Thema: Differentiationsregeln

Wahr oder falsch? Wenn $f(x) = \frac{x^2-1}{x^2+1}$, dann ist $f'(x) = \frac{4x}{(x^2+1)^2}$.

Hinweis Quotientenregel.

 ${\bf Thema:}\ {\bf Differentiations regeln}$

Wahr oder falsch? Wenn $f(x) = x \sin(x)$, dann ist $f'(x) = x \cos(x) + \sin(x)$.

 ${\bf Thema:}\ {\bf Differentiations regeln}$

Wahr oder falsch? Wenn $f(x) = \exp(\sin(x))$, dann ist $f'(x) = \cos(x) \exp(\sin(x))$.

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Wahr oder falsch? Wenn $\log_2(x+3) = 5$ ist, dann ist x = 29.

Thema: Differentiationsregeln

Wahr mit der Produktregel.

Thema: Differentiationsregeln

Wahr, denn mit der Quotientenregel ist $f'(x) = \frac{2x(x^2+1)-(x^2-1)2x}{(x^2+1)^2} = \frac{4x}{(x^2+1)^2}$.

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Wahr, denn aus $\log_2(x+3) = 5$ folgt $2^5 = x+3$, also x = 32-3 = 29.

Thema: Differentiationsregeln

Wahr mit der Kettenregel.

Thema: Trigonometrische Funktionen

Wahr oder falsch? $\lim_{x\to 0} \frac{\sin(3x)}{\sin(7x)} = \frac{7}{3}$.

Thema: Grenzwerte von Funktionen

Wahr oder falsch? $\lim_{x\to 0} \frac{|x|}{x}$ existiert nicht.

Thema: Grenzwerte von Funktionen

Wahr oder falsch? Wenn $\lim_{x\to a} f(x)$ und $\lim_{x\to a} g(x)$ beide nicht existieren, dann existiert auch $\lim_{x\to a} (f+g)(x)$ nicht.

Thema: Definition von Stetigkeit

Geben Sie ein Beispiel für Funktionen $f, g : \mathbb{R} \longrightarrow \mathbb{R}$, so dass f + g, $f \cdot g$ und $\frac{f}{g}$ auf ganz \mathbb{R} stetig sind, aber f und g sind in keinem Punkt stetig.

 $\label{eq:himself} \textbf{Hinweis} \ \ \text{Denken Sie an die Dirichlet-Funktion und wandeln Sie diese etwas ab.}$

[©] FernUniversität in Hagen, 2008

Thema: Grenzwerte von Funktionen

Wahr. Sei
$$(x_n) = (\frac{1}{n})$$
. Dann ist $\lim_{n \to \infty} \frac{\left|\frac{1}{n}\right|}{\frac{1}{n}} = \lim_{n \to \infty} 1 = 1$. Ist $(y_n) = (-\frac{1}{n})$, dann ist $\lim_{n \to \infty} \frac{\left|-\frac{1}{n}\right|}{-\frac{1}{n}} = \lim_{n \to \infty} -1 = -1$. Damit exist $\lim_{x \to 0} \frac{|x|}{x}$ nicht.

Thema: Trigonometrische Funktionen

Falsch. Für $x \neq 0$ gilt nämlich $\frac{\sin(3x)}{\sin(7x)} = 3x \frac{\sin(3x)}{3x} \frac{1}{7x} \frac{7x}{\sin(7x)} = \frac{3}{7} \frac{\sin(3x)}{3x} \frac{7x}{\sin(7x)}$. Ist (x_n) eine Nullfolgen dann gind auch $(2x_n)$ and $(7x_n)$ Nullfolgen and as gilt $\lim_{n \to \infty} \frac{\sin(3x_n)}{\sin(3x_n)} = 1$ and

Nullfolge, dann sind auch $(3x_n)$ und $(7x_n)$ Nullfolgen, und es gilt $\lim_{n\to\infty} \frac{\sin(3x_n)}{3x_n} = 1$ und

$$\lim_{n \to \infty} \frac{7x_n}{\sin(7x_n)} = 1. \text{ Damit folgt } \lim_{x \to 0} \frac{\sin(3x)}{\sin(7x)} = \lim_{x \to \infty} \frac{3}{7} \frac{\sin(3x)}{3x} \frac{7x}{\sin(7x)} = \frac{3}{7}.$$

Thema: Definition von Stetigkeit

Sei $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit $f(x) = \begin{cases} -1, & x \in \mathbb{Q} \\ 1, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ und $g: \mathbb{R} \longrightarrow \mathbb{R}$ mit $g(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ -1, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$.

Ein ähnlicher Beweis wie der, dass die Dirichlet-Funktion in keinem Punkt stetig ist, zeigt auch, dass f und g in keinem Punkt stetig sind. Es gilt aber $f+g=\hat{0}, \ f\cdot g=(\hat{-1})$ und $\frac{f}{g}=(\hat{-1})$, also sind diese Funktionen auf ganz $\mathbb R$ stetig.

Thema: Grenzwerte von Funktionen

Falsch. Sei $f:(0,\infty)\longrightarrow \mathbb{R}$ definiert durch $f(x)=\frac{1}{x}$. Sei $(x_n)=(\frac{1}{n})$. Dann ist $(f(x_n))=(n)$ unbeschränkt, also nicht konvergent. Es folgt, dass $\lim_{x\to 0}f(x)$ nicht existiert. Sei g=-f. Auch

 $\lim_{x\to 0} g(x)$ existiert nicht. Aber $f+g=\hat{0}$, die konstante Funktion, also $\lim_{x\to 0} (f+g)(x)=0$.

Thema: Grenzwerte von Funktionen

Wahr oder falsch? $\lim_{x\to 0} \frac{\sqrt{x+3}-\sqrt{3}}{x}$ existiert nicht.

Hinweis Erweitern Sie den Bruch mit $\sqrt{x+3} + \sqrt{3}$.

Thema: Grenzwerte von Funktionen

Wahr oder falsch? $\lim_{x\to 1} \frac{x^2+x-2}{(x-1)^2}$ existiert nicht.

Thema: Grenzwerte von Funktionen

Wahr oder falsch? Wenn $\lim_{x\to a} f(x)$ und $\lim_{x\to a} (f(x)+g(x))$ existieren, dann existiert auch $\lim_{x\to a} g(x)$.

Thema: Grenzwerte von Funktionen

Wahr oder falsch? Wenn $\lim_{x \to a} f(x)$ und $\lim_{x \to a} ((fg)(x))$ existieren, dann existiert auch $\lim_{x \to a} g(x)$.

