Automates, algèbre, applications - AAA

Uli Fahrenberg Sven Dziadek Philipp Schlehuber Adrien Pommellet Etienne Renault

EPITA

S6 2022

Foreword

•0000

Program of the Course

CM 1 : Weighted automata	5 May
TD : Weighted automata	12 May
O CM 2: LTL model checking	12 May
$lacktriangle$ CM 3 : ω -Automata	19 May
o DM	
o TP : ω -Automata	2 June
CM 4 : Automata learning	16 June

Program of the Course

CM 1 : Weighted automata	5 May
TD : Weighted automata	12 May
CM 2 : LTL model checking	12 May
o CM 3 : ω -Automata	19 May
o DM	
o TP : ω -Automata	2 June
CM 4 : Automata learning	16 June

CM 4: Active Learning of Automata

- Foreword
- A Theoretical Active Learning Framework
- The L* Algorithm
- 4 Further Optimizations

Verification

- Model a program as an automaton M.
- Model a specification as a LTL formula φ .
- Check if $\mathcal{M} \models \varphi$.

Verification

- Model a program as an automaton \mathcal{M} .
- Model a specification as a LTL formula φ .
- Check if $\mathcal{M} \models \varphi$.

Synthesis

- Consider a LTL specification φ .
- Compute an automaton \mathcal{M} such that $\mathcal{M} \models \varphi$.
- Design a program based on M.

Verification

- Model a program as an automaton \mathcal{M} .
- Model a specification as a LTL formula φ .
- Check if $\mathcal{M} \models \varphi$.

Synthesis

- Consider a LTL specification φ .
- Compute an automaton \mathcal{M} such that $\mathcal{M} \models \varphi$.
- Design a program based on M.

Active learning

- Consider a program \mathcal{P} .
- Submit various queries to \mathcal{P} .
- Find an automaton ${\cal M}$ that models ${\cal P}.$

Verification

- Model a program as an automaton \mathcal{M} .
- Model a specification as a LTL formula φ .
- Check if $\mathcal{M} \models \varphi$.

Synthesis

- Consider a LTL specification φ .
- Compute an automaton \mathcal{M} such that $\mathcal{M} \models \varphi$.
- Design a program based on M.

Active learning

- Consider a program \mathcal{P} .
- Submit various queries to \mathcal{P} .
- ullet Find an automaton ${\cal M}$ that models ${\cal P}.$

Why Active Learning?

 Writing complex specifications is hard work; formalizing them using LTL makes it even harder for the uninitiated.

Why Active Learning?

- Writing complex specifications is hard work; formalizing them using LTL makes it even harder for the uninitiated.
- Understanding black box systems by intuiting rules that determine their outputs.

Why Active Learning?

- Writing complex specifications is hard work; formalizing them using LTL makes it even harder for the uninitiated.
- Understanding black box systems by intuiting rules that determine their outputs.
- A common pattern: a person asking questions, and an 'expert' (human or machine) that can answer them.

A Theoretical Active Learning Framework

Learning Languages

Consider a (possibly infinite) language $L \subseteq \Sigma^*$ of finite words on Σ .

Learning Languages

Consider a (possibly infinite) language $L \subseteq \Sigma^*$ of finite words on Σ .

A student

- Knows nothing of L (yet!).
- Wants to find a model (which type?) \mathcal{M} such that $\mathcal{L}(\mathcal{M}) = L$.

Learning Languages

Consider a (possibly infinite) language $L \subseteq \Sigma^*$ of finite words on Σ .

A student

- Knows nothing of L (yet!).
- Wants to find a model (which type?) \mathcal{M} such that $\mathcal{L}(\mathcal{M}) = L$.

A teacher

- Knows L.
- Can answer various types of queries on L, but can't explicitly give L.

Membership Queries

The student can submit membership queries.

Membership Queries

The student can submit membership queries.

Membership Queries

The student can submit membership queries.

These queries can be answered by merely running the black box.

Equivalence Queries

The student can also submit equivalence queries.

Equivalence Queries

The student can also submit equivalence queries.

Equivalence Queries

The student can also submit equivalence queries.

These queries are complex to answer (if it is even possible) and should be used conservatively.

A Reminder on Deterministic Finite Automata

Deterministic, complete finite automaton

A DFA is a 5-uplet $A = \langle \Sigma, Q, q_0, Q, \delta \rangle$ where:

- Σ is the alphabet,
- Q a finite set of states,
- $q_0 \in Q$ a subset of initial states,
- $F \subseteq Q$ a set of accepting states,
- $\delta: Q \times \Sigma \mapsto Q$ the transition relation.

• What can we learn about A, using nothing but membership queries?

- What can we learn about A, using nothing but membership queries?
- Note that states are being given arbitrary names.

- What can we learn about A, using nothing but membership queries?
- Note that states are being given arbitrary names.
- We could instead label them according to their path from the initial state.

- What can we learn about A, using nothing but membership queries?
- Note that states are being given arbitrary names.
- We could instead label them according to their path from the initial state.
- But there may be more than one such path.

• Assume that the teacher knows $\mathcal{L}(A)$ but we don't.

- Assume that the teacher knows $\mathcal{L}(\mathcal{A})$ but we don't.
- Note that bb is accepted but ba isn't.

- Assume that the teacher knows $\mathcal{L}(A)$ but we don't.
- Note that bb is accepted but ba isn't.
- Thus, they cannot lead to the same state.

- Assume that the teacher knows $\mathcal{L}(A)$ but we don't.
- Note that bb is accepted but ba isn't.
- Thus, they cannot lead to the same state.
- Membership queries thus allow us to infer information on states.

