CONFIDENTIAL CS/DEC 2021/STA404

UNIVERSITI TEKNOLOGI MARA ASSESSMENT 1

COURSE : STATISTICS FOR BUSINESS AND SOCIAL

SCIENCES

COURSE CODE : STA404

DATE : 1 DEC 2021

TIME : 8.00 – 9.00 PM (1 HOUR)

ANSWER SCHEME

(PLEASE CHECK THE SOLUTIONS BEFORE BEGIN MARKING)

QUESTION	SOLUTION	MARKS
PART A		
1 a)	i) TRUE (T) ii) FALSE (F) iii) FALSE (F) iv) FALSE (F) v) TRUE (T)	1 mark each (5 marks)
1 b)	i) FALSE (F) ii) FALSE (F) iii) TRUE (T) iv) FALSE (F) v) FALSE (F)	1 mark each (5 marks)
	TOTAL MARKS FOR QUESTION 1 (PART A) = 10 MARKS	
2 a)	$\sum x = 107; \ \sum x^2 = 1619$ $\overline{x} = \frac{\sum x}{n} = \frac{107}{8} = 13.375$ $s = \sqrt{\frac{1}{n-1} \left[\sum x^2 - \frac{(\sum x)^2}{n} \right]} = \sqrt{\frac{1}{8-1} \left[1619 - \frac{107^2}{8} \right]} = 5.181$	5 marks
2 b)	PCS = $\frac{3(mean - median)}{s} = \frac{3(13.375 - 14.5)}{5.181} = -0.651$ Negatively (left) skewed.	2 marks
2 c)	$CV_{Nov\ 2021} = \frac{s}{\overline{x}} \times 100 = \frac{5.181}{13.375} \times 100 = 38.7$ $CV_{Nov\ 2020} = \frac{\sqrt{10.79}}{7.25} \times 100 = 45.3$ Decision: Vegetables prices in November 2021 has a more consistent distribution.	3 marks
	TOTAL MARKS FOR QUESTION 2 (PART A) = 10 MARKS	
	TOTAL MARKS FOR PART A = 20 MARKS	

PART B		
1 a)	Standard error = $\frac{s}{\sqrt{n}} = \frac{16.7128}{\sqrt{30}} = 3.0513$	2 marks
1 b)	$\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$ $53.6892 \pm t_{0.05/2,29} \frac{16.7128}{\sqrt{30}}$ $53.6892 \pm (2.045) \frac{16.7128}{\sqrt{30}}$ $53.6892 \pm 2.045 (3.0513)$ 53.6892 ± 6.2399 $(47.4493, 59.9291)$	3 marks
2.0)	TOTAL MARKS FOR QUESTION 1 (PART B) = 5 MARKS	
2 a)	H0: Equal variances assumed H1: Equal variances not assumed $\alpha = 0.05$ $p\text{-value} = 0.308$ Since the p-value = 0.308 > $\alpha = 0.05$, equal variances assumed.	2 marks
2 b)	Standard error difference = $Sp\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ $(n_4 - 1)s_2^2 + (n_2 - 1)s_2^2$	
	$Sp = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$ $= \sqrt{\frac{(13 - 1)7.0774^2 + (12 - 1)9.2846^2}{13 + 12 - 2}}$ $= 8.2074$	4 marks
	Standard error difference = $Sp\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	
	$= 8.2074 \sqrt{\frac{1}{13} + \frac{1}{12}} = 3.2856$	
	*Note: Student can use other ways to find standard error difference.	
2 c)	$(\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2} Sp \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	

	$(\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2} Sp \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ $-1.3654 \pm t_{0.05/2,23} (3.2856)$ $-1.3654 \pm t_{0.025,23} (3.2856)$ $-1.3654 \pm 2.069 (3.2856)$ $-1.3654 \pm 2.069 (3.2856)$ -1.3654 ± 6.7979 $(-8.1633, 5.4325)$	3 marks
2 d)	With 95% confident, there is no difference in Mathematics score between gender, because 0 value is included in the interval.	1 mark
	TOTAL MARKS FOR QUESTION 2 (PART B) = 10 MARKS	
3 a)	$A = 22.83 - 21.83 = 1.00 (\sqrt{1} M)$	
	B = n-1 = 6 - 1= 5 ($\sqrt{\sqrt{1 \text{ M}}}$	2 marks
3 b)	$\overline{\mathbf{d}} \pm \mathbf{t}_{\alpha/2} \frac{\mathbf{s}_{\mathbf{d}}}{\sqrt{\mathbf{n}}}$ $\sqrt{\qquad \sqrt{\qquad (1 \mathbf{M})}}$	3 marks
	1.00 ± (3.365) (0.683) 1.00 ± 2.298 (-1.298, 3.298) $\sqrt{\sqrt{ (1M)}}$	
	One can be 98% confident that the mean difference between working hours lost due to the factory accidents before and after training program is between -1.298 and 3.298 hours. ($\sqrt{1}$ 1M)	
	TOTAL MARKS FOR QUESTION 3 (PART B) = 5 MARKS	
	TOTAL MARKS FOR QUESTION PART B = 20 MARKS	