可编程协议 I/0 微控制器 PIOC

手册

版本: 1

http://wch.cn

1、概述

部分 WCH 芯片内嵌了一个可编程协议 I/O 微控制器 PIOC,即 eMCU,该 eMCU 基于单时钟周期的精简指令集 RISC8B 内核,运行于系统主频,具有 2K 指令的程序 ROM 和 49 个 SFR 寄存器及 PWM 定时/计数器,支持 2 个 I/O 引脚的协议控制。

2、特点

- RISC8B 内核,优化的单周期位操作指令集,全静态设计,支持系统主频。
- 复用了 4K 字节的系统 SRAM 作为 2K 容量的程序 ROM, 支持程序暂停和动态加载。
- 提供 33 字节的双向寄存器和单向各 1 个寄存器,提供 6 级独立堆栈。
- 8 位自动重加载定时器 0,用于超时复位、可编程时钟或者 8 位 PWM 输出。
- 支持 2 个通用双向 I/O 协议控制,支持输入电平变化检测。

3、指令和程序空间及堆栈

3.1. 指令集

eMCU 采用精简指令集 RISC8B 内核,数据宽度为 8 位,指令宽度为 16 位。

共 66 条指令,除了跳转指令是双时钟周期、程序空间读写指令是双周期之外,其余指令都是单时钟周期。更多介绍请参考 RISC8B 内核指令集和汇编工具文档 CHRISC8B. PDF。

3.2. 程序 ROM

eMCU 的程序 ROM 来自 4K 字节的系统 SRAM 复用,当 RB_MST_CLK_GATE 为 0 时专用于主机侧的系统 SRAM,当 RB_MST_CLK_GATE 为 1 时专用于 eMCU 的程序 ROM。

eMCU 的程序空间是 2048 字,程序空间地址从 0x0000 到 0x07FF。程序 ROM 中 0 地址的指令具有特殊用途,该指令不会被执行。

eMCU 芯片支持对程序空间进行读操作。步骤是: 先将目标地址低 8 位写入 SFR_INDIR_ADDR 中,目标地址高 3 位写入 A 寄存器中,然后执行 RDCODE 指令,可以一次读出程序空间中的 16 位数据,分为高低两个字节,其中低字节返回在 A 寄存器中,高字节返回在 SFR_INDIR_ADDR 中。该操作可以用于双字节查表。

eMCU 芯片不支持对程序空间进行写操作。

3.3. 堆栈

eMCU 具有 6 级深度的堆栈存储器,数据宽度是 11 位。用于在子程序调用时保存程序返回地址,也可以用于 PUSHAS 指令将程序运行中的变量和状态等数据保存到堆栈中。

3.4. 睡眠与唤醒

当 RB_MST_CLK_GATE 为 0 时,eMCU 程序将暂停运行。当执行 SLEEP 或 SLEEPX 指令后,eMCU 将进入睡眠状态。eMCU 为全静态设计,程序暂停与睡眠具有等同效果。

eMCU 睡眠后支持两种唤醒方式:开启电平变化检测的引脚的电平变化唤醒,SB_MST_CLK_GATE 从 0 到 1 的变化唤醒。

3.5. 事件等待指令

WAITB 指令支持 8 种事件等待,当事件无效时一直持续执行 WAITB 等待,程序计数器 PC 保持不变;当检测到目标事件后退出等待,执行下一条指令。等待过程中可选开启定时器超时复位。

指令参数 WB_DATA_SW_MR_0 表示等待直到 SB_DATA_SW_MR 为 0 时退出,如已是 0 直接退出;

指令参数 WB BIT CYC TAIL 1表示等待直到 SB BIT CYC TAIL 为 1 时退出,如已是 1 直接退出;

指令参数 WB_PORT_IO_FALL 表示等待直到 SB_PORT_INO 检测到下降沿退出,如之前记录了已检测到也直接退出,退出时清除下降沿检测记录;

指令参数 WB_PORT_IO_RISE 表示等待直到 SB_PORT_INO 检测到上升沿退出,如之前记录了已检测到也直接退出,退出时清除上升沿检测记录;

