

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

String defects, supersymmetry and the swampland

Quentin Bonnefoy (DESY Hamburg)

Seminar Series on String Phenomenology 06/04/2021

Based on arXiv:2007.12722 [hep-th] (JHEP) with C. Angelantonj, C. Condeescu, E. Dudas

[Vafa '05, recent review: Palti '19]

[Vafa '05, recent review: Palti '19]

(interconnected) set of conjectures

[Vafa '05, recent review: Palti '19]

(interconnected) set of conjectures

Strengthening of the swampland criteria?

[Vafa '05, recent review: Palti '19]

(interconnected) set of conjectures

Strengthening of the swampland criteria?

[Vafa '05, recent review: Palti '19]

(interconnected) set of conjectures

Strengthening of the swampland criteria?

refinements
(string tests with landscape
SUSY breaking)
extensions (new conjectures)

[Kim, Shiu, Vafa'19] ruled out some SUGRA EFTs using anomalies

[Kim, Shiu, Vafa '19] ruled out some SUGRA EFTs using anomalies

The idea : use the completeness of the gauge spectrum and study the consistency of the charged states

[see also Lee, Weigand '19, Katz, Kim, Tarazi, Vafa '20]

[Kim, Shiu, Vafa '19] ruled out some SUGRA EFTs using anomalies

The idea : use the completeness of the gauge spectrum and study the consistency of the charged states

[see also Lee, Weigand '19, Katz, Kim, Tarazi, Vafa '20]

Used to motivate the string lamppost principle

[Kim, Tarazi, Vafa '19, Montero, Vafa '20]

[Kim, Shiu, Vafa'19] ruled out some SUGRA EFTs using anomalies

The idea : use the completeness of the gauge spectrum and study the consistency of the charged states

[see also Lee, Weigand '19, Katz, Kim, Tarazi, Vafa '20]

Used to motivate the string lamppost principle

[Kim, Tarazi, Vafa '19, Montero, Vafa '20]

A statement about the deep IR

Consistency of string defects from anomaly inflow

Originally, in (10d and) 6d: start with a N=I SUGRA with anomaly cancellation à la Green-Schwarz-Sagnotti

[Green, Schwarz, '84, Sagnotti '92]

Originally, in (10d and) 6d: start with a N=1 SUGRA with

anomaly cancellation à la Green-Schwarz-Sagnotti

[Green, Schwarz, '84, Sagnotti '92]

$$I_8 = \frac{1}{2} \Omega_{\alpha\beta} X_4^{\alpha} X_4^{\beta} \qquad S_{GS} = \int \Omega_{\alpha\beta} C_2^{\alpha} \wedge X_4^{\beta} \qquad \delta_{\theta} C_2^{\alpha} = \dots$$

Originally, in (10d and) 6d: start with a N=I SUGRA with anomaly cancellation à la Green-Schwarz-Sagnotti

[Green, Schwarz, '84, Sagnotti '92]

$$I_8 = \frac{1}{2} \Omega_{\alpha\beta} X_4^{\alpha} X_4^{\beta} \qquad S_{GS} = \int \Omega_{\alpha\beta} C_2^{\alpha} \wedge X_4^{\beta} \qquad \delta_{\theta} C_2^{\alpha} = \dots$$

Use the completeness of the gauge spectrum: there exist **charged string defects** [Polchinski '03]

$$S_{2d} \supset -\Omega_{\alpha\beta} Q^{\alpha} \int C_2^{\beta}$$

Originally, in (10d and) 6d: start with a N=I SUGRA with

anomaly cancellation à la Green-Schwarz-Sagnotti

[Green, Schwarz, '84, Sagnotti '92]

$$I_8 = \frac{1}{2} \Omega_{\alpha\beta} X_4^{\alpha} X_4^{\beta} \qquad S_{GS} = \int \Omega_{\alpha\beta} C_2^{\alpha} \wedge X_4^{\beta} \qquad \delta_{\theta} C_2^{\alpha} = \dots$$

Use the completeness of the gauge spectrum: there exist charged

string defects

[Polchinski '03]

$$S_{2d} \supset -\Omega_{\alpha\beta} Q^{\alpha} \int C_2^{\beta}$$

Anomaly inflow on the defect :
$$I_4 = \Omega_{\alpha\beta} \, Q^{\alpha} \left(X_4^{\beta} + \frac{1}{2} Q^{\beta} \chi(N) \right)$$

Originally, in (10d and) 6d: start with a N=I SUGRA with

anomaly cancellation à la Green-Schwarz-Sagnotti

[Green, Schwarz, '84, Sagnotti '92]

$$I_8 = \frac{1}{2} \Omega_{\alpha\beta} X_4^{\alpha} X_4^{\beta} \qquad S_{GS} = \int \Omega_{\alpha\beta} C_2^{\alpha} \wedge X_4^{\beta} \qquad \delta_{\theta} C_2^{\alpha} = \dots$$

Use the completeness of the gauge spectrum: there exist charged

string defects

[Polchinski '03]

$$S_{2d} \supset -\Omega_{\alpha\beta} Q^{\alpha} \int C_2^{\beta}$$

Anomaly inflow on the defect :
$$I_4 = \Omega_{lphaeta}\,Q^lpha\left(X_4^eta + rac{1}{2}Q^eta\chi(N)
ight)$$

Consistency of the IR CFT constrains I_4 : compatibility?

