

广州阿路比电子科技有限公司 http://www.alubi.cn

目录

1.	产品介绍	1	-
2.	历史版本	2	<u> </u>
3.	系统概况	3	, _
	3.1 结构框图		
	3.2 功能引脚		
	3.3 典型应用		
	UART 模式		
	I ² C 模式	5	; -
	SPI 模式	6) –
	3.4 参考坐标系	6) –
4.	通信接口介绍	7	, _
	4.1 UART		
	4.2 I ² C		
	4.3 SPI		
	4.5 SPI 简介		
5.	性能参数	- 11	
6.	通信协议	- 12	! -
	6.1 LPBUS 协议	- 12	! -
	6.2 通信模式	- 12	! -
	6.3 LPBUS 数据包结构	- 13	-
	6.4 通信例程	- 16	• –
	将传感器进入 Command Mode	- 16	, -
	将传感器进入 Streaming Mode	- 17	' -
	读取传感器配置	- 18	; -
	读取陀螺仪范围	- 19	- ا
	设置加速度计范围		
	读取传感器数据		
	保存参数设置		
	陀螺仪校准		
	磁力计校准	- 26) –

	设置波特率	27 -
7.	封装信息	28 -
3.	附录	29 -
	8.1 Firmware function / command list	29 -
	Summary	29 -
	Acknowledged and Not-acknowledged Identifiers	31 -
	Configuration and Status Commands	31 -
	Mode Switching Commands	32 -
	Gyroscope Settings Command	33 -
	Accelerometer Settings Command	34 -
	Magnetometer Settings Command	34 -
	Data Transmission Commands	35 -
	Register Value Save and Reset Command	37 -
	Reference Setting and Offset Reset Command	37 -
	Device Info	39 -
	8.2 Register Map	40 -
	ME1 寄存器映射	40 -
	FUN_CONFIG 寄存器(0x00)	43 -
	SYS_CONFIG 寄存器(0x01)	43 -
	DATA_CTRL 寄存器(0x02)	43 -
	DATA_ENABLE 寄存器(0x03)	43 -
	CTRL_0_A 寄存器(0x04)	44 -
	CTRL_1_G 寄存器(0x05)	44 -
	CTRL_2_M 寄存器(0x06)	44 -
	STATUS 寄存器(0x07) (只读取)	45 -
	FILTER_CONFIG 寄存器(0x08)	45 -
	OFFSET_SETTING 寄存器(0x09)	46 -
	FIRMWARE_VERSION_0 寄存器(0x75)	46 -
	FIRMWARE_VERSION_1 寄存器(0x76)	46 -

1. 产品介绍

LPMS-ME1 是一款低成本、高精度的 9 轴惯性测量单元。它整合了三轴加速度计、三轴陀螺仪和三轴磁力计等传感器,通过我司独有的算法进行矫正和计算,能提供包括欧拉角、四元数和加速度等信息在内的精确数据。同时,该模块体积小巧,易于组装,方便用户嵌入到自己系统中进行开发和设计。

主要特征:

- MEMS 微型惯性测量单元(IMU)
- 集成三轴陀螺仪、三轴加速度计、三轴磁力计
- 实时计算传感器的姿态方向、线性加速度以及角速度等数据
- 电源输入: 3.3-5.5V
- 通信接口: UART, I2C, SPI
- 封装尺寸: PLCC-28 (12.0x12.0x2.6mm)

应用领域:

- 人体动作捕捉
- 物联网 (IOT) 设备
- 运动性能评估
- 无人机飞行控制

2. 历史版本

日期	版本号	更改
2019-06-14	ver. 1.17	增加了部分引脚的说明增加了部分寄存器的说明
2019-04-10	ver. 1.16	增加了 SPI 功能的说明增加了部分寄存器的描述修订了 LRC 的计算方式
2018-08-13	ver. 1.15	• 修订了一术语性错误
2018-03-22	ver. 1.14	修订了 IIC 描述上的错误更新了 ME1 引脚描述
2018-01-24	ver. 1.13	• 修订了通讯接口选择的说明
2017-10-02	ver. 1.12	将数据手册改为用户手册修改结构框图更新了通信协议例子
2017-08-08	ver. 1.11	• 增加了 Command Lists 到附录中
2017-05-25	ver. 1.10	增加了 SPI 处于开发中的说明增加了磁力计校准例程及详细说明修复某些地方的表述错误
2016-10-21	ver. 1.9	• 模块厚度和外形更新
2016-09-06	ver. 1.8	• 增添了设置波特率这一例程
2016-08-31	ver. 1.7	• 增添了参考坐标系章节
2016-08-30	ver. 1.6	修订了发送数据的格式和单位增添了通信模式章节增添了通信例程
2016-08-29	ver. 1.5	 增加高低电平的定义 增加引脚 15 和 25 的描述 增加功耗一栏
2016-08-25	ver. 1.4	I2C 寄存器名称部分更新增添关于数据传输的细节说明
2016-08-18	ver. 1.3	UART 部分增加默认波特率增加不同模式下数据传输格式
2016-08-16	ver. 1.2	I2C 寄存器部分更新LPMS-ME1 外形更新
2016-07-18	ver. 1.1	• 初始发布

