Summary

v.v.kitov@yandex.ru

Yandex School of Data Analysis

Method types

- Label usage:
 - supervised methods use $\{(x_n, y_n)\}_{n=1}^N$ unsupervised methods use only $\{x_n\}_{n=1}^N$
- Predicted target (unsupervized):
 - $y \in \mathbb{R}$: feature extraction, dimensionality reduction
 - PCA. non-linear
 - $y \in \{1, 2, ... C\}$: clustering.
 - K-means etc.
- Predicted target (supervized):
 - regression: $y \in \mathbb{R}$
 - classification: $y \in \{1, 2, ... C\}$

- Data preprocessing
- Supervised prediction methods
- 3 Extensions
- 4 Evaluation

Data visualization

- univariate histograms
- pairwise scatter plots
- in first 2 principal components
- depict y with coordinate, color, marker, point size.

Common issues

- too much data => subsampling
- outliers => filter them
- missing data => impute it
- imbalanced classes => object reweighting
- train/validation/test have different distributions
 - if adjustable: use random/stratified subsampling
 - if fixed: use adaptation techiques (transfer learning)

- Data preprocessing
- Supervised prediction methods
- 3 Extensions
- 4 Evaluation

Metric methods

- Assumption: close objects have similar targets
 - "flat costs as average price of similar flats"
- Prediction: by targets of similar objects
- Representatives:
 - KNN, nearest centroids, Parzen window, Nadaraya-Watson regression

Linear methods

- Assumption: factors linearly add together to form target
 - "#[rooms], #[square meters], distance to city center, etc. sum toghether with coefs to form the price"
- Prediction: by linear functions
- Representatives:
 - regression: linear, ridge, LASSO, robust, SVM regression.
 - classification: SVM, logistic, Perceptron.

Rule-based methods

- Assumption: target is formed under logical combination of simple rules
 - "if district=central and #[rooms]=1 then price=X, else if ..."
- Prediction: by sequential application of rules
- Representatives: decision trees

- Data preprocessing
- Supervised prediction methods
- 3 Extensions
- 4 Evaluation

Generalizations

- Feature engineering:
 - centering, scaling
 - $f(x^i)$, $x^i x^j$, $\rho(x x_{ref})$, etc.
- Metric methods: by different distance functions
- Scalar product dependent: by different kernels $\langle x,z\rangle \to K(x,z)$
 - need to establish Mercer condition for $K(\cdot, \cdot)$

Ensembles

- Outputs of base models = inputs to other models
- Combination strategies
 - voting
 - averaging
 - step-wise fitting
 - boosting
 - stacking
 - use different datasets for base and aggregation models.
 - iterative stacking with simultaneous fitting
 - neural networks

- Data preprocessing
- Supervised prediction methods
- 3 Extensions
- 4 Evaluation

General concepts

- Different loss functions give different results
- Loss functions should be derived from business task
 - may be non-symmetric losses

Classifier evaluation

- Performance on single object:
 - margin: $g_v(x) \max_{c \neq v} g_c(x)$
 - probability of correct prediction: p(f(x) = y|x)
- On the validation set:
 - accuracy
 - ordering of preferences
 - ROC curve, AUC
 - probabilities
 - likelihood function