

ITMO UNIVERSITY

NLP - Dependency Parsing

Quick Introduction

References

- https://web.stanford.edu/~jurafsky/slp3/15.pdf
- ✓ State-of-the-art methods:

 http://nlpprogress.com/english/dependency_parsing.htm

Dependency Parsing

- **Goal:** we want to understand the grammatical structure of a sentence, similar to context-free constituent parsing
- In contrast to constituent parsing, not **based on rules** for the structure of the sentence, but more flexible, well-suited for example for languages like Russian, which have a flexible word order.
 - DPs abstracts over word order ...

Example

(15.1)

I prefer the morning flight through Denver

Basics

- We look at binary relationships between words.
- The relations are always between a head and a dependent
- The relationships are directed and labeled
- The label show the type of grammatical relationships
- There is always **one root node** (the predicate of the sentence)

Motivation - Why DP?

- Question answering: Who invented the light bulb? → If we understand the structure of the sentence, we can more easily answer the query. When was the light bulb invented → modifier.
- Information extraction
- Co-reference resolution
- ★ this information is very helpful / necessary for many NLP problems

Relation types

▼ There is a fixed number of relation types

Clausal Argument Relations	Description
NSUBJ	Nominal subject
DOBJ	Direct object
IOBJ	Indirect object
CCOMP	Clausal complement
XCOMP	Open clausal complement
Nominal Modifier Relations	Description
NMOD	Nominal modifier
AMOD	Adjectival modifier
NUMMOD	Numeric modifier
APPOS	Appositional modifier
DET	Determiner
CASE	Prepositions, postpositions and other case markers
Other Notable Relations	Description
CONJ	Conjunct
CC	Coordinating conjunction
Figure 15.2 Selected dependent	cy relations from the Universal Dependency set. (de Marn-

effe et al., 2014) Selected dependency relations from the Universal Dependency set. (de Marn-

Universal dependency set (UD) / Treebanks

- Standardized set of labels
- ✓ linguistically motivated, computationally useful, cross-linguistically applicable
- See example on previous slide
- Treebanks are basically datasets with manually or semi-automatically labelled examples
- They can be used for training and evaluation of algorithms

Another Example

United canceled the morning flights to Houston

ITSMOre than a UNIVERSITY