3. 系统概况

3.1 结构框图

图 3.1. LPMS-ME1 结构框图

3.2 功能引脚

图 3.2. LPMS-ME1 功能引脚

表 3-1 引脚描述

引脚号	名称	功能		描述
1, 25	VDD	电源		3.3V~5.5V
2	NRST	重	置	低电平有效
5	CS	SPI 信·	号片选	只用于 SPI 通信
6	SDI	信号	输入	SPI 输入
7	SDO	信号	输出	SPI 输出
8	SPC	时	钟	SPI 时钟
10	MOD0	涌 /	口.华.4又	连条四丰 2.2
11	MOD1	通信接	口处拜	请参照表 3-2.
12	SYNC	同步	引脚	根据数据流频率输出脉冲信号
15	VOUT	电压输出		3.3V (电流 < 20mA) 输出,可
13	VOU1	七 丘	11111111111111111111111111111111111111	用于供给外部其它设备
16	DRDY	DATA_READY		数据可读,高电平有效
17	RTS	UART	_RTS	UART 硬件流控制引脚暂不开
18	CTS	UART	C_CTS	放
19	RX/SD	UART 模式	UART_RX	在 UART 模式下为 RX 信号,
19	A	I ² C 模式	I ² C_SDA	在 I2C 模式下为 SDA 信号
20	TX/SC	UART 模式	UART_TX	在 UART 模式下为 TX 信号,
20	L	I ² C 模式	I ² C_SCL	在 I2C 模式下为 SCL 信号
4, 9, 21, 28	GND	-		信号地
3, 13, 14, 22, 23,	RES	-		保留
24,26, 27	KES			

注: 1. 所有不用的引脚都应该悬空。

2. 高低电平的定义见表 3-3。

表 3-2 通信接口模式选择

MOD0	MOD1	通信接口
0	0	UART (默认)
0	1	SPI
1	0	I ² C (ADD0=0)
1	1	I ² C (ADD0=1)

注: 1. ADD0 为 I²C 的从设备地址的最低位 LSB。

2. MOD0/MOD1 需通过上下拉电阻置 1 或者 0。

表 3-3 高低电平定义

项目	值	单位
低电平	0~0.99	V
高电平	2.31~3.3	V

3.3 典型应用

UART 模式

图 3.3. LPMS-ME1 典型应用(UART 模式)

注:用 UART 测试使用时可只接 VDD、GND、TX 和 RX 四根线即可。

I2C 模式

图 3.4. LPMS-ME1 典型应用(I²C 模式)

注: Opt 处接高电平则 ADD0=1,接低电平则 ADD0=0。

SPI 模式

图 3.5. LPMS-ME1 典型应用(SPI 模式)

3.4 参考坐标系

图 3.6. LPMS-ME1 参考坐标系

4. 通信接口介绍

LPMS-ME1 提供三种通讯方式: UART, IIC 和 SPI。其中 UART 通讯遵循 LPBUS 的通讯协议, IIC 和 SPI 的相关寄存器请查看附录 8.2。

4.1 UART

UART,即通用异步收发传输器 (Universal Asynchronous Receiver/Transmitter),是常用的一种异步串行通信方式,传输速率最高可达 4.5Mbps。LPMS-ME1 模块提供了 TX、RX、RTS 和 CTS 共四个引脚配置使用,默认波特率为 115200bps。默认的数据传输设置为 8 位数据位,1 位停止位,无奇偶校验位。时序图如图 4.1 和图 4.2 所示。

