# VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta informačních technologií



Databázové systémy 2019/2020

Dokumentace projektu

Zadání č. 62 – Antidopingová agentura

Petr Mičulek (xmicul08) Daniel Jacko (xjacko04)

## Zadání

Po nedávném rozruchu ve světě sportu se rozhodla antidopingová agentura změnit svůj interní informační systém a vás na to najala. Pro agenturu pracují dopingoví komisaři, kteří budou mít možnost zadávat neohlášené kontroly sportovců na vybrané látky v určený čas a místo konání. IS těsně před konáním kontroly odešle sportovci upozornění. U sportovce se evidují všechny jeho osobní informace včetně pohlaví a aktuálního místa pobytu a sport, který vykonává (může jich být více). V záznamu z dopingové kontroly se uvádí, jestli byl sportovec zastižen a jestli byla kontrola vykonána při soutěži (uvede se druh sportu) a nebo mimo soutěž. Také se uvádí, jestli byl povolen odklad (při postupu v soutěži, delším tréninku). Sportovec může mít povoleno užívat některé léky po určitou dobu z důvodu zranění. Je povinen uvést dopingovému komisaři látky, které jsou součástí těchto léků. Sportovci se odeberou vždy dva vzorky krve nebo moči (hlavní a kontrolní) označené číselným kódem. Tv se pak zapečetěné posílají do laboratoří s platnou akreditací. U laboratoří si mimo akreditace evidujeme jejich adresu a zaměstnance. Laboratorní pracovník pak doplní, jestli byl vzorek negativní, pozitivní nebo neprůkazný. Ve druhém případě zadají i o které zakázané látky se jednalo. U zakázaných látek se uvádí jejich název, popis, od kterého roku byly zakázány a jsou rozděleny do kategorií. Mimo soutěž se některé zakázané látky z kategorií stimulanty, narkotika, kanabinoidy... nekontrolují. U kontroly se bere v potaz i sport, který vykonává sportovec, tzn. např. automobilový jezdec při soutěži nesmí mít v krvi alkohol. Výsledek kontroly je neprodleně oznámen sportovci a ten následně může požádat o ověření kontrolního vzorku.

# Schéma databáze – ER diagram



### Generalizace/Specializace



Při tvorbe ER diagramu sme považovali za vhodné využít vztah generalizace u modelování entit, které představují povolání/roli osob. O všech osobách je uchovávána množina základních informací. Každá osoba má zároveň nějakou roli, kterou může být laboratorní pracovník, sportovec alebo komisař. Každá osoba v systému vždy vystupuje ve své jedné konkrétní roli, ačkoli návrh nebrání tomu, aby jedna osoba měla rolí více a mohla být zároveň komisařem i sportovcem.

(Situace, kdy by daná osoba - v roli komisaře - prováděla dopingovou kontrolu sama se sebou - v roli sportovce - jsme v implementaci neřešili. Považujeme to spíše za problém organizace práce na mezilidské úrovni.)

## Implementace 4. úlohy

## **Triggery**

Prvním implementovaným triggerem je doplnění primárního klíče pro řádek v tabulce address, pro případ, že by nebyl zadaný ručně.

Druhý a třetí trigger také slouží k validaci vstupních dat pro tabulku person. Druhý umožňuje zajistit, aby pro osobu vždy existoval alespoň nějaký způsob kontaktování – tedy telefonní číslo nebo email.

Třetí trigger validuje formát zadané emailové adresy pro lepší varování v případě nesprávně zadané adresy.

## **Procedury**

Implementované procedury demonstrují použití PL/SQL k získání bohatších informací z databáze.

currently\_in\_country\_percentage(country IN varchar2)

Tato procedura slouží k vypsání procent sportovců pobývajících aktuálně v zadané zemi (parametr country). Také demonstruje použití výjimky, kterou odchytí v případě, kdy celkový počet sportovců byl 0 a při výpočtu procent by došlo k dělení nulou.

Tato procedura slouží k vypsání seznamu sportovců, kteří aktuálně pobývají na jiné než domácí adrese.

### **Explain Plan**

Pro zjištění náročnosti operace select jsme si zvolili jednodušší dotaz, který spojuje informace ze dvou tabulek a jeho výsledkem je seznam dvojic (sport, počet sportovců).

| Id | Operation               | Name               | Rows | Bytes | Cost (%CPU) | Time     |
|----|-------------------------|--------------------|------|-------|-------------|----------|
| 0  | SELECT STATEMENT        |                    | 10   | 650   | 3 (34)      | 00:00:01 |
| 1  | HASH GROUP BY           |                    | 10   | 650   | 3 (34)      | 00:00:01 |
| 2  | INDEX FAST FULL<br>SCAN | SYS_C0015602<br>75 | 10   | 650   | 2 (0)       | 00:00:01 |

#### Index

Výše zmíněný dotaz není náročný, ale dá se znatelně optimalizovat použitím indexu nad tabulkou reprezentující vztah M:N mezi sportovcem a sportem. Došli jsme k závěru, že "sort group by nosort" je výhodnější, jelikož je využito "pipeliningu", zatímco u "hash group by" k tomu nedochází. Nedochází sice k využití "index fast full scan", ale ve výsledku jsme dosáhli nižší ceny.

| Id | Operation               | Name                 | Rows | Bytes | Cost (%CPU) | Time         |
|----|-------------------------|----------------------|------|-------|-------------|--------------|
| 0  | SELECT<br>STATEMENT     |                      | 10   | 650   | 1 (0)       | 00:00:0<br>1 |
| 1  | SORT GROUP BY<br>NOSORT |                      | 10   | 650   | 1 (0)       | 00:00:0<br>1 |
| 2  | INDEX FULL SCAN         | INDEX_ATHLETE_S PORT | 10   | 650   | 1 (0)       | 00:00:0<br>1 |

#### Materialized views

Byl vytvořen jeden materializovaný pohled pro propojení čísla vzorku a jména laboratoře, ve které je analyzován.

Options použíté u tohoto pohledu zajišťují, aby se dal používat pro urychlení často používaného dotazu. Proto je nutné, aby byl automaticky aktualizován v případě změn v původních tabulkách.

### Přístupová práva

Skript obsahuje příkazy pro přidělení všech práv kolegovi pro vývoj.

### Závěr

K vytváření skriptu jsme použili nástroj DataGreip od společnosti JetBrains, který je pro studenty k dispozici zdarma. Skript jsme testovali na školním serveru Oracle12c. Informace potřebné k úspěšnému vypracování projektu jsme získali z učební látky předmětu IDS, demonstračních cvičení, oficiální dokumentace Oracle Database a neoficiálních zdrojů jako StackOverflow a GitHub.