指令参数 WB_DATA_MW_SR_1 表示等待直到 SB_DATA_MW_SR 为 1 时退出,如已是 1 直接退出;

指令参数 WB PORT XOR1 1表示等待直到 SB PORT XOR1 为 1 时退出,如已是 1 直接退出;

指令参数 WB_PORT_XORO_0 表示等待直到 SB_PORT_XORO 为 0 时退出,如已是 0 直接退出;

指令参数 WB_PORT_XORO_1 表示等待直到 SB_PORT_XORO 为 1 时退出,如已是 1 直接退出。

3.6. 位传送指令

位传送指令支持 2 个位操作寄存器: BP1F 和 BG1F 对应寄存器 SFR_INDIR_ADDR, BP2F 和 BG2F 对应寄存器 SFR DATA EXCH。

位传送指令 BP1F 和 BP2F 支持 4 个独立位输出: 0#参数 BI0_FLAG_C 对应 SB_FLAG_C 位,1#参数 B0_BIT_TX_00 对应 SB_BIT_TX_00, 2#参数 B0_PORT_OUTO 对应 SB_PORT_OUTO, 3#参数 B0_PORT_OUT1 对应 SB_PORT_OUT1。

位传送指令 BG1F 和 BG2F 支持 4 个独立位输入: 0#参数 BIO_FLAG_C 对应 SB_FLAG_C 位,1#参数 BI_BIT_RX_IO 对应 SB_BIT_RX_IO,2#参数 BI_PORT_INO 对应 SB_PORT_INO,3#参数 BI_PORT_IN1 对应 SB_PORT_IN1。

位传送指令 BCTC 支持 4 个独立位输入: 0#参数 BI_C_XOR_INO 则位 SB_FLAG_C 更新为 SB_FLAG_C 与 SB_PORT_INO 的异或结果, 1#参数 BI_BIT_RX_IO 对应 SB_BIT_RX_IO, 2#参数 BI_PORT_INO 对应 SB_PORT_INO, 3#参数 BI_PORT_INI 对应 SB_PORT_INI。

4、数据空间和寄存器及寻址

eMCU 的数据空间包括 49 个专用功能寄存器 SFR,通过 8 位地址进行寻址,范围是 0x00-0x3F。 所有寄存器的数据宽度都是 1 个字节,也就是 8 位数据。

部分 SFR 在主机侧可以读写或者只读,主机侧支持 8 位、16 位或者 32 位宽度进行读写。主机侧具有写优先权,当 eMCU 与主机同时写入同一寄存器时,eMCU 写操作被自动丢弃。

eMCU 的寻址方式包括:立即数寻址、立即数快速寻址、普通直接寻址、扩展直接寻址、间接寻址、位寻址,后 4 种用于寻址寄存器。

间接寻址的寻址范围是 0x000-0x0FF,覆盖 eMCU 的所有寄存器。eMCU 共提供了两组间接寻址寄存器,每组间接寻址寄存器由一个地址寄存器和一个数据读写端口组成。先向地址寄存器写入目的寄存器的地址,再通过读写数据读写端口就可以读写目的寄存器。

扩展直接寻址的寻址范围是 0x000-0x1FF, 由指令直接提供 9 位寄存器地址, 仅适用于以下两条直接读写寄存器的指令: MOV register, A 或 F 指令, MOVA register 指令。

普通直接寻址的寻址范围是 0x000-0x0FF,由指令直接提供 8 位寄存器地址,适用于除上述扩展直接寻址指令之外的所有直接地址指令,例如 CLR register、ADD register、BS register, bit 等。需要寻址更大范围时应该采用间接寻址方式。

立即数快速寻址用于无需通过 A 中转而将指令码中的操作数快速写入目标寄存器。MOVA1F 用于快速设置 1#寄存器 SFR_PORT_DIR,MOVA2F 用于快速设置 2#寄存器 SFR_PORT_IO。MOVA1P 和 MOVA2P 通过间接寻址适用于所有寄存器的快速设置,相当于单周期内先立即数寻址再间接寻址。

