Teichmüller spaces of hyperkähler manifolds and rigid currents

Andrey Soldatenkov

Instituto de Matemática Pura e Aplicada

Seminário de Geometria Diferencial, 9 de maio de 2023

Definition

A hyperkähler structure on a C^{∞} -manifold X is a tuple (g, I, J, K), where:

- g is Riemannian metric;
- I, J and K are complex structures s.t. IJ = -JI = K;
- g is Kähler w.r.t. I, J and K.

We have two-forms ω_I , ω_J and ω_K :

$$\omega_I(u, v) = g(Iu, v),$$

$$\omega_J(u, v) = g(Ju, v),$$

$$\omega_K(u, v) = g(Ku, v).$$

$$d\omega_I = d\omega_J = d\omega_K = 0$$

Definition

A hyperkähler structure on a C^{∞} -manifold X is a tuple (g, I, J, K), where:

- g is Riemannian metric;
- I, J and K are complex structures s.t. IJ = -JI = K;
- g is Kähler w.r.t. I, J and K.

We have two-forms ω_I , ω_J and ω_K :

$$\omega_I(u, v) = g(Iu, v),$$

$$\omega_J(u, v) = g(Ju, v),$$

$$\omega_K(u, v) = g(Ku, v).$$

$$d\omega_I = d\omega_J = d\omega_K = 0$$

Definition

A hyperkähler structure on a C^{∞} -manifold X is a tuple (g, I, J, K), where:

- g is Riemannian metric;
- I, J and K are complex structures s.t. IJ = -JI = K;
- ullet g is Kähler w.r.t. I, J and K.

We have two-forms ω_I , ω_J and ω_K :

$$\omega_I(u, v) = g(Iu, v),$$

$$\omega_J(u, v) = g(Ju, v),$$

$$\omega_K(u, v) = g(Ku, v).$$

$$d\omega_I = d\omega_J = d\omega_K = 0.$$

Definition

A hyperkähler structure on a C^{∞} -manifold X is a tuple (g, I, J, K), where:

- g is Riemannian metric;
- I, J and K are complex structures s.t. IJ = -JI = K;
- \bullet g is Kähler w.r.t. I, J and K.

We have two-forms ω_I , ω_J and ω_K :

$$\omega_I(u, v) = g(Iu, v),$$

$$\omega_J(u, v) = g(Ju, v),$$

$$\omega_K(u, v) = g(Ku, v).$$

$$d\omega_I = d\omega_J = d\omega_K = 0$$

Definition

A hyperkähler structure on a C^{∞} -manifold X is a tuple (g, I, J, K), where:

- g is Riemannian metric;
- I, J and K are complex structures s.t. IJ = -JI = K;
- g is Kähler w.r.t. I, J and K.

We have two-forms ω_I , ω_J and ω_K :

$$\omega_I(u, v) = g(Iu, v),$$

$$\omega_J(u, v) = g(Ju, v),$$

$$\omega_K(u, v) = g(Ku, v).$$

$$d\omega_I = d\omega_J = d\omega_K = 0.$$

Definition

A hyperkähler structure on a C^{∞} -manifold X is a tuple (g, I, J, K), where:

- g is Riemannian metric;
- I, J and K are complex structures s.t. IJ = -JI = K;
- g is Kähler w.r.t. I, J and K.

We have two-forms ω_I , ω_J and ω_K :

$$\omega_I(u, v) = g(Iu, v),$$

$$\omega_J(u, v) = g(Ju, v),$$

$$\omega_K(u, v) = g(Ku, v).$$

$$d\omega_I = d\omega_J = d\omega_K = 0$$

Definition

A hyperkähler structure on a C^{∞} -manifold X is a tuple (g, I, J, K), where:

- g is Riemannian metric;
- I, J and K are complex structures s.t. IJ = -JI = K;
- g is Kähler w.r.t. I, J and K.

We have two-forms ω_I , ω_J and ω_K :

$$\omega_I(u, v) = g(Iu, v),$$

$$\omega_J(u, v) = g(Ju, v),$$

$$\omega_K(u, v) = g(Ku, v).$$

$$d\omega_I = d\omega_J = d\omega_K = 0.$$

Definition

A Riemannian metric g as above is called hyperkähler.

Equivalently: g is hyperkähler if $\operatorname{Hol}(\nabla^g) \subset Sp(n)$

 ∇^g is the Levi-Civita connection for g.

 $Sp(n) = \text{group of quaternionic-linear transformations of } \mathbb{H}^n$ that preserve the quaternionic-Hermitian scalar product.

Consider the 2-form $\sigma_I = \omega_J + i\omega_K$.

 σ_I is a non-degenerate closed (2,0)-form on X_I , i.e. a holomorphic symplectic form.

Today we assume: a hyperkähler manifold X is compact and of maximal holonomy, i.e. $\operatorname{Hol}(\nabla^g) = Sp(n)$.

This implies: $\pi_1(X) = 1$ and $H^0(X_I, \Omega^2_{X_I}) = \mathbb{C}\sigma_I$

Definition

A Riemannian metric g as above is called hyperkähler.

Equivalently: g is hyperkähler if $\operatorname{Hol}(\nabla^g) \subset Sp(n)$,

 ∇^g is the Levi-Civita connection for g.

Sp(n) = group of quaternionic-linear transformations of \mathbb{H}^n that preserve the quaternionic-Hermitian scalar product.

Consider the 2-form $\sigma_I = \omega_J + i\omega_K$.

 σ_I is a non-degenerate closed (2,0)-form on X_I , i.e. a holomorphic symplectic form.

Today we assume: a hyperkähler manifold X is compact and of maximal holonomy, i.e. $\operatorname{Hol}(\nabla^g) = Sp(n)$.

This implies: $\pi_1(X) = 1$ and $H^0(X_I, \Omega^2_{X_I}) = \mathbb{C}\sigma_I$

Definition

A Riemannian metric g as above is called hyperkähler.

Equivalently: g is hyperkähler if $\operatorname{Hol}(\nabla^g) \subset Sp(n)$,

 ∇^g is the Levi-Civita connection for g.

 $Sp(n) = \text{group of quaternionic-linear transformations of } \mathbb{H}^n$ that preserve the quaternionic-Hermitian scalar product.

Consider the 2-form $\sigma_I = \omega_J + i\omega_K$.

 σ_I is a non-degenerate closed (2,0)-form on X_I , i.e. a holomorphic symplectic form.

Today we assume: a hyperkähler manifold X is compact and of maximal holonomy, i.e. $\operatorname{Hol}(\nabla^g) = Sp(n)$.

This implies: $\pi_1(X) = 1$ and $H^0(X_I, \Omega^2_{X_I}) = \mathbb{C}\sigma_I$.

Definition

A Riemannian metric g as above is called hyperkähler.

Equivalently: g is hyperkähler if $\operatorname{Hol}(\nabla^g) \subset Sp(n)$,

 ∇^g is the Levi-Civita connection for g.

 $Sp(n) = \text{group of quaternionic-linear transformations of } \mathbb{H}^n$ that preserve the quaternionic-Hermitian scalar product.

Consider the 2-form $\sigma_I = \omega_J + i\omega_K$.

 σ_I is a non-degenerate closed (2,0)-form on X_I , i.e. a holomorphic symplectic form.

Today we assume: a hyperkähler manifold X is compact and of maximal holonomy, i.e. $\operatorname{Hol}(\nabla^g) = Sp(n)$.

This implies: $\pi_1(X) = 1$ and $H^0(X_I, \Omega^2_{X_I}) = \mathbb{C}\sigma_I$.

Definition

A Riemannian metric g as above is called hyperkähler.

Equivalently: g is hyperkähler if $\operatorname{Hol}(\nabla^g) \subset Sp(n)$,

 ∇^g is the Levi-Civita connection for g.

Sp(n) = group of quaternionic-linear transformations of \mathbb{H}^n that preserve the quaternionic-Hermitian scalar product.

Consider the 2-form $\sigma_I = \omega_J + i\omega_K$.

 σ_I is a non-degenerate closed (2,0)-form on X_I , i.e. a holomorphic symplectic form.

Today we assume: a hyperkähler manifold X is compact and of maximal holonomy, i.e. $\operatorname{Hol}(\nabla^g) = Sp(n)$.

This implies: $\pi_1(X) = 1$ and $H^0(X_I, \Omega^2_{X_I}) = \mathbb{C}\sigma_I$

Definition

A Riemannian metric g as above is called hyperkähler.

Equivalently: g is hyperkähler if $\operatorname{Hol}(\nabla^g) \subset Sp(n)$,

 ∇^g is the Levi-Civita connection for g.

 $Sp(n) = \text{group of quaternionic-linear transformations of } \mathbb{H}^n$ that preserve the quaternionic-Hermitian scalar product.

Consider the 2-form $\sigma_I = \omega_J + i\omega_K$.

 σ_I is a non-degenerate closed (2,0)-form on X_I , i.e. a holomorphic symplectic form.

Today we assume: a hyperkähler manifold X is compact and of maximal holonomy, i.e. $\operatorname{Hol}(\nabla^g) = Sp(n)$.

This implies: $\pi_1(X) = 1$ and $H^0(X_I, \Omega^2_{X_I}) = \mathbb{C}\sigma_I$.

Definition

A Riemannian metric g as above is called hyperkähler.

Equivalently: g is hyperkähler if $\operatorname{Hol}(\nabla^g) \subset Sp(n)$,

 ∇^g is the Levi-Civita connection for g.

Sp(n) = group of quaternionic-linear transformations of \mathbb{H}^n that preserve the quaternionic-Hermitian scalar product.

Consider the 2-form $\sigma_I = \omega_J + i\omega_K$.

 σ_I is a non-degenerate closed (2,0)-form on X_I , i.e. a holomorphic symplectic form.

Today we assume: a hyperkähler manifold X is compact and of maximal holonomy, i.e. $\operatorname{Hol}(\nabla^g) = Sp(n)$.

This implies: $\pi_1(X) = 1$ and $H^0(X_I, \Omega^2_{X_I}) = \mathbb{C}\sigma_I$.

Since σ_I is symplectic, we have:

- $\dim_{\mathbb{C}}(X_I) = 2n$,
- σ_I^n is a nowhere vanishing section of $K_{X_I} = \Omega_{X_I}^{2n}$.

Theorem (Beauville, Bogomolov, Fujiki)

There exists $c_X \in \mathbb{Q}$ such that for all $a \in H^2(X, \mathbb{Q})$

$$\int_X a^{2n} = c_X q(a)^n,$$

where q is a quadratic form on $H^2(X,\mathbb{Q})$, the Beauville-Bogomolov-Fujiki form, or the BBF form.

We may assume: q is primitive and integral on $H^2(X,\mathbb{Z})$.

The signature of q is (3, d-3), where $d=b_2(X)$

Since σ_I is symplectic, we have:

- $\dim_{\mathbb{C}}(X_I) = 2n$,
- σ_I^n is a nowhere vanishing section of $K_{X_I} = \Omega_{X_I}^{2n}$.

Theorem (Beauville, Bogomolov, Fujiki)

There exists $c_X \in \mathbb{Q}$ such that for all $a \in H^2(X, \mathbb{Q})$

$$\int_X a^{2n} = c_X q(a)^n,$$

where q is a quadratic form on $H^2(X,\mathbb{Q})$, the Beauville-Bogomolov-Fujiki form, or the BBF form.

We may assume: q is primitive and integral on $H^2(X,\mathbb{Z})$.

The signature of q is (3, d-3), where $d=b_2(X)$

Since σ_I is symplectic, we have:

- $\dim_{\mathbb{C}}(X_I) = 2n$,
- σ_I^n is a nowhere vanishing section of $K_{X_I} = \Omega_{X_I}^{2n}$.

Theorem (Beauville, Bogomolov, Fujiki)

There exists $c_X \in \mathbb{Q}$ such that for all $a \in H^2(X, \mathbb{Q})$

$$\int_X a^{2n} = c_X q(a)^n,$$

where q is a quadratic form on $H^2(X,\mathbb{Q})$, the Beauville-Bogomolov-Fujiki form, or the BBF form.

We may assume: q is primitive and integral on $H^2(X,\mathbb{Z})$

The signature of q is (3, d-3), where $d = b_2(X)$.

Since σ_I is symplectic, we have:

- $\dim_{\mathbb{C}}(X_I) = 2n$,
- σ_I^n is a nowhere vanishing section of $K_{X_I} = \Omega_{X_I}^{2n}$.

Theorem (Beauville, Bogomolov, Fujiki)

There exists $c_X \in \mathbb{Q}$ such that for all $a \in H^2(X, \mathbb{Q})$

$$\int_X a^{2n} = c_X q(a)^n,$$

where q is a quadratic form on $H^2(X, \mathbb{Q})$, the Beauville-Bogomolov-Fujiki form, or the BBF form.

We may assume: q is primitive and integral on $H^2(X,\mathbb{Z})$.

The signature of q is (3, d-3), where $d=b_2(X)$

Since σ_I is symplectic, we have:

- $\dim_{\mathbb{C}}(X_I) = 2n$,
- σ_I^n is a nowhere vanishing section of $K_{X_I} = \Omega_{X_I}^{2n}$.

Theorem (Beauville, Bogomolov, Fujiki)

There exists $c_X \in \mathbb{Q}$ such that for all $a \in H^2(X, \mathbb{Q})$

$$\int_X a^{2n} = c_X q(a)^n,$$

where q is a quadratic form on $H^2(X, \mathbb{Q})$, the Beauville-Bogomolov-Fujiki form, or the BBF form.

We may assume: q is primitive and integral on $H^2(X,\mathbb{Z})$.

The signature of q is (3, d-3), where $d = b_2(X)$.

Since σ_I is symplectic, we have:

- $\dim_{\mathbb{C}}(X_I) = 2n$,
- σ_I^n is a nowhere vanishing section of $K_{X_I} = \Omega_{X_I}^{2n}$.

Theorem (Beauville, Bogomolov, Fujiki)

There exists $c_X \in \mathbb{Q}$ such that for all $a \in H^2(X, \mathbb{Q})$

$$\int_X a^{2n} = c_X q(a)^n,$$

where q is a quadratic form on $H^2(X, \mathbb{Q})$, the Beauville-Bogomolov-Fujiki form, or the BBF form.

We may assume: q is primitive and integral on $H^2(X,\mathbb{Z})$.

The signature of q is (3, d-3), where $d = b_2(X)$.

Known deformation types of hyperkähler manifolds:

- $K3^{[n]}$ -type. Let S be a complex projective K3 surface, i.e. a surface with $\pi_1(S) = 1$ and $K_S = \mathcal{O}_S$. $S^{[n]} =$ the Hilbert scheme of length n subschemes of S. The manifold $S^{[n]}$ is hyperkähler with $b_2 = 23$ for n > 1 and $b_2 = 22$ for n = 1.
- Kumⁿ-type. Let $T = \mathbb{C}^2/\mathbb{Z}^4$. The Albanese morphism:

$$a: T^{[n+1]} \to T, \quad (x_0, \dots, x_n) \mapsto \sum x_i$$

 $K^nT = a^{-1}(0)$ = the generalized Kummer variety, it is hyperkähler with $b_2 = 7$ for n > 1.

• OG6 and OG10-types. O'Grady's exceptional hyperkähler manifolds of dimensions 6 and 10 with $b_2 = 8$ and $b_2 = 24$ respectively.

obtained from the above by deforming the complex structure.

Known deformation types of hyperkähler manifolds:

- $K3^{[n]}$ -type. Let S be a complex projective K3 surface, i.e. a surface with $\pi_1(S) = 1$ and $K_S = \mathcal{O}_S$. $S^{[n]} =$ the Hilbert scheme of length n subschemes of S. The manifold $S^{[n]}$ is hyperkähler with $b_2 = 23$ for n > 1 and $b_2 = 22$ for n = 1.
- Kumⁿ-type. Let $T = \mathbb{C}^2/\mathbb{Z}^4$. The Albanese morphism:

$$a: T^{[n+1]} \to T, \quad (x_0, \dots, x_n) \mapsto \sum x_i$$

 $K^nT = a^{-1}(0)$ = the generalized Kummer variety, it is hyperkähler with $b_2 = 7$ for n > 1.

• OG6 and OG10-types. O'Grady's exceptional hyperkähler manifolds of dimensions 6 and 10 with $b_2 = 8$ and $b_2 = 24$ respectively.

Known deformation types of hyperkähler manifolds:

- $K3^{[n]}$ -type. Let S be a complex projective K3 surface, i.e. a surface with $\pi_1(S) = 1$ and $K_S = \mathcal{O}_S$. $S^{[n]} =$ the Hilbert scheme of length n subschemes of S. The manifold $S^{[n]}$ is hyperkähler with $b_2 = 23$ for n > 1 and $b_2 = 22$ for n = 1.
- Kumⁿ-type. Let $T = \mathbb{C}^2/\mathbb{Z}^4$. The Albanese morphism:

$$a: T^{[n+1]} \to T, \quad (x_0, \dots, x_n) \mapsto \sum x_i$$

 $K^nT = a^{-1}(0)$ = the generalized Kummer variety, it is hyperkähler with $b_2 = 7$ for n > 1.

• OG6 and OG10-types. O'Grady's exceptional hyperkähler manifolds of dimensions 6 and 10 with $b_2 = 8$ and $b_2 = 24$ respectively.

Known deformation types of hyperkähler manifolds:

- $K3^{[n]}$ -type. Let S be a complex projective K3 surface, i.e. a surface with $\pi_1(S) = 1$ and $K_S = \mathcal{O}_S$. $S^{[n]} =$ the Hilbert scheme of length n subschemes of S. The manifold $S^{[n]}$ is hyperkähler with $b_2 = 23$ for n > 1 and $b_2 = 22$ for n = 1.
- Kumⁿ-type. Let $T = \mathbb{C}^2/\mathbb{Z}^4$. The Albanese morphism:

$$a: T^{[n+1]} \to T, \quad (x_0, \dots, x_n) \mapsto \sum x_i$$

- $K^nT = a^{-1}(0)$ = the generalized Kummer variety, it is hyperkähler with $b_2 = 7$ for n > 1.
- OG6 and OG10-types. O'Grady's exceptional hyperkähler manifolds of dimensions 6 and 10 with $b_2 = 8$ and $b_2 = 24$ respectively.

Known deformation types of hyperkähler manifolds:

- $K3^{[n]}$ -type. Let S be a complex projective K3 surface, i.e. a surface with $\pi_1(S) = 1$ and $K_S = \mathcal{O}_S$. $S^{[n]} =$ the Hilbert scheme of length n subschemes of S. The manifold $S^{[n]}$ is hyperkähler with $b_2 = 23$ for n > 1 and $b_2 = 22$ for n = 1.
- Kumⁿ-type. Let $T = \mathbb{C}^2/\mathbb{Z}^4$. The Albanese morphism:

$$a: T^{[n+1]} \to T, \quad (x_0, \dots, x_n) \mapsto \sum x_i$$

 $K^nT = a^{-1}(0)$ = the generalized Kummer variety, it is hyperkähler with $b_2 = 7$ for n > 1.

• OG6 and OG10-types. O'Grady's exceptional hyperkähler manifolds of dimensions 6 and 10 with $b_2 = 8$ and $b_2 = 24$ respectively.

Known deformation types of hyperkähler manifolds:

- $K3^{[n]}$ -type. Let S be a complex projective K3 surface, i.e. a surface with $\pi_1(S) = 1$ and $K_S = \mathcal{O}_S$. $S^{[n]} =$ the Hilbert scheme of length n subschemes of S. The manifold $S^{[n]}$ is hyperkähler with $b_2 = 23$ for n > 1 and $b_2 = 22$ for n = 1.
- Kumⁿ-type. Let $T = \mathbb{C}^2/\mathbb{Z}^4$. The Albanese morphism:

$$a: T^{[n+1]} \to T, \quad (x_0, \dots, x_n) \mapsto \sum x_i$$

 $K^nT = a^{-1}(0)$ = the generalized Kummer variety, it is hyperkähler with $b_2 = 7$ for n > 1.

• OG6 and OG10-types. O'Grady's exceptional hyperkähler manifolds of dimensions 6 and 10 with $b_2 = 8$ and $b_2 = 24$ respectively.

Known deformation types of hyperkähler manifolds:

- $K3^{[n]}$ -type. Let S be a complex projective K3 surface, i.e. a surface with $\pi_1(S) = 1$ and $K_S = \mathcal{O}_S$. $S^{[n]} =$ the Hilbert scheme of length n subschemes of S. The manifold $S^{[n]}$ is hyperkähler with $b_2 = 23$ for n > 1 and $b_2 = 22$ for n = 1.
- Kumⁿ-type. Let $T = \mathbb{C}^2/\mathbb{Z}^4$. The Albanese morphism:

$$a: T^{[n+1]} \to T, \quad (x_0, \dots, x_n) \mapsto \sum x_i$$

 $K^nT = a^{-1}(0)$ = the generalized Kummer variety, it is hyperkähler with $b_2 = 7$ for n > 1.

• OG6 and OG10-types. O'Grady's exceptional hyperkähler manifolds of dimensions 6 and 10 with $b_2 = 8$ and $b_2 = 24$ respectively.

Known deformation types of hyperkähler manifolds:

- $K3^{[n]}$ -type. Let S be a complex projective K3 surface, i.e. a surface with $\pi_1(S) = 1$ and $K_S = \mathcal{O}_S$. $S^{[n]} =$ the Hilbert scheme of length n subschemes of S. The manifold $S^{[n]}$ is hyperkähler with $b_2 = 23$ for n > 1 and $b_2 = 22$ for n = 1.
- Kumⁿ-type. Let $T = \mathbb{C}^2/\mathbb{Z}^4$. The Albanese morphism:

$$a: T^{[n+1]} \to T, \quad (x_0, \dots, x_n) \mapsto \sum x_i$$

 $K^nT = a^{-1}(0)$ = the generalized Kummer variety, it is hyperkähler with $b_2 = 7$ for n > 1.

• OG6 and OG10-types. O'Grady's exceptional hyperkähler manifolds of dimensions 6 and 10 with $b_2 = 8$ and $b_2 = 24$ respectively.

Denote:

- $\mathcal{D}iff(X)$ the Fréchet Lie group of diffeomorphisms of X;
- $\mathcal{D}iff^{\circ}(X) \subset \mathcal{D}iff(X)$ the connected component of the identity.

Definition

- $\mathcal{MCG}(X) = \mathcal{Diff}(X)/\mathcal{Diff}^{\circ}(X)$ the mapping class group;
- A complex structure I on X is of hyperkähler type if I is part of a hyperkähler structure;
- $\mathcal{J}(X) = all\ complex\ structures\ of\ hyperkähler\ type\ on\ X;$
- The Teichmüller space: $\mathcal{T}(X) = \mathcal{F}(X)/\mathcal{D}iff^{\circ}(X)$. It is a non-Hausdorff complex manifold.

Denote:

- $\mathfrak{Diff}(X)$ the Fréchet Lie group of diffeomorphisms of X;
- $\mathcal{D}iff^{\circ}(X) \subset \mathcal{D}iff(X)$ the connected component of the identity.

Definition

- $\mathcal{MCG}(X) = \mathcal{Diff}(X)/\mathcal{Diff}^{\circ}(X)$ the mapping class group;
- A complex structure I on X is of hyperkähler type if I is part of a hyperkähler structure;
- $\mathcal{J}(X) = all\ complex\ structures\ of\ hyperkähler\ type\ on\ X;$
- The Teichmüller space: $\mathcal{T}(X) = \mathcal{F}(X)/\mathcal{D}iff^{\circ}(X)$. It is a non-Hausdorff complex manifold.

Denote:

- $\mathfrak{Diff}(X)$ the Fréchet Lie group of diffeomorphisms of X;
- $\mathcal{D}iff^{\circ}(X) \subset \mathcal{D}iff(X)$ the connected component of the identity.

Definition

- $\mathcal{MCG}(X) = \mathcal{Diff}(X)/\mathcal{Diff}^{\circ}(X)$ the mapping class group;
- A complex structure I on X is of hyperkähler type if I is part of a hyperkähler structure;
- $\mathcal{J}(X) = all\ complex\ structures\ of\ hyperkähler\ type\ on\ X;$
- The Teichmüller space: $\mathcal{T}(X) = \mathcal{F}(X)/\mathcal{D}iff^{\circ}(X)$. It is a non-Hausdorff complex manifold.

Denote:

- $\mathfrak{Diff}(X)$ the Fréchet Lie group of diffeomorphisms of X;
- $\mathcal{D}iff^{\circ}(X) \subset \mathcal{D}iff(X)$ the connected component of the identity.

Definition

- $\mathcal{MCG}(X) = \mathcal{Diff}(X)/\mathcal{Diff}^{\circ}(X)$ the mapping class group;
- A complex structure I on X is of hyperkähler type if I is part of a hyperkähler structure;
- $\mathcal{J}(X) = all\ complex\ structures\ of\ hyperkähler\ type\ on\ X;$
- The Teichmüller space: $\mathcal{T}(X) = \mathcal{F}(X)/\mathcal{D}iff^{\circ}(X)$. It is a non-Hausdorff complex manifold.

Denote:

- $\mathfrak{Diff}(X)$ the Fréchet Lie group of diffeomorphisms of X;
- $\mathcal{D}iff^{\circ}(X) \subset \mathcal{D}iff(X)$ the connected component of the identity.

Definition

- $\mathcal{MCG}(X) = \mathcal{Diff}(X)/\mathcal{Diff}^{\circ}(X)$ the mapping class group;
- A complex structure I on X is of hyperkähler type if I is part of a hyperkähler structure;
- $\mathcal{J}(X) = all\ complex\ structures\ of\ hyperkähler\ type\ on\ X;$
- The Teichmüller space: $\mathcal{T}(X) = \mathcal{F}(X)/\mathcal{D}iff^{\circ}(X)$. It is a non-Hausdorff complex manifold.

Denote:

- $\mathfrak{Diff}(X)$ the Fréchet Lie group of diffeomorphisms of X;
- $\mathcal{D}iff^{\circ}(X) \subset \mathcal{D}iff(X)$ the connected component of the identity.

Definition

- $\mathcal{MCG}(X) = \mathcal{Diff}(X)/\mathcal{Diff}^{\circ}(X)$ the mapping class group;
- A complex structure I on X is of hyperkähler type if I is part of a hyperkähler structure;
- $\mathcal{J}(X) = all\ complex\ structures\ of\ hyperkähler\ type\ on\ X;$
- The Teichmüller space: $\mathcal{T}(X) = \mathcal{F}(X)/\mathcal{D}iff^{\circ}(X)$. It is a non-Hausdorff complex manifold.

Denote:

- $\mathfrak{Diff}(X)$ the Fréchet Lie group of diffeomorphisms of X;
- $\mathcal{D}iff^{\circ}(X) \subset \mathcal{D}iff(X)$ the connected component of the identity.

Definition

- $\mathcal{MCG}(X) = \mathcal{Diff}(X)/\mathcal{Diff}^{\circ}(X)$ the mapping class group;
- A complex structure I on X is of hyperkähler type if I is part of a hyperkähler structure;
- $\mathcal{I}(X) = all\ complex\ structures\ of\ hyperkähler\ type\ on\ X;$
- The Teichmüller space: $\mathcal{T}(X) = \mathcal{I}(X)/\mathcal{D}iff^{\circ}(X)$. It is a non-Hausdorff complex manifold.

The Teichmüller space

Denote:

- $\mathfrak{Diff}(X)$ the Fréchet Lie group of diffeomorphisms of X;
- $\mathcal{D}iff^{\circ}(X) \subset \mathcal{D}iff(X)$ the connected component of the identity.

Definition

- $\mathcal{MCG}(X) = \mathcal{Diff}(X)/\mathcal{Diff}^{\circ}(X)$ the mapping class group;
- A complex structure I on X is of hyperkähler type if I is part of a hyperkähler structure;
- $\mathcal{J}(X) = all\ complex\ structures\ of\ hyperkähler\ type\ on\ X;$
- The Teichmüller space: $\mathcal{T}(X) = \mathcal{I}(X)/\mathcal{D}iff^{\circ}(X)$. It is a non-Hausdorff complex manifold.

We have a natural action of $\mathcal{MCG}(X)$ on $\mathcal{T}(X)$.

Denote

$$V = H^2(X, \mathbb{Q}), \quad V_{\mathbb{R}} = V \otimes \mathbb{R}, \quad V_{\mathbb{C}} = V \otimes \mathbb{C}.$$

q is the BBF form on V of signature $(3, d-3), d = \dim(V)$.

The period domain for \mathcal{T}

$$\mathcal{D} = \{L \subset V_{\mathbb{R}} \mid \dim(L) = 2, L \text{ is oriented and positive}\}$$

$$\simeq O(3, d-3)/SO(2) \times O(1, d-3).$$

The period map $\rho \colon \mathcal{T} \to \mathcal{D}$,

$$I \mapsto L = \langle \operatorname{Re}[\sigma_I], \operatorname{Im}[\sigma_I] \rangle$$

where σ_I is the holomorphic symplectic form on X_I and $[\sigma_I]$ is its cohomology class.

Denote:

$$V = H^2(X, \mathbb{Q}), \quad V_{\mathbb{R}} = V \otimes \mathbb{R}, \quad V_{\mathbb{C}} = V \otimes \mathbb{C}.$$

q is the BBF form on V of signature $(3, d-3), d = \dim(V)$.

The period domain for \mathcal{T}

$$\mathcal{D} = \{L \subset V_{\mathbb{R}} \mid \dim(L) = 2, L \text{ is oriented and positive}\}$$

$$\simeq O(3, d-3)/SO(2) \times O(1, d-3).$$

The period map $\rho \colon \mathcal{T} \to \mathcal{D}$,

$$I \mapsto L = \langle \operatorname{Re}[\sigma_I], \operatorname{Im}[\sigma_I] \rangle$$

where σ_I is the holomorphic symplectic form on X_I and $[\sigma_I]$ is its cohomology class.

