МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

Лабораторная работа №3

по дисциплине: Теория автоматов и формальных языков тема: «Регулярные языки и конечные распознаватели»

Выполнил: ст. группы ПВ-223 Пахомов Владислав Андреевич

Проверили: ст. пр. Рязанов Юрий Дмитриевич

Лабораторная работа №3

Регулярные языки и конечные распознаватели Вариант 8

Цель работы: изучить основные способы задания регулярных языков, способы построения, алгоритмы преобразования, анализа и реализации конечных распознавателей.

1.	Язык L_1 в алфавите $\{0,1\}$, представляющий собой множество цепочек, в которых на предпослежнем месте стоит единица, задан грамматикой: $S \to A10$ $A \to A011$
	$A \rightarrow 0A$
	$A \rightarrow 1A$
	$A \rightarrow \epsilon$
	Построить детерминированный конечный распознаватель языка L_1 .
	Преобразуем заданную грамматику к автоматной правосторонней. Сейчас она яв ляется КС-грамматикой.
	Приведём грамматику и устраним левую рекурсию.
	Лишних символов в грамматике нет.
	В грамматике есть є-правило. Исключим его.
	$S \rightarrow A10$
	$S \rightarrow 10$
	$A \rightarrow A011$

 $A \rightarrow 011$ $A \rightarrow 0A$ $A \rightarrow 0$ $A \rightarrow 1A$ $A \rightarrow 1$

 $S \rightarrow A10$ $S \rightarrow 10$ $A \rightarrow 011B$ $A \rightarrow 0AB$ $A \rightarrow 0B$ $A \rightarrow 1AB$ $A \rightarrow 1B$ $A \rightarrow 011$ $A \rightarrow 0A$ $A \rightarrow 0$ $A \rightarrow 1A$ $A \rightarrow 1$ $B \rightarrow 011B$

 $B \rightarrow \epsilon$

Цепных правил в грамматике нет.

В грамматике есть левая рекурсия. Исключим её.

В грамматике есть ε-правило. Исключим его.

```
S \rightarrow A10
S \rightarrow 10
A \rightarrow 011
A \rightarrow 011B
A \rightarrow 0A
A \rightarrow 0AB
A \rightarrow 0
A \rightarrow 0B
```

 $A \rightarrow 1A$

 $A \rightarrow 1AB$

 $A \rightarrow 1$

 $A \rightarrow 1B$

 $A \rightarrow 011$

 $A \rightarrow 0A$

 $A \rightarrow 0$

 $A \rightarrow 1A$

 $A \rightarrow 1$

 $B \rightarrow 011B$

 $B \rightarrow 011$

Исключим правила-дубликаты:

 $S \rightarrow A10$

 $S \rightarrow 10$

 $A \rightarrow 011$

 $A \rightarrow 011B$

 $A \rightarrow 0A$

 $A \rightarrow 0AB$

 $A \rightarrow 0$

 $A \rightarrow 0B$

 $A \rightarrow 1A$

 $A \rightarrow 1AB$

 $A \rightarrow 1$

 $A \rightarrow 1B$

 $B \rightarrow 011B$

 $B \rightarrow 011$

Грамматика приведена, а также в ней нет левой рекурсии. Преобразуем грамматику к такому виду, что каждое правило будет начинаться с терминала:

 $S \rightarrow 01110$

 $S \rightarrow 011B10$

 $S \rightarrow 0A10$

 $S \rightarrow 0AB10$

 $S \rightarrow 010$

 $S \rightarrow 0B10$

 $S \rightarrow 1A10$

 $S \rightarrow 1AB10$

 $S \rightarrow 110$

 $S \rightarrow 1B10$

 $S \rightarrow 10$

 $A \rightarrow 011$

 $A \rightarrow 011B$

 $A \rightarrow 0A$

 $A \rightarrow 0AB$

 $A \rightarrow 0$

 $A \rightarrow 0B$

 $A \rightarrow 1A$

 $A \rightarrow 1AB$

 $A \rightarrow 1$

 $A \rightarrow 1B$

 $B \rightarrow 011B$

 $B \rightarrow 011$

Преобразуем КС-грамматику к правосторонней:

Преобразовать грамматику к правосторонней невозможно, так как в ходе преобразований получили правило (подчёркнутое с !!! в вычислениях) $N_4 \to {\rm AB}N_1$. С правилом $N_3 \to {\rm A}N_1$ они имеют общий префикс и постфикс, в дальнейшем мы будем получать правила вида ${\rm AB}*N_1$, получаем рекурсию, и следовательно правостороннюю грамматику с конечным числом правил получить нельзя. Задание невыполнимо.

2. Язык L_2 в алфавите $\{0,1\}$, представляющий собой множество цепочек, в которых на последнем месте стоит единица, задан регулярным выражением: (0+1)*1

Построить детерминированный конечный распознаватель языка L_2 . Для начала построим конечный недетерминированный распознаватель языка:

Получение недетерминированного конечного распознавателя:

Данный распознаватель языка не является детерминированным, так как он содержит є-переходы. Преобразуем данный конечный распознаватель языка в детерминированный:

	\downarrow			1
	S1	S2	S3	S4
1		S2	S4	
0		S2		
3	S2	S3		

Удалим є-переходы:

 ϵ -замыкания: $\epsilon(S1) = \{S1, S2\}, \, \epsilon(S2) = \{S2, S3\}, \, \epsilon(S3) = \{S3\}, \, \epsilon(S4) = \{S4\}$

	<u> </u>	↓		1
	ε(S1)	ε(S2)	ε(S3)	ε(S4)
	{S1, S2}	{S2, S3}	{S3}	{S4}
1	ε(S2)	$\varepsilon(S2), \varepsilon(S4)$	ε(S4)	
0	ε(S2)	ε(S2)		

	+	<u> </u>		1
	S1	S2	S3	S4
1	S2, S3	S2, S3, S4	S4	
0	S2, S3	S2, S3		

Устранение ε-переходов

Преобразуем недетерминированный конечный распознаватель в детерминированный:

	i Dilli					
	{S1, S2}	{S2, S3}	{S2, S3, S4}			
1	{S2, S3, S4}	{S2, S3, S4}	{S2, S3, S4}			
0	{S2, S3}	{S2, S3}	{S2, S3}			

Обозначим множества состояний как S'1, S'2, S'3...

S'1 обозначим как начальное состояние, солгасно алгоритму, а S'3 обозначим как допускающее состояние, так как множество $\{S2, S3, S4\}$ включает в себя допускающее состояние S4.

	\		1
	S'1	S'2	S'3
1	S'3	S'3	S'3
0	S'2	S'2	S'2

Переход к детерминированному распознавателю

Построили детерминированный конечный распознаватель языка L_2 .

3. Построить минимальный детерминированный конечный распознаватель языка L_3 в алфавите $\{0,1\}$, представляющий собой множество цепочек, в которых хотя бы на одной из последних двух позиций стоит единица.

Пусть у нас будет исходный распознаватель языка L_3 . В начальном состоянии S1 мы итеративно получаем 0 и 1, для окончания работы переходим в состояние S2 по входному символу 1, из него можем попасть в допускающие состояния S3 или S4 по входным символам 0 и 1 соответственно, так как если 1 - предпоследний символ, то строку можем закончить либо 1 либо 0. Если же предпоследний символ - 0, то из состояния S1 можно перейти в состояние S5 при входном символе 0. Однако из S5 мы теперь можем попасть только в S3, так как если предпоследний символ - 0, то последним обязательно должен быть 1. Получили недетерминированный конечный алгоритм без ϵ -переходов:

Исходный недетерминированный распознаватель

Преобразуем распознаватель в детерминированный:

	{S1}	{S1, S2}	$\{S1, S5\}$	{S1, S2, S4}	{S1, S5, S3}
1	{S1, S2}	{S1, S2, S4}	{S1, S2, S4}	{S1, S2, S4}	{S1, S2, S4}
0	{S1, S5}	{S1, S5, S3}	{S1, S5}	{S1, S5, S3}	{S1, S5}

	\			1	1
	S1	S2	S3	S4	S5
1	S2	S4	S4	S4	S4
0	S3	S5	S3	S5	S3

Детерминированный распознаватель

Полученный распознаватель является детерминированным, однако является ли он минимальным?

Вывод: в ходе лабораторной работы изучили основные способы задания регулярных языков, способы построения, алгоритмы преобразования, анализа и реализации конечных распознавателей.