# PATENT ABSTRACTS OF JAPAN

(11) Publication number: 07018210 A

(43) Date of publication of application: 20.01.95

(51) Int. Cl

C09D 7/12

C01G 23/00

C09D 5/00

C09D 5/00

G02B 1/11

G02B 5/22

H01J 9/20

(21) Application number: 06081631

(22) Date of filing: 20.04.94

(30) Priority:

21.04.93 JP 05117931

(71) Applicant:

ASAHI GLASS CO LTD

(72) Inventor:

ABE KEISUKE

SANADA YASUHIRO KAWASATO TAKESHI HIRATSUKA KAZUYA

(54) COATING FLUID FOR FORMING COLORED THIN FILM, COLORED THIN FILM AND PRODUCTION THEREOF

(57) Abstract:

PURPOSE: To obtain the fluid which is excellent in heat stability and weatherability and, when applied to a cathode ray tube, can embody an improvement in COPYRIGHT: (C)1995,JPO contrast without destroying the balance among spectra

emitted by a phosphor since no absorption occurs at a specified visible light wavelength.

CONSTITUTION: The fluid contains a nitrogen-containing metal oxide, such as TiO<sub>x</sub>(1.02x<2.0) containing 0.1-30wt.% nitrogen. The film is produced by using this

# (19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平7-18210

(43)公開日 平成7年(1995)1月20日

| (51) Int.Cl. <sup>6</sup> |                  | 宁内整理番号     | F I               | 技術表示箇所                                |
|---------------------------|------------------|------------|-------------------|---------------------------------------|
| CO9D 7/12                 | PSK              |            |                   |                                       |
| COIG 23/00                | Z                |            |                   |                                       |
| CO9D 5/00                 | PNV              |            |                   |                                       |
|                           | PPM              |            |                   |                                       |
|                           | 7                | 724-2K     | G02B              | 1/ 10 A                               |
|                           | •                | 李在請求       |                   | 1の数15 OL (全 7 頁) 最終頁に続く               |
|                           |                  | 有丘阴水       | <b>小門小 明4/</b> ラ  | MONETO OF (E I E) ADMENICACIO         |
| (21)出題番号                  | 特願平6-81631       |            | (71)出願人           | 00000044                              |
| ,, <u></u>                |                  |            |                   | 旭硝子株式会社                               |
| (22)出順日                   | 平成6年(1994)4月2    | n អ        |                   | 東京都千代田区丸の内2丁目1番2号                     |
| (DE) HINN H               |                  | <b>У</b> Н | (72)発明者           | , , , , , , , , , , , , , , , , , , , |
| 601万米地上海水口                | \$4.00000 117001 |            | いの元の有             | 神奈川県横浜市神奈川区羽沢町1150番地                  |
| (31)優先権主張番号               | 特惠平5-117931      |            |                   |                                       |
| (32) 優先日                  | 平5 (1993) 4月21日  |            | (000) 000 000 000 | 旭硝子株式会社中央研究所内                         |
| (33)優先権主張国                | 日本(JP)           |            | (72)発明者           | 真田 恭宏                                 |
|                           |                  |            |                   | 神奈川県横浜市神奈川区羽沢町1150番地                  |
|                           |                  |            | •                 | 旭硝子株式会社中央研究所内                         |
|                           |                  |            | (72)発明者           | 河里 健                                  |
|                           |                  |            |                   | 神奈川県横浜市神奈川区羽沢町1150番地                  |
|                           |                  |            |                   | 旭硝子株式会社中央研究所内                         |
|                           | •                |            | (74)代理人           |                                       |
|                           |                  |            | (14)代型人           |                                       |
|                           |                  |            |                   | 最終頁に続く                                |

# (54) 【発明の名称】 着色薄膜形成用塗布液、着色薄膜およびその製造方法

# (57)【要約】

【構成】窒素を0.1~30wt%含有するTiOx

(1.0≦x<2.0)などの窒素を含有する金属酸化 物を含む着色薄膜形成用塗布液および該塗布液を用いた 着色薄膜およびその製造方法。

【効果】熱安定性、耐候性に優れ、特定の可視光波長に 吸収を生じないため、陰極線管に適用した場合、蛍光体 の発するスペクトルのバランスを崩すことなくコントラ ストの向上を図れる。

