Modello matematico

Traduzione di un problema di decisione, di cui si ha una descrizione a parole, nel linguaggio matematico: le varie componenti del problema di decisione vengono tradotte in oggetti matematici come insiemi, numeri, variabili, equazioni e/o disequazioni, funzioni matematiche.

No teoria, si impara con la pratica. Ma alcune cose ritornano spesso nella creazione di modelli ed è possibile darne una descrizione formale.

Concentreremo l'attenzione su modelli in cui compaiono solamente espressioni lineari (problemi di *Programmazione Lineare* e *Programmazione Lineare Intera*).

Argomenti trattati

- variabili binarie, particolarmente importanti nella creazione di modelli di problemi di decisione, con i relativi vincoli logici;
- non linearità eliminabili (funzioni non lineari sostituibili da equivalenti espressioni lineari);
- problemi di particolare rilevanza nelle applicazioni pratiche di cui daremo sempre il modello matematico e, in molti casi, anche il modello dello stesso nel linguaggio AMPL.

Variabili binarie

Possono assumere due soli valori (convenzionalmente fissati a 0 e 1).

Vengono utilizzate nei problemi di decisione quando, come spesso accade, si deve scegliere se effettuare o non effettuare una determinata azione, se un sistema si debba trovare o meno in un determinato stato.

Vedremo diversi casi in cui se ne fa uso.

Limitazioni su altre variabili

Supponiamo che nel nostro problema di decisione una certa variabile x abbia una limitazione superiore pari a B se ci si trova in uno tra due possibili stati.

La scelta tra i due possibili stati viene modellata con una variabile binaria δ e possiamo imporre che lo stato relativo a $\delta=1$ sia quello per cui x non può superare B. In altre parole, abbiamo la seguente relazione tra δ e x

$$\delta = 1 \implies x \leq B.$$

Vincolo logico → disequazione

$$x \le B\delta + (1 - \delta)M,$$

M=limite superiore esplicito o implicito (ovvero derivato da altri vincoli del problema) sui valori che possono essere assunti da x indipendentemente dallo stato del sistema (in prima analisi possiamo anche pensare a $M=+\infty$).

Esempio

Un impianto di produzione, che ha una capacità produttiva (massimo numero di prodotti realizzabili in una giornata) in condizioni normali pari a Cap_1 , può essere fatto funzionare con una capacità ridotta $Cap_2 < Cap_1$.

In questo caso i due stati sono il funzionamento normale $(\delta = 0)$ o ridotto $(\delta = 1)$ dell'impianto.

Se indichiamo con x il numero di prodotti realizzati in una giornata, possiamo imporre il vincolo:

$$x \le Cap_2\delta + (1 - \delta)Cap_1,$$

Altro esempio

Supponiamo di non avere limiti dal di sopra espliciti per la variabile x ma che nel problema siano presenti i vincoli

$$x + y + z \le 100, \quad x, y, z \ge 0,$$

Un limite implicito per x è 100 e possiamo utilizzare tale valore come quantità M.

Limitazioni inferiori di variabili

Supponiamo ora che una certa variabile x abbia una limitazione inferiore pari ad A se ci si trova in uno tra due possibili stati.

Di nuovo la scelta tra i due possibili stati viene modellata con una variabile binaria δ e possiamo imporre che lo stato relativo a $\delta=1$ sia quello per cui x non può essere inferiore ad A.

Quindi, abbiamo la relazione

$$\delta = 1 \implies x \ge A.$$

Vincolo logico → disequazione

$$x \ge A\delta - (1 - \delta)M,$$

-M= limite inferiore (esplicito o implicito) sui valori che possono essere assunti da x indipendentemente dallo stato del sistema. In particolare, se abbiamo un vincolo di non negatività per x possiamo imporre M=0.

NOTA BENE: si potrebbe anche usare

$$\delta x > \delta A$$
.

ma in tal caso si perde la linearità.