Indistinguishable States

Indinstinguishable states

Two states q and q' are said to be indistinguishable if they accept the same language (also written $\mathcal{L}_q(\mathcal{A}) = \mathcal{L}_{q'}(\mathcal{A})$).

We then write $q \equiv_{\mathcal{A}} q'$.

Indistinguishable States

Indinstinguishable states

Two states q and q' are said to be indistinguishable if they accept the same language (also written $\mathcal{L}_q(\mathcal{A}) = \mathcal{L}_{q'}(\mathcal{A})$).

We then write $q \equiv_{\mathcal{A}} q'$.

Indistinguishable States

Indinstinguishable states

Two states q and q' are said to be indistinguishable if they accept the same language (also written $\mathcal{L}_q(\mathcal{A}) = \mathcal{L}_{q'}(\mathcal{A})$).

We then write $q \equiv_{\mathcal{A}} q'$.

Here, $q_1 \equiv_{\mathcal{A}} q_2$ and $q_2 \equiv_{\mathcal{A}} q_3$.

A Minimal DFA

A Minimal DFA

By merging indistinguishable states, we obtain an equivalent, minimal DFA (remember Moore's algorithm).

• Formally, $\equiv_{\mathcal{A}}$ is an equivalence relation on Q.

- Formally, $\equiv_{\mathcal{A}}$ is an equivalence relation on Q.
- We partition Q according to its equivalence classes.

- Formally, $\equiv_{\mathcal{A}}$ is an equivalence relation on Q.
- We partition Q according to its equivalence classes.
- We then define an equivalent automaton whose set of states is the quotient space $Q/\equiv_{\mathcal{A}}$.

- Formally, $\equiv_{\mathcal{A}}$ is an equivalence relation on Q.
- We partition Q according to its equivalence classes.
- We then define an equivalent automaton whose set of states is the quotient space $Q/\equiv_{\mathcal{A}}$.

As a well-known consequence (already discussed in THLR):

A consequence of Myhill-Nerode's Theorem

Given a rational language L, there exists an unique (graph isomorphism notwithstanding), minimal (in terms of states) DFA \mathcal{M} such that $\mathcal{L}(\mathcal{M}) = L$, also known as the canonical DFA of L.

Distinguishable states

Two states q and q' are said to be distinguishable if there exists a word w such that q accepts w but not q' or q' accepts w but not q. We then say that w distinguishes q and q'.

Distinguishable states

Two states q and q' are said to be distinguishable if there exists a word w such that q accepts w but not q' or q' accepts w but not q. We then say that w distinguishes q and q'.

As a consequence:

A property of the canonical DFA

All the states of a canonical DFA are distinguishable.

• Note that q_0 and q here are distinguishable: the former refuses the word b, the latter accepts.

- Note that q_0 and q here are distinguishable: the former refuses the word b, the latter accepts.
- As a consequence, the automaton refuses $\varepsilon \cdot b$ and accepts $a \cdot b$.

- Note that q_0 and q here are distinguishable: the former refuses the word b, the latter accepts.
- As a consequence, the automaton refuses $\varepsilon \cdot b$ and accepts $a \cdot b$.
- More generally, if we know that u (resp. v) leads to q (resp. q'), then the membership queries $u \cdot w$ and $v \cdot w$ may allow us to prove that w distinguishes q and q' if they yield different results.

- Note that q_0 and q here are distinguishable: the former refuses the word b, the latter accepts.
- As a consequence, the automaton refuses $\varepsilon \cdot b$ and accepts $a \cdot b$.
- More generally, if we know that u (resp. v) leads to q (resp. q'), then the membership queries $u \cdot w$ and $v \cdot w$ may allow us to prove that w distinguishes q and q' if they yield different results.
- In particular, $w = \varepsilon$ can distinguish final and non-final states.

Extension to Languages

Indistiguishable words

Let $L \subseteq \Sigma^*$ be a language. Two words $u, v \in \Sigma^*$ are said to be indistinguishable if $\forall w \in \Sigma^*$, $u \cdot w \in L \iff v \cdot w \in L$. We then write $u \equiv_L v$, and \equiv_L is an equivalence relation.

Extension to Languages

Indistiguishable words

Let $L \subseteq \Sigma^*$ be a language. Two words $u, v \in \Sigma^*$ are said to be indistinguishable if $\forall w \in \Sigma^*$, $u \cdot w \in L \iff v \cdot w \in L$. We then write $u \equiv_L v$, and \equiv_L is an equivalence relation.

Myhill-Nerode's theorem

A language $L \subseteq \Sigma^*$ is rational if and only if its quotient space Σ^*/\equiv_L is finite.

Extension to Languages

Indistiguishable words

Let $L \subseteq \Sigma^*$ be a language. Two words $u, v \in \Sigma^*$ are said to be indistinguishable if $\forall w \in \Sigma^*$, $u \cdot w \in L \iff v \cdot w \in L$. We then write $u \equiv_L v$, and \equiv_L is an equivalence relation.

Myhill-Nerode's theorem

A language $L \subseteq \Sigma^*$ is rational if and only if its quotient space Σ^*/\equiv_L is finite.

Intuitively, assuming L is rational, each class in Σ^*/\equiv_L is equal to the set of prefixes leading to a given state in the canonical DFA of L. The number of classes is therefore equal to the size of the canonical DFA.