位寻址由指令直接提供3位位地址,而对寄存器的寻址可分别采用普通直接寻址或者间接寻址,

分别实现 0x000-0x0FF 的寻址范围,从而可以寻址任何一个寄存器的任何一位。

5、专用功能寄存器 SFR

部分 SFR 或部分位未真正实现,是保留位,读出是 0,写入必须保持原值或者写 0。

마기	OFK 以即刀 区不共正为	天现,走休笛位, 以 山走 0, 与人	必须体付原但 以有	
地址	SFR 名称	SFR 说明	主机侧读写	复位后默认值
00H	SFR_INDIR_PORT	间接寻址的数据读写端口	UUUUUUUU	XXXXXXXX
01H	SFR_INDIR_PORT2	间接寻址 2 的数据读写端口	UUUUUUUU	XXXXXXXX
02H	SFR_PRG_COUNT	程序计数器 PC 的低字节	UUUUUUUU	00000000
03H	SFR_STATUS_REG	状态寄存器	UUUUSUSU	0000-0-0
04H	SFR_INDIR_ADDR	间接寻址的地址寄存器	RRRRRRR	XXXXXXXX
05H	SFR_TMRO_COUNT	定时器 0 的计数寄存器	RRSSRRRR	00000000
06H	SFR_TIMER_CTRL	定时器的控制寄存器	RRRRRRR	00000000
07H	SFR_TMRO_INIT	定时器 0 的初值寄存器	RRRRRRR	00000000
08H	SFR_BIT_CYCLE	编码位周期寄存器	WWWWWWW	00000000
09H	SFR_INDIR_ADDR2	间接寻址 2 的地址寄存器	RRRRRRR	00000000
OAH	SFR_PORT_DIR	端口方向设置寄存器	RRRRRRR	00000000
0BH	SFR_PORT_IO	端口输入输出寄存器	RRRRRRR	XXXXXX00
OCH	SFR_BIT_CONFIG	编码位配置寄存器	WWWRRRR	00010000
1CH	SFR_SYS_CFG	系统配置寄存器	RRRWWWW	00000000
1DH	SFR_CTRL_RD	eMCU 读写且主机只读寄存器	RRRRRRR	00000000
1EH	SFR_CTRL_WR	主机读写且 eMCU 只读寄存器	WWWWWWW	00000000
1FH	SFR_DATA_EXCH	数据交换寄存器	WWWWWWW	00000000
20H	SFR_DATA_REGO	数据寄存器 0	WWWWWWW	00000000
21H	SFR_DATA_REG1	数据寄存器 1	WWWWWWW	00000000
22H	SFR_DATA_REG2	数据寄存器 2	WWWWWWW	00000000
23H	SFR_DATA_REG3	数据寄存器 3	WWWWWWW	00000000
24H	SFR_DATA_REG4	数据寄存器 4	WWWWWWW	00000000
25H	SFR_DATA_REG5	数据寄存器 5	WWWWWWW	00000000
26H	SFR_DATA_REG6	数据寄存器 6	WWWWWWW	00000000
27H	SFR_DATA_REG7	数据寄存器 7	WWWWWWW	00000000
28H	SFR_DATA_REG8	数据寄存器 8	WWWWWWW	00000000
29H	SFR_DATA_REG9	数据寄存器 9	WWWWWWW	00000000
2AH	SFR_DATA_REG10	数据寄存器 10	WWWWWWW	00000000
2BH	SFR_DATA_REG11	数据寄存器 11	WWWWWWW	00000000
2CH	SFR_DATA_REG12	数据寄存器 12	WWWWWWW	0000000
2DH	SFR_DATA_REG13	数据寄存器 13	WWWWWWW	00000000
2EH	SFR_DATA_REG14	数据寄存器 14	WWWWWWW	0000000
2FH	SFR_DATA_REG15	数据寄存器 15	WWWWWWW	00000000
30H	SFR_DATA_REG16	数据寄存器 16	WWWWWWW	00000000
31H	SFR_DATA_REG17	数据寄存器 17	WWWWWWW	00000000
32H	SFR_DATA_REG18	数据寄存器 18	WWWWWWW	00000000
33H	SFR_DATA_REG19	数据寄存器 19	WWWWWWW	00000000
34H	SFR_DATA_REG20	数据寄存器 20	WWWWWWW	00000000
35H	SFR_DATA_REG21	数据寄存器 21	WWWWWWW	00000000
36H	SFR_DATA_REG22	数据寄存器 22	WWWWWWW	00000000
37H	SFR_DATA_REG23	数据寄存器 23	WWWWWWW	00000000
38H	SFR_DATA_REG24	数据寄存器 24	WWWWWWW	00000000