Variabili binarie per imporre vincoli

In alcuni problemi può accadere che un certo vincolo $\sum_{j=1}^{n} a_j x_j \leq b$ sia presente solo se un sistema si trova in uno tra due possibili stati, identificato, ad esempio, dal valore 1 di una variabile binaria δ .

Quindi:

$$\delta = 1 \quad \Rightarrow \quad \sum_{j=1}^{n} a_j x_j \le b.$$

Equivalente alla disequazione

$$\sum_{j=1}^{n} a_j x_j \le b\delta + M(1-\delta),$$

M= numero sufficentemente elevato, tale da rendere la disequazione $\sum_{j=1}^{n} a_j x_j \leq M$ (a cui ci si riduce nel caso $\Delta = 0$) ridondante rispetto agli altri vincoli del problema.

In particolare...

... se sono note delle limitazioni inferiori l_j e superiori u_j per tutte le variabili x_j , una possibile scelta per M è la seguente

$$M = \sum_{j=1}^{n} \max\{a_j l_j, a_j u_j\}.$$

Esempio

Supponiamo che i e j siano due attività di durata rispettivamente pari a d_i e d_j che non possano essere eseguite contemporaneamente.

Associamo alle due attività due variabili t_i e t_j che indicano il loro istante di inizio.

Ipotiizziamo anche che le attività debbano essere iniziate in un determinato intervallo, ovvero che esistano istanti T_{\min} e T_{\max} tali che

$$T_{\min} \le t_i, t_j \le T_{\max}.$$

Se le due attività non possono essere eseguite contemporaneamente possiamo introdurre una variabile binaria

$$\delta_{ij} = \begin{cases} 0 & \text{se } i \text{ precede } j \\ 1 & \text{se } j \text{ precede } i \end{cases}$$

Quindi...

$$\delta_{ij} = 0 \implies t_j \ge t_i + d_i$$
 (j può iniziare solo quando finisce i)

$$\delta_{ij} = 1 \quad \Rightarrow \quad t_i \geq t_j + d_j$$
 (*i* può iniziare solo quando finisce *j*)

In base a quanto visto le due implicazioni possono essere tradotte nei seguenti vincoli

$$t_j \ge t_i + d_i(1 - \delta_{ij}) - M\delta_{ij}$$

$$t_i \ge t_j + d_j \delta_{ij} - M(1 - \delta_{ij}),$$

dove possiamo scegliere $M=T_{\rm max}-T_{\rm min}$.

Costi fissi

Le variabili binarie vengono frequentemente usate per modellare problemi in cui sono presenti costi fissi.

Pensiamo al caso di una variabile x che rappresenta la quantità realizzata di un certo prodotto. Se x=0 avremo ovviamente un costo di produzione associato al prodotto pari a 0.

Ma se x > 0 allora avremo un costo pari a f + cx dove:

- f = costo fisso (legato, ad esempio, al fatto che la produzione richiede l'acquisto di un certo macchinario il cui costo è, appunto, fisso e non dipende dalla quantità prodotta).

Allora...

... si introduce la variabile binaria

$$\delta = \begin{cases} 0 & \text{se } x = 0 \\ 1 & \text{se } x > 0 \end{cases}$$

Con questa il costo diventa

$$cx + f\delta$$

Continua

Dobbiamo modellare l'implicazione

$$\delta = 0 \implies x = 0.$$

Se M è un limite noto (implicito o esplicito) per i valori che possono essere assunti da x possiamo imporre

$$x < M\delta$$
,

Combinata con il vincolo di non negatività $x \ge 0$ (la produzione non può ovviamente essere negativa), garantisce che l'implicazione sia soddisfatta.

Però ...

... dovremmo anche imporre

$$\delta = 1 \implies x > 0.$$

Questo non viene imposto ma è in realtà una condizione sempre soddisfatta dalle soluzioni ottime del problema.

Infatti, il costo comparirà in un obiettivo da minimizzare

$$\min \quad \cdots + (f\delta + cx) + \cdots$$

$$\vdots$$

$$x \le M\delta$$

$$\vdots$$

$$x \ge 0$$

La combinazione $\delta=1, x=0$, che viola l'implicazione, può comparire in una soluzione ammissibile del problema, ma certamente tale soluzione non sarà ottima, in quanto basta portare il valore di δ a 0 per ridurre di f il valore dell'obiettivo.

