

Bayesian

Hendrik Santoso Sugiarto

IBDA2032 – Artificial Intelligence

Capaian Pembelajaran

- Bayesian
- Estimasi Parametrik
- Model Probabilistik Generatif
- Model Probabilistik Diskriminatif
- Probabilistic Graphical Model

Bayesian

Bayesian Learning

- Paradigma machine learning yang menggunakan perspektif peluang munculnya sebuah data
- Dapat digunakan untuk regresi, klasifikasi, unsupervised
- Mudah diinterpretasi
- Probabilistic: setiap prediksi memiliki nilai peluang

Peluang bersyarat

- $P(A) \rightarrow peluang A terjadi$
- $P(A,B) \rightarrow \text{peluang A dan B terjadi}$
- $P(A|B) \rightarrow peluang A terjadi jika B terjadi$
- Conditional probability dan chain rule:

$$P(B|A) = \frac{P(A,B)}{P(A)} \to P(A,B) = P(A)P(B|A)$$

$$P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)$$

$$P(A,B,C,D) = P(D|A,B,C) P(AB,C)$$

$$= P(D|A,B,C) P(C|A,B) P(A,B)$$

$$= P(D|A,B,C) P(C|A,B) P(B|A) P(A)$$

$$= P(D|A,B,C) P(C|A,B) P(B|A) P(A)$$

Independen

• Jika A dan B tidak saling berhubungan maka

$$P(A,B) = P(A)P(B)$$

Jika A dan B memiliki korelasi maka

$$P(A,B) \neq P(A)P(B)$$

Uji Pemahaman

A

- Tidak terdapat hubungan antara hujan dan gempa bumi. Jika peluang hujan adalah 0.5 dan gempa bumi adalah 0.001:
 - berapa peluang gempa bumi terjadi bersamaan dengan hujan?
- 0.5×0.001 = 0.0005
- Saat ini sedang hujan, berapa peluang terjadi gempa bumi?
- Saat ini terjadi gempa bumi, berapa peluang hujan?

$$P(A,B) = P(A,B) = 0.0005 = 0.00$$

$$P(A|B) = P(A,B) = 0.0005 = 0.5$$

$$P(A|B) = P(B,A) = 0.0005 = 0.5$$

Teorema Bayes

nkelihood prior

• Posterior \propto Likelihood \times Prior

$$P(h|D) = \frac{P(D|n)P(n)}{P(D)}$$

- $P(h) = prior\ probability\ hypothesis\ h\ (prior)$
- P(D) = prior probability data D (evidence)
- $P(h|D) = conditional \ probability \ of \ h \ given \ D \ (posterior)$
- $P(D|h) = conditional \ probability \ of \ D \ given \ h \ (likelihood)$

Contoh

- Tes antigen menunjukan hasil positif. Pada saat itu hanya 1% penduduk terkena covid. Jika akurasi hasil positif adalah 98% dan akurasi hasil negative 97%, berapa peluang terkena covid?
- $P(covid) = 0.01, P(\neg covid) = 0.99$
- P(+|covid) = 0.98, P(-|covid) = 0.02
- $P(-|\neg covid) = 0.97 P(+|\neg covid) = 0.03$

•
$$P(covid|+) = \frac{P(+|covid)P(covid)}{P(+)} = \frac{0.98 \times 0.01}{0.98 \times 0.01 + 0.03 \times 0.99} = \frac{0.0098}{0.0395} = 0.2481$$

Uji Pemahaman

→ O.25

Berapa peluang terkena covid jika hasil tes perikutnya adalah positif lagi?

$$P(covid | t) = \frac{P(t | covid) P(covid)}{P(t)} = \frac{P(t | covid) P(covid) P$$

Estimasi Parametrik

Density Estimation

- Density estimation bertujuan untuk estimasi fungsi peluang dibalik data observasi → menemukan sebuah distribusi p yang paling mendekati distribusi asli d
- Data: data sample x diambil secara iid (independent identically distributed) dari sebuah distribusi d

