Pravděpodobnost a statistika - zkoušková písemka 12.5.2021

Jméno a příjmení	1	2	3	ústní	celkem	známka

Úloha 1. (celkem 50 bodů)

Cukrárna je vyhlášená výrobou zdobených dortů, zejména narozeninových, svatebních a se zábavnou tématikou. Tyto tři typy jsou objednávány v poměru 4:1:3. Zákazník si vybírá mezi světlým a tmavým těstem, přičemž ze světlého těsta jich je mezi narozeninovými dorty 30%, mezi svatebními 60% a mezi tématickými 40%. Cukrárna denně obdrží průměrně 2 objednávky na některý z těchto dortů (ostatní objednávky neuvažujeme), přičemž objednávky jsou na sobě zcela nezávislé. Určete pravděpodobnost, že

- a) příští objednaný dort bude ze světlého těsta, (5 bodů)
- b) příští objednaný dort ze světlého těsta bude se zábavnou tématikou, (5 bodů)
- c) během tří následujících dnů budou objednány alespoň dva narozeninové dorty,
 (8 bodů)
- d) na objednávku příštího svatebního dortu budeme čekat nejvýše dva dny, (8 bodů)
- e) nejpozději čtvrtý objednaný dort bude svatební, (8 bodů)
- f) mezi dalšími šesti objednanými dorty budou nejvýše dva se zábavnou tématikou,
 (8 bodů)
- g) mezi dalšími šedesáti objednanými dorty bude nejvýše dvacet se zábavnou tématikou (řešte pomocí CLV; 8 bodů).

Úloha 2. (celkem 20 bodů)

Na svahu v Alpách měřila horská služba na 16 místech tloušťku ledovce. Naměřené hodnoty (v m) jsou:

- a) Nakreslete histogram a odhadněte z něj, jaké rozdělení má náhodná veličina udávající tloušťku ledovce v náhodně vybraném místě. (5 bodů)
- b) Odhadněte z dat střední hodnotu a rozptyl náhodné veličiny z otázky a). (5 bodů) (hint: $\sum x_i = 75$, $\sum (x_i \bar{x})^2 = 5.7175$)
- c) Statisticky otestujte na hladině 5%, zda je střední tloušťka ledovce 5 m. (10 bodů)

Úloha 3. (celkem 30 bodů)

Na veletrhu rodinných domů byl mezi návštěvníky proveden průzkum, v němž organizátor mj. zjišťoval, o jaké typy domů se návštěvníci nejvíce zajímali a jaký je příjem jejich domácností. Zaznamenáno bylo:

p říjem $\downarrow typ domu \rightarrow$	zděný	standardní dřevostavba	pasivní
vysoký	60	40	100
středně vysoký	150	200	150
průměrný / nižší	90	160	50

- a) Odhadněte z dat marginální rozdělení složek náhodného vektoru (X,Y), kde X popisuje typ domu (X=1 pro zděný, X=2 pro dřevostavbu a X=3 pro pasivní) a Y popisuje příjem domácnosti (Y=1 pro vysoký, Y=2 pro středně vysoký a Y=3 pro průměrný / nižší). (5 bodů)
- b) Statisticky otestujte na hladině 1%, zda můžeme považovat typ domu, o který se návštěvník zajímá, za závislý na příjmu jeho domácnosti. (15 bodů)
- c) Statisticky otestujte na hladině 5%, zda je o všechny typy domů přibližně stejný zájem. (10 bodů)

$\mathbf{\acute{U}stn\acute{i}}$ část (celkem 10 bodů)

Definujte nejprve **obecně** nezávislost diskrétních náhodných veličin X a Y. Poté pro náhodné veličiny X a Y se sdruženými a marginálními pravděpodobnostmi uvedenými v následující tabulce

$X \downarrow Y \rightarrow$	0	1	2	Σ
0	a	b	c	1/2
2	d	e	f	1/4
4	g	h	i	j
Σ	1/2	1/4	k	l

2

určete parametry a, b, c, d, e, f, g, h, i, j, k a l tak, aby

- (i) corr(X, Y) = 0,
- (ii) corr(X, Y) = 1

(stačí jedna kombinace těchto parametrů pro každý z případů (i) a (ii)).