Problema da Árvore de Steiner

Steiner Tree Problem

Origem

- O Problema de Steiner em Grafos é derivado do Problema Euclideano de Steiner, proposto na verdade por Fermat no século XVII.
- O problema em sua versão simplificada consistia em dados 3 pontos no plano, encontrar um quarto ponto tal que a soma das distâncias desse ponto aos 3 originais fosse mínima.

o Grafo Inicial

Seleção de 3 pontos

Origem

Solução sem ponto de Steiner

Solução com ponto de Steiner

Vértice de Steiner

Considere um grafo G=(V,E), V conjunto de vértices e E conjunto de ligações, uma função C que atribui custo às ligações e T um conjunto de vértices terminais contido em V.

 O problema consiste em encontrar uma árvore que conecte todos os vértices terminais com o menor custo.

 Quando houver 2 terminais apenas é possível resolver o problema com algoritmos de caminho mínimo.

 Quando todos os vértices forem terminais é possível resolver com o algoritmos de árvore geradora mínima.

G:

Escolha dos vértices terminais

Construção da Solução

o Árvore de Steiner

Vértices de Steiner

Aplicações

Projetos de circuitos eletrônicos;

- Redes de comunicação;
- Planejamento de redes externas de comunicação;
- Árvores Filogenéticas

Aplicações

Tubulação de gás e óleo;

 Modelos de confecção de modelos de circuitos VLSI;

 Distribuição de água para irrigação de redes de drenagem;

Problemas relacionado com Steiner em grafos

Problema de Steiner
 Generalizado

o Formulação de produto único

Formulação de multiprodutos

Problemas relacionado com Steiner em grafos

 Problema de Steiner com conexão estocástica

Problema da floresta de steiner

 Problema de agrupamento de árvores de steiner

Primeiros Algoritmos - Melhores trabalhos na área

- Limites obtidos da RL para reduzir o número de subarvores de Steiner (Beasley et al.)
- Modificação de um algoritmo para o problema de Steiner euclidiano.
- Desenvolvimento de subarvores de Steiner (Dreyfus e Wagner)

Primeiros Algoritmos - Melhores trabalhos na área

- Limites obtidos de formulção dual para reduzir enumeração (Wong)
- O(r.n²) (Takahashi e Matsuyama)
- \circ O(n³) (Aneja)

Primeiros Algoritmos – Melhores trabalhos na área

- Heurísticas duais em algoritmos exatos para o PSG
- Os melhores algoritmos exatos para o PSG são baseados nas chamadas "formulações fortes"
- A formulação por multifluxo (Claus e Maculan e Wong)

Primeiros Algoritmos

- A formulação por cortes direcionados Wong,
 Aneja usa cortes não-direcionados)
- A formulação por eliminação de ciclos generalizada (Lucena, Goemans e Margot at al.)
- Em 1984, Wong propôs uma heurística de dual ascent para se obter rapidamente uma solução aproximada do dual da formulação de multifluxo

Algoritmos Genéticos
 É um algoritmo probabilístico análogo o processo de evolução natural

Busca Tabu

É um procedimento adaptativo que guia um algoritmo de busca local na exploração contínua do espaço de busca. Sem retornar a um ótimo local visitado e nem ser confundido pela ausência de vizinhos aprimorante.

GRASP

Combinação de um método construtivo com busca local, em um procedimento interativo com interações completamente independentes.

Branch and Bound

Baseia-se na idéia de desenvolver uma enumeração inteligente dos pontos candidatos à solução ótima inteira de um problema

Simulated Annealing

Analogia entre um processo de mecânica estatística e a solução de um problema de otimização combinatória

Scatter Search

Baseia em combinar as soluções que aparecem no chamado conjunto de referência. Este conjunto armazena boas soluções que foram encontradas durante o processo de busca.

Algoritmo de Rede de Distância

Rede de distâncias $D_G=(T,E)$: para cada $(i,j) \in TxT$: wij = comprimento do caminho mais curto de i a j em G em relação aos pesos c_{ii} .

Passo 0:

Calcular a rede de distâncias $D_G=(T,E)$, isto é, os caminhos mais curtos entre cada par de terminais do grafo.

Passo 1:

Obter uma árvore geradora de peso mínimo T^* da rede de distâncias $D_G = (T,E)$.

Passo 2:

Expandir as arestas de T*.

Passo 3:

Eliminar folhas que não sejam terminais.

Calculando o caminho mais curto de cada para de terminais

 C_{ab} : a,1,b (2)

 C_{ac} : a,2,c (4)

 C_{ad} : a,1,3,5,d (4)

 C_{bc} : b,1,3,5,c (4)

 C_{bd} : b,4,d (4)

 C_{cd} : c,5,d (2)

Rede de distâncias $D_G=(T,E)$

 C_{ab} : a,1,b (2)

 C_{ac} : a,2,c (4)

 C_{ad} : a,1,3,5,d (4)

 C_{bc} : b,1,3,5,c (4)

 C_{bd} : b,4,d (4)

 C_{cd} : c,5,d (2)

Terminal

Arvore geradora de peso mínimo da rede de distâncias $D_G = (T,E)$

Calculando a arvore geradora mínima utilizando o algoritmo de Prim ou Kruskal.