Denote:

$$V = H^2(X, \mathbb{Q}), \quad V_{\mathbb{R}} = V \otimes \mathbb{R}, \quad V_{\mathbb{C}} = V \otimes \mathbb{C}.$$

q is the BBF form on V of signature (3, d-3), $d = \dim(V)$.

The period domain for \mathcal{T} :

$$\mathcal{D} = \{L \subset V_{\mathbb{R}} \mid \dim(L) = 2, L \text{ is oriented and positive}\}$$

$$\simeq O(3, d-3)/SO(2) \times O(1, d-3).$$

The period map $\rho \colon \mathcal{T} \to \mathcal{D}$,

$$I \mapsto L = \langle \operatorname{Re}[\sigma_I], \operatorname{Im}[\sigma_I] \rangle$$

where σ_I is the holomorphic symplectic form on X_I and $[\sigma_I]$ is its cohomology class.

Denote:

$$V = H^2(X, \mathbb{Q}), \quad V_{\mathbb{R}} = V \otimes \mathbb{R}, \quad V_{\mathbb{C}} = V \otimes \mathbb{C}.$$

q is the BBF form on V of signature $(3, d-3), d = \dim(V)$.

The period domain for \mathcal{T} :

$$\mathcal{D} = \{L \subset V_{\mathbb{R}} \mid \dim(L) = 2, L \text{ is oriented and positive}\}$$

$$\simeq O(3, d-3)/SO(2) \times O(1, d-3).$$

The period map $\rho \colon \mathcal{T} \to \mathcal{D}$,

$$I \mapsto L = \langle \operatorname{Re}[\sigma_I], \operatorname{Im}[\sigma_I] \rangle$$

where σ_I is the holomorphic symplectic form on X_I and $[\sigma_I]$ is its cohomology class.

Denote:

$$V = H^2(X, \mathbb{Q}), \quad V_{\mathbb{R}} = V \otimes \mathbb{R}, \quad V_{\mathbb{C}} = V \otimes \mathbb{C}.$$

q is the BBF form on V of signature $(3, d-3), d = \dim(V)$.

The period domain for \mathcal{T} :

$$\mathcal{D} = \{L \subset V_{\mathbb{R}} \mid \dim(L) = 2, L \text{ is oriented and positive}\}$$

$$\simeq O(3, d-3)/SO(2) \times O(1, d-3).$$

The period map $\rho \colon \mathcal{T} \to \mathcal{D}$,

$$I \mapsto L = \langle \operatorname{Re}[\sigma_I], \operatorname{Im}[\sigma_I] \rangle$$

where σ_I is the holomorphic symplectic form on X_I and $[\sigma_I]$ is its cohomology class.

Denote:

$$V = H^2(X, \mathbb{Q}), \quad V_{\mathbb{R}} = V \otimes \mathbb{R}, \quad V_{\mathbb{C}} = V \otimes \mathbb{C}.$$

q is the BBF form on V of signature $(3, d-3), d = \dim(V)$.

The period domain for \mathcal{T} :

$$\mathcal{D} = \{L \subset V_{\mathbb{R}} \mid \dim(L) = 2, L \text{ is oriented and positive}\}$$

$$\simeq O(3, d-3)/SO(2) \times O(1, d-3).$$

The period map $\rho \colon \mathcal{T} \to \mathcal{D}$,

$$I \mapsto L = \langle \operatorname{Re}[\sigma_I], \operatorname{Im}[\sigma_I] \rangle$$

where σ_I is the holomorphic symplectic form on X_I and $[\sigma_I]$ is its cohomology class.

Theorem (The local Torelli — Beauville, Bogomolov)

The period map $\rho \colon \mathcal{T} \to \mathcal{D}$ is a local isomorphism of complex manifolds.

Identify the non-separated points of \mathcal{T} , get a Hausdorff complex manifold $\widetilde{\mathcal{T}}$.

Fix a connected component \mathcal{T}° of the Teichmüller space.

Theorem (The global Torelli — Verbitsky)

The period map $\tilde{\rho}^{\circ} : \mathcal{T}^{\circ} \to \mathcal{D}$ is an isomorphism of complex manifolds.

Theorem (The local Torelli — Beauville, Bogomolov)

The period map $\rho \colon \mathcal{T} \to \mathcal{D}$ is a local isomorphism of complex manifolds.

Identify the non-separated points of \mathcal{T} , get a Hausdorff complex manifold $\widetilde{\mathcal{T}}$.

Fix a connected component \mathcal{T}° of the Teichmüller space.

Theorem (The global Torelli — Verbitsky)

The period map $\tilde{\rho}^{\circ}: \mathcal{T}^{\circ} \to \mathcal{D}$ is an isomorphism of complex manifolds.

Theorem (The local Torelli — Beauville, Bogomolov)

The period map $\rho \colon \mathcal{T} \to \mathcal{D}$ is a local isomorphism of complex manifolds.

Identify the non-separated points of \mathcal{T} , get a Hausdorff complex manifold $\widetilde{\mathcal{T}}$.

Fix a connected component \mathcal{T}° of the Teichmüller space.

Theorem (The global Torelli — Verbitsky)

The period map $\tilde{\rho}^{\circ} : \mathcal{T}^{\circ} \to \mathcal{D}$ is an isomorphism of complex manifolds.

Theorem (The local Torelli — Beauville, Bogomolov)

The period map $\rho \colon \mathcal{T} \to \mathcal{D}$ is a local isomorphism of complex manifolds.

Identify the non-separated points of \mathcal{T} , get a Hausdorff complex manifold $\widetilde{\mathcal{T}}$.

Fix a connected component \mathcal{T}° of the Teichmüller space.

Theorem (The global Torelli — Verbitsky)

The period map $\tilde{\rho}^{\circ} \colon \tilde{\mathcal{T}}^{\circ} \to \mathcal{D}$ is an isomorphism of complex manifolds.

Theorem (The local Torelli — Beauville, Bogomolov)

The period map $\rho \colon \mathcal{T} \to \mathcal{D}$ is a local isomorphism of complex manifolds.

Identify the non-separated points of \mathcal{T} , get a Hausdorff complex manifold $\widetilde{\mathcal{T}}$.

Fix a connected component \mathcal{T}° of the Teichmüller space.

Theorem (The global Torelli — Verbitsky)

The period map $\tilde{\rho}^{\circ} : \widetilde{\mathcal{T}}^{\circ} \to \mathcal{D}$ is an isomorphism of complex manifolds.

How to describe the non-separated points of \mathcal{T} , i.e. the fibre of $\rho^{\circ} \colon \mathcal{T}^{\circ} \to \mathcal{D}$?

Theorem (Huybrechts)

The non-separated points of \mathcal{T} correspond to bimeromorphic hyperkähler manifolds.

Fix $L \subset V_{\mathbb{R}}$ corresponding to a point $[L] = \rho^{\circ}(I) \in \mathcal{D}$. The restriction of q to $V_{\mathbb{R}}^{1,1} = L^{\perp} \subset V_{\mathbb{R}}$ has signature (1, d-3).

Definition

The positive cone $C^+ \subset V_{\mathbb{R}}^{1,1}$ is the connected component of the set $\{x \in V_{\mathbb{R}}^{1,1} \mid q(x) > 0\}$ that contains the Kähler classes.

How to describe the non-separated points of \mathcal{T} , i.e. the fibre of $\rho^{\circ} \colon \mathcal{T}^{\circ} \to \mathcal{D}$?

Theorem (Huybrechts)

The non-separated points of \mathcal{T} correspond to bimeromorphic hyperkähler manifolds.

Fix $L \subset V_{\mathbb{R}}$ corresponding to a point $[L] = \rho^{\circ}(I) \in \mathcal{D}$. The restriction of q to $V_{\mathbb{R}}^{1,1} = L^{\perp} \subset V_{\mathbb{R}}$ has signature (1, d-3).

Definition

The positive cone $C^+ \subset V_{\mathbb{R}}^{1,1}$ is the connected component of the set $\{x \in V_{\mathbb{R}}^{1,1} \mid q(x) > 0\}$ that contains the Kähler classes.

How to describe the non-separated points of \mathcal{T} , i.e. the fibre of $\rho^{\circ} \colon \mathcal{T}^{\circ} \to \mathcal{D}$?

Theorem (Huybrechts)

The non-separated points of \mathcal{T} correspond to bimeromorphic hyperkähler manifolds.

Fix $L \subset V_{\mathbb{R}}$ corresponding to a point $[L] = \rho^{\circ}(I) \in \mathcal{D}$. The restriction of q to $V_{\mathbb{R}}^{1,1} = L^{\perp} \subset V_{\mathbb{R}}$ has signature (1, d-3).

Definition

The positive cone $C^+ \subset V_{\mathbb{R}}^{1,1}$ is the connected component of the set $\{x \in V_{\mathbb{R}}^{1,1} \mid q(x) > 0\}$ that contains the Kähler classes.

How to describe the non-separated points of \mathcal{T} , i.e. the fibre of $\rho^{\circ} \colon \mathcal{T}^{\circ} \to \mathcal{D}$?

Theorem (Huybrechts)

The non-separated points of \mathcal{T} correspond to bimeromorphic hyperkähler manifolds.

Fix $L \subset V_{\mathbb{R}}$ corresponding to a point $[L] = \rho^{\circ}(I) \in \mathcal{D}$. The restriction of q to $V_{\mathbb{R}}^{1,1} = L^{\perp} \subset V_{\mathbb{R}}$ has signature (1, d-3).

Definition

The positive cone $C^+ \subset V_{\mathbb{R}}^{1,1}$ is the connected component of the set $\{x \in V_{\mathbb{R}}^{1,1} \mid q(x) > 0\}$ that contains the Kähler classes.

How to describe the non-separated points of \mathcal{T} , i.e. the fibre of $\rho^{\circ} \colon \mathcal{T}^{\circ} \to \mathcal{D}$?

Theorem (Huybrechts)

The non-separated points of \mathcal{T} correspond to bimeromorphic hyperkähler manifolds.

Fix $L \subset V_{\mathbb{R}}$ corresponding to a point $[L] = \rho^{\circ}(I) \in \mathcal{D}$. The restriction of q to $V_{\mathbb{R}}^{1,1} = L^{\perp} \subset V_{\mathbb{R}}$ has signature (1, d-3).

Definition

The positive cone $C^+ \subset V_{\mathbb{R}}^{1,1}$ is the connected component of the set $\{x \in V_{\mathbb{R}}^{1,1} \mid q(x) > 0\}$ that contains the Kähler classes.

How to describe the non-separated points of \mathcal{T} , i.e. the fibre of $\rho^{\circ} \colon \mathcal{T}^{\circ} \to \mathcal{D}$?

Theorem (Huybrechts)

The non-separated points of \mathcal{T} correspond to bimeromorphic hyperkähler manifolds.

Fix $L \subset V_{\mathbb{R}}$ corresponding to a point $[L] = \rho^{\circ}(I) \in \mathcal{D}$. The restriction of q to $V_{\mathbb{R}}^{1,1} = L^{\perp} \subset V_{\mathbb{R}}$ has signature (1, d-3).

Definition

The positive cone $C^+ \subset V_{\mathbb{R}}^{1,1}$ is the connected component of the set $\{x \in V_{\mathbb{R}}^{1,1} \mid q(x) > 0\}$ that contains the Kähler classes.

How to describe the non-separated points of \mathcal{T} , i.e. the fibre of $\rho^{\circ} \colon \mathcal{T}^{\circ} \to \mathcal{D}$?

Theorem (Huybrechts)

The non-separated points of \mathcal{T} correspond to bimeromorphic hyperkähler manifolds.

Fix $L \subset V_{\mathbb{R}}$ corresponding to a point $[L] = \rho^{\circ}(I) \in \mathcal{D}$. The restriction of q to $V_{\mathbb{R}}^{1,1} = L^{\perp} \subset V_{\mathbb{R}}$ has signature (1, d-3).

Definition

The positive cone $C^+ \subset V_{\mathbb{R}}^{1,1}$ is the connected component of the set $\{x \in V_{\mathbb{R}}^{1,1} \mid q(x) > 0\}$ that contains the Kähler classes.

Amerik, Verbitsky: there is a collection of integral classes

$$MBM \subset H^2(X, \mathbb{Z})$$

called monodromy birationally minimal or MBM classes with the following properties.

Let $MBM^{1,1} = MBM \cap V_{\mathbb{R}}^{1,1}$. Then the hyperplanes x^{\perp} , where $x \in MBM^{1,1}$, cut \mathcal{C}^+ into open chambers.

The points of the fibre $\rho^{\circ -1}[L]$ are in 1-1 correspondence with the chambers: each chamber is the Kähler cone for a manifold X_I , where $I \in \rho^{\circ -1}[L]$.

Theorem (Amerik, Verbitsky)

Amerik, Verbitsky: there is a collection of integral classes

$$MBM \subset H^2(X,\mathbb{Z})$$

called monodromy birationally minimal or MBM classes with the following properties.

Let $MBM^{1,1} = MBM \cap V_{\mathbb{R}}^{1,1}$. Then the hyperplanes x^{\perp} , where $x \in MBM^{1,1}$, cut \mathcal{C}^+ into open chambers.

The points of the fibre $\rho^{\circ -1}[L]$ are in 1-1 correspondence with the chambers: each chamber is the Kähler cone for a manifoldd X_I , where $I \in \rho^{\circ -1}[L]$.

Theorem (Amerik, Verbitsky)

Amerik, Verbitsky: there is a collection of integral classes

$$MBM \subset H^2(X,\mathbb{Z})$$

called monodromy birationally minimal or MBM classes with the following properties.

Let $MBM^{1,1} = MBM \cap V_{\mathbb{R}}^{1,1}$. Then the hyperplanes x^{\perp} , where $x \in MBM^{1,1}$, cut \mathcal{C}^+ into open chambers.

The points of the fibre $\rho^{\circ -1}[L]$ are in 1-1 correspondence with the chambers: each chamber is the Kähler cone for a manifold X_I , where $I \in \rho^{\circ -1}[L]$.

Theorem (Amerik, Verbitsky)

Amerik, Verbitsky: there is a collection of integral classes

$$MBM \subset H^2(X,\mathbb{Z})$$

called monodromy birationally minimal or MBM classes with the following properties.

Let $MBM^{1,1} = MBM \cap V_{\mathbb{R}}^{1,1}$. Then the hyperplanes x^{\perp} , where $x \in MBM^{1,1}$, cut \mathcal{C}^+ into open chambers.

The points of the fibre $\rho^{\circ -1}[L]$ are in 1-1 correspondence with the chambers: each chamber is the Kähler cone for a manifoldd X_I , where $I \in \rho^{\circ -1}[L]$.

Theorem (Amerik, Verbitsky)

Amerik, Verbitsky: there is a collection of integral classes

$$MBM \subset H^2(X,\mathbb{Z})$$

called monodromy birationally minimal or MBM classes with the following properties.

