Linear Regression

Jun Du dr.jundu@gmail.com

Last Updated: January 9, 2018

1 Basics

- 1. Interpretation
 - (a) Intuition: Minimizing squared error

$$E(\mathbf{w}) = (\mathbf{X}\mathbf{w} - \mathbf{y})^{\mathrm{T}}(\mathbf{X}\mathbf{w} - \mathbf{y}) \tag{1}$$

where $\mathbf{X} \in \mathbb{R}^{M \times N}$, $\mathbf{w} \in \mathbb{R}^N$, $\mathbf{y} \in \mathbb{R}^M$.

(b) Probability interpretation: Maximum likelihood estimate assuming $p(y_m|\mathbf{x}_m;\mathbf{w}) = \mathcal{N}(y_m|\mathbf{w}^T\mathbf{x}_m,\beta^{-1})$.

$$\ln \prod_{m=1}^{M} p(y_m | \mathbf{x}_m; \mathbf{w}) = \sum_{m=1}^{M} \ln \mathcal{N}(y_m | \mathbf{w}^{\mathrm{T}} \mathbf{x}_m, \beta^{-1})$$
 (2)

where $y_m \in \mathbb{R}$, $\mathbf{x}_m \in \mathbb{R}^N$, $\beta \in \mathbb{R}$.

- (c) It can be shown that, minimizing squared error is equivalent to MLE given the Gaussian noise assumption.
- 2. Analytical solution: normal equations Gradient descent can also be applied. When data volume is large, gradient descent is more efficient.
- 3. Normal equations derivation:
 - (a) Setting first derivative to 0
 - i. Set the first derivative of $E(\mathbf{w})$ to 0: $\nabla E(\mathbf{w}) = 2\mathbf{X}^{\mathrm{T}}(\mathbf{X}\mathbf{w} \mathbf{y}) = 0$
 - ii. Assume $\mathbf{X}^{\mathrm{T}}\mathbf{X}$ is invertible: $\hat{\mathbf{w}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$
 - iii. \mathbf{X} and $\mathbf{X}^T\mathbf{X}$ have the same null space (see "Introduction to Linear Algebra" P211-212 for proof), hence $\mathbf{X}^T\mathbf{X}$ is invertible $\Leftrightarrow 0$ is the null space of $\mathbf{X}^T\mathbf{X} \Leftrightarrow 0$ is the null space of $\mathbf{X} \Leftrightarrow \mathbf{X}$ has linear independent columns.

(b) Geometric intuition / derivation

 $\mathbf{X}\mathbf{w} = \mathbf{y}$ has at least one solution (for \mathbf{w}) if and only if \mathbf{y} is in the column space of \mathbf{X} . So we formulate $\tilde{\mathbf{y}}$, the projection of \mathbf{y} onto the column space of \mathbf{X} , such that (1) $\mathbf{X}\hat{\mathbf{w}} = \tilde{\mathbf{y}}$ has at least one solution, and (2) $|\mathbf{y} - \tilde{\mathbf{y}}|$ is minimized.

- Derivation 1:
 - i. Using projection matrix (see "Introduction to Linear Algebra" P209-210 for proof), $\tilde{\mathbf{y}} = \mathbf{X}(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$, then we have

$$\begin{split} \mathbf{X}\hat{\mathbf{w}} &= \tilde{\mathbf{y}} \Rightarrow \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y} \\ &\Rightarrow \mathbf{X}^{\mathrm{T}}\mathbf{X}\hat{\mathbf{w}} = \mathbf{X}^{\mathrm{T}}\mathbf{X}(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y} \\ &\Rightarrow \mathbf{X}^{\mathrm{T}}\mathbf{X}\hat{\mathbf{w}} = \mathbf{X}^{\mathrm{T}}\mathbf{y} \end{split}$$

- ii. The rest is the same \cdots
- Derivation 2:
 - i. Given the projection, $\mathbf{y} \tilde{\mathbf{y}}$ should be perpendicular to the column space of \mathbf{X} , hence we have

$$\mathbf{X}^{\mathrm{T}}(\mathbf{y} - \tilde{\mathbf{y}}) = 0 \Rightarrow \mathbf{X}^{\mathrm{T}}(\mathbf{y} - \mathbf{X}\hat{\mathbf{w}}) = 0 \Rightarrow \mathbf{X}^{\mathrm{T}}\mathbf{X}\hat{\mathbf{w}} = \mathbf{X}^{\mathrm{T}}\mathbf{y}$$

- ii. The rest is the same · · ·
- (c) Newton-Raphson derivation (see PRML P207 for detail)
 - i. The Newton-Raphson update, for minimizing $E(\mathbf{w})$, takes the form

$$\mathbf{w}^{new} = \mathbf{w}^{old} - \mathbf{H}^{-1} \nabla E(\mathbf{w}) \tag{3}$$

where **H** is the Hessian matrix whose elements comprise the second derivatives of $E(\mathbf{w})$ w.r.t. **w**.

