Roll Number: - 22102B2006

Name: - Khushil Girish Bhimani

Github Link:- https://github.com/KhushilBhimani2004/Machine-Learning

```
1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 from sklearn.model_selection import train_test_split
6 from sklearn.linear_model import LinearRegression
7 from sklearn.metrics import mean_squared_error as mse, r2_score
8 from sklearn.metrics import accuracy_score
9 import plotly.express as px
1 df = pd.read_csv("/content/housing.csv")
1 df.head(10)
\overline{\Rightarrow}
        longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value
     0
           -122.23
                       37.88
                                            41.0
                                                        880.0
                                                                         129.0
                                                                                     322.0
                                                                                                 126.0
                                                                                                               8.3252
                                                                                                                                 452600.0
           -122 22
                                                                                    2401 0
                                                                                                1138 0
                                                                                                                                 358500 0
     1
                       37 86
                                            21.0
                                                       7099 0
                                                                        1106.0
                                                                                                               8 3014
     2
           -122.24
                                                                         190.0
                                                                                     496.0
                                                                                                 177.0
                                                                                                               7.2574
                                                                                                                                 352100.0
                       37.85
                                            52.0
                                                       1467.0
           -122 25
                                                       1274.0
                                                                         235.0
                                                                                     558.0
                                                                                                 219.0
                                                                                                               5.6431
                                                                                                                                 341300.0
     3
                       37.85
                                            52.0
           -122.25
                       37.85
                                            52.0
                                                       1627.0
                                                                         280.0
                                                                                     565.0
                                                                                                 259.0
                                                                                                               3.8462
                                                                                                                                 342200.0
     4
     5
           -122.25
                       37.85
                                            52.0
                                                        919.0
                                                                         213.0
                                                                                     413.0
                                                                                                 193.0
                                                                                                               4.0368
                                                                                                                                 269700.0
     6
           -122 25
                       37 84
                                            52.0
                                                       2535.0
                                                                         489 0
                                                                                    1094 0
                                                                                                 514 0
                                                                                                               3.6591
                                                                                                                                 299200.0
     7
           -122.25
                                                       3104.0
                                                                         687.0
                                                                                    1157.0
                                                                                                 647.0
                                                                                                                                 241400.0
                       37.84
                                            52.0
                                                                                                               3.1200
                                                                                                               2 0804
           -122 26
                       37 84
                                            42 0
                                                       2555.0
                                                                         665.0
                                                                                    1206.0
                                                                                                 595 0
                                                                                                                                 226700 0
     8
     9
           -122.25
                       37.84
                                            52.0
                                                       3549.0
                                                                         707.0
                                                                                    1551.0
                                                                                                 714.0
                                                                                                               3.6912
                                                                                                                                  261100.0
    - 4 II
 Next steps:
             Generate code with df
                                      View recommended plots
1 # from google.colab import drive
2 # drive.mount('/content/drive')
1 df.shape
→ (20640, 10)
1 df.columns
'median_house_value', 'ocean_proximity'],
          dtype='object')
1 df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 20640 entries, 0 to 20639
    Data columns (total 10 columns):
     # Column
                              Non-Null Count Dtype
     ---
     0
                              20640 non-null
                                              float64
         longitude
     1
         latitude
                              20640 non-null
                                              float64
         housing_median_age
                              20640 non-null
                                              float64
         total_rooms
                              20640 non-null
                                              float64
```

float64

float64

float64

float64

float64

20433 non-null

20640 non-null

20640 non-null

20640 non-null

20640 non-null

20640 non-null object

total_bedrooms

median income

ocean_proximity dtypes: float64(9), object(1)

median_house_value

population

households

6

memory usage: 1.6+ MB

```
1 df.describe()
```

3		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	
	count 20640.000000 2064		000 20640.000000 20640		20640.000000	20433.000000	
	mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	
	std	2.003532	2.135952	12.585558	2181.615252	421.385070	
	min	-124.350000	32.540000	1.000000	2.000000	1.000000	
	25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	
	50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	
	75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	
	max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	3
4	4 <u> </u>						Þ

