Independencia lineal

Clase #11, 1/03/2022

Luz Myriam Echeverry N

Dependencia lineal

• Definición, decimos que dos funciones, f, g definidas en el intervalo I=(a,b), son linealmente dependientes si existen dos constantes k_1 , k_2 no nulas, tales que

•
$$k_1 f(t) + k_2 g(t) = 0$$
 para todo $t \in I$. (1)

- Si no son dependientes decimos que son linealmente independientes, es decir la única manera para que se cumpla (1) es que k_1 , = k_2 = 0
- Ejemplo 1, sean f(t) = sen(t), $g(t) = cos\left(t \frac{\pi}{2}\right)$
- Si se toma

•
$$k_1 sen(t) + k_2 cos\left(t - \frac{\pi}{2}\right) = sen(t) - \left[cos(t)cos\left(\frac{\pi}{2}\right) + sen(t)sen\left(\frac{\pi}{2}\right)\right] = 0$$

• $k_1 = 1, k_2 = -1$

• Las funciones f y g son linealmente dependientes

- Ejemplo 2 sean $f(t) = t^2 + 5t$, $g(t) = t^2 5t$, ¿son linealmente dependientes o independientes?
- La ecuación (1)

•
$$k_1(t^2 + 5t) + k_2(t^2 - 5t) = 0$$

Factorizando

•
$$(k_1 + k_2)t^2 + (k_1 - k_2)5t = 0$$

 Para que se cumpla que un polinomio es cero los coeficientes de todos sus exponentes deben ser cero.

•
$$k_1 - k_2 = 0$$
, $(k_1 + k_2) = 0$

- La única solución, $k_1=k_2=0$, porque la primera ecuación $k_1=k_2$
- La segunda $k_1 = -k_2$, son linealmente independientes

<u>Teorema</u>, sean f,g funciones diferenciable en un intervalo I, si $W(f,g)(t_0) \neq 0$ para algún $t_0 \in I$, entonces f,g son linealmente independientes en I. Además si f,g son linealmente dependientes en I entonces W(f,g)(t)=0 para todo t en I

- Supongamos que son dependientes, es decir $k_1f+k_2g=0$ para dos constantes no nulas, k_1,k_2 , y para todo t en I. Por contradicción
- En particular en t_0 , i.e.

•
$$k_1 f(t_0) + k_2 g(t_0) = 0$$

 $k_1 f'(t_0) + k_2 g'(t_0) = 0$

Y su derivada

• El determinante del sistema es

•
$$\begin{vmatrix} f(t_0) & g(t_0) \\ f'(t_0) & g'(t_0) \end{vmatrix} = W(f,g)(t_0) \neq 0$$
 por hipótesis!!!

• la única solución $k_1=k_2=0!!!$ Contradicción. Por lo tanto son linealmente independientes.

• La segunda parte del teorema : Además si f,g son linealmente dependientes en l'entonces W(f,g)(t)=0 para todo t en l

- Por contradicción, si, f, g, son linealmente dependientes pero la conclusión es falsa, es decir existe un punto t_0 en el intervalo con $W(f,g)(t_0) \neq 0$
- Por la primera parte del teorema las funciones f, g son linealmente independientes!!! Tenemos una contradicción.
- Es una propiedad fácil de aplicar, por ejemplo sean $f = e^t$, $g = e^{3t}$

•
$$W(f,g)(t_0) = \begin{vmatrix} e^{t_0} & e^{3t_0} \\ e^{t_0} & 3e^{3t_0} \end{vmatrix} = 2e^{4t_0} \neq 0$$

<u>Teorema de Abel</u> Sean y_1, y_2 soluciones de la ecuación diferencial L(y) = y'' + p(t)y' + q(t)y = 0 con p, q funciones continuas en el intervalo I, entonces el wronskiano $W(y_1, y_2)(t)$ está dado por:

$$W(y_1, y_2)(t) = c \exp(-\int p(t)dt)$$

con c una constante que depende de y_1, y_2 , pero no de t, además $W(y_1, y_2)$ es cero en todo el intervalo o nunca es cero.

- Nota Podemos calcular el wronskiano sin resolver el sistema, por ejemplo si tenemos
- $x^{2}y'' + xy' + (x^{2} v^{2})y = 0$, ecuación de Bessel

•
$$y'' + \frac{1}{x}y' + \left(1 - \frac{v^2}{x^2}\right)y = 0 \rightarrow W(y_1, y_2) = cexp(-\ln(x)) = \frac{c}{x}$$

Demostración

Recordemos que

•
$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1'$$

• $W'(y_1, y_2) = y_1' y_2' + y_1 y_2'' - y_2' y_1' - y_2 y_1'' = y_1 y_2'' - y_2 y_1''$

Las soluciones

•
$$y_1'' + p(t)y_1' + q(t)y_1 = 0$$
 $(-y_2)$
• $y_2'' + p(t)y_2' + q(t)y_2 = 0$ (y_1)

• Sumando, se eliminan los últimos términos del lado izquierdo.

•
$$y_2''y_1 - y_1''y_2 + p(t)[y_2'y_1 - y_1'y_2] = 0$$

• $W' + p(t)W = 0$, $\leftrightarrow \frac{W'}{W} = -p(t) \leftrightarrow \ln(W) = -\int p(t)dt + c$
• $W(y_1, y_2)(t) = c \exp(-\int p(t)dt)$

Resumiendo dos soluciones de L(y) = y'' + p(t)y' + q(t)y = 0, con coeficientes continuos en el intervalo I son linealmente dependientes en I si y sólo si $W(y_1, y_2)(t) = 0$, en todo el intervalo I y son independientes si y sólo si $W(y_1, y_2)(t) \neq 0$

- En el intervalo en que los coeficientes son continuos tenemos la equivalencia entre las siguientes cuatro afirmaciones.
- 1. Las funciones y_1, y_2 forman un conjunto fundamental de soluciones en I
- 2. Las funciones y_1, y_2 son linealmente independientes en l.
- 3. $W(y_1, y_2)(t_0) \neq 0$ para algún t_0 en I
- 4. $W(y_1, y_2)(t) \neq 0$ en todo el intervalo I

las soluciones y_1, y_2 son la base de un subespacio de dimensión 2 que es el espacio solución de la ecuación

$$y'' + p(t)y' + q(t)y = 0$$

Ejercicios

- 1- Estudie la dependencia lineal de $f(x) = x^3$, $g(x) = |x|^3$, diferentes intervalos.
- 2-Encuentre el Wronskiano de $(1-x^2)y^{\prime\prime}-2xy^{\prime}+a(a+1)y=0$, ecuación de Legendre.
- 3- Si y_1, y_2 son soluciones linealmente independientes de $ty'' 2y' + te^t = 0$ y $W(y_1, y_2)(1)=2$, ¿cuál es el valor de $W(y_1, y_2)(5)$?
- 4-Si el wronskiano de dos soluciones de y'' + p(t)y' + q(t)y = 0 es constante ¿qué podemos decir de los coeficientes p(t), q(t)?
- 5- Pruebe que si y_1, y_2 tiene un máximo o un mínimo en el mismo punto $t_0 \in I$, no pueden ser un conjunto fundamental en ese intervalo.

Bibliografía

• W.Boyce, R. DiPrima, "Elementary Differential Equations and Boundary Value Problems" 8Ed