TX: 发送数据输出。

RX:接收数据输入。

RTS: 发送请求, 若是低电平, 表明 UART 准备好接收数据。

CTS: 清除发送, 若是高电平, 在当前数据传输结束时阻断下次的数据发送。

图 4.1. CTS 控制下数据发送时序图

图 4.2. RTS 控制下数据接收时序图

4.2 I²C

I2C 简介

I²C (Inter-Integrated Circuit) 总线是一种两线式串行总线,用于连接微控制器及其外围设备。它是由数据线 SDA 和时钟线 SCL 构成的串行总线,可发送和接收数据。高速 I²C 总线一般可达 400kHz 以上。

当 MOD0 引脚的值为 1 时,LPMS-ME1 的通信模式为 I^2C ,且作为从设备(Slave) 使用,从设备地址通过 MOD1 引脚确定,见表 4-1。

表 4-1 I2C 从设备地址

MOD1	I ² C 从设备地址	
0	0x32	
1	0x33	

I²C 读写时序图见图 4.3 到 4.6。

图 4.3.写一个寄存器

图 4.4. 写多个寄存器

图 4.5.读一个寄存器

图 4.6. 读多个寄存器

4.3 SPI

SPI 简介

SPI,即串行外围设备接口 (Serial Peripheral Interface),是一种高速的全双工同步通信总线,SPI 时钟最大可以到 18Mhz。LPMS-ME1 模块的 SPI 通信模式包括 CS、SDI、SDO 和 SPC 四个引脚。其中,LPMS-ME1 作为从设备(Slave)使用,连接示意图如图 4.7 所示。

ME1 系列支持 4 线模式 SPI, 使用的四条线是:

CS: 从设备片选信号,由主设备(Master)控制。

SDI: 主设备数据输出,从设备数据输入。

SDO: 主设备数据输入,从设备数据输出。

SPC: 时钟信号,用于接收主设备发出的串行时钟。

图 4.7. LPMS-ME1(SPI Mode)连接示意图

SPI 读写时序图见图 4.8 到 4.11。

图 4.8. SPI 单个字节读取

图 4.9 .SPI 多个字节读取(2字节示例)

SPI 单个字节读操作由 16 个时钟脉冲执行,多字节读取操作是通过每多读一个字节添加 8 个时钟脉冲来执行。

bit 0: READ 位, 值为 1。

bit 1-7: 地址 AD (6: 0), 这是寄存器的地址段。

bit 8-15: 数据 DO (7: 0) (读取模式), 这数据就是地址 AD (6: 0) 存放的数据。

bit16-...:数据 DO (...-8), 多字节读取中的更多数据,即读取时地址往后加 1。

图 4.10. SPI 单个字节写入

图 4.11. SPI 多个字节写入(2字节示例)

SPI 单个字节写操作由 16 个时钟脉冲执行,多字节写操作通过每多写一个字节添加 8 个时钟脉冲来执行。

bit 0: WRITE 位, 值为 0。

bit 1-7: 地址 AD (6: 0), 这是寄存器的地址段。

bit 8-15: 数据 DI (7: 0) (写入模式), 地址 AD (6: 0) 就是存放写入数据的地址。

bit 16-...:数据 DI (...-8), 多字节写入中的更多数据,即每写入一个字节地址加 1。

5. 性能参数

表 5-1 LPMS-ME1 主要性能参数

项目	值
名称	LPMS-ME1
尺寸	12.0x12.0x2.6mm
重量	0.3g
旋转角度	Roll: ±180°; Pitch: ±90°; Yaw: ±180°;
分辨率	0.01°
精度	<0.5°(静态), <2°(动态)
数据输出	原始数据/欧拉角/四元数
电源	3.3-5.5V
数据更新率	默认 100Hz(可调 5~400Hz)
功耗(100Hz 数据更新率, UART 模式)	<20mA @ 3.3V
工作温度	-40~+80°C
通信接口	UART/I ² C/SPI

表 5-2 LPMS-ME1 加速度计参数

参数	典型值	单位
测量范围	±2/±4/±8/±16	g
灵敏度	0.061/0.122/0.244/0.488	mg/LSB
灵敏度变化/温度	±1	%
静止零漂	±40	mg
静止温漂	±0.5	mg/°C
噪声密度	90	μg/√Hz
深户	$(FS = \pm 2 g ODR = 104 \text{ Hz})$	μg/ \HZ

表 5-3 LPMS-ME1 陀螺仪参数

参数	典型值	单位
测量范围	±125/±245/±500/±1000/±2000	dps
灵敏度	4.375/8.75/17.50/35/70	mdps/LSB
灵敏度变化/温度	±1.5	%
静止零漂	±10	dps
静止温漂	±0.05	dps/°C
噪声密度	7	mdps/√Hz

