Leis do Cálculo Funcional (2023/24)

Funções

Natural-1d	$f \cdot id = id \cdot f = f$	(1)
Assoc-comp	$(f \cdot g) \cdot h = f \cdot (g \cdot h)$	(2)
Natural-const	$\underline{k} \cdot f = \underline{k}$	(3)
Fusão-const	$f \cdot \underline{k} = \underline{f} \underline{k}$	(4)
Leibniz	$\left\{ \begin{array}{ll} f \cdot h = g \cdot h \\ h \cdot f = h \cdot g \end{array} \right. \Leftarrow f = g$	(5)

PRODUTO

Coproduto

Universal-+	$k = [f, g] \Leftrightarrow \left\{ \begin{array}{l} k \cdot i_1 = f \\ k \cdot i_2 = g \end{array} \right.$	(17)
Cancelamento-+	$ \left\{ \begin{array}{l} [f , g] \cdot i_1 = f \\ [f , g] \cdot i_2 = g \end{array} \right. $	(18)
Reflexão-+	$[i_1 , i_2] = id_{A+B}$	(19)
Fusão-+	$f\cdot [g\ ,h]=[f\cdot g\ ,f\cdot h]$	(20)
$\mathbf{Def} ext{-}+$	$f+g=[i_1\cdot f\ ,i_2\cdot g]$	(21)
Absorção-+	$[g\ ,h]\cdot (i+j)=[g\cdot i\ ,h\cdot j]$	(22)
Natural- i_1	$(i+j)\cdot i_1 = i_1\cdot i$	(23)
Natural- i_2	$(i+j)\cdot i_2 = i_2\cdot j$	(24)
Functor-+	$(g \cdot h) + (i \cdot j) = (g+i) \cdot (h+j)$	(25)
Functor-id-+	$id_A + id_B = id_{A+B}$	(26)
Eq-+	$[f,g] = [h,k] \Leftrightarrow \left\{ \begin{array}{l} f = h \\ g = k \end{array} \right.$	(27)

MISC. PRODUTO / COPRODUTO

CONDICIONAL

Natural-guarda
$$p? \cdot f = (f+f) \cdot (p \cdot f)?$$
 (29)

Def condicional de McCarthy
$$p \rightarrow f, g = [f, g] \cdot p?$$
 (30)

1.ª Lei de fusão do condicional
$$f \cdot (p \rightarrow g, h) = p \rightarrow f \cdot g, f \cdot h$$
 (31)

2.ª Lei de fusão do condicional
$$(p \rightarrow f, g) \cdot h = (p \cdot h) \rightarrow (f \cdot h), (g \cdot h)$$
 (32)

Isomorfismos (α)

'Shunt-left'
$$h \cdot \alpha = k \equiv h = k \cdot \alpha^{\circ}$$
 (33)

'Shunt-right'
$$\alpha \cdot g = f \equiv g = \alpha^{\circ} \cdot f$$
 (34)

EXPONENCIAÇÃO

Universal-exp
$$k = \overline{f} \Leftrightarrow f = \operatorname{ap} \cdot (k \times id)$$
 (35)

Cancelamento-exp
$$f = ap \cdot (\overline{f} \times id)$$
 (36)

Reflexão-exp
$$\overline{\mathsf{ap}} = id_{B^A}$$
 (37)

Fusão-exp
$$\overline{g \cdot (f \times id)} = \overline{g} \cdot f$$
 (38)

$$Def-exp f^A = \overline{f \cdot ap} (39)$$

Absorção-exp
$$f^A \cdot \overline{g} = \overline{f \cdot g}$$
 (40)

Natural-exp
$$g \cdot ap = ap \cdot (g^A \times id)$$
 (41)

Functor-exp
$$(g \cdot h)^A = g^A \cdot h^A$$
 (42)

Functor-id-exp
$$id^A = id$$
 (43)

FUNCTORES

Functor-F
$$F(g \cdot h) = (Fg) \cdot (Fh) \tag{44}$$

Functor-id-F
$$Fid_A = id_{(FA)}$$
 (45)

Indução

Universal-cata
$$k = (g) \Leftrightarrow k \cdot \mathsf{in} = g \cdot \mathsf{F} k$$
 (46)

Cancelamento-cata
$$(g) \cdot in = g \cdot F(g)$$
 (47)

Reflexão-cata
$$(in) = id_T$$
 (48)

Fusão-cata
$$f \cdot (g) = (h) \Leftarrow f \cdot g = h \cdot \mathsf{F} f$$
 (49)

Base-cata
$$Ff = B(id, f) \tag{50}$$

Absorção-cata
$$(g) \cdot \mathsf{T} f = (g \cdot \mathsf{B}(f, id))$$
 (52)

RECURSIVIDADE MÚTUA

Fokkinga
$$\begin{cases} f \cdot in = h \cdot \mathsf{F} \langle f, g \rangle \\ g \cdot in = k \cdot \mathsf{F} \langle f, g \rangle \end{cases} \equiv \langle f, g \rangle = (\langle h, k \rangle)$$
 (53)

"Banana-split"
$$\langle (|i|), (|j|) \rangle = (|(i \times j) \cdot \langle \mathsf{F} \pi_1, \mathsf{F} \pi_2 \rangle)$$
 (54)

Coindução

Universal-ana	$k = [\![g]\!] \Leftrightarrow out \cdot k = (Fk) \cdot g$	(55)
Cancelamento-ana	$out \cdot \llbracket (g \rrbracket = F \llbracket (g \rrbracket) \cdot g$	(56)
Reflexão-ana	$\llbracket(out)\rrbracket=id_T$	(57)
Fusão-ana	$[\![g]\!]\cdot f = [\![h]\!] \Leftarrow g\cdot f = (Ff)\cdot h$	(58)
Base-ana	$Ff \;\; = \;\; B\;(id,f)$	(59)
Def-map-ana	$Tf = [[B(f,id) \cdot out)]$	(60)
Absorção-ana	$Tf\cdot [\![g]\!] = [\![B(f,id)\cdot g)\!]$	(61)

Mónadas

Multiplicação	$\mu \cdot \mu = \mu \cdot T \mu$	(62)
Unidade	$\mu \cdot u = \mu \cdot T u = id$	(63)
$\mathbf{Natural}$ - u	$u \cdot f = T f \cdot u$	(64)
Natural- μ	$\mu \cdot T \left(T f \right) \ = \ T f \cdot \mu$	(65)
Composição monádica	$f \bullet g = \mu \cdot T f \cdot g$	(66)
Associatividade-•	$f \bullet (g \bullet h) = (f \bullet g) \bullet h$	(67)
Identidade-•	$u \bullet f = f = f \bullet u$	(68)
Associatividade- \bullet/\cdot	$(f \bullet g) \cdot h = f \bullet (g \cdot h)$	(69)
${\bf Associatividade}{}/{\bullet}$	$(f \cdot g) \bullet h = f \bullet (T g \cdot h)$	(70)
μ versus $ullet$	$id \bullet id = \mu$	(71)

DEFINIÇÕES ao ponto ('POINTWISE')

Def-ap

the perme (Tentition)		
Igualdade extensional	$f = g \iff \langle \forall \ x \ :: \ f \ x = g \ x \rangle$	(72)
Def-comp	$(f \cdot g) \ x = f \ (g \ x)$	(73)
Def-id	$id \ x = x$	(74)
Def-const	$\underline{k} \ x = k$	(75)
Notação- λ	$f \ a = b \equiv f = \lambda a \to b$	(76)
Def-split	$\langle f, g \rangle x = (f x, g x)$	(77)
$\mathbf{Def} ext{-} imes$	$(f \times g) (a,b) = (f a, g b)$	(78)
Def-proj	$\begin{cases} \pi_1 (x, y) = x \\ \pi_2 (x, y) = y \end{cases}$	(79)
Elim-let	$\mathbf{let} \ x = a \ \mathbf{in} \ b = b \left[x/a \right]$	(80)
Elim-pair	$t = t[(x,y)/z, x/\pi_1 z, y/\pi_2 z]$	(81)
Def-cond	$(p \rightarrow f, g) x = $ if $p x$ then $f x$ else $g x$	(82)
Def-guard	$p? a = \mathbf{if} \ p \ a \ \mathbf{then} \ i_1 \ a \ \mathbf{else} \ i_2 \ a$	(83)

ap(f,x) = f x

(84)

Curry	$\overline{f} \ a \ b = f \ (a, b)$	(85)
Uncurry	$\widehat{f}(a,b) = f a b$	(86)
Composição monádica	$(f \bullet g) \ a = \mathbf{do} \{ b \leftarrow g \ a; f \ b \}$	(87)
'Binding- μ'	$x \gg = f = (\mu \cdot T f)x$	(88)
Notação-do	$\mathbf{do} \{x \leftarrow a; b\} = a \gg (\lambda x \to b)$	(89)
' μ -binding'	$\mu x = x \gg id$	(90)
Sequenciação	$x \gg y = x \gg \underline{y}$	(91)