For I/2-BPS string defects:

$$Q \cdot J \ge 0 \qquad c_L = 3Q \cdot Q - 9Q \cdot a + 2 \ge 0 \qquad c_R = 3Q \cdot Q - 3Q \cdot a \ge 0$$

$$Q \cdot Q + Q \cdot a \ge -2 \qquad k_i \equiv Q \cdot b_i \ge 0 \qquad \sum_i \frac{k_i \dim G_i}{k_i + h_i^{\vee}} \le c_L$$

For I/2-BPS string defects:

$$Q \cdot J \ge 0 \qquad c_L = 3Q \cdot Q - 9Q \cdot a + 2 \ge 0 \qquad c_R = 3Q \cdot Q - 3Q \cdot a \ge 0$$
$$Q \cdot Q + Q \cdot a \ge -2 \qquad k_i \equiv Q \cdot b_i \ge 0 \qquad \sum_i \frac{k_i \dim G_i}{k_i + h_i^{\vee}} \le c_L$$

where the vectors a, b_i are defined from the 6d anomaly polynomial

$$I_8 = \frac{1}{2} \Omega_{\alpha\beta} X_4^{\alpha} X_4^{\beta} \qquad X_4^{\alpha} = \frac{1}{2} a^{\alpha} \operatorname{tr} R^2 + \frac{1}{2} \sum_i \frac{b_i^{\alpha}}{\lambda_i} \operatorname{tr} F_i^2$$

and all contractions are performed with $\Omega_{lphaeta}$

Used to rule out specific SUGRA EFTs, or to bound infinite families of SUGRA EFTs

Used to rule out specific SUGRA EFTs, or to bound infinite families of SUGRA EFTs

Examples : N=1 SUGRA with gauge group $U(1)^{496}$ or $E_8 \times U(1)^{248}$ in 10d, N=1 SUGRA with 9 tensors and two bifundamentals of the gauge group $SU(N) \times SU(N)$ in 6d if N>9, etc [see also Lee, Weigand '19]

Tests in perturbative 6d orientifold models

A) examples from SUSY models

Tests in perturbative 6d orientifold models A) examples from SUSY models

Simplest example : Bianchi-Sagnotti-Gimon-Polchinski type I T_4/\mathbb{Z}_2 model [Bianchi, Sagnotti '90, Gimon, Polchinski '96]

Simplest example : Bianchi-Sagnotti-Gimon-Polchinski type I T_4/\mathbb{Z}_2 model [Bianchi, Sagnotti '90, Gimon, Polchinski '96]

Model of O9 and O5 planes, D9 and D5 branes, with gauge group

$$U(16)_9 \times U(16)_5$$

Spectrum:

Multiplicity	Multiplet	Field Content
1	Gravity	$(g_{\mu\nu}, C_{\mu\nu}^+, \psi_{\mu L})$
1	Tensor	$(C_{\mu\nu}^-,\phi,\chi_R)$
20	Hypers	$(4\phi_a,\psi_{aR})$
(256,1) + (1,256)	Vectors	(A_{μ},χ_L)
$(120 + \overline{120}, 1) + (1, 120 + \overline{120}) + (16, 16)$	Hypers	$(4\phi,\chi_R)$

Simplest example : Bianchi-Sagnotti-Gimon-Polchinski type I T_4/\mathbb{Z}_2 model [Bianchi, Sagnotti '90, Gimon, Polchinski '96]

Model of O9 and O5 planes, D9 and D5 branes, with gauge group

$$U(16)_9 \times U(16)_5$$

Spectrum:

Multiplicity	Multiplet	Field Content
1	Gravity	$(g_{\mu\nu}, C_{\mu\nu}^+, \psi_{\mu L})$
1	Tensor	$(C_{\mu\nu}^-,\phi,\chi_R)$
20	Hypers	$(4\phi_a,\psi_{aR})$
(256,1) + (1,256)	Vectors	(A_{μ},χ_L)
$(120 + \overline{120}, 1) + (1, 120 + \overline{120}) + (16, 16)$	Hypers	$(4\phi,\chi_R)$

Anomaly polynomial: $I_8 = \left(\operatorname{tr} R^2 - \frac{1}{2} \operatorname{tr} F_1^2 \right) \left(\operatorname{tr} R^2 - \frac{1}{2} \operatorname{tr} F_2^2 \right)$

