${\bf Teorie}$

Elektroenergetika 3

Petr Jílek

2024

Obsah

1	Značení			
2	Kor	nstanty	4	
3	Energie			
	3.1	Potenciální energie	5	
	3.2	Kinetická energie	5	
	3.3	Měrná tepelná kapacita	5	
	3.4	Výkon	5	
4	Sdílení tepla			
	4.1	Fourierova-Kirchhoffova rovnice	6	
	4.2	Fourieruv zákon	6	

1 Značení

- t čas (s sekunda)
- l délka (m metr)
- h výška (m metr)
- r poloměr (m metr)
- d tloušťka / průměr (m metr)
- S plocha (m² metr čtvereční)
- V objem (m³ metr krychlový)
- m hmotnost (kg kilogram)
- ρ hustota (kg·m⁻³ kilogram na metr krychlový)
- v rychlost (m·s⁻¹ metr za sekundu)
- a zrychlení (m · s⁻² metr za sekundu na druhou)
- \dot{V} objemový průtok (m $^3\cdot {\rm s}^{-1}$ metr krychlový za sekundu)
- E_p potenciální energie (J joule)
- E_k kinetická energie (J joule)
- P výkon (W watt)
- T teplota (K kelvin / °C stupeň celsia)
- ΔT rozdíl teplot (K kelvin)
- \dot{q} měrný tepelný tok (W·m⁻² watt na metr čtvereční)
- \dot{Q} tepelný tok (W watt)
- q měrná tepelná energie (J·m⁻² joule na metr čtvereční)
- Q tepelná energie (J joule)
- \dot{Q}_V objemový zdroj tepla (W·m⁻³ watt na metr krychlový)
- c měrná tepelná kapacita (J · kg $^{-1}$ · K $^{-1}$ joule na kilogram na kelvin)
- λ tepelná vodivost (W · m⁻¹ · K⁻¹ watt na metr na kelvin)
- R_{ϑ} (měrný) tepelný odpor (m² · K · W^{-1} metr čtvereční kelvin na watt)
- $R_{\vartheta A}$ (absolutní) tepelný odpor (K·W⁻¹ kelvin na watt)

- α_{ϑ} součinitel přestupu tepla (W · m⁻² · K⁻¹ watt na metr čtvereční na kelvin)
- U_{ϑ} součinitel prostupu tepla (W · m^-2 · K^-1 watt na metr čtvereční na kelvin)
- $U_{\vartheta A}$ prostup tepla $(W \cdot K^{-1} \text{watt na kelvin})$
- ρ_e měrný elektrický odpor $(\Omega \cdot m^{-1} ohm na metr)$
- σ_e měrná elektrická vodivost (S·m⁻¹ siemens na metr)
- J_e elektrická proudová hustota (A·m⁻² ampér na metr čtvereční)
- E_e intenzita elektrického pole (V · m⁻¹ volt na metr)
- U_e elektrické napětí (V volt)
- I_e elektrický proud (A ampér)
- R_e elektrický odpor (Ω ohm)
- G_e elektrická vodivost (S siemens)
- \hat{Z}_e impedance (Ωohm)
- \hat{Y}_e admitance (S siemens)
- B_e elektrická susceptance (S siemens)
- L_e elektrická indukčnost (H henry)
- C_e elektrická kapacita (F farad)

2 Konstanty

- gravitační zrychlení: $g=9,81~\mathrm{m\cdot s^{-2}}$ metr za sekundu na druhou
- Stefanova-Boltzmannova konstanta: $\sigma=5,67\cdot10^{-8}~W\cdot m^{-2}\cdot K^{-4}$ watt na metr čtvereční na kelvin na čtvrtou

Mateiál	$\rho (\mathrm{kg \cdot m^{-3}})$	$c \left(\mathbf{J} \cdot \mathbf{kg}^{-1} \cdot \mathbf{K}^{-1} \right)$
Voda (H2O)	1 000	4 186
Ocel	7 750	450
Zlato	19 320	129

Tabulka 1: Hustota a měrná tepelná kapacita materiálů.

3 Energie

3.1 Potenciální energie

Potenciální energie je energie, kterou má těleso v důsledku své polohy v gravitačním poli. Vztah pro výpočet potenciální energie je:

$$E_p = m \cdot g \cdot h,\tag{J}$$

kde:

 E_p – potenciální energie (J), m – hmotnost (kg), g – gravitační zrychlení (m·s⁻²), h – výška (m).

3.2 Kinetická energie

Kinetická energie je energie, kterou má těleso v důsledku své rychlosti. Vztah pro výpočet kinetické energie je:

$$E_k = \frac{1}{2} \cdot m \cdot v^2, \tag{J}$$

kde:

 E_k – kinetická energie (J), m – hmotnost (kg), v – rychlost (m·s⁻¹).

3.3 Měrná tepelná kapacita

Měrná tepelná kapacita je definována jako množství tepla, které je potřeba k ohřátí jednoho kilogramu látky o jeden stupeň Kelvina:

$$Q = m \cdot c \cdot \Delta T,\tag{J}$$

kde:

Q – tepelná energie (J), m – hmotnost (kg), c – měrná tepelná kapacita (J·kg⁻¹·K⁻¹), ΔT – rozdíl teplot (K).

3.4 Výkon

Výkon je definován jako množství práce vykonané za jednotku času:

$$P = \frac{dW}{dt},\tag{W}$$

kde:

P - výkon (W), dW - infinitesimální práce (J),dt - infinitesimální čas (s).

Sdílení tepla

Fourierova-Kirchhoffova rovnice

Fourierova-Kirchhoffova rovnice je základní rovnicí pro popis toku tepla:

$$\rho \cdot c \cdot \left(\frac{\partial T}{\partial t} + \vec{v} \cdot \vec{\nabla} T \right) = \nabla \cdot \left(\lambda \cdot \vec{\nabla} T \right) + \dot{Q}_V, \quad (\mathbf{W} \cdot \mathbf{m}^{-3}) \quad (5)$$

kde:

 ρ – hustota (kg·m⁻³),

c – měrná tepelná kapacita ($J \cdot kg^{-1} \cdot K^{-1}$),

T – teplota (K),

 $t - \check{\text{c}}$ as (s),

 \vec{v} - rychlost (m·s⁻¹),

 $\vec{\nabla}T$ – gradient teploty (K·m⁻¹),

 $\nabla \cdot$ divergence (m⁻¹), λ – tepelná vodivost (W·m⁻¹·K⁻¹), \dot{Q}_V – objemový zdroj tepla (W·m⁻³).

4.2 Fourieruv zákon

Fourieruv zákon je základní rovnicí pro popis toku tepla:

$$\vec{\dot{q}} = -\lambda \cdot \vec{\nabla} T, \qquad (\mathbf{W} \cdot \mathbf{m}^{-2}) \quad (6)$$

$$\begin{split} & \vec{\dot{q}} - \text{měrný tepelný tok } (\mathbf{W} \cdot \mathbf{m}^{-2}), \\ & \lambda - \text{tepelná vodivost } (\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}), \end{split}$$

 $\vec{\nabla}T$ – gradient teploty (K·m⁻¹).