Alocação de Polos Em Regiões do Plano Complexo Para Sistemas Discretos via LMIs

Alexandre Nascimento, Jr.

28 de outubro de 2022

Sumário

Sumário .		1
1	INTRODUÇÃO	3
2	REGIÃO DE DESEMPENHO GARANTIDO	5
2.1	Regiões de polos para sistemas contínuos	5
2.2	Regiões de polos para sistemas discretos	6
2.3	Aproximação das regiões do plano z via LMIs	8
2.4	Condição de Liapunov	9
3	ALGORITMO 1	.1
3.1	Aproximação cônica	. 1
3.2	Aproximação elíptica	.3
3.3	Aproximação poligonal	.3
4	TESTES E SIMULAÇÕES	9
4.1	Modelagem via espaço de estados	.9
4.2	Primeiro projeto	:0
4.3	Um projeto mais restritivo	:0
5	CONCLUSÃO	:3
	REFERÊNCIAS 2	25

1 Introdução

2 Região de Desempenho Garantido

A alocação de polos é uma das principais ferramentas da teoria de controle, pois a partir desta, é possível projetar um sistema que seja estável e que tenha um bom desempenho Rosinová e Holič (2014). A operação de alocar polos de um sistema linear dentro de uma região específica é chamada \mathcal{D} -estabilidade Wisniewski et al. (2017).

Entende-se por estável o sistema que, em termos de resposta a estímulos, possui uma convergência ao zero da resposta natural, restando apenas a reposta forçada (NISE, 2011). Assim, para um intervalo de tempo determinado, espera-se que o sistema apenas tenha dinâmica referente à entrada aplicada. Neste contexto, a estabilidade é o ponto de partida para projetos de compensadores.

2.1 Regiões de polos para sistemas contínuos

Na \mathscr{D} -estabilidade, a região referente à estabilidade em sistema contínuos e invariantes no tempo é o semi-plano esquerdo do plano complexo. Dado um ponto genérico no plano s, representado por:

$$s = x + iy \tag{2.1}$$

este estará na região estável somente se a parte real de tal ponto estiver à esquerda do eixo imaginário, ou em números:

$$\operatorname{Re}(s) < 0 \implies x < 0$$
 (2.2)

Assim, um sistema com n polos é dito estável se todos os seus polos estão localizados à esquerda do eixo imaginário. A partir deste conceito, é possível definir estabilidade relativa. Se um sistema é estável para um valor $\sigma < 0$, então aquele é dito estável relativo (ao valor de σ).

A figura 1a mostra um esboço da região comentada. À medida que o valor de σ aumenta em valor absoluto, mais a esquerda a reta limitante se encontra e menor o plano estável relativo se torna. Além disso, as equações de tais retas podem ser generalizadas via:

$$x = -|\sigma| \tag{2.3}$$

Outros parâmetros de desempenho importantes para projetos de compensadores são o fator de amortecimento ζ e a frequência natural não-amortecida ω_n . São caracterizados pela resposta de sistemas de segunda ordem à função degrau (NISE, 2011)(OGATA, 2011) e representam as oscilações não-amortecidas do modelo físico. Dado um par de

polos conjugados via (2.1), é possível reescrevê-los em termos daqueles parâmetros:

$$s = -\zeta \omega_n \pm \jmath \omega_n \sqrt{1 - \zeta^2} \tag{2.4}$$

com $\sigma = -\zeta \omega_n$. As regiões de \mathscr{D} -estabilidade referente a tais parâmetros são obtidos fixando um deles em (2.4) e variando o outro em um certo intervalo. Por esse motivo, (2.4) pode ser entendido como uma função de duas varáveis, dado como:

$$s(\zeta, \omega_n) = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2}$$
 (2.5)

Figura 1 – Regiões de \mathscr{D} -estabilidade do plano s. Em (a) encontram-se retas verticais em vários valores de σ , sendo $|\sigma_2| > |\sigma_1|$. Em (b) encontram-se retas para vários valores de ζ , sendo $\zeta_2 > \zeta_1$. Em (c) encontram-se circunferências de raios $r = \omega_n$, sendo $\omega_{n2} > \omega_{n1}$.

Com isso, é possível analisar as regiões geradas a partir de tais parâmentros. A região ζ -constante é obtida fixando-se um valor para ζ e variando-se o valor de ω_n . As características obtidas são representadas na figura 1b. Os ângulos formados entre as retas e o eixo imaginário têm valores absolutos $\beta = -\cot(\arccos(\zeta))$ e diminuem à medida que o valor de ζ aumenta, tornando a região estreita.

