Problem 4.21. Let $S = \{\langle M \rangle \mid M \text{ is a DFA that accepts } w^R \text{ whenever it accepts } w\}$. Show that S is decidable.

Proof. We present a **TM** I that decides S.

I = "On input $\langle M \rangle$, where M is a DFA:

- 1. Construct an NFA N, such that $L(N) = S^R$ by following the construction given in solution to Problem 1.31¹.
- 2. Convert the NFA N to equivalent DFA D.
- 3. Test L(M) = L(D) using the EQ_{DFA} decider F from Theorem 4.5.
- 4. If F accepts, accept; if F rejects, reject."

Problem 1.31. For any string $w = w_1 w_2 \cdots w_n$, the reverse of w, written w^R , is the string w in reverse order, $w_n \cdots w_1 w_2$. For any language A, let $A^R = \{w^R \mid w \in A\}$. Show that if A is regular, so is A^R .