String defects: DI branes, or DI-like in 6d

Brane	0	1	2	3	4	5	6	7	8	9
							I			
D5	×	X	×	×	×	X	•	•	•	•
	×									
D1	×	×	•	•	•	•	•	•	•	•
$\overline{\mathrm{D1}}$	×	×	•	•	•	•	•	•	•	•
	1									

String defects: DI branes, or DI-like in 6d

Brane	0	1	2	3	4	5	6	7	8	9
D9	X	X	X	X	X	X	×	X	X	×
D5	×	×	×	×	×	×	•	•	•	•
D5'	×	×	•	•	•	•	×	×	×	×
						•				
$\overline{\mathrm{D1}}$	×	X	•	•	•	•	•	•	•	•

Landscape of defects by turning on magnetic fields on D5'

String defects: DI branes, or DI-like in 6d

Brane	0	1	2	3	4	5	6	7	8	9
D9							I		X	×
D5	×	×	×	×	×	×	•	•	•	•
						•		×	×	×
(D1)						•			•	•
$\overline{\mathrm{D}1}$	×	×	•	•	•	•	•	•	•	•

Landscape of defects by turning on magnetic fields on D5'

Focus on the DI

Brane	0	1	2	3	4	5	6	7	8	9
D5	×	X	X	X	X	X	•	•	•	•
D5 D1	×	×	•	•	•	•	•	•	•	•

DI brane at a fixed point

Brane	0	1	2	3	4	5	6	7	8	9
D5	×	X	X	×	X	X	•	•	•	•
D1	×	×	•	•	•	•	•	•	•	•

DI brane at a fixed point

Representation	$SO(1,1) \times SU(2)_l \times SU(2)_R \times SO(4)$
$\overline{rar{r}}$	$(0,1,1,1) + (\frac{1}{2},1,2,2')_L$
$rar{r}$	$(1,2,2,1) + (\frac{1}{2},2,1,2')_R$
$\frac{r(r+1)}{2} + \frac{\bar{r}(\bar{r}+1)}{2}$	$(1,1,1,4) + (\frac{1}{2},1,2,2)_R$
$\frac{r(r-1)}{2} + \frac{\bar{r}(\bar{r}-1)}{2}$	$(\frac{1}{2}, 2, 1, 2)_L$
$r\bar{n} + \bar{r}n$	$(rac{1}{2},1,1,1)_L$
$rd + \bar{r}\bar{d}$	$(\frac{1}{2}, 1, 1, 2)_L$
$r\bar{d} + \bar{r}d$	$(1,1,2,1) + (\frac{1}{2},1,1,2')_R$

Representation	$SO(1,1) \times SU(2)_l \times SU(2)_R \times SO(4)$
$\frac{r(r-1)}{2}$	$(0,1,1,1) + (\frac{1}{2},2,1,2)_L + (\frac{1}{2},1,2,2')_L$
$\frac{r(r+1)}{2}$	$(1,2,2,1) + (\frac{1}{2},1,2,2)_R$
$\frac{r(r+1)}{2}$	$(1,1,1,4) + (\frac{1}{2},2,1,2')_R$
$r(n+ar{n})$	$(rac{1}{2},1,1,1)_{L}$

Brane	0	1	2	3	4	5	6	7	8	9
D5	×	X	×	×	X	X	•	•	•	•
D1	×	×	•	•	•	•	•	•	•	•

DI brane at a fixed point

Representation	$SO(1,1) \times SU(2)_l \times SU(2)_R \times SO(4)$
$\overline{rar{r}}$	$(0,1,1,1) + (\frac{1}{2},1,2,2')_L$
$rar{r}$	$(1,2,2,1) + (\frac{1}{2},2,1,2')_R$
$\frac{r(r+1)}{2} + \frac{\bar{r}(\bar{r}+1)}{2}$	$(1,1,1,4) + (\frac{1}{2},1,2,2)_R$
$\frac{r(r-1)}{2} + \frac{\bar{r}(\bar{r}-1)}{2}$	$(\frac{1}{2}, 2, 1, 2)_L$
$r\bar{n} + \bar{r}n$	$(rac{1}{2},1,1,1)_L$
$rd + \bar{r}\bar{d}$	$(\frac{1}{2}, 1, 1, 2)_L$
$r\bar{d} + \bar{r}d$	$(1,1,2,1) + (\frac{1}{2},1,1,2')_R$

$$I_4 = -\left(\operatorname{tr} R^2 - \frac{1}{2}\operatorname{tr} F_1^2\right) \implies Q = \frac{1}{\sqrt{2}}(1,1)$$

Brane	0	1	2	3	4	5	6	7	8	9
D5	×	X	×	×	X	X	•	•	•	•
D5 D1	×	×	•	•	•	•	•	•	•	•

DI brane at a fixed point

$$I_4 = -\left(\operatorname{tr}R^2 - \frac{1}{2}\operatorname{tr}F_1^2\right) \implies Q = \frac{1}{\sqrt{2}}(1,1)$$

$$\implies c_L^{(KSV)} = 3Q \cdot Q - 9Q \cdot a + 2 = 20 \qquad c_R^{(KSV)} = 3Q \cdot Q - 3Q \cdot a = 6$$

