JACOBIAN

Table of Contents

Calling Syntax	
/O Variables	
Example	
Hypothesis	
imitations	
Version Control	
Group Members	
Function	
<i>Y</i> alidity	
Main Calculations	
Output Data	
<u>r</u>	

Propagação das velocidades para obtenção do Jacobiano conforme exemplo 5.3 do Craig (até junta 2) e terminada conforme 'jacobian_prop.jpg'. Para o robo planar 3R, conforme vetor de ângulos de juntas e comprimento dos ligamentos informados, calcula o Jacobiano em referência ao sistema do punho, {3}.

Calling Syntax

[jac]=jacobian(theta,L)

I/O Variables

```
IN Double Array theta: Joint angles [\theta_1 \theta_2 \theta_3] [degrees degrees degrees]

IN Double Array L: Ligaments length [L_1 L_2] [meters meters]

OU Double Matrix jac: sistem {3} jacobian 6x3 Matrix
```

Example

```
theta = [0 90 -90]
L = [0.5 0.3]
[jac]=jacobian(theta,L)
```

Hypothesis

RRR planar robot.

Limitations

A "Forma do usuário" é específica para o exercício de simulação e não tem validade para qualquer configuração de robô.

Version Control

1.0; Grupo 04; 2025/27/05; First issue.

Group Members

· Guilherme Fortunato Miranda

13683786

• João Pedro Dionizio Calazans

13673086

Function

```
function [jac]=jacobian(theta,L)
```

Validity

Not apply

Main Calculations

```
jac = zeros(6,3);
```

Output Data

0	-0.3000	-0.3000
0	0	0.5000
0	0	0
0	0	0
0	0	0
1.0000	1 0000	1.0000

Published with MATLAB® R2024b