Social Choice

Social Choice

Joseph Chuang-Chieh Lin

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2024

Outline

- Introduction to Social Choice
- Peer-Grading in MOOCs
 - Preliminaries
 - Correctness of Recovered Pairwise Rankings
 - Proofs

The Setting of Social Choice

Take voting scheme for example.

- A set O of outcomes (i.e., alternatives, candidates, etc.)
- The social choice function: a mapping from the profiles of the preferences to a particular outcome.

Outcomes & preferences

Preferences

- A binary relation > such that
 - for every $a, b \in O$, $a \neq b$, we have either $a \succ b$ or $b \succ a$ but NOT both.
 - for $a, b, c \in O$, if $a \succ b$ and $b \succ c$, then we have $a \succ c$.
- <u>►</u> can be defined similarly.
 - ≺: ¬≻

Agents with preferences

- E.g., five agents (voters).
- Each agent has its preference over four candidates $\{a, b, c, d\}$.

Agents with preferences

- E.g., three agents (voters).
- Each agent has its preference over four candidates $\{a, b, c, d\}$.

v_1	v_2		v_3
d	b		а
b	С		b
а	а	-	С
С	d		d

Plurality rule \Rightarrow a

 Plurality rule: each agent can only give score 1 to the most preferred one and 0 to the others.

Plurality rule (contd.)

• Plurality rule: each agent can only give score 1 to the most preferred one and 0 to the others.

Plurality rule (contd.)

• Plurality rule:

Plurality rule (contd.)

• Plurality rule: depending on the tie-breaking rule.

- Condorcet rule:
 - a vs. b
 - a vs. c
 - a vs. d

- Condorcet rule:
 - a vs. $b \rightarrow b$
 - a vs. $c \rightarrow a$
 - a vs. $d \rightarrow a$

- c vs. a
- o c vs. b
- o c vs. d

- Condorcet rule:
 - c vs. $a \rightarrow a$
 - c vs. $b \rightarrow b$
 - c vs. $d \rightarrow c$

- Condorcet rule:
 - b vs. a
 - b vs. c
 - b vs. d

- Condorcet rule:
 - b vs. $a \rightarrow b$
 - b vs. $c \rightarrow b$
 - b vs. $d \rightarrow b$

- Condorcet rule: b
 - b vs. $a \rightarrow b$
 - b vs. $c \rightarrow b$
 - b vs. $d \rightarrow b$

Borda rule

• Borda count rule:

Borda rule

Borda count rule:

- score of a: 1+1+3=5.
- score of *b*: 2+3+2=7.
- score of c: 0+2+1=3.
- score of d: 3+0+0=3.

Borda rule

- Borda count rule: b.
 - score of a: 1+1+3=5.
 - score of *b*: 2+3+2=7.
 - score of c: 0+2+1=3.
 - score of d: 3+0+0=3.

• Who is the winner by Borda counting?

• Who is the winner by Borda counting? a: 6, b: 7, c: 2.

- Who is the winner by Borda counting? a: 6, b: 7, c: 2.
- Condorcet principle follows?

- Who is the winner by Borda counting? a: 6, b: 7, c: 2.
- Condorcet principle follows? $a \succ b$, $a \succ c$.

- Who is the winner by Borda counting? a: 6, b: 7, c: 2.
- Condorcet principle follows? $a \succ b$, $a \succ c$.
- Who is the winner under the plurality rule?

- Who is the winner by Borda counting? a: 6, b: 7, c: 2.
- Condorcet principle follows? $a \succ b$, $a \succ c$.
- Who is the winner under the plurality rule? a.

• Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$:

• Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$:

• Successive elimination with ordering $\not a \to \not b \to c \to d$:

• Successive elimination with ordering $\not a \to \not b \to \not c \to d$:

• Successive elimination with ordering $\not a \to \not b \to \not c \to d$: $\not d$

- Successive elimination with ordering $\not a \to \not b \to \not c \to d$: $\not d$
 - The issue: all of the agents prefer b to d!

- Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$: d
- Successive elimination with ordering $a \rightarrow c \rightarrow b \rightarrow d$:

- Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$:
- Successive elimination with ordering $a \rightarrow c \rightarrow b \rightarrow d$: **b**

Successive elimination (sensitive to the agenda order)

- Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$:
- Successive elimination with ordering $a \rightarrow c \rightarrow b \rightarrow d$:
- Successive elimination with ordering $b \rightarrow c \rightarrow a \rightarrow d$:

Successive elimination (sensitive to the agenda order)

- Successive elimination with ordering $a \rightarrow b \rightarrow c \rightarrow d$:
- Successive elimination with ordering $a \rightarrow c \rightarrow b \rightarrow d$:
- Successive elimination with ordering $b \rightarrow c \rightarrow a \rightarrow d$:

- Let's say we have 1,000 agents each of which has a preference over three candidates A, B, C.
 - 499 agents for $A \succ B \succ C$.
 - 3 agents for $B \succ C \succ A$.
 - 498 agents for $C \succ B \succ A$.
- Who is the Condorcet winner?

- Let's say we have 1,000 agents each of which has a preference over three candidates A, B, C.
 - 499 agents for $A \succ B \succ C$.
 - 3 agents for $B \succ C \succ A$.
 - 498 agents for $C \succ B \succ A$.
- Who is the Condorcet winner? B.

- Let's say we have 1,000 agents each of which has a preference over three candidates A, B, C.
 - 499 agents for $A \succ B \succ C$.
 - 3 agents for $B \succ C \succ A$.
 - 498 agents for $C \succ B \succ A$.
- Who is the Condorcet winner? B.
- Who is the winner under the plurality rule?

- Let's say we have 1,000 agents each of which has a preference over three candidates A, B, C.
 - 499 agents for $A \succ B \succ C$.
 - 3 agents for $B \succ C \succ A$.
 - 498 agents for $C \succ B \succ A$.
- Who is the Condorcet winner? B.
- Who is the winner under the plurality rule? A.

