Rajalakshmi Engineering College

Name: Adithya Varman

Email: 240801010@rajalakshmi.edu.in

Roll no: 240801010 Phone: 8122197670

Branch: REC

Department: I ECE FA

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 4

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John, a computer science student, is learning about binary search trees (BST) and their properties. He decides to write a program to create a BST, display it in post-order traversal, and find the minimum value present in the tree.

Help him by implementing the program.

Input Format

The first line of input consists of an integer N, representing the number of elements to insert into the BST.

The second line consists of N space-separated integers data, which is the data to be inserted into the BST.

The first line of output prints the space-separated elements of the BST in post-order traversal.

The second line prints the minimum value found in the BST.

Refer to the sample output for formatting specifications.

```
Sample Test Case
    Input: 3
    5 10 15
    Output: 15 10 5
    The minimum value in the BST is: 5
    Answer
    #include <stdio.h>
    #include <stdlib.h>
    struct Node {
      int data:
      struct Node* left;
      struct Node* right;
   struct Node* createNode(int data) {
      struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
      newNode->data = data;
      newNode->left = newNode->right = NULL;
      return newNode;
    }
    // You are using GCC
    struct Node* insert(struct Node* root, int data)
if (root == NULL)
```

```
240801010
                                                                                 240801010
          struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
          newNode->data = data;
          newNode->left = newNode->right = NULL;
          return newNode;
        if (data < root->data)
          root->left = insert(root->left, data);
     } else
     {
          root->right = insert(root->right, data);
      return root;
     void displayTreePostOrder(struct Node* root)
     {
        if (root == NULL) return;
        displayTreePostOrder(root->left);
        displayTreePostOrder(root->right);
       printf("%d ", root->data);
```

```
240801010
     int findMinValue(struct Node* root)
       if (root == NULL) return -1;
       while (root->left != NULL)
     {
          root = root->left;
       return root->data;
     }
     int main() {
       struct Node* root = NULL;
       int n. data:
       scanf("%d", &n);
       for (int i = 0; i < n; i++) {
         scanf("%d", &data);
       root = insert(root, data);
       displayTreePostOrder(root);
       printf("\n");
       int minValue = findMinValue(root);
       printf("The minimum value in the BST is: %d", minValue);
       return 0;
     }
     Status: Correct
                                                                           Marks: 10/10
2408010
```