Transfert de chaleur : convection

Durée: 2h00

Questions de cours:

- 1) What is the difference between a local convection heat transfer coefficient and an average coefficient over a flat plate with a constant temperature? 等壁温平板的局部对流换热系数与平均对流换热系数之间的差异是什么? (建议用方程展示)
- 2) What is the definition of the Prandtl number? How does its value affect relative growth of the velocity and thermal boundary layers for laminar flow over a surface? 普朗特数的定义是什么? 它的值是如何影响平板层流流动时速度边界层与温度边界层的相对增长的?
- 3) How does the local convection heat transfer coefficient vary with distance from the leading edge over a flat plate?
 平板局部对流换热系数是如何随到前缘的距离变化的?
- 4) What is a log mean temperature difference? Why is a log mean temperature difference, rather than an arithmetic mean temperature difference, used to calculte the total rate of heat transfer to or from a fluid flowing through a tube with a constant surface temperature?

什么是对数平均温差?为什么采用对数平均温差而不是算数平均温差来计算等壁温管道内总的换热量?

- 5) What is the definition of the Grashof number and what is its physical interpretation? 格拉晓夫的定义式和物理意义是什么
- 6) What is the critical heat flux on the the boiling curve? 沸腾曲线上的临界热流密度是什么?

Exercice 1:

A flat plate of width 1 m is maintained at a uniform surface temeprature of $T_s = 150^{\circ}\text{C}$ by using independently controlled, heat-generating rectangular modules of thickness a = 10 mm and length b = 50 mm. Each module is insulated from its neighbors, as well as on its back side. Atmospheric air at 25°C flows over the plate at a velocity of 30 m/s. The thermophysical properties of the module are k = 5.2 W/m·K, $c_p = 320$ J/kg·K, and $\rho = 2300$ kg/m³.

Find the required power generation, \dot{q} (W/m³), in a module positioned at a distance 700mm from the leading edge.

一个宽 1m 的平板通过使用独立控制的矩形加热模块将表面温度维持在 $T_s=150^{\circ}$ C,该模块的厚度 a=10 mm,长度 b=50 mm,模块间都是相互绝热的,模块与底部也是绝热的。温度为 25° C 的空气以 30 m/s 的速度流过该平板。模块的物性是 k=5.2 W/m·K, $c_p=320$ J/kg·K, and $\rho=2300$ kg/m³。

试求出在距前缘 700 mm 处的模块所需要产生的热量 \dot{q} (W/m³)。

Exercice 2:

To determine air velocity changes, it is proposed to measure the electric current required to maintain a platinum wire of 0.5 mm diameter at a constant temperature of 77°C in a stream of air at 27°C.

- (1) Assuming Reynolds numbers in the range $40 < \text{Re}_D < 1000$, develop a relationship between the wire current and the velocity of the air that is in cross flow over the wire. Use this result to establish a relation between fractional changes in the current, $\Delta I/I$, and the air velocity, $\Delta V/V$.
- (2) Calculate the current required when the air velocity is 10 m/s and the electrical resistivity of the platinum wire is $17.1 \times 10^{-5} \,\Omega \cdot m$.

为确定空气速度的变化,建议通过测量电流的变化来将 $0.5~\mathrm{mm}$ 的铂丝在 $27^{\circ}\mathrm{C}$ 的空气流中维持在固定温度 $77^{\circ}\mathrm{C}$ 。

- (1) 假设雷诺数的范围为 $40 < Re_D < 1000$,请建立电流和横跨热线的空气速度间的 关系,并用该结果建立电流的相对变化量 $\Delta I/I$ 与相对的空气速度变化量 $\Delta V/V$ 之间的关系。
- (2) 如果空气速度为 10 m/s,并且铂丝的电阻率为 $17.1 \times 10^{-5} \Omega \cdot \text{m}$,试计算需要的电流。

Exercice 3:

A hot fluid passes through a thin-walled tube of 10 mm diameter and 1 m length, and a coolant at $T_{\infty} = 25^{\circ}\text{C}$ is in cross flow over the tube. When the flow rate is $\dot{m} = 18$ kg/h and the inlet temperature is $T_{\text{mi}} = 85^{\circ}\text{C}$, the outlet temperature is $T_{\text{mo}} = 78^{\circ}\text{C}$.

Assuming fully developed flow and thermal conditions in the tube, determine the outlet temperature, $T_{\rm m,o}$, if the flow rate is increased by a factor of 2. That is, $\dot{m}=36$ kg/h, with all other conditions the same. The thermophysical properties of the hot fluid are $\rho=1079$ kg/m³, $c_p=2637$ J/kg·K, $\mu=0.0034$ N·s/m², and k=0.261 W/m·K.

