Matked -up Copy
filed on July 10, 1998

- 1 -

This is a Continuation application of USSN 09/112,774 filed on July 10, 1998

Title of the Invention

€)

AN IMAGE CAPTURE AND PROCESSING DEVICE FOR A PRINT ON DEMAND DIGITAL CAMERA SYSTEM

Field of the Invention

The present invention relates substantially to the concept of a disposable camera having instant printing capabilities and in particular, discloses an image capture and processing device for a digital camera system.

Background of the Invention

Recently, the concept of a "single use" disposable camera has become an increasingly popular consumer item. Disposable camera systems presently on the market normally include an internal film roll and a simplified gearing mechanism for traversing the film roll across an imaging system including a shutter and lensing system. The user, after utilising a single film roll returns the camera system to a film development centre for processing. The film roll is taken out of the camera system and processed and the prints returned to the user. The camera system is then able to be re-manufactured through the insertion of a new film roll into the camera system, the replacement of any worn or wearable parts and the re-packaging of the camera system in accordance with requirements. In this way, the concept of a single use "disposable" camera is provided to the consumer.

Recently, a camera system has been proposed by the present applicant which provides for a handheld camera device having an internal print head, image sensor and processing means such that images sense by the image sensing means, are processed by the processing means and adapted to be instantly printed out by the printing means on demand. The proposed camera system further discloses a system of internal "print rolls" carrying print media such as film on to which images are to be printed in addition to ink to supplying the printing means for the printing process. The print roll is further disclosed to be detachable and replaceable within the camera system.

Unfortunately, such a system is likely to only be constructed at a substantial cost and it would be desirable to provide for a more inexpensive form of instant camera system which maintains a substantial number of the quality aspects of the aforementioned arrangement.

It would be further advantageous to provide for the effective interconnection of the sub components of a camera system.

Summary of the Invention

In accordance with a first aspect of the invention, there is provided an image capture and processing device which comprises

an image sensor chipintegrated circuit;

4:=

a plurality of analogue-to-digital converters (ADC's) that are connected to the image sensor ehipintegrated circuit to convert analogue signals generated by the image sensor ehipintegrated circuit into digital signals;

image processing circuitry that is connected to the ADC's to carry out image processing operations on the digital signals and

a print head interface that is connected to the image processing circuitry to receive data from the image processing circuitry and to format that data correctly for a printhead.

A memory device may be interposed between the image sensor <u>chipintegrated circuit</u> and the image processing circuitry to store data relating to an image sensed by the image sensor <u>chipintegrated circuit</u>.

The image sensor <u>chipintegrated circuit</u> may define a CMOS active pixel sensor array. The image sensor <u>chipintegrated circuit</u> may incorporate a plurality of analog signal processors that are configured to carry out enhancement processes on analog signals generated by the active pixel sensor array.

The image processing circuitry may include color interpolation circuitry to interpolate pixel data.

The image processing circuitry may include convolver circuitry that is configured to apply a convolution process to the image data.

The print head interface may be configured to format the data correctly for a pagewidth printhead.

The device may be a single chipintegrated circuit.

The invention extends to a camera system that includes an image capture and processing device as described above.

In accordance with a second aspect of the present invention, there is provided in a camera system comprising: an image sensor device for sensing an image; a processing means for processing the sensed image; a print media supply means for the supply of print media to a print head; a print head for printing the sensed image on the print media stored internally to the camera system; a portable power supply interconnected to the print head, the sensor and the processing means; and a guillotine mechanism located between the print media supply means and the print head and adapted to cut the print media into sheets of a predetermined size.

Further, preferably, the guillotine mechanism is detachable from the camera system. The guillotine mechanism can be attached to the print media supply means and is detachable from the camera system with the print media supply means. The guillotine mechanism can be mounted on a platen unit below the print head.

Brief Description of the Drawings

بر.

Notwithstanding any other forms which may fall within the scope of the present invention, preferred forms of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:

- Fig. 1 illustrates a front perspective view of the assembled camera of the preferred embodiment;
- Fig. 2 illustrates a rear perspective view, partly exploded, of the preferred embodiment;
 - Fig. 3 is a perspective view of the chassis of the preferred embodiment;
 - Fig. 4 is a perspective view of the chassis illustrating mounting of electric motors;
- Fig. 5 is an exploded perspective of the ink supply mechanism of the preferred embodiment;
- Fig. 6 is rear perspective of the assembled form of the ink supply mechanism of the preferred embodiment;
- Fig. 7 is a front perspective view of the assembled form of the ink supply mechanism of the preferred embodiment;
- Fig. 8 is an exploded perspective view of the platen unit of the preferred embodiment;
 - Fig. 9 is a perspective view of the assembled form of the platen unit;
 - Fig. 10 is also a perspective view of the assembled form of the platen unit;
- Fig. 11 is an exploded perspective view of the printhead recapping mechanism of the preferred embodiment;
- Fig. 12 is a close up exploded perspective of the recapping mechanism of the preferred embodiment;
- Fig. 13 is an exploded perspective of the ink supply cartridge of the preferred embodiment;
- Fig. 14 is a close up perspective, view partly in section, of the internal portions of the ink supply cartridge in an assembled form;
- Fig. 15 is a schematic block diagram of one form of chipintegrated circuit layer of the image capture and processing chipintegrated circuit of the preferred embodiment;

Fig. 16 is an exploded view perspective illustrating the assembly process of the preferred embodiment;

Fig. 17 illustrates a front exploded perspective view of the assembly process of the preferred embodiment;

Fig. 18 illustrates a perspective view of the assembly process of the preferred embodiment;

Fig. 19 illustrates a perspective view of the assembly process of the preferred embodiment;

Fig. 20 is a perspective view illustrating the insertion of the platen unit in the preferred embodiment;

Fig. 21 illustrates the interconnection of the electrical components of the preferred embodiment;

Fig. 22 illustrates the process of assembling the preferred embodiment; and

Fig. 23 is a perspective view further illustrating the assembly process of the preferred embodiment.

Description of Preferred and Other Embodiments

, **G**,

 $\widehat{\psi}^{i}$

Turning initially simultaneously to Fig. 1 and Fig. 2 there are illustrated perspective views of an assembled camera constructed in accordance with the preferred embodiment with Fig. 1 showing a front perspective view and Fig. 2 showing a rear perspective view. The camera 1 includes a paper or plastic film jacket 2 which can include simplified instructions 3 for the operation of the camera system 1. The camera system 1 includes a first "take" button 4 which is depressed to capture an image. The captured image is output via output slot 6. A further copy of the image can be obtained through depressing a second "printer copy" button 7 whilst an LED light 5 is illuminated. The camera system also provides the usual view finder 8 in addition to a CCD image capture/lensing system 9.

The camera system 1 provides for a standard number of output prints after which the camera system 1 ceases to function. A prints left indicator slot 10 is provided to indicate the number of remaining prints. A refund scheme at the point of purchase is assumed to be operational for the return of used camera systems for recycling.

Turning now to Fig. 3, the assembly of the camera system is based around an internal chassis 12 which can be a plastic injection molded part. A pair of paper pinch rollers 28, 29 utilized for decurling are snap fitted into corresponding frame holes eg. 26, 27.

As shown in Fig. 4, the chassis 12 includes a series of mutually opposed prongs eg. 13, 14 into which is snapped fitted a series of electric motors 16, 17. The electric motors 16, 17 can be entirely standard with the motor 16 being of a stepper motor type. The motor 16, 2F189US

17 include cogs 19, 20 for driving a series of gear wheels. A first set of gear wheels is provided for controlling a paper cutter mechanism and a second set is provided for controlling print roll movement.

Turning next to Figs. 5 to 7, there is illustrated an ink supply mechanism 40 utilized in the camera system. Fig. 5 illustrates a back exploded perspective view, Fig. 6 illustrates a back assembled view and Fig. 7 illustrates a front assembled view. The ink supply mechanism 40 is based around an ink supply cartridge 42 which contains printer ink and a print head mechanism for printing out pictures on demand. The ink supply cartridge 42 includes a side aluminium strip 43 which is provided as a shear strip to assist in cutting images from a paper roll.

A dial mechanism 44 is provided for indicating the number of "prints left". The dial mechanism 44 is snap fitted through a corresponding mating portion 46 so as to be freely rotatable.

As shown in Fig. 6, the mechanism 40 includes a flexible PCB strip 47 which interconnects with the print head and provides for control of the print head. The interconnection between the Flex PCB strip and an image sensor and print head ehipintegrated circuit can be via Tape Automated Bonding (TAB) Strips 51, 58. A moulded aspherical lens and aperture shim 50 (Fig. 5) is also provided for imaging an image onto the surface of the image sensor ehipintegrated circuit normally located within cavity 53 and a light box module or hood 52 is provided for snap fitting over the cavity 53 so as to provide for proper light control. A series of decoupling capacitors eg. 34 can also be provided. Further a plug 45 (Fig. 7) is provided for re-plugging ink holes after refilling. A series of guide prongs eg. 55-57 are further provided for guiding the flexible PCB strip 47.

The ink supply mechanism 40 interacts with a platen unit 60 which guides print media under a printhead located in the ink supply mechanism. Fig. 8 shows an exploded view of the platen unit 60, while Figs. 9 and 10 show assembled views of the platen unit. The platen unit 60 includes a first pinch roller 61 which is snap fitted to one side of a platen base 62. Attached to a second side of the platen base 62 is a cutting mechanism 63 which traverses the platen unit 60 by means of a rod 64 having a screw thread which is rotated by means of cogged wheel 65 which is also fitted to the platen base 62. The screw threaded rod 64 mounts a block 67 which includes a cutting wheel 68 fastened via a fastener 69. Also mounted to the block 67 is a counter actuator which includes a pawl 71. The pawl 71 acts to rotate the dial mechanism 44 of Fig. 6 upon the return traversal of the cutting wheel. As shown previously in Fig. 6, the dial mechanism 44 includes a cogged surface which interacts with pawl 71, thereby maintaining a count of the number of photographs by means of

Ŷ.

•

numbers embossed on the surface of dial mechanism 44. The cutting mechanism 63 is inserted into the platen base 62 by means of a snap fit via clips 74.

The platen unit 60 includes an internal recapping mechanism 80 for recapping the print head when not in use. The recapping mechanism 80 includes a sponge portion 81 and is operated via a solenoid coil so as to provide for recapping of the print head. In the preferred embodiment, there is provided an inexpensive form of printhead re-capping mechanism provided for incorporation into a handheld camera system so as to provide for printhead re-capping of an inkjet printhead.

Fig. 11 illustrates an exploded view of the recapping mechanism whilst Fig. 12 illustrates a close up of the end portion thereof. The re-capping mechanism 80 is structured around a solenoid including a 16 turn coil 75 which can comprise insulated wire. The coil 75 is turned around a first stationery solenoid arm 76 which is mounted on a bottom surface of the platen base 62(Fig. 8) and includes a post portion 77 to magnify effectiveness of operation. The arm 76 can comprise a ferrous material.

A second moveable arm 78 of the solenoid actuator is also provided. The arm 78 is moveable and is also made of ferrous material. Mounted on the arm is a sponge portion surrounded by an elastomer strip 79. The elastomer strip 79 is of a generally arcuate cross-section and act as a leaf spring against the surface of the printhead ink supply cartridge 42 (Fig. 5) so as to provide for a seal against the surface of the printhead ink supply cartridge 42. In the quiescent position an elastomer spring unit 87, 88 acts to resiliently deform the elastomer seal 79 against the surface of the ink supply unit 42.

When it is desired to operate the printhead unit, upon the insertion of paper, the solenoid coil 75 is activated so as to cause the arm 78 to move down to be adjacent to the end plate 76. The arm 78 is held against end plate 76 while the printhead is printing by means of a small "keeper current" in coil 75. Simulation results indicate that the keeper current can be significantly less than the actuation current. Subsequently, after photo printing, the paper is guillotined by the cutting mechanism 63 of Fig. 8 acting against Aluminium Strip 43, and rewound so as to clear the area of the re-capping mechanism 80. Subsequently, the current is turned off and springs 87, 88 return the arm 78 so that the elastomer seal is again resting against the printhead ink supply cartridge.

It can be seen that the preferred embodiment provides for a simple and inexpensive means of re-capping a printhead through the utilisation of a solenoid type device having a long rectangular form. Further, the preferred embodiment utilises minimal power in that currents are only required whilst the device is operational and additionally, only a low keeper current is required whilst the printhead is printing.

¥

Turning next to Fig. 13 and 14, Fig. 13 illustrates an exploded perspective of the ink supply cartridge 42 whilst Fig. 14 illustrates a close up sectional view of a bottom of the ink supply cartridge with the printhead unit in place. The ink supply cartridge 42 is based around a pagewidth printhead 102 which comprises a long slither of silicon having a series of holes etched on the back surface for the supply of ink to a front surface of the silicon wafer for subsequent ejection via a micro electro mechanical system. The form of ejection can be many different forms such as those set out in the tables below.

Of course, many other inkjet technologies, as referred to the attached tables below, can also be utilised when constructing a printhead unit 102. The fundamental requirement of the ink supply cartridge 42 is the supply of ink to a series of colour channels etched through the back surface of the printhead 102. In the description of the preferred embodiment, it is assumed that a three colour printing process is to be utilised so as to provide full colour picture output. Hence, the print supply unit includes three ink supply reservoirs being a cyan reservoir 104, a magenta reservoir 105 and a yellow reservoir 106. Each of these reservoirs is required to store ink and includes a corresponding sponge type material 107 - 109 which assists in stabilising ink within the corresponding ink channel and inhibiting the ink from sloshing back and forth when the printhead is utilised in a handheld camera system. The reservoirs 104, 105, 106 are formed through the mating of first exterior plastic piece 110 and a second base piece 111.

At a first end 118 of the base piece 111 a series of air inlet 113 – 115 are provided. Each air inlet leads to a corresponding winding channel which is hydrophobically treated so as to act as an ink repellent and therefore repel any ink that may flow along the air inlet channel. The air inlet channel further takes a convoluted path assisting in resisting any ink flow out of the chambers 104 - 106. An adhesive tape portion 117 is provided for sealing the channels within end portion 118.