Vincoli logici

Spesso accade che esistano dei vincoli logici che legano i valori di diverse variabili binarie.

Ad esempio, ipotizziamo di avere quattro attività A, B, C, D che possiamo decidere se svolgere o non svolgere e che valga il seguente vincolo:

se si esegue A o B, allora si esegue C o non si esegue D

(gli o vanno intesi come non esclusivi).

Continua

Indichiamo con V_i , i=A,B,C,D, l'evento si esegue l'attività i.

Utilizzando gli operatori logici \cup (OR), \cap (AND), \neg (NOT), \Rightarrow (implicazione), possiamo scrivere il vincolo come

$$V_A \cup V_B \quad \Rightarrow \quad V_C \cup \neg V_D.$$

Operazioni logiche

$$S_{1} \Rightarrow S_{2} \equiv \neg S_{1} \cup S_{2}$$

$$\neg(S_{1} \cup S_{2}) \equiv \neg S_{1} \cap \neg S_{2}$$

$$\neg(S_{1} \cap S_{2}) \equiv \neg S_{1} \cup \neg S_{2}$$

$$S_{1} \cup (S_{2} \cap S_{3}) \equiv (S_{1} \cup S_{2}) \cap (S_{1} \cup S_{3})$$

$$S_{1} \cap (S_{2} \cup S_{3}) \equiv (S_{1} \cap S_{2}) \cup (S_{1} \cap S_{3})$$

Forma normale disgiuntiva

Ogni espressione logica che coinvolge gli operatori \cup , \cap , \neg , \Rightarrow può essere riscritta in forma normale disgiuntiva

$$\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_k \cup \neg \mathcal{E}_{k+1} \cup \cdots \cup \neg \mathcal{E}_{k+h}$$

dove ogni \mathcal{E}_i , $i=1,\ldots,k+h$ è una espressione data dall'intersezione di un numero finito di eventi (eventualmente negati).

Forma normale congiuntiva

Ogni espressione logica che coinvolge gli operatori \cup , \cap , \neg , \Rightarrow può essere riscritta anche in forma normale congiuntiva

$$\mathcal{E}_1 \cap \cdots \cap \mathcal{E}_k \cap \neg \mathcal{E}_{k+1} \cap \cdots \cap \neg \mathcal{E}_{k+h}$$

dove ogni \mathcal{E}_i , $i=1,\ldots,k+h$ è una espressione data dall'unione di un numero finito di eventi (eventualmente negati).

Nell'esempio

Forma normale disgiuntiva

$$\underbrace{(\neg V_A \cap \neg V_B)}_{\mathcal{E}_1} \cup \underbrace{V_C}_{\mathcal{E}_2} \cup \underbrace{\neg V_D}_{\mathcal{E}_3}$$

Forma normale congiuntiva

$$\underbrace{(\neg V_A \cup V_C \cup \neg V_D)}_{\mathcal{E}_4} \cap \underbrace{(\neg V_B \cup V_C \cup \neg V_D)}_{\mathcal{E}_5}.$$

Variabili binarie

Introduciamo

$$\delta_i = \left\{ \begin{array}{ll} 0 & \text{se si decide di non eseguire l'attività } i \\ 1 & \text{altrimenti} \end{array} \right.$$

$$i = A, B, C, D$$
.

Vediamo come una forma normale congiuntiva e disgiuntiva può essere tradotta in un sistema di disequazioni lineari che coinvolge queste variabili binarie (più altre eventualmente da aggiungere).

