Método de Newton

Métodos Numéricos

Prof. Juan Pablo Concha y Eduardo Uribe

Conferencia 7

Conferencia 7

Método de Newton

2 Velocidad de convergencia

Motivación

Taylor en torno a un cero

Sea $f \in C^2[a,b]$ y x_0 una aproximación de \bar{x} de modo tal que $f(\bar{x}) = 0$ y $f'(x_0) \neq 0$. Tenemos:

$$0 = f(\bar{x}) = f(x_0) + (\bar{x} - x_0) \cdot f'(x_0) + \frac{(\bar{x} - x_0)^2}{2} f''(\xi)$$

Si
$$|\bar{x} - x_0|^2 \ll |\bar{x} - x_0|$$
, entonces

$$0 \approx f(x_0) + (\bar{x} - x_0) \cdot f'(x_0)$$

o sea:

$$\bar{x} \approx x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Ejemplo gráfico: f(x) = cos(x) - x, $x_0 = 0.3$, $x_1 = 0.8058$

Formulación

Fórmula de Newton-Raphson

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Observaciones

Newton como punto fijo

El método de Newton para *f* es una iteración de punto fijo si seleccionamos la función:

$$g(x) = x - \frac{f(x)}{f'(x)}$$

Teorema

Sea $f(x) \in C^2([a,b])$. Si $\bar{x} \in [a,b]$ es tal $f(\bar{x}) = 0$ y $f'(\bar{x}) \neq 0$, entonces existe un radio $\delta > 0$ tal que el método de Newton genera una suceción $\{x_n\}_{n=1}^{\infty}$ que converge a \bar{x} desde cualquier punto inicial x_0 del intervalo $[\bar{x} - \delta, \bar{x} + \delta]$.

Encuentre una raíz $e^x - 2 + x = 0$ en el intervalo [0, 2]

Si resolvemos el problema por bisección tenemos

k	а	b	<u>a+b</u> 2	f(a)	f(b)	$f\left(\frac{a+b}{2}\right)$
0	0	2	1	1	7.389056	1.718282
1	0	1	0.5	-1	1.718282	0.148721
2	0	0.5	0.250000	-1	0.148721	-0.465975
3	0.25	0.500000	0.375000	-0.465975	0.148721	-0.170009
4	0.375000	0.500000	0.437500	-0.170009	0.148721	-0.013670
5	0.437500	0.500000	0.468750	-0.013670	0.148721	0.066745
6	0.437500	0.468750	0.453125	-0.013670	0.066745	0.026346
7	0.437500	0.453125	0.445312	-0.013670	0.026346	0.006290
8	0.437500	0.445312	0.441406	-0.013670	0.006290	-0.003702
9	0.441406	0.445312	0.443359	-0.003702	0.006290	0.001291

Encuentre una raíz $e^x - 2 + x = 0$ en el intervalo [0, 2]

Ahora para la iteraciones del método de Newton recordemos que la fórmula iterativa es:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \Rightarrow x_{k+1} = x_k - \frac{e_k^{x} - 2 + x_k}{e_k^{x} + 1}$$

Y las iteraciones son

k	x_k	$f(x_k)$
0	2	7.38905 <i>e</i> + 00
1	1.119202	2.18161 <i>e</i> + 00
2	0.582178	3.72111 <i>e</i> – 01
3	0.448801	1.52359 <i>e</i> – 02
4	0.4428651	2.75489 <i>e</i> – 05
5	0.4428544	9.03638 <i>e</i> – 11
6	0.4428544	1.11022 <i>e</i> – 16

$$f(x)=x^3-x+3$$

Punto Inicial $x_0 = 3$;

Solución $\bar{x} = -1.671699881657161$

n	<i>x</i> (<i>n</i>)
1	3
2	1.961538461538461
3	1.147175961403547
4	0.006579371480712
5	3.000389074071233
9	3.000473188773216
13	3.000492442916955
21	3.000497939939629
49	3.000498253796694

$$f(x) = xe^{-x}$$

Punto Inicial $x_0 = 1$; Solución $\bar{x} = 0$

n	<i>x</i> (<i>n</i>)	f(x)
1	1	0.36787
2	1.5	0.33469
3	2.1	0.25715
4	2.77741	0.17275
5	3.51268	0.10473
10	7.66578	0.10473
20	16.84521	0.0000008
30	26.386061	0.0000
50	45.82616	0

Regla de Fourier

Sea $f:[a,b]\to\mathbb{R}$ continua y dos veces continuamente diferenciable en [a,b] y tal que verifica

- **1** $f(a) \cdot f(b) < 0$
- $2 f'(x) \neq 0, \forall x \in [a, b]$

Entonces, el método de Newton converge si tomamos $x_0 = a$ o $x_0 = b$ de tal forma que $f(x_0)f''(x_0) > 0$

$$f(x) = x^3 - x + 3 \cos x \in [-3, 0]$$

- $f'(x) = 3x^2 1$ y f''(x) = 6x
- f, f' y f" son continuamente diferenciables por ser polinomios.
- $f(-3) \cdot f(0) = (-27) \cdot (3) < 0$
- $f'(x) \neq 0$ esta condición no se cumple, pues

$$f'\left(\frac{-\sqrt{3}}{3}\right) = 0 \text{ y } \frac{-\sqrt{3}}{3} \in [-3,0].$$

Para evitar el problema anterior reduzcamos el intervalo a $\left[-3,\ -\frac{3}{5}\right]$ y revisemos las hipótesis nuevamente

Continuación...

