Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US05/010913

International filing date: 31 March 2005 (31.03.2005)

Document type: Certified copy of priority document

Document details: Country/Office: US

Number: 60/559,202

Filing date: 01 April 2004 (01.04.2004)

Date of receipt at the International Bureau: 12 August 2005 (12.08.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

AND AND IND WINDOWS THRUSH, PROCESSINAS; SHAME, COMBU;

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

August 02, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/559,202

FILING DATE: April 01, 2004

RELATED PCT APPLICATION NUMBER: PCT/US05/10913

1352381

Certified by

Under Secretary of Commerce for Intellectual Property and Director of the United States Patent and Trademark Office Express Mail Label No.

Approved for use through 7/31/2006. OMB 0651-0032
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53(c).

EL 961008121 US

	INVENTO	R(S)				. 2
Given Name (first and middle [if any])	Family Name or Surna	ıme	(City and eith	Resider	nce r Foreign Country)	221
Steven	MAH		San Diego, Cal		i i oreign country)	
Andreas	BRAUN		San Diego, Cal			
Stefan M.	KAMMERER		San Diego, Cal			
· Additional inventors are being		separately	numbered sheets a		hereto	
Т	ITLE OF THE INVENTION	(500 cha	racters max)			
METHODS FOR IDENTIFYING				TS THE	REOF	
			•			
Size of all assessment and a second						
	RRESPONDENCE ADDRE	38				
X Customer Number:	25225					
OR						
Firm or Individual Name						
Address						
City	State			Zip		
Country	Teleph		101	Fax		
ENC	LOSED APPLICATION PA	RTS (che	eck all that apply)			
x Specification Number of Page	s 240	CD(s), N	lumber			
X Drawing(s) Number of Sheets 2 X Other						
Return Receipt Postcard						
X Application Data Sheet. See	<u> </u>	(specify):	L			
METHOD OF PAYMENT OF FILING	FEES FOR THIS PROVISI	IONAL AP	PLICATION FOR	PATENT		
x Applicant claims small entity s	tatus. See 37 CFR 1.27.					
A check or money order is enclosed to cover the filing fees. FILING FEE AMOUNT (\$)						
The Director is hereby authorized to charge filing						
fees or credit any overpayment to Deposit Account Number: 03-1952 80.00						
Payment by credit card. Form PTO-2038 is attached.						
The invention was made by an agence	of the United States Govern	nment or u	inder a contract with	an agen	cy of the	

Respectfully submitte	ed,	/	[Page 1 of 2]	Date	April 1, 2004
GIGNATURE	La			 	
YPED OR PRINTED NAME	Bruce D	Grant		REGISTRATION NO. (if appropriate)	47,608
ELEPHONE	(858) 72	0-7962		Docket Number:	524593008700

Yes, the name of the U.S. Government agency

and the Government contract number are:

USE ONLY FOR FILING A PROVISIONAL APPLICATION FOR PATENT

I hereby certify that this correspondence is being deposited with the U.S. Postal Service as Express Mail, Airbill No. EL 961008121 US, in an envelope addressed to: Mail Stop Provisional Patent Application, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450, on the date shown below. Signature: (Deborah Wykes)

United States Government.

x No

PROVISIONAL APPLICATION COVER SHEET Additional Page

PTO/SB/16 (08-03)
Approved for use through 07/31/06. OMB 0651-0032
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Docket Number 524593008700								
INVENTOR(S)/APPLICANT(S)								
Given Name (first and middle [if any]) Matthew Roberts Rikard Henry Maria L.	INVENTOR(S)/APPLICA Family or Surname NELSON RENELAND LANGDOWN	Residence (City and either State or Foreign Country) San Marcos, California San Diego, California San Diego, California						

[Page 2 of 2]

METHODS FOR IDENTIFYING RISK OF OSTEOARTHRITIS AND TREATMENTS THEREOF

Field of the Invention

[0001] The invention relates to genetic methods for identifying risk of osteoarthritis and treatments that specifically target such diseases.

Background

[0002] Osteoarthritis (OA) is a chronic disease usually affecting weight-bearing synovial joints. There are approximately 20 million Americans affected by OA and it is the leading cause of disability in the United States. In addition to extensive human suffering, OA also accounts for nearly all knee replacements and more than half of all hip replacements in the United States. Despite its prevalence, OA is poorly understood and there are few treatments available besides anti-inflammatory drugs and joint replacement.

[0003] Most commonly affecting middle-aged and older people, OA can range from very mild to very severe. It affects hands and weight-bearing joints such as knees, hips, feet and the back. Knee OA can be as disabling as any cardiovascular disease except stroke.

[0004] OA is characterized by the breakdown of cartilage in joints. Cartilage in joints cushions the ends of bones, and cartilage breakdown causes bones to rub against each other, causing pain and loss of movement. Type II collagen is the main component of cartilage, comprising 15-25% of the wet weight, approximately half the dry weight, and representing 90-95% of the total collagen content in the tissue. It forms fibrils that endow cartilage with tensile strength (Mayne, R. Arthritis Rhuem. 32:241-246 (1989)).

Summary

[0005] It has been discovered that certain polymorphic variations in human genomic DNA are associated with osteoarthritis. In particular, polymorphic variants in loci containing *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* and *ERG* regions in human genomic DNA have been associated with risk of osteoarthritis. The *PSMB1*, *TBP* and *PDCD2* regions are located in a larger region referred to herein as the *chrom* 6 region.

[0006] Thus, featured herein are methods for identifying a subject at risk of osteoarthritis and/or a risk of osteoarthritis in a subject, which comprise detecting the presence or absence of one or more polymorphic variations associated with osteoarthritis in or around the loci described herein in a human nucleic acid sample. In an embodiment, two or more polymorphic variations are detected in two or more regions, of which one or more is a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* region. In certain

1

embodiments, 3 or more, or 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 or more polymorphic variants are detected.

[0007] Also featured are nucleic acids that include one or more polymorphic variations associated with occurrence of osteoarthritis, as well as polypeptides encoded by these nucleic acids. In addition, provided are methods for identifying candidate therapeutic molecules for treating osteoarthritis, as well as methods for treating osteoarthritis in a subject by identifying a subject at risk of osteoarthritis and treating the subject with a suitable prophylactic, treatment or therapeutic molecule.

[0008] Also provided are compositions comprising a cell from a subject having osteoarthritis or at risk of osteoarthritis and/or a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleic acid, with a RNAi, siRNA, antisense DNA or RNA, or ribozyme nucleic acid designed from a PSMB1, TBP, PDCD2, ELP3. CHDC1 or ERG nucleotide sequence. In an embodiment, the RNAi, siRNA, antisense DNA or RNA, or ribozyme nucleic acid is designed from a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence that includes one or more polymorphic variations associated with osteoarthritis, and in some instances, specifically interacts with such a nucleotide sequence. Further, provided are arrays of nucleic acids bound to a solid surface, in which one or more nucleic acid molecules of the array have a PSMB1. TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence, or a fragment or substantially identical nucleic acid thereof, or a complementary nucleic acid of the foregoing. Featured also are compositions comprising a cell from a subject having osteoarthritis or at risk of osteoarthritis and/or a PSMB1, TBP. PDCD2, ELP3, CHDC1 or ERG polypeptide, with an antibody that specifically binds to the polypeptide. In an embodiment, the antibody specifically binds to an epitope in the polypeptide that includes a nonsynonymous amino acid modification associated with osteoarthritis (e.g., results in an amino acid substitution in the encoded polypeptide associated with osteoarthritis). In certain embodiments, the antibody selectively binds to an epitope in the PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG polypeptide having an amino acid associated with osteoarthritis.

Brief Description of the Drawings

[0009] Figures 1A-1D show proximal SNPs in *chrom 6, ELP3, CHDC1* and *ERG* regions of genomic DNA, respectively. The position of each SNP in the chromosome is shown on the x-axis and the y-axis provides the negative logarithm of the p-value comparing the estimated allele to that of the control group. Also shown in the figures are exons and introns of the regions in the approximate chromosomal positions.

Detailed Description

[0010] It has been discovered that a polymorphic variant in a locus containing a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* region is associated with occurrence of osteoarthritis in subjects. Thus,

detecting genetic determinants associated with an increased risk of osteoarthritis occurrence can lead to early identification of a predisposition to osteoarthritis and early prescription of preventative measures. Also, associating a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* polymorphic variant with osteoarthritis has provided new targets for screening molecules useful in treatments of osteoarthritis.

Osteoarthritis and Sample Selection

[0011] Osteoarthritis (OA), or degenerative joint disease, is one of the oldest and most common types of arthritis. It is characterized by the breakdown of the joint's cartilage. Cartilage is the part of the joint that cushions the ends of bones, and its breakdown causes bones to rub against each other, causing pain and loss of movement. Type II collagen is the main component of cartilage, comprising 15-25% of the wet weight, approximately half the dry weight, and representing 90-95% of the total collagen content in the tissue. It forms fibrils that endow cartilage with tensile strength (Mayne, R. Arthritis Rhuem. 32:241-246 (1989)).

[0012] Most commonly affecting middle-aged and older people, OA can range from very mild to very severe. It affects hands and weight-bearing joints such as knees, hips, feet and the back. Knee OA can be as disabling as any cardiovascular disease except stroke.

[0013] Osteoarthritis affects an estimated 20.7 million Americans, mostly after age 45, with women more commonly affected than men. Physicians make a diagnosis of OA based on a physical exam and history of symptoms. X-rays are used to confirm diagnosis. Most people over 60 reflect the disease on X-ray, and about one-third have actual symptoms.

[0014] There are many factors that can cause OA. Obesity may lead to osteoarthritis of the knees. In addition, people with joint injuries due to sports, work-related activity or accidents may be at increased risk of developing OA.

[0015] Genetics has a role in the development of OA. Some people may be born with defective cartilage or with slight defects in the way that joints fit together. As a person ages, these defects may cause early cartilage breakdown in the joint or the inability to repair damaged or deteriorated cartilage in the joint.

[0016] Inclusion or exclusion of samples for an osteoarthritis pool may be based upon the following criteria: ethnicity (e.g., samples derived from an individual characterized as Caucasian); parental ethnicity (e.g., samples derived from an individual of British paternal and maternal descent); relevant phenotype information for the individual (e.g., case samples derived from individuals diagnosed with specific knee osteoarthritis (OA) and were recruited from an OA knee replacement clinic). Control samples may be selected based on relevant phenotype information for the individual (e.g., derived from individuals free of OA at several sites (knee, hand, hip etc)); and no family history of OA and/or rheumatoid arthritis. Additional phenotype information collected for both cases and controls may include

age of the individual, gender, family history of OA, diagnosis with osteoarthritis (joint location of OA, date of primary diagnosis, age of individual as of primary diagnosis), knee history (current symptoms, any major knee injury, menisectomy, knee replacement surgery, age of surgery), HRT history, osteoporosis diagnosis.

[0017] Based in part upon selection criteria set forth above, individuals having osteoarthritis can be selected for genetic studies. Also, individuals having no history of osteoarthritis often are selected for genetic studies, as described hereafter.

Polymorphic Variants Associated with Osteoarthritis

[0018] A genetic analysis provided herein linked osteoarthritis with polymorphic variant nucleic acid sequences in the human genome. As used herein, the term "polymorphic site" refers to a region in a nucleic acid at which two or more alternative nucleotide sequences are observed in a significant number of nucleic acid samples from a population of individuals. A polymorphic site may be a nucleotide sequence of two or more nucleotides, an inserted nucleotide or nucleotide sequence, a deleted nucleotide or nucleotide sequence, or a microsatellite, for example. A polymorphic site that is two or more nucleotides in length may be 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more, 20 or more, 30 or more, 50 or more, 75 or more, 100 or more, 500 or more, or about 1000 nucleotides in length, where all or some of the nucleotide sequences differ within the region. A polymorphic site is often one nucleotide in length, which is referred to herein as a "single nucleotide polymorphism" or a "SNP."

[0019] Where there are two, three, or four alternative nucleotide sequences at a polymorphic site, each nucleotide sequence is referred to as a "polymorphic variant" or "nucleic acid variant." Where two polymorphic variants exist, for example, the polymorphic variant represented in a minority of samples from a population is sometimes referred to as a "minor allele" and the polymorphic variant that is more prevalently represented is sometimes referred to as a "major allele." Many organisms possess a copy of each chromosome (e.g., humans), and those individuals who possess two major alleles or two minor alleles are often referred to as being "homozygous" with respect to the polymorphism, and those individuals who possess one major allele and one minor allele are normally referred to as being "heterozygous" with respect to the polymorphism. Individuals who are homozygous with respect to one allele are sometimes predisposed to a different phenotype as compared to individuals who are heterozygous or homozygous with respect to another allele.

[0020] In genetic analysis that associate polymorphic variants with osteoarthritis, samples from individuals having osteoarthritis and individuals not having osteoarthritis often are allelotyped and/or genotyped. The term "allelotype" as used herein refers to a process for determining the allele frequency for a polymorphic variant in pooled DNA samples from cases and controls. By pooling DNA from each group, an allele frequency for each SNP in each group is calculated. These allele frequencies are then

compared to one another. The term "genotyped" as used herein refers to a process for determining a genotype of one or more individuals, where a "genotype" is a representation of one or more polymorphic variants in a population.

[0021] A genotype or polymorphic variant may be expressed in terms of a "haplotype," which as used herein refers to two or more polymorphic variants occurring within genomic DNA in a group of individuals within a population. For example, two SNPs may exist within a gene where each SNP position includes a cytosine variation and an adenine variation. Certain individuals in a population may carry one allele (heterozygous) or two alleles (homozygous) having the gene with a cytosine at each SNP position. As the two cytosines corresponding to each SNP in the gene travel together on one or both alleles in these individuals, the individuals can be characterized as having a cytosine/cytosine haplotype with respect to the two SNPs in the gene.

[0022] As used herein, the term "phenotype" refers to a trait which can be compared between individuals, such as presence or absence of a condition, a visually observable difference in appearance between individuals, metabolic variations, physiological variations, variations in the function of biological molecules, and the like. An example of a phenotype is occurrence of osteoarthritis.

[0023] Researchers sometimes report a polymorphic variant in a database without determining whether the variant is represented in a significant fraction of a population. Because a subset of these reported polymorphic variants are not represented in a statistically significant portion of the population, some of them are sequencing errors and/or not biologically relevant. Thus, it is often not known whether a reported polymorphic variant is statistically significant or biologically relevant until the presence of the variant is detected in a population of individuals and the frequency of the variant is determined. Methods for detecting a polymorphic variant in a population are described herein, specifically in Example 2. A polymorphic variant is statistically significant and often biologically relevant if it is represented in 5% or more of a population, sometimes 10% or more, 15% or more, or 20% or more of a population, and often 25% or more, 30% or more, 35% or more, 40% or more, 45% or more, or 50% or more of a population.

[0024] A polymorphic variant may be detected on either or both strands of a double-stranded nucleic acid. Also, a polymorphic variant may be located within an intron or exon of a gene or within a portion of a regulatory region such as a promoter, a 5' untranslated region (UTR), a 3' UTR, and in DNA (e.g., genomic DNA (gDNA) and complementary DNA (cDNA)), RNA (e.g., mRNA, tRNA, and rRNA), or a polypeptide. Polymorphic variations may or may not result in detectable differences in gene expression, polypeptide structure, or polypeptide function.

[0025] It was determined that polymorphic variations associated with an increased risk of osteoarthritis existed in the *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* regions. In certain embodiments, polymorphic variants at positions rs756519, rs1042327, rs8770, rs1563055, rs912428 and rs1888475 in the human genome were associated with an increased risk of osteoarthritis, and in specific

embodiments, a thymine at position rs756519, a cytosine at position rs1042327, a cytosine at position rs8770, a thymine at position rs1563055, a thymine at position rs912428 and an adenine at position rs1888475 were associated with an increased risk of osteoarthritis.

[0026] Polymorphic variants in and around the chrom δ region were tested for association with osteoarthritis. These include polymorphic variants at positions in SEQ ID NO: 1 selected from the group consisting of 229, 6310, 11840, 11870, 12064, 13392, 16354, 16559, 16935, 17616, 17737, 18321, 18453, 18811, 20020, 21662, 23197, 23446, 24339, 25504, 27174, 28008, 29294, 29759, 30832, 44512, 44850, 45884, 46345, 48589, 53371, 53911, 53990, 55152, 55667, 58952, 59315, 60029, 61477, 62988, 63090, 64021, 65685, 70220, 70323, 70959, 73436, 82945, 82958, 82961, 82964, 82965, 83006, 83025, 83034, 83074, 83132, 83155, 83172, 83174, 83206, 83216, 83234, 83252, 83260, 83263, 83296, 83319, 83322, 83324, 83357, 83375, 83381, 83389, 83443, 83499, 83545, 83566, 83591, 83619, 83698, 83780, 83784, 83826, 83832, 83852, 86297, 86315, 86420, 86460, 86714, 86718, 86736, 86753, 86766, 88162, 88218, 88246, 88255, 88309, 88310, 88471, 88619, 88904, 89044, 90531, 90534, 90613 and 46252. Polymorphic variants at the following positions in SEQ ID NO: 1 in particular were associated with an increased risk of osteoarthritis: 229, 6310, 16559, 18453, 25504, 27174, 30832, 44850, 45884, 48589, 61477, 82961 and 46252, with specific embodiments directed to variants at positions 229, 16559, 44850 and/or 46252. In particular, the following polymorphic variants in SEQ ID NO: 1 were associated with risk of osteoarthritis: a thymine at position 229, a guanine at position 6310, a thymine at position 16559, an adenine at position 18453, an adenine at position 25504, an adenine at position 27174, an adenine at position 30832, a guanine at position 44850, an adenine at position 45884, an adenine at position 48589, a cytosine at position 61477, a cytosine at position 82961 and a thymine at position 46252.

[0027] Polymorphic variants in and around the *ELP3* region were tested for association with osteoarthritis. These include polymorphic variants at positions in SEQ ID NO: 2 selected from the group consisting of 211, 473, 1536, 5639, 17186, 17335, 25029, 25111, 28811, 28863, 30809, 40985, 45147, 45282, 46168, 46328, 49077, 51925, 52141, 52168, 60852, 62468, 65572, 79089, 79541, 79790, 90843, 90978, 91052, 91131, 91132, 94439 and 94621. Polymorphic variants at the following positions in SEQ ID NO: 2 in particular were associated with an increased risk of osteoarthritis: 40985, 46168, 51925 and 52168. In particular, the following polymorphic variants in SEQ ID NO: 2 were associated with risk of osteoarthritis: a cytosine at position 40985, a guanine at position 46168, a thymine at position 51925 and a cytosine at position 52168.

[0028] Polymorphic variants in and around the *CHDC1* region were tested for association with osteoarthritis. These include polymorphic variants at positions in SEQ ID NO: 3 selected from the group consisting of 243, 10208, 15049, 15111, 15272, 15287, 15326, 15327, 17038, 19391, 21702, 22431, 22881, 27744, 32564, 32698, 33104, 33181, 33256, 33543, 35567, 40085, 40482, 45641, 46059, 48504, 48919, 49693, 49874, 50020, 50616, 50719, 55511, 65533, 70529, 75591, 77266, 80368, 82475, 92462,

92480, 95819 and 96275. Polymorphic variants at the following positions in SEQ ID NO: 3 in particular were associated with an increased risk of osteoarthritis: 15111, 45641, 46059, 49693, 49874, 50020, 50719, 70529, 82475, 92462, 92480 and 96275, with specific embodiments directed to variants at positions 82475 and/or 92462. In particular, the following polymorphic variants in SEQ ID NO: 3 were associated with risk of osteoarthritis: a guanine at position 15111, a thymine at position 45641, an adenine at position 46059, a cytosine at position 49693, an adenine at position 49874, an adenine at position 50020, a guanine at position 50719, an adenine at position 70529, an adenine at position 92462, a thymine at position 92480 and a cytosine at position 96275.

[0029] Polymorphic variants in and around the ERG region were tested for association with osteoarthritis. These include polymorphic variants at positions in SEQ ID NO: 4 selected from the group consisting of 231, 882, 960, 1194, 1530, 1673, 2096, 2285, 5873, 7256, 7988, 8222, 8381, 8814, 8915, 9642, 9902, 10619, 10927, 11032, 14377, 15608, 15928, 16296, 17598, 19272, 20084, 20577, 28051, 29466, 29530, 29987, 30012, 30322, 32216, 32516, 32544, 32746, 33137, 33538, 33798, 33802, 33964, 34132, 34210, 34317, 34499, 34753, 34845, 35335, 36423, 36450, 36481, 38447, 38784, 39387, 39458, 39822, 40305, 40869, 40926, 41010, 41134, 41984, 42172, 42753, 43011, 43176, 43320, 43381, 44142, 44383, 44726, 45087, 45141, 45359, 45421, 45456, 45467, 45486, 45709, 45716, 47626, 49413, 49796, 49962, 50075, 50093, 50571, 50615, 50780, 50851, 51459, 53193, 53702, 53736, 53795, 54109, 54126, 54230, 54894, 55455, 55499, 56522, 56662, 56954, 57267, 58282, 58916, 59544, 59666, 59913, 66846, 67245, 67652, 67955, 67966, 68420, 70226, 70810, 72246, 73330, 73457, 74389, 74638, 74640, 75358, 75952, 76098, 77836, 78449, 78507, 80031, 81695, 82775, 82795, 84611, 84657, 84693, 85020, 85048, 85100, 85325, 85452, 85868, 85936, 85990, 86139, 86497, 87236, 87248, 87533, 87912, 88108, 88494, 89598, 90235, 91287, 91359, 92384, 92410, 92900, 94495, 94512, 97777 and 98333. Polymorphic variants at the following positions in SEQ ID NO: 4 in particular were associated with an increased risk of osteoarthritis: 1673, 20577, 33137, 39822, 45716, 49962, 51459, 54894, 55455, 55499, 58282, 68420 and 80031, with specific embodiments directed to variants at positions 33137, 55499 and/or 58282. In particular, the following polymorphic variants in SEQ ID NO: 4 were associated with risk of osteoarthritis: a guanine at position 1673, a thymine at position 20577, a guanine at position 33137, a guanine at position 39822, an adenine at position 45716, a guanine at position 49962, an adenine at position 51459, a cytosine at position 54894, an adenine at position 55455, an adenine at position 55499, a guanine at position 58282, an adenine at position 68420 and a thymine at position 80031.

[0030] Based in part upon analyses summarized in Figures 1A-1D, regions with significant association have been identified in loci associated with osteoarthritis. Any polymorphic variants associated with osteoarthritis in a region of significant association can be utilized for embodiments described herein. For example, polymorphic variants in a region spanning chromosome positions 170719500 to 170766500 (approximately 47,000 nucleotides in length) in a *chrom 6* region, spanning

chromosome positions 27963000 to 27983000 (approximately 20,000 nucleotides in length) in a *ELP3* region, spanning chromosome positions 44962000 to 45013000 (approximately 51,000 nucleotides in length) in a *CHDC1* region, and spanning chromosome positions 38830000 to 38844000 (approximately 14,000 nucleotides in length) in a *ERG* region, have significant association (chromosome positions are within NCBI's Genome build 34).

Additional Polymorphic Variants Associated with Osteoarthritis

[0031] Also provided is a method for identifying polymorphic variants proximal to an incident, founder polymorphic variant associated with osteoarthritis. Thus, featured herein are methods for identifying a polymorphic variation associated with osteoarthritis that is proximal to an incident polymorphic variation associated with osteoarthritis, which comprises identifying a polymorphic variant proximal to the incident polymorphic variant associated with osteoarthritis, where the incident polymorphic variant is in a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence. The nucleotide sequence often comprises a polynucleotide sequence selected from the group consisting of (a) a polynucleotide sequence of SEQ ID NO: 1-12; (b) a polynucleotide sequence that encodes a polypeptide having an amino acid sequence encoded by a polynucleotide sequence of SEO ID NO: 1-12; and (c) a polynucleotide sequence that encodes a polypeptide having an amino acid sequence that is 90% or more identical to an amino acid sequence encoded by a nucleotide sequence of SEQ ID NO: 1 or a polynucleotide sequence 90% or more identical to the polynucleotide sequence of SEO ID NO: 1-12. The presence or absence of an association of the proximal polymorphic variant with osteoarthritis then is determined using a known association method, such as a method described in the Examples hereafter. In an embodiment, the incident polymorphic variant is a polymorphic variant associated with osteoarthritis described herein. In another embodiment, the proximal polymorphic variant identified sometimes is a publicly disclosed polymorphic variant, which for example, sometimes is published in a publicly available database. In other embodiments, the polymorphic variant identified is not publicly disclosed and is discovered using a known method, including, but not limited to, sequencing a region surrounding the incident polymorphic variant in a group of nucleic samples. Thus, multiple polymorphic variants proximal to an incident polymorphic variant are associated with osteoarthritis using this method.

[0032] The proximal polymorphic variant often is identified in a region surrounding the incident polymorphic variant. In certain embodiments, this surrounding region is about 50 kb flanking the first polymorphic variant (e.g. about 50 kb 5' of the first polymorphic variant and about 50 kb 3' of the first polymorphic variant), and the region sometimes is composed of shorter flanking sequences, such as flanking sequences of about 40 kb, about 30 kb, about 25 kb, about 20 kb, about 15 kb, about 10 kb, about 7 kb, about 5 kb, or about 2 kb 5' and 3' of the incident polymorphic variant. In other embodiments, the region is composed of longer flanking sequences, such as flanking sequences of about

55 kb, about 60 kb, about 65 kb, about 70 kb, about 75 kb, about 80 kb, about 85 kb, about 90 kb, about 95 kb, or about 100 kb 5' and 3' of the incident polymorphic variant.

[0033] In certain embodiments, polymorphic variants associated with osteoarthritis are identified iteratively. For example, a first proximal polymorphic variant is associated with osteoarthritis using the methods described above and then another polymorphic variant proximal to the first proximal polymorphic variant is identified (e.g., publicly disclosed or discovered) and the presence or absence of an association of one or more other polymorphic variants proximal to the first proximal polymorphic variant with osteoarthritis is determined.

[0034] The methods described herein are useful for identifying or discovering additional polymorphic variants that may be used to further characterize a gene, region or loci associated with a condition, a disease (e.g., osteoarthritis), or a disorder. For example, allelotyping or genotyping data from the additional polymorphic variants may be used to identify a functional mutation or a region of linkage disequilibrium. In certain embodiments, polymorphic variants identified or discovered within a region comprising the first polymorphic variant associated with osteoarthritis are genotyped using the genetic methods and sample selection techniques described herein, and it can be determined whether those polymorphic variants are in linkage disequilibrium with the first polymorphic variant. The size of the region in linkage disequilibrium with the first polymorphic variant also can be assessed using these genotyping methods. Thus, provided herein are methods for determining whether a polymorphic variant is in linkage disequilibrium with a first polymorphic variant associated with osteoarthritis, and such information can be used in prognosis/diagnosis methods described herein.

Isolated Nucleic Acids

[0035] Featured herein are isolated *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleic acid variants depicted in SEQ ID NO: 1-12, and substantially identical nucleic acids thereof. A nucleic acid variant may be represented on one or both strands in a double-stranded nucleic acid or on one chromosomal complement (heterozygous) or both chromosomal complements (homozygous).

[0036] As used herein, the term "nucleic acid" includes DNA molecules (e.g., a complementary DNA (cDNA) and genomic DNA (gDNA)) and RNA molecules (e.g., mRNA, rRNA, siRNA and tRNA) and analogs of DNA or RNA, for example, by use of nucleotide analogs. The nucleic acid molecule can be single-stranded and it is often double-stranded. The term "isolated or purified nucleic acid" refers to nucleic acids that are separated from other nucleic acids present in the natural source of the nucleic acid. For example, with regard to genomic DNA, the term "isolated" includes nucleic acids which are separated from the chromosome with which the genomic DNA is naturally associated. An "isolated" nucleic acid is often free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and/or 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic

acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of 5' and/or 3' nucleotide sequences which flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. As used herein, the term "gene" refers to a nucleotide sequence that encodes a polypeptide.

[0037] Also included herein are nucleic acid fragments. These fragments often have a nucleotide sequence identical to a nucleotide sequence of SEQ ID NO: 1-12, a nucleotide sequence substantially identical to a nucleotide sequence of SEQ ID NO: 1-12, or a nucleotide sequence that is complementary to the foregoing. The nucleic acid fragment may be identical, substantially identical or homologous to a nucleotide sequence in an exon or an intron in a nucleotide sequence of SEQ ID NO: 1-12, and may encode a domain or part of a domain of a polypeptide. Sometimes, the fragment will comprises one or more of the polymorphic variations described herein as being associated with osteoarthritis. The nucleic acid fragment is often 50, 100, or 200 or fewer base pairs in length, and is sometimes about 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 2000, 3000, 4000, 5000, 10000, 15000, or 20000 base pairs in length. A nucleic acid fragment that is complementary to a nucleotide sequence identical or substantially identical to a nucleotide sequence in SEQ ID NO: 1-12 and hybridizes to such a nucleotide sequence under stringent conditions is often referred to as a "probe." Nucleic acid fragments often include one or more polymorphic sites, or sometimes have an end that is adjacent to a polymorphic site as described hereafter.

[0038] An example of a nucleic acid fragment is an oligonucleotide. As used herein, the term "oligonucleotide" refers to a nucleic acid comprising about 8 to about 50 covalently linked nucleotides, often comprising from about 8 to about 35 nucleotides, and more often from about 10 to about 25 nucleotides. The backbone and nucleotides within an oligonucleotide may be the same as those of naturally occurring nucleic acids, or analogs or derivatives of naturally occurring nucleic acids, provided that oligonucleotides having such analogs or derivatives retain the ability to hybridize specifically to a nucleic acid comprising a targeted polymorphism. Oligonucleotides described herein may be used as hybridization probes or as components of prognostic or diagnostic assays, for example, as described herein.

[0039] Oligonucleotides are typically synthesized using standard methods and equipment, such as the ABI™3900 High Throughput DNA Synthesizer and the EXPEDITE™ 8909 Nucleic Acid Synthesizer, both of which are available from Applied Biosystems (Foster City, CA). Analogs and derivatives are exemplified in U.S. Pat. Nos. 4,469,863; 5,536,821; 5,541,306; 5,637,683; 5,637,684;

5,700,922; 5,717,083; 5,719,262; 5,739,308; 5,773,601; 5,886,165; 5,929,226; 5,977,296; 6,140,482; WO 00/56746; WO 01/14398, and related publications. Methods for synthesizing oligonucleotides comprising such analogs or derivatives are disclosed, for example, in the patent publications cited above and in U.S. Pat. Nos. 5,614,622; 5,739,314; 5,955,599; 5,962,674; 6,117,992; in WO 00/75372; and in related publications.

[0040] Oligonucleotides may also be linked to a second moiety. The second moiety may be an additional nucleotide sequence such as a tail sequence (e.g., a polyadenosine tail), an adapter sequence (e.g., phage M13 universal tail sequence), and others. Alternatively, the second moiety may be a non-nucleotide moiety such as a moiety which facilitates linkage to a solid support or a label to facilitate detection of the oligonucleotide. Such labels include, without limitation, a radioactive label, a fluorescent label, a chemiluminescent label, a paramagnetic label, and the like. The second moiety may be attached to any position of the oligonucleotide, provided the oligonucleotide can hybridize to the nucleic acid comprising the polymorphism.

Uses for Nucleic Acid Sequence

[0041] Nucleic acid coding sequences may be used for diagnostic purposes for detection and control of polypeptide expression. Also, included herein are oligonucleotide sequences such as antisense RNA, small-interfering RNA (siRNA) and DNA molecules and ribozymes that function to inhibit translation of a polypeptide. Antisense techniques and RNA interference techniques are known in the art and are described herein.

[0042] Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. The mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, hammerhead motif ribozyme molecules may be engineered that specifically and efficiently catalyze endonucleolytic cleavage of RNA sequences corresponding to or complementary to a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleotide sequence. Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites which include the following sequences, GUA, GUU and GUC. Once identified, short RNA sequences of between fifteen (15) and twenty (20) ribonucleotides corresponding to the region of the target gene containing the cleavage site may be evaluated for predicted structural features such as secondary structure that may render the oligonucleotide sequence unsuitable. The suitability of candidate targets may also be evaluated by testing their accessibility to hybridization with complementary oligonucleotides, using ribonuclease protection assays.

[0043] Antisense RNA and DNA molecules, siRNA and ribozymes may be prepared by any method known in the art for the synthesis of RNA molecules. These include techniques for chemically

synthesizing oligodeoxyribonucleotides well known in the art such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by *in vitro* and *in vivo* transcription of DNA sequences encoding the antisense RNA molecule. Such DNA sequences may be incorporated into a wide variety of vectors which incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Alternatively, antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.

[0044] DNA encoding a polypeptide also may have a number of uses for the diagnosis of diseases, including osteoarthritis, resulting from aberrant expression of a target gene described herein. For example, the nucleic acid sequence may be used in hybridization assays of biopsies or autopsies to diagnose abnormalities of expression or function (e.g., Southern or Northern blot analysis, in situ hybridization assays).

[0045] In addition, the expression of a polypeptide during embryonic development may also be determined using nucleic acid encoding the polypeptide. As addressed, *infra*, production of functionally impaired polypeptide is the cause of various disease states, such as osteoarthritis. *In situ* hybridizations using polypeptide as a probe may be employed to predict problems related to osteoarthritis. Further, as indicated, *infra*, administration of human active polypeptide, recombinantly produced as described herein, may be used to treat disease states related to functionally impaired polypeptide. Alternatively, gene therapy approaches may be employed to remedy deficiencies of functional polypeptide or to replace or compete with dysfunctional polypeptide.

Expression Vectors, Host Cells, and Genetically Engineered Cells

[0046] Provided herein are nucleic acid vectors, often expression vectors, which contain a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleotide sequence, or a substantially identical sequence thereof. As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked and can include a plasmid, cosmid, or viral vector. The vector can be capable of autonomous replication or it can integrate into a host DNA. Viral vectors may include replication defective retroviruses, adenoviruses and adeno-associated viruses for example.

[0047] A vector can include a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleotide sequence in a form suitable for expression of an encoded target polypeptide or target nucleic acid in a host cell. A "target polypeptide" is a polypeptide encoded by a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleotide sequence, or a substantially identical nucleotide sequence thereof. The recombinant expression vector typically includes one or more regulatory sequences operatively linked to the nucleic acid sequence to be expressed. The term "regulatory sequence" includes promoters, enhancers and other expression control elements (*e.g.*, polyadenylation signals). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence, as well as tissue-specific regulatory and/or

inducible sequences. The design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of polypeptide desired, and the like. Expression vectors can be introduced into host cells to produce target polypeptides, including fusion polypeptides.

[0048] Recombinant expression vectors can be designed for expression of target polypeptides in prokaryotic or eukaryotic cells. For example, target polypeptides can be expressed in *E. coli*, insect cells (e.g., using baculovirus expression vectors), yeast cells, or mammalian cells. Suitable host cells are discussed further in Goeddel, *Gene Expression Technology: Methods in Enzymology 185*, Academic Press, San Diego, CA (1990). Alternatively, the recombinant expression vector can be transcribed and translated *in vitro*, for example using T7 promoter regulatory sequences and T7 polymerase.

[0049] Expression of polypeptides in prokaryotes is most often carried out in *E. coli* with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion polypeptides. Fusion vectors add a number of amino acids to a polypeptide encoded therein, usually to the amino terminus of the recombinant polypeptide. Such fusion vectors typically serve three purposes:

1) to increase expression of recombinant polypeptide; 2) to increase the solubility of the recombinant polypeptide; and 3) to aid in the purification of the recombinant polypeptide by acting as a ligand in affinity purification. Often, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant polypeptide to enable separation of the recombinant polypeptide from the fusion moiety subsequent to purification of the fusion polypeptide. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith & Johnson, *Gene 67*: 31-40 (1988)), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding polypeptide, or polypeptide A, respectively, to the target recombinant polypeptide.

[0050] Purified fusion polypeptides can be used in screening assays and to generate antibodies specific for target polypeptides. In a therapeutic embodiment, fusion polypeptide expressed in a retroviral expression vector is used to infect bone marrow cells that are subsequently transplanted into irradiated recipients. The pathology of the subject recipient is then examined after sufficient time has passed (e.g., six (6) weeks).

[0051] Expressing the polypeptide in host bacteria with an impaired capacity to proteolytically cleave the recombinant polypeptide is often used to maximize recombinant polypeptide expression (Gottesman, S., Gene Expression Technology: Methods in Enzymology, Academic Press, San Diego, California 185: 119-128 (1990)). Another strategy is to alter the nucleotide sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (Wada et al., Nucleic Acids Res. 20: 2111-2118 (1992)). Such alteration of nucleotide sequences can be carried out by standard DNA synthesis techniques.

[0052] When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. Recombinant mammalian expression vectors are often capable of directing expression of the nucleic acid in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Non-limiting examples of suitable tissue-specific promoters include an albumin promoter (liver-specific; Pinkert et al., Genes Dev. 1: 268-277 (1987)), lymphoid-specific promoters (Calame & Eaton, Adv. Immunol. 43: 235-275 (1988)), promoters of T cell receptors (Winoto & Baltimore, EMBO J. 8: 729-733 (1989)) promoters of immunoglobulins (Banerji et al., Cell 33: 729-740 (1983); Queen & Baltimore, Cell 33: 741-748 (1983)), neuron-specific promoters (e.g., the neurofilament promoter; Byrne & Ruddle, Proc. Natl. Acad. Sci. USA 86: 5473-5477 (1989)), pancreas-specific promoters (Edlund et al., Science 230: 912-916 (1985)), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Patent No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are sometimes utilized, for example, the murine hox promoters (Kessel & Gruss, Science 249: 374-379 (1990)) and the α-fetopolypeptide promoter (Campes & Tilghman, Genes Dev. 3: 537-546 (1989)).

[0053] A PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleic acid also may be cloned into an expression vector in an antisense orientation. Regulatory sequences (e.g., viral promoters and/or enhancers) operatively linked to a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleic acid cloned in the antisense orientation can be chosen for directing constitutive, tissue specific or cell type specific expression of antisense RNA in a variety of cell types. Antisense expression vectors can be in the form of a recombinant plasmid, phagemid or attenuated virus. For a discussion of the regulation of gene expression using antisense genes see, e.g., Weintraub et al., Antisense RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) (1986).

[0054] Also provided herein are host cells that include a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleotide sequence within a recombinant expression vector or a fragment of such a nucleotide sequence which facilitate homologous recombination into a specific site of the host cell genome. The terms "host cell" and "recombinant host cell" are used interchangeably herein. Such terms refer not only to the particular subject cell but rather also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein. A host cell can be any prokaryotic or eukaryotic cell. For example, a target polypeptide can be expressed in bacterial cells such as *E. coli*, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.

[0055] Vectors can be introduced into host cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, transduction/infection, DEAE-dextranmediated transfection, lipofection, or electroporation.

[0056] A host cell provided herein can be used to produce (i.e., express) a target polypeptide or a substantially identical polypeptide thereof. Accordingly, further provided are methods for producing a target polypeptide using host cells described herein. In one embodiment, the method includes culturing host cells into which a recombinant expression vector encoding a target polypeptide has been introduced in a suitable medium such that a target polypeptide is produced. In another embodiment, the method further includes isolating a target polypeptide from the medium or the host cell.

[0057] Also provided are cells or purified preparations of cells which include a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* transgene, or which otherwise misexpress target polypeptide. Cell preparations can consist of human or non-human cells, *e.g.*, rodent cells, *e.g.*, mouse or rat cells, rabbit cells, or pig cells. In preferred embodiments, the cell or cells include a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* transgene (*e.g.*, a heterologous form of a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* gene, such as a human gene expressed in non-human cells). The transgene can be misexpressed, *e.g.*, overexpressed or underexpressed. In other preferred embodiments, the cell or cells include a gene which misexpress an endogenous target polypeptide (*e.g.*, expression of a gene is disrupted, also known as a knockout). Such cells can serve as a model for studying disorders which are related to mutated or misexpressed alleles or for use in drug screening. Also provided are human cells (*e.g.*, a hematopoietic stem cells) transfected with a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleic acid.

[0058] Also provided are cells or a purified preparation thereof (e.g., human cells) in which an endogenous PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleic acid is under the control of a regulatory sequence that does not normally control the expression of the endogenous gene. The expression characteristics of an endogenous gene within a cell (e.g., a cell line or microorganism) can be modified by inserting a heterologous DNA regulatory element into the genome of the cell such that the inserted regulatory element is operably linked to the corresponding endogenous gene. For example, an endogenous corresponding gene (e.g., a gene which is "transcriptionally silent," not normally expressed, or expressed only at very low levels) may be activated by inserting a regulatory element which is capable of promoting the expression of a normally expressed gene product in that cell. Techniques such as targeted homologous recombinations, can be used to insert the heterologous DNA as described in, e.g., Chappel, US 5,272,071; WO 91/06667, published on May 16, 1991.

Transgenic Animals

[0059] Non-human transgenic animals that express a heterologous target polypeptide (e.g., expressed from a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleic acid or substantially identical sequence thereof) can be generated. Such animals are useful for studying the function and/or activity of a target polypeptide and for identifying and/or evaluating modulators of the activity of a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleic acid or encoded polypeptide. As used herein, a "transgenic animal" is a non-human animal such as a mammal (e.g., a non-human primate such as chimpanzee, baboon, or macaque; an ungulate such as an equine, bovine, or caprine; or a rodent such as a rat, a mouse, or an Israeli sand rat), a bird (e.g., a chicken or a turkey), an amphibian (e.g., a frog, salamander, or newt), or an insect (e.g., Drosophila melanogaster), in which one or more of the cells of the animal includes a transgene. A transgene is exogenous DNA or a rearrangement (e.g., a deletion of endogenous chromosomal DNA) that is often integrated into or occurs in the genome of cells in a transgenic animal. A transgene can direct expression of an encoded gene product in one or more cell types or tissues of the transgenic animal, and other transgenes can reduce expression (e.g., a knockout). Thus, a transgenic animal can be one in which an endogenous nucleic acid homologous to a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleic acid has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal (e.g., an embryonic cell of the animal) prior to development of the animal.

[0060] Intronic sequences and polyadenylation signals can also be included in the transgene to increase expression efficiency of the transgene. One or more tissue-specific regulatory sequences can be operably linked to a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence to direct expression of an encoded polypeptide to particular cells. A transgenic founder animal can be identified based upon the presence of a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence in its genome and/or expression of encoded mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence can further be bred to other transgenic animals carrying other transgenes.

[0061] Target polypeptides can be expressed in transgenic animals or plants by introducing, for example, a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleic acid into the genome of an animal that encodes the target polypeptide. In preferred embodiments the nucleic acid is placed under the control of a tissue specific promoter, *e.g.*, a milk or egg specific promoter, and recovered from the milk or eggs produced by the animal. Also included is a population of cells from a transgenic animal.

Target Polypeptides

[0062] Also featured herein are isolated target polypeptides, which are encoded by a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleotide sequence (e.g., SEQ ID NO: 1-12), or a substantially identical nucleotide sequence thereof. Examples of *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* polypeptides are set forth in SEQ ID NO: 13-20. The term "polypeptide" as used herein includes proteins and peptides. An "isolated" or "purified" polypeptide or protein is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. In one embodiment, the language "substantially free" means preparation of a target polypeptide having less than about 30%, 20%, 10% and more preferably 5% (by dry weight), of non-target polypeptide (also referred to herein as a "contaminating protein"), or of chemical precursors or non-target chemicals. When the target polypeptide or a biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, specifically, where culture medium represents less than about 20%, sometimes less than about 10%, and often less than about 5% of the volume of the polypeptide preparation. Isolated or purified target polypeptide preparations are sometimes 0.01 milligrams or more or 0.1 milligrams or more, and often 1.0 milligrams or more and 10 milligrams or more in dry weight.

[0063] Further included herein are target polypeptide fragments. The polypeptide fragment may be a domain or part of a domain of a target polypeptide. The polypeptide fragment may have increased, decreased or unexpected biological activity. The polypeptide fragment is often 50 or fewer, 100 or fewer, or 200 or fewer amino acids in length, and is sometimes 300, 400, 500, 600, 700, or 900 or fewer amino acids in length. Certain embodiments are directed to *PSMB1* polypeptide fragments (e.g., sequence accessed by NP_002784; rs756519 in Table A), such as a proteasome protease domain (e.g., starting at about amino acid 34 and ending at about amino acid 226) or a proteasome B domain (e.g., starting at about amino acid 41 and ending at about amino acid 88).

[0064] Substantially identical target polypeptides may depart from the amino acid sequences of target polypeptides in different manners. For example, conservative amino acid modifications may be introduced at one or more positions in the amino acid sequences of target polypeptides. A "conservative amino acid substitution" is one in which the amino acid is replaced by another amino acid having a similar structure and/or chemical function. Families of amino acid residues having similar structures and functions are well known. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine,

tryptophan, histidine). Also, essential and non-essential amino acids may be replaced. A "non-essential" amino acid is one that can be altered without abolishing or substantially altering the biological function of a target polypeptide, whereas altering an "essential" amino acid abolishes or substantially alters the biological function of a target polypeptide. Amino acids that are conserved among target polypeptides are typically essential amino acids. In certain embodiments, the polypeptide includes one or more non-synonymous polymorphic variants associated with osteoarthritis.

[0065] Also, target polypeptides may exist as chimeric or fusion polypeptides. As used herein, a target "chimeric polypeptide" or target "fusion polypeptide" includes a target polypeptide linked to a non-target polypeptide. A "non-target polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a polypeptide which is not substantially identical to the target polypeptide, which includes, for example, a polypeptide that is different from the target polypeptide and derived from the same or a different organism. The target polypeptide in the fusion polypeptide can correspond to an entire or nearly entire target polypeptide or a fragment thereof. The non-target polypeptide can be fused to the N-terminus or C-terminus of the target polypeptide.

[0066] Fusion polypeptides can include a moiety having high affinity for a ligand. For example, the fusion polypeptide can be a GST-target fusion polypeptide in which the target sequences are fused to the C-terminus of the GST sequences, or a polyhistidine-target fusion polypeptide in which the target polypeptide is fused at the N- or C-terminus to a string of histidine residues. Such fusion polypeptides can facilitate purification of recombinant target polypeptide. Expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide), and a nucleotide sequence in SEQ ID NO: 1-12, or a substantially identical nucleotide sequence thereof, can be cloned into an expression vector such that the fusion moiety is linked in-frame to the target polypeptide. Further, the fusion polypeptide can be a target polypeptide containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression, secretion, cellular internalization, and cellular localization of a target polypeptide can be increased through use of a heterologous signal sequence. Fusion polypeptides can also include all or a part of a serum polypeptide (e.g., an IgG constant region or human serum albumin).

[0067] Target polypeptides can be incorporated into pharmaceutical compositions and administered to a subject *in vivo*. Administration of these target polypeptides can be used to affect the bioavailability of a substrate of the target polypeptide and may effectively increase target polypeptide biological activity in a cell. Target fusion polypeptides may be useful therapeutically for the treatment of disorders caused by, for example, (i) aberrant modification or mutation of a gene encoding a target polypeptide; (ii) misregulation of the gene encoding the target polypeptide; and (iii) aberrant post-translational modification of a target polypeptide. Also, target polypeptides can be used as immunogens to produce anti-target

antibodies in a subject, to purify target polypeptide ligands or binding partners, and in screening assays to identify molecules which inhibit or enhance the interaction of a target polypeptide with a substrate.

[0068] In addition, polypeptides can be chemically synthesized using techniques known in the art (See, e.g., Creighton, 1983 Proteins. New York, N.Y.: W. H. Freeman and Company; and Hunkapiller et al., (1984) Nature July 12 -18;310(5973):105-11). For example, a relative short fragment can be synthesized by use of a peptide synthesizer. Furthermore, if desired, non-classical amino acids or chemical amino acid analogs can be introduced as a substitution or addition into the fragment sequence. Non-classical amino acids include, but are not limited to, to the D-isomers of the common amino acids, 2,4-diaminobutyric acid, a-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-amino butyric acid, g-Abu, e-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, b-alanine, fluoroamino acids, designer amino acids such as b-methyl amino acids, Ca-methyl amino acids, Na-methyl amino acids, and amino acid analogs in general. Furthermore, the amino acid can be D (dextrorotary) or L (levorotary).

[0069] Polypeptides and polypeptide fragments sometimes are differentially modified during or after translation, e.g., by glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. Any of numerous chemical modifications may be carried out by known techniques, including but not limited, to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH4; acetylation, formylation, oxidation, reduction; metabolic synthesis in the presence of tunicamycin; and the like. Additional post-translational modifications include, for example, N-linked or O-linked carbohydrate chains, processing of N-terminal or C-terminal ends), attachment of chemical moieties to the amino acid backbone, chemical modifications of N-linked or O-linked carbohydrate chains, and addition or deletion of an N-terminal methionine residue as a result of prokaryotic host cell expression. The polypeptide fragments may also be modified with a detectable label, such as an enzymatic, fluorescent, isotopic or affinity label to allow for detection and isolation of the polypeptide.

[0070] Also provided are chemically modified derivatives of polypeptides that can provide additional advantages such as increased solubility, stability and circulating time of the polypeptide, or decreased immunogenicity (see e.g., U.S. Pat. No: 4,179,337. The chemical moieties for derivitization may be selected from water soluble polymers such as polyethylene glycol, ethylene glycol/propylene glycol copolymers, carboxymethylcellulose, dextran, polyvinyl alcohol and the like. The polypeptides may be modified at random positions within the molecule, or at predetermined positions within the molecule and may include one, two, three or more attached chemical moieties.

[0071] The polymer may be of any molecular weight, and may be branched or unbranched. For polyethylene glycol, the preferred molecular weight is between about 1 kDa and about 100 kDa (the term

"about" indicating that in preparations of polyethylene glycol, some molecules will weigh more, some less, than the stated molecular weight) for ease in handling and manufacturing. Other sizes may be used, depending on the desired therapeutic profile (e.g., the duration of sustained release desired, the effects, if any on biological activity, the ease in handling, the degree or lack of antigenicity and other known effects of the polyethylene glycol to a therapeutic protein or analog).

[0072] The polymers should be attached to the polypeptide with consideration of effects on functional or antigenic domains of the polypeptide. There are a number of attachment methods available to those skilled in the art (e.g., EP 0 401 384 (coupling PEG to G-CSF) and Malik et al. (1992) Exp Hematol. September;20(8):1028-35 (pegylation of GM-CSF using tresyl chloride)). For example, polyethylene glycol may be covalently bound through amino acid residues via a reactive group, such as a free amino or carboxyl group. Reactive groups are those to which an activated polyethylene glycol molecule may be bound. The amino acid residues having a free amino group may include lysine residues and the N-terminal amino acid residues; those having a free carboxyl group may include aspartic acid residues, glutamic acid residues and the C-terminal amino acid residue. Sulfhydryl groups may also be used as a reactive group for attaching the polyethylene glycol molecules. For therapeutic purposes, the attachment sometimes is at an amino group, such as attachment at the N-terminus or lysine group.

[0073] Proteins can be chemically modified at the N-terminus. Using polyethylene glycol as an illustration of such a composition, one may select from a variety of polyethylene glycol molecules (by molecular weight, branching, and the like), the proportion of polyethylene glycol molecules to protein (polypeptide) molecules in the reaction mix, the type of pegylation reaction to be performed, and the method of obtaining the selected N-terminally pegylated protein. The method of obtaining the N-terminally pegylated preparation (i.e., separating this moiety from other monopegylated moieties if necessary) may be by purification of the N-terminally pegylated material from a population of pegylated protein molecules. Selective proteins chemically modified at the N-terminus may be accomplished by reductive alkylation, which exploits differential reactivity of different types of primary amino groups (lysine versus the N-terminal) available for derivatization in a particular protein. Under the appropriate reaction conditions, substantially selective derivatization of the protein at the N-terminus with a carbonyl group containing polymer is achieved.

Substantially Identical Nucleic Acids and Polypeptides

[0074] Nucleotide sequences and polypeptide sequences that are substantially identical to a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleotide sequence and the target polypeptide sequences encoded by those nucleotide sequences, respectively, are included herein. The term "substantially identical" as used herein refers to two or more nucleic acids or polypeptides sharing one or more identical nucleotide sequences or polypeptide sequences, respectively. Included are nucleotide sequences or polypeptide

sequences that are 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more (each often within a 1%, 2%, 3% or 4% variability) identical to a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleotide sequence or the encoded target polypeptide amino acid sequences. One test for determining whether two nucleic acids are substantially identical is to determine the percent of identical nucleotide sequences or polypeptide sequences shared between the nucleic acids or polypeptides.

[0075] Calculations of sequence identity are often performed as follows. Sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). The length of a reference sequence aligned for comparison purposes is sometimes 30% or more, 40% or more, 50% or more, often 60% or more, and more often 70% or more, 80% or more, 90% or more, or 100% of the length of the reference sequence. The nucleotides or amino acids at corresponding nucleotide or polypeptide positions, respectively, are then compared among the two sequences. When a position in the first sequence is occupied by the same nucleotide or amino acid as the corresponding position in the second sequence, the nucleotides or amino acids are deemed to be identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, introduced for optimal alignment of the two sequences.

[0076] Comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. Percent identity between two amino acid or nucleotide sequences can be determined using the algorithm of Meyers & Miller, *CABIOS 4:* 11-17 (1989), which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. Also, percent identity between two amino acid sequences can be determined using the Needleman & Wunsch, *J. Mol. Biol. 48:* 444-453 (1970) algorithm which has been incorporated into the GAP program in the GCG software package (available at the http address www.gcg.com), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. Percent identity between two nucleotide sequences can be determined using the GAP program in the GCG software package (available at http address www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. A set of parameters often used is a Blossum 62 scoring matrix with a gap open penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.

[0077] Another manner for determining if two nucleic acids are substantially identical is to assess whether a polynucleotide homologous to one nucleic acid will hybridize to the other nucleic acid under stringent conditions. As use herein, the term "stringent conditions" refers to conditions for hybridization and washing. Stringent conditions are known to those skilled in the art and can be found in *Current*

Protocols in Molecular Biology, John Wiley & Sons, N.Y., 6.3.1-6.3.6 (1989). Aqueous and non-aqueous methods are described in that reference and either can be used. An example of stringent hybridization conditions is hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 50°C. Another example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 55°C. A further example of stringent hybridization conditions is hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 60°C. Often, stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 65°C. More often, stringency conditions are 0.5M sodium phosphate, 7% SDS at 65°C, followed by one or more washes at 0.2X SSC, 1% SDS at 65°C.

[0078] An example of a substantially identical nucleotide sequence to a nucleotide sequence in SEQ ID NO: 1-12 is one that has a different nucleotide sequence but still encodes the same polypeptide sequence encoded by the nucleotide sequence in SEQ ID NO: 1-12. Another example is a nucleotide sequence that encodes a polypeptide having a polypeptide sequence that is more than 70% or more identical to, sometimes more than 75% or more, 80% or more, or 85% or more identical to, and often more than 90% or more and 95% or more identical to a polypeptide sequence encoded by a nucleotide sequence in SEQ ID NO: 1-12.

[0079] Nucleotide sequences in SEQ ID NO: 1-12 and amino acid sequences of encoded polypeptides can be used as "query sequences" to perform a search against public databases to identify other family members or related sequences, for example. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul *et al.*, *J. Mol. Biol. 215*: 403-10 (1990). BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to nucleotide sequences in SEQ ID NO: 1-12. BLAST polypeptide searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to polypeptides encoded by the nucleotide sequences of SEQ ID NO: 1-12. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul *et al.*, *Nucleic Acids Res. 25(17)*: 3389-3402 (1997). When utilizing BLAST and Gapped BLAST programs, default parameters of the respective programs (*e.g.*, XBLAST and NBLAST) can be used (*see* the http address www.ncbi.nlm.nih.gov).

[0080] A nucleic acid that is substantially identical to a nucleotide sequence in SEQ ID NO: 1 may include polymorphic sites at positions equivalent to those described herein when the sequences are aligned. For example, using the alignment procedures described herein, SNPs in a sequence substantially identical to a sequence in SEQ ID NO: 1-12 can be identified at nucleotide positions that match (i.e.,

align) with nucleotides at SNP positions in each nucleotide sequence in SEQ ID NO: 1-12. Also, where a polymorphic variation results in an insertion or deletion, insertion or deletion of a nucleotide sequence from a reference sequence can change the relative positions of other polymorphic sites in the nucleotide sequence.

[0081] Substantially identical nucleotide and polypeptide sequences include those that are naturally occurring, such as allelic variants (same locus), splice variants, homologs (different locus), and orthologs (different organism) or can be non-naturally occurring. Non-naturally occurring variants can be generated by mutagenesis techniques, including those applied to polynucleotides, cells, or organisms. The variants can contain nucleotide substitutions, deletions, inversions and insertions. Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions (as compared in the encoded product). Orthologs, homologs, allelic variants, and splice variants can be identified using methods known in the art. These variants normally comprise a nucleotide sequence encoding a polypeptide that is 50% or more, about 55% or more, often about 70-75% or more or about 80-85% or more, and sometimes about 90-95% or more identical to the amino acid sequences of target polypeptides or a fragment thereof. Such nucleic acid molecules can readily be identified as being able to hybridize under stringent conditions to a nucleotide sequence in SEQ ID NO: 1-12 or a fragment of this sequence. Nucleic acid molecules corresponding to orthologs, homologs, and allelic variants of a nucleotide sequence in SEQ ID NO: 1-12 can further be identified by mapping the sequence to the same chromosome or locus as the nucleotide sequence in SEQ ID NO: 1-12.

[0082] Also, substantially identical nucleotide sequences may include codons that are altered with respect to the naturally occurring sequence for enhancing expression of a target polypeptide in a particular expression system. For example, the nucleic acid can be one in which one or more codons are altered, and often 10% or more or 20% or more of the codons are altered for optimized expression in bacteria (e.g., E. coli.), yeast (e.g., S. cervesiae), human (e.g., 293 cells), insect, or rodent (e.g., hamster) cells.

Methods for Identifying Risk of osteoarthritis

[0083] Methods for prognosing and diagnosing osteoarthritis are included herein. These methods include detecting the presence or absence of one or more polymorphic variations in a nucleotide sequence associated with osteoarthritis, such as variants in or around the loci set forth herein, or a substantially identical sequence thereof, in a sample from a subject, where the presence of a polymorphic variant described herein is indicative of a risk of osteoarthritis. Determining a risk of osteoarthritis sometimes refers to determining whether an individual is at an increased risk of osteoarthritis (e.g., intermediate risk or higher risk).

[0084] Thus, featured herein is a method for identifying a subject who is at risk of osteoarthritis, which comprises detecting an aberration associated with osteoarthritis in a nucleic acid sample from the subject. An embodiment is a method for detecting a risk of osteoarthritis in a subject, which comprises detecting the presence or absence of a polymorphic variation associated with osteoarthritis at a polymorphic site in a nucleotide sequence in a nucleic acid sample from a subject, where the nucleotide sequence comprises a polynucleotide sequence selected from the group consisting of: (a) a nucleotide sequence of SEQ ID NO: 1-12; (b) a nucleotide sequence which encodes a polypeptide consisting of an amino acid sequence encoded by a nucleotide sequence of SEQ ID NO: 1-12; (c) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to an amino acid sequence encoded by a nucleotide sequence of SEQ ID NO: 1-12, or a nucleotide sequence about 90% or more identical to a nucleotide sequence of SEQ ID NO: 1-12; and (d) a fragment of a nucleotide sequence of (a), (b), or (c) comprising the polymorphic site; whereby the presence of the polymorphic variation is indicative of a predisposition to osteoarthritis in the subject. In certain embodiments, polymorphic variants at the positions described herein are detected for determining a risk of osteoarthritis, and polymorphic variants at positions in linkage disequilibrium with these positions are detected for determining a risk of osteoarthritis. As used herein, "SEQ ID NO: 1-12" refers to individual sequences of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12, each sequence being separately applicable to embodiments described herein.

[0085] Risk of osteoarthritis sometimes is expressed as a probability, such as an odds ratio, percentage, or risk factor. Risk often is based upon the presence or absence of one or more polymorphic variants described herein, and also may be based in part upon phenotypic traits of the individual being tested. Methods for calculating risk based upon patient data are well known (see, e.g., Agresti, Categorical Data Analysis, 2nd Ed. 2002. Wiley). Allelotyping and genotyping analyses may be carried out in populations other than those exemplified herein to enhance the predictive power of the prognostic method. These further analyses are executed in view of the exemplified procedures described herein, and may be based upon the same polymorphic variations or additional polymorphic variations.

[0086] In certain embodiments, determining the presence of a combination of two or more polymorphic variants associated with osteoarthritis in one or more genetic loci (e.g., one or more genes) of the sample is determined to identify, quantify and/or estimate, risk of osteoarthritis. The risk often is the probability of having or developing osteoarthritis. The risk sometimes is expressed as a relative risk with respect to a population average risk of osteoarthritis, and sometimes is expressed as a relative risk with respect to the lowest risk group. Such relative risk assessments often are based upon penetrance values determined by statistical methods, and are particularly useful to clinicians and insurance companies for assessing risk of osteoarthritis (e.g., a clinician can target appropriate detection, prevention and therapeutic regimens to a patient after determining the patient's risk of osteoarthritis, and an insurance company can fine tune actuarial tables based upon population genotype assessments of

osteoarthritis risk). Risk of osteoarthritis sometimes is expressed as an odds ratio, which is the odds of a particular person having a genotype has or will develop osteoarthritis with respect to another genotype group (e.g., the most disease protective genotype or population average). In related embodiments, the determination is utilized to identify a subject at risk of osteoarthritis. In an embodiment, two or more polymorphic variations are detected in two or more regions in human genomic DNA associated with increased risk of osteoarthritis, such as a locus containing a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG, for example. In certain embodiments, 3 or more, or 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 or more polymorphic variants are detected in the sample. In specific embodiments, polymorphic variants are detected in a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG region, for example. In another embodiment, polymorphic variants are detected at two or more positions selected from the group consisting of rs756519, rs1042327, rs8770, rs1563055, rs912428 and rs1888475; 229, 16559, 44850 and/or 46252 in SEQ ID NO: 1; 40985, 46168, 51925 and/or 52168 in SEQ ID NO: 2; 49693, 82475, 92462 and/or 96275 in SEQ ID NO: 3; and 33137, 55499 and/or 58282 in SEQ ID NO: 4. In certain embodiments, polymorphic variants are detected at other genetic loci (e.g., the polymorphic variants can be detected in PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG in addition to other loci or only in other loci), where the other loci include but are not limited to those described in concurrentlyfiled patent applications having attorney docket number 524593008800, 524593008900, 524593009000, 524593009100 or 524593009200, each of which is incorporated herein by reference in its entirety.

[0087] Results from prognostic tests may be combined with other test results to diagnose osteoarthritis. For example, prognostic results may be gathered, a patient sample may be ordered based on a determined predisposition to osteoarthritis, the patient sample is analyzed, and the results of the analysis may be utilized to diagnose osteoarthritis. Also osteoarthritis diagnostic method can be developed from studies used to generate prognostic methods in which populations are stratified into subpopulations having different progressions of osteoarthritis. In another embodiment, prognostic results may be gathered, a patient's risk factors for developing osteoarthritis (e.g., age, weight, race, diet) analyzed, and a patient sample may be ordered based on a determined predisposition to osteoarthritis.

[0088] The nucleic acid sample typically is isolated from a biological sample obtained from a subject. For example, nucleic acid can be isolated from blood, saliva, sputum, urine, cell scrapings, and biopsy tissue. The nucleic acid sample can be isolated from a biological sample using standard techniques, such as the technique described in Example 2. As used herein, the term "subject" refers primarily to humans but also refers to other mammals such as dogs, cats, and ungulates (e.g., cattle, sheep, and swine). Subjects also include avians (e.g., chickens and turkeys), reptiles, and fish (e.g., salmon), as embodiments described herein can be adapted to nucleic acid samples isolated from any of these organisms. The nucleic acid sample may be isolated from the subject and then directly utilized in a

method for determining the presence of a polymorphic variant, or alternatively, the sample may be isolated and then stored (e.g., frozen) for a period of time before being subjected to analysis.

[0089] The presence or absence of a polymorphic variant is determined using one or both chromosomal complements represented in the nucleic acid sample. Determining the presence or absence of a polymorphic variant in both chromosomal complements represented in a nucleic acid sample from a subject having a copy of each chromosome is useful for determining the zygosity of an individual for the polymorphic variant (*i.e.*, whether the individual is homozygous or heterozygous for the polymorphic variant). Any oligonucleotide-based diagnostic may be utilized to determine whether a sample includes the presence or absence of a polymorphic variant in a sample. For example, primer extension methods, ligase sequence determination methods (*e.g.*, U.S. Pat. Nos. 5,679,524 and 5,952,174, and WO 01/27326), mismatch sequence determination methods (*e.g.*, U.S. Pat. Nos. 5,851,770; 5,958,692; 6,110,684; and 6,183,958), microarray sequence determination methods, restriction fragment length polymorphism (RFLP), single strand conformation polymorphism detection (SSCP) (*e.g.*, U.S. Pat. Nos. 5,891,625 and 6,013,499), PCR-based assays (*e.g.*, TAQMAN® PCR System (Applied Biosystems)), and nucleotide sequencing methods may be used.

[0090] Oligonucleotide extension methods typically involve providing a pair of oligonucleotide primers in a polymerase chain reaction (PCR) or in other nucleic acid amplification methods for the purpose of amplifying a region from the nucleic acid sample that comprises the polymorphic variation. One oligonucleotide primer is complementary to a region 3' of the polymorphism and the other is complementary to a region 5' of the polymorphism. A PCR primer pair may be used in methods disclosed in U.S. Pat. Nos. 4,683,195; 4,683,202, 4,965,188; 5,656,493; 5,998,143; 6,140,054; WO 01/27327; and WO 01/27329 for example. PCR primer pairs may also be used in any commercially available machines that perform PCR, such as any of the GENEAMP® Systems available from Applied Biosystems. Also, those of ordinary skill in the art will be able to design oligonucleotide primers based upon a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleotide sequence using knowledge available in the art.

[0091] Also provided is an extension oligonucleotide that hybridizes to the amplified fragment adjacent to the polymorphic variation. As used herein, the term "adjacent" refers to the 3' end of the extension oligonucleotide being often 1 nucleotide from the 5' end of the polymorphic site, and sometimes 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides from the 5' end of the polymorphic site, in the nucleic acid when the extension oligonucleotide is hybridized to the nucleic acid. The extension oligonucleotide then is extended by one or more nucleotides, and the number and/or type of nucleotides that are added to the extension oligonucleotide determine whether the polymorphic variant is present. Oligonucleotide extension methods are disclosed, for example, in U.S. Pat. Nos. 4,656,127; 4,851,331; 5,679,524; 5,834,189; 5,876,934; 5,908,755; 5,912,118; 5,976,802; 5,981,186; 6,004,744; 6,013,431; 6,017,702;

6,046,005; 6,087,095; 6,210,891; and WO 01/20039. Oligonucleotide extension methods using mass spectrometry are described, for example, in U.S. Pat. Nos. 5,547,835; 5,605,798; 5,691,141; 5,849,542; 5,869,242; 5,928,906; 6,043,031; and 6,194,144, and a method often utilized is described herein in Example 2.

[0092] A microarray can be utilized for determining whether a polymorphic variant is present or absent in a nucleic acid sample. A microarray may include any oligonucleotides described herein, and methods for making and using oligonucleotide microarrays suitable for diagnostic use are disclosed in U.S. Pat. Nos. 5,492,806; 5,525,464; 5,589,330; 5,695,940; 5,849,483; 6,018,041; 6,045,996; 6,136,541; 6,142,681; 6,156,501; 6,197,506; 6,223,127; 6,225,625; 6,229,911; 6,239,273; WO 00/52625; WO 01/25485; and WO 01/29259. The microarray typically comprises a solid support and the oligonucleotides may be linked to this solid support by covalent bonds or by non-covalent interactions. The oligonucleotides may also be linked to the solid support directly or by a spacer molecule. A microarray may comprise one or more oligonucleotides complementary to a polymorphic site set forth herein.

[0093] A kit also may be utilized for determining whether a polymorphic variant is present or absent in a nucleic acid sample. A kit often comprises one or more pairs of oligonucleotide primers useful for amplifying a fragment of a nucleotide sequence of SEQ ID NO: 1-12 or a substantially identical sequence thereof, where the fragment includes a polymorphic site. The kit sometimes comprises a polymerizing agent, for example, a thermostable nucleic acid polymerase such as one disclosed in U.S. Pat. Nos. 4,889,818 or 6,077,664. Also, the kit often comprises an elongation oligonucleotide that hybridizes to a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence in a nucleic acid sample adjacent to the polymorphic site. Where the kit includes an elongation oligonucleotide, it also often comprises chain elongating nucleotides, such as dATP, dTTP, dGTP, dCTP, and dITP, including analogs of dATP, dTTP, dGTP, dCTP and dITP, provided that such analogs are substrates for a thermostable nucleic acid polymerase and can be incorporated into a nucleic acid chain elongated from the extension oligonucleotide. Along with chain elongating nucleotides would be one or more chain terminating nucleotides such as ddATP, ddTTP, ddGTP, ddCTP, and the like. In an embodiment, the kit comprises one or more oligonucleotide primer pairs, a polymerizing agent, chain elongating nucleotides, at least one elongation oligonucleotide, and one or more chain terminating nucleotides. Kits optionally include buffers, vials, microtiter plates, and instructions for use.

[0094] An individual identified as being at risk of osteoarthritis may be heterozygous or homozygous with respect to the allele associated with a higher risk of osteoarthritis. A subject homozygous for an allele associated with an increased risk of osteoarthritis is at a comparatively high risk of osteoarthritis, a subject heterozygous for an allele associated with an increased risk of osteoarthritis is at a comparatively intermediate risk of osteoarthritis, and a subject homozygous for an

allele associated with a decreased risk of osteoarthritis is at a comparatively low risk of osteoarthritis. A genotype may be assessed for a complementary strand, such that the complementary nucleotide at a particular position is detected.

[0095] Also featured are methods for determining risk of osteoarthritis and/or identifying a subject at risk of osteoarthritis by contacting a polypeptide or protein encoded by a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleotide sequence from a subject with an antibody that specifically binds to an epitope associated with increased risk of osteoarthritis in the polypeptide.

Applications of Prognostic and Diagnostic Results to Pharmacogenomic Methods

[0096] Pharmacogenomics is a discipline that involves tailoring a treatment for a subject according to the subject's genotype as a particular treatment regimen may exert a differential effect depending upon the subject's genotype. For example, based upon the outcome of a prognostic test described herein, a clinician or physician may target pertinent information and preventative or therapeutic treatments to a subject who would be benefited by the information or treatment and avoid directing such information and treatments to a subject who would not be benefited (e.g., the treatment has no therapeutic effect and/or the subject experiences adverse side effects).

[0097] The following is an example of a pharmacogenomic embodiment. A particular treatment regimen can exert a differential effect depending upon the subject's genotype. Where a candidate therapeutic exhibits a significant interaction with a major allele and a comparatively weak interaction with a minor allele (e.g., an order of magnitude or greater difference in the interaction), such a therapeutic typically would not be administered to a subject genotyped as being homozygous for the minor allele, and sometimes not administered to a subject genotyped as being heterozygous for the minor allele. In another example, where a candidate therapeutic is not significantly toxic when administered to subjects who are homozygous for a major allele but is comparatively toxic when administered to subjects heterozygous or homozygous for a minor allele, the candidate therapeutic is not typically administered to subjects who are genotyped as being heterozygous or homozygous with respect to the minor allele.

[0098] The methods described herein are applicable to pharmacogenomic methods for preventing, alleviating or treating osteoarthritis. For example, a nucleic acid sample from an individual may be subjected to a prognostic test described herein. Where one or more polymorphic variations associated with increased risk of osteoarthritis are identified in a subject, information for preventing or treating osteoarthritis and/or one or more osteoarthritis treatment regimens then may be prescribed to that subject.

[0099] In certain embodiments, a treatment or preventative regimen is specifically prescribed and/or administered to individuals who will most benefit from it based upon their risk of developing osteoarthritis assessed by the methods described herein. Thus, provided are methods for identifying a subject predisposed to osteoarthritis and then prescribing a therapeutic or preventative regimen to

individuals identified as having a predisposition. Thus, certain embodiments are directed to a method for reducing osteoarthritis in a subject, which comprises: detecting the presence or absence of a polymorphic variant associated with osteoarthritis in a nucleotide sequence in a nucleic acid sample from a subject, where the nucleotide sequence comprises a polynucleotide sequence selected from the group consisting of: (a) a nucleotide sequence of SEQ ID NO: 1-12; (b) a nucleotide sequence which encodes a polypeptide consisting of an amino acid sequence encoded by a nucleotide sequence of SEQ ID NO: 1-12; (c) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to an amino acid sequence encoded by a nucleotide sequence of SEQ ID NO: 1-12, or a nucleotide sequence about 90% or more identical to a nucleotide sequence of SEQ ID NO: 1-12; and (d) a fragment of a polynucleotide sequence of (a), (b), or (c); and prescribing or administering a treatment regimen to a subject from whom the sample originated where the presence of a polymorphic variation associated with osteoarthritis is detected in the nucleotide sequence. In these methods, predisposition results may be utilized in combination with other test results to diagnose osteoarthritis.

[0100] Certain preventative treatments often are prescribed to subjects having a predisposition to osteoarthritis and where the subject is diagnosed with osteoarthritis or is diagnosed as having symptoms indicative of an early stage of osteoarthritis. The treatment sometimes is preventative (e.g., is prescribed or administered to reduce the probability that osteoarthritis arises or progresses), sometimes is therapeutic, and sometimes delays, alleviates or halts the progression of osteoarthritis. Any known preventative or therapeutic treatment for alleviating or preventing the occurrence of osteoarthritis is prescribed and/or administered. For example, the treatment often is directed to decreasing pain and improving joint movement. Examples of OA treatments include exercises to keep joints flexible and improve muscle strength. Different medications to control pain, including corticosteroids and nonsteroidal anti-inflammatory drugs (NSAIDs, e.g., Voltaren); cyclooxygenase-2 (COX-2) inhibitors (e.g., Celebrex, Vioxx, Mobic, and Bextra); monoclonal antibodies (e.g., Remicade); tumor necrosis factor inhibitors (e.g., Enbrel); or injections of glucocorticoids, hyaluronic acid or chondrotin sulfate into joints that are inflamed and not responsive to NSAIDS. Orally administered chondroitin sulfate also may be used as a therapeutic, as it may increase hyaluronic acid levels and viscosity of synovial fluid, and decrease collagenase levels in synovial fluid. Also, glucosamine can serve as an OA therapeutic as delivering it into joints may inhibit enzymes involved in cartilage degradation and enhance the production of hyaluronic acid. For mild pain without inflammation, acetaminophen may be used. Other treatments include: heat/cold therapy for temporary pain relief; joint protection to prevent strain or stress on painful joints; surgery to relieve chronic pain in damaged joints; and weight control to prevent extra stress on weight-bearing joints.

[0101] As therapeutic approaches for treating osteoarthritis continue to evolve and improve, the goal of treatments for osteoarthritis related disorders is to intervene even before clinical signs first manifest.

Thus, genetic markers associated with susceptibility to osteoarthritis prove useful for early diagnosis, prevention and treatment of osteoarthritis.

[0102] As osteoarthritis preventative and treatment information can be specifically targeted to subjects in need thereof (e.g., those at risk of developing osteoarthritis or those in an early stage of osteoarthritis), provided herein is a method for preventing or reducing the risk of developing osteoarthritis in a subject, which comprises: (a) detecting the presence or absence of a polymorphic variation associated with osteoarthritis at a polymorphic site in a nucleotide sequence in a nucleic acid sample from a subject; (b) identifying a subject with a predisposition to osteoarthritis, whereby the presence of the polymorphic variation is indicative of a predisposition to osteoarthritis in the subject; and (c) if such a predisposition is identified, providing the subject with information about methods or products to prevent or reduce osteoarthritis or to delay the onset of osteoarthritis. Also provided is a method of targeting information or advertising to a subpopulation of a human population based on the subpopulation being genetically predisposed to a disease or condition, which comprises: (a) detecting the presence or absence of a polymorphic variation associated with osteoarthritis at a polymorphic site in a nucleotide sequence in a nucleic acid sample from a subject; (b) identifying the subpopulation of subjects in which the polymorphic variation is associated with osteoarthritis; and (c) providing information only to the subpopulation of subjects about a particular product which may be obtained and consumed or applied by the subject to help prevent or delay onset of the disease or condition.

[0103] Pharmacogenomics methods also may be used to analyze and predict a response to osteoarthritis treatment or a drug. For example, if pharmacogenomics analysis indicates a likelihood that an individual will respond positively to osteoarthritis treatment with a particular drug, the drug may be administered to the individual. Conversely, if the analysis indicates that an individual is likely to respond negatively to treatment with a particular drug, an alternative course of treatment may be prescribed. A negative response may be defined as either the absence of an efficacious response or the presence of toxic side effects. The response to a therapeutic treatment can be predicted in a background study in which subjects in any of the following populations are genotyped: a population that responds favorably to a treatment regimen, a population that does not respond significantly to a treatment regimen, and a population that responds adversely to a treatment regimen (e.g., exhibits one or more side effects). These populations are provided as examples and other populations and subpopulations may be analyzed. Based upon the results of these analyses, a subject is genotyped to predict whether he or she will respond favorably to a treatment regimen, not respond significantly to a treatment regimen, or respond adversely to a treatment regimen.

[0104] The tests described herein also are applicable to clinical drug trials. One or more polymorphic variants indicative of response to an agent for treating osteoarthritis or to side effects to an agent for treating osteoarthritis may be identified using the methods described herein. Thereafter,

potential participants in clinical trials of such an agent may be screened to identify those individuals most likely to respond favorably to the drug and exclude those likely to experience side effects. In that way, the effectiveness of drug treatment may be measured in individuals who respond positively to the drug, without lowering the measurement as a result of the inclusion of individuals who are unlikely to respond positively in the study and without risking undesirable safety problems.

[0105] Thus, another embodiment is a method of selecting an individual for inclusion in a clinical trial of a treatment or drug comprising the steps of: (a) obtaining a nucleic acid sample from an individual; (b) determining the identity of a polymorphic variation which is associated with a positive response to the treatment or the drug, or at least one polymorphic variation which is associated with a negative response to the treatment or the drug in the nucleic acid sample, and (c) including the individual in the clinical trial if the nucleic acid sample contains said polymorphic variation associated with a positive response to the treatment or the drug or if the nucleic acid sample lacks said polymorphic variation associated with a negative response to the treatment or the drug. In addition, the methods described herein for selecting an individual for inclusion in a clinical trial of a treatment or drug encompass methods with any further limitation described in this disclosure, or those following, specified alone or in any combination. The polymorphic variation may be in a sequence selected individually or in any combination from the group consisting of (i) a nucleotide sequence of SEQ ID NO: 1-12; (ii) a nucleotide sequence which encodes a polypeptide consisting of an amino acid sequence encoded by a nucleotide sequence of SEQ ID NO: 1-12; (iii) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to an amino acid sequence encoded by a nucleotide sequence of SEQ ID NO: 1-12, or a nucleotide sequence about 90% or more identical to a nucleotide sequence of SEQ ID NO: 1-12; and (iv) a fragment of a polynucleotide sequence of (i), (ii), or (iii) comprising the polymorphic site. The including step (c) optionally comprises administering the drug or the treatment to the individual if the nucleic acid sample contains the polymorphic variation associated with a positive response to the treatment or the drug and the nucleic acid sample lacks said biallelic marker associated with a negative response to the treatment or the drug.

[0106] Also provided herein is a method of partnering between a diagnostic/prognostic testing provider and a provider of a consumable product, which comprises: (a) the diagnostic/prognostic testing provider detects the presence or absence of a polymorphic variation associated with osteoarthritis at a polymorphic site in a nucleotide sequence in a nucleic acid sample from a subject; (b) the diagnostic/prognostic testing provider identifies the subpopulation of subjects in which the polymorphic variation is associated with osteoarthritis; (c) the diagnostic/prognostic testing provider forwards information to the subpopulation of subjects about a particular product which may be obtained and consumed or applied by the subject to help prevent or delay onset of the disease or condition; and (d) the

provider of a consumable product forwards to the diagnostic test provider a fee every time the diagnostic/prognostic test provider forwards information to the subject as set forth in step (c) above.

Compositions Comprising Osteoarthritis-Directed Molecules

[0107] Featured herein is a composition comprising a cell from a subject having osteoarthritis or at risk of osteoarthritis and one or more molecules specifically directed and targeted to a nucleic acid comprising a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence or amino acid sequence. Such directed molecules include, but are not limited to, a compound that binds to a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence or amino acid sequence referenced herein; a RNAi or siRNA molecule having a strand complementary or substantially complementary to a PSMB1. TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence (e.g., hybridizes to a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence under conditions of high stringency); an antisense nucleic acid complementary or substantially complementary to an RNA encoded by a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence (e.g., hybridizes to a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence under conditions of high stringency); a ribozyme that hybridizes to a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence (e.g., hybridizes to a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence under conditions of high stringency); a nucleic acid aptamer that specifically binds a polypeptide encoded by PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence; and an antibody that specifically binds to a polypeptide encoded by PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence or binds to a nucleic acid having such a nucleotide sequence. In specific embodiments, the osteoarthritis directed molecule interacts with a nucleic acid or polypeptide variant associated with osteoarthritis, such as variants referenced herein. In other embodiments, the osteoarthritis directed molecule interacts with a polypeptide involved in a signal pathway of a polypeptide encoded by a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence, or a nucleic acid comprising such a nucleotide sequence.

[0108] Compositions sometimes include an adjuvant known to stimulate an immune response, and in certain embodiments, an adjuvant that stimulates a T-cell lymphocyte response. Adjuvants are known, including but not limited to an aluminum adjuvant (e.g., aluminum hydroxide); a cytokine adjuvant or adjuvant that stimulates a cytokine response (e.g., interleukin (IL)-12 and/or gamma-interferon cytokines); a Freund-type mineral oil adjuvant emulsion (e.g., Freund's complete or incomplete adjuvant); a synthetic lipoid compound; a copolymer adjuvant (e.g., TitreMax); a saponin; Quil A; a liposome; an oil-in-water emulsion (e.g., an emulsion stabilized by Tween 80 and pluronic polyoxyethlene/polyoxypropylene block copolymer (Syntex Adjuvant Formulation); TitreMax; detoxified endotoxin (MPL) and mycobacterial cell wall components (TDW, CWS) in 2% squalene (Ribi Adjuvant System)); a muramyl dipeptide; an immune-stimulating complex (ISCOM, e.g., an Ag-

modified saponin/cholesterol micelle that forms stable cage-like structure); an aqueous phase adjuvant that does not have a depot effect (e.g., Gerbu adjuvant); a carbohydrate polymer (e.g., AdjuPrime); L-tyrosine; a manide-oleate compound (e.g., Montanide); an ethylene-vinyl acetate copolymer (e.g., Elvax 40W1,2); or lipid A, for example. Such compositions are useful for generating an immune response against osteoarthritis directed molecule (e.g., an HLA-binding subsequence within a polypeptide encoded by a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleotide sequence). In such methods, a peptide having an amino acid subsequence of a polypeptide encoded by a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleotide sequence binds to an HLA molecule and induces a CTL lymphocyte response. The peptide sometimes is delivered to the subject as an isolated peptide or as a minigene in a plasmid that encodes the peptide. Methods for identifying HLA-binding subsequences in such polypeptides are known (see e.g., publication WO02/20616 and PCT application US98/01373 for methods of identifying such sequences).

[0109] The cell may be in a group of cells cultured *in vitro* or in a tissue maintained *in vitro* or present in an animal *in vivo* (e.g., a rat, mouse, ape or human). In certain embodiments, a composition comprises a component from a cell such as a nucleic acid molecule (e.g., genomic DNA), a protein mixture or isolated protein, for example. The aforementioned compositions have utility in diagnostic, prognostic and pharmacogenomic methods described previously and in therapeutics described hereafter. Certain osteoarthritis directed molecules are described in greater detail below.

Compounds

[0110] Compounds can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; peptoid libraries (libraries of molecules having the functionalities of peptides, but with a novel, non-peptide backbone which are resistant to enzymatic degradation but which nevertheless remain bioactive (see, e.g., Zuckermann et al., J. Med. Chem. 37: 2678-85 (1994)); spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; "one-bead one-compound" library methods; and synthetic library methods using affinity chromatography selection. Biological library and peptoid library approaches are typically limited to peptide libraries, while the other approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam, Anticancer Drug Des. 12: 145, (1997)). Examples of methods for synthesizing molecular libraries are described, for example, in DeWitt et al., Proc. Natl. Acad. Sci. U.S.A. 90: 6909 (1993); Erb et al., Proc. Natl. Acad. Sci. USA 91: 11422 (1994); Zuckermann et al., J. Med. Chem. 37: 2678 (1994); Cho et al., Science 261: 1303 (1993); Carrell et al., Angew. Chem. Int. Ed. Engl. 33: 2061 (1994); and in Gallop et al., J. Med. Chem. 37: 1233 (1994).

[0111] Libraries of compounds may be presented in solution (e.g., Houghten, Biotechniques 13: 412-421 (1992)), or on beads (Lam, Nature 354: 82-84 (1991)), chips (Fodor, Nature 364: 555-556 (1993)), bacteria or spores (Ladner, United States Patent No. 5,223,409), plasmids (Cull et al., Proc. Natl. Acad. Sci. USA 89: 1865-1869 (1992)) or on phage (Scott and Smith, Science 249: 386-390 (1990); Devlin, Science 249: 404-406 (1990); Cwirla et al., Proc. Natl. Acad. Sci. 87: 6378-6382 (1990); Felici, J. Mol. Biol. 222: 301-310 (1991); Ladner supra.).

[0112] A compound sometimes alters expression and sometimes alters activity of a polypeptide target and may be a small molecule. Small molecules include, but are not limited to, peptides, peptidomimetics (e.g., peptoids), amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heteroorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds.

Antisense Nucleic Acid Molecules, Ribozymcs, RNAi, siRNA and Modified Nucleic Acid Molecules

[0113] An "antisense" nucleic acid refers to a nucleotide sequence complementary to a "sense" nucleic acid encoding a polypeptide, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. The antisense nucleic acid can be complementary to an entire coding strand, or to a portion thereof or a substantially identical sequence thereof. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence (e.g., 5' and 3' untranslated regions in SEQ ID NO: 1).

[0114] An antisense nucleic acid can be designed such that it is complementary to the entire coding region of an mRNA encoded by a nucleotide sequence (e.g., SEQ ID NO: 1), and often the antisense nucleic acid is an oligonucleotide antisense to only a portion of a coding or noncoding region of the mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of the mRNA, e.g., between the -10 and +10 regions of the target gene nucleotide sequence of interest. An antisense oligonucleotide can be, for example, about 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, or more nucleotides in length. The antisense nucleic acids, which include the ribozymes described hereafter, can be designed to target a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleotide sequence, often a variant associated with osteoarthritis, or a substantially identical sequence thereof. Among the variants, minor alleles and major alleles can be targeted, and

those associated with a higher risk of osteoarthritis are often designed, tested, and administered to subjects.

[0115] An antisense nucleic acid can be constructed using chemical synthesis and enzymatic ligation reactions using standard procedures. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Antisense nucleic acid also can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

[0116] When utilized as therapeutics, antisense nucleic acids typically are administered to a subject (e.g., by direct injection at a tissue site) or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a polypeptide and thereby inhibit expression of the polypeptide, for example, by inhibiting transcription and/or translation. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then are administered systemically. For systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, for example, by linking antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens. Antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. Sufficient intracellular concentrations of antisense molecules are achieved by incorporating a strong promoter, such as a pol II or pol III promoter, in the vector construct.

[0117] Antisense nucleic acid molecules sometimes are alpha-anomeric nucleic acid molecules. An alpha-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual beta-units, the strands run parallel to each other (Gaultier et al., Nucleic Acids. Res. 15: 6625-6641 (1987)). Antisense nucleic acid molecules can also comprise a 2'-o-methylribonucleotide (Inoue et al., Nucleic Acids Res. 15: 6131-6148 (1987)) or a chimeric RNA-DNA analogue (Inoue et al., FEBS Lett. 215: 327-330 (1987)). Antisense nucleic acids sometimes are composed of DNA or PNA or any other nucleic acid derivatives described previously.

[0118] In another embodiment, an antisense nucleic acid is a ribozyme. A ribozyme having specificity for a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleotide sequence can include one or more sequences complementary to such a nucleotide sequence, and a sequence having a known catalytic region responsible for mRNA cleavage (see e.g., U.S. Pat. No. 5,093,246 or Haselhoff and Gerlach, Nature 334: 585-591 (1988)). For example, a derivative of a Tetrahymena L-19 IVS RNA is sometimes utilized in which the nucleotide sequence of the active site is complementary to the nucleotide sequence

to be cleaved in a mRNA (see e.g., Cech et al. U.S. Patent No. 4,987,071; and Cech et al. U.S. Patent No. 5,116,742). Also, target mRNA sequences can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules (see e.g., Bartel & Szostak, Science 261: 1411-1418 (1993)).

[0119] Osteoarthritis directed molecules include in certain embodiments nucleic acids that can form triple helix structures with a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleotide sequence, or a substantially identical sequence thereof, especially one that includes a regulatory region that controls expression of a polypeptide. Gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of a nucleotide sequence referenced herein or a substantially identical sequence (e.g., promoter and/or enhancers) to form triple helical structures that prevent transcription of a gene in target cells (see e.g., Helene, Anticancer Drug Des. 6(6): 569-84 (1991); Helene et al., Ann. N.Y. Acad. Sci. 660: 27-36 (1992); and Maher, Bioassays 14(12): 807-15 (1992). Potential sequences that can be targeted for triple helix formation can be increased by creating a so-called "switchback" nucleic acid molecule. Switchback molecules are synthesized in an alternating 5'-3', 3'-5' manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizeable stretch of either purines or pyrimidines to be present on one strand of a duplex.

[0120] Osteoarthritis directed molecules include RNAi and siRNA nucleic acids. Gene expression may be inhibited by the introduction of double-stranded RNA (dsRNA), which induces potent and specific gene silencing, a phenomenon called RNA interference or RNAi. See, e.g., Fire et al., US Patent Number 6,506,559; Tuschl et al. PCT International Publication No. WO 01/75164; Kay et al. PCT International Publication No. WO 03/010180A1; or Bosher JM, Labouesse, Nat Cell Biol 2000 Feb;2(2):E31-6. This process has been improved by decreasing the size of the double-stranded RNA to 20-24 base pairs (to create small-interfering RNAs or siRNAs) that "switched off" genes in mammalian cells without initiating an acute phase response, i.e., a host defense mechanism that often results in cell death (see, e.g., Caplen et al. Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9742-7 and Elbashir et al. Methods 2002 Feb;26(2):199-213). There is increasing evidence of post-transcriptional gene silencing by RNA interference (RNAi) for inhibiting targeted expression in mammalian cells at the mRNA level, in human cells. There is additional evidence of effective methods for inhibiting the proliferation and migration of tumor cells in human patients, and for inhibiting metastatic cancer development (see, e.g., U.S. Patent Application No. US2001000993183; Caplen et al. Proc Natl Acad Sci U S A; and Abderrahmani et al. Mol Cell Biol 2001 Nov21(21):7256-67).

[0121] An "siRNA" or "RNAi" refers to a nucleic acid that forms a double stranded RNA and has the ability to reduce or inhibit expression of a gene or target gene when the siRNA is delivered to or expressed in the same cell as the gene or target gene. "siRNA" refers to short double-stranded RNA formed by the complementary strands. Complementary portions of the siRNA that hybridize to form the

double stranded molecule often have substantial or complete identity to the target molecule sequence. In one embodiment, an siRNA refers to a nucleic acid that has substantial or complete identity to a target gene and forms a double stranded siRNA.

[0122] When designing the siRNA molecules, the targeted region often is selected from a given DNA sequence beginning 50 to 100 nucleotides downstream of the start codon. See, e.g., Elbashir et al,. Methods 26:199-213 (2002). Initially, 5' or 3' UTRs and regions nearby the start codon were avoided assuming that UTR-binding proteins and/or translation initiation complexes may interfere with binding of the siRNP or RISC endonuclease complex. Sometimes regions of the target 23 nucleotides in length conforming to the sequence motif AA(N19)TT (N, an nucleotide), and regions with approximately 30% to 70% G/C-content (often about 50% G/C-content) often are selected. If no suitable sequences are found, the search often is extended using the motif NA(N21). The sequence of the sense siRNA sometimes corresponds to (N19) TT or N21 (position 3 to 23 of the 23-nt motif), respectively. In the latter case, the 3' end of the sense siRNA often is converted to TT. The rationale for this sequence conversion is to generate a symmetric duplex with respect to the sequence composition of the sense and antisense 3' overhangs. The antisense siRNA is synthesized as the complement to position 1 to 21 of the 23-nt motif. Because position 1 of the 23-nt motif is not recognized sequence-specifically by the antisense siRNA, the 3'-most nucleotide residue of the antisense siRNA can be chosen deliberately. However, the penultimate nucleotide of the antisense siRNA (complementary to position 2 of the 23-nt motif) often is complementary to the targeted sequence. For simplifying chemical synthesis, TT often is utilized. siRNAs corresponding to the target motif NAR(N17)YNN, where R is purine (A,G) and Y is pyrimidine (C,U), often are selected. Respective 21 nucleotide sense and antisense siRNAs often begin with a purine nucleotide and can also be expressed from pol III expression vectors without a change in targeting site. Expression of RNAs from pol III promoters often is efficient when the first transcribed nucleotide is a purine.

[0123] The sequence of the siRNA can correspond to the full length target gene, or a subsequence thereof. Often, the siRNA is about 15 to about 50 nucleotides in length (e.g., each complementary sequence of the double stranded siRNA is 15-50 nucleotides in length, and the double stranded siRNA is about 15-50 base pairs in length, sometimes about 20-30 nucleotides in length or about 20-25 nucleotides in length, e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. The siRNA sometimes is about 21 nucleotides in length. Methods of using siRNA are well known in the art, and specific siRNA molecules may be purchased from a number of companies including Dharmacon Research, Inc.

[0124] Antisense, ribozyme, RNAi and siRNA nucleic acids can be altered to form modified nucleic acid molecules. The nucleic acids can be altered at base moieties, sugar moieties or phosphate backbone moieties to improve stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of nucleic acid molecules can be modified to generate peptide nucleic acids (see

Hyrup et al., Bioorganic & Medicinal Chemistry 4 (1): 5-23 (1996)). As used herein, the terms "peptide nucleic acid" or "PNA" refers to a nucleic acid mimic such as a DNA mimic, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of a PNA can allow for specific hybridization to DNA and RNA under conditions of low ionic strength. Synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described, for example, in Hyrup et al., (1996) supra and Perry-O'Keefe et al., Proc. Natl. Acad. Sci. 93: 14670-675 (1996).

[0125] PNA nucleic acids can be used in prognostic, diagnostic, and therapeutic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, for example, inducing transcription or translation arrest or inhibiting replication. PNA nucleic acid molecules can also be used in the analysis of single base pair mutations in a gene, (e.g., by PNA-directed PCR clamping); as "artificial restriction enzymes" when used in combination with other enzymes, (e.g., S1 nucleases (Hyrup (1996) supra)); or as probes or primers for DNA sequencing or hybridization (Hyrup et al., (1996) supra; Perry-O'Keefe supra).

[0126] In other embodiments, oligonucleotides may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across cell membranes (see e.g., Letsinger et al., Proc. Natl. Acad. Sci. USA 86: 6553-6556 (1989); Lemaitre et al., Proc. Natl. Acad. Sci. USA 84: 648-652 (1987); PCT Publication No. W088/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W089/10134). In addition, oligonucleotides can be modified with hybridization-triggered cleavage agents (See, e.g., Krol et al., Bio-Techniques 6: 958-976 (1988)) or intercalating agents. (See, e.g., Zon, Pharm. Res. 5: 539-549 (1988)). To this end, the oligonucleotide may be conjugated to another molecule, (e.g., a peptide, hybridization triggered cross-linking agent, transport agent, or hybridization-triggered cleavage agent).

[0127] Also included herein are molecular beacon oligonucleotide primer and probe molecules having one or more regions complementary to a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleotide sequence, or a substantially identical sequence thereof, two complementary regions one having a fluorophore and one a quencher such that the molecular beacon is useful for quantifying the presence of the nucleic acid in a sample. Molecular beacon nucleic acids are described, for example, in Lizardi et al., U.S. Patent No. 5,854,033; Nazarenko et al., U.S. Patent No. 5,866,336, and Livak et al., U.S. Patent 5,876,930.

Antibodies

[0128] The term "antibody" as used herein refers to an immunoglobulin molecule or immunologically active portion thereof, i.e., an antigen-binding portion. Examples of immunologically active portions of immunoglobulin molecules include F(ab) and F(ab')₂ fragments which can be

generated by treating the antibody with an enzyme such as pepsin. An antibody sometimes is a polyclonal, monoclonal, recombinant (e.g., a chimeric or humanized), fully human, non-human (e.g., murine), or a single chain antibody. An antibody may have effector function and can fix complement, and is sometimes coupled to a toxin or imaging agent.

[0129] A full-length polypeptide or antigenic peptide fragment encoded by a nucleotide sequence referenced herein can be used as an immunogen or can be used to identify antibodies made with other immunogens, e.g., cells, membrane preparations, and the like. An antigenic peptide often includes at least 8 amino acid residues of the amino acid sequences encoded by a nucleotide sequence referenced herein, or substantially identical sequence thereof, and encompasses an epitope. Antigenic peptides sometimes include 10 or more amino acids, 15 or more amino acids, 20 or more amino acids, or 30 or more amino acids. Hydrophilic and hydrophobic fragments of polypeptides sometimes are used as immunogens.

[0130] Epitopes encompassed by the antigenic peptide are regions located on the surface of the polypeptide (e.g., hydrophilic regions) as well as regions with high antigenicity. For example, an Emini surface probability analysis of the human polypeptide sequence can be used to indicate the regions that have a particularly high probability of being localized to the surface of the polypeptide and are thus likely to constitute surface residues useful for targeting antibody production. The antibody may bind an epitope on any domain or region on polypeptides described herein.

[0131] Also, chimeric, humanized, and completely human antibodies are useful for applications which include repeated administration to subjects. Chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, can be made using standard recombinant DNA techniques. Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in Robinson et al International Application No. PCT/US86/02269; Akira, et al European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison et al European Patent Application 173,494; Neuberger et al PCT International Publication No. WO 86/01533; Cabilly et al U.S. Patent No. 4,816,567; Cabilly et al European Patent Application 125,023; Better et al., Science 240: 1041-1043 (1988); Liu et al., Proc. Natl. Acad. Sci. USA 84: 3439-3443 (1987); Liu et al., J. Immunol. 139: 3521-3526 (1987); Sun et al., Proc. Natl. Acad. Sci. USA 84: 214-218 (1987); Nishimura et al., Canc. Res. 47: 999-1005 (1987); Wood et al., Nature 314: 446-449 (1985); and Shaw et al., J. Natl. Cancer Inst. 80: 1553-1559 (1988); Morrison, S. L., Science 229: 1202-1207 (1985); Oi et al., BioTechniques 4: 214 (1986); Winter U.S. Patent 5,225,539; Jones et al., Nature 321: 552-525 (1986); Verhoeyan et al., Science 239: 1534; and Beidler et al., J. Immunol. 141: 4053-4060 (1988).

[0132] Completely human antibodies are particularly desirable for therapeutic treatment of human patients. Such antibodies can be produced using transgenic mice that are incapable of expressing

endogenous immunoglobulin heavy and light chains genes, but which can express human heavy and light chain genes. See, for example, Lonberg and Huszar, Int. Rev. Immunol. 13: 65-93 (1995); and U.S. Patent Nos. 5,625,126; 5,633,425; 5,569,825; 5,661,016; and 5,545,806. In addition, companies such as Abgenix, Inc. (Fremont, CA) and Medarex, Inc. (Princeton, NJ), can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above. Completely human antibodies that recognize a selected epitope also can be generated using a technique referred to as "guided selection." In this approach a selected non-human monoclonal antibody (e.g., a murine antibody) is used to guide the selection of a completely human antibody recognizing the same epitope. This technology is described for example by Jespers et al., Bio/Technology 12: 899-903 (1994).

[0133] An antibody can be a single chain antibody. A single chain antibody (scFV) can be engineered (see, e.g., Colcher et al., Ann. N Y Acad. Sci. 880: 263-80 (1999); and Reiter, Clin. Cancer Res. 2: 245-52 (1996)). Single chain antibodies can be dimerized or multimerized to generate multivalent antibodies having specificities for different epitopes of the same target polypeptide.

[0134] Antibodies also may be selected or modified so that they exhibit reduced or no ability to bind an Fc receptor. For example, an antibody may be an isotype or subtype, fragment or other mutant, which does not support binding to an Fc receptor (e.g., it has a mutagenized or deleted Fc receptor binding region).

[0135] Also, an antibody (or fragment thereof) may be conjugated to a therapeutic moiety such as a cytotoxin, a therapeutic agent or a radioactive metal ion. A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1 dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thiotepa chlorambucil, melphalan, carmustine (BCNU) and lomustine (CCNU), cyclophosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).

[0136] Antibody conjugates can be used for modifying a given biological response. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a polypeptide such as tumor necrosis factor, gamma-interferon, alpha-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator; or, biological response modifiers such as, for

example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophage colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G-CSF"), or other growth factors. Also, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Patent No. 4,676,980, for example.

[0137] An antibody (e.g., monoclonal antibody) can be used to isolate target polypeptides by standard techniques, such as affinity chromatography or immunoprecipitation. Moreover, an antibody can be used to detect a target polypeptide (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the polypeptide. Antibodies can be used diagnostically to monitor polypeptide levels in tissue as part of a clinical testing procedure, e.g., to determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance (i.e., antibody labeling). Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase. alkaline phosphatase, ß-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and acquorin, and examples of suitable radioactive material include ¹²⁵I, ¹³¹I, ³⁵S or ³H. Also, an antibody can be utilized as a test molecule for determining whether it can treat osteoarthritis, and as a therapeutic for administration to a subject for treating osteoarthritis.

[0138] An antibody can be made by immunizing with a purified antigen, or a fragment thereof, e.g., a fragment described herein, a membrane associated antigen, tissues, e.g., crude tissue preparations, whole cells, preferably living cells, lysed cells, or cell fractions.

[0139] Included herein are antibodies which bind only a native polypeptide, only denatured or otherwise non-native polypeptide, or which bind both, as well as those having linear or conformational epitopes. Conformational epitopes sometimes can be identified by selecting antibodies that bind to native but not denatured polypeptide. Also featured are antibodies that specifically bind to a polypeptide variant associated with osteoarthritis.

Methods for Identifying Candidate Therapeutics for Treating Osteoarthritis

[0140] Current therapies for the treatment of osteoarthritis have limited efficacy, limited tolerability and significant mechanism-based side effects, and few of the available therapies adequately address underlying defects. Current therapeutic approaches were largely developed in the absence of defined molecular targets or even a solid understanding of disease pathogenesis. Therefore, provided are

methods of identifying candidate therapeutics that target biochemical pathways related to the development of osteoarthritis.

[0141] Thus, featured herein are methods for identifying a candidate therapeutic for treating osteoarthritis. The methods comprise contacting a test molecule with a target molecule in a system. A "target molecule" as used herein refers to a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleic acid, a substantially identical nucleic acid thereof, or a fragment thereof, and an encoded polypeptide of the foregoing. The methods also comprise determining the presence or absence of an interaction between the test molecule and the target molecule, where the presence of an interaction between the test molecule and the nucleic acid or polypeptide identifies the test molecule as a candidate osteoarthritis therapeutic. The interaction between the test molecule and the target molecule may be quantified.

[0142] Test molecules and candidate therapeutics include, but are not limited to, compounds, antisense nucleic acids, siRNA molecules, ribozymes, polypeptides or proteins encoded by a PSMB1. TBP, PDCD2, ELP3, CHDC1 or ERG nucleotide sequence, or a substantially identical sequence or fragment thereof, and immunotherapeutics (e.g., antibodies and HLA-presented polypeptide fragments). A test molecule or candidate therapeutic may act as a modulator of target molecule concentration or target molecule function in a system. A "modulator" may agonize (i.e., up-regulates) or antagonize (i.e., down-regulates) a target molecule concentration partially or completely in a system by affecting such cellular functions as DNA replication and/or DNA processing (e.g., DNA methylation or DNA repair), RNA transcription and/or RNA processing (e.g., removal of intronic sequences and/or translocation of spliced mRNA from the nucleus), polypeptide production (e.g., translation of the polypeptide from mRNA), and/or polypeptide post-translational modification (e.g., glycosylation, phosphorylation, and proteolysis of pro-polypeptides). A modulator may also agonize or antagonize a biological function of a target molecule partially or completely, where the function may include adopting a certain structural conformation, interacting with one or more binding partners, ligand binding, catalysis (e.g., phosphorylation, dephosphorylation, hydrolysis, methylation, and isomerization), and an effect upon a cellular event (e.g., effecting progression of osteoarthritis).

[0143] As used herein, the term "system" refers to a cell free *in vitro* environment and a cell-based environment such as a collection of cells, a tissue, an organ, or an organism. A system is "contacted" with a test molecule in a variety of manners, including adding molecules in solution and allowing them to interact with one another by diffusion, cell injection, and any administration routes in an animal. As used herein, the term "interaction" refers to an effect of a test molecule on test molecule, where the effect sometimes is binding between the test molecule and the target molecule, and sometimes is an observable change in cells, tissue, or organism.

[0144] There are many standard methods for detecting the presence or absence of interaction between a test molecule and a target molecule. For example, titrametric, acidimetric, radiometric, NMR,

monolayer, polarographic, spectrophotometric, fluorescent, and ESR assays probative of a target molecule interaction may be utilized. Any modulator can be utilized in methods for detecting an interaction. For example, proteasome modulators (e.g., *PSMB1* includes a proteasome domain) are described in WO-2004014882 and Roesel et al. Proceedings of the American Association of Cancer Research 2003, 44:1st Ed (Abs 1769), and bortezomib (Velcade, MLN-341, LDP-341 and PS-341), a ubiquitin proteosome inhibitor, is used for the treatment of multiple myeloma.

[0145] Test molecule/target molecule interactions can be detected and/or quantified using assays known in the art. For example, an interaction can be determined by labeling the test molecule and/or the target molecule, where the label is covalently or non-covalently attached to the test molecule or target molecule. The label is sometimes a radioactive molecule such as ¹²⁵I, ¹³¹I, ³⁵S or ³H, which can be detected by direct counting of radioemission or by scintillation counting. Also, enzymatic labels such as horseradish peroxidase, alkaline phosphatase, or luciferase may be utilized where the enzymatic label can be detected by determining conversion of an appropriate substrate to product. In addition, presence or absence of an interaction can be determined without labeling. For example, a microphysiometer (e.g., Cytosensor) is an analytical instrument that measures the rate at which a cell acidifies its environment using a light-addressable potentiometric sensor (LAPS). Changes in this acidification rate can be used as an indication of an interaction between a test molecule and target molecule (McConnell, H. M. et al., Science 257: 1906-1912 (1992)).

[0146] In cell-based systems, cells typically include a *PSMB1*, *TBP*, *PDCD2*, *ELP3*, *CHDC1* or *ERG* nucleic acid, an encoded polypeptide, or substantially identical nucleic acid or polypeptide thereof, and are often of mammalian origin, although the cell can be of any origin. Whole cells, cell homogenates, and cell fractions (*e.g.*, cell membrane fractions) can be subjected to analysis. Where interactions between a test molecule with a target polypeptide are monitored, soluble and/or membrane bound forms of the polypeptide may be utilized. Where membrane-bound forms of the polypeptide are used, it may be desirable to utilize a solubilizing agent. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton® X-100, Triton® X-114, Thesit®, Isotridecypoly(ethylene glycol ether)_n, 3-[(3-cholamidopropyl)dimethylamminio]-1-propane sulfonate (CHAPSO), or N-dodecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate.

[0147] An interaction between a test molecule and target molecule also can be detected by monitoring fluorescence energy transfer (FET) (see, e.g., Lakowicz et al., U.S. Patent No. 5,631,169; Stavrianopoulos et al. U.S. Patent No. 4,868,103). A fluorophore label on a first, "donor" molecule is selected such that its emitted fluorescent energy will be absorbed by a fluorescent label on a second,

"acceptor" molecule, which in turn is able to fluoresce due to the absorbed energy. Alternately, the "donor" polypeptide molecule may simply utilize the natural fluorescent energy of tryptophan residues. Labels are chosen that emit different wavelengths of light, such that the "acceptor" molecule label may be differentiated from that of the "donor". Since the efficiency of energy transfer between the labels is related to the distance separating the molecules, the spatial relationship between the molecules can be assessed. In a situation in which binding occurs between the molecules, the fluorescent emission of the "acceptor" molecule label in the assay should be maximal. An FET binding event can be conveniently measured through standard fluorometric detection means well known in the art (e.g., using a fluorimeter).

[0148] In another embodiment, determining the presence or absence of an interaction between a test molecule and a target molecule can be effected by monitoring surface plasmon resonance (see, e.g., Sjolander & Urbaniczk, Anal. Chem. 63: 2338-2345 (1991) and Szabo et al., Curr. Opin. Struct. Biol. 5: 699-705 (1995)). "Surface plasmon resonance" or "biomolecular interaction analysis (BIA)" can be utilized to detect biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcore). Changes in the mass at the binding surface (indicative of a binding event) result in alterations of the refractive index of light near the surface (the optical phenomenon of surface plasmon resonance (SPR)), resulting in a detectable signal which can be used as an indication of real-time reactions between biological molecules.

[0149] In another embodiment, the target molecule or test molecules are anchored to a solid phase, facilitating the detection of target molecule/test molecule complexes and separation of the complexes from free, uncomplexed molecules. The target molecule or test molecule is immobilized to the solid support. In an embodiment, the target molecule is anchored to a solid surface, and the test molecule, which is not anchored, can be labeled, either directly or indirectly, with detectable labels discussed herein.

[0150] It may be desirable to immobilize a target molecule, an anti-target molecule antibody, and/or test molecules to facilitate separation of target molecule/test molecule complexes from uncomplexed forms, as well as to accommodate automation of the assay. The attachment between a test molecule and/or target molecule and the solid support may be covalent or non-covalent (see, e.g., U.S. Patent No. 6,022,688 for non-covalent attachments). The solid support may be one or more surfaces of the system, such as one or more surfaces in each well of a microtiter plate, a surface of a silicon wafer, a surface of a bead (see, e.g., Lam, Nature 354: 82-84 (1991)) that is optionally linked to another solid support, or a channel in a microfluidic device, for example. Types of solid supports, linker molecules for covalent and non-covalent attachments to solid supports, and methods for immobilizing nucleic acids and other molecules to solid supports are well known (see, e.g., U.S. Patent Nos. 6,261,776; 5,900,481; 6,133,436; and 6,022,688; and WIPO publication WO 01/18234).

[0151] In an embodiment, target molecule may be immobilized to surfaces via biotin and streptavidin. For example, biotinylated target polypeptide can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, IL), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). In another embodiment, a target polypeptide can be prepared as a fusion polypeptide. For example, glutathione-S-transferase/target polypeptide fusion can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivitized microtiter plates, which are then combined with a test molecule under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, or the matrix is immobilized in the case of beads, and complex formation is determined directly or indirectly as described above. Alternatively, the complexes can be dissociated from the matrix, and the level of target molecule binding or activity is determined using standard techniques.

[0152] In an embodiment, the non-immobilized component is added to the coated surface containing the anchored component. After the reaction is complete, unreacted components are removed (e.g., by washing) under conditions such that a significant percentage of complexes formed will remain immobilized to the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of manners. Where the previously non-immobilized component is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the previously non-immobilized component is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface, e.g., by adding a labeled antibody specific for the immobilized component, where the antibody, in turn, can be directly labeled or indirectly labeled with, e.g., a labeled anti-Ig antibody.

[0153] In another embodiment, an assay is performed utilizing antibodies that specifically bind target molecule or test molecule but do not interfere with binding of the target molecule to the test molecule. Such antibodies can be derivitized to a solid support, and unbound target molecule may be immobilized by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the target molecule.

[0154] Cell free assays also can be conducted in a liquid phase. In such an assay, reaction products are separated from unreacted components, by any of a number of standard techniques, including but not limited to: differential centrifugation (see, e.g., Rivas, G., and Minton, Trends Biochem Sci Aug; 18(8): 284-7 (1993)); chromatography (gel filtration chromatography, ion-exchange chromatography); electrophoresis (see, e.g., Ausubel et al., eds. Current Protocols in Molecular Biology, J. Wiley: New York (1999)); and immunoprecipitation (see, e.g., Ausubel et al., eds., supra). Media and

chromatographic techniques are known to one skilled in the art (see, e.g., Heegaard, J Mol. Recognit. Winter; 11(1-6): 141-8 (1998); Hage & Tweed, J. Chromatogr. B Biomed. Sci. Appl. Oct 10; 699 (1-2): 499-525 (1997)). Further, fluorescence energy transfer may also be conveniently utilized, as described herein, to detect binding without further purification of the complex from solution.

[0155] In another embodiment, modulators of target molecule expression are identified. For example, a cell or cell free mixture is contacted with a candidate compound and the expression of target mRNA or target polypeptide is evaluated relative to the level of expression of target mRNA or target polypeptide in the absence of the candidate compound. When expression of target mRNA or target polypeptide is greater in the presence of the candidate compound than in its absence, the candidate compound is identified as an agonist of target mRNA or target polypeptide expression. Alternatively, when expression of target mRNA or target polypeptide is less (e.g., less with statistical significance) in the presence of the candidate compound than in its absence, the candidate compound is identified as an antagonist or inhibitor of target mRNA or target polypeptide expression. The level of target mRNA or target polypeptide expression can be determined by methods described herein.

[0156] In another embodiment, binding partners that interact with a target molecule are detected. The target molecules can interact with one or more cellular or extracellular macromolecules, such as polypeptides *in vivo*, and these interacting molecules are referred to herein as "binding partners." Binding partners can agonize or antagonize target molecule biological activity. Also, test molecules that agonize or antagonize interactions between target molecules and binding partners can be useful as therapeutic molecules as they can up-regulate or down-regulated target molecule activity *in vivo* and thereby treat osteoarthritis.

[0157] Binding partners of target molecules can be identified by methods known in the art. For example, binding partners may be identified by lysing cells and analyzing cell lysates by electrophoretic techniques. Alternatively, a two-hybrid assay or three-hybrid assay can be utilized (see, e.g., U.S. Patent No. 5,283,317; Zervos et al., Cell 72:223-232 (1993); Madura et al., J. Biol. Chem. 268: 12046-12054 (1993); Bartel et al., Biotechniques 14: 920-924 (1993); Iwabuchi et al., Oncogene 8: 1693-1696 (1993); and Brent WO94/10300). A two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. The assay often utilizes two different DNA constructs. In one construct, a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleic acid (sometimes referred to as the "bait") is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In another construct, a DNA sequence from a library of DNA sequences that encodes a potential binding partner (sometimes referred to as the "prey") is fused to a gene that encodes an activation domain of the known transcription factor. Sometimes, a PSMB1, TBP, PDCD2, ELP3, CHDC1 or ERG nucleic acid can be fused to the activation domain. If the "bait" and the "prey" molecules interact in vivo, the DNA-binding and activation domains of the transcription factor are

brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to identify the potential binding partner.

[0158] In an embodiment for identifying test molecules that antagonize or agonize complex formation between target molecules and binding partners, a reaction mixture containing the target molecule and the binding partner is prepared, under conditions and for a time sufficient to allow complex formation. The reaction mixture often is provided in the presence or absence of the test molecule. The test molecule can be included initially in the reaction mixture, or can be added at a time subsequent to the addition of the target molecule and its binding partner. Control reaction mixtures are incubated without the test molecule or with a placebo. Formation of any complexes between the target molecule and the binding partner then is detected. Decreased formation of a complex in the reaction mixture containing test molecule as compared to in a control reaction mixture indicates that the molecule antagonizes target molecule/binding partner complex formation. Alternatively, increased formation of a complex in the reaction mixture containing test molecule as compared to in a control reaction mixture indicates that the molecule agonizes target molecule/binding partner complex formation. In another embodiment, complex formation of target molecule/binding partner can be compared to complex formation of mutant target molecule/binding partner (e.g., amino acid modifications in a target polypeptide). Such a comparison can be important in those cases where it is desirable to identify test molecules that modulate interactions of mutant but not non-mutated target gene products.

[0159] The assays can be conducted in a heterogeneous or homogeneous format. In heterogeneous assays, target molecule and/or the binding partner are immobilized to a solid phase, and complexes are detected on the solid phase at the end of the reaction. In homogeneous assays, the entire reaction is carried out in a liquid phase. In either approach, the order of addition of reactants can be varied to obtain different information about the molecules being tested. For example, test compounds that agonize target molecule/binding partner interactions can be identified by conducting the reaction in the presence of the test molecule in a competition format. Alternatively, test molecules that agonize preformed complexes, e.g., molecules with higher binding constants that displace one of the components from the complex, can be tested by adding the test compound to the reaction mixture after complexes have been formed.

[0160] In a heterogeneous assay embodiment, the target molecule or the binding partner is anchored onto a solid surface (e.g., a microtiter plate), while the non-anchored species is labeled, either directly or indirectly. The anchored molecule can be immobilized by non-covalent or covalent attachments. Alternatively, an immobilized antibody specific for the molecule to be anchored can be used to anchor the molecule to the solid surface. The partner of the immobilized species is exposed to the coated surface with or without the test molecule. After the reaction is complete, unreacted components are removed

(e.g., by washing) such that a significant portion of any complexes formed will remain immobilized on the solid surface. Where the non-immobilized species is pre-labeled, the detection of label immobilized on the surface is indicative of complex. Where the non-immobilized species is not pre-labeled, an indirect label can be used to detect complexes anchored to the surface; e.g., by using a labeled antibody specific for the initially non-immobilized species. Depending upon the order of addition of reaction components, test compounds that inhibit complex formation or that disrupt preformed complexes can be detected.

[0161] In another embodiment, the reaction can be conducted in a liquid phase in the presence or absence of test molecule, where the reaction products are separated from unreacted components, and the complexes are detected (e.g., using an immobilized antibody specific for one of the binding components to anchor any complexes formed in solution, and a labeled antibody specific for the other partner to detect anchored complexes). Again, depending upon the order of addition of reactants to the liquid phase, test compounds that inhibit complex or that disrupt preformed complexes can be identified.

[0162] In an alternate embodiment, a homogeneous assay can be utilized. For example, a preformed complex of the target gene product and the interactive cellular or extracellular binding partner product is prepared. One or both of the target molecule or binding partner is labeled, and the signal generated by the label(s) is quenched upon complex formation (e.g., U.S. Patent No. 4,109,496 that utilizes this approach for immunoassays). Addition of a test molecule that competes with and displaces one of the species from the preformed complex will result in the generation of a signal above background. In this way, test substances that disrupt target molecule/binding partner complexes can be identified.

[0163] Candidate therapeutics for treating osteoarthritis are identified from a group of test molecules that interact with a target molecule. Test molecules are normally ranked according to the degree with which they modulate (e.g., agonize or antagonize) a function associated with the target molecule (e.g., DNA replication and/or processing, RNA transcription and/or processing, polypeptide production and/or processing, and/or biological function/activity), and then top ranking modulators are selected. Also, pharmacogenomic information described herein can determine the rank of a modulator. The top 10% of ranked test molecules often are selected for further testing as candidate therapeutics, and sometimes the top 15%, 20%, or 25% of ranked test molecules are selected for further testing as candidate therapeutics. Candidate therapeutics typically are formulated for administration to a subject.

Therapeutic Formulations

[0164] Formulations and pharmaceutical compositions typically include in combination with a pharmaceutically acceptable carrier one or more target molecule modulators. The modulator often is a test molecule identified as having an interaction with a target molecule by a screening method described above. The modulator may be a compound, an antisense nucleic acid, a ribozyme, an antibody, or a

binding partner. Also, formulations may comprise a target polypeptide or fragment thereof in combination with a pharmaceutically acceptable carrier.

[0165] As used herein, the term "pharmaceutically acceptable carrier" includes solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Supplementary active compounds can also be incorporated into the compositions. Pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.

[0166] A pharmaceutical composition typically is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerin, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

[0167] Oral compositions generally include an inert diluent or an edible carrier. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules, e.g., gelatin capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

[0168] Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, NJ) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can

be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

[0169] Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

[0170] For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.

[0171] Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art. Molecules can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

[0172] In one embodiment, active molecules are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. Materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to

viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.

[0173] It is advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.

[0174] Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD₅₀/ED₅₀. Molecules which exhibit high therapeutic indices are preferred. While molecules that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

[0175] The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such molecules lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any molecules used in the methods described herein, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC₅₀ (*i.e.*, the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.

[0176] As defined herein, a therapeutically effective amount of protein or polypeptide (i.e., an effective dosage) ranges from about 0.001 to 30 mg/kg body weight, sometimes about 0.01 to 25 mg/kg body weight, often about 0.1 to 20 mg/kg body weight, and more often about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight. The protein or polypeptide can be administered one time per week for between about 1 to 10 weeks, sometimes between 2 to 8 weeks, often between about 3 to 7 weeks, and more often for about 4, 5, or 6 weeks. The skilled artisan will appreciate that certain factors may influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a

therapeutically effective amount of a protein, polypeptide, or antibody can include a single treatment or, preferably, can include a series of treatments.

[0177] With regard to polypeptide formulations, featured herein is a method for treating osteoarthritis in a subject, which comprises contacting one or more cells in the subject with a first polypeptide, where the subject comprises a second polypeptide having one or more polymorphic variations associated with cancer, and where the first polypeptide comprises fewer polymorphic variations associated with cancer than the second polypeptide. The first and second polypeptides are encoded by a nucleic acid which comprises a nucleotide sequence in SEQ ID NO: 1-12; a nucleotide sequence which encodes a polypeptide consisting of an amino acid sequence encoded by a nucleotide sequence referenced in SEQ ID NO: 1-12; a nucleotide sequence which encodes a polypeptide that is 90% or more identical to an amino acid sequence encoded by a nucleotide sequence of SEQ ID NO: 1-12 and a nucleotide sequence 90% or more identical to a nucleotide sequence in SEQ ID NO: 1-12. The subject often is a human.

[0178] For antibodies, a dosage of 0.1 mg/kg of body weight (generally 10 mg/kg to 20 mg/kg) is often utilized. If the antibody is to act in the brain, a dosage of 50 mg/kg to 100 mg/kg is often appropriate. Generally, partially human antibodies and fully human antibodies have a longer half-life within the human body than other antibodies. Accordingly, lower dosages and less frequent administration is often possible. Modifications such as lipidation can be used to stabilize antibodies and to enhance uptake and tissue penetration (e.g., into the brain). A method for lipidation of antibodies is described by Cruikshank et al., J. Acquired Immune Deficiency Syndromes and Human Retrovirology 14:193 (1997).

[0179] Antibody conjugates can be used for modifying a given biological response, the drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a polypeptide such as tumor necrosis factor, alpha-interferon, beta-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophage colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G-CSF"), or other growth factors. Alternatively, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Patent No. 4,676,980.

[0180] For compounds, exemplary doses include milligram or microgram amounts of the compound per kilogram of subject or sample weight, for example, about 1 microgram per kilogram to about 500 milligrams per kilogram, about 100 micrograms per kilogram to about 5 milligrams per kilogram, or about 1 microgram per kilogram to about 50 micrograms per kilogram. It is understood that appropriate

doses of a small molecule depend upon the potency of the small molecule with respect to the expression or activity to be modulated. When one or more of these small molecules is to be administered to an animal (e.g., a human) in order to modulate expression or activity of a polypeptide or nucleic acid described herein, a physician, veterinarian, or researcher may, for example, prescribe a relatively low dose at first, subsequently increasing the dose until an appropriate response is obtained. In addition, it is understood that the specific dose level for any particular animal subject will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate of excretion, any drug combination, and the degree of expression or activity to be modulated.

[0181] With regard to nucleic acid formulations, gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see, e.g., U.S. Patent 5,328,470) or by stereotactic injection (see e.g., Chen et al., (1994) Proc. Natl. Acad. Sci. USA 91:3054-3057). Pharmaceutical preparations of gene therapy vectors can include a gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells (e.g., retroviral vectors) the pharmaceutical preparation can include one or more cells which produce the gene delivery system. Examples of gene delivery vectors are described herein.

Therapeutic Methods

[0182] A therapeutic formulation described above can be administered to a subject in need of a therapeutic for inducing a desired biological response. Therapeutic formulations can be administered by any of the paths described herein. With regard to both prophylactic and therapeutic methods of treatment, such treatments may be specifically tailored or modified, based on knowledge obtained from pharmacogenomic analyses described herein.

[0183] As used herein, the term "treatment" is defined as the application or administration of a therapeutic formulation to a subject, or application or administration of a therapeutic agent to an isolated tissue or cell line from a subject with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect osteoarthritis, symptoms of osteoarthritis or a predisposition towards osteoarthritis. A therapeutic formulation includes, but is not limited to, small molecules, peptides, antibodies, ribozymes and antisense oligonucleotides. Administration of a therapeutic formulation can occur prior to the manifestation of symptoms characteristic of osteoarthritis, such that osteoarthritis is prevented or delayed in its progression. The appropriate therapeutic composition can be determined based on screening assays described herein.

[0184] As discussed, successful treatment of osteoarthritis can be brought about by techniques that serve to agonize target molecule expression or function, or alternatively, antagonize target molecule

expression or function. These techniques include administration of modulators that include, but are not limited to, small organic or inorganic molecules; antibodies (including, for example, polyclonal, monoclonal, humanized, anti-idiotypic, chimeric or single chain antibodies, and Fab, F(ab')₂ and Fab expression library fragments, scFV molecules, and epitope-binding fragments thereof); and peptides, phosphopeptides, or polypeptides.

[0185] Further, antisense and ribozyme molecules that inhibit expression of the target gene can also be used to reduce the level of target gene expression, thus effectively reducing the level of target gene activity. Still further, triple helix molecules can be utilized in reducing the level of target gene activity. Antisense, ribozyme and triple helix molecules are discussed above. It is possible that the use of antisense, ribozyme, and/or triple helix molecules to reduce or inhibit mutant gene expression can also reduce or inhibit the transcription (triple helix) and/or translation (antisense, ribozyme) of mRNA produced by normal target gene alleles, such that the concentration of normal target gene product present can be lower than is necessary for a normal phenotype. In such cases, nucleic acid molecules that encode and express target gene polypeptides exhibiting normal target gene activity can be introduced into cells via gene therapy method. Alternatively, in instances in that the target gene encodes an extracellular polypeptide, it can be preferable to co-administer normal target gene polypeptide into the cell or tissue in order to maintain the requisite level of cellular or tissue target gene activity.

[0186] Another method by which nucleic acid molecules may be utilized in treating or preventing osteoarthritis is use of aptamer molecules specific for target molecules. Aptamers are nucleic acid molecules having a tertiary structure which permits them to specifically bind to ligands (see, e.g., Osborne, et al., Curr. Opin. Chem. Biol. 1(1): 5-9 (1997); and Patel, D. J., Curr. Opin. Chem. Biol. Jun; 1(1): 32-46 (1997)).

[0187] Yet another method of utilizing nucleic acid molecules for osteoarthritis treatment is gene therapy, which can also be referred to as allele therapy. Provided herein is a gene therapy method for treating osteoarthritis in a subject, which comprises contacting one or more cells in the subject or from the subject with a nucleic acid having a first nucleotide sequence (e.g., the first nucleotide sequence is identical to or substantially identical to a nucleotide sequence of SEQ ID NO: 1-12). Genomic DNA in the subject comprises a second nucleotide sequence having one or more polymorphic variations associated with osteoarthritis (e.g., the second nucleotide sequence is identical to or substantially identical to a nucleotide sequence of SEQ ID NO: 1-4). The first and second nucleotide sequences typically are substantially identical to one another, and the first nucleotide sequence comprises fewer polymorphic variations associated with osteoarthritis than the second nucleotide sequence. The first nucleotide sequence may comprise a gene sequence that encodes a full-length polypeptide or a fragment thereof. The subject is often a human. Allele therapy methods often are utilized in conjunction with a

method of first determining whether a subject has genomic DNA that includes polymorphic variants associated with osteoarthritis.

[0188] In another allele therapy embodiment, provided herein is a method which comprises contacting one or more cells in the subject or from the subject with a polypeptide encoded by a nucleic acid having a first nucleotide sequence (e.g., the first nucleotide sequence is identical to or substantially identical to the nucleotide sequence of SEQ ID NO: 1-12). Genomic DNA in the subject comprises a second nucleotide sequence having one or more polymorphic variations associated with osteoarthritis (e.g., the second nucleotide sequence is identical to or substantially identical to a nucleotide sequence of SEQ ID NO: 1-4). The first and second nucleotide sequences typically are substantially identical to one another, and the first nucleotide sequence comprises fewer polymorphic variations associated with osteoarthritis than the second nucleotide sequence. The first nucleotide sequence may comprise a gene sequence that encodes a full-length polypeptide or a fragment thereof. The subject is often a human.

[0189] For antibody-based therapies, antibodies can be generated that are both specific for target molecules and that reduce target molecule activity. Such antibodies may be administered in instances where antagonizing a target molecule function is appropriate for the treatment of osteoarthritis.

[0190] In circumstances where stimulating antibody production in an animal or a human subject by injection with a target molecule is harmful to the subject, it is possible to generate an immune response against the target molecule by use of anti-idiotypic antibodies (see, e.g., Herlyn, Ann. Med.;31(1): 66-78 (1999); and Bhattacharya-Chatterjee & Foon, Cancer Treat. Res.; 94: 51-68 (1998)). Introducing an anti-idiotypic antibody to a mammal or human subject often stimulates production of anti-anti-idiotypic antibodies, which typically are specific to the target molecule. Vaccines directed to osteoarthritis also may be generated in this fashion.

[0191] In instances where the target molecule is intracellular and whole antibodies are used, internalizing antibodies may be preferred. Lipofectin or liposomes can be used to deliver the antibody or a fragment of the Fab region that binds to the target antigen into cells. Where fragments of the antibody are used, the smallest inhibitory fragment that binds to the target antigen is preferred. For example, peptides having an amino acid sequence corresponding to the Fv region of the antibody can be used. Alternatively, single chain neutralizing antibodies that bind to intracellular target antigens can also be administered. Such single chain antibodies can be administered, for example, by expressing nucleotide sequences encoding single-chain antibodies within the target cell population (see, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA 90: 7889-7893 (1993)).

[0192] Modulators can be administered to a patient at therapeutically effective doses to treat osteoarthritis. A therapeutically effective dose refers to an amount of the modulator sufficient to result in amelioration of symptoms of osteoarthritis. Toxicity and therapeutic efficacy of modulators can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for

determining the LD_{50} (the dose lethal to 50% of the population) and the ED_{50} (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD_{50}/ED_{50} . Modulators that exhibit large therapeutic indices are preferred. While modulators that exhibit toxic side effects can be used, care should be taken to design a delivery system that targets such molecules to the site of affected tissue in order to minimize potential damage to uninfected cells, thereby reducing side effects.

[0193] Data obtained from cell culture assays and animal studies can be used in formulating a range of dosages for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the methods described herein, the therapeutically effective dose can be estimated initially from cell culture assays. A dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC₅₀ (*i.e.*, the concentration of the test compound that achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma can be measured, for example, by high performance liquid chromatography.

[0194] Another example of effective dose determination for an individual is the ability to directly assay levels of "free" and "bound" compound in the serum of the test subject. Such assays may utilize antibody mimics and/or "biosensors" that have been created through molecular imprinting techniques. Molecules that modulate target molecule activity are used as a template, or "imprinting molecule", to spatially organize polymerizable monomers prior to their polymerization with catalytic reagents. The subsequent removal of the imprinted molecule leaves a polymer matrix which contains a repeated "negative image" of the compound and is able to selectively rebind the molecule under biological assay conditions. A detailed review of this technique can be seen in Ansell et al., Current Opinion in Biotechnology 7: 89-94 (1996) and in Shea, Trends in Polymer Science 2: 166-173 (1994). Such "imprinted" affinity matrixes are amenable to ligand-binding assays, whereby the immobilized monoclonal antibody component is replaced by an appropriately imprinted matrix. An example of the use of such matrixes in this way can be seen in Vlatakis, et al., Nature 361: 645-647 (1993). Through the use of isotope-labeling, the "free" concentration of compound which modulates target molecule expression or activity readily can be monitored and used in calculations of IC₅₀. Such "imprinted" affinity matrixes can also be designed to include fluorescent groups whose photon-emitting properties measurably change upon local and selective binding of target compound. These changes readily can be assayed in real time using appropriate fiberoptic devices, in turn allowing the dose in a test subject to be quickly optimized based on its individual IC₅₀. An example of such a "biosensor" is discussed in Kriz et al., Analytical Chemistry 67: 2142-2144 (1995).

[0195] The examples set forth below are intended to illustrate but not limit the invention.

Examples

[0196] In the following studies a group of subjects was selected according to specific parameters relating to osteoarthritis. Nucleic acid samples obtained from individuals in the study group were subjected to genetic analysis, which identified associations between osteoarthritis and polymorphisms in the following genes or regions: *chromosome* 6 (6q27), ELP3, CHDC1, and ERG (herein referred to as "targets"). The polymorphisms were genotyped again in two replication cohorts consisting of individuals selected for OA. In addition, SNPs proximal to the incident polymorphisms were identified and allelotyped in OA case and control pools. Methods are described for producing PSMB1, TBP, PDCD2, ELP3, CHDC1, and ERG polypeptide and polypeptide variants thereof *in vitro* or *in vivo*; PSMB1, TBP, PDCD2, ELP3, CHDC1, and ERG nucleic acids or polypeptides and variants thereof are utilized for screening test molecules for those that interact with PSMB1, TBP, PDCD2, ELP3, CHDC1, and ERG molecules. Test molecules identified as interactors with PSMB1, TBP, PDCD2, ELP3, CHDC1, and ERG molecules and variants thereof are further screened *in vivo* to determine whether they treat osteoarthritis.

Example 1 Samples and Pooling Strategies

Sample Selection

[0197] Blood samples were collected from individuals diagnosed with knee osteoarthritis, which were referred to as case samples. Also, blood samples were collected from individuals not diagnosed with knee osteoarthritis as gender and age-matched controls. A database was created that listed all phenotypic trait information gathered from individuals for each case and control sample. Genomic DNA was extracted from each of the blood samples for genetic analyses.

DNA Extraction from Blood Samples

[0198] Six to ten milliliters of whole blood was transferred to a 50 ml tube containing 27 ml of red cell lysis solution (RCL). The tube was inverted until the contents were mixed. Each tube was incubated for 10 minutes at room temperature and inverted once during the incubation. The tubes were then centrifuged for 20 minutes at 3000 x g and the supernatant was carefully poured off. 100-200 µl of residual liquid was left in the tube and was pipetted repeatedly to resuspend the pellet in the residual supernatant. White cell lysis solution (WCL) was added to the tube and pipetted repeatedly until completely mixed. While no incubation was normally required, the solution was incubated at 37°C or

room temperature if cell clumps were visible after mixing until the solution was homogeneous. 2 ml of protein precipitation was added to the cell lysate. The mixtures were vortexed vigorously at high speed for 20 sec to mix the protein precipitation solution uniformly with the cell lysate, and then centrifuged for 10 minutes at 3000 x g. The supernatant containing the DNA was then poured into a clean 15 ml tube, which contained 7 ml of 100% isopropanol. The samples were mixed by inverting the tubes gently until white threads of DNA were visible. Samples were centrifuged for 3 minutes at 2000 x g and the DNA was visible as a small white pellet. The supernatant was decanted and 5 ml of 70% ethanol was added to each tube. Each tube was inverted several times to wash the DNA pellet, and then centrifuged for 1 minute at 2000 x g. The ethanol was decanted and each tube was drained on clean absorbent paper. The DNA was dried in the tube by inversion for 10 minutes, and then 1000 µl of 1X TE was added. The size of each sample was estimated, and less TE buffer was added during the following DNA hydration step if the sample was smaller. The DNA was allowed to rehydrate overnight at room temperature, and DNA samples were stored at 2-8°C.

