

IN THE CLAIMS

Please amend the claims as follows, substituting any amended claim(s) for the corresponding pending claim(s):

1 1. (Withdrawn) A baseband controller system, comprising:
2 a plurality of buses coupled to communicate with a plurality of hardware blocks;
3 a microsequencer also coupled to the plurality of buses;
4 the microsequencer comprising a 72-bit correlator/ accumulator; and
5 transceiver circuitry coupled to at least one of the plurality of buses.

1 2. (Withdrawn) The baseband controller system of claim 1 wherein the
2 microsequencer further comprises a 72-bit arithmetic logic unit.

1 3. (Withdrawn) The baseband controller system of claim 1 wherein the
2 microsequencer further comprises a plurality of temporary registers for storing computational
3 data.

1 4. (Withdrawn) The baseband controller system of claim 3 wherein the temporary
2 registers include a 64-bit register.

1 5. (Withdrawn) The baseband controller system of claim 3 wherein the temporary
2 registers include a 48-bit register.

1 6. (Withdrawn) The baseband controller system of claim 3 wherein the temporary
2 registers include a 32-bit register.

1 7. (Withdrawn) The baseband controller system of claim 3 wherein the temporary
2 registers include a 16-bit register.

1 8. (Withdrawn) The baseband controller system of claim 3 wherein the temporary
2 registers include a 64-bit register, a 48-bit register, a 32-bit register and a 16-bit register.

1 9. (Withdrawn) The baseband controller system of claim 8 further including logic
2 circuitry to determine which temporary register should be used to store a piece of computational
3 data based upon the size of the piece of computational data.

1 10. (Withdrawn) The baseband controller system of claim 1 wherein the
2 microsequencer comprises a plurality of clocks, including a native Bluetooth clock.

1 11. (Withdrawn) The baseband controller system of claim 1 wherein the
2 microsequencer comprises a plurality of clocks, including a native real-time clock.

1 12. (Withdrawn) The baseband controller system of claim 1 wherein the
2 microsequencer comprises a plurality of clocks, including an externally driven Bluetooth clock.

1 13. (Withdrawn) The baseband controller system of claim 1 wherein the
2 microsequencer comprises a plurality of clocks, including an externally driven real-time clock.

1 14. (Withdrawn) The baseband controller system of claim 1 wherein the
2 microsequencer comprises a plurality of timers.

1 15. (Withdrawn) The baseband controller system of claim 1 wherein the
2 microsequencer comprises a plurality of timers wherein the plurality of timers comprises at least
3 four timers.

1 16. (Withdrawn) The baseband controller system of claim 1 wherein the
2 microsequencer includes eight timers.

1 17. (Currently Amended) A microsequencer for use as a real-time Bluetooth baseband
2 controller, comprising comprises:

3 timer circuitry operably coupled to receive a requested timer counting value and to
4 announce when the timer counting value has elapsed;

5 temporary data storage circuitry operably coupled to store data; and

6 a plurality of Bluetooth and native clocks operably coupled to support for supporting
7 timing functionality of the timer circuitry according to Bluetooth specifications when in a master
8 mode; and

9 a plurality of externally-driven Bluetooth and native clocks operably coupled to support
10 timing functionality of the timer circuitry according to Bluetooth specifications when in a slave
11 mode.

Claims 18 – 21 (Cancelled).

1 22. (Original) The microsequencer of claim 17 wherein the temporary data storage
2 circuitry includes a 64-bit storage register.

1 23. (Original) The microsequencer of claim 17 wherein the temporary data storage
2 circuitry includes a 48-bit storage register.

1 24. (Original) The microsequencer of claim 17 wherein the temporary data storage
2 circuitry includes a 32-bit storage register.

1 25. (Original) The microsequencer of claim 17 wherein the temporary data storage
2 circuitry includes a 16-bit storage register.

1 26. (Original) The microsequencer of claim 17 wherein the temporary data storage
2 circuitry includes a 64-bit register, a 48-bit register, a 32-bit register and a 16-bit register.

1 27. (Currently Amended) The microsequencer of claim 17 wherein the temporary
2 data storage circuitry ~~includes~~ comprises registers of different size and ~~further wherein the~~
3 ~~microsequencer includes~~ a data storage logic module, which data storage logic module
4 determines which available register should be used for storing the data based upon the size of the
5 data that is to be temporarily stored.

1 28. (Currently Amended) The microsequencer of claim 17 wherein the ~~timers include~~
2 timer circuitry comprises at least four timers.

1 29. (Currently Amended) The ~~micro-sequenceer~~ microsequencer of claim 17 wherein
2 the ~~timers include~~ timer circuitry comprises at least eight timers.

1 30. (Currently Amended) The ~~micro-sequenceer~~ microsequencer of claim 27 further
2 ~~including~~ comprises timer control logic circuitry for controlling the operation of the at least eight
3 timers.

1 31. (Original) A microsequencer for use as a real-time Bluetooth baseband controller,
2 comprising:

3 eight timers to provide traditional timer functionality;
4 timer control logic circuitry;
5 an externally driven Bluetooth clock;
6 an externally driven real-time clock;
7 a native Bluetooth clock;
8 a native real-time clock;
9 a 64-bit register for temporarily storing computational data;
10 a 48-bit storage register for temporarily storing computational data;
11 a 32-bit storage register for temporarily storing computational data;
12 a 16-bit storage register for temporarily storing computational data; and
13 data storage logic circuitry for determining which of the temporary storage registers is to
14 store a piece of data that is to be temporarily stored.

1 32. (Original) The microsequencer of claim 31 wherein the period of one Bluetooth
2 clock cycle is equal to 312.5 real-time clock cycle periods.