Thema: Grenzwerte von Funktionen

Wahr. Für $x \neq 1$ ist $\frac{x^2+x-2}{(x-1)^2} = \frac{(x+2)(x-1)}{(x-1)^2} = \frac{x+2}{x-1}$. Sei nun $(x_n) = (1+\frac{1}{n})$. Dann gilt $\lim_{n\to\infty} x_n = 1$ und $\lim_{n\to\infty} \frac{1+\frac{1}{n}+2}{1+\frac{1}{n}-1} = \lim_{n\to\infty} n(3+\frac{1}{n}) = \lim_{n\to\infty} (3n+1)$. Da die Folge (3n+1) unbeschränkt ist, existiert der Grenzwert nicht.

Thema: Grenzwerte von Funktionen

Falsch. Für
$$x \neq 0$$
 gilt $\frac{\sqrt{x+3}-\sqrt{3}}{x} = \frac{(\sqrt{x+3}-\sqrt{3})(\sqrt{x+3}+\sqrt{3})}{x(\sqrt{x+3}+\sqrt{3})} = \frac{x+3-3}{x(\sqrt{x+3}+\sqrt{3})} = \frac{1}{\sqrt{x+3}+\sqrt{3}}$. Damit ist $\lim_{x\to 0} \frac{\sqrt{x+3}-\sqrt{3}}{x} = \lim_{x\to 0} \frac{1}{\sqrt{x+3}+\sqrt{3}} = \frac{1}{2\sqrt{3}}$.

Thema: Grenzwerte von Funktionen

Falsch, denn für $f=\hat{0}$ gilt immer $\lim_{x\to a}((fg)(x))=0$, egal, wie g aussieht.

Thema: Grenzwerte von Funktionen

Wahr, denn wenn $\lim_{x \to a} f(x)$ und $\lim_{x \to a} (f(x) + g(x))$ existieren, dann existiert auch $\lim_{x \to a} (f(x) + g(x) - f(x)) = \lim_{x \to a} g(x)$.

Thema: Differentiationsregeln

Wahr oder falsch? Wenn $f(x) = \frac{3x+2}{2x+3}$, dann ist $f'(x) = \frac{5}{(2x+3)^2}$.

Thema: Differentiationsregeln

Wahr oder falsch? Wenn $f(x) = \sqrt{1 + \sqrt{x}}$ ist, dann ist $f'(x) = \frac{1}{4\sqrt{x}\sqrt{1+\sqrt{x}}}$.

Thema: Differentiationsregeln

Wahr oder falsch? Wenn $f(x) = \exp(\frac{\sin(x)}{\cos(x)})$ ist, dann ist $f'(x) = \frac{1}{\cos^2(x) \exp(\frac{\sin(x)}{\cos(x)})}$.

 $\label{eq:continuous} \mbox{Hinweis Ketten- und Quotientenregel.}$

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Wahr oder falsch? Wenn $\log_2(2^{4x}) = 20$ ist, dann ist x = 5.

 ${\bf Thema} {:} \ {\rm Differentiations regeln}$

Wahr, denn
$$f'(x) = (1 + \sqrt{x})' \frac{1}{2\sqrt{1+\sqrt{x}}} = \frac{1}{2\sqrt{x}} \frac{1}{2\sqrt{1+\sqrt{x}}} = \frac{1}{4\sqrt{x}\sqrt{1+\sqrt{x}}}.$$

Thema: Differentiationsregeln

Wahr mit der Quotientenregel.

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Wahr, denn wenn $\log_2(2^{4x}) = 20$ gilt, dann ist $2^{20} = 2^{4x}$, also 4x = 20.

Thema: Differentiationsregeln

Falsch. Mit Ketten- und Quotientenregel ist $f'(x) = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} \exp(\frac{\sin(x)}{\cos(x)}) = \frac{1}{\cos^2(x)} \exp(\frac{\sin(x)}{\cos(x)})$

Thema: Differentiationsregeln

Wahr oder falsch? Wenn $f(x) = \frac{x}{x^2+1}$, dann ist $f'(x) = \frac{1-x^2}{(x^2+1)^2}$.

Hinweis Quotientenregel.

 ${\bf Thema} \hbox{: } {\rm Differentiations regeln}$

Wahr oder falsch? Wenn $f(x) = \sin(x^3)$, dann ist $f'(x) = \cos(x^3)3x^2$.

 $\label{eq:himself} \textbf{Hinweis} \ \text{Kettenregel.}$

 ${\bf Thema:}\ {\bf Differentiations regeln}$

Wenn $f(x) = \cos^2(x)$, dann ist $f'(x) = -2\sin(x)\cos(x)$.

Thema: Grenzwerte von Funktionen

Wahr oder falsch? $\lim_{x\to 1} \frac{x-1}{\sqrt{x^2+3}-2}$ existiert nicht.

Thema: Differentiationsregeln

Wahr mit der Kettenregel.

 ${\bf Thema} \hbox{: } {\rm Differentiations regeln}$

Wahr, denn mit der Quotientenregel ist $f'\left(x\right)=\frac{(x^2+1)-x(2x)}{(x^2+1)^2}=\frac{1-x^2}{(x^2+1)^2}.$

Thema: Grenzwerte von Funktionen

Falsch. Für
$$x \neq 1$$
 gilt $\frac{x-1}{\sqrt{x^2+3}-2} = \frac{(x-1)(\sqrt{x^2+3}+2)}{(\sqrt{x^2+3}-2)(\sqrt{x^2+3}+2)} = \frac{(x-1)\sqrt{x^2+3}+2}{x^2-1} = \frac{\sqrt{x^2+3}+2}{x+1}$, also
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x^2+3}-2} = \lim_{x \to 1} \frac{\sqrt{x^2+3}+2}{x+1} = 2.$$

Thema: Differentiationsregeln

Wahr mit der Kettenregel.

Thema: Grenzwerte von Funktionen

Wahr oder falsch? Sei $f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$ definiert durch $f(x) = \frac{2x}{2|x|}$. Dann existiert $\lim_{x \to 0} f(x)$ nicht.

Hinweis Wahr.

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Wahr oder falsch? Wenn $\log_2(x^2) + \log_2(x) = 4$ ist, dann ist $x = \sqrt[3]{16}$.

Thema: Differentiationsregeln

Wahr oder falsch? Wenn $f(x) = x^2 \sin(\frac{1}{x})$ für $x \neq 0$, dann ist $f'(x) = 2x \sin(\frac{1}{x}) - \cos(\frac{1}{x})$.

Hinweis Produkt- und Kettenregel.