Our Conclusion So Far

- We noted that we can finitely partition Σ^* according to \equiv_L : we regroup indistinguishable worlds in classes.
- Moreover, two words belonging to different classes are always distinguishable, hence admit a distinguishing word.
- We therefore expressed syntactic properties (tied to a given DFA representation) in a more generic manner that only depends on the language itself.

Our Current Goal

We want to design an algorithm that computes the canonical DFA of an unknown rational language L while only relying on membership and equivalence queries to a teacher that knows L.

To learn $L = \mathcal{L}(A)$, we will maintain two sets:

To learn $L = \mathcal{L}(A)$, we will maintain two sets:

• A set of prefixes P that covers every single equivalence class of \equiv_L (i.e. visits every state of the canonical DFA \mathcal{A}) at least once.

To learn $L = \mathcal{L}(A)$, we will maintain two sets:

- A set of prefixes P that covers every single equivalence class of \equiv_L (i.e. visits every state of the canonical DFA \mathcal{A}) at least once.
- A set of suffixes S big enough to pairwise distinguish every pair of classes (i.e. pair of states of the canonical DFA A) of \equiv_L .

To learn $L = \mathcal{L}(A)$, we will maintain two sets:

- A set of prefixes P that covers every single equivalence class of \equiv_L (i.e. visits every state of the canonical DFA \mathcal{A}) at least once.
- A set of suffixes S big enough to pairwise distinguish every pair of classes (i.e. pair of states of the canonical DFA A) of \equiv_L .

Here, $P = \{\varepsilon, a, aa, ab\}$ and $S = \{a, b\}$ match these criteria.

Distinguishing Words

Two prefixes in P may or may not lead to the same class (i.e. state).

Distinguishing Words

Two prefixes in P may or may not lead to the same class (i.e. state).

Assuming $S = \{s_1, ..., s_k\}$, we compute $\forall u \in P$ the following bit vector using only membership queries:

$$u_S = ((u \cdot s_1 \in L), \ldots, (u \cdot s_k \in L))$$

Distinguishing Words

Two prefixes in P may or may not lead to the same class (i.e. state).

$P \cdot S$	а	b
ε	0	0
а	0	1
aa	0	0
ab	1	1

Assuming $S = \{s_1, ..., s_k\}$, we compute $\forall u \in P$ the following bit vector using only membership queries:

$$u_S = ((u \cdot s_1 \in L), \ldots, (u \cdot s_k \in L))$$

A New Equivalence Relation

$P \cdot S$	а	b
ε	0	0
а	0	1
aa	0	0
ab	1	1

Here, $\varepsilon_S \neq a_S$, thus $\varepsilon \not\equiv_L a$ as at least one word in S distinguishes them. Also note that $\varepsilon_S = aa_S$, but does it imply $\varepsilon \equiv_L aa$?

A New Equivalence Relation

$P \cdot S$	a	b
ε	0	0
а	0	1
aa	0	0
ab	1	1

Here, $\varepsilon_S \neq a_S$, thus $\varepsilon \not\equiv_L a$ as at least one word in S distinguishes them. Also note that $\varepsilon_S = aa_S$, but does it imply $\varepsilon \equiv_L aa$?

• We define a new equivalence relation \equiv_L^S on P:

$$u \equiv_L^S v \iff u_S = v_S$$

• Note that \equiv_L^S under-approximates \equiv_L on P:

$$u \not\equiv_L^S v \implies u \not\equiv_L v$$

Approximating Indistinguishability

Here is an important consequence of this under-approximation:

Theorem

The size of the quotient space P/\equiv_L^S is smaller than or equal to the size of Σ^*/\equiv_L . If it is equal, we say that (P,S) represents L.

Approximating Indistinguishability

Here is an important consequence of this under-approximation:

Theorem

The size of the quotient space P/\equiv_L^S is smaller than or equal to the size of Σ^*/\equiv_L . If it is equal, we say that (P,S) represents L.

Its proof is obvious: if Σ^*/\equiv_L is of size n, there can't be more than n pairwise distinguishable elements in $P\subseteq\Sigma^*$.

Approximating Indistinguishability

Here is an important consequence of this under-approximation:

Theorem

The size of the quotient space P/\equiv_L^S is smaller than or equal to the size of Σ^*/\equiv_L . If it is equal, we say that (P,S) represents L.

Its proof is obvious: if Σ^*/\equiv_L is of size n, there can't be more than n pairwise distinguishable elements in $P\subseteq\Sigma^*$.

As a consequence, our algorithm will rely on the following intuition: we will make (P, S) grow until we can design a model \mathcal{M} of L.

How can we build a DFA \mathcal{M} such that (P, S) represents $\mathcal{L}(\mathcal{M})$? States. The equivalence classes in P/\equiv_L^S .

How can we build a DFA \mathcal{M} such that (P, S) represents $\mathcal{L}(\mathcal{M})$?

States. The equivalence classes in P/\equiv_L^S .

Initial state. The equivalence class $[\varepsilon]_{\equiv_{L}^{S}}$, as the prefix ε naturally leads to the initial state of any DFA. Thus, we must ensure that $\varepsilon \in P$.

- How can we build a DFA \mathcal{M} such that (P, S) represents $\mathcal{L}(\mathcal{M})$?
 - States. The equivalence classes in P/\equiv_L^S .
- Initial state. The equivalence class $[\varepsilon]_{\equiv^S_L}$, as the prefix ε naturally leads to the initial state of any DFA. Thus, we must ensure that $\varepsilon \in P$.
 - Final state. Every $[u]_{\equiv_{L}^{S}}$ for $u \in L$; this class accepts the word ε . Thus, we must ensure that $\varepsilon \in S$.

- How can we build a DFA \mathcal{M} such that (P, S) represents $\mathcal{L}(\mathcal{M})$?
 - States. The equivalence classes in P/\equiv_L^S .
- Initial state. The equivalence class $[\varepsilon]_{\equiv_L^S}$, as the prefix ε naturally leads to the initial state of any DFA. Thus, we must ensure that $\varepsilon \in P$.
- Final state. Every $[u]_{\equiv_L^S}$ for $u \in L$; this class accepts the word ε . Thus, we must ensure that $\varepsilon \in S$.
- Transitions. The successor of a state $[u]_{\equiv_L^S}$ according to letter $a \in \Sigma$ must naturally be $[u \cdot a]_{\equiv_L^S}$. Thus, we must also compute the bit vector $(u \cdot a)_S$ for any $u \in P$ and $a \in \Sigma$.

A Full Table

$P \cdot S$	ε	a	b
arepsilon	0	0	0
а	0	0	1
aa	0	0	0
ab	1	1	1
$P \cdot \Sigma \cdot S$	ε	a	b
$\varepsilon \cdot a$	0	0	1
$arepsilon \cdot oldsymbol{b}$	0	0	1
a·a	0	0	0
$a \cdot b$	1	1	1
aa · a	0	0	1
aa · b	0	0	1
$ab \cdot a$	1	1	1
$ab \cdot b$	1	1	1

Finding the Classes

$P \cdot S$	ε	a	b
arepsilon	0	0	0
a	0	0	1
aa	0	0	0
ab	1	1	1
$ extbf{\textit{P}} \cdot \Sigma \cdot extbf{\textit{S}}$	ε	a	b
$\varepsilon \cdot a$	0	0	1
$\varepsilon \cdot b$	0	0	1
a · a	0	0	0
a ⋅ b	1	1	1
aa · a	0	0	1
aa · b	0	0	1
ab · a	1	1	1
$ab \cdot b$	1	1	1

Finding the Classes

$P \cdot S$	ε	a	b
arepsilon	0	0	0
a	0	0	1
aa	0	0	0
ab	1	1	1
$ extbf{ extit{P}} \cdot \Sigma \cdot extbf{ extit{S}}$	ε	a	b
$\varepsilon \cdot a$	0	0	1
$\varepsilon \cdot b$	0	0	1
a · a	0	0	0
a ⋅ b	1	1	1
aa · a	0	0	1
aa ∙ b	0	0	1
ab · a	1	1	1
$ab \cdot b$	1	1	1

Three classes. $\{\varepsilon, aa\}, \{a\}, \{ab\}.$

Finding the Classes

$P \cdot S$	ε	а	b
arepsilon	0	0	0
а	0	0	1
aa	0	0	0
ab	1	1	1
$P \cdot \Sigma \cdot S$	ε	a	b
$\varepsilon \cdot a$	0	0	1
$\varepsilon \cdot b$	0	0	1
a·a	0	0	0
a · b	1	1	1
aa · a	0	0	1
aa · b	0	0	1
ab · a	1	1	1
$ab \cdot b$	1	1	1

```
Three classes. \{\varepsilon, aa\}, \{a\}, \{ab\}. Initial class. \{\varepsilon, aa\}.
```

Finding the Classes

$P \cdot S$	ε	a	b
arepsilon	0	0	0
a	0	0	1
aa	0	0	0
ab	1	1	1
$P \cdot \Sigma \cdot S$	ε	a	b
$\varepsilon \cdot a$	0	0	1
$\varepsilon \cdot b$	0	0	1
a · a	0	0	0
a ⋅ b	1	1	1
aa · a	0	0	1
aa ∙ b	0	0	1
ab · a	1	1	1
$ab \cdot b$	1	1	1

```
Three classes. \{\varepsilon, aa\}, \{a\}, \{ab\}. Initial class. \{\varepsilon, aa\}. Final class. \{ab\}.
```

Finding the Classes

$P \cdot S$	ε	а	b
arepsilon	0	0	0
а	0	0	1
aa	0	0	0
ab	1	1	1
$ extbf{ extit{P}} \cdot \Sigma \cdot extbf{ extit{S}}$	ε	a	b
$\varepsilon \cdot a$	0	0	1
$\varepsilon \cdot b$	0	0	1
a · a	0	0	0
a ⋅ b	1	1	1
aa · a	0	0	1
aa · b	0	0	1
ab · a	1	1	1
$ab \cdot b$	1	1	1

Three classes. $\{\varepsilon, aa\}$, $\{a\}$, $\{ab\}$. Initial class. $\{\varepsilon, aa\}$. Final class. $\{ab\}$.

A Correct Intuition

Our active learning algorithm will hinge on the following result:

Theorem

If (P, S) represents L, then $\mathcal{L}(\mathcal{M}) = L$, where \mathcal{M} is the DFA built previously using the \equiv_{L}^{S} relation.

A Correct Intuition

Our active learning algorithm will hinge on the following result:

Theorem

If (P, S) represents L, then $\mathcal{L}(\mathcal{M}) = L$, where \mathcal{M} is the DFA built previously using the \equiv_{L}^{S} relation.

The only step left is determining an iterative way to make P, S, and their matching table grow.

Closed Tables

 $\begin{array}{c|c} \boldsymbol{P} \cdot \boldsymbol{S} & \varepsilon \\ \hline \varepsilon & 0 \\ a & 0 \\ \boldsymbol{P} \cdot \boldsymbol{\Sigma} \cdot \boldsymbol{S} & \varepsilon \\ \hline \varepsilon \cdot a & 0 \\ \varepsilon \cdot b & 0 \\ a \cdot a & 0 \\ a \cdot b & 1 \\ \hline \end{array}$

• The table associated with (P, S) is closed if any equivalence class according to \equiv_L^S that appears in $P \cdot \Sigma$ also appears in P.