Já as regiões ω_n -constante possuem as características esboçadas na figura 1c. Os raios das semicircunferências formadas possuem valores iguais à ω_n e aumentam ou diminuem à medida que se varia tal parâmetro. Conforme abordado em (CHILALI; GAHINET, 1996), a intersecção das regiões comentadas formam a Região Ω de Desempenho garantido. Todos os polos dentro de tal região possuem um mínimo valor de σ , ζ e ω_n .

2.2 Regiões de polos para sistemas discretos

As regiões de \mathscr{D} -estabilidade para sistemas discretos são obtidas seguindo os mesmos métodos abordados nos contínuos, com a diferença de serem descritos no plano z. A transformada de um ponto do plano s para z é dada por:

$$z = \exp(s T_s) \tag{2.6}$$

onde T_s é o período de amostragem, parâmetro importante para sistemas discretos (KUO, 1980). Substituindo (2.4) em (2.6), chega-se a seguinte relação:

$$z = \exp\left(-\zeta \omega_n T_s \pm j\omega_n T_s \sqrt{1-\zeta^2}\right)$$
 (2.7)

A σ -estabilidade nos contínuos foi encontrada verificando a parte real dos polos. Utilizando-se da mesma ideia, ao analisar apenas a parte real de (2.7) (igualando a parte imaginária igual a zero), chega-se na seguinte relação:

$$z = \exp\left(-|\sigma|T_s\right) \tag{2.8}$$

onde $\sigma = -\zeta \omega_n$. Tal função descreve uma circunferência com raio $r = |\sigma|$ no plano complexo. Recordando (2.2) e (2.3), quando $\sigma = 0$ em (2.8), a circunferência gerada possui raio unitário. Dessa maneira, o região estável nos sistemas discretos é o interior de uma circunferência unitária. A figura 2a mostra esboços para vários valores de σ .

Como realizado nos sistemas contínuos, (2.7) pode ser enxergada em função de ζ e ω_n :

$$z(\zeta, \omega_n) = \exp\left(-\zeta \omega_n T_s \pm j\omega_n T_s \sqrt{1-\zeta^2}\right)$$
 (2.9)

e a partir desta, é possível descrever as regiões geradas a partir de tais parâmentros. A região ζ -constante possui o formato aprensentado na figura 2a. Devido ao exponencial, as curvas geradas assemelham-se a cardioides, mas não o são, pois denominam-se espirais logarítmicas.

Figura 2 – Regiões de \mathscr{D} -estabilidade do plano z. Em (a) encontram-se circunferências com valores de raios crescentes, sendo $|\sigma_2| > |\sigma_1|$. Em (b) encontram regiões ζ -constantes com áreas decrescentes em relação à ζ , sendo $\zeta_2 > \zeta_1$. Em (c) encontram-se regiões semelhantes à cardioides que possuem áreas crescentes em relação à ω_n , sendo $\omega_2 > \omega_1$.

Ambos os ramos começam a ser desenhadas a partir de (1,0) (quando $\omega_n = 0 = \omega_{nmin}$), e se deslocam no sentido anti-horário, até cruzarem o eixo real primeira vez. À medida que o valor de ω_n aumenta, mais voltas o contorno dá. E a cada $n\pi$ voltas, o contorno cruza o eixo real pela n-ésima vez, conforme esboçado na figura 3. Como a espiral tende

Figura 3 – Espiral logarítmica com 3 voltas gerada a partir de (2.9) com $\zeta = 0.5$ constante.

para dentro da região limitada pela primeira volta, somente a primeira volta é considerada no plano z.

O valor de ω_n no qual os ramos cruzam o eixo imaginário a cada $n\pi$ voltas é encontrado quando o argumento de (2.9) é igual à π (meia volta da espiral, em radianos), isto é:

$$\arg z(\zeta, \omega_{nmax}) = \pi \implies \omega_{nmax} T_s \sqrt{1 - \zeta^2} = \pi \implies$$

$$\omega_{nmax} = \frac{\pi}{T_s \sqrt{1 - \zeta^2}}$$
(2.10)

Assim, ambos os ramos cruzam o eixo imaginário pela primeira vez quando $\omega_n = \omega_{nmax}$, para o respectivo valor fixado de ζ . Ainda, outra característica que pode ser citada é a influência do ζ na região: quanto maior seu valor, menor a área da região ζ -constante equivalente, assim como ocorre com seu dual nos contínuos.

