Section #2.	
- Dirac deltas - the big picture.	-> fello EFT & cq: yuahun Hout Faram > M mt. > 6 brevaldes
- contour integrals - answer pret Q's	Wick (S correlation Free.) LSZ
particle physics (condensed matter ruclear physics) quantum ophis 2nd particle cosmology quart limit (cosmology quart limit (cosmology)	opening of the subject that unifies particle QM & classical field theory. all question scale entited the subject that unifies
(atomiz physics) particle QM <u>classical limits</u> (M (everyday physics chemistry) particle QM (anonical quintization (planetary & galactic	dynamis) becomes classical EM Fold; in another, few
& QFT is the common language of huge part of physic!	durale photons.
basic syms.	
Stypes of particles rep. Types of fields EFT Layrangen (ann. theory) Theory	trion tiles.
the "step": interacting theren correlation functions LSZ scattering theorem	amplitudes place space. Cooper sections lints. decay rates etc.

$$V_{1}+iV_{2}=(u+iv,-v+iu)$$

$$=(f,if)$$

$$\int dx f(x) f(cx) = \frac{1}{|c|} f(0) \xrightarrow{\text{pure}} \int dx f(x) f(g(x)) = \underbrace{\frac{1}{|c|} f(x_n)}_{\text{g(x_n)=0}} \frac{f(x_n)}{|g(x_n)|}$$

$$\underline{E}x$$
: what is $\int dx f(x) f(x^2-1)$? Solve $x=\pm 1$ where demotive is $\pm 2 \longrightarrow \frac{1}{2}(f(1)+f(-1))$

 $S^{(3)}(\vec{x}) = (?) S(r)$

Contour integrals: If Itz) dz - let's consider component: f = u + iv, dz = dx + idy.

$$\int_{\mathcal{L}} f(z) dz = \int_{\mathcal{L}} (u dx - v dy) + i (v dx + u dy)$$

$$f'(z) = \lim_{\epsilon \to 0} \frac{f(z+\epsilon a) - f(z)}{\epsilon a} \longrightarrow \frac{f(z+\epsilon) - f(z)}{\epsilon} = \frac{f(z+\epsilon) - f(z)}{it}$$

(for an a)
$$\left(\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}\right)$$
 $\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$ $-i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$

$$\frac{\partial x}{\partial u} + i \frac{\partial x}{\partial v} \qquad -i \frac{\partial y}{\partial u} + \frac{\partial y}{\partial v}$$

So we can always deform closed integration contour to zero, when there are singularities

$$\begin{pmatrix} x & x \\ x & x \end{pmatrix} = \begin{pmatrix} x & x \\ x & x \end{pmatrix} = \begin{pmatrix} x & x \\ x & x \end{pmatrix} = \begin{pmatrix} x & x \\ x & x \end{pmatrix}$$

just need to know how to evaluate a small loop around each singularly

$$\int \frac{dz}{z} = \int \frac{d\theta}{d\theta} = \int \frac{d\theta}{e^{i\theta}} = \int \frac{2\pi}{e^{i\theta}} = 2\pi i.$$

$$\int_{0}^{\infty} \frac{dz}{z^{2}} = \int_{0}^{2\pi} d\theta \frac{ie^{i\theta}}{re^{2i\theta}} = \frac{i}{r} \int_{0}^{2\pi} d\theta e^{i\theta} = 0. \quad (and \text{ is an})$$

challewing example: hondling "essetall suppliery.

Solzeiazeiblz = ?.

note: with oscillations, growth, and danying as 2 > 0!

for single singlewither, looking like 1/2", only 1/2 tems ("poles") to anything. So in youral we have

$$\int_{C} f(z) dz = \frac{1}{z} 2\pi i \operatorname{Res}(z_{i}) \quad \text{where } f |_{\text{looks}} \text{ like } \frac{\operatorname{Res}(z_{i})}{z-z_{i}} \text{ near } z=z_{i}.$$

Ex: what is Sfizhez where (13 a big cow circle, and fis not singular?

$$\frac{1}{2^{2}-1} = \frac{1}{(2-1)(2+1)} = \frac{1}{2}\left(-\frac{1}{2+1} + \frac{1}{2-1}\right) \longrightarrow 2\pi i \left(\frac{1}{2}f(1) - \frac{1}{2}f(-1)\right).$$