Closed Tables

$P \cdot S$	ε
ε	0
а	0
$P \cdot \Sigma \cdot S$	ε
$\varepsilon \cdot a$	0
$arepsilon \cdot oldsymbol{b}$	0
a·a	0
$a \cdot b$	1

- The table associated with (P, S) is closed if any equivalence class according to \equiv_L^S that appears in $P \cdot \Sigma$ also appears in P.
- Intuitively, it means the successors of P in $P \cdot \Sigma$ have already been explored.

Closed Tables

$P \cdot S$	ε
ε	0
a	0
$P \cdot \Sigma \cdot S$	ε
$\varepsilon \cdot a$	0
$arepsilon \cdot oldsymbol{b}$	0
a·a	0
$a \cdot b$	1

- The table associated with (P, S) is closed if any equivalence class according to \equiv_L^S that appears in $P \cdot \Sigma$ also appears in P.
- Intuitively, it means the successors of P in $P \cdot \Sigma$ have already been explored.
- Here, P clearly does not cover the class of [ab]_≡^S_L. To make it closed, we should therefore add ab to P.

Consistent Tables

$P \cdot S$	ε	a
$\overline{\varepsilon}$	0	0
а	0	0
ab	1	1
$P \cdot \Sigma \cdot S$	ε	a
$\varepsilon \cdot a$	0	0
$arepsilon \cdot oldsymbol{b}$	0	0
a·a	0	0
$a \cdot b$	1	1
$ab \cdot b$	1	1
$ab \cdot b$	1	1

• The table associated with (P, S) is consistent if $\forall u, v \in P$, $u \equiv_L^S v$ implies that $u \cdot a \equiv_L^S v \cdot a$ for all $a \in \Sigma$.

Consistent Tables

$P \cdot S$	ε	a
ε	0	0
а	0	0
ab	1	1
$P \cdot \Sigma \cdot S$	ε	а
$\varepsilon \cdot a$	0	0
$arepsilon \cdot oldsymbol{b}$	0	0
a·a	0	0
$a \cdot b$	1	1
$ab \cdot b$	1	1
$ab \cdot b$	1	1

- The table associated with (P, S) is consistent if $\forall u, v \in P$, $u \equiv_L^S v$ implies that $u \cdot a \equiv_L^S v \cdot a$ for all $a \in \Sigma$.
- Intuitively, it means the successors of two equivalent states are also equivalent.

Consistent Tables

$P \cdot S$	ε	а
arepsilon	0	0
а	0	0
ab	1	1
$ extbf{\textit{P}} \cdot \Sigma \cdot extbf{\textit{S}}$	ε	а
$\varepsilon \cdot a$	0	0
$arepsilon \cdot oldsymbol{b}$	0	0
a·a	0	0
$a \cdot b$	1	1
$ab \cdot b$	1	1
$ab \cdot b$	1	1

- The table associated with (P, S) is consistent if $\forall u, v \in P$, $u \equiv_L^S v$ implies that $u \cdot a \equiv_L^S v \cdot a$ for all $a \in \Sigma$.
- Intuitively, it means the successors of two equivalent states are also equivalent.
- Here, ε and a are equivalent but their successors according to a aren't. To make the table consistent, we should therefore add b to S.

Submitting Our Results to the Teacher

- If the table is closed and consistent, then we can build an automaton \mathcal{M} associated with the table and (P, S).
- If $\mathcal{L}(\mathcal{M}) \neq L$, then the teacher will at least provide a counter-example w.
- Adding w to P will ensure that our next attempt will not contradict it.
- More generally, we should add w and all its prefixes to P, to ensure every state visited by w in the canonical DFA of M is also covered by P.

The L* Algorithm At Last I

```
Data: two sets P, S \subseteq \Sigma^*, a teacher \mathcal{T}.
Result: a table T.
T \leftarrow \texttt{EmptyTable};
while T is not closed or not consistent do
     T \leftarrow AskTable(P, S, T); /* Use membership queries */
    if \exists u \in P, \exists a \in \Sigma such that \forall v \in P, (T[v] \neq T[u \cdot a]) then
    P \leftarrow P \cup \{u \cdot a\}:
                                                     /* Closure issue */
    end
    if \exists u, v \in P, \exists a \in \Sigma, \exists s \in S such that (T[u] = T[v]) but
      (T[u \cdot a][s] \neq T[v \cdot a][s]) then
     S \leftarrow S \cup \{a \cdot s\};
                                      /* Consistency issue */
    end
end
```

Algorithm 1: BuildTable(P, S, T)

The L* Algorithm At Last II

```
Data: a teacher \mathcal{T} knowing a rational language L.
Result: a minimal DFA \mathcal{M} such that \mathcal{L}(\mathcal{M}) = L.
P \leftarrow \{\varepsilon\}:
S \leftarrow \{\varepsilon\};
T \leftarrow \text{BuildTable}(P, S, T);
\mathcal{M} \leftarrow \text{BuildModel}(T);
while !EquivalenceQuery(\mathcal{M}, \mathcal{T}) do
     c \leftarrow \text{CounterExample}(\mathcal{M}, \mathcal{T});
     P \leftarrow P \cup Pref(c); /* Extending the prefixes */
    T \leftarrow \text{BuildTable}(P, S, T);
     \mathcal{M} \leftarrow \text{BuildModel}(T):
end
```

