PROBLEM - SET 0

Problem 1. Consider the random experiment of rolling two balanced dice with six faces and sum the two numbers that appears.

- (a) Describe the probability space for this random experiment.
- (b) Compute the probability to obtain an even number.

Problem 2. Instead of rolling two dice, assume now that we extract at random two balls without replacement from a box that contains six balls numbered from 1 to 6.

- (a) Describe the probability space for this random experiment.
- (b) Compute the probability to obtain two balls with consecutive numbers.

Problem 3. Let $\Omega = \mathbb{R}$ and define the following subset of 2^{Ω}

$$\mathscr{A} = \{A \subset \mathbb{R} : A \text{ is countable}\} \cup \{A \subset \mathbb{R} : A^c \text{ is countable}\}$$

- (a) Prove that \mathscr{A} is a σ -field (it is called the countable/co-countable σ -field)
- (b) Prove that $A = (-\infty, 0]$ does not belong to \mathscr{A} .

Problem 4. Let $\Omega = \mathbb{N}$ and define

$$\mathscr{A} = \{A \subset \mathbb{N} : A \text{ or } A^c \text{ is finite}\}$$

Show that \mathscr{A} is a field, but not a σ -field.

Problem 5. (a) Prove that the intersections of σ -fields is a σ -field.

(b) Given $\Omega = \{1, 2, 3, 4, 5, 6\}$, define the minimal σ -field containing the sets $\{1\}$ and $\{2, 4\}$.

Recall that given a collection of subsets $\mathscr C$ of Ω , the σ -field generated by $\mathscr C$, denoted $\sigma(\mathscr C)$, is the σ -field satisfying:

- (i) $\sigma(\mathscr{C}) \supset \mathscr{C}$
- (ii) If \mathscr{B} is a σ -field containing \mathscr{C} , then $\mathscr{B} \supset \sigma(\mathscr{C})$.