1 df.isnull().sum()

```
→ longitude
    latitude
                             0
    housing_median_age
                             0
    total_rooms
                             0
    total_bedrooms
                           207
    population
                             0
    households
                             0
    median_income
    median_house_value
                             0
    ocean_proximity
dtype: int64
```

1 df.duplicated().sum()

→ 0

```
1 # med_value = df['total_bedrooms'].median()
2 # med_value
```

1 df =df.dropna(axis=0, how='any')

1 df.sample(10)

		longitude	latitude	housing median age	total rooms	total hedrooms	populat:
		Tongreude	Tu c T cuuc	mousing_median_age		cocar_bear ooms	рорилис
	13868	-117.31	34.35	9.0	2404.0	390.0	107
	19338	-122.82	38.53	27.0	1823.0	360.0	90
	5620	-118.25	33.78	32.0	296.0	139.0	51
	4694	-118.37	34.07	52.0	2195.0	435.0	88
	2126	-119.71	36.77	11.0	5112.0	1384.0	248
	15686	-122.42	37.79	48.0	4506.0	1342.0	198
	17892	-121.91	37.36	42.0	3224.0	708.0	194
	7441	-118.20	33.94	45.0	1570.0	328.0	132
	6629	-118.15	34.16	18.0	1711.0	383.0	147
	13279	-117.65	34.10	44.0	1526.0	337.0	83
	4						>

1 df.isnull().sum()

```
⇒ longitude latitude
                             0
     housing_median_age
                             0
     total_rooms
total_bedrooms
                             0
                             0
     population
                             0
     households
                             0
     median\_income
                             0
     median_house_value
     ocean_proximity
                              0
     dtype: int64
```

```
1 df.info()
<<class 'pandas.core.frame.DataFrame'>
    Index: 20433 entries, 0 to 20639
    Data columns (total 10 columns):
                              Non-Null Count Dtype
     # Column
     ---
     0 longitude
                              20433 non-null float64
     1
         latitude
                              20433 non-null float64
         housing_median_age 20433 non-null
                                               float64
         total_rooms
                              20433 non-null
                                               float64
         total_bedrooms
                              20433 non-null
                                               float64
                              20433 non-null float64
         population
         households
                              20433 non-null
                                               float64
                              20433 non-null float64
         median_income
         median_house_value 20433 non-null float64
     8
        ocean_proximity
                              20433 non-null object
    dtypes: float64(9), object(1)
    memory usage: 1.7+ MB
1 unique_val = df['ocean_proximity'].unique()
2 unique_val
⇒ array(['NEAR BAY', '<1H OCEAN', 'INLAND', 'NEAR OCEAN', 'ISLAND'],</pre>
           dtype=object)
 1 \ df['ocean\_proximity'] = df['ocean\_proximity']. \\ map(\{'NEAR \ BAY': 1, '<1H \ OCEAN': 2, 'INLAND': 3, 'NEAR \ OCEAN': 4, 'ISLAND': 5\}) 
2 #
3 #
1 df.head(10)
\overline{\mathcal{T}}
        longitude latitude housing_median_age total_rooms total_bedrooms population
           -122.23
     0
                       37.88
                                             41 0
                                                         880 0
                                                                          129 0
                                                                                      322 0
     1
           -122.22
                       37.86
                                             21.0
                                                        7099.0
                                                                         1106.0
                                                                                     2401.0
     2
           -122.24
                       37.85
                                             52.0
                                                        1467.0
                                                                          190.0
                                                                                      496.0
           -122.25
                       37.85
                                             52.0
                                                        1274.0
                                                                          235.0
                                                                                      558.0
     3
           -122.25
                       37.85
                                             52.0
                                                        1627.0
                                                                          280.0
                                                                                      565.0
           -122.25
                       37.85
                                             52.0
                                                         919.0
                                                                          213.0
                                                                                      413.0
     5
     6
           -122.25
                       37.84
                                             52.0
                                                        2535.0
                                                                          489.0
                                                                                     1094.0
     7
           -122.25
                       37.84
                                             52.0
                                                        3104.0
                                                                          687.0
                                                                                     1157.0
                                             42.0
                                                        2555.0
                                                                                     1206.0
           -122.26
                       37.84
                                                                          665.0
           -122.25
                       37.84
                                             52.0
                                                        3549.0
                                                                          707.0
                                                                                     1551.0
    4
```

```
Generate code with df
1 df.hist(bins=50, figsize=(20,15))
```