TO LETTIS HELF FAIR VI D M			
参数		典型值	单位
测量范围		±4/±8/±12/±16	gauss
灵敏度 零漂		6842/3421/2281/1711	LSB/gauss
		±1	gauss
RMS 噪声	X 轴	3.2	mgauss
(范围±12gauss,	Y轴	3.2	mgauss
超高性能模式)	Z轴	4.1	mgauss
非线性度		±0.12	%FS

表 5-4 LPMS-ME1 磁力计参数

6. 通信协议

6.1 LPBUS 协议

LPBUS 是基于工业标准的 MODBUS 协议所设计的通信协议。这是 LPMS 设备默认的通信方式。通信协议数据包结构具体请参照 6.3 节。

一个LPBUS 通信包含有两项基本的指令形式: GET 和 SET 指令。指令均由主机(PC、移动数据记录单元等)发送给从机(LPMS 设备)。下面我们会对具体的指令进行详细的介绍,包括指令的类型和传输的数据。

GET 指令: 读取从机的数据需通过发送 GET 指令实现。一个 GET 请求指令通常不包含任何数据,所请求的数据由从机收到 GET 指令后发出。

SET 指令: 从机数据寄存器的值通过发送 SET 指令设置。一个 SET 指令包含要设置的数据,从机的返回值为 ACK (代表成功写入寄存器)或者 NACK (代表写入寄存器失败)。

详细的指令表请查看附录 8.1。

6.2 通信模式

LPMS 设备具有数据流模式(Streaming Mode)和命令模式(Command Mode)两种通信模式。数据流模式下,传感器以设定好的频率不断往外发送数据(发送的数据类型和格式可进行设置)。命令模式下,需通过发送指令与传感器进行通信,可对传感器的参数进行设置。LPMS-ME1 上电后默认的模式为数据流模式(默认频率为 100Hz,默认发送的数据类型见表 6-2)。

图 6.1 为对传感器进行参数设置的流程。通常首先要使传感器进入命令模式再进行参数的修改或者读取。

注:

- 1. 仅有四个指令(见图 6.1)可以在数据流模式下使用。
- 2. 进入命令模式修改参数过后一定要保存设置(图 6.1 中 Step 4), 否则断电后修改无效。

图 6.1.传感器参数设置流程

6.3 LPBUS 数据包结构

LPBUS 通信协议的每一个数据包的结构组成如表 6-1 所示。

表 6-1 数据包结构组成

字节#	名称	描述
0	包头	3Ah
		包含传感器的 Sensor ID 号的低位字节。ID 号默认值
1	Sensor ID(低位字节)	为 1。主机可使用该 ID 号发送 GET/SET 指令到特定
1	Sellsol ID(M亚子巾)	的 LPMS 设备中,从机将返回相同的 ID 号。ID 号可
		通过发送 SET 指令修改。
2	Sensor ID(高位字节)	包含传感器的 Sensor ID 号的高位字节。
3	指令号(低位字节)	包含所要执行的指令号的低位字节。
4	指令号 (高位字节)	包含所要执行的指令号的高位字节。
5	数据长度(低位字节)	包含所要传输的数据长度的低位字节。
6	数据长度(高位字节)	包含所要传输的数据长度的高位字节。

X	数据(n 个字节)	如果数据长度 n 不等于 0, 那么 x=6+n; 若 n 为 0,则 x 为空。如果数据长度不为 0,则该数据含有要传输的数据包,反之该数据为空。
7+n	LRC(低位字节)	LRC 校验的低位字节。为了确保传输数据不失真,我们使用了 LRC 检验和的方法,具体计算如下所示: LRC=sum(Sensor ID,指令号,数据长度,数据)。 计算出来的 LRC 通常与从远程设备传输过来的 LRC 进行比较,如果这两个 LRC 不相等则产生错误报告。
8+n	LRC(高位字节)	LRC 校验的高位字节。
9+n	包尾 (低位字节)	0Dh
10+n	包尾 (高位字节)	0Ah

数据包中的数据部分,通常以小端格式传输,即**低位字节在前,高位字节在后**。数据包中的数据部分,数据格式有两种:

- 32 位浮点型数据格式
- 16 位无符号整型格式

传感器默认设置下为 32 位浮点型数据格式 (时间戳除外, 其恒为 32 位无符号整型), 如表 6-2 所示, 其表示数据包中数据部分传输的数据类型、传输顺序及其数据格式。数据格式标识符定义请查看表 6-4.

