Teste (covid-19) – 24 de janeiro 2022

Nota: Justifique <u>todas</u> as tuas respostas. Pode usar esquemas ou gráficos para facilitar a explicação. Não são necessárias demonstrações, apenas que indique o ou os aspetos em que baseou a sua conclusão e os passos que deu. A ideia é que fique claro que as respostas não "caíram do céu".

Questão 1

	Α	В	С	D	
Comprimento	6.569	6.566	6.567	6.5680	m
Largura	5.327	5.327	5.312	5.3139	m
Pé direito	2.640	2.659	2.664	2.6627	m
Volume	92.382	93.004	92.931	92.933	m³

- a) O volume de uma sala foi determinado considerando a sala um paralelepípedo tendo os lados sido medidos com um medidor laser, e foram efetuadas quatro medições em locais diferentes. Uma média simples dos quatro volumes finais dá V = (92,81±0,14) m³. Considerando apenas os dados da série D e sabendo que o desvio padrão de cada comprimento é 0,6 mm, calcule a incerteza padrão do volume D e explique porque razão dá menor do que o desvio padrão da média dos volumes.
- b) Exprima o valor medido pelo voltímetro e a respetiva incerteza padrão. Exprima a posição do centro da mancha branca (devido a um laser) na escala da régua. Considere o erro de calibração da régua desprezável.

Accuracy Specifications

Accuracy is specified for a period of one year after calibration, at 18 °C to 28 °C (64 °F to 82 °F) with relative humidity to 90 %.

AC conversions are ac-coupled, average responding, and calibrated to the RMS value of a sine wave input.

Accuracy specifications are given as: ±([% of reading]+[number of least significant digits])

Function	Range	Accuracy
V	3.200 V, 32.00 V, 320.0 V 600 V	± (0.3 %+1) ± (0.4 %+1)
m₩	320.0 mV	± (0.3 %+1)
	3.200 V, 32.00 V, 320.0 V, 600 V	± (2 %+2) ± (2 %+2)
Ω	320.0 Ω 3200 Ω , 32.00 k Ω , 320.0 k Ω , 3.200 M Ω 32.00 M Ω	± (0.5 %+2) ± (0.5 %+1) ± (0.5 %+1) ± (2 %+1)
→ ml)	2.0 V	± (1% typical)

Function	Range	Accuracy	Typical Burde Voltage
(45 Hz to	32.00 mA, 320.0 mA	± (2.5 %+2)	6 mV/mA
kHz)	10.00 A *	± (2.5 %+2)	50 mV/A
i	32.00 mA, 320.0 mA	± (1.5 %+2)	6 mV/mA
	10.00 A *	± (1.5 %+2)	50 mV/A
	,	± (1.5 %+2)	50 mV/A

Questão 2

Um professor do ensino secundário pretende desenhar uma experiência para medir g. Para tal pondera duas opções:

- 1. Deixar cair uma esfera de uma altura h, e medir o tempo de queda t: $h = \frac{1}{2}gt^2$.
- 2. Colocar um pêndulo a oscilar, medir o comprimento L e o período T: $\omega = \frac{2\pi}{T} = \sqrt{\frac{g}{L}}$

A altura de queda h e o comprimento do pêndulo L podem ser medidos com uma precisão relativa de 0,1%. O tempo de queda t pode ser medido com uma precisão relativa de 0,5%. O período do pêndulo T pode ser medido com uma precisão relativa de 0,1%.

- a) Qual dos métodos permite medir a aceleração da gravidade com menor incerteza, e quantas vezes é menor?
- b) O professor opta pelo método 1 por envolver uma física mais acessível aos seus alunos, mas pretende obter uma incerteza duas vezes menor do que com o método 2. Para tal fará múltiplas medidas de *t* e calculará a média. Quantas medidas de *t* são necessárias (desprezando erros sistemáticos)?

Questão 3

declive	0.00612	0	ord. origem
declive			ora. origeni
S _{declive}	0.00014	#N/A	S _{ord. origem}
	0.997271	0.010	S _{pontos}
	1827.172	5	
	0.19764	0.000541	

Pode-se medir o módulo de Young esticando um fio em vez de criarmos uma flexão. A expressão é $E = \frac{F_{/A}}{\Delta L_{/L}}$, sendo E o módulo de Young, F a força tensora, A a secção reta do fio, L o comprimento do fio e ΔL a deformação do fio.

Sabendo que $L = (0.9235\pm0.0008)$ m, $d = (0.98\pm0.02)$ mm e $A = \pi d^2/4$, determine o módulo de Young e respetiva incerteza.

Ouestão 4

Quando uma bola embate no solo e ressalta, parte da energia cinética da bola perde-se no choque. Relacionado com este comportamento define-se o *coeficiente de restituição*, *e*, dado pela expressão:

 $v_{afastamento} = e \cdot v_{aproximação}$

Para determinar o coeficiente de restituição de uma bola a ressaltar no chão do laboratório, um grupo de alunos realizou uma experiência que consistia em deixar cair uma bola (movimento vertical) usando um sonar para medir altura ao solo a espaços de tempo regulares. O sonar nem sempre captava a bola, devolvendo nesse caso a altura do chão:

Sempre que o número de pontos válidos era suficiente, fazia-se um ajuste parabólico h(t) e determinava-se a altura máxima. Para cada dois ressaltos consecutivos válidos as respetivas alturas máximas foram registadas:

Tendo em conta que, para cada ressalto, $mgh_{m\acute{a}x} = \frac{1}{2}mv_{m\acute{a}x}^2$, foi feito um ajuste linear para determinar e.

a)	Mostre que	$h_{ressalto}$	$v_{afastamento}^{2}$
a)		h _{queda}	$-rac{v_{aproximação}^2}{v_{aproximação}^2}$.

b) Determine o coeficiente de restituição e respetiva incerteza padrão.

declive	0.5246	0.016264	ord. origem
S _{declive}	0.0127	0.009	S _{ord. origem}
	0.994753	0.022	S _{pontos}
	1706.206	9	
	0.824752	0.00435	

c) Se, nas mesmas condições, a bola fosse deixada cair de uma altura de 1,000 m, a que altura subiria no ressalto? Indique também a incerteza padrão do valor que calcular.

Nota: todas as distâncias nesta questão estão expressas em metros.