[0199] DNA was quantified by placing samples on a hematology mixer for at least 1 hour. DNA was serially diluted (typically 1:80, 1:160, 1:320, and 1:640 dilutions) so that it would be within the measurable range of standards. 125 µl of diluted DNA was transferred to a clear U-bottom microtitre plate, and 125 µl of 1X TE buffer was transferred into each well using a multichannel pipette. The DNA and 1X TE were mixed by repeated pipetting at least 15 times, and then the plates were sealed. 50 µl of diluted DNA was added to wells A5-H12 of a black flat bottom microtitre plate. Standards were inverted six times to mix them, and then 50 µl of 1X TE buffer was pipetted into well A1, 1000 ng/ml of standard was pipetted into well A2, 500 ng/ml of standard was pipetted into well A3, and 250 ng/ml of standard was pipetted into well A4. PicoGreen (Molecular Probes, Eugene, Oregon) was thawed and freshly diluted 1:200 according to the number of plates that were being measured. PicoGreen was vortexed and then 50µl was pipetted into all wells of the black plate with the diluted DNA. DNA and PicoGreen were mixed by pipetting repeatedly at least 10 times with the multichannel pipette. The plate was placed into a Fluoroskan Ascent Machine (microplate fluorometer produced by Labsystems) and the samples were allowed to incubate for 3 minutes before the machine was run using filter pairs 485 nm excitation and 538 nm emission wavelengths. Samples having measured DNA concentrations of greater than 450 ng/μl were re-measured for conformation. Samples having measured DNA concentrations of 20 ng/ul or less were re-measured for confirmation.

Pooling Strategies - Discovery Cohort

[0200] Samples were derived from the Nottingham knee OA family study (UK) where index cases were identified through a knee replacement registry. Siblings were approached and assessed with knee x-

rays and assigned status as affected or unaffected. In all 1,157 individuals were available. In order to create same-sex pools of appropriate sizes, 335 unrelated female individuals with OA from the Nottingham OA sample were selected for the case pool. The control pool was made up of unrelated female individuals from the St. Thomas twin study (England) with normal knee x-rays and without other indications of OA, regardless of anatomical location, as well as lacking family history of OA. The St. Thomas twin study consists of Caucasian, female participants from the St. Thomas' Hospital, London, adult-twin registry, which is a voluntary registry of >4,000 twin pairs ranging from 18 to 76 years of age. The female case samples and female control samples are described further in Table 1 below.

[0201] A select set of samples from each group were utilized to generate pools, and one pool was created for each group. Each individual sample in a pool was represented by an equal amount of genomic DNA. For example, where 25 ng of genomic DNA was utilized in each PCR reaction and there were 200 individuals in each pool, each individual would provide 125 pg of genomic DNA. Inclusion or exclusion of samples for a pool was based upon the following criteria: the sample was derived from an individual characterized as Caucasian; the sample was derived from an individual of British paternal and maternal descent; case samples were derived from individuals diagnosed with specific knee osteoarthritis (OA) and were recruited from an OA knee replacement clinic. Control samples were derived from individuals free of OA, family history of OA, and rheumatoid arthritis. Also, sufficient genomic DNA was extracted from each blood sample for all allelotyping and genotyping reactions performed during the study. Phenotype information from each individual was collected and included age of the individual, gender, family history of OA, general medical information (e.g., height, weight, thyroid disease, diabetes, psoriasis, hysterectomy), joint history (previous and current symptoms, joint-related operations, age at onset of symptoms, date of primary diagnosis, age of individual as of primary diagnosis and order of involvement), and knee-related findings (crepitus, restricted passive movement, bony swelling/deformity). Additional knee information included knee history, current symptoms, any major knee injury, menisectomy, knee replacement surgery, age of surgery, and treatment history (including hormone replace therapy (HRT)). Samples that met these criteria were added to appropriate pools based on disease status.

[0202] The selection process yielded the pools set forth in Table 1, which were used in the studies that follow:

TABLE 1

	Female case	Female control
Pool size (Number)	335	335
Pool Criteria (ex: case/control)	control	case

Mean Age	57.21	69.95
(ex: years)	37.21	07.75

Example 2 Association of Polymorphic Variants with Osteoarthritis

[0203] A whole-genome screen was performed to identify particular SNPs associated with occurrence of osteoarthritis. As described in Example 1, two sets of samples were utilized, which included samples from female individuals having knee osteoarthritis (osteoarthritis cases), and samples from female individuals not having knee osteoarthritis (female controls). The initial screen of each pool was performed in an allelotyping study, in which certain samples in each group were pooled. By pooling DNA from each group, an allele frequency for each SNP in each group was calculated. These allele frequencies were then compared to one another. Particular SNPs were considered as being associated with osteoarthritis when allele frequency differences calculated between case and control pools were statistically significant. SNP disease association results obtained from the allelotyping study were then validated by genotyping each associated SNP across all samples from each pool. The results of the genotyping then were analyzed, allele frequencies for each group were calculated from the individual genotyping results, and a p-value was calculated to determine whether the case and control groups had statistically significant differences in allele frequencies for a particular SNP. When the genotyping results agreed with the original allelotyping results, the SNP disease association was considered validated at the genetic level.

SNP Panel Used for Genetic Analyses

[0204] A whole-genome SNP screen began with an initial screen of approximately 25,000 SNPs over each set of disease and control samples using a pooling approach. The pools studied in the screen are described in Example 1. The SNPs analyzed in this study were part of a set of 25,488 SNPs confirmed as being statistically polymorphic as each is characterized as having a minor allele frequency of greater than 10%. The SNPs in the set reside in genes or in close proximity to genes, and many reside in gene exons. Specifically, SNPs in the set are located in exons, introns, and within 5,000 base-pairs upstream of a transcription start site of a gene. In addition, SNPs were selected according to the following criteria: they are located in ESTs; they are located in Locuslink or Ensembl genes; and they are located in Genomatix promoter predictions. SNPs in the set were also selected on the basis of even spacing across the genome, as depicted in Table 2.

[0205] A case-control study design using a whole genome association strategy involving approximately 28,000 single nucleotide polymorphisms (SNPs) was employed. Approximately 25,000

SNPs were evenly spaced in gene-based regions of the human genome with a median inter-marker distance of about 40,000 base pairs. Additionally, approximately 3,000 SNPs causing amino acid substitutions in genes described in the literature as candidates for various diseases were used. The case-control study samples were of female Caucasian origin (British paternal and maternal descent) 670 individuals were equally distributed in two groups: female controls and female cases. The whole genome association approach was first conducted on 2 DNA pools representing the 2 groups. Significant markers were confirmed by individual genotyping.

TABLE 2

General Statistics		Spacing Statistics		
Total # of SNPs	25,488	Median	37,058 bp	
# of Exonic SNPs	>4,335 (17%)	Minimum*	1,000 bp	
# SNPs with refSNP ID	20,776 (81%)	Maximum*	3,000,000 bp	
Gene Coverage	>10,000	Mean	122,412 bp	
Chromosome Coverage	All	Std Deviation *Excludes outliers	373,325 bp	

Allelotyping and Genotyping Results

[0206] The genetic studies summarized above and described in more detail below identified allelic variants in the target genes that are associated with osteoarthritis.

Assay for Verifying, Allelotyping, and Genotyping SNPs

[0207] A MassARRAYTM system (Sequenom, Inc.) was utilized to perform SNP genotyping in a high-throughput fashion. This genotyping platform was complemented by a homogeneous, single-tube assay method (hMETM or homogeneous MassEXTENDTM (Sequenom, Inc.)) in which two genotyping primers anneal to and amplify a genomic target surrounding a polymorphic site of interest. A third primer (the MassEXTENDTM primer), which is complementary to the amplified target up to but not including the polymorphism, was then enzymatically extended one or a few bases through the polymorphic site and then terminated.

[0208] For each polymorphism, SpectroDESIGNERTM software (Sequenom, Inc.) was used to generate a set of PCR primers and a MassEXTENDTM primer which where used to genotype the polymorphism. Other primer design software could be used or one of ordinary skill in the art could manually design primers based on his or her knowledge of the relevant factors and considerations in designing such primers. Table 3 shows PCR primers and Table 4 shows extension primers used for analyzing polymorphisms. The initial PCR amplification reaction was performed in a 5 μl total volume containing 1X PCR buffer with 1.5 mM MgCl₂ (Qiagen), 200 μM each of dATP, dGTP, dCTP, dTTP

ACGTTGGATGTCAGATCAGAGTGAGTTTAG

(Gibco-BRL), 2.5 ng of genomic DNA, 0.1 units of HotStar DNA polymerase (Qiagen), and 200 nM each of forward and reverse PCR primers specific for the polymorphic region of interest.

SNP Reference Forward PCR primer Reverse PCR primer
rs756519 ACGTTGGATGTCTAGAGACACCTGAGGTTG ACGTTGGATGTTTCACTTCAGAGCCCTG
rs1042327 ACGTTGGATGAACTTCACATCACAGCTCCC ACGTTGGATGCAGAAGTTGGGTTTTCCAGC
rs8770 ACGTTGGATGCTGTCACTGGACACTTTTG ACGTTGGATGAAAATAGAGGTGCAGAGATG
rs1563055 ACGTTGGATGAGTTCTTTCTCCTCACATTG ACGTTGGATGCCCTTTAGAAGCACATACTC

rs1888475 ACGTTGGATGACCCCTGGCAAGTGAATTAC ACGTTGGATGGGGAGGTGGATGTTCTTATC

rs912428 ACGTTGGATGACTACATCCATTCCAGGGAG

TABLE 3: PCR Primers

[0209] Samples were incubated at 95°C for 15 minutes, followed by 45 cycles of 95°C for 20 seconds, 56°C for 30 seconds, and 72°C for 1 minute, finishing with a 3 minute final extension at 72°C. Following amplification, shrimp alkaline phosphatase (SAP) (0.3 units in a 2 µl volume) (Amersham Pharmacia) was added to each reaction (total reaction volume was 7 µl) to remove any residual dNTPs that were not consumed in the PCR step. Samples were incubated for 20 minutes at 37°C, followed by 5 minutes at 85°C to denature the SAP.

[0210] Once the SAP reaction was complete, a primer extension reaction was initiated by adding a polymorphism-specific MassEXTEND™ primer cocktail to each sample. Each MassEXTEND™ cocktail included a specific combination of dideoxynucleotides (ddNTPs) and deoxynucleotides (dNTPs) used to distinguish polymorphic alleles from one another. Methods for verifying, allelotyping and genotyping SNPs are disclosed, for example, in U.S. Pat. No. 6,258,538, the content of which is hereby incorporated by reference. In Table 4, ddNTPs are shown and the fourth nucleotide not shown is the dNTP.

TABLE 4: Extension Primers

SNP Reference	Extend Probe	Termination Mix
rs756519	CAGAGCCCTGTTCTTTGATTT	ACG
rs1042327	CATCACAGCTCCCCACCAT	ACT
rs8770	TAGACACTGTGTAAGCAATC	ACG
rs1563055	TTCTCCTCACATTGTTTCTACT	ACG
rs912428	CCATTCCAGGGAGACTCCCA	ACT
rs1888475	GACATCAAATGATTCCCCTGT	ACT

[0211] The MassEXTEND[™] reaction was performed in a total volume of 9 μl, with the addition of 1X ThermoSequenase buffer, 0.576 units of ThermoSequenase (Amersham Pharmacia), 600 nM MassEXTEND[™] primer, 2 mM of ddATP and/or ddCTP and/or ddGTP and/or ddTTP, and 2 mM of dATP or dCTP or dGTP or dTTP. The deoxy nucleotide (dNTP) used in the assay normally was

complementary to the nucleotide at the polymorphic site in the amplicon. Samples were incubated at 94°C for 2 minutes, followed by 55 cycles of 5 seconds at 94°C, 5 seconds at 52°C, and 5 seconds at 72°C.

[0212] Following incubation, samples were desalted by adding 16 μl of water (total reaction volume was 25 μl), 3 mg of SpectroCLEANTM sample cleaning beads (Sequenom, Inc.) and allowed to incubate for 3 minutes with rotation. Samples were then robotically dispensed using a piezoelectric dispensing device (SpectroJETTM (Sequenom, Inc.)) onto either 96-spot or 384-spot silicon chips containing a matrix that crystallized each sample (SpectroCHIPTM (Sequenom, Inc.)). Subsequently, MALDI-TOF mass spectrometry (Biflex and Autoflex MALDI-TOF mass spectrometers (Bruker Daltonics) can be used) and SpectroTYPER RTTM software (Sequenom, Inc.) were used to analyze and interpret the SNP genotype for each sample.

Genetic Analysis

[0213] Minor allelic frequencies for the polymorphisms set forth in Table A were verified as being 10% or greater using the extension assay described above in a group of samples isolated from 92 individuals originating from the state of Utah in the United States, Venezuela and France (Coriell cell repositories).

[0214] Genotyping results are shown for female pools in Table 5. In Table 5, "AF" refers to allelic frequency; and "F case" and "F control" refer to female case and female control groups, respectively.

AF AF SNP Reference p-value F case F control C = 0.581C = 0.656rs756519 0.0055 T = 0.419T = 0.344T = 0.472T = 0.563rs1042327 0.0012 C = 0.528C = 0.437C = 0.529C = 0.432rs8770 0.0001 T = 0.471T = 0.568C = 0.653C = 0.736rs1563055 0.0013 T = 0.264T = 0.347T = 0.228T = 0.170rs912428 0.0076 C = 0.772C = 0.830A = 0.188A = 0.135rs1888475 0.0087 G = 0.812G = 0.865

TABLE 5: Genotyping Results

[0215] All of the single marker alleles set forth in Table A were considered validated, since the genotyping data agreed with the allelotyping data and each SNP significantly associated with osteoarthritis. Particularly significant associations with osteoarthritis are indicated by a calculated p-value of less than 0.05 for genotype results.

Example 3

Association of Polymorphic Variants with Osteoarthritis in Replication Cohorts

[0216] The single marker polymorphisms set forth in Table A were genotyped again in two replication cohorts consisting of individuals selected for OA.

<u>Sample Selection and Pooling Strategies – Replication Sample 1</u>

[0217] A second case control sample (replication sample #1) was created by using 100 Caucasian female cases from Chingford, UK, and 148 unrelated female cases from the St. Thomas twin study. Cases were defined as having Kellgren-Lawrence (KL) scores of at least 2 in at least one knee x-ray. In addition, 199 male knee replacement cases from Nottingham were included. (For a cohort description, see the Nottingham description provided in Example 1). The control pool was made up of unrelated female individuals from the St. Thomas twin study (England) with normal knee x-rays and without other indications of OA, regardless of anatomical location, as well as lacking family history of OA. The St. Thomas twin study consists of Caucasian, female participants from the St. Thomas' Hospital, London, adult-twin registry, which is a voluntary registry of >4,000 twin pairs ranging from 18 to 76 years of age. The replication sample 1 cohort was used to replicate the initial results. Table 6 below summarizes the selected phenotype data collected from the case and control individuals.

TABLE 6

Phenotype	Female cases (n=248): median (range)/ (n,%)	Male cases (n=199): median (range)/ (n,%)	Female controls (n=313): mean (range)/ (n,%)
Age	59 (39- 73)	66 (45- 73)	55 (50- 72)
Height (cm)	162 (141- 178)	175 (152- 198)	162 (141- 176)
Weight (kg)	68 (51- 123)	86 (62- 127)	64 (40- 111)
Body mass index (kg/m²)	26 (18- 44)	29 (21- 41)	24 (18- 46)
Kellgren- Lawrence* left knee	0 (63, 26%), 1 (20, 8%), 2 (105, 43%), 3 (58, 23%), 4 (1, 0%)	NA	NA
Kellgren- Lawrence* right knee	0 (43, 7%), 1 (18, 7%), 2 (127, 52%), 3 (57, 23%), 4 (1, 0%)	NA	NA
KL* >2 both knees	No (145, 59%), Yes (101, 41%)	NA	NA
KL* >2 either knee	No (0, 0%), Yes (248, 100%)	NA	NA

^{* 0:} normal, 1: doubtful, 2: definite osteophyte (bony protuberance), 3: joint space narrowing (with or without osteophyte), 4: joint deformity

Sample Selection and Pooling Strategies - Replication Sample 2

[0218] A third case control sample (replication sample #2) was created by using individuals with symptoms of OA from Newfoundland, Canada. These individuals were recruited and examined by rheumatologists. Affected joints were x-rayed and a final diagnosis of definite or probable OA was made according to American College of Rheumatology criteria by a single rheumatologist to avoid any interexaminer diagnosis variability. Controls were recruited from volunteers without any symptoms from the musculoskeletal system based on a normal joint exam performed by a rheumatologist. Only cases with a diagnosis of definite OA were included in the study. Only individuals of Caucasian origin were included. The cases consisted of 228 individuals with definite knee OA, 106 individuals with definite hip OA, and 74 individuals with hip OA.

Phenotype Case **Control** Age at Visit 62.7 52.5 Sex (Female/Male) 227/119 174/101 Knee OA Xray: No 35% (120) 80% (16) Unknown 0% (0) 1% (4) Yes 20% (4) 64% (221) Hip OA Xray: No 80% (16) 63% (215) Unknown 0%(0)2% (7) Yes 20% (4) 35% (121)

TABLE 7

Assay for Verifying, Allelotyping, and Genotyping SNPs

[0219] Genotyping of the replication cohorts described in Tables 6 and 7 was performed using the same methods used for the original genotyping, as described herein. A MassARRAYTM system (Sequenom, Inc.) was utilized to perform SNP genotyping in a high-throughput fashion. This genotyping platform was complemented by a homogeneous, single-tube assay method (hMETM or homogeneous MassEXTENDTM (Sequenom, Inc.)) in which two genotyping primers anneal to and amplify a genomic target surrounding a polymorphic site of interest. A third primer (the MassEXTENDTM primer), which is complementary to the amplified target up to but not including the polymorphism, was then enzymatically extended one or a few bases through the polymorphic site and then terminated.

[0220] For each polymorphism, SpectroDESIGNER™ software (Sequenom, Inc.) was used to generate a set of PCR primers and a MassEXTEND™ primer which where used to genotype the polymorphism. Other primer design software could be used or one of ordinary skill in the art could manually design primers based on his or her knowledge of the relevant factors and considerations in

designing such primers. Table 3 shows PCR primers and Table 4 shows extension probes used for analyzing (e.g., genotyping) polymorphisms in the replication cohorts. The initial PCR amplification reaction was performed in a 5 μl total volume containing 1X PCR buffer with 1.5 mM MgCl₂ (Qiagen), 200 μM each of dATP, dGTP, dCTP, dTTP (Gibco-BRL), 2.5 ng of genomic DNA, 0.1 units of HotStar DNA polymerase (Qiagen), and 200 nM each of forward and reverse PCR primers specific for the polymorphic region of interest.

[0221] Samples were incubated at 95°C for 15 minutes, followed by 45 cycles of 95°C for 20 seconds, 56°C for 30 seconds, and 72°C for 1 minute, finishing with a 3 minute final extension at 72°C. Following amplification, shrimp alkaline phosphatase (SAP) (0.3 units in a 2 μl volume) (Amersham Pharmacia) was added to each reaction (total reaction volume was 7 μl) to remove any residual dNTPs that were not consumed in the PCR step. Samples were incubated for 20 minutes at 37°C, followed by 5 minutes at 85°C to denature the SAP.

[0222] Once the SAP reaction was complete, a primer extension reaction was initiated by adding a polymorphism-specific MassEXTEND™ primer cocktail to each sample. Each MassEXTEND™ cocktail included a specific combination of dideoxynucleotides (ddNTPs) and deoxynucleotides (dNTPs) used to distinguish polymorphic alleles from one another. Methods for verifying, allelotyping and genotyping SNPs are disclosed, for example, in U.S. Pat. No. 6,258,538, the content of which is hereby incorporated by reference. In Table 7, ddNTPs are shown and the fourth nucleotide not shown is the dNTP.

[0223] The MassEXTENDTM reaction was performed in a total volume of 9 μl, with the addition of 1X ThermoSequenase buffer, 0.576 units of ThermoSequenase (Amersham Pharmacia), 600 nM MassEXTENDTM primer, 2 mM of ddATP and/or ddCTP and/or ddGTP and/or ddTTP, and 2 mM of dATP or dCTP or dGTP or dTTP. The deoxy nucleotide (dNTP) used in the assay normally was complementary to the nucleotide at the polymorphic site in the amplicon. Samples were incubated at 94°C for 2 minutes, followed by 55 cycles of 5 seconds at 94°C, 5 seconds at 52°C, and 5 seconds at 72°C.

[0224] Following incubation, samples were desalted by adding 16 μl of water (total reaction volume was 25 μl), 3 mg of SpectroCLEANTM sample cleaning beads (Sequenom, Inc.) and allowed to incubate for 3 minutes with rotation. Samples were then robotically dispensed using a piezoelectric dispensing device (SpectroJETTM (Sequenom, Inc.)) onto either 96-spot or 384-spot silicon chips containing a matrix that crystallized each sample (SpectroCHIPTM (Sequenom, Inc.)). Subsequently, MALDI-TOF mass spectrometry (Biflex and Autoflex MALDI-TOF mass spectrometers (Bruker Daltonics) can be used) and

SpectroTYPER RTTM software (Sequenom, Inc.) were used to analyze and interpret the SNP genotype for each sample.

Genetic Analysis

[0225] Genotyping results for replication cohorts #1 and #2 are provided in Tables 8 and 9, respectively.

Replication #1 Meta-analysis rsID (Mixed Male/Female cases and Female controls) Disc. + Rep #1 AF OA Con AF OA Cas Delta P-value P-value -0.04 rs756519 0.4 0.43 0.140 0.0098 rs1042327 0.49 0.52 -0.03 0.234 0.0430 rs8770 0.51 0.48 0.03 0.303 0.0480 rs1563055 0.31 0.35 -0.04 0.083 0.0002 rs912428 0.86 8.0 0.06 0.004 ~0.00001 rs1888475 0.86 0.81 0.04 0.032 0.0002

TABLE 8

T 4	DI	100	Λ
IΑ	. KI	лΗ.	У

rsID	Replication #2 (Newfoundland) ID (Male/Female cases and controls)				Meta-analysis Disc. + Rep #2
	AF OA Con	AF OA Cas	Delta	P-value	Not Done
rs756519	0.39	0.40	-0.007	0.816	
rs1042327	0.49	0.51	-0.024	0.405	
rs8770	0.53	0.49	0.039	0.195	
rs1563055	0.34	0.34	-0.005	0.864	
rs912428	0.82	0.76	0.058	0.016	
rs1888475	0.80	0.82	-0.025	0.280	

[0226] To combine the evidence for association from multiple sample collections, a meta-analysis procedure was employed. The allele frequencies were compared between cases and controls within the discovery sample, as well as within the replication cohort #1 using the DerSimian-Laird approach (DerSimonian, R. and N. Laird. 1986. Meta-analysis in clinical trials. Control Clin Trials 7: 177-188.)

[0227] The absence of a statistically significant association in one or more of the replication cohorts should not be interpreted as minimizing the value of the original finding. There are many reasons why a biologically derived association identified in a sample from one population would not replicate in a sample from another population. The most important reason is differences in population history. Due to bottlenecks and founder effects, there may be common disease predisposing alleles present in one population that are relatively rare in another, leading to a lack of association in the candidate region. Also, because common diseases such as arthritis-related disorders are the result of susceptibilities in

many genes and many environmental risk factors, differences in population-specific genetic and environmental backgrounds could mask the effects of a biologically relevant allele. For these and other reasons, statistically strong results in the original, discovery sample that did not replicate in one or more of the replication samples may be further evaluated in additional replication cohorts and experimental systems.

Example 4 Chromosome 6 Region Proximal SNPs

[0228] It has been discovered that SNPs rs756519, rs1042327 and rs8770 on chromosome 6 (6q27) are associated with occurrence of osteoarthritis in subjects. This region contains genes that encode proteasome (prosome, macropain) subunit, beta type, 1 (*PSMB1*), TATA box binding protein (*TBP*), and programmed cell death 2 (*PDCD2*).

[0229] One hundred-nine additional allelic variants proximal to rs756519, rs1042327 and rs8770 were identified and subsequently allelot0yped in osteoarthritis case and control sample sets as described in Examples 1 and 2. The polymorphic variants are set forth in Table 10. The chromosome positions provided in column four of Table 10 are based on Genome "Build 34" of NCBI's GenBank.

TABLE 10

dbSNP rs#	Chromosome	Position in SEQ ID NO: 1	Chromosome Position	Allele Variants
rs1474555	6	229	170689279	c/t
rs1474554	6	6310	170695360	a/g
rs10334	6	11840	170700890	g/t
rs10541	6	11870	170700920	a/t
rs3823299	6	12064	170701114	a/g
Rs742348	66	13392	170702442	c/g
rs1474644	6	16354	170705404	a/g
rs1474643	6	16559	170705609	c/t
rs2056970	6	16935	170705985	a/g
rs2223474	6	17616	170706666	c/t
rs2206284	6	17737	170706787	c/t
Rs756519	6	18321	170707371	c/t
Rs756518	6	18453	170707503	a/g
Rs756517	6	18811	170707861	c/t
rs1474642	6	20020	170709070	c/t
rs2038093	6	21662	170710712	c/g
rs2038092	6	23197	170712247	c/g
rs2223473	6	23446	170712496	g/t
Rs760909	6	24339	170713389	g/t
rs2076319	6	25504	170714554	a/g
rs3778589	6	27174	170716224	a/g
rs3800236	6	28008	170717058	a/t

dbSNP rs#	Chromosome	Position in SEQ ID NO: 1	Chromosome Position	Allele Variants
rs2206286	6	29294	170718344	c/t
rs12717	6	29759	170718809	c/g
rs2179373	6	30832	170719882	a/g
rs3800235	6	44512	170733562	a/c
rs3823298	6	44850	170733900	c/g
rs2076318	6	45884	170734934	a/g
rs2235506	6	46345	170735395	c/t
rs2072916	6	48589	170737639	a/g
rs3734763	6	53371	170742421	a/g
rs3177571	6	53911	170742961	g/t
rs8770	6	53990	170743040	a/g
rs3173219	6	55152	170744202	c/g
Rs960744	6	55667	170744717	c/t
rs2066954	6	58952	170748002	a/c
rs2072917	6	59315	170748365	g/t
rs3173220	6	60029	170749079	a/g
Rs734249	6	61477	170750527	a/c
rs2092310	6	62988	170752038	c/t
rs2092309	6	63090	170752140	c/g
rs1016536	6	64021	170753071	a/c
rs2235506	6	65685	170754735	c/t
rs2076998	6	70220	170759270	a/g
rs2076997	6	70323	170759373	a/c
rs2345478	6	70959	170760009	a/c
rs2021899	6	73436	170762486	c/g
rs2021898	6	82945	170771995	a/g
rs2345682	6	82958	170772008	g/t
rs2345683	6	82961	170772011	c/g
rs2881195	6	82964	170772014	c/t
rs2345684	6	82965	170772015	g/t
rs3046261	6	83006	170772056	-/cttt
rs4083413	6	83025	170772075	c/t
rs4083412	6	83034	170772084	a/g
rs2345685	6	83074	170772124	g/t
rs2021897	6	83132	170772182	g/t
rs4036211	6	83155	170772205	_ c/t
rs4036212	6	83172	170772222	a/t
rs4036213	6	83174	170772224	g/t
rs2345686	6	83206	170772256	c/t
rs4036214	6	83216	170772266	g/t
rs4036215	6	83234	170772284	g/t
rs2345687	6	83252	170772302	a/g
rs2345688	6	83260	170772310	a/c
rs2881196	6	83263	170772313	a/c_
rs3046288	6	83296	170772346	/at
rs4036216	6	83319	170772369	a/g
rs4036205	6	83322	170772372	c/g

dbSNP rs#	Chromosome	Position in SEQ ID NO: 1	Chromosome Position	Allele Variants
rs2092307	6	83324	170772374	a/c
rs4036206	6	83357	170772407	c/g
rs2345689	6	83375	170772425	c/t
rs2345690	6	83381	170772431	c/t
rs2345691	6	83389	170772439	a/t
rs2345692	6	83443	170772493	a/g
rs3046306	6	83499	170772549	-/ggtg
rs4036207	6	83545	170772595	c/t
rs2345693	6	83566	170772616	c/t
rs2345694	6	83591	170772641	c/t
rs2345695	6	83619	170772669	g/t
rs2345696	6	83698	170772748	a/g
rs4036209	6	83780	170772830	g/t
rs2345697	6	83784	170772834	g/t
rs2881197	6	83826	170772876	g/t
rs2345698	6	83832	170772882	c/t
rs2345699	6	83852	170772902	c/t
rs2744640	6	86297	170775347	c/t
rs2744639	6	86315	170775365	g/t
rs2744638	6	86420	170775470	c/g
rs2744637	6	86460	170775510	c/g
rs2744636	6	86714	170775764	c/t
rs2744635	6	86718	170775768	c/t
rs2744634	6	86736	170775786	c/g
rs2744633	6	86753	170775803	c/t
rs2744632	6	86766	170775816	g/t
rs2744630	6	88162	170777212	c/g
rs2744629	6	88218	170777268	a/g
rs2744628	6	88246	170777296	a/g
rs2744627	6	88255	170777305	c/t
rs2977616	6	88309	170777359	g/t
rs2977617	6	88310	170777360	a/t
rs2744626	6	88471	170777521	a/g
rs2744625	6	88619	170777669	c/t
rs3115847	6	88904	170777954	c/t
rs2744623	6	89044	170778094	c/g
rs4036193	6	90531	170779581	-/aaaaa
rs4036194	6	90534	170779584	a/g
rs4036196	6	90613	170779663	c/g
Rs1042327	6	46252	170735302	c/t

[0230] The methods used to verify and allelotype the 109 proximal SNPs of Table 10 are the same methods described in Examples 1 and 2 herein. The primers and probes used in these assays are provided in Table 11 and Table 12, respectively.

TABLE 11

dbSNP rs#	Forward PCR primer	Reverse PCR primer
Rs1474555	ACGTTGGATGACATCAACTGAAGCCGACAG	ACGTTGGATGAATGGTGGAATGTGATGAGA
Rs1474554	ACGTTGGATGATACACCTAGGACACCTCCA	ACGTTGGATGCAGAAGGAGATAAACCCAGC
rs10334	ACGTTGGATGAACAGTTTCCTCCCTGATGC	ACGTTGGATGCGGCTGGTGAAAGATGTCTT
rs10541	ACGTTGGATGACTATGCAGATCCGGAGTGC	ACGTTGGATGGTCCTTGGACAGAGCCATG
Rs3823299	ACGTTGGATGCTCATGTGTACGAGGATTTG	ACGTTGGATGGTCTGGAAGGGTCTTTATTC
rs742348	ACGTTGGATGTGGATTTTCCAGTGCTCG	ACGTTGGATGCTGTACTTGAACTCCCAAGC
Rs1474644	ACGTTGGATGGCAAGACAAGCATAATTGGG	ACGTTGGATGTAAAGGGCATTTTGGCTTCC
Rs1474643	ACGTTGGATGTCTCCCAAATTAAAAGTGGC	ACGTTGGATGGATACCAAAGTCCTACTTAC
Rs2056970	ACGTTGGATGTGGGACTACAGGAAGAGAAG	ACGTTGGATGCAAAACACAGACCTTCAGCC
Rs2223474	ACGTTGGATGCCAGGGTAAAGAAAAGATCC	ACGTTGGATGAGAGGCTTACCTCCTAAAAG
Rs2206284	ACGTTGGATGTCACATACTAGGTGGATCCC	ACGTTGGATGAAAGAGGAGAACACAGGATG
rs756519	ACGTTGGATGTCTAGAGACACCTGAGGTTG	ACGTTGGATGTGTTTCACTTCAGAGCCCTG
rs756518	ACGTTGGATGCCCAGATTAGACTCTCTAAC	ACGTTGGATGAAATAGCTGAGCTGCCATTG
rs756517	ACGTTGGATGCTCGGTTGTTGACTCCTATC	ACGTTGGATGGCGGATGTTAAGAGTCAGAG
Rs1474642	ACGTTGGATGGGAGGTCATACATTAGCTTC	ACGTTGGATGTACCATCTGACACAATTCTC
Rs2038093	ACGTTGGATGGAGACAGAGTTTCACTCTTG	ACGTTGGATGTAATCACTTGAACCCAGGAG
Rs2038092	ACGTTGGATGTTACCTGAGGTCAGGAGTTT	ACGTTGGATGCCACACCCAGCTGATTTTTG
Rs2223473	ACGTTGGATGCCTTTATGTTATTGCTTTCC	ACGTTGGATGCAGGGAAATTTAAGAATAGC
rs760909	ACGTTGGATGGGAAGAGGCAAGCTTAGTTC	ACGTTGGATGGCAGCATTAACGAATGCCTG
Rs2076319	ACGTTGGATGGACATTTCACAATGCCTTTG	ACGTTGGATGCCAACAGCAACTTAAAAACTC
Rs3778589	ACGTTGGATGGCAAGAGAGAGAAAAGTTCC	ACGTTGGATGGTGTTTCTGTCCCATTTCAC
Rs3800236	ACGTTGGATGAGAGAATGAGGCCTCATTTT	ACGTTGGATGCTCAGTCATTGTTCTTTTC
Rs2206286	ACGTTGGATGTTCAGACGCTAACCCTCTAC	ACGTTGGATGAACATAGCCTCTGCTCTGTG
rs12717	ACGTTGGATGAAAATCGCAGCTGCAAAGGG	ACGTTGGATGAGACAGCAAGTGTCGGATCC
Rs2179373	ACGTTGGATGGAAGTGACCTATGCTCACAC	ACGTTGGATGAATGTCACTTCCGCCAGTTC
Rs3800235	ACGTTGGATGCTATGTGTTGATACCTCCAAG	ACGTTGGATGGCTTCATAAATGAACTGAAC
Rs3823298	ACGTTGGATGGGTGGTTTCTTGTCTTGATG	ACGTTGGATGTTTTTGTCCCAGAGCATCTG
Rs2076318	ACGTTGGATGTCCGCCAAATTATTGTAGCC	ACGTTGGATGCTCAGTAGAAATGCATGGGC
Rs2235506	ACGTTGGATGTAACCATGTCAACTGTTCTC	ACGTTGGATGCCCACCAACAATTTAGTAGG
Rs2072916	ACGTTGGATGACGCTGGAGTCACTAAGATG	ACGTTGGATGCAGATTAAGGCACAGGCATG
Rs3734763	ACGTTGGATGGCCTTTTGCCTTTCAGTGTC	ACGTTGGATGTAAAGAGGCTGGACCTTCAG
Rs3177571	ACGTTGGATGGTCTGTTGTCAATATAGGTG	ACGTTGGATGACAAAAGTGTCCAGTGACAG
rs8770	ACGTTGGATGAATTCCCTGTCACTGGACAC	ACGTTGGATGCCAAAAATAGAGGTGCAGAG
Rs3173219	ACGTTGGATGACATAACCACACTGGAGGTG	ACGTTGGATGCCTAGTTTTCAGACACGGTC
rs960744	ACGTTGGATGAAAGGCATGTCACAGTTCCC	ACGTTGGATGGCCCTCTGAGTCAGATAAAC
Rs2066954	ACGTTGGATGGAGGTTCTGGGTATAACTTTC	ACGTTGGATGCTACAAACCAGTAAGCTGATG
Rs2072917	ACGTTGGATGTGCTAGGCACTCACACTATC	ACGTTGGATGAGGCTTGGTAAGTTCCTCTG
Rs3173220	ACGTTGGATGTATCTGGGTTGACAAAGGCG	ACGTTGGATGACATAAGCAGGCTTGTGCAC
rs734249	ACGTTGGATGAGGTGGACACCAGCAGGGAA	ACGTTGGATGTCACCTCTGCACATGTCTTG

dbSNP rs#	Forward PCR primer	Reverse PCR primer
Rs2092310	ACGTTGGATGTTAGTCAGGTAAAGCGGGAC	ACGTTGGATGTCAGTGGAAGGCTGATCAAG
Rs2092309	ACGTTGGATGATCTAATTGCTTCCCCTCCC	ACGTTGGATGCAGCCTTCCACTGAATACAC
Rs1016536	ACGTTGGATGCCCCAAAAATTGGAGACAGG	ACGTTGGATGGGCTGTCATAATCGTGTGTC
Rs2235506	ACGTTGGATGAAGTGATTCTCCTGCCTCAG	ACGTTGGATGTGGTGAAACCCTGTCTCTAC
Rs2076998	ACGTTGGATGGCTCTGTGATTTCGATGATG	ACGTTGGATGAGCTACTTCTTGCAGGAGTC
Rs2076997	ACGTTGGATGCAGAGCTTCCAAGTGTTTTC	ACGTTGGATGAAAGGAGTGCTTAAAGGAGC
Rs2345478	ACGTTGGATGCCTTCAACAAGTGCTGACAC	ACGTTGGATGATCCAGGCATTATTGCCAGC
Rs2021899	ACGTTGGATGGTTTTGTGGTGGATGATGGG	ACGTTGGATGAGAGTGCCCATAATGGACAG
Rs2021898	ACGTTGGATGCGCAAGAAACTCCTTGGATG	ACGTTGGATGCCAATTAAAGCCAAGGTCAC
Rs2345682	ACGTTGGATGATTCGCAAGAAACTCCTTGG	ACGTTGGATGGGAAGAAATCTTACCAGAAC
Rs2345683	ACGTTGGATGATTCGCAAGAAACTCCTTGG	ACGTTGGATGGGAAGAAATCTTACCAGAAC
Rs2881195	ACGTTGGATGATTCGCAAGAAACTCCTTGG	ACGTTGGATGGGAAGAAATCTTACCAGAAC
Rs2345684	ACGTTGGATGATTCGCAAGAAACTCCTTGG	ACGTTGGATGGGAAGAAATCTTACCAGAAC
Rs3046261	ACGTTGGATGCTCCACTCAGACATCAAAAG	ACGTTGGATGGTGACCTTGGCTTTAATTGG
Rs4083413	ACGTTGGATGGTGACCTTGGCTTTAATTGG	ACGTTGGATGCTCCACTCAGACATCAAAAG
Rs4083412	ACGTTGGATGGTGACCTTGGCTTTAATTGG	ACGTTGGATGCTCCACTCAGACATCAAAAG
Rs2345685	ACGTTGGATGGTTCTGGTAAGATTTCTTCC	ACGTTGGATGAGTCTTACAATAGATGACTG
Rs2021897	ACGTTGGATGGCAATTATTTACAGAAGCCC	ACGTTGGATGTCCCACACAGTCATCTATTG
Rs4036211	ACGTTGGATGCCCATTACAAGTTGGGCAGTT	ACGTTGGATGCTTTCTGATTCCTTTTTTTCC
Rs4036212	ACGTTGGATGCTTTCTGATTCCTTTTTTTCC	ACGTTGGATGCCCATTACAAGTTGGGCAGTT
Rs4036213	ACGTTGGATGCCCATTACAAGTTGGGCAGTT	ACGTTGGATGCTTTCTGATTCCTTTTTTTCC
Rs2345686	<u>ACGTTGGATGCCCATTACAAGTTGGGCAGTT</u>	ACGTTGGATGCTTTCTGATTCCTTTTTTTCC
Rs4036214	<u>ACGTTGGATGCCCATTACAAGTTGGGCAGTT</u>	ACGTTGGATGCTTTCTGATTCCTTTTTTTCC
Rs4036215	<u>ACGTTGGATGCTTTCTGATTCCTTTTTTTCC</u>	ACGTTGGATGCCCATTACAAGTTGGGCAGTT
Rs2345687	ACGTTGGATGGGATTGTAAGGTGAGACTTG	ACGTTGGATGTTCCTCCCCATTACAAGTTG
Rs2345688	ACGTTGGATGAGGGTCCCATCTAAGAATTC	ACGTTGGATGGGATTGTAAGGTGAGACTTG
Rs2881196	ACGTTGGATGAGGGTCCCATCTAAGAATTC	ACGTTGGATGGGATTGTAAGGTGAGACTTG
Rs3046288	ACGTTGGATGCCAACTTGTAATGGGGAGGA	ACGTTGGATGCAGTTTTTACAGAGGGTCCC
Rs4036216	ACGTTGGATGCTTGTAATGGGGAGGAAAAAA	ACGTTGGATGTTCTCATTTTAATCTGTCAG
Rs4036205	<u>ACGTTGGATGCTTGTAATGGGGAGGAAAAAA</u>	ACGTTGGATGTTCTCATTTTAATCTGTCAG
Rs2092307	ACGTTGGATGCTTGTAATGGGGAGGAAAAAA	ACGTTGGATGTTCTCATTTTAATCTGTCAG
Rs4036206	ACGTTGGATGGACCCTCTGTAAAAACTGAC	ACGTTGGATGCCACTGCACCTCAAATCTTC
Rs2345689	ACGTTGGATGTTCCCTGAGTATCTCCCATG	ACGTTGGATGGGGACCCTCTGTAAAAACTG
	ACGTTGGATGTTCCCTGAGTATCTCCCATG	ACGTTGGATGGGGACCCTCTGTAAAAACTG
Rs2345691	ACGTTGGATGGCCACCTGTTGGAGATTTAC	ACGTTGGATGGGGACCCTCTGTAAAAACTG
	ACGTTGGATGTACATGGGAGATACTCAGGG	ACGTTGGATGCCACTGCACCTCAAATCTTC
	ACGTTGGATGGTATAACAAACCTTACCCTTG	ACGTTGGATGTAAAGAAGAAGATTTGAGG
	ACGTTGGATGTATCAATGGAGAATGCGTGG	ACGTTGGATGGGGAGTTAACCAGCAAAAGC
	ACGTTGGATGTCGACAACAAGAAGAGAAGG	ACGTTGGATGCACATTAGACAAGGGTAAGG
Rs2345694	ACGTTGGATGCTACCTCTCTCGACAACAAG	ACGTTGGATGCTTAAGTCCACGCATTCTCC
	ACGTTGGATGCGCATTCTCCATTGATAAGAC	ACGTTGGATGCCATTTAAAAGCTACCTCTC
Rs2345696	ACGTTGGATGCCTTACACAAGTGTAACTTC	ACGTTGGATGCCCCAAAATATAATGGTAGG
Rs4036209		ACGTTGGATGGTTTTCACAACTTCGTTAGC
Rs2345697		ACGTTGGATGGCCACCCCAAAATATAATGG
	ACGTTGGATGGCTGGAGGAAAAACAAGAAC	ACGTTGGATGCCTACCATTATATTTTGGGG
	<u>ACGTTGGATGCTGGAGGAAAAACAAGAACTC</u>	ACGTTGGATGCATTATATTTTGGGGTGGCAT
Rs2345699	ACGTTGGATGGCTGGAGGAAAAACAAGAAC	ACGTTGGATGGGGTGGCATATTTTGGTCTT

dbSNP rs#	Forward PCR primer	Reverse PCR primer
Rs2744640	ACGTTGGATGGCAACAGCACTTAGTATGCC	ACGTTGGATGTGAAGCTGCAAATCTGGC
Rs2744639	ACGTTGGATGGCAACAGCACTTAGTATGCC	ACGTTGGATGTGAAGCTGCAAATCTGGC
Rs2744638	ACGTTGGATGAACCGTGGCAATACCACGTC	ACGTTGGATGTGGGTTTGGGCTGGATTTGG
Rs2744637	<u>ACGTTGGATGTGAGTTGACAGCCTCTGCTGG</u>	ACGTTGGATGCACGTCAGTAAGGCAGAGAC
Rs2744636	ACGTTGGATGTCGGAGATGACATTGTCACC	ACGTTGGATGTTCCAGGGGTTACGTGTGTG
Rs2744635	ACGTTGGATGTGAGTCTGACTGTCACGG	ACGTTGGATGTCGGAGATGACATTGTCACC
Rs2744634	ACGTTGGATGCGTGTTCCAGGGATTATATG	ACGTTGGATGGCACATAACGCTTGGAACTC
Rs2744633	ACGTTGGATGTATGAGTGTGACGGGTGTAG	ACGTTGGATGGCACATAACGCTTGGAACTC
Rs2744632	ACGTTGGATGTAGCTGCCTTCCACATCCAA	ACGTTGGATGTGACGGGTGTAGCGTTAG
Rs2744630	ACGTTGGATGGGGTTCAAATGCCTCTGATAG	ACGTTGGATGGGTCTAGGACAAGACCCATT
Rs2744629	ACGTTGGATGAACTTTCCCTTAGCCAGTGG	ACGTTGGATGATCAGAGGCATTTGAACCCC
Rs2744628	ACGTTGGATGTTGACCTCAAATCATGTCAC	ACGTTGGATGTATCAGAGGCATTTGAACCC
Rs2744627	ACGTTGGATGGGGTGGTTTATGTTCCACTG	ACGTTGGATGCCAGAACTAATGCTAGCTTC
Rs2977616	ACGTTGGATGTTCCACTGGCTAAGAGAAAG	ACGTTGGATGCCAGAACTAATGCTAGCTTC
Rs2977617	ACGTTGGATGCCAGAACTAATGCTAGCTTC	ACGTTGGATGTTCCACTGGCTAAGAGAAAG
Rs2744626	ACGTTGGATGACAGTGAAATTGTATTTCCG	ACGTTGGATGGCACAAACTTAAGAATCTCC
Rs2744625	ACGTTGGATGAGCAAAATCCACCTATGTCC	ACGTTGGATGCTGAATTTTGTCTCCAGTAC
Rs3115847	ACGTTGGATGTCGAGGCAGAGGCGTAGTA	ACGTTGGATGATAGGAATGACATGAACCCG
Rs2744623	ACGTTGGATGACGCGAGTCCGTAGGTGCTG	ACGTTGGATGAAGAGGCTGCTACCCAGAG
Rs4036193	ACGTTGGATGAGAGCAAGACTCCGTCTCAA	ACGTTGGATGACATGTCGCTTGATGTGTGC
Rs4036194	ACGTTGGATGACATGTCGCTTGATGTGTGC	ACGTTGGATGAGAGCAAGACTCCGTCTCAA
Rs4036196	ACGTTGGATGCCCCAGCGTTCATATTTGTC	ACGTTGGATGTCTGGCCAAATGGTCATACC
rs1042327	ACGTTGGATGAACTTCACATCACAGCTCCC	ACGTTGGATGCAGAAGTTGGGTTTTCCAGC

TABLE 12

dbSNP rs#	Extend Primer	Term Mix
rs1474555	TGAAGCCGACAGTGACACC	ACT
rs1474554	CCAATTTTGCACACCTCCAGCA	ACG
rs10334	CAGATCCGGAGTGCGTCC	CGT
rs10541	TCTCTCTCAGCCGCAGAA	CGT
rs3823299	GAGGATTTGTGATGAAAATACTA	ACG
rs742348	AATCCCCGTGTTGTTCAAGG	ACT
rs1474644	AAGGATGTTCATCATAGTGTTTA	ACG
rs1474643	ACATGTTTATACATACACTCATG	ACG
rs2056970	TTGGCAGCTTTTTAGGCCTC	ACT
rs2223474	AAGTCTCAAAAAGGTCCC	ACT
rs2206284	TAGGTGGATCCCTTTTCCC	ACG
rs756519	CAGAGCCCTGTTCTTTGATTT	ACG
rs756518	CAAAGGATGCTGTCTGGCC	ACG
rs756517	GTTCCATGAGCGTTTTCTTTG	ACG
rs1474642	CTTCAGTTTCTTCATCACTTTC	ACT
rs2038093	TTTCACTCTTGTTGCCCAGG	ACT
rs2038092	CCAACATGGTGAAACCCCATCT	ACT
rs2223473	TAGAATTAAAATTAGACTTTGGGG	ACT

dbSNP rs#	Extend Primer	Term Mix
rs760909	GCAAGCTTAGTTCTAGGTCAG	CGT
rs2076319	TCACAATGCCTTTGTAATGATTT '	ACT
rs3778589	GTTTTAGGAAGACTGCTCTGACAA	ACG
rs3800236	CTGAGAGCCAGCTGCAGTAA	CGT
rs2206286	CCTCGCCGGCTGGCATAA	ACT
rs12717	CCATCCCCAAGTCTCTGCCAG	ACT
rs2179373	TGACCTATGCTCACACTTCTCA	ACG
rs3800235	GTGTTGATACCTCCAAGTACATTT	CGT
rs3823298	CTTGATGAAATAGTCATCCAACTA	ACT
rs2076318	TGAATTATCACCATCATCA	ACT
rs2235506	TGTTGCCAATAACAATCA	ACG
rs2072916	TGTGACAAGGGATTCCAC	ACG
rs3734763	CATCTGTAAGCAGGGCCGC	ACG
rs3177571	AAGACTGTGTAGCCTTCCTCTG	ACT
rs8770	GTAGACACTGTGTAAGCAATC	ACG
rs3173219	CACTGGAGGTGGAGAGCA	ACT
rs960744	CCCCATCAGACCTGGCTGT	ACT
rs2066954	TTACAATTTGAGCCTTGAGC	CGT
rs2072917	CTATCCCGACCCGAGAAAC	CGT
rs3173220	GCGATGAAACTGAACTGA	ACT
rs734249	CACCAGCAGGGAAGGTTTG	CGT
rs2092310	TTGAGGTGAGGGCTTCCAG	ACT
rs2092309	TCCCCTCCCCTATTGTTTAC	ACT
rs1016536	AAATTGGAGACAGGTCTCAGT	ACT
rs2235506	CTGGGAGTACAGGTGCGC	ACT
rs2076998	GTTTTTGTATAGTCTGCAGATGC	ACT
rs2076997	ATCCATTTTAATGGGTTGCTAGCT	ACT
rs2345478	ACAACTGTACTTATTGGGCATA	ACT
rs2021899	CTTTCTTGGAAACTCTTCCCA	ACT
rs2021898	TTGGATGGGGTTAATGGCAG	ACG
rs2345682	GTTAATGGCAGCTGTATTTTCTG	ACT
rs2345683	GGCAGCTGTATTTTCTGTGA	ACT
rs2881195	CAGCTGTATTTTTCTGTGACCT	ACG
rs2345684	GCAGCTGTATTTTTCTGTGACCTT	ACT
rs3046261	GAAAACATTTGAGATACTGAAGAT	ACT
rs4083413	TTCCTTTATCTTCAGTATCTCAA	ACT
rs4083412	TCTTCAGTATCTCAAATGTTTTCA	ACG
rs2345685	CAACTTTTGATGTCTGAGTGGA	ACT
rs2021897	ATTATTTACAGAAGCCCTATTCA	ACT
rs4036211	TTTCCAAACAAAAGCTACCATGCA	ACT
rs4036212	AAATAATTGCATGGTAGCTTTTG	CGT
rs4036213	ACAACTACTTTGATGTTATTTCC	CGT
rs2345686	ACAATCCAAAAATCACATTCCTA	ACT
rs4036214	GTCTCACCTTACAATCCAAAAAT	CGT

dbSNP rs#	Extend Primer	Term Mix
rs4036215	AATGTGATTTTTGGATTGTAAGG	ACT
rs2345687	AAGGTGAGACTTGTTTAGCTTT	ACT
rs2345688	TCCTCCCATTACAAGTTGGGCA	ACT
rs2881196	TTTTCCTCCCCATTACAAGTTGG	ACT
rs3046288	TAATGGGGAGGAAAAAAATTTTCT	ACT
rs4036216	ATGTTTTTGGAATTCTTAGATGG	ACT
rs4036205	GTTTTTGGAATTCTTAGATGGGAC	ACT
rs2092307	TGGAATTCTTAGATGGGACCC	ACT
rs4036206	ACTGACAGATTAAAATGAGAAAAA	ACT
rs2345689	TCCCATGTATCCATAAGGTATAC	ACT
rs2345690	GTATCTCCCATGTATCCATAAG	ACT
rs2345691	CCCTGAGTATCTCCCATGTA	CGT
rs2345692	TCTCCAACAGGTGGCTTTCA	ACT
rs3046306	TTGCTGGTTAACTCCCCACT	CGT
rs4036207	GCGTGGACTTAAGTCTGTATAAC	ACT
rs2345693	AGAGTCTTATCAATGGAGAATGC	ACT
rs2345694	GAAGAGAAGGATAACTAAATCACT	ACT
rs2345695	ATTTAGTTATCCTTCTCTTCTTG	ACT
rs2345696	ACACAAGTGTAACTTCTACTCT	ACT
rs4036209	GGAAACCAGAATATGCCACC	CGT
rs2345697	AGCCAAAGGGACATATTTTGTGGT	ACT
rs2881197	GGAACACAGTGTATAAGACCAAA	CGT
rs2345698	CGGTGGAACACAGTGTATAAG	ACT
rs2345699	AAAACAAGAACTCTTTTCATTGCC	ACT
rs2744640	TTTATCTCCAGTTCCCCAGC	ACG
rs2744639	AGCACTTAGTATGCCTTCTCCTT	ACT
rs2744638	TGGCAATACCACGTCAGTAAG	ACT
rs2744637	GCTGGGCTGGGTTTGGGCTG	ACT
rs2744636	ACCCGTCACACTCATATAATCCC	ACG
rs2744635	ACACATGCGTGTTCCAGGG	ACT
rs2744634	GGGATTATATGAGTGTGACGG	ACT
rs2744633	GGGTGTAGCGTTAGGTGAC	ACT
rs2744632	GCGCACATAACGCTTGGAAC	ACT
rs2744630	CGTGTTAAAACTCATGGCCAAAC	ACT
rs2744629	ATAAACCACCCTGGAGTTCAT	ACT
rs2744628	TTGAAGAAAACTTTCCCTTAGCCA	ACT
rs2744627	GTTTATGTTCCACTGGCTAAG	ACT
rs2977616	TTGAGGTCAAACATTAATATCAAG	ACT
rs2977617	CTAGCTTCTCAATCTTTTGAGTT	CGT
rs2744626	GTGAAATTGTATTTCCGGATTTC	ACT
rs2744625	TCCTGAACACTTATCCACTTTAC	ACT
rs3115847	CCAGGGCTGGAGGGGCC	ACT
rs2744623	GGTGCTGGCGGGAGCGAGAGT	ACT
rs4036193	GACTCCGTCTCAAAAAAAAAAAAAA	ACT

dbSNP rs#		
rs4036194	CTTGATGTGTGCTTCAGGGTA	ACG
rs4036196	CAGTGCAAGTAAAGAGCCTTA	ACT
rs1042327	CATCACAGCTCCCCACCAT	ACT

Genetic Analysis

[0231] Allelotyping results from the discovery cohort are shown for cases and controls in Table 13. The allele frequency for the A2 allele is noted in the fifth and sixth columns for osteoarthritis case pools and control pools, respectively, where "AF" is allele frequency. The allele frequency for the A1 allele can be easily calculated by subtracting the A2 allele frequency from 1 (A1 AF = 1-A2 AF). For example, the SNP rs1474555 has the following case and control allele frequencies: case A1 (C) = 0.64; case A2 (T) = 0.36; control A1 (C) = 0.70; and control A2 (T) = 0.30, where the nucleotide is provided in paranthesis. Some SNPs are labeled "untyped" because of failed assays.

TABLE 13

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
Rs1474555	229	170689279	С/Т	0.36	0.30	0.024
Rs1474554	6310	170695360	A/G	0.48	0.43	0.058
rs10334	11840	170700890	G/T			
rs10541	11870	170700920	A/T			
Rs3823299	12064	170701114	A/G	0.45	0.41	0.125
Rs742348	13392	170702442	C/G	0.46	0.44	0.275
Rs1474644	16354	170705404	A/G	0.75	0.77	0.270
Rs1474643	16559	170705609	C/T	0.45	0.40	0.042
Rs2056970	16935	170705985	A/G	0.36	0.33	0.242
Rs2223474	17616	170706666	C/T	0.42	0.46	0.140
Rs2206284	17737	170706787	C/T	0.37	0.35	0.493
rs756519	18321	170707371	СЛ			
_Rs756518	18453	170707503	A/G	0.49	0.53	0.133
Rs756517	18811	170707861	С/Т			
Rs1474642	20020	170709070	C/T	0.12	0.12	0.904
Rs2038093	21662	170710712	C/G			
Rs2038092	23197	170712247	C/G			
Rs2223473	23446	_170712496_	G/T	0.42	0.45	0.296
Rs760909	24339	170713389	G/T	0.49	0.52	0.255
Rs2076319	25504	170714554	A/G	0.43	0.46	0.219
Rs3778589	27174	170716224	A/G	0.49	0.54	0.081
Rs3800236	28008	170717058	A/T	0.47	0.50	0.319
Rs2206286	29294	170718344	С/Т	0.81	0.82	0.831
rs12717	29759	170718809	C/G	0.52	0.57	0.081
rs2179373	30832	170719882	A/G	0.58	0.62	0.089
rs3800235	44512	170733562	A/C	0.60	0.64	0.077
rs3823298	44850	170733900	C/G	0.44	0.38	0.022
rs2076318	45884	170734934	A/G	0.41	0.45	0.109
rs2235506	46345	170735395	C/T	0.68	0.66	0.320
rs2072916	48589	170737639	A/G	0.48	0.51	0.192
rs3734763	53371	170742421	A/G	0.50	0.54	0.142

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs3177571	53911	170742961	G/T			
rs8770	53990	170743040	A/G			
rs3173219	55152	170744202	C/G	0.49	0.53	0.056
rs960744	55667	170744717	C/T	0.39	0.35	0.179
rs2066954	58952	170748002	A/C	0.37	0.32	0.057
rs2072917	59315	170748365	G/T	0.46	0.42	0.153
rs3173220	60029	170749079	A/G		1	
rs734249	61477	170750527	A/C	0.48	0.40	0.022
rs2092310	62988	170752038	C/T		1	
rs2092309	63090	170752140	C/G	0.43	0.47	0.165
rs1016536	64021	170753071	A/C	0.10	0.10	0.985
rs2235506	65685	170754735	C/T		1	0.000
rs2076998	70220	170759270	A/G			
rs2076997	70323	170759373	A/C	0.90	0.90	0.814
rs2345478	70959	170760009	A/C	0.09	0.09	0.947
rs2021899	73436	170762486	C/G	0.46	0.43	0.218
rs2021898	82945	170771995	A/G	0.70	0.40	0.210
rs2345682	82958	170772008	G/T			
rs2345683	82961	170772000	C/G	0.28	0.34	0.019
rs2881195	82964	170772014	СЛТ	0.20	0.54	0.013
rs2345684	82965	170772015	G/T	<u> </u>	 	
rs3046261	83006	170772015	-/CTTT	 		
rs4083413	83025	170772075	C/T			
rs4083412	83034	170772084	A/G			
rs2345685	83074	170772124	G/T	0.71	0.71	0.025
rs2021897	83132	170772124	G/T	0.71	0.71	0.835
rs4036211	83155	170772102	C/T			
rs4036211	83172	170772222	A/T			
rs4036212	83174	170772224	G/T			
rs2345686	83206	170772256	C/T			
rs4036214	83216	170772266	G/T			
rs4036215	83234	170772284	G/T		+	
rs2345687	83252	170772302	A/G	0.55	0.50	0.005
rs2345688	83260	170772302	A/G A/C	0.55	0.50	0.085
rs2881196				0.53	0.52	0.958
rs3046288	83263 83296	170772313 170772346	A/C			
	83319	170772346	-/AT A/G	<u> </u>	1	
rs4036216	- 				 	
rs4036205	83322	170772372	C/G	 	 	
rs2092307 rs4036206	83324	170772374	A/C		1	
	83357	170772407	C/G		 	
rs2345689	83375	170772425	<u>C/T</u>			
rs2345690	83381	170772431	C/T	 		
rs2345691	83389	170772439	A/T			
rs2345692	83443	170772493	A/G	0.40	1	0.704
rs3046306	83499	170772549	-/GGTG	0.42	0.43	0.761
rs4036207	83545	170772595	C/T		 	
rs2345693	83566	170772616	С/Т	 	 	
rs2345694	83591	170772641	С/Т		 	
rs2345695	83619	170772669	G/T			
rs2345696_	83698	170772748	A/G		 	
rs4036209	83780	170772830	G/T	0.79	0.73	0.156
rs2345697	83784	170772834	G/T			
rs2881197_	83826	170772876	G/T	ļ		
rs2345698	83832	170772882	C/T	ļ	 	
rs2345699	83852	170772902	C/T			
rs2744640	86297	170775347	C/T	0.53	0.53	0.973
rs2744639	86315	170775365	G/T	0.40	0.40	0.789

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs2744638	86420	170775470	C/G	0.39	0.39	0.941
rs2744637	86460	170775510	C/G	0.40	0.42	0.497
rs2744636	86714	170775764	С/Т	0.76	0.73	0.271
rs2744635	86718	170775768	С/Т	0.03	0.02	0.425
rs2744634	86736	170775786	C/G	0.96	0.94	0.436
rs2744633	86753	170775803	С/Т	0.14	0.16	0.409
rs2744632	86766	170775816	G/T	0.80	0.83	0.217
rs2744630	88162	170777212	C/G			
rs2744629	88218	170777268	A/G	0.80	0.80	0.978
rs2744628	88246	170777296	A/G	0.71	0.67	0.206
rs2744627	88255	170777305	С/Т	0.32	0.30	0.335
rs2977616	88309	170777359	G/T			
rs2977617	88310	170777360	A/T			
rs2744626	88471	170777521	A/G			
rs2744625	88619	170777669	С/Т			_
rs3115847	88904	170777954	С/Т			
rs2744623	89044	170778094	C/G			
rs4036193	90531	170779581	-/AAAAA			
rs4036194	90534	170779584	A/G			
rs4036196	90613	170779663	C/G			
rs1042327	46252	170735302	С/Т	0.45	0.39	0.028

[0232] The chromosome 6 proximal SNPs were also allelotyped in the replication cohorts using the methods described herein and the primers provided in Tables 11 and 12. The replication allelotyping results for replication cohort #1 and replication cohort #2 are provided in Tables 14 and 15, respectively.

TABLE 14

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs1474555	229	170689279	С/Т	0.37	0.27	0.004
rs1474554	6310	170695360	A/G	0.50	0.42	0.020
rs10334	11840	170700890	GЛ			
rs10541	11870	170700920	A/T			
rs3823299	12064	170701114	A/G	0.45	0.40	0.080
rs742348	13392	170702442	C/G	0.47	0.41	0.075
rs1474644	16354	170705404	A/G	0.75	0.79	0.231
rs1474643	16559	170705609	С/Т	0.46	0.39	0.028
rs2056970	16935	170705985	A/G	0.38	0.33	0.129
rs2223474	17616	170706666	С/Т	0.41	0.48	0.052
rs2206284	17737	170706787	C/T	0.37	0.34	0.342
rs756519	18321	170707371	С/Т			
rs756518	18453	170707503	A/G	0.48	0.56	0.013
rs756517	18811	170707861	С/Т			
rs1474642	20020	170709070	С/Т	0.10	0.13	0.277
rs2038093	21662	170710712	C/G			
rs2038092	23197	170712247	C/G			
rs2223473	23446	170712496	G/T	0.42	0.48	0.070
rs760909	24339	170713389	G/T	0.47	0.54	0.077
rs2076319	25504	170714554	A/G	0.41	0.49	0.017
rs3778589	27174	170716224	A/G	0.50	0.57	0.035
rs3800236	28008	170717058	A/T	0.47	0.52	0.126
rs2206286	29294	170718344	C/T_	0.80	0.80	0.952

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs12717	29759	170718809	C/G	0.53	0.59	0.059
rs2179373	30832	170719882	A/G	0.57	0.64	0.025
rs3800235	44512	170733562	A/C	0.59	0.65	0.065
rs3823298	44850	170733900	C/G	0.46	0.36	0.003
rs2076318	45884	170734934	A/G	0.40	0.47	0.017
rs2235506	46345	170735395	C/T	0.68	0.65	0.434
rs2072916	48589	170737639	A/G	0.47	0.54	0.026
rs3734763	53371	170742421	A/G	0.49	0.56	0.052
rs3177571	53911	170742961	G/T		0.00	- 0.002
rs8770	53990	170743040	A/G		· · · · · · · · · · · · · · · · · · ·	<u></u>
rs3173219	55152	170744202	C/G	0.49	0.55	0.069
rs960744	55667	170744717	C/T	0.39	0.34	0.131
rs2066954	58952	170748002	A/C	0.36	0.31	0.096
rs2072917	59315	170748365	G/T	0.46	0.41	0.070
rs3173220	60029	170749079	A/G		5,	
rs734249	61477	170750527	A/C	0.37	NA	0.484
rs2092310	62988	170752038	C/T	1	1.0	0.404
rs2092309	63090	170752140	C/G	0.43	0.49	0.102
rs1016536	64021	170753071	A/C	0.08	0.11	0.277
rs2235506	65685	170754735	C/T	0.00	0.11	0.277
rs2076998	70220	170759270	A/G			
rs2076997	70323	170759373	A/C	0.89	0.91	0.655
rs2345478	70959	170760009	A/C	0.08	0.09	0.660
rs2021899	73436	170762486	C/G	0.48	0.42	0.081
rs2021898	82945	170771995	A/G	0.40	0.12	0.001
rs2345682	82958	170772008	G/T			
rs2345683	82961	170772011	C/G	0.32	0.39	0.046
rs2881195	82964	170772014	C/T	0.02	0.03	0.040
rs2345684	82965	170772015	G/T			
rs3046261	83006	170772056	-/CTTT			
rs4083413	83025	170772075	C/T			
rs4083412	83034	170772084	A/G			
rs2345685	83074	170772124	G/T	0.69	0.70	0.772
rs2021897	83132	170772182	G/T	0.03	0.70	0.112
rs4036211	83155	170772205	C/T	1		
rs4036212	83172	170772222	A/T			
rs4036213	83174	170772224	G/T			
rs2345686	83206	170772256	C/T			
rs4036214	83216	170772266	G/T			
rs4036215	83234	170772284	G/T	1		
rs2345687	83252	170772302	A/G	0.62	NA	NA
rs2345688	83260	170772310	A/C	0.46	0.49	0.383
rs2881196	83263	170772313	A/C	J	3.70	0.000
rs3046288	83296	170772346	-/AT	i		
rs4036216	83319	170772369	A/G			
rs4036205	83322	170772372	C/G	<u> </u>		
rs2092307	83324	170772374	A/C	1		
rs4036206	83357	170772407	C/G	1		
rs2345689	83375	170772425	С/Т	 		
rs2345690	83381	170772423	C/T	 		
rs2345691	83389	170772439	A/T	l		
rs2345692	83443	170772493	A/G			
rs3046306	83499	170772549	-/GGTG	0.39	0.40	0.729
rs4036207	83545	170772595	C/T	0.03	U.40	0.123
rs2345693	83566	170772616	C/T			
rs2345694	83591	170772641	C/T			
	บบบฮา	1/0//2041	- UI			

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs2345696	83698	170772748	A/G			
rs4036209	83780	170772830	G/T	0.79	0.73	0.156
rs2345697	83784	170772834	G/T			
rs2881197	83826	170772876	G/T			
rs2345698	83832	170772882	С/Т			
rs2345699	83852	170772902	C/T			
rs2744640	86297	170775347	С/Т	0.49	0.51	0.583
rs2744639	86315	170775365	G/T	0.45	0.43	0.745
rs2744638	86420	170775470	C/G	0.38	0.38	0.852
rs2744637	86460	170775510	C/G	0.35	0.40	0.216
rs2744636	86714	170775764	С/Т	0.71	0.73	0.482
rs2744635	86718	170775768	С/Т	0.05	0.03	0.195
rs2744634	86736	170775786	C/G	0.93	0.92	0.601
rs2744633	86753	170775803	С/Т	0.19	0.20	0.681
rs2744632	86766	170775816	G/T	0.85	0.90	0.070
rs2744630	88162	170777212	C/G			
rs2744629	88218	170777268	A/G	0.78	0.79	0.891
rs2744628	88246	170777296	A/G	0.68	0.67	0.766
rs2744627	88255	170777305	С/Т	0.32	0.30	0.636
rs2977616	88309	170777359	G/T			
rs2977617	88310	170777360	A/T			
rs2744626	88471	170777521	A/G			
rs2744625	88619	170777669	С/Т			
rs3115847	88904	170777954	СЛ			
rs2744623	89044	170778094	C/G			
rs4036193	90531	170779581	-/AAAAA			
rs4036194	90534	170779584	A/G			
rs4036196	90613	170779663	C/G			
rs1042327	46252	170735302	С/Т	0.46	0.37	0.004

TABLE 15

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs1474555	229	170689279	С/Т	0.35	0.36	0.770
rs1474554	6310	170695360	A/G	0.45	0.44	0.873
rs10334	11840	170700890	G/T			
rs10541	11870	170700920	A/T			
rs3823299	12064	170701114	A/G	untyped	0.43	NA
rs742348	13392	170702442	C/G	0.45	0.47	0.600
rs1474644	16354	170705404	A/G	0.74	0.75	0.775
rs1474643	16559	170705609	С/Т	0.43	0.41	0.614
rs2056970	16935	170705985	A/G	0.33	0.33	0.978
rs2223474	17616	170706666	С/Т	0.44	0.43	0.944
rs2206284	17737	170706787	С/Т	0.36	0.37	0.901
rs756519	18321	170707371	С/Т			
rs756518	18453	170707503	A/G	0.50	0.47	0.453
rs756517	18811	170707861	С/Т			
rs1474642	20020	170709070	С/Т	0.15	0.11	0.147
rs2038093	21662	170710712	C/G			
rs2038092	23197	170712247	C/G			
rs2223473	23446	170712496	G/T	0.43	0.40	0.408
rs760909	24339	170713389	GЛ	0.51	0.48	0.506
rs2076319	25504	170714554	A/G	0.44	0.40	0.264
rs3778589	27174	170716224	A/G	0.49	0.48	0.910

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs3800236	28008	170717058	A/T	0.48	0.46	0.670
rs2206286	29294	170718344	C/T	0.83	0.84	0.685
rs12717	29759	170718809	C/G	0.51	0.53	0.726
rs2179373	30832	170719882	A/G	0.59	0.58	0.880
rs3800235	44512	170733562	A/C	0.60	0.62	0.632
rs3823298	44850	170733900	C/G	0.41	0.41	0.032
rs2076318	45884	170734934	A/G	0.43	0.42	0.636
rs2235506	46345	170735395	C/T	0.69	0.67	0.594
rs2072916	48589	170737639	A/G	0.49	0.46	0.399
rs3734763	53371	170742421	A/G	0.51	0.51	0.888
rs3177571	53911	170742961	G/T	0.01	0.01	
rs8770	53990	170743040	A/G	-		
rs3173219	55152	170744202	C/G	0.48	0.51	0.493
rs960744	55667	170744717	C/T	0.38	0.37	0.738
rs2066954	58952	170748002	A/C	0.37	0.34	0.378
rs2072917	59315	170748365	G/T	0.45	0.45	0.982
rs3173220	60029	170749079	A/G	00	0.10	U.UUL
rs734249	61477	170750527	A/C	0.46	0.02	
rs2092310	62988	170752038	C/T		0.02	
rs2092309	63090	170752140	C/G	0.43	0.44	0.891
rs1016536	64021	170753071	A/C	0.13	0.09	0.173
rs2235506	65685	170754735	C/T			
rs2076998	70220	170759270	A/G			
rs2076997	70323	170759373	A/C	0.92	0.89	0.256
rs2345478	70959	170760009	A/C	0.11	0.10	0.545
rs2021899	73436	170762486	C/G	0.44	0.45	0.797
rs2021898	82945	170771995	A/G			
rs2345682	82958	170772008	G/T			
rs2345683	82961	170772011	C/G	0.23	0.26	0.407
rs2881195	82964	170772014	C/T			
rs2345684	82965	170772015	G/T			
rs3046261	83006	170772056	-/CTTT			
rs4083413	83025	170772075	C/T			
rs4083412	83034	170772084	A/G			
rs2345685	83074	170772124	G/T	0.74	0.71	0.533
rs2021897	83132	170772182	G/T			
rs4036211	83155	170772205	C/T			
rs4036212	83172	170772222	A/T			
rs4036213	83174	170772224	G/T			
rs2345686	83206	170772256	C/T			
rs4036214	83216	170772266	G/T_			
rs4036215	83234	170772284	G/T			
rs2345687	83252	170772302	A/G	0.47	0.50	0.457
rs2345688	83260	170772310	A/C	0.61	0.58	0.434
rs2881196	83263	170772313	A/C			
rs3046288	83296	170772346	-/AT		<u> </u>	
rs4036216	83319	170772369	A/G	ļ .	ļ <u>-</u> .	
rs4036205	83322	170772372	C/G			
rs2092307	83324	170772374	A/C		ļ	
rs4036206	83357	170772407	C/G			
rs2345689	83375	170772425	С/Т			
rs2345690	83381	170772431	C/T		ļI	
rs2345691	83389	170772439	A/T			
rs2345692	83443	170772493	A/G		 	
rs3046306	83499	170772549	-/GGTG			
rs4036207	83545	170772595	C/T			
rs2345693	83566	170772616	C/T			

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs2345694	83591	170772641	С/Т			
rs2345695	83619	170772669	G/T			
rs2345696	83698	170772748	A/G			
rs4036209	83780	170772830	G/T			
rs2345697	83784	170772834	G/T			-
rs2881197	83826	170772876	G/T			_
rs2345698	83832	170772882	С/Т			
rs2345699	83852	170772902	С/Т			
rs2744640	86297	170775347	С/Т	0.57	0.55	0.595
rs2744639	86315	170775365	G/T	0.35	0.34	0.752
rs2744638	86420	170775470	C/G	0.41	0.40	0.793
rs2744637	86460	170775510	C/G	0.47	0.46	0.836
rs2744636	86714	170775764	С/Т	0.83	NA	
rs2744635	86718	170775768	С/Т			
rs2744634	86736	170775786	C/G	untyped	0.97	NA
rs2744633	86753	170775803	С/Т	0.09	0.10	0.691
rs2744632	86766	170775816	G/T	0.74	0.72	0.529
rs2744630	88162	170777212	C/G			
rs2744629	88218	170777268	A/G	0.81	0.81	0.959
rs2744628	88246	170777296	A/G	0.74	NA NA	
rs2744627	88255	170777305	С/Т	0.33	0.29	0.341
rs2977616	88309	170777359	G/T			
rs2977617	88310	170777360	A/T		1	
rs2744626	88471	170777521	A/G			
rs2744625	88619	170777669	С/Т			
rs3115847	88904	170777954	С/Т			
rs2744623	89044	170778094	C/G		}	
rs4036193	90531	170779581	-/AAAAA			
rs4036194	90534	170779584	A/G			
rs4036196	90613	170779663	C/G			
rs1042327	46252	170735302	С/Т	0.42	0.43	0.880

[0233] Allelotyping results were considered particularly significant with a calculated p-value of less than or equal to 0.05 for allelotype results. These values are indicated in bold. The allelotyping p-values were plotted in Figure 1A for the discovery cohort. The position of each SNP on the chromosome is presented on the x-axis. The y-axis gives the negative logarithm (base 10) of the p-value comparing the estimated allele in the case group to that of the control group. The minor allele frequency of the control group for each SNP designated by an X or other symbol on the graphs in Figure 1A can be determined by consulting Table 13. For example, the left-most X on the left graph is at position 170689279. By proceeding down the Table from top to bottom and across the graphs from left to right the allele frequency associated with each symbol shown can be determined.

[0234] To aid the interpretation, multiple lines have been added to the graph. The broken horizontal lines are drawn at two common significance levels, 0.05 and 0.01. The vertical broken lines are drawn every 20kb to assist in the interpretation of distances between SNPs. Two other lines are drawn to expose linear trends in the association of SNPs to the disease. The light gray line (or generally bottommost curve) is a nonlinear smoother through the data points on the graph using a local polynomial

regression method (W.S. Cleveland, E. Grosse and W.M. Shyu (1992) Local regression models. Chapter 8 of Statistical Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth & Brooks/Cole.). The black line provides a local test for excess statistical significance to identify regions of association. This was created by use of a 10kb sliding window with 1kb step sizes. Within each window, a chi-square goodness of fit test was applied to compare the proportion of SNPs that were significant at a test wise level of 0.01, to the proportion that would be expected by chance alone (0.05 for the methods used here). Resulting p-values that were less than 10^{-8} were truncated at that value.

[0235] Finally, the exons and introns of the genes in the covered region are plotted below each graph at the appropriate chromosomal positions. The gene boundary is indicated by the broken horizontal line. The exon positions are shown as thick, unbroken bars. An arrow is place at the 3' end of each gene to show the direction of transcription.

ELP3 Region Proximal SNPs

[0236] It has been discovered that SNP rs1563055 in elongation protein 3 homolog (*ELP3*) is associated with occurrence of osteoarthritis in subjects.

[0237] Thirty-three additional allelic variants proximal to rs1563055 were identified and subsequently allelotyped in osteoarthritis case and control sample sets as described in Examples 1 and 2. The polymorphic variants are set forth in Table 16. The chromosome positions provided in column four of Table 16 are based on Genome "Build 34" of NCBI's GenBank.

TABLE 16

dbSNP rs#	Chromosome	Position in SEQ ID NO: 2	Chromosome Position	Allele Variants
rs1000658	8	211	27927511	c/t
rs1984880	8	473	27927773	c/t
rs999112_	8	1536	27928836	c/t
rs735880	8	5639	27932939	c/t
rs2045029	8	17186	27944486	a/g
rs2045028	8	17335	27944635	c/t
rs1947384	8	25029	27952329	c/g
rs1947385	8	25111	27952411	c/t
rs1901744	8	28811	27956111	a/g
rs1901745	8	28863	27956163	a/t
rs971882	8	30809	27958109	a/c
rs1377338	8	40985	27968285	a/c
rs2305452	8	45147	27972447	c/t
rs2305451	8	45282	27972582	a/g
rs2123472	8	46168	27973468	g/t
rs2167768	8	46328	27973628	a/g

dbSNP rs#	Chromosome	Position in SEQ ID NO: 2	Chromosome Position	Allele Variants
rs1563055	8	49077	27976377	a/g
rs2290371	8	51925	27979225	c/t
rs2290370	8	52141	27979441	a/g
rs2290369	8	52168	27979468	c/t
rs2874904	8	60852	27988152	c/t
rs3213997	8	62468	27989768	a/g
rs3213998	8	65572	27992872	g/t
rs1530929	8	79089	28006389	a/c
rs1000275	8	79541	28006841	c/t
rs1000274	8	79790	28007090	c/t
rs3757896	8	90843	28018143	a/g
rs3757895	8	90978	28018278	c/t
rs3757894	8	91052	28018352	c/g
rs3757893	8	91131	28018431	a/g
rs3757892	8	91132	28018432	c/t
rs3757891	8	94439	28021739	a/g
rs3757890	8	94621	28021921	a/t

[0238] The methods used to verify and allelotype the 33 proximal SNPs of Table 16 are the same methods described in Examples 1 and 2 herein. The primers and probes used in these assays are provided in Table 17 and Table 18, respectively.

TABLE 17

dbSNP rs#	Forward PCR primer	Reverse PCR primer
Rs1000658	ACGTTGGATGTTCTCAAAAAAGAAACACAT	ACGTTGGATGGGGTTATCAGTTTGAGATTC
Rs1984880	ACGTTGGATGCCATTTGCCAATTCCTGTGG	ACGTTGGATGATGGGCTGAAATGTATCCCC
rs999112	ACGTTGGATGCTAAGCACATGCCTTTCTTG	ACGTTGGATGCTATTTTCTACTGGGAGATG
rs735880	ACGTTGGATGTGCCTTCATTCTCCAACCAC	ACGTTGGATGAACAGAGTGAGACCCATCTG
Rs2045029	ACGTTGGATGAGTCATTGCTAGCTTTCTGG	ACGTTGGATGGGAACTTAAG
Rs2045028	ACGTTGGATGAGCTTGTAGTGAGCCGAGAT	ACGTTGGATGTGAGACAGAGTCTTGCTCTG
Rs1947384	ACGTTGGATGATTCTCCACCGAGAAACCAG	ACGTTGGATGTTGTGGCAGCAAGAAGGAAC
Rs1947385	ACGTTGGATGAAATTTCAACAGTCAACAAT	ACGTTGGATGGTCAGTTTTGAAAACTGATC
Rs1901744	ACGTTGGATGCCTTGATTGAAGAGTAAAGC	ACGTTGGATGATCAAATATTCCTCATCCCC
Rs1901745	ACGTTGGATGCTTCTGCCTTTACCTGTGTC	ACGTTGGATGAAATGAAGCAGCACTCACAG
rs971882	ACGTTGGATGAAGCCCTAATCATTGGTACG	ACGTTGGATGGATGGGTGCTAAAAAGACAC
Rs1377338	ACGTTGGATGCCCACATATCTACACATCAAG	ACGTTGGATGAGGGAGATAGGTGGTTAAAG
Rs2305452	ACGTTGGATGCCGTGTTGCAACTAACAGGG	ACGTTGGATGAGACGTTCCCATCCTCCATC
Rs2305451	ACGTTGGATGGCAGAGCCACCAGAGATAAA	ACGTTGGATGTTTTACGACAGGCGGGATTG
Rs2123472	ACGTTGGATGCACTTAGAATTGTTGCTTGG	ACGTTGGATGGCTGTATCTGTGACCTCAAA
Rs2167768	ACGTTGGATGGAATCAACATGACTTGGTGAC	ACGTTGGATGATCTCACTCTAACTTGCTCC
rs1563055	ACGTTGGATGAGTTCTTTCTCCTCACATTG	ACGTTGGATGCCCTTTAGAAGCACATACTC
Rs2290371	ACGTTGGATGATCCTCTTGGTAGCTTGTCC	ACGTTGGATGCTGTCTTGGTTTTCACCCTG

dbSNP rs#	Forward PCR primer	Reverse PCR primer
Rs2290370	ACGTTGGATGCAACCTCTACCTCACTACAC	ACGTTGGATGATGAGGTATCGACACACTGG
Rs2290369	ACGTTGGATGACACACTGGGTATCTGTTCT	ACGTTGGATGTCAGAATCCCCAACCTCTAC
Rs2874904	ACGTTGGATGAAATTCCAGGCTGGGTACAG	ACGTTGGATGTGCTGACCTTAAGTGATCCG
Rs3213997	ACGTTGGATGGGTTGGCTAGAAGAGAAAAA	ACGTTGGATGTACAGTCCTTTTGAAACTAC
Rs3213998	ACGTTGGATGACAGTTTGTTGACATAGTAG	ACGTTGGATGAGGCTGAAAAGACATTCATG
Rs1530929	ACGTTGGATGGGCTTTCACTATATTTCCTC	ACGTTGGATGGAATACAGTAAGCCTATGGG
Rs1000275	ACGTTGGATGAACCCCAGAAAGCAAAAAGC	ACGTTGGATGCACGCTTGCTAACTTAATGG
Rs1000274	ACGTTGGATGGCCTAAGACAGGATCCAAAC	ACGTTGGATGTTACTGCGTGCCTTAGTACC
Rs3757896	ACGTTGGATGCCTTCAAGCAAGTCAGTTAC	ACGTTGGATGCAGAAACTGTGTGACTGATC
Rs3757895	ACGTTGGATGAAAATCATTGGCCAAACTGC	ACGTTGGATGCTCCTTAGTATTCTTAGGTG
Rs3757894	ACGTTGGATGAGAAGGGTTGAACAACAAGG	ACGTTGGATGCACCTAAGAATACTAAGGAG
Rs3757893	ACGTTGGATGCCCTTGTTGTTCAACCCTTC	ACGTTGGATGCTGCATGTGGATACCTACAC
Rs3757892	ACGTTGGATGTCCTGCATGTGGATACCTAC	ACGTTGGATGCCCTTGTTGTTCAACCCTTC
Rs3757891	ACGTTGGATGATGGCCAATTCTCCATAGG	ACGTTGGATGAGGCCTGTTAAGGAAACCTG
Rs3757890	ACGTTGGATGCAGGTGGATGTAGGCTTAAG	ACGTTGGATGGCACCACTGCCTCTTGTTTT

TABLE 18

dbSNP rs#	Extend Primer	Term Mix
rs1000658	AATTGACAATGTTGGGACTGTT	ACG
rs1984880	TGTGGTGTAAATAGGAGTTAGTGG	ACT
rs999112	GCACATGCCTTTCTTGGAACTG	ACG
rs735880	AACCTTTACTTGTACTACATGC	ACG
rs2045029	GCTAGCTTTCTGGTAATGAAAAT	ACT
rs2045028	GATCGCACCACTGCACTCCAG	ACG
rs1947384	ATAGCGGCAGTCCAAAAAGC	ACT
rs1947385	TTCAACAGTCAACAATGAAACC	ACT
rs1901744	ATAGTCAAGTATGCAAATGAAGC	ACT
rs1901745	CCTTTACCTGTGTCTTCCCT	CGT
rs971882	CCTAATCATTGGTACGGTCTCA	ACT
rs1377338	AGTATTAGCTCAAATATCACATTG	ACT
rs2305452	CAGGGTAGCAGGCGGCC	ACG
rs2305451	CCACAAACTCAGACCACGG	ACT
rs2123472	CAGTTAATGTCAAGAAGCATAG	ACT
rs2167768	ACATGACTTGGTGACAGAAGAA	ACT
rs1563055	TTCTCCTCACATTGTTTCTACT	ACG
rs2290371	GGTAGCTTGTCCTTAAATAACCGT	ACT
rs2290370	GGAGCAGGGACTTCTGCCA	ACT
rs2290369	AGTCCCTGCTCCATGTGAC	ACT
rs2874904	GGCTAACGCCTGTAATCCCA	ACT
rs3213997	AGAAAAATATTGTTATGCCCACA	ACG
rs3213998	TAGTATTCTCAAATAGAGAGATTC	ACT
rs1530929	TTTCCTCTTTCCAGAATTGTATTT	ACT
rs1000275	ATGAGAATATCCTAGAATGAGGCA	ACG

dbSNP rs#	Extend Primer	Term Mix
rs1000274	GAATCATCAGGTCCTGTGCC	ACG
rs3757896	TAATTCTCCTTAAGTAGTTAATTC	ACT
rs3757895	TTGGCCAAACTGCAGGATCT	ACT
rs3757894	AAGGGCCACACAAGCAATTTCAA	ACT
rs3757893	CCAAAGGACATTAGGTGGTG	ACG
rs3757892	TGTGGATACCTACACTGCTC	ACG
rs3757891	AGGATAAGTGTAACGGGGTC	ACT
rs3757890	AGTGACACTCTTACTTCACAC	CGT

Genetic Analysis

[0239] Allelotyping results from the discovery cohort are shown for cases and controls in Table 19. The allele frequency for the A2 allele is noted in the fifth and sixth columns for osteoarthritis case pools and control pools, respectively, where "AF" is allele frequency. The allele frequency for the A1 allele can be easily calculated by subtracting the A2 allele frequency from 1 (A1 AF = 1-A2 AF). For example, the SNP rs1000658 has the following case and control allele frequencies: case A1 (C) = 0.36; case A2 (T) = 0.64; control A1 (C) = 0.37; and control A2 (T) = 0.63, where the nucleotide is provided in paranthesis. Some SNPs are labeled "untyped" because of failed assays.

TABLE 19

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
Rs1000658	211	27927511	С/Т	0.79	0.80	0.591
Rs1984880	473	27927773	C/T	0.47	0.48	0.735
Rs999112	1536	27928836	С/Т	0.72	0.72	0.775
Rs735880	5639	27932939	С/Т	0.20	0.19	0.561
Rs2045029	17186	_ 27944486	A/G	0.54	0.56	0.361
Rs2045028	17335	27944635	С/Т			
Rs1947384	25029	27952329	C/G	0.63	0.60	0.122
Rs1947385	25111	27952411	С/Т			
Rs1901744	28811	27956111	A/G	0.18	0.18	0.796
Rs1901745	28863	27956163	A/T	0.14	0.18	0.117
Rs971882	30809	27958109	A/C			
Rs1377338	40985	27968285	A/C	0.28	0.24	0.085
Rs2305452	45147	27972447	C/T	0.31	0.27	0.078
Rs2305451	45282	27972582	A/G	0.48	0.52	0.130
Rs2123472	46168	27973468	G/T	0.42	0.45	0.239
Rs2167768	46328	27973628	A/G	0.38	0.35	0.350
Rs1563055	49077	27976377	A/G			
Rs2290371	51925	27979225	С/Т	0.28	0.24	0.039
Rs2290370	52141	27979441	A/G	0.85	0.84	0.551
Rs2290369	52168	27979468	С/Т	0.43	0.47	0.138
Rs2874904	60852	27988152	С/Т	0.26	0.23	0.132
Rs3213997	62468	27989768	A/G	0.44	0.47	0.201
Rs3213998	65572	27992872	G/T	0.83	0.80	0.223
Rs1530929	79089	28006389	A/C	0.47	0.49	0.556

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
Rs1000275	79541	28006841	С/Т	0.86	0.87	0.771
Rs1000274	79790	28007090	_ c/T	0.54	0.56	0.510
Rs3757896	90843	28018143	A/G			
Rs3757895	90978	28018278	с/т	0.46	0.47	0.874
Rs3757894	91052	28018352	C/G	0.08	0.09	0.709
Rs3757893	91131	28018431	A/G	0.16	0.15	0.590
Rs3757892	91132	28018432	С/Т	0.09	0.08	0.595
Rs3757891	94439	28021739	A/G			
Rs3757890	94621	28021921	A/T	0.98	0.96	0.167

[0240] The *ELP3* proximal SNPs were also allelotyped in the replication cohorts using the methods described herein and the primers provided in Tables 17 and 18. The replication allelotyping results for replication cohort #1 and replication cohort #2 are provided in Tables 20 and 21, respectively.

TABLE 20

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs1000658	211	27927511	С/Т	0.78	0.79	0.863
rs1984880	473	27927773	C/T	0.46	0.48	0.594
rs999112	1536	27928836	C/T	0.71	0.70	0.759
rs735880	5639	27932939	C/T	0.20	0.17	0.255
rs2045029	17186	27944486	A/G	0.55	0.57	0.526
rs2045028	17335	27944635	C/T			
rs1947384	25029	27952329	C/G	0.65	0.61	0.198
rs1947385	25111	27952411	С/Т			
rs1901744	28811	27956111	A/G	0.19	0.18	0.674
rs1901745	28863	27956163	A/T	0.15	0.18	0.448
rs971882	30809	27958109	A/C			
rs1377338	40985	27968285	A/C	0.29	0.22	0.039
rs2305452	45147	27972447	C/T	0.31	0.26	0.067
rs2305451	45282	27972582	A/G	0.49	0.56	0.063
rs2123472	46168	27973468	G/T	0.42	0.49	0.039
_rs2167768	46328	27973628	A/G	0.36	0.34	0.396
rs1563055	49077	27976377	A/G			
rs2290371	51925	27979225	С/Т	0.28	0.23	0.054
rs2290370	52141	27979441	A/G	0.85	0.83	0.488
rs2290369	52168	27979468	С/Т	0.41	0.49	0.036
rs2874904	60852	27988152	C/T	0.29	0.22	0.062
rs3213997	62468	27989768	A/G	0.44	0.50	0.064
rs3213998	65572	27992872	G/T	0.84	0.82	0.336
rs1530929	79089	28006389	A/C	0.48	0.52	0.311
_rs1000275	79541	28006841	С/Т	0.86	0.87	0.566
rs1000274	79790	28007090	С/Т	0.54	0.59	0.159
rs3757896	90843	28018143	A/G			
rs3757895	90978	28018278	С/Т	0.45	0.49	0.308
rs3757894	91052	28018352	C/G	0.09	0.09	0.914
rs3757893	91131	28018431	A/G	0.15	0.14	0.803
rs3757892	91132	28018432	С/Т	0.09	0.08	0.798
rs3757891	94439	28021739	A/G			
rs3757890	94621	28021921	A/T	0.98	0.95	0.159

TABLE 21

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs1000658	211	27927511	C/T	0.80	0.82	0.443
rs1984880	473	27927773	С/Т	0.48	0.47	0.898
rs999112	1536	27928836	С/Т	0.72	0.76	0.319
rs735880	5639	27932939	C/T	0.20	0.22	0.598
rs2045029	17186	27944486	A/G	0.52	0.54	0.581
rs2045028	17335	27944635	С/Т			
rs1947384	25029	27952329	C/G	0.62	0.59	0.348
rs1947385	25111	27952411	С/Т			
rs1901744	28811	27956111	A/G	0.18	0.18	0.928
rs1901745	28863	27956163	A/T	0.13	0.17	0.113
rs971882	30809	27958109	A/C			
rs1377338	40985	27968285	A/C	0.27	0.27	0.961
rs2305452	45147	27972447	С/Т	0.32	0.30	0.673
rs2305451	45282	27972582	A/G	0.47	0.47	0.911
rs2123472	46168	27973468	G/T	0.41	0.38	0.348
rs2167768	46328	27973628	A/G	0.39	0.37	0.664
rs1563055	49077	27976377	A/G			
rs2290371	51925	27979225	С/Т	0.28	0.25	0.403
rs2290370	52141	27979441	A/G	0.85	0.84	0.939
rs2290369	52168	27979468	С/Т	0.46	0.44	0.712
rs2874904	60852	27988152	С/Т	0.24	0.24	0.888
rs3213997	62468	27989768	A/G	0.45	0.43	0.752
rs3213998	65572	27992872	G/T	0.81	0.78	0.373
rs1530929	79089	28006389	A/C	0.46	0.43	0.445
rs1000275	79541	28006841	С/Т	0.87	0.86	0.767
rs1000274	79790	28007090	C/T	0.54	0.51	0.394
rs3757896	90843	28018143	A/G			
rs3757895	90978	28018278	С/Т	0.47	0.42	0.202
rs3757894	91052	28018352	C/G	0.07	0.09	0.478
rs3757893	91131	28018431	A/G	0.17	0.16	0.653
rs3757892	91132	28018432	С/Т	0.09	0.07	0.567
rs3757891	94439	28021739	A/G			
rs3757890	94621	28021921	A/T	0.97	0.97	0.728

[0241] Allelotyping results were considered particularly significant with a calculated p-value of less than or equal to 0.05 for allelotype results. These values are indicated in bold. The allelotyping p-values were plotted in Figure 1B for the discovery cohort. The position of each SNP on the chromosome is presented on the x-axis. The y-axis gives the negative logarithm (base 10) of the p-value comparing the estimated allele in the case group to that of the control group. The minor allele frequency of the control group for each SNP designated by an X or other symbol on the graphs in Figure 1B can be determined by consulting Table 19. For example, the left-most X on the left graph is at position 27927511. By proceeding down the Table from top to bottom and across the graphs from left to right the allele frequency associated with each symbol shown can be determined.

[0242] To aid the interpretation, multiple lines have been added to the graph. The broken horizontal lines are drawn at two common significance levels, 0.05 and 0.01. The vertical broken lines are drawn every 20kb to assist in the interpretation of distances between SNPs. Two other lines are drawn to

expose linear trends in the association of SNPs to the disease. The light gray line (or generally bottommost curve) is a nonlinear smoother through the data points on the graph using a local polynomial regression method (W.S. Cleveland, E. Grosse and W.M. Shyu (1992) Local regression models. Chapter 8 of Statistical Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth & Brooks/Cole.). The black line provides a local test for excess statistical significance to identify regions of association. This was created by use of a 10kb sliding window with 1kb step sizes. Within each window, a chi-square goodness of fit test was applied to compare the proportion of SNPs that were significant at a test wise level of 0.01, to the proportion that would be expected by chance alone (0.05 for the methods used here). Resulting p-values that were less than 10^{-8} were truncated at that value.

[0243] Finally, the exons and introns of the genes in the covered region are plotted below each graph at the appropriate chromosomal positions. The gene boundary is indicated by the broken horizontal line. The exon positions are shown as thick, unbroken bars. An arrow is place at the 3' end of each gene to show the direction of transcription.

Example 6 CHDC1 Region Proximal SNPs

[0244] It has been discovered that SNP rs912428 in calponin homology (CH) domain containing 1 (CHDC1) is associated with occurrence of osteoarthritis in subjects.

[0245] Forty-three additional allelic variants proximal to rs912428 were identified and subsequently allelotyped in osteoarthritis case and control sample sets as described in Examples 1 and 2. The polymorphic variants are set forth in Table 22. The chromosome positions provided in column four of Table 22 are based on Genome "Build 34" of NCBI's GenBank.

TABLE 22

dbSNP rs#	Chromosome	Position in SEQ ID NO: 3	Chromosome Position	Allele Variants
rs1012628	13	243	44917643	c/t
rs1570976	13	10208	44927608	c/t
rs912436	13	15049	44932449	c/t
rs912435	13	15111	44932511	a/g
rs912433	13	15272	44932672	c/t
rs912432	13	15287	44932687	a/g
rs912431	13	15326	44932726	a/g
rs912430	13	15327	44932727	c/t
rs1408225	13	17038	44934438	c/t
rs998657	13	19391	44936791	a/g
rs1324006	13	21702	44939102	c/t
rs1924417	13	22431	44939831	c/g
rs2038728	13	22881	44940281	a/g

dbSNP rs#	Chromosome	Position in SEQ ID NO: 3	Chromosome Position	Allele Variants
rs912429	13	27744	44945144	a/t
rs3742269	13	32564	44949964	a/g
rs3742270	13	32698	44950098	a/c
rs3803192	13	33104	44950504	g/t
rs3803191	13	33181	44950581	c/t
rs754106	13	33256	44950656	c/t
rs2005053	13	33543	44950943	c/t
rs1535793	13	35567	44952967	c/t
rs1886220	13	40085	44957485	c/t
rs1886219	13	40482	44957882	a/t
rs1535792	13	45641	44963041	a/t
rs1535791	13	46059	44963459	a/g
rs912428	13	48504	44965904	c/t
rs1886218	13	48919	44966319	a/c
rs1570622	13	49693	44967093	c/t
rs912427	13	49874	44967274	a/g
rs912426	13	50020	44967420	a/g
rs3068693	13	50616	44968016	-/ttt
rs1570621	13	50719	44968119	a/g
rs1886965	13	55511	44972911	c/t
rs1008849	13	65533	44982933	a/g
rs912434	13	70529	44987929	a/c
rs3889095	13	75591	44992991	c/t
rs716223	13	77266	44994666	g/t
rs2897207	13	80368	44997768	g/t
rs1570620	13	82475	44999875	a/g
rs1467605	13	92462	45009862	g/t
rs1467604	13	92480	45009880	c/t
rs1408224	13	95819	45013219	c/t
rs1408223	13	96275	45013675	c/t

[0246] The methods used to verify and allelotype the 43 proximal SNPs of Table 22 are the same methods described in Examples 1 and 2 herein. The primers and probes used in these assays are provided in Table 23 and Table 24, respectively.

TABLE 23

dbSNP rs#	Forward PCR primer	Reverse PCR primer
Rs1012628	ACGTTGGATGGATTTTCTGTGTCCCCCAAG	ACGTTGGATGTTGCAACAGAGAGAGCTCTG
Rs1570976	ACGTTGGATGTGATGTCTGCTGTTTGG	ACGTTGGATGTTCACATGGCGAGGTCTTAG
rs912436	ACGTTGGATGCCATATAAGGTGGTTATGGG	ACGTTGGATGCAAACAGGTTTTTCTGAGGC
rs912435	ACGTTGGATGCAAGCCAATATCCAAGACAG	ACGTTGGATGAAAAACCTGTTTGTGAGGCC

dbSNP rs#	Forward PCR primer	Reverse PCR primer
rs912433	ACGTTGGATGTGCCTTCCATCCTTAACACG	ACGTTGGATGGGCTTGAGCTTAGATATGGC
rs912432	ACGTTGGATGAAATAGTTGGGTTTTGTGCC	ACGTTGGATGATTTGGTGTTAATTGCAGTG
rs912431	ACGTTGGATGTGGAAGGCACAAAACCCAAC	ACGTTGGATGCAGAAGCTAGGCTTCCTATG
rs912430	ACGTTGGATGTGGAAGGCACAAAACCCAAC	ACGTTGGATGCAGAAGCTAGGCTTCCTATG
Rs1408225	ACGTTGGATGGGGCACCATGACAATATTCC	ACGTTGGATGACACCTTGATCTTGGACTTC
rs998657	ACGTTGGATGACTGGGCCAGGGAGGAATAG	ACGTTGGATGGTTGGGGAGATAATACAGAAG
Rs1324006	ACGTTGGATGGCTGAAAACCCAAATGTGTG	ACGTTGGATGCCAGCTATCAGCTCCATTTC
Rs1924417	ACGTTGGATGACAAAAGCAAGCCTTCACAG	ACGTTGGATGGTACTGTAAAAGGTACTGTG
Rs2038728	ACGTTGGATGAAGGCTTTTGGACACAAGTC	ACGTTGGATGGCACCTCTTATGATGTTCCC
rs912429	ACGTTGGATGTTCAATTCCCCAAAGCCCTC	ACGTTGGATGGGCAAGTTCCATAACCTCTC
Rs3742269	ACGTTGGATGGAGAAAGAGAACGAGAAGG	ACGTTGGATGTAAATGACAGCAGTCTGGAG
Rs3742270	ACGTTGGATGCTAAAACCAAAGCTGACGGG	ACGTTGGATGTTCTGCTCCTGTGGCATAGC
Rs3803192	ACGTTGGATGTCCTTTTGCTTCTGCGATGC	ACGTTGGATGTGCTTCCCCATCAGTTCTTG
Rs3803191	ACGTTGGATGCTGTCTGTACATTACCAGGC	ACGTTGGATGAATAGCAGCTGGAGGATCTC
rs754106	ACGTTGGATGTTCTTACCATCCAGCAAGGC	ACGTTGGATGGCCTGGTAATGTACAGACAG
Rs2005053	ACGTTGGATGCTGTTGCTAGCTTGGATTTG	ACGTTGGATGTTCCCTGTCCTTTCTGGCAT
Rs1535793	ACGTTGGATGAACAAAGAGGAACAGAGCCC	ACGTTGGATGGCATAAGCCCCTTTTCCTAG
Rs1886220	ACGTTGGATGTCACCGTGTTAGCGAGAATG	ACGTTGGATGTAATCCCAGCACTTTGGGAG
Rs1886219	ACGTTGGATGTAACTGGATTTGCTGGAG	ACGTTGGATGTACATCAATAGCCGAGGAAG
Rs1535792	ACGTTGGATGCTGTATATCAGTGACTGTCC	ACGTTGGATGCAGAGAAGAACATCTCAGC
Rs1535791	ACGTTGGATGGAGGGTTTATCCTTACAATTG	ACGTTGGATGTTTTAGGGTCCCTTGATAAG
rs912428	ACGTTGGATGACTACATCCATTCCAGGGAG	ACGTTGGATGTCAGATCAGAGTGAGTTTAG
Rs1886218	ACGTTGGATGTCCCGAAAACAAGTCAAGAC	ACGTTGGATGAGTCCAGGCAAAACAGTAAG
Rs1570622	ACGTTGGATGATAGCTGCCACACTCTTTAG	ACGTTGGATGGCGCAGTTTAGAAAAACCTG
rs912427	ACGTTGGATGTAGGGTTCTCGATGGGTATG	ACGTTGGATGTTTGCCCTGGTCACTTTAGG
rs912426	ACGTTGGATGTTAGAGGATGCATAGGCCAG	ACGTTGGATGAAGTCACTTACTGCATGGTC
Rs3068693	ACGTTGGATGAAATTGGCCACATGGAATCC	ACGTTGGATGCTACCTTTAACATCCCTGTC
Rs1570621	ACGTTGGATGAATTAAGAATGGCAGCTATG	ACGTTGGATGGTTTAAAACTAAAAACAC
Rs1886965	ACGTTGGATGCTGCTAAGGATATGTGTTTCC	ACGTTGGATGACACCAGTGCTCAGTATTTG
Rs1008849	ACGTTGGATGGCAGTTGTGAATTGTGCAGC	ACGTTGGATGTGGTGCAGACATGTCAGAC
rs912434	ACGTTGGATGTTCTGACATGTACAGACGTG	ACGTTGGATGTCCTGGGAAATCTTTCCATC
Rs3889095	ACGTTGGATGAAGGTAATGATATGTCCCCC	ACGTTGGATGCGCATTTTACAGAGACATTG
rs716223	ACGTTGGATGACACTGTCTCTAGAAGCAGG	ACGTTGGATGGAAGCAGGAAAAGAGTGAGG
Rs2897207	ACGTTGGATGTCAGCCTCCAGAACTATGAG	ACGTTGGATGAACAGAGAGAGACCCTGTCT
	ACGTTGGATGCTGTTCCTGCCTTGATATGG	ACGTTGGATGGAAGGAAGTCTATTCAGCCC
Rs1467605	ACGTTGGATGATGTTACAGGGTGGTAAGCG	ACGTTGGATGTAAAGTTGCCACGCTTCTCC
Rs1467604	ACGTTGGATGATATACGGCATGTTACAGGG	ACGTTGGATGTTAAAGTTGCCACGCTTCTC
Rs1408224	ACGTTGGATGACTTCCCACTCCTCTAGACA	ACGTTGGATGTATTGGCTGGGTAGCACTCC
Rs1408223	ACGTTGGATGTCATTACCAGTTCCACAGAG	ACGTTGGATGTTGAGACATCATGAGGAGTG

TABLE 24

dbSNP rs#	Extend Primer	Term Mix
Rs1012628	CTGTGTCCCCCAAGTCTTTG	ACG
Rs1570976	TTGGCATTTCTTTGAGAA	ACT
rs912436	AGGTGGTTATGGGTTTGTCACTCA	ACT
rs912435	TCCAAAAAGCCCAAGAAATTCT	ACT
rs912433	CCTTAACACGTTTATAATAGATTA	ACG
rs912432	GTGCCTTCCATCCTTAACAC	ACT
rs912431	GGCACAAAACCCAACTATTTTC	ACG
rs912430	GCACAAAACCCAACTATTTTCC	ACT
Rs1408225	CCTCAGACTGGGTGGCTTA	ACT
rs998657	CACCCACCTGAGGGAGGC	ACT
Rs1324006	GATACCTTGAAGAATTTTTAAAAC	ACG
Rs1924417	TTTAGGCACATTTGTACTTATAAA	ACT
Rs2038728	TGGACACAAGTCCATGCAACA	ACG
rs912429	CTGTGACAGGTGCTATTATCA	CGT
Rs3742269	TTTTGGACCGATTTCCGGTG	ACT
Rs3742270	GCTGACGGGGATTCCCTTTA	ACT
Rs3803192	GATGCACTAAAAGCAGCAATGT	ACT
Rs3803191	TCCAGCCTTCATATTTTCCTC	ACG
rs754106	ATCCAGCAAGGCACTTAGAAT	ACT
Rs2005053	TGTGGCCTTCAGATGCTTACAT	ACG
Rs1535793	GAGGAACAGAGCCCAAAGGACA	ACT
Rs1886220	CTGACCTCGTGATCCGCC	ACG
Rs1886219	ACTGGATTTGCTGGAGTTAAGAA	CGT
Rs1535792	TATCAGTGACTGTCCTTTTCTTTT	CGT
Rs1535791	TTATCCTTACAATTGAAGAAAGGA	ACT
rs912428	CCATTCCAGGGAGACTCCCA	ACT
Rs1886218	GAAAACAAGTCAAGACATTTATTG	ACT
Rs1570622	CTGCCACACTCTTTAGATGAAGTT	ACG
rs912427	GGGAGATGACAGAACAAACT	ACT
rs912426	AGGTGCCAAGTGTTAGAAGAAAC	ACG
Rs3068693	GCCTCACATTGTTTTTTTTTTTTTTTTTTTTTTTTTTTT	ACT
Rs1570621	TCGGTCATAACTTTAATGAAGG	ACG
Rs1886965	TGATTTTATGACTCACATTATTTC	ACT
Rs1008849	GTGAATTGTGCAGCTATAAACATG	ACG
rs912434	AGACGTGCCCAGCTATGATA	ACT
Rs3889095	TCCCCCATAACATTTCAGCAT	ACT
rs716223	GTGGTTTGTATTTCCAGTGTCA	ACT
Rs2897207	AACTATGAGAAATAAATGTGTGGG	ACT
Rs1570620	TTGATATGGTTCTTGGTTGTTGG	ACG
Rs1467605	GTAAGCGCTAGAAAGAAAAATAA	ACT
Rs1467604	ACGCATGTTACAGGGTGGTAAG	ACG
Rs1408224	GGGCACACATTCAGAACTGCCC	ACG
Rs1408223	ACAGAGGAAGACCAAATGACA	ACG

Genetic Analysis

[0247] Allelotyping results from the discovery cohort are shown for cases and controls in Table 25. The allele frequency for the A2 allele is noted in the fifth and sixth columns for osteoarthritis case pools and control pools, respectively, where "AF" is allele frequency. The allele frequency for the A1 allele can be easily calculated by subtracting the A2 allele frequency from 1 (A1 AF = 1-A2 AF). For example, the SNP rs1570976 has the following case and control allele frequencies: case A1 (C) = 0.49; case A2 (T) = 0.51; control A1 (C) = 0.53; and control A2 (T) = 0.47, where the nucleotide is provided in paranthesis. Some SNPs are labeled "untyped" because of failed assays.

TABLE 25

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs1012628	243	44917643	C/T	0.70	0.70	0.768
rs1570976	10208	44927608	C/T	0.51	0.47	0.125
rs912436	15049	44932449	C/T	0.98	untpyed	
rs912435	15111	44932511	A/G	0.64	0.36	~0.0001
rs912433	15272	44932672	C/T	0.22	0.23	0.581
rs912432	15287	44932687	A/G	0.46	0.44	0.282
rs912431	15326	44932726	A/G	0.46	0.46	0.969
rs912430	15327	44932727	C/T	0.20	0.19	0.584
rs1408225	17038	44934438	C/T			
rs998657	19391	44936791	A/G	0.47	0.44	0.254
rs1324006	21702	44939102	C/T	0.55	0.53	0.419
rs1924417	22431	44939831	C/G	0.53	0.49	0.108
rs2038728	22881	44940281	A/G	0.34	0.38	0.082
rs912429	27744	44945144	A/T			
rs3742269	32564	44949964	A/G	0.83	0.83	0.967
rs3742270	32698	44950098	A/C	0.53	0.50	0.170
rs3803192	33104	44950504	G/T			-
rs3803191	33181	44950581	C/T			
rs754106	33256	44950656	C/T	0.40	0.41	0.714
rs2005053	33543	44950943	C/T	0.40	0.40	0.877
rs1535793	35567	44952967	C/T	0.26	0.26	0.910
rs1886220	40085	44957485	C/T			
rs1886219	40482	44957882	A/T	0.21	0.22	0.867
rs1535792	45641	44963041	A/T	0.73	0.71	0.550
rs1535791	46059	44963459	A/G	0.08	0.15	0.009
rs912428	48504	44965904	C/T			
rs1886218	48919	44966319	A/C			
rs1570622	49693	44967093	C/T	0.73	0.75	0.451
rs912427	49874	44967274	A/G	0.68	0.70	0.352
rs912426	50020	44967420	A/G	0.76	0.77	0.680
rs3068693	50616	44968016	-/111	0.22	0.21	0.597
rs1570621	50719	44968119	A/G	0.19	0.18	0.569
rs1886965	55511	44972911	C/T			
rs1008849	65533	44982933	A/G	0.48	0.43	0.160
rs912434	70529	44987929	A/C	0.23	0.23	0.988
rs3889095	75591	44992991	C/T	0.90	0.90	0.880
rs716223	77266	44994666	G/T	0.91	0.90	0.981
rs2897207	80368	44997768	G/T	0.46	0.46	0.921
rs1570620	82475	44999875	A/G	0.67	0.68	0.738
rs1467605	92462	45009862	G/T	0.29	0.22	0.044

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs1467604	92480	45009880	C/T	0.68	0.67	0.537
rs1408224	95819	45013219	C/T	0.66	0.65	0.683
rs1408223	96275	45013675	C/T	0.29	0.28	0.587

[0248] The *CHDC1* proximal SNPs were also allelotyped in the replication cohorts using the methods described herein and the primers provided in Tables 23 and 24. The replication allelotyping results for replication cohort #1 and replication cohort #2 are provided in Tables 26 and 27, respectively.

TABLE 26

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs1012628	243	44917643	C/T	0.69	0.72	0.337
rs1570976	10208	44927608	C/T	0.48	0.46	0.490
rs912436	15049	44932449	C/T			
rs912435	15111	44932511	A/G	0.16	untyped	0.637
rs912433	15272	44932672	C/T	0.28	0.28	0.984
rs912432	15287	44932687	A/G	0.46	0.42	0.260
rs912431	15326	44932726	A/G	0.46	0.48	0.602
rs912430	15327	44932727	С/Т	0.18	0.20	0.476
rs1408225	17038	44934438	C/T			
rs998657	19391	44936791	A/G	0.46	0.43	0.380
rs1324006	21702	44939102	C/T	0.54	0.53	0.811
rs1924417	22431	44939831	C/G	0.51	0.49	0.440
rs2038728	22881	44940281	A/G	0.35	0.39	0.181
rs912429	27744	44945144	A/T			
rs3742269	32564	44949964	A/G	0.84	0.85	0.911
rs3742270	32698	44950098	A/C	0.56	0.50	0.090
rs3803192	33104	44950504	G/T			·
rs3803191	33181	44950581	C/T			
rs754106	33256	44950656	С/Т	0.40	0.40	0.827
rs2005053	33543	44950943	C/T	0.40	0.37	0.328
rs1535793	35567	44952967	C/T	0.27	0.24	0.259
rs1886220	40085	44957485	C/T			
_rs1886219	40482	44957882	A/T	0.22	0.19	0.302
rs1535792	45641	44963041	Α/Τ	0.73	0.76	0.435
rs1535791	46059	44963459	A/G	0.08	0.08	0.958
rs912428	48504	44965904	C/T			
rs1886218	48919	44966319	A/C_			
rs1570622	49693	44967093	C/T	0.71	0.79	0.007
rs912427	49874	44967274	A/G	0.65	0.73	0.007
rs912426	50020	44967420	A/G	0.74	0.80	0.047
rs3068693	50616	44968016	-/1777	0.25	0.21	0.236
rs1570621	50719	44968119	A/G	0.22	0.15	0.028
rs1886965	55511	44972911	C/T			
rs1008849	65533	44982933	A/G	0.47	untyped	NA
_rs912434	70529	44987929	A/C	0.24	0.19	0.083
rs3889095	75591	44992991	C/T	0.91	0.91	0.867
rs716223	77266	44994666	G/T	0.91	0.93	0.598
rs2897207	80368	44997768	G/T	0.48	0.45	0.321
rs1570620	82475	44999875	A/G	0.66	0.72	0.034
rs1467605	92462	45009862	G/T	0.29	0.22	0.044
<u>rs1467604</u>	92480	45009880	C/T	0.66	0.70	0.307

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs1408224	95819	45013219	С/Т	0.64	0.67	0.312
rs1408223	96275	45013675	С/Т	0.31	0.23	0.028

TABLE 27

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs1012628	243	44917643	С/Т	0.71	0.68	0.438
rs1570976	10208	44927608	C/T	0.55	0.50	0.159
rs912436	15049	44932449	С/Т			
rs912435	15111	44932511	A/G	0.66	untyped	-it
rs912433	15272	44932672	C/T	0.14	0.17	0.479
rs912432	15287	44932687	A/G	0.47	0.46	0.806
rs912431	15326	44932726	A/G	0.46	0.44	0.513
rs912430	15327	44932727	C/T	0.23	0.17	0.084
rs1408225	17038	44934438	С/Т			
rs998657	19391	44936791	A/G	0.48	0.45	0.518
rs1324006	21702	44939102	C/T	0.55	0.52	0.324
rs1924417	22431	44939831	C/G	0.54	0.49	0.123
rs2038728	22881	44940281	A/G	0.34	0.37	0.295
rs912429	27744	44945144	A/T			
rs3742269	32564	44949964	A/G	0.82	0.82	0.861
rs3742270	32698	44950098	A/C	0.50	0.49	0.873
rs3803192	33104	44950504	G/T			
rs3803191	33181	44950581	C/T			
rs754106	33256	44950656	C/T	0.41	0.44	0.346
rs2005053	33543	44950943	С/Т	0.40	0.44	0.302
rs1535793	35567	44952967	C/T	0.25	0.31	0.096
rs1886220	40085	44957485	С/Т			
rs1886219	40482	44957882	A/T	0.20	0.27	0.053
rs1535792	45641	44963041	A/T	0.73	0.63	0.007
rs1535791	46059	44963459	A/G	NA	0.27	NA
rs912428	48504	44965904	С/Т			
rs1886218	48919	44966319	A/C			
rs1570622	49693	44967093	С/Т	0.75	0.67	0.040
rs912427	49874	44967274	A/G	0.71	0.64	0.059
rs912426	50020	44967420	A/G	0.78	0.72	0.065
rs3068693	50616	44968016	-/TTT	0.19	0.21	0.520
rs1570621	50719	44968119	A/G	0.15	0.21	0.077
rs1886965	55511	44972911	С/Т			
rs1008849	65533	44982933	A/G	0.49	0.43	0.138
rs912434	70529	44987929	A/C	0.21	0.28	0.027
rs3889095	75591	44992991	С/Т	0.89	0.88	0.583
rs716223	77266	44994666	G/T	0.90	0.87	0.368
rs2897207	80368	44997768	G/T	0.44	0.48	0.276
rs1570620	82475	44999875	A/G	0.70	0.62	0.026
rs1467605	92462	45009862	G/T			
rs1467604	92480	45009880	С/Т	0.71	0.62	0.018
rs1408224	95819	45013219	С/Т	0.68	0.61	0.060
rs1408223	96275	45013675	С/Т	0.27	0.34	0.023

[0249] Allelotyping results were considered particularly significant with a calculated p-value of less than or equal to 0.05 for allelotype results. These values are indicated in bold. The allelotyping p-values

were plotted in Figure 1C for the discovery cohort. The position of each SNP on the chromosome is presented on the x-axis. The y-axis gives the negative logarithm (base 10) of the p-value comparing the estimated allele in the case group to that of the control group. The minor allele frequency of the control group for each SNP designated by an X or other symbol on the graphs in Figure 1C can be determined by consulting Table 25. For example, the left-most X on the left graph is at position 44917643. By proceeding down the Table from top to bottom and across the graphs from left to right the allele frequency associated with each symbol shown can be determined.

[0250] To aid the interpretation, multiple lines have been added to the graph. The broken horizontal lines are drawn at two common significance levels, 0.05 and 0.01. The vertical broken lines are drawn every 20kb to assist in the interpretation of distances between SNPs. Two other lines are drawn to expose linear trends in the association of SNPs to the disease. The light gray line (or generally bottommost curve) is a nonlinear smoother through the data points on the graph using a local polynomial regression method (W.S. Cleveland, E. Grosse and W.M. Shyu (1992) Local regression models. Chapter 8 of Statistical Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth & Brooks/Cole.). The black line provides a local test for excess statistical significance to identify regions of association. This was created by use of a 10kb sliding window with 1kb step sizes. Within each window, a chi-square goodness of fit test was applied to compare the proportion of SNPs that were significant at a test wise level of 0.01, to the proportion that would be expected by chance alone (0.05 for the methods used here). Resulting p-values that were less than 10⁻⁸ were truncated at that value.

[0251] Finally, the exons and introns of the genes in the covered region are plotted below each graph at the appropriate chromosomal positions. The gene boundary is indicated by the broken horizontal line. The exon positions are shown as thick, unbroken bars. An arrow is place at the 3' end of each gene to show the direction of transcription.

Example 7

ERG Region Proximal SNPs

[0252] It has been discovered that SNP rs1888475 in v-ets erythroblastosis virus E26 oncogene like (ERG) is associated with occurrence of osteoarthritis in subjects. One hundred sixty-six additional allelic variants proximal to rs1888475 were identified and subsequently allelotyped in osteoarthritis case and control sample sets as described in Examples 1 and 2. The polymorphic variants are set forth in Table 28. The chromosome positions provided in column four of Table 28 are based on Genome "Build 34" of NCBI's GenBank.

TABLE 28

dbSNP rs#	Chromosome	Position in SEQ ID NO: 4	Chromosome Position	Allele Variants
rs2898353	21	231	38783681	a/t
rs960818	21	882	38784332	a/g
rs960819	21	960	38784410	a/c
rs2410034	21	1194	38784644	a/c
rs2836437	21	1530	38784980	a/g
rs2836438	21	1673	38785123	a/g
rs2836439	21	2096	38785546	c/t_
rs2836440	21	2285	38785735	a/g
rs2226683	21	5873	38789323	c/t
rs2836441	21	7256	38790706	a/g
rs2836442	21	7988	38791438	a/g
rs2836443	21	8222	38791672	g/t
rs2836444	21	8381	38791831	c/t
rs3787906	21	8814	38792264	c/t
rs3838108	21	8915	38792365	-/c
rs2836445	21	9642	38793092	a/g
rs2836446	21	9902	38793352	a/t
rs3787908	21	10619	38794069	a/g
rs2836447	21	10927	38794377	c/t
rs2836448	21	11032	38794482	c/t
rs2836450	21	14377	38797827	c/t
rs2836451	21	15608	38799058	c/t
rs1015022	21	15928	38799378	c/g
rs2836452	21	16296	38799746	a/g
rs2836453	21	17598	38801048	a/t
rs3787909	21	19272	38802722	a/g
rs2836454	21	20084	38803534	a/g
rs2836455	21	20577	38804027	a/t
rs2155718	21	28051	38811501	a/g
rs2836456	21	29466	38812916	a/g
rs2836457	21	29530	38812980	c/t
rs2836458	21	29987	38813437	a/g
rs2032323	21	30012	38813462	c/t
rs2051400	21	30322	38813772	g/t
rs2836459	21	32216	<u>38815666</u>	c/t
rs2836460	21	32516	38815966	c/t
rs2836461	21	32544	38815994	a/g
rs2836462	21	32746	38816196	a/g
rs2836463	21	33137	38816587	g/t
rs2836464	21	33538	38816988	a/g
rs2836465	21	33798	38817248	c/t_
rs2836466	21	33802	38817252	a/c_
rs2836467	21	33964	38817414	c/t
rs3827204	21	34132	38817582	a/g
rs2836468	21	34210	38817660	c/t
rs3787911	21	34317	38817767	a/g

dbSNP rs#	Chromosome	Position in SEQ ID NO: 4	Chromosome Position	Allele Variants
rs2836469	21	34499	38817949	c/t
rs2836470	21	34753	38818203	a/c
rs2212599	21	34845	38818295	c/t
rs2836472	21	35335	38818785	c/t
rs2836473	21	36423	38819873	c/t
rs1888469	21	36450	38819900	a/g
rs1888470	21	36481	38819931	g/t
rs2032322	21	38447	38821897	c/g
rs2410035	21	38784	38822234	c/t
rs1573332	21	39387	38822837	a/t
rs2836474	21	39458	38822908	c/t
rs2836475	21	39822	38823272	c/g
rs3787914	21	40305	38823755	c/g
rs1888471	21	40869	38824319	c/t
rs1888472	21	40926	38824376	c/t
rs1888473	21	41010	38824460	c/t
rs1888474	21	41134	38824584	c/t
rs2836476	21	41984	38825434	a/g
rs3787916	21	42172	38825622	a/t
rs2836477	21	42753	38826203	. g/t
rs970043	21	43011	38826461	c/t
rs2212600	21	43176	38826626	a/g
rs2836478	21	43320	38826770	g/t
rs2836479	21	43381	38826831	a/t
rs1475877	21	44142	38827592	a/g
rs2836480	21	44383	38827833	a/g
rs2836481	21	44726	38828176	c/t
rs2836483	21	45087	38828537	a/g
rs2836484	21	45141	38828591	c/t
rs2836485	21	45359	38828809	c/g
rs2836486	21	45421	38828871	c/t
rs2836487	21	45456	38828906	c/t
rs1893199	21	45467	38828917	c/t
rs2836488	21	45486	38828936	c/t
rs1893200	21	45709	38829159	a/g
rs1893201	21	45716	38829166	a/g
rs2836489	21	47626	38831076	c/t
rs1888475	21	49413	38832863	a/g
rs2836490	21	49796	38833246	c/t
rs2836491	21	49962	38833412	a/g
rs2836492	21	50075	38833525	c/t
rs2836493	21	50093	38833543	a/g
rs2836494	21	50571	38834021	c/t
rs2836495	21	50615	38834065	a/g
rs2898354	21	50780	38834230	a/g
rs3065390	21	50851	38834301	-/ta
rs2836496	21	51459	38834909	a/c

dbSNP rs#	Chromosome	Position in SEQ ID NO: 4	Chromosome Position	Allele Variants
rs2836497	21	53193	38836643	c/t
rs2836498	21	53702	38837152	c/t
rs2836499	21	53736	38837186	a/c
rs2836500	21	53795	38837245	c/t
rs2836501	21	54109	38837559	a/t
rs2836502	21	54126	38837576	c/t
rs2836503	21	54230	38837680	a/c
rs2836504	21	54894	38838344	c/t
rs3787917	21	55455	38838905	a/g
rs2836505	21	55499	38838949	a/g
rs2836506	21	56522	38839972	c/t
rs2836507	21	56662	38840112	c/t
rs2836508	21	56954	38840404	a/g
rs2836509	21	57267	38840717	a/g
rs2836510	21	58282	38841732	a/g
rs2836511	21	58916	38842366	a/c
rs2212601	21	59544	38842994	c/g
rs2212602	21	59666	38843116	c/t
rs2226682	21	59913	38843363	a/t
rs2836512	21	66846	38850296	a/g
rs2836513	21	67245	38850695	g/t
rs1999328	21	67652	38851102	a/c
rs2212603	21	67955	38851405	a/g
rs3787919	21	67966	38851416	a/c
rs2836514	21	68420	38851870	a/g
rs1023153	21	70226	38853676	a/g
rs1023372	21	70810	38854260	c/t
rs2212604	21	72246	38855696	a/g
rs2226684	21	73330	38856780	g/t
rs2212605	21	73457	38856907	c/t
rs2187307	21	74389	38857839	a/g
rs3065412	21	74638	38858088	-/aa
rs2898355	21	74640	38858090	a/c
rs2836518	21	75358	38858808	a/c
rs3838110	21	75952	38859402	-/g
rs2836519	21	76098	38859548	a/g
rs3827207				
		- 1		
		1		
rs382/207 rs2836520 rs2836521 rs2836522 rs2836523 rs2836524 rs2836525 rs3833350 rs2836526 rs2836527 rs3834676	21 21 21 21 21 21 21 21 21 21 21	77836 78449 78507 80031 81695 82775 82795 84611 84657 84693 85020	38861286 38861899 38861957 38863481 38865145 38866225 38866245 38868061 38868107 38868143 38868470	a/g a/c g/t g/t c/t a/g a/g -/c c/t a/c -/t

dbSNP rs#	Chromosome	Position in SEQ ID NO: 4	Chromosome Position	Allele Variants
rs2836528	21	85048	38868498	c/t
rs3761364	21	85100	38868550	c/t
rs2836529	21	85325	38868775	a/c
rs2836530	21	85452	38868902	c/t
rs3761366	21	85868	38869318	a/g
rs2836531	21	85936	38869386	a/g
rs2836532	21	85990	38869440	a/t
rs2836533	21	86139	38869589	c/t
rs2836534	21	86497	38869947	c/t
rs2836535	21	87236	38870686	a/g
rs2836536	21	87248	38870698	c/t
rs3827208	21	87533	38870983	c/g
rs715860	21	87912	38871362	a/g
rs717231	21	88108	38871558	g/t
rs2836537	21	88494	38871944	a/c
rs2836538	21	89598	38873048	a/c
rs2836539	21	90235	38873685	a/t
rs2836540	21	91287	38874737	g/t
rs2836541	21	91359	38874809	c/t
rs2836542	21	92384	38875834	a/c
rs2836543	21	92410	38875860	c/t
rs881837	21	92900	38876350	c/t
rs3949052	21	94495	38877945	a/g
rs2065307	21	94512	38877962	a/g
rs3216105	21	97777	38881227	-/a
rs2073427	21	98333	38881783	c/t

[0253] The methods used to verify and allelotype the 166 proximal SNPs of Table 28 are the same methods described in Examples 1 and 2 herein. The primers and probes used in these assays are provided in Table 29 and Table 30, respectively.