Let $MBM^{1,1} = MBM \cap V_{\mathbb{R}}^{1,1}$. Then the hyperplanes x^{\perp} , where $x \in MBM^{1,1}$, cut \mathcal{C}^+ into open chambers.

The points of the fibre $\rho^{\circ -1}[L]$ are in 1-1 correspondence with the chambers: each chamber is the Kähler cone for a manifoldd X_I , where $I \in \rho^{\circ -1}[L]$.

Theorem (Amerik, Verbitsky)

Let $\mathcal{MCG}^{\circ} \subset \mathcal{MCG}$ be the stabilizer of the connected component \mathcal{T}° .

There is a representation $r: \mathcal{MCG}^{\circ} \to O(V, q)$.

Theorem (Verbitsky, Markman)

 $\Gamma = \operatorname{Im}(r)$ is a finite index subgroup in $O(H^2(X, \mathbb{Z}), q)$ called the monodromy group.

The period map $\rho^{\circ} \colon \mathcal{T}^{\circ} \to \mathcal{D}$ is \mathcal{MCG}° -equivariant. We want to understand the \mathcal{MCG}° -orbits.

Recall

$$\mathcal{D} \simeq O(3, d-3)/SO(2) \times O(1, d-3)$$

Let $\mathcal{MCG}^{\circ} \subset \mathcal{MCG}$ be the stabilizer of the connected component \mathcal{T}° .

There is a representation $r: \mathcal{MCG}^{\circ} \to O(V, q)$

Theorem (Verbitsky, Markman)

 $\Gamma = \operatorname{Im}(r)$ is a finite index subgroup in $O(H^2(X, \mathbb{Z}), q)$ called the monodromy group.

The period map $\rho^{\circ} \colon \mathcal{T}^{\circ} \to \mathcal{D}$ is \mathcal{MCG}° -equivariant. We want to understand the \mathcal{MCG}° -orbits.

Recall

$$\mathcal{D} \simeq O(3, d-3)/SO(2) \times O(1, d-3)$$

Let $\mathcal{MCG}^{\circ} \subset \mathcal{MCG}$ be the stabilizer of the connected component \mathcal{T}° .

There is a representation $r: \mathcal{MCG}^{\circ} \to O(V, q)$.

Theorem (Verbitsky, Markman)

 $\Gamma = \operatorname{Im}(r)$ is a finite index subgroup in $O(H^2(X,\mathbb{Z}),q)$ called the monodromy group.

The period map $\rho^{\circ} \colon \mathcal{T}^{\circ} \to \mathcal{D}$ is \mathcal{MCG}° -equivariant. We want to understand the \mathcal{MCG}° -orbits.

Recall

$$\mathcal{D} \simeq O(3, d-3)/SO(2) \times O(1, d-3)$$

Let $\mathcal{MCG}^{\circ} \subset \mathcal{MCG}$ be the stabilizer of the connected component \mathcal{T}° .

There is a representation $r: \mathcal{MCG}^{\circ} \to O(V, q)$.

Theorem (Verbitsky, Markman)

 $\Gamma = \operatorname{Im}(r)$ is a finite index subgroup in $O(H^2(X, \mathbb{Z}), q)$ called the monodromy group.

The period map $\rho^{\circ} \colon \mathcal{T}^{\circ} \to \mathcal{D}$ is \mathcal{MCG}° -equivariant We want to understand the \mathcal{MCG}° -orbits.

Recall:

$$\mathcal{D} \simeq O(3, d-3)/SO(2) \times O(1, d-3)$$

Let $\mathcal{MCG}^{\circ} \subset \mathcal{MCG}$ be the stabilizer of the connected component \mathcal{T}° .

There is a representation $r: \mathcal{MCG}^{\circ} \to O(V, q)$.

Theorem (Verbitsky, Markman)

 $\Gamma = \operatorname{Im}(r)$ is a finite index subgroup in $O(H^2(X,\mathbb{Z}),q)$ called the monodromy group.

The period map $\rho^{\circ} \colon \mathcal{T}^{\circ} \to \mathcal{D}$ is \mathcal{MCG}° -equivariant. We want to understand the \mathcal{MCG}° -orbits.

Recall:

$$\mathcal{D} \simeq O(3, d-3)/SO(2) \times O(1, d-3)$$

Let $\mathcal{MCG}^{\circ} \subset \mathcal{MCG}$ be the stabilizer of the connected component \mathcal{T}° .

There is a representation $r: \mathcal{MCG}^{\circ} \to O(V, q)$.

Theorem (Verbitsky, Markman)

 $\Gamma = \operatorname{Im}(r)$ is a finite index subgroup in $O(H^2(X, \mathbb{Z}), q)$ called the monodromy group.

The period map $\rho^{\circ} \colon \mathcal{T}^{\circ} \to \mathcal{D}$ is \mathcal{MCG}° -equivariant. We want to understand the \mathcal{MCG}° -orbits.

Recall:

$$\mathcal{D} \simeq O(3, d-3)/SO(2) \times O(1, d-3)$$

Let $\mathcal{MCG}^{\circ} \subset \mathcal{MCG}$ be the stabilizer of the connected component \mathcal{T}° .

There is a representation $r: \mathcal{MCG}^{\circ} \to O(V, q)$.

Theorem (Verbitsky, Markman)

 $\Gamma = \operatorname{Im}(r)$ is a finite index subgroup in $O(H^2(X, \mathbb{Z}), q)$ called the monodromy group.

The period map $\rho^{\circ} \colon \mathcal{T}^{\circ} \to \mathcal{D}$ is \mathcal{MCG}° -equivariant. We want to understand the \mathcal{MCG}° -orbits.

Recall:

$$\mathcal{D} \simeq O(3, d-3)/SO(2) \times O(1, d-3)$$

Setting:

- $\mathbf{G} \subset SL(V)$ a connected semisimple algebraic \mathbb{Q} -group;
- $G = \mathbf{G}(\mathbb{R})^{\circ}$ the identity component of $\mathbf{G}(\mathbb{R})$;
- $\Gamma \subset \mathbf{G}(\mathbb{Q}) \cap G$ an arithmetic lattice;
- $S \subset G$ a Lie subgroup generated by unipotents.

Theorem (Ratner)

In the above setting $\overline{\Gamma S} = \Gamma H$, where $H = \mathbf{H}(\mathbb{R})^{\circ}$ and $\mathbf{H} \subset \mathbf{G}$ is the smallest algebraic \mathbb{Q} -subgroup such that H contains S. Hence the closure of the image of Γ in G/S is homogeneous: it is the Γ -orbit of H/S.

Corollary

Setting:

- $\mathbf{G} \subset SL(V)$ a connected semisimple algebraic \mathbb{Q} -group;
- $G = \mathbf{G}(\mathbb{R})^{\circ}$ the identity component of $\mathbf{G}(\mathbb{R})$;
- $\Gamma \subset \mathbf{G}(\mathbb{Q}) \cap G$ an arithmetic lattice;
- $S \subset G$ a Lie subgroup generated by unipotents.

Theorem (Ratner)

In the above setting $\overline{\Gamma S} = \Gamma H$, where $H = \mathbf{H}(\mathbb{R})^{\circ}$ and $\mathbf{H} \subset \mathbf{G}$ is the smallest algebraic \mathbb{Q} -subgroup such that H contains S. Hence the closure of the image of Γ in G/S is homogeneous: it is the Γ -orbit of H/S.

Corollary

Setting:

- $\mathbf{G} \subset SL(V)$ a connected semisimple algebraic \mathbb{Q} -group;
- $G = \mathbf{G}(\mathbb{R})^{\circ}$ the identity component of $\mathbf{G}(\mathbb{R})$;
- $\Gamma \subset \mathbf{G}(\mathbb{Q}) \cap G$ an arithmetic lattice;
- $S \subset G$ a Lie subgroup generated by unipotents.

Theorem (Ratner)

In the above setting $\overline{\Gamma S} = \Gamma H$, where $H = \mathbf{H}(\mathbb{R})^{\circ}$ and $\mathbf{H} \subset \mathbf{G}$ is the smallest algebraic \mathbb{Q} -subgroup such that H contains S. Hence the closure of the image of Γ in G/S is homogeneous: it is the Γ -orbit of H/S.

Corollary

Setting:

- $\mathbf{G} \subset SL(V)$ a connected semisimple algebraic \mathbb{Q} -group;
- $G = \mathbf{G}(\mathbb{R})^{\circ}$ the identity component of $\mathbf{G}(\mathbb{R})$;
- $\Gamma \subset \mathbf{G}(\mathbb{Q}) \cap G$ an arithmetic lattice;
- $S \subset G$ a Lie subgroup generated by unipotents.

Theorem (Ratner)

In the above setting $\overline{\Gamma S} = \Gamma H$, where $H = \mathbf{H}(\mathbb{R})^{\circ}$ and $\mathbf{H} \subset \mathbf{G}$ is the smallest algebraic \mathbb{Q} -subgroup such that H contains S. Hence the closure of the image of Γ in G/S is homogeneous: it is the Γ -orbit of H/S.

Corollary

Setting:

- $\mathbf{G} \subset SL(V)$ a connected semisimple algebraic \mathbb{Q} -group;
- $G = \mathbf{G}(\mathbb{R})^{\circ}$ the identity component of $\mathbf{G}(\mathbb{R})$;
- $\Gamma \subset \mathbf{G}(\mathbb{Q}) \cap G$ an arithmetic lattice;
- $S \subset G$ a Lie subgroup generated by unipotents.

Theorem (Ratner)

In the above setting $\overline{\Gamma S} = \Gamma H$, where $H = \mathbf{H}(\mathbb{R})^{\circ}$ and $\mathbf{H} \subset \mathbf{G}$ is the smallest algebraic \mathbb{Q} -subgroup such that H contains S. Hence the closure of the image of Γ in G/S is homogeneous: it is the Γ -orbit of H/S.

Corollary

Ratner's theory

Setting:

- $\mathbf{G} \subset SL(V)$ a connected semisimple algebraic \mathbb{Q} -group;
- $G = \mathbf{G}(\mathbb{R})^{\circ}$ the identity component of $\mathbf{G}(\mathbb{R})$;
- $\Gamma \subset \mathbf{G}(\mathbb{Q}) \cap G$ an arithmetic lattice;
- $S \subset G$ a Lie subgroup generated by unipotents.

Theorem (Ratner)

In the above setting $\overline{\Gamma S} = \Gamma H$, where $H = \mathbf{H}(\mathbb{R})^{\circ}$ and $\mathbf{H} \subset \mathbf{G}$ is the smallest algebraic \mathbb{Q} -subgroup such that H contains S. Hence the closure of the image of Γ in G/S is homogeneous: it is the Γ -orbit of H/S.

Corollary

In the above setting consider the homogeneous space G/S. Assume that $\mathbf{H} = \mathbf{G}$. Then the image of Γ is dense in G/S

Ratner's theory

Setting:

- $\mathbf{G} \subset SL(V)$ a connected semisimple algebraic \mathbb{Q} -group;
- $G = \mathbf{G}(\mathbb{R})^{\circ}$ the identity component of $\mathbf{G}(\mathbb{R})$;
- $\Gamma \subset \mathbf{G}(\mathbb{Q}) \cap G$ an arithmetic lattice;
- $S \subset G$ a Lie subgroup generated by unipotents.

Theorem (Ratner)

In the above setting $\overline{\Gamma S} = \Gamma H$, where $H = \mathbf{H}(\mathbb{R})^{\circ}$ and $\mathbf{H} \subset \mathbf{G}$ is the smallest algebraic \mathbb{Q} -subgroup such that H contains S. Hence the closure of the image of Γ in G/S is homogeneous: it is the Γ -orbit of H/S.

Corollary

In the above setting consider the homogeneous space G/S. Assume that $\mathbf{H} = \mathbf{G}$. Then the image of Γ is dense in G/S

Ratner's theory

Setting:

- $\mathbf{G} \subset SL(V)$ a connected semisimple algebraic \mathbb{Q} -group;
- $G = \mathbf{G}(\mathbb{R})^{\circ}$ the identity component of $\mathbf{G}(\mathbb{R})$;
- $\Gamma \subset \mathbf{G}(\mathbb{Q}) \cap G$ an arithmetic lattice;
- $S \subset G$ a Lie subgroup generated by unipotents.

Theorem (Ratner)

In the above setting $\overline{\Gamma S} = \Gamma H$, where $H = \mathbf{H}(\mathbb{R})^{\circ}$ and $\mathbf{H} \subset \mathbf{G}$ is the smallest algebraic \mathbb{Q} -subgroup such that H contains S. Hence the closure of the image of Γ in G/S is homogeneous: it is the Γ -orbit of H/S.

Corollary

In the above setting consider the homogeneous space G/S. Assume that $\mathbf{H} = \mathbf{G}$. Then the image of Γ is dense in G/S.

Our case: $\mathcal{D} \simeq SO^{\circ}(3, d-3)/SO(2) \times SO^{\circ}(1, d-3)$.

 $SO(2) \times SO^{\circ}(1, d-3)$ is not generated by unipotents.

Pass to the S^1 -bundle $\tilde{\mathcal{D}} = SO^{\circ}(3, d-3)/SO^{\circ}(1, d-3)$ over \mathcal{D} .

We have: $L \subset V_{\mathbb{R}}$ is a positive plane, $[L] \in \mathcal{D}$.

$$\mathbf{G} = SO(V, q), G = SO^{\circ}(V_{\mathbb{R}}, q), S = SO^{\circ}(L^{\perp}, q).$$

Theorem (Verbitsky)

There are 3 possibilities.

- $L \cap V = 0$. Then $\mathbf{H} = \mathbf{G}$ and the orbit $\Gamma \cdot [L]$ is dense in \mathcal{D} .
- L ∩ V is one-dimensional, spanned by v ∈ V.
 Then H = SO(v[⊥], q). The closure of Γ · [L] is the union of totally real subvarieties of D.
- L is defined over \mathbb{Q} . Then $\Gamma \cdot [L]$ is closed.

Our case: $\mathcal{D} \simeq SO^{\circ}(3, d-3)/SO(2) \times SO^{\circ}(1, d-3)$.

 $SO(2) \times SO^{\circ}(1, d-3)$ is not generated by unipotents. Pass to the S^1 -bundle $\widetilde{\mathcal{D}} = SO^{\circ}(3, d-3)/SO^{\circ}(1, d-3)$ over \mathcal{D} .

We have: $L \subset V_{\mathbb{R}}$ is a positive plane, $[L] \in \mathcal{D}$. $\mathbf{G} = SO(V, q), G = SO^{\circ}(V_{\mathbb{R}}, q), S = SO^{\circ}(L^{\perp}, q)$.

Theorem (Verbitsky)

There are 3 possibilities

- $L \cap V = 0$. Then $\mathbf{H} = \mathbf{G}$ and the orbit $\Gamma \cdot [L]$ is dense in \mathcal{D} .
- L ∩ V is one-dimensional, spanned by v ∈ V.
 Then H = SO(v[⊥], q). The closure of Γ · [L] is the union of totally real subvarieties of D.
- L is defined over \mathbb{Q} . Then $\Gamma \cdot [L]$ is closed.

