Figures

```
library(tidyverse)
library(MASS, exclude = "select")
library(marginaleffects)
library(broom)
library(survival)
```

Figure 1: Packages

Price	Beds	Baths	Size	Lot
82.0	3	3.0	1.454	2.50
92.5	3	1.0	1.329	0.42
92.5	3	2.0	1.790	0.73
144.0	3	1.5	1.968	0.34
118.0	3	1.0	1.500	0.50
92.0	3	2.0	1.815	0.00
100.5	3	2.0	1.608	0.58
114.0	4	2.0	2.720	2.50
197.5	4	2.5	2.268	1.00
72.0	3	2.0	1.442	0.22
185.0	4	3.5	2.220	0.12
115.0	4	2.0	1.401	1.10
87.0	3	1.5	1.740	0.25
179.0	4	2.0	3.100	0.28
162.0	4	1.5	2.044	0.85

Figure 2: Canton houses data (15 randomly chosen rows)

Figure 3: Canton houses scatterplots

boxcox(Price ~ Size + Beds, data = houses_ny)

Figure 4: Code and output from houses data

```
houses.1 <- lm(Price ~ Size + Beds, data = houses_ny)</pre>
summary(houses.1)
Call:
lm(formula = Price ~ Size + Beds, data = houses_ny)
Residuals:
   Min
            1Q Median
                            3Q
                                   Max
-61.493 -31.920 1.696 27.866 73.436
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                        22.277
                                2.087
(Intercept)
            46.498
                                         0.042 *
Size
             31.169
                        12.617
                                 2.470
                                         0.017 *
Beds
              4.367
                         9.515 0.459
                                         0.648
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 36.21 on 50 degrees of freedom
Multiple R-squared: 0.2653, Adjusted R-squared: 0.236
F-statistic: 9.03 on 2 and 50 DF, p-value: 0.0004489
```

Figure 5: Regression 1 for Canton houses data

```
houses.2 <- lm(Price ~ Beds, data = houses_ny)</pre>
summary(houses.2)
Call:
lm(formula = Price ~ Beds, data = houses_ny)
Residuals:
            1Q Median
   Min
                            3Q
                                   Max
-66.453 -32.953 -5.048 33.142 70.642
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                        23.161 1.694 0.09632 .
(Intercept)
             39.239
Beds
              21.905
                         6.644
                                 3.297 0.00179 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 37.98 on 51 degrees of freedom
Multiple R-squared: 0.1757,
                               Adjusted R-squared: 0.1595
F-statistic: 10.87 on 1 and 51 DF, p-value: 0.001785
```

Figure 6: Regression 2 for Canton houses data

```
new <- tribble(</pre>
  ~Size, ~Beds,
  2.75, 5,
  2.75, 2
)
cbind(predictions(houses.1, new)) %>%
  select(Beds, Size, estimate, conf.low, conf.high) %>%
  mutate(conf.length = conf.high - conf.low)
# A tibble: 2 x 6
   Beds Size estimate conf.low conf.high conf.length
  <dbl> <dbl>
                 <dbl>
                           <dbl>
                                     <dbl>
1
      5 2.75
                  154.
                           131.
                                      177.
                                                  45.1
2
      2 2.75
                            90.9
                                                  100.
                  141.
                                      191.
```

Figure 7: Canton houses data: predictions (values rounded to 3 significant digits)

3.40

1.68

1

```
ggplot(houses_ny, aes(x = Beds, y = Size)) + geom_point()
```


Figure 8: Canton houses data: further analysis

#	Α	tibb]	Le: 15	x 3
		temp	male	${\tt female}$
		<dbl></dbl>	<int></int>	<int></int>
1	L	27.2	1	9
2	2	27.2	0	8
3	3	27.2	1	8
4	1	27.7	7	3
Ę	5	27.7	4	2
6	3	27.7	6	2
7	7	28.3	13	0
8	3	28.3	6	3
S	9	28.3	7	1
10)	28.4	7	3
11	L	28.4	5	3
12	2	28.4	7	2
13	3	29.9	10	1
14	1	29.9	8	0
15	5	29.9	9	0