Exercise

On Borda Count & Condorcet

We have five voters with the following preferences (ordering) over the outcomes A, B, C, and D.

- $B \succ C \succ A \succ D$.
- $B \succ D \succ C \succ A$.
- $D \succ C \succ A \succ B$.
- $A \succ D \succ B \succ C$.
- $A \succ D \succ C \succ B$.

Who is the winner by the Borda Count rule?

Who is the Condorcet winner?

Social Choice Peer-Grading in MOOCs

Let's consider a practical application in MOOCs.

- MOOCs: Massive Online Open Courses
 - e.g., Coursera, EdX.

- MOOCs: Massive Online Open Courses
 - e.g., Coursera, EdX.
- Outscourcing the grading task to the students.

- MOOCs: Massive Online Open Courses
 - e.g., Coursera, EdX.
- Outscourcing the grading task to the students.
- They may have incentives to assign LOW scores to everybody else.

- MOOCs: Massive Online Open Courses
 - e.g., Coursera, EdX.
- Outscourcing the grading task to the students.
- They may have incentives to assign LOW scores to everybody else.
 - ▶ Ask each student to grade a SMALL number of her peers' assignments.

- MOOCs: Massive Online Open Courses
 - e.g., Coursera, EdX.
- Outscourcing the grading task to the students.
- They may have incentives to assign LOW scores to everybody else.
 - ▷ Ask each student to grade a SMALL number of her peers' assignments.
 - Then merge individual rankings into a global one.

Terminologies

- A: universe of n elements (students).
- (n, k)-grading scheme: a collection \mathcal{B} of size-k subsets (bundles) of \mathcal{A} , such that each element of \mathcal{A} belongs to exactly k subsets of \mathcal{B} .
- The bundle graph:
 Represent the (n, k)-grading scheme with a bipartite graph.
- \prec_b : a ranking of the element b contains (partial order).

The aggregation rule

An aggregation rule: profile of partial rankings \rightarrow complete ranking of all elements.

Borda:

• a: 14; b: 12; c: 4; d: 6; e: 9.

 $a \prec b \prec e \prec d \prec c$.

Order-revealing grading scheme

An aggregation rule in peer grading (Borda):

Alice: 9; Bob: 8; Curry: 5; David: 5; Elvis: 3.
 Alice ≺ Bob ≺ Curry ≺ David ≺ Elvis.

Assumption (perfect grading)

Each student grades the assignments in her bundle consistently to the ground truth.

Order-revealing grading scheme (contd.)

• Alice: 9; Bob: 8; Curry: 8; David: 5; Elvis: 4; Frank: 6; Green: 5; Henry: 3.

Alice \prec Bob \prec Curry \prec Frank \prec David \prec Green \prec Elvis \prec Henry.

Order-revealing grading scheme (contd.)

• Alice: 9; Bob: 8; Curry: 8; David: 5; Elvis: 4; Frank: 6; Green: 5; Henry: 3.

Alice \prec Bob \prec Curry \prec Frank \prec David \prec Green \prec Elvis \prec Henry.

The bundle graph

The bundle graph:

The bundle graph

The bundle graph:

• A random *k*-regular graph:

A complete bipartite $K_{n,n} \to \text{removing edges } \{v,v\}, \ \forall v \to \text{repeat}$

"draw a perfect matching uniformly at random among all perfect matchings of the remaining graph"

for k times.

The limitation on the order revealing scheme

• The property of revealing the ground truth for certain:

$$\forall x, y \in \mathcal{A}, \exists B \in \mathcal{B} \text{ such that } x, y \in B.$$

The limitation on the order revealing scheme

• The property of revealing the ground truth for certain:

$$\forall x, y \in \mathcal{A}, \ \exists B \in \mathcal{B} \text{ such that } x, y \in B.$$

- Suppose NO bundle contains both $x, y \in A$.
- Let \prec , \prec' be two complete rankings.
 - x, y are in the first two positions in \prec , \prec' ;
 - \prec and \prec' differs only in the order of x and y.
- Clearly, partial rankings within the bundles are identical in both cases.
- No way to identify whether \prec or \prec' is the ground truth.

The limitation on the order revealing scheme

• The property of revealing the ground truth for certain:

$$\forall x, y \in \mathcal{A}, \exists B \in \mathcal{B} \text{ such that } x, y \in B.$$

- Suppose NO bundle contains both $x, y \in A$.
- Let \prec , \prec' be two complete rankings.
 - x, y are in the first two positions in \prec, \prec' ;
 - \prec and \prec' differs only in the order of x and y.
- Clearly, partial rankings within the bundles are identical in both cases.
- No way to identify whether \prec or \prec' is the ground truth.
- To reveal the ground truth with certainty: $k = \Omega(\sqrt{n})$.
 - $n \cdot \binom{k}{2} \geq \binom{n}{2}$.

Seeking for approximate order-revealing grading schemes

- Use a bundle graph with a very low degree k (independent of n).
- Randomly permute the elements by $\pi: U \to \mathcal{A}$ before associating them to the nodes of U of the bundle graph.
- Aiming at $\frac{\text{\#correctly recovered pairwise relations}}{\binom{n}{2}}$.

The main result

Theorem (Caragiannis, Krimpas, Voudouris@AAMAS'15)

When

- Borda is applied as the aggregation rule, and
- all the partial rankings are consistent to the ground truth, then the expected fraction of correctly recovered pairwise relations is $1 O(1/\sqrt{k})$.

Social Choice
Peer-Grading in MOOCs
Correctness of Recovered Pairwise Rankings

Question

• What will happen if we assign for each student only two assignments and each assignment is graded by exactly two students?

