CLAIMS:

1	1.	A method for reliably transmitting a frame comprising the steps of:
2		inserting two or more sequence numbers in said frame, wherein each of said
3	two o	or more sequence numbers is associated with a destination node; and
4		transmitting said frame to two or more destination nodes.
1	2.	The method as recited in claim 1 further comprising the step of:
2		inserting one or more bits in a frame header of said frame to select appropriate
3	ports	in a switch fabric to transmit said frame.
1	3.	The method as recited in claim 2 further comprising the step of:
2		setting a bit in said frame header of said frame to indicate an explicit or an
3	impli	cit acknowledgment.
1	4.	The method as recited in claim 1 further comprising the step of:
2		saving a copy of said transmitted frame.
1	5.	The method as recited in claim 1 further comprising the step of:
2		receiving an acknowledgment from a particular destination node of said two
3	or mo	ore destination nodes.
1	6.	The method as recited in claim 5 further comprising the steps of:
2		identifying said particular destination node;
3		identifying a frame associated with said acknowledgment;
4		reading a data structure associated with said particular destination node; and
5		determining if a sequence number associated with said acknowledgment is
6	oreate	er than an expected sequence number

RAL920010024US1 PATENT

1	7.	The method as recited in claim 6, wherein if said sequence number associated
2	with	said acknowledgment is greater than said expected sequence number then the
3	meth	od further comprises the step of:
4		detecting a lost acknowledgment.
1	8.	The method as recited in claim 5 further comprising the steps of:
2		identifying said particular destination node;
3		identifying a frame associated with said acknowledgment;
4		reading a data structure associated with said particular destination node;
5		indicating in an entry in said data structure associated with said particular
6	desti	nation node that a frame associated with said acknowledgment from said
7	partio	cular destination node has been received; and
8		identifying a previous entry associated with a frame transmitted with an
9	impli	cit acknowledgment in said data structure associated with said particular
0	desti	nation node as having been received.
1	9.	The method as recited in claim 5 further comprising the steps of:
2		identifying said particular destination node;
3		identifying a frame associated with said acknowledgment;
4		reading a data structure associated with said frame associated with said
5	ackno	owledgment; and
6		indicating in an entry in said data structure associated with said particular
7	desti	nation node that a frame associated with said acknowledgment from said
8	partic	cular destination node has been received.
1	10.	The method as recited in claim 9 further comprising the step of:
2		determining if there are outstanding responses for said frame associated with
3	said a	cknowledgment

RAL920010024US1

1 2

3

4

1

2

3

4

1

2

3

4

5

1

11.	T	he meth	od as recite	d in c	laim 1	10, wherein if there	e are	outsta	anding re	sponses
for	said	frame	associated	with	said	acknowledgment	then	the	method	further
com	prise	s the ste	ep of:							

waiting to receive an additional acknowledgment.

- 12. The method as recited in claim 10, wherein if there are no outstanding responses for said frame then the method further comprises the step of:
 - releasing memory associated with said frame associated with said acknowledgment.
 - 13. The method as recited in claim 1 further comprising the step of:
 receiving a request to retransmit said frame from a particular destination node
 of said two or more destination nodes; and

retransmitting said frame to said particular destination node of said two or more destination nodes.

14. The method as recited in claim 1, wherein said frame is a multicast frame.

1	15.	A computer program product embodied in a machine readable medium for
2	reliab	ly transmitting a frame, comprising:
3		programming operable for inserting two or more sequence numbers in said
4	frame	, wherein each of said two or more sequence numbers is associated with a
5	destin	ation node; and
6		programming operable for transmitting said frame to two or more destination
7	nodes	
1	16.	The computer program product as recited in claim 15 further comprises:
2		programming operable for inserting one or more bits in a frame header of said
3	frame	to select appropriate ports in a switch fabric to transmit said frame.
1	17.	The computer program product as recited in claim 16 further comprises:
2		programming operable for setting a bit in said frame header of said frame to
3	indica	te an explicit or an implicit acknowledgment.
1	18.	The computer program product as recited in claim 15 further comprises:
2		programming operable for saving a copy of said transmitted frame.
1	19.	The computer program product as recited in claim 15 further comprises:
2		programming operable for receiving an acknowledgment from a particular
3	destin	ation node of said two or more destination nodes.
1	20.	The computer program product as recited in claim 19 further comprises:
2		programming operable for identifying said particular destination node;
3		programming operable for identifying a frame associated with said
4	ackno	wledgment;
5		programming operable for reading a data structure associated with said