TABLE 29

dbSNP rs#	Forward PCR primer	Reverse PCR primer
rs2898353	ACGTTGGATGAATGTGAATGTGGAGGTAGC	ACGTTGGATGCTCCCTTGCTGGTTTTTTTG
rs960818	ACGTTGGATGTGGGATTTTTCCCAGAAGAG	ACGTTGGATGCTGTGCAGAGAAACATGATG
rs960819	ACGTTGGATGCTGTCTCCCTTCTCTTTATC	ACGTTGGATGCATCATGTTTCTCTGCACAG
rs2410034	ACGTTGGATGTTTAGAGACATTTCTCCTAG	ACGTTGGATGTTAGGATGATGTTAGTTTGG
rs2836437	ACGTTGGATGAGCTTCTGCGATATCAGTGG	ACGTTGGATGTTCCTGTCAGCACATTCTCC
rs2836438	ACGTTGGATGAACATGTCTTGGCCAAGCTC	ACGTTGGATGCCACTGTGACCTCTGGATTT
rs2836439	ACGTTGGATGCCTAGTGTATAAAGTGATGC	ACGTTGGATGTCCTTTCTAGGCACCAATAC
rs2836440	ACGTTGGATGAGATCCTAACCAACCACAGC	ACGTTGGATGAGGTAGGTAGATACAAGGCC
rs2226683	ACGTTGGATGAATATGGCTCCTATAGACAG	ACGTTGGATGTTTTGGGTCACAAAATCAAG

dbSNP rs#	Forward PCR primer	Reverse PCR primer
rs2836441	ACGTTGGATGTTACCTTAATAGTGCTGGCC	ACGTTGGATGACTTTCTGGTCAGAGAGAAG
rs2836442	ACGTTGGATGCAAGGACTCTAGGCTTACAG	ACGTTGGATGGGGACATTTGTAGTCACTTC
rs2836443	ACGTTGGATGGGGCCCCATTACATGTCTAA	ACGTTGGATGTTCGCTGTACTTCCTTCGAG
rs2836444	ACGTTGGATGCTGCAACCAGGAATTGTCAG	ACGTTGGATGAGGACCCATAAAGAGGTGTG
rs3787906	ACGTTGGATGTGAAAAGAGCGGAAATCAAC	ACGTTGGATGGTAAGAAAATCATTCTGTGG
rs3838108	ACGTTGGATGATAAGATGGCAGGCTG	ACGTTGGATGAAGCTGCCCAGATAAAACAG
rs2836445	ACGTTGGATGCATTTCCAAAATTAGACGCAG	ACGTTGGATGAAAAAGAGAAAAACAGATGC
rs2836446	ACGTTGGATGGTGCCTTGTCCTATCAAGAG	ACGTTGGATGAGCATCCAAGCCTGGTAATC
rs3787908	ACGTTGGATGAATCACCACACTAGACCAGC	ACGTTGGATGCATGCAAGGGAAATGTGTGC
rs2836447	ACGTTGGATGATCTCCTCTCTTTGCTCTGC	ACGTTGGATGGAGGAAGGTTAGGAGCTAAG
rs2836448	ACGTTGGATGTGTAGGGATGTATAGGGCAG	ACGTTGGATGAAAGAGAGGAGATCCGTCTG
rs2836450	ACGTTGGATGTGTGGGCATCAGATGACAAC	ACGTTGGATGATCCCGTTAAATGCACCGAC
rs2836451	ACGTTGGATGCAGACAACAACTGTCACCC	ACGTTGGATGGTATTTCCTTTTCTCGCCGC
rs1015022	ACGTTGGATGTCGAGCCAGCGTCTTTTATC	ACGTTGGATGGTAACAGTCGTACATTCCGG
rs2836452	ACGTTGGATGATCACTGACACAGTCATGAG	ACGTTGGATGCCAGTAACTTTGCAGGTTTG
rs2836453	ACGTTGGATGTGTATTTCCCAAGATGGCCC	ACGTTGGATGCCTCACTTTCTGATGGAAGC
rs3787909	ACGTTGGATGACTTCTCAGTGTTCTGGCTG	ACGTTGGATGCGTCACTCTCTGTTTCATGG
rs2836454	ACGTTGGATGAGGAATGATTCACAACCTCC	<u>ACGTTGGATGGAATGTTCAAATGTAGGGTGG</u>
rs2836455	ACGTTGGATGGGTCTATTGCTGTGACATTT	ACGTTGGATGCATCCCAATTTTTAAGCAAG
rs2155718	ACGTTGGATGAGAACTCTCACACACAGCTG	ACGTTGGATGTGCCTCTTATTACAGCCCTG
rs2836456	ACGTTGGATGGGGATTGTCTGATCTCCTTG	ACGTTGGATGCCAGCTTTCCTTTGTGCATG
rs2836457	ACGTTGGATGAACTCCTGGAATGAGTCACC	ACGTTGGATGATGCACAAAGGAAAGCTGGG
rs2836458	ACGTTGGATGATCACTTAGAAGCCCAGCAG	ACGTTGGATGTGATGCACACTCACTGAAGC
rs2032323	ACGTTGGATGGTAGCCGCACTTTGAGATGC	ACGTTGGATGAGCACAGAGTCGAGGAGGAG
<u>rs2051400</u>	ACGTTGGATGACAGACCTCAGACCAAAGTC	ACGTTGGATGTTTGTCCTAGAGTAACCCCC
rs2836459	ACGTTGGATGGCAAGAATGTTACTTTCTGG	ACGTTGGATGCCATCAAATAGTTGGTTGTC
rs2836460	ACGTTGGATGCAATATCTGAGTTTCACCCC	ACGTTGGATGGTAGATGAGAATTCCGTGTG
rs2836461	ACGTTGGATGGTTACCCACACGGAATTCTC	ACGTTGGATGCCAGATCCAGGTTCTTTCTG
rs2836462	ACGTTGGATGTCTCCTCCGTATGTCTCCAT	ACGTTGGATGATCCCGGAACTCTCTGTTTC
rs2836463	ACGTTGGATGGCACTATTTGACTTGAGCTC	ACGTTGGATGAATTCAAGCCAGAAAGGCTC
rs2836464	ACGTTGGATGGTCTTTTTCACCCCAGTAAAG	ACGTTGGATGATAAGCAAAAGGACCTTTGG
rs2836465	ACGTTGGATGTGAGCTCTTGTGTTTTGCCC	ACGTTGGATGGAGAATTCTCCAGCCTTCTC
rs2836466	ACGTTGGATGTGAGCTCTTGTGTTTTGCCC	ACGTTGGATGGAGAATTCTCCAGCCTTCTC
rs2836467	ACCTTGGATGGACTCTGCTCATTTCCTTGG	ACGTTGGATGAAGAGGGGTAGATGCAG
rs3827204	ACGTTGGATGTGAAGATCACACGTGGTGTA	ACGITGGATGGGGTGAATGCCAAAAAGAGG
rs2836468	ACCTTGGATGTAGAGGCAGGAAAGAGCATG	ACGTTGGATGTTTTTGGCATTCACCCTCTC
rs3787911	ACCTTCCATCATTCTCTCTCTCTCTCTCTCTCTCTCTCT	ACCITICATIONALIZATIONA
rs2836469 rs2836470	ACCITICATION	ACCTTGGATGACGGAAATGC
	ACCITICATION ACCITATION ACCITICATION ACCITICATION ACCITICATION ACCITATION ACCI	ACCTTGGATGACGGACTGAAAGCCAAATGG
rs2212599	ACCITICATION OF A CONTROL OF A C	ACGTTGGATGCAGTGGTCCATTAAGAATCC
rs2836472	ACCITICATE ACCITICATE ACCITICATE ACCITICATE ACCITICATE ACCITICATE ACCITICATE ACCITATION	ACCTTGGATGAATGAAGGGTCAGAGGAGCAGGAC
rs2836473 rs1888469	ACGTTGGATGACCACCAGGAAGGGTCTGAA	ACGTTGGATGGAGGATCAGAGGCAGAAAAC
	ACGTTGGATGACCACCAGGAAGGGTCTGAA	ACCTTGGATGTTCTTTGGCCTCCCTGTAAG
rs1888470 rs2032322	ACGTTGGATGGCGTTGATTGCAGCTTCC	ACCITICATEGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
rs2410035	ACGTTGGATGTGATACTCTGTTGAGCCTCC ACGTTGGATGAATCACTTGAACCCAGGAGG	ACGITGGATGTTTTTGAGACGCACTTTCGC
		ACGITGGATGTTTTTGAGACGGAGTTTCGC
rs1573332	ACGTTGGATGGGGTGAACTTTACAGAGAGG	ACGTTGGATGCTGCCAGACAGTTTTGAGAC

dbSNP rs#	Forward PCR primer	Reverse PCR primer
rs2836474	ACGTTGGATGAATTCTGCACAGGAGAGTCC	ACGTTGGATGCAGGAAATGAAGATGTCGCC
rs2836475	ACGTTGGATGAGTTCTACATGGGAAGCTGC	ACGTTGGATGATATCTGTGTCTACAGGCCC
rs3787914	ACGTTGGATGGGCTGAAGGCTAAAATCACC	ACGTTGGATGGTCTGAGAAGTAGGAATGGC
rs1888471	ACGTTGGATGACTGAGGCAATTGTGTAGAC	ACGTTGGATGTTGACTTTGTTTTGAGAGGC
rs1888472	ACGTTGGATGTTGCCTCTCAAAACAAAGTC	ACGTTGGATGCTATTATTCTGGAAGCAGCC
rs1888473	ACGTTGGATGAGAAAGTTCAGTTCTCAGCC	ACGTTGGATGTGTTTGCTCCTGTGAGTAAC
rs1888474	ACGTTGGATGTGTTATGTGAGTCCAGGGTG	ACGTTGGATGTCTTGTTATGTGGGTGGGTG
rs2836476	ACGTTGGATGTTACCTGTGACCTCATTTGG	ACGTTGGATGGAACACACACATACGGTAC
rs3787916	ACGTTGGATGAAGGCATCTCAGTCATTCTC	ACGTTGGATGTGAGTTTGACACAAAGAAGC
rs2836477	ACGTTGGATGTTTAGCTCTCCTGGATGATG	ACGTTGGATGCCATGATTAGTGCATGAAGG
rs970043	ACGTTGGATGTATAACTCCCCTCTCTCCTG	ACGTTGGATGAGAGCAGACCCTTATCAGAG
rs2212600	ACGTTGGATGGAAACAGGTGTTCATTTGGC	ACGTTGGATGTCTGCATGAACCAGTAAGTC
rs2836478	ACGTTGGATGAGCTATTGAGTGTCACTTGC	ACGTTGGATGCAGAAGCTTCTGACTTCAAC
rs2836479	ACGTTGGATGAGTAGCCATCCTAATAGGTG	ACGTTGGATGAGCAAGTGACACTCAATAGC
rs1475877	ACGTTGGATGAATCAACACTCCCCGTGTTC	ACGTTGGATGGGTACCTAGAGTAGTCCAAG
rs2836480	ACGTTGGATGTACCAAACCCACTGTACATC	ACGTTGGATGCATAACCTAACACATTGTGGG
rs2836481	ACGTTGGATGTAAGAAGTTCTTTCTCCCCC	ACGTTGGATGGCTGCTTCTTTCATAAGAGG
rs2836483	ACGTTGGATGCACTGAGGTAATCTCCAACC	ACGTTGGATGGGTGGAGATATGGCTTGATG
rs2836484	ACGTTGGATGAAGCCCACCAGAGTCATCAA	ACGTTGGATGACTACTGACCAGCTTTCCAG
rs2836485	ACGTTGGATGTTCTAAGTGAAGCCCTCCTC	ACGTTGGATGTACAGCTGTGCAAACAGTTG
rs2836486	ACGTTGGATGCATGGTCTGTTGCCTCTAAG	ACGTTGGATGCCCTAGCATTTTATGCATCC
rs2836487	ACGTTGGATGTGAATACCCACTAGGTCTCG	ACGTTGGATGCCACCACTAAACTTAGAGGC
rs1893199	ACGTTGGATGGCCAACAGACCATGGTTTTG	ACGTTGGATGCTTCCCTTCAACATGCACTG
rs2836488	ACGTTGGATGGGCAACAGACCATGGTTTTG	ACGTTGGATGCTTCCCTTCAACATGCACTG
rs1893200	ACGTTGGATGAGTTAAGTCTTCGCATAACC	ACGTTGGATGCCTCTCACACACTAAATCTTG
rs1893201	ACGTTGGATGGTCTTCGCATAACCAAAACAG	ACGTTGGATGCCTCTCACACACTAAATCTTG
rs2836489	ACGTTGGATGGTCAACCATGGAGCTTGAAC	ACGTTGGATGAGAAGACATGTGGGCTTGTG
rs1888475	ACGTTGGATGACCCCTGGCAAGTGAATTAC	ACGTTGGATGGGGAGGTGGATGTTCTTATC
rs2836490	ACGTTGGATGAAAGGCAGAGCTAAAGCAAG	ACGTTGGATGAGCACAACCCAGCAATGCAG
rs2836491	ACGTTGGATGACAACTTGGAGTGGAAAGGG	ACGTTGGATGATCCAGATGGATTCCACAGC
rs2836492	ACGTTGGATGACATATGGGCATGGAAGAGC	ACGTTGGATGAATCCATCTGGATGGAAGAC
rs2836493	ACGTTGGATGTTAAGAGTTCCGATGCTTGC	ACGTTGGATGGTAATCTGGACTTCTCTTCC
rs2836494	ACGTTGGATGGTGCATTCATTTGAATTGCTG	ACGTTGGATGCAGTCTTACTTAAAACTGAC
rs2836495	ACGTTGGATGGAATTTAACGAAACTTCAGC	ACGTTGGATGGGATATTTTCAGGATATCTG
rs2898354	ACGTTGGATGTGAACAAACCTGCACATCC	ACGTTGGATGGGTACTTTCCAAATATCTGC
rs3065390	ACGTTGGATGCGAGACTCCATCTCAAAAAAG	ACGTTGGATGTGGAAAGTACCAATAGCTTC
rs2836496	ACGTTGGATGTGGAGCTTAATGTGTTCCTG	ACGTTGGATGGTTAGCCATGCATAAGACAG
rs2836497	ACGTTGGATGAGCCGGGATGACTGCTAGAC	ACGTTGGATGAGATGAGGAGTAA
rs2836498	ACGTTGGATGGGTCCTGGGAAAATAGGATG	ACGTTGGATGCACCCTTGCTCTTTCTGAAG
rs2836499	ACGTTGGATGACTAGTCAGAGCACAGTGAG	ACGTTGGATGGCTCTCTCTTTGACTC
rs2836500	ACCITICATION CANADATION CONTROL OF THE CONTROL OF TH	ACGTTGGATGATCAACTCAGGGCTCTTCTC
rs2836501	ACGTTGGATGACTCACAAAGGTTGACCTTG	ACGTTGGATGGAGGTCCAGGTTGAAAGAAC
rs2836502	ACCTTGGATGGAGGTCCAGGTTGAAAGAAC	ACGTTGGATGACTCACAAAGGTTGACCTTG
rs2836503	ACCTTGGATGGAGCAATTATCAACCCTACG	ACGTTGGATGATTCTCCCCCTTCACTCTTG
rs2836504	ACGTTGGATGGAGGTCTGGGTATGGAAAGAG	ACGTTGGATGTTCCTAGAAATGGTGTCTGC
rs3787917		ACGTTGGATGCGCCCACAAACCTAAGAGAA
rs2836505	ACGTTGGATGTTTTCGACTGCTCCACTCTG	ACGTTGGATGGCTCTCCCTCATTGTTCTTC

dbSNP rs#	Forward PCR primer	Reverse PCR primer
rs2836506	ACGTTGGATGGGCTAAGGGCATCATTTTATC	ACGTTGGATGGTTTGCTGATTCATGGATGC
rs2836507	ACGTTGGATGAGCAAAGGTTCTGGTGTTGG	ACGTTGGATGAAATGATGCCCTTAGCCCAG
rs2836508	ACGTTGGATGGTGATGATATTTTCTCC	ACGTTGGATGTTTCAGGTATTCCTCTTTGC
rs2836509	ACGTTGGATGTAAAGCTTTCTAAGTCAATG	ACGTTGGATGTCATATGATAATGGTCTCTG
rs2836510	ACGTTGGATGCAGGGAGAGATCTAAACAGC	ACGTTGGATGGCCAAAGCTATAACACGTGG
rs2836511	ACGTTGGATGAGAACCTGACTTTTGGAGTG	ACGTTGGATGCTTCCTCATTGGTCAGAGTC
rs2212601	ACGTTGGATGCCAGCCTTTAGAACTGTGAG	ACGTTGGATGTGGGCTGCTGTAACAAAGTG
rs2212602	ACGTTGGATGACTACAACCAGCCAGAGATG	ACGTTGGATGCACAAACCTTGTGTGAACCC
rs2226682	ACGTTGGATGCCAAGATTGAACCAGGAAAG	ACGTTGGATGCACAAAAGAATTCAGGAGGTG
rs2836512	ACGTTGGATGCCCCAAAACTTAGCATCCTG	ACGTTGGATGTGTTCTCCCTGCACTTCAAC
rs2836513	ACGTTGGATGCACTGGGGTTAGCAAGAAAC	ACGTTGGATGGACTGTGATTCACCCTGTCT
rs1999328	ACGTTGGATGAGTTACAGCGCAAATTGAGG	ACGTTGGATGGCCTTTATGACTCCATTTCTC
rs2212603	ACGTTGGATGTGGAGGGTGTCTGTGAGTAC	ACGTTGGATGTCATGGAGCAAGGTCTGTGG
rs3787919	ACGTTGGATGCCATCAGCTAGGATTCATGG	ACGTTGGATGTCTGTGAGTACCCCACAATG
rs2836514	ACGTTGGATGCAGGTCTAACTAACTGATGAC	ACGTTGGATGGCCTCTACTGTTATTTAAGG
rs1023153	ACGTTGGATGTACAAAAGTGACCTAGAGCC	ACGTTGGATGTTCTTGCAGGACATTGTGCC
rs1023372	ACGTTGGATGCAAAATTCCAAAATTCTGGTTG	ACGTTGGATGCTCAGAAGTAACATGTACTC
rs2212604	ACGTTGGATGCAGACTTGAGCATATACCAC	ACGTTGGATGACCCATGTGGGAAAATGTTG
rs2226684	ACGTTGGATGGGTGTTGGAAAAGGAACATC	ACGTTGGATGTTAATGATAGTTCCCCTCAG
rs2212605	ACGTTGGATGATATGAGTGATTTGCATGGG	ACGTTGGATGTGCATATAAGCTGTCTGCAC
rs2187307	ACGTTGGATGCACATCCTGCAGCTTTAACC	ACGTTGGATGCCTGGCACTTTCAAGTAACG
rs3065412	ACGTTGGATGGCTGAGATAGAATGTGCTC	ACGTTGGATGTCTCCTGCTTTGTTCTGGAG
rs2898355	ACGTTGGATGGGCTGAGATAGAATGTGCTC	ACGTTGGATGTCTCCTGCTTTGTTCTGGAG
rs2836518	ACGTTGGATGCACTTGTTGCTTCTTCCACC	ACGTTGGATGATGCCAACCTTGCTGATGTC
rs3838110	ACGTTGGATGGAAGTAGTGAAGTGTTCCCC	ACGTTGGATGAGCCTCACTGAATCTTAACG
rs2836519	ACGTTGGATGTTTTCTCCTTCTCACTGGG	ACGTTGGATGAAAGGCTACAGGAACTGAGC
rs3827207	ACGTTGGATGTGTAGTCTGCACCTTCACCT	ACGTTGGATGAGCGGCTGCTGAACATAGAT
rs2836520	ACGTTGGATGCCTGCAAAGGTGTTTGCTTC	ACGTTGGATGGCCACCTAATTTTCCTCTC
rs2836521	ACGTTGGATGAAGAATAAGAAGCAAACACC	ACGTTGGATGGTTTTAGGGGAAAGGCATAAG
rs2836522	ACGTTGGATGTGCATCTTTGGTTGTGACAG	ACGTTGGATGGCACATCTACTCTTAGCATG
rs2836523	ACGTTGGATGTCTCTCTTTCTTTTCCCTAC	ACGTTGGATGACTCTCAGTTATGATTTCTC
rs2836524	ACGTTGGATGGTGTGTTGGTAGAAACGTTC	ACGTTGGATGGTCACCCCTTCAGATAATAAG
rs2836525	ACGTTGGATGCAGAGCCGAAAACATAGTTC	ACGTTGGATGGTGTGTTGGTAGAAACGTTC
rs3833350	ACGTTGGATGGTTGTTCTTTGTCTTCTAG	ACGTTGGATGGAATCATGTCCTTCAGTAAGC
rs2836526	ACGTTGGATGATTGTGTCCTGTCCTGCTAG	ACGTTGGATGGACGCTAGAAGACAAAAGG
rs2836527	ACGTTGGATGGTGTTTTATGTTCTAGCAGG	ACGTTGGATGGATGCCTTTAGGCAAACATG
rs3834676	ACGTTGGATGAAGCTGAAAAGGATGTGCAG	ACGTTGGATGACAGGGCATACTTCTCTATC
rs2836528	ACCITGGATGCCAAAACTCATGCGATCTGC	ACGTTGGATGTGGCGCTGAAGTACTCAATG
rs3761364	ACGTTGGATGAAACAGCACAGCTACCATTC	ACGTTGGATGATGAGAAAATGTGTGTGGAG
rs2836529	ACCITICATION ACCITI	ACGTTGGATGCAGAGCCCAAAAAAAATTTGG
rs2836530	ACCITICATIONAL AND ANALYSIS AND ASSOCIATION	ACGTTGGATGAAAGATGCCTATAATCCAGG
rs3761366	ACCITICATIONAL	ACGTTGGATGGCCATCAGTTCTTTTTTGGC
rs2836531	ACGITGGATGGCCTTCGAAAATGTCTCAAG	ACGTTGGATGCACTTGCTTTTTATCACCTG
	ACCITICATORAGACAGCCTTCGAAAATG	ACCTTGGATGCAATGGCTCTTTGCAGTAAC
rs2836533	ACGTTGGATGTTTCTGACCTCTCACGGTAC	ACGTTGGATGTGCAGATCTGGAGGTAGATG
	ACCTTGGATGAGAAGAGGCTGGGAGAGGAT	ACCITICATIONAL ACCITAGE AND ACCITAGE ACC
rs2836535	ACGTTGGATGACAGGAGGAGTTGAGTGTTG	ACGTTGGATGTAGAGGCACGGAGAAGATAG

dbSNP rs#	Forward PCR primer	Reverse PCR primer
rs2836536	ACGTTGGATGAAAAGCATGGGTACAGGAGG	ACGTTGGATGTAGAGGCACGGAGAAGATAG
rs3827208	ACGTTGGATGGAGGATGAGGGTACCTGAG	ACGTTGGATGGGGATGATCAAACGTAGT
rs715860	ACGTTGGATGTTCTGGTGGAGGTTTCTTGG	ACGTTGGATGCGAGACATGATCTCAAACCC
rs717231	ACGTTGGATGCAAGAGACTCAAACAGTTGC	ACGTTGGATGTCATAGAAGTTACAGCAGCC
rs2836537	ACGTTGGATGTTGGTGTGATCACTCTGG	ACGTTGGATGGAACCTAAGTTTCTCCCAGC
rs2836538	ACGTTGGATGGGTTAGAGCTTACGTAATTC	ACGTTGGATGCTACTTGTGTCACTTCTTTG
rs2836539	ACGTTGGATGTTATCCTCCAAGAGCCTTAG	ACGTTGGATGGGGCAAATGGAGTTCTTATT
rs2836540	ACGTTGGATGCCCAGTTGGTATCAGTGTTG	ACGTTGGATGTGCTGAACATCGTTTGGAGG
rs2836541	ACGTTGGATGCTTGCACTGACACCTTTGTG	ACGTTGGATGGTACTGGCGAAGACATGATG
rs2836542	ACGTTGGATGAGATGAGCCATTTCCTACTG	ACGTTGGATGCAGCATGAGAAACTGAATGC
rs2836543	ACGTTGGATGAAATGGACTTCTTCAGTAGG	ACGTTGGATGGATACAATTCAACCCATAGC
rs881837	ACGTTGGATGAATGGATGTGGCTCTTGAGG	ACGTTGGATGTATGGAGGGACTTACGAAAG
rs3949052	ACGTTGGATGTTTTCAACGGAAACAGATGC	ACGTTGGATGCCAAGTAAAATATTCAATCCCC
rs2065307	ACGTTGGATGTTTTCAACGGAAACAGATGC	ACGTTGGATGCCAAGTAAAATATTCAATCCCC
rs3216105	ACGTTGGATGACCACCATGCCTGGCTAATT	ACGTTGGATGGGCCTGGACAAAATAGTGAG
rs2073427	ACGTTGGATGTTTTGCTTGGGTGTTCTGCC	ACGTTGGATGGGATTTACACTGGTGTTGGG

TABLE 30

dbSNP rs#	Extend Primer	Term Mix
Rs2898353	TCCTGTCTTCAGTGCTTGATTCTG	CGT
rs960818	AGTAGATAACATAAAGTAACCAGC	ACT
rs960819	GCTATTCACCCTAGCTGTACATAG	ACT
Rs2410034	AAATGTAGCTGTAGTATCTTGAA	ACT
Rs2836437	TTCACACTCAACAACAACACA	ACT
Rs2836438	TGGAAAGTAAGCTAGACCAAACAG	ACT
Rs2836439	GTATAAAGTGATGCTGCTTGC	ACT
Rs2836440	AACAATTGGGATATGTCTCTCCAC	ACG
Rs2226683	GAGAGTTAATGTGCCCTACTT	ACT
Rs2836441	TAATAGTGCTGGCCATAATGC	ACT
Rs2836442	CTCTAGGCTTACAGTAAACAC	ACT
Rs2836443	TATAAGTTCAGGGTCACAGGTC	ACT
Rs2836444	TGTGTTCTTGGGGTCGCCT	ACT
Rs3787906	TAATGTAGGTGCTGAGAACTTAG	ACT
Rs3838108	GGCTGATTAAAATTCTGTTTCCCC	ACT
Rs2836445	AGACGCAGTAAAACTTATGGAT	ACG
Rs2836446	GCCTTGTCCTATCAAGAGCCAAAG	CGT
Rs3787908	CATACAGTAGCTGTGGACAGC	ACT
Rs2836447	ATGTATTACATTGAGAACCATGTG	ACT
Rs2836448	TGTATAGGGCAGGGATAAAGAC	ACT
Rs2836450	AACAACAAATTTACTGATATCATC	ACT
Rs2836451	CTGTCACCCATTGACCTCAC	ACT
Rs1015022	CTTTTATCTGCAGTTGCACCC	ACT
Rs2836452	CGGGAAGATGGCTGCCTTC	ACG

dbSNP rs#	Extend Primer	Term Mix
Rs2836453	CCAAGATGGCCCAGTAGGA	CGT
Rs3787909	AAATAGTAAAATAAAAAGAGCTCC	ACG
Rs2836454	CACAACCTCCCAAATGAATAAATC	ACT
Rs2836455	TGCTGTGACATTTTAGTGCTTCTG	CGT
Rs2155718	CTCACACACAGCTGGAGTTTA	ACT
Rs2836456	CGTTCTGAAGGTTTTGTGTACA	ACT
Rs2836457	GAGTCACCCGTCCCCTAGA	ACT
Rs2836458	ACAGAAGAGCCAGCCGACA	ACT
Rs2032323	TGCACACTCACTGAAGCCC	ACT
Rs2051400	AAACACTATGTGACGCCACC	ACT
Rs2836459	AGAATGTTACTTTCTGGATTCTAC	ACT
Rs2836460	ATTGTAATTCTCCGTAAAACCC	ACG
Rs2836461	TACCCACACGGAATTCTCATCTAC	ACT
Rs2836462	TCCGTATGTCTCCATCCATCTCA	ACT
Rs2836463	AAACTTAAATTGCTTTAATCAGCT	ACT
Rs2836464	AATATCTTATCACTGCTCCTGTCT	ACG
Rs2836465	GCCCACTTTTGTGTTTGCTTTAG	ACT
Rs2836466	TTTGCCCACTTTTGTGTTTGCT	ACT
Rs2836467_	TTAATTTTCTTGTCTCTTTCTGTA	ACT
Rs3827204	CCCTCACATCTTCCCCGC	ACT
Rs2836468	GCAGGAAAGAGCATGGGCATTAAC	ACT
Rs3787911	TACATCCAAAAGCCTGCCAG	ACT
Rs2836469	TCCTGCGAGATCCTGCTCA	ACG
Rs2836470	ACAAGCTTAATGTTTTGTTCAGA	ACT
Rs2212599	TTCCCCAACAATAGTCAGAAAA	ACT
Rs2836472	TTCTCTATCATGATGCAGTCC	ACT
Rs2836473	GATGATGAACAGGGCTGTGA	ACG
Rs1888469	AAGGGTCTGAAGAGGAGGC	ACT
Rs1888470	GTTTTCTGCCTCTGATCCTCA	ACT
Rs2032322	CCTATAGGTAACGTGGCTTCT	_ACT
Rs2410035	AGGCAGAAGTTGCAGTGAAC	ACG
Rs1573332	GAGAGGCCAGAAAGCCTTC	CGT
Rs2836474	GCACAGGAGAGTCCTCAATT	ACG
Rs2836475	CATGGGAAGCTGCTGAACTA	ACT_
Rs3787914	ACAGTGTTTGAGCCCTCCTT	ACT
Rs1888471	AACTGACAGAAGAAAAAATAT	ACG
Rs1888472	TGTGTTGGTGTATAAATCAAGATT	ACG
Rs1888473	CAGTTCTCAGCCAGACGATC	ACG
Rs1888474	GAGTCCAGGGTGCTAATTTC	ACG
Rs2836476	GGTGTTAGCCCTGGGTTCTAATAA	ACG
Rs3787916	TCTCTTATGTAAATACAAAGACG	CGT
Rs2836477	CCTCTTAAAATAGCCTGCCTTCA	ACT
rs970043	GCTCCTTGACTCAAGTATTTC	ACG
Rs2212600	AAAACAACTTTCTCTCCCAAAC	ACG_

dbSNP rs#	Extend · Primer	Term Mix
Rs2836478	CTTGCTTATCTTCAAGCAGTC	CGT
Rs2836479	CCTAATAGGTGTGAAGTGTAAAA	CGT
Rs1475877	CTCCCGTGTTCTGCATGC	ACG
Rs2836480	CCCACTGTACATCTTACACTC	ACT
Rs2836481	TCCCCTGAAATCCCATAGC	ACT
Rs2836483	AGGTAATCTCCAACCAAACCT	ACT
Rs2836484	AGTCATCAAGCCATATCTCCA	ACG
Rs2836485	CTCCTCTGGGACGTCAGC	ACT
Rs2836486	CCTCTAAGTTTAGTGGTGGAT	ACT
Rs2836487	TGTTGGGTTCTACACATTCAAA	ACT
Rs1893199	CAGACCATGGTTTTGAATGTG	ACG
Rs2836488	GTAGAACCCAACACAGAGCC	ACG
Rs1893200	AGTCTTCGCATAACCAAAACAGA	ACT
Rs1893201	CGCATAACCAAAACAGAAAAGAAC	ACT
Rs2836489	CAAGAGCTCTTTTCAATTCCAG	ACT
Rs1888475	GACATCAAATGATTCCCCTGT	ACT
Rs2836490	GAGCCAAAGCTTTCCTGATG	ACT
Rs2836491	GTGGAAAGGGCACTGTGGT	ACT
Rs2836492	GGCATGGAAGAGCAAGCATC	ACT
Rs2836493	TCCGATGCTTGCTCTTCCAT	ACT
Rs2836494	TGAAGTTTCGTTAAATTCACTACA	ACT
Rs2836495	CTTCAGCAATTCAAATGAATGCAC	ACT
Rs2898354	TCCGGCACATATATCCTGGAAC	ACT
Rs3065390	AAACAAACAAACAAAACAGTGTA	ACT
Rs2836496	GTGTTCCTGATGTTTCTGGAGT	CGT
Rs2836497	CTGCTAGACATTGTCAGTCC	ACT
Rs2836498	AATAGGATGAGTCAAAGAAGGAG	ACT
Rs2836499	GAGAAGAGCCCTGAGTTGATAAA	ACT
Rs2836500	AGAGGATGAGCAATTTCAGGGA	ACT
Rs2836501	CAAAGGTTGACCTTGTTTTCTAT	CGT
Rs2836502	AAGAACTTACATTTTATGGCTTC	ACT
Rs2836503	GATTTGGGAGCAAGGGAGC	ACT
Rs2836504	AGAGTTAAAGATGACTCTAGGCTC	ACT
Rs3787917	GCAGCCAGAGTGGAGCAGT	ACG
Rs2836505	AAGGCATTCCTCCTCCAAATCAC	ACT
Rs2836506	GAAAATCAAATCAGTTTCTACAAC	ACT
Rs2836507	GTGTTGGAATATTGTTGGCCT	ACT
Rs2836508	ATTCTCTACCATTTCATTCTCTTT	ACT
Rs2836509	TTTCTAAGTCAATGTAGGCAAC	ACT
Rs2836510	CAGCTAGTTATCTTACTTCACC	ACT
Rs2836511	AGCAGGTGACAACCCAGACAT	ACT
Rs2212601	TAAGTTTCTGTTGTTTATATGCCA	ACT
Rs2212602	CCAGCCAGAGATGGGATCA	ACG
Rs2226682	GATTGAACCAGGAAAGAAATAGTT	_ CGT

dbSNP rs#	Extend Primer	Term Mix
Rs2836512	AATGCCAGTTGCCATAGGATA	ACG
Rs2836513	ATAAGAAGATGAGTACTATTATTG	ACT
Rs1999328	ATTGAGGGAAGAGTAAATGATTTC	CGT
Rs2212603	TGTCTGTGAGTACCCCACAATGAA	ACT
Rs3787919	TCTGTGGCTTCAATGCTGGG	ACT
Rs2836514	ACAGACTTTAACAAAATCACTGA	ACT
Rs1023153	GGGTCATCTCCTTACCTGTCCAA	ACG
Rs1023372	TTCCAAAATTCTGGTTGTGTTTT	ACT
Rs2212604	CTGCCCCTATACATACATAGCTTC	ACG
Rs2226684	AAAAACAATCTGCACAACAAATAT	ACT
Rs2212605	GCAGTGAATATGAACAAAAAAAA	ACT
Rs2187307	CAGCTTTAACCTCACTCCAC	ACT
Rs3065412	AGTTACAAATCAGGTGGTGCTGG	ACT
Rs2898355	GTTACAAATCAGGTGGTGCTG	ACT
Rs2836518	TAGGAATCGGAGTCAATAATTTT	ACT
Rs3838110	GCTGCACAATCCCCCCC	CGT
Rs2836519	CCTTCTCACTGGGTTCCTG	ACG
Rs3827207	TATCACCCCTGTGTCCTGC	ACG
Rs2836520	CACAAATAGATTATATATCCTGTT	ACT
Rs2836521	AATAAGAAGCAAACACCTTTGCA	ACT
Rs2836522	CCACCCCTTCAGAGAGTTG	ACT
Rs2836523	TCATATTGGTTGATCGTATTGGTT	ACT
Rs2836524	GATTTCAGGAATGAACTATGTTTT	ACG
Rs2836525	AGCCGAAAACATAGTTCATTCCTG	ACT
Rs3833350	CTTTTGTCTTCTAGCCGTCAG	ACT
Rs2836526	AGAACATAAAACACAGAAATGCA	ACT
Rs2836527	TTATGTTCTAGCAGGACAGGA	CGT
Rs3834676	AAAAGGATGTGCAGATCGCAT	ACT
Rs2836528	ATCTGCACATCCTTTTCAGCTT	ACG
Rs3761364	CTACCATTCATTGAGTACTTCAG	ACG
Rs2836529	CTTCAAAATGTGGGTTGATACC	ACT
Rs2836530	GGTCAGAACATGCTGCTTTAT	ACT
Rs3761366	GTGATGGCTTCTAAAAATGTAAA	ACG
Rs2836531	GCATTTGTTACTGCAAAGAGCCAT	ACG
Rs2836532	AGCCTTCGAAAATGTCTCAAG	CGT
Rs2836533	CACACCCATTCCAACCCAAT	ACG
Rs2836534	GCTGAAGGTTTCTGGGAGCA	ACG
Rs2836535	GAGGAGTTGAGTGTTGGAACCA	ACG
Rs2836536	ATGGGTACAGGAGGAGTTGA	ACT
Rs3827208	CACCCACCCCAATCACCC	ACT
rs715860	CTTGGTTATCCTTCAGTTTCCA	ACT
rs717231	CTCATTTAGTTTATGTCTTGGTTG	ACT
Rs2836537	GCTCATACGCCCTTGGTCTCTAAT	ACT
Rs2836538	AGCTTACGTAATTCAAATCAAGT	ACT

dbSNP rs#	Extend Primer	Term Mix
Rs2836539	TTACACATTTGCACAATGAGGATA	CGT
Rs2836540	GTATCAGTGTTGAATGACTGGT	ACT
Rs2836541	TGACACCTTTGTGAATTGCTGAAC	ACT
Rs2836542	CCATTTCCTACTGAAGAAGTCCA	ACT
Rs2836543	CTTCTTCAGTAGGAAATGGCT	ACG
rs881837	GGCTCTTGAGGCCATGCC	ACG
Rs3949052	ACAATTTCTCATGTTGTAAGGATT	ACG
Rs2065307	GGAAACAGATGCCATTTACAATTT	ACG
Rs3216105	GCCTGGCTAATTTTTAAAAAAAAA	CGT
Rs2073427	CTGCCCCACATGACCCA	ACG

Genetic Analysis

[0254] Allelotyping results from the discovery cohort are shown for cases and controls in Table 31. The allele frequency for the A2 allele is noted in the fifth and sixth columns for osteoarthritis case pools and control pools, respectively, where "AF" is allele frequency. The allele frequency for the A1 allele can be easily calculated by subtracting the A2 allele frequency from 1 (A1 AF = 1-A2 AF). For example, the SNP rs2898353 has the following case and control allele frequencies: case A1 (A) = 0.79; case A2 (T) = 0.21; control A1 (A) = 0.81; and control A2 (T) = 0.19, where the nucleotide is provided in paranthesis. Some SNPs are labeled "untyped" because of failed assays.

TABLE 31

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs2898353	231	38783681	A/T	0.21	0.19	0.560
rs960818	882	38784332	A/G	0.59	0.57	0.330
rs960819	960	38784410	A/C	0.13	0.09	0.101
rs2410034	1194	38784644	A/C			
rs2836437	1530	38784980	A/G	0.14	0.14	0.956
rs2836438	1673	38785123	A/G	0.79	0.75	0.077
rs2836439	2096	38785546	C/T	0.70	0.71	0.508
rs2836440	2285	38785735	A/G	0.19	0.18	0.623
rs2226683	5873	38789323	C/T	0.79	0.76	0.312
rs2836441	7256	38790706	A/G	0.12	0.12	0.765
rs2836442	7988	38791438	A/G	0.31	0.30	0.746
rs2836443	8222	38791672	G/T	0.22	0.23	0.728
rs2836444	8381	38791831	C/T	0.19	0.20	0.807
rs3787906	8814	38792264	C/T	0.97	untyped	NA
rs3838108	8915	38792365	-/C	0.58	0.56	0.425
rs2836445	9642	38793092	A/G	0.32	0.35	0.190
rs2836446	9902	38793352	A/T	0.12	0.14	0.274
rs3787908	10619	38794069	A/G			
rs2836447	10927	38794377	C/T	0.68	0.67	0.816
rs2836448	11032	38794482	С/Т	0.12	0.14	0.235
rs2836450	14377	38797827	C/T	0.70	0.68	0.460
rs2836451	15608	38799058	C/T	0.92	0.95	0.157

P A T E N T Docket 524593008700

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs1015022	15928	38799378	C/G	0.31	0.36	0.072
rs2836452	16296	38799746	A/G	0.18	0.18	0.822
rs2836453	17598	38801048	A/T	0.02	0.02	0.836
rs3787909	19272	38802722	A/G	0.06	0.03	0.091
rs2836454	20084	38803534	A/G	0.04	0.03	0.397
rs2836455	20577	38804027	A/T	0.17	0.13	0.050
rs2155718	28051	38811501	A/G	0.78	0.78	0.950
rs2836456	29466	38812916	A/G	0.94	0.92	0.569
rs2836457	29530	38812980	C/T			
rs2836458	29987	38813437	A/G	0.48	0.46	0.455
rs2032323	30012	38813462	C/T			
rs2051400	30322	38813772	G/T	0.03	NA	NA
rs2836459	32216	38815666	C/T	0.19	0.17	0.319
rs2836460	32516	38815966	C/T			
rs2836461	32544	38815994	A/G			
rs2836462	32746	38816196	A/G			
rs2836463	33137	38816587	G/T	0.67	0.72	0.032
rs2836464	33538	38816988	A/G	0.67	0.67	0.991
rs2836465	33798	38817248	C/T	0.01	0.0.	0.001
rs2836466	33802	38817252	A/C	0.39	0.40	0.627
rs2836467	33964	38817414	C/T	0.00	0.40	0.027
rs3827204	34132	38817582	A/G	0.45	0.42	0.213
rs2836468	34210	38817660	C/T	0.13	0.14	0.678
rs3787911	34317	38817767	A/G	0.13	0.12	0.862
rs2836469	34499	38817949	C/T	0.38	0.40	0.250
rs2836470	34753	38818203	A/C	0.73	0.74	0.939
rs2212599	34845	38818295	C/T	0.66	0.64	0.474
rs2836472	35335	38818785	C/T	0.40	0.35	0.071
rs2836473	36423	38819873	С/Т	0.53	0.54	0.755
rs1888469	36450	38819900	A/G	0.45	0.49	0.175
rs1888470	36481	38819931	G/T	0.17	0.18	0.623
rs2032322	38447	38821897	C/G	0.50	0.50	0.879
rs2410035	38784	38822234	C/T	0.50	0.50	0.019
rs1573332	39387	38822837	A/T	0.57	0.58	0.609
rs2836474	39458	38822908	<u>С/Т</u>	0.33	0.35	0.564
rs2836475	39822	38823272	C/G	0.17	0.14	0.113
rs3787914	40305	38823755	C/G	0.73	0.73	0.113
rs1888471	40869	38824319	C/T	0.29	0.75	0.367
rs1888472	40926	38824376	C/T	0.62	0.63	0.818
rs1888473	41010	38824460	C/T	0.63	0.65	0.435
rs1888474	41134	38824584	C/T	0.28	0.23	0.099
rs2836476	41984	38825434	A/G	0.46	0.23	0.379
rs3787916	42172	38825622	A/T	0.45	0.43	0.314
rs2836477	42753	38826203	G/T	0.43	0.96	0.196
rs970043	43011	38826461	C/T	0.04	0.04	0.190
rs2212600	43176	38826626	A/G	0.04	0.04	0.045
rs2836478	43320	38826770	G/T	0.76	0.75	0.914
rs2836479	43381	38826831	A/T	0.76	0.43	0.670
rs1475877	44142	38827592	A/G	0.35	0.32	0.070
rs2836480	44383	38827833	A/G	0.35	0.32	0.110
rs2836481	44726	38828176		0.40	0.43	
rs2836483	45087		C/T A/G			0.434
rs2836484	45087 45141	38828537 38828591		0.47	0.45	0.393
			C/T	0.46	0.47	0.671
rs2836485	45359	38828809	C/G	0.16	0.17	0.643
rs2836486	45421	38828871	С/Т		0.00	0.750
rs2836487	45456	38828906	С/Т	0.02	0.03	0.758
rs1893199	45467	38828917	с/т	0.62	0.65	0.220

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
	4			l		
rs2836488	45486	38828936	C/T	0.25	0.23	0.360
rs1893200	45709	38829159	A/G_	0.16	0.14	0.177
rs1893201	45716	38829166	A/G	0.84	0.87	0.060
rs2836489	47626	38831076	С/Т	0.29	0.31	0.502
rs1888475	49413	38832863	A/G	0.04	0.00	0.704
rs2836490	49796	38833246	C/T	0.94	0.93	0.731
rs2836491	49962	38833412	A/G	0.10	80.0	0.219
rs2836492 rs2836493	50075 50093	38833525	C/T	0.20	0.22	0.518
rs2836494	50571	38833543 38834021	A/G C/T	0.95 0.72	0.94	0.850
rs2836495	50615	38834065	A/G	0.72	0.70 0.78	0.536 0.142
rs2898354	50780	38834230	A/G	0.82	0.78	0.728
rs3065390	50851	38834301	-/TA	0.25	0.25	0.728
rs2836496	51459	38834909	A/C	0.80	0.84	0.064
rs2836497	53193	38836643	C/T	0.65	0.65	0.004
rs2836498	53702	38837152	C/T	0.43	0.44	0.682
rs2836499	53736	38837186	A/C	0.43	0.30	0.169
rs2836500	53795	38837245	C/T	0.55	0.30	0.105
rs2836501	54109	38837559	A/T	0.36	0.34	0.234
rs2836502	54126	38837576	C/T	0.31	0.29	0.427
rs2836503	54230	38837680	A/C	0.32	0.29	0.194
rs2836504	54894	38838344	C/T	0.51	0.54	0.170
rs3787917	55455	38838905	A/G	0.56	0.60	0.177
rs2836505	55499	38838949	A/G	0.73	0.78	0.022
rs2836506	56522	38839972	C/T	0.52	0.56	0.145
rs2836507	56662	38840112	C/T	0.51	0.54	0.173
rs2836508	56954	38840404	A/G	0.53	0.56	0.376
rs2836509	57267	38840717	A/G	0.35	0.31	0.089
rs2836510	58282	38841732	A/G	0.65	0.59	0.034
rs2836511	58916	38842366	A/C	0.32	0.30	0.315
rs2212601	59544	38842994	C/G	0.45	0.46	0.568
rs2212602	59666	38843116	С/Т	0.30	0.28	0.644
rs2226682	59913	38843363	A/T	0.38	0.35	0.164
rs2836512	66846	38850296	A/G	0.94	0.94	0.896
rs2836513	67245	38850695	G/T	0.23	0.22	0.713
rs1999328	67652	38851102	A/C	0.79	0.79	0.973
rs2212603	67955	38851405	A/G	0.73	0.72	0.776
rs3787919	67966	38851416	A/C			
rs2836514	68420	38851870	A/G	0.52	0.54	0.319_
rs1023153	70226	38853676	A/G	0.09	0.09	0.985
rs1023372	70810	38854260	С/Т	0.83	0.81	0.518
rs2212604	72246	38855696	A/G_	0.68	0.71	0.237
rs2226684	73330	38856780	G/T	0.83	0.81	0.462
rs2212605	73457	38856907	C/T	0.82	0.85	0.255
rs2187307	74389	38857839	A/G	0.13	0.13	0.869
rs3065412	74638	38858088	-/AA		ļ	
rs2898355	74640	38858090	A/C	0.96	0.94	0.413
rs2836518	75358	38858808	A/C	0.10	0.12	0.261
rs3838110	75952	38859402	-/G	0.66	0.67	0.790
rs2836519	76098	38859548	A/G	0.60	0.61	0.509
rs3827207	77836	38861286	A/G	0.62	0.63	0.575
rs2836520	78449	38861899	A/C		2.50	
rs2836521	78507	38861957	G/T	0.07	0.08	0.551
rs2836522	80031	38863481	G/T	0.11	0.08	0.155
rs2836523 rs2836524	81695	38865145	C/T	0.05	0.64	0.604
こく ノス イクランバ	82775	38866225	A/G	0.05	0.04	0.321

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs3833350	84611	38868061	-/C			
rs2836526	84657	38868107	С/Т	0.83	0.86	0.292
rs2836527	84693	38868143	A/C	0.08	0.08	0.936
rs3834676	85020	38868470	-/T	0.80	0.83	0.191
rs2836528	85048	38868498	С/Т	0.84	0.87	0.089
rs3761364	85100	38868550	С/Т	0.06	0.04	0.159
rs2836529	85325	38868775	A/C	0.09	0.06	0.100
rs2836530	85452	38868902	С/Т			
rs3761366	85868	38869318	A/G	0.06	0.04	0.179
rs2836531	85936	38869386	A/G	0.49	0.50	0.729
rs2836532	85990	38869440	A/T	0.30	0.29	0.766
rs2836533	86139	38869589	С/Т	0.47	0.48	0.751
rs2836534	86497	38869947	С/Т	0.87	0.87	0.874
rs2836535	87236	38870686	A/G	0.93	0.92	0.628
rs2836536	87248	38870698	С/Т	0.86	0.84	0.474
rs3827208	87533	38870983	C/G	0.51	0.53	0.459
rs715860	87912	38871362	A/G	0.08	0.09	0.627
rs717231	88108	38871558	G/T	0.65	0.67	0.382
rs2836537	88494	38871944	A/C	0.43	0.40	0.239
rs2836538	89598	38873048	A/C			
rs2836539	90235	38873685	A/T	0.98	0.97	0.796
rs2836540	91287	38874737	G/T			
rs2836541	91359	38874809	C/T	0.07	0.06	0.403
rs2836542	92384	38875834	A/C	0.36	0.38	0.418
rs2836543	92410	38875860	С/Т	0.54	0.50	0.202
rs881837	92900	38876350	С/Т	0.29	0.28	0.639
rs3949052	94495	38877945	A/G			
rs2065307	94512	38877962	A/G			
rs3216105	97777	38881227	-/A	0.32	0.28	0.265
rs2073427	98333	38881783	C/T	0.09	0.07	0.242

[0255] The ERG proximal SNPs were also allelotyped in the replication cohorts using the methods described herein and the primers provided in Tables 29 and 30. The replication allelotyping results for replication cohort #1 and replication cohort #2 are provided in Tables 32 and 33, respectively.

TABLE 32

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs2898353	231	38783681	A/T	0.19	0.19	0.773
rs960818	882	38784332	A/G	0.59	0.57	0.600
rs960819	960	38784410	A/C	0.07	NA	0.132
rs2410034	1194	38784644	A/C			
rs2836437	1530	38784980	A/G	0.14	0.14	0.957
rs2836438	1673	38785123	A/G	0.80	0.77	0.402
rs2836439	2096	38785546	С/Т	0.68	0.73	0.089
rs2836440	2285	38785735	A/G	0.20	0.18	0.421
rs2226683	5873	38789323	С/Т	0.78	0.76	0.622
rs2836441	7256	38790706	A/G	0.12	0.12	0.946
rs2836442	7988	38791438	A/G	0.30	0.32	0.674
rs2836443	8222	38791672	G/T	0.22	0.25	0.332
rs2836444	8381	38791831	С/Т	0.20	0.20	0.908
rs3787906	8814	38792264	С/Т	0.97	untyped	NA

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs3838108	8915	38792365	-/C	0.58	0.56	0.604
rs2836445	9642	38793092	A/G	0.33	0.37	0.211
rs2836446	9902	38793352	A/T	0.13	0.15	0.481
rs3787908	10619	38794069	A/G			
rs2836447	10927	38794377	C/T	0.67	0.67	0.843
rs2836448	11032	38794482	C/T	0.13	0.15	0.521
rs2836450	14377	38797827	C/T	0.67	0.67	0.989
rs2836451	15608	38799058	C/T	0.92	0.95	0.214
rs1015022	15928	38799378	C/G	0.30	0.36	0.076
rs2836452	16296	38799746	A/G	0.18	0.18	0.982
rs2836453	17598	38801048	A/T	0.02	untyped	NA
rs3787909	19272	38802722	A/G	0.06	0.03	0.110
rs2836454	20084	38803534	A/G	0.03	0.03	0.746
rs2836455	20577	38804027	A/T	0.17	0.12	0.080
rs2155718	28051	38811501	A/G	0.78	0.79	0.747
rs2836456	29466	38812916	A/G	0.91	0.91	0.915
rs2836457	29530	38812980	C/T			
rs2836458	29987	38813437	A/G	0.48	0.47	0.626
rs2032323	30012	38813462	C/T			
rs2051400	30322	38813772	G/T	0.02	untyped	NA
rs2836459	32216	38815666	C/T	0.20	0.16	0.278
rs2836460	32516	38815966	C/T			
rs2836461	32544	38815994	A/G	T		*
rs2836462	32746	38816196	A/G			
rs2836463	33137	38816587	G/T	0.67	0.75	0.011
rs2836464	33538	38816988	A/G	0.66	0.68	0.586
rs2836465	33798	38817248	C/T			
rs2836466	33802	38817252	A/C	0.39	0.41	0.507
rs2836467	33964	38817414	C/T	T		
rs3827204	34132	38817582	A/G	0.45	0.41	0.229
rs2836468	34210	38817660	C/T	0.13	0.14	0.736
rs3787911	34317	38817767	A/G	0.14	0.13	0.856
rs2836469	34499	38817949	C/T	0.37	0.41	0.168
rs2836470	34753	38818203	A/C	0.72	0.73	0.854
rs2212599	34845	38818295	C/T	0.63	0.65	0.636
rs2836472	35335	38818785	С/Т	0.41	0.35	0.145
rs2836473	36423	38819873	C/T	0.51	0.54	0.291
rs1888469	36450	38819900	A/G	0.45	0.49	0.281
rs1888470	36481	38819931	G/T	0.17	0.17	0.949
rs2032322	38447	38821897	C/G	0.51	0.53	0.476
rs2410035	38784	38822234	C/T			
rs1573332	39387	38822837	A/T	0.56	0.60	0.279
rs2836474	39458	38822908	С/Т	0.33	0.36	0.330
rs2836475	39822	38823272	C/G_	0.18	0.13	0.049
rs3787914	40305	38823755	C/G	0.73	0.74	0.977
rs1888471	40869	38824319	C/T	0.31	0.26	0.134
rs1888472	40926	38824376	C/T	0.62	0.65	0.247
rs1888473	41010	38824460	C/T	0.63	0.67	0.210
_rs1888474	41134	38824584	C/T	0.28	0.21	0.091
rs2836476	41984	38825434	A/G	0.47	0.44	0.346
rs3787916	42172	38825622	A/T	0.46	0.41	0.171
rs2836477	42753	38826203	G/T	0.94	0.97	0.294
rs970043	43011	38826461	C/T	0.05	0.03	0.331
rs2212600	43176	38826626	A/G			
rs2836478	43320	38826770	G/T	0.75	0.75	0.983
rs2836479	43381	38826831	A/T	0.44	0.43	0.752
rs1475877	44142	38827592	A/G	0.35	0.31	0.166

dbSNP	Position in SEO ID NO:	Chromosome	A1/A2	F A2	F A2	F p-
rs#	4	Position	Allele	Case AF	Control AF	Value
rs2836480	44383	38827833	A/G	0.45	0.41	0.254
rs2836481	44726	38828176	С/Т	0.42	0.39	0.330
rs2836483	45087	38828537	A/G	0.46	0.46	0.797
rs2836484	45141	38828591	C/T	0.45	0.47	0.553
rs2836485	45359	38828809	C/G	0.18	0.18	0.993
rs2836486	45421	38828871	С/Т			
rs2836487	45456	38828906	C/T	0.03	0.03	0.955
rs1893199	45467	38828917	C/T	0.61	0.67	0.071
rs2836488	45486	38828936	С/Т	0.27	0.23	0.246
rs1893200	45709	38829159	A/G	0.16	0.13	0.203
rs1893201	45716	38829166	A/G	0.83	0.89	0.021
rs2836489	47626	38831076	C/T	0.30	0.31	0.702
rs1888475	49413	38832863	A/G			
rs2836490	49796	38833246	C/T	0.94	0.95	0.662
rs2836491	49962	38833412	A/G	0.10	0.06	0.038
rs2836492	50075	38833525	С/Т	0.20	0.22	0.651
rs2836493	50093	38833543	A/G	0.93	0.95	0.397
rs2836494	50571	38834021	C/T	0.73	0.71	0.592
rs2836495	50615	38834065	A/G	0.81	0.77	0.212
rs2898354	50780	38834230	A/G	0.24	0.24	0.827
rs3065390	50851	38834301	-/TA	0.10	0.11	0.743
rs2836496	51459	38834909	A/C	0.78	0.86	0.022
rs2836497	53193	38836643	С/Т	0.65	0.66	0.733
rs2836498	53702	38837152	C/T	0.44	0.46	0.576
rs2836499	53736	38837186	A/C	0.33	0.29	0.200
rs2836500	53795	38837245	C/T			
rs2836501	54109	38837559	ΑT	0.36	0.32	0.167
rs2836502	54126	38837576	ĊŢ	0.31	0.27	0.206
rs2836503	54230	38837680	A/C	0.32	0.28	0.173
rs2836504	54894	38838344	C/T	0.50	0.57	0.033
rs3787917	55455	38838905	A/G	0.56	0.62	0.033
rs2836505	55499	38838949	A/G	0.72	0.81	0.004
rs2836506	56522	38839972	C/T	0.52	0.58	0.093
rs2836507	56662	38840112	C/T	0.51	0.56	0.134
rs2836508	56954	38840404	A/G_	0.53	0.58	0.170
rs2836509	57267	38840717	A/G	0.35	0.30	0.136
rs2836510	58282	38841732	A/G_	0.62	0.56	0.035
rs2836511	58916	38842366	A/C	0.33	0.30	0.273
rs2212601	59544	38842994	C/G	0.44	0.46	0.675
rs2212602	59666	38843116	C/T	0.29	0.27	0.571
rs2226682	59913	38843363	A/T	0.38	0.33	0.127
rs2836512	66846	38850296	A/G	0.93	0.96	0.261
rs2836513	67245	38850695	G/T	0.23	0.22	0.692
rs1999328	67652	38851102	A/C	0.79	0.80	0.618
rs2212603	67955	38851405	A/G	0.73	0.74	0.676
rs3787919	67966	38851416	A/C			
rs2836514	68420	38851870	A/G	0.51	0.57	0.044
rs1023153	70226	38853676	A/G	0.09	0.09	0.699
rs1023372	70810	38854260	C/T	0.82	untyped	NA
rs2212604	72246	38855696	A/G	0.67	0.73	0.063
rs2226684	73330	38856780	G/T	0.82	0.82	0.992
rs2212605	73457	38856907	С/Т	0.83	0.86	0.180
rs2187307	74389	38857839	A/G	0.14	0.13	0.901
rs3065412	74638	38858088	-/AA			
rs2898355	74640	38858090	A/C	0.95	0.93	0.442
rs2836518 rs3838110	75358 75952	38858808 38859402	A/C -/G	0.11 0.65	0.14 0.68	0.248

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs2836519	76098	38859548	A/G	0.59	0.64	0.134
rs3827207	77836	38861286	A/G	0.60	0.64	0.205
rs2836520	78449	38861899	A/C			
rs2836521	78507	38861957	G/T	0.08	0.09	0.765
rs2836522	80031	38863481	G/T	0.12	0.07	0.033
rs2836523	81695	38865145	С/Т			
rs2836524	82775	38866225	A/G	0.05	0.04	0.539
rs2836525	82795	38866245	A/G	0.12	0.09	0.179
rs3833350	84611	38868061	-/C			
rs2836526	84657	38868107	С/Т	0.83	0.85	0.536
rs2836527	84693	38868143	A/C	0.08	0.07	0.444
rs3834676	85020	38868470	-/T	0.79	0.82	0.270
rs2836528	85048	38868498	С/Т	0.82	0.86	0.130
rs3761364	85100	38868550	C/T	0.08	0.05	0.132
rs2836529	85325	38868775	A/C	0.09	0.07	0.214
rs2836530	85452	38868902	С/Т			
rs3761366	85868	38869318	A/G	0.07	0.04	0.259
rs2836531	85936	38869386	A/G	0.49	0.50	0.741
rs2836532	85990	38869440	A/T	0.30	0.30	0.921
rs2836533	86139	38869589	C/T	0.48	0.48	0.843
rs2836534	86497	38869947	C/T	0.86	0.89	0.374
rs2836535	87236	38870686	A/G	0.91	0.91	0.933
rs2836536	87248	38870698	C/T	0.86	0.86	0.945
rs3827208	87533	38870983	C/G	0.51	0.55	0.183
rs715860	87912	38871362	A/G	0.07	0.07	0.893
rs717231	88108	38871558	G/T	0.65	0.68	0.506
rs2836537	88494	38871944	A/C	0.43	0.39	0.251
rs2836538	89598	38873048	A/C			
rs2836539	90235	38873685	A/T	0.98	0.98	0.910
rs2836540	91287	38874737	G/T			
rs2836541	91359	38874809	C/T	0.09	0.06	0.324
rs2836542	92384	38875834	A/C	0.37	0.41	0.365
rs2836543	92410	38875860	C/T	0.54	0.55	0.863
rs881837	92900	38876350	C/T	0.30	0.28	0.673
rs3949052	94495	38877945	A/G			
rs2065307	94512	38877962	A/G			
rs3216105	97777	38881227	/A	0.31	0.29	0.603
rs2073427	98333	38881783	C/T	0.09	0.06	0.249

TABLE 33

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value
rs2898353	231	38783681	A/T	0.22	0.21	0.629
rs960818	882	38784332	A/G	0.59	0.55	0.351
rs960819	960	38784410	A/C	0.12	0.01	
rs2410034	1194	38784644	A/C			
rs2836437	1530	38784980	A/G	0.14	0.14	0.989
rs2836438	1673	38785123	A/G	0.78	0.71	0.047
rs2836439	2096	38785546	C/T	0.72	0.68	0.265
rs2836440	2285	38785735	A/G	0.18	0.19	0.789
rs2226683	5873	38789323	С/Т	0.80	0.77	0.342
rs2836441	7256	38790706	A/G	0.11	0.12	0.559
rs2836442	7988	38791438	A/G	0.32	0.28	0.269
rs2836443	8222	38791672	G/T	0.23	0.21	0.504

dbSNP rs# Position in SEQ ID NO:		Chromosome Position	A1/A2 Ailele	F A2 Case AF	F A2 Control AF	F p- Value	
rs2836444	8381	38791831	С/Т	0.19	0.19	0.829	
rs3787906	8814	38792264	С/Т	0.97	untyped		
rs3838108	8915	38792365	-/C	0.58	0.55	0.526	
rs2836445	9642	38793092	A/G	0.30	0.32	0.722	
rs2836446	9902	38793352	Α/T	0.11	0.14	0.425	
rs3787908	10619	38794069	A/G				
rs2836447	10927	38794377	С/Т	0.68	0.68	0.908	
rs2836448	11032	38794482	С/Т	0.11	0.14	0.302	
rs2836450	14377	38797827	C/T	0.73	0.70	0.314	
rs2836451	15608	38799058	C/T	0.93	0.94	0.499	
rs1015022	15928	38799378	C/G	0.33	0.35	0.527	
rs2836452	16296	38799746	A/G	0.17	0.18	0.750	
rs2836453	17598	38801048	A/T	0.02	0.02	0.934	
rs3787909	19272	38802722	A/G	0.05	0.04	0.546	
rs2836454	20084	38803534	A/G	0.05	0.03	0.379	
rs2836455	20577	38804027	A/T	0.17	0.15	0.472	
rs2155718	28051	38811501	A/G	0.79	0.78	0.704	
rs2836456	29466	38812916	A/G	0.97	0.94	0.174	
rs2836457	29530	38812980	C/T				
rs2836458	29987	38813437	A/G	0.48	0.45	0.532	
rs2032323	30012	38813462	C/T				
rs2051400	30322	38813772	G/T	0.04	0.02	0.476	
rs2836459	32216	38815666	C/T	0.19	0.18	0.921	
rs2836460	32516	38815966	C/T				
rs2836461	32544	38815994	A/G		:		
rs2836462	32746	38816196	A/G				
rs2836463	33137	38816587	G/T	0.68	0.68	0.988	
rs2836464	33538	38816988	A/G_	0.69	0.66	0.430	
rs2836465	33798	38817248	С/Т				
rs2836466	33802	38817252	A/C	0.39	0.39	0.948	
rs2836467	33964	38817414	C/T_				
rs3827204	34132	38817582	A/G	0.45	0.43	0.614	
rs2836468	34210	38817660	C/T	0.12	0.12	0.879	
rs3787911	34317	38817767	A/G	0.12	0.11	0.901	
rs2836469	34499	38817949	С/Т	0.38	0.39	0.914	
rs2836470	34753	38818203	A/C	0.75	0.74	0.960	
rs2212599	34845	38818295	С/Т	0.71	0.64	0.095	
rs2836472	35335	38818785	С/Т	0.40	0.36	0.321	
rs2836473	36423	38819873	C/T	0.56	0.53	0.433	
rs1888469	36450	38819900	A/G	0.45	0.49	0.399	
rs1888470	36481	38819931	G/T	0.16	0.19	0.356	
rs2032322	38447	38821897	C/G	0.50	0.45	0.190	
rs2410035	38784	38822234	C/T	0.50	0.50		
rs1573332	39387	38822837	A/T	0.58	0.56	0.554	
rs2836474 rs2836475	39458	38822908	C/T	0.34	0.33	0.762	
	39822	38823272	C/G	0.15	0.14	0.817	
rs3787914 rs1888471	40305 40869	38823755	C/G C/T	0.73 0.28	0.73 0.27	0.934	
rs1888472	40869	38824319 38824376				0.760	
rs1888473	41010	38824460	<u>С/Т</u> С/Т	0.63 0.63	0.58	0.302	
rs1888474	41134	38824584	C/T	0.63	0.62 0.26	0.683	
rs2836476	41984	38825434	A/G			0.853	
rs3787916	42172		A/G A/T	0.46	0.45	0.838	
rs2836477	42753	38825622		0.44	0.45	0.827	
rs970043	43011	38826203	<u> </u>	0.94	0.95	0.505	
rs2212600	43176	38826461		0.04	0.04	0.848	
1322 12000	L. 43170	38826626	A/G_				

dbSNP	Position in SEQ ID NO:	Chromosome	A1/A2	F A2	F A2	F p-	
rs#	4	Position	Allele	Case AF	Control AF	Value	
rs2836479	43381	38826831	A/T	0.44	0.43	0.801	
rs1475877	44142	38827592	A/G	0.35	0.33	0.450	
rs2836480	44383	38827833	A/G	0.47	0.44	0.444	
rs2836481	44726	38828176	С/Т	0.41	0.41	0.999	
rs2836483	45087	38828537	A/G	0.48	0.44	0.306	
rs2836484	45141	38828591	С/Т	0.46	0.46	0.939	
rs2836485	45359	38828809	C/G	0.15	0.17	0.483	
rs2836486	45421	38828871	С/Т				
rs2836487	45456	38828906	C/T	NA NA	0.03	NA	
rs1893199	45467	38828917	С/Т	0.63	0.62	0.868	
rs2836488	45486	38828936	С/Т	0.23	0.22	0.913	
rs1893200	45709_	38829159	A/G	0.17	0.16	0.653	
rs1893201	45716	38829166	A/G	0.85	0.85	0.947	
rs2836489	47626	38831076	С/Т	0.27	0.30	0.597	
rs1888475	49413	38832863	A/G				
rs2836490	49796	38833246	C/T	0.94	0.91	0.196	
rs2836491	49962	38833412	A/G	0.09	0.11	0.493	
rs2836492	50075	38833525	С/Т	0.20	0.21	0.669	
rs2836493	50093	38833543	A/G	0.96	0.93	0.211	
rs2836494	50571	38834021	C/T	0.70	0.69	0.697	
rs2836495	50615	38834065	A/G	0.82	0.80	0.510	
rs2898354	50780	38834230	A/G	0.27	0.26	0.846	
rs3065390	50851	38834301	-/TA	0.11	0.10	0.936	
rs2836496	51459	38834909	A/C	0.81	0.80	0.746	
rs2836497	53193	38836643	C/T	0.66	0.64	0.756	
rs2836498	53702	38837152	C/T	0.41	0.40	0.844	
rs2836499	53736	38837186	A/C	0.32	0.30	0.567	
rs2836500	53795	38837245	С/Т				
rs2836501	54109	38837559	A/T	0.36	0.36	0.917	
rs2836502	54126	38837576	C/T	0.31	0.32	0.738	
rs2836503	54230	38837680	A/C	0.32	0.31	0.730	
rs2836504 rs3787917	54894	38838344	C/T	0.52	0.50	0.620	
	55455	38838905	A/G	0.57	0.56	0.759	
rs2836505 rs2836506	55499 56522	38838949 38839972	A/G	0.74	0.74	0.982	
rs2836507	56662	38840112	C/T C/T	0.52	0.53	0.907	
rs2836508	56954	38840404	A/G	0.51 0.53	0.52	0.785	
rs2836509	57267	38840717	A/G	0.35	0.52 0.33	0.709 0.453	
rs2836510	58282	38841732	A/G	0.55			
rs2836511	58916	38842366	A/C	0.32	0.65 0.31	0.457 0.832	
rs2212601	59544	38842994	C/G	0.32	0.31	0.832	
rs2212602	59666	38843116	C/T	0.45	0.30	0.717	
rs2226682	59913	38843363	A/T	0.39	0.38	0.801	
rs2836512	66846	38850296	A/G	0.94	0.38	0.801	
rs2836513	67245	38850695	G/T	0.34	0.23	0.184	
rs1999328	67652	38851102	A/C	0.80	0.23	0.487	
rs2212603	67955	38851405	A/G	0.74	0.70	0.289	
rs3787919	67966	38851416	A/C			<u> </u>	
rs2836514	68420	38851870	A/G	0.53	0.49	0.363	
rs1023153	70226	38853676	A/G	0.08	0.09	0.611	
rs1023372	70810	38854260	C/T	0.84	0.81	0.315	
rs2212604	72246	38855696	A/G	0.69	0.68	0.641	
rs2226684	73330	38856780	G/T	0.85	0.81	0.216	
rs2212605	73457	38856907	C/T	0.82	0.82	0.927	
rs2187307	74389	38857839	A/G	0.12	0.13	0.685	
rs3065412	74638	38858088	-/AA		1		
rs2898355	74640	38858090	A/C	0.96	0.96	0.893	

dbSNP rs#	Position in SEQ ID NO:	Chromosome Position	A1/A2 Allele	F A2 Case AF	F A2 Control AF	F p- Value	
rs2836518	75358	38858808	A/C	0.10	0.11	0.823	
rs3838110	75952	38859402	-/G	0.68	0.65	0.457	
rs2836519	76098	38859548	A/G	0.60	0.57	0.357	
rs3827207	77836	38861286	A/G	0.64	0.61	0.449	
rs2836520	78449	38861899	A/C				
rs2836521	78507	38861957	G/T	0.06	0.07	0.625	
rs2836522	80031	38863481	G/T	0.09	0.10	0.810	
rs2836523	81695	38865145	С/Т				
rs2836524	82775	38866225	A/G	0.05	0.04	0.419	
rs2836525	82795	38866245	A/G	0.10	0.14	0.132	
rs3833350	84611	38868061	-/C				
rs2836526	84657	38868107	С/Т	0.83	0.86	0.342	
rs2836527	84693	38868143	A/C	0.08	0.11	0.209	
rs3834676	85020	38868470	-/T	0.81	0.84	0.442	
rs2836528	85048	38868498	C/T	0.86	0.88	0.350	
rs3761364	85100	38868550	С/Т	0.04	0.03	0.643	
rs2836529	85325	38868775	A/C	0.08	0.06	0.271	
rs2836530	85452	38868902	C/T				
rs3761366	85868	38869318	A/G	0.06	0.04	0.473	
rs2836531	85936	38869386	A/G	0.49	0.49	0.915	
rs2836532	85990	38869440	A/T	0.31	0.28	0.446	
rs2836533	86139	38869589	С/Т	0.47	0.48	0.810	
rs2836534	86497	38869947	С/Т	0.88	0.84	0.149	
rs2836535	87236	38870686	A/G	0.94	0.92	0.378	
rs2836536	87248	38870698	C/T	0.86	0.82	0.311	
rs3827208	87533	38870983	C/G	0.51	0.49	0.598	
rs715860	87912	38871362	A/G	0.09	0.11	0.463	
rs717231	88108	38871558	G/T	0.65	0.67	0.588	
rs2836537	88494	38871944	A/C	0.42	0.41	0.694	
rs2836538	89598	38873048	A/C				
rs2836539	90235	38873685	A/T	0.97	0.97	0.749	
rs2836540	91287	38874737	G/T				
rs2836541	91359	38874809	C/T	0.05	0.05	0.895	
rs2836542	92384	38875834	A/C	0.34	0.34	0.998	
rs2836543	92410	38875860_	С/Т	untyped	0.43	NA	
rs881837	92900	38876350	C/T	0.29	0.28	0.811	
rs3949052	94495	38877945	A/G				
rs2065307	94512	38877962	A/G				
rs3216105	97777	38881227	-/A	0.32	0.28	0.273	
rs2073427	98333	38881783	C/T	0.08	0.07	0.700	

[0256] Allelotyping results were considered particularly significant with a calculated p-value of less than or equal to 0.05 for allelotype results. These values are indicated in bold. The allelotyping p-values were plotted in Figure 1D for the discovery cohort. The position of each SNP on the chromosome is presented on the x-axis. The y-axis gives the negative logarithm (base 10) of the p-value comparing the estimated allele in the case group to that of the control group. The minor allele frequency of the control group for each SNP designated by an X or other symbol on the graphs in Figure 1D can be determined by consulting Table 31. For example, the left-most X on the left graph is at position 38783681. By proceeding down the Table from top to bottom and across the graphs from left to right the allele frequency associated with each symbol shown can be determined.

[0257] To aid the interpretation, multiple lines have been added to the graph. The broken horizontal lines are drawn at two common significance levels, 0.05 and 0.01. The vertical broken lines are drawn every 20kb to assist in the interpretation of distances between SNPs. Two other lines are drawn to expose linear trends in the association of SNPs to the disease. The light gray line (or generally bottommost curve) is a nonlinear smoother through the data points on the graph using a local polynomial regression method (W.S. Cleveland, E. Grosse and W.M. Shyu (1992) Local regression models. Chapter 8 of Statistical Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth & Brooks/Cole.). The black line provides a local test for excess statistical significance to identify regions of association. This was created by use of a 10kb sliding window with 1kb step sizes. Within each window, a chi-square goodness of fit test was applied to compare the proportion of SNPs that were significant at a test wise level of 0.01, to the proportion that would be expected by chance alone (0.05 for the methods used here). Resulting p-values that were less than 10⁻⁸ were truncated at that value.

[0258] Finally, the exons and introns of the genes in the covered region are plotted below each graph at the appropriate chromosomal positions. The gene boundary is indicated by the broken horizontal line. The exon positions are shown as thick, unbroken bars. An arrow is place at the 3' end of each gene to show the direction of transcription.

Example 8

In Vitro Production of Target Polypeptides

[0259] cDNA is cloned into a pIVEX 2.3-MCS vector (Roche Biochem) using a directional cloning method. A cDNA insert is prepared using PCR with forward and reverse primers having 5' restriction site tags (in frame) and 5-6 additional nucleotides in addition to 3' gene-specific portions, the latter of which is typically about twenty to about twenty-five base pairs in length. A Sal I restriction site is introduced by the forward primer and a Sma I restriction site is introduced by the reverse primer. The ends of PCR products are cut with the corresponding restriction enzymes (i.e., Sal I and Sma I) and the products are gel-purified. The pIVEX 2.3-MCS vector is linearized using the same restriction enzymes, and the fragment with the correct sized fragment is isolated by gel-purification. Purified PCR product is ligated into the linearized pIVEX 2.3-MCS vector and E. coli cells transformed for plasmid amplification. The newly constructed expression vector is verified by restriction mapping and used for protein production.

[0260] E. coli lysate is reconstituted with 0.25 ml of Reconstitution Buffer, the Reaction Mix is reconstituted with 0.8 ml of Reconstitution Buffer; the Feeding Mix is reconstituted with 10.5 ml of Reconstitution Buffer; and the Energy Mix is reconstituted with 0.6 ml of Reconstitution Buffer. 0.5 ml of the Energy Mix was added to the Feeding Mix to obtain the Feeding Solution. 0.75 ml of Reaction Mix, 50 μl of Energy Mix, and 10 μg of the template DNA is added to the E. coli lysate.

[0261] Using the reaction device (Roche Biochem), 1 ml of the Reaction Solution is loaded into the reaction compartment. The reaction device is turned upside-down and 10 ml of the Feeding Solution is loaded into the feeding compartment. All lids are closed and the reaction device is loaded into the RTS500 instrument. The instrument is run at 30°C for 24 hours with a stir bar speed of 150 rpm. The pIVEX 2.3 MCS vector includes a nucleotide sequence that encodes six consecutive histidine amino acids on the C-terminal end of the target polypeptide for the purpose of protein purification. Target polypeptide is purified by contacting the contents of reaction device with resin modified with Ni²⁺ ions. Target polypeptide is eluted from the resin with a solution containing free Ni²⁺ ions.

Example 9

Cellular Production of Target Polypeptides

[0262] Nucleic acids are cloned into DNA plasmids having phage recombination cites and target polypeptides are expressed therefrom in a variety of host cells. Alpha phage genomic DNA contains short sequences known as attP sites, and *E. coli* genomic DNA contains unique, short sequences known as attB sites. These regions share homology, allowing for integration of phage DNA into *E. coli* via directional, site-specific recombination using the phage protein Int and the *E. coli* protein IHF. Integration produces two new att sites, L and R, which flank the inserted prophage DNA. Phage excision from *E. coli* genomic DNA can also be accomplished using these two proteins with the addition of a second phage protein, Xis. DNA vectors have been produced where the integration/excision process is modified to allow for the directional integration or excision of a target DNA fragment into a backbone vector in a rapid *in vitro* reaction (GatewayTM Technology (Invitrogen, Inc.)).

[0263] A first step is to transfer the nucleic acid insert into a shuttle vector that contains attL sites surrounding the negative selection gene, ccdB (e.g. pENTER vector, Invitrogen, Inc.). This transfer process is accomplished by digesting the nucleic acid from a DNA vector used for sequencing, and to ligate it into the multicloning site of the shuttle vector, which will place it between the two attL sites while removing the negative selection gene ccdB. A second method is to amplify the nucleic acid by the polymerase chain reaction (PCR) with primers containing attB sites. The amplified fragment then is integrated into the shuttle vector using Int and IHF. A third method is to utilize a topoisomerase-mediated process, in which the nucleic acid is amplified via PCR using gene-specific primers with the 5' upstream primer containing an additional CACC sequence (e.g., TOPO® expression kit (Invitrogen, Inc.)). In conjunction with Topoisomerase I, the PCR amplified fragment can be cloned into the shuttle vector via the attL sites in the correct orientation.

[0264] Once the nucleic acid is transferred into the shuttle vector, it can be cloned into an expression vector having attR sites. Several vectors containing attR sites for expression of target polypeptide as a

native polypeptide, N-fusion polypeptide, and C-fusion polypeptides are commercially available (e.g., pDEST (Invitrogen, Inc.)), and any vector can be converted into an expression vector for receiving a nucleic acid from the shuttle vector by introducing an insert having an attR site flanked by an antibiotic resistant gene for selection using the standard methods described above. Transfer of the nucleic acid from the shuttle vector is accomplished by directional recombination using Int, IHF, and Xis (LR clonase). Then the desired sequence can be transferred to an expression vector by carrying out a one hour incubation at room temperature with Int, IHF, and Xis, a ten minute incubation at 37°C with proteinase K, transforming bacteria and allowing expression for one hour, and then plating on selective media. Generally, 90% cloning efficiency is achieved by this method. Examples of expression vectors are pDEST 14 bacterial expression vector with att7 promoter, pDEST 15 bacterial expression vector with a T7 promoter and a N-terminal GST tag, pDEST 17 bacterial vector with a T7 promoter and a Nterminal polyhistidine affinity tag, and pDEST 12.2 mammalian expression vector with a CMV promoter and neo resistance gene. These expression vectors or others like them are transformed or transfected into cells for expression of the target polypeptide or polypeptide variants. These expression vectors are often transfected, for example, into murine-transformed a adipocyte cell line 3T3-L1, (ATCC), human embryonic kidney cell line 293, and rat cardiomyocyte cell line H9C2.

[0265] Modifications may be made to the foregoing without departing from the basic aspects of the invention. Although the invention has been described in substantial detail with reference to one or more specific embodiments, those of skill in the art will recognize that changes may be made to the embodiments specifically disclosed in this application, yet these modifications and improvements are within the scope and spirit of the invention, as set forth in the claims which follow. All publications or patent documents cited in this specification are incorporated herein by reference as if each such publication or document was specifically and individually indicated to be incorporated herein by reference.

[0266] Citation of the above publications or documents is not intended as an admission that any of the foregoing is pertinent prior art, nor does it constitute any admission as to the contents or date of these publications or documents. U.S. patents and other publications referenced herein are hereby incorporated by reference.

Nucleotide and Amino Acid Sequence Embodiments

[0267] Table A includes information pertaining to the incident polymorphic variant associated with osteoarthritis identified herein. Public information pertaining to the polymorphism and the genomic sequence that includes the polymorphism are indicated. The genomic sequences identified in Table A may be accessed at the http address www.ncbi.nih.gov/entrez/query.fcgi, for example, by using the publicly available SNP reference number (e.g., rs756519). The chromosome position refers to the

position of the SNP within NCBI's Genome Build 34, which may be accessed at the following http address: www.ncbi.nlm.nih.gov/mapview/map_search.cgi?chr=hum_chr.inf&query=. The "Contig Position" provided in Table A corresponds to a nucleotide position set forth in the contig sequence (see "Contig Accession No."), and designates the polymorphic site corresponding to the SNP reference number. The sequence containing the polymorphisms also may be referenced by the "Nucleotide Accession No." set forth in Table A. The "Sequence Identification" corresponds to cDNA sequence that encodes associated target polypeptides (e.g., ELP3). The position of the SNP within the cDNA sequence is provided in the "Sequence Position" column of Table A. If the SNP falls within an exon, the corresponding amino acid position (and amino acid change, if applicable) is provided as well. Also, the allelic variation at the polymorphic site and the allelic variant identified as associated with osteoarthritis is specified in Table A. All nucleotide and polypeptide sequences referenced and accessed by the parameters set forth in Table A are incorporated herein by reference.

Table A

RS_ID	Chrom- osome	Chrom Position	Contig Accession No. [1]	Contig Position	Nucleotide Accession No. [2]	Sequence Position	Amino Acid Posi- tion		Locus ID	A [3]	Allelic Variabllity	OA Assoc. Allele
rs756519	6	170707371	Hs6_7740_34:11	520890	NM_002793	intron		PSMB1	5689	F	[C/T]	Т
rs1042327	6	does not map			NM_003194	exonic		TBP	6908	R	[T/C]	С
rs8770	6	170743040	Hs6_7740_34:11	556559	NM_002598	mrna-utr		PDCD2	5134	R	[C/T]	С
rs1563055	8	27976377	Hs8_23822_34:16	6328752	NM_018091	intron		ELP3	55140	F	[C/T]	T
rs912428	13	44965904	Hs13_24680_34:1	28147904	NM_015116	intron		CHDC1	23143	R	[T/C]	T
rs1888475	21	38832863	Hs21_11669_34:9	25572863	NM_004449	intron		ERG	2078	F	[A/G]	Α

[1] Contig Accession Number which can be found in the NCBI Database:

ttp address: www.ncbi.nih.gov/entrez/query.fcgi

[2] <u>Sequence Identification or Nucleotide Accession Number which can be found in the NCBI</u> Database:

http address: www.ncbi.nih.gov/entrez/query.fcgi

[3] "A" column is the sequence orientation ("F" is forward, "R" is reverse).

[0268] Following are genomic nucleotide sequences for a *chrom 6* region (SEQ ID NO: 1), an *ELP3* region (SEQ ID NO: 2), a *CHDC1* region (SEQ ID NO: 3) and an *ERG* region (SEQ ID NO: 4). The following nucleotide representations are used throughout: "A" or "a" is adenosine, adenine, or adenylic acid; "C" or "c" is cytidine, cytosine, or cytidylic acid; "G" or "g" is guanosine, guanine, or guanylic acid; "T" or "t" is thymidine, thymine, or thymidylic acid; and "I" or "i" is inosine, hypoxanthine, or inosinic acid. Exons are indicated in italicized lower case type, introns are depicted in normal text lower case

type, and polymorphic sites are depicted in bold upper case type. SNPs are designated by the following convention: "R" represents A or G, "M" represents A or C; "W" represents A or T; "Y" represents C or T; "S" represents C or G; "K" represents G or T; "V" represents A, C or G; "H" represents A, C, or T; "D" represents A, G, or T; "B" represents C, G, or T; and "N" represents A, G, C, or T.

chrom 6 genomic sequence (SEO ID NO: 1)