Em relação às regiões ω_n -constante, como o estudo de alocação de polos se restringe a sistemas se segunda ordem subamortecidos (NISE, 2011) (OGATA, 2011), os valores possíveis para a taxa de amortercimento está no intervalo $0 < \zeta < 1$. Dito isso, os ramos esboçados na figura 2c começam a ser desenhadas a partir da circunferência unitária (quando $\zeta = 0$) e vão em direção ao ponto $(z(1, \omega_n), 0)$. Tais pontos extremos possuem as seguintes relações:

$$z(\zeta_{min} = 0, \omega_n) = \exp(\pm \omega_n T_s)$$
(2.11a)

$$z(\zeta_{max} = 1, \omega_n) = \exp(-\omega_n T_s \pm j\omega_n)$$
(2.11b)

Com tais pontos extremos, é possível aproximar as regiões do plano z utilizando Desigualdes Matriciais Lineares (LMIs, em inglês). Esse estudo será abordado na subseção a seguir.

2.3 Aproximação das regiões do plano z via LMIs

Em estudos anteriores, foram abordadas técnicas utilizando LMIs para mapear as regiões de \mathcal{D} -estabilidade no plano s. Tal feito foi realizado devido à convexidade de tais regiões, requisito para o uso de LMIs. Conforme visto na subseção 2.2, as regiões

 ζ -constante e ω_n -constante no plano z podem possuir características não-convexas, o que impossibilita o mapeamento exato via LMIs.

Estudos foram desenvolvidos para contornar a não-convexidade de algumas regiões do plano z, aproximando-os em regiões convexas. Em 2014, no artigo (ROSINOVá; HOLIč, 2014), a autora mapeou a região ζ -constante utilizando a maior elipse ou circunferência inscrita possível. Mas foi em (ROSINOVá; HYPIUSOVá, 2019) que foi desenvolvido um algoritmo que traz várias aproximações utilizando elipses, para aproveitar da melhor forma a área daquela região.

Já em (WISNIEWSKI et al., 2017) foi abordada uma aproximação cônica, utilzandose apenas de quatro pontos e, consequentemente, dois setores cônicos. Apesar de simples, a ideia poderia facilmente ser estendida para n pontos, o que foi feito em (WISNIEWSKI; MADDALENA; GODOY, 2019). Ao aumentar a área a cada iteração, o algoritmo verifica a solução proposta.

E finalmente, utilizando-se das ideias anteriores, (CHIQUETO, 2021) trouxe aproximações cônica, elíptica e poligonal da região ω_n -constante.

2.4 Condição de Liapunov

$$\begin{bmatrix} -rP & * \\ PA + Z'B & -rP \end{bmatrix} \prec 0 \tag{2.12}$$

 $com r = \exp(-|\sigma|T_s).$

$$\begin{bmatrix} \operatorname{sen}(\theta)(AP + BZ + PA' + Z'B - 2\alpha P) & * \\ \cos(\theta)(PA' + Z'B' - AP - BZ) & \operatorname{sen}(\theta)(AP + BZ + PA' + Z'B - 2\alpha P) \end{bmatrix} < 0$$
(2.13)

$$\begin{bmatrix} \sin(\theta)(2\alpha P - AP - BZ - PA' - Z'B') & * \\ \cos(\theta)(PA' + Z'B' - AP - BZ) & \sin(\theta)(2\alpha P - AP - BZ - PA' - Z'B') \end{bmatrix} \prec 0$$
(2.14)

$$AP + BZ + Z'B' + PA' - 2\alpha P \succ 0 \tag{2.15}$$

$$N_y = \frac{\omega_s}{\omega_n} = \frac{2\pi}{\omega_n T_s} \tag{2.16}$$

$$a = \left(1 - \exp\left(\frac{-2\pi}{N_y}\right)\right) \tag{2.17}$$

$$b = a \operatorname{sen}\left(\frac{2\pi}{Ny}\right) \tag{2.18}$$

$$\begin{bmatrix} -P & * \\ -\frac{1}{a}P + \frac{1}{2}\left(\frac{1}{a} + \frac{1}{b}\right)AP + \frac{1}{2}\left(\frac{1}{a} - \frac{1}{b}\right)PA' - P \end{bmatrix} \prec 0$$
 (2.19)

3 Algoritmo

O algoritmo apresentado neste trabalho é um compilado de algoritmos desenvolvidos anteriormente, utilizando-se das aproximações cônica, elíptica e poligonal das regiões de \mathscr{D} -estabilidade do plano z. O objetivo deste trabalho é desenvolver em software tais algoritmos e, ao informar parâmetros de projeto, determinar se é possível implementar um compensador que respeite os requisitos.