Brane	0	1	2	3	4	5	6	7	8	9
D5	×	X	X	×	X	X	•	•	•	•
D1	×	×	•	•	•	•	•	•	•	•

DI brane at a fixed point

$$I_4 = -\left(\operatorname{tr} R^2 - \frac{1}{2}\operatorname{tr} F_1^2\right) \implies Q = \frac{1}{\sqrt{2}}(1,1)$$

$$\implies c_L^{(KSV)} = 3Q \cdot Q - 9Q \cdot a + 2 = 20 \qquad c_R^{(KSV)} = 3Q \cdot Q - 3Q \cdot a = 6$$

$$c_L = 4_{CM} + 20$$
$$c_R = 6_{CM} + 6$$

Brane	0	1	2	3	4	5	6	7	8	9
D5	×	X	×	×	X	X	•	•	•	•
D1	×	×	•	•	•	•	•	•	•	•

DI brane at a fixed point

Representation $SO(1,1) \times SU(2)_l \times SU(2)_R \times SO(4)$ $(0,1,1,1) + (\frac{1}{2},1,2,2')_L$ $rar{r}$ $(1,2,2,1) + (\frac{1}{2},2,1,2')_R$ $rar{r}$ $\frac{r(r+1)}{2} + \frac{\bar{r}(\bar{r}+1)}{2}$ $(1,1,1,4) + (\frac{1}{2},1,2,2)_R$ $\frac{r(r-1)}{2} + \frac{\bar{r}(\bar{r}-1)}{2}$ $(\frac{1}{2},2,1,2)_L$ $(\frac{1}{2},1,1,1)_L$ $r\bar{n} + \bar{r}n$ $(\frac{1}{2},1,1,2)_L$ $rd + \bar{r}\bar{d}$ $r\bar{d} + \bar{r}d$ $(1,1,2,1) + (\frac{1}{2},1,1,2')_R$

$$\begin{array}{ll} \textbf{Representation} & SO(1,1) \times SU(2)_l \times SU(2)_R \times SO(4) \\ \hline \frac{r(r-1)}{2} & (0,1,1,1) + (\frac{1}{2},2,1,2)_L + (\frac{1}{2},1,2,2')_L \\ \frac{r(r+1)}{2} & (1,2,2,1) + (\frac{1}{2},1,2,2)_R \\ \frac{r(r+1)}{2} & (1,1,1,4) + (\frac{1}{2},2,1,2')_R \\ r(n+\bar{n}) & (\frac{1}{2},1,1,1)_L \end{array}$$

$$I_4 = -\left(\operatorname{tr} R^2 - \frac{1}{2}\operatorname{tr} F_1^2\right) \implies Q = \frac{1}{\sqrt{2}}(1,1)$$

$$\implies c_L^{(KSV)} = 3Q \cdot Q - 9Q \cdot a + 2 = 20$$
 $c_R^{(KSV)} = 3Q \cdot Q - 3Q \cdot a = 6$

$$c_L = 4_{CM} + 20 + 6 + 96_{D5}$$
$$c_R = 6_{CM} + 6 + 6 + 96_{D5}$$

$$c_L = 4_{CM} + 20$$
$$c_R = 6_{CM} + 6$$

Brane							l .			
D5	×	X	X	X	X	X	•	•	•	•
D5 D1	×	×	•	•	•	•	•	•	•	•

DI brane at a fixed point

Representation	$SO(1,1) \times SU(2)_l \times SU(2)_R \times SO(4)$
$\overline{rar{r}}$	$(0,1,1,1) + (\frac{1}{2},1,2,2')_L$
$rar{r}$	$(1,2,2,1) + (\frac{1}{2},2,1,2')_R$
$\frac{r(r+1)}{2} + \frac{\bar{r}(\bar{r}+1)}{2}$	$(1,1,1,4) + (\frac{1}{2},1,2,2)_R$
$\frac{r(r-1)}{2} + \frac{\bar{r}(\bar{r}-1)}{2}$	$(\frac{1}{2},2,1,2)_L$
$r\bar{n} + \bar{r}n$	$(\frac{1}{2},1,1,1)_L$
$rd + \bar{r}\bar{d}$	$(\frac{1}{2}, 1, 1, 2)_L$
$rar{d} + ar{r}d$	$(1,1,2,1) + (\frac{1}{2},1,1,2')_R$

