

A Fixed-Point Algorithm for the AC Power Flow Problem

Liangjie Chen John W. Simpson-Porco

Department of Electrical and Computer Engineering, University of Toronto

Background

Fixed-point power flow algorithms

- Given generation and transmission network topology data, solve for bus voltages $\xi = (V, \theta)$ via fixed-point iterations $\xi_{k+1} = f(\xi_k)$, and terminate until $\|\xi_{k+1} \xi_k\|_{\infty} \le \epsilon$
- Convergence analysis via the Banach fixed-point theorem

Relevant Literature

- Lossy DC Power Flow (L-DCPF) [JWSP '17]: decoupled active power flow equation
- Fixed-Point Power Flow (FPPF) [JWSP '18]: lossless power flow equations

Goal: Extend L-DCPF & FPPF to

- solve the AC power flow problem with coupled and lossy power flow equations,
- accommodate phase-shifting transformers and the distributed slack bus model, and
- derive sufficient solvability conditions for the 2-bus model.

Graph modelling of an AC transmission system

Graph structure: weakly connected bidirected graph

- Each node of \mathcal{G} is a load/generator bus (in the set $\mathcal{N}_L/\mathcal{N}_G$), total of n+m buses
- Each edge is a branch: transmission line/transformer in standard Π -model, total of $|\mathcal{E}|$ branches

Graph matrices

• Node-edge incidence matrix A, cycle matrix C, and asymmetrically weighted incidence matrix Γ

Vectorized power flow equations

$$\bar{P}_{i} + \alpha_{i} P_{\mathsf{slack}} = \sum_{j=1}^{N+m} V_{i} V_{j} G_{ij} \cos(\theta_{i} - \theta_{j}) + V_{i} V_{j} B_{ij} \sin(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{N}_{L} \cup \mathcal{N}_{G}$$

$$Q_{i} = \sum_{j=1}^{n+m} V_{i} V_{j} G_{ij} \sin(\theta_{i} - \theta_{j}) - V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{N}_{L}$$

$$\downarrow \qquad \text{change of variables } \psi := \mathbf{sin} \left(A^{\mathsf{T}} \theta \right)$$

$$R^{\mathsf{T}} \bar{P} = R^{\mathsf{T}} \left([V^{\circ}][g(v)][G_{ii}][V^{\circ}]g(v) + |\Gamma_{G}|[h(v)]\sqrt{1 - [\psi]\psi} \right) + M_{B}[h(v)]\psi$$

$$Q_{L} = -[V_{L}^{\circ}][v][B_{ii}]_{L}[V_{L}^{\circ}]v + \Gamma_{G_{I}}[h(v)]\psi - |\Gamma_{B_{I}}|[h(v)]\sqrt{1 - [\psi]\psi}$$

Key variables:

- Normalized load bus voltage magnitude $v \in \mathbb{R}^n$, open-circuit voltage magnitude $V^\circ \in \mathbb{R}^{n+m}$
- Γ_B , Γ_G , M_B encode network connections weighted by conductance and susceptance values
- Generator participation factor $0 \le \alpha_i \le 1$ s.t. $\sum_i \alpha_i = 1$, and R matrix s.t. $R^T \alpha = 0$

Proposed fixed-point algorithm

Equivalent fixed-point form + loop flow constraint

$$v = \mathbb{1}_{n} - \frac{1}{4}S^{-1}[v]^{-1} \left(Q_{L} - \Gamma_{G_{L}}[h(v)]\psi - |\Gamma_{B_{L}}|[h(v)] \left(\mathbb{1}_{|\mathcal{E}|} - \sqrt{\mathbb{1} - [\psi]\psi} \right) \right)$$
(1)

$$\psi = [h(v)]^{-1} M_{B}^{\dagger} R^{\mathsf{T}} \left(\bar{P} - [V^{\circ}][g(v)][G_{ii}][V^{\circ}]g(v) - |\Gamma_{G}|[h(v)]\sqrt{\mathbb{1} - [\psi]\psi} \right) + [h(v)]^{-1} Kx_{c}$$
(2)

$$\mathbb{0}_{n_{c}} = C^{\mathsf{T}} \operatorname{arcsin}(\psi) \bmod 2\pi$$
(3)