- $f(-3) \cdot f\left(-\frac{3}{5}\right) = (-27) \cdot \left(\frac{423}{125}\right) < 0$
- $f'(x) \neq 0$, $\forall x \in \left[-3, -\frac{3}{5}\right]$ pues f'(x) es continua y es cero en $\pm \frac{\sqrt{3}}{3} \notin \left[-3, -\frac{3}{5}\right]$.
- $f''(x) \neq 0$, $\forall x \in \left[-3, -\frac{3}{5}\right]$ pues únicamente cero en $x = 0 \notin \left[-3, -\frac{3}{5}\right]$

Entonces el punto inicial es aquel que cumpla $f(x_0) \cdot f''(x_0) > 0$ que corresponde a $x_0 = -3$, volviendo a iterar a partir de ese valor tenemos

n	1	2	3	4	5	6
x(n)	-3	-2.19230	-1.79402	-1.68079	-1.67175	-1.67169

Y en 6 iteraciones llegamos a la solución.

Ideas básicas

Definición

Supongamos que $\{x_n\}_{n=0}^{\infty}$ es una sucesión que converge a \bar{x} tal que $x_n \neq \bar{x}$ para todo n. Si existen constantes positivas λ y α que cumplen:

$$\lim_{n\to\infty}\frac{|x_{n+1}-\bar{x}|}{|x_n-\bar{x}|^{\alpha}}=\lambda$$

entonces se dice que $\{x_n\}_{n=0}^{\infty}$ tiene una velocidad de convergencia hacia \bar{x} de orden α con una constante de error asintótico λ .

Casos especiales

- Si $\alpha = 1$ y $\lambda < 1$, se dice que la convergencia es lineal.
- Si $\alpha =$ 2 la convergencia se llama cuadrática.

Diferencia entre velocidad lineal y cuadrática

Ejemplos

$$\lim_{n \to \infty} \frac{|y_{n+1} - \bar{x}|}{|y_n - \bar{x}|} = 0.5 = \lim_{n \to \infty} \frac{|z_{n+1} - \bar{x}|}{|z_n - \bar{x}|^2}$$

En consecuencia:

$$|y_n - \bar{x}| \approx (0.5)^n |y_0 - \bar{x}| \quad \wedge \quad |z_n - \bar{x}| \approx (0.5)^{2^n - 1} |z_0 - \bar{x}|^{2^n}$$

Valores aproximados para $|y_0 - \bar{x}| = |z_0 - \bar{x}| = 1$

n	$ y_n-\bar{x} $	$ z_n-\bar{x} $
1	0.5	0.5
2	0.25	0.125
3	0.125	0.0078125
4	0.0625	3.051757813e-005
5	0.03125	4.656612873e-010
6	0.015625	1.084202172e-019
7	0.0078125	5.877471754e-039

Velocidad de convergencia de iteraciones punto fijo

Teorema 2

Sea $g(x) \in C([a,b])$ tal que $g(x) \in [a,b]$ para todo $x \in [a,b]$. Supongamos, además que g'(x) es **continua** en (a,b) y que hay una constante K < 1 tal que

$$|g'(x)| < K, \quad \forall x \in (a,b).$$

Si $g'(\bar{x}) \neq 0$ con $g(\bar{x}) = \bar{x}$, entonces para cualquier punto inicial $x_0 \in [a, b]$ la sucesión de punto fijo $x_{n+1} = g(x_n)$ converge solamente con velocidad lineal hacia \bar{x} .

Observaciones

- Las iteraciones de punto fijo convergentes poseen velocidad al menos lineal.
- Para que una iteración de punto fijo tenga convergencia mejor que lineal (por ejemplo, cuadrática) debe cumplirse que $g'(\bar{x}) = 0$ (como, por ejemplo, Newton!).

Convergencia cuadrática para iteraciones punto fijo

Teorema

Sea $g(\bar{x}) = \bar{x}$. Supongamos, además, que $g'(\bar{x}) = 0$ y que g''(x) es continua en un intervalo abierto I que contiene a \bar{x} y satisface |g''(x)| < M. Entonces existe un radio $\delta > 0$ tal que:

- La sucesión de punto fijo $x_{n+1} = g(x_n)$ converge con velocidad al menos cuadrática hacia \bar{x} desde cualquier punto inicial x_0 del intervalo $[\bar{x} \delta, \bar{x} + \delta]$,
- Para valores suficientemente grandes de n se cumple también la relación:

$$|x_{n+1} - \bar{x}| < \frac{M}{2}|x_n - \bar{x}|^2$$

Convergencia cuadrática del método de Newton

Sea $f \in C^2[a,b]$, $f(\bar{x}) = 0$ y x_n una sucesión convergente a \bar{x} generada con el método de Newton. Tenemos:

$$0 = f(x_n) + (x_{n+1} - x_n) \cdot f'(x_n)$$

$$0 = f(\bar{x}) = f(x_n) + (\bar{x} - x_n) \cdot f'(x_n) + \frac{(x - x_n)^2}{2} f''(\xi)$$

Restando se obtiene:

$$|x_{n+1} - \bar{x}| \cdot |f'(x_n)| = \left| \frac{f''(\xi)}{2} \right| |x_n - \bar{x}|^2$$

Si $x_n \to \bar{x}$, entonces $\xi \to \bar{x}$ y tenemos:

$$|x_{n+1} - \bar{x}| \approx \left| \frac{f''(\bar{x})}{2 \cdot |f'(\bar{x})|} \right| |x_n - \bar{x}|^2$$

Ejercicios

Aplique el método de Newton para obtener soluciones con una exactitud de 10^{-5} , use la regla de Fourier para determinar el punto inicial x_0

- $x^3 2x^2 5 = 0$, $x \in [1, 4]$.
- $x 0.8 0.2 \sin(x) = 0$, $x \in [0, \frac{\pi}{2}]$.
- ln(x-1) + cos(x-1) = 0, $x \in [1.3, 2]$.