Figure 9: Turtle hatch data, in dataframe turtle (all)

```
turtle.1 <- glm(cbind(female, male) ~ temp, data = turtle,</pre>
                family = "binomial")
summary(turtle.1)
Call:
glm(formula = cbind(female, male) ~ temp, family = "binomial",
    data = turtle)
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 61.3183 12.0224 5.100 3.39e-07 ***
            -2.2110 0.4309 -5.132 2.87e-07 ***
temp
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 74.508 on 14 degrees of freedom
Residual deviance: 24.942 on 13 degrees of freedom
AIC: 53.836
Number of Fisher Scoring iterations: 5
```

Figure 10: Turtle hatch data logistic regression

plot_predictions(model = turtle.1, condition = "temp")

Figure 11: Turtle hatch data plot

```
# A tibble: 15 x 4
   sex
           year use
                           n
   <chr> <dbl> <fct> <int>
             80 <1m
 1 female
                          30
2 male
             77 never
                          88
3 female
             80 >1m
                          15
4 female
             80 never
                          75
5 female
             77 never
                         106
 6 female
             78 >1m
                           8
7 female
             79 >1m
                          14
8 male
             78 never
                          75
9 male
             76 never
                         104
10 male
             79 <1m
                          20
11 male
             78 <1m
                          20
12 male
             79 never
                          70
13 female
             78 never
                          91
14 female
             76 >1m
                           1
15 male
             80 >1m
                          32
```

Figure 12: Marijuana use data (15 randomly chosen rows)

potuse %>% count(use)

Figure 13: Marijuana use summary

```
potuse.1 <- polr(use ~ sex + year, data = potuse, weights = n)</pre>
```

Figure 14: Marijuana use model

```
drop1(potuse.1, test = "Chisq")
```

	Df	AIC	LRT	Pr(>Chi)
1	NA	1675.796	NA	NA
sex	1	1694.766	20.96921	4.7e-06
year	1	1771.661	97.86416	0.0e + 00

Figure 15: Marijuana use model output

Re-fitting to get Hessian

```
# A tibble: 6 x 5
  year sex
               never `<1m` `>1m`
  <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
     76 male
               0.858 0.09 0.053
1
     76 female 0.918 0.053 0.029
3
    78 male
               0.697 0.176 0.127
     78 female 0.811 0.117 0.073
4
5
     80 male
              0.467 0.256 0.277
     80 female 0.62 0.21 0.17
```

Note: the predictions are shown to three decimal places. If only two decimal places are shown, the third one is zero.

Figure 16: Marijuana use: predictions

```
plot_predictions(model = potuse.1, condition = c("year", "group", "sex"))
```

Re-fitting to get Hessian

Figure 17: Marijuana use: plot

lungcancer

```
# A tibble: 14 x 3
    time cens group
   <dbl> <dbl> <fct>
     257
             0 newdrug
2
     476
             0 newdrug
3
     355
             1 newdrug
4
    1779
             1 newdrug
5
     355
             0 newdrug
6
     191
             1 control
7
     563
             1 control
8
     242
             1 control
9
     285
             1 control
10
      16
             1 control
11
      16
             1 control
12
      16
             1 control
13
     257
             1 control
14
      16
             1 control
```

Figure 18: Lung cancer data

```
with(lungcancer, Surv(time, cens == 1))
 [1]
      257+
            476+
                   355 1779
                                355+
                                      191
                                            563
                                                   242
                                                         285
                                                                 16
                                                                       16
                                                                             16
[13]
      257
             16
```

