## § 9.7 物质的磁性

前面几节中我们讨论了电流和运动电荷在真空中激发的磁场,如果磁场中有实物存在,则由于磁场和实物的相互作用,实物内部状态发生变化,从而改变原来的磁场分布,这些实物称为——磁介质

## 一. 磁介质及其分类

1. 磁介质——任何实物都是磁介质

在电场中,电场与电介质之间相互作用,结果是电介质发生极化并产生附加电场,即:

电介质放入外场 
$$\vec{E}_0 \longrightarrow \vec{E} = \vec{E}_0 + \vec{E}'$$

类似的在磁场中,磁介质与磁场之间相互作用,磁介质被磁化并产生附加磁场,即:

磁介质放入外场 
$$\overline{B}_0 \longrightarrow \overline{B} = \overline{B}_0 + \overline{B}'$$

实验表明:不同磁介质产生的 B' 大小和方向不同引入物理量  $\mu_r = B/B_0$  —— 磁介质的相对磁导率

——反映磁介质对原场  $\overline{B}_0$  的影响程度

## 2. 磁介质的分类

抗磁质  $\mu_r < 1$  抗磁质产生的附加磁场 $\overline{B}'$ 与 $\overline{B}_0$ 反向

 $B < B_0$  减弱原场

如锌、铜、水银、铅等

顺磁质  $\mu_r > 1$  顺磁质产生的附加磁场 $\overline{B}'$ 与 $\overline{B}_0$ 同向

B > B 增强原场

如锰、铬、铂、氧等

顺磁质和抗磁质  $|\bar{B}'| << |\bar{B}_0| \implies \mu_r \approx 1, B \approx B_0$ 

铁磁质  $\mu_r >> 1$   $(10^2 \sim 10^4)$  通常不是常数

具有显著的增强原磁场的性质 ——强磁性物质

## 二. 磁化机理

1. 安培分子环流的概念和方法

物质由原子或分子组成,原子或分子中的电子不停的参与

两种运动:绕核的转动:形成轨道磁矩。

电子的自旋:形成自旋磁矩。

分子磁矩 —— 分子中所有电子磁矩的总和

分子电流: 将分子磁矩(分子中所有电子运动产生的磁

效应总和)看作是由一个等效圆电流产生的,

这个等效的圆电流称为分子电流  $\bar{i}_m$ 

研究发现: 抗磁质  $P_m = 0$  无外场作用时,对外不显磁性

顺磁质  $P_m \neq 0$  无外场作用时,由于热运动,对外也不显磁性



$$\sum \bar{P}_m = 0$$

## 2. 磁介质的磁化

抗磁效应: 所有物质放入外磁场中受外磁场作用后,均产生一个和外磁场方向相反的附加磁场。

当外场方向与电子的磁矩方向相同时



当外场方向与电子的磁矩反方向时

$$\vec{f} \longrightarrow \omega \uparrow \longrightarrow \vec{P}_m \uparrow (\Delta \vec{P}_m)$$





结论: 在外场作用下,电子产生附加的转动,从而形成附加的  $\Delta \bar{P}_m$ ,附加磁矩(也称感应磁矩)总是与外场方向  $\bar{B}_0$  相反,即产生一个与外场反向的附加磁场  $\Delta \bar{B}'$ 

## 抗磁质磁化

在外场作用下,每个分子中的所有电子都产生感应磁矩  $\Delta P_m$ 则磁介质产生附加磁场  $B' = \sum \Delta B'$  与外场方向相反顺磁质磁化

将顺磁质放入外场  $\bar{B}_0$ 

分子环流在外场作用下,产生取向转动,分子固有 磁矩将转向外场方向——宏观上产生附加磁场  $\bar{B}_1$ 



分子磁矩发生转向的同时,由于抗磁效应每个分子中的所有电子也都产生附加磁矩,即产生一个与外场反向的附加磁场  $\bar{B}_2'$  则磁介质产生总附加磁场  $\bar{B}_1' = \bar{B}_1' + \bar{B}_2' \approx \bar{B}_1'$ 

