

基于节点电压和电气距离

快速估算光伏可接入容量

2022年11月7日

汇报人:赵知易

指导老师:雪映

背景

Background

模型建立

Model Establishment

仿真与结果

Simulation and Results

实际应用

Practice

背景

BACKGROUND

2021年8月

国家能源局综合司发布了《关于公布整县(市、区)<mark>屋顶分布式</mark>光伏开发试点名单》的通知,各省(自治区、直辖市)及新疆生产建设兵团共报送试点县(市、区)676个,全部列为整县(市、区)屋顶分布式光伏开发试点。

2022年5月

国家发展和改革委员会、国家能源局发布《关于促进新时代新能源高质量发展的实施方案》,提出到2030年,风电、太阳能发电总装机容量达到12亿kW以上加快构建清洁低碳、安全高效的能源体系。

01

习近平总书记在中共中央政治局第三十六次集体学习时强调,要把促进新能源和清洁能源发展放在更加突出的位置,积极有序发展光能源、硅能源、氢能源、可再生能源。

03

国家发展和改革委员会等九部委联合印发《"十四五"可再生能源发展规划》,指出2025年可再生能源年发电量达到3.3万亿kWh左右;且"十四五"期间,可再生能源发电量增量在全社会用电量增量中的占比超过50%,风能和太阳能发电量实现翻倍。

截至2021年底累计并网容量(万干瓦)

山东 / 3343.4

其中集中式光伏电站1008.97万千瓦; 分布式光伏2334.4。 2021年新增容量为1070.9万千瓦。

河北 / 2921.3

其中集中式光伏电站1658.84万千瓦; 分布式光伏1262.5。 2021年新增容量为730.0万千瓦。

广东 / 1020.1

其中集中式光伏电站508.20万千瓦; 分布式光伏511.9。 2021年新增容量为226.4万千瓦。

数据来源:国家能源局《2021年光伏发电建设运行情况》(山东、河北为装机量位列全国前二)

高渗透光伏带来的问题

高渗透光伏 (High PV penetration)

系统层面 计算光伏可接入容量 (限制量为节点电压), 在安装光伏前进行合理 规划。

器件层面 运用电力电子技术,通 过逆变器的无功吸收降 低节点电压...

电力系统运行问题 (Operational issues)

节点过电压 (Overvoltage) 电压不平衡 (Unbalanced voltage) 电压谐波 (Voltage harmonics)

2 线路过载 (Line overloading) 电流逆流 (Inverse current flow) 热应力增加 (Increased thermal stress)

3 e.g.,更多的电容开关和稳压器抽头

➤ e.g., 山东部分 区域因为配电 网过电压问题, 己叫停光伏安 装

计算光伏可接入容量的方法

随机方法

- ✓ 随机方法基于概率潮流建立随机电网模型,模拟客户用电和光伏生产的变化
- 系统变量之间的数学关系 随时间变化,使建立的模型无效。

时间序列方法

- ✓ 利用实际系统测量的电力 消耗和太阳能光伏生产作 为输入的计算。
- ➤ 需要长周期的测量(长达30 年)。
- 数据可以由随机模型生成, 但是计算量非常庞大。
- ✓ 所提方法不需要完整拓扑结构;
- ✓ 不需要负荷数据;
- ✓ 保守估算,误差在6%以内!

确定性方法

- ✓ 确定性方法是基于已知和 固定输入数据的潮流分析 模型,分析太阳能光伏对 配电网的影响。
- I ➤ <mark>现有方法</mark>需要完整的配电 M拓扑结构。
- 需要每个节点下的准确负荷数据。

模型建立

MODEL ESTABLISHMENT

基本潮流方程

✓节点电压与功率的关系

$$V_{i+1}^{2} = \frac{\left(P_{i} - I_{i}^{2} r_{i}\right)^{2} + \left(Q_{i} - I_{i}^{2} x_{i}\right)^{2}}{I_{i}^{2}}$$

$$= \frac{P_{i}^{2} + Q_{i}^{2}}{I_{i}^{2}} - 2(r_{i} P_{i} + x_{i} Q_{i}) + I_{i}^{2} (r_{i}^{2} + x_{i}^{2})$$

✓电压迭代方程

$$V_{i+1}^2 = V_i^2 + r_i (P_i^L - 2P_i) + x_i (Q_i^L - 2Q_i)$$

✓ 迭代(n-1)次

$$V_n^2 = V_1^2 + \sum_{j=1}^{n-1} \left(r_j \left(P_j^L - 2P_j \right) + x_j \left(Q_j^L - 2Q_j \right) \right)$$

- ➤ 变电站电压V₁视为不变
- ▶ 潮流和线路参数共同影响节点电压

 P_i^L, Q_i^L :线路 i 上的损耗

光伏输出功率与节点电压的关系

✓光伏并入后各参数

\checkmark 光伏输出功率 P_{pv} 和节点电压关系

$$(V_i^{pv})^2 = \begin{cases} V_i^2 + 2P_{pv} \sum_{j=1}^{i-1} r_j - \sum_{j=1}^{i-1} L_j & \text{for } 1 < i < k \\ V_i^2 + 2P_{pv} \sum_{j=1}^{k-1} r_j - \sum_{j=1}^{i-1} L_j & \text{for } k \le i \le n \end{cases}$$

 $V_n^2 = V_1^2 + \sum_{j=1} \left(r_j (P_j^L - 2P_j) + x_j (Q_j^L - 2Q_j) \right)$

$$L_j = r_j (2\Delta P_j^{DL} - \Delta P_j^L) + x_j (2\Delta Q_j^{DL} - \Delta Q_j^L)$$

✓准确潮流方程

$$(V_i^{pv})^2 = \begin{cases} V_i^2 + 2P_{pv} \sum_{j=1}^{i-1} r_j - \sum_{j=1}^{i-1} L_j \text{ for } 1 < i < k \\ V_i^{pv} + 2P_{pv} \sum_{j=1}^{k-1} r_j - \sum_{j=1}^{i-1} L_j \text{ for } k \le i \le n \end{cases}$$

省略 $\sum_{j=1}^{i-1} L_j$

✓简化后的线性方程

$$(V_i^{pv})^2 = \begin{cases} V_i^2 + 2P_{pv} \sum_{j=1}^{i-1} r_j \text{ for } 1 < i < k \\ V_i^2 + 2P_{pv} \sum_{j=1}^{k-1} r_j \text{ for } k \le i \le n \end{cases}$$

 $(V_i^{pv})^2$ 和 P_{pv} 呈线性关系

✓可接入容量估算方程

$$P_{pv}^{i} = \begin{cases} \frac{V_{max}^{2} - V_{i}^{2}}{2\sum_{j=1}^{i-1} r_{j}} & for \ 1 < i < k \\ \frac{V_{max}^{2} - V_{i}^{2}}{2\sum_{j=1}^{k-1} r_{j}} & for \ k \le i \le n \end{cases}$$

V_{max}: 电压上限 (e.g., 1.05p.u.)

 P_{pv}^{i} : 受限于节点i电压下的可接入容量

可接入容量: $min\{P_{pv}^{i} (i = 1,2,3,..n)\}$

共享支路、电气距离的概念

TB (Target Bus): 安装光伏的目标母线

B (Branch): 变电站到某一节点的线路

SB (Shared Branch): 共享支路

ED (Electrical Distance): 电气距离; 共享支路上的线路电阻/电抗之和, 用于计算可接入容量

实际估算方法

(根据基本潮流方程<mark>对称性</mark>考虑无功功率) $\alpha为无功系数, Q_{nv} = \alpha P_{nv}$

1. 限制电压

➤ 人为设置, e.g., 1.05p.u.

