

Data Mining

Chapter 8: Outlier Detection

Yunming Ye, Baoquan Zhang
School of Computer Science
Harbin Institute of Technology, Shenzhen

Agenda

Introduction to Outlier Detection

Maximum Likelihood Method

One-class SVM and Isolation Forest

Reconstruction Methods

8.1 Introduction to Outlier Detection

What Is Outlier Detection?

An outlier is a data object that <u>deviates significantly</u> from the rest of

the objects

 Outlier detection (anomaly detection) is the process of finding data objects with behaviors that are very different from expectation

Applications of Outlier Detection

- Network intrusion detection
- Insurance / Credit card fraud detection
- Healthcare Informatics / Medical diagnostics
- Industrial Damage Detection
- Image Processing / Video surveillance
- Novel Topic Detection in Text Mining

• ...

Types of outliers

Global outliers (point anomalies)

A global outlier deviates significantly from the rest of the data set

Contextual outliers

A contextual outlier deviates significantly w.r.t a specific context of the object

Collective outliers

A collective outlier refer to objects as a whole deviate significantly from the entire data set

Challenges of Outlier Detection

- Modeling normal objects and outliers effectively
- Application-specific outlier detection
- Handling noise in outlier detection
- Understandability

Methods for Outlier Detection

- Supervised methods
 - train classifier with "normal" and "abnormal" data
 - Challenge: umbalanced data
- Unsupervised methods
 - Proximity-based: an outlier's nearest neighbors should be far away

Nearest-Neighbor Based Approach

Compute the distance between every pair of data points

- There are various ways to define outliers:
 - \triangleright Data points for which there are fewer than p neighboring points within a distance D

> The top n data points whose distance to the kth nearest neighbor is greatest

> The top n data points whose average distance to the k nearest neighbors is greatest

Methods for Outlier Detection

- Supervised methods
 - train classifier with "normal" and "abnormal" data
 - Challenge: umbalanced data
- Unsupervised methods
 - Proximity-based: an outlier's nearest neighbors should be far away
 - Clustering-based: normal data belonging to large and dense clusters
 - One-class Method
 - Statistical method : data normality from some statistical model
 - Other one-class methods
 - Reconstruction method

>

Outlier detection using one-class model

- Only modeling the normal class (with large amount of objects).
 - Centroid-based method
 - Statistical method
 - One-class SVM
 - > Isolation forest
 - **>**

8.2 Maximum Likelihood Method

Statistical Approaches

- Assume a parametric model describing the distribution of the data (e.g., normal distribution)
- Apply a statistical test that depends on
 - Data distribution
 - Parameter of distribution (e.g., mean, variance)
 - Number of expected outliers (confidence limit)

Maximum Likelihood Method: problem definition

- Given a data set $X = \{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$
- Assume the probability density function of X is known to be $f_{\theta}(x)$
 - \triangleright θ is the parameters, and to be learned from data
- Likelihood of X:

$$L(\theta) = \prod_{i=1}^{m} f_{\theta}(\mathbf{x}^{(i)}) = f_{\theta}(\mathbf{x}^{(1)}) f_{\theta}(\mathbf{x}^{(2)}) \dots f_{\theta}(\mathbf{x}^{(m)})$$

• Maximize:

$$\theta^*$$
: $\underset{\theta}{\operatorname{argmax}} L(\theta) = \underset{\theta}{\operatorname{argmax}} \left(\prod_{i=1}^m f_{\theta}(\boldsymbol{x}^{(i)}) \right)$

• Given a data set $X = \{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$ $x^{(i)} \in \mathbb{R}^d$

Assume the distribution of X be Gaussian:

$$\theta: \mu, \sigma = \frac{1}{(2\pi)^{d/2}} \frac{1}{|\sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x - \mu)^T \sigma^{-1} (x - \mu)\right\}$$

Maximize:

$$\theta^*$$
: $\underset{\theta: \mu, \sigma}{\operatorname{argmax}} L(\theta) = \underset{\mu, \sigma}{\operatorname{argmax}} \left(\prod_{i=1}^m f_{\mu, \sigma}(x^{(i)}) \right)$

$$\mu^* = \frac{1}{m} \sum_{i=1}^m x^{(i)} \qquad \sigma^* = \frac{1}{m} \sum_{i=1}^m (x^{(i)} - \mu^*) (x^{(i)} - \mu^*)^T$$

Detection Phase

- Given a threshold value δ
- Decide whether a given data object x is an outlier

$$f_{\mu^*,\sigma^*}(x) = \frac{1}{(2\pi)^{d/2}} \frac{1}{|\sigma^*|^{1/2}} \exp\left\{-\frac{1}{2}(x-\mu^*)^T \sigma^{*-1}(x-\mu^*)\right\}$$

8.3 One-class SVM and Isolation Forest

One-class SVM: Basic Idea

• Learning the Boundary of the input data (i.e. normal class with large amount of objects).

One-class SVM: v-SVM

- How to define the second class?
 - \triangleright $\emptyset(x)$: Projection to high-dimensional feature space
 - With Gaussian kernel:

$$K(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2}\right)$$

$$K(x,x) = \langle \emptyset(x), \emptyset(x) \rangle = \|\emptyset(x)\|^2 = 1$$

• the origin of the feature space is the second class!

