One-Way ANOVA

- Sometimes we have more than two groups
- Matt Wynn Understanding the clinician's role in dementia diagnosis
- Diagnosing dementia isn't easy or often clear-cut

CDR – Clinical dementia rating

- WashU School of Medicine
- Assesses performance in six areas: memory, orientation, judgment & problem solving, community affairs, home & hobbies, and personal care
- Composite rating
 - 0 None
 - 0.5 Very mild
 - 1 Mild
 - 2 Moderate
 - 3 Severe

Three Groups

0 – No Impairment	0.5 – Very Mild Impairment	1 – Mild Impairment

Participants' Anxiety scores following appointment (20-80)

0 – No Impairment	0.5 – Very Mild Impairment	1 – Mild Impairment
30	35	45
35	40	55
30	45	55
25	45	50
40	55	50

Participants' Anxiety scores following appointment (20-80)

0 – No Impairment	0.5 – Very Mild Impairment	1 – Mild Impairment
30	35	45
35	40	55
30	45	55
25	45	50
40	55	50
Ybar = 32	<i>Ybar</i> = 44	<i>Ybar</i> = 51

Restricted model – 0 Group

0 – No Impairment	Prediction	Error	Squared Error
30	42.333	-12.333	152.111
35	42.333	-7.333	53.778
30	42.333	-12.333	152.111
25	42.333	-17.333	300.444
40	42.333	-2.333	5.444
Ybar = 32			$E_R = 663.889$

Full model – 0 Group

0 – No Impairment	Prediction	Error	Squared Error
30	32	-2	4
35	32	3	9
30	32	-2	4
25	32	-7	49
40	32	8	64
Ybar = 32			$E_F = 130$

Restricted Model – 0.5 group

0.5 – Very Mild	Prediction	Error	Squared Error
35	42.333	-7.333	53.778
40	42.333	-2.333	5.444
45	42.333	2.667	7.111
45	42.333	2.667	7.111
55	42.333	12.667	160.444
<i>Ybar</i> = 44			$E_R = 233.889$

Full Model – 0.5 group

0.5 – Very Mild	Prediction	Error	Squared Error
35	44	-9	81
40	44	-4	16
45	44	1	1
45	44	1	1
55	44	11	121
<i>Ybar</i> = 44			$E_F = 220$

Restricted Model – 1 group

1 – Mild	Prediction	Error	Squared Error
45	42.333	2.667	7.111
55	42.333	12.667	160.444
55	42.333	12.667	160.444
50	42.333	7.667	58.778
50	42.333	7.667	58.778
<i>Ybar</i> = 51			$E_R = 445.556$

Full Model – 1 group

1 – Mild	Prediction	Error	Squared Error
45	51	-6	36
55	51	4	16
55	51	4	16
50	51	-1	1
50	51	-1	1
<i>Ybar</i> = 51			$E_F = 70$

Wrapping it up

$$\begin{split} E_R &= 663.889 + 233.889 + 445.556 = 1343.333 \\ E_F &= 130 + 220 + 70 = 420 \\ F &= \underbrace{(E_R - E_F) / (df_R - df_F)}_{E_F / df_F} \\ F &= \underbrace{(1343.333 - 420) / (df_R - df_F)}_{418 / df_F} \end{split}$$

Degrees of freedom (ν)

- Restricted model
 - N one grand mean (N-1)
- Full model
 - N one mean for each group (N a)

Wrapping it up

$$F = (1343.333 - 420) / (14 - 12)$$

 $420 / df_F$

$$F = (1343.333 - 420) / (14 - 12)$$

420 / 12

$$F = \underline{461.667} = 13.190$$

35.000

Critical value for F(2, 12) = 3.885

A trick

- E_R = Squared deviations from the grand mean
- E_F = Squared deviations from the group mean
- If equal n, $E_R E_F = n \times \Sigma (Grand Mean Group Mean)^2$

$$E_R - E_F$$

- $E_R E_F = n\Sigma (Group mean Grand mean)^2$
- $5[(32-42.333)^2+(44-42.333)^2+(51-42.333)^2]$
- 5[106.778 + 2.778 + 75.111]
- $E_R E_F = 923.333$

ANOVA Formula

$$F = (E_{R} - E_{F}) / (df_{R} - df_{F})$$

$$E_{F} / df_{F}$$

$$F = \frac{923.333 / 2}{420 / 12}$$

ANOVA Formula

$$F = (E_{R} - E_{\underline{F}}) / (df_{R} - df_{\underline{F}})$$
$$E_{F} / df_{F}$$

$$F = \frac{923.333 / 2}{420 / 12}$$

$$F = \underline{SS_{\underline{B}} / df_{Numerator}}$$

$$SS_{W} / df_{Denominator}$$

 $E_R - E_F$

- Sum of squared deviations from the grand mean Sum of squared deviations from the group mean
- $E_R E_F = n\Sigma(Group mean Grand mean)^2$
- Sum of squared deviations between groups