 C_{ab} : a,1,b (2)

 C_{ac} : a,2,c (4)

 C_{ad} : a,1,3,5,d (4)

 C_{bc} : b,1,3,5,c (4)

 C_{bd} : b,4,d (4)

 C_{cd} : c,5,d (2)

Terminal

Expansão da árvore geradora de peso mínimo

da rede de distâncias $D_G=(T,E)$

 C_{ab} : a,1,b (2)

 C_{ac} : a,2,c (4)

 C_{ad} : a,1,3,5,d (4)

 C_{bc} : b,1,3,5,c (4)

 C_{bd} : b,4,d (4)

 C_{cd} : c,5,d (2)

Terminal

Passo 3 - Solução

Problema de Steiner Generalizado

A otimização de uma rede de condutas de gás ou de água

A minimização do comprimento de fios condutores na construção de aparelhos elétricos

O cálculo de tarifas telefônicas de chamadas de longa distância

Na natureza, as abelhas minimizam instintivamente a quantidade de cera a usar para construir as colmeias (neste caso não se trata de uma minimização de comprimentos, mas sim de áreas os triedros de 120º são redes minimais)

 Um dos principais problemas de construção de redes de comunicação é o desenho de uma topologia de interconexão de nós que verifique certas características de custo e confiabilidade

 A confiabilidade de uma rede é a medida que indica o sucesso de comunicação entre os pares de nós

 O aumento na quantidade de problemas nos desenhos de redes de comunicação tem proporcionado a busca por novas alternativas

- Varias heurísticas tem sido aplicadas obter soluções aproximadas de boa qualidade
- Entre elas, os algoritmos genéticos(AG) tem se manifestado como métodos flexíveis e robustos para solução de problemas complexidade otimização de redes de comunicação
- Em uma rede de comunicação existem nós distintos denominados nós terminais, o Problema de Steiner Generalizado refere-se ao desenho de uma sub-rede de mínimo custo e de máxima confiablidade

 Minimização de custo e maximização de confiabilidade são objetos antagônicos

Ex: Um modelo que minimize os custos da rede satisfazendo os requisitos de conexão sem agregar redundância de caminhos, constitui uma solução muito sensível a falha

 O GSP incorpora requisitos adicionais a conectividade sobre os pares de nós terminais, aplicando um desenho de redes de comunicações onde a alta confiabilidade é garantida pela existência de caminhos alternativos entre os terminais

Rede de comunicação inicial

Dado um grafo não orientado G(V,E) e uma matriz de custos e um conjunto T de nós terminais, de cardinalidade n_t = |T|, sendo n_v = |V| a cardinalidade de G

Matriz de conectividade

Uma matriz R = $\{r_{ij}\}$ com i, j E T, com dimensão $n_t \times n_t$, cujos os elementos são inteiros positivos que indicam os requerimentos de conectividade

Matriz r_{ii}:

0	3	3
2	0	2
3	3	0

Solução ótima

 O GSP procurar um sub grafo G_t de custo mínimo, tal que, todo o par de nodo i,j E T i <> j, existiam r_{ij} caminhos diferentes entre os nodo i e j

Sub grafo G_t:

Solução ótima

 Os nós não pertencentes ao conjunto de nós terminais não se aplicam os requisitos de conectividade. Estes nós são chamados de nós de Steiner e podem ou não fazer parte da solução ótima

Modelo matemático

$$\begin{aligned} & \textit{Min} \sum_{(i,j) \in E} C_{ij} \cdot x_{ij} \quad \text{sujeto a} \\ & x_{ij} \geq y_{ij}^{kl} + y_{ji}^{kl} \quad \forall (i,j) \in E, \forall k, l \in T, k \neq l \\ & \sum_{(k,j) \in E} y_{kj}^{kl} \geq r_{kl} \quad \forall k, l \in T, k \neq l \\ & \sum_{(p,j) \in E} y_{pj}^{kl} - \sum_{(i,p) \in E} y_{ip}^{kl} \geq 0 \ \forall k, l \in T, \forall p \in V \setminus \{k,l\} \\ & x_{ij} \in \{0,1\} \quad \forall (i,j) \in E \\ & y_{ij}^{kl} \geq 0 \quad \forall i,j: (i,j) \in E, \forall k, l \in T, k \neq l \end{aligned}$$

Modelo matemático

Função objetivo:

$$Min \sum_{(i,j) \in E} C_{ij} \cdot x_{ij}$$

C_{ii} Representa o custo referente a aresta i,j

X_{ij} Variável binária em que 1 significa que a aresta(i,j) pertencente a solução e 0 caso contrário

Restrição 1:

$$x_{ij} \ge y_{ij}^{kl} + y_{ji}^{kl} \quad \forall (i,j) \in E, \forall k, l \in T, k \ne l$$

 y_{ij}^{kl} A quantidade da comodidade a ser deslocada de k para l ao longo da aresta(i,j) na direção i para j

A restrição 1 garante que o produto associado a cada para origem-destino(k.l), Só pode usar o arco(i,j)