39H	SFR_DATA_REG25	数据寄存器 25	wwwwwww	00000000
3AH	SFR_DATA_REG26	数据寄存器 26	wwwwwww	00000000
3BH	SFR_DATA_REG27	数据寄存器 27	wwwwwww	00000000
3CH	SFR_DATA_REG28	数据寄存器 28	wwwwwww	00000000
3DH	SFR_DATA_REG29	数据寄存器 29	wwwwwww	00000000
3EH	SFR_DATA_REG30	数据寄存器 30	wwwwwww	00000000
3FH	SFR_DATA_REG31	数据寄存器 31	wwwwwww	00000000

复位后的默认值都是以二进制数表示, 位值说明如下:

- 0: 复位后总是 0:
- 1: 复位后总是 1;
- X: 复位不影响数据,数据初值不确定;
- -: 上电复位后总是清 0,系统复位或主机强制复位不影响数据。

主机侧读写的说明如下:

- W: 可以读或者写的位:
- R: 只读位:
- U: 不可见的位,不可读写;
- S: 只读的交换位,主机侧可见的 SFR_TIMER_CTRL 与 eMCU 侧部分不同,其中 SB_TMR0_ENABLE 和 SB TMR0 OUT EN 两个位分别被 SB GP BIT Y 和 SB GP BIT X 代替。
- 5.1. 间接寻址的数据读写端口 SFR INDIR PORT
- 5.2. 间接寻址的地址寄存器 SFR INDIR ADDR
- 5.3. 间接寻址 2 的数据读写端口 SFR INDIR PORT2
- 5.4. 间接寻址 2 的地址寄存器 SFR_INDIR_ADDR2

这是两组间接寻址寄存器,每组间接寻址寄存器由一个地址寄存器和一个数据读写端口组成。先 向地址寄存器写入目的寄存器的地址,再通过读写数据读写端口就可以读写目的寄存器。

读写间接寻址的数据读写端口 SFR_INDIR_PORT,就是读写由间接寻址的地址寄存器 SFR_INDIR_ADDR 指定地址的目的寄存器。读写间接寻址的数据读写端口 SFR_INDIR_PORT2,就是读写由间接寻址的地址寄存器 SFR INDIR ADDR2 指定地址的目的寄存器。

专用指令 MOVIP 用于向 SFR_INDIR_ADDR 加载 8 位目标地址, 并且 SFR_INDIR_ADDR 也可以被其它非专用指令独立修改。

专用指令 MOVIA 用于向 SFR_INDIR_ADDR2 加载 8 位目标地址, 并且 SFR_INDIR_ADDR2 也可以被其它非专用指令独立修改。

间接寻址 2 的地址寄存器 SFR_INDIR_ADDR2 具有自动增量特性,当执行"MOV SFR_INDIR_PORT2, A" 读指令或者对 RAM 执行 "MOVA SFR_INDIR_PORT2" 写指令时,SFR_INDIR_ADDR2 将在指令执行完成后自动加 1。

