Implementing Column Generation

Implementing a CG Approach

We can now start implementing our CG approach

- We need to define how to solve the restricted Master Problem
- ... And how to solve the Pricing Problem

We'll discover that this case study is not a trivial one

...But also that, with the right choices, it can be solved fast!

Restricted Master Problem

Dealing with the restricted Master Problem is the easy part

...Since we can still rely on the cycle formulation:

$$\min - \sum_{j \in S} w_j x_j$$
s.t.
$$\sum_{j \in S} a_{ij} x_j \le 1 \qquad \forall i = 1..m$$

$$x_j \ge 0 \qquad \forall j = 1..n$$

Compared to the full formulation:

- We restrict the summations
- We switched the direction of optimization

Restricted Master Problem

In th code:

- We add an option to relax all variables so that they are continuous
- In which case, we use <u>the CLP solver</u> instead of CBC
- We switch optimization and the constraint direction
- We add code to retrieve the dual multipliers

The resulting API is:

```
def cycle_formulation(pairs, cycles, tlim=None, relaxation=False, verbose=1):
```

■ The summations are restricted by just passing a subset of cycles

Restricted Master Problem

Now, let's try to solve the LP

```
In [16]: pairs, arcs, aplus = util.generate_compatibility_graph(size=12, seed=2)
    cycles = util.find_all_cycles(aplus, max_length=4, cap=None)
    sol, tme, duals = util.cycle_formulation(pairs, cycles, tlim=10, verbose=1, relaxation=True)
    for i, c in enumerate(cycles):
        if sol[f'x_{i}'] == 1: print(c)
        print(f'Dual multipliers: {duals}')

        Solution time: 0.000 sec, objective value: -6.0 (optimal)
        (0, 7, 8, 3)
        (5, 6)
        Dual multipliers: [0. 0. 0. 2. 0. 2. 0. 2. 0. 0. 0. 0.]
```

- We have one multiplier per constraint, i.e. one per graph node in our case
- lacktriangle The non-zero λ are associated to nodes used by the selected cycles
- ...Meaning that their associated constraints are tight
- The cost is negative, since we have negated the original objective formula

Pricing Problem

Our pricing problem formulation is:

$$\underset{i=1}{\operatorname{argmin}} \sum_{i=1}^{m} y_i (-1 + \lambda_i^*)$$

s.t. y defines a cycle

$$\sum_{i=1}^{m} y_i \le C$$

$$y_i \in \{0, 1\} \qquad \forall i = 1..m$$

- We need to choose nodes that form a minimum weight cycle
- ...Which makes this problem inconvenient to solve via LP or MILP

So we'll use instead a different approach

We will base our pricing algorithm on a Time Unfolded version of our graph

- (1)

- 2
- 2
- 2
- 2
- (2)

- 3
- 3
- 3
- 3
- (3)

4

t=1

4

t=2

4

t=3

- t=4
- An unfolded graph contains one copy of each original node per time unit
- In our case, time units correspond to possible cycle lengths

We can use unfolding to account for one of our constraints

- 2 2 2 2
- 3 3 3
- Our cycles can contain at most C nodes (say C=4)
- lacksquare For this reason, we will unfold C+1 times

The time-unfolded graph is layered

- There are no arcs between nodes associated to the same time unit
- Arcs connect node associated to contiguous time units

Now we need to select nodes that form a cycle on the original graph

How do we do that over the TUG?

Now we need to select nodes that form a cycle on the original graph

How do we do that over the TUG?

Since the graph is acyclic, we can use _Dijkstra's algorithm_

We search for a shortest path, processing one layer at a time

- We start at layer 1, from a given root node (1, in the figure)
- We consider all outgoing arcs
- We update the shortest path to the destination nodes as usual in Dijkstra's

We then start from all visited nodes, and proceed as before

- If we end up visiting the root node again, we have found a cycle
- This is a shortest cycle including the root node, for the current length
- We store all these cycles (in this case, we store the cycle 1-4 for the path 1-4-1)

Nodes that close a cycle count as non-visited

- If we end up visiting a non-root node that is on the shortest path
- ...Then we have found a path with a sub-cycles
- We do not store such paths (e.g., we store a cycle for 1-2-3-1, but not 1-2-3-2)

We proceed until maximum length, or until no node is visited in the nest layer

- Then we can restart from another root node
- In the next restart, we can ignore all arcs pointing to already considered roots
- ...Since all shortest cycles containing those nodes have already been found

The process returns (at most) one cycle per root node and per non-zero weight

For our example graph, we have:

```
In [17]: weights = -np.ones(len(pairs)) + duals
scl, sct = util.shortest_cycles(aplus, weights, max_len=4)
print(scl)
print(sct)

[{0, 3}, {0, 7}, {0, 1, 3, 7}, {1, 3}, {1, 7}, {8, 1, 3, 7}, {8, 3}, {5, 6}, {8, 7}]
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
```

- All shortest cycles have non-negative reduced costs
- This is expected since the dual multiplier refer to an optimal solution

Formulating pricing as optimization can be very beneficial

In our case, we get a massive speed improvement w.r.t. enumeration:

```
In [30]: pairs, arcs, aplus = util.generate_compatibility_graph(size=150, seed=2)
%time cycles = util.find_all_cycles(aplus, max_length=4, cap=None)

CPU times: user 6.22 s, sys: 1.1 ms, total: 6.22 s
Wall time: 6.23 s

In [31]: %time cycles2, _ = util.shortest_cycles(aplus, weights=-np.ones(len(pairs)), max_len=4)

CPU times: user 75.4 ms, sys: 0 ns, total: 75.4 ms
Wall time: 75.1 ms
```


