ECE 215 Spring 2025

Objective 1.4:
Apparent and
Reactive Power

Objective 1.4

I can compute the reactive and apparent power values for an AC-powered circuit.

OTHER CIRCUIT ELEMENTS

$$\begin{array}{ccc}
 & L & i_L \\
 & \downarrow & \downarrow \\
 & + & v_L & -
\end{array}$$

$$V_L =$$

OTHER CIRCUIT COMPONENTS

Power of L and C

- Inductors and Capacitors consume no real power
- The angle between voltage & current can be between and

Consequences

If V and I are out of phase, not all $P = V_{rms}I_{rms}$ is available as real power.

General Expression for Real Power

$$P = V_{rms} I_{rms} \cos \theta_v - \theta_i$$

WHERE DOES THE POWER GO?

Definition

 $S \rightarrow$ Apparent Power: the power we thought we would get, based on V_{rms} and I_{rms} .

$$S = V_{rms} I_{rms} \rightarrow units \text{ of V-A}$$

$$\implies pF = \cos \theta_v - \theta_i = \frac{P}{V_{rms}I_{rms}} = \frac{P}{S}$$

Definition

 $Q \rightarrow$ Reactive Power: a quantity to account for inductive and capacitive effects in AC circuits.

$$Q = V_{rms} I_{rms} \sin \theta_v - \theta_i \rightarrow units of VAR$$

POWER TRIANGLE

Putting it all together

$$[V_{rms}I_{rms}\cos\theta_v - \theta_i]^2 + [V_{rms}I_{rms}\sin\theta_v - \theta_i]^2 = [V_{rms}I_{rms}]^2$$

$$\implies P^2 = Q^2 = S^2$$

AC POWER EXAMPLE

A compressor is hooked to a $440V_{rms}$ bus. It is rated at 4kW and has a lagging pF of 0.8. What I_{rms} is drawn from the bus and what reactive power (Q) is consumed by the compressor?

WARNING!

EXAMPLE 1

There are three loads connected to a $230V_{RMS}$ bus. Load 1 is rated for 800W at a 0.7 lagging power factor. Load 2 is rated for 900W at a 0.9 lagging power factor. Load 3 is rated for 600W at a 0.8 leading power factor. Find the AC RMS current drawn from the bus.

EXAMPLE 1 (CONT'D)

Step 1: Find individual load apparent powers.

Step 2: Find individual reactive powers.

Step 3: Mind your P's and Q's.

EXAMPLE 1 (CONT'D)

Step 4: Find bus apparent power.

Step 5: Find bus I_{rms}

EXAMPLE 2

What value of Q_2 is required to reduce I_{bus} to 9.88A?