专用指令 MOVA1P 和 MOVA2P 用于直接将指令码中的操作数快速写入目标寄存器,相当于单周期内 先立即数寻址再间接寻址。

5.5. 状态寄存器 SFR_STATUS_REG

状态寄存器包含 ALU 的结果状态、通用的位变量及堆栈使用标志等。当执行算术或者逻辑操作后,eMCU 会根据结果设置相应的状态位,以便程序判断后再做出进一步处理。通用位变量可以由应用程序定义其用途。

定时器超时复位用于监控 WAITB 等待指令的超时,关闭 SB_TMRO_ENABLE 并启用 SB_EN_TOUT_RST 后,在 WAITB 指令执行期间,定时器进行计数,溢出时 SB_TMRO_CYCLE 为 1 则导致超时复位。每次当

WAITB 指令因满足条件而退出 WAITB 等待时自动重新加载定时器初值。在 SB_TMR0_ENABLE 为 0 情况下的非 WAITB 指令的执行期间不计数,即定时器超时复位仅针对 WAITB 指令。

地址	位名称	说明	默认值
位 7		(保留)	0
位 6		(保留)	0
位 5	SB_STACK_USED	当前堆栈使用标志: 0:尚未使用或已完全出栈;1:已压栈	0
位 4	SB_EN_TOUT_RST	定时器超时复位使能: 0:禁用;1:允许在定时器超时溢出时复位 eMCU	0
位 3	SB_GP_BIT_Y	通用的位变量 Y,由应用程序定义和使用, 上电复位后为 0,不受系统复位或主机强制复位的影响	_
位 2	SB_FLAG_Z	ALU 零标志,结果是否为 00H: 0:结果不是 0;1:结果是 0	0
位 1	SB_GP_BIT_X	通用的位变量 X,由应用程序定义和使用, 上电复位后为 0,不受系统复位或主机强制复位的影响	_
位 0	SB_FLAG_C	ALU 进位标志,结果是否进位或者由移位产生: 0:结果没有进位;1:结果产生进位	0

5.6. 程序计数器 PC 的低字节 SFR_PRG_COUNT

eMCU 的程序计数器 PC 的宽度是 11 位,通过读写 SFR_PRG_COUNT 可以修改 PC 的低 8 位,但是不会影响 PC 的高 3 位,从而可以在 256 字节范围内进行短跳转和查表。

5.7. 端口方向设置寄存器 SFR_PORT_DIR

5.8. 端口输入输出寄存器 SFR PORT 10

端口包含 2 个双向输入输出引脚,可以由各自的方向设置位 SB_PORT_DIR 独立设定为输入方向或输出方向,如果是输出方向,则输出 SB_PORT_OUT 中的数据到引脚。复位后的默认方向是输入,SB_PORT_IN_用于获取当前引脚输入电平(当 SB_PORT_IN_EDGE=0 时)或者前一个周期的引脚输入电平(当 SB_PORT_IN_EDGE=1 时),后者比前者提前约半个时钟周期。

2 个引脚均具有电平变化检测功能,当输入电平与输出数据寄存器 SB_PORT_OUT 中的数据不一致时,对应的 SB_PORT_XOR 变为 1。

100 引脚的可用输入指令和方法更多,相比 101 更适宜用于输入或双向数据。

下表是端口方向设置寄存器 SFR PORT DIR 的说明。

地址	位名称	说明	默认值
位 7	SB_PORT_MOD3		0
位 6	SB_PORT_MOD2	引脚模式控制,主机侧定义用途	0
位 5	SB_PORT_MOD1	打脚快入控制,主机则足又用压	0
位 4	SB_PORT_MODO		0
位 3	SB_PORT_PU1	I01 引脚上拉使能: 0:禁用;1:允许	0
位 2	SB_PORT_PU0	I00 引脚上拉使能: 0:禁用;1:允许	0
位 1	SB_PORT_DIR1	I01 引脚方向控制: 0:输入;1:输出	0
位 0	SB_PORT_DIRO	I00 引脚方向控制: 0:输入;1:输出	0