At the top end, there is included a series of refill holes (not shown) for refilling corresponding ink supply chambers 104, 105, 106. A plug 121 is provided for sealing the refill holes.

Turning now to Fig. 14, there is illustrated a close up perspective view, partly in section through the ink supply cartridge 42 of Fig. 13 when formed as a unit. The ink supply cartridge includes the three colour ink reservoirs 104, 105, 106 which supply ink to different portions of the back surface of printhead 102 which includes a series of apertures 128 defined therein for carriage of the ink to the front surface.

The ink supply cartridge 42 includes two guide walls 124, 125 which separate the various ink chambers and are tapered into an end portion abutting the surface of the

9

printhead 102. The guide walls 124, 125 are further mechanically supported by block portions eg. 126 which are placed at regular intervals along the length of the ink supply unit. The block portions 126 leave space at portions close to the back of printhead 102 for the flow of ink around the back surface thereof.

The ink supply unit is preferably formed from a multi-part plastic injection mould and the mould pieces eg. 110, 111 (Fig. 13) snap together around the sponge pieces 107, 109. Subsequently, a syringe type device can be inserted in the ink refill holes and the ink reservoirs filled with ink with the air flowing out of the air outlets 113 - 115. Subsequently, the adhesive tape portion 117 and plug 121 are attached and the printhead tested for operation capabilities. Subsequently, the ink supply cartridge 42 can be readily removed for refilling by means of removing the ink supply cartridge, performing a washing cycle, and then utilising the holes for the insertion of a refill syringe filled with ink for refilling the ink chamber before returning the ink supply cartridge 42 to a camera.

Turning now to Fig. 15, there is shown an example layout of the Image Capture and Processing Chipintegrated circuit (ICP) 48.

The Image Capture and Processing Chipintegrated circuit 48 provides most of the electronic functionality of the camera with the exception of the print head ehipintegrated circuit. The ehipintegrated circuit 48 is a highly integrated system. It combines CMOS image sensing, analog to digital conversion, digital image processing, DRAM storage, ROM, and miscellaneous control functions in a single ehipintegrated circuit.

The <u>chipintegrated circuit</u> is estimated to be around 32 mm² using a leading edge 0.18 micron CMOS/DRAM/APS process. The <u>chipintegrated circuit</u> size and cost can scale somewhat with Moore's law, but is dominated by a CMOS active pixel sensor array 201, so scaling is limited as the sensor pixels approach the diffraction limit.

The ICP 48 includes CMOS logic, a CMOS image sensor, DRAM, and analog circuitry. A very small amount of flash memory or other non-volatile memory is also preferably included for protection against reverse engineering.

Alternatively, the ICP can readily be divided into two ehipintegrated circuits: one for the CMOS imaging array, and the other for the remaining circuitry. The cost of this two ehipintegrated circuit solution should not be significantly different than the single ehipintegrated circuit ICP, as the extra cost of packaging and bond-pad area is somewhat cancelled by the reduced total wafer area requiring the color filter fabrication steps.

The ICP preferably contains the following functions:

1

•

Function 1.5 megapixel image sensor **Analog Signal Processors** Image sensor column decoders Image sensor row decoders Analogue to Digital Conversion (ADC) Column ADC's Auto exposure 12 Mbits of DRAM DRAM Address Generator Color interpolator Convolver Color ALU Halftone matrix ROM Digital halftoning Print head interface 8 bit CPU core Program ROM Flash memory Scratchpad SRAM Parallel interface (8 bit) Motor drive transistors (5) Clock PLL JTAG test interface Test circuits Busses Bond pads

Ç

The CPU, DRAM, Image sensor, ROM, Flash memory, Parallel interface, JTAG interface and ADC can be vendor supplied cores. The ICP is intended to run on 1.5V to minimize power consumption and allow convenient operation from two AA type battery cells.

Fig. 15 illustrates a layout of the ICP 48. The ICP 48 is dominated by the imaging array 201, which consumes around 80% of the ehipintegrated circuit area. The imaging array is a CMOS 4 transistor active pixel design with a resolution of 1,500 x 1,000. The array can be divided into the conventional configuration, with two green pixels, one red pixel, and one blue pixel in each pixel group. There are 750 x 500 pixel groups in the imaging array.

The latest advances in the field of image sensing and CMOS image sensing in particular can be found in the October, 1997 issue of IEEE Transactions on Electron Devices and, in particular, pages 1689 to 1968. Further, a specific implementation similar to that disclosed in the present application is disclosed in Wong et. al, "CMOS Active Pixel Image Sensors Fabricated Using a 1.8V, 0.25 µm CMOS Technology", IEDM 1996, page 915

The imaging array uses a 4 transistor active pixel design of a standard configuration. To minimize ehipintegrated circuit area and therefore cost, the image sensor pixels should be as small as feasible with the technology available. With a four transistor cell, the typical pixel size scales as 20 times the lithographic feature size. This allows a minimum pixel area of around 3.6 μ m x 3.6 μ m. However, the photosite must be substantially above the diffraction limit of the lens. It is also advantageous to have a square photosite, to maximize the margin over the diffraction limit in both horizontal and vertical directions. In this case, the photosite can be specified as 2.5 μ m x 2.5 μ m. The photosite can be a photogate, pinned photodiode, charge modulation device, or other sensor.

The four transistors are packed as an 'L' shape, rather than a rectangular region, to allow both the pixel and the photosite to be square. This reduces the transistor packing density slightly, increasing pixel size. However, the advantage in avoiding the diffraction limit is greater than the small decrease in packing density.

The transistors also have a gate length which is longer than the minimum for the process technology. These have been increased from a drawn length of 0.18 micron to a drawn length of 0.36 micron. This is to improve the transistor matching by making the variations in gate length represent a smaller proportion of the total gate length.

The extra gate length, and the 'L' shaped packing, mean that the transistors use more area than the minimum for the technology. Normally, around 8 μm^2 would be required for rectangular packing. Preferably, 9.75 μm^2 has been allowed for the transistors.

The total area for each pixel is $16 \, \mu m^2$, resulting from a pixel size of $4 \, \mu m \, x \, 4 \, \mu m$. With a resolution of 1,500 x 1,000, the area of the imaging array 101 is 6,000 $\mu m \, x \, 4,000$ μm , or 24 mm².

The presence of a color image sensor on the ehipintegrated circuit affects the process required in two major ways:

-The CMOS fabrication process should be optimized to minimize dark current Color filters are required. These can be fabricated using dyed photosensitive polyimides, resulting in an added process complexity of three spin coatings, three photolithographic steps, three development steps, and three hardbakes.

There are 15,000 analog signal processors (ASPs) 205, one for each of the columns of the sensor. The ASPs amplify the signal, provide a dark current reference, sample and hold the signal, and suppress the fixed pattern noise (FPN).

There are 375 analog to digital converters 206, one for each four columns of the sensor array. These may be delta-sigma or successive approximation type ADC's. A row of low column ADC's are used to reduce the conversion speed required, and the amount of analog signal degradation incurred before the signal is converted to digital. This also eliminates the hot spot (affecting local dark current) and the substrate coupled noise that would occur if a single high speed ADC was used. Each ADC also has two four bit DAC's which trim the offset and scale of the ADC to further reduce FPN variations between columns. These DAC's are controlled by data stored in flash memory during ehipintegrated circuit testing.

The column select logic 204 is a 1:1500 decoder which enables the appropriate digital output of the ADCs onto the output bus. As each ADC is shared by four columns, the least significant two bits of the row select control 4 input analog multiplexors.

A row decoder 207 is a 1:1000 decoder which enables the appropriate row of the active pixel sensor array. This selects which of the 1000 rows of the imaging array is connected to analog signal processors. As the rows are always accessed in sequence, the row select logic can be implemented as a shift register.

An auto exposure system 208 adjusts the reference voltage of the ADC 205 in response to the maximum intensity sensed during the previous frame period. Data from the green pixels is passed through a digital peak detector. The peak value of the image frame

period before capture (the reference frame) is provided to a digital to analogue converter(DAC), which generates the global reference voltage for the column ADCs. The peak detector is reset at the beginning of the reference frame. The minimum and maximum values of the three RGB color components are also collected for color correction.

The second largest section of the ehipintegrated circuit is consumed by a DRAM 210 used to hold the image. To store the 1,500 x 1,000 image from the sensor without compression, 1.5 Mbytes of DRAM 210 are required. This equals 12 Mbits, or slightly less than 5% of a 256 Mbit DRAM. The DRAM technology assumed is of the 256 Mbit generation implemented using 0.18µm CMOS.

Using a standard 8F cell, the area taken by the memory array is 3.11 mm². When row decoders, column sensors, redundancy, and other factors are taken into account, the DRAM requires around 4 mm².

This DRAM 210 can be mostly eliminated if analog storage of the image signal can be accurately maintained in the CMOS imaging array for the two seconds required to print the photo. However, digital storage of the image is preferable as it is maintained without degradation, is insensitive to noise, and allows copies of the photo to be printed considerably later.

A DRAM address generator 211 provides the write and read addresses to the DRAM 210. Under normal operation, the write address is determined by the order of the data read from the CMOS image sensor 201. This will typically be a simple raster format. However, the data can be read from the sensor 201 in any order, if matching write addresses to the DRAM are generated. The read order from the DRAM 210 will normally simply match the requirements of a color interpolator and the print head. As the cyan, magenta, and yellow rows of the print head are necessarily offset by a few pixels to allow space for nozzle actuators, the colors are not read from the DRAM simultaneously. However, there is plenty of time to read all of the data from the DRAM many times during the printing process. This capability is used to eliminate the need for FIFOs in the print head interface, thereby saving ehipintegrated circuit area. All three RGB image components can be read from the DRAM each time color data is required. This allows a color space converter to provide a more sophisticated conversion than a simple linear RGB to CMY conversion.

Also, to allow two dimensional filtering of the image data without requiring line buffers, data is re-read from the DRAM array.

The address generator may also implement image effects in certain models of camera. For example, passport photos are generated by a manipulation of the read addresses to the DRAM. Also, image framing effects (where the central image is reduced), image ZF189US

warps, and kaleidoscopic effects can all be generated by manipulating the read addresses of the DRAM.

While the address generator 211 may be implemented with substantial complexity if effects are built into the standard ehipintegrated circuit, the ehipintegrated circuit area required for the address generator is small, as it consists only of address counters and a moderate amount of random logic.

A color interpolator 214 converts the interleaved pattern of red, 2 x green, and blue pixels into RGB pixels. It consists of three 8 bit adders and associated registers. The divisions are by either 2 (for green) or 4 (for red and blue) so they can be implemented as fixed shifts in the output connections of the adders.

A convolver 215 is provided as a sharpening filter which applies a small convolution kernel (5 x 5) to the red, green, and blue planes of the image. The convolution kernel for the green plane is different from that of the red and blue planes, as green has twice as many samples. The sharpening filter has five functions:

-To improve the color interpolation from the linear interpolation provided by the color interpolator, to a close approximation of a sinc interpolation.

-To compensate for the image 'softening' which occurs during digitization.

-To adjust the image sharpness to match average consumer preferences, which are typically for the image to be slightly sharper than reality. As the single use camera is intended as a consumer product, and not a professional photographic products, the processing can match the most popular settings, rather than the most accurate.

-To suppress the sharpening of high frequency (individual pixel) noise. The function is similar to the 'unsharp mask' process.

-To antialias Image Warping.

These functions are all combined into a single convolution matrix. As the pixel rate is low (less than 1 Mpixel per second) the total number of multiplies required for the three color channels is 56 million multiplies per second. This can be provided by a single multiplier. Fifty bytes of coefficient ROM are also required.

A color ALU 113 combines the functions of color compensation and color space conversion into the one matrix multiplication, which is applied to every pixel of the frame. As with sharpening, the color correction should match the most popular settings, rather than the most accurate.

A color compensation circuit of the color ALU provides compensation for the lighting of the photo. The vast majority of photographs are substantially improved by a

simple color compensation, which independently normalizes the contrast and brightness of the three color components.

A color look-up table (CLUT) 212 is provided for each color component. These are three separate 256 x 8 SRAMs, requiring a total of 6,144 bits. The CLUTs are used as part of the color correction process. They are also used for color special effects, such as stochastically selected "wild color" effects.

A color space conversion system of the color ALU converts from the RGB color space of the image sensor to the CMY color space of the printer. The simplest conversion is a 1's complement of the RGB data. However, this simple conversion assumes perfect linearity of both color spaces, and perfect dye spectra for both the color filters of the image sensor, and the ink dyes. At the other extreme is a tri-linear interpolation of a sampled three dimensional arbitrary transform table. This can effectively match any non-linearity or differences in either color space. Such a system is usually necessary to obtain good color space conversion when the print engine is a color electrophotographic

However, since the non-linearity of a halftoned ink jet output is very small, a simpler system can be used. A simple matrix multiply can provide excellent results. This requires nine multiplies and six additions per contone pixel. However, since the contone pixel rate is low (less than 1 Mpixel/sec) these operations can share a single multiplier and adder. The multiplier and adder are used in a color ALU which is shared with the color compensation function.

Digital halftoning can be performed as a dispersed dot ordered dither using a stochastic optimized dither cell. A halftone matrix ROM 216 is provided for storing dither cell coefficients. A dither cell size of 32 x 32 is adequate to ensure that the cell repeat cycle is not visible. The three colors – cyan, magenta, and yellow – are all dithered using the same cell, to ensure maximum co-positioning of the ink dots. This minimizes 'muddying' of the mid-tones which results from bleed of dyes from one dot to adjacent dots while still wet. The total ROM size required is 1 KByte, as the one ROM is shared by the halftoning units for each of the three colors.

The digital halftoning used is dispersed dot ordered dither with stochastic optimized dither matrix. While dithering does not produce an image quite as 'sharp' as error diffusion, it does produce a more accurate image with fewer artifacts. The image sharpening produced by error diffusion is artificial, and less controllable and accurate than 'unsharp mask' filtering performed in the contone domain. The high print resolution (1,600 dpi x 1,600 dpi) results in excellent quality when using a well formed stochastic dither matrix.