Thema: Differentiationsregeln

Wahr oder falsch? Wenn $f(x) = (\frac{x}{1+x})^5$, dann ist $f'(x) = \frac{5x^4}{(1+x)^6}$.

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Wahr, denn wenn $\log_2(x^2) + \log_2(x) = \log_2(x^3) = 4$ gilt, dann ist $2^4 = 16 = x^3$, also $x = \sqrt[3]{16}$.

Thema: Grenzwerte von Funktionen

Wahr. Sei $(x_n) = (\frac{(-1)^n}{n})$. Dann gilt $\lim_{n \to \infty} x_n = 0$ und $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{2\frac{(-1)^n}{n}}{\frac{2}{n}} = \lim_{n \to \infty} (-1)^n$, das heißt, der Grenzwert existiert nicht.

Thema: Differentiationsregeln

Wahr. Es ist $f'(x) = 5(\frac{x}{1+x})^4(\frac{1+x-x}{(1+x)^2}) = \frac{5x^4}{(1+x)^6}$.

Thema: Differentiationsregeln

Wahr. Es ist $f'(x) = 2x \sin(\frac{1}{x}) + x^2(-\frac{1}{x^2})\cos(\frac{1}{x}) = 2x \sin(\frac{1}{x}) - \cos(\frac{1}{x})$.

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Wahr oder falsch? Es gibt kein $x \in \mathbb{R}$, das die Gleichung $\exp(x) - 3\exp(-x) = 2$ erfüllt.

Thema: Grenzwerte von Funktionen

Wahr oder falsch? Wenn $\lim_{x\to a} f(x)$ existiert und $\lim_{x\to a} g(x)$ nicht existiert, dann kann auch $\lim_{x\to a} (f+g)(x)$ nicht existieren.

Thema: Grenzwerte von Funktionen

Wahr oder falsch? $\lim_{x\to 1} \frac{1}{x-1}$ existiert nicht.

Thema: Eigenschaften von Funktionen

Wie ist die Dirichletfunktion definiert?

Thema: Grenzwerte von Funktionen

Wahr. Wenn nämlich $\lim_{x \to a} (f+g)(x)$ existiert, dann auch $\lim_{x \to a} ((f+g)(x) - f(x)) = \lim_{x \to a} g(x)$.

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Falsch. Es ist $\exp(x) - 3\exp(-x) = \exp(x) - \frac{3}{\exp(x)} = 2$ genau dann, wenn $(\exp(x))^2 - 3 = 2\exp(x)$ oder $(\exp(x))^2 - 2\exp(x) - 3 = 0$ gilt. Ist $\exp(x) = 3$, dann wird diese Gleichung erfüllt. Für $x = \ln(3)$ gilt also $\exp(x) - 3\exp(-x) = 2$.

Thema: Eigenschaften von Funktionen

Es ist die Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit $f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$

Thema: Grenzwerte von Funktionen

Wahr. Sei $(x_n) = (1 + \frac{1}{n})$. Dann gilt $\lim_{n \to \infty} x_n = 1$ und $\lim_{n \to \infty} \frac{1}{1 - (1 + \frac{1}{n})} = \lim_{n \to \infty} (-n)$. Da

dieser Grenzwert nicht existiert, existiert auch $\lim_{x\to 1} \frac{1}{1-x}$ nicht.

Thema: Eigenschaften von Funktionen

Was ist der Unterschied zwischen der Definition der Komposition zweier Abbildungen f und g aus Kurseinheit 1 und der Definition der Komposition zweier Funktionen aus Kurseinheit 5?

Hinweis Es geht um den Wertebereich von f und den Definitionsbereich von g.

Thema: Eigenschaften von Funktionen

Was ist der Definitionsbereich einer Funktion?

Thema: Eigenschaften von Funktionen

Wie ist der Graph einer Funktion $f: D \longrightarrow \mathbb{R}$ definiert?

Thema: Eigenschaften von Funktionen

Kann man jeden Funktionsgraph einer Funktion $f:D\longrightarrow \mathbb{R}$ malen?

Thema: Eigenschaften von Funktionen

Der Definitionsbereich ist eine nicht leere Teilmenge von \mathbb{R} .

Thema: Eigenschaften von Funktionen

In Kurseinheit 1 muss der Wertebereich von f gleich dem Definitionsbereich von g sein, in Kurseinheit 5 reicht es, wenn der Wertebereich von f im Definitionsbereich von g enthalten ist.

Thema: Eigenschaften von Funktionen

Nein. Es müssen zum Beispiel D und der Wertebereich von f beschränkt sein. Aber selbst dann lassen sich nicht alle Funktionsgraphen malen, wie das Beispiel der Dirichletfunktion zeigt.

Thema: Eigenschaften von Funktionen

Der Graph einer Funktion ist definiert als $\{(x, f(x)) \mid x \in D\}$.

Thema: Eigenschaften von Funktionen

Sei $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit $f(x) = \sin(x)$. Sei $g: \mathbb{R} \longrightarrow \mathbb{R}$ mit $g(x) = x^3$. Was ist $f \circ g$ und was ist $g \circ f$?

. siəw
ni H ənd O
 ${\bf sisweis}.$

Thema: Eigenschaften von Funktionen

Sei $f: D \longrightarrow \mathbb{R}$ eine Funktion. Was ist die Bedingung, die erfüllt sein muss, damit f eine Umkehrfunktion f^{-1} besitzt?

 $\textbf{Hinweis} \ \ \text{Die Umkehrfunktion} \ \ f^{-1} \ \ \text{von} \ \ f \ \text{erfüllt} \ \ f \circ f^{-1} = \mathrm{id}_{f(D)} \ \ \text{und} \ \ f^{-1} \circ f = \mathrm{id}_D.$

[©] FernUniversität in Hagen, 2008

Thema: Eigenschaften von Funktionen

Was ist die Umkehrfunktion der Funktion $f:\{x\in\mathbb{R}\mid x>0\}\longrightarrow\mathbb{R}$ mit $f(x)=\frac{1}{x}$?

Hinweis Die Umkehrfunktion f^{-1} von f erfüllt $f\circ f^{-1}=\mathrm{id}_{f(D)}$ und $f^{-1}\circ f=\mathrm{id}_D$.

Thema: Eigenschaften von Funktionen

Besitzt die Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit $f(x) = \exp(x^2)$ eine Umkehrfunktion?

Thema: Eigenschaften von Funktionen

Die Funktion f muss injektiv sein.

Thema: Eigenschaften von Funktionen

Für alle $x \in \mathbb{R}$ ist $(f \circ g)(x) = f(g(x)) = \sin(x^3)$ und $(g \circ f)(x) = g(f(x)) = (\sin(x))^3$.