Parametric Density Estimation

- Parametrik berarti sebuah density function memiliki bentuk tertentu, dengan parameters yang bisa diestimasi
- Gaussian density function

$$p(x) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 standard de Via

Multivariate gaussian

Maximum-Likelihood Estimation

$$P(x^{(1)}) = 0.0001 = 10^{-4}$$

loy $P(x^{(1)}) = -4$

• Likelihood: peluang untuk menemukan data pada distribusi d, dengan asumsi

independent:

Jata pertuma dala hadra
$$P(x^{(1)}, x^{(2)}, \dots, x^{(m)}) = \prod_{i=1}^{m} p(x^{(i)}) = P(x^{(i)}) \cdot P(x^{(i)}) \cdot P(x^{(i)})$$

MLE principle: pilih sebuah distribusi yang dapat memaksimalkan likelihood

• MLE principle: pilih sebuah distribusi yang dapat memaksin
$$\begin{array}{c} \text{Ol} \ \times \delta \text{-}1 \times 0 \text{-}1 \\ \text{log} \ (\text{a.b.c}) = \text{log} \ (\text{6.001}) \\ = -3 \end{array} \qquad \begin{array}{c} p_* = \arg\max_{p} \prod_{m=1}^{m} p(x^{(i)}) \\ p_* = \arg\max_{p} \sum_{i=1}^{m-1} \log p(x^{(i)}) \\ -1 - 1 - 1 \end{array}$$

MLE vs MAP

- MLE: mencari hipotesis h yang memaksimalkan likelihood data D $h_{MLE} = \arg\max_{h} P(D|h)$
- MAP: mencari hipotesis h yang memaksimalkan posterior data $h_{MAP} = \arg\max_{h} P(h|D)$
- Jika priornya adalah uniform distribution maka MLE sama dengan MAP

Optimisasi dari Perspektif Bayesian

Bayesian

- Probability = a degree of belief
- Aturan Bayes P(x|y) = P(x)P(y|x)/P(y)
- Maximum Likelihood Estimation (MLE)

$$\widehat{\underline{\theta}} = argmax(P(y|\theta))$$

Maximum A Posteriori (MAP)

$$\hat{\theta} = argmax \left(\frac{P(y|\theta)P(\theta)}{\int_{\Theta} P(y|\phi)P(\phi)d\phi} \right) = argmax \left(P(y|\theta)P(\theta) \right)$$

$$\hat{\theta} = argmax (\log P(y|\theta) + \log P(\theta))$$

Kasus Gaussian

Gausian conditional likelihood

d
$$P(\mathbf{y}|\mathbf{X}, \mathbf{\Theta}) = \prod_{i}^{N} \exp\left(-\frac{1}{2}(y_i - x_i \mathbf{\theta})^2\right)$$

Gaussian Prior

$$P(\mathbf{\Theta}) = \exp\left(-\frac{1}{2\sigma^2}(\boldsymbol{\theta})^2\right)$$

Log posterior

$$\ln P(\mathbf{y}|\mathbf{X},\mathbf{\Theta})P(\mathbf{\Theta}) = \sum_{i}^{N} -\frac{1}{2}(y_i - \mathbf{x}_i\mathbf{\theta})^2 - \frac{1}{2\sigma^2}(\mathbf{\theta})^2$$

MAP

$$\frac{d}{d\theta_j} \ln P(\mathbf{y}|\mathbf{X}, \mathbf{\Theta}) P(\mathbf{\Theta}) = \sum_{i=1}^{N} -\frac{1}{2} x_{ij} (y_i - \mathbf{x}_i \mathbf{\theta}) - \lambda (\theta_j) = \mathbf{O}$$