We can now inspect the column generation method itself

```
def cycle_formulation_cg(pairs, aplus, max_len, itcap=10, tol=1e-3, verbose=1):
    weights = -np.ones(len(pairs)) # initial cycle pool
    cycles, _ = er.shortest_cycles(aplus, weights, max_len=max_len)
    converged = False # main loop
    for itn in range(itcap):
        sol, stime, duals = er.cycle_formulation(pairs, cycles, verbose=0, relaxation=Tru
        if verbose > 0: ...
        weights = -np.ones(len(pairs)) + duals # shortest paths
        scl, sct = er.shortest_cycles(aplus, weights, max_len=max_len)
        nrc_cycles = [scl[i] for i, c in enumerate(sct) if c < -tol] # negative r.c.</pre>
        if verbose > 0: ...
        if len(nrc_cycles) == 0: # no improvement possible
            converged = True
            break
        else: cycles += nrc_cycles # add new arcs
   return cycles, converged
```


The initial pool of variables corresponds to all shortest cycles

```
def cycle_formulation_cg(pairs, aplus, max_len, itcap=10, tol=1e-3, verbose=1):
    weights = -np.ones(len(pairs)) # initial cycle pool
    cycles, _ = er.shortest_cycles(aplus, weights, max_len=max_len)
```

■ The cycle weight is just the number of nodes

Then we start the main loop

At the end we return the optimized cycle pool, plus convergence flag

At each iteration, we solve the LP relaxation

```
def cycle_formulation_cg(pairs, aplus, max_len, itcap=10, tol=1e-3, verbose=1):
    ...
    for itn in range(itcap):
        sol, stime, duals = er.cycle_formulation(pairs, cycles, verbose=0, relaxation=Truif verbose > 0: ...
```

Then we find all shortest cycles

```
def cycle_formulation_cg(pairs, aplus, max_len, itcap=10, tol=1e-3, verbose=1):
    ...
    for itn in range(itcap):
        ...
        weights = -np.ones(len(pairs)) + duals # shortest paths
        scl, sct = er.shortest_cycles(aplus, weights, max_len=max_len)
    ...
```


Then we detect the cycles with negative reduced costs

- LP solvers operate withing tolerances, so it's a good idea to use one
- We also add multiple columns at every iteration
- This is usually a good idea, since it reduces iteration overhead

Column Generation - Correctness

It's time to test the approach. We will initially focus on correctness

We generate a graph:

```
In [33]: pairs, arcs, aplus = util.generate_compatibility_graph(size=100, seed=2)
```

Then we solve the GC formulation:

```
In [37]: cycles_cg, _ = util.cycle_formulation_cg(pairs, aplus, max_len=4, itcap=10)

(CG, it. 0), #cycles: 839, time: 0.02, relaxation objective: -36.00
(CG, it. 0), #cycles with negative reduced cost: 0
```

And we compare it with the approach based on full enumeration:

```
In [38]: cycles_cf = util.find_all_cycles(aplus, max_length=4, cap=None)
    sol, stime, duals = util.cycle_formulation(pairs, cycles_cf, tlim=10, verbose=0, relaxation=
    print(f'(Full formulation) #cycles: {len(cycles_cf)}, time: {stime}, relaxation objective: {
```

(Full formulation) #cycles: 9890, time: 1.358, relaxation objective: -36.00

Column Generation - Downstream IP

After we solve the CG formulation, we still don't have an actual solution

- We have an optimal solution of the LP relaxation
- ...Which may violate the integrality constraints

A simple strategy: keep the set of variables and solve the original problem

```
In [40]: sol, tme, _ = util.cycle_formulation(pairs, cycles_cg, tlim=30, verbose=1)
Solution time: 0.033 sec, objective value: 36.0 (optimal)
```

This one is guaranteed optimal only if the LP-IP gap is zero (as in our case)

- Otherwise, in principle we should start branching (Branch & Price)
- In practice, we are usually happy with this two-phase approach

Just make sure that your Master Problem yeilds a good bound!

Column Generation - Scalability

Now we will quickly test the method scalability

Let's try with 300 and 600 pairs:

```
In [41]: %%time
         pairs2, arcs2, aplus2 = util.generate compatibility graph(size=300, seed=2)
         cycles cq2, = util.cycle formulation cq(pairs2, aplus2, max len=4, itcap=10)
         , , = util.cycle formulation(pairs2, cycles cg2, tlim=30, verbose=1)
         (CG, it. 0), #cycles: 8906, time: 0.283, relaxation objective: -122.00
         (CG, it. 0), #cycles with negative reduced cost: 0
         Solution time: 0.509 sec, objective value: 122.0 (optimal)
         CPU times: user 1.83 s, sys: 19.9 ms, total: 1.85 s
         Wall time: 1.85 s
In [44]: %%time
         pairs3, arcs3, aplus3 = util.generate compatibility graph(size=600, seed=2)
         cycles_cq3, _ = util.cycle_formulation_cq(pairs3, aplus3, max_len=4, itcap=10)
         _, _, _ = util.cycle_formulation(pairs3, cycles_cg3, tlim=30, verbose=1)
         (CG, it. 0), #cycles: 31010, time: 1.021, relaxation objective: -229.00
         (CG, it. 0), #cycles with negative reduced cost: 0
         Solution time: 1.456 sec, objective value: 229.0 (optimal)
         CPU times: user 9.37 s, sys: 49.3 ms, total: 9.42 s
         Wall time: 9.43 s
```


Considerations

Column generation is not an easy technique

...But when it works, it works very well

- The trick is finding a clean Master Problem formulation
- ...By including constraints as part of the variable definition
- In short: a clean problem with super-complicated variables

There's no need to solve the pricing problem via dedicated methods

- We can use Linear Programming, MILP, or even SMT or CP
- The pricing problem can even be NP-hard
- ...We just needt it to be easy solve for the scale we need

