# A review of regularized regression methods for high dimensional setting with focus on time-to-event data

Fred Azizi November 30, 2022

#### Outline

Background: What is wrong with regression analysis of higher dimensions data?

Time-to-event data: how to deal with high dimensions in survival analysis

Result on Gene-expression data

Background: What is wrong with regression analysis of higher dimensions

data?

### **Background**

We start with a regular regression problem

- Consider i.i.d. samples  $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}, i = 1, \dots, n$  from the linear model
- We can express a model as

$$y = X\beta + \epsilon \tag{1}$$

$$y = (y_1, \ldots, y_n) \in \mathbb{R}^n$$
,  $X \in \mathbb{R}^{n \times p}$ ,  $\epsilon = (\epsilon_1, \ldots, \epsilon_n) \in \mathbb{R}^n$ 

- Several different sets of assumptions can be put here, (i.e.  $\epsilon$  are Normally distributed, etc)

# **Background (continued)**

• We can estimate vector  $\beta$  using OLS (Ordinary Least Square) or Maximum Likelihood Estimation:

$$\min_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n} (y_{i} - x_{i}^{\mathsf{T}} \beta)^{2} \iff \\
\min_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n} \left( y_{i} - \sum_{j=1}^{p} \beta_{j} X_{j} \right)^{2} \iff \\
\min_{\beta \in \mathbb{R}^{p}} \| y - X \beta \|_{2}^{2} \tag{2}$$

OLS estimate would be:

$$\hat{\beta}_{OLS} = \left(X^T X\right)^{-1} X^T y \tag{3}$$

Under regular assumptions, Gauss–Markov theorem show OLS estimator is **BLUE** (Best Linear Unbiased Estimator)

## Failure in high dimensions

Most classical approaches work when n > p in  $X_{n \times p}$  but... Not all datasets have similar structures!

- Lack of interpretability: when p is large we may prefer a smaller set of predictors to determine those most strongly associated with y
  - Going back to the solution to Least squares (equation (3)),  $\hat{\beta}_{OLS} = \left(X^TX\right)^{-1}X^Ty, \text{ if } \mathrm{Rank}(X) < p, \ \hat{\beta} \text{ does not have a unique representation!}$
- Large variability: when p is large relative to n, or when columns in our design matrix are highly correlated, variance of parameter estimates is large
- Issues with prediction: While the fitted value is unique regardless of Rank(X), in terms of actual predictions at say a new point x<sub>0</sub> ∈ ℝ<sup>p</sup>, it will not generally be the case that x<sub>0</sub><sup>T</sup>β̃ = x<sub>0</sub><sup>T</sup>β̂ for two solutions β̂, β̃. So which one should be our prediction?

### What to do in higher dimensions?

- Principle Component Regression: The idea of PCR can be traced back to (Hotelling 1957) and (Kendall et al. 1957). idea is:
  - Perform PCA on the observed data matrix for the explanatory variables to obtain the principal components
  - Now regress the observed vector of outcomes on the selected principal components as covariates, using OLS regression to get a vector of estimated regression coefficients.
- Penalty/Shrinkage/Regularized Methods
  - Idea is to penalize coefficients the further they go from zero
  - We change the Likelihood function/ Objective function and add a penalty term. In case of regression:

$$\min_{\beta \in \mathbb{R}^n} \|y - X\beta\|_2^2 \text{ subject to } \beta \in C$$

$$\min_{\beta \in \mathbb{R}^n} \|y - X\beta\|_2^2 + Pen(\beta) \tag{4}$$

### Penalized regression

Lets define three norms  $\ell_0, \ell_1, \ell_2$  as:

$$\|\beta\|_0 = \sum_{j=1}^p 1\{\beta_j \neq 0\}. \quad \|\beta\|_1 = \sum_{j=1}^p |\beta_j|, \quad \|\beta\|_2 = \left(\sum_{j=1}^p \beta_j^2\right)^{1/2}$$

then we can look at our regression problem with a penalty in three ways:

- 1.  $\min_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y X\beta\|_2^2 + \lambda \|\beta\|_0$  (known as best subset selection (Donoho and Johnstone 1994))
- 2.  $\min_{\beta \in \mathbb{R}^p} \frac{1}{2} \|y X\beta\|_2^2 + \lambda \|\beta\|_1$  (known as LASSO (Tibshirani 1996))
- 3.  $\min_{\beta\in\mathbb{R}^p}\frac{1}{2}\|y-X\beta\|_2^2+\lambda\|\beta\|_2^2$  (known as ridge regression (Hoerl and Kennard 2000))

 $\lambda$  controls the trade-off between the penalty and the fit.

