# EEM076 Lab1

Albin Boklund, Samuel Runmark Thunell  ${\it April~24,~2023}$ 

# 1 Measuring currents

## 1.1 Calculations

Calculate the currents  $I_1$  and  $I_2$  in Figure 1.



 $\label{lem:figure 1.} \textit{The first circuit to analyze. It consists of a DC voltage source and resistors.}$  insert equation here

## 1.2 Circuit design



Figure 1. The first circuit to analyze. It consists of a DC voltage source and resistors. insert maybe description here

## 1.3 Circuit design

Calculate the currents  $I_1$  and  $I_2$  in Figure 1.



Figure 1. The first circuit to analyze. It consists of a DC voltage source and resistors.

insert analasys here

## 2 Mesh analasys

#### 2.1 Calculations

Calculate the currents I1, I2 and, I3.



Figure 4. The circuit to simulate in Task 2 consists of three meshes.

insert equation here

## 2.2 Circuit design

Calculate the currents  $I_1$  and  $I_2$  in Figure 1.



 $\label{lem:figure 1.} \textit{The first circuit to analyze. It consists of a DC voltage source and resistors.}$  insert maybe description here

#### 2.3 Simulation



 $\label{eq:Figure 1.} \textit{The first circuit to analyze. It consists of a DC voltage source and resistors.}$  insert analasys here

## 3 The Superposition Principle

#### 3.1 Calculations

Calculate the voltage  $V_x$  once when V1=0 V and  $I_s$ =2 A, then once when V1=42 V and Is=0 A. Hint: A voltage source will become a short circuit when set to zero while a current source will become an open circuit.



Figure 5. The circuit for Task 3 where the superposition principle is used.

insert equation here

#### 3.2 Circuit design



Figure 1. The first circuit to analyze. It consists of a DC voltage source and resistors. insert maybe description here

#### 3.3 Simulation

Calculate the currents  $I_1$  and  $I_2$  in Figure 1.



Figure 1. The first circuit to analyze. It consists of a DC voltage source and resistors. insert analysis here

## 4 Input and Output impedance

#### 4.1 Calculations

## 4.1 Calculations

Calculate the gain  $F = \frac{V_{out}}{V_{in}}$  given the circuit in *Figure 6*. Furthermore, calculate the Thévenin and Norton equivalent  $(V_{Th}, I_N, R_{Th})$  and draw the equivalent circuits.



Figure 6. Amplifier circuit.

insert equation here

## 4.2 Circuit design

Calculate the currents  $I_1$  and  $I_2$  in Figure 1.



 $\label{lem:figure 1.} \textit{The first circuit to analyze. It consists of a DC voltage source and resistors.}$  insert maybe description here

## 4.3 Simulation



 $\label{eq:Figure 1.} \textit{The first circuit to analyze. It consists of a DC voltage source and resistors.}$  insert analasys here

## 5 Maximal power from a voltage source

#### 5.1 Calculations

Calculate the value of the load resistance  $R_L$  for which the maximum power is delivered to the output,  $V_{Th}=1$  V and  $R_{Th}=50$   $\Omega$ . Hint: Express the output power as a function of  $R_L$  and find its maximum.



Figure 7. A Thevénin equivalent circuit delivering power to a load resistance RL

insert equation here

## 5.2 Circuit design

Calculate the currents I1 and I2 in Figure 1.



Figure 1. The first circuit to analyze. It consists of a DC voltage source and resistors.

insert maybe description here

#### 5.3 Simulation

Calculate the currents I1 and I2 in Figure 1.



 ${\it Figure~1.~The~first~circuit~to~analyze.~It~consists~of~a~DC~voltage~source~and~resistors.}$ 

insert analasys here

## 6 Maximum power from a current source

#### 6.1 Calculations

Calculate the output impedance of the circuit in Figure 8 without any load resistance  $R_L$  (open circuit output) and draw the schematics of the Thevénin equivalent circuit. Specify the numerical values of  $V_{Th}$  and  $R_{Th}$  in your schematics.



Figure 8. A loaded circuit that can be expressed with a Thevénin equivalent circuit and its load.

insert equation here

## 6.2 Circuit design

Calculate the currents  $I_1$  and  $I_2$  in Figure 1.



 $\label{lem:figure 1.} \emph{The first circuit to analyze. It consists of a DC voltage source and resistors.}$  insert maybe description here

## 6.3 Simulation



 $\label{eq:Figure 1.} \textit{The first circuit to analyze. It consists of a DC voltage source and resistors.}$  insert analasys here