DI brane in the bulk

$$\begin{array}{|c|c|c|c|} \hline \textbf{Representation} & SO(1,1) \times SU(2)_l \times SU(2)_R \times SO(4) \\ \hline \hline \frac{r(r-1)}{2} & (0,1,1,1) + (\frac{1}{2},2,1,2)_L + (\frac{1}{2},1,2,2')_L \\ \frac{r(r+1)}{2} & (1,2,2,1) + (\frac{1}{2},1,2,2)_R \\ \frac{r(r+1)}{2} & (1,1,1,4) + (\frac{1}{2},2,1,2')_R \\ r(n+\bar{n}) & (\frac{1}{2},1,1,1)_L \\ \hline \end{array}$$

$$I_4 = -\left(\operatorname{tr} R^2 - \frac{1}{2}\operatorname{tr} F_1^2\right) \implies Q = \frac{1}{\sqrt{2}}(1,1)$$

$$\implies c_L^{(KSV)} = 3Q \cdot Q - 9Q \cdot a + 2 = 20 \qquad c_R^{(KSV)} = 3Q \cdot Q - 3Q \cdot a = 6$$

$$c_L = 4_{CM} + 20 + 6 + 96_{D5}$$

 $c_R = 6_{CM} + 6 + 6 + 96_{D5}$

$$c_L = 4_{CM} + 20$$
$$c_R = 6_{CM} + 6$$

"accidentally" massless states

non-trivial CP factors

Brane										
D5	×	X	X	X	X	X	•	•	•	•
D5 D1	×	×	•	•	•	•	•	•	•	•

DI brane at a fixed point

DI brane in the bulk

BPS branes can have nonminimal central charges

Unitarity constraint?

$$\implies c_L^{(KSV)}$$

 $r\bar{n} + \bar{r}n$

 $rd + \bar{r}\bar{d}$

 $r\bar{d} + \bar{r}d$

 I_4

$$-3Q \cdot a = 6$$

 $(\frac{1}{2},2,1,2')_R$

 $(1,1)_{L}$

$$c_L = 4_{CM} + 20 + 6 + 96_{D5}$$

 $c_R = 6_{CM} + 6 + 6 + 96_{D5}$

$$c_L = 4_{CM} + 20$$
$$c_R = 6_{CM} + 6$$

"accidentally" massless states

non-trivial CP factors

Tests in perturbative 6d orientifold models B) (brane) SUSY breaking

SUSY breaking in string theory: two examples

SUSY breaking in string theory: two examples

SUSY breaking **by deformation** of SUSY models (by compactification, Scherk-Schwarz) : KSV conditions expected to hold

SUSY breaking at the string scale (brane SUSY breaking): KSV conditions expected to be violated, but SUSY breaking can be localised

[Antoniadis, Dudas, Sagnotti '99]

[Antoniadis, Dudas, Sagnotti '99]

Model of O9 and O5+ planes, D9 and anti-D5 branes, with gauge group

 $SO(16)_9^2 \times USp(16)_5^2$

Spectrum:

Field/Multiplet	Representation
Gravity	1
Tensors	17
Hypers	4
$\overline{A_{\mu}}$	(120,1;1,1) + (1,120;1,1) + (1,1;136,1) + (1,1;1,136)
χ_L	(120, 1; 1, 1) + (1, 120; 1, 1) + (1, 1; 120, 1) + (1, 1; 1, 120)
Hypers	(16, 16; 1, 1) + (1, 1; 16, 16)
$\text{MW} \; \psi_L$	(16, 1; 16, 1) + (1, 16; 1, 16)
2ϕ	(16, 1; 1, 16) + (1, 16; 16, 1)

[Antoniadis, Dudas, Sagnotti '99]

Model of O9 and O5+ planes, D9 and anti-D5 branes, with gauge group

 $SO(16)_9^2 \times USp(16)_5^2$

Spectrum:

Field/Multiplet	Representation
Gravity	1
Tensors	17
Hypers	4
$\overline{A_{\mu}}$	(120, 1; 1, 1) + (1, 120; 1, 1) + (1, 1; 136, 1) + (1, 1; 1, 136)
χ_L	(120, 1; 1, 1) + (1, 120; 1, 1) + (1, 1; 120, 1) + (1, 1; 1, 120)
Hypers	(16, 16; 1, 1) + (1, 1; 16, 16)
$\text{MW} \; \psi_L$	(16, 1; 16, 1) + (1, 16; 1, 16)
2ϕ	(16, 1; 1, 16) + (1, 16; 16, 1)

Anomaly polynomial: $I_8 = \frac{1}{64} \left(\operatorname{tr} F_1^2 + \operatorname{tr} F_2^2 - \operatorname{tr} F_3^2 - \operatorname{tr} F_4^2 \right)^2 - \frac{1}{64} \left(-8 \operatorname{tr} R^2 + \operatorname{tr} F_1^2 + \operatorname{tr} F_2^2 + \operatorname{tr} F_3^2 + \operatorname{tr} F_4^2 \right)^2 - \frac{1}{128} \left(\operatorname{tr} F_1^2 - \operatorname{tr} F_2^2 + 4 \operatorname{tr} F_3^2 - 4 \operatorname{tr} F_4^2 \right)^2 - \frac{15}{128} \left(\operatorname{tr} F_1^2 - \operatorname{tr} F_2^2 \right)^2$

