreational developments in Dallas County, Texas.
- Anonymous. 1967b. An appraisal of potential for outdoor recreational developments in Leon County, Texas.
- Anonymous. 1967c. An appraisal of potential for outdoor recreational developments in Navarro County, Texas.
- Braun, E. L. 1950. Deciduous forests of eastern North America. The Blakiston Company, Philadelphia.
- Bray, W. L. 1906. Distribution and adaptation of the vegetation of Texas. University of Texas Bull. 82.
- Collier, G. L. 1964. The evolving East Texas woodland. PhD. Thesis, University of Nebraska, Lincoln, Nebraska.
- Conservation Needs Committee. 1967. Statistical report of conservation needs, San Jacinto County.
- Correll, D. S. and M. C. Johnston. 1970. Manual of the vascular plants of Texas. Texas Research Foundation, Renner, Texas.
- Dallas County Conservation Needs Inventory Committee. 1970. Soil and water conservation needs inventory, Dallas County.
- Gould, F. W. 1969. Texas plants--a checklist and ecological summary. Tex. Agr. Exp. Sta. Bull. MP-585.
- Leon County Conservation Needs Committee. 1970. Leon County conservation needs inventory.
- Liberty County Conservation Needs Committee. 1958.
 Liberty County inventory of land capabilities, uses, soil and water problems and needed conservation treatment present 1958 and by 1975.

The state of the s

- Liberty County Conservation Needs Committee. 1970. An inventory of land capabilities, uses, soil and water problems and needed conservation treatment for Liberty County, Texas.
- Miller, H. J. and others. 1967. An appraisal of potential for outdoor recreational developments in San Jacinto County, Texas.
- Rare Plant Study Center. 1972. Rare and endangered plants native to Texas. The University of Texas. Austin, Texas.
- Texas Almanac and State Industrial Guide, 1972-1973. 1971.

 A. H. Belo Corporation, Dallas, Texas.
- Texas Organization for Endangered Species (TOES). 1973.

 Letter dated June 8, 1973, including list of endangered species, dated May 6, 1973, to appear in next edition of The Texas Almanac. Temple, Texas.
- Navarro County Conservation Needs Committee. 1967. Navarro County conservation needs inventory.
- Tharp, B. C. 1926. Structure of Texas vegetation east of the 98th meridian. University of Texas Bull. 2606.
- Tharp, B. C. 1939. The vegetation of Texas. The Anson Jones Press, Houston, Texas.
- Tharp, B. C. 1952. Texas range grasses. Plant Research Institute, University of Texas Press, Austin, Texas.
- U. S. Department of Agriculture Soil Conservation Service. 1972. General soil map, Dallas County, Texas. Temple, Texas.

Geological Maps

University of Texas, Bureau of Economic Geology; Geologic Atlas of Texas: scale 1:250,000.

THE PARTY BUT

Beaumont Sheet, 1968 Dallas Sheet, 1972 Palestine Sheet, 1967 Waco Sheet, 1970 APPENLIX II

Appendix II-a. Partial checklist of herbaceous species in the Trinity River Basin including annotation of rare and endangered species according to the Rare Plant Study Center (1973) (indicated by *) and the Texas Organization for Endangered Species (1973) (indicated by **).

The same of the sa	
Common name	Scientific name
Agrimony	Agrimonia parviflora Ait.
Agrimony	Agrimonia rostellata Wallr.
Alfafa	Medicago sativa L.
Amaranth	Amaranthus arenicola I. M. Johnst.
Amaranth	Amaranthus Palmeri Wats.
Amberique bean	Strophostyles helvola (L.) Ell.
American basket-flower	Centaurea americana Nutt.
American germander	Teucrium canadense L.
American nightshade	Solanum americanum Mill.
** American potato bean	Apios americana Medic.
Annual fleabane	Erigeron annuus (L.) Pers.
Annual hairgrass	Aira elegans Gaud.
Annual yellow sweet-clover	Melilotus indicus (L.) All.
Antelope horn	Asclepias viridis Wall.
Arrowhead	Sagittaria graminea Michx.
Arrowhead	Sagittaria montevidensis Cham. & Schlech
Arrowhead	Sagittaria platyphylla Engelm.

Appendix II-a. Continued.

Common name	Scientific name
Arrowvine	Polygonum sagittatum L.
Aster	Aster Eulae Shinners
Aster	Aster lateriflorus (L.) Britt.
Aster	Aster patens Ait.
Aster	Aster pratensis Raf.
Aster	Aster subulatus Michx.
* Atlantic pigeon wings	Clitoria mariana L.
Autumn beitgrass	Agrostis perennans (Walt.) Tuckerm.
Autumn zephyr-lily	Zephyranthes candida Herb.
Baby blue-eyes	Nemophila microcalyx (Nutt.) Fisch.
Baby blue-eyes	Nemophila phacelioides Nutt.
Bahia grass	Paspalum notatum Flugge
Baldwin ironweed	Vernonia Baldwinii Torr.
Balloon-vine	Cardiospermum Halicacabum L.
Barley	Hordeum vulgare L.
Barnyard grass	Echinochloa crusgalli (H.B.K.) Hitcho
Barnyard grass	Echinochloa crusgallii (L.) Beauv. var. zelayensis (H.B.K.) Hitchc.
Beak rush	Rhynchospora caduca Ell.
Beak rush	Rhynchospora capitellata (Michx.) Vahl
Beak rush	Rhynchospora globularis (Chapm.) Smal
Beak rush	Rhynchospora glomerata (L.) Vahl

Appendix II-A. Continued.

Co	mmon name	Scientific name
Ве	aked cornsalad	Valerimella radiata (L.) Dufr.
Ве	ard grass	Bothriochloa saccharoides var. longipaniculata (Gould) Gould
Ве	ard-tongue	Penstemon laxiflorus Penn.
** Be	ard-tongue	Penstemon teruis Small
Ве	ar's foot	Polymnia Uvedalia (L.) L.
Be	ggar-ticks	Bidens discoidea (T. & G.) Britt.
Ве	ggar-f :ks	Bidens laevis (L.) B.S.P.
Be	ggar's-ticks	Desmodium Nuttallii (Schindl.) Schul
Ве	ggar's-ticks	Desmodium obtusum (Willd.) DC.
Be	ggar's-ticks	Desmodium viridiflorum (L.) DC.
Bu	rmuda grass	Cynodon Dactylon (L.) Pers.
Ві	g bluestem	Andropogon Gerardi Vitman
Bi	tterweed	Helenium amarum (Raf.) Rock
B14	ack medic	Medicago Lupulina L.
B14	ackseed needlegrass	Stipa avenacea L.
Bla	ack snakeroot	Sanicula canadensis L.
B1a	adder-pod	Lesquerella recurvata (Gray) Wats.
B1a	adder pod	Sesbania vesicaria (Jacq.) Ell.
Bla	idder sedge	Carex intumescens Rudge
Bla	adderwort	Utricu'aria subulata L.
Bla	zing-star	Liatris pycnostachya Michx.
B11	ster buttercup	Ranunculus sceleratus L.

Appendix II-a. Continued.

	Common name	Scientific name
	Bloodleaf	Iresine rhizomatosa Standl.
	Blue-eyed grass	Sisyrinchium Langloisii Greene
	Blue-eyed grass	Sisyrinchium pruinosum Bickn.
	Bluegrass	Poa annua L.
	Bluegrass	Poa autumnalis Ell.
	Blue jasmine	Clematis crispa L.
	Blue larkspur	Delphinium carolinianum Walt.
* :	Blue sage	Salvia azurea Lam.
	Blue star	Amsonia illustris Woods.
	Bluet	Hedyotis aigricans (Lam.) Fosb.
	Bluet	Hedyotis uniflora (L.) Lam.
	Blunt-lob d woodsia	Woodsia obtusa (Spreng.) Torr.
	Blunt spiterush	Eleocharis obtusa (Willd.) Schult.
	Bog-hemp	Boehmeria cylindrica (L.) Sw. var. cylindrica
	Bog marsh-cress	Rorippa islandica (Oeder) Borbas
	Bog-rush	Juncus trigonocarpus Steud.
	Branched sedge	Carex decomposita Muhl.
	Brazilian vervain	<u>Verbena</u> <u>brasiliensis</u> Vell.
	Britton : edge	Carex Brittoniana Bailey
	Broadleaf signalgrass	Brachiaria platyphylla (Griseb.) Nash
	Brome	Bromus commutatus Schrad.
	Brookweed	Samolus parviflorus Raf.

والمرافق المنافقة الم

Common name	Scientific name
Broomsedge	Andropogon virginicus L.
Broomweed	Xanthocephalum dracunculoides (DC.) Shinners
Broomweed	Xanthocephalum texanum (DC.) Shinne
Brownseed paspalum	Paspalum plicatulum Michx.
Browntop panic grass	Fanicum fasciculatum Sw.
Buckth >rn	Plantago aristata Michx.
Ruffal > bur	Solanum rostr tum Dun.
Buffal, gourd	Cucurbita foemidissima H.B.K.
Buffal, grass	Buchloe dacty oides (Nutt.) Engelm.
Bull-n:ttle	Cnidoscolus texanus (Muell. Arg.) Small
Bull-thistle .	Circium horridulum Michx.
Bulrusn	Scirpus koilo epis (Steud.) Gl.
Bluntleaf bedstraw	Galium obtusum Bigel.
Bur-clover	Medicago polymorpha var. vulgaris (Benth.) Shinners
Burhead	Echinodorus cordifolius (L.) Griseb
Burhead	Echinodorus rostratus (Nutt.) Engeli
Butter and eggs	Linaria vulgaris Mill.
Buttercup	Ranunculus carolinianus DC.
Butter up	Ranuncilus pusillus Poir.
Butterfly pea	Centrosema virginianum (L.) Bentı.
Butterfly weed	Asclepias tuberosa L.

Common name	Scientific name
Butterweed	Senecio glabellus Poir.
Button clover	Medicago orbicularis (L.) Bartal.
Button weed	Diodia virginiana L.
Camphor-weed	Pluchea camphorata (L.) DC.
Canada wild-rye	Elymus canadensis L.
Canary grass	Phalaris canariensis L.
Canary grass	Phalaris caroliniana Walt.
Cardinal flower	Lobelia cardinalis L. var. cardinalis
Carolina clover	Trifolium carolinianum Michx.
Carolina geranium	Geranium carolinianum L.
Carolina horse-nettle	Solanum carolinense L.
Carolina modiola	Modiola caroliniana (L.) G.Don.
Carolina sedge	Carex caroliniana Schwein.
Carpet grass	Axonopus affinis Chase
Catchfly grass	Leersia lenticularis Michx.
Catchweed bedstraw	Galium Aparine L.
Cat-tail	Typha domingensis Pers.
Chain fern	Lorinseria areolata (L.) Presl.
Chasmanthium	Chasmanthium laxum (L.) Yates
Chervil	Chaerophyllum Tainturieri Hook. var Tainturieri
Chicken spike	Sphenoclea zeylanica Gaert.
Chickweed	Cerastium brachypodum (Engelm.) Robin

Commos name	Scientific name
Chickweed	Cerastium giomeratum Thuill.
Christmas fern	Polystichum acrostichoides (Mic x.) Schott
** Cinnamon fern	Osmunda cinnamomea 1.
Clammy groundcherry	Physalis heterophylla Nees
Clanmy-weed	Polenisia erosa (Nutt.) Iltis
Claoping Venus' looking glass	Triodagis perfectiata (L.) Nieuw.
climbing dogbans	Trachelo: permum difforme Gray
d Clarbing actu	TRANSCO SOURCE (IR. A.) Su.
8.52.79.2.13g Bengambe &	Mrs. 1 1230 13 (10) 22.13
coast sandbut	Construe to seeing M. A. Curtis
Cocar ebu r	Asthium strumarium L.
Common cat-tail	Typica latifelia L.
Common chickweed	Stellaria media (L.) Cyr.
Common green-briar	Smilax rotundifolia L.
Common horehound	Marrubium vulgare L.
Common mouse ear	Cerastium vulgatum L.
Common mullein	Verbascum Thapsus L.
Common self-heal	Prunella vulgaris L.
Common sunflower	Helianthus annuus L.
Common yatrow	Achillea millefolium L.
Cone-spur blanderwort	Utraciaria sibba L

Appendix II-a. Continued.

Common name	Screntific name
Coral bean	Erythrina herbacea L.
Coreopsis	Coreopsis cardaminaefolia (DC.) Nutt.
Cotton thistle	Onepordum Acanthium L.
Cowpen daisy	Verbesina enceloides (Cav.) Gray
Creeping bush clover	Lespedeza repens (L.) Bart.
Creeping rush	Jurcus repens Michx.
Creeping spot flower	Spilanthes americana var. repens (Walt.) A.H. Moore.
Creeping water primrose	Ludwigia peploides (H.B.K.) Raven subsp. peploides
Croton	Croton glandulosus L.
Croton	Croton Lindheimerianus Muell.
Crowfoot sedge	Carex crus-corvi Kunze
Crow poison	Not hoscordum bivalve (L.) Britt.
Cudweed	Gnaphalium falcatum Lam.
Cudweed	Gnaphalium pensilvanicum Willd.
Cupgrass	Eriochloa sericea (Scheele) Monro.
Cut-leaved evening primrose	Oenothera laciniata Hill.
Cylindric-fruited ludwigia	Ludwigia glandulosa Walt.
Dakota vervain	Verbena bipinnatifida Nutt.
Dayflower	Commelina communis L.
Dayflower	Commelina erecta L.
Dayflower	Commelina erecta var. Deamiana Fern.
Deer pea vetch	Vicia ludoviciana Nutt.

Common name	Scientific name
Deer vetch	Lotus Purshianus (Benth.) Clem. & Clem.
Dichanthium	Dichanthium annulatum Stapf
Dicliptera	Dicliptera brachiata (Pursh) Spreng
Ditch stonecrop	Penthorum sedoides L.
Dock	Rumex chrysocarpus Moris
Dodder	Cuscuta compacta Juss.
Dognettle	Urtica urens L.
Downy chess	Bromus tectorum L.
Downy ground cherry	(Dun.) Waterfall
Dracopis	Dracopis amplexicaulis (Vahl) Cass.
Drummond phlex	Phlox Drummondii Hook.
* Drummond wax-mallow	Malvaviscus arboreus var. Drummondi (T. & G.) Schery
Duck potato	Sagittaria latifolia Willd.
Dwarf dandelion	Krigia gracilis (DC.) Shinners
Dwarf dandelion	Krigia virginica (L.) Willd.
Dwarf spikerush	Eleocharis parvula (R. & S.) Link
Dye bedstraw	Galium tinctorium L.
Ebony spleenwort	Asplenium platyneuron (L.) D. C. Ea
Echinochloa	Echinochloa Walteri (Pursh) Heller
Eclipta	Eclipta alba (L.) Hassk.
Clephant's-foot	Elephantopus carolinianus Requesto

Appendix II-a. Continued.

=	Common name	Scientific name
	Elephant's-foot	Elephantopus tomentosus L.
	Engelmann daisy	Engelmannia pinnatifida Nutt.
	Eryngo	Eryngium Hookeri Walp.
	Eryngo	Eryngium integrifolium Walt.
	Evening primrose	Oenothera heterophylla Spach.
	Eyebane	Euphorbia nutans Lag.
	Fall panic	Panicum dichotomiflorum Michx.
	Fall witchgrass	Leptoloma cognatum (Schult.) Chase
	False dandelion	Pyrrhopappus carolinianus (Walt.) DC.
	False dandelion	Pyrrhopappus multicaulis DC.
	False pimpernel	Lindernia anagallidea (Michx.) Penn.
	False ragweed	Parthenium Hysterophorus L.
	Fewflower tickclover	Desmodium pauciflorum (Nutt.) DC.
	Fiddle dock	Rumex pulcher L.
	Fimbristylis	Fimbristylis autumnalis (L.) R. & S.
	Finger dogshade	Cynosciadium digitatum DC.
**	Finger lionsheart	Physostegia Digitalis Small
	Fireweed	Erechtites hieracifolia var. intermedia Fern.
	Flat sedge	Cyperus acuminatus T. & G.
	Flat sedge	Cyperus brevifolius (Rottb.) Hassk.
	Flat sedge	Cyperus erythrorhizos Muhl.
	Flat sedge	Cyperus globulosus Aubl.

Appendix II-a. Continued.

Common name	Scientific name
Flat sedge	Cyperus Haspan L.
Flat sedge	Cyperus odoratus L.
Flat sedge	Cyperus ovularis (Michx.) Torr.
Flat sedge	Cyperus pseudovegatus Steud.
Flat sedge	Cyperus polystachyos var. texensis (Torr.) Fern.
Flat sedge	Cyperus retrofractus (L.) T. & G.
Flat sedge	Cyperus setigerus T. & H.
Flat sedge	Cyperus strigosus L.
Flat sedge	Cyperus surinamensis Rottb.
Fleabanc	Erigeron tenuis T. & G.
Flower-of-an-hour	Hibiscus trionum L.
Forget-me-not	Myosotis verna Nutt.
Forked blue curls	Trichostema dichotomum L.
Forked rush	Juneus dichotomus Ell.
Fourspike heliotrope	Heliotropium procumbens Mill.
Fox sedge	Carex vulpinoidea Michx.
Foxtail	Alopecurus carolinianus Walt.
Fragile fern	Cystopteris fragilis (L.) Bernh.
Fragrant cudweed	Gnaphalium obtusifolium L.
Frostweed	Verbesina virginica L.
Franks sedge	Carex Frankii Kunth.

Common name	Scientific name
Gaura	Gaura filiformis Small
Gay feather	Liatris elegans (Walt.) Michx.
Giant ragweed	Ambrosia trifida L.
Globe-berry	Ibervilles Lindheimeri (Gray) Green
Golden aster	Heterotheca latifolia Buckl.
Colden aster	Heterotheca pilosa (Nutt.) Shinners
Goldenrod	Solidago altissima L.
Goldenrod	Solidago nitida T. & G.
Goldenrod	Solidago nemoralie Ait.
Grassleaf rush	Juncus marginatus Rostk.
Gray vervain	Verbena canescens H.B.K.
Green amaranth	Ameranthus viridis L.
Green dr ago n	Arisaema Dracontium (L.) Schott.
Green-eyes	Berlandiera pumila (Michx.) Mutt.
Green gerardia	Agalinis viridis (Small) Penn.
Green parrot's feathers	Myriophyllum pinnatum (Walt.) B.S.P
Green-thread	Thelesperma flavodiscum (Shinners) B. L. Turner
Gromwell	Lithospermum tuberosum A. DC.
Ground cherry	Physalis angulata L.
Ground cherry	Physalis angulata var. pendula (Rydi Waterfall

Common name	Scientific name
Groundsel .	Senecio imparipinnatus Klatt
Gulf croton	Croton punctatus Jacq.
Gulf vervain	Verbena xutha Lehm.
Gummy lovegrass	Eragrostis curtipedicellata Buckl.
Haisy four-o-clock	Minch lie the ta (Fuceh) MacM.
Hairyseed paspalum	Paspalum pubiflorum Fourn.
Hairy bush clover	Lespedeza hirsuta (L.) Hornem.
Hairy grama ,	Boutelous hirsuta Lag.
Hairy vetch	Vicia villega Ruth.
Hammerwort	fatie . The pensylvanics Muhl.
Nowk's~beard	Crepis capillaris (L.) Waliz.
Reartlear mettle	Urtica chamaedryoides Pursh
Heartleaf mettle	Urtica chamaedryoides var. Runyonii Correll
Heart sorrel	Rumex hastatulus Ell.
Hedge-parsley	Torilus arvensis (Huds.) Link
Hoary tickclover	Desmodium canescens (L.) DC.
Hooked pepperwort	Marsilea uncinata A. Br.
Hooker eryngo	Eryngium Hookeri Walp.
Horned rush	Rhynchospora corniculata (Lan.) Gra
Horsenint	Monarda citriodora Cerv.
Horsetail	Equisetum hyemale var affine (Engelm.) A.A. ha

Common name	Scientific name
Horse-weed	Conyza canadensis (L.) Cronq.
Hummock sedge	Carex Joori Bailey
Hydrolea	Hydrolea ovata Choisy
Illinois bundleflower	Desmanthus illinoiensis (Michx.) MacM.
India heliotrope	Heliotropium indicum L.
Indian blanket	Gaillardia pulchella Foug.
Indian chickweed	Mollugo verticillata L.
Indian grass	Sorghastrum avenaceum (Micha.) Nach
Indian hemp	Apocynum cannabinum L.
Indian strawberry	Duchesnes indics (Andrs.) Focke
Inland sea oats	Chasmanthium latifolium (Nichx.) Yates
Inland rush	Juncus interior Wieg.
Intermediate lions heart	Physostegia intermedia (Nutt.) Engelm. & Gray
Ironweed	Vernonia missurica Ref.
Ironweed	Vernonia texana (Gray) Small
Ivy treebine	Cissus incisa (Nutt.) Des Moul.
Japanese bushclover	Lespedeza striata (Thumb.) H. & A.
Japanese chess	Bromus japonicus L.
Johnson grass	Sorghum halepense (L.) Pers.
Joint-tail	Manisuris rugosa (Nutt.) O. Ktse.
Jumpseed	Polygonum virginianum L.
Jungle-rice	Echinochlos tolonum (L.) Link

The state of the s

Appendix II-a. Continued.

Common name	Scientific name
Juniper leaf	Polypremum procumbens L.
Kallstroemia	Kallstroemia parviflora Mort.
Knotted hedge-parsley	Torilis nodosa (L.) Gaert.
Knotweed	Polygonum cristatum Engelm.
Lance-leaved warer-willow	Justicia lanceolata (Chapm.) Small
Late-flowering thoroughwort	Eupatorium serotinum Michx.
Leaf-flower	Phyllanthus polygonoides Spreng.
Leaf-flower	Phyllanthus pudens Wheeler
l.eather-flower	Clematis Pitcheri T. & G.
leathery rush	Juncus coriaceus Mack.
Leavenworth vetch	Vicia Leavenworthii T. & G.
Leucospora	Leucospora multifida (Michx.) Nutt.
l.eersia	Leersia hexandra Sw.
lettuce	Lactuca floridana (L.) Gaertn.
Little barley	Hordeum pusillum Nutt.
Little bluestem	Schizachyrium scoparium (Michx.) Na
Little burclover	Medicago minima (L.) L.
Little mallow	Malva parviflora L.
Little quaking grass	Briza minor L.
Lizard's tail	Saururus cernuus L.
Lovegrass	Eragrostis hirsuta (Michx.) Nees
Lovegrass	Eragrostis hypnoides (Lam.) B.S.P.

Common name	Scientific name
Low hopelover	Trifolium campestre Sturm.
Low poppy-mallow	Callirhoe involucrata (Torr.) Gray
Lyre-leaf sage	Salvia lyrata L.
Maidencane	Panicum hemitomon Schult.
Marigold dogwood	Dyssodia tagetoides T. & G.
Marijuana	Cannabis sativa L.
Marsh-elder	Iva angustitolia DC.
Marsh-elder	Iva annua L.
Marsh-fleabane	Pluchea purpurascens (Sw.) DC.
Marsh purslane	Ludwigia palustris (L.) Ell.
Maryland senna	Cassia marilandica L.
Mauchia	Bradburia hirtella T. & G.
Maximilian sunflower	Helianthus Maximiliani Schrad.
Meadow beauty	Rhexia mariana L.
Meadow beauty	Rhexia petiolata Walt.
Melonette	Melothria pendula L.
Mexican hat	Ratibida columnaris (Sims) D. Don.
Milkweed	Asclepias obovata Ell.
Milkweed	Asclepias rubra L.
Milkweed	Asclepias viridiflora Raf.
Missouri violet	Viola missouriensis Greene
Mist-flower	Eupatorium coelestinum L.

Common name	Scientific name
Mock bishop's-weed	Ptilimnium cupillaceum (Michx.) Raf.
Mock pennyroyal	Hedeoma Drummondii Benth.
Mock pennyroyal	Hedeoma hispidum Pursh
Monk y-flower	Mimulus alatis Ait.
Morning glory	Ipomea lacun sa L.
Morning glory	lpomea trichocarpa Ell.
Muhlenburg sedge	Carex Schlombergii Schkuhr.
Muhly	Muhlenbergie brachyphylla Bush
Nama	Nama hearidu Gray
Narrow cell cornsalad	Valerianella stenocarpa (Engelm.) Kro
Narrow-leaved vetch	Vicia angustafolia L.
Narrow plumegrass	Erianthus strictus Baldw.
Nimblewill muhly	Muhlenbergia Schreberi J. F. Gmel.
Northern crabgrass	Digitaria sanguinalis (L.) Scop.
Northern frog fruit	Phyla lanceolata (Michx.) Greene
Noseburn	Tragia cordata Michx,
Noseburn	Tragia ramosa Torr.
Nutgrass	Cyperus rotundus L.
Oats	Avena fatua L.
Old field toad-flax	Linaria canadensis (L.) Dum.
Old plainsman	Hymenopappus Scabiosaeus L. Her.

Common name	Scienti; ic name
Oplismenus	Oplisme us hirtellus subsp. setarius (Lam.) Mez
⁰ x-eye	Heliops s helianthoides (L.) Sweet
Ozark grass	Limnode: arkansana (Nutt.) L. H. Dewey
Palafoxia	Palafoxia Reverchonii (Bush) Cory
Palafoxia	Palafoxia rosea (Bush) Cory
Pale dock	Rumex al tissimus Wood
Pale-seeded plantain	Plantage virginica L.
Panic grass	Panicum anceps Michx.
Panic grass	Panicum brachyanthum Steud.
Panic grass	Panicum dichotomum L.
Panic grass	Panicum iilatetum Poir.
Panic grass	Panicum geminatum Michx.
Panic grass	Panicum hians Ell.
Panic grass	Panicum oligosanthes Schult.
Panic grass	Panicum rigidulum Nees
Panic grass	Panicum verrucosum Muhl.
Panicled tickclover	Desmodium paniculatum (L.) DC.
Partridge pea	Cassia Jasciculata Michx.
Partridge pea	Cassia asciculata var. rostrata (Woot. & Standl.) B. L. Turner
Paspalum	Paspalum acuminatum Raddi
Paspalum	Paspalum floridanum Michx.

Common name	Scientific name
Paspalum	Paspalum fluitans (Ell.) Kunth
Paspalum	Paspalum laeve Michx.
Paspalum	Paspalum Lange (Fcurn.) Nash
Paspalum	Paspalum praecox Wait.
Peanut clover	Trifo) and mobianthum T. & G.
Pencil-flower	Stylosanthes . 16 lora (L.) B. S. P.
Peppergrass	Lepidium virginicum L.
Peppervine	Ampelopsis arborea (L.) Koehne
Persian clover	Irifolium resupinatum L.
Persica ria	Persicaria densiflora (M. lan.) Molden
Phacelia	Phacelia hirsuta F .c+.
Phlox	Phlox pilosa L.
Pickerel-weed	Pontederia cordata 1.
Pink smartweed	Persicaria bicornis (Raf.) Nieuw.
Fipewort	Eriocaulon decangulare L.
Pitseed goosefoot	Chenopodium Berlandieri Moq.
Plains wild indigo	Baptisia leucophaea Nutt.
Poke weed	Phytolacca americana L.
Polygala	Polygala cruciata L.
Pol yga la	Polygala ramosa Ell.
Po ny-foot	Dichondra carolinensis Michx.
Power puff	Mimosa strigillosa T. & C.

Common name	Scientific name
Prairie Agalinie	Agalinis heterophylla (Nutt.) Small
Prairie clover	Petalostemum candidum (Will4.) Michx.
Prairie cupgrass	Eriochloa contracta Hitchc.
Prairie ground cheery	Physalis pumila Nutt.
Prairie-pareley	Polytaenia Nuttallii DC.
Prairie tea	Croton monanthogynus Michx.
Prairie three-own	Aristida oligantha Michx.
Prairie vedgescale	Sphenopholis obtusata (Michm.) Seriba.
Prickly lettuce	Lectuca serriole L.
Prickly mallow	Sida spinosa L.
Prickly poppy	Argemone polyanthemos (Fedde) G. Ownbey
Primrose-willow	Ludwigia decurrens Walt.
Prionopsis	Prionopsis ciliata (Nutt.) Mutt.
Prostrate lawaflower	Calyptocarpus vialis Less.
Puncture vine	Tribulus terrestris L.
Purple emaranth	Amerenthus cruentus L.
Purple cudveed	Gnaphalium purpureum L.
Purple mondey-rue	Thalictrum Dasycarpum Fisch. 6 All.
Purple sendgrass	Triplacie purpurea (Walt.) Chapm.
Purple three-awn	Aristida purpurea Nutt.
Purpletop	Tridens flavus (L.) Hitche.
Purslane speedsell	Veronica peregrina L.

Common name	Scientific name
Rain-lily	Cooperia Drummondii Herb.
Rattle-box	Ludwigia alternifolia L.
Rattlesnake-weed	Daucus pusillus Michx.
Red Lovegrass	Eragrostis oxylepis (Torr.) Torr.
Red-seeded plantain	Plantago rhodosperma Done.
Red sprangle top	Leptochloa Filiformis (Lam.) Beauv.
Redtop bentgrass	Agrostis stolon fera L.
Reflexed sedge	Carex retroflex Michx.
Rescue grass	Bromus unioloides H.B.K.
* Rice cutgrass	Leersia oryzoid is (L.) Sw.
Rose gentian	Sabatia campesteis Nutt.
Rose vervain	Verbena canadensis (L.) Britt.
Rough buttonweed	Diodia teres Walt.
Roundhead rush	Juncus validus Cov.
Roundleaf scurfpea	Psoralea rhombifolia T. & G.
* Royal fern	Osmunda regalis var. spectab lis (Willd.) Gray
Ruellia	Ruellia caroliniensis (Walt.) Steud
Ruellia	Ruellia humilis var. longiflora (Gray) Fern.
Rush	Juncus nodatus Cov.
Rush-foil	Crotonopsis linearis Michx.
Ryegrass	Lolium perenne L.

Common name	Scientific name
Sacciolepis	Sacciolepis striata (L.) Nash
Salsify	Tragopogon porrifolius L.
Sandhills amaranth	Amaranthus arenicola I. M. Johnst.
Sand spikerush	Eleocharis montevidensis Kunth.
Sandwort	Arenaria patula Michx.
Scaleseed	Spermolepis inermis (DC.) Math. & Const.
Scarlet pea	Indigofera miniata Ort.
Scarlet pimpernel	Anagallis arvensis L.
Scarlet rose-mallow	Hibiscus militaris Cav.
Scarlet spiderling	Boerhaavia coccinea Mill.
Scorpion grass	Myosotis macrosperma Engelm.
Scrambled eggs	Corydalis aurea Willd.
Scratch-daisy	Croptilon divaricatum (Nutt.) Raf.
Sedge	Carex albolutescens Schwein.
Sedge	Carex amphibola Steud.
Sedge	Carex blanda Dew.
Sedge	Carex crebriflora Wieg.
Sedge	Carex cherokeensis Schwein.
Sedge	Carex Davisii Schwein. & Torr.
Sedge .	Carex lurida Wahl.
Sedge	Carex reniformis (Bailey) Small

Common name	Scientific name
Sensitive Fern	Onoclea sensibilis L.
Sesbania	Sesbania macrocarpa Muhl.
Sessile-leaf Tickclover	Desmodium sessilifolium (Torr.) T. & G.
Setaria	Setaria geniculata (Lam.) Beauv.
Shade betony	Stachys oren to Parl.
Shade mud-flower	Micranthemum embrosum (Walt.) Blake
Shepherd's purse	Capsella Bursa-Pastoria (L.) Medic.
Shore milkweed	Asclepias perennis Wait.
Short ragweed	Ambrigit and lifel.
Shortstem Iris	Iris r. avidat Ref.
Showy Primrose	Ocnothera speciesa Nutte
Sicklepod	Cassia obtusifolia L.
Sida	Sida rhombifolia L.
Side-oats grama	Boutelous curtipendula (Michx.) Tors
Silver bluestem	Bothriochloa Saccharoides (Sw.) Rydb
Silverleaf nightsh ade	Solanum elaeagnifolium Cav.
Singletary pea	Lathyrus hirsutus L.
Eix-weeks fescue	Vulpia octoflora (Walt.) Rydb.
Skullcap	Scutellaria cardiophylla Engelm. & Gray
Slender rush	Juncus tenui: Willd.
Slick-seed bean	Strophostyles lefospioma (T & G.) Piper

Common name	Scientific name
Slimleaf scuripea	Psoralea tenuiflora Pursh
Slimlobe celery	Apium leptophyllum (Pers.) F. V. Muell
Slimlobe poppy-mallow	Callirhoe involucrata var. limeariloba (T. & G.) Gray
Slimpod rush	Juncus difussimus Buckl.
Small-flowere vervain	Verbena bipinnatifida Nutt.
Small Venus' ooking glass	Triodanis biflora (R. & P.) Greene
Smartweed	Persicaria coccinea (Muhl.) Green
Smartweed	Persicaria hydropiperoides (Michx.) Small
Smartweed	Persicaria lapathifolia (L.) Small
Smartweed	Persicaria punctata (Ell.) Small
Smooth buttom eed	Spermacoce glabra Michx.
Smooth hydrolea	Hydroles uniflora Raf.
Smutgrass	Sporobolus indicus (L.) R. Br.
Snake-cotton	Froelichia Braunii Standl.
Snake-cotton	Froelichia Drummondii Moq.
Snake-cotton	Froelichia floridana (Nutt.) Moq.
Sneezeweed	Helenium autumnale L.
Sneezeweed	Helenium microcephalum DC.
Sneezeweed	Helenium quadridentatum Labill.
Snow-on-the-prairie	Euphorbia bicolor Engelm. & Gray
Snoutbean	Rhynchosia latifolia (Nutt.) T. & G.

The second second

Common name	cientific name
Soft rush	uncus effusus var. solutus Fern. & Wieg.
Sorghum	orghum bicolor (L.) Moench.
Sourclover	telilotus indicus (L.) All.
** Southern blue-flag	ris virginica L.
Southern crabgrass	Digitaria adscendens (H. B. K.) Henr
Southern wildrice	izaniopsis miliacea (Michx.) Doell. & Asch.
Southernshield fern	Thelypteris Kunthii (Desv.) Morton
Sow thistle	Sonchus asper (L.) Hill
Sow thistle	Sonchus oleraceus L.
Spanish mos:	Tillandsia usneoides (L.) I.
Spanish-needles	Bidens bipinnata L.
Spiderwort	Commelina virginica L.
Spiderwort	Tradescantia hirsutiflora Bush
Spider wort	Tradescantia ohioensis Raf.
Spiderwort	Tradescantia Reverchonii Bush
Spikerush	Eleocharis austrotexana M. C. Johnst
Spikerush	Eleocharis macrostachya Britt.
Spikerush	Eleocharis tortilis (Link.) Schult.
Spiny pigweed	Amaranthus apinosus L.
Splitbeard bluestem	Andropogon ternarius Michx.

Common name	Scientific name
Spotted beebalm	Monarda punctata L
Spotted bur-clover	Medicago arabica () Huds.
Spreading dayflower	Commelina diffusa Burm. F.
Spring bentgrass	Agrostis hyemalis (Walt.) B. S. P.
* Spring ladies' tresses	Spiranthes vernalis Engelm. & Gray
Spurge	Euphorbia dentata Michx.
Spurge	Euphorbia maculata L.
Spurge	Euphorbia missurica Raf.
Spurge	Euphorbia prostrata Ait.
Spurge	Euphorbia serpens H. B. K.
Spurge	Euphorbia spathulata Lam.
Squarestem spikerush	Eleocharis quadrangulata (Michx.) R. &
Sticky hedge-hyssop	Gratiola brevifolia Raf.
Stinking-fleabane	Pluchea foetida (I.) DC.
St. John's-wort	Hypericum mutilum L.
St. John's-wort	Hpericum Walteri Cwel.
Sugarcane plumegrass	Erianthus giganteus (Walt.) Muhl.
Sunflower	Helianthus angustifolius L.
Sunflower	Helianthus debilis Nutt.
Sunflower	Helianthus grosse-serratus Martens
Swampdock	Rumex verticillatus L.
Sweet goldenrod	Solidago odora Ait.

Commo: name	Scientific name
Tall lush clover	Lespedeza Stuevei Nutt.
Tall cropseed	Sporobolus asper (Michx.) Kunti
Tallow weed	Plantago Hookeriana Fisch. & Mey.
Texas aster	Aster texanus Burgess
Texas bedstraw	Gallum rexense Gray
Texas pluebonnet	Lupinus texensis Hook.
Texas Frog-fruit	Phyla incisa Small
Texas ;;eranium	Geranium texanum (Trel.) Heller
Texas gourd	Cucurbita texana Gray
Texas grama	Boutelous rigidisets (Steud.) Hitch
Texas groundsel	Senecio ampullaceus Hook
Texas millet	Panicum texanum Buckl.
Texas paintbrush	Castilleja indivisa Engelm.
Texas pink-root	Spigelia texana (T. bG.) A. DC.
Texas speargrass	Stipa leucotricha Trin. & Rupr.
Texas thistle	Cirsium texanum Buckl.
Texas toad-flax	Linaria texana Scheele
Texas vervain	Verbena Halei Small
Texas yellow-star	Lindheimera texana Gray & Engelm.
Thin paspalum	Paspalum setaceum Michx.
Thoroughwort	Eupatorium perfoliatum L.
Thoroughwort	Eupatorium rotundifolium L.

Common name	Scientific name
Three-awn grass	Aristida desmantha Trin. & Rupr.
Three-awn grass	Aristida lanosa Ell.
Three-awn grass	Aristida longespica Poir.
Three-seeded Mercury	Acalypha gracilens Gray
Three-seeded Mercury	Acalypha ostryaefolia Ridd.
Three-seeded Mercury	Acalypha rhomboidea Raf.
Three-seeder Mercury	Acalypha virginica L.
Tick-seed	Coreopsis basalis (Otto. & Dietr.) Blake
Tick-seed	Coreopsis nuecensis Heller
Tick-seed	Coreopsis tinctoria Nutt.
Toad-rush	Juncus bufonius L.
Toothcup	Ammannia coccinea Rottb.
Toothcup	Rotala ramosior (L.) toehne
Tomato	Lycopersicon esculentum Mill.
Trailing ratany	Krameria lanceolata Torr.
Tridens	Tridens strictus (Nutt.) Nash.
Tropical crabgrass	Digitaria diversiflora Swall.
Tuckahoe	Peltandra virginica (L.) Kunth
Tumblegrass	Schedonnardus paniculatus Nutt.
Turnsole	Heliotropium tenellum (Nutt.) Torr.
Two-eyed berry	Mitchella repens L.

Common name	Scientific name
Two-flower melic	Melica mutica Walt.
Umbre la-grass	Fuirena simplex Vahl
Umbre .la-grass	Fuirena squarrosa Michx.
Urugu y water primrose	Ludwigia uruguayensis (Camb.) Hara
Vahl 'imbry	Fimbristylis Vahliz (Lam.) Link
Vasey grass	Paspalum Uzvillei Steud.
Velvet-leaf gaura	Gaura parviflora Hook.
Venus' looking glass	Triodanis texana NcVaugh
Vetch	Vicia deavenmonthii T. & G.
Vine mesquice	Panicus obtusus H.B.K.
Violet wood-sorrel	Oxalis violaces L.
Virginia bugle-weed	Lycopus virginicus L.
Virginia wild rye	Elymus virginicus L.
Water clover	Marsilea mucronata A. Br.
Water-feather	Myriophyllum brasiliense Camb.
Water-horehound	Lycopus rubellus Moench.
Water-hyssop	Bacopa Monnieri (L.) Wettst.
Water-milfoil	Myriophyllum verticillatum L.
Water-pennywort	Hydrocotyle umbellata L.
Water-pennywort	Hydrocotyle verticillata Thunb.
Water-primrose	Ludwigia leptocarpa (Nuct.) Rara
Wedgegrass	Sphenopholis filiforate (Chapm.) Hitche.

Common name	Scientifi name
Wedgegrass	Splenopho is intermedia (Rydb.) Rydb.
Wedgegrass	Spi enopholis longiflora (Vasey) Hitche.
Weedy dandelion	Krigia oppositifolia Raf.
Weeping lovegrass	Eragrostia curvula (Schrad.) Nees
Western horse-nettle	Solanum dimidiatum Raf.
Western ragweed	Ambrosia Isilostachya DC.
White avens	Geum canadense Jacq.
White clover	Tr folium repens L.
White grass	Lecrsia virginica Willd.
White root rush	Jui cus brachycarpus Engelm.
White sheath sedge	Ca ex hyaline Boott
White sweet clover	Me ilotus albus Lam.
White top daisy	Er geron strigosus Willd.
White tridens	Tr dens albescens (Vasey) Woot. & Stand.)
White vervain	Ve bena urticifolia L.
Wild buckwheat	Er ogonum longifolium Nutt.
Wild buckwheat	Er ogonum multiflorum Benth.
Wild four o'clock	Mir abilis nyctaginea (Michx.) MacM.
Wild indigo	Bartisia Nuttalliana Small
Wild onion	Allium canadense L.
Wild petunia	Rue ilia Corzoi Tharp & Barkl.

Common name	Scientific name
Wild petunia	Ruelisa pedunculata forr.
Wild petunia	Ruellia strepens 1. var. strepens
Wild potato	Ipomoea pandurata (L.) Mey.
Windmill fingergrass	Chloris verticillata Nutt.
Wingseed	Carex asatz Torr.
Witchgrass	Panicom capillare L
Winter vetch	Vicia dasycarpa teas
Woods cornsalad	Valerianella Woodsinna (T. & G.) Walt.
Wood-scrrel	Oza is bil il Jacq.
Woolly croton	Grown haps an schichx.
Woolly rose-mallow	Hibiscus lasloca s Gar.
Noolly white	Hymenopappus accessinefolius VC.
Wormseed	Chenopodium ambiosioides L.
Yellow cow-lily	Nuphar luteum subsp. macrophyllum (Small) E. O. Beal
Yellow Cress	Rorippa sessiliiora (Nutt.) Hitchc.
Tellow Dock	Rumex crispus L.
Yellow-eyed grass	Xyris iridifolia Chapm.
Yellow-eyed grass	Xyris Jupicai Rich.
Yellow Nut grass	Cyperus esculentus L.
Yellow-purr	Neptunia lutes (LeavenW.) Benth.
Yellow-spine Thistle	Cirsium ochrocentrum Gray

Common name	Scientific name
Yellow Sweet Clover	Melilotus officinalis (L.) Lam.

Appendix II-b. Partial checklist of shrub, tree, and woody vine species within the Trinity River Basic including annotation of rare and endangered species according to the Rare Plant Study Center (1973) (indicated by *) and the Texas Organization for Enlangered Species (1973) (indicated by **).

Common name	Scientific name
American basswood	Tilia amoricana L.
American beautyberry	Callicarya americana L.
American elder	Sambucas and Samble L.
American elm	Ulmus americana L.
American holly	Ilex opaca Ait.
American hop-hornbeam	Ostry: varganiana (Mill.) K. Koch
American starjasmine	Trachelospermum difforme (Walt.) Gray
Amorpha	Amorpha paniculata T. & G.
Bald cypress	Taxouium distichum (L.) Rich.
Bastard indigo	Amorpha fruticosa L.
Bastard oak	Quercus sinuata Walt.
Beech	Fagus grandifelia Ebrh.
Bitter orange	Citrus trifoliata L.
Bitternut hickory	Carya cordiformis (Wang.) K. Koch
Black cherry	Prunus serotina Ehrh.
Black gum	Nyssa sylvatica March.
Black hickory	Carya texana Fuckl.
Black locust	Robinia pseudo-acacia L.

Appendix II-b. Continued.

	Common name	Scientific name
**	Black oak	Quercus velutina Lam.
	Black walnut	Juglans nigra L.
	Black willow	Salix nigra Marsh.
	Blackjack oak	Quercus marilandica Muenchh.
	Blue beech	Carpinus caroliniana L.
	Bottomland post oak	Quercus similis Ashe
	Box elder	Acer Negundo L.
	Brazos hawthorne	Crataegus brazoria Sarg.
	Bristly green-brier	Smilax hispida Muhl.
	Buckthorn	Rhamnus lanceolata Pursh
	Buffalo-gourd	Cucurbita foetidissima H. B. K.
**	Bur oak	Quercus macrocarpa Michx.
	Burning bush	Euonymus atropurpureus Jacq.
	Bush palmetto	Sab al minor (Jacq.) Pers.
	Carolina ash	Fraxinus caroliniana Mill.
	Carolina basswood	Tilia caroliniana Mill.
	Catalpa	Cat lpa speciosa Warder
	Cat-brier	Smilax bona-nox L.
	Cedar elm	<u>Ulmus</u> <u>crassifolia</u> Nutt.
	Chaste lamb-tree	Vitex agnus-castus L.
	Chestnut oak	Quercus Prinus L.
	Chickasaw plum	Prunus angustifolia Marsh.

Common name	Scientific name
Chinaberry	Melia azedarach L.
Chinese tallow tree	Sapium sebiferum (L.) Roxb.
Cockspur hawthorn	Crataegus crus-galli L.
Common buttonbush	Cephalanthus occidentalis L.
Common green-brier	Smilax rocundifolia 1.
Coral-berry	Symphoricarpos orbiculatus Mcench.
Cow-itch	Cissus incisa (Nutt.) Des Moul.
Deciduous holly	Ilex decidua Walt.
Dewberry-blackberry	Rubus aboriginum Rydb.
Dewberry-blackberry	Rubus apogueus Bailey
Dewberry-blackberry	Rubus saepescandens Bailey
Devil's-walking-stick	Aralia spinosa L.
Dogwood	Cornus racemosa Lam.
Downy hawthorn	Crataegus mollis Scheele
Drooping melonette	Melothria pendula L.
Drummond wax-mallow	Malvaviscus arboreus var. Drummondii (T. & G.) Schery
Eardrop vine	Brunnichia ovata (Walt.) Shinners
Eastern cottonwood	Populus deltoides Marsh.
Eastern red cedar	Juniperus virginiana L.
Eve's necklace	Sophora affinis T. & G.
Farkleberry	Vaccinium arboreum Marsh.
Florida basswood	Tilia floridana Swal!

	
Common name	Scientific name
Flowering dogwood	Cornus florida L.
Forestiera	Forestiera ligustrine (Michx.) Poir.
Fragrant sumac	Rhus aromatica Ait.
Fringe-tree	Chionanthus virginica L.
Frost grape	Vitis riparia Michx.
Giant cane	Arundinaria gigantea (Walt.) Muhl.
Green ash	Fraxinus pensylvanica Marsh.
Green hawthorn	Crataegus viridis L.
Gum bumelia	Bumelia languinosa (Michx.) Pers.
Hawthorn	Crataegus glabriuscula Sarg.
Heartleaf	Ampelopsis cordata Michx.
Hersules-club	Zanthoxylum clava-herculis L.
Honey Locust	Gleditsia tria anthos L.
Honey mesquite	Prosopis glandulosa Torr.
Indian cherry	Rhamnus caroliviana Walt.
Japanese honeysuckle	Lonicera japonica Thunb.
Laurel oak	Quercus laurifolia Michx.
Loblolly pine	Pinus taeda L.
Maypop passionflower	Passiflora incarnata L.
Mexican plum	Prunus mexicans Wats.
Milkvine	Matelea gonocarpa (Walt.) Shinners
Mistletoe	Phoradendron tomento: um (DC.) Gray

A CONTRACTOR OF THE PERSON OF

Appendix II-b. Continued.

Common name	Scientific name
Mockernut hickory	Carya tomentosa Nutt.
Mock-orange	Styrax americana Lam.
Muscadine grape	Vitis rotundifolia Michx.
Mustang grape	Vitis mustangensis Buckl.
Netleaf hackberry	Celtis reciculata Torr.
0'possum-wood	Halesia carolina L.
Osage orange	Maclura pomifera (Raf.) Schneid.
Overcup oak	Quercus lyrata Walt.
Parsley hawthorn	Crataegus Marshallii Eggl.
Pasture haw	Crataegus spathulata Michx.
** Pawpaw	Asimina triloba (L.) Dun.
Peach	Prunus persica (L.) Batsch
Pecan	Carya illinoinensis (Wang.) K. Koch
Pepper vine	Ampelopsis arborea (L.) Koehne
Persimmon	Diospyros virginiana L.
Pigeon-berry	Rivina humilis L.
Poison ivy	Rhus toxicodendron L.
Possum-haw	Viburnum nudum L.
Post oak	Quercus stellata Wang.
Post oak grape	Vitis lincecumii Buckl.
Prairie rose	Rosa setigera Michx.
Privet	Ligustrum spp.

Appendix II-b. Continued.

Common name	Scientific name
Rattan vine	Berchemia scandens (Hill) K. Koch
Rattlebush	Sesbania Drummondii (Rydb.) Cory
Red bay	Persea borbonia (L.) Spreng.
Red grape	Vitis palmata Vahl
Red maple	Acer rubrum L.
Red mulberry	Morus rubra L.
Red-berried moonseed	Cocculus carolinus (L.) DC.
Redbud	Cercis canadensis L.
Redroot	Ceanothus herbaceus Raf.
Retama	Parkinsonia aculeata L.
River birch	Betula nigra L.
Roosevelt weed	Baccharis neglecta Britt.
** Roughleaf dogwood	Cornus Drummondii C. A. Mey.
Saltcedar	Tamarix gallica L.
Sandjack oak	Quercus incana Vartr.
Sassafras	Sassafras albidum (Nutt.) Nees
Sea-myrtle	Baccharis halimifolia L.
Shagbark hickory	Carya ovata (Mill.) K. Koch
Shining sumac	Rhus copallina L.
Shortleaf pine	Pinus echinata Mill.
Shumard red oak	Quercus Shumardii Buckl.
Skunk-bush	Ptelea trifoliata L.

- Mariantes Co.

Appendix II-b. Continued.

Common name	Scientific name
Slippery elm	Ulmus rubra Muhl.
Smooth alder	Alnus serrulata (Ait.) Willd.
Smooth sumac	Rhus glabra L.
Snowdrop-tree	Halesia diptera Ellis
Soap berry	Sapindus Saponaria L.
Southern arrow-wood	Viburnum dentatum L.
Southern blackhaw	Viburnum rufidalum Raf.
Southern dewberry	Rubus trivialis Michx.
Southern magnolia	Magnolia grandiflora L.
Southern red oak	Quercus falcata Michx.
St. Andrew's Cross	Ascyrum hypericoides L.
St. Peter's-wort	Ascyrum stans Michx.
Strawberry-bush	Euonymus americanus L.
Sugar maple	Acer saccharum Marsh.
Summer grape	Vitis aestivalis Michx.
Swamp privet	Forestiera acuminata (Michx.) Poir
Sweet grape	Vitis cinerea Engelm.
Sweetgum	Liquidambar Styraciflua L.
Sweet-leaf	Symplocus tinctoria (L.) L'Her.
Sycamore	Platanus occidentalis L.
Tassel-white	Itea virginica L.
Texas nightshade	Solanum triquetrum Cav.

Appendix II-b. Continued.

Соттоп нате	Scientific name
Texas red oak	Quercus texana Buckl.
Texas sugarberry	Celtis laevigata Willd.
Trumpet honeysuckle	Campsis radicans (L.) Seem.
Tupelo	Nyssa aquatica L.
Virginia creeper	Parthenocissus quinquefolia (L.) Planch.
Water elm	Planera aquatica (Walt.) J. F. Gmel
Water hickory	Carya aquatica (Michx. f.) Nutt.
Water locust	Gleditsia aquatica Marsh.
Water oak	Quercus nigra L.
Wax-leaf ligustrum	Ligustrum Quihoui Carr.
Wax myrtle	Myrica cerifera L.
White ash	Fraxinus americana L.
White mulberry	Morus alba L.
White oak	Quercus alba Michx.
Willow oak	Quercus Phellos L.
Winged elm	Ulmus alata Michx.
Winter grape	Vitis vulpina L.
Woolly dutchman's pipe	Aristolochia tomentosa Sims
Yaupon	Ilex vomitoria Ait.
Yellow passionflower	Passiflora lutea L.

CHAPTER III

LIMMOLOGIC-AQUATIC ELEMENTS

by

Jack D. McCullough and Michael A. Champ The American University Washington, D.C.

with the assistance of:

William Walker Richard Whitman Betsy Smith Mary Harris Tim Taylor K. C. Rudy

TABLE OF CONTENTS

Introduction	93
General Methods and Procedures	93
Physical & Chemical Methods	93
Pesticide Methods	95
Collection	95
Extraction	97
Determination of Residues	99
Dissolved & Particulate Organic Carbon	
Analytical Methods	99
Methods	99
Phytoplankton Methods	101
	103
Chlorophyll Analytical Methods	104
Primary Productivity Methods	104
Benthic Methods	105
Zooplankton Methods	106
Bacteriology Methods	106
Methods I	106
Methods II	109
Results and Discussion	115
Water Quality	115
Particulate & Dissolved Organic Carbon	125
Pesticide Analysis	132
Phytoplankton and Periphyton	149
	157
	159
Benthic Analysis	165
Zooplankton Analysis	175
Coliform Bacteria Analysis	183
List of References	185
Appendix	196

-

INTRODUCTION

The purpose of this investigation has been to conduct environmental studies of the Trinity River Basin, expanding and quantifying certain baseline information revealed by previous literature and field surveys. Ten permanent general study areas (transects) were established along the Trinity River between Fort Worth and Wallisville Reservoir and are described elsewhere in this report. The specific objectives of this phase of the study included:

- 1. An investigation of water quality conditions at the 10 study sites.
- 2. An investigation of the phytoplankton productivity and diversity; the periphyton community composition and diversity.
- 3. An investigation of the total and fecal coliform, and fecal streptococcus bacteria counts and ratios.
- 4. Studies of the benthic macroinvertebrates including species composition, seasonal fluctuations and species diversity.
- 5. An investigation of the zooplankton community composition and diversity.
- 6. An investigation of the pesticide concentrations in the sediments and ground water.
- 7. An investigation of the particulate, dissolved and total organic carbon cencentrations in the Trinity River.

GENERAL METHODS AND PROCEDURES

Physical and Chemical Methods

Surface oxygen in parts per million, and temperature in degrees centigrade were measured in the field using a Yellow Springs Model 54 oxygen and temperature meter.

Transparency was determined in the field using the Secchi Disc method reported in Welch (1948), and is reported in feet.

Surface water samples were collected in disposable polyethylene containers, and were brought back to the laboratory for further analysis. Water samples were stored at 4°C from the time of collection until analysis, at which time the samples were allowed to warm to room temperature. Samples were generally analyzed chemically within 6 hours after they were collected.

Turbidity was determined using a Hach Model 2100A Turbidimeter, and was reported in Jackson Turbidity Units (JTU). True color was determined through centrifugation of the water samples for five minutes to remove suspended material, and subsequent measurement was made on a colorimeter. True color was reported in color units (CU). Conductivity was made on a Lab-Line Lectro-mho Meter Model MC-1, Mark IV and values are reported as micro-mhos at 25°C. Both pH and eH were measured on a Coleman Model IV pH Meter, and values reported as pH units and millivolts respectively.

Chloride, as sodium chloride was determined for water samples from collecting stations using the Hercuric Hitrate Method as described in Standard Methods (1971).

Nitrate, nitrite, ammonia, orthophosphate and sulfate were determined by colorimetric methods. Samples of unusually high turbidity were filtered prior to analysis to reduce chemical and photometric interference.

Orthophosphate was determined by the amino-naptholsulfonic acid method, nitrate nitrogen was determined by the disazotization method, and ammonia nitrogen by the Method: (Standard 1971). Sulfate Nessler Method in water samples vere concentrations colorimetrically using the Turbidimetric Method outlined in Standard Methods (1971). Colorimetric determinations were done using a Bausch and Lomb spectrophotometer Hodel 70, and a Hach Colorimeter Model DR9398B.

Five day biochemical oxygen demand (BOD) was determined according to the methods set forth in Standard Methods (1971). Samples were normally diluted 1:3, and were incubated in the dark at 20 degrees centrigrade in a Labline Incubator Model 844. Oxygen was measured before and after the five day incubation using Yellow Springs Oxygen Meter, Model 54 and a B.O.D. Probe, Model 5420A. The dilution factor was applied to the resultant oxygen change,

- Alexandre

and the biochemical oxygen demand was reported in parts per million of oxygen per five days.

Sediment Oxygen Demand (SOD) was determined on bottom samples collected in the field, using a 0.75 inch diameter plastic core sampler. Samples were then homogenized and diluted in the laboratory. B.O.D. Bottles, filled with dilution water, were injected with one milliliter of the diluted sediment, and were incubated in the dark for 15 days at 20 degrees centrigrade with daily resuspension of solid material. Oxygen was measured as for B.O.D. The organic content of the diluted sample was simultaneously determined through ash-free-dry-weight analysis of samples of equal volume. The sediment oxygen demand is reported as parts per million oxygen per kilogram sediment per minute.

River discharge data for each station are reported in cubic feet per second and data were obtained from the United States Geological Survey in Austin, Texas.

Pesticide Methods

Collection

Samples were collected from eight stations located in the Trinity River. Each station's location is described below:

Rosser Station: at bridge on State Highway 34 near Rosser, Texas, river mile 454 (Station #3).

Highway 85 Station: At bridge on State Highway 85 near Kemp, Texas, river sile 430.

Trinidad Station: at bridge on State Highway 31 near Trinidad, Texas, river mile 395 (Station #4).

Cayuga Station: at bridge on U.S. Highway 287 near Cayuga, Texas, river mile 370 (Station #5).

<u>Pairfield Station:</u> at bridge on U.S. Highway 79 near Elkhart, Texas, river sile 308 (Station #6).

Highway 7 Station: at bridge on State Highway 7 near Crockett, Texas, river mile 266 (Station #7).

Highway 21 Station: at bridge on State Highway 21 near Madisonville, Texas, river mile 231.

Wallisville Station: at bridge on Interstate 10 near Wallisville, Texas, river mile 10 (Station #10).

An attempt was made to collect sediments monthly from each station from January 1972 to January 1973; however, only one sample was collected from Stations 4 and 10. In addition, water samples were collected from three deep wells near Rosser, Texas to determine if there was any significant pesticide pollution of ground water in this portion of the river basin. Location of 3 wells are on the Rosser Quadrangle, Texas, 7.5 minute series (Topographic) scale 1:2400, map supplied by the United States Department of the Interior Geological Survey. Well \$1, grid coordinates 398-969 (marked 201 by U.S. Army Engineers). Well \$2, grid coordinates 372-955 (marked 105 by U.S. Army Engineers). Well \$3, grid coordinates 373-949 (marked 102 by U.S. Army Engineers). Water samples were collected from wells with a Kemmerer Sampler lined with Teflon.

The samples were collected in Hexane-acetone cleansed pint mason jars, by scooping up top sediment at the river's edge with a large stainless steel slotted spoon. The mason jars were filled 2/3 to 3/4 full with sediment and covered with aluminum foil and capped. At no time did collection extend further than fifty yarts either side of the bridge crossing. When possible, several spots were sampled in order to achieve a more representative collection. Samples were kept on ice in an ice chest or placed in a closed cardboard box and transported back for analysis. The collected sediments were frozen at -12 degrees centigride within twelve hours after collection.

Analysis of the earlier samples collected in the first months of the year were postponed due to delays in receiving the supplies needed for their analysis. For this reason many of the samples were kept frozen as long as eight months. Samples were allowed to that in a refrigerator at 7.5 degrees contigrade prior to analysis. The samples were then removed from the refrigerator and stirred to achieve homogeneity.

Extraction

One hundred and fifty grams of undried sediment were weighed and placed in a five hundred milliliter glass stoppered erlenmeyer flask. A three hundred milliliter mixture of 4:1 hexane isopropanol was poured into the flask along with one hundred grams of anhydrous sodium sulfate. The sample was then extracted using a wrist-action shaker for a period of four hours.

The extract was then filtered into a five hundred milliliter separatory flask equipped with a Teflon stopcock. One hundred milliliters of deionized water was then added to the extract and shaken for two minutes. The mixture was allowed to separate and the aqueous layer drawn off and discarded. This was repeated three times to remove the alcohol from the extract.

Clean-up of the sample was done by allowing the extract to pass through a column (one cm i.d.) Made of a silanized glass woolplug, six grams of hexane-rinsed activated Plorisil and two grams of hexane-rinsed anhydrous sodium sulfate, in that order. The extract was then allowed to pass through the column at a rate of about two milliliters per minute. After measuring the volume of the eluant, the column was rinsed with an additional fifty milliliters of hexane.

The eluant and rinsings were transferred into a three-neck distilling flask. Into one neck was placed a column containing activated silica gel. The middle was glass stoppered and the third contained a vacuum connecting tube. The sample was concentrated by pulling a stream of dry air over the solution at a reduced pressure.

The volume of the concentrate was determined and then transferred into a twenty-five milliliter vial with a Teflon lined screwcap. The concentrate, which had been adjusted to twenty milliliters, was stored at 7.5 degrees centigrade in the dark until analysis could be made.

Care was taken to avoid introducing substances that would interfere with the pesticide analysis. This was accomplished by running extensive controls before beginning analysis. Chemicals were kept in five gallon drums so that assumptions to its quality could be made. Fifty percent of the samples were run using analyzed reagent grade solvent, and the other samples were run using pesticide grade solvent. After the initial controls, a control was run

every tenth extraction. The Florisil and sodium sulfate were heated to 550 degrees centigrade for two hours and then dessicated until use.

Percent dry weight was determined by transferring 100.0 grams of the wet sediment to a porcelain crucible and placing it in a drying oven at 105 degrees centigrade for six hours. The sample was allowed to cool in a dessicator and weighed. A two to ten gram portion of the dried sediment was weighed on an analytical balance and then placed in a muffle furnace at 550 degrees centigrade for four hours to determine the percent organics, by loss on ignition. A fifty gram portion of the dried sediment was used to determine percent sand, silt and clay by the Bouyoucos Hydrometer Method (Bouyoucos, 1962). technique utilizes the differential settling rate of the soil particles according to particle size. Dispersed sand (between $2.00-0.05\,\text{mm}$), silt (between $0.05-0.0002\,\text{mm}$) and clay (less than $0.0002\,\text{mm}$) left in suspension is using a Bouyoucs Hydrometer which has been measured corrected for the suspension's temperature.

Sulfur was found to be present in a large percentage samples extracted. Sulfur interferes with of Heptachlor, Aldrin, Lindane and Chlordane and must be removed before analysis can be attempted. Schutzmann, Woodham and Collier (1971) describe a method for removing up to 50 ppm elemental sulfur by refluxing with a copperaluminum alloy. Although this method is efficient, supplies for the extraction could not be received in time for completion of analysis. Goerlitz and Law (1971) propose a technique used in this study in which metallic mercury is introduced to the extract to precipitate out the sulfur. Removal of a large percentage of the elemental sulfur was found within ten minutes, and analysis in most cases could proceed. In several cases all sulfur could not be removed. and the co-extractive interferences remained present.

Percent recovery was determined by extracting the same sediment repeatedly until no pesticide could be detected. Recovery on first extraction ranged from eighty-two to ninty-seven percent. The percentage of mud extracted was determined by assuming that the fraction of herane proportion of actual aud recovered represented the extracted. The sediment's weight was then adjusted to its dry weight by using the percent dry weight previously determined. The concentrations reported in micrograms pesticides per kilogram dry sediment veight were not corrected for percent pesticide recovered. Confirmation

The second and the control

was made using a second column containing 2.5% DC-200 and 2.5% QF-1 liquid phase. Further confirmation of residues identity was not made due to a lack of time and facilities.

Determination of Residues

Determination of the cleaned extract was accomplished using a Varian-Aerograph 2100 gas chromatograph equipped with a Nickel 63 electron capture detector. The glass column (1/4 inch o.d. By 6 feet) was packed with 5% QF-1 liquid phase on 80-100 mesh Chromosorb W. Nitrogen flow rate was 60 ml per minute. Injection temperature at 200 degrees centigrade, and detector temperature injection volume ranged between 0.6 microliters to 4.0 microliters. No pesticidal quantities are reported for organic chlorine compounds less than 0.2 micrograms per kilogram, except for chlordane whose lower detectable limits are set for 1.0 micrograms per kilogram.

Dissolved and Particulate Organic Carbon Analytical Methods

water samples were collected from each station monthly. Samples were collected at the surface in 30 ml glass vials and within six hours, the samples were stored in a deep freeze until they were analyzed.

Oceanography International Total Carbon System Model 0524A was used to analyze water samples for total carbon (organic carbon plus carbon in carbonates) and inorganic carbon (i.e., carbonate).

Prozen water samples prior to filtering were allowed to thaw at room temperature. Each water sample was filtered through a pre-combusted Gelman Type A glass fiber filter for the partitioning of POC and DOC. Aliquots of the filtrate were analyzed for DOC, and for POC. The DOC and POC were determined by modifications of the method developed by Henzel and Vaccaro (1964), Predericks and Sackett (1970), and Brooks (1970). A step by step description of this method is listed below:

- (1) Thirty ml water samples were frozen in glass vials until time permitted filtering and sealing.
- (2) Ten ml glass ampules (Ovens-Illinois) were prepared for use by being tapped upside down on a clean surface (to remove any particles of foreign material) and the top of

the neck of the ampule wrapped with a piece of lightweight (one inch square) aluminum foil twisted to form a cover for the ampule. Ampules were pre-combusted at 550°C for four hours.

- (3) Gelman Type A (0.3 micron) glass fiber filters (25 mm diameter) were pre-combusted at 400°C for four hours. Filters were handled only with clean forceps.
- (4) Frozen water samples were allowed to thaw at room temperature prior to filtering and sealing.
- (5) Pour pre-combusted glass ampules were required for each water sample; giving replicate analysis for DOC and POC. To each ampule 0.2 grams of potassium persulfate and 0.25 ml of 6% phosphoric acid solution were added prior to addition of the sample.
- (6) Before tiltering, samples were briskly shaken and aliquots removed by syringe.
- (7) Three ml aliquots of water sample were taken into two syringes through millipore lock-on syringe filter holders containing pre-combusted Gelman glass fiber filters.
- (8) The two filters (each containing 3 ml POC from the 3 ml aliquots) were air dried with a water aspirator and inserted in ampules. Distilled water (5 ml) was then added to each POC vial.
- (9) two ml aliquots of filtrate were then added from the syringe to the two ampules for DOC analysis.
- (10) Filled ampules were purged of inorganic carbon constituents for four to six minutes with purified oxygen flowing at a rate of 60 ml/min, and then sealed in a special apparatus (designed by Oceanography International Corporation, College Station, Texas) to prevent CO₂ contamination from the sealing flame.

Tring the same in

- ALIENSENSEE .

- (11) Sealed ampules were eated at 125°C for four hours in an autoclave to oxidize organic carbon to carbon dioxide.
- (12) The carbon dioxide content of each ampule was then analyzed in a special ampule breaking apparatus (designed by Oceanography International Corporation, College Station, Texas) which permits the carbon dioxide to be flushed through an infrared analyzer.

The carbon dioxide content of each ampule was determined by flushing the gas content of the ampule with nitrogen into the gas stream of a non-dispersive infrared analyzer sensitized to carbon dioxide. The detector output of the analyzer was recorded as a peak on a potentiometric strip chart recorded equipped with an integrator.

Standard carbon dioxide conversion graphs were made by plotting the integrated area versus carbon for standardized sodium carbonate solutions. The standard was made by injecting a known volume of the sodium carbonate standard through a rubber septum in a special vial containing phosphoric acid solution. The organic carbon concentration (those organic carbon compounds oxidized by persulfate and heat to carbon dioxide) of each ampule was determined by comparing the integrated area to the standard carbon dioxide conversion graph.

The deviation for duplicated DOC determinations on the same water sample was generally 5% or lower, with POC usually 10% or lower. A reagent blank value was determined with each set of water samples sealed. The DOC reagent blank value varied from 0.003 mg C to 0.004 mg Cl. The POC reagent blank value varied from 0.003 mg C to 0.006 mg C.

Phytoplankton Methods

Standing crop of phytoplankton was based on collection of surface water samples at each station from September 1972 through April 1973. Concentration of samples for cell counts was accomplished by passing one liter of each water sample through a FOERST electrical plankton centrifuge three times (Hartmann, 1958). The volume of the concentration was then determined. Cell counts were done using a phase contrast compound microscope and hemacytometer. Direct microscopic counts of phytoplankter were expanded to cells per liter by the equation given in Welch (1948).

Flow chart for organic carbon analysis (DOC & POC)

}*

THE REAL PROPERTY.

Periphyton Methods

Periphyton samples collected AGLG by allowing organisms to colonize submerged artificial substrates according to techniques suggested by Sladeckova (1962) and Sladecek and Sladeckova (1963). The periphyton samples were placed at each collecting station and consisted of a plastic float supporting a wooden slide rack constructed according to the directions given in Welch (1948). The slide racks were submerged two inches from the surface and the slides were held with the long axis parallel to, and their short axis perpendicular to, the water surface. The slides were collected at two week intervals and replaced with clean slides. Weber and Raschke (1970) report that a two week exposure period is sufficiently long to permit development of abundant periphyton yet is short enough to reflect short term changes in water quality. The periphyton was scraped from the slides, diatom frustules cleaned and mounted in hyrax on slides for microscopic examination. Prustul**es** were examined under oil immersion, 1000 magnification, with a phase contrast microscope. Each sample was evaluated by identifying 100 diatons to species on each slide. Individuals were selected by a transect method. These data were then used to calculate the diversity indices utilizing a Model 720 Wang computer.

The mathematical expression of the ratio between numbers of species and individuals in a biotic community is referred to as a diversity index (Odum, 1959). The equation: d=\frac{7}{n_i/n}\log_2\left(n_i/n)\reported by Wilhm and Dorris (1968) as a measure of diversity (or information) per individual was used where "n" is the number of individuals in "S" species, and "n;" is the number of individuals in the i'th species with logarithms interpreted to base 2. Warren (1971) reports that reductions in community diversity can be used as an index of environmental change such as the introduction of domestic or industrial effluents into an aquatic ecosystem. In this study, diversity index values were used as an index of pollution.

One slide rack was located at each collection station except Station 10. In an attempt to assess the biological impact of the effluent from the Texas Gulf Sulfur plant on the Trinity River. One slide rack was located three hundred yards downstream from the outfall and another was placed three hundred yards upstream from the outfall.

Slides were collected and species diversity determined according to directions previously alluded to.

Chlorophyll Analytical Methods

Chlorophyll a, b, and c concentrations were determined from phytoplankton water samples collected at each sampling station. A 100 ml aliquot of the phytoplankton sample was filtered through a millipore filter type HA with 0.45 micron pores. The concentration of chlorophyll a, b, and c was subsequently determined by the technique described by Richards and Thompson (1952) with revised equations by Parsons and Strickland (1964). Optical density values were determined using a Coleman Universal model 14 Spectrophotometer.

Primary Productivity Methods

The rate of primary productivity was determined for each station using the Diurnal Oxygen Curve Method for flowing waters as reported in Standard Methods (1971). The grams of O_2/m^3 and $^{\circ}$ C was determined at each meter of depth every three hours for 24 hours. The last measurement was taken at the same time the first measurement was taken. The measurements were made on the "halfmeter", assuming the D.O. And $^{\circ}$ C at 0.5 meters are the average values for the layer of water between 0.0 and 1.0 meters. The community metabolism values were calculated according to the equations in Standard Methods (1971). Assuming that for every gram of oxygen produced there is approximately one gram of organic matter produced.

Sunlight
$$6CO_2 + 12H_2O \xrightarrow{\text{Chlorophyll a}} C_6H_{12}O_6 + 6O_2 + 6H_2O$$
Chlorophyll a

The rate of change in the concentration of dissolved oxygen in grams per cubic meter is:

$$q = p - r + d_{in} + a$$

where (q) in the rate of change in $0_2/m^3$, (p) is the rate of photosynthesis, (r) respiration rate, (d) is the diffusion rate, and (a) is the accrual from ground water inflow and runoff.

The rate of change in oxygen in a one square meter water column is determined by taking the sum of the rates of change for each meter of depth.

$$q_z = \sum_{i=1}^{2} (p - r + d_{in} + a)$$

The diffusion rate of oxygen into the water (D) is determined by multiplying the gas transfer coefficient (K) and the percent saturation deficit (S).