Para tal, o algoritmo pode ser divido em três partes, uma para cada aproximação, sendo a aproximação desejada escolhida via chamada da função. O *software* utilizado foi o MATLAB, juntamente com o interpretador de LMIs YALMIP em conjunto com o solucionador númerico MOSEK.

Notação: $loc(v_1, v_2)$ determina o ponto que a reta que passa por v_1 e v_2 . $ang(v_1, v_2)$ cruza o eixo real. $ang(v_1, v_2)$ refere-se ao ângulo entre aquela reta e o eixo real.

3.1 Aproximação cônica

Para o mapeamento cônico das curvas ζ -constante e ω_n -constante, são utilizados os setores cônicos determinados via (2.14) e (2.13), e retas verticais como apresentado em 2.15.

Para a primeira curva, a ideia consiste em utilizar os pontos extremos calculados na seção 2.2, onde serão os centros dos setores cônicos. Os ângulos, medidos no sentido antihorário, são determinados a partir de um terceiro ponto, conforme a figura 4a. A escolha do ponto V é feita de maneira que a área do triângulo $\widehat{VV_oV_i}$ seja a maior possível. Um algoritmo linear foi usado para encontrar este ponto.

Figura 4 – Esboços das aproximações cônica da regiões ζ e ω_n -constantes.

Algoritmo 1 Aproximação cônica da taxa de amortecimento

```
Entrada: \sigma, \zeta, T_s
Saída: K
  1: V_o \leftarrow z(\zeta, \omega_{nmin})
  2: V_i \leftarrow z\left(\zeta, \omega_{nmax}\right)
  3: Z \leftarrow z(\zeta, \omega_n), onde a área do triângulo formado é a maior possível
  4: F \leftarrow P \succ 0
  5: F \leftarrow F \cap (2.12) \text{ com } r = \exp(-|\sigma|T_s)
                                                                                                                     ▶ Taxa de amortecimento
  6: F \leftarrow F \cap (2.13) \text{ com } \alpha = V_o \text{ e } \theta = ang(Z, V_i)
                                                                                                                        ⊳ Setor cônico esquerdo
  7: F \leftarrow F \cap (2.14) \text{ com } \alpha = V_i \text{ e } \theta = ang(Z, V_o)
                                                                                                                           ⊳ Setor cônico direito
  8: F \leftarrow F \cap (2.15) \text{ com } \alpha = V_i
                                                                                                                                     ▶ Reta vertical
  9: Verificar se o problema é factível
10: K \leftarrow ZP^{-1}
```

Uma que vez conhecidas tais informações, é possível aplicar o algoritmo 1. Um setor cônico voltado para a direita, com centro em V_i e ângulo θ_1 , e outro voltado para a esquerda, com centro em V_o e ângulo θ_2 , são aplicados para a aproximação. Além disso, para limitar a simetria do setor cônico com centro em V_i , uma reta que passa por este ponto é aplicada.

A região de \mathscr{D} -estabilidade resultante é a intersecção das regiões descritas. Ao ser unida com a restrição da taxa de decaimento, o setor cônico com centro em V_o é limitado por esta região. Após finalizado, o algoritmo determina a factibilidade da solução encontrada e retorna a matriz K que estabiliza o sistema com os parâmetros de projeto informados.

Em relação à região ω_n -constante, a mesma ideia é aplicada (CHIQUETO, 2021). Contudo, neste caso, somente um setor cônico com centro em N_i , que é limitado pela direita por uma reta que passa neste ponto são usados. Os pontos N_o e N_i são determinados via (2.11a) e (2.11b), respectivamente. Além disso, o ângulo θ é determinado através de $ang(N_o, N_i)$.

Após determinadas essas informações, é possível utilizar o algoritmo 2. Um detalhe que é facilmente observado é a rápida perda de convexidade da curva N_y . Logo, caso a constante N_y seja menor que 4.86 (CHIQUETO, 2021), o algoritmo retorna um alerta devido informando a falta de convexidade. Assim, para fins práticos, a pouca e a falta convexidade de tais curvas não foram tratadas.