ii. To minimize squared error, $E(\mathbf{w}) = (\mathbf{X}\mathbf{w} - \mathbf{y})^{\mathrm{T}}(\mathbf{X}\mathbf{w} - \mathbf{y})$, then

$$\nabla E(\mathbf{w}) = 2\mathbf{X}^{\mathrm{T}}(\mathbf{X}\mathbf{w} - \mathbf{y}) \tag{4}$$

$$\mathbf{H} = 2\mathbf{X}^{\mathrm{T}}\mathbf{X} \tag{5}$$

iii. The Newton-Raphson update then takes the form

$$\mathbf{w}^{new} = \mathbf{w}^{old} - (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}(\mathbf{X}^{\mathrm{T}}\mathbf{X}\mathbf{w}^{old} - \mathbf{X}^{\mathrm{T}}\mathbf{y})$$
(6)

$$= (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y} \tag{7}$$

4. MLE properties

X is a given / known constant matrix;

w is an unknown constant vector that is to be estimated (i.e., Frequentest perspective);

 y_m is a random variable, where $y_m \sim \mathcal{N}(\mathbf{w}^{\mathrm{T}}\mathbf{x}_m, \beta^{-1});$

 \mathbf{y} is a random variable vector, where $\mathbf{y} \sim \mathcal{N}(\mathbf{X}\mathbf{w}, \beta^{-1}\mathbf{I})$;

ML estimator $\hat{\mathbf{w}}$ is a random variable vector, where $\hat{\mathbf{w}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$.

- (a) $\hat{\mathbf{w}}$ is unbiased. $E[\hat{\mathbf{w}}] = E[(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}] = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^TE[\mathbf{y}] = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{X}\mathbf{w} = \mathbf{w}$
- (b) $Var(\hat{\mathbf{w}}) = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\beta^{-1}$ (See ESL P47 for proof.)
- (c) Given \mathbf{y} has a Gaussian distribution and $\hat{\mathbf{w}}$ is a linear function of \mathbf{y} , $\hat{\mathbf{w}}$ also has a Gaussian distribution, $\hat{\mathbf{w}} \sim \mathcal{N}(\mathbf{w}, (\mathbf{X}^T\mathbf{X})^{-1}\beta^{-1})$.
- (d) MLE is also the BLUE (Best Linear Unbiased Estimator). (See ESL P51 for proof.)

 That is, among all linear (w.r.t. y) unbiased estimators, MLE has the smallest variance.

5. Loss function interpretation:

- (a) Mean Squared Error (MSE): sensitive to outliers; strict convex
- (b) Mean Absolute Error (MAE): less sensitive to outliers; convex
- (c) ϵ -insensitive Error (Support Vector Regression): less sensitive to outliers
- (d) Huber Loss (Robust Regression; combination of MSE and MAE): less sensitive to outliers.

2 Probability Perspective

- 1. Fundamental assumption: $y_m \sim \mathcal{N}(\mathbf{w}^T \mathbf{x}_m, \beta^{-1})$
- 2. Traditional Linear Regression (OLS)
 - (a) w is an unknown constant vector
 - (b) β is also a constant, but its value is irrelevant to estimating **w**
 - (c) ML for $p(D; \mathbf{w})$ (specifically $p(\mathbf{y}|\mathbf{X}; \mathbf{w})$) is used to optimize \mathbf{w} .
 - (d) This is equivalent to MSE loss.

3. Ridge and Lasso

- (a) **w** is a random variable vector, with prior distribution $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \alpha^{-1}\mathbf{I})$ for Ridge, and zero mean Laplace prior distribution for Lasso.
- (b) α and β are both known constants, or tunable hyperparameters.
- (c) MAP for $p(\mathbf{w}|D)$ is used to optimized \mathbf{w} still point estimate.
- (d) Ridge tends to shrink the coefficients to small values; Lasso tends to shrink the coefficients to zeros (hence can be used for feature selection).
- (e) Ridge is equivalent to MSE loss with L_2 regularization; Lasso is equivalent to MSE loss with L_1 regularization.

- 4. Bayesian Linear Regression (See PRML Section 3.3 for detail)
 - (a) **w** is a random variable vector, with prior distribution $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \alpha^{-1}\mathbf{I})$.
 - (b) α and β are both known constants, or tunable hyperparameters.
 - (c) Full posterior distribution $p(\mathbf{w}|D)$ can be inferred.
 - (d) The prediction of **y** is:

$$p(\hat{\mathbf{y}}|D, \mathbf{w}; \alpha, \beta) = \int p(\hat{\mathbf{y}}|\mathbf{w}; \beta) p(\mathbf{w}|D; \alpha) d\mathbf{w}$$
(8)

where \mathbf{X} is omitted.

