Limites et fonctions continues

1.1 Notions de fonction

Une *fonction* est une application $f:U\to\mathbb{R}$, où U est une partie de \mathbb{R} appelé domaine de définition.

Le graphe d'une fonction $f: U \to \mathbb{R}$ est la partie Γ_f de \mathbb{R}^2 définie par $\Gamma_f = \{ (x, f(x)) \mid x \in U \}.$

- f est majorée sur U si $\exists M \in \mathbb{R} \ \forall x \in U \ f(x) \leq M$;
- f est minorée sur U si $\exists m \in \mathbb{R} \ \forall x \in U \ f(x) \ge m$;
- f est bornée sur U si f est à la fois majorée et minorée sur U, c'està-dire si $\exists M \in \mathbb{R} \ \forall x \in U \ |f(x)| \leq M$.

Voici le graphe d'une fonction bornée (minorée par m et majorée par M).

- f est *croissante* sur U si $\forall x, y \in U$ $x \leq y \Longrightarrow f(x) \leq f(y)$
- f est strictement croissante si $\forall x, y \in U \ x < y \implies f(x) < f(x)$ f(y)
- f est décroissante si $\forall x, y \in U \quad x \leq y \implies f(x) \geq f(y)$
- f est strictement décroissante si $\forall x, y \in U$ $x < y \implies f(x) >$ f(y)
- f est monotone sur U si f est croissante ou décroissante sur U.

Un exemple de fonction croissante (et même strictement croissante) :

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I symétrique par rapport à 0.

- f est paire si $\forall x \in I$ f(-x) = f(x),
- f est impaire si $\forall x \in I$ f(-x) = -f(x).
- f est paire si et seulement si son graphe est symétrique par rapport à l'axe des ordonnées (figure de gauche).
- f est impaire si et seulement si son graphe est symétrique par rapport à l'origine (figure de droite).

Exemple. La fonction définie sur \mathbb{R} par $x \mapsto x^{2n}$ $(n \in \mathbb{N})$ est paire. La fonction définie sur \mathbb{R} par $x \mapsto x^{2n+1}$ $(n \in \mathbb{N})$ est impaire.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction et T un nombre réel, T > 0. La fonction f est *périodique* de période T si $\forall x \in \mathbb{R}$ f(x+T) = f(x).

Exemples. Les fonctions sinus et cosinus sont 2π -périodiques. La fonction tangente est π -périodique.

1.2 Limites

Limite en un point

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Soit $x_0 \in \mathbb{R}$ un point de *I* ou une extrémité de *I*.

Définition. Soit $\ell \in \mathbb{R}$. On dit que f a pour limite ℓ en x_0 si

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies |f(x) - \ell| < \varepsilon$$

- L'inégalité $|x-x_0| < \delta$ équivaut à $x \in]x_0 \delta, x_0 + \delta[$. L'inégalité $|f(x)-\ell| < \varepsilon$ équivaut à $f(x) \in]\ell - \varepsilon, \ell + \varepsilon[$.
- L'ordre des quantificateurs est important, on ne peut pas échanger le $\forall \varepsilon$ avec le $\exists \delta$.

Soit f une fonction définie sur un ensemble de la forme $]a, x_0[\cup]x_0, b[$.

Définition. On dit que f a pour limite $+\infty$ en x_0 si

$$\forall A > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies f(x) > A$$

Limite en l'infini

Soit $f: I \to \mathbb{R}$ définie sur un intervalle de la forme $I =]a, +\infty[$.

— Soit $\ell \in \mathbb{R}$. On dit que f a pour limite ℓ en +∞ si

$$\forall \varepsilon > 0 \quad \exists B > 0 \quad \forall x \in I \quad x > B \Longrightarrow |f(x) - \ell| < \varepsilon$$

— On dit que f a pour limite $+\infty$ en $+\infty$ si

$$\forall A > 0 \quad \exists B > 0 \quad \forall x \in I \quad x > B \Longrightarrow f(x) > A$$

Proposition.

Si une fonction admet une limite, alors cette limite est unique.

Soient deux fonctions f et g et $x_0 \in \mathbb{R}$ ou $x_0 = \pm \infty$.

Proposition. Si $\lim f = \ell \in \mathbb{R}$ et $\lim g = \ell' \in \mathbb{R}$, alors :

$$-\lim_{x_0} (\lambda \cdot f) = \lambda \cdot \ell \text{ pour tout } \lambda \in \mathbb{R}$$

$$-\lim_{g \to g} (f+g) = \ell + \ell'$$

$$-\lim_{g \to g} (f \times g) = \ell \times \ell'$$

—
$$si \ell \neq 0$$
, alors $\lim_{x_0} \frac{1}{t} = \frac{1}{\ell}$

De plus, si $\lim_{x_0} f = +\infty$ (ou $-\infty$) alors $\lim_{x_0} \frac{1}{f} = 0$.

Proposition. Si $\lim_{x_0} f = \ell$ et $\lim_{\ell} g = \ell'$, alors $\lim_{x_0} g \circ f = \ell'$.

Formes indéterminées: $+\infty - \infty$; $0 \times \infty$; $\frac{\infty}{\infty}$; $\frac{0}{0}$; 1^{∞} ; ∞^{0} .

Proposition.