Algorithm 2: $L^*(\mathcal{T})$

An Example I

$P \cdot S$	ε
ε	0
$P \cdot \Sigma \cdot S$	ε
$\varepsilon \cdot a$	0
$arepsilon \cdot oldsymbol{b}$	0

An Example I

$$egin{array}{c|ccc} oldsymbol{P} \cdot oldsymbol{S} & arepsilon & arepsilon & 0 \ oldsymbol{P} \cdot oldsymbol{\Sigma} \cdot oldsymbol{S} & arepsilon & ar$$

An Example I

$P \cdot S$	ε
ε	0
$P \cdot \Sigma \cdot S$	ε
$\varepsilon \cdot a$	0
$arepsilon \cdot oldsymbol{b}$	0

The L* Algorithm

Not equivalent, counter-example ab:

An Example II

$egin{array}{cccc} arepsilon & 0 & & & & & & & & & & & & & & & & & $
$ \begin{array}{c c} ab & 1 \\ \textbf{\textit{P}} \cdot \boldsymbol{\Sigma} \cdot \textbf{\textit{S}} & \varepsilon \\ \hline \varepsilon \cdot a & 0 \\ \varepsilon \cdot b & 0 \\ a \cdot a & 0 \\ a \cdot b & 1 \\ ab \cdot a & 1 \\ \end{array} $
$egin{array}{c cccc} oldsymbol{P} \cdot oldsymbol{\Sigma} \cdot oldsymbol{S} & arepsilon & & & & & & & & & & & & & & & & & & &$
$egin{array}{c ccc} arepsilon\cdot a & 0 & & & & & & & & & & & & & & & & &$
$egin{array}{ccc} arepsilon \cdot b & 0 \ a \cdot a & 0 \ a \cdot b & 1 \ ab \cdot a & 1 \end{array}$
$egin{array}{cccc} a\cdot a & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$
$a \cdot b$ 1 $ab \cdot a$ 1
ab·a 1
$ab \cdot b$ 1

An Example II

$P \cdot S$	ε
arepsilon	0
a	0
ab	1
$ extbf{ extit{P}} \cdot \Sigma \cdot extbf{ extit{S}}$	ε
$\varepsilon \cdot a$	0
$arepsilon \cdot oldsymbol{b}$	0
a·a	0
$a \cdot b$	1
ab ∙ a	1
$ab \cdot b$	1

The table is not consistent: $a \equiv_{L}^{S} \varepsilon$ but $b \not\equiv_{L}^{S} ab$.

An Example II

$P \cdot S$	ε
arepsilon	0
а	0
ab	1
$P \cdot \Sigma \cdot S$	ε
$\varepsilon \cdot a$	0
$arepsilon \cdot oldsymbol{b}$	0
a·a	0
$a \cdot b$	1
$ab \cdot a$	1
$ab \cdot b$	1

The table is not consistent: $a \equiv_{L}^{S} \varepsilon$ but $b \not\equiv_{L}^{S} ab$.

Thus we add b to S.

An Example III

$P \cdot S$	ε	b
arepsilon	0	0
а	0	1
ab	1	0
$P \cdot \Sigma \cdot S$	ε	b
$\varepsilon \cdot a$	0	1
$arepsilon \cdot oldsymbol{b}$	0	1
a·a	0	0
$a \cdot b$	1	1
$ab \cdot a$	1	1
$ab \cdot b$	1	1

An Example III

$P \cdot S$	ε	b
arepsilon	0	0
а	0	1
ab	1	0
$ extbf{ extit{P}} \cdot \Sigma \cdot extbf{ extit{S}}$	ε	b
$\varepsilon \cdot a$	0	1
$arepsilon \cdot oldsymbol{b}$	0	1
a·a	0	0
$a \cdot b$	1	1
ab ∙ a	1	1
$ab \cdot b$	1	1

An Example III

$P \cdot S$	ε	b
arepsilon	0	0
а	0	1
ab	1	0
$P \cdot \Sigma \cdot S$	ε	b
$\varepsilon \cdot a$	0	1
$arepsilon \cdot oldsymbol{b}$	0	1
a·a	0	0
$a \cdot b$	1	1
ab ∙ a	1	1
$ab \cdot b$	1	1

Is equivalent to:

Do It Yourself

Foreword

Further Optimizations

Overloading the Table

$P \cdot S$	ε	Ь
ε	0	0
a	0	1
aa	0	0
ab	1	0
abb	1	0

 Note that P may contain redundant prefixes that already belong to an identified equivalence class.

Overloading the Table

$P \cdot S$	ε	b
ε	0	0
а	0	1
aa	0	0
ab	1	0
abb	1	0

- Note that P may contain redundant prefixes that already belong to an identified equivalence class.
- Closure checks do not add such prefixes, but counter-example handling does.

Handling Counter-Examples

• Note that the teacher \mathcal{T} must provide a counter-example, but its length is arbitrary.

Handling Counter-Examples

- Note that the teacher \mathcal{T} must provide a counter-example, but its length is arbitrary.
- The word ab is a valid counter-example, but so is $(aa)^{100}ab$.

Handling Counter-Examples

- Note that the teacher \mathcal{T} must provide a counter-example, but its length is arbitrary.
- The word ab is a valid counter-example, but so is $(aa)^{100}ab$.
- Since P is kept prefix-closed by design, by adding $Pref((aa)^{100}ab)$ to P, we add no less than 600 lines to the table, most of which will be useless.

Simpler Prefixes

• We only need exactly one representative in P of each equivalence class of \equiv_L to find its model.