Digital halftoning is performed by a digital halftoning unit 217 using a simple comparison between the contone information from the DRAM 210 and the contents of the dither matrix 216. During the halftone process, the resolution of the image is changed from the 250 dpi of the captured contone image to the 1,600 dpi of the printed image. Each contone pixel is converted to an average of 40.96 halftone dots.

The ICP incorporates a 16 bit microcontroller CPU core 219 to run the miscellaneous camera functions, such as reading the buttons, controlling the motor and solenoids, setting up the hardware, and authenticating the refill station. The processing power required by the CPU is very modest, and a wide variety of processor cores can be used. As the entire CPU program is run from a small ROM 220[.], program compatibility between camera versions is not important, as no external programs are run. A 2 Mbit (256 Kbyte) program and data ROM 220 is included on ehipintegrated circuit. Most of this ROM space is allocated to data for outline graphics and fonts for specialty cameras. The program requirements are minor. The single most complex task is the encrypted authentication of the refill station. The ROM requires a single transistor per bit.

A Flash memory 221 may be used to store a 128 bit authentication code. This provides higher security than storage of the authentication code in ROM, as reverse engineering can be made essentially impossible. The Flash memory is completely covered by third level metal, making the data impossible to extract using scanning probe microscopes or electron beams. The authentication code is stored in the chipintegrated circuit when manufactured. At least two other Flash bits are required for the authentication process: a bit which locks out reprogramming of the authentication code, and a bit which indicates that the camera has been refilled by an authenticated refill station. The flash memory can also be used to store FPN correction data for the imaging array. Additionally, a phase locked loop rescaling parameter is stored for scaling the clocking cycle to an appropriate correct time. The clock frequency does not require crystal accuracy since no date functions are provided. To eliminate the cost of a crystal, an on ehipintegrated circuit oscillator with a phase locked loop 224 is used. As the frequency of an on-chipintegrated circuit oscillator is highly variable from chipintegrated circuit to chipintegrated circuit, the frequency ratio of the oscillator to the PLL is digitally trimmed during initial testing. The value is stored in Flash memory 221. This allows the clock PLL to control the ink-jet heater pulse width with sufficient accuracy.

A scratchpad SRAM is a small static RAM 222 with a 6T cell. The scratchpad provided temporary memory for the 16 bit CPU. 1024 bytes is adequate.

A print head interface 223 formats the data correctly for the print head. The print head interface also provides all of the timing signals required by the print head. These timing signals may vary depending upon temperature, the number of dots printed simultaneously, the print medium in the print roll, and the dye density of the ink in the print roll.

The following is a table of external connections to the print head interface:

Connection	Function	Pins
DataBits[0-7]	Independent serial data to the eight segments of the	8
	print head	
BitClock	Main data clock for the print head	1
ColorEnable[0-2]	Independent enable signals for the CMY actuators,	3
	allowing different pulse times for each color.	
BankEnable[0-1]	Allows either simultaneous or interleaved actuation	2
	of two banks of nozzles. This allows two different	
	print speed/power consumption tradeoffs	
NozzleSelect[0-4]	Selects one of 32 banks of nozzles for simultaneous	5
	actuation	
ParallelXferClock	Loads the parallel transfer register with the data from	1
	the shift registers	
Total		20

There is no connection between the segments on the print head ehipintegrated circuit. Any connections required are made in the external TAB bonding film, which is double sided. The division into eight identical segments is to simplify lithography using wafer steppers. The segment width of 1.25 cm fits easily into a stepper field. As the print head ehipintegrated circuit is long and narrow (10 cm x 0.3 mm), the stepper field contains a single segment of 32 print head ehipintegrated circuits. The stepper field is therefore 1.25 cm x 1.6 cm. An average of four complete print heads are patterned in each wafer step.

A single BitClock output line connects to all 8 segments on the print head. The 8 DataBits lines lead one to each segment, and are clocked into the 8 segments on the print head simultaneously (on a BitClock pulse). For example, dot 0 is transferred to segment₀, dot 750 is transferred to segment₁, dot 1500 to segment₂ etc simultaneously.

The ParallelXferClock is connected to each of the 8 segments on the print head, so that on a single pulse, all segments transfer their bits at the same time.

The NozzleSelect, BankEnable and ColorEnable lines are connected to each of the 8 segments, allowing the print head interface to independently control the duration of the cyan, magenta, and yellow nozzle energizing pulses. Registers in the Print Head Interface allow

the accurate specification of the pulse duration between 0 and 6 ms, with a typical duration of 2 ms to 3 ms.

A parallel interface 125 connects the ICP to individual static electrical signals. The CPU is able to control each of these connections as memory mapped I/O via a low speed bus.

The following is a table of connections to the parallel interface:

Connection	Direction	Pins ·
Paper transport stepper motor	Output	4
Capping solenoid	Output	1
Copy LED	Output	1
Photo button	Input	1
Copy button	Input	1
Total	•	8

Seven high current drive transistors eg. 227 are required. Four are for the four phases of the main stepper motor, two are for the guillotine motor, and the remaining transistor is to drive the capping solenoid. These transistors are allocated 20,000 square microns (600,000 F) each. As the transistors are driving highly inductive loads, they must either be turned off slowly, or be provided with a high level of back EMF protection. If adequate back EMF protection cannot be provided using the ehipintegrated circuit process chosen, then external discrete transistors should be used. The transistors are never driven at the same time as the image sensor is used. This is to avoid voltage fluctuations and hot spots affecting the image quality. Further, the transistors are located as far away from the sensor as possible.

A standard JTAG (Joint Test Action Group) interface 228 is included in the ICP for testing purposes and for interrogation by the refill station. Due to the complexity of the ehipintegrated circuit, a variety of testing techniques are required, including BIST (Built In Self Test) and functional block isolation. An overhead of 10% in ehipintegrated circuit area is assumed for ehipintegrated circuit testing circuitry for the random logic portions. The overhead for the large arrays the image sensor and the DRAM is smaller.

The JTAG interface is also used for authentication of the refill station. This is included to ensure that the cameras are only refilled with quality paper and ink at a properly constructed refill station, thus preventing inferior quality refills from occurring. The camera must authenticate the refill station, rather than vice versa. The secure protocol is communicated to the refill station during the automated test procedure. Contact is made to

four gold plated spots on the ICP/print head TAB by the refill station as the new ink is injected into the print head.

Fig. 16 illustrates a rear view of the next step in the construction process whilst Fig. 17 illustrates a front view.

Turning now to Fig. 16, the assembly of the camera system proceeds via first assembling the ink supply mechanism 40. The flex PCB is interconnected with batteries 84 only one of which is shown, which are inserted in the middle portion of a print roll 85 which is wrapped around a plastic former 86. An end cap 89 is provided at the other end of the print roll 85 so as to fasten the print roll and batteries firmly to the ink supply mechanism.

The solenoid coil is interconnected (not shown) to interconnects 97, 98 (Fig. 8) which include leaf spring ends for interconnection with electrical contacts on the Flex PCB so as to provide for electrical control of the solenoid.

Turning now to Figs. 17 - 19 the next step in the construction process is the insertion of the relevant gear trains into the side of the camera chassis. Fig. 17 illustrates a front view, Fig. 18 illustrates a rear view and Fig. 19 also illustrates a rear view. The first gear train comprising gear wheels 22, 23 is utilised for driving the guillotine blade with the gear wheel 23 engaging the gear wheel 65 of Fig. 8. The second gear train comprising gear wheels 24, 25 and 26 engage one end of the print roller 61 of Fig. 8. As best indicated in Fig. 18, the gear wheels mate with corresponding pins on the surface of the chassis with the gear wheel 26 being snap fitted into corresponding mating hole 27.

Next, as illustrated in Fig. 20, the assembled platen unit 60 is then inserted between the print roll 85 and aluminium cutting blade 43.

Turning now to Fig. 21, by way of illumination, there is illustrated the electrically interactive components of the camera system. As noted previously, the components are based around a Flex PCB board and include a TAB film 58 which interconnects the printhead 102 with the image sensor and processing ehipintegrated circuit 48. Power is supplied by two AA type batteries 83, 84 and a paper drive stepper motor 16 is provided in addition to a rotary guillotine motor 17.

An optical element 31 is provided for snapping into a top portion of the chassis 12. The optical element 31 includes portions defining an optical view finder 32, 33 which are slotted into mating portions 35, 36 in view finder channel 37. Also provided in the optical element 31 is a lensing system 38 for magnification of the prints left number in addition to an optical pipe element 39 for piping light from the LED 5 for external display.

Turning next to Fig. 22, the assembled unit 90 is then inserted into a front outer case 91 which includes button 4 for activation of printouts.

Turning now to Fig. 23, next, the unit 90 is provided with a snap-on back cover 93 which includes a slot 6 and copy print button 7. A wrapper label containing instructions and advertising (not shown) is then wrapped around the outer surface of the camera system and pinch clamped to the cover by means of clamp strip 96 which can comprise a flexible plastic or rubber strip.

Subsequently, the preferred embodiment is ready for use as a one time use camera system that provides for instant output images on demand. It will be evident that the preferred embodiment further provides for a refillable camera system. A used camera can be collected and its outer plastic cases removed and recycled. A new paper roll and batteries can be added and the ink cartridge refilled. A series of automatic test routines can then be carried out to ensure that the printer is properly operational. Further, in order to ensure only authorised refills are conducted so as to enhance quality, routines in the on-chipintegrated circuit program ROM can be executed such that the camera authenticates the refilling station using a secure protocol. Upon authentication, the camera can reset an internal paper count and an external case can be fitted on the camera system with a new outer label. Subsequent packing and shipping can then take place.

It will be further readily evident to those skilled in the art that the program ROM can be modified so as to allow for a variety of digital processing routines. In addition to the digitally enhanced photographs optimised for mainstream consumer preferences, various other models can readily be provided through mere re-programming of the program ROM. For example, a sepia classic old fashion style output can be provided through a remapping of the colour mapping function. A further alternative is to provide for black and white outputs again through a suitable colour remapping algorithm. Minimum colour can also be provided to add a touch of colour to black and white prints to produce the effect that was traditionally used to colourize black and white photos. Further, passport photo output can be provided through suitable address remappings within the address generators. Further, edge filters can be utilised as is known in the field of image processing to produce sketched art styles. Further, classic wedding borders and designs can be placed around an output image in addition to the provision of relevant clip arts. For example, a wedding style camera might be provided. Further, a panoramic mode can be provided so as to output the well known panoramic format of images. Further, a postcard style output can be provided through the printing of postcards including postage on the back of a print roll surface. Further, cliparts can be provided for special events such as Halloween, Christmas etc. Further, kaleidoscopic effects can be provided through address remappings and wild colour effects can be provided through remapping of the colour

lookup table. Many other forms of special event cameras can be provided for example, cameras dedicated to the Olympics, movie tie-ins, advertising and other special events.

The operational mode of the camera can be programmed so that upon the depressing of the take photo a first image is sampled by the sensor array to determine irrelevant parameters. Next a second image is again captured which is utilised for the output. The captured image is then manipulated in accordance with any special requirements before being initially output on the paper roll. The LED light is then activated for a predetermined time during which the DRAM is refreshed so as to retain the image. If the print copy button is depressed during this predetermined time interval, a further copy of the photo is output. After the predetermined time interval where no use of the camera has occurred, the onboard CPU shuts down all power to the camera system until such time as the take button is again activated. In this way, substantial power savings can be realized.

Ink Jet Technologies

The embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.

The most significant problem with thermal inkjet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal inkjet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.

The most significant problem with piezoelectric inkjet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per print head, but is a major impediment to the fabrication of pagewide print heads with 19,200 nozzles.

Ideally, the inkjet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications. To meet the requirements of digital photography, new inkjet technologies have been created. The target features include:

low power (less than 10 Watts)
high resolution capability (1,600 dpi or more)

photographic quality output
low manufacturing cost
small size (pagewidth times minimum cross section)
high speed (< 2 seconds per page).

All of these features can be met or exceeded by the inkjet systems described below with differing levels of difficulty. 45 different inkjet technologies have been developed by the Assignee to give a wide range of choices for high volume manufacture. These technologies form part of separate applications assigned to the present Assignee as set out in the table below.

The inkjet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems

For ease of manufacture using standard process equipment, the print head is designed to be a monolithic 0.5 micron CMOS ehipintegrated circuit with MEMS post processing. For color photographic applications, the print head is 100 mm long, with a width which depends upon the inkjet type. The smallest print head designed is IJ38, which is 0.35 mm wide, giving a ehipintegrated circuit area of 35 square mm. The print heads each contain 19,200 nozzles plus data and control circuitry.

Ink is supplied to the back of the print head by injection molded plastic ink channels. The molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool. Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer. The print head is connected to the camera circuitry by tape automated bonding.

