	Page 1	IIT Kanpur
Name Roll N		CS771A (IML) Mid-sem Exam Date: September 23, 2023
Instr	actions:	Total: 60 marks
1. 2. 3. 4. 5.	Total duration: 2 hours . Please write your name, roll number, departure This booklet has 6 pages (5 pages + 1 page for rough work). No parture pages designated for rough work. Additional rough sheets may be pages designated for rough work. Additional rough sheets may be pages designated for rough work. Additional rough sheets may be pages designated for rough work. Additional rough sheets may be pages designated for rough work. Additional rough sheets may be pages designated for rough work. Additional rough sheets may be pages designated for rough work. Additional rough sheets may be pages designated for rough work. Additional rough sheets may be pages designated for rough work. Additional rough sheets may be pages designated for rough work. Additional rough sheets may be pages designated for rough work. Additional rough sheets may be pages designated for rough work. Additional rough sheets may be pages designated for rough work. Additional rough sheets may be pages designated for rough work. Additional rough sheets may be pages at the provided space. Please keep Avoid showing very detailed derivations. You may do those on rough the exam). If you want to make any assumptions, please states a page of the pages of the pa	art of your answers should be on provided if needed. p your answers precise and concise. ght sheet and only show key steps. uestion (no clarifications during)
Sectio	n 1 (2 Multiple Choice Questions: Total 4 marks). (Tick/circle all option	ons that you think are true)
t P	Which of the following is true about MLE? (1) It is equivalent to finding the loss function on the training data, (2) It is guranteed to give the arameters, (3) It yields the same answer as maximum-a-posteriori (sing zero-mean Gaussian prior on the parameters, (4) It has the risk	he global optimal solution for the (MAP) estimation if MAP is done
v v	Which of the following is true about probabilistic linear regression with rior on the weight vector and assuming all other hyperparameters a reight vector is the same as the solution of least squares regression, (2) ector is also Gaussian, (3) The mode of the posterior distribution is the mean of the posterior distribution is the same as the MLE solution.	s fixed? (1) MLE solution for the Posterior distribution of the weight the same as the MAP solution (4)
Sectio	n 2 (8 Descriptive Answer Questions: Total 56 marks).	
c t	You wish to learn a linear regression model with the loss function $L($ onstraints on $\boldsymbol{w} \in \mathbb{R}^D$ that its entries can only be non-negative. Briefly a learn \boldsymbol{w} and write all the necessary mathematical equations/update pproach must not involve introducing any additional variables to solve	describe an optimization algorithm es required by the algorithm. Your

Page 2 IIT Kanpur Name: CS771A (IML) Mid-sem Exam Roll No.: Dept.: Date: September 23, 2023 2. Suppose we are given N training examples $\{(x_i, y_i)\}_{i=1}^N$ with each input $x_n \in \mathbf{R}$ being a scalar value and each output $y_n \in \{1, 2, ..., K\}$. Assume the inputs from class c are generated i.i.d. by univariate Gaussian $\mathcal{N}(x|\mu_c,\sigma_c^2)$ and, for simplicity, assume that only μ_c is unknown and σ_c^2 is known. • Derive (only show key steps) and write down the expression for the MLE solution of μ_c . (3 marks) • Given the MLE solution of $\{\mu_c\}_{c=1}^K$, to predict the label y_* for a new test input x_* , suppose this model uses the following rule at test time: predict y_* to be the class under which the test input x_* has the largest probability density. Compare and contrast this model with the Learning with the Prototypes (LwP) model. What would be the advantage of this model as compared to LwP? (5 marks) 3. Given a set P with N inputs $\{x_i\}_{i=1}^N$ and another set Q with M inputs $\{z_j\}_{j=1}^M$, one notion of distance between these two sets is the squared Euclidean distance $||\phi_P - \phi_Q||^2$ between their means ϕ_P and ϕ_Q in a feature space ϕ defined by a kernel function k. Derive the expression of this distance. Your final answer must be written only in terms of k and not in terms of the feature mapping ϕ . (6 marks)

IIT Kanpur CS771A (IML) Mid-sem Exam

11	No.:					Dept.:				Mid-sem Exar tember 23, 202	
1.	given a ran	by N_1 , dom var	N_2, \dots, N_2	N_K . Associated by	sume eacl y a multi	h outcome $m{x}$ inoulli $p(m{x}_n $	c_n (a one-hot π) where π =	vector of length $= \{\pi_1, \pi_2, \dots \}$	$\operatorname{ngth} K$) of the	face showed in the die roll to be arameter of the $\sum_{i=1}^{K} \pi_i = 1$.	e
	Using	Lagran	ge multi	plier bas	ed constr	rained optim	ization, deriv	e the MLE so	olution of $\{\pi_i\}$	$c_{i=1}^K$. (8 marks	;)
ō.	$(y_n -$	$ \hat{y}_n - \epsilon$	² . Here	$\hat{y}_n = \boldsymbol{w}^{T}$	\boldsymbol{x}_n deno	tes the mode	el's prediction	and y_n is the	e true label.	vise $\ell_{\epsilon}(y_n, \hat{y}_n)$ = Write down th DF. (6 marks	ie

Page 4 Name: Roll No.: Dept.:

IIT Kanpur **CS771A (IML)** Mid-sem Exam otember 23, 2023

	Date: September 23, 202
6.	The ridge regression problem has the solution $\boldsymbol{w} = (\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I}_{D})^{-1}\mathbf{X}^{\top}\boldsymbol{y}$, where \mathbf{X} is $N \times D$ feature matrix (row i contains the input \boldsymbol{x}_{i}) and \boldsymbol{y} is the $N \times 1$ response vector, and $\lambda > 0$ is the regularization hyperparameter. Using the result $(\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I}_{D})^{-1}\mathbf{X}^{\top} = \mathbf{X}^{\top}(\mathbf{X}\mathbf{X}^{\top} + \lambda\mathbf{I}_{N})^{-1}$ (due to Woodbury matrix identity), show that the ridge regression model can be kernelized. More specifically, show that, given test input $\boldsymbol{x}*$, we can compute a kernelized prediction which is given by $y_* = \sum_{i=1}^{N} \alpha_i k(\boldsymbol{x}_i, \boldsymbol{x}_*)$. (6 marks
7.	Consider a logistic regression model $p(y_n \boldsymbol{x}_n, \boldsymbol{w}) = \frac{1}{1+\exp(-y_n\boldsymbol{w}^{\top}\boldsymbol{x}_n)}$, with a zero-mean Gaussian prior $p(\boldsymbol{w}) = \mathcal{N}(0, \lambda^{-1}\mathbf{I})$. Note that this loss function for logistic regression assumes $y_n \in \{-1, +1\}$ instead of $\{0, 1\}$. Show that the MAP estimate for \boldsymbol{w} can be written as $\boldsymbol{w} = \sum_{n=1}^{N} \alpha_n y_n \boldsymbol{x}_n$ where each α_n itself is a function of \boldsymbol{w} . Based on the expression of α_n , you would see that it has a precise meaning. Briefly explain what α_n means, and also briefly explain why the result $\boldsymbol{w} = \sum_{n=1}^{N} \alpha_n y_n \boldsymbol{x}_n$ makes sense for this model. (8 marks)

Р	age	5
-		

Name:		IIT Kanp CS771A (IM	
Roll No.:	Dept.:	Mid-sem Exam Date: September 23, 2023	

8. Consider the dual problem for soft-margin linear SVM: $\arg\max_{0\leq \boldsymbol{\alpha}\leq C} f(\boldsymbol{\alpha})$, where $f(\boldsymbol{\alpha}) = \boldsymbol{\alpha}^{\top}\mathbf{1} - \frac{1}{2}\boldsymbol{\alpha}^{\top}\mathbf{G}\boldsymbol{\alpha}$, \mathbf{G} is an $N\times N$ matrix such that $G_{nm} = y_n y_m \boldsymbol{x}_n^{\top} \boldsymbol{x}_m$ (assume labels as -1/+1), and $\boldsymbol{\alpha} = [\alpha_1, \alpha_2, \dots, \alpha_N]$ are the Lagrange multipliers. Given the optimal $\boldsymbol{\alpha}$, the SVM weight vector is $\boldsymbol{w} = \sum_{n=1}^{N} \alpha_n y_n \boldsymbol{x}_n$.

Your goal is to derive a **co-ordinate ascent** procedure for the vector $\boldsymbol{\alpha}$, such that each iteration updates a uniformly randomly chosen entry α_n of the vector $\boldsymbol{\alpha}$. However, instead of updating $\boldsymbol{\alpha}$ via standard co-ordinate descent as $\alpha_n = \alpha_n + \eta g_n$ where g_n denotes the *n*-th entry of the gradient vector $\nabla_{\boldsymbol{\alpha}} f(\boldsymbol{\alpha})$, we will update it as $\alpha_n = \alpha_n + \delta_*$ where $\delta_* = \arg \max_{\delta} f(\boldsymbol{\alpha} + \delta \mathbf{e}_n)$ and \mathbf{e}_n denotes a vector of all zeros except a 1 at entry *n*. Essentially, this will give the new α_n that guarantees the maximum increase in f, with all other α_n 's fixed at their current value. Derive the expression for δ_* .

te that your express	sion for δ_* should	be such that the	e constraint $0 \le$	$\alpha_n \leq C$ is mainta	ined. (8 mai

Some distributions and their properties:

- For $x \in \mathbb{R}$, the PDF of univariate Gaussian: $\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$. If using precision $\beta = 1/\sigma^2$, the PDF is $\mathcal{N}(x|\mu,\beta^{-1}) = \sqrt{\frac{\beta}{2\pi}} \exp\{-\frac{\beta}{2}(x-\mu)^2\}$.
- Given $\boldsymbol{\pi} = [\pi_1, \dots, \pi_K]$, s.t. $\sum_{k=1}^K \pi_k = 1$, the multinoulli is defined as multinoulli($\boldsymbol{x} | \boldsymbol{\pi}$) = $\prod_{i=1}^K \pi_i^{x_i}$, where the random variable $\boldsymbol{x} = [x_1, x_2, \dots, x_K]$ is a one-hot vector.

Some other useful results:

• $\frac{\partial}{\partial x} \mathbf{a}^{\top} \mathbf{x} = \mathbf{a}$, $\frac{\partial}{\partial x} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} = 2 \mathbf{A} \mathbf{x}$. $|x| = \max\{x, -x\}$. If a function $h(x) = \max\{f(x), g(x)\}$ then, at any point x_* , (1) if $f(x_*) > g(x_*)$ then the subgradient $\partial h(x_*) = \partial f(x_*)$, (2) if $g(x_*) > f(x_*)$ then $\partial h(x_*) = \partial g(x_*)$, and (3) if $f(x_*) = g(x_*)$ then $\partial h(x_*) = \{\alpha a + (1 - \alpha)b\}$, where $a \in \partial f(x_*)$, $b \in \partial g(x_*)$, and $a \in [0, 1]$.

Page 6

Name:		
Roll No.:	Dept.:	

IIT Kanpur CS771A (IML) Mid-sem Exam

Date: September 23, 2023

FOR ROUGH WORK ONLY