Introduction to FIJI - workflows v. 1.9

Federico Gasparoli, Szymon Stoma Simon F. Nørrelykke* October 8, 2024

Contents

1	working with single channel images	3
	1.1 opening the image and basic info	3
	1.2 opening the image and basic drawing	3
	1.3 image inspection	4
	1.4 adjust brightness/contrast of all open images	4
	1.5 copy pasting from image to image	5
	1.6 file handling and non-invasive editing	6
	1.7 file handling and invasive editing	6
	1.8 LUT and calibration bar	7
	1.9 8-bit and 16-bit pseudocolor images	7
	1.10 pseudocolor image to RGB conversion	8
	1.11 color spaces	9
	1.12 line-tool operations	9
	1.13 histogram based intensity transformations	9
		10
		11
	1.15 dailing to bit images to morease precision	' '
2	working with multichannel images	12
		12
		13
		13
		14
3		15
	3.1 basic concept of thresholding	15
	3.2 basic concept of filtering: binary filters	15
	· · · · · · · · · · · · · · · · · · ·	16
		16
		17
	5	

^{*}simon@hms.harvard.edu

	. 19
	. 20
	. 23
	. 25 . 26 . 26
19.6)	. 29 . 29
ondition	31 32 33 33 34 34 35
ma 19 onc	ge calcula

10	workflow: tracking	38
	10.1 create image with moving dots	38
	10.2 tracking: process single image	
	10.3 tracking: process whole stack	
	10.4 tracking: process whole stack - enabling linking of the objects	
11	workflow: FRET	41
	11.1 preparation part 1 - image import	41
	11.2 preparation part 2 - averaging	41
	11.3 preparation part 3 - masks	42
	11.4 preparation part 4 - ratios	
	11.5 analysis - problem: cell population	
	11.6 preparation part 5 - cropping	
	11.7 analysis - problem: chromatin change	
	11.8 analysis - problem: manual labor	
12	workflow: scratch assay	44
	12.1 part 1	44
	12.2 part 2	45
	12.3 part 3	45
13	various useful tools	46
	13.1 installing plugins	46
	13.2 using line selection to make a "straighten" image	
	13.3 using 3D viewer	
	13.4 preparing images for publications	

working with single channel images

1.1 opening the image and basic info

- 1. file > open samples > HeLa (IJ:26.2)
- 2. image > show info (ctrl-i) (IJ:28.3)
- 3. analyze > tools > scale bar (IJ:30.14.6)

1.2 opening the image and basic drawing

- 1. target: "convert" [geometry-source.tif] into [geometry-target.tif]
- 2. file > open : [geometry-source.tif] (IJ:26.2)
- 3. use following tools to convert source into target:
 - (a) [palete > straight line] (IJ:19.12.1)
 - · try shift

- (b) [palete > color picker] (IJ:19.11)
 - · e.g. choose black as foreground
 - try Draw (d) (IJ:27.9-10)
- (c) [palete > flood fill tool] (IJ:19.16)
 - · use again: color or picker to choose right color for filling
- (d) [palete > wand tracking tool] (IJ:19.7)
 - · use to select shapes
 - apply Copy (ctrl-c), Paste (ctrl-v), Cut (ctrl-x)
 - alternatively select, move selection, choose color and try Fill (f), Draw (d), Clear tools (IJ:27.2 IJ:27.9-10)
- (e) [palete > rectangular selection] (IJ:19.1)
 - i. select a rectangular shape around blue rectangle
 - ii. apply Copy (ctrl-c), Paste (ctrl-v)

1.3 image inspection

- 1. open the "single channel.tif" image (drag & drop, or File > Open)
- 2. Image > Duplicate (IJ:28.9)
 - · shortcut: D (shift-d)
- 3. Analyze > Histogram (IJ:30.10)
 - · Shortcut: h
- 4. click "live"
- 5. Image > Adjust > Brightness/Contrast
 - (a) play with sliders and Auto and Set and Reset
 - (b) observe histogram window-what is changing, what is not?
 - (c) click Apply
 - (d) what changed?

1.4 adjust brightness/contrast of all open images

- 1. open three single-channel images, in folder "for_exercise_1.4" (drag & drop, or File > Open)
- 2. for all images: Analyze > Histogram (IJ:30.10) (Shortcut: h)
 - · click "live"
- for one image: Image > Adjust > Brightness/Contrast

- 4. adjust contrast with sliders or Auto
- 5. click Set
- 6. check "Propagate to all other open images"-box
- 7. click OK
- 8. what happened to the histograms?
- 9. what happened to the images?
- 10. did pixel values change?
- 11. pick another image and repeat steps 4-7
- 12. what happened, what is different, is it better/worse?

1.5 copy pasting from image to image

- 1. target: create a figure illustrating the difference in C. elegans phenotype (see elegance-fig.tif) based on elegans.tif example
- 2. file > new > image (IJ:26.1)
 - Type: 8bit
 - · Slices: 1
 - · Fill with: black
- 3. file > save as > tif: my-elegance-fig.tif (IJ:26.10.1)
- 4. [palete > color picker] (IJ:19.11)
 - · choose white as foreground and black as background
- 5. file > open : [elegance.tif] (IJ:26.2)
- 6. find two different phenotypes of a worm; for each worm
 - select worm with [palete > rectangular selection] (IJ:19.1)
 - edit > selection > add to manager (ctrl-t) (IJ:27.12.22)
 - analyze > tools > ROI manager
- 7. prepare the template as in elegance example (see elegance-fig.tif)
 - [palete > straight line] (ctrl-click to select straight mode) (IJ:19.2)
 - use line selection to create two horizontal lines (use shift while drawing)
 - create line; Draw (d); move line down; Draw (d); add to selection for future

- [palete > text tool] (IJ:19.8)
 - add text for "GFP" and "Brightfield"
 - confirm with ctrl-d (or edit > draw)
- use ROI manager to put ROIs into right places (analogous to elegancefig.tif); for each ROI from original image:
 - paste ROI into new image
 - move it to desired location
 - add it to the ROI manager
- 8. copy paste selected worms to the new images (two channel per worm)
 - use ROI to find a worm position
 - · choose channel: GFP or Brightfield
 - · copy selection
 - · choose my-elegance-fig.tif window
 - use ROI to select desired paste location
 - paste
 - · repeat procedure for all four images
- 9. file > save (IJ:26.10.1)

1.6 file handling and non-invasive editing

- 1. file > open samples > blobs (shift-b) (IJ:26.4)
- 2. analyze > tools > scale bar (IJ:30.14.6)
 - · set color, background, position
 - · check: overlay, bold
- 3. file > save as > tiff : blobs1.tif (IJ:26.10.1)
 - · saving the image as tiff keeps the scale bar as an overlay, so pixelvalues below it are kept

1.7 file handling and invasive editing

- 1. file > open : [blobs1.tif] (IJ:26.2)
 - · from the previous exercise
- 2. image > info (i) (IJ:28.3)
- 3. image > overlay > remove overlay (IJ:28.14.7)
- 4. analyze > set scale (IJ:30.8)

- set scale such as image is 100 um long in each dimension
- 5. analyze > tools > scale bar (IJ:30.14.6)
 - · set color, background, position
 - · check: NO overlay
- 6. file > save as > tiff : blobs2.tif (IJ:26.10.1)
 - load again to check the difference (e.g. check info)

