INTRODUCTION À LA **ROBOTIQUE**

Viviane CADENAT. Enseignant-chercheur à l'UPS. LAAS-CNRS, équipe Robotique, Action, Perception.

UPSSITECH - 1A SRI - Université P. Sabatier

Un bref survol de la planète « robotique »

- Définition et caractéristiques
 - Robot : Système mécanique articulé ou doué de mouvement capable d'effectuer automatiquement certaines tâches
 - Bras manipulateurs à base fixe ou mobile,
 - Robots mobiles à roues.
 - Robots volants.
 - Robots humanoïdes, etc.
 - ⇒ Des structures mécaniques adaptées à la tâche à réaliser.
 - ⇒ Le mouvement fait la spécificité du robot → interaction avec l'environnement. Ce n'est pas un ordinateur!

Un bref survol de la planète « robotique »

- Un peu d'histoire...
 - Étymologie : mot tchèque « robota » (travail forcé)
 - □ Objectif : Remplacer l'opérateur humain pour des tâches pénibles ou dangereuses
 - Quelques dates clés des débuts de la robotique
 - 1947 : premier manipulateur télé-opéré
 - 1954 : premier robot programmable
 - 1961 : premier bras manipulateur sur chaîne d'assemblage → manipulation de pièces de fonderie pour General Motors

UPSSITECH - 1A SRI - Université P. Sabatier

Un bref survol de la planète

« robotique »

- Domaines d'applications
 - Industrie manufacturière
 - Secteurs :
 - Automobile.
 - Industrie chimique,
 - □ Industrie électronique, ...
 - Tâches :
 - soudure.
 - peinture.
 - palettisation.
 - mesure.
 - manutention. ..

Un bref survol de la planète

« robotique »

Domaines d'application

□ La robotique d'intervention

iRobot PackBot → Interventions en milieux hostiles

Robot Perseverance & Ingenuity → Exploration

Systèmes robotiques mobiles souvent équipés de bras Problématique: navigation & manipulation

Cobham TEODOR → Robot démineur

UPSSITECH - 1A SRI - Université P. Sabatier

Un bref survol de la planète

« robotique »

- Domaines d'application
 - □ La robotique de service

Hospi, Panasonic

Roomba, irobot

Systèmes robotiques mobiles

Problématique: navigation.

Ebee, sensefly.

Robots Naio technologies Agriculture: binage, désherbage, ...

Transport autonome

UNIVERSITÉ TOULOUSE III

UPSSITECH - 1A SRI - Université P. Sabatier

Un bref survol de la planète

« robotique »

- Domaines d'application
 - La robotique de service

Aibo, Sony

Spencer (european project)

Des robots **personnels** : services, sollicitation cognitive, téléprésence ...

Systèmes robotiques mobiles, souvent anthrophomorphes.

Problématiques: mouvement, navigation, manipulation, interaction forte avec l'homme.

Robotics

Un bref survol de la planète « robotique »

Conclusion

« Voir » l'environnement

→ Capteurs embarqués/déportés

- Le robot : système mécanique (mobile ou fixe, polyarticulé ou non) doté de capacités autonomes et capable :
 - D'agir dans le monde réel
 - De s'adapter à son environnement et au contexte d'exécution
 - De collaborer avec l'homme et/ou avec l'environnement (flotte multirobot, systèmes ambiants, ...)
- Principe : Boucle « Perception / Décision / Action »

Déterminer le mouvement à réaliser

Réaliser le mouvement souhaité

Un bref survol de la planète « robotique »

Conclusion

- Déploiement d'un système robotique nécessite des compétences en
 - □ Vision, TI, TS, Reco. des formes → Perception
 - □ IA, Raisonnement, apprentissage → Décision et adaptation
 - \square Synthèse images, parole, interface & dialogue H/M \rightarrow Interaction H/R
 - □ Automatique → Déplacement du robot (action)
 - □ Programmation objet → mise en œuvre
- Organisation de l'enseignement « robotique »
 - □ Robotique industrielle → Bras manipulateur, commande de robots (1A et 2A, S7)
 - □ Robotique mobile → navigation, commande de robots (2A, S8)
 - □ Robotique avancée → robot humanoïde et interaction, SLAM, etc. (3A, S9)

UPSSITECH - 1A SRI - Université P. Sabatier

Focus sur la robotique industrielle

Architecture & structure mécanique des bras

Un bras manipulateur comprend deux parties :

- → Un organe terminal (OT) ou effecteur : permet de réaliser la tâche
- → Une structure mécanique articulée : permet de positionner et d'orienter l'OT

Robot manipulateur à chaîne simple

UPSSITECH - 1A SRI - Université P. Sabatie

Focus sur la robotique industrielle

Architecture & structure mécanique des bras

Un bras manipulateur comprend deux parties:

- → Un organe terminal (OT) ou effecteur : permet de réaliser la tâche
- → Une structure mécanique articulée : permet de positionner et d'orienter l'OT

Robot manipulateur à chaîne arborescente

Focus sur la robotique industrielle

UPSSITECH - 1A SRI - Université P. Sabatie

Architecture & structure mécanique des bras

Un bras manipulateur comprend deux parties :

- → Un organe terminal (OT) ou effecteur : permet de réaliser la tâche
- → Une structure mécanique articulée : permet de positionner et d'orienter l'OT

Robot manipulateur à chaîne complexe

Focus sur la robotique industrielle

Liaisons et structure des bras industriels

UPSSITECH - 1A SRI - Université P. Sabatier

13

Focus sur la robotique industrielle

Quelques exemples

Focus sur la robotique industrielle

Notions de base Indice de mobilité Configuration d'un BM Situation de l'OT Degré de liberté Base du BM → FIXE

Focus sur la robotique industrielle

Notions de base

Focus sur la robotique industrielle

Degrés de liberté et de mobilité

Focus sur la robotique industrielle

- Problématique de la robotique → Un exemple : opération industrielle de pick & place
 - But : saisir automatiquement la pièce détectée par la caméra
 - Tâches à effectuer
- Perception
- □ Détecter l'objet avec la caméra → Trait. Images
- □ Déduire sa position <u>ET</u> son orientation dans le repère de la caméra, puis dans le repère de base du robot $\rightarrow X_{but}$

- □ Déplacer la pince pour rejoindre la situation X_{but}
 - ⇒ Question : comment faire ?

Focus sur la robotique industrielle

Degrés de liberté et de mobilité

Focus sur la robotique industrielle

Schéma de commande d'un robot