• Log Posterior = Regresi Linear + Regularisasi

Kasus Binomial

Binomial conditional likelihood

Product
$$T = X_1 \cdot X_2 \cdot X_3$$
elihood
$$P(y|X, \mathbf{\Theta}) = \prod_{i} [\sigma(x_i \mathbf{\theta})]^{y_i} [1 - \sigma(x_i \mathbf{\theta})]^{1-y_i}$$

Gaussian Prior

$$P(\mathbf{\Theta}) = \exp\left(-\frac{1}{2\sigma^2}(\mathbf{\theta})^2\right)$$

Log posterior

$$\ln P(\mathbf{y}|\mathbf{X},\mathbf{\Theta})P(\mathbf{\Theta}) = \sum_{i}^{N} \left[-\ln(1 + \exp(x_{i}\boldsymbol{\theta})) + y_{i}x_{i}\boldsymbol{\theta} \right] - \frac{1}{2\sigma^{2}}(\boldsymbol{\theta})^{2}$$

MAP

$$\frac{d}{d\theta_j} \log P(\mathbf{y}|\mathbf{X}, \mathbf{\Theta}) P(\mathbf{\Theta}) = \sum_{i=1}^{N} [y_i - \sigma(x_i \theta_j)] x_i - \lambda \theta_j$$

Log Posterior = Regresi Logistik + Regularisasi

Model Probabilistik Generatif

Probabilistic Generative Models

• Terdapat data latih dari K kelas:

Klasifikasi data x menuju salah satu dari K kelas

$$p(C_k|\mathbf{x}) \propto p(\mathbf{x}|C_k)p(C_k)$$

• Density function untuk kelas C_k

$$p(\mathbf{x}|C_k) = N(\mathbf{x}|\mu_k, \Sigma_k) = \frac{1}{(2\pi)^{d/2}|\Sigma_k|} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu_k)^T \Sigma_k^{-1} (\mathbf{x} - \mu_k)\right)$$

© Copyright 2020 Calvin Institute of Technology.

Curse of Dimensionality

- Problem dari metode ini biasanya tidak cukupnya data untuk menebak parameter
- Jika 5 data cukup untuk menebak pola 1D maka dibutuhkan:

• 1D: 5 data

• 2D: 25 data

• 3D: 125 data

• 10D: 9765625 data

25 points

125 points

Klasifikasi Naïve Bayes

- Algoritma efisien namun memiliki performa / generalisasi yang lebih buruk jika dibandingkan linear classifier lain seperti regresi logistic atau SVM
- Asumsi naïve bayes: setiap fitur independent terhadap fitur yang lain sehingga memerlukan data lebih sedikit dibanding algoritma lain
- Contoh: benda apakah dengan warna merah, bentuk bulat, diameter sekitar 10 cm?
- Prediksi: apel
- Mudah dilakukan karena fitur warna, bentuk, dan ukuran independent terhadap peluang benda tersebut adalah apel. Korelasi antar fitur dapat diabaikan sekalipun ada

Naïve Bayes

- Sulit untuk menebak $p(x|C_k)$ pada data dimensi tinggi / fitur banyak
- Asumsi naïve bayes: semua fitur independent
- Aproksimasi naïve bayes:

$$p(\mathbf{x}|C_k) \approx \prod_{j=1}^d p(x_j|C_k)$$

$$p(\mathbf{x}|C_k) = N(\mathbf{x}|\mu,\Sigma) \approx \prod_{j=1}^d p(x_j|C_k) = \prod_{j=1}^d N(x_j|\mu_j,\sigma_j^2)$$

Naïve Bayes Classifier

• Untuk klasifikasi:

$$P(C_k|\mathbf{x}) = \frac{P(\mathbf{x}|C_k)P(C_k)}{P(\mathbf{x})} \propto P(\mathbf{x}|C_k)P(C_k)$$