1.8 LUT and calibration bar

- 1. target: verrify that images "looking" alike might be different
- 2. file > open samples > blobs (shift-b) (IJ:26.4)
- 3. inspect pixel values (IJ:p.28:Toolbar)
- 4. image > lookup table > invert LUT (IJ:28.15.1)
- 5. change color lookup table
 - Image > Look up table > Fire
- 6. analyze > tools > calibration bar (IJ:30.14.7)
- 7. file > open > [blobs16bit.tif] (IJ:26.2)
- 8. change color lookup table
 - Image > Look up table > Fire
- 9. analyze > tools > calibration bar (IJ:30.14.7)

1.9 8-bit and 16-bit pseudocolor images

- 1. file > open samples > blobs (shift-b) (IJ:26.4)
- 2. inspect pixel values (IJ:p.28:Toolbar)
- 3. image > lookup table > invert LUT (IJ:28.15.1)
- 4. analyze > tools > calibration bar (IJ:30.14.7)
- 5. file > open > [blobs16bit.tif] (IJ:26.2)
- 6. inspect pixel values (IJ:p.28:Toolbar)
 - alternatively use Pixel Inspector (IJ:19.20)
- 7. analyze > tools > calibration bar (IJ:30.14.7)

- 8. file > open samples > blobs (shift-b) (IJ:26.4)
- 9. add arrow in overlay (IJ:19.13)
 - play with the look of the arrow (i.e. colors, thickness)
 - · indicate a blob which you like
 - confirm by ctrl-b (IJ:19.8)
- 10. add arrow in draw (IJ:19.13)
 - confirm by ctrl-d (IJ:19.8)
- 11. mark a part of image with overlay brush (IJ:19.18)
 - play with transparency
 - · cover blobs marked by arrows with red paint

1.10 pseudocolor image to RGB conversion

- 1. file > open samples > blobs (shift-b) (IJ:26.4)
- 2. image > duplicate (IJ:28.9)
- 3. rename images: left and right
 - image > rename (IJ:28.10)
- 4. change color lookup table for left and right
 - Image > Look up table > Fire | green
- 5. duplicate both images (IJ:28.9)
 - name them left-1 and right-1
- 6. image > stack > tools > combine (IJ:28.6.15.1)
 - · select left and right
- 7. select left-1
 - image > type > Color RGB (IJ:7)
 - check with picker what are the values in pixels (IJ:p.28:Toolbar)
- 8. select left-2
 - image > type > Color RGB (IJ:7)
- 9. image > stack > tools > combine (IJ:28.6.15.1)
 - select left-1 and right-1

1.11 color spaces

- 1. file > open : [blob-combined.tif] (IJ:26.2)
- 2. plugins > Color Inspector 3D
- 3. switch "Display mode" to histogram
- 4. play with color: rotation | saturation | brightness
 - · compare RGB space with e.g. LAB

line-tool operations

goal: familiarize you with manual histogram adjustment and some built in rutines making this task easier

- 1. file > open samples > blobs (shift-b) (IJ:26.4)
- 2. image > lookup tables > invert LUT (IJ:28.15.1)
- 3. analyze > histogram (IJ:30.10)
 - · mark live
- 4. select line tool (IJ:19.2) (IJ:p.28:Interface)
- 5. analyze > plot profile (IJ:30.11)
 - mark Live
 - move line
 - · double click on line icon
 - · change line thickness (move line)
- 6. edit > selection > select none
- 7. image > adjust > brightness/contrast (IJ:28.2.1)
 - · play with settings to achieve white blobs and black background (actually you almost thresholded image)
 - apply when finished (note: pixel values are altered)

histogram based intensity transformations

- 1. file > open samples > M51 galaxy (IJ:26.4)
- 2. (2x) image > duplicate (IJ:28.9)
- 3. (3x) analyze > histogram (IJ:30.10)

- · mark live
- · check log button
- 4. on each image
 - process > enhance contrast (IJ:29.5)
 - normalize checked
 - process > enhance contrast (IJ:29.5)
 - equalize checked
 - process > enhance local contrast (CLAHE)
 - http://fiji.sc/wiki/index.php/Enhance_Local_Contrast_ (CLAHE)
 - try different setting (block size ~30, histogram bins ~200, max slope: ~30)
 - what settings brings the result close to the (global) histogram equalization?
 - what happens at small block sizes and large max slopes? why?
- 5. compare the results

histogram adjustments

- 1. target: familiarize with manual histogram adjustment and HiLo LUT
- 2. file > open > [dudes.jpg] (IJ:26.2)
- 3. analyze > histogram (IJ:30.10)
 - mark live
- 4. image > lookup tables > invert LUT (IJ:28.15.1)
- 5. image > adjust > brightness/contrast (IJ:28.2.1)
 - · play with settings to increase contrast in the image (actually you almost thresholded image)
 - apply when finished (note: pixel values are altered; see histogram)
- 6. process > enhance contrast (IJ:29.5)
 - · equalize un-checked
 - · normalize un-checked
- 7. What is happening when saturated pixels is equal to 5%?

1.15 using 16 bit images to increase precision

- 1. file > open samples > M51 galaxy (IJ:26.4)
- 2. image > lookup tables > fire (IJ:28.15)
- 3. image > duplicate (IJ:28.9)
- 4. (2x) analyze > histogram (IJ:30.10)
 - · mark live
 - · check log button
- 5. on first image:
 - image > type > 8 bit
 - process > enhance contrast (IJ:29.5)
 - equalize checked
- 6. on second image:
 - process > enhance contrast (IJ:29.5)
 - equalize checked
- 7. for both img.: image > lookup tables > fire (IJ:28.15)
- 8. select center of the galaxy with [palete > rectangular selection] (IJ:19.1)
- 9. edit > selection > add to manager (ctrl-t) (IJ:27.12.22)
 - analyze > tools > ROI manager
 - · switch window to second image
 - click ROI you just added that it appears in the second image
- 10. analyze > set measurements (IJ:30.7)
 - · check: mean gray value / standard deviation
- 11. for both img.: analyze > measure (m) (IJ:29.12.1)
- 12. for both img.: image > lookup tables > glasbey (IJ:28.15)
- 13. compare the results

working with multichannel images

2.1 create new image

- 1. target: create a sketch of a cell as in [cell.tif]
- 2. file > new > image (IJ:26.1)
 - Type: 8bit
 - · Slices: 2
 - · Fill with: black
- 3. [palete > brush] (IJ:19.4)
 - right click on the [palete > brush]
 - uncheck: "Paint in overlay"
- 4. [palete > color picker] (IJ:19.11)
 - · choose red as foreground
- 5. Draw an outline of a cell;)
- 6. image > color > channel tool (ctrl-z) (IJ:28.5.3)
 - make composite (IJ:28.5.5)
- 7. Switch a slice with a slider
- 8. [palete > color picker] (IJ:19.11)
 - · choose blue as foreground
- 9. Draw cell nuclei
- 10. [palete > brush] (IJ:19.4)
 - right click on the [palete > brush]
 - check: "Paint in overlay"
- 11. [palete > color picker] (IJ:19.11)
 - · choose blue as foreground
- 12. Draw cell vesicles
- 13. Inspect pixel values (IJ:p.28:Toolbar)
 - alternatively use Pixel Inspector (IJ:19.20)
 - · switch a slice with a slider
 - move inspector between: outline | nuclei | vesicles