Define the separating hyperplane:

$$w \cdot \emptyset(x) = \rho$$

Outlier detection function:

$$f(x) = sgn(\langle w, \emptyset(x) \rangle - \rho)$$

Learning task:

- ▶ Learned model: $w \cdot \emptyset(x) = \rho$
- Objective function:

$$\min_{\boldsymbol{w},\boldsymbol{\xi},\rho} \frac{1}{2} \|\boldsymbol{w}\|^2 + \frac{1}{vm} \sum_{i=1}^{m} \xi_i - \rho$$
subject to: $\langle \boldsymbol{w}, \emptyset(x_i) \rangle \ge \rho - \xi_i, \xi_i \ge 0$

$$0 < v \le 1$$

$$K(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{2\sigma^2}\right)$$

$$w^* = \sum_{i=1}^m \lambda_i^* \phi(x_i)$$

$$\rho^* = \sum_{i=1}^m \lambda_i^* \phi(x_i) \phi(x_s)$$

$$= \sum_{i=1}^m \lambda_i^* K(x_i, x_s)$$

Outlier detection:

$$f(x) = sgn(\langle w, \emptyset(x) \rangle - \rho)$$

$$= sgn(\sum_{i=1}^{m} \lambda_i^* \phi(\mathbf{x}_i) \phi(x) - \rho) = sgn(\sum_{i=1}^{m} \lambda_i^* K(\mathbf{x}_i, x) - \rho)$$

One-class SVM: SVDD

Support Vector Domain Description:

Constraining "normal" data in a ball with relative small radius

$$\min_{R,\xi,C} R^2 + \frac{1}{vm} \sum_{i=1}^m \xi_i \qquad R \in \mathbb{R}, \xi \in \mathbb{R}^m, c \in \mathcal{H}$$

subject to:

$$\|\phi(x_i) - c\|^2 \le R^2 + \xi_i, \ \xi_i \ge 0$$
$$0 < v \le 1$$

Novelty Detection

error train: 18/200; errors novel regular: 1/40; errors novel abnormal: 0/40

https://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html

Isolation-based outlier detection

- Outliers are few and different
- when randomly split the space into small region, an outlier is more likely to be *ISOLATED*

• F. T. Liu, K. M. Ting and Z. H. Zhou, *Isolation-based Anomaly Detection. ACM* TKDD, 2011

Key idea: Modeling "Isolation" using tree structure, and characterize the outlier suspiciousness with the path length from the root to the isolated object

General steps:

- Randomly subsample the original data
- On each subsampled data, grow an *iTree* by
 - Randomly pick an attribute and a split value between min and max
 - Split the data into two subtrees
 - This process iterates until "isolation" is reached (no more points to be split or instances share the same value)
- Compute outlier score by consulting the average path length from root to the isolated objects

Output of outlier detection

- Label
 - > Each test instance is given a normal or anomaly label

Score

- > Each test instance is assigned an anomaly score
 - Allows the output to be ranked
 - Requires an additional threshold parameter

IsolationForest training observations new regular observations new abnormal observations 2 0 -2 -

https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py

0

8.4 Reconstruction Method

Reconstruction Method: basis idea

$$x_i \longrightarrow z_i \longrightarrow \hat{x}_i \qquad x_i, \hat{x}_i \in R^n \qquad z_i \in R^{d'}$$

$$d' \ll n$$

Minimize:

$$e = \|x_i - \widehat{x}_i\|^2$$

Reconstruction with PCA

- Find a projection that captures the largest amount of variation in data.
- Project and reconstruct x_i with PCA
- Limitation of PCA method
 - Can only model linear combination of original features

Reconstruction with Autoencoder

Training objective

encoder: map x to low dimensional z.

$$z = f_{\varphi}(x)$$

decoder: reconstruct x based on z.

$$\hat{x} = g_{\theta}(z)$$

Objective function: minimize reconstruction error.

$$L = \sum_{i=1}^{N} \|x_i - \tilde{x}_i\|_2^2$$
$$= \sum_{i=1}^{N} \|x_i - g_{\theta}(f_{\varphi}(x_i))\|_2^2$$

Outlier detection

Core idea: compare reconstruction errors with given threshold to detect anomalies.

error> threshold anomaly

error< threshold normal

Shortages of AE

$$z = f_{\varphi}(x)$$

$$\hat{x} = g_{\theta}(z)$$

- Learn one-on-one mapping between x and z.
- Can not handle variance in normal samples. Low generalization capability.
- Normal samples may also be falsely judged as anomalies.

Reconstruction with Variational Autoencoder

Core idea:

model the parameters of distributions of z and \tilde{x} rather than their values.

——main difference with autoencoders.

Encoder: learn distributional parameters of z based on x. ightharpoonup Decoder: learn distributional parameters of \tilde{x} based on z.

Reading list

- An J, Cho S. Variational autoencoder based anomaly detection using reconstruction probability[J]. Special Lecture on IE, 2015, 2(1): 1-18.
- B. Zhou, S. Liu, B. Hooi, X. Cheng, J. Ye, Beatgan: Anomalous rhythm detection using adversarially generated time series, in: S. Kraus (Ed.), IJCAI 2019.
- Alexander Geiger, Dongyu Liu, Sarah Alnegheimish, Alfredo Cuesta-Infante, Kalyan Veeramachaneni. TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks. In proceedings of IEEE International Conference on Big Data, 2020

Acknowledgements

- Some text, figures and formulations are from WWW. Thanks for their sharing. If you have copyright claim please contact with me at yym@hit.edu.cn.
- This lecture is distributed for nonprofit purpose.

Thank You for Your Attention

Contact me at: yym@hit.edu.cn

Tel: 26033008, 13760196623

Address: Rm.1402, H# Building