Chapitre 12

Fonctions de références

	Sommaire	
	Sommane	
1	Fonctions paraboles	1
	1.1 Fonction $x \mapsto ax^2$ où $a \neq 0$	1
	1.2 Fonction $x \mapsto ax^2 + b$ où $a \neq 0$ et $b \neq 0$	1
	1.3 Function $x \mapsto ax^2 + bx + c$ où $a \neq 0$	1
_		_
2	Fonctions hyperboles	2
	2.1 Fonction $x \mapsto \frac{a}{x}$ où $a \neq 0$	2
	2.2 Fonction $x \mapsto \frac{\tilde{a}}{x} + b$ où $a \neq 0$ et $b \neq 0$	2
	2.3 Fonction $x \mapsto \frac{ax+b}{cx+d}$ où $ad-bc \neq 0$	3
3	Exercices	3

Fonctions de références Mathématiques

1 Fonctions paraboles

1.1 Fonction $x \mapsto ax^2$ où $a \neq 0$

Propriétés

Soit f la fonction numérique définie par $f(x) = ax^2$, où a est un réel non nul, et (C_f) sa représentation graphique dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- La fonction f a pour domaine de définition $D_f = \mathbb{R}$ (f est une fonction polynôme).
- La fonction f est paire.
- Le tableau des variations de f dépend du signe de a:

Si a < 0, alors: $\begin{array}{|c|c|c|c|c|c|}
\hline
x & -\infty & 0 & +\infty \\
\hline
f & & & & & & & & & & \\
\hline
\end{array}$

• La courbe (C_f) de la fonction f est appelée «**parabole de sommet** O(0,0) **et d'axe** x=0 (l'axe des ordonnées)».

Exercice

Étudier et tracer les courbes des deux fonctions $f: x \mapsto 2x^2$ et $g: x \mapsto -\frac{2}{3}x^2$.

1.2 Fonction $x \mapsto ax^2 + b$ où $a \neq 0$ et $b \neq 0$

Propriétés

Soit f la fonction numérique définie par $f(x) = ax^2 + b$, où a et b sont des réels non nuls, et (C_f) sa représentation graphique dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- La fonction f a pour domaine de définition $D_f = \mathbb{R}$ (f est une fonction polynôme).
- \bullet La fonction f est paire.
- Le tableau des variations de f dépend du signe de a : Si a>0, alors :

• La courbe (C_f) de la fonction f est une parabole de sommet S(0,b) et d'axe x=0 (l'axe des ordonnées).

Exercice

Étudier et tracer les courbes des deux fonctions $f: x \mapsto 2x^2 - 3$ et $g: x \mapsto -\frac{2}{3}x^2 + 1$.

1.3 Fonction $x \mapsto ax^2 + bx + c$ où $a \neq 0$

Propriétés

Soit f la fonction numérique définie par $f(x) = ax^2 + b$, où a est un réel non nul, et (C_f) sa représentation graphique dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- La fonction f a pour domaine de définition $D_f = \mathbb{R}$ (f est une fonction polynôme).
- Pour tout x de D_f , on a $f(x) = a(x-\alpha)^2 + \beta$, où $\alpha = -\frac{b}{2a}$ et $\beta = f(\alpha)$.

Fonctions de références Mathématiques

ullet Le tableau des variations de f dépend du signe de a: Si a > 0, alors:

Si a < 0, alors:

• La courbe (C_f) de la fonction f est un parabole de sommet $S(\alpha, \beta)$ et d'axe $x = \alpha$.

Remarques

- L'écriture $a(x-\alpha)^2 + \beta$ est appelé «forme canonique» de l'expression $ax^2 + bx + c$.
- Il est à noter que $f\left(-\frac{b}{2a}\right) = \frac{b^2 4ac}{4a}$. Rappelons que le terme $b^2 4ac$, noté Δ , est le discriminant de l'expression $ax^2 + bx + c$.

Exercice

Étudier et tracer les courbes des deux fonctions $f: x \mapsto 2x^2 + 8x + 5$ et $g: x \mapsto -\frac{2}{3}x^2 + \frac{8}{3}x - \frac{5}{3}$.