About who grading both u and v

• $\lambda_{u,v} := |N(u) \cap N(v)|$, for $u, v \in U$. • $\sum_{v \in U \setminus \{u\}} \lambda_{u,v} = k(k-1)$.

$$\bullet \sum_{v \in U \setminus \{u\}} \lambda_{u,v} = k(k-1).$$

- $W_{r,q}$: the r.v. denoting $B(a_r) B(a_q)$ for r < q, $a_r, a_q \in A$.
- $\Gamma^{r,q}_{u,v}$: the event that $\pi(u) = a_r$, $\pi(v) = a_q$.

$$C := \sum_{r=1}^{n-1} \sum_{q=r+1}^{n} \mathbf{E}[\mathbb{1}\{W_{r,q} > 0\}] = \sum_{r=1}^{n-1} \sum_{q=r+1}^{n} \Pr[W_{r,q} > 0]$$

- $W_{r,q}$: the r.v. denoting $B(a_r) B(a_q)$ for r < q, $a_r, a_q \in A$.
- $\Gamma^{r,q}_{u,v}$: the event that $\pi(u) = a_r$, $\pi(v) = a_q$.

$$C := \sum_{r=1}^{n-1} \sum_{q=r+1}^{n} \mathbf{E}[\mathbb{1}\{W_{r,q} > 0\}] = \sum_{r=1}^{n-1} \sum_{q=r+1}^{n} \Pr[W_{r,q} > 0]$$
$$= \sum_{r=1}^{n-1} \sum_{q=r+1}^{n} \left(1 - \sum_{u,v \in U} \Pr[W_{r,q} \le 0 \mid \Gamma_{u,v}^{r,q}] \cdot \Pr[\Gamma_{u,v}^{r,q}]\right)$$

- $W_{r,q}$: the r.v. denoting $B(a_r) B(a_q)$ for r < q, $a_r, a_q \in A$.
- $\Gamma^{r,q}_{u,v}$: the event that $\pi(u) = a_r$, $\pi(v) = a_q$.

$$C := \sum_{r=1}^{n-1} \sum_{q=r+1}^{n} \mathbf{E}[\mathbb{1}\{W_{r,q} > 0\}] = \sum_{r=1}^{n-1} \sum_{q=r+1}^{n} \Pr[W_{r,q} > 0]$$

$$= \sum_{r=1}^{n-1} \sum_{q=r+1}^{n} \left(1 - \sum_{u,v \in U} \Pr[W_{r,q} \le 0 \mid \Gamma_{u,v}^{r,q}] \cdot \Pr[\Gamma_{u,v}^{r,q}]\right)$$

$$= \sum_{r=1}^{n-1} \sum_{q=r+1}^{n} \left(1 - \frac{1}{n(n-1)} \sum_{u,v \in U} \Pr[W_{r,q} \le 0 \mid \Gamma_{u,v}^{r,q}]\right)$$

- $W_{r,q}$: the r.v. denoting $B(a_r) B(a_q)$ for r < q, $a_r, a_q \in A$.
- $\Gamma^{r,q}_{u,v}$: the event that $\pi(u) = a_r$, $\pi(v) = a_q$.

$$C := \sum_{r=1}^{n-1} \sum_{q=r+1}^{n} \mathbb{E}[\mathbb{1}\{W_{r,q} > 0\}] = \sum_{r=1}^{n-1} \sum_{q=r+1}^{n} \Pr[W_{r,q} > 0]$$

$$= \sum_{r=1}^{n-1} \sum_{q=r+1}^{n} \left(1 - \sum_{u,v \in U} \Pr[W_{r,q} \le 0 \mid \Gamma_{u,v}^{r,q}] \cdot \Pr[\Gamma_{u,v}^{r,q}]\right)$$

$$= \sum_{r=1}^{n-1} \sum_{q=r+1}^{n} \left(1 - \frac{1}{n(n-1)} \sum_{u,v \in U} \Pr[W_{r,q} \le 0 \mid \Gamma_{u,v}^{r,q}]\right)$$

- Given $\Gamma_{\mu,\nu}^{r,q}$
 - the expected Borda score of a_r is $k + (k(k-1) \lambda_{u,v}) \cdot \frac{n-r-1}{n-2} + \lambda_{u,v}$.
 - the expected Borda score of a_q is $k + (k(k-1) \lambda_{u,v}) \cdot \frac{n-q}{n-2}$.
- Thus

$$\mathbf{E}[W_{r,q} \mid \Gamma_{u,v}^{r,q}] = (k(k-1) - \lambda_{u,v}) \frac{q-r-1}{n-2} + \lambda_{u,v}.$$

- Given $\Gamma_{\mu,\nu}^{r,q}$
 - the expected Borda score of a_r is $k + (k(k-1) \lambda_{u,v}) \cdot \frac{n-r-1}{n-2} + \lambda_{u,v}$.
 - the expected Borda score of a_q is $k + (k(k-1) \lambda_{u,v}) \cdot \frac{n-q}{n-2}$.
- Thus

$$\mathbf{E}[W_{r,q} \mid \Gamma_{u,v}^{r,q}] = (k(k-1) - \lambda_{u,v}) \frac{q-r-1}{n-2} + \lambda_{u,v}.$$

Why?

Calculate the Borda score from another point of view

- Element a_r gets one point for each bundle it belongs to;
 - plus one additional point for each appearance of an element with rank higher > r in the bundles a_r belongs to.

- In the bundles of containing a_r :
 - $\lambda_{u,v}$ appearances of a_q in the bundles of a_r .
 - $k(k-1) \lambda_{u,v}$ appearances of elements different than a_r, a_q .
 - Each of them has prob. $\frac{n-r-1}{n-2}$ to have rank higher than r.