Algoritmo 2 Aproximação cônica da curva N_y

```
Entrada: \sigma, \omega_n

Saída: K

1: N_o \leftarrow z(\zeta_{min}, \omega_n)

2: N_i \leftarrow z(\zeta_{max}, \omega_n)

3: F \leftarrow P \succ 0

4: F \leftarrow F \cap (2.12) com r = \exp(-|\sigma|T_s) \triangleright Taxa de amortecimento

5: F \leftarrow F \cap (2.14) com \alpha = N_i \triangleright Setor cônico direito

6: F \leftarrow F \cap (2.15) com \alpha = N_i \triangleright Reta vertical

7: Verificar se o problema é factível

8: K \leftarrow ZP^{-1}
```

Aproximação elíptica 3.2

Para a aproximação elíptica, apenas a região ω_n -constante foi aproximada. A ideia consiste em encontrar a maior elipse inscrita, a fim de aproveitar melhor a área. A figura 5 mostra um esboço da ideia descrita. Para tal, é preciso verificar se o valor escolhido para ω_n e T_s resultem em uma área convexa (CHIQUETO, 2021). Caso os parâmetros informados atendam às restrições, o algoritmo 3 pode ser aplicado.

Uma desvantagem de tal aproximação é a determinação da equação da elipse. Contudo, mesmo com tal dificuldade, a aproximação é importante para projetos em controle digital.

Figura 5 – Aproximação elíptica da região ω_n -constante.

▶ Taxa de amortecimento

▷ Elipse

Algoritmo 3 Aproximação elíptica da curva N_y

```
Entrada: \sigma, T_s, N_y
Saída: K
```

- 1: $F \leftarrow P \succ 0$
- 2: $F \leftarrow F \cap (2.12)$, com $r = \exp(-|\sigma|T_s)$
- 3: $F \leftarrow (2.19)$, com a = (2.17) e b = (2.18)
- 4: Verificar se o problema é factível
- $5:\ K \leftarrow ZP^{-1}$

Aproximação poligonal 3.3

A aproximação poligonal consiste na ideia de aproximar as regiões de interesse em um polígono com o maior número de lados possíveis. Para isto, o algoritmo irá partir de uma aproximação cônica simples. A partir daí, entre os dois pontos usados para definir o setor, um ponto intermediário é calculado e dois novos setores cônicos são definidos. Sob a ótica do número de lados, a cada iteração, um novo lado é acrescentado e, consequentemente, a área é incrementada. Em um número grande de iterações, a região aproximada tende a área total.

Algoritmo 4 Aproximação poligonal da região ζ-constante

```
Entrada: \sigma, \zeta, T_s
Saída: K
  1: l \leftarrow 0
  2: V_o \leftarrow z(\zeta, \omega_{nmin}, T_s)
  3: V_i \leftarrow z(\zeta, \omega_{nmax}, T_s)
  4: V \leftarrow z(\zeta, \omega_n, T_s), tal que Re(V) = V_i
  5: pontos1 \leftarrow [0 \ \omega_{ne}]
  6: pontos2 \leftarrow pontos1
  7: vec1 \leftarrow [V_o \ V]
  8: vec2 \leftarrow vec1
 9: F \leftarrow P \succ 0
10: F \leftarrow (2.12) \text{ com } r = \exp(-|\sigma|T_s)
                                                                                                       ▶ Taxa de amortecimento
11: F \leftarrow F \cap (2.13), com \alpha = V_o \in \theta = ang(V_o, V)
                                                                                                       ⊳ Voltado para a esquerda
12: F \leftarrow F \cap (2.15), com \alpha = V_i
                                                                                                                      ▶ Reta vertical
13: Verificar se o problema é factível
14: enquanto Problema for infactível faça
          se l < \text{número de elementos em } vec1 - 1 então
16:
              l \leftarrow l + 1
          sen{\tilde{a}o}
17:
18:
              l \leftarrow 1
19:
               vec1 \leftarrow vec2
20:
               pontos1 \leftarrow pontos2
          fim se
21:
22:
          F \leftarrow \emptyset
                                                                                            ▶ Descarta as restrições anteriores
23:
          F \leftarrow P \succ 0
24:
          F \leftarrow (2.12) \text{ com } r = \exp(-|\sigma|T_s)
                                                                                                        ▶ Taxa de amortecimento
25:
          ponto_{new1} \leftarrow (pontos1(l) + pontos1(l+1))/2
26:
          V_{new1} \leftarrow z(\zeta, ponto_{new1}, T_s)
27:
          pontos2 \leftarrow [pontos2\ ponto_{new1}]
          Orderna de forma decrescente pontos2
28:
29:
          vec2 \leftarrow [vec2 \ V_{new1}]
30:
          Orderna de forma decrescente vec2
31:
          F \leftarrow F \cap (2.15), \text{ com } \alpha = V_i
                                                                                                                      ▶ Reta vertical
          \mathbf{para}\ m=1até número de elementos de vec1-1 faça
32:
33:
               u \leftarrow loc(vec2(m), vec2(m+1))
34:
               se u < 0 então
35:
                   F \leftarrow F \cap (2.14), com \alpha = u \in \theta = ang(vec2(m+1), u)

⊳ Voltado para a direita

36:
                   F \leftarrow F \cap (2.13), com \alpha = u \in \theta = ang(vec2(m+1), u)
                                                                                                      \triangleright Voltado para a esquerda
37:
38:
               fim se
39:
          fim para
40:
          Verificar se o problema é factível
41: fim enquanto
42: K \leftarrow ZP^{-1}
```