Thema: Eigenschaften von Funktionen

Nein. Es gilt f(1) = f(-1), das heißt, f ist nicht injektiv und besitzt damit auch keine Umkehrfunktion.

Thema: Eigenschaften von Funktionen

Die Umkehrfunktion ist f selbst.

Thema: Eigenschaften von Funktionen

Was ist die Umkehrfunktion der Funktion $f: \{x \in \mathbb{R} \mid x \geq 0\} \longrightarrow \mathbb{R}$ mit $f(x) = \exp(x^2)$?

Hinweis Die Umkehrfunktion f^{-1} von f erfüllt $f\circ f^{-1}=\mathrm{id}_{f(D)}$ und $f^{-1}\circ f=\mathrm{id}_D$.

Thema: Eigenschaften von Funktionen

Wahr oder falsch? Die Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit $f(x) = \frac{x-1}{x^2+1}$ ist monoton.

Thema: Eigenschaften von Funktionen

Wahr oder falsch? Die Funktion $f:\{x\in\mathbb{R}\mid x>0\}\longrightarrow\mathbb{R}$ mit $f(x)=-\frac{1}{x}$ ist streng monoton wachsend.

Hinweis Wahr.

Thema: Eigenschaften von Funktionen

Wahr oder falsch? Wenn f streng monoton wachsend ist, dann ist die Umkehrfunktion streng monoton fallend.

Hinweis Falsch.

Thema: Eigenschaften von Funktionen

Falsch. Es ist f(0) = -1 und f(1) = 0, also ist f nicht monoton fallend. Wegen $f(2) = \frac{1}{5} > \frac{3}{17} = f(4)$ ist f aber auch nicht monoton wachsend.

Thema: Eigenschaften von Funktionen

Die Umkehrfunktion ist $g: \{x \in \mathbb{R} \mid x \geq 1\} \longrightarrow \mathbb{R}$ mit $g(x) = \sqrt{\ln(x)}$. Dann gilt nämlich $g \circ f(x) = g(f(x)) = g(\exp(x^2)) = \sqrt{\ln(\exp(x^2))} = x$ für alle $x \geq 0$ und $f \circ g(x) = f(\sqrt{\ln(x)}) = x$ für alle $x \geq 1$.

Thema: Eigenschaften von Funktionen

Falsch. Wenn f streng monoton wachsend ist, dann ist auch die Umkehrfunktion streng monoton wachsend.

Thema: Eigenschaften von Funktionen

Wahr. Seien $a, b \in \{x \in \mathbb{R} \mid x > 0\}$ mit a < b. Dann ist $f(a) = -\frac{1}{a} < -\frac{1}{b} = f(b)$.

Thema: Eigenschaften von Funktionen

Geben Sie ein Beispiel für eine Funktion, die monoton, aber nicht streng monoton ist.

 $\mathbf{Hinweis} \ \mathrm{Ohne} \ \mathrm{Hinweis}.$

Thema: Eigenschaften von Funktionen

Seien $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ mit $f(x) = x^2$ und $g(x) = \sin(x)$. Wie sind f + g, fg und -f definiert?

Hinweis Ohne Hinweis.

Thema: Eigenschaften von Funktionen

Wie kann man den Graph der Umkehrfunktion f^{-1} geometrisch beschreiben?

Hinweis Der Graph von fmuss an einer bestimmten Achse gespiegelt werden.

Thema: Eigenschaften von Funktionen

Wahr oder falsch? Die Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit $f(x) = x^2 - 15$ ist nach unten beschränkt.

Thema: Eigenschaften von Funktionen

Es sind $f + g, fg, -f : \mathbb{R} \longrightarrow \mathbb{R}$ mit $(f + g)(x) = x^2 + \sin(x), (fg)(x) = x^2 \sin(x)$ und $(-f)(x) = -x^2$.

Thema: Eigenschaften von Funktionen

Sei $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit f(x) = 5 für alle x. Dann ist f monoton, denn $f(a) \leq f(b)$ für alle $a \leq b$, aber f ist nicht streng monoton.

Thema: Eigenschaften von Funktionen

Wahr. Da $x^2 \ge 0$ für alle $x \in \mathbb{R}$ gilt, ist $x^2 - 15 \ge -15$ für alle $x \in \mathbb{R}$ und f ist nach unten beschränkt.

Thema: Eigenschaften von Funktionen

Man erhält den Funktionsgraph von f^{-1} , indem man den Graph von f an der Diagonalen $\{(x,x) \mid x \in \mathbb{R}\}$ spiegelt.

Thema: Polynomfunktionen und rationale Funktionen

Wieviele Nullstellen kann ein Polynom vom Grad n über einem Körper $\mathbb K$ höchstens haben?

Hinweis Ohne Hinweis.

Thema: Polynomfunktionen und rationale Funktionen

Sei $p = \sum_{i=0}^n a_i T^i \in \mathbb{R}[T]$. Wie ist die zugehörige Polynomfunktion \tilde{p} definiert?

Thema: Polynomfunktionen und rationale Funktionen

Sei $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit $f(x) = x^2 + 3x + 1$. Wie sind f^2 und $f \circ f$ definiert?

Thema: Polynomfunktionen und rationale Funktionen

Wie lautet der Identitätssatz für Polynomfunktionen?

 $\mathbf{Hinweis}$ Es geht darum, wann zwei Polynome gleich sind.

Thema: Polynomfunktionen und rationale Funktionen

Es ist $\tilde{p}: \mathbb{R} \longrightarrow \mathbb{R}$ mit $\tilde{p}(x) = \sum_{i=0}^{n} a_i x^i$.

Thema: Polynomfunktionen und rationale Funktionen

Es kann höchstens n verschiedene Nullstellen haben.

Thema: Polynomfunktionen und rationale Funktionen

Seien $p = \sum_{i=0}^{n} a_i T^i, q = \sum_{i=0}^{n} b_i T^i \in \mathbb{R}[T]$, und seien \tilde{p} und \tilde{q} die zugehörigen Polynomfunktio-

nen. Sei $\operatorname{Grad}(p) = n$ und sei $\operatorname{Grad}(q) = m$. Gilt $\tilde{\operatorname{p}}(x) = \tilde{\operatorname{q}}(x)$ für $\max(n, m) + 1$ verschiedene $x \in \mathbb{R}$, so ist n = m und $a_i = b_i$ für alle $0 \le i \le n$. Insbesondere gilt $\tilde{\operatorname{p}}(x) = \tilde{\operatorname{q}}(x)$ für alle $x \in \mathbb{R}$.