1

# 【特許請求の範囲】

【請求項1】窒素を含有する金属酸化物を含む着色薄膜 形成用塗布液。

【請求項2】前記金属酸化物の金属は、Ti、Cr、Z r、Hf、Al、Si、Nb、TaおよびVからなる群 から選ばれる少なくとも1種であることを特徴とする請 求項1記載の着色薄膜形成用塗布液。

【請求項3】前記金属酸化物の金属は、Tiであるとと を特徴とする請求項1記載の着色薄膜形成用塗布液。

【請求項4】前記窒素を含有する金属酸化物は、窒素を 10 0.1~30wt%含有するTiOx(1.0≤x< 2.0)であることを特徴とする請求項1記載の着色薄 膜形成用塗布液。

【請求項5】前記塗布液は、Sn、In、Sb、Zn、 Al およびGaの群から選ばれる少なくとも1種の金属 の化合物を含むことを特徴とする請求項1~4いずれか 1 項記載の着色薄膜形成用塗布液。

【請求項6】基体表面に請求項1~5いずれか1項記載 の着色薄膜形成用塗布液を塗布した後、加熱および/ま たは紫外線照射し基体表面に着色薄膜を形成することを 20 特徴とする着色薄膜の製造方法。

【請求項7】窒素を含有する金属酸化物を含み、かつ、 380nmから700nmの波長領域において透過率の 低下が生じることを特徴とする着色薄膜。

【請求項8】前記金属酸化物の金属は、Ti、Cr、Z r、Hf、Al、Si、Nb、TaおよびVからなる群 から選ばれる少なくとも1種であることを特徴とする請 求項7記載の着色薄膜。

【請求項9】前記金属酸化物の金属は、Tiであること を特徴とする請求項7記載の着色薄膜。

【請求項10】前記窒素を含有する金属酸化物は、窒素 を0.1~30wt%含有するTiO, (1.0≤x< 2.0)であることを特徴とする請求項7記載の着色薄

【請求項11】前記着色薄膜は、Sn、In、Sb、Z n、Al およびGaの群から選ばれる少なくとも1種の 金属の化合物を含むことを特徴とする請求項7~10い ずれか1項記載の着色薄膜。

【請求項12】基体上に形成される多層膜において、該 多層膜のうちの少なくとも1層が、請求項7~11いず 40 れか1項記載の着色薄膜であることを特徴とする多層 膜。

【請求項13】前記多層膜は、基体側から、請求項7~ 11いずれか1項記載の着色薄膜、その上に該着色薄膜 よりも低屈折率を有する膜が順次形成されたものである ことを特徴とする多層膜。

【請求項14】請求項7~11いずれか1項記載の着色 薄膜、謂求項12記載の多層膜、または謂求項13記載 の多層膜が形成されたことを特徴とするガラス物品。

薄膜、請求項12記載の多層膜、または請求項13記載 の多層膜が形成されたことを特徴とする陰極線管。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は陰極線管用パネル等に適 用される着色薄膜形成用塗布液、該塗布液を用いて形成 される着色薄膜、およびその製造方法に関する。

[0002]

【従来の技術】帯電防止膜、着色薄膜、着色帯電防止 膜、低反射帯電防止膜、着色低反射帯電防止膜のコーテ ィング方法は従来より光学機器においてはいうまでもな く、民生用機器特にTV、コンピュータ端末の陰極線管 (CRT) に関し多くの検討がなされてきた。

【0003】帯電防止に関しては、ブラウン管パネル表 面を350℃程度に加熱してCVD法により酸化スズお よび酸化インジウム等の導電性酸化物層を設ける方法が 提案されている(たとえば特開昭63-76247)。 膜の着色に関しては、水溶性フタロシアニン化合物を用 いる方法が提案されている(特開平1-27566

