Практическое занятие №3

Tema: составление программ ветвящейся структуры в IDE PyCharm Community.

Цель: закрепить усвоенные знания, понятия, алгоритмы, основные принципы составления программ, приобрести навыки составление программ ветвящейся структуры в IDE PyCharm Community.

Постановка задачи №1

Разработать программу, выводящую на экран проверку истинности высказывания: «Справедливы неравенства A > 2 и B < 3».

Тип алгоритма: ветвление **Блок-схема алгоритма:**

Текст программы:

```
# Даны два целых числа: A, B. Проверить истинность высказывания: «Справедливы неравенства A > 2 и В < 3».

while True: # обработка исключений

try:
    A = int(input('Введите целое число A: '))
    break
    except ValueError:
        print('Нужно целое число!')

while True: # обработка исключений
    try:
    B = int(input('Введите целое число В: '))
    break
    except ValueError:
        print('Нужно целое число!')

if A > 2 and B < 3:
    print('Неравенства A > 2 и В < 3 верны!')

else:
    print('Неравенства A > 2 и В < 3 не верны!')
```

Протокол работы программы:

Введите целое число А: 7

Введите целое число В: 3

Неравенства A > 2 и B < 3 не верны!

Process finished with exit code 0

Постановка задачи №2

Спектр видимого излучения представлен в таблице. Составить программу, определяющую название цвета в зависимости от введенной длины волны.

Цвет	Диапазон длин волн, <u>нм</u>
<u>Фиолетовый</u>	≤450
<u>Синий</u>	450—480
Сине-зелёный	480—510
<u>Зелёный</u>	510—550
Жёлто-зелёный	550—570
<u>Жёлтый</u>	570—590
Оранжевый	590—630
<u>Красный</u>	≥630

Тип алгоритма: ветвление

Блок-схема алгоритма:

Текст программы:

```
# Спектр видимого излучения представлен в таблице.

# Составить программу, определяющую название цвета в зависимости от введенной длины волны.

while True: # обработка исключений

try:

    A = float(input('Введите длину волны: '))
    if A <= 450:
        print('Цвет излучения ~фиолетовый~')

elif 450 < A <= 480:
        print('Цвет излучения ~синий~')

elif 480 < A <= 510:
        print('Цвет излучения ~сине-зеленый~')

elif 510 < A <= 550:
        print('Цвет излучения ~зеленый~')

elif 550 < A <= 570:
        print('Цвет излучения ~желто-зеленый~')

elif 570 < A <= 590:
        print('Цвет излучения ~желтый~')

elif 590 < A < 630:
        print('Цвет излучения ~оранжевый~')

elif A >= 630:
        print('Цвет излучения ~красный~')

break

except ValueError:
    print('Введите число!')
```

Протокол работы программы:

Введите длину волны: True

Введите число!

Введите длину волны: 523.954

Цвет излучения ~зеленый~

Process finished with exit code 0

Вывод: в процессе выполнения практического занятия выработала навыки составления программ структуры ветвления в IDE PyCharm Community. Были использованы языковые конструкции if, elif, else, input, print.

Выполнены разработка кода, отладка, тестирование, оптимизация программного кода.