Thema: Polynomfunktionen und rationale Funktionen

Es sind f^2 , $f \circ f : \mathbb{R} \longrightarrow \mathbb{R}$ mit $f^2(x) = f(x)f(x) = (x^2 + 3x + 1)(x^2 + 3x + 1) = x^4 + 6x^3 + 11x^2 + 6x + 1$ und $f \circ f(x) = f(f(x)) = f(x^2 + 3x + 1) = (x^2 + 3x + 1)^2 + 3(x^2 + 3x + 1) + 1 = x^4 + 6x^3 + 11x^2 + 6x + 1 + 3x^2 + 9x + 3 + 1 = x^4 + 6x^3 + 14x^2 + 15x + 5$.

Thema: Polynomfunktionen und rationale Funktionen

Gibt es Polynome p und q aus $\mathbb{R}[T]$ mit $p \neq q$ und $\tilde{p} = \tilde{q}$?

Thema: Polynomfunktionen und rationale Funktionen

Wahr oder falsch? Sei $p=T^2-1$ und q=T-1. Dann ist $\frac{\tilde{p}}{\tilde{q}}:\mathbb{R}\longrightarrow\mathbb{R}$ mit $\frac{\tilde{p}}{\tilde{q}}(x)=x+1$.

Hinweis Achten Sie auf den Definitionsbereich.

Thema: Polynomfunktionen und rationale Funktionen

Wie sieht der Definitionsbereich einer rationalen Funktion $\frac{\tilde{p}}{\tilde{q}}$ aus?

Hinweis Was ist mit den Nullstellen von $\tilde{\mathbf{q}}?$

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Sei ρ eine irrationale Zahl und sei $a \in \mathbb{R}$ mit a > 0. Wie ist a^{ρ} definiert?

 $\mathbf{Hinweis} \ \mathrm{Ohne} \ \mathrm{Hinweis}.$

Thema: Polynomfunktionen und rationale Funktionen

Falsch. Es ist $\frac{\tilde{p}}{\tilde{q}}: \mathbb{R} \setminus \{1\} \longrightarrow \mathbb{R} \text{ mit } \frac{\tilde{p}}{\tilde{q}}(x) = \frac{x^2 - 1}{x - 1} = x + 1.$

Thema: Polynomfunktionen und rationale Funktionen

Nein. Über den reellen Zahlen folgt aus $p \neq q$ immer schon $\tilde{p} \neq \tilde{q}$.

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Sei (r_n) eine Folge rationaler Zahlen mit Grenzwert ρ . Dann ist $a^{\rho} = \lim_{n \to \infty} a^{r_n}$. Dabei ist $a^{\frac{p}{q}}$ für eine rationale Zahl $\frac{p}{q}$ definiert als $\sqrt[q]{a^p}$.

Thema: Polynomfunktionen und rationale Funktionen

Der Definitionsbereich ist $\mathbb{R} \setminus \{\text{Nullstellen von } q\}$.

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Wahr oder falsch? Wenn 0 < a < 1 ist und $\rho, \sigma \in \mathbb{R}$ mit $\rho < \sigma$, dann ist $a^{\rho} < a^{\sigma}$.

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Für welche reellen Zahlen a und ρ ist der Ausdruck a^{ρ} definiert?

Hinweis Er ist zum Beispiel definiert für a>0und beliebiges $\rho.$

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Ist $(-27)^{\frac{1}{3}}$ definiert?

Thema: Stetige Funktionen auf Intervallen

Wie lautet der Zwischenwertsatz von Bolzano?

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Der Ausdruck ist für alle a>0 und $\rho\in\mathbb{R}$ definiert. Außerdem ist er definiert für a<0 und $\rho\in\mathbb{Z}$ und für a=0 und $\rho>0$.

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Falsch, es gilt dann $a^{\rho} > a^{\sigma}$.

Thema: Stetige Funktionen auf Intervallen

Sei $f:[a,b] \longrightarrow \mathbb{R}$ eine stetige Funktion, und sei $d \in \mathbb{R}$ mit $f(a) \le d \le f(b)$, falls $f(a) \le f(b)$, oder $f(a) \ge d \ge f(b)$, falls $f(a) \ge f(b)$. Dann gibt es ein $x \in [a,b]$ mit f(x) = d.

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Nein, denn der Ausdruck a^{ρ} ist nur für $\rho \notin \mathbb{Z}$ definiert, wenn a > 0 ist.

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Ist e^{π} definiert?

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Was können Sie über die Funktion \exp_1 sagen?

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Wahr oder falsch? Ist 0 < a < 1, dann ist das Bild von $\exp_a : \{x \in \mathbb{R} \mid x < 0\} \longrightarrow \mathbb{R}$ die Menge $\{x \in \mathbb{R} \mid x > 1\}$.

. siəwni
H ənd O $\mathbf{siswniH}$

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Wahr oder falsch? Für $x,y\in(0,\infty)$ und a>0 mit $a\neq 1$ gilt $\log_a(x+y)=\log_a(x)\log_a(y)$.

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Es gilt $\exp_1 = \hat{1}$.

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Ja, denn es ist e > 0 und $\pi \in \mathbb{R}$.

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Falsch. Sei a=2. Dann ist $\log_2(4)=2$ und $\log_2(2)=1$. Dann ist $\log_2(4)\log_2(2)=2\cdot 1=2\neq \log_2(2+4)=\log_2(6)$.

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Wahr.

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Wahr oder falsch? Für a > 0 und $x, y \in \mathbb{R}$ gilt $\exp_a(xy) = \exp_a(x)^y$.

Thema: Definition von Stetigkeit

Geben Sie zwei verschiedene Definitionen der Stetigkeit einer Funktion $f:D\longrightarrow \mathbb{R}$ im Punkt $a\in D.$

Hinweis Es gibt das $\varepsilon-\delta-Kriterium$ und eine Definition über Folgen.

Thema: Definition von Stetigkeit

Wahr oder falsch? Seien $f,g:D\longrightarrow \mathbb{R}$. Wenn f und fg stetig sind, dann ist auch g stetig.

Thema: Definition von Stetigkeit

Wahr oder falsch? Die Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit $f(x) = \sqrt{\exp(x) + x^2 + 1}$ ist stetig.