- In the bundles of containing ar:
 - $\lambda_{u,v}$ appearances of a_q in the bundles of a_r .
 - $k(k-1) \lambda_{u,v}$ appearances of elements different than a_r, a_q .
 - Each of them has prob. $\frac{n-r-1}{n-2}$ to have rank higher than r.

•
$$\mathbf{E}[B(a_r) \mid \Gamma_{u,v}^{r,q}] = k + (k(k-1) - \lambda_{u,v}) \frac{n-r-1}{n-2} + \lambda_{u,v}.$$

- In the bundles of containing ar:
 - $\lambda_{u,v}$ appearances of a_q in the bundles of a_r .
 - $k(k-1) \lambda_{u,v}$ appearances of elements different than a_r, a_q .
 - Each of them has prob. $\frac{n-r-1}{n-2}$ to have rank higher than r.
- $\mathbf{E}[B(a_r) \mid \Gamma_{u,v}^{r,q}] = k + (k(k-1) \lambda_{u,v}) \frac{n-r-1}{n-2} + \lambda_{u,v}$.
- In the bundles of containing aq:
 - $\lambda_{u,v}$ appearances of a_q in the bundles of a_r .
 - $k(k-1) \lambda_{u,v}$ appearances of elements different than a_r, a_q .
 - Each of them has prob. $\frac{n-q}{n-2}$ to have rank higher than q.

<□ > <□ > < □ > < □ > < □

- In the bundles of containing a_r:
 - $\lambda_{u,v}$ appearances of a_q in the bundles of a_r .
 - $k(k-1) \lambda_{u,v}$ appearances of elements different than a_r, a_q .
 - Each of them has prob. $\frac{n-r-1}{n-2}$ to have rank higher than r.
- $\mathbf{E}[B(a_r) \mid \Gamma_{u,v}^{r,q}] = k + (k(k-1) \lambda_{u,v}) \frac{n-r-1}{n-2} + \lambda_{u,v}$
- In the bundles of containing aq:
 - $\lambda_{u,v}$ appearances of a_q in the bundles of a_r .
 - $k(k-1) \lambda_{u,v}$ appearances of elements different than a_r, a_q .
 - Each of them has prob. $\frac{n-q}{n-2}$ to have rank higher than q.

•
$$\mathbf{E}[B(a_q) \mid \Gamma_{u,v}^{r,q}] = k + (k(k-1) - \lambda_{u,v}) \frac{n-q}{n-2}.$$

$$a_1 \qquad a_r \qquad a_q \qquad a_r$$

Dealing with dependencies

Goal:
$$Pr[W_{r,q} \leq 0 \mid \Gamma_{u,v}^{r,q}]$$

- Given $\Gamma_{u,v}^{r,q}$, define $S = N(N(u) \cup N(v)) \setminus \{u,v\}$.
- $o: [|S|] \to S$ denotes an arbitrary ordering of nodes of S.
- X_i : the random variable denoting the rank of the element $\pi(o(i))$.
- Define the Doob martingale $Z_0, Z_1, \ldots, Z_{|S|}$ such that
 - $\bullet \ Z_0 = \mathbf{E}[W_{r,q} \mid \Gamma_{u,v}^{r,q}];$
 - $\bullet \ \ Z_i = \mathbf{E}[W_{r,q} \mid \Gamma_{u,v}^{r,q}, X_1, \ldots, X_i].$
- Hence, $W_{r,q} \mid \Gamma_{u,v}^{r,q} = Z_{|S|}$.

Martingale

Martingale

A sequence of random variables Z_0, Z_1, \ldots, Z_m is a martingale w.r.t. a sequence of random variables X_1, X_2, \ldots, X_m if $\forall i = 1, \ldots, m$,

$$\mathbf{E}[Z_i \mid X_1, \dots, X_{i-1}] = Z_{i-1}.$$

Doob martingale (Joseph L. Doob (1910–2004))

- W: a random variable
- X_1, \ldots, X_m : a sequence of m random variables.

The sequence Z_0, Z_1, \ldots, Z_m such that

- $Z_0 = E[W];$
- $Z_i = \mathbf{E}[W \mid X_1, \dots, X_i], \ \forall i = 1, \dots, m$

is called a Doob martingale.

Azuma-Hoeffding inequality

Azuma-Hoeffding inequality

Let Z_0, Z_1, \ldots, Z_m be a martingale with $Z_i - Z_{i-1} \le c_i$ for $i = 1, \ldots, m$. Then, for all t > 0,

$$\Pr[Z_m - Z_0 \le -t] \le \exp\left(-\frac{t^2}{2\sum_{i=1}^m c_i^2}\right).$$

Dealing with dependencies (contd.)

- Given $\Gamma_{u,v}^{r,q}$, define $S = N(N(u) \cup N(v)) \setminus \{u,v\}$.
- $o: [|S|] \mapsto S$ denotes an arbitrary ordering of nodes of S.
- X_i : the random variable denoting the rank of the element $\pi(o(i))$.
- ullet Define the Doob martingale $Z_0, Z_1, \ldots, Z_{|S|}$ such that
 - $Z_0 = \mathbf{E}[W_{r,q} \mid \Gamma_{u,v}^{r,q}];$
 - $\bullet \ \ Z_i = \mathbf{E}[W_{r,q} \mid \Gamma_{u,v}^{r,q}, X_1, \ldots, X_i].$
- Hence, $W_{r,q} \mid \Gamma_{u,v}^{r,q} = Z_{|S|}$.

Lemma 8

$$\forall i \in \{1, 2, \dots, |S|\}$$
, it holds that $|Z_i - Z_{i-1}| \leq 2(\lambda_{u,o(i)} + \lambda_{v,o(i)})$.