(D) is the diffusion rate in $q O_2/m^2/hr$ and (K) is based on the diffusion rate at zero percent saturation.

The gas transfer coefficient (K) is calculated by the following equation:

$$K = \frac{q_{m} - q_{e}}{S_{m} - S_{e}}$$

 $K = \frac{q_m - q_e}{s_m - s_e}$ where (q_m) is the average negative rate of change during the morning hours before sunrise, (q_e) is the average negative rate of change during the evening hours after sunset, (S_m) is the saturation deficit in the morning hours before sunrise and (Sa) is the saturation deficit in the evening hours after sunset.

Gross productivity, community respiration, and net productivity in q 0,/m2/day were calculated.

Milligrams of O, produced was converted to milligrams of carbon by the equation reported by Strickland (1966):

Carbon assimilated by photosynthesis in mg per unit time = (mg O_2 evolved in unit time) x O_2 375

A PQ (photosynthetic quotient) of 1.2 was used.

Benthic Methods

At the site of collection one Ekman dredge grab (1/25) sq. Meter) was passed through a bucket with a doublescreened bottom and the contents retained for laboratory examination. removal After of any macroinvertebrates, this sample was filtered through two to six of a series of screens of graduated mesh sizes 10 to 230. Contents of each screen were placed in pans or in petri dishes for microscopic examination, with the exception of molluscs, which were retained in plastic bags or in water. Invertebrates were counted and preserved in FAA (formalin-aceto-alcohol) (Pennak, 1953) for identification.

A diversity index figure for, each sample taken was calculated by the formula $\bar{d} = -\frac{1}{2}(n_1/n) \log_2(n_1/n)$ (Wilhm and Dorris, 1968). For this purpose, organisms were separated into as many different species as possible.

Zooplankton Methods

Zooplankton collected in one five-minute horizontal plankton tow with a #25 bolting cloth plankton net was retained for laboratory examination. After brief observation of living organisms beneath both dissecting and compound microscopes, the plankton was preserved in PAA (formalin-aceto-alchhol) (Pennak, 1953). Three one-milliliter portions of each homogeneously mixed sample were identified and counted in a Sedgewick-Rafter cell under the compound microscope at 10% power. By the use of an average value for each organism in the three milliliters and the total number of milliliters in the sample, extrapolation produced the estimated total number of each organism in the five-minute plankton tow.

A diversity index (\tilde{d}) figures for each sample taken was calculated by the formula $\tilde{d} = -\frac{1}{2}(n_1/n)\log_2(n_1/n)$ (Wilhm and Dorris, 1968). For this purpose, organisms were separated into as many different species as possible. Also, numbers of ephippia were added to cladocera ausbers, nauplii to copepods, and dipteran pupae to dipteran larvae before calculation of \tilde{d} .

Bacteriology Methods

The methods involved in this study will include the Millipore technique and the multiple tube fermentation methods. These techniques will give an estimate of the number of total coliform, fecal coliform and fecal streptococcus per 100 milliliters of water sample. The sampling procedure involved collecting a 200 milliliter surface water sample in a sterile 250 milliliter erlenmeyer flask. The samples were immediately placed in refrigeration at 4°C and returned to the laboratory for analysis.

Methods I (Preparation of media used in MPN and membrane filter analysis)

The lactose fermentation media used in the most probable number determination was prepared by using 7.5 grams of lactose, 16 grams of phenol red broth base and 1

liter of distilled water. The lactose media was then pipetted into test tubes in nine milliliter portions. The durham tubes were autoclaved for fifteen minutes at 121 degrees centigrade. The lactose tubes were then stored at 4 degrees centigrade for not more than thirty days.

Eosin methylene blue plates were used on the confirmatory step on the most probable number analysis. The media was prepared using the directions on the bottled dehydrate. The plates were stored in plastic bags at 4 degrees centigrade for period not to exceed thirty days.

The completed step utilized the above mentioned lactose preparation and nutrient agar slants which were prepared following the directions on the bottled dehydrate. The nutrient agar media was pipetted into test tubes and autoclaved for fifteen minutes at 121 degrees centigrade. The tubes were removed from the autoclave and slanted until the media solidified. The slants were then stored at 4 degrees centigrade.

Three media were used in the membrane filter analysis. These included m-Endo-MF broth for total coliform, m-FC broth for fecal coliform, and m-enterococcus agar for fecal streptococcus. Autoclaved 250 milliliter erleameyer flasks with cotton plugs were used for preparation of 100 milliliters of distilled water measured in an autoclaved graduated cylinder. Two milliliters of 95% ethyl alcohol were added to the water in the graduated cylinder. The contents were then poured into the flask containing the 8-Endo-MF broth dehydrate. The flask was then removed, and the media allowed to cool. If the media was mot used immediately, then it was refrigerated for a maximum of ninety-six hours.

The m-PC booth was prepared by weighing out 3.7 grams of dehydrated media and placing it in an autoclaved 250 milliliter flask. One hundred milliliters of distilled water were measured in an autoclaved cylinder and added to the dehydrate in the flask. One milliliter of 1% rosolic acid was added to the dissolved broth. The flask was then heated in a 100 degree centigrade water bath until the media began to boil. The media was then allowed to cool to room temperature. If it was not used, it was stored at 2-10 degrees centigrade for a maximum of ninety-six hours.

The m-enterococcus agar dehydrate involved weighing 4.2 grams of media and placing it in an autoclaved flask. One hundred mililiters of distilled water was added, and

the tlask was placed in a 100 degree centigrade water bath where the liquid was heated to boiling. The liquid agar was then cooled to 45-50 degrees centigrade and dispensed in six milliliter portions into the bottom half of a petridish with a diameter of 60 milliliters. These plates may be stored in the dark for thirty cays at 2-10 degrees centigrade.

Methods I
(Preparation of media used in classifying fecal coliform and fecal streptococcus)

The remaining media employed in this study were made according to directions on the bottled dehydrate. An effort was made to utilize all media before thirty days had elapsed. The media used will be mentioned in Hethods II section on classification of organisms.

Methods I
(Preparation of materials used in most probable number and membrane filter ana ysis)

Dilution blanks were prepared in test tubes containing nine milliliters of distilled water and in dilution bottles containing ninety-nine milliliter portions of distilled water. These dilution blanks were autoclaved for fifteen minutes at 121 degrees centigrade. The blanks were then refrigerated.

Stock phosphate buffer solution was prepared dissolving 43.0 grams of potassium dihydrogen phosphate in an autoclayed two liter erlenmeyer flask. This flask was then filled with 500 milliliters of distilled water. The pH was adjusted to 7.2 with 1 N sodium hydroxide, and this material was diluted to one liter with distilled water. This stock was stored in the dark at 4 degrees centigrade. Five hundred milliliter portions of distilled water were placed in one liter flasks and these portions autoclaved. Upon preparation for water analysis these 500 milliliter portions were removed from the refrigerator, and .625 milliliters of stock buffer solution was pipetted into the distilled water. The pH on the ::tock buffer solution was checked before it was used. The stock buffer solution was prepared on a monthly basis. The phosphate buffer water was used as a rinse on the membrane filter apparatus (Millipore Manual AM302, p. 21).

The membrane filtration apparates was prepared for use prior to the analysis of each set of water samples. The

-

glassware such as pipettes, flasks, and filtering apparatus were rinsed thoroughly with distilled water prior to autoclaving. The sampling flasks are periodically rinsed with a dichromate solution followed by several distilled water rinses. The side arm flasks were plugged with cotton and autoclaved. The filter support and funnel are individually wrapped in Kraft paper. These were autoclaved prior to the actual filtration.

Methods II

The actual procedural methods used in this study were the Millipore technique and multiple tube fermentation method.

- A. Hultiple tube fermentation method (Standard Methods for Examination of Water and Wastewater, 1971).
 - 1. Dilutions from 101 through 104 are made on each sample using 9 milliliter water blanks. These dilutions are made after thorough agitation of the water sample
 - 2. A three milliliter portion is then pipetted from each dilution blank. One milliliter is placed in each of a series of three lactose tubes for the particular dilution. A set of eighteen lactose tubes is required for each sample.
 - 3. The tubes are incubated for 48 hours at 37 degrees centigrade and examined for acid and gas formation.
 - 4. The highest dilution showing acid and gas production is streaked on an eosin methylene blue plate and checked after 24 hours for a green metallic sheen.
 - 5. The colony showing a green metallic sheen is streaked on a nutrient agar slant, and after growth is reinoculated into lactose broth to be evaluated for acid and gas formation.
 - 6. The nutrient agar slant growth is Gram stained after 18-24 hours. If the organism was Gram negative and produced acid and gas in lactose, the evidence indicated the presence of <u>Escherichia coli</u>.

- B. Membrane filter technique (Millipore Manual AB 302, 1972). The dilutions used on the membrane filter were varied among stations. In order to try to obtain the suggested range of colonies on total coliform (20-80), fecal coliform (20-60), and fecal streptococcus (20-100), it was necessary to try several dilutions on one station. In the procedure following, this fact should be emphasized. Generally 1:10, 1:100, and 1:1000 dilutions were run, and three plates set up for each analysis.
 - 1. The broth media used in membrane filter technique was brought to room temperature. Sterile 60 millimeter petri dishes were opened using the end of flamed forceps. The absorbent pads were then added to the petri dishes in a series of plates necessary for analysis of the water sample. The pads were placed in the smooth half of the petri dish. Two milliliters of prepared broth were pipetted into each petri dish. A series of three plates was set up for each dilution of the total coliform and fecal coliform analysis which involved liquid media.
 - 2. The agar plates were also removed and allowed to reach room temperature before the filtration was initiated.
 - 3. The vacuum pump and the filtration apparatus was retained on the Kraft paper, mouth down. The funnel was attached and the pump turned on for five minutes.
 - 4. The excess alcohol was burned off the forceps and one sterile filter (0.45 m) was carefully transferred to the filter holder. The filter was centered with the grid side up. The forceps were replaced in the alcohol, and funnel was placed on top of the holder base and over the membrane filter. The filtering funnel was secured with a clamp.
 - 5. The sample was agitated prior to filtration in each of several dilutions set up on each analysis. A sample volume of 10 milliliters for each dilution series was then pipetted into the filter funnel, and this volume was followed by a 20 milliliter rinse of buffer water. The buffer rinse was repeated twice with the buffer solution poured down the side of the funnel so that a

T. STANDARD

swirling action resulted.

- 6. The medium-containing petri dish was obtained and the filter was placed on the absorbent pad or agar depending on which step of the analysis was being done.
- 7. The dilutions used in the membrane filter analysis were prepared before filtration and were not used if more than thirty minutes had elapsed.
- 8. Incubation was begun as soon as one complete sample was finished.
- 9. Total coliform analysis involving m-ando-MF broth were incubated for twenty-four hours at 37 degrees centigrade and examined for colonies illustrating a green metallic sheen under a dissecting scope with a light source attached. The fecal coliform utilizing m-FC broth was incubated twenty-four hours in a 44 degree bath. The colonies with a blue color were counted. The fecal streptococcus analysis involving aenterococcus was incubated for forty-eight hours at 37 degrees centigrade, and the colonies illustrating a red color counted.
- 10. The results were recorded and the ratio between fecal coliform and fecal streptococcus was then calculated in an effort to determine the source of contamination.
- C. Classification of fecal coliform and fecal streptococcus.
 - 1. An isolated colony is picked up from fecal coliform or fecal streptococcus plate and transferred to a nutrient agar slant. These slants were incubated for 18-24 hours, and Gram stains were done to determine gram negative or gram positive.
 - 2. The gram negative organisms which were isolated from the fecal coliform plates were streaked on eosin methylene blue plates, MacConkey plates, and Salmonella-Shigelia agar plates. The next series of texts

involved inoculation of the organism into indole media, methyl-red-voges Proskauer media, and citrate tablet test. The organisms were also inoculated into Klingers iron agar slants, dextrose fermentation SIM tubes, and urea media. This combination of media was then incubated for twenty-four hours at 37 degrees centigrade. A new culture was also inoculated on several nutrient agar slants. Dextrose fermentation media. ornithine tablet test, lysine decarboxylase tablet test, phenylaline deamisse tablet test, and lactose fermentation media were also used. Aseptic technique was used in an to lower the possibility contamination.

3. The gram positive organisms which were isolated from the fecal streptococcus plates were transferred to trypticase soy slants. Gram stains were done on these cultures after 18-24 hours growth at 37 degrees centigrade. The organisms were then transferred to brain heart infusion broth for days at 10 degrees centigrade. The organisms were also inoculated into 40% bile broth and examined for growth. The organisms were then checked for catalase reaction. Two temperatures (45 degrees and 10 degrees centigrade) were then employed to check for growth. The one that diea at both temperatures were confirmed with growth in 6.5% sodium chloride in brain heart infusion broth. The next step involved streaking the organisms (those that grew at both 45 and 10 degrees centigrade and those that grew only at 45 degrees) onto a starch agar plate. The streptococci that grew at 45 degrees centigrade only were then transferred into lactose fermentation media to check for acid reaction after twenty-four hours incubation. The organisms that grew at both temperatures were placed in litmus milk for the final step of analysis. After incubation, the litaus milk cultures were checked for peptonization. (Geldreich and Kenner, 1969).

The without the

```
Sample
                        M-FC broth
      Growth on nutrient agar slant for 18-24 hours.
Kligers iron agar, Eosin methyleneblue agar, MacConkey agar,
                 Salmonella-Shigella agar
       Indole, methyl red, Voges Proskauer, Citrate
    ++--E. coli Variety I, +--- E. coli intermediate
   +-++Enterobacter aerogenes -+-+ Citrobacter freundii
                   Dextrose fermentation
 Phenylalanine Deaminase
                                            Non-Enterobacteriace
                   SIM
                  (H2S)
                               Indole
 Indole
                             E. coli
                             Shigella
 decarboxylase
                             Lysine
                             decarboxylase
             Citrobacter
              freundii
                             Lactose
                       Escherichia
                                           Enterobacter
                                           Shigella
                           coli
                                           Klebsiella
                                           Serratia
                   E. coli antisera
                                         Gas production
                                           dextrose
                                  Ornithine
                                decarboxylase
                            lactose
                Lysine
            decarboxylase
 Enterobacter
    aerogenes
                                     closcae
```

SAMPLE

```
S. bovis
(livestock and poultry sources
                                                                                                                                                                                                                                                                                                             No change
                                                                              with confirmation as catalase-negative and positive for growth in 40% bile broth
                                                                                                                           Growth at 45 C only
                                                                                                                                                                 S. bovis - S. equinus
                                                                                                                                                                                                  Starch hydrolysis
                                                                                                                                                                                                                                                                       Lactose fermentation
                                                            Growth in brain-heart infusion broth within 2 days at 45 and 5 days at 10 C
                                                                                                                                                                                                                                     Positive
                                                                                                                                                                                                                                                                                                         Acids only
                                                                                                                                                                                                                                                                                                                                                                                                                               Megative
(m-Enterococcus agar)
                                  Pink-red colonies
                                                                                                                                                                                                                                                                                                                                                                       Peptonization of
                                                                                                                                                                                                                                                                                                                                                                                          litmus milk
                                                                                                                                                                                                                                                                                                                                                                                                                         Positive
                                                                                                                                                                                                                       Lancefield group D Streptococci
                                                                                                                                                  Confirm with growth in 6.5% NaCl in brain-heart
                                                                                                                 Growth at 45 and 10 C
                                                                                                                                                                                                                                                                                                Negative
                                                                                                                                                                                                                                                           Starch hydrolysis
                                                                                                                                                                                         infusion broth
                                                                                                                                                                                                                                                                                                                            A typical S. Faecalis (Vagetation source)
                                                                                                                                                                                                                                                                                           Positive
```

Enterococci (Warm-blooded animal sources)

S. faecalis var. liquefaciens (Insect source)

RESULTS AND DISCUSSION

Mater Quality

The results of water quality analysis may be found in Appendix III-01 and in Figures III-01,02.03, and 04. Oxygen is perhaps the single most important parameter that a limnologist can measure in any aquatic environment. Oxygen values on the Trinity River varied from a minimal average of 4.7 parts per million at Station 3 to a maximal average value of 10.4 parts per million at Station 8. In general, tends to increase gradually from Station 3 downstream to Lake Livingston. Below Lake Livingston, values are significantly higher than values encountered on the upper river. This increase in oxygen below Lake Livingston reflects increased water quality which will also be reflected in other parameters yet to be discussed. The high value of 10.4 parts per million at Station 8 suggests two possible explanations. (1) There may be fewer organics present in the water at Station 8, wost of these having been broken down and utilized by organians in Lake Livingston (as seen by the entrophic state of the upper region of the lake), or having been settled out as (2) also the release of water at the Livingston sediment. Dam may in itself serve to oxygenate the water as a result of tumbling down the "release way". Once below the dam and Station 8, organics may again increase, resulting in the observed decrease from 10.4 parts per million at Station 8 to 8.8 parts per million at Station 10. The depression of oxygen at Station 10 may also result from high chlorides. Similarly, up river, oxygen decreases from Station is and Stations 2 and 3 are due primarily to the excessive input domestic sevage of organic matter from from metropolitan Fort Worth-Dallas area. Upstream from Station 1, the Trinity River receives effluents from two major sewaye treatment plants, Fort Worth Riverside and Fort Worth Village Creek and effluents from two major industries, Fort Worth Refining Company and the American Manufacturing Company. Downstream from Station 1, the effluents from four major sewage treatment plants are received, the TRA Central, Dallas White Rock, Dallas and Dallas South Side, while the effluents of one major industry is received, Proctor and Gamble Incorporated. (Porrest and Cotton, 1970). White Rock Creek receives the effluents from the Richardson sevage treatment plant and forms a confluence with the Trinity River upstream from Station 2. The Bast Fork of the Trimity River is also the source of a considerable in-put of organic enrichment, with one of the major sources coming from Garland-Duck Casek producing an average sewage discharge of 9.80 (mga).

*****0 .

The influence of organic enrichment on dissolved oxygen is borne out well by the relationship between oxygen concentrations and biochemical oxygen lemand (BoD₅) at each station. Generally, BoD₅ is high above Lake Livingston with a maximum average of 9.9 parts per million at Station 2. Below Lake Livingston BoD₅ values drop significantly, showing a minimum average of 2.9 parts per million at Station 8, again indicating the removal of organics occurring in the lake. Where plotted together, oxygen and BoD₅ show an inverse relationship to be highly significant with a correlation coefficient of r = -0.9045.

Orthophosphate also shows some interesting trends. Orthophosphate shows a maximum average of 10.94 parts per million at Station 2, and a minimum average of 0.54 parts million Station 9. Plotting BODs at orthophosphate indicates that these parameters are also closely related, and simple linear regression showed this relationship to be significant vith a coefficient of r = +0.9436. The fact that BOD₅ orthophosphate are closely related suggests that phosphate is being introduced into the river as domestic pollution as opposed to agricultural and industrial pollution. The high rate of overturn of phosphorus and its conversion from organic to inorganic forms may invalidate this suggestion, however. Fecal coliform to fecal streptococcus ratios for Stations 1 through 7 are greater than 4.0 which indicates sevage opposed to human as pasture OL feedlot contamination.

NIPAK, Inc., a fertilizer plant located near Station 4 did not appear to have any influence on orthophosphate, with a significant decrease in concentration between Station 3 and 4.

Orthophosphate also is inversely related to oxygen -0.9024). This relationship may be real and significant if a high phosphate value triggers high populations and a resultant high oxygen demand. Hayes and Phillips (1958) have shown that bacteria take up large quantities of inorganic phosphorus. (n the other hand, the relationship of orthophosphate and oxygen may merely be coincidental to the more elementary relationships of phosphate to BODs and BODs to oxygen. It is also interesting to note, from the tremendous decrease in orthophosphate from Station 7 (9.42 parts per million) Station 8 (0.56 parts per million), that there must be a significant uptake and utilization of phosphorus in Lake Livingston and this is probably having a marked effect on the eutrophication of the reservoir.

The pH values appeared to be correlated with oxygen, with a correlation coefficient of +0.9465. Since pH is often determined by the amount of carbon dioxide in the water, the low pH and low O₂ values above Lake Livingston are probably related to the high BOD values in this region of the river.

Nitrogen values (NH3, NO2, NO3) showed trends which extremely characteristic of transitions in selfpurification from a zone of recent pollution to a zone of recovery to a recovered zone. Ammonia shows a peak average value of 9.40 parts per million at Station 2. This level is maintained until Station 4 where the concentration begins to decline. NIPAK, Inc. Occasionally discharges significant amounts of ammonia in their effluent (McCullough, 1972) and may have affected the slight average increase at Station 4 compared with Station 3. A minimum average concentration of 0.41 parts per million is found at Station 9. Mitrite shows maximum average value at Station 5 of 7.87 parts per million, and declines to a minimum average of :0.0008 parts per million at Station 9. Nitrate shows a maximum average of 2.66 parts per million at Station 6 and also decreases downstream to a minimum average of 0.16 parts per million at Station 10. This downstream trend of ammonia being replaced by nitrite, which is, in turn, replaced by nitrate, is a commonly observed phenomenon which occurs as result of downstream oxidation of ammonia to nitrite to nitrate. It is also interesting to note that there is a net loss of nitrogen from above Lake Livingston. No immediate explanation can be made. Ammonia concentrations peaked at Station 4, nitrite peaked at Station 6, while the average phytoplankton biomass was found to peak at Station 4 and begins to decline downstream. The effect of the nitrogen peaks on phytoplankton biomass production is not clear. The decline may be due to grazing effects, increased turbidity and color, or to some other limiting nutrient.

Chlorides varied from 36 parts per million at Station 9 to 131 parts per million at Station 10. This tremendous increase at Station 10 is the result of malt water intrusion from Trinity Bay and malt water pollution from the Texas Gulf Sulfur Plant at this location. Tehaucana, Chambers and Richland Creek have been found to carry high concentrations of chlorides (rcCullough, 1972). However, the results of this investigation do not show that the waters from these tributaries are having any mignificant effect on chloride concentrations at stations downstream from their confluence with the Trinity River. Station 5 only shows an average increase of 3 ppm above that at Station 4. Otherwise, above Lake Livingston, chlorides show a general decrease from Station 1 to Station 7.

Conductivity ranged from a high average of 790 micro mhos at Station 1 to a low average of 335 micro mhos at Station 9.

Sulfate concentrations ranged from a high average of 142 parts per million at Station 2 to a low average of 37 parts per million at Station 9. From Station 2 there was a general decline downstream with an increase at Stations 4 and 10 which are noteworthy. NIPAK has reported (Forrest and Cotton, 1970) 720 ppm of sulfate in effluents which may be responsible for the increase at Station 4. Station 10 increase may be caused by sulfate discharges from Texas Gulf Sulfur. McCullough (1972) reported 310 ppm sulfates in effluents from this plant. Sulfate was closely related to orthophosphate in the present study (r = +0.9246). The factors involved in this relationship are not known.

Turbidity varied from a maximum average of 161 JTU at Station 4 to a minimum average of 28 JTU at Station 9. Phytoplankton reached an average high at Station 4 which would contribute to turbidity. Color showed a maximum average of 117 color units at Station 7 and a minimum average of 55 color units at Station 9. Turbidity showed a significant decrease below Lake Livingston as a probable result of settling of suspended matter in Lake Livingston. Turbidity also showed a second high peak (other than the maximum at Station 4) at Stations 6 and 7. This increase may be the result of the inflow of turbid water from Richland and Tehuacana Creeks. Color also Chambers, increased at these stations. Color and turbidity probably limits primary productivity at Stations above Lake Livingston, particularly at Stations 4 through 7. PWPCA (1968) points out that color values in excess of 50 JTO will limit photosynthesis by phytoplankton.

Sediment oxygen demand S.O.D. was quite variable, but some general trends can be seen. Average values ranged from 32.4 parts per million of oxygen per kilogram dry weight of sediment per minute at Station 1 (with one value as high as 41.8 ppm) to a low of 7.4 ppm at Station 6. Generally, there was a decline in SOD downstream from the Dallas-Port Worth area, thought to be the major source of the organics causing the demand. Station 7 was a major exception to this trend, and no immediate explanation can be given at this time for this result. Total organic carbon data from bottom sediments (Pigure III-05 and Table III-01) reveals the same general conclusion as the Sediment Oxygen Demand (SOD) data. The bottom sediments from the Dallas-Port Worth area (Stations 1 and 2) and the sediments below the confluence

Table III-01. Total organic carbon (mg carbon/ gram dry veight soil) for bottom samples from the Trinity River

Station	on 1	Station	2 uc	Station	n 3	Station	t uc
10-9-72	29.4	10-9-72	ິດ	10-9-72	•	7-4-0	27.
11-28-72	11.4	11-28-72	150.0	1	•	1-6-1	
~	58.1	1-10-73	9	-10-73	•	•	9
2-10-73	87.9	2-10-73	136.1	7	40.2	-4-73	
3-3-73	67.1	3-3-73	Q,	7		•	O
AVERAGE	50.8	AVERAGE	119.1	AVERAGE	83.4	3-3-73 AVERAGE	31.
Station	on S	Station	9 uc	Station	7 00	Station	8 uc
10-4-72	?	10-23-72	_	_	~ ~	0-17-7	
1-4-73	55.5	~	33.6	11-22-72	23.1	11-22-72	28.
2-7-73	9	2-7-73	S		S	-10 - 73	
3-6-73	Š	3-6-73	0	1-11-73	m	AVERAGE	S
AVERAGE	45.0	AVERAGE	~	2-7-73	6.4		
				3-6-73	36.1		
				AVERAGE	~		
	Station	ion 9			Station	n 10	
	10-17-72	57.7			10-17-72	-	
	11-21-72	87.1			12-15-72	5	
	12-15-72	16.4			1-11-73	31.9	
	1-11-73	20.1			2-23-73	6	
	2-23-73	14.4			AVERAGE	;	
	AVERAGE	39.1					

of the Trinity River and the East Fork Trinity River, contain the highest amounts of total organic carbon. A thick layer of black sludge was very evident at Stations 1, 2, and 3 at most collecting periods, and appeared to be greatly reduced during periods of high flow. The origin of the organic sludge is primarily from sewage discharge, evidenced by the fact that the organic content of the bottom sediments progressively declined downstream from greates**t** Station 2, the station nearest the sevage discharge on the river. The total carbon data and sediment oxygen demand data strongly suggest that the sediments near Stations 1, 2, and 3 probably account for the depressed oxygen values observed during a river rise on the Trinity River. This oxygen depression was observed in water quality data collected during a river rise in this study and the phenomenon is reported to be the cause of frequent fish kills. The bottom sediments at Station 2, for example, with a very high oxygen demand and high organic content would be "scoured out" by flood conditions. The sediments at Station did not ever appear to be dense or "tightly packed" on the bottom but were more loosely packed and disturbed by a strong current or an object such as the bottom sampler used to obtain sediments. As the sediments become resuspended, an enormous oxygen demand would suddenly be placed on the water mass, depressing the dissolved oxygen values.

On October 23, 1972 to October 31, 1972 water quality data was collected for Stations 5, 6, and 7 during a river rise. The results of chemical analysis on samples collected during these dates are given in Appendix III-02.

Although the data reflects only one river rise and only a segment of the river, only some generalities can be observed. Most of the stations showed a drop in dissolved oxygen as the river began to rise, followed by a general increase in dissolved oxygen. The turbidity, color and conductivity in most cases increased during the rise. At Station 5, the initial wave contained relatively high chloride and sulfate levels, perhaps as tributaries became flushed out upstream. Ammonia doubled its concentration as the initial flood waters arrived but three days later dropped to very low levels as the rise continued. Average BOD, POC and DOC were all relatively high during the water rise.

Particulate and Dissolved Organic Carbon

The results of dissolved organic carbon analysis (DOC) and particulate organic carbon analysis (POC) are given in Appendices III-01, III-02 and the average values for each

station in Figures III-06 and III-07. Average POC values ranged from 8.5 ppm at Station 2 to 3.2 ppm at Station 9, and average DOC values ranged from 8.5 at Station 2 to 4.7 at Station 8. A comparison is given in Table III-02 of the POC and DOC ranges in the Trinity River with other river studies.

Figure III-06 suggests that the principle source of particulate organic carbon, in the study area, is domestic sewage. The average POC value peaks at Station 2 and progressively declines at downstream stations. In this study, ammonia levels are indicative of recent sewage discharge. Simple linear regression shows ammonia values are highly correlated with POC values, with a correlation coefficient of +0.8229, significant at the 99% confidence level. It is of interest to note the wide range in values 4 and 5 which are the stations where Stations phytoplantton biomass was usually quite dense. The general decline in POC downstream could be due to several causes. Much of the particulate matter introduced at Station 2 near Dallas could settle out downstream. The dilution effect, because of increased volume of the river, could also reduce POC values. Aquatic organisms (e.g. Bacteria, protozoa and tilter feeders) could also effect a reduction concentrations.

Brooks (1970) found in the Brazos River that POC was diractly related to river discharge with the increased POC probably due to allochthonous matter being washed into the river during flooding conditions. Weber and Moore (1967) reported that POC was related to river height in the Little Miami River in Ohio. Both Brooks (1970) and Weber and Moore (1967) reported that DOC concentrations were not related to river discharge. In this study, no relationship between POC concentrations and discharge was observed. The Trinity River base flow is sewage, so that during low discharge the sewage is more concentrated and the POC would be high. During flood conditions the POC from sewage would be diluted but allochthonous detritus washed in by flood would increase the value, so that no clear relationship between POC and discharge could be expected. Brooks (1970) found DOC values to be the best indication of organic pollution. In this study both could be used as an indicator of water pollution since both showed an average maximum at Station 2 and generally declined downstream; however DOC was better correlated with BOD (r = +0.70) than was POC and BOD (r = +0.51). Simple linear regression showed DOC was correlated with orthophosphate (r = +0.8295)

Table III-02. A comparison of DOC and POC ranges in the Trinity River and other rivers

River	Reference	DOC (ppm)	POC (ppm)
Trinity River, Texas	this study (1973)	2.9-14.1 1.1	1.1-13.6
Brazos River, Texas	Brooks (1970)	2.8-7.0	1.0-16
Guadalupe River, texas	Parker and Calder (1968)	1.0-5.0	1.0-5.0
Houston Ship Channel, Texas	Parker and Calder (1968)	1.4-26.0	2.2-20.0
Little Biami River, Ohio	Weber and Roore (1967)	2.5-12.5	1 1 1
	19. 化二甲基甲基苯基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲		

significant at the 99% confidence level. Wilson (1963) found that the Colorado River in Texas increased in total organic carbon as it flowed to the coast.

Computation of Average Metric Tons/day (Avg/Ht/Day) total Organic Carbon (DOC plus POC) indicates an increase in each constituent with river mile (Table III-03). The computation of Avg. MT/Day utilizes flow data to calculate an estimate of the mass balance transported by the river past the station sampled. Table III-03 compares the Avg/MTDay for TOC, DOC, and POC and calculates the River Index for organic carbon by dividing the Avg HT/Day by the total river mileage above the station for each station sampled. Station 3 below Dal as exports 9 times as much Avg MT/Day of TOC than Station 1 (between Fort Worth | (below Dallas). High and Dallas) to 0.78 at Station levels of organic carbon are transpirted to Station 8. where the TOC River Index crops back to 0.14. If Station 7 is considered the last high River Ind x (see Table III-03) and it is 315 miles downriver, the total river mileage polluted can be calculated as at least 255 river miles. This can be calculated by subtracting the 60 miles of river above Fort Worth-Dallas from the 315 miles. At least 1/2 of the entire Trinity River is affected by municipal or industrial sewage from the Fort Worth-Dallas area.

A calculated estimate of 3.52 x 10 Metric Tons/year of total organic carbon was exported by the Trinity River into Trinity Bay. This determination utilizes the data from Station 9 during the study period.

The following conclusions may be drawn from the organic carbon analysis:

- 1. The highest concentrations of DOC and POC were observed at Station 2 (near Dallas) with station means of DOC and POC leing 8.56 ppm and 8.58 ppm respectively.
- 2. The largest Average Metric Tons per Day of TOC, DOC, and POC were observed at Station 3, located just below the confluence of the Trinity River with the East Fork of the Trinity River.
- 3. On the average, at least 250 miles of the Trinity River (or 1/2 of the river mileage) is affected by the municipal and industrial sewage wastes from the Fort Worth-Dallas area.

Station	River Miles Above Station	Avg. TOC Index MI/Day	Index	Avg. DOC MT/Day	Index	Avg. Poc MT/Day	Index
	09	11.89	0.20	6.75	0.11	5.14	0.09
8	06	43.07	0.48	20.89	0.23	22.18	0.25
m	125	97.27	0.78	44.14	0.35	53.13	0.42
	180	70.51	0.39	28.70	91.0	41.81	0.23
10	210	69.03	0.33	41.51	0.20	27.51	0.13
v 6	270	80.15	0.30	31.00	0.12	49.19	0.18
_	315	90.94	0.29	38.52	0.12	52.42	0.17
80	465	96.99	0.14	41.40	0.09	25.56	90.0
•	200	96.31	0.19	62.92	0.13	33.54	0.07
Means		69.57	٥. علا	35,00	0.17	34.50	0.18

4. A calculated estimate of 3.52 x 10 Metric Tons per year of Total Organic Carbon was exported by the Trinity River into Trinity Bay, utilizing the data collected from Station 9 during the study period.

Pesticide Analysis

Collection and subsequent analysis of river sediments was made during 1972-73, as previously described in the methods section. A total of 49 samples were collected. Results of these analyses are given in Appendix III-03 and Table III-04. Out of 49 samples, 45 contained measurable amounts of Chlordane (92.0%), and 38 samples contained measurable amounts of DDE (77.5%). Measurable amounts of Heptachlor were found in 20 samples (40.8%). Lindane was found in 12 samples (24.5%), DDT in 8 samples (16.3%), and Aldrin in 6 samples (12.3%).

Dieldrin and Endrin were found in 4 and 5 samples, respectively, Mirex in 2, and Methoxychlor was not detected in any samples. Table III-05 gives the means and standard deviations for pesticides in micrograms per kilogram of sediments for the entire river.

Chlordane varied between 402.47 mcg/kg at the Rosser station on October 12, 1972 to 0.00 mcg/kg at the Cayuga station on January 12, 1973. DDE showed a smaller range. It varied between 10.99 mcg/kg sediment at the Rosser station on January 12, 1973, to undetectable amounts on several occasions. Analysis of variance indicates that both DDR and related Heptachlor are statistically to Chlordane concentration (a=.01). Heptachlor, itself was detected more often in the upper three stations than in the lower three. It occurred in 75.3% of the samples collected in the lower three. Concentrations of Lindane were relatively low at the Highway 7 and 21 stations with a high of just over one microgram per kilogram sediment. Lindane concentrations were detected in 5 out of 19 samples at the Fairfield and Cayuga stations and ranged between 0.93 mcg-kg to 3.92 mcq/kq sediment. Sediments from the uppermost stations, Highway 85 and Rosser, showed the highest concentrations of Lindane. It occurred in 5 out of the 13 samples and ranged between 1.05 to 6.52 mcg/kg.

Aldrin was shown to be concentrated around the Cayuga station. When present it ranged between 0.62 to 9.58 mcg/kg

Table III-04.	Pesticide q	uantities	for the ye	ar 1972		133	
		Averages	(mg/kg)				
	Rosser	Hiway 85	Cayuga	Fairfield	Hiway 7	Hiway 21	
LINDANE	1.60	0.44	.64	.40	.28	<.05	
ALDRIN	.62	0.00	1.31	< .04	0.00	< .02	
CHLORDANE	127.02	49.69	22.41	12.09	9.75	25.15	
HEPTACHLOR	5.07	.80	.56	<.14	.05	< .13	
P P' DDE	3.85	2.36	1.10	.50	.65	.91	
p P' DDT	0.00	0.00	.88	.12	.67	.5 3	
MIREX	0.00	0.00	.17	0.00	.18	0.00	
ENDRIN	1.89	0.00	.45	0.00	0.00	. 69	
DIELDRIN	0.40	0.42	.61	0.00	0.00	0.00	
METHOXY CHLOR	0.00	0.00	0.00	0.00	0.00	0.00	
		STANDARD I	DEVIATIONS				
	Rosser	H1Way 85	Cayuga	Fairfield	H1Way 7	H1Way 21	
LINDANE	2.69	0.98	1.30	.97	.35	.09	
ALDRIN	1.76	0.00	3.15	.007	0.00	.07	
CHLORDANE	131.51	65.32	28.20	10.80	11.38	35.93	
HEPTACHLOR	10.09	0.83	.77	.18	.12	.22	
P P DDE	3.96	3.81	1.51	.37	.73	.77	
P P' DDT	0.00	0.00	2.43	.37	1.18	1.03	
Mirex	0.00	0.00	.51	0.00	.48	0.00	
ENDRIN	5.35	0.00	1.34	0.00	0.00	1.28	
DIELDRIN	1.13	0.95	1.28	0.00	0.00	0.00	
METHOXYCHLOR	0.00	0.00	0.00	0.00	0.00	0.00	

A state of the second s

Table III-05. Mean concentrations of pesticide for the upper Trinity River for 1-1-1972 through 1-12-1973

Pesticide	Mean Concentration	Standard Deviation
Chlordane	41.01	01.41
DDB*	1.56	1.30
Heptachlor	1.12	1.95
Endrin	0.50	0.73
Lindane	0.56	0.54
DDT*	0.37	0.37
Aldrin	0.33	0.53
Dieldrin	0.23	0.27
Birex	90°0	60.0
Methoxychlor	00.0	00.00

*Reported as pp' isomers only.

and was found in 3 out of 9 samples taken from that station. Aldrin was not detected at the Highway 85 station and was detected only once at the Rosser station. Samples taken from below the Cayuga station showed only traces of Aldrin residues.

Endrin residues were detected once at the Rosser station, once at the Highway 85 station, and once at the Cayuga station. It was found twice at the Highway 21 station. No detectable quantities were found at the Pairfield and Highway 7 stations. DDT was not found at the two uppermost stations, Rosser and Highway 85, but was found in two samples from the Cayuga station. It appeared more often at the two lowermost stations, being found in 5 out of 14 samples. Detectable amounts of DDT ranged between 0.22 to 7.34 mcg/kg sediment. It was found once at the Pairfield station.

Dieldrin was not detected at the three lowermost stations. The three uppermost stations had four samples with detectable quantities of Dieldrin residues. Hirex was found in only two samples: one from the Cayuga station and the other from the Highway 7 station. Hethoxychlor was not found in any samples taken.

Statistical treatment of the data indicates that there is no significant difference in the mean concentrations of any two adjacent stations for the following items: Chlordane, DDE, Heptachlor, organics, clays, silt, or sand. An unpaired t-test was used to determine this factor and the level of significance (α =0.05). This test is very sensitive to the sample variances. A Hann-Witney non-parametric rank test confirms that the differences between adjacent stations is not significant (α =0.05). Student's test indicate that there is a significance difference between the Rosser station and the lower stations with the exception of the station at Highway 82 which is adjacent to it.

Multiple quadratic regression analysis indicate that there is a high correlation between Chlordane and percent organics, and DDE and percent organics (α =0.01). Regression analysis also indicates a strong relationship between the above mentioned pesticides and percent clays (α =.01). Regression analysis, on the other hand, shows silts to be a poor predictor of Chlordane and DDE concentrations. Data suggest an inverse relationship between percent sand and Chlordane and DDE.

Pesticide concentrations in the bottom sediments below Lake Livingston appear to be quite low. One sample collected near Wallisville, Texas near the bridge on Interstate Highway 10, contained only two insecticides, Lindane (0.2 micrograms per kilogram of sediment) and Chlordane (less than 1.0 microgram per kilogram of sediment). It would appear that the rice production adjacent to the lower Trinity River is not resulting in significant pesticide contamination of the sediments.

Pesticide analysis of well water samples collected near Rosser, Texas did not produce any dectable quantities of pesticides.

Monitoring pesticides at the residue level has become an essential parameter in assessing the fitness of a lotic environment (Barthel et. Al., 1969; Breidenbach, et al., 1967; Brown and Nishioka, 1967). The action and effect of pesticides on non-target organisms have emphasized the need for monitoring the levels of insecticides introduced into the freshwater ecosystem. Since the early fifties, scientists have recognized that chlorinated pesticides do accumulate in the environment and can have adverse effects on aquatic biota (Surber, 1948; Sun, 1950; Young and Nicholson, 1951).

Pesticides may enter the fresh water environment through a number of routes. Drift from aerial application of agricultural crops, accidental direct application of an adjacent stream (Ide, 1957), and direct application for aquatic pest control (Weidhass, Shhmidt, and Bowman, 1960) may occur. Nicholson (1967), however, believes that a large percentage of pesticide contamination comes from industrial discharge from such industries as pesticide manufacturers and formulators, and from surface runoff and erosion. Since degradation of many of the organochlorine pesticides are slow, one could expect a sustained burden of residues in rivers that are adjacent to large agricultural regions. Portunately, pesticide runoff is greatly retarded by the insecticides' affinity for soil particles (Grzenda et al., 1964; Young and Nicholson, 1951).

The pesticide concentrations in river sediments is dependent on the watershed associated with a particular river. Land use patterns, surface erodability, and rainfall influence the extent of residue burden a river will have. Soil composition of the surrounding treated acreage appears to determine the rate of movement from rain runoff. Bailey and White (1964) have shown that pesticide runoff is

THE PERSON NAMED IN

significantly decreased by the percentage of organics in the soil. They have also shown that soil texture influences the movement of pesticides, with soil particles of smaller size having the greater affinity.

Once the pesticide has entered the river environment, its fate is again partly dependent on the type of sediment with which it has become associated. Finer textured sediments proportionately would have a concentration of pesticides and would be more easily transported downstream (Bailey and White, 1964; Wharton, 1970). Since most of the chlorinated pesticides are fairly hydrophobic, the majority of the residue found in water is found on suspended particles and not dissolved in the water itself (Crocker and Wilson, 1965). As the river kinetics decrease, the decreased load capacity allows the pesticide containing sediments to settle out. It is not unusual to find that the pesticide contents in silt and clay deposits of a slow moving river exceed that of the water by several hundred fold (Edwards, 1970).

Percent organics, sand, silt, and clay were determined in order to assess what relationship exists in the Trinity River between soil composition and pesticide contents. Several generalizations may be drawn from the data. According to statistical treatment of the data collected, there is a significant quadratic relationship between Chlordane and DDE residues and that of organic and clay content in sediments. These pesticides do not appear to be well correlated with silts; however, sand is negatively correlated with pesticide content. The occurrence of other pesticides were so scant that statistical treatment was difficult. The averages of percent organics, clays and silts generally decrease downstream as фo pesticide concentrations. Pesticide concentrations increase slightly on the Highway 7 and Highway 21 stations yet, percent organics, silt and clays do not. The pesticide content appears to be dependent on other factors such as rainfall, discharge, season and agricultural land use, as well as chemical and physical parameters of the river itself.

Second order regression analysis of the data in this study indicates that percent organics or percent clays are good predictors for Chlordane and DDE levels in sediments. The following table gives correlation coefficients for the above mentioned pesticides and the percentage of general

sediment type from which they came:

	r-values
Chlordane vs. Percent organics	.951**
DDE vs. Percent organics	. 994**
Chlordane vs. Percent clays	.947**
DDE vs. Percent clays	.987**
Chlordane vs. Percent silt	.652 N.S.
DDE vs. Percent silt	.686 #.S.
Chlordane vs. Percent sand	.912*
DDE vs. Percent sand	.895*

- * indicates significance at the 95% confidence level.
- ** indicates significance at the 99% confidence level.
- N.S. Indicates no significance.

The data suggest a strong relationship between organics and DDE, and organics and Chlordane. Clays also show positive correlation for these pesticides, but silts do not. Sand content appears to be correlated, also, although the data suggests that its effects on Chlordane and DDE are opposite from that of clays and organics.

These data appear to agree with Bailey and White (1964, 1969) findings that posticides have increasing affinities for sediment particles of smaller and lighter They suggest three factors in which these particles may interact: (1) adsorption by Coulombic forces, physical adsorption through dipole interaction (2) (primarily Van der Waal forces), (3) and by adsorption hydrogen bonding. Kunze (1966) suggests that through "...chlorinated hydrocarbons tend to associate accumulate in the organic fraction [and that this] may be due to compounds in the organic matter which act as solvents for these insecticides."

The source of pesticide contamination is not definitely known. Data from the Texas A & M Extension Service indicates that the counties adjacent to the Rosser station utilize more insecticides than the lower counties. The data presented in this report suggest that the river recovers from this pesticide burden as it proceeds downstream. Bailey and Hannum (1965) reported a decrease of pesticide residues in river water of a rate of 0.0016 micrograms per liter per mile downstream from the application point. LeGrand (1966) states that:

- A PARTIE

"When waste containing pesticides comes in contact with water or the soil, contaminates in them start to move with the entraining water, and they also start a complex course of attenuation, or weakening in strength and consistency...by decay or some inherent power to decrease in potency, by sorption or soil materials, and by dilution through dispersion."

The upper Trinity is subject to large amounts of domestic sewage from urban areas in the Dallas-Fort Worth area (McCullough, 1972). The organic matter associated with this region of the river has shown to exert its influence in at least the upper three stations covered in this study (McCullough, 1972). Some of the pesticide residues recovered may have come from domestic and industrial discharge. These residues could easily be transported by organic matter for which pesticides have a great affinity (Bailey and White, 1969).

The quadratic relationship of Chlordane and DDE with that of organics, clays, and sand may be due to factors other than the pesticide-sediment interaction. The proximity of the station to agricultural usage may be of importance in evaluating to what extent the pesticides and sediments will interact. The Pairfield, Highway 7 and Highway 21 stations, for instance, receive waters from tributaries that drain agricultural areas (McCullough, 1972). These tributaries (i.e., Chambers, Richland, and Tehuacana creeks) are also characteristically low in organics (McCullough, 1972). Chambers Creek drains much of Ellis County. County extension agents report that some 414,000 acres in Ellis County have been treated with insecticides in 1971 (McCullough, 1972). All three creeks drain Navarro County. In 1970, Navarro County was reported to have treated 49,100 acres with insecticides (McCullough, 1972).

The three points of the regression line (see Fig. III-08), that cause it to bend upward for lower clay and organic containing sediments represent Pairfield, Highway 7, and Highway 21 stations. The increased average pesticide concentrations at those stations may be due to Chambers, Richland, and Tehuacana creeks which form a confluence with the Trinity River a few miles upstream.

Figure III-08. Second order regression analysis, $y = b(0) + h(1)x + b(2)x^2$, of pesticide concentrations vs. clay and organics in the Trinity River, Texas, from January, 1972, to January, 1975.

STEPHEN F AUSTIN STATE UNIV NACOGDOCHES TX F/6 8/6 ECOLOBICAL SURVEY DATA FOR ENVIRONMENTAL CONSIDERATIONS ON THE --ETC(U) JUL, 73 C P FISHER, D D HALL, H L JONES DACM63-73-C-0016 AD-A095 957 UNCLASSIFIED NL 3 ≈ 7 O

Figure III-08 (cont.)

In an environment as dynamic as a river, explaining relationships between parameters can be very complex. Sediment composition is just one of the many factors invluencing the amount of pesticides that will be recovered on any given day and sample. Experimental technique may also enter into the problem, since some sediment types give greater pesticide recoveries than others (Bailey and White, 1964).

information, Pesticide usage when compared t.o residues, suggest that most of the pesticides entering the river come from agricultural application (Fig. III-09 and Table III-06). Much of the clays associated with the uppper Trinity River originate from land that is either agricultural in nature or which is adjacent to such areas. Since clays are easily suspended in water, it could be transported downstream and redeposited. If pesticides originate from this area, it would not be surprising to find that clays and pesticides are closely related to one another. Regression analysis of the data presented bears out this finding. Unfortunately, clay and organics are (r=.88)significantly correlated also. This understandable since organics have a great affinity for clay particles (LeGrand, 1966). A more structured study would have to be done in order to determine whether the residues become associated first with the organic matter and then the clays or with the clays first and then the organics.

Pigure III-09 illustrates the relationship between DDE, Chlordane, and pesticide usage with that of river miles upstream. The figure indicates that there is a trend for these residues to decrease rapidly downstream, then to level off, and finally, increase slightly. Pesticide usage in adjacent counties follow the same pattern.

Northern reaches of the Trinity River basin are characterized by large agricultural land use. Cotton, sorghum, grains, and forage crops are abundant in Bllis, Kaufman, Navarro, and Anderson counties (McCullough, 1972).

Peanuts, vegetables, soybeans and oats are among the principle crops in more central river basin counties such as Houston and Leon counties (McCullough, 1972). Estimates of pesticide usage appear to be greatest in the more northern counties with a marked decrease downstream (McCullough, 1972). This decrease may be due not only to less agricultural acreage, but to production of crops requiring lower pesticide application as well.

Table III-06. Cumulative acreage treated with insecticides in 1970-71.

STATION NAME	COUNTY ADJACENT TO STATION	CUMULATIVE ACREAGE TREATED
Rosser	Ellis	414,000
	Kaufmaa	119,000
Highway 85	Henderson	14,900
•	Navarro	43,100
Cayuga	Anderson	43,427
	Freestone	9,000
Fairfield	Anderson	45,427
	Freestone	9,000
Highway 7	Leon	10,000
	Houston	48,000
Highway 21	Leon	10,000
	Ho iston	48,000

Data supplied by the Texas A. & M. Extension Service, Texas A. & M., College Station, Texas.

Pesticide residue averages appear to be well correlated with application (see Pigure III-09). The greatest concentrations of pesticides were found in sample sites closest to Dallas. Residues were found less frequently and less abundantly downstream with a slight increase at sites adjacent to been and Houston counties. This increase is not of statistical significance, due to the high variances encountered at these two stations.

The most frequent pesticide encountered was Chlordane, which was found present in 96% of the samples tested. DDB was found in 79% of the samples and Heptachlor in 55%. DDT and Lindane occurred in 17% and 36% of the samples analyzed, respectively. Aldrin, Endrin, and Dieldrin occurred less frequently. Hirex was found in only two samples, and methoxychlor residues were not found.

The scarcity of DDT upstream coupled with the frequency of occurrence its metabolite, DDE, suggest a decrease in its usage (Tidswell and McCasland, 1972). It is interesting to note that although Rosser and Highway 85 stations showed the greatest concentrations of DDE, no DDT residues were identified. Tidswell and McCasland (1972) found no DDT for stations on the West Fork of the Trinity at Loop 12 Bast and Loop 12 West and at Arlington on State Highway 360, yet they found frequent occurrence of DDE. At stations on the West fork at Fort Worth and the Clearfork at Fort Worth, Tidwell and McCasland had similar results.

Guenzi and Beard (1967) have shown that DDT is dechlorinated rapidly in an anaerobic condition, by bacteria such as <u>Bscherichia coli</u>, <u>Enterobacter</u> (reported as <u>Aerobacter</u>), and <u>Proteus</u>. Hill and McCarty (1967) report similar results. The Trinity River frequently contains dissolved oxygen of less than 3 ppm in these areas and has been known to contain high concentrations of bacteria similar to those used in the Guenzi and Beard experiments (Harris, Mary Anne J., unpublished thesis, Stephen F. Austin State University, Nacogdoches, Texas).

of the mixture of pesticides sampled, Chlordane appears to predominate. The concentrations of Chlordane are not only highest at the Rosser station, but also the most variable. The highest concentration of Chlordane at the Rosser station was 402.47 mcg/kg and the lowest concentration was 9.67 mcg/kg the average concentration was 127.02 mcg/kg sediments and the standard leviation was 131.51. It appears that during 1972, the highest pesticide concentrations are in the fall and the lowest are in late

spring and early summer. Unfortunately, no data was taken for the months of July and August.

Heptachlor was found in 55% of the samples taken. Its occurrence is possibly due to Chlordane being present, since Chlordane has as one of its constituents. Heptachlor. Regression analysis show that the two pesticides are correlated at the 99% confidence level (r=0.85). The mode of entry into the aquatic environment may be similar for the two pesticides. This latter possibility is very plausible when one considers that the concentration of Chlordane and DDB are also correlated (r=0.96, =0.05).

Three out of eight samples at Rosser contained Lindane, and one of the eight samples contained Endrin, Dieldrin, and Aldrin. These pesticides were all encountered on November 28, 1972. Collections at other stations show a wide variety of pesticides during this period.

The Cayuga station showed the highest concentration of encountered (7.34 mcg/kg) during November, 1972, along with Aldrin and Dieldrin residues. The concentration of and DDE decreases rapidly as one proceeds Chlordane downstream, withe the Highway 85 station showing a marked decrease in the residues followed by a more gradual decrease and finally by a slight increase. The reasons for this are only speculative. It appears that agricultural use plays a significant role as Figure II -09 would indicate. Pesticide residues carried downstream most likely play some part. Pesticides have a very high affinity for soil particles (Bailey and White, 1969; Wicholson, 1969), and Breidenbach and Lichtenberg (1963) suggest that rivers way effectively remove posticides by siltation. Micholson (1967) found .33 ppm DDT in stream water thirty minutes after the watershed had been sprayed, but twenty-seven hours later no pesticide could be detected. During greater river discharge, the pesticide-containing silt and clays could be carried downstream and then redeposited.

A very interesting relationship appears to exist between rainfall and DDE concentrations. Figure III-10 shows the average monthly rainfall in the region studied as compared to average DDE concentration for each month. It appears that during months of high rainfall and therefore, increased discharge, the DDE laden sediments are scoured out. During periods of decreased discharge, these sediments along with newly introduced sediments could be redeposited. This could account for the increased in DDE during periods of lower rainfall. It is realized that this is only

DDE concentrations in mcg/kg sediment

Total monthly reinfell in inches

1

The Real Property lies

indirect evidence that such a relationship does exist. Tidwell and McCasland (1972) in their study of the Trinity River and other Texas rivers warn that "...many variables exist in the relationship....Additional variables would include the quality of the sample, the availability of the deposited sediment, the time difference between deposition and collection, and many other." A misinterpretation does exist in most cases in a graph such as this one. Part of this is due to the way the graphs were made. First, the pesticide average concentrations were placed in the center of the month rather than relative to the actual time of the month they were taken. Second, the graph represents the total average rainfall for the entire month. These data were derived by taking ten representative rainfall stations along the river and taking their average.

Regardless of these faults, the data appear to follow the particular pattern previously described although an abnormality exists in the January, 1973 samples. This anomaly can be improved when one examines the precipitation patterns of the month more closely. Host of the precipitation occurred in the first and last week of the month while the sample was collected on the twelfth. Crockett reported over three inches of precipitation in the first week of January. This date marked the beginning of rainfall lull that lasted nearly a week. This may account for the unusually high DDE concentrations found although what relationship, if any is only speculative.

Phytoplankton and Periphyton

The results of phytoplankton biomass and phytoplankton chlorophyll analysis are given in Pigures III-11 and III-12 and Appendicies III-04 and III-05. In general, chlorophyll analyses is correlated with phytoplankton biomass, with chlorophyll a concentrations appearing to better correlated with phytoplankton than the total of chlorophyll a. b. and C. The phytoplankton biomass ranged from a low of 6.1 x 105 cells per liter at Station 1 to a high of 63.3 x 105 cells at Station 3. A phytoplankton "bloom" is generally defined as 106 algal cells per liter.

The data indicate average phytoplankton density increases progressively from Station 1 downstream, reaching a peak in average biomass at Station 4. The population declines from Station 4 downstream to Station 8, and then begins to increase again at Stations 9 and 10.

The State of the same

the state of

Company of the Control

The relatively low phytoplankton population at Stations 1 and 2 are probably caused by excessive input of organic pollution upstream. Hynes (1971) points out that in severe organic pollution where de-oxygenation of the water occurs, all algae may be eliminated. However, if some oxygen remains immediately below the sewage outfall, the algae are first reduced in numbers then increase downstream. Toxic industrial effluents released upstream may also have an impact on the phytoplankton density at Station 1. Hurphy, et al. (1971) have identified toxic effluents from a chemical plant, a railroad yard, and metal etching plant.

The effluent from the metal etching plant upstream from Station 1 was found to be consistently very acid and bioassay studies showed the effluent to be quite toxic: "Direct discharge of the effluent into the Trinity River would have serious effect on all living organisms." (Murphy, et al., 1971). Erratic results from BOD (eq. Low values) and occasionally with coliform analyses (e.g. No coliform organisms) coupled with a low average phytoplankton biomass, suggest a possible toxic factor at Station 1.

In view of the excessive input of organic matter above stations 1 and 2, it is reasonable to assume that the increase in phytoplankton biomass downstream from these stations was due to the release of nutrient salts from bacterial action on organic matter.

The average phytoplankton biomass value declines from Station 4 to Station 7 above Lake Livingston. Hypes (1971) reports the phytoplankton peak downstream from a sewage outfall declines rapidly. The reduction may be due to declining nutrients, dilution as the volume of the river increases, or because large populations of algae are inherently unstable. Average nitrate and phosphate values do not appear to be limiting between Stations 4 and 7, with a nitrate peak at Station 6 and with the average orthophosphate concentration slightly increasing between Stations 5 and 7.

The decrease in phytoplankton between Stations 4 and 7 may have been due to heavy grazing pressure from herbivorous zooplankton. Pigure III-15 indicates a sharp increase in zooplankton which graze on algae, beginning at Station 4 and peaking at Station 6. The phytoplankton show a concurrent decrease, in a classic preditor-prey relationship. Raymont (1963), Bigelow, Lillick and Sears (1940) have demonstrated that zooplankton grazers can, very

The second second second

· 我们就是我们的

extensively and very rapidly, reduce a phytoplankton crop, despite tremendous algal production. Clark (1939) with reference to phytoplankton production, stated: "Copepods in fact regulate the plant production."

The reduced phytoplankton biomass at Station 8 may be due to reduced nitrogen and phosphorus or possibly to the velocity of the water. Station 8 is approximately 5 miles Lake Livingston and was often dam at the characterized by high flow rates because of water released at the dam. Williams (1964), on the basis of a five year study, has shown that heavy stream flow is a prime factor in controlling phytoplankton production. Galstaff (1924), Rzoska, et al. (1955), and Cushing (1964) have observed the effects of dams and turbulent areas in reducing plankton Although the nutrients populations. do not substantially at Station 10, a significant rise in average phytoplankton biomass was observed, as revealed by cell counts and by chlorophyll analyses. It might also be pointed out that a concurrent rise in zooplankton numbers also occurred. The increase in phytoplankton may be related to reduced flow, which is characteristic of that portion of the river. Hartman (1965) reports the development of higher concentrations of phytoplankton in the Ohio River is partly dependent on slow to moderate rates of flow.

The phytoplankton community structure from Station 1 through 7 is that generally associated with waters polluted with sewage. At Stations 1 through 7, the phytoplankton community was typically dominated during the study pecied by members of the Division Chlorophyta, with the genera Chlorella, Scenedesmus, Chlamydomonas, and Micractinium being most common. The genera Euglena and Phacus, members of the Division Euglenophyta, are also common from Stations 1 through 7, with the diatom species (Fivision Chrysophtya) Mitzschia palea, Navicula cryptomephala, Gomphonema angustatum and Gomphonema parvulum also being common.

Palmer (1969) evaluated the algae listed by 110 workers as being tolerant to organic enrichment and sewage. The most tolerant genera were <u>Buqlena</u>, <u>Oscillatoria</u>, <u>Chlamydomonas</u>, <u>Scenedesnus</u>, <u>Chlorella</u>, and <u>Nitzschia</u>. The most tolerant species were <u>Buqlena</u> <u>viridis</u>, <u>Witzschia</u> <u>palea</u>, <u>Stigeoclonium</u> tenne and <u>Oscillatoria</u> tenius. Generally <u>Chlorella</u>, <u>Chlamydomonas</u> and <u>Scenedesnus</u> are very common in sewage oxidation ponds.

The high ammonia levels characteristic in the river near the Vallas-Fort Worth area, probably select for

Plate III-01. Representative phytoplankton collected in the Trinity River, Texas

- 1. Cocconeis sp.
- 2. Micractinium sp.
- 3. Gomphonema angustatum
- 4. Pediastrum sp.
- 5. Surirella linearis
- 6. Cyclotella meneghiniana
- 7. Synedra ulna
- 8. Melosira granulata
- 9. Scenedesmus acuminatus
- 10. Phacus longicauda
- 11. Nitzschia palea
- 12. Diploneis smithii
- 13. Navicula cryptocephala
- 14. Cymbella ventricosa
- 15. Gyrosigma sp.
- 16. Nitzschia acicularis
- 17. Gomphonema parvulum

Chlorella, which is dominant in many of the stations above Lake Livingston. Preferential uptake of ammonia by Chlorella species is quite well established (Ludwig, 1938; Pratt and Fong, 1940; Schuler, Diller, and Kerslen, 1953; Syrett, 1962). According to King (1970) CO levels in the water may influence the presence of the genus Chlamydomonas, an alga also common in many of the stations above Lake Livingston.

Williams (1964) lists seven genera that are the most important genera in the major rivers of the United States as: Cyclotella, Stephanodiscus, Synedra, Helosira, Nitzschia, Scenedesmus, and Chlamydomonas. In the same publication, Williams points out that Nitzschia, Scenedesmus and Chlamydomonas become seasonally important in late summer and fall.

Hartman (1965) in a study of a eutrophic region of the upper Ohio River, found the genera <u>Chlamydomonas</u>, <u>Ankistrodesmus</u>, <u>Scenedesmus</u>, <u>Pediastrum</u>, <u>Hicratinium</u>, <u>Cruciqenia</u> and <u>Dictyosphaerium</u> were dominant.

The green filamentous alga <u>Cladophora</u> was frequently found in abundance attached to submerged stones and wood surfaces from Stations 1 through 7. Blue (1956) reports this species to be associated with organic pollution.

The phytoplankton community structure is influenced by water quality. The centric diatoms appear, in this study, to reflect the degree of recovery of water quality. The Division Chlorphyta dominates the phytoplankton community from Stations 1 through 7 and pinnate diatoms are the most common type of diatom. However, as water quality improves at Stations 6 and 7 the centric diatoms become frequent. At Stations 8, 9, and 10, the diatoms dominate the phytoplankton community, with the centric diatoms more common than the pinnate forms. Stations 8, 9, and 10 all reflect relatively high water quality. The most common centric diatom species found in this region of the river were Melosita distans, Melosita granulata and Cyclotella glomerata.

A checklist, including the relative abundance of periphyton diatoms may be found in Appendix III-06. Gomphonema parvulum and Nitzschia palea were generally the dominant species of diatom collected in periphyton samples from Stations 1 through 7, and probably reflect the high degree of organic enrichment downstream from the Dallas-Fort Worth area. Weber and Raschke (1970) found that

THE PARTY OF A

Gomphonema parvulum and Nitzschia palea indicated high levels of dissolved organics (high organic pollution). Butcher (1947) and Pjerdinstad (1964) both report the two diatoms to be associated with polluted waters. Hornung (1959) reports Gomphonema angustatum, also present in periphyton collections of this study, to be present in highly polluted waters. Kolkwitz (1950) and Liebman (1951) have associated Nitzschia palea with the alpha-mesosaprobic zone of a polluted stream. Hynes (1971) also reported Gomphonema parvulum and Mitzschia palea as being characteristic of waters with high organic pollution.

Below Lake Livingston, Cyclotella meneghiniana, granulata, and Navicula rhyncocephala were generally the dominant species in periphyton collections at Stations 8, 9, and 10 respectively. Melosita and Cyclotella are reported by Palmer (1969) to be genera that indicate organic enrichment. The frequent dominance of Mavicula rhynoocephala at Station 10 may reflect the variable chloride levels in the water. Both the brackish water from Trinity Bay and the salt water effluents from Texas Gulf Sulphur contribute to the relatively high average chloride concentration of 131 ppm at Station 10. Patrick (1966) reports that Mavicula rhynchocephala appears to prefer, or is tolerant to, high concentrations of chloride. <u>Diploneis</u> smithii found to be frequent at Station 10, is indicative high chloride concentrations in freshwater, according to Williams (1964).

Periphyton Species Diversity Index Values

The results of species diversity index analysis are given in Table III-07. The paucity of the data was caused by frequent and prolonged flood conditions in the study area, which usually resulted in the loss of the periphyton sampler. Diversity Index values ranged from a low of 0.5 at high of 3.2 at Station 10. The Station 2 to a interpretation of the diversity index values are based on the work of Wilhm and Dorris (1968) who suggested that diversity values of less than 1.0 indicate heavy pollution, values of 1.0 to 3.0 indicate moderate pollution, and values greater than 3.0 indicate clean water. Diversity Index values from Station 1 to Station 2 may be interpreted as a heavily polluted region of the river, with values at Station 3 averaging 1.3, interpreted as moderate pollution and would suggest that recovery of water quality begins in this region. This interpretation should be made with extreme caution because of the paucity of data, and in view

Table III-07. Diversity index values for all periphyton samples taken from the Trinity River

Barch, 1973	2. 2 2. 4 8. 6	
January, 1973	20202020202020202020202020202020202020	
October, 1972	0.85 0.9 2.3 2.8 1.9 7.2	
Station	1 2 3 4 5 6 7 7 10 upstream 10 downstream	

of the fact that two of the higher index values at Station were obtained during winter months in high water conditions. A Diversity Index value of 0.9 for Station 3 was obtained in October during more "normal" discharge conditions. Periphyton diversity index values in % bla study show an improvement in water quality at Station %, with an average of 2.0, reflecting moderate pollution. RcCullough (1972) obtained a diversity index range from 0.8 to 2.2 at Station 4 with an average value of 1.5, indicating wederate pollution. Although some impact from the WIFEK, Inc. Effluent was detected in the Tennessee Colony (McCullough, 1972) no detectable impact in this study could be discerned. Benthic macroinvertebrates show an average diversity index value of 0.8087 at Station 4, which would سي. ع be interpreted as heavy pollution, but this improvement over the upstream Station 3 whichiversity index values at Stations 5 through 7 reflect moderate pollution is had an average benthic macrointertebrate diversity of 0.3367. Periphyton and no significant impact could be discerned from the confluence of the Wrinicy River with Richland, Chambers, and Tehauacana creeks.

Below Lake Livingston diversity values are variable ranging from 1.9, moderate pollution, to 3.2 imagesting clean water. Station 10 which is subject to the images of industrial effluents and salt water intrusion boes not reflect this in diversity index values. So significant difference in values could be seen comparing the egypthem and downstream diversity at Station 10. Because saltwaver has a density greater than fresh water, the effect of saltwater intrusion may be greatest on the bestall macroinvertebrate community, with an average index value of 1.4988 at Station 10.

Primary Productivity

Results of gross primary productivity determinations at the study sites are given in Table III-08, and range from a low 349 mgC/m²/day at Station 2 to a high of 10, 292 mgC/m²/day at Station 7. The mean productivity values are given in Pigure III-13, and reflect a low of 1323 mgC/m²/day at Station 10, while Station 7 produced a high average of 7511 mgC/m²/day. The average primary production rate at the study sites below Lake Livingston were all below 2000 mgC/m²/day, while only Station 1 above Lake Livingston produced an average below 2000 mgC/m²/day. Stations 3, 5, and 7 were all above an average of 3000 mgC/m²/day with Station 7 producing the highest average rate.

Table III-08. Some primary production rates at study sites on the Trinity River from September 1972 through April 1973

1 3-23-73 2,827 4,92 2 3-23-73 4-26-73 4,922 3 4-14-73 4-27-73 3,912 4 10-4-72 11-9-72 2,170 5 2-17-73 3-9-73 8,430 6 10-18-72 10,292 7 2-10-73 10,292 7 10-6-72 10-18-72 10,292 8 2-23-72 3,036 10-21-72 10-21-72 1,364 110 10-6-72 1,550	Station	Date	Productivity (mgC/m²/day)
3-23-73 1-29-73 4-14-73 4-27-73 10-4-72 11-9-72 2-17-73 3-9-73 10-16-72 2-10-73 10-6-72 11-11-72	1	23-7 25-7	2,827 492
4-14-73 4-27-73 10-4-72 11-9-72 2-17-73 3-9-73 10-18-72 10-18-72 10-6-72 10-6-72 11-4-72 12-1-72 13-1-72 13-1-72 13-1-72 13-1-72 13-1-72 13-1-72 13-1-72 13-1-72 13-1-72 13-1-72 13-1-72 13-1-72	2	3-23-73	67E 570°7
10-4-72 11-9-72 2-17-73 3-9-73 10-18-72 2-10-73 10-6-72 11-11-72 11-11-72 11-11-72 11-11-72 11-11-72 12-1-72 12-1-72 12-1-72 12-1-72 12-1-72 12-1-72 12-1-72	m	4-14-73	3,912
2-17-73 3-9-73 10-18-72 2-10-73 10-6-72 10-6-72 10-7-72 10-7-72 11-11-72 10-6-72 11-11-72 12-1-72 12-1-72 12-1-72 13-1-72 13-1-72	3	10-4-72	4,231
10-18-72 2-10-73 10-6-72 10-6-72 10-6-72 10-21-72 11-11-72 11-11-72 12-1-72 12-1-72 12-1-72 12-1-72 12-1-72	vs	2-17-73 3-9-73	2,170
10-6-72 1-20-73 10-21-72 11-11-72 10-7-72 12-1-72 10-6-72 11-4-72	9	10-18-72 2-10-73	108,391
\$-23-72 10-21-72 11-11-72 12-1-72 12-1-72 12-2-12	7	10-6-72	10,292
10-7-72 12-1-72 10-6-72 11-4-72 12-2-12	30	9-23-72 10-21-72 11-11-72	•
10-6-72	o ^	0=====================================	3,511
	10	10-6-72 12-4-72 52-2-12	1,550

studies of the rate of primary production are not as common in lotic waters as in lentic water. A comparison of the range in productivity rates for the Trinity River are made with other river studies (Table III-09). The Trinity River values are comparable to the rates for other polluted rivers such as the values reported for the White River, Indiana; River Lark, England; and the Ohio River. It might be pointed out that the Trinity River values were determined during fall, winter, and spring months while the high values obtained in comparable river studies were made in summer months. It is the opinion of this writer that the Trinity River primary production rates would far exceed those values reported for other rivers had most of the determinations been done in the summer months.

The low average primary productivity rates at Station 1 and 2 are probably due to reduced phytoplankton biomass caused by heavy domestic sewage discharge upstream of these stations. Stations 3 through 7 appear to be the most productive region of the river, probably due to the downstream release of nutrient salts (e.g., NO₃ - PO₄) from organic matter and the stimulating effect this usually has on phytoplankton growth. However, the correlation between phytoplankton biomass and productivity has some discrepancies. The highest average primary production rate was recorded for Station 7 however the highest average phytoplankton biomass occurred at Station 4. Station 10 produced a relatively high phytoplankton biomass, but the average production rate did not increase proportionately at that station.

Many variables affect primary production rates, such as highly variable meterological conditions on days when productivity data was collected, turbidity, nutrients, river flow, and many other factors. The cause of variations in productivity rates in this study would, therefore, be difficult to determine.

Strickland (1965) reports there may be wide discrepancies between phytoplankton biomass and primary production rates. A large standing crop of algae may be photosynthesizing at a relatively low rate, or a low standing crop may display vigorous growth characteristics and a high rate of production (Verduin, 1956).

Vollenweider (1969) reports the P/B ratio, or Production/Biomass used by many Russian authors, may vary from zero (a completely inactive population) to some upper limit which is determined by inherent properties of the organism.

- -

Table III-03. A comparison of some primary production rates in rivers

Source	Reference	Gross Productivity
Trinity River, Texas September - April	This study	0.3 - 10.2
Itchen River, England	Odum (1956)	.12 - 4.3
Ivel River, England	Edwards & Owens (1962)	#*S - 66.
Silver Springs, Florida Spring Winter Headwaters area	0dum (1957)	10.8 2.4 5.1
Weuse River, N. Carolina	Hoskin (1959)	0.6 - 8.0
Blue River, Oklahoma Limestone Bed Granite Bed Sand Bed	Suffer & Dorris (1966)	2.1 6.6 0.9
San Marcos River, Texas	Bennan & Dorris (1970)	0.7 - 8.4
Ohio River July August October	goods (1965)	\$ 10 °°
Follower, Tablent Popul Pollokas taccrept Zopu Juli	\$87.830 District	8.61
Control of the second of the s	898 chur , <u>42</u> .022 (7330)	12.2

Another factor which may bear upon the Production/Biomass discrepancy is the photo-heterotrophic activity of some algal species. Stations 3 through 7 were generally characterized by an abundance of Chlorella and Chlamydomonas. Parker (1971) has shown that Chlorella vulgaris and Chlamydomonas eugametos may function as heterotrophs or photo-heterotrophs in nature. Therefore, it is conceivable that a high phytoplankton biomass might exist mostly as a heterotrophic population using organic matter in the water as an energy source and carrying on little photosynthesis.