>6:170689051-170779900

```
tggcctagcc caggccatct gccacacttg catagaatgt ttttcctatg gaagcttatt
61
       ttggaatata atcacagagg aaattgagat aaacaggett tteettteet ggacaattet
121
       tagagataaa atctactgca gaaggcaaga cacttaactt ctgcccagaa actgatgtca
181
       cgtggttaac gtgtggtggc cacatcaact gaagccgaca gtgacaccRa gtcagcatcc
241
       tgggtgcagc tgccaccctg tcactctcat cacattccac cattcccagg ccacagaggc
301
       aagaggatac tctcaaaact tagagatagc tttagtttta ggaaaatagg acggaaaaat
361
       atcttatgcc tcagaataat aggtqqaatt caattqctct tcaagqcagc acaaqcataa
421
       tgtccaaata ggcttacaaa ggctttccct agattgtggg tgattgatct gtggcaggct
481
       attaagggaa gttcaggatg gccaggctat tttgaggctg atatcttgga gaaccctctc
       tetetectge aaaceaetee ettggeatea eteteagaga caagetgetg geetgtgeag
541
601
       cccacaccct gactcagggt ggcatttttc tcaagccctc tccttttaag gccatcaggg
661
       atctgagccc ccatgggtag ggaacaggcc aggcagctgg agcgtacaag agtcaccact
721
       acgaatagct tgactctgaa gtttctaaaa gggaacctgg accacctgag cctccccaga
781
       agacgcctca gtcacattta ccctgctgct gccattagta tcaggcagag ccatctgtac
       acgcgggaac atgaagggca ctttgcaaga cttcagctgg tgggttaaat gtggctcaca
841
901
       gctgtcgctg aggcacactc cccaaaatag tctcaacaca gcagtaggaa agatgacaca
       gaggtgactg agactaatag caatacagta ttactattat cccttgaata aagtatgtaa
961
1021
       atcaaggtgt taaccatcag gagcagagaa aagagagtgt taagtatagg ggcttagctg
1081
       taaaaagaat cagaagaaaa agaaaaaaaa accctcagtt aaaqqgctag atagtctaga
1141
       aaatttgtta ggtatttata ttattaacac agagcagggt aacacgatag aatagaaacc
1201
       tgttacaaac aggcaacaac aacaacaaaa tagacaacaa ccctagaaga aaaatgcctt
1261
       gaaggaaaag ctggaatact gtgagagact taccagtggc ctgtctgcgt gtaactaact
1321
       cctcatcccg acttggtcac gcaaaggaca ggtgaccata cctccaggaa ggtggaaaqq
1381
       ggccctacat gagtgagagg ctcaagtcct gcccaagtgg aatctgtgat tctgtgatct
1441
       aaagaaagtt tgtggctatt tttagaaact aaagtttatc tcatattgac acaaactcaa
1501
       aaatcaatga tactttgaga tatgtcatat cacaaaaaag atttctcctc tagtacatta
1561
       tcatttaacc aatacaaaca ggtctgggcc aggtgctgtg gttcatgcct ataaacccag
1621
       cactttgaga ggctgagggg ggtggatccc tagagcccag gagtttcagg ccagcctggg
1681
       caacatggtg aaactctgtc tctaccaaaa gtacaaaaat tagccaggta tagtggcaca
1741
       cacctgtagt tccagctact aaggaggcta aggtgagagg accactgagc ccagggacgt
1801
       agagactacg gtgagacatg attataccac tgcactccag cctgggcaac agagggagac
1861
       cttctctcaa aaagaaaaga aaagaaaaag aaacaggtct aatttgttca tctaagcaat
       gataagattt atatgaacat aagttgcttt attgatgaaa aattgaacat aatctaatca
1921
1981
       agcctctaaa tttaactgcc aatttatagg aaaagacagg acagaaccta caggaatgca
2041
       atcatttata tctagaatgt ggaagattct gcatgacaaa cgacttggat tcttcaacat
2101
       gtaaatttca aggaaagaga gagagagaga gataaaaagg cttgtttcca gatttgaatg
2161
       acatgttaat agacatttat gagacaatca aggaaatttg aacatggact gcatattgaa
2221
       tgttgaggga ttatagttaa tttttaaagg tacaattgtg atactgtgat tatattttta
2281
       aatgcgatca ttatctttta ggagcactaa aatatttact aataaaatta taggatttac
2341
       ttcaaaataa acaacgataa taagattacc atgaatagtg gtgggtgaaa tatacaaggg
2401
       gcttatttga catttccata ataaaaaaca cgaatgaata acaaagcatt atagaaattc
2461
       aagtaaaaaa tagctcgtgc ttagtaataa atcaaagcgt gctggacact ttaaataata
2521
       aacaaagata agatettgee etetagaaaa eagetetaat teaggaeaga ettgeteaca
2581
       tcagatggaa gagtcagaat gagatgtgct gagtagaagg tagaacggtc gctagcagag
2641
       ggtgggaagg tggtatgtgt gggggagagg agaaaqaqaq qttgattaat qqqtacaaac
2701
       agacagttag atggaaggag tgagatctgt tgttcgacag tagagtaggg tgactacagt
2761
       taacaacaat atttgcatat ttcaaaaatag ctagaagaca ggacttggaa tgttcccaac
2821
       acatagaaag gtgatgaact caaggtgctg aacaccccaa ataccctgac ttgatcatta
2881
       tgcaataaca aaatatcaca tgtaccctgt aaatatgtac aaatactaca tatcaattta
2941
       aaaattttca cacaagaatg agatgtgctq atqcatgtqq agqccctagc tccagactqq
3001
       gtgtaaactt caagccactg aagatcttat ttccaaggtt tttctacttt gaaattccaa
```

```
3061
       acttattttt ctagcagatt tataagggac acgggacaac ataaacttgt taaagtgaca
3121
       agagaaagta aatatgccct taaatttata ccaaatcttc tgacaagtct tgactgataa
3181
       ttgtttcctt caaatttgtg aaaaacatga gagaaaacgt gtttgtatct catttttaag
3241
       tgtggacact tggcattgct cacggcttcc aacggaataa aatagggctt agttgttttc
3301
       3361
       acatattggc tctaagcatt tattagccca ataattttta gtgaaactct ccacttctca
3421
       atatettttg cegtattaga tttttgtaac atgtgetaaa ggttaaaaca eetttteece
3481
       ttcatgaagc ctgagagaag tcggttttct gggttttctc aagacaaccc agaggttttg
3541
       tatacgtctg tctaaaaagt ctcagatttt tcttgctaat tgtgcacctt cataatcaag
3601
       cagacaaatc agaatattat tttggtgagg ccatcatcta aactaacagt ctttatgtac
3661
       agaagcagca ctgaccgggt tcatactcct cagttagcaa gtcaacatct tcctcctgcc
3721
       agcaacccat cccaqaatat ctqtqqctta ttaatactta tqaaaacaac agtcttcatt
3781
       atttactaat taggagatga tcagatgtat ctattgatag caacaggcta tttaaaagtq
       aaataatcta tcaaacagat tttttatcaa ctcaaagttt ccagttagat atttttcatt
3841
3901
       aaattgattg ctagattgca gccacaatca aacttaaqta ttataaqaaq tttqqttqqt
3961
       cttttaaaat catgcaaaaa ttcaaggggt gctattaaat atagaattcc aaatgtataa
       agtottgtcc taaaatggtc aataaaatga accagtccac tggttcattt atagggggcc
4021
4081
       agtccactac attaatttgg atgttcttcg tctgcatttt catgttttca cacacctgca
       gtcattgtgt acaattctgg actcttgatt ttcatttagc attctgcgtt aatattctga
4141
4201
       catgftqctq ccaqqtcttc atqqccacca cttttaatqq ccaqaaaata tttcatqtaq
4261
       tgaacatttc ataaattact taaccatgtc ccaattattg gttatttaag gaatttaaaa
4321
       ctaaaacacc actcttgtga caaagttctg atgtatccag atgtactcat gccaagtcgt
4381
       ccatcaatag ttctgctaaa ccctgtcaga gcccttttct gaaqqqaacc aqqaaacatc
4441
       tcacaacaag aagcttaagg cctctacaaa atgacttcag ggttaggatt tcaatttcac
4501
       tctgaggcac atacaggaac cactaggtta tttggcttag aatggaggga agtgtcattt
4561
       tgtttctgtt cggcctgcag gaagctcctt cccaggccct gcattgccaa ttgaacaatt
4621
       gaacaattct cattgttcaa ttcccaccta tgagtgagaa catgcattgt ttggtttcct
4681
       gtccttgcga tagtttactg agaatgatgg tttccagctt catccatgtc cctacgaagg
4741
       acatgaactc atcattttt atggctgcat agtattccat ggtgtatatg tgccacattt
4801
       tottaatoca gtotatoact gatggacatt tgggttggtt ccaagtottt gotattgtga
4861
       atagtaccgc aataaacata cgtgtgcatg tgtctttata gtgcctagaa cataatagga
4921
       gctccagaaa tactgttgaa aaaatgaata aattgagcac actaagtgtc tgaataaaat
4981
       accotgacca taccoctaaa taaacaacat aaataagcaa atttcaattt ctcggaaaag
5041
       ttatatttta gtgtccaatg ctcttgttat gcagtaatgg catctttgat tattcatatt
5101
       cgttagagct tccagaaagg agtattgcaa atcacacggg cctctgactc tcatgaccaa
5161
       atccccctgt cactgtcctt gttctctgat ccttcctctg ggccctcgga aatgctggtc
5221
       tccatcaaat tgctgtaaac agttttcaga aaaagttctc tttgggaagt ttcaagagaa
       aaccacaaat ttcctggaaa tgcttcatgc ttcatgacat ttaaggcttt cagagccttg
5281
5341
       aacttcagga gcaagatagc tggtaggtct tctggaggtc ttgcctaacc tgagaaggtc
5401
       ccagagaatt tgtgcataga acctcccagg aagcagtaag acaggctggt gcagtcccac
5461
       aggatgagaa aggtaagagc ttaccaatgt ctccagtttt gtaaatgaat qttcttagca
5521
       tttttggtga ggagaaaaaa atatcaaacc catcacagac agatcagcag tctcttgacc
5581
       taggtcactc aaggggttct caacaatcaa ttctaaaatg caagtgaaaa atgtcaatat
5641
       aaggctagac acaggggctc atgcctgtaa ttccaacact ttggaaggcc aaggcagacc
5701
       tagaactttg taaatctgag attttgctcc atgactttgt ggatactttc tactaatacc
5761
       acctacacaa aatcttcaac caagaatctt aattgcattt atcaacttgt qtccttaqat
5821
       cataacattt agattcattt gaaagaaatt tattgaagta aaagaaataa gaagaacttg
5881
       5941
       actgaaaccc agagagagag agagaagtag aaaaactaaa cactgaqtct taatctqttc
6001
       tgccactagt cagcagcctg cacagagcac tttaatqtat tctctgtcca ttagtttcct
6061
       tgtttatgaa agtatatagc tccaaaaaaa ttctgtgttc tgatttttgt ctctccaaac
6121
       cacaaccagt cocctgetee etteteet ectecteet ettetete tttetetet
6181
       tetecetgte tetetete tetetetet tececettte eeteteece acceaceae
       ctcccaaccc ctgcatacac ctaggacacc tccagcatag gttactacca attttgcaca
6241
6301
       cctccagcaY aggttactac caattttgct gggtttatct ccttctgtcc tttccgcttt
6361
       gatctgagga atagctgaga tttaggacag caacaaggtg tacctccttc caggttataa
6421
       aacaggatta atqattaggc tcaaggcccc ttcctagtca ctcagtaaag tctgtgcact
6481
       ggaaaactgt ggtagcagtt ttctgagcat tagaaaactg tggttctcac agaggctgga
6541
       tgagtcaaca ctgccatctg gcggcctctt ggagggtgat gtggagcctg gctttcattg
6601
       aagaatgaag gtcccttgat ttcctgaccc tcagccaact ctccagcagc ttctcactqc
6661
       agaagaggtc aggccattgg tcagcttgag gacaaagtgg gaggatcaca ctttcgatca
6721
       cctatacttt ctaacaatca gccctgtgga catctgctca cgccccatgc tgtttttaaa
6781
       atattttccc attatagaaa tatttttcaa agatgattca caagctccag gagccattca
6841
       gacaagggag agcaaattgg cagctaaact cattcaagag tggagcagat gcacatgaag
```

```
6901
       ctctgtctgg cggaggaggc acaagacacc gagcctggct gggagggtgc tcatgacaag
6961
       agtggggcca caggcctctc ctttcattgg acatagtggc catacaaagt ggctgccttg
7021
       aaatgcaccc acatacacta toggtottoc oggtotaggg agaaaactag cacagtatgt
7081
       caacagataa atcagcgcaa tcctgtgggt gaagcagtgc acccatactc ttcattctgc
7141
       tgagcggaac tcaagggtga gacacttgta ttcctaactc cacttgcctt caggctcctc
7201
       caacattcca aattgcccat ggacagagct actacccctc catagaagtg acaacttgaa
7261
       ataaaagatt tgaagctcct tcccacgttt agacccaggc ctgctgctag gaactccaga
7321
       ggagggatgg aaagaagttt gcactgctca cagatttaat gtttctctca caaccagaag
7381
       taggcagcag gatggatttt caatcaacac taacaaacgg atcactcctg ggtcctttaa
7441
       acaagttcca tgtctcttta taggttttag gtgcctccta tgtgttcaga cttcgtataa
7501
       tggatatata agaaaagtaa atgggagggg caatatttaa gaaataacag caaacaattg
7561
       cattcatatt taatataaac tacaagtatc aagttaatag acgctcagaa gaaattcata
7621
       aaatctagaa aagttgggaa aatctcaata gagaaaataa aacttgatct ggactttaag
7681
       agtatgattt ataaagttca aggggacaqt acacaaaqtc agacaatgtt agctgaatca
7741
       ctgaagaatg agaatatcac acccacttaa caaagcagcc cagctagtta aagaagtatg
7801
       ttgaagaggt agggagttgg gtgggggagg cgaggatggc gtggagggat ctgaaaacta
7861
       tcaaccttaa ataatgagat ttagaaaata tgattaagta qagggttaat tcgagtgcag
7921
       agcttgagaa tggccacctg gaaacactga ctctaaacca gtaaggttaa tgtttcaaag
7981
       tggagaagtt aaggtttcac ttagaaattt tagcaggatc acattttcca tacaagacca
8041
       gtgcattcgc cacagcaatt tgattggtta tagattgctg ctcattccaa gattacttta
8101
       ttactctgtg cggaggagta gtgatttgag gggtcttatg tctggtgcct ttttgtcttg
8161
       tttacagggg aaaaggcaga agttgcgcct gcatgccgca taactcaggc tctgcatagc
8221
       cacatgtett teaaggetea gaataatttg aagtteeaac agetttaagt ttgaattaat
       ttcacaaagc ggagaaagac ttggacttcg tgcagtaatg aagaccaccg atgggtactg
8281
8341
       aacagctctg gtgggtttgc actcagagaa aggagcctaa gatgcagaag gtgcagtgag
8401
       gcagcagcca tctgctcttg tgctgctgag cagagcatga tgggctgtca ccgctcacgc
       gtgttcttta cctgctgact cacctggcgg catgggctgc atatggggtc ccagctcctt
8461
8521
       aagctcctgt caggcccttc tgcaacttct cccaagctct tgggccaggt gcatgtctag
       ccatgaaaaa ggaggccagt acctgatcac taagtgaaag ttctaaggta gtgggactgc
8581
8641
       cacaggtgtc ccccatggtc ccaggtcaca atccagtctg ttgaccctcc tccttttgca
8701
       ccatcgcccc tttgacagcc tgtgctatgg gttttaggct cctagcacca aacagaaaca
8761
       ggcttatata gatcatctaa tcagctcttc ttatgtgagg ccgaactctg taataaatct
8821
       ttttatgtct cctagggctt ctctgattga acctgtctga tgaggagtta aagaagttct
8881
       caaattgtgt atgcataaga atcacctggg atttctagct cagagactgg gacaataggt
8941
       ctattgaacc taggagttca ttttgaacaa gtgctctacg taattctgat acagggaatc
9001
       ttccagttac agtttgaaat tcacaaatac aaggaatgag agacctagaa tcagaaagca
9061
       tgttaataca cttttgggcc attaagtgct cacccaggta acaggtacag aaaggcagaa
9121
       aaaggaaacc tatcagggta ataattatqc cttttttttt ttttttttt qaqacaqqqt
9181
       cttgctctat cacccagget ggagtgcagt ggcacaacca cagetcactg cageettgac
9241
       ctcctgggct caagtgattc ttccagttca gcctcttgag taactacgac tacaggcatg
9301
       tgccaccatc cctggctcat tttttgtaga gagggggttt ggccatgctg cacaggctgg
9361
       tctcaaattc ctgggctcat gtgatttccc cacctcagcc tcctaaagta ttaggattac
9421
       aggcgtaagc cactgtgctt ggccaagaca ttttggtaag aaatattatt ttcctactaa
9481
       attgtctaca ttccccttgg gtaggcttgc aaagtcactg tgactacagc aggagctatt
9541
       gctgcatggg aaatatggag acacgagtgg tacctggcag tcacgggctc agtttgtttc
9601
       taacctccca agtcagcaca gccccactga gcagactgcc ggaaagtatt tatgccatct
9661
       gtcggataat taagacaaat ccaaacatct acgtgcattc tgtgtgtata aatggagtca
9721
       tggccaacct ctcaagcagt tttccatcaa tcacttgtaa tattaccaga tacttccaat
9781
       ccccttgcag gcagtaatga agagaaagtc tctacatcag cagcttctca ctggaatctt
9841
       caagcctaac tcttaagaat gaatcatact tctaatgttt atcaaaggtt ttcttttcac
9901
       acaaggaatg tgcctgaatg atctataaaa ctacccaaat aactagtagc caggttagct
9961
       ctaggagcca tatgccaaac acattctgga ctaagtcgtg ttcactccaa aactaagacc
10021
       atgttcaaag tctacagcaa tactggatta aaacaatgtt agctgaaggt tgtaaaaaaa
10081
       catcatggaa cactaattat gtgccatcaa tcattactca atttgtagaa cttccctata
10141
       caccttggga ggtgagaacc ttatagaaaa tcctagatac acaactttat ataaacagaa
       aattccaaaa tgggaaatcc tttagaataa gaatatacct agtgtatata aagaagaaaa
10201
10261
       aatgtagatt tgaaattggg atactctaca gtttttagtt gggacattgg gatagttaat
10321
       tttaggtgtc aacttgactg gattaaagga tatcaagaca gcaggtaaag cattacttct
10381
       gggtttgtct gtgaggatgt ttccggagac tggcctagga gtttgtggac tgagtgcaga
10441
       tcagcctgtg tgagcaggca ccatccaact gaatggagcc cagatagaac caaaaggcaa
10501
       aggcaaataa ttcactgtct ttctcctcga gccagggact tgattagcaa cccctcacac
10561
       ccaactcctt attttcagga cttcaagggt tataccatca gcttccctgg ttgtgaggcc
10621
       ttcagacttg gactgagcca tgctgccagt ttctctggct ccccagcttg cagacagcca
10681
       ggcatgggaa ttctcagtct caataactga gtgagccaat ttctttaata aaccctttct
```

```
10741
       catctctctc tatatacaaa catatcctat tggttctgag tctttggaga atcctcatac
10801
       agacactqtt aagagatgaa ccaggtgtta ccactgtgtc cccaatgcct gggatagtga
10861
       gtgacagtat tgatgtttgt gcaataaatg tttacaatgt gtatctacta gcagctttcg
10921
       ataatttgaa ttatttataa aaggcaaaat aaacaaaagt ggtatctaag attaaccact
10981
       aacttagtaa aattccattt ataccacagg ttgttctggt acaaagcata caataactcc
11041
       catgttacat ataatttgac ttgttcaata acaagaaaat tactcaaata ttataatgga
11101
       gttaaaatgt atttaataga totaaaaaat tttggotota toaaaactta qqtotoaatt
11161
       ataacattac taaaqtqctt qtaaaaatta tcccaqattt ctqqctacaq cttqtataaa
11221
       ggcctatttt tttttttta cagttttatt ttggttgaag atttttctcc aaaatagcta
11281
       ttccagatgg cttaacagtc ccagaagtga aaaatcttaa gatatttcat ttataaccat
       tagagtctta ataaaaccct agtaaatact ctcccttctg gatggtttaa aggtcccttc
11341
11401
       aggcaagctg gctgcgtaaa caccagagcc ctcttcataa qataagtttg ctcaaaaggt
       caacttttac agagaaattc ctacctcatt agtgtaaggg aaaattaaca tgacctgttt
11461
11521
       11581
       aagggtggga aaaatgaaga aaattaaaag aaattctact tcctatatct gtcctgctta
11641
       gagaagacaa gttatagcaa aatgagtact tcaggtttct cttttaataa acaaaaccat
11701
       ccaaggtaca gttccaaagt acaaaatcaa ccaggtctga actgattqgt gataagaqca
11761
       cacagatcag teetteetta aggaaacagt tteeteettg atgeeetett tggteactat
11821
       qcaqatccqq aqtqcqtccM caqtqtacac atctctctca qccqcaqaaW tqaaqacatc
11881
       tttcaccage egeatggete tqtecaaqqa caqeqqaaca tqetecacat tetqeatqtt
11941
       cttaaaacca acctggtggg acatgaaact tgggtgagat gtcatgtgac agtgagcaca
12001
       aaggaaaggt tcaagtttct tccaataccc tcatgtgtac gaggatttgt gatgaaaata
12061
       ctaYacaaaa ttaaaatgtc cttcaqactg aataaagacc cttccaqacc tggatgaatt
       acacacatca gaaatctgac aacgattccc tggcaaagct cccactcttg agaagcacat
12121
12181
      gacccggaga ggtggacgta tgcaagcaaa gtgatcagag aattgctata actaagaaga
12241
       aaataagagc caggagagcc ccaacagatg tccactaagt ctcctagaag aagacaggct
12301
       tCagCagaaa ggaCttttaa gtaggtgagc gCtgaaggCt aCaCtgaaga gCaCagaaca
12361
       ttccagactg aagatgtggg acggagttag gaaaagcaca tcttttctga gaaaagcaga
12421
       gttagggtct gggtgtagtg gggtgacagg agatgaggtc aataagcaat aagcagagga
12481
       gtagctatat atgacatcct tcagaaaact gagcaggagg aattagggaa gtaaacttgt
12541
      aggcagaaag gatgttagga aataaatcca ataatctaat aatgtaggtc tgaatttagc
12601
       cagcagtaat cacaaagagg gacgaattag aaatacaggc ggcctttgaa taacaccgtt
12661
       ttcaaccact caggcccact gacacataaa ttttcagtaa acacactgag aagtttttgg
12721 agactogoaa cactttgaaa aactcagatg agccaagtag cotaaaaata cottaaaaat
12781
      taagagaaag gtatgccaca aatgtataaa ctatatgtag atactagcta ttttatcatt
12841
       tactaccata aaatacacat aaactgatta taaaaaagtta aagtgatctc tcaatgttct
12901
       cctttgtttt tcattgtgtt tagtgcgatt attataaacc ttaaataaca agtggcccaa
12961
       acaaagcact attagtgatq ctgqaactqc tccccaaqaa qcaqqqaaaq ttatqacatc
13021
       acaagaaaaa gctgaattgc ttgatatqta ctqtagattq aqgtctgcaq ctqtqqttqt
13081
       ccaccactcc agacagatga ttctccttgt aaacagatga tgtaaactta caqtatcaac
13141
       aaatacagta ttgtaaatgt attttctctt cctataattt tcttaataac attctctttc
13201
       ctgtagttta tttatcataa gaatacagca cataatacat atgtaaaata cgtgataatc
13261
       cacagtttac attattggca aggcttccag tcaacagtag gcttatttqt aagttttctt
13321
       ggagtcgaaa gttatatgtg gattttccag tgctcgggga actggcgccc caatccccgt
       gttgttcaag gStcaactgt atgcttggga gttcaagtac agtattgggt aacacagaaa
13381
13441
       gggggggtaa gagggaaaaa ggcattttta tqatcttcag qtaaaqacaq caaqaqaatt
13501
       agccactaca gacataaaag agttggaagc catgagaata caggaaaaca atcaaaacca
13561
       tgggagtagg taaggaccca caagagagta ggcagaacac agagagagac catgaggttt
13621
       ctgtaggaca cgtctgccaa actcaaacag taatttataa gaaagtcttt atatcttggc
13681
       tctcctaagc taatgaagag gagaacttgg aggaaggcac ttcaactgaa caccatgaca
13741
       agttggacat agtatcatta cctggacaca gtatcattac ctqgttgtca agcaqqqqct
13801
       gtagcatggc acttgctgag cctccagcct tgaaggagtc tctctggtaa gaccctactg
       gatcaaagct gtatacagcc ccctttcctt aaagaagaaa acagtattca taaggatggt
13861
13921
       atccaatcac aatcccaaat catcqcaaaa ataaatcaqq tcaaaacqtq acacaaaacq
13981
       gactatcacc ttggctaaaa cttcagggaa cagttggaac acagccactg ttgcactggt
14041
       gacagetgea geacacacae tgttgeacat gtgacageca qaacceagte accattgeac
14101
       aggtgccacc cagcagacag ccccaatccc cqtqttqqtq tqttqttcaa qqqtaaactq
14161
       taggcttggg agttaaaata caatattgag taacacagaa agggtgggta agagggaqaa
14221
       aggcattttt atgatcttca ggtaaagatg acaagagaat taaccactgc agatgtaaaa
14281
       cagttggaag ccatgagaat acacaaaaat aatccaagcc atggtagtag gtaaggaccc
14341
       gtaagagagt agggagaaca cagagagaga tggtgaggtt tctgtaggac acatcagcca
14401
       aactcaaaca gtcatttgta agaaagtctt tatttcttqq ctctcctaaq ctaacqaaqa
14461
       ggagaacttg aaggaaagca cgacttatgt atatagacag gtccaaggga cacatccgca
14521
       agacacagta aaacgaagag aattctgtaa cctgtaaaat acgatactgc ttttgtttaa
```

```
14581
       aagaataaga aaactatttg tacaagcaca aaaaagtctg gaaagataag taactgtggc
14641
       tggtcatctt tgagctctga attagaggca agaaaagaag ggaattaatt catgtgcttc
14701
       tatcttattt gagtttgtta caaagaacac aggtgattct acaatcgtta aaaaggcctg
14761
      ttaaaaacaa ccgtgttctg ggtatgagaa atcacgagtc atttacaagg tatgattttt
14821
       taaaaacata actgatttag aaaacacatt atataccaga actcagtacc ctgggagatg
14881
       tgatataggg acaatctcct tactaaccat gtacaactqc cactgttagc tttgtatgtt
14941
       ttctactata gaactgcgta aacttggcca ggcgcggtgg ctcacgcctg taatcccagc
15001
      actctggqag gctgaggtgg gccgatcacg aggtcaggag ttcgagatca gcctggccaa
15061
      cacagtgaaa ccccatctct actaaaaata caaaaattag ctgagcatgg tggcacgtgc
15121
      ctctattccc aactacttgg gaggctgagg caggagaatc gcttgaaccc aggaggcgga
       gqttgtggtg agccgagatc atgccactgc actccagcct gggcaacaga gcgagacttg
15181
15241
       gtctcaaaaa aagaaaaagg attgtgtaaa ctgaattctc tggtggagaa ggcaccatct
15301
       gaggtcacct aagaaactgg gaagtatttt tgctggaagc aagcttggga caagacatga
15361
      gatcacagca ggcaatccac taacctcaat atacaaaaaa agaaagagat qtaaqqtqta
15421
       aaggcagaaa aatgattgta tctctcatga ggatgacagg ccacaagtaa actgaggccc
15481
       aaaagcttta cccaaggatg gaaccaatct cagaaaacca cacacaacaa atttaaaaaa
15541
       ataaaccaaa gaaagggtgg gctatgtcca agaacacagc tttaaagacc ccctagaaga
15601
       agcaagagag acactagtaa aatcagtata aaacagcaaa aatcaataaa taaaaacaaa
15661
       aataaatqta gaatqqcatq aatcttgatt acaaagtqct tttcctcatc aaagtaaaat
15721
       ccaaaaagca caatcatttc aatgtaaaaa ataaaatcag acaagtctta aaagaaatac
15781
       agctaagctt tggatgggag aagtttttct aacaaggcaa gaaactgaat gtcataaaga
15841
       aatgattgac agattagact gtatgaaaca cagcaatttc tgtgtagcaa aaqqcaccac
15901
       ccaaaagaga caaataacac tottgggagt atotataata toacagacat ttgacacagt
15961
      cgaatgtagt tcttgaaaat cagtaagaag aaaactaacc tgcaaataag gaaatgggca
16021
       acagttaata tatgaatcag tctccaaaga ggaaatttat aaagtcaata aacatatgaa
16081
       aacatgccca agaatatata taaatgaaaa taataaactg ttcaataggc aaaaagatgt
16141
       ttcaaaatgt gttaattcta atactgggaa ggttatataa aatcgggtac tcagggtact
16201
       ggcgtatcct tcagaaagag tatactcaac aaaatacaaa aaaaaattta tctgacccaa
       tacttcaact actcgaagtt tattctagca agacaagcat aattggggaa gtacacaaaa
16261
16321
       atgtatgtac aaggatgttc atcatagtgt ttaYattaag aaaacaggaa gccaaaatgc
16381
       cctttagagg actggttagg taaatgatgc tatgtattac aqcaqcaaaa acaqaaqaca
16441
       aaaaaatttt ttgttaatta aatacaaaaa tcattatgca tatagcttag atctccttga
16501
       taatacataa tgtatagtta cagaaaaaca gataccaaag tcctacttac ataaaactRc
      atgagtgtat gtataaacat gtactgattg ttttcactac agaaaaacta aagccacttt
16561
16621
       taatttggga gaaaaatttt taaaaggcat gagagcagct aaqagattaa aqacagaga
16681
       gttagtgcag acagcggttg acaccaaggg aaagagctgt ggaccttgct gtcctgaagg
       tttcaatatg gagcactgct ctccaggtcc ctgcatccac caacacagaa gacagtaaag
16741
16801
       gaagtctcct gagacattag cagaggctct ggacttaggg gaccaggctc tagagtggca
16861
       aagggtagga gcaaaacaca tgaaatggaa agttgatgta aacaaaacac agaccttcag
16921
       ccccttcct cctcYgaggc ctaaaaagct gccaaccggg cttctcttcc tgtagtccca
16981
       cctcacctca ggaaaaaaga ttaaagaaat tcttcatctg aagaaaatgc tgcttactta
17041
       agcacccagt taacggctgt cagttgacaa gccatgtcaa caaggacttt cataatcaaa
17101
       17161
       tcagagattt gaaggaagcc tctaacatag aagacagagg ccaaaaatga acacataaca
17221
       tgaaaaaaaa aacattctga tgaaatacag aaaactgcaa agaaagtaaa caggattttt
17281
       tttaaaaaga caaaaaataa gtacaagctc ttggaaatta atgacaccag aaataaaagc
17341
       aatcagtaaa ggatgaaaag ctaaaattaa ggaaatcttc ataaagtaga acaaaaaaga
       cagacatgga taacatgggg agtcaaaaat aaagtaccgg gtcataatcc aggtggttgt
17401
17461
       ggagaaggtg cagaggggta gggggaggagg agaggaaaga aggtggagaa agaggataaa
17521
       acaaataaga aactctaggc aaggaacatc actatacaat ttcagaacac cagggtaaag
17581
       aaaagatcct aaaagcaaag tctcaaaaag gtcccRtttt gttttttca gaaatctttt
17641
       aggaggtaag cctctaaaat aaggaaataa atcaagaaag aggagaacac aggatgtggg
       ggaatctcag gatggcagtg gtccatcctg gagcaaRggg aaaagggatc cacctagtat
17701
17761
       gtgaggtctg acaaccagat gaattgtact cagagaatgt acaaggaact gacaaaaagt
17821
       ttaaagaaat ctgagccaat tagagatagt taacttaaga aaaaaataaa aacgagttac
17881
       acaagaaaga aaatattaat gcatgctact tggcgcaaca aagatcaata tctatctqqt
17941
       cataataaaa acattaaagg tctatgttac caaaagtgta atgtgttaaa ggaggatgct
18001
       aatgaggaag aggacacaaa agagctaaga accatcatct accagaacaa aacaccaaaa
18061
       gatatctcaa aagagtgcag tacaaataca gagttttgga aaatggaggt aagtaccagg
18121
       aaatacaggt aaaagagctg aaaactgtct tagggcaatg gaaaaaaaag atagaggact
18181
       qctttattat tcacacaaat tcctctataa aataaaaatt agtttaaaga acacttaaaa
18241
       gccaaccaga cagacaagct tagaaagaca gttctagaga cacctgaggt tgtcaccaaa
18301
       actagcaaca ctgttacatg Raaatcaaag aacagggctc tgaagtgaaa caaaagccaa
18361
       acctgaatct taggtctgct gcttagtagg tatcagcttt cccagattag actctctaac
```

```
18421
       tctcggaaaa actcaaagga tgctgtctgg ccYgctgaaa ttcaatggca gctcagctat
18481
       ttttaatgtt gctaaaatct gaatctatta atctgacatt aaagccaggc ataatgtaag
18541
       tcaaaaaaga caccagaagc atccagcttg ctaagttagg caaattaatt tgtagctaga
18601
       ctctaattac ccatgttaaa ggtaattcat ttctattttt actatttcta cactttactt
18661
       tttctcttgg ttttcaagta aggttgaaag ccttaaaaag aaattgtgtc aacctaattt
18721
       gtctacgcct aaaccatggc aggtaaaatg atcagaatgt tccccaaggc tgtgtatggg
18781
       ggcggatgtt aagagtcaga gatagcgcac Rcaaagaaaa cqctcatqga acagaaagcq
18841
       ataggagtca acaaccgaga ggcagggcgc tgaaatgaag cttgaccctt tcctcttaga
18901
       attttccctc acaggattta gggtccccag tccccttgct ttctttctgt gtccaactga
18961
       gatgttctgt gatgtggcca gccgcatgta ttcccctgga ggctctgacc caagccaagg
19021
       cctgccttga acattcccag gcgctgacaa tgttgtttag gctattgctt gaaacactga
19081
       gaaattaccc ctgttgctaa acacacagaa actatccctg gccctgaacc aaattccttc
19141
       aacactcaaa tcaactccct caccttggac acatcttttc ctgctgtctg ctgagaggac
19201
       tgctgcagca ctaaatgctt ttgactgatt accctgagat ttagtgttct qgaacccaa
19261
       ctaggttcgg ggcagtccct tacaggaatt cctctgcccc tacttttagg gcaacttcag
19321
       ccacaggttc agccagaagg aacacagaag atgggcttac tccaatgata tcctcatcta
19381
       gacacttctg taacttctta tctcaatgga ctactctaaa tgacacagat ggactactta
19441
       tccatctgtg tcaatggact actctaagtg acaaagatct gtcctgggac actgtacttg
19501
       tatttqattt ttagatqcaa ccaaaaqcca atccaaatga gaacatttgg attgcaaatg
19561
       agaacaaatg gattggaaca tttggatgga aaacattggt gcccatgtgg cgtaatgcag
19621
       ctctggaaca aaaatgggat ggaatattaa gtaacaagac ttaatattct cagggaatcc
       tggtctgact ctgacaaaat cagagaggtg tttcaaaaaag ttctgaaaac actggagtag
19681
19741
       atgcttatta ttaattaccc caaatgactt ctaqaaccqt taaaqaactt ttttqaaqtq
19801
       tatttgttaa taaaaaaatt ttcaatactc agaatcacat ttaggtcaag ctttctaggt
19861
       ccgatttctt tctataagat aaaaatgcct aattatttac tactaactca tgcaagttcc
19921
       tgagaaaata gcaaaataac tggctgctca acattcacta ttagagcttc aatgtgcctt
19981
       tggaggtcat acattagctt cagtttcttc atcactttcR ttatcagaaa tgaaatgaga
20041
       attgtgtcag atggtattta tggttctttt caactctaga tggatacaca catctaggga
20101
       ataataactc ctcccccca ccattttcca gaaagaagga attctacctt cttcatcaag
20161
       tccaccgatg atgttgtaaa catagtatgg aaagaagcgc cttgaataca ggattgtaga
20221
       cagcattgca gcaattgccc ccgtagtcat ggccttatta ttggaatgct tatacatctg
20281
       caattattga taaaagtcac aggcatgtag aggcagaggc cattatagac tagaacaatc
20341
       aacagtataa agtgaataaa taaatgcata ccacagtgga aggggaaagc atgcctattt
20401
       ccttcatgat caaccaacac agtattacta acataaaatt ttaagggaag gaatgccaag
20461
       tttgccctca gctctctggt ttagactcta ttttccatac cacccttatc tcaggtactq
20521
       Ctaatccaag agctaatgtg tatgaaaggg cacatgaagt ggcctaagga agatgggttt
20581
       aaatccatct ctctccctca ctctgcatat agaccagggg tcaacaaact accctgtag
20641
       tttggctcag gggccaaatc cagcctactc cctattgcta tqaatattgt ccqtqqctqc
20701
       tttttcacta cagaagcaga tcaaatgagg cccataaagc tgtaaatatt tactatctgg
20761
       tcctttacag aaaaattacg gcaatccctg atcaaaccta gatgtaagtc cctctctttg
20821
       tggagcagat ctctgtgaga acagaagaca cagggcagca cccttactct gcatgatttt
20881
       aatacacagc agtggtcgtg atccttaaaa catctacagt agagaacaca agcatccaaa
20941
       acagggtett agcatgacaa tacagtgact gcaaateeta getttaetat acetttgega
21001
       gccctacatt acccactggt agagaaactt cacaaaaatt ataaacataa aatgaattca
21061
       aqatcaccaa tttttgttaa ccacatagca aacatctcta atgagaaact taatggccag
21121
      gcatagtggc tcacacctgt aatcccaact gaggcgggag aatgtttgag cccaggagat
21181
       gaaggctaca gtgagctaca atggcgccac tgtactccag cctgtgcaac aaagtgagac
21241
       gctgtctcta aataaataga cagatagata tctaactagc accgtaaaat taaataatga
21301
       cagtcaaaac actgaaaaat gattagaaat gaactacaag taacaggtaa gttttttata
21361
       gaggaatgcc tttccaagat aaaaactata aaaaattatt cataggccgg gcacagtggc
21421
       tcactgctgg cctgtaatcc cagcactttg ggaggccgag atgggtggat cacctgaagt
21481
       caggggttcg agaccagcct ggccaacatg gtgaaacccc gtctctacta aaatacaaaa
21541
       attagacagg ggtggtgaca ggtgcctgta atctcagcta ctcgggaggc tgtggcagga
21601
       taatcacttg aacccaggag gcagaggttg cagtgagcca agatcatgcc attgcactcc
21661
       aScctgggca acaagagtga aactctgtct caaaaaaaaa aaaaaaaatt tcattccatt
21721
       tcatttcgaa accaagcacc aacatttatt tacttcacca cctaataaag tatgagagaa
21781
       aaacttcagg aaggggtgtg tattatgtag aattcaccat tccttgtttt attaacaata
21841
       tcatgtttac ttttgtcttc taactcccat ttataaaata agcattagga attatcatat
21901
       aaatatgcca ataaatgtaa gtcactatgg ctttcaatgt aagtttctaa aaaagcatta
21961
       acaattgata aatactgagt gaaatccttt ctacacattc aaaaagcatg tgtcagttaa
22021
       ataaatatac tatatactcc agtaaccact cataagtgta aataatctca agtgttattc
22081
       atgaataggc aaaacagaat gtgatcaccc ctgacttctg gcagctggct atcaactgaa
22141
       gctggtcagg tgacagacgt taatggtgca tgttgtgcct cccatccaag ctcccagctt
22201
       attcattctt tcgtatttct actcatgcat cctgccaact aagagcacag cactgtaaag
```

```
22261
       aggaaaagct tgtcaactga tggtgatgca aaccaagctc ctgtgtcaaa tctttcctgg
22321
       gctctctcct gccacagaaa ttgatttgct ttgtttttga gggaagagta tcttcagaag
22381
       aagaactcct cccaggctcc ttctaaaagg gtagagaacc cttcatatga tacaagactt
22441
       taacaaatgg aatgtgctgc tgtttcacat tatgctactt taatgaccct gcattaatga
22501
       tatcatttca tttctagcat acatttgtaa ttcatctact aacctagtga ctctctagct
22561
       atctgaccaa cagtcatgct gtaggcttaa aagaatttaa tgaattacta ttaatttaaa
22621
       atagtgtaga aatgtacaaa agcatctacc tttagtcttg cttcaataat ctttqtcagc
22681
       gtaagacagt ctccatgaaa accgctgcat ccaatgactg ttttgtctgt tctgtaaaaa
22741
       gcacatttca gaaaactgag ctggttagat agtagagcaa aacatatctt cggcaatttt
22801
       aaatttaaaa ttctgattcc cactattccc taaatggtaa tgggacaaac agtcaccctt
22861
       ctggggagga ggggtctgta ttccatctta ccccttattc cagatgaatt acaggtggat
22921
       caaagacttt aaaaatgcga ctatgaatgg actaaataaa tcatgggtga attttttta
22981
       ctatcttggg ctgaggaaga tacgtaggta ggttaattga ctgatttttg agacggagtt
23041
       togotottgt caccoaggot ggaatgoagt ggogoaatot tggotoactg caacttoogo
23101
       ctcctgggtt caagcaattc ccctgcctca gcctcccaag tatctgggat tacaggcacc
23161
       cgccaccaca cccagctgat ttttgtattt ttagtaSaga tggggtttca ccatgttggc
23221
       caggctggtc tcaaactcct gacctcaggt aatccacctg ccttggcctc caaagtgctg
23281
       ggattacagg tgtgaaccac tgcacccagc ctcgtgaagg tagatttaaa caacacaatc
       caaqqqccac acagaaaaat ttcataaatt tgactacata aaattctaca gggaaattta
23341
23401
       agaatagett tttaaaacce taagaaaata tattagtage atctaMcccc aaagtetaat
23461
       tttaattcta taaaaattct tacaaataag gaaagcaata acataaagga aagatgggta
23521
       acttctatga acagacaagt cacagaaaaa agagacatta agtcaccata aacataaqaq
23581
       cctctatgtt actcagaaat ccaaatctca aaaagagact atttcaacca attatactgg
23641
       ctaaaaaatgc ctaactaact aaatgctggt gaggttgtgg aaacagtata aactgattaa
23701
       cctgttagat gggcaatttg gtggtattta ttaaaaattt aaatacacac cactctcacc
23761
       aattotattg ctagaaatcc atottgttaa tatacttatc caagtatgca aagggatgct
23821
       23881
       tccatctgta tggagaggat taaaatttgg tatagacata caaattcaac cgtgtatttc
       aaaaattaat tootagatot tgatatgaat otataaagaa acctaaacaa tattttgcag
23941
24001
       aggccacaca attcctcttg gaaacttacg aatgactcgc acaaaccata cctgtcctac
24061
       taggagagca gctgacacct ctagggtcat cactaacatc acctgatcta tgcctaccat
24121
       caacctcact gcactaaggt gaagacgtcc aatcccctat aaggctttac tgcctttact
24181
       gacaagattg gttgacaata ccaacaggga aagacagaaa tcttagaact tcaagatgct
24241
       tttcccaaat atccaggtgc atcaaaggaa tgggagtttt catgcaaaga atacagtctg
24301
       aaacaggttt ggaagaggca agcttagttc taggtcagMc ccacaggacg tgggatgagg
24361 gatatataca ggcattcgtt aatgctgcat tgttcttatt ctctatctct atatctgacg
24421
       tgtttcacaa aaaaaaaaa aaaaagtgct cacttcacca gcaaacgtaa ctaaagcaat
24481
       atttaaaaga tgagtaaaag ctagtacaag gatggtatcc ataaagttgt tttaaaatct
24541
       tatttctaat atttactact ttcaagttgt acaagtgtcg tccttgagga gaaaaaaagg
24601
       taacacaaga gcaccataaa cagaaagcag aaagggggta tcaaaagatg caagtggaga
.24661
       gaaacagaac tgggaagacg aaaacaaact tcattgcttt ttaagatgtg ggccatccct
24721
       aggagcagga aagacaacgt atcttttctt ctgtacctac ttcctacaat acaaggaggg
       tccatccaaa ggacctaaac ctcgtaagtc ccattcctat tacaattcaa gtttaattaa
24781
24841
       cccaggaatt catgaccatt tataagcatt tccaaaactg gtaaatacag accactgcca
24901
       atctgcagta tgtattcagt atttatgcag gctttttgtt tttttaagtt ttggctttat
24961
       tttcatgttt taggaaaaac atagctagcc tattaaaact qagctgtgga cataattgct
25021
       25081
       aaaaaaatat catttaatgg attaatggtg ctgtggtttg aatattccct tcaaaactca
25141
       tgttgaaatt taattgccat tgtgatggta ctgggagttg ggaccaggtg tttaggtcct
25201
       agggeteage tttcatgaat ggacattate acagcagtgg gttegettge tettettet
25261
       ttctctggcc ttccaccatg ttaagacaca gcaggaaatt tttcatggta aaatgctggg
25321
       gtgaacacat ttaggttacc gaaagcactt ttggtaccct gaatacagca aatattatta
       agactgcaca ttaaattatt aggaaacatt aacttagaaa atggttttct aataaaaatg
25381
25441
       ctcccaacag caacttaaaa actcatgaaa caaatcattt agaagtagaa actctcacaa
25501
       catYaaatca ttacaaaggc attgtgaaat gtctttagaa atatttactt acaatttgta
25561
       acatttgggg ctatcccgcg tatgaattga aaacccttca ctcaatcgag tatcagaagc
25621
       aacaattgca aaatcttctc cagcaattgc cagtatagta ctgaggaaaa aagaaaaaaa
25681
       ttaattetee agggtggtaa teetateeet acaaatagaa gaatgeteea tagtacataa
25741
       tgggataaaa tactctagat gtcaacaaaa acatgattca aatgggaaga ggaaagatga
25801
       gcgggaagag aatgaacgcc tggctacgag ttgtctggga aaaaaaaatt attaataagc
25861
       ctaaatcagg gcaaagtctc cttggcagga gttaacagaa aagccaatga attatcatca
25921
       ccaacacatt aaatacttac tcgcgcaagg tactactaat acagaacaac taaataccac
25981
       atctgtgccc ttgaggatca ggtatagaca gtggtactac aacgcaagct ctatgagttt
26041
       agagaagatg agattttttt ttcttgcttc atttctttat atccaagtcc ttatataacg
```

```
26101
       cctatataat gcttatttct ttatacccaa tcccttatat aatgacaaat agatggacaa
26161
       acagtaaatt tttccctctg tggctgtaca atttgacagc ttatcaaaga gacttacagt
26221
       agaattccaa aagcagaccg cctgggttct aattctggct ttcccgtttc gcagatatga
26281
       gactgtgggt aagttacttc tcaaagcgtc aatttcatca tatatacaac agagatcact
26341
       gcagttgcta cctcattagg gtgttcaaag gatcaaatat gtaagccctt atagcagtcc
26401
       Ctgacatgta actggtcctc tagtaagtgt tagctataag tgctatggca ctggagtatg
26461
       actaagcacc tgggctctgg aattacatga gacagagacc cactcttgct acttactagg
26521
       tatgtgatct tggacaaatc ctccaaatgc aagttgatga taacagtacc tgtgtcacaa
26581
       ggtgtgtata tatatttggg tgtgtatatt ttaatgtaca aggcttgact gataactata
26641
       accactgctt caatgcaata gtggaaatta aaggcatggt gcctcacaga cgtaagcact
26701
       caggaaactt aagccactat ttttactgag gagggatttg tgctaaagct ctcaagaaga
       aaaqgatggc attccaggta atataaacag caagcaatgg caaacaggta attattcaaa
26761
26821
       tagtacatac attcaagcaa ctcattcagg cagccctttt tgcataagca catgtagtga
26881
       cgttaaggtt tatgtgatgg acagggttcc tactgtagaa aatcccaaat gccaagctaa
26941
       agattttqqa attttaqcaa qaaatcatqa aggtattctq aqcaaqaatq atctqtaqtt
27001
       gtaactactc aagaggetga ggtgggagga ctgcttgagc ccaggtgttc aaggctgcag
27061
       tgagctatga tcgtgcctgg gcattagagt gagacctggt ctttaaaaaa ggaatgcaag
27121
       agagagaaaa gttccattta caaagtgggg ttttaggaag actgctctga caaYaacata
27181
       gtatgtgaaa tgggacagaa acactgttct aatactacta atgcaatagt aaggtagcag
27241
       qqtqaacaqt aaatccaaaa tcatcacaaa cacacaaaat agacaaattt ttatatctac
27301
       gcaaatgttt taggaactgg gaaaaccaat tatgacatcc aagatttaga acttagatga
27361
       acagaatgat ggcataatta taagtatttt aaaggagagg aggccgggca cggtggctca
27421
       cacctgtaat cccaacactt tgggaggctg agggggggg ggggggtcaa ttgcctgaga
27481
       tcaggagttc gagaccagcc tggccaacat ggtgaaaccc atctctacta aaaatacaaa
       aattagccag gcgtggtggc aggcacctgt aatcccagct actcgggagg ctgaggcaga
27541
27601
       aatgcgtgaa cccaggagtt ggaggttgca gtgagctgag atcgcaccgc tgcactccgg
27661
       cctgggtgac agagtgagac tctgtctcaa aaaataagaa gaaaggagaa gaggagatga
27721
       aggggaataa ttagcttgct ttttgttttg ctagctgtct tqagttqccc tqaqaqcaqa
27781
       aaaaccagtt aaaaatgttt tactgaagaa gccgaatcga gggactcatg agaggcagaa
27841
       ctggaaaacc agatttggga gtaatcctcc cagcaatgag acatgaaaga gtgctgagcg
27901
       ataaacaagg cggctaatga cttaactaca tttaaagaca qagtaqgaaa agagaatgag
27961
       gcctcatttt gcggaagcga aggctgcctg agagccagct gcagtaaWca ctaaagaaaa
28021
       agaacaatga ctgagaaaaa gtaatcagaa agatctaagt aatttttagg gcagtaatgg
28081
       cttaaactgg attacaaggg attaaaaaagt gagtaacgag tagggcatac tgaacactga
28141
       aaattettat ttatagagaa tageettaeg aaaegggtee aataaeeete eetaeaatat
28201
       acaacttaat tagtcatcac aggaagtgtt aaggtgtata atggaaaagc atccataaac
28261
       tcagtggtga aatagctatg aattaagtcc tggctcaact tcacaccagc tctctgaccc
       tgacagttta acgtctaata taaccctagg atgctaatat catctaacat tcacttttca
28321
28381
       tgaggattaa ataagatgac agcttgcaat ttacaaaatg catctctctt qattctcacc
28441
       aaaaactatg aagctactaa ggaagataag gaaatttagg ttcaagaagt tcagaagtac
28501
      ccaaagtgtc ctttagtggc agaaccaagg ctaaaatcag actttcgtta tctttctaac
28561
       acactcccaa aatgtgcatt tatatttcaa atttatgagg aaccaattaa catttttgct
       ttgtttttaa aatttattt tgtagagatg gggtcttgct atgctgcgca ggctggtctt
28621
28681
       caactcctgg cctcaagcga tgatcctcct gccttggctt cccaaagtcc tgggattaca
28741
       ggtgcgagcc acactgccca gccaatattt tctgttttaa gaaccatcgg ttcgttcaaa
28801
       ttgcgtgtgt atattttaat gtacaaggct tgattgqtaa ctataaccac tgtttcaatt
28861
       tacagctctt ccctgtcaag agtcttaaac agagcatctt tctataaccc taaatctctq
28921
       gcgtgccacc acggaaaatt atactactca agataaagct ggtaattaaa ataaaaacca
28981
       aaacttgaac ataacataca agaacacaca tactaaaagg tccatcttct gagtattttg
29041
       ttttcctgaa cttaagctaa acgttaaaaa aaaaaaqcac ttatctatga aactaaqttt
29101
       gctcaqccaa tcccaccttc tatttgaaat aaaacaaaat gattaaactg ctacaattag
29161
       aaataacaga aatcaggcgg ctacaattag acatctcggc taccaaccca gctatgcatc
29221
       taacaacaca gaccaaacaa coctaacttt taagtttcag acgctaaccc totaccotcg
29281
       ccggctggca taaRaaacgt gtacatgagg tccagtttta atggtcttcc acagagcaga
29341
       ggctatgttt caatttctac tttactgtct tacagcagca aggagcacgg agtggcggtc
29401
       cacataaaaa ctcaaatgac atgactgtaa tgggaaaccc taaaaaccaa ggctgtatcg
29461
       caatcaccaa gtaaacttga gcaaagcgag cctgaagagg gaaacacagg gcatgaqagg
29521
       acggcaggga gaccggcctt gtgcggaccc cctcagctca gggttctgag gcctqcagga
29581
       gcccggggca gcgccatcac ggcggtgact cctaaatagg cttcagcaga tgggggaagg
29641
       gcgaaagtga aagccgcagc tctctggggt ttttaccctc cgttgaaaac gtagggcgaa
29701
       aatcgcagct gcaaagggcc cgcggctctg tgcggttcca tccccaagtc tctgccagSa
       gccgaataca tggctgtaga ggacaacatc gcacggctgc gcctgcggat ccgacacttg
29761
29821
       ctgtctcacg gcgagatggc tgccttgacc ggacgttacg ccacttccgg cttctcctga
29881
       agttcgctcc cggcctctct atctcacgct agtcgttgct cctggagggc tgcacggcgg
```

```
29941
       cttgtccctt tggtagttga atcccgccca ttccaaaaag cgctgacagg gatgtaaagg
30001
       gttttttttg tttgtttttt gttttttcc ccctcgaaga aaacattgga attcacccca
30061
       atggacaaaa atttaagtct gaccatacaa aaaaattgtc agaactatgg cgcaacggca
30121
       actcgaataa cggtgggaac gttaattgtc ctggctaata aaaaatgtat ataacatttc
30181
       ctatccttaa agagctcaca acctcactga taataaaaag tacaaagaaa acaagcagta
30241
       taacatatga ttacgccaca atgaactaca gaagggaaaa tcaaggcgtg ctgaagtccc
30301
       actaagaaac aactgcggaa agagccatgt gacaacagtg catgaactgg gagtggcaga
       actgaatata aatgcatgtg taaacacaag ctgtttgttt tgcttagtgt tccttgtcat
30361
30421
       tctacacgct tgaagatcag ctagcgttct tgctgacagg taaggaggac gcgcttactg
30481
       agtgccaagc actgctcagg cactgattct gtcaatctct gtcaatctcc cgacagccca
       agggtaagca ctgttatcat tattcaattt tacagaaaaa aaatgcgggg gagaggtcag
30541
30601
       gtaacttgtc gaaggtaacg ccgctagttg ctttaaacaa caacaacaac aacaacaaaa
30661
       cacacteaca catatacaca cacacgecat ttaaaaaateg atettteeta egteeageaa
30721
       gggccaatta gagatggctg tggcacggcg gcccgccc ggaactcctc aagaqcttcq
30781
       cccctcctta cctatggaaa cacaggaagt gacctatgct cacacttctc aYggcctcgg
30841
       ccctagtggg agcaactcgc tgaagccgag ggcagaactg gcggaagtga cattatcaac
30901
       gcgcgccagg ggttcagtga ggtcgggcag gttcgctgtg gcgggcgcct gggccgccgg
30961
       ctgtttaact tcgcttccgc tggcccatag tgatctttgc agtgacccag gtaacagatt
31021
       gtactctttt ctgacggttc gggcgaaggc caccactgca ctgaggcctg ggggcaatgg
31081
       tggggaagag actaggaatt ggcgcgcqtg caggcccctc gggggacgtt cctccctttc
31141
       gtgctgccgc cgttccggcc tgtaacggcc actcggccgc cactcccgcc tggtgcccta
       ctctgctgtg tttcgcaggc agcttcccat cgtacgattg tggggctcag ggtactactg
31201
31261
       gctggctggg cggcggcagg cgggacagga cagtcccttg catcgaagac cctaagttta
31321
       ccctgccctg tcctgccatc cgcttcttct ccatgttaga agcagattca cccagatctg
31381
       tgcccgcctg ttttgctgcc aacattgaga cttaaatatt ttgtcagaag cctgagacag
31441
       cgggcacggt agcgcttaag atataataca caccacttta tttgcagggt ctcccgtctc
       tcqqttcagg ccatcatggt tttccaaatc tctaggtaga cttttctgtg aaaagactgt
31501
31561
       gcttcattta gttatacaga cactagaagg ctatgcagaa ttaatttgat tgcctccaaa
31621
       aaatatcgga tttgatgttt caatttccag gagatgaaga tacccagcaa acaactcttt
31681
       tctgaggata aattagtgca gtaatcactg tgcggtttct tctgtagact tacttgcaaa
31741
       aagtggcctg aagccaccga aggtcctgga taaatctcta atcatactta taatggcttt
31801
       aaatcctgcc gtcattatct cttgcctcaa ccttagattc ctgaaacgaa acttccgtcc
31861
       tccagtttta ctcctctcaa attcatctag tcttgccaaa ttagatctgt tcatactgca
31921
      cttccgaaat tccataactg ttattattgc ctatgcaata acattgaaaa ctcctgatag
31981
       tatgagccca ccaatatgtg ctgtctcatc tgctgcagtg accttctata cagtcatact
32041
       aagettgttg cetgeatact geatgetttt teaatetgte tetttetget tgatttetet
32101
       tttgtctgaa gccctgatgt gtaaattcct actcaccttg tgagacccaa gttagatggt
32161
       ccctgctttg tgaaaacact gcgctctctt cacagtgatt ggctgttagt ctatattgtc
32221
      ttctcttcca ggggtgtata tgggctcatt catgatcaca tactgtattc caggcatagt
      gctagatgca gagatcacaa agacatgtag gctggtttct gcattcaagg aacttagctt
32281
32341
      agaccatacc tgctgttata atactatgtt ttacagtagt tatttgcata cccttcatat
32401
       tgaacacttt gatgccaagg actatatect cetatettta tateeteate tgeaggaett
32461
       ctgttattgt tattatagga taactgtcaa aaaaaaagta tattttaaaa aatatctctg
32521
       atatatttat ttccagaagc agagcttgct ttcttttttg gtctgttttt cagtgatgag
32581
       tatgtaggat agatagtett tgggggeett tgeeetttea aagtgategt eagagtettt
32641
       catacattca gcaaatatct gagtgtctgt tctgtaccag cacatgcttg aagtgcatat
32701
       gcctgaagga tctttggaca tataatttgt aactttgaga cctctaagtt ctatgtgaga
32761
       atatgttgtt ataaactcat ttcagatgtg tagtgagtaa agcgatgatg atttaagaaa
32821
       agtcagataa caggcacagt ttgcattaat gtgttctaaa gaggtaaggt tattacattt
32881
       ataaaaattc agggctttat ctttgtgcgg cttttttttt tttaacagtt tcattacagt
32941
       aggagettga taaatgatea etetgaagta tattggattg aatttgatat ttaettaatt
33001
       ttttgcccaa gacattgtag aggatgtaaa attggaatat ttaaagatct aaactttgcc
33061
       taacagtgct gtgtatacag tgcttagtga atattctgct ctgatattac attttgctta
33121
       ggaattattt ttctctaggt gtttttcctc aaaagttttt aatgctggtt atgacagetc
33181
       gattttgagc attttccgat tatttaaaca tgtaacaaaa tgatttttgt tttgttggcg
       attttacatg caatcgccgg aaacatggaa ggaataaaac tttaggatta taaggtaaaa
33241
33301
       acaaatgtat tccaaaatag cttcattggt tttcatgttt gtgttttgta tagccataga
33361
       actggcttat aggactgtac aggttacctg gatccttaaa ttaaacttta gactttttc
33421
       caaagcagca tcactgtttc ttggcgtgtg aagataaccc aaggaattga ggaagttgct
33481
       gagaagagtg tgctggagat gctctaggaa aaaattgaat agtgagacga gttccagcgc
33541
       aagggtttct ggtttgccaa gaagaaagtg aacatcatgg atcagaacaa cagcctgcca
33601
       ccttacgctc agggcttggc ctcccctcag gtaatatagc aggagggaga gaatagggag
33661
       ggcggaaatc tgaactgcaa gagatggtat caaaaggcaa ggaagggcat ttaatgatct
33721
       gtttttgaaa atggtttaat atgtttttta agccttattt tgttgagaag ttctattagg
```

```
33781
       ctttgaatag gcacaatggt gtttatttgg gaagtctgga agctaagtta tatatttatg
33841
       aaacacctaa tcttttgata aacacttatg agaatgttcc aaatgactat atagggtctt
33901
       tgattttgaa aatcaccctc accaaattat tttctagttt tatttttccc cttttacatt
33961
       tcaagctctc aaccacccat ctactttaaa aatttttcag cctgggtgca gtggctcacg
34021
       cctgtaatcc cagcactttg ggaggccaag gtgggcggat cacctgaggt caggagttcg
34081
       agaccagcct ggccaacgtg gtgaaacctc atctctacaa aatatacaaa aattagccag
34141
       gtgttgtggc gggtgcctgt aatcccagct actcgggagg ctgaggcaag gagaattgct
34201
       tgaacccggg aggtggaggt tgcagtgagc agaggtcgtg ccactgcact ccagcctggg
34261
       34321
       ttgaaatata catacaaaaa aactcatttt aagtgtctgt tttgataatt atatataatg
       tataaattac agaacatttc agttacctta aaaagtccct tcttcccctt tatagtcact
34381
34441
       ctgctgqccc caggtaacta ctgcatctgc ttttcaatqc tqaaqattaq ttttqtctat
34501
       tctagaattt catatagatg gaatcagagt gtatgctttt ttgtgtatgt ctgacttctt
34561
       agcccagtgt actgtttgta tatcagtagt taatccattg tatagctaag tatcactcca
34621
       ttgtttggat gttccacagt tcatccattc tccagttgct cacatttggg gtctttccag
34681
       tttggagcta ttgcgaataa aagcactgta aacatttgtg tagactttga atgcactgtt
34741
       tttacttctc atgggtaaat acttaggagt aggattgcta ggtcctatat tggtatatgt
34801
       ataactttat aagaaactgc caaactgttt tttgaagtgg ctgtattgtt ttgcagcata
       agagatttaa gttgctccac atcctcacca acactttctg ctgtcagtct ttttactttc
34861
34921
       actctagtga ttgcttagta gtatcttatt gtggttttga tttttatttg cctgattact
34981
       aatgtttctg agcaccttgg caagtgcttg tcagccactc atacacaggc ccacctcact
       ttactgcact tcactttact gcatgtttga caaattgaag gttgtggtaa acctgtaccc
35041
35101
       agcaagtctg ttggcattat ttttccaaaa gtgtgtactc acttcatgtc ttggggttag
35161
       attttggtaa tttttgcagg atttcaaact ttttcattat tatccgttat tgttatcaaa
35221
       ctttttttt tctttttt tgtattttt ttttaatttt tttttcagt cactctqttq
35281
       cccaggctgg agtgcagtgg tgcagtcttg gctcactgca aactccatct cccgtgttca
       agcqattctc ctgcctcagc ctcccaagta gctgggatta caggcatgcg ccaccacacc
35341
35401
       cagctaaatt ttgtattttt agtggagacg gagtttcacc atgctggtgt caaactactg
35461
       gctgcaagtg atccatccgc cttggcctcc caaagtgttg ggattacagg catgagccac
35521
       tgtgcctagt caaacctttt cattattatc tgttattgtg atcagtgatc tttgatgtta
35581
       ctattgtaat tattattgaa tgccataaac tgcacctgta taatacagga acttaattga
35641
       taaatgtctg cagcgtgacc aaccattccc ccatctctct ccctctgctt ggtcttccct
35701
       attccttgag acacaacaat atggaaatta ggctaattaa taaccttaca gtgactttta
35761
       attaagtgtt cagatgaagg gaagagctgc acatctctca tttgaaacca aaagctataa
35821
       atgattatac ttagtgaaga aggcatgttg aaagctgaga caggctaaaa gctaggcctc
35881
       ttgcaccaaa tagttagcca agttgtgaat gcaagggaaa agttcttaaa ggaaattaga
35941
       agtgctactc cagtaaaccc acaagtgata agaaagcaaa acagccttat tgcttatatg
36001
       gagaaagttt gaatggtctg gatagaagat cataccaccc acacatcccc ttaagccaaa
36061
       gtgtaataca gagcaaggcc ttaactctct tcaattctgt aaaggctgag agcggagagg
36121
       aagCtgtaga agaaagtttt gaaactagca gaggtttatt cagagcttta aggagagagg
36181
       ccttctccac aacataaaaa tgcaacatga agcagcaagt tatctggaag atctagctga
36241
       gataattgat gaaggtgact atactaaata atagattttt aatgtagatg aaacagcctt
       ctactggaag aagatgctat ctaggacttt tatagctaga gaggagaaat cagtgcctag
36301
36361
       cctcaaagct tcagaggact ggctgactag ttaggggcta atagagctgg tgagtttaaa
36421
       ttgaagccaa tgctcatgtt ctgctctaaa accatagagc cttaagaatt acgctaaatc
36481
       tactctqcct qtcctcaqta aacaqaacaa caaaacctga tqaqaqcacq tctqtttaca
36541
       gcatgattta ctggatattt taagctcttt gagatctgct cagaaaaaaa gtttaatttc
36601
       aaaatattac tcactgacag tgtaactagt tgtccacaag ctctgatgga gaagaacaag
36661
       gagattaata ttgttttcat gcctgcttaa ataatatatc cattcttcag cccatggatc
36721
       aaggagtaat ttcaactttc aattcttact atttaagaaa tacagcaggg catggtggct
36781
       catgcttgta atctcagtac tttgggaggc caaggtggaa ggatcactca aagctaggag
36841
       ctcaagacca acctgggtaa caaaacaagt ccctgttgct acaaaaaaaa atttttttt
36901
       aattagctgg tcatggtggc atgtgcctgt agtcccagct acttgggagg ctgaggcggg
36961
       agggtcactt gagtccagaa gttaaaggct acaatggaga ccctgtctca aagaaaggaa
37021
       gcagggaggg acatatgctg tagctgccat agatagtgat tcctctgatg aatctgggca
37081
       aagtgaattg aaaaccttct gaaaaagatt caccattcta gatgccatta agaatgttca
37141
       tgattcatgg gaggaggtg aaatatcaac atgaataaga gtttggaaga ggttgattcc
37201
       aaccctcgtg gatgactttg agaggttcta gacttcagtg ctggaagtta ctgcaggtgt
37261
       agtggaaata gcaagtgaac tagaattaga agtgaacctg aagatgtgac tgaattgctg
37321
       caattttttg ataaaacctg aacagatgag gagttgcttc ttgtgagtaa gcaaagaaag
37381
       tggtttcttg agatagaatt gactcctggt gaagaactga tgactttaga atattacata
37441
       aacttagttg ataaagcagc agcagggttt gagaggattg actccaattt tgaaataagt
37501
       tctagtgtgg gtaaaatgct gtcaaatagt atcatatgct acagagacat cttcagtgaa
37561
       aggaagagtc agtcagtgtg gcaaacttcg tcagtcttat tttaagaaat tgccacagct
```

```
37621
       accaccetga teagteagea gecateaaca tegaggeaag atectetgte ageaaaaaga
37681
       ttatgatttg ctgcaggctc acatgattgt tagcattttt agcaataaag catttttaaa
37741
       ttaagttata tacatattat tagacataat gctattgcac acttaataga ctttagtgct
37801
       aacataactt ttgtaggcac tgggaaacca aaaaattgat gccgcttgct ttattgagat
37861
       ggtctggaac ctaacctgta gtatctccga ggtatgcctg tatcttcatt tgtaatatgt
37921
       ccttcacatc ttttgccctt ttttattatt ttatttgttg atcttctttt atggagttgt
37981
       cagagetett tattattetg tttaccagte ettteteaga tgtatgtatt atagttattt
38041
       ttttcccagt ctggcctgcc ttttaatttt ctcaatggtg tctttcaaag aacagaagtt
38101
       tttaattttt ccgaagttca gtttatccat ttttcttcat gtttatccac tgtgtggtat
38161
       taaagaagaa agcaatgtgt ataagaatag ctggttcttc cgtaattaat gtttaataac
38221
       cccattattc tccgaaggca tctgtctttg cacacctgac ctgctgttcc accaagaaag
38281
       ttccacaaac acttagcagc agccagccta acctgtttt ctccttgctt tccacagggt
38341
       gccatgactc ccggaatccc tatctttagt ccaatgatgc cttatggcac tggactgacc
       ccacagccta ttcagaacac caatagtctg tctattttgg aagagcaaca aaggcagcag
38401
38461
       cagcaacaac aacagcagca gcagcagcag cagcagcaac agcaacagca qcaqcaqcag
38521
       cagcagcagc agcagcagca gcagcagcag cagcagcagc agcaacaggc agtggcagct
38581
       gcagccgttc agcagtcaac gtcccagcag gcaacacagg gaacctcagg ccaggcacca
38641
       cagetettee acteacagae teteacaact geaccettge egggeaceae tecaetgtat
      coctoccca tgactoccat gaccoccato actoctgoca cgccagotto ggagagttot
38701
38761
       gggattgtac cgcagctgca gtgagtactt cgtgttttat gtttcctccc acttaggagt
38821
       ccctttgagt tatgttcctg ctctgttttc agatggatcc ttttattaag ggagggagtg
38881
       gcactaacgg taattgtgta tcaaaatttg ctttatctca catttgggaa agggaagcaa
38941
       agctatctta gtcagtgtcc tcagtaaaag gctcttaaca ggtttagaaa tgtgqtcatt
       tgtgtttaca tacctgagcc aataaaattt aatctgactt tcactgtcgt tattattata
39001
39061
       ttatagacat ttccctgtat ctgatatcgc taaatcacaa tgttaggtag tctctttccc
39121
       ttatgctatt ttaggtcttt agtcacaata tcagtataat ttctggtagt tcttgtttt
39181
       tgtttttact atgggtgctg catataaatc tttgaaggtc tgtgtccttc ccacaaaatg
39241
       aagacgactg tttttgtcat aaatggattt ttctacctaa atgaagtggg ttctatatgt
39301
       aacagtgtag taggggtagg aaataatttc atcttcctga aaaaccagca aatatttcca
39361
       aataattcca gtcaataaga agtgtatagc ttttcatttt agaaagctta tgaccaaatt
39421
       aaaaggttac ttgcagtctc tgcatctcct cagttttctt gtacagatac cttcctcctt
39481
       catactccct ttagatctag tatttcctat ttgcatttat tcaccttgtt acatatatgg
39541
       ttgttgttta taagctatct ctcatcattt ttggaactaa gtggtgtgta atcgtggatg
39601
       ctgactttca cccaaagacc taaatcttgc ctccacaatt ttgtttgacc ccacacaa
       ttttaaaaac aaagtaattt tagtgatttt agagagagcc ctttttagct cacccttgtc
39661
39721
       tataccactc ccatgtgtcc agcatgcttg tetgactece aggaatattt aagtttgcat
39781
       ttctgattta aataataaat tataaacagt acagtcaggt gtttgtttct tgcgagtgcc
39841
       tttgctgttc tgatactccc cagagcatcc agtcatccac attcctgaat ttccactatc
39901
       tactaagaac cctcccgggt ggtagttcag tgccctctcc atcttgtagg cttaagaggg
39961
       attaaggtaa atattaatt aatgaaaata tataagaata catttaacaa ttatgtgact
40021
       aaagttgtga tagatatact aaaatctact tggtatagtt cataagtgga caaatgctaa
40081
       aggcaggtgt gtatacaagg gtgattggaa ggaaatagat gatatggaaa tgaaaacatt
40141
       cattgtgtgg atcaacctaa ttggctttac agttgtgtat catagactgt acaagaaaaa
40201
       gaaccagaag caacaatgag ctgaaaccta ttgtatttga acctatgtat ttgaaatctg
40261
       gactcgatat tcttgggatg gtgatttcca ggtccatgcg agacagttgt tgagcagtta
40321
       attgcattca aagggcattg cccatttcaa ctatatatac tttcataagc agaaaaatgt
40381
       ataatgaaaa tgtgggtttg ttgtttaaat ttttattaaa atttctaata gagttgcttt
40441
       ttagtatatc tttatccttg tataagttat tcgttaagtg atttaagaac actgagaaat
40501
       gaaaagggtc agtggaccca gatggctcca tttatcctta tttactgaga gttaattaga
40561
       agagaaagca gggttttgcc tttttttttt gctaaagaca cttagctctt qtttttcaaa
40621
       agatacttac tttgagagaa ctgggcagtt catgcctgct tgttttcatt ataaatagtt
40681
       acttaggaat agggtggtgg tggtagcttt tcagagctca cagatgagaa ttgagtttgt
40741
       ctgtgagaag gctaagggca ggctctggag acagacagac tcaaatcctg gctcctccac
40801
       ttgggagcca ttgcgtcctg agcaagttgc actctacctt taagcctcag cttatttatc
40861
       caaatgtggg aatactggta acttctacct cagtgcgtta tatgtattaa atggaataat
40921
       ctatataaaa tgctcaacat gtgcatgata cttgttaaac aataaatgtg agcaattaaa
40981
       aaaaagtaaa gcctggttga aataatcaga tgtctgcata atttctaacg cctcatccaa
41041
       tgaaacttaa gtaatttaaa tagtcgtgtt ttctttttaa atctcttaca gaaatattgt
41101
       atccacagtg aatcttggtt gtaaacttga cctaaagacc attgcacttc gtgcccgaaa
41161
       cgccgaatat aatcccaagg ttagatctat tttaatgtat ttctttttt tttcttttt
41221
       gtctcctctg ccgtgtctct atattttaat gtatttcacg ctataaaaca aatgtctgta
41281
       gatcaggcca ggcacagtgg ctaatgcctg taatcccagc actttgggag gctgaggaag
41341
       gagaatttct tgaacctagg agttcaccac cagcccaggc aacatggcaa gaccctgtct
41401
       cttaaaaaaa aaaaaaaaat tggccgggct tggtggctca cacgtgtaat cccagcactt
```

```
41461
       tgggaggccg aggtgggcgg atcatctgag gtcaggagtt caagaccatc ctggccaaca
41521
       tagtgaaacc ccgtctctac taaaaataca aaaatttgcc gggagtggtg gcatgcgcct
41581
       gtaatcccgg ctacttqqqa qqctqaqqca qqaqaatcac ttqatcctqq qaqqcaqaqq
41641
       ttgcagtgag cggagattgc gccattgcat tccagcctgg caacagagcg agactccgcc
41701
       tcaaaaaaaa aatctgtata tcaaagagtt tgtgttatgc ttattccttg acaccaataa
41761
       aatgaagatc taaagtaaaa tgtgcattgt tttgtatctt ttattgagtg tctgtgatat
41821
      41881
      ggatcatgtg aagaattttg tatatgtata gggatgatgt tagccagcta tagtaggcaa
41941
       agtaatttgg ataaacatta gctgggttga gagaaatgtt aagtaatgga cttagggtgc
42001
      attttaaaat ccctgaaaca taatgcctga gatctgaaag acagctaagg gtctgaaaat
42061
       caccttttaa ccactcataa tgagtctgta tgacatgtag cattctaaga attaatcttt
       catctattat aatcacattt agttgaatac ataattttat tactttacgt tcttaagtga
42121
42181
      tatttaacca ataaaaatag tagaggaaat tctggaaatt caaaatagct aggcttttcc
42241
      tgggacgtat ataaactact atatactgct agcttttta gatgttgata aaatcacagg
42301
       gaagacatag agcaggtttt aaactaaaat tgttaaaagc caggcatggt gactcagacc
42361
       tgtaattcca gcactttggg aggccaaggt gggaggatca cttgaggcca acagttcaag
42421
       acgagcctgg gcaacatagc aaggccttgt ttcatcagaa aatttaaaaa attatctqqq
42481
      gttggtggca cacacctata atcccagcta cttgggaggc caagacagaa ggatctcttg
42541
      agctcaggaa ttcgaggctg cagtgagcca tgattqcacc actqcactcc aqtctqqqca
42601
      acaaagtgag actcttgtct ctaaaaaaaa aaattaataa aataaaaaaa taaaattgtt
42661
       aaagcaatct agtttgtcaa agagtcgtct taattagaaa catgtaggtt tttattgtat
42721
       aattaaatgt attaaaatat ttaagttgtt tcaaagtaat tatttgcttt ttatcatgta
42781
      cctaataact gaggccatta attcaaccca cagttgaaat attttcccct tgagttacca
      ccttagcaag aaaattttct gaaagaatta acatgtttca agcataaaaa gcagaaaata
42841
42901
       aaagttaaaa ctgtgttttt ttcctaattt gcatttatgt gtttaataca ttaatattgt
42961
       ttctaaagac caattgaaag catgatttta cttcattacg tattgatagg cttgtaatct
43021
       gatttattaa ttccattaag gtagaaaagg tttattggtt tatttgcctc aaaattcata
43081
       ttaataaaac aaaatgtatc agagaagcta tagtcatgat aagcagcaaa tataaagtag
43141
      aaacagaagc acttgtattt attgagaaca taaccaaatt ttgcaaacat ttctcttgat
43201
      ggaatgctca tgtgaaagaa catacagatt tggtataact tagtcacaat tgattatttt
43261
      ctgctcctta tgcaaaggaa tatttgttac atgtggtgta tgcaaatcct ttacagatat
43321
       acagaaatac agaacaaata ttttgataac tagatgtact atgtccttcc taccagttgt
43381
       gatttttttg tcaatgggtg gttcgcctaa caacattgag cagtttggca tgacctcact
      aatgattoto totgaccatt gtagoggttt gctgcggtaa toatgaggat aagagagcoa
43441
43501
      cgaaccacgg cactgatttt cagttctggg aaaatggtgt gcacaggagc caagaggtag
43561
      cogtaagaaa ttcattotto tggtotatgg gttatgaatg aaaaggtgat atotoattgt
       ttttaggtta ttaggttagc actttaacat gttattattg ctttcttata aaaaccattt
43621
43681
      taatatgatt ctattaatta ttttattta tttatttatt atttgattct attaatgtta
43741
      gatagcagtg atttcatttt cttaaaaatt agatatgggc aggcgtggtg tctcaccaag
43801
      gcgggcaaat cacttgaggc caggagttcg agaccagcct gaccaacatg gtgaaactcc
43861
       atototacta aaaatacaaa aattagooag gogtggtagt ggatgtotgt agtoocagot
43921
       acttgggagg ctgaagcacg agaatcgctt aaatccggga ggtggaggtt gcagtgagct
       gagatcatgc tactgtactc cagcatggga gacagaacaa gacactttct ccagaaaaaa
43981
44041
       gaaaaaaatt aggtaagatg taatacaaca tcagaactat taataaaatt ccctttatgt
44101
       gaaaaatgtt gtaaataaca caaatacatc ttqaaatgqa aqaaaaatt qatcaaqaat
44161
      taaaacactt ctaagctaat ggtgtaaggg ctttgcagac cttattgggc ctggcagcgt
44221
       gacagcatca catgtgttgg ctgcagaaac ctgccttctc actggaacta gctttcatta
44281
       atagtgtttg agttgtgcag atcttaagga atgcaccctt gttataaaat gtcattgcct
44341
      atatteteca tetgaagtga teetgtetga aggttagtae tetgeggeee tgaetgttet
44401
      aaacagaqct tatatacttg gtagaagtca aaaactaggg ggaaaattag tgacattagc
44461
      ttcataaatg aactgaacaa ataaactaaa actttttaaa tgaaagagta tKaaatgtac
44521
       ttggaggtat caacacatag aagggggctg tggatatttt tgcttattct gaagtttgaa
       attgtctttc agtgatggga atgccattgg tgtggacatt ctggctcctg atctccgagg
44581
44641
       tttttcagaa tgcaggacaa ggatgtgttc ttqcctttca cttccccttg qccacaacat
44701
       gcagtagtaa cctctttaat taagagcgtt tttgtttgct tgttttcccc tgcatggaac
44761
       atcagaaact tttggtttat caaggcaagc ttttcatgca gcatttagcc tttttgtccc
44821
       agagcatctg aaaactgaat attgtatatS tagttggatg actatttcat caagacaaga
44881
       aaccaccaat acatttacct gaaatttaaa agcgtagcat atatatatat gcttgatttt
44941
       tgttcttcct gatcccctgc acctgatagt ctctttatgg taatattttc acattctttt
45001
       ttgttgttgt tgttgttttt gagatggagt ctcgctctgc gcccaggctg gagtgcagtg
45061
       gcatgatctc ggctcactgc aagctccgcc tcctgggttc acgccattct cttgcctcag
45121
       cctcccgagt agcagagact acaggtgccc accaccatgc ctggctaatt tttgtatttt
45181
       tagtagagat ggggtttcac tgtgttagcc aggatggtct caatctcctg acctcatgat
45241
       ccgcctgcct cagcctccca aagtgttggg attacaggtg tgagccaccg tgcccgacct
```

```
45301
       45361
       tottttttt tttttttt ttttttttg gtggagtcac ctaggctgga gtgcagtggc
45421
       acaatcttgg ctcactgcaa cctccacctc ccaggttcaa gtgattctcc tgcctcaqcc
45481
      tcccaagtag ctgggattgc aggtgcctgg caccatgccc agctaatttt tgtattttta
45541
       gtagagatag ggtttcacca tgttgaccaa gctggtctcg aactcttgac ctcaggtgag
45601
       ctatccgcct tggcctccca aagtgcttgg gattagaggc gtgagccacc atgcctggcc
45661
      cacattetge ttttettatg taagetetga actgetaagt egtagtttat teaacaaatg
45721
      acataggaat gtctattcat gatgagtctt ggtataaaag aggatagaat tagtgaatac
45781
      attgttcaat aataaatctc atcaacattt tctgatcaaa atgaagtttg ttagttttcc
45841
      tctcagtaga aatgcatggg ctaaaaataca gaaatagtga tgaYtgatga tggtgataat
45901
      tcacatccat aaaatctagg gctacaataa tttggcggat tgaaaggtca ttttggcagg
       cctacagttt tctgtcaagg atccaggaat actttataag gaattgtgaa tgcctgtcag
45961
46021
      tottttctcc tattgcaaga aggotgacca gtttacactt tattagttta ctgttttgga
46081
      ctttttataa gttattagtc taaataagta ttttagctgg ctctgagtat gaataactca
46141
      cttttttcct ttccctagtg aagaacagtc cagactggca gcaagaaaat atgctagagt
46201
      tgtacagaag ttgggttttc cagctaagtt cttggacttc aagattcaga aRatggtggg
46261
       gagctgtgat gtgaagtttc ctataaggtt agaaggcctt gtgctcaccc accaacaatt
46321
      tagtaggtaa gtctgaaatg tattRtgatt gttattggca acagttcatt tataatctaa
46381
      acattgttca gaataaaaca catgcaaaat attcagtata tgagaacagt tgacatggtt
46441
      atagttgtat gtattcttgc attgtcttcc tgatgttctc agtcatattt atcaccctca
46501
      ccagcctctg cttcccttat cactttgcgg tacccataac tcccctttac tggaatgaat
       ttgattctac ttctgtatgt tttatcgttt tattgctgaa tacacttgga atgcatgaat
46561
46621
       tgaccctaac cttgtatcaa tttttttcc cagtttggat cttctctttt agtcaacatt
46681
      gtgtcagatc taccagcaaa gtgtgaagtt gagcgatagg aacaactttc taattatctt
46741
      ccctgctact tgcaggtgaa gactcacagg caggcagccc tgcccacctc actgcttcat
46801
      ctcatggtct tctggtgtct gttcacaggc acattagttc tgtgtgcccc tggggctcac
46861
       ttggttcctc ctgccctagg cctttgcact tgccactttt atgcctagta tgctcatttc
46921
       cetttteace taggaagete ceaettgagt tecatatgte tacceattee actetteete
46981
      agagaagcct gtcctgaatt ttgtcttagg tcagacacac agaaacagag gcatcctgtt
47041
      ttcagtctct ccgaactgag aaaaatgaga ttactaggct tagaagaata tgtaccaggc
47101
      ctggcctggt ggctcacacc tgtaatccca gcattttggg aggccgaggc aggcagatca
47161
       gttgagttca ggagttcaag accagcctgg ccaacatggt gaaacctcgt ctttactaaa
47221
       aatacaaaaa ttagctggac atggtggtgc atgcctgtaa tcccagttac atgggaggct
47281
       gaggcaggac aatcattcga acccaggaga tggaggttgc agtgagccaa gatcgtgcca
47341
      47401
      caatagtcca ttcagtcaga cagcttaatc aggtataggt taattctcag gctagtatat
47461
      aagtttgatt aaatttcctg accacaattg tcagctagag aatatttcaa tttaaggagg
47521
       taagatatga ttaaaagtta aactgtcagt attggatctt agaagtaaat gattattagg
47581
      actgtaatag taattattag gactgtaaaa gtaaaggatt attatctgca ttagatatca
47641
      ttatatctaa tgatatagag actgcagaca taactacagg gctctttttc ttaaatcaga
47701
      aaatccagat tcaatagaaa tagggtaaag tgataggagg acaaatagcc ttccatccag
47761
      tggttatcaa ctgacgacta caagtcggcc tcacttgctt taattattct attctatcct
       ttgatgctgc ttgaagaact gtgttttacc tcttgactag tttgtttatt cagtatttt
47821
47881
       ccttgtacag gtcctcattt tatctaaaag cacacaaagc tcttgatttc taaacttttt
47941
      gcaattttcc ttctagttat gagccagagt tatttcctgg tttaatctac agaatgatca
48001
      aacccagaat tgttctcctt atttttgttt ctggaaaagt tgtattaaca ggtaagttgt
48061
      aacaggaagt agtatctgaa agtttgtaag tgttttgagt atggcatttt ctcagtgctg
48121
       aaaagaaatt tcagtgttcg gacagtgggc tagcttcttg tacaaaggcc tcccacccaa
48181
       agtctgatga gaaacgtgcc cactaaaggc acagtgagag cagggaagtc tgaccacagc
48241
      tctgcaagca gacttccatt tacagtgagg aggtgagcat tgcattgaac aaaagatggc
48301
      gttttcactt ggaattagtt atctgaagct ttaggattcc tcagcaatat gattatgaga
48361
      caagaaagga agattcagaa atgagtctag ttgaaggcag caattcagag aagaagattc
48421
      agttgttatc attgccgtcc tgcttggttt atggcctggt tcaggaccaa ggagagaagt
       gtgaatacat gcctcttgag ctatagaatg agacgctgga gtcactaaga tgattttta
48481
48541
      aaagtattgt tttataaaca aaaataagat tgtgacaagg gattccacYa ttaatgtttt
48601
      catgcctgtg ccttaatctg actgggtatg gtgagaattg tgcttgcagc tttaaggtaa
48661
      gaattttacc atcttaatat gttaaqaaqt qccatttcaq tctctcatct ctactccaac
48721
      ttgtcttctt aggtgctaaa gtcagagcag aaatttatga agcatttgaa aacatctacc
48781
       ctattctaaa gggattcagg aagacgacgt aatggctctc atgtaccctt gcctcccca
48841
       cccccttctt ttttttttt taaacaaatc agtttgtttt ggtaccttta aatggtggtg
48901
       ttgtgagaag atggatgttg agttgcaggg tgtggcacca ggtgatgccc ttctgtaagt
48961
       gcccaccgcg ggatgccggg aaggggcatt atttgtgcac tgagaacacc gcgcagcgtg
49021
       actgtgagtt gctcataccg tgctgctatc tgggcagcgc tgcccattta tttatatgta
49081
       gattttaaac actgctgttg acaagttggt ttgagggaga aaactttaag tgttaaagcc
```

```
49141
       acctctataa ttgattggac tttttaattt taatgttttt ccccatgaac cacagttttt
49201
       atatttctac cagaaaagta aaaatctttt ttaaaagtgt tgtttttcta atttataact
49261
       cctaggggtt atttctgtgc cagacacatt ccacctctcc aqtattqcaq qacaqaatat
49321
       atgtgttaat gaaaatgaat ggctgtacat atttttttct ttcttcaqaq tactctqtac
49381
       aataaatgca gtttataaaa gtgttagatt gttgttatac cttgtaagag tcatgtgatc
49441
       atactgtttt ctacaaagtt gtattttaga tataatgcct gaaaccattt tggtgtttgc
49501
       ttcagtcagt atttcattgt atgctgcaat gaaaacagat taatgatctg agaaccttcc
49561
       atatattgag caactcctgt tttctaggta ttttgcatac aatgcctgga atcctcacaa
49621
       agcttcagtt acgttttgtt cctctgttgg aggtgaggag ataaggaagc cccagctgag
49681
       ggacttggct gaggttacac agctagtaag tggtaaaaat gagtgagtcc ttcaggtgta
       gaagctggtg ccctatccac aggctgccaa ctctctgcag taacttttt ttgcttgttt
49741
49801
       tgcagttttt ttctcatgga ctatcaggtg gacatttgtg ggttcttagg ttttattgtt
49861
       agagtggttt gttgttttta attgtaaaag tacatcttca gctgactcag gaataaaatc
49921
       agaaagggga ggtccttcct tcctttctct tctgcctctt tccccaaqat aacgaccaqa
49981
       ttagtgggta tcttctaagc cctgttctgt ctatcttctq qqcatqqcat ttgatcccat
50041
       ttttggaaaa aagaaataat acattcaatt ttatagcttt cccttttttc agtcaatata
50101
       tcataaacct atttccatga ttgggaatct aggatactct tcttaggtac cttcacttac
50161
       tgagctattc ctgtaattat ggtcatttac atgacctcta gtttttcaat atcatcaaca
       gcgctgcagg gaacatcctt gtatgtgtat ttttcggatg agtgcaggta ttcatgtagt
50221
50281
       aaactttcct aqaaqaqqaa ctaaaqacta tacattctqa qttttaatca qttqatacca
50341
       gattgcagtc caaagagaac ggtgcatgaa atgccctttt cttgcatttt ccaatcatta
       gtgatgccaa taatgtatgg attaattgga aagacatcat tccaatatta tctcctatct
50401
50461
       aagaaagaag tatctcttca tgtatgtagg tcttatgttc ctcagtaaag ttttgtactt
50521
       tttttcacac agggctttta tatttcataa gtattacttc cttaattcct aagtatagta
50581
       tcattctgt tttattactg gaagtttttc ctaacacttt aaaagttatt gttgataata
50641
       tttttcttat tccgagttta ctgaactcct attactgctg atttagttga ttgcattgaa
       agttctaggc atgtaatcat ctgtaaatag taattttatg ttttcctttc caacatttat
50701
50761
       ttttcctatc agtgcctagg actttaatgt atataactta aaaaaaacat ctcttagagt
50821
       tgtagctaca tatacaggaa atctaacaaa tgtgtagcat aatgtattat acaaaggcag
50881
       acaccettge agccaccaac aaggtcaaga aacaattttg ctgcctgtcc tagaaqcccc
50941
       toottatggt cotatocaga cacacactto tggcttccct caagcagtga ctattatcct
51001
       gactotcacg catttaaaga taattgaagt tootcgtoca totottttot ttocaattta
51061
       caggccattt agtgtgtaga gcttctcata gtctggggtt tgctagttgg aaattcatgg
51121
       tgtagtttcc ctattctctg tatttcctgc aaattggaag ctgctgtgta attcctagat
51181
       51241
       attaatttga atacttttat aaagtgttgt gctccatata gcagaatact ttcccctttt
51301
       aagttttcaa gataaaatga gttcatatta atatgtccaa ttcaaagctc atagggttat
       tttaccaatt gtataccaa ttcaaattca aagcttatag ggttttatt taaccaattc
51361
51421
      tgtattacac tcttccttct acactgagaa tttttaattc ttaaagacat aggggatgag
       quattagaat gtcccataat tactcattta ctttacgtat ttactttatc attactttat
51481
51541
      Ctgttatatg tgcaattttt tttgagacac ggtctctqtt gcccaggctg qaqtqcaqtq
51601
       gcacaatcat ggtttgctgc agtctcaaac tcctgggctc aagtgatcca cctcaqcctc
51661
       {\tt tggagtagct\ agccaggact\ acgggtgcac\ accaacacac\ ccagctaatt\ ttttttaatt}
51721
       tttgtagaga caaagtcact caactgttgc ccaggctgtt cttgaactct taggctcaag
51781
       ccatcctccc acctccacca taacattctt aagagtaaca aaaacactat caccaatatg
51841
       attgccaaaa acacttggaa ctttttttt ttttgctgtg atatctgaaa ttgccaaagg
51901
      atattcagta tctgaaataa aaaggcaaag ctgaatatgc tgctctctac agcagagqqa
51961
       gctgctgtgg ctggacagta tctgaaccaa gcagatctta aaactttgta ggtgttgaga
52021
       aatggtggat gcatggactg qcaccgtctg tggaqccatq attatgtagg tgaqacttqc
52081
       tcattatctt gtagtgtttt aaaatgtctt cacatttcta aaggcaactt gcttaatgca
52141
       ttttttaatt taaatttttt atgttgtaca gtttatttta aatatagttg ctattttta
52201
      acacagatge caagteggtg etgtgagatt ttetttetgg tgatttggae cagtttgtet
52261
       ccctcttgat atatccatcc caaatggaaa ggccctgtaa actgttacga tcatctccag
52321
       aggttaactg gaatatacac caatgacagc ttgcctgggt atgccaaaat acctgcaaqa
52381
       atgtccacat catctggtga tgtccccaaa taacagtttt taccatagaa agatcgttaa
52441
       catgtttgct ttaaaagtca ttagcagtca taacgtactt acagattctg cctataagga
52501
       ataatacata attttagata taaaqqcccc actagtccag gtttccttat gccactgtgc
52561
       ttcctactaa gtgttgcgac cagctcttgt cactagttga tgacaactta ctccagtagc
52621
       cacagggctg tgacaccata gttataggtg attttcatag atttagccat cccaggttcg
52681
       aaactagtat cctctagctc ttaagtagct gataacctcc ccatgggaga aactccatac
52741
       tgcagtttcc catatggtgc tatgtataac tatcttatac aattaataca aattgcatat
52801
       gtatacttat ataatatqqa ctactaqqac aqaacttttt aaattacaaa taaaataqcc
52861
       aagtagacaa ttacattagc aagtgatgtt acctatgaaa acgtgaggat ttatggtggc
52921
       aatgcatttc agttaacagg gatgtgttag gggacaatgt gagccaatgt agattaagga
```

```
52981
       aataagcctg agaaatttat cagaattagc cgtcagtatt caagcactga tcaacagcaa
53041
       tgtgtcttaa gggcaggcat cactggtgct gagagaactg ggaattgtca actgtgagct
53101
       gctaggggat ggaagaaacc ttagtgtagt cttaggagcc gcttgcttaa acaqatqtat
53161
       cagaaacata ataggccaag ggtcagccct ttgaaaactg acttcagggc cttcctttcc
53221
       tcaggctgct gcctcctagg ccagaccctt attttggctt acattccata acccttgtat
53281
       gtgcgatagg gaacctgtat acaatgctga cacggaaagg gaagaccatc gccttttgcc
       tttcagtgtc tcatctgtaa gcagggccgc Yggctgacca agatcagttc tgaaggtcca
53341
53401
       qcctctttaa attccagttc tgtgatcaca aagccactgt tgttcctcat cctgccaact
53461
       gtgatactgc tgcttcagaa ttactgggtt tcctgttcat catactcacc aacctqaqqt
53521
       ttggtatttc tcaaatattc tgggcttcca gtacatacta gagcctgtga taatcagcta
53581
       atgatcagac aagtttgttg ggagttttac ctaagtattt ttgtgtttta aaaacctagg
       gtgggaaatg ctcagagtga gatggtttga cttcattagg catataaccc atttttatta
53641
53701
       taaaaagaaa tgcacatata agtaaaaaga ccattttagt tagtcccacc attcgttggt
53761
       aaccagttca ctaagtgtac atctttgcag atttctgtgc atacatacaa atatttttac
53821
       aagaatagga tcataccatg aataccacct ataatggtat gtctgttgtc aatataggtg
53881
       ttataattaa gactgtgtag ccttcctctg Kggatgtacc aaaatttatt taattccctg
53941
       tcactggaca cttttgtttc actaataagt agacactgtg taagcaatcY gtcaacatct
54001
       ctgcacctct atttttggta taagtatttc cttaggataa aatcccaqaa atggaattgc
       aaqqtataaa agattattaa catttttcaa ggctttaaga tgcctttacg gtgtatctgt
54061
54121
       tacatcctqc ttccacacaa attcttctqt ataqccaqta cccaaqctqc aqctctcaqc
54181
       acaggtgaag acagccagga tgccccagtc aatgctcttg cccagtctgt cagccttcag
       gtagtttagg agctgaggca tgacctgaga agagggtgac acacagttag aaagctgctt
54241
54301
       cacagcaggg agcacgagac cttctcagcc aggatgatta tagggatctt ggtctttcaa
54361
       tcctcatact acaaagcagg attatagaca ttatacaatt aacatgttta acaatctaaa
54421
       acttecttat gaetteaaag ceceteteae ettetqtttq qtetttteea tttqaqaaaq
54481
       aagttcacaa gtggctgtta atgaattatt ttcattacta atatgccact caaaaggqct
       gaggetteta tttgggcaac ttttactttg tatcattgca gatgttgtta ctcttgactc
54541
54601
       aagaaacact aattactagt aatgaataca gaaaggacat ctatcaatgt agttatagag
       accagagagg aatcttagaa gtagtctaac tcaaagagtg aataggcaga atagccacct
54661
54721
       qatatggaat cactttatac aaatcctqtc acctcaattt qqacattqaq aqctttqqca
54781
       ctaagaacca agcagagttt tgtgtatggt cctcataatt ccttttttac ccaaagaaac
54841
       aaaccaatat tagctatgac tttggtaagg ttagtgaatc catagctcaa gagcatttcc
54901
       accctaccca aatggatttt gatgctaaca aatccttttg qqcaqqqaaq qacatttatc
54961
       tttaatgctt atatccattt tttctaacaa atccacaaac caagattaaa cagtaaagac
55021
       tcctctcata aagtatataq tcaaagactt taattactag aacaagaaag gaaggtatac
55081
       attatttaaa ataacaaaag ttaacagagg cactaataat aatgacataa ccacactgga
55141
       ggtggagagc aStgtagata tcctcattgt cacagaagtc agtcaataga ccgtgtctga
55201
       aaactaggaa acagaaaaaa acaagacagt tccttccagg gaactagccc caaggtgagg
55261
       caggaaactg atgattttca ttataqqqta cccttccata ctqccatqtt qacccatqtq
       cacaaattac cttggtgaag tttttaatgt ttaaaaaacaa tcatggtgat tacacactaa
55321
55381
       atggtcctta tttaaggtca tacctggaat tccaatattc tcttggcacc acaggggcaa
55441
       totggaatat cottttottg aggaatattt toaccagaaa tocagatggg ggcaatacct
       ctqccatatc taagaatcta aaatcaatga agatcatgtt caaataatca ataccttacc
55501
55561
       tataagttgc caatggtaac atgctatcta ctccatgaat gttcctactc ttgatgtagc
       actgacccaa aaggcatgtc acagttcccc catcagacct ggctgtRcca gtgtgccact
55621
55681
       aatqccttct caatcacctc aaagtgatta tttcagttta tctgactcag aggqcatcaa
55741
       aatatatctc ccagatgatg cttttactac ctaatgttgg caacttaatc ctatgaatat
55801
       attgtgaagg gactaagaat gagcctctgc tctaattgca gaattctgcc cagagtctgt
55861
       gcctaccttc atagttaaaa aattttagga gggacaaata ccaagtgaaa catagtgttt
55921
       tqaaaactac tacaaacata agtaaatttc actgtaataa gcttcctaca gcaactgagt
55981
       ggttttctgt attttgtcta aaagcatatq cattgctaaa aactqcctta qtqtttaaqa
56041
       cctagatcta ttcttcctgt gtatttattt gaaccagtga ctggtttatg ggagtttagt
56101
       tttctttcgt gatttacgtt tatggtaggg gaggttaagg agaaaaatgt taacatgtca
56161
       cattttacaa gccaaagtta cctgttggaa atgggcaaaa ataacctttt ttctttctgg
56221
       cgggggggcc aatggtgcct aaacctcatg taccttaggc aacatctcat tcatctcca
       tccctgatgc ttgctttaga aaatgaaccc tgtatgataa acagtataac ctttagtctt
56281
56341
       ttagtaacta ttaaatggat caqcactgca aaacaccttt ctacatqqcc catctgtgtq
56401
       aggaactcct ctaacaagat aacaaaagcc tgcttttata ggctcctaag gaacagacta
56461
       atgttactat gaagttattt cttacagatt atactcataa aacatggcct gaagagaaca
56521
       cgatgaggag ctatgagctc cactttacct gttctggttc aagggctatc tgagttttaa
56581
       acttetgaaa aattttatet teeetggatt catgttttge catggaatee agttetteet
56641
       caaqtqcttc acctgaaaaa tcaacgtaac tattatqaaa aacaggagta atccccacaa
56701
       cttgacaatt cacacatgga gaggggaccc acttttaatc agatagcttt ccctatttat
56761
       tcactcattc aagttggacc atctgaattt ccaggtactc catccaactc tattatatgg
```

```
56821
       acttccattt agtgcatctc cttaaagctt caaaataaca gaatggtcaa gggcttagga
56881
       ctgcccagca catcacagga cacccaacaa atgtgagccc ttatcattag tatcctcagc
56941
       tggtaggetc actcactcag tcatcaagtq ttcatttctq qcctqqaqca qtqqctcacq
57001
       cctgtaatcc cagtactttg ggaggccgaq gcgqqcagat cacctgaqqt caggaqttca
57061
       agaccagcct ggccaacatg gtgaaatccc gtatctacta aaaatataaa aattagccag
57121
       acgtggtggt aggtgcctgt aatcccagct actcgggagg ctgaggcagg agagtcactt
57181
       gaacctggga ggcagaggct gcagtgaacc gagatggtga cattgcactc cagcctgggc
57241
       gacagagtga gactccgtct caaaaaaaaa aatgttcatt tccttctcca cattccttcc
57301
       tgggattaca gccaccctaa gccactgctg tccccaacag acccgtqtct ctaaqtataa
57361
       ccattagtct ttgtaatgta cgttaaaata gaactgatat accttgggtc agagaagcta
57421
       aaataactgc tttgatgaaa ctggaaaggc actgatggtg ttcacttgca ccatcaggtc
57481
       tgatggagga agtgtaggat gccttcagat tgatgttcca tcaagtatac gtggaaagtt
57541
       tcagtataac cgttaggaca ctgtaaatgc tgttccctca ggccctactg cctcctgcca
57601
       agtctcaggt aagacacagc tacctccagg aagcattttt ctattcaatt ctccttttat
57661
       tttagaaaat tttggacata cagaaaagtg gaaatactat aatgaaccgc cacatatcat
57721
       taatcagttt caacactatc aagtccagtg tttcctttct ctgccacttc cacctccatt
57781
       actotgaagt aaattocaca catatoactt cattoataat taagttatgt acccctcgaa
57841
       ggcaaactct ttccttttat ttaccaattt gaaaatgagt ctgttcccaa gtatcctata
57901
       aagatgatta ctgagttttt ttaaagtatc attttgaacc cattaaacat atctgatgca
57961
       gttagcqtcc ttqtqqatqt tcaaactqtc catcttttqc aagcaggagc cttttcatqt
58021
       tgcttgagtt ctgacatggc cctagtaatc cttatcctta atctttgata tgaccatgtt
       cccacattat atgaacgttt cctgacctag ttctggaatc aaccacctct ccaaagagcc
58081
58141
       tggagttcct tttagagaga aatggtacgt agacacaatc aacattatct tcctcctacq
58201
      cccaacatct cagttctcag taacaccaac ataattactc gtttcctttc cccccaatac
58261
       acacacaacc atctcaaaat aaaagcaaca gtctagtaat aacatgttta ttcaaaatac
58321
       taacactgtt acattettt catteteagg geatatteta etagagatgt actgteetat
58381
       gttttgaagt cacctggaag agttcttagt gtggttatat gactacatca agagtttttt
58441
       acttttgatg attagggact gctttttaaa acttacttta ctccataatc ttaaaatact
58501
       catacagttc cacagtcaca tttacactaa caaggcatat ttgaagtcca gctttcatcc
58561
       ttgatcctgc tactctaggc tctcctttct cctaaagata agcattttca ttatgtatca
58621
       tgtttatcgt ataggcatga acacacgcgc ggccccttcc aggcagtctt cagtgatgtc
58681
       acgtgttccc atggcacctg tattgtactc ttatcagtca ttatatggac tttaacttcc
       ccagatatta tttgggctcc tccataagac tgtgagcatc tgaccactgg agtgttgctt
58741
58801
       cccattatat ccctgttatc aagcacaagg tcaggcacag agtaagactc aaaacatgtt
58861
       ttggaatgta tgactggtat gaactacaaa ccagtaagct gatgttttca ttttgagtct
58921
       ataaatctaa ttttgtggtg gttttgtgta tKgctcaagg ctcaaattgt aaaatttaat
58981
       attatgtgac caaagaaagt tatacccaga acctcaattt cctcaccttc aaaatggggc
       agtttctcac tcattggtct gctgtcacga ttttaatgag ctcatgcaca aacagccctt
59041
59101
       tatataaggt aagtgctgga taaatgttgg ctactataat aaaataagcc tctaagatac
59161
       ttggtcagca caagtactac ccaagagtat gcactgtaag taaactgaca aaattgtgta
       tctaaaactg gccagatgaa agagaaactt ttaaggggcc cttctgcgtg cccgacactg
59221
59281
       tgctaggcac tcacactatc ccgacccgag aaacMgatct gcgacccaga ggaacttacc
       aagcctccag catcttgtgc agccctactc atgggaccat ctggataccc acccttgtct
59341
59401
       ttacagggag cagaacacac ctcttatgtg tcagaaaaca aagtccagga agtatatttt
59461
       tacctgaggc aatatctgaa aattgtatgc tacagcctcc aaagtgagtc ttcctctcag
59521
       tacctctctt ctaggcacat ggagcccttt cttccaaqta ttatgtttaa ccacttaatq
59581
       aatgaagtcc tgaaactgct tacccatgct ccctataatc tctgagtaat cttccttttc
59641
       cacaacctca ggcataatct catcttctgt ttctattaca atttcaaatt ctggaaaaag
59701
       gaagttgtgg tctggaatta tatggtccag atgatctgaa acaaaaagga cagcactatt
59761
       agtaatcatt tagttttgaa gacagtctaa taatttgctg tctctaaaqt actatattcc
       ctatagttct ggcattttag ataaagggtc ataaattaaa tgcctatatg gtgacattat
59821
59881
       tcagtgattc agacttcaca gccttttttt ttttttaca aaggtgttcc aggcatgaaa
59941
       aattttaaag tactatacct ttcctaattt tacctttaaa gttgtcctgg aaatatctgg
60001
       gttgacaaag gcgatgaaac tgaactgaRa cttaaaaaaa agattaccca cctggttgtg
60061
       cacaagectg cttatgtece aatetecagt ctagggtetg atgeteettg etgeagtaat
60121
       atgctttgtg gcatctggag cacgttttgg ggcctaaaca gccacaaacc ctgcagagat
       gagcaccaga cttaagctgg agacacactg attctcctgt ttctggggga ggattctcag
60181
60241
       aaggtggctc atatgagtaa aaatcgtttt tcctgggtag ttgattccta aaaactaaaa
60301
       aagaatacag agaaaagttt tatcttcaaa caaaacagca attcacatat tttatcctct
60361
       gcacgtaaaa ctgaaaataa caacaacaaa aaagaaatga aagtttttgc tttcaggaat
60421
       aagcttttaa aatccaqaaa ctagatttcq tccqqtacac qcaactqaqt tqcctcctaq
60481
       aggtggtttg agttaatcaa attaataaga ctgatcgtta agaacqactq ccaaaaatac
60541
       gaaaaagcta ctgggatcca tctttccaag acaatttcta ttatctqaat taacaccata
60601
       cctggtaccc actgattaaa agctgggggt taccaatgcg cgtgggcaca gttagaagct
```

```
60661
       tatgtagcaa aaatgagcac atcctggaag ggcccgggag aaggtgctcc tggggcagcg
60721
       cggagaggga gctctgaggc tgggggggca gcggtgcttg ccgccgtccc cctggtcgct
60781
       cccggaatta acgccgcgca cgcgtcggaq gcatggcccc gtcccgaccc cgtttgqcqq
60841
       ctcacctcgc aggccggcac agcacggctg ctcgcggcag cagaagagga agatgcagcg
60901
       gtggaaggcg tccgggcggc caggcagcgg cgcatacacc tgcagcagga aggagagcgg
60961
       geggeegeae agetegeagg ceagggeetg gggeeeegge ageeeggeeg egeeeageea
61021
       tgccggccgc ccgcccacct tgctggggaa ctgctcgctg cgcagtcgcc acgccggcgc
61081
       cgactcggcg aagcccagct ccacaggcct ggccccggcg gcagccatgc ggggcgcggg
61141
      ctggcgtggg gcgcagccca cagctgggtc ggaaggcgga aatcgggcgc cqgqccqqaa
61201
       ggcaagaggc gggcaccttt ccggaggaca ggaggcggaa acgcgtctga cgggagcggt
       tgcaggacca atgcgaggga acggggcaga ggaaacctct cggcatcagc cccgccctg
61261
61321
       gcgcctctgc ctccgagccg ctttcctggt gcctccgggt gctctgggat ggttctggtc
61381
       tttgggagag tggcagctgg tgacggcgct ccgctcacct ctgcacatgt cttgctgtgg
61441
       gcctgcgggt ggccgccagg gaggcagagc cctcccKcaa accttccctg ctggtqtcca
61501
       cctcagggtg tgggaaacct gtgcgctggc cgagtgctaa ccaagagtag gcagtgaaag
61561
       acaaatgaag gttgaacagg taaagtgagg accctacagc ggaaaccaag aatcctgtgt
61621
       gcctgagagt aatgaagaag cctctgcaga agagtctttt ctgtcagtct taaqqtctct
61681
       gttttaatgt tagtgctggc ttgctgtacc tgaattccaa gggaggagtg tataatgagg
61741
      catggccaac ccccacttcc catcattqcc tqaactaqtt tttcaqqtta acttcaqaat
61801
      gcccttgggc aagcagaggg tccatcagtc gqttggaggg tttagaattt tactgttggt
61861
      ttgcaaaggt ctgaaagaaa catgtaccac ctgttctctt taaggagttc tacttaggag
61921
       gtttcattta cataacaaga ccgtggttgt cagccaggtc tccacccgca taacctgtta
61981
       tgccacaatc caaaccccca ttctgtaacc tcaagatggt atataagttt ctgaacccca
62041
      tttggggctt cagcaaaatc actctggttc tcccccatgt gcatgttaat aaatttgtat
62101
       gccctttctc caattaatgt gccttttgtc agttgacttt tcagtgaacc ttcagaggac
62161
      aaaaaggaag ctttcccttg gctactacag tggctttaat ggaagtaaag tcatcaacaa
       catttatttt tgacaaaatc acagtttagt tggcagtata tttgtttgtt tttgtttat
62221
62281
       ttgagatgga gtctcgctct gtcgcccagg ctggagagca atggtgcgat ctcggctcac
62341
      tgcaacctcc gcctcccgag ttcaagcatt ctcctgcctc agcctcccga gcagctgggt
      agcagtatat ttgtaatggt acataaaata atgtctgttt ttaaataaac atttacattg
62401
62461
       62521
       ctgtcaccca ggctggagga gtgcagtggc atgatctcgg ctcactgcaa ccttcgcctc
62581
       ccaggcaagc gatcetettg ceteageete etgagcaget ggaattatag gtgtgtgeea
62641
      atacaaccag ctaattttcg tatctttggt agagacagag tttcaccatg ttggccaggc
62701
      ttgtctcgaa ttcctgacct cagttgatct gtccgtctca gcttcccaaa gtgctgggat
62761
      tacaggcatg agccaccaca tccggcatcc atcaatttag aaagtttatt tcaccaagat
       taaggttgca cccgtgacac agcctcagaa ggccctgatg accatgtgcc cttggtggtc
62821
62881
      agggtacagc ttgcttttat acatgttagg gagacatgag acatcaatca gtatgtgtaa
62941
      gatgtacttt agtcaggtaa agcgggactt gaggtgaggg cttccagRtc atgagtagat
63001
      aagaggcaaa agatcgcatt tttttgagtc cttgatcagc cttccactga atacacaatt
63061
       tagtctggct cagtgaatta tcatttttaS gtaaacaata ggggagggga agcaattaga
63121
       tatgcatttg tctcaggcgc accttaaagg gataactttg agttctgtct gtcctttatc
63181
       cacaaggaat ttccttgtgg gcaaatttta agggaggtac gtagcctctt atcttgqcaq
63241
      ctatcttatt taggaataga atgggaggca ggtttgcctg acatagtttc cagcttgact
63301
      ttaccctttg gtttagtgat tttqtggtcc tqagttttat tttcctttca caqaaattat
63361
      accgtaaaag taattgaaga aaatcacttc tttccccttc cctcaactag qccttgacca
63421
      ttttaaataa aatcaggatt tgctgaaggt caacaaattt aaccaagttc agttaaaact
63481
       taactctgaa tctgtatgtc cctggggtct tttccagtga gagatgtcta agcatcattc
63541
      caagetttte tatactaact ggeetatttg tatgtteett attttaggat teettttgtt
      catgtgtatt tttattaggc aatcacccat ttcctgtagg tttccaggtt aatatattt
63601
63661
      tcttattgga attttaattt atcctctcta gttttctaca tattttttt ttctttgaga
63721
      cgaggtctca tatgttgccc cggttggcct caaactcctg ggcttaagca atcctcccac
63781
       cttggcctcc caaagtgctg ggattatagg tgtgaattac tgtacccagc ctagaatcct
63841
       tagtcctata tacttttgct gtttttttca ttgccaactt qaaataataa aaaqqgtcaq
63901
      aatcctataa accaaaaata aaataaggcc ccccaaccct ctgaatggac ttcctcctct
63961
       gacacagatc ttttacaatt taacctgtat gaaccccaaa aattggagac aggtctcagt
64021
      Kaatttagaa aatttatett gegaaggtea aggacacaeg attatgacag eetcaggagg
64081
       tcctgacgac atgtacctaa gatagtcaga gcacagggtg gttttataca ttttagggag
64141
       atataagaca tcaatcaaca tatgtaaaat gaatattggt caggaaaggt gggacaactc
64201
       aaagaaaaaa tgggacaact cgaagtgggg aggggcttcc aggtcacagg taggtgagag
64261
       acaaatggtt gcactctttt gagtttctga ttcacctttc taaaagaggc agtcagacat
64321
       64381
       cagttcccag cttgactttt cccattagct tagtgattat gggattccaa ggtaatttcc
64441
       tttcacattt cccccctttt cttttttaaa atattttgga gaaagcattt ttgaagaaaa
```

```
64501
       taagtttctg ttcccaggtt ttatctgctc tctcatggct aggatggttt tttcctagaa
64561
       gggtaggtcc tgagttatta ggaaagctca tttttagaag gttgtgaagt ctaatatcct
64621
       atcaagagaa aatttgggga ggaagggaga acaataagaa caatcttgga aaattgatct
64681
       aggccacatt actctgaagt ccatacatca gtaagcaggt atgaaagtgg cttatgtatg
64741
       taaataggtt cccattattt tcttctgaag tttaagttgt ctacttcagt tcacagggct
64801
       tcacgaaagt tagttttaag tgacttagtt tagtgacagc ttagttttaa gtgactccaa
64861
       attaggaaaa atggggaaaa aaagaaggaa aaaaattgaa aacattattt tgaagacttg
64921
       tagcccacaa aaattagaat ttggtccaaa ctgtagaaaa tgataaaaat tgaaaaacat
64981
       taggcaagac tagaatctaa caactggtgg actatagttt tccagtctct agtttcccat
65041
       ttatactaaa gacaaatcat gataggtttg ccttattata tttggccgaa ttatttgtat
65101
       acagtgcagc aagaataatt attttttaac attggctttt aaattggctt tgatggaact
65161
       ttgttccata gagggtattt cagataagac tttttaaaaag ctgagcccag ccatggattt
65221
       gtgccatcaa atacctgtga gtttggtgat cctctctct tgaggttcca agataaactt
65281
       gaggeteetg ggeetgteag aaagtgacat tetttaetta ceacaggtea ggaaccetgt
65341
       acaggagctg tgtagacaaa gttatgagga cggtttttcc aagggggttt aattggctcc
65401
       gtaagtcaag taaaagcatt ggtaaacaac cagtttcccc aattgtgtcc tgttacaaat
65461
       gaaaacagat tattagtgca cttatgcaaa taactgtatt gtcataagtt aagaatactt
65521
       acagtttcca aattctggag aaatcgggta gagagaacca aatgtgctcc aaattttgtt
65581
       cataggagta tgtgttactc aattgttaaa agctgcagat agcctgacca acatqqtqaa
65641
       accetgtete tactaaaaat acaaaaaata geeaggeatg gtggYgegea cetgtaetee
65701
       cagctacttg ggaggctgag gcaggagaat cacttgaact tgggaggtgg aggttgcagt
65761
       gagccgagat cgcaccgctg cactccagcc tgggcaacag agcaagactc catctccaaa
65821
       aaaaattatc ttgtttttat caatctttct taaatgtata gctcacattt atttcaatgt
65881
       ttaaaatgag aaatatttgg ggtctttatt tagacgtttg ttgatgtttt tgtgaccaga
65941
       aatatgttac aagaacttaa ctcttgttta tatcaatcat cccatggcaa attggtttta
66001
       ttaccagtag tgttgcttaa agtcacagtt tccaagaatc tatccatgat aaatgaggac
66061
       ttactggact taatagtact gaattgtaca cataaaaatg gttaagatga taaattttat
66121
       gttatgtgta ttttaccaca atttttaaaa atgaaaaaaa gaaatcctgg ggaatgatat
66181
       gttcaaagaa ggctttgaaa agctctgata tattccagaa atctagacag ctacacaggg
66241
       gcagggcttt gtgcgtggcc atgaaagacc tgaggcagct gtaatgtttt acatttgact
66301
       ctggggttct gtgccatcag aaagtgaagg ctaaagcaga cttggactgc cagagtgttg
66361
       aagatgtgtc ccagcacata caaagccact ctacaaaggc tgggagacat aggttcaagg
66421
       catttaagga aatctctatc taatcattag ctgaccactc agcacactaa gcaaagactg
       aaagacacat gacaaagaat acagacttca tagaattagt cagggaaagt cactaaaaaa
66481
66541
       ttcaacagca acaacaacaa aaccettgag agggaagggt ctggettaca gttaccacat
66601
       cctagtcttt aaaatattca gttttgagca aaaatatgag atacacaaag aaacaaaagc
66661
       ccatgcagag gaaattctga gaccagctcg atcggggaga ccctaaccca gtggcactag
66721
       gggatattaa agacacacac acacaaatat agaggtgtga agtgggaaat caggggtctc
66781
       acagccttca gtgctgagag ctccaaacag agatttaccc acatatttat taacagcaag
66841
       ccagtcattg gtattgtttc tatagatatt aagttaacta aaagtatccc ttatgggaaa
66901
       cgaagggatg tgccgaatta aaggaatagg ttgggctagt taactgcaac aggagcatgt
66961
       ccttaaggca cagatcgctc atgctattgt ttgtggctta agaatgcctt taagcagttt
67021
       tecgceetgg geggaceagg tgtteettge ceteatteeg gtaaaceeag ageetteeag
67081
       cctgggtgtt atggccatca ggaacatgtc acagtgctgc agagattttg tttatggcca
67141
       gttttggggc cagtttatgg ccagattttg gggggcttgt tcccaacagg aaaataaaga
67201
       agtcaatgga aattctccat gaggaggccc agatgttatc cttcctaggc aaagatttta
67261
       aattagctat tataaatatg ttcagagaac taaaggaaac catttctaaa gactaaagga
67321
       atgtataaga atatctcacc aaatagagaa tactaatgaa gagataagaa ttagaagaac
67381
       caagtaagaa atgctagagt tgaaaattac aaaactgaaa tacaaaattc gctagaqqca
67441
       ctcaacagca gattagagat tgcaaaagaa agaaacagca aacttgatga taggtacatt
67501
       gagattaccc aatcagagga gcagaaagaa aaaagaataa agagaaatga acagagcctt
67561
       agaaatctgt gggataccat caaacaaatc tggaagtccc agaggagaga acaaggggga
67621
       aaaaaaggcag aaaggctatt tggagaaata atagccaaaa ttttccatta agcttttcat
67681
       ttgattaaaa tttatatatt ttaaaaagtt taagtgtatc ctactcatac tttttaaaga
67741
       ggtccatacc tagacacatc atagtcaaac tgccaaaaaa gagagagaga atcctgaaag
67801
       caccaagaga aaaacaattc atcttgtata agagatcatc agtaagatta acagctggct
67861
       tcttgtaaaa aactcacaga gaacaaaatg ctgcagaatg acatacttgg gaaggcagtg
67921
       gggtggagaa gcatgccaac taagaattgt atatccagct aaactagcct tcaaaaacca
67981
       aagaagaaaa ataaaaaaaa aatgagatat toccaaatta ataataaaca aataacactg
68041
       agataatctg tcattcatag atctgcctta tgagaaatac taaagggcct cctctttcag
68101
       gctgaaataa aagaacatta cacataactt gaatctacag aagaaaaaag agcacggtta
68161
       aaagtaacta cataggtata taaaaatgat agtataaatg tatttttgtt tgcttgtaac
68221
       tcattctctc tgatttaaag gacaactgca ggaaacaata ccaataaaaa tgttttgaca
       atgttatatg aaaatttaat ttgcatgatg gtaataccac aaataagagg gatgggaata
68281
```

```
68341
       gagctatatt ggagtaaagt ttttgtgtat gatttgaatt aagttggtat taatctgaac
68401
       tagattgttt taaattaaga tgataactga aattaaatgt taattgaaag gcagtcacta
68461
       agaaaataga gtaaaagaaa caaataaata aaatggcact taaaaaatatc taacagtaaa
68521
       gaaagcaata atggagagca aaatgacttg aaacatacag aaaataaaga gcaaaatgac
68581
       aggcacaaat cctaccatat cagtaattaa atgtaaatga attaaacatt ctaataaaaa
68641
       aggcagagat tggcaaaatg gattaaaaca caaaacacag acagaaacag caaccattct
68701
       ccaattatat gaggagacct gctttacatt caggaaaaca aataqqttqa aaqaaaqqqq
68761
       atggaaataa atatactctg caaacagtac ccaaagacag ctgaagtggc tatataaaca
68821
       ccagacaaaa tagactttaa tgcacgaatt attagagaca aagacatttt ataatcaaag
68881
       ggtcaatgta tcaggaagac ataacaatta taaacatata tacctctgac agtagagcac
68941
       caaagtaaat gaaacaaaaa ctaacttaaa aagagaaata cacaggtcaa caataaatgt
69001
       tggagacttt aatatcccac tttcaataat gaacagatct aggcagaaga tcaacaaaaa
69061
       atagaagact taacactatg aaccaaatag acctagcaga catctgtata atactgcatc
69121
       caacaactgc acaatatata ttcttcaaat acacatgaaa gattctctaq gatagaccat
69181
       gtgttaggcc ctaaaacaag tctcaataag tttaaaagga ctgaagtcat acaaagtatg
69241
       tcttccaacc acaataaaat gaaattagaa atccataaaa gaagaaaatg tgagaaattc
69301
       acaaataagt agtaatgaaa caaaataacc tatgggataa aaaggaaatc acaggggaaa
69361
       ttagaaaata tgtagagatt aatgaaaata caccatgtca aaatttatgg gacacaggac
       aqtqttqaaa aqqaaattta cagctgtaaa cacctatatt taaaaagaaa gattttagtt
69421
69481
       caataatcta aacttctacc attagaaatg aaaaaggaaa tgcaaacaat ctaaatcaag
69541
       cagaaagtag aaaatagcag agattagggt ggaaataaat ggaagaccca aaaaacagag
       aaagtaataa aatcaaaagt tggttattgc cgaaaccagc ttggctgggg agaccctaac
69601
69661
       ccagtggcac tagaggaatt aaagacactc acacagaatt atagaggtgt ggagtgagaa
69721
       atcaqqqqtc tcacaqcctt cagagctgaa agcctcaaac agatttaccc acatatttat
69781
       tgacagcaag ccagtgataa gcagtgtgtc tatagattat agattaacta aaagtattcc
69841
       ttatgggaaa caaagggatg ggccgaaata aagggatggg tctggctagt tatctgcagc
69901
       aggagcatgt ccttaaggga cagatcgctc atgctatttt ttgtggttta agaacacctt
69961
       taagtggttt tccgccctgg gtggtacagg tgttccttgc cctcattccg ataaacccac
       aatcttccag catgggtgtc atgaccatca caaacatgtc acagtgctgc agagattttg
70021
70081
       tttatqqcca gttttqcqqc caatttatqq ccaqattttq qqqqcctaqt cccaacqtqt
70141
       ccccttctt tgatttgcaa agtgataaaa gcaaaggcag ttttgtcacg gtgagctact
70201
       tcttgcagga gtcaggatcY gcatctgcag actatacaaa aacaacatag attaaaagca
70261
       caatcatcat cgaaatcaca gagcttccaa gtgttttcat ccattttaat gggttgctag
70321
       ctKcttatct gtctgcagct cctttaagca ctccttttcc tggcattaag gtcaggtgtg
70381
       cctaggatqc tttatttgtt cttttaattt tgcaatatcc aaaaacaaqc ttgtagaqtq
70441
       tccttctaga tgctttttaa attccttccc aaattttgat ctaattaaga gctattaata
70501
       atttccacaa atccttattt aagctcctag agtgggccat atcatttgag gttgaggtgc
70561
       cactataccg ccatqgttcc agatqataqq aactcttqcc atqtcttatc atttctacca
70621
       tctgaccatt ttgttcagac cagctgaaca tagtgtggct gtggcatgca gactgagagg
70681
       tgcaattcaa gccaaacatc cccttagggg accaatcaat aatgattcca taggaagcat
70741
       tgtgcagcac ctctgcctgt tctgcaatgc agtcttccta aacaagtaca ttcattttt
70801
       ctaactgggt ccaatcctgt ttacaaatag gtttttgagg gcagtatgcc ttaattatag
       qaqcagattt attatggtaa atactgagat cagaaagcat gtgtaagtgt gtcatagagt
70861
70921
       gattacatcc aggcattatt gccagccaag attgataaMt atgcccaata agtacagttg
       ttctctqtqt cagcacttqt tgaaggaata ctcatggcaa tggtgatcac cgctgtcata
70981
71041
       gctaccatta aattactcac tqtqactqqt tqtcctqctt tcctcaqqtt ttcttctqcc
71101
       aactgtgaca gettettgat etgteeccaa gtgggtgget gtgtttgatg ggtgttgete
71161
       gtgacagttg gggtcctcct cagcatcagt cttgagatgg ctgcaaccag ggggtcctca
71221
       ggatcctcct ggaatctctt cctcagcatc tggctcatga taaggtttca ggtatcttga
71281
       tggtatccaa atcagctctt gattttggcc tggagaaaca caagcataac ctctacccca
71341
       aqttattatt ttacctattt cccaaccttt tgttatgcaa agtgagaaaa ggtgtgcaca
71401
       catacatgta acgtgtgaca tccatttgcc aaagataatt aggttccaat cctcgaggat
71461
       taactcctcc tgcaaaagat gaggaatgca ccatttggca agttgggcat cactggatca
71521
       taactttagc ttctttccag gtaatgctgt atctgtgttt cagaccagag gcattaacat
71581
       gggttaaatt gtgaaaatgt ctagcagtag atattgcttt agcaactagg tgatcagcca
71641
       tttgattccc ttcagtcaaa ggtcctggaa gaggtgtatg agccctaatg tgagtgatgt
71701
       aaaaagggtg cattctactc ctaactgctg tttgcaactg ggtaaataaa gtcattagtg
71761
       tcatctgttt gaaattgtaa ctgagcattt tcaactaact gtgtggaatg aaccacgtat
71821
       gaagaatcag aaatcatatt aatagacata ttaaaagcag tcaatacctc aattacagct
71881
       acaagctctg ctgttagagc tgaagtatag ggtgtctgga aaactttaac ttttgagcca
71941
       gaataagaag ctttaccatt actagaccca tctgtgaaac aatgaaaatg cttagcaggc
72001
       tgcaagttgt ttactgcagg aattataaat gtaaaccatt cacagtcttg cttagctaaa
72061
       gtgatagtaa agaaacagtc ctttaaatct gtgacaatta aaggccaatt ttttggaatt
72121
       atagcaggag aaggcaatcc aggaggctgt aatgctccca taggttgtat aactgaattg
```

```
72181
       ataqctatta agtcagttaa cattctccat ttacccqatt ttttcttaat tatqaaaact
72241
       ggagaattcc aaggggaaaa tgctggcgct atgtgcccat tttctaattg ttcagtaact
72301
       aattootota aagootooag titotottia ottagoggoo attgitotat ocaaattggo
72361
       ttatctgtta agcattttaa aggtgtaggt tctggaggct taacagtggc cgccatcaaa
72421
       aatgatatcc tacaccttgg cgggaacttt gtctttacgc ttgaaqcqqt tccttcaaac
72481
       cttgcaattt ttttcctagt cccataccag ggacatgccc catttcatgc atcatatgtt
72541
       gactttgagg gctatataat tgttctggaa ttagaacttg tgctccccat tgttgtaata
72601
      aatctcttcc ccataaattt gtaggtacag aagttataat tggttgaata gtcccaggtt
      gtccatcggg ccttcacaat gcaaaatata actactttga tatacttcag gggctttacc
72661
72721
      aactccaact atgttaaatt gagcgggtgg aattggccac gcaaacagcc aqtqctqtaq
72781
       agaaatgatt gaaatgtctg ctcctgtatc taccaaacct ttaaatttct ttccctgaat
       aqttatttca caggtaagat gtttatcagt aatttgattt acccaataag cttctttgcc
72841
72901
       ttgtttattt gtgctttcaa atcctcctgt tcgtttaatt taacttttcc gtatttctac
72961
       atacggcaca atcaggagct gtgctataag ctctcctggc tctgctttcc agggaacaga
73021
       agtqqatata acaatttqaa tttccacatt qtaatctqaa tcaqtqactc ctqtttqtac
73081
      ttgtatccct tttaaattta aactagacct tactagaagt aatcctatca tccctgctgg
73141
       caatggtcca cagactcctg ttgggaactt ttgtgggggt tccccaggca gaaggctcac
73201
       agcatttgtg cagcataaat ctactgcagc agtaccagct gtggcagggg acaaacattg
73261
      taaatcccat gaagtatatg gggtattagt gcattcattt agagctgagg gctcttaggt
73321
      ggaagatgtt aataaactgt ccaggtccca tggttcagca gagcattttc cattqctqqg
73381
       gcccttaggg atctccagga tttatcccag agtgcccata atggacagta caaaaStggg
73441
       aagagtttcc aagaaagcaa ataccccatc atccaccaca aaacacactc tcagcttatt
73501
       catcaatgtg gcactggggt ccttaatgtg tggcaggcag aggtaatgac agtgaqcaaa
73561
       tagcccaggg attacttgag ctaaaaqcaa caaaggaacc aaacgcttcg actttctgac
      caaactcagt tcccaactga agctggtctc atgcaagtgt gctggcctga gtgatctcac
73621
73681
       atcctgtgaa ggctctgcca aggagggatg gtggctaggg tcaggcctcc ttaagagggg
73741
      tcccggatcc taccagaggc taaggtggga ggatcgcttg agcccagaag tttcagagca
73801
       gcctggacaa catggagaga ccctgtctct gcagaaaaaa aattagcaga gcatggtggc
73861
       aggagtgttt aatgccagct actcaagaag cagaagtggg aggattgcct gagcacagaa
       gtaccaacct gcagtgagct atgattgtac cctgacactc cagcctgggc aagagagtga
73921
73981
       74041
       74101
       74161
       gctttggaga aacccacaga agacttttac actttagttg tgttttgaat acttaaatcc
74221
      aacatacaaa ggaatagaaa ttatattott cacaattatg atttttcttt totttccc
       ttttttttt tttttgagac agagtcttgc ttcttcgccg aaactggagt gcattggtgc
74281
74341
       gaccttggct cactgcaact tctgcctcct ggtttcaagt aattctccta cctcagcttc
74401
       cccagtagct gggattaaag gcatgtgcca ccacaccgg caaatttttg tatttttagt
74461
      acagacaggg tttcttcatg ttggtcaggc tggtctcgaa ctcccaacct caggtgatcc
74521
      gcctgcctcg gcctcccaaa gtgctgggat ttaaaggcat gagccaccgt gcccggccag
74581
      gtctcagatt ttttagaaag tttattttgc caagttggag gatgcgtqcc tqtqatqcat
74641
       cctcaggagg tcctgacaac atgtgcccaa ggtggttggg gcacagcttg gttttatata
74701
       ttctagggtg acatgagaca tcaatcaata tgtgaaagat gtacgttggt tcagtccaga
74761
       aaggtgagac aacttgaaga gaaggccaaa cagggggctt ccaggtcata ggtagaaaag
74821
       agaccaatgg tttcattctt ttgagctgct gattaccctc tccaaatgag qcaatcagat
74881
       atgcatttat gagcagacag gtggctttgg atagaatggg aggcaggttt gccctcagca
74941
       gttcccagct tgacttttcc ctttagctta gtgattttgg gtccccaaga ttgattttc
75001
       ttttgtaagg tctaacatgg tttcctatga gcattaatta ttcattgtgt attttattac
       aaaaataagg cacagatttt ttaaaaaaaca tcaatttcat gactagttat atacacataa
75061
75121
       ttacactgaa gttcaactaa atttggaaac attccagagt ttgggtttct aataattctt
75181
       tgtgattctt tagaagctaa aatattttaa caaagcaaca tctaaaatca cctgtagaat
75241
       gtcctgccat ttttgtttct ctagtttcct cattttctgc aaaqcctcqc tqaqqaaatt
75301
       gactetgaat atcettttac actettetgt tttaqaaage attqtqqtqa aacattqaat
       cataatggtc acaagttctg ttcacattct ttctttcttt gaatattttt tcccagtggc
75361
75421
       caatatttga ttctgttgta ttatgggtaa aaggtaggca tgagaacaaa ataaagacaa
75481
       gaggtetttt gaataagtga teeagteaca atgaateaat ttgecattgg aacatatttt
75541
       tacgtcactc ttctgaaaat atttagccat gaattgaaag agagtctgta agattatttt
75601
       tttcctgttc taaggtgaac agcattttag agaatgaacc acaaccacag cacaaqaaaa
75661
       aaatctgata aataagttta cacatatgtg ttactactgt aacataaaac atgtaaagag
75721
       catttgtttt gatttatata tcagtctgta ttgtttaatt ttttgtgtca taaatgctct
75781
       tatttaaaag acaggactat ttaacagtgt aaattactag taattcatgg tataaataat
75841
       taaacaagga agtgttcaaa aatataacaa tgttttaaat aagcccattt tgtgcttctg
75901
       taacagaata cctgaggctg ggtaatttat aagtaaaaaa cqttcatttg gttcacaata
75961
       ctggtggttg gaatgtctga gattgggcag aggcatctgg tggggcctca gtcttttca
```

```
76021
       cctcatggtg gaaagtggaa ggggagcaag ggagtgcacc agagatcaca tagcaagagc
76081
       aaaagcaaca gtgaagccaa ggaagtcaga ctctttttaa ctacctactc ttgcaggaat
       taatccattc ctgtgagagc agaactcact cacctctgtg gaggacaata atctattcat
76141
76201
       gaaggateca teccatgace caaacacett ccactaggee ccacetecee acactgeeae
76261
       attgggggtc aaatttcaac atgagatttt gcagggacaa accacatcga aaccttagta
76321
       atttgtagca tagttaaatt ctttttcaca tgatgtattc tgtgctggga tactccacat
76381
       cctgaatatt ttaatttaat ttgaatagag tttgatttac ccattttgct gtaaaattcc
76441
       gtqtqttttg acaaatgcat agttgcaggt atccattatt aaagaatcat atggaatgct
76501
       tcaaatcccc accccatgca gccaatggca ttcccatctg tgcagtttgc cttctccaqa
76561
       atctcattaa atgaggtcac actgtgtgtg ttctcctcag actgtcttct tccactcagt
       aatgtgcatg caagattcac tcatgtcttt gtgtgagttg atagcttgtt cctttctatg
76621
76681
       gctaaatagt attccattgc atgaatgtac cacaatttgg ttatgcattt tagggagcaa
76741
       aaccttcctc ttctaacttt gttccagggt tggagacctt caaattaact gacaatagat
76801
       acattagtag gagaggcaat acttggcttc ttattccaca agtatcattg tgggacaaaa
76861
       ttcatcagat ggcaggatct agtttacaaa gaggtgaaaa tagcccaaaa cgagaaacaa
76921
       gactagaatc tgataaccca caagggctat agttttcctt tttaaaaaaa tttttttttg
76981
       agacagagte tggetetgte geceaggetg gagtgeaatg gtgeaatece ageteaetge
77041
       aacctctacc tcctgggtgg aagcgaacct ccctcctcag cctcctgatt agctgggact
       acaqqcacat qccatcatqc ccagctaatt tttgcagttt tagtagaggt ggggttttga
77101
77161
       actectggee tecaaaaqtq etqqaattat aqqettatqe caccatqeac qqetqaqtta
77221
       tagttttcca ttgaaacata aaatttctct ctgtagtaac catcattttt gatcatagat
       aatcaatgtg agattattct tgttttaaaa ataagtctag tttcgttaga ttttgcctga
77281
77341
       gtatttatgt aagtgcagca agaacaggag gtgaccacgt aggtgctttc aagcttcttc
77401
       gctggaagtt ttcatacaga atctcagatt ggacttttaa aggccttatt gaggctaaaa
77461
       gccaagccaa gaacatactt tcaaatttca gctgcagtca ttgtagcttt atgtgaattc
77521
       ctctcttctt gacgccccca aaatatcccc aaattcctgg gcctagcagg aaattacctt
       ctttactaac ctgtaaggct gtgaaccgtg taatgtaggt accaggctgg cttttctcaa
77581
77641
       agtgctttgt aagcattggc ttcataaaag tcagccttag ttccttaaaa ttgctggtca
77701
       taactgatct caggtatact attcctaaat atgatattcc agtaaaagcc tgataatata
77761
       atcaaaqttt ccaattatqt cttqctataa qqtqaacaqa tqcttattqq acttctqcta
77821
       acaactatat tgtcatgaaa ataagagtat tcagtaagat tttcaaaatt ctggagaaat
77881
       caggcaggga aaaaaagatt ttttttttt ccccacccag cctcatttct gtttacaaaa
77941
       gtataatcta ctaaattttt gtgagttata gttagcttaa gagaaagaga tttcttaaat
78001
       ccagaaacta gaacattaaa gaaccagcag tactccaaaa aagctataaa attataatca
78061
       attttcatca cttcattcag tgccatgtaa tcaattccag tcttgctgga tcttgggtta
78121
       gcagtgtcac gaacccatcg atttctcaac cagacttctg gagatcttca ctgagtcaag
78181
       tgtatggtct taaagttatt taagcaatat catcagaagc ctacaaccag agtacctgtc
78241
       ataggetttt tegtgagtet cagagegagt cetgtgttgg agacaaacat tetgacetgt
78301
       agctgattgc aggagctttc aggaaagtat cagggggaaa tagtatctaa atgccaaaga
78361
       gtatgaaatg gctgtgatga aaggtcagat gagagttcat tataccacaa ctgacaagga
78421
       tattcgattt ttttggtggc atacaacgtt taaaataata attgaaatta tgactcaaaa
78481
       cagtataccg gcacatagca tggataagga ggacattgac aaatttccag taattttata
       caatttctga aaacataaca ttttatccat acaaatataa cccagggaag gttaggtatc
78541
78601
       tctttttatt ttatattttg tatggttttt cttataaaaa atacatccta ctttacctgc
       aaaacatgcc ctgctttttg catacttttc atagagttgc ttctagtttt taatacttag
78661
78721
       taatctctat tttccaqaqa aactaqqaaq aaqacaattt taaactqtca tacattaqca
78781
       ttctatagta gattagaaaa tgtatgagta taccatctcc caacatctag agggatgtgt
78841
       ttcctcattg tacaatttct cagtgtggta gacaaaaata cgtttattaa cgggccaaaa
78901
       tatctttact ctctctgtaa aaacaagaag ccaaaagtat ataaacttga attacttatg
78961
       ttcagtaatt aatgttttag tatcgtatct tatttaaaat gatctagata ttgaatgcaa
79021
       atcttttact tagcttaact ttaaggttaa aaattaccaa aagtattttg gaaactatta
79081
       ttaggcagat ttactgtaaa aaattattat tgaaataatg cttttaataa gaatgacaat
79141
       tagaatcaaa totataagot ttaagatttt aaggatotag taagtataat attagottat
79201
       ttgagtagaa ctcaagcaga atagaaattt gttttatatt taatagtgat aactctgaag
79261
       acatagttgt tttattacac caaaaatata aaattactct tatttaacta agttttatcg
79321
       aaattgtgtt aacttgaaaa acatttggat cagttcctat atttattgga gtttggggaa
79381
       tatttattta taaatgcttg gttttttttc caagccaagt tagaatagag cacttttaga
79441
       agattttata agtgaatttt gcaatgctct ctggagtgaa gaaaaatcac atatacataa
79501
       catacattaa tatacataca aacacaaata gaggtctcat agctttcatc ctgaaatatt
79561
       agccatgaat caggcataaa tattctgatg gttaatttta gacatctgct tgattgatta
79621
       agagatacta acatagctgg aaaagcacaa tttctgggca caagtgtgag ggtgtttctg
79681
       caagacactq aqataaqqaa qatccaccct qacccaatqt aqataqqcac tqatatqqtt
79741
       tggctgtgtc cccacccaaa tctcatcttg aattgtagtt cctataatcc ctacatgttg
79801
       agggatggac cctgtggtag gtgattgaat catggtggtg gttactgcca tgctgttctc
```

```
79861
       atgatagtga gtgagctctg atgctctgat ggttctacaa ggggcttttc cccttttgct
79921
       cagcacttct ccttacagct gccatgtgaa gaaggactct ttgcttcctc ttttgccatg
79981
       attgtgaggc ccctccagcc atatggaact gccagcccat taaacctctt tgttcttttt
80041
       tttttttttt tttttttt tttttttga gatggagtct ggctctgtct cccaggctgg
80101
       agtgcagtgg cgtgatcttg gctcactgca agctctgcct cctgggttca cgccattctc
80161
       ctgcctcagc ctcccgagta gctgggacta caggtgcctg ccaccacccc tggctaattt
80221
       tttgtatttt ttgtagagac ggggtttcac tgtgttagcc aggatggtct caatctcctq
80281
      acctcatgat cctcccgcct tagcctccca aagtgctggg attacaggcc tgagccactg
80341
      tgcccagccc aaacctcttt tttctttata aattgctcag actcaggtat tttttcatag
80401
       cagtataaaa gtggactaat acaggcacca tccaattgat tgagagccca gatagaacaa
80461
       caaggaagag gaaaggtgaa ttatctcctt ctgaaactga aatatccttc ctcccctgcc
80521
       cttgacatcg gagctttaga gttacaccat tggcttccct gattctgagt cctttggaca
80581
       tggactgagc catgctacca gctttccctg ttctccaact tggagacagc ctatcgtgga
80641
       acttctcagc ctccataatt atgtcaacca attcccctaa tgagtcttct ctcatctatc
80701
      tatctacata tatcctattg attctgcctt tctggagaac cctaatgtgg ttacaataac
80761
       acaaaattca ctagtttata tggaagactt agtttttgcc tttgccccat tttatatttg
80821
       tattataact gtttctggaa aatggaacaa gttttcgtct tcttcatatg agggctaaag
80881
       cttttttctc actaatattt ttggagattt ttaagatttt cttttgtctt gacatacaat
80941
      cttatgaagg ctgagaatta aaattatttt tctattttat ttttcaggct caagtgtttg
81001
      cttttgtaga ttcttgagca cgttgagagc ctccaaggct tggagggggg tgcctaaagt
81061
      ttcagtgatt atagggagtt gagagactca actgggaaag gaaacgtcta aacagaggca
81121
       atttgagaga taaaagtttt ctcaaaggag ccattaaagt tctaaataat tcttagtaaa
81181
       gtcatgcaaa caggaaagga agtagacagg attagttcct tattggtgga acacatagtc
81241
       agcggaggtt tgggaaggga gattttagtc aactgagaag ttcccatgaa aggagcaaga
81301
       tcaagatctg atggaagggg aagagacacc atgaaacaaa atccaggaat aagttccaac
81361
       ccaagaggag aacagagagg cctcaaaacc aaagctagga taagaaactt ctagcctgag
       agttaccttc tagacaaaga agactgagat tccaacccag cttcagagag tactcacatt
81421
81481
       ttgatgttac tcaaacttta ggctttttaa tgacttagcc atgcatgcaa aaggcattcc
81541
       ctaaggtggc acagaagacg gagcccctat atccaaagat agccaaggag aaagaaagac
81601
       ccctqttqcc agagccaqtq qataaaqqca acaqaaaaaq agacaaqqqt ccttatqtqa
81661
       tgagacettt teagatttag gettatataa acteetgaga aetgggagga tgagageeae
81721
       agatggggta ccaacatttc tactcatttg attacaagtt ctcgggcatc caaaatgatt
81781
       aacaaaatga caatttctag ggcttctgtg ggatagtatg gaaggtcttt ttgaacgttt
81841
       81901
       ttttatgttt ctttattctt tttttttgag acggagtttt actcttgttg cccaggctgg
81961
       agtgcaatgg catgatettg geteactgca acctecacet eccaggttca agtgaetete
82021
       ctgcctcagc ctcccaatta gctgagatta tagatgcata ccaccatgcc cagctaattt
82081
       tttgtacttc tagtagagac agggtttcac catgttggcc aggctggtct ccaactcctg
82141
       ctgttagatg atccaccac ctcagcatcc caaagtgctg ggagtacagg catgagccac
       tgcqtccaat gagagattta tttcctataa agggttacag cctgcagggt agttcttctg
82201
82261
       acaggctagg aagtatagcc tccaqccaga agccagaaac agacattttc aaatgtgagt
82321
       taaaggaaac agtaatttat gctgagtggc atggccaaat acacatattt aataagctct
82381
       aggaggagtc atgaatattt atgaaaggag aaatgcgtgc atgcgcaatt gagtgtcttg
82441
       ctccttcatg ggtcccatgt acaaaaattg gcagtgttag catgatccca ggatggagtt
82501
       ttcagccccc taacactaaa aggtgaagca gaggacatga aaactcactc tgtgcatcct
82561
       ctgtacgctg gccagaacct ctccgtcatg ggtggtctct tatcaggcaa gaaaggagag
82621
       geggetteag geagttggtt gatateagtg gtggagtett ttteaaggge tggtttetgt
82681
       taaatcctta gggaagaaag cctcatcatg gttagcaaag gagagggtat aacaaggtgt
82741
       atctgactcc catcatccca tgctqgccaa gctgagaact cagttttgaa agttactctt
82801
      gggtcccctc agccaagagt gggtctgttc agtcagttgg gagcttagga tttcattttc
82861
      atttatcatt gctaatggga aagggtacgc tgtctccatg gcagctgaat tcgcaagaaa
82921
      ctccttggat ggggttaatg gcagYtgtat ttttctgKga SctYKgcttt aattggataa
82981
       agtaagttct ggtaagattt cttccNttat cttcagtatc tcaaRtgttt tcaYttaaat
83041
       aatctttata acaacttttg atgtctgagt ggaKtcccac acagtcatct attgtaagac
83101
       tttctgattc ctttttttc ctttggtcat tMtgaatagg gcttctgtaa ataaYtgcat
83161
       ggtagctttt gWtKggaaat aacatcaaag tagttgtcaa aatacYtagg aatgtKattt
83221
       ttggattgta aggKgagact tgtttagctt tRqaaaaaaM tgMccaactt gtaatgggga
83281
       ggaaaaaaat tttctNtgtt tttggaattc ttagatggRa cScKctgtaa aaactgacag
83341
       attaaaatga gaaaaaSaga aaagtttaaa aacaYgtata YcttatggWt acatgggaga
83401
       tactcaggga aaaatgagta aatctccaac aggtggcttt caRttcaagc ataaatacta
83461
       tcttcaactt aaagaaagaa gatttgaggt gcagtggtNa gtggggagtt aaccagcaaa
83521
       agcacattag acaagggtaa ggttYgttat acagacttaa gtccaYgcat tctccattga
83581
       taagactctt Yagtgattta gttatccttc tcttcttgKt gtcgagagag gtagctttta
83641
       aatggtgatt tcctttatag atgtaaattt tccttacaca agtgtaactt ctactctRtt
```

```
83701
       ttcacaactt cgttagcatt ttttttttt tcaaaataat cagcttggaa taattcttaa
83761
       gccaaaggga catattttgK ggtKgcatat tctggtttcc taccattata ttttggggtg
83821
       qcataKtttq qYcttataca ctqtqttcca cYqqcaatqa aaaqaqttct tqtttttcct
83881
       ccagcaattt gtcattttgt agtttagcag ttctaagagc tatacaccag ctgtgctatc
83941
       tcactgtggt tttcggttct ctagtatgtt gagcatcttt ttgtatgttt acttgccatc
84001
       tgtagatett etttggtgag gttetgttea gatetgtgtg catttteaat tgggttgttt
84061
      aacttattgt ttagttttaa gattttttta tatattttga atacaaattc tttctcagat
84121
      ctgtattttg caaatatttt cttcaatatg tggcttgtct ttttgttctc ttaacaaqgt
84181
      ctcttccaga gtataaactt taaatattaa gaaatccaca ttgtcatttc ttctgtgtat
84241
      atcaaccttt tgtgtcattt gttaaaattc attaccaaac ccaaaggcac atagcttttc
84301
       ttctatagtt tcttctagaa atggtacagt tttgcatttt tagtgtaagg atgattttga
84361
       gtgattattt gtgtaagttg taaagttttc atctacacac atatcatttc ttatgqtttc
84421
      caattaactg ttccctattt ctgggaaaga cacaggatag tgggctctgt tagagtagat
84481
      agatagctag acatgaacag gagggggaag ctcctggaaa agggaaagtc tgggaagcct
84541
      cacctggagg taccaccaaa aattcacata ttagtagcat ctctagtgct ggagtggatg
84601
      ggcacttgtc aattgtgggt aggtgggaga agaggtacct atgcagaaag aaacacccta
84661
       gaattcctct taagatgccc caatcatcat tcattctgca ataaaaatgt catacatcta
84721
      ctctactgca cccagccctc ttctgcaatt tcaataatca attgtgctat ttgcctttct
84781
      ttcagcaatg agattttatt tttctttcct aattatttca aacatgaact ttggttccag
84841
      agaactagta tttccttgat ttataaattq aqqqcaqctq qqcatqqtqq ctcacqcctq
84901
       taatcccagc actttgggag gccaaggcag gcagatcact gaaggtcagg ggatcaagac
84961
       cagcctggca aacatggtga aaccccatct ccactaaaac tgcaaaaaat agccagccat
85021
       ggtggcaggt gcctgtagtc ccagctactc aggagactga gacaggagaa tcgcttgaac
85081
      ccgagaggtg gagactgtgg tgagccaagg tcgtgccact gcactctagc ctgggtaaca
85141
       tagggagact ctatcctcaa aaaaaagata aaaaaattga gggtcatctc acagacgatc
85201
      taataatgaa ttatttttt gtctttagaa aatcaacatt aacttttcta cttttagata
85261
       tcgtaactgc tgtgacttga aggacttatc tagaaaaaagc cttaaaaaaac tacggtcagc
85321
       actgggtgaa tgggttgggg gaacccacat aaaatcccca agacacctgg gagtccatgt
85381
      ccccatgagt gggactgcag gcagctgtag cagactggat gggagagggc agcaggcagg
85441
      agaactcggg gtctggagtc cacqqttcta aqqccaqqqa aaaccactqq caaaqtqaaa
85501
      tgcggagett gacaggatga aatttgtgat tgtaaatgaa tatttgccat ttecaagtga
85561
       gatcgccagt ggtggtggga tggatgggtg cccctccaag tgggctgcag tgaggagagc
85621
       gtggcaccag gccaggatgc tcctgccagg aacacaggat ctgcacacgt ttaggaggaa
85681
      acgctgggca gacccagctt ggagtcatct ctgctcttta catctgttaa ggctgtgaaa
85741
      actgagagte ggeeggatge agtggeteae geetgtaate ceageactet gggatgeega
85801
       ggcgaatgga tcacctgagg tcaggagttc aagactagcc tggccaacat ggtgaaaccc
85861
       catctctact aaaaatacag aaaattagcc gggtgtggtg gtaggtgcct gtaattacag
       ctaatcggga agctgacaca gaagaatatc ttgaacatgg gaggcagagg ttgcaatgag
85921
85981
      cagagatggc gccattgcac tccagcctgg gtcacagagg gagactccgt caaaaaaaa
86041
      caaaaacaaa aacagaaaac tgagtctcag gaacagttcc cgagaaggaa aattgggccc
86101
      gcatggaaat agacattttt ctcccaccta gggcagggag tgaagtgaaa taggtctgtg
86161
       gagtggactt tcacatagaa accatgtatt tcctaaattg ggggttattt ggggatcacc
86221
       tggaggagta ttcctggttt tggtgaaaca cacqqggqta ttttttqtqa aqctqcaaat
86281
       ctggcacagc aataacRgct ggggaactgg agatMaagga gaaggcatac taagtgctgt
86341
      tgcaagtttc ccagaagtat gacattattg ggaagtaaac tactttttaa aacaaccgtg
86401
       gcaataccac gtcagtaagS cagagacaac accatgaagt ttcatgacag aggccaaatS
86461
      cageceaaae ecageceage agaggetgte aacteagege eccagegaga geeggaaggt
86521
       tecatectea gagetgeaga ecetetegtg tgggetgeaa aggeeatgte tgcatecegg
86581
       gcggtatgta cgctctgaga gatacatgcg tgttccgggg gttatatgag tgtgacgggt
86641
       gtggcgtgag tctgactgtg tcacgggcgt tccaggggtt acgtgtgtgc tctgagggac
86701
       acatgcgtgt tccRgggRtt atatgagtgt gacggStgta gcgttaggtg acRatgtcat
86761
       ctccgMgttc caagcgttat gtgcgcactg agggacacat ccacgttccc ggggttggat
86821
       gtggaaggca gctaccccga cgggtgtgct ctctgcatac gacgggtgct aacactagca
86881
       tcacagatgc agtgttatta gtactacgga qgttattatc agtgtggcgg gtgttctaat
86941
       tgctttcctg acgctacatt tctgttccaa gaccgcagct tggccctgtg gctgcctcgc
       cttgggtgtg gagaatgaac ctcgagtgcg ctggattcac aggggatttt ggtttctaat
87001
87061
      tttccacatg aagggccaag gcgggtggat cacttgagat caggagttca agaccaqctt
87121
       87181
       gcttgcacgt acctgtagtc ccagctaccc aggaggctga agtgggagga ttgcttgagt
87241
       ccagaagttt gaggctgcaa tgagccagcc atgatcgcac cactgcactc cagcctgggc
87301
       gacagagtga gaccetgtet etetetete etetetete etetetete gteacacaca
87361
      cacacacaca cgttaaattt gttggattat atatttaggg ggttgagcac ttttggttat
87421
       aaaatattta tgattgtggg aacaagttaa taaagacacg aaacttattt aaatgtccca
87481
       gaactttaag aacaaaaagc attcttagtt taaaaataag ttttacttta aaggtaatag
```

```
87541
       tacacacata aattgttgtt aaaatcgaca gtaacaaaga gaagtaacaa tactaatggc
87601
       ctgtcacaaa ctgattctta ataacctata taaacaaacg ttaagcccgg gcgctgggtg
87661
       gctcatgcct gttatcccag cactttggga agccgaggca ggcagatcac ttgaggccag
87721
      gagttccaga ccagcctgac caacatggtg aagcccagtc tctaccaaaa atacaaaaaa
87781
      attagccggg tatattggca tgcacctgta atcccagcta cttgggaggc tgaggcagga
87841
       gaatcettga acccaggaag cagaggtege agtgageega gateatgeea ttgtgacagg
87901
       agagaaactc tgtctcaaaa aaaaaattat atgtttacaa caggtgcatt cctcctcttg
87961
      ctttctgagg acgccctgct atgtagctga gtagtcgcta ataaactatc ttaacttcac
88021
      tatactctgt gacttgccaa aaggtctttc ccatgtgaaa tccaaaaacc tattcttggg
88081
      gtctaggaca agacccattt tataatgaca aaactataca aattctagag gaaaacatgg
88141
      aaagaaagct atgtgacctt gSgtttggcc atgagtttta acacgacact atcagaggca
88201
       tttgaacccc tcctctaYat gaactccagg gtggtttatg ttccaYtqgc taagRqaaaq
88261
       ttttcttcaa aaatgtgaca tgatttgagg tcaaacatta atatcaagKW aactcaaaag
      attgagaagc tagcattagt tctgggaaaa ccagaagtgt gcctttttt ggaaataatc
88321
88381
      attggtagca caaacttaaq aatctccaaa qqaaataaaa atqaqttatt aacttacaqt
88441
      tttcaccaat taagatataa atgaagctaa Ygaaatccgg aaatacaatt tcactgtttt
88501
       taatgttcat taaaaaaaaa aaaaaaaacc ttatcaaata gccccagtaa gtcaccaatt
88561
      aagtotttac tacttaaaag caaaatocac ctatgtootg aacacttato cactttacRa
88621
      gcctcattat atgtactgga gacaaaattc agaaataaat aaatatatat gtacatatat
88681
      acaaatatat ttcaaattaa aaaatacttt tagagagtgg tatgtattac atttagaaat
88741
      taataacgaa gtaaattatg ggatgtcatc cacgcctgtc ccaaaggtac cgaatttata
88801
       aatcatctca ggtgcggagc aggacaggtt gaaaatagga atgacatgaa cccgcgcgga
88861
      acagetgeeg gegeggtgte cagggeggea eccegeeegg teeYggeeee teeaqeeetq
88921
      ggcccgaccc ctactacgcc tctgcctcga cgcgaacgcg gagcccgagc gcgcgtcacg
88981
      ccgtgtgggg ccgaagaggc tgctacccag aggcggagtg cgggctcgcg agggtcccca
89041
      cccSactete getecegeea geacetaegg actegegtee cegeegegeg cegacteggg
89101
      agcagcaccg cccccggcac aggagcctca cgcgcctctt acctaacagg aagttgggtg
89161
       gaagcagcgc ggacccacgg cacaccgaac gcactccaac agaacccgac gcagacacgc
89221
       gCtttcaacc ggcggagaca ctggcaggtc aatagagata ttgactatat aaacaaaaga
89281
      atgacaaatt aatagtgtaa tggataactt gactttggca aatattgtga atttttgtga
89341
      aagtacaact aaaaggcaat gtcactccaa taatcaccag agtaatcaat ttgcttattq
89401
      ctgtcccttt aaatatagtt ctctggtatc aactaacatg tttttaacta atgatgcttc
89461
       ttaaagaaaa gggaaaagac ctttttcttt ctttcagtct tcaatgattc actgcttcat
89521
      ctcgctccac caaagataaa tgaaatctac atctcttata cattaacaat qcatqacaat
89581
      ttacaaatag ctaaattttt ggagctaact ttaagtacct gaatggaatt taatcaaccc
89641
      actaatctcc ttctcacttc tcagttattt atcaagttta tgtcaaggga caaggaaaaa
89701
      ttatccaaac attgtttaaa acaatcatca ttaattagta acacttatcc aggggggttt
       ttaacctttc ccccactcaa ggattattct aatgtcagag tagaataaaa aataagtgca
89761
89821
       gcgatgctga ctcttccaag cttaacattt ctcacaagtc aattagcttt gtactgggag
89881
      gagggcgtga agggctgctt gcggtagttg tgtagcagca gcacaatggc cgcagacaag
89941
      gaaaacagtt tctaaaaatt cctcgtatat aattttatat ttttgacaag attaatgacc
90001
      catgeteect teeteteeat ttettttttt ggaattetgt tggtatgtag ttactatatt
90061
       90121
       ttcctttata tttttattaa aggattttat tattattaaa ggaaattagc cttatctctt
90181
      attatatttt ttatgacctt caaagtagtg tctctgctta aaagtgtacc ctggccgggc
90241
      gtggtggctc acacctgtaa ttccagcact ttgggaggcc qaggcgggtg gatcacgagg
90301
      tcaggagatc gagaccatcc tggctaacac ggtgaaaccc cgtctgtact aaaaatacaa
90361
      aaaattagca gggcatagtg gcgggcgcct gtagtcccag ctactcagga ggctcaggca
90421
       ggagaatggc gtgaacccgg gagacggagc ttgcggtgag ctgagatcgc accqctqcac
90481
      90541
       gaagcacaca tcaagcgaca tgtagagttc ataaattctg gccaaatggt catacctcaa
90601
      acctcatcag caStaaggct ctttacttgc actgacaaat atgaacgctg gggaatttgg
90661
       90721
       atacatatat aatattatat atgtaataga tatacaatat ataatatata atagatatat
90781
       aatattatat ataatagata tataatatta tatataatag atatataata tataactttc
90841
      catgtgattt
```

ELP3 genomic sequence (SEQ ID NO: 2)

