Assignment 18

Neha Rani EE20MTECH14014

Download the latex-tikz codes from

https://github.com/neharani289/MatrixTheory/Assignment18

1 Problem

(ugcdec/2015/72):

Let **V** be the vector space of polynomials over \mathbb{R} of degree less than or equal to n. For $p(x) = a_0 + a_{n-1}x + ... + a_nx^n$ in **V**, define a linear transformation $\mathbf{T} : \mathbf{V} \to \mathbf{V}$ by $(\mathbf{T}p)(x) = a_n + a_{n-1}x + ... + a_0x^n$. Then

- 1) **T** is one to one.
- 2) **T** is onto.
- 3) **T** is invertible.
- 4) $\det \mathbf{T} = \pm 1$.

2 **D**EFINITION AND THEOREM USED

Theorem	Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ is the linear transformation $\mathbf{T}(\mathbf{x}) = \mathbf{A}\mathbf{x}$ where \mathbf{A} s an $m \times n$ matrix.
	 T is one to one if the columns of A are linearly independent, which happens precisely when A has a pivot position in every column. T is onto if an over R only if the span of the columns of A is Rⁿ, which happens precisely when A has a pivot position in every row.
Range(T)	It is column-space of linear operator T .
	$\mathbf{T}(\mathbf{x}) = \mathbf{v} \implies \mathbf{A}\mathbf{x} = \mathbf{v}$
	where $\mathbf{x}, \mathbf{v} \in \mathbf{V}$ and We can also say that
	$Range(\mathbf{T}) = C(\mathbf{A})$
	where $C(\mathbf{A})$ is column space of \mathbf{A} .
rank(T)	$rank(\mathbf{T}) = rank(\mathbf{A})$

TABLE 1: Definitions and Theorem

3 Solution

Given	${f V}$ be a vector space of polynomials over ${\Bbb R}$ of degree less then n
	$p(x) = a_0 + a_{n-1}x + \dots + a_n x^n$
	$T: V \rightarrow V$
	$(\mathbf{T}p)(x) = a_n + a_{n-1}x + + a_0x^n$
Explanation	We know that Basis for a polynomial vector space $P = (p_1, p_2,, p_n)$ is a set of vectors that spans the space, and is linearly independent.
	Basis = $(1, x, x^2,, x^n)$
	$\mathbf{T}(1) = x^{n} = 0.1 + 0.x + + 0.x^{n-1} + 1.x^{n}$ $\mathbf{T}(x) = x^{n-1} = 0.1 + 0.x + + 1.x^{n-1} + 0.x^{n}$
	$\mathbf{T}(x^n) = 1 = 1.1 + 0.x + + 0.x^{n-1} + 0.x$
	Expressing T in matrix form
	$\mathbf{T} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix}$
Example	For Simplicity, Let $n = 3$
	$\implies p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$
	\implies (T) $p(x) = a_3 + a_2x + a_1x^2 + a_0x^3$
	$Basis = (1, x, x^2, x^3)$
	$\mathbf{T}(1) = 0.0 + 0.x + 0.x^2 + 1.x^3$
	$\mathbf{T}(x) = 0.0 + 0.x + 1.x^2 + 0.x^3$
	$\mathbf{T}(x^2) = 0.0 + 1.x + 0.x^2 + 0.x^3$
	$\mathbf{T}(x^3) = 1.1 + 0.x + 0.x^2 + 0.x^3$
	Expressing T in matrix form;

	$\mathbf{T} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$
Statement 1:T is one to one	True
	$T: V \rightarrow V$ be a linear transformation
	T is one-to-one if and only if the nullity of T is zero.
	According to rank-nullity theorem. $dim(\mathbf{V}) = rank(\mathbf{T}) + nullity(\mathbf{T})$
	$\mathbf{T} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$
	Here, $dim(\mathbf{V}) = 4$
	$rank(\mathbf{T}) = \text{no. of linearly independent column or row} = 4$
·	$\implies nullity(\mathbf{T}) = 0$
	Thus, we can conclude T is one to one.
Statement 2:T is onto	True
	A matrix transformation is onto if and only if the matrix has a pivot position in each row, if the number of pivots is equal to the number of rows.
	$\mathbf{T} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$
	$\implies rank(\mathbf{T}) = 4$ which is equal to no of rows.
	Thus, we can conclude T is onto.
Statement 3:T is invertible	True
	Theorem : A linear transformation $T: V \to W$ is invertible if there exists another linear transformation $U: W \to V$ such that UT is the <i>identity</i> transformation on V and TU is the <i>identity</i> transformation on W , where U is called Inverse of T .
	T is invertible if and only if T is one – one and onto

	$\mathbf{T} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$ $\mathbf{T}^{-1} = \mathbf{U} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = \mathbf{T}$ $\mathbf{UT} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \mathbf{I}$
	Thus, we can conclude T is invertible.
Statement 4: $\det \mathbf{T} = \pm 1$	True
	$\mathbf{T} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \text{ where } \mathbf{T} \text{ is a permutation matrix }.$
	A permutation matrix is nonsingular matrix, and determinant is ± 1 . Permutation matrix A satisfies $\mathbf{A}\mathbf{A}^T = \mathbf{I}$
	Here, $\mathbf{T}\mathbf{T}^{T} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$
	$\mathbf{T}\mathbf{T}^{T} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \mathbf{I} \text{ , also an Involutory matrix .}$
	Involutory matrix : an involutory matrix is a matrix that is its own inverse. That is, multiplication by matrix \mathbf{A} is an involution if and only if $\mathbf{A}^2 = \mathbf{I}$.
	Since, $\mathbf{T}^{-1} = \mathbf{T}$ and $\mathbf{T}^2 = \mathbf{I}$
	We can say T is also an Involutory matrix. Thus, we can conclude det $T = \pm 1$

TABLE 2: Solution Summary