Thema: Definition von Stetigkeit

- 1. Ist (a_n) eine Folge in D mit Grenzwert a, dann gilt $\lim_{n\to\infty} f(a_n) = f(a)$.
- 2. Für jedes $\varepsilon>0$ gibt es ein $\delta>0$ mit $|f(x)-f(a)|<\varepsilon$ für alle $x\in D$ mit $|x-a|<\delta.$

Thema: Logarithmus, Exponentialfunktion und allgemeine Potenz

Wahr, denn für alle a > 0 und alle $x, y \in \mathbb{R}$ gilt $\exp_a(xy) = a^{xy} = (a^x)^y = \exp_a(x)^y$.

Thema: Definition von Stetigkeit

Wahr. Die Funktion f ist eine Verkettung stetiger Funktionen und damit stetig.

Thema: Definition von Stetigkeit

Falsch. Ist $f = \hat{0}$, dann ist fg immer stetig.

Thema: Definition von Stetigkeit

Wahr oder falsch? Die Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit $f(x) = \begin{cases} x^2 + 1, & \text{für } x \leq 0 \\ \cos(x), & \text{für } x > 0 \end{cases}$ ist stetig.

Hinweis Wahr.

Thema: Stetige Funktionen auf Intervallen

Wie lautet der Nullstellensatz von Bolzano?

Thema: Stetige Funktionen auf Intervallen

Wie kann man zeigen, dass die Funktion $f:[0,1] \longrightarrow \mathbb{R}$ mit $f(x)=1-\sqrt{\frac{2}{\exp(1-x)}}$ mindestens eine Nullstelle besitzt?

 ${\bf Hinweis}\ {\bf Nullstellensatz}\ {\bf von\ Bolzano}.$

Thema: Stetige Funktionen auf Intervallen

Was ist die Beweisidee, wenn man den Zwischenwertsatz von Bolzano mit dem Nullstellensatz von Bolzano beweisen möchte?

 $\mathbf{Hinweis} \ \mathrm{Ohne} \ \mathrm{Hinweis}.$

Thema: Stetige Funktionen auf Intervallen

Sei $f:[a,b] \longrightarrow \mathbb{R}$ eine stetige Funktion $\operatorname{mit} f(a) < 0$ und f(b) > 0 (oder f(a) > 0 und f(b) < 0). Dann gibt es ein $x \in (a,b)$ mit f(x) = 0.

Thema: Definition von Stetigkeit

Wahr. Die Funktionen x^2+1 und $\cos(x)$ sind stetig. Es muss also nur noch untersucht werden, ob f auch im Punkt 0 stetig ist. Sei also $\varepsilon>0$. Dann gibt ein $\delta_1>0$ mit $|\cos(x)-1|<\varepsilon$ für alle $x\in\mathbb{R}$ mit $|x|<\delta_1$, denn die Funktion cos ist stetig in 0. Weiter gibt es ein $\delta_2>0$ mit $|x^2+1-1|<\varepsilon$ für alle $x\in\mathbb{R}$ mit $|x|<\delta_2$, denn die Funktion x^2+1 ist stetig in 0. Sei also nun $\delta=\min(\delta_1,\delta_2)$. Dann gilt $|f(x)-f(0)|=|f(x)-1|<\varepsilon$ für alle $x\in\mathbb{R}$ mit $|x|<\delta$. Damit ist f überall stetig.

Thema: Stetige Funktionen auf Intervallen

Beim Zwischenwertsatz hat man eine stetige Funktion $f:[a,b] \longrightarrow \mathbb{R}$ und ein d zwischen f(a) und f(b) gegeben. Man wendet dann den Nullstellensatz auf die Funktion $g:[a,b] \longrightarrow \mathbb{R}$ mit g(x) = f(x) - d an.

Thema: Stetige Funktionen auf Intervallen

Mit dem Nullstellensatz von Bolzano. Es ist nämlich $f(0) = 1 - \sqrt{\frac{2}{\exp(1)}} = 1 - \sqrt{\frac{2}{e}} > 0$, denn e > 2, also $\frac{2}{e} < 1$ und $\sqrt{\frac{2}{e}} < 1$. Weiter ist $f(1) = 1 - \sqrt{\frac{2}{\exp(0)}} = 1 - \sqrt{2} < 0$. Mit dem Nullstellensatz von Bolzano folgt, dass es mindestens eine Nullstelle von f gibt.

Thema: Stetige Funktionen auf Intervallen

Wahr oder falsch? Wenn $f:I\longrightarrow \mathbb{R}$ eine stetige Funktion ist, und das Intervall I ist beschränkt, dann ist auch f(I) beschränkt.

Hinweis Betrachten Sie die Funktion $f:(0,1] \longrightarrow \mathbb{R}$ mit $f(x) = \frac{1}{x}$.

Thema: Stetige Funktionen auf Intervallen

Was können Sie über das Bild einer stetigen Funktion auf einem abgeschlossenen Intervall sagen?

 $\mathbf{Hinweis} \ \mathrm{Ohne} \ \mathrm{Hinweis}.$

Thema: Stetige Funktionen auf Intervallen

Durch welche Eigenschaft ist ein Intervall gekennzeichnet?

Thema: Stetige Funktionen auf Intervallen

Was sagt der Satz vom Minimum und Maximum?

Hinweis Es geht darum, dass eine stetige Funktion auf einem abgeschlossenen Intervall Minimum und Maximum annimmt.

[©] FernUniversität in Hagen, 2008

Thema: Stetige Funktionen auf Intervallen

Das Bild ist ein abgeschlossenes Intervall.

Thema: Stetige Funktionen auf Intervallen

Falsch. Es ist zum Beispiel das Intervall (0,1] beschränkt, und $f:(0,1] \longrightarrow \mathbb{R}$ mit $f(x) = \frac{1}{x}$ ist stetig, aber f((0,1]) ist unbeschränkt.

Thema: Stetige Funktionen auf Intervallen

Sei $f:[a,b] \longrightarrow \mathbb{R}$ stetig. Dann gibt es $x_1,x_2 \in [a,b]$ mit $f(x_1) \leq f(x) \leq f(x_2)$ für alle $x \in [a,b]$.

Thema: Stetige Funktionen auf Intervallen

Für ein Intervall I gilt immer, dass für $x_1, x_2 \in I$ auch alle Punkte zwischen x_1 und x_2 in I liegen.

Thema: Stetige Funktionen auf Intervallen

Wahr oder falsch? Wenn $f: I \longrightarrow \mathbb{R}$ stetig und injektiv ist, dann ist f streng monoton.

Thema: Grenzwerte von Funktionen

Wann ist $a \in \mathbb{R}$ Häufungspunkt einer Teilmenge M von \mathbb{R} ?

