

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
15. März 2001 (15.03.2001)

PCT

(10) Internationale Veröffentlichungsnummer
WO 01/18755 A2

(51) Internationale Patentklassifikation⁷: **G07F 7/00**

(21) Internationales Aktenzeichen: **PCT/EP00/08516**

(22) Internationales Anmeldedatum:
31. August 2000 (31.08.2000)

(25) Einreichungssprache: **Deutsch**

(26) Veröffentlichungssprache: **Deutsch**

(30) Angaben zur Priorität:
199 41 868.3 2. September 1999 (02.09.1999) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): **GZS GESELLSCHAFT FÜR ZAHLUNGSSYSTEME MBH [DE/DE]; Konrad-Adenauer-Allee 1, 61118 Bad Vilbel (DE). INFORM GMBH [DE/DE]; Pascalstrasse 23, 52076 Aachen (DE).**

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): **VON ALTROCK, Constantin [DE/DE]; Baumgartsweg 22, 52076 Aachen (DE). HEPP, Hanns, Michael [DE/DE]; Adolf-Guckes-Weg 1, 65817 Eppstein (DE).**

[Fortsetzung auf der nächsten Seite]

(54) Title: EXPERT SYSTEM

(54) Bezeichnung: EXPERTSYSTEM

(57) Abstract: The invention relates to a method which is implemented on a computer and which is provided for identifying and determining fraudulent transaction data in a computer controlled transaction processing system comprising a prediction model for receiving current transaction data, for processing the current transaction data, and for outputting at least one output value that depicts a probability of a fraudulent transaction. According to the invention, the prediction model is used to carry out the evaluation with regard to the risk that the current transaction is fraudulent, and a corresponding output value is generated. This evaluation is carried out using stored data of a time series analysis of earlier transactions with respect to the same means of payment or user and to expert rules concerning parameters which occur in a statistically significant cumulative manner during fraudulent transactions, especially with respect to the origin of the means of payment/user, to the branch and to

the beneficiary of the transaction, as well as to the magnitude or value of the transaction, which is essentially based on the expert rules and which is specific for the type of transaction, with a value, which is essentially based on the time series analysis and which is specific for the current transaction, in order to generate the output value. The combination is carried out in a floating manner so that output values can be generated which vary according to the extent of the suspicion of misuse and which can be used to initiate different reactions to the current transaction request.

(57) Zusammenfassung: Die Erfindung betrifft ein auf einem Rechner realisiertes Verfahren zum Identifizieren und Ermitteln betrügerischer Transaktionsdaten in einem rechnergesteuerten Transaktionsverarbeitungssystem mit einem Vorhersagemodell zum Empfangen aktueller Transaktionsdaten, Verarbeiten der aktuellen Transaktionsdaten und Ausgeben wenigstens eines Ausgangswertes, der eine Wahrscheinlichkeit einer betrügerischen Transaktion wiedergibt, bei dem auf Grundlage gespeicherter Daten zu einer Zeitreihenanalyse früherer Transaktionen

[Fortsetzung auf der nächsten Seite]

WO 01/18755 A2

PRASCHINGER, Johann [DE/DE]; Hofhausstrasse 60,
60389 Frankfurt (DE).

(74) Anwalt: MAIWALD, Walter; Maiwald Patentanwalts
GmbH, Elisenhof, Elisenstrasse 3, 80335 München (DE).

(81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT,
AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU,
CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eura-
sisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI,

FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
SN, TD, TG).

Veröffentlicht:

— Ohne internationalen Recherchenbericht und erneut zu
veröffentlichen nach Erhalt des Berichts.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen
Abkürzungen wird auf die Erklärungen ("Guidance Notes on
Codes and Abbreviations") am Anfang jeder regulären Ausgabe
der PCT-Gazette verwiesen.

bezüglich des gleichen Zahlungsmittels bzw. Benutzers und Expertenregeln hinsichtlich bei betrügerischen Transaktionen statistisch signifikant gehäuft auftretenden Parametern, insbesondere bezüglich der Herkunft des Zahlungsmittels/Benutzers, der Branche und der Person des durch die Transaktion Begünstigten, sowie Höhe bzw. Wert der Transaktion, mittels des Vorhersagemodells die Bewertung hinsichtlich des Risikos erfolgt, dass die aktuelle Transaktion betrügerisch ist, und ein entsprechender Ausgangswert erzeugt wird, wobei das Prädiktionsmodell ein im Wesentlichen auf den Expertenregeln basierendes, für die Art der Transaktion, spezifisches Limit mit einem im Wesentlichen auf der Zeitreihenanalyse basierenden für die aktuelle Transaktion spezifischen Wert kombiniert, um den Ausgangswert zu erzeugen, und wobei die Kombination gleitend erfolgt, so dass je nach Stärke des Missbrauchsverdachts verschiedene Ausgangswerte erzeugt werden können, die zur Auslösung unterschiedlicher Reaktionen auf der aktuellen Transaktionsanfrage benutzt werden können.

Expertensystem

5

Die Erfindung betrifft den Nachweis der betrügerischen Verwendung von Kundenkonten und Kontonummern, einschließlich von zum Beispiel Geschäften mit Kreditkarten. Insbesondere betrifft die Erfindung ein automatisiertes Betragsnachweissystem und ein Verfahren, das ein Vorhersagemodell zur

10 Mustererkennung und Klassifizierung verwendet, um Geschäfte mit einer hohen Betrugswahrscheinlichkeit auszusondern. In der folgenden Diskussion wird der Ausdruck "Kreditkarte" zu Zwecken der Anschaulichkeit verwendet; jedoch gelten die hier diskutierten Methoden und Grundlagen auch für andere Arten von elektronischen Zahlungssystemen, wie etwa Kundenkreditkarten, automatisierte
15 maschinenlesbare Kassenkarten und Telefonkarten.

Seit jeher haben die Emittenten von Kreditkarten versucht, ihre Verluste durch Betrug zu begrenzen, indem die betrügerische Verwendung der Karte aufgezeigt wird, bevor der Karteninhaber eine verlorene oder gestohlene Karte gemeldet hat.

20

Ein wirksames Modell zum Betragsnachweis sollte hohe Fangraten bei niedriger Verhinderung rechtmäßiger Transaktionen im Echtzeitbetrieb ergeben. Es sollte sich verändernden Betragsmethoden und -muster anpassen können, und sollte eine integrierte Lernfähigkeit aufweisen, welche diese Anpassungsfähigkeit unterstützt.

25

Die vorveröffentlichte Druckschrift WO-A-8 906 398 beschreibt ein Element zur Analyse einer Transaktion mittels Datenverarbeitung: indem nur diejenigen Daten herausgezogen werden, die zur Analyse der Transaktion nützlich sind; Signale gelöscht werden, die einer Transaktion entsprechen, von der man meint, daß sie auf einen Satz vorbestimmter Regeln paßt; gefiltert wird, damit nicht-signifikante

30

-2-

Abwandlungen der zu analysierenden Transaktion beseitigt werden; und die Signale in eine oder mehrere Klassen, gemäß einem vorbestimmten Kriterium, eingeteilt werden. Dieses Element ist zur Anwendung für die Herausgabe von Zahlungsauftragserstellungen an Kreditkartennutzer geeignet.

5

Eine weitere Druckschrift, EP-A-0 418 144 beschreibt ein Verfahren zur Begrenzung der mit einer computergestützten Transaktion verbundenen Risiken, indem die Transaktionsanfrage mit vorbestimmten statistischen Daten verglichen wird, die als representativ zur Risikobewertung einer nicht gemäßen Verwendung erscheinen. Die statistischen Daten beschreiben die gemittelte Anzahl oder die Menge der während der Abfolge von aufeinanderfolgenden Zeitabschnitten 10 getätigten Transaktionen, und werden abgeleitet, indem die Zeit in aufeinanderfolgende nicht gleiche Abschnitte eingeteilt wird, deren Dauern so gewählt sind, daß die Wahrscheinlichkeit einer getätigten Transaktion oder der 15 gemittelte Betrag für jeden einzelnen Zeitabschnitt im wesentlichen gleich sind.

10

Aus der EP-0 669 032 sind ein auf einem Computer implementiertes 20 Betrugsnachweisverfahren und eine entsprechende Hardware bekannt, welche Einrichtungen für Vorhersagemodelle einschließt. Aktuelle Transaktionsdaten werden empfangen und verarbeitet, was dann in einer Vielzahl von Ausgabewerten resultiert, die einen Trefferwert enthalten, der die Wahrscheinlichkeit für eine betrügerische Transaktion darstellt.

15

Dieses im Stand der Technik bekannte Verfahren erfordert mehrere Schritte, die vor den Verarbeitungsschritten für die aktuellen Daten durchgeführt werden 25 müssen, nämlich:

- Erzeugen eines Benutzerprofils für jeden einzelnen einer Vielzahl von Benutzern aus einer Unmenge von Variablen bezüglich früheren

-3-

Transaktionen und aus persönlichen Benutzerdaten, die für jeden Benutzer Werte aus einer Vielzahl von Benutzervariablen enthalten, wobei jedes Benutzerprofil ein Muster für die Tätigkeitshistorie eines Benutzers beschreibt;

5

- Ableitung von Variablen, die nachgewiesenen früheren Betrug betreffen, indem Daten früherer Transaktionen vorverarbeitet werden, wobei diese Werte für eine Vielzahl von Transaktionsvariablen für eine Vielzahl von früheren Transaktionen beinhalten;

10

- Trainieren von Einrichtungen für Vorhersagemodelle mit den Benutzerprofilen und mit den Variablen, die früheren Betrug betreffen, um ein Vorhersagemodell zu erhalten; und
- Speichern des erhaltenen Vorhersagemodells im Computer.

15

Dann erfolgt die Verarbeitung der aktuellen Daten, indem

20

- die aktuellen Transaktionsdaten für eine aktuelle Transaktion eines Benutzers empfangen werden;
- die Benutzerdaten, die den Benutzer betreffen, empfangen werden;
- das mit dem Benutzer verbundene Benutzerprofil empfangen wird;
- die erhaltenen aktuellen Transaktionsdaten, Benutzerdaten und Benutzerprofil vorverarbeitet werden, um für die aktuelle Transaktion Variablen bezüglich eines aktuellen Betruges abzuleiten;

25

-4-

- die Betrugswahrscheinlichkeit bei der aktuellen Transaktion bestimmt wird, indem das Vorhersagemodell auf die aktuellen betrugsbezogenen Variablen angewendet wird; und
- 5 - von den Einrichtungen für das Vorhersagemodell ein Ausgangssignal abgegeben wird, welches die Betrugswahrscheinlichkeit für die aktuelle Transaktion anzeigt.

Dieses System stützt sich auf ein neuronales Netz, um die Einrichtungen für das
10 Vorhersagemodell zu trainieren. Dieses Training soll hauptsächlich die Einrichtungen für das Vorhersagemodell verändern, um die Verhinderung rechtmäßiger Transaktionen gering zu halten und die Leistung des Systems für den Betragsnachweis zu verbessern.

