Towards optimal synchronous counting

Christoph Lenzen

MPI for Informatics

<u>Joel Rybicki</u>

MPI for Informatics Aalto University Jukka Suomela

Aalto University

PODC 2015

July 23

Focus on fault-tolerance

Fault-tolerant *co-ordination* primitives:

- permanent failures (Byzantine faults)
- transient failures (self-stabilisation)

Focus on fault-tolerance

Fault-tolerant *co-ordination* primitives:

- permanent failures (Byzantine faults)
- transient failures (self-stabilisation)

Find solutions that are

- fast to recover
- space and communication-efficient

Our contribution

A deterministic round counter with

- high resilience
- optimal recovery time
- low space/message complexity

n state machines

Synchronous rounds:

- 1. broadcast
- 2. receive
- 3. update state

n state machines

Synchronous rounds:

- 1. broadcast
- 2. receive
- 3. update state

n state machines

Synchronous rounds:

- 1. broadcast
- 2. receive
- 3. update state

n state machines

Synchronous rounds:

- 1. broadcast
- 2. receive
- 3. update state

Algorithm **A** maps a *vector* of states to a new state!

Complexity measures

Time complexity: #rounds

≈ "recovery time"

Space complexity: log #states

≈ complexity of the circuit

≈ number of bits broadcast per node

On failures

Transient failures

n state machines

arbitrary initial states

chosen by adversary!

= self-stabilisation

n state machines

n state machines

n state machines

n state machines

n state machines

f Byzantine failures

Non-faulty nodes can observe different states for the system!

Counting mod c

3-counting

increment counter +1 mod c

Synchronous counting

Synchronous counting

Stabilisation Counting

Synchronous counting

Stabilisation Counting

Reduction from consensus

Given a 2-counting algorithm

A that stabilises in *t* rounds

consensus solvable in trounds

Dolev et al. (2013)

Consensus lower bounds*

Resilience

Pease et al. (1980)

Time

At least f rounds to reach agreement

Fischer & Lynch (1982)

*deterministic

Prior work on 2-counting

Resilience Time

State bits

$$O(f)$$
 $O(f \log f)$

Prior work on 2-counting

Resilience

Time

State bits

$$O(f \log f)$$

$$2^{2(n-f)}$$

Prior work on 2-counting

Resilience

Time

State bits

$$O(f \log f)$$

$$2^{2(n-f)}$$

$$n^{O(1)}$$

*deterministic

Current state

Resilience

Time

State bits

$$O(f \log f)$$

$$2^{2(n-f)}$$

$$n^{O(1)}$$

Our work*
$$f = n^{1-o(1)}$$

$$o(\log^2 f)$$

*deterministic

?

Counting

Consensus

Counting

 \Leftarrow

Consensus

Solve consensus to agree on counters

Counting

Consensus

Use a *c*-counter as a round counter; execute a consensus algorithm

?

Counting

Consensus

Counting

Consensus

Solution: counters that work *once in a while*

Counting once in a while

Arbitrary Counting Arbitrary Counting

Counting once in a while

Use *proper* counters with **low** resilience, to count *once in a while* with **high resilience!**

low resilience

Counting once in a while high resilience

Clock for consensus

If we can count *once in a while* with high resilience..

then we can execute a **highly-resilient consensus** algorithm (*phase king*)

Berman et al. (1989)

Agree on a new counter

Use consensus protocol with **high resilience**, to agree on a new proper counter!

Counting low resilience

Counting low resilience

Counting once in a while high resilience

Counting low resilience

Counting once in a while high resilience

Rinse and repeat

More formally...

Algorithm **A**

n nodes f faults

n nodes f faults

Algorithm **B**

$$N = kn$$
$$F \approx (f+1)k/2$$

Stabilisation time: $T(\mathbf{B}) = T(\mathbf{A}) + O(Fk^k)$

Space complexity: $S(\mathbf{B}) = S(\mathbf{A}) + O(\log C)$

C = new counter range

Boosting resilience

Boost resilience recursively while keeping time and space complexity *small enough*

Main result

Resilience

$$f = n^{1 - o(1)}$$

Stabilisation time

Space complexity

$$O(\log^2 f / \log \log f)$$

Main result

Resilience

$$f = n^{1 - o(1)}$$

Stabilisation time

Space complexity

$$O(\log^2 f / \log \log f)$$

Thanks!