Thema: Grenzwerte von Funktionen

Wahr oder falsch? Wenn M eine nicht leere beschränkte Teilmenge von \mathbb{R} ist, dann sind sup M und inf M Häufungspunkte von M.

Hinweis Falsch.

Thema: Grenzwerte von Funktionen

Sei $f:D\longrightarrow \mathbb{R}$ eine Funktion, die in $a\in D$ stetig ist, wobei a ein Häufungspunkt von D ist. Wann heißt f konvergent in a?

Hinweis Ohne Hinweis.

Thema: Grenzwerte von Funktionen

Wenn es mindestens eine Folge in $M\setminus\{a\}$ gibt, deren Grenzwert a ist.

Thema: Stetige Funktionen auf Intervallen

Wahr.

Thema: Grenzwerte von Funktionen

Wenn für jede Folge (a_n) in $D \setminus \{a\}$, die gegen a konvergiert, auch die Folge $(f(a_n))$ konvergiert.

Thema: Grenzwerte von Funktionen

Falsch. Sei zum Beispiel $M = [0,1] \cup \{2\}$. Dann ist M nicht leer und beschränkt mit sup M = 2. Es gibt aber keine Folge in $M \setminus \{2\}$, die gegen 2 konvergiert. Also ist 2 kein Häufungspunkt von M.

Thema: Grenzwerte von Funktionen

Wahr oder falsch? Sei $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit $f(x) = \frac{x^2 - 1}{x - 1}$ für $x \neq 1$ und f(1) = 17. Dann ist f konvergent in 1.

Thema: Grenzwerte von Funktionen

Was ist eine hebbare Unstetigkeit?

Thema: Grenzwerte von Funktionen

Sei $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit $f(x) = \frac{x^2 + x}{x^3 - 1}$ für $x \neq 1$ und f(1) = 0. Hat f in 1 eine hebbare Unstetigkeit?

Hinweis Nein.

Thema: Grenzwerte von Funktionen

Sei $f: D \longrightarrow \mathbb{R}$ und a ein Häufungspunkt von D. Wann und wie ist $\lim_{x \to a} f(x)$ definiert?

Hinweis Der Grenzwert ist definiert, wenn f in a konvergent ist. Wie ist er in diesem Fall definiert?

© FernUniversität in Hagen, 2008

Thema: Grenzwerte von Funktionen

Sei $f: D \longrightarrow \mathbb{R}$ eine Funktion, die in $a \in D$ nicht stetig ist, wobei a ein Häufungspunkt von D ist. Wenn $f|_{D\setminus\{a\}}$ auf D stetig fortgesetzt werden kann, dann hat f in a eine hebbare Unstetigkeit.

Thema: Grenzwerte von Funktionen

Wahr. Sei (a_n) eine Folge in $\mathbb{R}\setminus\{1\}$ mit $\lim_{n\to\infty}a_n=1$. Dann gilt $\lim_{n\to\infty}f(a_n)=\lim_{n\to\infty}\frac{a_n^2-1}{a_n-1}=\lim_{n\to\infty}a_n+1=2$, das heißt, f ist konvergent in 1.

Thema: Grenzwerte von Funktionen

Der Grenzwert ist definiert, wenn f in a konvergent ist. Ist das der Fall, dann ist $\lim_{x\to a} f(x) = \lim_{n\to\infty} f(a_n)$ für jede Folge (a_n) aus $D\setminus\{a\}$, die gegen a konvergiert.

Thema: Grenzwerte von Funktionen

Nein. Die Folge $(x_n) = (1 + \frac{1}{n})$ konvergiert gegen 1, und es gilt $f(x_n) = \lim_{n \to \infty} \frac{(1 + \frac{1}{n})^2 + 1 + \frac{1}{n}}{(1 + \frac{1}{n})^3 - 1} = \frac{1 + \frac{2}{n} + \frac{1}{n^2} + 1 + \frac{1}{n}}{1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3} - 1} = \frac{2 + \frac{3}{n} + \frac{1}{n^2}}{\frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3}} = \frac{2n + 2 + \frac{1}{n}}{3 + \frac{3}{n} + \frac{1}{n^2}}$. Für $n \to \infty$ konvergiert der Nenner des Bruchs gegen 3, während der Zähler unbeschränkt ist. Insgesamt ist die Folge also unbeschränkt, und damit existiert $\lim_{x \to 1} f(x)$ nicht. Die Unstetigkeit von f in 1 ist also nicht hebbar.

 ${\bf Thema:}\ {\bf Differentiations regeln}$

Sei $f:I\longrightarrow \mathbb{R}$ eine Funktion, wobei I ein Intervall ist. Sei $a\in I.$ Wann ist a in I differenzierbar?

 $\label{eq:himself} \textbf{Hinweis}.$

Thema: Differentiationsregeln

Sei $f: I \longrightarrow \mathbb{R}$, wobei I ein Intervall ist, in $a \in I$ differenzierbar. Geben Sie zwei verschiedene Definitionen für f'(a).

. siəwni
H ənd O $\mathbf{sisweis}.$

Thema: Differentiationsregeln

Berechnen Sie die Ableitung von $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit $f(x) = 4x^2 + x$ mit dem Differentialquotienten.

Hinweis Der Differentialquotient ist $\frac{f(x)-f(a)}{x-x}$.

Thema: Differentiationsregeln

Wahr oder falsch? Wenn eine Funktion in einem Punkt $a \in D$ stetig ist, dann ist sie in a auch differenzierbar.

 $\mathbf{Hinweis} \ \mathrm{Falsch}.$

Thema: Differentiationsregeln

Es gilt
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
.

Thema: Differentiationsregeln

Wenn $\lim_{x\to a} \frac{f(x) - f(a)}{x - a}$ bzw. $\lim_{h\to 0} \frac{f(a+h) - f(a)}{h}$ existiert.

Thema: Differentiationsregeln

Falsch. Die Betragsfunktion ist zum Beispiel im Punkt 0 stetig, aber nicht differenzierbar.

Thema: Differentiationsregeln

Seien $x, a \in \mathbb{R}$ mit $x \neq a$. Dann ist $\frac{f(x) - f(a)}{x - a} = \frac{4x^2 + x - 4a^2 - a}{x - a} = \frac{4x^2 - 4a^2 + (x - a)}{x - a} = \frac{4(x + a)(x - a)}{x$

Thema: Extrema

Wahr oder falsch? Ein globales Extremum ist immer auch ein lokales Extremum.

Thema: Extrema

Geben Sie ein Beispiel für eine Funktion $f:D\longrightarrow \mathbb{R}$ und ein $a\in D$, so dass f in a ein lokales, aber kein globales Maximum besitzt.