15 Hierbei stützt sich das System auf einen Satz von festen (aber veränderbaren) Werten, die verschiedene Aspekte der Transaktion darstellen. Diese Werte werden in der Verarbeitung unterschiedlich gewichtet und eine wichtige Funktion des auf dem neuronalen Netz basierenden Trainings ist die Veränderung dieser Gewichtung, was in grundlegender Weise eine "Lern"-Fähigkeit für dieses System ergibt. Solche bekannten neuronalen Netze stellen eine Verknüpfung von
20 „Neuronen“ im Sinne einfacher mathematischer Übertragungsfunktionen dar. Um hier eine „Lernfähigkeit“ zu erzeugen, wird ein entsprechender Algorithmus eingesetzt - z.B. gemäß EP 0 669 032 zur Anpassung der „Gewichte“ bei der Datenbewertung im neuronalen Netz.

25 Bei alledem verwendet das System für die Kombination der verschiedenen Parameter und Daten gewöhnliche Logikalgorithmen und funktionelle Beziehungen, um den Trefferwert zu erhalten. Es führt für jede aktuelle

-5-

Transaktion eine Berechnung durch, die auf herkömmlicher Logik basiert, betrachtet (später) das Ergebnis und verändert, wenn notwendig, den Algorithmus.

Es ist wünschenswert, ein automatisiertes System zu schaffen, welches die
5 verfügbaren Informationen z.B. über den Karteninhaber, Händler und Geschäfte verwendet, um Transaktionen zu prüfen und jene auszusondern, die wahrscheinlich betrügerisch sind, und dabei einen relativ höheren Anteil an Betrugsfällen bei einer relativ niedrigen Verhinderung rechtmäßiger Transaktionen auffinden kann. Ein solches System sollte vorzugsweise noch fähig
10 sein, mit einer großen Zahl von voneinander abhängigen Variablen in einem schnellen Echtzeitbetrieb umzugehen, und sollte die Fähigkeit zur Rückentwicklung des zugrundeliegenden Systemmodells als neue Muster für auftauchendes Betrugsverhalten aufweisen.

15 Demgemäß betrifft die Erfindung ein in einem Computer implementiertes Verfahren zur Identifizierung und Bestimmung von betrügerischen Transaktionsdaten, gemäß den Merkmalen des Anspruchs 1.

In mancher Hinsicht verwendet die Erfindung Merkmale, die aus der
20 EP 0 669 032 bekannt sind. Auf die EP 0 669 032 wird deshalb in vollem Umfang Bezug genommen.

25 Jedoch gibt es, wie aus der folgenden Beschreibung erkennbar, größere Unterschiede zwischen der Erfindung und diesem Stand der Technik, die sowohl in der grundlegenden Herangehensweise und der entsprechenden Grundstruktur, als auch in verschiedenen Einzelheiten der Datenerzeugung und -verarbeitung liegen.

-6-

Ein wesentlicher Unterschied ergibt sich daraus, daß die vorliegende Erfindung
kein Benutzerprofil als Teil des Vorhersagemodells verwendet. Statt dessen
arbeitet die Erfindung mit einer Kombination von einerseits Expertenregeln und
andererseits einer Analyse vorausgegangener Benutzungsvorgänge des
5 Zahlungsmittels, das für die aktuell zu bewertende Transaktion eingesetzt wird.

Bei den Expertenregeln handelt es sich, vergleichbar dem eingangs genannten
Stand der Technik, um eine auf Erfahrungswerten, i.e. der Analyse früherer
Mißbrauchsfälle, basierende Auswahl typischer Elemente einer individuellen
10 Transaktion, die eine erhöhte Gefahr eines Mißbrauchs anzeigen. Relevant sind
erfindungsgemäß insbesondere die Herkunft des Zahlungsmittels (zum Beispiel
der Karte), die Branche und die Person des Empfängers der zu autorisierenden
Zahlung und der Betrag der Zahlung.

15 Die Analyse vorausgegangener Benutzungsvorgänge desselben Zahlungsmittels
umfaßt vorzugsweise die jüngsten Vorgänge, etwa die letzten fünf bis zwanzig
Transaktionen (könnte sich aber auch weiter zurück erstrecken).

20 Im Gegensatz zum Stand der Technik, zum Beispiel gemäß EP 0 669 032,
verwendet die Erfindung vorzugsweise kein herkömmliches neuronales Netz,
kombiniert mit einem Lernalgorithmus.

25 Die Erfindung verwendet Fuzzy Logik zur Feststellung, ob eine bestimmte
Transaktion als betrügerisch zu erachten ist.

Im erfindungsgemäß bevorzugten Entscheidungssystem werden sowohl die
Expertенregeln als auch dem neuronalen Netz im Stand der Technik funktional
entsprechenden Regeln für die deskriptive Statistik als Fuzzy-Regeln

abgespeichert, und unterscheiden sich damit nicht in der Berechnungsart, jedoch in der Gewinnungsart.

Das Expertenwissen ist direkt als Fuzzy-Regeln formuliert. Diese definieren für jede Transaktionsart ein Limit, das der (benutzerspezifischen) „Risikobereitschaft“ entspricht.

Die Information aus der Benutzungshistorie des Zahlungsmittels wird mit Hilfe eines „NeuroFuzzy-Moduls“ ebenfalls in Fuzzy-Regeln transformiert. Das

NeuroFuzzy Modul verwendet eine Modifikation desjenigen Trainingsalgorithmus, der auch bei den meisten neuronalen Netzen verwendet wird, nämlich den Error Backpropagation Algorithmus, der weithin in der Literatur beschrieben ist. Da in dieser Weise die Information aus den

Vergangenheitsdaten (also das was zum Beispiel gemäß EP 0 669 032 in den

Gewichten des trainierten neuronalen Netzes abgespeichert wird) als lesbare und interpretier-/modifizierbare Fuzzy-Regeln zur Verfügung steht, sind diese in jeder Weise ergänz-, verifizier- und erweiterbar. Hinsichtlich der Eingangs- und Ausgangsdaten können die "neuronal" erzeugten Fuzzy-Regeln die gleichen Größen verwenden wie die Expertenregeln.

Die „neuronal“ erzeugten Fuzzy-Regeln beruhen vorzugsweise auf einer Analyse vorausgegangener Transaktionen hinsichtlich solcher Faktoren wie dem durchschnittlichen Betrag der Transaktion, dem Anteil von Barauszahlungen, dem Anteil von Auslandseinsätzen, von Reisekostennutzungen, dem früheren

Auftreten von Verdachtsfällen usw. und hinsichtlich „dynamischer“ Kriterien wie etwa der aktuellen Ausschöpfung des Limits der betroffenen Kreditkarte. Das Ergebnis dieser Analyse wird auch als „Zeitreihe“ bezeichnet. Dieses Regelsystem ermittelt so für jede Transaktion ein dynamisches Risiko in Form eines „Bonus“ bzw. „Malus“.

-8-

Die Erfindung gestattet so die Verschmelzung statistischer Modelle mit Expertenwissen. Statt, wie beim Stand der Technik, für jeden Vorgang einfach eine Betrugswahrscheinlichkeit auszurechnen, wird das für jede Transaktionsart 5 definierte Limit gleitend mit dem dynamischen Risiko („Bonus“ oder „Malus“) der spezifischen aktuellen Transaktion zu einem (gleitenden) Transaktionslimit kombiniert.

Dies ermöglicht unterschiedliche, differenzierte Behandlungen „auffälliger“ 10 Transaktionen, z.B. die sofortige Sperre oder statt dessen die Verweisung zur individuellen Überprüfung, z.B. durch einen Sachbearbeiter.

Im Stand der Technik wird eine Transaktion, die oberhalb der berechneten Risikoschwelle liegt, normalerweise gesperrt; der Stand der Technik kennt 15 grundsätzlich nur Freigabe oder Sperre als Ergebnis der Überprüfung. Die Erfindung ermöglicht statt dessen abgestufte Reaktionen; beispielsweise kann ein Verdachtsfall generiert werden (und damit in die „Zeitreihe“ für diese Kreditkarte eingehen, die für zukünftige Transaktionen herangezogen wird), obwohl die aktuelle Transaktion autorisiert wird. Bei stärkerem Verdacht würde eine 20 Nachprüfung (referral) der aktuellen Transaktion (vor deren eventuellen Freigabe) ausgelöst; bei noch stärkerem Verdacht würde die Transaktion verweigert (decline).

Wesentliche Unterschiede zum Stand der Technik ergeben sich auch hinsichtlich 25 der Modellbildung, also der Generierung und Erkennung von Mißbrauchsmustern (Fraudmustern).

Der Stand der Technik basiert auf „passiver Datengewinnung“. Mit anderen Worten, ausschließlich bereits vorhandene Vergangenheitsdaten werden zur

-9-

Modellbildung herangezogen. Das bedeutet, um im Modell überhaupt ein Fraudmuster erkennen zu können, muß (a) bereits genug Zeit verstrichen sein, damit die Fraudmeldungen bereits zurückgekommen sind (meist erst, nachdem die Kunden ihren Auszug gelesen haben), (b) müssen genug Fälle für ein sicheres Training vorhanden sein (nur so funktioniert ein neuronales Netz / es gibt Fraudfälle, die sehr selten sind, aber einen hohen Einzelschaden ausmachen, die sind so nur sehr schwer im Modell zu erfassen, © erst nach einem aufwendigen manuellen Retraining ist eine Immunisierung des Autorisierungsbetriebes überhaupt möglich.

5

Hingegen ist die Datengewinnung erfindungsgemäß „aktiv“. Tauchen die ersten Verdachtsmomente eines neuen Fraudmusters auf, so werden Regeln definiert, die sofort eine Nachrecherchierung genau dieser Fälle durch aktive Kontaktierung der Kunden auslösen. So stehen im Idealfall innerhalb weniger Stunden viele gesicherte Daten darüber zur Verfügung, ob hier tatsächlich ein neues Fraudmuster aufgetaucht ist, und wie es sich von anderen Mustern abgrenzt. Diese Analyse läßt sich (egal mit welchem Verfahren) nämlich erst durchführen, wenn genug gesicherte Daten vorhanden sind.

15

20

Die Methodik der Modell-Erstellung im Stand der Technik führt dazu, daß die Erfahrung menschlicher Analysten zu wenig genutzt werden kann und Erwartungen über zukünftige Fraudmuster nicht Eingang finden können. Im Stand der Technik bildet das neuronale Netz praktisch eine „black box“ festgelegter, starrer Kriterien, die nur noch „automatisch“, also als Ergebnis wiederum vorher festgelegter Algorithmen, hinsichtlich der „Gewichte“ modifiziert werden. Soweit überhaupt Expertenregeln zusammen mit neuronalen Netzen eingesetzt werden, laufen neuronales Netz und Expertenregeln unabhängig nebeneinander. Durch den NeuroFuzzy-Ansatz ist das mit Daten trainierte prädiktive Modell keine black box

25

-10-

mehr, sondern wird in Form von Fuzzy-Regeln erzeugt. Diese sind direkt von Experten interpretierbar und modifizierbar.