下表是端口输入输出寄存器 SFR_PORT_IO 的说明。

地址	位名称	说明	默认值
位 7	SB_PORT_IN_XOR	101 引脚输入状态与 100 引脚输入状态的异或结果: 0: 101 与 100 电平相同; 1: 101 与 100 电平不同	Х
位 6	SB_BIT_RX_IO	100 引脚的位接收状态解码后的数据	Χ
位 5	SB_PORT_IN1	IO1 引脚输入状态(参考 SB_PORT_IN_EDGE)	Χ
位 4	SB_PORT_INO	100 引脚输入状态(参考 SB_PORT_IN_EDGE)	Χ
位 3	SB_PORT_XOR1	I01 引脚输入状态与 SB_PORT_OUT1 的异或结果: 0: I01 电平 SB_PORT_IN1 与 SB_PORT_OUT1 相同; 1: I01 电平与 SB_PORT_OUT1 不同,用于检测电平变化	Х
位 2	SB_PORT_XORO	IOO 引脚输入状态与 SB_PORT_OUTO 的异或结果: 0: IOO 电平 SB_PORT_INO 与 SB_PORT_OUTO 相同; 1: IOO 电平与 SB_PORT_OUTO 不同,用于检测电平变化	Х
位 1	SB_PORT_OUT1	I01 引脚输出数据: 0: 输出低; 1: 输出高	0
位 0	SB_PORT_OUTO	I 00 引脚输出数据:	0

- 5.9. 定时器 0 的计数寄存器 SFR_TMR0_COUNT
- 5.10. 定时器 0 的初值寄存器 SFR TMR0 INIT
- 5.11. 定时器的控制寄存器 SFR_TIMER_CTRL

定时器 0 是 8 位宽度的计数器。计数值在寄存器 SFR_TMR0_COUNT 中,SFR_TMR0_COUNT 支持直接 写入数据以加载新值。定时器 0 的时钟频率由 SB_TMR0_FREQ 进行选择。定时器 0 可以工作于定时器 模式或脉宽调制器模式。

定时器 0 在定时器模式下,计数初值事先保存在初值寄存器 SFR_TMR0_INIT 中,定时器 0 的计数值总是从计数初值计数到 0FFH,当从 0FFH 计数溢出时,定时器 0 自动从初值寄存器 SFR_TMR0_INIT 中重新加载初值,然后再从计数初值开始向 0FFH 计数。当计数值从 0FFH 计数到 0FFH 时,定时器 0 自动将计数周期信号 SB_TMR0_CYCLE 设置为 1;当计数值从 0FFH 计数溢出重新回到计数初值时,定时器 0 自动将计数周期信号 SB_TMR0_CYCLE 清除为 0。SB_TMR0_CYCLE 的频率是(SB_TMR0_FREQ 时钟频率)/(256-SFR_TMR0_INIT),其占空比是 1/(256-SFR_TMR0_INIT),也就是每个周期中有 1 个时钟期间 SB_TMR0_CYCLE 为 1。

定时器 0 在脉宽调制器模式下,定时器 0 总是从 00H 计数到 0FFH,再从 0FFH 计数溢出,重新回到 00H 开始新的计数,其周期总是 256 个时钟。当计数值大于定时器 0 的初值寄存器 SFR_TMRO_INIT中的数值时,定时器 0 自动将计数周期信号 SB_TMRO_CYCLE 设置为 1;当计数值从 0FFH 计数溢出回到 00H 时,定时器 0 自动将计数周期信号 SB_TMRO_CYCLE 清除为 0。SB_TMRO_CYCLE 的占空比是 (255-SFR TMRO INIT)/256。

SB_TMRO_OUT_EN 用于设定内部信号 SB_TMRO_CYCLE 或者其二分频信号是否输出到 100 引脚,内部信号为 1 时引脚输出高电平,否则输出低电平。如果计数周期信号输出允许,那么在定时器模式下,SB_TMRO_CYCLE 的二分频信号(频率降低为一半并且占空比为 50%)将通过 100 引脚输出;在脉宽调制器模式下,SB_TMRO_CYCLE 信号将通过 100 引脚输出。