与外场方向相同

## 三. 有磁介质的磁高斯定理

磁介质存在时: $\overline{B} = \overline{B}_0 + \overline{B}'$  即:总的磁感应强度  $\overline{B}$  为  $\overline{B}_0$ 与磁介质磁化后的附加场  $\overline{B}'$  的和。

因磁感应线仍是一系列无头无尾的闭合曲线,不论对 $\bar{B}_0$ 还是

$$\vec{B}'$$
 都有:  $\iint_S \vec{B}_0 \cdot d\vec{S} = 0$   $\iint_S \vec{B}' \cdot d\vec{S} = 0$  S为任意闭合曲面

$$\Rightarrow \iint_{S} \vec{B} \cdot d\vec{S} = \iint_{S} \vec{B}_{0} \cdot d\vec{S} + \iint_{S} \vec{B}' \cdot d\vec{S} = 0$$

$$|\oint_{S} \vec{B} \cdot d\vec{S} = 0$$
 (含磁介质的磁高斯定理)

## 四. 有磁介质时的安培环路定理

1. 束缚电流(磁化电流) 以无限长螺线管为例说明磁化电流

传导电流  $I_0$  在环内产生磁场  $B_0$  使顺磁质中的分子磁矩转向  $B_0$  方向,如图是一横截面上各分子电流的排列情况。



在磁介质内部的任一小区域:

相邻的分子环流的方向相反在磁介质表面处各点:

分子环流未被抵消

形成沿表面流动的面电流 / s



——束缚电流

如果介质为顺磁质,则 $I_s$ 与 $I_0$ 方向相同如果介质为抗磁质,则 $I_s$ 与 $I_0$ 方向相反

结论:介质中磁场由传导和束缚电流共同产生。

2. 磁介质中的安培环路定理

(下面从螺绕环这一特例推出介质中的安培环路定理)

设传导电流为I,束缚电流为 $I_s$  螺绕环总匝数为N,磁介质的相对磁导率为 $\mu_r$ 。

取以r为半径的闭合同心圆周为积分路径。如图绕行方向顺时针



## 利用真空中的安培环路定理

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 (NI + I_s) \tag{1}$$

式中 
$$\vec{B} = \vec{B}_0 + \vec{B}'$$

由上式 
$$B \cdot 2\pi r = \mu_0 (NI + I_s)$$

无介质时:  $B_0 2\pi r = \mu_0 NI$ 

$$\Rightarrow \frac{B}{B_0} = \mu_r = \frac{NI + I_s}{NI}$$

$$\Rightarrow NI + I_s = \mu_r NI$$
 代入(1)式

$$\Rightarrow \oint_{L} \vec{B} \cdot d\vec{l} = \mu_0 \mu_r NI$$



$$\oint_{L} \vec{B} \cdot d\vec{l} = \mu_{0} \mu_{r} NI$$

$$\Leftrightarrow \mu = \mu_{0} \mu_{r}$$

NI 为闭合路径所包围的传导电流代数和,记为:  $\sum I$ 

$$\Rightarrow \oint_{L} \frac{\vec{B}}{\mu} \cdot d\vec{l} = \sum_{|\beta|} I$$

令 
$$\frac{\bar{B}}{\mu} = \bar{H}$$
  $\bar{H}$  ——称为磁场强度矢量。

$$\oint_L \vec{H} \cdot d\vec{l} = \sum_{|\beta|} I$$

# $\oint_{I} \vec{H} \cdot d\vec{l} = \sum_{i} I$ ——介质中的安培环路定理

H矢量沿任一闭合路径的线积分,等于闭合路径所包围 的传导电流的代数和,与束缚电流与及闭合路径之外的 传导电流无关。

## 讨论

- (1)  $\frac{1}{H}$  与电场的  $\frac{1}{D}$  一样,是一辅助物理量,它与介质有 关,只要是各向同性介质, $\overline{H}$ 与 $\overline{B}$  总是同方向的。
  - H单位是 A/m 。
- (2) 有介质存在的情况下,可用安培环路定理求解磁场 强度, 然后再求解磁感应强度。