# LASSO vs Ridge



**Figure 1:** The "classic" illustration comparing lasso and ridge constraints. From Chapter 3 of (Hastie, et al 2009)

Time-to-event data: how to deal with high dimensions in survival analysis

#### Time-to-event data

Statistical methods to study not only if an event happens but also **when** it happens.

- Time is measured for each person from the first observation until when an event happens (aka failure) or when time is censored.
  - Cause of censoring: The study is out of time/money, A person is lost to follow-up or dies from other causes, etc.
- We are interested in predicting the survival time or instantaneous failure rate at time t (aka hazard function  $\lambda(t)$ )

**Goal**: Compare two or more groups, adjusting for other risk factors on survival times (like Multiple regression) with p features and we want to model Relative Risk of the event as function of time and covariates

- Logistic regression can predict the presence or absence of events but not time until events and it can not handle time dependent covariates.
- Linear regression can not handle censoring well or time-dependent covariates or the fact that time can only be positive

## **Proportional Hazard Model**

(Cox 1972) proposed this method:

Consider the usual survival data setup:  $(t_1, \mathbf{x}_1, \delta_1) \dots (t_N, \mathbf{x}_N, \delta_N)$ . Denote the distinct failure times by  $t_1 < \dots < t_k$ , there being  $d_i$  failures at time  $t_i$ .

The proportional-hazards model for survival data, also known as the Cox model, assumes that

$$\lambda(t \mid \mathbf{x}) = \lambda_0(t) \exp\left(\sum_j x_j \beta_j\right)$$

eta is found by maximizing the partial likelihood:

$$L(\beta) = \prod_{r \in D} \frac{\exp\left(\beta^{\mathrm{T}} \mathbf{x}_{j_r}\right)}{\left\{\sum_{j \in R_r} \exp\left(\beta^{\mathrm{T}} \mathbf{x}_j\right)\right\}}$$

**Issue**: Similar to linear regression, this won't work properly when p > n.

#### LASSO for Cox Model

(Tibshirani 1997) introduced LASSO method for variable selection in the Cox model. We change the maximization of the partial Cox log-likelihood to:

$$\hat{eta}(s) = \operatorname{argmax} \ell(eta) \quad ext{ subject to } \sum_{j=1}^p |eta_j| \leq s.$$

- (0) Define  $\eta = \beta' x, \mu = \partial I/\partial \eta, A = -\partial^2 I/\partial \eta \eta^T$ ,  $z = \eta + A^- \mu$ ,  $y = A^{1/2} z$  and  $\hat{x} = A^{1/2} x$ .
- (1) Fix s and initialize  $\hat{\beta}$ .
- (2) Compute everything defined in step 0 based on the current value of  $\hat{\beta}$ .
- (3) Minimize  $(y \beta'\hat{x})^T (y \beta'\hat{x})$  subject to  $\sum |\beta_j| \leq s$ .
- (4) Repeat step 2 and 3 until  $\hat{\beta}$  does not change.

s is chosen by CV.

#### **Elastic net for Cox Models**

(Park and Hastie 2007) introduce Elastic net for Cox Models by mixing the  $\ell_1$  and  $\ell_2$  penalties and changing the constraint term to:

$$\hat{\beta}(\mathbf{s}) = \operatorname{argmax} \ell(\beta) \quad \text{ subject to } \alpha \sum_{j=1}^p |\beta_i| + (1-\alpha) \sum_{j=1}^p \beta_i^2 \leq c$$

- **1.** Initialize  $\tilde{\beta}$ , and set  $\tilde{\eta} = X\tilde{\beta}$ .
- **2.** Compute  $\ell''(\tilde{\eta})$ , and  $z(\tilde{\eta}) = \tilde{\eta} \ell''(\tilde{\eta})^{-1}\ell'(\tilde{\eta})$ .
- **3.** Find  $\widehat{\beta}$  minimizing

$$\frac{1}{n}\sum_{i=1}^{n}w(\tilde{\eta})_{i}\left(z(\tilde{\eta})_{i}-x_{i}^{\top}\beta\right)^{2}+\lambda P_{\alpha}(\beta)$$

- **4.** Set  $\tilde{\beta} = \hat{\beta}$  and,  $\tilde{\eta} = X\hat{\beta}$ .
- **5.** Repeat steps 2-4 until convergence of  $\widehat{\beta}$ .