Lemma 3

For every k-regular bipartite graph G,

$$\theta_{u,v} = 4 \sum_{z \in (N(u) \cup N(v)) \setminus \{u,v\}} (\lambda_{u,z} + \lambda_{v,z})^2 \le 8k(k-1)(4k-3).$$

《ロ》(節)(意》(意) 意

• Set $t = \mathbf{E}[W_{r,q} \mid \Gamma_{u,v}^{r,q}] \ (= Z_0)$, by the Azuma-Hoeffding inequality:

$$\begin{aligned} \Pr[Z_{|S|} - Z_0 \le -t] &= \Pr[W_{r,q} \le 0 \mid \Gamma_{u,v}^{r,q}] \\ &\le \exp\left(-\frac{t^2}{2\sum_{i=1}^m c_i^2}\right) \\ &= \exp\left(-\frac{\mathbf{E}[W_{r,q} \mid \Gamma_{u,v}^{r,q}]^2}{2\theta_{u,v}}\right). \end{aligned}$$

Proofs

Back to the computation of C

$$C = \sum_{r=1}^{n-1} \sum_{q=r+1}^{n} \left(1 - \frac{1}{n(n-1)} \sum_{u,v \in U} \Pr[W_{r,q} \le 0 \mid \Gamma_{u,v}^{r,q}] \right)$$

$$\geq \sum_{r=1}^{n-1} \sum_{q=r+1}^{n} \left(1 - \frac{1}{n(n-1)} \sum_{u,v \in U} \exp\left(-\frac{\mathbf{E}[W_{r,q} \mid \Gamma_{u,v}^{r,q}]^{2}}{2\theta_{u,v}} \right) \right)$$

$$= \sum_{r=1}^{n-1} \sum_{q=r+1}^{n} \left(1 - \frac{1}{n(n-1)} \sum_{u,v \in U} e^{-(\beta(u,v) \cdot y(q-r) + \delta(u,v))^{2}} \right)$$

$$= \frac{n(n-1)}{2} - \frac{1}{n(n-1)} \sum_{u,v \in U} \sum_{d=1}^{n-1} (n-d) e^{-(\beta(u,v) \cdot y(d) + \delta(u,v))^{2}}$$

$$\geq \frac{n(n-1)}{2} - \sum_{u,v \in U} \int_{0}^{1} (1-y) e^{-(\beta(u,v) \cdot y + \delta(u,v))^{2}} dy$$

$$C \geq \frac{n(n-1)}{2} - \sum_{u,v \in U} \int_{0}^{1} (1-y)e^{-(\beta(u,v)\cdot y + \delta(u,v))^{2}} dy$$

$$\geq \frac{n(n-1)}{2} - \sum_{u,v \in U} \frac{\beta(u,v) + \delta(u,v)}{2\beta(u,v)^{2}} \sqrt{\pi}$$

$$\geq \frac{n(n-1)}{2} - \frac{k-1}{k(k-2)^{2}} \sqrt{\frac{\pi}{2}} \sum_{u,v \in U} \sqrt{\theta_{u,v}}$$

$$\geq \frac{n(n-1)}{2} \left(1 - \frac{48\sqrt{2\pi}}{\sqrt{k}}\right).$$

Claim 9

Let $\beta > 0$, $\delta \ge 0$, then $\int_0^1 (1-y) \mathrm{e}^{-(\beta y + \delta)^2} dy \le \frac{\beta + \delta}{2\beta^2} \sqrt{\pi}.$

• $k \ge 3$ (assumption).

Proof of Lemma 8

Recall:

- Given $\Gamma_{u,v}^{r,q}$, define $S = N(N(u) \cup N(v)) \setminus \{u,v\}$.
- $o: [|S|] \to S$ denotes an arbitrary ordering of nodes of S.
- X_i : the random variable denoting the rank of the element $\pi(o(i))$.
- ullet Define the Doob martingale $Z_0, Z_1, \ldots, Z_{|S|}$ such that

 - $\bullet \ \ Z_i = \mathbf{E}[W_{r,q} \mid \Gamma_{u,v}^{r,q}, X_1, \ldots, X_i].$
- $\bullet \ \ \mathsf{Hence}, \ W_{r,q} \mid \Gamma_{u,v}^{r,q} = Z_{|S|}.$

Lemma 8

$$\forall i \in \{1,2,\ldots,|S|\} \text{, it holds that } |Z_i-Z_{i-1}| \leq 2\big(\lambda_{u,o(i)}+\lambda_{v,o(i)}\big).$$

 $\bullet \ \mu_{u,v,w} = |N(u) \cap N(v) \cap N(w)|.$

• The Borda score difference $W_{r,q}$ (conditioned on $\Gamma_{u,v}^{r,q}$):

- The Borda score difference $W_{r,q}$ (conditioned on $\Gamma_{u,v}^{r,q}$):
 - increases for each appearance of a_q in the same bundle with a_r ;
 - increases for each appearance of $\pi(o(j))$ in a bundle containing a_r but NOT a_q provided that $r < \operatorname{rank}(\pi(o(j))) < q$;
 - increases for each appearance of $\pi(o(j))$ in a bundle containing BOTH a_r, a_q provided that $r < \operatorname{rank}(\pi(o(j))) < q$;
 - decreases for each appearance of $\pi(o(j))$ in a bundle containing a_q but NOT a_r provided that $\operatorname{rank}(\pi(o(j))) > q$.

$$W_{r,q} =$$

- The Borda score difference $W_{r,q}$ (conditioned on $\Gamma_{u,v}^{r,q}$):
 - increases for each appearance of a_q in the same bundle with a_r ;
 - increases for each appearance of $\pi(o(j))$ in a bundle containing a_r but NOT a_q provided that $r < \operatorname{rank}(\pi(o(j))) < q$;
 - increases for each appearance of $\pi(o(j))$ in a bundle containing BOTH a_r, a_q provided that $r < \operatorname{rank}(\pi(o(j))) < q$;
 - decreases for each appearance of $\pi(o(j))$ in a bundle containing a_q but NOT a_r provided that $\operatorname{rank}(\pi(o(j))) > q$.