- 14. image > color > channel tool (ctrl-z) (IJ:28.5.3)
 - switch between composite | color | grey
- 15. file > save as > tif : my-cell.tif (IJ:26.10.1)

2.2 composite images - splitting and merging

- 1. file > open samples > fluorescent cells (IJ:26.4)
- 2. image > color > arrange channels
 - · click on New 1, and select magenta
- 3. image > color > split channels (IJ:28.5.1)
- 4. merge channels to composite
 - image > color > merge channels (IJ:28.5.2)
 - check "create composite" box (IJ:28.5.2)
- 5. LUT
 - change LUT of the channels (LUT in the "startup tools")
- 6. color blindness
 - image > color > simulate color blindness
 - image > color > dichromacy

2.3 composite images - individual channel corrections

goal: create an image with brightfield / red / cyan channels which shows locations with strongest expression of these fluorophores

- 1. file > open samples > neuron (IJ:26.4)
- 2. image > color > channel tool (IJ:28.7.5)
- 3. for each channel
 - adjust contrast such as final image "conveys the message" (IJ:28.2.1)
 - Make sure to select the same channel in the channel tool and with the slider in the image window otherwise you may be surprised that adjusting has no visible effect
- 4. Save as jpg or Image > Type RGB color to remove other channels

2.4 microscopy stacks handling

goal: make a video and a picture for publication showing progression of mitosis in time (see: mitosis-montage.tif)

- 1. open: [mitosis-mixedStack.tif] (IJ:26.2)
- 2. image > hyperstacks > reorder hyperstacks
 - swap z with t (it is to overcome issues with make montages)
- 3. image > stacks > tools > make substack (IJ:28.6.15.7)
 - · choose only one z slice e.g. 3rd one
- 4. image > duplicate (IJ:28.9)
 - · check duplicate hyperstack
- 5. image > color > channels tool (shift-z) (IJ:28.7.5)
 - split channels (IJ:28.5.1)
- 6. for both C1 and C2 images
 - choose LUT Fire (IJ:19.7)
 - create channel label (IJ:19.8)
 - image > type > color RGB (IJ:7)
- 7. for original two channel image
 - image > type > color RGB (IJ:7)
- 8. image > stacks > tools > combine (IJ:28.6.15.1)
 - · choose left: 2 channel image
 - · choose right: C1
- 9. image > stacks > tools > combine (IJ:28.6.15.1)
 - · choose left: merged image
 - · choose right: C2
- 10. image > stacks > series labeler
 - · select time and other options; use preview to peek
- 11. file > save as > avi (IJ:26.10.1)
 - e.g. 10 frames per sec.
- 12. image > stacks > make montage (IJ:28.6.8)

- · play with settings:
 - columns 1
 - rows 5
 - increments 12
- 13. file > save as > tiff (IJ:26.10.1)

image processing: thresholding & filters

basic concept of thresholding 3.1

target: Threshold blob.gif image to create a mask enabling segmentation of blob-like structures (i.e. create an image where the values of all pixels not belonging to blob-like structures are set to 0, and all other pixel values are equal to 255).

- 1. file > open samples > blobs (IJ:26.4)
- 2. image > lookup table > invert LUT (IJ:28.15.1)
- 3. image > duplicate (IJ:28.9)
- 4. image > adjust > threshold (IJ:28.2.4)
 - · set up sliders and Dark background checkbox and threshold the image:
 - · use 126 value as threshold
- 5. note: pixel values are altered
- 6. (optional) image > adjust > auto threshold

3.2 basic concept of filtering: binary filters

goal: see different binary operations in action

- 1. open : [blobs-thr.tif] (IJ:26.2)
- 2. image > duplicate (IJ:28.9)
- 3. process > binary > watershed (IJ:29.8.12)
- 4. process > noise > remove outliers (IJ:29.6.5)
 - check preview
 - list bright
- 5. (process > find maxima) (IJ:29.4)

- 6. (2x) process > binary > erode (IJ:29.8.3)
- 7. process > find edges (IJ:29.3)
- 8. process > binary > fill holes (IJ:29.8.8)

basic concept of filters: sharpen

- 1. file > open samples > hela cells (IJ:26.4)
- 2. process > filters > unsharp mask (IJ:29.11.8)
 - check how it behaves when image is composite / color (use channel tool for this purpose) (IJ:28.7.5)

3.4 edge filters - vertical stripes

- open vertical_stripes.tif
- 2. duplicate the vertical_stripes.tif original image
 - Image > Duplicate (shortcut: shift-d) (IJ:28.9)
- 3. apply horizontal Prewitt filter:
 - Process > Filters > Convolve...
 - as kernel input (Prewitt):

```
-1 -1 -1
0 0 0
1 1 1
```

- · click on OK.
- do you understand the output of this process?
- 4. duplicate the vertical_stripes.tif original image
- 5. apply vertical Prewitt filter:
 - Process > Filters > Convolve...
 - as kernel input (Prewitt):

```
-1 0 1
-1 0 1
-1 0 1
```

- click on OK.
- · do you understand the output of this process?

3.5 edge filters - horizontal stripes

The steps in this exercise are identical to 3.4—only the input image differs

- 1. open horizontal_stripes.tif
- 2. duplicate the horizontal_stripes.tif original image
 - Image > Duplicate (shortcut: shift-d) (IJ:28.9)
- 3. apply horizontal Prewitt filter:
 - Process > Filters > Convolve...
 - as kernel input (Prewitt):

```
-1 -1 -1
0 0 0
1 1 1
```

- · click on OK.
- · do you understand the output of this process?
- 4. duplicate the horizontal_stripes.tif original image
- 5. apply vertical Prewitt filter:
 - Process > Filters > Convolve...
 - as kernel input (Prewitt):

```
-1 0 1
-1 0 1
-1 0 1
```

- click on OK.
- do you understand the output of this process?

3.6 edge filters - checkerboard

The steps in this exercise are identical to 3.4 or 3.5—only the input image differs

- 1. open checkerboard.tif
- 2. duplicate the checkerboard.tif original image
 - Image > Duplicate (shortcut: shift-d) (IJ:28.9)
- 3. apply horizontal Prewitt filter:
 - Process > Filters > Convolve...
 - as kernel input (Prewitt):


```
-1 -1 -1
0 0 0
1 1 1
```

- · click on OK.
- · do you understand the output of this process?
- 4. duplicate the checkerboard.tif original image
- 5. apply vertical Prewitt filter:

```
• Process > Filters > Convolve...
```

• as kernel input (Prewitt):

```
-1 0 1
-1 0 1
-1 0 1
```

- click on OK.
- · do you understand the output of this process?

3.7 basics mathematical operations on single image

- 1. open: [f2.tif] (IJ:26.2)
- 2. process > math > add (IJ:29.9.1)
 - · play with different functions
 - check what happens when image is 32 bit

3.8 beyond the limits of bits

- 1. target: Perform consecutive addition and subtraction of the same value from an image. Compare the results with original image.
- 2. open: [spooked_16bit.tif] (IJ:29.9.1)
- 3. image > duplicate (IJ:28.9)
 - · work on the copy
- 4. process > math > add (IJ:29.9.1)
 - add value: 600
- 5. process > math > subtract (IJ:29.9.2)
 - subtract value: 600
- 6. comapare the original and the copy: are they the same? What has happened?

