```
In [74]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn.cluster import KMeans
    from scipy.spatial.distance import cdist
    from scipy.cluster.hierarchy import linkage
    import scipy.cluster.hierarchy as sch
    from sklearn.cluster import AgglomerativeClustering

import warnings
    warnings.filterwarnings('ignore')
```

In [38]: data = pd.read_excel('EastWestAirlines.xlsx',sheet_name='data')
data

Out[38]:

	ID#	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Fli
0	1	28143	0	1	1	1	174	1	
1	2	19244	0	1	1	1	215	2	
2	3	41354	0	1	1	1	4123	4	
3	4	14776	0	1	1	1	500	1	
4	5	97752	0	4	1	1	43300	26	
3994	4017	18476	0	1	1	1	8525	4	
3995	4018	64385	0	1	1	1	981	5	
3996	4019	73597	0	3	1	1	25447	8	
3997	4020	54899	0	1	1	1	500	1	
3998	4021	3016	0	1	1	1	0	0	

3999 rows × 12 columns

In [39]: data.shape

Out[39]: (3999, 12)

```
In [40]: data.isna().sum()
Out[40]: ID#
                               0
         Balance
                               0
         Qual miles
                               0
                               0
         cc1_miles
         cc2_miles
                               0
         cc3_miles
                               0
         Bonus_miles
                               0
         Bonus_trans
                               0
         Flight_miles_12mo
         Flight_trans_12
                               0
         Days_since_enroll
                               0
         Award?
                               0
         dtype: int64
In [41]: data.dtypes
Out[41]: ID#
                               int64
         Balance
                               int64
         Qual_miles
                               int64
         cc1_miles
                               int64
         cc2 miles
                               int64
         cc3_miles
                               int64
         Bonus_miles
                               int64
         Bonus_trans
                               int64
         Flight_miles_12mo
                               int64
         Flight trans 12
                               int64
         Days_since_enroll
                               int64
         Award?
                               int64
         dtype: object
In [31]: def norm_func(i):
             x = (i-i.min())/(i.max()-i.min())
             return(x)
```

```
In [32]: df_norm = norm_func(data.iloc[:,1:])
df_norm
```

Out[32]:

	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_m
0	0.016508	0.0	0.00	0.0	0.0	0.000660	0.011628	
1	0.011288	0.0	0.00	0.0	0.0	0.000815	0.023256	
2	0.024257	0.0	0.00	0.0	0.0	0.015636	0.046512	
3	0.008667	0.0	0.00	0.0	0.0	0.001896	0.011628	
4	0.057338	0.0	0.75	0.0	0.0	0.164211	0.302326	
						•••		
3994	0.010837	0.0	0.00	0.0	0.0	0.032330	0.046512	
3995	0.037766	0.0	0.00	0.0	0.0	0.003720	0.058140	
3996	0.043169	0.0	0.50	0.0	0.0	0.096505	0.093023	
3997	0.032202	0.0	0.00	0.0	0.0	0.001896	0.011628	
3998	0.001769	0.0	0.00	0.0	0.0	0.000000	0.000000	

3999 rows × 11 columns

```
In [33]: X = data.iloc[:,[1,11]].values
```

```
In [34]: wcss = []
for i in range(1,11):
    kmeans = KMeans(n_clusters=i,init = 'k-means++',random_state=0)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)
```

```
In [35]: plt.plot(range(1,11),wcss)
    plt.title('The Elbow Method')
    plt.xlabel('Number of Clusters')
    plt.ylabel('WCSS')
    plt.show()
```



```
In [49]: kmeans=KMeans(n_clusters=4,init='k-means++',random_state=0)
y_kmeans = kmeans.fit_predict(X)
y_kmeans
```

Out[49]: array([0, 0, 0, ..., 0, 0, 0])

```
In [50]: plt.scatter(X[y_kmeans==0,0],X[y_kmeans==0,1],s=100,c='red',label='Cluster1')
    plt.scatter(X[y_kmeans==1,0],X[y_kmeans==1,1],s=100,c='blue',label='Cluster2')
    plt.scatter(X[y_kmeans==2,0],X[y_kmeans==2,1],s=100,c='green',label='Cluster3')
    plt.scatter(X[y_kmeans==3,0],X[y_kmeans==3,1],s=100,c='cyan',label='Cluster4')

plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],s=300,c='ye

plt.title('Clusters of customers')
    plt.xlabel('Annual Income(K$)')
    plt.ylabel('Spending Score(1-100)')
    plt.legend()
    plt.show()
```



```
In [55]: k = list(range(2,15))
k

TWSS = [] # variable for storing total within sum of squares for each kmeans
for i in k:
    kmeans = KMeans(n_clusters = i)
    kmeans.fit(df_norm)
    WSS = [] # variable for storing within sum of squares for each cluster
    for j in range(i):
        WSS.append(sum(cdist(df_norm.iloc[kmeans.labels_==j,:],kmeans.cluster_cer
        TWSS.append(sum(WSS))
```

```
In [57]:
        plt.plot(k,TWSS, 'ro-')
        plt.xlabel("No_of_Clusters")
        plt.ylabel("total_within_SS")
        plt.xticks(k)
        plt.show()
           1600
          1400
         total_within_SS
          1200
          1000
           800
                             No_of_Clusters
In [58]:
        model = KMeans(n_clusters=5)
        model.fit(df_norm)
Out[58]: KMeans(n_clusters=5)
In [59]: model.labels
Out[59]: array([0, 0, 0, ..., 1, 3, 3])
In [60]: |md = pd.Series(model.labels_)
In [61]: data.columns
'Days_since_enroll', 'Award?'],
```

dtype='object')

```
In [62]: X = data[['Balance', 'Qual_miles','cc1_miles','cc2_miles','cc3_miles','Bonus_mile
    clusters = KMeans(4) # 4 clusters!
    clusters.fit( X )
    clusters.cluster_centers_
    clusters.labels_

    data['Crime_clusters'] = clusters.labels_
    data.head()
    data.sort_values(by=['Crime_clusters'],ascending = True)
    X.head()
```

Out[62]:

	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_miles_
0	28143	0	1	1	1	174	1	
1	19244	0	1	1	1	215	2	
2	41354	0	1	1	1	4123	4	
3	14776	0	1	1	1	500	1	
4	97752	0	4	1	1	43300	26	
4								

```
In [69]: c = linkage(df_norm,method='complete',metric='euclidean')
```



```
In [76]: agc= AgglomerativeClustering(n_clusters=4,linkage='complete',affinity = "euclideate")
```

```
In [77]: agc.labels_
Out[77]: array([0, 0, 0, ..., 2, 0, 0], dtype=int64)
In [78]: cluster_labels = pd.Series(agc.labels_)
In [ ]:
```