- 2. 当前节点电压
- > 从历史数据中选取最高值

$$P_{pv}^{i} = \begin{cases} \frac{V_{max}^{2} - V_{i}^{2}}{2(\sum_{j=1}^{i-1} r_{j} + \alpha \sum_{j=1}^{i-1} x_{j})} & for \ 1 < i < k \\ \frac{V_{max}^{2} - V_{i}^{2}}{2(\sum_{j=1}^{i-1} r_{j} + \alpha \sum_{j=1}^{i-1} x_{j})} & for \ k \leq i \leq n \end{cases}$$

→ 3. 电气距离项

- ▶ 通过部分拓扑结构进行定位
- > 从数据库中提取线路参数
- ▶ 根据光伏型号确定无功系数

估算的可接入容量(由TB和已并入光伏的节点电压共同限制)

- ▶ 取最小为可接入容量
- ▶ 可用于误差分析与修正*

误差分析与修正

✓被忽略的损耗项

$$L_j = r_j (2\Delta P_j^{DL} - \Delta P_j^L) + x_j (2\Delta Q_j^{DL} - \Delta Q_j^L)$$

$$\Delta P_i^L = \Delta (I_i^2) r_i$$

$$\Delta Q_i^L = \Delta (I_i^2) x_i$$

✓光伏输出直接影响上游节点发出功率

$$\Delta(I_i^2) \approx \frac{(P_i - P_{pv})^2 + Q_i^2}{(V_i^{pv})^2} - \frac{P_i^2 + Q_i^2}{{V_i}^2} \text{ for } 1 \le i < k,$$

$$\Delta(I_i^2) \approx 0 \text{ for } k \le i \le n - 1.$$

对于大容量 P_{pv} , $\Delta(I_i^2) \ge 0 \to \sum_{j=1}^{i-1} L_j > 0 \to$ 保守估算

✓容量修正项

$$P_{pv-c}^{i} = \frac{\sum_{j=1}^{i-1} L_{j}}{2\sum_{j=1}^{i-1} r_{j}}$$

$$P_{pv-new}^i = P_{pv-original}^i + P_{pv-c}^i$$

 $V_i^{pv} = V_{max}$; P_{pv} : 忽略损耗估算的容量 \rightarrow 修正后保守估算依然成立

仿真与结果

SIMULATION AND RESULTS

博學慎思 明雜萬行

O Target Bus (TB)

开 情景二下已经安装的光伏

线性关系验证

(c). 3D colormap of $(V_{27}^{pv})^2$ with changing P_{pv} and Q_{pv} .

(a). $(V_{27}^{pv})^2$ increases as P_{pv} rises from 0 to 4MW;

(b). $(V_{27}^{pv})^2$ increases as Q_{pv} rises from 0 to 4kVar;

估算容量,误差及限制节点

ESTIMATION RESULTS IN SCENARIO I

Case	ТВ	Bus with minimu m PHC	Estimate d PHC (kW)	Accurat e PHC (kW)	Error (%)
1	10	10	1927	2008	-4.0%
2	24	24	4900	5080	-3.5%
3	27	27	4056	4190	-3.2%

ESTIMATION RESULTS IN SCENARIO II

Case	ТВ	Bus with minimu m PHC	Estimate d PHC (kW)	Accurat e PHC (kW)	Error (%)
4	10	12	1041	1095	-4.9%
5	24	24	4413	4565	-3.3%
6	27	30	2134	2220	-4.0%

ERROR REDUCTION RESULTS IN SCENARIOS I AND II

Case	Updated PHC (kW)	Accurate PHC (kW)	Error (%)
1	1927(+73)	2008	-0.4%
2	4900(+167)	5080	-0.3%
3	4056(+125)	4190	-0.2%
4	1041(+49)	1095	-0.5%
5	4413(+152)	4565	-0.0%
6	2134(+82)	2220	-0.2%

✓误差在5%以内

✓ 保守估算

节点电压情况

Bus Number

Bus Number

估算容量,误差及限制节点(全节点)

不用误差修正,对IEEE 33 Bus所有节点在场景一、二下进行容量计算。

电流限制: $\sqrt{3}V_NI_N = \sqrt{3}\times 12.66kV\times 240A = 5262kW$

- ✓ 误差在6%以内
- 保守估算
- ✓ 容量均被TB或已并入光伏的节点电压限制

成果:完成SCI论文一篇并提交 (Under Review)

7 不需要完整拓扑结构

2 不需要潮流迭代

3 保守估计,误差较小(6%以内)

探索该方法的实际应用

2 节点电压在有限条件下的估算

3 ...