Available carbon may have also been significant in affecting the variations in production rates. King (1970) has suggested recently that carbon rather than phosphorus or nitrogen is the chief limiting nutrient in the production of algae. Bacterial oxidation of organic matter will produce CO₂ which the algae could use in the synthesis of organic matter. Burlew (1953) has shown in culture studies CO₂ enrichment stimulates productivity of algae. King (1970) has also shown that in waste oxidation ponds, the dominance of Chlorella and Chlanydononas can be predicted by CO₂ levels, so that CO₂ may also be important in regulating the phytoplankton community structure.

Production rates in this study are probably limited by color. The FWPCA (1968) reports that color in excess of 50 units may limit photosynthesis and have a deleterious effect on aquatic life, particularly phytoplankton and benthic organisms. Average color values exceeded 50 units at all stations with peaks at Stations 6 and 7. Turbidity also limits primary production above Lake Livingston. PWPCA (1968) recommends that warm water streams not exceed 50 JTU. Values in excess of 50 JTU in warm water streams affect phytoplankton photosynthesis, fish production and benthic production. All stations above Lake Livingston exceeded 50 JTU, with only Station 8 and 9 averaging turbidity below 50 JTU. PWPCA (1968) points out that effective photosynthetic production of oxygen requires a minimum of 10% of the incident light. Secchi transparency, which usually represents the depth at which 5% of the incident light penetrates, was commonly only one foot or less at stations above Lake Livingston, thus reflecting a very reduced euphotic zone.

Benthic Analysis

Intermittant pollution, sometimes not discernable by periodic chemical and physical tests, may have a

THE PROPERTY OF

significant effect on fresh-water organisms. conditions may be much more important to the aquatic community than average chemical and physical Because of this, the benthic community is very useful in monitoring environmental conditions. These organisms are relatively immobile, and have prolonged aquatic stages which allow a complex community structure to develop. In general, organisms are much more sensitive to changes in their environment than are chemical tests, thus they may react strongly to very small concentrations of pollutants. A periodic release of a toxic substance perhaps impossible to find by periodic analysis, may have an impact on the benthic community long after it has been carried downstream. Wilhm and Dornis (1968) have developed a very has been carried valuable technique in assessing environmental changes by analyzing changes in diversity in the benthic community. The diversity of the community is determined using the equation:

$$d = -\sum_{i=1}^{S} (n_{i}/n) \log_{2} (n_{i}/n)$$

where (d) is the diversity index, (n_i) are the number of individuals in all species in the sample. Goodnight (1973) has interpreted diversity index values in benthic studies and states...that values of diversity index less than 1 are indicative of heavy pollution, values from 1 to 3 indicate moderate pollution, and values above 3 are found in clean water areas."

A list of organisms collected in the benthic study with numbers and percent composition of the sample are given in Appendix III-07. The results of species diversity analysis for each benthic sample taken from the Trinity River are given in Table III-10 and Pigure III-14 is a graph of the average divensity index figures by station.

With reference to the interpretation of diversity index values by Goodnight (1973), the average index implies a high degree of pollution from Station 1 through 4 and the remainder of the stations reflect moderately polluted waters. As a general trend, the diversity index increases downstream through Station 8. The exception to this progression, Station 2, is seen to have a relatively high figure for the October sample. This figure is probably explained by the number of different species of gastropods, some of which appear to be pulmonate or land snails washed into the river. The index figures for most stations appear to be rather stable with the exception of Stations 4 and 5, considered by this researcher to be "recovery" stations,

A Company of the Comp

: III-10. Diversity index figures for all benthic samples taken from the Trinity River from September, 1972 through March, 1973 Table III-10.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 5	
Station	1	7	m !	4. 1	ru I	9	7		6	10
September	1 1	!		 		1.3953	2.2200	; ! ! ! ** !	1.0810	*
October	0.9446	1.8310	0.3622	0.3110	1.2252	1.4192	1.9060	1.9760	1.2900	1.5850
November	0.3910	*	0.8802	1.0437	0.2352	1.3710) 	1	1.5000	1.2788
December	 	;	1 1 1	0.7675	 	1 1 1	1.9646	2.2530	2.1736	1.0892
January	0.4754	0.4532	0.000.0	1.3710	1.5850	1.2870	2.0000	2.5956	1.5488	2.2129
February	0.2017	Ú.6698	0.2205	 	2.2536	2.1937	2.3696	*	62123	
March	0.3901	1.2244	0.2205	0.5504	1.5438	1.7265	2.8554	 	† 	0.2695
AVERAGE	0.4746	1.0446	0.3367	0.8087	1.3686	1.5654	2.2178	2.2749	1.6344	1.4988

----- indicates no sample taken.
* see tables for explanation.

- Charles

.

therefore easily influenced by the type and amount of pollution from upstream, flood conditions, tlow rate, and other such physical and chemical factors. Also, there is the above-mentioned deviation in Station 2, and an unexplained low figure for March at Station 10, where the community structure resembled that of the highly polluted Stations 1 through 3. The low value for Station 10 could have been caused by salt water intrusion, toxic industrial effluents, high water flow, seasonal effects or other factors. An average diversity value calculated without the March index is given in parenthesis in Table III-15.

In the analysis of the benthic community structure, notice was taken of the presence or absence of well-known species indicative of certain levels of water quality. "highly polluted" Stations 1 through 3, bottom samples generally consisted of a layer of decaying detritus (in some cases evidence of untreated sewage) over thick black "sludge". With few exceptions, pollution-tolerant groups are the only species present (Tubificidae, Chironomidae, pulmonate gastropods). At these stations the diversity index values are consistently low. Use of the suggested method of comparison of relative percentage of oligochaetes to total biota (Goodnight, 1973) is quite revealing in the river, particularly at Stations 1 through 3. Goodnight (1973) concluded that 80% or more oligochaetes indicated a high degree of organic or industrial pollution, 60-80% constituted doubtful conditions and below 60% indicated good water conditions. With only two exceptions, the percentage of tubificids present at Stations 1 through 3 were above 80%. Of the two exceptions (between 60% and 80%) one was in the presence of large numbers of other pollution indicators and one was in the case of one sample with a low total number of organisms.

At "recovery stations" 4 and 5, clay and rocks or small pebbles prevailed in the bottom samples. In addition to the species at the above three stations, leeches, sometimes listed by authors as being associated with pollution tolerant organisms, were collected. The only clean water organism added to the species list from Stations 4 and 5, is the caddis fly larva of the insect Trichoptera. Gaufin (1956) mentions that gill breathing insects, such as caddis flies, in a stream indicates high water quality. The numbers of tubificid worms and chironomid larvae (indicators of pollution) are generally lower, creating a slightly higher species diversity. Percentage of oligochaetes rose above 80% only twice and above 60% only once.

The state of the state of

Stations 6 and 7 reflected still higher average diversity index figures indicating more extensive recovery. The soil type at these stations was usually clay and/or fine sand. There appeared in this area such clean-water forms as gill-breathing molluscs, gill-breathing insect larvae (<u>Hexagenia</u> sp.; Trichoptera; Odonata; both Zygoptera and Anisoptera), and decapod crustacea. Tubificid worms and chironomid larvae declined to some of their lowest numbers, and occurrences were recorded here of amphipods and of the fresh-water endoproct <u>Urnatella gracilis</u> Leidy. Percentage of oligochaetes was usually very low, only twice rising above 60% at Station 6. Members of the Unionidae (freshwater class) were frequently found at Stations 6 and 7. Goodnight (1973) reports that the unionidae are not found in polluted streams; thus their presence indicates favorable conditions.

Station 8 would, by species listings and diversity index figures, be included with Station 7 as the least polluted portion of the river. All of the stations downstream Lake Livingston reflect from **"moderate** pollution" conditions with values between 1.0 and 3.0. However, the benthic community diversity probably does not reflect the much improved water quality, especially at Stations 8 and 9. In the opinion of this writer, the index values are unusually low for the quality of water in this region of the river. Station 8 average diversity was 2.74, highest average for the river, but the station was very inconsistent species composition and density of in organisms. The greatest number of species were found at Station 8, but this was only one collection. On two occasions, repeated Ekman dred e samples yielded no visable organisms. In the one sample in which oligochaetes were reported, the percentage was low. The inconsistency is probably caused by a rather unstable substrate of mostly shifting sand and a highly variable rate of flow. Station 8 located below the dam of Lake Livingston and is subject to flow conditions ranging from no flow up to as much as 40,000 CPS during one period of this study. Also, the ranges in temperature of the water varied, depending on whether water was being released. The samples which produced the greatest number of specie; were taken during early winter when there had been a long period of moderate flow in the river. Low yield come during, or just after, major water releases. Blanz et al. (1969) reported that water released from Beaver Dam in Arkansas had an adverse effect on the development of the benthic community due to a turbulent substrate. Neel (363) found a more stable substrate in natural streams permitted a wider variety of organisas.

The Party and State alive on the

Plate III-02. Representative benthic organisms collected in the Trinity River, Texas

- 1. Polychaete collected at Station 10
- 2. Tubificid worm (Annelida; Tubificidae)
- 3. Mayfly nymph (Ephemeroptera; Hexagenia sp.)
- 4. Caddisfly larva (Trichoptera)
- 5. Midge larva (Diptera; Tendipididae=Chironomidae)
- 6. Biting midge larva (Diptera; Ceratopogonidae)

MARIE STANDARD STANDARD

Plate III-03. Representative benther organisms collected in the Trinity River, Texas

- 1. Amphipeda
- 2. Dragonfly nymph (Odonata; Anisoptera; Gomphus sp.)
- 3. Fresh-water entoproct, Urnatella gracilis Leidy

medianistation and their events the

The benthic community diversity seems low at Station 9, compared with the water quality data in that porion of the river. Again the bottom is mostly shifting sand and the flow is usually rapid. The diversity index values remained relatively constant with an average of 1.63. Species composition at Station 9 remained largely clean-water forms, with the exception of the October sample in which there was a puzzling combination of the largest number of individuals of the genus <u>Hexagenia</u>, an indicator of high water quality, with the largest number and percentage of tubificids which rose to above 60%.

With an average of 1.49, Station 10 had the lowest average benthic community diversity of the stations below Lake Livingston. The depth of the water is up to 7 meters and the bottom is fine black clay with detritus. The benthic community is exposed to industrial effluents from a plant adjacent to this station, which consists mostly of salt water and sulfate, and the community is exposed to a salt water "wedge" due to tide activity at Trinity Bay. Station 10 was very inconsistent with respect to numbers of individuals in each sample, ranging from no organisms present in one sample to very profuse populations in other samples. Between these extremes are many combinations of clean water organisms and pollution-indicator organisms, of fresh-water organisms and marine organisms. The percentage of tubificids rose once above 80% of the organis**s**s collected in one sample.

10 some sporadic but very significant At Station collections were made of apparently marine or estuarine species of two different phyla, these being at least two species of polychaete worms and an amphipod not included in available fresh-water keys, but closely resembling members of the marine family Corophildae having greatly enlarged second antennae. Also, an annelid was twice collected at which is tentatively identified as the Station 4 <u>sowerbyi</u> Bedd, because oligochaete Branchiura distinctive pairs of gills on approximately the last forty sequents.

Zooplankton Analysis

There has long been a controversy over whether rivers support a true plankton community. It has been strongly suggested that plankton originate in tributaries or in quiet tays and side arms and are washed into the river at periods of high water. After an initial rise in plankton in the river due to this flush-out, the composition and

Plate III-04. Representative zooplankton collected in the Trinity River, Texas

- 1. Harpacticoid copeped
- 2. Cladocera (Bosmina sp.)
- 3. Cyclopoid copepodid
- 4. Rotifer (Branchionidae)
- 5. Rotifer (<u>Keratella</u> sp.)
- 6. Testacean, (Arcella sp.
- 7. Cyclopoid copeped

numbers are supposedly changed by selective elimination of standing-water species and by dilution. These changes may leave some true plankton species along with some strays from other habitats in an inherently unstable community subject to constant change (Hynes, 1974).

A list of zooplankton organisms collected and their abundance is given in Appendix 111-08. According to Hynes (1971), river zooplankton typically includes the Protozoa Arcella and Difflugia, with ciliates in large numbers in polluted waters. In this study, Argella was numerous in the upper end of the Trinity River and Difflugia in the lower end. Ciliates, as well as flagellates, some amoebae, and some suctorians, were numerous in the liver, particularly at Stations 1 and 2, but were rarely counted because of the necessity for preservation of the samples well in advance of counting. Bynes (1971) states that, in contrast to the condition of lakes, the acoplankton in rivers is dominated by planktonic rotifers, and the crustadea are not numerous and are relatively unimportant, usually species of <u>Cyclops</u> and Bosnina. Reference to the relative abundance rotifers and crustacea in Figure III-15 shows that the above statement generally holds true in the Trinity River, with crustagea rising to importance only at Station 7 and bolow take tivingston at Station 8. Direct flow of water from the lake environment may contribute to the crustacea dominance at Station 8. Dominant rotifiers were several members of the family Branchionidae and "Keratella-like" species, a counting category which included Keratella spp. And occasional individuals of the genera Kellicottia and Notholca. Other rotifers counted from samples were Pilipia, Lecane, Monostyla, Philodina and Rotaria,

The planktonic crustacea were primarily Copepoda and Cladocera. The Cladocera were usually dominated by the genus Boumina with Maina, Singcephalis, Pleuroxis striatus Schodler 1863, Chydorus spaerious (O.F. Muller) 1785, Daphnia and Alona guttata Surs 1867, being less common. The cyclopoid copepods included Tropy cyclops prasinus Pischer 1860, Cyclops spp., Mesocyclops edax (Forbes) 1891. Calanoid copepods and two species of harpactacoid copepods were also found.

Average diversity index (d) tigures for zooplankton (Table III-11 and Pigure III-16) seem rather erratic. However, if one takes into account the fact that the lower figure at Station 6 is probably due to the extremely high rotifer count in September and October, an upward trend would otherwise be seen through Station 7 (indicating a less polluted aguatic condition). The lower diversity at

Table III-11. Diversity index figures for all zooplankton samples taken from the Trinity River from September, 1972 through March, 1973

				1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1			 	
Station	-	2	e :	4	S	9	7	6 0	o	10
September						0.4505	2.1090 1.8522	1.8522		
October	1.3750	1.9353	3 2.1648	2.1037	2.0060	0.1301	2.3500	2.0633	2.5816	1.1977
November	2.1541	1.0831	1 2.5064	1.9834	2.7493	2.4496	1	 	2.8884	2.5939
December	!	# # 		2.5771	 	; ; ; ;	2.2832	2.5214	2.2868	1.0376
Januarv	1.1163	7015.2	1 0607	2000	7 3050	,	, n 400	, , , , ,	1.5238	1.2738
February	2.3306	2.3793	2.4734	1 1 1 1 1	2.5622	2.6174	2.5582	1.7389	1.9571	1.8321
March	2.4117	2.7211	1.8929	1.3039	1.4284	2.1855	2.6935		1.4768	2.0998
AVERAGE	1.8775	2.0663	2.1996	2.0554	2.2262 1.6904		2.4237	1.8454	2.1191	1.6725
	, 1 1 1 1 1	1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1		

----- indicates no sample taken

. . .

-

Station 8 was probably due to the stress on the zooplankton in changing from a lentic to a lotic situation.

Zooplankton diversity rose at Station 9, but fell again at Station 10. Even though the average total number of zooplankton rose at Station 10, the number of species became reduced, possibly being influenced by special conditions present at the mouth of the Trinity River such as reduced flow rate and salt water intrusion.

At the "highly polluted" stations I through 3, it is apparent from Figure III-15 that much of the zooplankton population is made up of nonherbivorous species of protozoa. Where organic pollution is severe and bacteria populations are high, Hynes (1971) reports that bacteria-eating protozoa, particularly the ciliates, dominate as opposed to the algae-eating genera.

At Stations 4 and 5, considered in this study to be "recovery" stations, total zooplankton population and herbivore population rose simultaneously, with the rise in herbivores due mainly to increased numbers of rotifers (Pigure III-15). Algae-eating genera of protozoa, such as <u>Stentor</u>, were frequently observed. It should be noted that at Stations 4 and 5 the average phytoplankton biomass was higher than at any other station on the river.

Zooplankton populations rose sharply downstream from Station 5, reaching their highest levels at Stations 6 and 7. The effect of this expanding population of herbivores is probably seen in the rapid decline in the average phytoplankton biomass in this region of the river. The largest number of zooplankton species occurred at Station 7 where, incidentaly, there also occurred one of the most diverse benthic communities. Station 6 contained rotifer populations of several hundred thousand in September and October, influencing the average number disproportionately. Without these "blooms" the average population at Station 6 would fall on an upward slope between Stations 5 and 7.

Below Lake Livingston the zooplankton population levels declined through Station 9, to the lowest figures in the river, rising sharply in number at Station 10. The phytoplankton populations also rose at Station 10. Zooplankton species diversity at Stations 8, 9, and 10 showed the opposite trend compared with the populations at those stations. Station 8 probably had imposed upon it the influence of the lake environment just above it. Station 9 is rather unusual in its comparatively greater width with

very shallow water and riffles. The influences at Station 10 have been previously alluded to.

Coliforn Bacteria Analysis

The bacteriologic examinations of samples are used to determine the sanitary quality and suitability for general use of the water. The methods are intended to indicate the degree of contamination of the water with wastes from human or animal sources. The tests have been for the detection and enumeration of indicator organisms. The coliform group has been used as such an indicator organism. Extensive studies have been done to establish the significance of the coliform group densities as criteria of the degree of pollution. The sensitivity of the historically older multiple tube fermentation test has been increased by developments in the bacteriologic techniques and culture media. The multiple tube fermentation test has accepted as a standard method, and recently the membrane filter has also been accepted as a standard method.

In studying the bacteriological aspects of the Trinity River, both the multiple tube fermentation test and the membrane filter analysis were employed. In both procedures, the density of coliform organisms was reported as organisms per 100 ml. The fecal streptococci on the membrane filter tests were also reported as organisms per 100 ml. The multiple tube counts are determined as most probable numbers (MPN) using a table (Standard Methods, 1972), and the membrane filter analysis are reported as membrane filter counts (MFC). The results of total coliform, fecal coliform, and fecal streptococcus are given in Appendix III-09 and Figures III-17 and III-18.

In studying the results from the ten station on the Tr nity River, the stations on Loop 12 and at Rosser had consistently high counts. The lowest most probable numbers were obtained at the lowermost three stations. The other stations had MPN which varied according to the results from the multiple tube fermentation test. Station 1 which was located near Highway 360 went from a maximum MPH of greater than 240,000 coliforms/100 ml to an apparent absence of coliforms. This data could be attributed to the toxicity of some chemical effluent or some similar type influence on the microbial ecology. In studying the multiple tube fermentation results, it is also important to point out that the presence of <u>Escherichia coli</u> was confirmed on all stadies where there was acid and gas producton. Occasionally this confirmation involved several transfers

-

--

on eosin methylene blue agar to obtain a green metallic sheen. The inability to obtain this sheen at first can be attributed to the overgrowth by other bacterial organisms

Since the most probable number determinations were only enumerated to 240,000 coliforms/100 ml according to the tables in Standard Methods (1971), the total coliform membrane counts were important in estimating organisms above this point. The membrane filter counts involve a direct counting method. This direct plating technique eliminates to a large extent the synergistic reaction which could produce acid and gas in the multiple tube method. Figure III-18 gives an approximate relationship for these two methods. The highest averages on the membrane filter total coliform counts occurred at Station 2 which is located at Loop 12. The lowest counts were obtained below Lake Livingston. These low counts or absence of counts at Stations 8, 9, and 10 might be attributed to a dilution or settling out factor.

The fecal coliform and the fecal streptococcus counts are an important value in determining the possible source of contamination. Ratios of fecal streptocci to fecal coliform which are 4 and above indicate a possible human contamination (Geldreich and Kenner, 1969). Stations 1 through 7 had average ratios above 4. Stations 8, 9, and 10 had ratios below 4 for the study period. Ratios of the type that were obtained at these stations indicate sampling at a distance away from the original source of contamination (Figure III-19).

In order to further clarify the fecal coliform and fecal streptococci groups, a classification study was dot. Although most strains of coliforms are symbiotic in relation to the animal gut, the main organisms were varieties of <u>Escherichia coli.</u> The fecal coliform test results are always given in addition to total coliform results so that an evaluation can be made of the authenticity of data, since fecal coliform counts should be smaller than total coliform data. However, the fecal coliform data can also be used to determine if the organisms involved are of fecal origin. The selectivity of this test is to a large extent based on the elevated water bath temperature and the culture media.

On Stations 1 through 7 the classification study showed the presence of <u>Escherichia coli</u> mainly, but also indicated the presence of <u>Enterobacter aerogenes</u> and <u>Citrobacter freundii</u> in smaller percentages than

The same of the same

Escherichia coli. Stations 8, 9, and 10 were studied for classification of fecal coliforms in December and January which were the only dates when significant counts were found. The only organism found at these stations was Escherichia coli.

The fecal streptococci classification included bovis. Streptococcus faecalis Streptococcus Streptococcus equipus. Streptococcus faecalis was the dain organism found at all stations. The other two streptococci were found occasionally at the upper seven stations. However, in December <u>Streptococcus</u> bovis was found Station 9. Some characteristics of these organisms are the they will not multiply in the water and some have a rapid die-away rate in water (Geldreich and Kenner, 1969). Fecal streptococci are native to the gut of warm-blooded animals. Bighty percent or over of human fecal streptococcus bacteria is included in the <u>Streptococcus faecalis</u> group (Biological Analysis of Water and Wastewater, 1972). Cows and horses are possible sources for Streptococcus bovis and equinus.

It is important in the evaluation of these methods to recognize the limitations. One factor that has to be considered in a study such as this one is the turbidity of the water tends to interfere with the bacterial growth on the membrane filter. Also in using the multiple tube fermentation method, high populations of some bacteria can interfere with the growth of the coliform organisms. There is also the possibility of synergistic action resulting in acid and gas production in the multiple tube fermentation test.

LIST OF REFERENCES

- American Public Health Association. 1971. Standard Methods for the examination of water and wastewater. 13th Ed., New York, 874pp.
- Anon. 1968. Water Quality Criteria. Report of the National Technical Advisory Committee to the Secretary of the Interior. Federal Water Pollution Control Administration.
- Anon. 1970. Water quality monitoring plan upper Trinity River basin. Forrest and Cotton, Inc., Consulting Engineers Dallas, Texas. 50pp.
- Anon. 1972. Biological analysis of water and wastewater. Application Manual AM302. Millipore Corporation.
- Bailey, G. W. and J. L. White. 1964. Review of adsorption and desorption of organic pesticides by soil colloids, and implications concerning bioactivity. J. Agric. and Food Chem. 12:324-332.
- Bailey, G. W. and J. L. White. 1969. Factors influencing the adsorption and desorption and movement of pesticides in soil. Residue Reviews. 32:29-92.
- Baile, T. E. and J. R. Hannum. 1965. Proc. Amer. Soc. Civ. Eng. Jour. San. Eng. Div. 93:27-43.
- Barthel, W. F., J. C. Hawthorne, J. E. Ford, G. C. Bolton, L. L. McDowell, E. H. Grissinger, and D. A. Parsons. 1969. Pesticide residues in sediments of the Lower Mississippi River and its tributaries. Pest. Monit. J. 3(1):8-66.
- Bigelow, H. B., L. Lillick, and M. Sears. 1940. Phytoplank on and planktonic Protozoa of the offshore waters of the Gulf of Maine. Part I. Numerical distribution. Trans. Amer. Phil. Soc. 31:149-191.
- Blanz, R. E., C. E. Hoffman, R. V. Kilambi, and C. R. Listen. 1969. Benthic macroinvertebrates in cold tailwaters and natural streams in the state of Arkansas. Proc. 23rd Ann. Conf. Southeastern Assn. of Game and Fish Commissioners.
- Blum, J. L. 1956. The ecology of river algae. Bot. Rev. 22:291-341.
- Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analysis of soil. Agronomy J. 54:464-465.

- Breindenbach, A. W., and J. J. Lichtenberg. 1963. DDT and Dieldrin in rivers: A Report of the National Water Quality Network. Science. 141:8-9-901.
- Briendenbach, A. W., C. G. Gunnerson, F. K. Kawahara. J. J. Lichtenberg, and R. S. Green. 1967. Chlorinated hydrocarbon pesticides in major river basins 1957-1965. Public Health Report. 82:139-156.
- Brooks, J. M. 1970. The distribution of organic carbon in the Brazos River Basin. Masters thesis, Texas A&M University, College Station.
- Brown, E. and V. A. Nishioka. 1967. Pesticides in selective western streams a contribution to the national program. Pest. Monit. J. 1(2):38-41.
- Burlew, J. S. 1953. Algal culture from laboratory to pilot plant. Carnegie Institution of Washington, Publication No. 600. 357pp.
- Butcher, R. W. 1947. Studies in the ecology of rivers, VII.

 The algae of organically enriched waters. J. Ecol.

 35:186-191.
- Butcher, R. W., F. T. K. Pentelow, and J. W. A. Woodley. 1930. Variations in the compostion of river water. Int. Rev. Hydrobiol. 24:47-80.
- Clark, G. L. 1939. The relation between diatoms and copepods as a factor in the productivity of the sea. Quart. Rev. Biol. 14:60-64.
- Crocker, R. A. and A. J. Wilson. 1965. Kinetics and effects of DDT in a tidal marsh ditch. Trans. Amer. Fish. Soc. 94(2):152-159.
- Cushing, C. E. 1964. Plankton and water chemistry in the Montreal River lake-stream system, Saskatchewan. Ecology. 45:306-313.
- Denham, S. C. 1938. A limnological investigation of the West Fork and common branch of the White River. Invest. Indiana Lakes and Streams. 1:17-52.
- Duffer, W. R. and T. C. Dorris. 1966. Productivity in a great plains stream. Limnol. Oceanogr. 11:143-151.
- Edwards, C. A. 1970. Persistent pesticides in the environment. CRC Press, Cleveland, Ohio. 78pp.

- Edwards, R. W. and M. Owens. 1962. The effects of plants on river conditions, IV. The oxygen balance of a chalk stream. J. Ecol. 50:207-220.
- Fjerdinstad, E. 1964. Pollution of streams estimated by benthal phytomicroorganisms, I. A saprobic system based on communities of organisms and ecological factors.

 Int. Rev. Ges. Hydrobiol. 49:63-131.
- Fredericks, A. D. and W. M. Sackett. 1970. Organic carbon in the Gulf of Mexico. J. of Geophysical Res. 75:2199-2206.
- Galstoff, P. S. 1924. Limnological observations in the upper Mississippi. U. S. Bur. Fish. Bull. 39:347-438.
- Gaufin, A. R. 1956. Aquatic macroinvertebrate communities as indicators of pollution in Lytle Creek. Sewage Indust. Wastes. 28:906-924.
- Geldreich, E. E. and B. A. Kenner. 1969. Concepts of fecal streptococci in stream pollution. J. Water Poll. Cont. Fed. 41:336-352.
- Goerlitz, D. F. and L. M. Law. 1971. Note on removal of sulfur interferences from sediment extracts for pesticide analysis. Bull. of Environ. Contamination and Toxicology. 6:1.
- Goodnight, C. J. 1973. The use of aquatic macroinvertebrates as indicators of stream pollution. Trans. Amer. Mic. Soc. 92:1-12.
- Grzenda, A. R., G. J. Lauer, and H. P. Nicholson. 1964.

 Water pollution by insecticides in an agricultural river basin, II. The zooplankton, bottom fauna and fish.

 Limnol. Oceanog. 9:381-323 and Biol. Abs. 45:94-277.
- Guenzi, W. D. and W. E. Beard. 1967. Anaerobic biodegradation of DDT and DDD in soil. Science. 156:1116-1117.
- Hannan, H. H. and T. C. Dorris. 1970. Succession of a macrophyte community in a constant temperature river. Limnol. Oceanogr. 15:442-453.
- Hartmann, T. T. 1958. Composition and distribution of phytoplankton communities in the upper Ohio River. Pymatuning Lab. Pub. 3:45-65.
- Hill, D. W. and P. L. McCarty. 1967. Anaerobic degradation of selected chlorinated hydrocarbon pesticides. J. of Water Pol. Cont. Fed. 39:1259-1277.

- Hornung, H. 1959. Foristich-okologische Untersuchungen an der Echaz uter besondered Berucksichtigung der Verunreiningung durch Abwasser. In: The Ecology of Algae. Pymatuning Lab. Pub. 2. 96pp.
- Hoskin, C. M. 1959. Studies of oxygen metabolism of streams of North Carolina. Publ. Inst. Mar. Sci. 6:186-192.
- Hayes, F. R. and J. E. Phillips. 1958. Lake water and sediment, IV. Radio-phosphorus equilibrium with mud, plants, and bacteria under oxidized and reduced conditions. Limnol. Oceanogr. 3:459-475.
- Hynes, H. B. N. 1970. The ecology of running waters.
 University of Toronto Press. 555pp.
- Hynes, H. B. N. 1971. The biology of polluted waters. University of Toronto Press, 202pp.
- Ide, F. P. 1957. Effects of forest spraying with DDT on aquatic insects of salmon streams. Trans. Amer. Fish. Soc. 86:208-219.
- Johnson, D. N. 1968. Pesticides and fishes--a review of selected literature. Trans. Amer. Fish. Soc. 97:398-424.
- King, D. L. 1970. The role of carbon in eutrophication. J. Water Poll. Con. Fed. 42:2035-2051.
- Kolkwitz, R. 1950. Odologie der Saprobien. Uber die Beziehunger der Wasserorganism zur Umwelt. Schriftenr. In: The Ecology of Algae. Pymatuning Lab. Pub. 2. 96pp.
- Kunze, G. W. 1966. Pesticides and clay minerals. In: Pesticides and their effects on soils and water. Pub. No. 8. Soil Science Soc. of America, Madison, Wis. 150pp.
- LeGrand, H. E. 1966. Movement of pesticides in the soil. In: Pesticides and their effects on soils and water. Pub. No. 8. Soil Science Soc. of America, Madison, Wis. 150pp.
- Liebmann, H. 1951. Handbach der Frischwasser and Abwasserbiologie. In: The Ecology of Algae. Pymatuning Lab. Pub. 2. 96pp.
- Ludwig, C. A. 1938. The availability of different forms of nitrogen to a green algal (Chlorella). Amer. J. Bot. 25:448-458.

- McCullough, J. D. 1972. Eutrophication and pesticide element. In: Environmental and Cultural Impact on the Proposed Tennessee Colony Reservoir, Trinity River, Texas. Stephen F. Austin State University, Nacogdoches, Texas, III (E). 57pp.
- Menzel, D. W. and R. F. Vaccaro. 1964. The measurement of dissolved organic and particulate carbon in sea water. Limnol. Oceanogr. 9:138-142.
- Murphy, C. E., L. W. Newland, J. W. Forsyth, and D. E. Keith. 1971. Industrial Wastes: Effects on Tririty River ecology, Fort Worth, Texas. U. S. Environ. Protection Agency, Water Pollution Control Research Series. 18050 DBB 12/17.
- Neel, J. K. 1963. Impact of reservoirs. In: Limnology of North America. Univ. of Wisconsin Press, Madison. 575-593.
- Nicholson, H. P. 1967. Pesticide pollution control. Science. 158:871-876.
- Odum, E. P. 1959. Fundamentals of Ecology. W. B. Saunders, Philadelphia, Pa. 546pp.
- Odum, H. T. 1956. Primary productivity in flowing waters. Limnol. Oceanogr. 1:102-117.
- Odum, H. T. 1957. Trophic structure and productivity of Silver Spring, Florida. Ecol. Monogr. 27:55-112.
- Palmer, C. M. 1969. A composite rating of algae tolerating organic pollution. J. Phycol. 5:78-82.
- Parker, P. L. and J. A. Calder. 1968. Stable carbon isotope variations in biological systems. Symposium on organic materials in natural waters. University of Alaska, College.
- Parker, B. C. 1971. Facultative heterotrophy in certain soil algae from the ecological viewpoint. Commentary. 800pp. In: Selected Papers in Phycology. Rosowski and B. C. Parker (eds.). Univ. of Nebraska Press.
- Parsons, T. R. and J. D. H. Strickland. 1964. Discussion of spectrophotometric determinations of marine plant pigments, with revised equations for ascertaining chlorophylls and carotenoids. J. Mar. Res. 21:155-163.

- Charles and the second

- Patrick, R. and C. W. Reimer. 1966. The diatoms of the United States. Acad. Nat. Sci., Philadelphia. No. 13. 688pp.
- Pennak, R. W. 1953. Freshwater invertebrates of the United States. New York: Ronald Press. 769pp.
- Pratt, R. and J. Fong. 1940. Studies on Chlorella vulgaria
 III. Growth of Chlorella and changes in the hydrogenion and ammonia-ion concentration in solution containing
 motrate and ammonium natrogen. Amer. J. Bot. 27:735-743.
- Raymont, J. E. G. 1963. Plankton and productivity in the oceans. Pergamon Press. London. 660pp.
- Richards, F. A. with T. G. Thompson. 1952. The estimation and characterization of plankton populations by pigment analysis: A spectrophotmetric method for the estimation of plankton pigments, II. J. Mar. Res. 11:156.
- Rzoska, J., A. J. Brook, and G. A. Prowse. 1955. Seasonal plankton development in the White and Blue Nile near Khartoum. Verh. int. Ver. Limnol. 12:327-334.
- Schuler, J. F., V. M. Diller, and H. J. Kerslen. 1953.

 Preferential assimilation of ammonium ion by Chlorella vulgaris. Plant Physiology. 28:299-303.
- Schultzmann, R. L., D. W. Woodham, and C. W. Collier. 1970.
 Removal of sulfur in environmental samples prior to
 gas chromatographic analysis for pesticide residues.
 J. A. O. A. C. 54:5-8.
- Sladecek, V. and A. Sladeckova. 1964. Determination of periphyton production by means of the glass slide method. Hydrobiologia. 23:125-158.
- Sladeckova, A. 1962. Limnological investigations methods for the periphyton (Aufwuschs) community. Bot. Rev. 28:286-350.
- Strickland, J. D. H. 1966. Measuring the production of marine phytoplankton. Bull. Fish. Res. Bd. Canada. 122:1-172.
- Sun, Y. P. 1950. Toxicity index an improved method of comparing the relative toxicity of insecticides.

 J. Econ. Entom. 43:45-53.
- Surber, E. W. 1948. Chemical control agents and their effects on fish. Progr. Fish Cult. 10:125-131.

The state of the state of the state of

- Syrett, P. J. 1962. Nitrogen assimilation. In: Physiology and biochemistry of algae, R. A. Lewin (ed.), Academic Press, New York. pp 161-170.
- Tidswell, B. and W. E. McCasland. 1972. An evaluation of pesticide residues on silt and sediment in Texas waterways. Tex. Dept. of Agric. Austin, Texas. 11pp.
- Verduin, J. 1956. Primary production in lakes. Limnol. Oceanogr. 1:85.
- Vollenweider, R. A. 1969. Primary production in aquatic environments. IBP Handbook No. 12. Burgess and Son, London.
- Warren, C. E. 1971. Biology and water pollution control. W. B. Saunders Co., Philadelphia. 395pp.
- Weber, C. I. and D. R. Moore. 1967. Phytoplankton seston and dissolved organic carbon in the Little Niami River at Cincinnati, Ohio. Limnol. Oceanogr. 12:311-318.
- Weber, C. I. and R. L. Raschke. 1970. Use of a floating periphyton sampler for water pollution surveillance. Water Pollution Surveillance System Applications and Development Report No. 2. 22pp.
- Weidhaus, D. E., C. H. Schmidt, and M. C. Bowman. 1960. Effects of heterogenous distribution and docistillation on the results of tests with DDT against mosquito larvae. J. Econ. Entomol. 53(1):121-125.
- Welch, P. S. 1948. Limnological Methods. McGraw-Hill Inc., New York. 381pp.
- Wharton, C. H. 1970. The southern river swamp a multiple use environment. Georgia State Univ., Atlanta, Ga. 44pp.
- Whilm, J. L. and T. C. Dorris. 1968. Biological parameters for water quality criteria. Bioscience. 18(6):477-481.
- Williams, L. G. 1964. Possible relationships between plankton diatom species numbers and water quality estimates. Ecology. 45:809-823.
- Wilson, R. F. 1963. Organic carbon levels in some aquatic ecosystems. Pub. Inst. of Mar. Sci. 9:64-76.
- Woods, W. 1965. Primary production measurements in the upper Ohio River. Pymatuning Laboratory Special Pub. No. 3.

market the same of

Young, L. A. and H. P. Nicholson. 1951. Stream pollution resulting from the use of organic insecticidss. Prog. Fish Cult. 13:195-198.

APPENDIX III

			furbi-		Con-				
Date	Tongs	0xygen	dity (JTU)	Color (CU)	due- trance+	Secoli Depth***	ጟ .	eH (m.V)	PO4
			Ø	Station 1					
19-9-72	25.8	2.7	35	80	066	1.0	7.88	:	28.00
11-2-72	16.0	4.3	310	8	395	:	7.30	100	3.00
11-28-72	15.0	868	19	9	835	1.0	7.60	200	4.10
1-15-73	8.0	9.5	20	20	875	1.0	7.45	250	3.50
2-10-73	7.2	12.0	115	81	650	ů.	7.35	20	2.00
3-3-73	14.2	5.5	2	62	\$	۲.	7.60	100	3.80
4-8-73	16.0	5.0	59	20	940	1.1	7.51	20	4.10
AVERAGE	14.6	6.3	a	20	290	9.0	X+53	120	7.36
			84	Station 2					
10-9-72	27.0	1.9	22	175	046	.2	7.60	160	39.00
11-2-72	16.0	4.2	450	98	044	;	V	220	3.70
11-28-72	15.0	2.9	89	100	870	'n	.20	704	9.60

Monday Til-01 (cont.)

_
0
_
Ω,
Ø
4
80
0
•
G
•
•
٠.

Date	NH3	N02 N	NO3	CI	ф _О S	Discharge GPS	POC	D0C	вор	SOD
				Station 1	on 1					
10-9-72	20.00	.425	2.99	105	135	&	00.4	6.63	6.8	ļ
11-2-72	2,30	·400	1.30	30	65	1210	6.83	8.18	8.6	į
11-28-72	3.50	.450	2.55	75	150	143	3.43	9.00	3.0	ł
1-15-73	10.25	.250	1.35	25	130	221	5.75	7.50	6.3	:
2-10-73	4.20	.370	1.58	90	140	454	6.29	8.68	4.2	;
3-5-73	10.00	.535	2.22	8	125	762	4.36	90.9	11.2	;
4-8-73	974	.300	1.85	85	125	:	1	1	5.6	i
AVERAGE	3.2	.390	1.98	22	124	399	5.08	7.18	9.9	1
				Station 2	on 2					
10-9-72	19.50	.330	5.09	100	140	362	12,25	11.81	19.8	:
11-2-72	3.00	.240	1.00	35	86	2560	10.12	5.85	4.9	•
11-28-72	15.00	.375	1.80	8	200	. 725	10.29	10.00	17.8	:

1-3

Appendix III-01 (cont.)

(--no sample)

į			Parb1-	,	Con-				
	မှ ပ	0 ry gen	dity (JTU)	Color (CU)	duct-	Secchi Depth***	ጟ	on ($_{ m h0}$
			, in	Station 2	(Cont')				
1-15-73	2.0	8.0	35	62	722	Φ.	7.51	250	10.00
2-10-73	2.0	10.8	102	125	. 555	ů.	7.32	100	2.80
3-3-73	15.0	4.5	16	85	.795	٠,	7.32	250	8.00
4-8-73	16.2	3.4	2	106	785	1.0	7.40	100	6.54
AVERAGE	**	5.1	110	706	733	9.0	7.34	210	10.94
			(2)	Station 3					
10-9-72	25.0	1.4	48	128	910	1.5	7.65	140	35.00
11-2-72	16.0	3.7	480	130	.365	i	7.25	100	3.60
11-9-72	18.0	1.3	9	100	.805	:	7.35	250	11.00
11-28-72	12.0	3.7	25	8	.775	۸.	7.30	300	5.10
1-15-73	5.0	†. 8	89	35	.740	٠.	7.40	300	5.90
2-10-23	9.9	11.4	175	130	493	8.	7.46	100	• 30
3-3-73	14.0	3.4	36	100	635	٠.	7.41	250	7.75

Appendix III-01 (cont.)

(no sample)	le)									
Date	NH3	NO ₂	NO ₃	ជ	\$0¢	Discharge CPS	Poc	DOG	ВОД	SOD
				Station 2	2 (Cont')	·			 	
1-15-73	16.00	.111	1.59	55	125	73.1	7.34	8.38	7.8	27.5
2-10=73	2.30	.200	2.00	35	145	2750	4.12	6.34	8.6	41.8
3-3-73	10.00	.190	1.16	20	140	754	7.38	6.00	8.	27.9
4-8-73	6.00	.330	2.05	75	160	;	!	1	4.7	:
AVERAGE	9.ko	.251	1.67	\$	142	1268	8.58	8.56	6.6	32.4
				Station 3	3					
10-9-72	21.00	.007	29	140	130	340	7.20	9.56	9.6	ł
11-2-72	3.50	.200	1.00	30	2	0244	8.84	2.44	10.2	ł
11-9-72	14.50	090.	.20	65	190	785	8.74	8.44	;	ŀ
11-28-72	14.00	.275	1.70	65	175	536	6.16	7.62	10.4	ł
1-15-73	0046	.160	1.64	9	130	2090	7.80	8.75	10.5	30.3
2-10-73	1.60	.980	1.06	25	150	7899	7.30	7.50	8.6	26.4
3-3-73	7.40	.200	.70	90	83	1106	6.75	6.50	9.6	ł

Appendix III-01 (cont.)

14.9 4.9 4.5 7.50 5.85 13.9 4.9 4.7 80 .555 .5 7.50 5.85 24.0 4.8 117 99 .659 .6 7.42 206 9.38 24.0 4.1 54 70 .890 1.0 7.30 300 34.00 16.5 4.1 54 70 .890 1.0 7.20 120 2.70 16.5 4.8 110 55 610 7.20 120 2.70 2 16.5 4.8 110 55 610 .5 7.45 150 3.50 3 6.8 190 60 850 7.20 250 2.20 4 6.8 190 60 250 .5 7.45 100 3.50 4 6.8 10.6 250 .5 7.45 100 4.60<	Date	Tento OC.	0xygan	furbi- dity (JTU)	Color (CU)	Con- duct- ance**	Secchi Depth***	ųď **	eH (m.v)	Pou	
14.9 4.9 47 80 555 .5 7.50 5.85 13.9 4.8 117 99 .659 .6 7.42 206 9.38 24.0 4.1 54 70 .890 1.0 7.20 34.00 16.0 3.3 600 135 .410 7.20 34.00 16.5 4.8 110 55 .610 .5 7.45 150 2.70 16.5 4.8 110 55 .610 .5 7.45 150 2.70 2 10.0 8.1 48 155 .810 1.2 7.45 100 5.30 9.8 6.8 190 60 .850 7.45 100 4.60 6.8 10.6 195 240 .5 7.45 100 1.68 15.0 3.5 47 80 55 7.45 100 1.60				(7)	tation 3						
24.0 4.8 117 99 .659 .6 7.42 206 9.38 24.0 4.1 54 70 .890 1.0 7.30 300 34.00 16.0 3.3 600 135 .410 7.20 120 2.70 16.5 4.8 110 55 610 .5 7.45 150 3.50 2 10.0 8.1 48 155 810 1.2 7.45 100 5.30 9.8 6.8 190 60 850 7.20 250 2.20 10.0 7.8 162 75 .550 .5 7.45 100 5.30 15.0 3.6 4.3 35 .661 .5 7.45 100 4.00 15.2 3.5 4.7 80 .550 .7 7.45 100 4.00 15.2 3.5 4.7 80 .550 .7	4-8-73	14.9		24	80	.555	ň	7.50	;	5.85	
Station 4 24.0 4.1 54 70 ,890 1.0 7.30 300 34.00 16.0 3.3 600 135 ;410 7.20 120 2.70 2 16.5 4.8 110 55 ;610 .5 7.45 150 3.50 2 10.0 8.1 48 155 .810 1.2 7.45 100 5.30 9.8 6.8 190 60 850 7.20 250 2.20 1 5.0 7.8 162 7.5 7.50 250 4.60 1 6.8 10.6 195 240 .365 7.42 100 1.68 15.0 3.5 47 80 592 .7 7.45 4.65 15.2 3.5 47 80 592 .7 7.45 4.65	AVERAGE	13.9	8.	117	66	.659	•	7.42	506	9.38	
24.0 4.1 54 70 ,890 1.0 7.30 300 34.00 16.0 3.3 600 135 ;410 7.20 120 2.70 2 16.5 4.8 110 55 610 .5 7.45 150 3.50 2 10.0 8.1 48 155 .810 1.2 7.45 100 5.30 9.8 6.8 190 60 850 7.20 250 2.20 1 3.0 7.8 162 75 .550 .5 7.30 350 4.60 15.0 3.6 4.3 3.6 4.7 80 561 7.45 100 4.65 15.2 3.5 47 80 592 7.45 100 4.65					tation 4						
16.0 3.3 600 135 410 7.20 120 2.70 16.5 4.8 110 55 610 .5 7.45 150 3.50 2 10.0 8.1 48 155 .810 1.2 7.45 100 5.30 9.8 6.8 190 60 850 7.20 250 2.20 1 3.0 7.8 162 75 .550 .5 7.30 350 4.60 15.0 3.6 43 35 .661 .5 7.45 100 1.68 15.2 3.5 47 80 592 .7 7.45 - 4.65	10-4-72	0.43	4.1	未	20	,890	1.0	7.30	300	34.00	
2 16.5 4.8 110 55 610 .5 7.45 150 3.50 2 10.0 8.1 48 155 .810 1.2 7.45 100 5.30 9.8 6.8 190 60 850 7.20 250 2.20 1 6.8 10.6 195 240 .365 7.42 100 1.68 15.0 3.5 47 80 592 .7 7.45 4.65 15.2 3.5 47 80 592 .7 7.45 4.65	1132922	16.0	3.3	009	135	014	{	7.20	120	2.70	
2 10.0 8.1 48 155 .810 1.2 7.45 100 5.30 9.8 6.8 190 60 850 7.20 250 2.20 1 3.0 7.8 162 75 .550 .5 7.30 350 4.60 1 6.8 10.6 195 240 .365 7.42 100 1.68 15.0 3.5 43 35 .661 .5 7.5± 200 4.00 15.2 3.5 47 80 592 .7 7.45 4.65	11-9-72	16.5	4.8	110	55	019	'n	7.45	150	3.50	
9.8 6.8 190 60 850 7.20 250 2.20 3.0 7.8 162 75 ,550 .5 7.30 350 4.60 4.00 10.6 195 240 .365 7.42 100 1.68 15.0 3.5 43 35 .661 .5 7.5± 200 4.00 15.2 3.5 47 80 592 .7 7.45 4.65	11-30-72	10.0		48	155	. 810	1.2	7.45	700	5.30	
3 6.8 10.6 195 240 .365 7.42 100 1.68 15.0 3.6 43 35 .661 .5 7.54 200 4.00 15.2 3.5 47 80 592 .7 7.45 4.65	1-4-73	8.6	6.8	190	09	.850	į	7.20	250	2.20	
3 6.8 10.6 195 240 .365 7.42 100 1.68 15.0 3.6 43 35 .661 .5 7.5± 200 4.00 15.2 3.5 47 80 592 .7 7.45 4.65	1-10-73	3.0	7.8	162	75	, 550	٠.	7.30	350	4.60	
15.0 3.6 43 35 .661 .5 7.5. 200 4.00 15.2 3.5 47 80 592 .7 7.45 4.65	2-10-73	6.8	_	195	240	.365	i	7.42	700	1.68	
15.2 3.5 47 80 592 .7 7.45 4.65	3-7-73	15.0	3.6	43	35	. 661	٠,	7.5.	200	00°#	1-5
	4-8-73	15.2	3.5	47	.80	592	.2	2.45	:	4.65	•

Appendig III-01 (cont.)_

arding gambre	727									
Da te	N E	NO ₂	NO ₃	C1	\$ 0 ₽	Discharge OPS	Poc	DOC	вор	SOD
				Stati	Station 3 (Cont')	ont')				
4-8-73	2.15	.190	2.25	45	80	:	1	1	5.6	1,
AVERAGE	9.14	.259	1.15	9	127	3146	7.54	7.26	7.6	28.4
				Station 4	t uo					
10-4-72	20.70	.240	.58	85	125	707	5.75	7.38	13.6	ł
11-2-72	5.80	.320	1.70	25	23	3040	9.33	4.19	11.4	1
11-9-72	5.75	.380	1.00	45	170	779	5.38	2.00	:	•
11-99-72	14.00	.450	1.50	9	170	2118	12.62	10,00	;	i
1-4-73	16.00	.800	.53	100	200	1910	3.71	5.25	;	:
1-10-73	4.20	.160	.27	37	140	:	1	ļ	2.0	ł
2-10-73	2.40	.170	1.58	25	86	10171	6.58	4.12	6.7	:
3-7-73	8.90	2.700	•89	જ	110	1275	3.8	7.00	10.9	17.1
4-8-73	9.00	.250	1.50	20	8	:	1	;	3.9	•

8.36

250

7.46

7.60

120

7.40

3.30 3.20 6.00 10.00

3.00

29.00

200

300

200

7.50

1.0

780

190

6.6 8.0

11-30-72

1-4-73

250

7.70

!

735

65

8

9.8

300

7.40

530

8

182

8.0

9.5 9.5 3.0 13.0 16.0

1-10-73

2-8-73

307~73

4-1-73

610

125

4

6.5

645

105

450

8

155

5.0

3

83

103

9.9

12.62

AVERAGE

400

7.30

200

7.55

Appendix III-01 (cont.)

96.9

200

P04

(A . W)

Appendix III-01 (tent.)

(no sample)	npie)									
Date	MH ₃	NO ₂	NO ₃	CI	40 8	Discharge GFS	Poc	DOC	ВОД	SOD
				Stati	Station 4 (Cont')	ont')				
AVERAGE	9.30	.608	1.06	53	130	2589	6.62 5.71	5.71	8.9	17.1
				Station 5	on 5					
10-4-72	13.50	1.100	1.70	25	130	İ	12.34	10.06	12.8	1
11-21-72	7.60	.340	3.41	20	130	* 645	4.25	9.17	8.0	;
11-30-72	10.50	.550	1.80	65	160	;	1	I I	;	i
1-4-73	15.00	2.800	1.30	8	130	876*	2.96	5.62	14.4	:
1-10-73	2.90	• 095	.27	35	175	1	;	1	5.4	:
2-8-73	4.25	.360	1.08	72	87	*2510	4.92	5.63	16.2	12.3
3-7-73	6.75	3.300	1.50	45	130	Ì	4.16	76.5	4.	11.7
422:73	2.50	.336	1.71	30	9	:	i	;	5.5	2.8
AVERAGE	7.87	1.11	1.60	%	125	1368	5.73	7.28	9.5	8.9
	İ			•						

Appendix III-01 (cont.)

(-- no sample)

Date	remp.	Oxygen	furbi- dity (JTU)	Golor (CU)	Con- duct- ance **	Seechi Depth***	# <u>.</u>	eH (m.V)	POL
			Sta	Station 6					
9-26-72	26.0	2.6	38	83	915	.2	7.20	350	29.00
10-18-72	21.0	2.6	15	32	.835	1.0	7.12	300	32.00
11-21-72	10.0	7.8	190	105	435	:	7.25	250	3.50
11-30-72	9.6	8.0	80	35	580	٠,	7.40	150	•10
1-4-73	0.6	8.7	20	15	299	;	7.90	250	1.28
1-10-73	3.0	5.8	510	255	340	٦.	7.50	200	1.35
2-8-73	13.0	9.6	170	128	0047	r.	7.50	300	2.00
3-7-73	16.5	6.9	155	250	.410	7.	7.65	200	3.20
4-1-73	17.0	5.4	125	130	. 386	£.	2.46	i	4.50
AVERAGE	13.9	4.9	148	911	. 551	₽.	*	250	8.55
			Sta	Station 7					
9-27-72	26.0	6.5	62	24	800	3.	2.60	200	40.00

Appendix III-01 (cont.)

Date	NH3	M02	NO ₃	CI	so _{th}	Discharge GPS	Poc	DOC	B0D	SOD
				Station 6	on 6					
9-26-72	10.00	1.220	4.22	80	150	740	3.84	00.9	ł	ł
10-18-72	1.50	.575	10.30	95	150	323	1	;	16.6	ł
11-21-72	2.10	.320	2.68	45	v80	276	2.70	3.88	5.4	1
11-30-72	2.10	.220	1.50	20	145	248	ł	}	ţ	ł
1-4-73	10.00	.350	1.45	20	130	1220	i	;	24.8	ł
1-10-73	2.10	.030	.81	30	125	•	6.25	5.88	8.	ļ
2-8-73	1,28	1.600	.20	50	26	2850	5.75	79.4	9.3	14.
5-7-73	2.30	2.400	1.30	2	ā	2600	5.54	5.81	5.1	5.9
4-1-73	1.23	.216	1,48	30	65	:	1	;	4.9	1.6
AVERAGE	#· 6	0.77	2.66	22	109	1775	4.82	5.24	8.6	7.4
				Station 7	9 no					
9-27-72	.61	.190	00.	8	135	752	4.42	5.50	1	;

Appendix III-01 (cont.)

(-- no sample)

Date	Temp.	0xygen	Turbi- dity (JTU)	Color (CU)	Con- duct- ancet	Secchi Depth***	¥6.	eH (m.v)	PO4
			ά	Station 7 (Con't)	(Con't)				
10-18-72	22.8	5.5	~	18	.830	1.5	7.55	;	00.04
11-21-72	11.0	4.6	185	20	555	•	7.10	350	5.25
12-5-72	10.0	88.5	55	45	595	۶.	7.50	100	4.50
1-4-73	10.0	4.9	72	10	099	i	8.10	250	.70
1-10-73	3.0	5.8	510	255	.340	.3	7.50	900	1.35
2-8-73	11.5	11.0	128	112	.370	ċ	2.60	300	1.45
3-7-73	18.0	4.9	240	305	. 301	Ţ.	7.65	150	1.18
4-1-73	16.5	7.3	120	200	292	ć.	8.15	004	3.33
AVERAGE	14.3	4.7	153	117	527	'n	7.64	240	10.86
			Ó	Station 8					
9-25-72	26.0	8.2	33	9	345	2.0	8 25	110	1.10
10-17-72	27.0	5.6	15	28	1.470	1.5	7.90	50	.22

Appendig III-01 (cent.)

Date	NH3	N 2	N03	ជ	₹os	Distharge GFS	Poc	DOC	ВОД	SOD
				Stati	Station 7 (Cont')	ont')				
10-18-72	.03	.025	2.10	105	120	419	5.75	6.68	9.9	1
11-21-72	2.10	.180	2.30	20	125	1580	94.4	9.00	4.0	i
12-5-72	.75	.160	1.65	55	125	986	6.25	14.12	7.2	ł
1-4-73	4.90	400	1.55	8	150	1650	4.92	8.00	25.0	;
1-10-73	2,10	.030	.81	%	125	i	6.58	5.00	2.0	1
2-8-73	.92	1.250	•19	52	52	3600	99**	3,75	8.7	33.3
3-7-73	1.55	1.550	1.15	8	99	8800	7.38	5.50	4.8	22.2
4-1-73	.85	•036	.56	25	%	ŧ ŧ		;	4.0	4.4
AVERAGE	1.53	. 425	1.14	26	105	2540	5.55	6.82	7.8	20•0
				Stat	Station 8					
9-25-72	46.	.032	.19	32	28	524	2.71	2.88	ŧ ì	;
10-17-72	.28	500.	.02	310	œ	247	76	Å 1 Å	•	!

Appendix III-01 (cont.)

Date Temp. oxygen Turbl- dity duty duty duty duty duty duty duty du	(no sample)	ole)								
Station 8 (Gont') 2 13.5 11.2 15 15 380 7.85 1 10.0 11.5 15 28 .415 2.5 7.92 9 11.8 5 100 .480 9.00 1 10.0 13.5 27 75 .395 2.0 7.75 1 15.5 29 145 .360 7.40 1 15.5 29 145 .360 7.40 1 15.5 29 145 .360 7.40 1 15.5 29 145 .360 7.40 1 14.8 10.4 41 74 .510 2.0 7.92 2 28.0 4.5 1.0 3.6 2.0 7.92 2 28.0 4.5 1.0 3.6 2.0 7.92 2 28.0 4.5 1.0 3.6 1.0 3.0 2 28.0 4.2 1.0<	Date	Temp.	0xygen	Turbi- dity (JTU)	Color (CU)	Con- duct- ancer*	Secohi Depth**		eH (a.v)	PO.
2 13.5 11.2 15 15 380 7.85 10.0 11.5 15 28 415 2.5 7.92 9.0 11.8 5 100 .480 9.00 1 8.2 9.0 210 130 .370 9.00 1 10.0 13.5 27 75 .395 2.0 7.50 1 15.5 29 145 .360 7.90 1 15.5 17 85 .360 7.40 1 15.6 17 85 .360 7.40 1 16.5 10.4 41 74 .510 7.92 2 2 10.4 .510 2.0 7.92 2 2 4.5 .510 2.0 8.75 2 2 2 4 .510 6.0 6.0 2 2				S	ation 8					
10.0 11.5 15 28 415 2.5 7.92 9.0 11.8 5 100 .480 9.00 1 8.2 9.0 210 130 .370 9.00 1 10.0 13.5 27 75 .395 2.0 7.52 1 13.5 12.5 29 145 .360 7.40 1 14.8 10.4 41 74 .510 2.0 7.92 1 14.8 10.4 41 74 .510 2.0 7.92 1 32.0 8.5 15 .036 2.0 8.05 2 28.0 4.5 .2 .48 .425 1.0 0.0.0 2 16.7 12.6 80 30 335 1.0 7.90	11-21-72	13.5	11.2	15	71	380	1	7.85	ጻ	.28
9.0 11.8 5 100 .480 9.00 10.2 210 130 .370 7.50 10.0 13.5 27 75 .395 2.0 7.72 13.5 12.5 29 145 .380 7.90 16.0 10.4 41 74 .510 2.0 7.92 18.5 10.4 41 74 .510 2.0 7.92 2.2 28.0 8.5 15 .036 2.0 8.65 2.6 4.5 22 48 .425 1.0 0.0.0 2.0 16.7 12.6 80 30 33 1.0 7.90	12-5-72	10.0	11.5	15	28	.415	2.5	7.92	400	•90
8.2 9.0 210 130 .370 7.50 10.0 13.5 27 75 .395 2.0 7.72 13.5 12.5 29 145 .360 7.90 1 16.0 10.6 17 65 .360 7.40 1 14.8 10.4 41 74 .510 2.0 7.92 2 20 8.5 15 .036 2.0 8.75 2 28.0 4.5 2 .48 .425 1.0 8.0 2 28.0 4.5 2 .48 .425 1.0 0.0 2 16.7 12.6 80 30 335 1.0 7.90	122-73	0.6	11.8	٧.	100	.480	ł	9.00	©	•58
10.0 13.5 27 75 .395 2.0 7.72 13.5 12.5 29 145 .380 7.90 1 16.0 10.6 17 85 .360 7.40 1 14.8 10.4 41 74 .510 2.0 7.40 1 32.0 8.5 15 .036 2.0 8.05 2 28.0 4.5 2 48 .425 1.0 0.0.5 2 16.7 12.6 80 30 335 1.0 7.90	1-10-73	8.2	0.6	210	130	.370	:	7.50	100	.50
13.5 12.5 29 145 .380 7.90 16.0 10.6 17 85 .360 7.40 14.8 10.4 41 74 .510 2.0 7.92 2 14.8 10.4 41 74 .510 2.0 7.92 2 32.0 8.5 15 .036 2.0 8.0 2 28.0 4.5 22 48 .425 1.0 0.0.0 2 16.7 12.6 80 30 335 1.0 7.90	2-24-73	10.0	13.5	27	75	,395	2.0	7.72	150	.59
16.0 10.6 17 85 .360 7.40 14.8 10.4 41 74 .510 2.0 7.92 2.0 32.0 8.5 15 .036 2.0 8.0 2 28.0 4.5 22 448 .425 1.0 0.0.0 2 16.7 12.6 80 30 335 1.0 7.90	3-8-73	13.5	12.5	53	145	.380	;	7.90	:	.20
14.8 10.4 41 74 ,510 2.0 7.92 Station 9 32.0 8.5 15 .036 2.0 8.0 28.0 44.3 22 48 .425 1.0 0.0 16.7 12.6 80 30 335 1.0 7.90	3-28-73	16.0	0.0	17	85	.360	1	7.40	8	.70
32.0 8.5 15036 2.0 8.04 28.0 4.3 22 48 .425 1.0 0.0.3 16.7 12.6 80 30 335 1.0 7.90	AVERAGE	14.8	10.4	41	*	.510	2.0	7.92	120	.56
32.0 8.5 15 .036 2.0 8.0 28.0 4.5 22 48 .425 1.0 0.0.5 16.7 12.6 80 30 335 1.0 7.90				Š	ation 9					
28.0 4.5 22 48 .425 1.0 0.0.5 16.7 12.6 80 30 335 1.0 7.90	9-19-72	32.0	8.5	15	;	.036	2.0	8.04	180	1.00
16.7 12.6 80 30 335 1.0 7.90	10-17-72	28.0	£ • ₽	22	847	.425	1.0	ن.ن	150	45.
	11-14-72	16.7	12.6	80	30	335	1.0	7.90	300	.32

Appendix III-01 (cont.)

Date	NH3	NO ₂	NO ₃	CI	30 th	Discharge CPS	Poc	DOC	Вор	SOD
				Stati	Station 8 (Cont')	ont')				
11-21-72	•19	.015	3.10	30	45	3360	5.42	4.75	ŧ	;
12-5-72	.25	.012	.32	55	120	1770	3.50	3.94	2.4	ì
1-2-73	.53	.070	90.	45	去	049	2.42	4.19	4.2	1
1-10-73	•65	,005	.55	35	72	1	5.83	3.06	1.5	i
2-24-73	·#5	.023	.63	30	51	5300	3.12	00.6	1.5	i
3-8-73	12.	.002	.60	25	9	15000	2.42	3.82	2.4	i
3-28-73	•55	.028	.79	30	23	;	1	i	1.2	;
AVERAGE	.48	.021	.70	99	61	3837	3.83	4.73	2.9	1
				Station 9	on 9					
9-19-72	89.	.005	.02	37	え	797	5.21	4.75	;	;
10-17-72	.35	• 000	.02	\$	35	295	1.17	3.18	8.6	;
11-14-72	.45	.002	.13	25	37	2520	3,00	30.6	;	ł

Appendix III-01 (cent.)

sample)	
00	
1	

	,,,,									
Date	Temp.	Oxygen	Turbi- dity (JTU)	Color (CU)	Con- duct- ance**	Secchi Depth***	· · · · · · · · · · · · · · · · · · ·	eH (m.v)	P04	1
			S	ation 9	Station 9 (Cont')					ı
12-7-72	11.0	11.6	#	25	.390	ł	7.70	200	.60	
1-2-73	10.0	10.8	10	100	.455	•	8.70	80	9.	
2-24-73	10.5	13.0	12	20	.350	۰.	7.91	210	.37	
3-8-73	13.5	11.5	33	35	.340	1	7.99	20	.70	
3-28073	16.0	9.6	4 1	22	.355	;	7.75	150	• 60	
AVERAGE	17.2	10.2	28	63	.335	1.2	8.01	161	•59	
			, so	Station 10						1
9-19-72	34.0	8.7	'n	ł	2.880	2.0	8.50	390	.32	
10-17-72	26.0	5.3	ដ	38	400	2.5	8.65	200	.25	
11-14-72	17.0	11.2	220	155	.235	1.2	7.15	150	.55	
12-7-72	13.5	9.6	\$	35	. 380	;	7.	120	.20	1-
£6-6-1	ů řů	111.0	130	140	550	1	8.50	80	2.90	13

Appendix III-01 (costut)

[no sample)	le)									
Date	MF.3	N02	N NO3	ថ	30 th	Discharge CFS	Poc) DOC	ВОД	SOD
				Stati	Station 9 (Cont')	ont')				
12-7-72	.12	.005	.16	35	ł	1610	3.34	6.12	2.4	ł
1-2-73	.10	.020	0 rt	의	90	024	2.42	3.00	† • †	
2-24-73	•45	.003	‡	3	33	5700	3.67	2.44	3.0	:
3-8-73	.65	.008	.68	*	72	15000	3.88	8.31	2.7	ŀ
3-28-73	.55	.028	.71	35	23	:	1	1	1.1	ł
AVERAGE	*	•000	.28	36	37	3723	3.24	96•4	3.7	ł
				Station 10	on 10					
9-19-72	•19	.005	00•	894	135	+	3.20	3.62	:	:
10-17-72	.35	• 000	.01	35	\$	+	3.34	2.94	3.6	ł
11-14-72	1.17	000	.12	30	2	+	7.66	2.00	;	1
12-7-72	.42	*10*	20.	35	ł	+	2.17	3.12	10.8	•
1-2-73	.95	.045	.17	85	8	•	3.38	3.68	1.0	:

Appendix III-01 (cont.)

	PO4		.37	89.	.50	.72
	eH (m.v)		200	20	700	195
	75.		7.90	7.81	7.98	7.97
	Seconi Depthes		9.	;	Ĭ	1.5
	Con- duct- ance**	(Coht')	349	. 320	. 999	819
	Color (CU)	Station 10 (Coht')	85	140	140	105
	furbi- dity (JTÜ)	84	22	22	ā	26
	0xygen		10.2	7.8	6.0	8.7
ple)	Temp.		10.0	16.5	18.0	18.1
(no sample)	Date		2-24-73	3-8-73	3-28-73	AVERAGE

Appendix III-01 (cont.)

	_		i
		į	2
		ַ	
		ļ	
•	۰	•	

Date	NH3	NO2	M M	CJ	†os	Discharge CFS	20 4	D 00	808	SOD
				Static	n 10 (Station 10 (Cont')				
2-24-73	.51	200	•30	01	39	0049	3.29 4.94	76.7	••	i
3-6-73	£.	800°	.50	30	8	10800	3.21	7.12	1.9	9.6
3-28-73	.74	.025	•15	30	0	+	!	ł	1.0	1
AVER ACE	.63	.013	.16	131	58	0099	3.22	3.22 4.63	3.2	9.6

Discharge at station no. 5 was approximated by subtracting the flow at Tehuachana Greek and Catfish Greek from the flow at station no. 6.

Discharge not known at low stages due to tide effect.

* Conductance - Mcro-mhos at 25 %.

*** Secchi Depth - Feet

- Indicates no sample taken.

Appendix III-02. Water quality data from Trinity River, river rise from October 23, 1972 to October 31, 1972. (Values in milligrams per liter except as indicated)

(-- no sample)

Date	Temp.	Oxygen	Turbid- Ity (Jfu)	Color (CU)	Con- gH65≠+	袛	eH (m.v.)	P04
			Station 5	5				
10-23-72	17.0	3.3	120	310	049	7.35	100	45.00
10-24-72	21.0	∞.	65	191	940	7.51	90	36.00
10-25-72	18.6	1.8	110	65	905	7.25	20 Q	20.00
10-26-72	9	ļ	964	298	400	2.40	80	15.00
10-27-72	21.0	9.9	009	0479	178	7.55	1	18.00
10-31-72	16.0	2.6	540	330	380	7.40	1	8.00
AVERAGE	7.31	3.0	322	300	574	7.41	110	31.50
			Station 6	9				
10-23-72	21.0	9.4	65	245	775	7.40	50	49.00
10-24-72	20.0	4°2	20	135	275	7.45	100	32.00
10-25-72	19.0	1.6	85	7	750	7.00	007	40. 00

Appendix III-02 (cont.)

(no sample)	ample)								
Date	MH3	~ON	NO3	เว	SO _{th}	Discharge CPS	200	DOC	Вор
				Sta	Station 5				
10-23-72	11.50	·\$00	1.50	9	160	834	10.84	90.7	16.0
10-24-72	21.00	.175	2.30	145	190	1188	8.96	9.12	18.2
10-25-72	22.00	.300	2.10	100	170	1727	6.17	5.68	8.8
10-26-72	2.00	.235	.10	30	89	2981	;	;	16.0
10-27-72	2.00	.025	98.	15	23	2982	;	{	5.6
10-31-72	2.00	.500	1.80	50	77	9209	5.18	12.42	•
AVERAGE	11.50	642.	1.44	62	115	2631	7.79	8.57	12.9
				S t	Station 6				
10-23-72	11.00	.450	3.00	8	150	12	6.75	6.88	17.6
10-24-72	13.50	.660	3.10	\$	140	1260	6.38	6.62	17.0
10-25-72	9.75	.275	8.20	88	140	1800	6.42	5.18	5.18 15.0

Appendix III-02 (Cont.)

(Orduna o			N - March		202			
Date	Too.	ue ž k o	dity (JTU)	Celer (CU)	duct- ance*	H.	eH (m.v.)	PO ₄
		St	ation 6	Station 6 Centinued	σ			
10-26-72	:	•	929	300	815	7.30	100	34.00
10-27-72	16.0	0.4	900	220	750	7.55	;	12.00
10-31-72	15.9	2.9	360	225	350	7.60	ł	8,00
AVERACE	18.4	3.1	280	189	249	7.38	162	2.62
			Station 7	n 7				
10-23-72	22.2	7.4	62	210	655	7.50	90	35.00
10-24-72	17.0	8.4	65	142	692	7.30	150	24.00
10-25-72	19.4	1.9	24	97	680	7.20	250	20.00
10-26-72	•	;	.195	220	710	7.20	180	27.00
10-27-72	16.0	1.6	270	200	069	7.22	200	. 00°92
10-31-72	16.8	3.4	800	420	285	7.50	ن ن 00	00.4
AVERAGE	18.3	3.8	240	200	619	7.32	3,40	22.67

Appendia III-02 (cont.)

(no sample)	umple)								
Date	NH3	NO ₂	10 3	5	†10S	Discharge CPS	Poc	D0C	ВОД
			Sta	tion 6	Station 6 *Continued				
10-26-72	13.90	.160	• 60	80	190	3080	11.50	89.9	14.2
10-27-72	6.75	.200	.80	35	120	3180	10.25	4.50	14.41
10-31-72	4.70	.148	1.51	25	06	6470	11.46	3.94	
AVERAGE	+184	213	2,87	59	138	27.56	8.79	5.63	15.6
				Station 7	on 7				
10-23-72	.93	.700	01.9	8	125	930	7.67	5.68	9.9
10-24-73	.75	.700	5:90	95	125	971	5.75	7.30	7766
10-25-72	1.15	.015	7.30	8	86	1460	5.96	5.68	10.2
10-26-72	7.75	0200	4.00	20	110	2410	5.58	5.68	14.2
10-27-72	10.75	.140	3.50	85	125	3750	7.96	9.00	15.6
10-31-72	2.40	.070	2.00	20	25	10.300	10.20	4.12	•
AVERAGE	3.96	.282	8.	73	109	3303	7.19	5.74	10.8

Appendix III-03. Pesticide residues and sediment composition in samples collected in the Trinity River from January 1972 to January 1973 (Pesticide residues of sediment in microgram per kilogram)

TRINITY RIVER AT ROSSER, TEXAS (BRIDGE ON STATE HIGHWAY 34)

					4 4 4 7 7 7 7 7			_
Date	organics	Z Z	Silt	Sand *	ury weignt	ጋዕር	300	
3-8-72	5.4	36	22	37	58.4	0	1.92	Y
4-5-72	5.6	31	31	38	67.3	0	29.0	
5-31-72	7.8	141	22	32	73.7	0	4.22	
6-29-72	8.1	24	30	23	73.3	0	0	
9-2-72	7.8	20	18	18	71.8	0	7.20	
10-12-72	0.6	39	14	20	49.3	0	0	
11-28-72	7.8	52	37	#	51.5	0	5.77	
1-12-73	6,2	47	31	22	4.89	0	10.99	
Kean	7.2	42.9	30.3	25.1	64.2	0.0	3.85	
Standard Deviation	1.3	7.3	6.9	9.6	8.6	0.0	3,96	
								ſ

TRINITY RIVER AT ROSSER, TEXAS (BRIDGE ON STATE HIGHWAY 34) Festicide Residues of Sediment in Microgram per Kilogram

Appendix III-03 (cont.)

