

- Prelegerea 8 - Securitate semantică

Adela Georgescu, Ruxandra F. Olimid

Facultatea de Matematică și Informatică Universitatea din București

Cuprins

1. Securitate - interceptare simplă

2. Securitate - interceptare multiplă

Securitate semantică - interceptare simplă

▶ Reamintim: (Enc, Dec) peste spațiul ($\mathcal{K}, \mathcal{M}, \mathcal{C}$) este perfect sigură dacă

$$orall m_0, m_1 \in \mathcal{M}$$
 cu $|m_0| = |m_1|$ are loc egalitatea

$$\{Enc_k(m_0)\} = \{Enc_k(m_1)\}$$

(distribuțiile sunt identice)

pentru $k \leftarrow^R \mathcal{K}$;

► Incercăm o relaxare:

$$\forall m_0, m_1 \in \mathcal{M}$$
 cu $|m_0| = |m_1|$ are loc

$$\{Enc_k(m_0)\}\approx \{Enc_k(m_1)\}$$

(distribuțiile sunt indistinctibile computațional)

pentru $k \leftarrow^R \mathcal{K}$:

Insă adversarul trebuie să aleagă m_0 și m_1 explicit.

Securitate semantică - interceptare simplă

- Vom defini securitatea semantică pe baza unui experiment de indistinctibilitate $Priv_{\mathcal{A},\pi}^{eav}(n)$ unde $\pi=(Enc,Dec)$ este schema de criptare iar n este parametrul de securitate al schemei π
- Personaje participante: **adversarul** A care încearcă să spargă schema și un **provocator** (**challenger**).
- ► Trebuie să definim capabilitățile adversarului: în contextul sistemelor de criptare fluide, el poate vedea un singur text criptat cu o anume cheie, fiind un adversar pasiv care poate rula atacuri în timp polinomial.

Adversar ${\cal A}$

Experimentul $Priv_{A,\pi}^{eav}(n)$

Output-ul experimentului este 1 dacă b'=b și 0 altfel. Dacă $Priv_{\mathcal{A},\pi}^{eav}(n)=1$, spunem că \mathcal{A} a efectuat experimentul cu succes.

Securitate semantică - interceptare simplă

Definiție

O schemă de criptare $\pi=(\mathit{Enc},\mathit{Dec})$ este indistinctibilă în prezența unui atacator pasiv dacă pentru orice adversar $\mathcal A$ există o funcție neglijabilă negl așa încât

$$Pr[Priv_{\mathcal{A},\pi}^{eav}(n)=1] \leq \frac{1}{2} + negl(n).$$

Un adversar pasiv nu poate determina care text clar a fost criptat cu o probabilitate semnificativ mai mare decât dacă ar fi ghicit (în sens aleator, dat cu banul).

Securitate pentru interceptare multiplă

- In definiția precedentă am considerat cazul unui adversar care primește un singur text criptat;
- In realitate, în cadrul unei comunicații se trimit mai multe mesaje pe care adversarul le poate intercepta;
- Definim ce înseamnă o schemă sigură chiar şi în aceste condiții.

Adversar ${\cal A}$

- Output-ul experimentului este 1 dacă b' = b și 0 altfel;
- Definiția de securitate este aceeași, doar că se referă la experimentul de mai sus.
- Securitatea pentru interceptare simplă nu implică securitate pentru interceptare multiplă!

Securitate pentru interceptare multiplă

Definiție

O schemă de criptare $\pi=(Enc,Dec)$ este indistinctibilă în prezența unui atacator pasiv dacă pentru orice adversar $\mathcal A$ există o funcție neglijabilă negl așa încât

$$Pr[Priv_{\mathcal{A},\pi}^{mult}(n) = 1] \leq \frac{1}{2} + negl(n).$$

Teoremă

O schemă de criptare (Enc, Dec) unde funcția Enc este deterministă nu are proprietatea de securitate la interceptare multiplă conform cu definiția de mai sus.

- ► Intuitiv, am vazut că schema OTP este sigură doar când o cheie este folosită o singură dată;
- La sistemele fluide se întâmplă același lucru;
- Vom considera un adversar \mathcal{A} care atacă schema (în sensul experimentului $Priv_{\mathcal{A},\pi}^{mult}(n)$)

 $\begin{array}{c} \mathsf{Adversar} \\ \mathcal{A} \end{array}$

- ▶ Dacă $c_1 = c_2$, atunci \mathcal{A} întoarce 0, altfel \mathcal{A} întoarce 1.
- Analizăm probabilitatea ca \mathcal{A} să ghicească b: dacă b=0, același mesaj este criptat mereu $(m_0^1=m_0^2)$ iar $c_1=c_2$ și deci \mathcal{A} întoarce mereu 0;
- ▶ Dacă b=1, atunci $(m_1^1 \neq m_1^2)$ iar $c_1 \neq c_2$ și deci $\mathcal A$ întoarce mereu 1.

Important de reținut!

- Securitate interceptare simplă ⇒ securitate interceptare multiplă
- ► Schemele deterministe nu sunt sigure la interceptare multiplă