

Seminar Algorithms for Big Data

Fast Random Integer Generation in an Interval Based on a paper of the same title by Daniel Lemire

Lukas Geis Supervised by Dr. Manuel Penschuck

29th February 2024 · Algorithm Engineering (Prof. Dr. Ulrich Meyer)

We want to *efficiently* draw a *uniform* random integer in an interval.

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

Motivation

What is our goal?

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

Shuffling

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

- Shuffling
- Complex Graph Generators

TBD

TBD

Motivation

What is our goal?

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

- Shuffling
- Complex Graph Generators
- Sampling

- 1 Preliminaries
 - Formal Definition
 - Operations
 - The Naive Approach
- 2 Unbiased Algorithms
 - The OpenBSD Algorithm
 - The Java Algorithm
 - The Fast-Dice-Roller Algorithm
 - The Bitmask Algorithm
- 3 Lemire's Algorithm
 - Multiply-And-Shift
 - The Algorithm
- **4** Conclusion

Formal Definition

GOETHE UNIVERSITÄT

Setting:

Formal Definition

Setting:

■ Input: upper bound of interval $n \in \mathbb{N}$

Formal Definition

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

We can map this to our setting by subtracting a!

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

We can map this to our setting by subtracting a!

■ Set n = b - a and draw a uniform random integer $x \in [0, n)$

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

We can map this to our setting by subtracting a!

- Set n = b a and draw a uniform random integer $x \in [0, n)$
- Return x + a

Operations

Definition (Common Operations)

■ Integer-Division: $x \div y \qquad \coloneqq |x/y|$

- Integer-Division: $x \div y \qquad := |x/y|$
- Remainder-Operation: $x \mod y := x (x \div y)y$

- Integer-Division: $x \div y := |x/y|$
- Remainder-Operation: $x \mod y := x (x \div y)y$
- $x \gg W := x \div 2^W$ Bit-RightShift:

- $x \div y = |x/y|$ ■ Integer-Division:
- $x \mod y \coloneqq x (x \div y)y$ ■ Remainder-Operation:
- $x \gg W := x \div 2^W$ Bit-RIGHTSHIFT:
- $x \ll W := x \cdot 2^W$ Bit-LeftShift:

■ Integer-Division:
$$x \div y := \lfloor x/y \rfloor$$

■ Remainder-Operation:
$$x \mod y := x - (x \div y)y$$

■ Bit-RightShift:
$$x \gg W := x \div 2^W$$

■ Bit-LeftShift:
$$x \ll W := x \cdot 2^W$$

■ Bitwise-And:
$$x \& y$$

- Integer-Division: $x \div y := \lfloor x/y \rfloor$
- Remainder-Operation: $x \mod y := x (x \div y)y$
- Bit-RightShift: $x \gg W := x \div 2^W$
- Bit-LeftShift: $x \ll W := x \cdot 2^W$
- Bitwise-And: $x \& y \to x \mod 2^W := x \& (2^W 1)$

Definition (Common Operations)

- $x \div y := |x/y|$ ■ Integer-Division:
- $x \mod y := x (x \div y)y$ ■ Remainder-Operation:
- $x \gg W := x \div 2^W$ Bit-RightShift:
- $x \ll W := x \cdot 2^W$ Bit-LeftShift:
- $x \& y \rightarrow x \mod 2^W := x \& (2^W 1)$ Bitwise-AND:

Definition (Power Remainder)

For $W, n \in \mathbb{N}$, we write \mathcal{R}_n^W for $2^W \mod n$.

How do we get random numbers?

How do we get random numbers?

■ Generated by Pseudo-Random-Number-Generators (PRNGs)

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

Does this work?

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

Is this efficient?

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

$rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

Is this efficient?

■ No, we require one expensive integer division operation.

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

$rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

Is this efficient?

■ No, we require one expensive integer division operation.

Is the generated number uniform in [0, n)?

Preliminaries

The Naive Approach

GOETHE UNIVERSITÄT

In general, applying $x \mod n$ to $[0, 2^W)$ yields

In general, applying $x \mod n$ to $[0, 2^W)$ yields

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Every approach that maps every integer in $[0, 2^W)$ to a single number in [0, n)

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Every approach that maps every integer in $[0, 2^W)$ to a single number in [0, n) does not generate uniform random integers in one step

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Every approach that maps every integer in $[0, 2^W)$ to a single number in [0, n) does not generate uniform random integers in one step whenever n does not divide 2^W .

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Every approach that maps every integer in $[0,2^W)$ to a single number in [0,n) does not generate uniform random integers in one step whenever n does not divide 2^{W} .

