The Colorability problem on (r,ℓ) -graphs and a few parametrized solutions

M. S. D. Alves^{1,*} U. S. Souza¹

¹ Universidade Federal Fluminense

Keywords: colorability; graph coloring; (r,ℓ) -graph; list coloring; parametrized complexity

An (r,ℓ) -graph is a graph that can be partitioned into r independent sets and ℓ cliques; In the k-Colorability problem we are asked to determine whether a given graph G admits a vertex coloring using at most k colors such that adjacent vertices have different colors.

In this work, we describe a $Poly\ vs\ NP\text{-}complete$ dichotomy of this problem regarding to the parameter r and ℓ of (r,ℓ) -graphs, determining the boundaries of the NP-completenes for such a class. In addition, we analyze the complexity of the problem on (r,ℓ) -graphs under the parametrized complexity perspective.

A parameterized problem (Π, k) is said fixed-parameter tractable (FPT) if it can be solved in time $f(k) \times n^{O(1)}$, where f is an arbitrary function, and n is the size of the input.

Using a reduction from k-Colourability on (r,ℓ) -raph to List-Coloring as strategy, we are able to discovery that given a (2,1)-partition of the input graph G, to finding an optimal coloring of G is: W[1]-hard when parametrized by the size of the smallest independet part; Para-NP-complete when parametrized by the size of the complete part; FPT when parametrized by the number of vertices having no neighbors in the complete part; and FPT when the size of the complete part and the size of the smallest independent part are agregated parameters.