3.9 basics mathematical operations on two images

- 1. open: [f2.tif] and [f1.tif] (IJ:26.2)
- 2. process > calculator (IJ:29.13)
 - · start with add
 - · check what happens when image is 32 bit
 - · play with different functions

3.10 seeing JPEG artifacts

target: Save the same image in TIFF and JPEG formats. Compare the differences

- 1. file > open : [tulip.tif] (IJ:26.2)
- 2. image > duplicate (IJ:28.9)
 - · work on the copy
- 3. file > save as > jpg (IJ:26.10.3)
 - · tulip.jpg
- 4. [palete > pencil] (IJ:19.19)
 - modify value of only one pixel
- 5. file > save as > jpg (IJ:26.10.3)
 - tulip-1px.jpg
- 6. close all jpeg files and reopen them
- 7. process > calculator (IJ:29.13)
 - image1: tulip.tif
 - · operation: subtract
 - image2: tulip.jpg
 - · checked: create new window
 - · checked: 32 bit result
- 8. process > calculator (IJ:29.13)
 - image1: tulip-1px.jpg
 - · operation: subtract
 - · image2: tulip.jpg
 - · checked: create new window

· checked: 32 bit result

9. questions:

- What are the differences between images tif and jpg images? Why?
- How many pixels are affected by changing only 1 pixel in jpg image? Why?

background elimination

dividing by background image

- 1. target: Estimate the local ratio of increase by dividing the image by background. Check the impact of 32-bit image conversion on the quatlity of the result.
- 2. file > open : [xxx.tif] (IJ:26.2)
- 3. file > open : [xxx_background.tif] (IJ:26.2)
- 4. process > calculator (IJ:29.13)
 - · image1: xxx.tif
 - · operation: subtract
 - image2: xxx_background.tif
 - · checked: create new window
 - · checked: 32 bit result
- 5. process > calculator (IJ:29.13)
 - image1: xxx.tif
 - operation: subtract
 - image2: xxx_background.tif
 - checked: create new window
 - unchecked: 32 bit result
- 6. question: what is the reason of posterization?

4.2 background elimination - flat field correction

- 1. file > open > cell colony (IJ:26.4)
- 2. use selection to draw a horizontal line across the image (IJ:19.2)
- 3. analyze > plot profile

- · check live
- 4. process > subtract background
 - · click: preview
 - · click: create background
 - · vary: rolling ball radius
 - · try: sliding paraboloid

4.3 background elimination - flat field correction using Image calculator

- 1. file > open samples > cell colony (IJ:26.4)
- 2. image > duplicate (IJ:28.9)
- 3. process > filters > gaussian blur % sigma ~= 30 (IJ:29.11.2)
- 4. measure mean of blurred image (select it, "a", "m") (IJ:29.12.1)
- 5. process > calculator plus > divide (i1 = image, i2 = blurred image, k1 = mean, k2 = 0)

manual measurements and working with rois

measuring fluorescence within a selection

- 1. task: measure average flu. in Red channel in neuron
- 2. file > open samples > neuron (IJ:26.4)
- 3. image > color > channel tool (IJ:28.7.5)
 - split channels (IJ:28.5.1)
- 4. close all but green and red
- 5. work on green image
 - image > duplicate (IJ:28.9)
 - process > filters > gaussian blur (IJ:29.11.2)
 - use preview to set parameters
 - image > adjust > threshold (IJ:28.2.4)
 - threshold to create neuron mask (avoid false negatives)
 - use wand tool to select main part of the neuron (IJ:19.7)
 - analyze > tools > roi manager (IJ:30.14.5)

- roi manager > add (t) (IJ:27.12.22)
- 6. choose second copy of green
 - image > adjust > threshold (IJ:28.2.4)
 - threshold to create neuron mask (avoid false negatives)
 - edit > selection > create selection (IJ:27.12.11)
 - roi manager > add (t) (IJ:27.12.22)
 - edit > selection > select none (ctrl-shift-a) (IJ:27.12.2)
 - process > noise > remove outliers (IJ:29.6.5)
 - use preview; remove some of the outliers outside of neuron
 - edit > selection > create selection (IJ:27.12.11)
 - roi manager > add (t) (IJ:27.12.22)
- 7. analyze > set measurements (IJ:30.7)
 - check: area / area fraction / mean gray value
- 8. work on red image
 - choose multi point tool (IJ:19.5)
 - select some points in the neuron
 - edit > selection > enlarge (IJ:27.12.14)
 - roi manager > add (t) (IJ:27.12.22)
- 9. for each selection
 - analyze > measure (m) (IJ:29.12.1)
- 10. roi manager > more > save selection (IJ:30.14.5)

5.2 measuring geometrical properties in the image

- 1. task: measure average flu. in Red channel in neuron
- 2. file > open samples > neuron (IJ:26.4)
- 3. use polygon selection tool to measure cell body area (IJ:19.1.6)
 - use measure to get the read out after creating polygon (IJ:29.12.1)
 - roi manager > add (t) (IJ:27.12.22)
- 4. use segmented line tool (IJ:19.2.2) to measure length of few dendrites
 - test shift and alt while adding points (with mouse over a point)
 - use measure to get the read out after creating a line (IJ:29.12.1)

- roi manager > add (t) (IJ:27.12.22)
- 5. use angle tool (IJ:19.2.2) to measure length of few dendrits
 - use measure to get the read out after creating an angle (IJ:29.12.1)
 - roi manager > add (t) (IJ:27.12.22)
- 6. roi manager > more > save selection (IJ:30.14.5)

automatic measurements

identifying and measuring objects - basics

- 1. open : [blobs-thr.tif] (IJ:26.2)
- 2. image > duplicate (IJ:28.9)
- 3. process > binary > watershed (IJ:29.8.12)
- 4. process > noise > remove outliers (IJ:29.6.5)
 - · check preview
- 5. analyze > set measurements (IJ:30.7)
 - check: area / area fraction / mean gray value
- 6. analyze > analyze particles (IJ:30.2)
 - · test different options

6.2 identifying and measuring objects - cells #1

- 1. target: measure distribution of RFP signal inside nucleus across cell population
- 2. open : [hela1.tif] (IJ:26.2)
- 3. image > adjust > threshold (IJ:28.2.4)
 - · test different option to isolate cells
- 4. question: What are the difficulties?