Our case: $\mathcal{D} \simeq SO^{\circ}(3, d-3)/SO(2) \times SO^{\circ}(1, d-3)$.

 $SO(2) \times SO^{\circ}(1, d-3)$ is not generated by unipotents.

Pass to the S^1 -bundle $\widetilde{\mathcal{D}} = SO^{\circ}(3, d-3)/SO^{\circ}(1, d-3)$ over \mathcal{D} .

We have: $L \subset V_{\mathbb{R}}$ is a positive plane, $[L] \in \mathcal{D}$. $\mathbf{G} = SO(V, q), G = SO^{\circ}(V_{\mathbb{R}}, q), S = SO^{\circ}(L^{\perp}, q)$

Theorem (Verbitsky)

There are 3 possibilities.

- $L \cap V = 0$. Then $\mathbf{H} = \mathbf{G}$ and the orbit $\Gamma \cdot [L]$ is dense in \mathcal{D} .
- L ∩ V is one-dimensional, spanned by v ∈ V.
 Then H = SO(v[⊥], q). The closure of Γ · [L] is the union of totally real subvarieties of D.
- L is defined over \mathbb{Q} . Then $\Gamma \cdot [L]$ is closed.

Our case: $\mathcal{D} \simeq SO^{\circ}(3, d-3)/SO(2) \times SO^{\circ}(1, d-3)$.

 $SO(2) \times SO^{\circ}(1, d-3)$ is not generated by unipotents.

Pass to the S^1 -bundle $\widetilde{\mathcal{D}} = SO^{\circ}(3, d-3)/SO^{\circ}(1, d-3)$ over \mathcal{D} .

We have: $L \subset V_{\mathbb{R}}$ is a positive plane, $[L] \in \mathcal{D}$. $\mathbf{G} = SO(V, q), \ G = SO^{\circ}(V_{\mathbb{R}}, q), \ S = SO^{\circ}(L^{\perp}, q)$.

Theorem (Verbitsky)

There are 3 possibilities.

- $L \cap V = 0$. Then $\mathbf{H} = \mathbf{G}$ and the orbit $\Gamma \cdot [L]$ is dense in \mathcal{D} .
- L ∩ V is one-dimensional, spanned by v ∈ V.
 Then H = SO(v[⊥], q). The closure of Γ · [L] is the union of totally real subvarieties of D.
- L is defined over \mathbb{Q} . Then $\Gamma \cdot [L]$ is closed.

Our case: $\mathcal{D} \simeq SO^{\circ}(3, d-3)/SO(2) \times SO^{\circ}(1, d-3)$.

 $SO(2) \times SO^{\circ}(1, d-3)$ is not generated by unipotents.

Pass to the S^1 -bundle $\widetilde{\mathcal{D}} = SO^{\circ}(3, d-3)/SO^{\circ}(1, d-3)$ over \mathcal{D} .

We have: $L \subset V_{\mathbb{R}}$ is a positive plane, $[L] \in \mathcal{D}$.

$$\mathbf{G} = SO(V, q), G = SO^{\circ}(V_{\mathbb{R}}, q), S = SO^{\circ}(L^{\perp}, q).$$

Theorem (Verbitsky)

There are 3 possibilities.

- $L \cap V = 0$. Then $\mathbf{H} = \mathbf{G}$ and the orbit $\Gamma \cdot [L]$ is dense in \mathcal{D} .
- L ∩ V is one-dimensional, spanned by v ∈ V.
 Then H = SO(v[⊥], q). The closure of Γ · [L] is the union of totally real subvarieties of D.
- L is defined over \mathbb{Q} . Then $\Gamma \cdot [L]$ is closed.

Our case: $\mathcal{D} \simeq SO^{\circ}(3, d-3)/SO(2) \times SO^{\circ}(1, d-3)$.

 $SO(2) \times SO^{\circ}(1, d-3)$ is not generated by unipotents.

Pass to the S^1 -bundle $\widetilde{\mathcal{D}} = SO^{\circ}(3, d-3)/SO^{\circ}(1, d-3)$ over \mathcal{D} .

We have: $L \subset V_{\mathbb{R}}$ is a positive plane, $[L] \in \mathcal{D}$.

$$\mathbf{G} = SO(V, q), G = SO^{\circ}(V_{\mathbb{R}}, q), S = SO^{\circ}(L^{\perp}, q).$$

Theorem (Verbitsky)

There are 3 possibilities:

- $L \cap V = 0$. Then $\mathbf{H} = \mathbf{G}$ and the orbit $\Gamma \cdot [L]$ is dense in \mathcal{D} .
- L ∩ V is one-dimensional, spanned by v ∈ V.
 Then H = SO(v[⊥], q). The closure of Γ · [L] is the union of totally real subvarieties of D.
- L is defined over \mathbb{Q} . Then $\Gamma \cdot [L]$ is closed.

Our case: $\mathcal{D} \simeq SO^{\circ}(3, d-3)/SO(2) \times SO^{\circ}(1, d-3)$.

 $SO(2) \times SO^{\circ}(1, d-3)$ is not generated by unipotents.

Pass to the S^1 -bundle $\widetilde{\mathcal{D}} = SO^{\circ}(3, d-3)/SO^{\circ}(1, d-3)$ over \mathcal{D} .

We have: $L \subset V_{\mathbb{R}}$ is a positive plane, $[L] \in \mathcal{D}$.

$$\mathbf{G} = SO(V, q), G = SO^{\circ}(V_{\mathbb{R}}, q), S = SO^{\circ}(L^{\perp}, q).$$

Theorem (Verbitsky)

There are 3 possibilities:

- $L \cap V = 0$. Then $\mathbf{H} = \mathbf{G}$ and the orbit $\Gamma \cdot [L]$ is dense in \mathcal{D} .
- L ∩ V is one-dimensional, spanned by v ∈ V.
 Then H = SO(v[⊥], q). The closure of Γ · [L] is the union of totally real subvarieties of D.
- L is defined over \mathbb{Q} . Then $\Gamma \cdot [L]$ is closed.

Our case: $\mathcal{D} \simeq SO^{\circ}(3, d-3)/SO(2) \times SO^{\circ}(1, d-3)$.

 $SO(2) \times SO^{\circ}(1, d-3)$ is not generated by unipotents.

Pass to the S^1 -bundle $\widetilde{\mathcal{D}} = SO^{\circ}(3, d-3)/SO^{\circ}(1, d-3)$ over \mathcal{D} .

We have: $L \subset V_{\mathbb{R}}$ is a positive plane, $[L] \in \mathcal{D}$.

$$\mathbf{G} = SO(V, q), G = SO^{\circ}(V_{\mathbb{R}}, q), S = SO^{\circ}(L^{\perp}, q).$$

Theorem (Verbitsky)

There are 3 possibilities:

- $L \cap V = 0$. Then $\mathbf{H} = \mathbf{G}$ and the orbit $\Gamma \cdot [L]$ is dense in \mathcal{D} .
- L ∩ V is one-dimensional, spanned by v ∈ V.
 Then H = SO(v[⊥], q). The closure of Γ · [L] is the union of totally real subvarieties of D.
- L is defined over \mathbb{Q} . Then $\Gamma \cdot [L]$ is closed.

Our case: $\mathcal{D} \simeq SO^{\circ}(3, d-3)/SO(2) \times SO^{\circ}(1, d-3)$.

 $SO(2) \times SO^{\circ}(1, d-3)$ is not generated by unipotents.

Pass to the S^1 -bundle $\widetilde{\mathcal{D}} = SO^{\circ}(3, d-3)/SO^{\circ}(1, d-3)$ over \mathcal{D} .

We have: $L \subset V_{\mathbb{R}}$ is a positive plane, $[L] \in \mathcal{D}$.

$$\mathbf{G} = SO(V, q), G = SO^{\circ}(V_{\mathbb{R}}, q), S = SO^{\circ}(L^{\perp}, q).$$

Theorem (Verbitsky)

There are 3 possibilities:

- $L \cap V = 0$. Then $\mathbf{H} = \mathbf{G}$ and the orbit $\Gamma \cdot [L]$ is dense in \mathcal{D} .
- L ∩ V is one-dimensional, spanned by v ∈ V.
 Then H = SO(v[⊥], q). The closure of Γ · [L] is the union of totally real subvarieties of D.
- L is defined over \mathbb{Q} . Then $\Gamma \cdot [L]$ is closed.

Our case: $\mathcal{D} \simeq SO^{\circ}(3, d-3)/SO(2) \times SO^{\circ}(1, d-3)$.

 $SO(2) \times SO^{\circ}(1, d-3)$ is not generated by unipotents.

Pass to the S^1 -bundle $\widetilde{\mathcal{D}} = SO^{\circ}(3, d-3)/SO^{\circ}(1, d-3)$ over \mathcal{D} .

We have: $L \subset V_{\mathbb{R}}$ is a positive plane, $[L] \in \mathcal{D}$.

 $\mathbf{G} = SO(V, q), G = SO^{\circ}(V_{\mathbb{R}}, q), S = SO^{\circ}(L^{\perp}, q).$

Theorem (Verbitsky)

There are 3 possibilities:

- $L \cap V = 0$. Then $\mathbf{H} = \mathbf{G}$ and the orbit $\Gamma \cdot [L]$ is dense in \mathcal{D} .
- L ∩ V is one-dimensional, spanned by v ∈ V.
 Then H = SO(v[⊥], q). The closure of Γ · [L] is the union of totally real subvarieties of D.
- L is defined over \mathbb{Q} . Then $\Gamma \cdot [L]$ is closed.

Let X be Kähler, $\dim(X) = k$. Denote:

- $\mathcal{E} = H^0(X, \Lambda^{k-1,k-1}X)$ the space of C^{∞} (k-1,k-1)-forms.
- \mathcal{E}' the space of (1,1)-currents, i.e. continuous linear functionals on \mathcal{E} .

For $T \in \mathcal{E}'$ write $T \geqslant 0$ if $T = \overline{T}$ and for any (1,0)-forms $\eta_1, \ldots, \eta_{k-1}$ we have $\langle T, \prod_j \sqrt{-1} \eta_j \wedge \bar{\eta}_j \rangle \geqslant 0$.

Let $\alpha \in H^{1,1}_{\mathbb{R}}(X)$. Define

$$\mathcal{C}_{\alpha} = \{ T \in \mathcal{E}' \mid T \geqslant 0, dT = 0, [T] = \alpha \}.$$

- α is pseudo-effective if $\mathcal{C}_{\alpha} \neq \emptyset$;
- α is nef if $\alpha \in \overline{\mathcal{K}}_X$.
- α is rigid if \mathcal{C}_{α} contains exactly one element;

Let X be Kähler, $\dim(X) = k$. Denote:

- $\mathcal{E} = H^0(X, \Lambda^{k-1,k-1}X)$ the space of C^{∞} (k-1,k-1)-forms.
- \mathcal{E}' the space of (1,1)-currents, i.e. continuous linear functionals on \mathcal{E} .

For $T \in \mathcal{E}'$ write $T \geq 0$ if $T = \overline{T}$ and for any (1,0)-forms $\eta_1, \ldots, \eta_{k-1}$ we have $\langle T, \prod_j \sqrt{-1} \eta_j \wedge \bar{\eta}_j \rangle \geq 0$.

Let $\alpha \in H^{1,1}_{\mathbb{R}}(X)$. Define

$$\mathcal{C}_{\alpha} = \{ T \in \mathcal{E}' \mid T \geqslant 0, dT = 0, [T] = \alpha \}.$$

- α is pseudo-effective if $\mathcal{C}_{\alpha} \neq \emptyset$;
- α is nef if $\alpha \in \overline{\mathcal{K}}_X$.
- α is rigid if \mathcal{C}_{α} contains exactly one element;

Let X be Kähler, $\dim(X) = k$. Denote:

- $\mathcal{E} = H^0(X, \Lambda^{k-1,k-1}X)$ the space of C^{∞} (k-1,k-1)-forms.
- \mathcal{E}' the space of (1,1)-currents, i.e. continuous linear functionals on \mathcal{E} .

For $T \in \mathcal{E}'$ write $T \geq 0$ if $T = \overline{T}$ and for any (1,0)-forms $\eta_1, \ldots, \eta_{k-1}$ we have $\langle T, \prod_j \sqrt{-1} \eta_j \wedge \bar{\eta}_j \rangle \geq 0$.

Let $\alpha \in H^{1,1}_{\mathbb{R}}(X)$. Define

$$\mathcal{C}_{\alpha} = \{ T \in \mathcal{E}' \mid T \geqslant 0, dT = 0, [T] = \alpha \}.$$

- α is pseudo-effective if $\mathcal{C}_{\alpha} \neq \emptyset$;
- α is nef if $\alpha \in \overline{\mathcal{K}}_X$.
- α is rigid if \mathcal{C}_{α} contains exactly one element;

Let X be Kähler, $\dim(X) = k$. Denote:

- $\mathcal{E} = H^0(X, \Lambda^{k-1,k-1}X)$ the space of C^{∞} (k-1,k-1)-forms.
- \mathcal{E}' the space of (1,1)-currents, i.e. continuous linear functionals on \mathcal{E} .

For $T \in \mathcal{E}'$ write $T \geqslant 0$ if $T = \overline{T}$ and for any (1,0)-forms $\eta_1, \ldots, \eta_{k-1}$ we have $\langle T, \prod_j \sqrt{-1} \eta_j \wedge \bar{\eta}_j \rangle \geqslant 0$.

Let $\alpha \in H^{1,1}_{\mathbb{R}}(X)$. Define

$$\mathcal{C}_{\alpha} = \{ T \in \mathcal{E}' \mid T \geqslant 0, dT = 0, [T] = \alpha \}.$$

- α is pseudo-effective if $\mathcal{C}_{\alpha} \neq \emptyset$;
- α is nef if $\alpha \in \overline{\mathcal{K}}_X$.
- α is rigid if \mathcal{C}_{α} contains exactly one element;

Let X be Kähler, $\dim(X) = k$. Denote:

- $\mathcal{E} = H^0(X, \Lambda^{k-1,k-1}X)$ the space of C^{∞} (k-1,k-1)-forms.
- \mathcal{E}' the space of (1,1)-currents, i.e. continuous linear functionals on \mathcal{E} .

For $T \in \mathcal{E}'$ write $T \geqslant 0$ if $T = \overline{T}$ and for any (1,0)-forms $\eta_1, \ldots, \eta_{k-1}$ we have $\langle T, \prod_j \sqrt{-1} \eta_j \wedge \bar{\eta}_j \rangle \geqslant 0$.

Let $\alpha \in H^{1,1}_{\mathbb{R}}(X)$. Define

$$\mathcal{C}_{\alpha} = \{ T \in \mathcal{E}' \mid T \geqslant 0, dT = 0, [T] = \alpha \}.$$

- α is pseudo-effective if $\mathcal{C}_{\alpha} \neq \emptyset$;
- α is nef if $\alpha \in \overline{\mathcal{K}}_X$.
- α is rigid if \mathcal{C}_{α} contains exactly one element;

Let X be Kähler, $\dim(X) = k$. Denote:

- $\mathcal{E} = H^0(X, \Lambda^{k-1,k-1}X)$ the space of C^{∞} (k-1,k-1)-forms.
- \mathcal{E}' the space of (1,1)-currents, i.e. continuous linear functionals on \mathcal{E} .