Figure 19: Lung cancer code and its output

```
lungcancer.1 <- coxph(Surv(time, cens == 1) ~ group, data = lungcancer)</pre>
summary(lungcancer.1)
Call:
coxph(formula = Surv(time, cens == 1) ~ group, data = lungcancer)
 n= 14, number of events= 11
               coef exp(coef) se(coef) z Pr(>|z|)
groupnewdrug -2.45904  0.08552  1.07581 -2.286  0.0223 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
            exp(coef) exp(-coef) lower .95 upper .95
groupnewdrug 0.08552 11.69
                                0.01038 0.7043
Concordance= 0.764 (se = 0.064)
Likelihood ratio test= 8.84 on 1 df, p=0.003
Wald test
                  = 5.22 on 1 df, p=0.02
Score (logrank) test = 7.82 on 1 df, p=0.005
```

Figure 20: Lung cancer Cox model

Figure 21: Predictions from lung cancer Cox model

```
lungcancer.1 %>% augment(lungcancer) %>%
ggplot(aes(x = .fitted, y = .resid)) + geom_point()
```


Figure 22: Another plot from lung cancer Cox model

group	attempts
Group2	10
Group1	3
Group3	15
Group2	13
Group1	4
Group2	11
Group1	7
Group2	9
Group3	18
Group1	7

Figure 23: Shock data (10 randomly chosen rows)

Call:

lm(formula = attempts ~ group, data = Shock)

Residuals:

Min 1Q Median 3Q Max -3.4444 -1.4444 0.1111 1.1111 3.5556

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.4074 0.3889 26.762 < 2e-16 ***
groupc_any -4.5185 0.5500 -8.216 1.96e-08 ***
groupc_med_sev -2.2222 0.4763 -4.666 9.72e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 2.021 on 24 degrees of freedom Multiple R-squared: 0.7881, Adjusted R-squared: 0.7705 F-statistic: 44.63 on 2 and 24 DF, p-value: 8.188e-09

Figure 24: Shock data analysis

treatment	rep	weight1	feed	weight2	gain
$\overline{T2}$	R1	26	699	194	168
T1	R9	28	632	192	164
T1	R10	26	637	184	158
T5	R6	36	678	196	160
Т3	R5	32	607	185	153
T5	R3	32	722	205	173
T4	R3	32	733	218	186
T3	R7	30	637	190	160
T5	R7	30	763	230	200
T5	R9	32	710	216	184

Figure 25: Pigs data (10 randomly chosen rows)

```
ggplot(crampton.pig, aes(x = feed, y = gain, colour = treatment)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE)
```

`geom_smooth()` using formula = 'y ~ x'

Figure 26: Graph of pigs data

```
pig.1 <- lm(gain ~ feed * treatment, data = crampton.pig)
drop1(pig.1, test = "F")</pre>
```

	Df	Sum of Sq	RSS	AIC	F value	Pr(>F)
	NA	NA	3024.615	225.1258	NA	NA
feed:treatment	4	899.1275	3923.742	230.1389	2.972701	0.030638

Figure 27: ANCOVA of pigs data

summary(pig.1)

```
Call:
lm(formula = gain ~ feed * treatment, data = crampton.pig)
Residuals:
    Min
              1Q
                  Median
                              3Q
                                      Max
-25.2835 -5.1686 -0.0565
                           6.1270 17.6647
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 1.342383 42.798105 0.031 0.975134
feed
                 treatmentT2
               163.288907 66.193398 2.467 0.018011 *
treatmentT3
                -1.860747 55.241490 -0.034 0.973297
treatmentT4
                45.776065 54.342512 0.842 0.404594
treatmentT5
               -43.145509 53.945914 -0.800 0.428556
feed:treatmentT2 -0.228126 0.099615 -2.290 0.027368 *
feed:treatmentT3
                 0.005866 0.084898 0.069 0.945258
feed:treatmentT4 -0.048686
                           0.082056 -0.593 0.556298
                           0.080759 0.799 0.429050
feed:treatmentT5
                 0.064521
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.696 on 40 degrees of freedom
Multiple R-squared: 0.7857,
                             Adjusted R-squared: 0.7375
F-statistic: 16.3 on 9 and 40 DF, p-value: 8.356e-11
```

Figure 28: Summary output from ANCOVA