一股热流体穿过一个直径为 10mm,长度为 1m 的薄壁管,一股温度 $T_{\infty}=25$ °C 的冷流体横跨圆管,当热流体的质量流量 $\dot{m}=18$ kg/h,进口温度 $T_{\rm m,o}=85$ °C 时,出口温度 $T_{\rm m,o}=78$ °C。

假设管内的流体为充分发展的流体,如果将质量流量升高 2 倍,即 \dot{m} = 36 kg/h,其他条件不变,试计算出口温度 $T_{\rm m,o}$ 。热流体的热物性为 ρ = 1079 kg/m³, $c_{\rm p}$ = 2637 J/kg·K, μ = 0.0034 N·s/m², and k = 0.261 W/m·K.

Propriétés des fluides et corrélations :

Tem- pera- ture, T°C	Saturation pressure, PkPa	Density, ρ kg/m³		Enthalpy of vapori- zation,	Specific heat, C_{ρ} J/kg·°C		Thermal conductivity, k W/m·°C		Dynamic viscosity, μ kg/m·s		Prandtl number, Pr	
		Liquid	Vapor	h _{lq} kJ/kg	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor	Liquid	Vapor
0.01	0.6113	999.8	0.0048	2501	4217	1854	0.561		1.792 × 10 ⁻³	0.922×10^{-5}	13.5	1.00
5	0.8721	999.9	0.0068	2490	4205	1857	0.571	0.0173	1.519×10^{-3}	0.934×10^{-5}	11.2	1.00
10	1.2276	999.7	0.0094	2478	4194	1862	0.580	0.0176	1.307×10^{-3}	0.946×10^{-5}	9.45	1.00
15	1.7051	999.1	0.0128	2466	4186	1863	0.589	0.0179	1.138×10^{-3}	0.959×10^{-5}	8.09	1.00
20	2.339	998.0	0.0173	2454	4182	1867	0.598	0.0182	1.002×10^{-3}	0.973×10^{-5}	7.01	1.00
25	3.169	997.0	0.0231	2442	4180	1870	0.607	0.0186	0.891×10^{-3}	0.987×10^{-5}	6.14	1.00
30	4.246	996.0	0.0304	2431	4178	1875	0.615		0.798×10^{-3}		5.42	1.00
35	5.628	994.0	0.0397	2419	4178	1880	0.623	0.0192	0.720×10^{-3}	1.016 × 10 ⁻⁵	4.83	1.00
40	7.384	992.1	0.0512	2407	4179	1885	0.631	0.0196	0.653×10^{-3}	1.031×10^{-5}	4.32	1.00
45	9.593	990.1	0.0655	2395	4180	1892	0.637		0.596×10^{-3}		3.91	1.00
50	12.35	988.1	0.0831	2383	4181	1900	0.644		0.547×10^{-3}		3.55	1.00
55	15.76	985.2	0.1045	2371	4183	1908	0.649	0.0208	0.504×10^{-3}	1.077 × 10 ⁻⁵	3.25	1.00
60	19.94	983.3	0.1304	2359	4185	1916	0.654	0.0212	0.467×10^{-3}	1.093×10^{-5}	2.99	1.00
65	25.03	980.4	0.1614	2346	4187	1926	0.659		0.433×10^{-3}		2.75	1.00
70	31.19	977.5	0.1983	2334	4190	1936	0.663	0.0221	0.404×10^{-3}	1.126×10^{-5}	2.55	1.00
75	38.58	974.7	0.2421	2321	4193	1948	0.667	0.0225	0.378×10^{-3}	1.142×10^{-5}	2.38	1.00
80	47.39	971.8	0.2935	2309	4197	1962	0.670	0.0230	0.355×10^{-3}	1.159×10^{-5}	2.22	1.00
85	57.83	968.1	0.3536	2296	4201	1977	0.673	0.0235	0.333×10^{-3}	1.176×10^{-5}	2.08	1.00
90	70.14	965.3	0.4235	2283	4206	1993	0.675		0.315×10^{-3}		1.96	1.00
95	84.55	961.5	0.5045	2270	4212	2010	0.677	0.0246	0.297×10^{-3}	1.210×10^{-5}	1.85	1.00
100	101.33	957.9	0.5978	2257	4217	2029	0.679	0.0251	0.282×10^{-3}	1.227×10^{-5}	1.75	1.00
110	143.27	950.6	0.8263	2230	4229	2071	0.682	0.0262	0.255×10^{-3}	1.261×10^{-5}	1.58	1.00
20	198.53	943.4	1.121	2203	4244	2120	0.683	0.0275	0.232×10^{-3}	1.296×10^{-5}	1.44	1.00
130	270.1	934.6	1.496	2174	4263	2177	0.684	0.0288	0.213×10^{-3}	1.330×10^{-3}	1.33	1.01
140	361.3	921.7	1.965	2145	4286	2244	0.683	0.0301	0.197×10^{-3}	1.365×10^{-5}	1.24	1.02
150	475.8	916.6	2.546	2114	4311	2314	0.682	0.0316	0.183×10^{-3}	1.399×10^{-5}	1.16	1.02
160	617.8	907.4	3.256	2083	4340	2420	0.680	0.0331	0.170×10^{-3}	1.434×10^{-5}	1.09	1.05
170	791.7	897.7	4.119	2050	4370	2490	0.677	0.0347	0.160×10^{-3}	1.468×10^{-5}	1.03	1.05
180	1002.1	887.3	5.153	2015	4410	2590	0.673	0.0364	0.150×10^{-3}	1.502×10^{-5}	0.983	1.07
190	1254.4	876.4	6.388	1979	4460	2710	0.669	0.0382	0.142×10^{-3}	1.537×10^{-5}	0.947	1.09
200	1553.8	864.3	7.852	1941	4500	2840	0.663			1.571×10^{-5}	0.910	1.11
220	2318	840.3	11.60	1859	4610	3110	0.650	0.0442	0.122×10^{-3}	1.641×10^{-5}	0.865	1.15
240	3344	813.7	16.73	1767	4760	3520	0.632	0.0487	0.111×10^{-3}	1.712×10^{-5}	0.836	1.24
260	4688	783.7	23.69	1663	4970	4070	0.609	0.0540	0.102×10^{-3}	1.788×10^{-5}	0.832	1.35
280	6412	750.8	33.15	1544	5280	4835	0.581	0.0605	0.094×10^{-3}	1.870×10^{-5}	0.854	1.49
300	8581	713.8	46.15	1405	5750	5980	0.548			1.965×10^{-5}		1.69
320	11,274	667.1	64.57	1239	6540	7900	0.509	0.0836	0.078×10^{-3}	2.084×10^{-5}	1.00	1.97
340	14,586	610.5	92.62	1028	8240	11870	0.469	0.110	0.070×10^{-3}	2.255×10^{-5}	1.23	2.43
360	18,651	528.3	144.0	720	14,690	25,800	0.427		0.060×10^{-3}	2.571×10^{-5}	2.06	3.73
374.14	22,090	317.0	317.0	0	00	00	00	00	0.043×10^{-3}	4.313×10^{-5}	-	700

