EPISEN – ING3. SI Machine Learning

Abdallah EL HIDALI

Tech Lead Sita For Aircraft abdallah.el-hidali@sita.aero

EPISEN

2024/2025

IV. Les arbres de décision

Gender	Occupation	Арр	
F	Study	Pokemon Go	
F	Work	WhatsApp 🕓	
M	Work	Snapchat 💍	
F	Work	WhatsApp 🕓	
М	Study	Pokemon Go	
M	Study	Pokemon Go	

Pour une femme qui travaille dans un bureau, quelle application recommandons-nous ?

- o Pokemon Go
- Whatsapp
- Snapchat

Pour un homme qui travaille dans une usine, quelle application recommandons-nous ?

- Pokemon Go
- Whatsapp
- Snapchat

Pour une fille qui va au lycée, quelle application recommandons-nous ?

- o Pokemon Go
- Whatsapp
- Snapchat

Gender	Occupation	Арр	
F	Study	Pokemon Go	
F	Work	WhatsApp 🕓	
М	Work	Snapchat 💍	
F	Work	WhatsApp 🕓	
М	Study	Pokemon Go	
M	Study	Pokemon Go	

Pour une femme qui travaille dans un bureau, quelle application recommandons-nous ?

- o Pokemon Go
- Whatsapp
- Snapchat

Pour un homme qui travaille dans une usine, quelle application recommandons-nous ?

- Pokemon Go
- Whatsapp
- Snapchat

Pour une fille qui va au lycée, quelle application recommandons-nous ?

- Pokemon Go
- Whatsapp
- Snapchat

Gender	Occupation	Арр	
F	Study	Pokemon Go	
F	Work	WhatsApp 🕓	
М	Work	Snapchat 👃	
F	Work	WhatsApp 🕓	
М	Study	Pokemon Go	
M	Study	Pokemon Go	

Essayez de créer un arbre de décision en vous basant sur le tableau ci-dessus

Dans la suite du cours, nous examinerons comment déterminer que la colonne "occupation" est la plus pertinente pour effectuer la première division de notre arbre de décision

L'entropie dans les arbres de décision:

Définition:

 L'entropie mesure l'impureté ou le désordre dans un ensemble de données.

Formule:

$$H(S) = -\sum_{i=1}^{c} p_i \log_2(p_i)$$

c: nombre de classes

pi: la proportion d'éléments de la classe

Propriétés:

- Varie entre 0 (homogénéité parfaite) et 1 (impureté maximale)
- Entropie faible = meilleure séparation des classes

Utilisation:

- Sélectionner le meilleur attribut pour diviser un nœud
- Calculer le gain d'information

Objectif:

Minimiser l'entropie à chaque division pour construire un arbre optimal

Le gain d'information

Le gain d'information

 $InformationGain = Entropy(Parent) - (rac{m}{m+n}Entropy(Child1) + rac{n}{m+n}Entropy(Child2))$

Le gain d'information

Le découpage optimal est celui qui maximise le gain d'information.

Construction d'un arbre de décision

- ✓ Examiner tous les points de division possibles pour chaque attribut (colonne/feature) du jeu de données.
- ✓ Pour chaque point de division potentiel :
 - Calculer le gain d'information résultant de cette division.
- ✓ Sélectionner l'attribut et le point de division qui maximisent le gain d'information.
- ✓ Effectuer la division du jeu de données selon l'attribut et le point choisis.
- ✓ Répéter récursivement ce processus pour chaque sous-ensemble résultant de la division, jusqu'à ce qu'un critère d'arrêt soit atteint (par exemple, profondeur maximale de l'arbre ou gain d'information minimal).

Gender	Occupation	Арр
F	Study	<u></u>
F	Work	<u>Q</u>
М	Work	
F	Work	<u>Q</u>
М	Study	<u></u>
М	Study	⊕

Construction d'un arbre de décision

Construction d'un arbre de décision

Arbres de décision : cas des variables continues

Pour les variables continues, il faut évaluer tous les points de division potentiels afin de déterminer celui qui maximise le gain d'information.

Les hyperparamètres

Afin de créer des arbres de décision qui se généraliseront bien à de nouveaux problèmes, nous pouvons ajuster plusieurs aspects différents de ces arbres.

Profondeur maximale

La profondeur maximale d'un arbre de décision est simplement la plus grande longueur entre la racine et une feuille. Un arbre de longueur maximale k peut avoir au maximum 2^k feuilles.

Depth = 2

Depth = 3

Depth = 4

Nombre minimum d'échantillons par feuille

Pour éviter des divisions déséquilibrées (par exemple, 99 échantillons d'un côté et 1 de l'autre), on peut fixer un nombre minimum d'échantillons par feuille. Cela optimise le processus et évite le surapprentissage.

Minimum samples per leaf = 1

Minimum samples per leaf = 5

Exercice

Dans cet exercice, on vous fournira l'ensemble de données échantillon suivant, et votre objectif sera de définir un modèle qui atteigne une précision de 100% sur celui-ci.

https://github.com/elhidali/EPISEN-2024