实际应用(初步成果)

PRACTICE

估算节点电压

✓节点电压估算方程
$$V_{i+1}^2 = V_i^2 - 2(r_i P_i + x_i Q_i)$$

节点二次侧电压可测 变压器抽头位置未知

> 一次侧节点电压 难以直接测量

根据已知潮流 估算节点电压 荷

知

运用节点电压估算方程 估算节点电压

运用节点电压估算方程 估算节点电压

将首端潮流平均分配到各个节点

方法

方 法

误差对比(30%负荷)

→节点电压可测 →方法一 →方法二

- ✓ 方法一更加保守
- ✓ 方法二误差在 ± 10%以内

- ⇒ 实际负荷较为集中在线路末端→ 平均首端潮流→节点电压估算值偏大 → 误差为负;
- 实际负荷较为集中在线路前端→平均首端潮流→节点电压估算值偏小 → 误差为正

p.s.,*线路为变电站到TB

附录一:33节点系统数据

节点负荷数据

Load	Location (Bus Bar)	Real Load (kW)	Reactive Load (kVAR
L2	2	100	60
L3	3	90	40
L4	4	120	80
L5	5	60	30
L6	6	60	20
L7	7	200	100
L8	8	200	100
L9	9	60	20
L10	10	60	20
L11	11	45	30
L12	12	60	35
L13	13	60	35
L14	14	120	80
L15	15	60	10
L16	16	60	20
L17	17	60	20
L18	18	90	40
L19	19	90	40
L20	20	90	40
L21	21	90	40
L22	22	90	40
L23	23	90	50
L24	24	420	200
L25	25	420	200
L26	26	60	25
L27	27	60	25
L28	28	60	20
L29	29	120	70
L30	30	200	600
L31	31	150	70
L32	32	210	100
L33	33	60	40
	Total load	3715	2300

线路参数

Line Name	From Bus	To Bus	Length (km)	Line Impedance		
Line Name				Resistance (Ohm/km)	Reactance (Ohm/km)	
BRANCH-1	1	2	1	0.0922	0.0470	
BRANCH-2	2	3	1	0.4930	0.2511	
BRANCH-3	3	4	1	0.3660	0.1864	
BRANCH-4	4	5	1	0.3811	0.1941	
BRANCH-5	5	6	1	0.8190	0.7070	
BRANCH-6	6	7	1	0.1872	0.6188	
BRANCH-7	7	8	1	1.7114	1.2351	
BRANCH-8	8	9	1	1.0300	0.7400	
BRANCH-9	9	10	1	1.0440	0.7400	
BRANCH-10	10	11	1	0.1966	0.0650	
BRANCH-11	11	12	1	0.3744	0.1238	
BRANCH-12	12	13	1	1.4680	1.1550	
BRANCH-13	13	14	1	0.5416	0.7129	
BRANCH-14	14	15	1	0.5910	0.5260	
BRANCH-15	15	16	1	0.7463	0.5450	
BRANCH-16	16	17	1	1.2890	1.7210	
BRANCH-17	17	18	1	0.7320	0.5740	
BRANCH-18	2	19	1	0.1640	0.1565	
BRANCH-19	19	20	1	1.5042	1.3554	
BRANCH-20	20	21	1	0.4095	0.4784	
BRANCH-21	21	22	1	0.7089	0.9373	
BRANCH-22	3	23	1	0.4512	0.3083	
BRANCH-23	23	24	1	0.8980	0.7091	
BRANCH-24	24	25	1	0.8960	0.7011	
BRANCH-25	6	26	1	0.2030	0.1034	
BRANCH-26	26	27	1	0.2842	0.1447	
BRANCH-27	27	28	1	1.0590	0.9337	
BRANCH-28	28	29	1	0.8042	0.7006	
BRANCH-29	29	30	1	0.5075	0.2585	
BRANCH-30	30	31	1	0.9744	0.9630	
BRANCH-31	31	32	1	0.3105	0.3619	
BRANCH-32	32	33	1	0.3410	0.5302	

V. Vita, "Development of a Decision-Making Algorithm for the Optimum Size and Placement of Distributed Generation Units in Distribution Networks," *Energies*, vol. 10, pp. 1433, 2017.

汇报结束 感谢聆听!

2023年5月

汇报人:赵知易

指导老师:雪映