МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

Отчет

по Заданию 1

на тему «Преобразование аналогового сигнала в цифровой сигнал»

Дисциплина: СиСПИ

Группа: 21ПИ1

Выполнил: Попов М. С.

Количество баллов:

Дата сдачи:

Принял: Иванов А. П.

1 Цель работы: изучение преобразования аналогового сигнала в цифровой сигнал.

2 Задание. Осуществить преобразование аналогового сигнала, приведенного на рисунке 1 в цифровую кодовую последовательность. Определить шумы квантования. Результаты привести на временной диаграмме и в таблице по шаблону таблицы 1. Вид аналогового сигнала, его максимальную амплитуду и частотный диапазон взять из таблицы 2 в соответствии с вариантом.

Рисунок 1 — Вариант задания (сигнал)

- 3 Выполнение работы.
- 3.1 В соответсвии с рисунком и восьмым вариантом задания были определены:
 - $U_{MAX} = 1,5 B$ и U_{MIN} : -1,5 B;
 - в соотвествии с заданием $U_{\text{огр}} = U_{\text{MAX}} = 1,5 \text{ B};$
 - в соотвествии с вариантом 7 f_{MIN} = 0,2 к Γ ц и f_{MAX} = 3,1 к Γ ц;
 - в соответсвии с заданием $\Delta_{\text{идоп}} = 0.25 \text{ B};$

Было расчитано минимальное число уровней квантования N_{MIN} по формуле $(U_{MAX}-U_{MIN})/\Delta_{u_{JOI}}$. $N_{MIN}=3$ / 0.25=12

Было определено число уровней N_{KB} из условия $N_{\text{KB}} > N_{\text{MIN}}$. $N_{\text{KB}} = 16$.

Было определено количество разрядов n в коде. $n = log_2 16 = 4$ бит.

Было расчитан шаг квантования по формуле $\,\delta = U_{\text{O\GammaP}}/2^{\text{n}} = 1,5/2^4 = 0,09375\,$ В.

Была рассчитана частота дискретизации в соотвествии с теоремой Котельникова (любой непрерывный сигнал, ограниченный по спектру верхней частотой Fв, полностью определяется последовательностью своих дискретных отсчетов, взятых через промежуток времени $T_{\rm A} \!\! \leq \! 1/2F_{\rm B}$) должна удовлетворять условию $F_{\rm A} \!\! \geq \! 2F_{\rm B}$). $F_{\rm A} = F_{\rm MAX} * 2 = 6,2$ к Γ ц

3.2 При частоте дескритизации 6,2кГц длина одного отсчета будет равна 1000 мс / 6200 гц = 0,14мс \rightarrow количесвто отсчетов за 1мс будет равно 1мс / 0,16мс \approx 6 отсчетов, для 6мс количество отсчетов равняется 36. Было определено Ubx(t), Ukb(t), Δ KB(t) и N. Результат представлен в таблице 1.

Таблица 1 — Результаты измерений

Отсчет сигнала	UBX(t), B	UKB(t).B	ΔKB(t)	N	Двоичный код
1	0,52	0,56	-0,04	6	0110
2	0,65	0,66	-0,01	7	0111
3	0,72	0,75	-0,03	8	1000
4	0,74	0,75	-0,01	8	1000
5	0,73	0,75	-0,02	8	1000
6	0,69	0,75	-0,06	8	1000
7	0,63	0,66	-0,03	7	0111
8	0,58	0,66	-0,08	7	0111
9	0,54	0,56	-0,03	6	0110
10	0,51	0,56	-0,05	6	0110
11	0,52	0,56	-0,04	6	0110
12	0,54	0,56	-0,02	6	0110
13	0,59	0,66	-0,06	7	0111
14	0,65	0,66	-0,01	7	0111
15	0,70	0,75	-0,05	8	1000
16	0,74	0,75	-0,01	8	1000
17	0,75	0,75	0,00	8	1000
18	0,71	0,75	-0,04	8	1000
19	0,63	0,66	-0,03	7	0111
20	0,51	0,56	-0,06	6	0110
21	0,33	0,38	-0,05	4	0100
22	0,09	0,09	0,00	1	0001
23	0,17	0,19	-0,02	2	0010
24	0,44	0,47	-0,03	5	0101

25	0,72	0,75	-0,04	8	1000
26	0,95	1,03	-0,08	11	1011
27	1,15	1,22	-0,07	13	1101
28	1,28	1,31	-0,03	14	1110
29	1,35	1,41	-0,06	15	1111
30	1,33	1,41	-0,07	15	1111
31	1,25	1,31	-0,07	14	1110
32	1,11	1,13	-0,02	12	1100
33	0,91	0,94	-0,03	10	1010
34	0,66	0,75	-0,09	8	1000
35	0,41	0,47	-0,06	5	0101
36	0,12	0,19	-0,07	2	0010

3.3 В соответствии с вариантом задания кодовая последовательность была записана с помощью Miller Code. Результат приведен на рисунке 2 - 6.

Рисунок 3 — Манчестерский код

4 Вывод: было изучено преобразование аналогового сигнала в цифровой сигнал.

Рисунок 2 — Коды с 1 по 8

Рисунок 3 — Коды с 9 по 16

Рисунок 4 — Коды с 17 по 24

Рисунок 5 — Коды с 25 по 32

Рисунок 6 — Коды с 33 по 36