

EL2520 Control Theory and Practice

MIMO Robustness, Controller Design

Elling W. Jacobsen School of Electrical Engineering and Computer Science KTH, Stockholm, Sweden

Today's Lecture

- Robust stability of MIMO feedback systems
- Controller design to meet performance specifications and robust stability
 - Loop shaping
 - $-\mathcal{H}_{\infty}$ -optimal control

Robust Stability

Assume model uncertainty

$$G_p(s) = (I + W_o(s)\Delta_o(s))G(s), \|\Delta_o\|_{\infty} < 1 \ (\Rightarrow \bar{\sigma}(\Delta_o) < 1 \ \forall \omega)$$

- Small Gain Theorem: closed-loop stable if $M,\ \Delta_o$ stable and $\|M\|_{\infty}\|\Delta_o\|_{\infty}<1\ \Rightarrow \|M\|_{\infty}<1$
- Identify M from block-diagram

$$M = -TW_o$$

Thus, robust stability condition

$$||TW_o||_{\infty} < 1$$

Robust stability

- Same result as for SISO case
- What if uncertainty is on input side of G?

$$G_p(s) = G(s)(I + W_I(s)\Delta_I(s)), \|\Delta_I\|_{\infty} < 1$$

Exercise: derive the robust stability condition for this case!

Controller Design

- Aim: determine controller $F_y(s)$ (and $F_r(s)$) to shape desired closed-loop transfer-functions, e.g., S and T
- Example: attenuate disturbance w and noise n

$$z = Sw - Tn$$
, $u = -F_y S(w + n) = G_{wu}(w + n)$

- thus, make S, T and Gwu "small"
- introduce weights and design controller to achieve

$$||W_S S||_{\infty} < 1$$
, $||W_T T||_{\infty} < 1$, $||W_u G_{wu}||_{\infty} < 1$

Controller Design

How design controller to achieve objectives?

- 1. Loop-shaping: shape open-loop $L=GF_y$, or
- 2. Controller synthesis: solve optimization problem

$$F_y = rg \min_{F_y} egin{bmatrix} W_S S \ W_T T \ W_u G_{wu} egin{bmatrix} W_u G_{wu} \end{bmatrix}_{\infty}$$

Loop Shaping (for S and T)

Translate bounds on $\bar{\sigma}(S)$ and $\bar{\sigma}(T)$ into bounds on $\sigma_i(L), \ L = GF_y$:

- We have $\bar{\sigma}(S)=\bar{\sigma}((I+L)^{-1})$. Since $\bar{\sigma}(A^{-1})=1/\underline{\sigma}(A)$ we get $\bar{\sigma}(S)=\frac{1}{\underline{\sigma}(I+L)}$
- From Fan's Theorem (see lec notes 6)

$$\underline{\sigma}(L) - 1 \le \underline{\sigma}(I + L) \le \underline{\sigma}(L) + 1$$

- Thus, $\underline{\sigma}(L) >> 1 \ \Rightarrow \ \bar{\sigma}(S) \approx \frac{1}{\underline{\sigma}(L)}$
- This gives the loop-shaping bounds

$$\bar{\sigma}(S) \le |W_S^{-1}| \Rightarrow \underline{\sigma}(L) \ge |W_S|, |W_S| >> 1$$

Loop Shaping (for S and T)

Similar derivation for T (see lec notes 7):

$$\bar{\sigma}(L) << 1 \quad \Rightarrow \quad \bar{\sigma}(T) \approx \bar{\sigma}(L)$$

and

$$\bar{\sigma}(T) \le |W_T^{-1}| \quad \Rightarrow \quad \bar{\sigma}(L) \le |W_T^{-1}|, \ |W_T| >> 1$$

 Note: difficult to deal with stability since there is no phase defined for MIMO systems. This will be addressed when we consider *robust* loopshaping later in the course

\mathcal{H}_{∞} -Synthesis

$$F_y = rg \min_{F_y} egin{array}{c} W_S S \ W_T T \ W_u G_{wu} \end{array} egin{array}{c} (*) \end{array}$$

• Solution of (*) is based on the *extended system:*

Equivalence between signal minimization problem and system norm minimization:

$$\min_{F_y} \sup_{w} \frac{\|z_e\|_2}{\|w\|_2} = \min_{F_y} \|G_{ec}\|_{\infty} \quad (**)$$