4)。帯電防止性能をもつ着色薄膜については、メチル バイオレットを用いた帯電防止膜の記述がある(特開平 1-251545)。低反射性に関しては、ブラウン管 表面に防眩効果をもたせるため表面に微細な凹凸を有す るSi〇、層を付着させたり、フッ酸により表面をエッ チングして凹凸を設ける等の方法が採られてきた(たと えば特開昭61-118931号)。

【0004】しかし、これらの方法は、外部光を散乱さ せるノングレア処理と呼ばれ、本質的に低反射層を設け る方法ではないため、反射率の低減には限界があり、ま 30 たブラウン管等においては解像度を低下させる原因とも なっていた。

【0005】低反射帯電防止膜については、イオンプレ ーティング法による光学多層膜を設ける方法が記載され ている(特開平3-93136)。

[0006]

【発明が解決しようとする課題】上述の方法のうち、C VD法による帯電防止膜を付与させる手法は装置コスト がかかることに加えてブラウン管表面を高温に加熱する ためブラウン管内の蛍光体の脱落を生じたり、寸法精度 が低下する等の問題があった。またこの場合通常400 \*C程度の高温を必要とし、低温で焼成した場合、充分低 抵抗な膜が得られない欠点があった。

【0007】また上記着色薄膜に水溶性フタロシアニン 化合物を用いる方法は、有機染料を用いるため耐熱性、 耐候性に乏しく特定波長に吸収をもつため可視光全波長 領域にわたっての均一な吸収を得ることが難しいという 欠点を有している。

【0008】上記メチルバイオレットを含む帯電防止膜 も同様な理由より耐熱性、耐候性に乏しく可視光全波長 【請求項15】請求項7~11いずれか1項記載の着色 50 領域にわたっての均一な吸収を得ることが難しい。

3

【0009】またイオンプレーティングによる方法は工業的に安価とはいえず、また可視光波長領域にわたっての均一な吸収を得られないため、陰極線管に成膜したときコントラストの向上も望めない。

【0010】本発明は従来技術が有していた前述の欠点 を解決し、低温熱処理が可能な着色薄膜、あるいは着色 帯電防止膜、着色低反射帯電防止膜およびそれらの製造 方法を新規に提供することを目的とする。

#### [0011]

【課題を解決するための手段】本発明は、窒素を含有す 10 る金属酸化物を含む着色薄膜形成用塗布液を提供する。 【0012】本発明はまた、窒素を含有する金属酸化物

そ含み、かつ、380nmから700nmの波長領域において透過率の低下が生じることを特徴とする着色薄膜を提供する。

【0013】本発明はまた、基体上に形成される多層膜において、該多層膜のうちの少なくとも1層が、前記着色薄膜であることを特徴とする多層膜を提供する。

【0014】本発明の着色薄膜はディスプレイ用途に供 されるガラス物品に好ましく用いられる。

【0015】ガラス物品としての陰極線管は近年コンピュータの端末表示等に使用される場合高解像度の要求とともにハイコントラストの要求も高まりつつある。しかしコントラストの向上を期してガラス自体の透過率を低下させた場合、ディスプレイの大型化に伴ってフェイスプレートの内厚も厚くなっていることから、特に大型ディスプレイでは透過率の着しい低下が問題となる。

【0016】本発明ではガラス自体の透過率を下げることなくその表面に膜を形成しこの膜で光吸収を生じさせることによりコントラストの向上を図る。したがって、種々の肉厚をもつディスプレイ用ガラスパネルへの適用がきわめて容易にできる。

【0017】陰極線管の発光スペクトルは複数のスペクトルで構成されるが、発光スペクトルのバランスを崩さずにコントラストの向上を図るには、特定の光吸収を持つ着色薄膜よりも可視光領域にわたって均一の光吸収を持つ着色薄膜が好ましい。