Cross-Referenced Applications

The following table is a guide to cross-referenced patent applications filed concurrently herewith and discussed hereinafter with the reference being utilized in subsequent tables when referring to a particular case:

Docket	Reference	Title	
No.			
IJ01US	IJ01	Radiant Plunger Ink Jet Printer	
IJ02US	IJ02	Electrostatic Ink Jet Printer	
IJ03US	IJ03	Planar Thermoelastic Bend Actuator Ink Jet	_
IJ04US	IJ04	Stacked Electrostatic Ink Jet Printer	

		
IJ05US	IJ05	Reverse Spring Lever Ink Jet Printer
IJ06US	IJ06	Paddle Type Ink Jet Printer
IJ07US	IJ07	Permanent Magnet Electromagnetic Ink Jet Printer
IJ08US	IJ08	Planar Swing Grill Electromagnetic Ink Jet Printer
IJ09US	IJ09	Pump Action Refill Ink Jet Printer
IJ10US	IJ10	Pulsed Magnetic Field Ink Jet Printer
IJ11US	IJ11	Two Plate Reverse Firing Electromagnetic Ink Jet Printer
IJ12US	IJ12	Linear Stepper Actuator Ink Jet Printer
IJ13US	IJ13	Gear Driven Shutter Ink Jet Printer
IJ14US	IJ14	Tapered Magnetic Pole Electromagnetic Ink Jet Printer
IJ15US	IJ15	Linear Spring Electromagnetic Grill Ink Jet Printer
IJ16US	IJ16	Lorenz Diaphragm Electromagnetic Ink Jet Printer
IJ17US	IJ17	PTFE Surface Shooting Shuttered Oscillating Pressure Ink Jet
		Printer
IJ18US	IJ18	Buckle Grip Oscillating Pressure Ink Jet Printer
IJ19US	IJ19	Shutter Based Ink Jet Printer
IJ20US	IJ20	Curling Calyx Thermoelastic Ink Jet Printer
IJ21US	IJ21	Thermal Actuated Ink Jet Printer
IJ22US	IJ22	Iris Motion Ink Jet Printer
IJ23US	IJ23	Direct Firing Thermal Bend Actuator Ink Jet Printer
IJ24US	IJ24	Conductive PTFE Ben Activator Vented Ink Jet Printer
IJ25US	IJ25	Magnetostrictive Ink Jet Printer
IJ26US	IJ26	Shape Memory Alloy Ink Jet Printer
IJ27US	IJ27	Buckle Plate Ink Jet Printer
IJ28US	IJ28	Thermal Elastic Rotary Impeller Ink Jet Printer
IJ29US	IJ29	Thermoelastic Bend Actuator Ink Jet Printer
IJ30US	IJ30	Thermoelastic Bend Actuator Using PTFE and Corrugated Copper
		Ink Jet Printer
IJ31US	IJ31	Bend Actuator Direct Ink Supply Ink Jet Printer
IJ32US	IJ32	A High Young's Modulus Thermoelastic Ink Jet Printer
IJ33US	IJ33	Thermally actuated slotted chamber wall ink jet printer
IJ34US	IJ34	Ink Jet Printer having a thermal actuator comprising an external
		coiled spring
<u> </u>		

IJ45US	IJ45	Coil Acutuated Magnetic Plate Ink Jet Printer
IJ44US	IJ44	Surface bend actuator vented ink supply ink jet printer
IJ43US	IJ43	Inverted Radial Back-Curling Thermoelastic Ink Jet
IJ42US	IJ42	Radial Back-Curling Thermoelastic Ink Jet
		element
IJ41US	IJ41	A thermally actuated ink jet printer including a tapered heater
		actuator units
IJ40US	IJ40	A thermally actuated ink jet printer having a series of thermal
IJ39US	IJ39	A single bend actuator cupped paddle ink jet printing device
IJ38US	IJ38	Dual Nozzle Single Horizontal Actuator Ink Jet
IJ37US	IJ37	Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet
IJ36US	IJ36	Dual Chamber Single Vertical Actuator Ink Jet
IJ35US	IJ35	Trough Container Ink Jet Printer

Tables of Drop-on-Demand Inkjets

Eleven important characteristics of the fundamental operation of individual inkjet nozzles have been identified. These characteristics are largely orthogonal, and so can be elucidated as an eleven dimensional matrix. Most of the eleven axes of this matrix include entries developed by the present assignee.

The following tables form the axes of an eleven dimensional table of inkjet types.

Actuator mechanism (18 types)

Basic operation mode (7 types)

Auxiliary mechanism (8 types)

Actuator amplification or modification method (17 types)

Actuator motion (19 types)

Nozzle refill method (4 types)

Method of restricting back-flow through inlet (10 types)

Nozzle clearing method (9 types)

Nozzle plate construction (9 types)

Drop ejection direction (5 types)

Ink type (7 types)

The complete eleven dimensional table represented by these axes contains 36.9 billion possible configurations of inkjet nozzle. While not all of the possible combinations

result in a viable inkjet technology, many million configurations are viable. It is clearly impractical to elucidate all of the possible configurations. Instead, certain inkjet types have been investigated in detail. These are designated IJ01 to IJ45 above.

Other inkjet configurations can readily be derived from these 45 examples by substituting alternative configurations along one or more of the 11 axes. Most of the IJ01 to IJ45 examples can be made into inkjet print heads with characteristics superior to any currently available inkjet technology.

Where there are prior art examples known to the inventor, one or more of these examples are listed in the examples column of the tables below. The IJ01 to IJ45 series are also listed in the examples column. In some cases, a printer may be listed more than once in a table, where it shares characteristics with more than one entry.

Suitable applications include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.

The information associated with the aforementioned 11 dimensional matrix are set out in the following tables.

Actuator mechanism (applied only to selected ink drops)

Actuator	Description	Advantages	Disadvantages	Examples
Mechanism				
Thermal bubble	An electrothermal heater heats the	Large force generated	High power	Canon Bubblejet 1979
	ink to above boiling point,	Simple construction	Ink carrier limited to water	Endo et al GB patent
	transferring significant heat to the	No moving parts	Low efficiency	2,007,162
	aqueous ink. A bubble nucleates	Fast operation	High temperatures required	Xerox heater-in-pit
	and quickly forms, expelling the	Small ehipintegrated circuit	High mechanical stress	1990 Hawkins et al
·	ink.	area required for actuator	Unusual materials required	USP 4,899,181
	The efficiency of the process is		Large drive transistors	Hewlett-Packard TIJ
	low, with typically less than		Cavitation causes actuator failure	1982 Vaught et al
·	0.05% of the electrical energy		Kogation reduces bubble formation	USP 4,490,728
	being transformed into kinetic		Large print heads are difficult to	
	energy of the drop.		fabricate	

Piezoelectric	A piezoelectric crystal such as	Low power consumption	Very large area required for actuator	Kyser et al USP
	lead lanthanum zirconate (PZT) is	Many ink types can be used	Difficult to integrate with electronics	3,946,398
	electrically activated, and either	Fast operation	High voltage drive transistors required	Zoltan USP 3,683,212
	expands, shears, or bends to apply	High efficiency	Full pagewidth print heads impractical	1973 Stemme USP
	pressure to the ink, ejecting drops.		due to actuator size	3,747,120
			Requires electrical poling in high field	Epson Stylus
			strengths during manufacture	Tektronix
	•			1104
Electro-strictive	An electric field is used to	Low power consumption	Low maximum strain (approx. 0.01%)	Seiko Epson, Usui et
	activate electrostriction in relaxor	Many ink types can be used	Large area required for actuator due to	all JP 253401/96
	materials such as lead lanthanum	Low thermal expansion	low strain	1104
	zirconate titanate (PLZT) or lead	Electric field strength	Response speed is marginal (~ 10 µs)	
	magnesium niobate (PMN).	required (approx. 3.5 V/μm)	High voltage drive transistors required	
		can be generated without	Full pagewidth print heads impractical	
		difficulty	due to actuator size	
		Does not require electrical		
		poling		

a phase transition betwee antiferroelectric (AFE) a ferroelectric (FE) phase. Perovskite materials such modified lead lanthanum zirconate titanate (PLZSr exhibit large strains of up associated with the AFE phase transition	n the nd nd ras tin T) to 1% to FE	Many ink types can be used Fast operation (< 1 µs) Relatively high longitudinal strain High efficiency Electric field strength of around 3 V/µm can be readily provided	Unusual materials such as PLZSnT are required Actuators require a large area	
antiferroelect ferroelectric (Perovskite m modified leac zirconate tita exhibit large associated wi	tin 1% E	peration (< 1 μs) vely high longitudinal efficiency ic field strength of d 3 V/μm can be y provided	required Actuators require a large area	
Perovskite manodified lead zirconate tital exhibit large associated with the phase transiti	tin 1%	vely high longitudinal efficiency ic field strength of d 3 V/µm can be y provided	Actuators require a large area	
Perovskite mandified lead zirconate tital exhibit large associated with associated with the phase transiti	tin 1%	strain High efficiency Electric field strength of around 3 V/µm can be readily provided		
modified lead zirconate tital exhibit large associated wi	18% E	High efficiency Electric field strength of around 3 V/µm can be readily provided		
zirconate tital exhibit large associated wi	1% E	Electric field strength of around 3 V/µm can be readily provided		
exhibit large associated wi		around 3 V/μm can be readily provided		
associated wi		readily provided		
nhase transiti				
	tion.			
Electrostatic Conductive p	Conductive plates are separated	Low power consumption	Difficult to operate electrostatic	1J02, 1J04
plates by a compress	by a compressible or fluid	Many ink types can be used	devices in an aqueous environment	
dielectric (usı	dielectric (usually air). Upon	Fast operation	The electrostatic actuator will	
application of	application of a voltage, the plates		normally need to be separated from	
attract each o	attract each other and displace		the ink	
ink, causing c	ink, causing drop ejection. The		Very large area required to achieve	
conductive pl	conductive plates may be in a		high forces	
comb or hone	comb or honeycomb structure, or		High voltage drive transistors may be	
stacked to inc	stacked to increase the surface	-	required	
area and there	area and therefore the force.		Full pagewidth print heads are not	
			competitive due to actuator size	

Electrostatic	A strong electric field is applied	Low current consumption	High voltage required	1989 Saito et al, USP
pull on ink	to the ink, whereupon electrostatic	Low temperature	May be damaged by sparks due to air	4,799,068
	attraction accelerates the ink		breakdown	1989 Miura et al, USP
	towards the print medium.		Required field strength increases as	4,810,954
			the drop size decreases	Tone-jet
			High voltage drive transistors required	
			Electrostatic field attracts dust	
Permanent	An electromagnet directly attracts	Low power consumption	Complex fabrication	1107, 1110
magnet electro-	a permanent magnet, displacing	Many ink types can be used	Permanent magnetic material such as	
magnetic	ink and causing drop ejection.	Fast operation	Neodymium Iron Boron (NdFeB)	
	Rare earth magnets with a field	High efficiency	required.	
	strength around 1 Tesla can be	Easy extension from single	High local currents required	
	used. Examples are: Samarium	nozzles to pagewidth print	Copper metalization should be used	
	Cobalt (SaCo) and magnetic	heads	for long electromigration lifetime and	
	materials in the neodymium iron		low resistivity	
	boron family (NdFeB,		Pigmented inks are usually infeasible	
	NdDyFeBNb, NdDyFeB, etc)		Operating temperature limited to the	
			Curie temperature (around 540 K)	

Soft magnetic	A solenoid induced a magnetic	Low power consumption	Complex fabrication	1101, 1105, 1108, 1110
core electro-	field in a soft magnetic core or	Many ink types can be used	Materials not usually present in a	1112, 1114, 1115, 1117
magnetic	yoke fabricated from a ferrous	Fast operation	CMOS fab such as NiFe, CoNiFe, or	
	material such as electroplated iron	High efficiency	CoFe are required	
	alloys such as CoNiFe [1], CoFe,	Easy extension from single	High local currents required	
	or NiFe alloys. Typically, the soft	nozzles to pagewidth print	Copper metalization should be used	
	magnetic material is in two parts,	heads	for long electromigration lifetime and	
	which are normally held apart by		low resistivity	
	a spring. When the solenoid is		Electroplating is required	
	actuated, the two parts attract,		High saturation flux density is	
•	displacing the ink.		required (2.0-2.1 T is achievable with	
			CoNiFe [1])	

		Div nouver concilmation	Force acte as a function motion	11106 1111 11113 1116
	THE LOISING TOLOG ACHING OIL A	Low power consumption	I OICE acts as a twisting inoutin	13.00, 13.11, 13.13, 13.14
Lorenz force c	current carrying wire in a	Many ink types can be used	Typically, only a quarter of the	
<u>u</u>	magnetic field is utilized.	Fast operation	solenoid length provides force in a	
	This allows the magnetic field to	High efficiency	useful direction	
<u>-</u>	be supplied externally to the print	Easy extension from single	High local currents required	
<u> </u>	head, for example with rare earth	nozzles to pagewidth print	Copper metalization should be used	
d	permanent magnets.	heads	for long electromigration lifetime and	
<u> </u>	Only the current carrying wire		low resistivity	
<u>u</u>	need be fabricated on the print-		Pigmented inks are usually infeasible	
<u>ч</u>	head, simplifying materials			
<u> </u>	requirements.			
Magneto- T	The actuator uses the giant	Many ink types can be used	Force acts as a twisting motion	Fischenbeck, USP
striction	magnetostrictive effect of	Fast operation	Unusual materials such as Terfenol-D	4,032,929
	materials such as Terfenol-D (an	Easy extension from single	are required	1325
· æ	alloy of terbium, dysprosium and	nozzles to pagewidth print	High local currents required	
ï	iron developed at the Naval	heads	Copper metalization should be used	
<u>O</u>	Ordnance Laboratory, hence Ter-	High force is available	for long electromigration lifetime and	
	Fe-NOL). For best efficiency, the		low resistivity	
<u>8</u>	actuator should be pre-stressed to		Pre-stressing may be required	
a	approx. 8 MPa.			

