哈丁大 2005 年春季学期

数据结构与算法 试券

班号	
学号	
姓名	

题号	_			四	五	六	总分
分值	10	10	10	13	27		70
得分							

_	埴空题	(每空 1 分	共10分)
	·	しみエュル	, , ,, 10 /) /

- 1.假定对线性表(38,25,74,52,48)进行散列存储,采用 H(K)=K %7 作为散列函数,若分别采用线性探查法和链接法处理冲突,则 对各自散列表进行查找的平均查找长度分别为和
- 2. 假定一组记录的排序码为(46,79,56,38,40,80),对其进行归 并排序的过程中,第二趟归并后的结果为_____
- 3. 在堆排序的过程中,对任一分支结点进行调整运算的时间复杂 度为 , 整个堆排序过程的时间复杂度为 。
- 4. 有向图的邻接矩阵表示法中某一行非 0 元素的个数代表该顶点 的 ,某一列非 0 元素的个数是该顶点的 。
- 5.对于下面的带权图G3,若从顶点v₀出发,则按照普里姆(Prim) 算法生成的最小生成树中,依次得到的各条边为

主管 领导 审核 签字

- 6. 由带权为3,9,6,2,5的5个叶子结点构成一棵哈夫曼树, 则带权路径长度为
- 7. 由三个结点构成的二叉树, 共有 种不同结构。
- 二.选择题(每题1分,共10分)
- 1. 快速分类在 的情况下不利于发挥其长处.
- A. 待分类的数据量太大 B. 待分类的数据相同值过多
- C. 待分类的数据已基本有序 D. 待分类的数据值差过大.
- 2.两路归并排序中,归并的趟数是_____
 - A. O(n) B. $O(log_2n)$ C. $O(nlog_2n)$ D. $O(n^2)$

注 意 行 为 规 范

澊 守

考

场

纪 律

3. 对外部分类的 K 路平衡归并,采用败者树时,归并的效率与 K。	
A. 有关 B.无关 C.不能确定 D. 都不对 4. 对于一个索引顺序文件,索引表中的每个索引项对应主文件中的。	
A. 一条记录 B.多条记录 C. 所有记录 D.三条以上记录 5若线性表采用顺序存储结构,每个元素占用4个存储单元,第	
一个元素的存储地址为 100,则第 12 个元素的存储地址	
时。	
A.112 B.144 C.148 D.412	
6. 若频繁地对线性表进行插入和删除操作,该线性表应该采用	
存储结构。	
A.散列 B.顺序 C.链式 D.索引	
7. 若长度为 n 的非空线性表采用顺序储存结构,删除表中第 i 个	
数据元素,需要移动表中个数据元素。	
A.n+i B.n-i C.n-i+1 D.n-i-1	
8. 栈和队列的相同之处是。	
A.元素的进出满足先进后出 B.元素的进出满足后进先出	
C.只允许在端点进行插入和删除操作 D.无共同点	
9.在一棵高度为 k 的二叉树中,最多含有()个结点。	
$A \cdot 2^{k}-1$ $B \cdot 2^{k-1}$ $C \cdot 2k-1$ $D \cdot k$	
10.任何一棵二叉树的叶结点在先序、中序和后序遍历序列中的	
相对次序()。	
A.发生改变 B.不发生改变 C.不能确定 D.以上都不对	
三.判断题,正确的在括号内画 ,错误的在括号内画 。 (每小题 1 分,共 10 分)	
1.树的父链表示就是用数组表示树的存储结构。().	

- 2.任何二元树都唯一对应一个森林,反之亦然。.()
- 3.有向图的邻接矩阵一定不是对称的。()
- 4.AOE 网中,只有一个入度为 0 的顶点(起始点),只有一个出度为 0 的顶点(结束点)。()
- 5.关键路径可能不只一条,但缩短某一关键路径一定能够缩短工期。()
- 6.顺序存储方式只能用于存储线性结构。()
- 7.用循环链表作为存储结构的队列就是循环队列。()
- 8. 倒排文件的主要优点为便于节省空间()。
- 9. 一组记录的关键字为(46,79,56,38,40,84),则利用快速排序的方法,以第一个记录为基准元素得到的一次划分结果为40,38,46,56,79,84()。
- 10. 算法分析的目的是分析算法的易读性()。

四.简答题

- 1.简述如何用两个栈模拟一个队列的入队和出队操作.(6分)
- 2. 对于图 G5 所示的树: (7分)
 - (1) 写出先根遍历得到的结点序列;
 - (2) 写出按层遍历得到的结点序列;
 - (3) 画出转换后得到的二元树

五. 算法设计

1.设二元树采用左右链存储,写出后序遍历该二元树的非递归算法。(12分)

2.设图中各边上的权值均相等,试以邻接表为存储结构,写出求源 点 Vi 到 Vj 的最短路径算法。 (15 分)..