Travel Package Purchase Prediction

Contents -

- 1. Introduction To Project
- 2. How To Think To Start
- 3. How I Start
- 4. Data Preprocessing
- 5. Feature Engineering
- 6. Feature Selection
- 7. Playing with different models and checks the accuracy
- 8. Pickle it
- 9. Build the GUI interface
- 10. Deployment of our model

Let's get started

Introduction to our project

"Travel Package Purchase Prediction" -

As the name suggests we'll build a model that predicts the probability of purchasing the travelling package.

If talking about importance of it. It is quite a bit interesting scenario – Suppose a travels and tours company wants to know their sales, deals are working or not. They do some analysis like

- 1. Age,
- 2. Monthly income,
- 3. Number of trips they want,
- 4. Are they male, female or both,
- Their job rolesAnd many many aspects.....

In this project, we'll do this analysis by my machine learning knowledge.

We'll perform every aspect of the data and explore it.

2. How to think to start

We have our dataset and it contains a lot features.

Have a look at our dataset

It has many features like we talked above about it

Definition		
Unique customer ID		
Product taken or not		
Age of customer		
Preferred login device of		
customer in last month		
City tier		
Duration of pitch by a		
sales man to customer		
Occupation of customer		

Gender	Gender of customer
NumberOfPersonVisited	Total number of person
	came with customer
NumberOfFollowups	Total number of follow
	up has been done by
	sales person after sales
	pitch
ProductPitched	Product pitched by sales
	person
PreferredPropertyStar	Preferred hotel property
	rating by customer

Marital status of
customer
Average number of trip
in a year by customer
Customer passport flag

PitchSatisfactionScore	Sales pitch satisfactory
	score
OwnCar	Customers owns a car
	or not
NumberOfChildrenVisited	Total number of
	children visit with
	customer
Designation	Designation of
	customer in current
	organization
MonthlyIncome	Gross monthly income
	of customer

You can get a brief description of every feature (column) using the table above.

Let's take a scenario, you have to decorate a messy room so how should you start to decorate it.

First you should clear the mess and then decorate it right ??

Same with our data. First we clean the data.

3. How I Start

I'll start with cleaning the data, which we'll talk about in Data Preprocessing Section and then try to decorate my room I mean creating the model and deploy it.

4. Data Preprocessing

Steps we'll follow in data preprocessing

- Handling Missing Values
- Handling Categorical Values
- Checking the distributions of features
- Removing the outliers

• Handling Missing Values :-

1	CustomerID	ProdTaken	Age	TypeofContact	CityTier
2	200000	1	41	Self Enquiry	3
3	200001	0	49	49 Company Invited	
4	200002	1	37	Self Enquiry	1
5	200003	0	33	Company Invited	1
6	200004	0		Self Enquiry	1
7	200005	0	32	Company Invited	1
8	200006	0	59	Self Enquiry	1
9	200007	0	30	Self Enquiry	1
10	200008	0	38	Company Invited	1
11	200009	0	36	Self Enquiry	1
12	200010	0	35	Self Enquiry	1
13	200011	0		Self Enquiry	1
14	200012	0	31	Self Enquiry	1
15	200013	0	34	Self Enquiry	1
16	200014	1	28	Self Enquiry	1
17	200015	0	29	Self Enquiry	1
18	200016	0	32	Self Enquiry	1
19	200017	0	22	Company Invited	1
20	200018	0	53	Self Enquiry	3
21	200019	Tourism 😜		Self Enquiry	1
Ready		TOURSHI / GJ/			

Designation	MonthlyIncome
Manager	20993
Manager	20130
Executive	17090
Executive	17909
Executive	18468
Executive	18068
Executive	17670
Executive	17693
Senior Manager	24526
Manager	20237
Executive	17426
Manager	
Executive	17911
Executive	17661
Executive	17028
Senior Manager	24980
Executive	18298
Executive	17935
AVP	30427
Executive	

As we can above there are empty spaces in the columns i.e. Age, MonthlyIncome etc and we don't want our data to be distorted like this. We have many methods to remove it like

First find the columns which have missing values

CustomerID	0
ProdTaken	0
Age	226
TypeofContact	25
CityTier	0
DurationOfPitch	251
Occupation	0
Gender	0
NumberOfPersonVisited	0
NumberOfFollowups	45
ProductPitched	0
PreferredPropertyStar	26
MaritalStatus	0
NumberOfTrips	140
Passport	0
PitchSatisfactionScore	0
OwnCar	0
NumberOfChildrenVisited	66
Designation	0
MonthlyIncome	233

We have missing values in 8 columns

- Dropping the columns which have missing values.
- Dropping the rows which have missing values.
- Mean/Median replacement
- Random Sample replacement
- End of Distribution value replacement

We'll try some methods from this.

Easiest way is to delete (drop the column)
 which have the missing values but it is a loss of
 the data at large level.

Like if we single-single missing values in each columns should we drop every column.

Obviously not, so it's not the right approach

- Other way is dropping all the rows which have missing values and this is quite a bit good approach but if we have small dataset, dropping rows is also not a good approach
- Replacing the all the missing values with some values is although a very good approach because no loss of columns, no loss of rows inshort no loss of data.
 - Mean/Median replacement

First we'll calculate the mean or median (according to distribution) of a column which has missing values and then replace all the nan values with that mean or median value.

We select mean if the distribution of columns is Gaussian and if the distribution of columns is skewed, then we select median.