Para a região ζ -constante, um setor cônico voltado para esquerda e centro em V_o é usado como aproximação inicial (WISNIEWSKI; MADDALENA; GODOY, 2019). Contudo, devido à cúspide daquela, uma reta em V_i é usada para eliminar tal convexidade. Dito isso, surge a necessidade de calcular o ponto \bar{V} , localizado entre os pontos máximo e mínimo, onde possui a mesma parte real que V_i , conforme a figura 6a:

A ideia é determinar o módulo do ponto V_i , para então encontrar o número complexo que possui o mesmo módulo. Como aquele ponto já foi calculado em (2.10), basta determinar a parte real desse número com tal módulo:

Para tal, utiliza-se o cálculo numérico para encontrar uma solução aproximada. Com tal ponto calculado e a não convexidade da cúspide tratada, é possível utilizar o algoritmo 4. Os vértices iniciais V_o e V_i do ramo são guardados em um vetor. Em paralelo a isso, os valores de ω_n que geram tais valores em (2.9) também são armazenados. A ideia do algoritmo é, a cada iteração, calcular o ponto médio entre dois pontos consecutivos de cada vetor, pois o cálculo do primeiro depende da computação do segundo.

Contudo, antes do algoritmo voltar para o início dos vetores mencionados, é preciso que ele calcule o ponto médio entre todos os pontos do vetor atual. Para isso, cópias dos vetores de vértices e de pontos foram inicializados, a fim de controlarem tal fluxo. Assim, quando o algoritmo terminar de percorrer o "vetor anterior", tal conjunto é atualizado com os novos pontos e vértices calculados ao final deste processo.

Em relação ao cálculo dos pontos intermediários, a inclinação destes juntamente com o ponto anterior podem ser positiva ou negativa. O uso da função *loc* se torna enssencial, pois caso o ponto resultante for menor que zero, a reta que passa pelos pontos possui inclinação positiva e negativa, caso contrário (WISNIEWSKI; MADDALENA; GODOY, 2019). Assim, os setores cônicos gerados seguem a orientação desta, com centro naquele ponto calculado.

Para a região ω_n -constante, a ideia é similar. A aproxmição inicial utiliza-se de apenas um setor cônico voltado para a direita com centro em $N_i = \mathbf{z}(\zeta_{max}, \omega_n, T_s)$, com $\zeta_{max} = 1$. O ângulo θ em (2.14) é definido a partir do ângulo entre a reta $\overline{N_oN_i}$ e o eixo real, onde $N_o = \mathbf{z}(\zeta_{min}, \omega_n, T_s)$, com $\zeta_{min} = 0$.

Caso esta região não seja factível, basta calcular o ponto intermediário entre N_o e N_i e definir dois novos setores cônicos, a fim de aumentar a área. Novamente, para o novo ponto calculado e o anterior, é utilizado a função loc para determinar o ponto que a reta