Die erfindungsgemäßen gleitenden Transaktionslimits erlauben eine
5 wirkungsvolle Kombination von „hard facts“ und „soft facts“. Dies ermöglicht eine Modellierung der „soft“ und „hard“ facts in konsistenter und kooperativer Weise. Bei dem „black-box“-Ansatz im Stand der Technik ist das nicht wichtig, denn dort findet keine wissensbasierte Modellierung statt. Bei der Erfindung, die es ermöglicht und vorzugsweise auch vorsieht, daß automatische Modellbildung
10 und menschliche Expertise im laufenden Betrieb kombiniert werden, ist dies sehr relevant.

Im folgenden wird die Erfindung an einem Ausführungsbeispiel näher erläutert, welches gegenwärtig besonders bevorzugte Ausgestaltungen des
15 erfindungsgemäßen Grundprinzips umfaßt.

Das Ausführungsbeispiel betrifft ein Autorisierungssystem für Kreditkarten-Transaktionen und damit eine Grundkonstellation ähnlich der im eingangs behandelten Stand der Technik. Aus einem vorhandenen Netzwerk, das
20 Nutzungsstellen für die im System benutzbaren Kreditkarten umfaßt, kommen Autorisierungsanfragen, die in Echtzeit bearbeitet und beantwortet werden müssen.

Die Bearbeitung der Autorisierungsanfragen erfolgt im erfindungsgemäß ausgestalteten Autorisierungssystem, das schematisch in den Figuren 1 bis 4
25 gezeigt ist.

-11-

Das System umfaßt im Ausführungsbeispiel mehrere Rechner, kann aber natürlich auch auf einem Zentralrechner oder mittels eines Rechner-Netzwerks realisiert werden.

5 Im Beispiel umfaßt das System einen „Tandem“-Rechner mit einer Datenbank A, einen „SGI“-Server (SQL-Server) mit einer Datenbank B und ein „Hostsystem“ mit einer Datenbank C.

Auf dem Tandem-Rechner ist eine Software implementiert, die für
10 Datenübergaben, Data Preprocessing (Kriterien-Ableitung),
Zeitreihenberechnungen und -aktualisierungen etc. dient, wie später noch deutlich
werden wird. Weiterhin ist auf dem Tandem-Rechner die erfindungsgemäße
Entscheidungslogik implementiert, die Fuzzy-Expertenregeln und Neuro-Fuzzy-
Modelle umfaßt und die Entscheidung über die Autorisierungsanfragen trifft. Die
15 auf dem Tandem-Rechner implementierte Software wird im folgenden
zusammenfassend als „NeuroFuzzy Inferenzmaschine“ (NFI) bezeichnet.

Der SGI-Server dient, gegebenenfalls zusammen mit einer entsprechenden Zahl
von PC-Clients, insbesondere zur Implementierung der Software für den
20 „Investigation Workflow“ (IW) für die Nachbearbeitung von Verdachtsfällen, und
für das „Online Data Mining Module“ (ODMM), wie später noch erläutert werden
wird.

25 Das Hostsystem enthält und erhält die wesentlichen historischen wie aktuellen
Daten zu Zahlungsmittel und Nutzer, die für die Bearbeitung der
Autorisierungsanfragen benötigt werden.

Figur 1 zeigt den grundsätzlichen Informationsaustausch wie folgt:

-12-

Das Autorisierungssystem erlangt Daten (1) für ein Cardholder File aus der Datenbank [C] des Hostsystems. Bei einer Änderung der Daten des Cardholder Files werden nur die für die Autorisierung relevanten Daten einer Kartennummer auf das Autorisierungssystem überspielt. Ereignisse wie Kartensperrungen mit einer hohen Priorität werden sofort übertragen, andere mit einer kleineren Priorität erst wesentlich später. Der Datentransfer (Update) erfolgt ständig.

5

Der SGI-Server erhält (2) über das bestehende Netzwerk vom Tandem-Autorisierungsrechner die Autorisierungsanfragen, versehen mit der von NFI ausgelösten Aktion (diese besteht aus: Fallwichtigkeit, Fallklasse, Fallschwelle, Referralentscheidung, Risko-Score, Limit und Action Code) sowie die aktuelle Zeitreiheninformation. (Die hierfür erforderlichen Echtzeitanforderungen liegen im Bereich von Minuten. Die Gesamtinformation zu einer Autorisierungsanfrage wird von der NFI zu einer Nachricht komprimiert, die dann an den SGI-Server übertragen wird.)

10

15

Weiter erhält der SGI-Server vom Hostsystem alle Postinginformationen, Mißbrauchsinformationen und gegebenenfalls Karteninhaberstammdaten, die nicht aus der Cardholder File extrahiert werden können (3). Die Datenbank des SGI-Servers [B] speichert diese Daten je nach Speicherausbau so lange wie erforderlich. Der SGI-Server beherbergt die Serverkomponente sei es des Supervisory Workflow (ODMM) als auch des Investigation Workflow (IW).

20

Figur 2 zeigt den Datenfluß bei vermuteten bzw. erkannten Mißbrauchsfällen.

25

Der Investigation Workflow (IW) (6) dient der Bearbeitung der erkannten und vermuteten Fraudfälle, insbesondere durch Mitarbeiter (Call-Center).

-13-

Im Call-Center wird festgestellt, ob es sich bei den vermuteten Mißbrauchsfällen um tatsächliche Mißbrauchsfälle handelt. Es erfolgt eine entsprechende Mitteilung (7) an den SGI-Server.

5 Neben dieser ersten Hauptaufgabe erfüllt der SGI-Server noch eine weitere
Hauptaufgabe:

Die Datenbank des SGI-Servers speichert die für das Entdecken neuer Fraudmuster erforderlichen Daten und bereitet diese für eine Analyse durch das
10 Online Data Mining Modul (ODMM) auf. Hierfür werden die mißbrauchsrelevanten Daten in der Datenbank [B] zwischengespeichert. Im Fraud Supervisory Center werden dann mittels dieser Informationen (4) neue Fraudregeln definiert und die vorhandenen Fraudregeln werden kontinuierlich auf ihre Wirksamkeit hin überprüft.

15 Die entsprechend modifizierten Fraudregeln in Form einer Datei werden vom Fraud Supervisory Center auf den Autorisierungsrechner übertragen (5). Hierzu wird vom PC aus die Datei auf den SGI-Server gebracht. Auf dem SGI-Server wird ein automatischer Job installiert, der erkennt, wenn der Timestamp der Datei sich geändert hat, und in diesem Falle einen Austausch der Datei auf der Tandem
20 vornimmt, als auch der NFI mitteilt, daß es diese Datei neu einlesen muß.

Es ergeben sich somit insgesamt zwei Workflows (Figur 4):

25 1. Der Supervisory Workflow ODMM paßt die Entscheidungsstrategie des Präventionssystems kontinuierlich an die sich ändernden Mißbrauchsmuster an.
2. Der Investigation Workflow IW kontrolliert die Entscheidungen des Präventions-

-14-

systems durch Einzelbearbeitung der gemeldeten und vermuteten Mißbrauchsfälle.

5 Beide Workflows sind indirekt über die (mittlere) operative EDV-Ebene verbunden. Wird im Supervisory Workflow die Entscheidungsstrategie modifiziert, so werden vom Präventionssystem andere Referrals generiert, die im Investigation Workflow nachrecherchiert werden.

10 Nicht vom Präventionssystem rechtzeitig erkannter Mißbrauch sowie fälschlicher Mißbrauchsverdacht wird vom Investigation Workflow verifiziert und in der Datenbank des SGI-Servers abgelegt. Hierauf greift das Online Data Mining Modul (ODMM) zu und schlägt den Fraudexperten im Fraud Supervisory Center entsprechende Modifikationen der Entscheidungsstrategie vor.

15 Die gesamte Berechnung, also der Fluß der Fuzzy-Inferenz durch das Regelwerk, sowie die gesamte Profilbildung und -initialisierung, wird von der NFI selbst übernommen; es ist keine externe Steuerung erforderlich. Die Schnittstelle enthält weitere Funktionen zur Initialisierung und Konfiguration der Entscheidungslogik (diese Funktionen müssen einmal beim Laden des Präventionsmoduls aufgerufen werden), die aber nicht pro Autorisierungsanfrage aufgerufen werden müssen.

20 25 Die SQL-Datenbank des Autorisierungsrechners (Cardholder File) wird um ein Feld "Zeitreihe" ergänzt. Dieses Feld speichert die letzten Autorisierungsanfragen zu dieser Kartennummer (Nutzungsprofil) in komprimierter Form ab. Wenn eine Autorisierungsanfrage in das System kommt, wird der komplette Datensatz der Karte aus der Datenbank geladen. Hier muß nun zusätzlich noch das Binärobject "Zeitreihe" aus der Datenbank geladen und dem NFI zugeführt werden. Das Binärobject Kartennutzungsprofil wird in einer stark komprimierten Form erzeugt, so daß es in Form eines String in der SQL-Datenbank effizient für den

-15-

Echtzeitzugriff gespeichert werden kann. Zusätzliche Rechenzeit durch das Auslesen und Wiedereinspeichern des Kartenprofils bei jeder Autorisierungsanfrage wird keinen spürbaren Rechenaufwand bedingen, da der Datensatz einer Karte sowieso bei jeder Autorisierungsanfrage ausgelesen wird.

5 Nach der Entscheidung aktualisiert das NFI die Zeitreihe um die jetzt gerade eingegangene Autorisierung. Genau wie die durch die Autorisierung aktualisierten Limits muß auch die aktualisierte Zeitreihe wieder in die Datenbank zurückgeschrieben werden.

10 Weiterhin wird die Cardholder File ergänzt um zwei Datumsfelder, je eines für "kein Referral bis" (Dieses Feld wird bei einem positiv beantworteten Referral gesetzt, um sicherzustellen, daß nicht sofort nach einer positiven ID des Karteninhabers dieser bei der nächsten Transaktion direkt wieder einen Referral erhält) und eines für "Kurzreferral bis" (bei akutem Verdacht wird dieses Datum gesetzt, um bis zu diesem Datum bei jeder Autorisierungsanfrage einen Referral zwangsweise zu erzeugen.). Diese Felder werden über das Autorisierungssystem gesetzt oder zurückgesetzt. Die Daten werden vom Autorisierungssystem an die NFI übergeben, die NFI wertet die Daten aus und entscheidet, ob ein Referral oder Decline, und gegebenenfalls ein Fall generiert werden soll. Da die NFI gegebenenfalls auch mandantenabhängige Regeln enthält, muß die NFI den Mandanten aus der Kartenummer erkennen. (Mandant ist z.B. der Kunde der Processingfirma, für welchen das Fraudprocessing durchgeführt wird)

15 20 25 Die Entwicklungskomponente ist Bestandteil des Supervisory Workflow und eine grafische Entwicklungs- und Analysesoftware, die auf Windows/NT Workstations (Clients) installiert wird. Hierbei kann es sich um vorhandene Rechner handeln, der auch für andere Aufgaben genutzt wird, oder es kann ein eigener Rechner bereitgestellt werden.

-16-

Von der Entwicklungssoftware aus kann der Entwickler das Fuzzy-Entscheidungssystem der Tandem modifizieren. Hierbei wird in keinem Fall der laufende Autorisierungsprozeß gestoppt, gestört oder verlangsamt.