Let's us see the distribution of some columns

As we can see many distributions are not Gaussian so replace it with median.

2. Random Sample replacement

We'll take random values of our column which have missing values and replace it with our random samples.

3. End of distribution replacement

Now we get the value which is present after the 3rd standard deviation of distribution and replace it with missing values

Remember* - when we replacing the nan values with some other values, the distribution of that columns need not to be changed (less variance).

After imputing the missing values, check the distribution using kdeplot, we get better result with the method of random sample imputation.

Blue plot - original feature with missing values.

Orange plot - feature with median replacement.

Green plot - feature with random sample imputation.

Red plot –feature with end distribution imputation.

We can see that blue and green plot are almost coinciding means less change in variance.

Handling categorical feature

Categorical features are those features which have values in form of string like our features below

```
['TypeofContact',
  'Occupation',
  'Gender',
  'ProductPitched',
  'MaritalStatus',
  'Designation']
```

We can replace the missing values of categorical feature (column) with the most frequent value.

This would be the good approach for imputing categorical features.

Now all machine learning algorithms/models does work well with categorical features and its not good approach to drop the columns as we discussed above.

So let's replace the value of categorical features with a number.

We are doing <u>onehotencoding</u> with categorical features using <u>get_dummies</u> function in pandas.

Let's have a look at one of the categorical feature after OneHotEncoding.

Income	TypeofContact_Self Enquiry	Occupation_Large Business	Occupation_Salaried	Occupation_Small Business	Gender_Male	ProductPitched_Deluxe	ProductPitched_King	ProductPitched_Standar
0993.0	1	0	1	0	0	1	0	
0130.0	0	0	1	0	1	1	0	
7090.0	1	0	0	0	1	0	0	
7909.0	0	0	1	0	0	0	0	
8468.0	1	0	0	1	1	0	0	

5. Feature Engineering

Checks the distribution and treat the outliers

Outliers are those which are damaging our models and have an reverse relation with our model.

For example:- we have age column in which allmost values are above 12 and below 40, but some values are 70,80.So this values are considered as an outliers.

We can see the outliers using boxplot for every feature.

Know more about <u>outliers</u>.

Black points on this plots are acting as an outliers.

We'll find the values which are acting as an outliers and remove those rows (only option).

We'll remove the outliers using <u>InterQuantileRange</u> method.

After removing outliers

Plots lookalike

6. Feature Selection

Now that maybe the case that columns are not important for our dataset and model so should drop that columns.

We'll find the relation using corr() method of pandas to find out the relation between each column.

We have two type of feature i.e. Dependent Feature and Independent Features.

Corr() gives a number which shows the strength of relation .

If we see a high relation between two independent features, we'll drop one of them.

If we see a high relation between independent feature and dependent feature, we'll keep the relation because it is important for our model.

We can see the relation by plotting it using heatmap.

I've used <u>feature_selection</u> library of sklearn module to find the top 10 essential features that we can keep.

We are using chi_2 method to find it.

Top 10 most essential features are:-

```
feat_imp #important features

['MonthlyIncome',
    'Passport',
    'DurationOfPitch',
    'Designation_Executive',
    'ProductPitched_Deluxe',
    'Designation_Manager',
    'Age',
    'NumberOfTrips',
    'PreferredPropertyStar',
    'Gender_Male']
```

Playing with different models and checks the accuracy

Now we build the model for prediction.

I've splitted the data in training data and testing data using train_test_split and classifies the model

- KNeighborsClassifier
- SVC
- RandomForestClassifier

- AdaBoostClassifier
- GaussianNB

I've build the models one by one and <u>tune</u> it also using hyperparameter tuning with <u>GridSearchCV</u> library.

1. Random Forest Classification

2. Support Vector Classification

3. KNN Classification

4. Gaussian Naive Bayes Classification

5. AdaBoost Classification

I've used accuracy and classification report for accuracy checking and Random Forest Classifier works best for our dataset.

So we'll use the Random Forest Classifier for our dataset.

8. Pickle it

Now we have to import our model to other source, editor, codebase etc. We cant take our whole file, so for this we'll make a model file (extension of .pkl). For this I'm using joblib library.

```
[ ] from sklearn.externals import joblib

joblib.dump(nb, 'model.pkl')

# Load the model from the file
pklmodel = joblib.load('model.pkl')

# Use the loaded model to make predictions
pklmodel.predict(x_test)
```

My model is saved with model.pkl file.

9. Build the GUI interface

Now to globalize the model and increase the user interaction with model, I need some frontend stuff.

Streamlit comes into picture.

Using streamlit I've build the frontend that consist

- Three sections:-
 - Header: This section consist my dataset so anybody can see what it contains and displaying list of features and some plots.
 - Midsection: This section includes the main part that is prediction of package purchasing. Some input boxes, checkboxes, selectboxes etc.
 - 3. Footer :- This section has something about me.

10. Deployment of our model

I've also deployed our model using <u>streamlit</u> <u>sharing</u> platform.

Having your files on GitHub with accurate requirements.txt is only you require for deploying on streamlit

All library that are required for this project are:-

- 1. Pandas
- 2. Numpy
- 3. Matplotlib
- 4. Seaborn
- 5. Itertools
- 6. Sklearn
- 7. Joblib
- 8. Streamlit
- 9. Os
- 10. Pickle

You can get the whole source code on my <u>GitHub</u> profile.