Figura 6

Algoritmo 5 Aproximação poligonal da região ω_n -constante

```
Entrada: \sigma, \omega_n, T_s
Saída: K
  1: l \leftarrow 0
  2: N_o \leftarrow z(\zeta_{min}, \omega_n, T_s)
  3: N_i \leftarrow z(\zeta_{max}, \omega_n, T_s)
  4: pontos3 \leftarrow [0\ 1]
  5: pontos4 \leftarrow pontos3
  6: vec3 \leftarrow [N_i \ N_o]
  7: vec4 \leftarrow vec3
  8: F \leftarrow P \succ 0
 9: F \leftarrow (2.12) \text{ com } r = \exp(-|\sigma|T_s)
                                                                                                       ▶ Taxa de amortecimento
10: F \leftarrow F \cap (2.14), com \alpha = N_i \in \theta = ang(N_o, N_i)
                                                                                                         ⊳ Voltado para a direita
11: F \leftarrow F \cap (2.15), com \alpha = N_i
                                                                                                                     ▶ Reta vertical
12: Verificar se o problema é factível
13: enquanto Problema for infactível faça
14:
          se l < \text{número de elementos em } vec3 - 1 \text{ então}
15:
16:
          senão
              l \leftarrow 1
17:
18:
              vec3 \leftarrow vec4
19:
              pontos1 \leftarrow pontos2
20:
          fim se
          F \leftarrow \emptyset
21:
                                                                                           ▶ Descarta as restrições anteriores
          F \leftarrow P \succ 0
22:
23:
          F \leftarrow (2.12) \text{ com } r = \exp(-|\sigma|T_s)
                                                                                                       ▶ Taxa de amortecimento
24:
          ponto_{new} \leftarrow (pontos3(l) + pontos3(l+1))/2
25:
          V_{new2} \leftarrow z(ponto_{new2}, \omega_n, T_s)
          pontos4 \leftarrow [pontos4 \ ponto_{new2}]
26:
27:
          Orderna de forma decrescente pontos4
28:
          vec4 \leftarrow [vec4 \ V_{new2}]
29:
          Orderna de forma decrescente vec4
30:
          F \leftarrow F \cap (2.15), com \alpha = V_i
                                                                                                                     ▶ Reta vertical
31:
          para m = 1 até número de elementos de vec3 - 1 faça
32:
               u_2 \leftarrow loc(vec4(m), vec4(m+1))
33:
               F \leftarrow F \cap (2.14), com \alpha = u_2 \in \theta = ang(vec4(m), u_2)
34:
          fim para
          Verificar se o problema é factível
35:
36: fim enquanto
37: K \leftarrow ZP^{-1}
```

que passsa por aqueles pontos cruza o eixo real. Este será o centro do novo setor cônico. Já o ângulo seguirá o mesmo critério, sendo o valor entre aquela reta e o eixo real.

Assim, a cada iteração, o algoritmo adiciona dois novos setores cônicos e os intersecta com as regiões previamente definidas. Ao cópia inicial de pontos calculados, o algoritmo descarta tais regiões e aumenta a área de \mathscr{D} -estabilidade a partir de N_i até N_o .

Figura 7

4 Testes e Simulações

Para ilustrar o funcionamento dos algoritmos, foi proposta uma planta hidráulica composta por um sistema de tanques comunicantes. A figura 8 mostra um esboço de tal sistema. O tanque com capactância C_1 é interligado com um de capacitância C_2 . Aquele é alimentado por uma vazão q e é drenado por uma vazão q_1 . Tal grandeza é controlada por um registro, que pode ser enxergado como um resistor de resistência R_1 .

Ainda, devido à ligação, a vazão de saída do primeiro tanque é a entrada do segundo. Este é drenado por uma vazão q_2 , onde é controlado por um registro R_2 . A variável controlada é a diferença $h_1 - h_2$.

Figura 8 – Tanques comunicantes.

4.1 Modelagem via espaço de estados

Para a representação via espaço de estados, define-se as variáveis de estado $x_1 = q_1$ e $x_2 = q_2$. A partir das relações entre capacitância e vazão, chega-se a seguinte representação no espaço de estados:

$$\dot{\mathbf{x}} = \begin{bmatrix} -(R_1 C_{eq})^{-1} & (R_1 C_2)^{-1} \\ (R_2 C_2)^{-1} & -(R_2 C_2)^{-1} \end{bmatrix} \mathbf{x} + \begin{bmatrix} (R_1 C_1)^{-1} \\ 0 \end{bmatrix} \mathbf{u}$$
(4.1a)

$$\mathbf{y} = \begin{bmatrix} R_1 & 0 \end{bmatrix} \mathbf{x} \tag{4.1b}$$

onde $C_{eq} = C_1 C_2 / (C_1 + C_2)$. Para discretizar o sistema, é preciso de um valor para o período de amostragem T_s . A transformada usada será a bilinear de Tustin, dada por:

$$s = \frac{2}{T_s} \frac{z - 1}{z + 1} \tag{4.2}$$

onde o semi-plano esquerdo dos contínuos é mapeado no círculo unitário dos discretos.