数据格式标识符 顺序# 传感器数据 1 UInt32 时间戳 (400Hz 更新率,即 0.0025s) 2 Vector3f 校准后的陀螺仪数据 (rad/s) 3 Vector3f 校准后的加速度计数据 (g) 校准后的磁力计数据 (μT) 4 Vector3f 5 Vector3f 角速度 (rad/s) 6 Vector4f 四元数 (归一化单位) 7 Vector3f 欧拉角数据 (rad) 线性加速度数据 (g) 8 Vector3f

表 6-2 数据包中数据部分的数据格式(32 位浮点型模式下)

如用户修改传感器为 16 位无符号整型数据格式,数据将先通过应用一乘法因子后,再进行数据打包传输,以提高数据传输精度,具体请看表 6-3。

表 6-3 数据包中数据部分的数据格式 (16 位无符号整型模式下)

顺序#	数据格式	传感器数据	乘法因子
1	UInt32	时间戳 (400Hz 更新率,即 0.0025s)	无
2	Vector3i16	校准后的陀螺仪数据 (rad/s)	1000
3	Vector3i16	校准后的加速度计数据 (g)	1000
4	Vector3i16	校准后的磁力计数据 (μT)	100
5	Vector3i16	角速度 (rad/s)	1000
6	Vector4i16	四元数 (归一化单位)	10000
7	Vector3i16	欧拉角数据 (rad)	10000
8	Vector3i16	线性加速度数据 (g)	1000

表 6-3 数据格式标识符定义

标识符	描述
UInt32	32 位无符号整型
Int32	32 位带符号整型
Int16	16 位带符号整型
Float32	32 位浮点型
Vector3f	3 元素 32 位浮点型向量
Vector3i16	3 元素 16 位带符号整型向量
Vector4f	4 元素 32 位浮点型向量
Vector4i16	4 元素 16 位带符号整型向量
Matrix3x3f	3x3 浮点型矩阵

传感器数据包中的数据部分,数据类型的传输顺序规定为如表 6-2 和 6-3 中所示,即从顺序#1 到#8 所示的数据类型,最多 8 种。时间戳不能被用户修改,其恒为输出数据。顺序#2 到#8 中的数据,如有任何一数据类型没有被使能输出,则顺延传输下一个被使能的数据,顺序号相对应地往前移。

默认设置下, 传感器只输出以下顺序的数据类型 (共7种):

- 1. 时间戳
- 2. 校准后的陀螺仪数据
- 3. 校准后的加速度计数据
- 4. 校准后的磁力计数据
- 5. 四元数
- 6. 欧拉角数据
- 7. 线性加速度数据

6.4 通信例程

以下将列举几个使用 LPBUS 协议的通信例程。

将传感器进入 Command Mode

发送指令(主机->传感器)

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节(ID = 1)
2	00h	Sensor ID 高位字节
3	06h	指令号低位字节
3		(06h = GOTO_COMMAND_MODE)
4	00h	指令号高位字节
5	00h	数据长度低位字节(GOTO_COMMAND_MODE
3	OOH	指令数据长度为0)
6	00h	数据长度高位字节
7	07h	校验和低位字节
8	00h	校验和高位字节
9	0Dh	包尾低位字节
10	0Ah	包尾高位字节

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节(ID = 1)
2	00h	Sensor ID 高位字节
3	00h	指令号低位字节(00h = REPLY_ACK)
4	00h	指令号高位字节
5	00h	数据长度低位字节(返回 ACK, 无数据)
6	00h	数据长度高位字节
7	01h	校验和低位字节
8	00h	校验和高位字节
9	0Dh	包尾低位字节
10	0Ah	包尾高位字节

将传感器进入 Streaming Mode

发送指令(主机->传感器)

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节(ID = 1)
2	00h	Sensor ID 高位字节
3	07h	指令号低位字节
3	0711	(07h = GOTO_STREAMING_MODE)
4	00h	指令号高位字节
5	00h	数据长度低位字节(GOTO_STREAMING_MODE
3	OOH	指令数据长度为0)
6	00h	数据长度高位字节
7	08h	校验和低位字节
8	00h	校验和高位字节
9	0Dh	包尾低位字节
10	0Ah	包尾高位字节

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节(ID = 1)
2	00h	Sensor ID 高位字节
3	00h	指令号低位字节(00h = REPLY_ACK)
4	00h	指令号高位字节
5	00h	数据长度低位字节(返回 ACK, 无数据)
6	00h	数据长度高位字节
7	01h	校验和低位字节
8	00h	校验和高位字节
9	0Dh	包尾低位字节
10	0Ah	包尾高位字节

