Analysis and Differential Equations

Team

(Please select 5 problems to solve)

a) Let f(z) be holomorphic in D: |z| < 1 and $|f(z)| \le 1$ ($z \in D$). Prove that

$$\frac{|f(0)| - |z|}{1 + |f(0)||z|} \le |f(z)| \le \frac{|f(0)| + |z|}{1 - |f(0)||z|}. \qquad (z \in D)$$

b) For any finite complex value a, prove that

$$\frac{1}{2\pi} \int_0^{2\pi} \log|a - e^{i\theta}| d\theta = \max\{\log|a|, 0\}.$$

2. Let $f \in C^1(\mathbf{R}), f(x+1) = f(x)$, for all x, then we have

$$||f||_{\infty} \le \int_0^1 |f(t)|dt + \int_0^1 |f'(t)|dt.$$

3. Consider the equation

$$\ddot{x} + (1 + f(t))x = 0.$$

We assume that $\int_{-\infty}^{\infty} |f(t)| dt < \infty$. Study the Lyapunov stability of the solution $(x, \dot{x}) = (0, 0)$.

4. Suppose $f:[a,b] \to \mathbf{R}$ be a L^1 -integrable function. Extend f to be 0 outside the interval [a,b]. Let

$$\phi(x) = \frac{1}{2h} \int_{x-h}^{x+h} f$$

Show that

$$\int_{a}^{b} |\phi| \le \int_{a}^{b} |f|.$$

- **5.** Suppose $f \in L^1[0, 2\pi], \hat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$, prove that
 - 1) $\sum_{|n|=0}^{\infty} |\hat{f}(n)|^2 < \infty \text{ implies } f \in L^2[0, 2\pi],$
 - 2) $\sum_{n=0}^{\infty} |n\hat{f}(n)| < \infty$ implies that $f = f_0, a.e., f_0 \in C^1[0, 2\pi],$

where $C^1[0, 2\pi]$ is the space of functions f over [0, 1] such that both f and its derivative f' are continuous functions.

6. Let Ω be a bounded domain of \mathbf{R}^n and let f be a smooth function defined in $[0, +\infty)$ such that f(t)/t is strictly decreasing. Assume that u_1 and u_2 are positive solutions of

$$\Delta u + f(u) = 0$$
 in Ω , $u = 0$ on $\partial \Omega$

Show that $u_1 = u_2$. (Hint: Calculate $\Delta \log \frac{u_2}{u_1}$ and consider the maximum principle.)