OR di eventi

Un OR di eventi (eventualmente negati)

$$V_1 \cup \cdots \cup V_k \cup \neg V_{k+1} \cup \cdots \cup \neg V_{k+h}$$

a cui si associano le variabili binarie δ_i , $i = \dots, k + h$, viene tradotto nella disequazione

$$\sum_{i=1}^{k} \delta_i + \sum_{i=k+1}^{k+h} (1 - \delta_i) \ge 1$$

ovvero almeno una della variabili δ_i , $i=1,\ldots,k$, deve essere pari a 1 oppure almeno una delle variabili δ_i , $i=k+1,\ldots,k+h$, deve essere pari a 0.

AND di eventi

Consideriamo un AND di eventi (eventualmente negati)

$$V_1 \cap \cdots \cap V_k \cap \neg V_{k+1} \cap \cdots \cap \neg V_{k+h}$$
.

Possiamo introdurre, oltre alle variabili binarie δ_i , $i=,\ldots,k+h$, un'ulteriore variabile binaria δ il cui valore pari a 1 implica che l'espressione è soddisfatta, ovvero

$$\delta = 1 \implies \delta_i = 1 \quad i = 1, \dots, k, \quad \delta_i = 0 \quad i = k+1, \dots, k+h,$$

Equivalentemente

$$\delta_i \ge \delta$$
 $i = 1, \dots, k$
 $\delta_i \le 1 - \delta$ $i = k + 1, \dots, k + h$.

Nell'esempio

$$\mathcal{E}_1 \equiv \neg V_A \cap \neg V_B \quad \rightarrow \quad \delta_A \leq 1 - \delta, \quad \delta_B \leq 1 - \delta,$$

$$\mathcal{E}_1 \cup V_C \cup \neg V_D \rightarrow \delta + \delta_C + (1 - \delta_D) \ge 1.$$

Quindi, la froma normale disgiuntiva per l'esempio equivale al sistema di vincoli lineari

$$\begin{cases} \delta_A \le 1 - \delta \\ \delta_B \le 1 - \delta \\ \delta + \delta_C - \delta_D \ge 0. \end{cases}$$

Continua

$$\mathcal{E}_4 \equiv \neg V_A \cup V_C \cup \neg V_D \quad \rightarrow \quad \delta_C + (1 - \delta_A) + (1 - \delta_D) \ge 1,$$

$$\mathcal{E}_5 \equiv \neg V_B \cup V_C \cup \neg V_D \quad \rightarrow \quad (1 - \delta_B) + \delta_C + (1 - \delta_D) \ge 1,$$

Quindi, la forma normale congiuntiva equivale al sistema di vincoli lineari

$$\begin{cases} \delta_A + \delta_D - \delta_C \le 1 \\ \delta_B + \delta_D - \delta_C \le 1. \end{cases}$$

Nota bene - I

Nel caso specifico le due formulazioni ottenute tramite la forma congiuntiva e quella disgiuntiva sono tra loro equivalenti, ma da un punto di vista algoritmico si osserva che la forma disgiuntiva è spesso migliore rispetto a quella congiuntiva.

Nota bene - II

L'AND di due eventi S_1 e S_2 con associate le variabili binarie δ_1 e δ_2 , oltre a poter essere modellato, con l'introduzione della variabile binaria aggiuntiva δ , come

$$\delta_1 \geq \delta, \quad \delta_2 \geq \delta$$

può essere modellato anche con il vincolo

$$\delta_1 \delta_2 \geq \delta$$
.

Tuttavia, un vincolo di questo tipo è non lineare ed è opportuno quindi evitarne l'introduzione.

Non linearità

Per quanto la presenza di espressioni lineari in un modello sia sempre auspicabile per la maggiore facilità di risoluzione dei problemi lineari, non sempre è possibile evitare l'introduzione di espressioni non lineari.

Per esempio, prendiamo la semplicissima formula della velocità in un moto rettilineo uniforme

$$v = \frac{s}{t}$$

dove v indica la velocità, s lo spazio percorso e t il tempo.

Se supponiamo che queste siano tre variabili di un problema di decisione, è chiaro che il vincolo dato dalla formula che lega le tre grandezze è non lineare e non possiamo rimuovere tale non linearità.

Ma ...

... esistono anche casi in cui la non linearità può essere eliminata con l'introduzione di opportune espressioni lineari.

