CSE 15 Discrete Mathematics

Lecture 15 – Number Theory & Cryptography

Announcement

- HW #7
 - Due 5pm 11/7 (Wed) with 1 extra day of re-submission.
- Reading assignment
 - ∘ Ch. 5.1 5.4 of textbook

Divisibility and Modular Arithmetic (Ch. 4.1)

- Division
- Division Algorithm
- Modular Arithmetic

Division

Definition: If a and b are integers with $a \ne 0$, then $a \ne 0$ if there exists an integer c such that b = ac.

- When a divides b we say that a is a factor or divisor of b and that b is a multiple of a.
- The notation a | b denotes that a divides b.
- If $a \mid b$, then b/a is an integer.
- If a does not divide b, we write $a \nmid b$.

Example: Determine whether 3 | 7 and whether 3 | 12.

Properties of Divisibility

Theorem 1: Let a, b, and c be integers, where $a \neq 0$.

- i. If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$;
- ii. If $a \mid b$, then $a \mid bc$ for all integers c;
- iii. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof: (i) Suppose $a \mid b$ and $a \mid c$, then it follows that there are integers s and t with b = as and c = at. Hence,

$$b + c = as + at = a(s + t)$$
. Hence, $a \mid (b + c)$.

Corollary: Let a, b, and c be integers, where $a \neq 0$, such that $a \mid b$ and $a \mid c$, then $a \mid mb + nc$ whenever m and n are integers.

Division Algorithm

When an integer is divided by a positive integer, there is a quotient and a remainder. This is traditionally called the "Division Algorithm," but is really a theorem.

Division Algorithm: If a is an integer and d a positive integer then there are unique integers q and r, with $0 \le r < d$, such that a = dq + r (proved in Section 5.2).

- *d* is called the *divisor*.
- a is called the dividend.
- q is called the quotient.
- r is called the remainder.

Definitions of Functions div and mod

$$q = a \operatorname{div} d$$

$$r = a \mod d$$

Examples:

- What are the quotient and remainder when 101 is divided by 11?

 Solution: The quotient when 101 is divided by 11 is 9 = 101 div 11, and the remainder is 2 = 101 mod 11.
- What are the quotient and remainder when -11 is divided by 3?

 Solution: The quotient when -11 is divided by 3 is -4 = -11 div 3, and the remainder is 1 = -11 mod 3.

Congruence Relation

Definition: If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides a - b.

- The notation $a \equiv b \pmod{m}$ says that a is congruent to b modulo m.
- We say that $a \equiv b \pmod{m}$ is a *congruence* and that m is its modulus.
- Two integers are congruent mod m if and only if they have the same remainder when divided by m.
- If a is not congruent to b modulo m, we write $a \not\equiv b \pmod{m}$.

Example: Determine whether 17 is congruent to 5 modulo 6 and whether 24 and 14 are congruent modulo 6.

Solution:

- $17 \equiv 5 \pmod{6}$ because 6 divides 17 5 = 12.
- $24 \not\equiv 14 \pmod{6}$ since 6 divides 24 14 = 10 is not divisible by 6.

More on Congruences

Theorem 4: Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that a = b + km.

Proof:

- If a ≡ b (mod m), then (by the definition of congruence) m | a b.
 Hence, there is an integer k such that a b = km and equivalently a = b + km.
- Conversely, if there is an integer k such that a = b + km, then km = a b.

Hence, $m \mid a - b$ and $a \equiv b \pmod{m}$.

The Relationship between (mod *m*) and mod *m* Notations

- The use of "mod" in $a \equiv b \pmod{m}$ and $a \mod m = b$ are different.
 - $\circ a \equiv b \pmod{m}$ is a relation on the set of integers.
 - In $a \mod m = b$, the notation \mod denotes a function.
- The relationship between these notations is made clear in this theorem.
- ▶ **Theorem 3**: Let a and b be integers, and let m be a positive integer. Then $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Congruences of Sums and Products

Theorem 5: Let m be a positive integer.

