Identifikácia z impulznej charakteristiky

Metóda momentov

Uvažujeme systém v tvare

$$S(s) = \frac{0.1s+1}{s^2+2s+1}$$

Perióda vzorkovania: Tv=0.1 s

Doba ustálenia prech. a imp. charakteristiky: približne 10 s ⇒ počet vzoriek: N=100.

Máme nameranú impulznú charakteristiku (vzorky h_j , j=1,..., N v časoch t_j) a poznáme (odhadneme) rády čitateľa a menovateľa (m, n).

$$F(s) = \frac{b_1 s + b_0}{a_2 s^2 + a_1 s + 1}$$

Vytvorená sústava algebrických rovníc má tvar

kde i-ty moment váhovej funkcie

$$M_{i} = \int_{0}^{\infty} t^{i} h(t) dt$$

v diskrétnom tvare

$$M_i = \sum_{i=1}^N t^i_j \, h_j T_{vz}$$

kde h_{j} je hodnota impulznej charakteristiky v čase t_{j} a T_{vz} je perióda vzorkovania,

Po dosadení vypočítaných momentov do sústavy algebrických rovníc, resp. do vzťahu (*), vypočítame vektor $\hat{\theta}$ obsahujúci parametre prenosovej funkcie a_1 , a_2 , b_0 , b_1 . Výsledný prenos modelu je

num/den =

Porovnanie impulznej charakteristiky modelu s nameranou impulznou charakteristikou:

Porovnanie prechodovej charakteristiky modelu s prechodovou charakteristikou skutočného systému:

