

Solving 3D frictional contact problems: Formulations and comparisons of numerical methods.

RESEARCH

REPORT

N° 123456789

September 23, 2017

Project-Team Bipop

Solving 3D frictional contact problems: Formulations and comparisons of numerical methods.

Project-Team Bipop

Research Report n° 123456789 — September 23, 2017 — 149 pages

Abstract: TBW

Key-words: Multibody systems, nonsmooth Mechanics, unilateral constraints, Coulomb friction, impact, numerical methods

RESEARCH CENTRE GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l'Europe Montbonnot

38334 Saint Ismier Cedex

Sur la résolution du problème de frottement tridimensionnel. Formulations and comparaisons des méthodes numériques.

Résumé: TBW

Mots-clés : Systèmes multi-corps, Mécanique non régulière, contraintes unilatérales, frottement de Coulomb, impact, Schémas numériques de résolution

Contents

1	LMGC_100_PR_PerioBox	4
	1.1 Comments	17
2	$LMGC_945_SP_Box_PL$	18
	2.1 Comments	31
3	LMGC Aqueduc PR	32
	3.1 Comments	45
4	LMGC Bridge PR	46
5	LMGC LowWall FEM	59
6	LMGC Cubes H8	72
7	Capsules	85
8	Chain	98
9	BoxesStack1	111
10	KaplasTower	124
11	Chute 1000	137

$1 \quad LMGC_100_PR_PerioBox$

Figure 1: LMGC_100_PR_PerioBox time VI/UpdateRule

Figure 2: LMGC_100_PR_PerioBox time NSGS/LocalSolver

 $Figure~3:~LMGC_100_PR_PerioBox~time~NSGS/LocalSolverHybrid$

Figure 4: LMGC_100_PR_PerioBox time NSGS/LocalTol

Figure 5: LMGC_100_PR_PerioBox time NSGS/LocalTol-VI

Figure 6: LMGC_100_PR_PerioBox time NSGS/Shuffled

Figure 7: LMGC_100_PR_PerioBox time PSOR

Figure 8: LMGC_100_PR_PerioBox $\,$ time NSN

Figure 9: LMGC_100_PR_PerioBox time OPTI

Figure 10: LMGC_100_PR_PerioBox time PROX/Internal Solvers

Figure 11: LMGC _100 _PR _PerioBox $\,$ time PROX/Parameters

Figure 12: LMGC_100_PR_PerioBox $% \frac{1}{2}$ time COMP/large

Figure 13: LMGC_100_PR_PerioBox time COMP/zoom

1.1 Comments

1. VI solvers:

- (a) The EG-VI solvers are better than FP-VI solvers.
- (b) The local update rule UPK vs. UPTS is not important
- (c) The update in the loop improves greatly the convergence rate.

2. NSGS Solvers:

(a) Local solvers

- i. NSN local solvers without line-search are the best solvers.
- ii. GP line-search method is slowing a lot the efficiency of the solver. Since we do need to improve to robustness of the solver, there is no interest in this set to use a line-search
- iii. Quite surprisingly, the local solvers based on FP-VI-UPK are also efficient, especially when we limit the number of iteration or the local tolerance of the local algorithm.
- (b) Local Tolerances: The study of the local tolerances of the local solvers shows that the local tolerance has to be lower than 1e-10 to get robustness and a good convergence rate of the NSGS-AC-GP solver. For the NSGS-FP-VI-UPK, a limited tolerance improves the efficiency without reducing the robustness
- (c) Shuffling techniques: The shuffling of contact does not improve the convergence.

PSOR Solvers.

- 1. For the values of the relaxation parameters ω in [1.3, 1.5], the relaxation increases the efficiency of the solver but decreases the robustness
- 2. For low values of the relaxation parameters ω in [0.5, 0.8], the relaxation increases the the robustness but decreases the efficiency

NSN and PROX solvers. The direct Newton techniques on such rigid-body test set are inefficient. (link to the distribution of ranks of the matrices)

OPTI solvers. On this problem, the ACLM and TRESCA approaches do not improve the efficiency. The problems are also better solved by the SOCLCP technique. Convexification is working well.