- 5. Bayesian Linear Regression Evidence Approximation (See PRML Section 3.5 for detail)
 - (a) **w** is a random variable vector, with prior distribution $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \alpha^{-1}\mathbf{I})$.
 - (b) α and β are unknown, and point estimate is applied to get $\hat{\alpha}$ and $\hat{\beta}$.
 - i. α and β are regarded unknown constants, and ML for $p(D; \alpha, \beta)$ (by marginalizing **w**) is used for point estimate.
 - ii. α and β are regarded random variables with flat prior distributions, and MAP for $p(\alpha, \beta|D)$ is used for point estimate.
 - iii. Both end up with the same solution $\hat{\alpha}$ and $\hat{\beta}$.
 - (c) Given $\hat{\alpha}$ and $\hat{\beta}$, the full posterior distribution $p(\mathbf{w}|D; \hat{\alpha}, \hat{\beta})$ can be inferred.
 - (d) The prediction of **y** is:

$$p(\hat{\mathbf{y}}|D,\mathbf{w};\hat{\alpha},\hat{\beta}) = \int p(\hat{\mathbf{y}}|\mathbf{w};\hat{\beta})p(\mathbf{w}|D;\hat{\alpha})d\mathbf{w}$$
(9)

where \mathbf{X} is omitted.

- 6. ARD (Automatic Relevance Determination) for Linear Regression (See MLaPP Section 13.7.1 for detail)
 - (a) **w** is a random variable vector, with prior distribution $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1})$, where $\mathbf{A} = diag(\boldsymbol{\alpha}) \ (\boldsymbol{\alpha} \in \mathbb{R}^N)$.
 - (b) The prior distribution $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1})$ is no longer an Isotropic Gaussian (as in Ridge, Lasso, and Bayesian Linear Regression). Each dimension \mathbf{w}_j has its own variance α_j .
 - (c) α and β are random variables with prior distributions: $\alpha_j \sim Ga(a,b)$ and $\beta \sim Ga(c,d)$, where a,b,c, and d are known constants, or tunable hyperparameters.
 - (d) MAP for $p(\boldsymbol{\alpha}, \beta)|D$ is used for point estimate $\hat{\boldsymbol{\alpha}}$ and $\hat{\beta}$.

- (e) Given $\hat{\boldsymbol{\alpha}}$ and $\hat{\boldsymbol{\beta}}$, the full posterior distribution $p(\mathbf{w}|D;\hat{\boldsymbol{\alpha}},\hat{\boldsymbol{\beta}})$ can be inferred.
- (f) The prediction of y is:

$$p(\hat{\mathbf{y}}|D,\mathbf{w};\hat{\boldsymbol{\alpha}},\hat{\beta}) = \int p(\hat{\mathbf{y}}|\mathbf{w};\hat{\beta})p(\mathbf{w}|D;\hat{\boldsymbol{\alpha}})d\mathbf{w}$$
(10)

where \mathbf{X} is omitted.

- 7. Variational Linear Regression Full Bayesian (See PRML Section 10.3 for detail)
 - (a) **w** is a random variable vector, with prior distribution $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \alpha^{-1}\mathbf{I})$.
 - (b) α and β are also random variables with prior distributions.
 - (c) The full posterior distribution $p(\mathbf{w}, \alpha, \beta | D)$ can be approximated by VI (Variational Inference), and the marginalized $p(\mathbf{w}|D)$ can also be approximated.
 - (d) The prediction of y is:

$$p(\hat{\mathbf{y}}|D, \mathbf{w}, \alpha, \beta) = \int p(\hat{\mathbf{y}}|\mathbf{w}, \alpha, \beta) p(\mathbf{w}, \alpha, \beta|D) d\alpha d\beta d\mathbf{w}$$
(11)

or equivalently

$$p(\hat{\mathbf{y}}|D, \mathbf{w}) = \int p(\hat{\mathbf{y}}|\mathbf{w})p(\mathbf{w}|D)d\mathbf{w}$$
 (12)

3 Quantile Regression, etc.

- 1. Quantile Regression
 - (a) MSE: $\sum_{m=1}^{M} (y_m \hat{y}_m)^2$ (b) MAE: $\sum_{m=1}^{M} |y_m \hat{y}_m|$

 - (c) Quantile regression (q quantile) minimizes a sum that gives asymmetric penalties

$$L(\mathbf{w}) = \sum_{m: y_m > \mathbf{w}^{\mathrm{T}} \mathbf{x}_m}^{M} q |y_m - \mathbf{w}^{\mathrm{T}} \mathbf{x}_m| + \sum_{m: y_m < \mathbf{w}^{\mathrm{T}} \mathbf{x}_m}^{M} (1 - q) |y_m - \mathbf{w}^{\mathrm{T}} \mathbf{x}_m|$$

$$q|y_m - \hat{y}_m|$$
 for underprediction (i.e., $y_m \ge \hat{y}_m$) $(1-q)|y_m - \hat{y}_m|$ for overprediction (i.e., $y_m < \hat{y}_m$)