Hinweis Ohne Hinweis.

Thema: Extrema

Geben Sie ein Beispiel für eine Funktion $f:D\longrightarrow \mathbb{R}$ und ein $a\in D$, so dass f ein lokales Minimum in a hat, aber in a nicht differenzierbar ist.

 ${\bf Hinweis} \ {\bf Betragsfunktion}.$

Thema: Extrema

Geben Sie ein Beispiel für eine Funktion $f:D\longrightarrow \mathbb{R}$ und ein $a\in D$ mit f''(a)=0, aber f hat in a kein lokales Extremum.

Hinweis Betrachten Sie $f(x) = x^3$.

Thema: Extrema

Sei f(x) = 1 für $x \le 0$ und f(x) = 0 für x > 0. Dann ist in a = 1 ein lokales, aber kein globales Maximum.

Thema: Extrema

Wahr. Für ein globales Extremum a gilt $f(a) \ge f(x)$ bzw. $f(a) \le f(x)$ für alle $x \in D$, also gilt die entsprechende Ungleichung insbesondere in einer δ -Umgebung von a.

Thema: Extrema

Sei $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit $f(x) = x^3$. Dann gilt f'(0) = 0, aber f hat in 0 kein lokales Extremum.

Thema: Extrema

Sei $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit f(x) = |x|. Dann hat f in 0 ein lokales Minimum, ist aber nicht differenzierbar bei 0.

Thema: Extrema

Sei $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit $f(x) = \exp(x^3 - 3x^2 + 1)$. Geben Sie eine zweielementige Teilmenge von \mathbb{R} an, die auf jeden Fall alle lokalen Extrema der Funktion enthält.

Hinweis let f differenzierbar in a und hat ein lokales Extremum in a, dann gilt f'(a) = 0.

[©] FernUniversität in Hagen, 2008

Thema: Stetige Funktionen auf Intervallen

Sei I ein Intervall, und sei $f: I \longrightarrow \mathbb{R}$ stetig und streng monoton. Sei f in $a \in I$ differenzierbar. Dann ist bekanntlich f^{-1} in f(a) = b differenzierbar. Aber was ist $(f^{-1})'(b)$?

 $\mathbf{Hinweis} \ \mathrm{Ohne} \ \mathrm{Hinweis}.$

Thema: Differentiationsregeln

Wahr oder falsch? Wenn $f(x) = x^{\pi}$ für x > 0 ist, dann ist $f'(x) = \pi x^{\pi-1}$.

Thema: Stetige Funktionen auf Intervallen

Besitzt die Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit $f(x) = \frac{x^2 + 2x - 2}{x^2 + 1}$ im Intervall [0, 1] eine Nullstelle?

 ${\bf Hinweis}\ {\bf Nullstellensatz}\ {\bf von\ Bolzano}.$

Thema: Stetige Funktionen auf Intervallen

Es ist $(f^{-1})'(b) = \frac{1}{f''(a)}$.

Thema: Extrema

Da f überall differenzierbar ist, gilt für alle $a \in \mathbb{R}$, in denen f ein lokales Extremum besitzt, dass f'(a) = 0 gilt. Es müssen also nur die Nullstellen der Ableitung von f berechnet werden. Es gilt $f'(x) = (3x^2 - 6x) \exp(x^3 - 3x^2 + 1)$ mit der Kettenregel. Da exp immer größer als 0 ist, sind die Nullstellen von f' die $x \in \mathbb{R}$ mit $3x^2 - 6x = 0$, also 3x(x - 2) = 0, das heißt, x = 0 oder x = 2. Die gesuchte Menge ist also $\{0, 2\}$.

Thema: Stetige Funktionen auf Intervallen

Ja, denn die Funktion ist als rationale Funktion stetig, und es gilt f(0) = -2 und $f(1) = \frac{1}{2}$. Mit dem Nullstellensatz von Bolzano folgt, dass f im Intervall [0,1] eine Nullstelle besitzt.

Thema: Differentiationsregeln

Wahr. Die Ableitung der allgemeinen Potenzfunktion $x\mapsto x^a$ für x>0 und $a\in\mathbb{R}$ ist $x\mapsto ax^{a-1}$.

Thema: Differentiationsregeln

Zeigen Sie, dass $f: \mathbb{R} \longrightarrow \mathbb{R}$ mit f(x) = 6x - 1 stetig ist und geben Sie zu jedem ε ein passendes δ an.

Hinweis Versuchen Sie es mit $\delta = \frac{\epsilon}{\delta}$.

Thema: Differentiationsregeln

Wahr oder falsch? Sind $f: \mathbb{R} \longrightarrow \mathbb{R}$ und $g: \mathbb{R} \longrightarrow \mathbb{R}$ stetige Funktionen und gilt f(x) = g(x) für alle $x \in \mathbb{Q}$, dann gilt schon f = g.

Hinweis Wahr.

Thema: Differentiationsregeln

Wie lautet die Produktregel?

 ${\bf Thema:}\ {\bf Differentiations regeln}$

Wie lautet die Quotientenregel?

Thema: Differentiationsregeln

Wahr. Sei nämlich $x \in \mathbb{R} \setminus \mathbb{Q}$. Dann gibt es eine Folge (x_n) aus \mathbb{Q} , die gegen x konvergiert. Da f und g stetig sind, gilt dann $f(x) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n) = g(x)$. Also gilt f(x) = g(x) für alle $x \in \mathbb{R}$.

Thema: Differentiationsregeln

Sei $a \in \mathbb{R}$ und sei $\varepsilon > 0$. Sei $\delta = \frac{\varepsilon}{6}$. Für alle $x \in \mathbb{R}$ mit $|x - a| < \delta$ gilt dann $|f(x) - f(a)| = |6x - 6a| = 6|x - a| < 6\frac{\varepsilon}{6} = \varepsilon$. Also ist f stetig in a.

Thema: Differentiationsregeln

Seien $f,g:I\longrightarrow\mathbb{R}$ und sei $a\in I$ so, dass f und g in a differenzierbar sind und $g(a)\neq 0$ gilt. Dann ist $\frac{f}{g}$ in a differenzierbar, und es gilt $(\frac{f}{g})'(a)=\frac{f'(a)g(a)-f(a)g'(a)}{g(a)^2}$.

Thema: Differentiationsregeln

Seien $f, g: I \longrightarrow \mathbb{R}$ und sei $a \in I$ so, dass f und g in a differenzierbar sind. Dann ist fg in a differenzierbar, und es gilt (fg)'(a) = f'(a)g(a) + f(a)g'(a).