5 Werden neue Betrugsprofile bekannt, so erlaubt die Entwicklungskomponente, diese durch Modifikation bekannter und Definition neuer Regeln zu berücksichtigen. Dabei werden diese neuen Regeln und modifizierten Regeln in die NFI übertragen, wo sich die neuen Regeln augenblicklich auf das Autorisierungsverhalten auswirken.

10 Alle Autorisierungsanfragen werden von der Tandem über TCP/IP an den SGI-Server übergeben. Der SGI-Server legt für jede Autorisierungsanfrage einen neuen Record an und füllt diesen mit allen erforderlichen Informationen.

15 Liegt die Fallwichtigkeit einer Autorisierungsanfrage über der Fallschwelle, so legt der SGI-Server zusätzlich einen Fall an. Ein Fall besteht aus einem Eintrag in der Falltabelle und den hierzu gehörigen Untertabellen.

Zusammengefaßt:

20 Jede von der Tandem eingehende Message beschreibt eine Autorisierungsanfrage.
Für jede Autorisierungsanfrage wird ein Record angelegt.

25 Die Fallerzeugung ist von den Referrals unabhängig, d.h. es kann ein Fall erzeugt werden, ohne daß ein Referral erzeugt wurde und es kann ein Referral erzeugt werden ohne daß ein Fall erzeugt wird.

-17-

Diese Schnittstelle ist auf Seiten der SGI-Server erstellt. Die Erzeugung der entsprechenden Einträge in den Tabellen des SGI-Servers ebenfalls.

Zur Nachbearbeitung der möglichen Betrugsfälle und Referrals dient der
5 Investigation Workflow. Hierbei wird für die Fallsortierung die von der NFI ermittelte Fallwichtigkeit zugrundegelegt. Ob oder ob nicht für diese Autorisierungsanfrage ein Referral generiert wurde, ist für die Generierung eines Falles unerheblich. Die Fallgenerierung arbeitet mit einer eigenen Entscheidungslogik, die auch Regeln abweichend von den Betrugsregeln enthalten
10 kann. Hierdurch lassen sich Präventionsstrategien sozusagen "erstmal im Trockenen" ausprobieren. Damit können im Investigation Workflow auch solche Fälle nachverfolgt werden, bei denen der Verdacht nicht für eine Referralgenerierung ausgereicht hat.

15 Komprimierte Speicherung der Autorisierungshistorie ("Zeitreihe")

Die NFI arbeitet mit neuronalen Modellen, die auf der Analyse früherer Transaktionen beruhen.

20 Problem einer solchen Analyse ist, daß während der Bearbeitung einer Autorisierungsanfrage keine Abfrage und Analyse vergangener Transaktionen in Echtzeit möglich ist. Daher muß die NFI eine Kurzhistorie in einem Ringpuffer zwischenspeichern. (Ein Ringpuffer ist ein Speicher mit einer festen Anzahl von Plätzen, die hintereinander geschaltet sind. Jedes neu gespeicherte Objekt wird
25 "vorne" in den Ringpuffer hineingeschoben, was alle bereits im Ringpuffer befindlichen Objekte je eine Position weiterschiebt. Das Objekt auf dem letzten Platz fällt dabei völlig aus dem Ringpuffer heraus.) Besonders wichtig ist hier, daß diese Zeitreihe so wenig Speicherplatz wie möglich erfordert (jedes Byte pro Karte ergibt einen Nettospeicherplatzbedarf von ungefähr 7 Megabyte in der

-18-

Datenbank des Autorisierungsrechners), und so schnell und effizient wie möglich gelesen und geschrieben werden kann.

Aus diesem Grunde basiert die Zeitreihenbildung auf einem Algorithmus, der diesen Ringpuffer so erzeugt und aktualisiert, daß dieser effizient zu speichern und zu berechnen ist. Zur Speicherung wird eine komprimierte Speicherung im umgewandelten Ganzzahlformat verwendet.

Die Zeitreiheninformation stellt dabei z.B. eine verdichtete Historie der letzten 15 Autorisierungsanfragen dar, die eine Berechnung von dynamischen Kriterien (Ausschöpfung, Panik, Tankstellennutzung,...) ermöglicht. Die Zeitreiheninformation erlaubt zudem die Ermittlung von aggregierten Größen wie: Durchschnittliche Einkaufshöhe, Anteil Cashing, Anteil Ausland, Anteil Reisekostennutzung, wann wurde zum letzten Mal ein Referral ausgesprochen und wann wurde zum letzten Mal ein Referral beantwortet.

Da die Zeitreiheninformation 15 mal (für jede Autorisierungsanfrage im Ringpuffer) abgespeichert werden muß, ist hier eine Komprimierung der Information besonders wichtig.

Da in der Datenbank das Profil als Binärobject (Stringformat) abgespeichert wird, können die einzelnen Teilinformationen jeder Transaktion im Ringpuffer als Ganzzahlen beliebiger Bitlänge codiert werden. Es wurde allerdings eine sinnvolle Aufteilung einzelner Bitlängen auf die Bytes des Stringformats gewählt, damit die Berechnung und Aktualisierung der Profile nicht zu rechenaufwendig wird. Hierdurch ist nicht immer "auf Bit genau" die kürzestmögliche Speicherform gewählt, sondern es ergibt sich ein Kompromiß aus Speicherplatzbedarfminimierung und Rechenperformancemaximierung.

-19-

Zu den gespeicherten Feldern im einzelnen:

- Datum

5 Die Abspeicherung des Datums im Minutenformat ermöglicht das einfache Berechnen von Zeitdifferenzen im Ganzzahlarithmetik einer 16-bit Zahl (mit 16-Bit Minutenauflösung lassen sich maximal 45 Tage darstellen, was für die Berechnung von Zeitdifferenzen im Profil ausreicht).

10 Die bei Subtraktionen solcher Minutenwerte resultierenden 16-Bit Werte für die Zeitdifferenzen werden direkt ohne rechenaufwendige Umskalierungen als Eingangsgrößen der NFI verwendet.

15 Mit der maximalen Speicherlänge des Minutendatums nach Stichtag von 24 Bit muß allerdings ein Reset der Profilinformationen alle 31 Jahre erfolgen.

Ist dieser Eintrag "Datum" gleich "0", so bedeutet das, daß dieser Eintrag im Ringpuffer noch nicht verwendet ist.

20 - Betrag

Muß durch 10 dividiert werden, um den Euro-Betrag zu ergeben. Hierdurch ergibt sich eine optimierte Ausschöpfung des 20 bit Zahlenbereiches.

25 Betragsabweichungen unter Euro 0,10 sind für die Mißbrauchsprävention unerheblich, und der maximale darstellbare Betrag von über Euro 100.000,00 ist auch ausreichend. Angefragte Werte über Euro 100.000,00 werden auf Euro 100.000,00 im Ringpuffer abgeschnitten.

- MCC

-20-

Enthält den Branchencodes des Vertragspartners, der die Autorisierung angefragt hat.

5 ICA

Beschreibt alle Issues anhand ihrer ICA-Nummern.

Country Code

10 Für die Zeitreihenbetrachtungen reicht der Country Code zur Herkunftsbestimmung aus. Dieser ist maximal dreistellig, daher reichen 10 bit zur Darstellung aus (nach MC Quick Reference Booklet, Oktober 97).

15 - POS

Nimmt die 5 möglichen POS Entry Modes auf. Zwar würden 3 bit ausreichen, um die 5 möglichen POS Entry Modes darzustellen, doch bietet die Darstellung in 4 bit rechnerische Vorteile.

20

- Status

25 Status beschreibt beispielsweise, ob das Verfallsdatum falsch war, oder ob ein CVC Problem aufgetreten ist, etc.. (Auf der Magnetkarte ist die Kartennummer um einen dreistelligen Code (CVC-1) erweitert. Dieser dreistellige Code ist nicht errechenbar. Damit ist über diese Prüfung eine recht gute Identifikation einer echten Karte möglich.) Hierdurch ist gewährleistet, daß auch nichtautorisierte Anfragen in dem Profil berücksichtigt werden können.

-21-

Fraud Supervisory Workflow

Der Fraud Supervisory Workflow umfaßt alle Werkzeuge, die verwendet werden,
5 um die Entscheidungslogik zu kontrollieren und zu warten. Im einzelnen sind
dies die Module:

- Online Data Mining Modul
- 10 Zur systematischen Erkennung neuer Mißbrauchsmuster, sowie zur
kontinuierlichen Prüfung der Treffsicherheit aktuell definierter
Entscheidungsregeln.
- Entscheidungslogik
- 15 In diesem Modul werden die Entscheidungskomponenten entwickelt, überwacht
und gesteuert.
- Analyse-NFI
- 20 Die Analyse-NFI dient dem Test neuer Entscheidungslogiken an
Vergangenheitsszenarien.

Online Data Mining Modul (ODMM)

25 Das Online Data Mining Modul besteht sowohl aus einer Serverkomponente auf
dem SQL-Server als auch aus einer Clientkomponente auf PC. Die
Clientkomponente arbeitet mit dem Server über Pass-Through Queries und
verknüpfte Tabellen zusammen.

-22-

Das ODMM arbeitet mit den Tabellen, in denen die für die Analysen erforderlichen Autorisierungsanfragen und Fälle abgelegt sind.

5 Der ODMM Client erhält folgende Informationen zu jeder Transaktion:

- Kartennummer (Zusammen mit Datum und Zeit der Transaktion dient diese Information

10 der eindeutigen Zuordnung jeder Transaktion (Schlüssel). Da zu einer Transaktion

 mehrere Ereignisse (zum Beispiel mehrere Autorisierungsanfragen, Mißbrauchs-

 meldungen, beantwortete Referrals, etc.) gehören können, die zu unterschiedlichen Zeiten

15 stattfinden können, wird hier immer das früheste Datum eingesetzt. Dies entspricht

 der Logik, daß die zu dieser Transaktion gehörenden Ereignisse sich alle auf den ersten Zahlungswunsch beziehen, der im System bekannt geworden ist.

20 - Datum und Zeit der Transaktion

 - Betrag in Euro

25 - Typ der Transaktion (autorisierte oder nichtautorisierte Transaktion; bei nicht-autorisierten Transaktionen liegt beispielsweise keine Autorisierungsanfrage vor, jedoch kann beispielsweise ein Posting und eine Mißbrauchsmeldung vorliegen)

 - Mißbrauch (ist Mißbrauch aufgetreten?)

-23-

- Referral (ist ein Referral generiert worden, wenn ja, wie beantwortet)
- Informationen aus der Autorisierungsanfrage oder dem Posting (Branchencode, Country Code Herkunft, POS Entry)

5

- Zufallszahl (Auswahl einer Stichprobenmenge)

Die Tabellen, die diese Informationen liefern, werden von den ODMM Clients über Pass Through Queries abgefragt.

10

Der Server ordnet im Nachhinein eintreffende Mißbrauchsmeldungen zu bereits in der Tabelle TRX eingetragenen Transaktionen zu. Ebenfalls werden die Ergebnisse für die statistische Komponente aktualisiert.