【0018】 このような観点より鋭意研究を行った結 補助成分と 果、窒素を含有する金属酸化物(以下、窒素含有酸化物 物は、硬度 という)を含む着色薄膜を構成することにより、可視光 40 用できる。 領域、特に380nmから700nmの波長領域におい て均一な光吸収を可能とし上記の問題点を解決できた。 【0019】前記金属酸化物の金属としては、特に限定 されないが、Ti、Cr、Zr、Hf、Al、Si、N なくとも1 を れないが、Ti、Cr、Zr、Hf、Al、Si、N なくとも1 種であることが好ましい。特に、窒素を含有するTiの 能とした。

【0020】酸窒化チタンの組成は限定されないが、窒 よりも低屈折率を有する隙 素を $0.1\sim30$  w t %含有する $TiO_{*}$  ( $1.0\leq x$  となく蛍光灯の映り込み等く2.0) であることが好ましい。x<1 では屈折率が 50 与することも可能とした。

酸化物(以下、酸窒化チタンという)が好ましい。

1. 9以下となり好ましくなく、また、x < 2. 0でなければ好ましい導電性が得られない。

【0021】また窒素元素を酸化物中で安定化させるために、短周期型周期表において示される3~11族元素、たとえば、V、Nb、Taなどの遷移金属元素を酸窒化チタンに対して5.0重量%以下添加するのも好ましい。

【0022】本発明で用いる酸窒化チタン粒子は還元処理した酸化チタンを用いることが好ましく、還元処理にはN、ガス、NH、ガス等を用いることができる。

【0023】本発明における窒素含有酸化物は、粒径が 5~200μmであることが好ましい。ここでいう粒径 とは、粒子の平均1次粒径をいう。これよりも小さい粒径の場合は、粒子の隠蔽力の点で着色性能が充分発現されず、また、これよりも大きい粒径の場合、表面の凹凸構造が大きくなり過ぎ、かつ、ヘーズが増加し好ましくない。

【0024】本発明に用いられるその他の窒素含有酸化物としては特に限定されないが、窒素を0.5~25w t%含有するCr,O,,,(0<x<3)、窒素を0.5~30重量%含有するZrO,(1.0≤x<2)、窒素を0.1~35重量%含有するHfO,(1.0≤x<2)、酸素を1~40重量%含有するAlN,(0<x<1)、酸素を1~35重量%含有するSi,N,(0<x<1)、酸素を1~28重量%含有するNbN,(0<x<1)、TaN,(0<x<1)、VN,(0<x<1)、可以(0<x<1)、VN,(0<x<1)、可以(0<x<1)、VN,(0<x<1)、可以(0<x<1)、VN,(0<x<1)、可以(0<x<1)、VN,(0<x<1)等が挙げられる。

【0025】窒素を $0.1\sim30$ 重量%含有するTiO。( $1\leq x<2$ )に関しては、これよりも含有される窒素量が少ないと、充分な着色度が得られず、かつこれよりも含有される量が多いと、赤みの色相が増加し、着色薄膜に適用した場合均一な光の吸収が得られず好ましくない。

【0026】これらの窒素含有酸化物のうちでTi、Crの窒素含有酸化物は黒色を呈しており、着色材として好適に使用できる。Zr、Hf、V、Ta、Nbの窒素含有酸化物は電気伝導率の点で導電成分、あるいは導電補助成分として優れている。Al、Siの窒素含有酸化物は、硬度が高く、膜中での膜補強成分として好適に使用できる。

【0027】さらに本発明ではこの着色薄膜にSn、In、Sb、Zn、A1、およびGaの群から選ばれる少なくとも1種の金属の酸化物を含有させるととによりディスプレイのオン、オフ時に生起する静電気を抑える帯電防止性能も付与させ、埃等の付着を抑制することも可能とした。

【0028】さらには上記着色帯電防止膜上に当該被膜よりも低屈折率を有する膜を構成し、解像度を損なうことなく蛍光灯の映り込み等を抑制する低反射性能をも付与することも可能とした。