$$W_{r,q} = \lambda_{u,v}$$

- The Borda score difference $W_{r,q}$ (conditioned on $\Gamma_{u,v}^{r,q}$):
 - increases for each appearance of a_q in the same bundle with a_r ;
 - increases for each appearance of $\pi(o(j))$ in a bundle containing a_r but NOT a_q provided that $r < \operatorname{rank}(\pi(o(j))) < q$;
 - increases for each appearance of $\pi(o(j))$ in a bundle containing BOTH a_r, a_q provided that $r < \operatorname{rank}(\pi(o(j))) < q$;
 - decreases for each appearance of $\pi(o(j))$ in a bundle containing a_q but NOT a_r provided that $\operatorname{rank}(\pi(o(j))) > q$.

$$W_{r,q} = \lambda_{u,v} + \sum_{j=1}^{|S|} (\lambda_{u,o(j)} - \mu_{u,v,o(j)}) \cdot \mathbb{I}\left\{X_j > r\right\}$$

- The Borda score difference $W_{r,q}$ (conditioned on $\Gamma_{u,v}^{r,q}$):
 - increases for each appearance of a_q in the same bundle with a_r ;
 - increases for each appearance of $\pi(o(j))$ in a bundle containing a_r but NOT a_a provided that $r < \text{rank}(\pi(o(j))) < q$;
 - increases for each appearance of $\pi(o(i))$ in a bundle containing BOTH a_r , a_q provided that $r < \operatorname{rank}(\pi(o(i))) < q$;
 - decreases for each appearance of $\pi(o(j))$ in a bundle containing a_q but NOT a_r provided that $rank(\pi(o(j))) > q$.

$$W_{r,q} = \lambda_{u,v} + \sum_{j=1}^{|S|} (\lambda_{u,o(j)} - \mu_{u,v,o(j)}) \cdot \mathbb{1}\{X_j > r\} + \sum_{j=1}^{|S|} \mu_{u,v,o(j)} \cdot \mathbb{1}\{r < X_j < q\}$$

Proofs

- The Borda score difference $W_{r,q}$ (conditioned on $\Gamma_{u,v}^{r,q}$):
 - increases for each appearance of a_q in the same bundle with a_r ;
 - increases for each appearance of $\pi(o(j))$ in a bundle containing a_r but NOT a_q provided that $r < \operatorname{rank}(\pi(o(j))) < q$;
 - increases for each appearance of $\pi(o(j))$ in a bundle containing BOTH a_r, a_q provided that $r < \operatorname{rank}(\pi(o(j))) < q$;
 - decreases for each appearance of $\pi(o(j))$ in a bundle containing a_q but NOT a_r provided that $\operatorname{rank}(\pi(o(j))) > q$.

$$W_{r,q} = \lambda_{u,v} + \sum_{j=1}^{|S|} (\lambda_{u,o(j)} - \mu_{u,v,o(j)}) \cdot \mathbb{1}\{X_j > r\} + \sum_{j=1}^{|S|} \mu_{u,v,o(j)} \cdot \mathbb{1}\{r < X_j < q\}$$

$$- \sum_{j=1}^{|S|} (\lambda_{v,o(j)} \cdot \mathbb{1}\{X_j > r\} - \lambda_{v,o(j)} \cdot \mathbb{1}\{X_j > q\})$$

- The Borda score difference $W_{r,q}$ (conditioned on $\Gamma_{u,v}^{r,q}$):
 - increases for each appearance of a_q in the same bundle with a_r ;
 - increases for each appearance of $\pi(o(j))$ in a bundle containing a_r but NOT a_q provided that $r < \operatorname{rank}(\pi(o(j))) < q$;
 - increases for each appearance of $\pi(o(j))$ in a bundle containing BOTH a_r, a_q provided that $r < \operatorname{rank}(\pi(o(j))) < q$;
 - decreases for each appearance of $\pi(o(j))$ in a bundle containing a_q but NOT a_r provided that $\operatorname{rank}(\pi(o(j))) > q$.

$$W_{r,q} = \lambda_{u,v} + \sum_{j=1}^{|S|} (\lambda_{u,o(j)} - \mu_{u,v,o(j)}) \cdot \mathbb{1} \{X_j > r\} + \sum_{j=1}^{|S|} \mu_{u,v,o(j)} \cdot \mathbb{1} \{r < X_j < q\}$$

$$- \sum_{j=1}^{|S|} (\lambda_{v,o(j)} \cdot \mathbb{1} \{X_j > r\} - \lambda_{v,o(j)} \cdot \mathbb{1} \{X_j > q\})$$

$$= \lambda_{u,v} + \sum_{j=1}^{|S|} (\lambda_{u,o(j)} \cdot \mathbb{1} \{X_j > r\} - \lambda_{v,o(j)} \cdot \mathbb{1} \{X_j > q\}).$$

$$W_{r,q} = \lambda_{u,v} + \sum_{j=1}^{|S|} (\lambda_{u,o(j)} \cdot \mathbb{I} \{X_j > r\} - \lambda_{v,o(j)} \cdot \mathbb{I} \{X_j > q\})$$

$$Z_i - Z_{i-1} = \mathbf{E}[W_{r,q} \mid \Gamma_{u,v}^{r,q}, X_1, \dots, X_i] - \mathbf{E}[W_{r,q} \mid \Gamma_{u,v}^{r,q}, X_1, \dots, X_{i-1}]$$