读取传感器配置

发送指令(主机->传感器)

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节 (ID = 1)
2	00h	Sensor ID 高位字节
3	04h	指令号低位字节(04h = GET_CONFIG)
4	00h	指令号高位字节
5	00h	数据长度低位字节 (GET 指令数据长度为 0)
6	00h	数据长度高位字节
7	05h	校验和低位字节
8	00h	校验和高位字节
9	0Dh	包尾低位字节
10	0Ah	包尾高位字节

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节(ID = 1)
2	00h	Sensor ID 高位字节
3	04h	指令号低位字节(04h = GET_CONFIG)
4	00h	指令号高位字节
5	04h	数据长度低位字节(32位整型为4个字节)
6	00h	数据长度高位字节
7	xxh	配置数据字节1(最低位)
8	xxh	配置数据字节 2
9	xxh	配置数据字节 3
10	xxh	配置数据字节4(最高位)
11	xxh	校验和低位字节
12	xxh	校验和高位字节
13	0Dh	包尾低位字节
14	0Ah	包尾高位字节

注: xx 的值取决于当前的传感器配置。

读取陀螺仪范围

发送指令(主机->传感器)

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节 (ID = 1)
2	00h	Sensor ID 高位字节
3	1Ah	指令号低位字节(1Ah=GET_GYR_RANGE)
4	00h	指令号高位字节
5	00h	数据长度低位字节(GET_GYR_RANGE 指令数据
3		长度为0)
6	00h	数据长度高位字节
7	1Bh	校验和低位字节
8	00h	校验和高位字节
9	0Dh	包尾低位字节
10	0Ah	包尾高位字节

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节(ID = 1)
2	00h	Sensor ID 高位字节
3	1Ah	指令号低位字节(1Ah=GET_GYR_RANGE)
4	00h	指令号高位字节
5	04h	数据长度低位字节(32位整型为4个字节)
6	00h	数据长度高位字节
7	xxh	配置数据字节1(最低位)
8	xxh	配置数据字节 2
9	xxh	配置数据字节 3
10	xxh	配置数据字节4(最高位)
11	xxh	校验和低位字节
12	xxh	校验和高位字节
13	0Dh	包尾低位字节
14	0Ah	包尾高位字节

注: xx 的值取决于当前的传感器配置。

设置加速度计范围

发送指令(主机->传感器)

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节(ID = 1)
2	00h	Sensor ID 高位字节
3	1Fh	指令号低位字节(1Fh = SET_ACC_RANGE)
4	00h	指令号高位字节
5	04h	数据长度低位字节(32位整型为4个字节)
6	00h	数据长度高位字节
7	08h	范围数据字节1(范围 8g 为 8d)
8	00h	范围数据字节 2
9	00h	范围数据字节 3
10	00h	范围数据字节 4
11	2Ch	校验和低位字节
12	00h	校验和高位字节
13	0Dh	包尾低位字节
14	0Ah	包尾高位字节

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节(ID = 1)
2	00h	Sensor ID 高位字节
3	00h	指令号低位字节(00h = REPLY_ACK)
4	00h	指令号高位字节
5	00h	数据长度低位字节(返回 ACK, 无数据)
6	00h	数据长度高位字节
7	01h	校验和低位字节
8	00h	校验和高位字节
9	0Dh	包尾低位字节
10	0Ah	包尾高位字节

读取传感器数据

发送指令(主机->传感器)

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节 (ID = 1)
2	00h	Sensor ID 高位字节
3	09h	指令号低位字节(09h = GET_SENSOR_DATA)
4	00h	指令号高位字节
5	00h	数据长度低位字节(GET_SENSOR_DATA 指令数
3		据长度为0)
6	00h	数据长度高位字节
7	0Ah	校验和低位字节
8	00h	校验和高位字节
9	0Dh	包尾低位字节
10	0Ah	包尾高位字节