Next steps:

2 plt.show()

View recommended plots

1 df.corr()

_		longitude	latitude	housing median age	total rooms	total bedr
	longitude	1.000000	-0.924616	-0.109357	0.045480	0.06
	latitude	-0.924616	1.000000	0.011899	-0.036667	-0.0€
	housing_median_age	-0.109357	0.011899	1.000000	-0.360628	-0.32
	total_rooms	0.045480	-0.036667	-0.360628	1.000000	0.93
	total_bedrooms	0.069608	-0.066983	-0.320451	0.930380	1.00
	population	0.100270	-0.108997	-0.295787	0.857281	0.87
	households	0.056513	-0.071774	-0.302768	0.918992	0.97
	median_income	-0.015550	-0.079626	-0.118278	0.197882	-0.00
	median_house_value	-0.045398	-0.144638	0.106432	0.133294	0.04
	ocean_proximity	0.181198	-0.067980	-0.206178	0.015917	0.00
	4					>

1 corrln = df.corr()['median_house_value']

2 round(corrln,2)

_	longitude	-0.05
	latitude	-0.14
	housing_median_age	0.11
	total_rooms	0.13
	total_bedrooms	0.05
	population	-0.03
	households	0.06
	median_income	0.69
	median_house_value	1.00
	ocean_proximity	-0.21
	Name: median house	value, dt

Name: median_house_value, dtype: float64

1 df.sample(3000).plot(kind='scatter', x='longitude', y='latitude', s=32, alpha=.8)
2 plt.gca().spines[['top', 'right',]].set_visible(False)

1 ax = sns.heatmap(df.corr(), annot = True)

1 data = df.head(2000)
2 px.scatter(data, x='median_income', y='median_house_value')


```
1 df.columns
2 housing_df = df[['longitude', 'latitude', 'housing_median_age', 'total_rooms',
3 'total_bedrooms', 'population', 'households', 'median_income',
4 'ocean_proximity', 'median_house_value']]
```

1 housing_df.head()

→		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population
	0	-122.23	37.88	41.0	880.0	129.0	322.0
	1	-122.22	37.86	21.0	7099.0	1106.0	2401.0
	2	-122.24	37.85	52.0	1467.0	190.0	496.0
	3	-122.25	37.85	52.0	1274.0	235.0	558.0
	4	-122.25	37.85	52.0	1627.0	280.0	565.0

Next steps: Generate code with housing_df View recommended plots

1 train_pd, test_pd, val_pd = housing_df[:18000], housing_df[18000:19217], housing_df[19215:]
2 len(train_pd), len(test_pd), len(val_pd)

→ (18000, 1217, 1218)

1 X_train, y_train = train_pd.drop('median_house_value', axis=1), train_pd.to_numpy()[:, -1]
2 X_train.head(10)

₹		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population
	0	-122.23	37.88	41.0	880.0	129.0	322.0
	1	-122.22	37.86	21.0	7099.0	1106.0	2401.0
	2	-122.24	37.85	52.0	1467.0	190.0	496.0
	3	-122.25	37.85	52.0	1274.0	235.0	558.0
	4	-122.25	37.85	52.0	1627.0	280.0	565.0
	5	-122.25	37.85	52.0	919.0	213.0	413.0
	6	-122.25	37.84	52.0	2535.0	489.0	1094.0
	7	-122.25	37.84	52.0	3104.0	687.0	1157.0
	8	-122.26	37.84	42.0	2555.0	665.0	1206.0
	9	-122.25	37.84	52.0	3549.0	707.0	1551.0 •

Next steps: Generate code with X_train
• View recommended plots

```
1 X_val, y_val = val_pd.to_numpy()[:,:-1], val_pd.to_numpy()[:, -1]
2 X_test, y_test = test_pd.to_numpy()[:,:-1], test_pd.to_numpy()[:, -1]

1 X_train.shape, y_train.shape, X_test.shape, y_test.shape, X_val.shape, y_val.shape

((18000, 9), (18000,), (1217, 9), (1217,), (1218, 9), (1218,))

1 from sklearn.preprocessing import StandardScaler
2 scaler = StandardScaler()
3 X_train = scaler.fit_transform(X_train)
4 X_test = scaler.transform(X_test)
5 X_val = scaler.transform(X_val)

// /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning:
X does not have valid feature names, but StandardScaler was fitted with feature names
```