	Lindane	Aldrin	Heptachlor	Endrin	Dieldrin	Wethomy- chlor	Myrex	Chlordane
3-8-72	0	0	0	0	0	0	0	ħE*89
4-5-72	0	0	0.53	0	0	0	0	6.67
5-31-72	0	0	1,10	0	0	0	0	33.90
6-29-72	1.05	0	0	0	0	0	0	18.11
9-2-72	0	0	2.65	0	0	0	0	197.69
10-12-72	6.52	0	29.78	0	9	0	0	405.47
11-28-72	5.24	4.97	2.33	15.14	3.20	0	0	111.80
1-12-73	0	0	4.18	0	0	0	0	174.21
Mean	1.60	0.62	5.07	1.89	04.0	0.0	0.0	127.02
Standard Deviation	2.69	1.76	10.09	5.35	1.13	0.0	0.0	131.51

Pesticide Residues of Sediment in Micrograms per Kilogram TRINITY RIVER AT HIGHWAY 85 (BRIDGE ON U.S. HIGHWAY 85)

				ł			
Date	organics	CIBY *	N N	A A	Dry weight	DDT	agg .
2-18-72	2.7	19	9	75	24.5	0	0
4-5-72	8.9	35	141	54	68.5	0	2,12
5-31-72	7.2	84	27	25	68.3	0	69.0
9-2-72	8.0	24	∞	45	4.59	0	C
20-61-1	~ ;	45	31	÷.	4,33	0	0.6
Mean	9.9	38.8	22.6	38.6	68.6	0.0	2.36
Standard Deviation	2.2	12.2	15.1	22.2	3.5	0.0	3.81
viation	2.2	12.2	15	۱.	ŀ	22.2	22.2 3.5

Pesticide Residues of Sediment in Micrograms per Kilogram TRINITY RIVER AT HIGHWAY 85 (BRIDGE ON U.S. HIGHWAY 85)

Appendix III-03 (cont.)

Date	Lindane	Aldrin	Heptachlor	Endrin	Dieldrin	Methoxy- chlor	Xyrex	Chlordane
21-01-2	Ü	(٢	0.87	(3	Ċ	0	O	54.57
4-5-72	0	0	0.39	0	2.12	0	0	19.71
5-31-72	2.19	0	0.21	0	0	0	0	6.27
9-2-72	0	0	0.32	0	0	O	0	6.78
1-12-73	0	O.	2.22	0	0	0	0	161.12
Mean	₩.0	0.0	08.0	0.0	0.42	0.0	0.0	69.64
Standard Deviation	86*0	0*0	0,83	0.0	0.95	0.0	0.0	65.32

3 - 5

Pesticide Residues of Sediments in Micrograms per Kilogram TRINITY RIVER AT CAYUGA, TEXAS (BRIDGE ON U.S. HIGHWAT 287)

Appendix III-03 (cont.)	14 111		CYVIII IV	about va)	1/02 TRUNTU 'C'I NO GENTRO VERVET TOUR VI	()07	
Date	Organics	Clay %	Silt	Sand	Dry Weight	DDT	(4)
1-29-72	3.0	21	50	29	70.9	O	0
3-8-72	7.1	35	か	31	6.99	0	2.33
4-5-72	9.9	141	20	39	71.9	0	0.87
5-31-72	3.5	38	37	25	0.47	0	Ö
6-29-72	4.0	35	32	33	69.1	0	0.34
10-26-72	5.1	39	56	35	. 8 - 29	0	66.0
11-21-72	†*9	į	ł	;	2.99	7.34	4.62
12-29-72	8.4	17	14	69	75.0	0	0.37
1-13-73	•	56	28	16	4.89	0.55	0.32
Mean	5.4	35.3	30.1	34.6	70.1	0.88	1.10
Standard Deviation	1.5	12.1	11.11	15.5	3.04	2.43	1.51

TRINITY RIVER AT CAYUGA, TEXAS (BRIDGE ON U.S. HIGHWAY 287) Pesticide Residues of Sediments in Micrograms per Kilogram

(cont.	
III-03	•
Appendix	
Z	

									T
Date	Lindane	Aldrin	Heptachlor	Endrin	Dieldrin Wethoxy-	Wethoxy- chlor	Myreх	Chlordane	**
1-29-72	0.67	85*6	'n	Ú	Ü	C	O	1.63	
3-8-72	0	1.59	2.22	0	3.60	0	0	82.31	
4-5-72	ο,	0	0.27	0	0	0	0	6.43	
5-31-72	0	0	0.29	O	0	0	0	1.38	
6-29-72	0	0	0.20	0	0	0	0	29.92	
10-26-72	1.20	0	0.65	4.03	0	0	0	34.10	
11-21-72	0	0.62	1.42	0	1.85	0	7.52	46.71	
12-29-72	0	0	0	0	0	C	0	2.49	
1-13-73	3.92	0	0	0	0	0	0	Ö	
Lean	0.64	1.31	0.56	6.45	0.61	0.0	0.17	14.22	
Standard Deviation	1.30	3.15	22.5	1.34	1.28	0.0	0.51	28.20	

TRINITY RIVER AT FAIRFIELD, TEXAS (BRIDGE ON U.S. HIGHWAY 79) Pesticide Residues of Sediments in Micrograms per Kilogram

-	-
+ 100	
ç	,
7	ׅׅ֚֚֡֝֝֝֝֟֝֝֜֝֝֝֟֝֝֡֝֜֜֝֜֜֜֜֝֡֜֜֜֜֜֝֡֡֜֜֝֡֡֡֡֡֜֝֡֡֡֜֜֝֡֡֡֡֡
۲	i
;	1
7	7
	į

Date	Lindane	Aldrin	Heptachlor	Endrin	Dieldrin	Kethoxy- chlor	Kyrex	Chlordane
1-29-72	3.04	0	0	0	0	0	С	34.17
2-18-72	0	0	0	0	·O	0	c	6.33
4-5-72	0	0	0	0	0	0	0	0
5-31-72	0	0	6. 20	0		0	0	5.11
6-29-72	0	0	<.20	0	0	.0	0	26.28
9-2-72	0	0	0	0	0	0	0	16.06
10-19-72	0	0	0	0	0	0	O	2.48
11-21-72	0.93	0	0.58	0	0	0	0	10.48
12-29-72	0	4. 20	420	0	0	00	0	7.34
1-12-72	0	4.20	<.20	0	0	0	0	12.62
Mean	04.0	ħ0°>	41.)	0.0	0.0	0.0	0.0	12.09
Standard Deviation	26.0	200.	0.18	0.0	0.0	0.0	0.0	10.80

TRINITY RIVER AT FAIRFIELD, TEXAS (BRIDGE ON U.S. HIGHWAY 79) Pesticide Residues of Sediments in Micrograms per Kilogram

Appendix III-03	Appendix III-03 (cont.) (no	sambre)					
Date	Organics	Clay	Silt	Sand	Dry Weight	DDT	DDB
1-29-72	3.5	22	10	89	73.5	0	0.82
2-18-72	1.8	:	i	!	85.2	r	ဝ
4-5-72	9.5	94	30	₩2	7.46	O	0
5-31-72	5.5	22	23	55	73.8	0	0.58
6-29-72	2.6	12	10	92	83.2	0	0.68
9-2-72	1.5	10	ω	82	27.6	0	0.41
10-19-72	1.4	17	14	69	78.4	0	0.27
11-21-72	2.7	19	20	19	88.1	O	94.0
12-29-72	2.9	17	14	69	73.4	0	0.51
1-12-72	2.8	22	17	19	75.4	1.18	1.23
Meari	3.4	20.8	16.2	63	78.3	0.12	0.50
Standard Deviation	7.2	10.4	7.1	16.9	5.4	£6°0	0.37

TRINITY RIVER AT CROCKETT, TEXAS (BRIDGE ON STATE HIGHWAY ?) Pesticide Residues of Sediment in Micrograms per Kilogram

Date Organics 2-18-72 2.2 4-5-72 5.7 5-31-72 3.5	4						
0 0		clay *	Silt	Sand	Dry Weight	<u>.</u> 00	300
	2,2	15	10	75	78.0	C	0.55
	2.	22	16	62	9.92	0	0.45
	'n	21	10	69	4.66	0	0
6-29-72 4.0	Ο.	28	21	51	75.9	0	1.59
9-2-72	1° 1	~	6	98	78.2	O	0
10-21-72 0.7	2	!	;		81.8	1.85	0.22
1-12-73 2.2	8	;	:	:	76.3	2.85	1.76
Mean 2.8	8	18.2	13.2	9.89	78.0	0.67	0.65
Standard Deviation 1.7	2.	8.7	5.2	13.2	2.1	1.18	0.73

TRINITY RIVER AT CROCKETT, TEXAS (BRIDGE ON STATE HIGHWAY ?) Pesticide Residues of Sediment in Micrograms per Kilogram

Appendix III-03 (cont.)	3 (COIL.)							
Date	Lindane	Aldrin	Heptachlor	Endrin	Dieldrin	Wethoxy- chlor	Мутех	Ohlordane
2. 8. 6	c	c	C	d	C	C	¢	96 9
7/_OT_7)	>	")	>	D)	0	S .
4-5-72	1.03	0	0	0	0	0	0	4.33
5-31-72	6.20	0	0	0	0	0	0	0
6-29-72	4.20	0	0	0	0	0	0	21.95
9-2-72	<.20	0	0	0	0	0	0	1.82
10-21-72	0	0	0.32	0	0	0	1,28	3.71
1-12-73	0.36	0	0	0	C	0	· C	29.65
Mean	4.28	0*0	50.0	0.0	0.0	0.0	0.18	9.75
Standard Deviation	0.35	0.0	0.12	0.0	0.0	0.0	0.48	11.38

TRINITY RIVER AT MADISONVILLE, TEXAS (BRIDGE ON STATE HIGHMAY 21) Pesticide Residues of Sediment in Micrograms per Kilogram

Appendix III-03 (cont.)	3 (cont.)						-
Date	Organice	Clay	Silt	Sand	Dry weight	דמכ	DDE
2-18-72	1.3	€	6	83	71.1	0	0.52
4-5-72	1.6	13	©	44	6.47	0	0.52
5-31-72	2.0	60	v	87	78.8	0	64.0
6-29-72	2.7	15	10	75	82.4	0.60	0.73
9-2-72	2.3	10	16	74	71.6	ာ	76.0
72-77-01	co -	6	#	87	77.9	0	0.45
11-21-72	1.9	13	0.6	78	8.47	0.63	06.0
1-12-73	9.4	22	5 6	47	68.9	2.97	2.76
Kean	2.3	12.9	10.9	76.2	75.0	0.53	0.91
Standard Deviation	1.0	6.3	٠.٠	12.8	η. 50	1.03	0.77

TRINITY RIVER AT MADISONVILLE, TEXAS (BRIDGE ON STATE HIGHWAY 21) Pesticide Residues of Sediment in Nicrograms per Kilogram

Appendix III-03 (cont.)	-03 (cont.)	•	•					
Date	Lindane	Aldrin	Aldrin Heptachlor	Endrin	Dieldrin	Wethoxy- chlor	Äyrex	Chlordane
2-18-72	0	O	0	c	0	0	C	5.70
4-5-72	0	0	0	3.00	0	0	0	22.79
5-31-72	0	0	0.20	0	0	0	0	3.10
6-29-72	0	0	0	0	0	0	0	4.20
9-2-72	<.20	0	0	0	C	0	0	104.6
10-21-72	0	0	0	0	0	0	0	2.45
11-21-72	<.20	6,20	4. 20	5.49	0		0	8.32
1-12-73	0	0	0.63	0	0	0	0	50.05
Kean .	50° >	<. 02	0.10	69*0	0*0	0.0	0.0	25.15
Standard Deviation	60.	. 70.	0.22	1.28	0.0	0.0	0.0	35.33

Pesticide Residues of Sediment in Micrograms per Kilogram TRINITY RIVER AT TRINIDAD, TEXAS (BRIDGE ON STATE HIGHWAY 31)

(cont.)
III-03
Appendix

		* 122 - 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4				
Date	Organica A	N W	Silt M	Sand	Dry Weight		DDE
	The state of the s		Martine (A. 17) Charle Const. Co. Addings and Co. Co. Co. Co. Co. Co. Co. Co. Co. Co.				
10-26-72	5.0	42	23	31	8.49	0	1.82

TRINITY RIVER AT WALLISVILLE, TEXAS (BRIDGE ON IH-10)

		STATE OF STREET	The second secon	The second of the second second	The second of th			
Date	Organics	Clay	Silt	Sand	Dry Weight	DOT	DDE	
		The same of the sa		Andreas designations of the second se	The second of th			
6-21-72	4.9	11	22	67	79.5	c	c	

de established in the design open the state of the second state of

Pesticide Residues of Sediment in Micrograms per Kilogram TRINITY RIVER AT TRINIDAD, TEXAS (BRIDGE ON STATE HIGHWAY 31)

Appendix III-03 (cont.)

Date	Lindane Al'rin	Al-'rin	Heptachlor	Endrin	Dieldrin	Methoxy- chlor	Myrex	Chlordane
10-26-72	0.70	0	0.40	6.14	0.81	0	0	20.94

TRINITY RIVER AT WALLISVILLE, TEXAS (BRIGE ON IH-10)

Date	Lindane	Aldrin	Heptachlor	Endrin	Dieldrin	Wethoxy- chlor	Myrex	Chlordane
6-21-72	0.20	0	0	0	0	0	0	<1.0

Appendix III-04. List of Trinity River from S	f phytoplankton September 1972	ankton 1972	and to Ap	relative ril 1973	abune	abundan ce *	y d	stations	i.i.	the	
STATION	4	2	7	4	М	9	2	တ	0	7	ا
Division Chlorophyta											
Actinastrum gracilmum			œ,		رن	o:	ĸ				
Actinastrum sp.			æ				œ				
Ankistrodesmus sp.		0	0		(Et	0	0	ľŁ,	Œ	O	
Arthrodesmus incus	0	œ	æ	æ	[k ₄	0	0	æ	0	0	
Chlamydomonas sp.	ĵĿ _i		0	0	Œ4	0	0	0	፫ -	0	
Chlorella sp.	Q	0	Д	Ω	а	A	o	Œ4	0	ပ	
Chlorogonium sp.				œ	0	0	æ	0	æ	æ	
Chloromonas sp.					0	œ					
Closteriopsis sp.		Œ,									
Closterium abruptum										æ	
Closterium sp.		0	0	œ	œ		0				
Closterium setaceum										æ	
Coccomonas sp.			æ								
Coelastrum sp.				0	0	0					

STATION	4	27	7	4	M	9	2	ß	0	ort
<u>Crucigenia rectangularia</u>			œ							
Crucigenia sp.			ပ	o	0					
Eudorina sp.				œ	æ	64	œ			
Golenkinia sp.				œ						
00mm 80.	٠			25						
Kirchneriella lunaris				0						
Kirchneriella obesa								ß.	o	
Kirchneriella sp.					ß,					
Lagerheimia sp.		0		٠						
Micractinium pusillum	0	ſĿι	ርፈ	Œ,	0	0	0	Œį	Œ	0
Micractinium pusillum						0	0			
Micractinium sp.			0	0	(See	0	0			
Micrasterias sp.					0					
Pandorina ap.			œ	æ	0	æ				
Pediastrum duplex					0					
Pediagrum SD.				0		0				

ĺ

18

Appendix III-04 (cont.)

STATION		2	7	4	5	9	2	(1)	6	10
Polyedriopsis spinulosa					œ					
Pseudotetrahedron sp.	-		œ	æ	œ					
Pteromonas sp.			æ	œ	æ	œ				
Scenedesmus abundans					0	0			æ	
Scenedesmus acuminatus	0	ß.	0	0	0	æ	œ			
Scenedesmus arcuatus			ધિ	0	0		0			
Scenedesmus Bernardii				α;	0		œ			
Scenedesmus bijuga			0	æ	p c;	œ	æ			
Scenedesque denticulatus			œ		0					
Scenedesmus dimorphus	ß.	Œ	Œ,	æ	0	0	œ	0	0	æ
Scenedesmus incrassatulus							æ			
Scenedesmus quadricanda	0	0	∢	ß.	Œ	0	0	0	0	i ž ą
Scenedesmus sp.			œ				œ			
Spinoclosterium sp.				0		œ				œ
Staurastrum sp.				ι:						
<u>Tetradesmus</u> sp.	0	Andrews of the second	R	A STATE OF THE STA					in the state of th	

10		ρij	0				•		íŁ			ى		Œ,
3				£z4					0				0	ပ
က				O					0		ο÷			Ö
2	œ				œ				Ö					0
9	œ				œ									0
3	æ				œ					æ				0
1					α ;									0
~						æ								æ
2														
-	넴								œ					
STATION	<u>Tetraedron arthrodesmiformi</u>	Tetraedron minimum	Tetraedron BD.	retraedron transmin	<u>Tetraedron victorieae</u>	Tetrastrum sp.	Volvox sp.	Division Chrysophyta	Class Bacillariophyceae Diploneis smithii	Bunotia pectinalia	Fragellaria sp.	Cyclotella stelligera	Cymbella turrida	Combella ventricosa

STEPHEN F AUSTIN STATE UNIV NACOGOOCHES TX F/6 8/6 ECOLOGICAL SURVEY DATA FOR ENVIRONMENTAL CONSIDERATIONS ON THE --ETC(U) AD-A095 957 DACW63-73-C-0016 JUL 73 C D FISHER, D D HALL, H L JONES NL. UNCLASSIFIED 4 0 7 4D A 1195957

Appendix III-04 (cont.)

STATION		2	7	7	7	9		ω	Q	10
Cyclotella glomerata								ſk4	O	<
Cyclotella kutzingiana			α;							[24
Cyclotella meneghiniana			ρ¢	ပ	0	[24	∢	ርኳ	ſī.	ſĿ
Cyclotella sp.									ſŧ	
Gomphonema angustatum			0	O	O	æ	æ		ပ	
Gomphonema parvulum	0	A	Œ,	0	0	0	0	æ	Ú	比
Melosira abigua						0				
Melosira distans										٦
Melosira granulata	æ		4	ر،		ائر	(St. ₄	Ω	ıa	~
Melosira herzogii					0					
Melosira islandica						œ	٥			
Melosira italica							æ			
Melosira sp.	æ		æ	O	0	0	0		ĮŢ4	0
Navicula cryptocephala	Œ	ſτ	ß.	Œ,	0	0	Ω	æ	O	O
Navicule exigua							0			
Navicula pusilla		0								

Appendix III-04 (cont)

STATION	-	2	3	4	2	9	2	C	6	10
Navicula rhynchocephala R	æ	0	ſz.	0	F O O R C	œ	O		œ	œ.
Navicula sp.			0	0	0	æ	œ			
Nitzschia amphibia									O	
Nitzschia acicularis	æ	ſŁι	∢ .	Œ	0	α;	æ			ပ
Nitzschia kutzingiana							0			
Nitzschia palea	IJ	ſų	Œ	ပ	0	0	0	O	្រុ	ω,
Nitzachia vermicularis						0	œ			
Pinnularia biceps					0					
Pleurosigma sp.			œ			œ	O			
Stauroneis sp.									œ	
Stephanodiscus astrea							œ			
Surirella decipiens							æ			
Surirella conifera						œ	œ	œ	æ	œ
Synedra ulna			œ	0	0	0	O	0	0	(Z4

Appendix III-04 (cont.)

STATION 1 2 3	Division Chrysophyta Class Chrysophyceae	Synura sp.	Division Cyanophyta	Chamaesiphon sp.	Chroococus sp.	Merismopedia sp.	Oscillatoria sp. 0 R R	Phormidium sp.	Rivularia ep.	,	0 0 F	Euglena hemichromata	Buglena oxyuria	Buglena ruba	Euglena sp. R O R
7				0			æ				0				×
~				ᄄ			œ				æ			Ω	:
9				0			œ		æ		A C;				
(-)				œ	; <u>(</u> 2	•	Ω	; ec	:		æ		þ	4	œ
ထ						c	o								
9					þ	4 0	¥				24				
	1														

STATION	ч	℃	3	.	1 0	10	~	ø	0	10
	i									
rnacus acuminatus	Œ		0				æ			
Phacus longicauda	æ	œ	ſt.	0	o	œ	. 00		c	
Fhacus oscillans				ߣ		ı	;		•	
Phacus tortus			0	Et.						
Phacus sp.							æ			
Division Pyrrhophyta										
Ceratium hirundinella										ត
Dinoflagellate						ú				L 4

Relative Abundance:

D - Dominant

A = Abundant

F = Frequent

0 = Occasional

R - Rare

ppendix III-05. the Trinity		Phytoplankton River from Sep	on chlorogieptember 1	rophyll ir 1972	concentrat through Apr	tration: April	s in w	ater sam expresse	samples nased in	taken irom mg/m)
# A	chlo	Chlorophyll Chlorophyll	4 D	•	၁ ၃ ၈ ၃	# 1	Chlorophyll c Total Chlorophylls	c ophylle	_	
STATIONS		2	3	17	5	9	7	8	6	10
SRPTEMBER Ca Cb Cc Cabc						11 9000 17 10 10 10 10 10 10 10 10 10 10 10 10 10	1126 122.6 12.0			
0010BER CR CD CC CR	4000 4000	20.1 13.6 28.5	30 273 274 84 58 37	31.1 22.1 61.3 115.1	27 24.2 28.6 80.3	23.8 16.3 15.0 55.1	16.8 10.8 1.8	12 9 3 5 5 1 1 1	7.9 3.5 11.4	11.4 7.8 0 19.2
NOVEMBER CA CC CC Cabc	2002 2002	23.0	1. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	7.0 2.0 2.0 2.0	7. 4 14.8 50.3	.1 6.1 14.8 21.0	5.0 .13 0 5.1		11.5 13.2 12.2 36.9	27.6 35.0 62.2 125.4
DECEMBER Ca Cb Cc Cabc	4646 4646	35.45 64.33 137.75	8 C W O!				10.9	11.3 8.2 0 19.5 1	18.7 26.7 61.3 106.7	24.6 25.2 69.7 119.5
JANUARY Ca Cb Cc Cc Cabc	5.9 18.6.5 31.2	62.0 63.0 63.0 63.0	6.8 20.9 34.8	201 100 100 100 100 100 100 100 100 100	9.2 8.9 11.6 29.7	23.03 40.8	3.5 20.5 27.5	8.8 6.1 22.8 37.7		

Appendix III-05 (cont.)

21124	-	2	6	7	v ,	9	6	α	6	10
FEBRUARY										
අව	æ	3	3	•	6	8	2	_	•	o
ဝ	18.7	S	9		. 6	~	~	i v	•	Ö
္ပ	H.	?	S	•	· O	Š	Š	Š	•	V
Cabc	88.0	92.8	95.4	6.48	73.3	134.4	62.7	133.3	116.0	124.6
MARCH										
Ça	24.0	∞	•	ထ	~	,	•	•		20 2
ဍ	23.7	5		S	ľ	· ~		•	•	, C
ပ္ပ	77.2	0	•	4	10	, , , ,	-~		•	13
င္တန္အာင္	124.9	135.1	143.2	129.7	7.96	103.6	95.6	95.1	88.6	4.98
APRIL										
Ca	~	2	•	C		c				V
ಕ್ಷ	0		•	0			•	•	•	א כ
బ	ά		•	·V			•	•	•	74
Cabc	62.8	63.3	66.7	96.2		47.6	53.3	48.3	で ご ご	63.0
11	hloroph	lorophyll a								
ပ ရ ည	Chloroph	yll b								
11	hloroph	y11 c								
Cabc = To	otal Ch	lorophy	lls							

List of periphyton diatoms and their relative abundance* by stations Appendix III-06.

Appendix iii - Oo. Disc or Fe in the Trinity River fr	74 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	september	1972	through	h March	197	m		1	
STATIONS		2	3	.	8	9	2	ω	6	10
Achnanthes exigns						0				
Achnanthes hauckiana								æ		
Amphiprora sp.										œ
Anomoeneis serians				∢	æ					
Cyclotella kutzingiana				0		0	ţ.	0		
Cyclotella meneghiniana				~	0	Э	5	13		
Cyclotella ocellata								œ;		
Cyclotella stelligera				œ						
Cyclotella striata								œ		æ
Cymbella affinis									0	
Cymbella prostrata								œ		
Cymbella tumida										œ

Appendix III-06 (cont.)

STATIONS	4	2	3	4	4	9	2	8	9	भ
Cymbella turgida					4	æ		œ		0
Cymbella ventricosa				œ;	œ	0				
Diploneis interrupta								æ		
Diploneis pseudovalis			œ							
Diploneis smithii				æ		æ		ſĿ,		ß,
Epithemia sp.										œ
Frustulia rhomboides				æ	24	œ				
Gomphonema acuminatum				æ	0	0				0
Gomphonema angustatum			₿Ŀ,	ß.	Ck4	[Eq	0		0	0
Jomphonema olivaceum				Œ	0	0	0	0	0	0
Comphonema parvulum	∢		Д	Ω	Ω	Q	Q	O	Œ	ß.
Gyrosigma kutzingil										0
Gyrosigma scalproides					0					
Helosira granulata							ß	Ď.,	Q	Çe _s
Welosira herzogii						0				

Appendix III-06 (cont.)

STATIONS	+	2	3	4	5	9	2	80	6	10
Melosira islandica									∢	
Navicula biconica				4	0	Çt.,				
Navicula cryptocephala			ße,	0	ρ¢	0	ſĿι	ĵ t 4	0	
Navicula cuspidata				æ						
Navicula elginensis				0	œ	æ				æ
Navicula exigua				æ	0	0				
Navicula gastrum				0	0	0				0
Mavicula insignita						0				
Navicula laevissima	œ									
Navicula laterostrata				ር ሂፋ						
Navicula mobiliensis				O	œ					
Navicula muralis				0	0					
Navicula pusilla									œ	
Navicula pupula									()	
Navicula rhyncocephala				0	124	(E.				9
Navicula viridula									,	æ

STATIONS	7	2	3	7	7	9	2	8	8	10
Nedium iridis								0		
<u>Nitzschia acicularis</u>	0					æ		0		
Nitzgchia amphibia				0	p.	0	0			
Nitzschia filiformis				æ	æ					
Nitzschia gracilis										æ
Nitzschia kutzingiana	0				0		0	0		æ
Witzschia lacunarum				0	দৈ	0		æ		
Nitzschia obtusa						0				
Nitzschia lorenziana				œ						
Mitzschia palea	Ω	Q	βų	~	ße,	p.	0	0	0	Œ,
Witzschia parvula				0	0	0				0
Witzschia sigmoidea										0
Ntrschia sublinearis					0	0				
Vitzschia subrostrata						æ		ပ		
Nitzschia thermalis				æ		0				
<u>Opephora</u> martyi									e	

Appendix III-06 (cont.)

STATION	 7	7	4	4	9	2	8	8	10
Pleurosigma delicatulum								0	0
Pleurosigma sp.					0				
Pinnularia biceps			æ		0	œ			æ
Pinnularia microstauron						æ			
Pinnularia sudetica									æ
Rhopalodia gibberula				œ					
Stauroneis acuta						æ			
Stauroneis anceps			0						
Stauroneis sp.				œ					
Stephanodiscus astrea							æ		
Surirella elegans									œ
Surirella linearis						0			
Surirella ovalis		p;					ပ	ပ	0
Surirella ovata							0		
Surirella tenera									œ
Synedra acus			0						

Appendix III-06 (cont.)

STATION	7	2	3	4	4	9	2	80	8	2
Synedra rumpens							4			(te ₄
Synedra ulna			0	0	œ	œ	ße,			0

Relative Abundance:

D - Deminant

A = Abundant

0 = Occasional

F - Frequent

R = Rare

THE PERSON NAMED IN

Appendix III-07. Benthic organisms collected in the Trinity River from river mile 520 to river mile 10, September 1972 through March 1973

September, 1972

9	3/15.0	18/20.4 3/15.0	2/10.0	gracilis Leidy 9/45.0	roptera larvae	1/5.0	59/67.0	6/6.8	_
-	0	0.	0.	0.	o.	0			20 2.2200
80			3	presen	sus ji	olevi	oN		
6		20/74.1				4/14.8			27.1
-		٦٠				10			27 1.0810
10			31	ble s es	eme î ii	or E ite	ON		

* No samples were taken from the other stations during this month.

Appendix III-07 (cont.)
October, 1972

number per 1/25 sq. meter / percent of total organisms

STATION	<u>' 1</u>	2	3	4
NEMATODA		1/0.37		
ANNELIDA Oligochaets Tubificidse Unidentified Hirudinea Arhynchobdella	325/85.5	165/61.8	2600/93. 9	18/5.6
ENDOPROCTA Urmatella gracilia Leidy				
ECTOPROCTA				
ARTHROPODA Mandibulata Insecta Ephemeroptera larvae Hexagenia sp. Trichoptera larvae Diptera Chironomidae larvae pupae Ceratopogomidae	12/3.2	32/12.0 12/4.5	148/5.4 20/0.7	30 4/ 94 .4
Mollusca Gastrepeda Ferrissia sp. Others Pelecypoda Eupera sp. Others	1/0.3	57/21.3		
TOTAL ORGANISMS	380	267	2768	322
DIVERSITY INDEX	0.9446	1.8310	0.3622	0.3110

Appendix III-07 (cont.) October, 1972 number per 1/25 sq. meter / percent total organisms

5	6	7	88	9	10	
			14/29.2		1/33.3	
58/65.9	45/70.3	47/47.9	14/29.2	43/67.2 3/4.7		
1/1.1						
	3/4.7	27/27.6			1/33.3	
3/3.4						
	3/4.7		11/22.9	15/23.4		
	3/4•/					
25/28.4	4/6.2	15/15.3	9/18.8	4	·	
				3/4.7		
_	9/14.1					
1/1.1		3/3.1				
		$\frac{1}{1.0}$ $\frac{2}{2.0}$			1/33.3	
88	64	98	48	64	3	
1.2252	1.4192	1.9060	1.9760	1.2900	1.5850	

Appendix III-07 (cont.) November, 1972

number per 1/25 mg. me er / percent total organisms

STATION	<u>' 1</u>	2	3	4
NEMATODA				
ANNELIDA	}			
Oligochaeta	127 (0: 0	=	6700/98.9	2.2.1
Tubificidae	334/9469	⊴	0/00/90.9	2/2.4
Pol ych aeta Hirudinia	§ .	ين		
Rhymehodbdellida	l	Z		
Placobdella sp.	[Ī		5/5.9
		X		
ARTHROPODA	1			
Mandibulata		Ç		
Cruatacea	}	H		
Malacostraca Amphipoda	1	prevented		
Insects	Ì	Ð		
Trichoptera larvae	į	Ã,		
Coleoptera larvas	1/1.3	0		
Diptera		Ę	4 - 4	
Chironomidae larvae	7/2.00	Bevage	69/1.0	61/80.0
Ceratopogomidae larvae	6/1.0		2/0.02	5/10.6
Culicidae larvae		rav	1/0.01	
Chaoborus sp.	l		1/0.01	
MOLLUSGA		of		
Gastropode				
Ferrissia sp.		ဋ		_
Others	4/1.1	ĕ		3 /1.2
	250	Š	6000	de.
TOTAL ORGANISMS	352	Prescence	6772	85
DIVERSITY INDEX	0.3910		0.8802	1.0437

⁻⁻ indicates no sample ta en

Appendix III-07 (cont) November, 1972

number per 1/25 sq. meter / total number of organisms

5	6	77	8	9	10
;			wa anji ma	1/25.0	
1/3.9	1/20.0			2/50.0	1/2.5 1/2.5
					21/52.5
	3/60.0				
25/96.2	1/20.0			1/25.0	17.42.5
26	5			4	40
0.2352	1.3710			1.5000	1.2766

it.)	
(cont	725
III-07	. 197
I XID	эшоег
Appen	Десе

	7 4040	(4			
STATION	erer / rora	. Lumper o	organisms	6	. 10	•
				2/6.7		
ANNELIDA Oligochaeta Tubificidae	4.68/005	15/46.9		4/13.3	1/7.1	
Hirudinea Piscicolidae Unidentified	2/0.4					
ENDOPROCIA <u>Urnatella gracilis</u> Leidy		4/12.5	5/2.0			
ARTHROPODA Mandidbulata Grustacea						
Malacostraca Amphipoda					1/7.1	
Decapoda Procambarus sp.			1/1.0			
insecta Ephemeroptera larvae			3			
<u>Hexagenia</u> sp. Odonata larvae			24/23.5			
Zygoptera Hemintera			1/1.0			
			2/2.0	6716.2		
Trichoptera larvae Lepidoptera larvae			0.6401	1/3:3		
Coleoptera	•		4	i i		
Berosus sp. (?)			1/1:0			
Tipulidae	,	•	1/0.98	•		
Chironomidae	N	1/3.1	39/38.2	16/53.3	11/280	_
Ceratopogonidae Gulicidae	4.170		0 • // / /	1/2:2		
Chaoborus sp.		2/6.2				

(cont.)
111-07
Appendix

		위
		-
		8
	SIIIS	-
	/ total number of organisms	8
	d	
	number	7
	total	-
	`	
	meter	7
	sq.	-
	1/25	
~	per	LION
ecember, 1972	number per 1/25 sq. meter /	STATIO
Ω		ı

MOLLUSCA Gastropoda Ferrissia sp. Others Pelecypoda Amblema sp. Lambsilis sp.	5/0.9 39/7.9	1/3.1 9/28.1	1/1.0	30	* 1
DIVERSITY INDEX	0.7675	1.9646	2,2530	2,1736	1,0892

* No samples were taken from the other stations during this month

Appendix III-07 (cont.) January, 1973

number per 1/25 sq. m	eter / tota	al number 2	of organism	ns
NEMATODA				1/20.0
ANNELIDA Oligochaeta Tubificidae Hirudinea	220/91.3	37/92.5	1200/100.0	1/20.0
ENDOPROCTA <u>Urnatella gradilis</u> Leidy				
ARTHROPODA Mandibulata Crustacea Malacostraca Amphipoda Decapoda Paleomonaetes sp. Insecta Ephemeroptera larvae Hexagenia sp. Diptera larvae Chironomidae Ceratopogonidae				
Gastropoda Ferrissia sp. Others Pelecypoda Eupera sp. Others Amblema sp. Lampsilis sp. Proptera sp. Ligumia sp.	25/10.2	3/7.5		3/80.0.
TOTAL ORGANISMS	245	40	1200	5
DIVERSITY INDEX	0.4754	0.4532	0	1.3710

Appendix III-07 (cont.)
January, 1973

numbe:	r per 1/25 6	sq. meter	/ total 8	number o	of organisms	
					1/2.5	
1/33.3	9/64.3	1/35.0		5/62.5	14/35.0	
		1/25.0	2/6.9			
	2/14.3	1/25.0	2/6.9			
		1/25.0			1/2.5	
1/33.3	3/21.4		1/3.5 8/27.6	1/12.5	21/52.5	
1/33.3		1.25.0	1/3.5 5/17.2	1/12.5		
			2/6.9 8/27.6			
3	14	4	291	8	40	
	1.2870	2.0000	2.5956	1.5488	2.2129	

Appendix III-07 (cont.) February, 1973

number per 1/25 sq. meter / total number of organisms

STATION	1	2	3 4
NEMA TODA			
ANMRLIDA Oligochaeta Tubificidae Polychaeta	1000/97	v.6 45/88.2	2 109/98.2
ARTHROPODA Mandibulata Crustacea Malacostraca Amphipoda Decapoda			
Insecta Ephemeroptera larvae Hexagenia sp. Odorata larvae Anisoptera-Gomphus Trichoptera larvae Diptera Chironomidae larvae pupae Ceratopogonidae larvae Culicidae larvae Chaoborus sp.	1/1.0	1/2.0	1/0.9 1/0.9
MOLLUSCA Gastropoda Ferrissia sp. Others Pelecypoda Eupera sp. Others Amblema spp.	9/0.9	5/9.8	
TOTAL ORGANISMS	1025	51	111
DIVERSITY INDEX	0.2017	0.6698	0.2205
indicates no sample taken			

Appendix	III-07	(cont.)
----------	--------	---------

number p	per 1/25 so 6	q. meter / 7	total	number of o	rganisms 10
				7/17.5	
38/55.1	20/35.1	7/41.2		1/2.5	1/3.6 3/10.7
	1/1.8 1/1.8				3/10.7
				2/5.0	10/35.7
1/1.4	1/1.8 8/14.0	1/5.9		4/10.0	1/3.6
1/1.4	21/36.8			18/45.0	6/21.4
9/13.0	3/5.3	•	ent	7/17.5	3/10.7
1/1.4			Pres		
1/1.4 16/23.2		4/23.5 3/17.6	Organisms Present		
		3/17.6	rga		
1/1.4			No ON		
	2/11.8		Z		
69	57	17		40	28
2.2536	2.1937	2.0636	,	2.2129	2.5576

Appendix III-07 (cont.) March, 1973

----indicates no sample taken

number per 1/25 sq. meter /	total numi	per of or	rganisms
STATION	1	2	3
ANNELIDA Oligochaeta Tubificidae	648/93.9	6/66.7	109/98.2
ENDOPROCTA <u>Urnatella gracilis</u> Leidy			
ECTOPROCTA			
ARTHROPODA Mandibulata Insecta Diptera Chironomidae larvae pupae Ceratopogonidae larvae Culicidae larvae Chaoborus sp.	35/5.0		1/0.9 1/0.9
MOLLUSCA Gastropoda Ferrissia sp. Other Pelecypoda Propters sp. Fusconaria sp. or Obovaria sp. Lampsilis spp.	7/1.0 1/0.1	2/22.2 1/11.1	
TOTAL ORGANISMS	701	9	111
DIVERSITY INDEX	0.3901	1.2244	0.2205

Appendix III-07 (cont.) March, 1973

number	per 1/25 :	sq. meter ,	/ total	number 8	of orga	nisms 10
103/89.6	. 11/55.0	18/51.4	2/16.7			121/96.03
			2/16.7			
			1/8.4.			
	6/30.0 2/10.0	6/17.1 1/2.9 1/2.9	3/25.0 1/8.3			1/0.8 4/3.2
		2/209	1/8.3			-7 //•2
2/1.7 10/8.7	1/5.0	9/25.7	1/8.3 1/8.3			
115	20	35	12			126
0.5504	1.5438	1.7265	2.8554	•		0.2695

THE PROPERTY OF THE PARTY OF TH

Appendix III-08. Zooplankton organisms collected in the Trinity River from river mile 520 to river mile 10, September 1972 through March 1973

September, 1972 number per 5-minute plankton tow/ percent of total organisms

STATION*	• 6	• 7	. 8
PROTOZOA			
Sarcomastigophora			
Sarcodina			
Rhizopodea			
Lobosia			
Arcellinida			
Arcella-like tests	930/0.4	130/0.5	144/1.8
<u>Difflugia</u> -like tests	7998/3.4	1170/4.8	288/3.6
Ciliophora			•
Ciliatea			
Peritrichia			
Peritrichida		39/0.2	
ROTIFERA			
Brachionidae	223293/93	.8 2535/10.	3 1728/21.4
<u>Keratella-</u> type	70/0.03	.8 2535/10. 3 2470/10.	Ŏ ,
Others		•	96/1.2
NEMATODA	93/0.04		
ENDOPROCTA			
<u>Urnatella gracilia</u> Leidy		1/0.004	
ARTHOPODA			
Mandibulata			
Arachnida			
Hydracarina			48/0.6
Crustacea			, ., .
Branchiopoda			
Cladocera	29/0.01		384/4.8
E phippia	465/0.20	20/0.08	336/4.2
Ostracoda	3751/1.6	_	48/0.6
Copepoda	651/0.3	390/1.6	816/10.1
Insecta			•
Collembola	29/0.01		
Dipteran larvae	465/0.2	20/0.08	288/3.6
TOTAL ORGANISMS	237960	24563	8064
DIVERSITY INDEX (d)	0.4505	2.1090	1.8522

^{*} No samples were taken from the other stations during this month

Appendix III-08 (cont.) October, 1972

number per	5-minute	plankton	tow/percent	of total	organisms
STATION		• 1	. 2	•	<u> </u>

PROTOZOA			
Sarcomastigophora			
Sarcodina			
Rhizopodea			
Lobosia			
Arcellinida			
Arcella-like tests	2144/71.7	16016/55.4	74/10.6
Difflugia-like tests			, ,, 2000
Ciliophora			
Ciliatea			
Peritrichia			
Peritrichida	469/15.7	5368/18.6	1776/25.4
Other ciliates	407/ 130/))00/ 1 0.0	1110/2014
O MIGI CILLA VOS			
ROTIFERA			
Brachionidae	22/0.7	2000/6.9	814/11.7
Keratella-type	22/01/	2000/01/	814/11.7 25/0.4
Others		880/3.0	2)/014
Onter 9		000/).0	
NEMA TODA		440/1.5	25/0.4
N2) at 1 0 miles			23/041
ANNELIDA			
Oligochaet			
Tubifici ae			
Idpitiot, de			
ARTHROPODA			
kandibulata			
Arachnida			
Hydracarina			
Crustacea			
Branchiopoda			
Cladocera		88/0.3	3182/45.6
Ephippia		0-70-5	25/0.4
0s tracoda	67/2.2	44/0.2	74/1.1
Copepoda	134/4.5	880/3.0	25/0.4
Nauplii	67/2.2	2684/9.3	<i>-</i> 5/ •• ·
Insecta	• •	200.,,,0	-1-0-/
Collembola	67/2.2		148/2.1
Ephemeroptera larvae			
Corixidae			
Dipteran larvae	22/0.7	396/1.4	370/5.3
pupae	/ 001	8/0.03	296/4.2
Hemiptera		9,000	148/2.1
seemer east			~ TV/ ~ T ~
TOTAL ORGANISMS	2992	28892	6982
* A cides _ Actains . P. A. s. and	-//-		0 /0 2
DIVERSITY INDEX	1.3750	1.9353	2.1648
~ · ~ (1) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			

Appendix III-08 (cont.)			October, 1972
number per 5-minute p	lankton tow/	percent of	total organisms
PROTOZOA Sarcomastigophora Sarcodina Rhizopodea Lobosia Arcellinida Arcella-like tests Difflugia-like tests Ciliophora Ciliatea Peritrichia Peritrichida Other ciliates	126/35.3	96/0.8 288/2.4	346/0.1 2436/0.5
ROTIFERA Brachionidae	420/11.8	3648/31.2	478848/98.7
<u>Keratella</u> - type Oth er s	1092/30.6	1392/11.8	348/0.1
NEMATODA .			
ANNELIDA Oligochaeta Tubificidae			
ARTHROPODA Mandibulata Arachnida Hydracarina Crustacea		14/0.1	
Branchiopoda Cladocera Ephippia Ostracoda Copepoda Nauplii Insecta Collembola	96/0.8 13/0.4 882/24.7 42/1.2 13/0.4	5472/46.2 288/2.4 144/0.1	116/0.02 1044/1.6 1972/0.4 116/0.02
Ephemeroptera larvae Corixidae Dipteran larvae pupae Hemiptera	966/2 7. 1	2/0.02 384/3.2 14/0.1	116/0.02
TOTAL ORGANISMS	3567	11840	484996
DIVERSITY INDEX	2.1037	2.0060	0.1301

Appendix III-08 (cont.)

October, 1972

number per 5-minute plankt	on tow/percent	
<u>STATION</u>		10
PROTOZOA Sarcomastigophora Sarcodina Rhizopodea Lobosia		
Arcellinida Arcella-like tests Difflugia-like tests Ciliophora Ciliatea	224/19.3 224/19.3	343/0.05
Peritrichia Peritrichida Other ciliates		15/0.8
ROTIFERA Brachionidae	56/0.5	294/16. L
Keratella-type Others	17/1.5	254/13.9
NEMATODA		
ANNELIDA		
Oligochaeta Tubificidae	17/0.2	
ARTHROPODA Mandibulata Arachnida Hydracarina		
Crustacea Branchiopoda Cladocera Ephippia Ostracoda Copepoda	56/0.5 168/14.5 168/14.5 17/1.5	49/2.7 147/8.0
Nauplii Insecta Collembola Ephemeroptera larvae Corixidae	110/0//	735/40.2
Dipteran larvae pupae Hemiptera	112/9.65	
TOTAL ORGANISMS	1161	1827
DIVERSITY INDEX	2.5816	1.1977

Appendix III-08 (cont.) November, 1972

November, 1972			
number per 5-minute plankton	tow/percen	t of total	organisms
STATION		2 .	3
PROTOZOA			
Sarcomastigophora			
Sarcodina			
Rhizopodea			
Lobosia			
Arcellinida			
Arcella-like tests	1856/30.0	52/7.1	220/5.5
Difflugia-like tests			, ,
Ciliophora			
Ciliatea			•
Peritrichia			
Peritrichida .	191/3.1	52/7.1	1650/41.1
		• •	
ROTIFERA			_
Brachionidae	174/2.8		55/1.4
Keratella-type	174/2.8		110/2.7
Others	2552/41.3		550/13.7
NEMA TODA	•	578/78.8	660/16.4
NDFR I ODK		3, 0, , 0, 0	000, 200
ANNELIDA			
Oligochaeta			
Tubificidae	116/18.8		
	-		
ARTHROPODA		•	
Ma ndibula ta			
Arachnida			
Hydracarina	17/0.3		
Crustacea			
Branchiopoda			00 fm 0
Cladocera	116/1.9		28/7.0
Ephippia			38/0.6
Ostracoda	(0) /2 = =	ro h	220/5.5
Coperoda	696/11.3	52/7.1	330/8.2
Nauplii	290/4.7		165/4.1
Insecta			20/0 7
Dipteran larvae			28/0.7
TOTAL ORGANISMS	6182	734	4016
DIVERSITY INDEX	2.1541	1.0831	2.5064

Appendix III-08 ,cont.) Nove				mber, 1972	
number per	5-minute	plankton	tow/percent	of total	organisms
4 .	5	6	7 1 8 1		10
1118/18.2	627/1.4	195/2.9		300/6.8	440/4.4
220/3.6	342/7.7	455/6.8		200/4.5	1202/12.0
228/8.0	171/3.9	130/1.9			
642/10.5	171/3.9	520/7.7 1950/28.	9 1	600/13.6	2347/23.5
220/3.6	171/3.9 570/12.9	1690/25.	í	100/25.0 300/6.8	1349/13.5
	57/1.3	46/0.7		100/2.3	
16/0.3					
110/1.8 38/0.6	17/0.4	20/0.3 65/1.0		300/6.8 100/2.3	1291/12.9 53/0.5
3098/50.5 385/6.3	513/11.6 1539/34. 114/2.6	65/1.0	.4	100/2.3 700/15.9 400/9.1	53/0.5 2493/24.9 381/3.8
57/2.0	114/2.6	46/1.0		200/4.5	
6138	4423	6742		4400	9996

2.8884 2.5939

1.9834 2.7493 2.4496

Appendix III-08 (cont.)

number per 5-minute pl	5-minute plankton tow/percent of total	cent of to	tal organisms	sms 4	5
PROTOZOA Sarcomastigophora Sarcomastigophora Sarcodina Rhisopodea Lobosia Arcellinida Arcellinida Arcella-like tests DIFILIZIA-LIKE tests Cillophora	2144/71.7		21/5.4	366/24.6	164/21.3
Peritrichia Peritrichia Other ciliates	4422/47.1		138/35.7	12/0.8	
ROTIFERA Brathionidae Keratella-type Others	20/0°5	34/15.5 56/25.6	138/35.7 21/5.4	183/12.3 183/12.3 244/16.4	12/1.6 205/26.6 246/31.9
HEMATODA		56/25.6			12/1.6
ARTHROPODA Fandibulata Crustacea Branchiopoda	6.0/06	·	2877.0	12/0.8	41/5.3
Ephippia Ostracoda		1		7 107 270	25/3.2
Copepoda Insecta Dipteran larvae	40/0.7	56/25.6	69/17.8	300/24.0 122/8.2	25/3.2
TOTAL CRGANISMS	9386	219	387	1482	771
DIVERSITY INDEX	1,1163	2,2127	1.9607	2,3088	2,3850

Appendix III-08 (cont.) December, 1972 number per 5-minute plankton tow/percent of total organisms	n tow/percen	t of total	organisms 8	. 6	10
PROTOZOA Sarcomastigophora Sarcodina Rhizopodea Lobosia Arcella-like tests Difflugia-like tests Ciliophora Ciliatea Peritrichia	456/15.9	46/3.0 14/0.9	162/7.3	18/2.5 244/34.0	134/1.1
Peritrichida ROTIFERA Brachionidae Keratella-type Others	228/8.0 171/6.0 114/4.0 604/21.1	46/3.0 506/33.0 92/6.0	54/2.4 162/7.3 162/7.3	61/8.5	201/1.7 737/6.2 201/1.7
NEMATODA ARTHROPODA				18/2.5	
Mandibulata Crustacea Branchiopoda Cladocera	34/1.2	0.6/34	270/12.2 216/9.8	61/8.5	201/1.7
Stracoda Copepoda Nauplii	171/6.0 912/31.9 114/4.0	460/30.0 322/21.0	108/4.9 864/39.0 54/2.4	18/2.5 61/8.5 37/5.2	201/1.7
Insecta Dipteran larvae	57/2.0		54/2.4	18/2.5	
TOTAL ORGANISMS	2861	1532	2214	717	11792
DIVERSITY INDEX	2.5771	2,2832	2.5214	2,2868	1.0376

[.] Other station were not sampled this month.

Appendix III-08 (cont.) January, 1973 number per 5-minute STATION	plankton to	5-minute plankton tow/percent of total organisms	total organ	ilsms 9	10
PROTOZOA Sarcomastigophora Sarcodina Rhizopodea Lobosia Arcella-like tests Difflugia-like tests Ciliophora Ciliatea Ciliatea Peritrichia Peritrichia Other ciliates	208/24.2 16/1.9 31/0.4	324/15.9 49/2.4	22/15.8	47/8.8 363/67.7	134/16.0
ROTIFERA Brachionidae <u>Keratella</u> -type Others	208/24	208/24.2 243/12.0 104/12.1 81/4.0 49/2.4		24/4.5	20/2.4
ARTHROPODA Nandibulata Crustacea Branchiopoda					·
Cladocera Ephippia	31/3.6	486/23.9 49/2.4 162/8.0	73/52.5	79/14.7 47/8.8	20/2.4
Copepoda Insecta Dipteran larvae	52/6.1 156/18.2	567/27.9 24/1.2		24/3.9	20/2.4 134/16.0
TOTAL ORGANISHS	858	2034	139	536	837
DIVERSITY INDEX	2,3092	2.5482	1.0511	1.5238	1.2738

Appendix III-08 (cont.)						
February, 1973						
number per 5-minute plankton tow/percent of total organisms	COW	/percent	of	total	organicms	
STATION	•	•		2	£	

4020m0dq					
Sarcomastigophora Sarcodina Rhizopodea				;	
Lobosia Arcellinida					
Arcella-like tests Difflueia-like tests	30/0.7	1500/17.0	1312/27.9	:	4.8,418
					2.0/22
Ciliatea					
reritions	2 100 /00/1		0 , / , 0		
ROLLICUTOR BULLETT PERT	C*+C /00+T	0.71/00C1	2.6/042	:	7972192
Brachionidae	100/2.5		1394/30.0		5 3C/CTTC
Keratella-type	300/7.4	3500/39.6	574/12.2		1554/16.1
Others	1400/34.5		•		22/0.2
NEWATODA		1000/11.3	246/5.2	;	888/9.2
ARTHROPODA		•			
Kandibulata					
Arachnida	,				
Hydracarina	500/4.9	165/1.87			
Crustacea					
Branchiopoda	,				
Cladocera	500/4.9		82/1.7	!	222/2,3
Ephippia			•		
Ostracoda		•			
Copepoda	200/4.9	5.00/5.7	つ。たけ、ついつ	;	L 3/ C 3
Nauplii	200/4.9	165/1.9	82/1.7		296/3.1
Insecta					
Dipteran larvae	30/0.7	500/5.7	82/1.7	ł	
TCIAL ORGANISMS	4060	8832	7,600		0664
					100
DIVERSITY INDEX	2.3306	2.3793	2.4734		2,5622
					•

_
cont.
90-
III
. X

·	1 200 200 200 200 200 200 200 200 200 20	4	; ; ;		
annurui-C J	ow/percent	prankton tow/percent of coal of gantams	8	6	10
PROTOZOA Sarcomastigophora Sarcodina Rhizonodea					
Lobosia Arcellinida					
Arcella-like tests Diffluela-like tests	560/2.9	623/3.2	17/0.3	47/8.8	64/0.2
•					
Peritrichia Peritrichida	4533/23.1	4509/22.9			19/0.1
ROTIFERA Brachionidae	2347/12.0	2344/12.0	1991/30.4		4331/14.2
pe	5547/28.3	5103/25.9	3364/51.4	1666/52.6	10624/34.9
	240/1.2	267/1.4		•	150/021
Arthropoua Fandibulata					
Arachida Hydracarina	48/0.2	27/0.1	17/0.3		
Grus taces Preschionade					
	3040/15.5	2996/15.2	58/0.9	238/7.5	2.91/6464
pia	80/0°	27/0.1	35/0.5	1 1/78	2.0/49
	2000/10.2	3174/16.1	638/9.8	119/3.8	8064/26.5
•r-1	560/2.9	445/2.3	58/0.9	357/11.3	1600/5.2
Libecta Dipteran larvae	24/0.1		•		19/0.1
TOTAL ORGANISMS	19587	19720	6543	3166	30457
DIVERSITY INDEX	2.6174	2,5582	1.7389	1.9571	1.8321

8-12

Appendix III-08 (cont.)

23
15
Ë
O

number per 5-minute plankton tow/percent of total organisms

PROTOZOA Sarcomastigophora Sarcodina Rhisopodea Lobosia Arcellinida Arcella-like tests Difflugia-like tests	144/2.7	246/8.0	6.0/94	273/2.5 91/0.8	146/1.2 365/3.1
Peritrichia Peritrichida	792/15.1	984/32.2	2128/39.7	1092/9.9	803/6.8
Brachlonidae <u>Keratella</u> -type Others NEMATODA	144/2.7 288/5.5 792/15.1 2088/39.8	410/13.4 246/8.0 574/18.8	2122/39.6 76/1.4 380/7.1	8554/77.5 273/2.5 27/0.2	8760/74.8 365/3.1 44/0.4 22/0.2
Animoroua Mandibulata Arachnida Hydracarina Crustacea	1/0.02			91/0.8	22/0.2
Branchlopoda Cladocera	22/0.4	82/2.7	76/1.4	182/1.6	146/1.2
Copepoda Nauplii	360/6.9 576/11.0	164/5.4	380/7.1 152/2.8	364/3.3	803/6.8 219/1.9
insecta Collembola Dipteran larvae	22/0.4	164/5.4			
TOTAL ORGANISMS	5251	3059	5360	11038	11717
DIVERSITY INDEX	2,4117	2,7211	1.8929	1.3039	1.4284

Appendix III-08 (cont.)
Farch, 1973
number per 5-minute plankton tow/percent of total organisms
STATION

STATION	2	T cotal organisms	gantsms	2	10
PROTOZOA Sarcometigophora Sarcodina Rhizopodea Lobosia Arcellinida Arcellinida Arcella-like tests Diffluria-like tests	186/3.4	138/10.0		42/3.4	33/0.8 300/7.3
Cillatea Pertrichia Peritrichida ROTIFERA Brachionidae Keratella-type	2604/47.72 1395/25.6 279/5.1	414/30.2	htrom s id	23/1.6 468/33.7	300/7.3
NEMATODA ARTHROPODA Mandibulata Arachnida	31/0.6	21/1.5 21/1.5			33/0.8
Hydracarina Crustacea oranchiopoda	31/0.6	41/3.0	. 891		
Cladocera Ephippia Copepoda Nauplii	279/5.1 80/0.4 372/6.8	207/15.1 41/3.0 276/20.1	Iqmas ov	47/3.4 23/1.7 546/39.3 243/16.9	300/7.3 100/2.4 1000/24.4 700/17.1
Collembola Dipteran larvae		4.0/9	I		33/0.8
TOTAL ORGANISMS	5456	1373		1388	6604
DT/ERSTOW TRIDEX	2.1855	2.6935		1.4768	2,0998

Appendix III-09. Multiple tube fermentation data

Station	October	November	December	January	February	Karch	April
7	24,000	~240°000	46,000	110,000	9,300	0	400
8	24,000	·>240,000	F240,000	7240,000	~240,000 240,000	7240,000	>.240,000
6	> 240,000	110,000	~ 240 , 000	>240,000	~240,000 110,000	7240,000	110,000
ক	4,300	110,000	110,000	240,000	~ 240,000 900	1,500	4,300
v	4,300 24,000 110,000 7 240,000	46,000	110,000	24,000 24,000	110,000	9,300	4,300
v	46,000 24,000 4,300 4,300	46,000	110,000	46,000	15,000	9,300	1,500
~	4,300 21,000 4,300 4,300	24,000	110,000	7,500	4,300	>240,000	€002

Appendix III-09 (cont.)

Station	October	November	December	January	February	March April	April
€	000	006	2,300	9,300	•	•	•
•	4,300	4.300	9,300	15,000	ò	•	•
10	24,000	2,300	900	4,300	•	•	•

Appendix III-09 (cont.)	.09 (cont.)		TOTAL COLIFORM ANALYSIS	K ANALYSIS			
Station	October	November	December	Jamary	February	March	April
~	35,800	79,400	198,000	174,000	100	100	200
N	33,800	83,800	2,322,000	2,220,000	3,230,000	1,000	220,000
6	001*11	004,99	138,000	163,000	530,000	26,000	68,000
4	22,800	62,600 13,000	115,000	160,000	79,000	2,000	7,300
v	13,630 180,000 433,400	52,000	84,000	92,000	20,000 317,000	2,000	2,900
•	10,600 8,250 13,330 51,000	149,000	144,000	91,000	27,000	7,400	4,200
~	12,000 14,500 333,000 27,000	195,000	87,000	96,000	24°000 6°000	220,000	300

Appendix III-09 (cont.)

Station	October	November	December	January	February	March	April
€	•	1,600	3,000	5,100	•	•	•
•	•	7,000	9,900	2,000	•	•	•
. 91	•	7,100	5,400	4,300	•	•	•

Appendix III-09 (cont.)	I-09 (cont.)	PECAI	PECAL COLIPORM ANALYSIS	ILYSIS			
Station	October	November	December	January	Pebruary	March	Apr11
4	21,400	63,460	157,000	129,300	œ	0	500
8	19,260	75,000	1,880,000	1,836,000	2,153,000	200	130,000
6	34,000	26,600	104,000	131,000	160,000	47,000	000 - 114
4	5,200	46,800	101,000	103,000	62,000	3,000	4° 000
~	8,430 76,660 90,000	19,000	38,000	62,000	22,000	3,000	2,700
9	9,000 77,000 90,000 47,000	000°49	101,000	000 89	13,000	9006*9	2,000
2	7,900 5,930 150,000 23,000	149,000	000 09	35,000	8,000	70,000	1,000
w	0	1,100	1,800	3,400	•	0	0

Appendix III-09 (cont.)

March April	•	•
March	•	•
February	•	•
January	2,800	1,700
December	4 ,000	1,100
November	3,900	5,700
October	0	•
Station	•	10

PECAL STREPTOCOCCUS ANALYSIS

Appendix III-09 (cont.)	-09 (cont.)	PECAL ST	PECAL STREPTOCOCCUS ANALISIS	MALYSAS			
Station	October	November	December	January	February	March	April
1	2,300	16, 00	3,900	13,900	100	0	0
8	3,700	19,100	173,000	102,000	134,000	200	27,000
6	9,800	8,300	004.4	5,100	7,000	2,200	4,100
.	006	11,800	000*9	5,800	2,420	100	200
~	2,000 18,670 15,900	2,600	6,100	12,800	100	006	800
9	1,300 8,000 9,600	5,100	4,500	1,600	•	3,500	200
	2,300 14,670 2,500	14,800	3,300	3,200	0	3,800	100

The values above refer to fecal streptococcus per 100 ml.

Appendix III-09 (cont.)

Station	October	Navember	December	January	February	March April	April
80	0	0	1,100	1,500	0	•	•
6	•	•	1,660	1,500	•	•	•
9	•	•	909	909	•	•	•

HATIO OF FECAL COLIFORM AND FECAL STREPTOCOCCUS

Appendix III-09 (cont.)	09 (cont.) October	November	December	January	February	March	Apr11
	709 0	3.966	40.256	9.302	000.0	0000	0.00
4 72	5.205	3.926	10.087	18,000	16.067	3.500	4.814
~	3.469	6.819	23.636	25.686	22.857	21.363	10.730
4	5.777	3.966	16.833	17.758	25.619	30.000	5.714
' ^	4.2150 4.106 5.660	7.307	6.229	4, 843 8,800	22,000	3.333	3.375
v	6.923 9.625 11.250 4.895	12.549	2.244	42.500	000.0	1.800	004.
~	1.082 2.502 10.224 6.570	10.067	17.180	10.937	00000	18.421	10.000
w	000.0	000.0	1.636	2,266.	000.0	0000	0.00

Appendix III-09 (cont.)

April	00000	0000
ry Merch April	0.000	00000
Tobrush	c.000	000°0
January	7.367	2.833
To Que de la companya	2,560	1.633
Tedusoui	000°C	90.0
Octuber	0.30	000.0
Station Oct	6	10

CHAPTER IV

GEOLOGIC ELEMENTS

by

Hershel L. Jones

with the assistance of:

Volker Gobel Hiram Kelly

1

and the second of the second

TABLE OF CONTENTS

Introduction	197
Procedures	197
Butler Quarry	197
Fairfield Lignite	
Palestine Salt Dome	198
Eagle Ford & Kerens Member Type Section	
& Cornuspira Carinata Fossil Locality	202
Results	
Butler Dome Quarry	202
Fairfield Lignite	
Butler & Palestine Salt Domes 2	212
Type Localities	215
Discussion and Conclusions	215
Butler Dome Quarry	215
Fairfield Lignite	217
Butler & Palestine Salt Domes	218
Type Localities	218
Addendum	
List of References	230

INTRODUCTION

The geological in-depth studies focused on several problem areas which became apparent after the previous research was completed. They included an investigation of the Butler Dome quarry operation with the associated acidic pit and surface water pollution, and a determination of the possible acid and heavy metal contamination resulting from the mining and utilization of lignite by the Big Brown Electric Generation Plant in the vicinity of Fairfield.

The studies also focused on the possible effects of salt water contamination from natural salt masses of the Butler and Palestine salt domes and on the academic value of the stratigraphic type section of the Eagle Pord Formation west of Dallas, and the <u>Cornuspira Carinata</u> fossil locality northeast of the town of Kerens.

An initial effort was made to determine the location of isolated abandoned or depleted oil wells, oilfields, and active or inactive brine disposal pits within the proposed Tennessee Colony reservoir area and along the Trinity River floodplain and its tributaries which may contribute pollution to the river and the Livingston and Walli ville reservoirs. However, it was soon realized that this task would require extensive time swarching the files of the Railroad Commission in Austin and in cross checking this information in the field. The time spent would have far exceeded that available for the duration of this contract. Nonetheless, information, e.g., the name, location, producing company, whether or not in production, pollution problems, of many of the fields is given in Figures 7 (pg. 96), 8 (pg. 100), 9 (pg. 104), and corresponding Tables 3 (pg. 97), 4 (pg. 101), 5 (pg. 105) of a previous report (Stephen P. Austin State University, 1972).

PROCEDURES

Butler Quarry

The following approach was used in the Butler Dome study. The section overlying the quarried stone was first measured and described to letermine what proportion of the overburden contains sulfide minerals. Pyrite (PeS_2) veins and nodules and elemental sulfur were detected in 50 feet of the overburden. A representative sample of the sulfide-bearing material was obtained by trenching the entire 50

foot interval. The sample was processed and analyzed to determine the percent of sulfide, sulfur, and heavy metals present.

The redistribution of the overburden and the effect of surface oxidation and leaching on the sulfides in it were carefully observed. A surface drainage map was constructed to portray the general drainage characteristics of the area in order to determine the dispersal of the acid, sulfate and heavy metals being leached from the overburden by surface oxidation (Figure 1V-01). The location of the quarry and the redistributed overburden are also shown on this map.

Water samples were taken and analyzed from collection pools in the bottom of the quarry, holding pools downdip from the quarry, collection pools on the exposed overburden, Blue Lake, and where Blue Lake flows into the Trinity River (Figure IV-01).

Pairfield Lignite

In order to study the possible acid and heavy metal pollution problems associated with the activities of the Big Brown Electric Generating Plant, it was necessary to observe their operations and to collect samples. The appropriate personnel of the company were contacted and several guided tours were arranged. They were very helpful in explaining their operation, the extent of their reserves, and in collecting representative samples of the liquite and fly ash. The samples were placed in plastic containers and returned to the laboratory for sample preparation and analysis. The samples were analyzed using atomic absorption, neutron activation, and wet chemical techniques. The location of the Fairfield lignite mining operation, power plant, and the local surface drainage system is given in Figure IV-02.

Palestine Salt Dome

Determination of the possible effects of pollution trom natural salt sources in the Palestine Salt Dome drainage area required a field reconnaissance of the area to determine the source of the salt which is contaminating surface waters. Determination of the surface drainage system had to be determined in order to trace the dispersal of the salt water. A surface drainage network map of the area was constructed to accomplish this (Figure IV-03). Water samples were collected from streams draining the Dome

Figure IV-02

Ligate

C. Ligate mine

C. Ligate mine

C. Ligate mine

C. Ligate mine

Figure Steam Electric

Generating Plant

Tennessee Colony Reservoir

XX Ligate within reservoir area

area to determine if salt pollution is occurring and if so, to what extent. The samples were taken to the laboratory and analyzed for chlorides and sulfates.

<u>Lagle Ford and Kerens Member Type Sections and Cornuspira</u>
carinata Fossil Locality

Location of type geological sections are frequently difficult because many were described years ago and referenced to the existing landmarks which may or may not now exist. A search of the literature was necessary to locate the original description and location of these type sections. Even then it required considerable field work to locate them. After location, the type sections were measured and described and compared to the original description. The locations of the type geological sections and the fossil locality are shown in Figures IV-04, 05, and 06.

RESULTS

Butler Dome Quarry

widespread progressive chemical decomposition of the iron sulfide mineral pyrite caused by weathering processes was observed in the overburden dumps and in the 50-feet of exposed material overlying the quarried stone. Some of the iron released during this process is being redeposited as iron oxide coatings on the quarry clitf faces and in the water collection pools. Part of the sulfur released occurs as elemental sulfur on the quarry walls and on the overburden dumps, but much of it reacts chemically with surface water producing sulfur-containing acids. Surface runoff from the dumps and from the exposed overburden above the quarry stone drains into the quarry, holding ponds, collection pools on exposed overburden, and in Blue Lake concentrating acids, sulfate, and heavy metals.

Their dispersal is shown on a general location map (Figure IV-01) of the area depicting the quarry, the location of the redistributed overburden material, and the local drainage system.

Approximately 2.8 million tons of overburden has been removed and redistributed by the Butler Dome quarry operation. It is anticipated that at least an additional million tons will be removed in the future. Table IV-01 gives data for the different forms of sulfur and the heavy metals in the overburden material. Approximately 45,600

mail of the best of the state o

tons of total sulfur are present. About 10,000 tons, or approximately 28 percent of the total amount, are readily soluble. The remaining sultur is still tied up in the exidizing pyrite.

Water samples taken from collection pools in the bottom of the quarry, collection pools on the overburden, from Blue Lake, and its outlet into the Trinity River (Figure IV-01) permitted the determination of the present effects of the quarry operation on the chemical composition of the water. Table IV-02 summarizes the analytical results.

The composition of the water varies with the amount of precipitation because of the subsequent dilution. The data given are for a wet season during which the backwater of the flooding Trinity River occasionally inundated the lowland area adjacent to the quarry and Blue Lake. At high floodstage the water backs up against the displaced overburden of the quarry and a water exchange between river and Blue Lake takes place.

Water from the holding ponds and collection pools on the overburden is very acidic and has a high sulfate content. The sultate content of the water in the collection pools in the bottom of the quarry is also high; surprisingly, the water is less acidic than expected. Dilution of the quarry water as a result of unusually heavy raintall and the reaction of the acidic water with calcium carbonate (CaCO₃) in the quarried rocks could account for this unexpected situation. High carbonate concentrations occur in the bottom pit water of the quarry.

The sulfate content of Blue Lake water and its outlet to the Trinity River is lower than that of water close to the quarry but is still significantly high as compared with average lake water. The pH is higher than expected but could be explained in part by the dilution of the lake water by the inflow of large quantities of water during the rainy season.

Heavy metal concentrations in the overburden from the quarry (Table IV-01) are as follows:

- (1) mercury 0.75ppm
- (2) cadmium 3.7ppm
- (3) lead 417ppm
- (4) arsenic 5.4ppm
- (5) selenium 3.1ppm.

Table IV-01. Sulfur and heavy metal contents (in weight percent and parts per million) of overburden material from the Butler Dome quarry.*

The state of the s

	Concentrations	Total Ions Present
Water soluble sulfate sulfur Water insoluble sulfate sulfur	0.15 wt.%	5,700.0
Blemental sulfur	0.12 ut.s	4,560.0
Total sulfur assay	1.20 ut. %	45,600.0
Bercury Cadaius	0.75 ppm 3.7 ppm	2.9
Lead	417.0 ppm	1,585.0 11.8
Arsenic Total moisture content	5.4 ppm 6.10 et.8	20.5 231,800.0
	!	

performed using a representative sample. The amount of 3.8 million tons of overburden was used in computing the townsques.

fable IV-02. Results of chemical analyses (in parts per million) of water samples from Butler Dome quarry and vicinity

Sample	Location	Month Collected	H Q	• 0s	a P	တ္သ	H J	Y S
-	Collection Pool inside quarry	Nov.	7.7	750.0	**	**	0.022	9.0
7	Collection pools on overburden	BOV.	2.6	7300.0	*	*	0.040	0.0
m	Holding ponds downdip from quarry	Nov. Hay	2.9	1700.0	* *	* *	0.018	000
3 ·	Blue Lake adjacent to quarry		7.1	140.0	*	*	0.020	0.0
'n	Central part of Blue Lake	* A O \$5	8.0	152.0	*	*	0.017	0.0
.	Outlet of Blue Lake to Trinity River	Hov.	7.9	70.0	* *	* *	0.020	00
					i 	1		

0.2 cadmium * Less than lower limit of detection as follows: lead 2 ppm, and arsenic 1.0 ppm.

The results of chemical analyses of water samples from quarry and vicinity are given in Table IV-02. The mercury content of water samples from collection pools on the overburden (40ppm), from inside the quarry (20ppm), and from Blue Lake (approximately 20ppm) (Figure 1V-01) exceed the maximum considered safe for drinking water (5ppb--U.S. Service, 1962). Health Cadmium and concentrations in water samples from the quarry vicinity and from Blue Lake were below the limit of detection (0.2ppm and 2.0ppm, respectively) of the atomic absorption unit used. Water samples from the collection pool inside the quarry averaged 8ppm which is considerably greater than 50ppb considered safe by the U.S. Public Health Service. Arsenic was not detected in water samples from Blue Lake, however.