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Proof:

- Because $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, by Theorem 4 there are integers s and t with b = a + sm and d = c + tm.
- Therefore,
 - b + d = (a + sm) + (c + tm) = (a + c) + m(s + t) and
 - bd = (a + sm)(c + tm) = ac + m(at + cs + stm).
- Hence, $a + c \equiv b + d$ (mod m) and $ac \equiv bd$ (mod m).

Congruences of Sums and Products

Example: Because $7 \equiv 2 \pmod{5}$ and $11 \equiv 1 \pmod{5}$, it follows from Theorem 5 that:

$$18 = 7 + 11 \equiv 2 + 1 = 3 \pmod{5}$$

$$77 = 7 \cdot 11 \equiv 2 \cdot 1 = 2 \pmod{5}$$

Algebraic Manipulation of Congruences

Multiplying both sides of a valid congruence by an integer preserves validity.

If $a \equiv b \pmod{m}$ holds then $c \cdot a \equiv c \cdot b \pmod{m}$, where c is any integer, holds by Theorem 5 with d = c.

Adding an integer to both sides of a valid congruence preserves validity.

If $a \equiv b \pmod{m}$ holds then $c + a \equiv c + b \pmod{m}$, where c is any integer, holds by Theorem 5 with d = c.

Dividing a congruence by an integer does not always produce a valid congruence.

Example: The congruence $14 \equiv 8 \pmod{6}$ holds. But dividing both sides by 2 does not produce a valid congruence since 14/2 = 7 and 8/2 = 4, but $7 \not\equiv 4 \pmod{6}$.

See Section 4.3 for conditions when division is ok.

Computing the mod *m* Function of Products and Sums

We use the following corollary to Theorem 5 to compute the remainder of the product or sum of two integers when divided by m from the remainders when each is divided by m.

Corollary: Let m be a positive integer and let a and b be integers. Then

 $(a + b) \pmod{m} = ((a \mod m) + (b \mod m)) \mod m$ and

 $ab \mod m = ((a \mod m) (b \mod m)) \mod m$.

(proof in text)

Arithmetic Modulo m

Definitions: Let \mathbb{Z}_m be the set of nonnegative integers less than m: $\{0,1,...,m-1\}$

- The operation $+_m$ is defined as $a +_m b = (a + b) \mod m$. This is addition modulo m.
- The operation \cdot_m is defined as $a \cdot_m b = (a \cdot b) \mod m$. This is multiplication modulo m.
- Using these operations is said to be doing arithmetic modulo m.

Example: Find $7 +_{11} 9$ and $7 \cdot_{11} 9$.

Solution: Using the definitions above:

- $^{\circ} 7 +_{11} 9 = (7+9) \mod 11 = 16 \mod 11 = 5$
- \circ 7 \cdot_{11} 9 = (7 \cdot 9) mod 11 = 63 mod 11 = 8

Arithmetic Modulo m

- ▶ The operations $+_m$ and $+_m$ satisfy many of the same properties as ordinary addition and multiplication.
 - Closure: If a and b belong to \mathbf{Z}_m then $a +_m b$ and $a \cdot_m b$ belong to \mathbf{Z}_m .
 - Associativity: If a, b, and c belong to \mathbf{Z}_m then $(a +_m b) +_m c = a +_m (b +_m c)$ and $(a \cdot_m b) \cdot_m c = a \cdot_m (b \cdot_m c)$.
 - Commutativity: If a and b belong to \mathbf{Z}_m then $a +_m b = b +_m a$ and $a \cdot_m b = b \cdot_m a$.
 - Identity elements: The elements 0 and 1 are identity elements for addition and multiplication modulo m, respectively.
 - If a belongs to \mathbf{Z}_m , then $a +_m 0 = a$ and $a \cdot_m 1 = a$.