$2 \quad LMGC_945_SP_Box_PL$

Figure 14: LMGC_945_SP_Box_PL time VI/UpdateRule

Figure 15: LMGC _945 _SP _Box _PL $\,$ time NSGS/Local Solver

Figure 17: LMGC_945_SP_Box_PL time NSGS/LocalTol

Figure 18: LMGC_945_SP_Box_PL $\,$ time NSGS/LocalTol-VI

 $Figure~19:~LMGC_945_SP_Box_PL~time~NSGS/Shuffled$

Figure 20: LMGC_945_SP_Box_PL time PSOR

Figure 21: LMGC_945_SP_Box_PL $\,$ time NSN

Figure 22: LMGC_945_SP_Box_PL time OPTI

Figure 23: LMGC_945_SP_Box_PL time PROX/Internal Solvers

Figure 24: LMGC_945_SP_Box_PL time PROX/Parameters

Figure 25: LMGC_945_SP_Box_PL time COMP/large

Figure 26: LMGC_945_SP_Box_PL time COMP/zoom

2.1 Comments

- 1. VI solvers: difficult to draw conclusions since a lot of solvers are not able to converge within timeout
- 2. NSGS Solvers:
 - (a) Local solvers
 - i. NSGS-FP-VI-UPK are the best solvers.
 - ii. NSGS-NSN suffers from huge robustness problem.
 - iii. GP line-search method improves a bit the efficiency of the solver
 - iv. Hybrid solvers seems to succeed but it is difficult to say if the Newton method helps to improve results
 - (b) Local Tolerances: For the NSGS-FP-VI-UPK, a limited tolerance improves the efficiency without reducing the robustness
 - (c) Shuffling techniques: The shuffling of contact does not improve the convergence.

PSOR Solvers. No conclusion due to robustness problems

NSN and PROX solvers. The direct Newton techniques on such rigid-body test set are inefficient. (link to the distribution of ranks of the matrices)

OPTI solvers. On this problem, the TRESCA approach improves a lot the efficiency. The problems are also better solved by the SOCLCP technique/ Convexification is working well.

${\bf 3}\quad {\bf LMGC\ Aqueduc\ PR}$

Figure 27: LMGC Aqueduc PR $\,$ time $\,$ VI/UpdateRule

Figure 28: LMGC Aqueduc PR $\,$ time NSGS/Local Solver

 $Figure\ 29:\ LMGC\ Aqueduc\ PR\quad time\ NSGS/LocalSolverHybrid$

Figure 30: LMGC Aqueduc PR time NSGS/LocalTol

 $\label{eq:figure 31: LMGC Aqueduc PR} \quad \text{time NSGS/LocalTol-VI}$

Figure 32: LMGC Aqueduc PR $\,$ time NSGS/Shuffled

Figure 33: LMGC Aqueduc PR time PSOR

Figure 34: LMGC Aqueduc PR $\,$ time NSN

Figure 35: LMGC Aqueduc PR time OPTI

Figure 36: LMGC Aqueduc PR $\,$ time PROX/InternalSolvers

Figure 37: LMGC Aqueduc PR time PROX/Parameters

Figure 38: LMGC Aqueduc PR $\,$ time COMP/large

Figure 39: LMGC Aqueduc PR $\,$ time COMP/zoom

3.1 Comments

- 1. VI solvers: difficult to draw conclusions since a lot of solvers are not able to converge within timeout
- 2. NSGS Solvers:
 - (a) Local solvers
 - i. NSGS-NSN-*-GP are the best solvers. Line search improves efficiency of the solvers.
 - ii. Hybrid solvers do not bring new advantages which is not surprising since NSGS-NSN solvers are the best
 - (b) Local Tolerances:
 - (c) Shuffling techniques: The shuffling of contact does not improve the convergence.

PSOR Solvers. The relaxation is not interesting in this example

NSN and PROX solvers. The direct Newton techniques on such rigid-body test set are inefficient. (link to the distribution of ranks of the matrices)

OPTI solvers. On this problem, the ACLM approach improves a lot the efficiency and the robustness. The problems are also better solved by the SOCLCP technique. Convexification is working well.