15

- Rasterfahndung

20

Die Rasterfahndung läuft als Pass-Through Query auf dem Server und generiert eine Tabelle mit Regeln, die aktuell nicht aktiviert sind und von denen es sinnvoll wäre, sie aufzunehmen. Jeder Regel ist eine Mißbrauchssumme zugeordnet, die im Untersuchungszeitraum hätte verhindert werden können, wenn diese Regel aktiv gewesen wäre. Um diese Aussage zu verifizieren, enthält jede Regel auch das Verhältnis fälschlich zu gerechtfertigt abgelehnter Autorisierungsanfragen (F/P-Rate), die Anzahl gerechtfertigter und die Anzahl nicht gerechtfertigter Referrals, welche die Beurteilung zur Aufnahme oder Ablehnung der Regel ermöglichen. Es ist möglich, die Regeln vorweg durch Angabe eines bestimmten Mißbrauchs betrags und F/P-Rate zu filtern. Bei kleineren Summen oder höheren F/P-Raten werden die gefundenen Regeln ausgeblendet. Auch die Gewichtung zwischen der Mißbrauchssumme und der F/P-Rate kann bei der Sortierung

25

-24-

eingestellt werden. Damit kann bei jeder Rasterfahndung erneut festgelegt werden, wie bedeutend jede der beiden Größen für die Untersuchung sein soll.

- Regeloptimierung

5

Die negativ beantworteten Referrals, die keinen Mißbrauch bestätigen konnten, dienen der Empfehlung zur Deaktivierung von Regeln als Grundlage. Wird ein Referral negativ beantwortet, so wird der dazugehörige Datensatz nicht mehr als Mißbrauch, sondern als gute Transaktion in die Analyse einfließen. Sollte sich 10 dann herausstellen, daß die Regel nicht genug Mißbrauch verhindert hat und zu viele gute Transaktionen verhindert hat, so wird sie zur Deaktivierung vorgeschlagen. Auch in dieser Analyse kann die Gewichtung zwischen der Mißbrauchssumme und der F/P-Rate eingestellt werden. Damit kann auch hier bei jeder Rasterfahndung erneut festgelegt werden, wie bedeutend jede der beiden 15 Größen für die Untersuchung sein soll.

Entscheidungslogik

20

Der Zugriff auf die Entscheidungslogik erfolgt über den Fraud Supervisory Workflow:

25

Der Block "Fraud Supervisory Workflow" stellt die PC-Netzwerke im Stab-SI dar. Diese verwalten beliebig viele Entscheidungslogiken, sei es zur Archivierung als auch als Zwischenstände der Entwicklung. (Die eigentlichen Daten für die Entscheidungslogiken werden zentral auf dem SGI-Server gespeichert, so daß alle Fraud-Analysten hierauf Zugriff haben. Der Zugriff auf diese Entscheidungslogiken erfolgt durch die PC mit der "Fraud Supervisory Workflow" Software.) Jede der Entscheidungslogiken besteht aus den drei

-25-

Komponenten Listen, Zeitreihe und Regeln. Durch Druck auf die jeweilige Taste öffnen sich die entsprechenden Editoren für die Komponenten.

5 Im Produktivbetrieb läuft immer die Entscheidungslogik "Betrieb". Durch Druck der Taste [übertragen] wird die aktuell im PC entwickelte Entscheidungslogik "Betrieb" auf die Tandem übertragen und aktiviert.

10 Auf dem SGI-Server laufen beide Entscheidungslogiken für die Szenarienanalyse. Durch Druck der Taste [übertragen] wird die aktuell im PC entwickelte Entscheidungslogik "Test" auf die SGI-Server übertragen und aktiviert.

-26-

Vorgehensweise bei der Entwicklung

Die grundsätzliche Vorgehensweise bei der Entwicklung von Entscheidungslogiken ist die folgende. Auf dem Autorisierungsrechner läuft die Entscheidungslogik "Betrieb". Durch Drücken der Taste [übertragen] wird die Entscheidungslogik "Test" mit der Entscheidungslogik "Betrieb" überschrieben. (Hierbei handelt es sich nicht um ein physikalisches Überschreiben von der Tandem auf die SGI-Server. Die SGI-Server verfügen ebenfalls über eine Kopie der Entscheidungslogik, wodurch das Überschreiben direkt auf den SGI-Servern 5 ausgeführt wird.)
10

Hierdurch kann nun die Entscheidungslogik "Test" auf dem PC modifiziert werden und mit Hilfe der Analyse-NFI erfolgt der Test von Modifikationen durch direkten Vergleich des "Test"-Systems mit dem "Betriebs"-System.

15 Sind die an der Entscheidungslogik "Test" durchgeführten Modifikationen erfolgreich, so wird durch Drücken der Taste [übertragen] die Entscheidungslogik "Test" mit der Entscheidungslogik "Betrieb" überschrieben. Nachdem die neue Entscheidungslogik in Betrieb gegangen ist, fängt die Vorgehensweise erneut an.
20

Jede neue Transaktion wird von der NFI-Maschine mit einer Fallwürdigkeitsbeurteilung versehen. Ein Hilfsmodul kennzeichnet eine Transaktion als Fall, wenn sie ein Fallkriterium erfüllt (MCC, ICA, CNT, POS, Betragsklasse, Fallwürdigkeit).

25 Wie weit die Historie der Transaktionen und Postings eines Vorgangs zurückgeht, kann wahlweise bestimmt werden. Als sinnvoll wird ein Zeitraum von 4-6 Wochen erachtet.

-27-

Gehört eine Transaktion zu einer Kategorie aller möglichen Fälle, so wird ein neuer Record in der Investigation Workflow eigenen Tabelle angelegt. Dieser Record enthält folgende Einzelinformationen:

- 5 - Kartennummer
- Transaktionsdaten (Datum/Uhrzeit, MCC, CNT, ICA, POS, Betrag,)
- Fallstatus (ist der Fall neu oder wurde er abgeschlossen)
- Fallwichtigkeit (die Fallwichtigkeit FW stellt den NFI-Score dar)
- Fallklasse (Die Fallklasse gibt an, warum eine Transaktion zu einem
- 10 Nachbearbeitungs-
 fall geworden ist bzw. zu welcher Kategorie die Transaktion gehört. Die
 Kennung
 beinhaltet folglich Angaben über MCC, ICA, CNT, POS, Betragsklasse, FW.)
- Benutzername
- 15 - Wiedervorlagedatum
- Close-Status (Der Close-Status eines Falls gibt Auskunft über das Ergebnis der
 Bear-
 beitung nach Schließen des Falls und kann folgende Information enthalten: "Kein
 Betrug"
 oder "kein Betrug geschätzt", "Betugsbestätigung unmöglich" oder "Betrug"
 oder
 "Betrug geschätzt".)
- 20 Die Kartennummer ist das Bindeglied (Zeiger) zu den vergangenen Transaktionen
25 mit derselben Kartennummer auf dem DBMS des SGI-Servers. Zusammen mit
 den Stammdaten der Kartennummer sind alle Daten für den Fraud Investigation
 Workflow vollständig.

Eingangsgrößen der NFI

-28-

Die NFI wird über ein Tokenprotokoll in den Ablauf der Autorisierung integriert. Hieraus entnimmt die NFI alle Eingangsgrößen sowie die Zeitreihe als Binärdatenobjekt (String).

5

Als Sonderform der Autorisierungen hat die NFI die Nachrichten über eine Referralsperre oder ein Referral_bis zu interpretieren.

Referral_bis: Der Parameter Referral_bis (Kurzreferral) wird bei
10 Mißbrauchsverdacht zur Verhinderung von Genehmigungen benutzt. Es wird manuell mittels einer Autorisierung aktiviert.

Die NFI speichert das Referral_bis Datum im Kartenprofil ab und überprüft bei der Autorisierung, ob das Transaktionsdatum kleiner dem Referral_bis Datum ist.
15 Ist dies der Fall, wird immer ein Referral von der NFI generiert.

Das Referral_bis Parameter wird zur Analyse und Rekonstruktion als Bestandteil des Transaktionsdatensatzes über die TCP/IP-Schnittstelle zum SGI-Rechner übertragen.

20 Referralsperre: Die Referralsperre wird dazu benutzt, nach einer positiven Identifikation oder nach Sichtung der vergangenen Transaktionen die weitere Auslösung von Referrals zu unterbinden. Die Referralsperre kann die Zustände "gültig" oder "nicht gültig" annehmen. Ist sie "gültig", so wird ein vorher eingestellter Parameter, der einen festen Offset vom aktuellen Transaktionsdatum (zum Beispiel Transaktionsdatum + 3 Tage) angibt, aktiviert. Die Referralsperre ist immer in Form des Datums gegeben, bis zu dem sie gehen soll. Es kann ja nur zum aktuellen Zeitpunkt bestimmt werden, ob die Sperre damit gültig ist oder nicht.
25

-29-

Die Referralsperre kann einerseits vom Investigation Workflow aus aktiviert werden. Andererseits kann die Referralsperre auch indirekt vom Genehmigungsservice ausgelöst werden, wenn nach einem Referral eine positive Identitäts-Überprüfung stattgefunden hat. Nach einer positiven Identitäts-Überprüfung wird vom Genehmigungsdienst eine Transaktion ausgelöst, die in der NFI verarbeitet wird. Die NFI schreibt die aktuelle Referralsperre in die Cardholder File auf dem Autorisierungsrechner.

5

Der Fall, daß sowohl eine Referralsperre als auch das Referral_bis Datum gültig ist, muß vermieden werden. Daher wird beim Setzen eines Wertes (zum Beispiel Referral_bis) der jeweils andere gelöscht (zum Beispiel Referralsperre).

10

Interne Ausgangsgrößen

15

Liegen alle Eingangsgrößen vor, die von der NFI verwendet werden, so erzeugt die NFI intern 6 Ausgangsgrößen:

1. Limit
20 2. RiskScore
3. Fallwichtigkeit
4. Fallschwelle
5. Fallbegründung
6. Decline

25 Hierbei stellt Limit direkt das transaktionsindividuelle Limit für die aktuelle Autorisierungsanfrage dar. Dieses transaktionsindividuelle Limit wird durch den RiskScore als Malus vermindert ("gleitendes Transaktionslimit").

-30-

Die NFI entscheidet nun durch einfachen Vergleich, ob ein Referral erzeugt werden soll oder nicht. Ein Referral wird immer dann erzeugt, wenn der zur Autorisierung angefragte Betrag über dem transaktionsindividuellen Limit liegt. Durch die Größen "Referralsperre" und "Referral_bis" kann die Entscheidung der NFI modifiziert werden.

5

Die weiteren drei Größen stellen die Entscheidung der NFI bezüglich der Fallgenerierung dar. Die Fallwichtigkeit stellt dar, in zu welchem Grade die aktuelle Autorisierungsanfrage als Fall erzeugt werden soll. Liegt dieser Wert über der Fallschwelle, so wird für die Autorisierung ein Fall erzeugt. Zusätzlich wird als Begründung der Entscheidung, einen Fall aus dieser Autorisierungsnachricht zu generieren, ein Text "Fallklasse" erzeugt, der die Verdachtsart mit Worten beschreibt. Diese Beschreibung wird von den Mitarbeitern des Investigation Workflow genutzt, um eine gezielte Ermittlungsarbeit durchführen zu können.

10

Diese Ausgangsgrößen der NFI werden direkt mit der gesamten Information zu der Autorisierung an die Autorisierungsanfrage übertragen. Die bestehende Software zur Autorisierung bearbeitet diese Information dann weiter.

