Atividade 1 - ES704

 $March\ 12,\ 2023$

Nome:	Ra:
Isabelle Miki Ikuno	173336
Mateus José de Sousa Goto	241559
Nuno Kuschnaroff Barbosa	242616
Pedro Henrique Limeira da Cruz	215663

Atividade 1 - ES704 Instrumentação Básica

Sistema Geral de Medição

De forma geral, um sistema de medição possui os seguintes estágios:

Figure 1: Sistema de Medição Genérico

Quando analisamos o problema em questão, temos que:

- Sensor

 Substrato Piezorresistivo: Pois o papel do sensor é detectar a mudança em quantidades físicas que, nesse caso, é representado pela deformação e subsequente mudança na resistividade do material.
- Transdutor → Ponte de Whetstone: Pois o papel do transdutor é a conversão de sinais (que no nosso caso converte de resistência para tensão).
- Calibração → processo de calibração estática: Processo onde aplicam-se excitações de entrada conhecidas e, após a estabilização do sistema, mede-se a saída do sistema. Neste caso, aplica-se forças controladas na matriz tátil a partir de células de carga e então seu sinal é registrado, posteriormente, na saída.
- Signal Conditioning → N/A: Não está necessariamente presente descrito no problema, mas poderia ser utilizado um amplificador de sinais como um hx711, tendo em vista que a variação de tensão de uma ponte de Whetstone tende a ser pequena.
- Output Stage → Módulo de Aquisição de Sinais: Tendo em vista que o output stage tem por função armazenar ou indicar o sinal de interesse, após quaisquer tratamentos (se necessários).
- Controle → N/A: Não especificado.

Atividade 1 - ES704 Instrumentação Básica

Variáveis

As variáveis do sistema podemos ser divididas em:

- Dependente: Depende de outros fatores/variáveis.
- Independente: Independe de quaisquer outras variáveis.
- Controlada: Variável a qual seu valor é controlada durante o processo.
- Não-Controlada: Variável a qual seu valor $n\tilde{a}o$ é controlada.
- Externa: Variável não-controlada, que pode vir a gerar ruído e interferências nas medições.

Temos, a seguir, uma lista das principais variáveis do processo de medição e suas respectivas classificações.

Classificação	Nome	Descrição
Independente / Controlável	Força	A força que é aplicada sobre o sistema.
Dependente	Deflexão	Delfexão do substrato e do condutor piezorresistivo
Dependente	Resistência	Resistência elétrica do condutor piezorresistivo, dependente da deflexão do substrato.
Dependente	Tensão de Saída do Transdutor	Depende da tensão de alimentação, resistência do piezorresistor, por conseguinte, da deflexão e forças aplicadas sobre o substrato.
Externa	Temperatura	Temperatura do ambiente, e por conseguinte a temperatura do circuito elétrico, que influ- encia na resistência elétrica.
Externa	Alimentação Elétrica	Influencia as medições de tensão de saída do transdutor (ponto de Whetstone).

Table 1: Caption

Calibração Estática x Dinâmica

A calibração estática aplica uma entrada no sistema e o relaciona, após a extinção do comportamento transiente, a um valor de saída, gerando uma relação direta y = f(x).

Já a calibração Dinâmica aplica uma entrada no sistema e analisa uma resposta transiente, o que possibilita uma resolução temporal, espacial e espectral.

Caracterização do sistema - Curve Fitting

Antes de aplicar qualquer método de curve fitting, é necessário identificarmos o comportamento que o sistema possui. Para fazer isso, primeiro realizamos um scatter plot (como visto no primeiro gráfico) para entendermos a tendência dos dados coletados. Verificamos, então, que o sistema possui um comportamento polinomial de segundo grau do tipo $y = p_1 x^2 + p_2 x + p_3$.

Figure 2: Curva de Calibração Estática

Após o curve fitting temos, com o coeficiente de determinação $R^2=0.95$, os seguintes valores para o polinômio:

$$\begin{cases} p_1 &= -7.786 \times 10^{-4} \\ p_2 &= 7.293 \times 10^{-3} \\ p_3 &= 3.986 \times 10^{-4} \end{cases}$$

Temos, além disso, as seguintes características da calibração estática feita:

• Sensibilidade estática: $\frac{dV}{dF} = -1.557 \cdot 10^{-5} x + 7.293 \cdot 10^{-3}$

• Faixa dinâmica de entrada: $0.0 \le F \le 5.0N$

• Faixa dinâmica de saída: $0.000 \le V \le 0.018V$