 E_{F}

- Sum of squared deviations from the group mean
- Errors reflect how much an individual deviates from the group
- Sum of squared deviations within groups

ANOVA Formula

$$F = (E_{\underline{R}} - E_{\underline{F}}) / (df_{\underline{R}} - df_{\underline{F}})$$
$$E_{\underline{F}} / df_{\underline{F}}$$

$$F = \frac{923.333 / 2}{420 / 12}$$

$$F = \underline{SS_B / df_{Numerator}}$$

$$SS_W / df_{Denominator}$$

$$F = \underline{MS_B}$$

$$MS_W$$

ANOVA Output

Source	df	SS	MS	F
CDR Condition	2	923.333	461.667	13.190
Error	12	420	35.000	
Total	14	1343.333		

Why not just run a number of t-tests?

- Inflates type-1 error rate FWER: the probability that one or more of your "family" of multiple tests is false
- P(making an error) = alpha
- P(not making an error) = 1 alpha

P(not making an error in m tests) = (1 - alpha)^m

P(making at least 1 error in m tests) = 1 - (1 - alpha)^m

Using an ANOVA helps control for inflated FWER by using a single cohesive statistical test, rather than a series of t-tests!

ANOVA allows a test of these various means while maintaining an a priori alpha level

$$\sum_{i}\sum_{j}(Y_{ij}-\overline{Y}_{..})^{2}$$

$$\sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_{..})^{2} = (\overline{Y}_{.j} - \overline{Y}_{..})^{2}$$

$$\sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_{..})^{2} = (\overline{Y}_{.j} - \overline{Y}_{..})^{2} + (Y_{ij} - \overline{Y}_{.j})^{2}$$

$$\sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_{..})^{2} = (\overline{Y}_{.j} - \overline{Y}_{..})^{2} + (Y_{ij} - \overline{Y}_{.j})^{2}$$

$$SS_{Total} = SS_{Between (Method)} + SS_{Within (Residual)}$$

$$\sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_{..})^{2} = (\overline{Y}_{.j} - \overline{Y}_{..})^{2} + (Y_{ij} - \overline{Y}_{.j})^{2}$$

$$SS_{Total} = SS_{Between (Method)} + SS_{Within (Residual)}$$

$$s_{\text{Total}}^2 = s_{\text{Explained}}^2 + s_{\text{Unexplained}}^2$$

ANOVA test statistic

• The ratio of SS between (signal) with the SS within (noise)

ETA SQUARED (η^2)

$$\eta^2 = \frac{SS_{between/effect}}{SS_{total}}$$

Interpretation: Proportion of the variability in the outcome variable that can be explained in terms of the predictor.

 $\eta^2=0$; there is no relationship at all between the outcome and predictor

 $\eta^2 = 1$; the relationship between the outcome and predictor is perfect

See tip in textbook on page 440 about magnitude

Proportionate Reduction in Error (PRE)

- To what extent does the full model reduce the errors made?
- PRE = $\underline{E}_{R} \underline{E}_{F}$ E_{R}

R^2 or η^2

- Always going to be at least somewhat greater than zero
- Even when no actual differences occur

Proportionate Reduction in Error (PRE)

To what extent does the full model reduce the errors made?

• PRE =
$$\underline{E}_{\underline{R}} - \underline{E}_{\underline{F}} = 923.333 = 0.687$$

 \underline{E}_{R} 1343.333

scale of 0 - 1

If it's 0, then knowing X does not help predict Y. The full model does not reduce the errors made. If it's 1, then knowing X 100% predicts Y. The full model completely reduces the errors made.

Another alternative

- Cohen's *d* using the extreme groups
- Mostly useful for power

Assumptions for the F test

Typical assumptions

- The following should hold in order to assume your observed F maps on to the population distribution for F
- 1) Normally distributed scores
- 2) Equal variances
- 3) Scores should be independent

What happens when you have ... ?

- 1) Unequal n
- 2) Unequal variance

Different formula for E_F

- E_F = Deviations from the group mean
- Σ (Sum of the squared deviations x Sample size for the group)
- Weight the sum of squares by the group size

When is the F test robust? (Maxwell & Delaney, 2004)

	Equal Sample Sizes	Unequal Sample Sizes
Equal variances		
Unequal variances		

	Equal Sample Sizes	Unequal Sample Sizes
Equal variances	Appropriate	Appropriate
Unequal variances		

	Equal Sample Sizes	Unequal Sample Sizes
Equal variances	Appropriate	Appropriate
Unequal variances	Good, unless there's a very large difference	???

	Equal Sample Sizes	Unequal Sample Sizes
Equal variances	Appropriate	Appropriate
Unequal variances	Good, unless there's a very large difference	
- Large sample with large variances		Conservative

	Equal Sample Sizes	Unequal Sample Sizes
Equal variances	Appropriate	Appropriate
Unequal variances	Good, unless there's a very large difference	
- Large sample with large variances		Conservative
- Large sample with small variances		Liberal