Optimisation convexe

$5~\mathrm{mars}~2015$

Table des matières

1	Rappels	2
	1.1 Calcul différentiel	2
	1.2 Rappel sur les formes différentielles	4
	1.2.1 Comment définir une distribution?	6
	1.2.2 Différentielle extérieure	6

Introduction

♣ Définition: Variété

M est une variété de dimension n si :

- 1. $\forall p \in M, \exists U,$ voisinage ouvert de $p, \exists \phi : U \to \mathbb{R}^n$ un homéomorphisme
- 2. $\forall p \in U, \phi : U \to \mathbb{R}^n, p \in V, \psi : V \to \mathbb{R}^n, \psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$ doit être de classe \mathcal{C}^k , \mathcal{C}^{∞} ou \mathcal{C}^{ω} (analytique).

On parle alors de variété de classe \mathcal{C}^k , \mathcal{C}^{∞} ou \mathcal{C}^{ω}

🔩 Définition: Espace tangent en p

Soit $X \subset \mathbb{R}^n$ un ouvert. On appelle espace tangent en p :

$$T_pX = {\dot{\gamma}(0), \gamma \text{ une courbe passant par } p}$$

♣ Définition: Fibré tangent

On prend une variété Q de dimension d. On appelle fibré tangent :

$$TQ = \bigcup_{q \in Q} T_q Q$$

de dimension 2d

♦ Définition: Espace cotangent

On appelle l'espace cotangent le dual d'un espace tangent :

$$T_q^*Q = (T_qQ)^*$$

1 Rappels

1.1 Calcul différentiel

♣ Définition: Crochet de Lie

Soit $f, g \in V^{\infty}(X)$. On définit :

$$[f,g](p) = \frac{\partial}{\partial t} (\gamma_{-t}^f)_* g(p) \Big|_{t=0} = Dg(x).f(x) - DF(x).g(x)$$

1 Proposition:

$$\forall p \in X, \ \forall t, s \in \mathbb{R}, \ \gamma_s^{-g} \circ \gamma_t^{-f} \circ \gamma_s^g \circ \gamma_t^f(p) = p \Leftrightarrow [f,g] \equiv 0$$

1 Proposition:

1. Soit γ_t le flot de $\dot{x} = f(x)$. Alors σ_t , le flot de $\dot{y} = (\phi_* f)(y)$ est :

$$\sigma_t = \phi \circ \gamma_t \circ \phi^{-1}$$

2. Soient $f,g\in V^\infty(X)$ et ϕ un difféomorphisme. Alors :

$$\phi_*[f,g] = [\phi_*f,\phi_*g]$$

3. $\left(\gamma_t^f\right)_{t} f = f$

♣ Définition: Distribution

Une distribution sur X, une variété de dimension n, est une application $p \in X \mapsto \mathcal{D}(p) \subset T_pX$. $\mathcal{D}(p)$ étant un sous-espace linéaire, une distribution est donc un champ de sous-espaces. Soient $f_1, ..., f_k \in V^{\infty}(X)$. On pose

$$\mathcal{D}(p) = vect\{f_1(p), ..., f_k(p)\}\$$

On dit alors que \mathcal{D} est de rang constant (=k).

A Définition

 $\mathcal D$ est dite intégrale si $\forall p \in X, \, \exists S$ une variété, $p \in S$ tel que

$$T_q S = \mathcal{D}(q), \ \forall q \in S$$

A Définition: Involutive

 $f \in V^{\infty}(X)$. On dit $f \in \mathcal{D}$ si $\forall p \in X$, $f(p) \in \mathcal{D}(p)$. \mathcal{D} est dite involutive si $f, g \in \mathcal{D} \Rightarrow [f, g] \in \mathcal{D}$.

⇔ Théorème: Frobenius

Soit \mathcal{D} une distribution de rang constant k. Alors les conditions suivants sont équivalentes :

- 1. \mathcal{D} intégrable
- 2. \mathcal{D} involutive
- 3. localement, autour de chaque point $p \in X$,

$$\exists (x_1, ..., x_k, ..., x_n); \mathcal{D} = span\{\frac{\partial}{\partial x_1}, ..., \frac{\partial}{\partial x_k}\}$$

1.2Rappel sur les formes différentielles

Soit E un espace vectoriel, $e_1, ..., e_n$ sa base. On a également E^* son dual, et $e^1, ..., e^n$ sa base duale.

$$e^j(e_i) = \delta_i^j$$

 $T: E \times ... \times E \to \mathbb{R}$ k-linéaire est dit un k-tenseur (ensemble noté $T^k(E)$).

Soit $T \in T^k(E)$, $S \in T^l(E)$. On pose : $T \otimes S(x_1, ...)$

$$T \otimes S(x_1, ..., x_{k+l}) = T(x_1, ..., x_k)S(x_{k+1}, ..., x_{k+l})$$

Remarque : En général, $T \otimes S \neq S \otimes T$.

i Propriété:

Une base de l'espace des k-tenseurs est formé par :

$$\bigotimes_{l=1}^{k} e^{i_{l}}$$

⇔ Corollaire:

$$\dim T^k(E) = n^k.$$

 $A^k(E)$: k-tenseur antisymétriques, ie:

$$\begin{split} T(v_1,...,v_i,...,v_j,...,v_k) &= -T(v_1,...,v_j,...,v_i,...,v_k) \\ \Leftrightarrow & T(...,v_i,v_{i+1},...) = -T(...,v_{i+1},v_i,...) \\ \Leftrightarrow & T(v_{\sigma(1)},...,v_{\sigma(k)}) = sgn(\sigma)T(v_1,...,v_k) \end{split}$$

Comment produire des tenseurs antisymétriques?

$$Alt: \begin{array}{ccc} T^k(E) & \to & T^k(E) \\ T & \mapsto & \frac{1}{k!} \sum_{\sigma \in \Sigma_k} \varepsilon(\sigma) T(x_{\sigma(1)}, ..., x_{\sigma(k)}) \end{array}$$

où Σ_k est l'ensemble des permutations de k éléments, $\varepsilon(\sigma)$ est le signe de la permutation.

1 Proposition:

- $$\begin{split} &1.\ T\in T^k(E)\Rightarrow Alt(T)\in A^k(E)\\ &2.\ T\in A^k(E)\Rightarrow Alt(T)=T\\ &3.\ T\in S^k(E)\ (\text{tenseur symétrique})\Rightarrow Alt(T)=0 \end{split}$$

Soit $\omega\in A(E),\ \eta\in A^l(E).$ On définit $\omega\wedge\eta\in A^{k+l}(E),$ appelé produit extérieur par :

$$\omega \wedge \eta = \frac{(k+l)!}{k!l!} Alt(\omega \otimes \eta)$$

i Propriété:

- 1. $\omega \in A^k$, $\eta \in A^l \Rightarrow \omega \wedge \eta \in A^{k+l}(E)$ 2. $\omega \wedge \eta = (-1)^{kl} \eta \wedge \omega$ 3. $(\omega \wedge \eta) \wedge \theta = \omega \wedge (\eta \wedge \theta)$

\Rightarrow Corollaire:

Soit $\omega \in A^{2k+1}(E)$

$$\omega \wedge \omega = 0$$

⇔ Corollaire:

Soit $e^1, ..., e^n$ la base duale.

$$e^i \wedge e^i = 0 \ e^i \wedge e^j = e^j \wedge e^i$$

1 Proposition:

Une base de $A^k(E)$ est donnée par :

$$e^{i_1} \wedge ... \wedge e^{i_k}$$
 où $1 < i_1 < ... < i_k < n$

⇔ Corollaire:

Si $\omega \in A^k(E)$

$$\omega = \sum_{1 \le i_1 < \dots < i_k \le n} \omega_{i_1, \dots, i_k} e^{i_1} \wedge \dots \wedge e^{i_k}$$

 $f(p) \in E = T_p X$ champ vecteur, $w(p) \in T_p^* X$ une 1-forme différentielle.

$$f(x) = \sum_{i=1}^{n} f^{i}(x) \frac{\partial}{\partial x^{i}}$$
 $w(p) = \sum_{j=1}^{n} w_{j}(x) dx^{j}$

$$w(f) = \sum_{j=1}^{n} w_j(x) f^j(x)$$

De même, une k-forme différentielle $\mathcal{C}^{\infty}: w \in \Lambda^k(X)$

$$w(x) = \sum_{1 \leq i_1 < \ldots < i_k \leq n} w_{i_1 \ldots i_k}(x) dx^{i_1} \wedge \ldots \wedge dx^{i_k}$$

1.2.1 Comment définir une distribution?

- 1. On choisit $f_1, ..., f_m \in V^{\infty}(X)$, et on pose $\mathcal{D} = span\{f_1, ..., f_m\}$
- 2. $p \in X \mapsto \mathscr{E}(p) \subset T_p^*X$ est une codistribution. On pose :

$$\mathcal{D} = \mathscr{E}^{\perp} = Ker\mathscr{E} = \{ f \in V^{\infty}(X); \langle w, f \rangle = 0, \ \forall w \in \mathscr{E} \}$$

Réciproquement, si \mathcal{D} est une distribution, on pose :

$$\mathscr{E} = \mathcal{D}^{\perp} = ann\mathscr{E} = \{ w \in \Lambda^k(X); \langle w, f \rangle = 0, \ \forall f \in \mathcal{D} \}$$

Remarque : Si $rg\mathcal{D}$ =cste (ou $rg\mathscr{E}$ =cste) :

- 1. $\operatorname{rg} \mathcal{D} + \operatorname{rg} \mathscr{E} = n$
- 2. $\langle w, f \rangle = 0$ peut être considéré point par poinr ou globalement

1.2.2 Différentielle extérieure

Soit $w \in \Lambda^k(X)$.

Si
$$k = 0$$
, $\Lambda^0(X) = \mathscr{C}^{\infty}(X)$

Si
$$k \ge 1$$
, $w(x) = \sum_{1 \le i_1 \le \dots \le i_k \le n} w_{i_1 \dots i_k}(x) dx^{i_1} \wedge \dots \wedge dx^{i_k}$ et

$$dw = \sum_{1 \leq i_1 < \ldots < i_k \leq n} dw_{i_1 \ldots i_k} \wedge dx^{i_1} \wedge \ldots \wedge dx^{i_k}$$

Ainsi:

$$\Lambda^0(X) \xrightarrow{d} \Lambda^1(X) \xrightarrow{d} \dots \xrightarrow{d} \Lambda^n(X) \xrightarrow{d} 0$$

1 Proposition:

Soit $w \in \Lambda^1(X)$, soient $f, g \in V^{\infty}(X)$. On a :

$$dw = L_f w(g) - L_g w(f) - w([f, g])$$

i Rappel:

$$\eta \in \Lambda^k(M), \ \omega \in \Lambda^l(M).$$

$$\eta \wedge \omega(v_1,...,v_{k+l}) = \frac{1}{k!l!} \sum_{\sigma \in S_{k+l}} sgn(\sigma) \eta(v_{\sigma(1)},...,v_{\sigma(k)}).\omega(v_{\sigma(k+1)},...,v_{\sigma(k+l)}) \in \Lambda^{k+l}(M)$$

Soit g indépendant en chaque point $p \in M$ de f_1 et f_2 .

$$dw \wedge \omega(f_1, f_2, g) = d\omega(f_1, f_2)\omega(g)$$

 $d\omega \wedge \omega \neq 0 \Leftrightarrow d\omega(f_1, f_2) = -\omega([f_1, f_2]) \neq 0$

2 cas possibles:

- 1. $\mathcal{D} = span\{f_1, f_2\}$ involutive
- 2. $\mathcal{D} = span\{f_1, f_2\}$ non involutive

Dans le premier cas, on a un système de coordonnées locales qui redresse le plan. Est-ce de même pour le deuxième cas? Sachant qu'ils sont bien plus courants, et stable : même s'il est perturbé, le tout reste $\neq 0$!

i Proposition: dans \mathbb{R}^3 , $rg\mathcal{D} = 2$

Les conditions suivantes sont équivalentes localement autour de $p \in M$

- 1. $[f,g](p) \notin \mathcal{D} = span\{f,g\}$ 2. $d\omega \wedge \omega(p) \neq 0$, où $\mathcal{D}^{\perp} = span\{\omega\}$ 3. $\exists \phi(x,y,z)$ des coordonnées locales autour de p tel que $\phi_*\mathcal{D} = span\left\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y} + x\frac{\partial}{\partial z}\right\}$ 4. $\mathcal{D}^{\perp} = span\{dz xdy\}$

1 Proposition:

La condition $d\omega \wedge \omega \equiv 0$ ne dépend pas du choix de ω .

→ Théorème: de Frobenius pour les formes différentielles

Les conditions suivantes sont équivalentes :

- 1. \mathcal{D} involutive
- 2. $\exists \alpha_j^i \in \Lambda^1(M), 1 \leq i, j \leq k$ tel que $d\omega_i = \sum_{i=1}^k \alpha_i^j \wedge \omega_j, 1 \leq i \leq k$
- 3. $d\omega_i=0\mod I$ où I est l'idéal dans $\bigcup_{p\geq 0}\Lambda^p(M)$ engendré par $\omega_1,...,\omega_k$ ie :

$$i \in I \Leftrightarrow i = a \wedge \omega_i$$

$$d\omega_i \wedge \omega_1 \wedge \dots \wedge \omega_k \equiv 0$$

On pose $\mathcal{D}_0 = \mathcal{D}$, $\mathcal{D}_{i+1} = \mathcal{D}_i + [\mathcal{D}_0, \mathcal{D}_i]$

🔸 Définition: Vecteur de croissance

Le vecteur de croissance de \mathcal{D} en p est la suite $(d_i(p)_{i>0}, \text{ où } d_i(p) = dim \mathcal{D}_i(p).$

Remarque: Si on n'indique pas p, d_i est constant.

\Rightarrow Corollaire: Dans \mathbb{R}^3 , $rg\mathcal{D}=2$

- 1. \mathcal{D} involutive \Leftrightarrow $(d_0, d_1) = (2, 2)$
- 2. $dw\omega \wedge \omega(p) \neq 0 \Leftrightarrow \forall q \in V_p, (d_0(q), d_1(q)) = (2,3)$ Si p est singulier, on a en p (2,2,3) et en dehors (2,3).

♣ Définition: Caractéristique

Un champ $v \in \mathcal{D}$ est dit caractéristique pour \mathcal{D} si

$$[v, f] \in \mathcal{D} \forall f \in \mathcal{D}$$

 $\mathcal{C} = \{v \in \mathcal{D}, \, v \text{ caractéristique}\}$ est dite la distribution caractéristique.

Remarque : v est parfois appelé symétrie infénitésimale, car $(\gamma_t^v)_t$ est une famille de symétries de \mathcal{D} . $\phi; M \to M$ difféomorphisme est une symétrie de \mathcal{D} si $\phi_* \mathcal{D} = \mathcal{D}$. Démontrez que $(\gamma_t^v)_* \mathcal{D} = \mathcal{D} \Leftrightarrow [v, \mathcal{D}] \subset \mathcal{D}$.

1 Proposition:

 $\mathcal C$ est toujours involutive.

i Proposition:

Soit $rg\mathcal{D}=m$. On suppose que $rg\mathcal{C}=p$. Autour de chaque point, il existe des coordonnées locales $(x^1,...,x^n)$ telles que

$$\mathcal{D} = span\left\{\frac{\partial}{\partial x^{1}}, ..., \frac{\partial}{\partial x^{p}}, f_{p+1}, ..., f_{m}\right\}$$

οì

$$f_j = \frac{\partial}{\partial x^j} + \sum_{q=m+1}^n f_j^q \frac{\partial}{\partial x^q}, \ p+1 \le j \le m, \quad \text{où } f_j^q = f_j^q(x^{p+1},...,x^n)$$