>8:27927301-28022150

```
1
       gagaaaataa ttcaaagttg tatttaaatg ttcagagggg gaataatacc aggatccttt
61
       ctcaaaaaag aaacacatgt ctggaatagg cagtgatgtg ctgcagccag ctcgtaccag
121
       ctcctgaaag ccaacagcac acatcacttt cctactctgc attcagtgac gtcacactgg
       tagcttgaaa ttgacaatgt tgggactgtt Ycagtcctga atctcaaact gataacccaa
181
241
       atccataacc acattgtgat ccctaatctt caaccaaata attccaqctg acatqtqacc
301
       acagettate aatactaaga ggeacateat tteeetgttt aagatttetg aaattgagat
       gcatcttgca actgctatag accaggtgac aatcacaagg tggttgtcac tgcctgcgtg
361
421
       ttatgggctg aaatgtatcc ccctccaaaa ttcaaatgtt gaggtcccaa tcYccactaa
481
       ctcctattta caccacagga attggcaaat ggtacacatc agccttttgg gttttttgtt
541
       tgtttgtttg ttttggggga tttttttgtt tttaaacaaa qagctagttg ttaaacattt
601
       acaagcgcaa cgcaacacaa acctggctaa ggtcctagaa aagtgacagt ttcttaaqta
661
       gttagtgagt aatcatacac attttaatgc agactaatgt tgaaacatta gtctgggtgc
721
       ggtggttcac acctgtaatc ctagcacttt gggaggccaa ggcaggcgga tcacaaggtc
781
       aggagttcga gaccagcctg gccaatatgg tgaaacccca tctctactaa aaaatacaaa
841
       aattagccag gcatggtggt gcgcacttgt agtcgcagct actcgggagg ctgagacaag
901
       agaattgttt gaacccggga ggtagaggtt gcaatgagcc aagatcatgc cactgcactc
961
       aagaattatt tgagggagtc tttttttgtg cttagaaaaa cagtgtcgtg gagaagtcat
1021
1081
       1141
       agaaaaacat tcacctatag aatgtgcatg tgcgtgtgtg ggtatttgag ggaggtagaa
1201
       agcagtgaag agttgtcaat ctctttctga tgcaaagata taaagagctg agtgagtaga
1261
       cgccttgcag tccactggga ctggtgagaa gccgtgtccc tggcaagcta taagcacgtg
1321
       tagttaaggc tggaatacgg atatctgtgc agactgccag aagcccaccc ccaccaaccc
1381
       ccttatagag tgagctgaag ttgcaaaaag aatctatctg ctgagatttt gctttgattg
1441
       agttttcact ctaggaaaaa gtttagggaa agctgaaact attttctact gggagatgaa
1501
       attaatgtag aattaagttt aagtagagtt ttaaaRcagt tccaagaaag gcatgtgctt
1561
       agctgtgtcc agatgtttgc attatttaaa atctggacct aaatcttgta taacttttct
1621
       aaaaattact gaagattagt taacatttat gctttttatt gtagtaaaaa gaaatgtttt
1681
       tatagtgtca gtgaagtgac tctagtataa agggttcata ttattgtaaa agaqaagtag
1741
       aaacagctac agctagaggt aggatccaag atgttagtag atattcatta aattatgcaa
1801
       cagaaacatt acacactgtt ctaatttaaa cacatggctt gtcataataa aacgtaacac
1861
       aatatattaa agtttgtaaa aagatgttgt atgtgagaga ggagaaaacg tggaagctca
1921
       aaccagaagg gaggctaggt gtggtggctc acacctgtaa tcccagcact ttgggaagcc
1981
       gaggcaggtg gattgcctaa gctcaggaat tcaggaccag cctagccaac atggtgaaac
2041
       cccgtctcta ctaaaaatac aaaaaattag tcgggcatgg aggcacacgc ctgtagtccc
2101
       aactactcgg gaggctgaag caggagaatt ccttgagcct gggaagcaga ggctgcagtg
2161
       agccatgatc acgccattga actccagcca ggacaacaaa ggaagacact atcttaaaaa
2221
       aattaaataa aaggccgggc acggtggctc atgcctqtaa tcccaqcact tcgqqaqqcc
2281
       gaggcgggca aatcaccgga ggtctggagt ttgagaccag cctgatcaac atggagaaac
2341
       cccgtctcta ctaaaaatac aaaattagcc aggcatggtg gtgagtgcct gtaatcccag
2401
       ctactcggga ggctgaggca ggagaatcgc ttgaaccagg gaggcagata ttgtggtaag
2461
       ccaaqatcqt qccattacat tccaqcctqq qcaacaaqaa caaaactctq ttaaaaaaaaa
2521
       agaaaaaagg aaaggaaaag aaaggaaagg aaaggaaagg aagaaagaaa acaqaagggt
2581
       tattcaatgg aagcagaatc agaaaggata tagtaaagtt ggagttacac tgaaaccagt
       aatatcaatc atgacccagc tgggtgaggt ggctcatgcc tgtaatccta gtactttggg
2641
2701
       aggctgagac aggtgggtca cctgaggtca qqaqttcqaq accagcctqq ccaatatqqt
       gaaaccctgt cttcactaaa actacaaaaa ttagccagtt gtggtggcgc atgcctgtaa
2761
2821
       tcccagctac ctgggagact gaggcaggag aatcacttga acccaggagg cagaggttgc
2881
       agtgagccaa cattgtgcca ctgcattcta gcctgggcaa cagagccagg ctccgtctca
2941
       aaaaaaaaaa aaaatcatga cctgattttt aaaaatctac ctgaaatcag tgacataaat
3001
       catgactcat tttttaaatc caccttttct agctttgtca tgaaaattat gttgcagtga
3061
       tgtcactctg ccactgtctt acttgtatga aataatttga tctgagcccc tagcactctt
3121
       tttttgctgt tgttagagat gggggtcttg ctatgttgcc ctagctggtc ttgaactcct
3181
       ggcctcatac gatcctccca cctcggcctc ccaaagtgct gagattacag gtgtgagcca
3241
       ctgctcctgg cccaattatt atttttaatg ttattctcgc taaaagaaac cccagattcc
3301
       tggggagtag ttgttccata tcttggggca gggaaaaata aagtgaacct gaatatcttg
3361
       ttgtagctag acagcaagaa tgttttttaa atqctaaaqq qaqtaatqct aaaqqqaqtc
3421
       agcttaaagg gttcccactg gccaaaaagt gacacattga gcatcagaat gaacacaata
3481
       gttctgtgaa aagctatgag ctcattatqa tcctaaaact qaqtaaataa aataaqgtat
3541
       gttaaagtaa aggcattaac cacctcaaac aatatatgcc tgagactgtc aaaattcagt
```

```
3601
       ctgtaaattc cacttgggca agtcctaaaa gtttacctaa catataaaag aatattaaca
3661
       gtcttagtag gggcacaaaa atcctgtcag gtcaaatcag gcagtaaaac tttgtgaatt
       aggttaaaat aaaaagtcgt gtgacagttt atagtaaaaa ctgagccaag gcggccaggt
3721
3781
       gcattggctc atgcctgtaa tcccaqcact ttgagaggct qaqqqcaqat cacctgaqqt
3841
       cgggagtttg agaccagcct gaccagcatg gagaaacccc gtctctacta aaagtacaaa
3901
       attagctggg cctggtggcc catgcctgta atcccagcta cttgggaggc tgaggcagga
3961
       gaattgcttg aacccaggag gcggaggttg cggtgagcca agatagcgcc attgcactcc
4021
       4081
       aaaaaaacca aactgggtca aggcaaaatt taagggaagg tcaagtgaac cataacatac
4141
       caggtagtaa gaaaagatgt ggagctagaa agcctcgtta ctataggatg gggcccaaat
4201
       caggcatctt ggaaggatct atgtgcctgt gtctcagcct tgaatctcaa actagtaact
4261
       caaatccata actacattgt gatccccaat cttcaaccac ttaacttcag ctgatatgtg
4321
       actacagctt atcaatacta agaggcacat tgtttccccg tttaatattt ttgaaattga
4381
       ggtgcatctt gcaactgctg caggccaggt ggcagtcaca aggtggttgt cactgcctgt
4441
       gtgttatggg ctgaaatgta tccccctcca aaattcacat gttgagqtcc taatctccac
4501
       tacctaaaaa tgtgacctta tatggaaatt gggtcattga ggatgaaatg tattaagatg
4561
       aagtcataat ggagtagggt gggcccctaa tccaatgact ggtgtcttta aaaaaagggg
4621
       aaatttggat acagagacac acacatgagg agaatggcat atgaagactg gagttgtgct
4681
       gccacaagcc aggaattacc agaagcaagc agacagaact gtaccagatc cttcctgcag
4741
       tttcagaggg agcatggcgc tgctaatacc ttgattttgg acttccagcc tccagaactg
4801
       ggagataata attttctgtc gttccaagct acccagctgt ggtgcttagg aggttcatac
       actgcacatg ggtgaacttg gtcacagctg ttcacattgc ccttccttct aatgagttgt
4861
4921
       4981
       gaaaggtcag cattttccag gccgttacat cgaaaggcct ggaaatggaa acgtggggca
5041
       tatacttgat gttagtggaa gtatggttgg tgtagacagt aattccagat ttttttgcaa
5101
       agcaacacct aagtgcttca tgggacctag gaaagggaga catccacatg tagatgaagg
5161
       tgggttgtgt tttgatactg aggtgtatgc aaagtgactg cctatcccac acccagccaa
5221
       aaaaaaaagt gatggaaact caaagaatgc cttataaaga acttctgtct catgttttct
5281
       gtgattaaaa ctaaatttgc tccaaggcta ggcattgtgg ctcacacctg taatcccagt
5341
       gctttgggag gcccaagcag gagaattgct tgagcccagg aattagagac caqcctqqqc
5401
       aacataccct gtctctacaa aaaatttaaa aattagctgg atgtggtggt gcataccggt
5461
       ataccggtag tcctagctcc ttgggaggct ggtggtggtc agggggtgcg gagtgcgggc
5521
       aggaagatag cttgagccca ggaattcaac gttgcagtga gttatcattg tgccactaca
5581
       ctccagcctg gctaacagag tgagacccat ctgggaaaaa aaaaaagttc caaacaacRg
5641
       catgtagtac aagtaaaggt ttcacaataa ttcaaactga aataaagtgg ttggagaatg
5701
       aaggcatcac cttgccatca gaggtgtggg ttttaggcct cagaagaact tgcaccatag
5761
       cggtgacagc tatagtcacc ctgcaaactg atgtattgct gcccaggccc taactcatac
       aaaccaattc ggcatgttta ctggcatagt tgtaaattgt gtattgaagt attctacgtt
5821
5881
       tccatttcca gggataatat gatcaggcac tcatacaatg catatttatt taataccaac
5941
       aagaacaatt caacagacca agaccagctg tactaagttt tgcctcgtta aaactggcat
6001
       tcaagaattg cctgatagaa tattttggct taagtatgag gcctaatgat attgcgctag
6061
       aaacaaaagc tttgaaattt tcaattccac gttgcacaac agacattttc tgtatcaata
       ttattgaagg caaaatacag aaagaaattg aatatagagc tggtcatcgg ccaaatgttt
6121
6181
       ttactattga atccaatacc gaagattttg tttcagccaa acatatcatc tgtcacatgg
       tacttactct gatataccc ttatgttgtg ttgtttatat tttatcttaa acttggtttt
6241
6301
       agttttatag ttgtacaaga ctattatagg ccagacgtgg tggctcacgt tggtaatccc
6361
       agcactttgg gaggccgagg tgggtagatc accagaggtc aggagttcga gaccagcctg
6421
       gctaacatgg tgaaacctca tctccactaa aaatacaaaa attagctggg catagtggca
6481
       ggcacttgta atcccagcta cttgggaggc tgaggcagga aaatcgtttg aacccagggg
6541
       tcagaggttg cagtgagccg agattgcacc actgcactcc agcctgggca acggagcgca
6601
       actctgtctc aaaataaaaa agttaaaaaa aaagactata ataataataa gttgtatgtt
6661
       tgtacctact ttagtgataa aatagtaaaa ataggagaac actaagtgca gctcaggcct
6721
       tatccctgtc cactcctct cacactctcc ctctgagcct ttccaagcta cttgcctgtc
6781
       attcgccaaa cacagcagcc tgtgtgaacg gtgttcttgc ttctgcctca aaagtgcctt
6841
       ctcgactttt tcaccttact aaagactaca gcttctttaa aattctgctc tgcagagcac
       tgtggtgctt gccgagctgt agtcccagct acgtgggagg ctgaggcagg aggatcactt
6901
6961
       cagcccaaga gtttgagacc agcctgggca acatagtgga aaccccatct ttaaaaaataa
7021
       taataataaa attggccagg tgcagtggct catgcctgta atcccagcat tttgggaggc
7081
       caaggcaggc agatcacctg aggtcaggag ttcaagacca gcctagtcaa catggtaaaa
7141
       ccctgtctct actaaaaata caaaaattaa ccaggcatgg tgaccagcct ggtcaacatg
7201
       gtaaaaccct ctctctacta aaaatacaaa aattaaccag gcatggtggc atgcacctgt
7261
       aatcccagct actcaggagg ctgaggcagg ataatcactt qaacccagga gacggaggtt
7321
       gcagtgagcc gagtttgtcc cactgcactc cagcctgggt gacaaagtga gactaagtct
7381
       caaaaaataa taataataaa ataaaattct gctcagaggc tgagttttcc ttgaacacct
```

```
7441
       ccccagtccc acctetectg ccaccagtgt gacetggeat etttecteeg tgteccatag
7501
       cactcaacaa ttcctccact gtatggagag cccagactca cctgggccta ctcctctgtg
7561
       gaccacatgc tcattcgacc ctctcaacaa tcacgggaga tagatatcat tatctccctg
7621
       ctttaaagat gagaaaatgg tgcctcagag aggtaactga agcagtagga ctgagttaaa
7681
       tecaaactgt etectatagg teagtaatee eageactttg ggaggteaag geaggtggat
7741
       cacttgagcc caggagtttg agaacagtct ggacaacatg gtgcaatccc atctctacaa
7801
       aaaatacaaa aattagccag acatggcggt gcatgcctat agtcccagct acttgagagg
7861
       ctgaggtggg aggatctctt gagcctggga ggcagaggtt gcagtgagtc aagatcacac
7921
       cgctgcactt cagcctggcc aacagagtga qacccqcqtc tcaaaacaaa aqaaactaac
7981
       tgtctattcc aaaactttgg cccttgcaac tacacaatac caggcataca tttgtctccc
8041
       aaaatctagt tgctgggata cagaaaaaca catagagaaa cctattaact caccttcagt
8101
       ttttccttga gaattctagt cctttgtagt tttatcattt catttctttc taaaacagcc
8161
       tctcgctgac tctgaatagc ttgctaggtt gtgaaaggaa atagaagcat gcagagagta
8221
       gcgttatcaa cagtgatgag gtggcaagat gcacattttt ttggcagatt ttcatttgqt
8281
       ccaaacagtc aaatatgcat gcactgtatt agaattatac acagttgccg ggcacqgtgg
8341
       ctcatgcctg taatcctagc ccgttgggag gccaaggtag gcagatcaca agctcaagag
8401
       atcgagacca tcctggctaa tccaqtgaaa ccccatctct actaaqaata caaaaaatta
8461
       gctaggcgtg gcggcacgtg cctgtagtcc cagctactcg ggaggctgag gcaggagaat
8521
       tgcttgaaca caggaagcag agcttgcagt gagtcgagat cgcgccactg cactccagcc
8581
       8641
       actacatggg tttgaactgc gtaggtccac ttatacgtgg attcttttc aataattgaa
       aaagatttga agatttgcaa caatctgaaa aaactcacag acaaaccctg tagcctagaa
8701
8761
       gtatcaaaaa attaacaaaa aggtgtcatg aatacataaa atagatgtag atcccagttt
8821
       atatttgata atgtactacc acgaaatgca cacgattcta tcatgaaaag ttaaaattta
8881
       tcaaaacttc tgtaaacatc tatagactac atggcaccat tggcagtcaa gaggaatgta
8941
       aacaaacatt aagatgcagt attaaatcat aactgcataa aattaactgt agtacatact
       atactactgt aataacttca gagccacctc ctgttgctgg tgtggtgagc tcaagtgttg
9001
9061
       caaatatcca cttaaagcgc caaacaccat gtgatactaa tgatctccat gtgaacaact
9121
       gctccagtaa attgcgtatg gcaataaaaa gtgagctctt gcagttctca tgtatttttc
9181
       agcctgttta gaqcaatacc ctaaatcttq aataacacca tcqqacccat qtqaaqtcca
9241
       gtgatcctgg aggggctccc aagtagcaga gaaaagtcat gacattacaa gaaaaagttg
       aatcgcttca tatgtgccgt agattgaggt ctgcagctgc tgttgcctgt catttcagat
9301
9361
       gtacgattca tcttgtaaac agatgaagta aacttatgct attgataaat acggtgccgt
9421
       attgtaaatg tattttctct tccttatgat tttctttcct ttttttttt ttttttgtt
9481
       gttgttgttt gagatggagt ctcactgttq ctcaqgctqq aqtqcaqtqq cqcqatctcq
9541
       gctcagtgca acctccgcct cccaggttca agtgactgtc ctgcttcagc ctactgagta
9601
       gctgggatta caggtccatt ccaccaggcc cagctaattt ttgcgttttt agtagaaacg
9661
       gggtttcacc atgttggttg ggctggtctt aactcctgac ctcgtgatcc gcccacctca
9721
       gccttccaaa gtgctgggat tacaggcatg agtcaccaag tcctgccatg attttcttaa
9781
       tgacattttc ttttctctaq cttacttatt ttaaqaatac agaacataat acatacacaa
9841
       aatatgtatt aatcgactgt ttatgctatc ggtaagactg ccaatcaaca gtggctatta
9901
       gtagttaagt ttttggggaa tcaaaaatta tgtgtggatt ttcaattgag caqggagttg
       gcacactaat ctctacattg ttcaagagcc aactgtaata tcagtcataa aaagtattat
9961
1.0021
       ttaaaaagaa ttagttcagg ccgggcgcgg tggctcacgc ctgtaatccc agcactttgg
10081
       gaggctgaag ccggtggatc acctgaggtc aggggttcaa aaccagcctg gccaacgtgg
10141
       tgaaacccca tctctactaa aaatacaaaa attagccagg catgatggtg ggtacctgta
10201
       atcccagcta ctctggaggc tgaattagga gaattgcttg aacctgggag gcagaggttg
10261
       ccgtgagccg agatcgcgcc aatgcactcc agcctgggtg acagagcgag actctgtctc
10321
       aaaaaaataa aaaataaata gataataatt taaaaaataaa aataaaaaaa actagttcat
10381
       acttacattt cctgcctttc tttccctgaa atgaaattag aaaaatgtaa caattactta
10441
       atttttacta tgtgtcactq caqtctttcq actttcccca aaagcaqcac acactccctq
10501
       tgtctgtgcc ttttcataag ttctttcttt gacccaatgc tctctcttct gacccatctc
10561
       cagcatccac ttgaaaaaag tgccttcatt tctcaacggc cagccagcgt tttgtcagct
10621
       gtgaacattt tctgtgacct cactccctgt cccagtcaaa aatgcagccc tctcaccctg
10681
       ggttcccata gcacctggct tgtcccttca tgtataactt ttaaccctct tttagatggt
10741
       gagctcaaag actgggcaat gtgcctctga atccacagcc cctacctatg ttcaataaat
10801
       10861
       tcactctgtt gcccaggctg gagtgcagtg gtacgatctc agctcactgc aacctccaca
10921
       ttccaggtcc aagcgattcc cctgcctcag cctcctgagt agctgggact acaggtgtgc
10981
       atcaccacgc ccggccaatt tattttgtat tttttagtac agatgggttt caccatgttg
11041
       gccaggatgg tctcaatctc ctgaccttgt gatctgcccg cctcagcctc ccaaagtgct
11101
       gggattacag gtgtgagcca ccacactcag cctaattgtg ttaattttag tgttggcatt
11161
       ggaaagggag ggctggagat attctctgct ggggtgagat ggggagaaat gcaggaggaa
11221
       aaaaatgaag ctgcaattcc aacccagacc atgacagcaa gggaattcct ggagacagca
```

```
11281
       gtcagaccta agcttcagtg ggtgtggagg aaatggtgga ggggctgtaa aggagctctt
11341
       gttggaggtg agacgcatcc gtgacatcac atcccgtgag cacacacccc atggatccag
11401
       gaaagcccag tttatacccg ctgatcccct ctaaggacta atcatacccc ctctcactct
11461
       caaaattgtc ccaatataga aggttagtta tagtcttcct aactataggq acaacagagc
11521
      tctccataga aatcaacatc tattaagccc aaaaatgcat acctttcatt gtaatttgtt
11581
       ataatacaac tottagagaa tgcatotacc ttotocogaa gttotaaaac ttttgaggac
11641
       ctgttccaag tgagttaaaa agttcaggag tctctggctg gggatgctgg gcttgatacc
11701
      taqqtgatgg gttgatctgt gcatctaacc accatggcac atgtttacct gtgtaacaaa
11761
       cctgcacatc ctgcacatgt accctggaac ttaaaataaa aataaaaatt taatqatttt
11821
       taaaaagctc aggagtacaa aaacctgaaa catcaaagct gtaccctggg ctgggtgcag
       {\tt tggctcacac}\ {\tt ctgtaatccc}\ {\tt agcactttgg}\ {\tt gaggccaagg}\ {\tt cgggcagatc}\ {\tt acctgaggtc}
11881
11941
       cggagttcaa gaccacccq qccaacatgq cqaaacccca tctctactaa aatacaaaaa
12001
       ttagctgggt ggaccggccg gcgcctgtaa tcccagccac tcgggaggct gaggcaggag
       aattgcttga acccaggaga cggaggttgc agtgagctga gatcgtgcca ttgcactcca
12061
12121
       12181
       gattataggc tgtaccccct agttatgggg gcatctacac tttctacatc tgtggagcag
12241
       gtgggatcat cacatcacac agtgcaggag gtacaccatc tgcatctggt acatgtgagt
12301
       ggcacccca gagctgtgta ggggacacca gcttggcact aagcagctac cctggaaggt
12361
      tcagattcct aagacaaccc aaccaagggt cctgatgtcc caggaagtca cccagccttt
12421
      totttoctoc ccaacaatca ottoctgaag coototaaco acgttacaaa gtcaagotec
12481
      atgctactgt agtcaggacc cacagaggaa agcccctgac tggagcccac atccttgcaa
12541
       gcccagcaca ataccttagg tattctggca agtggagttt gtccatcttg gtgaccacca
12601
       gggccacgtc cctacagaag ccccgctggc aggctttgat gctctcattc agaaggtctt
12661
      cgtgggcttg ccccccagaa actcgctcta tgtcgctgat cacccagatc actgagcact
12721
      tgtcaatggt ctgcaaaaca tgaccacggc atgtgtcagc acaggaatgg agtcacagtt
12781
      cctgaggacc ggttccctaa tgtatccctt aagcctctcc ctccagtccc acccctcacc
12841
       gctccccacc gcactctgtg cactagctgg actgagctat gagtcatttc tcatatgtgc
12901
       Cttgttctgt taattccctg gccacagcct ctgcctagcc cccatttgtt cctcaagact
12961
       gtggaggacc tctcgggcat tgggctggcc tctgcatcct gtaacacctg gacttacctc
13021
      aagcagcgcc tctgagacac agtgactgca ccaggtctgc tctctgcccc ttgatgqgaa
13081
       13141
       caggagaggc ttcacagaag tttgtggcat tagagattga cagaattccc taaatcagtc
13201
       ctccagtccc agtcccagat ccatcactgg cttgctttat ctcagttgtc ccctggggaa
13261
      aattottgtt tttocagaac taggtttggt ggtgcaccta cootcaagot gtcacotgac
13321
       ggcagcattt tgatgtttga ctgcccctgc acgtttagtt caatgccacc agatggcagc
13381
       atggagccag aaaccatatg acaagttgca aaggccaatg aacatgaaac aacataatgg
13441
      Catgaatgtt gctttattaa atatgcaact ttcacatgac gatcatgtgt agccttgtga
13501
       cattlctcta attgtattgt tactcttgtc ttacctccac ataaatgaaa atctggttca
13561
      actcagggat tgagtttatt tgtggttcct cagtgctttg catacaaagg gatgacaagt
13621
      ttgtgacttg aaaattaaat catcattttg ctttatacca gtagttttta actagtagag
13681
       gttttgtgcc ccagaaaata taaacagtct ccaatttgtg atgattcagc ttacaatttt
13741
       tcttttcgac tttacaatgg gtttactgaa caattggtaa gtccagtaca atcggggcta
13801
       atgatggtta tgattccagc ttacagtggg cttatcagga tgcaattcta tggtacatca
13861
       atgagcatct gtatttggca aaaaatgtct ggagacattt ttaattgtga caaccttggg
13921
       ggggtacttg aaggtaaagg ccgaggatgc agctaaacat tcttcaatgc ccaggacagc
13981
      ccaaccccag ctcccatccc acaaataatt atctgacagc ccaaaatgtc aagagtttga
14041
       gaaaccctga tccagggcag tgggtttcag cttgctttta gcatgggagg ctttttcaaa
14101
       tgaaatctta gttagaattc caacatataa acttgatttt taaaaagcag aactgctctg
14161
       gttgaattgg gagtgcagga cccagaacca ccatcggctc aatgccctct accctctgtc
14221
      caggaacctt ttggctccat acatcactgc ttaaaaaqca tctgcttctc aagttagaga
14281
       aaccccttgg attataggga agtaatgaag cccaagcggt aaagagactc aagtagggcc
14341
       acacgacgat ggatcctgtc tctcctctat aagtgaatgg actttgattt aggcaagaaa
14401
       ataaaaacca ttacagccct tctgctgccc aaactataat caacttagaa aagctttggg
       ctctgggcca gatgtggtgg ctcacgcctg taatcccaac attttgggag gctaaagcag
14461
14521
       gcagatcact tgagctcagg agttcaccag cctgggcaat atggtaaaat ctcatctcta
14581
      Caaaaaaaaa aaaaaattag ccaagtgtgg ttgtgtgcac ctgtagcccc agctactcgg
14641
       gaggctggga cagcaggatt gctcaagccc aggaggtcga ggttgcagtc agccatgatt
14701
       14761
       aaagtagaag cagcttccag ctctgtagtg tcaacagtgg gcagagaatg gtccagccag
14821
       cggaaggcca taaggatgcc aggctgggtg ctccttaagg gcagggcccc cgtcaccttc
14881
       atattcccca tggtcctggt aagccacagg tgcttagtgt ttactaacat gagaaaagga
14941
       cagcaaccat aaagggtgca gtggttaaat ttcaqaccqa ccccacacaa agctcccact
15001
       gccagggttt ggtaaagtta gtgtcgcaga agatacaaaa aagcatttcg ataaaacctg
15061
       aactgccaga cttaggagta gatgaggtgg caccccacca cccccaacct gcatctcccc
```

```
15121
       aggcccccgc tatgagaatg ggacttagag gagttcagag acatgcctca agtcacgtga
15181
       cttctaagtg gcagatcaga ttcagggaca tctgaattca taacgggttt tagggaaggc
15241
       aagactggca gcctgagaga catagggagg gcaactgtgt cgttctccct gcagaggggg
15301
       gtcttgagta acttcttgtg agaggaggtc aagaaaaccc acaagaatqc aggggagctg
15361
       ggccaggcag agcacggtgg gaaccatccc tcgcttcagc ctgacctcct cagagcacat
15421
       tttctgagcc agatctgccg tctttgataa gctgcccagt gtatctgaac tggctgcagc
       cgcggctcca tccagcgaga ggccctggca gccttcctgg gctgtcgctc tctcggccgg
15481
15541
       gcctggaact agccaagatt cgcgatttcc accccaggat ccgaggtctt gcagaaacta
15601
       aggctcacaa ggccaggcct gagccaccga ccaaggggaa ggacacagag actgccttcc
15661
       tcctgcagga ggtggataat atagagcgtg ccctggggga ggtggggtag atagagcccc
15721
       agcagggaag ttaggaaacc tgctctccaa ggctgtgtgg tcctggacaa gtgactttcc
15781
       ctctctgagc cttcatgtct tcatctgtac aatcagggca gaggctagag cttgctctag
15841
       attgtgactg gaagtcgtgg ttaccaagct cccctggcac aatcattcat ctaaacaaac
15901
       ctgtggagtt taaagaactg gattctttgg cagctgctgt gctgctcaca actcactgat
15961
       getggteece eteteceagt eccetteeag etectggget ectgtgttee teccaceetg
16021
       tgctccagag cgcctctgtt taccgcgccc tttctcaatc acatgcccca gtccctctct
16081
       tcctgcaagt tttcccagga agccaaactc tggagcagta gtactaaaga ccccagaact
16141
       tttccaggca tgtcttccat agtctccctc ctccacggac cccatgctcc ttctcccatt
16201
       cacccaggaa gattcaccct gcccccacca cgccagette etcagacete cagetetatg
16261
       ctgatgctgc ttacagccaa cacagttgca gcctcttggt tcttggtgac tggctgcagc
16321
       ttetetgett tgteeceaac acttggeete ceagtteeet tetgteettg gteactetgt
       ttcctcttaa gccactctat tgctggtctt tctcatacat cacacacact tgtcccagct
16381
16441
       ccaatagtca catcctgtga ttcctccctc cccactttct ctggctaccc acaccctgcc
16501
       agggccttga gacttagaac atagaaatta aaagaattta attccaatga actcaaaatc
16561
       cctgaagctg aaaccagagc attctttgtt gcttgagaaa gggtagagga gtttagggaa
16621
       gagagaacta aacctacgaa agacagtcac ctttttccac atctcgtccc tcttgctgtt
       gaagtcgcct gtgcctggga tgtccaccag cacgacccct tctgggatca ggtcggattt
16681
16741
       gggaagtgtc acttccacat gtttgatcaa gggccagatg cgcatctcag cggcctctcc
16801
       atcccaatct ctcctctgtg tgcggatgta ggggtccagc ttgatggaca gctcttctgc
16861
       Ctgaagaagg aggacagagt cacacacac agccatgcac ccagctctgt tcaccccqqt
16921
       tggctgtgat gcaggttcat ggtaagtatg ctgagtaagg gtaagaagtg cgtccaacag
16981
       gaggcctgca atcaggtctg taggacctag aacctgagag ccaggaagga ccctggagag
17041
       gagcaagttc aagatcctta ccttacagat gaaacaaaac caatgtcagc taaaatggga
17101
       ctttagggaa gttatagtat tgctgaataa taagtttatc ttctaaactg cattcagttc
17161
       taaaattaac atactatgta attgaYattt tcattaccag aaagctagca atgactatag
17221
       aaaattaaca gtgatatggt aaccatattt tccaaactga aaattgatct gaaattggat
17281
       ctttttttt tttttttt tttttttgag acagagtctt gctctgttgc ccagRctgga
17341
       gtgcagtggt gcgatctcgg ctcactacaa gctccgcctc ccgggttcac gccattctcc
17401
       tgcctgactc cccaggagct gggactacag gcacccgcaa ccacgcccgg ctaatttttg
17461
       ttgtattttt agtagagaca gggtttcacc atgttagcca ggatggggtc gatctcctga
17521
       cgttgtgatc cgcctcctc agcctcccaa agtgctggga ttacaggcgt gagccaccgc
17581
       gcctggccga aattggatct taaaaagagt ttttaaaatt tatcttctga ttacaaaaaa
17641
       taccttgata tgtaggcatt tctagaatat tttaatgatg gtgggtgaga gagggaatag
17701
       ttottagaco acggttocta ottaaacatg totogggaca atgacacato catgocagca
17761
       actatgacag taaatcgcaa ctggggtact tcagaggaca ggggatttgg gatgtatggt
17821
       ggtcactgtt aaataaattt ctataaaata gtcctgaaag aaagataaga atgtcagttc
17881
       ttaagagagt ttaaaattaaa tcgctggatt tgttgcaatc tggggaagga gtaagagatt
17941
       tcatcaattt caaccaaatg ataaaccacg acggaggaga taataaaagc tctttaagac
18001
       attgtaattt taaaatagag cagataccgt aagagagaag cccaggaaaa ggcaggggct
18061
       tgaaaagccc cttcctacaa gagggctcag cccaataaac tggttccggg caaacatcgt
18121
       tgtagaaggc cttgattcta ggatctccag tggaaaccct gaatttgtaa gcccactcat
18181
       cgagatggta attctgttca ccttgtttcc gtgcgtaaat ttatgacgct gggaaggagt
18241
       atttctaaat atagagttgg caaagacgtt gatacccttg tgtaagttgc gtgtattcag
18301
       ataaagcaac tagttttgta atcattgtgt ttcttagaca tgctcagtct atgttttaga
18361
       tattagaagt gtaatcattt taatagtaat attcgtctta aaactgtaag aaatgggcac
       tgtatttgtt tgattttcca ggtatgcaag agatagtaac atgctttgaa aaggtttcat
18421
18481
       tcatttgatt tttaagtgtg cctagtcaag catttaaaca ttttaagagg ctcaagtata
18541
       ttgaacttta actgtaatgc aaaaagccta aggaaatgtg attaattatg taagtatcat
18601
       taatatttaa ggaagatttg ctttgttaat caggagatca ttgaacattt aactttagga
18661
       catgtataaa aattgtaccc attttaccaa taatcactag atttataaat agaatagcaa
18721
       tattttaaag gtgtatttaa aggtgagaga tacaagaaaa actaggtttt taaatgtata
18781
       qctttcctaa attqaatgtt gattccacaa atattttgtt ttaattcaga aattgaattt
18841
       taacttaaaa taaacattgt ttataaaagc aagaatatca ttctactagt tgcctatcga
18901
       atgtccatcc tgtccctctt ttatgccagc agaatcctga ttttctgtct gactggggag
```

```
18961
       gcagtggagt gaaactggtc taagcaaatc atgacaagtc tgcttttcac tttctctgga
19021
       ctccctttca gccaggaagg gctgtgtggc tcagttctga actctgaaat ctacacagaa
19081
       atttgtcaga qqtatttctg ggaaaqtttt tactttctqa tqaaaqqqqa qatqtqqctq
19141
       atgccaacct tttctccact tcttccttcc aggaggctag catgaagtct agcactccgg
       gagccatctc atgacaatgg gggcgacgga aggcaaaggg agccagagat gctgatgttg
19201
19261
       gcattgctga tccactaaac caaccccacc cctactgccc ccaaacctct tacatgagaa
19321
      aaggaataaa tooctgtttg tttaagccac tataagtott ottaaaaaat otttqqcaqo
19381
       ccaaactatc cctaattatt ctcaagcaac tgtaaatagt ctttttctgg gcataaqagc
19441
      tcctccattc acataccaaa aatttccatt tgatagccat aaataatgag gataacttgg
19501
       gctacggata cttctaattt gggtagcaac ttatttctta tttcacacaa acactgtacc
19561
       acaagcccat cccctgaaac aggttcaact gttagacttg agacccagga tgaaatcaag
19621
       gaaaaaacga acttgacgct acctcttccg ccttgagggt gatgactctg gaggtggqqa
19681
       tcttcctttt gggcttcgcc ctcagtaact cctcatagtt cttactctct gccccatttc
19741
      cataaatcat ttgtagcttc caggtggctt cctccactqc ctcatccctq ttccacqcat
19801
      ctgcctcttc tctgctcagc tcctccgtcc tatgcaggag tttggtcagg ttcttcagct
       cctccctcca ctcctgccaa ggcagagtag ggccaagccc ctcttgacac agacacagag
19861
19921
       aacaccgaca aacagaggg cccattgccc cctgtggagg gccagggggc tgcatattca
      gaaaatctag gtcatctatc tggggtctcg aagaggggaa tggcttgccc aaagtctcat
19981
20041
      aaaaatgcaa ggaccaggct agaccccctc cccagctcac ttgatgaact ttctcctggg
20101
      atgggctctt ttcattcaac aaaggcatga gctgtatttg caaqqaatat aatgttatct
20161
       20221
       gaaagaaggg agagagggag ggaagaggaa ggaaggaaga aagaaaggaa ggagggaacg
20281
       ttacctggtc agacagaagg tggattttgg cctcatactg cacacagcag ccagagctca
20341
20401
       cttgtacaat gcaggaagta catatgcttt ctccagacac tggtagaaac attgcttgct
20461
       ggatgatggc attgatcagg gagctcttcc cagccccagt gcttccaaat aatgcaatgt
       agattgggtc cactgtcggc ttttcaatca aggcaagaag cctatttctg gatgaatttt
20521
20581
       aaaatgcaca ttgccatgat catcaaagtt tagagtgaag agcattgaaa cagaatgcaa
       aggaactgaa ttctaatccc gggcacgtca ctacaacctg agtctctgtt ctctcctctg
20641
20701
       tcaaaggaga atatcaatcc ctgttgacca cacagagttg qcctgqqqat caaatqagat
20761
       tatgtaaaaa tatttggtaa tgataattcc acacaatccc tgtaatgtct atatagatgt
20821
       gaggtgtctt tatttgtatt cactggaaat tgcatattct tttttttgtt tgtttatgtg
20881
       tctgagacag gatctcactt tgtcacccag gctggagtgc agtggtgcaa ttatggctca
       ctgcagcctt aacctcctag gctcaagcga ctcccttgcc tcagcctctg aagtagctgg
20941
21001
       aactacaggc gtgctccatg acgcctggct aatttttttg tattttgtat agaqacaqaq
21061
       ttttgccata ttgctcaggc tgctctcaag tggtccaccc gcctcggcct cccaaagtgc
21121
       tgagattata ggtgtcagcc actacacctg gacagaaatt gtatattctt gatcctagaa
21181
       atacaatgta tacagacatg aagtattaat agtgttagga qcaacacaga qtcttactga
21241
       gcaggagaaa ttgtagcctc agcaccactc gagtccttca agtcagcaga ggacaaataa
       ttggggacat gagctcagag tcacacagcc tggggtgaat tctggaccct ctcactgact
21301
21361
       actggtgtga gtttgttcac atctgggcct ctctgagcct caatttcagt aaaatggaag
21421
       tgatcataat agctcctact ttataggagt gttggatggg ttaaatgata tttgacatat
21481
       ataaagcact tagcagatta cctaacagtg acagctcaat gaatggcaac tatcccatag
21541
       ctacagaaat ttgtgtccct cttttcttag tttctaatta aatagtccct ttccttqttq
21601
       ggggaaagca cctataatcg cctaaggaaa gacactgaca taaaatttca gggttgcaga
21661
       tttcagactc acatgagata cttgactcca ttagggatgc tgtcatccag gaagacagac
21721
       tgaataagtt tctgataagt gttgctcaaa accettctgg tccgtgattc caatttttca
21781
       tctggaatta acagagagat gtcacctgca ggtacctggc agggataaag tactaggtct
21841
      ccaaaggagg tgtctgttga acatcgcaga gaagggaaaa aaaaaatgaa atgaaaagcc
      gattaaacaa gatagcaggt tatctcacac gagggatggc ggctcactgg agatagcaat
21901
21961
       cattggttct gaaaatctcc aaagagccag gctgctctga aactctggta acagaagtta
22021
       tggtatgctt ggccacgggc ttcagcccct tctagatttt tccctcctgt ggtcataaaa
22081
       agaaagaaaa aatgcaagga caccatgctg acacccacgg aagcaccaac ctcatcattt
22141
       tcacaggctt tgttctaatc tggaagaagt tattttgata acaaccctcc tgcccacaga
22201
       tgcctggaga caaattgcct aactgcatac cgctacagag actttgagcc ctctctttcc
22261
       aaaacaggtt tatttgatgt ttcatccagc ttcagaattt aacctcctct tcctttgacc
22321
       attttaacat acttggaaca gaaccgaacc atgttaaaac aacagttcca agacactcac
22381
       attecttaag ageactetge teeatggagg gaaatgeteg gaacegetgg tetegatetg
22441
       atttccttct ttttctcgtt cgttctttat ataaatcatc ttcaactaga gataaacaga
22501
       ggatatataa gattataggt gttggggtat ggtattcttg cctcacctct atcagcatag
22561
       aaactcaaag ggtctaacag actggctggg tgcagtggct catgtctgta atctgaagca
22621
       tgagggatta catgcctggg aggccaaggt gggaggattg cttgaggtca ggagttcgag
22681
       acatgcctgg gcaacacagc aagacccttg tctcaaaaaa aaattttttt ttttggtaga
22741
       gacaggggtc ttactgtgtt gcccagcagg ccagagtgct gcggcatgat cacgactcac
```

```
22801
       tgcaacctca acctcccagg ctcatgtgat cctcccacct cagcctctaq agtacctqqg
22861
       actacaggca cacaccatca cacctggcaa atttttgtag agacagtgtt tctgtatgtt
22921
       gcccaggctg gtctcgaact taccaaaaat atatatatat atattttttg attagccagg
22981
       tgtgqtqqtq tqcacctgta gtcctaqcta ctcaqqaqgc tqaaqtqqqa qqqtcacttq
23041
       agcccaggag ttgtaggctg cagtgggcta tgattttgcc actgcactcc aacctgggtc
23101
       atacaagacc ctgtctcaaa aaataaaaaa ataaaaaaat aggaactgct tccaqctctg
23161
       totgcccata aactcatttg ggaaaaaaca ctgttggatc attccagttt ggttcctact
23221
       tctcagagtc acaagactgt ctgcatttag ttccaaaatg tagagttcaa tctatctcc
23281
       cagataaata gtttctattt gcaactcctc agaagccaaa gtggctggac attcttcacc
23341
       aaatgccaag tottaggaaa toaaccaact gtgtagagaa aagctgaaga cggggttaag
23401
       tgtgcagtga ggaaaggcct ctgggaggtc tttccagact aggaaagaaa qcgactagaa
23461
       gcagaatgca aaggaaaaca ggggccaggt gaccagaaaa aatcacatct tcttgagcct
       caatttattc atctggaaaa tgagagaact gacaaaaaaa atacacatgc attacaagag
23521
23581
       tttggatgga tgcccttcag agatccttca aaattttgggg aaattttttc ccttcttcac
23641
       ttggagacat cagcagttgc ttccttgcat aataagcaag aacaqaaatc acctagaagc
23701
       agatetttgt agetetgegg agatteatte aettaageag ttteeettgg ttatgaagtg
23761
       aagggcttgt tgggcccatc atcctaaaga aggggtataa ccaaaatgtt gtgttttaga
23821
       tggattttag aaaacacccc ctggtcatgt ttacctggct agaaaggggc aagaggtgga
23881
       tctttggggt gaaggttgtt gaaaatggtt ctaacccagg gctcctgggg ctggcctgca
23941
       ccttagaaaa tggccatgag gtgaaccaaa agagtagatc cccaagaatc acagggaggc
24001
       catgaggete caaaactgag tgtgacatte tgaggteatt eeetgeagaa teacagagaa
24061
       gaaatgtcac gtggcatcca agaacggcag cccacacaga aggcccagtc tctgcctgag
24121
       ggctccagac acagatetee cagacaatte aggcageeet ecetetetgt teaacettge
24181
       atcttccagt agaaatggaa gccaacgcac accccgtaga atattctagt gcaagccatg
24241
       ctatttgcca aggcctgaat ctctgccacc tcatgctcca cgctcaagcc acaactgaga
24301
       gttgagagag gttatacttc gaccettece teteagacat tetaactgat gattgagete
24361
       aaattcaaga attcgccctg gctcggtttg aggactgcct tagaactaaa taccaagtgg
24421
       ttgctggctt ggtggctgga gctggagagg aagaggcaaa gaaagaagtc tgctggtcag
24481
       gcccctaggc cagctaccgg ctgaagaaca ctttaatctg tgctcgaaaa aqcatctcag
24541
       aactccagga tqtgtccaca acctgtctqt qqaaaqaqtq qaaaqqqatq taqactttqt
24601
       aactcaggaa ctcttttggg taaacaatgt ttgcctaatc tcttagccat gtgtataaaa
       caagggccaa gtccacacat ccagggccct tatttcaaca ttgtaaggac tggcaacgaa
24661
24721
       tctgataaga gtttggaagc ttatttctca actaaagcaa atgctaggaa gtccaataca
24781
       gcagggttta aaactttttc ttcaatttct aaaatgcaaa actatctgga aaggagaaag
24841
       tattccatct tggatttata ccatacgagg gtagtatttt tatattagat tgtaaccaaa
24901
       ataaacttgt ccgaatttag atcacagatc ttattattct tgtccatcgc tcaagccctt
24961
       ccttgccctt tccagcattc tccaccgaga aaccagctgt tggggtggat agcggcagtc
25021
       caaaaagcSt agtatactgc tgctqttcct tcttgctqcc acaagqtqtc agttttqaaa
25081
       actgatcccc caacaqcctg agctgagatg Yggtttcatt qttgactgtt gaaatttttt
       ttttttttt gagacgaggt ctccactctc gcccaggctg gagtgcaatg gctgggtcac
25141
25201
       ggctcactgc agcctcaacc tccgtggctc aagcaatcct ccgacctcag ctcccaagta
25261
       gctggaacta caggcactca ccaccacgcc tggctaattt ttttttcttt tttttttt
       ttccagtgat gaggtcttgc tgtgttgctt aggctggtct tgaactcctg ggctcaagag
25321
25381
       atcotcotgo ottggcotco caaagtootg ggattacaga catgattcag accattgcca
       gaaactgcca gaaatcttcc aagcaaaacg atcccattcc tctaggctaa gctcaactga
25441
25501
       ggtgacccca aagtggcagc tettectata tgcctgctca ggcttgcttc agatgctagc
25561
       atcacccca ctaacccaga aacactgctg cactttgccc ctaaggaaat ccatccctc
       ggaqtgagga aacattcct cttcagttct caaaacacaa aggatatgat acgccactgt
25621
25681
       tttctgcaac tgggggttat atccctgtca tcgtcctata gggaagcctc ccttattggc
25741
       tccaggggcg caataccagc cttctgaggg agggaagcca cccgcactga ctccaatgtg
25801
       agtcaccett ccaqqagccg ctccaaggca cctacatete teettetacq qaaaqecqce
25861
       taacgtcatt ccaggggtct tgtaagacag gctacctgac ttggacagag agtccaagct
25921
       gactttctgg aacattatta ttattgagat ggagtctcac tctgtcgccc aggctggaga
25981
       gcagtggcac aatcttggct cactgtgacc tccgcctcct gggttcaagt gattctcctq
26041
       cctcagcctc ccaagtatct gggactacag gcacaccac ccacaccgg ctaatttttg
26101
       tatttttagt agagatggga tttcaccatg ttggtcaggc tggtcacgaa ctcctgacgt
26161
       catgtgatcc accepectea geeteecaaa ttgetgggat tacaqgtgtg ageeaceatg
26221
       cccagcctgg aactttttt ttttttttta aqqaaaaaqc cqcacttatt taactqctqq
26281
       ccaaacagtt cacttcatta tgaacaggtt atttcagtta ctgttgaaat atctgatctt
26341
       cattcactat ttaaacttgt cacgagaaag caccttctqa ataaagagta aggaacaatg
26401
       acaacagtga aatatagtcc caacctattt gccttttatc ctatatcagt aatcagttcc
26461
       tatatcctcc atcagaagat actgcaaaga tgttacctgg atgcggttcc tggccaaaaa
26521
       catccttcgt ttctgccatt ccttgttacg tgaactcctg ctcttctcag ttcaggagaa
26581
       ccagcctgtg aagacaaagt acaaagacag gtggggcagc ggaatttgaa aatacagaaa
```

```
26641
       gcaaacccta aggatgtgtc agtctgcttg tgcggtattt ctgcccattc caacqtatct
26701
       ctgaatccct cacaacacct agtacactac ttgatggaaa tataacaaag attaqtqttt
       qaacactggt ttccaataat acttaggcca ggcgcagtgg ctcatgcctg taatcccagc
26761
26821
       tctttgggag gccaaggcgg gaggatcact tgaggtcagg agttcaagac cagcctgacc
26881
       aacatggtga aatgccgtct ctaccaaaaa tacaaaaatt agccaggcgt ggtggtgggt
26941
       gcccataatc ccagctactg gggaggctga ggcaggagaa tctcttgaac ctgggaggcg
27001
       gggcttgtag tgagccgaga tggaaccact gcactccagc ctggatgaca aaqcqaqact
27061
       ctgtcttgag aaaaaaaag agtctaaacc agtattacct gagagcttta gggtaactca
27121
       cgctgaaatg agaataagcc tctggtgacc agagctgtga aggtgaattt atatagcttc
27181
       gctgctttgg gtggcatcag tgctccactg gggcaaggct tgaaccctga gccagtgcta
27241
       tttagttcca gaaagtctca gcaggaatct gggaggtgga acattagata ttcctagagt
27301
       tccctggagt tgctttgggg ggctgctgac tggggaagga gatgcagtga cttggttccc
27361
       tggaccttcc tcaccaagcg caacttccac caggaggaca cccctcctgg gctctccttg
       27421
27481
       ggcagatcca gttggtctcc agtccaccag cagatagggc ttggacatag agggagaact
27541
       ggacccgtgg aggctcagaa cagagggcac tgcccagaca gggtagaatc tgctagcctg
27601
       gagetgette atetecacce atagagaaga atttgaggaa cacgagtggg gaacacceaa
27661
       ggtgcttact tgccgttacc tgatgtttct gtttggatca ctcagccgtg tatttcaaaa
       gcagagtcac cagcccttct gaaatatgca aaatcacctt tgatctgtcc tactagaccc
27721
27781
       acaqqctqtt atttaqqqaa actatqtctc atttacacat taaccccaaa ttaaaatcac
27841
       cattcatcag ttactcttag tttggtttgc agatattaac tgactaaacg gcttctgtat
27901
       ttggtgggtg ttgggtgaat ggggtgagaa cccctattaa gtgcaagatt ctgagtctta
27961
       ggtagagete tttccctcte cettectece etetgeagee cattttcaga teateceaca
28021
       ctccttacag ttctccaaag cagggtatcc tattgaactg ctgagcattt tagcacatgt
28081
       ggggtqccct tcccttcttc tcqcaggtqa attcctqctc ttqcttcaaa atcctqttct
28141
       agtgtttcct ctgtgaaacg gtgtctgatt cccactcatt ccccccgtgt gtccccggct
28201
       ccatacacac ctgtgttata acactgactg tgctgtgctt acgtctgttc ctcctggttg
28261
       aaccactcga ggtcagagga ctgcattttt ttcagtggtg catttctatc aagaagggca
28321
       atgactaact aaacgttagc tgaatgaatg gataacataa tggatgggaa gcttttgatg
       agattccaca ccaaaggatg tttaaaagct aaatttgttg ttttggtctg gtggtttgtt
28381
28441
       tgcttgtgac agagtcttgc tctgttgccc aggctggaat gcagcggcac aatctcaqtt
28501
       tactacaacc tccacctcct gggttcaagc gattttcctg cctcagcctc cagagtagct
28561
       gggattacag gcattgcacc atcatgcctg gctaattaca attttagtag agatggggtt
28621
       tcaccatgtt ggccaggctg gtcttgaact cctggactca agtgatccac ccacttcagc
28681
      ctcccaaagg gctggggtta caggtgtgag ccaccatgcc tggccctgaa ttcatttttg
28741
      gtatgttaga gtccttgatt gaagagtaaa gcaaagagta gaaataaata gtcaagtatg
28801
       caaatgaagc Rgcactcaca gtgaggactg ctccacgggg atgaggaata tttgatgtga
28861
       ggWagggaag acacaggtaa aggcagaaga tgggggcagg ggccttcatg gtggtcttca
28921
       aatgcattac cttacagctg caaataaaag agacatcctg catattttct agggttccca
28981
       gagggtagaa atagatccac taggtggcag gtacaagaaa gcattttggt ttaacattct
29041
       caactaatca gagttgtcca aaatggaatg agctccctta ggaaaccgtg agttttctgc
29101
       ctctagaggt gtctgaacct atattgatat gaccacctaa taacgacatt gagatagata
29161
       aattttaagc cttcttcaaa tcccaagatt ctatgttctt acttgaaatt ttcaccaaga
29221
       aagctggtag tagaagtgcc ctatgaggtc accaaatttc acaagaggca caagcaattt
29281
       ctggtttgga atactgagtc agaaatgctg acacacatca aaacctaggt gagctacaag
29341
       aaaaaaaaa gtaqatqqqc tataacatqa qtaaatatac cataatqcat qtcaataatt
29401
       ttaggcaggg tgtgatggct catatctata atcccagcac tttgggaggc tgaggaggga
29461
       ggattcattg agccctggag tttgagacca gcctgggcaa tcaagtgaga ccttgacact
29521
       accaaaaaaa aaaaaaaaga aagaaagtag ccggttgtgg tgacacacac ctgtagtacc
29581
      cactatttgg gaggctaaga tgggaggatc ccttgaaccc tggagttcaa ggttgcagtg
29641
       agetatgatt geaceactge actecageet gggtgacage aagaceetgt eteaaagaaa
29701
       aaaaaaaatt agatacagaa ctaggattac ccctaggaaa aagatctgtt gttttctgaa
29761
       gagagcagct taaggagtaa ctcgtatgaa atgctaggca tcatattatc acagtgagca
29821
       ctggaagcaa aacaaaatgt atgatacaac cagtgaacaa atccatggtc gacctccagg
29881
       acagctggtg tgctggaatt caaattctag gaggaaacag tggagccgga taaagtacaa
29941
       aagaactgat agaccaagtt gataagagtc gtggtcatac agacactaag attagggacc
30001
       ttcaattgag agaqctgtgg attaaagggc acaaaatcaa agggccttga gtttagaqca
30061
       gaagcagctg tggtcactga attctggaat acgggtagta gttttggctt ctttcagaat
30121
       cacaagaact ttagttcatt tgacttcatt tactaaatca acagtacaca gtgtccagca
30181
       agggccgtta gcatgtaact agctggggtt ggtttgggtt tagctgcatg caatgaagac
30241
       agaaaaccac acaacttcct ccgtagcagc atctatggtt tctgtataca agtaatttgt
30301
       gaactctaac tgaaatttgg aatcattgga aattatgtgg tttggttgtg gtggattggg
30361
       cttcaaattc ctttggccaa tgttcaaaga ctggcaggaa gggatcattt gatgaccaaa
30421
       caaaaacact agcaaatgga aagggatcat ttgcaaaaag gctaagagga cagaagaaaa
```

```
30481
       taaacaccaa gtacataaaa aggaaaagcg ataaacaaat gggggtagtt tggtacagac
30541
       attcagtata tagtcattgg gttgaactaa atgatgaggt gggaagaaca ttaggctgga
30601
       aatctggtgt ggaagcttcc agctccagct ttaccaccca tcaataaagc tggaqgactt
30661
       aagacaagtc gttttatcac cctggcctca ggtttcccat gtgtaaggca aagactgaac
30721
       tagtccttaa agtgtgagtg ttctctgatt tagatgggtg ctaaaaaagac acaaattctc
30781
       attttgaaaa tgtcacctgt cattgaaaMt gagaccgtac caatgattag ggcttccgtg
30841
       tggccaagag cagtacacca agagcactgt gatttcaagt gcattgtatt aaggagaaaa
       tgagctacag gagtatagtc cttcttcaaa tcatcctgca gtctatttcc ccccaaaggg
30901
30961
       aaggaatggt ggtgttcatt gtgaaaattt ggtttctgtg gagaagcaat tgataacagt
31021
       ccaaatttat tgctcagata agcaaggttc tgcctgtgtg gtttattttg cttgtatttc
31081
       agctatgtgg ttagcactga agttttgctt ttagtgctta tttacattca tgtgcactga
31141
       acctaagaat agcatetttt aaataagaet gtgeacatte agctagatat aggaaggetg
31201
      cacagaactg atttcctgat aaataattgt aacttttcac agttattctt gettetetee
31261
       ccctcctttt cttctqtttq tqtttqctta ttqttttttt tcttacaqqa aaatcacaqa
31321
       ggcaacacaa acgcaggtca ttcctgtact agaacagctg catatcatgg cattgaataa
31381
       agaatgcggg ccgggtgcgg tggctctcgc ctgtaatccc agcactttgg gaggctgaag
31441
       caggtggatc acaaggtcag gagtttgaga ccagcctgac cagcatggtg aaaccccatc
31501
       tctactaaaa atacaaaaat tagcccggtg tggtggcacg cgcctgtaat cccagctact
31561
       caggaggctg atgcaggaga attgcttgaa cccaggaagt ggaggttgca gtgagccgag
31621
       atcacgccac tgccagcctg ggcaacaaag cgagatttcg tcttaaaaaa aaqaatgcta
31681
       gggccccttc ttctacagat ccagaccctg aggaccagga aggggaagaa acttgtccaa
31741
       ggtcacatag taagattatg gcaatgaggg ctgaaactca gttttcctga ctccaagttc
31801
       aatgttcttt tcatcacatt cagcagcctc taataggcac tatttaaaca agccccctgg
       agctcaggca tagggcaatg gaaggagtag tgcccgcaaa ggagggttcc ctcaaatgca
31861
31921
       tggcaaaggc atttcatgag aaggaaggct gttgagtggg gagagagagt agcaacttga
31981
       tagaattgta tgcaggaact gaagctgaag ctactgcctg caaactgctt ttttgtttt
32041
       32101
       ctctatcgcc caggctggag tgcagtggca catgatctca gctcactgca acctccgcct
       cccaggttca agcgattctc ctgcctcagc ctcccgagta gctgggatta caggcacctg
32161
32221
       ccaccatgcc cqgctaattt ttgtatctct agtagagaca aggtttcact atgttqqcca
32281
       ggctggtctc gaacccctga cctcaggtga tctgcctacc ttggcctccc aaagtgctgg
32341
       gattacaggc atgagccacc atgcccaacc ttactgcctg caaacttgaa gacaccctca
32401
       gaagtaaaac aagccagaga gagagagaga gactatcaga ggaatacatt ttcactgcat
32461
       tttttctgtg ttcaatgcaa aattcaatgt gtttattaca aatgacaaat gtcctttct
32521
       tttcccctag ttattctcct taggcagaat ctcatttcac cctaccttgc ctcqcatcat
32581
      taaccettge caacactatt tacttactta aatttaaatg ettaaattag caaagtttet
32641
       caaaggggca ttttggtcat taacattggt ttactctcta cttttaataa atatqgqaaq
32701
       tacttggtac acagcaagca ctaaataatt tgttgaatga atgatgataq atataatttt
32761
       ttgtatctat atctagatag atctatctag atctagatat agatatatat cttagatqqt
32821
       32881
       aatatttgtg agtgcctatg atgcaccagg cactgttcta gatactgggg gtacagcagg
32941
       aaacaatgtg gtcacagtat ctgcaaacaa agggcttcca tattccagat gtgaatggtg
33001
       gagcaaaaat tattagggat ttggagtcag aatgcctgga tttttgctcc tgctcccaat
33061
       cttcaatgca acacagagca aatcacctga tctctctgag cctctatttc tccacatata
33121
       ggatagaatt ggttttaaaa aaaatacctg tatcaagaat tcattggcca ggcatggtgg
33181
       ctcatgcctg taattctagc accttgggag gccaaggtgg gccgatcact tgaggtcagg
33241
       agttcgagac cagcctggtc aacatggtga aaccctgtct ctactaaaaa tacaaaaatt
33301
       acctgggcat ggtgcagcat gcctgtaatt ccagctgctt gggagactga ggcaggagag
33361
      tcacttgaag ccaggaaaca gaggttgcag tgagttgaga tcgcaccact gcactccagc
33421
      ctgggcaaca gagcgagact ccacgtcaaa aaaataaaaa ataaaaaaga gttcgttgtg
33481
       agaattaaat gtgataatga atgcaaaatt gctctgcagg cacttatgca tctgtacaaa
33541
       tgttattttt tgaatatttt atgaaggtag ttaaactaga aatcagtact agtgtcatcc
33601
       {\tt aggccacgtc} \ {\tt tgttagtctt} \ {\tt tggggaacag} \ {\tt atgccacctt} \ {\tt agctgagatt} \ {\tt ctgactcccg}
33661
       ttcttgtccc tattgatcaa acacattgag gatgctctac catcttcctt aaagaatctt
33721
       cgatcagctg ggtgcagtgg atcacacctg taatcccaac attttgggag gctgagccgg
33781
       gcagatcatg aggtcaggag tttgagacca tcctggctaa ctcggtgaaa ctctgtctct
33841
       actaaaaata caaaaaatta gccagccgtt gtggcacatg cctgtagtcc cagctactca
33901
       ggaggctaag gcagaggaat cgcttgaacc cgggaggcgg aggttgcagt gagctgagat
33961
       catgccactg cactccagcc tgggcaacag agtgagactc catctcaaaa aaaaaaaaa
34021
      caatctttgg tcaagttttt tcttgctctc acaagaaggt gagctgaaga atgaaagaag
34081
       34141
       tttctctttg agtttgggtt taggtttaag taactttggt gttggcaaca tttcctaacc
34201
       acctegttgg ccaetgcact getettecaa actagggatg teceaaggea geaatttaaa
34261
       cacattagct cagaagcaaa agtgaaacaa gggcctccaa atctctaaag gaaaagaggt
```

```
34321
       atgttttcag cattaacaca tcggctaatg tgttcagaat tagaaatgtg gccaccagaa
34381
       gcagtcgtag tagaagggag gctttaggat gacatgttt tctccatctt tcttcctag
       gtaaagaggt aagcaaaata agcagatatt ttcataacgt actttagcag attctagcga
34441
34501
       aacgaatttg aatcttctca tattgctctc ccaagcttgt taaagctaat gaggcataag
34561
       atgacacttc cctccttatc aggaattcat acacctgcca gcaatttctg caatagctgt
34621
       tttcttttgg gaggaatgat taatgacttg cctaagatca cactgttctg taaaattcaa
34681
       actaaaacct gattctcccc atttctagcc cactggcctt tttacatagc cttaaaattc
34741
      acttaaacag cctgagcatg gtggctcatg cctgtaatcc cagcactttg ggaggctgag
34801 aggagagggg atcccttggg cccaggagct tgagaccagc cttggcaaca aagtgagacc
34861
      ctcatctcta caatttttt tttaattage tgggcatgge agcatgtate tgtagtccca
       gttattcagg aggctgaggc aggaggatta cttgagccca gaaggtgaag attacagtga
34921
34981
       gccatgttca taccactgca ctccagcctg ggtaacagac cgaaqcctca aaaacaaaca
35041
       aaccaaaccc ccaaaattca cttaagcaaa cagaaaagta aaattcactt tccctcaaga
35101
      aataacttgc tttaagaaaa tcaaaggaga gagaagagac aaatgtccca tatacagaag
35161
       aattccaaat aatttacgta gctactccat cctcaaggag gtagaataaa actccctgct
35221
       ccttaagtgt gtgctgtgca tagcagcttc tttccaaaga gaacacggcg gagattggag
35281
       cagggaaagg atcaccttat agcagagaaa ccagacaagc gctgcctcta ccaggtggtc
35341
       aaggtcaaca ccaacagtcc taaatcatgt tgacaatatt atcccttgat atgatgtgat
35401
       gagaacaqca ctttaactct qqqactcctt ccccaaaacc cataactcca qtctaataat
35461
       gagaaaaaca tcagacaaat gccaataqqa qaaqcctaca aaatacccaa ccaqtactcc
35521
       tcaaaactgc catattcatc aaaaacaagg aaagtctgag aaacaacgct acagctaaga
35581
       ggagcctaag ggaacataac taaatataat gtgctatcct gataggatgc cacagtagaa
35641
       agcagacgtt agataaaaac caagaatctg aatcaagcac agactttagt ttaagaataa
35701
       cgtatcagta tcggttcatc agttgtaaca aatgtaccac actaatacaa gataatgggg
35761
       aagttgggtg ggaattacat gggaatgctc taaactatct tctcaatatt cctqtaaact
35821
       caaaactgtt ctaaaaatta aggtccattt ttaaaaaatc aaccacaagt tacagtacaa
35881
       35941
       ggtttggtta caggagtcca cagaggagat ggtggcagct tctccttggt tcaggtattt
36001 ggaaccaget ggggtacgta geeetttggg ceacaateae aaageeaegt ttacacagea
36061
       gaagtgaaac caacttgcca tcagggagct atttaccatg gtctcctccc acagatactg
36121
       atttattctg tcttctttca cttaaatcta aattcaccag gcacggtggc tcactcctgt
36181
       aatcccagca ctttgggagg ctgaggcagg cagatcactt gaggtcagga gtacaacagc
36241
       agcctggcca acatggtgaa accttgactc tactaaaaat acaaaaaaaa aaaaaaaatc
36301
       agccaggcgt ggtggcagaa ccctgtagtc ccagctactc aggaggctga agcaagagaa
36361
       tcacttgagc ctgggaggtg gaggttgcag tgagccaaga tcgcqccact qcactccaac
36421
       ctggatgatg gagcaagact acatctcgaa aaaaaaaaa atctaaatgg tacatgaaac
36481
       ggggatcttg caccettete tgccatgtte ctacaagtag acagatgtet ttttteettt
36541
       ccaagtgcat cactgcatcc ttccacagca tcttttctct gagggtgaac aatattcaga
36601
       tgactggttc actggagcag acaggaaaaa tgccccaqtt ccaaqacaga caaaqcactg
       gctccccgac acccaactat aagacatgac tgggagagat ggaggatatg agataataaa
36661
36721
       tataaagtta ttcttgaccc aaagtcttaa aattcaccaa aaataacatt tgccaaaaat
36781
       aaaacaacat tggattgttt gagtgtagaa atgagtgata taccgcttta cacctctttc
36841
       tggaacttaa attttaaatc cgtatatttt tatgtcttta tttagttaga gacaaggtct
36901
       tgctctgtca cccagcctgg agtgcagtgg cgtgatcata gctcacagca gcctcgacct
       cccaggetca agecatecte ccaceteage etectgggta getgggacca tggteatget
36961
37021
       ccatcacgcc catctaattt taaattcata tttttaataa acccagaaaa caaaaatttg
37081
       aaagtgctgt ccaggagaga agaaaataaa acccactcca ctttgctgtg tctggcaacc
       caaaccatca catcacatac agggaaaaag ttgtcccttg aaccctcagc ttcagggtgt
37141
37201
       gtgttacctt ttttttttt ttgtgagaca cagtcttgct ctgtcaccca ggctagagtg
37261
       cagtggcgcc gtctcagctc actgcaacct ccgtcttccg ggttcaagag attttcctgc
37321
       ctcagcctcc tgagtagctg ggactacagg ggtgcgtcac catgcctgac ttttttttt
37381
       tttaatttta gtagagacag ggtttcacca tgtttgccag gctggtctcg aactcctgat
37441
       ctcatatgat ccgcccacct tggcctccca aagtgctggg attacaggta tgagctactg
37501
       tgctgggcca agggtgtatg ttacctttaa aggccaactc agtcattacc aagacaaccc
37561
       tcagtactct aggtatgtat ttagtctgaa gaggggattc agaaggtaaa gaggtcagaa
37621
       cagggaaaga attgaagata aatgtttaga ctgtggtctt aaaaactgct ttgaactttt
37681
       ggcaagatga cgtccctcct ccataagaaa accacagaaa caccaggcta aagttcaqaa
37741
       caaagaaagt cagcacaaat gccatcctgg atgctgagtc ttatactgat ctctctaggc
37801
       aaaatcacac cttacgctta cattcatgtc acgtgtgctc agctctccct ctactggcta
37861
       tttcttagct tcaacagtta accacaaatg ctactaaatt acttaattat taaaattaat
37921
       tttgagcatt tttaaagctt cctggggcaa ggcccagtgg ctcacacctg tgatccctgc
37981
       attttgggag gccgagqtqq acaqatcacc tqaaqtcaqq aqcttqaqac caqcctaqcc
38041
       aacatggtga aaccetgtct ctactaaaaa tacaaaatct agceggtcat ggcagtgtgt
       gcctgtagtc ccagctactc aggaggctga ggcaggagaa ttgcttgaac atgggaggca
38101
```

```
38161
       gaggttgcag tgagccaaga tcaggccact gcactccagc ctgggcgaca aagggagact
38221
       ccatctcaaa aaataaaaaa ataaagcttc ctgagttcct ttatttgttt gcttgtttt
38281
       gtttgtttgt tttagacagg gtctcactct gtcacccagg ctgaagtgta gtggcgttat
38341
       cacggctcac tgcaacctca acctcctggg ctcaagtgat cctcccacct cagcctccca
38401
       agcagctggg actacaggca tgtgccacca cacttagctt aaaaaaaacaa aaaacaaaaa
38461
       aagaaaaaca aaaacaaaac aaaactttag tagagatgag gtctccttat gttacccagg
38521
       ctgaactcaa actcctgagc tcaagcgatc ctcccatctt ggcctcccaa agtgttggga
38581
       ttacaggtgt aagccactgg gtccagcctc tgggggttctt tatggtagtc cttggcacct
38641
       gctattggac gcctgaatgc taggcctgtt agatgtttct ccattctctc aggctgaatt
38701
       tccattgagc tcactgaaaa cactgaagca atgagaccgt ccacagagcc tcatcatcac
38761
       ccccaaccac ctatccggtg ctctgccctc cagcctgttg ctagatgaac tatccatgca
38821
       cccattaaag gccaatccct tctctgtgca ccagattcca tccctctct taactgaaga
38881
       accatgtaga gtacttcctc ctcttctcta attcaccaaa ctttcactct ccactggatt
38941
       attcccatct gtgaacagat ttgatgtcat tcattccacc ttaacaaaca ctccctggac
39001
       ctccatttcc ctgccaggta ttagtatatt tctctgcact tctttatgac aaaactccta
39061
       ggctgggcat ggtgtcagca ctttgggagg ctgaggcagg aggatcactt gaacccagga
39121
       gttcaagacc agtctgggca acataaggaa acccctgttt ctacaaaaaa taaaaataaa
39181
       aattagccag gcatggtggt gcatgcctat agtcccagct acttgagggg ctgagatgga
39241
       aggatcactt gagcctggga ggtcgaggct gcagtgagct gtgattgtac cactgcactc
39301
       cagcctgggt gacagagcaa gaccctgtct ccaaaaaaac aaacaaaacc ccacaactcc
39361
       tcaaaagagt tgtctctact tactgtctca aattcctttc ctctcaagct aatataaacc
       tattccagtc aagccttcac ccttcccatc ccattaaagc tgttcttgtc aaagtccaca
39421
39481
       atgatectgg teaattttea acctttatet ttettgagee ateaggagea tttgacetgg
       ttgatcattc cctcctgttt gacaaacctc ctacacttgg ctttcagata accactcccc
39541
39601
       tagttttcat cocatctccc tggaagtgct cctcagtctc cttcactggt tattccctcq
39661
       acagccaccc tgtttcgtag ctttcaattt cgttcacata ccgatggctc tcgactgata
39721
39781
       tccagtgtca acctctttcg tgtcttcctg ttcactagtc atccgaaaat acaagttcaa
       accaatcccc gccagtccct tgaaacacct ctccacctaa ttttctccat ttcatctaat
39841
39901
      gataactaca tttttccagt cccttqqtca aaaaqctttq qtqtcacatt tqatqttqct
39961
       gtctgccttt catattccac atctgatctg tcaaaaagtc ttgttgaaat cttcaaatta
40021
       tattcagaat ctgaacactt ctcaccacct tcactgctga ctaccccgat ttgagtctca
40081
       ataatctctg gcctcattca gtggttccta agttttgctg cacgttggaa taacccagga
40141
       tcttttaaac atgctaatgc ctgactccca ccccttgata ttctgattta ataggtgtgg
40201
       gatgtaatct gggcactggg aatttttcac tgctctccag gtgattccaa ttgcagcaaa
40261
       gtttgggaat cattggcctg gctatggtaa ccgccaccca cctgatctcc ccacttccac
40321
       accaaccccc tcccacagtc tattctcaat gcagcaaata gacatgcttt taaattacag
40381
       atcagatcca ttcaattctc tgctaaaaac accagtggct ccccatctca attagggtaa
40441
       aagccaaagg cttttcaatg gcccacaagg tgttacatga gctgcactgc cccctgtccc
40501
       atgcgccact cctctgacct ctctttcaca ttgcctcacc cactgctccc gtgatgtcag
40561
       cotcotcagt ctccttgaac accccagaca tcctctcacc taggactttt tttcttttt
40621
       gagatggagt ctcgctctgt caccaggcta gagtgcagtg gtgtgagatc taggctcact
       gcaactgcca cctcccaatt ctcctgcctc agcctcccgc gtagctggga gtgcaggcgc
40681
40741
       gtgccaccat gcccagctaa tttttgtatt ttcagtagag acagggtttc accatgttgg
40801
       ccaggatggt cttgatctct tgaccttgtg atctgcctgc ctcagcctcc caaagtgctg
40861
       ggattacagg cgtgagccac tgcgcctgac cttcacctag qacctttqca ctaaccatta
40921
       tcttagccag aaatactctt tcccacatat ctacacatca agtattagct caaatatcac
40981
       attgKcaata aggcctactg taacccctat ttaaaattat acctttaacc acctatctcc
41041
       ctcccctctc tgagataaaa cagggaagag gtagaggatg gtgccattag ataaggaaga
41101
       gcagatctgg agtaataata gagttctgtt tgggacatgt taagtttgag atgcctatta
41161
       gacacccaaa tctaacaaga tatcaaatag gggaaaagtt ggggttggac tggaaacctg
41221
       ggagcaaaca cgtggtgctc tggggatcac cttggagaga caaggctgag tgaccccat
41281
       ggaacactag tattctgagg tgaggcagag acagagttca caaaagaaag agaagagaaa
41341
       ccaagagagt tggagggccc tgtcataaaa gatgttcatg gaagagttga caaaaagagt
41401
       caaactctgt aaaatacttg aagagattta ttctgagcca tgattgacca actgaggcaa
       gacaggcaag ctccaaaatt ggggctttgc ctgggagggt tcttggcttt gcccaggaaa
41461
41521
       caattcaagg gtgagctgat ggtgttaaat agcaacttgc attgaagcag cagtgcacag
41581
       ctgcagcaga gggactgctc cttgccgagc agggctactc acaggcagtg cccagaagag
41641
       cagctcagag gcagttctgc agtcatattt atacccactt ttaactgtat tcaaattaag
41701
       gggcaattta cgcagaaatg tcaagaatga ggatggtaac ttccaggtca tcaggtcatt
41761
       gccatggaaa ggggagggta atgttcaggt gttgccacgg caatagtaaa ctgacatggc
41821
       atactggtgg gcatcttatg gaaagttgct tccacccttg ccctgtttca gctagtcctc
41881
       aacttgatcc agtgtccaaa ctctgcctcc agaacagagt cccacttcct acctcacatg
41941
       gtctgtgaca gagccccagg ggatcctgag aacatgtgtc caaggtggtc aggttacagc
```

```
42001
       ttgattttat acattttagg gagttataag acattactac atgtaagatg tatattggtt
42061
       tggtccagca tggaggaaaa gttaaatatt aaatctgaat tcaattgaac ctggacacaa
42121
       acaataqtca ccaaqtcctq qaacaaqttt tqtqaqtccc ttqaqqcttt catccaqcqc
42181
       tqtttcaqaq aaatctctat ttcaatctat tcctatacat taqttattqa aaaacaataq
42241
       acaatagcaa aaacaagttg acctttttgt gttccttgag cctggttgtg aagggccctt
42301
       gtqactqqgc ctcatgccaa acaacttgtt acaaaaagaq ctaqqqtccc aqqcccaqcc
42361
       gaagetteag gagaeetate eteatetgtg caaggaggag tggeeaacte tggageecag
42421
       gctgttgctt cctggtctgg tggtgaatcc tccatagtct ggtgagtgta gtgcccaact
42481
      ctggagccca ggatgttgct tcccggtctg gtggtgaatc ctccatagtc tggtgagtgt
42541
       agtgtccaag tctggaaccc aggctgttgc ttcttggtct tgtgataaat cctccatagt
42601
       42661
       cccttctacc cttcccattg caatttgctt attatatctg cattgccatt tacatgggat
42721
       aaaggtcgtt tacccttaaa ggtattgtgt atgtgtcttt tcttctcccc tcacgcatat
42781
       cccacagaga acaaccagaa aggtgggaca actcaaagca ttgatgtggg gtcagggggc
42841
       aacactttca ggtcacaggc agattcagtt ttctctgact ggcaattggt tgaaagagtt
42901
       attatctata gacctgaaat gaacagaaag gaatgtctgg gttaagacac agagttgtgg
42961
       agactaaggt tttatcatgc agaggaagcc tccaggtagc aggcttcaga gagaatagat
43021
       tgtaaatgtt tcctttttt tttttttt tttgagccgg agtctcactg tgtcgcccag
43081
       gctggagtgc agtggtgcaa tctcggctca ctgcaagctc tgcctcccgg gttcacgcca
43141
      ttctcctgcc tcagcctccc aagtagctgg gactacaggg gcccaccacc acqcccqqct
43201
       aattttttgt atttttagtg gagacggggt ttcatcatgt tagccaggat ggtcttgatc
43261
       tcctgacctt gtgatccgcc cacctcggcc tcccaaagtg ctgggattac aggcatgagc
43321
       caccgcgccc ggccgtaaat gtttcttatc agactttaag agtcggttct gtgctctatc
43381
       agccttaagg tctctgtgtt gatgttaaca ctggttagca gctcctgaat tctaaaaagg
43441
       aggagggaat aaggaggcat gtccaacccc acttcccatc atggcctgag ctagtttttc
43501
       agtttaactt tggaatgccc tgggctgaga attattttcg gtttacagag gagaacttat
43561
       gttcattggt ataggatgac aatgaggtca gacaaatacc actgaacttg gcaggctggg
43621
       aagttacaaa gcttagcaag gccagtttca gtgtcatagt ggggtcaaag cctcgttgtt
43681
       gcctcaattc tagtagggta catattcctg tctttattaa tgggagaggt tcttaatctc
43741
      cageceatgg acaaaggaga teatagatgg gtttcaggaa aacateecaa gteetgeete
43801
       caaattttgc aaaattttgt gcctgtgtat ttttctggag aacgtaaacc aaacagtgtc
43861
       tgagacaggt ctcagtctgg aggtttattc tgccaaggtt gaggacacac ccaggaaaaa
43921
       gagacataag ttatcatgga atctgtggcc tgtggttttt ccaaagaggg ttttgaggac
43981
       ttcaatattt aaagggaaag agcagacaga aggggaaaga ggaacaacta tgcattcatt
44041
      tcacactcag taaatctgcc ttttacagaa gacaaagtaa acatagagga aggagtcaaa
44101
      tatgcatttt tettggggtg gaetgaaggg tgatttetag tettgteett gteecetace
44161
       tactgtaaat ttgcatggtc agggtggaat tcaacagaag tgttgtaagg taaagactct
44221
       gccactcaca aggaatttcc ctgtgagcaa ctcctctgqq aqqccaccta qqqaqatatq
44281
       tgggcttctg tctttgcagc tgtttaggaa cagaaggaag gcagtttttg cgtgactcag
       ttcacaagct taacttttg ttgttgttgt tgttgttgag acagggtctc gctctgtcgt
44341
44401
       ctaggctgga caacagagaa tgatctccac tcactgcaac ctccacttcc gggttcaaga
44461
       gattctcctg ccttagcctc ccaagtagct gggattacag gcgtgcacca ccacgcctgg
44521
       ctaatttttg tatttttagt agagacaggg tttcaccatg ttgaccaggg tggtcttgaa
44581
       tgccagacct cagatgatct gctggccttg gcctcctgag atgggcatag tgctagtatt
44641
       acatgtgtga gccactgcgc ccggccctaa gcttaacttt tttctttggc agagtttagg
44701
       qtcccqaqat qttattttcc ttccacaaqa qacatccaca qctttcacqa tqqttaccqa
44761
       tcatatgtgc cattcatcta agaccaaggt gaccacctgg tcccaaagcc tgcacctcgg
44821
       attettacte gattecegee tggtetette caggecetea gttagtttee acaacatggg
44881
       agggtteete eteegtggte tegeceatte gegtteeeae eeaceeteee eggatgtgae
44941
       gaccetggge teccaetece ecceatgaga gaccatecae ttecaecett teaettagge
45001
       ttcctggcgc agcctctatc caggaactct gtcccatagc tgtactgccc aggtcgagct
4.50.61
       ttctaacccc aagatgccac tccgttcaga cgttcccatc ctccatccct gagacccggg
45121
       gcaggatege agectagggg ceteacRgge egectgetae eetgttagtt geaacaeggg
45181
       gcggggcgtg gctttgtgca cgtcggcttc cgggaagagc tttacqatac attgaccgac
45241
       attttacgac aggcgggatt gttttgtggc tgtcagcttt cYccgtggtc tgagtttgtg
45301
       gctgcatttt tatctctggt ggctctgcta cggcggcgca gaaatgaggc agaagcggaa
45361
       aggtgcgaaa ggggaaggag atgggggaaa ggggtggtcc gaaaggggcg aacgcccagg
45421
       caatcaaatg ctgaaccgaa cttttaccgc gagaatccgc tacccagtcc agtcgccccg
45481
       ccacctaggg tcagtgtgtc cattctggtc cccgagcctt ctcgttttc ctgttttgct
45541
       ttttgaagca ccctaccctt cctctctcc tctttggcag tcacgtggtg tcttgtttga
45601
       atggcaggga aaccattatt ccaatatatg ccctccgagg agttaacgtc gatttaacgg
45661
       gttgtaggac ttttcatttg ttaagatttg tttcacqaca catttgacgt gttagagagt
45721
       ttcttttaaa gccttatttt aagatattaa aaaaacctta attatccttg gattcagtgt
45781
       aagagttgtg catgcaatta ttcccatttt tattacatca tgagttagca atgaacaatt
```

```
45841
       ccacctttgg tttttcaaca ggacggattc aaatttgaaa tattctctca caggttctgt
45901
       toctattict gtatctcaca ggttctgttc ctatttcatt tgaccagctg gtctaatcat
45961
       qqtaattqtt qtcaqaataa taqctaccat ttattqaqct tqtattttqa aqtcqqtatc
46021
       atttccattt tacagatgaa gaagctgaga ttcaaagagt taagtaactt tcccagacca
46081
       aaattatact tagatatgga gctggctggt caggctgtat ctgtgacctc aaaaaacata
46141
       aaatgaaaaa taaatacatc gttaatcMct atgcttcttg acattaactg ttattttct
46201
       ttcttccaag caacaattct aagtgtccaa gttaccttag attaagtctt qtcatatttq
46261
       catgocctaa attaatttgt tatotcacto taacttgoto ottotcaato taccaggatt
46321
       cttttagYtt cttctgtcac caagtcatgt tgattcttac ttagaaatta cttcttgata
46381
       tagtttattc ctcttcattc tggccgccaa cctcctaacc caccttcatc actaactaat
46441
       atttgaatgg tatttcagct ttcatataca ttatttattt gagtcttaga atggttttgt
46501
       gaaatttgga tgtattaccc caattttaca gacaaggaaa tgggcactca aaaqttqttq
46561
       atcttggcca ggcgcggtgg ctcatgccgg taatcccagc actttgggag gccaaggcgg
46621
       gtggatcact tgaggtcagg aattggagac caqcctgacc aacgtggtga aaccctgtct
46681
       ctactaaaaa cacaaaaatt agccgggcgt ggtggcaggt gcctgtaatc taatcccagc
46741
       tacttgggag gctgaggctg aggctgaggc agaggcggga gaatcacttg aacctgggag
46801
       gtggaggttg cagtgagccg agatcgcacc actgcactcc agcctqgqtg accgaqcaag
46861
       actctgtctc aaaaagaaaa agaaaaagaa aaaaaattgt cgatcttttc cgttaccaca
46921
       cagccagtag gcattgggac tggatcctgt cttagatttt gtgggttttt taaaacaatg
46981
       ttgcctttca agagccattt gagtagtatc catattatat qtattcttt tcactttctq
47041
       aatcattctt tgtaccgata atattcttac cttccttaaa cgttactttc aactttttat
47101
       ttccaaagtt gagaatatgc aattcttcac tgtctgttgc attccatttc aatgcctttg
47161
       cctagtggcc agggtcccct gtaatctgtt ctttattaca ccctgttaga aagctggatt
       ttagttaggc tgtgctgttt cacacaaaga taggtaattc ctatgcctga cattattct
47221
47281
       totggattgc cttctgtttt gcatgtccaa atcttgccct atctttaaag atccctgtgc
47341
       catttccttc atgaagtctt ttcctactca tttactcttc cagttcttga tacactcaag
       agctatacaa gtggtttcca aatcttatct gttcttatca gccgatcccc ttttaccctc
47401
47461
       caaataaatt cttacacaga acctcaatat ataaacagct gaaagcagag ctgctgtggt
47521
       ggaaataaag agacctcctc cttttttcc tccatgcctt attttcctct tcccttctcc
47581
       cttcctctgc catgaccacc accagtccta cctctqttgc atgqcccctq aggcaccttt
47641
       gtagaactct ggaagtgctg agttacatgg tttggaaagc atttagcctt tgagtataga
47701
       tggactttat ttctctcaaa aattgttgtg tatatgttag ccttgcctca ttaaattaga
47761
       tgcagtgtgt tacagtgaaa aaagcatgga agttgtggtg aaaagagctg gatttgagtc
47821
       ttggctctgc tgtttacgat agcttgttaa cttgccttag cctcattttt cacatctata
47881
       aaatqqqata acagtaccta ccctccgtgt tactgtaagg gttcaaatga gataaagtaa
47941
       atgtgtgggc tccataattg ccagggcctt ccatccacgc tttcattatg ttttagcttt
48001
       ctctgcagtg tgagtcctca gccccctggg ccacggacca gtaccggttc atggcctgtt
48061
       aggagctgag Ccagacagaa gaaqqtqaqc aqcaqqcqaq caaqtqaaqc ttcatcaqta
48121
       tttgcagcca cttcccatca ctcatgttac tgcctaagct ctgcctcctg tcacatcagc
48181
       agtggcatta gattctcaaa ggagtctgaa ccctgttgtg aaccgtgcat gtggtgggtc
48241
       taggttgtgt gctccttatg agaatctaat gcctgatgat ctgtcactgt ctcccatcac
48301
       ccccagatgg gagtgtctag ttgcaggaaa acaagctcag ggttcccact gattctatgg
48361
       gaacagaatt cgttatggtg aattgtataa ttatttcatt acatataaca atgcagtaat
48421
       aaaaataaag tgcacaataa atgtaatgca cttgaatcat cctaaaacca ccctgctccc
       ctggtctgtg gaaaaatcat cttccataaa accagttcct tttatcaaaa aggttgggaa
48481
48541
       ccactgctct acaggtgaga agcttgcttg ctgacagctt ccaagctgat atcccacagc
48601
       ttttgtccct ggaaaaagac tggcattttt taccttgaag aaaagagctc agattggcct
48661
       ggcttagaga tatgcccatc cttgaaccaa tccttgaact gtgcttgagt ggatggcgtc
48721
       atacaagaac ctgtcagctt ctgctgttgc ctttggatga gaccgagagc cccagttqcc
48781
       agaagttcat gatggtggac agacaatatt ttagaaatgc attaagattc ttaggcagat
48841
       acctqqqttt gagtttcaac tttactcctt gatagcatct tcatgtaaca ggcacatatt
48901
       cttgttctgt ctacctctgt tctgagaatt acctgaattc atgcatctaa atgttcttta
48961
       tgaactctaa agtattatgc acatattagt aattacacct ctggagataa agggaagaga
49021
       attactttgg tcctttcctg tgtgattaag ttctttctcc tcacattgtt tctactYctg
49081
       tatcctttcc tgtatttatt tttaataatc tcatagagta tgtgcttcta aagggagctt
       ttcccatata tatgtaaagc cacgtttgtt ttaaagatac aaaagatatg atcaaattgt
49141
49201
       aaacagtaga gatttagcat cttctgaact tgagctattc atttgqcata tttgtatqqt
49261
       ttcggatgga aaactgctac taaatcagat tttaaaatct tgattqaatg atacgatttt
49321
       tgacattgtt gaatattaac tttccaggag atctcagccc tgctgagctg atgatgctga
49381
       ctataggaga tgttattaaa caactgattg aagcccacga gcaggggaaa gacatcgatc
49441
       taaataagta agtggatata aagagagagc aagcttgttc ttaggtagca gatctctttt
49501
       atgaaattat ctagtactac ttgttttcca qctcaaqttt tattttagtt gagaatttta
49561
       gctttctgcc ttgccttgtc attcatttct ttttttttt ttgcaagttc cgcctctggg
49621
       gttaacgcca ttctcctgcc tcagcctcct gagtagctgg gactacaggc gcccgccacc
```

```
49681
       acgcctggct aattttttgt atttttagta gagacggggt ttcaccgtgt tagccaggac
49741
       ggtctcgatc tcctgacctc gtgatctgcc cacctcggcc tcccaaagtg ctgggattac
49801
       aggcgtgagt caccgcaccc ggccgtcatt catttcttga tggcaaaatt gtctcagctt
49861
       aagaatacta atagcttcta acatttattg ggcacttact gtattccaga cactgttgct
49921
       aatgcattgt atgtattagc tcagttaatc ccctcaaaat tctqtqaqat aggtactqat
49981
       accagccaca cttgacaggt gggtaatctg agtcagagag cagttaaata atttgtccag
50041
       gggtaagtaa ctagtaattg gcagagctgg gatttggaat taggtcagcc gtctccagag
50101
       cccatgttct tctgtgctgc atcgctgcac atcctacttt ccttccctac tgtctcagct
       gaagcagcag ctttctgtca ggaaaaccct ccctttgggg cccctgatct aatccaaccc
50161
50221
       toccctgctg tagaacctct ttgacacatt catccacttc ctctccataa tcattttcaq
50281
       cttggacttt cctacagtct caaataagag ttgtctttca tctctgcatc tattttttt
       ttcaaactat aatatatt cactctatgt agatcttccc taatgaaagg gttctctccc
50341
50401
       50461
       gatacttgag atgctgcaat attttacccc ttccttgaat cctcatgctt agtaaatatt
       tgctacagga ataagtaaat atcctctttt gactataaag ttattgtatt ttactgattt
50521
50581
       ttctaccgtg tctttagaag tttttctttc tttttttgtt ggttataccc ctgattatac
50641
       aaatctttaa tttctagtga acatttctac atcttatata tatttgttgt tctctttaat
50701
       ttagcacatc taaagctaaa gctgccatcg tccttaaaac tcgcccctcc tcagatgtca
50761
       ccagcctatt actggaaggt ctctcagtct ggcttcaacc tgcttttcca agtttttaaa
       cctctgtacc tttacattga aaatcttctg ctttctgtca agttggtctg cttgtatttc
50821
50881
       ttaaaatata tgcattcctg tttttgcatc tgcacataaa tcagcctgtc tgccctccat
50941
       gtcatctttg tgtctttagt gactgagacc tactctttct tctgtgctca tttccatgaa
       tatetececa geacacatea gatteeteee tgaactetgg aageatteat tgttggtatg
51001
51061
       tgtgtgtgtt ttatgacata tgttttaatc atttatacat taattttctt ggtacgcctg
51121
       tctgcaaaca tgtaaacata gaacatgaaa ggactgtgcc ttgcacattt gaacatagca
51181
       ggtattcagg cagcctcttg tacgtgttag gtcctcagtt aatatttgtt gacaaatatg
51241
       tgagcacttc acagatattt ctagatggat taaagttaga agacagggtg actgttaaga
       gtttggctag gaggcacaaa gaaaagctgg taaaagtttt ttttaaactt tcaaaaatat
51301
51361
       gtactttatt tcctatttgg ttctgcatag ccatccttga ttttttttt aattgttgtt
51421
       gttgttttgt ctaagacagt agttgtcaac caggggtgat ttcctcctca ggacatttgg
51481
       caatgtctag ggacattttt gagtgttaca acaggaagac aagaagaagg ctggtagtac
51541
       atagagacca aggatgctgc taaacatccc tcaattcgct ggccacctgc cacagcaaag
51601
       aactgtgtgg tcccaaacat cagtagtgct gaggttgaga aaggtggagt cagaatagtc
51661
       ctttgaagct gcagcactat tctgaactag atctatattg tgtcatcgtc cagggaccct
51721
       teteceteca tagteetetg gttttette tggtacteaa gggtgggaag tagteattea
51781
       ctcgtqaatt ttattcttct atttccctga tagtcacaga tcttaaaact atccttgtca
51841
       cgtggtgaag ggattggaga gtgacagttg ttaatgatgt tgtttataga tcatcctctt
51901
       ggtagcttgt ccttaaataa ccgtRatctt gataatgtga gatgctttac tttcagggtg
51961
       aaaaccaaga cagctgccaa atatggcctt tctgcccagc cccgcctggt ggatatcatt
52021
       gctgccgtcc ctcctcagta tcgcaaggtc ttgatgccca agttaaaggc gaaacccatc
       agaactgcta gtggggtgag tgattcgact catgaggtat cgacacactg ggtatctgtt
52081
52141
       Ytggcagaag tccctgctcc atgtgacRcc cgtgtagtga ggtagaggtt ggggattctg
52201
       aactaatgaa gtccctgtat taggatatgt gctggagtgg agacctgtgc tgaatgcaag
52261
       gagagcagag agagaaaaaa atataattgt gattaaagga gtagatgatg ttttgacctc
52321
       tttaaaaaata tagatttagg cttggtgaca atcataacag gataaatgtt ggccatctta
52381
       agctqgtagc tttcaatata attgatgctt atgaaaggta cttttgaaag gtagttaatg
52441
       gtgcaaagta gttctgtata tggtgattat gagcactgtg gaagtccaga caacagcgat
52501
       gtccctgcag caaaaggggc tggggaaggc ccagtagaaa gcacacagct tgcttgaccc
       ataagccaag aagagcaggc tctaagtgtc atgggagcaa ggacacaggg gctaaggcac
52561
52621
       agaggtagaa atgacaggaa gggcgtggtg cacgcaggaa atagcgagta cqccagactg
52681
       aagggtgtta acagttcagg agagtaggac tgtgcgttga acaggtagtt tgggatcagc
52741
       ttgtaaaaat cttaagtgtc tggcaaagca gctagataat aggaaacaaa agttttgaaa
52801
       aaggtagtaa tatgaacaaa gtagattttc agaaaattaa tttggataca acatgcaggg
52861
       tagtttggag acaaaaagac tagcttagat gctcttggta tgatgtcagt atgcagtgtt
52921
       aaggacttga gttaggatgg agactctagg atgaaaaaag atgagtgtga gatacatgca
52981
       cagaaattga tagaattaag accetectae catatggtee ecageaceaa attetgttee
       53041
53101
       tgtgttgact tggtgaccat atctcctgga tcaccttacg tttgtggcta attaaaccct
53161
       aaaattttta catacaatgt accaccaaac ctcatatcct cttctttgta cttaagtgtt
       tttgttttgt tttgtttgtt tgtatctagt gtaaaaagct tgttagccag gcacggtggc
53221
53281
       53341
       agaccatcct ggctaacacg acgaaagccc atctctacta aaaatacaaa aaaaaaaaat
53401
       tagccgggcg ttgtggcggg ggcctgtagt cccaqctact ccaqaggctq aggcaggaqa
53461
       atggtgtgaa cccgggaggt ggagcttgca gtgagctgag atcatgccac tgcactccag
```

```
53521
          cctgggcgaa aaagcgagac tccatctcaa aacaaaaaac aaaaaaactt gttaagaaaa
53581
          actaatagtc catgcccctc acctcccttt ttctacccta gggcaaccat ttttaactct
53641
          tagccaattt ctttagcatt aacttccata tccataaata aaataacatt ctttacataa
53701
          tagataagtc ttgactttct ttttttttt ttttacctga gacagtcttg ttctgttgcc
53761
          caggcaggag tacagtggta cgatcttggc tcactgcaac ttctgcctcc caggttcaag
53821
          cgattcttgt gcctcagcct cccaaggagc tgggattaca ggcatgtgcc acaatgccca
53881
          gctaattttt gtattttcag tagagacagg gtttcactat gttggccagg ctggtctcga
53941
          actettgace tgaggtgate tgecegeete ageeteecaa agtgetggga ttacagaegt
54001
          gagccactgt gcctggccga ctttttagag ttaagcatta tgtgtgggct tgccattaaa
54061
          gaagacagaa acttagcaac ctttcagcct gactggcaaa ccgaggcttc tgtgatacca
54121
          contesting that the transfer of the contesting the contesting that the contesting the contesting
54181
          gcttacctct aaaagttgat gttttctgtt gtcctgggct cattgtgttt ggtattttac
54241
          atgctttctt tggtaacctc atccatttga tgattttagt attgatgtat gctgactccc
54301
          agcatgaacc attocctgag cttcagactc ctgtcagatt gtcagttagg catctgtcct
54361
          ttgactgcct gagaacctcc tgaagtatag cataaccaaa actaatacca gacttgctta
54421
          ttcacctttc ctgtccatgt tagttcatgg taccaccgtg cactcagttt ccaaaaaatg
54481
          tgaaatgcat tttccgttcc tactgccact ggtaagaatg ctttggcctt tattatttct
54541
          tgtttagatt atttcagtca tttccttacg catctatttt gtcctaccta catgaaatgc
54601
          atctttaaca gtgtcacaag agtgatctat tgaaagtatc agaaacacac agctggtggc
54661
          cattecetat ctactgeeat teteacetee atgettttat tettgetgtt tttetgatgg
54721
          tgctttgttt attttataca gtagttttag gtttatagag aaaaaaatt tatacacttc
54781
          ctctagcacc ttcaccccta ccccagtttc cctattatta atatcttgca ttgtttggta
54841
          Catttgttag aattgatgaa ccaatattgt tgcattatta ttaaccaaag cctgtacata
          cattagaata cactctgtgt tctacattct gtaggttttg ccaatgcata atgtcatgta
54901
54961
          tccactatta ctgtgtcata tgaaatagtt tcactaccct aaaatctcct atttgtgqcc
55021
          gggcgcagtg gcttatgcct gtaatcctag cactttggga ggctgaggca ggcagatcag
          ctgaagccag gagtttgaga ccagcctggc caacatggtg aaaccctgtc tctactaaaa
55081
55141
          atacaaaaat tagccgggca tggtggcggg cgcctgtaat cccagctact tgggaggctg
55201
          aggcaggaga atagtttgaa cccaggaggc agaggttgcg ttgagccgag ataatgccat
55261
          tgcactccag cctgggtgac agagcgagat tctgtctcaa aaaaacaaac aaacaaacaa
55321
          acaaacaaaa acageteeta tttgteeett teeetetgea tgttetagae gtaacetgae
55381
          ttccactgat tgttttattg tctttaataa agtttgcttt ttccagagtg tcatgtacag
55441
          taattggaat catacagcct ttccacttag caatatgcat tgaagtctgc catgtctttt
55501
          tgtgacttgg tagctcattc ttttttttta attactgaat gataatccat tgtacggatg
55561
          taccactatt tgcttattca ttcacctatt gaaggacatc ttggttgctt ccaatttttg
55621
          gCagttttaa acaaagctct gtgaaggtta ttgtgtccac ctacattttc agcttacttg
55681
          agtaactgtc aacaagtgca actggtagat catatagtaa gactatgttt cactttgtaa
55741
          aaaactgcaa actcttccag catggctgca ccattttgca ttcccaccag cagtgagtga
55801
          gcactctgat gttccacatc cttgctaaca cttggagatg tcggtgtttt ggattttatt
55861
          taattaattt atttattta agacagggtt ttgtcctgtc actgaggcta gagtgtggtg
55921
          gcatgatcac agctcactgc agcaacctcc caggttcaag ctatcctccc acctcagcct
55981
          cccaagtaac tgggacaaca ggcatgcacc accacaccag ctaatttttg tgttttttgt
56041
          agagacaggg tttcaccatg ttacctagga tggtcttgag ctcctaggct caagggatcc
56101
          tcccagcttg gtctcccaaa gtgctgtgat tataggcgtg agctatggtg cccagccagt
          qttttqqatt ttaqccattc tcatagttga acagtggtat ctccttgttg tttagtttgt
56161
56221
          aattooctaa tgacatgatg ttgagcatot ttoogtatac ttatttgcca ctgtatatot
56281
          tetttattga gatatetagt cacatetttt geeetgttet taattgggtg ttttettaet
56341
          aggttttaag agttctttgt atatcttagc tggaagtggt ttatcaggta ccaattatgc
56401
          agatattttc tcctagtctg tggcttgtct tttcattgtc tttctcagag cacaactttt
56461
          aaatatagac aattaggtcc ataacccatt ctgagtttgt atttgagttc gtgtttgtgt
56521
          tcttgaaaca ccatggttgt taacttggat acattactgt catctaagcc tcagacctca
56581
          cttaagtttc accagccgtt tcaataacat cccacagaac ctagttcaga atcacctgtt
56641
          gcatttaatt gtcatatatc tttagtctgg acatttcctt tgtctttttt ggactccgtt
56701
          atcttaacgc ttttgaagat ttctggcaag ttattttgta gcacgtccct cagtgtgggt
56761
          tcatcagctg ttttctcatc atgagattca ggttacgcgt ctttggcccg tgcctcatag
56821
          aagcagcact acgttcttct cgtcatctcc catccagtgg tgcgcaggtt tggttttcct
56881
          atcactgatg ttcctcattt tgatcaaggt gctgtccacc agacttaccc tctgtcaagt
56941
          tattttttc cactttgtat taagaagtgt tgtatggaga aatactgaga aactaggtgg
57001
          atatectgtt teteateacg tacceagtte acteetttat ttgtgtgaag gaattaatgg
57061
          tttcctattt ggtgggttat catctgttac tatttatttt gatgcacaaa ttattgtgga
57121
          cttgaccagt gggagccttt tcaagctgat ttctatgtct ttttaaaatg tcctcatcat
57181
          tctttgagca gtttctagct ttctagcaca ataaaatgtt ccaggcttgg ccagacatgg
57241
          tggctcacgc ctgtaatccc agcactttgg aaggacgagg tgggtggatc acctgaggtc
57301
          aggagtttga gatcagcctg gccaacatgg caaaaccctg tctctactaa aaaaaaaaa
```

```
57361
          tacaaaaaat tagccaggca tggtggcaca tgcctgtaat cccagctact tgqgaqgctq
57421
          aggcaggaga attgcttgaa cccaggaggt ggaggttgca gtgagccaag atcacgccat
57481
          tgcactccag cctgggcaac acagtgagac tccgtctcaa aaaggaaaaa aaaggaaaat
57541
          gttccaggct tatcttagac tttctttgct ccagccctgg aatcagccat ttccccaagg
57601
          agccctggtt tcttttagtt ggagaaggat atttagatac taagacctgg gtcctaggtg
57661
          tgcttactgc tgttagggtg ttgctgctgc cagactctct cagtggacca agcgaggaca
57721
          tatatatgta tagctgcata cataacatgc acacatacat gtaacacatt tccatttgta
57781
          tttatttatc agtctaccat atgttgaaca ctctgattgg ccacaatacc tttaattcca
57841
          cccagcccac agagttcatt ctgcttctct ctctttccat gtttatagct acttctctqa
57901
          tagtaagaag cctggcttgc tttcactttt gtaaatggcc agatttgacc aagtgccctg
          gatgtaacca atcttgcgtc tctgccactg cctcctgtcg tcacctcact gaggctctgt
57961
58021
          cagacccctc tgaggttatt tacacccaga ccctgaaaca tgaagctgct agtttaatag
58081
          tacctgctgc aaatattgag atccagtgtg ttcatgaggc gtttgagtca caaaggttag
          gtttatatat aatttcatag aattgcttaa agaaattttt ttcttacagg ctgtttacta
58141
58201
          agacaatcag agagagaaag actaagaatc actttqqctt taacagttaa tttqttattt
58261
          tgtacttaat ttattgtaaa atggaatata acttcacata tatattacat acggacaatt
58321
          taaagatgat taatattgaa cagagatcac tottgtaccc attgcccago ttaagaaata
58381
          cagcctcggc cgggcgcggt ggctcacgcc tgtaatccca gcactttggg aggccgaggc
58441
          gggcggatca cgaggtcagg agatcgagac catcccggct aaaacggtga aaccccgtct
          ctactaaaaa tacaaaaaat tagccgggcg tagtggcggg cgcctgtagt cccagctacc
58501
58561
          tgggaggctg aggcaggaga atggcgtgaa cccgggaggc ggagcttgca gtgagccgag
          atcccgccac tgcactccag cctgggcgac agagcgagac tccgtctcaa aaaaaaaaa
58621
58681
          aaaaaaaaa aaaaaagaaa tacagcctcg tcaatacctt tgaaqcccct ttttgccact
58741
          ctctggttgc attcctccc ttccttccga gggataagca ctctgtggag ttttatatta
58801
          attatcctat aatagctttt ttattcatct ttcttttata gattgctgtc gtggctgtga
58861
          tgtgcaaacc ccacagatgt ccacacatca gttttacagg aaatatatgt gtgtaagtat
          ggtgatttta ttaaattgta tgtatgtttt aattaagcta aatatgcccc ctctagccct
58921
58981
          tagtcagtac atcctggtaa tgtttaaaac ttcagcttaa tagatttata gattactcct
59041
          ttcaaacaag caaccattgg tagatatttt agtgctttaa aattggaata tataaggccg
          ggcaaagtgg cttacgccta taatcccagc attttgggag gctgaggcag gtggatcacc
59101
59161
          tgaggtcagg agttaagacg agcctggcca gcactgtgag actccgtctc tactaaaaat
59221
          acaaaaatta gccgagcgtg gtggcatgcg cttctagtcc cagctactta ggaggctgag
59281
          gcaggagaat cgtttaaacc tgggaggtgg aggttgcagt gagccgagat cacgccactg
59341
          cactccagcc tgggcaacag agtgagactc catatcaaaa taaataaata aaattagaac
59401
          atatgaatat tttaatttat tgcaatatac aattctaaaa atgtaggtta tggaactcac
59461
          aacagtagac attgggatat gcaactcaaa acagcacatt ctgttaaact cataaatgaa
59521
          acatgggaat atgagctgcc taaattccac gtcagaaatt taaaatgaat ttggatcaga
59581
          aacatatcaa aataaaaaat tatccttata cgtaaccttt agatttctca aactcaccta
59641
          tttgaaagaa ttagcggaag agtttgcatg attctgggta ggaagataaa aggggggaaa
59701
          gattttcttg agtgtggttc ccaagagaac actgagtatt gattcaaact taggaaaact
59761
          tcatttctgt tatttgcccc taaaagctta aacctctgaa ataaacacaa ctgcaqttat
59821
          tttgaaaatg ggtgtaataa tgtcccttta catatttatc ttatttactt cttggtagaa
59881
          \verb|aatacattat| \verb|ttacagatac| | tgcaaaggta| | gattcttctg| | ttaggatttg| | aaaaggaagc| | ttaggatttg| | ttaggattg| | ttaggattg
59941
          tcatttgtta tcaggattct ttggagatgg tagatgcttg gaactagctg attgaactca
60001
          gttttgcatc tgacattctt gttcttttgt tgtactggca gatactgccc tggtggacct
60061
          gattctgatt ttgagtattc cacccagtct tacactggct atgaggtaca gtaactttga
60121
          ggctgtcctg atgaaatgtt gcatcatgct ttacctgtag tatggtttta ccagtactgg
          ctttctgaca attttttgtt tttgtttttg ttttttctg attttaaaag ctgttcattc
60181
60241
          accaaatatt tgccagtgtc tactagtgcc ctatattatt ctagccacta gagaaatact
60301
          tacataagca taaataatac ttacttctta tcccaaatgc tgttctaagt gctttacaac
60361
          tgtaaacctt attgcagtgt tttgaagata gacactatca tgatcccagt ttgccaatca
60421
          ggaaactagg gcatagcagg cttaaacagc tggcccaaag acacactatt agtaagtgac
60481
          aaccaggttt cgaagtctgt gctgcttacc actacattgt actgtcactt tagcagtgga
60541
          aaatggacag ggtcccattg tcttctggaa tttacatttt tttttctttt ttttttttt
60601
          ttttgagatg gagtctcact ctgttaccca ggctagagtg cagtggcacg atctccttca
60661
          ctgcaacctc cacctcctgg gttcaagtga ttctcctgcc tcagcctccc gagtagctgg
60721
          gactacaggc aagcaccacc acgcccagct aatttttqta tttttagtag agacaaggtt
60781
          tcatcatgtt ggccagcctg gtctcgaact gctgacctta agtgatccgc ctgccttggc
60841
          ttcccaaaat gYtgggatta caggcgttag ccactgtacc cagcctggaa tttatatttt
60901
          aataatggaa ggtagacagt aaagaaacaa gaaaaagtat caggcactca aaaaatgcta
60961
          agcagagatg taaaatcaag taaggtgatg gcagctgaga tggtttagct gtggtcgtta
61021
          ggaagggatt ctgtgaagtg agattgaagt tgagtctgaa tgacaagaag gacctagtcc
61081
          taagaatatg tgaaaggggc attcctagca gagaagtcac tagaatgagg cccaaggaag
61141
          gaaagacatg ggggtgttgt gcagtgcagg gggtgaggga agcatgaggc tgggagtgca
```

```
61201
       aatgagctgg ggtttgtaag caaaggtaag gagtttccat tttagcgtag qaqtcatqaq
61261
       aagctattag gatttaaggc aggggaatga tacaatccaa tttaggtttt ttgaaagatc
61321
       attttgatgg ccatgtagag aaagggttag agtggagacc agaaagaaqq caqaagqcca
61381
       gtgaggtgct tttgaaggag tcaccctcct cagaacacct cagaaqccag gaaaqcttgt
61441
       gacttttttc tcatatctgt tttcattttt tttcttgttt tctagggttc aaatttttta
       aaatacaaga ggaatgattt cgtgaaaagg cttcctctca ttcctatccc ctagccactc
61501
61561
       tttttcactc ttccccctac cagttagtgt tgtttgttat ttcctcccca tccttcaggg
61621
       atattttagg gaacacagca tacacaggtt gcctatccct tatgtgaaat gcctgggacc
61681
       agaagtgttt cggattttgg atttttctgg atttttggaat atttgcatat acatagtgag
61741
       aaatcttgag agtggaaccc gaatctgaac atgagattca ttttgggttt atgtacacct
61801
       gatacaccta ggctgaatta attttataca atattttaa taattttgtg cgtgaaacaa
       agtttgtgtt aagtactatg tgtggaattt tccagttatg gcatcatgtt ggcactcaaa
61861
61921
       aaattatgag gtttggagca tttttgattt ttggattagg gatgctcaac ctggacgtat
61981
       tetttatttg actgatteca tataaggtag catateagag teetetttea etttgeettt
62041
       tattttacaa tatcttagtg aacattttat gtcagtacat tgtttcqtqq ctgtagagta
62101
       ttccactgta tggtggtagc cattacaaac tgtgtggtat tttagaagct tacttaaaag
62161
       ttactttatt atatgattct ggtatatgta tgcacatcta tgtctgtgag cagaacactt
62221
       tggtgaccct gggattccag aagtgtttat acaaaagaca gatgtgatcc aaggagacac
62281
       cotgotgttg aggtgtttat gacagogtga gtggacacot gccagatgcg attcaggaca
62341
       ttattttgaa ccctgacaag actgagaaaa attaatgcgg gtacaagcca cgttttcagt
62401
       gttcggaacc atggagagtt ttttttaaaa tacagtcctt ttgaaactac tttttagttt
62461
       taattcaRtg tgggcataac aatattttc tcttctagcc aacctccatg agagctatcc
62521
       gtgccagata tgaccctttc ctacagacaa gacaccgaat agaacaggta catttttaaa
62581
       aaacatgttt cttaaaaatt aggtgtttat acttagtaag aagccattgt tgcttgattc
62641
       aaattgaacc tgaaataaga atgaaaaagg tgtttttcct ctttgtaagt tttcaatatc
62701
       catttgaggg agggggaatt tgccatgcct agcaaggtca aaaacactac tttctttaaa
62761
       gactgtattt attgtttaag ggttttatat tctctaagtt tttttgaatt tgtagaaagt
62821
       catttgtagt atgaaatttg tggaataaag atgtatgaaa gttcttagac aatgggtqqg
62881
       tgtgttgact tttaatttcc aaaagtcaga ttaagaagta ttttgactgg ccatgcgcaa
       tgqctcatgc ctgtaatccc aaccctttgg aaggctgtga cagcaggtca cttgagccta
62941
63001
       agagttcgag accagcctgg gcaacatagc aaaaccccat ctacaaaaaa tacaaaaatt
63061
       agcatggcat tgtggtgtgc acctgaagtc ttagctactt ggaaggctga ggtggaagga
       tcccttgagc ctggaaggtc aaggctgcag tgagctgtga tcataccact gcacttcagc
63121
63181
       ctgggtgaca cagcaagaac ctgtctcaaa aagaagtatt gtgacagatt tgttgggtgg
       aaatagqaaa tttcctacaa aggagtacaa agaactagtc ggggtatggc attgttctct
63241
63301
       atcatggtca tggtggtggt tacataactc taaatatcta tcagctctca tccattgtac
63361
       acttaaagtt agtggatttt atcgtattta aattatacct cagtatggtt gactaaaaac
       aagtactatg tacatgacct tgcagtgttc aagaaatctg aacattaata cagatttcct
63421
63481
       ttatttacaa gtttatttta aacttgtcca atttaaaaaa tgtaaagcac tgtccatagt
63541
       tgtaatagta atgtatagta ggcacatcca agtctaaagt agataatggt acataaccat
63601
       agtggataag ttgtctctgg gtttgtttat tggcttattg gtgaatactg ttcagtttta
63661
       atatccactt tgctgtcacc caagcgtatg aggaacagga ttgtcggtga caggagagga
       ctccatctgg gggagcccac atttttccaa acagtgggtt ctaaactgac ctttgcttca
63721
63781
       atttcttttt gggctatgat agttaattta tttaaaatgt aaaactattg agcatgaaat
63841
       gcttatgttt accaaaaaaa ggagcatagt ttacaagatt tagaaatgaa catagagcag
63901
       tgattctttt cttaaatgca ctagaattac ctgagtaact tctccaaaac gtgtcacatc
63961
      ttcacctcgg gaggttctga ttaagtctgc tttaaggtcc tagcaagata tttttaaaaa
64021
       ctaccagggt aattttgatg agtatctctt gtaaagaacc atagatacag aaatagagta
64081
       ttcttttagt gttgatatat atgtacacac atgcatatat atagtttttc tgtatacqtt
64141
       ttttgccatt ttcagaaatt agtgttaatt tcaataccta tttttaaaaa ttagaatctt
64201
       ggcttattgt agtcaacaaa atgaaagatt tgtatcattc tctccactag tagaggagac
64261
       ctaattttat tattattatt ttttttttt taaacagagt gtcactcttg ttgcccaqgc
64321
       tggagtgcag tggcacaatc ttgggtcact gcaacctccg cctcctggtt caagcgattc
       tcttgcctca gcctccagag tagctgggat tacggcatgt ctggctaatt tttatattt
64381
64441
       tagtagagac ggggtttcac catgttggcc aggctggtct cgaactcctg acctcaggtg
64501
       atctgccagc ctggtcctcc taagtgctgg gattacaggc atcagccacc gcacctggcc
64561
       tgaatatttc atttttaatc agactttcac ttttttttag aaagcagact tgaagtgcct
64621
       cctgtgcctg gaatcatcca tcaattttag actgctgtct tgatttttct ttccaatcta
64681
       ttcttttttt cttccattac atcaaatcct tattatgtta cataatcatt catgtatcat
64741
       tgttgaccat aaatgccacc tttttgtcct ctaggcttac caccaagtct gacataaaat
64801
       acatgatcaa taaatactta ctgttttgca aattgtatta tatttgtctt tactgctttc
64861
       tagtttatat tcttcgtgtt tttaaatttc cgctttgtag gtattcaagt caagcctctt
64921
       atttgttatt ttatattctc attctccctc cttatttgag ttgtactcac ttttttcttt
64981
       cagacttggg cctattttt atccacagaa ttagctaagt gtgtttcatt acttctgatt
```

```
65041
       tttaaactgt actgatgaaa acactgcaaa ataagagatt tgcaatgcct tcttagagta
65101
       gttccttatg cttatatcat tctaatgctg atgaatttgt ctttcagtta aaacaacttg
65161
       gtcatagtgt ggataaagtg gagtttattg tgatgggtgg aacgtttatg gcccttccag
65221
       aagaatacag agattatttt attcgaaatt tacatgatgc cttatcagga catacttcca
65281
       acaatattta cgaggcagtc aagtaagaaa ttcttatttt atcatagtct ccagagtggt
65341
       tgtcagttta tgctcctagc agtagtctac gagaatgcct tctgccctgc atccacattc
       ttacttctca taatctttct tgtttcatgg gaaaggatta tttcagtgaa aataatgctt
65401
       tcgctgaaat aatcttttcc agtgaaaata atcctttcac tgaaataatc cttttaaaga
65461
65521
       aaaaatgaat acagtttgtt gacatagtag tattctcaaa tagagagatt cKccaaatat
65581
       ggtccatgaa tgtcttttca gcccacccaa gaagggggct gggagtattt tagctgctgt
       aaaatcagca aaacaaggta ctgttattta aaaacctaat ttatagtaaa tatttcataa
65641
65701
       ttattaaata gtaactgttt atgattggga tcttagtctq tgttgtgctg ctgtaacaaa
65761
       atatctgaga ctaggtaatt tataatgcac agaaatgtat tggctcacag ctttggaggt
65821
       tgggaagtcc aatgtcaagg tgctggcatc tggcaagagc cttcttacta cgtcatcaca
65881
       cggcaaaaga caagagaaac aaaaagcgga ccaattcacc cttttataat ggcattaatc
65941
       ttacccacaa ggtcagatcg cctctcagag gtcccacctg ttaatactgt tacaatgaca
66001
       atttcaacat gagttttaga ggggacaaac tcatgtctgt caaatcatgt gttattcaaa
66061
       ccacaagtta atttagtcat tttgaattct agttgacaaa attatgcatc attttgacac
66121
       cttgttttta gcaagaagaa tactacaggt tagtatgtag ttcagtgatt taagaagtga
66181
       aagtettaaa atagtttttg tteteaggag ttgeaggaae acetggatag ttaetatttt
66241
       ccttatttaa caaatccttc ttgagggccc actagatact atgtgctgtt ttagatactg
66301
       gaaagtggtg atatttaggc tgagaccgga agtacaagga ggagttaggc caacagcaag
66361
       aaagataaaa taaaggctct gaaatgggaa gcagcctggg gtgttctagg gacagagagg
       aagccagcat ggttagatcc tgtgttaatc catttgtgtc cctataaagg aacacctaag
66421
66481
       actaggtaag ttataaagaa aagaggttta attggttcca gttctacagg cttcacatga
66541
       agcatagtgc tggcatttgc ttctggtgag gcctcaggaa gcttccaatc atggtggaag
66601
       gtgaagggga gccagtacat cacatgacgg gtgcagggag gtgccacact cttttaaaca
66661
       acaaatctca cgtgaaacaa ctgagcgaga actcacttat caccaaggag atggtggtaa
66721
       gccatttatt tatgaggaat ccagccccag gacccaaaca cctcccacca ggccacacct
66781
      ccaatattgg ggatcacatt tcaacataag atgtggaggg gacaaacacc caaaccatgt
66841
       cagatcccag tgaacaagag aaagaacgtc atgagacggg gttgaagtgt taggtaaggg
66901
       ccaagataca tgcttttaag gagttgaaat tttatttgaa atgcagtagg gagcagatga
66961
       aggggaagtg gcaagttctg gttaacaggt agggtcattc cggctactgt ctggctaatg
67021
       gattagagga gtaccagggt gaaagtggga aaccagatag gaggccatct gattacatcc
67081
       atccctgctc agatgggggc ggcagcagtg gtgatggaga ggagattgag atgggggtaa
67141
       gagaaaagaa gggatcaagc ctgacactaa ggttttggct gtcagaaatg gtaggaaggt
67201
       agggtagggc tgtatactga ggtgggaaag atagcgggaa gagcagagaa aatctcagag
67261
       ggagaaaatc aagagttctg ttttggatgt gtgaagtctg aagagcctgt gatacattca
67321
       agtggagatg tcggtgggct ctgaatgcaa gagaagtctg agctgacggt acgaaactgg
67381
       ggattatcag ctcataggta acattgacaa ccatgtaagt ggaggagacc acctcatggg
67441
       agagttgtgg atctccaagg tatactaagt gaaaagcaat ttttagagca attcttatag
67501
       tacgatccca ttatttgtgt gttcatgcac atacacacac acatatctgt atataaatgc
67561
       atagaaaagg tggcagaata atggtcatca tagaccttag agctgaggag gaaaggacat
67621
       gggaaatggc agcaaaggag gatatttaca tttgctctgt atacagtggg ccaggtgttg
       tcatqqqtqt ttaatattca cttatttaqt actcataqtt agcctttqaq ttaaqtqttc
67681
67741
       agattatete tgttttatgg gtgaggaage tgaggcacag agagataage aatttgeeca
67801
       aagttgcaga ggtggttggt ggtagaatgg gatataaatc ccaggtagct ttgctttcag
67861
       agcctaactt tgcaagctgt gctaggtgtc agaatgtgag tgtgtctgta tgtatgtgca
67921
       catgtgtgtg cacatcatca gagcttgaag atcttggaag gaatatggcc tgtttttcct
67981
       tgccctcctt ccctaccacc ctcaggcttt tctctggctt ctcttttata tggggtgagg
68041
       gtttcatata gctaattata aggttgttca aatagtgcca cctcttaaga ttttttgtgt
68101
       aggacaaaat tttggataga cctaagagtg gtttttatta ccctgtaagt aaagcagttc
68161
       ttggcacata gtaagcacaa gtaaatgcgt gaatgaattt tgaatgaaca gttagctaat
68221
       gacctgggta gggttgcctc ttggaattgg gggcagccac atctttttgt gccctcgcta
68281
       ctccccctac ccccttaact tcctttgttc tccttgggtt tgtaaaagtg aaaagaagag
68341
       aggagetttt teataaaatt taataccaag ggtageteaa agageeeate tgaaaggttt
68401
       ggcagctggg agagtttgtg tggacagcag cccacttctg tttgattgac tctagggaat
68461
       gcaacaggtg aattctgtgt ccgtgaatct ggacctgtag cattgtgatt tcttcgtctt
68521
       acaggggctt tagtaataga ggagatggcg actgcattgt tactgctcgt tcaaaactga
68581
       tcaagaggcc gggcgtagtg gctcacgcct gtaatcccag ccctttggga ggccaaggcg
68641
       ggcagatagc ttgaggccag gagtttgaga ccagcctgac caacatggtg aaacttcttc
68701
       tctactaaaa atgtaaaaat tagctgggca tggaggctgg tgcctctagt cccagctact
68761
       tgggaggccg aggcacagaa acacttgaac ccaggaggca gaggttgcag tgagccaaga
68821
       ttgcactact gcactccagc ctgggcgaca gagtgagact gtgtctcaaa aaacaaacaa
```

```
68881
       caacaaaaaa aactgatcat taatatgagt catacttagt aaatgctgaa' gtcttcaaac
68941
       tttagaggag taatgatatc atccagctaa ttactcttaa taatactqaa aaatcaaact
69001
       ataccttaga taaaatgtga ttqaqqaaaa acaaccttta ttaqttcaaa qccaqqcqac
69061
       ggggatggca gcagaaggtt ctctcagagg gttgctgacc acagttcatt cagctctgaa
69121
       aattccctgg cagggacatc tatgaagata agtttttctc tgcaagctta tatacttctg
69181
       tactcatttc ttggacctta atatgtaaqq tcttcttatc ttgaaqacct tacatattaa
69241
       gtggaattga gctgtaaata tcttagactt gcctctctcc cccataaaaa tttgccacta
69301
      agottttcat ctcctacagt ttgggtcccc tgaggtatat gaagcaggcc aactaagatc
69361
      tgcatagtga acttttagta tgtatctagt ttgacatttt catcaattga aagtaaaaat
69421
       tttgttttat tcttggtgta acattttatt tttgcagaaa tgttctagtg ctaatggtgc
       ttgaatgtaa gttttccatc attgggttga aaatagggtt gtctagtcca gcgagctcag
69481
69541
       tgcagatcat gatgtgtttg tagaaaaagc cctgtggaag agaaatcctc tttcagtaat
69601
       attctaggca gtgccagtgt tgttttgttt ctgttcttga atttacctca agagggcaac
69661
       gaacacttta ttttcagata aaaatttata tatgatttgg gtcttcattg caacacatct
69721
       catgaatgcc tcttgagaag taatgaaagt acaatctggg agccataaaa ccatccataa
69781
       attacactga attctgccaa cacac\operatorname{cac}tt aaatgttttg ctctttctc tcagtctcta
69841
       tatttttatg agatcatctg gaaaaaaaaa agacctgatt tgtggcgtgt tgttgctttg
69901
      ttaaggtaaa gttttactac aaacccctca taatagagtt tgtatttgtt ttgagqgaaa
69961
      ctttgtattt gaggaaataa tagtctagtt tgtgctatag aactagagac agaaagtatt
70021
      ttcaagtgtt ggcataattg tgaaataaaa agcagcccag agaagttgtg gttttgacat
70081
       aatgtggccc tcggaaatgt ttggatttga ccttgccctt ctctctcatc ctgcccagag
70141
       tctatgagtg aaaactggtt ggtttgcaca gcgtagccca ctgctcttag atgtaaggtg
70201
       atgaacttca tgtttatttt acttttgttt ttgcttgctg actacataga tgtaaactga
70261
       ctttcattag cttagcaggg ttttttaaag attaatttta aattaggtta aaaatgatgt
70321
       attgtgacct atgagtcagc aagcagcatt taaggttaat agtctgttca cgttaggqtc
70381
       aagttttact gctgtgttgg ctcaggtgtc cctgctatgt tttcatatgt tgaacctgat
       taaagttttg cttcttaaaa gaataggagt taaggtaaag aaaagcccca gcaagcagag
70441
70501
       cctggttatt atttatggca agctagtagc aagcagtgtg ttatatatat tctcgtggat
70561
       ggataaattg gaaagttgag tgaacagaga gttcaaggac aaaacaggta tggcttttgt
70621
       gaaqqctcat taaatcaaqc aaaqtqctaa tcactcaqta ctatcaqctq qactqaqatt
70681
       cttcagtagt ctccagagag caacaattac tggtgactgt catcgtgtaa caatcaggct
70741
       ctggagatga aaaagaccgg tagtgggatc tgagtcaccc attcactaga atgcaaatgt
70801
       tgccaaataa ctccaacaac cttttaaaat agttttattc ctttttaatc agctttgccc
70861
       agaagcagtt ttacattcaa totttaatgo toottggotg ttttcacaag atgcaattta
70921
       aagggtagtt acccattaaa aagtgagtga gtcatacttt ctccctgtgg aattttaaat
70981
       tcatttcccg ttccttcctc ttcccccgcc ccgcccccca cgccccatta atgactttag
71041
       atcctccaac tatgttctta cctgtctgag aaaagctgaa gtgctaggta atgctaggta
71101
       ccaggcccag aaqacaattt cqtagacttq cacaqctqca acqqaaqcaa aaqqaaccta
71161
       cagagacctg agagtgagtg actgtggccc tgctgccctg qqcqtcattt ctqqcaqqcc
71221
       traggacett etgeatttet gggetttgae getgaeaetg ettatetete acttttteta
71281
       ttgaccattt tactttctct tttggtcacc cagatttcca tacatggtga ccaggatcct
71341
       taacattggc cagagaacat aggatacaat cttagtcact ttaagagagt tgatatggtt
71401
       tttctttcag cattttattt gaaacaaaaa ttaaacagtt tttagtgagc atccacatac
71461
       ccatcaccta gattctacga tacttgcttt atcacatatc tgtcagttcc actatccatt
      catcagtgtc tctcgcgtgt gcttgcgctg tcttttttga tgaatttcat agtaagttgt
71521
71581
       atgcttcagt acacttctcc cgggatactt catcatgcat atcactgact agtgttcact
71641
       gtctgcagtg tttttctttt gaagtaaatt tacatacagt acaaaacaac ttgtggcgtt
71701
       71761
       acacatatat taagtatacc atttgattat ttttgacaaa tgcatatacc tgtgctacaa
71821
       agtoctatta agatacagaa tgtcaccgtc atcccagaaa gttcccacat cccacttgcc
71881
       agtaaatcct eccetqeqee teccagagge agecqttett etqatttttt tecceateae
71941
       aaattagttt tgtctcttct agaacttcat ataaatggaa ccatatagca tacacttgta
72001
       ggcctctctc actgagcata gtattttgag atttatccat gtgttgggtg attcattagt
72061
       tgttacctat ttagtgctga gtagtattcc attgtatgca gagatcacag tttgtttacc
72121
       atcettetat tgatagaege etgagetgtt ttgtttgtgg eeattatgaa taaaaettea
72181
       gcgtacgttc ttgtgtaagt ctttttgtgg ctatatgtat ttatttctct tgggggaata
72241
      aatagacata gaattgctat gtaagtttag ttttacaaga aaccgccagt cattttccca
72301
       aaatqqctct actatttqta ctcccaccaa taatqtatqa acatttqqtt qtaccacatc
72361
       ttcaccaaca tatggtgtag tcactcttt taattttagc cattctagtg ggcgtataat
72421
       ggtatctcgt ggttttagtt tgcttttgcc tgatgactaa tgatgttgaa cactttttta
72481
       gtatgtgctt atgctatttg agtatatttc ctttgtgaag tatctattaa aatcttttgc
72541
       ccatttttga ttaggtggtt gtatatccta gctgccagtc ctttgtcagc tctatatttt
72601
       gcaaacatga aaacccagtc tgtagtttgg ctgtttgtta tgttaatgat atcgtttagc
72661
       caaagttttt aattttgata aagtagaatt tagcagttgt tttctttcat ggttattgct
```

```
72721
       tttctgtatt gtctctaata aaccattgca cgttcccaag gcacaaagat attctcctgt
72781
       gttttcttct aattacaggt ttgagctttc acttacaggt ttatgttcca tcttgaatta
72841
       attettatgt gtaatatgag gtggggatca aggtteettt tteeccatat agacagetag
72901
       ttgctttaac atcacttctt taaagatttt ccttccctat tcggattata tcacaccttt
72961
       gttaaaaatc gaaggactca gtaaatgtgg gctgggctct tttctgtttc atcgatctgt
73021
       ttttcaatcc ttatgccagt gctacactgt tttgattact gtggcttttt agtgtatctt
73081
       gaagtcaagt aatatgagtc ttctaacttt gtaattgttt ttcaaaattg ctttagaaat
       tctaggtcct ttgcatttct atgtaaaatt tagaatcagc tggccaatgc tctattaaaa
73141
73201
       agtataatgg atttagaatt gtgttaaaac tatagaacaa atggaaagaa ttgacaattt
73261
       attgcttctt gcaattcatg aacatagtct atctccttgt atacttaggt ttttaaattc
       tcttagcaat cttcattgtt gagattgtat aagccttttg taaacaaatt ctttcaaaat
73321
73381
       atttgtatgt gttttggtgc tacaqtaaat qaaatqtaaa tttcatttt aaattttatt
73441
       attattatta ttatttttt ttttttgaat cggagtcttg ctctgtcgcc caggctggaa
73501
       tgcagtgacg tgatctcagc tcactgcaac ctgtaccttc tgggctcaag acattctcct
73561
       gcctcagcct cccgagtagc tgggattaca ggcatccacc accatgcctg gctaattttt
73621
       gtatttttag tagagatggg gtttcaccat gttggccagg ctggtctcaa actcccggcc
73681
       tcaggtgatc cgcccacttc ggcctcccaa agtgctggga ttacaggtgt gagccaccac
73741
       gcccggccat aaatttcatt ttttcaaatt tttgctgcta atatatata atacggttga
73801
      tttttatata ttaatgttat gtcataagac cttactaaat tcactactta attctaaaag
73861
      ctatttttgt aaatccttta atatttactt cctaaacaat catgtcatct gcaagtacag
73921
       tgcattttac ttttcccttt tggatttgta tgcttttctt tctcttgcct tactgcactg
73981
       cctaggacct tttcttacag tgttaaacag aagtggtaag agtgggcgtc tctgtcttgt
74041
       toccagtgat acagggaaaa catttttatt toagtattaa gtocagtgtt gootgtgggt.
74101
       tttttatagt tacatgtatt agattgaata agtttattga aagggtttat cattaactca
74161
       tttgtctgat gctttctctg catctattta aatggtcata tgattttcct cctttatttg
74221
       gtaatatgga tcattttgat tttttttaa cattaaacct cacatgccta ggataaaccc
       tattatatca tcatctttac atattgttgg attcaacttg ctaatacttt gtagaggatt
74281
74341
       tttgtgtctg tgttcataca gggtggtggt ctgtaatttt cttttttata attttgttgt
74401
       caggitaticg tigtiggitat tagtigtaacg caggittcac aaaacaagta aggatgigti
74461
       gttccctccc ctgttttctg aaagtgttca tgtaacatga atatgatttc ttccataaac
74521
       gtttgctaga actcaccagt gaaactatct agggctggaa ttttctttat gggagggttt
74581
       tagatcataa ttcagttcat ttaatagata tagagctatt catattttct gtttcatctg
74641
       tgtccatttt aaaaagttac gtttttcaag gaatttgtct gtttcattca ttttgtcaaa
74701
       cattttggta ttatgttgcc ttattaggct tttaacatct gtggaatctt agtgatcacc
74761
       cctgtttcaa ccctgatact catcatctgt gttttctctt tttttcttgt ttacccgagt
74821
       taggggttta tcaattttgt tgttcttttc aaagaagtag cttttggttt tatttcctct
74881
       actictgtaga cttctgcttt tatttttatt ctactttctt tccgtttaat tgctcttctt
74941
       tttCtagtga tttaataagg tataaaagct tggccaggcg caatggctca cgcctgtaat
75001
       cccagcactt tgggaggtga ggtgggcgga tcacctgagg tcaggagttc gagaccagcc
       tqqccaacat ggcaaaaccc cgtctctact aaaaatacaa aagttagcca tgtgtggtgg
75061
75121
       cacgcacctg taatcccagc tactggggaa gctgaggcag gagaatcgct tgaacctggg
75181
       aggcagaggt tgcagtgagc caagatcacg ccactgccct ccaqgctgga taacagagtq
75241
       agactccttc tcaaaaaaag agaaaaaaag cttggccatc attttagaca ttttcctcaa
75301
       agcactgctt tagctgaatc ccacacattt tgatatggtg tattttaatt attattcaat
75361
       tcaaaatatt ttttcatacc ctttatatat atgtatttga tccatggaat gtataggaat
75421
       qqqqtqttta atttccaaat ttccaqacaa tqaqqttttt cttqatatct tattaatttc
75481
       taatttattt tcattttggc cagagaacct actctgtata attttggtgt tttaaaattt
75541
       attgagactt gttttgtggc ccagcatatg tggtctctct tggtgaacat gccatgtgtg
75601
       tttgtaaaga atgtgtgttc tcagttgctg ggtgtcatgt tctataaata tcagttaaac
75661
       caagatggtt ggtagtagtg ttcaggtaaa ttttgttttt tattcttttg tagttctatc
75721
       aattgctaag agattgaaat ctccaagtat gattgaggaa ctctgtacat ctctcttcat
75781
       ttatattgat ttttactgaa tgtattttgt aaatctgtta ttaggtacat acacatctat
75841
       gattgctgtg ttttcctgat gtatgagctt ttcaccattg tgaaattacc tctttatcat
75901
       catgagatgt ccttccgcat ccctggtctt gcagtttact tggtgttaat ttagccgtca
75961
       tgtgcttact gtttgccctg tgtattatcc ttttccatac atttgctttc cacccatgtt
76021
       tctttatctt gaaaatgcat ttctttagac agaagtctac agtaattggc tcttttttt
76081
       tttatccatt ttgctcqtqt qtqcctttta attqqaqtqt ttaqtctqtt aacatttqat
76141
       gtaattattg atacatcagt ttaagctgat ggtttgattt atatctgcca gtttaatcat
76201
       ctcctcactt tggttttcag tagccaagaa taatagttgt aatgaatact attatggtct
76261
       aattotttat aatgtatttt ttotatatoo tttaataggg aatatottot taagagaaag
76321
       gtagaggact ccttatatct agtacaatgc cttaagcata gaattctggt acttaataaa
76381
       tgctaagtga atgcggtgga aagaactgtc ccttaagaat caggagacat agtctccaga
76441
       cttatttata ttattattt gcattattac ctggtttaat ccacttattt tgtgtgtgtg
76501
       atttagtttc ctcatctata aaaatgagga ggtttaggac tatattatct ctaaaattat
```

```
76561
       acctttctgt catctatgat ttgaagcttt ctaatgaaga gaatttttat ctaaaagata
76621
       tgttcacaag ttattcttca tttagcaacc actttctgac aatcattttc tataatgttt
76681
       ttatgtatat aaccettaaa tttcaatgtg gatataatat taaaagaatg caatatetgt
76741
       gattettttt ttettteta ttaataatgt gttgetgetg gttetttage tacacgaggg
76801
       gactacaaaa tgatagtttt tgtcagccat gaaaaaaatc aaacctcaaa caaaatgtta
76861
       taagctgttt ttatatatct taagccctgc cagctaatgt gatagggcac aagggtcttt
76921
       gattagtctg taagctgcag tgccaccagg ttggtttttc ataggtagta ctcattttta
76981
       aatcaaaatt ctgtcgttac ttcattttgt gttgggcgtg gttaatttat agaacctcat
77041
       gatataacca ccaatatcga ggaagcagac ttgactacca tctcaaaaaa agattggggg
77101
       taatagttat ttttaaatcc tcaagcacat caaacatcca actcagttaa gtctagagca
       tcactagcag agcattgggc agaacttcaa attttattga ggtattttca agatagggta
77161
77221
       atagttaaga agaggaattt gttcatggtg ctgctgccaa ggagttacac caataactca
77281
       aggtgttatc aacaattcaa acaaatctgg ctgttcaaag aagtgagtaa actccactga
77341
       cttgttttgg gaccgtagat ggagaagaga ttgtatgttg tgactaacga aaatgaatat
77401
       ttcatctctg taccattttt tactgtgcaa tttggtttga acaggttgag tatgaggttg
77461
       cagcatgtcc acacagggaa tgttctgtaa gccattcagc aacttgagcc ttgagttctt
77521
       gtgagagttt aagcaggact agactcaggc acatccagtt gcagtaagga cagaggtttt
77581
       gaaagaggag ctgccacgaa ttatttgtaa tgagaggtgc ccacctcttt gataccacag
       cttcttggag tgaaacaaaa gatagtttcc agaagataat aaagagactt taaaatcagt
77641
77701
       gtgctatctt ccttccatca gtgtccccct gqttqqqccc ttaqtqcaaq qaqacaqtaa
77761
       taatagatag tgcttctgtc aaaaggtcgc tttcttcttt ccagaaatag aaacatgctt
       cccaagaaat aatctaaatc tatttatatt tctgccactt ctagcttttt gttctgtagt
77821
77881
       catttetett tttttttt ttttttttt tctgtatgtc ttatccccc agctagattg
77941
       ttaagcatgt ctgggacagg aactattata tttttacttt ctgaagaata cctggcctac
78001
       tgctaggcac cttctaaggt taactttttg caagaggaaa gataagcggt agatgtatct
78061
       ggaggctgct gttggagtga agagagacct cctatgttcc cagttatgcc taattcattt
       attocttott caaatttgta atttttttt aatcaacgga gaatttttag tgttgaagco
78121
78181
       ttttagcctc tagacatgtt tgagcctgct ggctttcagg ggcttcctgt ccagatggag
78241
       agacagacat aaccacaaat aacaaggctg actacttgta gtgtgggcag ggtgcttggg
78301
       aatgggagca ctgagatctc actgagggtg gaggggttct gggaagatgt cattagggga
78361
       gaaatgtatt ggagctctgt tttgaaggct ggtagccttt ggtttttgtt tgcttttaaa
78421
       ttcctgggtt attgtcccat ttctcttcac ccctgctcca caatttttaa aaattctgtc
78481
       aacgtaaggt tttgacttaa gctatgcttc acagagaaca tagcatcttt tatagctqgt
78541
       gccactccta tggcatacag aaaagcgtag gattcaacat aaccccacag tgttgagctg
78601
       tacaqqctta aaatgaacct gtaataccac aaaaagagca gtggaattgg aatcagagga
78661
       tcccttttga gtcttggcct tgtctctcga gaagttgaca gagttgctgc atgccgaaga
78721
       acttgtagcc cccaaagagg tatgggagtt gaactaggta ctgaaggaga gccatgcttt
78781
       tggatggctg tctaagtggc acatactgtt ggatagctac ctaaatgata cagggggatc
78841
       atattaatac caggccataa agtgtcagca cagattggtt gaaagcctgt atgcgcatat
78901
       ttgcatatta aagaacagtt atgttgatat atttacatct ctgttaaatg aagaatcaga
78961
       tttggtgaga tgtaggatta gatatagtat caaaaaattt tcatgagaat acagtaagcc
79021
       tatgggaaaa attcattgtt ttgtcattca aatttgatac aaatttctgt ttaattgctt
79081
       ttcagatgMa aatacaattc tggaaagagg aaatatagtg aaagcctttt tataaatata
79141
       aaatattttt tcaaaacttg agttgttttt ttcttccacc atttctgttg ctgcaaaagg
79201
       taatgacatt tcccgcctga ggaaaaacat ttttgaaatg gagttaaatt attatttgag
79261
       aataaggttt ccttctgtgg cctqtactat attctqatqa cttataaaqa qaccttqtqc
79321
       agcagtgtcc tctgtatgtc cttggtgggg cctttgacac tctgcaatag gaagactagc
79381
       taataaattt tototttoot otacacaaat toocatttgt gcaattgoot cocctotagt
79441
       ttttcccagt gatgtaagct actattatgc caccacgctt gctaacttaa tggtatcact
79501
       tttaagaaat actgcaggtt ttttaaaaat accagttgga Rtgcctcatt ctaggatatt
79561
       ctcatttact tttaaaaacg tcatttagag ctttttgctt tctggggttt tttggtactt
79621
       ttttttcaac ctttgtatgg tgtgctttct ccataatata tgaatattta tttttatttg
79681
       aaaaatgttt tccctcaaac ccaataattg atgctggagg aaggtgtgtt acgtctctcc
79741
       tgtggcatca tgtactgtta ctgcgtgcct tagtacccac ctgtttaagR ggcacaggac
79801
       ctgatgattc tattgtttca gagaagccaa attagtttgg atcctgtctt aggcaagatt
       tgataagatc tgagcccttt ttctgtctca tagttcatct tttagtgact ttgaactagt
79861
79921
       tgtttacctt tagtcctgtt gcctgtggta atcctaccta aaacctcgcq qaatacaqaa
79981
       ataaacaatg caaaagagtt caaatgtcca gaatgaaaga tttgagaatt tgttctctag
80041
       attggtgatt cttagctttc ttaattatta ttggcaataa ataagtccgt ttttattgac
80101
       aattaagagt gaaagagtga acctcatgga attagttaca aaaattacag aaattttatg
80161
       atttttactt ttcagtaaag aacaatgaac ttcttcagaa agaaggaaaa taaatgggaa
80221
       attittitta aaggettete teateetee eecaaaattq aqaacattqt agaaggqtqe
80281
       actaagaaga atgatggggt tctaagaatt gagagatgtt ggccgggcgc agtggctcat
       gcccgtaatc ccagcacttt ggggggccga agcaggtgga tcatttgagg tcaggagttc
```

```
80401
       gagaccagcc tggccaacaa agtgaaaccc cgtctctact aaaaatacaa aaaaattagc
80461
       tgggtgtggt ggcacgcacc tgtaatccta gctactcggg aggctgaagc acaagaaatg
       cttgaaccca ggaggtagag gttgcagtga gccaagatcg cgccactgta ctacagcctg
80521
80581
       ggcaacacag tgaaactccg aatcaaaaaa aaaattgaga gatgttgaaa agcagagaag
80641
       tctggggtgg gtccacgctg agttgtctaa gcagtgtggt aactggaata cagagcaagg
80701
       actitgaagt caggtggacc caacttcaga tootgactcc gattttatta gototgtgcc
80761
       cttgaacatg ctgtttactc cctttcagct tcagtttcat cacttgtgaa atggaggtaa
80821
       taggacacac ttcatagagc tagtgggagg attcagtact agagtgtgtg gcacagagct
80881
       80941
       gcaagagact tacttctctg cctctttggc cagcattaag gccactaact gagacagcat
81001
       gaatctaaag tggtgctcgc tactctgata catgatttta gtaaaagaca aaaatgattg
81061
       gtaattttgt aaatcattgc taagattaat agactaggtg aaaaggcttt tgtgtatata
81121
       gaagacattt catctaaaat attcctataa tcattacata tgccctcccc cctttttttt
81181
       ctttcattta aaatatagag tgggaaataa ataatgtaga tggttttcac ttatgtgaaa
81241
       aatggttgct aggaattgaa aaataggttt tcacagttga aatcactgct ttcaaggaga
81301
       ttatggttgc agcttactgc aggagaataa taatgataat gatgataata acattactat
81361
       gctagctcag tcacgtcaat cttatgaggt gtagatagtg tattatcctc attttgcagt
81421
       taaaggaacc gaagcacaga ggttaatagc atccccatgt gcatagttag gaagtagcag
81481
       agccaggatt tgaactcagg cagcctggct ccagagccta cactctttac cactatctca
81541
       tactaggagg acagagaga ggcagttttt tgagacagag taatgtctta aaacctgcaa
81601
       caggttaatt attttagatt tgctctacag gtattctgag agaagcctca caaagtgtat
81661
       tggaattact attgaaacca gaccagatta ctgcatgaag cgacatttaa gtgacatgtt
81721
       gacctatggc tgcacaaggc tggagattgg ggtgcagagt gtttatgaag atgtggctag
81781
       agacaccaac aggtaagatg gtggcaggtg atcttgcaca agtcttcctc caagttcacc
81841
       attttctcta cattcatacc cagcctttct tccttctgac cactcttagg gaaagaagta
81901
       tgggtattcc tccttttcag agttctttct tctgtctgtg ttcttaattc catccctct
81961
       ttccctcatt ttcagtcttt ctctagtggg tcttttccag cagcctgtaa acacactcat
82021
       ctctctccct cttcttgtcc taagcagcct tgtccatata gagagcaggg qagaggactc
82081
       ggggttagta gtttaaagca ggagagaagg ccaagaacaa agaaaagagt ttgaataaaa
82141
       aggacatcag ggtaatgttt aagagattca tttttgtgga gcaaatacca actagcaaaa
82201
       agtttggtga tgccatggtt gtaaactttg agaaatttgg gagtqcaaqa aaagaaqgaa
82261
       gtaagagttg ttagagcttt attatgttcc ctctagaagt atatctttta gttgaaaaga
82321
       aaatacccgc gaaaggttaa ctgtataagg aacttcacag ttaattgcta aattagtgga
82381
       gtaggggaga caattgagag tttattaggc agctgagatg attgaccgag aattctaacg
82441
       gtgggctttg gaggaaggat gtgttgagtt ggatgttaaa ggccccttta ttctgtagga
82501
       tttgggtagg tgtgattggt gttgtgccag gagaaggaag caaaggggaa ctagggaaac
82561
       aagcactgat Cagcatctta gaaacaacca agaggaatgc caggccgagg aggatggaat
       tttcccttaa ggaatagaga tctgttgaat attttttagc atggggaaga atctcatgga
82621
82681
       tatCatgttt aattaagaaa gagtaaccga ataggatgct cttatqtqqq aaaaggcttc
82741
       aaccagggaa actgtggagt gctgtagcct tcaagggctg tgctagagag acagttgtgc
82801
       agatggaggg gaagggggag ctttctgaag aatacgacat ctgagttggg acttcatgga
82861
       agagtctgag ttggtcaggt gcagaagagg aagattgagg cagaaagaaa ataatgaact
82921
       cctagagatg ggagtgccat agcacatttg aggaatttgg agtggcttag tttgattaga
82981
       atgtgaaata ggagagtgat aagaggtgag gctgaaaagc aggcagaggg gctgattatt
83041
       aggggcctga ggagtcagcc cagggaggct ggacatgaat ctaatggagc aagccaccag
83101
       cacgcataaa gctacaatgt gatggagcat atctgcagct tagaaagatc gcttacagtg
83161
       taaggggcag tcagagaaga gcaagttgga agggagatca ggtacgaggc tgttacagaa
83221
       attaagcagg aaatactgat gtcctggaaa gaagtgaatg gtggtgattg gtgactgatt
83281
       ggaagtgagg ataagagaga atgggaagtc aaggaggctt ggagagaatg tgggtttcat
83341
       ttggctacac taagtttcag atacctgtag aatagccaag tgaaggtttg ctttagagca
83401
       gggctaggca atagacagtt cagcagtgat caaaatgttc tgtqcctgca actgagtttt
83461
       ccattttaat tcttctaaat ataaatttta ataaccacat gtgcctagtg gctgtcattt
83521
       taaatagtgc tgctttaaag tattggttat ttgggtttgg aattcatgag agaggcctgg
83581
       ccttgtccta ggaattggga agtcatcagc aaaaagacat tagaaattga agccatggaa
83641
       atggttggga gcattctgag agagtgagat ggagtctgtg gtttctagga tccttctgcc
83701
       gtgaatggga acaccttcgt ggcagaagga tagccacaag acttcagttt agttgcccaa
83761
       aactattgtt aggacttgtt tcctgctgga ttggctctag aatgccaagt taagatgatt
83821
       tatccacgtg accccaaatg actctgcctt ctcactaagt cattctctct ttctactgtt
83881
       atttaaggat cctccaaacc caccagtgaa atctattttg tatcataggt ttcactcttc
83941
       ctccctgtct acaaataatt tcacaagatc tttaaaggaa agaacatagc agcttgctgc
84001
       ttctgcatgg ttttgagctc attttaattt ttaatacagg tatttacatt cataagctta
84061
       ttttgactgg tgatgctaaa ccaaataatt ttaatacaca ttaacttttg ccatcccaat
84121
       gctttacttt caagacttta agtagatgtg taagagaatt tctgagaaat atctcagaaa
84181
       taaagttatt tacttccagg cctcctgaga ggtggggatg taaaaaaatga ctttctgaga
```

```
84241
       tgtcttttcc cccagccata tgattttggt tatggaactt ctgttacctg tctcagagat
84301
       tgttttcccc ttgttccttg tgttaacttt gtcacccatt tatttgtgta acagatgtta
84361
       cacaaatagg tagtgatttt cacaggtagt gattttcttt ccttaggggc cacactgtga
84421
       aggcagtgtg tgagtcattt cacctggcca aagattccgg ttttaaagtg gtggcccata
84481
       tgatgcctga cctgccaaac gtgggactag aaagagacat tgaacagttc acagtaagtg
84541
       tgacttcagc caggcgcatt cagaatggct ctgcatgttt cttatcccat ctggtcttgt
84601
       tgcttgttca ctgttgatgt tttccagtgt taaagaaatg catccttatt atagaatatt
84 661
       agaaacacag tagggtaaga gacatcaccc atagccccat cagacaaaac tcttaacatt
       ttaatgaatt ctttccaaga tttttctatg cataggtttt ttggggggtg aggttgttta
84721
84781
       tgcaaatata acacagacat acaaatatat atgacatagg aaattattgt aatagttttt
84841
       tcacttaaca ttttaacaag catttatcca tgttgtagcc tggtctctgt taacatgtta
84901
       acatatttaa atgtettttt aatttaatat gteatacett gettaaacee ttgeaagttt
84961
       ttcagaattt aagatatact ggttttttaa tattatttaa aaaacactgc aggtaaatga
85021
       ctttatgtgt ataattttt ttagtattta ggtttatctg tttatgataa attccatgga
85081
       gtaqaattat caggtaaagg tagaaacatt ttaagaatct cactgtatta ataagttgct
85141
       ttgcagagag ttataacaat ttatactcat ttcagcagag tttttcttcc caaataattc
85201
       tctcctgttt attttctata tatgcttata gatgcatatg cacatatgta catatattt
85261
       actgtttgct agtttgatca ataaaagtgc cattttaact tgcattttga aattgtaata
85321
       atacattttt caagtttgta tttactaatt acatttcttt catctttttg gaattgtgtg
85381
       tttttatcct ctgactcatt attctattga gataagaata tttttagtat tagtttatat
85441
       gaatttttta ggtaaggaga ttatggactc attggttttt atatttgttt taaatatttt
85501
       ccttaaccta ttgttgacct tttacttgtg cttccattaa gtcgatcttt tttttccttt
85561
       tttttttttt tcttcaaatg cctctaagct tagaactgcc tttctgttct ttgaatttta
85621
       actctgggtt gttttattgt tgttatttta actctcacag tttcttgatc catgttaact
       ttgttgtggg aaatgagatt ggtcaggcct tttgtttttc ttcagattct ccgatagggc
85681
85741
       aagtgtgttt taagatgatg acgatattta tcaagttatt tcatctataa aagtactttt
85801
       aatttgctct gtttagaaaa atgcagttta ccatgtctta tttgtgaagt taataattct
       ttcctctcaa gaagtttact tttattattt tttaagctgg tgaactgcac ctgaggacct
85861
85921
       gtttatgaga taacattaat tcacagatat ccctcttcgt aattccccca caatggatat
       gtaatagact gtgagtctag tatcctcccc tcagtaacta atagccaggt gctcagacac
85981
86041
       caggccaaaa aggcacctga aacacacttt ttattatcat gattattatt attattatta
86101
       tactttaagt tctagggtat gtgtgcacaa cgtgcaggtt tgttacatag gtatacatgt
86161
       gccacgttgg ttggctgcac ccatgaactt gtcatttaca ttaggtattt ctcctaatgc
       tgtccctccg cctgccccc accccacgac aggccccggg gtatgatgtt ccccaccctg
86221
86281
       tgtcccagtg tgaaacacac tgttctttag cacagctcct agggagacca gtaggatagc
86341
       cagaactcat aaagtttaag tgctcctgaa aaatatagta tgtttcatac tgtaggaagc
86401
       catagcaaat agctgagtct cagtacatat tttccttggt gtcttcaaca taaggaatag
86461
       ttcagtaata acattgcaag gacaaccttt cttgtaaaca gatttatttg cttgtttgta
86521
       gtctttgcag ggaaactcac agggaatatg agtggatcat atttctttc taactqcatc
86581
       ctagtaaaga gtaacagaag ggagctaaaa tgaaaaatct gagttctttc tagagaagaa
86641
       ttctctacaa attaaattgt tttaaaattaa ataagtttta gaaattgata agaggcaaac
86701
       agctcagtag gaaaatgggc aaaaaacttg aacaagcatt tcacaaaaga gaatattcaa
86761
       atagccaata aacctatcaa aaagttctca aagtaattaa tcttcaaaaa agcgaaattt
86821
       aaaactacat ttggtctcag ttttctacag caccttggtc ttgtattgtg gatataattt
86881
       atcttttctt atctctctga agaaatttat tacagatttt ttttatacat tttattttc
       tgtatgcatt gcctctgttt cctccaagtg ccttttgttt tctttttgtt ttggttggcc
86941
87001
       ccttaatgta cttggctttc cccaagttta tgatgatctt caaccagttt cttatgcctt
87061
       tttttttttt tccttgagac ggagtctcgc actgtcattc aggctggagt gcaatggcac
87121
       gatettgget cactgeaace tetgeeteec gggtteaage aatteteetg ceteageett
87181
       ctgagtagct gggattacag gtgcccacca ccacacctgg ctaatttttt gtattttag
87241
       tagagacggg gtttcaccat gttgaccagg ctggtctcga acttctgacc tcgtgatccg
87301
       cccgcctctg cctcccaaag tgctgggatt acaggcgtga gccactgcgc ctggcctaaa
87361
       gcgattcctt atgcttttaa gagtaggggt ttgaaaagcc ggatggcaag gcctgtgtgc
87421
       ctagcttgca ggcgtgcttc actgaagaat gttcttttag caataagcgc ttctttctt
87481
       atgggattcc taaatgtcag tatcgtgaac tcttacgtag agccatttga ttcatccaga
87541
       gatgaactct ccaacttcct gctttgggct gagtggcctg agtatatctc aggaagttgg
87601
       ttgctgacat ccagagagta gggcggagag tccaccagtc tatgtgctgg cttttccctg
87661
       ttttcagcct tggtcttcat ctagaccttc ctttgtacct ggaatctcag agcgcagagg
87721
       ctttccagtt tctccaggga ctaaatgttc tcatctgcct gttcgggaaa ggctaagggt
87781
       taacggataa ttccctctat gtacacactt gatccagtac ccctgttttt atttccatgt
87841
       ctetecteca teetgeecag ttettggtac etetgateeg tgageettte tggaactetg
87901
       cagtgtgatt gagcaggcct ttcgttactg tctccttttg ctattttctt tacttgcaaa
87961
       gtcattcaca agccttccta gtttctgtct ttgaaqaatt tgttgccatc ttgggtctca
88021
       ttottgooto ctttottgtt ctctttgtto ttctgggttt atacttttta aaaaattott
```

```
88081
       tectgtteet ttttttttt tttttettga gatggagtet egetetgtea eecaggetgg
88141
       agtgcagtgg cacgatettg geteactgca accteegeet cetgggttca ageaattete
88201
       gtgcctcagc ctcctcaata gctgggatta caqacqcqca ccaccacqtc caqctaattt
88261
       ttgtattttt agtagagatg gggtttcacc atgttagcca ggctggtctt gaactcctga
       cctcaggtga tccacctgcc ttggcctccc aacgtgctgg gattacaggt gtgagccact
88321
88381
       gcgcctggcc cctgttactt tagtgtggtt ttggagggaa agaaaataaa cactttttta
88441
      aattototag tgtaactgaa aattgagaac caatcaattt toattottto caaaggaatg
88501
      tatcagcctg tatgtctccg aaacttatta tacaagcacc agaaatactt ttctaaatcc
88561
       Catgttcaaa tgtagattca gactgggtga acaatggctt ccatacgtgc tctttgtggg
88621
       atggctgcag aatatttatt aaagacctga tgattcttta aaatataaat gttacaggaa
88681
       aatcacacaa ttacagaaga agatctctga aactaaatag tacataaaga atacagcatt
88741
       taagaacgtg acagatgtca atgagagatg gaaaagtcta ttgttatatt tctttgtaaa
88801
       gcaagttaaa caatgaagag ctttggaaga ctaatgtggc aaagataaaa agtatttttc
88861
       cagtttacaa gatagagccc tgccagctga gtagatactc ccaccaaqqt qqqaqtqaqa
88921
       ggggactgtg agtccacttt catttctcca aaatatatta tqcaaaacaa gattaqaqca
88981
       aattatcagt gcaaagtcat ggaaaggaga atgcctggtg tctcattgct acatcccaaa
89041
       ataaagaaag aaagcagcca gctggggtga tgtagtataa gaaatgactt gccaaaaqta
       gttgagttag atctattgct cagtgtccag ataacaaatg gacaaggtgt agcccaggat
89101
89161
       aggaatggtg ccagttggtt tagggacaga gtagtcatat ccagggatca gcaaactttt
89221
       cctctaaagg gccctatagt aaacatttta aattttgtaa gctagatgat ctctqtcaca
89281
       acttttgaaa tgtaagcaat taagtatatt ccattattaa agaaaggtat actctagagg
89341
       tgaaggcaga cattgaatag attgtcatgt gatgataaga aagaggtaat actgggttca
89401
       gtgggatttt ttttaagtgg gacagctagt atttgaaagt cagaggggcc tctctgaaga
89461
       agtggcattc aaactgaaac ctgaagatta gctagataaa gaaaaattga tgaactttcc
89521
       aggcaaagga aattgccttt gcaggagtgg aaaggccaga tggtgagggg tggcatgaga
89581
       tgagattgtg caggagacaa gctggaatgg tgagggccta gtgcagtcca gcacacactt
89641
       getttgeece agtgagacta cagaaacaag gagtttetgt tetgtetgta egecetaeet
89701
       ggtcagaagc aaaggctgcc ccagggccta ctgggtgtgc cagagaagct gtcaggggtt
       gagatttcac cctcggtgat ctctgcataa ctaatggaga agtcattttc tgttctctat
89761
89821
       tcacaggagt tttttgagaa ccctgctttt cgtcccgatg ggctgaaact ctatcctacc
89881
       ctggtgattc gtgggaccgg gctttatgag ctttggaaat caggaagata taagagttac
89941
       tetectagtg acetggttga attggtgget eggateetag ecetegtgee tecatggaet
90001
       cgagtgtacc gagtacagag gtagtgtgtt atcttttatt cctaaaatag ttggtgacta
       qtctqtttac tatttctcat ggaaatagtc tgatttcata ttgagggttt tggattttc
90061
90121
       ttaatggaaa taagataact ggaatgctat ctgtaaatag ggagggatgg aaatcatagc
90181
       atgtctaagc cactttgcca ataacgtatt tatttatcta cccattcatt catgagcctg
       gagacagagc catgacggtc aataggcatg gtgcttgctt ccgagcagct tatggtctag
90241
90301
       ttcagtgttt cctcttccag gtctgcttcc atctagatgc agtaatgggt atgagcataa
       gaagtgtggc cgtgtgtgca atctctgttc tagagcctct gaaagaaaaa gtagcaacaa
90361
90421
      tcactcttta cagatattaa tgtaaatgtg gaggaaaggt gacatatttc tgatggcttg
90481
       aagaaaacaa aataatctga actgctttct tcctagaaaa gagaaagtaa gatctcattt
90541
       90601
       acataacatc acagaaaaat tttagaagcc ataaagttac ccgtatacct acaatcctaa
90661
       caaagccaat tcccacacac acattcccac cacctgcca aaaactaccc aggttccaat
90721
       attacaaatg caaggccaga aggagactgc aaatgcatta caatcagctg ctagagcagg
90781
       actCcactga gcacagaaac tgtgtgactg atcatgtaaa gcaatgaaca ctgaaaacaa
90841
       gcYgaattaa ctacttaagg agaattatga aggatataaa gtaactgact tgcttgaagg
90901
       tcaaaggaca tttacatgat acttctgctg catactgatt tctcagtttt aaaatcattg
90961
       gccaaactgc aggatctRaa ttgcctatat ggtctctatt tttaaaaata cacctaagaa
91021
       tactaaggag attttaatag aaaaatcaac tSttgaaatt gcttgtgtgg cccttcccct
91081
      tgttgttcaa cccttctgaa gcaattcagt ccaaaggaca ttaggtggtg YRgagcagtg
91141
       taggtatcca catgcaggag gcagggagcc acagggtcca gagcagggtg agaaggtcac
       tcattcacat gcaggaggca gaggcgtggt gcaggctgat gaagtcagaa tgtggcgaaa
91201
91261
       agggcattca ttcccaccaa gggcagatct ggtacaggat gtcagagctg tacgtcctct
91321
       aggggtgggt tgggggtata tgcagaagag gagacagcaa gaaaagacca gttacttaca
91381
       gggagttgat ctaatcagca qatatattaa qqatactqqq tqctaqqttt tttttqttat
91441
       cttagaagtc aattacaaaa gttgaaaaag gagaaaatta gtgtgagcac tgtggtgttt
91501
       tggaacagga gatagtggtg tgaactcatg gtttccaaca tataggtaca tgtagaaata
91561
       agtgtaaatg taatgaataa caacacaggt ggcccttcat atcttcggat tctgcattct
91621
       acaaattcaa ccaactgcag atggaaaata ttcagaaaaa acagtgggtg gttattgcat
91681
       ctgtactgaa catgtataga ttttttttt ttqtcattac tccctaaaca atacaqtata
91741
       acaactagtt atagtactta cagtgtatta gatatcaata aataatctag aggccaggcg
91801
       tggtggctca cgcctgcaat cccagcattt tgggaggccg aagtgggcgg attacctgag
91861
       gtcaggagtt cgagaccagc ctggccaaca tggtgaaacc ctgtctctac taaaaataca
```

91921	222224	t	~~~~t~~~t	~++	ataataaaa	
91981			gcaggtgcct	_		
		-	gaggcggagg			
92041			tgaaactcca		-	
92101			cataggttat			
9216 1			tggtgtcttt			
92221		-	ttttgtgtgt			
92281			tacttagttt			
92341			actaaaagga			
92401	caaagaagaa	aagggaatct	ggcttaaagg	gctcccattg	gccaaatctg	ggacaatttg
92461	agcatcaaaa	taaatattga	tattaacaga	ttataaccag	ctgaataaaa	taggaatcca
92521	ctagtttata	ccaatattcc	taattaataa	attgtaagtg	tgattcagaa	acataatatt
92581	tgcagtcagt	cttcatcatt	ctcagattcc	ttatttgcaa	attttcctac	tcactaaaat
92641	tcgtttgtga	ctcaaatcca	atactggcat	tttcacagtc	attcttgggc	atgcttagca
92701	gtgaaaaatt	tgagttgccc	agcattgtca	ccagctgagg	tcaaacaggt	ggtgctctgc
92761			actgggagcc			
92821			agttttttga			
92881			ttgctcctga			
92941		-	ctttgttcag			
93001			tatatatcag			
93061		_	cagtcgacaa		-	
93121		-	gagcaattac			
93181	_		acttattgcc	-	, , , ,	2 22 2
93241			tccccacca			
93301			ggcagctgat			
93361	-		atagagggta		-	
93421			aatccaatag		=	_
93481			ggcccgtaat			
93541	tctaacttga	aggagactac	acagacatga	caattaaata	caatattcta	aactgggtcc
93601			atgggacact			
93661			taacttcctc			
93721			atttaaagta			
93781			aggaaaataa			
93841			aatctaaact			
93901		-	aaaaagacga	-	_	
93961	-		tcteagccgc		-	
94021			ataccgaaag			_
94081	-	-	cccttcgttt			
94141		-	cattgctata		_	
94201						
94261			tcctggccta			
94321			gtctctatag			
		_	acaaccgaaa			-
94381	_		ctgttaagga		-	
94441	_		tggagaattg			-
94501		-	tatgtttctc			
94561		,	tgtaggctta	-		
94621			gtaatggaat			
94681	ctttcaaaat	gtggaattag	taatgtcctc	gatgagtctg	aggacagttt	attttttgaa
94741			taacacagta			catccagagt
94801	ctagctgtga	tgtcaggttt	ttatgcttta	ggattgataa	tgtagttaac	

CHDC1 genomic sequence (SEQ ID NO: 3)

