Low-Level Design (LLD) – E-Commerce Sales Analysis Difficulty Level: Medium Total Marks: 15 Standards Followed: 6 Functions 5 Visible Test Cases 3 Hidden Test Cases

☐ Summary of Corrections (Based on SME Feedback)
 All operations encapsulated as free-standing functions (no classes) Strict separation: each function does exactly one thing, returns data for testing Used NumPy (np.array, np.unique, np.sum, np.mean, np.argmax, etc.) No side-effects—input arrays never mutated Return types and shapes match driver's expectations
□ Concepts Tested
 NumPy array creation & validation □ Built-in aggregations (sum, mean, max, min) □ Conditional labeling & clipping □ Iteration and boolean masking □ Array formatting (string conversion)
☐ Problem Statement Build a set of utility functions for analyzing daily sales figures stored in NumPy arrays. You must implement:
 create_sales_array — convert list → np.ndarray validate_sales_array — ensure all values ≥0, non-empty compute_sales_metrics — total, average, maximum categorize_demand_levels — label each day "Low"/"Moderate"/"High" demand longest_growth_streak — longest strictly increasing run format_sales_data — convert numbers to comma-formatted strings

All functions should return new data (never print), matching exactly the types and shapes the driver.py tests expect.

OPERATIONS (Structured Format)

□ Pur	mose.
	rt a Python list of daily sales into a NumPy array.
□ Inp	
0	
	•
	A NumPy array containing the same values.
_	Accept the sales data list.
	Use np.array() to convert it into a NumPy array.
3.	Return the resulting array.
□ Exa	mple:
	e_sales_array([150, 220, 90, 300]) → array([150, 220, 90,
300])	
ration Pur Check	2: validate_sales_array pose: if the array is valid—non-empty, numeric, and non-negative.
ration Pur Check Inp	2: validate_sales_array pose: if the array is valid—non-empty, numeric, and non-negative. ut:
ration Pur Check Inp	2: validate_sales_array rpose: if the array is valid—non-empty, numeric, and non-negative. ut: sales_array: A NumPy array.
ration Pur Check Inp Out	2: validate_sales_array rpose: if the array is valid—non-empty, numeric, and non-negative. ut: sales_array: A NumPy array.
ration Pur Check Inp Out	2: validate_sales_array pose: if the array is valid—non-empty, numeric, and non-negative. ut: sales_array: A NumPy array. put: True if valid, False otherwise.
ration Pur Check Inp Out Cut Log	2: validate_sales_array pose: if the array is valid—non-empty, numeric, and non-negative. ut: sales_array: A NumPy array. tput: True if valid, False otherwise. tic: Check that the array is not empty using .size.
ration Pur Check Inp Out Log 1.	2: validate_sales_array *pose: if the array is valid—non-empty, numeric, and non-negative. *ut: **sales_array: A NumPy array. *put: **True if valid, False otherwise. **jic: Check that the array is not empty using .size. Confirm all values are numeric types.
ration Pur Check Inp Out Log 1. 2. 3.	2: validate_sales_array *pose: if the array is valid—non-empty, numeric, and non-negative. ut: sales_array: A NumPy array. *put: True if valid, False otherwise. *fic: Check that the array is not empty using .size. Confirm all values are numeric types. Ensure all sales are \(\geq 0 \) using np.all().
Pur Check Inp Out Check Inp Check 1. 2. 3. 4.	2: validate_sales_array *pose: if the array is valid—non-empty, numeric, and non-negative. *ut: **sales_array: A NumPy array. *put: **True if valid, False otherwise. **jic: Check that the array is not empty using .size. Confirm all values are numeric types.

• [Calculate the total, average (rounded), and highest sale. Input: sales_array: A validated NumPy array. Output:
• [o sales_array: A validated NumPy array.
	Output:
• [•
•	o A tuple: (total, average, maximum) as (int/float, float, int/float).
	Logic:
	1. Compute total sales using .sum().
	 Calculate average using .mean() and round to 1 decimal. Find maximum sale using .max().
	4. Return the 3 values as a tuple.
. [Example:
	- Example.
С	ompute_sales_metrics(np.array([150, 200, 250])) \rightarrow (600, 200.0, 250
• [ation 4: categorize_demand_levels Purpose:
• [L	Purpose: abel each day's demand as "Low", "Moderate", or "High".
• [L	Purpose: abel each day's demand as "Low", "Moderate", or "High". Input:
• [L	Purpose: abel each day's demand as "Low", "Moderate", or "High". Input: sales_array: A NumPy array of sales data.
• [L	Purpose: abel each day's demand as "Low", "Moderate", or "High". Input: sales_array: A NumPy array of sales data. Output:
• [I	Purpose: Label each day's demand as "Low", "Moderate", or "High". Input: Sales_array: A NumPy array of sales data. Output: A NumPy array of strings with labels for each day.
• [I	Purpose: abel each day's demand as "Low", "Moderate", or "High". Input: sales_array: A NumPy array of sales data. Output: A NumPy array of strings with labels for each day. Logic:
• [I	Purpose: abel each day's demand as "Low", "Moderate", or "High". Input: sales_array: A NumPy array of sales data. Output: A NumPy array of strings with labels for each day.
• [I	Purpose: abel each day's demand as "Low", "Moderate", or "High". Input: sales_array: A NumPy array of sales data. Output: A NumPy array of strings with labels for each day. Logic: 1. Initialize an empty list labels.
• [I	Purpose: abel each day's demand as "Low", "Moderate", or "High". Input: sales_array: A NumPy array of sales data. Output: A NumPy array of strings with labels for each day. Logic: Initialize an empty list labels. For each sale value:
• [I	Purpose: abel each day's demand as "Low", "Moderate", or "High". Input: o sales_array: A NumPy array of sales data. Output: o A NumPy array of strings with labels for each day. Logic: 1. Initialize an empty list labels. 2. For each sale value:
• [I	Purpose: abel each day's demand as "Low", "Moderate", or "High". Input: sales_array: A NumPy array of sales data. Output: A NumPy array of strings with labels for each day. Logic: Initialize an empty list labels. For each sale value: <100 → "Low Demand" 100-250 → "Moderate Demand"
• [I	Purpose: abel each day's demand as "Low", "Moderate", or "High". Input:

	□ Purpose:
	Find the length of the longest strictly increasing streak.
	□ Input:
	o sales_array: A NumPy array of sales data.
	□ Output:
	Integer representing the maximum streak length.
	Logic:
	1. Initialize max_streak = 1, current_streak = 1.
	2. Iterate through the array starting from index 1.
	3. If current value > previous → increment current_streak.
	 4. Else → reset current_streak to 1. 5. Update max streak accordingly and return it.
	Example:
	•
	longest growth streak(np.array([100, 120, 140, 130, 150])) →
	longest_growth_streak(np.array([100, 120, 140, 130, 150])) → 3
	longest_growth_streak(np.array([100, 120, 140, 130, 150])) → 3
e	longest_growth_streak(np.array([100, 120, 140, 130, 150])) → eration 6: format_sales_data
e	eration 6: format_sales_data
e	eration 6: format_sales_data □ Purpose:
-e	Purpose: Format each sales number into a human-readable string with commas.
e	Purpose: Format each sales number into a human-readable string with commas. ☐ Input:
e	Purpose: Format each sales number into a human-readable string with commas. Input: sales_array: A NumPy array of integers or floats.
e	Purpose: Format each sales number into a human-readable string with commas. Input: sales_array: A NumPy array of integers or floats. Output:
e	Purpose: Format each sales number into a human-readable string with commas. ☐ Input: ○ sales_array: A NumPy array of integers or floats. ☐ Output: ○ A NumPy array of strings with comma separators.
e	Purpose: Format each sales number into a human-readable string with commas. Input: o sales_array: A NumPy array of integers or floats. Output: o A NumPy array of strings with comma separators. Logic:
e	Purpose: Format each sales number into a human-readable string with commas. Input: o sales_array: A NumPy array of integers or floats. Output: o A NumPy array of strings with comma separators. Logic: 1. Initialize an empty list formatted.
e	Purpose: Format each sales number into a human-readable string with commas. Input: o sales_array: A NumPy array of integers or floats. Output: o A NumPy array of strings with comma separators. Logic: 1. Initialize an empty list formatted. 2. For each number in the array:
e	Purpose: Format each sales number into a human-readable string with commas. Input: o sales_array: A NumPy array of integers or floats. Output: o A NumPy array of strings with comma separators. Logic: 1. Initialize an empty list formatted. 2. For each number in the array: ■ Format using f"{num:,}"
e	Purpose: Format each sales number into a human-readable string with commas. Input: o sales_array: A NumPy array of integers or floats. Output: o A NumPy array of strings with comma separators. Logic: 1. Initialize an empty list formatted. 2. For each number in the array: Format using f"{num:,}" 3. Store each formatted string in the list.
e	Purpose: Format each sales number into a human-readable string with commas. Input: o sales_array: A NumPy array of integers or floats. Output: o A NumPy array of strings with comma separators. Logic: 1. Initialize an empty list formatted. 2. For each number in the array: ■ Format using f"{num:,}"

☐ Test Cases & Marks Allocation

Test Case ID	Description	Function	Marks
TC1	Create sales array	<pre>create_sales_array()</pre>	2.5
TC2	Validate with negative values	<pre>validate_sales_array()</pre>	2.5
TC3	Compute total, average, max	<pre>compute_sales_metrics()</pre>	2.5
TC4	Categorize demand levels	<pre>categorize_demand_levels()</pre>	2.5
TC5	Longest growth streak	<pre>longest_growth_streak()</pre>	2.5
HTC1	Format with commas	<pre>format_sales_data()</pre>	2.5
HTC2	100% high demand boundary (e.g. 250→High)	<pre>categorize_demand_levels()</pre>	2.5
HTC3	Empty array validation in validate_sales_array()	<pre>validate_sales_array()</pre>	2.5
TOTAL			20

☐ Visible Test Cases (5)

1. TC1:

```
create_sales_array([150,220,90,300,175]) \# \rightarrow array([150,220,90,300,175])
```

2. TC2:

```
validate_sales_array(np.array([150,220,-5]))  # → False
```

3. TC3:

```
compute_sales_metrics(np.array([150,220,90,300,175])) \# \rightarrow (935,187.0,300)
```

4. TC4:

```
categorize_demand_levels(np.array([99,150,275])) \# \rightarrow ['Low', 'Moderate', 'High']
```

5. TC5:

```
longest_growth_streak(np.array([100,120,140,130,150,160,170,140,145,150,155])) # \rightarrow 4
```

☐ Hidden Test Cases (3)

• HTC1:

```
format_sales_data(np.array([1000,24500])) # → ['1,000','24,500']
```

• HTC2:

```
categorize_demand_levels(np.array([100,250])) # ->
['Moderate','Moderate']
```

• HTC3:

```
{\tt validate\_sales\_array(np.array([]))} \quad \# \  \, {\color{red} \rightarrow} \  \, {\tt False}
```