Surface tension	Ink under positive pressure is held	Low power consumption	Requires supplementary force to effect	Silverbrook, EP 0771
reduction	in a nozzle by surface tension.	Simple construction	drop separation	658 A2 and related
	The surface tension of the ink is	No unusual materials	Requires special ink surfactants	patent applications
	reduced below the bubble	required in fabrication	Speed may be limited by surfactant	
	threshold, causing the ink to	High efficiency	properties	
	egress from the nozzle.	Easy extension from single		
		nozzles to pagewidth print		
		heads		
Viscosity	The ink viscosity is locally	Simple construction	Requires supplementary force to effect	Silverbrook, EP 0771
reduction	reduced to select which drops are	No unusual materials	drop separation	658 A2 and related
	to be ejected. A viscosity	required in fabrication	Requires special ink viscosity	patent applications
	reduction can be achieved	Easy extension from single	properties	
	electrothermally with most inks,	nozzles to pagewidth print	High speed is difficult to achieve	
	but special inks can be engineered	heads	Requires oscillating ink pressure	
	for a 100:1 viscosity reduction.		A high temperature difference	
			(typically 80 degrees) is required	
Acoustic	An acoustic wave is generated and	Can operate without a	Complex drive circuitry	1993 Hadimioglu et
	focussed upon the drop ejection	nozzle plate	Complex fabrication	al, EUP 550,192
	region.		Low efficiency	1993 Elrod et al, EUP
			Poor control of drop position	572,220
			Poor control of drop volume	

1J03, IJ09, IJ17, IJ18	1119, 1120, 1121, 1122	1123, 1124, 1127, 1128	1J29, IJ30, IJ31, IJ32	1133, 1134, 1135, 1136	1137, 1138, 1139, 1140	1141								
Efficient aqueous operation requires a	thermal insulator on the hot side	Corrosion prevention can be difficult	Pigmented inks may be infeasible, as	pigment particles may jam the bend	actuator									
Low power consumption	Many ink types can be used	Simple planar fabrication	Small ehipintegrated circuit	area required for each	actuator	Fast operation	High efficiency	CMOS compatible voltages	and currents	Standard MEMS processes	can be used	Easy extension from single	nozzles to pagewidth print	heads
An actuator which relies upon	differential thermal expansion	upon Joule heating is used.												
Thermoelastic	bend actuator													

High CTE	A material with a very high	High force can be generated	Requires special material (e.g. PTFE)	1J09, 1J17, 1J18, 1J20
thermoelastic	coefficient of thermal expansion	PTFE is a candidate for low	Requires a PTFE deposition process,	1321, 1322, 1323, 1324
actuator	(CTE) such as	dielectric constant insulation	which is not yet standard in ULSI fabs	1127, 1128, 1129, 1130
	polytetrafluoroethylene (PTFE) is	in ULSI	PTFE deposition cannot be followed	1131, 1142, 1143, 1144
	used. As high CTE materials are	Very low power	with high temperature (above 350 °C)	
	usually non-conductive, a heater	consumption	processing	
	fabricated from a conductive	Many ink types can be used	Pigmented inks may be infeasible, as	
	material is incorporated. A 50 µm	Simple planar fabrication	pigment particles may jam the bend	
	long PTFE bend actuator with	Small ehipintegrated circuit	actuator	
	polysilicon heater and 15 mW	area required for each		-
	power input can provide 180 μN	actuator		
	force and 10 µm deflection.	Fast operation		
	Actuator motions include:	High efficiency		
	Bend	CMOS compatible voltages		
	Push	and currents		
	Buckle	Easy extension from single		
	Rotate	nozzles to pagewidth print		
		heads		

~				
Conductive	A polymer with a high coefficient	High torce can be generated	Requires special materials	1324
polymer	of thermal expansion (such as	Very low power	development (High CTE conductive	
thermoelastic	PTFE) is doped with conducting	consumption	polymer)	
actuator	substances to increase its	Many ink types can be used	Requires a PTFE deposition process,	
	conductivity to about 3 orders of	Simple planar fabrication	which is not yet standard in ULSI fabs	
	magnitude below that of copper.	Small ehipintegrated circuit	PTFE deposition cannot be followed	
	The conducting polymer expands	area required for each	with high temperature (above 350 °C)	
	when resistively heated.	actuator	processing	
	Examples of conducting dopants	Fast operation	Evaporation and CVD deposition	
	include:	High efficiency	techniques cannot be used	
	Carbon nanotubes	CMOS compatible voltages	Pigmented inks may be infeasible, as	
	Metal fibers	and currents	pigment particles may jam the bend	
	Conductive polymers such as	Easy extension from single	actuator	
	doped polythiophene	nozzles to pagewidth print		
	Carbon granules	heads		

Shape memory	A shape memory alloy such as	High force is available	Fatigue limits maximum number of	1326
alloy	TiNi (also known as Nitinol -	(stresses of hundreds of	cycles	
	Nickel Titanium alloy developed	MPa)	Low strain (1%) is required to extend	
	at the Naval Ordnance	Large strain is available	fatigue resistance	
	Laboratory) is thermally switched	(more than 3%)	Cycle rate limited by heat removal	
	between its weak martensitic state	High corrosion resistance	Requires unusual materials (TiNi)	
	and its high stiffness austenic	Simple construction	The latent heat of transformation must	
	state. The shape of the actuator in	Easy extension from single	be provided	
	its martensitic state is deformed	nozzles to pagewidth print	High current operation	
	relative to the austenic shape. The	heads	Requires pre-stressing to distort the	
	shape change causes ejection of a	Low voltage operation	martensitic state	
	drop.			

Linear Magnetic	Linear magnetic actuators include	Linear Magnetic actuators	Requires unusual semiconductor	1112
Actuator	the Linear Induction Actuator	can be constructed with high	materials such as soft magnetic alloys	
	(LIA), Linear Permanent Magnet	thrust, long travel, and high	(e.g. CoNiFe [1])	
	Synchronous Actuator (LPMSA),	efficiency using planar	Some varieties also require permanent	
	Linear Reluctance Synchronous	semiconductor fabrication	magnetic materials such as	
	Actuator (LRSA), Linear	techniques	Neodymium iron boron (NdFeB)	
	Switched Reluctance Actuator	Long actuator travel is	Requires complex multi-phase drive	
	(LSRA), and the Linear Stepper	available	circuitry	
	Actuator (LSA).	Medium force is available	High current operation	
		Low voltage operation		

Basic operation mode

Operational	Description	Advantages	Disadvantages	Examples
mode				

Actuator	This is the simplest mode of	Simple operation	Drop repetition rate is usually limited	Thermal inkjet
directly pushes	operation: the actuator directly	No external fields required	to less than 10 KHz. However, this is	Piezoelectric inkjet
ink	supplies sufficient kinetic energy	Satellite drops can be	not fundamental to the method, but is	1J01, IJ02, IJ03, IJ04
	to expel the drop. The drop must	avoided if drop velocity is	related to the refill method normally	1105, 1106, 1107, 1109
	have a sufficient velocity to	less than 4 m/s	nseq	IJ11, IJ12, IJ14, IJ16
	overcome the surface tension.	Can be efficient, depending	All of the drop kinetic energy must be	1J20, IJ22, IJ23, IJ24
		upon the actuator used	provided by the actuator	1125, 1126, 1127, 1128
			Satellite drops usually form if drop	1129, 1130, 1131, 1132
			velocity is greater than 4.5 m/s	1133, 1134, 1135, 1136
				1137, 1138, 1139, 1140
				1141, 1142, 1143, 1144
Proximity	The drops to be printed are	Very simple print head	Requires close proximity between the	Silverbrook, EP 0771
	selected by some manner (e.g.	fabrication can be used	print head and the print media or	658 A2 and related
	thermally induced surface tension	The drop selection means	transfer roller	patent applications
	reduction of pressurized ink).	does not need to provide the	May require two print heads printing	
	Selected drops are separated from	energy required to separate	alternate rows of the image	
	the ink in the nozzle by contact	the drop from the nozzle	Monolithic color print heads are	
	with the print medium or a		difficult	
	transfer roller.			

Electrostatic	The drops to be printed are	Very simple print head	Requires very high electrostatic field	Silverbrook, EP 0771
pull on ink	selected by some manner (e.g.	fabrication can be used	Electrostatic field for small nozzle	658 A2 and related
	thermally induced surface tension	The drop selection means	sizes is above air breakdown	patent applications
	reduction of pressurized ink).	does not need to provide the	Electrostatic field may attract dust	Tone-Jet
	Selected drops are separated from	energy required to separate		
	the ink in the nozzle by a strong	the drop from the nozzle		
	electric field.			
Magnetic pull	The drops to be printed are	Very simple print head	Requires magnetic ink	Silverbrook, EP 0771
on ink	selected by some manner (e.g.	fabrication can be used	Ink colors other than black are	658 A2 and related
	thermally induced surface tension	The drop selection means	difficult	patent applications
	reduction of pressurized ink).	does not need to provide the	Requires very high magnetic fields	
	Selected drops are separated from	energy required to separate		
	the ink in the nozzle by a strong	the drop from the nozzle		
	magnetic field acting on the			
	magnetic ink.			

Shutter	The actuator moves a shutter to	High speed (>50 KHz)	Moving parts are required	1J13, IJ17, IJ21
	block ink flow to the nozzle. The	operation can be achieved	Requires ink pressure modulator	
	ink pressure is pulsed at a	due to reduced refill time	Friction and wear must be considered	
	multiple of the drop ejection	Drop timing can be very	Stiction is possible	
	frequency.	accurate		
		The actuator energy can be		
		very low		
Shuttered grill	The actuator moves a shutter to	Actuators with small travel	Moving parts are required	1J08, 1J15, 1J18, 1J19
	block ink flow through a grill to	can be used	Requires ink pressure modulator	
	the nozzle. The shutter movement	Actuators with small force	Friction and wear must be considered	
	need only be equal to the width of	can be used	Stiction is possible	
	the grill holes.	High speed (>50 KHz)		
		operation can be achieved		
Pulsed magnetic	A pulsed magnetic field attracts	Extremely low energy	Requires an external pulsed magnetic	IJ10
pull on ink	an 'ink pusher' at the drop	operation is possible	field	
pusher	ejection frequency. An actuator	No heat dissipation	Requires special materials for both the	
	controls a catch, which prevents	problems	actuator and the ink pusher	
	the ink pusher from moving when		Complex construction	
	a drop is not to be ejected.			

Auxiliary mechanism (applied to all nozzles)

Auxiliary	Description	Advantages	Disadvantages	Examples
Mechanism				
None	The actuator directly fires the ink	Simplicity of construction	Drop ejection energy must be supplied	Most inkjets,
	drop, and there is no external field	Simplicity of operation	by individual nozzle actuator	including piezoelectric
	or other mechanism required.	Small physical size		and thermal bubble.
				IJ01- IJ07, IJ09, IJ11
				1112, 1114, 1120, 1122
				1J23-IJ45
Oscillating ink	The ink pressure oscillates,	Oscillating ink pressure can	Requires external ink pressure	Silverbrook, EP 0771
pressure	providing much of the drop	provide a refill pulse,	oscillator	658 A2 and related
(including	ejection energy. The actuator	allowing higher operating	Ink pressure phase and amplitude must	patent applications
acoustic	selects which drops are to be fired	speed	be carefully controlled	1108, 1113, 1115, 1117
stimulation)	by selectively blocking or	The actuators may operate	Acoustic reflections in the ink	1118, 1119, 1121
	enabling nozzles. The ink pressure	with much lower energy	chamber must be designed for	
	oscillation may be achieved by	Acoustic lenses can be used		
	vibrating the print head, or	to focus the sound on the		
	preferably by an actuator in the	nozzles		
	ink supply.			

proximity proxim Selecte		Low power	Precision assembly required	Silverbrook, EP 0771
Selecte	proximity to the print medium.	High accuracy	Paper fibers may cause problems	658 A2 and related
	Selected drops protrude from the	Simple print head		patent applications
print h	print head further than unselected	construction		
drops,	drops, and contact the print			
mediur	medium. The drop soaks into the			
mediur	medium fast enough to cause drop			
separation.	tion.			
Transfer roller Drops	Drops are printed to a transfer	High accuracy	Bulky	Silverbrook, EP 0771
roller ii	roller instead of straight to the	Wide range of print	Expensive	658 A2 and related
print m	print medium. A transfer roller	substrates can be used	Complex construction	patent applications
can also	can also be used for proximity	Ink can be dried on the		Tektronix hot melt
drop se	drop separation.	transfer roller		piezoelectric inkjet
				Any of the IJ series
Electrostatic An elec	An electric field is used to	Low power	Field strength required for separation	Silverbrook, EP 0771
acceler	accelerate selected drops towards	Simple print head	of small drops is near or above air	658 A2 and related
the prir	the print medium.	construction	breakdown	patent applications
				Tone-Jet

1.

Direct magnetic	A magnetic field is used to	Low power	Requires magnetic ink	Silverbrook, EP 0771
field	accelerate selected drops of	Simple print head	Requires strong magnetic field	658 A2 and related
	magnetic ink towards the print	construction		patent applications
	medium.			
Cross magnetic	The print head is placed in a	Does not require magnetic	Requires external magnet	1106, 1116
field	constant magnetic field. The	materials to be integrated in	Current densities may be high,	
	Lorenz force in a current carrying	the print head	resulting in electromigration problems	
	wire is used to move the actuator.	manufacturing process		
Pulsed magnetic	A pulsed magnetic field is used to	Very low power operation is	Complex print head construction	1110
field	cyclically attract a paddle, which	possible	Magnetic materials required in print	
	pushes on the ink. A small	Small print head size	head	
	actuator moves a catch, which			
	selectively prevents the paddle			
	from moving.			

Actuator amplification or modification method

Actuator	Description	Advantages	Disadvantages	Examples
amplification				
None	No actuator mechanical	Operational simplicity	Many actuator mechanisms have	Thermal Bubble Inkjet
	amplification is used. The actuator		insufficient travel, or insufficient	1101, 1102, 1106, 1107
	directly drives the drop ejection		force, to efficiently drive the drop	1116, 1125, 1126
	process.		ejection process	

Differential	An actuator material expands	Provides greater travel in a	High stresses are involved	Piezoelectric
expansion bend	more on one side than on the	reduced print head area	Care must be taken that the materials	1J03, IJ09, IJ17-IJ24
actuator	other. The expansion may be	The bend actuator converts	do not delaminate	1J27, IJ29-IJ39, IJ42,
	thermal, piezoelectric,	a high force low travel	Residual bend resulting from high	1143, 1144
	magnetostrictive, or other	actuator mechanism to high	temperature or high stress during	
	mechanism.	travel, lower force	formation	
		mechanism.		
Transient bend	A trilayer bend actuator where the	Very good temperature	High stresses are involved	1140, 1141
actuator	two outside layers are identical.	stability	Care must be taken that the materials	
	This cancels bend due to ambient	High speed, as a new drop	do not delaminate	
	temperature and residual stress.	can be fired before heat		
	The actuator only responds to	dissipates		
	transient heating of one side or the	Cancels residual stress of		
	other.	formation		
Actuator stack	A series of thin actuators are	Increased travel	Increased fabrication complexity	Some piezoelectric
	stacked. This can be appropriate	Reduced drive voltage	Increased possibility of short circuits	ink jets
	where actuators require high		due to pinholes	1304
	electric field strength, such as			
	electrostatic and piezoelectric			
	actuators.			