Vedremo un paio di esempi:

- problemi maximin e minimax;
- problemi di minimizzazione di somme di valori assoluti.

Problemi minimax

min
$$\max_{r=1,...,k} \{ \sum_{j=1}^{n} c_{rj} x_j + c_{0r} \}$$

 $\sum_{j=1}^{n} a_{ij} x_j \le b_i$ $i = 1,..., m$
 $x_j \ge 0$ $j = 1,..., n$

La funzione obiettivo

$$f(x) = \max_{r=1,\dots,k} \{ \sum_{j=1}^{n} c_{rj} x_j + c_{0r} \}$$

è non lineare.

Ma ...

... il problema è equivalente al seguente problema di programmazione lineare

min
$$y$$

$$y \ge \sum_{j=1}^{n} c_{rj}x_j + c_{0r} \quad r = 1, \dots, k$$

$$\sum_{j=1}^{n} a_{ij}x_j \le b_i \quad i = 1, \dots, m$$

$$x_j \ge 0 \quad j = 1, \dots, n$$

Osservazione

Un discorso analogo vale per la massimizzazione del minimo di un numero finito di funzioni lineari (problema maximin), mentre si può verificare che non è eliminabile la non linearità nei problemi di massimizzazione del massimo di un numero finito di funzioni lineari (maximax) e minimizzazione del minimo di un numero finito di funzioni lineari (minimin).

Tuttavia ...

...teniamo presente come problemi maximax e minimin siano risolvibili risolvendo più problemi di PL.

Ad esempio il problema minimin:

min
$$\min_{r=1,...,k} \{ \sum_{j=1}^{n} c_{rj} x_j + c_{0r} \}$$

 $\sum_{j=1}^{n} a_{ij} x_j \le b_i$ $i = 1,..., m$
 $x_j \ge 0$ $j = 1,..., n$

lo possiamo risolvere risolvendo i k problemi di PL per $r = 1, \ldots, k$:

$$\min \sum_{j=1}^{n} c_{rj} x_j + c_{0r}
\sum_{j=1}^{n} a_{ij} x_j \le b_i \quad i = 1, \dots, m
x_j \ge 0 \qquad j = 1, \dots, n$$

Somma di valori assoluti

min
$$\sum_{r=1}^{k} |\sum_{j=1}^{n} c_{rj} x_j + c_{0r}|$$

 $\sum_{j=1}^{n} a_{ij} x_j \le b_i$ $i = 1, \dots, m$
 $x_j \ge 0$ $j = 1, \dots, n$

La funzione obiettivo

$$f(x) = \sum_{r=1}^{k} |\sum_{j=1}^{n} c_{rj} x_j + c_{0r}|$$

è non lineare.

In realtà ...

... osservando che

$$\left| \sum_{j=1}^{n} c_{rj} x_j + c_{0r} \right| = \max \left\{ \sum_{j=1}^{n} c_{rj} x_j + c_{0r}, -\sum_{j=1}^{n} c_{rj} x_j - c_{0r} \right\}.$$

Abbiamo che il problema è equivalente a

min
$$\sum_{r=1}^{k} \max\{\sum_{j=1}^{n} c_{rj}x_j + c_{0r}, -\sum_{j=1}^{n} c_{rj}x_j - c_{0r}\}\$$

 $\sum_{j=1}^{n} a_{ij}x_j \le b_i$ $i = 1, \dots, m$
 $x_j \ge 0$ $j = 1, \dots, n$

a sua volta equivalente al problema lineare

min
$$\sum_{r=1}^{k} y_r$$

 $y_r \ge \sum_{j=1}^{n} c_{rj} x_j + c_{0r}$ $r = 1, ..., k$
 $y_r \ge -\sum_{j=1}^{n} c_{rj} x_j - c_{0r}$ $r = 1, ..., k$
 $\sum_{j=1}^{n} a_{ij} x_j \le b_i$ $i = 1, ..., m$
 $x_j \ge 0$ $j = 1, ..., n$