

Standard Rectifier Module

3~ Rectifier				
V_{RRM}	=	1600 V		
I_{DAV}	=	27 A		
I _{FSM}	=	550 A		

3~ Rectifier Bridge

Part number

VUO36-16NO8

Features / Advantages:

- Planar passivated chips
- Very low leakage currentVery low forward voltage drop
- Improved thermal behaviour

Applications:

- Diode for main rectification
- For three phase bridge configurations
 Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: FO-B

- Industry standard outline
- RoHS compliant
- 1/4" fast-on terminals
- Easy to mount with one screw

Rectifie	r				Ratings	3	
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse bloc	king voltage	$T_{VJ} = 25^{\circ}C$			1700	V
V _{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			1600	V
I _R	reverse current	V _R = 1600 V	$T_{VJ} = 25^{\circ}C$			40	μΑ
		V _R = 1600 V	$T_{VJ} = 150^{\circ}C$			1.5	mΑ
V _F	forward voltage drop	I _F = 15 A	$T_{VJ} = 25^{\circ}C$			1.04	V
		$I_F = 45 A$				1.23	V
		I _F = 15 A	T _{VJ} = 125 °C			0.93	V
		$I_F = 45 A$				1.18	٧
IDAV	bridge output current	T _c = 85°C	T _{VJ} = 150°C			27	Α
		rectangular d = ⅓					
V _{F0}	threshold voltage \(\) T _{VJ} = 150°C				0.76	V	
r _F	slope resistance \(\) for power	loss calculation only				9.1	mΩ
R _{thJC}	thermal resistance junction to ca	se				7	K/W
R _{thCH}	thermal resistance case to heats	sink			1		K/W
P _{tot}	total power dissipation		T _C = 25°C			17	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			550	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			595	Α
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			470	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			505	Α
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			1.52	kA2s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			1.48	kA²s
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			1.11	kA²s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			1.06	kA²s
C	junction capacitance	V _R = 400 V; f = 1 MHz	T _{VJ} = 25°C		18		pF

Package FO-B					Ratings			
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					100	Α
T _{stg}	storage temperature	storage temperature					125	°C
T _{VJ}	virtual junction temperature				-40		150	°C
Weight						20		g
M _D	mounting torque				1.8		2.2	Nm
d _{Spp/App}	creepage distance on surface striking distance through air		terminal to terminal	9.0	7.0			mm
d _{Spb/Apb}			terminal to backside	10.0	10.0			mm
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA		3000			V
		t = 1 minute			2500			V

Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	VUO36-16NO8	VUO36-16NO8	Box	50	465178

Equiva	alent Circuits for	Simulation	* on die level	T _{vJ} = 150 °C
$I \rightarrow V_0$	R_0	Rectifier		
V _{0 max}	threshold voltage	0.76		V
$R_{0\text{max}}$	slope resistance *	7.9		$m\Omega$

Outlines FO-B

Rectifier

Fig. 1 Forward current vs. voltage drop per diode

Fig. 2 Surge overload current vs. time per diode

Fig. 3 I²t vs. time per diode

Fig. 4 Power dissipation vs. forward current and ambient temperature per diode

Fig. 5 Max. forward current vs. case temperature per diode

Fig. 6 Transient thermal impedance junction to case vs. time per diode

Constants for Z_{thJC} calculation:

i	R_{th} (K/W)	t _i (s
1	0.040	0.005
2	0.150	0.030
3	1.710	0.400
4	5.100	2.300