For $T \in \mathcal{E}'$ write $T \geqslant 0$ if $T = \overline{T}$ and for any (1,0)-forms $\eta_1, \ldots, \eta_{k-1}$ we have $\langle T, \prod_j \sqrt{-1} \eta_j \wedge \bar{\eta}_j \rangle \geqslant 0$.

Let $\alpha \in H^{1,1}_{\mathbb{R}}(X)$. Define

$$\mathcal{C}_{\alpha} = \{ T \in \mathcal{E}' \mid T \geqslant 0, dT = 0, [T] = \alpha \}.$$

- α is pseudo-effective if $\mathcal{C}_{\alpha} \neq \emptyset$;
- α is nef if $\alpha \in \overline{\mathcal{K}}_X$.
- α is rigid if \mathcal{C}_{α} contains exactly one element;

Let X be Kähler, $\dim(X) = k$. Denote:

- $\mathcal{E} = H^0(X, \Lambda^{k-1,k-1}X)$ the space of C^{∞} (k-1,k-1)-forms.
- \mathcal{E}' the space of (1,1)-currents, i.e. continuous linear functionals on \mathcal{E} .

For $T \in \mathcal{E}'$ write $T \geqslant 0$ if $T = \overline{T}$ and for any (1,0)-forms $\eta_1, \ldots, \eta_{k-1}$ we have $\langle T, \prod_j \sqrt{-1} \eta_j \wedge \bar{\eta}_j \rangle \geqslant 0$.

Let $\alpha \in H^{1,1}_{\mathbb{R}}(X)$. Define

$$\mathcal{C}_{\alpha} = \{ T \in \mathcal{E}' \mid T \geqslant 0, dT = 0, [T] = \alpha \}.$$

- α is pseudo-effective if $\mathcal{C}_{\alpha} \neq \emptyset$;
- α is nef if $\alpha \in \overline{\mathcal{K}}_X$.
- α is rigid if \mathcal{C}_{α} contains exactly one element;

Let X be Kähler, $\dim(X) = k$. Denote:

- $\mathcal{E} = H^0(X, \Lambda^{k-1,k-1}X)$ the space of C^{∞} (k-1,k-1)-forms.
- \mathcal{E}' the space of (1,1)-currents, i.e. continuous linear functionals on \mathcal{E} .

For $T \in \mathcal{E}'$ write $T \geqslant 0$ if $T = \overline{T}$ and for any (1,0)-forms $\eta_1, \ldots, \eta_{k-1}$ we have $\langle T, \prod_j \sqrt{-1} \eta_j \wedge \bar{\eta}_j \rangle \geqslant 0$.

Let $\alpha \in H^{1,1}_{\mathbb{R}}(X)$. Define

$$\mathcal{C}_{\alpha} = \{ T \in \mathcal{E}' \mid T \geqslant 0, dT = 0, [T] = \alpha \}.$$

- α is pseudo-effective if $\mathcal{C}_{\alpha} \neq \emptyset$;
- α is nef if $\alpha \in \overline{\mathcal{K}}_X$.
- α is rigid if \mathcal{C}_{α} contains exactly one element;

Let X be Kähler, $\dim(X) = k$. Denote:

- $\mathcal{E} = H^0(X, \Lambda^{k-1,k-1}X)$ the space of C^{∞} (k-1,k-1)-forms.
- \mathcal{E}' the space of (1,1)-currents, i.e. continuous linear functionals on \mathcal{E} .

For $T \in \mathcal{E}'$ write $T \geqslant 0$ if $T = \overline{T}$ and for any (1,0)-forms $\eta_1, \ldots, \eta_{k-1}$ we have $\langle T, \prod_j \sqrt{-1} \eta_j \wedge \bar{\eta}_j \rangle \geqslant 0$.

Let $\alpha \in H^{1,1}_{\mathbb{R}}(X)$. Define

$$\mathcal{C}_{\alpha} = \{ T \in \mathcal{E}' \mid T \geqslant 0, dT = 0, [T] = \alpha \}.$$

- α is pseudo-effective if $\mathcal{C}_{\alpha} \neq \emptyset$;
- α is nef if $\alpha \in \overline{\mathcal{K}}_X$.
- α is rigid if \mathcal{C}_{α} contains exactly one element;

Let X be Kähler, $\dim(X) = k$. Denote:

- $\mathcal{E} = H^0(X, \Lambda^{k-1,k-1}X)$ the space of C^{∞} (k-1,k-1)-forms.
- \mathcal{E}' the space of (1,1)-currents, i.e. continuous linear functionals on \mathcal{E} .

For $T \in \mathcal{E}'$ write $T \geqslant 0$ if $T = \overline{T}$ and for any (1,0)-forms $\eta_1, \ldots, \eta_{k-1}$ we have $\langle T, \prod_j \sqrt{-1} \eta_j \wedge \bar{\eta}_j \rangle \geqslant 0$.

Let $\alpha \in H^{1,1}_{\mathbb{R}}(X)$. Define

$$\mathcal{C}_{\alpha} = \{ T \in \mathcal{E}' \mid T \geqslant 0, dT = 0, [T] = \alpha \}.$$

- α is pseudo-effective if $\mathcal{C}_{\alpha} \neq \emptyset$;
- α is nef if $\alpha \in \overline{\mathcal{K}}_X$.
- α is rigid if \mathcal{C}_{α} contains exactly one element;

Let X be Kähler, $\dim(X) = k$. Denote:

- $\mathcal{E} = H^0(X, \Lambda^{k-1,k-1}X)$ the space of C^{∞} (k-1,k-1)-forms.
- \mathcal{E}' the space of (1,1)-currents, i.e. continuous linear functionals on \mathcal{E} .

For $T \in \mathcal{E}'$ write $T \geqslant 0$ if $T = \overline{T}$ and for any (1,0)-forms $\eta_1, \ldots, \eta_{k-1}$ we have $\langle T, \prod_j \sqrt{-1} \eta_j \wedge \bar{\eta}_j \rangle \geqslant 0$.

Let $\alpha \in H^{1,1}_{\mathbb{R}}(X)$. Define

$$\mathcal{C}_{\alpha} = \{ T \in \mathcal{E}' \mid T \geqslant 0, dT = 0, [T] = \alpha \}.$$

- α is pseudo-effective if $\mathcal{C}_{\alpha} \neq \emptyset$;
- α is nef if $\alpha \in \overline{\mathcal{K}}_X$.
- α is rigid if \mathcal{C}_{α} contains exactly one element;

Example: S a projective surface and $C \subset S$ an irreducible curve with $C^2 < 0$. Then the cohomology class [C] is rigid: the unique positive closed current in [C] is the current of integration over C.

Demailly-Peternell-Schneider: an example of a surface S with a nef irreducible curve $C \subset X$ such that [C] is rigid.

Cantat: Let X be Kähler. Call $\alpha \in \mathcal{P}_X$ dynamical if there exists an automorphism $f: X \to X$ and a volume form Vol on X such that $f^*\alpha = \lambda \alpha$ with $\lambda > 1$ and $f^*\text{Vol} = \text{Vol}$. One can show: a dynamical class α is rigid.

Note: a dynamical class satisfies $\alpha^k = 0$, where $k = \dim(X)$.

Definition

Example: S a projective surface and $C \subset S$ an irreducible curve with $C^2 < 0$. Then the cohomology class [C] is rigid: the unique positive closed current in [C] is the current of integration over C.

Demailly-Peternell-Schneider: an example of a surface S with a nef irreducible curve $C \subset X$ such that [C] is rigid.

Cantat: Let X be Kähler. Call $\alpha \in \mathcal{P}_X$ dynamical if there exists an automorphism $f: X \to X$ and a volume form Vol on X such that $f^*\alpha = \lambda \alpha$ with $\lambda > 1$ and $f^*\text{Vol} = \text{Vol}$. One can show: a dynamical class α is rigid.

Note: a dynamical class satisfies $\alpha^k = 0$, where $k = \dim(X)$.

Definition

Example: S a projective surface and $C \subset S$ an irreducible curve with $C^2 < 0$. Then the cohomology class [C] is rigid: the unique positive closed current in [C] is the current of integration over C.

Demailly–Peternell–Schneider: an example of a surface S with a nef irreducible curve $C \subset X$ such that [C] is rigid.

Cantat: Let X be Kähler. Call $\alpha \in \mathcal{P}_X$ dynamical if there exists an automorphism $f: X \to X$ and a volume form Vol on X such that $f^*\alpha = \lambda \alpha$ with $\lambda > 1$ and $f^*\text{Vol} = \text{Vol}$. One can show: a dynamical class α is rigid.

Note: a dynamical class satisfies $\alpha^k = 0$, where $k = \dim(X)$.

Definition

Example: S a projective surface and $C \subset S$ an irreducible curve with $C^2 < 0$. Then the cohomology class [C] is rigid: the unique positive closed current in [C] is the current of integration over C.

Demailly–Peternell–Schneider: an example of a surface S with a nef irreducible curve $C \subset X$ such that [C] is rigid.

Cantat: Let X be Kähler. Call $\alpha \in \mathcal{P}_X$ dynamical if there exists an automorphism $f: X \to X$ and a volume form Vol on X such that $f^*\alpha = \lambda \alpha$ with $\lambda > 1$ and $f^*\text{Vol} = \text{Vol}$. One can show: a dynamical class α is rigid.

Note: a dynamical class satisfies $\alpha^k = 0$, where $k = \dim(X)$.

Definition

Example: S a projective surface and $C \subset S$ an irreducible curve with $C^2 < 0$. Then the cohomology class [C] is rigid: the unique positive closed current in [C] is the current of integration over C.

Demailly–Peternell–Schneider: an example of a surface S with a nef irreducible curve $C \subset X$ such that [C] is rigid.

Cantat: Let X be Kähler. Call $\alpha \in \mathcal{P}_X$ dynamical if there exists an automorphism $f: X \to X$ and a volume form Vol on X such that $f^*\alpha = \lambda \alpha$ with $\lambda > 1$ and $f^*\text{Vol} = \text{Vol}$. One can show: a dynamical class α is rigid.

Note: a dynamical class satisfies $\alpha^k = 0$, where $k = \dim(X)$.

Definition

Example: S a projective surface and $C \subset S$ an irreducible curve with $C^2 < 0$. Then the cohomology class [C] is rigid: the unique positive closed current in [C] is the current of integration over C.

Demailly–Peternell–Schneider: an example of a surface S with a nef irreducible curve $C \subset X$ such that [C] is rigid.

Cantat: Let X be Kähler. Call $\alpha \in \mathcal{P}_X$ dynamical if there exists an automorphism $f: X \to X$ and a volume form Vol on X such that $f^*\alpha = \lambda \alpha$ with $\lambda > 1$ and $f^*\text{Vol} = \text{Vol}$. One can show: a dynamical class α is rigid.

Note: a dynamical class satisfies $\alpha^k = 0$, where $k = \dim(X)$.

Definition

Main results

Theorem (Sibony–S.–Verbitsky)

Assume that X is a hyperkähler manifold with $b_2(X) \ge 7$ and $u \in H^{1,1}_{\mathbb{R}}(X)$ is a parabolic class, i.e. a nef class with q(u) = 0 where q is the BBF form. The class u is rigid in the following cases:

- if $u^{\perp} \cap H^2(X, \mathbb{Q}) = 0$;
- if $u^{\perp} \cap H^2(X, \mathbb{Q})$ is spanned by $v \in H^{2,0}(X) \oplus H^{0,2}(X)$.

Corollary

Assume that X is a hyperkähler manifold with $b_2(X) \ge 7$ and non-maximal Picard group, i.e. the rank of Pic(X) is less than $b_2(X) - 2$. Then there exists a non-empty open subset U of the boundary of the Kähler cone $\partial \mathcal{K}_X$ such that the rigid parabolic classes are dense in U.

Main results

Theorem (Sibony–S.–Verbitsky)

Assume that X is a hyperkähler manifold with $b_2(X) \ge 7$ and $u \in H^{1,1}_{\mathbb{R}}(X)$ is a parabolic class, i.e. a nef class with q(u) = 0, where q is the BBF form. The class u is rigid in the following cases:

- if $u^{\perp} \cap H^2(X, \mathbb{Q}) = 0$;
- if $u^{\perp} \cap H^2(X, \mathbb{Q})$ is spanned by $v \in H^{2,0}(X) \oplus H^{0,2}(X)$.

Corollary

Assume that X is a hyperkähler manifold with $b_2(X) \geqslant 7$ and non-maximal Picard group, i.e. the rank of Pic(X) is less than $b_2(X) - 2$. Then there exists a non-empty open subset U of the boundary of the Kähler cone $\partial \mathcal{K}_X$ such that the rigid parabolic classes are dense in U.

Main results

Theorem (Sibony–S.–Verbitsky)

Assume that X is a hyperkähler manifold with $b_2(X) \ge 7$ and $u \in H^{1,1}_{\mathbb{R}}(X)$ is a parabolic class, i.e. a nef class with q(u) = 0, where q is the BBF form. The class u is rigid in the following cases:

- if $u^{\perp} \cap H^2(X, \mathbb{Q}) = 0$;
- if $u^{\perp} \cap H^2(X, \mathbb{Q})$ is spanned by $v \in H^{2,0}(X) \oplus H^{0,2}(X)$.

Corollary

Assume that X is a hyperkähler manifold with $b_2(X) \geqslant 7$ and non-maximal Picard group, i.e. the rank of Pic(X) is less than $b_2(X) - 2$. Then there exists a non-empty open subset U of the boundary of the Kähler cone $\partial \mathcal{K}_X$ such that the rigid parabolic classes are dense in U.

Diameters of pseudo-effective classes

Idea of the proof: any hyperkähler manifold with $b_2 \ge 5$ has a deformation that admits a hyperbolic automorphism and a dynamical rigid class, as shown by Amerik–Verbitsky.

Use Ratner's theory and semicontinuity of the diameter of pseudo-effective classes.

Let
$$\eta \in \Lambda^{1,1}_{\mathbb{R}}X$$
 with $[\eta] = \alpha \in \mathcal{P}_X$.

Define $\Phi_{\eta} = \{ \varphi \in L^1(X) \mid \sup(\varphi) = 0, \ \eta + dd^c \varphi \geqslant 0 \}.$ Φ_{η} is a compact subset of $L^1(X)$.

$$\operatorname{diam}(\Phi_{\eta}) = \sup_{\varphi, \psi \in \Phi_{\eta}} \left\{ \int_{X} |\varphi - \psi| \operatorname{Vol} \right\} < +\infty$$

Definition

The diameter function $\delta \colon \mathcal{P}_X \to \mathbb{R}$.

$$\delta(\alpha) = \operatorname{diam}(\Phi_{\eta}), \text{ where } [\eta] = \alpha$$

Diameters of pseudo-effective classes

Idea of the proof: any hyperkähler manifold with $b_2 \ge 5$ has a deformation that admits a hyperbolic automorphism and a dynamical rigid class, as shown by Amerik–Verbitsky. Use Ratner's theory and semicontinuity of the diameter of pseudo-effective classes.

