X₁, ...,
$$X_{N} \mid \theta_{1}, \delta^{2} \stackrel{\text{iid}}{\sim} N(\theta_{1}, \delta^{2})$$

 $\theta_{1} \sim N(M_{0}, \mathbb{T}^{2})$
 $\delta^{2} \sim I_{NN} \left(\frac{n_{0}}{2}, \frac{n_{0}, \delta^{2}}{2} \right)$
 $\Rightarrow P(\theta_{1}, \delta^{2} \mid X) = N(\theta_{1}, \delta^{2}_{p}) K(\delta^{2} \mid X)$

Becau: $X \mid \theta \sim Bin(n, \theta)$ $\theta \sim Beta(x, \beta)$ $\theta \mid X \sim Beta(x, x, \beta + n - x)$

P(Φ) = $\frac{1}{2}$ Beta (3,3) + $\frac{1}{2}$ Beta (2,4) χ_1 χ_2 χ_3 χ_4 χ_5 χ_5

If you know the function $P(\theta)$ then you can compute: $P(\theta|X) \propto P(X|\theta)P(\theta) = K(\theta|X)$

(an we still use conjugacy?

Imagine P(+) is a mixture (compound distribution of a discrete

of beta components

$$P(\theta) = \sum_{m=1}^{M} \chi_m P_m(\theta) \qquad \text{s.t.} \qquad \sum_{m=1}^{N} \chi_m = 1$$

$$\begin{array}{c} X \mid \theta \sim B_{11}(n,\theta) \\ P(\theta) = \sum_{m=1}^{\infty} J_{1m} P_{1m}(\theta) \\ \theta \mid X \sim 2 \\ \\ P(x) = P(x|\theta) P(\theta) = P(x|\theta) \sum_{m=1}^{\infty} J_{1m} P_{1m}(\theta) \\ P(x) = \sum_{m=1}^{\infty} J_{1m} P_{1m}(\theta) = \sum_{m=1}^{\infty} J_{1m} P_{1m}(\theta) \\ = \sum_{m=1}^{\infty} J_{1m} P_{1m}(\theta) P_{1m}(\theta) \\ = \sum_{m=1}^{\infty} J_{1m}(\theta) P_{1m}(\theta) P_{1m}(\theta) P_{1m}(\theta) P_{1m}(\theta) \\ = \sum_{m=1}^{\infty} J_{1m}(\theta) P_{1m}(\theta) P_{1m}(\theta) P_{1m}(\theta) P_{1m}(\theta) \\ = \sum_{m=1}^{\infty} J_{1m}(\theta) P_{1m}(\theta) P_{1m}(\theta) P_{1m}(\theta) P_{1m}(\theta) \\ = \sum_{m=1}^{\infty} J_{1m}(\theta) P_{1m}(\theta) P_$$

P2 (5) = 0 betahinum (5, 10, 2, 4) = . 112 :

dbh = dbetabinomal

512/17-2

= .57 abera () + .43 abera ()

Samor from Plaix)

- 1 Sample Do., from Beta (8.8); use rneta (8.8)
- 3 Sample Bo, 2 from Beta (7,9): use rhaz(7,9)
- 3 return to = Ti to,1 + 72' to,2
- @ Repeat 1-3 many times.

Point Estimate

In our example = .57
$$\frac{8}{11}$$
 + .43 $\frac{2}{11}$

not on exam

Prior is a known mixture.

What it likelihund model is a muxture?

XII ... X M | A W E & EM PM (XIA)

Vi. am

ex: X_1 , $IX_1 | \theta_1 | \delta_1^2$, $\theta_2 | \delta_2^2$, $Q = Q | (\theta_1 | \delta_1^2) + (1-Q) | N(\theta_2 | \delta_2^2)$

P N(8, 62, 62)

GODI - art posterior or function of posterior

P(0,02,02,02,01x) & (T, P(x, 10,02,02,02,0)) P(0,02,02,02,0)