$$= \sum_{j=i}^{|S|} \lambda_{u,o(j)} \left(\Pr[X_j > r \mid X_1, \dots, X_i] - \Pr[X_j > r \mid X_1, \dots, X_{i-1}] \right) - \sum_{j=i}^{|S|} \lambda_{v,o(j)} \left(\Pr[X_j > q \mid X_1, \dots, X_i] - \Pr[X_j > q \mid X_1, \dots, X_{i-1}] \right).$$

$$Z_{i} - Z_{i-1} = \mathbf{E}[W_{r,q} \mid \Gamma_{u,v}^{r,q}, X_{1}, \dots, X_{i}] - \mathbf{E}[W_{r,q} \mid \Gamma_{u,v}^{r,q}, X_{1}, \dots, X_{i-1}]$$

$$= \sum_{j=i}^{|S|} \lambda_{u,o(j)} \left(\Pr[X_{j} > r \mid X_{1}, \dots, X_{i}] - \Pr[X_{j} > r \mid X_{1}, \dots, X_{i-1}] \right) - \sum_{j=i}^{|S|} \lambda_{v,o(j)} \left(\Pr[X_{j} > q \mid X_{1}, \dots, X_{i}] - \Pr[X_{j} > q \mid X_{1}, \dots, X_{i-1}] \right).$$

Note that:

$$Pr[X_j > r \mid X_1, \dots, X_{i-1}] = \frac{x+y}{n-i-1}, \qquad Pr[X_j > q \mid X_1, \dots, X_{i-1}] = \frac{y}{n-i-1} \quad (i \le j \le |S|)$$

$$Pr[X_j > r \mid X_1, \dots, X_i] = \frac{x+y-1\{X_i > r\}}{n-i-2}, \quad Pr[X_j > q \mid X_1, \dots, X_i] = \frac{y-1\{X_i > q\}}{n-i-2} \quad (i+1 \le j \le |S|)$$

- x: # available ranks from $[n] \setminus \{r, q, X_1, \dots, X_{i-1}\}$ that are between r and q;
- y: # available ranks from $[n] \setminus \{r, q, X_1, \dots, X_{i-1}\}$ that are > q.

$$Z_{i} - Z_{i-1} = \lambda_{u,o(i)} \left(\mathbb{1}\{X_{i} > r\} - \frac{x+y}{n-i-1} \right) - \lambda_{v,o(j)} \left(\mathbb{1}\{X_{i} > q\} - \frac{y}{n-i-1} \right)$$

$$+ \sum_{j=i+1}^{|S|} \lambda_{u,o(j)} \left(\frac{x+y-\mathbb{1}\{X_{i} > r\}}{n-i-2} - \frac{x+y}{n-i-1} \right)$$

$$+ \sum_{j=i+1}^{|S|} \lambda_{v,o(j)} \left(\frac{y-\mathbb{1}\{X_{i} > q\}}{n-i-2} - \frac{y}{n-i-1} \right)$$

Note that:

$$\begin{aligned} & \Pr[X_j > r \mid X_1, \dots, X_{i-1}] = \frac{x+y}{n-i-1}, & \Pr[X_j > q \mid X_1, \dots, X_{i-1}] = \frac{y}{n-i-1} & (i \le j \le |S|) \\ & \Pr[X_j > r \mid X_1, \dots, X_i] = \frac{x+y-1\{X_i > r\}}{n-i-2}, & \Pr[X_j > q \mid X_1, \dots, X_i] = \frac{y-1\{X_i > q\}}{n-i-2} & (i+1 \le j \le |S|) \end{aligned}$$

- x: # available ranks from $[n] \setminus \{r, q, X_1, \dots, X_{i-1}\}$ that are between r and q;
- y: # available ranks from $[n] \setminus \{r, q, X_1, \dots, X_{i-1}\}$ that are > q.

$$Z_{i} - Z_{i-1} = \lambda_{u,o(i)} \left(\mathbb{1}\{X_{i} > r\} - \frac{x+y}{n-i-1} \right) - \lambda_{v,o(j)} \left(\mathbb{1}\{X_{i} > q\} - \frac{y}{n-i-1} \right)$$

$$+ \sum_{j=i+1}^{|S|} \lambda_{u,o(j)} \left(\frac{x+y-\mathbb{1}\{X_{i} > r\}}{n-i-2} - \frac{x+y}{n-i-1} \right)$$

$$+ \sum_{j=i+1}^{|S|} \lambda_{v,o(j)} \left(\frac{y-\mathbb{1}\{X_{i} > q\}}{n-i-2} - \frac{y}{n-i-1} \right)$$

Note that:

$$\begin{aligned} & \Pr[X_j > r \mid X_1, \dots, X_{i-1}] = \frac{x+y}{n-i-1}, & \Pr[X_j > q \mid X_1, \dots, X_{i-1}] = \frac{y}{n-i-1} & (i \le j \le |S|) \\ & \Pr[X_j > r \mid X_1, \dots, X_i] = \frac{x+y-1\{X_i > r\}}{n-i-2}, & \Pr[X_j > q \mid X_1, \dots, X_i] = \frac{y-1\{X_i > q\}}{n-i-2} & (i+1 \le j \le |S|) \end{aligned}$$

- x: # available ranks from $[n] \setminus \{r, q, X_1, \dots, X_{i-1}\}$ that are between r and q;
- y: # available ranks from $[n] \setminus \{r, q, X_1, \dots, X_{i-1}\}$ that are > q.

