

AoPS Community

1954 AMC 12/AHSME

AMC 12/AHSME 1954

www.artofproblemsolving.com/community/c4818 by AIME15, rrusczyk

- The square of $5-\sqrt{y^2-25}$ is: (A) $y^2-5\sqrt{y^2-25}$ (B) $-y^2$ (C) y^2 (D) $(5-y)^2$ (E) $y^2-10\sqrt{y^2-25}$ 1
- The equation $\frac{2x^2}{x-1}-\frac{2x+7}{3}+\frac{4-6x}{x-1}+1=0$ can be transformed by eliminating fractions to the equation $x^2-5x+4=0$. The roots of the latter equation are 4 and 1. Then the roots of the 2 first equation are:
 - **(A)** 4 and 1
- **(B)** only 1
- **(C)** only 4
- (D) neither 4 nor 1
- **(E)** 4 and some other root
- If x varies as the cube of y, and y varies as the fifth root of z, then x varies as the nth power of 3 z, where n is:
 - (A) $\frac{1}{15}$
- **(B)** $\frac{5}{3}$ **(C)** $\frac{3}{5}$
 - - **(D)** 15
- **(E)** 8
- 4 If the Highest Common Divisor of 6432 and 132 is diminished by 8, it will equal:
 - **(A)** -6
- **(B)** 6
- (C) -2
- **(D)** 3
- **(E)** 4
- A regular hexagon is inscribed in a circle of radius 10 inches. Its area is: 5
 - **(A)** $150\sqrt{3}$ sq. in.
- **(B)** 150 sq. in.
- **(C)** $25\sqrt{3}$ sq. in.
- **(D)** 600 sq. in.
- **(E)** $300\sqrt{3}$ sq. in.

- The value of $\frac{1}{16}a^0+\left(\frac{1}{16a}\right)^0-\left(64^{-\frac{1}{2}}\right)-(-32)^{-\frac{4}{5}}$ is: (A) $1\frac{13}{16}$ (B) $1\frac{3}{16}$ (C) 1 (D) $\frac{7}{8}$ (E) $\frac{1}{16}$ 6

- A housewife saved \$2.50 in buying a dress on sale. If she spent \$25 for the dress, she saved 7 about:
 - **(A)** 8%
- **(B)** 9%
- **(C)** 10%
- **(D)** 11%
- **(E)** 12%
- 8 The base of a triangle is twice as long as a side of a square and their areas are the same. Then the ratio of the altitude of the triangle to the side of the square is:
 - (A) $\frac{1}{4}$
- **(B)** $\frac{1}{2}$
- (C) 1
- **(D)** 2
- **(E)** 4
- A point P is outside a circle and is 13 inches from the center. A secant from P cuts the circle 9 at Q and R so that the external segment of the secant PQ is 9 inches and QR is 7 inches. The radius of the circle is:
 - **(A)** 3"
- **(B)** 4"
- **(C)** 5"
- **(D)** 6"
- **(E)** 7"

10 The sum of the numerical coefficients in the expansion of the binomial $(a + b)^8$ is:

(D) 48

- **(A)** 32
- **(B)** 16
- **(C)** 64
- **(E)** 7
- A merchant placed on display some dresses, each with a marked price. He then posted a sign 11 $\frac{1}{3}$ off on these dresses. The cost of the dresses was $\frac{3}{4}$ of the price at which he actually sold them. Then the ratio of the cost to the marked price was:
 - (A) $\frac{1}{2}$
- **(B)** $\frac{1}{3}$
- (C) $\frac{1}{4}$
 - **(D)** $\frac{2}{3}$
- 12 The solution of the equations

$$2x - 3y = 7$$

$$4x - 6y = 20$$

is:

- **(A)** x = 18, y = 12
- **(B)** x = 0, y = 0
- (C) There is no solution
- (D) There are an unlimited number of solutions
- **(E)** x = 8, y = 5
- 13 A quadrilateral is inscribed in a circle. If angles are inscribed in the four arcs cut off by the sides of the quadrilateral, their sum will be:
 - **(A)** 180°
- **(B)** 540°
- (C) 360°
- **(D)** 450°
- **(E)** 1080°
- When simplified $\sqrt{1+\left(\frac{x^4-1}{2x^2}\right)^2}$ equals: 14