particular destination node; and

9

RAL920010024US1 PATENT

7	programming operable for determining if a sequence number associated with
8	said acknowledgment is greater than an expected sequence number.
1	21. The computer program product as recited in claim 20, wherein if said
2	sequence number associated with said acknowledgment is greater than said expected
3	sequence number then the computer program product further comprises:
4	programming operable for detecting a lost acknowledgment.
1	22. The computer program product as recited in claim 19 further comprises:
2	programming operable for identifying a frame associated with said
3	acknowledgment;
4	programming operable for reading a data structure associated with said
5	particular destination node;
6	programming operable for indicating in an entry in said data structure
7	associated with said particular destination node that a frame associated with said
8	acknowledgment from said particular destination node has been received; and
9	programming operable for identifying a previous entry associated with a
10	frame transmitted with an implicit acknowledgment in said data structure associated
11	with said particular destination node as having been received.
1	23. The computer program product as recited in claim 19 further comprises:
2	programming operable for identifying said particular destination node;
3	programming operable for identifying a frame associated with said
4	acknowledgment;
5	programming operable for reading a data structure associated with said frame
6	associated with said acknowledgment; and
7	programming operable for indicating in an entry in said data structure
8	associated with said particular destination node that a frame associated with said

acknowledgment from said particular destination node has been received.

2

28.

multicast frame.

1	24.	The computer program product as recited in claim 23 further comprises:
2		programming operable for determining if there are outstanding responses for
3	said fr	ame associated with said acknowledgment.
1	25.	The computer program product as recited in claim 24, wherein if there are
2	outstar	nding responses for said frame associated with said acknowledgment then the
3	compu	ter program product further comprises:
4		programming operable for waiting to receive an additional acknowledgment.
1	26.	The computer program product as recited in claim 24, wherein if there are no
2	outsta	nding responses for said frame then the computer program product further
3	compr	ises:
4		programming operable for releasing memory associated with said frame
5	associ	ated with said acknowledgment.
1	27.	The computer program product as recited in claim 15 further comprises:
2		programming operable for receiving a request to retransmit said frame from a
3	particu	ular destination node of said two or more destination nodes; and
4		programming operable for retransmitting said frame to said particular
5	destina	ation node of said two or more destination nodes.

The computer program product as recited in claim 15, wherein said frame is a

29. A node, comprising:

1

2		a processor; and
3		a memory unit coupled to said processor, wherein said memory unit is
4	operab	ole for storing a computer program operable for reliably transmitting a frame,
5	where	in the computer program is operable for performing the following programming
6	steps:	
7		inserting two or more sequence numbers in said frame, wherein each
8	of said	two or more sequence numbers is associated with a destination node; and
9		transmitting said frame to two or more destination nodes.
1	30.	The node as recited in claim 29, wherein the computer program is further
2	operab	ole for performing the following programming step:
3		inserting one or more bits in a frame header of said frame to select appropriate
4	ports i	n a switch fabric to transmit said frame.
1	31.	The node as recited in claim 30, wherein the computer program is further
2	operat	ole for performing the following programming step:
3		setting a bit in said frame header of said frame to indicate an explicit or ar
4	implic	it acknowledgment.
1	32.	The node as recited in claim 29, wherein the computer program is further
2	operat	ole for performing the following programming step:
3		saving a copy of said transmitted frame.
1	33.	The node as recited in claim 29, wherein the computer program is further
2	operal	ole for performing the following programming step:
3		receiving an acknowledgment from a particular destination node of said two
4	or mo	re destination nodes.

1	34. T	he node as recited in claim 33, wherein the computer program is further
2	operable	for performing the following programming steps:
3	ic	lentifying said particular destination node;
4	ic	lentifying a frame associated with said acknowledgment;
5	re	eading a data structure associated with said particular destination node; and
6	d	etermining if a sequence number associated with said acknowledgment is
7	greater th	nan an expected sequence number.
1	35. T	he node as recited in claim 34, wherein if said sequence number associated
2	with said	acknowledgment is greater than said expected sequence number then the
3	compute	r program is further operable for performing the following programming
4	step:	
5	d	etecting a lost acknowledgment.
1	36. T	he node as recited in claim 33, wherein the computer program is further
2	operable	for performing the following programming steps:
3	ic	lentifying said particular destination node;
4	ic	lentifying a frame associated with said acknowledgment;
5	re	eading a data structure associated with said particular destination node;
6	ir	ndicating in an entry in said data structure associated with said particular
7	destination	on node that a frame associated with said acknowledgment from said
8	particula	r destination node has been received; and
9	ic	lentifying a previous entry associated with a frame transmitted with an
10	implicit	acknowledgment in said data structure associated with said particular
11	destination	on node as having been received.
1	37. T	The node as recited in claim 33, wherein the computer program is further
2	operable	for performing the following programming steps:

identifying said particular destination node;

42.