(Assume
$$n \ge 3k(k-1) + 2$$
; Note: $|S| \le 2k(k-1)$)

$$\begin{split} Z_{i} - Z_{i-1} &= \lambda_{u,o(i)} \left(\mathbb{1}\{X_{i} > r\} - \frac{x+y}{n-i-1} \right) - \lambda_{v,o(j)} \left(\mathbb{1}\{X_{i} > q\} - \frac{y}{n-i-1} \right) \\ &+ \sum_{j=i+1}^{|S|} \lambda_{u,o(j)} \left(\frac{x+y-\mathbb{1}\{X_{i} > r\}}{n-i-2} - \frac{x+y}{n-i-1} \right) \\ &+ \sum_{j=i+1}^{|S|} \lambda_{v,o(j)} \left(\frac{y-\mathbb{1}\{X_{i} > q\}}{n-i-2} - \frac{y}{n-i-1} \right) \\ &= \left(\lambda_{u,o(i)} - \frac{\sum_{j=i+1}^{|S|} \lambda_{u,o(j)}}{n-i-2} \right) \cdot \left(\mathbb{1}\{X_{i} > r\} - \frac{x+y}{n-i-1} \right) \\ &+ \left(\lambda_{v,o(i)} - \frac{\sum_{j=i+1}^{|S|} \lambda_{v,o(j)}}{n-i-2} \right) \cdot \left(\frac{y}{n-i-1} - \mathbb{1}\{X_{i} > q\} \right). \end{split}$$

Lemma 3

For every k-regular bipartite graph G,

$$\theta_{u,v} = 4 \sum_{z \in (N(u) \cup N(v)) \setminus \{u,v\}} (\lambda_{u,z} + \lambda_{v,z})^2 \le 8k(k-1)(4k-3).$$

- The edge contributes 2 to the quantity $\lambda_{u,z} + \lambda_{v,z}$.
 - $\lambda_{u,z} + \lambda_{v,z} \leq 2k$.
- The edge contributes $\leq (2k)^2 (2k-2)^2 = 8k-4$ to the quantity $(\lambda_{u,z} + \lambda_{v,z})^2$.
- There are $|N(u) \cap N(v)|(k-2)$ such edges.

<□ > < □ > < ≡ > <

Lemma 3

For every k-regular bipartite graph G,

$$\theta_{u,v} = 4 \sum_{z \in (N(u) \cup N(v)) \setminus \{u,v\}} (\lambda_{u,z} + \lambda_{v,z})^2 \le 8k(k-1)(4k-3).$$

- The edge contributes 1 to the quantity $\lambda_{u,z} + \lambda_{v,z}$.
 - $\lambda_{u,z} + \lambda_{v,z} \leq 2k 1$.
- The edge contributes $\leq (2k-1)^2 (2k-2)^2 = 4k-3$ to the quantity $(\lambda_{u,z} + \lambda_{v,z})^2$.
- There are $2(k |N(u) \cap N(v)|)(k 1)$ such edges.

< ロ > < 回 > < 豆 > < 豆 >

Social Choice
Peer-Grading in MOOCs
Proofs

Proof of the Gaussian integral (Claim 9)

$$\int_{0}^{1} (1-y)e^{-(\beta y+\delta)^{2}} dy = \underbrace{\int_{0}^{1} e^{-(\beta y+\delta)^{2}} dy}_{A} - \underbrace{\int_{0}^{1} ye^{-(\beta y+\delta)^{2}} dy}_{B}$$

• The error function:

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.$$

• The Gaussian integral:

$$\int_{-\infty}^{\infty} e^{-t^2} dt = \sqrt{\pi}.$$

$$\therefore \int_0^\infty e^{-t^2} dt = \frac{\sqrt{\pi}}{2} \quad \text{and} \quad \operatorname{erf}(x) \le \frac{2}{\sqrt{\pi}} \cdot \frac{\sqrt{\pi}}{2} = 1.$$

•
$$B = \int_0^1 y e^{-(\beta y + \delta)^2} dy$$
.

Let
$$v = \beta y + \delta$$
 \therefore $\begin{cases} dv = \beta dy \\ y = \frac{v - \delta}{\beta} \end{cases}$.

$$\therefore B = \frac{1}{\beta} \int_{\delta}^{\beta+\delta} \frac{v-\delta}{\beta} \cdot e^{-v^2} dv$$

$$= \frac{1}{\beta^2} \left(\int_{\delta}^{\beta+\delta} v \cdot e^{-v^2} dv - \delta \cdot \int_{\delta}^{\beta+\delta} e^{-v^2} dv \right)$$

$$= \frac{1}{2\beta^2} \int_{\delta}^{\beta+\delta} e^{-v^2} dv^2 - \frac{\delta}{\beta^2} \cdot \frac{\sqrt{\pi}}{2} \cdot \frac{2}{\sqrt{\pi}} \int_{\delta}^{\beta+\delta} e^{-v^2} dv$$

$$= \frac{1}{2\beta^2} \left(-e^{-(\beta+\delta)^2} + e^{-\delta^2} \right) - \frac{\delta\sqrt{\pi}}{2\beta^2} \left(\text{erf}(\beta+\delta) - \text{erf}(\delta) \right).$$

•
$$A = \int_0^1 e^{-(\beta y + \delta)^2} dy$$
.
Let $u = \beta y + \delta$: $du = \beta dy$.

$$\therefore A = \frac{1}{\beta} \int_{\delta}^{\beta+\delta} e^{-u^{2}} du$$

$$= \frac{\sqrt{\pi}}{2\beta} \cdot \frac{2}{\sqrt{\pi}} \left(\int_{0}^{\beta+\delta} e^{-u^{2}} du - \int_{0}^{\delta} e^{-u^{2}} du \right)$$

$$= \frac{\sqrt{\pi}}{2\beta} \left(\operatorname{erf}(\beta + \delta) - \operatorname{erf}(\delta) \right).$$

Thus

$$A - B = \frac{\beta + \delta}{2\beta^2} \sqrt{\pi} \left(\operatorname{erf}(\beta + \delta) - \operatorname{erf}(\delta) \right) + \frac{1}{2\beta^2} \left(e^{-(\beta + \delta)^2} - e^{-\delta^2} \right)$$

$$\leq \frac{\beta + \delta}{2\beta^2} \sqrt{\pi}.$$

