Heuristic Analysis

This project to solve deterministic logistics planning problems for an Air Cargo transport system using a planning search agent (AI: A Modern Approach by Norvig And Russel) given classical PDDL. The goal of this project run both uninformed non heuristic and domain independent heuristic with A* search and obtain an optimal and fastest solution for this problem.

All problems are in the Air Cargo domain. They have the same action schema.

Air Cargo Action Schema:

```
Action(Load(c, p, a), PRECOND: At(c, a) \( \Lambda\) t(p, a) \( \Lambda\) Cargo(c) \( \Lambda\) Plane(p) \( \Lambda\)

Airport(a) EFFECT: \( \Lambda\) t(c, a) \( \Lambda\) In(c, p)) Action(Unload(c, p, a),

PRECOND: In(c, p) \( \Lambda\) At(p, a) \( \Lambda\) Cargo(c) \( \Lambda\) Plane(p) \( \Lambda\) Airport(a)

EFFECT: At(c, a) \( \Lambda\) - In(c, p)) Action(Fly(p, from, to), PRECOND:

At(p, from) \( \Lambda\) Plane(p) \( \Lambda\) Airport(from) \( \Lambda\) Airport(to)

EFFECT: \( \Lambda\) At(p, fo))
```

Problem 1 initial state and goal:

Problem 2 initial state and goal:

Problem 3 initial state and goal:

```
Init(At(C1, SF0) \land At(C2, JFK) \land At(C3, ATL) \land At(C4, ORD) \land At(P1, SF0) \land At(P2, JFK) \land Cargo(C1) \land Cargo(C2) \land Cargo(C3) \land Cargo(C4) \land Plane(P1) \land Plane(P2) \land Airport(JFK) \land Airport(SF0) \land Airport(ATL) \land Airport(ORD)) Goal(At(C1, JFK) \land At(C3, JFK) \land At(C2, SF0) \land At(C4, SF0))
```

An optimal sequence of actions:

Problem1:	Problem2:	Problem3:
Load(C1, P1, SFO)	Load(C1, P1, SFO)	Load(C1, P1, SFO)
Load(C2, P2, JFK)	Load(C2, P2, JFK)	Load(C2, P2, JFK)
Fly(P1, SFO, JFK)	Load(C3, P3, ATL)	Fly(P1, SFO, ATL)
Fly(P2, JFK, SFO)	Fly(P1, SFO, JFK)	Fly(P2, JFK, ORD)
Unload(C1, P1, JFK)	Fly(P2, JFK, SFO)	Load(C3, P1, ATL)
Unload(C2, P2, SFO)	Fly(P3, ATL, SFO)	Load(C4, P2, ORD)
	Unload(C1, P1, JFK)	Fly(P1, ATL, JFK)
	Unload(C2, P2, SFO)	Fly(P2, ORD, SFO)
	Unload(C3, P3, SFO)	Unload(C1, P1, JFK)
		Unload(C2, P2, SFO)
		Unload(C3, P1, JFK)
		Unload(C4, P2, SFO)
		_
Optimal plan Length:6	Optimal plan Length:9	Optimal plan Length:12

Uninformed Non-heuristic Search Analysis:

The Uninformed non-heuristic search agent ran with Breadth first search (BFS), and Depth first search (DFS) and Uniform cost search (UCS) . Here results table.

Problem	Search Type	Expansions	Goal Tests	New Nodes	Path Length	Execution Time (s)	Optimal
P1	BFS	43	56	180	6	0.029	YES
P1	DFS	101	271	414	50	0.074	NO
P1	ucs	55	57	224	6	0.030	YES
P2	BFS	3343	4609	30509	9	2.369	YES
P2	DFS	624	625	5602	619	0.033	NO
P2	ucs	4843	4855	44041	9	0.038	YES
Р3	BFS	14663	18098	129631	12	90.39	YES
P3	DFS	408	409	3364	392	1.53	NO
P3	ucs	18223	18225	159618	12	44.59	YES

Comparison between search agents for Uninformed Non-heuristic

- Node Expansion: Depth First Search (DFS) taking less memory compare to BFS and UCS, because expanding less nodes. UCS > BFS > DFS
- Execution Time: Depth First Search (DFS) is faster than BFS and UCS.
 UCS > BFS > DFS
- Optimal: Based on Path length (P1->6, P2->9, P3->12) Breadth First Search (BFS) And Uniform cost search (UCS) is provide optimal action plan. DFS not provide optimal action plan based on path lengths 50,619,392 instead of 6,9,12, because it does not consider better node due to once reach the goal, then not look other nodes even though better nodes available.

Based on factor (memory, Time, Optimal) **Breadth First Search (BFS)** is recommended uninformed non-heuristic search agent,

Domain independent heuristic with A* Search Analysis:

The domain independent heuristic with A* search agent ran with

- Greedy_best_first_graph_search with h_1
- A * Search h 1
- A* Search h ignore preconditions
- A* Search h pg levelsum

Here results table.

