Centro de Ciência e Tecnologia Laboratório de Ciências Matemáticas Ciência da Computação

Arquitetura de Computadores

Sânya Carvalho dos Santos

sanya.carvalho@yahoo.com.br

Livro

Conteúdo programático

- 1 Introdução
- 2 Organização de Sistemas de Computadores
- 3 O Nível Lógico Digital
- 4 O Nível da Microarquitetura
- 5 Nível de Arquitetura do Conjunto de Instrução
- 6 Nível de Máquina de Sistema Operacional
- 7 O Nível de Linguagem de Montagem
- 8 Arquiteturas de Computadores Paralelos

1 Introdução

Objetivo do capítulo:

Introdução à organização estruturada de computadores

1.1 Organização estruturada de computadores

Problemas:

- As pessoas querem fazer X, mas os computadores só fazem Y.
- Os computadores só conhecem dois níveis de voltagem:

normalmente, 0v (valor zero) e +5v (valor 1).

Lo -> linguagem de máquina

L1 -> linguagem mais conveniente para as pessoas

Tradução -> todo programa L₁ é antes convertido para um programa L₀. Cada instrução escrita em L₁ é substituída por sequência equivalente de instruções em L₀. O programa L₁ é descartado e L₀ é carregado na memória e executado.

Interpretação -> após o exame e a decodificação de cada instrução L₁, ela é executada imediatamente. Nenhum programa traduzido é gerado.

Nível 0 (nível lógico digital)

- Portas e operações simples como AND e OU
- Portas são combinadas para formar memória de 1bit
- Registradores com um único número binário

Nível 1 (nível de microarquitetura)

- Registradores formam a memória local e ULA
- Execução de operações aritméticas simples

Nível 2 (nível de arquitetura de conjunto de instrução)

 Compreende o conjunto de instruções de máquina (ISA – Instruction Set Architecture)

Nível 3 (nível do sistema operacional da máquina)

- É considerado um nível híbrido
- Pode interpretar comandos para entregar ao nível 2
- Pode passar comandos diretamente para o nível 2

Nível 4 (nível de linguagem orientado a problemas)

- Linguagem de montagem
- Assembler é o programa que traduz os comandos para baixo nível.

Nível 5 (nível de linguagem orientado a problemas)

- Linguagem de alto nível
- Tradução ou Interpretação

Arquitetura

- Conjunto de tipo de dados, operações e características de cada nível
- Trata dos aspectos que são visíveis ao usuário daquele nível
- O estudo sobre como projetar as partes de um sistema de computador que sejam visíveis para o programador é denominado arquitetura de computadores.

arquitetura de computadores = organização de computadores

"Hadware é o que você chuta, software é o que você xinga."

João Ubaldo - escritor

"Hadware e software são logicamente equivalentes."

Livro

"Hadware é apenas software petrificado."

Karen Panetta Lentz

Hardware

 Circuitos eletrônicos, memória, dispositivos de entrada e saída

Software

 Consiste em algoritmos (instruções detalhadas que dizem como fazer algo) e suas representações no computador, o que chamamos de programa

Decisão de colocar certas funções em hardware e outras em software é baseada nos seguintes fatores:

- Custo
- Velocidade
- Confiabilidade
- Frequência de mudanças esperadas
- Tendências econômicas
- Demanda
- Tecnologia

A invenção da microprogramação

Execução de instruções por interpretação de comandos de maior nível

- Primeiros computadores digitais (década de 1940) tinham só 2 níveis:
 nível ISA e nível lógico digital
- 1951, Maurice Wilkes sugere projetar um computador de 3 níveis
- Hardware só executa microprogramas
- Números menor de circuitos eletrônicos

A invenção do sistema operacional

Objetivando automatizar o trabalho do programador

- Programador operava a máquina pessoalmente
- Planilha de utilização, cartões perfurados de 80 colunas, lápis...
- Na tentativa de reduzir o desperdício de tempo automatizando o trabalho do operador um programa denominado sistema operacional era mantido no computador o tempo todo

A invenção do sistema operacional

IBM 709

Migração de funcionalidade para microcódigo

Conjunto de instruções maiores e melhores

- Acrescentar 'hardware' (novas instruções de máquina) por programação
- Explosão virtual de conjuntos de instruções de máquina
- Muitas instruções nem eram essenciais

Migração de funcionalidade para microcódigo

Exemplos de instruções mais frequentes:

- Instruções para multiplicação e divisão de inteiros
- Instruções aritméticas para ponto flutuante
- Instruções para chamar e sair de procedimentos
- Instruções para acelerar laços (looping)
- Instruções para manipular cadeia de caracteres

Inúmeras características e facilidades também foram acrescentadas ao longo dos anos, em geral para acelerar alguma atividade particular

Eliminação da microprogramação

Redução do conjunto de instruções para acelerar a execução

- Microprogramas engordam durante os anos dourados da microprogramação (décadas de 1960 e 1970)
- Se tornam mais lentos à medida que se tornam mais volumosos
- Drástica redução do conjunto de instruções fazendo com que as instruções fossem executadas diretamente por hardware
- O ciclo se fecha, voltando ao modo como era antes de Wilkes inventar a microprogramação

[O hardware de alguém é o software de outrem.]