>13:44917401-45013900

```
tcaaatcttc tcaaattttc cccatcttaa aaactaaacc agttttctct gctttatttg
tttttagtc aactataat ctttttcttt cttctagccc ccaaacgctt ggagtaagta
acttacacct actcttcta ctttctttgc cttctcctta cctctgcagt ttggatgttg
ataaactgtc ctagaactac tctctcaaag acagaggatt ttctgtgtcc cccaagtctt
tgYctcttgc atttgctatt attgcaggac aaggacagag ctctctctgt tgcaactcca
gtaccaaaca ttacctgtga gttagaagcg gttcagcaaa tctttgttga atacagactc
tgtggtcttt tccttcaaa aacttcttgt ccatccatcc ttatgcatgc cctgtgctcc
atcctagtcc aagcaccctt tgtcacacct cctatacctg gtaacactat tctggcttgc
```

```
481
       541
       cccatgactt caatgactat tgctgcaaac tcaatcttct gaattggtat ttttaaaatg
       taattaatta actgatttat tattatattg attaattata gatgcacaag gtaaaactga
601
661
       acaaacaqat atctaqaqaa aqaqaaqtct ttctctcatc ccattctacc aqttttcttt
721
       cccataagcc atcactgata gcagtttctt gtccctcctt gcagagactt tctgtgctag
781
       acaattgctt cctgattgga ctatggctca ccatcatgcc tggggccctg tcttgaatcc
841
       tagecagttg ggctagggtc ttgtttacct cctgggcatt ctcccattgt gggctgtgcc
901
       atacatcccc ccaggcaatg atttatgatt tgcttcaatt ggcatagtct aagatgatcc
961
       ttgctcttag aagagtatct gggactccag cggctgtgac cagacatgca ggtaacactc
1021
       ccctgtgggt attatgaggt attccaacac tgttcaccct cactggggtg gacttccttt
1081
       ctggtcagtc ctctatccca accacgctaa ttctggcttt actctctctg cagcaaccag
       aaatcgaaga aagtcctaac tggttttact tttgaactgt ggtgagttgt gctacgtgtt
1141
1201
       gacctgattt gccaacagat aaaatgagat gaccatgttc ctttgcttct gcactattqc
1261
       ttcactgtct agcaggacct ctctttagat gtcgcactgg caggatttga gaaataactt
       ggggcgttag acagctaatg tttaaaccct gtgtatgtga atagtgatag catctgggta
1321
1381
       tgggaagctt aacgccattg tagccagagg gcattttctg ctaaatctgg agagaacaac
1441
       cactctggga gcctctgact agaccctaat gacagcctta agttcggaaa atatccctgt
1501
       aatgatatca agagtottaa aaacggcoto tggggaacat gaaaattact gotttagtit
1561
       gatgcaaagt accttaacta caaataggaa gacttttttg tccttttaaa gtccacctaa
1621
       tqaacaacaq qcctqaaaaq qtacttaaaa tattqatttg gaggtacatt ttgatcagtt
1681
       gaactgcgat ataattggcg atcgaaagat gacacatcca tgagagagac taccccagtc
1741
       cagggtttct caaagtgtga gccatggata acagtcttgc aagatgagat ttattggtca
1801
       aatatatagg aaaaaactgc agtgaatcat ctttccttct tccatgttca caatgtacat
1861
       tagcatatca aggattcaga qaaqtqtqtt aqtaaaacaa cttctaaact tttaaattaa
       ccctttgtct cccaaactta tttggcgaaa aaatgtttta tgcatagtgc ctgttagcag
1921
1981
       cctaaagaac taaggttcag agacacacac actggataat gctgcttcag tttattcatg
2041
       caagttaaat gatttacggt catgcgatgc acaatgacgt tttggtcagt gacagactgt
2101
       atggaatgat cgtcccataa gattataata ccaaattttt actgtacttt ttctatattt
2161
       agatatgttt agatacccaa atgcatactt accacggtgt tacaattgcc tatagtattc
2221
       agtattgtaa catgctgtac aggctagctg caataggcta taccatatat agcccaggtg
2281
       cataatagga tataccatct aggtttgtgt aagtatactc catgatgttc acacaacaag
2341
       aaagtcatct gaaatgtact tgtcagaata tatccccatt gttaagagag acatgactat
2401
       attaataaac aaataactgg ttcctctaaa taattcacat attcatcata ttacaaacca
2461
       ataatacaat atgcctatgt tataaaccaa taacataata taatgaactg gtgaaacatt
2521
       taggtgaacc agttgcaata aagctqtttt ttaatattat ctqttatcta acatttacat
2581
       ttgctttttt tttaaagtca ggtatttaaa aatcgatttt ccttttttt tgagatggag
2641
       tcttgctttg tcaccaggct ggagtgcagt ggcacgatct cggctcactg caatttccgc
       ctcccgggtt caagcgattc ccctgcctca gcctcccgag tagctgggac tacaggcaca
2701
2761
       tgccaccatg cctggctaat ttttttatt ttagtagaga cggggtttca ccatgttggc
2821
       caggatggtc tcgatctcct gaccttgtga atccgcctgc cttggcctcc caaagtgctg
2881
       qgattacagg tqtqaqccac cqcacccqcc ctaaaaaatct atttctttat aagttaaagt
2941
       cttattagtt gatgcctttt ggtccttatt ttctagtgaa ttcacctgga agcctcctaa
3001
       acctetggca ggaaccagag ggtttgctac tgctcactga tgttttttcc ttacaactta
3061
       cttaaggaga tctcaacctc cttaagccaa aatattcttt tattattatt attttattt
3121
       caataggttt ttggggaaca ggtggtgttt ggttacctga ataagttctt tagtggtggt
       ctctqagatt ctqqtqcacc catcacctga gcagagcaca ctggacctaa tgtgcagtcc
3181
3241
       tttctctctc accacttccc actctttccc ccaaqccccc aaaqtccatg tatcattcta
3301
       ttttttcttt ttttagacag agtctcactc cgtcgcccag gctggagtgc agtggtgcaa
3361
       teteagetea etgeaacete egttteeeag tteaagtgat teteatgeet eageeteeee
3421
       agaaqctqqq actccaqqcq cacqccatca cacccaqcta atttttqtat ttttaqtaqa
3481
       gatggggtct caccatgttg qccaqactgq tctcaaactc ctqacctcaa qtqatccqcc
3541
       cactteggee teceaatgtg etgggattat gggegtgaac caccatgace agetgttgta
3601
       tcattcttat ccttttgcat cctcatagct tagctcccac ttataagtga gaacatatga
3661
       ttggttttcc atttttgagt taccaaaata ttcttttcat tacaatcagc ttctaatcca
3721
       cagtggtcca aaccaagttt tcctcaggtt ttttcaaaat cctattatca ctcataagtt
3781
       ctaggtcaga atgttgtctc tccgttatac aattggttat attatctcat ataatttctt
       aaaaagcatt gatttaaaaa caaaaatcac acataaatga aaattgacat ttcataagac
3841
3901
       catgtacaca tatttatgaa qacaqaacaa qqactaaaqt ataggttatt qatttatcaa
3961
       gactgctcct ctattgtcat tcagagaatg gtcaagaagc cagcttctct gagaatccta
4021
       tcttgaggca tagattctgc agtttcttta ttccgcagga actqctgtag aaaggagtac
4081
       ttaaataaag tctccctggt ctaggagcca gaactccacc ttaatctggg agaaaacagg
4141
       gaaataaagt ggccagaggc tagtagctac tgctttgttg cttcaagaga aggaagtatg
4201
       agcctctatg aaggggttga ggttttttgc tggggacttt ggggcacaga atgtaaaaaa
4261
       aaaactgcgt ctggacaata gtcagctatg aagtatttaa aaatgtaaag gggctgggtg
```

```
4321
       cagtggcttg tgcctgtaat cccagcactt tgggaggccg aggctggtgg attacctgag
4381
       gtcaggagtt taagaccagc ctgatcaata tggtgaaacc ccgtctctac taaaatacaa
       aatttagccc agcatggtgg tgtgcaactg tagtcccagc taattgggag gctgagacag
4441
4501
       gagaattgct tgaacctggg aggcggaggt tgcagtgagc cgggattgaa ccactgcact
4561
       ccagccaggg cgacagagcg agacactgtc ccataaataa ataaataaat aaaggggcca
4621
       ggcacagtgg ctcatacctg taatcccagc actttgggga ggccaaggtg agtggatcac
4681
       ctgaggtcag gagtttgaaa ccagcctggc taatgtgttg aacctgcatc tctactaaaa
4741
       ataccaaaaa aaaaaaaaa aaaaaaaaat tagccaggca tggtggcagg tgcctgtagt
4801
       cctaactact cgggaggctg aggcaggaga atcccttgaa catgggaggt ggaggttaca
4861
       4921
       gagcacagct taagaaaatg cttgaaagca ggtgactaga cttatgtatg actaacttcc
4981
       ttttaagaaa accaagggtc tcagcaagta cagtagttcc cagagttttt gatttcagag
5041
       ataaacaaca tcaaaataat tggtaactga ctttagtaac ctccttttgt tattttttga
5101
       aaaaggatac ttaaaaaaca ctacaattta ttgttaccat tgttttggtt ttttttttc
5161
       atcagaaaaa aaaatagtga aggcacagcc tcacaattat atataatttt tgaaattaaa
5221
       tacattcagg ttcatgaaaa actcaggaca ttgtcctatt tttttttcct cattttatca
5281
       gggtcatttt ttcatcaact agctgattca catagaaaaa tcctgaaaca catattattt
5341
       atcttcagag aaattcatgt tgatgttact agttgcatca aatatctcag ccagacaaca
5401
       ttatttgttg aatcttccag gcagcggatt tttttaaaag ggcctgattc ctgcccttaa
5461
       tagcaaaagg gtgctgtttt cagaataagt aaacagggta ttaaacaaaa gagagatgtc
5521
       catcttcttg aagaaatagt gaagaagcaa gacagcaagg ggaaatggct tgtcgagttt
       ctttaatatt tagaaataat caagatcatt ttcaagggtc aagtactctc tcccatttta
5581
5641
       agaaaaactc cttcattcag ggaaatcatt tgaaacttta aagatgtatc aacaagtacc
5701
       ccataaattt atacaaataa aaaaggacat atcaacaggt ggcaaacctg ttaaacacat
5761
       ggtctattat gcaatactta attgattact aatattaatt gtgcactcat tatatacaaa
5821
       gtactcccct cgattctgag gcatggggag agagttgcaa agatgaatag gtccctattt
5881
       catggaattt acagtttagt aatctgtaga tgggtaaaca aaccacaatg agtaggtcaa
5941
       tctaacagag ggactgatca tttgttaaaa agcaaatcgt gggctcatat gcaatccatt
6001
       attttcttta aagaagaatt agtggtcttt taaaaaaata tgtatgcttc ctatgatgca
6061
       tcacaacgac tcttagtctg aactaaattt gcagtcagcc agaagatgtc ccaaatcatg
6121
       tcctgactgc tgatcacaca gactaccacc tggtttcagc tgaagattct tttaattgga
6181
       tttttttctg tgtttctgtt tttcactgga ttttgttttt ctctgttcct ctccctggag
6241
       gaaagtggaa atttggttac ttttttgtga tggaagtata ctttcattta ttattattgt
6301
       cgttattatt atgaattttg aagccggact tttaaaagcc tggaaggctg cggcgaatgg
6361
       catgtgagag gggaggtttg cgggaggata ccagcaggtg gcgcgtgtct cctccgggca
6421
       gattagaatg ctttgctcag ggccaagaat cccgcaggaa ttaagggcaa ctatctgtgc
6481
       agtcaattca agtgacacag atcatgccat acttaagtgc cgagtccatg aagtcaccag
6541
       ttccaqcctg ttgtctaggc catcaaactt atgtattacc acttaaaaaa ccagctcccc
6601
       tactccaagg gttgcattac tttcgtgctt gacaccccga caaccccgca cccaccccc
       gactcatttt ccccaagcca agtcgctcat aggggacaat caagccttaa gaatagagca
6661
6721
       aaaataaagg ccctggaaag ttggacatga agctttaact tcaggaaagg aatggtattc
6781
       tattaatcgt ccagctggtc tgcccttagg gtgtcagatg ttctctgtcg cccctggtgt
6841
       gccagcattg gcctgggtgc cactgggtgg ctgatggcag aatgtgaatt cacttgcaag
6901
       cggacatgtt cgtttccatg ccccaaagcg ggaagaagaa gggcacaagg agacttcgat
6961
       ggttctttca gctcagactc gagctgtgac tgatttgctg tttggggtca ctggctttct
7021
       agcetetect ggcaccacce aatttegggg agcagecage teatetttet cetacgacaa
7081
       tgtcttctgt cccccataaa cactgccctc attttgagtt tttctttcct atgtctgtag
7141
       ctttcttctg ccgctcagca aacactctgt cccactcgta ttcgtccctt ggcgctggcg
7201
       tctggcccag gggtacactg tgaaggaggg caaccctaga ttctgagggc cctagctcga
7261
       atctagcgcc cctctaactg caggggtgac cttagataca tttattaact tcctctgtag
7321
       actcagggga acaactttgg cactcctggg gtccctggat taatgaggta acttacgtag
7381
       actocotaaa caagogtotg gttoattgta agogoocaaa tgocaggggg catotgcagg
7441
       gatgacccca tagtgaatga aaactgcctc ttggggatct ctgggttaaa cggccagaat
7501
       aaatcgcaga attgagagaa ccctctcctg ccccaaacct cactgtactg taaatcccat
7561
       teattgeete cegeegtttt atcegtgtte teagaceace cecetateee egeaacetee
7621
       agtcccctaa agcctcctgg gcggcaaaag gacgcccaga gagaggttcg gcgcctcagt
7681
       tgccccggag cagacgtcca gccccgccgt gtacccgatt gcggggcgga tcgcggcaag
7741
       gcggcggcgg ccggcagaat aggcgcggag gaaggctcag gcggggcaga ctgcgtgggg
7801
       gaaggaggag gagagagcag acggcggagg agggcagagc agccgggggg agggcgcagg
7861
       ggcgggagga gacacatgcg cgctgccgcc gccgccgccg ccgccgcagt ccttagcttc
7921
       ccggggacag gaaaccttca agaccgagct gccacggccg cctccccgcc cgcccccat
7981
       totacqcqcc tqcccacacc ctcctcccct ccttccagcg cctttcggtg gagcactgcg
8041
       gcactcagcc egagetgccg ttttcccctc gcggggaacg ctgtgacccc cccgcaggag
8101
       cggcggggcg gggtggggg gcccgggaga agatggcgac gccgggaagc gaaccccaac
```

```
8161
       ctttcgtccc ggccctttcg gtagctactc tgcacccact tcatcatccc caccaccacc
8221
       accaccacca tcagcaccac ggaggaaccg gcgcccccgg cggggcgggt ggtggcggcg
       gtggcagcgg gggcttcaac ctgcccttga accggggtct ggagcgcgcg cttgaggagg
8281
8341
       cggccaactc cggggggctg aacctgagcg ccaggaaatt gaaggaattt ccccgtaccg
8401
       cagcccccgg gcacgacctc tcggacacgg tgcaggcagg tgagtgaggg ccgaggggcg
8461
       ggcaggggtg tgggtgctgt ctgggtgtct gtcgtgcgtt ccctaacgcg gtggacagtc
8521
       ggagatettg tettgetggg ggagggaggg tecateggee egttgtetee egaagaaggg
8581
       actogogtgg gogoggaaga agogggooot ggagagggca ogggggooot gootggtoog
8641
       gcgatgcagt gccaggaggg caggggtgcg ccgggcctct gcgcctgaga gcgaggggtc
8701
       teeggetete caccetgtgg etgeegegee agggaagtaa eegegggget gggaettgea
8761
       ggcgcgccgc gtgcgcgcag tgtaagtggg aggtttcagg cggctgtgtc ggcttcctgg
8821
       gccccgcgca gggctgggaa ctccagcgcg gacagcggcg tcggcgcctc caaccagttc
8881
       aagccgtctt tgcatcgagg cgtagcccat cctggtgggg aaacccagac aaaggtggca
8941
       cgccctcggc cgagccaggg gcatcggcgc agtgccgcga gccccctcgg cgacatcgcc
9001
       gagegategg geaacteggt geogeetgtg aggtgeeeaa gttteetete cetgegettg
9061
       tgcgggaaaa gagccgccgg gcttgtagtg aatcccagtc ggctgccgct tcggaagcga
9121
       teggeeetet teetteegtg cettttgete accgeeeaca eagtttgggt cetaceaceg
9181
       aggetacetg gtteteagtt acceaacegt tgegggggee eeaggaaagg aeggegtgge
9241
       atattaaagg caaagtaatt aacgtgagcc tgttttcctg tgtgagcccg gcaagttgta
9301
       actogogoca ataagoagoa taacttttto aagttacgto atgtgttaca tacttotaaa
9361
       acgtctgctt tctctttggt agttggagtt ccaggagcgg gatctataaa caggaaggag
9421
       ggtggtggaa taggattggg gccttagggt ctatacagaa ctgacttggt ttccggccat
9481
       ccggttccgc tccctggggg agggtttgtg tcatagcaag cgcccaacat ttcccagggc
9541
       agtgggtgct ccgttttgga gccgctgccc agacctcttg gctgtcatcg cctcatggcc
9601
       cagggtcaga ccccctgggt cttggatggg ttgactctca tcacaggagc acccagttta
9661
       atcttgtagt gggcaaggga gcaggcagtg ggtttttgga ggctaggttt ccagtgtctt
9721
       ttcccccttt taattcaata aacatttatc tagagcctta atgaatattt agatacagtt
9781
       ctgagttcac tggaggcaaa gatggctctc cagggtcatt aaactttgta atttggattt
9841
       agggatagtc aggaatcggc aaaaaagagg gaatttccaa agttgagctg tcaacagctg
9901
       gggagtgtct ttcaataaga cctcttagtt acatcttctc aagtggaact tattccaaga
9961
       attgcctgaa tcactgactt aaaaaactac attaaatttt acttcccttc tgctataqaq
10021
       tgtaccgtga gctagctatg ctatggttgg ctatatctgc agaaaataga gctggcatga
10081
       ctaataataa taggtttgtg tagttcagta agggggcttc atagttgttc tacttcagtt
10141
       atgctaagga ttatttacaa agttaggtga acttgatgtg tctgctgtgt tggcatttct
10201
       ttgagaaRac cagtgctttt agggatcaca tcttttagct aagacctcgc catgtgaagt
10261
       ggatgctgaa agtgttcttg ttggcttgtt tatggcaagc ttaagttgtg agttttgcag
10321
       gtttttattt atgagctcac ttgcacatgt tttatgctca ggaaaatcta actggttaaa
       attcagaggc tttatgttaa ttcctcatcc aaaaatacag tattatttgg gggaagagga
10381
10441
       gtggagggat attcatgttt gtagaaactt aagtcaaccc catcagaaaa gtattcattg
10501
       cagctagtta ttttacatga aattagaata cccaaatgta ttaaatattt gcttctgcaa
10561
       aacgtctttg cctcaggtca aaagctaggt gtaaaccaca tgtactcttt gttctaaaga
10621
       taaatttaat tgagcacagt ttcttatttg agagaccaga aagcaaaata aagagttaaa
10681
       gttacctccg gtgtacacag tgttgacaca gcgtacatgt aagagttcta gtacagttga
10741
       aagtttgagt agtaacattt ataataaaga tagtggtttc tccttgactc atatttactt
10801
       taagaatgtc tcttaaaatt agaatggcat atgaagatcc ttaaaggcct aagaggcaaa
10861
       gtggattttt ttttccatat attttctaag acagggaqtg gtagagcaag ctttttctca
10921
       cagttttgtt gtatattaca ggccatttgg tttacgcctt gtaaaaagtc aggcttctgg
10981
       cagccacctg tgcagaactg cacctgggca atatagccca tctgaacaga gtggaaaacc
11041
       aagatgtaaa caaagaaaca tagaatagat gtctaagctg tcactcaagt gcatatactt
11101
       tattgatagg aaaaaattca agctctcatt ttqagcctat taatttactt ctatttqaat
11161
       caaaataagt tttgttgtca gagtctagtc ttttaatagg tgaaacgggg aaagaaagac
11221
       tgatccacgc aggtgcagtg agtgacacag gtgtcactga tggaaaggga caaaacagaa
11281
       gagccactat cagcactggg tgcgcctctc tatgcgttat ctgcatgatc ttagtcccca
11341
       ctaggagccc agtcataccc tcatttatac atgggaagac tgagacagag acaagttaca
11401
       taatatgctg aagattatac ctctactgag atggtcaacc ggtgattgga accctggcag
11461
       cctcacgtta attcatgttc ttgaccatat tctcatcaag cagagggaag gggttgagag
       atagaatctg ggaggcttcc tggaaattca ttcaaccagc attgattcca caagaatgta
11521
11581
       ctgagcccct ctgagtgctg gccactgatc taggcactgg ggacacaaca gtgaccaaaa
11641
       gagaatccct gtatcccttc ttgtggagtt cattctagtt ggagaataga gagatacatg
11701
       aataaattga ttttgcagga taaataggat gagttacagg atagatggaa tatctttgtt
11761
       ttataaatac acagattgct ttgtattgac ttcaggtggc ttgtagcaag agtataaatg
       atgactagta atacatataa tctgaagcat aaaattgggc caaagaaaaa caagtacaca
11821
11881
       aatttgcata tgagtaaagc aaatttttt tttttttggt gctgatttat taagtagtgt
11941
       cgttttgaat gaagaagttc aaaagggtat tttgtacaat taaaagtgaa ttgaaaagga
```

```
12001
       gtaagaaaag aaagtggctg attgcaggag gttctagaaa ataaaaaaga agcccttaga
       cttggcatgc aggacacttg ttgaaagtct tgttaaggaa agtggggaat atttcattgc
12061
12121
       taattatett tttgagttgg etetaageag gaaagaetat gggeeaggea etgtggetea
12181
       cacctgtaat cccagcactt tgggaggcct aggtggaagg accacttgac cccaggagtt
12241
       tgagaacggt ctgggcaata tagtgagacc ccatctctac gaaaaataaa atattaggcc
12301
       aggcacgata gctcactcct gtaacgcctg cactttggga ggccaaggtg ggtggatcac
12361 ctgaggtcag gagtttgaga ccagcctgac caacatggta aaacctcatc tctactgaaa
12421
       atacaaacat tagccgggca tggtggcatg tgcctgtaat ctcagctact caggaggctg
12481
       aggtgggaga atcacttgaa cccaggaggc ggaggttgca gtgagctgag gttgcagtga
12541
       gctgaggtcg caccactgca tgccagcctg ggcgacagag agagactcca tctcaaaaaa
       tgaatgaata aataagtaaa taaaataaaa aattaggcgg gtgtggtggc gcatgcctgt
12601
12661
       agttccagct atgcggacgg ctgaggtggg aagcccatag gttgaggctg cagtgaaagc
       catgategeg ceaetgeact ceagectacg tgacagagtg agacectgee ttaaacaaac
12721
12781
       aaacaaacaa acaaacaaaa caaagactat qtqqqaaaca aaqaqcttac tcaqqqaaqa
12841
       atattgaagt gcagcattaa aaatacccat ttatgtgtga gggaagagtt ctgtaggaga
12901
       tgcaaagtat aagacaatac aggaatacat gagatgctaa ataacagttc caggaagcca
12961
       ctgaggccca aggcaggtca aggtgaggtg ccaagtagca ctgatggaca ttqtqtqtaq
       aattcagagg aaaaggtcat tttcatgagg atgcttagga aagactttga tagcagaggt
13021
13081
       aggatttgga tcaggttttg taggatggat aggatttaga tagaagtgcc tatgaatatt
13141
       ctgtgattgg aaggatggtg ccaagacgtg gagtaagaac ctgacagttg qccqqqtqtq
13201
       gtgactcaca cctgtaatcc cagcattttg ggaggctgag gcgggtggat cacttgaggc
13261
       caggagttca agaccagcct ggccaagacg gtgaaaccct gtgtctacaa aaaaaaaaa
13321
       aaaaaaaaaa aaaagctggg ttcctgtaat cccagttact cgggaggctg aggcatgaga
       attgcttgaa cctgggaggt gaaggttgta gtgagccgag gttgcgccac tgcactccag
13381
13441
       cctgggcgac agaacaagac tctgtctcaa acaaacaaac aaacaaatga acctgacagt
13501
       ctaagattct gtgaataaaa gaaacagaga gggcatttaa gcctgtcttt ctggtcatat
       tcttctaccc aactcctgcc ttataatgga gtaaaggcta cagggctctt atgacccttt
13561
13621
       aattgaggac tccggaaatg gctgaagcct aggatttgtc agcctgtggg aataacacc
       tagctctgtg tgatctggct ctctcaaatg tctgtacaga ttcaaaggat cttctctgag
13681
13741
       atttgtgggt ggttttatct cttgaaggct gacttccaca ccctattccc atcctaaagc
13801
       aatggagtcc ttgggatgtt agcactcttt agtcgttgga attcacagaa gacttgataa
13861
       caaaatctag tcattttcaa caacttaact ttatttcata atttttgcca tcaatatgtt
13921
       tcactataaa tataataaaa tttttgaaat cacatgtgtt tccttaaaat gtatgttctt
13981
       ttatagttat atccagtttt gaattatcgt tctgctattg aattaaattt ggtagtttt
14041 aacatacctg ttgctttttg tggtggttac tatcagataa atgcctttgt ttattacatg
14101
       tattctaaat attcttccat tcataaacta tgattcatat ccttttcttt cctattacta
14161
       ttgtttttc ttccctgtta aggtatagat aaattccaac atcaaacaaa agcttttgga
14221
       acaactcaga caatatctgt agtggttctg aatcacgtct agatgggccc ttccacatgt
14281
       ctgtggtata tggcaaaaac agtctccaca aacctacatg ctattctcat tgcttgcatt
14341
       acaggctgct ttcttgaaaa ggcaaggaca tactaatcat gcttctagaa taatagcata
14401
       caattatagg ccagggaacc tctgggaatt tttggtctgt gccagtttat aaaggaacag
14461
       cccaaggttt gaccttcatc actgagatga ctctactgga gagtttgtca gtcactgcaa
14521
       catctgattt gatttttggt aggtgtttga tactaggcca caaattagca cacctgtca
14581
       tttaaaaaatt cttgtttaaa ttattgactg agactttttt ttgtgtgcgt gtgttactgt
14641
       aatgaactga aatttcccat ggcatggcat aataactctt tgtaataaac atttaaaggg
14701
       tagatacctt ttgaaatcca tgttgacqtc gattaattca gaagtcaaac ttgttttgcc
14761
       cgtgctgtcc atctggtata tgtacataga ctttttctat tatatcattc aacttcatca
14821
       ttgcttgttt aaacacaagc tattttcctc ttttgtgtat acatttctgt tcccccatat
14881
       atatagactt tttatatttc agctgggcag catttacttg ctcttaatgt ctccccataa
14941
       tttcccttca ggtgtggtac tgcatgtgct ttttcaaagc cttgataatt taaatggcag
15001
       aaatgctatt attaactcca tataaggtgg ttatgggttt gtcactcaRg ccatgtgtaa
15061
       cttgaatttt tgtctaagcc tcagaaaaac ctgtttgtga ggccactttt Yagaatttct
15121
       tgggcttttt ggaaaattga acgtctgtct tggatattgg cttgagctta gatatggcaa
15181
       ttccaccagt gattatttca gtgattgtgt gaattgttag aattaagata atttggtgtt
15241
       aattgcagtg attatttcaa gttataagat tRtaatctat tataaaYgtg ttaaggatgg
15301
       aaggcacaaa acccaactat ttttcYRtag tgaataatct tttttaatgc ccaactcata
15361
       ggaagcctag cttctgttat tgctactagt cttttgttqc atqaaagatt tttgttttq
15421
       catcagaatt ttgccatgat atttcagaga gtaagaaaag aaaaaaagaa aagaaaggtc
15481
       agggttccaa gtcagactta atgtaggaaa actaggcatt ctaatataga ctcaaacatg
15541
       aaatatgcct gtgttattct tcatcctaat ttaagagttt agtgatattg cttccatatt
15601
       ctgcagtaag aaatagtaca tttggaaacc atctcctcc ataaagtaat tcaaaaataa
15661
       agtgagattg tttacatgaa tagaaagttg atgaactgtg agaattgggg cttcccttgc
15721
       ttactccagc catgcaatag aagggaaatg cttttatagt cagatttctg ttcactgttt
15781
       ttcctaacca tatcctcctt cactggccat aaaggaggat atagctggag aaaaaaatca
```

```
15841
       gagaagaaca gtatgtttga tttgcataac agaaatactt catattttgc ttggtaagaa
15901
       attattgctt ctctgttaat atgatgctgg tgctgaggca gctcaactga ctatacctga
15961
       aattettace gaacattttt aagtaategg ggacaggtta tttgattttg ggatetteet
16021
       agatgtttgt ttttcttcct tctgctgttt gcttttttcc ctcagtccct ctgctggagg
16081
       gggacctaac acaggtgtgg gatgaaactg agcaggagcc ttctagctca gtgtgtcttg
       aattteettt ccactgitet igccaaatgg gcagaaagtg gcccccatct tagttittet
16141
16201
       aatcttctgg cttctcatgt ggacttgctt ttgacagctq acccctqcaq tqtqqtatqt
16261
       atagettigg cacacgatgt gittectetgt tattetteee tattitigat gittatgeea
16321
       tacagogtga ggagtagoat caatatttot gatotggtto agtoagotta gototgattt
16381
       aactacttta tototgoagg caatggtggc aattcaaaga cagcaccatc aacacactgc
16441
       ttggcttgcc cttcctctgg attgccttca ttttgctttt ccaagtcatt tacctcatgt
16501
       coefficient coefficient taggatteta etgaceccae teteatttea tetgggeece
16561
       cagcctgtca aaacaaacag cctccctatc agccctttct tgcagatgtc agcactgaat
       catacatgac cttaagccat ctttgcatta tttccttatg gcattttttg ttttattgcc
16621
16681
      ttcctctgat actttcccta tqtttaacct ttttqctcct tcactqqcct qtqaqatttq
16741
       gctagacggg acttttcctg atttttgtat ggcttccatg cccaggacag aaaatgctag
16801
       aaaaacattg atggattact ctctttcctc tttcctacac ttggtctctg catttttcat
16861
       ccatcatctt ggatctaccc tgaagttatc ccctacttgt gcatagtttg ctgatctgct
16921
      cagattttcc tgtgagagct gatttttctc acatagcctc tttttacttc tcagtgtcat
16981
      ccactgtatt agtctgctag qggcaccatg acaatattcc tcagactggg tggcttaRac
17041
       aacagaaatt aattttccca tagctctgga ggctggaagt ccaagatcaa ggtgtcggca
17101
       ggtttgattc tcctgaggcc tctctcttgg cttacaggtg gaggttgtct tcctgggtct
17161
       tcacaggccg ttccttttta tacacaaatc cttgttgtcc cttcctgagc ccaaatttcc
17221
      tottottata agggtatcag tgagattgga ttgggaccca cccataggac ctcatgtaat
17281
      cttcattact tctttaaaga ctttgtctct aaatacagtc acattctgag gtgctagggg
17341
       ttagtgcttc cattactttt gggggtcata attcagccca taacgcccac tgactcaccc
17401
       ctgctgtagc tggtagctgg agttcctccc ccagcctgtg taaactgatc ttggacttgt
17461
       gtgaggctgc cctcaatgct gctcttgcag gaggcccaag acaggtctgt ttgttaacca
17521
       tectgteett ggaatetage eetgeacaca etagetacae etgeatecae getgagagte
       ccaataatgc tcctgagccc tcgaatgtgc tgtaaaatgg taagagagcc acatatacac
17581
17641
      ttacaaatgg atgactccgg ctcatctgga cccctcctcc atctctcata qacttaqaat
17701
       cttttcggtg gttggtgggt ccctagagtc acactttatt tttagctaaq qtqqqqtcac
17761
       ttctcaccaa catttgcaag tgttcgataa gcaatgttac atctaaaatc aaatgagtta
17821
       tagtgaattc tgagggagat gggcaggtqt tttataatat caaatattqt ttqaaattaq
17881
      caaatgaaaa actaatcaat atcttttgag cacttattgt gtaaggagca tagccaaaaa
17941
       tataaaggca tagttccacc tagtttgaat tggatgagga ttaaagaaat tatgtatttq
18001
       aaagtccctt acacatacag tactccaatt aacaagtatt atttcaccaa agcctttcag
18061
       cccttagcca aatggaattt cttccttttt tttttaagta tagcttagtg attaaaaata
18121
       gggtttcctg agcttcaaag acctgtgttc aaatcttggc cttgttgctt ataaactatg
18181
       tcactttggc cagatgactt aaaccctatg catcggtttc ctcacctgtc aaatggagat
18241
       aataatagta tgtacctagt agagttqtca tgaggacatt qqttataata acaacagcta
18301
       acattagcaa gcagttattc tatgtcaggt attgctccaa gtgctttata tgcaaatata
18361
       tgtattaaat gtatgtaata gatgtttcac ctcatttaat gcttgctaca tggtctgtat
18421
       taactagagt gggggctcaa taactccaag caatgccttt ctattgcaac ctgaagaggg
18481
       agattagaaa tgtagaaacc atccattcat atctctcct catttaatag ctgaggacac
18541
       taaggcccag agagtataat catttggcca agggtacaca gcatggcagt aggtgccaga
18601
       gccagggcag agtctcccag gctcacatca aagggtcgtt tctgtggagc caggaggtga
18661
       cattgggatg aagggaaggc tttccctcat ccatagggtt ctcaggtcaa acccacccaa
       accagccagg ttgtgggcct cccaaaaaaa aaaaaaaaa ggtgtgaaac ctttaataac
18721
18781
       agatggtcca aacctgggga gaataagata aagctaacgg tagttacaga tgagacatgt
18841
       tagtgtagga tttgactgca tgtggtttga gggacatgca caggcctctt gtcaactqqa
18901
       ttccacatac taaaggagtg tgctgggcag cccccgactc acaaacgggg ccatcagcct
18961
       ttcctagcaa ggctttgttt cagaacttgg catgcatttt cctataaaaa caaggtggta
19021
       acctgtgatt tggttctccc gccaacccac aaaqccctqt ttaaccctaq cagacctqqq
19081
       ccttcttatt aatggtggtt tcttattgtt tctttggaaa aatgcaatcc cagttccaac
19141
       atgaaatccc gaatctggag aacttggcat caggctgtga atgaggcccc tgcctcttga
19201
       aaataattet eteecetetg gecatteegg ceaggggteg gaggtteece acacetetee
19261
       caggtccctt gatcagggca ctcagcggct gggaaacaag ggttggcata agtcagggat
19321
       ccacttggac ctcaggaagg ccactgggcc agggaggaat aggccgggga gccacccacc
19381
       tgagggaggc Rtgcaggaac ttagacactt ctctatttaa tttttatatt tcttctqtat
19441
       tatctcccca acttactaat tttggaattg gaagcaagtt agtgaacttt tctgaacatc
19501
       aggtttgtaa tttqttaqaa qcqaaaatqc tctttatccc ttqqqtqqtt qtataqattc
19561
       aaagggtaat agatagcaca ggagcagggc tcaggtctgg caaacagtga gtgactagta
19621
       gaaaacctgt cactttctgt ccttaatttc catggggcta tgtgacatag tcttcttcag
```

```
19681
       tcacgtagat aattggaagc tgtcagccta tcattagcat agaggctaaa gcacaaactg
19741
       tggctgggtc tttgtccctg ctctgccagg acatggctac tacttcactt ccctgagtct
19801
       cagtttcctc gtcataaaat ggggataata attatagaat tattgtgagg aacaaatgaa
19861
       tacatatgtc aagtgcttag gtcagtgcat ggcactgatt ttgccattat gattattctg
19921
       {\tt tatctttaga\ aaagagagtc\ agtgttataa\ ggcacagaaa\ gactaaattc\ ctagaaatgc}
19981
       tgtgacatta ataaaataac atcagtatcc agcaagcttg ggtgtacatg ctttcagtgt
20041
       gtgtacatgt tatttatatc ctttcggcag tcttgggagg atggtagcat aggtggtatt
20101
       cattattcca tattgcatgg ggggaaacag gctggatggt gaaatgactt tccttcggtt
20161
       atgctgctag tcagcagttg agacaagacc acatcttctg ggttttcatg ctgtttttat
20221
       tcctcaattc aacggtgttc ttaggtttga tttaatttct gctggggccg ggtgcaatgg
       ctcatacctg taatcctagc aatttgggag gccaaggtgg gtaaatcact tgaggccagg
20281
20341
       agtttgagac cagcctggcc aatatggtga gacccgtctc tactaaaaat acaaaaatta
20401
       gctgggtgtg gtggtgggca cctgtaatcc aagctactca ggaggctagg gcaagagaat
20461
       cgcttgaact gggaggcgga ggttgcagtg agctgagatc acgccattgc actccagcct
20521
       gggtgacaga atgagactct gtctccaaaa taataataat aataataata ataataataa
20581
       {\tt taataatgac}\ aacaataatt\ {\tt tctactggga}\ {\tt cagaggagtc}\ {\tt ttgaggggac}\ {\tt tgagtctcgc}
20641
       agagaagagt gtgttcaggt ttctcacagt agagaatggg gaaccctatt cctgtgccac
20701
       gttgtgtatt caggtgaagg gtgctggggc cagctcttgt tttggcctcc agattggagg
20761
       ggtgaggaag tggtggctgg ggcctcagag gagggcctgg ggtgcctgtc ttcagtctct
20821
       acggaagtct tgtcattgat ttaaaagctc ttccaagtta aaaaacaagc aaacaaataa
20881
       aaaaccattg acagtctctt catgttcttg gcaaagaaca atttatgaat aattttatgt
20941
       tcttgacatg ctctgaagat gaatagcaaa cacttctacc agaagtgaag aaatggctac
21001
       taggaggctg agctttagga ataaatatat agtagattca attgttatct ttttttccc
       tcactctttt actggcatcc agcatttatt ttgaacttca gtcagaagtt atttcactaa
21061
21121
       gaaccttgtc atagcttcaa catctccctg aggctactga tatggtaact cggaaqqqqq
21181
       aataatgttt gtagggccag actcatgtct gggtccaggg tctttcagaa tgttcctctt
21241
       {\tt tcagttctca} \ \ {\tt gaacaccctt} \ \ {\tt gtgaggtcgg} \ \ {\tt gagtatcatc} \ \ {\tt gttactgaga} \ \ {\tt agggcactta}
21301
       tcacaagtta ggcagtcaga gtatatttgt aagccagtag taagacagag ccgaaattgg
21361
       agcccaaaca gttgttgaag aagtgcagga tcctcctcta ttttagtgtc actgaatatt
21421
       tagagctaga ggaagagacc agagaaggaq attttgcaga tgagaatcaa qcctatgqca
21481
       tttctacaga tggtcctcgg ggtgacatag agattttaga gttcatcccc aagtaggacc
21541
       cggattcctg actaatgtga tttcccccac tgatctgaaa gtgagctcag agaccccaga
21601
       tatatgcatg gggagttcca gccctaatcc tcacttgttt gtgatggcca gctatcagct
21661
       ccatttctaa gaattgtgtt ttaaagcaag tcacaattac tRgttttaaa aattcttcaa
21721
       ggtatctgtt attaaaaaat atagacacac atttgggttt tcagctttgg tataaacttt
21781
       tcttgttaga ctttgtaaca catgacctaa ttgaacagtt tactgatatt ttctataaac
21841
       agtttactga tatttacttt ccctccagtg agaaatgaac gaatttcatc gagtgcaaga
21901
       ccaagtttac tttctagaac attacctata gaatacaaat gtttacattc caaagactgt
21961
       tttattatgt aataagaatc atcaatttga catataaaaa tatgttttat tttgtaatag
22021
       agatctttct atacattaat tacctctaca attttataga tgaaataggg cagcacaaga
22081
       ttatggctaa aaaacagatt ttttttgagt gcatgcaaat caaatccaac ttaaaggaat
22141
       ctgtgcaatt gacggcaaat agatctctct ttgtgcagtt cccttggagg tgaaaatgat
22201
       aatctctgca tgcaatttaa ggcaattttg tgtgtgtgt tgtgtgtgt tgtgtgtgt
22261
       tgttttcctg gtgttttaga aagcctggat aaatccaagt taattttagt tgtagcagtc
       attccatcgg ttataggctt gtaatcaact cttagctgtg gtttgttcag atatttacaa
22321
22381
       tgaatgcttt cttgtatcta tacaqtactg taaaaggtac tgtgctataa Stttataagt
22441
       acaaatgtgc ctaaatctga tatattttat aaaattcagt tggcagctgt gaaggcttgc
22501
       ttttgtctct tcctccctg cacaggctaa gtccttggaa tcagtatgtt aatgaagact
22561
       tggtatctca atatgaaatt tgcaccatgg gagttctgag ataatgcgtc ctgatagagc
22621
       ccctaatgcc tgcctcttag gagggcgagt gacaaagaca gtataactca gctaagtcct
22681
       ttcataatca ggcagccttg gtctttctca agtggttcca tagtttctgt gtgtgtgctt
22741
       tcttgtgttt ctgtgtctca gacctcttct ctccttgggc agtctgtctg taatctttta
22801
       atactgcatg gtagattgga ttggatgagc cccatcacct ttggataaga aaaggctttt
22861
       ggacacaagt ccatgcaaca Ytcttttctt tagagaacac aatagatcac tgggaacatc
22921
       ataagaggtg ctctcagagg gtgcttataa gtggcaccat cctaaatcca ggtttaccgg
22981
       ggacagtctg ggtttataac tcatcctggc ctaatgaata atagcaccct cttttagcac
23041
       agcatgattt agataagtta tatggtcacc ccatgcacat gggatgtggt agataacacc
23101
       ttttaagaat aaagtgaaat ggattcaagt gaagtgactt acctacccat gtctagttgt
23161
       gtcagattga atccagaatt ggtccaggtt atcctggtca tttcaccagc tacccatatt
23221
       gctgtccttt gaaggaatta caatgcttgg ctggttctct tttttaactt tcatgccaag
23281
       aaaccctctt agtaaagtct tagacatttg ttgtttattt tagttggtaa aatacagcat
23341
       taatttaaaa attacaaaat attgcataca taggaaggag tccgtaccct atgtagacat
23401
       gatttaagta atgatgataa aacagacata gtgacagaag catatagaaa ggtgatcacc
23461
       tgggaagggg tgcagagagg atggaaacat tctatgtctt agaatggtga gtacataggt
```

```
23521
       aggtgtatgt atttgtcaga actcagtgaa ctctgcactt aaaatgggtg cattttactg
23581
       tatgtaaatc ataccttgat acagtagact aaaaatttac ctatttacca ctatccaact
       taaaaaggag aacatttcca ataccttttt agctttctgc ctggtgccga ttcctgactg
23641
23701
       acaagctgtt ttaaaacaca gaataactga ggctttattg ctaaatcaat gcctcctatt
23761
       agaagactga tatttctgtt ttagtggacg ttctttaatc tttattttcc ttatttcgaa
23821
       acgtcttgtt aaccctcttt acgtagtctt actcataaaa tattctaatt ctgtatttaa
23881
       caagcggcat tttattttag tgatagaaaa aactgtggct gaaccaagtt ttctgggatc
23941
       actggaatga tgttagctaa tggagtccaa tgttgaaagc atttgttgcg cacctactgg
24001
       atgtcagaca ctttgcagac acgatcttat ttctcctctg agcctaataa taggtatcat
24061
       ttcccttaaa tttcctcatg tgtagaattg aggcctatag atgttaagaa cttgcccaag
24121
       atccccatgc aaaagtaatt aggagaatta ggagtcaggg tttgagcccc agggatctaa
24181
       gtacattgtt aatgtagaga actgcccttt gctgggagaa gttaagcact tggctggctc
24241
       ccctggttgt atcgtgtagc accaggacca tgtggcgtat cacttccaaa tttcctaaat
       cactgtgatc ctgcatactc cttgcccaga cccctcctgt ggctctctcc tgcttgccca
24301
24361
       ccgaggctca gctgcctagc agcagatcca cagggcctct qgtatctqgc qccaacccqc
24421
       ttatcctgct gggttttcct ctagctcccc tcaagggcct gtgtggctcc agctgccttt
24481
       tccattagtg ttcccatatg ttccaggtta aggcctccgc tttgccttcg attgtacctt
24541
       ttctgtcttc attgcacttg ccaaataaaa taaacaaaac aaaacaatga cagacccag
24601
       ctctccagtc cctgtcaagc agtcatctca aaattttaat tcctgcctct tctaggatgc
24661
       cccaaatgcc agcctcctc tctgcaactc tactcatctt ttcatctaaa acagagttta
24721
       taatgattga gttggtcctt aattgttctt taattccatg tcttttttct ctaataagaa
       taagaatgat aatagcttca tttattgagt cagatattgt gttctccact ttatgtggct
24781
24841
       tccctcagct aactcccaga gcaatcttgg gaggtaagta cacattttct tcccatctga
24901
       cagactggaa aattgaggct cagagagaaa tgcctgagat cacatggcta ctaagtggca
24961
       agactgggat tcqqtttqac ttqagtttqa ctactctttq ctqacttctt qcaaatqcct
25021
       tgaggagagt agaaaagaaa ggaaactgac attgactgtg cctttgctat ggcttggcat
25081
       cgagatggtt tagcttatta tctcacaggg tccttatcct gtgctaagaa tcagatctcc
25141
       aaaaaaattg agaattagat ctctaaaaaaa cggaggctct gtttacataa ttcattcaag
25201
       gtcacagcgc tgattagtgg agagataaaa attaaaccag gtctttctgc ccctagagat
25261
       gctccactgc gtgcatgagg acactttatt tctttttctt actctctqca tgqcctagca
25321
       tagagctgga tattagggaa acttttcaat tagttatagg ttgcttaaaa aacaacaaaa
25381
       acaaaagtto ottttattot gttagaagca tgagcatato acacatatto oggtagggaa
25441
       gagtagtacc ataaagaatg ttggattttt agaaqaqaca acqtaaaagc aaaqqtqaqq
25501
       tgagatagac acttgaacag aatggcagtc acagaatttc ttatcttttg agagatttac
25561
       ttqaqqqatt ctacctttac tatagtagag gagtgtctaa aattaaaaga caggagaaga
25621
       tgacttagta ttcccattca gatttttaaa ttgctgtgtg gttagctgtc tccagtcagg
25681
       cagcttcact gctcctttct ttaactgcct ttctcaggca tagaagtaaa aagaagtaaa
25741
       aggtaacggc cagttgccct cggcctctcc attggtggat ttgcagagtg ctgaaattca
25801
       ccctagagtt tacccttcaa agtaactagg cattaaaaaa ctcataccta caaaaaagga
25861
       actcctttgt gttccaacaa ttgttacaat atgttagact tttggtgatc aaaacacacc
25921
       tccattaact gctccagcat cttgtgcatc tcaqctgttt gtqcqagtca tccaqcatga
25981
       gggaggatgg gtctgcatca ggtgcagttc ctgggccttg gaatatgtcc tccacttttg
26041
       tttgatcagc ggcgtgtttc cattgagtgt gctgtgtgcc aagagaacag ttgtcagtgg
26101
       tattcgcagt gatgcacatt agcatgagtg ccagagattc aagtggcgac gagtaccaac
       tctgccttcc acccattgct ttttgtgctc tcagaaactg gagaaacgct agctttgcac
26161
26221
       actgggtttt ctcqaaqcgq qctaqqcqta tcatttccaa qqqctqtqqa qcttcctqqa
26281
       actgtgcatg ctgtgaacac tctcccagaa tgatgaaatg ccaaagtgct caagtcacca
26341
       tgcctttgtt cactggctcc catgcctttc ttgctgtgac catccatgag gcttagaacc
26401
       atcacagctg tttaggaaat ggtcttggag tccaacagac caaggtcaaa ttctggctct
26461
       gtcacttagc agttgggtga ctgtaggcaa ttcatgtacc tctctgaact tctcatttct
26521
       catctgtaaa gtaagtgaga gtaataacac ttatggggtt gctgtgatga ctaaaataac
26581
       aaattctaag tatgtggcac ttggggtatg tgtgtgtgag agagagagag aaagagcggg
26641
       26701
       tgcccacaga gggggagtta tttttggaga ggaggggtc ttctcactgc tcccaattct
26761
       catccatgct ggggacgtgc atctgtctct gccactactc tgggaacata tctcttgtcg
26821
       gatacagctg tctttctgtt gttcccttgg tctgccagca cagggctgag gccattccct
26881
       geactectet tectaettgt acceecactg caggecatge etggggacte cetgaecetg
26941
       ctgtccttct cagcttggag cttgctgctc tttatgggga ggactttggt tctctttgcc
27001
       aggctgcctg agaaacaggc ccaggtggtg tgaagtaata atccccagac caaatatgtt
27061
       tatcgtctta tttgagccat cctgagactt actgcaacac tactttaagc ttagtgagtt
27121
       taatttggat cacagcctat tatacatatg gcatggtgtc agcttttagt aaaagataaa
27181
       ataggtgcgt gaaatgaaag agacatagat gccaqttgqa qaacagagtg atctaaaagc
27241
       aaattctgca tagcaatatg aatacttcag agtggacagg ggtatagttt gaaagaagct
27301
       acctataacg actgttttca ttatattgac taaagaaaaa aaaagctcga caaaatctcc
```

```
27361
       ctaactcgtg gagtcatatg gaagatagaa taagaagaca gtgcacaatt gtgggcaaaa
27421
       gaaggtaatg aaacattgca aagactttaa aaagcttttt ttaagttcta tattcacagc
27481
       cacatttcgt aaacttaaga ggtgctgcat tttttttcat tcattcatcc atccagcaaa
27541
       tatttattat ctagtgtgag taaacttgcc catgagccca tccctttcca ctgcctgtta
27601
       ctgtatgtga caaggatagt agcgtgctca gtagcttgca accacgttgc ctgggtgagc
27661
       gactecteca tetactggee cagtgacett gggeaagtte cataacetet etatgeteta
27721
       gtttcctcat ctgtaaaaga gaaWtgataa tagcacctgt cacagagggc tttggggaat
27781
       tgaaaatgca aggagtgcag agcaatgcct ggcatctgag agacattcaa tacatgttaa
27841
      ctcttatcat ttgttttctg acttattcat ttgcttcttt attgtcactc tctcttcca
27901
       tcattaaacg ctgagagaaa ccttgttttc tcttttctca tgtaactact atccttggtt
27961
       cctaggacag tgtctgccca tggtagcagc ttagtaaata tttgagccga gtaagtgaat
28021
       aaatggctgg atgaatgaat ggaatgcatg aaggctggac tctgtgctgg gtqcttccta
28081
       gacaggagtg aacaaaactt ggtgcctgct gggtatatgc ccaaaggaaa gaaaatcagt
28141
      acagcaaaga gatatctgca cccccatgtt tgttgcagca ctgttgacaa tagccaagat
28201
      ttgaaagcat cctaagtgtc catcaacaga tgaatggata aagaaaatgt ggtacatatg
28261
       cacaatggag tactattcag ccataaaaag aatgagatcc tgtcatttgc aaccacatgg
28321
       atagaactgg acatcattat attaagtgaa ataagccggg cacagaaaga caaacttcgc
28381
      atgttctcac ttatttgtag gagctaaaaa ttaaaacagt tgaactcatg gacatagaca
28441
      tagagagtag aatgatggtt accagaggat gggaagtgga gggatgggaa ggaggtgggg
28501
       atggttaata ggtatgaaaa atagaatgaa tgaaggaaca agatctagta tatgatagca
28561
       caacagggtg actatagtca aatatatata tatatata tattttttt tttttgaga
28621
       tggagtctta ctctattccc cagactggag cgcagtggca tgatctcagc tcactgcaac
28681
       ctccacctgc ctcgttcaag cctcccaagt agctgggatt acaggcacac accaccatgc
      ccggctaatt tttgtatttt tagtagagac ggggtttcgc catgttggcc aggctggtct
28741
28801
      cgaactcctg acctcacctc aggtgatccg cctgcctcgg cctcccaaag tgctggaatt
28861
       acaggccact gtgcctgacc atatagtcaa taataattta attgtaattt aaatataatt
28921
       ttacagtaac ctaaagagta taattatcct ttgtaacaca aaggataaat gcttgaaatg
28981
       atggataccc atttatcctg atgtgattat tgcatgcctg tatgaaagta tctcatgtac
29041
       cccataaata tatataccta ctatgtaccc ccagaaatta aaaattaaaa aaaattaaca
29101
      ttaaaaaata caaaacaagt ggtgttgcct gcattttaga gcttccagct agtcaagtga
29161
       aggagaagtc tagagatcta taataaccaa aggtgctaag tgtcaatgca agggaagaac
29221
       ggggacacca tgctgtatgg catcaaggaa gaagtggcat tttccgacta tgttgagtgg
29281
       tggactgata aacaagagca cttttttct ttatccatta gaagacttaa aataattatt
29341
       tgtagatccc acttccccac tttttaaagc atttccttct caattattcc ctctcttcaa
29401
       acatacaaac ttatacgcat attctaaaac ttgtaaaagg aagttaaaca cattttaatc
29461
       atttaaaagg ttttttaaaa agtcaaccca tgtaacttaa aaatgattat gaagcacttg
29521
       tttactttcg gttgtctggc atttatttgt gtgtggggtt ttttttttt ttttttt
29581
       ttggtgtatg ggctatttat tgctttttct taattttttc cttgtgtgtt tggaaagcaa
29641
      aatccaaaca aagtcctttt tggcagtggt aataataaat attctgttta gcctttggat
29701
      gaggtttaca tgatgtatct ataagcacat tctggaatat tggaataaca gtttccaatc
29761
      cttttgatca atggatagtg ggataaatga aaagttccaa ccaaaatata cctactggac
29821
       aagaaccatc atctttaat aggcagaaat cctctttagg gtccagcctt cctttcattc
29881
       ctgttctaca ttgtcaatga ctctgaccac aggaacagag aactgctgga tagggtgcag
29941
       tgctgctggt cccctctatc atcaccagca caaataattg tattaatttt ttttttagga
30001
       gtggagttta agctcagctg tgcaccccag acattgatga agatagtcta tcgtatgact
30061
       tagagtcaca gaaccacaag atgcgtgtgt gattatctaa ataaagagct cttactgcaa
30121
       ccttgtgact ctggtgatag aactgggcgt gggagggctt tctcattcat gtgctgtgca
30181
       cacaaatgat tctctaagtt gaaggacaca ttgctctgca gcataactga aaaatctgtg
30241
       30301
      cattectact tgcaaaaate etceagaagg ggttttcaaa geattgcaca getgttgett
30361
      gtcagcttct tgtgttgact agatgtcagc aacacttcct caactttgga caatgacttg
30421
       aaagcaagat cagtgtgtgc tcatgggatg gatttaaatg gaattgaatg atacagaaac
30481
       cattgcctaa tttatattta ggtaagtcat gttttctttc tctctcttt taaatttttc
30541
       ctgaaatgca tgtatgaagc tctttttggc taaaatgaga gaatgaagca ggctcctqag
30601
       tccttgagtg aagaggatcc attgagaagt ccagagggag agagaatgag cttgattaac
30661
       ggcagcacaq gattggcagg agtgatataa aatagtacat catctcagaq tgacctaata
30721
       ctcgactttg gaatgcattt ttatttttgg cagtggattt acctccctgt gtcctgcctg
30781
       gacaaacgtt ggaattagtc agcattcctt aagcacatgc tgattatggc caaagaaagt
30841
       ggcaggcttg aggcttgctg gcgaccagga gaaagccagc tggattagac atttgccgtg
30901
       agccttttgt tcatgtaact tatggggcag tctcctaagc cagagaaaca agaaactcaa
30961
       aggcagtttt agcaaggttc tcatgcatgg cagcatattt taatactaat gctcccttta
31021
       ggcaggccct aaataagaat gtcttgttct aatttttttc cgtagactta agattgttgg
31081
       gaaaaaactt gttagaattc ccaagtgaaa ccatttaaat gccttggctt ctgataactg
31141
       ggagtcctga gtgaagttgt cagttgctgc tgaactcagc agaaataatt gcgctcccta
```

```
31201
       tgccaatgat ctgtgcatat tttgagacca ttctgagacc aaggaggcta tcacaacatg
31261
       ttcacattgc tatcgttgat tagagccctg agctttacat gttgtctcct gtggtgtcct
31321
       toggaatatt ggagagccat gcctctttcc tttcaatgtt ctcaacctgg cccagccagg
31381
       attagagget ceettetgag gttcagtaga attttatatt taccetttat cattatteac
31441
       cttactgtat tgcacttctc tgtctacagt ctccagcatt ccattacagt gctaggacta
31501
       tgttggcatt tgtattcgtt tttcattact tcataagaaa ttgccccaaa tttggtggct
31561
       taaaatgatg cacatttatg atggcacagt ttctatggat caggaqtcca gacacagttt
31621
       ggctggattc tctgccctag gtctcacaag gctgtactca aggaactggc tggggcttct
31681
       ctcatctgaa gcttggagtc cttttccaag ctttcgaggt tgttggcagg attcggtccc
31741
       ttgtgattgt ggaactcatg gtggcctttt ttctttcagg ccagcaggaa aaggtctctg
31801
       acttgagggt gggccccagt ccttctttta ttttattatt attttttgag acagagtttc
31861
       gttcttgttg cccaggctga gtgcaacctc ggtgccatct cggctcactg caacctccac
31921
       ctccagagtt caaatgatcc tcccacctca gcctcccaag tagctaggat tacaggcaca
31981
       cgccaccatg cctggctaat ttttgtatct tttagtagag atgggatttc accatgttgg
32041
       ccaqqctqqt ctcqaactcc tgacctcaaq tqatccaccc acctcqqcct cccaaaqtqc
32101
       tgggattaca ggtatgagcc actgcacctg gcccccagtt cttctttaa aggcatcacc
32161
       taattaggtc aggcccactc aacagttgat taaccttaat tatatttgca aaatcccttt
32221
       gccatttaag atgacacaat aattggaatg atatcccatc atattcacag gtcctaccta
32281
       tactcaaaag gtggtaggtt atacagggtg gatatagtgt tgaaagaagg aatgaatgaa
32341
       atqaatqaat totqataqot qqaaqcacaq caactaqott tttttqtaqo atqaqtqaqa
32401
       gaaggtattg agttccttat tgaagaatgc agttgcaaca gtttatcact agtgagctgc
32461
       ttcttggtaa ctataagaca taagcagaca agaaacagca agaaaggaag gaaggagaa
32521
       agagaacgag aaggaaatca ttattttgga ccgatttccg gtgRtggttt caagaagttc
32581
       tocccaccot ccagactgot gtcatttaca attgctagag aacaagagot gggagootot
32641
       ccttggttct gctcctgtgg catagccatg ggggatgcag aagggcagtg gtgcccaMta
32701
       aagggaatcc ccgtcagctt tggttttagt ttccagagat tgagcctctg ccttaggctg
32761
       agagaaaaac ttagtgtgag tctttatttg ctcccttata atcacaggca catgtggcac
       ctcctcccc atctctgccc cacctcttcc aacagtgaga tgcattaggt gtggaaagga
32821
32881
       agcetteatt teaaaatete etggetgegg ttagetttaa aaateaaatg gaactgtggt
       cgtctgtgtt taatttggaa gagcagaaag gatgcgtgct ttgtggcgcc tgcatagtga
32941
33001
       aagtotocat gaottaatao caotgoocag cottagaago ttoocatgoa gacaatggoo
33061
       ctgcttcccc atcagttctt gggcttgggt gccaccttat ataMacattg ctgcttttag
33121
       tgcatcgcag aagcaaaagg atgacacatt aatagcagct ggaggatctc attaaaattc
33181
       Rgaggaaaat atgaaggctg gagcctggta atgtacagac agtaagtctt tgtctgtctg
33241
       attaacaatt gcatgYattc taagtgcctt gctggatggt aagaaccagc atttcagcca
33301
       gaagtaccat gttcttctcc ttaagaataa cctatttctg tttttcaatt cccttatccc
33361
       ctctaaaaat aatatgctgg tcttttggac tcccttgaga actgaaacag cttagcaact
33421
       ggggcagtcc ctgagagctg gtgcagaaac aactgttgct agcttggatt tgaattatgc
       agtcagatgc ttacatcgtg ggagggggat gtacggggtg tgtgggccttc agatgcttac atYgtgggag ggggatgtac agggtgtgtg gccttcatgc cagaaaggac agggaagcac
33481
33541
33601
       tccctggttg gcgggaggag gggagatgct ggggttgagg cccttacctt tatttatgtt
33661
       gttcactggt acagccagac tgcaacctct caactcttca gacaagacct aaggccgaca
33721
       aaattcactc cctcatgaag aacattgggc tgtttctccc tggtgtgtag gtggtggag
33781
       tgaagtagag gggctcgctg tgtgcaggga aagggctgca ttctcaagaa tttgtatgta
33841
       gcccttggac taaaaacaaa atattccaaa ggaatgcttc ttttggaacc ctggtccagt
33901
       ccctcgtcta agcaggagtg cccttatatg cttgactgtg gatggcatct gattacgggc
33961 agaaggttgc actggattgc tgcctgatgc ggacccacag aacacagttt aactctggct
34021
       ctgtcagcag tcatcagtgt ttatttttcc aactcttcag agagatatta gtcgttatga
34081
       aaagtgtacc atctcagaac tccatggaat aagctgccaa tataagacag gttgaaatta
34141
       ttgtgtcttt ttgcctagag ttatttttag ttatttttc ttccttggaa tttctttct
34201
       tttttttttt taaccatata tgctaacttt gtagctggtg gcaaaaaaag attattttcc
34261
       ctatattaat gacttettea getgaattga ggaatagggt taccagetet tttettggag
34321
       tttaacactc tcaatctgat aatatgaata acacctcaat aaccacaaca agagcggatc
34381
       atottcagta totttcctga attacctttt ggottttcac caccttgttt gtccgtttca
34441
       gagtttgtct ttctgtaaaa tcatgggaag gcatctgatt actttgttct tgatgtacct
34501
       gagtaatgcg aacatctgaa taattgaaca aaaatcttgt ttaaacaaaa cttttgtttc
34561
       agaagcatct gtcaaattgt tagtcatctg acaatttaaa atgtcaaagc aagagttggc
34621
       tgatcttaac cttagccttg tcacattatt aacttcatgg agcttcagag taacttgaga
34681
       agacttgcag tctgtacctg aaaaagccag gtttagaaag tggctcatga agaagtaaaa
34741
       cctctcagtc aagtggaatg tgcaagggaa cccctaggag cattttggca tgaacatttc
34801
       ttttgagttt ctagcccaag acctetttat aacatttqtt cctctcccag gtcctcctcc
34861
       tactgcctct aatttttaaa taagttctgt ttaactcatt tttggataat aagctagctc
34921
       tgagaaagct tggtagaact attttcactg aaggagttct aaaactgatc atatctcttq
34981
       tcatcaaatt ataacctgac tgttgcctgt tatctgaaat tctaagatag tgaagagagt
```

```
35041
       tattttactt tttcttgtag ggcccttctg tcattacttc cttgctagaa tcctatgtgt
35101
       gataatgagg gaatgaaatt atccaaaggg taatttgcag tatgcatcct acccagcagt
35161
       tgaaactact gcagcgaaac tgcaaggaaa cctaacccat gttttcttgt aatgctaccc
35221
       tttgggggtc atgcatgctg ctttctgctc caacagtctt aacgtgggaa ttggggacac
35281
       ttactttttg acctggaaca aatctctaag actcgtaagc caccaattga ttcacctttt
35341
       gtagcagggc ttgtatgaca aactcttttg tgagaacaaa aggaaagtcc cttcccttt
35401
       tgccattctt gttctgtaga ttaattagca aagacgtagt ggagaaatgt gtcacttgca
35461
      agacatttct ggcacggagt ggaccaagtg gaaatgctta aatgtgttgc agggatatca
35521
       aagggactga gcttttggaa caaagaggaa cagagcccaa aggacaRttg gtacaaatta
35581
      cacaattttc agttggttct aataaagttc taggaaaagg ggcttatgca caaaggctga
35641
      gctcttgcct ctgttgttct tcaaatccaa aatgtcatta aaatactagt agtggttgtc
35701
       atattttaat aacattttgg atttgaagtg tgtagctgaa acttactctt tgttaatgga
35761
       tgtatcactg ggtgagcttc tagactgcct caccaatgga tctagcatta ccttggttaa
       tgaaataagg taaaacacag tccctgtgta ccagaaagca ggttcatgtg tcagctgcat
35821
35881
       catgtcattt ggaactttgc aggtgtgtt ttcctttgct ccttcaatct cctcatttct
35941
      36001
       gccccctaga cctctgtgtg caactggagt atggtgttaa gtgagcctgg agcagtctta
36061
       ggaaaaggct tcaagtgagg ctaggtggga aggcctggga cagaaataaa ttcaaaacaa
36121
      caaccaaaga actgataggt ggaataaaag aagtgggaca gaaaagattc aaaggtggga
36181
      attgaaagag agaggtacag taagaatagc tggcgtccag tgaacatgta cagtggacca
36241
      tgcacagttc caagcacgtt cgatttatta tttcatctaa gactcacgag aactctataa
36301
       gacaaaggtc tgacattctc atccccgtgt tagatgtgag gaatctggag cacaaatgtg
36361
       taagtaattt ttctgttgag aaatggacct atcaggggtt gaacccaagc agtttgcctc
36421
      cagttaatgt ccttcgccac tttatattga actgagaaaa ggcgggacaa aagtcacaac
36481
      caaaggtggc tttggccttc agaatattcc acctactgcc atcaatattc caccttctca
36541
      agcccacatg ctcctgtttc tttttttgtc cccccattcc ataattaatc atccttgcaa
36601
      taaaagagac ttttggaaat tattttggga aaatgaagtc tttgggaggc caaggtgggt
36661
       ggatcacttg aggtcaggag ttttaggcca ccctggccaa tatggcgaaa cccctttgt
36721
      actaaaaatt caaaaattag ccgggcgtgc tggtgtgtgc ctgtagtccc agctacttgg
      gaggctgagg caggagaatc gcttgaacct gggaggcgga gtttgcagtg agccgaaatc
36781
36841
      36901
       aagaaagaaa gaaaatgaag ggtatagctg aaatctgctc atttcatgat cttgacaatt
36961
       taaaaaaacct gattgctgtt gcagtaggac tgtttaaaaa aggaaagaga aaaatatatt
37021
       tttaaaaatc tgagcatgtt gaaagacaca aaggaccttt gttacaagtc actcctacca
37081
       atggaagaac aaccgttgct ctcatcttt ttttttttt ttttttttgg tcatttcatc
37141
       tctccagtgg ctgagatcaa taagagatgc tctatggttg cttttgagtt cctttggatg
37201
       tottaatgaa gggatgaaca tattgttttt tttttttgac acagggtoto attotgtoac
       tccctgctgg agtgcagtga cacaatctta gctcactgta gccttgacct cccgggctca
37261
37321
       ggtgatcctc ccaccttagc ctcctgagtg gctgggacca caggcacgca ccaccatgcc
       cagctttttt ttttttttt ttttttttgt atttttagta gagacggggt ctcaacatgt
37381
37441
       tgcccaggct ggtcttgaac ttctcagatc aagccatctg cttqcctcqg cctcccaqaq
37501
      tgctgggatt ataggtattc gccgctgtgc ccagccacat attgcttttg atgtagttaa
37561
       acagttaact gctaccaagc tcttcacaga ggttactggg ctcaggaata aaaaggcttc
37621
       tactccaaat ctggtagcac cttgcaccac aaagacttgc tctctcagta agaaaacaaa
37681
       tggcagttct atatatagtc aagagtggag gcaggaaaag actacatttc tgaaaaatgt
37741
       gttcccaaga aatccatgtt aatcaatgtc agagaccatc cagtttttat atattgcagt
37801
      ctcaagaaat attctgccac agattctcta aggactgatc ataaaacaca aaaccttttt
37861
       atcttttgta agtttgtcag ttctaacatt aaatgcttaa ttttgacagt taccaaaaca
37921
       agtcgattct agctttcctt ttttaaagtt tcaggtgaaa tttgctataa tctcatgtcc
37981
      atcctcattc aggcatgctg aaagcactaa tattctgttt gcttttgagt gctaaagaaa
38041
       tatagcccat gagattactg gccaaattga aaagaatgag gcttattgta ccaagatatc
38101
       tttcttgata aattaagtca atgatctatt tcctgcacta gaggtcttga ttgggtatgt
38161
       catagogtaa ttttgtttgc cttctgaggc acacctattc tcttgctctt taacttggaa
38221
       agctcctaac tcagaagcca ctctgtgaac atatggctcc aaagattgct tcagattcct
38281
       ggctgcctgt gctaatgtca gtactcacct ttggacagga tatctaattt ttagattcta
38341
       gacagttgaa agtaactaac ctctctaggt ttttcttctg tttcctagag taaatgttat
38401
       caatgtgatt taatctgact agattactat acatttttga acgtaatcat ttatttgtgt
38461
       ttatattatt tgctcttgtt tcagctacgg aatttttcta tttttttt ttttgagaca
38521
       gtgtgtcact gtgtccccca ggctggagtg cagtggcgca atctccgctc actgcaacct
38581
       CCGCCtCtca ggttcaagca attctcctgc ctcaqcctcc caagtagctg ggattacagg
38641
       Cgtgagccac tgcgcccagc caaggaattt tgctttcttt agtcagctag attttaaact
       ccacgaggtc aggaaactta cttttcacac gtttttcctt cttatagaat aatattttct
38701
38761
       cgatatgttt tagaggtggt attttatagg cagtggttaa agactgaaaa ctttaaccac
38821
       tttaaactct gaaattctag gcaatgggat ttgtactgaa agacatagga taattatgac
```

```
38881
       acttcaatta tagtccgttc aattcaccac tggggtggtt ctaagtttag ttcatggtgg
38941
       ctttctccca ggaaatctaa agtactttac atatatagct ccattgtttc tcatagcatg
39001
       caaccttaac ccagtgtttt cacatgtgat ttgagagctc gatacccaaa ttatqqtcca
39061
      tgcaccagca gcaccggcat cacctaggag ctggtgggaa atgcaggctc tcaggcctca
39121
       cccaaggcct catgaatcag agtctgtatt ttaacaagat ttcgggtgat ctgtgtgcac
39181
       attacagttt gaagagataa gacaccaaag ttaactattt ttcctgttat cacatggcaa
39241
       gtagatctcc agtcctgagt ctgggttgca tagcttgtga tgttgatgtt gcaaagatgc
39301
      aggtqccttc ttttcccatg atgatgcaga gccccctcag ctcctgttgg agcctgtgat
39361
      ggtctctaca ctccgtgttt ttcttcttag gctctttatc tgtacctgcg ttgcttttqt
39421
       cccttaaggt tttgtccctt tgatttcctc ttaagtgctc tgaacttaat cattttttgt
       ttcttaattt taacatggcc atttcagtct gatgacagtt ttataatcaa aacccacatg
39481
39541
       caatcgatta ataatgtttt ataaagcaac agttgctacg aaaaaaagtg gatcttcctg
39601
       agatgaggct atatgtaaaa tatggatgga atttgtatgc caattgggaa ctgatggaga
39661
       aatqtatttt qqtctqacat aaaaqttcct ttctcaaact actttcatac aactaaqcaa
39721
       tgaaagagca gagaattete aacttgette actaetggaa agtaaaggga aatttatqqq
39781
       ggtaatagtg acattgagaa gtagttcttt aaagaactgc atttttcata ggtaactgga
39841
       aacatttcca gctttgaaaa tgaacagata tctttttctc tcatgtttag taaggcttta
39901
       gaaatgagta ggaacaattt ggtagaattt cttacctgta tttcaaaaca tgctgagtct
      acttgttaag taagatgttt taaaagcatt tggtccttgg aattctgcta ctcataagaa
39961
40021
      tgcatttcta gagccgggcg tggtggctca cgcctgtaat cccagcactt tgggaggccg
40081
       aggcRggcgg atcacgaggt caggagatca agaccattct cgctaacacg gtgaaaccac
       gtctctacta aaaatacaaa aaattagcca ggcatagtgg tgggcgcctg tagtcccagc
40141
40201
       tactcgtgaa tctgggaggc ggagctttca gtgagcagag atcatgccac tgcactccag
40261
       40321
       ttctataacc tgcaccgatt ttgtagaaat tagtgtgatc tgaagctagt tgtcctgaat
40381
      atgctttatg taaatatgtg tggctcactc aagtaatttt cattctttag attacatctc
40441
       tcgatctttt tggatgtaac tggatttgct ggagttaaga aWgaacgttg tcattcccc
40501
       tgcccacccc caccttcctc ggctattgat gtaataaatg taattacggt actaagaaat
40561
       cctttccagc tgaaggaaca aaccacaaag tctgtgcttt aaatctttgt aattttttct
40621
      ttccgtttaa aatctaagcc atatattcag atttgggcgt gctttttgca ggtgtctatt
40681
      tttagagett teeetgtttt gtaattteee agtteteagt catgagtatt ggggaaaaat
       gcacattaaa attggtttt acttttgtt tattttaaaa tttgttttga gttttataac
40741
40801
       tttaaaagcc tcgtgcattc ttttcacagc ttccagcccc aggaacatgg caatggaaca
40861
       tgtttattgc cagtctagca tctagaaaaa gctaactcct ggatgacaca aagtaaatga
40921
       ttgcaaaaag aaagagaga aggaagaaag gatgacaggc aggggaaaga tcagggggtc
40981
      tgaccacaga ggtggcgcat tttactgaat taagcatgat agttgttgcc caggaaggtc
41041
       tcacagaggg ccacatgtgg ggtcagaggt tgcctgtcac atgtggttgg cagccagaaa
       cagccatage aaggetgagg ggagcateat teattitte atteagttag gtttttgttt ttgtttttg agacagggte teeetetgte acteaggetg gagtgeagag gtgeaatett
41101
41161
41221
       agctcactgc agcttccact tccccaggct caagggatcc tcccacctca gcctcccgaa
41281
       tagctgggac tataggcaca cgccaccaac acccaactga ttqttgtatt tttaqtagag
41341
       atggggtttc gccatgttgc ccaggctggt ctcaaactcc tgagctcaaa gcaatccgct
41401
       ggcctcagcc tctcaaagtg ctgggattac aggcgtgagc caccatgccc agcttcagtt
41461
       aatgtttatt gagtteeete eetgggttaa ggaatgatae tteagettta acagtgaggg
41521
       gtaggcgcca ggatcaggtc ctgggatgtg tggctgtatt tttctggcat gagcagcttt
41581
      ctcaggcatt qqttctttcc aaqcaggaaa qtttattaga attttqcaca qatqcqqttc
41641
      atttcaccca ggattttgtc ttagttttag cagcagagac agtgaatctc actgggtctt
41701
       aatcaggaaa aggagttggc cgttaaatga cctcaggagt ggcttctggc ttagaccctg
41761
       gagatgccgt gtggtttgct aaggatcaac tagctcatqa caaatactag aagagactta
41821
      ataaatctgg acctttcttt accaatccaa gttgcttgag ttgtaaatga tgtaaaaata
41881
       gcaccctaca gacactagtt gttcagggtg aaatctctta tttccattag ccctgattct
41941
      agagaagagt ggagagttgg ccttaggtgc cctctttgtc tttgactgta tatgtggcac
42001
       actttcttca gccaatggaa tggcatacgt tgtatgccat ctgcaagagc ctgataagtt
42061
       gcattacaaa tagagtgtgc aaacaatagt actgattaag tgacaaatgt tgaggcctgq
42121
       gaactgattt ttggcactga caaattaagg cagattagac cgcctttcag gacacttttg
42181
      ataatgctac gtgtatgtga aagaagaagg tatcagaaaa aacttaatag agtttcttag
42241
      caaqaqtact qqaacataat tqtqqatqcc taaqaqqaaq tqtttqaqtc aqqaaaattt
42301
       cagttgtcct gaattgatga acgagtctct ttttagtaaa tgcttctttt aacggtcatg
42361
       gttagttagg acttagagac aaattacaga gtagcttatt gttatttctg ttgttgtata
42421
       ataaactttt ggagatgaac ttcattaaat gcccctggtc tggttttgtt ggtgaaaagc
42481
       tgaaataaat ctattgttgt taacatctgt ggtgatatag acttgaaatt ataatcttag
42541
       catgggttag aggagetgtg agaaacagtg aaaattcata tagcacettat tatacacagt
42601
       gtatgaaatt aataatctct gcatcctcct cccaattgct gaaattattc ttacggtttc
42661
       catttcattg tggtaccata gagtatgtaa gggatgctgg ggctaagact attagcatta
```

```
42721
       tgggaatatt taaatataat ttaatatgag aaaaatcaga ggaatgtgca aactctaggc
42781
       tgtatttctc cctaatgggt aaatccagtc atatatctct gacagaattg taaaaacact
42841
       gagttatttg atctttcctg actgacttat cttggagtca tttatattta taacatgctq
42901
      tgcaccaaag catgaaaagc agaagcatac agtttcgctc tcatctqaag taataaaata
42961
      ttttttattt acatagtcaa tctgggatag attatagtag aaaaccccta caaatctgag
43021
       atactgaaag tggtagccgt tttcagagat aaataagtaa cctattagcc tgattagatg
43081
       tctttgctac tcacatggta aataaggcgt aactttgctt gtttactcct ttaaatttcc
43141
      ttatagatgt acttactttc tttttatatg tttaaggtct tagtagaatt tcatccttc
43201
      ctccagcttt ttattgtata aaatgttaaa tgtggaaaaa ttgaagaatt tatgtagcat
43261
      agcacatctg tatatctact acctaaatta attaattaac atggtgctgt atttcgtttc
      tototototg tottttttt tttttttt tttgagacag toatotogot otgtoaccca
43321
43381
      ggctqqaatq caqtggcgcc atctccqttc actqcaaccc ccqcctctcq qqttcaaqtq
43441
      attetectge ettageetee egagtagetg ggattacagg egecegeeae tacatecage
      taactttttt gtatatttag tagagacggg gttttgccat gttggccagg ctggtctcga
43501
43561
      actcctgatc tcaggtgatc tgcctgcctt ggcctcccaa agtgttggga ttataggtgt
43621
      gagcaaccgt gcccagcctg catttgcttt ctctatttgt gtgtgtatat gtgtatgtga
43681
      aggtatgcgg atgtgtgtat atatatata atgttttttg ctgaacagtt tgagattaat
43741
      cagggtaagg agatgtcatg atgcttaccc tctctcta tatattttt aaggcagggt
43801
      ctcactatgt cacccaggct ggagggcagt ggtgcaatca tagctcactg cagcctcgaa
43861
      cttctqqqct caactaatcc tcccacctca qcctcccaaq taqctqqaac tataqqcaca
43921
      tgccaccaca cctggctaat tttaatttta tttctataga gagaaatctt accatgttgc
43981
      ccaggctggt ctcagactca agtgatcctc ctgcctcagc ctcccaagta ttcagattat
44041
       aggcatgagc cactgtgcct ggcctaagtt cttgagcatc tgtttcctaa tagtaagggc
44101
      attctcgtac ataaagacac taacatttca aaatatgaaa aatgaacgat aattttctca
44161
      ttatatctgg tatccagtcc atatttaaat ttatctagtt gtctccaaat tgtctttat
44221
      ggcgattttt tcttcctaaa ttcagataca cagtgctcat gcattgcaat tcatattgta
      gtcctaaact cttttatgtt taatctagca tctagaacag ttctctcact ttttttttt
44281
44341
       ttttttttt tttgagatgg cgttttgctc ttgtcaccca ggctggaggg caatggtgct
44401
      atattggctc actgtaacct ccgcctcctg ggttcaagtg attctcctgt ctcagccttc
44461
      cgagtaggtg ggattacttg tgcccaccaa cacgcccagc taatttttgt atttttagta
44521
      gagacagggt tttaccacat tggttaggct ggtctcgaac tcctgacctc aggtgatcca
44581
      atggccttgg cttcacaaag tgctgggatt acaagtgtaa gccactgtgc ctgggatttt
44641
       ttttttttt ttttgacatt gactttagaa agagaccagg ccacttgcct tggaggacat
44701
      cccacatgga ggatgtgtct gattgtttcc tgttgaggct gttcagtttc tctcattcat
44761
      gatttcctgt aaactggaag ttaggccaga agtttggagt ttattagttc agttaatctt
44821
      ttttgggaag atgaggtaga ggagattaag aaaaagtcag tgtcatcttc gcagagtgat
44881
      ttttcttaaa accctggcct ctgtgatatt gagaaagtca caatattgga aggtgacact
44941
      tgtcaacttc tgattagagt ctcttcctta ttttaaaaga catgaactaa aagttgactq
45001
       ggtttcctgt cctccccct tcaccctatc tctttctatc tcctcttctt tgctcttcca
45061
       tggccatgag tatgtgccac taataggaca ttttcttaca atgtggcaat ttccttgtat
45121
      acgtttatgt ctagcccacc attctatgag ctgctgacag cagggaggtg ttgcttttt
45181
      tgtgatttct tgaaacccaa tataattcag tgttatcaca ggccaattta ttaacattta
45241
      aaactctctt cttggccagg cgtggttggct cacacctgta atctcagccc tttaggaggc
45301
       taaggcagga ggatcacttg agcccaggag tttgaggctg cagtgagcca tgattgcagc
45361
      actacactgc agcctggata acagagcaag accctatctc aaaaataaaa taaaataata
45421
      aataaataaa agtctcatct taaatttgat ggggaaagga attttctgga tccacaactg
45481
      aattgtctat gcttggcagg cagatgtttt ctcaaatggt gaatggattc accttctttc
45541
      45601
       45661
      aggagctgag atgtttcttc tctgaacttt atttttcatt gcttatqqct ttttttttc
45721
      cccctgtaag ttctctgcga gctatacacc tgtggaaata tagggactct ccttcatttt
45781
      caaagagete agaatategg tgagacaaag teeetteetg eetggacatt eagattggee
45841
      ctatggactt aaattgtcaa gcaagtatac ttttttgtgt gccccgcaac ttggcctaaa
45901
      ctttgctata aatggcaaag ttactgaatt gccttggctc cataccaaat gttggaaata
45961
      attttaggat ataaaaacac atctttcata tgaaagtatt tcttttaggg tcccttgata
46021
      agcatatata tgtgttactc attttcctaa tgaattagYt cctttcttca attgtaagga
46081
      taaaccctca ttaatatcta atttqttqqa atqaaaatqa ttccaqtaac atttttatqa
46141
      46201
      gaaaaaagaa atattattct gaatacgcac ttcataaata ggaaaggcag ttttcagcat
46261
       ttactttagg tatcatttat tcagtgagag cttgagggta acccccaggt tcctgcaggc
46321
      aattaagacg aaagtcatga ttttggagag ctctgggttt agtaaaacca cattagatta
46381
      gagttettag accaggaagg ggeectagaa aaccateaga teaageetet tgeetttagg
46441
       caaataggat actaacccct gttgacagac aagcatattt gaaaccaata atggtgtttt
46501
      gaacaaaaga aaaatagggg cttggagcct gggttttcat cttttattgc actcttccta
```

```
46561
       ctgtaattat agttttattt ttcaattcaa ttcattggat ccgagaggag ctcatttatc
46621
       gatttgcaac ctaagtatta gccatggagt cattcttgaa ctttgccgtg gacttgggtg
       aaaaatgttt ctggttttca aggcttccct agtatcatat ggtattggaa tcaaaaatag
46681
46741
       agtattgttt taaaactgtc agcataggca gaacttctca tccagcaacg cattccgtag
46801
       ctcaagtcct cattttgaac ataggattgc aatgctgagc ccctaccatc tttccactgg
46861
       aaggaacagt tgggcagctt tttaaggtac ggcgcctcgt ggaggactcc attaatgagg
46921
       aatcatggtc tcctgacttt ggattgatca tttttgttca aaacaggagt attcctgagt
      cagagtcagc cacagcttat aggcaacaat tttcaggaga caacatccca agttaactgc
46981
47041
      ttatggcccc caaaactgta aggcttgtga tagtgcccca gtgaaatatg ccactgtggc
47101
       atteceatee ttttagetee tggatttete etttteagee cataatagge aagggeaagt
47161
       aagggaacta acaattatat gagcacttcc tctgtcccac acatggtgct aagtccttta
47221
       aagaaaacaa ggttttcttc actggttctc tatgqccatt attagagaat qctqqaqtca
47281
       ctgatctgga aaaacctgtt taattccttg gtctcaattt cttatctgta aaatgagatt
47341
       aaattggtaa aatatgtgaa gcacttaaaa agtatgtttt aaatggtact tagtgttacc
47401
       cactteatat acatttetge cagetetate atacetaate acteatttga teatgteate
47461
       ctcttcccag tctctgttct ttgagctgaa gaatgtttgg tgattcctgg ctgcttctgg
47521
       gcaaaactcc ttagtttgtt gtgtgatctg gccccgtctt acctctttag actgatagat
47581
       cccttcattc tcgcattggt attaaaaatc aatatagacc atgatttttgg gtttatggct
      totgtaagtt tgtgaggttt ototacotaa aattoootta coacctgtoo tootatgtoo
47641
47701
       cttccctcta cagtctccac ctgttcaaat ccccatgtcc cttcaggaca cgggtcccag
47761
       cctctgcccc aatgtagcct ttcctgcttg cctttaaact gggagtaata tcctcctttg
47821
       gattactagc cctgtattta tagctgtttt gaaaccctat ggaagtgtag gctttgaatc
47881
       atcaaaaagt attaagtgat gttcagtact tccatttact cagtactaaa gttcatcagt
       gtattttcaa acatttttca acaagacttg aaataaaaaa aaagtttttc cttaagaggt
47941
48001
       tttttctttc tttctttcct ttttttttt tttttttgtc catttgacat ctgaatcctg
48061
       aattgactag acaaatttgg tttttctagt cagtggttaa ctgggacatg ccattcttca
       aacatttcta ggaatcccaa tacctagtag ctgattcggt cgtgctggag aatacaaagg
48121
48181
       cagtaatcaa agagcctaca cagagagaca ctgaatttta gaaccaggat aaatcaaagt
48241
       gactttagtg aaacgtcacc acgatctgac gtgatctgaa taaaccacaa tctcagagag
48301
       tgaggatatg ttttgagtaa atttgttctg tgtgttggcg agagtggctg cctagttaac
48361
       cgtgggcagg tctgtgagtt tgcggcatgc cccttcgttc cagctgcttg ctgataggct
48421
       ggcccaggcg ggatccatcc ttctgatcgc caggtcctga tgaggctggt gccaccacta
48481
       catccattcc agggagactc ccaRtctctg tcagtttctt ctgcttttct gaattctaaa
48541
       Ctcactctga tctgatttca ttatttgtct gttgtggtag ctttggtgaa gttggaccac
48601
       aaataatgat atagaagaaa aaatgaactt tttttcttct ttcctgtgtc cttttatcag
48661
       gtatcatttc ctctataaaa ctaattttaa gttgatagag tcttaggtct atagccactg
48721
       ttgaatgcac ctaatcaggc catctccttg aactagagaa tgtttgcatc ataggataga
48781
       taccaggttc cctgagaggt gggtaccagg tgcctgggaa gtgaagtaac ttgccaagaa
48841
       cagagageca gggagtgaca ttgcaggcat ttaagcetag gcagtetgag tecegaaaae
48901
       aagtcaagac atttattgKc tttccatttc ttacccatgt tcttactgtt ttgcctqqac
48961
       tcctctttta atctcagtga aaaaaaaaaa aaaagtacat atttaacaac tgaagaaaat
49021
       aaacagagac tgtagtaaat ttccaagcta atagcaagtt atgtaaaaaa tactacttgc
49081
       tgatgaggtt tgtaagaacc tcctagaacc ttatagaaca agtgtggaat acttgttttc
49141
       tgctaagggc tattgacccc aagaaaattc aatgaagcga tctttgcaaa atagtaaatg
49201
       atttttcttt gtctccctgc agaagcaaag aggcttagac ctctagccac tgttgaatgc
49261
       accaaatcag gccacctcct tgagctacac agaatgtttg cattatagga taggtgccaa
49321
       gtgccctgga aggttggtgg agagagagat gacttccagc tgagattgta cagtagaatt
49381
       taatatttaa agtttctcga tttgacgggg ctgaattagt tcatatgagt tcataagtag
49441
       gaactgcttc gcttaatttt ggtgaataaa atatcctggc tgcaaaatac aaaaaagaaa
49501
       gtcaccctca ttttcaaatg tatggttagt gctttccata gaaaacatat ggctaaatgt
49561
      gtgtgttttt ttaatttagc tetgaaatgt gaagaetgta ataagateta gtaacaagag
49621
       cgcagtttag aaaaacctga ttgactctag tttatgtaac tatacaggct atataaagaa
49681
       agtctcataa atRaacttca tctaaagagt gtggcagcta taaccttctc caactttcag
49741
       gctctgggtg ttctcctagc ttcttctgag tttatagtct ttatgtaatt attaatacca
49801
       tgatgatcat tctggggttt gctttttgcc ctggtcactt taggtttaat tttattccat
49861
       tcctggtcat ttaYaqtttt gttctgtcat ctccccatac ccatcgagaa ccctattctc
49921
       ctgtggcaga Ctttaatgaa tgtaaccgca gattatgtgt tttctttctt tggtgaactt
49981
       agaggatgca taggccaggt gccaagtgtt agaagaaacY atacctttcc tgatggtqct
50041
       gcatggctag cctaccccga ccatgcagta agtgacttcc tcaccgctga tgtggcagac
50101
       ctgctctgca tctccacagg gtttctgggt tcttttccag gctgtttcca tattgcacac
50161
       tcagactggg taggaaagca ggcagggcac agttttatat gtacgtcagc attttcactt
50221
       ggtgatggat ataagctaac ttttgtagct ctcctaggtt tattactgac atctgttccc
50281
       ccctgagcat atccagctgg ggctgaagcc acatctgcac tttaaacttc catctacctt
50341
       tatgttttca atgtaatttt agatttcatt tgtttttaat tgtgaactca gaagagatga
```

```
50401
       gttccagcta tgactcagtg tgagttccta tgtcataatt ctacatttct ggagtgctta
50461
       cacctgacag gaataaactc aaggaaacaa aaagaacagg aaaggcctta ggcacatact
       ggttgttcta gatgtggagt tctgctggca actgccacag agtgaaattg gccacatgga
50521
50581
       atccaaaqca cggcctcaca ttgttttttt tttttNqaat attttatqta aqacaqqqat
50641
       gttaaaggta gaggaagtaa ttaagaatgg cagctatgtc tttaaaaatta aacacatcgg
50701
       tcataacttt aatgaaggYg taaaagtgtt tttagtttta aacaggcaaa aaggctttta
50761
       aatacaagta accagttttg agactttaaa aagcagaagt ttttcatgcc agtgcttcct
50821
       attttagttt caaaggaaag gaggaggagc tgaggtttgg atggttatca tagatgaggg
50881
       agttgacatg atcaaaaatg tttttttccc tgggaacaca tcttgagtgc ttatctcttc
50941
       taatagataa agggctggtg aattttgaat gtttcctgca gctctgaaga aacactgtga
51001
       tcctaatgaa caccgaggaa agcttgtatt gcagccctaa atattacctg cttcaaggag
51061
       qcaqcatqtt ttqqtacaqt ctqatcatqa ctataaatca aaqcatcttt acttctccaq
51121
       ggagataaaa aaaatcatgt gttactttat aaggatcttg tagttgcagt atgtctgtca
51181
       gatgtttcca tttttatgat ttaagacact tggtgctgct atgaatagca aattggaaaa
51241
       attgggcatt ttttaaattt tgaattttat cttagcatat atctggaaat gaaatagcga
51301
       tottggaaca gagacatott tgttagaata tgaaagaatg tcagtgaatt ctaacttgaa
51361
       gctacattga gatgacatgt taaaggcatg aatagacaaa gggaatgatt ttcaggaagt
51421
       gccttctgga gactgtggga aatcccgtca.tgggtagagg aacagcttgc gattggatca
51481
       aagtcacgca aagttacgca ggtggtagat gctggtagtc aacatggcta ggtccatggc
51541
       aatcgatcat ttgcccagca ttttgcctgc tgaatttggg ggagtgaaga ggacattttc
51601
       accacccag gaagatagta actagtgctc tatgtatgta gctcagagcc cttgaatttt
51661
       caagtgacct tttaaaagtt tcccccagaa aggtttgaat agacttccta tctattactc
51721
       taagtttagg totaagaaaa ttoocaaatg ggttaataca gtogatooto aatotttgag
51781
       aattctgtat ctgtgaaatt ggcctacttg ctaaaatgta tttgtaagcc ccaaatccat
51841
       ccgtgaggac tctttgtggt cattggtgga tatgtacaga gcagcaaaaa aatttgagta
51901
       gctcaaggta cacgtacccg gtggaggttg aacaaggtga cactctgcct tcttgcctca
51961
       gttctcatac tgtaaacgag tgtcctggat gcagacaatt cagtgccatg tcttctgcat
52021
       tttttgggctt tttcttggtg atttcactgt ttaaaatggc tccccaaata tagggctaaa
52081
       gaactgtcca gtaggacttt ttttttttt agatggagtc ttactcttgt cgcccaggct
       ggagtgcagt ggcttgatct tggctcactg caacttccgc ctcccgggtt caagcaattc
52141
52201
       tectgeetea geeteteaag tagetggggt taeaggeate ageeaceaeg eeeggetaat
52261
       ttttatattt ttagtagaga cagggtttca ccatgtcgaa caggctggac ttgaactcct
       gacctcaggt gatccaccag ccttggcctc ccaaagtgct gggattacag gcgtgaacca
52321
52381
       ccgcgcctgg ccctgtccag tgtttttaag tgcaagaagg ctgtgatgtg ccttataggg
52441
      aaaaatacat gtgttagcta agctttcttc aggcatgggc tttagtgctg ttggctqtga
52501
      gtttagtgtc aatgaaccaa caacttagat caaataagcc atttttttt taaaaaacag
52561
      aaacacacat aaaatgacgt tataagttgg ttgatgaaaa ttttgtgacc agaggcttgc
52621
       aggaacctaa ccctgtgttt cccccagaag ctaaggatta gtatttccta tggcggtgtt
52681
       Caaggcaact tcatagacag aactaccatc atgaataaca aggatcactg tgtgggctga
52741
       gtgcggtggc tcatgcctgt aatcccagca ctttgggagg ccgaggcagg cagatcacct
52801
      gaggtaagga gttcaagact agcctggcca acatgatgaa accctgtctc tactaaaaat
52861
       acaaaaatta gccggtcaag gtggcgggca cccaataaaa tgacaataga gtttaaactc
52921
       catggtttct gaggcatttt ctgagtaaat tggcatacag cgtatgtact ctttcctcta
52981
       gaagttccag aaacaacact atttctttat gtgcaaaatg gcctcttttg agcagccctg
53041
       gggcagtttt gtctggccct cttgcagcca gggtgcccca gtttagtgta caattggtat
53101
       aaaaataqqc aacacaggaa cttqcttqtc tcqqqqqaaa aqacqcttqc aqatttataq
53161
       aaattttaca tttgtatgca tgatattctg taggttcaag aaaaaacaat tcaatttcaa
53221
       gataacattc tacagggtaa ataaaattta atttcaataa atttaagggg aaaagttgtc
53281
       53341
       gaacacaaac aaaatagcct tgctctgggt tttgaggaaa tggttttgca aggctatttg
      gttagacaat gaattagagt cagaacttcc gggatgggct ttcggtaagg gaaatgctta
53401
53461
       ggctgctgca aagcctggat tcaacttaca caggatcctt gagaagttgt tcttcgcatc
53521
       cagaaccatg ggcaatgctc tatggtataa aaaccccgaa ggtaaacact gtctgatata
       tattttttat aattgcaaaa tacacataaa cttaccatct tgactgtttt taagtgtgca
53581
53641
       gttacatatt cacattgtcg cacagtctcc agagctcttt tcatcttgca aaactgaaac
53701
       tctgtaccat taaatgactc ttcatctccc tctctccagc tcagcccctg gaaaccacca
53761
       ttctgttttc catctctatg aatttgacta ccctaggtac cttatataaa tagaagcata
53821
       gagtatttgt ctttttagta ttggctgatt ttacttagca ttatataatg tccttaaggt
53881
       ccatccatac tgtagcaggt gtcagaattt ccttccttct taaggctgat taatatttaa
53941
       ttgcatgtat acaccacatt ttgtttatcc attcttctgt caatgaacat ttgggttgct
54001
       tccacaattt gactattgtg aataatgctg ccatgaacgt gggtttgcaa atatctcttt
54061
       gagaccctgt tttcaatttt tttttgttgt tgtatactca gaagtagaat tgctggatca
54121
       gacggtaact ttatttttaa tttttttgag gatctgccat aatgttttcc atggtggttc
54181
       caccatttta cattcccacc cacagtacac aggggttcca gtttctccac atccttgcca
```

```
54241
       acatttgtta ctttcatttt ttttggtagc tgactgataa ttatgactaa ataatattgt
54301
       tgaagaacta ttacaatgtc aagaaatttt ggccatcagt gatagtctta tgattaaact
54361
       tagtagtatt ttattattaa acttagtagc atttattagt agtagtttta tttcagaaat
54421
       atttgcattt tccatgtttc tagcccctca attatgtagg tagaaacaaa taatatagaa
54481
       tcaatttacc ttatgttacc ttagaactgt ggccacagcc tagtaggtgc tcagttcatt
54541
       tttgttaaat gaatgaatca atgaccatga agacagttca ggttatttgt tatggagata
54601
       cgtaatggga ttggaaaaca tgtagggtaa atgtattagc cctctcctgt gttaactctt
54661
       tagccctttc aaaactaaag gtatttggcc atgtgcggtg gctcacgcca ccgatcttaa
54721
       tttttttatt ttaaaaatag cttacttaaa aaatagcttt gttgtattaa aaaatagcac
54781
       ccagctaatt tttgtatttt cagtagagac agggtttcac catgttggcc aggctggtct
54841
       tgaactcctg gcctcaggtg atccacccgc ctcaggcctc ccatagtgct gggattacag
54901
       gcgtgagcca ccacacccgg ccaggctttt taacatagta acataaacat ttttattctc
54961
       acaatgtctt tatggtttgg gaatggtggc ttcctgtctt tcagagtctg gtgttatttg
55021
       tttttttggt gtgtgccttg cagacacctg cacttgaaat ctttcaggta ttttgcagtc
55081
       gttttctcag atggctggat tatttcaagc caagaataac agagttaggg tcaagactgt
55141
      gaaccgtatg gtcagtcctt ctaaggaagt atttattttt attcactttt gtttgccttt
55201
       ccttgggtca tggtcctaat tgctgttccc tttggctgca gttattcaaa actgaattta
55261
       ctgctgagcc taagacagtg tttttcaaac ttttaaaatt aagacaccca gtaagaaata
      tgttttacag tttttttaca tcctgaccag atttacacac acacacacac acacacacac
55321
55381
      acacacaca agaacctgaa gtatttgttg caagttgcag atgtttacag ttactgctaa
55441
       ggatatgtgt ttccatttaa tttacataaa atactgttca ttgaattgat tttatgactc
       acattatttc Rtcatgcagt ttaacaaata ctgagcactg gtgtcacaga actttgtcgt
55501
55561
       tcatgctctt tagcaacagt cagcttttct gctcatgact gatggcctat tgctatqatt
55621
      ctgttagcgc tttaaagcaa tttgattgtc aaagtcatgt tagctctggt tgtgtattca
55681
      gttactcagt ttcaccttta caggcagctg ctccttggga aatggggctt gctgagcagg
55741
       ttgaatgttc catagaatca gatctatact ttggggaact cagcagtatg ggaatcacaa
       gccaacccac cctatccgtt aaagggctca ggcccattgg tctccattgt cacttagact
55801
       agcacaacat cacctacctc atggatgctt tgagggcagg gccggttttg tttttctttt
55861
55921
       tattcctcag agcccgcagc atgattcctt gtgtggagaa tatgcatcag ccttggctct
55981
      ggtcctctct tcactgtccc tcttctcctc cctacagaaa acagcaaagc atgtatagaa
56041
       agagatgtgc agactgtgtg gaatgacctg aggggtaact tgcttagagg gtagagactg
56101
       ttgtgtgtaa aaacttatgt ttgaggcaaa ttgcaggaaa aagttcttta aatgaaggaa
56161
       agataagatt ataagttttt taaaaagttg tottaatgaa tagaggagaa tgactagtca
56221
       ttatttcata gatcataggt acataggtga ttttaaaggt tgagtgactg gtcccttgag
56281
      gttagttcaa tqtcctcttq taatctqaat tttttcatca aattctttta aatccaqqtq
56341
      gggctcagct ccctctgaag tatcacaaaa ccctaaatga attaggttaa taagactaat
56401
       tatatttcca tagcaatgtt taagtggcct gctgcccaat caccttccaa gccctgctct
56461
       gttgggtttc tttttaccca gtcatgatca cgtaggacca ggctgttttt cgtagggggt
56521
       tatggagtcg caatgcctgg ggtgttagga atataggctg ggcttgtatc atagtaccca
       cgccgctgcc taactcttga tatccagtga ctgagttgga ctttgtagct gctttctctt
56581
56641
       tattaggaga aaagagcttg tttaataaac ctaagaatta atagcctgtg ttcagtagtt
56701
       ggatttgtaa cctgaatgtt tttatgtcta ctgacttgca acgttgtcat ataaattaaa
56761
       gatcatagat ccagctatgg tttaaaggtg acttccagga catggatttg aaagatcaga
56821
       atttgaatct catctttc cattctagct tggtaacctt gaggaaacca cttaacttct
56881
       ctaagcctca aaggtgtcaa gtagattaat gcaactatgt atagctgacc ctgaggaatt
56941
       tttggttccg ctagaataaa gcttgaattt ttggacatta gaaggatctt tgaagatgat
57001
       gtagcttcgt tgtgtaactg aagaccagag aaatttaagt gagtttcctg gaatagttta
57061
       tgcctctgct tcctgtgtca tgattaccac ccagaacacg tgcttaattg gggacaggta
57121
       atccattcag ggtgaagaac atggcttttg ggtcagtctg cagtggatct aaatcagccc
57181
      cctgctgttt actgtgtctg tagtctagaa aaagctattt aacttcttgc agatttagcc
57241
      taactatgaa attaaattgg ggatttaaaa aaactcatag ggacgtggtg aggcttgact
57301
       gagataaatt tatgcaaagc tcttagcaca atggctagta cccagaaagt gctcaacatt
57361
       attattattt cctaattgaa gggcattgat gatttaaaat aaaatggagg ctgggtacag
57421
       gctcatgtct gtaatcccta cactttggga ggccgagttg ggtggaacac ttgagcccag
57481
       gactttgaga ctagattggg caacatggta aaactccatc tctataaaaa atacacaaat
       tagctgactg cggtggtgcc tgtagcccca gctactgaag aggctgaggt gggaggatgg
57541
57601
       attgagcccc ggaggtcagt gctgcagtga accatgattg tgccactgtg ctccagcctg
57661
       ggcaacagag caagacccgg tcaacaaata catacatgca tacatacatg catgcataca
57721
       tacatacata catacataca tgtaaataat taaataactc atttcttgtc agataaatgg
57781
       ctgtatcttt ataataagat atctgtatcc tgtgacttca tcctgtaaat aattttgtgc
       ctcttgtgct ttctatgatc tagggaggag aaagctaatt cttcttcatt ttatgcacgg
57841
       agcagagaca cggagagcct ctaatttatt tcttcttggt gtggccctgt tttctgagca
57901
57961
       tgggtgtgtc tgatccctgg ggagagcaga gccacactgt ggatctgagg tgctgggaag
       ccatccagtt tectectect gaccetgact caagtettee etgaaatete tgteageece
58021
```

```
58081
       attetettte tgteageece attetettte tgteageege ceteettaca taacceaaat
58141
       gggttgtttg caaagctagt gtcgctgagg tgttctgtgt acaacagaaa agaatctagg
       gaggattcct atgtgtcact aaagccagta attaagtgga caacaggggg agctaacact
58201
58261
       gaatqcacca ataaatttca agactcctqc taccctaqqt aaccqaqtca ataqtattaq
58321
       aaaccatttt aagcattggt agttttaaac atgctgttta aaaacaattt taaatttacc
58381
       ttcacttttc taattggata ctttactatt cagagtacta tgagatgagg gtctcgcttt
58441
       ggagtgcagg ggactgatct tggcttactg cagcctcaat ctcctqqqct caaqcqatcc
58501
       teccaectea geeteetgag tagetgagae tataggeteg tgecaecata getggetaat
58561
       ttttaatttt tttgtagaga tggggtctca ctatgttgcc caggctggtc ttgaactcct
58621
       ggcctcaagc aatcctcctg ccttggcctt ctaaaatgtt ggcattatag gcqtgagcca
58681
       ccatgcccgg ccaaacttct tttgaaatta gcttgttgat tcttcctcac ctcccagttg
       tttttgtgcc agaattaatt tttctccttg tattatagaa tagtttggag gagtattgaa
58741
58801
       agaattaggg ggtagagttg ccagatgtag caaataaaaa tacaaqacac ccagttaaat
       gtgaatttca tataaataac tactttttt ttgctataca tatgtcccat gcaatatttg
58861
58921
       agacatactt atactaaaag attqttaatt atctqaaatt cagatctaac tqqqcatcct
58981
       gtattttatc tggcaaccct aactggggtg gggatggtga ggagggcctt ggatgtggcc
59041
       agaggagagg tgtcagagcc tcaggtgtct tcttgtgggt gaccgaggtg gctgcagcac
59101
       agtageettg etceetgggt etggggeetg tgeettetee etgtagteae ttagaatagg
59161
       atgatggggg tggctcaagg cagtggaata aattaattct gaaggaacac actgggccag
59221
       agtcctagaa cagtttactt aatgatagtg ttattttaat tttcaattgt ttgcctttct
59281
       tccctgtgat acggaataaa catgaaattg tatctggagc ggagcaggca gaacttacat
59341
       cttgttggtc ttgttctgcc ctcagcctct gatgttctac aaggtttatc cttttgtttc
59401
       tttttttatt atccaaggaa tgagatatgc cagaaaaatg tgacaggtat ttatgaaatg
59461
       ctttgaacta qqtqaqctta qaqcataaqt aattttaqqt catttatctc atcacaacac
59521
       tatctacaga gttttaaccc ttatcataag gaacagacca tgatgacact gacattatca
59581
       acataacgac acacatgctt ttctattcct aatgctttgg tgagagaaac tqqggcatcg
59641
       gagaatgttc tcagccatat ttttgatatg gcctaaggta taatgaacaa aagcttagat
59701
       gagaaaaqtc catctgattg atgcctggct aattqacagc caattatgtc atggtgccag
59761
       ttcttaaaga aattgaccca ttaatccctt tgtgtggaga ggccagccag caggcatctg
       ctttcttagc atgcagcagt actgaaaagt ttattgaaat aatcgtcacc tgtcctttcc
59821
59881
       aaatcttaat tcttctgagt ttaaacatgt tttctctaag gaaagtcgga ttgacatgaa
59941
       atcacacatg totggaatta tototgagto otttataaac agaccaagac ttggaaqggo
60001
       acaccttagg ttacagagtg ttttcctggg ctgggctcca aagcttcctg actattgaac
60061
       aataatgtgt totttocatg ctactttata tatttatttt acagaagcct tgtgcctttt
60121
       60181
       ttccggatta ttttctgttt agaggcccca cacaatacag tatatgtgct gaagatgagg
60241
       gcactectec tectectect ettectate tacceettee tecaceteat
60301
       ttttcttctt cttttttaaa aataatcata agcatgtgtt ttcttctcat gtgcttgtaa
60361
       atatttttgt tggggattct tgactgggat ttcagaatat cctqataqqq aqaaqttqqq
60421
       tatttcttca tgagataaat tccttaagga gagatttgaa tagttttgac ctttgggttt
60481
       tcttttctct ttcagttttc tttctaaaaa atgttacatt tcttggttat gagataaaaa
60541
       caaacctata atttgtgata atgggtgaaa atgtgattag aattcacatt ctaggtttaa
60601
       taatgacaga ctacttatga aagataagat gtcagagctg gaaggcttct tagatattgt
60661
       cgggttcaat attcttttct cattagagga aatggagact cagagacatg aagtgacttc
60721
       tccaaggtca cacagtaagt gagtgatgaa gctgggagta ggacctcttt tgcctgactc
60781
       caaacacagc tttccccaac tattgaggaa aaggactcag gacaatttaa catttcaagt
60841
       cattgaaata teetttaaat geteaaacte taattttaae ettatgtgtg tgtgtgtgtg
60901
       tgtgtgtgtg tgtgtataag tcgttctaaa gtacttaacc ttctgaaatc ttattttgac
60961
       catgtagaac acagttcgac ctttttcaa tctcatcatt atcaacactg ttttgtqaac
61021
       atgggtcatt gtggttttaa ttcatgggtg cccttgggct attctgagtc tataggactt
61081
       gcccttagtt acattaacac tcccacatga caaaactcat gagtgcatgg ggaacttttt
61141
       gatateette etcattgtea gttgteaett tttgetaett teagaggtga tatttatage
61201
       atttcccccc ttctgtgttg ttcctaccca caqqatttta acttacaqaq atqactqaat
61261
       61321
       tttttgggac agggtctcac tctgtcgccc atgctggagt acagtggcac aatctcaqct
61381
       cactgtagcc tttgtctccc aggttcaagc tattctcccg cctcagcctc ctgagtagtt
61441
       ggacttacag gcqtgggcca ctacqctcqq ccaatttttg tatttttaqt aqaqatqqqq
61501
       tttcaccatg ttggccaggc tggtctcgaa ctcctgacct caagtgatcc tcctqcctcq
61561
       gctggtgtgc taggattaca ggtgtgagcc acagcacctg gcagaaagaa atttttttt
61621
       attactcaca tttcctaaga gaagagggca ttccatgcca cacagggcca ggaggagaag
61681
       cacctatttg ggtgaagagg aagagatggg agtcagggga aagccgaggc cagagccttt
61741
       actgggtttt tatggaaaag gcaaggcaga ctggaggaat cagcttgggg ttggctaggc
61801
       gctgggatgg tctttaqttq tcagttcctg gccctgaqag atttagggca ggggaaatgt
61861
       gggctgggta actgagagtt agataaggag gtggctcagc tagatcacag aggagatgga
```

```
61921
       aactacttgg ctgttaactt gccctgtaat tgatggatac caaatagcca aatacagatt
61981
       cggagaaaat gcaggacaac ttcccaggct tactttgctg ccattcattt tgtggtgaac
62041
       caaaaaacca cttacacaaa cctgttggaa ggggtctctt ttgtqagtac tgtcaaagag
62101
       agctatctag aagagacctt tttttgtgag tggtgaggtt taggctgaat ttttattttg
62161
       ttttggtgct tttctgtaat ttgggattat taaaaacaaa gactagacct ttttatagat
62221
       agaaacaagg ctcttttatt tggaaatacc atgtgcataa atgatgaata aatagagtca
62281
       gtgaggacct tcttgccctc atgattcatt gttcttctcc ttctcctttt tctccttctc
62341
       62401
       tgagacacag tctcgctctg ttaaacactt gtattagttt cattgaaagt gtaatataaa
62461
       atctgaggat ctcagacatc ttaggaagat gactgtcatt tattatctat taaccaggtg
       agcaacttcc tggcgagtga ggggtgcggc agggaagggt ggagacgcaa aggcacagtt
62521
62581
       ccctttgtaa tggagagctt cagctcctgg gaaggatctg caatgcttaq tqqqqctqtt
       catctctaat atagttaata attactgatt tgtatgaagc agaactgagg gcagggaggg
62641
62701
       atgtgggaag gccacaggag atatgagttt gcagccagag tttaccggtg atgaatcacc
62761
       ttctgatcaa agcaggaggc tgggacctgt gggggatgca cttcgaccct ggggtgtgac
62821
       ccaggaagtc agtgatttgt gaagggcatc ataggtcaca gatgcctttc caaagttacc
62881
       agaacttggg atccaattta tttctcttag tccaggctca ggtttgattc ccaatccctt
62941
       gcattcacac gagtcacagg gcagaaaagt gcagacgtgt tcttgtgcga cctccagatg
63001
       tggtgtggag atggaagatg gtactctcat cattagagct gatttgcttt ggaattaaag
63061
       agagacatac gcactgtgtt tctgtggccc atcatagttt ccactgatgg tgccatgtgt
63121
       catttggggt aacattgact tgtatttcca ctcagtgtga ggaaaggacc ataagacaga
63181
       attggagtaa tttctggaaa aaagaagtaa atgcttagta gagtgtcata cagtctttta
63241
       ataacaagta tttgataaac atgattttgt tatccatcct tctgcaggaa aagaagccaa
      gttaattttc ctgagtttac agattggagg gtttttagta taacctgtgc ctttttcctt
63301
63361
       caccctgttt cctcttttac tactacagta aagagggtga aatttagttg caaaaggata
63421
       ccattgaaat ttagttactt ttgctcgtct cttgctaaaa gagttaataa tgtgcagtct
63481
       ttaacttgga ctgattttgg tataatgtag tgggtttcta aaaatagatt tcttttcat
63541
       gtaattgaca attaactcca taagttactt tacagaaatt taagtttctc tagaaattac
      tqcagtacac attgcatgca ttctccttaa agaaaattga cagaacaaaa tttcatcctc
63601
63661
      tgttaggagc ttgcttttcc ctcacttgct catctcatqa qqqqaaqcat qtattatatc
63721
      atgtaattga cctcccgagc tgtatggcac ccttgagtga accaggtaca agcagcctcc
63781
       accoaggeat tttcttaatg tccacaaagg ctcgctgact tcaagttagc tatttgtgtc
63841
       ctttaacttg ttgccacaat ttaaaaccag gtgagcattt tctgcacaga gtggtcataa
       gcagtgtctg ttctgctgtg ctcggcctct ttgtcacctg ttccatattt gggcatgaag
63901
63961
      cactaggccc atatgccttc accattttgc aatgttgttc tgggacagag ttatagggtt
64021
      tttgccttga acaaagcatc tacattcttc attcttaggg agtgacagtt ccattgccaa
       tatgtggata tcagttttct tcaagcttgt gtaccactcg tatccactgc tgttcagttg
64081
       cataatctct aagattaaaa actacatttt ggtaatgctg gcaacgaggg cacaaggaaa
64141
64201
      taaattgtct gtttttataa acatgtagct actgatattt ttttttqaaq qtqaaagctt
64261
       tatttaaagg aaggtctcat agagagtttt aaaattttag aatgaaaaa ggtcttaaat
64321
       ttattaacca aatagtaaac taattcattc aaccaaaaga cttactgaac actccctgag
64381
       tgaaggtgtg tgtgttagga aatgtgctta ctgggtgaac acaacagagg tgttccccac
64441
       ctcatgatac ccacagtcta gggagtgaca ggcaataatt aagtaatttt taaaaattta
64501
       tagctgtaaa gtaaagcaaa ctatggcacg tccatgaaag agaggttaga gcctatgagc
       ggggaggcgg ggaccagatg gagcctgggc tcaggggctg ccagacacac acagctgcct
64561
64621
       acgggcagga aggggcccca ttggaagcgt taaacaaqtq tctqtataqa aggaaggcat
64681
       gtgaataaag aaaaaaagat tgacctttgt gagttgtgac atccaaggtg tccaggaact
64741
       agtttctcca ctttctttt ctcctttttg tcatggccgg cagttgggcc cttgtactgt
64801
       tcatcagctt caccatcaaa atcaaatgaa aagaaagaga agggaatgga atgctcactt
64861
      tctagacctt actttaaatt ctgttgaaga tttattaata tttgggagag agtttgaaat
64921
      gataatccaa aagatgtctc cctttgaaca tatgtagaag ttaatcattt agattaactt
64 981
       gcatttaaac acataattgt atgtgatcgt atacattttt tggctcactg ttttgtgttc
65041
       aaaggcagat ttoctagggt agtgctgatt tattctactt cttttaggct gtgtaattca
65101
       ccttttttct aatttgggga aaattgtggt cactatagtt atatatttt tatttaaaaa
65161
       cttgtaatat tttattaagt tatctaccca aatcttcctc ctgaaagata atatctttt
       ttcctttttt ttttttaat ttcagtaggt ttttggggaa taggtgtcct catagcttag
65221
65281
       ctcccactta ggagtgagaa tataggatgt ttggtttttc attcctqagt tacttcactt
65341
       agaacaatgg tctccagttc catctaggtt gctgtgaatg ccattatttc attcctttat
65401
       atagctgagt agtattccat tatctatctc tgtatatgta tatatcacaa cttctttatc
65461
       cacttgttga ctgataggca tttgtgctgg ttccatattt ttgcagttgt gaattgtgca
       gctataaaca tgYgataaca cagtatcttt tcagatatgt gtccgtctga catgttctgc
65521
65581
       accacccact acactgcagg gcatttaggt aagcagcatt tataagagtg actggaaatg
65641
       gcttaggaaa aatggtacag aatgtaattt atcagaataa tcactgatcc tcttagcatg
65701
       tgtattcaac aggtaactgt gactctaaaa tgttatttgg gagggaattt gcaaccaaag
```

```
65761
       ttagaaacag ctctagaggt gctgggatct aggggcctta qattttttca tctcagttaa
65821
       teacaccatg etttaggaag etttaggata agattetggt getagtgtee eeggttggtt
       ttgcttctga gaaccaattt tgcagttgtc acatgatgag ttggatcctc atgcagatcc
65881
65941
       tccaaggqtc ttactgaaca ccatcggttt atgctagtga gggtttgtgg ttctcagctt
66001
       cccgcattgg aatgaacatt atttgggcct gagctgtgac agcttccttc ttcagcttcc
66061
       ttccttgggt tcttctggtt ggggtatgga ccacttcttc tggagaacag cagggtggtg
66121
       ttcaagcacc atcgtactct cctaqtctag agctcagcca cccagtacta tagccaatag
66181
       agatatttgg ctcaaaaaca catgagagat ggtagtgtga cagaataatg qaattqtaaa
       ttgtatttag ttttaatcaa aactttaaaa ttgatatcca atatatatga ttggaacaac
66241
66301
       ttgaatatgt gagettacet tttcatetet aaagtttatg ataaaagatt tecagtaaaa
66361
       atttaatgtc caagttgaga tatgctgtga gtgtaaaata catgctatat ttcaaagact
66421
       tagtatttaa aaagaataat atacaataag taattttaaa atgttgatta tttgttgaga
66481
       tgataatatt tttggtacat taggttaaat aaaatgtact attaaaataa tgttatcttc
66541
       ttaaaattgt gatgactata aaatttgaaa ttgcataggt ggcttacata atgtttctgt
66601
       tattgggcat tgccctagag ctaactgagg aaaagatcat agggcaccat ttgccattqt
66661
       tgtcagtatg tggctttcag tactaggagg taaagtagat actctttcca tactaaatac
66721
       taaatgccac tatcattaaa aaacaacatg gcaaatcttg cccttaaggg gacctcattt
66781
       tttccccagc aaaacaaaac cgacagcctg ttatataqct aaagagtaga tgaaaatact
66841
       taaacaatat aaatgaactt tattggttaa taggtgcagc aaaccaccat gqcacacatt
66901
       tacctatgtq acaaacctqc acatcctqca catqtatccc aqaacttaaa attaaatata
66961
       tatataaaaat aaactttatt agttatgcaa tgaaataaaa cagagcaagc aataccttta
67021
       ggttcactga attttaaagt taacaccttc aatacaaatg tatatatttt gtatacacgg
67081
       ttatgaaggt atgaacatat taatgagcaa aataattatg aatacttgtt cctcttttgt
67141
       agttttaaat atgtataagc aagaagtaac ttgacatgac ataatgctgt gccaccttgc
       ctattctgtc gtgggctcca aatgtaaatt catcagaaga gctcacagct ttgttgaatc
67201
67261
       tcctgcctct ttggggagat aggctcatat gtctcaattt tgaaqcaccc ctcttgqaat
67321
       gaggtcagtt agaccactcc aaggaccact ctcttttctt ctttgtattt tctggggaaa
67381
       acgtatagct agcatgctgg gactgtttgt tttgaatgag tttgtttatg agttttcaaa
67441
       acaaaattat gaaaaaaagg gaagtttcca actccttgtg catgtcttgc tggctaagca
       gatgatctct aaaaacagat tacaatatca ttttgaaggt aacaaaggta tcttccttgc
67501
67561
       ttatctttaa gqctqcatat tttattgttt atacattqqc caattaqqaa ctqaaattta
67621
       agaaagacag tcattttaac ctattgaagt cacagaatga aatgatgaag taatcgtatg
       tgttcccagt ttagcatata tgtatatata tgcattgatg aataatatga tttgttgtaa
67681
67741
       acaaatgaaa aactgcagaa acctgtaatt tgtacattat tatttcagat caccgtaaca
67801
       aatattacca ggtttttaat tttctttaaa aaaatgcatt tctagggctg ggcgtggtgg
67861
       ctcacgcctg taatcccagc actttgggaq qccaaggcaq qaqgatcacq aqqtcaqqaq
67921
       atcgagacca tcctggccaa catggtgaaa ccctgtctct actaaaaaga caaaaattag
67981
       ccgagcgtgg tggcacgtgc ctgtagtccc agctgctcgg gaggctgagg caggagaatt
68041
       gcttgaacca gggagtcaga ggttgcaatg agccaagatt gcggctgcac tcctgcctgg
68101
       tgacagagcg agaccccgtc tgaaaaaaaa aaaagaaaaa aagattttct aaaattgtat
68161
       ttatactoto tgotocttoo coatcagoca toaacgotto cotocotcoo totocottoo
68221
       ttaatgataa gccctcagct ttgctcagga ctcagcctcc catgtggttt tggtaagtgg
68281
       tctaagacct gaggcccaaa gcgtgattgg ctgatgctgt gatttctcag cctggttgcg
68341
       cattagaatc accctgggag ctttagaatc cagatgcctg ggctctactc acagagattc
68401
       tgatttaatt ggtgttgc agaacctgac ttgagccatt tcgaaatggg tcattgatag
       cttgtagctg taacgattca aacatataca acataagcag ggtgaccaca gaagttattc
68461
68521
       totaagtotg gtatgttoot aaatgtooto taaattotta tottocacto cagggotttt
68581
       gaagtggcct gatccaaaca ccttctttcc gacattaaaa acattagccg gttattttgc
68641
       ctcatcagca cttcctacac ttccttaggt gagccaggtt gcttttaatc tcttggagct
68701
       gccttcgtta ataggccttt tttttttctt ttttgtttta aattgtatgt attgaaagta
68761
       tacaacatga tatttgatat acatattcct agtgaagtaa ttactacaat taaattaaca
68821
       cacccatcat ttcacatagt tacctttctt tttttgtqqc gaqaqtacct aaaatctact
68881
       atcatagcaa atttgtaata tataatgcaa tattattaac gacaatactt gtgtggtact
68941
       ctagattttt tcatccaaga taactgcatc tttgtatgct ttgatctata tctccccatt
69001
       ttccctgccc ctcccgatta tgccttttga ggcagtatag tgtgacagtt agccatcact
69061
       gaattctggg ggccttttgt ctattccagg gagatgaaat tgttagagaa agattaggag
69121
       aaagaatatg aaaaggactt agagaggata caaaatcatg aagtcacaaa tacctgccaa
69181
       acaaatccac ataaqgaqaa aataaaqaaa tgtcagattc ataaaaqatc aaaaaaaccca
69241
       aactgttctt agagggaaaa gcatgcacag ttaaggaaac tttttttaaa aagttttaat
69301
       aaaatctgat ctctagtggt aaatactgtt tcccaattac acctagactt ttatcgtgaa
69361
       tcaggttttc tagttgacat tgttgttttt catttgaaaa tgaatgctgt gtattctcct
69421
       tgtttcaatt cccttatgta tttttgtgtt aactccctct gccggggagc gccagactca
69481
       gatgaaaggt attatgacat tcgaqatgaa taatqacqta aqaaggactt actctattqt
69541
       atatcacggt gcagtatcaa aacattttgt cccatgagga gaggcagtga gtcagaaaat
```

```
69601
       cctgttggaa ttgtattata atgtagaaaa ccatttcaga attactgtct gacatttggg
69661
       cagctgggac tttgagctca ttccacggcc accccacctt agacatttta ttaggaagat
69721
       gctattcttt tttagggcta tcactggatc tttgtcctca ctgatgaatt aattaggtag
69781
       gtaataatga atctgagtta ttactgctga caatttagtc ttattcttaa aaacqttcat
69841
       ttcatggtgt gttactctgt tctgtgttgc aataaaggaa tacctgagac tgggtaattt
69901
       ataaagaaaa gaggttttat tggctcatgg ttctgcaggc tctgcaagca tggcaccagc
69961
       atctgctccg ctacctgtga ggcctaggaa ccttgtaatc aaggcagaag gctaaggggg
70021
       agcaqgcaag acacacggcg aaagagggag caagagagag caagggagga ggggccttgc
70081
       tcttttaacc aaccagetct tgtgtgaact cagaatagga actcacttgc tatqqcaaqq
70141
       acaggaccaa gccattcatg agtgatccgt ccctgtgacc caaacgcctc ccactaggcc
70201
       tcacctccaa cattggaggt cacatttcaa catgagattt ggagggggaa aaaacctcca
70261
       aacctcatca catggttaag tggcataaga tgcaactcta ggaatttttg ctttttaaa
70321
       acccagcttc gagctccctt ccattccttc atcaagatat tcatgatgga tctgcattgg
70381
       gacctgcttt tgtcttattg tttcccaaga ctaaaaaggg ttttcagcgc aagtgttctc
70441
       gtaatgtttt tgtccccaag attggatgtt tttcagttgt attatctccc catatttctq
70501
       acatgtacag acgtgcccag ctatgataKt ctgtgtggat ggtcttaaaa atgagttatc
70561
       attatgaata gtttgatgga aagatttccc aggaagcatt atgctttgag tgttggggaa
70621
       gagaagccac cagatgtcgt gtaggccctt gtccctttac tgcctttcct ctctgtttgt
70681
       accoctgtac aaggcagete ttgtggttac gatttgttaa caatttgagt ageteeetta
70741
       tattttgctt ctagagtaat taaacattgt ttcttagaaa tgtaaacatg ggacttagaa
70801
       ttacgatgca gtaatgcatt tggcagctga actgtgtact gggaaaagaa aaatatcctg
       gagcgggttt aagtttcgca gataagaaaa atggctttat ttagtgaatt ggaacaatac
70861
70921
       aagacctgtg ccctgaagtc agtactttct cttcccagat gagtttcccc aggcacaaga
70981
       ccaacttcta aaataaaact tgaaagtaaa tggcaaaaac cagaaacaga gccctgtaaa
71041
       ctagactttt atgctacggc gccataaaaa taacttattt gctatcaaaa taagcttaaa
71101
       cagaaccttt gtctgacaga tgacttttcc tctcccctta acctgacagc acccccaacc
71161
       cagtctttgg tcataagcct gacagcacgg tgagatacaa gttcctagtg gcagtggagg
71221
       ctgatgttta ttatttagag agtttctgaa aatgaaagtg taatgtcttg agtcacttac
71281
       ttccaaattc ttcccagaga actttaaata gtgttgtatt aaaaaacagg agtaaacaat
       cattcgtaaa acacaccca gaataaatct cttatttctg catgaaggca actgatctga
71341
71401
       aacatttttt ctatgtgcct tttagagacg gcaccaaatt tcatgcgcgt tcgtgtgaag
71461
       agaccaccaa acaggctttg tgtgagcaac atggctgttt atttcacctg ggtgctggtg
71521
       ggctgagtcc gaaaagagag tcagcaaagg gtggtggatt atcattagtt cttatagqtt
71581
       ttgggatagg cggtgaagtt aagagcaatg ttttgcgggc aggagtggat ctcacaaaqt
71641
       acattctcaa gggtgaggag aattacaaag aaccttctta agggtggggg agattacaaa
71701
       gtacattgat cagttagggt ggggcaggaa caaatcacaa tggtggaatg tcatcagtta
71761
       aggctatttt tacttctttt gtggatcttc agttacttca ggccatctgg atgtatacgt
71821
       gcaagtcaca ggggatgcga tggcttggct tgggctcaga ggcctgacaa taacacaqtq
71881
       ctcaaaactg tcagatagcc tgtgtcaggt ctgaagatgt gattttggtt gtttatactt
71941
       ggatgctttg gatgggaata gccctggagt cagcccttca tttcaggcag aggagcagag
72001
       gagtgtgagt tagacacaac tttggatcag gggccaggaa aacttggttg tcatcctgga
72061
       ccagttacta actcgctgtg tgggcaagtc acttcatttg tctaagtctc tcttttcct
72121
       tttgtaaaat aaggatgtcg gcaaatctgt gtggtccctt ccaacagtgt tttttaagtt
72181
       ggtgcctgag tatctgaagc aggagatacg aagggtcatg tgagctgcac attcctattt
       gctccgcagg gaggctggct aagacacccg gcccctgcct tgtaaccatg aacaaggttc
72241
72301
       tcgcaggggc tcgtctcaac tgcaggtccc ctgaaggtct catccttttc tttgctagag
72361
       ggaatttgga tgtcgttggt ccttgcctaa cccttgtctt tgaaagatac agatccaatc
72421
       tctgtgtagc agttaagtga tctgactcag acatatttac tcagtcttct tagagaatga
72481
       gaaaactctt ctcagaattt ttaagaatgt tcctgaagga caataaaagc tctcattcag
72541
       gataggcccc aaaacatttt tttctttata atgtggtgcc atttcctcat tttgcttttg
72601
       ttcatttgtt tattccttca acaaatattt ttgagaattt gctgagcact aggtattact
72661
       agatactagg acagtgagat aagtaagata cagcccctat cttcaataag ctgtatgccc
72721
       tgataatgat accettagtg tettetacaa getataeggt catgeateae ttaacgaeag
72781
       72841
       gacttacaga aacctagatg gcgtggccta ctgcacacat agggtatatg gtgtaaccta
72901
       ttgctcctag tctacaaacc cgcatggcat gttaccatac tgcatactgt aggcaatttt
72961
       cctctccccc taacctgaca gcacccatta cctgacaaaa atggtaagta tttgtgtatc
73021
       taagcatatc tagacataga aaaggtacag taaaactaag gcataaaaag tgaaaatggt
73081
       acacctttac agggcagatc catttacgca accaccactg catgcgtggt ccattgttaa
73141
       tggaaactgt tgtgtggggc ataactgtat ataaaagtat agctacttta attttaagtt
73201
       aaccctggta tgtgggaaaa tttgtcttct gtgctgtctt gcactgaatt ttgcattggt
73261
       atttttccct taatagtggc tgcaaaaaaa cttataaata cagaaccttc ttcatttata
73321
       gaattcttct gcattgacct ggaaaatgac gttgagaatt ggacgttaca ctacaatgta
73381
       gtcctccaat gaaggctctc aatgggcatt tctttaaggc ctaagttaaa gataaaatag
```

```
73441
       aacaacttcc atcactacaa aagatagtgt actcggagga acttgtagag atttttttt
73501
       tcttgtagct gtttttctca ctactcaggt ttcctttttg agttttgccc ctggaggctc
73561
       agagttgaat totgttggta gtoacttaga acctttotac tgototgtot ttootcagtt
73621
       qtqttttccc catqtqqqtt tqttttqqqa aaqcaqtqqa qqqqaattcc tcttaqqttq
73681
       aaataacttt tagagcgatg gtgccacagt ttacaaatat ttttagaaaa atcctgtcag
73741
       73801
       73861
       tttgagacag agtcttgctc tgtcacccag gctggagtgc agtggcacga tctcagctca
73921
      ctgcaacctc tgcctcccag gttcaagtga ttctcatgct tcagcctccc tgagtagctg
73981
       ggactacagg taccetecae tacgeetgge taatttttgt atttttagte gagatggggt
74041
       ttcgccacat tggccaggct ggtctcggac tcttggcctc aagtgatccg cctgcttggc
74101
       ctcccaaagt gctgggacta caggcgtgac ccaccacgcc tggcctaaag ttcttattta
74161
       aaaatttttc ttctgatttg ttagtttaag aaggtaggtt tgaagcagtg accaggaatt
74221
       ttcgggaaat ccattaagga ataaattatt cagtaaaaca gtctcaaagt gagggccaga
74281
       gtgcagqaca gaggcagaga qagatggtag cagtttataa agagaaqata cttgattaga
74341
       gaaatcattg tcagagtaac cttatgctta gaaagaaatc acacgcgaag ctctgtgttt
74401
       gaaatcagaa gggaaggtgg gcattcggat gaagaggctg tcggacttgc attactttga
74461
       ccactactgt tgtttttgct gttgtggtgg ttgttgttgt ttggaagatg gagtaaattg
       caagectggt ggattteatg tgtttagaat tgtagetaaa atageteett acgttgaage
74521
74581
       atttcctcaa ttctataccc acqttctcaq tccttqtqtt actaccaqta actcattttc
74641
       caaaatgcag aattgcattt tacattttag ttctttcaat atttggatca aatacatgtt
74701
       cagtggaaag ggtatgttta atttcctttt ggttcggcac taatttaaat tatgaataga
74761
       gataacgtaa ttctagtatt cgtatttgat tgttaaaata tttggactca gaagtgcatt
74821
       tacacgtttc caaatttgac aagtaggaaa aggtatagag tccaaactcc ttcccaggcc
74881
       tatccacage tacccagtgg cctatcccca ggcaaccagt gttaccagtt tettgcatat
74941
       ccttctgcat actaccaata caaaagcatg ttattctgta gccccagcta cttgtgaggc
75001
       tgaggtggta ggatcactcg agccgaggag ctggaggtag cagtcagctg agattgtgcc
75061
       actgaactcc agcctaggtg acagtaagaa cctgtctcaa aaaaaaaaa aagcatataa
75121
       ttttgttctt cttgttttta tgctgatgag gacatgctat gtccactgtt ccatggtatg
75181
       tgcctttata ttcagttatt cactaaaaaa atgagaagta tagagtaaaa tgaaagtctg
75241
       tagtattctc cactagaaac aggtgtgggg ttcaagggag agtgtgtatt aattattgca
75301
       aaacttctgg ttaggtcatt aatcagaacg ggagccatgc agtggtgaag ggccctggct
75361
       atgatetgaa acatttttet gaageagtgt tgagttetgt aactgaagte catggggaet
75421
       tgctattggc ataactatat gtggaaaatt ttgctttttg agtaggacat tcccatgctt
75481
       cacatttaat ttgaattttg gtatgactgt actaagttaa catagctttt cgcattttac
75541
       agagacattg agtaaatcat tgactaaaga taattaactc ctttatatca Yatgctgaaa
75601
       tgttatgggg gacatatcat tacctttctt ggcttatgga agagatgtaa tctaattcat
75661
       tgagtctgac tgtgtttaag ctattgtttt gggtgtcatc gttggctctt agaacaggga
75721
       ctgggcctta gtccttttcc ttgctcatac ctggcctcct cctagaagac cctgcttttc
75781
       atgttttatg cctcagaacc aagatgtttg gggtcccaaa gtagggatgt gtatgagcac
75841
       attitttgat actiticatet tietettaet etetaacatg egitteegeta gigteatgta
75901
       aatacagtga atcagatatt tctctgcctg caaaatgcct tttgccagta tgtgggaggt
75961
       gtgttgcagg taccacagtg gattttctgc atctgttcat acatccatct ttcccactta
76021
       gctgtgagtg gcctcagtgc agaatggtgc cttaactcta gagtctggta ggaaatgcca
76081
       tgcacatttg tcaaatgaat ggaaatgcag ctgacttgct agagctcagt tctgagtgca
76141
       gggtgcttga atgctatata atcaagttga gatcttagtc tggggcagca gaaaacaaga
76201
       aaaggttact gagcaggaga gtgacaggct ttcatttgta tcttaatggg ttaattgcag
76261
       tggcattaga aaaggggaga gattggggta aggcattagt tggaaagctt tgataaagtc
76321
       taggtgagtc aggaaggggt tctgcattgc ttgtttccca ttgctctaac tagatttctt
76381
       agaaaaaaga aaatcttaca ccagactttt acagcgtttg caactgagta aatttcactt
76441
       tgtaataccc tggatattat acaattatat aaagcgcagt ataataagag agttagtagc
76501
       ttcattgtaa tcagtaaaaa taatttttaa gacaattgtt attttttgta tattgtatta
76561
       taacaaaaa gaagtcatca agtgggagga ggtgttgttt tgagacgttt gctttcatct
76621
       cttaatcctg cagacattta tctagtccct tctctgtact cttaaatgct agggatttaa
76681
       aagacggata agatacaggc ttattatgtc tgtgttccag acactggact ccaaacataa
76741
       agcaaacatt acattattct tccttatgta atagaaatgt ttatgtaaga ttgtgtgtaa
76801
       atcagtcttq aataaactqa attaaatqqa atgtgccaat aggagttqct atttagaqaa
76861
       gccctgtgat aaaacatttg tataataata tacttatcta aacaagccca ctaatttcta
76921
       tgggtttttt tttttttcc ccccaaggcg aggtatcctg tatattctgt gttgattgaa
76981
       ttccagttgg ccaaccacct gcctggttaa tagagtatac cattaactta gtgacactag
77041
       aaccctgcaa aggaaataag acacaatcta tcgttgttca gtctccacta ttaaatagat
77101
       tttcattcac ttcagcttgg gtgggtgtaa tttgcatctt tcctaacagg caagcatctg
77161
       caagtgtatt gcctgtagaa gctcattaaa aatcagtgca aatcctgaca ctgtctctag
77221
       aagcaggcat taacttgcag aaagtggttt gtatttccag tgtcaKtaga gcttcctcac
```

```
77281
       tetttteetg ettecatgea agtttagtee taaactagta ecaetatttt agtacaacta
77341
       gtaccactca aataatgctg ctttttaaat aaattcaagg ggaactgcta aggaactgag
77401
       aacctgtaag gtgacaggaa aaaggaaatt ctattttttq qqqctaqttt gtqtattqaa
77461
       aataattttt gctgagaatc aagctaaqaa aattacttgc taatttaaac aacatgacag
       tcctcagaat tttccagcaa cagttaggag cactgtgata aagttggctt ttctgttgag
77521
77581
       aacgttttac ctttttgctt cagcttcttt aaagagtttg aaattagtaa tttcagtaga
77641
       gcagctttgc tgttgcgtcg tactgctcag agcttagtga gctgaagcct tttgggaaaa
77701
       tagcatttqq qqaqaqactc qtqqtqtaat aqctcatccc actqqcacat qtcccaqaqt
77761
       aagctgggct ggaagctttt agtgtagtta aaagatgcca gtctgtcatt tgcatgcact
77821
       gtaattgggc aagtggtttc aggctgagct ttacattatc cttccactga gagcagctgg
77881
       tggtgggctg tagattccat atgagctggg gacttatcat ctggtgtgtt tagtgcaatc
77941
       ctgcctcatc ttgggagcaa ttttttattg aatgataata ataatgcaca atcttggtga
78001
       aagataatgc ttgtggttat tagaatgtgt agactgagta ggggctttgg catagagatg
78061
       gtaatggtgg ggaaagacat atttaataaa aggattgtaa tggggagaaa gtaaatattt
78121
       tgcaggataa ggaaagccac aaatatgatt aatttaagag tcttaaataa aatgtctata
       aaatgttaga tttttagtac cagtaaggca aagtggccaa tctctagctt cctttataaa
78181
78241
       gtctactcat ccttggaggg tcgctttttg gtgctttttt tgtttgttca gagtcaactt
78301
       cttcctctag ggatatgttt aagtctgtca cctttcctta ggaattgtgc caatctgatc
78361
       atttqttcca ccactgctgc cccqcccct tttcttqact caaaqaataa tttqtqtacc
78421
       78481
       gtacatgtgt acaacgtaca ggtttgttac atatgtatac atgtgccatg ttggtgtgct
78541
       gcacccatta actogtoato tqcattaqqt atqtotocta atqctatoco toccoctoo
78601
       ccatctctgt tttttattat ttatttattt atcgttagag acagagtctc actctgtcac
78661
       ccaggctgga gtacagtggt gcagttatag ctcactgcag cctcaaactc ctgggctcaa
78721
       togatoctoc ogoctoagoc tootgagoag ctagaagtgo aggoacatgo caccacaco
78781
       agacaatttt tctattttt atagagatga ggtctctcta tgtttcccag gctggtcttg
       aactcctggc cttaaatgat cctcctgcct cagcctccca aagtgctggg attataggtg
78841
78901
       tgagccacta cacccaggcc ctgtttttaa cttgcaatac cttttctgca agattgaatt
78961
       tatattagat tataaagttt gtggacaaaa tagaacactc cattataaaa gcctccttca
79021
       tttgttttgt tctctggtgt ttgatttgac tgatgtggat ttgagtatgg aagtgttcca
79081
       tgccttatta aggaaagcac tttgggaatt ggccagggcc cacttaactt agtttcagaa
79141
       tggcagcact ttggcagtcc tcagtttctc ttatttccta acccatccct actcattaag
79201
       acggggctat tgcattccat tttcagggaa tgctctttca tttttcgttg gtgagagaac
79261
       atgaatgcct cttaaaatgg tggtttgagc ttgctgagaa ttttagggga tccacagagt
79321
       tgaaaagtct tacaggctat cagtgaagca tggagggttt tcgttatgaa aatqtcctqa
79381
       gatgggggga agactggaca gatgaggtag gggagcctcc ttgcaaagtt agaattcagc
79441
       tgtttatact ggtaacagaa tctgctttag taaggatgaa gcaaaaagaa aaacgatatt
79501
       aacaccttga gaaaatctct gtattgtgag cttaatccaa caactccaac gatgttagct
79561
       actitticaa aatacatctt agcccttgtt acaataacat ttacttgtgg agtgaaattt
79621
       tgtattaggc agattcactg taatcagtaa tcttccttcc attgagattc ttcctgttac
79681
       tttcttattt aaaaaccttc agtagcctgc atcctcaggg ttctgtttac agagaccctt
79741
       aacagtctat tcagccttac ttctgccatt atccctactc taggctgagt gttaaccata
79801
       cctacctatg tacatttgca gctgtgccat tttatctgtt tggattctta acccctctc
79861
       ttgcccaagt gcctagtggc gccctgttgg cacgttgagg ggtagcttaa gtgtttactt
       ctttcccgac tccctcagtc cgtgttagca gtaccctctt ccatactctt ctattatctt
79921
79981
       ctgcatactt ctgtactcca cctatctgtt gccatgaaac aggtcacccc aaaacagtgg
80041
       cttagaacaa tactatggac tgcgtttgtg tcccccacc ccaactcata tgttgaaatc
80101
       ctggccccca gggcgatggt attaggagat ggggcctttg ggaggtgatt aggtcgtgag
80161
       ggtggagccc acatgaatgg gatgtcttta taaaagagac cccagagagc ttctttcctc
80221
       ttctaccata tgaggacact gtgagaaaac atctgtgaag cagaaagtgg ggtcctcacc
80281
       agacacataa totgottgot cottgagooo ggactoottg agootggact cotcagooto
80341
       cagaactatg agaaataaat gtgtgggKtt tttttttttt ttttttttg gtcttgtttg
       tttgtttgag acagggtctc tctctgttgc ctgggctgga gcaaagtggc atgatctcag
80401
80461
       gtaactgcaa cctctgcctc ctgggctcaq qtgattcccc cacctcaqcc tcccaqqtaq
80521
       ctgggaccac gggcctgtgc caccacgccc agcttatttt tgtatttttt gtagagaggg
80581
       gtctccccat gttgcccagg ttagtctcaa actcctggaa tcaagtgatc tgcccacctc
80641
       agcctcccaa attgctggga ttacaggcgt gagccaccga acccagccag atgtttgttg
80701
       tttaagccac tcagactatg gtatttttgt atcttccatt gtacttaatc tatgggtctt
80761
       atattcagca gtattctatg ttatgtaagg agttgtggcg tgaaaccact tccttcatgt
80821
       ttttatgttt ctttttaatt aaattttaag cctgggaatc ttggtaatga catattatat
80881
       80941
       caaaggtggg tggtaatggc tttttccaaa gcatagtccc ttggttgtat tacactatta
81001
       81061
       aaacgtatac atccagatgg cctgaagtaa ctgaagatcc acaagagaag taaaaatagc
```

```
81121
       cttaactgat gacattccac cattgtgatt tgtttctgcc ccaccctaac tgatcaatgt
81181
       actttgtaat ctccccacc cttaagaagg tactttgtaa ttctccttac ccttgagaat
81241
       gtactttgtg agatccactc ctgcccgcaa aacattgctc ttaacttcac cgcctatccc
81301
       aaaacctata agaactaatg ataatccacc accetttgct gactctcttt teggactcag
81361
       cccacctgca cccaggtgaa ataaacagcc atgttgctca cacaaagcct gtttggtggt
81421
       ctcctcacat ggacgtgcat gaaaggtagc ataatacaat ttttgctgaa gttttgttgc
81481
       tcttctactt ttaaattaag gaccagatag gaaaggacat atggtaatct atcaaatata
81541
       tagccattga tattttcttt gttttctttc actaaccggt ttatgcaaga ttttttaaa
81601
       aaaacagcaa aatgaaaagg ttcgtaatat cctgacttcc tgttttatta taaatgagat
81661
       gaacaccagg tagtgttaat ttcctttaat ttctttatga gtcatcctca aattaatgtt
       tgaggaatgg ttgggtgttt tcaaatatct ccgacatctt ttagttagac agcatagtga
81721
81781
       aatggaaaga aattttgaat ctgctagact caagtttgca ttttggctct gtcatttact
81841
       catagatgta ctacttggag taatcatact gattttgtag accaattgga aagataattg
81901
       accagtgttt tagggtatat gtatatacac aaaatttgac agacatgtaa tcacacaatg
81961
       cttaagcccc atatgttatt aagcccacac tttggtaaat aacatttggg gcttaagcat
       ctgtgtgatt ctatatatgc cggtatttgt aaatgtaaaa gtgataccag ctaaatcacc
82021
82081
       catctttctg ggaactaagt acaaaggaat ggttctgttt ctaacccttt ggcttagagt
       atcatagagt tttaaatttg gccagatttt aatttgacag ataaaaaaat gaggcacaga
82141
82201
       taaaaaaatc gagaagttga atgaattatg aaaactcact agaggcagag ttgaggacgt
82261
       tgtccagtgc tctgttgtat cattatgtca ctgcctgccc tactgttttc ctgctctttc
82321
       cetettette tteeteete teageeetgg teeacetace ttagtgeatg cacacacgta
82381
       tggcaaagat caacaaggat gctgggttca gggtcctttt cccactggag tctggcaaca
82441
       ctgttcctgc cttgatatgg ttcttggttg ttggYcactt aaaacaatgg catattttga
82501
       agggctgaat agacttcctt ctttttaagc ttttctttt atttatactt tttggatccg
82561
       tgtaatttct ctgagtcatc cacattattt tctacttttt ctcagttttc atgacctgta
82621
       ttaccattac aggtgtctct gctataattc aatatacata ttcctgaaaa cctcatgttc
82681
       tacaaaatca tacattcaga ataatctggc taatgggaaa tattggtttg gggcagtctg
82741
       gcttatggga aatattggtt tggggcagtc tggcttatgg gaaatattaa gttgggacca
82801
       accactctaa atctatgcta ctttgcaagc acagcactaa caaaaacaat gaaaaccatc
82861
       ataaaacagg agcacagttc agaagacata ctacattcct actatataca qatacacttt
82921
       ggtaaatatg actttaactc atgaaaatat gcggggctgc ttgatggaag gggatgtaag
82981
       gaaggatatg aggctggtga gtactgggag acaagaatga aacacaccaa gacgtttgca
83041
       tgagatcatg caaagagaat catgcagaag gtacatctaa gacacaaggc caaccgggca
       tggtggctca tgcctgtaat cccagcactt tgggaggctg aggtgggcag gtcacaaggt
83101
83161
       caggagttcg agacctgacc tttaacagtc tattcagcct ggcaactatg gtgaaatccc
83221
       gtctccacta aaagtacaaa aaattagctg ggcgtggtgg cacgcaccag tagtcccagc
83281
       tactcaggag gctgaggcag gagaatcact tgaacttggg aggcagaggt tgcagtgagc
83341
       cgagatcaca ccactgcaat ccagcctggg cgacagagcg attctctqtc tcagggaaga
83401
       aaaaaaaaaa aaaaacacaa ggcccggcag gctgagacca tgacaggaac ggttagagtg
83461
       gaccetggtg cagtgtgggg tgctctgttc agcctcacta tgaatttcac atccagettc
83521
       tgttacttgg agatataaaa cagtaatgtg tggagacaaa tcgtggatga accaactcct
83581
       gagttatggc gtcatcaatc tgctatgacc agtcaaattc gcagtataga aacatgtctt
83641
       gtagctggac agaaaacatc cagctctact gctgctaaac atcatggaat gtacccattg
83701
       gtttatccat atagtaagtt ttaacattat ttttaatata ttgttcattc tgaatttgac
83761
       agtggtctgc caagtctccc tgaactccac aaattaaata aaggtatctc agagggcctt
83821
       tcccaagaac tttaatgcca tcttcctagc aagctataga aaacatttga aaaccccaag
83881
       ggcaaagttc cagggctgcc taggggcaaa atcagtgaac agagtagtaa actgataaaa
83941
       ccagcataga ggcctctgtg ggggaaaaag acacctttct gcagttaata aacagtacca
84001
       aagaacactg attgtcttct cagggtttgt agcccatttc tgttttttat ttttaaatct
84061
       cacctgttat ttttgttttt agctgttcca tagtagtctg atggaaatac actttatgtg
84121
       ttcttgtgtg ccaatcaaaa ataaaataag cacaatgaat acctctaatt gcatagttca
84181
       tgaaaggctt gaaaagatgc agagcagctg gctaatgctg ccaatgagcc attggctgga
84241
       gccccttgta actcagcctt tgattctgtc ttcagcaagc cccagcatcc tcagggccca
84301
       tgtgatgggt gctcagtgga actccagact ttgtggaggg ctctgtggtt ctgctgctgg
84361
       ggaaactgtg tgtttctgag cctatgggaa tgggtcagaa agcctgggaa atgggggaga
84421
       ataggagcag gaacacaaat gaggagccag caatgcaggt tgctattatg tcqcatgtca
84481
       cttcctacga atatcttgat agattagctt ccttcaggcc caaaaccttg aatggacatg
84541
       aaccacagta tcagggctaa atgagtaaca gcccaaacca ggtccactct ccagacagtt
84601
       agaaaaggta gacatctctt gtagctggat ggagcagggg tctcccccag gggtggtaat
84661
       tcagcaggtc tttaaagaat gaataggatt aaagtaagtg aaaatggaaa gctgaaggca
84721
       gggaaggaaa gtgaggctca gggagaattc tgggcaaggg aaagttacag agtgattcct
84781
       tagagettgt gagtetaaca attttgatgt caatggacet tattettgga accacaggge
84841
       aactgattga ctttagtttt cttttttgct atattcttgc cactcactca atgactgctc
84901
       attgaaaatt gatgataatg gccatatgga aagtctcaga gcttatctag gatttgagtc
```

```
84961
       cctgaggcat aatcagtggg tggaacagca gatggatggg gcagactatt tttctgttcc
85021
       ttcctgtgac agttgattat aagttataaa aatgggcatt ctctttgtga tcttagcttc
85081
       caaaattacg gaaggttatc actatttatt attactactt tctcaqcaaa ctcaaaqaat
85141
       cagagtgata ttgattattt agatttagca atgggggact taagctctta taaatcaggg
85201
       tcatctgaat ctaaagatgt atgtctttct tatttcagtc tgaccagtta tttaagaatc
85261
       caagatacct ttacttttta tttgaagttc cttaatttga taagagctct accaagcagt
85321
       tggttetgtt tetettteag ttetetgeea agettttgtg tgtettaaga caetgggaet
85381
       qqqaaaagac tgcagtgttt gttaaatgta aattatactg agccttgagg atttgaatgc
85441
       atggggagag gtacattttg gctttccttc ctttgtaaaa tqcaqttaaa ctgatatcca
85501
       gaacaatggt gagaaaacac caattaactg aatgtatgaa agacagtaaa ataaacaagg
85561
       tgggcagtcc tgtatgtgag gcatttttaa actctttgct gtgtaagtgc aggcttttgg
85621
       aaagatctgc ttttcacttt qatttttqca qtcccacacc aqcttqcttc tqqttctqcc
85681
       ttcagggaca tatgtgctct ctagatctgg gaatcttttt gtctggagac ctcaagattg
       ggatctgcac cctccccacc ccttcctgtc tgaactctat tttagatctg cagtaaagac
85741
85801
       ttgaggcttt ttgcaagctt tcaactctga ggtattttgg aaaactgtaa ttttgtttgt
85861
       tototgotgt atgoatgtgg tttottaaaa cacgagtgtg attattttct gcatcotttc
85921
       catagcaaac atttccctca aactacatgc tccaaaagta ggttctcact gcacttgcca
85981
       tgccgtctca ttgcttattg agagtgactg tctctttaca acaaatcaac tggttacaat
       tttgaggctt tttaggtggc ttccaaactt gtcttggggt ttgtccctca tatgttcagc
86041
86101
       agccaaacat gctcaatgca ttgtatattt cccagcaagc catgaagcac tattgactta
86161
       ttatgaaact taatttgatg ataatgaggc aggtctataa aatagcactt tgggtagttt
       ttacccataa aatagcaatt tgtggaagac cgttagtatg tagcatggac tctgaagcta
86221
86281
       gagaacttga gtttgagtct cagcttttct acttttttt tctagtaatt ttatttattt
       tatqttttac tgttaaattc ttaacctacc tggaatttag tttggtatag ggagtcatgt
86341
86401
       ttggatctag ctgttgattc tttttaaata taatttttag tgatttttt attgtgataa
86461
       aatatacata agatttatca ttttaaccat tttaatttag atgtacaatt cagtggcact
       aaacacaatc acaagttttc cactttttag ctgtgttaga ggtcaaatta ttttaccttt
86521
86581
       ctgcgtctcc gtttcctctt ctgcaagtgg gaataatact cccattaagt tgttatgaga
86641
       ttaagactta attcaggccg ggcgtggtgg ctcacacttg taattccagc actttgggag
86701
       gccaaagcag gtggatcact tgaggtcagg agttcgagac cagcctggcc aacatggtgg
86761
       aaccccatct ctactaaaaa tacaaaaagt taactccgta tagtggtgca tgcctgtagt
86821
       cccagctact caggaggctg aggcagcaga attgtttgaa cctgggaggt agagtttgca
86881
       gtgagctaag attgtgccac tgcactccag cctgggtgac caagcaagac tctgtctaaa
86941
       aaaaaaaaac aaacctaaat tcataggaaa cacttgatga cttgatgtgt acaggacaaa
       ataagtgctt aataatagtt gatggccatg aggatttgtg gtactggcag tcccccattt
87001
87061
       gctagttaag aagcattttt tgagcctggt gccatatgtc tgccccatac atatgcctgt
87121
       gtggtcacag taattgccgg ttgaatcaca gtggagacct cgagaattct cattggtaac
87181
       actggataat tttttcatca tttttatgtc cactttagca tgagactaat atacagtttg
87241
       aacttcaggg gagaaaagaa gattttctaa cagatttata tttcaaattq tttacaagac
87301
       aattgaaaat gaaaagataa aacctactta ctcttcaagt tcaaggcata atgcaagagg
87361
       cttgaagagg gtagacttct gaatatattc cataaacagt atctcttttc agaggttttq
87421
       agaaaaccct tgtttaaaaa aaatatgagc aacaattatt tgttattcat gaattctaga
87481
       tgtgtaaatt gtgtgatcaa aatgagagga aaaagagaag tctcaagaga ataagcattt
87541
       tgtctacatt taagtctttt ggaaatgata tgtttgaaaa taatacacc gttaaatata
       tttccttaaa ttatttagat aaactgtttc tattgtagtt tctggtaaac agtaatatga
87601
87661
       aatggtttct attttattgt caacaacttc attacttttt aatgcagcaa aaagcttcca
87721
       aatagatctg ttaaaaagac tgcagaaatc ctctgaattg aataaactat ttctagcctt
87781
       aacattcatg cttccacagt ggaatatact atattcagcc accatcacaa aaaatgtctt
87841
       tcttatcagt gctgccctag ctaaatgtga actttaaaaa ttggaaaatc aggcactttg
87901
       tagacagttc actctttgtt tcatattttt gggctaagga aaaaaaattg cccaaggaag
87961
       tatttctgga aggagtctaa cttctcaata aacatagtag tttagcctac aatatttttg
88021
       ttgttttggg aattgatagt gaccctaaat ataacaaaag aatattgatt tctaaagcat
88081
       ggatcgtgtt ggttcctaaa aagtgagtga taatgtagca attaaattct gccctgtatt
88141
       atacacagtt ggtcagggta tcagcagaat gccatcatca ttattgaatt gtgtaataaa
88201
       tacttggggc agagtgccat agtggaaata aaactacatt ttggtttagg acttcctgcc
       ctagcccatg gcctatagag ccaagccttc acgtttcaag aagttgtgag gggaaagaga
88261
88321
       caggeattgg ceteatggta geagetgetg gagggttett tteetagete attttettte
88381
       ctcatgtttc acatttttcc agggtgacat cacgtgtggt aactatttgt atggatcttc
88441
       caagcccgca ttttagccaa gacatttctc atgggctcca gacccacaat ctggtggtca
88501
       acatactete tacttggttg etecatagat accetaagte aaggeatgaa tatetaaact
88561
       gatcgtgact ctcctctct ccaccatcac ctccaaacct gtttcttttc ctgcatttt
88621
       ttttttttt ttttgagatg gagteteget etgtegeecq getggagtte agtggeacga
88681
       teteagttea etgeaacete eateteegg gtteaagega tteteetgee teageeteet
88741
       gagtagctgg gattacaggt gtgcaccacc atgcccggct aatttttgta tttttagtag
```

```
88801
       agacggggtt tcaccatgtt gttcaggctg gtctcgaact cctgacctcg tgatctgccc
88861
       gcctcaqcct cccaaagtgc tgggattaca ggcgtgaqcc accgcgccca gcctttcctg
88921
       catttetttt gagcatetag cacgttteca gteatteate caegteagaa ageceeagat
88981
       gccaccagct cttctttgct ttcaatgttt aatggaacac taaggtctgc gaattctacc
89041
       tcacaaatgt cttccctggc gaatcctcct ttctgtgcca cccatcttca ccttatttcq
89101
       ggccttcctc atttctcacc tggatctttg taaccatggc ctctagagct ggctccctqg
89161
       atccctactg gccatcaatc ccatgtgcct cagccgtaat gccagtcaca gttctcaaag
89221
       agctattctc ttcctccctt cctcattcag gctgtgcctg gtaatctgga gtgaattttc
89281
       cactecatee tgcagactte caaatactta tecagagget cagettacag etcaatgeet
       ctttgaagcc tttcccaacc tttgcagagt tgagatataa ctatgctgct aaatgtaaat
89341
89401
       ctaactette atacatttte tettgtttae etgteteece etectgteag agtetgagtt
89461
       acttgaggtt gtgaattgag tcttatttat gtctgtctct aatatctagc atggtgtgtc
89521
       tcattgatag cagacatcta taaatgagtg agtaagtgag ccaacgtgtg ggtggttttt
89581
       cctggggcgg gaagggttgg gagggtacca cgtagtcagt gtgagcctcc cttcgqgctc
89641
       tttgactttc cgatgagcat gcttactggt agtgacttcc cttgaccctt accagttaga
89701
       tacatgctct gggaccagag ctgcagaata taaaccagta gttttgaaaa gttattatta
89761
       tctccataag gattgggttt tttataggca caggtaacaa ggttgaacac aaccaaqtga
89821
       acccagtgaa ttctatttat ttcaqtqaqq tgtctqtatq cactqtqqcc atcccaqaqq
89881
       ccttactttc aattcatatc cactaactca agggggcttt actgccaccc agcactcaca
89941
       ccgccgtgct cttctgcaga gactttcccg cagtctgttc actgcttcat actttctcct
       qcacttaaac ctttagcata tctccatccc tgcctctcag ctaacggggc ttgcaggcaa
90001
90061
       ttagaaagag cttccctgtg tacctgccac cacatcttct cagttqtctg cactcqctqq
90121
       ctagtctccc ttgctgtgga ggaattgttg atgcccctgg gaaggccaca ccctccactt
90181
       90241
       ctggtgccca ggccagagtg cagtggcacg atctcagctc actgcaagct ctgcctccca
       ggttctcacc attctcctgc ctcagcctcc cgagtagctg ggactacaag tacccgccac
90301
90361
       cacgcccagc taattgtttt gtatttttag tagagacggg gtttcagcat gttagccagg
90421
       atggtctcga tctcctgacc tcgtgatcca cctgcctcgg cctcccaaag tgctgggatt
90481
       acaggogtga gocacogcac coggococct cocacctttt taagaacatc actocatcag
90541
       ttgtctcctt tctcttctga ataatcagtt ttcccctqgc caccaaqcta ttcccatcaq
       catacaaaca tgctgatttc ttcccccata ccatgcccct ctccagcttc catttatctg
90601
90661
       ctctgtttta ctttgacttg cctgaactca ttataactta ttcctctcct ttcagtctct
       ctctttgcaa agtttttaaa gcttttaatt ttggtaagac atatacaaca caacatccaa
90721
90781
       90841
       tgtcacccag cctggagtgc aatggcacga tctcggctca ctgtaacctc tgcttcctgg
90901
       gttcaagcga ttctcctacc tctgcctccc gagtagctgg aattacaggc atgtgccaca
90961
       tgcctggcta atatttttt gtatttttgt agagatgggg tttcaccatg ttgqccagqc
91021
       tggtcttgaa ctcctgacct caagtgatcc acctgccttg gtctcccaaa gtgccaggat
91081
       tacaggcatg agccactgcg cctggcccat ctcaaccatt cttaagtgtg caattcggta
91141
       atgtcaggta catttacatt attaagccac caatctgcag aatgttttca tcttgcaaaa
91201
       ctgaaattct gtacccagta aacattaaca cctcattttt ccctcctcca agcccctggc
91261
       aaccatcctt ataccttcta tctctgtaaa tttgactact ctgggtaatc gtccattctc
91321
       tcctgaaccc accttcatca ggcttttgct cctacattcc ccctccacca cttttctcaq
91381
       gqtcacctgt ggcctcact tqctggatct gacagtcatt tctcagtctt tggctqattt
91441
       ggcccggcag cagctatagg aacagtggaq cactccctcc tctttgaaac actgtcttca
91501
       cttggtttcc agggaccttg ctggcctgtg ttttccttct tcctcacaga ccactccctt
91561
       ttagtgttct tcctcttgtt gcctctgtag gttggaatgt cccagggctg agtgcatggc
91621
       cctcttctct aatcttcact cactcctctt tagagttgat gtctttccat gccatttata
       ctcttacagt tcccaacatt tgtcccgagg cccagctgtg aacacttcct tacctgcata
91681
91741
       tctaataggt gtctcaacat ttgcatctcc agaatgactc ttgacctgcc ccccaatatc
91801
       tgccataggc ttccacatct gaggatggca actccgttct tccaatttct gaggccaaaa
       ttgggaatca taattgacta ctcttttct ctcaaacccc catccaatca gcaaattcag
91861
91921
       ttggctttac tttcaaaaga tacaacctga atgtgaccac ttcttqtcac ttccactctq
91981
       ccactcaggt ctaaccacca tettacattg ettgggttgt caceteetee etggeetee
92041
       tgcctgccct agattccaaa cacaaatcta gcgagaagag cctatgaaaa tgtgagccac
92101
       cctctgctcc aagccctcca gtggccagga aatggcagac ttttacagtg gccgaaagct
92161
       ctatgtgatt gcctactcca tgacctcatt ggcctctttt cttgattttc tcacccttgt
92221
       cccctcgctg gagtcccaca gccttccctg gtgtgcctgc agtatgccat cctgctgcta
92281
       ccttagggct tttctgctct ctgtccctct ggggaaaggc tcagccctta aggatcccgt
       qccttcctct cttcttctq tcaqctctgc actcagctgt caccttggtt gcgaattctt
92341
92401
       ccctggtcac cctgtttaaa gttgccacgc ttctcccqca cttcqtagtt tttttttct
92461
       tMttattttt ctttctagcR cttaccaccc tgtaacatgc cgtatatttt acttgtcatt
92521
       tgtgtttgta tcaccccact ggagggtgag ttctagagag cgggatttcc ttgccagcgt
92581
       tcgctggatt tgcccactgc ttagaactat ttctqqcqca taqtaqgtac acagcaagta
```

```
92641
        ttccttgaat gactatagag aagaagcttt cacaaaacag aaaagcgtaa ttaattgccc
 92701
        acttcagcct cctaaactgt aggcttcatt tgaaatttca agttcttatt ttatccaaaa
 92761
        gagaacaaag ctgaattaaa cattgcttca aacgatatct ttgagtcgtt tccaagaagg
 92821
        atgtatagat gaaattataa tttaggttgc tatggataca tttatacata taaaatattt
 92881
        gtgacaaata tagtatttgt attatataca agaaaattac tatggatttg caaatcgatt
        catataaaat ttactttctt atgggacatt aaatatatta cagtagcttt gaattttctg
 92941
 93001
        aattatattt acttaaaaat gtcactggca atacctttga gggttacttt ttttggataa
        aacttgtggc aataattcct cctttgactt cttcagcaat atgttaaaac tggcacggaa
 93061
 93121
        cctttgaata gcttttgaat ttttatctcg tttgaaatta accagttact gatgtaatta
 93181
        ataccatatg gtataaattt tgaattctgc atgatttcta cttcaaaatg atgcctgctg
 93241
        ccttcattct actttatgtt taacacaagt atttggaaaa cctgagtagt ggttatctgg
 93301
        cttagtggaa ctataattta ctgcaggtaa aaaggaggat tcatttcttt atgttggaag
 93361
        tctttaaaaa tatactgata catttccatc ccaaattagc aagtctgtta gagggacaat
 93421
        aattttatct ttgctaactg aagatcttac atggcctcat gcctaagatt atttactaca
93481
        cattgtatca aaataaaaaa agtttgatat gccactaaaa ggctttttta aataggagag
93541
        atctaatcaa tcacatacgt ggacgtgctg tttatactac aaaacctcta gatcctcttt
93601
        acctttgcaa ggggggtggg tagttttggc tttccttatg tttttatttg ttatttgtga
        agtatataat aaaagaaaat ctaagaaatt gaggattatg gttaactgaa gtgtaataga
93661
        ctgtttcacg gtatatttga cttcaacagc ttccagcaaa gaaaaatcct ggaaaaaaac
93721
93781
        tttctggttt ggtcattttt attataaaag gctttctatt ttccagcaaa gaacatttct
93841
        tttatggtta agagtttcaa tatttatgta attagcaact cacagcagtg ccttgtttca
93901
        ttcttgattc taatcctgga atgataacat accagcaaag cagcagccgt agcgtccaca
93961
        gagcctactt ctctgccttt tttctgtctc cctgtagaga gaagtccact cttttctctg
94021
        atcccagtgt agtaatgtaa atttgggcat gcagaaagtc aatgtgcctt agcatccttg
        ggattcattt tctttgcatt tccgaaatta ctcaccttgt agcagttgtc agatccctta
94081
94141
        attagtaact agttttcttt gaattatggt atcacataga ctgtctgtgg tctggctggt
94201
        aagagactgt taccagctgc tcagctttag tcaggcaata aggtatttgt tacacttcaa
94261
        ataatcatgt gatttagtga aaggccattt gagctctaaa gcctcacagt ggaaagtttc
94321
        tgagacctct gccctccctc tcacacccca gagaatccct agtctcctgc cttcctctca
94381
       tgctatctgc atgattgctg ttggcctgct cggccaggaa gatggtccga cacacaccc
94441
       tgttcactgc ccagggtctc aggatccctg tcctaggcag agtcccaagc agtgttgtac
94501
        ctgccaggaa gccctttggg ctcttctgca cccttgggga ccagtgtccc tacagtaatc
       tgtactcatg tttattccca tacttctctc tagaatttaa gtcatgagct gtgtgtctcc
94561
94621
       ctttctgcac tcagagagta tcagaggagg cctggtgtcc tagttatatt tcatttttca
94681
       actgtcattt gttgaactcc agacactgct aactgctttg catgcatcat cttacttctt
94741
       cttcccagtg tttataaggt gcaactgaac caagccatat agttggcact gtgatgagtg
94801
       agggaacaga tacattgatc attgaatgga gctagagaaa actgttaagt aagttgacta
94861
       ctaatttagt ggaaagagaa accttcaaac taacttacag attgttcact tattgtacaa
94921
       aactattatt tatttatttg tgtctcatgg aacccagtaa tagctaacat aatcatgata
94981
       gcagttattc ttagagtgct tcactctgtg gcaggcactg ctctaagggc tttatatgta
95041
       tcatcccatt cagtcctttc actaattcaa tggagccagt actattaatg tcctcatgtt
95101
       acagatgcag aaattgaggc atagagaaat taagtaatta cttccaagtt catgcagcta
95161
       agtggtggga ccagagtttg aactcaagct gtctgacatg aggacctgga accagcctgg
95221
       gtttccagca agataggaca gtgcccatct tgggctgggt ggaaacatgg cactgaagac
95281
       atgggctctt tgttctggag aaaatattag ggacctggtc agagctcact tacttttagt
95341
       aataaatatt caattcaacg aatatttatt aagctcttac tgtacaacaa tgaacaaagc
95401
       tcctaatctt catggagctt acgttctagg aagggaagag agaaaattca catctatcta
95461
       catgactaaa tcgcattgct atgttagaag gttatttatg tgctaagata aaaagaaaat
95521
       gtagaacaga ggaagaaggt taagatggtt atgaaagaag ttttaaggag atgatcaggg
95581
       aagacctcat ggttcatatt ggagaattgt tgatcacatt tctgttgttt gacctgactt
95641
       ctttgttgat ctcttaagag atgcaggctg agatcttgac tcactcaaaa cttgtaggga
95701
       actgcttaat atttctgcct atttaaccct ggaagcgttg ggttgtttgg tctgcagagt
95761
       caggggtgag tcagcccatg ggttctgctt tattggctgg gtagcactcc cttactggRg
95821
       ggcagttctg aatgtgtgcc ccatgggtgc tgagttatgg gctgggtggg gtgtctagag
95881
       gagtgggaag tgagggtcag acaccgagga cattgcggag ctgagagagg aagttcagga
95941
       tggatagaaa gatgtagctg cgattcttct agagagaccc ttgcctgcct aggtgaagat
96001
       agggatgaat tgtccaaaga gggcacatga ccctagatcc tacctctacc caaggactat
96061
       cttcaccaag gcagtggtcc caggaagagt agcaagaggg tggagataac agagcagccc
96121
       cctcagtact gggaaaacag caggttccat gcacttttgt ggtgggccag ggctttagat
96181
       gagtgaatga cagattcacc ttttacccag ttattgagac atcatgagga gtgttaagat
       tctgaaagta aatttccacg ataacatgtt tatgRtgtca tttggtcttc ctctgtggaa
96241
96301
```

```
96361 gcaaacgagg ttcccagctg tcctggtctg tcggcatggc tgctcgatgg ctctggtggc
96421 tgataactca ggatgttgtt gctggagagt ggggaactcg tccagatcct cctgagacac
96481 cactttcctt tttcatacaa
```

ERG genomic sequence (SEQ ID NO: 4)

>21:38783451-38882000

```
tgacagattc taaagtgttg tttcaacagt ttcttcttcc tcaaaggtga gcatcatqtq
61
       cacactgtca aaattaaaaa aaaaaaaaaa aagacccaat aaaacccgat gaaacccaaa
121
       gagcatggag atgagaaact cactgctggc tgacgatctg aatgaatggc cttgggggga
181
       atgtgaatgt ggaggtagca gaagggtcct gtcttcagtg cttgattctg Watcaatact
241
       tggtaaattt aaaaaacaaa aaaaccagca agggagattt taaatcatca aggcagaagg
301
       atttaaaaag tggaatgtgt taaatgcaag agtgcgggat ctttgcataa agttattata
361
       ttttcaaaaa ttcgacaagc attgttttta ccaaacgtgt ttaaagtaac agccctgagg
       ttaatgttat gattggattc tgatgtggca ctttaaaaat aaatcatttt gcttggcctt
421
481
       agcatttctt ttcaaaatgt ctctgtactt atctgtgtac aacagcagat taccgttctt
541
       cccagagttt aattccatga acaccctgct gaaagacttg ttaaggcctt atggaaaact
601
       ctgacctgcg tgttcattat tgacqcccaa gacgagtqca aggaagttga tacttgggat
661
       gaggaaattt aaatcagcag ctgatctgga atctggaagc actgcccctt ggatctcgcc
721
       aaatatggaa agaattottg toactgagca aatatagaat toagtgotag agttttacot
       cttgaatttt ctagaacttt gttttgatta gccacctaga gtataagaat tgctgcctat
781
841
       gggatttttc ccagaagagt agataacata aagtaaccag cRataataat tttcattatc
901
       caattatttc atgtgtctcc ataacactta atacatcatg tttctctgca cagtaattcM
961
       ctatgtacag ctagggtgaa tagcaggaaa aaagagatca gatgataaag agaaqggaga
1021
       cagatttgtg tgacttgtat aagatacttc gcctctctaa tcctttgtcc ttatctgtaa
1081
       gaaagcagca gtacccaggc tgctgtgagg atcacatgag acattatgag agtttagcac
1141
       aggacttggc acataacaag cagttattag gatgatgtta gtttggatta tgaMttcaag
1201
       atactacage tacatttttt atactttett aaacateaat ttaagteaat tttaattaae
1261
       gttattttac taggagaaat gtctctaaaa acataagaat tctatttgaa gtctacaatg
1321
       ataattacat tactctgata tcttaacttc ctctttatga tttcaaataa ttaaaattta
1381
       agtttatgtt ttcaacaagt gcttattgaa cctctactct ttgccagtca ctgttgagga
1441
       cacagaagaa atggataaga tatcactaaa aacagcttct gcgatatcag tgggtataca
       taaattattc acactcaaca acaaacacaR gcaaagctgg gagaatgtgc tgacaggaaa
1501
1561
       gaaaatgaag agtgggagag tggacagatg ggaatcgatg tgaaatttta taaaacatgt
1621
       cttggccaag ctcagtaggg gaaatatgtg gaaagtaagc tagaccaaac agRgaataaa
1681
       agtataaata agaaaaaaaa tccagaggtc acagtggacc actagccaaa atgggttcac
1741
       agcaaacaaa caaaaaaatg taatgaaata ctaaaattaa agaagtacaa ataaaaatga
1801
       gattctgttc ttatctgtca gaatggcaaa gattcaaaga gtaaaatatt cagagttgtt
1861
       atgggtgtag tgtggaactg gtctcatatg tggctagaaa aagggagaac tggtataatc
1921
       cttccagaga ataatctggt aattatttt taaattggca aatatttaaa tttggcaaag
1981
       acttaaaaaa tatatatacc cattggctca ataattcctt tctaggcacc aatactaata
2041
       aaaagtattc aaaaaattaa atagatggtg tactgcaata taatgagtga aacatYgcaa
2101
       gcagcatcac tttatacact aggatattgg ttataaaaatg gtaatacata ttttagatag
2161
       aatataatga aacaaaaatt ttgcttatca aaaaatgtta gtaacatggg aaaatgcttg
2221
       taaaacaatg ctaactgaga agagcaggac aggtaggtag atacaaggcc aaacagatac
2281
       acacRgtgga gagacatatc ccaattgtta ggaatttgct gtggttggtt aggatctgaa
2341
       caatttatat tgactttgtg atgactttta aacgttttct ctaccataag aattttttat
2401
       gtttataatt tatgctaaag aacaagatgt attttttgta attcaggagt aaagaggaga
       gtggggtatt ccagggtgct gttcctgccc taaccaggag cacgatgcag tcataggcct
2461
2521
       ctgccctcct ccagcagcct cggctcagaa caggacgaag ccaaccctct ctgaccagca
2581
       ccaccteggg egacecetgg aegetecace tgeceetgtg tgtggtacet geeetgetae
2641
       acctttaaca ageaccetg caageteect ceteetteet teeetgteet gtggetgeee
2701
       agacccagat gtaccctgcc tgggtgtggg aggccgcaca tcagagcagt ctatggctgt
2761
       gggcttcaca gctgaagctg ggccgtggga aatgttgaga cgagtgagtg cagagcctga
2821
       aagacaatac ggtagaaaag gttacatccg cgggggggcg tctgatggca tctgccattt
2881
       attgaggatg ggtgcgagac agggtagcca ttatgatccc attttacagg tgacgaaact
2941
       gagatcagac aggctagcta ccttgcccag ggtcacaaca ggaaggaagc aaatgcaagt
3001
       gtgtctgcgg ccacgtaagg tgagagaagc gctatcaggg gtggtctgac agaatcccca
3061
       ggccagggag cagttgtcct ctatcctgtg gggtcaaagg aggggacaag aaggctctcc
3121
       ttgaggtagc tccaaagaaa agaccccgcc agagcacagt gtgctaccaa acgctggaac
```

```
3181
       agcctggaga ctgtccctgt ctcttctctg aggtttctca tttcagagaa actctcatcc
3241
       gtctggcttc cccatggccc ttactctgtg attctcttat gtatcagctg ttaaaccaat
3301
       aaatccgcca aattgttggg atgcctataa tggctttggg tctccactcc cacagaggga
3361
       atcttattct aaagttctaa atgtatcagt catattttcc tgaaqacaac aqaaatqqtt
3421
       gtttcattta cttattttta tgtatgcttt ttcaagagtt gttaacctgt gtttgtgttt
3481
       aaataaagat ctgttttgca aaacaaaaac tttatgagat aatcacttat aaacgtagat
3541
       aattaagaaa tggttcaggc tcagcacatt gtctgagagc attgcagtcc tgcactgtat
3601
       ttcatggggg aagaaaagcc cacagatgga gccattctca atcctgcttt ccagggtcac
3661
       tgagtcaggg tgcctggcat gcatgggtgc atgcacacac aggcagaggg ccagggagaa
3721
       ctgtgctgtg tccacagagg gcagcctgga tcacagagct gaccaagaac ggaagcagca
       agttgtttta aagtagttgc ctgtaaagcc acttttcggc aaggacaaac actcagagca
3781
3841
       tgctctgaaa tgacttatgc acaqcaqqqc agcqqcattt tqcccctqqc cttccttcca
3901
       ttctcccgga atccccctaa agtaacaagg actgacgcaa ttcgtatttc acttagccaa
3961
       caggttqatq aaaaatcata aatctqtaqc tattaaactc attaatcaca tccatcaaaa
4021
       ttctgtgagg agttaacttt cttcatataa ctcttagtct taattaagtt tccctcacat
4081
       gtgatagcaa acgttcaaga agtgcaaatg tgcagacgtg gcgtatataa tgcaagcttt
4141
       atgtctttaa attaataaaa ttgagtccta tcaggtcgtg tttcaattac catcaaacct
4201
       tccaacctct gttaattcaa aaaaaagtaa cttctttagg caagtcatgg aaatagcact
4261
       agggtgccct caggtctcca ccaagccttg ttagtaactt tccatgtcct gtctgatttt
4321
       taagatgctt tcccctgatg ctgctqccgg ctgctqqctc tctccacatc cttcaatgtc
4381
       agatototgt gatgatggaa aatococcac attocotttt tacacattaa gtatotttot
4441
       aggatcagaa cttgcaacct ggggttcatg ttctccttaa aaggtccggg gagaggactg
4501
       tatttctgtt gtaattctat gtatttcttt ttaggcacca gaaagtatta ttctgagaaa
       ggactgtagg cttcactaga cttcccaaat tgcagatggc attaaaaaaa aaggaatcag
4561
4621
       gaaagtcttt gggaaattag gctaaaactc ctaactgaag cacaatcgag ttttcagtgc
4681
       aacagcagga tccctgcagt ctgtagcaaa cactgagatg tttgtgggga cagtggggcc
       ggtgaggttc agcacctctc aatattgtca gatgtcacca atgcccaagg gaagcaccaa
4741
4801
       aaccaatcag tgaattgtct gcaaaccatc agctttgttg cttccaagtc tttactagaa
4861
       ctcttaagct gatcttaaaa ttcacagaca cttagagata aatgaacact ctcacataag
4921
       ttcccaaaat tcctttactt cttccaattq aaacattttq ttcccaattt caaqttacca
4981
       agggaaaatg atggtaagaa tcacaaagac tggatacgaa tatttagctt ttcatagtgt
5041
       ctcatagggt cttacaaatg ttaatgcaaa aaaataaaaa ctccactcaa atgcagaaaa
5101
       ccaacttaaa aaattcagag catctgatac ctaatcgact aattgattta tttactgaaa
5161
       caacaaaaaa acagagtgca ttgagactgg aaattgcctc tatggggggc tgtttcctaa
5221
       ttccaqtqqa caqccatcat tttccctatg ctaacttqqq ctttqcqcta acqtaattqa
5281
       aactgtagtc aacagactca ggacctcctt tttccactct ataaacaagg ctgtaaaatc
5341
       atctcattac tttacccagg aaatctaaca gaaacatgtc ttaaaggaag tcacctataa
5401
       agagggccta ttttaacaga agattaaaaa aaaattcacc tqtaqtcatt ctaagggttc
5461
       acttgggtac atacaataaa cacataatgc aatgtaataa aatgttaaat caagcatagt
5521
       accttagaca agtgtaaact attatttcca aaaaagtgtt cagaaaatca caaaatattc
5581
       aaactttcaa aatagcttca tgtattcata aatgtatact tcaaattaaa cagtataaca
5641
       catttggatg ttttgcaaaa tgtacctacc ttctaaagga tggtctgtta tttcaatgtc
5701
       ctttttaatg cactgagttt tttgggaaaa aaaaccacat aagatcgtac ccaagctatt
5761
       caagatttac acagaatatt tgatttaaca tgcatatgaa taaggatgaa aataagaaca
       aaaaaataac attttgggtc acaaaatcaa gtaatttcta ttcatgtagc taYaagtagg
5821
5881
       gcacattaac tctcaatttt ataattcctg tctataggag ccatatttca gcagattcca
5941
       atccttgaag ccaaagaaag aaaagtataa ggtgaaagtt cttggtacac agatttttaa
6001
       tatattattg aacacactt gagaaataaa agctgaactt ctcaaacaca gtttctatgg
6061
       tacatatgag tcaaatcttc taatacaaac atttcaaatt atgaaaatac caaaccaaag
6121
       agtatttttg aaaatggctt ggcccaattc tgggcaaact tccattttct tatgcacttt
6181
       ccaacaaact aaaagcctta tgaaaacacc accaaatgct tctcacctcc gtgcagcaaa
6241
       actaaagaca tgcaacaaac acaattttct tttccctcca ctcagcatct gcttttgttg
6301
       ctgatttttc acatttctac aaatgtcacg aaggcatggt ggcctttaaa acaactgaac
6361
       ggacccccat tcaagactgc atgccccttg acttgtagtc accattaaat tggcttcatt
6421
       tccaggaatc aggccatatt taggattgta cctgtgcaga tttacctcca cattaatctc
6481
       tacatgctat ctactaaaaa cttaggcaag gaaatgcatc agaccaaaca ccccacagca
6541
       cagagaaccg accggccatt gctttccaat ctccgcaaac ctaaccattg ctggaagaaa
6601
       tcttactcac agtgcacaga cagtaggtat tttattgaag ataaacatat agtggaacaa
6661
       accaaattac ccccatttga gttacgtgag cactcagttc tcagcgtgga tgtcccacaa
6721
       atcaagtcaa catttgcgtc ccattaccag cagccacttg ccgagtatct cttcgcttcc
6781
       actgggactg cctggcatcc ctgatgctaa ggagccactg aagagcctcc aaatgtctga
6841
       cattcacaaa cgcatctttt gctttgaccc gacccttcaa cctctccgag tctgctgcct
6901
       tttctcagac acacatccag gcaccgttag ggatagttag agaatctgaa aattcagaag
6961
       cgctccgaaa agcctttcca aaagtaatcc acagcactca acagtgaatt tagaaacccc
```

```
7021
       aatttttttc tgagtttgaa gtttttaagc cttgcggatg gttggagtag gaaaaaggaa
7081
       atttactagg cagtgcaaag gaaatcttgt tgtcctctat tgtggcagtg ggggtgttgc
7141
       ccaaccctaa cttatctgcc ttgataaagg aaaccaaaga aaagagtaac aagaacaaga
7201
       ttttgtcaaa ttaaaaggaa ccctttcctt accttaatag tgctggccat aatgcRatca
7261
       agtttattga tcgttaataa atgttaataa taattattgc ttctctctga ccagaaagta
7321
       gttttqatga ggttgtttag agcggatgag attgtgctaa gtctgggaaa tgaagtcagc
7381
       caatggcagg aagaggtttc tattggtcct ggctgtccag cccaaagaaa caggatattt
7441
       gggagtggag agataagaga ccctgaaaac aatgttgttt ttcttgatga tatgcagcca
       ggagattttt ttttttaat taaaaaaaga aaaggcatca attgggatgg ggactgccac
7501
7561
       agcaggtgtg accggtgtgc cgccgtgtga cacactgcac tgagaccaag gcaggatgca
7621
       gatgtgatgg gactccgcat ggcttcacac gggctgcaag caccttggag ccaaggcgtt
7681
       gagggcaccc cactgccctg ggtgtcagcc cttcgcagcc caattcttcg cagaattact
7741
       aggacagagg acttgagctc ctttctccta aaaggaaact ttgcaggtgg agtttatttc
       atgttaatag atggccatgt tcagtaacag ccattgcctg gctgattttt aacaacctat
7801
7861
       atttattcaa catttcatat aagtgttcca gaacagtttc attttctcct tccaaatacc
7921
       tgcacttttt atttgctcta caacaaagtt gttgaaaacg caaggactct aggcttacag
7981
       taaacacRaa aaataaagag gaaaaataaa ccttcctaag tcttgtttc aagtatttat
8041
       taaaacccaa ataactgaag tgactacaaa tgtcccggaa tatcagtgag ctggtctcac
8101
       tctgacagac atccatgttg cagacaacag atcctcatag aacttttggc tacccagaga
8161
       tgccatgtga gggccccatt acatgtctaa aatccaagct ataagttcag ggtcacaggt
8221
       cKgttttctc ctcgaaggaa gtacagcgaa tgcaggcctg aacattcctt agagggtttc
8281
       aggactttaa ttactcattt tcaggaaatt gcttggaaga aacattttgc tttgaatcta
8341
       gctacaggaa cgcaggaccc ataaagaggt gtggtctcaa Yaggcgaccc caagaacaca
8401
       atagactaaa teetgagtea tetgacaatt eetggttgea gagetggaeg tteagtaaat
8461
       ggatttcact cagactttag gccggcatgt gtcagagttc tgtccaccag cccaggtcat
8521
       tctggctttt attatatacc tctgatttat cacctcatgt taggacaaaa gaaggaggag
8581
       aaggagaaag ataagggggg aaagggagag gaaggagagg aggagggaag
8641
       agggcgagaa aaaatggaga aggagaaagg aaggacaqaa qaqaqaqaga aaqgaagqaq
8701
       8761
       aaaagaaaag aaagagagta tattgtaaga aaatcattct gtggaaatca gaaYctaagt
8821
       tctcagcacc tacattatga gggggtgttg atttccgctc ttttcatctc tgaacaatga
       ataagatggc aggctgatta aaattctgtt tcccNgaaaa tttcaaagtc ctgagctgtt
8881
8941
       ttatctgggc agettecact agaattetgg agtgcggagg agaaaagete tetcagette
9001
       cctgagtgtc cttgcttttt gttctctcct aagaagcatc aatgtaaaat gttaactgtg
9061
       gcctccacaa cacatggcac ctgattatgc ctttaccaaa caccagcttt aaataagatg
9121
       aacgctttgc taatgaaata gccacggaag aaaatcctgt gtggtcccgc ctcacccacq
9181
       cctcgtggtt gctaatccag ccctcagttg ttccctgcag caggaaagat cagcatttct
9241
       actgggacct aatgcttcag tgatgatttg gccttaactc cctggttctt gcctaatgca
9301
       aatcaaactg tgaagagtgg gatttcttac ctctctattt tgaaataatt tccaacttac
9361
       agaaaagcca caagataata caccaaactc ctaataccct ttgcctggtt aactctgatt
9421
       gtctactggt qccaatgtac atcattttct ctqctttctc tcacacatqc tctctctct
9481
       tcaatctctg tctctctctc ccatatttat ttatgtataa catacatgca tgcatatatc
       catcattttc taactaataa aaatattgtt ttataagaga caaatttatt tattggatac
9541
9601
       taaaaaagag aaaaacagat gctattattt gatcaatatt cRatccataa qttttactqc
9661
       gtctaatttt ggaaatgcat acaaacataa aaagtgatct aataaaaagt taatttgggg
9721
       atactgagtg gtaaattctg ttccaaaatt ttacaaagga aactcctcct catttctaat
9781
       gacaaaatgt ttgattgatt cctgttgtct tcaaagagaa taattcttga tgtttcaaat
9841
       ggcatcatag catccaagcc tggtaatctc tgactattta atgtaaagtg ttttaaaaaa
9901
       aWctttggct cttgatagga caaggcacat cttttttttt ttttttttt tttttgggac
9961
       ggaatettge tgtegeecag getggagtge agtggegega teteggetea etgeaagete
10021
       cgcctcccag cttcacgcca ttctcctgcc tcagcctccc gagtagctgg gactgcaggc
10081
       gcccgccacc acacctggct aattttttt gtatttttag tagagacggq qtttcaccat
10141
       attagccagg atggtctcga tctcctgact tcatgatcca cccgcctcag cctcccaaag
10201
       tgctgggatt aaagacgtga accaccacgc ccggccaagg cacatctatt aactagaata
10261
       tagcagtgca gaaaccgttt cccaaatatt atcctatggg gaaattatct gaagatatag
10321
       atatcactct agctttcctc acttgtaccc caagtctatg ttattaaatg gcctcatccc
10381
       tacaccaccc agcagectaa gaaccagget geettteeca cetgatacet ceteteeeta
10441
       gggaaatatg ccctccaagc caccacgcgg accaagttag ggggcaatct ggcacacggc
       ccctacctga ggcccgtcct gccatgagcc tatcagggca gggtcctttt tcactctcct
10501
10561
       tgagatgcag taatcaccac actagaccag cacagcccat acagtagctg tggacagcRq
10621
       aacctatgaa taaagcacac atttcccttg catgcttctc tgccacaaac ccatcccctg
10681
       tgaatctgcc aaaaccttcc actagtctcc tcacatttta ctccaaagaa agaaacaaaa
10741
       taatataaca taaatatacc ataaattcac tgtcacaata aaagaaacac tagtatttat
10801
       ttatcctaaa atcatttctt cccattttct aaagatcgaa caagttctca ttcttgttcc
```

```
10861
       cttactaact tctctgtatg gaatatgggg aggaaggtta ggagctaaga acactctgaa
10921
       tgacagYcac atggttctca atgtaataca tgcgcagagc aaagagagga gatccgtctg
10981
       aacctccaca tctgtgggga cacaacagaa gattcactca tgactcattc aYgtctttat
11041
       ccctgcccta tacatcccta caatggaacg cccttcctcc tcaaaaacat tgcaggaaaa
11101
       tgatgtcgta gatgaacact tagcaatatg gaaaactgct ctgatatttt acctggttag
11161
       ttaaaaaatc acagtatata ggagaattat atccatagac tcattttgtt aaaaataaaa
11221
       aggcagttgg ggatggccgt gcattctgtt ccaaagcatc tgtgaacctg aggaatagac
11281
       accatgagcg aagctaacct tcccgagttg aaaaatgaaa tgcaatggtg gcagacatgt
11341
       ccaaggaata ttatggggac tcgatccctt tatgaatctt gtcatagatg aatgtgtgga
11401
       gatgtcaact agttggcagc agaacagtat tggaacggtg gtaatacaag gaaatagtat
11461
       catcatatta gaaactttgg aatgagtata aataatggct gttcaacaga aaaacccatg
11521
       tcccctctcc aaagggcctg tttcactata tgtaaaaatt aggtcatgta tgttttcata
11581
       ttagactttt tgttaaataa cetttttttt ttttttttt gagteteact etgtegeeca
11641
       ggctggagtg cagtggcgtg atctcagctc actgcaagct ccgcctcctg ggctcatgcc
11701
       attetectge etcageetee tgagtagetg ggaetacagg tgeeegeeae caecetgget
11761
11821
       aattttttgt atttttagta gagacaggtt ttcaccatgt tggccaggat ggtctcgatc
       tettgacett gtgatecaet egeeteagee teecaaagtg etgggattae aggegtgage
11881
       caccacgccc ggccaataac cttttgtaat agtcaaaaaa taaaaaataa ataaaaaggc
       aaagtaaaaa tattgacagc tatatcttat aataccaatg gcagagaagc tttttgtttt
11941
12001
       ttcccctctt cttctttggt tcacttatat tttcaaaaca taaatttgta ataaacataa
12061
       attatatoct aatataaaaa tatgtaagta acatgcaatg ttgttcattt ttgtaaatat
       ctgaaaaata caggcatgtt ctgtaaaaag tgcagcccac aatacttgta ggtgtcaaac
12121
12181
       cttttagcat gcccaaatgc ctgttctttt ttaaatgtct acagcaagca tagagctctt
12241
       ttttttttc attttattaa gaaaacccag aaacgctcaa gagtttcgtg gaggccatct
12301
       atgcggcatt aatccattca ggtgatatta atggcctttt cctgccaqqa actccaqtqq
12361
       gcactcagga agccaggatt acagggetet atccagtcac egcatgtete ggcatteggg
12421
       aagcctatct cagtctcctc aaattctgca cacataaaac ttcagagcct gggagcgacc
12481
       catgaaacgc aggtttttaa ggacaaaaca ataggacaaa agtgctgtat attgtcctta
12541
       agatgacaca tgaatttaaa atgcatagtg tttggattat tcatgagagc cccgcaagaa
12601
       cgatgtccca ggggtttttg ccaggaacat gcctgagatt gtagataaga atcaagcatc
12661
       tggggctgcc gcacaatgga aaactccagc actccatgga acttttccat ctgcagcagt
12721
       eggaggattt geetgagaac atacgeggea tgaagacact eteageeete aagggeaeee
12781
       agtcagcgct gtttaaggac ggtttttctg ttcacagcat acttcatgat tacagcttca
12841
       ctccattgga tacaactatg tgagtatgtg tgtatgagtg tgtgagtgtg tgtatgaggg
12901
       tgtgtgtgtg ggggggtagg ggaqtqccat atcccccaqc aqcacattaa qaaataatcc
12961
       aattacaatt taaataacca ttgtttcaac actttctcta agtggtgaat gtattcttca
13021
       gtctcttggt tgatctgaac taatagaaac caaggaaact gttatcacat accaaatcct
13081
       caacttctca acaccaagtt gcaatttcct taatactgaa gcacacgtca gttcagttct
13141
       ataagctccc atggagcaat gatttcaata aacacaattt cataagcatc ccacacgttc
13201
       tcaagtttag gccaattttg ctcttactca actccatatg actttaaaaa tgcaggaata
13261
       ttaaaaccat tatcaaggac tccaaatagg tcaatgtatt atctgtggtt ttaagaaaga
13321
       aacctaagag gagagtaatt attttgtcac cattatttag cttaaaataa cttttaaatg
       tattgttcca attattaggc ttctccatat aatttggaaa ccattaaatg agtttcaact
13381
13441
       tetttgteeg tataactggg tatatetgag catagatget acagacatea egttgeeatt
       ggtgcccata aggcttcgta tgcccacagg gcatataatt aagattcaca aaagcatctg
13501
13561
       actggcatcc cactctaccc ccgactcaga tccaaagtat cctttcccag gtactgtccc
13621
       ctgtcaccat ccttggccaa attgagaatt tatcccaggt tgttgaaatt aattttgatt
13681
       ttgattctag tcagagtttt aaatgatttt ttaagaagtg tgtcaatctc acctataaga
13741
       tactaaacag catcacttat ttttgtctta atctgtcact attttatgaa ttattttaa
13801
       agaaaataca gattacttct taaagaaaga tcataagtgg cactataata gcattcaatt
13861
       gatagaaatt gatgtagaag cctgcattaa taatttttcc tqctqctttc taaaqttqqc
13921
       ttttagtttt cggttgaggt gggctttaat tcagcatcac ctcatttgat gatttattta
13981
       ctaatttatt tccatcacaa atggaatcag aaatgaagcg aaggcaaaaa atctttgcca
14041
       caaattcatt tatatttgca tgagtatcac caggctacct gcggatgcaa tgaagcccta
14101
       tacccgtgcc tgaagtcagg agcacaggac actgggagtc tgtctcagcg cagtaactgc
14161
       tacatggtac getecacatg gtatectete cacetgagee etecteatee etegeeeet
14221
       ctccacacct caccetetee acactgtatt ateteceact geaageaacg cagaggacae
14281
       agaggtgcag ctgaagtgaa ggcaggccag ttcttttcca attcactctt atgaaaatgt
14341
       gttaaatccc gttaaatgca ccgacctgaa ctgaaaYgat gatatcagta aatttgttgt
14401
       tgtcatctga tgcccacaca gatctcagca catgttttgg gaaaggctgc agtgttcaag
14461
       gagtactaga aatgttcttt ctgagtggac tggccatgat aagccaaaga atattatagc
14521
       cgatagggat aaatcatggt tttcccactq cgcqqttqcc tqqtqqaqat tattccaqcc
14581
       tttatttaca gctacaaaaa taatcctgcc tcaaggattt taggaagcaa ccacctcctg
14641
       cctaaagaac tacactgcat tgttgacttg ccagctagaa accagacatg agtcgtgcag
```

```
14701
       ggaagttccc tttgaacggc ttgaattgtt gtcactagag ggtgctaaat gcccctcaaa
14761
       aaggccttta gagagaatac tagtgtgcct aattcttgat ttaaattcct tgaattgaca
14821
       ttattttaca aagtggtctc atttttact tgttaaaatt aagatctaac atttataatg
14881
       cagaaatggt gtttttttt gaaaaatttg gattgttcat tattatagaa cataaagaaa
14941
       tacacgtttt aggagcaaac atgaattaca cagatctgaa tataagatta aaggcataaa
15001
       tctqqqqqqq tqaqatttqt ccatqqaaat tqtataattq ttttatqcca ctqttaatqa
15061
       ttttaaagcc tgaaaaattt accactttac aataatttta gattgttcaa tatgttccca
15121
       aatgtgagtt gcatcaaatt cggtaaatgt agagtatgtt tgttttctct gtacacaata
15181
       ctgacgtcag tgctagtgcc tgcctaaact cagacaccag tagatccttt tccagaacta
15241
       agtgttatag gaggaatatg gattatactg taatatatca gatgtgaaaa aagcctcacg
15301
       gtcccttcct ttctcaaaaa aaacgtgtag tattttggaa tatgcatgqa gtataqcact
15361
       tctaaaaatg gtactttatg tatatatgaa gtaaaatagg ccttaaaact taatatacag
15421
       atttccttga aaataatctt attatacatt tacactgact ttttggtcat ccaaacatta
15481
       tgcacttaag caaaaagaaa tataaccaat tttgcaactt tcctcttcct gcctttgctt
15541
       ctacttaaaa atatctgcag tatttccttt tctcgccgct tccactttgg ttcatatacc
       aaggaatYgt gaggtcaatg ggtgacagtt gtttgtctgt gttcacggct gtcgggcggg
15601
15661
       gctgggtgtg ggtaaggctc tgaccgacat ctgaagaggc ttcacccact gcggtttagg
15721
       atacattttc ctctcgctct gccagtagaa cagggaggct agttttcaat gtgttctaca
15781
       gaaggataat taaggcagtg tgtcacctgc tcgtctgcta tttttaaaag gaaacaaaca
15841
       taacctttgc atgtgagagg cattgcaaac tagatgggag gaggcccgga ccctgtaaca
15901
       gtcgtacatt ccggtcccag cttcgctSgg gtgcaactgc agataaaaga cgctggctcg
15961
       acaaaaagcg cccctgggct ctgcattgcc agcatgcaca atacqaattg ctaatqatqa
16021
       gctggcttag gtaggaactg aggacctga gtgcagggct aacctctgct tcacaggagg
16081
       ggtccactgg cgcgcgctgg aggcggggag ccttcgtgat atttctccga agggaagagt
16141
       ccatgcagca tcctgataac agggaccttg gcttcatccc caactgctcg gtgaccccga
16201
       tgcgtcattt aattcatttg tgccaatatt cctttttcaa tcaaccagta actttgcagg
16261
       tttgttcaaa gaagaaatta aaatgcattg gagatRgaag gcagccatct tcccggagcc
16321
       ccagtgctga cactgggagg ggaaccccag gattccctca tgactgtgtc agtgatggcc
16381
       ctcaacaagc acttactgaa tgagtgaatg aatgaatgaa tgaatgaatg aagccggcca
16441
       cagagcccag gagtatcagg ggagagcaat actggctgtg tcagtggcta gtccaggaga
16501
       gcccttcaag agcccagagt tcgacttgaa cttgggactc ccctgggatg ggtgaggttc
16561
       tctcaacagc agttgacagg agggaactqq gacaggccca gccagtttca ttcagtccag
16621
       ccagctgtgg ctcctcttta ggaatgtggc caggcccagc tgtggccaaa gcaccagcca
16681
       gtccctcagt tctgaacaga acgtgcccag catcagtgcc ttcatttgtt tttaaactgc
16741
       ctgctgacca tccacaaagt taagatgaca gctgggactt aagttgtgag gaaccagtgg
16801
       ctccccatc actctctct acacacacgc acatgcacac acacagagac acacagacac
16861
       acacacatgc acacacag agacacacaa acacacatgc acacaaagac agacacatat
16921
       aaacacacat atacacacat gcacacacat atatacacac agacacacag gcaaacacag
16981
       acacacaatg gatggtatcg atatctatga acagatgaga gagagagaca gagcaggagg
17041
       tcatctgctc cccaccctc ttctccccac tgtcaccacc tctctcccaa gtctagctgc
17101
       aggccctgtg agctgtggaa gtggcttttt taagctgtct tcttagattg agtcattggg
       cagtgaggaa ggtaaatttt ctctaagaag cctcccaaat ctgtatctta tgggatttcc
17161
17221
       qtctcaataa ttqaqctaat aqtacctqta aqcaaqtqqa taqtcaataa aaaaaaaata
17281
       ccggctgtaa gaacgaatga atgaatgagt ggatgagtgg atgagtatac atcctctatt
17341
       ttgctggcat catgattatt ttacagcaga tttatctgga tttcaatata aaataagagc
17401
       tcccatttgt atacaactta gtccttgtaa ttttccaaag taactctgat taaaattatt
17461
       tccagccaaa ctatttaggc aactgggttg gtttcacacg tacttatcag aaaccattag
17521
       aatggtatat tgattgcatt tctagacatt tgccatacca ccatggcaac tgtatttccc
17581
       aagatggccc agtaggaWgt cccatcatgc ataaccttct ataaagtgac attgactttg
17641
       cttccatcag aaagtgaggt ccacgttccc actccttgaa tctgagttgg gctgtgacta
17701
       cagcagaagt tcagctatgt ggcttccaag gctaccttgg aaaggtgata gagcttccac
17761
       ctgattttct tgggaacagc cactcttaaa cctcagccac catacgggga gaaagcccaa
17821
       gccatgtgac gaggccattt gtaggtgttc cagtcatcag tcccagccca cagccagcat
17881
       taacccccag aggtataaat gaagaaacca agatcactcc agccccaacc ggcacttgac
17941
       tgcaaaccta taagagactc caagcaaata atatctatct cagcccaatc aagccctgga
18001
       accatgagag attctaaata ataaagtgat cattgtgatt ttaagccact gagtcctgca
18061
       gtgagttgtt atatagcaac cgggcatcgg cataccatca gaagattcct taagaagaaa
18121
       cttttgcaac gttgctacag cagaaaatat tccttctgta tgatcattca tccattcatc
18181
       aatcttgatt ggcattgcct atgtgctaag cattgtcggt cactggaggt gcagaaaaga
18241
       agtgaagcag tattcagcca aacaaacaac ttgcatattg gatagagaga aaaatatgcc
18301
       aaaattacaa cagtattttg acccaacaga aaggacataa gaagggaaca tcaacagttc
18361
       cttcctattc ttttccaccc tttttctttc taggctcatt aaatgtagag gtgcctcagg
18421
       gtcactttgc cccatgagag tagataccct cctctcccat ccctaacttt ggtcttcact
       ctatgcctga taccagcagc tccccaggct cctccatgct gttggcaccc cattcccatt
18481
```

```
ctctggaaac atctcagccc atcaacctca gattactttc ccaaggagat gtgagaaaac
18601
       ttcaattttc ccctttgtga cttgcagaga aataggggtg gtaaatgaga agcagaggga
18661
       gagggtgggg attcattacc ttgagttact aaagagaaaa gctctagtgt ttagaaggtg
18721
       ctgttattat tttctctgaa acattagctc ctagaaatca gaggctctgt ccctagcatg
18781
       gtctctaagg cttccaggac gccccagggg cttccctcag tcaattttga ctctaatgag
18841
       agccatctgg aaggctgcaa tggtgggcct ggctgatcac tggaggggcc ttcgctgtgg
18901
       gcacagggac gtgcacaggt tcacagagtg tgtctccgtt tctgggaacc atggtcctgt
18961
       gtgctccttc cccaaagaaa gcaggagaaa gaaaaaccac agtcctgagt gggattctcc
       ccaaacatct aaaaagcttc tttaaagaag tcaagttatc ataattaaac tcacatatgg
19021
19081
      aatgcctata gacaacgtgt tgctcttcca atcccaggga gctaggacac ccaaaactca
19141
       cctcccagac ggagctagga tttgagatac tggattccac attacttaaa gctgttcgag
       cttttcatca ggaatggaaa gcattaatgc gtctcacacg tcactctctg tttcatggaa
19201
19261
       ttcttacact gRggagctct ttttatttta ctatttttct ttaacaqcca qaacactqaq
19321
       aagtttgcaa agaaattttt cagctgcctt tagtgaccct taactcaaga ggttttgcct
      aatctgtaaa ttggagttga aaatatttca gtacttttgg agtggggagc tttttgtctt
19381
19441
      taaaagagtg gaacgacact aacaataggg ctatacatac cttgtgcttc tttgtcagtt
19501
       actgcaaacc aaaaccagat gtgaagtatc agcggctacc tcgtagtgac ccatggaagt
19561
       tgaggctaat ccatatcatt cttaataact caaaactgcc accttttaac cacctaattt
19621
       ttttctcact tacaaatgca aaaaaaggaa ttgacagtac acattgaaat cgattttccc
19681
       ctgaccactt acagattttc tcctataaga gccaggaata aaagctcact ccattatatc
19741
       aagcagccat catctgagta tgctttagtt taggtgatca tcacctttaa caaaccaaga
19801
       tctggaagga agatttctga tctttaacaa accaagattt gaaaactaga tattcctgtc
19861
       atgacetttt eccaacatte agtatgtaag ggatteaetg gattattaga etgettgtaa
19921
       atgtaagaaa acatagaagg tttagtgtga aggagttagc aacctaacaa atgtttcccc
       ctgaattttc aataaccttc ctgaatttaa aggtaatgaa tataaatgaa gaacaaaatc
19981
20041
       aatagatata ggaatgattc acaacctccc aaatgaataa atcRatcatt ccaccctaca
20101
       tttgaacatt caatcaatat tttgtctatt tactaaatct aagaggaact actttaacat
20161
       aaaactaaat atgaaattat ttccagcatt gaatattgtg ttttgcctta gagcaggcac
20221
       aaagtggaat gcctatgggt acaaagctag gcattgattg atgtttaata cctacaaata
20281
       cagcaattac actgtcatgc tacacgagac ttcctattcc tacactgaaa ttagactgca
20341
       20401
       gggtggtaag atgtaaagca catcatgatt taaagtatca ctaggaaaga aaaaacaatt
20461
       ctgccaatga aaattcaccg taatactttc taatcaatca attttaagat acatcccaat
20521
       ttttaagcaa gaataaatgt gttaaaatta acacaaattg gtacacttgt gatacaWcag
20581
       aagcactaaa atgtcacagc aatagaccac agggtttctc aaccttggca gcatcaacat
20641
      tttgggttgg ttaattatct gttgtggggg ctgccctgtg catggcagga tgtttgctag
20701
       cattectgge ctctacceae tagatgecag taacaceteg cagactecaa ttatgacaae
20761
       caaaactgtc tttagacatg gccaactgtc cctaaaggtg caaccaaaaa ctgtcccagt
20821
       tgagaaccac tggaacagag caattcggtt ttatcaqcct tgtaatataa ttgtqtqt
       gcactgtgtg catgacagac tgtcagccta atggaaggta tattgtcaga tgggatagat
20881
20941
       tgacctgaaa aaatcacata aaccaacagc tggtacatat acaagagtgt gtcctgccca
21001
      tectaaceca cacaatgeaa aagaacetgg atgaceaega gteaceatea eaggagttta
21061
       ctatccataa gtgtaaacca tccaagaaaa gtgaaaacag attaaagaaa ataaaaataa
21121
       ataaaccacc acacaatatt tgggcctagc cagataacaa caatgaaaaa atgtaatatt
21181
       ttgaagtatt ggcaagaatg tggaggaaaa agcattgaca ttcgtgtata atgggaataa
21241
      aataatttat cetttgtete egeaattgat attetagaaa tetattttt agaaataete
21301
      acaatagaca gttataagta caaaggatgt ctqctattac actqctcaqt aacaqtaaaa
21361
       tatgaaaata cactgtacgt ctttcaatca gatattgaat aattatacta cacagtatta
21421
       agaatgagat agatattaat gtactgcata gaaaatattc aaagtataat aagttttaga
21481
       aaattatcac atatgtatat tagcatatgc agagaaaaca tottaaaata caaatttcag
21541
       ttttgaggtt tggatcatgg agtaactgcc cccttttcaa gtcaaacagt tgagaaaatt
21601
       taggataaaa caagtgtgtg ctacctttgt aatcagataa agtattttaa aataattcac
21661
       attataatat agaaatactg aaatgccaag aaaatttaaa tatattaatt aaaacctacg
21721
       ggccaggcgc agtggctcac gcctgtaatc ccagcacttt gggaggccga ggcaggcgga
21781
       tcatgaggtc aggagattga gaccaccctg ggcaacatgg tgaaaccctg tctctactaa
21841
       aaatacaaaa attagctggg catggtggcg tgtgcctgta atcccagcta ctcaggaggc
21901
       tgaggcagga gaatcgcttg aaccagggag tcggaggqtg ccqtgagcca agatcatqcc
21961
       22021
       aggctaccaa ttagacttta tagaatacat aaatatatta atatagctac aaagaggttg
22081
       aagcttattc attgagacaa gagtatttat tgagcatcga ctttattaaa tacactgtta
22141
       gtaagataac aagtgaaact tgttaaaaaa aaagaaacta ggacaaaaga aatttgagtt
22201
       gagttcccca aaaacaggga atattcagat tgtaggggaa attgggtaaa ggatttgttt
22261
       cagcatgaaa ggagcaagga gcaaagaaac taaatgggag gttatgctga gaagtatatc
22321
       agtatgagga aatatcttga catctacaga caaatatttg ttgccaattc attttgggca
```

```
ttgaggattc acaagaataa ttaaaaaacac gtaatataaa atccttctga ttagagcaca
22381
22441
       ttttatggca ctgcataaag agatggctgt gggagtcatt tatattttaa tactaacttg
22501
       aacaaggctt ggttctgcaa ataaaacaga agagtaaata tgaagtggag cacataataa
       tqttactqtt tctqtgggtg agcttccata ggaaagaggc aaaggcatca atctcaaaaa
22561
22621
       gttagaaaaa cccaaagaaa gaagaagaaa aataacaaat gagaacaaaa ttgagaaaat
22681
       tgtaaataat atggtagaga agataaacaa aaccaaatct ggttctctga aaagattagt
22741
       tatgtgtaag tcactggtga ttacagagag aaaagaggga aggttaaaat aaccaaagtc
22801
       aacaataaaa agggggctat tactacagat gctgtagaca ttggaaggat aatagaatat
22861
       tatgatcaat ttcctatcaa taaatgtgaa aaattagttg aaatacataa ttggaaaata
22921
       taatttacca aaactgtcaa aagaaaaaac acaaaacctg aactcctata attattaaag
22981
       acattgattg aaaaatctca gacctcttaa aggacaactc caaaaataaa aaaataaaaa
       aaagaaagaa agttccaggc cagacggatt tatcagcaaa ttctaacatg catttaaaaa
23041
       aaaaaggatg ccactcttac ataagctttt cagataaaag aaaagaaagc ttgataccaa
23101
23161
       aatgtagcta gaaaattatt taaaaaggaa aattatgggt caatttcata cataaacata
       gatgcaaaat cctaaataaa attctagaaa acaaaaccca acagtatata cgacaataat
23221
23281
      atatattgtg aacaaactgg atttatttta agaatgaaag cttgtttcaa tcaaataatc
23341
      aaatttacat tgtaaagaaa atttatataa ctttaaacaa aagaagaaaa qcacttaata
23401
       acattcaaca ttcatattaa aaattcttag taaattagaa ataaagagga agtttataaa
23461
       tcctacaaat tgataaaagg aatctaccga aacctacagt aaaccacaca ttttcatgtc
23521
       aaaactttaa aatttaatca tttgaagttg ggggaaaaga caaagaagcc ccacatatta
23581 ccgcatttgt ctgaaattga attggcagtc ttaqttaqta aaqaaqqcaa qqaaatqaaa
23641
       tgcaatgtta aaggattggg aaaaagtaaa taaaacttta tttacagatg acatcatttt
       tttacacaga atttccaaga gaatttggaa ataagtcatt agaattaata aatgagtttt
23701
23761
       aaaagtttgc tagatacaag gtcaatatag aattttagtt ttatatatca gcataaacat
23821 caatagaaat caaaattttt aagtgatact gttttcatta gcattaaaaa taccttacaa
23881
       tatggacata aatctaacat aatacgtgca gaacctctac accaaaaact acaaaatatt
23941 attaaaagaa gaccaaaata aatggataga tatattcatg gattgaaaaa cttaataatc
24001
      aaaggtagaa ttttcttcaa attgatcaat agattcaatg cagatgcatt caatatttca
24061
       acaaagtttt tgtgaaactt gagtgattct aaaatatgta tggaaatgca gagtcaaaaa
24121
       cagacaagat gctcttaaag aagagtgaga aatacaaaag attatcagag actattacaa
24181
       actggaaaac ctagaggaaa tggatacatt tctgaacaca tacaacctgc caaqattgaa
24241
       tcagaaagaa actgaaaact taaacagacc aataacaagt aataagattg qataggaaaa
24301
       aaaatctccc aacaaagaaa agtcaaggac cagatggttt cactactaat tctaccaaac
24361
       ttagaaagaa gaactaatac caatcctcac caagccattt caaaaaatta aagaggagag
24421 aattottoot aattoattot atgaggocaa cattaccoto ataacaaaat cagacaagaa
24481 cacaacaaaa aagaaaacta caggctgata ttcctgatga acatcacttc agttcagcat
24541
      ggatacaggc caatatttct ggtgaatata agttttctag tattttgttc agcaaaagct
24601
      atcaacaaaa tattagtagc ctgaaaccaa cagcacatca aaaagataat gcaccatggt
24661
       caagtgggat gtatcccaga gatgcaagga tggttcaaca tacacaaatc aataaatatg
24721
       atacatcaca tcaatagaaa aaaacaaaaa ccatatgatc atatcaataa atgcagaaaa
       ggcatctgat aaaacttaac attgtttcat agtaaaagct ctcaacaaac taggtacaga
24781
24841 agaaacatac ctcaatatat taaaqtccat acatqattaa cccacaqcta acattatact
24961
       tttatcactt ctattcaata taggactgga agtcttagcc agagcaatca ggcaagagaa
25021
       agcaataaag gtcatccaaa ctggaaaaga agtcaaattg tccctctttg gagatgacat
25081
       gatettacat etagaaaaac etacagaete caccaaaaaa etettaggtt taattaaaaa
25141
       attcagtaaa gttgcaggat acaaaaaaat cagtagcatt tatataccca ataatgcact
25201
       ggctgagaaa gaaatcaaga agaaaatccc atttacaata ggtataagga aaaaatatct
25261
       aggaaaaaa ttaaccaagg aagcgaaaaa tctctacaaa aaaactacaa aacactaatg
25321
       aaagaaatgg aaaaggacac aaacaaatga aaagacactg catggtcatg gatcagaaga
25381
       actaatatca ttaaaatgac cacaccaccc aaataaatct acagattcaa tgcaatccct
25441
       gttaaaatat taacgtcatt tttcacaaga atagaaaaaa acaatcctaa aatttatatg
25501
       aaagcaaaaa ggagcctgaa tagctaaagg aaccctgaac aaaaacaaca aaactgggag
25561
       catcacataa cctgacttca aaatatatta caaggctcta gtaaccaaaa gagcatgata
25621
       ctagtataaa aacagacgca tagaccaatg gaacagaatt gataacccag aaataaatcc
25681
       acatattcac agccaaccga ctttcaacaa aggcatcagt aacatacatt gggaaaaaga
25741
       caccctcttc aataaatggt gctggaataa ttggatatcc atatgcgaaa gaataaaact
25801
       ggacctctat ctcttgccat atataaaaat caactcaaqq taqatqaaaq acttaaactt
25861
       aagaccccaa attataaaac tattaaaaga aaatagagaa aacatttcag gacattgatc
25921
       taagcaaaga tttgatggct aagacctcaa aagcacaggc aagagaaaac agacaaatga
25981
       gactatatta aactaaaaca cttctgcaca gcaaaggaaa gaaaacaacc agcagagtga
26041
       agagacaacc tgttgaatgg gataaaatat ttgtaaactg ttcatctagt aagagaaaat
26101
       ccagaatata cacaaaactc aaacaactca acaattaaaa agaaaacttt tacaaagtgg
26161
       gcaaagaacg tcaatagaca tttctcaaaa gaagacacag gaatggccat caagcatatg
```

```
26221
       aaaaaaaata ctcaatatca ctaatcatca gggaaatgca aatcaaaacc acaatgagat
26281
       atcatcatac cttagttaga atggcaatta ttaaaaaagac aaaaaataac agatgctggc
26341
       cagaatgcag agaaaaggga actcttctac actgtgagtg ggaatgtaaa ttagtacagc
26401
      cactatagaa aacagtagag atttctcaaa aaactaaaaa taagactcaa tataatccag
26461
      atateteact actgggtatt tatetaatga aaaagaaate agtatateaa aaagataett
26521
      gcacccacat gtttaccgca gcactattta ccatagcaaa gacatgaaat caacctaaat
26581
      gtccatccac agatgaaatg gtaaacaaaa tgtggtacat atacacaatg gaatactatt
26641
       tggccataaa aataaggaaa tcatgtcact tgcagcaaca tggatggaac cggaggtcat
26701
      tatgtcaagt aaaataagcc aagcacaaag gacaaatacc acatgttctc actcctatgt
26761
       gggagctaaa aatgttaatg tcatggagat agagagtgga atgatggtta ccagaggctg
26821
      agcagagagt gggagtggag aggaagagag tttggataat gggtacaaac atacagttag
26881
       atagaaggaa taagttctga tgttgtatag cagagtagct gactatactt aacaaaaatg
26941
       tattgtatag ttcaaatcag ctagaaaaqa ggacttgcaa tgttcctgac acatagaaat
27001
       gagaaatacc caaggtgaca gacaccccaa aaccctgact tgatcattac acattctatg
27061
      catqtaacaa actatcacat gtaccccata actatgtgtg tgtgtgtatc tatctatcta
27121
      27181
      aaggcaaatc ttaaaaaaaa gagtgaggta ggacaacctg ctctactaaa catttttata
27241
       aaggcacagc aattaggtca gaatagtgtt catgcaggta gaaacaaatc agacaatgga
27301
       aaagaaagga aagttcagaa acagattcac acatatatgg acacacttga tttttgacga
27361
       aggtggcagt tgatttttt ttacaaaggg gcagagtagt taaaaaaggg agaaactgtt
27421
       ggtaaatgat gctggaaaat gaqaaatcca catgagaaac agaaacttqa gaagtaactc
27481
      ataacatcac aaaaattgat gtcagataaa ctataaatct aaatatgaca agcaaaaact
      atgaagtttc tggaacataa tatagaaaac tatattcctg acttgggaag ggaaagattt
27541
27601
       taaaaaacaag gcacagaaac actaagagta aaggaaagac taataaattg aactgcatta
27661
      aaataagaaa aaaattagga acttaaattt tcatcaaaag acactattaa gagaatcaaa
27721
      aggcaatgca tggagtggaa gatgatatct ttaacacatc taatctacta ttcatatcca
27781
      gaatatgtaa agaaccccca tcaatcaata agaatacaca caagtcagaa tacacacaag
27841
      gaaaaacagg gaagaaactg cacaggcagt cataaaagag gatatccaac tgctcattaa
27901
       aaggtettet aetteattag taaageagga agtacaaatt aaaacetgaa tgaaataaca
27961
      ccacagatac atcagaatgt ctaaaacaaa gactaacaat gttggtgaag atgtggagca
28021
      ataagaactc tcacacacaq ctggagttta Raaaacatcc ttatttatcc atcagggctq
28081
      taataagagg catatagcat attcaaatag gtaagtqaac aaaatttaat qaaagaattt
28141
      acaacggtaa aggtagaatt tagtaaaaac caaagggtga ggaagtcccc caggctagca
28201
      agaacaggaa gccattacta ccctcaggcc tacaagggca agggaggtag cagtcacgca
28261
       gcaccggtag ctgtgaacac aggagaggat aaacaatagg agctgtggcc ttccatggag
28321
      qqaaaaagtc actgccaacc catgaccaaa gagagaaagc tggagaaaaa aactccccaa
28381
      gctctctcct cctactctca ggcttccttg tggtgactct catttgctta acccaacaga
28441
      agatagagga caaaggagcc catttgatgt agtcgacaga agtcaaactc ccaggacaag
      aggagcagag aaggatggag aatgaattag agaagtaaac aaagaaagtc ggcacatcta
28501
28561
       ctgtcatcaa agactgtgta attccactat ttaatacatg tacaatagag atgtgtgtat
28621
      atgtgcacca gaagtcacct acaagaatgt ccactgcagt attattctct cagttaaatg
28681
      ctatatctqq ctqcacaact aqattaqqac tqaqacccta accacacatq taqaaqcaqq
28741
      gagaaagatg cagttgagaa gccctttgcc atctgatatg cttccaaaca agggaaactc
28801
      agcttggaca ctgaaagcat tttgtataaa atactgtttg tatgatatcc ccatgtcacc
28861
       28921
      ttccagggtt acttttctcc tcagttagca ggtcaaaact tttcacgtgt gaaatacttt
28981
      tgcaaggagg cagatgaaac gggggagaaq ggataacctt gccttgcagt catctatcaa
29041
      ttcactgcaa ggaaggaaca cagagcttag atatgaagca tcaggagttc ttcccaagac
29101
       ccttcttgtc ccttgggaag agccaggagc tggaggggat ggccttcact gagaagtggc
29161
       atcaaattag aacctgcaca acaaatagga accagctact taaagatcca gagaagtagc
29221
       cctctagact gaaggatcag ctcctcaaat atcctttttq attttgaact cacaagttca
29281
       ggggcatccg aggaacagac acaagccagg gctgaacaat ctcatctgtg tccatgaggt
29341
       gggcaagagc cagatcctac tgaggagttt gaacttaatc ccaaacatqq cgqgaagcca
29401
      ttggggccaa agatgaatta gggattgtct gatctccttg acacgttctg aaggttttgt
       gtacaRaaaa ggtttgtcaa catgcacaaa ggaaagctgg gataaccaag ctaagacgct
29461
29521
       accgcatcaY tctaggggac gggtgactca ttccaggagt ttctgcagga agacctatca
29581
       ggactggtga ttgactggag gcagagagca cgaaaaaaaga acaatcagag atgatctgtg
29641
       gtttgtggtt gttgtgtaat gttaaggctt aacaactqcq aaaatagtgt ttttacttta
29701
       cagagaagaa gacttgaaga atacaagatt qqqqaqaqca qatcqqqatt tgtactttat
29761
       atcagacgtg ctcatagata tacatgttga gatatcagtt gggagctgga tatatcagga
29821
       ttcgagactg ggaatcacca gtttatagat ggtttttaag ccatgtgatt ggatctcatt
29881
       tcttagtggg gagaagtgag ataacaaata aaagccaaga ttaaagctga accttcagcc
29941
       tgcccatcac ttagaagccc agcagggaca gaagagccag ccgacaRcac agagtcgagg
30001
       aggaggattt cYgggcttca gtgagtgtgc atcagagatt catggacaca acttaaagta
```

```
agaccagcca cacagttccc ttcattttct caagcaacat tcagcatctc aaagtgcggc
30061
30121
       tactacacac ggagccaagc cctggtccag ttatcacaaa accttactag atatgtcgat
30181
       tattagctgc attttatagc taaaggtagg caggcacaga gaagttacgt ctcttgccca
30241
       cagtcacagc aagcaaacag acctcagacc aaagtctttc taactcctta tttcacatct
30301
       aaaacactat gtgacgccac cKccaaaaaa tgtgggggtt actctaggac aaaagaagct
       catqaaaqca aaqagagaag catagagctt aaatttagaa caatattcag ggtgattggg
30361
30421
       aaaaatagcc tccatacaaa tataatcggt tcatcaccag gtgaataaaa tgagagaga
30481
       acctggtaca agtgaagttc attgaatttg cttgcaaaaa aacataattc aagtgtggaa
30541
       gtttggaaac taaaatagta atcagctaaa gaaattttca ggccaactta gacacaatgg
       tgacaaagct cccctgagga gacaggaact atactacttg caactctaac tgaatggact
30601
30661
       taacttagca attaagatca ccgtaagttt gatcagataa gtattaaagg gtgtcttggg
30721
       tacatttgca gattcagaca ctcttagttg tgaaattctt caccaaaaat ttqcaactta
30781
       tggcttgcac attaaaaaca tgatatgaat gaaattcaga tatctcttgg taaattttat
30841
       aattattoot occatcagot aaagttotoa gtatgaaggg ttataactga tgtoatatac
30901
       aataactaca agctgtatca tacaaaaatt gagaattttc tattatagaa agagttgctt
30961
       taatctaaac ctaaagtagc atcaataatt tttcgtaagt ggtccccttc ctatgagtaa
       gcccccagga aaaataaatt gcttttaaga aatgctgtaa gtaagctgtt tcatatataa
31021
31081
       gttttgacaa gatctggcta cttaaattac aagatataaa atgagatttg tactttttct
31141
       caaatgtaaa aaaaaagatt tacttctgaa ataatggtct ttataaaata tgcatttttg
31201
       ttccttttc ttatcatatc tataaattta ctaataaaag attctatctt gatttactaa
31261
       catttgaaaa gattgattat attggtattg caagaagagg ataccataaa ttaaaaatcc
31321
       atatattaac catattcttt tatttgcaat atgacaaatg attgtgtaaa gttataatca
31381
       ataaaagcta tttgaaagtc ataaaatgga tattgccata actgctttcc tagcaaggtt
31441
       aaaacacttt aactatttt aatcaactta cagtgtagta gatcaagcat atctaaatat
31501
       tttattttaa tcaagcaaat atatttctgc tgttcctatg acagtatgaa agtttggttc
31561
       aaaatatttc caaggtattt aacacagttc agtagaggtc ctgtctcata aatcaatttc
31621
       agattagata aaaggaaaaa gcaaattett gtttacttea gaatttttea agecagttee
31681
       aaagacagag ttgttactct catgtgaatt ttcagtagaa agctgaacaa cgacgttgct
31741
       ctgacaatct ttttaaatac catatgatgg agacagaata acaaaaacaa agtaggtata
31801
       agctgtacga aattatttct cttggacata aaatatgttt ggggaagaaa tgcattgttc
       catatggact agggtagtta cttctcaaag tgggagcaac tcagactctg aaaaatggtt
31861
31921
       tctcaaagga ggcattgtgt ctgggtgagg ccagttttct agtcaaaatc attttattaa
31981
       atgccattgg attgaatgct tccaggtttg ctctctgaaa tatgccctat cattcttaaa
32041
       aaacacactt aggtagcaaa aagggcacac taaaaaataac qtqqqttaat qtttctatcc
32101
       tgcctgtgtt ttctaagtag cccctgcctg agctttcgac ttttttaaat gaaccatcaa
32161
       atagttggtt gtctatcaca aataagccat ctattttgtt attcctgtaa cttttYgtag
32221
       aatccagaaa gtaacattct tgctgatata tcttatataa caccaagtcc attttccaaa
32281
       tgaggattcc aatgagtatt catcaccaac atctccccga aaaatattta gaaaaaacag
32341
       actcaatcct ttatccaaag tcagtgagta agaggcgggg gccagggttg gacaaaaatc
32401
       tctttggcca ggaagccggt ggtcaccctg atctacttct ctaagctccc acccctgatg
32461
       aatgttcaat atctgagttt caccccactc attattgtaa ttctccgtaa aacccYagtt
32521
       acccacacgg aatteteate tacRtetage ceaatttget actggattte aatgttattt
32581
       catatgaaaa caatcactaa cagaaagaac ctggatctgg tttcgaaaac ataatttgaa
32641
       aggaattcat tctgaaggct gcaaaagccc agtgatggcc catcggtacc ctgaatggc
32701
       ttctcaggtg cctccactct cctccgtatg tctccatcca tctcaRaata catgtctggc
32761
       tcttcctgct cataaacaga aacagagagt tccgggatcc aaaggcaaga ctgcgattta
32821
       agagacactt tgtttttgta ggtgttcaag gatttggaat caaagcagca gaattattaa
32881
       aattaatcca attttcttgc atttattttg ttagttcata cctctaaaag atatattttg
32941
       gaaggcaccc ttcaacccac ccatttacaa atcaaagctt tctttqqaat ccctqaqacc
33001
       aaacccaagc tagacagtga cacactgcca gctccagagc cctgcccacc tggaaggggt
33061
       atggaatgca ctatttgact tgagctcaca tttaattaca gtgtcaaaaa tcaaacttaa
33121
       attgctttaa tcagctKcca acactatgag cctttctggc ttgaatttct ataaacaaaq
33181
       aataaattca aatctgtcac aaagtggcag caacttgttg accactggac taggaatcgt
       tatgcaacca tggctcactg tggaaaaagt caacatcttc ctatatgtga ctctttctg
33241
33301
       atcttttcgg actattagtc aacagaatca tcataaaqct aaattatcta tctqcactqa
33361
       aattactcag cctcagacat ccaaaccagt agctgttcac caatgaaacc tqaataaaqc
33421
       tgttgctgac tttccctgct tcaatttaga gtatttttgg aaacatcatt gcatgtttaa
33481
       aatataataa gcaaaaggac ctttggtaat taaacattct gtaatttaaa actccaaRag
33541
       acaggagcag tgataagata ttagattttc tttactgggg tgaaaaagac agaaagtggt
       taactgttta aaaaaagaaa gaaagaaaga aatccaagga tttttagagc cagaaacagt
33601
33661
       aacagtgtcc tttattctgg aaatgtttaa aagcctgtaa qcaqaqatca cccagttcat
33721
       cctgagcatt ggtgagcaaa taacttctga aatgctcttg aaagagaatt ctccagcctt
33781
       ctctgtttga aatacttYct aMagcaaaca caaaagtggg caaaacacaa gagctcatgt
33841
       taattccaaa caaagagacc aacagtcgca aattgagagt ccatcttaga agcgggtgct
```

```
33901
       gcttccacat caagcaacta ttggaaagaĝ taggggtaga tgcagaatta agatcatttg
33961
       tgaYtacaga aagagacaag aaaattaatt tttaaaacta aaagagaaat ttatttcaga
34021
       taatccaagg aaatgagcag agtcaaccta acaggattct caagcccctc cctactgqtq
34081
       tggtgtgaag atcacacgtg gtgtagctga cacccctcac atcttccccg cRcccctcct
34141
       gccacctctt tttggcattc accctctctc qqqttctqta tccctqccca tqttctccat
34201
       gaaaggccaY gttaatgccc atgctctttc ctgcctctaa cagacgatgc cttccacagt
       cactcaagct ttaaccctct tctggattcg gacctgtaca tccaaaagcc tgccagRcat
34261
34321
       ctcttccaga tgctctcaga gcacatgacc agaagcacgc qcaaaqctct cctqaqcctc
34381
       agtgctttcc ctccaacact tcttccactc tctcagttac cgagccaaga cacaqagttq
34441
       cttgtgagtc atttctctac ctcatcccc acccaacctt cctgcgagat cctgctcaYg
34501
       ttacctccta aatgctgtta cgtgacttca accacgtcag ctttttatgg gggaggagag
34561
       gcacctgcat atctgtggga gcaccaacct ctagacatct cctgccaagt tactgcaatg
34621
       tgcagaaaag aggaagaaag caagcccaag tcgcaaagtc tttgccagtc cttctaccaa
34681
       ccacaccttc ggtggagatg tgggtctgtg gaaatgcaga gacggactga aagccaaatg
34741
       ggccaatgag agMtctgaac aaaacattaa gcttgtttt ctttaaggca atacgattaa
34801
       cagtggtcca ttaagaatcc qtttaaaaaaa aataataata atacYttttc tqactattgt
34861
       tggggaagaa taactccttt atggggagta tgaactcaaa gacatgatat tgtaaaggag
       gccttgaaga agagaggac taagaaatgt gatggcgtgg tctgttacat gtgcaggtgc
34921
34981
       tgtgtgtgag ggaagcactg aggaccactg gaggatgagg gatgctctgt ccttctcggq
35041
       tatggctgaa ggacagggat tgcccatcaa ggagtaaata atccatgagt ggactaaatt
35101
       ctttagaaac aggaactcaa atccagtagg qattaggata aaaatqtaaa ctctaatttq
35161
       cacctetece tetetecect aagtagteeg tttetataat tttatactaa atcaattaaa
       tgtatctgct ataatattaa tcataatttt gtctgaagta gtaacaactg gaaactacct
35221
35281
       aaaagagtca gagcaggact gtaagactat attgtagtct acactatgtc acaqYqqact
35341
       gcatcatgat agagaacgat actcatgatt taactgataa acacatatqq caatqaataa
35401
       aactgtgagt aagatgtctt taattttagc aaaattatct tcattctaat tttcaagtaa
35461
       acttaaagat ttatatataa atgcacataa tttaattaaa atacatgcat atattaacta
35521
       gaaggctaat cccccaaaat gtccatagat gttatttctg agtgaggagg gtcaggaagg
35581
       ttttaatttt ctttgtacta actctattta ctaaaatgtc cacctggatt aacgttataa
35641
       taaaaatgtt accgtttaaa ataaaatgaa taaaatacac cggtatgaag gtattattag
35701
       aacatacgaa agtacaaaat caagcagcaa aaggaggaaa ttatattaag aactgaaaaa
35761
       actatgttga gaattetgte taagaaacge tgtageaatt aagaaaaate ceagttetge
35821
       aagtaatggg agaaagatga tgacttccag aactttcacc atctactaag atgttcacca
35881
       attoctaaga agggactgaa tacgtctgca toctcagato tgagagtaat tttccacgac
35941
       gcatactgag caccataatg agtgaagtct ctgagatgac ctctctgacc tctctaaaac
36001
       aatcaggcac tgcaaacatg gcctatccca cactagccct tggtgaaatt caagggcata
36061
       atattagact gaaacagtga gaagaagatt cgacatggag tgcggcaaga atgtgttcta
36121
       gtccttgaag gccagcgcta ttccaagtgt ggtctcagac cagcagcctc agctgcagct
36181
       gggggcttgg aaatggaaac gtatgtgcta cgtcctggac ctgtggaatc agaatctctg
36241
       aggtggacca ggaatctgtg tttttaaaac cctgtggttg gtaacttcct gctggctgag
36301
       gacagagaga atgcttagtg aacgctgagg aatgacgggt taaataatcc ctgaatgatt
       cctgagcgga tcaatttctc agccagagtt ttgaccgcag ctgatgatga acagggctgt
36361
36421
       gaYcaccagg aagggtctga agaggaggcR ttgattgcag ttttctgcct ctgatcctca
36481
       Kgcatggagc cccaccccc aactctctta cacggaggcc aaagaaaaag ctggaattct
36541
       ccaggagagc aggacctgtt aaacagcaaa gggcaaccca aaattgtatg agtqqccttg
36601
       ccctgagaag ctttgaagcc agaggttact gaacaactac cctggttaaa accctaacgt
36661
       gacaatgata acatgtgact qtatqtqqct qtcttcaaaa caqcaatqat ttaqqcacaa
36721
       ctgtggatct cagattgttc cgtgagtttg gtctgataag attgtatgcg tttcccaggg
36781
       gtgccataac aaagtgccac accetgggcg gcttccgcca ccgaaatgta ttttctcaca
36841
       gctctgaggt cgaaagtcca agatcaaggt gtcagcaggg ctggttcctt ttgaggctgt
36901
       gagggaggat ctgttctagg ctctctctc cccagcttct gggggctgct gcagtctttg
36961
       gtgttccttg gcttatagaa gcatcatccc aatctctgct tttgcgttca catggccttc
37021
       tecteatata cetgtetgte tecaaattte etetteteat aaggacacea ageactggat
37081
       taggggccca ccctactaca tctgcaataa ccctatttcc aaataaggtc acattttgag
37141
       ggaccagcta aatacaaaac attagccagg catggtggtg ggcacctgta gttccagcta
37201
       ctcaggagaa tcacttgaac ctggattaga acttcacaat tactgacacg attcaaccca
37261
       tattaggttg tttagtatta tacattagga agccatagca aactttttt tttttttt
37321
       tttttttttt tttttgagac ggagtctcgc tctgtcgccc aggctggagt gcagtggcgg
37381
       gatetegget caetgeaage teegeeteee gggtteaege catteteetg ceteageete
37441
       ccaagtagct gggactacag gcacccgcca ctacgcccgg ctaatttttt tgtattttta
37501
       gtagagacgg ggtttcacct tgttagccag gatggtctcg atctcctgac ctcatgatcc
37561
       accogcotog gcotoccaaa gtgctgggat tacaggcgtg agccaccgcg cccggcccat
37621
       agcaaacttt tgtaaacata actatttatt aaaatttggt ataattaata tttaaatatc
37681
       ctttctggca agatttagcc agttttttaa gcttcattga gagaaccaca atattagcat
```

```
37741
       taataataga atggtctatt aattttttaa aaagatacta tgtctgcatt tccaatataa
37801
       aattcacagc aatgattcag gtagaaatta aatgaggatg tcattgtcaa ccttttaaat
37861
       tatattacag gagcagggag cacacgggcc ctgaggtaga aatgaataag gaatattcta
       gaaccaccaa gaagccagtg tggccacagc agagtgagcc agtggtgctg gaggcaggtg
37921
37981
       agatottqaa qqqcottqqc aacatqaaca qqaqottqqa ttttatocac attqccqaqq
38041
       gaagtatgag gtggtgttta gcagggcata aatctcatct gatctgtact ttgaggaaaa
38101
       38161
       agggaggggt gacttcagtc tccaggagaa tgagctagtq atgtgaatta aggtgctggt
38221
       ggtggaggaa gtgaggtgga gaactggaca ctgggatcta ttttgaaqag qqaqcctaca
38281
      gaacttgttg gtggatggct atgagggaaa gaggattaaa gaatgatgct aggcatttqq
38341
       gcttaaacaa acccctgagt aaatggttat cctattatta atactaagat gggtaatgct
38401
       agggaaggag tagccttggg gagcagtgat gagttatttt cttagaSaga agccacgtta
38461
       cctataggag gctcaacaga gtatcaaatt agaataaaat atctaatgtt ctgatttgtg
38521
       tetttatttt ttecattaag atacaeatgg etggeeagge geggtggete atgeetgtaa
38581
       tcccagcact ttgggaggct gaggcaggcc gatcacctga ggtcaggagt ttgagaccag
38641
       cctqqccaac qtqqtqttac cccqtctqta ttaaaaatac aaaatattaq ccaqqcatqq
38701
       tggtgggcac ctgtagttcc agctactcag gaggctgagg taggagaatc acttgaaccc
38761
       aggaggcaga agttgcagtg aacYgagatc acgccattgc actccagcct gggtgacaag
38821
       agcgaaactc cgtctcaaaa ataaaaataa acaaaaacca tqqqaaaqaa caattqaqqa
38881
       38941
       tgtttttgag acagagtctt gctctqttqc ctqaqctqqa qtqcaatqqt qcqaactcaq
39001
       ctcactgcaa cctccgcctc ctgtattcaa gtgattctcc cacctttgcc tcctgagtag
39061
       ctgagactat aggcgcacac caccatgccc agctaatttt tgcattttta gtagagagag
39121
       ggtttcatcg tgttggccag gctgtcctca aactcctgac ctcaagtgat ccacccgcct
39181
       cggcctccca aagtgccggg attgcaqaaq tgaqccactq cgtccaqcaa qaatqaqqtt
       tgaagggagg catgattgtg ttctcttcaa atagttgaaa ggttccattt gaaaaaggga
39241
39301
       tttacttatt cctatggttc tagtaagttg cagagggtgg atctaagacc attgggtgaa
39361
       ctttacagag aggccagaaa gccttcWcca ggggaagaaa gtcaagaaaa ggtctcaaaa
39421
       ctgtctggca gaattctgca caggagagtc ctcaattYgg tgtagaattg gcaagtataa
39481
       taactgtaaa tccctctcaa tctaccatct acatcattag gcgacatctt catttcctga
       aaattccaac acatgaaggc tcacttacta tcaagatgag caagtttgtg ctacatagtg
39541
39601
       aatttgattt caataggact cattttatac cttttaagag tctttaaaac gttgaaaatg
39661
       taaagatetg caagagcaac tgatetteaa agteeegteg agteacagga ttttgtaatg
39721
       atqtctaaag aggaaaattc ccatttcaga aaaggctcaa tagtatttaa tagttagctc
39781
       aaaaggacga ataaagttct acatgggaag ctgctgaact aSaqtcagqc caaaccttca
39841
       tactcggaga agatgactgg gcctgtagac acagatattg atgataaatc atcacaaacc
39901
       acagetttee ttaattgggg tggtgggeag ggagageagg etteaggttg geetteetee
39961
       agcaagggca cacacacaaa ggggacctga acacgtggag cttatggtca ggaagcctga
40021
       agtgcctgac ccagcacatc tggtgactag tagtgtagat tccccacaga aggaatgaca
40081
       aggogtcatt attcaaaqtq accttccctc cattqqaata atcaqaaaca qctcacaaat
40141
       aaagtaatct gtaagatgct tcatcttctc taggtaacct ctccccaaca tgatgacatc
40201
       acttcacatg aggcgacatg gttttqtqaq qacttttctt tccttccaaq tttqqaatct
40261
      ggctgaaggc taaaatcacc atttacagtg tttgagccct ccttSacact ttqaaqaaqq
40321
       gtctgtgtaa atagccattc ctacttctca gactcgccag aggcaaaacc tqttttqctt
40381
       tggtagtaca cgctcttcct taactggtaa aagactttaa aaaaaaataa gatgccattt
40441
       ttaattgttt cataaatctg gcttagatat attaaggaaa ttgctatttt atatgtagaa
40501
      cagcggcaag caaatctcaa gagattaaaa atcatgttct tgtggttttc ttttagaaqc
40561
      tgcaaatttg aattcaattt aaaaaatcat ggcacaggga caaaataaga atgaacaaag
40621
       atgggaaaaa tgtccgcagc attctgcaga gtcaagcgct gctgtgagtg agtgtgcatg
40681
       tttccaatta cacatcaggg cttggcgagc tccaggagtc aaattcagac agaacccaag
40741
       tgcagtgcgt tacacagaac ccaggccagg aaaagcttca cagagtcttt ctttcaactg
40801
       aggcaattgt gtagacaatt tggttcattt caagaaaaaa ataaaactga cagaagaaag
40861
       aaaaatatYa ttatattttg cctctcaaaa caaaqtcaaa ttgtgttggt gtataaatca
40921
       agattYagta tttccttggc tgcttccaga ataatagtag atcacaaaga gaataagaac
       aagaaagttc agttctcagc cagacgatcY aaggtaacaa agggtgagac cctcattccg
40981
41041
       ttactcacag gagcaaacag acaaccaata ataattgggc acatgggggt ttcaacaaga
41101
       taaactgtta tgtgagtcca gggtgctaat ttcYggattc ttttgagttg caaggaaaat
      atataccgat tccccaccc cacccacca cataacaaga cacaatagtt aacagctgga
41161
41221
      agactgtggt tagggggaaa tgtgattgta ggcttccatt tcaaatgatg gaaaatcatt
41281
       tctgaagtca ctacgaaagt tacttcacaa aactaaaaga agccttgaca ccttgtgtta
41341
       tcccatcatc taaagcaatt ctagtttgga aacacttgat tcttggcagg ggattctaaa
41401
       gaaggtgccg tatgtgaaag gctggtgtgt cagaaggagc tttaaggaac tggaatgaga
41461
       acagccaaaa gctaagattt ctgattataa tcacaggtct qqatgtqttc aaggtaaaaa
41521
       gagatcatcc ccatcatttg caatattttc aagagaatgg ggctttagtg acactgatca
```

```
41581
       aagtetgaca tggattttca getgeettee aactecacat acetgeaatt caatqatete
41641
       tatggatagt agaagtaact gccaccctga tgttctcatc ggtgatttat acgtgaagtg
41701
       gactcaaaag aaatacaacg aaatccctta ataaaaatta tgtccattga cccaacaagc
41761
       ttcccagtgc tgtatcagtt ctcaaccgat tttagagaca tttggtcaaa aatgatctac
41821
       ttgtaataag ccatctgagg gcactagctc tttttcacct ctgtgttcct tgaagcagga
41881
       agtcagtaaa atcactattg aattaaaatg aagtaaagca ctttgagatt tcagatttct
41941
       aaattaagga acacacaaca tacggtactt tatttgcaca agaRttatta gaacccaqqq
42001
       ctaacaccca aatgaggtca caggtaaatg aaaatctgtc tcagttattt gaactcaggt
42061
       caacacacag acagagcaaa gcaccagctg acctctgatg cacaacccag tgttcttacc
42121
       atagaattcc agaaggcatc tcaqtcattc tcttatqtaa atacaaaqac qWcaactqqt
42181
       ttaaaaaattc atttatttt attttagctt ctttgtgtca aactcaaaga agcctcacat
42241
       aaatgatcaa agactttttg gtggatcttc caaacgtaca tgccgggaag gcctgcttgc
       actttttcct tcaatcctct aaaatgaagg ttttgaagat gcttgccaat ggaacgttgt
42301
42361
       gccttacagc tataatattt tttaaaaggc attcagttta aattaatata tttggccaga
       caactgtatt aaaattcttg ttgttttttc tgttataatg gtagcctgtg gtatgactag
42421
42481
       tottottoaa aaatatgtac agttattgct tototottgc ctggggtata toatgtgttt
42541
       ttcatttgag tgtacattgc aatacctcat taaaaccaac acttaggcta cacaaaagtc
42601
       ttcatatcat gccgcaaagg gcgtaaacta acgtggaaag tttcagagcc tcataactca
42661
       ttgcatatac ctcttatact agctgctcaa ctgatattta gctctcctgg atgatgtcac
42721
       agtttttatc ctcttaaaat agcctgcctt caKaaaatat atagtttcct tcatgcacta
42781
       atcatgggga gttacgatgt aaatagagcc atttttttt ttatacaagg aacaagtgct
42841
       ctcaccetce tecettetet cectececat acacagaage acaetteact teaettatae
       taaacacttc acttatactt acactgcaac aaagagttgc aaatacatgc aaataaagcc
42901
42961
       tttataactc ccctctccc tgctggacag ctccttgact caagtatttc Yqaaqacaga
43021
       cactetgata agggtetget etgagettea tteteageat acagteetgq gattatttae
43081
       ctaccaatat tcacctctgc atgaaccagt aagtcattac tgacaagaaa aaaacaattt
43141
       gtgatttttt ttaatgtcac aatttttctt tttaaRgttt gggagagaaa gttgttttga
43201
       atgtttcatc agtttctatt gccaaatgaa cacctgtttc agagtccctg aaagtcacac
43261
       atcagaagct tctgacttca acatatagtc tgctttgaag aattatttta aaaaagcatK
43321
       gactgcttga agataagcaa gtgacactca atagcttcat tctttagtct tagaaaataa
43381
       Wttttacact tcacacctat taggatggct actatgaaat ataaaaaaaa ttaaaaataa
43441
       caatggtggc aaaaatatga agaaattaga accettgtgc actgctggtg ggaatatcaa
43501
       atgatacagc ctctatggaa aacagtatgg tggctcctca aaaaattaaa aatagaatta
43561
       ccatatgatc cagcaattct acttctgggt atatattcaa aaaaatttaa agcaggatct
43621
       caaagagttc tttgtacagc catgttcatg gcagcattac tcacaatagc caaaaggtca
43681
       aagcaaccca atcgtccatc cacagatgaa tgaataaaca aaatgtggca tacaataaaa
43741
       tgtcattcag tctttaaaaa gaagaaaatt tggacacatt gtacaatata gatgaatctt
43801
       tttttaaatt aaagtggttt ttttaatcgt tttatttaa agttccgagg gacatgtgca
43861
       ggatgtgcag gtgtgttaca taggtaaacg tgtgccatgg tggtttgctg cacctatcaa
43921
       cccatcacct aggtattaag cccagtatgt attagctatt ttccctaagg ctctcccacc
       cccaccatcc cccaacatac accatagatg aatcttaagg acattatgct gcgtgaaata
43981
44041
       aaccagtcac aaaaagacaa acagtgtatg attctactta tgtgaggtac ctagagtagt
44101
       ccaagttcag aaagtagtaa taatggttgc caaaaggtgg gRgcatgcag aacacgggga
44161
       gtgttgattg acatcaagtt tctgttttgc aaggtaaaga agttccagag atttgctgca
44221
       ccaacaatgt gaatatactt aacactactg aactgtaaag tggttgtgac tacagatttt
44281
       atgttttatg tgtttgccac aaccaaaaat aaagattaaa ttaaaaaaata aaagatttta
44341
       tagcacctat cacttaccaa acccactgta catcttacac tcRtgaatat tttatgattt
44401
       tcaaaacacc tttattttt tcccttattt gttcattcct tcatgtataa cccacaatgt
44461
       gttaggttat gtgctgggca gcctggaaga cccaaagacg aattagggaa gtaccctata
44521
       tttaaagcct tgcaaggaca taaatatcag taatataaag taaaatatgt tcactgctga
44581
       aaactgctat acttcctaga tttttcaatt caattgcaat ttctaatatt ttgccatgtt
44641
       gatcccacaa attcacttgt gtttaaaagt taacgtgctt gattatcata cagctgcttc
44701
       tttcataaga ggaatacaga taaaaYgcta tgggatttca gggggagaaa gaacttctta
44761
       ttaaattcat attttcaacc aataagaaaa cacaatttt tttaatcaac actatcttct
44821
       tggtgctttt ttcacatctc atcctcttc ctcctttacc ctqcctaaqc aaccatttct
44881
       ggacccaatc ttgggttatt acatctgacg gcaagtgtta tgtgggccat ggaccatgag
44941
       caattagccc cctctctact cctagggatg gagtacatgt gatgatttcc atcagactca
45001
       gattaaatat cttqctqqta aqttacccct aaaaatcqat taatqqactc tccaqqtaqa
45061
       cactgaggta atctccaacc aaacctRact tatacttagg ggctttggaa gcccaccaga
45121
       gtcatcaagc catatctcca Yctaggctct atactggaaa gctggtcagt agtaacacaa
45181
       agaacaagcc atttgggaaa acagcccaca tgaaaagaac tqtggtttca agaaqagtca
45241
       ttccatccca ggtttaaaat actcttctcc tctttatcta ccttgaggac tcctatctat
45301
       ccttccatac cagatccagc ctcatcttct aagtgaagcc ctcctctggg acgtcagcSt
45361
       ctcctctgca tcccctagca ttttatgcat cctctgttaa agcaactgtt tgcacagctg
```

```
Yatccaccac taaacttaga ggcaacagac catggYtttg aatgtgYaga acccaacaca
45421
       gagccYgaga cctagtgggt attcagtgca tgttgaaggg aagaatgaat gcatgagcaa
45481
       acaagacaat ggaagtctgt catcagtatt tacatttcaa aatgcaaagt gaaaattgtg
45541
45601
       caaatctcta atcaagctgt actttaaaat gctaaattga tttggctaaa aatatttcaa
       cactgaaatt tctttttgca agttaagtct tcgcataacc aaaacagaRa agaacRtatc
45661
       aatqaactaa ataqataaat ttatqqctqa caaaatctca agatttagtg tgtgagagga
45721
       aagtaaaatt caatgtgtcc ttgaaagttc tggggtctaa gatatacagg ccaatggaat
45781
       agaatagaga cttcagaaat aaactattgc atatatggtc tgataacttt tgaaagtggt
45841
       tcaaaqatca tttaatgaga aaaaaaggag tcttttcaac aactggtgtt gggaaaactg
45901
       ggtatacata tgcaaaagaa aaaagttggg ctcttacctt atactatata caaaaattaa
45961
       ctcaaaataq aacaaaqacc aaaaaataaa agctaaaact ctaaaattct tatgagaaaa
46021
46081
       ctctaaaatg cttagggaat aacttcataa cactggattt cacaagcctg tcttgaatat
       gacaccaaaa gcacaggcaa cataaataaa agagacaaat ttgcctgcac taaaattaaa
46141
46201
       cacttttqtq aqtcaaacaa gctatcaaca aagtcaaaag acatcctata aaataagaga
46261
       adatatctga adataattta tctaataagg gattaatatc cagaaaaaaa aatatatata
       tatatgtata taacctacaa ctcaacaaca acaacaaaaa caacccaatt taaaaatggg
46321
46381
       caaaqqactt qaacaqaatt ttttccaaag ataacactaa tggccaataa gtacatgaaa
       ttatqctcaa catcactaat cattqqqaaa atqcaactca aatccacaat gaaatacttc
46441
       gtagccatta gtatgactat taccaaaaaa tcagaaaatt acaagtgctg gtggagatat
46501
46561
       ggaaaagttg caaatcttat gcactggtgg tgggagagta aaatgggaaa gtcactataa
       aaaacagtct agtgattcaa aaattaaaaa tagaattaac atatgattca ccaattccgc .
46621
       atqaaqataq caqqaaattq aactqatatt tqcacatcca tqttcataqc aqcattattt
46681
       acaataacca aaaggtggag gcaacccaag tgtccatcca cagatgagtg gataaacaaa
46741
       atgtgatata cacatatcat gggatatctt cagccttaga aaaggagaga aattctgaca
46801
46861
       tatqctataa cacaqatqqa cctttggaaa gttaagagat tgtcttattt atcttacgct
       aagagaaata agccatccac aaaaggacaa atgctgtacg attccacttg tgtgagttac
46921
       ctagggcagt caaattcaca gaaacagaaa gtaaaatgat ggtttccagg ggctgagaga
46981
47041
       agggtagaat ggaaagctat tgtttaatgg gttggagtgt cagtgtaaga aaatgaaaaa
       agttctggag atggatgatg gtgagttttg caccacaatg tgaatgtatt taataccact
47101
       caactgtaca ctaaaaaatg gttaggatga taaattttat gtatattta ctataacaaa
47161
       aagtcataaa aatcaaacat ggttcttctc attaaaaaaa aaagaagatt cctgggtcta
47221
47281
       qttqqttctc cctccttctt aqttcttgga tcaaggagat agaattgtgt ccaaagtgac
47341
       caaqtqacct acqqagtaat gggcttccat ctagccactc cctgctttat gactgagctg
47401
       cactgggaga ggcattgtca ggggaaattc caggtttcta gaattggtat ctagccagaa
       tttgtcccag ggctaagtgg ctaaggcagt gaactagtct gtcagcttct ctgttttaaa
47461
       tqqaqtcatq taattccatt acataccctt tgctttcaac tatatggcca aacatgactg
47521
       gccagcaggc tgggggacag aagacatgtg ggcttgtgct tgttaYctgg aattgaaaag
47581
       agetettgge atggttettg tteaagetee atggttgaet ageacatgae caccaagaga
47641
47701
       gctactgtac ttctccgaga ctcattttct cttctgtaaa aaatgactga gtttctttca
47761
       caqtqcataa atcttttcct ccaggaacag agactgccca gggcctgtcc aagacaacta
47821
       qqaaaccaga gcaqcagtta agccattcct gggcaggaat aaatgagcag atgtcagctc
       tcagaatctc agttttctca ctcataaaat ggaaaagaat actatttctt ttatgtcatt
47881
47941
       caccatattq tqaqctqaaq qcactttaac gatgctgagg ctgtaaacta atgcataatg
       tgatgtttat cattcttcac ctatgtttta gttactgagc atctcctgac accagagagg
48001
       acgcaacaa aatcacaact cctagaactg cacagtctaa atggcaacca ctagcccctg
48061
48121
       tqacaactga tcacttgaaa agtgagtagt ccaaattaag atgtgctgta ggtgcaaaat
        atatgctgga tttggaagat gttctatgaa aaaagtatct cattagtcat ttttatattg
48181
48241
       attacatatt aaaaagattc cattttggct atgctggact cttcagatat atcctgggag
       attgtattaa aagaaaatac atgatggaaa ttagtgtagg tagttactag aaaatgtaaa
48301
       attacatgat tcacatccta tgttcactgt tctagacata taaatataac tttgagttat
48361
       ttttaagcat gagaagacag aaatcgacga ataaagtgaa aaagctaaag attaaagata
48421
       cttacaaatc attgttgtat tttttaagag gtcattttga gcatattcct taccattgaa
48481
48541
       qcccctqcct qtctqgctcc tctgcccacc ttgttttgct aatgggtcat gctcctatat
       qtgcatagac qagqagcqgc tctcagggac tgaccgtaag catagtcagc acagcacgta
48601
       tacccatgct ctgaccccag gttggcgtct tggagggtga agcattttcc cagtccttct
48661
48721
        ttgactcatc acagaggtat aaaacagcgt ctccaacacg tgatttttt tttttttt
48781
        ttttgagaca gagtcttgct ctgtcgccca ggctggagta cagtggcacg atcttggctc
        actgcaacct ccaactccca ggttcaatca attctcctac ctcagcctcc caagtagctg
48841
       aaattacagg cacacaccac cacgcctggc taatttttgt attttagtag atacggggtt
48901
        tcacaatgtt ggccaggctg gtctcaaact cccgacctca agtgatccac ccatcttggc
48961
       ctcccaaagt gctgggatta caggctgagc cactgtgcca gttaaaagaa aaaaaatatt
49021
        caaacatatt tggtttctta ttgaggtgaa gttcacataa catgaaacta acagttttaa
49081
        agtgaacaat tcagtagcat ttaattaaca atgttgtcca accaacacct ctgtctagtt
49141
       ccaaacattt ttqtcacccc aaaaggaaac cacgtgctca gaaggcagtc actccacatc
49201
```

```
49261
       acccetette ctagtectat getttgeaca caactgacte accetgacag ttataaccta
49321
       aaagttaaat aaaattatta gtaaactgca aacccctggc aagtgaatta cttaatatct
49381
       cttaaaatcc tgacatcaaa tgattcccct gtRaggccat gagatgataa gaacatccac
49441
       ctccctctct tgctccagtg gaatgaaacc ccctcctcaa ggagggttac actcaggcat
49501
       aggcccgatc actcatcata tattgacaga tgtgcaggcc tgagaccccg ccttctggag
49561
       ctttctaatg ctccttgttt ctcaatccaa tccttgctag gaattaggct cttctgctqa
49621
       atgtaaaatt tttccatctg cctccataaa gtatgtgcca cctgtcagct gactggtcaa
49681
       ccccaagctc aaagtatatg gacattttgg gggtgacaat ggtgggcata catctttagc
49741
       aaagattaag aaggtaccag aggaggacca gcacaaccca gcaatgcagc agaatYcatc
49801
       aggaaagett tggetetggg tggageteet tgetttaget etgeetttga gegettgggt
49861
       ggctggggag gcactggggt ggaagggaag gaagcaggaa ttcgtgtgct gcaaatttca
49921
       ctacacttga ccacaacttg gagtggaaag ggcactgtgg tRcgtctatc tggccttcct
49981
       ttacaagcct taaaatgctg tggaatccat ctggatggaa gacgccatcc aattataaat
50041
       ccttaggata cttttattg ccctttaaga gttcYgatgc ttgctcttcc atRcccatat
50101
       gtttctgctt aagaggcttc attcaaatca aattggaaga gaagtccaga ttacccaact
50161
       acaattacct gagcaaaaat cccctcaatt atcttggtaa tccagataaa ttcggagtac
50221
       aaaggtgagt tgcctggata gcactggcta agaactgctt tgtctcccat ttcaccttgc
50281
       attattataa totaottgat tacaottoat ttataacaat agggagggot tgttttatgo
50341
       cacacattgc cacttgctca agtgtaaaat aaaccttaaa tgactgatgt actgctaaat
50401
       ttatctcaaa aaacaatcat aacaggaatc ttaaggcaat aaagtcaaac aaatagaatt
50461
       ttacagaatt taaaaattat tttgtgagtg atttatgcta aaatacctca aatttatttc
50521
       aaaaacagtc ttacttaaaa ctgacttaaa atatatgtag gataaataat Ytgtagtgaa
50581
       tttaacgaaa cttcagcaat tcaaatgaat gcacRttatt cttcttaaaa acagatatcc
       tgaaaatatc catcaggata aatagctaat gcatgtgtgg cctaatatct aggtgatggg
50641
50701
       ttgataggtg cagggaacca ccatggcaca tgtttacctg tgtaacaaac ctgcacatcc
50761
       ggcacatata tcctggaacR taaaattaaa ttaaattttt aaaaagcaga tatttggaaa
50821
       gtaccaatag cttcaaagta aaaatactct Ncactgtttt tgtttgtttg tttattttcg
50881
      tttttgtttt tcttttttga gatggagtct cgctctgttg cccaggctgg agtgcagtgg
50941
       cgtgttctca gcttaccaca acctctgcct cctgggttca agtgattctc ctgacttggc
51001
       cgtgccacca tgcccagcta attttttac atttttggta gagatgatgg ggtttcactg
51061
       tgttggccag gctggtctcg aactcctgac ctcgtgatcc acccgcctca gcctcccaaa
51121
       qtqctqqqat tacaqqcqtq aqtcaccqcq cctgqcctat gcactgttaa ttttatcacq
51181
       acagttataa atccatcaag atgtcctgtg atttttcaac acaaattact caaattatga
51241
       acttctctgt gtgtattttc cactggcttg tttatgaatc ctgctgatat gtctgctaca
51301
       atttctccaa aggctaaaag atgtttacag gacaaatgac atcatgacca tgtcaggctt
51361
       aaatgtgttt atatcagttg ggtttagagg gtcttcaaaa catggcttta aaatctcagt
51421
       tattatggag cttaatgtgt tcctgatgtt tctggagtMa tgtatttcta aaaatagaga
51481
       aatagattgg ttaaaagaaa atgaattgtt ggtctaatct gtcttatgca tggctaacga
51541
       aatgcatttt cactctcttc cgtgataata cgacacttaa aactgtgagg accaatgggg
       tgataagaga caaaataaac agtaaataga tactccatgt gagttactac tctgtaatag
51601
51661
       atagaaaaga tattttatag aaaagggaaa atacccacag acatataagc aatgtcctgt
51721
       ggttgctatc aaatttactg ttagctgttt aaaactgcct taaaggtttt ttaaatgtgt
51781
       cttttctacc atagattctt tagacqacag ccatcaagca qcaaatacct cqcagqaqqc
51841
       cattgtgttt ctatttgaac ttctatggat gtcaagetet gttcttcaaa atttageeet
51901
       acagatgggt ggcccaccgg agagaattaa tctcactatg cagccaacac taccctttct
51961
       ggatctttcc ccagtagtgt ggattctgct ctagtccaga attatgcaga ataagtatac
52021
       ttcatcttag acaccataat tcttcaaata tctaaaatgt atattatgct ctccaaatcc
52081
       tqqtcatctc caqqttaaqt atctctcaaa aacagtccat cagataatat gattttaaat
52141
       ctttatcccc ttggtcatat acccacaatc tcattctatt taccaatatc cctactgatg
52201
       cataaactac atatgtatat gtgtgttttt ttttaaaaaa aaagcaattc cactgtaatt
52261
       ttagcagagg ttatttccac atagagctat gtatatgtgt atatacacat atctttatat
52321
       tatatagttt tctgtgcttt cccagttatc tacaatgggc atatatgact tttatagcca
52381
       ggtaattcaa tattcattca ttcagtgaac atcattgagc atccactatg ggctgggaag
52441
       tgaggatgga gccacaaaca agcaaaataa aaacccctgc tcttgtggag ttcccttctc
52501
       attggaagag acgtacagta aagaaaaaaa taaaagagta aagttaatag cctgtgagaa
52561
       ggggatataa aagtgggaag gaagacaggg tgatgtgtga gaaacacttt ttttttttt
52621
       ttttcagatg aagtctcact ctgttgccca ggctggaggg cagtggctcg atctcagctc
52681
       actgcaacct ccacctcctg gtttcaagca gttctcctgc ctcagcctcc caagtagctg
52741
       ggacttcagg catgcaccac catgcctagc taatttttat atttttagta gagacaggat
52801
       ttcaccatgt tggccaggct ggtcgtctca aacttctgac ctcaagtgat ctgcctgcct
52861
       tgacctccga aagtgctggg actacagcaa tgagctgcca agcccggcct ggggaacact
52921
       attgaatagt gtggtcaggg aaggctttac tgtgaaggtg atgaagaccc aaagaaagtg
52981
       aggaactaag tcataaatga tgggtagaac attccggatt gcgggagcag caagtgcaaa
53041
       ggccctgggg tgaggaatac caagaatgtt tgtgtgggca gagcagaaag aaccaagggt
```

```
53101
       aaagcattag gagatgaggc tgaagaagta accgggatca ggtggttagg gccctcaggc
53161
       cctggaggaa ggctggcagc gctggagcca caYggactga caatgtctag cagtcatccc
53221
       ggctccctgt gaagaacaga ccctcgcttg cagagaagcg aggacaatta ggaaagcaga
53281
       gtcatgatcc acgcacagga tcacggtgac ttggaccaga aagagagcag tggagctggg
53341
       gagtgactct tttcagtatt tctcaggtgg taccagtggg atctgcagag aatacatagt
53401
       taaaqqaaat qtctqqaact aaacatqact cttcaaacgt gatcctactg tggcagaaga
53461
       gaggcgactt tacatttcct ttcccaggat atcttattct aatgaacaca gaaaccgtaa
53521
       aatcaagcca accaacatga tgaaaatgat tatataaggt acacagccca ggctggattt
       gaactgatga gggaaaaaa atctctagtg aaaattcctc tctctaacca cagccttctc
53581
53641
       teetteeate tetgeeteae eettgetett tetgaageet teetggatge teatgaaget
53701
       cYctccttct ttgactcatc ctattttccc aggacMttta tcaactcagg gctcttctcc
53761
       cctccccaca gtcagctcac tgtgctctga ctagYtccct gaaattgctc atcctcttac
53821
       taaccaggaa gcttctaccc gctcttggtc ttctttctcc accccagtgc caaagaacta
       agcactgatg gagaaaaagc atgcggctaa tactgtctgt ctctaccaca aatctcataa
53881
53941
       tttttaaaat ccatttggaa tttacattca ctccttaact tcttttcatt cactcctaat
       tcacttccta tataattctc tacacagctg ctgaaaacct tcctttctgc tgcctcttac
54001
54061
       cccaaaacta ctctcacatt actcacaaag gttgaccttg ttttctatWt actttttag
54121
       agtaaYqaag ccataaaatg taagttcttt caacctggac ctcccactct tgggatttct
       caatagette acctgtatte tecceettea etettgacte agaggtaaaM geteeettge
54181
54241
       toccaaatcc tttagcaacg tagggttgat aattgctcct ttccaaattt aatccctgca
54301
       tctgcgcccc tgagacagac actgccatga tttcccagct tgctgtcttc tccctcctgc
54361
       atetecteec tttetetgtg acggatattt teeetgtgca agagaaattt ettetgeeet
54421
       aaaataaata atccaaaaca tctcttgact ccacttaagc taacattcaa tatctcactt
54481
       tcccttgtat taacaaaagt taattgagtc agtacggtgc tacaattctc agacacaacg
54541
       ataaacatga tagagaccat caacatgcct tggcattttg cctgctttct cttcaattac
54601
       54661
       toccaaagaa actgtcccct tgcccagtgg tottcaaaac cotccaactc cacagtgtot
54721
       cattaactcc aactcatttc ctactaaaca tctcttctca gctcttcaaa gtcaaagatt
54781
       gcgaaccaaa tctacagact tctcctctct tctcctttgg gtccaactcc atccttctcc
54841
       atgaaacttc ttattcctag aaatggtgtc tgcacctttt aggcttccag gctYgagcct
54901
       agagtcatct ttaactcttt ccatacccag actcccaaga cccagtcagc tgtttaggtg
54961
       tctcctctqt atgcaqcact tactqtcatt gccctggtcc atctcccaga gcccacatct
55021
       tgtcccactg tctgcaaagc ctttcctata tgctggatat aagtgcaaac tccccctaaa
55081
       atcccattga agtttttact tttttctatc ttctttttt acttctttt atcttcctct
55141
       actcacacag aagtgctcca attatgagga ccttatttta ttccctttac tgtcaaacac
55201
       aaagccaaca tgccatacga aaagatagta ctgtgcttcc ttcagtgcca ctctagcacg
55261
       cccactccag cacaccette ttgtgcgggt gtatgctcat gtgatactat cacaggcaac
55321
       acttactatg caatacgttt tccacaatca caatatttcc acaatattgt gatatgagct
55381
       cattetteag geettgacae aagegeeeae aaaeetaaga gaatgeattt teatttttat
55441
       gatacacagt tttcRactgc tccactctgg ctgccaaggc attcctcctc caaatcacRa
55501
       tgtctatatc aaaagaagaa caatgaggga gagctggagg tagcgctaag aaacaacctg
55561
       gtccagctcc caggtctcat agagaacact cagaacacgc ttgttagagg tatctgctcc
55621
       tgqcctcaqc ttctcaqaaq caattacaca tcttctqqqt aaacqtqqaq tqtqcaqcac
55681
       agaataccaa agctgagctt cccattgtac ctggttgttg atctcctcgt tgacctccct
55741
       cagctgaata tttcttaaga acagtgttca attaatccaa ctatccctgg tggctggcag
55801
       gatgaatcag ttatgactta tttcatgttt gtgggtgggt gtatgaagtg gtcctcaaag
55861
       gagatttttg ctctctgcag acagtctgcc tgtctgtagg tcacttcctg ccatttcctt
55921
       tgagtgggaa tatgagccag ggtgttggaa gaaggaagag tccaaaagat gtctcaggga
55981
       atgtcccata gccattggcc tggtctgccc tagataactt ctgagccagg tcaccctaaa
56041
       gtgctacatg aaaagtcatg gattttttt ctaacttgtt gatctcaaat gtcgtgattt
56101
       ggcatgaata tctagcttcc catgttgcag ctatggattt attcttgcca aaatattggg
56161
       gattgggctg gagagggaag aaggtacgaa gatgcattct gtgttgctca acaagatctg
56221
       catggcctca accaatgcgt gtttgaccat atggatattt acaaacccca ccatcaactc
56281
       accaaaatga agagtgtctt agacttattc tcacaagaca agagggaacg ctgcctctaa
56341
       ggagtctctc tgggacacct gggagagatt tatttaatgg taaagcaagg aaaggaaaag
56401
       atgaacagtg acctgcaaat cattaaagag ggcgactcga tcataggcaa gggcttttat
56461
       tagtgctaaa attccacttc aaagtttgct gattcatgga tgctttttgt tttgctgttt
56521
       aYgttgtaga aactgatttg attttcatag acaaaataac taggcattta taaccacata
56581
       taggtatgaa agaaagataa aatgatgccc ttagcccagt cagaaatact cttaaccatc
56641
       aaaatagttc cctgaatcta aYaggccaac aatattccaa caccagaacc tttgctacca
56701
       tagccagaat ttttaagact gcaccactgt taagtagagg caatttttaa tacttagggt
56761
       ctaaccacaa ggcataaaat gcaaaaaaaa ttacataatc ctgtactttt taataattaa
56821
       atgaaaatac atagactcta agcaggaaaa tatctgagat ccttaaaacg gtataatcat
56881
       aattgttcta cattggtaat atgtgtgatg atatttttct ccaaaaaaaa ttctctacca
```

```
56941
       tttcattctc tttRatttct tctagcccgt aaggtctagc aaagaggaat acctgaaaag
57001
       atgcaaattg tacccctgtg ctgttcaatg acagcaaaaa ttgcagctcc ccaaccccac
57061
       ctcttatgtc ccctgagcaa tctgtgatca cttgagggtg aggacagtat attgcccaa
57121
       taaactggct ttccaccaag taccaccaag aaatcaaaac agcttttatt ttattgtgtc
57181
       atcatatata agttaatagt tcataattag ttcaaaattt aaaattatgt tctaaaaata
57241
       aagctttcta agtcaatgta ggcaacRatt ccaagatcct tatagttttc ctctcttaaa
57301
       cagagaccat tatcatatga ttttttttt tttttgagac ggaagctcac tctgttgccc
57361
       aggctggagt gcagtggtgc gatctctgct cactgcaagc tctgcctcct gggttcacgc
       cattetectg ceteagecte ceaagtaget gggactagag geaceégeca ceaegeeegg
57421
57481
       ctaatttttt tttttttt tttttttgca tttttaqtaa agaccacqtt tqaccqtqtt
57541
       agccaggatg gtctcgatct cctgacctca tgatctgcca gccttaacct cccaaagtgc
57601
       tgagattaca ggcgtgagcc accgtgcctg gccagtcata tgatttctaa agagaaactg
       aacagttatt tgtagaaact ctgcaaagca tgactttggg acgggcacag tggctcacgc
57661
57721
       ctgtaatccc agcactttgg gaggctgagg cgggcagatc acgaggtcgg gagatcgaga
57781
       ccatcctggc taacatggtg aaaccccgcc tctactaaaa aaatacaaaa aaattaqcca
57841
       ggcatggtgg tgggcgcctg tagtcccagc tacttgggag gctgaggcag qagaatqqcq
57901
       tgaacccagg aggcggagct tgcagtgagc caagatcgca ccaccgcact ccagcctqqg
57961
       58021
       aaagccatgc ccaagcccac ccctgaccag tgaaatctcc gggattgggg cacaggtata
       atqttttat aaacatcttc ctagatgttt cctgcatcca gggtgataaa tcatcatact
58081
58141
       aaaggcatca tctgaaggct cctagagtat agagaagttc agaataagga ccccaaacta
58201
       ttgcacatcc tgacactaac tagctgtagc tgtgcaccct ggacagggag agatctaaac
       agctagttat cttacttcac cRaaatctac aactaaagat gtctatccac gtgttatagc
58261
58321
       tttggcttcc ctaatctaga tgttcaatct acttttctgc aatttggcaa agtaaaacac
       acatatacag taatgcacaa tgtcctgatt gttggggttt attatttgtt ttgcatttac
58381
58441
       gcttcttagg tatgtaacat gccaaagtca tgggagctga gtcttttgaa acaqagqctt
58501
       ctttgggtgc aaatattaat tttctatgaa aaaaagagaa agtacaaaga aaagaaaaaa
58561
       cagcagtaat acagaaatga atatcttcct tgtctaggac acagtgtttt ttttaaccta
58621
       gatttctttg aacacagact gacacaaaaa ttaaatacta ttgctccatt ggagaggtgc
58681
       aaacctgggg cggtgagagt gaggggaagc gagtgagatt gtcactacac tagcttctgg
58741
       ggacatggag acagccagtc actgagcccc tgccttccct tggccatgca gatgcctctg
58801
       ataggttaca cggaaaaatt ctacctcaca gcagcccatg gggtggagga aaaataggaa
58861
       cttagttgcc tacattcttc ctgcatcccc ttcctcattg gtcagagtca ccctgMatgt
58921
       ctgggttgtc acctgctccc aaggtgacca ctccaaaagt caggttctac gcccggtqgt
58981
       ggggtgcttc atccaagtac agaaatgcca agaggatccg gaaacctttt gacctggttg
59041
       ctgagtcaca ggaaagaagg gccagccctc ctgggacagg taacaggctg gccctgagct
59101
       gtggaagccc tcacacccag aaggagtcaa tctgctgggg tggccactga gaccaagcag
59161
       gagctgaggg tcctggagta atagatggag gcccatgaga tgtgttcaga cacatagtgt
59221
       gtttgtcaac tgcaatgtgt gtgtgcccc aaaattcatg ggtttaaatc cttaccccca
59281
       aggtagcagt atgaggagga ggggcctttg gaaggtgact aggtcataag gatggaggtc
59341
       tcatgaattg cattagtacc tttacaaaag ggaccccagg gagattccct cacccttttg
59401
       tcacagtgtg aagacccagc aagaagatgg acatctatga atcaggaaga gagccctcac
59461
       cagaacccaa ccctgctaca ctctgatctc agacttccag cctttagaac tgtgagaaat
59521
       aagtttctgt tgtttatatg ccaStcaatg tatagcactt tgttacagca gcccaagcta
59581
       agacagccta ttatgtatga gcaggtggct ttgagataat tgagaaaaca gagactataa
       ctacaaccag ccagagatgg gatcaYtgca aatgggactc gggttcacac aaggtttgtg
59641
59701
       acacacaca aaaaaaacat aaggcagata aatcagcaag ggtagcagtc aggaattgac
59761
       agacgattaa tggattgagg aaacagaata gataatttaa aagcaaacct ttgtacacaa
       aagaattcag gaggtgataa aagtaacatt ttcatatcag ttggaaagta agttattcaa
59821
59881
       tagcaacaga acaatcattt attgaggaaa aaWaactatt tctttcctgg ttcaatcttg
       gggtgttgta tgtttccata aatttatccc tttttttctg ggttttctaa tttttgtgca
59941
60001
       cagaaatgtt ttttaatagt ctctgaggtt ttttttttat ttctgtqqqt tcaqtqqtaa
60061
       tgtccccttt gtcatttctg attatgctta tttggatctt ctctcttttt tctttatcag
60121
       tctagctagt tgtctatcaa tcttatttat tctttcaaaa aaccaacttt tatttttgtt
60181
       ggtcttttgc atggtttttt tgtatctcaa tttcattcag ttcagccccg attttggtta
60241
       tttcttttct tctgctagca gtaagtttgg tttgctcttg ttttttctag ttcctccagg
60301
       tqtqacatta qqctqttaat ttaagatctt tccaactttt tgatatcagt gtttaqtqct
60361
       ataaactttc ctgttaacat tgctttaact gtatcccaga gattctggta tgqtgtatct
60421
       ttgttttcat ttgtttcaaa taatttattg atttctgtct tagtttcatt gtttacccaa
60481
       aagtcattca ggagcaggtt gttcaatttc catgattttg agagatattc ttagcattga
60541
       ttttattttt accgtgctgt ggtctgaaag tacggctagt atgatttcag ggtttttttt
60601
       catttgttgc aaattgtttt atagccaagt gcgtagtcaa ttttgaagta tgtgccacgt
60661
       gtaggtgaaa agaatgcata ttgtqtcgtt gttggqtgca gtqttctgga gatgtctqtt
60721
       aggtccattt ggtcaagtgt caagtttagg tctcaaatat gttaagttag ttttctgcct
```

```
tgatgatcta tctaatactg tcagtgagat gttgaaatct cccactatta ttgtatggtt
60781
60841
       atctaagtct ctcactaggt ccctaaaact tgatttatga atctgagtgc tccagcattg
60901
       ggtgcataca tatctagaac agttaagtct tcttgttgaa ttggaccctt tatcattata
      taatqccctt ctttgtcttt tttgatcatt gttggtttaa agtctgaaat tgaaacgctg
60961
61021
      aacagaccaa taacgaatta caaaattaaa tcagtaatat aaagactacc aaccagaaaa
61081
      agccctagac cagagagatt cacaaccaaa ttctaccaga tgtataacaa agagctacta
61141
       ccaatcctac tgaaactatt acaaaagatt taggaggaaa gactcctcct taacctcatt
61201
      ttatgaggcc agtatcattt tgatacagaa acctggcaga gacacaataa gaaaagaaac
61261
      ttcaggccaa tattcatgat gaacagggat ttggaaatcc tcaacaaaat accagtaaac
61321
      caaatccagt accacatcaa aaagctaatc caccatgatt aactacacat tattcctggg
61381
      atgcaaggtt ggctcaacat atgcagatca ataaatgtga ttcatcccat aaacagaact
      aaacacaaaa accacatgat catctcaata gctgcagaaa agacttccaa taaaattcaa
61441
61501
       catcetttca tgtttaaaac actgacaaac taggcattga aagaacatac ctcaaaatac
61561
       taacagccat ctatgacaaa cccacagcaa cactgtactg aacaggaaaa gctggaaqca
61621
      ttccccatga gaattgaaac aagctaagga tgcccactct caccactctt agtcaatata
61681
      61741
      acatccaaat gggaagagag gaagtcaaac tatctctctt cacagaggac gtgatttatg
61801
      tctggaaaac ctcattgtat ctgtctaaaa actcctggat ctgaaaaaca atttcacaac
61861
       gttttaggat acaaaatcaa tgtacaaaaa tcagtagcat ttctaaacat caacaatgtc
61921
      caagetgaga gecatateaa gaatgeaatt eeatteaaaa tageaacaaa aaaaatacaa
61981
      62041
      gatcaaagaa atcagagatg acacaaagaa atggaaaaac attccatgcc catggatagg
      aagaatcaat attgttaaaa tggccatact tcccaaagca acttatagat tcaatgctat
62101
62161
      ttctatcata ttactaatta cattttcaca gaattagaaa aaactatttg gaaattcata
62221
      tggaaccaca gaagagccta aatagccaaa gcaattctag gaaaccaaaa agctgaaqta
62281
      tcacactacc tagcttcaaa ctatgccata aggccacagt aaccaagaca gcatagaact
62341
      agtacaaaaa cagacacata aaccaatgga ctagattaga gaacccagaa gtaatgtcac
      acatctatag tcatctaatc ttcaacaaag tagacaaaac aagcaatgtg gaaaggattc
62401
62461
       cctattcaat aaatagtgct tggataacta gctagccata tgcagaagat tgaaactaga
62521
      ctctttcatt ttaccatata caaaaatcaa ctcaagatgg attaaagact taaatgtaaa
62581
      tcatacaact ataaaaacct agaagaaaac ctagaacata ccattctgga cataggccct
62641
      ggcaaagatt tcatgacaga ctccaaaagc aatggcaaca aaaacagaaa ttgacaaatg
62701
      ggacctaatt aaactaaaga gcttctgcac agcaaaagaa actatcaata gagtatacag
      acaatgtaca gaataggaga aaatatttgc aaattatgca tccaacaaag gtctaatatg
62761
62821
      cagaatctat aaaaaaaac ttaagcaaat taacaagcaa aaaacaactt ctttaaaaaa
      aatgggccaa aaaaacatga aaagacactt ctcaaaagaa gacatgtgtg accaacaagc
62881
62941
      atatgaaaaa acgctcaaca tcactaatca ctagagaaaa gcaaaccaaa accaccatga
63001
      gatatcatga cacaccagtc agaacggcaa ttttaaaagt caaaaaataa cacatgttgg
       tgaggctgca gagaaaaagg aacagttata tgctgcgtgt gtgaatgtaa attagttcag
63061
63121
      acactgtgga aagcagtttg gagatttccc aaagaactta aaataqaact accattcaac
63181
      ccaataatcc catcactggg tatataaagg aatataaatt gttctactgt aaagacacct
63241
      gcattattca cagcattatt cacaatagca aaqacataga accaatctag aagtccatca
63301
      gtggtggact ggataaagaa aaaaatgtgg tacacaaaca ttacagaata ctacacagcc
63361
      ataaaataga atgaaatcat gtcctttgca gtaacatgaa tggagctgga ggccattatc
63421
      ctaagggagt taacacagga gcggaaaacc aaataccaca tgttttcact tataagtggg
63481
      63541
      qaqqqtqqag ggtaqacqaa qqgtgaagat tgaaaaacta ccaattgggc actatgctta
63601
      ttacatggtt tatgaaataa tctgcacacc aaactctcat ggcatgcaat ttacccacgt
63661
      aacaaacgta cacgtgtacc cccgaaccta aaataaaagt tagaaaggaa aaaaaaaaa
63721
       63781
      attaaaccat aaaacacaga aagaaaatac agatgaatag ttatataatt taggatgaga
63841
      acagcctctg tcaggatgaa ctaaagaatt cacaaaaaaa aatgttaaca aattaaatga
63901
      catgttaaaa atctggccag gggtagtggt tcacacctgt aatcccagca ctttqqqatq
63961
      ctgaggcggg cggattacct gaggtcagga gtttgagacc agcctggcca acatagtgaa
      acctcqtctc tactgaaagt acaaaaatta tccaggcatg gtggcacacg cctgtaatcc
64021
64081
      cagctactca ggaggctgag gcaggagaat tgcttgagcc cgggagacgg aggctgcagt
64141
      gagetgagat catgecactg cactecagee tggetgacag agggagacte tgtetcaaaa
64201
      aaaaaaaatt aagaaactat atattgaaag actataaaaa atagttttqg tttttttctc
64261
      agtaaaaaaa taatatacc attgtcaaaa attttctatt ttcaatatta ttatttaata
64321
      gaaaaatttc aacaatttct ggagaaaata tatgaaacac atttgacaga gttttaacat
64381
       ccttaacata aaggatgtaa cttatatgtt acatccttaa cataattttc tttgttcagt
64441
       taacaagttt ttattgagta tctatattga aatatgcact atgtctgaca ctggcaacac
64501
      atttgaggaa ataaagaaga aaaattcaag tccacatgga aaaatggact aaggacatga
64561
      aaaagtataa atcatcagta cacttctaat aaagttaata atcaaagaaa tgcaaataaa
```

```
64621
       tgtgacctat caaggtcttg ctatttgtac tgtcaaatta taaaaaataca ataacaaata
64681
       ttggcagata ttggggaaac aagtaatgtc atatactggt atgtgcttaa actggtaaaa
64741
       gtcttcagaa aggaaattgg aaatatatgt aaaaattttg gacagttgca tattctttgt
64801
       tctagaaatt ctacttatat gattagaacc taaggaagtt atcatagatt taatcaaaga
64861
       tagttacagg atattcaaca tagccctgta tataacagcc aagaatctga agccaacaaa
64921
       aaatatttaq cttaaaatqt ataqaatata cataqqatqa aattqcataq qtcactaaac
64981
       agtttctagg gacatggaaa aaaaaatgcc atattgcaga aatgcaatat tttgggatga
65041
       taaaagggca gtttcaaaaa attgaaaaaa tagcagttac tatgacctct tttggcaaaa
65101
       ataattatat gtaatattgt tcatggaaaa atagactgga aatataacga ttaaaatgtt
65161
       aattgtatct gggttggtga gattacatat aattattata tataatcttt acttttttag
65221
       attgttgttc acagtgacat caagatttgt catgggagaa aaaatgaaqa agattattat
65281
       tttgtagtca cccaaggaga gaagaagtca catctctgga gataggagga gatagggcat
65341
       atgagccaat cacatttctg cagccttttg tggatacaaa aggggtgggc caagcctttc
65401
       caatatecet ttteeteett ggtaeceaga cagactatat ttaecaqeet cetttgeage
65461
       caggtgtggt catgtgactc attcctggtc aatgaaaggt agatggaagc ctggcctagg
       aaacaggtct acatgcaatc ttccattctt ctcccaccca ctggctgaaa agaaaggctt
65521
65581
       ctgaggacac agagtggggg gaaggctagg tagaggctgg atgggaagaa agcagggttc
65641
       tottgotcot otcatcagag agotactgag gagacccacc gcacccagac coccatactg
       gactgttaca ggagtgagaa ataaactttg tttagaccac tgaaatttga gagttagagc
65701
65761
       tattagccta ccctgattaa cgctggggta gccctcaca tctgcccagc accctcagca
       gagcctaacc caatcatcca aggttaccca atagagaact caggcttcca ctagagtagc
65821
65881
       cgtcacatag agttactggg tcttccaggt tctqccacct ccaccgtgtt ttgtgggact
65941
       ctccactgaa ctcacaaagc acatgtattc agctactcca aagctatgtg tactcaggaa
       gagaaagttc taaatgtttc tgtgaccttg tgccactgat atcatgggtt ctatccttca
66001
66061
       gagtqctaaq aaaaqtqtta aatctccaqa ataqctttqq aaaaqtqqaq aaatttqaqa
66121
       ctttctctat ttttagttgc taatatgcat tcctgaaaag tttatttaaa gccacaagga
66181
       aatatttcca tattqaattt caatattgca atatactatt ttagaataaa atggaaaqat
66241
       ccaggacata gagcagctga gaagctacac agttggcccc tgggcttcac tcagacagtg
66301
       cttctctagg ctgcaagtca taagtctttg tgtcacccac ttttagaaga catccccgg
66361
       acttctggga ccaacctgag gtttgtagga atctctgagg atcaatgatc aaacatatat
66421
       tagcttgaaa aaaaactaat atatgtgtat gtttttttaa aaggttaagt ttttaacaat
66481
       ttagacgtct tqqcattata ctctqaqaac qttaaccaat qaqaataaqa qtqacaattt
66541
       agatgtaaaa cctcttaaag gtaaagataa aatcctaacc acatggggaa aaccatgtgt
66601
       tctgtggatg atttccctgg atttctcaaa agactcttag aatgttctgg gtatgacttt
66661
       gggggcatct gttctatqaa gatgggcacc ccaqcatcac ctgcatatta accettcttc
66721
       ttgctcctaa agatgcagaa ttagctgaga ttaggaagat gtacaaagtg ttctccctgc
       acttcaacta atgaacaaaa ctttttaaaa attacttatg atttggaact attttatcat
66781
66841
       tttatRtatc ctatggcaac tggcatttta tatttaattt tatcatcttt tgctttttt
66901
       ctttgatcta aatcaggatg ctaagttttg ggggggggtc ctacagtttt ggcagagacc
       tcattctaaa aaagaggtac cagactatta aggcagaatc tgctgagggt ggccccaaac
66961
67021
       ctggtctggt gaacctcact caactcatca ttgatttcaa gggcacagaa gaggcaagga
67081
       gatgacagca ggagaaatgg acatgtacca tggagaaagg ggaccaacca caccttctgt
67141
       ccaaactqaq atttcccaqc ctqaaacaqq tcaacactqq qqttaqcaaq aaactttaaa
67201
       ctgaatagga gattaaagta ataagaagat gagtactatt attgKtacaa attatattgg
       taatagtttt aagtttcatt ctttaagaca gggtgaatca cagtcccttc tctcaaggtc
67261
67321
       cttgtcagca ttctactttt ccaaggacat tcaaaaattt ctcatccaaa gtcaaacatt
67381
       agtgtgtgtg cctcaaacaa gaaatagttt tccatcagtc tccaaatctt tgaatagtaa
67441
       atggcaaaag tatggaaatg caagatggag tggggcttaa tgttgccaca acattcctac
67501
       aatactggga tagtcttcct tgggaattac tttctttcct atcacgtatc aataaggaaa
67561
       gccaaatgta gaaataaaga aatctccccg atttacttaa cacacggagg tgacagttac
       agcgcaaatt gagggaagag taaatgattt cMacaaatga accaaaaaca cttaaaagcc
67621
67681
       acatttaaga gaaatggagt cataaaqgca atatttqtqa qcaqataaaa aatcaqcaca
67741
       qaaaaaqqtq agaaatacac aatgtctttc atcaaggtqc aagqaaatgt aaaataacat
67801
       taaaagtacc aactacataa tttgaatata aagagaacaa tagcaagaaa qqagaggqqa
67861
       agtgatggcg atatggagac acagtctctt ttgcatgcac agggcagaac cggtgcctca
67921
       ggctggaggg tgtctgtgag taccccacaa tgaaRgcaaa agagcMccca gcattgaagc
67981
       cacagacctt gctccatgaa tcctagctga tgggctggca cagagagatc aggagcagaa
       caaggaaatc cataggagga tcctcccaaa gtacttttt ttctggtcca aaaatcctta
68041
68101
       aatctqtcag aagcaqqaqq ttqqaqtqqq aqaattqcaq aqcctqqaac acacctqcct
68161
       gctgatgacc cattctgagg gggttctttc cacttggcag caatggactt ggtaaaaaaa
       ataatagatc cttctccatg gatcccattt cccttttttt ttttttttt ttttttgaga
68221
68281
       tggagcccca ggcagaatta aagaccaact ctgggaccca aatttttaga ggacaaaggt
68341
       tgatataatg gccagcacga tttagtcatt tagatttcag gtctaactaa ctgatgacag
68401
       actttaacaa aatcactgaR agaaatttaa cgtcaacctt aaataacagt agaggcaggt
```

```
68461
       aatataacaa atagagtcaa aatggtttat ctaaaggtct aagcccaaga aacatccaac
68521
       aataaaatta atctaaaaca aatttttaa taatcatttt tttttcttga gacagagttt
68581
       cgctcttgtt gcccaggctg gagtgccatg gcacggtctt ggctcactgc accccttgcc
68641
       tcccgggttc aagtgatttc ctgcctcagt ctcccaagta gctgggatta caggcatgcg
68701
       ccaccacgcc cagctaattt ttttgtattt ttagtagaga tqqqqtttca ccatqttqqt
68761
       caggetggcc tegaactect gaceteaggt gatecaeeca cettgqtete ceaaaqtqct
68821
       gggattatag gcgtgagaca ccacacccgg cctcatcttt tctttaacat tacaatttcc
68881
       catcatggtg gcacttgaca gtagtgggac tgtccaacag caaatgaccc catctaagca
68941
       ctcaggacag aagccatttt aggtcatgaa aattatacag attttqtqaq tqaaqqqcat
69001
       ttagttctga gcagaaagta gtcttgcaaa agggaaattt gcaacaacaa caaaaaagga
69061
       caaggagggt gacaatgtca agcaaatgat aaccctgctg gagcttcaga aggaaccaqc
69121
       tacatccctt tcctgcttct acagatgcta tggcagcccc agaggtgtcc cactaggatc
       tcccttcaag aaagaatcta gcatgcatct gaacaacctc cagctgttca cacctcaggc
69181
69241
       cctgcctcat cccagacagc cctgagccaa tcactgacac agcagggtac tagagcctgg
69301
       tcatttctgc ccaaccoggg gcccctccaa aggcaagctc tgctccagac ctccccgttg
       ggttgqtcaa actatcaaat ctgtacctgg tctgaggctc tccctgccca qtcttqcttc
69361
69421
       atcctcattt tatccttcac aggcacagcc cccttccccc tccaataaaa cactaacatt
69481
       cctaattccg tctcaacatc tgcttcccag ggaacctaac taacacaata ctcctaaaac
69541
       caataccagc aaaaagtgac tttccaagcc cctacatgaa gactcatttt ctggaaaata
69601
       aaatttaata taattccaat tacccatgac gctatttagc catttcaaag gaaatgagaa
69661
       agetteecaa attgtggtee teatggagtg aactgateat caaatgttge tgtttacatg
69721
       agggcacaca ataattaggg ttgtatgtaa catgctactt tcagattttc aggtaagtct
69781
       aaatgctttt aattgatgca agaataataa gtccttcagt tgatttatgt catgcattaa
       tatcaatcaa aaggittict aacacatact itttaatact ataaaatgtg gggtttttt
69841
69901
       taatqtcttt tttttcttat tcaqaqccac atttcttcac atqqtatqtt ttacctaacc
       taagggttat gttgttcgtt tgtttttaat ttcaggtttg aggaatcaag taacaggtct
69961
70021
       ttctaaatcc ttttattgga tatatgttag ttttccatta tcataaaaqa ctqaggaaca
70081
       ggaacagcag catattgttt aaatgattca caggtaaaaa tatcttctcc ctcttggtct
70141
       gttttctttc ctgatgtctt tgctcattgc caacattgtc tattttatat ataattcttg
70201
       caggacattg tgccctgaag gtgaaRttgg acaggtaagg agatgaccca acaccccttg
70261
       tcacacctgc aggetctagg tcacttttgt aacacacaat gaaatgggta aattctacac
70321
       aatccttttt tttttttt caaacaataa caqaaaqtaa atatttqaac tqqqqqcttt
70381
       ttcaaacaac acaagtcaga aaaaattgac ttgtttttga ctgttacttt aggcatatat
       ttttgattaa tgacaattaa atgtaaatat aaagatattt taaacttgag gttttaaaac
70441
70501
       aaagaatgca agaatcacct ggttaaagtt agatattttg tcagtctcaa agtcagttgg
70561
       ctggataata ccatatcata aaattttata agactaattt gaaggtccat atgaattggt
70621
       attattgttc gtttttcaat attgatctta gcagtgtatt tacagcatac agcagagtta
70681
       atgtttaata caaacaaaca agactttcca gaaaatctac aaagaatcac taactaatag
70741
       ccatgcttca gttaaatttg tttacttttt aaagtacatt ctcagaagta acatgtactc
       tcaattaagY aaaacacaac cagaattttg gaatttgatc tttaaaataa taaaaaaact
70801
70861
       ttctctgcta tttacagcct tggttaaaat cccaacatct ggataccaga atctgagcag
       caaaatccac ggagacacat gtgcaatttt atgcctgcaa gctcactatt atttagaacg
70921
70981
       aaaccaacgt agtgcatcta cccttgtttc ttgctacaca qaatgtatcc agagtacaaa
71041
       ctaatgtaga ttattataaa actcagtgtg tagatattat atatatatac acatgcatac
       atacacgcac atatataact aaaacaaaat cttcaaaaaat aatacttttt ctttctgtat
71101
71161
       gtgatgtgcc ctgatagttt ccactttact ccatcccatt tccttttgtt aatactggcc
71221
       ttgactcact tagacaaatg ggtcatgacc tgtagtttgg aaaacagggc tttccagcct
71281
       ggctttaaag aggctggtcc tcaggccagc agaaccagca gcacctgggg gtagtttgtg
71341
       gcgcacaatc tcaaggcctg ccctagacct actgaactag gatctgctct tagcaaggtc
71401
       cccaggtgac ttatggatgt attaaagttt gagaagccgt cctcctgcat gcaaaagtac
71461
       agaatgagta totgtgatot gaactacatt taaatcgata atgcacctot taaactgtot
71521
       ttgttcaaag aacttctatc ctactgagct caaggagcaa cacagtttct agcaagatag
71581
       gtgcaaagaa aaattcactt tcaatttcat caactgcttc aagaggttqc agggactqqc
71641
       tgacctggta tcccagctcc tgcaggaccg agagtgtggg aggtgggttg aggggaggta
71701
       ctgaattgac tgcaatagat ccatgagcat ataaaagtgt gcgtgtttgt tcttattcct
71761
       gggagaaaat atatagtatt cacctaattt taaaagagtt ttatggttta aaaagttaag
71821
       aagagctact aagccatgaa aagacgagga ggaagcttaa atgcacatta ctataccaga
71881
       taagaaaatc tgaaaaggct acatagtgta tgattccaac catatgacag tctggaaatg
71941
       gcaaaactat ggagatgtaa aaagatcaqt ggttgtcagg gcctaggagg tcgggagqqa
72001
       tgaacagaca cagctcagtg aatttgaggg gcagtgaaac taatctgtat gatattataa
72061
       tggtggatcc gtgtcatcac ctgtttgtcc aaacccacag aacatataac accaagggta
72121
       tacggtgttt atattaaagt ataaccctaa tgagaactct ggactttggg tgataatgat
72181
       gtgttgatgt aggttcagcc cttgttacac gtcagccacc catgtgggaa aatgttgata
72241
       gtggtRgaag ctatgtatgt ataggggcag gaattatatg agaacacttg tggtatatgc
```

```
72301
       tcaagtctgt tgtgaaccta aaactgctct aaaaaataaa gtctgtaggt atctatgaaa
72361
       gcgcagacac atggtccgtg agagcacgtc ctctctgcta taaattggtt gtatggttac
72421
       aatcatacct agaaaggaga gaaaataaag agtaagtgaa taccgacatg ttcaattctg
72481
       ccccaqaata caacaaagtc cctgaatcac tcttgtttca ttgttgccat tgcttattca
72541
       attcagtcaa ctcgtatatg tgaagcatgt gctacataca taacgtataa tgcaggatgc
72601
       aaaaatgatt atgtgatcac ttcaagtaat ttataatcta gcaaacatat aaaacaggca
72661
       cacagataat ccttacatag taaatgcctc ctttttcccc aaaatggcaa ggagacaaat
72721
       agcaaggatc cgaggacaga gaggcaaaat tcagaaggcc agaaaggcat ggagccagaa
       atccaattca ctcgcgagta aggtatcggg agagagtggt gtacaacgtg acagggacac
72781
72841
       ctgttgctcc caattgtaat cttttctgat tggtttatgc ccctttccaa ttactgtgtc
72901
       catgctaatt atcaactatt tttattatca accctgcaga ggggactaag agaaaaaaaa
72961
       aaactgctgc aaagtgatgc tgtgttcatt ttgcacagaa cccagaaatc ctgatgaagg
73021
       aaactgaatt ggatgccaca agccttatct cctgtgaatg ctgaatgact ttgtcqgtqq
73081
       gttttacgat aagatgtact ttcttttata tctattaaac aagctataca gaatactggt
73141
       aaatacacag aagtaaaaag aagaataaaa tagataaaat tttctaagtt aaaagctaag
73201
       ggaaaaataa aaagaattat caattgatgt gatcaaagaa aaatgtttat ctcatggggt
73261
       gttggaaaag gaacatcata aaaattaata ggtagaataa tcatcaaaaa caatctgcac
73321
       aacaaatatK acatagctga ggggaactat cattaaaata taatgtatac aaattgctga
73381
       gaaactcact acaccttcta aatcatgtca aaagagttgt ttgcatataa gctgtctgca
73441
       cttcttctct ctctctYttt ttttttgttc atattcactg caaggtggct tttgtccacc
73501
       catgcaaatc actcatatga aggtcacaat gatgtccagg tggccaaagc ctgtggctaa
73561
       tcctcagtcc tcatctcacc gagacagcag tttcttagcc cttctcctac ctccactggc
73621
       ttctcttctc agctcctctg tagttccccc tcctctttcc aacctgtatg cattggaggg
73681
       gcccaaagct caaccctaat gctcttctgc atcttggtcc ctaggtgatc tcacctagtc
73741
       acccagcete agatageett aggettagga atcacaaata tateteteae atgaceteta
73801
       gactcatatc aacctctcaa catcacaatt tggatatcca acaggcatct ccaactcaac
73861
       acagecaaac eccaettttg acttectget cattgeaact gteecetett geagatgtee
73921
       cttttagagt aggtggcacc atcatatacc cagttacaaa caaaatcttt aaagtcatcc
73981
       ttgactctcc tacactgcat atctaatcca tcagcaaatg ctgtcttttc caccttcaaa
74041
       gtagatcccc agtetgatca tttctcacta cctccccttt cgctgcctgg tgcctggcaa
74101
       tggcctccta attggtcttc cctgtttcaa ctcttggtcc ccctctagac tgttcccac
74161
       acaacagcca acatggttct tttagaactt caaccaatgt aaattatact tcaagaaagc
74221
       tttaaaaaaat tcaatcagat cacatctgct atgaaccttc caatggttct cctcccgcag
74281
       tgtgCcaaat aaaatggaaa tgcccttatc cttgcttaac agaagtctac aacacagcct
74341
       caccagcatg cetecaacte acateetgea getttaacet cacteeacRe cageeceeag
74401
       tctccttgcc gttacttgaa agtgccagga gagctcctgc caaagggcct ttgcacatgc
74461
       tgttccctct ctctgcaata ctcttccccg tgtgatcata cggctcatgc tcccactccc
74521
       ttcgggtctc agcttgaatg tcacctcctc cctatgacct tccctaacct ttcgtgtaaa
74581
       attotacctc toccttcctc agtotettgc ttctcctqct ttgttctqqa qaataccNaM
74641
       cagcaccacc tgatttgtaa ctattccctt gagcacattc tatctcagcc acgggaatgg
       aagcttcatg caggcgggga catcatctgt tcagttcatg ctgtagccca gcaattctga
74701
74761
       atgattagat tgaaattgga tccaaaaata tcacaaatga gataacgtaa cttgttgata
74821
       agtgtgtgaa gagtatgaag agatgatcaa gctcacaagt ttccaagtgc taacatctat
74881
       aaaactccat tgtcacccat caaatcagca aagattaaaa accacaatag aatgtgataa
74941
       aatagtgCtc tcagatactt cctggagaag tatagatggg cagaattggg tgatctggta
       tcaatgatca ttctttcata ccaatacacc atgggatttt gcgatcagaa ggtaaagaag
75001
75061
       acacagaagg aaaagaaggt gaagattaaa ccagcaaaaa cccataataa gtaggacttc
75121
       ttcctattca ttagtaagaa agagttgggt gtccccatgg gaaaatgcta atttagtgtc
75181
       ctgaaccact gtaccctcca attcctgctt cccccacaac agtggcccca cactgagtcc
75241
       tacaacgagg ataatgatcc tcaaccccca attgcacaga cagggctaag tcagagacag
75301
       tgatgccaac cttgctgatg tctctaaaac actcaactac tgggggctaa ccctaagMaa
75361
       aattattgac tccgattcct aagttaattt cctataaggt ggaagaagca acaagtgtca
75421
       cttctcttct gggctctatg acaccaaata gtggagccga agagacttgc tgatgttttg
75481
       aaacccaagg ccaaataatg ctctctaaac ccttagaggt gtgactagga tattcacaga
75541
       agccacgcaa aagacagcag ccttcaatga agaaacaaag aaacaaaaa catggttcct
75601
       tttataaata tttatcgatt atctaaggct aggttaattg ttgataacta tcaattatct
75661
       gagcaagata cgcagaaaca cttcaggtgc ttgaactgca gcatcctggg ctccaaccca
75721
       aacttactgg agaagaagct ttagatacca ggaatctgca ttttaaccaa ctcctcaggg
75781
       aaactgcccc agagggggtc taggctaacc atgcgcaact tccacccatt ctcctgggaa
75841
       gtgattgtga atctcctcca aacccctctt acacttcctg attaagttgg tgccccctac
75901
       tgaatgtcag cctcactgaa tcttaacgag gaatcgccag actggggggg gNattgtgca
75961
       gcatgtctgg ggaacacttc actacttcac taaaccctgc tgcacacatg ctgaacaccg
76021
       ttccaaaggc tacaqqaact qaqcaccqca ttqqaatctq qccctqqaqq qtqcccaqca
76081
       tggcgaccct gaggggtRca ggaacccagt gagaaggaga aacagaaggt acagtccagc
```

```
tcgagaccac gcacataaag aaatctgtag gcagggtctc tattattgtg ccatattaaa
76141
76201
       tatcttgata ttttaaagca atattatttt tctgattata aaagtactca ttgtagaaat
76261
       tttaattgtg ccatcatcct gcagaaaaat gaaagtacaa aaaacqaaaa agcagctata
76321
       cacggccaca aagtcacagg gctcatcggg atgtgctaac caggctggaa actgatcaaa
76381
       gctgatttat tgagaaaaaa taggcagcat atcaaagact tacatcagct tcatagtaga
76441
       cagactttgg gggcggggga actctgtctc ttttgagtat attctcaaaa ggataaactt
       tcaccttcct gtgaagcaca gttactataa atcagatttg caaactgtga gaaatgctta
76501
76561
       caactcaatg agtcttttgt cagccagtgg gggctccatc gtgaaatcca cccttcgcca
       tagcgatggg ataaatcatc accagccccg agacatcgcc taatcccttc ctcgcaaggc
76621
76681
       agattcgggc gctttctgca tctgcttcgt gttattgaaa agagctcggc tcatctqctq
76741
       ggctctcagg cttcacagtg acctcgcaca gaacgctgct acttctgaaa ctgttttaga
76801
       ctcttccgtc tatgaaacag acacagagtt taagtttagc gtcttttatg gtcagaaata
       tttagcgtta cttccagagc ggcagccgtg gaacaatgtg ggaaagaagt gcttcagttc
76861
76921
       acttettggg aagtactgac cetgggteaa tttaattttt teegtaagat tteecettet
76981
       tacttttctc cttccactgc tatatgtaac agtatctccc cttccactgc tatatgtaac
77041
       agtatetece ettecactge tatatgeace agtatgetag tatacaacat tatagattaa
77101
       taatatgcta tattgtttaa aaatattaat gttatataat taacatggtg tgcatattat
       tatattgaca atacgtaatg tgatgtgata ataagtctca ctgagtgcca ggcaccgctt
77161
77221
       tgaatgctct aaactcatta gctaatttat tcctcgtgat tctatggggt agatgcacta
       tttcattccc attttacagc tgaggaaact gaggcagcta gtaacaggtg gagccaagct
77281
77341
       tcacactgag atcatctggc cccagcacac tcataaaaat qaqcaaaaqt ataaaaqcca
77401
       aagggaaaag gaagccaagg ggtgaaaatc ctaattacaa acaaatcctg ggtaagctgg
       gtttttagtc cttccccaca tgtgaacagc aactagaaac ctgaacagtg actttgtttc
77461
77521
       ccctgtcatc cattgttggt gcctgatcct cacacaaaat cttacqqaqc aqtatctaqt
77581
       gattagctta gctgaattga gcctggacac ccttcatgag ctggaggaca gaggacgtgt
77641
       cgatggaggg tccaacttca ggcatctgta ctcgcctgct acaggtgagt ggacctatga
77701
       acceccagee teateaagea ecegagggte acetgeetge tteacetgga agagacagea
77761
       aggtgtgatc ccaggaagat cctctgccag gaggcttaca ggcagaagca gcggctgctg
77821
       aacatagatg ctgtcRgcag gacacagggg tgataggggg tgagccagtg gagcaggtga
       aggtgcagac tacaggcagc ccccctgaga tcctgcccag accccagcag cagctcccct
77881
77941
       gteectetet ageagetteg etgtgeeega agtgtttgag aacaggtgae ceatgeeetg
78001
       agtggcagat gctgtgtctt tttgatccct tctctccctc cccccccacc cccaqtqqqq
78061
       tacatggaag gtttgctaaa tgtttgttga atgaataaac gagcccaagt cagaagcagt
78121
       ctccaaatca ttcctcatcg caaaagggtg cggtggaaaa actcacaaag ccaaggcagg
78181
       aggacacact caacttggaa acggcccgtg cccagctttg gaacaggcac agcctgagct
78241
       tcaaggaagt cacttgacca gcagtagctc ccacctttcc ttgcagctag aacaqcatca
78301
       gaccaagtga tctctaatgt gatgatttgc taaagtacaa tgagttttac aactagaaag
78361
       taccttcctc tcaagactga cttcactatg agccacctaa tttttcctct ctcttcttt
       ggtatttttg ttgcaaatag tacacacaMa acaggatata taatctattt gtgcaattta
78421
78481
       aagaataaga agcaaacacc tttgcaKgta ctccctagtc cacaacagtc agccccaqqa
78541
       cctcagaagc cccttatgcc tttcccctaa aactctcccc tccctgacaa ggtaattcca
78601
       78661
       gaataatatg ctttttaatg ttgcctcttt ttaatcttta tttgtggaat catattgtat
78721
       gtaatctgtg actttttct actcacatat gagaaccatc cacactgata catggctaca
78781
       gatagacact tggagtttat ttttcactgc tgtatagtac tccattggtg gagtacaata
78841
       ggtttatgta tccacttttc tgtagatgga cacttgggtt gttctgtttt tgctcataca
       tacctcctgg tgctcaggta caagggaata cagacccagg gtgagactgc tggatcacag
78901
78961
       gctaggcaca tcttcagctt tactaggtaa caccaagcca atacaaaagt gcttgtacaa
79021
       actcatgctc ctgccagcat ggaggaccca ctgtgccaca taaaaacatc actgttatta
79081
       actigittia titigicatatg attattitti cccttatccc caaccactic tcaaaqcaac
79141
       tagccagcat gtgccacaca ggcaagcacc cactccaatg tgatctatat ggttaggtat
79201
       gtatgtaccc tggaaaaccc tgtgatgttg cttgaggagt atataacttt tttatgtatg
79261
       taagtagcat gtgctacaaa gcgcgttctg ttttctgtat ttttcactcc actcagtgtt
79321
       ttgtaaaaca tgctcatgtt gctccatagg tatcagagac aggatgatgt tttatcttta
79381
       agatgggtac gccaccctca ttttatagat cacagtgata gctcacaatt gtttagtact
79441
       cagtggggtc taaatgtact aactcgttta atctcccacg aaccctgcaa aacagatqct
79501
       teegttteat ataaaatgag accaaggeac aaagaaacta aggaacttgt acaaaateac
79561
       caagttagta aacatcagag caggatttga attgagccag aatgtgttct tatccacgac
79621
       atgaaactgg ataagaatgc aaagctcaga gaattttcat gactagcatc tctgggattc
79681
       acagetggeg accaeggage agaactaata tacagatggt teceetetea gtecagteet
79741
       cattccatcg gctccaaaat gtgtattatt ctatatgatt agctggtgaa caacaaagqc
79801
       aattagttag tootottoag caaatgttag taaatgaaaa tattatagag acagaactot
79861
       ttttaggaaa tgcaatcatg tgaatttaaa aatqctttat cagaaataga attaatgaca
79921
       aaaatattta taggatccta agaaaatgga tttgctattt tttttgtcgg ctgatgataa
```

```
79981
        tcatctgggt gcatctttgg ttgtgacagc tccacccctt cagagagttg Katcttcata
80041
        cacacctaac atgctaagag tagatgtgca tgatatggta gttagtataa tttctgtaat
80101
        aaaaaaagta cttggtcatg cctgtaatcc cagcattttg ggaggctgag gtgggaggat
80161
        tgcttgagcc cagagtttga gaccagcctg ggcaagatag tgagaccttg tctctacaaa
80221
        aaaaataaaa attagctggg tgtagcggtg cacacctgta gtcccagcta ctcaggaggt
80281
        tgaggcagga agatcgcttg agcctgggag gcagaggctg cagtgagcca taatcatacc
80341
        actgcactcc agcctgggca acagagcaag actatgtctt aaaaaaaata aataaaaata
80401
        aataataaat aaaaaatttt taaaaaaggt acctggaacg qcctqcaaag aaagggaaat
80461
        caaattatgc ttcaagacag tcactattat cactgacaga gaagcagcta aaataaacag
80521
        cctgctcatt ttgtttgtaa atgaattgcc acaattcttg cactatttaa atcaagaata
80581
        ttttatattc catagttttc aaccacccct ccttttttta ttgtttccag ctccttaaac
80641
        atataaaagg ataaaagcca tttgttctgg cagaaaagag tcatcataaa ttttgcagag
80701
        tgaatttctc taagatgaaa ggaatgttcc tctcctccag gacagcctac ggacaggact
80761
        gtgatgacac agagtettea egggaateac acetgeagtg ttaageeact tetgtggaaa
80821
        actcaagtcc ttctcagata acaaaaacat tttagtagca atgaaccaaa aacaaaatct
80881
        tccactatat atgttaatac atcaaaagga accattcatg tgccatttat aagaacttcc
80941
        ttccggccag gtgcggtggc tcacgcctgt aatcccagca ctttgggagg ccaaggcagg
81001
        tggatcacga ggtcaggaga ttgagaccat cctggctaac acggtgaaac cccgtctcta
81061
        ctaaaaaaaa aaaaaaaat gcaaaaaatt agccaggcgt ggtggcaggt gcctgtagtc
81121
        ccagctactc aggaggctga ggcaggagaa tggcgggaac ccaggaggca gaggttgcag
81181
        caagccaaga tcgcgccact gcactccagc ctgggcaaca aagcgagact ccatcaaaaa
81241
        aaaaaaaaaa aaaaaagaac ttccttccca gaaatcatag cagcgttcct cagcccaaag
81301
        ccagaagaaa cttctcgcac atgaaatttt acttcaaaaa ctcccatatc aggcatttta
81361
        atgaatcagt ggaagaaaat tatcctccca actttqttqt caagaacccc aatttcatat
81421
        gcagaaaaaa gaattacaaa aataattatt cgaattctaa ttggtgggat tttgataggt
        ttataaagga aataaatatc tttaacacaa ttctacctcg cagccaacat cagctattag
81481
81541
        caaccacact tottattgcc agttcatctc tocaaacaca cagaagccat gtgagttgaa
81601
        atttattttt taaaaactct cagttatgat ttctcaaaat tatatttcat atattgacat
81661
        caaccaatat gatgatgata ttatatattg acatYaacca atacgatcaa ccaatatgat
81721
        gataattgta gggaaaagaa agagagatct gactgttact gtqtctatgt agaaaggaaa
81781
        gacataaqag actccatttt qaaaaaqacc tqtactttaa acaattqctt tqctqaqatq
81841
       ttgttaattt gtagetttge eccaaceact ttgeectage caetttgaec caacetggag
81901
        ctcacaaaaa catgtgttgt ataaaatcaa tgtgtaaggg atctagggct gtgcaggacg
81961
        tgccttgtta acatgtttac aagcagtata cttggtaaaa gtcatcgcca ttctctagcc
82021
        tcaataaacc aggggcacaa tgcactgcgg aaagccgcag ggacctctgc ccttgaaagc
82081
        ggggtattgt ccaaggtttc tcccatgtga tagtctgaaa tatggcctcg tgggatgaga
82141
        aagacctgac tgtcccccag cccgacaccc gtaaagggtc tgtgctgagg tggattagta
82201
        aaagaggaaa gcctcttgca gttgagatag aggaaggcca ctgtctcctg tctgcccctg
        ggaactgaat gtctcagtat aaaacccaat tgtacatttg ttcaattctg agatgagaga
82261
82321
        aaaaccgccc tatggtggaa ggtgagacat gtttacaqca atgctqcttt gttattcttt
82381
        actccgctga gatgtttggg tggagagaaa catacatctg gcctatgtgc acatccaggc
82441
        ataqtacctt cccttqaact taattatqac ataqattctt ttqctcacat qttttttqct
82501
        gaccttctcc ttattatcac cctgctctcc tactacattc ctttttgcta aaataatgaa
82561
        aataataatc aattaaaact gagggaactc agaggccggt gccggtgcag gtccttggta
82621
        tgctgagcgc cggtcccctq agcccactgt tgtttctcta tactttgtct ctgtgtctta
82681
        tttcttttct cagtctctcg tcccacctga ctagaaatac ccacagttgt ggaggggaag
82741
        gtcacccctt cagataataa gataaatcag agccRaaaac atagttcatt cctgRaatca
82801
        aatatagaac gtttctacca acacacattt tcaaagatgg tgttttcagg tttgtatggg
82861
        attgtttcac ctttatgaat tagcttttta aaacctgtaa tactttcttg ctgacttcat
82921
        cattlccttc tggttgcctg gaggggtggt gtggaatgct aataaaatga attlcagttg
82981
        ccgtccctca caatctqaac tataqaaqat atttattgtc tcaacttccc tatgaqcttt
83041
        tctttgcatc atgcagcttc atggtcagca gacactaaaa attaaagaaa gtctttctcc
83101
        cactttactt gtgtagcaca gacacactga tcaaatatgt tcccagcact tccgaagaaa
83161
        ccttatcaca tccacaagag atttcctact tgcacttttt ttgataaaca caaccatcat
83221
        agcccaacaa aacatcacac agaaatcaaa ttatagtgtc cccataagca tctgctcctc
83281
        tatggccttg ggcaaaattt agaatcctcg acatccctag agttaccaca atctctgaaa
83341
        gtgaaggagc acccacaag ctcaaggaat gcattgaaac tcttattact tccaattcca
83401
        ttttcaaaaa aaqtaaatgt qtqtgtatgt qaqctqcaca tqqtccagaa tgcctcacca
83461
        aatgtattgt tttaaaatgt gtgtacgtcc atgtgtaatt gtatgtgtgg gattttgaaa
83521
        ggctttttat attttattca aaaaggtaca cttttcaata tcacaaactt tgctttcaat
83581
        tataagccct tcccattttc aattaatgtt ttaggcaagg aatatacatt agtaaaacca
83641
        accacaccac ttagggaaaa tgaattagta tggggaaagt gaagaactgg ccatgcagtc
83701
        aattactttq qccaqcataq atataqttqa actaaccaqc acaqqtqtag acaqcctqtt
83761
        tggataaggt agcttaagcc ccaatttttt ctgcagtctt tatttttgtc aaatatatga
```

```
aaactaccat ctcatttcct ccctgtagct attacccaca tgtatgtgta gtgtcaaaat
83821
83881
       aaatggccag agtcctctca gggacctccc ttggcacaag tcgcacttcc tcaccctctc
83941
       acctccagag cctcaggaag tgcaggtcag aaagcagcca gggcaggtgt gaggtgatgg
84001
       agcgctgagt gtcggcgagc ccagataaaa caacgttcca acatcggaaa tccaatcatt
84061
       cacctacttg tctcctgctc gctaacccca ggcaagtata aaggagatgg aattataaca
84121
       ggagttagaa gaatttggat gtgatttcat atattaactc agcaaaattt tttctgaaaa
84181
       ggtccagaca gtaaatattt tcagctggca ggccatatgg tctttgtcga acctactcaa
84241
       ctgtgccatt atggagtgaa ggcagccaca gatgatatag aaatgaatgc atggggctgt
      gttccaataa agctttcttt atggacactg aaatgtaaat ttcatgcaat ttacatgtgt
84301
84361
       tacgaaatat gcttcttttg atttttcaac catttaaaaa agtaaaaacc attttcttag
84421
       ctcctgggct gtgttgactg acccctaatt aactgatatg tgggctgcta tccatgaaaa
84481
       cctaggcaca gaggaaggca gagctggctt cccagccaag acgggactta ccttgatatg
       agetgetggg teegggacag tetgaateat gteetteagt aagecageee atetaceage
84541
84601
       tgttcagaac Ntgacggcta gaagacaaaa ggaacaacat acataataat aaacaaYtgc
84661
       atttctgtgt tttatgttct agcaggacag gaMacaattc accaatggca aaagaatcat
84721
       agetttacat taaacatgtt tgeetaaagg cateetetag gtaegtgtgg tecatgaggt
84781
       gactagataa ctcacttccc ttccattggg aaaatcactt acaatgagcc caagagaacc
84841
       ctagtccgac aggacagaag aatctagctc aagctaaccc acatcacatg cagcatccac
84901
       acatecttee acgtgggeag catetaatga gggateeatt aaaggaagae gtgggaetaa
84961
      aacagggcat acttctctat catactgaga aaacaggact ttgaaatccc accaaaactN
85021
       atgcgatctg cacatccttt tcagcttYgt tattaagttc ttagtaaaca gcacagctac
85081
       cattcattga gtacttcagY gccagttcct tgagcgctaa gggctccaca cacattttct
85141
       catttcattc caaccacgac tctgagagct gtcattccca ttgtccagct gtggacgtca
85201
       agactcataa aggttactga tttgtccagg atcacctggt taataagcga cagaaccaaa
85261
       cttcaaatca gattaggcta tctgactcca gagcccaaaa aaaatttggt ttgacttaat
85321
       tagcMggtat caacccacat tttqaaqqqa cattttaaaa caccqcttaa ataaattaaa
85381
       tttaaagatg cctataatcc aggaattttc cagaaataaa tacttcatcc aatatattcc
85441
       tttattcaaa tYataaagca gcatgttctg accactgtct gtgccctccc cttccaccga
85501
       gccagtctcc aacctccctt tgctgtcaca ggccccaggg ctgacctcta cagatgggct
      cagcagggtg ccttgcctcc tggccacctg tcagggttgg ttgacgtggc cccctctgga
85561
85621
      gagcagggt gagaggagag gggtatetet teccetcace tteccaccac egacacetge
85681
       cgcccaacct ccctgggcgc ttggttatgg ttctgactgc agctggattc tagggggacc
85741
       tctcccgtca tggggcccct ccttccaggc tccagcctcc agtacctggt ccccagccag
85801
       tctctggtgc tctgcagatc tcagccaagc catcagttct tttttggcac taaaaatgcc
85861
       ttttttaRtt tacattttta gaagccatca cttgcttttt atcacctgta gttttttgtt
85921
       tgttttctcc tttacRatgg ctctttgcag taacaaatgc aaaataaaaa taaacaatat
85981
       gattacagaW cttgagacat tttcgaaggc tgtctttcaa atttgctact gagcgcatta
86041
       ctgtagtgac aagtgaaagc attcacagga gtcctcccca cattcacatc tgtcctttct
86101
       gacctctcac ggtacaggca cacccattcc aacccaatYg cctctcatga agagcatcta
86161
       cctccagate tgcatgctcc acatetgtct tcagtctccc tggaggcctc ccaagattgg
86221
       cggagcttgg ctcaccaaga agatgacatg ctgggaacct taggcatttt ttttctataa
86281
       ccaaatttct aggtcttgga aaatatgtac ttccccccac ccccaccccc aggcctaaag
86341
       teeetetggg ggatgagagt taetgaaagt acagagggag tgaaqtgeag teetgaaatt
86401
       gaaccgggaa gcagatgaag gtgaccaggc tcctggtgct ctcgtgggag aagaggctgg
86461
       gagaggatgg ggcctggctg aaggtttctg ggagcaYagg aatcctcaac tccccttatc
86521
       ctaagagcag Caggtgccac aggaaaacac cactctgctc ctggggtcat tcagcccgga
86581
       aggggagcgt ctgcaagcca tcctcacaaa gggagggcgt cccactgcac aaccctgctc
86641
       tggggagcac atggctattt ccgtatgtct ggacattctc tctggactag ttcactccgc
86701
       acagtteete eetgeetgea cacacatget gaegeteaca ceagggaetg aagetegtee
86761
       ccctcccctc aaacccaggc tgacctgtgg ctgcctctga cctgcagaac acagcagagg
86821
       gaaggtttca ggagtcccag gctcaggcct ttatggaagt gggagcttcc ccttcctgcc
86881
       86941
       agtggggcag ccagcaccaa cgccaggccc gggagggagt tgtcctggac agtccagaga
87001
       actgactctc agatgaccac ggcccctgcc gacatcaggg aggcagcttc cagctgagtc
87061
       cagtcagccc acagaatcat gaccaataat aaatgggttg ttgtactaag ctgctaggat
87121
       ttggggtagt ttattacaca cacaggtcat tgaaacaccc tgtaagtgct ctagaggcac
87181
       ggagaagata gagggtaaat agcttgtttc actgtcacta tggataagta caaagRtggt
87241
       tccaacaYtc aactcctcct gtacccatgc tttttgccac ataactttgt gattcttccc
87301
       attaaagagg tagaattact tcccaaccct tatttttggg cggcctatat gatctgcttc
87361
       agccaacagg cagtagcaga aagacaagta tgacagatcc tagctgaagc ctcaggaggc
87421
       aggacatgtt cccctttgct tttctqtaac tttccaccaq catqqgaaca tqqccaqatq
87481
       catgcgggag gatgagaggt acctgaggca gagtcaccca ccccaatcac ccSaccaaga
       ctacgtttga tcatcccata gacaaccaaa accccagaca tgggagggag gcaaccagac
87541
87601
       cagccgctag ccaagtccaa ccagaatggc caacccacag gctcatggct gaataagtgc
```

```
87661
       ttactgcttg aagccactga aatttgggga atttgttaca cagcattttt gtgacaatag
87721
       attactgaca tacactttgc aatgtacaat cagattaccg agatcttcgt taaaattttt
87781
       ctagccagtg ataaaaggag actcaaacag ggcatttcaa aggaagccac ttcatcccaa
87841
       cacagagaca taatatttcc actcacctac gagacatgat ctcaaaccct aatcctgccc
87901
       tcaaaatggg tYtggaaact gaaggataac caagaaacct ccaccagaag cctccatggg
87961
       attcccagag cccttcccag gagcaactga attctcactt cacatgatgc cctgccagcc
88021
       tcccctggat tccaaaaatc aaaacatcct tggatatcca agaccgcagc aacatcatag
88081
       aagttacagc agccactcgg tctgtaaMca accaagacat aaactaaatg agcaactgtt
88141
       tgagtctctt gtttcttatg gggaagtttt gagtactcag gttgcatcaa gtataaaatg
88201
       acagggaagg gaatagatag agattccaga tgcaacacag tcctgatcct tgagggatcq
88261
       agatgggaaa cagatctgtt tcatacagat atgaagcggt cagtcctgag agcaggcagt
       tagtggaggt gcccagtgag gcgtgtggat atacctagag gaaagagaga gctgattcat
88321
88381
       qcagagacaa qagqgtqcca ccaaggaqcc ttgatqaaca agaagcatga ggactggagg
88441
       aaagaggtg aaaggcatga agcagggaac ctaagtttct cccagctctg ccaMattaga
88501
       qaccaaqqqc qtatgaqctt ctcacaccqc caccaccaga qtgatcacac accaaaqqqa
88561
       ttcactcagc acgcagcgtg atggcactgc caccctccac accagctcag cgaaaaccca
88621
       acggacctaa agaccaggag aataaaagct caaccacct cccctgcctc ctcaacccac
88681
       acggatetet gactettttt ttttttttga gacggagtet etetetgttg eccaggetgg
88741
       agtgcagtgg tacgateteg geteactgea acctetgeet eeegggttea caccattete
88801
       ctgcctcagc ctcccaagta gctgggacta cagccgccca ccaccacgcc tggctaattt
88861
       tttgtatttt tagtagagac gggatttcac cgtgttagcc aggatggtat cgatctcctg
88921
       acctcttgat ccaccegcet eggeetecea aageaetggg attacaggeg tgagecacea
       cgcccggcta attittgta titttagtag agacggggtt tcaccgtgtc ggccagatgg
88981
89041
       tetegatete etgacetegt gatecaceca egttggeete ceaaagtget gggattacag
89101
       gcgtgagcca ccacacctgg ccctctctga ctctttttgc agccatttga gtgcctgttc
89161
       ttttttacca tttcagaggt attttatgga ttttttaaag agtacttcta atttactttt
89221
       gtgttcctaa tggtcatttc tcaaatatgt agtagttggt aaccaaacaa actaaaacca
       tactaaaaat ttttagtagt tggtgatagt ttcatgtcac tgtaggaacc tttttatttt
89281
89341
       ctattttacc tgcctttgaa cccttgcaga acttcactct atgttgattg aaaatcattt
89401
       ctttaatact tgtttcttgc aataaactca tttgctaagg tatatacttc catatgattt
89461
       tgtgtttcat gacccagcta tattttatta ttgggtatct taaagaaaca aaaaaggcct
89521
       taacaataac agaattctac ttgtgtcact tctttgtttt tgttttcaaa atgccaatgt
89581
       cttactaaat agaaacaMac ttgatttgaa ttacgtaagc tctaaccaca taaaaaagat
89641
      ggactggtac ccaaggtaga agggaaaata agcattttgt aattatggag gcagtattgc
89701
       aaaatggtta agagaaggcc taaatatttg cagggctggt gcaagaaaat agatggaagt
89761
       ttgagacccc tcgaccctac ccctctctc ttctcaaacc caattgtgtt ctgcgggtta
89821
       ggggatgcat atagtcacgt ggacatcccg atccacatgg ccacactcca ttcagcaatg
89881
       ctccctgctc atctttcaga cccagggaaa cacacacaag atcttcccaa gaagatgaac
89941
       tccaggaaac aggctggtgc agcccaaaag atgctcagtc aagtttggaa aggcactctg
90001
       ggtgccccag cacctggggc atgtcctgga atggggatgg gttcagctgg ggagggcagg
90061
       aatggggcct agaaggcata ggcaggacgc tgggctgggg gcagtgctcg atatgagcac
90121
       agtgcagagc cagatgaggg atggaaatca gatctqccac ttactccttg gaaacctata
90181
       aatgatcact ttatcctcca agagccttag ttacacattt gcacaatgag gataWtatta
90241
       ctgtagtata ataagaactc catttgccct tgtctctcgt ttctggcatg gagctcctaa
90301
       aactctggga atttcccaag tgatgggagc atcttttgtt ctaagaaggc agcaggttgg
90361
       tgagtcccta gatagcttca ggatgggggc taattgcaag aaagagtgag tcttgattag
90421
       90481
       gagttgatcc ccagtggcca gtgatttaat caatcctgcc tatgtaacaa aatctccata
90541
       aaataccctg acggggttag gacagcttct gggctggtga gcatattggt atgaagagtg
90601
       tggtgcaacc caatgctaaa gggacagagg cggccaggcg cggtggctca cgcctgtaat
90661
       cccagcacct tgggaggccg aggagggtgg atcacgaggt caggagatcg agaccatcct
90721
       ggttaacacg gtgaaacccc atctctactg aaaatacaaa agattagccg ggcgtggtgg
90781
       tggacgcctg tagtcccagc tgctcaggag gctgaggcag gagaatggcg tgaacccggg
90841
       aggaggaggt tgcagtgagc cgagatcgtg ccactgcact ccagcctggg caacagagcg
90901
       agactccatc tcacaaaaaa aaaaaaaaaa aaaaaagggc agaggctcct gtacttggaa
90961
       tccttccaga ccttgccctg tgcacctctt catctggttg ttcattcata tgcttaataa
91021
       taaactgtaa tcataagagc atagcgtttt cctgagttct agcaagttgt tgcacctaaa
91081
       aggggggttg tgggaacccc caatqttqta qccatqtcaq acaqaqtqta ggtaacctqq
91141
       ggacccaata cttgtaactg gcatctgaag tgaggacggt gttggggagc tcagccctta
91201
       aacccatgtg ctaacttccg gtagtcagtg tcagaactga attgaactgt tggacaccca
91261
       gttggtatca gtgttgaatg actggtKggt actggcgaag acatgatgta tttggtgttg
91321
       ggaaacatga ataaaaaatt tgtaaaacct ccaaacgaYg ttcagcaatt cacaaaggtg
91381
       tcagtgcaag agttggcctg tatctattct aactggtcag tatgcaagtt gaaccattgt
91441
       ttgattatct cctctgtcta caccatcagg cttttgtgag gattaaacta aattatgcct
```

```
91501
       cagaaagaaa actctctcaa ggctaggcac ataatcaaca ctaaacaagt ggtaatcatt
91561
       ataattaaga aagtaaaaat atttcaaatg gacgattttg atactgtata aaatgttgca
91621
       actitttttt tittgagacg gagtettget etgtegeeca ggetggageg eagtggegea
91681
       atcttggctc actgcaacct ccacctcccg ggttccactg attctcctgc ctcagcctcc
91741
       cgagcagctg ggattacagg cacgtgctac catggctggc taattaaaat gttgcaactt
91801
      tttaggaaaa ataatcctca ataaataaat tgctaatttt cataagagcc ctttgtcaac
91861
       tgactaaaaa catccttaat ttagaaatgt attttttagt tttaagataa ctagtcatta
91921
       agtgaaaaca ttgtaggcaa aatggctcta agcaatttag tattcatagg aatgaatcca
91981
       ttccttgaaa gcattggtcg ctgggtgcac ttgtcctqqa tqaqcaqata ttaqqcaaat
       cagtetttca ccagcaaacc ctgccataag aactgcacag gcctgattcc tgccaagcac
92041
92101
       accaggcccc tgactggggc agaggcctcc cttatggggc aggaagaagg aggcagggag
92161
       aaacataggg cccatgattt aaggaggctc tccctctcag gctcatgcaa gtgcaggatc
92221
       agtacctaaa ggggagcacc gcccgaaatc ctgtgcccca gtcaccttaa cccagtccag
92281
       ccctggctcc tgcactccaa agctaagcag ggaataccag cgggagacag aagacagcat
92341
       gagaaactga atgcatctcc cacatttatc taaaaataag aaaMtggact tcttcagtag
92401
      gaaatggctY atctttccaa atgaataaaa atacttatag ctatgggttg aattgtatca
92461
       attetetece ceagtteatg cactggagta ctaaceeeeg gteeeteggg atgtgatgat
92521
       agagaggtag ggcctttaca gaggcaatca aattaaagtg aggtcattag tgacctaacc
92581
       caatgtgact gatccactta caaaaaaagg gacaagattt aaagacagac ctgtatagaa
92641
       ggacgatggt gtgaagacac agggaaaaga caaaagaggc ctggaacaga ttttcctcaa
92701
       agccctcaga gggaaccact tgggctgaca ccttgatctt ggacatccag cctccggaac
92761
       ggtgagatga tgaatttctg ttgttttaag ctacccagtt catggcagtt tgttacaaca
92821
       gcactgggaa aggaaatcac ctctatggag ggacttacga aagtcactta actaatgcag
92881
       attagaggcc tcacagtcaR ggcatggcct caagagccac atccatttta attgtaccat
92941
       ttctcactga actctgaccc tggtcaaggc atgtctcagg ctccatggac tactattcct
       tocactgatc gaccotggct toattotggc aagggaggga ctcatacatt ctgcggcctg
93001
93061
       catgagtgtc atgtgagcac ccccataacc ttgatccctg cggtgcttct ccaggggagc
93121
       cctagcattc cagctggcct catgggcatg ccttagagag agggagctga ccctctcctt
93181
       cttcaactgg attttattt tatttttgg catgttttgt gaatacaaag attcactgcc
93241
       tgggtgtgcc ccttgaaaga aggtttcaat tgcattcagg tgaaataacc acaaaatgac
       tgtaagccaa atgtagtagt atgatagaaa aatggaaata tcgtaaaagc accagtctgt
93301
93361
       agacacctag cttctggttc ctctggaaaa gggagaagag agtagacagt gatggagaaa
93421
       agaggggctg tgaagactat agaactgaga aggcagtaat tctaaaatct ccacactgta
93481
       gggccaggaa caggcagtgc tgggcaatgg ggcatcttat ctcagggaag tcaagggtgt
93541
       catgtagaac caacataatt catccaagta cagcaaagaa tccagaaatg gtctgtggag
93601
      gtttggaacc atgaaaatca aataggaaag atacaaaata tttacatatc cacatttttt
93661
      aaaaggggtc Ctgactaggc agcataagat tatttgggtt ctgttcattt tacctttagt
93721
      tgcccttggt tctgccatct tttttctctg tgagtcattt gtcttgcttt tggtcaacac
       ggctttcctc gggtctccaa agatcctgga ataacctgaa tataagttga agaatattaa
93781
93841
       accttatttt gttttcaaat attaatacca gggatcaact gtacatgtac cgacaaaacc
93901
      tatttottaa acattatttt aaaatatoot aaaaggggaa agaacttaaa toottoocot
      taaaaaaaaga ggggacaaca ttcctctcct ctgagggaag cccagcatta tgaagcaaaa
93961
94021
      atcgggagtg aaagcaaggc caagcctaac tggcatgctg aagcacacag atgcttttgc
94081
       acagaaaata ttttgaaaat gttttctttt ccttatagcc cccagctttg gtaataatgg
94141
       cttccctaga tcattctgtt agcactttct gctgctcaga acagggtagt gggatttaga
94201
       atttagaaaa catcccgaga actgtaatta agcaattgtc atagtcccag aaaagaaaca
94261
       accettttac tttgtaaatg ctaggaggat ctgtattttt taaaatetta gaacactaac
94321
       tagCtaaaaa gatagaaaga aaaaaatctt tcttacaata tgcctgtagc acggctccaa
94381
       94441
       ttcttacaca actttccaag taaaatattc aatccccaaa taatatattt agtaRaatcc
94501
       ttacaacatg aRaaattgta aatggcatct gtttccgttg aaaatatttt taaattagaa
       aacatcttaa gcactgcatc aaatcaatat ttgtaatggg cagaattatt tctaaatggt
94561
94621
       tocacaggoo agttgacatt cocactotac ttaggaagoo cocagocaac tocacotgaa
94681
       gtcttcgaaa cctatgcata gaggcaaatt gcccagatgt cacagaaaag catttgttgt
       gatacagaaa ataaaacaca ttactggggg aaaaaaatca gggtactaaa ccacgtacat
94741
94801
       aatatCatCC caatattgCa caaagaaaaa aaaataagtg gatgaaataa aagagggaag
94861
       gcaggaaagg aaagaggatg acctgagaaa agttatcaaa atggttaaca gtcatggtct
94921
       ttggctttcc agtgtgaaat aggagttctt attttcctct ttttaaaata tttttaaaat
94981
       tatttatttt ttaaaccaac taataaaagt aatatatt taccgtgtac aacattatgt
95041
       tttgaaatat atatatat atatatat atatatat atatatat atatatat
95101
       atatacatgt tggaatggct aaagtaagct aattaacatc tgcattacct cacatactta
95161
       tttttttgtg gtgcgaacac ttgaaatcta ctcttagtga ttttcaagaa tataatgcat
       tgttattaac tacagtcaat agatcatagg tctattcaag ttcaagtcac agatctcttg
95221
95281
       aaattactcc tcctgtctaa ctgaaatttt gtgtcctttg accaacatct ccccagttcc
```

```
95341
       cctacgctca acatcactaa tcatcaagga aatgcaaatc gaaatcatga tgagtgtcat
95401
       ctcacacctg ttagaatggc cattatcaaa aagacaagtg ttggtgggga tgtggaaaaa
95461
       gggaactctt gcccaccgtt ggtgggaacg tagatcagta cagtcattat ggaaaacagg
95521
       atggaggttc ctcaaaaaca caaagatcaa ttacaaaaca aaatactata tgttttacaa
95581
      atgtactaca actcaatttg gtatgtatta caaatcaaaa tactacatga ttgctggcaa
95641
      tcccactctq gagatagatc caaagaaaat ggaaaatgaa atcggtatgt caaagaggta
95701
       ccagccctcc caaattcatt acagcattat tcacaacaga caaggtatgg catcaaccta
95761
       agtgtccatc aacataaacg cccataaaga aaagtggtgc acatacacaa tgqaacacta
95821
       ttcagcattt agaagagaaa tcctgtcatt tgtgacaaca tgaacaaacc tggagaactt
95881
      tatgctaaat gaaataagcc aggcacagaa agacacatac tgcatcctct cacttataca
95941
      tagcatctga aaagttgaac tectatttee ttetttatag ttttgtgtat tttecaaatt
96001
       ttctaaacca aaaatattca tctttataat caggggagaa aactaaggaa taatcatttt
96061
       ataatcctaa acatgctttt aaagcattta tttcactgta atgtattctt ttcccatcca
96121
       gtcatacatg ggcccaagga gctggccttc cctgctcggc agcctgatgt tcaaggggat
96181
       gggggagggg gacggtgcag tagatcatgc tttgcaaagc tgtgcaaatc ttttttttt
       ttttttgaga cggagtctcg ctctgtcgcc caggctggag tgcagtggca cgatcttggc
96241
96301
      teactgeaac etecgeetee caggiteaca ceatteteet geeteageet eeegagtage
96361
       tgggattaca ggcgcccgcc accacacccg gctaattttt gtattttagt agagacgggg
96421
       tttcatcgtg ttagccagga cggtctcaat ctcctgacct cgtgatccac ccgcctcggc
96481
       caaagtgctg ggattacagg cgtgagccac ggcgcccggc caaagctgtg caaatcttga
96541
      gttaataaac atgttcccca aatccaaaag ccaatattga ctattgcttg gttaactgtt
96601
      ttgcatggat aagtggttaa aggagtattt ggtttccaat ttctgcaaag ggaataaaag
96661
      ttttaaaagc gtgaactaag atttcctata ctatgctatt ctatagtagg tttttatgcc
       aaaacctcta ctaggctgaa aggataattt gatttatggt tgagacattg ttgggcctga
96721
96781
       tttaaagccc agagtcaagc ccagagagga ttctcttaaa tatgtgcaat gggtattttt
96841
      aaattagcat tatggcgtta ttaatatttc atttatcctg agagcattta cctgacaacg
96901
      taaattatgt gtaacacage tgagaageca caaaggatee aaaaagatgt cacgaagtee
96961
      acgaagagaa gctttgccag agaaaggcac actaccagcc gcgtgagctg gcctcatcaa
97021
       agcaaaaaag tcagaaaatt atgtaaacca gactcaagaa ctcaaaaata cagtcgtttg
97081
       agaacattgg taagagtgca aactgctcac cccagctcaa tcacccctgg tccagcaacg
97141
      gcagaaagcc aaggtcaagg agtcacatga cctgaagaga caccccccac caccaccac
97201
      accetecaag ceetgeeect ggeeagtggg acaaaceaea tgaceeetgg gatteagtat
97261
      tcagtcaggt tctgtgttct gtatggggag gtagaagaag gcaccagatc atcaggaaat
97321
       ctggactgga aatggccaaa gctgaacaca tctgagtacc tgaagggtaa gcttaaggtg
97381
       tcaaagcagc catggtgagg cagaaagaac cttgagcttg gggccccaag tttatgctga
97441
      cccactagca gccaacaaaa cctccctcag cctcagtttg ctcatctgaa aactgtgagt
97501
      aagaggctct gactccagag aggtggtgca agttcaatga gaaggggttg ctgatggtcc
97561
       agatggacag atgcaaagca ctgctttctg tttttgtctt tgttttgata caggattctc
97621
       totgtcatcc aggotggtgt gcagtggtgt caatagotca otgcagootg gaccotcoot
97681
       ggctcaagtg atcctcccac ctcagccacc caactagctc agactatagg aaaaagagtc
97741
       atgcaccacc atgcctggct aatttttaaa aaaaaaNttt tggagacatg agatctcact
      attitgtcca ggccaatctc gaactcctgg cctcaagcaa tcctcctctc tcagcctccc
97801
97861
       aaagtgcttg gattagaggg gtgagctacc atgcccagca aaggcattgt taaattcagg
97921
       aatgaatgac caccttgttc cccaaaacac tagacaagag aaccattctc tacgcacaga
97981
       tctccctggc caccacgtgt aagcagcagt gaatattcca taggtggaac tggctactgt
98041
       gaagaaagaa aactccagaa aagctaccct cactccaaga agtagcctgg accccacgtg
98101
       cgtgacagca gcctggggag aaggctccac tcccaccagc aatgccaagg acagagcagc
98161
       agcagccgtc catccccaca gttatggtga acacagccac agagcagcct gctttttcca
98221
       tgtatagcca cacacaggtg gcaatggcag cagacgtaac tggctgccct tcctccctta
98281
       tggaaggaaa cataattttg cttgggtgtt ctgcctgccc ccacatgacc caYggaggat
98341
       gaccagccc aacaccagtg taaatcctat cactgggcac catctcttct caccacqqat
98401
       tggtttaggg aagggcacat gatataattc tggtcagtct aacactcggg gaagcgagct
98461
       agaggactic taggaaaagt gttggctgat gaagaaaggc catagagtag tagtcctgtc
98521
      tgtgtggcac ttggaactgt gagagccatc
```