[Antoniadis, Dudas, Sagnotti '99]

Model of O9 and O5+ planes, D9 and anti-D5 branes, with gauge group

 $SO(16)_9^2 \times USp(16)_5^2$

Spectrum:

Field/Multiplet	Representation
Gravity	1
Tensors	17
Hypers	4
A_{μ}	(120, 1; 1, 1) + (1, 120; 1, 1) + (1, 1; 136, 1) + (1, 1; 1, 136)
χ_L	(120, 1; 1, 1) + (1, 120; 1, 1) + (1, 1; 120, 1) + (1, 1; 1, 120)
Hypers	(16, 16; 1, 1) + (1, 1; 16, 16)
$\text{MW} \; \psi_L$	(16, 1; 16, 1) + (1, 16; 1, 16)
2ϕ	(16, 1; 1, 16) + (1, 16; 16, 1)

Anomaly polynomial: $I_8 = \frac{1}{64} \left(\text{tr} F_1^2 + \text{tr} F_2^2 - \text{tr} F_3^2 - \text{tr} F_4^2 \right)^2 - \frac{1}{44} \left(-8 \, \text{tr} R^2 + \text{tr} F_1^2 + \text{tr} F_2^2 + \text{tr} F_3^2 + \text{tr} F_4^2 \right)^2 - \frac{1}{128} \left(\text{tr} F_1^2 - \text{tr} F_2^2 + 4 \, \text{tr} F_2^2 - 4 \, \text{tr} F_4^2 \right)^2 - \frac{1}{128} \left(\text{tr} F_1^2 - \text{tr} F_2^2 \right)^2$

Brane	0	1	2	3	4	5	6	7	8	9
$\overline{\mathrm{D5}}$	×	×	×	×	X	X	•	•	•	•
$\overline{\mathrm{D5}}$ $\overline{\mathrm{D1}}$	×	×	•	•	•	•	•	•	•	•

DI brane at a fixed point

Brane	0	1	2	3	4	5	6	7	8	9
$\overline{\mathrm{D5}}$	×	×	X	X	X	X	•	•	•	•
$\overline{\mathrm{D5}}$ D1	×	×	•	•	•	•	•	•	•	•

DI brane at a fixed point

$$I_{4} = -\frac{d}{2} \left(\operatorname{tr} R^{2} - \frac{1}{2} \operatorname{tr} F_{1}^{2} - \operatorname{tr} F_{3}^{2} + \operatorname{tr} F_{4}^{2} + d\chi(N) \right) \qquad I_{4} = -d \left(\operatorname{tr} R^{2} - \frac{1}{4} \operatorname{tr} F_{1}^{2} - \frac{1}{4} \operatorname{tr} F_{2}^{2} \right)$$

$$\implies Q = \left(\frac{1}{2\sqrt{2}}, -\frac{1}{2\sqrt{2}}, -1, 0^{15} \right) \qquad \Longrightarrow Q = \left(-\frac{1}{2\sqrt{2}}, \frac{1}{2\sqrt{2}}, 0^{16} \right)$$

Representation
$$SO(1,1) \times SU(2)_l \times SU(2)_R \times SO(4)$$
 $\frac{d(d-1)}{2}$ $(0,1,1,1) + (\frac{1}{2},2,1,2)_L + (\frac{1}{2},1,2,2')_L$ $\frac{d(d+1)}{2}$ $(1,2,2,1) + (\frac{1}{2},1,2,2)_R$ $\frac{d(d+1)}{2}$ $(1,1,1,4) + (\frac{1}{2},2,1,2')_R$ $d(n_1+n_2)$ $(\frac{1}{2},1,1,1)_L$

$$I_{4} = -d\left(\operatorname{tr}R^{2} - \frac{1}{4}\operatorname{tr}F_{1}^{2} - \frac{1}{4}\operatorname{tr}F_{2}^{2}\right)$$

$$\implies Q = \left(-\frac{1}{2\sqrt{2}}, \frac{1}{2\sqrt{2}}, 0^{16}\right)$$

Brane	0	1	2	3	4	5	6	7	8	9
$\overline{\mathrm{D5}}$	×	×	X	X	X	X	•	•	•	•
$\overline{\mathrm{D5}}$ D1	×	×	•	•	•	•	•	•	•	•

DI brane at a fixed point

$$I_4 = -\frac{d}{2} \left(\operatorname{tr} R^2 - \frac{1}{2} \operatorname{tr} F_1^2 - \operatorname{tr} F_3^2 + \operatorname{tr} F_4^2 + d\chi(N) \right)$$

$$\implies Q = \left(\frac{1}{2\sqrt{2}}, -\frac{1}{2\sqrt{2}}, -1, 0^{15} \right)$$

$$c_L = 4_{CM} + 8 + 0 + 16_{D5}$$
 $c_R = 6_{CM} + 0 + 0 + 16_{D5}$
bulk CP factors

