2)

http://www.akubihar.com

Code: 103202

B.Tech 2nd Semester Exam., 2019

MATHEMATICS—II

(Linear Algebra, Transform Calculus and Numerical Method)

(New Course)

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are MINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- Choose the correct answer (any seven): 2×7=14
 - If A is a 3-rowed square matrix such that |A|=2, then $|adj\{adj(adjA^2)\}|$ is equal to
 - (f) 24

(ii) 2^8

- (jii) 2¹⁶
- (iv) None of the above

http://www.akubihar.com

http://www.akubihar.com

- If 3, -2 are the eigenvalues of a nonsingular matrix A and |A| = 4, then eigenvalues of adj A are
 - (i) $\frac{3}{4}$, $-\frac{1}{2}$
 - (ii) $\frac{4}{3}$, -2
 - (jii) 12, -8
 - (iv) None of the above
- Let A be a skew-symmetric matrix of order n, then

$$(i)$$
 $|A| = 0$, if n is even

- (ii) |A| = 0, if n is odd
- (iii) |A| = 0 for all $n \in N$
- (iv) $|A| \neq 0$, always
- If A is non-zero column matrix of the type $n \times 1$ and B is non-zero row matrix of the type $1 \times n$, then $\rho(AB)$ is
 - (i) 0
 - (ii) 1
 - (iii) n
 - (iv) None of the above

AK9/689

(Turn Over) http://www.akubihar.com AK9/689

In regula-falsi method, the first approxi-

- mation is given by
 - $(i) x_1 = \frac{af(b) bf(a)}{f(b) f(a)}$
 - (ii) $x_1 = \frac{bf(b) af(a)}{f(b) f(a)}$
 - $f(a) = \frac{bf(a) + af(b)}{f(a) f(b)}$
 - (iv) $x_1 = \frac{af(a) bf(b)}{f(a) f(b)}$
- While evaluating the definite integral by trapezoidal rule, the accuracy can be increased by taking
 - (i) large number of sub-intervals
 - (ii) even number of sub-intervals
 - (iii) h = 4
 - (iv) a multiple of 3
- Various types of Runge-Kutta methods are classified according to their
 - (i) degree
 - ß) order
 - (iii) rank
 - (iv) Both (i) and (ii)

http://www.akubihar.com

- (h) The value of $L\left\{\frac{\cos 10t}{t}\right\}$ is
 - (i) 0
 - (ii) 1
 - (iii) 2
 - Does not exist
- Laplace transform of unit step function is

http://www.akubihar.com

- Which function has Laplace transform even it is not piecewise continuous in the range?

 - (iv) All of the above

- **2.** (a,
- (i) no solution, (ii) unique solution and (iii) infinite number of solution.

7

http://www.akubihar.com

http://www.akubihar.com

(b) Find the eigenvalues and eigenvectors of the matrix

(5)

Investigate for what value of λ and μ

do the system of equations x+y+z=6,

x+2y+3z=10 and $x+2y+\lambda z=\mu$ have

$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

(a) Verify Cayley-Hamilton theorem for the

$$A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Also obtain (i) A^{-1} , (ii) eigenvalues of A and A^{2} , and (iii) spectral radius of A.

(b) Diagonalize the matrix

matrix

$$A = \begin{bmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{bmatrix}$$

by means of an orthogonal transformation. (b) Show that the following two sequences, both have convergence of the second order with the same limit \(\frac{a}{a}\):

$$x_{n-1} = \frac{1}{2}x_n \left(1 + \frac{1}{x_n^2}\right)$$
 and $x_{n-1} = \frac{1}{2}x_n \left(3 - \frac{x_n^2}{a}\right)$

- 5. (a) Derive Newton's forward interpolation formula. http://www.akubihar.com
 - (b) Find the value of cos51°43' by Gauss's backward interpolation formula. Given that

x	50*	51*	52*	53*	54*
cos x	0-6428	0-6293	0-6157	0.6018	0.5878

6. (a) Solve the differential equation $\frac{dy}{dx} = y - x^2 \text{ by Milne's method and compute } y \text{ at } x = 0.80. \text{ Given that}$

x	0-0	0.2	0-4	0.6
y	1	1-12186	1.46820	1.73790

J

6

8

7

(b) Using Adams-Moulton-Bashforth method, find y(1.4). Given

(7)

$$\frac{dy}{dx} = x^2(1+y), \ y(1) = 1, \ y(1\cdot 1) = 1\cdot 233,$$
$$y(1\cdot 2) = 1\cdot 548, \ y(1\cdot 3) = 1\cdot 979$$

- 7. (a) Solve $u_{xx} = u_t$ in 0 < x < 2, t > 0, u(0, t) = u(2, t) = 0, t > 0 and $u(x, 0) = \sin(\pi, x/2)$, $0 \le x \le 2$ using $\Delta x = 0.5$, $\Delta t = 0.25$ for one time step by Crank-Nicolson implicit finite difference method.
 - (b) Write an implicit method for solving the one-dimensional wave equation $u_{tt} = c^2 u_{xx}$, $0 \le x \le l$, t > 0.
- 8. (a) Evaluate

$$\int_0^\infty \left\{ \cos t \cdot \delta \left(t - \frac{\pi}{4} \right) \right\} dt$$

by using Laplace transform.

- (b) Find the Fourier transform of the function $f(t) = e^{-a|t|}$, $-\infty < t < \infty$, a > 0.
- 9. (a) Find the inverse Laplace transform of

$$\tan^{-1}\!\!\left(\frac{2}{s^2}\right)$$

(Turn Over) http://www.akubihar.com

http://www.akubihar.com

10

7

http://www.akubihar.com

(b) Solve the given partial differential equation by Laplace transform:

$$x\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = xt$$
, if $u(x, 0) = 0$, $u(0, t) = t$

...

http://www.akubihar.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भजे और 10 रुपये पार्ये, Paytm or Google Pay से

AK9-3970/689

Code: 103202 http://www.akubihar.com

8