Algorithm: The extended fixed-point power flow algorithm

Require: Power flow data, power balance mismatch tolerance ϵ , maximum iteration limit $v[0] \leftarrow V_L/V_L^{\circ}$, $\psi[0] \leftarrow \sin(A^T\theta)$, $x_c[0] \leftarrow \mathbb{O}_{n_c}$, $k \leftarrow 0$ while power balance mismatch $> \epsilon$ AND k < maximum iteration limit **do** update v[k+1] using (1) with $v[k], \psi[k], x_c[k]$ if \mathcal{G} is not radial **then**Let update $x_c[k+1]$ using (3) with a Newton step update $\psi[k+1]$ using (3) with $v[k+1], \psi[k], x_c[k+1]$

return $\psi[\mathit{k}+1]$, $\mathit{v}[\mathit{k}+1]$

 $k \leftarrow k + 1$

Algorithm convergence analysis: two-bus system

Update rule

Define state variable $\xi=(\psi,v-1)=(\psi,x)$, then $\xi_{k+1}=F_{\mu}(\xi_k)$

- F_{μ} denotes the update rule of the extended FPPF algorithm
- μ is the vector of "perturbations": conductance, transformer parameters, and line-charging susceptance in the Π -model of the branch; $\mu=0$ is the nominal case studied in [JWSP '18]

Key constants

• Active/reactive power loading margins:

$$\gamma_P \coloneqq \bar{P}_1/(bV_1^{\circ}V_2^{\circ}), \ \gamma_Q \coloneqq Q_1/(bV_1^{\circ}V_2^{\circ})$$

Contraction region boundaries

$$k_2^- := 1 - \sqrt{\frac{1}{2} + \gamma_Q + \sqrt{\frac{1}{4} + \gamma_Q - \gamma_P^2}}, \ k_1^- := -\frac{\gamma_P}{1 - k_2^-}$$

• Assumption: $0 < \gamma_P^2 - \gamma_Q < \frac{1}{4}$

$k_{2}^{-} + \epsilon_{2}$ k_{2}^{-} λ^{-} k_{1}^{-} $k_{1}^{-} + \epsilon_{1}$

Main Theoretical Result

When $\mu = \mathbb{O}$

- $\mathcal{A}^- \coloneqq \{\xi: |\psi| \le k_1^-, |x| \le k_2^-\}$ is F_μ -invariant; F_μ is a contraction on \mathcal{A}^- in the ℓ_∞ norm
- Unique high-voltage soln. is $(k_1^-, -k_2^-)$

When $\mu \neq 0$ and is sufficiently small, $\exists \epsilon_1, \epsilon_2 > 0$ such that

- $\mathcal{A}^-_{\epsilon}\coloneqq\{\xi:|\psi|\leq k_1^-+\epsilon_1,|x|\leq k_2^-+\epsilon_2\}$ is F_{μ} -invariant; F_{μ} is a contraction on \mathcal{A}^-_{ϵ} in the ℓ_{∞} norm
- FPPF always converges to the unique high-voltage soln. in the set \mathcal{A}^-_ϵ , from any $\xi_0\in\mathcal{A}^-_\epsilon$

Numerical results: convergence

Linear convergence; comparable to fast-decoupled load flow (FDLF)

Figure 1. Left: IEEE 118-bus system, base load; Right: PEGASE 2869-bus system, high load

Numerical results: algorithm robustness

- Test algorithm success rate (%) under random initial load bus voltage magnitudes, generated uniformly from $[1-\delta,1+\delta]$
- ullet Higher success rate as δ increases \Longrightarrow more robust

Figure 2. Left: IEEE 30-bus system, high load; Right: IEEE 118-bus system, high load

Conclusion

Summary

- A new fixed-point algorithm for the AC power flow problem with higher robustness than NR and linear convergence rate comparable to FDLF
- The algorithm accounts for resistive losses and active/reactive power flow coupling, and accommodates phase-shifting generators and distributed slack bus model in the network
- A framework to study the solvability of the full power flow equations

Future Work

- Improve algorithm robustness for networks with high R/X ratio branches and large variations in initial voltage angles
- Develop algorithm convergence conditions for general radial and meshed systems