"accidentally" massless states

$$\begin{array}{lll} \textbf{Representation} & SO(1,1) \times SU(2)_l \times SU(2)_R \times SO(4) \\ \hline \frac{d(d-1)}{2} & (0,1,1,1) + (\frac{1}{2},2,1,2)_L + (\frac{1}{2},1,2,2')_L \\ \frac{d(d+1)}{2} & (1,2,2,1) + (\frac{1}{2},1,2,2)_R \\ \frac{d(d+1)}{2} & (1,1,1,4) + (\frac{1}{2},2,1,2')_R \\ d(n_1+n_2) & (\frac{1}{2},1,1,1)_L \end{array}$$

$$I_{4} = -d\left(\operatorname{tr}R^{2} - \frac{1}{4}\operatorname{tr}F_{1}^{2} - \frac{1}{4}\operatorname{tr}F_{2}^{2}\right)$$

$$\implies Q = \left(-\frac{1}{2\sqrt{2}}, \frac{1}{2\sqrt{2}}, 0^{16}\right)$$

Brane	0	1	2	3	4	5	6	7	8	9
$\overline{\mathrm{D5}}$	×	×	×	X	X	X	•	•	•	•
$\overline{\mathrm{D5}}$ D1	$ $ \times	×	•	•	•	•	•	•	•	•

DI brane at a fixed point

$$I_{4} = -\frac{d}{2} \left(\operatorname{tr} R^{2} - \frac{1}{2} \operatorname{tr} F_{1}^{2} - \operatorname{tr} F_{3}^{2} + \operatorname{tr} F_{4}^{2} + d\chi(N) \right)$$

$$\implies Q = \left(\frac{1}{2\sqrt{2}}, -\frac{1}{2\sqrt{2}}, -1, 0^{15} \right)$$

$$c_L = 4_{CM} + 8 + 0 + 16_{D5}$$
 $c_R = 6_{CM} + 0 + 0 + 16_{D5}$
bulk CP factors

"accidentally" massless states

Representation
$$SO(1,1) \times SU(2)_l \times SU(2)_R \times SO(4)$$
 $\frac{d(d-1)}{2}$ $(0,1,1,1) + (\frac{1}{2},2,1,2)_L + (\frac{1}{2},1,2,2')_L$ $\frac{d(d+1)}{2}$ $(1,2,2,1) + (\frac{1}{2},1,2,2)_R$ $\frac{d(d+1)}{2}$ $(1,1,1,4) + (\frac{1}{2},2,1,2')_R$ $d(n_1+n_2)$ $(\frac{1}{2},1,1,1)_L$

$$I_{4} = -d\left(\operatorname{tr}R^{2} - \frac{1}{4}\operatorname{tr}F_{1}^{2} - \frac{1}{4}\operatorname{tr}F_{2}^{2}\right)$$

$$\implies Q = \left(-\frac{1}{2\sqrt{2}}, \frac{1}{2\sqrt{2}}, 0^{16}\right)$$

Brane	0	1	2	3	4	5	6	7	8	9
$\overline{\mathrm{D5}}$	×	×	×	X	X	X	•	•	•	•
$\overline{\mathrm{D5}}$ D1	$ $ \times	×	•	•	•	•	•	•	•	•

DI brane at a fixed point

$$I_{4} = -\frac{d}{2} \left(\operatorname{tr} R^{2} - \frac{1}{2} \operatorname{tr} F_{1}^{2} - \operatorname{tr} F_{3}^{2} + \operatorname{tr} F_{4}^{2} + d\chi(N) \right)$$

$$\Longrightarrow Q = \left(\frac{1}{2\sqrt{2}}, -\frac{1}{2\sqrt{2}}, -1, 0^{15} \right)$$

$$c_L = 4_{CM} + 8 + 0 + 16_{D5}$$

$$c_R = 6_{CM} + 0 + 0 + 16_{D5}$$
 bulk CP factors

"accidentally" massless states

DI brane in the bulk

Representation
$$SO(1,1) \times SU(2)_l \times SU(2)_R \times SO(4)$$
 $\frac{d(d-1)}{2}$ $(0,1,1,1) + (\frac{1}{2},2,1,2)_L + (\frac{1}{2},1,2,2')_L$ $\frac{d(d+1)}{2}$ $(1,2,2,1) + (\frac{1}{2},1,2,2)_R$ $\frac{d(d+1)}{2}$ $(1,1,1,4) + (\frac{1}{2},2,1,2')_R$ $d(n_1+n_2)$ $(\frac{1}{2},1,1,1)_L$

$$I_{4} = -d\left(\operatorname{tr}R^{2} - \frac{1}{4}\operatorname{tr}F_{1}^{2} - \frac{1}{4}\operatorname{tr}F_{2}^{2}\right)$$

$$\implies Q = \left(-\frac{1}{2\sqrt{2}}, \frac{1}{2\sqrt{2}}, 0^{16}\right)$$

$$c_L = 4_{CM} + 20$$
$$c_R = 6_{CM} + 6$$

KSV conditions apply!