Pairfield Lignite

Mercury analyses of samples of the Pairfield lignite power plant ash were performed by neutron activation analyses and double gold amalgamation-flameless atomic absorption spectrophotometry. Results obtained by neutron activation analyses were not as reliable as those obtained double gold amalgamation-flameless atomic absorption spectrophotometry and were thus not included in this report. The results of the analyses by the latter are given in Table 1V-03. Trace element results of a composite sample are given in Table IV-04. Figure IV-02 shows the location of the power plant and lignite pits. The mercury content varies for samples taken from pits A and B and the stock piles. The calculated averaged value is 0.30 ppm Hg. corresponds quite well to the 0.35 ppm figure obtained for a composite sample representing materials from pits A and B, the unloading dump and the stock piles. Therefore, this figure of 0.35 ppm Hg can be taken as representative for the mercury content of the Fairfield lignite.

Combined bottom and precipitated fly ashes constitute approximately 14 weight percent of the total lignite burned, and contain approximately 0.05 ppm Hg.

Based on annual lignite consumption of 3,600,000 tons (dry coal basis), approximately 1.26 tons per year of mercury is mobilized. Of this amount released by burning, only 2 percent or 50 pounds is retained in the fly ash,

The fate of mercury upon burning of the coal is diverse. It escapes out of the stack together with the gases and may partly be absorbed on the fly ash and the interior walls of the furnace and stack system.

Table IV-03. Hercury contents for Fairfield Lignite and ash from the Big Brown Power Plant *

Sample	LO	Location	uo		(mđđ) bH
	Pit A				0.18
	Pit B				0.34
æ	Power Plant Stock Pile	ant	Stock	Pile	0.39
\$	Power Plant ash	ant	ash		90.0
	1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

amalgamation-* Analyses were performed by double gold flameless atomic absorption spectrophotometry.

Table IV-04. Trace element contents of composite samples of Pairfield lignite and power plant ash*

Element	Concentrations in Lignite Ash	tions in Ash	Amounts of Lignite	Amounts of Elements in Lignite Ash	Loss	Retained Ash	
ני מ	0 35mm	0.05pp	1.26s.t.	0.025s.t.	38 6	2%	•
Pp	17.00ppm	41.40ppm	61.20s.t.	20.87s.t.	899	34%	
Cđ	1.16ppa	7.40pp	4.18s.t.	3.73s.t.	118	8 68	
S	8.50ppm	5.40pm	30.60s.t.	2.72s.t.	%16	× 6	
y s	0.9ppm	1.20ppm	3.24s.t.	0.61s.t.	198	818	
Sc	3.2ppm	23.00ppm	11.52s.t.	15.59s.t.	% 0	100%	
<pre>fotal S (weight percent)</pre>	0.87%	0.16%	0.16% 31,320.00s.t.	. 806.00s.t.	84°C6	2.6%	
Total moi	Total moisture (+105°C) 35.39%	5°C) 35.39					

* All results are on a dry coal basis, and the tonnage of each element computed is on the basis of an annual lignite consumption of 3.6 million short tons with a 14 percent ash content. The fly ash is removed from the furnace emissions by electrostatic precipitators and is combined with the bottom-ash. The combined ash is sent through a slurry line to a collection pit from which it is removed and used as road base material.

The mercury content of the slurry pit ash is about 0.05 ppm Hg. Some of this mercury in road base material may ultimately escape to the atmosphere and the ground water because mercury begins to volatilize at a temperature of about 8°P. Dissemination of the ash as road material could possibly result in wide dispersal of the mercury due to this volatilization under hot weather conditions during and after road construction.

It can be assumed that the majority of the mercury escapes directly to the atmosphere because airborne surveys (Hearings, p. 162, 1971) detected large concentrations of up to 10,000 ng/m³ of mercury in the plumes discharged from the smokestacks of coal-burning power plants.

Other elements in the Pairfield lignite (Table IV-04) analysed include lead, cadmium, selenium, arsenic, scandium, and sulfur. Various amounts of these elements are not retained in the ash, and have most likely been emitted with the stack emissions. Sulfur occurs mostly as sulfur dioxide gas. Lead, cadmium, selenium, and arsenic probably exist as volatized heavy metal atoms.

butler and Palestine Salt Domes

Results of water sample analyses from the drainage areas of Butler and Palestine salt domes are given in Tables IV-05 and IV-06. Surface drainage is pictured in Figures IV-01 and 03.

In December 1972, sodium and chloride concentrations in the water entering the Trinity River through the outlet of Blue Lake were higher than for regular lake water. Blue Lake is the collection basin for all the drainage from the Butler Salt dome. Lower concentration values were obtained for samples collected during May, 1973. This can be explained by the recent dilution of lake water by heavy rains, and by an exchange of Trinity Fiver flood waters with the water of Blue Lake. The results indicate that most of the chlorides come from the salt dome surface drainage rather than from the quarry operation on the north flank of the dome.

The second second

Table IV-05. Results of chemical analyses of water samples (in parts per million) for chlorides from Butler Dome and wicinity.

Sample	Location	Honth	₹	c1
-	Collection pool inside quarry	Dec.	70 70 70 70	35
7	Collection pools on overburden	Dec.	9•9	*
m	Holding ponds downdip from quarry	Dec. May	0.2	\$ * 80
#	Blue Lake adjacent to quarry	Dec.		80
'n	Central part of Blue Lake	Dec.	#9	180
9	Outlet of Blue Lake to Trinity River	Dec. May	70	180

*Below detectable limit.

The state of the second

Table IV-06. Results of chemical analyses of water samples from the Palestine Dome vicinity.

Sample	Location	Month Collected	Na (ppm)	C1 (ppm)	H.C.	\$0,
-	Duggey's Lake	· AON	1600	2600	7.0	144
7	Wolt Creek	Nov.	0 #	90	7.4	52
m	Town Creek at	NOV.	42	09	7.0	52
	or raye on argumay 643	Aay	20	70	77.9	82
			111111111111111111111111111111111111111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	

Extremely high concentrations of chlorides were observed in the water from Duggey's Lake which is located near the center on the Palestine dome. Salt flats occur on the flanks of the dome. However, these high concentrations of chlorides have not been observed in the drainage waters farther away from the dome. Wolf Creek and Town Creek waters have fairly low chloride concentrations. Town Creek discharges into the Trinity River above the proposed Tennessee Colony reservoir.

Type Localities

The type localities of the Eagle Ford Formation, Gulf Series, Cretaceous as named and and described by Hill (1887) are situated around the small settlement of Eagle Ford approximately 1 mile south of and some 60 feet above the present Trinity River floodplain (Pigure IV-04). These localities are numerous and are so far away from the river that they would not be disturbed by channelization activities. Detailed information concerning the stratigraphy of the Eagle Ford Formation is given in Table IV-07.

The Eagle Ford Formation has been divided into three members: Tarrant, Britton, and Arcadia Park, in ascending order from older to younger by Moreman (1927). The type locality of the Tarrant member is located east of Grapevine at the crossing of the St. Louis, San Francisco, and Texas railways over a tributary of Bear Creek approximately 9 miles north and well above the Trinity River (Pigure IV-05). The stratigraphy of these units is described in detail in Table IV-07.

The type locality of the Kerens member of the Wills Point Formation and the <u>Cornuspira Carinata</u> fossil locality of the Kerens member located northeast of Kerens (Figure IV-06) will both be inundated by the Tennessee Colony Reservoir. No suitable alternative localities have been found up to now.

DISCUSSION AND CONCLUSIONS

Butler Dome Cuarry

The results of this study confirm the previous belief that a serious acid water pollution problem does exist in the vicinity of the Butler quarrying operation. Surface drainage from the overburden dumps, quarry and holding ponds transports acid, sulfate, and heavy metals into Blue

Table IV-07. Stratigraphy of the Eagle Ford Formation, Gulfian, Cretaceous; Eagle Ford Vicinity.

Physical Characteristics of Rock Unit	Clay, shale and limestone. Basal portion clay (20 feet), separated from upper shaley portion (75 feet) by thin limestone flags (1-3 feet). Numerous calcareous concretions in upper portion.	Clay, marl, and shale with some limestone seams, cai-careous concretions, and bentonite seams.	Clay, sandy, limestone and calcareous concretions.	
Approx. Thickness (feet)	100±	300#	15±	
Stratigraphic Unit	Arcadia Park Shale	Britton	Tarrant	
Group	Eagle	Ford		
Series	•	Gulflan		
System	npper	Cretaceous		

Lake, which in turn, discharges into the Trinity River. At the present time, this does not appear to affect seriously the chemistry of the water in Blue Lake because of the continuous flow of water from Blue Lake into the Trinity River, and also the frequent influx of water from the Trinity River into Blue Lake during flood periods.

This situation will change if the proposed cut-off of the Trinity River during channelization is done. This creates a man-made oxbow lake north of the quarry (Figure IV-01). Realignment of the channel would prevent flooding and frequent exchange of water between river and lake. The large quantities of available acid, sulfate, and heavy metals in the waters could ultimately affect adversely the water quality of Blue Lake which in turn would affect the water quality of the Trinity River below the oxbow lake. Fortunately, the outlet of Blue Lake is below the proposed cut-off and the discharge from the lake will not flow into the oxbow lake. There is, however, the possibility of minor pollution of the lake by surface water drainage from the overburden dump and holding ponds during heavy rains.

Fairfield Lignite

Results for the Fairfield lignite and fly ash from the power plant show that a potentially serious mercury, sulfur dioxide, and heavy metal pollution problem exists due to the activities of the Big Brown Electric Generating Plant.

The magnitude of the emissions problem can only be assessed after an aerial wind dispersal study has been made. The problems of atmospheric transport and environmental accumulation should be investigated over a long period of time to determine the severity of this problem. Prevailing winds from the southwest to the northeast could feasibly cause the accumulation of mercury in Big Brown reservoir, Cottonwood Creek, Trinity River, and the proposed Tennessee Colony Reservior.

Mercury pollution poses a serious environmental problem because of the tendency of mercury to be concentrated in the food chain.

Lead, cadmium, and selenium pose similar problems. These elements are serious pollutants and also constitute an acute health problem caused by heavy metal poisoning, as has been demonstrated in previous studies (Texas State Health Department, 1972).

butler and Palestine Salt Domes

Some natural salt pollution of the surface drainage exists in the Butler and Palestine salt dome areas. Analyses of water samples for chlorides indicate that the problem is more severe in the Butler Dome area. Surface runoff from Butler Dome concentrates chlorides in Blue Lake, which drains into the Trinity River. The problem will become more serious if channelization produces an artificial oxbow lake just to the north of Blue Lake. It would reduce dilution of the lake water by overflow from the river and allow chlorides to concentrate in higher amounts in Blue Lake. Polluted water from Blue Lake would flow into the Trinity River below the oxbow lake and affect the water quality of the river.

Severe salt pollution of surface water occurs in the Palestine dome proper but considerable dilution appears to occur before this water enters the Trinity River via Town Creek.

Type Localities

The type localities of the Eagle Ford Formation west of Dallas are too far away from the river to be affected by channelization.

The type locality of the Kerens member of the Wells Point Formation and the <u>Cornuspira Carinata</u> fossil locality of the Kerens member located northeast of Kerens will both be inundated by the Tennessee Colony Reservoir, and suitable alternative localities have not yet been located.

It is felt that the flooding of the type locality of the Kerens member and and the <u>Cornuspira Carinata</u> tossil locality will not be an important loss. Both localities have been adequately described, and new satisfactory alternatives could probably be located.

ADDENDUM

This addendum entitled Preliminary Report on the Status of the Oil and Gas Wells in the Proposed Tennessee Colony Reservoir Area, Trinity River, Texas was prepared by Martha Robins Stokes under the supervision of Dr. Hershel L. Jones

**4

A supplemental study was made of the oil and gas wells of the Tennessee Colony Reservoir area using 1953 (updated to 1963) Heydrick ownership and oil development maps by Acme Mip Co., Tyler, Texas. Six maps were used covering portions of Anderson, Preestone, Henderson, and Navarro counties. Based on the maps, a count revealed 414 wells in the thoodplain (flood pool elevation 297 feet) of the proposed Tennessee Colony Reservoir area. Two hundred and forty of these wells were shown to be producing, with the remainder being dry or abandoned. The breakdown is as follows:

Producing oil wells	164
Producing gas wells	64
Producing gas and oil distillate Total	12 240
Dry or abandoned holes	130
Abandoned oil	38
Abandoned gas and oil distillate	1
Abandoned gas	5
Total	774-

Due to the limited time available for this study, six percent of the total wells were randomly sampled and further investigated in an attempt to determine what percentage of the shown producing wells were still producing and to determine what percentage of those shown to be abandoned or depleted were plugged and the plugging techniques. On the basis of this information, an attempt was made to statistically determine the number of wells still in production; the number of wells abandoned or depleted; and the number plugged and the plugging techniques.

The investigation was accomplished by using the available records for District Five and Six at the Railroad Commissioner's Office in Kildore, Texas. This amounted to checking the records and data on 13 producing (including 2)

shut-in) and 12 dry or abandoned wells (some plugged and some rot plugged).

During the course of this study, problems arose that required changes in well sampling techniques, possibly affecting the accuracy of the data obtained. The antiquated maps and in some cases the incomplete records, (drilling, leepening, and plug-back) on file at the Railroad Commissioner's Office due to the negligence of oil and gas operators, are examples of problems encountered. The perging and liquidating of leases and operators and the renumbering of wells by the new operators when leases are changed altered sampling techniques.

The assistance of the employees in the records room was essential because in many cases wells that were shown on the maps did not exist any longer, or existed as a newly numbered well or on a new lease with a new operator.

Producing wells had to be checked by using both the tiles (drilling or deepening records only) and the Gas and Oil Schedules for District Five and Six and the Gas and Oil Production Schedules for District Five and Six. These schedules consist of current computer-printed information by county, field, operator, lease, and well number. They live monthly allowables and monthly production per thousand cubic feet or barrels for the lease and individual wells.

Of the 13 wells shown as producing, records indicate that 5, or approximately 38 percent, have been depleted, shut-in, or abandoned (see Table IV-08). Assuming this figure to be representative, approximately 147 wells should still be in production. Wells drilled since 1963 do not appear on the maps and are therefore not included in this survey. It should be noted, however, that exploration and development has continually occurred since that time, and the above data does not reflect the current situation.

Two of the 12 dry and abandoned wells sampled (or approximately 20 percent) were not plugged and the files contained no record of plugging. Utilizing the figure of 20 percent, approximately 34 of the 147 dry and abandoned wells would not be plugged (see Table IV-09).

In addition, 1 of the 5 wells, or approximately 20 percent of the dry and abandoned wells that were shown to be producing on the maps, contained no record of plugging.

Thus, approximately 18 of 93 dry and abandoned wells were not plugged, giving a grand total of 52 wells not plugged in the Tennessee Colony Reservoir area.

Information from the files shows that the plugged wells surveyed conformed essertially to the general conservation rules and regulations of statewide application as set forth by the Railroad Commission of Texas, 1964 Recodification, supplimented to June 1, 1973 (see Table IV-11).

Data pertaining to production and plugging techniques are found in Tables IV-10 and IV-11, respectively.

Hr. James Smith, Director of the District Five and Six Railroad Commission, is well qualified to render a decision based on his experience and knowledge of the area, pertaining to the overall plugging conditions and the potential likelihood of pollution resulting from future blowouts. He has indicated a willingness to cooperate in this matter, and it is recommended that he be asked to submit a written statement to this effect.

Table IV-08. Randomly selected producing wells, including 2 shut-in wells, Tennessee Colony Reservoir area, Trinity River Texas.

Well No.	Location	Field	Producing or Dry	g Operator	Lease	Survey
27	Freestone Co. 660'S 1650'W of H. Berk-location	Cayuga-Trinity	Prod.	Amerada	H. Berk	Rector A 531
-	Navarro Co. 330' NW of SW line; 1370' SW of NE line of 137 acre tract of lease	So. Kerens (Woodbine Formation)	Prod.	Humble Oil	P. T. Fullwood,	W.M. Love , A-677
21 (formerly 2 under Clyde H.	Navarro Co. Creslenn Ranch "B" 660' E line, 6300' from 5 line of McKinney	Cayuga	Shut-in	W.C. Perryman	Cayuga NW Unit Rodessa	McKinney & Williams A-609
20 (formerly 1)	Navarro Co. Creslenn Ranch "C"	Cayuga	Shut-in	W.C. Perryman	Cayuga NW Unit Rodessa	McKinney & Williams A-609
6 (formerly A-1 Cres- lenn Ranch	Henderson Co.	Cayuga	Prod.	W.C. Perryman	Cayuga NW Unit Rodessa	R.W. Chappel A-140

Table IV-98 (cont.)

Well No.	Location	Field	Producing or Dry	Oper	ł	Survey
11 (formerly Stevens Lake Land Co#1 Murchison Opr.)	H	Cayuga		W.C. Perryman	C S S C C C C C C C C C C C C C C C C C	жы. жеве А-419
8	Anderson Co.	Cayuga	Prod.	Double Diamond Pet., Inc.	7-11 Ranch "B"	Michael Ellis A-278
n	Anderson Co.	Cayuga	Prod.	Ed Over- ton & W. E. Richey	7-11 Ranch "B"	Ellis A-278
10	Anderson Co.	Cayuga (Trinity Formation)	Prod	Getty Oil Company		Jas. A. Wil- son A-793
.	Navarro CoUnit 1	So. Kerens (Woodbine)	Prod.	R x on	N. David- son Blaize	WR. A. LOVE A-677
n	Navarro Co.	So. Kerens (Woodbine)	Prod.	u o x x m	lst Matl Robt. Bank of A-139 Corsicana	Robt. Caradine A-139
.	Navarro Co.	So. Kerens (Woodbine)	Prod.	Texaco, Inc.	W.M. Montgom- ery	E. Powers A-633
-	Freestone Co.	Cayuga-Trinity	Prod.	G.C. Clark	Hettie Berk	B.G. Rector C A-531 6

: IV-09. Randomly selected dry and abandoned wells, plugged and unplugged, Tennessee Colony Reservoir area, Trinity River, Texas Table IV-09.

Well No.	Location	Field	Plugged or Not Plugged	Operator	Lease	Survey
18	Freestone Co.	Cayuga	Plugged (Abandoned)	Amerada	H. Berk	
24	Freestone Co.	Cayuga	Plugged (Abandoned)	Amerada	H.Berk	Rector A-531
п	Henderson Co.	Wildcat	Plugged (re- vealed by field insp.) but no plug- ging data filed.	T.C. MOLLOW	Mary Har- well	C.E. Miller A-1028
8	Henderson Co.	Wildcat	Plugged (re- vealed by field insp.)	T.C. Morrow	Mary Har- well	C.E. Miller A-1028
1	Henderson Co. 330' from N line,1500' from W line of Trinity Farms Security Co. lease	Wildcat	Not Plugged (Abandoned)	Texas Co.	Trinity Farms Securities	C.E. Miller A-1028
н	Henderson Co. 3 miles W of the town of Tool	Flag Lake	Plugged (Dry)	Wheelock- Weinschel	J.P. Tarkinton, et al.	Wm.K. Newell A-593
m	Navarro Co. (Flag Lake extn.)	Bazette Field	Plugged (Dry)	W.W. Lechner	W.L. Crowley	R.H. Matthews A-518

Table IV-09 (cont.)

Well No.	Location		Plugged or Not Plugged	Operator		
~	Navarro Co. 10 mi. NE from town of Kerens	Bazette	Not Flugged (Abandoned)	Trebole (for-merly T.C.	Sarah B.	P. Norton
~	Henderson Co. 1600' from E line; 850' from S line	Trinidad	Plugged (Abandoned)	Amoco Prod. Co. (formerly Pan Am)	Hoffman Gas Unit	Jos. Bartlett A-105
Ħ	Henderson Co. 6250' from E line; 3600' from N line; 660' NE of Trintty River	Wildcat (Woodbine Formation)	Plugged (Dry)	Ralph Spence	Xenia Miller	Geo. J. Johnston A-395
r-d	Henderson Co.	Cayuga (Woodbine)	Plugged (Dry)	Slago Oil Co.	W.R. Kinabrew	Jose Ysidro Perez A-605
2	Henderson Co.	Cayuga NW	Plugged (Dry)	J.W. Murchison Creslenn Co. Ranch	Creslenn Ranch	J.P. McCullars

Table IV-10. Production data of randomly selected producing wells, including two shut-in wells, Tennessee Colony, Trinity River, Texas

Well No.*	Type Well	Platform Elevation	Total Depth	Top Pay	Perforations	Producing	Surface Casing Oil String, Tubing
27	Prod oil	255	7630"	7517'	7554'to7560'	17bb1s/d.	8-5/8"- 753' 4-1/2"-7629' 2-3/8"-7430'
ч	Prod oil	283'	3450	† !		50bbls/d. Gas Limit 128 MCF	10-3/4"-206.29' 7" - 3440.42' 2-1/2"-3391.48'
21	Shut-in oil	273.3'	7334'	7293'	7293-95' to 7299.5-7301.5	† † † † †	8-5/8"- 770' 4-12/"-7334' 2-3/8"-7253'
20 (formerly	Shut-in oil	272'	7394'	7377'	7377'-78'to 7381'-83'		8-5/8"- 761' 4-1/2"-7394' 2-3/8"-7320'
6 (formerly A-1)	Prod oil	268'	7398'	7350	7373.5-7374.5 to 7377'-79'	35bbl.oil 14MCF gas	8-5/8"- 788' 5-1/2"-not record 2-3/8"-7380'
(formerly l-Stevens Lake Land Co.)	Prod oil	268	8646'	7434'	7439'-7447'	2 bbl.oil 18 H ₂ O 1 MFC gas	8-5/8"- 746' 5-1/2"-8646' 2-3/8"-7429'
18	Prod oil	273'	4075'	4021'	4021'-4023'	5bb1 Oct.'73	10-3/4"- 624' 5-1/2"-4075'

Oil String, Tubing 10-3/4"- 206.71' 7" - 3415' Surface Casing, 2-1/2"-3381.50' 8-5/8"- 594.89' 5-1/2"-3439.0' 10-3/4"- 602' 10-3/4"- 539' 6-5/8"-4022" 8-5/8"- 112' 4-1/2"-4058' 2-3/8"-3978' 2-1/2"-3373' 5-1/2"-3464" 8-5/8"- 633' 4-1/2"-7500" 2" - 2332' 2" -7283' 0-0ct.'73 Producing 8,772bbl. 2,653MCF 62bbl. Oct.'73 Oct. '73 Oct. '73 Oct. '73 flowing 148 MCF 1,271 bbl. **Perforations** 7420'-7460' 3372'-3378' 3370'-3378' 3412'-3415' prod.from Trinity TOP Pay 1 1 1 1 1 111111 3370 3372 Form. Depth Total 1 1 1 1 1 1 4047 3450 3422' 3464 7500 Platform Elevation 287 282 276 270' 257 1 Type Well oil gas Prod. - oil Prod. - gas Prod. - oil Prod. - oil Prod. -Prod. -Well No.* 10

Table IV-10 (cont.)

* Corresponds to order used in Table IV-08.

uell No. * B)		Date Plugged	Total Depth	Formation Thickness	Plugging Data
80 7	Abandoned £ plugged oil well	253,	8/10/62	4028,	3990~95' oil	cement plug 39 3' rom 3793'-694' cement plug 694' rom 664'-30' from 30' to 0'
24	Abandoned & plugged oil well	246	9/29/60	4019'	3994'- 4004'	25 sx. cement plug 3980'-3775' mud from 3775'-652' 10 sx. cement 652'-619' mud from 619'-33' 10 sx. 33'-0'
н	Permit to d	to drill issued May, 1962.	May, 1962.	No other rep	ort filed win drilled wi	to drill issued May, 1962. No other report filed with Railroad Commission

Office. Field inspection revealed well had been drilled and plugged but no report or record of plugging was ever filed.

Permit to drill issued May, 1962. No other report filed with Railroad Commission Office. Field inspection revealed well had been drilled and plugged but no report or record of plugging was ever filed.

~

l i i i i i	50' plug from 2625' to 2575'
Top of pay 3000' Top of sand 3000' Perforation not recorded	50' plug fr 2575'
3004' TOE	3100'
Drilling compl.	11/11/60
294'	! ! !
Abandoned unplugged oil well	Dry plugged
н	1

10 sx. at surface

,	H	F (,	, ,	ω	Well No. *
Dry plugged	Dry plugged	Dry	Abandoned plugged gas well	Abandoned unplugged oil well	gge	Type Well
• }		290'	;	289'	208	i (th thi)
6/13/62	1/11/64	9/18/69	1/14/71	1 1 1 5 8	5/25/52	Date Plugged
8460'	4331' Woodbine	3426	11,700' Smack- over Form.	2997' Woodbine Sand		d Total Depth
		1		Top of pay- 2992'	Sand-3229'- 3235' w/ small show of oil	ess ess
8-5/8"-772' put in & left 33 sx. from 7600'-7500' N 33 sx. from 3650'-3500' N 35 sx. 800'-700' Welded plate on top surface casing	yx. at surface 5/8"-266' put in a sx. cement from 40; 1989' sx. from 550' - 45; sx. from 316' - 21; sx. at top of surface	40 sx. top 3145' bottom 3275' bottom 150'	100 sx. top 9030-bottom 9520' 100 sx. top 4101-bottom 4319' 20 sx. top 489'-bottom 545'	Surface casing 8"-100' 4-1/2"-2992' 2"-2000'	75 sx. by Halliburton 8 sx. cement at bottom of surface pipe-102' 102' of 10-3/4" put in and left in	Plugging Data

TIZT OF REFERENCES

Adkins, W. S. and F. E. Lozo. 1951. Stratigraphy of the Woodbine and Eagle Ford, Waco area in the Woodbine and adjacent atrata of the Waco area of central Texas. South. Meth. Univ., Foundren Sci. Ser. no. 4:105-164.

Baldwin, E. E. 1972. Urban geology along interstate 35; growth corridor from Belton to Hillsboro, Texas. Unpublished Masters thesis, Baylor University, Waco.

Bird, D. 1971. Mercury as an air pollution problem.
The New York Times, p. CII.

Chemical and Engineering News. March 8, 1971. Mercury in air, p. 49.

Diehl, R. C., E. A. Hattman, H. Schultz, and R. J.
Haren. 1972. Fate of trace mercury in the com-

Haren. 1972. Face or crace mercury in the combustion of coal. BuMines Tech. Prog. Report 54, 9 pp.

Durum, W. H., J. D. Hem, and S. G. Heldel. 1970.
Reconnalseance of selected minor elements in surface waters of the United States. Geological
Survey Circular 643, p. 49.

Environmental Protection Agency. 1971. Detailed EPA comments to Senator Clinton P. Anderson regarding the Four Corners mercury situation.

Fisher, W. L. 1963. Lignites of the Texas Gulf Coast Plain. Bureau Econ. Geology, Univ. of Texas, Rep. Invest. 50, 164 pp.

Fisher, W. L., et al. 1965. Rock and mineral resources of East Texas. Bureau Econ. Gelogy, Univ. of

of East Texas. Bureau Econ. Gelogy, Univ. of Texas, Rep. Invest. 54, 439pp.

Hatch, W. R. and W. L. Ott. 1968. Determination of sub-microgram quantities of mercury by atomic absorption spectrophotometry. Anal. Chem., v.40, pp. 2085-2087.

Headlee, A.J.W. and R. C. Hunter. 1955. The inorganic elements in the coals. Part V in characteristics of Mineral Coals in West Virginia. West Virginia Geological Survey, sec. 13a, p. 109.

- Hearings before the Committee On Interior and Insular Affairs, U. S. Senate 92nd Congress. 1971. Problems of electrical production in the Southwest. Albuquerque, 5 parts, part 1, U. S. Gov't. Printing Office.
- Hendricks, L. 1967. Comanchean stratigraphy of the Cretaceous of North Texas. In Comanchean (Lower Cretaceous) stratigraphy and paleontology of Texas. Soc. Econ. Paleontologists and Mineralogists (Permian Basin Section) Pub. 67-8: 51-63, Midland, Texas.
- Hill, R. T. 1887-a. The topography and geology of the Cross Timbers and surrounding regions in northern Texas, American Journal of Science, vol. 33, p. 291-309.
- Hill, R. T. 1887-b. The Texas section of the American Cretaceous, American Journal of Science, vol. 34, p. 287-309.
- Hughes, L. S. ans W. Shelby. 1962. Chemical composition of Texas surface waters, 1959. Tex. Water Comm., Bull. 6205, 103pp.
- Joensuu, O. I. 1971. Fossil fuels as a source of Mercury pollution. Science, v. 172, pp. 1027-1028.
- Lahee, F. W. 1933. The Keechi and Palestine salt domes, Texas. In Guidebook 6, 16th Intern. Geol. Congr., Washington, 77-82.
- Leifeste, D. K. and L. S. Hughes. 1967. Reconnaissance of the chemical quality of surface waters of the Trinity River Basin, Texas. Tex. Water Develop. Bd., Rep. 67, 65pp.
- Lockwood, M. G., et al. 1960. Surface runoff from Texas watersheds and sub-basins. Tex. Bd. of Water Engineers, Bull. 6001, 121pp.
- Moreman, W. L. 1972. Fossil zones of the Eagle Ford of North Texas, Journal of Paleontology, vol. 1, p. 89-101, Pls. 13-16.
- Osborne, F. L. Jr. 1960. Brine production and disposal on the lower watershed of Chambers and Richland Creeks, Navarro County, Texas; with a section on the quality of water by U. M. Shamburger, Jr., Texas Bd. of Water Engineers, Bull 6002, 66pp.

- Ruch, R. R., H. J. Gluskoter, and J. E. Kennedy. 1971. Mercury content of Illinois coals. Illinois Geological Survey, Environmental Geology Notes, No. 43, 14pp.
- Schlesinger, M. D. and H. Schultz. 1971. Analysis for mercury in coal. BuMines Tech. Prog. Report 43, 4pp.
- Schultz, H. 1972. An evaluation of methods for detecting mercury in some U. S. coals. BuMines Report of Inv. 7609, 11pp.
- State Health Department Air Pollution Control Services.
 1972. Report on findings. An environmental
 impact study of the American Smelting and Refining
 Company's zinc smelter, Amarillo, Texas.
- Stephen F. Austin State University. 1972a. Environmental and cultural impact of the proposed Tennessee Colony Reservoir, Trinity River, Texas. Nacogdoches, Texas, 4 vol.
- Stephen F. Austin State University. 1972b. A survey of the environmental and cultural resources of the Trinity River, Texas, Nacogdoches, Texas, 7 vol.
- U. S. Geological Survey. 1970. Mercury in the Environment. Prof. Paper 713, 67pp.
- U. S. Public Health Service. 1962. Drinking water standards, U. S. Public Health Service Pub. 956, 61pp.

G ological Maps

University of Texas, Bureau of Economic Geology; Geologic Atlas of Texas: scale 1:250,000,

Beaumont Sheet
Dallas Sheet, 1972
Palestine Sheet, 1967
Tyler Sheet, 1964
Waco Sheet, 1970

CHAPTER V

ZOOLOGICAL ELEMENTS

by

Charles D. Fisher (Birds & Marmals)

and

Darrell D. Hall (Fishes)

with the assistance of:

Robert Camp Donald Edson Linley Risner Jeffrey Schultz David Wolf

i

wal with the way

A STATE OF THE PARTY OF THE PAR

TABLE OF CONTENTS

(Mammals & Birds)

Introduction	234
Materials and Methods	234
Description of the Study Areas	
Transect 1	
Transect 2	
Transect 3	241
Transect 4	241
Transect 5	
Transect 6	
Transect 7	
Transect 8	
Transect 9	
Transect 10	
Censusing Techniques	
Results and Discussion	
Small Mammals	
Larger Mammals	_
All Mammals	
Transect Studies of Birds	
Non-transect Studies of Birds	
Summary	
Jummuzy	• ' '
(Fishes)	
(rishes)	
Introduction	281
Materials and Methods	283
Study Areas	285
Additional Species Records	285
Fisheries Research Data	
Discussion	305
Fish Species Profile Analyses	-
Reservoir Fisheries Management Problems	330
Distribution of Fishes in the Trinity River	331
System	
Summary	335
Tick of Defendance (both continue)	2 4 4
List of References (both sections)	
Appendix (both sections)	351

ZOOLOGICAL BLENENTS - MANMALS AND BIRDS

INTRODUCTION

In order to evaluate present environmental conditions in any designated geographical area or region, it is essential to have quantitative data pertaining to as many environmental parameters as possible. Such data also allow comparisons between sites or regions and serve as a basis for making predictions of future changes. Although avian and mammalian faunas are a small part of the total terrestrial animal population, they are of particular interest because of their economic and aesthetic values, and because of their widespread use as ecological indicators of environmental quality and change.

Owing to their relative conspicuousness and abundance, it is somewhat easier to gather quantitative data on birds than it is on mammals (or other kinds of terrestrial vertebrates). Birds also appear to be quite sensitive to quantitative and qualitative changes in the environment. Pluctuations in kinds or numbers of birds are often one of the first clues of significant alterations in the overall ecology of an area. It is therefore worthwhile to accurately describe and enumerate bird populations and to assign a high importance value to this biological parameter in any evaluation or model of environmental quality.

The purpose of this element of the study was to provide quantitative data on bird and mammal populations at ten different study areas along the Trinity River. Populations at these sites were compared with each other and were correlated with a quantitative estimate of habitat diversity at each site. Comparisons were also made between three arbitrarily designated river regions (upper, middle, and lower), and seasonal changes in population size and composition were documented. Finally, indices of species diversity were computed for both bird and mammal populations at each of the ten study areas, for each of the three river sections, and for the Trinity River as a whole.

MATERIALS AND METHODS

Description of the Study Areas

The general location of the ten study areas along the Trinity River are shown in Figure V-01. At each study area a 1,500 meter transect line (approximately one mile) was laid out and marked by surveyor's flagging tape every 15

meters, thus creating 100 "stations" after the starting point. Distances were measured by pacing. The direction of a particular transect line varied because of artificial and natural topographic features, but an effort was made to avoid frequent or sharp turns. Each transect was usually set up to traverse more than one kind of habitat, though this policy was not always adhered to. A summary outline of each transect follows and Table V-01 describes the direction and habitats of each of the ten transects (see also Table V-02).

Transect No. 1

Location: extreme eastern Tarrant County, just south of the Greater Southwest International Airport, on the north side of the Trinity River and on the east side of Highway 360. Starting point: about 200 meters east of Highway 360 and 30 meters south of a railroad track. Habitat description: rather hilly topography; scrub oaks and scattered mesquite on upland sites; open cedar elm forests on the narrow river floodplain; large cottonwoods and willows along the river; frequent grassy or scrubby clearings. General comments: very heavy human use, principally motorbike riding and horseback riding; much noise disturbance from railroad trains and from airplanes landing and taking off at the airport; light livestock grazing by horses in the eastern part of the study area; frequent target shooting and "potshooting" along the river; the transect runs in a general eastward direction between the river (touching it at one point) and the main B-W railroad track.

Transect No. 2

Location: Dallas County, Fin and Peather Club on the southeast side of Dallas on the west side of the river just north of the Dowdy Ferry Road bridge. Starting point: north side of the Fin and Peather Club lake, about one mile north of the main clubhouse. Habitat description: open, heavily contover floodplain forest dominated by cedar class and oaks; many large cottonwoods were recently removed; frequent ples of brush: little ground cover; very homogeneous habitat. General comments: the transect parallels the river for most of its length, following rather closely a buildozed track which lies between the river and a diveralong the shore of the Fin and Feather Club lake; for the first ten stations the transect proceeds northerly toward the river, crossing the dike; the transect then turns right and follows the river downstream (touching the river bank

Table V-01. Summary description of Transects 1-10

Station No.	Compass Heading	General Habitat
	TRANSECT	NO. 1
1-10	115	dry woodland
10-20	(4	wet thickets and grasses
20-30	•	wet_woodland
30-50	090	wooded slope
50-58	165	thickets and forest edge
58-76	150	prusny riela
76-100	150-170	thickets, grasslands, & forest edge
		v zorobe cugo
	TRANSECT	NO. 2
1-10 10-100	360	bottomland forest
10-100	NB, gradually curving to E	•
	and SE	
	TRANSECT	NO. 3
1-30	320	forest edge
30-100	270	bottomland forest
	*****	NO. L
	TRANSECT	1100 4
1-12		
1-12 12-80		forest edge bottomland forest
	180	forest edge

TRANSECT NO. 5

	Idanse	, no. 5
1+13	105	transect winds back
13-25	3 25	and forth across a
25-29	240	narrowly-wooded
29-34	170	intermittent stream for
34-48	220	approximately the first
48-66	230	50 stations, then
66-67	300	follows along or
67-68	325	across grassy scrubby
68-77	240	pastures and cropland
77-83	250	
83-100	180	

	TRANSECT	' NO. 6
1-10	340	old weedy bottomland field
10-20	11	bottomland forest
20-33	98	old weedy bottomland field
33-56	090	thickety fencerow
56-70	180	thickety fencerow
70-80	60	hottomland forest
80-100	11	old weedy bottomland field
	TRANSECT	' NO. 7
1-3	135	woody slough
3-22	135	open scrubby thickets
22-41	135	bottomland forest
41-100	180 curving	bottomland forest
	gradually	
•	to 210	•
		•
ه خوا دانه دید. بنی وید دید بنید نوب پی بای دید وید	TRANSECT	NO. 8
1-5	045	marsh
5-8	145	grazed pasture
8-14	135	grazed pasture
14-83	2 20	forest and forest edge
83-100	095	dense thickets
		and corubby torost

and scrubby torest

TRANSECT NO. 9

1-30 30-100	190 115	mature bottomland forest
	TRANS	FCT NO. 10
1-22	020	old brush field
22-70	010	open bottomland forest
70-76	090	open grassy field
76-85	170	forest edge
85-100	145	open bottomland forest

AD-A095 957 STEPHEN F AUSTIN STATE UNIV NACOGOOCHES TX F/6 8/6 ECOLOGICAL SURVEY DATA FOR ENVIRONMENTAL CONSIDERATIONS ON THE --ETC(U) JUL 73 C D FISHER, D D HALL, H L JONES DACW63-73-C-0016 UNCLASSIFIED NL 5 o 7 AD A-957

W-U2. Summary of habitat types studied and habitat diversity indices at ten transects along the Trinity River Table V-02.

0	7
9	7
4	
0	į
-	י
90	
	ı
À	١
÷	١
E M	
**	4

				-	Transect Numbers	act R	1m bers	•			Ri Sec	River Section ¹		Whole
Habìtat²	-	7	٣	a	S	vo	7	œ	6	•	D.	E ,	-1	River
	30	95	78	85	25	15	99	25	06	09	89	47	28	28
Th	45	0	10	Ś	35	35	20	35	0	10	18	24	15	19
Gr	20	0	12	7	07	20	9	30	0	25	=	26	18	8
Agu	2	ស	0	m	0	0	6	10	10	S	m	(*)	σ	2
LOIAL	c;	Ć¢ţ	100	100	100	100	100	100	100	100	100	100	100	100
Habitat Diversity³ 1.7		.0.3 1.0	1.0	0.8	1.6	1.4	1.4	1.9	0.5	1.5	1.3	1.7	1.6	1.6
											1	i		1 1 1 1

1 Upper, middle, lower

swamps, marshes, ponds, edde: and forest sloughs, scrub, thickets, pastures, and weedy fields; Agu: Th: woodlands; and hardwood forests croplands, and river edge. grasslands, 5 HJ:

3 Computed using the Shannon-Wiener function (see text).

at two points), curving gradually almost 180° around to the right; there is no livestock grazing; during the open season squirrels and waterfowl are extensively hunted.

Transect No. 3

<u>Logation:</u> Kaufman County, "Flying A" Ranch just west of Rosser on the east side of the river about 1 mile downriver from the mouth of the East Fork of the Trinity River. Starting point: top of the river levee about 1-1/2 miles west of a new ranch house owned by Fred Alford, Jr. The starting point lies on the levee about 300 meters NW of where a farm road climbs up on the levee. description: principally cedar-elm forest on the river floodplain; the first 30 stations follow the top of the levee, which is cleared and is grown up in grasses and weeds; large open fields and pastures lie within 100 meters of the northeast side of the levee (away from the river), although the levee itself on this side is bordered by a narrow strip of forest (about 75-100 meters wide); within the study area all of the land lying between the levee and the river (a rather wide area of about 1,200 meters) is forested. General comments: overall quality of the forest rather poor, but fairly good woody understory and grass ground cover; no livestock grazing during the duration of this study; scattered wet depressions and sloughs present on the floodplain; heavy black clay soil; no Spanish moss.

Transect No. 4

Location: Henderson County, Bruce Smith Ranch about nine miles northwest of Trinidad, approximately three miles upriver from the mouth of the outflow from Cedar Creek Reservoir. Starting point: about 50 meters from the river bank near a small hayshed where a vehicle track comes down to the river along a cleared strip through an extensively wooded area; there is a small clearing adjacent to the river bank at this site, which is the only non-forested area on the bank itself for several miles in either direction on this side of the river; just above the starting point the river makes a right angle bend from east to south, and then 3/4 of a mile downriver the river makes a wide bend to the left and flows in a northeasterly direction briefly before turning again, to the southeast. Habitat description: except for the small clearing at the beginning, the whole transect line traverses an extensive floodplain woodland dominated by cedar-elm. General comments: rather open forest with fairly mature trees (but no Spanish moss); many sloughs and wet depressions; heavy

The state of

grazing by cattle except when too wet; sticky black clay soil; the transect parallels the river for most of its length, touching the bank at one point.

Transect No. 5

Location: extreme northern Preestone County; Neal farm one mile south of the New Hope Church (on PM Road 416), approximately nine miles ENE of Streetman and 8-1/2 miles WSW of Highway 287 bridge over the Trinity River. Starting point: near a small intermittent stream about 100 meters west of the Neal trailer home; to get to the Neal farm go SSE on a gravel road which leads off FM 416 just east of the New Hope Church (there is a very short jog initially and another access to FM 416); in about 1/2 mile turn right (the gravel road continues on SSE) on another gravel road; this road will angle to the left (south) in less than 1/2 mile, and immediately thereafter the Neal trailer home will be on the right. Habitat description: upland farmland lying on a low rise between Tehuacana and Richland creeks (the study areas lies above the flood pool elevation of the Colony Reservoir); proposed Tennessee predominantly pastures and cropland; a narrow belt of cutover riverine woodland borders a small intermittent stream; scattered junipers in old neglected fields. General comments: banks of the intermittent stream rather steep in places; numerous small eroded gulleys along the upper portions of the stream; a few large mature trees (elm, pecan, hickory, and oak) remain in the woodland belt along the creek; scattered trees and thickets along the fencerows; all areas lightly to heavily grazed by cattle (except one large plowed field adjacent to the transect).

Transect No. 6

Location: Anderson County just north of Highway 79/84 bridge over the Trinity River, on the east side of the river approximately nine miles southwest of Palestine. Starting point: about 700 meters north of the highway and 250 meters east of the river, at a point in an old weedy field 150 meters south of a small (5 acre) isolated patch of forest on the river floodplain. Habitat description: old neglected, ungrazed weedy field and thickets on the river floodplain; two small isolated patches of cutover bottomland forest, each about 5 acres. General comments: this area has apparently had no human use for several years; presently there is no grazing and therefore a relatively good ground cover of grasses, vines, and Rubus exists (except in the two patches of forest where there is very little ground cover); there is a narrow border of trees along some of the fences; the river itself (about 250 meters away) has a narrow belt of woodlands along the near bank; adjacent to the north side of the study area is a pasture heavily grazed by cattle; a small low wet marshy depression and drainage borders the transect area to the east.

Transect No. 7

Location: Leon County, just south of Highway 7 bridge over the Trinity River, on the west side of the river. Starting point: about 250 meters south of the highway and 500 meters west of the river, at a point on the north edge of a small woody slough. Habitat description: principally heavily cutover and grazed floodplain forest dominated by cedar elm; Spanish moss abundant; the forest at the beginning of the transect has been more heavily cleared and is now a scrubby clearing with scattered trees on a low rise in the topography between the slough and river floodplain; between the highway and the start of the transect is a small open heavily grazed pasture with a very small stock pond; an old weedy field borders this pasture to the west. General comments: the forest has only a few large trees and little ground cover; all of the study area is grazed by cattle; much Crataegus in the forest clearings; the transect in general parallels the river for most of the way, touching it at two points; several low wet depressions on the floodplain.

Transect No. 8

Location: southern Polk County; Jones farm on the north side of the Trinity River and east side of Highway 59. Starting point: about one mile east of Highway 59 and 1-1/2 miles north of the Trinity River, on the east side of McCardell's Lake at a point where a small intermittent stream leaves the lake. Habitat description: cutover woodlands mixed with open pastureland; a large swamp (McCardell's Lake) with some open water and many large tupelo gums borders the transect on the west; at the outlet of this swamp and for about 50 meters downstream (along the transect) is a small marshy area. General comments: all torests are heavily cutover with only a few scattered mature trees and sometimes with a dense thickety woody undergrowth; two cleared pipeline right-of-ways parallel or cross the transect line; all areas are heavily grazed by cattle.

Transect No. 9

Location: upper Liberty County, just south of Highway 162 bridge, about 50 meters from the river bank at a point approximately 100 meters south of a small stream flowing east into the river. <u>Habitat lescription</u>: mature cutover bottomland hardwood forest on the river floodplain; many scattered large mature oaks; bald cypresses numerous along the edge of a long slough. General comments: forest relatively open with little ground cover; at station 30 the transect line intersects a long water-filled bordered by cypresses, then turns left and parallels the near (to the river) edge of the slough for the rest of its length, finishing about 50 meters from the river bank; extremely heavy disturbance by wild pigs throughout the transect area but no cattle grazing during this study; by the end of the study a bulldozed track had been made into the area in preparation for a new housing development; shallow wet depressions and drainageways are common throughout the forest.

Transect No. 10

Location: extreme southern Liberty County, two miles east of the community of Old River (on FM Hoad 1409), just north of the Chambers County line and about two miles west conthe Starting point: about two miles east of FM Trinity River. Road 1409 and 200 meters north of the east end of hardsurfaced road running east (parallel to the county line) from the community of Old River, at a point on a pipeline right-of-way. Habitat description: mostly open bottomland forest with much palmetto, and one large grassy neglected field; two large biyous bordered by cypresses; an open grassy scrubby upland area at the start of the vransect (along and adjacent to the pipeline right-of-way). General comments: transect starts in an old field above the wide river floodplain but soon drops dovs onto the floodplain and runs in a northerly direction, parallelling the west bank of a prominent bayou; eventually the transect crosses this bayou (on an oli small concrete bridge) and then shortly thereafter turns southward and runs between this bayou and another major bayou just to the east; all of the bottomland area is very heavily disturbed by wild pigs but no cattle were present during the study period; a good grassy ground cover was present in parts of the torest.

All habitats at every study area vere classified into one of four major categories as shown in Table V-02. At each of the ten transects an estimate was made of the

percent contribution of each of the four major habitats to the total study area (study area being defined as that area within 150 meters of all points along the transect line). Habitat percentages were also calculated for each of three arbitrarily designated river sections defined as follows: upper river--transects 1, 2, and 3; middle river--transects 4, 5, 6, and 7; lower river--transects 8, 9, and 10.

Habitat diversity indices were calculated for each transect and river section, and for the river as a whole, using the Shannon-Wiener function:

 $H = -\frac{s}{\sum_{i=1}^{n} \binom{n_i}{n}} \left(\frac{1}{n_i}, \frac{n_i}{N} \right)$ where "s" is the total kinds of habitats, "n_i" is habitat percentage (expressed as a whole number) of each habitat, and N = 100 (since all habitat percentages add up to 100%). Although this is a very crude estimate of habitat diversity, it allows some statistical comparisons of other community parameters with habitat diversity.

Censusing Techniques

Biologists have usually found it difficult to obtain reliable estimates of population densities of terrestrial vertebrates. Various methods of censusing have summarized for mammals in Giles (1971) and for birds by Emlen (1971). Frequently, however, it is not necessary to know absolute numbers or densities but simply to have available indices of abundance. Such indices, determined by the same method, may be used in comparing populations either in space or time.

In the present study mammal populations were sampled in two ways. Small terrestrial mammals were caught in museum special snap traps set along the ten 1,500 meter transect lines. Peanut butter was used as bait and one trap was set at each station, 100 traps per night (with few exceptions). The number of trap stations in each of three major habitats at each transect is shown in Table V-03. Populations of larger mammals were sampled by counting all mammal signs encountered on a particular date by an observer while walking along a 1,000 meter transect. Separate counts were tabulated for: (a) individual: seen or heard, (b) sets of tracks, (c) fecal remains, (d) nests, dens, or burrows, and (e) food remains, gnawings, or diggings.

ten of each a habitats Table V-03. Number of trap stations in three general kinds of clausects along the Trinity River

				÷	2000	2 4	. 4				S S	River Section		9 040
Habitatı	,-	7	~	3	S	9 9 9	7	x 0	6	10		E	1	River
# q	0 7	100	70	90	50	15	75	55	100	09	210	200	215	625
ľħ	25	0	30	10	45	0 7	25	30	0	15	55	120	45	220
\$ ·	ω .	c	O	C)	<u>ርነ</u>	ج. ش	Çì	د. رن	c·	25	35	80	0	155
LOTAL	100	100	100	100	100	100	100	100	100	100	300	007	300	300 1,000
			; !	1			,							, , ,

1 Notations are the same as in Table V-02.

Avian populations were estimated by recording all birds seen or heard by an observer walking slowly along or near each transect line, with occasional stops when groups of birds were encountered. Counts were always taken in the morning, beginning within an hour after sunrise, and were completed in 2-3 hours. Birds were counted when they were seen or heard flying over the transect line, whether they were actually utilizing or foraging in the study area itself or not. In addition to the transect counts a record was kept of all species found in or near each of the study areas, and regular counts of aquatic birds were taken at the Fin and Feather Club Lake adjacent to Transect No. 2 and at McCardell's Lake adjacent to Transect No. 8.

This study was carried out from September, 1972 through May, 1973. The general distribution and relative abundance of mammalian and avian populations along the Trinity River during the summer months (June and July) has been previously documented (Fisher, 1972).

RESULUS AND DISCUSSION

Small Mammals

Small mammal trapping successes at each of the ten transects are shown in Appendix V-01. Scientific names are trom Blair, et al. (1968). These data, which are an index of relative abundance of small mammals, are summarized in Table V-04. The overall trapping success (2.8%) indicates that small mammals are not very abundant at most localities adjacent to the Trinity River. There is, however, considerable variation between sites and between different dates at the same site. Transect No. 6 had a much higher percent trapping success than any other transect. This is probably explained by the fact that this transect had combined habitat percentages of thickets grasslands (see Table V-02), and more importantly by absence of livestock grazing at this site, which permitted a very good ground cover of grasses and vines. The cotton mouse <u>(Peromyscus gossypinus)</u> was by far the most abundant and widespread small mammal along the river, and this the fulvous harvest species together with (Reithrodontomys fulvescens) made up 86% of the total population of small mammals at the ten study sites.

Trapping success in each of three major habitats (woodlands, thickets, and grasslands) is summarized in Table V-05. The percent success in each habitat on each night traps were set in that habitat, was compared to other

The state of the same of

caught in River from Table V-04. Summary of kinds and total numbers of small mammals snap traps at ten 1,500 meter transects along the Trinity September, 1972 through May, 1973

	•	·	^	T.	Transect Number	C t	usbe	ы Н	d	Ç	
Spectes.	-	,	,	•	n	٥	-	•	,	2 !	rotal
short-tailed shrew								-			_
least shrew						_		•			-
hispid pocket mouse			_								-
fulvous harvest mouse			:†			18	~	•-		~	29
deer mouse				_		က	_				2
white-footed mouse			-								_
cotton mouse		_	9	19		23	∞	~	7	٣	69
pygmy mouse										-	_
cotton rat	_					m					S
eastern Woodrat				_							_
Total individuals caught	-		12	21		8	13	m	7	7	114
Total traps set 450 300 393 300 500 400 500 380 465 350	450	300	393	300	500	004	500	380	465	350	4,038
Percent success	0.2	0.3	3.1	7.0	0.3	12	2.6	0.8	1.5	5.0	2.8
Total number of species	-	1 1 4		٣	3 1 5	2	#	m	4 3 1	8	10
					 			! ! !	į	1	

Table V-05. Summary of trapping success in each of three major habitat types at ten transects along the Trinity River

	•	•	Hab	Habitat		
Transect		5		Th	5	Gr
Number	caught	set	caught	set	caught	set
1	-	200	0	105	0	145
7	_	300	1	ı	ı	1
3	7	263	S	130	ı	ı
7	18	270	m	30	ı	ı
5	0	100	-	225	0	175
9	œ	99	20	160	20	180
7	10	375	m	125	ı	,
80	7	210		110	0	09
. 6	7	465		•	•	1
10	æ	180	m	75	_	95
rotal	57	2,423	36	096	21	655
% Success Sample size ²	2,	2. u u3	3.8	80 44	3.2	7 7

1 Notations are the same as in Table V-02.

2 Mumber of different nights traps were set.

- property and a

Table V-06. Summary of trapping success at ten transects along the Trinity River during the fall, winter and spring (1972-73)

1

Transect	Fall	-	Season	son	Spri	ing
Number	caught	set	caught	set	caught se	set
-	0	100		200	0	150
7	1	1	0	100	,	200
~	0	09	œ	200	a	133
्य	<u>;</u>	000			:1	() () ()
5	0	100	0	009	-	200
9	ß	100	10	909	33	200
7	œ	200	-	100	ŧ	200
0 0	-	100	-	100		180
6	0	165	0	100	7	200
10	ſ	ı	2	200	5	150
TOTAL	31 1	1,025	23	1,300	09	1,713
X Success Sample size ²		0 =	r ·	1.88 1.3	3.	2.6

1 See text for definitions.

2 Mumber of different nights traps were set.

Mabitats by a t-test. The equation used is:

$$t = \frac{(\bar{X}_1 - \bar{X}_2) \sqrt{\frac{N_1^+ N_2}{N_1 N_2}}}{\sqrt{(N_1 - 1) S_1^2 + (N_2 - 1) S_2^2}}$$

$$\frac{N_1 + N_2 - 2}{N_1 + N_2 - 2}$$

where \bar{x} is the sample mean, s^{z} is the sample variance, and N is the sample size. There were no statistical differences (at the .05 level of probability) in percent trapping success between any two habitat types.

A comparison of trapping success was also conducted between the three seasons of the year during which the study was carried out (Table V-06). Fall is defined as the months of September, October, and November; winter as the months of December, January, and Pebruary; and Ppring as the months of March, April, and May. There were no statistically significant differences in seasonal trapping success.

Comparisons of trapping success between each pair of transects were also made, using t-tests in the same manner as above (sample sizes were quite small, ranging from 3 to 5). These calculations show that Transects 1 and 5 which have very low populations, are statistically different from Transects 3, 4, 6, and 7 (at the .05 level of probability). Transects 1 and 5 are the most upland in topography of all the ten study sites. However, both have considerable human disturbance, which may help explain the relatively low abundance of small mammals at these sites.

Finally, t-tests were used to compare each pair of the three arbitrarily defined river sections. Sample sizes were 13 for the upper and lower rivers, and 17 for the middle river. Trapping success was 1.2% for the upper river, 4.9% for the middle river, and 1.4% for the lower river. There are no statistically significant differences between any two river sections.

simple linear correlation and regression analyses were run using the total percent trapping success as the dependent variable. The transect number and habitat diversity index (Table V-02) were both used, separately as independent variables. The regression of trapping success versus transect number had a correlation coefficient of .057, and trapping success versus habitat diversity had a correlation coefficient of -.043, neither of which is

Total and and the state

significant at the .05 level of probability (with 8 degrees of freedom). These tests indicate that total numbers of small mammals along the Trinity River are not directly correlated with habitat diversity (as here measured) and that there is no gradual increase or decrease in numbers of small mammals from one end of the river to the other.

Larger Mannals

Data gathered on larger mammals at each of the ten transects are presented in Appendix V-02, and a summary is given in Table V-07 (note that the eastern woodrat appears in these tables and those for small mammals). Scientific names are from Blair, et al. (1968). Because of the many variables involved in gathering these data (such as weather conditions at the time of and prior to the census, density of foliage, ground cover, soil type, etc.) they must be interpreted cautiously. Nevertheless, the data reflect the relative abundance of larger mammals in the areas studied. It is apparent that such species as armadillo, swamp rabbit, fox (and/or gray) squirrel, coyote (and/or domestic dogs), and raccoon are abundant and widespread along the Trinity River. Only at the most upland site (Transect No. 5) do cottontails appear to be as swamp rabbits. Cottontails prefer drier Dumerous as habitats than the swamp rabbit (Davis, 1966). White-tailed deer were much more numerous along the middle river (Transe:ts 4, 5, 6, and 7) than along either the upper or lower river.

Populations of larger mammals at each of the ten transects were compared with one another by t-tests of the total number of all mammal signs recorded on each census. These total numbers were each considered an index of population size on a specific data at a particular Sample sizes (number of censuses at each transect. transect) ranged from three to five. Results of these ttests are shown in Table V-08. There are significant differences in the numbers of larger mammals at different sites along the Trinity River. A possible explanation for the low population sizes at Transects 9 and 10 is the very high numbers of wild pigs in the study areas. It is more difficult to postulate reasons for the relatively low number of larger mammals at Transect 8. When the three river sections were each compared with one another the lower river was statistically different (at the .01 level of probability) from both the upper and middle river latter sections were not but these two significantly different from each other.

in the state of th

Table V-07, Total numbers of larger mammals and mammal signs recorded on 40 censuses at ten 1,500 meter transects along the Trinity River from September, 1972 through Mary, 1973

	-	2		=	Tran 5	Transect 5 6	Number 7	88	6	10	Total
ansscdo	#	e	6	æ	•	-	2	-	2	-	29
edsterm more armadillo	99	16	74	48	4 4	23	49	27	æ ć	21	391
cottontail rabbit	3	?	1 4	3 6		8	9	<u> </u>	7	2 4	5 03
gray squirrel fox squirrel	9	~	œ	10				7		- 2	31
(fox and/or gray squirrel)	=	25	42	15	15	5 .	32	13	12	17	224
tlying squirrel plains pocket dopher	x				31	a					12
Deaver	#	10	0 7	16			-		-		72
eastern woodrat			٣	٣					2	_	12
nutria	-	m						7			11
coyote	4	\$	19	9	#	7	m	7			45
(coyote and/or dog)	15	13	35	10	17	19	15	22	1	6	162
gray fox	2	7	7	_			7		-	_	14
raccoon	19	=	23	30	10	14	22	11	16	7	169
striped skunk	m		∓ ′	7 *	-	a	٣		7	8	32
white-tailed deer			V 3	- [9	65	29	21	2	9	a	195
Total number	177	170	323	242	202	141	247	116	82	78	1,778
snsu	44.2	56.7	9.49	60.5	50.5	35.2	61.8	29.0	20.5	19.5	1
Total number of species	12	6	13	14	6	10	11	6	11	12	6.

-

the state of the formation and the state of

of size2 population of rable V-08. Values of t1 for paired comparisons larger mammals at ten Trinity River transects

Transect	C	~	ā	Tran:	Transect Number	ber 7	α	σ	10
	, ,	, !!		,	- {		,	, !!	
-	2.59*		3,53*	0.71	0.95		2.83*	2.83* 7.46** 7.90**	7.90**
7		7.7	0.72	Û.59	2.31		4*[7*	10.11**	10.59**
m			0.33	1.00	2.03		2.80*	3.63**	3.72**
#				1.11	3.13*	0.18	5.50**	10.75**	11.16**
٦.					1.23		2.27	3.56*	3.69*
9							1.08	2.60*	2.76*
7							4.34**	6.69 **	4 * 68 . 9
30								1.82	2.05
6									0.63

ot .05 level I An asterisk indicates statistical significance at the .05 level probability, and two asterisks indicate significance at the .01 level.

2 Total number of all mammal signs on each census.

The average number per census of all larger mammals and signs (Table V-07) was used as the dependent variable and regressed, separately, against transect number and habitat diversity as for small mammals. The correlation coefficient of -.230 in the latter instance is statistically significant, suggesting once again that habitat diversity per se is not as important as other factors in determining abundance of mammal populations. The correlation coefficient of -.709 obtained in the former analysis is significant, however, at the .05 level of probability (with 8 degrees of freedom). This correlation results primarily from the relatively small numbers of mammal signs at the three transects (8, 9, and 10) at lower end of the river. When the average number per census of larger mammals and signs was regressed against the total percent trapping success (of small mammals) there was no significant correlation. Apparently population sizes of larger mammals and small mammals are independent of each other.

All Manuals

In order to calculate a species diversity index for all mammals at each transect, an effort was made to combine the relative abundance data for both small and larger mammal populations, recognizing the problems involved because of the different sampling methods utilized and different kinds of signs recorded. It was decided that each n in the Shannon-Wiener function would be best indicated by the highest number recorded from all the censuses at a given transect. For small mammals this figure is the highest number trapped on any single night. Total number trapped on all censuses could have been used, since individuals trapped were removed from the population, but it was felt this would have biased the index in favor of small mammals. For larger mammals the figure used was the highest number of all the signs recorded. Gnawings, diggings, and evidence of food remains were excluded for all species except the semi-aquatic beaver and nutria. This was done in an effort to reduce bias in favor of certain species (such as the armadillo) in which some individuals occasionally leave an unusually large amount of sign. Only fresh beaver quavings were recorded. The difficulty of trying to equate mammal tracks and fecal remains and nests and individuals seen or trapped as indicators of relative abundance is acknowledged. Relative to larger mammals, populations of small mammals are 'probably underestimated. Species diversity indices computed using these data are given in Table V-09.

THE PARTY AND

Table V-09. Species diversity of terrestrial mammal populations at ten transects along the Trinity River

				Tra	Transect	Number	er			
Species	-	2	ĸ	3	5	9	7	80	6	10
*opossum	7	2	3	2		-	2	-	2	-
*eastern mole					,					
short-tailed shrew								_		
least shrew						-				
*armadillo	7	m	6	7	9	(L)	7	3	7	7
swamp rabbit	7	18	7	œ	~	7	27	9	S	7
*cottontail rabbit	=		7	7	7	寸	7	đ	_	7
gray squirrel?									٣	m
fox squirrel2	9	S	11	9	1	9	80	Ŋ		S
*flying squirrel	~					~				
plains pocket gopher					12					
hispid pocket mouse			-							
beaver	_	ə	#	-			_		_	
fulvous harvest mouse			٣			11	7	,		m
deer moust				-		,-	,- -			
white-footed mouse			-							
cotton mouse		_	٣	13	-	15	⇉	-	2	7
pyjmy mouse										_
cotton rat	-					-	-			

Table v-09 (cont.)

				Tra	nsect	Number	er			#
Species	-	7		3	4 5		7	သ	6	10
*eastern Woodrat			2	-			} 		2	
*nutria		7	ı	•				7	1	•
*coyote3	•	~	1	m	m	đ	#	→	m	
* jray fox	7	_	7	,			-		,	-
*raccoon	7	7	6	12		9	11	ထ	· V	· m
**************************************				-						
#striped skunk	7		۲,	 ,	-	7	7			7
*white-tailed deer			- ~	- [21	8	12	7	\$	M
TOTAL	9 11	9 77	74	7.1	63	7.1	87	38	34	34
Number of species Species diversity index*	13 3.4	10 2.7	17 3.7	16 3.4	11 2.9	15 3. 4	15 3.2	12 3.2	12 3.4	15 3.8
	11111				11111	-	-			

¹ No asterisk indicates the numbers in the row are the highest number trapped on any one night; an asterisk indicates the numbers are the highest number of all signs recorded on all censuses (except see text).

squirrel" and/or gray "fox as 2 Each number in Appendix V-62 recorded considered here as fox squirrel.

"coyote and/or dog" 3 Half of each number in Appendix V-02 recorded as "coyote and/or doconsidered from consideration).

· Computed using the Shannon-Wiener function (see text).

If the transects in Table V-09 are grouped by river section and the numbers for each species are added together in each section, then these sums can be used as ni's to compute a species diversity index for each river section. Similarly, figures from all ten transects can be added together for each species and these sums used to calculate a species diversity index for the river as a whole. Each transect is thus considered a different sample from the whole "population", and the highest number recorded total each species from all censuses at each sampling locality is considered to be the best index of relative abundance of that species at that locality. Following are the species diversity indices calculated in this manner (total number of species are in parentheses): upper river, 3.63 (20); middle river, 3.60(22); lower river, 3.80 (18); whole river. 3.85 (28). It is apparent that species diversity of terrestrial mammals is virtually the same on all three river sections and that the river as a whole has about the same diversity as any single section. Furthermore. differences between the ten transects (Table Y+09) do not seem very great, though index values tend to be somewhat lower for individual transects than for a whole river section or the total river.

Since diversity indices are receiving widespread attention in ecological investigations it is worthwhile to consider what factors influence their values. Krebs (1972) has summarized (in Ch. 23) much of the current thinking and history pertaining to diversity indices. Theoretical discussed by Fisher, Corbet, and considerations are Williams (1943), Lloyd and Ghelardi (1964), MacArthur (1957), Margalef (1958), Pielou (1966), Preston (1948), and williams (1953). In regard to the Shannon-Wiener function used to compute diversity indices in this study, it has been shown by Lloyd and Ghelardi (1964) that only two factors influence index values: number of species and equatability of distribution (i.e., relative abundance). The other factor remaining constant, species diversity can be increased only by: (1) increasing the number of species, or (2) changing the relative abundance so that rare species become commoner and common species become rarer. maximum possible diversity index for a given number of species (s) is realized when all species are equally abundant, in which case the diversity index (computed by the Shannon-Wiener function) = log S. The actual population size in the community being measured does not directly influence species diversity (i.e., other factors remaining constant an increase or decrease in overall population size will not change the species diversity

index). Customarily diversity indices are computed for a specific taxonomic group of organisms in an arbitrarily chosen "community" or habitat. It could be argued that the ten transacts in the present study are not equivalent "communities", and therefore cannot be compared.

It is beyond the scope of this report to critically evaluate the numerous attempts by various workers to relate species diversity indices to other ecological parameters, such as community stability, community maturity, community structure, habitat diversity, etc. The interested reader is directed to papers by Connell and Orias (1964), Elton (1958), Hairston (1959), MacArthur (1955), MacArthur and MacArthur (1961), MacArthur, Recher, and Cody (1966), Margalef (1963, 1968, and 1969), and Odum (1969).

In the present study of mammal populations several ecological parameters at each of the ten Trinity River transects were compared with one another by the use of simple linear regression analyses in order to look for possible correlations within communities and to perhaps gain insight into community organization. The tests run (with the dependent variable being mentioned first) were: (1) species diversity vs. Habitat diversity, (2) species diversity vs. Transect number, (3) species diversity vs. Average number per census of all larger mammals and signs (used here as an index of total population size), (4) species diversity vs. Total percent trapping success (as an index of total population size of small mammals), (5) number of species (all mammals) vs. Habitat diversity, and (6) number of species vs. Transect number. None of coefficients correlation computed proved be statistically significant (at the .05 level probability). Thus it is concluded that the ecological parameters tested here are not directly related, or at least that their relationship is relatively unimportant (multiple regression analyses would help answer this question). There is no unidirectional trend in mammal species diversity or variety along the Trinity River, and species diversity appears to be influenced more by factors other than habitat diversity or population size. It is suggested that environmental "quality" is probably an important contributing factor to species diversity, and could perhaps be measured in part by careful quantitative analyses of vegetational characteristics (see MacArthur and MacArthur, 1961 in regard to bird species diversity and physical characteristics of the vegetation).

water and the state of the state of

Transect Studies of Birds

Results of each census at all ten transects are shown Appendix V-03 and these data are summarized in Appendix V-04. Scientific and common names follow those of A.O.U. (1957) and the A.O.U. Committee On Classification And Nomenclature (1973). During this study a total of species of birds were recorded on 59 censuses at the ten Trinity River transects, and an additional 31 species were recorded from the study areas during non-census period: t should be emphasized that these investigations occurred primarily during the non-breeding part of the year and birds, and the data obtained are therefore not indication of the breeding avifaunal populations. A general account of breeding birds and their relative abundance along the Trinity River is given by Fisher (1972). However, it would be worthwhile to carry out during the breeding and August) a (June, July, quantitative season investigation similar to the present one.

Like the majority of animal species, most birds are closely associated with a particular kind of habitat. Therefore, the absence of some kinds of birds, particularly those of aquatic or semi-aquatic environments, from a particular transect does not necessarily indicate that these species were absent from that general area of the Trinity diver, but may have resulted simply from the lack of a suitable "niche" at the site of the transect. Forest and wood and environments were sampled most thoroughly, and aquatic habitats and grasslands least completely (see Table V-02). Ideally a separate transect should be set up in cocamaror habitat at every study area along the river, but to tire limit imposed on the present research did not permit such a detailed investigation. However, quantitative data pertaining to the use of the Trinity River by aquatic birds were gathered regularly at small lakes adjacent to Transects 2 and 8, and these will be presented later in this report, as will other observations of waterfowl and of small wading birds.

Inspection of Appendix V-04 reveals that many avian species are widespread along the whole length of the Trinity liver. These include the little blue heron, cattle egret, turkey vulture, red-tailed hawk, killdeer, mourning dove, barred owl, chimney swift, ruby-throated hummingbird, four species of woodpeckers, great crested flycatcher, castern phoebe, barn swallow, blue jay, common crow, and a large number of small "songbirds" (chickadee, titmouse, creeper, wrens, thrushes, kinglets, vireos, warbler,

"blackbirds", buntings, sparrows, etc.). Some species, on the other hand, were confined to a particular segment of river. The Swainson's hawk, rough-legged hawk, Franklin's gull, black-chinned hummingbird, ladder-backed woodpecker, western kingbird, and great-tailed grackle were found only on the upper parts of the river; the barn owl, white-tailed kite, and Smith's longspur were recorded only on the middle river; and the anhinga, white ibis, hooded warbler, Brewer's blackbird, and Swainson's warbler were observed during this study only on the lower half of the river. It is noteworthy that a pair of white-tailed kites built a nest at Transect 7, since this represents the northernmost breeding record of this species in the state, and is well north (and east) of the present known range of the white-tailed kite in Texas (see Wolfe, 1956). Among the most abundant species were the blue jay, common crow, Carolina chickadee, tufted titmouse, Carolina wren, robin, starling (locally), redwinged blackbird, common grackle, brown-headed cowbird, cardinal, myrtle warbler, and whitethroated sparrow. The redwinged blackbird was by far the single most numerous avian species.

Population sizes of birds were compared by t-tests. Each census was considered an estimate of population size (see the "total individuals" figures for each date in Appendix V-03). Values of t were calculated for the following paired comparisons: (1) each of the ten transects was compared with every other transect, using data from all censuses (sample sizes ranged from 5 to 7); (2) each of the three river sections was compared with the other two sections, using data from all censuses (sample sizes were 17, 23, and 19 for the upper, middle, and lower rivers, respectively); (3) using data from the whole river, each of the three seasons was compared with the other two (sample sizes were 13, 20, and 26, respectively); (4) for each of the three seasons a comparison was made between the upper and middle river sections (sample sizes ranged from 3 to 9), upper and lower river sections (sample sizes ranged from 3 to 9), and middle and lower river sections (sample sizes ranged from 4 to 9); and (5) for each of the three river sections a comparison was made between the fall and winter (sample sizes ranged from 3 to 8), fall and spring (sample sizes ranged from 3 to 9), and winter and spring (sample sizes ranged from 6 to 9). Average population sizes for each transect are given in Appendix V-03, and are summarized by river section and season in Table V-10.

The state of the

V-10. Summary of bird distribution, diversity, and abundance along the Trinity River during the non-breeding season (fall, winter, and spring) Table V-10.