数据返回(传感器->主机), 默认设置下 32-bit 数据格式

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节(ID = 1)
2	00h	Sensor ID 高位字节
3	09h	指令号低位字节(9d = GET_SENSOR_DATA)
4	00h	指令号高位字节
5	50h	数据长度低位字节(80个字节)
6	00h	数据长度高位字节
7-10	xxxxxxxxh	时间戳
11-14	xxxxxxxxh	陀螺仪 x 轴数据
15-18	xxxxxxxxh	陀螺仪y轴数据
19-22	xxxxxxxxh	陀螺仪z轴数据
23-26	xxxxxxxxh	加速度计 x 轴数据
27-30	xxxxxxxxh	加速度计y轴数据
31-34	xxxxxxxxh	加速度计z轴数据
35-38	xxxxxxxxh	磁力计x轴数据
39-42	xxxxxxxxh	磁力计y轴数据
43-46	xxxxxxxxh	磁力计z轴数据
47-50	xxxxxxxxh	四元数数据 q0

51-54	xxxxxxxxh	四元数数据 q1
55-58	xxxxxxxxh	四元数数据 q2
59-62	xxxxxxxxh	四元数数据 q3
63-66	xxxxxxxxh	欧拉角 x 轴数据
67-70	xxxxxxxxh	欧拉角y轴数据
71-74	xxxxxxxxh	欧拉角 z 轴数据
75-78	xxxxxxxxh	线性加速度 x 轴数据
79-82	xxxxxxxxh	线性加速度 y 轴数据
83-86	xxxxxxxxh	线性加速度 z 轴数据
87	xxh	校验和低位字节
88	xxh	校验和高位字节
89	0Dh	包尾低位字节
90	0Ah	包尾高位字节

注: xx 的值取决于当前的传感器配置和测量值。

若仅使能了加速度计和四元数数据输出,则返回的数据按顺序跳过,见下表。

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节(ID = 1)
2	00h	Sensor ID 高位字节
3	09h	指令号低位字节(9d = GET_SENSOR_DATA)
4	00h	指令号高位字节
5	20h	数据长度低位字节 (32 个字节)
6	00h	数据长度高位字节
7-10	xxxxxxxxh	时间戳
11-14	xxxxxxxxh	加速度计 x 轴数据
15-18	xxxxxxxxh	加速度计y轴数据
19-22	xxxxxxxxh	加速度计z轴数据
23-26	xxxxxxxxh	四元数数据 q0
27-30	xxxxxxxxh	四元数数据 q1
31-34	xxxxxxxxh	四元数数据 q2
35-38	xxxxxxxxh	四元数数据 q3
39	xxh	校验和低位字节
40	xxh	校验和高位字节
41	0Dh	包尾低位字节
42	0Ah	包尾高位字节

保存参数设置

发送指令(主机->传感器)

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节 (ID = 1)
2	00h	Sensor ID 高位字节
3	0Fh	指令号低位字节(OFh =WRITE_REGISTERS
3	OFII	command)
4	00h	指令号高位字节
5	00h	数据长度低位字节 (WRITE_REGISTERS 指令数
3		据长度为 0)
6	00h	数据长度高位字节
7	10h	校验和低位字节
8	00h	校验和高位字节
9	0Dh	包尾低位字节
10	0Ah	包尾高位字节

数据返回(传感器->主机)

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节(ID = 1)
2	00h	Sensor ID 高位字节
3	00h	指令号低位字节(00h = REPLY_ACK)
4	00h	指令号高位字节
5	00h	数据长度低位字节(返回 ACK, 无数据)
6	00h	数据长度高位字节
7	01h	校验和低位字节
8	00h	校验和高位字节
9	0Dh	包尾低位字节
10	0Ah	包尾高位字节

注:保存修改的参数需要一定的时间,该指令发送后不能马上返回数据,需经过 1~2s 才有数据返回。

读取传感器状态

发送指令(主机->传感器)

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节(ID = 1)
2	00h	Sensor ID 高位字节
3	05h	指令号低位字节(05h = GET_STATUS)
4	00h	指令号高位字节
5	00h	数据长度低位字节(GET_STATUS 指令数据长度
3	OOH	为0)
6	00h	数据长度高位字节
7	06h	校验和低位字节
8	00h	校验和高位字节
9	0Dh	包尾低位字节
10	0Ah	包尾高位字节

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节(ID = 1)
2	00h	Sensor ID 高位字节
3	05h	指令号低位字节(05h =GET_STATUS)
4	00h	指令号高位字节
5	04h	数据长度低位字节
6	00h	数据长度高位字节
7-10	xxxxxxxxh	返回的状态值
11	xxh	校验和低位字节
12	xxh	校验和高位字节
13	0Dh	包尾低位字节
14	0Ah	包尾高位字节

注: 返回状态值的解读请参考附录。

陀螺仪校准

发送指令(主机->传感器)