- $\begin{array}{l} \widehat{} \quad \text{Si } f \leqslant g \text{ et si } \lim_{x_0} f = \ell \in \mathbb{R} \text{ et } \lim_{x_0} g = \ell' \in \mathbb{R}, \text{ alors } \ell \leqslant \ell'. \\ \quad \text{Si } f \leqslant g \text{ et si } \lim_{x_0} f = +\infty, \text{ alors } \lim_{x_0} g = +\infty. \end{array}$
- Théorème des gendarmes

Si $f \le g \le h$ et si $\lim_{n \to \infty} f = \lim_{n \to \infty} h = \ell \in \mathbb{R}$, alors g a une limite en x_0 et $\lim g = \ell$.

1.3 Continuité en un point

Soit *I* un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction.

— f est continue en un point $x_0 \in I$ si

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I \quad |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

c'est-à-dire si f admet une limite en x_0 (cette limite vaut alors nécessairement $f(x_0)$).

— f est continue sur I si f est continue en tout point de I.

Proposition. Soient $f, g: I \to \mathbb{R}$ continues en un point $x_0 \in I$. Alors

- $\lambda \cdot f$ est continue en x_0 (pour tout $\lambda \in \mathbb{R}$),
- f + g est continue en x_0 ,
- $f \times g$ est continue en x_0 ,
- $si\ f(x_0) \neq 0$, alors $\frac{1}{f}$ est continue en x_0 .

Proposition. Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ avec $f(I) \subset J$. Si f est continue en un point $x_0 \in I$ et si g est continue en $f(x_0)$, alors $g \circ f$ est continue en x_0 .

Prolongement par continuité

Soit *I* un intervalle, x_0 un point de *I* et $f: I \setminus \{x_0\} \to \mathbb{R}$ une fonction.

- On dit que f est prolongeable par continuité en x_0 si f admet une limite finie en x_0 . Notons alors $\ell = \lim_{n \to \infty} f$.
- On définit alors la fonction $\tilde{f}: I \to \mathbb{R}$ en posant pour tout $x \in I$

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si } x \neq x_0 \\ \ell & \text{si } x = x_0. \end{cases}$$

Alors \tilde{f} est continue en x_0 et on l'appelle le prolongement par continuité de f en x_0 .

Suites et continuité

Proposition. Soit $f: I \to \mathbb{R}$ une fonction et x_0 un point de I. Alors:

$$f$$
 est continue en $x_0 \iff pour toute suite (u_n) qui converge vers x_0 la suite $(f(u_n))$ converge vers $f(x_0)$$

En particulier : si f est continue sur I et si (u_n) est une suite convergente de limite ℓ , alors $(f(u_n))$ converge vers $f(\ell)$. On l'utilise pour l'étude des suites récurrentes $u_{n+1} = f(u_n)$: si f est continue et $u_n \to \ell$, alors $f(\ell) = \ell$.

1.4 Continuité sur un intervalle

Théorème (Théorème des valeurs intermédiaires). Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur un segment.

Pour tout réel y compris entre f(a) et f(b), il existe $c \in [a, b]$ tel que f(c) = y.

Corollaire. *Soit* $f : [a, b] \rightarrow \mathbb{R}$ *une fonction continue sur un segment.*

Si
$$f(a) \cdot f(b) < 0$$
, alors il existe $c \in]a, b[$ tel que $f(c) = 0$.

Exemple. Tout polynôme de degré impair a au moins une racine réelle.

Corollaire.

Soit $f:I \to \mathbb{R}$ une fonction continue sur un intervalle I. Alors f(I) est un intervalle.

Attention! Il serait faux de croire que l'image par une fonction f de l'intervalle [a, b] soit l'intervalle [f(a), f(b)].

Théorème (Fonctions continues sur un segment). Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur un segment. Alors il existe deux réels m et M tels que f([a,b]) = [m,M]. Autrement dit, l'image d'un segment par une fonction continue est un segment.

Si f est continue sur [a,b] alors f est bornée sur [a,b], et elle atteint ses bornes.

1.5 Fonctions monotones et bijections

Soit $f:E\to F$ une fonction, où E et F sont des parties de $\mathbb R.$

- f est injective si $\forall x, x' \in E$ $f(x) = f(x') \Longrightarrow x = x'$;
- f est surjective si $\forall y \in F \ \exists x \in E \ y = f(x)$;
- f est bijective si f est à la fois injective et surjective, c'est-à-dire si $\forall y \in F \ \exists ! x \in E \ y = f(x)$.

Graphe d'une fonction injective (à gauche), surjective (à droite).

Proposition. Si $f: E \to F$ est une fonction bijective alors il existe une unique application $g: F \to E$ telle que $g \circ f = \mathrm{id}_E$ et $f \circ g = \mathrm{id}_F$. La fonction g est la bijection réciproque de f et se note f^{-1} .

- On rappelle que l'identité, $\mathrm{id}_E:E\to E$ est définie par $x\mapsto x$.
- $g \circ f = \mathrm{id}_E$ se reformule ainsi : $\forall x \in E \ g(f(x)) = x$.
- Alors que $f \circ g = \mathrm{id}_F$ s'écrit : $\forall y \in F$ f(g(y)) = y.
- Dans un repère orthonormé les graphes des fonctions f et f^{-1} sont symétriques par rapport à la droite (y = x).

Théorème (Théorème de la bijection). Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Si f est continue et strictement monotone sur I, alors

- 1. f établit une bijection de l'intervalle I dans l'intervalle image J = f(I),
- 2. la fonction réciproque $f^{-1}:J\to I$ est continue et strictement monotone sur J et elle a le même sens de variation que f.