Idea: Use rejection sampling to achieve uniformity!

The OpenBSD Algorithm

GOETHE UNIVERSITÄT

■ We shift the rejection interval to the left:

■ We shift the rejection interval to the left:

■ We shift the rejection interval to the left:

$$\underbrace{0,1,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{R}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}}$$

■ Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$

• We shift the rejection interval to the left:

$$\underbrace{0,1,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{R}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}}$$

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- Return $x \mod n$

■ We shift the rejection interval to the left:

$$\underbrace{0,1,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{R}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1,\ldots,\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}}$$

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

■ We shift the rejection interval to the left:

$$\underbrace{0,1,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{N \text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{N \text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{N \text{ values}}}$$

- Generate a uniform random number $x \in [0, 2^W)$ until $x \ge \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations:

■ We shift the rejection interval to the left:

$$\underbrace{0,1,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{R}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}}$$

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations: one for computing \mathcal{R}_n^W

• We shift the rejection interval to the left:

$$\underbrace{0,1,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{R}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}}$$

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations: one for computing \mathcal{R}_n^W and one for computing $x \mod n$.

The Java Algorithm

The Java Algorithm

GOETHE UNIVERSITÄT

The Java Algorithm

The Java Algorithm

GOETHE UNIVERSITÄT

The Java Algorithm

The Java Algorithm

The Java Algorithm

The Java Algorithm

■ Consider $x - (x \mod n)$ for $x \in [0, 2^W)$:

• Only numbers in the leftover interval get mapped to $2^W - \mathcal{R}_n^W > 2^W - n$

GOETHE UNIVERSITÄT

The Java Algorithm

- Only numbers in the leftover interval get mapped to $2^W \mathcal{R}_n^W > 2^W n$
- Algorithm:

The Java Algorithm

- Only numbers in the leftover interval get mapped to $2^W \mathcal{R}_n^W > 2^W n$
- Algorithm:
 - (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$

The Java Algorithm

- Only numbers in the leftover interval get mapped to $2^W \mathcal{R}_n^W > 2^W n$
- Algorithm:
 - (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
 - (2) Return r if $x r > 2^W n$ else goto (1)

The Java Algorithm

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

The Java Algorithm

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

The Java Algorithm

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

Efficiency

■ At least one integer division operation

The Java Algorithm

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds

The Java Algorithm

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x-r>2^W-n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds
- Return a number in round if $x < 2^W \mathcal{R}_n^W$

The Java Algorithm

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds
- Return a number in round if $x < 2^W \mathcal{R}_n^W$
- Happens with probability $\frac{2^W \mathcal{R}_n^W}{2^W} > \frac{1}{2}$

The Java Algorithm

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds
- Return a number in round if $x < 2^W \mathcal{R}_n^W$
- Happens with probability $\frac{2^W \mathcal{R}_n^W}{2^W} > \frac{1}{2}$
- Expected number of integer division operations is $\frac{2^W}{2^W \mathcal{R}_n^W} < 2$

Unbiased Algorithms

The Fast-Dice-Roller Algorithm

GOETHE UNIVERSITÄT

 \blacksquare Build up x bit-by-bit using uniform random bits flip()

- Build up x bit-by-bit using uniform random bits flip()
- Keep track of upper bound \mathcal{B} for number

Unbiased Algorithms

- \blacksquare Build up x bit-by-bit using uniform random bits flip()
- Keep track of upper bound \mathcal{B} for number $\longrightarrow x \in [0, \mathcal{B})$

Unbiased Algorithms

- Build up x bit-by-bit using uniform random bits flip()
- Keep track of upper bound \mathcal{B} for number $\longrightarrow x \in [0, \mathcal{B})$
- Repeat until $\mathcal{B} \geq n$

- \blacksquare Build up x bit-by-bit using uniform random bits flip()
- Keep track of upper bound \mathcal{B} for number $\longrightarrow x \in [0, \mathcal{B})$
- Repeat until $\mathcal{B} \geq n$
 - \blacksquare if x < n, return x

- \blacksquare Build up x bit-by-bit using uniform random bits flip()
- Keep track of upper bound \mathcal{B} for number $\longrightarrow x \in [0, \mathcal{B})$
- Repeat until $\mathcal{B} \geq n$
 - \blacksquare if x < n, return x
 - \blacksquare else decrease x and \mathcal{B} by n (rejection)

The Bitmask Algorithm

The Bitmask Algorithm

Lemire's Algorithm

Multiply-And-Shift

Multiply-And-Shift

The Algorithm

The Algorithm

Summary

Summary

End of Talk