6.3 identifying and measuring objects - cells #2

- 1. target: measure distribution of RFP signal inside nucleus across cell population
- 2. open: [hela2.tif] (IJ:26.2)
- 3. image > color > split channel (IJ:28.5.1)
- 4. work on blue channel (DAPI)
 - image > adjust > threshold (IJ:28.2.4)
 - process > binary > watershed (IJ:29.8.12)
 - process > noise > remove outliers (IJ:29.6.5)
 - check preview
- 5. analyze > set measurements (IJ:30.7)
 - check: area / area fraction / mean gray value
 - · redirect to: RFP
- 6. analyze > analyze particles (IJ:30.2)
- 7. analyze > distribution (IJ:30.4)
 - · choose: gray value

Segmentation

DAPI segmentation with thresholding

- open DAPI.tif (single-channel image)
- 2. change LUT to Grays
- 3. Image > Adjust > Threshold
- 4. understand the function of the Dark Background checkbox (inspect pixel values)
- 5. try setting sliders manually
- 6. try different algorithms
 - Image > Adjust > Auto Threshold, if you want to see all at the same time
- 7. try different display options (Red, B&W, Over/Under)—do you understand what they show

- 8. when happy with result, click Apply
- 9. save the resulting binary image (File > Save As > Tiff...)
- 10. proceed with Analyze > Analyze Particles etc

7.2 DAPI segmentation with filters and thresholding

- 1. open DAPI_noise.tif
- 2. change LUT to Grays
- 3. Image > Adjust > Threshold
- 4. understand the function of the Dark Background checkbox (inspect pixel values)
- 5. try setting sliders manually. Can you find a good threshold range?
- 6. try different algorithms. Can you find one that gives a good result?
 - Image > Adjust > Auto Threshold, if you want to see all at the same time
- 7. duplicate the DAPI_noise.tif image
 - Image > Duplicate (shortcut: shift-d) (IJ:28.9)
- 8. apply a filter of your choice (Mean, Gaussian Blur, Median, ...)
 - Process > Filters
 - check the Preview checkbox
 - change the Radius / Sigma. What happens to the image?
 - when you are happy, click on OK
- 9. now perform steps 5 and 6 again
- 10. repeat steps 8, 5 and 6 until happy with result, then click Apply
- 11. save the resulting binary image (File > Save As > Tiff...)
- 12. proceed with Analyze > Analyze Particles etc

7.3 DAPI segmentation with Weka

- 1. open hela-1.tif (single-channel image)
- 2. change LUT to Grays
- 3. Plugins > Segmentation > Trainable Weka Segmentation
- 4. draw a line outside a nucleus
- 5. click Add to class 1
- 6. draw a line inside a nucleus
- 7. click Add to class 2
- 8. click Train classifier
- 9. repeat the last four steps until happy with result
- 10. click Get probability
- 11. inspect the probability maps, do you understand the meaning of the values of the pixels in the different channels?
- 12. click Create result
- 13. inspect results, do you understand the meaning of the values of the pixels in the different channels?
 - (a) you now have a binary image, but not the kind Fiji likes
 - (b) to measure, proceed by thresholding ("set" both threshold values to 1), then Analyze Particles, etc
 - (c) alternatively, multiply all values in the Weka output image by 255, then apply Binarize, etc
- 14. save the resulting image (File > Save As > Tiff...) with name "myWekaHeLa1.tif"
- 15. Bonus round: play with Settings

7.4 DAPI double-segmentation with Weka

- 1. open hela-1.tif (single-channel image)
- 2. change LUT to Grays
- 3. Process > Enhance Contrast > Histogram Equalization
- 4. Plugins > Segmentation > Trainable Weka Segmentation
- 5. draw a line outside the cells

- 6. click Add to class 1
- 7. draw a line inside a nucleus
- 8. click Add to class 2
- 9. draw a line inside the cytoplams
- 10. click Add to class 3
- 11. click Train classifier
- 12. repeat the last six steps until happy with result
- 13. inspect the probability maps, do you understand the meaning of the values of the pixels in the different channels?
- 14. click Create result
- 15. inspect results, do you understand the meaning of the values of the pixels in the different channels?
 - · you now have an image with three values
 - to measure, proceed by thresholding at 0, 1, and 2, to extract each class (use Set and then set both thresholds to 0, 1, or 2)
 - then proceed with Analyze Particles, etc for each of the classes of interest (nuclei and cytoplasm)
- 16. Bonus round: play with Settings

7.5 **DAPI** segmentation with StarDist

- 1. Follow StarDist installation instructions from here
 - https://imagej.net/plugins/stardist
- 2. open hela-1.tif (single-channel image)
- change LUT to Grays
- 4. Plugins > StarDist > StarDist 2D
- 5. Model: Versatile (fluorescent nuclei)
- 6. click OK and wait
- 7. after result shows
 - · select original image
 - select ROI Manager
 - check the Show All box
- 8. comment on the result, is it good/bad?

7.6 H&E segmentation with StarDist

- 1. open H&E_retina.jpg (RGB image)
- 2. Plugins > StarDist > StarDist 2D
- 3. Model: Versatile (H&E nuclei)
- 4. click OK and wait
- 5. after result shows
 - select original image
 - select ROI Manager
 - check the Show All box
- 6. comment on the result, is it good/bad?
- 7. duplicate original image
- 8. re-scale it by factor of 0.5 in x and y (Image > Scale)
- 9. apply StarDist again and overlay the ROIs as above
- 10. is there a difference? why?

Spot detection

manual spot detection with the Multi-point Tool (IJ:19.6)

- 1. read all the next steps before beginning
- 2. open spot_detection/beads_001.tif
- 3. right-click (ctrl-click) on the Point Tool in the tool bar and select Multi Tool
- 4. double-click on the Point Tool in the tool-bar and customize to your liking (test on image, clear points by shift-a)
- 5. count all beads by clicking on them one by one
- 6. how long did it take you to click on all the beads (measure with stopwatch the time it took to complete the previous step)?
- 7. save results to the ROI Manager (t) then to file (More » Save ...)
- 8. click measure in the ROI Manager to get number of spots

8.2 algorithmic spot detection with Find Maxima (IJ:29.4)

Forum post about Find Maxima

- 1. open spot_detection/beads_001.tif
- 2. Process > Find Maxima ...
- 3. check Preview point selection
- 4. try different values for Prominence and the three check-boxes
- 5. try each of the possibilities in the pull-down (remember to click OK to apply your selection)
 - · what is the difference and what could the different outputs be used
 - tip: shift-u allows you to pin sub-menus of the control panel for quick selection, e.g. the Process menu
- 6. add you detected maxima (Point Selection) to the ROI Manager and save to file
- 7. load saved ROIs from the manual detection exercise and compare results
 - how many beads do you get and how does the number compare to your manual count?

8.3 automatic spot segmentation with thresholding

- 1. open spot_detection/beads_001.tif
- 2. Image > Adjust > Threshold ...
 - select Otsu, then apply
- 3. Analyze > Set Measurements ...
 - + [X] Area
 - + [X] Mean gray value
 - + [X] Display label
- 4. Analyze > Analyze Particles ...
 - + Show: Overlay Masks
 - + [X] Display results
 - + [X] Clear Results
 - + [X] Summarize
 - + [X] Add to Manager

- 5. save ROIs to file
- 6. Compare results to the previous two approaches
 - Do they differ significantly from each other?
 - · Which performed better?