	Upper No. Of	pper River Middle River Of Averag	Middle No. Of	Middle River	Lower River	Lower River Whol	ાં છામન	River
Season	δί Δί	ecies Pop.Size	Species	Pop.Size	on I	Pop.Size	Specie	POPT STORY
Fall	99	483	78	1,041	97	310	136	989
Winter	09	065	91	1,501	83	768	102	1,008
Spring	111	339	116	287	120	474	169	က ် က
TOTAL	131	453	145	906	148	532	196	ເກ ເ ຕ ເວ
diversity index ¹		5.4	Ř	3.8	۱Ω	5.5		5.1

Computed using the Shannon-Wiener function (see text).

applicated the state of the

None of the ten transects were statistically different in population size (at the .05 level of probability) from any of the other transects. This is somewhat surprising the rather large differences in average οf population size and would appear to be explained by the very large variances in population size at individual transects and by the rather small sample sizes. Transect 6 with an average population size of 1,486 individuals (on 6 censuses), and Transect 4, with an average population size 1,002 individuals (on 5 censuses), had by far the largest average population sizes of the ten transects. both these transects the unusually large population sizes were due principally to a single species, the redwinged blackbird. This species is well known for its enormous winter concentrations in the southern United States, often occurs in huge flocks with other icterids and starlings (i.e., "blackbirds" in a general sense). It should be pointed out that usually the large flocks of redwinged blackbirds counted were observed flying overhead, without stopping, although occasionally they were seen foraging in the study area. Other gregarious species which were sometimes seen in large numbers were the doublecrested cormorant and white itis (both at Transect 10. flying overhead), robin, starling, common grackle, and brown-headed cowbird. Large aggregations of "blackbirds" are responsible for the unusually high population sizes on the middle river in the fall and winter, and also account for the relatively high Winter population on the river as a whole (Table V-10).

of the t-tests carried out with population sizes at different seasons and river sections, only six were statistically different (at the .05 level of probability). These were: (1) winter vs. spring on the upper river, (2) winter vs. spring on the middle river, (3) fall vs. spring or the middle river, (4) fall vs. spring on the river as a whole, (5) winter vs. spring on the river as a whole, and (6) middle river vs. lower river in the spring. Conclusions which can be drawn from these lests are: (a) on the upper middle river, and river as a whole winter river, significantly higher than populations were populations (but not on the lower river, where spring populations were relatively high); (b) on the middle river and the river as a whole winter populations were also significantly higher than fall populations; and c) spring populations on the lower river were significantly higher than on the middle river. Trends in average population size from fall to writer to spring are shown in Figure V-02.

THE STATE OF THE PARTY OF THE P

The second second

Note that in every instance winter populations were the highest, and everywhere except on the lower river spring populations were the lowest (see also Table V-10). It is of interest that all the significant differences in population size (except one) are related to seasonal factors rather than to river section, in spite of the much larger numbers recorded on the middle river during the fall and winter.

Pluctuations in variety of Trinity River birds (i.e., number of species present) are shown in Figure V-03 and Table v-10. On all three river sections and the river as a whole the number of bird species recorded was lowest in the winter and highest in the spring. This trend is exactly the reverse of that for average population size. In the winter birds were present in greatest numbers but least variety, while in the spring they were prosent in greatest variety but fewest numbers. Such changes is the avifauna along the Trinity River are the result of the annual spring and fall migrations of birds. Differences is species variety were not tested statistically, but it is noteworthy that in all three seasons variety of birds was greatest on the lower river and least on the upper river. Transect 8 had the greatest variety of species (120), and the fewest number of species was recorded at Transect 2 (70). It will be shown later that these differences are correlated with habitat diversity.

The Shannon-Wiener function was used to species diversity indices for each of the ten transects, for each of the three river sections, and for the river as whole. The maximum number of individuals counted on any single census (Appendix V-04) was used to represent abundance (n_i) of each species; all the n_i 's were then summed to get M. It is felt that the maximum individual count from all censuses conducted at a particular transect is a better estimate of real abundance of a particular species than an average number of individuals from all three censuses. However, it would be worthwhile, although not done here, to compare diversity indices computed by using these two slightly different methods for obtaining values of ni. It would not have been reasible to use the sum of recorded figures from all consuses at a particular transect because of the probability of counting some individuals more than once, since individuals counted were not collected. In calculating diversity indices for a particular river section the maximum counts from each of the appropriate transects were added together for each species and their sum used for n₄. Similarly, maximum counts from all ten transects were summed to obtain each nu

The state of the same of

when computing a diversity index for the river as a whole. It should be noted that diversity indices computed for birds from data gathered during this study are indices for non-breeding populations, which were continually fluctuating in size and species composition.

Diversity indices for all ten transects are given Appendix V-04, and indices for the three river sections and the whole river are shown in Table V-10. The two factors diversity indices (number of species and influencing equitability) have already been discussed. The importance diversity indices in ecological studies lies in their οť use as indicators of environmental quality (see Wilhm and Dorris, 1968), and in their possible correlation with such parameters as community stability, community maturity, community community structure, change, community references and metabolism, food webs (see cited previously). The values calculated in this study will be tested below, by simple linear regression analyses, with certain other lata gathered in the current investigation.

The following simple linear regressions were performed (the dependent variable is mentioned first; all analyses have 10 data points and 8 degree; of freedom; a correlation coefficient of .632 or higher is statistically significant at the .05 level of probability): (1) bird species diversity vs habitat diversity, transect number, average population size of birds, and mammal species diversity (2) number of bird species vs habitat diversity, transect number, and number of mammal species; and (3) average population size of birds vs habitat diversity, transect number, percent trapping success of small mammals, and average number of larger mammals and signs.

Only three of these 11 regression analyses had relatively high correlation coefficients. Interestingly, the highest correlation (r=.951) was between the average population size of birds and the total percent trapping success of small mammals. This correlation exists primarily because Transects 4 and 6 had much higher totals of both small mammals and birds thai any other transect; (Appendices V-01 and V-03). At both of these transects the cotton mouse and the redwinger blackbird were clearly dominant. The remarkable correlation between small mammals and birds along the Trinity River is thus primarily a result of the fact that redwinged blackbirds and cotton mice were both most numerous at 'ransect 6 (principally old weedy bottomland field) and were both next most abundant at Transect 4 (a rather mature open bottomland

The state of the state of

THE PARTY OF THE P

forest dominated by cedar elm). Two habitats could hardly be more different, at least superficially. It is therefore difficult to postulate what factors in the environment, if any, resulted in the positive correlation between population sizes of birds and small mammals.

Average population size of birds when regressed against bird species diversity resulted in a correlation coefficient of -.816. That is, as the average population of birds increased, species diversity of bir decreased. There is no a priori reason why this should be true. The answer appears to lie in the fact that the highest bird populations were those at Transects 4 and 6, where numbers of a single species (the redwinged blackbird) greatly exceeded numbers of all other species, sometimes accounting for more than half the total avian population on a given date. The tremendous abundance of a single species greatly changes the "equitability" of species distribution (see Lloyd and Ghelardi, 1964). As common species get commoner (like redwinged blackbirds in the present study), diversity indices decrease in value. This would seem to explain the negative correlation here between population size and species diversity.

Because of the specific habitat preferences of most kinds of birds, it would be predicted that species variety would increase as habitat diversity increased. The positive correlation (r=.607) between these two variables in the present study is therefore not surprising (though this is quite statistically coefficient not correlation significant at the .05 level of probability). regression line is shown in Figure V-04. Interestingly, species increased with although number of diversity, there was no increase in bird species diversity with habitat diversity. This appears to result from the fact that even though number of species influences species diversity, in this study of bird populations there was no significant correlation between these two variables. It would seem that equitability was the more important component of the Shannon-Wiener function, rather than number of species. Equitability in bird populations was apparently not closely correlated with habitat diversity.

There was no unidirectional trend in avian populations along the Trinity River in population size, species variety, or species diversity. Population size was not correlated with habitat diversity, suggesting that bird populations were approximately the same density in different kinds of habitats. When bird populations were

compared with mammal populations there were no significant correlations of species diversity, species variety, or population sizes (with the one exception, already discussed, that bird and small mammal population sizes were positively correlated). Apparently in most instances the factors influencing diversity, variety, and size of hird and mammal populations are not the same.

Non-transect_Studies_of_Birds

A limited amount of data on avian populations were gathered from observations other than transect censuses. These pertained primarily to wading and aquatic birds. Counts were taken on six different dates at the Fin and Peather Club Lake adjacent to Transect 2 (Table V-11), ten different dates at McCardell's Lake adjacent to Transect 8 (Table V-12). The abundance and variety of waterfowl and other aquatic species at these two lakes are probably typical of that at most of the swamps, sloughs, and oxbow lakes along the whole length of the Trinity River. As indicated in Table V-12 there is a large aggregation of nesting herons, egrets, and ibises at McCardell's Lake. Nesting sites preferred by the smaller herons and egrets were principally buttonbush, whereas the great blue heron and great egret preferred tupelo gums growing in the middle of the swamp. Additional studies are presently being undertaken in regard to these nesting birds and their interrelationships with the vegetation and water quality in the swamp.

Both of the above two lakes are approximately one mile long and roughly 100-200 acres in area, but they are ver different in vegetational structure. The Fin and Feather Club Lake is primarily an open body of water with a marshy upper end. A dike runs across the middle of the lake and along the east and south sides between the lake and the river. Water is supplied to the lake primarily from Trinity River overflow once every two or three years. Normally there is no water flowing through the lake. McCardell's Lake, on the other hand, is a natural swamp with very Woody water. vegetation grows little open everywhere, and there are relatively extensive areas of pure tupelo gum. There is a very small marshy area at the lower end where water leaves the lake via a small stream. A low amount of water flowed from the lake throughout this

- Michigan Company

 $^{\mathrm{Numbers}}$ of individuals $^{\mathrm{l}}$ of shore and aquatic birds recorded from the Fin and Feather Club lake adjacent to Transect 2 Table V-11.

				Dates (1972-1973)	1973)	I
Species	Sept.30	Feb.20	Feb.24	Mar.25	Apr.7	Apr.27
pied-billed grebe*		м		84	7	ĸ
double-crested cormorant			7	260	37	-
little blue heron	9					
great egret	12					
snowy egret	7					
mallard		16		7		
gadwall		225				
pintail		285	65			
green-winged teal		325	30			
blue-winged teal*			17	11	30	m
shoveler			m		e	
wood duck*						8
ring-necked duck		25	77			
canvasback	•		m			
lesser scaup			٣			
ruddy duck			7			
osprey						-
American coot*	7	300	120	95	35	16
ring-billed gull				4		
Franklin's gull					7	LO

¹Counts were made during a 30-60 minute period by an observer walking across the E-W dike in the middle of the lake.

²Asterisks denote probable breeding species.

Table V-12. Numbers of individuals 1 of shore and aquatic birds recorded from McCardell's Lake adjacent to Transect 8

Species ² Oct. Nov. Dec. Jan. Feb. Mar. Mar. Apr. Apr. Apr. Hay pied-billed grebe* 3 1 1 2 26 pied-billed grebe* 3 2 14 1 2 2 2 anhinga* 1 1 3 4 8 57 72 86 green beron* 1 1 3 4 8 57 72 86 green beron* 1 1 3 6 41 35 93 84 65 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 14 13 14 13 14 13 14 13 14 13 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14	Species ²					Dates	(1912-1913)	4/3/			
morant 3 2 14 1 2 2 72 72 72 14 35 93 84 84 85 7 72 80 84 85 75 72 80 84 85 75 72 80 84 85 75 80 84 85 75 80 84 85 75 80 84 85 80 85 80		0ct.	Nov.	Dec.	Jan.	e b	Mar.	23 23	Apr.	29 29	May 28
on in the second secon				٠				-	,		
on xron** 1	onthe created cormorant	า		N		٧.	-	4	٦ ,		
on ron* 1 3 36 41 35 93 84 2 2 30 281 360 6 1 16 4 146 617 18 1 1 6 75 103 114 1 1 1 5 22 14 34 2 5 1 112 448 1 1 5 23 17 15 18 3 1 1 1 3 42 45 3 25 25 1 4 45 3 27 10 30 32 42 45 3 28 16 17 18 29 84 10 1 30 32 42 45 3 20 14 14 34 14 20 15 18 3 21 17 18 3 22 17 10 30 32 42 45 3 25 2 12 19 7 2 11 1 3 42 45 3 25 2 12 19 7 2 11 1 3 3 42 45 3 26 16 75 103 7 2 11 1 3 3 42 45 3 27 12 19 7 2	nowing cresced cormorant	٦				7 7	4 47	00			86
1	reat blue heron*			m	m	36	41	35		8.4	62
on ron* 1	reen heron*									7	12
32 42 1 14 146 617 18 on ron* 1 50 1 1 1 1 1 1 1 1 1 1 1 1 1	ittle blue heron*	-					72		281	360	99
gret* gret* gret* na heron r night heron* l spis* cr night heron* l cr night heron* </td <td>attle egret*</td> <td>32</td> <td></td> <td></td> <td>-</td> <td></td> <td>16</td> <td></td> <td>146</td> <td>617</td> <td>α</td>	attle egret*	32			-		16		146	617	α
gret* 1 1 6 11 r night heron 1 43 33 25 cr night heron* 1 1 1 448 cr night heron* 1 1 1 1 448 bis* 1 1 1 1 448 ue goose 1 24 13 23 15 18 3 inged teal 3 12 23 17 5 2 2 n shoveler 1 3 32 42 45 3 ck* 25 6 16 12 22 12 19 7 2 ck* 25 6 16 22 12 19 7 2	reat egret*						99		103	114	110
1	nowy egret*						-	т	9	11	1-
r night heron cr night heron* cr night heron* bis* ue goose 1	ouisiana heron								-1		
cr night heron* 1 bis* 1 ue goose 4 1 5 22 14 34 2 5 3 inged teal 3 12 23 15 18 3 inged teal 1 12 23 17 5 2 2 in wigeon 7 10 30 32 42 45 3 ck* 1 1 3 16 22 12 19 7 2 ck* 25 6 16 22 12 19 7 2 il 1 3 4 2 4 4 4 4 4 cked duck 2 6 16 2 12 19 7 2	lack-cr night heron								7		
bbis* ue goose	rellow-cr night heron*						31		33		
ue goose 4 1 5 22 14 34 2 5 3 24 13 23 15 18 3 inged teal 3 12 23 17 5 2 2 14 n wigeon 7 10 30 32 42 45 3 n shoveler 1 1 3 4 4 ck* 25 6 16 22 12 19 7 2 il 1 2 2 12 19 7 2	hite ibis*	-						-	112	4	
inged teal 3 12 22 14 34 2 5 3 4 4 4 13 23 15 18 3 3 4 4 4 14 14 14 14 14 14 14 14 14 14 14	inow/blue goose	4				•					
24 13 23 15 18 3 inged teal 3 12 23 17 5 2 n wigeon 7 10 30 32 42 45 3 n wigeon 1 1 3 42 45 3 ck* 25 6 16 22 12 19 7 2 cked duck 2 2 12 19 7 2 il 1 3 4 3 4 4	nallard	-	ß		14		7	Ŋ	m		
inged teal 3 12 23 17 5 2 2 nged teal 1 12 23 17 12 50 24 14 n wigeon 7 10 30 32 42 45 3 n shoveler 1 1 3 42 45 3 ck* 25 6 16 22 12 19 7 2 cked duck 2 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	adwall				13		15	18	m		
inged teal 3 12 23 17 5 2 2 14 14 15 12 50 24 14 14 15 3 17 10 30 32 42 45 3 4 15 1 1 3 4 15 12 19 7 2 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ointail			4							
1 10 30 32 42 45 3 14 14 15 10 30 32 42 45 3 2 4 14 2 15 3 15 2 12 19 7 2 2 12 19 7 2 2 12 19 7 2 2 12 19 7 2 19 7 2 19 7 2 19 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	reen-winged teal	m				17		Ŋ	7		
r 1 10 30 32 42 45 3 t 1 1 3 4 4 4 25 6 16 22 12 19 7 2 2 2 2 1 1 1	olue-winged teal	-						50		14	
l oveler 1 1 3 4 4 7 2 2 12 19 7 2 1 duck 2 1 1 1 2	merican wigeon	7	10					٣			
3 duck 25 8 16 22 12 19 7 2 2 1 duck 2 1 1 2	northern shoveler	-	н				4				
2 1	loog duck*		co						7	7	מי
	fing-necked duck			2							
	sora rail							, -i	п		27

purple gallinule*									7	4
common gallinule*	m					٦			m	7
American coot*	m		7		25	ហ			15	-
killdeer*	9	12	11	14	7					7
common snipe	19	7	9							
solitary sandpiper							-4	7	4	
belted kingfisher*	7	-			~		7			
		1 1 1 1 1	,	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1 1 1

the upper end of the lake are also included; observations were made from a canoe on Februeach at a separate observation point around the lake, and on October 21 observations from ¹Counts were usually made over a period of approximately two hours just before dusk by a single observer at the lower (east) end of the lake; on May 28 there were four observers,

²Asterisks denote probable breeding species.

investigation, but the source of water entering the swamp was not determined.

On February 10 and 11, observations of birds were made from a boat along an eight mile stretch of the Trinity River from the Highway 162 bridge at Transect 9 downriver to the outlet of "Mud Lake", and on the lake itself. Mud Lake is a narrow, shallow, wooded, floodplain lake about 3/4 of a mile long, through which Tanner Bayou and Little Bayou drain into the river. It is bordered by large cypresses and has many cypresses growing in the shallow upper end of the lake. Aquatic and wading birds recorded are given in Table V-13. Of particular interest is the large number of great egrets and great blue herons which were foraging on the sandbars and mudflats along the river, and the more than 150 ducks on Mud Lake. These data, along with those previously presented indicate that the small lakes, swamps and sloughs on the Trinity River floodplain are utilized fairly extensively by waterfowl during the winter months and early spring.

On September 29,1972, observations were made near Transect 3 of birds migrating south immediately following a brief, heavy rainstorm which preceded a well-defined cold front moving into the area from the northwest. Birds were flying very high, mostly singly, taking advantage of very high winds at that level. Species identified are shown in Table V-14. Noteworthy are the large flocks of pelicans and the wide variety of hawks, including a single peregrane falcon (possibly two). On the following morning a flock of 140 wood storks was recorded flying to the south over Transect 3.

small wading birds ("shorebirds") were not often seen on transect censuses since suitable habitat was usually lacking. That these species utilize the Trinity River valley as a migration route, however, is indicated by observations on May 12,1973, in a wet field adjacent to Transect 3 on the river floodplain. Heavy rains the night before accounted for several pools of standing water in the field, a grassy pasture heavily grazed by cattle. In a two hour period of observation over 300 individuals of 20 different kinds of shorebirds were counted (Table V-15).

During this study three species of birds currently considered rare or endangered were recorded along the Trinity River: the bald eagle (2 birds at Transect 4, see Appendix V-03), peregrine falcon (1 or 2 birds near Transect 3, see Table V-14), and osprey (1 bird at the Fin and Feather Club Lake, see Table V-11). In addition to

the state of the state of the state of

Table V-13. Shore and aquatic birds recorded on February 10 and 11, 1973 at Mud Lake and along an eight mile stretch of the Trinity River, both near Transect 9

garata.	Number o River Shore	Individuals 1
Species	KIVEL SHORE	Mud Lake
double-crested cormorant	1	
anhinga	2	1
great blue heron	24	3
great egret	82	
mallard		60
green-winged teal		6.5
wood duck	6	50
spotted sandpiper	5	
belted kingfisher	2	

¹ Counts were made by an observer in a boot, during a one-hour period in late afternoon at Mud Lake and during a 45 minute period in the morning on the river (from the Highway 162 bridge downriver to the Mud 3 ake outlet).

air preceding flying south very high in the Transect recorded from near Birds September 29, 1972 V-14.

immediately following the passage of a rainstorm a well-defined cold front! Humber double-crested cormorant small "shorebirds" sp.) sharp-shinned havk small falcon sp. large falcon sp.) broad-winged bawk great blue heron eregrine falcon merican kestrel Swainson's hawk ranklin's gull (Accipiter sp.) turkey vulture Cooper's havk white pelican Species larsh havk

hour t vo period, and were seen singly except as indicated. observers tro 1 Birds vere counted

2 In four flocks of 280,500, 250, and 290 birds each.

3 Two flocks of 160 and 18 birds each.

Single tlock.

Table V-15. Small wading birds (charadriiformes) recorded irom a 50-acre wet field adjacent to Transect 3 on Nay 12, 1973.

Munber	4 2 2 2 3 4 5 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	34.3
Species		TOTAL INDIVIDUALS Total species: 20

hour two 1 Counts were made by a single observer during a period in the morning. these records, two adult bald eagles were seen together on February 17, 1973, in Leon County between Transects 6 and 7, at a point approximately 3 miles west of the river, flying toward the river in the general direction of Stanmire and Clear Lakes. These three species are probably regular migrants and winter visitants, in very small numbers, along the Trinity River. The more remote parts of the river and the less disturbed lakes and swamps are undoubtedly used for foraging, as are artificial reservoirs such as Cedar Creek Reservoir and Lake Livingston.

SUMMARY

Hammal and bird populations were regularly censused, during the period September, 1972 through May, 1973, at ten 1,500 meter transects situated along the Trinity River. Bstimates of population sizes were made by the following methods: (1) for small mammals by the number of animals caught in snap traps set every 15 meters along each transect, (2) for larger mammals by the number of individuals seen or heard and the number of signs (tracks, feces, nests, diggings, etc.) recorded by an observer while walking along each transect, and (3) for birds by the number of individuals seen or heard by an observer while walking along each transect during a 2-3 hour period in the morning.

The environment of each transect was classified into four major categories: woodlands, thickets and edge, grasslands and fields, and aquatic habitats. A crude index of habitat diversity was calculated for each transect using the Shannon-Wiener function. For the river as a whole, the ten study areas were composed of 58% woodlands, 19% thickets and edge, 18% grasslands and fields, and 5% sloughs, swamps, ponds, and river. All areas were moderately to heavily disturbed by past or present human activities, principally livestock grazing and timber removal.

Species diversity indices were calculated, using the Shannon-Wiener function, for both mammal and bird populations at each transect, and also for three arbitrarily defined river sections (upper, middle, and lower) and the river as a whole. Population sizes were compared statistically by the use of a t-test, and simple linear regression analyses were used to test for the presence or absence of statistical correlations between such parameters as species diversity, habitat diversity, species variety, population size, and transect number.

Iventy-eight species of mammals and 227 species of birds were recorded from the ten study areas during this investigation. The most widespread and abundant mammals were the cotton mouse, armadillo, swamp rabbit, fox and/or gray squirrel, coyote, raccoon, and white-tailed deer (the latter principally on the middle river). Cotton mice constituted more than half of the total small mammal population, and this species together with the harvest mouse made up 86% of all mammals trapped.

There were many widespread species of birds, and only a relatively few were confined to a particular river section. Certain birds typical of central and west Texas, however, were recorded only on the upper river, a region where such species as the white ibis, anhinga, nooded warbler, and Swainson's warbler were absent. The redwinged blackbird was by far the most numerous avian species, but other very common birds were the blue gay, common crow, Carolina chickadee, tufted titmouse, Carolina wren, robin, starling (locally), common grackle, brown-headed combird, cardinal, and white-throated sparrow. Waterfowl occurred in moderate numbers on a small open artificial lake adjacent to Transect 2, and on a small swamp adjacent to Transect 8. Horons and egrets bred in very large numbers at the latter site.

The overall trapping success of 2.8% indicates that in general small mammals were not very common in the ten study areas. Small mammals were least abundant at the two most upland transects (1 and 5) and most abundant at Transects 6 (an old neglected field on the floodplain) and 4 (a relatively mature bottomland forest dominated by cedar elm). There were no statistically significant differences in trapping success between woodland, thicket, or grassland habitats, or between any of the three river sections (though trapping success was somewhat higher on the middle river) or the three seasons. Population sizes of larger mammals often differed significantly, but most noteworthy were the much smaller populations at Transects 8, 9, and 10 on the lower river (which resulted in populations of larger mammals being negatively correlated with transect number). It is suggested that the large number of wild pigs at the latter two sites may be a major factor in the reduced populations of larger mammals in those areas. Population sizes of larger mammals and small mammals were not correlated.

Population sizes of birds ranged from 169 to 3,401 individuals per census. There was considerable variation

THE PARTY OF LAND

between dates at a particular transect, so that statistically population sizes between any two pairs of transects were not significantly different. Nevertheless, the highest populations were at Transects 4 and 6 where redwinged blackbirds were most numerous, and during the fall and winter bird populations were much higher on the middle river than elsewhere.

At all three seasons bird species variety was greates on the lower river and least on the upper river. On all three river sections, and on the river as a whole, the variety of biri species was greatest in the spring and lowest in the winter, but the average size of the total avitaunal population was highest in the winter and was lowest in the spring (except on the lower river). Thus winter was the time of highest individual numbers of birds but the lowest variety, and spring was the time of greatest variety but lowest number of individuals.

There were no unidirectional trends along the Trinity River in population size, species variety, or species diversity of either birds or mammals. The single exception was that large mammal populations were smaller on the lower river than elsewhere.

When mammal populations were compared with bird populations there were no significant correlations of species diversity or species variety, suggesting that the factors which influence these parameters in mammals are not the same as those for birds. Bird and small mammal population sizes were positively correlated.

Variety of birds was positively correlated with habitat diversity, but mammal variety was not. Bird species diversity was negatively correlated with average population size, apparently because as certain avian populations increased due to large flocks of redwinged blackbirds the equitability of these populations declined, lowering diversity index values. Neither bird nor mammal species diversity were correlated with habitat diversity. This suggests that environmental "quality" may be more important in influencing species diversity of these animals than is variety of habitat per se.

No rare or endangered mammals were recorded during this study. Three species of rare or endangered birds were seen: bald eagle, osprey, and peregrine falcon. These three species are probably regular migrants and winter residents along the Trinity River, in very small numbers.

ZOOLOGICAL ELEMENTS - FISHES

INTRODUCTION

In a previous report submitted to the U. S. Army Corps of Engineers (Hall, 1972) the occurrence of 84 fish species in the Trinity River drainage system was documented. Species were listed on the basis of numerous field collections, newspaper reports, published documents, unpublished Texas Parks and Wildlife Department Dingell-Johnson research reports and personal communication with commercial fishermen along the Trinity River.

No attempt was made in the previous study to enumerate or discuss at length the myriad of ecological factors operating on and within fish populations in the drainage system. Baseline data regarding the fish species present and their distribution within the system were obtained in order that a framework of reference could be established for the present study.

Since the completion of the report mentioned above, numerous additional Trinity River fish species records have been called to this investigator's attention by Clark Hubbs, John V. Conner And Mark Kelly, all of whom have collected extensively within the drainage system. No treatise, as such, has dealt exclusively with the fishes of the Trinity River system to date and additional species, no doubt, await discovery within the sprawling system. The additional species records added by the individuals above are listed in the "Results" section of this report.

Completion of the inventory of fishes in the system was one of the major objectives of this phase of the study and with the inclusion of the additional species the overall status of fish populations within the river is somewhat clearer. It should be emphasized, however, that the inventory is not yet complete. The numerous "marine invaders" listed by Conner (personal communication) in the "Study Areas" section of this report attest to the everchanging conditions in the lower river. Increases and decreases in salinity due to flow volume determine to a large extent the number of marine species likely to be found in the lower river at any given time.

The 130 fish species and hybrids presently documented for the Trinity River compares well with the reports of: Moore and Paden (1950) who listed a total of 92 fish species from the Illinois River; Luce (1933) who found 89

- white the

species in the Kaskaskia River, Illinois; Rozenburg, et al. (1972) who collected 56 species in the Navasota River, Texas; Martin and Campbell (1953) who listed 68 fishes from the Black River, Missouri; and Banarescu (1961) who found 83 fish species in the Danube River of Europe. These river systems, with the exception of the Danube, are unlike the Trinity in that they do not allow directly into a marine body of water. The greater number of species from the Trinity is due, largely, to the influx of numerous brackish water and marine species in the lower zone of the river.

It is a general rule that the number of fish species increases from the source(s) to the mouth of the river, as has been established in western and eastern Europe (Huet, 1954, 1959; Backiel, 1964), South America (Kleerekoper, 1955), and North America (Hallam, 1959; Larimore and Smith, 1963; Rozenburg, et al., 1972). This trend has also been documented for the Trinity River. Mark Kelly (personal communication) has documented the occurrence of 55 extant species in the headwaters as compared to approximately 125 species for the wid- and lower reaches of the system. Some overlap of ubiquitous species occurs, hence the totals above reflect the occurrence of some species in all three zones (headwaters, mid-river, and lower river) and are used only as comparative rather than absolute numbers of species for each zone.

Thompson and Hunt (1930) noted that there is a more or less linear relationship between the logarithm of the drainage area upstream from a collecting station and the number of fish species occurring there. It has also been confirmed by Müller (1955a), Hallam (1959), Tesch and Albrecht (1961), and Larimore and Smith (1963) that the total number of individuals of all species per unit area declines in a downstream direction. Thus, there are fewer fishes per square meter (or per cubic meter) of water as one proceeds downstream, although the individuals are usually larger and the total weight per unit area remains more or less constant.

The basic assumptions underlying most of the above "rules" are that (1) the river system has not been significantly modified from its natural state by the activities of man (e.g., introduction of pollutants, silt, pesticides, etc.) And (2) that no obstructions are present in the river system which impede or prevent the migrations and other normal movements of fishes. Neither of the above assumptions holds true for the Trinity River. The upper segment of the river is polluted by various domestic and

industrial wastes from the Dallas-Fort Worth metroplex area (as well as from other cities within the basin) and Lake Livingston Dam currently obstructs and completely prevents movement of fishes above river mile 128 on the lower river.

Another major objective of this phase of the study was examine certain selected ecological parameters which influence presently existing fish populations in the river. Eighteen species of rough, game, and forage fishes were arbitrarily selected for "Profile Analysis" in regard to: preference, reproductive habits, tood habits, habitat economic value, specialized adaptations, and possible of canalization and impoundment upon their effects population densities. It should be stressed that the last item is largely speculative and depends to great extent upon canal and reservoir design, as well as fisheries management techniques which may be employed in the future. These 18 species were selected primarily upon the basis of their relative abundance, their importance in the Trinity River aquatic food chain, and their sport and/or commercial

some of the ecological factors influencing fish populations which will be considered herein include: current velocity, mean water depth, shoreline development, bottom substrates, fecundity, dissolved solids, storage ratios of reservoirs, age of the impoundment, and water level fluctuation. Jenkins (1964, 1968, 1970) has reported on the effects of many of these environmental variables in has surveys of artificial impoundments in the South and Southwestern United States (including several Texas reservoirs, though none were within the Trinity River basin). In addition, Hynes (1970) dealt with various aspects of river ecology which directly or indirectly influence fish populations.

MATERIALS AND METHODS

Field studies were initiated on this phase of the Trinity River Project during October, 1972 and were completed during early May, 1973. Ten widely separated sampling stations were established from the upper reaches of the river near Port Worth, Texas downstream to near the mouth of the Trinity River at Trinity Bay. These sites (previously described, Chapter I) were selected on the basis of their ecological uniqueness, location, habitat diversity, or other important features.

Little field work was accomplished during this phase of the study because of: (1) excessive rainfall in the watershed throughout the study period which resulted in extremely high water levels in the river; (2) an extremely cold winter marked by several snows (3) an unaccountable delay by the Texas Parks and Wildlife Department in granting a renewal of a scientific collecting permit for fishes; and (4) refusal of the Texas Parks and Wildlife Department to issue an electrofishing permit for this study.

During the limited periods during which field collections could be made fishes were collected with: common sense minnow seines (1/4 and 3/8 inch mesh sizes), drag seines, gill nets, and hoop nets. Fishes were preserved in the field in 10% formalin and later, in the lab were sorted, identified, cataloged, and placed in fresh 10% formalin.

Creel census data were also obtained by direct conversation with fishermen and by examination, with their permission, of their catch. Data were recorded on a mimeographed "Creel Census Data Sheet" (Appendix V-05). These were found to be of limited value due to the lack of angling during the extended periods of high water.

A 16 foot Monarch DW flat bottom Jon hoat and 20 hp. Chrysler outboard motor were used for reconnaissance and collecting trips on the river.

Air and water temperatures were obtained during each collection, as well as data regarding aquatic vegetation, bottom type, water depth, flow velocity, method of capture, turbidity, dissolved oxygen, pH, and detergents. These data were recorded in the field on prepared data sheets (Appendix V-06).

raxonomic keys and checklists used for identification of fishes collected during this survey included: Moore (1968), Hubbs (1970, 1972), Eddy (1957), Smith-Vaniz (1968), and Parker, et al. (1971).

The common name listed for a fish species in this report is that which has been selected and approved by the American Fisheries Society's Committee on Names of Fishes as published by Bailey, et al. (1970).

Unpublished data regarding fish species in the Trinity River and their distribution within the system have been

contributed by John V. Conner, Clark Hubbs, and Mark Kelly.

STUDY AREAS

Additional Species Records

In this seven-month study 7033 fishes were collected which represented 9 families, 13 genera and 19 species. A previous five-year study by Lamb (1957) documented the occurrence of 57 species within the Trinity River sys em. Hall (1972) expanded the list to 84 species. Species records recently obtained from Clark Hubbs (personal communication) have resulted in the inclusion of additional species (Table V-16). Data supplied by Mark Kelly (personal communication) have added 4 additional species (Table V-16) for the system. In addition, Conner's data have resulted in the inclusion of 28 additional species and hybrids, most of which are "marine invadors" of the lower Trinity River. Kelly and Conner also listed several species whose status in the system is in doubt for one reason or another. The "questionable specie: " are listed separately in Table V-17.

In addition to the 44 newly-documented species by Hubbs, Kelly, and Conner, 2 additional species have been added by our field work during this phase of the project (one of these, the black buffalo, was also listed by Conner). These two species are also listed in Table 1-16.

One additional species record has been found in the literature. Dendy and Scott (1953) listed the southern brook lamprey from this system.

All totaled there are, at present, 130 documented fish species for the Trinity River system. For the most part these are ubiquitous and apparently no endemic, rase, or endangered species occur within the system (Conner, personal communication; Miller, 1971).

According to Conner (1973) the Trinity River <u>per se</u> forms a range boundary for very few fish species. Apparently only two species, the emerald shiner and the creek chub, have the Trinity as their western limit. He notes that the Trinity, however, does seem to limit the eastern distribution of several species such as the stoneroller, chub shiner, silverband shiner, sand shiner, plains killifish, Mississippi silverside, and orangethroat darter. Most of these appear to be restricted to the upper portions of the Trinity River, i.e., above the coastal plain.

The state of the s

Table V-16. Additional fish species and hybrids reported from the Trinity River drainage system!

	Compon Mane?	Source
Petromyzonidae	southern brook lamprey	Dendy and Scott, 1953
Carcharhinidae	bull shark (marine invader)	Conner, 1973
Dasyatidae	Atlantic stingray (marine invader)	Conner, 1973
Blopidae	ladyfish (marine invader)	Conner, 1973 and Clark Hubbs (pers. Comm.)
Ophichthidae	speckled worm eel (marine invader)	Conner, 1973
Clupeidae	finescale menhaden (marine invader)	Ball, original
Cyprinidae	speckled chub pallid shiner	(pers.
	ghost shiner	(pers.
	emerald shiner chub shiner Sabine shiner red shiner x blacktail shiner hybrid	Clark Hubbs (pers. Come.) Conner, 1973 Conner, 1973 Conner, 1973 Conner, 1973

	creek chub	Conner, 1973 and Mark Kelly (pers. Comm.)
Catostowidae	western creek chubsucker black buffalo	Conner, 19/3 Hall, original and
	blue sucker	Conner, 1973 Clark Hubbs (pers. Comm.)
Ariidae	cea catfish (marine invader)	Conner, 1973
Belonidae	Atlantic needlofish (marine invader)	Conner, 1973 and Clark Hubbs (pers. Comm.)
Cyprinodontidae	plains killifish	
	Rainwater killifish (mainly estuarine)	pers.
	Diamond killifish (mainly estuarine) Saltmarsh topminnow (mainly estuarine)	Clark Hubbs (pers. Comm.) Clark Hubbs (pers. Comm.) Clark Hubbs (pers. Comm.)
Atherinidae	Hississippi silverside	
	Pough silverside (marine invader)	nark Kelly (pers. Coms.) Conner, 1973
Syngnathidae	Gulf pipefish (mainly estuarine)	Conner, 1973
Centrarchidae	green sunfish x bluegill sunfish hybrid green sunfish x redear sunfish hybrid	Conner, 1973 Conner, 1973
Percidae	orangethroat darter	Conner, 1973 and Mark Kelly (Ders. Comm.)

	goldstripe darter		88
	Cypress darter	Clark Hubbs (pers. Comm.) Conner, 1973 and Clark Hubbs (pers. Comm.)	
Sparidae	pinfish (marine invader)	Conner, 1973	
Sciaenidae	<pre>sand seatrout (marine invader) spotted seatrout (marine invader) spot (marine invader) black drum (marine invader) red drum (marine invader)</pre>	Conner, 1973 Conner, 1973 Conner, 1973 Conner, 1973	
Rugilidae	mountain mullet (marine invader) white mullet (marine invader)	Conner, 1973 Conner, 1973	
Eleotridae	fat sleeper (marine invader)	Conner, 1973 and Clark Hubbs (pers. Comm.)	
Gobiidae	darter goby (mainly estuarine) freshwater goby (mainly estuarine) naked goby (mainly estuarine)	Conner, 1973 Conner, 1973 Conner, 1973	
Pothidae	bay whiff	Conner, 1973	
Soleidae	lined sole hogchoker	Conner, 1973 Conner, 1973	
Cynoglossidae	blackcheek tonguefish (marine invader)	Conner, 1973	

1 In addition to those previously reported by Hall (1972) 2 Scientific names are listed in Appendix V-07.

Table Y-17. Questionable fish species reported from the Trinity River system 1

Family	Common Mane 2	Source
Lepisosteidae	shortnose gar	Lamb, 1957
Acipenseridae	shovelnose sturgeon	Baughman, 1950
Polyodontidae	paddlefish	McCune, 1971
Characidae	Hexican tetra	Kelly, pers. Com.
Cyprinidae	goldfish Plains minnow	Kelly, pers. Com. Lamb, 1957
Ictaluridae	stonecat	Powler, 1945
Centrarchidae	rock bass	Kelly, pers. Coms.
Cichlidae	Hozasbique mouthbrooder	Conner, 1973

1 Doubtful records because of failure of original stock in establishing breeding populations or because of doubt regarding the validity of reports listing the species as occurring in the system.

2 Scientific names are listed in Appendix V-07.

The taxonomic relationship between the Hississippi silverside and the tidewater silverside presents an enignatic problem which is currently under investigation by several workers. Apparently both species, if in fact they are separate species, do exist in the Trinity River system. In addition, there are populations which show a mosaic of morphological features, thus indicating that hybridization may be occurring between the two groups or that they may, in fact, be conspecific with a great deal of morphological variation existing between various populations.

To further coaplicate matters the transitional zone between fresh and saltwater, i.e., the estuary at and near the mouth of the Trimity River, harbors many fish species which may be temporary or, in some cases, long-term inhabitants of the lower river. Seasonal fluctuations in river flow, salinity, turbidity, dissolved solids, dissolved oxygen, etc., unquestionably influence the movement of many of the brackish-water and marine species upstream and freshwater species downstream.

Questionable records of fish species from the Trinity River system are listed in Table V-17. Certain of the species such as the paddlefish and the pallid shiner were, no doubt, once present but have apparently disappeared within recent years (Hall, 1972; Conner, 1973). Others such as the stonecat and the shortnose gar have apparently been included as a part of the Trinity ichthyofauna by mistake (Fowler, 1945; Lamb, 1957). Still other species such as the Mexican tetra and the goldfish have been stocked either intentionally or unintentionally.

Recently introduced non-native game fish species in the Trinity River watershed are listed in Table V-18. The striped bass is now found in approximately the lower two-thirds of the system while the walleye has been stocked in Garza-Little Elm Reservoir near Dallas, Texas.

Criteria sometimes used for the inclusion of fish species in an inventory checklist, i.e., that a reproducing, self-sustaining, well-established population must be evident, are not followed herein. The presence of any tish species in the Trinity River system, as documented by any valid method, is deemed sufficient for inclusion in this survey.

Pisheries Research Data

most of the data presented in the following section have been obtained by the investigator and associates by the use of seines and gill nets during the limited periods

And the Parties of th

Table V-18. Mon-native introduced game fish species in the Trinity River system

Pamily	Cosson Sase
Serranidae	striped bass1 Carpenter, 1972
Percidae	walleye? Comm.
1 Stocked in Lakes Bardwand the Trinity River.	Bardwell and Havarro Hills originally and now found in Lake Livingstoner.

2 Stocked in Garza-Little Blm Reservoir near Dallas, Texas.

of accessibility to the river. Data included in Tables V-19 and V-20 however, were provided by Texas Parks and Wildlife Department personnel headquartered at Sheldon Reservoir near Houston, Texas and were obtained by the use of electrofishing gear.

Attention is called to the fact that weights in the two tables mentioned above are expressed in pounds, whereas in all other tables the unit of weight used is the gram.

Wo attempt will be made herein to correlate data with specific station sites as previously established for this study. Several of the stations were impossible to sample during this study because of complicating factors mentioned earlier. In addition, the dispersal of fishes during high water also makes quantification and estimation of population sizes untenable. The only absolute methods for obtaining complete data on fishes per unit area or unit volume of water are to: (1) drain the body of water and collect all fishes or, (2) kill all fishes in the area by some method. Meither of these methods was feasible during this study.

Table V-19 based on electrofishing samples taken July 12. September 13, and December 6, 1972 at the Texas State Highway 21 bridge reveals the condition of the Trinity River fish populations at or near its confluence with Lake Livingston. Bighteen fish species were present, most of which are well-adapted to lake-type environments which is prima facie evidence of lake influence upstream to this point. Of the 387 individuals taken at this station only 56, 14.48%, were game fish. In total weight, however, the game fish comprised 55.65% of the overall total; thus indicating that the individual game fish, on the average, were much larger than the coarse or non-game individuals.

Table V-20 presents data which are somewhat enignatic in that the number of species (20) taken at the Trinity River bridge on Teras State Highway 19 exceeds the number of species taken further upstream and out of Lake Livingston proper, as listed in Sable V-19. Lake stations usually possess fewer species than stream or river stations, but that was not true in this instance. The total number of individuals taken also exceeds that for the upstream station (1026 vs. 387). The low number of game fishes reported in Table V-20 is also surprising in that Lake Livingston is generally conceded to be an excellent lake with a large game fish population. The generalization is probably true and the samples from one station do not reflect the overall condition of game fish populations

The second second

Table v-19. Results of electrofishing samples July 12, September 13, and December 6, 1972 Trinity River at Highway 21 bridge near Ridway, Texas 1

	Number	% of Mumber	weight (pounds)	% Weight	Average Weight (Pounds)
longnose gar	-	. 25	90-	90	90-
dizzard shad	174		20.16	22.63	-
river carpsucker	-	.26	• 56	.62	• 56
spotted sucker	_	.26	.25	.29	.25
carp	#	1.04	13.19	14.80	3.30
red shiner	20	12.91	. 14	.15	<.01
yellow bullhead	-	.26	90.	.07	90.
flathead catfish	~	.52	-07	90°	*0
blackstripe topsinnow	m	.78	.01	.01	<.01
brook silverside	7	.51	.0.	٠٥.	<.01
white bass	9	1.55	6.25	7.02	1.04
largemouth black bass	18	4.65	18.20	20.42	1.01
varmouth	7	.52	, 34	.38	. 17
redear sunfish	m	.78	.30	,34	.10
bluegill sunfish	22	5.68	1.89	2.12	60.
longear sunfish	29	~	•	•	*0.
black crappie	19	4.91	10.96	12.30	.58
white crappie	=	8	14.10	15.83	1.28
TOTAL: (18 species)	387	100.00	89.11	100.00	ı
Game Pish	26		•	•	1
Other Species	331	85.52	39.53	44.35	1

1 Data supplied by Texas Parks and Wildlife Department personnel.

2 Scientific names are included in Appendix V-07.

Table V-20. Results of electrofishing samples July 11, September 12, and December 5, 1972 Trinity River at Highway 19 bridge crossing¹

Common Name?	Kumber	% of Mumber	Weight (pounds)	% Weight	Average Weight (Pounds)
qizzard shad	563	54,88	70.38	46.20	. 13
threadfin shad	312		2.18		10.
river carpsucker	-	-	1.38	•	
carp	10	.97	57.52	34.51	5.26
golden shiner	_	~	.03	•	•
red shiner	7	. 19	.01	.01	.10
bullhead minnow	- -	.10	.02	.01	
channel catfish	m	. 29	8.13		2.71
black bullhead catfish	7		2.19	1.43	1.10
flathead catfish	\$	0.7	.50	.33	
tidewater silverside	_	.10	.01	.01	.01
brook silverside	30	2.93	.11	.07	<.01
white bass	7	. 19	2.56	1.68	1.28
yellow bass	m	• 29	•59	• 39	.20
largemouth black bass	9	.59	2.99	1.96	.50
warmouth	m	.29	.31	•20	.10
redear sunfish	7	.20		†0	.03
bluegill sunfish	\$ \$	•		-	60.
longear sunfish	27	2.63	1.69		90.
white crappie	7	.20	•	-	68.
TOTAL: (20 species)	1026	100.00	152.34	100.00	ı
Game Fish	14	1.36	•	10.48	•
Other Species	1012	98.64	136.38	89.52	•

Data supplied by Texas Parks and Wildlife Department personnel.

² Scientific names are included in Appendix V-07.

within the lake. Two forage fish species, the gizzard shad and the threadfin shad, were very abundant, comprising 86.5% of the total number of fishes collected. The average weights of these two species were low, thus indicating that they were small enough to serve as food items for the game fish populations. Catfishes and sunfishes dominated the game fish populations at this site, which is to be expected in lakes of this geographical region.

Data (Table V-21) from the Loop 12-Trinity River bridge collecting site at the south edge of Dallas indicate that conditions were not favorable for fish populations there at the time of sampling. Hosquitofish and gizzard shad were the only fishes taken and these were not present in abundance. Personal communication with residents and fishermen in the area indicated that game fishes are virtually unknown from this segment of the river. Carp, gars, bullhead catfishes, and other rough fishes are occasionally taken by anglers, sighted in the river, or found after fish kills. Nuch organic waste is discharged in the river immediately upstream from this station so the paucity of fish species is not unexpected.

Data (Table V-22) from the Post and Paddock Riding Club area between Fort Worth and Dallas are quite similar to those from the Loop 12-Trinity River bridge station. Species diversity was low with one species, the red shiner comprising 99.66% of the total. Mosquitofish, gizzard stad, and black bullhead catfish were the only other species collected at this station. All four of these species are known to be tolerant of adverse ecological conditions and are among the most pollution-tolerant species of this geographical region. The degree of pollution, as judged by vasual observation, at this station did not appear to be as great as at the Loop 12-Trinity River station. In spite of the better overall appearance, no game fishes were taken at this site.

A hiatus in game fish populations in the Trinity River apparently exists from near Fort Worth downstream to the Crockett, Texas area. Game fishes do currently exist west of Fort Worth in the headwaters of the Trinity River drainage system (Mark Relly, pers. Comm.), but conditions are apparently so bad in the area indicated above that virtually no game fishes are found and few rough fish species. Joe Mayhew, as quoted in the <u>Houston Chronicle</u> October 14,1972 said "...the upper Trinity River is so polluted it will support only trash fish such as carp and

Table V-21. Results of seine sampling, October 28,1972 at the Loop 12 and Trinity River bridge

	Rabber	% of Mumber	Total Wt. (grams)	% Weight	Average #t. (grams)	Average Length (mm)
mosquitofish gizzard shad TOTAL: (2 species) Same Fish Other Species	12 0 21	91.63 8.37 100.00 0	4.51 6.60 11.11 0	40.60 59.40 100.00 0	0.4 6.60 1 1 1	27.27 89.00 -

1 Scientific names are included in Appendix V-07.

Table V-22. Results of Seine sampling, October 28,1972 at the Post and Paddock Riding Club

Common Name1	Number	% of Mumber	Total Wt. (grams)	% Weight	Average Ht. (grams)	Average Length (BB)
mosguitofish	3211	99.66	2215.59	98.68	69*0	32.4
red shiner		.22	7.49	486	1.07	0.44
black bullhead catfish	8	90.	14.20	.24	7.10	79.5
gizzard shad	8	90.	8.20	.24	4. 10	78.5
TOTAL: (4 species)	3222	100.00	2245.48	100.00	1	•
Game Fish Other Species	3222	100.00	2245.48	100.00	1 1	1 1

1 Scientific names are included in Appendix 7-07.

alligator gars." Mayhew further stated, "...that recent seinings in the river yielded only one sport fish, a catfish, between the Loop 12 bridge in Dallas and the Texas 7 bridge near Crockett. He said the river is devoid of adequate oxygen to support sports fish from Dallas to the South Preestone County line, north of Crockett. Hayhew said gar and carp can live in water with insufficient oxygen for sports fish." Clearly the situation is not presently favorable for the development of game and sport fish populations over a large porion of the mid- and upper segments of the Trinity River.

Collections were made at Lake Livingston Dam in the Trinity River by seine and gill nets on February 2 and 3, 1973, respectively. Relatively still water in this area enabled these investigators to use gill nets one of the few times during this phase of the study. The data from these collections are presented in Tables V-23 and V-24, respectively. The seine sample (Table V-23) did not yield any game fish species. Relatively large numbers of tidewater silversides and threadfin shad, however, were taken. Gill net samples (Table V-24) were more successful in capturing larger fish species. Rough and forage fish species comprised 99.23% of the total individuals collected via gill net. Gizzard shad and river carpsuckers dominated gill net samples with 92.31% of the total being comprised of these two species. Only one game fish, a black crappie, was taken by gill net.

The negative effects of high water in the Trinity River and its tributaries on sampling were vividly illustrated in collections made at Richland Creek (Table V-25) and the Trinity River at the Highway 287 bridge (Table V-26). Only one species was taken at each of these sites, the golden shiner at the Highway 287 bridge and the red shiner at Richland Creek. These sample sites are within the zone discussed by Mayhew which is generally unsuited for the maintenance of game fish populations. No game fish were taken in either of these samples.

Collections made upstream from the Texas State Highway 21 bridge on the Trinity River near Midway, Texas in early March, 1973 (Tables V-27 and V-28) showed somewhat greater diversity than the stations further upstream but still failed to produce significant game fish populations. Red shiners and bullhead minnows, both small, forage fish species, dominated both collections. These ubiquitous species are present in practically all samples taken anywhere in the river system.

Table V-23. Results of seine sampling, February 2,1972 at the Lake Livingston Dam and the Trinity River

CORROD Manel	Number	umber % of Number	Total St. (grams)	% Weight	Average #t. (grams)	Average Length (mm)
golden shiner	8	1.58	5.70	<.55	1.90	53.00
threadfin shad	43	21.94	78.26	7.55	1.82	45.60
gizzard shad	16	8.12	741.60	71.51	46.35	127.60
bullhead minnow	-	.51	970	6.11	.70	32.00
Bosquitofish	15	7.65	2.70	<.25	. 18	20.10
tidevater silverside	118	60.20	207.68	20.03	1.76	57.70
TUTAL: (6 species)	196	100.00	1036.64	100.00	ı	•
Game Fish Other Species	196	100.00	0 1036.64	100.00		1 1

1 Scientific names are included in Appendix V-07.

Table V-24. Results of gill net sampling, Pebruary 3,1973 at Lake Livingston Dam and the Trinity River

Common Wame ¹	xc = ber	% of Busber	Total #t. (grams)	% Weight	Average Wt. (grams)	Average Length (mm)
gizzard shad	101	77.96	4529.78	84.52	451.78	258.96
river carpsucker	19	14.62	5674.92	10.51	298.68	220.25
yellow builhead catfish	sh 1	.11	681.00	1.26	681.00	298.45
black bullhead catfish		.77	227.00	<.50	227.00	203.20
black crappie	_	.77	567.50	1.05	567.50	254.00
yellow bass	#	3.08	789.60	1.46	197.40	176.25
golden shiner	_	.77	75.02	<.50	75.02	133,35
bluegill sunfish		.77	113.50	<.50		127.00
lake chubsucker	-		227.00	<.50	7.	203.20
TOTAL: (9 species)	130	100.00	53985,32	100.00	1	ı
Game Fish Other Species	129	.77	567.50 53417.82	1.05 98.95	1 1	1 1

1 Scientific names are included in Appendix V-07.

Table V-25. Results of seine sampling, February 24,1973, Richland Creek at Texas State Righway 488 bridge

Comon Name ¹	Hubber	≯ of	fumber % of Mumber	Total #t. (grams)	% Weight	Average Ht. (grams)	Average Length (mm)
red shiner	161	100.00	00.	84.4	100.00	. 52	249
TOTAL: (1 species)	161	100.00	00	8 * #8	100.00	•	•
Game Fish Other Species	161	100.00	00	3 · · · · · · · · · · · · · · · · · · ·	100.00	† †	1 1

1 Scientific names are included in Appendix V-07.

Table V-26. Results of seine sampling, Pebruary 24, 1973, Trinity River at Texas State Highway 287 bridge

Common Name1	Number	% of Humber	Total Wt. (grams)	% Weight	Average #t. (grans)	
golden shiner	1	100.00	.30	100.00	. 30	340
TOTAL: (1 species)	-	100.00	.30	100.00	ı	•
Game Pish	0	0	0	0	ı	•
Other Species	-	100.00	• 30	100.00	i	•

1 Scientific names are included in Appendix V-07.

Table V-27. Results of seine sampling, March 4,1973, approximately 6 miles upstream from Texas State Highway 21 bridge near Hidway, Texas

Comon Hame ¹	Number	% of Humber	Total Wt. (grams)	% Weight	Average Wt. (grams)	Average Length (BB)
Bosquitofish	-	<1.0	.30	. 30	<1-0	220.00
blackspotted topminnow		<1.0	. 10	. 10	0. 1.0	210.00
	16	2.7	653.44	40.84	71.7	1300.00
red shiner	356	61.0	174.54	64.	19.1	194.00
mimic shiner	,	<1.0	. 10	.10	~1.0	270.00
emerald shiner	-	<1.0	.10	٠.	<1.0	240.00
ghost shiner	16	2.7	3,36	.21	<1.0	229.00
bluegill sunfish	S	<1.0	3.60	.72	<1.0	282.00
longear sunfish	'n	<1.0	6.70	1.34	<1.0	338.00
bullhead minnov	183	31.0	69.54	. 38	7.6	265.00
TOTAL: (10 species)	585	100.00	911.78	•	100.00	,
Game Fish Other Species	585	100.00	911.78	1 1	100.00	. •

1 Scientific names are included in Appendix V-07.

Table V-28. Results of seine sampling, March 4,1973, approximately 8 miles upstream from Texas State Highway 21 bridge near Hidway, Texas

Comon Name1	Rusber	% of Humber	Total Wt. (grams)	% Weight	Average Wt. (grass)	Average Length (ss)
red shiner	1338	57.2	307.74	.23	80.09	199.00
bullhead minnow	995	42.5	189.05	. 19	37.4	234.00
bluegill sunfish	m	<1.0	1.59	.53	<1.0	253.00
ghost shiner	7	<1.0	.26	.13	<1.0	250.00
white crappie	-	<1.0	7.20	7.20	1.4	680.00
TOTAL: (5 species)	2339	100.00	505.84	ı	100.00	1
Game Fish Other Species	2338	<1.0 99.0	7.20	1 1	1.5 98.5	1 1

1 Scientific names are included in Appendix V-07.

Andrew Andrews and State of the second state o

DISCUSSION

Fish Species Profile Analyses

In the following pages an attempt has been made to synthesize and condense data regarding habitat preference, reproductive habits, food habits, specializations, economic value, and probable response to impoundment and channelization for 18 of the most important fish species in the Trimity River system. Published data are extensive for some of these species, but lacking for others.

Construction of dams is known to result in considerable change in the fish fauna of a river system (Keith, 1964; Fritz, 1968), but few detailed "before-and-after" ecological surveys have been conducted to determine the extent of and the underlying reasons for these changes. It is the intent of this discussion to provide basic data on life histories of several of the most important fish species in the river system.

PISH SPECIES PROFILE #1

Common Name: Largemouth Black Bass

Habitat Preference: This species is widely distributed in rivers and lakes of Bast Texas and prefers areas of submerged aquatic vegetation, logs, stumps, brush, and underwater rock formations. It is typically found in relatively deep, quiet, soft-bottomed areas. Upper and lover lethal temperatures for this species acclimated at 20°C are 32.5°C and 5.5°C, respectively (Brett, 1956).

Reproduction: This species normally begins spawning in Texas in early spring (February-May) when water temperatures approach 60°F. Circular nests are usually constructed in water 2-8 feet deep on practically any substrate other than soft mud bottoms. In heavily wooded lakes this species has been known to spawn on the top of submerged logs. Females deposit 2000-25,000 eggs in the nest and are then driven away by the male. Fry hatch in 5-10 days, depending upon water temperature, and are then guarded, in a school, by the male for several days. This species may reach sexual maturity and spawn at one year. Life expectancy is estimated to be 6-10 years. Average size is 2-6 pounds.

<u>Pood habits:</u>
Young: plankton, small insect larvae, small fish, insects, crayfish, frogs
Adults: larger fish, frogs, crayfish, snakes, etc.

Specializations (Morpho) ogical, Physiological, Behavioral, etc.): Protective coloration consisting of bars, blotches, and generally dark color pattern provides concealment; streamlined body for speed in swimming and large mouth for ingestion of large prey; adults may form schools which feed en masse on schools of gizzard and threadfin shad; highly predaceous.

Economic Value: This is the most popular and most soughtafter game fish in Texas. This species is also quite edible. More time and money are spent in quest of this fish than any other species of freshwater fish in the state. No commercial fishery exists for this species.

<u>Probable Response to Channelization:</u> This species is adaptable to lake-type sluggish water habitats and probably will not be extremely adversely affected by the

impoundments and canal <u>if</u> suitable spawning substrates are made available <u>or</u> if sufficient numbers of young can be reared and stocked in the system by Texas Parks and Wildlife Department hatcheries located throughout the state. Like most other game fish species the population size will decline as the canal-impoundment system ages. Therefore, short-term effects will probably be positive, while long-term effects will be negative.

PISH SPECIES PROFILE #2

Common Name: Spotted Bass

Habitat Preference: This species prefers much the same type environment as the largemouth bass, but is generally considered to be a more riverine species. In addition, it seems to prefer clearer lakes and streams than the largemouth black bass. This fish is native to rivers, natural lakes, and streams of East Texas. From previous work (Hall, 1972) this species appears to be far less numerous than the largemouth bass in the Trinity River drainage system.

Reproduction: Little is known regarding the spawning habits of this species other than the fact that it is a nest-builder. Data from McCune (1971) indicate that this species migrates upstream in the spring to spawn in small tributaries of lakes and rivers. Spawning probably occurs at an earlier date than for the closely related largemouth bass. Average size is usually 1-2 pounds with a maximum of about 5-6 pounds.

<u>Food Habits:</u> Young feed on plankton, insect larvae, small fish, and insects, whereas adults feed primarily on larger fish, crayfish, and frogs.

Specializations (Morphological, Physiological, Behavioral, etc.): Same as for largemouth bass in regard to color pattern, speed, and large mouth, but no data are available on schooling habits in this species.

Economic Value: Highly valued as a food and game fish. No commerical fishery exists for this species.

Probable Response to Channelization: The initial impact on this species will probably be negative since it, presumably, prefers flowing, clear water for day-to-day living and spawning. Locks and dams may impede migration and the lentic nature of the canal and its impoundments may not be conducive to adequate spawning in this species. As with the largemouth bass, the long-term effects will probably be negative.

PISH SPECIES PROFILE #3

Common Name: Bluegill

Habitat Preference: This fish prefers shallow, weedy areas, but will thrive in a variety of habitats. It is widely distributed in the U.S. And is native to the Trinity River system. Adults usually show a preference for deep water, while the young frequent shallower areas. Upper and lower lethal temperatures for this fish acclimated at 20°C, are approximately 31.5°C and 5.0°C, respectively (Brett, 1956).

Reproduction: This species spawns over an extended period of time, beginning when water temperatures reach 65°P and continuing on into the fall. It is quite prolific and overpopulation and stunting may result from the high reproductive potential of this species. Nests are typical "sunfish-type" circular nests and are built on sand or gravel shoals. It is a colonial nester with beds of 100 or more in some areas. A mature female may spawn 100,000 eggs per spawning season. This fish may attain a length of 12 inches and a weight of 1 pound, although the average size is much smaller.

<u>Rood Habits:</u> Young normally feed on plankton, small insects, and algae, while adults take insects, crayfish, small fish, and various types of aquatic vegetation.

Specializations (Morphological, Physiological, Behavioral, etc.): One of the most advantageous traits of this species is its high reproductive potential. In addition, males may nate with several females over the extended spawning period. Protective coloration of dark vertical bars on the sides of the body provides for concealment in aquatic vegetation. This species also utilizes many types of food items in its diet.

Reconomic Value: Highly valued as a food and game fish by many anglers. This is a sporty, but small fish with firm, tasty flesh. No commercial value because of its small size.

Probable Response to Channelization: Probably negative since sand and gravel substrates normally used in spawning may be lacking. The demersal ("heavier than water") eggs produced by this species are not suited for development in mud or silt substrates. Also, if shoreline aquatic vegetation is removed from the canal, little or no protection will be available for this species. High

reproductive potential may partially compensate for some of the handicaps above.

PISH SPECIES PROFILE #4

Cosson Name: Redear Sunfish

Habitat Preference: The redear sunfish generally prefers deep waters of lakes and streams. This fish also apparently prefers areas of lakes and streams with limited amounts of vegetation. This species is common the Trinity River system (Hall, 1972).

Reproduction: This fish generally spawns in early spring in deeper water than the blue ill and probably does not spawn over a prolonged period of time as does the bluegill. It is a colonial nester and congregates in large schools for spawning. The redear does not overpopulate as readily as the bluegill. Redears may attain a length of 12 inches and a weight of 2 pounds.

<u>Pood Habits:</u> Young feed on plankton and adults take snails, bottom organisms, and small fishes.

Specializations (Horphological Physiological Behavioral etc.): This is one of he larger "panfishes" so it is probably not as susceptible to predation as many of the smaller sunfishes. Co onial nesting facilitates reproduction.

<u>Reconomic Value:</u> Righly de irable food and sport fish. Relatively large size and lirm, tasty flesh make this fish one of the most sought after species of the "cane pole" crowd. No commercial value.

<u>Probable Response to Channelization:</u> Probably negative because of the spawning habitat requirements and lower reproductive potential than the bluegill.

PISH SPECIES PROFILE #5

Common Name: Black Crappie

Habitat Preference: This fish is predominately limited to the clear acid waters of East Texas and is typically found around submerged logs, brush, stumps, and aquatic vegetation. It is common in the Trinity River drainage system, although it is less numerous than the closely related white crappie.

Reproduction: Black crappie readily overpopulate waters resulting in large numbers of stunted fish. Spawning occurs in March-April in Bast Texas waters. Nests are typical circular "sunfish-type". A 10-inch female may spawn 14,000 eggs per spawning season. Water temperatures of approximately 58-64°F are required for spawning. Sexual maturity is usually attained at 2-3 years. Black crappie may nest in gravel areas or on bottom materials muddier than those acceptable to other sunfishes (Eddy and Surber, 1947).

Pood Habits: Young usually feed on plankton, small fish, and insects while aquatic and land insects, larger fishes, and crustaceans normally are taken by idults (Harlan and Speaker, 1956; Sigler, 1959). This species is highly predaceous and apparently competes more with the largemouth and spotted basses than with other sunfishes.

Specializations (Morphological, Physiological, Behavioral, etc.): Probably a colonial nester (although data are lacking); adaptable in its food habits; normally found in large schools; quite prolific; dark color and blotches on the sides of the body also provide concealment.

<u>Economic Value</u>: Highly valued as a food and game fish. Crappies are the largest of the so-called "panfishes" and are readily taken by the angler during the spring spawning season. No commercial value.

<u>Probable Response to Channelization:</u> This species adapts well to a lake-type environment and probably would not, initially, be extremely adversely affected by channelization <u>if</u> suitable spawning substrates were made available. Removal of all shoreline brush and vegetation would be detrimental to this species. The long-term effect is negative, as with most other game and sport species.

PISH SPECIES PROPILE 46

Common Name: White Crappie

<u>Habitat</u> <u>Preference</u>: White crappie tolerate turbid conditions better than black crappie (Weal, 1963). They are also generally more tolerant of warm, sluggish waters than black crappie. White crappie usually predominate in waters with pH values over 7.0 (Toole, 1950). They are fond of cover such as aquatic vegetation, logs, brush, etc. They are found in both flowing and still waters. This species is quite common in the Trinity River system.

Reproduction: This fish usually spawns in East Texas from March-July beginning when water temperatures reach 64-68°F. White crappie often spawn near brush piles, stumps, or rock outcroppings (Toole, 1950), but they seem to prefer to deposit their eggs on plant materials (Hansen, 1951; Whiteside, 1964). Sexual maturity is usually attained in 2-3 years. A 10-inch female may produce 25,000 eggs per spawning season. This species has a tendency to overpopulate and become stunted (Goodson, 1966).

<u>rood Habits</u>: Zooplankton, crustaceans, insects and fishes are commonly eaten by both young and adults (Harland and Speaker, 1956; Sigler, 1959). Growth rates of white crappie are significantly reduced in turbid waters (Hall, et al., 1954).

Specializations (Borphological, Physiological, Behavioral, etc.): This species is very prolific and adapts we'l to alkaline lake waters. They also form schools and are able to remain active and feed at low temperatures (Goodson, 1966). This species is also able to tolerate high water temperatures in southern latitudes. This fish is also adaptable in its food habits and is highly predaceous.

Reconomic Value: Highly valued as a food and game tish. Easily caught by anglers during the spring spawning season and at night, during summer, under lanterns and floodlights. No commercial fishery exists for this species.

<u>Probable Response to Channelization:</u> A sustained white crappie yield can be expected <u>only</u> if adequate cover is retained in the canal system. If this requirement is met

and if a large forage fish population (e.g., threadfin shad) is present in the system this species should thrive. High turbidity will favor this species to the exclusion of the black crappie. The long-term effect, as for the other game fish species, appears to be negative.

PISH SPECIES PROFILE 47

Common Name: White Bass

Habitat Preference: This species thrives in rivers and larger lakes of East Texas and is common in the Trinity River system. It prefers open water of lakes over sandy shoal areas and ridges. Young are often found in shallow inshore areas. The white bass was originally found in Texas only in Caddo Lake, but has been widely distributed and is now found statewide (McCune, 1971).

Reproduction: The white bass is very prolific and a mature female may produce up to 1 million eggs at one spawning (Moore, 1963). When flowing tributaries are available this species prefers to migrate upstream to spawn. It does, however, spawn over windswept sand and gravel areas of lakes. Pry hatch in 2-3 days and usually reach a size of 8-9 inches the first year.

<u>Pood Habits:</u> Adults feed primarily on forage fishes such as gizzard and threadfin shad. Fry feed on plankton, gradually changing to a diet of insects, crustaceans, and fish as they mature. Life expectancy is usually 3-6 years. Average size usually ranges from 1-1-1/2 pounds with a maximum of approximately 5 pounds.

Specializations (Morphological, Physiological, Behavioral, etc.): This species is well-known for its schooling behavior. Schools often feed en masse on schools of forage fishes. The white bass is not easily reared in hatcheries, but stocking is usually unnecessary because of the high reproductive potential. This is a voracious, fast-swimming, fast-growing species.

<u>Reconomic Value:</u> This species is highly valued as a game and food fish by the fisherman. The flesh is firm and edible. It is readily taken by the sport, fisherman on jigs, spoons, spinner baits, minnows, etc. Ho commercial value.

Probable Response to Channelization: This species adapts well to lake-type habitats, especially when numerous tributaries are present which allow spawning. If access to such tributaries is allowed in the construction of the canal-impoundment system this species will probably thrive

since it is not highly dependent upon shoreline vegetation or other underwater cover. This is an open-water fish with an extremely high reproductive potential, both of which attributes will be advantageous in adapting to a non-flowing or moderately-flowing canal-impoundment system.

FISH SPECIES PROFILE #8

Common Name: Striped Bass

Habitat Preference: This species is an anadromous saltwater fish native to the Atlantic coast of the U.S. There it normally migrates upriver during the spawning season. Striped bass are now present in the Trinity River system where they have been stocked by the Texas Parks and Wildlife Department. This is an open-water, deep-water species of lakes and large rivers.

Reproduction: Spawning occurs in spring in flowing water of streams. Plowing water is necessary to keep the eggs in motion until they hatch, therefore this species requires a flowing river length of approximately 50 miles for successful reproduction. Water temperature of 60°F or slightly higher is required for spawning. Eggs are broadcast in areas with considerable current (Raney, 1952). Sixty hours after fertilization, at 64°F, the eggs hatch. The young reach a length of 9mm ten days after fertilization (Pearson, 1938).

<u>Pood Rabits:</u> Young striped bass normally feed on small fish and crustaceans while adults feed primarlly upon clupeid (shad-like) fishes (Goodson, 1964; Stevens, 1958).

Specializations (Morphological, Physiological, Behavioral, etc.): This species adapts well to freshvater environments and is able to feed on large forage fishes (e.g., gizzard shad) thus occupying an otherwise vacant niche in most inland freshvater lakes. It is tolerant of a wide range of temperatures. Like the white bass, it forms schools and members of a school normally feed en masse on schools of forage fishes. This is a large (30-40 pounds), fast-growing, fast-swimming, highly predaceous fish.

<u>Aconomic Value</u>: The striped bass is a highly valued food and game fish in areas where a sufficiently large population density permits a fishery. This species currently is of limited value in the Trinity River system because of its scarcity. No commercial fishery exists in the Trinity River, at present, for this fish.

Probable Response to Channelization: Debatable. Spawning is probably impossible now, before channelization, and further impoundment and consequent reduction of flowing water will further reduce the possibility of spawning. The only method for developing a striped bass fishery in the Trinity River system is by periodic stocking. A high mortality rate in fingerlings is common, therefore it will be difficult to establish this fish within the system. Since the striped bass is an open-water species it may adapt well to the larger lakes of the system and may survive in the deeper waters.

PISH SPECIES PROFILE #9

Common Mame: Channel Catfish

Habitat Preference: The channel catfish prefers flowing water of rivers and streams but also adapts well to lake-type environments. It may sigrate upstream in swift water since it tends to seek out channels and reacts positively toward currents (Boore, 1963). This fish is common in the Trinity River system.

Reproduction: Spawning usually occurs from May-July in Texas as the water temperature reaches 75°F (McCune, 1971). Spawning areas are sought under large rocks and ledges, in hollow logs, or in holes swept out in mud banks. Artificial containers have also been used with success in fish hatcheries. The number of eggs spawned by a sexually mature female usually ranges upward from 10,000. The male cares for the eggs after spawning.

<u>rood Habits:</u> Omnivorous. The channel catfish feeds on practically any type of organic matter, dead or alive. Common food items taken include fish, freshwater mussels, algae, pondweeds, snails, insects, crayfish, mice, cotton rats, toads, frogs, etc.

specializations morphological. Physiological. Behavioral, etc.1: The diverse diet is advantageous to this species. The body is streamlined and, thus, well-adapted to fast-flowing waters. Care of the eggs by the male insures a high hatch rate. This species is also quite tolerant of high temperatures and low oxygen levels.

Economic Value: This is one of the most important food and game fishes of the Trinity River system. It is taken year-round by sport and commercial fishermen.

Probable Response To Channelization: As with the other game fish populations there should be a positive effect initially, but a gradual decline in numbers as the impoundments age. Reduction in the number of possible spawning sites in the canal proper may be partially alleviated by the increased number of sites in the larger reservoirs of the system. Migratory habits of this fish will probably assure dispersal throughout the system. The fish is common in the system now and no stocking will be necessary to establish it in the impoundments.

PISH SPECIES PROPILE #10

Common Name: Blue Catfish

Habitat Preference: This species seems to prefer deeper waters of rivers and lakes, coming into the shallower backwaters in the spring (Moore, 1963). It is relatively common in the lower Trinity River, but is rarer upstream. This fish is native to the larger rivers of Texas and has been stocked in many Texas lakes (McCune, 1971).

Reproduction: Little is known regarding the spawning habits of the blue catfish, but it is supposedly similar to the channel catfish in regard to nest site selection, care of eggs by male, etc. This species spawns in Texas in May and June.