4 LMGC Bridge PR

Figure 40: LMGC Bridge PR $\,$ time $\,$ VI/UpdateRule

Figure 41: LMGC Bridge PR $\,$ time NSGS/LocalSolver

Figure 42: LMGC Bridge PR time NSGS/LocalSolverHybrid

Figure 43: LMGC Bridge PR $\,$ time NSGS/LocalTol

Figure 44: LMGC Bridge PR $\,$ time NSGS/LocalTol-VI

Figure 45: LMGC Bridge PR $\,$ time NSGS/Shuffled

Figure 46: LMGC Bridge PR time PSOR

Figure 47: LMGC Bridge PR $\,$ time NSN

Figure 48: LMGC Bridge PR time OPTI

Figure~49:~LMGC~Bridge~PR~~time~PROX/Internal Solvers

Figure 50: LMGC Bridge PR $\,$ time PROX/Parameters

Figure 51: LMGC Bridge PR $\,$ time COMP/large

Figure 52: LMGC Bridge PR $\,$ time COMP/zoom

5 LMGC LowWall FEM

Figure 53: LMGC LowWall FEM $\,$ time $\,$ VI/UpdateRule

Figure 54: LMGC LowWall FEM $^{\circ}$ time NSGS/LocalSolver

Figure 55: LMGC LowWall FEM $\,$ time NSGS/LocalSolverHybrid

Figure 56: LMGC LowWall FEM time NSGS/LocalTol

Figure 58: LMGC LowWall FEM $\,$ time NSGS/Shuffled

Figure 59: LMGC LowWall FEM time PSOR

Figure 60: LMGC LowWall FEM time NSN

Figure 61: LMGC LowWall FEM time OPTI

Figure 62: LMGC LowWall FEM $\,$ time PROX/Internal Solvers

	/figure/PROX/Parameters/time/profile-LMGC_LowWall_FEM.pdf
	/figure/PROX/Parameters/time/profile-LMGC_LowWall_FEM_legend.pdf
RR n° 12345	6789

Figure 64: LMGC LowWall FEM $\,$ time COMP/large

Figure 65: LMGC LowWall FEM $\,$ time COMP/zoom

6 LMGC Cubes H8

Figure 66: LMGC Cubes H8 time VI/UpdateRule

Figure 67: LMGC Cubes H8 time NSGS/LocalSolver

Figure 68: LMGC Cubes H8 $\,$ time NSGS/LocalSolver Hybrid

Figure 69: LMGC Cubes H8 time NSGS/LocalTol

	/figure/NSGS/LocalTol/VI/time/profile-LMGC_Cubes_H8.pdf
	/figure/NSGS/LocalTol/VI/time/profile-LMGC_Cubes_H8_legend.pdf
RR n° 12345	

Figure 71: LMGC Cubes H8 $\,$ time NSGS/Shuffled

Figure 72: LMGC Cubes H8 $\,$ time PSOR

Figure 73: LMGC Cubes H8 time NSN

Figure 74: LMGC Cubes H8 time OPTI

Figure 75: LMGC Cubes H8 $\,$ time PROX/InternalSolvers

	/figure/PROX/Parameters/time/profile-LMGC_Cubes_H8.pdf
RR n° 1234	/figure/PROX/Parameters/time/profile-LMGC_Cubes_H8_legend.pdf