- (A) $\frac{x^4 + 2x^2 1}{2x^2}$ (B) $\frac{x^4 1}{2x^2}$ (C) $\frac{\sqrt{x^2 + 1}}{2}$ (D) $\frac{x^2}{\sqrt{2}}$ (E) $\frac{x^2}{2} + \frac{1}{2x^2}$
- 15 $\log 125$ equals:
 - **(A)** 100 log 1.25
- **(B)** 5 log 3
- **(C)** $3 \log 25$ **(D)** $3 3 \log 2$
- **(E)** $(\log 25)(\log 5)$
- If $f(x) = 5x^2 2x 1$, then f(x+h) f(x) equals: 16
 - **(A)** $5h^2 2h$
- **(B)** 10xh 4x + 2 **(C)** 10xh 2x 2

- **(D)** h(10x + 5h 2)
- **(E)** 3h
- The graph of the function $f(x) = 2x^3 7$ goes: 17
 - (A) up to the right and down to the left
 - (B) down to the right and up to the left
 - (C) up to the right and up to the left
 - (D) down to the right and down to the left
 - (E) none of these ways.

Of the following sets, the one that includes all values of x which will satisfy 2x - 3 > 7 - x is: 18 **(B)** $x < \frac{10}{3}$ **(C)** $x = \frac{10}{3}$ **(D)** $x > \frac{10}{3}$

(A) x > 4

(E) x < 0

19 If the three points of contact of a circle inscribed in a triangle are joined, the angles of the resulting triangle:

(A) are always equal to 60°

- (B) are always one obtuse angle and two unequal acute angles
- (C) are always one obtuse angle and two equal acute angles
- (D) are always acute angles
- (E) are always unequal to each other
- The equation $x^3 + 6x^2 + 11x + 6 = 0$ has: 20

(A) no negative real roots

(B) no positive real roots

(C) no real roots

(D) 1 positive and 2 negative roots

(E) 2 positive and 1 negative root

The roots of the equation $2\sqrt{x} + 2x^{-\frac{1}{2}} = 5$ can be found by solving: 21

(A) $16x^2 - 92x + 1 = 0$ (B) $4x^2 - 25x + 4 = 0$ (C) $4x^2 - 17x + 4 = 0$ (D) $2x^2 - 21x + 2 = 0$ (E) $4x^2 - 25x - 4 = 0$

- The expression $\frac{2x^2-x}{(x+1)(x-2)}-\frac{4+x}{(x+1)(x-2)}$ cannot be evaluated for x=-1 or x=2, since division 22 by zero is not allowed. For other values of x:
 - (A) The expression takes on many different values.
 - **(B)** The expression has only the value 2.
 - (C) The expression has only the value 1.
 - **(D)** The expression always has a value between -1 and +2.
 - **(E)** The expression has a value greater than 2 or less than -1.
- If the margin made on an article costing C dollars and selling for S dollars is $M = \frac{1}{n}C$, then 23 the margin is given by:

(A) $M = \frac{1}{n-1}S$ (B) $M = \frac{1}{n}S$ (C) $M = \frac{n}{n+1}S$ (D) $M = \frac{1}{n+1}S$ (E) $M = \frac{n}{n-1}S$

The values of k for which the equation $2x^2 - kx + x + 8 = 0$ will have real and equal roots are: 24

(A) 9 and -7

(B) only -7

(C) 9 and 7

(D) -9 and -7

(E) only 9

The two roots of the equation $a(b-c)x^2+b(c-a)x+c(a-b)=0$ are 1 and: (A) $\frac{b(c-a)}{a(b-c)}$ (B) $\frac{a(b-c)}{c(a-b)}$ (C) $\frac{a(b-c)}{b(c-a)}$ (D) $\frac{c(a-b)}{a(b-c)}$ (E) $\frac{c(a-b)}{b(c-a)}$ 25

The straight line \overline{AB} is divided at C so that AC=3CB. Circles are described on \overline{AC} and \overline{CB} 26

as diameters and a common tangent meets AB produced at D. Then BD equals:

- (A) diameter of the smaller circle
- (B) radius of the smaller circle
- (C) radius of the larger circle
- **(D)** $CB\sqrt{3}$
- (E) the difference of the two radii
- 27 A right circular cone has for its base a circle having the same radius as a given sphere. The volume of the cone is one-half that of the sphere. The ratio of the altitude of the cone to the radius of its base is:

- (A) $\frac{1}{1}$ (B) $\frac{1}{2}$ (C) $\frac{2}{3}$ (D) $\frac{2}{1}$ (E) $\sqrt{\frac{5}{4}}$
- If $\frac{m}{n}=\frac{4}{3}$ and $\frac{r}{t}=\frac{9}{14}$, the value of $\frac{3mr-nt}{4nt-7mr}$ is: (A) $-5\frac{1}{2}$ (B) $-\frac{11}{14}$ (C) $-1\frac{1}{4}$ (D) $\frac{11}{14}$ 28

- **(E)** $-\frac{2}{3}$
- If the ratio of the legs of a right triangle is 1:2, then the ratio of the corresponding segments 29 of the hypotenuse made by a perpendicular upon it from the vertex is:
 - **(A)** 1 : 4
- **(B)** $1:\sqrt{2}$
- **(C)** 1 : 2
- **(D)** $1:\sqrt{5}$
- **(E)** 1 : 5
- A and B together can do a job in 2 days; B and C can do it in four days; and A and C in $2\frac{2}{5}$ 30 days. The number of days required for A to do the job alone is:
 - **(A)** 1
- **(B)** 3
- **(C)** 6
- **(D)** 12
- **(E)** 2.8
- 31 In triangle ABC, AB = AC, $\angle A = 40^{\circ}$. Point O is within the triangle with $\angle OBC \cong \angle OCA$. The number of degrees in angle BOC is:
 - **(A)** 110
- **(B)** 35
- **(C)** 140
- **(D)** 55
- **(E)** 70

- 32 The factors of $x^4 + 64$ are:
- (A) $(x^2 + 8)^2$ (B) $(x^2 + 8)(x^2 8)$ (C) $(x^2 + 2x + 4)(x^2 8x + 16)$ (D) $(x^2 4x + 8)(x^2 4x 8)$ (E) $(x^2 4x + 8)(x^2 + 4x + 8)$

- A bank charges \$6 for a loan of \$120. The borrower receives \$114 and repays the loan in 12 33 installments of \$10 a month. The interest rate is approximately.
 - **(A)** 5%
- **(B)** 6%
- **(C)** 7%
- **(D)** 9%
- **(E)** 15%

- The fraction $\frac{1}{3}$: 34
 - (**A**) equals 0.333333333
- **(B)** is less than 0.33333333 by $\frac{1}{3\cdot10^8}$
- **(C)** is less than 0.33333333 by $\frac{1}{3\cdot 10^9}$
- (**D**) is greater than 0.33333333 by $\frac{1}{3\cdot 10^8}$ (**E**) is greater than 0.33333333 by $\frac{1}{3\cdot 10^9}$

AoPS Community

1954 AMC 12/AHSME

35 In the right triangle shown the sum of the distances BM and MA is equal to the sum of the distances BC and CA. If MB = x, CB = h, and CA = d, then x equals:

- **(A)** $\frac{hd}{2h+d}$
- **(B)** d h
- **(C)** $\frac{1}{2}d$
- **(D)** $h + d \sqrt{2d}$
- **(E)** $\sqrt{h^2 + d^2} h$
- A boat has a speed of 15 mph in still water. In a stream that has a current of 5 mph it travels a 36 certain distance downstream and returns. The ratio of the average speed for the round trip to the speed in still water is:
 - (A) $\frac{5}{4}$
- **(B)** $\frac{1}{1}$
- (C) $\frac{8}{9}$
- **(D)** $\frac{7}{8}$
- (E) $\frac{9}{8}$
- 37 Given triangle PQR with \overline{RS} bisecting $\angle R$, PQ extended to D and $\angle n$ a right angle, then:

- (A) $\angle m = \frac{1}{2}(\angle p \angle q)$ (B) $\angle m = \frac{1}{2}(\angle p + \angle q)$ (C) $\angle d = \frac{1}{2}(\angle q + \angle p)$ (D) $\angle d = \frac{1}{2}\angle m$
- (E) none of these
- If $\log 2 = .3010$ and $\log 3 = .4771$, the value of x when $3^{x+3} = 135$ is approximately. 38
 - **(A)** 5
- **(B)** 1.47
- **(C)** 1.67
- **(D)** 1.78
- **(E)** 1.63
- 39 The locus of the midpoint of a line segment that is drawn from a given external point P to a

given circle with center O and radius r, is:

- (A) a straight line perpendicular to \overline{PO}
- **(B)** a straight line parallel to \overline{PO}
- (C) a circle with center P and radius r
- **(D)** a circle with center at the midpoint of \overline{PO} and radius 2r
- **(E)** a circle with center at the midpoint \overline{PO} and radius $\frac{1}{2}r$
- If $\left(a+\frac{1}{a}\right)^2=3$, then $a^3+\frac{1}{a^3}$ equals: (A) $\frac{10\sqrt{3}}{3}$ (B) $3\sqrt{3}$ (C) 0 (D) $7\sqrt{7}$ 40

- **(E)** $6\sqrt{3}$
- The sum of all the roots of $4x^3 8x^2 63x 9 = 0$ is: 41
 - **(A)** 8
- **(B)** 2
- (C) -8
- **(D)** -2
- Consider the graphs of (1): $y = x^2 \frac{1}{2}x + 2$ and (2) $y = x^2 + \frac{1}{2}x + 2$ on the same set of axis. 42 These parabolas are exactly the same shape. Then:
 - (A) the graphs coincide.
 - **(B)** the graph of (1) is lower than the graph of (2).
 - (C) the graph of (1) is to the left of the graph of (2).
 - (D) the graph of (1) is to the right of the graph of (2).
 - **(E)** the graph of (1) is higher than the graph of (2).
- 43 The hypotenuse of a right triangle is 10 inches and the radius of the inscribed circle is 1 inch. The perimeter of the triangle in inches is:
 - **(A)** 15
- **(B)** 22
- **(C)** 24
- **(D)** 26
- **(E)** 30
- A man born in the first half of the nineteenth century was x years old in the year x^2 . He was 44 born in:
 - **(A)** 1849
- **(B)** 1825
- **(C)** 1812
- **(D)** 1836
- **(E)** 1806
- In a rhombus, ABCD, line segments are drawn within the rhombus, parallel to diagonal BD, 45 and terminated in the sides of the rhombus. A graph is drawn showing the length of a segment as a function of its distance from vertex A. The graph is:
 - (A) A straight line passing through the origin.
 - **(B)** A straight line cutting across the upper right quadrant.
 - (C) Two line segments forming an upright V.
 - (D) Two line segments forming an inverted V.
 - (E) None of these.
- In the diagram, if points A, B and C are points of tangency, then x equals: 46

- (A) $\frac{3}{16}$ " (B) $\frac{1}{8}$ " (C) $\frac{1}{32}$ "
- **(D)** $\frac{3}{32}$ " **(E)** $\frac{1}{16}$ "
- 47 At the midpoint of line segment AB which is p units long, a perpendicular MR is erected with length q units. An arc is described from R with a radius equal to $\frac{1}{2}AB$, meeting AB at T. Then AT and TB are the roots of:
 - **(A)** $x^2 + px + q^2 = 0$
 - **(B)** $x^2 px + q^2 = 0$
 - (C) $x^2 + px q^2 = 0$
 - **(D)** $x^2 px q^2 = 0$
 - **(E)** $x^2 px + q = 0$
- 48 A train, an hour after starting, meets with an accident which detains it a half hour, after which it proceeds at $\frac{3}{4}$ of its former rate and arrives $3\frac{1}{2}$ hours late. Had the accident happened 90miles farther along the line, it would have arrived only 3 hours late. The length of the trip in miles was:
 - **(A)** 400
- **(B)** 465
- **(C)** 600
- **(D)** 640
- **(E)** 550
- 49 The difference of the squares of two odd numbers is always divisible by 8. If a > b, and 2a + 1and 2b+1 are the odd numbers, to prove the given statement we put the difference of the squares in the form:
 - (A) $(2a+1)^2 (2b+1)^2$
 - **(B)** $4a^2 4b^2 + 4a 4b$
 - (C) 4[a(a+1) b(b+1)]
 - **(D)** 4(a-b)(a+b+1)
 - **(E)** $4(a^2 + a b^2 b)$
- 50 The times between 7 and 8 o'clock, correct to the nearest minute, when the hands of a clock will form an angle of 84 degrees are:
 - (A) 7: 23 and 7: 53
- **(B)** 7: 20 and 7: 50
- (C) 7: 22 and 7: 53

- **(D)** 7: 23 and 7: 52
- (E) 7: 21 and 7: 49

These problems are copyright © Mathematical Association of America (http://maa.org).