End Term Presentation of BTP project

Real Time Battery Monitoring System Using Machine Learning

Presented by

Tathya Bhatt – 191030011041 Gurpreet Singh - 191030012005

Under the guidance of

Dr. Jagat Jyoti Rath

Department of Mechanical and Aerospace Engineering
Institute of Infrastructure, Technology, Research and
Management

Table of contents

Introduction

02 Literature Review

O3 Problem Statement & Objective

Progress made so far

Circuit and Interface

Try Pitch

06 Data Collection

7 Result Analysis

Real-time monitoring

Error Analysis

Future Scope

Introduction

BMS Systems

- To track the use of energy inside a battery and to prevent the risk of damage.
- Sensing, Protection and Estimation
- Measuring the data, capturing and estimating the State of Charge and other metrics.
- Application in portable electronic devices

Fig 1 - BMS Working

Literature Review

Sr.No	Paper Title	Authors
1.	XGBoost: A Scalable Tree Boosting System (2016) <i>Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery</i> and Data Mining, 785–794	Chen, T. Guestrin, C.
2.	Prediction of soil water infiltration using multiple linear regression and random forest in a dry flood plain, eastern Iran. <i>CATENA</i> , <i>194</i> , 104715.(2020)	Pahlavan-Rad M. R. Dahmardeh K. Hadizadeh M., Keykha G. Mohammadnia N. Gangali M.Keikha M. Davatgar N.Brungard
3.	A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222.(2004).	Smola, A. J. Schölkopf, B.
4	Overview of machine learning approach for Lithium Ion Battery Remaining Useful Lifetime Prediction. Electronics	Si Siyu Jin Xin Siyu Xinroug Huang Shunli Wang Remus Tedorescu Daniel Ioan Stroe

Literature Review

Sr.No	Paper Title	Authors
5.	Stock price prediction using support vector regression on daily and up to the minute prices. <i>The Journal of Finance and Data Science</i> , 4(3), 183–201.(2018).	Henrique, B. M. Sobreiro, V. A. Kimura, H.
6.	Decision tree methods: applications for classification and prediction. Shanghai Archives of Psychiatry	Ying LU Yan-yan Song
7.	Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 53 (2021)	Alzubaidi, L. Zhang, J. Humaidi, A.J. et al.
8.	Predicting the current and future state of the battery using data driven machine learning Natural Machine Intelligence	Man-Fai Ng Jin Zhao Qingyu Yan Gareth Conduit Zhi Wei Seh

Literature Review

Sr.No	Paper Title	Authors
9.	A Guide to Lithium Polymer Batteries for Drones Article – Tyro Robotics	Lauren Nagel
10.	Battery Management System : Hardware Concepts – An Overview Applied Sciences MDPI (Page 2-14)	Markus Lelie Thomas Braun Marcus Knips Hannes Nordmann Florian Ringbeck Hendrick Zappen Dirk Uwe Sauer
11.	Design a Battery Monitoring System for Lead-Acid Battery International Journal of Creative Research Thoughts (IJCRT) (Page 302-310)	Niraj Agarwal Phulchand Saraswati Ashish Malik Yogesh Bateshwar
12.	Machine Learning Approaches in Battery Management Systems: State of the Art: Remaining useful life and fault detection IEEE Explore (Page 63-64)	Ardeshiri, R. R., Balagopal, B., Al-Sabah, A., Ma, C., Chow, MY

Problem Statement

- Current methods rely on complex circuitory and techniques to measure and calculate charge and health of the battery.
- Most techniques neglect the temperature of the battery.
- Hysteresis reduces the accuracy in the methods like Coulimb Counting, Voltage Acquisition.
- Battery aging is not taken into account.

Objective

- Using data-driven approach for more efficient and accurate prediction
- Battery temperature to be considered.
- Making the BMS Module using sensor and microcontrollers.
- Comprehensive analysis of different regression algorithms to find the suitable one.
- Real-time implementation on self made hardware circuit.

Progress (7th Sem)

- Understood the working of a BMS System.
- Choose necessary sensors and hardware required for data acquisition.
- Decided the training ratios.
- Performed the initial algorithm analysis with
 Ordinal Least Square Regression, Lasso
 Regression and Ridge Rigression.
- Evaluation using R-Squared Metric.
- Pretty Similar Results

Fig 2 - Three accuracies

Progress (8th Mid Sem)

- Updated Dataset with higher datapoints and non linear data
- 9 algorithms were taken into consideration.
- Comprehensive analysis of these algorithms on the dataset was carried.
- Found **best training ratio**, added more features and **three metric evaluation**.
- Execution time was studied for the shortlisted algorithms
- Xtreme Gradient Boosting provided the accurate result compared to other algorithsm

Fig 3 - MAE at 80:20 Ratio

Fig 5 - Execution time for three algorithms

Fig 4 - RMSE at 80:20 Ratio

Fig 6 - Feature Correlation Map

Circuit Diagram

Fig 11 - BMS Circuit Diagram

Experimental Module

Data Collection

- Performed these condition while collecting data
 - Take Off (50Secs)
 - Cruise (Rest)
 - Landing (50Secs)
- **Tested** the collected data
- Ran for two and three motors to check the non linearity
- Three motor data collection was done for more iterations
- At the noted time and varying speeds (Low, Meduim and High)