5

【0029】膜厚は、強度、着色性等から適宜決定され、膜厚が厚過ぎると種々の特性より好ましくないことから、 $0.5\mu$ m以下がよい。

【0030】一般に、薄膜の光学的性能はその膜を構成する屈折率と膜厚で決定される。とこで一定の屈折率n 、を有する基体上に屈折率n を有する薄膜を付着させ、屈折率n 。の媒質中より波長 $\lambda$  の光が入射した場合のエネルギー反射率R は光が膜中を通過する際の位相差を $\Delta$  とすると $\Delta=4\pi n$  d  $\lambda$  (d: 膜厚)であり、 $\Delta=$  (2m+1) $\pi$ 、すなわち位相差 $\Delta$ が半波長の奇数倍の 10 とき、極小値をとり、このとき、数1 となる。

[0031]

# 【数1】

R=  $((n^{2}-n, n_{s})/(n^{2}+n, n_{s}))^{2}$  【0032】無反射条件を満たすには、数1において、R=0とおき、数2が必要とされる。

[0033]

【数2】 $n = (n_0 n_s)^{1/2}$ 

【0034】数2を2層構成に拡張した場合、数3となる。ただし、n,は媒質側層、n,は基体側層の屈折率である。

[0035]

[数3]  $n_5 n_1^2 = n_2^2 n_0$ 

【0036】 ことで $n_0 = 1$  (空気)、 $n_1 = 1.52$  (ガラス)を数3に適用した場合、 $n_1 / n_1 = 1.2$  3となり、との場合、2層構成膜の最大の低反射性が得られる。勿論 $n_1 / n_1 = 1.23$ を満たさなくても、2層膜の屈折率がこれに近い値をとれる場合、低反射性が得られる。したがって、基体側に設ける高屈折率層と媒質側に設ける低屈折率層は両者の屈折率比ができるだ 30 け 1.23 に近い値を選択するのが望ましい。

【0037】本発明において、所望の低反射膜を得るには、多層膜間の屈折率差と合わせて膜厚も重要な要素である。

【0038】反射防止性能を有する多層の低反射膜の構成としては、反射防止をしたい波長を入として、基体側より高屈折率層および低屈折率層を光学厚み入/2 および入/4で構成した低反射膜、基体側より中屈折率層、高屈折率層および低屈折率層を光学厚み入/4、入/2 および入/4で順次形成した3層の低反射膜、基体側よ 40 り低屈折率層、中屈折率層、高屈折率層および低屈折率層を光学厚み入/4、入/2 および入/4で順次形成した4層の低反射膜等が典型的な例として知られている。

【0039】本発明で用いる酸窒化チタン粒子は還元処理した酸化チタンを用いる。還元処理にはN. ガス、NH, ガス等を使用できる。

【0040】酸窒化チタン自体導電性を有しているため、帯電防止膜を構成する場合、導電補助成分として機能する。

【0041】酸窒化チタンの被膜中における含有割合については、着色薄膜の場合1~90wt%が好ましく、 これ以下の場合、着色性能が充分でなくこれ以上の場合 は膜の強度が低下し好ましくない。

【0042】着色帯電防止膜、着色低反射帯電防止膜の場合は、酸窒化チタンの被膜中における含有割合が1~80wt%であることが好ましい。酸窒化チタン量が少なすぎると着色性能が充分でなく、また多すぎると帯電防止能および膜の透過率が悪化し好ましくない。

【0043】本発明で用いる酸化物には、SbをドープしたSnO。、ITO、AlをドープしたZnO、またはGaをドープしたZnOなどを使用できる。これらの酸化物は塗布液中に粒子として分散させて用いることもでき、また溶液として用いて基体上で酸化物化させることもできる。

【0044】 これらの粒子の分散媒、分散法も特に限定されず、種々の溶媒および分散法が使用できる。好ましくは、水あるいはアルコール等の有機溶媒中に粒子を添加し、酸あるいはアルカリを添加しpHを調整し、コロ20 イドボールミル、サンドミル、ホモジナイザー等の市販の粉砕器で分散させて得ることができる。

【0045】この場合、分散中の粒子の平均粒径は300nm以下となっていることが好ましい。溶液を用いる場合、キレート錯体のような有機化合物、硝酸塩のような無機化合物を用い上記の粒子を分散した液と混合して用いる。