Brane	0	1	2	3	4	5	6	7	8	9
$\overline{\mathrm{D5}}$	×	×	×	X	X	X	•	•	•	•
$\overline{\mathrm{D5}}$ D1	$ $ \times	×	•	•	•	•	•	•	•	•

DI brane at a fixed point

Representation $SO(1,1) \times SU(2)_l \times SU(2)_R \times SO(4)$ $\frac{\frac{d(d-1)}{2}}{2} \qquad (0,1,1,1) + (\frac{1}{2},1,2,2')_L$ $\frac{d(d+1)}{2} \qquad (1,2,2,1) + (\frac{1}{2},2,1,2')_R$ dn_1

DI brane in the bulk

$$\begin{array}{c|c} \textbf{Representation} & SO(1,1) \times SU(2)_l \times SU(2)_R \times SO(4) \\ \hline \frac{d(d-1)}{2} & (0,1,1,1) + (\frac{1}{2},2,1,2)_L + (\frac{1}{2},1,2,2')_L \\ \frac{d(d+1)}{2} & (1,2,2,1) + (\frac{1}{2},1,2,2)_R \\ \end{array}$$

Non-BPS stable branes generically violate the conditions

$$I_4 = -\frac{d}{2} \left(\operatorname{tr} R^2 - \right)$$

$$\Longrightarrow Q =$$

 dm_1

 dm_2

DI branes "separated" from SUSY breaking do not

$$\left(\frac{\operatorname{tr} F_2^2}{1}\right), \frac{1}{2\sqrt{2}}, 0^{16}\right)$$

 $(\frac{1}{2},2,1,2')_R$

 $(1,1)_L$

$$c_L = 4_{CM} + 8 + 0 + 16_{D5}$$

$$c_R = 6_{CM} + 0 + 0 + 16_{D5}$$
 bulk CP factors

"accidentally" massless states

$$c_L = 4_{CM} + 20$$

$$c_R = 6_{CM} + 6$$

KSV conditions apply!

A « null charged string conjecture »

They have **null charges**: $Q \cdot Q = 0$

$$Q \cdot Q = 0$$

They have null charges:

$$Q \cdot Q = 0$$

Generic in geometric compactifications with at least one tensor multiplet

Always present when we scanned the literature

They have null charges:

$$Q \cdot Q = 0$$

Generic in geometric compactifications with at least one tensor multiplet

Always present when we scanned the literature

Null charged string conjecture

There must exist a consistent string with null charge (unless T=0)

Two examples:

[Kumar, Morrison, Taylor '10]

• $N_T=1,\ SU(N)$ with one symmetric and N-8 fundamentals

Two examples:

[Kumar, Morrison, Taylor '10]

• $N_T=1,\ SU(N)$ with one symmetric and N-8 fundamentals

$$\Omega = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad a = (-3, 1), \ b = (0, -1)$$

 $Q=(q,\pm q)$ never fulfils the KSV constraints

Two examples:

[Kumar, Morrison, Taylor '10]

• $N_T=1,\ SU(N)$ with one symmetric and N-8 fundamentals

$$\Omega = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad a = (-3, 1), \ b = (0, -1)$$

 $Q=(q,\pm q)$ never fulfils the KSV constraints

. $N_T=1,\ SU(24)\times SO(8)$ with three antisymmetric of the first group

Two examples:

[Kumar, Morrison, Taylor '10]

• $N_T=1,\ SU(N)$ with one symmetric and N-8 fundamentals

$$\Omega = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad a = (-3, 1), \ b = (0, -1)$$

 $Q=(q,\pm q)$ never fulfils the KSV constraints

. $N_T=1,\ SU(24)\times SO(8)$ with three antisymmetric of the first group

$$\Omega = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 $a = (-3, 1), b_1 = (1, 0), b_2 = (0, -2)$

 $Q=(q,\pm q)$ never fulfils the KSV constraints

We performed "experimental" tests of the KSV conditions in SUSY orientifolds, and in non-SUSY ones

We performed "experimental" tests of the KSV conditions in SUSY orientifolds, and in non-SUSY ones

BPS branes can have non-minimal central charges

Non-BPS stable branes generically violate the conditions

D I branes "separated" from SUSY breaking do not

Some anomaly polynomials cannot arise from a SUSY model

We performed "experimental" tests of the KSV conditions in SUSY orientifolds, and in non-SUSY ones

BPS branes can have non-minimal central charges

Non-BPS stable branes generically violate the conditions

D I branes "separated" from SUSY breaking do not

Some anomaly polynomials cannot arise from a SUSY model

We proposed a **null charged string conjecture**, that allows to exclude models without known string theory realisation

THANK YOU