下表是定时器的控制寄存器 SFR_TIMER_CTRL 的说明。

_	1 74	7C)C: 3 HH :: 33 ± 10 10 H	M	
	地址	位名称	说明	默认值
	位 7	SB_EN_LEVEL1	I01 引脚电平变化激活中断标志和唤醒使能: 0:不激活、不唤醒;1:允许激活中断标志和唤醒	0

位 6	SB_EN_LEVEL0	I00 引脚电平变化激活中断标志和唤醒使能: 0:不激活、不唤醒;1:允许激活中断标志和唤醒	0
位 5	SB_TMRO_ENABLE	定时器 0 的计数使能: 0:禁止计数;1:允许计数	0
位 4	SB_TMRO_OUT_EN	定时器 0 的计数周期信号输出允许: 0:禁止输出;1:允许输出到 100 引脚	0
位 3	SB_TMRO_MODE	定时器 0 的工作模式: 0: 定时器模式; 1: 脉宽调制器模式	0
位 2 位 1 位 0	SB_TMRO_FREQ	选择定时器 0 的时钟频率(以系统主频的分频数): 000: 1024X; 001: 256X; 010: 64X; 011: 16X; 100: 8X; 101: 4X; 110: 2X; 111: 1X	000

- 5.12. 系统配置寄存器 SFR_SYS_CFG
- 5.13. 主机读写且 eMCU 只读寄存器 SFR_CTRL_WR
- 5.14. eMCU 读写且主机只读寄存器 SFR_CTRL_RD

系统配置寄存器提供了主机的一些控制位和双向数据交换的状态位。

SB_INT_REQ 由 eMCU 完全控制,用于向主机请求中断或取消请求,但主机可以通过对只读寄存器 SFR_CTRL_RD 的假写操作实现对 SB_INT_REQ 清 0,主机写 SFR_CTRL_RD 对其中数据无实际影响。

eMCU 写入 SFR_CTRL_RD 后 SB_DATA_SW_MR 自动置 1, 主机读取 SFR_CTRL_RD 后 SB_DATA_SW_MR 自动清 0。

主机写入 SFR_CTRL_WR 后 SB_DATA_MW_SR 自动置 1, eMCU 读取 SFR_CTRL_WR 后 SB_DATA_MW_SR 自动清 0。

SB_MST_CLK_GATE 还同时控制 eMCU 程序 ROM 的复用,当 RB_MST_CLK_GATE 为 0 时专用于主机侧的系统 SRAM,共 4K 字节,可以为 eMCU 动态加载新的程序;当 RB_MST_CLK_GATE 为 1 时专用于 eMCU 的程序 ROM,共 2K 指令。

系统配置寄存器的位 0~位 4 由主机完全控制, eMCU 侧为只读。

下表是系统配置寄存器 SFR_SYS_CFG 的说明。

地址	位名称	说明	默认值
位 7	SB_INT_REQ	中断请求激活位: 0:取消中断请求;1:向主机请求中断	0
位 6	SB_DATA_SW_MR	SFR_CTRL_RD 等待读取状态位: 0: eMCU 尚未写入或者主机侧已经读取; 1: eMCU 已写入但主机侧尚未读取	0
位 5	SB_DATA_MW_SR	SFR_CTRL_WR 等待读取状态位: 0: 主机侧尚未写入或者 eMCU 侧已经读取; 1: 主机侧已写入但 eMCU 侧尚未读取	0
位 4	SB_MST_CFG_B4	配置信息位,软件定义用途	0
位 3	SB_MST_IO_EN1	I01 引脚的模式和输出控制开关: 0:由主机控制;1:由 eMCU 控制	0
位 2	SB_MST_IO_ENO	I00 引脚的模式和输出控制开关: 0:由主机控制;1:由 eMCU 控制	0
位 1	SB_MST_RESET	强制 eMCU 复位: 0: 不强制复位,eMCU 仅跟随主机一起复位; 1: 主机额外强制 eMCU 单独复位	0