8.4 spot detection with noise

- 1. Repeat 8.2 with with_noise_8000.tif
 - · consider smoothing the image first:
 - Process > Smooth (this is a 3x3 mean filter)
- 2. Repeat 8.3 with with_noise_8000.tif
 - · consider smoothing the image first:
 - Process > Filters
 - then pick one
- 3. Compare and comment on the performance of the two methods
 - Which one is better?
 - Why/how is it better?

spot detection with variable background

- 1. Repeat 8.2 with beads_001_ramp.tif
- 2. Repeat 8.3 with beads_001_ramp.tif
- 3. Compare and comment on the performance of the two methods
 - Which one is better?
 - · Why/how is it better?
- 4. What could be done to the image to make thresholding work better?

scripting / macros / automation basics

macro recorder - reproducing edits

- 1. target: save the edit chain for later (to save work and to document parameters used by different filters)
- 2. plugins > macro > recorder (IJ:31.1.4)

- 3. file > open samples > mri-stack (IJ:26.4)
- 4. process > filters > gaussian blur with sigma ~= 2 (IJ:29.11.2)
- 5. image > adjust > threshold (IJ:28.2.4)
 - · select manually threshold such as the head is separated from background
 - ignore small holes
 - uncheck box: calculate threshold for each image
- 6. process > binary > fill holes (IJ:29.8.8)
- 7. (optional) use analyze > set scale to calibrate the measurement units
 - 200 pixels is 25 cm
- 8. Question: What are the benefits of storing such a macro?

9.2 macro recorder - repeating actions on stack

- 1. target: calculate the volume of human skull
- 2. file > open samples > mri-stack (IJ:26.4)
 - use steps below or macro developed in previous excercise
- 3. process > filters > gaussian blur % sigma ~= 2 (IJ:29.11.2)
- 4. image > adjust > threshold (IJ:28.2.4)
 - · select manually threshold such as the head is separated from back-
 - ignore small holes
- 5. process > binary > fill holes (IJ:29.8.8)
- 6. (optional) use set scale to calibrate the measurement units
 - 200 pixels is 25 cm
- 7. plugins > macro > recorder (IJ:31.1.4)
- 8. analyse > measure (IJ:29.12.1)
- 9. image > stacks > next slice (IJ:28.6.3)
- 10. in recorder click create button
- 11. use copy paste to execute the same action many times:


```
run("Next Slice [>]");
run("Measure");
run("Next Slice [>]");
run("Measure");
run("Next Slice [>]");
run("Measure");
run("Next Slice [>]");
run("Measure");
```

12. Question: how to compute volume of human skull based on the measurement?

9.3 automatic iteration

- 1. target: avoid copy pasting use iteration instead
- 2. continue from last example or open preprocessed file
 - file > open > [mri-stack-binary] (IJ:26.4)
- 3. make sure that the code looks in the following way:

```
for (currentStep=0; currentStep<100; currentStep++) {</pre>
  run("Next Slice [>]");
  run("Measure");
```

4. Question: what is the issue with this approach?

9.4 automatic iteration - introducing function for stop condition

- 1. target: avoid fixed stop condition and exchange it by more accurate mechanism
- 2. continue from last example or open preprocessed file
 - file > open > [mri-stack-binary] (IJ:26.4)
- 3. make sure that the code looks in the following way:

```
for (currentStep=1; currentStep<=nSlices();currentStep++) {</pre>
  setSlice(currentStep);
  run("Measure");
```


9.5 adding macro to the menu

- 1. target: add macro to the menu
- 2. continue from last example or open preprocessed file
 - file > open > [mri-stack-binary] (IJ:26.4)
- 3. switch to code editor and make sure that the code looks in the following way:

```
macro "measure stack" {
  for (currentStep=1; currentStep<=nSlices();currentStep++) {</pre>
    setSlice(currentStep);
    run("Measure");
}
```

- 4. language > ImageJ Macro
- 5. save > .ijm
- 6. plugins > macros > install... (IJ:31.1.1)
 - · select the macro you just saved
- 7. (optional) test following FIJI tool
 - image > stacks > plot z axis profile (IJ:28.6.13)

9.6 iterations and variables in the macro: multi-measurement

- 1. target: prepare the evenly distributed selection over the image v.1 This can be used e.g. in FRAP experiment analysis.
- 2. open : [frap.tif] (IJ:26.2)
- 3. test code:

```
// initialization
x = 20;
y = 20;
// iterations
for (nbr_x=0;nbr_x<5;nbr_x++) {</pre>
  for (nbr_y=0;nbr_y<5;nbr_y++) {</pre>
    makePoint(x+x*nbr_x, y+y*nbr_y);
    run("Enlarge...", "enlarge=5 pixel");
    roiManager("Add");
  }
```


9.7 automatic measurement and saving to a file

- 1. target: prepare the evenly distributed selection over the image v.2
- 2. test code:

```
// initialization
roiManager("reset");
x = 220;
y = 110;
nbr\_sensors = 4;
delta = 12;
// iterations to create selection
for (nbr_x=0;nbr_x<nbr_sensors;nbr_x++) {</pre>
  for (nbr_y=0;nbr_y<nbr_sensors;nbr_y++) {</pre>
    makePoint(x+delta*nbr_x, y+delta*nbr_y);
    run("Enlarge...", "enlarge=5 pixel");
    roiManager("Add");
  }
}
// measurement and save results
roiManager("Multi Measure");
fn = getInfo("image.filename");
saveAs("Results", "/Users/sstoma/Desktop/Results-"+ fn +".txt");
// exchange previous line with your path
```

9.8 user input via GUI

- 1. target: prepare the evenly distributed selection over the image v.3
- 2. test code:

```
// initialization
roiManager("reset");
x = 20;
y = 20;
nbr\_sensors = 4;
delta = 12;
Dialog.create("Please specify parameters:");
Dialog.addNumber("Size [px]: ", 5);
Dialog.show();
size = Dialog.getNumber();
```



```
// iterations to create selection
for (nbr_x=0;nbr_x<nbr_sensors;nbr_x++) {</pre>
  for (nbr_y=0;nbr_y<nbr_sensors;nbr_y++) {</pre>
    makePoint(x+delta*nbr_x, y+delta*nbr_y);
    run("Enlarge...", "enlarge="+ size +" pixel");
    roiManager("Add");
  }
}
// measurement and save results
roiManager("Multi Measure");
fn = getInfo("image.filename");
saveAs("Results", "/Users/sstoma/Desktop/Results-"+ fn +".txt");
// exchange previous line with your path
```

9.9 user input via image window / selection

- 1. target: prepare the evenly distributed selection over the image add user selected zone of selection and prepare it to work in the batch mode v.4
- 2. test code:

```
// initialization
roiManager("reset");
x = 20;
y = 20;
nbr\_sensors = 4;
delta = 12;
// GUI
Dialog.create("Please specify parameters:");
Dialog.addNumber("Size [px]: ", 5);
Dialog.show();
size = Dialog.getNumber();
// get the input for location from the image
setBatchMode("show");
waitForUser("Draw ROI, then hit OK");
getBoundingRect(x, y, width, height)
// iterations to create selection
for (nbr_x=0;nbr_x<nbr_sensors;nbr_x++) {</pre>
  for (nbr_y=0;nbr_y<nbr_sensors;nbr_y++) {</pre>
    makePoint(x+delta*nbr_x, y+delta*nbr_y);
    run("Enlarge...", "enlarge="+ size +" pixel");
    roiManager("Add");
```



```
}
// measurement and save results
roiManager("Multi Measure");
fn = getInfo("image.filename");
saveAs("Results", "/Users/sstoma/Desktop/Results-"+ fn +".txt");
// exchange previous line with your path
```