<u>Pood Babits:</u> The blue catfish feeds primarily on fish, crustaceans, insects, aquatic insect larvae, fresh water aussels, and other living or dead materials. This fish may reach a size of 100 pounds or more.

Specializations (morphological, Physiological, Behavioral, etc.): Same as for channel catfish.

<u>Boonomic Value:</u> This is a highly value if ood and game fish, but is less abundant than the closely-related channel catfish. This fish is taken by sport and commercial fishermen in the Trinity River basin.

<u>Probable Response To Channelization:</u> The effects on this fish are debatable due to the lack of data regarding spawning habits, etc., but presumably it will follow the pattern outlined previously for the channel catfish.

FISH SPECIES PROFILE #11

Common Name: Plathead Catfish

<u>Habitat Preference:</u> this large catfish is commonly found in the large rivers and lakes of Texas and is very common in the Trinity River system. Platheads generally prefer sluggish, deep waters which have an abundance of logs, undercut banks, brush, etc.

Reproduction: the spawning period of this species, in Texas, usually begins in late hay and may extend through August. Hales select hollow logs, underwater caves, or rock crevices as nesting sites. The female then deposits her eggs and the male actively defends them until the fry hatch (usually 4-6 days, depending upon water temperature). The fry disperse almost immediately after hatching (McCune, 1971).

<u>Food Habits:</u> fingerlings feed on insect larvae for approximately the first year with a gradual transition to a fish diet. Adults feed almost exclusively on small fish. Adults reach 100 pounds or more and may live 15-20 years or longer.

<u>specializations (morphological, Pysiological, Behavioral, etc.):</u> care of the eggs by the male reduces predation and insures a high hatch rate. The mottled color pattern, particularly in the young, also provides concealment from predators. This species adapts well to large lakes.

<u>Reconomic Value</u>: this is a highly valued food fish because of its large size, excellent table qualities, and ease of capture (via trotline, hoop net, gill net, rod and reel, etc.). This is one of the most important commercial fishes of the Trinity River system.

Probable Response To Channelization: possibly few adverse effects will accome to this species since it is adaptable insofar as diet and type of aquatic habitat are concerned. Possible adverse effects may result, however, if suitable nesting sites are not available in the canal-impoundment system. Complete clearing of all timber, removal of shoreline vegetation, and elimination of undercut banks may significantly reduce possible spawning sites for this

species. Some progress has been made in rearing this species in fish hatcheries, therefore an adequate population could, perhaps, be maintained by a stocking program if necessary.

PISH SPECIES PROFILE #12

Coumon Name: Common Carp

Habitat Preference: This species is found throughout the Trinity River system. It may be found in the mainstream, tributaries, lakes, and oxbows. It was introduced in Texas in the late 1800's (McCune, 1971). This is primarily a warm-water, pollution-tolerant fish. Some preference is shown for sluggish water over fast-flowing streams.

Reproduction: This fish is very prolific. Small (3-5 pound) females may spawn up to 700,000 eggs per spawning season (Moore, 1963). Eggs are strewn about in shallow weedy water. The eggs stick to aquatic vegetation and no care is provided for eggs or young.

<u>Pood Habits:</u> The fry feed on plankton while adults are ominvorous. Organic detritus and small bottom organisms are commonly taken as well as small fish and other small, free-swimming aquatic organisms. Growth is usually quite rapid with weights of 50 pounds or more attainable. This species may live up to 47 years in captivity (McCune, 1971).

Specializations (morphological, Physiological, Behavioral, etc.): Omnivorous food habits, high reproductive potential, and the ability to live in practically any kind of aquatic habitat (including even brackish water along the Texas coast) make this one of the hardiest and most widespread fishes in the Trinity River system.

Ronomic Value: This species is generally held in low esteen, but sport and commercial fishermen do frequently take this species. The numerous sharp internuscular bones and "muddy taste" usually deter the would-be consumer, but it is eaten by some. This fish is large: easily taken in gill, hoop, and trannel nets; and is marketed by commercial fishermen along the lower Trinity River.

<u>Probable Response To Channelization:</u> This species will probably thrive in a canal-impoundment system, since it is highly adaptable to nearly all agratic habitats.

FISH SPECIES PROFILE #13

Common Name: Smallmouth Buffalo

Habitat Preference: This species normally prefers deeper waters of rivers and lakes, but generally shows a preference for flowing water (Moore, 1963). This fish is common in the mainstream and oxbow lakes of the lower Trinity River.

Reproduction: Spawning occurs in the spring at water temperatures of 60-65°F. The eggs are randomly strewn in shallow water over aquatic vegetation or mud bottoms. The eggs hatch in 7-14 days. No parental care is provided during or after the incubation period. Large numbers of eggs are produced by mature females.

<u>Pood Habits:</u> The diet includes algae, seeds of aquatic plants, small mollusks, insect larvae, and numerous species of bottom organisms. Maximum size for this fish is approximately 15-20 pounds.

<u>Specializations (aorphological, Physio ogical, Behavioral, etc.):</u> The diverse diet is beneficial o this species as is the high reproductive potential.

Economic Value: his is one of the most important commercial fishes of the lower Trimity River. It is occasionally taken by anglers, but more often is taken by commercial fishermen using gill, hopp, and tranmel nets. This fish has numerous interauscular bones, but the flesh is firm and tasty.

probable Response To Channelization: the overall impact upon this species will probably be negative since it seems to prefer deep, flowing water rather than sluggish, shallow waters. It apparently does not alapt well to large impoundments. This species is currently neither propagated nor stocked by the Texas Parks and Wildlife Department, therefore natural stocks may not be able to establish and maintain large populations in the canal-impoundment system.

FISH SPECIES PROFILE #14

Common Hame: Freshwater Drum

Habitat Preference: Ubiquitous. This fish adapts well to impoundments and is found in all major rivers of Texas, including the Trinity. This fish is usually found in medium to shallow depth water with soft bottoms (Binckley, 1963).

Reproduction: No nest is constructed by this species. The pelagic (free-floating) eggs are broadcast over gravel or clay bottoms. Drum usually spawn in large schools during may and June. No care is provided for eggs or fry.

Food Habits: The fry normally feed on plankton while adults feed upon aquatic insects, crustaceans, smalls, class, small fish, etc. (Moore, 1963). This fish may attain a weight of 40 pounds or more.

Specializations (norphological, Physiological, Behavioral, otc.): This fish is highly adaptable to diverse aquatic environments. The diverse diet and high reproductive potential are also advantageous traits.

Economic Value: Pirm, white flesh with few bones makes the demand for this fish quite high. This is one of the top commercial species taken from the Trinity River and is marketed under the names of "gou", "gasper-gou", "rockfish", etc. This fish is also taken by sport fishermen on live baits, such as minuous and worms. The large size and ease of capture make the freshwiter drum one of the highly sought commercial fishes of the river.

<u>Probable Response To Channelization:</u> Probably positive. This fish adapts well to impounded water and is found from the headwaters of the Trinity to the Gulf. The diverse diet, tolerance of turbid water, and high reproductive potential are factors which should favor this species in a canal system.

PISH SPECIES PROFILE #15,16

Common Name: Longnose Gar & Alligator Gar

Habitat Preference: Gars, in general, prefer warm lakes and slow-moving streams. During the summer they frequent the surface waters and lie motionless for minutes at a time (Suttkus, 1963). In streams below barriers (such as Lake Livingston Dam) large numbers of longnose gar can be seen basking or surfacing for air on warm sunny days. Alligator gars may winter in deep holes of the lower Trinity River or Trinity Bay (Lloyd Brannen, pers. Comm.). Both species are very common in the Trinity River.

deproduction: Spawning takes place in fresh water from April to mid-July. Gar move into the shallows to spawn with each female accompanied by 1-4 males. Eggs are strewn about and fertilization is external. Both eggs and milt are poisonous. The eggs are adhesive and adhere to the substratum. No care is provided for the eggs or young.

<u>Pood Habits:</u> Gar feed primarily on other fishes, most of which are forage tishes such as gizzard shad. In the lower Trinity River blue crabs and striped mullet are common food items. Garbage has also been reported as part of the diet by Sutthus (1963). Alligator gars weighing over 300 pounds have been reported and longnose gars over 100 pounds are commonly taken from the lower Trinity River.

Specializations (morphological, Physiological, Behavioral, etc.): Gars are ancient fishes which show a multitude of advantageous traits such as thick, ganoid scales which completely cover the body; an air-breathing, highly vascularized swimbladder; numerous large, sharp teeth; high reproductive potential; poisonous sex products; diverse diet; etc.

Economic Value: Both longnose and alligator gars are commonly taken and marketed by commercial fishermen along the lower Trinity River. These are very important commercial fishes and many are processed into fish sticks, fish cakes, etc., by various seafood processors (Hall, 1972).

<u>Probable Response To Channelization:</u> The longnose gar thrives in a shallow lake-type environment, therefore its response should be positive. The alligator gar, however, does not appear to be quite as adaptable to large impoundments and thus may not fare quite as well as the longnose and spotted gars. Both the longnose and alligator gar, however, should establish large populations within the confines of the canal-impoundment system.

PISH SPECIES PROFILE 617,18

Common Mane: Gizzard Shad & Threadfin Shad

Habitat Preference: Both these species are commonly found in flowing, as well as sluggish waters and both abound in the Trinity River system. Both appear to favor open, deep, clear water; and abrupt shoreline, little or no shoreline vegetation, and waters which contain large plankton populations (Hiller, 1960).

Reproduction: Spawning season for both species is from April-July at temperatures ranging from 50-70°P (Jester and Jensen, 1972). Various substrates such as sandy, gravel-covered bars; silt beds; etc, are utilized. Water depths used for spawning range from 6 inches to 50 feet. Eggs are adhesive and some sink to the bottom while others float. Spawning normally occurs in large schools with much rolling and tumbling in evidence. No parental care is provided for eggs or fry. Hature females may spawn up to 70,000 eggs per season.

<u>Pood Babits:</u> Numerous food items are taken by these filter-feeding fishes, such as algae, cladocerans, plant debris, water mites, aquatic insect larvae, small mollusks, small fish, etc., (Jester and Jensen, 1972). Gizzard shad may attain a length of 18 inches while threadfin shad seldom exceed 12 inches.

Specializations (morphological, Physiological, Behavioral, Etc.): The tremendous reproductive potential and diverse diet are the major factors which assure the success of these two species. Schooling may also be advantageous.

Economic Value: These small, bony fishes are not usually eaten by humans, but they do serve as a basic link in the aquatic food chain. Both are excellent forage fishes and serve in the diets of most, if not all, game fishes (and some rough fishes) in the Trinity River system. No commercial fishery or sport fishery exists for these two species.

<u>Probable Response To Channelization:</u> Probably positive. Pluctuating water levels favor gizzard shad production and and increase in total dissolved solids favors both species

(Jenkins, 1970). Both species should flourish in a canalimpoundment system. The richness (high organic content) of the waters of this system should assure good growth conditions for both species.

Reservoir Pisheries Management Problems

The difficulties in assessing the effects ecological parameters on fish populations in reservoirs have been well-stated by Jenkins (1964, 1968, 1970). Various workers have, in the past, used many data in an attempt to correlate fish production with various parameters. In an attempt to utilize and analyze only the most significant data regarding reservoirs and fish production, Jenkins (1970) used fish standing crop data from 140 reservoirs, which at that time comprised 25% of the total surface area in the U.S. The data were derived from population sampling studies conducted by fishery agencies in 17 annual summaries based on over 2,000 including 520 individual sample areas.

The various parameters used by Jenkins are listed, with the results of his Logarithmic Partial Correlation analysis, in Table V-29. For a definition of terms used in the table the reader is referred to the original publication. Fishes which do not occur in the Trinity River system have been deleted from Jenkins' data.

Jenkins has summarized some of the important environmental conditions in regard to sports fishes as follows:

generalizations O D sport production (0.20 influents confidence interval) include: with increase in reservoir area a decrease in bullheads, sunfishes and black basses; with increase in mean depth, an increase in sunfishes and decrease in channel catfish, largemouth bass and white crappie; with increase in outlet depth, an increase in combined sport fish crop; with increased level fluctuation, an increase in water flathead catfish, black bass and crappie and a decrease in sunfish crops; with increase in storage ratio (i.e., lower water exchange rate), increase in bullhead, channel catfish, largemouth bass, and white crappie crops and decreases in flathead catfish, bluegill and longear sunfish; with increased development, increase in channel catfish, white bass and bluegill and inclease in redear sunfish and black crappie; with increase in TDS (total dissolved solids), increase in catfishes, white bass, green suntish, largemouth bass and white crappie

and a decrease in bluegill, warmouth and black crappie crops."

with respect to forage fishes Jenkins (1970) stated that "Forage fish (gizzard and threadfin shad) crops are positively influenced by increase in TDS. Gizzard shad production also responds positively to increased outlet depth, but negatively to water level fluctuation. Threadfin shad is positively influenced by growing season length and negatively by storage ratio."

Prom Jenkins (1961) Multiple Regression Analyses some general relationships were apparent between standing crop and environmental conditions. These were: (1) increase in total disselved solids there was an increase in standing crop and sport fish yield; (2) with increased age of the reservoir there was an increase in gizzard and threadfin shad crops and commercial harvest of rough fishes, but a decrease in sport harvest and little effect on total standing crop; (3) with increased storage ratio (i.e., lower water exchange rate) there was a decrease in sport harvest; (4) with an increase in reservoir area there was a decrease in sport harvest; (5) with an increase in sean depth, there were decreases in total standing crop, and sport and commercial harvest; and (6) with increased shore development there were increases in total standing crop and sport harvest, but a decrease in the commercial harvest.

Admittedly, the data are still incomplete on Trinity River fish populations, but with more precise data on fish standing crop, production rates, and limnological factors fishery biologists should be better able to advise regarding the design and operation of lakes and canals in the system to increase sport and commercial fishery yields in the future.

Distribution of Fishes in the Tranity River System

Any attempt to categorize Trinty River fishes as living in a specific type of aquatic environment is likely to be an exercise in futility because: (1) the ichthyofauna of the river is apparently changing rapidly (e.g., certain species, such as the paddlefish and pallid shiner have, apparently, disappeared from the river within recent years); (2) the river is subject to periodic flooding which causes dispersal of many species into "atypical" habitats; (3) river modification via Lake Livingston Dam stops the

Table V-29. Logarithmic pastanding crop (pounds per 0.20 confidence level, 0.0 parentheses (slightly modi	c partial correlation of nine eperacre) of various species and s 0.05 level=*, and 0.01 level=**.	environmental variables with the species groups in reservoirs at the Humber of reservoirs is listed in
gnvironmental Variables	Effect Of Standing Crop Positive	Kega ti ve
Surface Area (in acres)	pickerel** (40)	bullhead catfishes (87) sunfishes (136) black basses (135)
Mean Depth (in feet)	spotted sucker (48) bluegill (129) longear sunfish** (69) redear sunfish (68) sunfishes	longnose gar** (**) carp (100) buffalofishes** (*7) channel catfish (109) largemouth bass (134) white crapple* (102) all sport fishes (139) freshwater drum (57)
Outlet Depth (in feet)	gizzard shad (116) carp carpsuckers (55) buffalofishes* bullhead catfishes catfishes** (124) green sunfish** (74)	spotted sucker**

	largemouth bass white crappie all sport fishes**	
Water Level Fluctuation (mean annual, in feet)	spotted gar (31) flathead catfish (76) black basses white crappie*	gizzard shad* pickerel* carpsuckers redear sunfish* sunfishes
Storage Ratio	bullhead catfishes* channel catfish* redear sunfish largemouth bass white crappie all sport fishes	<pre>chreadfin shad (61) spotted sucker* flathead catfish* bluegill longear sunfish</pre>
Shore Development (at mean pool level)	buffalofishes** carp channel cattish* white bass (73) bluegill all sport fishes*	redear sunfish black crappie (98)
Total Dissolved Solids (in ppm)	longnose gar gizzard shad** threadfin shad carp** carpsuckers** catfishes**	<pre>spotted gar pickerel spotted sucker buffalofishes bluegill warmouth (99) black crappie*</pre>

	pickerel* spotted sucker\$ buffalofishes	pickerel carp cullhead catfishes** flatheat catfish bluegill** sunfishes* spotted bass* (59)
green sunfish** largemouth bass* white crappie	threadfin shad** channel catfish* white bass bluegill* redear sunfish** black basses** black crappie\$	buffalo fishes channel catfish** white bass freshwater drum**
	Growing Season (frost-free, in days)	Age of Reservoir (in years)

movement of migratory fishes, such as the American eel, upstream; (4) a rather long segment of the mid-river is unfit for most of the fish species because of pollution; and (5) many fishes are able to live in a variety of aquatic habitats with no clear preference for any given type.

In view of the foregoing statements, an attempt has been made (Table V-30) to summarize the <u>usual</u> habitat preferences and distribution of <u>most</u> of the extant Trinity River fish species. Data bearing upon this aspect of the study have been taken from Minckley (1963), Rainwater (1972), Conner (pers. Comm.), Kelly (pers, comm.), Hall (1972), and Rozenburg, <u>et al.</u> (1972). Questionable species and recently introduced non-native game fishes have not been included in Table V-30.

The listing of a species under a specific heading in the following table is not meant to imply that it is found only in that habitat, but that it is commonly associated with that type habitat. Conversely, some species are limited to very specific habitats.

SUMMARY

The Trinity River supports, at present, a fish fauna probably comprised of at least 130 species representing approximately 33 inventory to date has documented the occurrence of more than 92 fish species. Families and perhaps as many as 73 genera. No other published river system many of the 130 species are brackish water and marine fishes, but they are, nevertheless, a part of the Trinity River's rich ichthyofauna.

The number of fish species increases downstream in the Trinity River with 56 species reported from the headwaters and approximately 100-125 species for the mid- and lower reaches of the river. Game fishes are virtually unknown in a major portion of the upper river and humerous species are apparently threatened, or have already been extirpated, by man's influence on the Trinity River. Among these are the paddlefish, pallid shiner, scaly sand darter, Sabine shiner, and various other species. Headwater populations of several species of game fishes indicate that they, at one time, did occupy the now depauperate region of the river.

River the Trinity fishes in ot Table V-30. Habitat distribution system.

streams with moderate current and hard bottom or sand bottom Small

stoneroller (headwaters region of Trinity)
creek chub
blackspot shiner
ribbon shiner
redfin shiner
blacktail shiner
pallid shiner (headwaters region of Trinity)
sand shiner (headwaters region of Trinity)
Sabine shiner
spotted sucker
blacktail redhorse

dusky darter goldstripe darter scaly sand darter orangethroat darter (headwaters region of Trinity)

redbreast sunfish

freckled madtom

spotted bass

plains killifish

River channel with current of moderate to strong velocity

vestern silvery minnow speckled chub chub shiner emerald shiner ghost shiner mimic shiner silverband shiner river carpsucker blue sucker black buffalo alligator gar longnose gar longnose gar freshvater drum tidevater silverside

Table V-30 (cont.)

acid shallow, Usually Sluggish-water species (oxbow lakes, sloughs, etc.) aquatic vegetation and soft-bottom; generally clear, Waters

western creek chubsucker western lake chubsucker blackspotted topminnow blackstripe topminnow banded pygmy sunfish starhead topminnow golden topminnow bluntnose darter spotted sunfish cypress darter grass pickerel dollar sunfish bantam sunfish slough darter pirate perch weed shiner boufin flier

Ubiquitous species

black bullhead catfish yellow bullhead catfish orange-spotted sunfish bluegill western mosquitofish smallmouth buffalo brook silverside carp bullhead minnow longear sunfish largemouth bass channel catfish freshvater drum redear sunfish fathead minnow tadpole madtom pugnose minnow threadfin shad golden shiner white crappie green sunfish black crappie yizzard shad yellow bass spotted gar white bass red shiner logperch Warmouth

Table V-30 (cont.)

coastal River Trinity lover Marine invaders found primarily in plain zone

Atlantic needlefish Gult killifish saltmarsh killifish rainwater killifish finescale menhaden diamond killifish sheepshead minnow rough silverside spotted seatrout bayou killifish mountain mullet golden croaker striped mullet Gulf pipefish sand seatrout Gulf menhaden sailfin soily white mullet American eel bay anchovy bull shark black drum red drum spot

pinfish
sheepshead
southern flounder
skipjack herring,
fat sleeper
darter goby
freshwater goby
naked goby
bay whiff
lined sole
hogchoker
blackcheek tonguefish

No endemic, rare, or endangered fish species are now recognized in the system. Most of the fishes inhabiting this system, including those above, are widespread geographically and many are quite tolerant of adverse environmental conditions.

Future re-colonization of the upper Trinity River down to Lake Livingston by now-missing riverine tish species is a possibility if: (1) basic water quality of the upper river is greatly improved (and maintained at a high level); (2) breeding populations of these fish species still exist in Lake Livingston or tributaries of the river; (3) food chain organisms of the riverine species have not been extirpated from the system by severe, prolonged pollution; (4) no future adverse changes occur in the structural configuration of the river channel proper and its tributaries; (5) a sufficient, sustained water flow is maintained year-round.

No specific fisheries recommendations can be made at this time because of the multiplicity of factors involved, but this investigator feels that it is reasonable to assume that many of the now-missing riverine species will return when the conditions and criteria listed above are corrected and/or attained.

Numerous ecological factors are operant on the fishes now occupying the Trinity River. Dams, reservoirs, locks, and canals will modify river habitats and thereby cause changes in species composition, distribution, and abundance. Some species will benefit from such changes, while others will be eliminated (particularly those species which are highly adapted to stream-type, clowing-water habitats). Some species, however, are ubiquitous and will adapt well to a lacustrine habitat.

A possible alternative approach to the proposed barge canal-flood control system is a single-purpose flood control project which, this investigator feels, will result in many of the same fisheries problems as outlined in this and a previous report (Hall, 1972). Such a flood-control system presumably would involve: (1) construction of dams (both on the river channel proper and its tributaries); (2) dredging and deepening the Trinity River channel; (3) straightening the river channel by cutting across incipient oxbows, i.e., large "horseshoe bends" in the river; (4) removal of shoreline vegetation, logs, and debris (in conjunction with number 2 above).

medical residential district

As mentioned above, some fish species will thrive in almost any type aquatic habitat, but on the whole most native food and game fishes will not adapt well to a highly modified river channel as would result from the changes described above. To be sure, there are certain benefits in a flood-control system which may include: (1) water conservation, (2) flood prevention, (3) longer stretches of flowing water in the river channel (than with a barge canal-lock and dam system), (4) upstream lakes which may act as settling basins for silt and other headwater pollutants, (5) greater recreational potential, and (6) greater fisheries potential than with a barge canal system.

Data provided herein, based on limited sampling during this phase of the project indicate that game fishes are not abundant upstream from Lake Livingston in the river. Data from a previous study (Hall, 1972) however, showed that a sport (and commercial) fishery of significant magnitude exists downstream from Lake Livingston Dam in the river.

Data have been provided herein regarding habitat preference, reproductive habits, specializations, economic importance, and the possible impact of channelization on many of the important food, game, forage, and rough fishes of the Trinity River system. Additional data have also been provided on environmental variables which relate specifically to and influence reservoir populations of fishes occurring in the river system.

In summation, this study was made to provide, as completely as possible, a record of the species composition, distribution, and abundance of the fishes of the Trinity River system. Hopefully, this survey will provide a basis for further studies on the effects of environmental changes on the Trinity River fish fauna.

LITERATURE CITED (Birds and Mammals)

- American Ornithologists' Union. 1957. Check-list of North American birds, 5th ed. Am. Orn. Union., Baltimore, Md.
- American Ornithologists' Union Committee on Classification and Nomenclature. 1973. Thirty-second supplement to the A.O.U. Check-list of N. Am. birds. Auk 90: 411-419.
- Blair, W. F., et al. 1968. Vertebrates of the United States, 2nd ed. McGraw-Hill, New York.
- Connell, J. H. and E. Orias. 1964. The ecological regulation of species diversity. Amer. Naturalist, 98:399-414.
- Davis, W. B. 1966. The mammals of Texas, rev. ed. Tex. Pks. & Wldlf. '11. No. 41.
- Elton, C. S. 1958. The ecology of invasions by animals and plants. Methuen, London.
- Emlen, J. T. 1971. Population densities of birds derived from transect counts. Auk 88:323-342.
- Fisher, C. D. 1972. Summer birds and mammals inhabiting the Trinity River in: A survey of the environmental and cultural resources of the Trinity River. Rept. to U. S. Army Corps of Engineers, Fort Worth, Texas, DACW 63-72-0005.
- Fisher, R. A., A. S. Corbet, and C. B. Williams. 1943.

 The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 12:42-58.
- Giles, R. H. Jr. (ed.). 1971. Wildlife management techniques. The Wildlife Society, Washington, D. C., Chapter 21.
- Hairston, N. G. 1959. Species abundance and community organization. Ecology, 40:404-416.
- Krebs, C. J. 1972. Ecology. Harper and Row, New York.
- Lloyd, M. and R. J. Ghelardi. 1964. A table for calculating the "equitability" component of species diversity. J. Anim. Ecol. 33:217-225.

The state of the same

- MacArthur, R. H. 1955. Fluctuations of animal populations and a measure of community stability. Ecology. 36:533-536.
- MacArthur, R. H. 1957. On the relative abundance of bird species. Proc. Nat. Acad. Science U.S. 43: 293-295.
- MacArthur, R. H., H. Recher, and M. Cody. 1960. On the relation between habitat selection and species diversity. Amer. Naturalist. 100:319-327.
- MacArthur, R. H. and J. W. MacArthur. 1961. On bird species diversity. Ecology. 42:594-598.
- Margalef, R. 1958. Information theory in ecology (an english translation of a 1957 paper). Gen. Syst. 3:36-71.
- Margalef, R. 1963. On certain unifying principles in ecology. Amer. Naturalist. 97:357-374.
- Margalef, R. 1968. <u>Perspectives in ecological theory</u>. Univ. of Chicago Press, Chicago.
- Margalef, R. 1969. Diversity and stability: a practical proposal and a model of interdependence. Brookhaven Symp. Biol. 22:25-37.
- Odum, E. P. 1969. The strategy of ecosystem development. Science. 164:262-270.
- Pielou, E. C. 1966. The measurement of diversity in different types of biological collections. J. Theoret. Biol. 13:131-144.
- Preston, F. W. 1948. The commonness and rarity of species. Ecology. 29:254-283.
- Wilhm, J. L. and T. C. Dorris. 1968. Biological parameters for water quality criteria. Pioscience. 477-481.
- Williams, C. B. 1953. The relative abundance of different species in a wild animal population. J. Anim. Ecol. 22:14-31.
- Wolfe, L. R. 1956. <u>Check-list of the birds of Texas</u>. Intelligencer Printing Co., Lancaster, Penn.

THE PROPERTY OF SHAPE

LITERATURE CITED (Fishes)

- Backiel, T. 1964. On the fish populations in small streams. Verh. Int. Verein. Theor. Angew. Limnol. 15: 529-534.
- Bailey, R. M., J. E. Fitch, E. S. Herald, E. A. Lachner, C. C. Lindsey, C. R. Robins, W. B. Scott. 1970.

 A List of Common and Scientific Names of Fishes from the United States and Canada. Am. Fish. Soc., Spec. Pub. No. 6, 3rd ed. 150 pp.
- Banarescu, P. 1961. Tiergeographische betrachtungen uber die fischfauna des Donaubeckens. Verh. Int. Verein. Theor. Angew. Limnol. 14: 386-389.
- Baughman, J. L. 1950. Random notes of Texas fishes, Part 1. Tex. J. Sci., 2: 117-138.
- Brett, J. R. 1956. Some principles in the thermal requirements of fishes. Quart. Rev. Biol. 31: 75-87.
- Carpenter, C. 1972. The Lake Livingston Sportsman Newspaper, Livingston, Texas. May 27, 1972.
- Conner, J. V. 1973. Fishes known or reported to occur in the Trinity River system of Texas. Unpublished document. Louisiana State University, Baton Rouge, Louisiana. 7pp.
- Dendy, J. S. and D. C. Scott. 1953. Distribution, life history, and morphological variations of the southern brook lamprey, <u>Ichthyomyzon gagei</u>. Copeia, pp. 152-
- Eddy, S. 1957. How to Know the Freshwater Fishes. Wm. C. Brown Co., Dubuque, Iowa. 286pp.
- Eddy, S. and T. Surber. 1947. Northern Fishes. 2nd Edition. University of Minnesota Press, 276pp.
- Fowler, H. W. 1945. A study of the fishes of the southern piedmont and coastal plain. Monogr. Acad. Nat. Sci. Phila., 7:i-iv, 1-408.
- Fritz, R. B. 1968. Fish habitat and population changes resulting from impoundment of Clinch River by Melton Hill Dam. J. Tenn. Acad. Sci., 43(1): 7-15.

T. Marin

militaritation of the

- Goodson, L. F., Jr. 1964. Diet of striped bass at Millerton Lake, California. Calif. Fish and Game, 50(4): 307.
- Goodson, L. F., Jr. 1966. Crappie in: Inland Fisheries
 Management, A. Calhoun. State of California, The
 Resources Agency, Department of Fish and Game, pp.
 312-332.
- Hall, D. D. 1972. An inventory and checklist of the fishes of the lower Trinity River drainage system in: A survey of the environmental and cultural resources of the Trinity River. U. S. Army Corps of Engineers Document, Fort Worth, Texas District. pp. 284-304.
- Hall, G E., R. M. Jenkins, and J. C. Finnell. 1954.

 The influence of environmental conditions upon the growth of white crappie and black crappie in Oklahoma waters. Okla. Fish. Res. Lab. Rep. No. 40. 56pp.
- Hallam, J. C. 1959. Habitat and associated fauna of four species of fish in Ontario streams. J. Fish. Res. Bd. Can., 16: 147-173.
- Hansen, D. F. 1951. Biology of the white crappie in Illinois. Ill. Nat. Hist. Surv. Bull., 25(4): 209-265.
- Harlan, J. and E. Speaker. 1956. <u>Iowa Fish and Fishing</u>. 3rd ed. Iowa St. Cons. Comm. 377pp.
- Hubbs, C. 1970. Key to the fresh-water fishes of Texas. Unpublished document. Univ. of Texas, Austin, Texas, 34pp.
- Hubbs, C. 1972. A Checklist of Texas Freshwater Fishes.
 Texas Parks and Wildlife Department, Tech. Series No.
 11, 11pp.
- Huet, M. 1954. Biologie, profils en long et en travers des eaux courantes. Bull. Fr. Piscic. 175, 41-53.
- Hynes, H. B. N. 1970. The Ecology of Running Water. Univ. of Toronto Press, 555pp.
- Jenkins, R. M. 1964. Reservoir fishery research strategy and tactics. Circ. No. 196. Bur. of Spt. Fish. and Wldlf., Washington, D.C., 12pp.

- Jenkins, R. M. 1968. The influences of somy environmental factors on standing crop and harvest of fishes in U.S. reservoirs. Reservoir Fishery Resources Symposium, Athens, Ga., April, 1967. Pub. by So. Div., Am. Fish. Soc., 298-321.
- Jenkins, R. M. 1970. The influence of engineering design and operation and other environmental factors on reservoir fishery resources. J. Am. Water Resources Assn., 6(1): 111-119.
- Jester, D. B. and B. L. Jensen. 1972. Life history and ecology of the gizzard shad, <u>Dorosoma cepecianum</u> (Le Sueur) with reference to Elephant Butte Lake. Agr. Expt. Sta. Res. Rept. No. 218, New Mexico State University, Las Cruces, NM, 56pp.
- Keith, W. E. 1964. A pre-impoundment study of the fishes, their distribution and abundance, in the Beaver Lake drainage of Arkansas. M.S. thesis, Univ. of Ark., Fayetteville, Ark., 170pp.
- Kleerekoper, H. 1955. Limnological observations in Northeastern Rio Grande do Sul, Brazil. Arch. Hydrobiol., 50: 553-567.
- Larimore, R. W. and P. W. Smith. 1963. The fishes of Champaign Co., Ill. as affected by 60 years of stream changes. Ill. Nat. Hist. Surv. Bull, 28(2): 299-382.
- Lamb, L. D. 1957. Basic survey and inventory of fish species in the Trinity River watershed. Tex. Game and Fish Comm D-J Proj., F-4-R-4, Job B-17 (mimeo.) 28pp.
- Luce, W. M. 1933. A survey of the fishery of the Kaskaskia River. Bull. Ill. St. Nat. Nist. Surv., 20:71-123.
- McCune, R. 1971. Freshwater Fishes of Texas. Bull. 5-A, Tex. Parks and Wldlf. Dept., Austin, Tex., 40pp.

The state of the state of

Martin, R. G. and R. S. Campbell. 1953. The fishes of the Black River and Clearwater Lake, Missouri. Univ. Mo. Stud. 26, pp 45-66.

- Miller, R.R. 1960. Systematics and biology of the gizzard shad, <u>Dorosoma cepedianum</u> (Le Sueur), and related fishes. Fish. Bull. 173, Vol. 60, U.S. Fish and Wildlife Service, Washington, D. C.
- Miller, R. R. 1971. Threatened freshwater fishes of the United States. Trans. Am. Fish. Soc., 101(2): 239-252.
- Minckley, W. L. 1963. The ecology of a spring stream Doe Run, Meade County, Kentucky. Wildlf. Monogr. Chestertown, Ill., 124pp.
- Moore, G. A. 1963. Know Your Olahoma Fishes. Educ. Pamphlet No. 2, Ok. Wldlf. Comm., Oklahoma City, Ok., 48pp.
- Moore, G. A. 1968. Fishes. in: Vertebrates of the United States by W. F. Blair, et al. McGraw-Hill Book Co., Inc., New York, pp. 21-165.
- Moore, G. A. and A. Paden. 1950. Fishes of the Illinois River in Oklahoma and Arkansas. Am. Midl. Nat., 44: 76-95.
- Muller, K. 1955a. Qualitative and quantitative untersuchungen an fischen der Rulda. Hydrobiologia, 7:230-244.
- Neal, R. A. 1963. Black and white crappies in Clear Lake, 1950-1961. Iowa State College J. Sci., 37(4): 425-445.
- Parker, J. C., B. J. Galloway, and D. Moore. 1971.
 Provisional keys to the marine fishes of Texas.
 Unpublished document, Texas A&M University, College
 Station, Texas, 111pp.
- Pearson, J. C. 1938. The life history of the striped bass, or rockfish, Roccus saxatilis (Walbaum). U. S. Bur. Fish., Bull. No. 28: 825-251.
- Rainwater, F. L. 1972. Fishes of the Tennessee Colony Site. in: Environmental and cultural impact of the proposed Tennessee Colony Feservoir Trinity River, Texas. Vol. III. Unpublished document, Stephen F. Austin State University, Nacogdoches, Texas.
- Raney, E. C. 1952. The life history of striped bass,

 Roccus saxatilis (Walbaum). Bingham Oceanogr. Coll.
 Bull., Vol. 14, art. 1: 5-97.

- Rozenburg, E. R., R. K. Strawn, and W. J. Clark. 1972.
 The composition and distribution of the fish fauna
 of the Navasota River. Tech. Rept. No. 32, Tex.
 Watr. Res. Inst., Texas A&M University, College
 Station, Texas, 120pp.
- Sigler, W. F. 1959. The taxonomy and life history of some fresh-water fish. Utah St. Univ., Dept. Wildlf. Mgmt. (mimeo.)
- Smith-Vaniz, W. F. 1968. Freshwater Fishes o Alabama. The Paragon Press, Montgomery, Ala., 211pp.
- Stevens, R. E. 1958. The striped bass of the Santee-Cooper Reservoir. Eleventh Ann. Conf. S. E. Assoc. Game and Fish Comm. Proc., pp 253-264.
- Suttkus, R. D. 1963. Order <u>Lepisostei</u>. <u>in</u>: <u>Fishes</u>
 <u>of the Western North Atlantic</u>, Mem. Sears Found. Mar.
 Res. I(3): 61-88.
- Tesch, F. W. and M. L. Albrecht. 1961. Über den einfauss verschiedener umweltfaktoren auf wachstum und bestand der bachforelle (Salmo trutta fario L.) in mittelgebirgsgewasser. Verh. Int. Verein. Theor. Angew. Limnol., 14: 763-768.
- Thompson, D. H. and F. D. Hunt. 1930. The fishes of Champaign County--a study of the distribution and abundance of fishes in small streams. Ill. Nat. Hist. Surv. Bull., 19(1): 1-101.
- Toole, M. 1950. Utilizing stock tanks and farm ponds for fish. Tex. Game and Fish Comm., Bull. 24, 53pp.
- Whiteside, B. G. 1964. Biology of the white crappie,

 Pomoxis annularis, in Lake Texoma, Cklahoma. M.S.
 thesis, Oklahoma State Univ., 35pp.

THE REAL PROPERTY AND ADDRESS OF THE PARTY AND

APPENDIX V

Species and numbers of small mammals caught in snap traps along 1,500 meter transect on different dates at Study Areas 1-10 Appendix V-01.

		St. Date	(197;	Study Area 1 Date (1972-1973)	3)	t	!	Hab	Habitat	-	
Species	Sept 23	Dec 3	Jan 15	Mar 17	May 12	Tota	38		f.	Gr	
cotton rat Sigmodon hispidus	0	-	0	0	0	П	1	-	0	0	
						•	<u> </u>				
								+			
								+			
Total Individuals Caught	0	1	0	0	0	-	1		0	0	
Total Traps Set	100	100	100	001	20	450	200		105	145	
Percent Success	0.0	1.0	0.0	0.0	0.0	0.2	0.5	+	0.0	0.0	
1								-		_	

Wd: hardwood forests and woodlands; Th: thickets, scrub, and forest edge; Gr: grasslands, croplands, pastures, and weedy fields.

Appendix V-01 (cont.)

		Stu Date	dy Ar	Study Area 2 Date (1972-1973)	τ		H	Habitat	-
Species	Feb 24	Mar 18	Apr 7		fota		P.M	t u	J S
cotton mouse Peromyscus gossypinus	0	1	0		1		H		
-									
						•			
Total Individuals Caught	0	1	0		1		П	:	
Total Traps Set	100	100	100		300		300	0	0
Percent Success	0.0	1.0	0.0	<u>.</u>	0.3		0.3	1	

¹Wd: hardwood forests and woodlands; Th: thickets, scrub, and forest edge; Gr: grasslands, croplands, pastures, and weedy fields.

Appendix V-01 (cont.)

		Str Date	Study Area 3 Date (1972-197		3)	τ		H 2	Habitat	-
Species	0ct 13	Dec 2	Jan 28	Mar 3	May 12	AJOT	·	MG	T.	J. B
hispid pocket mouse Perognathus hispidus	0	0	0	-	0	1		0	7	1
fulvous harvest mouse Reithrodontomys	0	7	Э	0	0	4		0	4	1
white-footed mouse Peromyscus leucopus	0	1	0	0	0	1		٦	0	1
cotton mouse Peromyscus gossypinus	0	0	3	2	п	9	•	ø	0	
Total Individuals Caught	0	7	و	ю	-1	12		7	S	}
Total Traps Set	09	100	100	100	33	393		263	130	0
Percent Success	0.0	2.0	0.9	3.0	3.0	3.1		2.7	3.8	1

Wd: hardwood forests and woodlands; Th: thickets, scrub, and forest edge; Gr: grasslands, croplands, pastures, and weedy fields.

The second of the second of the second

Appendix V-01 (cont.)

		St	Date "dks Areg 73)	-19743)	τ'		На	Habitat	-
Species	oct 8	Nov 11	Apr 8		8 T O T		рм	Тħ	Gr
deer mouse Peromyscus maniculatus	0	н	0		-	1 .	0	-	
cotton mouse Peromyscus gossypinus	13	3	ю		19		1.7	2	
eastern woodrat Neotoma floridana	. 0	0	-1		-			0	
						ſ 			
Total Individuals Caught	13	4	4		21	· · · · · ·	18	3	
Total Traps Set	100	100	100		300		270	30	0
Percent Success	13.0	0.	4.0		7.0		6.7	10.0	-

¹ Wd: hardwood forests and woodlands; Th: thickets, scrub, and forest edge; Gr: grasslands, croplands, pastures, and weedy fields.

Appendix V-01 (cont.)

		Stu Date	(197;	Study Area 5 ite (1972-1973)	8	τ		H	Habitat	-
Species	0ct 22	Jan 14	Feb 25	Mar 25	Apr 19	AtoT	I	P M	Th	Gr
cotton mouse Peromyscus gossypinus	0	0	0	1	0	г		0	1	0
										
Total Individuals Caught	0	0	0	1	0	H	- L	0	1	0
Total Traps Set	100	100	100	100	100	500		100	225	175
Percent Success	0.0	0.0	0.0	1.0	. 0 • 0	0.2	.	0.0	0.4	0.0

l hardwood forests and woodlands; Th: thickets, scrub, and forest edge; Gr: grasslands, croplands, pastures, and weedy fields.

Appendix V-01 (cont.)

		Sti	Study Ar	dy Area 6 (1972-1973			, n	44 + 44	-
Species	No v 12	Jan 27	Mar 4	Mar 30	Total		£ di	4.	Gr
least shrew Cryptotis parva		0	0	0	-		0	O	н
fulvous harvest mouse Reithrodontomys Tulvescens	0	7	11	0	18		7	11	9
deer mouse Peromyscus maniculatus	r -	~	~	0	е		1		1
cotton mouse Peromyscus gossypinus	-	7	15	ß	23	•	9	ω	6
cotton rat Sigmodon hispidus	2	0	-1	0	m		0	O	3
Total Individuals Caught	r	10	28	r.	48		8	20	20
Total Traps Set	100	100	100	100	400		09	160	180
Percent Success	5.0	10.0	28.0	5.0	12.0		13.3	12.5	11.1

l Wd: hardwood forests and woodlands; Th: thickets, scrub, and forest edge; Gr: grasslands, croplands, pastures, and weedy fleids.

Appendix V-01 (cont.)

pecies Nov Nov J A 17 Is harvest mcuse throdontomys fullvescens 2 0 nouse nouse nouse n mouse n mouse n mouse n mouse n mouse n rat n rat modon hispidus 1 0			,	. τ	H	Habitat	
is harvest mouse throdontomys fulvescens 2 0 nouse comyscus maniculatus 1 0 n mouse comyscus gossypinus 0 4 n rat modon hispidus 1 0	ט	Mar 24	Apr 20	stoT	P M	T.	Gr
nouse nouse comyscus gossypinus nrat modon hispidus 1 0	O	rl	0	m	r-1	8	-
comyscus gossypinus 0 4 rat modon hispidus 1 0		0	0	Н		0	;
modon hispidus 1 0	r-l	۳	0		c o	,	
	0	0	0		0	H	
local individuals Caught 4 4 1	1	4	0	13	10	m	
Total Traps Set 100 100 100		001	100	200	375	125	0
Percent Success 4.0 4.0 1.0		4.0	0.0	2.6	2.7	2.4	

¹ Wd: hardwood forests and woodlands; Th: thickets, scrub, and forest edge; Gr: grasslands, croplands, pastures, and weedy fields.

Appendix V-01 (cont.)

		Stud	4x Ax	Study Area 8 ate (1972-1973	τ	iii	Habitat		
۵ نو نو نو نو نو نو نو نو نو نو نو نو نو	Oct 21	Dec 9	Apr 1	Apr 29	STOT	Wd	ТЪ	Ğr	
short-tailed shrew Blarina brevicauda	1	0 .	0	0	1	-	0	0	
fulvous harvest mouse Reithrodontomys Tulvescens	0		0	0	ч	0	Н	0	,
cotton mouse Peromyscus gossypinus	0	0	0	~	7	7	0	0	
		:							,
									·
Total Individuals Caught	1	1	0	1	ю	7	~	0	
Total Traps Set	100	100	80	100	380	210	110	9	
Percent Success	1.0	1.0	0.0	1.0	0.8	1.0	0.9	0.0	
-		•							

¹ Wd: hardwood forests and woodlands; Th: thickets, scrub, and forest edge; Gr: grasslands, croplands, pastures, and weedy fields.

Appendix V-01 (cont.)

		St	Study A	-					
		Date	(1972-)	2-1973	<u>~</u>	τ	Ha	Habitat	1
	Sept 16	Oct 28	Feb 10	Mar	Apr 28	stoT	Wd	Th	29
gossypinus	0	0	0	5	2	7	7		-
Caught	0	0	0	S	2	7	7	:	
	65	100	100	100	100	465	465	0	0
	0.0	0.0	0.0	5.0	2.0	1.5	1.5		1
4 4 4		•					,		

Wd: hardwood forests and woodlands; Th: thickets, scrub, and forest edge; Gr: grasslands, croplands, pastures, and weedy fields.

्र विकास के किए के किए के किए के किए के किए के किए के किए के किए किए के किए किए किए किए किए किए किए किए किए कि

Appendix V-01 (cont.)

	Stu	udy Ar	Study Area 10 ate (1972-1973)				H	Habitat	
Dec F	Feb 11	Mar 11	May 13		s y o T		PM	Th	Gr
0	0	E	0		<u>8</u>		0	3	0
2	0	1	0		м	•	3	0	0
0	0	п	0				0	0	7
						•			
2	0	5	0		7	·	æ	3	-
100	100	100	20		350		180	75	95
2.0	0.0	5.0	о С	- 2	2.0		1.7	4.0	1.1

Wd: hardwood forests and woodlands; Th: thickets, scrub, and forest edge; G:: grasslands, croplands, pastures, and weedy fields.

- Addition to

andix V-02. Large mammals and mammal signs along a 1,500 meter transect on censuses at Study Areas 1-10 Appendix V-02.

Study Area 1*			Maximum	num and	Total	Numbers	S H			
	Indivi	Individuals			İ	1 (-
, , o & O		- 1		KS	reces	S	Nests	rs	Other	er
SPECTES STREET	Max.	Tot.	Max.	Tot.	Max.	Tot.	Max.	Tot.	Max.	Tot.
mnssodo										
Didelphis marsupialis	7	2			7	7				
armadillo										
Dasypus novemcinctus	2	ю	ស	13			7	16	14	34
swamp rabbit								ľ		
Sylvilaqus aquaticus	7	10			4	13				
cottontail rabbit										
Sylvilagus floridanus	7	2			4	9				
fox squirrel										
Sciurus niger	2	9								
fox and/or gray squirrel						•	9	11		
southern flying squirrel										
Glauconys volans							3	80		
beaver										
Castor canadensis				7					7	7
nutria										
Myocastor coypus			п	н						
coyote										
Canis latrans	н	-1			7	м				
coyote and/or dog			7	15						
gray rox Urocvon cinerecardenteus	-	2	6	,		•				
				4	•	•				
										2

1 Diggings, gnawings, or food remains.

The state of the s

* Censused on December 3, January 15, March 17, and May 12 1972-1973.

Appendix V-02 (cont.)

Study Area 1			Maximum	num and	Total	Numbers	ers			
. (Cont.)	Indiv	T								
•	Seen or		Tracks	ks	Feces	8	Nests	ts	Other	er
Species	Max.	rot.	Max.	Tot.	Max.	Tot.	Max.	Tot.	Max.	Tot.
raccoon										
Procyon lotor			7	19						
striped skunk										
Mephitis mephitis	2	3								
										·
Total		29		09		25		35		28
Average Number Per Census	7	7.2	15	15.0		6.2	8	8.8	7	7.0

1 Diggings, gnawings, or food remains.

Appendix V-02 (cont.)

Study Area 2*			Maximum	num and	Total	Numbers	er s			
•	Indiv	ויים ו		•	1	ł				
•	Seen or		Tracks	ks	Feces	8	Nests	ts	Other	er 1
Species	Max.	Tot.	Max.	Tot.	Max.	Tot.	Max.	Tot.	Max.	Tot.
			_ - -					-		
Opossum Didelphia marancialia		i I		! !				\ !		:
armadillo			7	5	1					
Dasypus novemcinctus	7	7	3	ญ			-4	7	S	8
swamp rabbit Sylvilagus aquaticus	2	က	5	13	18	37		\$ \$ 1		
fox squirrel Sciurus niger		m	:	4	-					
squirre			5	7 7			, v	<u>.</u>	11	29
Deaver Castor canadensis			4	S	1				2	4
nucria Myocastor coypus									2	6
coyote Canis latrans					3	4				
coyote and/or dog			5	13						
graj iox <u>Urocyon cinereoargenteus</u>		·	1	2		•				
raccoon Procyon lotor			7	10	1	П				
Total		7		63		43		13		44
Average Number Per Census	2	2.3	21	0.	14	.3		4.3	14	14.7
Diggings, quawings, or food	remaine	, 								

Diggings, gnawings, or food remains. * Censused on February 24, March 18, and April 7, 1973.

Study Area 3*			Maximum	num and	Total	Numbers	e rs			
	Indiv	Individuals				i				
	Seen or		Tracks	KS	Feces	ຫ	Nests	ts	Other	er
Species	Max.	Tot.	Max.	Tot.	Max.	Tot.	Max.	Tot.	Max.	Tot.
						_				
unssodo										
Didelphis marsupialis			e	9	٣	m				
armadillo										
Dasypus novemcinctus	4	7	7	19			4	11	13	37
swamp rabbit										
Sylvilagus aguaticus	1	3	S	7	7	24				y. ——
cottontail rabbit										
Sylvilagus floridanus	2	2	2	3	2	0				
fox squirrel	1									
Sciurus niger	2	&								
fox and/or gray squirrel						•	11	30	80	12
beaver Castor canadensis			4	α			,		5	,
Gastorn Mondrat				,			,	-	2	
Neotoma floridana							7	m		
coyote Canis latrans	9	11			3	ω				
coyote and/or dog			14	35						
gray fox <u>Urocyon cinereoardenteus</u>			2	2						
raccoon Procyon lotor			σ	23		,				
				77	,	1				

Diggings, gnawings, or food remains.

^{1972-1973.} * Censused on October 13, December 2, January 28, March 3, and May 12,

Appendix V-02 (cont.)

Study Area 3			Maximum	um and	Total	Numbers	ers			
· (Cont.)	Indiv	Individuals								
	Seen or		Tracks	Xs	Feces	S	Nests	ts	Other 1	erl
Species	Max.	Tot.	Max.	Tot.	Max.	Tot.	Max.	Tot.	Max.	Tot.
striped skunk		1		•						
Mephitis mephitis	1	2	7	12						
Lynx rufus			,	•					_	
white-tailed deer										
Odocoileus virginianus			7	4						
			:							
								1		
			# #							
						•				
			,							
Total		33		120		45		51		74
Average Number Per Census	9	9.9	24	24.0	0.6	0	7	10.2	7.7	14.8

1 Diggings, gnawings, or food remains.

Appendix V-02 (cont.)

Study Area 4*			Maximum	pum mnu	1 Total	Numbers	9 14 80			
	Indiv	Individuals			1	1				
	Seen or	- 1	Tracks	ks	Feces	S	Nests	ts	Other	erl
Species	Max.	Tot.	Max.	Tot.	Max.	rot.	Max.	Tot.	Max.	Tot.
wnssode	-									
<u>Didelphis</u> marsupialis			7	က						
armadillo										
CHARLES HOVEMOLINCEUS			7	17					10	31
swamp rabbit <u>Sylvilaque</u> aquaticus	4	7			α	7.5				
cottontail rabbit										
Sylvilagus floridanus		м								
fox squirrel										
Sciurus niqer	9	10								
fox and/or gray squirrel						•	9	51		
Deaver Castor canadensis			-4	1					۲	4
eastern woodrat Mectoma floridana							1	, m		1
coyote Canis latrans	3	4				2				
coyote and/or dog			4	01						
gray fox Urocvon cinerecargenteus			1	1						
raccoon <u>Procyon lotor</u>			12	29	-					

Diggings, ganwings, or food remains.

1972-1973. Censused on October 8, November il, April 8, and May 13,

2-7

Appendix V-02 (cont.)

Study Area 4			Maximum	num and	Total	Numbers	ers			
(Cont.)	Individuse Seen or	Individuals een or Heard	Tracks				4 0 0 N		1.0040	1,
Species	Max.		Max.	Tot.	Max.	Tot.	Max.	Tot.	Max.	Tot.
striped skunk Menhitis menhitis				٠						
mink Mustela vison			-	7						
bobcat Lynx rufus			-							
white-tailed deer Odocoileus wirginianus	8	19	11	33	, m	6				
Total		43		86		37		18		46
Manage Mumber Per Census	-	10.8	7	24.5	6	9.2	4	4.5	1	11.5
										1

Diggings, gnawings, or food remains.

Study Area 5*			Maximum	num and	d Total	Numbers	ers			
·	Individual Seen or Hea	iduals r Heard	Tracks	ks	Feces	S	Nests	un 4º	Oth	Other
Species	Max.	Tot.	Max.	Tot.	Max.	rot.	Max.	Tot.	Max.	Tot.
					·					
eastern mole										
Scalopus aquaticus			-	-						
armadillo										
Dasypus novemcinctus	9	8	က	9			9	13	7	17
swamp rabbit										
Sylvilagus aquaticus	1	1			3	9				!
cottontail rabbit	-									
Sylvilagus floridanus	77	2			2	2				,
fox and/or grap somittel							٦			
nlaine nocket conher	-						,	CT		
Geomy bursarius										
covote							;	;		
Canis latrans	-	-				7	m			
coyote and/or dog			φ	17						
raccoon										
Procyon lotor			4	6	-1	~			-	
striped skunk				,						
STOTING BEDIETER			4	-						
white-tailed deer <u>Odocoil</u> eus virginianus	σ.	12	21	53						
Total		27		87		12		59		17
Average Number Per Census	9	80.	21	1.8	· (*)	3.0		14.8	,	4.2
										1

Diggings, gnawings, or food remains

^{*} Censused on January 14, February 25, March 25, and April 19, 1973.

Appendix V-02 (cont.)

Study Area 6*			Maximum	num and	Total	Numbers	S			
•	Indivi	Individuals	0 A C	ب.	000	U	2 4 0 A	ų.	0+10	1 1
Species		1 .	Max.	Tot.	Max.	Tot.	Max.	Tot.	Max.	Tot.
mnssodo										
Didelphis marsupialis			-	Н					-	
armadillo										
Dasypus novemcinctus	п	7	m	2			m	7	2	10
swamp rabbit										
Sylvilagus aquaticus	2	4			7	18				
cottontail rabbit										
Sylvilagus floridanus	2	۳			7	S				
							·		,	,
iox anu/or gray squirrei							0	1.3	7	7
southern flying squirrel										
Glaucomys volans						•			М	4
coyote										
Canis latrans					2	2				
				,						
coyote analor and			7	7.7						
Frecoon lotor			9	14						
striped skunk										
Mephitis mephitis	2		7	7						
white-tailed deer										
Odocoileus virginianus			8	22	4	7				
Total		10		63		32		20		16
average number Per Census	7	٠,۶	15	8.9		8.0		2.0	4	0
•										

Diggings, gnawings, or food remains.

^{*} Censused on November 12, January 27, March 4, and March 30, 1972-1973.

Appendix V-02 (cont.)

Study Area 7*			Maximum	um and	Total	Numbers	ers			
	Indivi Seen or	Individuals een or Heard	Tracks	, K	Feces	S	Nests	ts	other	er 1
	Max.	Tot.	Max.	Tot.	Max.	Tot.	Max.	Tot.	Max.	Tot.
	,	,	,	,	,					
	7	7	7	7	7	-				
	^	8	m	7			^	19	13	30
	4	6	1	2	27	62				
					7	9				
	٠	٠	,	_				,	,	,
	•	,	1	4			٥	62		٠
						•			Н	1
	(1 	m								
			0	3.5						
urocyon cinerecargenteus			1	2						
			11	22						
			2	3						
			1.2	16						
			:	:						
		25		75		69		44		34
Average Number Per Census	9	6.2	76	18.8	ä	17.2	11	٥.	œ 	5.

Diggings, gnawings, or food remains. Censused on November 4, November 17, January 20, and March 24, 1972-1973.

Appendix V-02 (cont.)

Study Area 8*			Maximum	num and	Total	Numbers	e S			
	Individual	iduals		ľ	l	Į.				
	Seen or	r Heard	Tracks	. X.S	Feces	S)	Nests	ts	Other	er '
Species	Max.	Tot.	Max.	Tot.	Kax.	Tot.	Max.	Tot.	Max.	Tot.
mnssodo						1	•			
Didelphis marsupialis			~	H						
armadillo			-							
Dasypus novemcinctus	4	9					7	4	7	17
swamp rabbit			1) 				1		
Sylvilagus aquaticus	2	4			9	12				
cottontail rabbit										
Sylvilagus floridanus	-1	7			7	7				
fox squirrel										
Sciurus niger	2	2								
fox and/or gray squirrel	н	τ					5	12		
nutria										
Myocastor coypus	3	3	4	4						
coyote <u>Canis latrans</u>	1	г			н	п				
coyote and/or dog			80	22						
raccoon Brosson loter			C							
white-tailed door			٥	7						
Odocoileus virginianus	1	2	2	3						
Total		2.1		47		15		16		17
Average Number Per Census	5	.2	13	ω.	£	8.	4.0	0	4	7
•										

ofgrags, grammings, or food remains.

^{1972-1973.} * Censused on October 21, December 9, April 1, and April 29,

Study Area 9*			Maximum	um and	Total	Numbers	ers			
•	Indivi Seen or	Individuals een or Heard	Tracks	,ks	Feces	. 60	Nests	t s	Other	6 r 2
Species	Max.	Tot.	Ma	Tot.	Max.	Tot.	Max.	Tot.	Max.	Tot.
พกรร ดฉัด										
Didelphis, marsupialis			2	2						
armadillo									_	
Dasvous novemeinetus			1	-1	7	7	2	7	7	3
swamp rabbit										
Sylvilagus aguaticus	5	7			4	13				
gray squirrel										
Sciurus carolinensis	1	1								
		,								-
fox and/or gray squirrel	3	3	1	-1			3	8		
beaver										
Castor canadensis									٦,	1
eastern woodrat										
Meotoma floridana					1	1	2	4		
coyote										
Canis latrans					1	1				
coyote and/or dog			9	7					_	
			•	F						
STACTOR CTHETECATAENCE AS			Ţ	7						
raccoon										
Procyon lotor			5	16						
striped skunk										
Mephitis mephitis			٦	~			-			

l Diggings, gnawings, or food remains (note: wild pigs abundant)

^{*} Censused on October 28, February 10, March 10, and April 28, 1972-1973.

Appendix V-02 (cont.)

Study Area 9			Maxie	Maximum and	Total	Numbers	e r s			
(Cont.)	Indiv	Individuals		, ,	ł				1	-
	Naw C	TO BEALG	Max	- 4	F e C e S	100	Nescs Nescs	158	Var.	TOT
n n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					5					
white-tailed deer										
Odocolleus virginianus			4	9						
					·					
			·							
Total	/	11		36		17		14		4
Average Number Per Census	- 5	2.8	6	9.0	4	4.2		3.5	1.0	0

Diggings, gnawings, or food remains.

7) 1 (0)1 (3)1 (3)1 (4) (3) (4)1 (4)	2 1 2 2 E	Tracks Max. 170	ks						
S A A A A A A A A A A A A A A A A A A A	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Max.	ks			_			
'm vo	1 1 1 1	χ α x		Feces	se	Nests	ر ا ده) oth	Other1
·m vo	-1 2 -1		Tot.	Max.	Tot.	Max.	Fot.	Max.	707
·ml v	-1 2 -1				The state of the s				
'm vn	r1 0 r1							+-	
v	2 -1				-	do		***	
8	2							-	
v		2	3			(·)	m	ဏ	~
8)	 					_		 	
Ŋ		2	7	(1)	9				
v					· 		-		
	-			7	CI		-	e dell'e dell'e	
						-			
	,;				-				
		_		!		! !			
	۲,			,	paggi salis			-	
Iox and/or gray squirrel				-	ا و و	ω	17		
eastern woodrat	94**							d a-	
Neotoma floridana				e semana		-1	7		
coyote and/or dog	-	u	6						
gray fox	+	<u>, </u>						-	
<u>Urocyon cinereoargenteus</u>		ri	-		-				
raccoon								_	
Procyon lotor		Ю	9	Н					
striped skunk						_		-	
Mephitis mephitis		7	m						

Diggings, ganwings, or food remains.

- The second second

^{*} Censused on December 10, February 11, March 11, and May 13, 1972-1973.

Appendix V-02 (cont.)

Study Area 10			Maximum	um and		Total Numbers	ers			
(Cont.)	Indiv	Individuals								
	Seen or	r Heard		, ks	Feces	S	Nests	t s	Other	er
sətbeds	мах.	Tot.	Max.	Tot.	Max.	Tot.	Max.	Tot.	Max.	Tot.
									-	
white-tailed deer										
Odocoileus virginianus			m	4						
					ļ ,	-	-			
					_					
					-					
								•		
Total		7		28		6		2.1		13
Average Number Per Census		1.8	7	7.0	2	2.2	5	5, 2	3	3.2
										2

l Diggings, gnawings, or food remains (note: wild pigs abundant).

- -

Appendix V-03. Species and numbers of birds recorded on censuses at Study Areas 1-10. An "x" indicates the species was seen on or near the transect at some time other than the census period.

Study Area 1			Ce	nsus C	ates		
Species	9/23	10/1	12/3	1/15	3/24	4/22	5/12
green heron		х					
little blue heron	1						
cattle egret		1				2	
snowy egret	. 1						
yellow-cr night heron						1	
wood duck	2					2	
turkey vulture			1				1
red-tailed hawk		1	1		1	2	
Swainson's hawk						x	1
rough-legged hawk			1				
marsh hawk					1		
American kestrel		1				×	
bobwhite	20	1				×	3
killdeer		3	1	3	2		
upland sandpiper						5	
spotted sandpiper							1
solitary sandpiper						1	
Franklin's gull						14	14
mourning dove	2	3	6	4	4	14	6
great hor/ed owl		х					
barred ow					2	2	

Appendix V-03.(cont.)

Study Area 1 (Cont.)			Ce	ensus D	<u> </u>		
Species	9/23	10/1	12/3	1/15	3/24	4/22	5/12
chuck-will's widow						×	
chimney swift	7	32				9	7
ruby-throated hummingbird						1	
black-chinned hummingbird							2
belted kingfisher		×				1	
common flicker		18	8				
red-bellied woodpecker	2	7	3	2	1	1	
red-headed woodpecker		1					
yellow-bellied sapsucker		1	1				
hairy woodpecker	2					1	
downy woodpecker	1	1	3	1			4
ladder-backed woodpecker				1			
eastern kingbird						1	1
scissor-tailed flycatcher						1	1
great crested flycatcher						3	2
eastern phoebe	1				1		
least flycatcher	2						1
eastern wood pewee						1	
tree swallow		15					
bank swallow							1
rough-winged swallow						2	

Appendix V-03. (cont..)

Study Area 1 (Cont.)			C	ensus I	ates		
Species	9/23	10/1	12/3	1/15	3/24	4/22	5/12
barn swallow		38					9
cliff swallow		1					14
blue jay	28	37	10	8	7	6	1
common crow	. 11	23	21	9	16	31	4
Carolina chickadee	14	27	15	7	9	15	14
tufted titmouse	2	5	3	5	10	18	12
brown creeper			1	1			
house wren		2			1		
Bewick's wren		5	5	2	1	2	
Carolina wren	8	4	3	6	9	5	3
mockingbird		7	5	3	×	1	
gray catbird		×					
brown thrasher		7		4	2	4	
robin				218	12		
hermit thrush			1	3	3		
Swainson's thrush						3	1
eastern bluebird			6	14			
blue-gray gnatcatcher						4	2
golden-crowned kinglet			4				
ruby-crowned kinglet		2	13	2	5	11	
codar waxwing			5 5	18		84	35

Appendix V-03. (cont.)

Study Area 1 (Cont.)			c	ensus !	Dates		
Species	9/23	10/1	12/3	1/15	3/24	4/22	5/12
redwinged blackbird		36				3	
orchard oriole						1	
great-tailed grackle	10	18			1	15	8
common grackle				1	40	24	
brown-headed cowbird	12	!1		14	35	65	13
cardinal	19	€0	73	58	43	47	26
indigo bunting						8	9
painted bunting						3	19
dickcissel						21	
purple finch			16				
pine siskin			4				
American goldfinch			6	2			
rufous-sided towhee			8	7	5		
grasshopper sparrow						×	
vesper sparrow					×		
slate-colored junco			27	16	10		
chipping sparrow							4
clay-colored sparrow						x	
field sparrow		3 1	2	17			
Harris' sparrow			44	×		10	
white-throated sparrow			48	12	29	31	

Appendix V-03.(cont.)

Study Area 1 (Cont.)			Ce	nsus I	ates		······································
Species	9/23	10/1	12/3	1/15	3/24	4/22	5/12
loggerhead shrike	4	3		2			
starling	15	18	5	84	10	2	
white-eyed vireo						1	2
solitary vireo	. 3				×		
red-eyed vireo						4	1
black & white warbler							1
prothonotary warbler	2						:
Tennessee warbler						2	2
orange-crowned warbler	4	1				1	
Nashville warbler	2 5					35	
northern parula warbler					1		
yellow warbler	8						
myrtle warbler			1	3	4	2	
black-throated green warble	r					2	
chestnut-sided warbler							1
common yellowthroat	3	1				2	
yellow-breasted chat						6	
Wilson's warbler	10						
American redstart	3						
house sparrow	3	30			15	12	
eastern meadowlark		4			х	1	

Appendix V-03. (cont.)

Study Area 1 (Cont.)	Census Dates								
Species	9/23	10/1	12/3	1/15	3/24	4/22	5,12		
fox sparrow			15	18	<u> </u>				
Lincoln's sparrow	ļ	-	8	9	3	10			
song sparrow	ļ		26	32	1				
	<u> </u>			ļ	ļ				
			ļ	 					
	ļ								
	<u> </u>		· .						
				ļ		-			
	-								
	 		-	ļ	<u> </u>	 			
	 								
	 								
	 								
	 		<u> </u>				-		
	 	<u> </u>							
	-								
	 								
Total Individuals	225	465	479	569	300	55 7	226		
motal Census Species	30	35	36	33	31	56	25		

Total Species all Censuses: 10' (plus 7 non-census species=100) motal Individuals all Censuses: 2,821 (avg. 403 per census)

-

Appendix V-03. (cont.)

Study Area 2			Cens	us Da	es		
Species	2/20	2/24	3/25	4/7	4/27		
pied-billed grebe	×		ж	x	x		
double-crested cormorant		×	×	х_	x	ļ	
great blue heron	2	4	4				
little blue heron	ļ			6			
cattle egret					9		
yellow-cr night heron					1		
Canada goose		x					
mallard	х		×				
gadwall	x	×	4				
pintail	х	×					
green-winged teal	х	×					
blue-winged teal	·	x	21	x	x		
northern shoveler		ж		ж			
wood duck		6	4	5	3		
ring-necked duck	ж	ж					
canvasback		x					
lesser scaup		x					
ruddy duck		x					
turkey vulture			1				
red-tailed hawk	1	1	1				
Swainson's hawk					1		

Appendix V-03. (cont.)

Study Area 2 (Cont.)			Cei	nsus D	ates		
Species	2/20	2/24	3/25	4/7	4/27		
marsh hawk	×						
osprey					×		
American kestrel	×		x				
bobwhite					×		
American coot	×	×	×	×	×		
killdeer	×	1			ж		
ring-billed gull			1				
Franklin's gull			×	×	1		
mourning dove	×				4		
barred owl			1				
chimney swift			15		17		
ruby-throated hummingbird					1		:
common flicker	2	4	1	11			
red-bellied woodpecker	11	14	12	6	8		
red-headed woodpecker					ж		
pileated woodpecker	x						
hairy woodpecker		1			1	 -	
yellow-bellied sapsucker	1	1					
downy woodpecker	13	9	3	2	4	-	
western kingbird					x		
scissor-tailed flycatcher				×	×		

Appendix V-03 (cont.)

Study Area 2 (Cont.)			Ce	ensus l	Dates	
Species	2/20	2/24	3/ 25	4/7	4/27	
great crested flycatcher					6	
eastern phoebe	1			×		
least flycatcher					1	
horned lark	. 2					
rough-winged swallow			1		2	
barn swallow			×	· 	×	
cliff swallow					×	
purple martin			×			
blue jay	27	11	4	2	14	
common crow	30	14	17	8	19	
Carolina chickadee	13	15	17	7	10	
tufted titmouse	24	8	16	11	13	
brown creeper	1	1	1	·		
Bewick's wren	×	×				
Carolina wren	25	20	16	9	11	
mockingbird	×	1	x		×	
brown thrasher	1	3	1		3	
robin	36	74	12	3		
hermit thrush	1	×				
Swainson's thrush					1	i
eastern bluebird	3		х			

Appendix V-03. (cont.)

Study Area 2 (Cont.)			Cens	us Dat	es	
Species	2/20	2/24	3/25	4/7	4/27	
blue-gray gnatcatcher			6	2		
ruby-crowned kinglet	1	3	2	4	8	
cedar waxwing			2	32		
loggerhead shrike	<u>. </u>		ж			
starling	21	68	2		12	
white-eyed vireo				1	2	
solitary vireo					1	 ļ
warbling vireo					2.	
black & white warbler					1	
Tennessee warbler					5	
Nashville warbler					19	
yellow warbler					2	
myrtle warbler	24	19	10	15	3	
northern waterthrush					1	
common yellowthroat				ж	2	
house sparrow	ж	×	×	×	×	
eastern meadowlark	×	x	×	×	×	
western meadowlark	×	×	×			
redwinged blackbird	115	210	7	18	11	
Baltimore oriole					1	
rusty blackbird	4	9				

Appendix V-03 (cont.)

Study Area 2 (Cont.)			Cen	sus Da	tes		
Species	2/20	2/24	3/25	4/7	4/27		
great-tailed grackle		33	×		2		
common grackle		4	2	155	13		
brown-headed cowbird		14	2	9	10		
cardinal	. 33	89	30	52	37		
indigo bunting					1		
dickcissel					×	 	
purple finch	8	19	1				
American goldfinch	1	7	1	/			
rufous-sided towhee	4	8	1	2			
lark sparrow					×		
slate-colored junco	10	27	3				
chipping sparrow			×				
field sparrow			×				
Harris' sparrow	×	×			×		
white-crowned sparrow					×		
white-throated sparrow	48	153	41	38	14		
fox sparrow	1	1					
Lincoln's sparrow		2	2	11	6		
swamp sparrow			1		<u> </u>		
song sparrow	2	7	1	ж			
Total Individuals	466	861	267	399	283		
Total Census Species	31	35	38	23	42		

tal Species All Censuses: 70 (plus 34 non-census species= 104) tal Individuals All Censuses: 2,276 (avg. 455 per census)

Appendix V-03. (cont.)

Study Area 3		(Census	Dates			
Species	9/30	12/2	1/28	3/3	5/12		
white pelican	33						
double-crested cormorant	ж						
great blue heron	×						
little blue heron					10		
cattle egret	x				3		
snowy egret					×		
wood stork	140						
mallard				2	×		
blue-winged teal					×		
turkey vulture	7	7	23	4	5	·	
sharp-shinned hawk	×	1					
Cooper's hawk	ж			×			
red-tailed hawk	2		1				
red-shouldered hawk	1	1		4	2		
broad-winged hawk	21						
Swainson's hawk	2				. 1		
marsh hawk	ж		×	×			
peregrine falcon	x						
American kestrel	3		×	×			
bobwhite	x		14		2		
semipalmated plover					x		

Appendix V-03. (cont.)

Study Area 3 (Cont.)	Census Dates							
Species	9/30	12/2	1/28	3/3	5/12			
piping plover					×			
killdeer	2	1		x	2			
golden plover	x							
American woodcock	<u> </u>	1	1					
whimbrel					×			
upland sandpiper	x				×		·	
spotted sandpiper					×			
solitary sandpiper	1							
greater yellowlegs					×			
lesser yellowlegs					×			
willet					×			
pectoral sandpiper					×			
white-rumped sandpiper					×			
Baird's sandpiper					×			
least sandpiper					×			
semipalmated sandpiper					×			
dunlin					×			
long-billed dowitcher					ж			
stilt sandpiper					×			
buff-breasted sandpiper	×				x			
Hudsonian godwit					х			

Appendix V-03. (cont.)