Simpler Prefixes

- We only need exactly one representative in P of each equivalence class of \equiv_L to find its model.
- In that case, the table will always be consistent.

Simpler Prefixes

- We only need exactly one representative in P of each equivalence class of \equiv_L to find its model.
- In that case, the table will always be consistent.
- We thus want to improve our use of counter-examples.

Representatives of a State

• Assume that, for a given model \mathcal{M} , all its prefixes in P are distinguishable (hence, each equivalence class of \equiv_L has at most one representative in P).

Representatives of a State

- Assume that, for a given model \mathcal{M} , all its prefixes in P are distinguishable (hence, each equivalence class of \equiv_L has at most one representative in P).
- For any word $w \in \Sigma^*$, we note $[w]_{\mathcal{M}}$ the only (by design) prefix u in P such that u and w lead to the same state in \mathcal{M} .

Representatives of a State

- Assume that, for a given model \mathcal{M} , all its prefixes in P are distinguishable (hence, each equivalence class of \equiv_L has at most one representative in P).
- For any word $w \in \Sigma^*$, we note $[w]_{\mathcal{M}}$ the only (by design) prefix u in P such that u and w lead to the same state in \mathcal{M} .
- Here, $[ab]_{\mathcal{M}} = \varepsilon$ and $[a]_{\mathcal{M}} = a$.

An Important Property of Models

Theorem

Given a model \mathcal{M} , $u, v \in \Sigma^*$, and $x \in \Sigma$, if $\mathcal{L}(\mathcal{M}) = L$, then $[u]_{\mathcal{M}} \cdot x \cdot v \in L \iff [u \cdot x]_{\mathcal{M}} \cdot v \in L$.

An Important Property of Models

Theorem

Given a model \mathcal{M} , $u, v \in \Sigma^*$, and $x \in \Sigma$, if $\mathcal{L}(\mathcal{M}) = L$, then $[u]_{\mathcal{M}} \cdot x \cdot v \in L \iff [u \cdot x]_{\mathcal{M}} \cdot v \in L$.

The proof of this theorem is obvious: if u leads to a state q in \mathcal{M} , and $u \cdot x$ to a state q' that is the direct successor of q by x, then q must accept $x \cdot v$ if and only if q' accepts v.

An Important Property of Models

Theorem

Given a model \mathcal{M} , $u, v \in \Sigma^*$, and $x \in \Sigma$, if $\mathcal{L}(\mathcal{M}) = L$, then $[u]_{\mathcal{M}} \cdot x \cdot v \in L \iff [u \cdot x]_{\mathcal{M}} \cdot v \in L$.

The proof of this theorem is obvious: if u leads to a state q in \mathcal{M} , and $u \cdot x$ to a state q' that is the direct successor of q by x, then q must accept $x \cdot v$ if and only if q' accepts v.

Naturally, if $\mathcal{L}(\mathcal{M}) \neq L$, then counter-examples will violate this property.

Finding Discrepancies

• Consider the counter-example abab to the model \mathcal{M} (on the left) of L (on the right).

Finding Discrepancies

- Consider the counter-example abab to the model \mathcal{M} (on the left) of L (on the right).
- $[a \cdot b]_{\mathcal{M}} \cdot ab = \varepsilon \cdot ab = ab \notin L$, but $[a]_{\mathcal{M}} \cdot b \cdot ab = abab \in L$.

Finding Discrepancies

- Consider the counter-example abab to the model \mathcal{M} (on the left) of L (on the right).
- $[a \cdot b]_{\mathcal{M}} \cdot ab = \varepsilon \cdot ab = ab \notin L$, but $[a]_{\mathcal{M}} \cdot b \cdot ab = abab \in L$.
- Thus, the successor of the state $[\varepsilon]_{\equiv_L^S}$ containing ab cannot be the state $[a]_{\equiv_L^S}$.

Theorem

Given a model \mathcal{M} and a counter-example w proving that $\mathcal{L}(\mathcal{M}) \neq L$, there exist $u, v \in \Sigma^*$ and $x \in \Sigma$ such that $w = u \cdot a \cdot v$ and $[u]_{\mathcal{M}} \cdot x \cdot v \in L \iff [u \cdot x]_{\mathcal{M}} \cdot v \in L$.

Theorem

Given a model \mathcal{M} and a counter-example w proving that $\mathcal{L}(\mathcal{M}) \neq L$, there exist $u, v \in \Sigma^*$ and $x \in \Sigma$ such that $w = u \cdot a \cdot v$ and $[u]_{\mathcal{M}} \cdot x \cdot v \in L \iff [u \cdot x]_{\mathcal{M}} \cdot v \in L$.

• Given a counter-example of length n, we can find such a decomposition in at most $2 \times n$ membership requests.

Theorem

Given a model \mathcal{M} and a counter-example w proving that $\mathcal{L}(\mathcal{M}) \neq L$, there exist $u, v \in \Sigma^*$ and $x \in \Sigma$ such that $w = u \cdot a \cdot v$ and $[u]_{\mathcal{M}} \cdot x \cdot v \in L \iff [u \cdot x]_{\mathcal{M}} \cdot v \in L$.

- Given a counter-example of length n, we can find such a decomposition in at most $2 \times n$ membership requests.
- We then add v to the set S of suffixes, ensure the table is closed, then update the model \mathcal{M}' .