2 Fonctions hyperboles

Fonction $x \mapsto \frac{a}{x}$ où $a \neq 0$ 2.1

Propriétés

Soit f la fonction numérique définie par $f(x) = \frac{a}{x}$, où a est un réel non nul, et (C_f) sa représentation graphique dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- La fonction f a pour domaine de définition $D_f = \{x \in \mathbb{R} \mid x \neq 0\} = \mathbb{R}^*$.
- La fonction f est impaire.
- Le tableau des variations de f dépend du signe de a: Si a > 0, alors:

• La courbe (C_f) de la fonction f est appelée «hyperbole de centre O(0,0) et d'asymptotes x=0et y = 0 (les axes du repère)».

Exercice

Étudier et tracer les courbes des deux fonctions $f: x \mapsto \frac{4}{x}$ et $g: x \mapsto -\frac{3}{2x}$.

Fonction $x \mapsto \frac{a}{x} + b$ où $a \neq 0$ et $b \neq 0$

Propriétés

Soit f la fonction numérique définie par $f(x) = \frac{a}{x} + b$, où a et b sont des réels non nuls, et (C_f) sa représentation graphique dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

• La fonction f a pour domaine de définition $D_f = \{x \in \mathbb{R} \mid x \neq 0\} = \mathbb{R}^*$.

Fonctions de références Mathématiques

Le tableau des variations de f dépend du signe de a:

> 0, alors .							
x	$-\infty$	0	$+\infty$				
f							

Si a < 0, alors:

x	$-\infty$	0	$+\infty$
f			

• La courbe (C_f) de la fonction f est un hyperbole de centre $\Omega(0,b)$ et d'asymptotes x=0 (l'axe des ordonnées) et x = b.

Étudier et tracer les courbes des deux fonctions $f: x \mapsto \frac{4}{x} - 1$ et $g: x \mapsto -\frac{3}{2x} + 2$.

Fonction $x \mapsto \frac{ax+b}{cx+d}$ où $ad-bc \neq 0$ 2.3

Propriétés

Soit f la fonction numérique définie par $f(x) = \frac{ax+b}{cx+d}$, où $ad-bc \neq 0$, et (C_f) sa représentation graphique dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

• La fonction f a pour domaine de définition $D_f = \{x \in \mathbb{R} \mid x \neq -\frac{d}{c}\} = \mathbb{R} \setminus \{-\frac{d}{c}\}.$ • Pour tout x de D_f , on a $f(x) = \alpha + \frac{\beta}{cx+d}$, où $\alpha = \frac{a}{c}$ et $\beta = -\frac{ad-bc}{c}$.

• Le tableau des variations de f dépend du signe de β : Si $\beta > 0$, alors:

Si $\beta < 0$, alors:

• La courbe (C_f) de la fonction f est un hyperbole de centre $\Omega\left(-\frac{d}{c},\alpha\right)$ et d'asymptotes $x=-\frac{d}{c}$ et $x = \alpha$.

Remarques

- L'écriture $\alpha + \frac{\beta}{cx+d}$ est appelé «forme réduite» de l'expression $\frac{ax+b}{cx+d}$.
- Rappelons que le terme ad bc est le déterminant $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ issue de l'expression $\frac{ax+b}{cx+d}$

Étudier et tracer les courbes des deux fonctions $f: x \mapsto \frac{-x+6}{x-2}$ et $g: x \mapsto -\frac{4x+1}{2x+2}$

3 Exercices

Soient f et g deux fonctions numériques définies par $f(x) = -x^2 + 4x$ et $g(x) = \frac{4x}{x-2}$, et (C_f) et (C_g) leurs représentations graphiques dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- 1. Déterminer D_f et D_g les domaines de définitions respectifs de f et de g.
- 2. Déterminer la nature de (C_f) et (C_g) .
- 3. Étudier les variations de f et g.

Fonctions de références Mathématiques

- 4. Déterminer l'intersection de (C_f) et les axes du repère.
- 5. Déterminer l'intersection de (C_g) et les axes du repère.
- 6. Tracer (C_f) et (C_q) .
- 7. Résoudre algébriquement l'équation f(x) = g(x).
- 8. Résoudre graphiquement l'inéquation $f(x) \ge g(x)$.
- 9. Résoudre graphiquement suivant les valeurs du réels m les équations f(x) = m et g(x) = m.

Exercice 2

Soit f la fonction définie par : $f(x) = \frac{3x-1}{2x-2}$.