Modelo matemático

Restrição 2:

$$\sum_{(k,j)\in E} y_{kj}^{kl} \ge r_{kl} \qquad \forall k,l \in T, k \ne l$$

A restrição 2 indica que o fluxo do produto(k,l) deve escoar a partir do nó k, Através do número de nós sucessores pelo menos igual ao grau de conectividade requisitado para o produto(k,l)

Restrição 3:

$$\sum_{(p,j)\in E} y_{pj}^{kl} - \sum_{(i,p)\in E} y_{ip}^{kl} \ge 0 \quad \forall k,l \in T, \forall p \in V \setminus \{k,l\}$$

A restrição 3 garante que as conexões do produto(k,l) que deixam os vértices de Steiner sejam pelo menos iguais ao número de conexões que chegam

Algoritmos genéticos

Sua origem advém dos trabalhos desenvolvidos por John Holland (1962 e 1970).

São métodos de busca probabilística inteligentes baseados em mecanismos de seleção e evolução natural.

Holland (1972 e 1975) utilizou símbolos binários (0,1) em estruturas semelhantes aos cromossomos.

Objetivo

Tentar melhorar as qualidades genéticas de uma população através de um processo de renovação iterativa das populações

AG x Problema de Otimização

AG	Problema de Otimização
Indivíduo	Solução de um problema
População	Conjunto de soluções
Cromossomo	Representação de uma solução
Gene	Parte da representação de uma solução
Crossover / Mutação	Operadores de busca

Representação do cromossomo

- Tipos usuais de representação:
- o Binária [001010]
- Números reais [123456]
- Símbolos [ABCDEFG]

Estrutura de um AG básico

Algoritmo genético simples

- 1- inicie uma população
- 2- calcule a função de aptidão para cada
- o indivíduo
- 3- crie novos indivíduos com os operadores
- o genéticos definidos
- 4- gere uma nova população
- 5- se a condição de parada não for satisfeita,
- volte para 2
 (cada iteração corresponde a uma geração)

Função de aptidão

Avalia os cromossomos (fitness)

 Representa a capacidade um cromossomos se adaptar a um ambiente

Seleção de indivíduos: sobrevivência e morte

- Como selecionamos os cromossomos que devem sobreviver?
- Sobrevivem os que possuem os melhores níveis de aptidão?
- É importante permitir também a sobrevida de cromossomos menos aptos, do contrário o método ficaria preso em ótimos locais
- Elitismo

Seleção de indivíduos: métodos

- Roleta
- Torneio
- Aleatório, etc...

Método da Roleta

- Coloca-se os indivíduos em uma roleta, dando a cada um uma "fatia" proporcional à sua aptidão relativa
- Roda-se a roleta. O indivíduo em cuja fatia a agulha parar permanece para a próxima geração
- Repete-se o sorteio tantas vezes quanto forem necessárias para selecionar a quantidade desejada de indivíduos

Seleção de indivíduos: métodos

- Roleta
- Torneio
- Aleatório, etc...

Método do Torneio

- Utiliza sucessivas disputas para realizar a seleção
- Para selecionar k indivíduos, realiza k disputas, cada disputa envolvendo n indivíduos escolhidos ao acaso
- O indivíduo de maior aptidão na disputa é selecionado
- \circ É muito comum utilizar n = 3

Operadores genéticos

Operadores genéticos

- Reprodução (crossover)
- Mutação
- Clonagem, etc...

Operador de Cruzamento

- Também chamado de reprodução ou crossover
- Combina as informações genéticas de dois indivíduos (pais) para gerar novos indivíduos (filhos)
- Versões mais comuns criam sempre dois filhos para cada operação

Operador de Cruzamento

- Operador genético principal
- Responsável por gerar novos indivíduos diferentes (sejam melhores ou piores) a partir de indivíduos já promissores
- Aplicado a cada par de indivíduos com alta probabilidade (normalmente entre 0,6 e 0,99)

Abordagens para Cruzamento

Cruzamento Um-Ponto

Cruzamento Multi-Pontos

Cruzamento Uniforme

Cruzamento Um-Ponto

Cruzamento Multi-Ponto

Cruzamento Uniforme

Operadores genéticos

- Reprodução (crossover)
- Mutação
- Clonagem, etc...

Operador de Mutação

- Operador randômico de manipulação
- Introduz e mantém a variedade genética da população
- Garante a possibilidade de se alcançar qualquer ponto do espaço de busca
- Contorna mínimos locais
- Opera sobre os indivíduos resultantes do processo de cruzamento

Operador de Mutação

- Quando o filho não é um caminho viável
- o É um operador genético secundário
- Se seu uso for exagerado, reduz a evolução a uma busca totalmente aleatória

Operador de Mutação

Parâmetros Genéticos

- Tamanho da população
- Taxa de cruzamento
- Taxa de mutação
- Intervalo de geração
- Critério de parada

Aplicações com a Árvore de Steiner

Árvores K-restritas

Ganho Relativo

 Árvores de Steiner com terminais folhas

Autores

- Hugo Vinícius Bitencourt
- Milton da Silva Junior
- Paulo Henrique de Souza Batista
- Ramon de Faria Neves