2018 - 2019 学年第一学期期末考试高一年级数学试卷

班级______ 姓名______ 得分_____

, :	选择题 (每题 5 分,共	÷ 60 分)								
1.	与 60° 角终边相同的 (A) $\{\alpha \mid \alpha = k \cdot 360^{\circ}\}$ (B) $\{\alpha \mid \alpha = 2k\pi + 6\}$ (C) $\{\alpha \mid \alpha = 2k \cdot 360\}$ (D) $\{\alpha \mid \alpha = 2k\pi + \frac{7}{5}\}$	$+\frac{\pi}{3}, k \in \mathbb{Z}$. $0^{\circ}, k \in \mathbb{Z}$. $0^{\circ}, k \in \mathbb{Z}$.								
2.	sin 585° 的值为 ((A) $-\frac{\sqrt{2}}{2}$.	$(B) \frac{\sqrt{2}}{2}.$	(C)	$-\frac{\sqrt{3}}{2}$.	(D) $\frac{\sqrt{3}}{2}$.					
3.	函数 $y = 2\tan(\frac{1}{2}x - (A))$ π .	$\frac{\pi}{4}$) 的最小正周期是 ((B) 2π .	(C)) 3π .	(D) 4π .					
4.	已知 $\log_x 16 = 2$, 则 $(A) \pm 4$.	x = () (B) 4.	(C)	256.	(D) 2.					
5.					,则 $(C_u A) \cap (C_u B) = ($) (D) $\{1, 2, 3, 6, 7\}.$					
6.	若函数 $f(x) = 2x + 1$ (A) $4x + 3$.) (C)	$(2x+1)^2.$	(D) $2x^2 + 2$.					
7.	已知 $A(x,2)$, $B=(5,y-2)$, 若 $\overrightarrow{AB}=(6,y-2)$, 君 $\overrightarrow{AB}=(6,y-2)$, 君 $\overrightarrow{AB}=(6,y-2)$, $\overrightarrow{AB}=(6,y-$			(4,6),则 x,y 的值分别是 () (B) $x=1,y=10$. (D) $x=-1,y=-10$.						
8.		$(-5,2)$, $C = (6,y) \equiv$ (B) -13.	三点共 (C)		() (D) -9.					
9.	下列等式一定能成立 $(A) \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{BC}$ $(C) \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{CB}$	<i>5</i> .	()	$\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{BC}$ $\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CE}$						

10. 下列函数中同时满足: ①在 $(0, \frac{\pi}{2})$ 上是增函	函数;② 奇函数;③ 以 π 为最小正周期的函数的是()					
(A) $y = \tan x$. (B) $y = \cos x$.	(C) $y = \sin x$. (D) $y = \sin x $.					
11. 设 🗗 与 🔂 是平面内的一组基底, 则下列四	四组向量中, 不能作为基底的是()					
(A) $\overrightarrow{e_1} + \overrightarrow{e_2} \not \Leftrightarrow \overrightarrow{e_1} - \overrightarrow{e_2}$.	(B) $3\overrightarrow{e_1} - 2\overrightarrow{e_2} \approx 1 - 6\overrightarrow{e_1} + 4\overrightarrow{e_2}$.					
(C) $\overrightarrow{e_1} + 2\overrightarrow{e_2} \approx \overrightarrow{a} \overrightarrow{e_2} + 2\overrightarrow{e_1}$.	(D) $\overrightarrow{e_2}$ \overrightarrow{a} $\overrightarrow{e_1}$ $+ \overrightarrow{e_2}$.					
12. 若函数 $f(x) = 2\sin(\omega x + \varphi)$, $x \in R$ (其中 ω	$>0, arphi <rac{\pi}{2})$ 的最小正周期为 π , 且 $f(0)=\sqrt{3}$ 则 ()				
(A) $\omega = \frac{1}{2}, \varphi = \frac{\pi}{6}$. (B) $\omega = \frac{1}{2}, \varphi = \frac{\pi}{3}$.	(C) $\omega = 2, \varphi = \frac{\pi}{6}$. (D) $\omega = 2, \varphi = \frac{\pi}{3}$.					
☞请把你认为正确的答案填入下面的表格中:						
12. 若函数 $f(x) = 2\sin(\omega x + \varphi)$, $x \in R$ (其中 ω (A) $\omega = \frac{1}{2}$, $\varphi = \frac{\pi}{6}$. (B) $\omega = \frac{1}{2}$, $\varphi = \frac{\pi}{3}$.	$>0, \varphi <rac{\pi}{2})$ 的最小正周期为 π , 且 $f(0)=\sqrt{3}$,则 ())				