Multiple	Multiple smaller actuators are	Increases the force available	Actuator forces may not add linearly,	1112, 1113, 1118, 1120
actuators	used simultaneously to move the	from an actuator	reducing efficiency	1122, 1128, 1142, 1143
	ink. Each actuator need provide	Multiple actuators can be		
	only a portion of the force	positioned to control ink		
185-	required.	flow accurately		
Linear Spring	A linear spring is used to	Matches low travel actuator	Requires print head area for the spring	1115
	transform a motion with small	with higher travel		
	travel and high force into a longer	requirements	•	
	travel, lower force motion.	Non-contact method of		
		motion transformation		
Reverse spring	The actuator loads a spring. When	Better coupling to the ink	Fabrication complexity	1105, 1111
	the actuator is turned off, the		High stress in the spring	
	spring releases. This can reverse			
	the force/distance curve of the			
	actuator to make it compatible			
	with the force/time requirements			
	of the drop ejection.			

Coiled actuator	A bend actuator is coiled to	Increases travel	Generally restricted to planar	1117, 1121, 1134, 1135
	provide greater travel in a reduced	Reduces ehipintegrated	implementations due to extreme	
	ehipintegrated circuit area.	<u>circuit</u> area	fabrication difficulty in other	
		Planar implementations are	orientations.	-
		relatively easy to fabricate.		
Flexure bend	A bend actuator has a small	Simple means of increasing	Care must be taken not to exceed the	1J10, IJ19, IJ33
actuator	region near the fixture point,	travel of a bend actuator	elastic limit in the flexure area	
	which flexes much more readily		Stress distribution is very uneven	
	than the remainder of the actuator.		Difficult to accurately model with	
	The actuator flexing is effectively		finite element analysis	
	converted from an even coiling to			
	an angular bend, resulting in			
	greater travel of the actuator tip.			
Gears	Gears can be used to increase	Low force, low travel	Moving parts are required	1J13
	travel at the expense of duration.	actuators can be used	Several actuator cycles are required	
	Circular gears, rack and pinion,	Can be fabricated using	More complex drive electronics	
	ratchets, and other gearing	standard surface MEMS	Complex construction	
	methods can be used.	processes	Friction, friction, and wear are	
			possible	

Catch	The actuator controls a small	Very low actuator energy	Complex construction	1310
	catch. The catch either enables or	Very small actuator size	Requires external force	
	disables movement of an ink		Unsuitable for pigmented inks	
	pusher that is controlled in a bulk			
	manner.			
Buckle plate	A buckle plate can be used to	Very fast movement	Must stay within elastic limits of the	S. Hirata et al, "An
	change a slow actuator into a fast	achievable	materials for long device life	Ink-jet Head",
	motion. It can also convert a high		High stresses involved	Proc. IEEE MEMS,
	force, low travel actuator into a		Generally high power requirement	Feb. 1996, pp 418-
	high travel, medium force motion.			423.
				1118, 1127
Tapered	A tapered magnetic pole can	Linearizes the magnetic	Complex construction	IJ14
magnetic pole	increase travel at the expense of	force/distance curve		
	force.			
Lever	A lever and fulcrum is used to	Matches low travel actuator	High stress around the fulcrum	1132, 1136, 1137
	transform a motion with small	with higher travel		
	travel and high force into a	requirements		
	motion with longer travel and	Fulcrum area has no linear		
	lower force. The lever can also	movement, and can be used		
	reverse the direction of travel.	for a fluid seal		

Rotary impeller	The actuator is connected to a	High mechanical advantage	Complex construction	1128
	rotary impeller. A small angular	The ratio of force to travel	Unsuitable for pigmented inks	-
	deflection of the actuator results	of the actuator can be		
	in a rotation of the impeller vanes,	matched to the nozzle		
	which push the ink against	requirements by varying the		
	stationary vanes and out of the	number of impeller vanes		
	nozzle.			
Acoustic lens	A refractive or diffractive (e.g.	No moving parts	Large area required	1993 Hadimioglu et
	zone plate) acoustic lens is used to		Only relevant for acoustic ink jets	al, EUP 550,192
	concentrate sound waves.			1993 Elrod et al, EUP
				572,220
Sharp	A sharp point is used to	Simple construction	Difficult to fabricate using standard	Tone-jet
conductive	concentrate an electrostatic field.		VLSI processes for a surface ejecting	
point			ink-jet	
			Only relevant for electrostatic ink jets	

Actuator motion

vetuator motion	Description	Advantages	Disadvantages	Examples

Volume	The volume of the actuator	Simple construction in the	High energy is typically required to	Hewlett-Packard
expansion	changes, pushing the ink in all	case of thermal ink jet	achieve volume expansion. This leads	Thermal Inkjet
	directions.		to thermal stress, cavitation, and	Canon Bubblejet
			kogation in thermal ink jet	
			implementations	
Linear, normal	The actuator moves in a direction	Efficient coupling to ink	High fabrication complexity may be	1301, 1302, 1304, 1307
to	normal to the print head surface.	drops ejected normal to the	required to achieve perpendicular	1111, 1114
ehipintegrated	The nozzle is typically in the line	surface	motion	
circuit surface	of movement.			
Linear, parallel	The actuator moves parallel to the	Suitable for planar	Fabrication complexity	1112, 1113, 1115, 1133,
to	print head surface. Drop ejection	fabrication	Friction	1134, 1135, 1136
ehipintegrated	may still be normal to the surface.		Stiction	
circuit surface				
Membrane push	An actuator with a high force but	The effective area of the	Fabrication complexity	1982 Howkins USP
	small area is used to push a stiff	actuator becomes the	Actuator size	4,459,601
	membrane that is in contact with	membrane area	Difficulty of integration in a VLSI	
	the ink.		process	
Rotary	The actuator causes the rotation of	Rotary levers may be used	Device complexity	1105, 1108, 1113, 1128
	some element, such a grill or	to increase travel	May have friction at a pivot point	
	impeller	Small chipintegrated circuit		
		area requirements		-

Bend	The actuator bends when	A very small change in	Requires the actuator to be made from	1970 Kyser et al USP
	energized. This may be due to	dimensions can be	at least two distinct layers, or to have a	3,946,398
	differential thermal expansion,	converted to a large motion.	thermal difference across the actuator	1973 Stemme USP
	piezoelectric expansion,			3,747,120
	magnetostriction, or other form of			1103, 1109, 1110, 1119
	relative dimensional change.			1123, 1124, 1125, 1129
<u>.</u>				1130, 1131, 1133, 1134
				1135
Swivel	The actuator swivels around a	Allows operation where the	Inefficient coupling to the ink motion	90fI
	central pivot. This motion is	net linear force on the		
	suitable where there are opposite	paddle is zero		
	forces applied to opposite sides of	Small ehipintegrated circuit		
	the paddle, e.g. Lorenz force.	area requirements		
Straighten	The actuator is normally bent, and	Can be used with shape	Requires careful balance of stresses to	1126, 1132
	straightens when energized.	memory alloys where the	ensure that the quiescent bend is	
		austenic phase is planar	accurate	

direction when one element is energized, and bends the other way when another element is energized. Shear Energizing the actuator causes shear motion in the actuator material. Radial The actuator squeezes an ink reservoir, forcing ink from a constriction constricted nozzle.	is ses a	power two nozzles. Reduced ehipintegrated circuit size. Not sensitive to ambient temperature Can increase the effective travel of piezoelectric actuators	both bend directions identical. A small efficiency loss compared to equivalent single bend actuators. Not readily applicable to other actuator mechanisms	
r al triction	ses a		A small efficiency loss compared to equivalent single bend actuators. Not readily applicable to other actuator mechanisms	
r al triction	ses a		equivalent single bend actuators. Not readily applicable to other actuator mechanisms	
r al triction	ses a		Not readily applicable to other actuator mechanisms	
r al triction	ses a		Not readily applicable to other actuator mechanisms	-
r al triction	ses a		Not readily applicable to other actuator mechanisms	
al triction			actuator mechanisms	1985 Fishbeck USP
al triction		actuators		4,584,590
al triction				
		Relatively easy to fabricate	High force required	1970 Zoltan USP
constricted nozzle		single nozzles from glass	Inefficient	3,683,212
		tubing as macroscopic	Difficult to integrate with VLSI	
		structures	processes	
Coil / uncoil A coiled actuator uncoils or coils		Easy to fabricate as a planar	Difficult to fabricate for non-planar	1117, 1121, 1134, 1135
more tightly. The motion of the		VLSI process	devices	
free end of the actuator ejects the		Small area required,	Poor out-of-plane stiffness	
ink.		therefore low cost		
Bow The actuator bows (or buckles) in		Can increase the speed of	Maximum travel is constrained	IJ16, IJ18, IJ27
the middle when energized.		travel	High force required	
		Mechanically rigid		

D.,ck D.,11	Trees contractions constant a street	7.1.		
IIn I-lien I	I WU ACTUATOIS CONTINOI A SIMILET.	ine structure is pinned at	Not readily suitable for inkjets which	1318
	One actuator pulls the shutter, and	both ends, so has a high out-	directly push the ink	
	the other pushes it.	of-plane rigidity		
Curl inwards	A set of actuators curl inwards to	Good fluid flow to the	Design complexity	1120, 1142
	reduce the volume of ink that they	region behind the actuator		•
	enclose.	increases efficiency		
Curl outwards	A set of actuators curl outwards,	Relatively simple	Relatively large chipintegrated circuit	1J43
	pressurizing ink in a chamber	construction	area	
	surrounding the actuators, and			
	expelling ink from a nozzle in the			
	chamber.			
Iris	Multiple vanes enclose a volume	High efficiency	High fabrication complexity	1J22
	of ink. These simultaneously	Small ehipintegrated circuit	Not suitable for pigmented inks	
	rotate, reducing the volume	area		_
	between the vanes.			
Acoustic	The actuator vibrates at a high	The actuator can be	Large area required for efficient	1993 Hadimioglu et
vibration	frequency.	physically distant from the	operation at useful frequencies	al, EUP 550,192
		ink	Acoustic coupling and crosstalk	1993 Elrod et al, EUP
			Complex drive circuitry	572,220
			Poor control of drop volume and	
			position	

None	In various ink jet designs the	No moving parts	Various other tradeoffs are required to	Silverbrook, EP 0771
	actuator does not move.		eliminate moving parts	658 A2 and related
				patent applications
				Tone-jet

Nozzle refill method

Nozzle refill	Description	Advantages	Disadvantages	Examples
method				
Surface tension	After the actuator is energized, it	Fabrication simplicity	Low speed	Thermal inkjet
	typically returns rapidly to its	Operational simplicity	Surface tension force relatively small	Piezoelectric inkjet
	normal position. This rapid return		compared to actuator force	IJ01-IJ07, IJ10-IJ14
	sucks in air through the nozzle		Long refill time usually dominates the	1116, 1120, 1122-1145
	opening. The ink surface tension		total repetition rate	
	at the nozzle then exerts a small			
	force restoring the meniscus to a			
	minimum area.			

;

Shuttered	Ink to the nozzle chamber is	High speed	Requires common ink pressure	1108, 1113, 1115, 1117
oscillating ink	provided at a pressure that	Low actuator energy, as the	oscillator	1118, 1119, 1121
pressure	oscillates at twice the drop	actuator need only open or	May not be suitable for pigmented	
	ejection frequency. When a drop	close the shutter, instead of	inks	
	is to be ejected, the shutter is	ejecting the ink drop		
	opened for 3 half cycles: drop			
	ejection, actuator return, and			
	refill.			
Refill actuator	After the main actuator has	High speed, as the nozzle is	Requires two independent actuators	60fI
	ejected a drop a second (refill)	actively refilled	per nozzle	
	actuator is energized. The refill			
	actuator pushes ink into the nozzle			
	chamber. The refill actuator			
	returns slowly, to prevent its			
	return from emptying the chamber			
	again.			

Positive ink	The ink is held a slight positive	High refill rate, therefore a	Surface spill must be prevented	Silverbrook, EP 0771
pressure	pressure. After the ink drop is	high drop repetition rate is	Highly hydrophobic print head	658 A2 and related
	ejected, the nozzle chamber fills	possible	surfaces are required	patent applications
	quickly as surface tension and ink			Alternative for:
	pressure both operate to refill the			IJ01-IJ07, IJ10-IJ14
	nozzle.			1J16, 1J20, IJ22-IJ45

Method of restricting back-flow through inlet

Inlet back-flow	Description	Advantages	Disadvantages	Examples
restriction				
method				
Long inlet	The ink inlet channel to the nozzle	Design simplicity	Restricts refill rate	Thermal inkjet
channel	chamber is made long and	Operational simplicity	May result in a relatively large	Piezoelectric inkjet
	relatively narrow, relying on	Reduces crosstalk	ehipintegrated circuit area	1142, 1143
	viscous drag to reduce inlet back-		Only partially effective	_
	flow.			

Positive ink	The ink is under a positive	Drop selection and	Requires a method (such as a nozzle	Silverbrook, EP 0771
pressure	pressure, so that in the quiescent	separation forces can be	rim or effective hydrophobizing, or	658 A2 and related
	state some of the ink drop already	reduced	both) to prevent flooding of the	patent applications
	protrudes from the nozzle.	Fast refill time	ejection surface of the print head.	Possible operation of
	This reduces the pressure in the			the following:
	nozzle chamber which is required			IJ01-IJ07, IJ09- IJ12
	to eject a certain volume of ink.			1114, 1116, 1120, 1122,
	The reduction in chamber			IJ23-IJ34, IJ36- IJ41
	pressure results in a reduction in			1344
	ink pushed out through the inlet.			
Baffle	One or more baffles are placed in	The refill rate is not as	Design complexity	HP Thermal Ink Jet
	the inlet ink flow. When the	restricted as the long inlet	May increase fabrication complexity	Tektronix
	actuator is energized, the rapid ink	method.	(e.g. Tektronix hot melt Piezoelectric	piezoelectric ink jet
	movement creates eddies which	Reduces crosstalk	print heads).	
	restrict the flow through the inlet.			
	The slower refill process is			
	unrestricted, and does not result in			
	eddies.			