15

Nach der Berechnung der NFI übergibt die NFI an das System die aktualisierte Zeitreihe. Das System speichert diese in der Cardholder File, um sie bei der nächsten Autorisierungsanfrage dieser Kartennummer wieder an die NFI zu übergeben.

20

Die eigentlichen Entscheidungsregeln der NFI werden in einer Datei auf dem Autorisierungsrechner abgelegt. Diese Datei wird von dem Entwicklungswerkzeug auf dem PC erzeugt.

25

-31-

Im folgenden wird die Entscheidungslogik näher erläutert. Dabei werden folgende Abkürzungen verwendet:

Tabelle 1

5

	AvailBal	Noch verfügbarer Betrag auf der Karte in Euro
10	Betrag	Betrag, der zur Autorisierung angefragt wird (in Euro)
	BranchenCode	Einzelne Branchencodes
	Branchenklasse	Klasse der Branche, zu der der VP gehört
15	CountryCode	Ländercode aus der Autorisierungsnachricht
	CurrencyCode	Währungscode aus Autorisierungsnachricht
	GAC	Action Code aus Listendefinition
	ICA_BIN	Herkunft der Transaktion
20	Inanspruchnahme	Noch zu definieren!
	Kartenalter	Alter der Karte in Tagen gemessen an der Zeit, die seit "gültig ab neu" vergangen ist
	Kartenlimit	Limit der Karte in Euro
25	KI_Range	Zugehörigkeit der Kartensummer zu Ranges, die als Liste definiert sind
	letzte Antwort	Wie lange ist der letzte beantwortete Referral/Callme her?

-32-

	letzte GAA	Zeit, die seit der letzten GAA-Abhebung vergangen ist
	letzter Referral	Wie lange ist der letzte Referral/Callme her?
5	Mandant	Identifikation des Mandanten
	Merchant_ID	Merchant ID aus Listendefinition
	Panikfaktor	ist noch zu definieren!
10	POS_Eingabe	Eingabeart der Autorisierungsanfrage
	Terminal_ID	Terminal ID aus Listendefinition
	Z01	Eingangsvariable des Zählers XXXX
	Z02	Eingangsvariable des Zählers XXXX
15	Z03	Eingangsvariable des Zählers XXXX
	Z04	Eingangsvariable des Zählers XXXX
	Z05	Eingangsvariable des Zählers XXXX
	Z06	Eingangsvariable des Zählers XXXX
20	Z07	Eingangsvariable des Zählers XXXX
	Z08	Eingangsvariable des Zählers XXXX
	Z09	Eingangsvariable des Zählers XXXX
	Z10	Eingangsvariable des Zählers XXXX
25	Z11	Eingangsvariable des Zählers XXXX
	Z12	Eingangsvariable des Zählers XXXX
	Zeitreihenlänge	Zahl der aktuell in der Zeitreihe

-33-

	gespeicherten Autorisierungsanfragen
5	Decline Erzeugen eines "harten" Declines
10	Fallklasse Erklärung, welche Fraud Supervisory and Fraud Investigation "übergibt", um darzustellen, warum gerade dieser Fall erzeugt wurde
15	Fallschwelle Dies ist die Möglichkeit, in fuzzyTECH "variabel" eine Schwelle für die Fallgenerierung zu definieren
20	Fallwichtigkeit Grad, in dem die aktuelle Autorisierungsanfrage als "fallwürdig" betrachtet wird
25	GansLimit Transaktionslimit (nach Benutzerregeln bestimmt (in Euro))
	RisikoScore Risikoscore, der zur Bestimmung des "Malus" bei dem gleitenden Transaktionslimit zugrundegelegt wird
30	Regel-Limit Transaktionslimit (nach Benutzerregeln bestimmt)
	Berechne MBF Berechne Membership Funtion (Fuzzifizierungsmethode)

-34-

	CoM	Center of Maximum (Defuzzifizierungsmethode)
5	MoM	Mean of Maximum (Defuzzifizierungsmethode)
	Vorgabe	Setzen einer Prozeßvariablen (Visualisierungsinterface)
10	BSUM	Bounded Sum - Operator zur Berechnung der Ergebnis- aggregation
	MIN	Minimum-Operator (UND-Aggregation)
	MAX	Maximum-Operator (ODER-Aggregation)
15	GAMMA	Kompensatorischer Operator für die Aggregation
	PROD	Fuzzy Operator für die Komposition
	LV	Linguistische Variable
20	MBF	Zugehörigkeitsfunktion (Membership Function)
	RB	Regelblock

25 Die Systemstruktur beschreibt den Datenfluß in dem Fuzzysystem.
 Eingangsinterfaces fuzzifizieren die Eingangsgrößen. Hierbei werden Analogwerte in Zugehörigkeitsgrade umgesetzt. Dem Fuzzifizieren schließt sich die Fuzzy-Inferenz an: Mit in Regelblöcken festgelegten "wenn-dann" Regeln werden durch die Eingangsgrößen sprachlich beschriebene Ausgangsgrößen

-35-

festgelegt. Diese werden in den Ausgangsinterfaces durch eine Defuzzifizierung in analoge Größen umgewandelt.

Die Figur 5 zeigt die Struktur für dieses Fuzzysystem mit Eingangsinterfaces,
5 Regelblöcken und Ausgangsinterfaces. Die Verbindungslien symbolisieren
hierbei den Datenfluß.

-36-

Linguistische Variablen dienen in einem Fuzzysystem dazu, die Werte kontinuierlicher Größen durch sprachliche Begriffe zu beschreiben. Die möglichen Werte einer linguistischen Variablen sind keine Zahlen, sondern sprachliche Begriffe, auch Terme genannt.

5

Für alle Eingangs-, Ausgangs- und Zwischengrößen des Fuzzy-Systems werden linguistische Variablen definiert. Die Zugehörigkeitsfunktionen der Terme sind durch Stützstellen, die sogenannten Definitionspunkte, eindeutig festgelegt.

10

Die folgende Tabelle listet alle linguistischen Variablen zusammen mit den Termnamen auf.

-37-

Tabelle 2: Linguistische Variablen

	AvailBal	niedrig, mittel, hoch
5	Betrag	niedrig, mittel, größer_1000, hoch
10	BranchenCode	FlugAllg, Kaufhaus, Pelze, Teppiche, Schallplatten, Nacht- lokale, Waffensprot, Juwelier, Foto, Leder, alle Banking, HotelAllg, alle5erMCC, Massage, AutoAllg, FunFreizeit
15	Branchenklasse	Hotel, Airlines, Auto, Buiz_serv, Car_rentals, Cashing, Clothing, contrctd_services, mail_order, misc_store, nicht5311, pers_services, retail, services, transportation, utilities, -cashing
20	CountryCode	Ägypten, Brasilien, Ecuador, Hongkong, Indonesien, Israel, Kolumbien, Malaysia, Marokko, Mexiko, Singapur, Thailand, Türkei, Venezuela, Kanada
25	CurrencyCode	f_franç, drachme, forinth, gulden, i_lira, peseta, pfund
	GAC	bad_cvc
	ICA_BIN	Visa_quer, mexiko_spezial, -

-38-

	mexiko_spezial
5	Inanspruchnahme niedrig, mittel, hoch
	Kartenalter sehr_neu, neu, alt
	Kartenlimit niedrig, mittel, hoch
	KI_Range kein_range, fraud_nz, alle_anderen
10	letzte Antwort gerade_erst, v_lang_her
	letzte GAA gerade_erst, mittel, lang_her
	letzter Referral gerade_erst, v_lang_her
	Mandant kein_mandant, gzs, airplus
	Merchant_ID wempe
15	Panikfaktor niedrig, mittel, hoch
	POS_Eingabe unbekannt, unbek_o_manuell, manuell, gelesen, electr_commerce, gelesen_geprüft
20	Terminal_ID krimin_figaro
	Z01 mehr_als_vier
	Z02 mehr_als_vier
	Z03 mehr_als_vier
25	Z04 mehr_als_vier
	Z05 mehr_als_vier
	Z06 mehr_als_vier
	Z07 mehr_als_vier

-39-

	Z08	mehr_als_vier
	Z09	mehr_als_vier
5	Z10	mehr_als_vier
	Z11	mehr_als_vier
	Z12	mehr_als_vier
	Zeitreihenlänge	hoch
10	Decline	kein_decline, decline
	Fallklasse	counterfeit, hongkong, cvc_queue, ungarn, watchlist, juweliere
	Fallwichtigkeit	unverdächtig, mittel, verdächtig
15	Limit	_0,_100,_250,_500,_1000,_2500,_7500
	RisikoScore	unverdächtig, mittel, verdächtig
	Profil	unverdächtig, riskant
20	Regel-Limit	_0,_100,_250,_500,_1000,_2500,_7500

Die Eigenschaften der Basisvariablen sind in der folgenden Tabelle aufgelistet.

Tabelle 3: Basisvariablen

25

Variablenname	Min	Max	Default	Einheit
AvailBal	0	20000	0	Euro

-40-

	Betrag	0	20000	0	Euro
5	BranchenCode	0	9999	0	MCC
	Branchenklasse	0	32	0	Codewert_Liste
	CountryCode	0	999	0	CC_Schlüssel
	CurrencyCode	0	999	0	CC_Schlüssel
10	GAC	0	32	0	Codewert_Liste
	ICA_BIN	0	32	0	Codewert_Liste
	Inanspruch-nahme	0	100	0	Prozent
	Kartenalter	0	100	0	Tage
15	Kartenlimit	0	20000	0	Euro
	KI_Range	0	32	0	Codewert_Liste
	letzte Antwort	0	45	45	Tage
	letzte GAA	0	45	0	Tage
20	letzter Referral	0	45	45	Tage
	Mandant	0	32	0	Codewert_Liste
	Merchant_ID	0	32	0	Codewert_Liste
	Panikfaktor	0	100	0	Prozent
25	POS_Eingabe	0	32	0	POS_Entry_Mode
	Terminal_ID	0	32	0	Codewert_Liste

-41-

	Z01	0	32	0	Anzahl
	Z02	0	32	0	Anzahl
	Z03	0	32	0	Anzahl
5	Z04	0	32	0	Anzahl
	Z05	0	32	0	Anzahl
	Z06	0	32	0	Anzahl
	Z07	0	32	0	Anzahl
10	Z08	0	32	0	Anzahl
	Z09	0	32	0	Anzahl
	Z10	0	32	0	Anzahl
15	Z11	0	32	0	Anzahl
	Z12	0	32	0	Anzahl
	Zeitreihenlänge	0	32	0	AutoriAnfragen
	Decline	0	1	0	-
20	Fallklasse	0	32	0	Codewert_Liste
	Fallschwelle	0	1000	750	Schwelle
	Fallwichtigkeit	0	1000	0	Promille
25	Limit	0	30000	0	Euro
	RisikoScore	0	1000	0	Promille

Der Defaultwert wird von der Ausgangsvariablen angenommen, wenn für diese Variable keine Regel feuert. Für die Defuzzifizierung können unterschiedliche

-42-

Methoden eingesetzt werden, die entweder das "plausibelste Resultat" oder den "besten" Kompromiß liefern.

Zu den kompromißbildenden Verfahren gehören:

CoM (Center of Maximum)

5 CoA (Center of Area)

CoA BSUM, eine Variante für effiziente VLSI-Implementierungen

Das "plausibelste Resultat" liefern:

10 MoM (Mean of Maximum)

MoM BSUM, eine Variante für effiziente VLSI-Implementierungen

Die folgende Tabelle listet alle mit einem Interface verknüpften Variablen auf, sowie die entsprechende Fuzzifizierungs- bzw. Defuzzifizierungsmethode.

15

Tabelle 4: Interfaces

20

25

Variablenname	Typ	Fuzzifizierung/ Defuzzifizierung
AvailBal	Eingang	Berechne MBF
Betrag	Eingang	Berechne MBF
BranchenCode	Eingang	Berechne MBF
Branchenklasse	Eingang	Berechne MBF
CountryCode	Eingang	Berechne MBF
CurrencyCode	Eingang	Berechne MBF

-43-

	GAC	Eingang	Berechne MBF
	ICA_BIN	Eingang	Berechne MBF
	Inanspruchnahme	Eingang	Berechne MBF
5	Kartenalter	Eingang	Berechne MBF
	Kartenlimit	Eingang	Berechne MBF
	KI_Range	Eingang	Berechne MBF
10	letzte Antwort	Eingang	Berechne MBF
	letzte GAA	Eingang	Berechne MBF
	letzter Referral	Eingang	Berechne MBF
	Mandant	Eingang	Berechne MBF
15	Merchant_ID	Eingang	Berechne MBF
	Panikfaktor	Eingang	Berechne MBF
	POS_Eingabe	Eingang	Berechne MBF
	Terminal_ID	Eingang	Berechne MBF
20	Z01	Eingang	Berechne MBF
	Z02	Eingang	Berechne MBF
	Z03	Eingang	Berechne MBF
	Z04	Eingang	Berechne MBF
25	Z05	Eingang	Berechne MBF
	Z06	Eingang	Berechne MBF
	Z07	Eingang	Berechne MBF

-44-

	Z08	Eingang	Berechne MBF
	Z09	Eingang	Berechne MBF
5	Z10	Eingang	Berechne MBF
	Z11	Eingang	Berechne MBF
	Z12	Eingang	Berechne MBF
	Zeitreihenlänge	Eingang	Berechne MBF
10	Decline	Ausgang	MoM
	Fallklasse	Ausgang	MoM
	Fallschwelle	Ausgang	Vorgabe
	Fallwichtigkeit	Ausgang	CoM
15	Limit	Ausgang	MoM
	RisikoScore	Ausgang	CoM

Regelblöcke

20 Das Verhalten des Reglers in den verschiedenen Prozeßsituationen wird durch die Regelblöcke festgelegt. Jeder einzelne Regelblock enthält Regeln für einen festen Satz von Eingangs- und Ausgangsvariablen.

25 Der "wenn"-Teil der Regeln beschreibt dabei die Situation, in der die Regel gelten soll, der "dann"-Teil die Reaktion hierauf. Durch den "Degree of Support" (DoS) kann hierbei den einzelnen Regeln ein unterschiedliches Gewicht gegeben werden.

-45-

Zur Auswertung der Regeln wird zuerst der "wenn"-Teil berechnet. Hierbei können verschiedene Verfahren eingesetzt werden, die durch den Operatortyp des Regelblocks festgelegt sind. Der Operator kann vom Typ MIN-MAX, MIN-AVG oder GAMMA sein. Das Verhalten des Operators wird zusätzlich durch eine
5 Parametrisierung beeinflußt.

Beispielsweise:

MIN-MAX, mit dem Parameterwert 0 = Minimum-Operator (MIN).

10 MIN-MAX, mit dem Parameterwert 1 = Maximum-Operator (MAX).

GAMMA, mit dem Parameterwert 0 = Produkt-Operator (PROD).

Der Minimum-Operator ist die Verallgemeinerung des boolschen "und" und der Maximum-Operator ist die Verallgemeinerung des boolschen "oder".

15 Die Ergebnisse der einzelnen Regeln werden bei der anschließenden Fuzzy-Composition zu Gesamtschlußfolgerungen zusammengefaßt. Die BSUM-Methode betrachtet hierbei alle für einen Zustand feuernden Regeln, während die MAX-Methode nur dominante Regeln berücksichtigt.

20

A N S P R Ü C H E

1. Auf einem Rechner realisiertes Verfahren zum Identifizieren und
5 Ermitteln betrügerischer Transaktionsdaten in einem rechnergesteuerten
Transaktionsverarbeitungssystem mit einem Vorhersagemodell zum Empfangen
aktueller Transaktionsdaten, Verarbeiten der aktuellen Transaktionsdaten und
Ausgeben wenigstens eines Ausgangswertes, der eine Wahrscheinlichkeit einer
betrügerischen Transaktion wiedergibt, bei dem auf Grundlage gespeicherter
10 Daten zu

- einer Zeitreihenanalyse früherer Transaktionen bezüglich des gleichen Zahlungsmittels bzw. Benutzers und
- Expertenregeln hinsichtlich bei betrügerischen Transaktionen statistisch signifikant gehäuft auftretenden Parametern, insbesondere bezüglich der Herkunft des Zahlungsmittels/Benutzers, der Branche und der Person des durch die Transaktion Begünstigten, sowie Höhe bzw. Wert der Transaktion, mittels des Vorhersagemodells die Bewertung hinsichtlich des Risikos erfolgt, daß die aktuelle Transaktion betrügerisch ist, und ein entsprechender Ausgangswert erzeugt wird,

15 dadurch gekennzeichnet, daß das Prädiktionsmodell ein im wesentlichen auf den Expertenregeln basierendes, für die Art der Transaktion, spezifisches Limit mit einem im wesentlichen auf der Zeitreihenanalyse basierenden für die aktuelle Transaktion spezifischen Wert kombiniert, um den Ausgangswert zu erzeugen,
20 wobei die Kombination gleitend erfolgt, so daß je nach Stärke des Mißbrauchsverdachts verschiedene Ausgangswerte erzeugt werden können, die zur Auslösung unterschiedlicher Reaktionen auf der aktuellen Transaktionsanfrage benutzt werden können.

25

-47-

2. Verfahren nach Anspruch 1, bei dem die Zeitreihenanalyse in Form von Fuzzy-Logik-Regeln implementiert ist.

3. Verfahren nach Anspruch 1 oder 2, bei dem die Expertenregeln in Form von Fuzzy-Logik-Regeln implementiert sind.
5

THIS PAGE BLANK (USPTO)

1 / 3

FIG.1***FIG.2***

THIS PAGE BLANK (USPTO)

2 / 3

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

TRANSLATION OF INTERNATIONAL APPLICATION

Country Legal
Fraudulent Transaction Processing
Project Manager Specialist
(+31) 306 3653

CLAIMS

1. A method which is implemented on a computer and which is provided for identifying and determining fraudulent transaction data in a computer-controlled transaction processing system comprising a prediction model for receiving current transaction data, for processing the current transaction data, and for outputting at least one output value that depicts a probability of a fraudulent transaction, wherein, on the basis of stored data, for

- a time series analysis of earlier transactions with respect to the same means of payment or user, and
- expert rules concerning parameters which occur in a statistically significant cumulative manner during fraudulent transactions, especially with respect to the origin of the means of payment/user, to the branch and to the beneficiary of the transaction, as well as to the magnitude or value of the transaction, the evaluation is carried out by means of the prediction model with respect to the risk of the current transaction being fraudulent, and a corresponding output value is generated,

wherein the prediction model combines a limit, which is essentially based on the expert rules and which is specific for the type of transaction, with a value, which is essentially based on the time series analysis and which is specific for the current transaction, in order to generate the output value,

the combination being carried out in a floating manner so that output values can be generated which vary according to the extent of the suspicion of misuse and which can be used to initiate different reactions to the current transaction request.

2. The method according to claim 1, wherein the time series analysis is implemented in the form of fuzzy logic rules.

3. The method according to claim 1 or 2, wherein the expert rules are implemented in the form of fuzzy logic rules.

THIS PAGE BLANK (USPTO)

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Welt Organisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
15. März 2001 (15.03.2001)

PCT

(10) Internationale Veröffentlichungsnummer
WO 01/18755 A3

(51) Internationale Patentklassifikation⁷:

G07F 7/08

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): **GZS GESELLSCHAFT FÜR ZAHLUNGSSYSTEME MBH [DE/DE]**; Konrad-Adenauer-Allee 1, 61118 Bad Vilbel (DE). **INFORM GMBH [DE/DE]**; Pascalstrasse 23, 52076 Aachen (DE).

(21) Internationales Aktenzeichen:

PCT/EP00/08516

(22) Internationales Anmeldedatum:

31. August 2000 (31.08.2000)

(72) Erfinder; und

(25) Einreichungssprache:

Deutsch

(75) Erfinder/Anmelder (nur für US): **VON ALTROCK, Constantin [DE/DE]**; Baumgartsweg 22, 52076 Aachen (DE). **HEPP, Hanns, Michael [DE/DE]**; Adolf-Guckes-Weg 1, 65817 Eppstein (DE). **PRASCHINGER, Johann [DE/DE]**; Hofhausstrasse 60, 60389 Frankfurt (DE).

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

199 41 868.3 2. September 1999 (02.09.1999) DE

[Fortsetzung auf der nächsten Seite]

(54) Title: EXPERT SYSTEM

(54) Bezeichnung: EXPERTENSYSTEM

(57) Abstract: The invention relates to a method which is implemented on a computer and which is provided for identifying and determining fraudulent transaction data in a computer controlled transaction processing system comprising a prediction model for receiving current transaction data, for processing the current transaction data, and for outputting at least one output value that depicts a probability of a fraudulent transaction. According to the invention, the prediction model is used to carry out the evaluation with regard to the risk that the current transaction is fraudulent, and a corresponding output value is generated. This evaluation is carried out using stored data of a time series analysis of earlier transactions with respect to the same means of payment or user and to expert rules concerning parameters which occur in a statistically significant cumulative manner during fraudulent transactions, especially with respect to the origin of the means of payment/user, to the branch and to the beneficiary of the transaction, as well as to the magnitude or value of the transaction. The prediction model combines a limit, which is essentially based on the expert rules and which is specific for the type of transaction, with a value, which is essentially based on the time series analysis and which is specific for the current transaction, in order to generate the output value. The combination is carried out in a floating manner so that output values can be generated which vary according to the extent of the suspicion of misuse and which can be used to initiate different reactions to the current transaction request.

WO 01/18755 A3

(57) Zusammenfassung: Die Erfindung betrifft ein auf einem Rechner realisiertes Verfahren zum Identifizieren und Ermitteln betrügerischer Transaktionsdaten in einem rechnergesteuerten Transaktionsverarbeitungssystem mit einem Vorhersagemodell zum Empfangen aktueller Transaktionsdaten, Verarbeiten der aktuellen Transaktionsdaten und Ausgeben wenigstens eines Ausgangswertes, der eine Wahrscheinlichkeit einer betrügerischen Transaktion wiedergibt, bei dem auf

[Fortsetzung auf der nächsten Seite]

(74) Anwalt: MAIWALD, Walter; Maiwald Patentanwalts
GmbH, Elisenhof, Elisenstrasse 3, 80335 München (DE).