4	identifying a frame associated with said acknowledgment;
5	reading a data structure associated with said frame associated with said
6	acknowledgment; and
7	indicating in an entry in said data structure associated with said particular
8	destination node that a frame associated with said acknowledgment from said
9	particular destination node has been received.
1	38. The node as recited in claim 37, wherein the computer program is further
2	operable for performing the following programming step:
3	determining if there are outstanding responses for said frame associated with
4	said acknowledgment.
1	39. The node as recited in claim 38, wherein if there are outstanding responses for
2	said frame associated with said acknowledgment then the computer program is
3	further operable for performing the following programming step:
4	waiting to receive an additional acknowledgment.
1	40. The node as recited in claim 38, wherein if there are no outstanding responses
2	for said frame then the computer program is further operable for performing the
3	following programming step:
4	releasing memory associated with said frame associated with said
5	acknowledgment.
1	41. The node as recited in claim 29, wherein the computer program is further
2	operable for performing the following programming steps:
3	receiving a request to retransmit said frame from a particular destination node
4	of said two or more destination nodes; and
5	retransmitting said frame to said particular destination node of said two or
6	more destination nodes.

The node as recited in claim 29, wherein said frame is a multicast frame.

or an implicit acknowledgment.

1	43.	A system, comprising:
2		a transmitting node configured to transmit one or more frames of data;
3		a switch fabric coupled to said transmitting node configured to direct said
4	trans	mitted one or more frames of data;
5		a plurality of destination nodes coupled to said switch fabric, wherein each of
6	said 1	plurality of destination nodes is configured to receive one or more of said one or
7	more	frames of data; and
8		wherein said transmitting node comprises:
9		a processor; and
10		a memory unit coupled to said processor, wherein said memory unit is
11	opera	able for storing a computer program operable for reliably transmitting one or
12	more	frames of data, wherein the computer program is operable for performing the
13	follo	wing programming steps:
14		inserting two or more sequence numbers in a frame of data,
15	where	ein each of said two or more sequence numbers is associated with one of said
16	plura	lity of destination nodes; and
17		transmitting said frame of data to two or more of said plurality
18	of de	stination nodes.
1	44.	The system as recited in claim 43, wherein the computer program is further
2		ble for performing the following programming step:
3	орога	
		inserting one or more bits in a frame header of said frame of data to select
4	appro	priate ports in said switch fabric to transmit said frame of data.
1	45.	The system as recited in claim 44, wherein the computer program is further
2	opera	ble for performing the following programming step:
3		setting a bit in said frame header of said frame of data to indicate an explicit

46.

RAL920010024US1 PATENT

The system as recited in claim 43, wherein the computer program is further

2	opera	able for performing the following programming step:
3		saving a copy of said transmitted frame of data.
1	47.	The system as recited in claim 43, wherein the computer program is further
2	opera	able for performing the following programming step:
3		receiving an acknowledgment from a particular destination node of said two
4	or me	ore destination nodes.
1	48.	The system as recited in claim 47, wherein the computer program is further
2	opera	able for performing the following programming steps:
3		identifying said particular destination node;
4		identifying a frame of data associated with said acknowledgment;
5		reading a data structure associated with said particular destination node; and
6		determining if a sequence number associated with said acknowledgment is
7	great	er than an expected sequence number.
1	49.	The system as recited in claim 48, wherein if said sequence number associated
2	with	said acknowledgment is greater than said expected sequence number then the
3	comp	outer program is further operable for performing the following programming
4	step:	
5		detecting a lost acknowledgment.
1	50.	The system as recited in claim 47, wherein the computer program is further
2	opera	able for performing the following programming steps:
3		identifying said particular destination node;
4		identifying a frame associated with said acknowledgment;
5		reading a data structure associated with said particular destination node;

RAL920010024US1 PATENT

	6	indicating in an entry in said data structure associated with said particular
	7	destination node that a frame associated with said acknowledgment from said
	8	particular destination node has been received; and
	9	identifying a previous entry associated with a frame transmitted with an
	10	implicit acknowledgment in said data structure associated with said particular
	11	destination node as having been received.
	1	51. The system as recited in claim 47, wherein the computer program is further
	2	operable for performing the following programming steps:
:	3	identifying said particular destination node;
	4	identifying a frame of data associated with said acknowledgment;
	5	reading a data structure associated with said frame of data associated with said
	6	acknowledgment; and
	7	indicating in an entry in said data structure associated with said particular
	8	destination node that a frame associated with said acknowledgment from said
	9	particular destination node has been received.
	1	52. The system as recited in claim 51, wherein the computer program is further
	2	operable for performing the following programming step:
	3	determining if there are outstanding responses for said frame of data
	.4	associated with said acknowledgment.
	1	53. The system as recited in claim 52, wherein if there are outstanding responses
	2	for said frame associated with said acknowledgment then the computer program is
	3	further operable for performing the following programming step:

waiting to receive an additional acknowledgment.

54.	The	e sy	stem	as rec	ited ir	ı cla	im 52,	wh	erein	if	there	are	no	outstand	ling
respon	ises	for	said	frame	then	the	compu	ıter	progr	ram	is	furth	er	operable	for
perfor	performing the following programming step:														

releasing memory associated with said frame of data associated with said acknowledgment.