Big-O Example

We show that $\log n!$ is $O(n \log n)$ and $n \log n$ is $O(\log n!)$.

We use the following well-known properties of logarithms.

```
\log(ab) = \log a + \log b, the log of a product equals the sum of the logs a \le b \to \log a \le \log b, the log function is increasing
```

We first show $\log n!$ is $O(n \log n)$.

$$\log n! = \log(1 \cdot 2 \cdot 3 \cdot \dots \cdot n)$$

$$= \log 1 + \log 2 + \log 3 + \dots + \log n$$

$$\leq \log n + \log n + \log n + \dots + \log n$$

$$= n \log n$$

Therefore $\log n!$ is $O(n \log n)$ with C = 1 and k = 1 as witnesses.

Showing $n \log n$ is $O(\log n!)$ is trickier and before doing this we first prove an interesting set of inequalities. We claim that n is less than or equal to each of the following products: $1 \cdot n, 2 \cdot (n-1), 3 \cdot (n-2), 4 \cdot (n-3), \ldots, (n-1) \cdot 2, n \cdot 1$. If true, then $\log n$ will be less than or equal to the \log of each of these products.

If $1 \le i \le n$, then $i-1 \ge 0$ and $n-i \ge 0$ and so $0 \le (i-1)(n-i)$. Expanding this gives $0 \le in - i^2 - n + i$. Adding n to both sides gives $n \le in - i^2 + i$ and finally by factoring we get $n \le i(n-i+1)$, which is what we set out to show.

Now we will prove $n \log n$ is $O(\log n!)$.

```
n \log n = \log n + \log n + \log n + \dots + \log n
\leq \log(1 \cdot n) + \log(2 \cdot (n-1)) + \log(3 \cdot (n-2)) + \dots + \log(n \cdot 1)
= [\log 1 + \log n] + [\log 2 + \log(n-1)] + [\log 3 + \log(n-2)] + \dots + [\log n + \log 1]
= 2 \log 1 + 2 \log 2 + 2 \log 3 + \dots + 2 \log n
= 2(\log 1 + \log 2 + \log 3 + \dots + \log n)
= 2 \log(1 \cdot 2 \cdot 3 \cdot \dots \cdot n)
= 2 \log n!
```

Therefore $n \log n$ is $O(\log n!)$ with C = 2 and k = 1 as witnesses.