【0046】溶液の基体への塗布方法は、スピンコート法、ディップ法、スプレー法、ロールコーター法、メニスカスコーター法等、種々考えられるが、特にスピンコート法は量産性、再現性に優れ、好ましく用いられる。かかる方法によって10nm~1μm程度の膜が形成可能である。

【0047】また、着色低反射帯電防止膜において低屈 折率膜を構成する物質としてはケイ素化合物が屈折、膜 強度の点より好ましく用いられる。ケイ素化合物として は、Si(OR)。R。 $(m+n=4, m=1\sim4, n=0\sim3, R=C, \sim C$ 。のアルキル基)で示される化 合物あるいは部分加水分解物を用いることが好ましい が、ケイフッ化水素酸、ホウ酸を含む水溶液に二酸化ケ イ素粉末を飽和させてなる溶液より析出させてできるケ イ素化合物も使用できる。

【0048】Si(OR)。R。で示される化合物あるいは部分加水分解物の着色帯電防止膜上への塗布方法としては、前述した方法と同様に種々の方法が好ましく用いられる。

【0049】本発明の着色薄膜は酸窒化チタンを含有するため、高屈折率を有し上記低屈折率膜との2層で構成した場合前述の低反射性能が容易に発現される。

【0050】本発明の着色薄膜には膜強度を向上させる 50 ため、上記溶液に前記Si(OR)。R。で示される化

合物(たとえば、シリコンエトキシド、シリコンメトキ シド、シリコンイソプロポキシド、シリコンブトキシド 等)あるいは部分加水分解物を添加してもよい。

【0051】本発明において、着色薄膜を形成する基体 としは特に限定されるものではなく、目的に応じてソー ダライムシリケートガラス、アルミノシリケートガラ ス、ホウケイ酸塩ガラス、リチウムアルミノシリケート ガラス、石英ガラス等のガラス、鋼玉等の単結晶、マグ ネシア、サイアロン等の透光性セラミックス、ポリカー ボネート等のプラスチックも使用できる。

【作用】本発明の着色薄膜においては着色成分として窒 素を含有してなる酸化チタンを用いるので着色性能に関 して熱安定性、耐候性に優れている。

【0053】また、特定の可視光波長に吸収を生じない ため陰極線管に適用した場合、陰極線管内の蛍光体の発 するスペクトルのバランスを崩すことなくコントラスト の向上を図れる。

【0054】全可視光領域における均一な吸収に起因し て低反射特性も向上する。

【0055】さらには窒素を含有してなる酸化チタン自 体も導電性を有しているため酸窒化チタンも帯電防止能 を発現させる成分として機能している。

[0056]

【実施例】以下に実施例により本発明を具体的に説明す るが、本発明はこれらの実施例に限定されない。得られ た膜の評価結果は下記のように行った。

【0057】1)透過率評価:日立製作所製スペクトロ フォトメータU-3500により380nm、550n m、780nmの透過率を測定した。

【0058】2)ヘーズ評価:スガ試験機製直読ヘーズ コンピュータにより膜自体のヘーズを測定した。

【0059】3)導電性評価:着色帯電防止膜、低反射 帯電防止膜について三菱油化製ハイレスタ抵抗測定器に より相対湿度30%以下の雰囲気中で膜表面の表面抵抗 値を測定した。

【0060】4)耐擦傷性:1 kg重の荷重下、消しゴ ムで膜表面を50回往復後、その表面の傷の付きを目視 で判断した。評価基準は次の通りとした。○:傷が全く 付かない、 $\triangle$ :傷が多少付く、 $\times$ :多くの傷が付くか剥 40

【0061】5)鉛筆硬度:1kg重の荷重下、鉛筆で 膜表面を走査し、その後目視により表面の傷の生じ始め る鉛筆の硬度を膜の鉛筆硬度と判断した。

【0062】6) 視感反射率:着色低反射帯電防止膜に ついてGAMMA分光反射スペクトル測定器により膜の 380nm~700nmの視感反射率を測定した。

[0063]実施例1

窒素を2wt%含有するTiO, (1.0≤x<2.

