Pontificia Universidad Católica del Perú, Departamento de Economa, Facultad de Ciencias Sociales 1ECO11: Fundamentos de Econometría

Examen Parcial

Profesor: Juan Palomino

October 13, 2022

Instrucciones

- (1) El examen se encuentra habilitado en el sistema PAIDEIA a partir de las 10:00am y tiene hasta las 12:00pm para entregarme los cuadernillos. No se recibirá ningún cuadernillo pasado esa hora.
- (2) Pueden subir la solución de su programación a PAIDEIA hasta la hora final del examen.
- (3) Redacción y ortografía SERÁN TOMADAS EN CUENTA para la calificación de la prueba. SI EL ENVÍO DEL MANUSCRITO NO ES LEGIBLE RECIBIRÁN LA PENALIDAD DE MENOS UN PUNTO.
- (4) Si se evidencia plagio en las respuestas, automáticamente la prueba será anulada y remitida a las autoridades correspondientes de la Facultad.
- (5) La pregunta 3 lo pueden hacer en excel, Stata, RStudio, Colab u otro software. Pero solo quiero sus respuestas, es decir que me pongan el valor de los coeficientes estimados u otros valores que se les pide. En esta pregunta no se evaluará procedimiento.

TEORÍA

- (1) (Conceptos): Responder brevemente los siguientes conceptos:
 - (a) Multicolinealidad imperfecta y brinde un ejemplo. (1 punto)
 - (b) Error Tipo 1 y Error Tipo 2. Ejemplifique cada una. (1 punto)
 - (c) Defina Perturbaciones No Esféricas. (1 punto)
- (2) (Pruebas de Hipótesis): Asumir que tienes una muestra aleatoria del modelo:

$$y_i = \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i$$

$$E(\epsilon_i | x_i) = 0$$
(1)

donde y_i es el salario medido en soles por hora, y x_i es la edad. Describir como podrías testear la hipótesis que el salario esperado para un trabajador de 60 años es 20 soles una hora (2 puntos).

EJERCICIOS

(3) (Regresión Lineal): Considere la siguiente Tabla con observaciones anuales del logaritmo del Consumo (cp), de logaritmo del ingreso disponible (yd) y de la tasa de interés de referencia (i).

Año	Intercepto	yd	cp	i
2010	1	6.62	6.51	0.02
2011	1	6.66	6.52	0.03
2012	1	6.70	6.60	0.04
2013	1	6.76	6.64	0.052
2014	1	6.74	6.64	0.043
2015	1	6.77	6.66	0.030
2016	1	6.81	6.70	0.03
2017	1	6.85	6.76	0.05
2018	1	6.90	6.81	0.055
2019	1	6.83	6.83	0.06

- (a) Halle los estimadores $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\beta}_3$, $\hat{\sigma}^2$ de la regresión $cp_t = \beta_1 + \beta_2 y d_t + \beta_3 i_t + \epsilon_t$. (1 punto)
- (b) Pruebe la hipótesis que $\beta_2=0$. Use como valor crítico $t_{\alpha/2}=2.306$. ¿Rechaza o no rechaza la hipótesis nula? (1 punto)
- (c) Halle un intervalo de confianza al 95% para $\hat{\beta}_3$. Use como valor crítico $t_{\alpha/2} = 2.306$. (1 punto)
- (d) Halle el coeficiente R^2 y $\bar{R^2}$. (1 punto)
- (e) Halle el estadístico F para verificar la prueba de hipótesis $H_0: \beta_2 = \beta_3 = 0$. Usa el valor crítico 4.46. ¿Rechaza o no rechaza la hipótesis nula? (1 punto)
- (4) (**Propiedades Asintóticas**): Considerar el siguiente modelo $y_i = x_i\beta_0 + \epsilon_i$, con el supuesto $(\epsilon_i|x_i) = 0$ tal que $x_i, \beta, \epsilon_i \in \mathbb{R}$. Ahora considerar el siguiente estimador:

$$\widetilde{\beta} = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i}$$

Asumir que $\{y_i, x_i\}$ es una muestra aleatoria i.i.d

- (a) ¿Es el estimador insesgado? (1 punto)
- (b) Encontrar $Var(\widetilde{\beta}|x_i)$. (1 punto)

- (c) ¿Es el estimador consistente? Realizar una lista de todos los supuestos que has realizado. (1.5 puntos)
- (d) Hallar $\sqrt{n}(\widetilde{\beta} \beta_0)$ a medida que $n \to \infty$. Realizar una lista de todos los supuestos que has realizado. (1.5 puntos)
- (5) (Interpretación): Se tiene la siguiente ecuación salarial:

$$log(wage) = \beta_1 + \beta_2 sch_i + x_i'\gamma + \epsilon_i$$

donde log(wage) es el salario por hora, sch son los años de escolaridad del individuo. Asimismo, usando la Encuesta Nacional de Hogares (ENAHO) se estima por MCO y se obtiene los siguientes resultados:

Table 1: Ecuación Salarial usando ENAHO

	${\it Modelo}~1$	${\it Modelo}~2$	${\it Modelo}~3$	${\it Modelo}~4$
Constante	6.493*** (0.008)	6.341*** (0.009)	5.742*** (0.014)	5.804*** (0.014)
Escolaridad	$0.066^{***}_{(0.001)}$	$0.070^{***}_{(0.001)}$	$0.098^{***}_{(0.001)}$	$0.094^{***}_{(0.001)}$
Mujer		$-0.184^{*}_{(0.006)}$	$-0.178^{**}_{(0.006)}$	$-0.167^{**}_{(0.006)}$
Experiencia			$0.013^{***}_{(0.000)}$	0.010*** (0.000)
Permanencia				0.007*** (0.000)
N	84251	84251	84251	84251
\mathbb{R}^2	0.089	0.099	0.132	0.136
Pseudo \mathbb{R}^2	0.084	0.093	0.122	0.130

 $Notes:~^*,~^{**},~^{***}$ denota significancia estadística al 10%, 5% and 1%, respectivamente.

Asimismo, considerar que $E(\hat{\beta}_2|sch) = \beta_2 + \beta_3\hat{\gamma}$ donde β_3 es la relación entre salario y mujer, y $\hat{\gamma}$ es el coeficiente de la regresión de mujer sobre escolaridad. Asumir que para esta muestra las mujeres ganan en promedio menos que los hombres $\beta_3 < 0$. Y de una regresión entre escolaridad y mujer se obtiene que $\hat{\gamma}$ es positivo.

Responder lo siguiente:

- (a) ¿Cómo se interpreta el coeficiente de escolaridad para el modelo 1? Es significativo? (1 punto)
- (b) ¿En el modelo 2 el coeficiente de escolaridad es sesgado hacia arriba o hacia abajo con respecto al modelo 1? (2 puntos)
- (c) ¿Se podría incorporar una variable de *Hombre* al modelo? Qué problemas estaría ocasionando? Por qué? (1 punto)
- (d) ¿Qué es el Pseudo R^2 y por qué tiene un valor más pequeo que el R^2 . (1 punto)