\mathcal{H}_{∞} -Synthesis

• Choose signals w and z_e such that G_{ec} corresponds to transfer-functions we want to shape, i.e.,

$$G_{ec} = egin{bmatrix} W_S S \ W_T T \ W_u G_{wu} \end{bmatrix}$$

and determine corresponding $G_0(s)$

• Solution of (**) is based on state-space realization of $G_0(s)$:

$$\dot{x} = Ax + Bu + Nw
z_e = Mx + Du (***)
y = Cx + w$$

- normalized so that $D^T M = 0$, $D^T D = I$

Solution

- No direct solution to (**)
- Indirect solution: select real number γ and determine whether controller that gives $\|G_{ec}\|_{\infty} = \gamma$ exists
 - Let P>0 be a solution to the algebraic Riccati equation

$$A^{T}P + P^{T}A + M^{T}M + P(\gamma^{-2}NN^{T} - BB^{T})P = 0$$

- Then, if $A - BB^TP$ is stable, the controller

$$\dot{\hat{x}} = A\hat{x} + Bu + N(y - C\hat{x})$$
 $u = -L_{\infty}\hat{x}, L_{\infty} = B^{T}P$ $\} F_{y}(s)$

will give $\|G_{ec}\|_{\infty} = \gamma$

- State feedback + Observer!
- Optimal controller: iterate on γ until $\gamma \approx \gamma_{min}$ (known as γ -iterations)

Outline of Proof

For a proof, see Lecture notes. Main idea:

Consider function

$$V(t) = x^{T}(t)Px(t) + \int_{0}^{t} (z_{e}^{T}(\tau)z_{e}(\tau) - \gamma^{2}w_{e}^{T}(\tau)w_{e}(\tau))d\tau$$

• If P>0 and V(t)<0 for all t and all w_e , then the integral term must be negative and it follows that

$$\sup_{w_e \neq 0} \frac{\|z_e\|_2}{\|w_e\|_2} < \gamma$$

• Since V(0)=0 it is sufficient to show that $\dot{V}(t) < 0 \; \forall t$

$$\dot{V} = x^{T} (A^{T}P + PA + M^{T}M - P(BB^{T} - \gamma^{-2}NN^{T})P)x + (u + B^{T}Px)^{T}(u + B^{T}Px)$$
$$-\gamma^{-2} (w - \gamma^{-2}N^{T}Px)^{T}(w - \gamma^{-2}N^{T}Px)$$

• Thus, if P>0 solves Riccati equation and we choose $u=-B^TPx$ we get the result

Summary of \mathcal{H}_{∞} synthesis

- 1. Choose signals z_e and w such that the corresponding closed-loop transfer-function G_{ec} corresponds to the transfer-function we want to minimize the norm of
- 2. Solve equivalent signal minimization problem

$$\min_{F_y} \sup_{w} \frac{\|z_e\|_2}{\|w\|_2} = \min_{F_y} \|G_{ec}\|_{\infty}$$

- 3. The signal optimization problem is solved in state-space based on state-space realization of corresponding open-loop model $G_0(s)$
- 4. Solution based on γ -iterations and the optimal controller is on the form of state feedback combined with an observer.

Selecting signals

• Choose z_e and w such that

$$G_{ec} = egin{bmatrix} W_S S \ W_T T \ W_u G_{wu} \end{bmatrix}$$

- 1. W_SS : $z_{e1}=W_SSw$
 - we have $z = Sw \implies z_{e1} = W_S z, \ w = w$ (disturbance on output)
 - for $G_0(s)$: $z = Gu + w \Rightarrow z_{e1} = W_S(Gu + w)$
- 2. $W_T T$: $z_{e2} = W_T T w$
 - we have

$$z = Sw = (I - T)w \implies z - w = -Tw \implies z_{e2} = -W_T(z - w)$$

- for $G_0(s)$: $z-w=Gu \Rightarrow \boxed{z_{e2}=-W_TGu}$

Selecting Signals

- 3. $W_u G_{wu}$: $z_{e3} = W_u G_{wu} w$
 - we have $u = G_{wu}w \implies z_{e3} = W_uu$
 - for $G_0(s)$: $u=u \Rightarrow \overline{z_{e3}=W_u u}$
- · Thus, we get

$$G_0 = egin{bmatrix} W_S & W_S G \ 0 & -W_T G \ 0 & W_u \ I & G \end{bmatrix} \qquad \left(egin{bmatrix} z_e \ y \end{bmatrix} = G_0 egin{bmatrix} w \ u \end{bmatrix}
ight)$$

Next Time

- Classical optimal control LQG
- Comparison with \mathcal{H}_{∞} optimal control