Flexible flap	In this method recently disclosed	Significantly reduces back-	Not applicable to most inkjet	Canon
restricts inlet	by Canon, the expanding actuator	flow for edge-shooter	configurations	
	(bubble) pushes on a flexible flap	thermal ink jet devices	Increased fabrication complexity	
	that restricts the inlet.		Inelastic deformation of polymer flap	
			results in creep over extended use	
Inlet filter	A filter is located between the ink	Additional advantage of ink	Restricts refill rate	1104, 1112, 1124, 1127
	inlet and the nozzle chamber. The	filtration	May result in complex construction	1J29, IJ30
	filter has a multitude of small	Ink filter may be fabricated		
	holes or slots, restricting ink flow.	with no additional process		
	The filter also removes particles	steps		
	which may block the nozzle.			
Small inlet	The ink inlet channel to the nozzle	Design simplicity	Restricts refill rate	1J02, 1J37, 1J44
compared to	chamber has a substantially		May result in a relatively large	
nozzle	smaller cross section than that of		ehipintegrated circuit area	
	the nozzle, resulting in easier ink		Only partially effective	
	egress out of the nozzle than out			
	of the inlet.			
Inlet shutter	A secondary actuator controls the	Increases speed of the ink-	Requires separate refill actuator and	1109
	position of a shutter, closing off	jet print head operation	drive circuit	
	the ink inlet when the main	•		
	actuator is energized.			

The inlet is	The method avoids the problem of	Back-flow problem is	Requires careful design to minimize	1J01, 1J03, 1J05, 1J06
located behind	inlet back-flow by arranging the	eliminated	the negative pressure behind the	1107, 1110, 1111, 1114
the ink-pushing	ink-pushing surface of the		paddle	1116, 1122, 1123, 1125
surface	actuator between the inlet and the			1128, 1131, 1132, 1133
	nozzle.			1134, 1135, 1136, 1139
				1140, 1141
Part of the	The actuator and a wall of the ink	Significant reductions in	Small increase in fabrication	1307, 1320, 1326, 1338
actuator moves	chamber are arranged so that the	back-flow can be achieved	complexity	
to shut off the	motion of the actuator closes off	Compact designs possible		
inlet	the inlet.			
Nozzle actuator	In some configurations of ink jet,	Ink back-flow problem is	None related to ink back-flow on	Silverbrook, EP 0771
does not result	there is no expansion or	eliminated	actuation	658 A2 and related
in ink back-flow	movement of an actuator which			patent applications
	may cause ink back-flow through			Valve-jet
	the inlet.			Tone-jet
				1108, 1113, 1115, 1117
				1J18, 1J19, 1J21
Nozzle Clearing Method	Method			
Nozzle Clearing	Description	Advantages	Disadvantages	Examples
method				

Normal nozzle	All of the nozzles are fired	No added complexity on the	May not be sufficient to displace dried	Most ink jet systems
firing	periodically, before the ink has a	print head	ink	1J01-1J07, IJ09-IJ12
	chance to dry. When not in use			1J14, IJ16, IJ20, IJ22
	the nozzles are sealed (capped)			1123-1134, 1136-1145
	against air.			
	The nozzle firing is usually			
	performed during a special		•	
	clearing cycle, after first moving			
	the print head to a cleaning			
	station.			
Extra power to	In systems which heat the ink, but	Can be highly effective if	Requires higher drive voltage for	Silverbrook, EP 0771
ink heater	do not boil it under normal	the heater is adjacent to the	clearing	658 A2 and related
	situations, nozzle clearing can be	nozzle	May require larger drive transistors	patent applications
	achieved by over-powering the			
	heater and boiling ink at the			
	nozzle.			

Rapid	The actuator is fired in rapid	Does not require extra drive	Effectiveness depends substantially	May be used with:
succession of	succession. In some	circuits on the print head	upon the configuration of the inkjet	1101-1107, 1109-11111
actuator pulses	configurations, this may cause	Can be readily controlled	nozzle	1114, 1116, 1120, 1122
	heat build-up at the nozzle which	and initiated by digital logic		1J23-IJ25, IJ27-IJ34
	boils the ink, clearing the nozzle.			136-1345
	In other situations, it may cause			
	sufficient vibrations to dislodge			
	clogged nozzles.			
Extra power to	Where an actuator is not normally	A simple solution where	Not suitable where there is a hard limit	May be used with:
ink pushing	driven to the limit of its motion,	applicable	to actuator movement	1103, 1109, 1116, 1120
actuator	nozzle clearing may be assisted by			1123, 1124, 1125, 1127
	providing an enhanced drive			1129, 1130, 1131, 1132
	signal to the actuator.			1139, 1140, 1141, 1142
				1143, 1144, 1145

Acoustic	An ultrasonic wave is applied to	A high nozzle clearing	High implementation cost if system	1J08, 1J13, 1J15, 1J17
resonance	the ink chamber. This wave is of	capability can be achieved	does not already include an acoustic	1118, 1119, 1121
	an appropriate amplitude and	May be implemented at very	actuator	
	frequency to cause sufficient force	low cost in systems which		
	at the nozzle to clear blockages.	already include acoustic		
	This is easiest to achieve if the	actuators		
	ultrasonic wave is at a resonant			
	frequency of the ink cavity.			
Nozzle clearing	A microfabricated plate is pushed	Can clear severely clogged	Accurate mechanical alignment is	Silverbrook, EP 0771
plate	against the nozzles. The plate has	nozzles	required	658 A2 and related
	a post for every nozzle. The array		Moving parts are required	patent applications
	of posts		There is risk of damage to the nozzles	
			Accurate fabrication is required	
Ink pressure	The pressure of the ink is	May be effective where	Requires pressure pump or other	May be used with all
pulse	temporarily increased so that ink	other methods cannot be	pressure actuator	IJ series ink jets
	streams from all of the nozzles.	nsed	Expensive	
	This may be used in conjunction		Wasteful of ink	
	with actuator energizing.			

Print head wiper	A flexible 'blade' is wiped across	Effective for planar print	Difficult to use if print head surface is	Many ink jet systems
	the print head surface. The blade	head surfaces	non-planar or very fragile	
	is usually fabricated from a	Low cost	Requires mechanical parts	
•	flexible polymer, e.g. rubber or		Blade can wear out in high volume	
	synthetic elastomer.		print systems	
Separate ink	A separate heater is provided at	Can be effective where	Fabrication complexity	Can be used with
boiling heater	the nozzle although the normal	other nozzle clearing		many IJ series ink jets
	drop e-ection mechanism does	methods cannot be used		
	not require it. The heaters do not	Can be implemented at no		
	require individual drive circuits,	additional cost in some		
	as many nozzles can be cleared	inkjet configurations		
	simultaneously, and no imaging is			
	required.			

Nozzle plate construction

Nozzle plate	Description	Advantages	Disadvantages	Examples
construction				
Electroformed	A nozzle plate is separately	Fabrication simplicity	High temperatures and pressures are	Hewlett Packard
nickel	fabricated from electroformed		required to bond nozzle plate	Thermal Inkjet
	nickel, and bonded to the print		Minimum thickness constraints	
	head ehipintegrated circuit.		Differential thermal expansion	

Laser ablated or	Individual nozzle holes are	No masks required	Each hole must be individually formed	Canon Bubblejet
drilled polymer	ablated by an intense UV laser in	Can be quite fast	Special equipment required	1988 Sercel et al.,
	a nozzle plate, which is typically a	Some control over nozzle	Slow where there are many thousands	SPIE, Vol. 998
	polymer such as polyimide or	profile is possible	of nozzles per print head	Excimer Beam
	polysulphone	Equipment required is	May produce thin burrs at exit holes	Applications, pp. 76-
		relatively low cost		83
				1993 Watanabe et al.,
				USP 5,208,604
Silicon micro-	A separate nozzle plate is	High accuracy is attainable	Two part construction	K. Bean, IEEE
machined	micromachined from single		High cost	Transactions on
	crystal silicon, and bonded to the		Requires precision alignment	Electron Devices, Vol.
	print head wafer.		Nozzles may be clogged by adhesive	ED-25, No. 10, 1978,
				pp 1185-1195
				Xerox 1990 Hawkins
			•	et al., USP 4,899,181

Glass capillaries	Fine glass capillaries are drawn	No expensive equipment	Very small nozzle sizes are difficult to	1970 Zoltan USP
·	from glass tubing. This method	required	form	3,683,212
	has been used for making	Simple to make single	Not suited for mass production	
	individual nozzles, but is difficult	nozzles		
	to use for bulk manufacturing of			
	print heads with thousands of			
	nozzles.			
Monolithic,	The nozzle plate is deposited as a	High accuracy (<1 μm)	Requires sacrificial layer under the	Silverbrook, EP 0771
surface micro-	layer using standard VLSI	Monolithic	nozzle plate to form the nozzle	658 A2 and related
machined using	deposition techniques. Nozzles	Low cost	chamber	patent applications
VLSI	are etched in the nozzle plate	Existing processes can be	Surface may be fragile to the touch	1101, 1102, 1104, 1111
lithographic	using VLSI lithography and	nsed		1312, 1317, 1318, 1320
processes	etching.			1J22, 1J24, 1J27, 1J28
				1J29, IJ30, IJ31, IJ32
				133, 1134, 1136, 1137
				1138, 1139, 1140, 1141
				1142, 1143, 1144

Monolithic,	The nozzle plate is a buried etch	High accuracy (<1 μm)	Requires long etch times	1103, 1105, 1106, 1107
etched through	stop in the wafer. Nozzle	Monolithic	Requires a support wafer	1308, 1309, 1310, 1313
substrate	chambers are etched in the front	Low cost		1114, 1115, 1116, 1119
	of the wafer, and the wafer is	No differential expansion		1121, 1123, 1125, 1126
	thinned from the back side.			
	Nozzles are then etched in the			
	etch stop layer.			
No nozzle plate	Various methods have been tried	No nozzles to become	Difficult to control drop position	Ricoh 1995 Sekiya et
	to eliminate the nozzles entirely,	clogged	accurately	al USP 5,412,413
	to prevent nozzle clogging. These		Crosstalk problems	1993 Hadimioglu et al
	include thermal bubble			EUP 550,192
	mechanisms and acoustic lens			1993 Elrod et al EUP
	mechanisms			572,220
Trough	Each drop ejector has a trough	Reduced manufacturing	Drop firing direction is sensitive to	1135
	through which a paddle moves.	complexity	wicking.	
	There is no nozzle plate.	Monolithic		

instead of and replacement by a slit individual encompassing many actuator			Difficult to control drop position	1989 Saito et al USP
		clogged	accurately	4,799,068
	any actuator		Crosstalk problems	
nozzles positions reduce	positions reduces nozzle clogging,			
but increases cro	but increases crosstalk due to ink			
surface waves				

Drop ejection direction

Ejection	Description	Advantages	Disadvantages	Examples
direction				
Edge	Ink flow is along the surface of	Simple construction	Nozzles limited to edge	Canon Bubblejet 1979
('edge shooter')	the chipintegrated circuit, and ink	No silicon etching required	High resolution is difficult	Endo et al GB patent
	drops are ejected from the	Good heat sinking via	Fast color printing requires one print	2,007,162
	chipintegrated circuit edge.	substrate	head per color	Xerox heater-in-pit
		Mechanically strong		1990 Hawkins et al
		Ease of chipintegrated		USP 4,899,181
		circuit handing		Tone-jet

·:

Surface	Ink flow is along the surface of	No bulk silicon etching	Maximum ink flow is severely	Hewlett-Packard TIJ
('roof shooter')	the ehipintegrated circuit, and ink	required	restricted	1982 Vaught et al
	drops are ejected from the	Silicon can make an		USP 4,490,728
	ehipintegrated circuit surface,	effective heat sink		1102, 1111, 1112, 1120
	normal to the plane of the	Mechanical strength		1122
	ehipintegrated circuit.			
Through	Ink flow is through the	High ink flow	Requires bulk silicon etching	Silverbrook, EP 0771
ehipintegrated	ehipintegrated circuit, and ink	Suitable for pagewidth print		658 A2 and related
circuit, forward	drops are ejected from the front	High nozzle packing density		patent applications
('up shooter')	surface of the ehipintegrated	therefore low manufacturing		1104, 1117, 1118, 1124
	circuit.	cost		1J27-IJ45
				•
Through	Ink flow is through the	High ink flow	Requires wafer thinning	1J01, 1J03, 1J05, 1J06
ehipintegrated	ehipintegrated circuit, and ink	Suitable for pagewidth print	Requires special handling during	1J07, IJ08, IJ09, IJ10
circuit, reverse	drops are ejected from the rear	High nozzle packing density	manufacture	IJ13, IJ14, IJ15, IJ16
umop,)	surface of the ehipintegrated	therefore low manufacturing		1J19, IJ21, IJ23, IJ25
shooter')	circuit.	cost		1326