#### Issue with cross-validation

Solution: Harrell's C-index (Harrell Jr., Lee, and MARK 1996)

For subject *i* with risk score  $\eta_i$  and  $T_i$  survival time:

- 1. If both  $T_i$ , and  $T_j$  are not censored, we say that the pair (i,j) is a concordant pair if  $\eta_i > \eta_j$  and  $T_i < T_j$ , and it is a discordant pair if  $\eta_i > \eta_j$  and  $T_i > T_j$ .
- **2.** If both  $T_i$  and  $T_j$  are censored, we don't consider this pair in the computation.
- **3.** If  $T_i$  is not censored and  $T_i$  is censored:
  - If  $T_i < T_i$ , we don't consider this pair in the computation.
  - If  $T_j > T_i$ , (i,j) is a concordant pair if  $\eta_i > \eta_j$  and is a discordant pair if  $\eta_i < \eta_j$ .

Harrell's C-index is simply:

$$c = \frac{\# \text{ concordant pairs}}{\# \text{ concordant pairs } + \# \text{ discordant pairs}}$$

Result on Gene-expression data

#### Comparison on Real data

- (Alizadeh et al 2000): Gene-expression data in lymphoma patients.
  - There were 240 patients with measurements on 7399 genes
  - 140 censored observation



**Figure 2:** Left plot shows the result of Cross validation with LASSO and the right plot shows the result of cross validation using elastic net

#### Conclusion

- One method for overcoming the issues of high dimensionality in Cox models is shrinkage
- We introduce LASSO and Elastic nets for Cox model.
  - The lasso penalty (Tibshirani 1997) tends to choose only a few nonzero coefficients.
  - Ridge regression scales all the coefficients towards 0, but sets none to exactly zero.
  - The elastic net combines the strengths of the two approaches by mixing the penalty terms
- Downside of penalized Cox model in general is the computational cost.
   Another downside is difficulty of tuning the penalty parameter using cross validation.

# Thank you!

The codes and slides will be posted on my Github account:

 ${\tt https://fredazizi.github.io/}$ 

#### References i

- Cox, D. R. 1972. "Regression Models and Life-Tables." *Journal of the Royal Statistical Society. Series B (Methodological)* 34 (2): 187–220. http://www.jstor.org/stable/2985181.
- Donoho, David L, and Iain M Johnstone. 1994. "Ideal spatial adaptation by wavelet shrinkage." *Biometrika* 81 (3): 425–55. https://doi.org/10.1093/biomet/81.3.425.
- Harrell Jr., FRANK E., Kerry L. Lee, and DANIEL B. MARK. 1996. "MULTIVARIABLE PROGNOSTIC MODELS: ISSUES IN DEVELOPING MODELS, EVALUATING ASSUMPTIONS AND ADEQUACY, AND MEASURING AND REDUCING ERRORS." Statistics in Medicine 15 (4): 361–87. https://doi.org/https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4%3C361::AID-SIM168%3E3.0.CO;2-4.
- Hoerl, Arthur E., and Robert W. Kennard. 2000. "Ridge Regression: Biased Estimation for Nonorthogonal Problems." *Technometrics* 42 (1): 80–86. http://www.jstor.org/stable/1271436.

#### References ii

- Hotelling, Harold. 1957. "THE RELATIONS OF THE NEWER MULTIVARIATE STATISTICAL METHODS TO FACTOR ANALYSIS." *British Journal of Statistical Psychology* 10 (2): 69–79.
  - https://doi.org/https://doi.org/10.1111/j.2044-8317.1957.tb00179.x.
- Kendall, Maurice G et al. 1957. "Course in Multivariate Analysis."
- Park, Mee Young, and Trevor Hastie. 2007. "L1-Regularization Path Algorithm for Generalized Linear Models." *Journal of the Royal Statistical Society. Series B (Statistical Methodology)* 69 (4): 659–77. http://www.jstor.org/stable/4623289.
- Tibshirani, Robert. 1996. "Regression Shrinkage and Selection via the Lasso." Journal of the Royal Statistical Society. Series B (Methodological) 58 (1): 267–88. http://www.jstor.org/stable/2346178.
- ——. 1997. "THE LASSO METHOD FOR VARIABLE SELECTION IN THE COX MODEL." Statistics in Medicine 16 (4): 385–95. https://doi.org/https://doi.org/10.1002/(SICI)1097-0258(19970228)16:
  - 4%3C385::AID-SIM380%3E3.0.CO;2-3.