Let
$$\eta \in \Lambda_{\mathbb{R}}^{1,1}X$$
 with $[\eta] = \alpha \in \mathcal{P}_X$.
Define $\Phi_{\eta} = \{ \varphi \in L^1(X) \mid \sup(\varphi) = 0, \ \eta + dd^c \varphi \geqslant 0 \}$.
 Φ_{η} is a compact subset of $L^1(X)$.

$$\operatorname{diam}(\Phi_{\eta}) = \sup \left\{ \int |\varphi - \psi| \operatorname{Vol} \right\} < +\infty.$$

Definition

The diameter function $\delta \colon \mathcal{P}_X \to \mathbb{R}$:

$$\delta(\alpha) = \operatorname{diam}(\Phi_{\eta}), \text{ where } [\eta] = \alpha$$

Diameters of pseudo-effective classes

Idea of the proof: any hyperkähler manifold with $b_2 \ge 5$ has a deformation that admits a hyperbolic automorphism and a dynamical rigid class, as shown by Amerik–Verbitsky. Use Ratner's theory and semicontinuity of the diameter of pseudo-effective classes.

Let
$$\eta \in \Lambda_{\mathbb{R}}^{1,1}X$$
 with $[\eta] = \alpha \in \mathcal{P}_X$.

Define $\Phi_{\eta} = \{ \varphi \in L^1(X) \mid \sup(\varphi) = 0, \, \eta + dd^c \varphi \geqslant 0 \}.$ Φ_{η} is a compact subset of $L^1(X)$.

$$\operatorname{diam}(\Phi_{\eta}) = \sup_{\varphi, \psi \in \Phi_{\eta}} \left\{ \int_{X} |\varphi - \psi| \operatorname{Vol} \right\} < +\infty$$

Definition

The diameter function $\delta \colon \mathcal{P}_X \to \mathbb{R}$:

$$\delta(\alpha) = \operatorname{diam}(\Phi_{\eta}), \text{ where } [\eta] = \alpha$$

Idea of the proof: any hyperkähler manifold with $b_2 \ge 5$ has a deformation that admits a hyperbolic automorphism and a dynamical rigid class, as shown by Amerik–Verbitsky. Use Ratner's theory and semicontinuity of the diameter of

Let
$$\eta \in \Lambda^{1,1}_{\mathbb{R}}X$$
 with $[\eta] = \alpha \in \mathcal{P}_X$.

pseudo-effective classes.

Define $\Phi_{\eta} = \{ \varphi \in L^1(X) \mid \sup(\varphi) = 0, \ \eta + dd^c \varphi \geqslant 0 \}.$

 Φ_{η} is a compact subset of $L^1(X)$.

$$\operatorname{diam}(\Phi_{\eta}) = \sup_{\varphi, \psi \in \Phi_{\eta}} \left\{ \int_{X} |\varphi - \psi| \operatorname{Vol} \right\} < +\infty.$$

Definition

$$\delta(\alpha) = \operatorname{diam}(\Phi_{\eta}), \text{ where } [\eta] = \alpha$$

Idea of the proof: any hyperkähler manifold with $b_2 \ge 5$ has a deformation that admits a hyperbolic automorphism and a dynamical rigid class, as shown by Amerik–Verbitsky.

Use Ratner's theory and semicontinuity of the diameter of

Use Ratner's theory and semicontinuity of the diameter of pseudo-effective classes.

Let
$$\eta \in \Lambda_{\mathbb{R}}^{1,1}X$$
 with $[\eta] = \alpha \in \mathcal{P}_X$.

Define $\Phi_{\eta} = \{ \varphi \in L^1(X) \mid \sup(\varphi) = 0, \ \eta + dd^c \varphi \geqslant 0 \}.$ Φ_{η} is a compact subset of $L^1(X)$.

$$\operatorname{diam}(\Phi_{\eta}) = \sup_{\varphi, \psi \in \Phi_{\eta}} \left\{ \int_{X} |\varphi - \psi| \operatorname{Vol} \right\} < +\infty$$

Definition

$$\delta(\alpha) = \operatorname{diam}(\Phi_{\eta}), \text{ where } [\eta] = \alpha$$

Idea of the proof: any hyperkähler manifold with $b_2 \ge 5$ has a deformation that admits a hyperbolic automorphism and a dynamical rigid class, as shown by Amerik–Verbitsky.

Use Ratner's theory and semicontinuity of the diameter of pseudo-effective classes.

Let
$$\eta \in \Lambda_{\mathbb{R}}^{1,1}X$$
 with $[\eta] = \alpha \in \mathcal{P}_X$.

Define $\Phi_{\eta} = \{ \varphi \in L^1(X) \mid \sup(\varphi) = 0, \ \eta + dd^c \varphi \geqslant 0 \}.$ Φ_n is a compact subset of $L^1(X)$.

$$\operatorname{diam}(\Phi_{\eta}) = \sup_{\varphi, \psi \in \Phi_{\eta}} \left\{ \int_{X} |\varphi - \psi| \operatorname{Vol} \right\} < +\infty.$$

Definition

$$\delta(\alpha) = \operatorname{diam}(\Phi_{\eta}), \text{ where } [\eta] = \alpha$$

Idea of the proof: any hyperkähler manifold with $b_2 \ge 5$ has a deformation that admits a hyperbolic automorphism and a dynamical rigid class, as shown by Amerik–Verbitsky. Use Ratner's theory and semicontinuity of the diameter of

Let $\eta \in \Lambda^{1,1}_{\mathbb{D}}X$ with $[\eta] = \alpha \in \mathcal{P}_X$.

pseudo-effective classes.

Define $\Phi_{\eta} = \{ \varphi \in L^1(X) \mid \sup(\varphi) = 0, \ \eta + dd^c \varphi \geqslant 0 \}.$ Φ_{η} is a compact subset of $L^1(X)$.

$$\operatorname{diam}(\Phi_{\eta}) = \sup_{\varphi, \psi \in \Phi_{n}} \left\{ \int_{X} |\varphi - \psi| \operatorname{Vol} \right\} < +\infty.$$

Definition

$$\delta(\alpha) = \operatorname{diam}(\Phi_{\eta}), \text{ where } [\eta] = \alpha.$$

Consider $\pi \colon \mathcal{X} \to B$, a proper submersion of complex manifolds.

Assume that we have:

- a smooth 2-form $\tilde{\omega} \in \Lambda^{1,1} \mathcal{X}$ s.t. for any $t \in B$ the form $\omega_t = \tilde{\omega}|_{\mathcal{X}_t}$ is Kähler;
- a fibrewise volume form Vol on X, s.t. $Vol_t = Vol|_{X_t}$ is a volume form on the fibre.

The spaces $H^{1,1}_{\mathbb{R}}(\mathcal{X}_t)$ form a C^{∞} -vector bundle over B.

The pseudo-effective cone $\mathcal{P}_{\mathcal{X}/B}$ is a subset of the total space of this bundle.

As above, we have the diameter function: $\delta \colon \mathcal{P}_{\mathcal{X}/B} \to \mathbb{R}$.

Theorem (Sibony–S.–Verbitsky)

The function $\delta \colon \mathcal{P}_{\mathcal{X}/B} \to \mathbb{R}$ is upper semi-continuous

Consider $\pi: \mathcal{X} \to B$, a proper submersion of complex manifolds.

Assume that we have:

- a smooth 2-form $\tilde{\omega} \in \Lambda^{1,1} \mathcal{X}$ s.t. for any $t \in B$ the form $\omega_t = \tilde{\omega}|_{\mathcal{X}_t}$ is Kähler;
- a fibrewise volume form Vol on X, s.t. $Vol_t = Vol|_{X_t}$ is a volume form on the fibre.

The spaces $H^{1,1}_{\mathbb{R}}(\mathcal{X}_t)$ form a C^{∞} -vector bundle over B.

The pseudo-effective cone $\mathcal{P}_{\mathcal{X}/B}$ is a subset of the total space of this bundle.

As above, we have the diameter function: $\delta \colon \mathcal{P}_{\mathcal{X}/B} \to \mathbb{R}$.

Theorem (Sibony–S.–Verbitsky)

The function $\delta \colon \mathcal{P}_{\mathcal{X}/B} \to \mathbb{R}$ is upper semi-continuous.

Consider $\pi: \mathcal{X} \to B$, a proper submersion of complex manifolds.

Assume that we have:

- a smooth 2-form $\tilde{\omega} \in \Lambda^{1,1} \mathcal{X}$ s.t. for any $t \in B$ the form $\omega_t = \tilde{\omega}|_{\mathcal{X}_t}$ is Kähler;
- a fibrewise volume form Vol on X, s.t. $Vol_t = Vol|_{X_t}$ is a volume form on the fibre.

The spaces $H^{1,1}_{\mathbb{R}}(\mathcal{X}_t)$ form a C^{∞} -vector bundle over B.

The pseudo-effective cone $\mathcal{P}_{\mathcal{X}/B}$ is a subset of the total space of this bundle.

As above, we have the diameter function: $\delta \colon \mathcal{P}_{\mathcal{X}/B} \to \mathbb{R}$.

Theorem (Sibony–S.–Verbitsky)

The function $\delta \colon \mathcal{P}_{\mathcal{X}/B} \to \mathbb{R}$ is upper semi-continuous.

Consider $\pi: \mathcal{X} \to B$, a proper submersion of complex manifolds.

Assume that we have:

- a smooth 2-form $\tilde{\omega} \in \Lambda^{1,1} \mathcal{X}$ s.t. for any $t \in B$ the form $\omega_t = \tilde{\omega}|_{\mathcal{X}_t}$ is Kähler;
- a fibrewise volume form Vol on X, s.t. $Vol_t = Vol|_{X_t}$ is a volume form on the fibre.

The spaces $H^{1,1}_{\mathbb{R}}(\mathcal{X}_t)$ form a C^{∞} -vector bundle over B. The pseudo-effective cone $\mathcal{P}_{\mathcal{X}/B}$ is a subset of the total space of this bundle

As above, we have the diameter function: $\delta \colon \mathcal{P}_{\mathcal{X}/B} \to \mathbb{R}$.

Theorem (Sibony–S.–Verbitsky)

The function $\delta \colon \mathcal{P}_{\mathcal{X}/B} \to \mathbb{R}$ is upper semi-continuous

Consider $\pi: \mathcal{X} \to B$, a proper submersion of complex manifolds.

Assume that we have:

- a smooth 2-form $\tilde{\omega} \in \Lambda^{1,1} \mathcal{X}$ s.t. for any $t \in B$ the form $\omega_t = \tilde{\omega}|_{\mathcal{X}_t}$ is Kähler;
- a fibrewise volume form Vol on X, s.t. $Vol_t = Vol|_{X_t}$ is a volume form on the fibre.

The spaces $H^{1,1}_{\mathbb{R}}(\mathcal{X}_t)$ form a C^{∞} -vector bundle over B.

The pseudo-effective cone $\mathcal{P}_{\mathcal{X}/B}$ is a subset of the total space of this bundle.

As above, we have the diameter function: $\delta \colon \mathcal{P}_{\mathcal{X}/B} \to \mathbb{R}$.

Theorem (Sibony–S.–Verbitsky)

The function $\delta \colon \mathcal{P}_{\mathcal{X}/B} \to \mathbb{R}$ is upper semi-continuous.

Consider $\pi: \mathcal{X} \to B$, a proper submersion of complex manifolds.

Assume that we have:

- a smooth 2-form $\tilde{\omega} \in \Lambda^{1,1} \mathcal{X}$ s.t. for any $t \in B$ the form $\omega_t = \tilde{\omega}|_{\mathcal{X}_t}$ is Kähler;
- a fibrewise volume form Vol on X, s.t. $Vol_t = Vol|_{X_t}$ is a volume form on the fibre.

The spaces $H^{1,1}_{\mathbb{R}}(\mathcal{X}_t)$ form a C^{∞} -vector bundle over B.

The pseudo-effective cone $\mathcal{P}_{\mathcal{X}/B}$ is a subset of the total space of this bundle.

As above, we have the diameter function: $\delta \colon \mathcal{P}_{\mathcal{X}/B} \to \mathbb{R}$.

Theorem (Sibony–S.–Verbitsky)

The function $\delta \colon \mathcal{P}_{\mathcal{X}/B} \to \mathbb{R}$ is upper semi-continuous.

Consider $\pi: \mathcal{X} \to B$, a proper submersion of complex manifolds.

Assume that we have:

- a smooth 2-form $\tilde{\omega} \in \Lambda^{1,1} \mathcal{X}$ s.t. for any $t \in B$ the form $\omega_t = \tilde{\omega}|_{\mathcal{X}_t}$ is Kähler;
- a fibrewise volume form Vol on X, s.t. $Vol_t = Vol|_{X_t}$ is a volume form on the fibre.

The spaces $H^{1,1}_{\mathbb{R}}(\mathcal{X}_t)$ form a C^{∞} -vector bundle over B.

The pseudo-effective cone $\mathcal{P}_{\mathcal{X}/B}$ is a subset of the total space of this bundle.

As above, we have the diameter function: $\delta \colon \mathcal{P}_{\mathcal{X}/B} \to \mathbb{R}$.

Theorem (Sibony–S.–Verbitsky)

The function $\delta \colon \mathcal{P}_{\mathcal{X}/B} \to \mathbb{R}$ is upper semi-continuous

Consider $\pi: \mathcal{X} \to B$, a proper submersion of complex manifolds.

Assume that we have:

- a smooth 2-form $\tilde{\omega} \in \Lambda^{1,1} \mathcal{X}$ s.t. for any $t \in B$ the form $\omega_t = \tilde{\omega}|_{\mathcal{X}_t}$ is Kähler;
- a fibrewise volume form Vol on X, s.t. $Vol_t = Vol|_{X_t}$ is a volume form on the fibre.

The spaces $H^{1,1}_{\mathbb{R}}(\mathcal{X}_t)$ form a C^{∞} -vector bundle over B.

The pseudo-effective cone $\mathcal{P}_{\mathcal{X}/B}$ is a subset of the total space of this bundle.

As above, we have the diameter function: $\delta \colon \mathcal{P}_{\mathcal{X}/B} \to \mathbb{R}$.

Theorem (Sibony–S.–Verbitsky)

The function $\delta \colon \mathcal{P}_{\mathcal{X}/B} \to \mathbb{R}$ is upper semi-continuous.

X is a hyperkähler manifold, I a complex structure of hyperkähler type, $V = H^2(X, \mathbb{Q})$.

Recall: $\alpha \in V_{I,\mathbb{R}}^{1,1}$ is parabolic if $q(\alpha) = 0$ and α is nef.