Ano	Nome	Construído por	Comentários			
1834	Máquina analítica	Babbage	Primeira tentativa de construir um computador digital			
1936	Z1	Zuse	Primeira máquina de calcular com relés			
1943	COLOSSUS	Governo britânico	Primeiro computador eletrônico			
1944	MarkI	Aiken	Primeiro computador norte-americano de uso geral			
1946	ENIAC	Eckert/Mauchley	A história moderna dos computadores começa aqui			
1949	EDSAC	Wilkes	Primeiro computador com programa armazenado			
1951	Whirlwind I	M.I.T.	Primeiro computador de tempo real			
1952	IAS	von Neumann	A maioria das máquinas atuais usa esse projeto			
1960	PDP-1	DEC	Primeiro minicomputador (50 vendidos)			
1961	1401	IBM	Máquina para pequenos negócios de enorme popularidade			
1962	7094	IBM	Dominou a computação científica no início da década de 1960			
1963	B5000	Burroughs	Primeira máquina projetada para uma linguagem de alto nível			
1964	360	IBM	Primeira linha de produto projetada como uma família			

1964	6600	CDC	Primeiro supercomputador centífico		
1965	PDP-8	DEC	Primeiro minicomputador de mercado de massa (50 mil vendidos)		
1970	PDP-11	DEC	Dominou os minicomputadores na década de 1970		
1974	8080	Intel	Primeiro computador de uso geral de 8 bits em um chip		
1974	CRAY-1	Cray	Primeiro supercomputador vetorial		
1978	VAX	DEC	Primeiro superminicomputador de 32 bits		
1981	IBM PC	IBM	Deu início à era moderna do computador pessoal		
1981	Osborne-1	Osborne	Primeiro computador portátil		
1983	Lisa	Apple	Primeiro computador pessoal com uma GUI		
1985	386	Intel	Primeiro ancestral de 32-bits da linha Pentium		
1985	MIPS	MIPS	Primeira máquina comercial RISC		
1987	SPARC	Sun	Primeira estação de trabalho RISC baseada em SPARC		
1990	RS6000	IBM	Primeira máquina superescalar		
1992	Alpha	DEC	Primeiro computador pessoal de 64 bits		
1993	Newton	Apple	Primeiro computador palmtop		

Geração de computadores

Geração Zero

Computadores mecânicos (1642-1945)

Primeira Geração

Válvulas (1945-1955)

Segunda Geração

Transistores (1955-1965)

Geração de computadores

Terceira Geração

Circuitos integrados (1965-1980)

Quarta Geração

Integração em larga escala (1980-?)

Quinta Geração

Computadores invisíveis

1.2.1 A geração zero — computadores mecânicos (1642-1945)

- Blaise Pascal constrói uma máquina de calcular operacional (1642)
- Gottfried Wilhelm von Leibniz constrói outra máquina mecânica que também podia multiplicar e dividir (algo equivalente a uma calculadora de bolso) (30 anos depois de Pascal)
- Charles Babbage primeira máquina diferencial (150 anos depois)
 Logo depois começou a gastar quantidades cada vez maiores de seu tempo e fortuna para construir a máquina analítica (1834)
- Konrad Zuse constrói uma série de máquinas calculadoras automáticas usando relés eletrônicos
- Aiken constrói Mark I e Mark II (começo da era eletrônica)

1.2.2 A primeira geração – válvulas (1945-

Máquina original de Von Neumann.

1.2.2 A primeira geração – válvulas (1945-

John von Neumann

1.2.3 A segunda geração – transistores (1955-

- Importante inovação: um barramento único
- Barramento => um conjunto de fios paralelos usados para conectar os componentes de um computador

1.2.3 A segunda geração – transistores (1955-

Barramento omnibus do PDP-8.

1.2.4 A terceira geração — circuitos integrados (1965-

IBM 360

Oferta inicial da linha de produtos IBM 360.

Propriedade	Modelo 30	Modelo 40 3,5	Modelo 50	Modelo 65 21
Desempenho relativo 1				
Tempo de ciclo (em bilionésimos de segundo)	1.000	625	500	250
Memória máxima (bytes)	65.536	262.144	262.144	524.288
Bytes buscados por ciclo	1	2	4	16
Número máximo de canais de dados	3	3	4	6

1.2.5 A quarta geração — integração em escala muito grande (1980-?)

- Possibilidade de colocar primeiro dezenas de milhares, depois centenas de milhares, e por fim milhões de transistores em um único chip.
- Antes disso os computadores eram tão grandes e tão caros que empresas e universidade tinham de ter departamentos especiais denominados centrais de computação.
- Com a chegada do minicomputador, cada departamento podia comprar seu próprio computador.
- Era viável um único individuo ter seu próprio computador.

1.2.6 A quinta geração — computadores invisíveis (?)

- Computadores em toda parte e embutidos em tudo, com um aspecto peculiar: hardware e softawe costumam ser projetados em conjuntos.
- Mais uma mudança de paradigma do que uma nova arquitetura específica.
- Computação ubíqua ou computação pervasiva
 - Computadores serão parte da estrutura da vida diária, abrindo portas, acendendo luzes e milhares de outras coisas
 - Onipresença da informática no cotidiano das pessoas
- Computação em nuvem

Problemas (página 28)

- 1. Explique cada um dos termos seguintes com suas próprias palavras:
- a. Tradutor
- b. Interpretador
- c. Máquina real
- 2. Qual a diferença entre interpretação e tradução?
- 8. Em que sentido hardware e software são equivalentes? E não equivalentes?