5g 中に添加してサンドミルで4時間粉砕して90℃で 1時間加熱したのち、濃度10wt%に調整し、平均粒 径90nmのゾルを得た(A液)。

【0064】Si(OEt)。のエタノール溶液(酸化 物換算で固形分20wt%)にSi(OEt)。に対し て水 (pH3.0 に調整した塩酸酸性水溶液)を8mo 1比で添加し、2時間撹拌した(B液)。

【0065】A液とB液を各酸化物換算で1.2wt% となるようにエタノールで希釈した後、A液:B液= 10 2:3 (重量比)となるように混合し、ブラウン管バネ ル表面に100 r p mの回転速度で60秒間塗布し、そ の後160℃で30分間加熱し約100nmの厚さの膜 を得た。

#### 【0066】実施例2

Sbが8mol%ドープされたSnO、粉末(1次粒径 10 nm) 15 gを水85 g中に添加してサンドミルで 16時間粉砕して90°Cで1時間加熱した後、濃度10 wt%に調整し、平均粒径50nmのゾルを得た(C

20 【0067】A液とB液とC液を各酸化物換算で1.2 wt%となるようにエタノールで希釈した後、A液:B 液:C液=3:2:5(重量比)となるように混合し、 ブラウン管パネル表面に100грmの回転速度で60 秒間塗布し、その後160°Cで30分間加熱し約90n 血の厚さの膜を得た。

【0068】実施例3

実施例2におけるSbが8mol%ドープされたSnO 、粉末をITO粉末(Sn/In=10/90mol 比、1次粒径30nm) に変更し水85gをKOHであ 30 らかじめpH10. 0に調整した水溶液に変更した以外 は実施例2と同様に行い約80nmの膜厚の膜を得た。 【0069】実施例4

実施例2におけるSbが8mo1%ドープされたSnO 、粉末をAlがl0mol%ドープされたZnO粉末 (1次粒径20nm) に変更した以外は実施例2と同様 に行った。

【0070】実施例5

実施例4におけるAlが10mol%ドープされたZn O粉末をGaが8mol%ドープされたZnO粉末(1 次粒径400人) に変更した以外は実施例4と同様に行

#### 【0071】実施例6

実施例2において160℃、30分の加熱処理を60 °C、10分の加熱処理に変更し約100nmの厚さの膜 を得た。この膜上にB液を酸化物換算で0. 9wt%に エタノールで希釈した溶液を実施例2記載のスピンコー ト法で塗布し160℃で30分加熱処理し着色低反射帯 電防止膜を得た。

【0072】実施例7

0) 15gをあらかじめpH3.0に調整した水溶液8 50 実施例6におけるSbが8mol%ドープされたSnO

』粉末をITO粉末(Sn/In=10/90mo1 比、1次粒径30nm)に変更し水85gをKOHであ らかじめpH10.0に調整した水溶液に変更した以外 は実施例6と同様に行った。

# 【0073】実施例8

実施例6において基体側第1層を構成する塗布溶液の混合比をA液:B液:C液=4:2:4(重量比)となるように変更した以外は実施例6と同様に行った。

# 【0074】実施例9

硝酸インジウムを酸化物換算で10wt%となるように 10 アセチルアセトンに溶解し130 でで1 時間還流を行った (D液)。塩化第一スズをアセチルアセトンに酸化物換算で10wt%となるように溶解し135 でで2 時間加熱還流を行った (E液)。 D液とE液を各酸化物換算で1.2wt%となるようにエタノールで希釈した後、D液: E液=85:15(重量比)となるように混合した (F液)。

【0075】実施例7におけるC液をF液に変更し2層 塗布後の焼成を370℃、6分に変更した以外は実施例 7と同様に行った。

【0076】比較例1

\* 実施例1 におけるA液をC液に変更した以外は実施例1 と同様に行った。

10

# 【0077】比較例2

銅フタロシアニンブルー0.01gをB液20gに添加し酸化物換算で1.4wt%になるようにエタノールで希釈しブラウン管バネル表面に100rpmの回転速度で60秒間塗布しその後160℃で30分間加熱し膜を得た。

