Notation:

n^L = number of neurons in layer L. n⁰ is number of inputs

 w_{ii}^{L} = weight into layer L, from neuron j to neuron i

W^L = matrix of weights from L-1 to L, dimension 2

b, = bias for neuron i of layer L

B^L = bias vector for layer L

 a_i^L = output i of layer L.

A^L = vector output of layer L. A⁰ is input vector

 z^{L} = weighted sum of neuron i of layer L incl bias.

 σ = activation function. $a_i^L = \sigma(z_i^L)$, or sometimes, $a_i^L = \sigma(Z^L)$ e.g. for softmax

E = Loss function $E(A^N, Y)$, where N is final layer. (E for "error" to disambiguate from L)

d_L = partial of E wrt z_L

Chain Rule Partials for BackProp

For all
$$w_{ij}$$
:
$$\partial E/\partial z_i^{\ 1} = \partial a_i^{\ 1}/\partial z_i^{\ 1} * \Sigma_k (\partial z_k^{\ 2}/\partial a_i^{\ 1} * \partial E/\partial z_k^{\ 2}) \qquad \partial E/\partial z_j^{\ 2} = \partial a_j/\partial z_j^{\ *} \partial E/\partial a_j^{\ 2}$$

$$= \partial a_i^{\ 1}/\partial z_i^{\ 1} * \Sigma_k (w_{ki}^{\ 2} * \partial E/\partial z_k^{\ 2})$$

$$= \partial a_i^{\ 1}/\partial z_i^{\ 1} * \Sigma_k (w_{ki}^{\ 2} * \partial E/\partial z_k^{\ 2})$$

Partials for Activations:

For relu: 1 if a > 0, 0 otherwise

For S(z): $\partial a/\partial z = e^{-z}/(1+e^{-z})^2$

For SM(Z) it's more complex.
$$\partial a/\partial z$$
 requires a matrix of $\partial a_j/\partial z_i$ for all j, i:

for $i = i$: $\partial a/\partial z = a(1-a)$
 $\partial E/\partial z_1$

$$\begin{split} &\text{for } i=j \colon \partial a_j/\partial z_i=a_j(1-a_i)\\ &\text{for } i\!<\!\!>j \colon \partial a_j/\partial z_i=a_j(0-a_i)\\ &\text{or just } \partial a_j/\partial z_i=a_j(\delta_{ij}-a_i) \end{split}$$

$$\frac{\partial E}{\partial z_0} = \frac{\partial a_0}{\partial z_0} \frac{\partial a_1}{\partial z_0} \frac{\partial a_2}{\partial z_0} = \frac{\partial E}{\partial a_0}$$

$$\frac{\partial E}{\partial z_1} = \frac{\partial a_0}{\partial z_1} \frac{\partial a_1}{\partial z_1} \frac{\partial a_2}{\partial z_1} \frac{\partial E}{\partial z_2}$$

$$\frac{\partial E}{\partial z_2} = \frac{\partial a_0}{\partial z_2} \frac{\partial a_1}{\partial z_2} \frac{\partial a_2}{\partial z_2}$$

$$\frac{\partial E}{\partial a_0} = \frac{\partial E}{\partial a_0}$$

Partials for Loss Functions

For MSE: $\partial E/\partial a_i = 2(a_i - y_i)$

For crossentropy: $\partial E/\partial a_i = -y_i/a_i$