

Development of a consumer-grade scanning platform for fruit thermal and position data collection

Bortolotti Gianmarco; DISTAL dept. – University of Bologna, IT

Piani, M; Franceschini C; Manfrini L; DISTAL dept. – University of Bologna, IT

Mengoli, D; Omodei, N; Rossi, S; DEI dept. – University of Bologna, IT

INTRODUCTION

Fruit sunburn (SB)

* 'energy load'

Bleaching, Browning, Necrosis

Damage related excessive fruit temperature*

- excessive **solar radiation**
- excessive **temperature**

Combination

Berry shrivel

Softening

- up to 50% unmarketable production
- indirect cost (protection)

Increasing trends in regional heatwaves

The **Risk of Fruit SB occurrence** increases

Forecasting fruit SB damage occurrence (based on weather data) would be helpful to operate defensive strategies

Fruit SB occurrence forecasting

Need to Investigate Fruit temperature dynamics in relation to SB occurrence

Wide range of data needed:

- weather & microclimatic data
- global **positioning**
- pedological and surrounding info
- -crop info (specie, management, etc)
- -Fruit info (Temp., Position, SB occurrence)

Computers and Electronics in Agriculture

In-field crop physiology sensing aided realtime apple fruit surface temperature monitoring for sunburn prediction

Rakesh Ranian a, Lav R. Khot a 😩 🐹 , <u>R. Troy Peters</u>a, <u>Melba R. Salazar-Gutierrez</u>b, <u>Guobin Shi</u>

? Position

? SB occurrence

Wide amount

Goal

Develop and test a scanning **platform based** on **ready-to-use consumer-grade sensors**, computer vision system (**CVS**) and **object-detection algorithms**.

The platform objective is to facilitate fruit thermal and spatial data collection by introducing automation and possibly exploiting autonomous ground vehicles in the near future

MATHERIAL AND METHODS

Platform setup

Intel RealSense SDK 2.0

3° party SEEK Thermal SDK

ROS NODE

Simultaneous data collection Video .bag Recording

- *.bag post processing:
- synchronization
- alignment
- -fruit detection
- -fruit temperature extraction
- -fruit positioning (XYZ)

(a) Seek compactPRO
Thermal Camera

320*240

(b) Intel RealSense D435i

RGB-D Camera

848*480

3D printed case Close sensors Vertical alignment

Tripod Laptop(MSI KatanaGF66)

Image Alignment process

RGB & Depth:

aligned by the proper SDK

Thermal-to-RGB(D):

- different resolution
- different camera center
- -different wavelength

RGB- Visible

Thermal - IR

Alignment panel similar to Tsoulias et al., 2022

1-OpenCV - SimpleBlobDetector*

2-detection of the 4 corners **enclosing bbox**

^{*}SimpleBlobDetector tuning per each image type

3-Sx and Sy scaling factor computation

4- Thermal-to-RGB projection

Mean of **18** images: Sx and Sy scaling factors

Thermal Calibration – reverse engineering

No open source Raw thermal \rightarrow °C Eq.

Comparison of the same scene

1- conversion from ROSraw → APPraw pix-to-pix regression: r = 0.6; RMSE = 251 (maintain resolution and details)

2- conversion from ROSraw → °C (pix-pix regression for known temp obj.)

Not linear Defined **3 linear domain**:

< 3k; 3k-7k; >7k

3- object-to-camera distance correction

(scene with known temp obj at 6 distances)