Tempera- ture, √ K	Density, ρ kg/m³	Specific heat, C_{ρ} J/kg · °C	Thermal conductivity, k W/m - °C	Thermal diffusivity, α m ² /s	Dynamic viscosity, μ kg/m·s	Kinematic viscosity, v m²/s	Prandtl number, Pr
		The second second	Air				Miles and the second
200	1.766	1003	0.0181	1.02×10^{-5}	1.34×10^{-5}	0.76×10^{-5}	0.740
250	1.413	1003	0.0223	1.57×10^{-5}	1.61×10^{-5}	1.14×10^{-5}	0.724
280	1.271	1004	0.0246	1.95×10^{-5}	1.75×10^{-5}	1.40×10^{-5}	0.717
290	1.224	1005	0.0253	2.08×10^{-5}	1.80×10^{-5}	1.48×10^{-5}	- 0.714
298	1.186	1005	0.0259	2.18×10^{-5}	1.84×10^{-5}	1.55×10^{-5}	0.712
300	1.177	1005	0.0261	2.21×10^{-5}	1.85×10^{-5}	1.57×10^{-5}	0.712
310	1.143	1006	0.0268	2.35×10^{-5}	1.90×10^{-5}	1.67×10^{-5}	0.711
320	1.110	1006	0.0275	2.49×10^{-5}	1.94×10^{-5}	1.77×10^{-5}	0.710
330	1.076	1007	0.0283	2.64×10^{-5}	1.99×10^{-5}	1.86×10^{-5}	0.708
340	1.043	1007	0.0290	2.78×10^{-5}	2.03×10^{-5}	1.96×10^{-5}	0.707
350	1.009	1008	0.0297	2.92×10^{-5}	2.08×10^{-5}	2.06×10^{-5}	0.706
400	0.883	1013	0.0331	3.70×10^{-5}	2.29×10^{-5}	2.60×10^{-5}	0.703
450	0.785	1020	0.0363	4.54×10^{-5}	2.49×10^{-5}	3.18×10^{-5}	0.700
500	0.706	1029	0.0395	5.44×10^{-5}	2.68×10^{-5}	3.80×10^{-5}	0.699
550	0.642	1039	0.0426	6.39×10^{-5}	2.86×10^{-5}	4.45×10^{-5}	0.698
600	0.589	1051	0.0456	7.37×10^{-5}	3.03×10^{-5}	5.15×10^{-5}	0.698
700	0.504	1075	0.0513	9.46×10^{-5}	3.35×10^{-5}	6.64×10^{-5}	0.702
800	0.441	1099	0.0569	11.7×10^{-5}	3.64×10^{-5}	8.25×10^{-5}	0.704
900	0.392	1120	0.0625	14.2×10^{-5}	3.92×10^{-5}	9.99×10^{-5}	0.705
1000	0.353	1141	0.0672	16.7×10^{-5}	4.18×10^{-5}	11.8×10^{-5}	0.709
1200	0.294	1175	0.0759	22.2×10^{-5}	4.65×10^{-5}	15.8×10^{-5}	0.720
1400	0.252	1201	0.0835	27.6×10^{-5}	5.09×10^{-5}	20.2×10^{-5}	0.732
1600	0.221	1240	0.0904	33.0×10^{-5}	5.49×10^{-5}	24.9×10^{-5}	0.753
1800	0.196	1276	0.0970	38.3×10^{-5}	5.87×10^{-5}	29.9×10^{-5}	0.772
2000	0.177	1327	0.1032	44.1 × 10 ⁻⁵	6.23×10^{-5}	35.3×10^{-5}	0.801