Problem	Search Type	Expansions	Goal	New	Path	Execution	Optimal
			Tests	Nodes	Length	Time (s)	
P1	Greedy_best_first_graph_sear ch with h_1	7	9	28	6	0.004	YES
P1	A * Search h_1	55	57	224	6	0.033	YES
P1	A* Search h_ignore_preconditions	41	43	170	6	0.032	YES
P1	A* Search h_pg_levelsum	11	13	50	6	0.038	YES

P2	Greedy_best_first_graph_sear ch with h 1	998	1000	8982	9	2.07	YES
P2	A * Search h_1	4853	4855	44041	9	10.07	YES
P2	A* Search h_ignore_preconditions	1450	1452	13303	9	3.63	YES
P2	A* Search h_pg_levelsum	86	88	841	9	29.32	YES
P3	Greedy_best_first_graph_sear ch with h_1	5577	5579	49141	21	13.80	NO
Р3	A * Search h_1	18223	18225	159618	12	44.70	YES
Р3	A* Search h_ignore_preconditions	5040	5042	44994	12	14.39	YES
P 3	A* Search h_pg_levelsum	328	330	3032	12	145.62	YES

Comparison between search agents for domain independent heuristic with A* search

• Node Expansion: A* Search h_pg_levelsum taking less memory compare to Greedy_best_first_graph_search with h_1, A * Search h_1 and A* Search h_ignore_preconditions, because expanding less nodes.

A * Search h_1 > A* Search h_ignore_preconditions > Greedy best first graph search > A* Search h pg levelsum

• Execution Time: A* Search h_pg_levelsum faster compare to Greedy_best_first_graph_search with h_1, A * Search h_1 and A* Search h_ignore_preconditions, because expanding less nodes.

A * Search h_1 > A* Search h_ignore_preconditions > Greedy_best_first_graph_search > A* Search h_pg_levelsum

• Optimal: Based on Path length (P1->6, P2->9, P3->12) A * Search h_1 and A* Search h_ignore_preconditions and A* Search h_pg_levelsum is provide optimal action plan. Greedy_best_first_graph_search with h_1 not provide optimal action plan based on path lengths 6,9,21 instead of 6,9,12.

Based on factor (memory, Time, Optimal) **A* Search h_pg_levelsum** is recommended domain independent heuristic with **A*** search agent. This heuristic Search Agents perform better as the problem complexity increased.

Search Agents Comparison Between Individual Problems.

Problem1:

Problem	Search Type	Expan	Goal	New	Path	Execution	Optimal
		sions	Tests	Node	Length	Time (s)	
				s			
P1	BFS	43	56	180	6	0.029	YES
P1	DFS	101	271	414	50	0.074	NO
P1	ucs	55	57	224	6	0.030	YES
P1	Greedy_best_first_grap	7	9	28	6	0.004	YES
	h_search with h_1						
P1	A * Search h_1	55	57	224	6	0.033	YES
P1	A* Search	41	43	170	6	0.032	YES
	h_ignore_preconditions						
P1	A* Search	11	13	50	6	0.038	YES
	h_pg_levelsum						

Greedy_best_first_graph_search with h_1 using less memory, execution time and optimal solution compare to across all search agents in problem use case. Less complexity problems recommended **Greedy_best_first_graph_search with h_1** for Problem1.

Problem2:

Problem	Search Type	Expan	Goal	New	Path	Execution	Optimal
		sions	Tests	Node	Length	Time (s)	
				S			
P2	BFS	3343	4609	30509	9	2.369	YES
P2	DFS	624	625	5602	619	0.033	NO
P2	ucs	4843	4855	44041	9	0.038	YES
P2	Greedy_best_first_grap	998	1000	8982	9		YES
	h_search with h_1					2.07	
P2	A * Search h_1	4853	4855	44041	9	10.07	YES
P2	A* Search	1450	1452	13303	9	3.63	YES
	h_ignore_preconditions						
P2	A* Search	86	88	841	9	29.32	YES
1	h_pg_levelsum						

A* Search h_ignore_preconditions using execution time and optimal solution compare to across all search agents in problem use case. Medium complexity problems recommended A* Search h_ignore_preconditions for Problem2, (Note:if memory is constrain A* Search h_pg_levelsum using less memory)

Problem3:

Problem	Search Type	Expan	Goal Tests	New Node	Path Length	Execution	Optimal
		sions				Time (s)	
				s			
P 3	BFS	14663	18098	129631	12	90.39	YES
P 3	DFS	408	409	3364	392	1.53	NO
Р3	ucs	18223	18225	159618	12	44.59	YES
P3	Greedy_best_first_grap	5577	5579	49141	21	13.80	NO
	h_search with h_1						
Р3	A * Search h_1	18223	18225	159618	12	44.70	YES
P3	A* Search	5040	5042	44994	12	14.39	YES
	h_ignore_preconditions						
P3	A* Search	328	330	3032	12	145.62	YES
	h_pg_levelsum						

A* Search h_pg_levelsum using less memory, execution time and optimal solution compare to across all search agents in problem use case. More complexity problems recommended A* Search h_pg_levelsum for Problem3.

Conclusion:

Based on results domain independent heuristic with A* search agent good for complexity problems, and less complexity problems good for uninformed search agent. A* Search h_pg_levelsum using less memory, execution time and optimal solution compare to across all search agents.

Reference:

Stuart J. Russel, Peter Norvig, Artificial Intelligence A Modern Approach (3rd Edition)