9.10 batch mode - basics

- 1. target: Create a macro to segment nuclei in a single frame. Your macro should input a row to the Results containing area for each nuclei in the image. Process all files in the hela folder.
- 2. open: [hela/hela-1.tif] (IJ:26.2)
- 3. plugins > macro > recorder (IJ:31.1.4)
- 4. image > adjust > threshold (IJ:28.2.4)
 - select: triangle
 - · check: dark background
- 5. analyze > analyze particles (IJ:30.2)
- 6. make sure that the code looks in the following way:

```
// processing
run("Gaussian Blur...", "sigma=2 stack");
setAutoThreshold("Triangle dark");
run("Convert to Mask");
run("Set Measurements...", "area mean display redirect=None decimal=9");
run("Analyze Particles...", "show=[Overlay Masks] display exclude");
```

- 7. process > batch > macro
 - input: select folder containing [hela-1.tif]-[hela-4.tif]
 - output: select folder out in the folder containing [hela-1.tif]-[hela-4.tif]
- 8. click process
- 9. modify to save results

```
// initialization
outPath = "/Users/sstoma/Desktop/materials/images/hela/out/";
// exchange previous line with your path
```


// processing


```
run("Gaussian Blur...", "sigma=2 stack");
   setAutoThreshold("Triangle dark");
   run("Convert to Mask");
   run("Set Measurements...", "area mean display redirect=None decimal=9");
   run("Analyze Particles...", "show=[Overlay Masks] display exclude");
   // saving
   saveAs("Results", outPath+"Results.txt");
10. modify the code (target: save each result in separated file):
   // initilization
   fileName = getInfo("image.filename");
   outPath = "/Users/sstoma/Desktop/materials/images/hela/out/";
   // exchange previous line with your path
   // Process all images finishing with .tif
   dir = getDirectory("Choose a Directory where the HeLa tif files are");
   dirresults = getDirectory ("Choose a Directory where to save results (segment
   list = getFileList(dir);
   for (imagenumber=0;imagenumber<list.length;imagenumber++)</pre>
   {
     if (endsWith(list[imagenumber],".tif")){
       open(dir+list[imagenumber]);
       run("Clear Results");
       // processing
       run("Gaussian Blur...", "sigma=2 stack");
       setAutoThreshold("Triangle dark");
       run("Convert to Mask");
       run("Set Measurements...", "area mean display redirect=None decimal=9");
       run("Analyze Particles...", "show=[Overlay Masks] display exclude");
       // saving
       saveAs("Results", outPath + "Results-" + fileName + ".txt");
     }
   }
```

batch mode - full control on processing files

1. target: Create a macro to segment nuclei in a single frame. Your macro should input a row to the Results containing area for each nuclei in the image. Process all files in the hela folder. Do not use the batch execution in FIJI - iterate on files in the folder instead.


```
2. open: [hela/hela-1.tif] (IJ:26.2)
3. plugins > macro > recorder (IJ:31.1.4)
```

- 4. image > adjust > threshold (IJ:28.2.4)
 - · select: triangle
 - · check: dark background
- 5. analyze > analyze particles (IJ:30.2)
- 6. make sure that the code looks in the following way:

```
// Process all images finishing with .tif
dir = getDirectory("Choose a Directory where the HeLa tif files are");
outPath = getDirectory("Choose a Directory where to save results (segmentati
list = getFileList(dir);
// in list elements are numbered from 0
for (imagenumber=0;imagenumber<list.length;imagenumber++)</pre>
  if (endsWith(list[imagenumber],".tif")){
    open(dir+list[imagenumber]);
    run("Clear Results");
    // processing
    run("Gaussian Blur...", "sigma=2 stack");
    setAutoThreshold("Triangle dark");
    run("Convert to Mask");
    run("Set Measurements...", "area mean display redirect=None decimal=9");
    run("Analyze Particles...", "show=[Overlay Masks] display exclude");
    // saving
vfileName = getInfo("image.filename");
    saveAs("Results", outPath + "Results-" + fileName + ".txt");
  }
```

10 workflow: tracking

create image with moving dots

- 1. target: create an image with moving objects (dots)
- 2. make sure that the code looks in the following way:

```
macro "create_image_with_moving_objects"{
  // initial variables
```



```
nbr_frames = 40; // number of frames in the image
color1 = 150; // color of first obj.
color2 = 250; // color of sec. obj.
canvas_size = 200; // size of the image
step = 4; // progress in x between frames
delta = 15; // difference in position between two objects in x
x = 5; // initial position x of object
y = 5; // initial position y of object
width = 10; // baseline size of object in x
height = 10; // baseline size of object in y
// empty image with noise
newImage("Image", "8-bit black", canvas_size, canvas_size, nbr_frames); //
run ("Salt and Pepper", "stack");
for(i=1;i<=nbr frames;i++) {</pre>
 setSlice(i);
  // first dot
  setColor(color1, color1, color1);
  fillOval(x+i*step, y+i*step, width, height);
  // second dot
  setColor(color2, color2, color2);
  fillOval(delta+x+i*step, canvas_size-(y+i*step), width*2, height*2);
}
run("glasbey");
```

10.2 tracking: process single image

- 1. target: for current frame of the stack find the x, y of the center of the dot
- 2. make sure that the code looks in the following way

```
macro "tracking_process_single_image"{
  run("Median...", "radius=2 slice");
  setThreshold(0, 100);
  run("Convert to Mask", "method=Otsu background=Light only");
  run("glasbey");
  run("Find Maxima...", "noise=25 output=List light");
```

10.3 tracking: process whole stack

- 1. **target:** for **all** frames of the stack find the x, y of the center of the dot
- 2. make sure that the code looks in the following way:

}


```
macro "tracking_process_stack_v1"{
  r = newArray();
  for (i=1; i<=nSlices(); i++) {
    setSlice(i);
    run("Median...", "radius=2 slice");
    setThreshold(0, 100);
    run("Convert to Mask", "method=Otsu background=Light only");
    run("glasbey");
    run("Find Maxima...", "noise=25 output=List light");
    run("Next Slice [>]");
  // workaround for Find maxima overwriting results at each step
    for (j=0; j<nResults(); j++) {</pre>
      x = getResult("X", j);
      y = getResult("Y", j);
      print(x, y, i);
     temp = newArray(x, y);
      r = Array.concat(r, temp);
    }
  Array.show(r);
```

10.4 tracking: process whole stack - enabling linking of the objects

- 1. target: for all frames of the stack find the x, y of the center of the dot as well as some object features (i.e. size, mean grey value).
- 2. make sure that the code looks in the following way:

```
macro "tracking_process_stack_v2"{
  // clearing previous result and preparing image copy
  run("Clear Results");
  rename("Image");
  run("Duplicate...", "duplicate");
  rename("orig");
  selectWindow("Image");
  // iterating for each slice in the stack
  for (i=1;i<=nSlices();i++) {</pre>
    setSlice(i);
    run("Median...", "radius=2 slice"); // removing noise
    setThreshold(0, 100); // hardcoded thr. for image
    run("Convert to Mask", "method=Otsu background=Light only");
    run("glasbey"); // changing LUT to get false collors to better distingui
```



```
run("Set Measurements...", "area mean standard center median skewness ar
   run("Analyze Particles...", "display slice");
   run("Next Slice [>]");
}
```

workflow: FRET 11

preparation part 1 - image import

- 1. target: open .lif image and prepare it for further editing
- 2. file > open : [FRET_biosensor.lif] (IJ:26.2)
 - · configure the importer
 - · disable: all series
- 3. choose 3rd serie
- 4. image > stacks > z project (IJ:28.6.11)
- 5. image > color > split channel (IJ:28.5.1)
- 6. select blue channel (ch0)
 - file > save as > tif : cfp.tif (IJ:26.10.1)
- 7. select yellow channel (ch1)
 - file > save as > tif : yfp.tif (IJ:26.10.1)

