Homework 1

Nov. 12, 2020

NOTE: Homework 1 is due next Thursday (Nov. 19, 2020)

- 1. Denote the population by a random variable (r.v.) $X \sim B(1,p)$ (i.e., P(X=1)=p, P(X=0)=1-p, where p is an unknown parameter). Let $\mathbf{X}=(X_1,X_2,\cdots,X_6)$ be a random sample from the population X,
 - Write out the sample space and the probability distribution of X;
 - Point out which of the followings are statistics: X_1 , X_1X_2 , $\min_{1\leq i\leq 5} X_i$, X_6+p^2 , $X_6-E(X_2)$, $(X_6-X_1)^2/Var(X_2)$;
 - If there are m out of the observations of X_1, X_2, \dots, X_6 taking values 1 and 6-m out of them taking values 0, derive the empirical distribution function.
- 2. Let the r.v. X be distributed as uniform distribution U(0,1) and set $Y = -\log X$.
 - Determine the d.f. of Y and then its p.d.f.
 - If X_1, \dots, X_n is a random sample from the U(0,1) distribution and $Y_i = -2 \log X_i$, using the characteristic function approach to show that $\sum_{i=1}^n Y_i$ is distributed as χ^2_{2n} .
- 3. For any r.v.'s X_1, \dots, X_n , let

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$,

and show that:

 $(n-1)S^2 = \sum_{i=1}^n X_i^2 - n\bar{X}^2;$

- If the r.v.'s have common (finite) expectation μ , then

$$\sum_{i=1}^{n} (X_i - \mu)^2 = (n-1)S^2 + n(\bar{X} - \mu)^2.$$

- 4. Let $X = (X_1, X_2, \dots, X_n)$ be a random sample from the population $X \sim N(\mu, 2)$, determine the sample size n such that $P(|\bar{X} \mu| < 0.1) \ge 0.997$.
- 5. Let r.v.'s X_1, \ldots, X_n i.i.d. $\sim N(\mu, \sigma^2)$, $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$. Let r.v. $X_{n+1} \sim N(\mu, \sigma^2)$ and suppose that X_{n+1} is independent of X_1, \ldots, X_n . Determine the distribution of the r.v. $\frac{X_{n+1} \bar{X}}{S_n} \sqrt{\frac{n-1}{n+1}}$.
- 6. Let r.v. $X \sim \chi_n^2$.
 - Prove that E(X) = n, Var(X) = 2n;

- Calculate the population kurtosis $\beta_2 = \{E(X-EX)^4\}/\{E(X-EX)^2\}^2 3;$
- Show that $(X-n)/\sqrt{2n} \xrightarrow{d} N(0,1)$ as $n \to \infty$;
- If $X_i \sim \chi_{n_i}^2$, $i=1,2,\cdots,k$ and X_1,\cdots,X_k are independent, let $m=\sum_{i=1}^k n_i$, then using characteristic function method to show that $\sum_{i=1}^k X_i \sim \chi_m^2$.
- 7. The p.d.f. of the Weibull distribution with two unknown parameters α and β is

$$f(x) = \alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}}, \quad x > 0 \quad (\alpha, \beta > 0).$$

Let X_1, \ldots, X_n be a random sample from this distribution. Let $Y = X_{(1)}$ be the smallest order statistic.

- Is the family of Weibull distributions an exponential family?
- Obtain the p.d.f. of Y.
- Calculate the expectation E(Y) and the variance Var(Y).