Arithmetic Modulo m

- Additive inverses: If $a \neq 0$ belongs to \mathbf{Z}_m then m-a is the additive inverse of a modulo m and 0 is its own additive inverse.
 - $a +_m (m a) = 0$ and $0 +_m 0 = 0$
- Distributivity: If a, b, and c belong to \mathbf{Z}_m then
 - $a \cdot_m (b +_m c) = (a \cdot_m b) +_m (a \cdot_m c)$ and $(a +_m b) \cdot_m c = (a \cdot_m c) +_m (b \cdot_m c)$.
- Exercises 42-44 ask for proofs of these properties.
- Multiplicative inverses have not been included since they do not always exist. For example, there is no multiplicative inverse of 2 modulo 6.

Integer Representations and Algorithms (Ch. 4.2)

- Integer Representations
 - Base b Expansions
 - Binary Expansions
 - Octal Expansions
 - Hexadecimal Expansions
- Base Conversion Algorithm
- Algorithms for Integer Operations

Representations of Integers

- In the modern world, we use *decimal*, or *base* 10, *notation* to represent integers. For example when we write 965, we mean $9.10^2 + 6.10^1 + 5.10^0$.
- We can represent numbers using any base b, where b is a positive integer greater than 1.
- The bases b = 2 (binary), b = 8 (octal), and b= 16 (hexadecimal) are important for computing and communications
- ▶ The ancient Mayans used base 20 and the ancient Babylonians used base 60.

Base b Representations

We can use positive integer b greater than 1 as a base, because of this theorem:

Theorem 1: Let b be a positive integer greater than 1. Then if n is a positive integer, it can be expressed uniquely in the form:

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0$$

where k is a nonnegative integer, a_0, a_1, \ldots, a_k are nonnegative integers less than b, and $a_k \ne 0$. The a_j , $j = 0, \ldots, k$ are called the base-b digits of the representation.

The representation of n given in Theorem 1 is called the base b expansion of n and is denoted by $(a_k a_{k-1} a_1 a_0)_b$.

Binary Expansions

Most computers represent integers and do arithmetic with binary (base 2) expansions of integers. In these expansions, the only digits used are 0 and 1.

Example: What is the decimal expansion of the integer that has $(1\ 0101\ 1111)_2$ as its binary expansion?

Solution:

$$(1\ 0101\ 1111)_2 = 1\cdot2^8 + 0\cdot2^7 + 1\cdot2^6 + 0\cdot2^5 + 1\cdot2^4 + 1\cdot2^3 + 1\cdot2^2 + 1\cdot2^1 + 1\cdot2^0 = 351.$$

Example: What is the decimal expansion of the integer that has $(11011)_2$ as its binary expansion?

Solution: $(11011)_2 = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 27$.

Octal Expansions

The octal expansion (base 8) uses the digits $\{0,1,2,3,4,5,6,7\}$.

Example: What is the decimal expansion of the number with octal expansion $(7016)_8$?

Solution: $7.8^3 + 0.8^2 + 1.8^1 + 6.8^0 = 3598$.

Example: What is the decimal expansion of the

number with octal expansion $(111)_8$?

Solution: $1.8^2 + 1.8^1 + 1.8^0 = 64 + 8 + 1 = 73$.

Hexadecimal Expansions

The hexadecimal expansion needs 16 digits, but our decimal system provides only 10. So letters are used for the additional symbols. The hexadecimal system uses the digits {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}. The letters A through F represent the decimal numbers 10 through 15.

Example: What is the decimal expansion of the number with hexadecimal expansion $(2AE0B)_{16}$?

Solution:

$$2 \cdot 16^4 + 10 \cdot 16^3 + 14 \cdot 16^2 + 0 \cdot 16^1 + 11 \cdot 16^0 = 175627$$

Example: What is the decimal expansion of the number with hexadecimal expansion $(1E5)_{16}$?

