- P_1 . به ازای دو افراز P_1 و P_2 از مجموعه ی دلخواه P_3 ، میگوییم P_4 یک زیرافراز از P_4 است، اگر هر مجموعه در P_5 باشند و زیرمجموعه ی یکی از مجموعههای P_5 باشد. فرض کنید P_5 و P_5 دو رابطه ی همارزی روی مجموعه ی P_5 باشند و افراز حاصل از P_5 و P_5 روی مجموعه ی P_5 را به ترتیب P_5 و P_5 بنامید. ثابت کنید P_5 و تنها اگر و تنها اگر P_5 باشد. یک زیرافراز از P_5 باشد.
- ۲. فرض کنید S عددی k رقمی و با ارقام ۶ و ۸ باشد. برای k k را تعداد اعداد k رقمی میگیریم که با حذف k رقم از آنها k حاصل می شود. (این اعداد می توانند تعدادی صفر در سمت چپ خود داشته باشند.) ثابت کنید:

$$F(n,k) = F(n-1,k-1) + 1 \circ F(n-1,k).$$

- 1×1 فرض کنید a_n برابر با تعداد راههای مختلف پوشاندن کامل یک مستطیل 1×1 با موزاییکهایی به اندازههای 1×1 و 1×1 باشد. هر ترکیبی از موزاییکها قابل استفاده است به شرط آن که موزاییکها همپوشانی نداشته و کل سطح مستطیل را بپوشانند. یک رابطه ی بازگشتی با درجه ی ثابت برای a_n بیابید. [نکته: میتوانید از متغیر کمکی استفاده کنید، ولی رابطه ی بازگشتی نهایی باید تنها متشکل از جملات دنباله ی a_n باشد.]
 - ۴. اگر f_n تعداد روابط همارزی روی یک مجموعه یn عضوی باشد، نشان دهید:

$$f_n = \sum_{i=0}^{n-1} \binom{n-1}{i} f_{n-i-1}$$

۵. رابطهی بازگشتی زیر را با استفاده از روش توابع مولد حل کنید.

الموال = توبعزر الوكردور فوال امره توبياب من يك الدور الوكرية مات و اللات . فوص من على المواقع عب المراقع Pyracosiscipi, R, Las ocipotro-cis [n] R. -, P. () - () n Ry in in site of live is a Ry - in a (PSCOC (x) of in in R NON PO We wind In on مرس عرب مربق وربقه مربع مربع مربع مربع مربع الربي المربع الربي المربع ا حيومه سودور ٢ ابنوس م مؤت مي المادي المرادي ال جب رد) الما : دول موجود ، را مرد موجود ، را مرد موجود ، دول المرد موجود ، دول المرد موجود ، دول المرد موجود مود الم NOIN & O West Jew & Sing NR, y Sub- of Society CANTESSIJE, NEPOLOS PROCE (x)R, CHOTHERR, · Sin NRy Justinion NRy in (der in is) D. P. C. Washing R. CRy Under Sing of Ry · in (n,y) GR, ien x R, y oris, p tiling +

A را مرد مرد کا مرد مواهم با صوف می از کا به کابی ، روی و و سیان این الاستانية عن العني في المعنى . في المعنى ، في المعنى المعن خواهد مدان موادله این تعرفوندات و عدی ا-۱ رقی لر به عدی ایم این از مان این تعرفوندات و عدی ا-۱ رقی لر به عدی ا ر کرموره می در این کرون می در این در در این می در ا مراب را ا- ۲ در ۱۱ - ۲ در این می حالت رو) کرونف شوده ۱-۱ رقم، قری مامند که ما بری البعدی ما رقی (عدد ک) تدین رویس x رویس x رویس کار مرقب ای مرافق ای ۱۰۰۰ رقم از مرقم F(n-1,K) -/Bar) (n-(n-n) = K 2)26065 -A روس ما - زرف مه اروم مراز و ما مراز و ما مراز مواندار مواندار مواندار مواند ع بر احلت دار وطبقاء فر المرا- مي نور (۱٫۴/ ۱۰۶) م رزيم في اصحيران روات زرات كه هو تاريدان دار) F(n,k)=F(n-1,k-1)+ 10F(n-1,K)

Unin you ren me cheries de suis la désis روستن الرائع المحالي المرام المالي مدر در الن عدر ، حود دوملت در ال عن الما المعلى عنود (ا- الم) - ما عدى در فيون الله على الم · ((1) /) / (1) de برای این از این از این ما می موجود ایدا یک و ایدا یک این از ای () = 0 n - 1 + h = 2000 5 b 0 . ((((((n - 1)) =), Yx(n - 1)) [(((n - 1)) =) 2 & (((n - 1))) | ar= bn+an-1+ bn-1+an-r=) an+bn-1=an-bn-an-r $\frac{a_{n-1}}{a_{n-1}}$ $b_{n} = a_{n} - b_{n} - a_{n-1} = b_{n} = \frac{a_{n-1}}{a_{n-1}}$ =) $\alpha_{n} = \frac{\alpha_{n} - \alpha_{n-1}}{\gamma} + \alpha_{n-1} + \frac{\alpha_{n-1} - \alpha_{n-\alpha}}{\gamma} + \alpha_{n-\gamma}$ = > -ran + an - an - r + ran - 1 + an - 1 - an - c + ran = 0 $=) \left[\alpha_n = \alpha_{n-1} + \alpha_{n-r} - \alpha_{r-c} \right]$

ععدة دكول و رايد (اعدال يعدم م عور) درد ته دروز مايم ، مال كروه (12 25 1015 10 Pa - () Cope is of 10 25 10 1 250 1) راندنده دور المان الموسائد المدونوان بروموندار معیدی B بداه م (ریک و دری در فرندی و مقدر دان و ماری سان رائمز وسورى إها سكا، بنيم - تقداد كارا العظم لنى بعرك بالدجون أ دلوالاً . (1) (1) 1-1-1 see 1/10 (1) (2) (1) (2) (1) (2) (1) 3/200 1 1-1-1 (5/0) 2/1.1/20 (1/2) fr-i-1 1/25/100/ 1/25 elioil In-1 1,00) ou no i Osoli elio 1060 - 210 مرستر (رماب ف نود!) سكرن ، درجه جواب رابل ما fn = \(\frac{\Si}{i}\) fn-i-1

Gean LegisA(n) Jadis A(n) = an +an x +anx+ =) $\begin{cases} -4n A(n) = -40. x -49. x^{2} + 0. x^{$ =) = (an- xan-1 - can-+) xn = E + xn (ازره رابع رابع و برق ۲ در والحاس دریز ۱۰۰) =7 A(n) (1-1n-cn) = 5/2+ (9/-40.)x+ Exx $\frac{\alpha_1 = c}{\alpha_2 = c} < x + \frac{c_x}{c_x} = \frac{-k_x + c_x}{1 - k_x}$ $A(n) = \frac{A}{n+1} + \frac{B}{(n-1)} + \frac{C}{(n-1)} + \frac{C}{(n-1)}$ $= \frac{-dx^{7} + dx}{(1-4x)(x+1)(1-6x)} = \begin{cases} 9A + 4B + 4CC = -6 \\ -2A + B + 4CC = 6 \end{cases}$ $(1-4x)(x+1)(1-6x) = \begin{cases} 9A + 4B + 4CC = -6 \\ A - B - C = 6 \end{cases}$ A(n) = - ¿ (1+x) + Y (1-cn) - ¿ (1-rn) = - きを(-1)なか+とこっなかーをえてかか