4.2 Primeiro projeto

Com posse do espaço de estados, é possível sintetizar uma matriz de ganho K que possa estabilizar o sistema. Antes, é necessário atribuir valores para a planta. Em um primeiro projeto, serão escolhidas arbitrariamente tais valores, como segue:

- $C_1 = C_2 = 5$;
- $R_1 = R_2 = 1$;
- $T_s = 1.9 \,\mathrm{s}$.

Assim, a representação via espaço de estados da planta nos contínuos é:

$$\dot{\mathbf{x}} = \begin{bmatrix} -0.4 & -0.2 \\ 0.2 & -0.2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0.2 \\ 0 \end{bmatrix} \mathbf{u} \tag{4.3a}$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x} \tag{4.3b}$$

Através do função c2d disponibilizada no MATLAB, a transformação bilinear é realizada, resultando em:

$$\dot{\mathbf{x}} = \begin{bmatrix} -0.4181 & -0.2264 \\ 0.2264 & -0.6445 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0.2694 \\ 0.0430 \end{bmatrix} \mathbf{u}$$
 (4.4a)

$$y = \begin{bmatrix} 0.7091 & -0.1132 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0.1347 \end{bmatrix} \mathbf{u}$$
 (4.4b)

A característica notória obtida é a presença da matriz D no sistema discretizado. É um consequência da transformação bilinear: surgimento de transmissão direta. Com posse das matrizes obtidas na representação via espaço de estados, é possível escolher os parâmetros de projeto a serem estudados:

- $\zeta = 0.6$;
- $\omega_n = 0.5 \,\mathrm{rad/s}$.

Neste caso, a constante N_y possui o valor de 6.6139, acima do recomendado. Além disso, a maior frequencia natural não amortecida de malha aberta do sistema discretizado possui o valor igual a

4.3 Um projeto mais restritivo

Para exemplificar um projeto mais restritivo, será considerado uma planta com as seguintes características:

•
$$C_1 = 10$$
;

- $C_2 = 10;$
- $R_1 = 4;$
- $R_2 = 2;$
- $T_s = 5 \,\mathrm{s}$.

Os parâmetros de projeto são:

- $t_s = 30 \,\mathrm{s};$
- $M_p = 10\%;$
- $\sigma = -4/300;$
- $\zeta = 0.7;$
- $T_s = 5 \,\mathrm{s};$
- $\omega_n = 0.2 \,\mathrm{rad/s}$.

5 Conclusão

Referências

- CHILALI, M.; GAHINET, P. H/sub /spl infin// design with pole placement constraints: an lmi approach. *IEEE Transactions on Automatic Control*, v. 41, n. 3, p. 358–367, 1996.
- CHIQUETO, G. da S. Aproximações convexas via desigualdades matriciais lineares para o problema da largura de banda em ssistemas em tempo discreto. 2021.
- KUO, B. *Digital Control Systems*. Holt, Rinehart and Winston, 1980. (HRW series in electrical and computer engineering). ISBN 9780030575686. Disponível em: (https://books.google.com.br/books?id=oNpSAAAAMAAJ).
- NISE, N. Control Systems Engineering, Sixth. John Wiley & Sons, Incorporated, 2011. ISBN 9781118138168. Disponível em: \(\https://books.google.com.br/books?id=34zmCQAAQBAJ \).
- OGATA, K. Engenharia de controle moderno. Pearson Prentice Hall, 2011. ISBN 9788576058106. Disponível em: (https://books.google.com.br/books?id=iL3FYgEACAAJ).
- ROSINOVá, D.; HOLIč, I. Lmi approximation of pole-region for discrete-time linear dynamic systems. In: *Proceedings of the 2014 15th International Carpathian Control Conference (ICCC)*. [S.l.: s.n.], 2014. p. 497–502.
- ROSINOVá, D.; HYPIUSOVá, M. Lmi pole regions for a robust discrete-time pole placement controller design. *Algorithms*, v. 12, n. 8, 2019. ISSN 1999-4893. Disponível em: $\langle \text{https://www.mdpi.com/1999-4893/12/8/167} \rangle$.
- WISNIEWSKI, V.; MADDALENA, E.; GODOY, R. Discrete-time regional pole-placement using convex approximations: Theory and application to a boost converter. *Control Engineering Practice*, v. 91, p. 104102, 2019. ISSN 0967-0661. Disponível em: https://www.sciencedirect.com/science/article/pii/S0967066119301182.
- WISNIEWSKI, V. L. et al. Regional pole placement for discrete-time systems using convex approximations. In: 2017 25th Mediterranean Conference on Control and Automation (MED). [S.l.: s.n.], 2017. p. 655–659.