Solution: $1 \cdot 16^2 + 14 \cdot 16^1 + 5 \cdot 16^0 = 256 + 224 + 5 = 485$

Base Expansion

To construct the base *b* expansion of an integer *n*:

Divide n by b to obtain a quotient and remainder.

$$n = bq_0 + a_0$$
 $0 \le a_0 \le b$

• The remainder, a_0 , is the rightmost digit in the base b expansion of n. Next, divide q_0 by b.

$$q_0 = bq_1 + a_1 \quad 0 \le a_1 \le b$$

- The remainder, a_1 , is the second digit from the right in the base b expansion of n.
- Continue by successively dividing the quotients by b, obtaining the additional base b digits as the remainder. The process terminates when the quotient is 0.

Algorithm: Constructing Base b Expansions

```
procedure base b expansion(n, b: positive integers with b > 1)

q := n

k := 0

while (q \neq 0)

a_k := q \mod b

q := q \operatorname{div} b

k := k + 1

return(a_{k-1}, ..., a_1, a_0){(a_{k-1} ... a_1 a_0)_b is base b expansion of n}
```

- q represents the quotient obtained by successive divisions by b, starting with q = n.
- The digits in the base b expansion are the remainders of the division given by q mod b.
- ▶ The algorithm terminates when q = 0 is reached.

Base Expansion

Example: Find the octal expansion of $(12345)_{10}$

Solution: Successively dividing by 8 gives:

$$\circ$$
 12345 = 8 · 1543 + 1

$$\circ$$
 1543 = 8 · 192 + 7

$$\circ$$
 192 = 8 · 24 + 0

$$\circ$$
 24 = 8 · 3 + 0

$$\circ$$
 3 = 8 · 0 + 3

The remainders are the digits from right to left yielding $(30071)_8$.

Comparison of Hexadecimal, Octal, and Binary Representations

TABLE 1 Hexadecimal, Octal, and Binary Representation of the Integers 0 through 15.																
Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17
Binary	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111

Initial 0s are not shown

Each octal digit corresponds to a block of 3 binary digits. Each hexadecimal digit corresponds to a block of 4 binary digits. So, conversion between binary, octal, and hexadecimal is easy.

Conversion Between Binary, Octal, and Hexadecimal Expansions

Example: Find the octal and hexadecimal expansions of $(11\ 1110\ 1011\ 1100)_2$.

Solution:

- To convert to octal, we group the digits into blocks of three $(011\ 111\ 010\ 111\ 100)_2$, adding initial 0s as needed. The blocks from left to right correspond to the digits 3,7,2,7, and 4. Hence, the solution is $(37274)_8$.
- To convert to hexadecimal, we group the digits into blocks of four $(0011\ 1110\ 1011\ 1100)_2$, adding initial 0s as needed. The blocks from left to right correspond to the digits 3,E,B, and C. Hence, the solution is $(3EBC)_{16}$.

Binary Addition of Integers

Algorithms for performing operations with integers using their binary expansions are important as computer chips work with binary numbers. Each digit is called a bit.

```
procedure add(a, b): positive integers) { the binary expansions of a and b are (a_{n-1}, a_{n-2}, ..., a_0)_2 and (b_{n-1}, b_{n-2}, ..., b_0)_2, respectively} c := 0 for j := 0 to n-1  d := \lfloor (a_j + b_j + c)/2 \rfloor   s_j := a_j + b_j + c - 2d   c := d   s_n := c  return(s_0, s_1, ..., s_n){the binary expansion of the sum is (s_n, s_{n-1}, ..., s_0)_2}
```

The number of additions of bits used by the algorithm to add two n-bit integers is O(n).

Binary Multiplication of Integers

Algorithm for computing the product of two n bit integers.

```
procedure multiply(a, b): positive integers)
{the binary expansions of a and b are (a_{n-1}, a_{n-2}, ..., a_0)_2 and (b_{n-1}, b_{n-2}, ..., b_0)_2, respectively}

for j := 0 to n-1

if b_j = 1 then c_j = a shifted j places

else c_j := 0

\{c_o, c_1, ..., c_{n-1} \text{ are the partial products}\}

p := 0

for j := 0 to n-1

p := p + c_j

return p {p is the value of ab}
```

The number of additions of bits used by the algorithm to multiply two n-bit integers is $O(n^2)$.