Naïve Bayes Classifier:

$$C_{NB} = \arg \max_{C_k} P(C_k) \prod_{j=1}^{d} p(x_j | C_k)$$

$$\text{(ive likew)}$$

Model Probabilistik Diskriminatif

Batas Keputusan pada Naïve Bayes

- Misalkan kita mengklasifikasikan 2 kelas
- Gaussian density function: $p(x|C_k) = N(x|\mu_k, \Sigma_k)$
- Misalkan kovariannya sama: $\Sigma_1 = \Sigma_2 = \Sigma$
- Rasio pengambilan keputusan:

$$\frac{P(C_1|\mathbf{x})}{P(C_2|\mathbf{x})} = \frac{P(C_1)}{P(C_2)} \times \frac{P(\mathbf{x}|C_1)}{p(\mathbf{x}|C_2)}$$

$$\ln \frac{P(C_1|\mathbf{x})}{P(C_2|\mathbf{x})} \propto \ln \frac{P(C_1)}{P(C_2)} - \mathbf{x}^T \Sigma^{-1} (\mu_1 - \mu_2)$$

• Persamaan ini merupakan bentuk dari batas keputusan:

$$\ln \frac{P(C_1|\mathbf{x})}{P(C_2|\mathbf{x})} = b + \mathbf{x}^T \boldsymbol{\theta}^{\boldsymbol{\xi}}$$

Regresi Logistik

• Linear discriminatory model: memodelkan langsung batas keputusan linear

$$\ln \frac{P(y=1|x)}{P(y=-1|x)} = b + x^{T} \boldsymbol{\theta}$$

$$\frac{P(y|x)}{1 - P(y|x)} = \exp(b + x^{T} \boldsymbol{\theta})$$

$$P(y|x) = (1 - P(y|x)) \exp(b + x^{T} \boldsymbol{\theta})$$

$$P(y|x)(1 + \exp(b + x^{T} \boldsymbol{\theta})) = 1$$

$$P(y|x) = \frac{1}{1 + \exp(b + x^{T} \boldsymbol{\theta})} = \sigma(b + x^{T} \boldsymbol{\theta})$$

• Jadi dalam paradigma ini, peluang dimodelkan dengan sigmoid

Discriminative vs Generative

- Regresi Logistik: memodelkan P(y|x)
- Kelebihan:
 - Performa lebih baik
 - Robust terhadap noise
- Kekurangan:
 - Susah konvergen
 - Expensive computation
- Naïve Bayes: memodelkan P(x|y)
- Kelebihan:
 - Mudah konvergen
 - Cheap computation
- Kekurangan:
 - Performa lebih buruk
 - Sensitif terhadap noise

Probabilistic Graphical Model

Markov Process

• Peluang setiap kata hanya bergantung pada beberapa kata sebelumnya $P(w_N \big| w_1^{N-1}) \approx P(w_N \big| w_{N-1})$

Bayesian Networks

• Berlaku untuk relasi Bayesian apapun

Uji Pemahaman

Apakah relasi Bayesian untuk graphical model berikut?

Multiple output (Plate Diagram)

• Distribusi parametrik dapat menghasilkan banyak output

Polynomial regression model

• Regresi: input data $\mathbf{x} = (x_1, ..., x_N)^T \rightarrow \text{observed output } \mathbf{t} = (t_1, ..., t_N)^T$

Latent Dirichlet Allocation

(a) LDA document generation process

(c) Two outputs of LDA

(c-1) Per-document topic proportions (θ_d)

	Topic 1	Topic 2	Topic 3		Topic K
Doc 1	0.20	0.50	0.10		0.10
Doc 2	0.50	0.02	0.01		0.40
Doc 3	0.05	0.12	0.48		0.15
***	***		***		***
Doc N	0.14	0.25	0.33	***	0.14

(c-2) Per-topic word distributions (ϕ_k)

	Topic 1	Topic 2	Topic 3	***	Topic K
word 1	0.01	0.05	0.05		0.10
word 2	0.02	0.02	0.01	***	0.03
word 3	0.05	0.12	0.08		0.02

word N	0.04	0.01	0.03	***	0.07

Tuhan Memberkati