(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
SN, TD, TG).

(81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT,
AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU,
CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

Veröffentlicht:

- Mit internationalem Recherchenbericht.
- Vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

(88) Veröffentlichungsdatum des internationalen
Recherchenberichts:

10. Mai 2001

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches
Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches
Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent

Zur Erklärung der Zweibuchstaben-Codes, und der anderen
Abkürzungen wird auf die Erklärungen ("Guidance Notes on
Codes and Abbreviations") am Anfang jeder regulären Ausgabe
der PCT-Gazette verwiesen.

Grundlage gespeicherter Daten zu einer Zeitreihenanalyse früherer Transaktionen bezüglich des gleichen Zahlungsmittels bzw. Benutzers und Expertenregeln hinsichtlich bei betrügerischen Transaktionen statistisch signifikant gehäuft auftretenden Parametern, insbesondere bezüglich der Herkunft des Zahlungsmittels/Benutzers, der Branche und der Person des durch die Transaktion Begünstigten, sowie Höhe bzw. Wert der Transaktion, mittels des Vorhersagemodells die Bewertung hinsichtlich des Risikos erfolgt, dass die aktuelle Transaktion betrügerisch ist, und ein entsprechender Ausgangswert erzeugt wird, wobei das Prädiktionsmodell ein im Wesentlichen auf den Expertenregeln basierendes, für die Art der Transaktion, spezifisches Limit mit einem im Wesentlichen auf der Zeitreihenanalyse basierenden für die aktuelle Transaktion spezifischen Wert kombiniert, um den Ausgangswert zu erzeugen, und wobei die Kombination gleitend erfolgt, so dass je nach Stärke des Missbrauchsverdachts verschiedene Ausgangswerte erzeugt werden können, die zur Auslösung unterschiedlicher Reaktionen auf der aktuellen Transaktionsanfrage benutzt werden können.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 00/08516

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G07F7/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 G07F G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98 54677 A (FAITH PATRICK L ;SIEGEL KEVIN P (US); VISA INT SERVICE ASS (US); W) 3 December 1998 (1998-12-03) page 5, line 21 -page 7, line 21 page 9, line 16 -page 17, line 2; claims; figures ---	1
X	WO 98 54667 A (BASCH CATHERINE A ;FAITH PATRICK (US); SIEGEL KEVIN (US); BRUESEWI) 3 December 1998 (1998-12-03) abstract; claims; figures ---	1
X	US 5 398 300 A (LEVEY CURT A) 14 March 1995 (1995-03-14) the whole document ---	1-3 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

28 February 2001

Date of mailing of the international search report

13/03/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Guivol, O

INTERNATIONAL SEARCH REPORT

Inte	onal Application No
PCT/EP 00/08516	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 94 06103 A (HNC INC) 17 March 1994 (1994-03-17) cited in the application page 4, line 15 -page 23, line 5; figures ----	1-3
A	FAWCETT T ET AL: "ADAPTIVE FRAUD DETECTION" JOURNAL OF DATA MINING AND KNOWLEDGE DISCOVERY, NORWELL, MA, US, vol. 1, 1997, pages 291-316, XP000826461 ISSN: 1384-5810 the whole document ----	1
A	US 5 524 176 A (LACHER ROBERT C ET AL) 4 June 1996 (1996-06-04) abstract; claims; figures ----	1-3
A	US 5 884 289 A (ANDERSON MARY E ET AL) 16 March 1999 (1999-03-16) the whole document ----	1
A	HANAGANDI V ET AL: "DENSITY-BASED CLUSTERING AND RADIAL BASIS FUNCTION MODELING TO GENERATE CREDIT CARD FRAUD SCORES" PROCEEDINGS OF THE IEEE/IAFE CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING, 24 March 1996 (1996-03-24), XP000607379 the whole document ----	1
A	MOREAU Y ET AL: "Detection of mobile phone fraud using supervised neural networks: a first prototype" PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 8 October 1997 (1997-10-08), XP002109506 the whole document ----	1
A	DORRONSORO J R ET AL: "NEURAL FRAUD DETECTION IN CREDIT CARD OPERATIONS", IEEE TRANSACTIONS ON NEURAL NETWORKS, US, IEEE INC, NEW YORK, VOL. 8, NR. 4, PAGE(S) 827-834 XP000656471 ISSN: 1045-9227 the whole document ----	1
	-/-	

INTERNATIONAL SEARCH REPORT

Inte	rnal Application No
PCT/EP 00/08516	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>DATABASE INSPEC 'Online!' INSTITUTE OF ELECTRICAL ENGINEERS, STEVENAGE, GB; GHOSH S ET AL: "Credit card fraud detection with a neural-network" Database accession no. 4695962 XP002161580 abstract & PROCEEDINGS OF THE TWENTY-SEVENTH HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES. VOL.III: INFORMATION SYSTEMS: DECISION SUPPORT AND KNOWLEDGE-BASED SYSTEMS (CAT. NO.94TH0607-2), PROCEEDINGS OF THE TWENTY-SEVENTH HAWAII INTERNATIONAL CONFERENCE 0, pages 621-630, 1994, Los Alamitos, CA, USA, IEEE Comput. Soc. Press, USA ISBN: 0-8186-5070-2</p> <p>-----</p>	1

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 00/08516

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9854677	A	03-12-1998		US 6018723 A AU 7596098 A EP 0986797 A	25-01-2000 30-12-1998 22-03-2000
WO 9854667	A	03-12-1998		US 6119103 A AU 7696798 A EP 0985189 A	12-09-2000 30-12-1998 15-03-2000
US 5398300	A	14-03-1995		EP 0468229 A JP 5151188 A	29-01-1992 18-06-1993
WO 9406103	A	17-03-1994		US 5819226 A AU 4850093 A CA 2144068 A DE 69315356 D DE 69315356 T EP 0669032 A ES 2108880 T JP 8504284 T	06-10-1998 29-03-1994 17-03-1994 02-01-1998 18-06-1998 30-08-1995 01-01-1998 07-05-1996
US 5524176	A	04-06-1996		NONE	
US 5884289	A	16-03-1999		US 6094643 A	25-07-2000

INTERNATIONALER RECHERCHENBERICHT

Int. nationales Aktenzeichen

PCT/EP 00/08516

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 7 G07F7/08

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprässtoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 G07F G06F

Recherchierte aber nicht zum Mindestprässtoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, INSPEC, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 98 54677 A (FAITH PATRICK L ;SIEGEL KEVIN P (US); VISA INT SERVICE ASS (US); W) 3. Dezember 1998 (1998-12-03) Seite 5, Zeile 21 -Seite 7, Zeile 21 Seite 9, Zeile 16 -Seite 17, Zeile 2; Ansprüche; Abbildungen ---	1
X	WO 98 54667 A (BASCH CATHERINE A ;FAITH PATRICK (US); SIEGEL KEVIN (US); BRUESEWI) 3. Dezember 1998 (1998-12-03) Zusammenfassung; Ansprüche; Abbildungen	1
X	US 5 398 300 A (LEVEY CURT A) 14. März 1995 (1995-03-14) das ganze Dokument ---	1-3
	-/-	

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche	Absendedatum des internationalen Recherchenberichts
28. Februar 2001	13/03/2001
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	Bevollmächtigter Bediensteter Guivol, O

INTERNATIONALER RECHERCHENBERICHT

Inte. **onales Aktenzeichen**

PCT/EP 00/08516

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO 94 06103 A (HNC INC) 17. März 1994 (1994-03-17) in der Anmeldung erwähnt Seite 4, Zeile 15 -Seite 23, Zeile 5; Abbildungen ---	1-3
A	FAWCETT T ET AL: "ADAPTIVE FRAUD DETECTION" JOURNAL OF DATA MINING AND KNOWLEDGE DISCOVERY, NORWELL, MA, US, Bd. 1, 1997, Seiten 291-316, XP000826461 ISSN: 1384-5810 das ganze Dokument ---	1
A	US 5 524 176 A (LACHER ROBERT C ET AL) 4. Juni 1996 (1996-06-04) Zusammenfassung; Ansprüche; Abbildungen ---	1-3
A	US 5 884 289 A (ANDERSON MARY E ET AL) 16. März 1999 (1999-03-16) das ganze Dokument ---	1
A	HANAGANDI V ET AL: "DENSITY-BASED CLUSTERING AND RADIAL BASIS FUNCTION MODELING TO GENERATE CREDIT CARD FRAUD SCORES" PROCEEDINGS OF THE IEEE/IAFE CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING, 24. März 1996 (1996-03-24), XP000607379 das ganze Dokument ---	1
A	MOREAU Y ET AL: "Detection of mobile phone fraud using supervised neural networks: a first prototype" PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 8. Oktober 1997 (1997-10-08), XP002109506 das ganze Dokument ---	1
A	DORRONSORO J R ET AL: "NEURAL FRAUD DETECTION IN CREDIT CARD OPERATIONS", IEEE TRANSACTIONS ON NEURAL NETWORKS, US, IEEE INC, NEW YORK, VOL. 8, NR. 4, PAGE(S) 827-834 XP000656471 ISSN: 1045-9227 das ganze Dokument ---	1
	-/-	

INTERNATIONALER RECHERCHENBERICHT

Inte	nationales Aktenzeichen PCT/EP 00/08516
------	--

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	<p>DATABASE INSPEC 'Online! INSTITUTE OF ELECTRICAL ENGINEERS, STEVENAGE, GB; GHOSH S ET AL: "Credit card fraud detection with a neural-network" Database accession no. 4695962 XP002161580</p> <p>Zusammenfassung & PROCEEDINGS OF THE TWENTY-SEVENTH HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES. VOL.III: INFORMATION SYSTEMS: DECISION SUPPORT AND KNOWLEDGE-BASED SYSTEMS (CAT. NO.94TH0607-2), PROCEEDINGS OF THE TWENTY-SEVENTH HAWAII INTERNATIONAL CONFERENCE 0, Seiten 621-630, 1994, Los Alamitos, CA, USA, IEEE Comput. Soc. Press, USA ISBN: 0-8186-5070-2</p> <p>-----</p>	1

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 00/08516

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 9854677 A	03-12-1998		US 6018723 A AU 7596098 A EP 0986797 A		25-01-2000 30-12-1998 22-03-2000
WO 9854667 A	03-12-1998		US 6119103 A AU 7696798 A EP 0985189 A		12-09-2000 30-12-1998 15-03-2000
US 5398300 A	14-03-1995		EP 0468229 A JP 5151188 A		29-01-1992 18-06-1993
WO 9406103 A	17-03-1994		US 5819226 A AU 4850093 A CA 2144068 A DE 69315356 D DE 69315356 T EP 0669032 A ES 2108880 T JP 8504284 T		06-10-1998 29-03-1994 17-03-1994 02-01-1998 18-06-1998 30-08-1995 01-01-1998 07-05-1996
US 5524176 A	04-06-1996		KEINE		
US 5884289 A	16-03-1999		US 6094643 A		25-07-2000