Figure 77: LMGC Cubes H8 time COMP/large

Figure 78: LMGC Cubes H8 time COMP/zoom

7 Capsules

Figure 79: Capsules time VI/UpdateRule

Figure 80: Capsules time NSGS/LocalSolver

Figure 81: Capsules $% \left(1\right) =\left(1\right) +\left(1\right)$

Figure 82: Capsules time NSGS/LocalTol

Figure 83: Capsules time NSGS/LocalTol-VI

Figure 84: Capsules time NSGS/Shuffled

Figure 85: Capsules time PSOR

Figure 86: Capsules $\,$ time NSN

Figure 87: Capsules time OPTI

Figure 88: Capsules time PROX/InternalSolvers

Figure 89: Capsules time PROX/Parameters

Figure 90: Capsules time COMP/large

Figure 91: Capsules time COMP/zoom

8 Chain

Figure 92: Chain time VI/UpdateRule

Figure 93: Chain time NSGS/LocalSolver

Figure 94: Chain time NSGS/LocalSolverHybrid

Figure 95: Chain time NSGS/Local Tol

Figure 96: Chain time NSGS/LocalTol-VI

Figure 97: Chain time NSGS/Shuffled

Figure 98: Chain time PSOR

Figure 99: Chain time NSN

Figure 100: Chain time OPTI

Figure 101: Chain time PROX/InternalSolvers

Figure 102: Chain time PROX/Parameters

Figure 104: Chain time COMP/zoom

9 BoxesStack1

Figure 105: BoxesStack1 time VI/UpdateRule

Figure 106: BoxesStack1 time NSGS/LocalSolver

Figure~107:~BoxesStack1~time~NSGS/LocalSolverHybrid

Figure 108: BoxesStack1 time NSGS/LocalTol

Figure 109: BoxesStack1 time NSGS/LocalTol-VI

Figure 110: BoxesStack1 time NSGS/Shuffled

Figure 111: BoxesStack1 time PSOR

Figure 112: BoxesStack1 time NSN

Figure 113: BoxesStack1 time OPTI

Figure 114: BoxesStack1 time PROX/InternalSolvers

Figure 115: BoxesStack1 time PROX/Parameters

Figure 116: BoxesStack1 time COMP/large

Figure 117: BoxesStack1 time COMP/zoom

10 KaplasTower

Figure 118: Kaplas Tower $% \left(1,0\right) =\left(1,0\right$

Figure~119:~KaplasTower~time~NSGS/LocalSolver

 $\label{eq:signal_signal} \mbox{Figure 120: KaplasTower time NSGS/LocalSolverHybrid}$

Figure 121: KaplasTower time NSGS/LocalTol

	/figure/NSGS/LocalTol/VI/time/profile-KaplasTower.pdf
	/figure/NSGS/LocalTol/VI/time/profile-KaplasTower_legend.pdf
	/IIgure/Nogo/Locarioi/VI/time/profite-naprasfower_regend.pdf
RR n° 12345	6789

Figure 124: KaplasTower time PSOR

Figure 126: KaplasTower time OPTI

Figure~127:~KaplasTower~time~PROX/InternalSolvers

	$\dots / ext{figure/PROX/Parameters/time/profile-KaplasTower.pdf}$
RR n° 12345	/figure/PROX/Parameters/time/profile-KaplasTower_legend.pdf

11 Chute_1000

Figure 131: Chute_1000 time VI/UpdateRule

Figure 132: Chute $_1000$ time NSGS/LocalSolver

 $Figure~133:~Chute_1000~time~NSGS/LocalSolverHybrid$

 $Figure~134:~Chute_1000~time~NSGS/LocalTol$

	/figure/NSGS/LocalTol/VI/time/profile-Chute_1000.pdf
RR n° 12345	/figure/NSGS/LocalTol/VI/time/profile-Chute_1000_legend.pdf

Figure 136: Chute_1000 time NSGS/Shuffled

Figure 137: Chute_1000 $\,$ time PSOR

Figure 138: Chute_1000 $\,$ time NSN

Figure 139: Chute_1000 time OPTI

Figure 140: Chute_1000 time PROX/InternalSolvers

	/figure/PROX/Parameters/time/profile-Chute_1000.pdf
RR n° 12345	/figure/PROX/Parameters/time/profile-Chute_1000_legend.pdf

Figure 142: Chute_1000 $\,$ time COMP/large

Figure 143: Chute_1000 time COMP/zoom

RESEARCH CENTRE GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l'Europe Montbonnot

38334 Saint Ismier Cedex

Publisher Inria Domaine de Voluceau - Rocquencourt BP 105 - 78153 Le Chesnay Cedex inria.fr