		eMCU 的全局时钟控制:	
位 0	SB_MST_CLK_GATE	0:关闭 eMCU 的时钟,其程序暂停,相当于睡眠;	0
		1: 开启 eMCU 的时钟	

5.15. 编码位周期寄存器 SFR_BIT_CYCLE

5.16. 编码位配置寄存器 SFR_BIT_CONFIG

eMCU 支持两种位调制方式: PWM 占空比调制和 Manchester 曼彻斯特调制。

设置 SB_BIT_CYCLE 大于 3,则开启编解码。SB_BIT_TX_EN=0 时接收,根据预设宽度,从 100 接收输入状态,解码后的数据放在 SB_BIT_RX_IO 中。SB_BIT_TX_EN=1 时发送,在 SB_BIT_TX_00 中放置将要发送的原始数据,编码后自动送到 SB_PORT_OUTO 供引脚输出。

SB_BIT_CYC_CNT 和 SB_BIT_CYC_TAIL 标识编码位的周期状态,当 SB_BIT_CYC_TAIL=1 时,表示正处于位周期的后 25%,说明 SB_BIT_RX_IO 已完成接收解码,发送编码已完成并达到 SB_PORT_OUTO。

设置 SB_BIT_CYCLE=0 可以强制 SB_BIT_CYC_TAIL 置为 1,便于 Manchester 开启首位编解码。

设置 SFR_BIT_CYCLE 将清除 100 的上升沿和下降沿的检测记录,便于 WAITB 指令重新等待。

下表是编码位周期寄存器 SFR_BIT_CYCLE 的说明。

地址	位名称	说明	默认值
位 7	SB_BIT_TX_00	将要发送的编码位的原始位数据,该位为双缓冲结构, 当新的位周期开始后,此位即可提前加载下一个位数据	0
位 6 ~	SB_BIT_CYCLE	设定以时钟周期为单位的编码位的宽度, 是位的实际时钟数减 1。	000
位 0		其高 5 位为 0 则关闭编解码,非 0 则开启	0000

下表是编码位配置寄存器 SFR BIT CONFIG 的说明。

地址	位名称	说明	默认值
位 7	SB_BIT_TX_EN	编码位的发送使能: 0:禁止发送,如果 SB_BIT_CYCLE 有效则可以接收; 1: 开启发送,将 SB_BIT_TX_00 编码后送到 SB_PORT_OUTO	0
位 6	SB_BIT_CODE_MOD	编码位的调制方式: 0: PWM 占空比调制,0 的占空比 25%,1 的占空比 75%; 1: Manchester 调制,0 在周期内不翻转,1 在周期内翻转	0
位 5	SB_PORT_IN_EDGE	引脚输入电平采样时点选择: 0: 在本时钟周期的中间点采样,相对更实时一点; 1: 在前一个周期的边沿处采样,相当于提前约半个周期	0
位 4	SB_BIT_CYC_TAIL	编码位的周期状态: 0:处于位周期的前 75%; 1:处于位周期的后 25%,说明位编解码已完成	1
位 3	SB_BIT_CYC_CNT6	护可位的国期社时状态	0
位 2	SB_BIT_CYC_CNT5	编码位的周期计时状态, 位图期计时以时钟图期为单位,是 7 位计数器	0
位 1	SB_BIT_CYC_CNT4	位周期计时以时钟周期为单位,是 7 位计数器, SB_BIT_CYC_CNT6 \sim 3 是计数器的位 6 \sim 位 3	0
位 0	SB_BIT_CYC_CNT3		0

5.17. 数据寄存器 SFR_DATA_*

SFR_DATA_*均为双侧可读可写的数据寄存器,主机侧写操作优先,软件定义用途。 其中,SFR DATA EXCH 还支持单周期的位传送指令。

6、应用

eMCU 与主机侧主频相同,便于动态交换数据,其位操作指令非富,单周期设置 I/0,单周期采集 I/0 状态或复制位数据,可以硬件编解码 PWM 或 Manchester 调制的位数据,适用于各种中低速通讯协议的 I/0 实现,以及需要精确定时的 I/0 控制。