#### 【0078】比較例3

比較例2で得た膜上にB液を0.9 w t %となるように エタノールで希釈した後、ブラウン管パネル表面に10 0 r p mの回転速度で60秒間塗布しその後160℃で 30分加熱した。

# 【0079】比較例4

実施例2 におけるA液とB液とC液の混合比を、A液: B液:C液=9.5:0.25:0.25(重量比)となるように混合した以外は実施例2と同様に行った。

【0080】実施例1~9および比較例1~4において作成された膜の評価結果を表1に示す。

20 [0081]

\* 【表1】

|       | 透過率の低下(%) |       | ヘーズ<br>(%) | 表面抵抗值<br>(Ω/□) | 耐擦<br>傷性             | 鉛筆      | 視感 反射率 |     |
|-------|-----------|-------|------------|----------------|----------------------|---------|--------|-----|
|       | 380nm     | 550nm | 780nm      | (,,,           |                      | 199 124 | ~~     | (%) |
| 実施例 1 | 8.4       | 8.4   | 8.3        | 0.1            | _                    | 0       | 7 H    | _   |
| 実施例 2 | 6.7       | 6.7   | 6.5        | 0.1            | 1.0×10 <sup>9</sup>  | 0       | 7 H    | _   |
| 実施例3  | 6.7       | 6.7   | 6.5        | 0.1            | 1.0×10 <sup>8</sup>  | 0       | 7 H    | _   |
| 実施例4  | 6.4       | 6. 5  | 6.4        | 0.1            | 3.0×10°              | 0       | 6 H    | -   |
| 実施例 5 | 6.5       | 6.3   | 6.6        | 0.1            | 4.0×10 <sup>8</sup>  | 0       | 6 H    | -   |
| 実施例6  | 6.3       | 6. 3  | 6.4        | 0.1            | 7.0×10 <sup>d</sup>  | 0       | 6 H    | 0.8 |
| 実施例 7 | 6.4       | 6.4   | 6. 3       | 0.1            | 2.0×10 <sup>8</sup>  | 0       | 7 H    | 0.7 |
| 実施例8  | 8.1       | 8.0   | 8.1        | 0.1            | 3. 0×10 <sup>s</sup> | 0       | 6 H    | 0.6 |
| 実施例 9 | 6. 3      | 6. 2  | 6. 2       | 0.1            | 5.0×10 <sup>7</sup>  | 0       | 9 H    | 0.4 |
| 比較例1  | 0.1       | 0.3   | 0.1        | 0.1            | 7.0×10 <sup>8</sup>  | 0       | 7 H    | _   |
| 比較例 2 | 1.2       | 3.5   | 7.9        | 0.1            | _                    | 0       | 7 H    | -   |
| 比較例3  | 1.2       | 3.4   | 7.8        | 0.1            | _                    | 0       | 7 H    | 6.4 |
| 比較例4  | 10. 1     | 10.3  | 10. 2      | 0.9            | 6.0×10 <sup>10</sup> | ×       | 2 B    | _   |

# [0082]

【発明の効果】本発明の着色薄膜は、熱安定性、耐候性 に優れるとともに、特定の可視光波長に吸収を生じない ため、陰極線管に適用した場合、陰極線管内の蛍光体の 発するスペクトルのバランスを崩すととなくコントラス

#### トの向上を図れる。

【0083】また、本発明において用いる窒素を含有してなる酸化チタンは導電性を有しているため、本発明の 着色薄膜は、帯電防止能も発現することができる。 フロントページの続き

 (51)Int.Cl.6
 識別記号
 庁內整理番号
 FI
 技術表示箇所

 G 0 2 B
 1/11
 5/22
 8507-2K

 H 0 1 J
 9/20
 A
 7250-5E

(72)発明者 平塚 和也 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内