11.2 preparation part 2 - averaging

- 1. target: prepare images for further editing
- 2. file > open : [cfp.tif and yfp.tif] (IJ:26.2)
- 3. select blue channel (cfp.tif)
 - process > filters > gaussian blur % sigma ~= 2 (IJ:29.11.2)
 - file > save as > tif : cfp-smoothed.tif (IJ:26.10.1)
- 4. select yellow channel (yfp.tif)
 - process > filters > gaussian blur % sigma ~= 2 (IJ:29.11.2)
 - file > save as > tif: yfp-smoothed.tif (IJ:26.10.1)

preparation part 3 - masks

target: prepare masks

- 1. file > open : [yfp-smoothed.tif] (IJ:26.2)
- 2. image > adjust > threshold (IJ:28.2.4)
 - (a) test different option to isolate chromatine
- 3. file > save as > tif : mask.tif (IJ:26.10.1)

preparation part 4 - ratios

target: prepare image with ratios

- 1. file > open : [cfp-smoothed.tif and yfp-smoothed.tif] (IJ:26.2)
- 2. process > calculator plus > divide (i1 = yfp, i2 = cfp, k1 = 1, k2 = 0)
- 3. file > save as > tif: ratio.tif (IJ:26.10.1)

analysis - problem: cell population

target: measure the change of signal in ratio.tif image

- 1. file > open : [ratio.tif] (IJ:26.2)
- 2. analyze > set measurements (IJ:30.7)
 - · check: mean gray value / standard deviation
- 3. analyze > measure (m) (IJ:29.12.1)
- 4. move to next time point; repeat;...
- 5. image > stacks > plot z axis profile (IJ:28.6.13)
 - if does not work: image > hyperstacks > re-order hyperstack - swap t with z
- 6. question: what is the problem with results?

11.6 preparation part 5 - cropping

target: prepare image with ratios

- 1. file > open : [all previously prepared images] (IJ:26.2)
- 2. choose a cell in transition to anaphase make sure the field of view keeps only this cell during all time-points
 - [palette > rectangular selection] (IJ:19.1)
 - edit > selection > add to manager (ctrl-t) (IJ:27.12.22)
 - · use roi manager to move selection between images
 - analyze > tools > ROI manager
- 3. image > crop (IJ:28.8)
- 4. save all files adding "-crop" postfix

analysis - problem: chromatin change

target: measure the change of signal in ratio-crop.tif image

- 1. file > open : [ratio-crop.tif] (IJ:26.2)
- 2. analyze > set measurements (IJ:30.7)
 - · check: mean gray value / standard deviation
- 3. analyze > measure (m) (IJ:29.12.1)
- 4. move to next time point; repeat;...
- 5. image > stacks > plot z axis profile (IJ:28.6.13)
 - if does not work: image > hyperstacks > re-order hyperstack
 - swap t with z
- 6. question: what are the issues with results?

11.8 analysis - problem: manual labor

target: measure the change of signal in ratio-crop.tif image limited to chromatin

- 1. file > open : [mask-crop.tif] (IJ:26.2)
- 2. [palette > wand selection] (IJ:19.7)
 - add chromatin from current time-point
 - edit > selection > add to manager (ctrl-t) (IJ:27.12.22)

- · move to next time-point
- · repeat
- 3. file > open : [ratio-crop.tif] (IJ:26.2)
- 4. analyze > set measurements (IJ:30.7)
 - · check: mean gray value / standard deviation
- 5. select the right ROI; analyze > measure (m) (IJ:29.12.1)
- 6. move to next time point; repeat;...
- 7. question: what are the issues with results?

workflow: scratch assay

12.1 part 1

- 1. target: estimate the area occupied by cells in single timepoint
- 2. file > open : [scratch/control-single-frame.tif] (IJ:26.2)
- 3. image > duplicate
- 4. process > filters > gaussiab blur
 - (a) sigma: 5
- 5. threshold
 - (a) Method: Moments (b) Background: Dark
- 6. image > invert
- 7. process > binary > Distance Map
- 8. threshold
 - (a) Method: Moments (b) Background: Dark
- 9. select original image
- 10. image > type > 8-bit
- 11. image > color > merge channels
 - (a) C1: original image (after conversion to 8-bit)
 - (b) C4: mask
 - (c) Create composite: True (d) Keep source images: True

12.2 part 2

- 1. target: estimate the area occupied by cells in each time point (extend part 1 and identify the main problem)
- 2. file > open : [scratch/control.tif] (IJ:26.2)
- 3. repeat steps from part 1 on the stack

12.3 part 3

- 1. target: estimate the area occupied by cells in each time point
- 2. file > open : [scratch/control.tif] (IJ:26.2)
- 3. image > duplicate
- 4. image > process > subtract background
 - (a) Radius: 30 (b) Preview: True
- 5. process > filters > gaussiab blur
 - (a) sigma: 5
- 6. threshold
 - (a) Method: Moments (b) Background: Dark
- 7. image > invert
- 8. process > binary > Distance Map
- 9. threshold
 - (a) Method: Moments (b) Background: Dark
- 10. select original image
- 11. image > type > 8-bit
- 12. image > color > merge channels
 - (a) C1: original image (after conversion to 8-bit)
 - (b) C4: mask
 - (c) Create composite: True (d) Keep source images: True

13 various useful tools

13.1 installing plugins

- 1. download plugin from webpage: http://bigwww.epfl.ch/algorithms/ esnake/
- 2. unzip, drag and drop to FIJI
- 3. create new canvas
- 4. draw two white discs on black background
- 5. plugins > ESnake
 - · target brightness: bright
- 6. click OK

13.2 using line selection to make a "straighten" image

- 1. file > open samples > nile bend (IJ:26.4)
- 2. use selection tool for freehand selection
 - · make the line thickness adjusted to cover whole river
- 3. edit > selection > straighten (IJ:27.12.17)

13.3 using 3D viewer

- 1. file > open samples > confocal series (IJ:26.4)
- 2. image > properties > voxel depth x10 % to get decent aspect ratio
- 3. plugins > 3D viewer
- 4. add > from image % the resampling factor is a downsampling factor
- 5. play with displayed colors
- 6. view > start/stop animation
- 7. view > change animation settings
- 8. view > record 360 degree rotation
- 9. file > save as > avi % try the different compression options uncompressed, jpg, and png

13.4 preparing images for publications

- FigureJ plugin:
 - http://imagejdocu.tudor.lu/doku.php?id=plugin:utilities: figurej:start#installation_for_fiji

