ErSE222: Machine learning in Geoscience

Feb. 9th, 2025

Tariq Alkhalifah and Omar Saad

- Neuron: the fundamental computational units
- **Synapses**: the connections between neurons
- Layer: neurons are organized into layers
- Extremely complex: around 10¹¹ neurons in the brain, each with 10⁴ connections

The Neuron - A Biological Information Processor

- dendrites the receivers
- soma neuron cell body (sums input signals)
- axon the transmitter
- synapse point of transmission

- 200 billion neurons,32 trillion synapses
- Element size: 10⁻⁶ m
- Energy use: 25W
- Parallel, Distributed

- 1 billion bytes RAM but trillions of bytes on disk
- Element size: 10⁻⁹ m
- Energy watt: 30-90W (CPU)
- Serial, Centralized

Learning algorithms

$$\mathbf{y} = [y_1, y_2, \dots, y_{N_t}]^T$$
 $\mathbf{Y} = [\mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \dots, \mathbf{y}^{(N_s)}]$ Outputs / labels

- Model: $\mathbf{y} = f_{\theta}(\mathbf{x})$
- Cost function: $J_{ heta} = rac{1}{N_s} \sum_{i=1}^{N_s} \mathscr{L}(\mathbf{y}^{(j)}, f_{ heta}(\mathbf{x}^{(j)}))$
- Optimization algorithm: $\hat{\theta} = \underset{\theta}{\operatorname{argmin}} J_{\theta}$

Perceptron

Perceptron

MLP

MLP

$$\mathbf{W} \in \mathbb{R}^{N_o imes N_i} \ \mathbf{b} \in \mathbb{R}^{N_o}$$

$$y_j = \sigma(\sum_i w_{ji} x_i + b), \quad \mathbf{y} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$$

Deep Network (3-layers)

 $\mathbf{x} \qquad \mathbf{a}^{[1]}$

 $a^{[2]}$

 $\mathbf{a}^{[3]} = \mathbf{y}$

Deep Network (3-layers)

input layer

hidden layer 1 hidden layer 2 hidden layer 3

output layer

Deep Network (3-layers)

- Input layer: first layer taking the input vector \mathbf{x} as input and returning an intermediate representation $\mathbf{z}^{[1]}$;
- Hidden layers: second to penultimate layers taking as input the previous representation $\mathbf{z}^{[i-1]}$ and returning a new representation $\mathbf{z}^{[i]}$;
- Ouput layer: last layer producing the output of the network y;
- Depth: number of hidden layers (plus output layer);
- Width: number of units in each hidden layer.

Activation Functions - motivation

The need for nonlinearities comes from the recognition that:

$$\mathbf{y} = \sigma(\mathbf{W}^{[3]}\sigma(\mathbf{W}^{[2]}\sigma(\mathbf{W}^{[1]}\mathbf{x}))) = \mathbf{W}^{[3]}\mathbf{W}^{[2]}\mathbf{W}^{[1]}\mathbf{x} = \mathbf{W}\mathbf{x}$$
 $\sigma(\mathbf{x}) = \mathbf{I}\mathbf{x} = \mathbf{x}$,

One single linear model!

Activation Functions

Activation Functions

Activation Functions

Non-differentiable, but does not saturate

Loss Function (Regression)

The most commonly used cost function is:

$$J_{ heta} = MSE(\mathbf{y}_{train}, \hat{\mathbf{y}}_{train}) = rac{1}{N_s} ||\mathbf{y}_{train} - \hat{\mathbf{y}}_{train}||_2^2 = rac{1}{N_s} \sum_i^{N_s} (y_{train}^{(i)} - \hat{y}_{train}^{(i)})^2$$
 Mean squared error

which is minimized as follows:

$$\hat{ heta} = min_{ heta}J_{ heta}
ightarrow heta_{i+1} = heta_i - lpha
abla J_{ heta}$$

Once the model is trained (= best parameters are learned) one can estimate the solution from a new input – INFERENCE

$$y_{test} = ilde{\mathbf{x}}_{test}^T \hat{ heta}$$

Loss Function (Classification)

The loss function is called **binary cross-entropy**

$$\mathcal{L}(y_{train}^{(i)}, \hat{y}_{train}^{(i)}) = -(y_{train}^{(i)}log(\hat{y}_{train}^{(i)}) + (1 - y_{train}^{(i)})log(1 - \hat{y}_{train}^{(i)}))$$
 for 'true' labels (y=1) for 'false' labels (y=0)

and the total cost function is:

$$J_{ heta} = rac{1}{N_s} \sum_{i}^{N_s} \mathscr{L}(y_{train}^{(i)}, \hat{y}_{train}^{(i)}) \hspace{1cm} \widehat{ heta} = min_{ heta} J_{ heta}
ightarrow heta_{i+1} = heta_i - lpha
abla J_{ heta}$$

Sigmoid Activation Function $\sigma_s(x) = \frac{1}{1 - \rho^{-x}}$

$$\sigma_s(x) = rac{1}{1-e^{-x}}$$

Categorical cross-entropy loss in multi-class classification tasks;

$$CE = -\sum_{i=1}^{i=N} y_i \cdot log(\widehat{y}_i)$$

$$CE = -[y_1 \cdot log(\widehat{y_1}) + y_2 \cdot log(\widehat{y_2}) + y_3 \cdot log(\widehat{y_3})]$$

Ultimately goal of a ML model (Supervised Learning)

A model is useful if it can *perform well on new, previously unseen data*. This property of a model is also generally referred to as *generalization*.

ML data 'structuring' (Supervised Learning)

- Training dataset: $\{\mathbf{X}_{train}, \mathbf{Y}_{train}\}$, used to train the model (e.g., learn the free-parameters $m{ heta}$ of a NN);
- ullet Validation dataset: $\{\mathbf{X}_{valid}, \mathbf{Y}_{valid}\}$, used to select the hyperparameters of the model;
- Testing dataset: $\{X_{test}, Y_{test}\}$, used only once a model is finalized (trained and optimized) to produce an *unbiased* estimate of model performance.

ML performance

Different measures for different datasets:

- Training error (or performance): overall error (or performance) computed over the training dataset;
- Validation error (or performance): overall error (or performance) computed over the validation dataset.
- **Test/Generalization error** (or performance): overall error (or performance) computed over the testing dataset.

Classification evaluation metrics (Confusion Matrix)

True Labels

	_	Positive (P)	Negative (N)
Predicted Labels	Positive	Correct / True Positive (TP)	Type 1 Error / False Positive (FP)
	Negative	Type 2 Error / False Negative (FN)	Correct / True Negative (TN)

Classification evaluation metrics

Precision

$$Pr = rac{TP}{TP + FP}$$

Appropriate when minimizing false positives is the focus..

Recall:

$$Rc = \frac{TP}{TP + FN} = \frac{TP}{P}$$

Appropriate when minimizing false negatives is the focus..

Accuracy:

$$Ac = rac{TP + TN}{TP + TN + FP + FN} = rac{TP + TN}{P + N}$$

Percentage of correct predictions over the total number of cases. Combines both error types (in the denominator), it is therefore a more global measure of the quality of the model.

• F1-score:

$$2\frac{Pr\cdot Rc}{Pr+Rc}$$

Combines precision and recall into a single measure

Application

Earthquake Monitoring System

Earthquake Monitoring System

Seismic Event Classification