Study Area 3 (Cont.)			Cen	sus Da	tes	
Species	9/30	12/2	1/28	3/3	5/12	
Wilson's phalarope					×	
Franklin'g gull	4				ж	
black tern					×	
mourning dove	. 5	2	1		1	
yellow-billed cuckoo					4	
great horned owl	1	1				
barred owl	2	1		×	4	
common nighthawk					2	
chimney swift	15				10	
ruby-throated hummingbird					2	
common flicker	22	17	3	1		
pileated woodpecker	1	2	1		2	
red-bellied woodpecker	6	12	9	7	4	
yellow-bellied sapsucker		3	3	3		
hairy woodpecker	1			1	2	
downy woodpecker	5	7	6	-10	5	
eastern kingbird					2	
western kingbird					x	
scissor-tailed flycatcher	24				4	
great crested flycatcher					3	
eastern phoebo	2	1				

Appendix V-03. (cont.)

Study Area 3 (Cont.)			Ce	naus D	ates_	
Species	9/30	12/2	1/28	3/3	5/12	
acadian flycatcher					2	
least flycatcher					1	
eastern wood pewee					1	
olive-sided flycatcher	. 1				2	
horned lark			<u> </u>		ж	
tree swallow	25					
rough-winged swallow	2					
barn swallow	120				15	
cliff swallow	3				2	
blue jay	85	11	2	8	1	
common crow	20	10	15	7	11	
Carolina chickadee	18	39	16	17	18	
tufted titmouse	7	10	5	9	17	
brown creeper		1	1			
house wren	1					
Bewick's wren			1			
Carolina wren	4	8	5	6	3	
mockingbird	2		3	2	1	
gray catbird					3	
brown thrasher	2	5	2	2		
robin		155	181	25		

Study Area 3 (Cont.)			Cen	us Dat	es.		
Species	9/30	12/2	1/28	3/3	5/12		
hermit thrush		6	3	3			
Swainson's thrush					6		
eastern bluebird		2					
blue-gray gnatcatcher					4		
golden-crowned kinglet		6	3	6			
ruby-crowned kinglet	2	7	4	11			
water pipit			×		×		
Sprague's pipit			×				
cedar waxwing		152			×		
loggerhead shrike	8	4	2				
starling			7	3	×		
white-eyed vireo					5		
red-eyed vireo					9		
Philadelphia vireo					. 1		
warbling vireo					2		
black & white warbler	1				3		
Tennessee warbler					2	<u> </u>	
orange-crowned warbler	1	1				·	,
Nashville warbler	3						
northern parula warbler	1						
magnolia warbler					1		

Appendix V-03. (cont.)

Study Area 3 (Cont.)			Censu	ıs Dat	es	
Species	9/30	12/2	1/28		5/12	
myrtle warbler		15	13	3		
bay-breasted warbler					2	
ovenbird					1	
Kentucky warbler	<u> </u>				4	
common yellowthroat	1		: 		1	
yellow-breasted chat					1	
American redstart					1	
house sparrow	×	x	×	ж	×	
bobolink					×	
eastern meadowlark	3		×	2	4	
yellow-headed blackbird	ļ				×	
redwinged blackbird	15	40	x	7	2	
orchard oriole					3	
Baltimore oriole					1	
rusty blackbird				11		
common grackle	28	45		2	10	
brown-headed cowbird	75			11	5	
summer tanager					4	
cardinal	25	77	63	76	68	
indigo bunting	5				25	
painted bunting					8	

Appendix V-03.(cont.)

Study Area 3 (Cont.)		Census Date;							
Species	9/30	12/2	1/28	3/3	5/12				
dickcissel					75				
purple finch		1							
American goldfinch					1				
rufous-sided towhee	<u> </u>	2		2					
savannah sparrow			×	×	×				
grasshopper sparrow					×				
vesper sparrow				×					
lark sparrow				. ×					
slate-colored junco		13	11	1					
Harris' sparrow			×	2					
white-throated sparrow		32	19	28					
fox sparrow		21	20	5					
Lincoln's sparrow	4			1					
song sparrow		6	4						
Total Individuals	759	726	442	282	396				
Total Census Species	49	39	31	33	60				

Total Species All Censuses: 101 (plus 39 non-census species= 140). Total Individuals All Censuses: 2,605 (avg. 521 per census).

Mark miles in

Appendix V-03. (cont.)

Study Area 4		+	Ce	nsus Da	ates	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Species	10/8	11/11	2/4	4/8	5/13		
great blue heron					1		
green heron					×		
little blue heron				2	28		
cattle egret	. 2				30		
great egret					ж		
snowy egret					×		
American bittern					1		
Canada goose	×						
mallard		8	1				
blue-winged teal				×	×		
wood duck	3	4			2 -		
hooded merganser			1_				
turkey vulture	2	7	7	9	2		
black vulture			x	6			
sharp-shinned hawk		1	2				
red-tailed hawk		ж	2	1			
red-shouldered hawk	1			1	1		
Swainson's hawk				1			
bald eagle		2					
American kestrel	×	1					
killdeer	2	7	х	x	2		

Appendix V-03. (cont.)

Study Area 4 (Cont.)			Cens	us Dat	es		
Species	10/8	11/11	2/4	4/8	5/13		
solitary sandpiper				x	×		
white-rumped sandpiper					×		
least sandpiper					×	<u> </u>	
semipalmated sandpiper	ļ				×		
ring-billed gull		1					
Franklin's gull		20				-	
mourning dove	1	7	5		×		
yellow-billed cuckoo					2	·	
roadrunner		×	×				
screech owl		1					
great horned owl		2					
barred owl	1	1	1	1	4		
chuck-will's-widow					x		
common nighthawk					x		
chimney swift	1			. —			
ruby-throated hummingbird					1	·	
belted kingfisher				1			
common flicker	8	28	8				
pileated woodpecker	2	4	2	1	2		
red-bellied woodpecker	1	13	9	8	6		
red-headed woodpecker	×	[×	1	2]

Appendix V-03. (cont.)

Study Area 4 (Cont.) Species			Ce	naus De	ates		
Species	10/8	11/11	2/4	4/8	5/13		
yellow bellied sapsucker	1	9	4				
hairy woodpecker		4					
downy woodpecker	6	12	4	3	5		
eastern kingbird	<u> </u>				2		
scissor-tailed flycatcher	ж				1		
great crested flycatcher					5		
eastern pheobe	3	1					
acadian flycatcher					2		
least flycatcher		·			1		
eastern wood pewee					4		
barn swallow	1			1			
blue jay	3	4	1_	6	1		
common crow	6	36	24	7	L 5	-	
Carolina chicadee	27	43	43	26	28		
tufted titmouse	7	17	19	16	34		
white-breasted nuthatch	5	6	3	2	6	·	
brown creeper		7	2				
winter wren		5					
Bewick's wren		1					
Carolina wren	3	8	3	5	1		
mockingbird		4	1	1	×		

Appendix V-03. (cont.)

Study Area 4 (Cont.)		·	Cei	usus Da	tes	,	
Species	10/8	11/11	2/4	4/8	5/13		
brown thrasher	3	4	1	4	1		
robin			68				
hermit thrush		8	2	1			
Swainson's thrush							
eastern bluebird .	. 1	18	3	3	×		
blue-gray gnatcatcher				.8	3		
golden-crowned kinglet		14	3				
ruby-crowned kinglet	3	22	5	4			.
water pipit			×				
cedar waxwing		· 3		28			
loggerhead shrike	. 2	1	2	1	×		
starling		57 5	90				
white-eyed vireo				3	2		
yellow-throated vireo				1	2		
solitary vireo			1				
red-eyed vireo					5		
warbling vireo					1		
Tennessee warbler			-		3		
Nashville warbler				1			
yellow warbler					2		
magnolia warbler					1		
myrtle warbler		4		6			

Appendix V-03. (cont.)

Study Area 4 (Cont.)			Ce	nsus I	Dates	-	· · · · · · · · · · · · · · · · · · ·
Species	10/8	11/11	2/4	4/8	5/13		
blackburnian warbler					3		
yellow-throated warbler				1	3		
ovenbird					1		
house sparrow			x				
eastern meadowlark			х	3	ж		
redwinged blackbird		72	1750				
common grackle	22	108	15		3		
brown-headed cowbird	1	22	6	2	3		
summer tanager				1	7		
cardinal	51	103	72	51	55		
indigo bunting					3 -		
painted bunting					13		
purple finch		29	85				
pine siskin			8				
American goldfinch		36	195				
rufous-sided towhee		1	3				
savannah sparrow				6			
vesper sparrow		×					
lark sparrow					2		
slate-colored junco		10	28				
field sparrow		3	ж				

Appendix V-03. (cont.)

Study Area 4 (Cont.)	Census Dates								
Species	10/8	11/11	2/4	4/8	5/13				
Harris' sparrow		2	12						
white-crowned sparrow			1						
white-throated sparrow		162	254	78			}		
fox sparrow		10	10						
Lincoln's sparrow		1		5					
song sparrow		1	1						
		<u> </u>							
	1								
~ 									
									
	-								
	 								
	 			 .					
Total Individuals	169	1473	2757	306	303				
Total Census Species	28	53	43	39	47				

Total Species All Censuses: 97 (plus 15 non-census species= 112). Total Individuals All Censuses: 5,003 (avg. 1,002 per census).

-

Appendix V-03. (cont.)

Study Area 5 (Cont.)			Cer	sus Da	tes		
Species	10/22	1/14	2/3	2/25	3/25	4/21	
red-bellied woodpecker		1	1	1	1	3	
yellow-bellied sapsucker			1				
hairy woodpecker			1				
downy woodpecker		4	7	3	2		
eastern kingbird						2	
scissor-tailed flycatcher	4					4	
great crested flycatcher						1	
eastern phoebe	1						
eastern wood pewee						2	
horned lark			3			3	
barn swallow						3	
blue jay	6	5	5	7	1		
common crow	24	15	16	10	3	10	
Carolina chickadee	9	7	9	11	8	9	
tufted titmouse	4	4	2	3	7	15	
brown creeper		1					
house wren	1						
Bewick's wren		2	2	1			
Carolina wren	8	5	9	6	3	8	
mockingbird	7	8	4	5	5	16	
brown thrasher	5	1	1	1		1	

Appendix V-03. (cont.)

Study Area 5 (Cont.)		· · · · · · · · · · · · · · · · · · ·	Cer	nsu s Da	tes		· · · · · · · · · · · · · · · · · · ·
Species	10/22	1/14	2/3	2/25	3/25	4/21	
robin		41	23	19			
hermit thrush		2	6	1			
Swainson's thrush						1	
eastern bluebird		5	2		3		
golden-crowned kinglet		1				, 	
ruby-crowned kinglet	6	2	1			2	
Sprague's pipit			1				
cedar waxwing					25	14	
loggerhead shrike	2	2	1	. 2	1	1	
starling	×	140	×	×	×	×	
black & white warbler						1	
orange-crowned warbler						1	
Nashville warbler						9	
myrtle warbler		8	8	8	4	4	
house sparrow	x	×	x	×	×	х	
eastern meadowlark	32	3	80	34	33	31	
redwinged blackbird		1000	20		1	10	
orchard oriole						4	
common grackle		6	1		4	4	
brown-headed cowbird		. 20	1	44	11	5	
cardinal	48	41	37	42	24	34	

Appendix V-03. (cont.)

Study Area 5 (Cont.)			Cel	nsus Da	tes		
Species	10/22	1/14	2/3	2/25	3/25	4/21	
indigo bunting						1	
dickcissel						2	
purple finch		6	16	17			
pine siskin		×					
American goldfinch		1	11	1			
rufous-sided towhee		1	4	2			
savannah sparrow	13	19	11	22	2	21	
grasshopper sparrow			1_		2		
LeConte's sparrow			3				
vester sparrow		71	15	38			
lark sparrow		1				21	
slate-colored junco		18	10	80	4		
clay-colored sparrow						1	
field sparrow		12	12	9	5	1	
Harris' sparrow		36		8			
white-crowned sparrow						1	
white-throated sparrow	5	49	30	45	22	10	
fox sparrow		1	1	1			
Lincoln's sparrow	1			2		1	
song sparrow		11	5	6			
Smith's longspur		140	x				

Appendix V-03. (cont.)

Study Area 5 (Cont.)			Ce	ensus D	ates		
Species	10/22	1/14	2/3	2/25	3/25	4/2]	
					1		
and the second second second second second second second second second second second second second second seco							1
		1			1		
					;	! 	
						· 	
				1			
							1
	-	``\					
Territoria de la Contractica de la Contractica de la Contractica de la Contractica de la Contractica de la Cont					SEED OF STORE STATE STATE STATE		
The state of the s		•	1				·
**************************************			1			چې مناشق چې	
		, -					
Total Individuals	229	1769	383	453	314	340	
Total Census Species	24	43	44	34	28	48	

Total Species All Censuses: 81 (plus 3 non-census species= 84).

Total Individuals All Censuses: 3,388 (avg. 565 per census).

Traffic Marie Marie Marie

Appendix V-03. (cont.)

Study Area 6			Ç∈r	eus Da	ites	}	·
Species	11/12	1/27	2/18	3/4	3/31	5/27	
great blue heron			1			2	
green heron						1	
little blue heron						9	
cattle egret			-			81	
great egret					1	1	
wood duck	ж						
hooded merganser			2				
turkey vulture	14		1	4	7	1	
sharp-shinned hawk	×						
red-tailed hawk	4	4	3	5	2	1	
red-shouldered hawk	1			1		1	
marsh hawk	1	2	1	1	1		
American kestrel	1	1	1	1			
bobwhite	×	18		·			
killdeer	3	2	2	2		1	
common shipe	1						
greater yellowlegs	2						
mourning dove	7		1	1		2	
yellow-billed cuckoo						5_	
barn owl							
barred owl	1						

Appendix V-03. (cont.)

Study Area 6 (Cont.)			Cer	sus D	ata		
Species	11/12	1/27	2/18	3/4	3/31	5/27	
ruby-throated hummingbird						2	
common flicker	17	7	8 .	2			
red-bellied woodpecker	9	3	4	1	1	1	
red-headed woodpecker						1	
yellow-bellied sapsucker	2	1	1	1			
downy woodpecker	3	2	2	3	1	7	
great crested flycatcher						1	
scissor-tailed flycatcher					· .	2	
eastern phoebe	3			1			
willow flycatcher						3	
eastern wood pewee						×	
barn swallow						2	
purple martin						3	
blue jay	20	5	7	5	4	3	
common crow	72	9	12	10 `	,7	10	
Carolina chickadee	14	15	11	15	6	16	
tufted titmouse	5	7	4	3	4	10	
brown creeper	2						
house wren		1					
winter wren	2			***************************************			
Bewick's wren	1	1		1			

Appendix V-03. (cont.)

Study Area 6 (Cont.)			Cen	us Dat	es	r	
Species	11/12	1/27	2/18	3/4	3/31	5/27	
Carolina wren	5	1	1	4_	2	1	 -
mockingbird	6	6	3	5	5	×	1
brown thrasher		9	4	4	1	-	ļ
robin	65	6	31	3			
hermit thrush	3	1	2	-	.1		
eastern bluebird	17	6					
blue-gray gnatcatcher		ļ 			4		
golden-crowned kinglet	6	1				,	
ruby-crowned kinglet	9	4	1	4	. 3		
cedar waxwing				16	7		
loggerhead shrike	7	2	1	3	1		
starling			6	1			
white-eyed vireo					1	3	
orange-crowned warbler	1						
myrtle warbler	2		1	13	24		
common yellowthroat						4	
yellow-breasted chat						9	
eastern meadowlark	125	1.1	31	24	7	2	
western meadowlark	1						
redwinged blackbird	1600	1425	2315	92	×	1	
rusty blackbird			20				

Appendix V-03. (cont.)

Study Area 6 (Cont.)			Cens	us Dat	es		,
Species	11/12	1/27	2/18	3/4	3/31	5/27	
common grackle	350	285	335	33	31	33	
brown-headed cowbird	30	110	535	11	8	20	
cardinal	31	53	18	36	23	38	
blue grosbeak						1	
indigo bunting						11	
painted bunting						17	
dickcissel						1	
purple finch	6		1				
American goldfinch	. 36	1					
rufous-sided towhee	2			1			
savannah sparrow	15	11	1	3	4		
LeConte's sparrow		3	1				
vesper sparrow	6	5				-	
slate-colored junco	2						
field sparrow	1		2	2			
white-crowned sparrow	12		3	2	7		
white-throated sparrow	20	5	2	8	13	·	
fox sparrow	10	20	8	3			
Lincoln's sparrow	5			4	4		
swamp sparrow	24	2	5	6	3		
song sparrow	35	16	13	9			

Appendix V-03. (cont.)

Study Area 6 (Cont.)			Cer	nsus D	ates		
Species	11/12	1/27	2/18			5/27	
					1		
						1	
	_				 		
					<u> </u>		
					}		

	_						
Total Individuals	2617	2063	3401	344	183	307	
Total Census Species	5	38	40	40	30	37	L

Total Species All Censuses: 8 (plus 3 non-census species= 84).

Total Individuals All Censuses 8,915 (avg. 1,486 per census).

A second of the same of the sa

Appendix V-03. (cont.)

Study Area 7			Cens	us Dat	es		· · · · · · · · · · · · · · · · · · ·
Species	11/4	11/17	1/20	2/17	3/24	4/20	
great blue heron	1	×		2		1	
green heron						1	
little blue heron						1	
cattle egret						2	
snowy egret						1	
yellow-cr night heron						2	*.
white-fronted goose	5						
mallard			5	10			
pintail				2			
blue-winged teal						3	
wood duck	2	. x	6	4	2	2	
turkey vulture	6	15		4	10	6	
black vulture		29		4	5		
white-tailed kite					2	2	
Mississippi kite			•			1	
sharp-shinned hawk		1				×	
Cooper's hawk						×	
red-tailed hawk	1	3					
red-shouldered hawk	1		1	2		2	
broad-winged hawk						x	
marsh hawk	2	2		1	1	2	

Appendix V-03. (cont.)

Study Area 7 (Cont.)			Cen	us Dat	es		
Species	11/4	11/17	1/20	.2/17	3/24	4/20	
American kestrel	×	2				х	
bobwhite						х	
killdeer	7	27	1	2	2	3	
common snipe	5					x	
upland sandpiper						х	
solitary sandpiper						x	
greater yellowlegs						1	
lesser yellowlegs						3	
mourning dove	6	12		3		3	
barn owl					×		
great horned owl						x	
barred owl	2	1	1	2		2	
common nighthawk						3	
chimney swift						8	
ruby-throated hummingbird	_					11	
belted kingfisher	1					1	
common flicker	7	22		11	1		
pileated woodpecker		1		1	1	1	
red-bellied woodpecker	7	13	-,	11	5	7	
red-headed woodpecker	x					x	
yellow-bellied sapsucker	1	6		6]		

Appendix V-03. (cont.)

Study Area 7 (Cont.)			Car	igus Da	+40		
Species	11/4	11/17		2/17		4/20	
hairy woodpecker		2					
downy woodpacker	2	3	7	5	2	4	
eastern kingbird						×	
scissor-tailed flycatcher						1	
great crested flycatcher						1	
eastern phoebe	2	3	1	2			
tree swallow						1	
rough-winged swallow						5	
barn swallow						3	
purple martin					5	2	
blue jay	11	14	. 9	3	1 .	1	
common crow	22	57	19	25	12	29	
Carolina chickadee	15	39	31	23	13	13	
tufted titmouse	6	25	8	6	16	17	
white-breasted nuthatch	1						
brown creeper		8	1	2			
house wren		1					
winter wren	2	4	1	1			
Bewick's wren	3	3		1			
Carolina wren	12	29	23	3 3	12	17	
mockingbird	1	1	3	4	3	2	

Appendix V-03. (cont.)

Study Area 7 (Cont.)		-	Cen	eus Da	tes		
Species	11/4	11/17	1/20	2/17	3/24	4/20	
gray catbird	2						
brown thrasher	9	5	12	15		2	
robin	42	4	122	36			
hermit thrush	1	4	7	4	1		
eastern bluebird	1	8				х	
blue-gray gnatcatcher					6	2	
golden-crowned kinglet	6	10		2			
ruby-crowned kinglet	9	33	5	3	5	2	
water pipit	7	ı	1				
cedar waxwing			32			 	
loggerhead shrike	3	1	1	1		×	
starling				2		2	
white-eyed vireo	<u> </u>				5	6	
solitary vireo			1				
red-eyed vireo						2	
prothonotary warbler						2	
Swainson's warbler						2	
Tennessee warbler						1	
orange-crowned warbler	4	1	3	1			
Nashville warbler						1	
northern parula warbler					18	21	

Appendix V-03. (cont.)

Study Area 7 (Cont.)		,	Cens	us Dat	es	,	
Species	11/4	11/17	1/20	2/17	3/24	4/20	
myrtle warbler	9	24	4	4			
pine warbler	<u> </u>	1	2				
Kentucky warbler						3	
common yellowthroat						1	
house sparrow	ж	×	×	×	×	х	
eastern meadowlark	23	35	3	6	6	7	
western meadowlark		1			<u></u>		
redwinged blackbird	2	240	13	35		5	
Brewer's blackbird		20				<u> </u>	
common grackle	43	25	73	3	1	2	
brown-headed cowbird	400	ж			2	32	
cardinal	48	58	97	71	44	92	
blue grosbeak						1	
indigo bunting						2	
painted bunting						2	
dickcissel						4	
purple finch		2					
pine siskin			10				
American goldfinch	12	18	4	3			
rufous-sided towhee		1					
savannah sparrow	1	20		11		2	

Appendix V-03. (cont.)

Study Area 7 (Cont.)		Census Dates								
Species	11/4	11/17	1/20	2/17	3/24	4/20				
grasshopper sparrow						×	 			
vesper sparrow	2	20		1						
lark sparrow		<u> </u>				2				
slate-colored junco		6_	7	4	2					
white-crowned sparrow		1		3		×				
white-throated sparrow_	78	55	173	70	40	6				
fox sparrow			16	11						
Lincoln's sparrow		4			3	ж				
swamp sparrow			1		1					
song sparrow		6	2	6	1					
				-	·					
			<u></u>							
	-									
	_	-								
Total Individuals	833	927	721	462	228	361				
Total Census Species	46	53	41	47	31	63				

Total Species All Censuses: 105 (plus 10 non-census species= 115). Total Individuals All Censuses: 3,532 (avg. 589 per census).

Appendix V-03. (cont.)

Study Area 8			Cen	aus Da	tes		
Species	10/21	11/7	12/9	1/3	3/23	4/1	4/29
pied-billed grebe	1		2	•	1	2	
double-crested cormorant						×	
anhinga	×				8	27	6
great blue heron		1	1	3	26	37	6
green heron							1
little blue heron	×	1			13	21	31
cattle egret	32	23		1	,		117
great egret					65	58	7
snowy egret			·		1	2	x
Louisiana heron						×	
black-cr night heron						×	
yellow-cr night heron					3	1	12
white ibis	1				1	×	129
snow/blue goose	×						
mallard	1	7	5	14	5	3	
gadwall			15	13	17	3	
pintail			4				
green-winged teal	3	5	7	23	5	2	
blue-winged teal	. 1				5 0	24	14
American wigeon	7	2	8	32	. 3		
northern shoveler	1	1	3				

Appendix V-03. (cont.)

Study Area 8 (Cont.)			Ce	nsus D	ates		
Species	10/21	11/7	12/9	1/3	3/23	4/1	4/29
wood duck	5	9	12	4	19	7	2
ring-necked duck			×				
turkey vulture	4	5	11	12		1	1
black vulture	2	3	5	9	61	39	45
Mississippi kite							ж
sharp-shinned hawk	1						
Cooper's hawk		1				1	
red-tailed hawk	1	1	1	2			
red-shouldered hawk		2	1	4	2	1_	×
broad-winged haw						2	
marsh hawk	1						
American kestrel	x	2	2				
sora rail					1	1	
purple gallinule							2
common gallinule	1				•		3
American coot	2		7		×	15	ж
killdeer	6	14	11	14			×
common snipe	12	1	6				
solitary sandpiper				1	1	2	4
ring-billed gull						×	
mourning dove	4	22	4	25	4	1	2

The state of the s

Study Area 8 (Cont.)) Census Dates						
Species	10/21	11/7	12/9	1/3	3/23	4/1	4/29
yellow-billed cuckoo							1
roadrunner							×
barred owl	2	1			3 .	1	1
chimney swift	1				65	12	30
ruby-throated hummingbird						2	2
belted kingfisher	1	1			1		
common flicker	4	11	11	18	1	1	
pileated woodpecker	2	4	2	3	1		2
red-bellied woodpecker	3	9	1	8	8	5	5
red-headed woodpecker	×	1					3
yellow-bellied sapsucker	1	1	1	5		1	
downy woodpecker	1	1	2	2	7	5	3
scissor-tailed flycatcher	14					1	x
eastern kingbird						1	6
great crested flycatcher							7
eastern phoebe	4	7	4	5			
acadian flycatcher							10
vermillion flycatcher	1						
rough-winged swallow					1		2
barn swallow	1						ж
curple martin					2		x

Appendix V-03. (cont.)

Study Area 8 (Cont.)			Cei	nsus D	ates_		
Species	10/21	11/7	12/9	1/3	3/23	4/1	4/29
blue jay	31	13	11	22	12	13	5
common crow	25	3 5	13	56	20	8	<u> </u>
Carolina chickadee	6	7	9	17	20	10	14
tufted titmouse	2	4	5	2	23	9	12
white-breasted nuthatch							×
brown creeper		1	1				<u> </u>
house wren	2			1			ļ
winter wren	x	1	1	1			
Carolina wren	4	2	11	18	21	5	7
long-billed marsh wren	3						
short-billed marsh wren	1		2				
mockingbird	3	2	3	7	2.	3	
gray catbird	2						
brown thrasher	4	3	8	12	1	2	1
robin		5	169	340	24	1	
hermit thrush				2		1	
eastern bluebird		4	2				
blue-gray gnatcatcher	1		1		٥.	20	6
golden-crowned kinglet	1	5	4	3			
ruby-crowned kinglet	3	2	17	14	2	7	
water pipit			26	2			
cedar waxwing				12		12	

Study Area 8 (Cont.)			Cei	nsus Da	ates		
Species	10/21	11/7	12/9	1/3	3/23	4/1	4/29
loggerhead shrike	2	6_		3	1		x_
starlin g	×	9			7	6	11
white-eyed vireo					3	14	-,
yellow-throated vireo					1	1	2
solitary vireo			1	1			
red-eyed vireo							8
prothonotary warbler						2	6
Swainson's warbler							2
Tennessee warbler							6
orange-crowned warbler			4	2	1	2	
northern parula warbler					17	20	14
myrtle warbler			9	17	54	17	
yellow-throated warbler					2	2	1
pine warbler			1				
northern waterthrush					,		1
Louisiana waterthrush					1		
Kentucky warbler				· · · · · · · · · · · · · · · · · · ·			3
common yellowthroat	3	1		2		2	3
yellow-breasted chat							1
hooded warbler						3	2
Wilson's warbler	1						

Appendix V-03. (cont.)

Study Area 8 (Cont.)			C	ensus	Dates		
Species	10/21	1/7	12/9	1/3	3/23	4/1	4/29
eastern meadowlark	1	40		32	3	1	х
redwinged blackbird	1	4	48	290	40	8	Ē
Baltimore oriole							1
rusty blackbird			5	25	1		
Brewer's blackbird				×	×		
brown-headed cowbird	6	0		15	4	16	6
summer tanager							4
cardinal	24	21	61	42	31	64	34
indigo bunting	3						2
painted bunting				·			7
evening grosbeak				2			
purple finch			2	23			
American goldfinch			24	13		11	1
rufous-sided towhee			6	2			
savannah sparrow		4	2	7	11		1
vesper sparrow			12	2			
slate-colored junco			5	·			
chipping sparrow					2		
field sparrow			2			1	
white-crowned sparrow		×					
white-throated sparrow	2	6	ĝ1	43	17	17	6

1

Appendix V-03. (cont.)

Study Area 8 (Cont.)	Census Dates								
Species	10/21	11/7	12/9		3/23	4/1	4/29		
fox sparrow				1					
Lincoln's sparrow	2			 			 -		
swamp sparrow	4	2	3	9	9	1	 -		
song sparrow		2	3	7	2	-	 		
	+								
erroren eta erroren eta eta eta eta eta eta eta eta eta eta									
							· 		
	ļ						! 		
			 				<u> </u>		
	-		·						
Total Individuals	257	325	68 8	1245	7.17	558	628		
Total Census Species	55	50	57	55	57_	60	59		

Total Species All Censuses: 120 (p.us 12 non-census species= 13'). Total Individuals All Censuses: 4,4 8 (avg. 631 per census).

and the second s

Appendix V-03. (cont.)

Study Area 9			Cen	us Dat	es		
Species	9/16	10/28	2/10	2/24	3/10	4/14	4/28
double-crested cormorant			×		1	×	
anhinga	1		×			2	17
great blue heron			2	×	×	×	4
little blue heron	×		ж		x	2	1
cattle egret	×						10
great egret			×	ж	1	x	11
snowy egret	×					×	
yellow-cr night heron					1	1	1
white ibis			×				
mallard			×		x		
green-winged teal			x				
American wigeon			x				
wood duck			2	4			2
turkey vulture	2	6		4	4	4	
black vulture	1		12		ж	ж	
sharp-shinned hawk			ж				
Cooper's hawk		ж					x
red-tailed hawk	1						
red-shouldered hawk	2		1	2	2	3	1
broad-winged hawk	36						
American kestrel				х	×		

(

Study Area 9 (Cont.)			C(n aus I	ates	_	,
Species	9/16	10/28	2/10	2/24	3/10	4/14	4/28
killdeer	x			×	1		
spotted sandpiper	x		x			×	x
Caspian tern					¥		
yellow-billed cuckoo	3						4
barred owl	1		2	5		1	2
chimney swift					·		6
ruby-throated himmingbird	1					2	2
belted kingfisher	2		×		x	x	··-
common flicker		5	2	8	6		
pileated woodpecker	4	4	3	5	2	2	3
red-bellied woodpecker	4	6	10	17	5	5	7
red-headed woodpecker			ж	2			
yellow-bellied sapsucker		14	13	14	4		
hairy woodpecker	1					·	
downy woodpecker	3	5	3	12	1	5	3
eastern kingbird						ж	×
scissor-tailed flycatcher		ж					
great crested flycatcher	5						5
eastern phoebe		11	1	2	1		
acadian flycatcher	13						9
eastern wood pewee	1	1					

Appendix V-03. (cont.)

Study Area 9 (Cont.)			C	naua_[ates		
Species	9/16	10/28	2/10	2/24	3/10	4/14	4/28
tree swallow					15		
rough-winged swallow	×	×			2	×	~ ~
barn swallow					2		
purple martin					7		
blue jay		31	11	17	17	8	8
common crow	10	9	11	9	5	5	7
Carolina chickadee	31	24	27	16	20	18	18
tufted titmouse	14	25	24	24	13	13	20
brown creeper		4	3	1			
winter wren		1	1	1			
Carolina wren	23	8	17	35	13	6	11
mockingbird				×	1		
gray catbird	1						.3
brown thrasher		16	19	12	4	4	,
robin			10	2	3		
wood thrush		3					1
hermit thrush		1	4	8	1		
Swainson's thrush	1						3
eastern bluebird			x	x	,	,	
blue-gray gnatcatcher	7	5				12	2
golden-crowned kinglet		13	5	1			

Appendix V-03. (cont.)

Study Area 9 (Cont.)			Ce	nsus De	ates		······································
Species	9/16	10/28	2/10	2/24	3/10	4/14	4/28
ruby-crowned kinglet		36	3	4	2	1	
cedar waxwing						26	
loggerhead shrike	×			×	-		
white-eyed vireo	78	2	1		1	27	<u>.</u> 6
yellow-throated vireo	1					2	1
solitary vireo			1	1			
red-eyed vireo						7	9
black & white warbler	1	1	1				1
prothonotary warbler	3					12	11
Swainson's warbler	1						3
worm-eating warbler	1						1
Tennessee warbler							12
orange-crowned warbler		3	5	2			
northern parula warbler	4				12	39	16
myrtle warbler		9	18	17	4	8	1
black-throated green warbl	er	2					1
yellow-throated warbler							1
chestnut-sided warbler							1
ovenbird	1						
northern waterthrush	4						1
Kentucky warbler						4	6
common yellowthroat						×	

Appendix V-03. (cont.)

Study Area 9 (Cont.)			Ce	nsus D	ates		
Species	9/16	10/28	2/10	2/24	3/10	4/14	4/28
yellow-breasted chat	2						
hooded warbler	6					9	
Canada warbler	1						
American redstart	<u> </u>						12
redwinged blackbird				×	1	1	
Baltimore oriole	<u> </u>						1
brown-headed cowbird					·	2	13
summer tanager	1						2
cardinal	54	78	69	53	49	72	63
indigo bunting						1	24
painted bunting							6
purple finch				5			
American goldfinch			3	16	25		3
rufous-sided towhee			6		1		
savannah sparrow						x	
slate-colored junco			×	×			
white-throated sparrow		11	335	- 36	78	31	5
fox sparrow			3				
"otal Individuals	326	334	628	325	305	335	384
Total Census Species	39	28	33	30	34	32	53

Total Species All Censuses: 86 (plus 17 non-census species 103). Total Individuals All Censuses: 2,637 (avg. 377 per census).

Appendix V-03. (cont.)

Study Area 10 • Species			Cens	us Dat	es	
Species	12/10	2/11	3/11	4/15	5/13	
double-crested cormorant		585	14	3		
anhinga		1	3		2	
great blue heron		1	. 6	3	1	
little blue heron			1	1	2	
cattle egret				14	2	
great egret	2		5	6		
snowy egret			2		7	
Louisiana heron			1	1	4	
yellow-cr night heron					1	
white ibis			360		48	
Canada goose			×.			
wood duck		8	3			
turkey vulture	3	8				
black vulture	9	11	3	1	1	
Mississippi kite					1	
red-tailed hawk	1		1			
red-shouldered hawk		2	2	2	1	
marsh hawk		1				
American kestrel		1				
ring-billed gull			1			
mourning dove			2			

Appendix V-03. (cont.)

Study Area 10 (Cont.)			Censu	s Date	98		
Species	12/10	2/11		4/15			
yellow-billed cuckoo					6		
barred owl		2	1	2	1		
chimney swift				4	1		
ruby-throated hummingbird			,	2		ļ	
belted kingfisher		1					
common flicker	4	4					
pileated woodpecker	1	1	3	1			
red-bellied woodpecker		6	8	4	_ 4_		
red-headed woodpecker		4	3				
yellow-bellied sapsucker	1	3	3				
hairy woodpecker		1					
downy woodpecker	2	3	5	5	3		
great crested flycatcher			,		4		
eastern phoebe	4	1	1				
yellow-bellied flycatcher					1.		
eastern wood pewee				2	1		
tree swallow			7				
bank swallow					11		
barn swallow				2	2 7		
cliff swallow					2		
purple martin			5	6			

Appendix V-03. (cont.)

Study Area 10 (Cont.)			C	enaus I	ates		
Species	12/10	2/11	3/11	4/15	5/13		
blue jay	11	15	29	6_	5		
common crow	10	9	6	3	6		j
Carolina chickadee	15	24	-21	13	16		
tufted titmouse	2	4	4	11	13		
brown creeper	1	1					
house wren	1	4					
Carolina wren	6	11	15	6	7_		
mockingbird	8	17	7	7	2		
brown thrasher	3	17	8	3			
robin	65	28	2				
wood thrush				4			
hermit thrush	3	3					
eastern bluebird	34	10	4				
blue-gray gnatcatcher	2			3			!
ruby-crowned kinglet	24	8	12	2			
loggerhead shrike	2	1	1				
white-eyed vireo			3	14	7	 	
solitary vireo	1						
red-eyed vireo				2	5		
black & white warbler				5		-	
prothonotary warbler				3	3		

Appendix V-03. (cont.)

Study Area 10 (Cont.)			Ce	nsus De	tes	
Species	12/10	2/11	3/11	4/15	5/13	
Swainson's warbler				1	2	
worm-eating warbler				1		
blue-winged warbler				1		
Tennessee warbler				13		
orange-crowned warbler	2	4	2			
northern parula warbler			6	8	8	
magnolia warbler					1	
myrtle warbler	13	9	4		.,	
cerulean warbler				2		
blackburnian warbler				1		
yellow-throated warbler			1			
chestnut-sided warbler				1		
pine warbler	4	2	1	1	1	
Kentucky warbler				5	3	
common yellowthroat			1	6	2	
hooded warbler				5		
American redstart				1		
redwinged blackbird	2	5	6			
orchard oriole				36		
Baltimore oriole				2		
common grackle	30	1	3			

AD-A095 957

STEPHEN F AUSTIN STATE UNIV NACOGDOCHES TX
ECOLOGICAL SURVEY DATA FOR ENVIRONMENTAL CONSIDERATIONS ON THE --ETC(U)
JUL 73 C D FISHER, D D HALL, H L JONES

DACHG3-73-C-0016

ML

END
DATE PILMED

4-81
DTIC

Appendix V-03. (cont.)

Study Area 10 (Cont.)			Cen	sus Da	tes	··	·
Species	12/10	2/11			5/13		
brown-headed cowbird			. 1	4	20		
scarlet tanager	<u>-</u>			1			<u> </u>
summer tanager	ļ			1_	2		
cardinal	44	69	82	38	41		
indigo bunting	1			12	13		
painted bunting	ļ			1	10		
American goldfinch	31	53	14				ļ
rufous-sided towhee	1	2	1	1			
savannah sparrow		5					
Henslow's sparrow	<u> </u>	2					
LeConte's sparrow		1					
slate-colored junco		36					
field sparrow	4	2	2		···		
white-throated sparrow	87	276	55	26			
fox sparrow		3					
Lincoln's sparrow		5		2			
swamp sparrow	3	11	3.				
song sparrow	1	2					
Total Individuals	438	1284	732	311	298		
Total Census Species	3 3	51	50	55	42	· · · · · · · · · · · · · · · · · · ·	

Total Species All Censuses: 101 (plus 1 non-census species= 102).
Total Individuals All Censuses: 3,063 (avg. 613 per census).

dix V-04. Common and scientific names of all birds recorded at ten Trinity River transects, followed respectively by the maximum number of individuals counted on any single census and the number of different censuses each was observed! Appendix V-04.

Species pied-billed grebe	TI	Transect	Number						_	
u G	-				or cen	censuses	ın par	parentneses	(8)	
pied-billed grebe	5	2(5)	3(5)	4(5)	2 (6)	(9)9	7(6)	8(7)	9(7)	10 (5)
		×						2		
white notions	1							(4)		
White Pelican Pelecanus ervthrorhynchos			(1)							
	-	×	×					×	1	585
Phalacrocorax auritus									(1)	(3)
anhinga		-						27	17	3
Anhinga anhinga	-							(3)	(3)	(3)
great blue heron		4	×	1		2	2	3.7	4	9
Ardea herodias		(3)		(1)		(3)	(3)	(9)	(2)	(4)
green heron	×			×	1	1	7	1		
Butorides virescens					(1)	(1)	(1)	(1)		
	-	9	10	28	1	6	1	31	2	5
Florida caerulea (1)	(1)	(1)	(1)	(2)	(1)	(1)	(1)	(4)	(2)	(3)
	2	6	3	30	10	81	2	117	10	**************************************
Bubulcus ibis (2)	(2)	(1)	(1)	(2)	(1)	(1)	(1)	(4)	(1,	(2)
great egret	-			×		ī		9	11	9
Casmerodius albus	1					(2)		(3)	(2)	(3)
	 (×	×			-	7	×	7
(ו) פותם בחברם	3						î)	(2)		(2)
Hydranassa tricolor								×		→ (£)
black-crowned night heron								×		
Nycticorax nycticorax								į		
heron	-	-			1		2	12	1	1
Nyctanassa violacea (I)		3			Ē		3	(3)	<u>3</u>	<u>=</u>

(2) 10 (5) 360 × 9(7) × × × × of censuses in parentheses) (3) (1) 8(7) (9) (9) e (E) (4) 3 (5) 50 129 × 23 5 10 7(6) 7 3 (1) (9)9 2 (6) (1) (2) (no. 4(5) × × 8 Transect Number (1) 3 3(5) 140 × 123 (7) 2(5) × × 4 × × × 1(7) Rotaurus lentiginosus Mycteria americana Anas platyrhynchos gadwall White-fronted goose Chen caerulescens mallard Eudocimus albus Anser albifrons Anas americana northern shoveler green-winged teal blue-winged teal American bittern Species snow/blue goose Anas strepera pintail American wigeon Anas clypeata Anas discors Anas crecca Anas acuta Canada goose white ibis wood stork

Appendix V-04. (cont.)

Appendix V-04. (cont.)

1(7)	2(5)								
(2)	6 (4)	3 (5)	4(5)	5 (6)	6(6)	7(6)	(1) a	0(2)	10 (6)
	6 (4)	212)		6		(8)			() ()
	(4)		4		×	9	19	4	80
ring-necked duck Aythya collaris canvasback Aythya walisineria lesser scaup Aythya affinis ruddy duck			(3)			(2)	(2)	(3)	(2)
Aythya collaris canvasback	×						×		
canvasback Avthva valisineria lesser scaup Aythva affinis ruddy duck									
Avthva valisineria lesser scaup Avthva affinis ruddy duck	×								
lesser scaup Aythya affinis ruddy duck									
Avilya affinis ruddy duck	×								
ruddy duck									
ordado ramar axas xo	×								
hooded merganser			1		2				
Lophodytes cucullatus			(1)		(1)				
Lurkey vulture	7	23	6	8	14	15	11	٥	8
ura (2)	(1)	(5)	(2)	(9)	(2)	(2)	(9)	(2)	(2)
black vulture			9	3		29	19	12	11
Cradyps atratus			(1)	(1)		(3)	(2	ģ	(0)
white-tailed kite						2			
Elanus leucurus						(2)			
Mississippi kite						-	×		
Ictinia misisippiensis						(1)			(1)
sharp-shinned hawk		1	2		×	1	-	×	
Accipiter striatus		(1)	(2)			(1)	(1)		
Cooper's hawk		×				×	-	×	
Accipiter cooperii						-	(2)	!	
red-tailed hawk	1	2	2	2	^		2	~	-
Buteo jamaicensis (4)	(3)	(2)	(2)	(3)	(e.	<u></u>	(4)	(1)	(2)

10 (5) 2 (**4**) (1) ı j (9) (T)9(7) × in parentheses) 2 (1) (1) ~ 6 (3) (1) (3) 8(7) 4 (5) (2) (1) \widehat{z} (4) 7(6) × (4) (3) (2) (1) censuses (9)9 18 5 (6) (2) (2) 1<u>5</u> ¥ O (1) (1) (3) (1) 4(5) ~ (no Transect Number 3(5) (4) (1)21) (2) 2) × × 2 (5) ا (× × × × 1(7) 30 r (î (1) (1) (1)Ealiaetus leucocephalus Porphyrula martinica common gallinule virginianus Jallinula chloropus Buteo platypterns Swainson's hawk Randion haliaetus red-shouldered hawk Falco sparverius Falco peregrinus Porzana carolina perple gallinule rough-legged hawk broad-winged hawk Buteo swainsoni Buteo lineatus Species peregrine falcon Circus cyaneus American kestrel Buted lagopus bald eagle marsh hawk Colinus sera rail bobwhite Osprey

Appendix V-04. (cont.)

Appendix V-04. (cont.)

	T	Transect	Number	(no.	of cen	Censuses	in par	Darentheses	(50	
Species	1(7)	2(5)	3(5)	4(5)	2 (6)	(9)9	7(6)	8(7)	9(7)	10 (S)
American coot	-	×						15		
Fulica americana								(3)		
semipalmated plover			×							
Charadrius semipalmatus										
piping plover			×							
charadrius melodus										
killdeer	3	1	2	F	~	-	2.2	-		
Charadrius vociferus	(4)	(1)	(3)	(3)	(4)	(5)	(2)	*7	٦ <u>(</u>	
golden plover			×							
Pluvialis dominica			:							
American woodcock			-		-					
Philyhola minor		-	(3)		· C					
common snipe						-	7	13		
Capella qallinago						(1)	ĵ (ĵ	(3)		
whimbrel			×							i
Numenius phaeopus										
upland sandpiper	2		×				×			
Bartramia longicauda	(I)				,		:			
spotted sandpiper	-		×						,	
Actitis macularia	(1)								¢ 	
solitary sandpiper	1		1	×			,	4		
<u>Tringa solitaria</u>	(1)		(1)	!			•	(4)		
greater yellowlegs			×			2	-			
Tringa melanoleucus						(1)	<u>.</u> (1)			
)			×							
SARTABLE SELLE						-				

10 (5) (1)9(7) censuses in parentheses) 8(7) × 7(6) (9)9 5 (6) 3 of (1) Transect Number (no. 4(5) × × × 3(5) × × × × × × × × × × × × 2(5) (1) 1(7) Catoptrophorus semipalmatus Limnodromus scolopaceus Tryngites subruficollis Micropalama himantopus buff-breasted sandpiper white-rumped sandpiper semipalmated sandpiper Calidris fuscicollis long-billed dowitcher Steganopus tricolor ring-billed gull Calidris melanotos Larus delawarensis Calidris minutilla Limosa haemastica Wilson's phalarope Calidris pusillus pectoral sandpiper Calidris bairdii least sandpiper Baird's sandpiper Calidris alpina Species Hudsonian godwit stilt sandpiper dunlin willet

Appendix V-04. (cont.)

Appendix V-04. (cont.)

	Ē	Transect	Number	(no.	of cen	censuses	in par	parentheses)	e a)	
	1 (7)	2(5)	3(5)	4(5)	5 (6)	6(6)	7(6)	(6)8	0 (7)	10 (5)
Species		/2/-					6			C A
Franklin's gull	14	1	4	20						
Larus pipixcan	(2)	(1)	(1)	(1)						
Caspian tern									×	
Hydroprogne caspia										
			×							
Chlidonias niger										
mourning dove	14	4	5	4	45	7	12	25		2
Zenaida macroura	(7)	(1)	(4)	(3)	(9)	(4)	(4)	(2)		(1)
yellow-billed cuckoo			4	2		5		-	4	9
Coccyzus americanus			(1)	(1)	1	(1)		(1)	(2)	(1)
roadrunner				×				×		
Geococyx californianus										
barn owl						Ţ	×			
Tyto alba						(1)				
screech owl				1	ī					
Otus asio				(1)	(1)					
great horned owl	×		1	2	1		×			
Bubo virginianus			(2)	(1)	(1)					
barred owl	2	1	4	4	4	2	2	٣	5	2
Strix varia	(2)	(1)	(3)	(2)	(1)	(3)	(2)	(2)	(2)	(4)
chuck-will's-widow	×			×						
Caprimulqus carolinensis										
common nighthawk			2	×			3			
Chordeiles minor			(1)				(1)			
chimney swift	32	17	15	1	14		8	65	9	4
Chaetura pelagica	(4)	(2)	(2)	(1)	(3)		(1)	(4)	(1)	(2)

-

10 (5) (2) (3) (2) (2) 3 (4) Ξ œ 4 9(7) (4) (2) (4) 7 (T)7 × α censuses in parentheses) 8(7) 18 (6) (2) (2) 9 (5 7 6 (3) (9) 2 2 σ 4 (9) 7(6) 22 (4) (1) (2) (3) 1 9 × 13 × (9)9 (1) (9) (4) 25 (4) 2 (6) (T) (4) (4) (1) 5 10 × m of رت م 4(5) Transect Number (no. (3) (5) (2) (3) (5) Ξ 5 28 3(5) 7 22 10 (2) 3 8 ~ G (4) 12 3) (3) × 2 (5) (4) (5) (2) (5) 3 7 × 14 × 1(7) (2) 3 (2) (2) (1) 1 (9) 3 (1)(2)(2) Melanerpes erythrocephalus black-chinned hummingbird ruby-throated hummingbird yellow-bellied sapsucker adder-backed woodpecker Dendrocopos pubescens alexandri scalaris red-bellied woodpecker Dendrocopos villosus red-headed woodpecker Tyrannus verticalis Dryocopus pileatus Sphyrapicus varius Centurus carolinus Tyrannus tyrannus Lileated woodpecker Megaceryle alcyon Colaptes auratus belted kingfisher Species downy woodpecker hairy woodpecker eastern kingbird western kingbird common flicker Dendrocopos Archilochus Archilochus

Appendix V-04. (cont.)

10 (5) (3) (1) (2) (1) (1) $\overline{\mathbf{C}}$ 4 בן 9(7) 13 3 (1) (4) (2) × 72 in parentheses) 8(7) (3) 10 (1)4) 14 7(6) (1)(4) (1) censuses **(**() رَ م (1) (2) 3 × 2 (6) 4 (2) 3 (1) (2) 3 of 4(5) (1)5 (1) Transect Number (no. (1) 3(5) 24 (2) 7 (1) (1) 1 1 1 2 2 (1) Ξ (2) 7 8 ~ × 2(5) (1) (1) (1)(1) × φ 1(7) Ξ (2) (2) (2)(2) (1) (1) scissor-tailed flycatcher yellow-bellied flycatcher great crested flycatcher Empidonax flaviventris Nuttallornis borealis Pyrocephalus rubinus Eremophila alpestris olive-sided flycatcher Muscivora forficata Empidonax virescens vermillion flycatcher Iridoprocne bicolor Mylarchus crinitus Empidonax traillii Empidonax minimus eastern wood pewee acadian flycatcher Savornis phoebe willow flycatcher Contopus virens Riparia riparia Species least flycatcher eastern phoebe bank swallow cree swallow horned lark

The second

Appendix V-04. (cont.)

THE THE PERSON AND IN CO.

10 (5) (2) 4 (2) (2) (5) (5)(2) (5) (1) (5) ø 29 70 (3) (1) (9) (7) (7) 9(7) <u>ت</u> 2 (7) (3) censuses in parentheses) (7)(7 (3) (2) 65 P (7) 9 8(7) (7) (7) × 26 20 39 (3) (1) (4) (9) (9) (1)3) £ 2 £ (1) (2)(9) 7(6) 25 (1)(9) (1) (1) (3) (9) (9) (1)7 (1) (9) (9)9 16 6 72 2 (6) 3 3 (1) (2) (1) 2 (3) 24 (6) 6 (9) o f (1) (3) (2) (2) (2) رج (2 (3) (5) (1)Θ 4(5) 36 34 Transect Number (no. 3(5) ٦ (٤ (3) (2) (2) 202 39 (1) (2) ر ع (2) 120 2(5) (3) 2 (2) 30 (2) (3) × × × × 1(7) (2) 7 8 5) (7) (7) (2) (7) 7 (2) (7) 31 38 14 Stelgidoptervx ruficollis Petrochelidon pyrrhonota iroglody es troglodytes Corvus brachvrhvnchos Parus bicolor white-breasted nuthatch Cyanocitta cristata Certhia familiaris Parus carolinensis tufted titmouse Sitta carolinensis rough-winged swallow aedon Carolina chickadee Bewick's wren Luryomanes bewickii Hirundo rustica Species Progne subis Troglodytes purple martin brown creeper wellswallow barn swallow winter wren common crow house wren blue jay

Aggendix V-04. (cont.)

10 (5) 34 (5) (2) (4) (7) (2) (3) (2) 65 m 9(7) 35 9 (5) (2) (4) (3) (4) (3) ω parentheses) 21(7) Ξ (9) 8 (7) (5) (1)(7) (2) (2) 2 6 3 2 340 (2)20 33 (6) (9) (1)(2) (4) (2) 7(6) 10 (2) (2) ဖ ZZIcensuses in (4) (9)9 (6) (S) (4) 9 2 (5)(1) (4) 9 2 (6) 16 (6) 6) (3) 1 (1) 5) (1) 9 (3) S Ļ o f (1)8 (5) (3) (2) (2) 4(5) 8 (1) (4) (2) Transect Number (no. 89 18 α 4 3(5) ه (4) ń E 8 (2) (4) (3) (1) 9 9 8 (1) (1) 183 ဖ 2 2(5) 25 (4) (1) (4) (1) (7) (2) 74 9 1(7) (4) 9 (7) (4) (2) m (E) ₂ س (2) (2)× 14 4 Thryothorus ludovicianus long-billed marsh wren Dumetella carolinensis Telmatodytes palustris short-billed marsh wren Cistothorus platensis Polioptila caerulea golden-crowned kinglet Sialia sialis blue-gray gnatcatcher Turdus migratorius Catharus mustelina Mimus polvalottos Catharus ustulata Catharus guttata Toxostoma rufum Regulus satrapa Species eastern bluebird brown thrasher hermit thrush Carolina wren gray catbird mockingbird wood thrush Swainson's robin

Appendix V-04. (cont.)

10 (5) 11 6 (1) 2 5 (1) 24 2 (4) 9(7) (1) (9) (2) (3) (3) 26 σ in parentheses) 8 (7) 26 12 (2) (4) 3 8 (3) (4) (3) 8 (1) 14 33 7(6) (1) 32 4 ~ (I (2) (2) 3 ဖ censuses (9)9 16 (2) 9 (2 (2) 9 (3) 2 (6) **-** [25 T (T) 64) ~ © 140 (1) o f 22 (4) (5)(1) (1)4(5) 7 (1) (no. (2)575 × Transect Number 3(5) 19 (1) æ (£) (1) (1) 7 E (2) (2)× × 2(5) 32 68 (1) (1) 8 6 2 (1) 2 (2) × 1(7) 11 (1)(4) (1) (2) (3) (9) (2) Vireo philadelphicus Bombycilla cedrorum Lanius ludovicianus yellow-throated vireo s white warbler ruby-crowned kinglet Mniotilta variata Segulus calendula Anthus spinoletta Vireo olivaceus Philadelphia vireo Sturnus vulgaris Vireo solitarius Anthus spragueii Vireo flavifrons loggerhead shrike Species white-eyed vireo Sprague's pipit Vireo griseus solitary vireo warbling vireo red-eyed vireo Vireo gilvus cedar waxwing water pipit Larling

Appendix V-04. (cont.)

Appendix V-04. (cont.)

Prothonotary warbler Protonotary warbler Swainson's warbler Limnothlypis swainson; worm-eating warbler Limnothlypis swainson; worm-eating warbler Helmitheros vermivorus blue-winged warbler Vermivora peregrina Vermivora peregrina Vermivora celata Vermivora celata Vermivora ruficapilla Vermivora ruficapilla Vermivora ruficapilla Vermivora ruficapilla Vermivora ruficapilla	2 (5)	3(5)	4(5)	5 (6)	6 (6)	7(6) 2 (1) 2	8(7)	(1)6	(5) OT
2 S S (1) (2) (2) (3) (3) (3) (1) (4) (3) (3) (1) (4) (2) (1) (1) (2) (3) (2) (1) (3) (2) (4) (3) (4) (4) (5) (6) (7) (7) (7) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9	5 (1)	(1)	3 3 (1)			(1)			
1.1 S.2 (2) (1) (1) (1) (1) (1) (2) (2) (1) (2) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(1)	1 (1)	3 (1)			$\binom{1}{2}$	9	12	٣
2 5 (2) (1) ((2) (3) (2) (1) ((2) (1) ((2) (1) ((2) (1) ((2) (1) ((2) (1) ((2) (1) ((2) (1) ((2) (2) (1) ((2) (2) (1) ((2) (2) (1) ((2) (2) (2) (1) ((2) (2) (2) (2) (2) (2) (2) (2) (2) ((1)	1 (1)	3 (1)			2	(2)	(3)	(2)
2 5 (1) ((2) (1) ((3) (2) (1) ((2) (1) ((2) (1) ((2) (1) ((2) (1) ((2) (1) ((2) (1) ((2) (1) ((2) (2) (1) ((2) (2) (1) ((2) (2) (2) (1) ((2) (2) (2) ((2) (5 (1)	(1)	3 (1)				2	3	2
2 5 (1) (4 (3) (2) (1) (2) (1) (4 (2) (1) (4) (4) (4) (5) (4) (4) (5) (5) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	5 (1)	(1)	3 (1)			(1)	(1)	(2)	(2)
2 5 (2) (1) (4 (3) (2) (1) (2) (1) (4 (2) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	5 (1)	13.5	3					-	7
2 5 (2) (1) (4 (3) (1) (35 19 (2) (1) (5 (1)	2 (1)	3 (1)					(2)	(1)
2 5 (2) (1) (4 (3) (1) (35 19 (2) (1) (5 (1)	7 (1)	3 (1)						7
2 5 (2) (1) (4 (3) (1) (35 19 (2) (1) ((1)	(1)	(1)						(1)
(2) (1) (4 4 (3) (3) (1) (2) (1) (4)	(1)	Î,	3	1		1	9	12	13
(3) (35 19 (2) (1) (-				(1)	(1)	Ξ	(1)
(3) (35 19 ((2) (1) (-	-	4	4	2	4
35 19 (2) (1)		(2)		(1)	(1)	(4)	(4)	(3)	(3)
(2) (1)	19	3	-	6		1			
	(1)	(1)	(1)	(1)		(1)			
•		1				21	20	39	8
Parula americana (1) (1)		(1)				(2)	(3)	<u>4</u>	(3)
	2		2						
chia (1) ((1)		(1)						
		-	1						-
gnolia		(1)	(1)						(1)
4 4	24	15	9	8	24	24	54	18	13
(4) (5)	(5)	(3)	(2)	(2)	(4)	(4)	(4)	(9)	(3)
black-throated green warbler 2								7	
								(2)	
Carulean warbler Dendroica cerulea									2
#3-55		_							\exists

(5) 10 (5) (3) (1) (1) S 9(7) (1) (2) (3) 4 (2) ٥ (2 × censuses in parentheses) (1) 8(7) (1) 3 (2) 2 (3) [1] (5) 2 (2) 7(6) (1) 7 (9)9 (1) (1) 9 (6) ot (no. 4(5) (1) 3 3 Transect Number 3(5) (1) (1) (2) (1) 2(5) (7)2 (1) 1(7) 2 (1 (1) e (E) 6 (1) Dendroica pensylvanica Seiurus noveboracensis yellow-throated warbler chestnut-sided warbler Seiurus aurocapillus Louisiana waterthrush Dendroica dominica northern waterthrush bay-breasted warbler Dendroica castanea Opprornis formosus Geothlypis trichas yellow-breasted chat common yellowthroat Seiurus motacilla Wilsonia citrina Wilsonia ousilla Dendroica pinus blackburnian warbler Dendroica fusca Species Kentucky warbler Icteria virens hooded warbler Wilson's warbler pine warbler

Aggendix V-04. (cont.)

10 (5) (1) Ξ (1) 9 (3) 36 9(7) (1) (1) (1) ر کی 12 parentheses) 8(7) 5 (2) (1) <u>(3</u> 290 × × 7(6) (1) (1) 35 240 × censuses 2315 (5) (9)9 125 (6) . (1) 20 5 (6) 1000 (4) 80 (9) (1) × 4 o. 4(5) 1750 m (T) (2) (no. × Transect Number 3(5) (1) 6 4 (1) (1)4 🕄 (1) × × × 33 2(5) 210 (5) (1) 6 2 × × × 1(7) (1) 3 (4) 4 (36 (2) 18 (3) Kanthocephalus xanthocephalu Euchagus cyanocephalus yellow-headed blackbird Dolichonyx oryzivorus Setophaga ruticilla Wilsonia canadensis Agelaius phoeniceus great-tailed grackle Sturnella neglecta Euphagus carolinus Brewer's blackbird Cassidix maxicanus Passer domesticus bobolink redwinged blackbird eastern meadowlark Western meadowlark American redstart Icterus spurius Species Icterus galbula Baltimore oriole rusty blackbird orchard oriole Canada warbler house sparrow

Appendix V-04. (cont.)

10 (5) 3 3 20 (3) 3 2 5 82 13 10 (3) 9(7) 13 (2) 24 (1) 3 78 in parentheses 8(7) 16 (4) (T)(1) 64 (7) 3 (2) (1) (2) 7(6) (1) 73 (3) (1) 3 (1) $\widehat{\boldsymbol{z}}$ (1) (4) 400 (9) 2 censuses (9)9 (1) (6) 535 (6) 53 (1) (7) (1) 9 8 36 350 2 (6) 6 (4) 2 (1) (3) (2) 3 (3) 44 48 (6) of 4(5) (no. (1) 195 ۳ (آ 22 (5) 13 (2) (2) (4) (2) (2) 108 103 Transect Number 3(5) (1) 25 (2) 3 45 75 (3) (3) (1) 75 (1) (1) σ 2(5) (3) (4) (3) (4) 89 (3) 155 19 14 × 1(7) 3 6 65 (6) 73 9 (2) (2) 5 (1) (3) 13 Hesperiphona vespertina Cardinalic cardinalis Carpodacus purpureus pine siskin brown-headed cowbird Ouiscalus quiscula Piranga olivacea summer tanager Passerina cyanea painted bunting Spinus pinus American goldfinch Guiraca caerulea Spiza americana evening grosbeak Species Passerina ciris Molothrus ater scarlet tanager tristis Piranga rubra common grackle indigo bunting blue grosbeak purple finch dickcissel Spinus -- 1inal

Appendix V-04 (cont.)

10 (5) £ 3 3 7 (1) (7) (4) ਰ Ś 4 9(7) 9 6 × × censuses in parentheses) 8(7) (3) 72 3 9 (2 (5) × 11 ~ 7(6) m (5) (1) (4) 20 (E) (4) 20 × (9)9 12 (4) (3) 15 ₂ س 7 6 7 9 (2 5 (6) 22 (6) (1) 71 (3) (3) (1) (5) 36 7 3 **4** € (2) 4 80 ~ 2 of (no. 4(5) $\widehat{\mathbf{I}}$ (1) ° (5) (2) r (I 12 (2) (1) **5**8 ဖ × Transect Number 3(5) 7 6 (3) 7 [] × × × × 2(5) ∞ (4 (3) × × × × × 27 1(7) (1) 33 æ (ĉ (3) (2) × × 44 × 4 Passerculus sandwichensis Pipilo erythrophthalmus leucophrys Ammodramus savannarum Chondestes grammacus Ammodramus henslowii Ammospiza leconteii Pooecetes gramineus Zonotrichia querula white-crowned sparrow Spizella passerina clay-colored sparrow slate-colored junco ufous-sided towhee grasshopper sparrow Spizella pusilla Spizella pallida Henslow's sparrow LeConte's sparrow Species Junco hvemalis wornah sparrow chipping sparrow Harris' sparrow resper sparrow Zonotrichia field sparrow lark sparrow

Appendix V-04. (cont.)

7. c 31x 9-04. (cont.)

	Ę.	Transect	Number	(no.	of cen	censuses	in par	Parenthese	es)	
Species	1(7)	2 (5)	3(5)	4 (5)	5 (6)	(9)9	7 (6)	8 (7)	6(7)	10 (5)
white-throated sparrow	48	153	32	254	49	20	173	16	335	276
Z notrichia albicollis	(4)	(5)	(3)	(3)	(6)	(5)	(6)	(7)	(9)	(4)
for spectow Passerella iliaca	18	1 (2)	21	10	1 (3)	20	16	1	3	3
Lincoln's sparrow	10	11	4	5	2	5	4	2		4
Melospiza lincolnii	(4)	(4)	(2)	(2)	(3)	(3)	(2)	(1)		5 6
swamp sparrow Welospiza georgiana		1 (1)				24	1 (6 (11
song sparrow	32	1	9	-	1,1	35	(5)	10,		3
elospize melodia	(3)	(3)	(2)	(2)		£ ((4)	, §		7 (2)
Saith's longspur					140	•				
Total of Maximum Individuals	1451	1251	1606	3787	2170	4145	1881	2316	1238	2095
Total Species All Censuses	101	70	101	97	8.1	81	105	120	98	101
Species Diversity ²	5.4	4.5	š. 1	3.3	3.6	2.8	4.7	5.2	4.9	4.2

Cotal Trinity River Census Species: 196 (plus 31 non-census species= 227)

1 to "X" to find the species was observed at that particular locality but not during a rogular census. 2 Computed using the Shannon-Wiener function(see text) and the maximum individual totals in

Appendix V-05 Creel Census - Trinity River Survey

Date:		Time:		
Male: Female:			urs fished	
Type of gear:		Type of bait	(s)	
No. of fishermen in party		Trinity Proj	ect Station No	
Temperature: Air:		Water:	erreity/Consistents	
Kind of fishing: Shore:	Boat:	Trolli	ng: Castin	g <u>:</u>
	Other	<u>:</u>		
Water Condition:				
	List of	Fishes Caught		
Game Fi shes			Est. Wt. (Range)	Remarks
1. Largemouth Black Bass				
2. Spotted Bass				
3. Bluegill				
4. Black Crappie				
5. White Crappie				
6. White Bass		<u></u>		
7. Channel Catfish				-
8. Blue Catfish				
9. Other (specify)				
Rough Fishes				
10. Black Bullhead Catfish				
11. Yellow Bullhead Catfish				
12. Flathead Catfish				
13. Carp				
14. Smallmouth Buffalo				
15. Freshwater Drum				
16. Spotted Gar				
17. Longnose Gar				
18. Alligator Gar				
19. Other (specify)				

Appendix V-06 Fisheries Research Data Sheet

	Coll. No.
State or Country:	Locality:
County:	Orainage:
Water:	
Vegetation:	
1	
Bottom:	Temp: Air:
Shore:	Current:
Distance from shore:	Tide:
Depth of capture:	Depth of water:
Method of capture:	
	Date:
Orig. preserv.:	Time:
Turbidity (Jackson Turbidity Units):	
pH:	Conductivity (mhos):

COMMENTS:

Appendix V-07

FAMILY, SCIENTIFIC, AND COMMON NAMES OF FISHES REPORTED FROM THE TRINITY RIVER DRAINAGE SYSTEM

Petromyzontidae

Ichthyomyzoi gagei - southern brook lamprey

Carcharhinidae

Carcharhinus leucas - bull shark

Dasyatidae

Dasyatis sabina - Atlantic stingray

Acipenseridae

Scaphirhynchus platorynchus - shovelnose sturgeon

Polyodontidae

Polyodon spithula - paddlefish

Lepisosteidae

Lepisosteus oculatus - spotted gar
Lepisosteus osseus - longnose gar
Lepisosteus platostomus - shortnose gar
Lepisosteus spatula - alligator gar
L. spatula × (presumably) L. osseus - hybrid gar

Amiidae

Amia calva - bowfin

Elopidae

Elops saurus - ladyfish

Anguillidae

Anguilla rostrata - American eel

Ophichthidae

Myrophis punctatus - speckled worm eel

Clupeidae

Alosa chrysochloris - skipjack herring
Brevoortia patronus - Gulf menhaden
Brevoortia ginteri - finescale menhaden
Dorosoma cepedianum - gizzard shad
Dorosoma petenense - threadfin shad

Engraulidae

Anchoa mitchilli - bay anchovy

Isocidae

Esox america us vermiculatus - grass pickerel

THE PERSON NAMED IN

Characidae

Astyanax mexicanus - Mexican tetra

Cyprinidae

Campostoma anomalum - stoneroller Carassius auratus - goldfish Cyp: inus carpio - carp Hybognathus placitus - plains minnow Hybognathus nuchalis - western silvery minnow Note migonus crysoleucas - golden shiner Notropis amnis - pallid shiner Notropis atherinoides - emerald shiner Notropis atrocaudalis - blackspot shiner Notropis buchanani - ghost shiner Notropis fumeus - ribbon shiner Notropis lutrensis - red shiner Notropis potteri - chub shiner Not ppis sabinae - Sabine shiner Not: pis shumardi - silverband shiner Notropis stramineus - sand shiner Notropis texanus - weed shiner Notropis umbratilis - redfin shiner Notropis venustus - blacktail shiner Notropis volucellus - mimic shiner N. Jutrensis x N. venustus - red x blacktail shiner hybrid Opsopoedus emilae - pugnose minnow Phenacobius mirabilis - suckermouth minnow

Phenacobius mirabilis - suckermouth minnow Pimephales promelas - fathead minnow Pimephales vigilax - bullhead minnow Semotilus atromaculatus - creek chub

Catostomidae

Carpiodes carpio - river carpsucker

Erimyzon oblongus - western creek chubsucker

Erimyzon sucetta - western lake chubsucker

Ictiobus bubalus - smallmouth buffalo

Ictiobus niger - black buffalo

Minytrema melanops - spotted sucker

Moxostoma congestum - gray redhorse

Moxostoma poecilurum - blacktail redhorse

Ictaluridae

Ictalurus furcatus - blue catfish

Ictalurus melas - black bullhead catfish

Ictalurus natalis - yellow bullhead catfish

Ictalurus punctatus - channel catfish

Notirus gyrinus - tadpole madtom

Notirus nocturnus - freckled madtom

Notirus flavus - stonecat

Pylo ictis olivaris - flathead catfish

Ariidae

Arius felis - sea catfish

Aphredoderidae

Aphredoderus sayanus - pirate perch

Belonidae

Strongylura marina - Atlantic needlefish

Cyprinodontidae

Cyprinodon variegatus - sheepshead minnow
Fundulus chrysotus - golden topminnow
Fundulus grandis - Gulf killifish
Fundulus kansae - plains killifish
Fundulus nottii - starhead topminnow
Fundulus jenkinsi - saltmarsh topminnow
Fundulus pulvereus - bayou killifish
Fundulus notatus - blacksjripe topminnow
Fundulus olivaeeus - blackspotted topminnow
Adinia xenica - diamond killifish
Lucania parva - rainwater killifish

Poeciliidae

Gambusia affinis - western mosquitofish Poecilia latipinna - sailfin molly

Atherinidae

Labidesthes sicculus - brook silverside

Membras martinica - rough silverside

Menidia audens - Mississippi silverside

Menidia beryllina - tidewater silverside

Syngnathidae

Syngnathus scovelli - Gulf pipefish

Percichthyidae

Morone chrysops - white bass
Morone saxatilis - striped bass
Morone mississippiensis - yellow bass

Centrarchidae

Centrarchus macropterus - flier
Chaenobryttus gulosus - warmouth
Ambloplites rupestris - rock bass
Lepomis auritus - redbreast sunfish
Lepomis cyanellus - green sunfish
Lepomis humilis - orangespotted sunfish
Lepomis macrochirus - bluegill
Lepomis marginatus - dollar sunfish
Lepomis megalotis - longear sunfish
Lepomis microlophus - redear sunfish

Lepomis punctatus - spotted sunfish
Lepomis symmetricus - bantam sunfish
L. cyanellus x L. macrochirus - green x bluegill
sunfish hybrid

L. cyanellus x L. microlophus - green x redear sunfish hybrid

Micropterus punctulatus - spotted bass Micropterus salmoides - largemouth bass Pomoxis annularis - white crappie Pomoxis nigromaculatus - black crappie

Elassomatidae

Elassoma zonatum - banded pygmy sunfish

Percidae

Stizostedion vitreum - walleye

Ammocrypta vivax - scaly sand darter

Etheostoma chlorosomum - bluntnose darter

Etheostoma gracile - slough darter

Etheostoma parvipinne - goldstripe darter

Etheostoma proeliare - cypress darter

Etheostoma spectabile - orangethroat darter

Percina caprodes - logperch

Percina sciera - dusky darter

Sparidae

<u>Lagodon rhomboides</u> - pinfish <u>Archosargus probatocephalus</u> - sheepshead

Sciaenidae

Aplodinotus grunniens - freshwater drum
Cynoscion arenarius - sand seatrout
Cynoscion nebulosus - spotted seatrout
Leiostomus xanthurus - spot
Micropogon undulatus - Atlantic croaker
Pogonias cromis - black drum
Sciaenops ocellata - red drum

Cichlidae

<u>Tilapia mossambica</u> - Mozambique mouthbrooder

Mugilidae

Agonostomus monticola - mountain mullet

Mugil cephalus - striped mullet

Mugil curema - white mullet

Eleotridae

Dormitator maculatus - fat sleeper

Gobiidae

Gobionellus boleosoma - derter goby Gobionellus shufeldii - freshwater goby Gobiosoma bosci - naked goby Bothidae

Citharichthys spilopterus - bay whiff Paralichthys lethostigma - southern flounder

Soleidae

<u>Achirus lineatus</u> - lines sole <u>Trinectes maculatus</u> - hogchoker

Cynoglossidae

Symphurus plagiusa - blackcheek tonguefish