Soit (C_f) sa courbe dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

- 1. Déterminer D l'ensemble de définition f, et montrer que : $f(x) = \frac{3}{2} + \frac{1}{x-1}$ pour tout x de D.
- 2. Déterminer les points d'intersections de (C_f) avec les axes du repère.
- 3. Étudier les variations de f sur $]1; +\infty[$ et $]-\infty; 1[$.
- 4. Construire (C_f) dans le repère $(O; \vec{i}, \vec{j})$.
- 5. Construire dans le même repère la courbe de la fonction g définie par : $g(x) = \frac{3|x|-1}{2|x|-2}$.

Exercice 3

On considère la fonction f définie par $f(x) = -x^2 + 2x + 3$.

- 1. (a) Déterminer les images des réels 0; 1; -1 et 2 par f.
 - (b) Déterminer les antécédents éventuels des réels 3; 0 et 5 par f.
- 2. Montrer que pour tout x de \mathbb{R} , on a $f(x) = 4 (x-1)^2$.
- 3. (a) Donner le tableau des variations de f.
 - (b) En utilisant la courbe de la fonction $x \mapsto -x^2$, et une translation, construire la courbe de f dans un repère orthonormé $(O; \vec{i}, \vec{j})$.
- 4. Soit h la fonction définie sur \mathbb{R} par $h(x) = -x^2 + 2|x| + 3$.
 - (a) Étudier la parité de la fonction h.
 - (b) Déduire des résultats précédents, la représentation graphique de h dans le repère $(O; \vec{i}, \vec{j})$.

Exercice 4

Soit f la fonction définie par $f(x) = \frac{2x+1}{x+1}$.

- 1. (a) Déterminer D_f le domaine de définition f.
 - (b) Calculer les images des réels 0; -2; $\frac{1}{2}$; -3 et 2 par f.
 - (c) Déterminer les antécédents éventuels des réels suivants (s'ils existent) 1; $\frac{1}{2}$; 5 et -1 par f.
- 2. (a) Montrer que pour tout x de D_f , on a $f(x) = 2 \frac{1}{x+1}$.
 - (b) En déduire le tableau des variations de f.
 - (c) À partir de la représentation graphique de la fonction $x \mapsto -\frac{1}{x}$, déduire la construction de la courbe de f dans un repère orthonormé $(O; \vec{i}, \vec{j})$.
- 3. Soit g la fonction définie par $g(x) = \left| \frac{2x+1}{x+1} \right|$.
 - (a) Déterminer D_q le domaine de définition de g.
 - (b) Construire, dans le repère $(O; \vec{i}, \vec{j})$, la courbe de g.

Exercice 5

Soit f la fonction définie par $f(x) = \frac{1}{4}x^2 + 2x$, et (C_f) sa courbe dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

- 1. Déterminer les abscisses des points d'intersection de la courbe (C_f) avec l'axe des abscisses.
- 2. Vérifier que pour tout x de \mathbb{R} , on a $f(x) = \frac{1}{4}(x+4)^2 4$.
- 3. Déterminer la monotonie de f sur les deux intervalles $]-\infty;-4]$ et $[-4;+\infty[$.
- 4. Construire la courbe (C_f) dans le repère (O; i, j).
- 5. Résoudre graphiquement l'inéquation f(x) > 0.

Fonctions de références Mathématiques

- 6. Déterminer graphiquement le nombre et le signe des solutions de l'équation f(x) = m. Discuter selon les valeurs du paramètre réel m.
- 7. Construire dans le même repère la courbe de la fonction g(x) = |f(x)|.

Exercice 6

Le plan est muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$.

On considère les fonctions f et g définies par $f(x) = -2x^2 + 4x - 1$ et $g(x) = \frac{x}{x-1}$.

- 1. Déterminer les variations de f, et en déduire que $f(x) \leq 1$ pour tout x de \mathbb{R} .
- 2. Tracer (C_f) la courbe représentative de f.
- 3. Déterminer les variations de g.
- 4. Tracer (C_g) la courbe représentative de g.
- 5. Soit a l'abscisse du point d'intersection des courbes (C_f) et (C_g) .

Résoudre graphiquement l'inéquation : $-2x^2+4x-\frac{2x-1}{x-1}>0.$