X does not have valid feature names, but StandardScaler was fitted with feature names

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning:

X does not have valid feature names, but StandardScaler was fitted with feature names

1 pd.DataFrame(X_train)

	0	1	2	3	4	5	6	
0	-1.453822	1.204250	0.935040	-0.795703	-0.964371	-0.970876	-0.972988	2.32936
1	-1.448767	1.194570	-0.642170	2.018961	1.315597	0.843015	1.637958	2.31688
2	-1.458876	1.189729	1.802506	-0.530032	-0.822019	-0.819064	-0.841409	1.76947
3	-1.463931	1.189729	1.802506	-0.617382	-0.717005	-0.764970	-0.733049	0.92303
4	-1.463931	1.189729	1.802506	-0.457617	-0.611991	-0.758863	-0.629850	-0.01915
17995	-1.352724	0.947718	-0.799891	0.530841	1.597968	0.432076	1.676658	-0.19260
17996	-1.352724	0.957398	-1.036472	0.345732	1.518624	0.038586	1.392859	-0.15553
17997	-1.347669	0.952558	-0.642170	-0.075631	0.314465	0.044694	0.479544	0.01104
17998	-1.347669	0.952558	-0.326728	-0.255309	-0.362291	-0.141145	-0.309932	0.46045
17999	-1.342614	0.952558	-1.036472	-0.693870	-0.439302	-0.816447	-0.462151	0.16955
18000 rd	ows × 9 colur	mns						>

¹ pd.DataFrame(X_test).hist(bins=50, figsize=(20,15))

² plt.show()


```
1 X_train.shape, X_test.shape, X_val.shape,

→ ((18000, 9), (1217, 9), (1218, 9))
1 ##Linear Regression Model
1 # Preprocessing - scaling the data
2 scaler = StandardScaler()
3 X_train_scaled = scaler.fit_transform(X_train)
4 X_val_scaled = scaler.transform(X_val)
6 # Train the model
7 lm = LinearRegression().fit(X_train_scaled, y_train)
1 y_train_pred = lm.predict(X_train_scaled)
2 y_val_pred = lm.predict(X_val_scaled)
1 mse_train = mse(y_train, y_train_pred)
2 rmse_train = mse(y_train, y_train_pred, squared=False)
4 # Calculate MSE and RMSE for validation set
5 mse_val = mse(y_val, y_val_pred)
6 rmse_val = mse(y_val, y_val_pred, squared=False)
8 # Calculate R<sup>2</sup> score for training set
9 r2_train = r2_score(y_train, y_train_pred)
10
11 # Calculate R² score for validation set
12 r2_val = r2_score(y_val, y_val_pred)
```

```
1 print(f'Training MSE: {mse_train}')
2 print(f'Training RMSE: {rmse_train}')
3 print(f'Training R²: {r2_train}')

→ Training MSE: 4985623211.241477
1 print(f'Validation MSE: {mse_val}')
2 print(f'Validation RMSE: {rmse_val}')
3 print(f'Validation R²: {r2_val}')

→ Validation MSE: 3021634923.4105325
Validation RMSE: 54969.399882212034
Validation R²: 0.6626316715336671
```

Double-click (or enter) to edit

```
1 print('Some predictions on the validation set:', y_val_pred[:5])
```

Some predictions on the validation set: [104479.44966118 192574.74579031 146838.49904684 131771.43881713 109040.18165488]

```
1 plt.figure(figsize=(10, 5))
2
3 # Plot actual values
4 plt.scatter(range(len(y_val)), y_val, color='blue', alpha=0.5, label='Actual')
5
6 # Plot predicted values
7 plt.scatter(range(len(y_val)), y_val_pred, color='red', alpha=0.5, label='Predicted')
8
9 plt.xlabel('House Price')
10 plt.ylabel('Value')
11 plt.title('Actual vs Predicted Values')
12 plt.legend()
13 plt.show()
```