[0269] Following are cDNA sequences for *PSMB1* (SEQ ID NO: 5), *TBP* (SEQ ID NO: 6), *PDCD2* (SEQ ID NO: 7 and 8), *ELP3* (SEQ ID NO: 9), *CHDC1* (SEQ ID NO: 10), and *ERG* (SEQ ID NO: 11 and 12).

PSMB1 cDNA sequence (SEQ ID NO: 5)

NM 002793 Homo sapiens proteasome (prosome, macropain) subunit, beta type, 1 (PSMB1), mRNA

```
aaggcagcca tctcgccgtg agacagcaag tgtcgcgcag ccgtgcgatg ttgtcctcta cagccatgta ttcggctcct ggcagagact tggggatgga accgcacaga gccgcgggcc cttttgcagct gcgattttcg ccctacgttt tcaacggagg tactatactg gcaattgctg lal gagaagattt tgcaattgtt gcttctgata ctcgattgag tgaagggttt tcaattcata cagacaaaac agtcattgga tgcagcggtt soll tcatggaga ctgtcttacg ctgacaaaga ttattgaagc aagactaaag atgtataagc attcaataa taaggccatg actactggt acaattgctg actacagts actacagggg caattgctg actacagas actacagggg caattgctg acaacactgt atcaagac actacagggg caattgctg acaacactgt acaacacagggg caattgctgc acaccagggg cactcettacagg agcaaggggc tgtatacagc atgctacagc acctgcttga caaccaggt ggtttaaga acctgaagagac tcttaagac acctggt gagagagac atgtccgctg cactgggacact cgggtgaaag acctgctga acatgccgg ctggtgaaag fel atgtcttcat tctgcggct gagagagaag tgtacactgg ggacgcactc cggatctgca acctgat tagtgaccaa agagggcatc aggaggagaa ctgtttcctt aaggaaggac tgatctgca aggacgcactc cggatctgca acctgat tagtgaccaa agagggcatc aggaggagaa ctgtttcctt aaggaaggac tgatctgga agccttgga aggacgactc cggatctgca tagtgatctatca ccaatcagtt tagtgaccatga tgatctgtgt tagttttgtt tattaaaaga gaaacctgaa gt
```

TBP cDNA sequence (SEO ID NO: 6)

NM_003194 Homo sapiens TATA box binding protein (TBP), mRNA

```
1 ggttcgctgt ggcgggcgcc tgggccgccg gctgtttaac ttcgcttccg ctggcccata
  61 gtgatctttg cagtgaccca gcagcatcac tgtttcttgg cgtgtgaaga taacccaagg
 121 aattgaggaa gttgctgaga agagtgtgct ggagatgctc taggaaaaaa ttgaatagtg
 181 agacgagttc cagcgcaagg gtttctggtt tgccaagaag aaagtgaaca tcatggatca
 241 gaacaacage ctgccacett acgeteaggg ettggeetee ceteagggtg ceatgactee
 301 cggaatccct atctttagtc caatgatgcc ttatggcact ggactgaccc cacagcctat
 361 tcagaacacc aatagtetgt etattttgga agagcaacaa aggcagcagc agcaacaaca
 421 acagcagcag cagcagcagc agcagcagca gcagcagcag cagcagcagc agcagcagca
 481 gcagcagcag cagcagcagc agcagcagca gcaacaggca gtggcagctg cagccgttca
 541 gcagtcaacg tcccagcagg caacacaggg aacctcaggc caggcaccac agctcttcca
 601 ctcacagact ctcacaactg caccettgce gggcaccact ccactgtate cetececcat
 661 gactcccatg acccccatca ctcctgccac gccagcttcg gagagttctg ggattgtacc
721 gcagctgcaa aatattgtat ccacagtgaa tettqqttqt aaacttqacc taaaqaccat
781 tgcacttcgt gcccgaaacg ccgaatataa tcccaagcgg tttgctgcgg taatcatgag
841 gataagagag ccacgaacca cggcactgat tttcagttct gggaaaatgg tgtgcacagg
901 agccaagagt gaagaacagt ccagactggc agcaagaaaa tatgctagag ttgtacagaa
961 gttgggtttt ccagctaagt tcttggactt caagattcag aatatggtgg ggagctgtga
1021 tgtgaagttt cctataaggt tagaaggcct tgtgctcacc caccaacaat ttagtagtta
1081 tgagccagag ttatttcctg gtttaatcta cagaatgatc aaacccagaa ttgttctcct
1141 tatttttgtt tctggaaaag ttgtattaac aggtgctaaa gtcagagcag aaatttatga
1201 agcatttgaa aacatctacc ctattctaaa gggattcagg aagacgacgt aatggctctc
1261 atgtaccctt gcctccccca ccccttctt ttttttttt taaacaaatc agtttgtttt
1321 ggtaccttta aatggtggtg ttgtgagaag atggatgttg agttgcaggg tgtggcacca
1381 ggtgatgccc ttctgtaagt gcccaccgcg ggatgccggg aaggggcatt atttgtgcac
1441 tgagaacace gegeagegtg actgtgagtt geteataceg tgetgetate tgggeagege
1501 tgcccattta tttatatgta gattttaaac actgctgttg acaagttggt ttgagggaga
1561 aaactttaag tgttaaagcc acctctataa ttgattggac tttttaattt taatgttttt
1621 ccccatgaac cacagttttt atatttctac cagaaaagta aaaatctttt ttaaaagtgt
1681 tgtttttcta atttataact cctaggggtt atttctgtgc cagacacatt ccacctctcc
1741 agtattgcag gacagaatat atgtgttaat gaaaatgaat ggctgtacat attttttct
```

1801 ttcttcagag tactctgtac aataaatgca gtttataaaa gtgttaaaaa aaaaaaaaa 1861 aaaaaaa

PDCD2 cDNA sequence 1 (SEQ ID NO: 7)

NM 002598 Homo sapiens programmed cell death 2 (PDCD2), transcript variant 1, mRNA

```
1 tottgccttc cggcccggcg cccgatttcc gccttccgac ccagctgtgg gctgcgccc
  61 acgccagccc gcgccccgca tggctgccgc cggggccagg cctgtggagc tgggcttcgc
 121 cgagtcggcg ccggcgtggc gactgcgcag cgagcagttc cccagcaagg tgggcgggcg
 181 gccggcatgg ctgggcgcgg ccgggctgcc ggggccccag gccctggcct gcgagctgtg
 241 eggeegeecg etetectiee tgctgeaggt gtatgegeeg etgeetggee geeeggaege
 301 cttccaccgc tgcatcttcc tcttctgctg ccgcgagcag ccgtgctgtg ccggcctgcg
 361 agtttttagg aatcaactac ccaggaaaaa cgatttttac tcatatgagc caccttctga
 421 gaatceteec ceagaaacag gagaatcagt gtgtetecag ettaagtetg gtgeteatet
 481 ctgcagggtt tgtggctgtt taggccccaa aacgtgctcc agatqccaca aaqcatatta
 541 ctgcagcaag gagcatcaga ccctagactg gagattggga cataagcagg cttgtgcaca
 601 accaqatcat ctggaccata taattccaga ccacaacttc ctttttccag aatttgaaat
 661 tgtaatagaa acagaagatg agattatgcc tgaggttgtg gaaaaggaag attactcaga
 721 gattataggg agcatgggtg aagcacttga ggaagaactg gattccatgg caaaacatga
 781 atccagggaa gataaaattt ttcagaagtt taaaactcag atagcccttg aaccagaaca
 841 gattettaga tatggeagag gtattgeece catetggatt tetggtgaaa atatteetea
 901 agaaaaggat attccagatt gcccctgtgg tgccaagaga atattggaat tccaggtcat
 961 gcctcagctc ctaaactacc tgaaggctga cagactgggc aagagcattg actggggcat
1021 cctggctgtc ttcacctgtg ctgagagctg cagcttgggt actggctata cagaagaatt
1081 tgtgtggaag caggatgtaa cagatacacc gtaaaggcat cttaaagcct tgaaaaatgt 1141 taataatctt ttataccttg caattccatt tctgggattt tatcctaagg aaatacttat
1201 accaaaaata gaggtgcaga gatgttgaca gattgcttac acagtgtcta cttattagtg
1261 aaacaaaagt gtccagtgac agggaattaa ataaattttg gtacatccac a
```

PDCD2 cDNA sequence 2 (SEQ ID NO: 8)

NM 144781 Homo sapiens programmed cell death 2 (PDCD2), transcript variant 2, mRNA

```
1 tottgccttc cggcccggcg cccgatttcc gccttccgac ccagctgtgg gctgcgccc
  61 acgccagccc gcgccccgca tggctgccgc cggggccagg cctgtggagc tgggcttcgc
 121 cgagtcggcg ccggcgtggc gactgcgcag cgagcagttc cccagcaagg tgggcgggcg
 181 gccggcatgg ctgggcgcgg ccgggctgcc ggggccccag gccctggcct gcgagctgtg
 241 cggccgcccg ctctccttcc tgctgcaggt gtatgcgccg ctgcctggcc gcccggacgc
 301 cttccaccgc tgcatcttcc tcttctgctg ccgcgagcag ccgtgctgtg ccggcctgcg
 361 agtttttagg aatcaactac ccaggaaaaa cgatttttac tcatatqaqc caccttctqa
 421 gaatcctccc ccagaaacag gagaatcagt gtgtctccag cttaagtctg gtgctcatct
 481 ctgcagggtt tgtggctgtt taggccccaa aacgtgctcc agatgccaca aagcatatta
 541 ctgcagcaag gagcatcaga ccctagactg gagattggga cataagcagg cttgtgcaca
 601 accagatcat ctggaccata taattccaga ccacaacttc ctttttccag aatttgaaat
 661 tgtaatagaa acagaagatg agattatgcc tgaggttgtg gaaaaggaag attactcaga
 721 gattataggg agcatgggta agcagtttca ggacttcatt cattaagtgg ttaaacataa
 781 tacttggaag aaagggctcc atgtgcctag aagagaggta ctgagaggaa gactcacttt
 841 ggaggctgta gcatacaatt ttcagatatt gcctcaggta aaaatatact tcctggactt
 901 tgttttctga cacataagag gtgtgttctg ctccctgtaa agacaagggt gggtatccag
 961 atggtcccat gagtagggct gcacaagatg ctggaggctt ggtaagttcc tctgggtcgc
1021 agateggttt etegggtegg gatagtgtga gtgeetagea eagtgteggg eaegeagaag
1081 ggccccttaa aagtttctct ttcatctqqc caqttttaqa tacacaattt tqtcaqttta
1141 cttacagtgc atactcttgg gtagtacttg tgctgaccaa gtatcttaga ggcttatttt
1201 attatagtag ccaacattta tccagcactt accttatata aagggctgtt tgtgcatgag
1261 ctcattaaaa tcgtgacagc agaccaatga gtgagaaact gccccatttt gaaggtgagg
1321 aaattgaggt tetgggtata actttetttg gteacataat attaaatttt acaatttgag
1381 ccttgagcca tacacaaaac caccacaaaa ttagatttat agactcaaaa tgaaaacatc
```

```
1441 agcttactgg tttgtagttc ataccagtca tacattccaa aacatgttt gagtcttact 1501 ctgtgcctga ccttgtgctt gataacaggg atataatggg aagcaacact ccagtggtca 1561 gatgctcaca gtcttatgga ggagcccaaa taatatctgg ggaagttaaa gtccatataa 1621 tgactgataa gagtacaata caggtgccat gggaacacgt gacatcactg aagactgcct 1681 ggaaggggcc gcgcgtgtgt tcatgcctat acgataaaca tgatacataa tgaaaatgct 1741 tatctttagg agaaaggaga gcctagagta gcaggatcaa ggatgaaagc tggacttcaa 1801 atatgccttg ttagtgtaaa tgtgactgtg gaactgtatg agtattttaa gattatggag 1861 taaagtaagt tttaaaaagc agtccctaat catcaaaagt aaaaaaactct tgatgtagtc 1921 atataaccac actaagaact cttccaggtg acttcaaaac ataggacagt acatctctag 1981 tagaatatgc cctgagaatg aaaagaatgt aacagtgtta gtattttgaa taaacatgtt 2041 attactaaaa aaaaaaaaa aaaaaaaa
```

ELP3 cDNA sequence (SEQ ID NO: 9)

NM 018091 Homo sapiens elongation protein 3 homolog (S. cerevisiae) (ELP3), mRNA

```
1 gcagaaatga ggcagaagcg gaaaggagat ctcagccctg ctgagctgat gatgctgact
  61 ataggagatg ttattaaaca actgattgaa gcccacgagc aggggaaaga catcgatcta
 121 aataaggtga aaaccaagac agctgccaaa tatggccttt ctqcccaqcc ccqcctqqtq
 181 gatatcattg ctgccgtccc tcctcagtat cgcaaggtct tgatgcccaa gttaaaggcg
 241 aaacccatca gaactgctag tgggattgct gtcgtggctg tgatgtgcaa accccacaga
 301 tgtccacaca tcagttttac aggaaatata tgtgtatact gccctggtgg acctgattct
 361 gattttgagt attccaccca gtcttacact ggctatgagc caacctccat gagagctatc
 421 cgtgccagat atgaccettt cetacagaca agacacegaa tagaacagtt aaaacaactt
 481 ggtcatagtg tggataaagt ggagtttatt gtgatgggtg gaacgtttat ggcccttcca
 541 gaagaataca gagattattt tattegaaat ttacatgatg cettateagg acataettee
 601 aacaatattt acgaggcagt caagtattct gagagaagcc tcacaaagtg tattggaatt
 661 actattgaaa ccagaccaga ttactgcatg aagcgacatt taagtgacat gttgacctat
 721 ggctgcacaa ggctggagat tggggtgcag agtgtttatg aagatgtggc tagagacacc
 781 aacaggggcc acactgtgaa ggcagtgtgt gagtcatttc acctggccaa agattccggt
841 tttaaaqtqq tqqcccatat qatqcctqac ctqccaaacq tqqqactaqa aaqaqacatt
901 gaacagttca cagagttttt tgagaaccct gcttttcgtc ccgatgggct gaaactctat
961 cctaccctgg tgattcgtgg gaccgggctt tatgagcttt ggaaatcagg aagatataag
1021 agttactctc ctagtgacct ggttgaattg gtggctcgga tcctagccct cgtqcctcca
1081 tggactcgag tgtaccgagt acagagggat attccaatgc ctttagttag ctcaggagta
1141 gagcatggta acctgagaga gctggcactt gcaaqaatga aagacctcqg aatacagtgt
1201 cgagatgtga gaaccagaga agttggaatc caagaaattc atcacaaagt acggccatac
1261 caggttgaat tggtaaggag agattatgtt gcaaatggtg gctgggaaac attcttgtca
1321 tacgaagacc cagatcaaga cattttgatt ggcctcctac gattacgcaa gtgttcagaa
1381 gaaactttcc gtttcgaatt gggtggaggt gtctccatag tacgagagct gcatgtgtat
1441 gggagtgtgg teectgtgag cageegggat cetactaaat tteageatea gqqatttqqe
1501 atgctgctga tggaggaagc agaaagaata gctagagaag aacatgggtc tgggaaaatc
1561 gctgtgatat caggggtcgg caccaggaat tattatagaa agatcggcta cagattacaa
1621 ggcccgtaca tggtgaagat gctgaaataa tggccacacc agtccactct tctgcagtat
1681 cctccctggc agaacacgga gaatcaggat ttcttaaata ctcaacagag aggctgagca
1741 gagcaaatgg ggggcttcac cctcatcccg cagctgcaga gactggaaac tgccttcaag
1801 gccacggctg gtcatctgct gaccacaccc cagatccgcc ctctcctgcg tgcaccccaa
1861 aaaatcactt gcgtttttga ggcttaaatc atctatccag tttctacatt ttgcatgagg
1921 cctgcaggtg gcctattttg actcagacgg tgaaaaaagc aaattaactc atttggacac
1981 cataactcat gcaataaaac tgattgtcat tcgaggagca aacttaagag tagtttattt
2041 atataccctg gggacagaaa gtcaggttga aacaggaaaa ccaccagact ctaatctcag
2101 ccctttaacg acatacgcat tggagcgcaa gttaggaaaa tgagcttttg ttttcatgga
2161 aatcattctg attacagtgc tgatgtttag aaataaatag cagtgtgact gggaaagagg
2221 aattgcagtt gtgggggtgt gagcctggca gcagccagcc agcagcctct cccaggcgg
2281 agtetaceat cegagaegge gatgacaaag agetteatte cacattettt gttateteta
2341 cttcccaccc tcttggcaac tacagagcag tgtgggcagc cccaagtgtg gtccccagag
2401 agcgtttggc tttcctgtct gtctatcctg agcgggtgga gtctcaggtt gtgtgcccct
2461 aaatcaagat ttgcttccac agaagccatt acttgcaatt ttttttttt tttctgagaa
2521 agtotogotg tgtcaccoag gotggagtgo agtggogoaa totoactgoa tootoogoot
2581 cccgggttca agcgattctc ccgcctcagc ctcctgagta gctgggatta caggcacccg
2641 ccgctgctaa tttttgtatt tttagtagag atgggggttt caccatattg gtcaggctgg
2701 tetegaacte etgaceteag gtgateaace cacettggee teectaaatg eegggattae
```

```
2761 aggcatgagc caccgctccc agcctttgat tttttaaggt ggattttggt tgttataaat 2821 ggagaaaggt aagagttcaa gttcaacccg tgtgtgaaag caaaacaatg gaaaacagga 2881 ttggcttctt caaaggctcc tcttgtagaa ctgcctcttt gaaatttcga ggtaatctac 2941 tttggagact ctgcctggag agggtcagtt cctaagttaa aagcatcgct taaccttggc 3001 tcctgtggca ttttacaaag gtttaaagga attgattcct ctgaaagggc ctgaaaataa 3061 aaagtcttta acatataaaa aaaaaaaaaa aaaaa
```

CHDC1 cDNA sequence (SEQ ID NO: 10)

NM_015116 Homo sapiens calponin homology (CH) domain containing 1 (CHDC1), mRNA

```
1 ccgcagtcct tagcttcccq qqqacaqqaa accttcaaqa ccqaqctqcc acqqccqcct
  61 ccccgcccgc cccccattct acgcgcctgc ccacaccctc ctcccctcct tccagcgcct
 121 ttcggtggag cactgcggca ctcagcccga gctgccgttt tcccctcgcg gggaacgctg
 181 tgacccccc gcaggagcgg cggggggg tgggggggcc cgggagaaga tggcgacgcc
 241 gggaagcgaa ccccaacctt tcgtcccggc cctttcggta gctactctgc acccacttca
 301 teatececae caccaccace accaccatea geaccaegga ggaaceggeg ecceeggegg
 361 ggcgggtggt ggcggcggtg gcagcggggg cttcaacctg cccttqaacc ggggtctqga
 421 gcgcgcgctt gaggaggcgg ccaactccgg ggggctgaac ctgagcgcca ggaaattgaa
 481 ggaatttccc cgtaccgcag cccccgggca tgacctctcg gacacggtgc aggcagactt
 541 atctaaaaac agactggttg aagttccaat ggaattgtgc cattttgtat cactggaaat
 601 tottaatotg tatoacaact gtatoagagt cattootgag gccatogtta atotgoagat
 661 gctgacttac ctgaacttga gtcgaaatca gctgtccgcc ctgcctgcct qcctgtgtgg
 721 tctgcctctc aaagtcttaa tcgcaagtaa caacaaactt ggatcattac cagaagagat
 781 aggtcagctc aaacagttaa tggagctgga tgtcagctgc aacgagatca cagcgttgcc
841 ccagcagata ggtcagttga aatctctacg agaactgaat gtcagaagaa attaccttaa
901 agtittacca caagaactag tagatcttcc cttggtaaag tttgactttt cctgcaacaa
 961 agtgctcgtg attccaattt gttttagaga gatgaaqcag ctgcaagtgt tactacttga
1021 gaataaccct ctgcagtctc ctccagcaca gatttgcaca aagggcaaag ttcacatatt
1081 taagtatctg agcatacaag catgccagat taagacagct gactcccttt atctccacac
1141 catggagagg ccacatttac accagcacgt ggaagatggc aagaaggatt ctgattcggg
1201 agttggaagt gataatggag ataagcgatt atctgccacc gagccttctg acgaagacac
1261 tgttagcctc aatgtgccaa tgtcaaacat catggaagaa gaacagatca tcaaggagga
1321 ctcgtgccat cgccttagcc ccgttaaagg ggaatttcat caggaatttc aaccggagcc
1381 ttcccttttg ggtgacagca ccaactcagg agaagaaaga gaccagttta ctgatagagc
1441 agatggtctc cattcggaat ttatgaacta taaggcaagg gcagaagact gtgaagagct
1501 gttacggata gaagaggatg tgcactggca aactgagggc ataataagtt catccaaaga
1561 tcaggacatg gatatagcaa tgatcgagca gctgagagaa gcagtagatt tgctgcaaga
1621 tcccaatgga ttaagcacag atattacaga qagaagtgtt ttaaacctat atcctatqqq
1681 atcagcagaa gccttagaat tacaagattc tgcactgaat ggtcaaatac agctggagac
1741 atctccggtg tgtgaggtgc aaagtgatct aacattacag agtaacggga gccagtattc
1801 tccaaatgag attagagaga actcccctgc agtctctcct accacaaca gcacagctcc
1861 atttggcctg aagcctcgat cagtgtttct aagacctcag agaaatttgg aatctataga
1921 cccgcaqttt acaatccqqa qqaaaatqqa qcaqatqaqa qaaqaqaaaq aqctqqtqqa
1981 acaacttcgt gagagcattg agatgagatt gaaggtcagt ctacacgaag acctgggggc
2041 ageceteatg gatggtgteg teetetgeea tetggteaac caeateegee caeggteggt
2101 tgcaaqcatc catqtcccat caccaqcqqt tcccaaactt agcatqqcca aatqcaqaaq
2161 aaatgtggaa aactttttgg aagcgtgccg aaaattagga gtaccagagg ctgacctctg
2221 ctctccgtgt gacatcctgc agttggattt tcgtcacatt cgaaagactg ttgacactct
2281 gctggcactc ggggagaaag ccccaccacc aacttctgcc ctccgctcca gggaccttat
2341 aggettetgt ettgteeata ttetetttat agtgetggte tatateaett accaetggaa
2401 tgctctgtcc gcataacgtc tgcacgtgca tccaaacgct gtgctctgtc gccctcaacc
2461 tttgcagggt ccttcctacc tttgagcctt tgccttgcaa acttccatcc ctgtcatgtc
2521 ttcagttatc tctcgagttt tgaagctgaa cagtagcaaa tcagattttc cagaagcaca
2581 aactttgtag aatacagttt agtataattc ctctcactta ctgaaataca acgacgacga
2641 ctgcaaagtg tatgcacacc gcatgcttcc tcatccacat agtgccagca gcagtgccac
2701 gcagttcctc ctctccctcc cggtgagctg ctgccctggg cagaggggag gagaattcca
2761 ggacaagagt gtcaaggaca gggatttagc atatggaagt ctttcctttg ggtcagtatt
2821 gaactagaat totaattogg gactgggcaa ttgagctgta taggggccac ottgcaggga
2881 ggacagaaaa ctaacatttt ggcccaactt gatctataca aaactttaat aataccacta
2941 ctgaccaagt tggacgtgta cacgtactca cactgccttg atggccattc gattggattc
```

```
3001 ctcccaaatt tcctaaaaag ggagccgcga agggcgctgg gcagtgtggc cgccaacttc
3061 caccccggca agcccctctg tectatgcag aagggegete cagggaagga agtgtegttg
3121 ctgttagagc ctcacgtgga ggagtcactt aaacaccagt tttttactgc ttaattcctt
3181 gttaggtctt ctcttgaggc tcttagaaaa gcgttttcca gagagatttc tatttttgaa
3241 caatggaacg gatcactgct tttttgccac atcacatagt aactgccggt ccagaatgtg
3301 acggattega etetatteat ttteaaataa ageeatgage egtggaaeat tettggteet
3361 ggtgcttggg ttatgatggc aggagtcaag aagaagatta ctttcattct agaagaatgt
3421 agtttctcta attatttgaa atgttcattt agcctttgat tttcactgat attaactagc
3481 aaactgcttt aagtcagctc aaaggattat atagtaacta tatctgcatt tggagcaatg
3541 tgatcagttt gcatttaaaa ggaaaaaaaa gaattttatc ttagccagaa tgtccctgga
3601 ttcaggggtg tctttgtata atatgagagg gccttgttcc aaggtcaagg cagcctctt
3661 attttacatg ctgtttgcca aatcttgttt cttagcttgg ggagatgatg gacttagctt
3721 ceteaagata aatttetagt ttattaagat geaaacaget eteatagatg getaetaega
3781 agaaaatctt attttctga acattttcat gaatccaggg gacttgaaaa tatggaagac
3841 ccacatagtt agaagaatat atttataaag attccttgct gctaagtcag atcagatttg
3901 ctaacaggaa gcattcttta catgacagta tcttgagtta tgtgagtttt ttttcctcct
3961 gactttgtgt tgattggtga aatgcagggt atgtggaagt tatctaatta acctcagttg
4021 tatatgaata acccacagat gtactgaatt acttttggtg ctatcttgta ctcttcaatc
4081 tgtaacacaa taaaatcoct ttgtacgatg tctaatgagc accetgagcc ataaattget
4141 taataaacac attttgggtg att
```

ERG cDNA sequence 1 (SEO ID NO: 11)

NM_182918 Homo sapiens v-ets erythroblastosis virus E26 oncogene like (avian), (ERG), transcript variant 1, mRNA

```
1 aatctcatcc gctctaaaca acctcatcaa aactactttc tqqtcaqaqa qaaqcaataa
  61 ttattattaa catttattaa cgatcaataa acttgattgc attatggcca gcactattaa
 121 ggaagcctta tcagttgtga gtgaggacca gtcgttgttt gagtgtgcct acggaacgcc
 181 acacctggct aagacagaga tgaccgcgtc ctcctccagc gactatggac agacttccaa
 241 gatgagccca cgcgtccctc agcaggattg gctgtctcaa cccccagcca gggtcaccat
 301 caaaatggaa tgtaacccta gccaggtgaa tggctcaagg aactctcctg atgaatgcag
 361 tgtggccaaa ggcgggaaga tggtgggcag cccagacacc gttgggatga actacggcag
 421 ctacatggag gagaagcaca tgccacccc aaacatgacc acgaacgagc gcagagttat
 481 cgtgccagca gatcctacgc tatggagtac agaccatqtq cqqcaqtqqc tqqaqtqqqc
 541 ggtgaaagaa tatggcette cagaegteaa catettgtta ttecagaaca tegatgggaa
 601 ggaactgtgc aagatgacca aggacgactt ccagaggctc accccagct acaatgccqa
 661 cateettete teacatetee actaceteag agagaeteet ettecacatt tgaetteaga
 721 tgatgttgat aaagcettac aaaactetee aeggttaatg catgetagaa acaeaggggg
 781 tgcagctttt attttcccaa atacttcagt atatcctgaa gctacgcaaa gaattacaac
 841 taggccagat ttaccatatg agcccccag gagatcagcc tggaccggtc acggccaccc
 901 cacgccccag tcgaaagctg ctcaaccatc tccttccaca gtgcccaaaa ctgaagacca
 961 gegteeteag ttagateett ateagattet tggaceaaca agtageegee ttgeaaatee
1021 aggcagtggc cagatccagc tttggcagtt cctcctggag ctcctgtcgg acagctccaa
1081 ctccagctgc atcacctggg aaggcaccaa cggggagttc aagatgacgg atcccgacga
1141 ggtggcccgg cgctggggag agcggaagag caaacccaac atgaactacg ataagctcag
1201 ccgcgccctc cgttactact atgacaagaa catcatgacc aaggtccatg ggaagcgcta
1261 cgcctacaag ttcgacttcc acgggatcgc ccaggccctc cagccccacc ccccggagtc
1321 atctctgtac aagtacccct cagacctccc gtacatgggc tcctatcacg cccacccaca
1381 gaagatgaac tttgtggcgc cccaccctcc agccctcccc gtgacatctt ccagttttt
1441 tgctgcccca aacccatact ggaattcacc aactgggggt atatacccca acactaggct
1501 ccccaccage catatgeett etcatetggg caettactae taaagacetg geggaggett
1561 ttcccatcag cgtgcattca ccagcccatc gccacaaact ctatcggaga acatgaatca
1621 aaagtgcctc aagaggaatg aaaaaagctt tactggggct ggggaaggaa gccggggaag
1681 agatccaaag actettggga gggagttaet gaagtettae tacagaaatg aggaggatge
1741 taaaaatgtc acgaatatgg acatatcatc tgtggactga ccttgtaaaa gacagtgtat
1801 gtagaagcat gaagtettaa ggacaaagtg ecaaagaaag tggtettaag aaatgtataa
1861 actttagagt agagtttgga atcccactaa tgcaaactgg gatgaaacta aagcaataga
1921 aacaacacag ttttgaccta acataccgtt tataatgcca ttttaaggaa aactacctgt
1981 atttaaaaat agaaacatat caaaaaaaa aaaaaa
```

ERG cDNA sequence 2 (SEQ ID NO: 12)

NM_004449 Homo sapiens v-ets erythroblastosis virus E26 oncogene like (avian), (ERG), transcript variant 2, mRNA

```
1 atgattcaga ctgtcccgga cccagcagct catatcaagg aagccttatc agttgtgagt
  61 gaggaccagt cgttgtttga gtgtgcctac ggaacgccac acctggctaa gacagagatg
 121 accgcgtcct cctccagcga ctatggacag acttccaaga tgagcccacg cgtccctcag
181 caggattggc tgtctcaacc cccagccagg gtcaccatca aaatggaatg taaccctagc
 241 caggtgaatg gctcaaggaa ctctcctgat gaatgcagtg tggccaaagg cgggaagatg
 301 gtgggcagcc cagacaccgt tgggatgaac tacggcagct acatggagga gaagcacatg
 361 ccaccccaa acatgaccac gaacgagcgc agagttatcg tgccagcaga tcctacgcta
 421 tggagtacag accatgtgcg gcagtggctg gagtgggcgg tgaaagaata tggccttcca
 481 gacgtcaaca tottgttatt coagaacato gatgggaagg aactgtgcaa gatgaccaag
 541 gacgaettee agaggeteae ecceagetae aacgeegaea teettetete acateteeae
 601 tacctcagag agactcctct tccacatttg acttcagatg atgttgataa agccttacaa
 661 aactetecae ggttaatgea tgetagaaae acagatttae catatgagee ceccaqqaqa
 721 tcagcctgga ccggtcacgg ccaccccacg ccccagtcga aagctgctca accatctcct
 781 tccacagtgc ccaaaactga agaccagcgt cctcagttag atccttatca gattcttgga
841 ccaacaagta gccgccttgc aaatccaggc agtggccaga tccagctttg gcagttcctc
901 ctggagctcc tgtcggacag ctccaactcc agctgcatca cctgggaagg caccaacggg
961 gaqttcaaga tgacggatcc cgacgaggtg gcccqqcgct ggggagagcg gaaqagcaaa
1021 cccaacatga actacgataa gctcagccgc gccctccgtt actactatga caagaacatc
1081 atgaccaagg tccatgggaa gcgctacgcc tacaagttcg acttccacgg gatcgcccag
1141 gccctccage eccacecece ggagtcatet etgtacaagt acceetcaga ceteceqtae
1201 atgggctcct atcacgccca cccacagaag atgaactttg tggcgcccca ccctccagcc
1261 ctccccgtga catcttccag tttttttqct qccccaaacc catactqqaa ttcaccaact
1321 gggggtatat accccaacac taggetecec accagecata tgeettetea tetgggeact
1381 tactactaa
```

[0270] Following are amino acid sequences for *PSMB1* (SEQ ID NO: 13), *TBP* (SEQ ID NO: 14), *PDCD2* (SEQ ID NO: 15 and 16), *ELP3* (SEQ ID NO: 17), *CHDC1* (SEQ ID NO: 18), and *ERG* (SEQ ID NO: 19 and 20).

PSMB1 amino acid sequence (SEQ ID NO: 13)

NP_002784 Homo sapiens proteasome (prosome, macropain) subunit, beta type, 1 (PSMB1), protein

MLSSTAMYSAPGRDLGMEPHRAAGPLQLRFSPYVFNGGTILAIAGEDFAIVASDTRLSE GFSIHTRDSPKCYKLTDKTVIGCSGFHGDCLTLTKIIEARLKMYKHSNNKAMTTGAIAA MLSTILYSRRFFPYYVYNIIGGLDEEGKGAVYSFDPVGSYQRDSFKAGGSASAMLQPLL DNQVGFKNMQNVEHVPLSLDRAMRLVKDVFISAAERDVYTGDALRICIVTKEGIREET VSLRKD

TBP amino acid sequence (SEQ ID NO: 14)

NP_003185 Homo sapiens TATA box binding protein (TBP), protein

CKLDLKTIALRARNAEYNPKRFAAVIMRIREPRTTALIFSSGKMVCTGAKSEEQSRLAAR KYARVVQKLGFPAKFLDFKIQNMVGSCDVKFPIRLEGLVLTHQQFSSYEPELFPGLIYR MIKPRIVLLIFVSGKVVLTGAKVRAEIYEAFENIYPILKGFRKTT

PDCD2 amino acid sequence 1 (SEQ ID NO: 15)

NP_002589 Homo sapiens programmed cell death 2 (PDCD2), isoform 1, protein

MAAAGARPVELGFAESAPAWRLRSEQFPSKVGGRPAWLGAAGLPGPQALACELCGRP LSFLLQVYAPLPGRPDAFHRCIFLFCCREQPCCAGLRVFRNQLPRKNDFYSYEPPSENPPP ETGESVCLQLKSGAHLCRVCGCLGPKTCSRCHKAYYCSKEHQTLDWRLGHKQACAQP DHLDHIIPDHNFLFPEFEIVIETEDEIMPEVVEKEDYSEIIGSMGEALEEELDSMAKHESRE DKIFQKFKTQIALEPEQILRYGRGIAPIWISGENIPQEKDIPDCPCGAKRILEFQVMPQLLN YLKADRLGKSIDWGILAVFTCAESCSLGTGYTEEFVWKQDVTDTP

PDCD2 amino acid sequence 2 (SEO ID NO: 16)

NP 659005 Homo sapiens programmed cell death 2 (PDCD2), isoform 2, protein

MAAAGARPVELGFAESAPAWRLRSEQFPSKVGGRPAWLGAAGLPGPQALACELCGRP LSFLLQVYAPLPGRPDAFHRCIFLFCCREQPCCAGLRVFRNQLPRKNDFYSYEPPSENPPP ETGESVCLQLKSGAHLCRVCGCLGPKTCSRCHKAYYCSKEHQTLDWRLGHKQACAQP DHLDHIIPDHNFLFPEFEIVIETEDEIMPEVVEKEDYSEIIGSMGKQFQDFIH

ELP3 amino acid sequence (SEQ ID NO: 17)

NP 060561 Homo sapiens elongation protein 3 homolog (S. cerevisiae) (ELP3), protein

MRQKRKGDLSPAELMMLTIGDVIKQLIEAHEQGKDIDLNKVKTKTAAKYGLSAQPRLV DIIAAVPPQYRKVLMPKLKAKPIRTASGIAVVAVMCKPHRCPHISFTGNICVYCPGGPDS DFEYSTQSYTGYEPTSMRAIRARYDPFLQTRHRIEQLKQLGHSVDKVEFIVMGGTFMAL PEEYRDYFIRNLHDALSGHTSNNIYEAVKYSERSLTKCIGITIETRPDYCMKRHLSDMLT YGCTRLEIGVQSVYEDVARDTNRGHTVKAVCESFHLAKDSGFKVVAHMMPDLPNVGL ERDIEQFTEFFENPAFRPDGLKLYPTLVIRGTGLYELWKSGRYKSYSPSDLVELVARILA LVPPWTRVYRVQRDIPMPLVSSGVEHGNLRELALARMKDLGIQCRDVRTREVGIQEIHH KVRPYQVELVRRDYVANGGWETFLSYEDPDQDILIGLLRLRKCSEETFRFELGGGVSIV RELHVYGSVVPVSSRDPTKFQHQGFGMLLMEEAERIAREEHGSGKIAVISGVGTRNYYR KIGYRLQGPYMVKMLK

CHDC1 amino acid sequence (SEQ ID NO: 18)

NP_055931 Homo sapiens calponin homology (CH) domain containing 1 (CHDC1), protein

MATPGSEPQPFVPALSVATLHPLHHPHHHHHHHHHHHHGGTGAPGGAGGGGGGGGGFNL PLNRGLERALEEAANSGGLNLSARKLKEFPRTAAPGHDLSDTVQADLSKNRLVEVPME LCHFVSLEILNLYHNCIRVIPEAIVNLQMLTYLNLSRNQLSALPACLCGLPLKVLIASNNK LGSLPEEIGQLKQLMELDVSCNEITALPQQIGQLKSLRELNVRRNYLKVLPQELVDLPLV KFDFSCNKVLVIPICFREMKQLQVLLLENNPLQSPPAQICTKGKVHIFKYLSIQACQIKTA DSLYLHTMERPHLHQHVEDGKKDSDSGVGSDNGDKRLSATEPSDEDTVSLNVPMSNIM EEEQIIKEDSCHRLSPVKGEFHQEFQPEPSLLGDSTNSGEERDQFTDRADGLHSEFMNYK ARAEDCEELLRIEEDVHWQTEGIISSSKDQDMDIAMIEQLREAVDLLQDPNGLSTDITER SVLNLYPMGSAEALELQDSALNGQIQLETSPVCEVQSDLTLQSNGSQYSPNEIRENSPAV SPTTNSTAPFGLKPRSVFLRPQRNLESIDPQFTIRRKMEQMREEKELVEQLRESIEMRLKV SLHEDLGAALMDGVVLCHLVNHIRPRSVASIHVPSPAVPKLSMAKCRRNVENFLEACR KLGVPEADLCSPCDILQLDFRHIRKTVDTLLALGEKAPPPTSALRSRDLIGFCLVHILFIVL VYITYHWNALSA

ERG amino acid sequence 1 (SEO ID NO: 19)

NP_891548 Homo sapiens v-ets erythroblastosis virus E26 oncogene like (avian), (ERG), isoform 1, protein

MASTIKEALSVVSEDQSLFECAYGTPHLAKTEMTASSSSDYGQTSKMSPRVPQQDWLS QPPARVTIKMECNPSQVNGSRNSPDECSVAKGGKMVGSPDTVGMNYGSYMEEKHMPP PNMTTNERRVIVPADPTLWSTDHVRQWLEWAVKEYGLPDVNILLFQNIDGKELCKMT KDDFQRLTPSYNADILLSHLHYLRETPLPHLTSDDVDKALQNSPRLMHARNTGGAAFIF PNTSVYPEATQRITTRPDLPYEPPRRSAWTGHGHPTPQSKAAQPSPSTVPKTEDQRPQLD PYQILGPTSSRLANPGSGQIQLWQFLLELLSDSSNSSCITWEGTNGEFKMTDPDEVARRW GERKSKPNMNYDKLSRALRYYYDKNIMTKVHGKRYAYKFDFHGIAQALQPHPPESSLY KYPSDLPYMGSYHAHPQKMNFVAPHPPALPVTSSSFFAAPNPYWNSPTGGIYPNTRLPT SHMPSHLGTYY

ERG amino acid sequence 2 (SEQ ID NO: 20)

NP_004440 Homo sapiens v-ets erythroblastosis virus E26 oncogene like (avian), (ERG), isoform 2, protein

MIQTVPDPAAHIKEALSVVSEDQSLFECAYGTPHLAKTEMTASSSSDYGQTSKMSPRVP QQDWLSQPPARVTIKMECNPSQVNGSRNSPDECSVAKGGKMVGSPDTVGMNYGSYME EKHMPPNMTTNERRVIVPADPTLWSTDHVRQWLEWAVKEYGLPDVNILLFQNIDGKE LCKMTKDDFQRLTPSYNADILLSHLHYLRETPLPHLTSDDVDKALQNSPRLMHARNTD LPYEPPRRSAWTGHGHPTPQSKAAQPSPSTVPKTEDQRPQLDPYQILGPTSSRLANPGSG QIQLWQFLLELLSDSSNSSCITWEGTNGEFKMTDPDEVARRWGERKSKPNMNYDKLSR ALRYYYDKNIMTKVHGKRYAYKFDFHGIAQALQPHPPESSLYKYPSDLPYMGSYHAHP QKMNFVAPHPPALPVTSSSFFAAPNPYWNSPTGGIYPNTRLPTSHMPSHLGTYY

[0271] Modifications may be made to the foregoing without departing from the basic aspects of the invention. Although the invention has been described in substantial detail with reference to one or more specific embodiments, those of skill in the art will recognize that changes may be made to the embodiments specifically disclosed in this application, yet these modifications and improvements are within the scope and spirit of the invention, as set forth in the aspects which follow. All publications or patent documents cited in this specification are incorporated herein by reference as if each such publication or document was specifically and individually indicated to be incorporated herein by reference.

[0272] Citation of the above publications or documents is not intended as an admission that any of the foregoing is pertinent prior art, nor does it constitute any admission as to the contents or date of these publications or documents. U.S. patents and other publications referenced herein are hereby incorporated by reference.

What is claimed is:

- 1. A method for identifying a subject at risk of osteoarthritis, which comprises detecting the presence or absence of one or more polymorphic variations associated with osteoarthritis in a nucleic acid sample from a subject, wherein the one or more polymorphic variations are detected in a nucleotide sequence selected from the group consisting of:
 - (a) a nucleotide sequence in SEQ ID NO: 1-12;
- (b) a nucleotide sequence which encodes a polypeptide encoded by a nucleotide sequence in SEQ ID NO: 1-12;
- (c) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to the amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1-12;
 - (d) a fragment of a nucleotide sequence of (a), (b), or (c);

whereby the presence of the polymorphic variation is indicative of the subject being at risk of osteoarthritis.

- 2. The method of claim 1, which further comprises obtaining the nucleic acid sample from the subject.
- 3. The method of claim 1, wherein the one or more polymorphic variations are detected within a region spanning chromosome positions 170719500 to 170766500 in human genomic DNA.
- 4. The method of claim 1, wherein the one or more polymorphic variations are detected at one or more positions in SEQ ID NO: 1 selected from the group consisting of 229, 6310, 11840, 11870, 12064, 13392, 16354, 16559, 16935, 17616, 17737, 18321, 18453, 18811, 20020, 21662, 23197, 23446, 24339, 25504, 27174, 28008, 29294, 29759, 30832, 44512, 44850, 45884, 46345, 48589, 53371, 53911, 53990, 55152, 55667, 58952, 59315, 60029, 61477, 62988, 63090, 64021, 65685, 70220, 70323, 70959, 73436, 82945, 82958, 82961, 82964, 82965, 83006, 83025, 83034, 83074, 83132, 83155, 83172, 83174, 83206, 83216, 83234, 83252, 83260, 83263, 83296, 83319, 83322, 83324, 83357, 83375, 83381, 83389, 83443, 83499, 83545, 83566, 83591, 83619, 83698, 83780, 83784, 83826, 83832, 83852, 86297, 86315, 86420, 86460, 86714, 86718, 86736, 86753, 86766, 88162, 88218, 88246, 88255, 88309, 88310, 88471, 88619, 88904, 89044, 90531, 90534, 90613 and 46252.

- 5. The method of claim 1, wherein the one or more polymorphic variations are detected at one or more positions in SEQ ID NO: 1 selected from the group consisting of 229, 6310, 16559, 18453, 25504, 27174, 30832, 44850, 45884, 48589, 61477, 82961 and 46252.
- 6. The method of claim 1, wherein the one or more polymorphic variations are detected within a region spanning chromosome positions 27963000 to 27983000 in human genomic DNA.
- 7. The method of claim 1, wherein the one or more polymorphic variations are detected at one or more positions in SEQ ID NO: 2 selected from the group consisting of 211, 473, 1536, 5639, 17186, 17335, 25029, 25111, 28811, 28863, 30809, 40985, 45147, 45282, 46168, 46328, 49077, 51925, 52141, 52168, 60852, 62468, 65572, 79089, 79541, 79790, 90843, 90978, 91052, 91131, 91132, 94439 and 94621.
- 8. The method of claim 1, wherein the one or more polymorphic variations are detected at one or more positions in SEQ ID NO: 2 selected from the group consisting of 40985, 46168, 51925 and 52168.
- 9. The method of claim 1, wherein the one or more polymorphic variations are detected within a region spanning chromosome positions 44962000 to 45013000 in human genomic DNA.
- 10. The method of claim 1, wherein the one or more polymorphic variations are detected at one or more positions in SEQ ID NO: 3 selected from the group consisting of 243, 10208, 15049, 15111, 15272, 15287, 15326, 15327, 17038, 19391, 21702, 22431, 22881, 27744, 32564, 32698, 33104, 33181, 33256, 33543, 35567, 40085, 40482, 45641, 46059, 48504, 48919, 49693, 49874, 50020, 50616, 50719, 55511, 65533, 70529, 75591, 77266, 80368, 82475, 92462, 92480, 95819 and 96275.
- 11. The method of claim 1, wherein the one or more polymorphic variations are detected at one or more positions in SEQ ID NO: 3 selected from the group consisting of 15111, 45641, 46059, 49693, 49874, 50020, 50719, 70529, 82475, 92462, 92480 and 96275.
- 12. The method of claim 1, wherein the one or more polymorphic variations are detected within a region spanning chromosome positions 38830000 to 38844000 in human genomic DNA.
- 13. The method of claim 1, wherein the one or more polymorphic variations are detected at one or more positions in SEQ ID NO: 4 selected from the group consisting of 231, 882, 960, 1194, 1530, 1673, 2096, 2285, 5873, 7256, 7988, 8222, 8381, 8814, 8915, 9642, 9902, 10619, 10927, 11032, 14377, 15608, 15928, 16296, 17598, 19272, 20084, 20577, 28051, 29466, 29530, 29987, 30012, 30322, 32216, 32544, 32746, 33137, 33538, 33798, 33802, 33964, 34132, 34210, 34317, 34499, 34753, 34845, 35335, 36423, 36450, 36481, 38447, 38784, 39387, 39458, 39822, 40305, 40869, 40926, 41010, 41134,

41984, 42172, 42753, 43011, 43176, 43320, 43381, 44142, 44383, 44726, 45087, 45141, 45359, 45421, 45456, 45467, 45486, 45709, 45716, 47626, 49413, 49796, 49962, 50075, 50093, 50571, 50615, 50780, 50851, 51459, 53193, 53702, 53736, 53795, 54109, 54126, 54230, 54894, 55455, 55499, 56522, 56662, 56954, 57267, 58282, 58916, 59544, 59666, 59913, 66846, 67245, 67652, 67955, 67966, 68420, 70226, 70810, 72246, 73330, 73457, 74389, 74638, 74640, 75358, 75952, 76098, 77836, 78449, 78507, 80031, 81695, 82775, 82795, 84611, 84657, 84693, 85020, 85048, 85100, 85325, 85452, 85868, 85936, 85990, 86139, 86497, 87236, 87248, 87533, 87912, 88108, 88494, 89598, 90235, 91287, 91359, 92384, 92410, 92900, 94495, 94512, 97777 and 98333.

- 14. The method of claim 1, wherein the one or more polymorphic variations are detected at one or more positions in SEQ ID NO: 4 selected from the group consisting of 1673, 20577, 33137, 39822, 45716, 49962, 51459, 54894, 55455, 55499, 58282, 68420 and 80031.
- 15. The method of claim 1, wherein the one or more polymorphic variations are detected at one or more positions in linkage disequilibrium with one or more positions in claim 4, 7, 10 or 13.
- 16. The method of claim 1, wherein detecting the presence or absence of the one or more polymorphic variations comprises:

hybridizing an oligonucleotide to the nucleic acid sample, wherein the oligonucleotide is complementary to a nucleotide sequence in the nucleic acid and hybridizes to a region adjacent to the polymorphic variation;

extending the oligonucleotide in the presence of one or more nucleotides, yielding extension products; and

detecting the presence or absence of a polymorphic variation in the extension products.

- 17. The method of claim 1, wherein the subject is a human.
- 18. The method of claim 17, wherein the subject is a human female.
- 19. The method of claim 17, wherein the subject is a human male.
- 20. A method for identifying a polymorphic variation associated with osteoarthritis proximal to an incident polymorphic variation associated with osteoarthritis, which comprises:

identifying a polymorphic variation proximal to the incident polymorphic variation associated with osteoarthritis, wherein the polymorphic variation is detected in a nucleotide sequence selected from the group consisting of:

- (a) a nucleotide sequence in SEQ ID NO: 1-12;
- (b) a nucleotide sequence which encodes a polypeptide encoded by a nucleotide sequence in SEQ ID NO: 1-12;
- (c) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to the amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1-12;
- (d) a fragment of a nucleotide sequence of (a), (b), or (c) comprising a polymorphic variation;

determining the presence or absence of an association of the proximal polymorphic variant with osteoarthritis.

- 21. The method of claim 20, wherein the incident polymorphic variation is at one or more positions in claim 4, 7, 10 or 13.
- 22. The method of claim 20, wherein the proximal polymorphic variation is within a region between about 5 kb 5' of the incident polymorphic variation and about 5 kb 3' of the incident polymorphic variation.
- 23. The method of claim 20, which further comprises determining whether the proximal polymorphic variation is in linkage disequilibrium with the incident polymorphic variation.
- 24. The method of claim 20, which further comprises identifying a second polymorphic variation proximal to the identified proximal polymorphic variation associated with osteoarthritis and determining if the second proximal polymorphic variation is associated with osteoarthritis.
- 25. The method of claim 24, wherein the second proximal polymorphic variant is within a region between about 5 kb 5' of the incident polymorphic variation and about 5 kb 3' of the proximal polymorphic variation associated with osteoarthritis.
- 26. An isolated nucleic acid comprising a nucleotide sequence selected from the group consisting of:
 - (a) a nucleotide sequence in SEQ ID NO: 1-12;
- (b) a nucleotide sequence which encodes a polypeptide encoded by a nucleotide sequence in SEQ ID NO: 1-12;

- (c) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to the amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1-12;
- (d) a fragment of a nucleotide sequence of (a), (b), or (c) comprising a polymorphic variation; and
 - (e) a nucleotide sequence complementary to the nucleotide sequences of (a), (b), (c), or (d);

wherein the nucleotide sequence comprises a polymorphic variation associated with osteoarthritis selected from the group consisting of in SEQ ID NO: 1 a thymine at position 229, a guanine at position 6310, a thymine at position 16559, an adenine at position 18453, an adenine at position 25504, an adenine at position 27174, an adenine at position 30832, a guanine at position 44850, an adenine at position 45884, an adenine at position 48589, a cytosine at position 61477, a cytosine at position 82961 and a thymine at position 46252; in SEQ ID NO: 2 a cytosine at position 40985, a guanine at position 46168, a thymine at position 51925 and a cytosine at position 52168; in SEQ ID NO: 3 a guanine at position 15111, a thymine at position 45641, an adenine at position 46059, a cytosine at position 49693, an adenine at position 49874, an adenine at position 50020, a guanine at position 50719, an adenine at position 70529, an adenine at position 82475, a thymine at position 92462, a thymine at position 92480 and a cytosine at position 96275; and in SEQ ID NO: 4 a guanine at position 1673, a thymine at position 20577, a guanine at position 33137, a guanine at position 39822, an adenine at position 45716, a guanine at position 49962, an adenine at position 51459, a cytosine at position 54894, an adenine at position 55499, a guanine at position 58282, an adenine at position 68420 and a thymine at position 80031.

- 27. An oligonucleotide comprising a nucleotide sequence complementary to a portion of the nucleotide sequence of (a), (b), (c), or (d) in claim 26, wherein the 3' end of the oligonucleotide is adjacent to a polymorphic variation associated with osteoarthritis.
 - 28. A microarray comprising an isolated nucleic acid of claim 26 linked to a solid support.
 - 29. An isolated polypeptide encoded by the isolated nucleic acid sequence of claim 26.
 - 30. A method for identifying a candidate therapeutic for treating osteoarthritis, which comprises:
- (a) introducing a test molecule to a system which comprises a nucleic acid comprising a nucleotide sequence selected from the group consisting of:
 - (i) a nucleotide sequence in SEQ ID NO: 1-12;

- (ii) a nucleotide sequence which encodes a polypeptide encoded by a nucleotide sequence in SEQ ID NO: 1-12;
- (iii) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to the amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1-12;
 - (iv) a fragment of a nucleotide sequence of (a), (b), or (c); or

introducing a test molecule to a system which comprises a protein encoded by a nucleotide sequence of (i), (ii), (iii), or (iv); and

(b) determining the presence or absence of an interaction between the test molecule and the nucleic acid or protein,

whereby the presence of an interaction between the test molecule and the nucleic acid or protein identifies the test molecule as a candidate therapeutic for treating osteoarthritis.

- 31. The method of claim 30, wherein the system is an animal.
- 32. The method of claim 30, wherein the system is a cell.
- 33. The method of claim 30, wherein the nucleotide sequence comprises one or more polymorphic variations associated with osteoarthritis.
- 34. The method of claim 33, wherein the one or more polymorphic variations associated with osteoarthritis are at one or more positions in claim 4, 7, 10 or 13.
- 35. A method for treating osteoarthritis in a subject, which comprises contacting one or more cells of a subject in need thereof with a nucleic acid, wherein the nucleic acid comprises a nucleotide sequence selected from the group consisting of:
 - (a) a nucleotide sequence in SEQ ID NO: 1-12;
- (b) a nucleotide sequence which encodes a polypeptide encoded by a nucleotide sequence in SEQ ID NO: 1-12;
- (c) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to the amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1-12;
 - (d) a fragment of a nucleotide sequence of (a), (b), or (c); and
 - (e) a nucleotide sequence complementary to the nucleotide sequences of (a), (b), (c), or (d);

whereby contacting the one or more cells of the subject with the nucleic acid treats the osteoarthritis in the subject.

- 36. The method of claim 35, wherein the nucleic acid is RNA or PNA.
- 37. The method of claim 36, wherein the nucleic acid is duplex RNA.
- 38. A method for treating osteoarthritis in a subject, which comprises contacting one or more cells of a subject in need thereof with a protein, wherein the protein is encoded by a nucleotide sequence which comprises a polynucleotide sequence selected from the group consisting of:
 - (a) a nucleotide sequence in SEQ ID NO: 1-12;
- (b) a nucleotide sequence which encodes a polypeptide encoded by a nucleotide sequence in SEQ ID NO: 1-12;
- (c) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to the amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1-12;
 - (d) a fragment of a nucleotide sequence of (a), (b), or (c);

whereby contacting the one or more cells of the subject with the protein treats the osteoarthritis in the subject.

39. A method for treating osteoarthritis in a subject, which comprises:

detecting the presence or absence of one or more polymorphic variations associated with osteoarthritis in a nucleic acid sample from a subject, wherein the one or more polymorphic variation are detected in a nucleotide sequence selected from the group consisting of:

- (a) a nucleotide sequence in SEQ ID NO: 1-12;
- (b) a nucleotide sequence which encodes a polypeptide encoded by a nucleotide sequence in SEQ ID NO: 1-12;
- (c) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to the amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1-12;
- (d) a fragment of a nucleotide sequence of (a), (b), or (c) comprising a polymorphic variation; and

administering an osteoarthritis treatment to a subject in need thereof based upon the presence or absence of the one or more polymorphic variations in the nucleic acid sample.

- 40. The method of claim 39, wherein the one or more polymorphic variations are detected at one or more positions in claim 4, 7, 10 or 13.
- 41. The method of claim 39, wherein the treatment is selected from the group consisting of administering a corticosteroid, a nonsteroidal anti-inflammatory drug (NSAID), a cyclooxygenase-2 (COX-2) inhibitor, an antibody, a glucocorticoid, hyaluronic acid, chondrotin sulfate, glucosamine or acetaminophen; prescribing a heat/cold regimen or a joint protection regimen; performing joint surgery; prescribing a weight control regimen; and combinations of the foregoing.
 - 42. A method for detecting or preventing osteoarthritis in a subject, which comprises:

detecting the presence or absence of one or more polymorphic variations associated with osteoarthritis in a nucleic acid sample from a subject, wherein the polymorphic variation is detected in a nucleotide sequence selected from the group consisting of:

- (a) a nucleotide sequence in SEQ ID NO: 1-12;
- (b) a nucleotide sequence which encodes a polypeptide encoded by a nucleotide sequence in SEQ ID NO: 1-12;
- (c) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to the amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1-12;
- (d) a fragment of a nucleotide sequence of (a), (b), or (c) comprising a polymorphic variation; and

administering an osteoarthritis prevention or detection procedure to a subject in need thereof based upon the presence or absence of the one or more polymorphic variations in the nucleic acid sample.

- 43. The method of claim 42, wherein the one or more polymorphic variations are detected at one or more positions in claim 4, 7, 10 or 13.
- 44. The method of claim 42, wherein the osteoarthritis prevention is selected from the group consisting of administering a corticosteroid, a nonsteroidal anti-inflammatory drug (NSAID), a cyclooxygenase-2 (COX-2) inhibitor, an antibody, a glucocorticoid, hyaluronic acid, chondrotin sulfate, glucosamine or acetaminophen; prescribing a heat/cold regimen or a joint protection regimen; performing joint surgery; prescribing a weight control regimen; and combinations of the foregoing.

45. A method of targeting information for preventing or treating osteoarthritis to a subject in need thereof, which comprises:

detecting the presence or absence of one or more polymorphic variations associated with osteoarthritis in a nucleic acid sample from a subject, wherein the polymorphic variation is detected in a nucleotide sequence selected from the group consisting of:

- (a) a nucleotide sequence in SEQ ID NO: 1-12;
- (b) a nucleotide sequence which encodes a polypeptide encoded by a nucleotide sequence in SEQ ID NO: 1-12;
- (c) a nucleotide sequence which encodes a polypeptide that is 90% or more identical to the amino acid sequence encoded by a nucleotide sequence in SEQ ID NO: 1-12;
- (d) a fragment of a nucleotide sequence of (a), (b), or (c) comprising a polymorphic variation; and

directing information for preventing or treating osteoarthritis to a subject in need thereof based upon the presence or absence of the one or more polymorphic variations in the nucleic acid sample.

- 46. The method of claim 45, wherein the one or more polymorphic variations are detected at one or more positions in claim 4, 7, 10 or 13.
- 47. A composition comprising a cell from a subject having osteoarthritis or at risk of osteoarthritis and an antibody that specifically binds to a protein, polypeptide or peptide encoded by a nucleotide sequence identical to or 90% or more identical to a nucleotide sequence in SEQ ID NO: 1-12.
- 48. A composition comprising a cell from a subject having osteoarthritis or at risk of osteoarthritis and a RNA, DNA, PNA or ribozyme molecule comprising a nucleotide sequence identical to or 90% or more identical to a portion of a nucleotide sequence in SEQ ID NO: 1-12.
- 49. The composition of claim 48, wherein the RNA molecule is a short inhibitory RNA molecule.

Abstract of the Disclosure

Provided herein are methods for identifying a risk of osteoarthritis in a subject, reagents and kits for carrying out the methods, methods for identifying candidate therapeutics for treating osteoarthritis, and therapeutic and preventative methods applicable to osteoarthritis. These embodiments are based upon an analysis of polymorphic variations in nucleotide sequences within the human genome.

App No.: Not Yet Assigned Docket No.: 524593008700 Inventor: Steven MAH, et al.

Title: METHODS FOR IDENTIFYING RISK OF OSTEOARTHRITIS AND TREATMENTS THEREOF

FIGURE 1A

CHROM 6 - DISCOVERY P-VALUES (female only)

FIGURE 1B

ELP3 - DISCOVERY P-VALUES (female only)

App No.: Not Yet Assigned Inventor: Steven MAH, et al.

Docket No.: 524593008700

Title: METHODS FOR IDENTIFYING RISK OF

OSTEOARTHRITIS AND TREATMENTS THEREOF

FIGURE 1C

CHDC1 - DISCOVERY P-VALUES (female only)

FIGURE 1D

ERG - DISCOVERY P-VALUES (female only)

Application Data Sheet

Application Information

Application Type:: Provisional

Subject Matter:: Utility

Suggested Group Art Unit:: Not Yet Assigned

CD-ROM or CD-R?:: None

Sequence submission?:: None

Computer Readable Form (CRF)?:: No

Title:: METHODS FOR IDENTIFYING RISK OF

OSTEOARTHRITIS AND TREATMENTS

THEREOF

Attorney Docket Number:: 524593008700

Request for Early Publication?:: No

Request for Non-Publication?:: No

Total Drawing Sheets?:: 2

Small Entity?:: Yes

Petition included?:: No

Secrecy Order in Parent Appl.?:: No

Applicant Information

Applicant Authority Type:: Inventor

Primary Citizenship Country:: US

Status:: Full Capacity

Given Name:: Steven

Family Name:: MAH

City of Residence:: San Diego

State or Province of Residence:: CA

Country of Residence:: US

Street of mailing address:: 12820 Via Nieve #74

Page # 1

City of mailing address:: San Diego

State or Province of mailing address:: CA

Postal or Zip Code of mailing address:: 92130

Applicant Authority Type:: Inventor

Primary Citizenship Country:: Germany

Status:: Full Capacity

Given Name:: Andreas

Family Name:: BRAUN

City of Residence:: San Diego

State or Province of Residence:: CA

Country of Residence:: US

Street of mailing address:: 3935 Lago Di Grata Circle

City of mailing address:: San Diego

State or Province of mailing address:: CA

Postal or Zip Code of mailing address:: 92130

Applicant Authority Type:: Inventor

Primary Citizenship Country:: Germany

Status:: Full Capacity

Given Name:: Stefan

Middle Name:: M.

Family Name:: KAMMERER

City of Residence:: San Diego

State or Province of Residence:: CA

Country of Residence:: US

Street of mailing address:: 3825 Elijah Court, Unit 334

City of mailing address:: San Diego

State or Province of mailing address:: CA

Postal or Zip Code of mailing address:: 92130

Applicant Authority Type:: Inventor

Primary Citizenship Country:: US

Status:: Full Capacity

Page # 2 Initial 04/01/04

Given Name:: Matthew

Middle Name:: Roberts

Family Name:: NELSON

City of Residence:: San Marcos

State or Province of Residence:: CA

Country of Residence:: US

Street of mailing address:: 1250 Calle Prospero

City of mailing address:: San Marcos

State or Province of mailing address:: CA

Postal or Zip Code of mailing address:: 92069

Applicant Authority Type:: Inventor

Primary Citizenship Country:: Sweden

Status:: Full Capacity

Given Name:: Rikard

Middle Name:: Henry 👳

Family Name:: RENELAND

City of Residence:: San Diego

State or Province of Residence:: CA

Country of Residence:: US

Street of mailing address:: 7555 Charmant Drive, #1114

City of mailing address:: San Diego

State or Province of mailing address:: CA

Postal or Zip Code of mailing address:: 92122

Applicant Authority Type:: Inventor

Primary Citizenship Country:: United Kingdom

Status:: Full Capacity

Given Name:: Maria

Middle Name::

Family Name:: LANGDOWN

City of Residence:: San Diego

Page # 3 Initial 04/01/04

State or Province of Residence:: CA

Country of Residence:: US

Street of mailing address:: 3701 Yosemite Street

City of mailing address:: San Diego

State or Province of mailing address:: CA

Postal or Zip Code of mailing address:: 92109

Correspondence Information

Correspondence Customer Number:: 25225

Representative Information

Representative Customer Number:: 25225

£,

Page#4