Problem Set 2 PHYS 18500

2 Energy and Angular Momentum

- 10/13: 1. Which of the following forces are conservative? If conservative, find the potential energy $V(\vec{r})$.
 - A) $F_x = ayz + bx + c$, $F_y = axz + bz$, $F_z = axy + by$.
 - B) $F_x = -ze^{-x}$, $F_y = \ln z$, $F_z = e^{-x} + y/z$.
 - C) $\vec{F} = \hat{r} \cdot a/r$.
 - 2. A projectile is fired with a velocity v_0 such that it passes through two points both a distance h above the horizontal. Show that if the gun is adjusted for maximum range, the separation of the points is

$$d = \frac{v_0}{g}\sqrt{v_0^2 - 4gh}$$

- 3. Show directly that the time rate of change of the angular momentum about the origin for a projectile fired from the origin (constant g) is equal to the moment of force (or torque) about the origin.
- **4.** A bead is confined to move on a smooth wire of shape $y = ae^{-\lambda x}$ under the force of gravity, which acts in the $-\hat{j}$ direction.
 - A) Determine the Lagrangian for the bead.
 - B) Determine the equation(s) of motion.
- **5.** A bead of mass m is confined to move on a smooth circular wire of radius R, located in the xz-plane, under the influence of gravity (which acts in the $-\hat{k}$ direction).
 - A) Determine the Lagrangian for the bead.
 - B) Determine the equation(s) of motion.
 - C) Comment on the relationship between this bead and the bob of a simple pendulum of mass m and length R. What is the relationship between the force exerted by the pendulum rod, and the force exerted by the wire?
- 6. The circular wire from the previous question is now rotated at a constant rate ω about the \hat{k} axis through its center.
 - A) Determine the Lagrangian for the particle.
 - B) Determine the equation(s) of motion.
 - C) Make the approximation that the angular deviation from the bottom of the wire is small. What is the equation of motion? What is the frequency of the oscillations?
 - D) (Bonus) Returning to the full equation, determine a critical value of ω where the behavior of the system changes. What types of trajectories are possible for $\omega > \omega_c$?