Definition

• The parabolic Teichmüller space:

$$\mathcal{T}_p(X) = \{(I, \alpha) \in \mathcal{T} \times V_{\mathbb{R}} \mid 0 \neq \alpha \text{ is parabolic for } I\};$$

• the parabolic period domain:

$$\mathcal{D}_p = \{ (L, u) \in \mathcal{D} \times V_{\mathbb{R}} \mid 0 \neq u \in L^{\perp}, q(u) = 0 \};$$

X is a hyperkähler manifold, I a complex structure of hyperkähler type, $V = H^2(X, \mathbb{Q})$.

Recall: $\alpha \in V_{I,\mathbb{R}}^{1,1}$ is parabolic if $q(\alpha) = 0$ and α is nef.

Definition

• The parabolic Teichmüller space:

$$\mathcal{T}_p(X) = \{(I, \alpha) \in \mathcal{T} \times V_{\mathbb{R}} \mid 0 \neq \alpha \text{ is parabolic for } I\};$$

• the parabolic period domain:

$$\mathcal{D}_p = \{ (L, u) \in \mathcal{D} \times V_{\mathbb{R}} \mid 0 \neq u \in L^{\perp}, q(u) = 0 \};$$

X is a hyperkähler manifold, I a complex structure of hyperkähler type, $V = H^2(X, \mathbb{Q})$.

Recall: $\alpha \in V_{I,\mathbb{R}}^{1,1}$ is parabolic if $q(\alpha) = 0$ and α is nef.

Definition

• The parabolic Teichmüller space:

$$\mathcal{T}_p(X) = \{(I, \alpha) \in \mathcal{T} \times V_{\mathbb{R}} \mid 0 \neq \alpha \text{ is parabolic for } I\};$$

• the parabolic period domain:

$$\mathcal{D}_p = \{ (L, u) \in \mathcal{D} \times V_{\mathbb{R}} \mid 0 \neq u \in L^{\perp}, q(u) = 0 \};$$

X is a hyperkähler manifold, I a complex structure of hyperkähler type, $V = H^2(X, \mathbb{Q})$.

Recall: $\alpha \in V_{I,\mathbb{R}}^{1,1}$ is parabolic if $q(\alpha) = 0$ and α is nef.

Definition

• The parabolic Teichmüller space:

$$\mathcal{T}_p(X) = \{(I, \alpha) \in \mathcal{T} \times V_{\mathbb{R}} \mid 0 \neq \alpha \text{ is parabolic for } I\};$$

• the parabolic period domain:

$$\mathcal{D}_p = \{ (L, u) \in \mathcal{D} \times V_{\mathbb{R}} \mid 0 \neq u \in L^{\perp}, q(u) = 0 \};$$

X is a hyperkähler manifold, I a complex structure of hyperkähler type, $V = H^2(X, \mathbb{Q})$.

Recall: $\alpha \in V_{I,\mathbb{R}}^{1,1}$ is parabolic if $q(\alpha) = 0$ and α is nef.

Definition

• The parabolic Teichmüller space:

$$\mathcal{T}_p(X) = \{(I, \alpha) \in \mathcal{T} \times V_{\mathbb{R}} \mid 0 \neq \alpha \text{ is parabolic for } I\};$$

• the parabolic period domain:

$$\mathcal{D}_p = \{ (L, u) \in \mathcal{D} \times V_{\mathbb{R}} \mid 0 \neq u \in L^{\perp}, q(u) = 0 \};$$

X is a hyperkähler manifold, I a complex structure of hyperkähler type, $V = H^2(X, \mathbb{Q})$.

Recall: $\alpha \in V_{I,\mathbb{R}}^{1,1}$ is parabolic if $q(\alpha) = 0$ and α is nef.

Definition

• The parabolic Teichmüller space:

$$\mathcal{T}_p(X) = \{(I, \alpha) \in \mathcal{T} \times V_{\mathbb{R}} \mid 0 \neq \alpha \text{ is parabolic for } I\};$$

• the parabolic period domain:

$$\mathcal{D}_p = \{ (L, u) \in \mathcal{D} \times V_{\mathbb{R}} \mid 0 \neq u \in L^{\perp}, q(u) = 0 \};$$

Orbits in \mathcal{D}_p and \mathcal{T}_p

For the fixed connected component \mathcal{T}° we will also denote

$$\mathcal{T}_p^{\circ} = \mathcal{T}_p \cap (\mathcal{T}^{\circ} \times V_{\mathbb{R}}).$$

It is clear that \mathcal{MCG}° acts on \mathcal{T}_p° and Γ acts on \mathcal{D}_p .

Theorem (Sibony–S.–Verbitsky)

Assume that $d \geq 7$.

- Let $(L, u) \in \mathcal{D}_p$ s.t. u^{\perp} does not contain non-zero rational vectors. Then the Γ -orbit of (L, u) is dense in \mathcal{D}_p ;
- Let $(I, u) \in \mathcal{T}_p^{\circ}$ s.t. u^{\perp} does not contain non-zero rational vectors. Then the \mathcal{MCG}° -orbit of (I, u) is dense in \mathcal{T}_p° .

Orbits in \mathcal{D}_p and \mathcal{T}_p

For the fixed connected component \mathcal{T}° we will also denote

$$\mathcal{T}_p^{\circ} = \mathcal{T}_p \cap (\mathcal{T}^{\circ} \times V_{\mathbb{R}}).$$

It is clear that \mathcal{MCG}° acts on \mathcal{T}_p° and Γ acts on \mathcal{D}_p .

Theorem (Sibony–S.–Verbitsky)

Assume that $d \geq 7$.

- Let $(L, u) \in \mathcal{D}_p$ s.t. u^{\perp} does not contain non-zero rational vectors. Then the Γ -orbit of (L, u) is dense in \mathcal{D}_p ;
- Let $(I, u) \in \mathcal{T}_p^{\circ}$ s.t. u^{\perp} does not contain non-zero rational vectors. Then the \mathcal{MCG}° -orbit of (I, u) is dense in \mathcal{T}_p° .

Orbits in \mathcal{D}_p and \mathcal{T}_p

For the fixed connected component \mathcal{T}° we will also denote

$$\mathcal{T}_p^{\circ} = \mathcal{T}_p \cap (\mathcal{T}^{\circ} \times V_{\mathbb{R}}).$$

It is clear that \mathcal{MCG}° acts on \mathcal{T}_{p}° and Γ acts on \mathcal{D}_{p} .

Theorem (Sibony–S.–Verbitsky)

Assume that $d \ge 7$.

- Let $(L, u) \in \mathcal{D}_p$ s.t. u^{\perp} does not contain non-zero rational vectors. Then the Γ -orbit of (L, u) is dense in \mathcal{D}_p ;
- Let $(I, u) \in \mathcal{T}_p^{\circ}$ s.t. u^{\perp} does not contain non-zero rational vectors. Then the \mathcal{MCG}° -orbit of (I, u) is dense in \mathcal{T}_p° .

Theorem (Sibony–S.–Verbitsky, simplified)

Assume: X_I is a compact hyperkähler manifold with $b_2 \ge 7$ and $u \in H^{1,1}_{\mathbb{R}}(X_I)$ is a parabolic class s.t. $u^{\perp} \cap H^2(X, \mathbb{Q}) = 0$. Then u is rigid.

Proof

The \mathcal{MCG}° -orbit of $(I, u) \in \mathcal{T}_p^{\circ}$ is dense in \mathcal{T}_p° .

Amerik–Verbitsky: there exists $(I_0, u_0) \in \mathcal{T}_p^{\circ}$, where u_0 is a dynamical rigid class.

Consider the universal deformation $\pi: \mathcal{X} \to B$ of X_{I_0} , There exist: $t_i \in B$, $\mu_i \in \mathcal{MCG}^{\circ}$ and $u_i \in H^2(X, \mathbb{R})$ such that $t_i \to 0$, $\mathcal{X}_{t_i} \simeq X_{\mu_i^*I}$, $u_i = \mu_i^* u$, $u_i \to u_0$ when $i \to +\infty$.

The action of \mathcal{MCG}° preserves the diameter, so $\delta(u_i) = \delta(u)$.

Theorem (Sibony–S.–Verbitsky, simplified)

Assume: X_I is a compact hyperkähler manifold with $b_2 \geqslant 7$ and $u \in H^{1,1}_{\mathbb{R}}(X_I)$ is a parabolic class s.t. $u^{\perp} \cap H^2(X,\mathbb{Q}) = 0$. Then u is rigid.

Proof

The \mathcal{MCG}° -orbit of $(I, u) \in \mathcal{T}_p^{\circ}$ is dense in \mathcal{T}_p° .

Amerik–Verbitsky: there exists $(I_0, u_0) \in \mathcal{T}_p^{\circ}$, where u_0 is a dynamical rigid class.

Consider the universal deformation $\pi \colon \mathcal{X} \to B$ of X_{I_0} , There exist: $t_i \in B$, $\mu_i \in \mathcal{MCG}^{\circ}$ and $u_i \in H^2(X, \mathbb{R})$ such that $t_i \to 0$, $\mathcal{X}_{t_i} \simeq X_{\mu_i^*I}$, $u_i = \mu_i^*u$, $u_i \to u_0$ when $i \to +\infty$.

The action of \mathcal{MCG}° preserves the diameter, so $\delta(u_i) = \delta(u)$.

Theorem (Sibony–S.–Verbitsky, simplified)

Assume: X_I is a compact hyperkähler manifold with $b_2 \ge 7$ and $u \in H^{1,1}_{\mathbb{R}}(X_I)$ is a parabolic class s.t. $u^{\perp} \cap H^2(X,\mathbb{Q}) = 0$. Then u is rigid.

Proof.

The \mathcal{MCG}° -orbit of $(I, u) \in \mathcal{T}_p^{\circ}$ is dense in \mathcal{T}_p° .

Amerik–Verbitsky: there exists $(I_0, u_0) \in \mathcal{T}_p^{\circ}$, where u_0 is a dynamical rigid class.

Consider the universal deformation $\pi \colon \mathcal{X} \to B$ of X_{I_0} , There exist: $t_i \in B$, $\mu_i \in \mathcal{MCG}^{\circ}$ and $u_i \in H^2(X, \mathbb{R})$ such that $t_i \to 0$, $\mathcal{X}_{t_i} \simeq X_{\mu_i^*I}$, $u_i = \mu_i^*u$, $u_i \to u_0$ when $i \to +\infty$.

The action of \mathcal{MCG}° preserves the diameter, so $\delta(u_i) = \delta(u)$.

Theorem (Sibony–S.–Verbitsky, simplified)

Assume: X_I is a compact hyperkähler manifold with $b_2 \ge 7$ and $u \in H^{1,1}_{\mathbb{R}}(X_I)$ is a parabolic class s.t. $u^{\perp} \cap H^2(X,\mathbb{Q}) = 0$. Then u is rigid.

Proof.

The \mathcal{MCG}° -orbit of $(I, u) \in \mathcal{T}_p^{\circ}$ is dense in \mathcal{T}_p° .

Amerik–Verbitsky: there exists $(I_0, u_0) \in \mathcal{T}_p^{\circ}$, where u_0 is a dynamical rigid class.

Consider the universal deformation $\pi \colon \mathcal{X} \to B$ of X_{I_0} , There exist: $t_i \in B$, $\mu_i \in \mathcal{MCG}^{\circ}$ and $u_i \in H^2(X, \mathbb{R})$ such that $t_i \to 0$, $\mathcal{X}_{t_i} \simeq X_{\mu_i^*I}$, $u_i = \mu_i^* u$, $u_i \to u_0$ when $i \to +\infty$.

The action of \mathcal{MCG}° preserves the diameter, so $\delta(u_i) = \delta(u)$.

Theorem (Sibony–S.–Verbitsky, simplified)

Assume: X_I is a compact hyperkähler manifold with $b_2 \ge 7$ and $u \in H^{1,1}_{\mathbb{R}}(X_I)$ is a parabolic class s.t. $u^{\perp} \cap H^2(X,\mathbb{Q}) = 0$. Then u is rigid.

Proof.

The \mathcal{MCG}° -orbit of $(I, u) \in \mathcal{T}_p^{\circ}$ is dense in \mathcal{T}_p° .

Amerik–Verbitsky: there exists $(I_0, u_0) \in \mathcal{T}_p^{\circ}$, where u_0 is a dynamical rigid class.

Consider the universal deformation $\pi \colon \mathcal{X} \to B$ of X_{I_0} , There exist: $t_i \in B$, $\mu_i \in \mathcal{MCG}^{\circ}$ and $u_i \in H^2(X, \mathbb{R})$ such that $t_i \to 0$, $\mathcal{X}_{t_i} \simeq X_{\mu_i^*I}$, $u_i = \mu_i^*u$, $u_i \to u_0$ when $i \to +\infty$.

The action of \mathcal{MCG}° preserves the diameter, so $\delta(u_i) = \delta(u)$.

Theorem (Sibony–S.–Verbitsky, simplified)

Assume: X_I is a compact hyperkähler manifold with $b_2 \ge 7$ and $u \in H^{1,1}_{\mathbb{R}}(X_I)$ is a parabolic class s.t. $u^{\perp} \cap H^2(X,\mathbb{Q}) = 0$. Then u is rigid.

Proof.

The \mathcal{MCG}° -orbit of $(I, u) \in \mathcal{T}_p^{\circ}$ is dense in \mathcal{T}_p° .

Amerik–Verbitsky: there exists $(I_0, u_0) \in \mathcal{T}_p^{\circ}$, where u_0 is a dynamical rigid class.

Consider the universal deformation $\pi \colon \mathcal{X} \to B$ of X_{I_0} , There exist: $t_i \in B$, $\mu_i \in \mathcal{MCG}^{\circ}$ and $u_i \in H^2(X, \mathbb{R})$ such that $t_i \to 0$, $\mathcal{X}_{t_i} \simeq X_{\mu_i^*I}$, $u_i = \mu_i^*u$, $u_i \to u_0$ when $i \to +\infty$.

The action of \mathcal{MCG}° preserves the diameter, so $\delta(u_i) = \delta(u)$.

Theorem (Sibony–S.–Verbitsky, simplified)

Assume: X_I is a compact hyperkähler manifold with $b_2 \ge 7$ and $u \in H^{1,1}_{\mathbb{R}}(X_I)$ is a parabolic class s.t. $u^{\perp} \cap H^2(X,\mathbb{Q}) = 0$. Then u is rigid.

Proof.

The \mathcal{MCG}° -orbit of $(I, u) \in \mathcal{T}_p^{\circ}$ is dense in \mathcal{T}_p° .

Amerik–Verbitsky: there exists $(I_0, u_0) \in \mathcal{T}_p^{\circ}$, where u_0 is a dynamical rigid class.

Consider the universal deformation $\pi \colon \mathcal{X} \to B$ of X_{I_0} , There exist: $t_i \in B$, $\mu_i \in \mathcal{MCG}^{\circ}$ and $u_i \in H^2(X, \mathbb{R})$ such that $t_i \to 0$, $\mathcal{X}_{t_i} \simeq X_{\mu_i^*I}$, $u_i = \mu_i^* u$, $u_i \to u_0$ when $i \to +\infty$.

The action of \mathcal{MCG}° preserves the diameter, so $\delta(u_i) = \delta(u)$.

Thank you!