Convolution de suites réelles

 $E = \mathbb{R}^{\mathbb{N}}$ désigne l'ensemble des suites réelles.

Pour $u \in E$, on note u(n) au lieu de u_n le terme d'indice n de la suite u.

Pour $u, v \in E$, on appelle somme des suites u et v, la suite $u + v \in E$ définie par :

$$\forall n \in \mathbb{N}, (u+v)(n) = u(n) + v(n)$$
.

On sait que la loi de composition interne + sur E ainsi définie munit E d'une structure de groupe commutatif d'élément nul égal à la suite nulle notée 0.

Pour $u, v \in E$, on appelle convolé de la suite u par la suite v, la suite $u \star v \in E$ définie par :

$$\forall n \in \mathbb{N}, (u \star v)(n) = \sum_{k=0}^{n} u(k)v(n-k).$$

La loi de composition interne \star sur E ainsi définie est appelée produit de convolution de suites réelles.

- 1.a Montrer que ★ est commutative et associative.
- 1.b On note ε la suite réelle définie par $\varepsilon(0)=1$ et $\forall n\in\mathbb{N}^*, \varepsilon(n)=0$. Etablir que ε est élément neutre pour \star .
- 1.c Montrer que \star est distributive sur +.
- 1.d Que dire de la structure $(E, +, \star)$?
- 2.a Soit $\rho \in \mathbb{R}$ et u la suite réelle définie par $\forall n \in \mathbb{N}, u(n) = \rho^n$. Montrer que l'élément u est inversible et déterminer son inverse.
- 2.b On note $F = \mathbb{R}^{(\mathbb{N})}$ l'ensemble des suites réelles nulles à partir d'un certain rang. Montrer que F est un sous-anneau de l'anneau $(E,+,\star)$.
- 2.c Soit $f: E \to E$ définie par : $\forall u \in E$, la suite $f(u) \in E$ est donnée par $\forall n \in \mathbb{N}, [f(u)](n) = (-1)^n u(n)$. Montrer que f est un automorphisme involutif de l'anneau $(E, +, \star)$.
- 3. On se propose maintenant de déterminer les éléments inversibles de l'anneau $(E,+,\star)$.
- 3.a Soit u un élément inversible de l'anneau $(E, +, \star)$. Montrer que $u(0) \neq 0$.
- 3.b Inversement soit $u \in E$, tel que $u(0) \neq 0$. Montrer que u est inversible.
- 4. On se propose maintenant de justifier l'intégrité de l'anneau $(E,+,\star)$. Soit $u,v\in E$ tels que $u\neq 0$ et $v\neq 0$. On pose $p=\min\left\{n\in\mathbb{N}/u(n)\neq 0\right\}$ et $q=\min\left\{n\in\mathbb{N}/v(n)\neq 0\right\}$.
- 4.a Justifier l'existence de p et q.
- 4.b Montrer que $(u \star v)(p+q) \neq 0$.
- 4.c Conclure.