1111211 / 0 1 1 / 1111 1111												
题号	1	2	3	4	5	6	7	8	9	10	11	12
答案												

二、填空题 (每题 5 分, 共 20 分)

13. 已知向量 $\overrightarrow{a}=(x-5,3), \overrightarrow{b}=(2,x)$,且 $\overrightarrow{a}\perp\overrightarrow{b}$,则 x 的值为_____.

14. 函数
$$f(x) = \sqrt{2x+3} + \frac{1}{x-1}$$
 的定义域 ______.

15. 已知
$$|\overrightarrow{a}| = 1, |\overrightarrow{b}| = 2, \overrightarrow{a} \perp \overrightarrow{b}, 则 |\overrightarrow{a} + \overrightarrow{b}| = \underline{\hspace{1cm}}$$

16.
$$f(x)$$
 是偶函数, 当 $x < 0$ 时, $f(x) = x(x+1)$, 则 $f(-2) =$ ______.

三、解答题 (请写出必要的文字说明、解题过程等, 共 70 分)

17. (1) 将下列角度与弧度互化.

①
$$\frac{8}{5}\pi$$
; ② 1020° .

(2) 已知角 α 终边经过点 (-5,12), 求它的正弦、余弦、正切值.

18. 已知 $\tan(\pi + \alpha) = 3$, 求下列各式的值.

$$(1) \frac{4\sin\alpha - \cos\alpha}{3\sin\alpha + 5\cos\alpha}$$

(1)
$$\frac{4\sin\alpha - \cos\alpha}{3\sin\alpha + 5\cos\alpha};$$
 (2)
$$\frac{\sin^2\alpha - 2\sin\alpha\cos\alpha - \cos^2\alpha}{4\cos^2\alpha - 3\sin^2\alpha}.$$

- 19. 已知函数 $y = 2\sin(x \frac{\pi}{4})$.
 - (1) 求该函数的单调递增区间;
 - (2) 由 $y = \sin x$ 的图象如何变换得到该函数的图象?

20. 已知
$$\alpha$$
 是第三象限角,且 $f(\alpha) = \frac{\sin(\pi - \alpha)\cos(2\pi - \alpha)\tan(-\alpha + \frac{3\pi}{2})}{\cot(-\alpha - \pi)\sin(-\alpha - \pi)}$.

- (1) 化简 $f(\alpha)$.

- 21. 已知 $f(x) = \frac{ax+b}{1+x^2}$ 是定义在 (-1,1) 上的奇函数, 且 f(1) = 1.
 - (1) 确定函数 f(x) 的解析式; (2) 用定义证明 f(x) 在 (-1,1) 上是增函数.

- 22. 平面内给定三个向量 $\overrightarrow{a} = (3,2), \overrightarrow{b} = (-1,2), \overrightarrow{c} = (4,1).$
 - (1) 求满足 $\overrightarrow{a} = m\overrightarrow{b} + n\overrightarrow{c}$ 的实数 m, n;
 - (2) 若 $(\overrightarrow{a} + k\overrightarrow{c}) \parallel (2\overrightarrow{b} \overrightarrow{a})$, 求实数 k;
 - (3) 设 $\overrightarrow{d} = (x, y)$, 满足 $(\overrightarrow{d} \overrightarrow{c}) \parallel (\overrightarrow{a} + \overrightarrow{b})$ 且 $|\overrightarrow{d} \overrightarrow{c}| = 1$, 求 \overrightarrow{d} .