# 例:铜导线 $R_1$ I ,外包一层磁介质 $R_2$ $\mu_r$

已知: 
$$\mu_{\text{fl}} \approx \mu_0$$

$$\mathbf{\mathcal{R}}: \vec{H} \quad \vec{B}$$

解: 
$$r < R_1$$

$$\oint_{L} \vec{H} \cdot d\vec{l} = H 2\pi r = \frac{I}{\pi R_{1}^{2}} \pi r^{2}$$

$$\oint_{L} \vec{H} \cdot d\vec{l} = H 2\pi r = \frac{I}{\pi R_{1}^{2}} \pi r^{2}$$

$$H = \frac{Ir}{2\pi R_{1}^{2}} \qquad B = \mu_{\text{fil}} H \approx \mu_{0} H = \frac{\mu_{0} Ir}{2\pi R_{1}^{2}}$$

$$R_1 < r < R_2$$

$$\oint_{I} \vec{H} \cdot d\vec{l} = H 2\pi r = I$$

$$H = \frac{I}{2\pi r} \qquad B = \mu_0 \mu_r H = \frac{\mu_0 \mu_r I}{2\pi r}$$



$$r > R_2$$

$$\oint_{L} \vec{H} \cdot d\vec{l} = H2\pi r = I$$

$$H = \frac{I}{2\pi r} \qquad B = \mu_0 H = \frac{\mu_0 I}{2\pi r}$$







## 五. 铁磁质

主要特征{在外场中,铁磁质可使原磁场大大增强。 撤去外磁场后,铁磁质仍能保留部分磁性。

1. 磁畴理论 —— 磁铁被磁化微观机理

 $E_0 = E_0$  整个铁磁质的总磁矩为零  $A_0 = E_0$  {磁化方向与 $B_0$  同向的磁畴扩大 磁化方向转向 $B_0$  的方向

● 使磁场大大增强

外场撤去,被磁化的铁磁质受体内杂质和内应力的阻碍,不能恢复磁化前的状态。



有外磁场

## 2. 铁磁质的磁化规律 磁化曲线

一般磁介质:  $B = \mu H$   $\mu$  为常数  $B \sim H$  为线性关系。

铁磁质的  $B\sim H$  关系为非线性, $\mu$  不为常数。



用待测的铁磁质制成如图所示的螺绕环,通以变化的电流I,可控制螺绕环中的磁场强度II

$$H = nI$$

再测出B,即可画出 $B\sim H$  曲线。



随着H增大,在01段,B缓慢增加,在12段,B急剧增加,从2到3,B增加缓慢并达到饱和。

#### 磁滯回线(B~H回线)



#### 明确两个概念:

(1) 剩磁
$$H = 0, B = B_r \neq 0$$

$$B_r$$
 称为剩磁。

## (2) 矫顽力

为消除剩磁,加一反向磁场,当  $H = -H_c$  时,B = 0 反向磁场强度  $H_c$  称为矫顽力,曲线  $R \to C$  退磁曲线。

磁化铁磁质要消耗能量,其大小正比于回线面积。

#### 3. 铁磁质的种类



## (a) 软磁物质

 $H_c$ 小,易磁化,易于退磁,用于变压器电机的铁芯。

## (b) 硬磁物质

 $H_c$ 大 $B_r$ 大,不易去磁,能较长时间保持磁性,作永久磁体(磁铁)如钴钢、碳钢。

# 十总结

1. 含磁介质的磁高斯定理

$$\oint _{S} \vec{B} \cdot d\vec{S} = 0$$

2. 介质中的安培环路定理

$$\oint_{L} \vec{H} \cdot d\vec{l} = \sum_{|\beta|} I \qquad \qquad \vec{H} = \frac{B}{\mu}$$

#### 3.铁磁质

- 起始磁化曲线、磁滞回线、剩磁、矫顽力
- 铁磁质的种类