Through	Ink flow is through the actuator,	Suitable for piezoelectric	Pagewidth print heads require several	Epson Stylus
actuator	which is not fabricated as part of	print heads	thousand connections to drive circuits	Tektronix hot melt
	the same substrate as the drive		Cannot be manufactured in standard	piezoelectric ink jets
	transistors.		CMOS fabs	
			Complex assembly required	
Ink type				
Ink type	Description	Advantages	Disadvantages	Examples
Aqueous, dye	Water based ink which typically	Environmentally friendly	Slow drying	Most existing inkjets
	contains: water, dye, surfactant,	No odor	Corrosive	All IJ series ink jets
	humectant, and biocide.		Bleeds on paper	Silverbrook, EP 0771
	Modern ink dyes have high water-		May strikethrough	658 A2 and related
	fastness, light fastness		Cockles paper	patent applications

pigment contains: water, pigment, No odor Surfactant, humectant, and Reduced bleed biocide. Pigments have an advantage in reduced bleed, wicking and strikethrough. Methyl Ethyl MEK is a highly volatile solvent Very fast drying Ketone (MEK) used for industrial printing on Prints on various substrates difficult surfaces such as such as metals and plastics aluminum cans. Alcohol Alcohol based inks can be used Fast drying (ethanol, 2- where the printer must operate at Operates at sub-freezing butanol, and temperatures below the freezing temperatures others) point of water. An example of this Reduced paper cockle is in-camera consumer Low cost	Aqueous, Water	Water based ink which typically	Environmentally friendly	Slow drying	1302, 1304, 1321, 1326
surfactant, humectant, and biocide. Pigments have an advantage in reduced bleed, wicking and strikethrough. MEK is a highly volatile solvent difficult surfaces such as aluminum cans. Alcohol based inks can be used where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer		ns: water, pigment,	No odor	Corrosive	1127, 1130
Pigments have an advantage in reduced bleed, wicking and strikethrough. MEK is a highly volatile solvent difficult surfaces such as aluminum cans. Alcohol based inks can be used where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer	surfac	tant, humectant, and	Reduced bleed	Pigment may clog nozzles	Silverbrook, EP 0771
Pigments have an advantage in reduced bleed, wicking and strikethrough. MEK is a highly volatile solvent difficult surfaces such as aluminum cans. Alcohol based inks can be used where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer	biocid	á	Reduced wicking	Pigment may clog actuator	658 A2 and related
reduced bleed, wicking and strikethrough. MEK is a highly volatile solvent difficult surfaces such as aluminum cans. Alcohol based inks can be used where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer	Pigme	ints have an advantage in	Reduced strikethrough	mechanisms	patent applications
strikethrough. MEK is a highly volatile solvent used for industrial printing on difficult surfaces such as aluminum cans. Alcohol based inks can be used where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer	reduce	ed bleed, wicking and		Cockles paper	Piezoelectric ink-jets
MEK is a highly volatile solvent used for industrial printing on difficult surfaces such as aluminum cans. Alcohol based inks can be used where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer	striket	hrough.			Thermal ink jets (with
MEK is a highly volatile solvent used for industrial printing on difficult surfaces such as aluminum cans. Alcohol based inks can be used where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer					significant
MEK is a highly volatile solvent used for industrial printing on difficult surfaces such as aluminum cans. Alcohol based inks can be used where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer					restrictions)
used for industrial printing on difficult surfaces such as aluminum cans. Alcohol based inks can be used where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer		is a highly volatile solvent	Very fast drying	Odorous	All IJ series ink jets
difficult surfaces such as aluminum cans. Alcohol based inks can be used where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer		or industrial printing on	Prints on various substrates	Flammable	
aluminum cans. Alcohol based inks can be used where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer	difficu	It surfaces such as	such as metals and plastics		
Alcohol based inks can be used where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer	alumir	num cans.			
where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer		of based inks can be used	Fast drying	Slight odor	All IJ series ink jets
, and temperatures below the freezing point of water. An example of this is in-camera consumer		the printer must operate at	Operates at sub-freezing	Flammable	
point of water. An example of this is in-camera consumer		ratures below the freezing	temperatures		
		of water. An example of this	Reduced paper cockle		
	is in-c	amera consumer	Low cost		
photographic printing.	photog	graphic printing.			

Dhogo obongo	The int is solid of room	Mo dering time int	Uich wie consider	Toletoniis Lot molt
I Hase change	I IIC IIIN IS SOIIU AL IOOIII	INO OI JIIIG TIIIC- IIIN	rigit viscosity	TEKLIOIIIA HOU HIGH
(hot melt)	temperature, and is melted in the	instantly freezes on the print	Printed ink typically has a 'waxy' feel	piezoelectric ink jets
- Carlot - Carlot	print head before jetting. Hot melt	medium	Printed pages may 'block'	1989 Nowak USP
	inks are usually wax based, with a	Almost any print medium	Ink temperature may be above the	4,820,346
	melting point around 80 °C. After	can be used	curie point of permanent magnets	All IJ series ink jets
	jetting the ink freezes almost	No paper cockle occurs	Ink heaters consume power	
	instantly upon contacting the print	No wicking occurs	Long warm-up time	
	medium or a transfer roller.	No bleed occurs		
		No strikethrough occurs		
Oil	Oil based inks are extensively	High solubility medium for	High viscosity: this is a significant	All IJ series ink jets
	used in offset printing. They have	some dyes	limitation for use in inkjets, which	
	advantages in improved	Does not cockle paper	usually require a low viscosity. Some	
	characteristics on paper	Does not wick through	short chain and multi-branched oils	
	(especially no wicking or cockle).	paper	have a sufficiently low viscosity.	
	Oil soluble dies and pigments are		Slow drying	
	required.			

Microemulsion	A microemulsion is a stable, self	Stops ink bleed	Viscosity higher than water	All IJ series ink jets
	forming emulsion of oil, water,	High dye solubility	Cost is slightly higher than water	
	and surfactant. The characteristic	Water, oil, and amphiphilic	based ink	
	drop size is less than 100 nm, and	soluble dies can be used	High surfactant concentration required	
	is determined by the preferred	Can stabilize pigment	(around 5%)	
	curvature of the surfactant.	suspensions		

Ink Jet Printing

5

A large number of new forms of ink jet printers have been developed to facilitate alternative ink jet technologies for the image processing and data distribution system. Various combinations of ink jet devices can be included in printer devices incorporated as part of the present invention. Australian Provisional Patent Applications relating to these ink jets which are specifically incorporated by cross reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian	Filing Date	Title	US Patent/Patent
Provisional			Application and Filing
Number			Date
PO8066	15-Jul-97	Image Creation Method and Apparatus	6,227,652
		(IJO1)	(July 10, 1998)
PO8072	15-Jul-97	Image Creation Method and Apparatus	6,213,588
		(IJ02)	(July 10, 1998)
PO8040	15-Jul-97	Image Creation Method and Apparatus	6,213,589
		(IJ03)	(July 10, 1998)
PO8071	15-Jul-97	Image Creation Method and Apparatus	6,231,163
		(IJ04)	(July 10, 1998)
PO8047	15-Jul-97	Image Creation Method and Apparatus	6,247,795
		(IJ05)	(July 10, 1998)
PO8035	15-Jul-97	Image Creation Method and Apparatus	6,394,581
		(IJ06)	(July 10, 1998)
PO8044	15-Jul-97	Image Creation Method and Apparatus	6,244,691
		(IJ07)	(July 10, 1998)
PO8063	15-Jul-97	Image Creation Method and Apparatus	6,257,704
		(IJ08)	(July 10, 1998)
PO8057	15-Jul-97	Image Creation Method and Apparatus	6,416,168
		(IJ09)	(July 10, 1998)
PO8056	15-Jul-97	Image Creation Method and Apparatus	6,220,694
		(IJ10)	(July 10, 1998)
PO8069	15-Jul-97	Image Creation Method and Apparatus	6,257,705
		(IJ11)	(July 10, 1998)

PO8049	15-Jul-97	Image Creation Method and Apparatus	6,247,794
		(IJ12)	(July 10, 1998)
PO8036	15-Jul-97	Image Creation Method and Apparatus	6,234,610
		(IJ13)	(July 10, 1998)
PO8048	15-Jul-97	Image Creation Method and Apparatus	6,247,793
		(IJ14)	(July 10, 1998)
PO8070	15-Jul-97	Image Creation Method and Apparatus	6,264,306
		(IJ15)	(July 10, 1998)
PO8067	15-Jul-97	Image Creation Method and Apparatus	6,241,342
		(IJ16)	(July 10, 1998)
PO8001	15-Jul-97	Image Creation Method and Apparatus	6,247,792
		(IJ17)	(July 10, 1998)
PO8038	15-Jul-97	Image Creation Method and Apparatus	6,264,307
		(IJ18)	(July 10, 1998)
PO8033	15-Jul-97	Image Creation Method and Apparatus	6,254,220
		(IJ19)	(July 10, 1998)
PO8002	15-Jul-97	Image Creation Method and Apparatus	6,234,611
		(IJ20)	(July 10, 1998)
PO8068	15-Jul-97	Image Creation Method and Apparatus	6,302,528)
		(IJ21)	(July 10, 1998)
PO8062	15-Jul-97	Image Creation Method and Apparatus	6,283,582
٠		(IJ22)	(July 10, 1998)
PO8034	15-Jul-97	Image Creation Method and Apparatus	6,239,821
		(IJ23)	(July 10, 1998)
PO8039	15-Jul-97	Image Creation Method and Apparatus	6,338,547
		(IJ24)	(July 10, 1998)
PO8041	15-Jul-97	Image Creation Method and Apparatus	6,247,796
		(IJ25)	(July 10, 1998)
PO8004	15-Jul-97	Image Creation Method and Apparatus	09/113,122
		(IJ26)	(July 10, 1998)
PO8037	15-Jul-97	Image Creation Method and Apparatus	6,390,603
		(IJ27)	(July 10, 1998)

PO8043	15-Jul-97	Image Creation Method and Apparatus	6,362,843
		(IJ28)	(July 10, 1998)
PO8042	15-Jul-97	Image Creation Method and Apparatus	6,293,653
		(IJ29)	(July 10, 1998)
PO8064	15-Jul-97	Image Creation Method and Apparatus	6,312,107
		(IJ30)	(July 10, 1998)
PO9389	23-Sep-97	Image Creation Method and Apparatus	6,227,653
		(IJ31)	(July 10, 1998)
PO9391	23-Sep-97	Image Creation Method and Apparatus	6,234,609
		(IJ32)	(July 10, 1998)
PP0888	12-Dec-97	Image Creation Method and Apparatus	6,238,040
		(IJ33)	(July 10, 1998)
PP0891	12-Dec-97	Image Creation Method and Apparatus	6,188,415
		(IJ34)	(July 10, 1998)
PP0890	12-Dec-97	Image Creation Method and Apparatus	6,227,654
		(IJ35)	(July 10, 1998)
PP0873	12-Dec-97	Image Creation Method and Apparatus	6,209,989
l i		(IJ36)	(July 10, 1998)
PP0993	12-Dec-97	Image Creation Method and Apparatus	6,247,791
		(IJ37)	(July 10, 1998)
PP0890	12-Dec-97	Image Creation Method and Apparatus	6,336,710
		(IJ38)	(July 10, 1998)
PP1398	19-Jan-98	An Image Creation Method and	6,217,153
		Apparatus (IJ39)	(July 10, 1998)
PP2592	25-Mar-98	An Image Creation Method and	6,416,167
		Apparatus (IJ40)	(July 10, 1998)
PP2593	25-Mar-98	Image Creation Method and Apparatus	6,243,113
		(IJ41)	(July 10, 1998)
PP3991	9-Jun-98	Image Creation Method and Apparatus	6,283,581
		(IJ42)	(July 10, 1998)
PP3987	9-Jun-98	Image Creation Method and Apparatus	6,247,790
		(IJ43)	(July 10, 1998)

PP3985	9-Jun-98	Image Creation Method and Apparatus	6,260,953
		(IJ44)	(July 10, 1998)
PP3983	9-Jun-98	Image Creation Method and Apparatus	6,267,469
		(IJ45)	(July 10, 1998)

Ink Jet Manufacturing

5

Further, the present application may utilize advanced semiconductor fabrication techniques in the construction of large arrays of ink jet printers. Suitable manufacturing techniques are described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.

Australian	Filing Date	Title	US Patent/Patent
Provisional			Application and Filing
Number			Date
PO7935	15-Jul-97	A Method of Manufacture of an Image	6,224,780
		Creation Apparatus (IJM01)	(July 10, 1998)
PO7936	15-Jul-97	A Method of Manufacture of an Image	6,235,212
		Creation Apparatus (IJM02)	(July 10, 1998)
PO7937	15-Jul-97	A Method of Manufacture of an Image	6,280,643
		Creation Apparatus (IJM03)	(July 10, 1998)
PO8061	15-Jul-97	A Method of Manufacture of an Image	6,284,147
		Creation Apparatus (IJM04)	(July 10, 1998)
PO8054	15-Jul-97	A Method of Manufacture of an Image	6,214,244
		Creation Apparatus (IJM05)	(July 10, 1998)
PO8065	15-Jul-97	A Method of Manufacture of an Image	6,071,750
		Creation Apparatus (IJM06)	(July 10, 1998)
PO8055	15-Jul-97	A Method of Manufacture of an Image	6,267,905
		Creation Apparatus (IJM07)	(July 10, 1998)
PO8053	15-Jul-97	A Method of Manufacture of an Image	6,251,298
		Creation Apparatus (IJM08)	(July 10, 1998)
PO8078	15-Jul-97	A Method of Manufacture of an Image	6,258,285

		Creation Apparatus (IJM09)	(July 10, 1998)
PO7933	15-Jul-97	A Method of Manufacture of an Image	6,225,138
107733			
DO7050	15 I-1 07	Creation Apparatus (IJM10)	(July 10, 1998)
PO7950	15-Jul-97	A Method of Manufacture of an Image	6,241,904
		Creation Apparatus (IJM11)	(July 10, 1998)
PO7949	15-Jul-97	A Method of Manufacture of an Image	6,299,786
		Creation Apparatus (IJM12)	(July 10, 1998)
PO8060	15-Jul-97	A Method of Manufacture of an Image	09/113,124
		Creation Apparatus (IJM13)	(July 10, 1998)
PO8059	15-Jul-97	A Method of Manufacture of an Image	6,231,773
		Creation Apparatus (IJM14)	(July 10, 1998)
PO8073	15-Jul-97	A Method of Manufacture of an Image	6,190,931
		Creation Apparatus (IJM15)	(July 10, 1998)
PO8076	15-Jul-97	A Method of Manufacture of an Image	6,248,249
		Creation Apparatus (IJM16)	(July 10, 1998)
PO8075	15-Jul-97	A Method of Manufacture of an Image	6,290,862
		Creation Apparatus (IJM17)	(July 10, 1998)
PO8079	15-Jul-97	A Method of Manufacture of an Image	6,241,906
		Creation Apparatus (IJM18)	(July 10, 1998)
PO8050	15-Jul-97	A Method of Manufacture of an Image	09/113,116
		Creation Apparatus (IJM19)	(July 10, 1998)
PO8052	15-Jul-97	A Method of Manufacture of an Image	6,241,905
		Creation Apparatus (IJM20)	(July 10, 1998)
PO7948	15-Jul-97	A Method of Manufacture of an Image	6,451,216
		Creation Apparatus (IJM21)	(July 10, 1998)
PO7951	15-Jul-97	A Method of Manufacture of an Image	6,231,772
	9	Creation Apparatus (IJM22)	(July 10, 1998)
PO8074	15-Jul-97	A Method of Manufacture of an Image	6,274,056
		Creation Apparatus (IJM23)	(July 10, 1998)
PO7941	15 - Jul-97	A Method of Manufacture of an Image	6,290,861
		Creation Apparatus (IJM24)	(July 10, 1998)
PO8077	15-Jul-97	A Method of Manufacture of an Image	6,248,248