Results (0.05 SD)

- To take the dynamic condition, we added three types of noise.
- Gaussian Noise at 0.025SD, 0.0125 SD, and 0.05 SD.
- Random Forest, XGBoost and DNN were good performing models

Fig 9- MAE at 0.05 SD Noise

Results (0.025 SD)

- To take the dynamic condition, we added three types of noise.
- Gaussian Noise at 0.025SD, 0.0125 SD, and 0.05 SD.
- Random Forest, XGBoost and DNN were good performing models

Fig 8- MAE at 0.025 SD Noise

Results (0.0125 SD)

- To take the **dynamic** condition, we added three types of noise.
- Gaussian Noise at 0.025SD, 0.0125 SD, and 0.05 SD.
- MAE for OLS, Decision Tree and Random Forest were close to 0.
- The 0.0125 SD showed great accuracy compared to others

Fig 7 - MAE at 0.0125 SD Noise

Results (Time Analysis)

- Execution time analysis was performed.
- Based on this, it was concluded that for the fast prediction without compromising the results, XGBoost was perfect for this scenario
- XGBoost 0.05 Secs
- Ran Forest 0.5Secs
- DNN Around 3.5 Secs

Fig 10 - Execution time of three algorithms

Real-time Monitoring

Concept

- Continuous & up-to-date information
- Data collection & Analyzed Real-time
- Raspberry Pi's **GPIO Pin Layout**
- Pi uses an external ADC
- Communication via I2C
- Connected as
 - VDD 5V
 - GND Gnd
 - SCL GPIO 3
 - SDA GPIO 2

Fig 12 - Raspberry Pi GPIO

Raspberry Pi

Fig 13 - Pi with ADS1115

Prediction Results

- Positive results were seen for the predictions
- Collected SOC Data for this three conditions for analysis of the error

- Real-time test for three conditions
 - **High Speed** Predictions
 - **Cruise Speed** Predictions
 - Variable Speed Predictions

Fig 14 - Predicted and Real SOC on three motors

- Fig15 shows the error of output for variable condition
- As real SOC decreases the error increases.
- An error range of **4**% to **70**% is observed from maximum charging to lower charging levels

Fig 15 - Predicted and Real SOC on three motors at varied speed condition

- Similar case with cruise condition
- As real SOC decreases the error increases.
- An error range of 5% to 70% is observed from maximum charging to lower charging levels

Fig 16 - Predicted and Real SOC on three motors at Cruise speed condition

High Speed Condition

- With high speed condition, the error is comparatively quite minimal.
- As real SOC decreases the error increases.
- An error range of 1% to 30% is observed

Fig 17- Predicted and Real SOC on three motors at High speed condition

- Error increases with lower percentage of battery
- Three conditions' error for an entire discharge cycle
- All the conditions show the same pattern

Fig 18 - Error comparison of the three condition predictions

Conclusions

A thorough analysis of the results revealed the **XGBoost algorithm** to be suitable.

Predictions were **accurate** at **higher charging** levels but inaccurate at lower levels.

Robust BMS Module was made

It was observed that **heat is generated** from the components used in this setup

Optimized prediction time of 40Secs

To use **4S and 2S** batteries more effectively, the current system needs to **expand** its dataset.

Future Improvements

Towards better & efficient system.

✓ Heat Sink inside the BMS

✓ High Quality sensors for accurate measurements

✓ Increased set of data for real-time scenarios

✓ More data collection for 2S and 4S battery for versatile use

References

- 1. Vilsen, S. B., & Stroe, D.-I. (2021). Battery state-of-health modelling by multiple linear regression. *Journal of Cleaner Production*, 290, 125700. https://doi.org/10.1016/j.jclepro.2020.125700
- 2. Yang, H., Cao, Y., Xie, H., Shao, S., Zhao, J., Gao, T., Zhang, J., & Zhang, B. (2020). Lithium-ion Battery Life Cycle Prediction with Deep Learning Regression Model. 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), 3346–3351. https://doi.org/10.1109/APEC39645.2020.9124049
- 3. Chen, T., & Guestrin, C. (2016). XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
- 4. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. *The Annals of Statistics*, 29(5). https://doi.org/10.1214/aos/1013203451
- 5. Pahlavan-Rad, M. R., Dahmardeh, K., Hadizadeh, M., Keykha, G., Mohammadnia, N., Gangali, M., Keikha, M., Davatgar, N., & Brungard, C. (2020). Prediction of soil water infiltration using multiple linear regression and random forest in a dry flood plain, eastern Iran. *CATENA*, 194, 104715. https://doi.org/10.1016/j.catena.2020.104715
- 6. Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
- 7. Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2018). Stock price prediction using support vector regression on daily and up to the minute prices. *The Journal of Finance and Data Science*, 4(3), 183–201. https://doi.org/10.1016/j.jfds.2018.04.003
- 8. Yang, L., Wu, H., Jin, X., Zheng, P., Hu, S., Xu, X., Yu, W., & Yan, J. (2020). Study of cardiovascular disease prediction model based on random forest in eastern China. *Scientific Reports*, 10(1), 5245. https://doi.org/10.1038/s41598-020-62133-5

Thank you