Corrélations sur plaque plane à température uniforme:

- Régime laminaire (Re $_x$ critique $\cong 10^6$) : Nu $_x = 0,332~Re_x^{0.5}~Pr^{1/3}$ - Régime turbulent : Nu $_x = 0,029~Re_x^{0.8}~Pr^{1/3}$

Corrélations sur plaque plane à flux uniforme:

- Régime laminaire (Re $_x$ critique $\cong 10^6$) : Nu $_x = 0,453 \text{ Re}_x^{-0.5} \text{ Pr}^{1/3}$ - Régime turbulent : Nu $_x = 0,0308 \text{ Re}_x^{-0.8} \text{ Pr}^{1/3}$

Corrélations en conduite en régime laminaire (Re critique ≅ 2000) en régime établi :

Forme de la section	b/a	Nu qp = cste	Nu Tp = cste
R		4,36	3,66
a b	1	3,63	2,98
a b	1,4	3,78	
Id	2	4,11	3,39
Id	4	5,35	4,44
Id	8	6,6	5,95
Plaques parallèles	∞	8,235	7,54
Plaques parallèles dont 1 est isolée	8	5,38	4,86
a a a		3	2,35

Corrélations en conduite en régime turbulent (Re critique $\cong 2000$) en régime établi:

- Régime turbulent : $Nu = 0.023 \text{ Re}^{-0.8} \text{ Pr}^{n}$

n=0.4 pour un chauffage du fluide n=0.3 pour un refroidissement

Corrélations en conduite en régime non établi (zone d'entrée):

$$\overline{Nu} = \frac{3,66}{th(2,264(L^*)^{1/3} + 1,7(L^*)^{2/3})} + \frac{0,05}{L^*}thL^*$$

$$avec \quad L^* = L/D_h \text{ RePr}$$

:
$$\overline{\text{Nu}} = 0.023 \text{Re}^{0.8} \text{Pr}^{n} (1 + kD_{h} / L)$$

avec $k = 0.067 \text{Re}^{0.25}$

Longueur d'établissement dynamique en conduite (longueur de la zone d'entrée):

- Laminaire $L_d = 0.056 \text{ Re D}$
- Turbulent: $10D < L_d \le 60D$ (en générale: $Ld \approx 20D$)

Longueur d'établissement thermique en conduite (longueur de la zone d'entrée):

- Laminaire $L_t = 0.056 \text{ Re D Pr}$
- Turbulent: $L_t \approx L_d$

Corrélations sur un cylindre:

$$\overline{Nu} = \overline{hD}_{2} = C \operatorname{Re}_{D}^{m} \operatorname{Pr}^{1/3}$$

Re_D	C	m
1-40	0.75	0.4
40-1000	0.51	0.5
1000- 2 105	0.26	0.6
2.10 ⁵ -10 ⁶	0.076	0.7

Corrélations en convection naturelle sur une plaque plane verticale à température uniforme :

$$Nu_x = A(Gr_x^* Pr)^n$$

$$\operatorname{avec} Gr_L == \frac{g\beta \Delta T L^3}{v^2}$$

Couche limite laminaire (Rayleigh critique $\approx 10^9$) A = 0.59 n = 0.25

$$A = 0.59$$
 $n = 0.25$

$$A = 0.1$$
 $n = 1/3$

Corrélations en convection naturelle sur une plaque plane verticale à flux uniforme :

$$Nu_x = 0.6(Gr_x^* \text{ Pr})^{1/5}$$

avec
$$Gr_x^* = Gr_x Nu_x = \frac{g\beta \varphi x^4}{v^2 \lambda}$$