FILTER MEMBERSHIP OF COATOMS IN A PARTITION LATTICE IS NP-COMPLETE

WILLIAM DEMEO AND HYEYOUNG SHIN

ABSTRACT. We show that 3SAT reduces to the problem of deciding whether all coatoms in a certain partition lattice are contained in the union of a collection of certain principal filters of the lattice, so the latter problem is NP-complete. We conclude with a discussion of the tractability of such filter membership problems.

1. Introduction

We show that 3SAT reduces to the problem of deciding whether all coatoms in a certain partition lattice are contained in the union of a collection of certain principal filters of the lattice. Thus the latter problem, which we call the *covered coatoms problem* (CCP), is NP-complete. To prove this, we show that NAE-3SAT reduces to CCP. We conclude with a discussion of the tractability of such a filter membership problem. In particular, we describe some first steps toward a polynomial-time algorithm for solving instances of CCP.

1.1. Reduction of 3SAT to NAE-3SAT. First we find an instance of non-satisfiable NAE-3SAT. Let $\phi = \{(x_0, x_1, x_2), (\neg x_0, x_1, x_2), (x_0, \neg x_1, x_2), (x_0, x_1, \neg x_2)\}$. ϕ is not satisfiable because for it to be satisfiable, $(x_0, x_1, x_2) \notin \{(0, 0, 0), (1, 1, 1)\}$ for the first clause to be not-all-equal, $(x_0, x_1, x_2) \notin \{(1, 0, 0), (0, 1, 1, 1)\}$ for the second clause to be not-all-equal, $(x_0, x_1, x_2) \notin \{(0, 1, 0), (1, 0, 1)\}$ for the third clause to be not-all-equal, and $(x_0, x_1, x_2) \notin \{(0, 0, 1), (1, 1, 0)\}$.

(This section is under major revision.)

1.2. **Reduction of NAE-3SAT to CCP.** Consider the relational structure $\mathbb{B} = \langle \{0,1\}, R \rangle$ where R is the ternary relation $\{0,1\}^3 - \{(0,0,0),(1,1,1)\}$. That is,

$$R = \{(0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0)\}.$$

The CSP associated with the relational structure \mathbb{B} is denoted by $CSP(\mathbb{B})$ and described as follows: An *instance* is a (finite) relational structure $\mathbb{A} = \langle A, S \rangle$ with a single ternary relation S, and $CSP(\mathbb{B})$ is the following decision problem:

Problem. Given an instance $\mathbb{A} = \langle A, S \rangle$, does there exist a (relational structure) homomorphism from \mathbb{A} to \mathbb{B} ?

In other words, does there exist a function $f: A \to \{0,1\}$ such that $(f(a), f(b), f(c)) \in R$ whenever $(a, b, c) \in S$?

The kernel of a function f with codomain $\{0,1\}$ has two equivalence classes—namely, $f^{-1}\{0\}$ and $f^{-1}\{1\}$. If one of these classes is empty, then f is constant in which case it cannot be a homomorphism into the relational structure $\langle \{0,1\},R\rangle$ (since $(0,0,0) \notin R$ and

Date: December 28, 2016.

 $(1,1,1) \notin R$). Therefore, the kernel of every homomorphism $f: \mathbb{A} \to \mathbb{B}$ has two nonempty blocks.

Now, given a partition of A into two blocks, $\pi = |A_1|A_2|$, there are exactly two functions of type $A \to \{0,1\}$ with kernel π . One is f(x) = 0 iff $x \in A_1$ and the other is 1 - f. It is obvious that either both f and 1 - f are homomorphisms or neither f nor 1 - f is a homomorphism. Indeed, both are homomorphisms if and only if for all tuples $(a,b,c) \in S$ we have $\{a,b,c\} \nsubseteq A_1$ and $\{a,b,c\} \nsubseteq A_2$. Neither is a homomorphism if and only if there exists $(a,b,c) \in S$ with $\{a,b,c\} \subseteq A_1$ or $\{a,b,c\} \subseteq A_2$.

Now, for each tuple $s = (a, b, c) \in S$, we let $\operatorname{im}(s)$ (or simply $\operatorname{im} s$) denote the image of $\{0, 1, 2\}$ under s (viewing the sequence s as a function with domain the "index set" $\{0, 1, 2\}$ and codomain the set A). Furthermore, we let $\langle \operatorname{im} s \rangle$ denote the equivalence relation on A generated by $\operatorname{im} s$. Thus, if s = (a, b, c), then

$$\langle \operatorname{im} s \rangle = \{(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)\} \cup \{(x, x) : x \in A\}.$$

The partition corresponding to $\langle \operatorname{im} s \rangle$ is $\pi_{\langle \operatorname{im} s \rangle} = |a, b, c| x_1 | x_2 | \cdots$. It is clear that a function $f \colon A \to \{0, 1\}$ is a homomorphism from \mathbb{A} to \mathbb{B} if and only if for all $s \in S$ the relation $\langle \operatorname{im} s \rangle$ does not belong to the kernel of f. Therefore, a solution to the instance $\mathbb{A} = \langle A, S \rangle$ of CSP(\mathbb{B}) exists if and only if there is at least one coatom in the lattice of equivalence relations of A that is not contained in the union $\bigcup_{s \in S} {}^{\uparrow} \langle \operatorname{im} s \rangle$ of principal filters.

The covered coatoms problem (CCP) is the following: Given a set A and a list $s_1 = (a_1, b_1, c_1), s_2 = (a_2, b_2, c_2), \ldots, s_n = (a_n, b_n, c_n)$ of triples with elements in A, decide whether all of the coatoms of the lattice \prod_A of partitions of A are contained in the union $\bigcup_{i=1}^n {\uparrow (\operatorname{im} s_i)}$ of principal filters.

University of Hawaii

 $E ext{-}mail\ address:$ williamdemeo@gmail.com

University of Hawaii

E-mail address: hyeyoungshinw@gmail.com