Linear eq. correction for each domain*dist

	distance	Slope (a coeff.)	Intercept (b coeff.)
General			
	0.5m -3.0m	0.01286527470000000	-28.62827940000000000
Raw <3000	0.5m	0.01790580184650830	-41.62511947512870000
	1.0m	0.01709801137150510	-39.87904853972370000
	1.5m	0.01671930703052060	-38.82596994946430000
	2.0m	0.01648162214344660	-37.84663166550710000
	2.5m	0.01636317146858520	-37.77315677927730000
	3.0m	0.01592340420569740	-36.11466921652480000
Raw 3000-7000	0.5m	0.01122734467909650	-22.07632178280650000
	1.0m	0.01121187326341270	-22.00337506467050000
	1.5m	0.01112760151137210	-21.64788385102760000
	2.0m	0.01112956235348940	-21.55103524359960000
	2.5m	0.01106067709941020	-21.37977980029620000
	3.0m	0.01111150330406360	-21.29391749734170000
Raw >7000	0.5m	0.00802669863747835	-0.37960504788257500
	1.0m	0.00810378210333579	-1.07049399213111000
	1.5m	0.00794082388563919	0.21424855976091400
	2.0m	0.00785087065611661	1.01781066231241000
	2.5m	0.00785149354366968	0.93286503219869300
	3.0m	0.00400799716597930	29.31449127197260000

Fruit Temp. extraction process

1 – Fruit detection (Yolov5-m model): Apple - mAP = 0.734 and F1-score = 0.74 (Grape mAP = 0.973 and F1-score = 0.96)

5- Thermal filtering (> 70th percentile – Sunburn)

6- Thermal data corr. And extractoin

- ROSraw Th. Data → APPraw Th. Data range
- APPraw Th Data → °C Th Data
- Min, max, mean Temp^oC → Dist correction (RGB-D)

Fruit Position extraction process

RESULTS AND DISCUSSION

Image Alignment and Fruit positioning

Alignment performance guarantee that thermal data extracted is related to

object, considering **object real size** (fruit, clusters ~ 100-1000px)

	RMSE (pix)	MAE (pix)
X axis	±9.17	+4.5
Y axis	±4.17	+0.17
		N= 18 images

In-field 3D fruit positioning performances:

- Tagged fruit (known position) vs Estimated position
- **Preliminary dataset N=19** (* manual labelling requirement)
- RMSE of 0.15m approx.

Acceptable performance when dealing with plant dimensions (and for project purpose)

Temperature estimation

In-Field Fruit Temperature estimation

- Hot day (Tair~ 35° C)
- 24 image with Tmin, Tmax, Tambient
- HTI vs ROS extracted (manual label)

Obj	Scene Temp	Correlation
Exposed Fruit	T 'max'	0.93
Hand	T 'ambient'	0.97
Refr. container	T 'min'	0.98

HTI HT-A9

Apple Fruit results vs **HTI**:

• **RMSE**: $\pm 1.38 / \pm 6.72^{\circ}$ C

• **MAE**: -0.95 / 6.59° C

*best results for max temp extraction and correction

Thermocouple

Grape clusters results vs **Thermocouple**:

RMSE: $\pm 3.43 / \pm 10.36^{\circ}$ C

• **MAE**: -0.96 / -9.79° C

*best results for max temp extraction and correction

Encouraging performances in estimating max fruit temperature

3D fruit temperature scanning

CONCLUSION

Conclusion

A Low cost Scanning platform for fruit temperature and position was developed

Results are encouraging (RMSE: Temp ($\pm 1.38 / \pm 3.43$) and position(± 0.15))

Still need of improvements for both temperature and position estimation

A version 2.0 of the platform is currently under development

The **RGB-D** and thermal camera fusion can ease / automate fruit temperature data collection (to investigate sunburn dynamics)

*Sunburn detection model could be integrated

ACKNOWLEDGMENT

Mirko Piani PhD Student

Coding Speed-up

This work was supported by the **SHEET (Sunburn and heat prediction in canopies for evolving a warning tech solution)** European project. https://ictagrifood.eu/node/44656

The project is part of the ERA-NET co-funded ICT-AGRI-FOOD, with funding provided by national sources (Italian Ministry of the University and Research) and co-funding by the European Union's Horizon 2020 research and innovation program, Grant Agreement number 862665.

THANKS FOR THE ATTENTION

an Open Access Journal by MDPI

Smart Sensing, Artificial Intelligence and Robotic Solutions for Precision Horticulture, Tree Ecophysiology and Phenotyping

Guest Editors

Dr. Nikos Tsoulias, Dr. Gianmarco Bortolotti, Dr. Luigi Manfrini

Deadline

30 April 2024

Specialsue