Theorem

Given a model \mathcal{M} and a counter-example w proving that $\mathcal{L}(\mathcal{M}) \neq L$, there exist $u, v \in \Sigma^*$ and $x \in \Sigma$ such that $w = u \cdot a \cdot v$ and $[u]_{\mathcal{M}} \cdot x \cdot v \in L \iff [u \cdot x]_{\mathcal{M}} \cdot v \in L$.

- Given a counter-example of length n, we can find such a decomposition in at most $2 \times n$ membership requests.
- We then add v to the set S of suffixes, ensure the table is closed, then update the model \mathcal{M}' .
- We keep applying this procedure until w is no longer a counter-example proving that $\mathcal{L}(\mathcal{M}) \neq L$.

Another Example I

$$egin{array}{c|c} oldsymbol{P} \cdot oldsymbol{S} & arepsilon & \ \hline arepsilon \cdot oldsymbol{\Sigma} \cdot oldsymbol{S} & arepsilon & \ \hline arepsilon \cdot a & 1 & \ arepsilon \cdot b & 1 & \ \hline \end{array}$$

Another Example I

$$\begin{array}{c|c} \boldsymbol{P} \cdot \boldsymbol{S} & \varepsilon \\ \hline \varepsilon & 0 \\ \boldsymbol{P} \cdot \boldsymbol{\Sigma} \cdot \boldsymbol{S} & \varepsilon \\ \hline \varepsilon \cdot \boldsymbol{a} & 1 \\ \varepsilon \cdot \boldsymbol{b} & 1 \end{array}$$

The table is not closed.

Foreword

$P \cdot S$	ε
arepsilon	0
$P \cdot \Sigma \cdot S$	ε
$\varepsilon \cdot a$	1
$arepsilon \cdot oldsymbol{b}$	1

The table is not closed.

Thus we add a to P.

Another Example II

$P \cdot S$	ε
arepsilon	0
а	1
$P \cdot \Sigma \cdot S$	ε
$\varepsilon \cdot a$	1
$arepsilon \cdot oldsymbol{b}$	1
a·a	0
$a \cdot b$	0

Another Example II

$P \cdot S$	ε
arepsilon	0
а	1
$P \cdot \Sigma \cdot S$	ε
$\varepsilon \cdot a$	1
$arepsilon \cdot oldsymbol{b}$	1
a·a	0
$a \cdot b$	0

Another Example II

$P \cdot S$	ε
ε	0
a	1
$P \cdot \Sigma \cdot S$	ε
$\varepsilon \cdot a$	1
$arepsilon \cdot oldsymbol{b}$	1
a·a	0
$a \cdot b$	0

Not equivalent, counter-example abab:

Another Example III

и	X	V	$[u]_{\mathcal{M}} \cdot a \cdot v \in L$	$[u \cdot a]_{\mathcal{M}} \cdot v \in L$
aba			aa ∉ L	ε ⊈ L
ab	a	Ь	ab ∉ L	ab ∉ L
а	b	ab	abab $\in L$	ab ∉ L

Another Example III

и	X	V	$[u]_{\mathcal{M}} \cdot a \cdot v \in L$	$[u \cdot a]_{\mathcal{M}} \cdot v \in L$
aba			aa ∉ L	$\varepsilon \not\in L$
ab	a	Ь	ab $∉$ L	ab ∉ L
a	b	ab	$abab \in L$	ab ∉ L

Another Example III

We add ab to S.

 $abab \in L$

а

ab ∉ L

Foreword

$P \cdot S$	ε	ab
arepsilon	0	0
а	1	1
$P \cdot \Sigma \cdot S$	ε	ab
$\varepsilon \cdot a$	1	1
$arepsilon \cdot oldsymbol{b}$	1	1
a·a	0	0
$a \cdot b$	0	1

Another Example IV

$P \cdot S$	ε	ab
arepsilon	0	0
а	1	1
$P \cdot \Sigma \cdot S$	ε	ab
$\varepsilon \cdot a$	1	1
$arepsilon \cdot oldsymbol{b}$	1	1
a·a	0	0
$a \cdot b$	0	1

The table is not closed.

Another Example IV

$P \cdot S$	ε	ab
ε	0	0
а	1	1
$P \cdot \Sigma \cdot S$	ε	ab
$\varepsilon \cdot a$	1	1
$arepsilon \cdot oldsymbol{b}$	1	1
a·a	0	0
$a \cdot b$	0	1

The table is not closed.

Thus we add ab to P.

Another Example V

$P \cdot S$	ε	ab
ε	0	0
а	1	1
ab	0	1
$P \cdot \Sigma \cdot S$	ε	ab
$\varepsilon \cdot a$	1	1
$arepsilon \cdot oldsymbol{b}$	1	1
a·a	0	0
$a \cdot b$	0	1
$ab \cdot a$	0	1
$ab \cdot b$	1	1

Another Example V

$P \cdot S$	ε	ab
ε	0	0
a	1	1
ab	0	1
$ extbf{ extit{P}} \cdot \Sigma \cdot extbf{ extit{S}}$	ε	ab
$\varepsilon \cdot a$	1	1
$arepsilon \cdot oldsymbol{b}$	1	1
a·a	0	0
a · b	0	1
ab ∙ a	0	1
$ab \cdot b$	1	1

Another Example V

$P \cdot S$	ε	ab
arepsilon	0	0
а	1	1
ab	0	1
$ extbf{ extit{P}} \cdot \Sigma \cdot extbf{ extit{S}}$	ε	ab
$\varepsilon \cdot a$	1	1
$arepsilon \cdot oldsymbol{b}$	1	1
a·a	0	0
$a \cdot b$	0	1
ab ∙ a	0	1
$ab \cdot b$	1	1

Is equivalent to:

