Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference

Migrate-n version 3.7.2 [April-12-18]

Program started at Fri May 28 15:34:13 2021 Program finished at Fri May 28 23:44:04 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 1242138697

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	*	*	0	0	0	0	0	0	0	0	0	0
2 Bamfiel	*	*	*	0	0	0	0	0	0	0	0	0
3 PortRen	0	*	*	*	0	0	0	0	0	0	0	0
4 WalkOnB	0	0	*	*	*	0	0	0	0	0	0	0
5 BodegaH	0	0	0	*	*	*	0	0	0	0	0	0
6 Davenpo	0	0	0	0	*	*	*	0	0	0	0	0
7 VistaDe	0	0	0	0	0	*	*	*	0	0	0	0
8 HazardR	0	0	0	0	0	0	*	*	*	0	0	0
9 Refugio	0	0	0	0	0	0	0	*	*	*	0	0
10 Carpint	0	0	0	0	0	0	0	0	*	*	*	0

11 WhitePo		0	0	0	0	0	0	0	0	0	*	*	*	
12		0	0	0	0	0	0	0	0	0	0	*	*	
Order of param	eters:													
1	Θ_1							<0	lispla	ayed:	>			
2	Θ_2^1							<0	lispla	ayed:	>			
3	Θ_{2}							<0	lispla	ayed:	>			
4	Θ_4^3							<0	lispla	ayed:	>			
5	Θ_5							<0	lispla	ayed:	>			
6	Θ_6							<0	lispla	ayed:	>			
7	Θ_7							<0	lispla	ayed:	>			
8	Θ_8							<0	lispla	ayed:	>			
9	Θ_{o}							<0	lispla	ayed:	>			
10	Θ_{10}							<0	lispla	ayed:	>			
11	Θ_{11}							<0	lispla	ayed:	>			
12	Θ_{12}^{11}							<0	lispla	ayed:	>			
13	IVI ₂ .	->1						<0	lispla	ayed:	>			
24	M ₁ .	->2						<0	lispla	ayed:	>			
25	M ₃ .	->2						<0	lispla	ayed:	>			
36	M ₂ .	->3						<0	lispla	ayed:	>			
37	M ₄ .	->3						<0	lispla	ayed:	>			
48	M ₃ .	->4						<0	lispla	ayed:	>			
49	M ₅ .	->4						<0	lispla	ayed:	>			
60	M ₄ .	->5						<0	lispla	ayed:	>			
61	M ₆₋	->5						<0	lispla	ayed:	>			
72	M ₅ .	->6								ayed:				
73	M ₇ .	->6						<0	lispla	ayed:	>			
84	M ₆₋	->7						<0	lispla	ayed:	>			
85	M ₈	->7						<0	lispla	ayed:	>			
96	M ₇ .	->8						<0	lispla	ayed:	>			
97	M ₉ .	->8								ayed:				
108	M ₈₋	->9							-	ayed:				
109	M_{10}	0->9								ayed:				
120	M ₉ .	->10							-	ayed:				
121	M_{1}	1->10	0						-	ayed:				
132	M_{10}	0->1	1						-	ayed:				
133	M_{12}	2->1	1						-	ayed:				
144	M_{1}	1->1	2					<0	lispla	ayed:	>			
Mutation rate an	nong loo	ci:												Mutation rate is constant
Analysis strateg	y:													Bayesian inference

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Slice sampling

Prior distribution for parameter

Parameter Prior Delta Bins Minimum Mean* Maximum Theta Exp window 0.000010 0.010000 10.000000 1.000000 500 0.000100 100000.000000 1000000.000000 100000.000000 Μ Exp window 500

Markov chain settings: Long chain

Number of chains 1

Recorded steps [a]1000Increment (record every x step [b]100Number of concurrent chains (replicates) [c]3Visited (sampled) parameter values [a*b*c]300000Number of discard trees per chain (burn-in)1000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

100000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: ../../mcalifornianus_210528.mig

Output file:

Posterior distribution raw histogram file:

Print data:

outfile.txt
bayesfile

No

Print genealogies [only some for some data type]:

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
2 Bamfiel	1	23
3 PortRen	1	15
4 WalkOnB	1	16
5 BodegaH	1	7
6 Davenpo	1	17
7 VistaDe	1	19
8 HazardR	1	23
9 Refugio	1	16
10 Carpint	1	19
11 WhitePo	1	10
12	1	0
Total of all populations	1	184

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02251
1	Θ_2	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02900
1	Θ_3	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01130
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01784
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01587
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02140
1	Θ_{7}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01455
1	Θ_8	0.00001	0.00001	0.01001	0.08001	0.18001	0.09001	0.03043
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01324
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01618
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01477
1	Θ_{12}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00998
1	M _{2->1}	0.0	0.0	1000.0	12000.0	20000.0	13000.0	33582.5
1	M _{1->2}	0.0	0.0	1000.0	0.0008	18000.0	9000.0	17793.4
1	$M_{3->2}$	0.0	14000.0	25000.0	34000.0	46000.0	27000.0	24218.3
1	$M_{2->3}$	10000.0	20000.0	31000.0	38000.0	86000.0	69000.0	73329.6
1	$M_{4->3}$	0.00008	90000.0	105000.0	118000.0	130000.0	101000.0	72916.8
1	$M_{3->4}$	68000.0	0.00088	105000.0	118000.0	130000.0	93000.0	81454.4
1	M _{5->4}	10000.0	46000.0	61000.0	76000.0	82000.0	57000.0	49988.7
1	M _{4->5}	86000.0	150000.0	169000.0	190000.0	212000.0	163000.0	154160.5
1	M _{6->5}	60000.0	66000.0	85000.0	102000.0	108000.0	179000.0	176257.9
1	M _{5->6}	22000.0	30000.0	43000.0	56000.0	100000.0	81000.0	104502.8
1	M _{7->6}	0.0	0.0	1000.0	22000.0	70000.0	27000.0	28832.0
1	M _{6->7}	8000.0	48000.0	63000.0	78000.0	84000.0	57000.0	49502.2
1	M _{8->7}	0.0	2000.0	15000.0	26000.0	32000.0	73000.0	68794.1
1	M _{7->8}	0.0	2000.0	13000.0	26000.0	94000.0	47000.0	43904.9
1	M _{9->8}	0.0	0.0	5000.0	18000.0	52000.0	19000.0	15902.3
1	M _{8->9}	12000.0	26000.0	37000.0	48000.0	60000.0	131000.0	109745.3
1	M _{10->9}	28000.0	44000.0	59000.0	70000.0	108000.0	63000.0	64858.2
1	M _{9->10}	22000.0	32000.0	49000.0	62000.0	76000.0	59000.0	77076.4
1	M _{11->10}	0.0	2000.0	15000.0	28000.0	38000.0	25000.0	54550.7
1	M _{10->11}	0.0	24000.0	41000.0	52000.0	60000.0	37000.0	31398.2
1	M _{12->11}	0.0	0.0	1000.0	18000.0	70000.0	49000.0	52237.6
1	M _{11->12}	118000.0	124000.0	179000.0	214000.0	232000.0	593000.0	541770.3

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345 Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968. Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 15:34:13]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2153.456227	(1a)
	-2079.808659	(1b)
Harmonic mean	-1833.160901	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	442/4414	0.10014
Θ_2	309/4425	0.06983
Θ_3^-	805/4367	0.18434
Θ_{A}	1323/4428	0.29878
) ₅	2293/4356	0.52640
06	1248/4338	0.28769
7	1705/4498	0.37906
) ₈	849/4424	0.19191
$\mathbf{p}_{\mathbf{q}}$	2663/4375	0.60869
)10	2352/4354	0.54019
11	2225/4400	0.50568
12	3878/4417	0.87797
1 2->1	4314/4314	1.00000
1 _{1->2}	4441/4441	1.00000
1 _{3->2}	4465/4465	1.00000
1 2->3	4408/4408	1.00000
1 _{4->3}	4367/4367	1.00000
1 3->4	4483/4483	1.00000
1 _{5->4}	4415/4415	1.00000
1 4->5	4426/4426	1.00000
1 6->5	4378/4378	1.00000
1 5->6	4472/4472	1.00000
1 7->6	4328/4328	1.00000
1 6->7	4394/4394	1.00000
1 8->7	4333/4333	1.00000
1 7->8	4452/4452	1.00000
1 _{9->8}	4469/4469	1.00000
1 8->9	4428/4428	1.00000
1 10->9	4508/4508	1.00000
A 9->10	4474/4474	1.00000
11->10	4365/4365	1.00000
10->11	4319/4319	1.00000
10->11	4408/4408	1.00000
11->12	4431/4431	1.00000
Genealogies	34858/150126	0.23219

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.93880	97.92
Θ_2	0.96533	53.28
Θ_3	0.89950	160.70
94	0.77987	377.88
) ₅	0.61613	713.40
06	0.75091	427.44
) ₇	0.74768	439.89
$0_{8}^{'}$	0.86186	230.24
O_{0}	0.52038	961.31
) ₁₀	0.55670	894.51
) ₁₁	0.62080	704.19
12	0.28094	1707.14
1 2->1	0.79415	345.23
1 1->2	0.84975	243.77
1 3->2	0.83780	267.87
1 2->3	0.78602	359.68
1 4->3	0.79576	341.60
1 3->4	0.75150	433.32
1 5->4	0.74529	445.27
1 4->5	0.86677	214.78
1 6->5	0.82563	296.14
1 5->6	0.76299	414.75
7->6	0.73045	488.02
1 6->7	0.74260	450.57
1 8->7	0.71038	515.80
1 7->8	0.89260	171.06
1 9->8	0.74322	444.04
1 8->9	0.75600	416.88
1 10->9	0.75696	419.74
1 _{9->10}	0.67726	577.39
1 11->10	0.73275	468.47
10->11	0.71144	519.04
10->11	0.78318	377.80
11->12	0.78976	357.59
n[Prob(D G)]	0.97596	36.50

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very

informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run