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节(ID = 1)
2	00h	Sensor ID 高位字节
3	1 <i>6</i> b	指令号低位字节
3	16h	(16h =START_GYR_CALIBRATION)
4	00h	指令号高位字节
5	00h	数据长度低位字节
6	00h	数据长度高位字节
7	17h	校验和低位字节
8	00h	校验和高位字节
9	0Dh	包尾低位字节
10	0Ah	包尾高位字节

数据返回(传感器->主机)

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节(ID = 1)
2	00h	Sensor ID 高位字节
3	00h	指令号低位字节(00h = REPLY_ACK)
4	00h	指令号高位字节
5	00h	数据长度低位字节(返回 ACK, 无数据)
6	00h	数据长度高位字节
7	01h	校验和低位字节
8	00h	校验和高位字节
9	0Dh	包尾低位字节
10	0Ah	包尾高位字节

注:发送陀螺仪校准指令后返回 ACK 表示校准开始,校准过程保持传感器静止,10s 后校准完成。校准期间可发送读取传感器状态指令查询(返回值的位 3: Gyroscope calibration running,校准过程该位置 1,校准完成后恢复为 0)。磁力计校准指令与此类似,校准过程时间同为 10s。

磁力计校准

发送指令(主机->传感器)

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节(ID = 1)
2	00h	Sensor ID 高位字节
3	11h	指令号低位字节
3		(11h = START_MAG_CALIBRATION)
4	00h	指令号高位字节
5	00h	数据长度低位字节
6	00h	数据长度高位字节
7	12h	校验和低位字节
8	00h	校验和高位字节
9	0Dh	包尾低位字节
10	0Ah	包尾高位字节

数据返回(传感器->主机)

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节(ID = 1)
2	00h	Sensor ID 高位字节
3	00h	指令号低位字节(00h = REPLY_ACK)
4	00h	指令号高位字节
5	00h	数据长度低位字节(返回 ACK, 无数据)
6	00h	数据长度高位字节
7	01h	校验和低位字节
8	00h	校验和高位字节
9	0Dh	包尾低位字节
10	0Ah	包尾高位字节

注:发送磁力计校准指令后返回 ACK 表示校准开始,校准过程中使传感器绕 x、y、z 轴不停转动,收集周围的磁场信息,持续转动 10s 后校准完成。校准期间可发送读取传感器状态指令查询(返回值的位 4: Magnetometer calibration running,校准过程该位置 1,校准完成后恢复为 0)。磁力计校准完成后,必须发送保存参数指令保存校准数据。

设置波特率

发送指令(主机->传感器)

数据包字节号	值	描述
0	3Ah	包头
1	01h	Sensor ID 低位字节 (ID = 1)
2	00h	Sensor ID 高位字节
3	54h	指令号低位字节(84d =SET_UART_BAUDRATE)
4	00h	指令号高位字节
5	04h	数据长度低位字节
6	00h	数据长度高位字节
7	07h	
8	00h	设置波特率为 921600 bps (具体请查看附录中指令
9	00h	SET_UART_BAUDRATE)
10	00h	
11	60h	校验和低位字节
12	00h	校验和高位字节
13	0Dh	包尾低位字节
14	0Ah	包尾高位字节

数据返回(传感器->主机)

数据包字节号	值	描述	
0	3Ah	包头	
1	01h	Sensor ID 低位字节(ID = 1)	
2	00h	Sensor ID 高位字节	
3	00h	指令号低位字节(0d=REPLY_ACK)	
4	00h	指令号高位字节	
5	00h	数据长度低位字节(返回 ACK, 无数据)	
6	00h	数据长度高位字节	
7	01h	校验和低位字节	
8	00h	校验和高位字节	
9	0Dh	包尾低位字节	
10	0Ah	包尾高位字节	

注:设置波特率完成并保存设置后,需断电重启传感器才有效。

7. 封装信息

图 7.1. LPMS-ME1 外形尺寸(单位: mm)

图 7.2. LPMS-ME1 推荐封装(单位: mm)

8. 附录

8.1 Firmware function / command list

Summary

Acknowled	Acknowledged / Not-acknowledged Identifiers					
Identifier	Name	Parameter	Response	Default		
0 (00h)	REPLY_ACK					
1 (01h)	REPLY_NACK					

Get Configuration and Status Info Commands				
Identifier	Name	Parameter	Response	Default
4 (04h)	GET_CONFIG	NONE	Int32	
5 (05h)	GET_STATUS ¹	NONE	Int32	

Mode Switching Commands				
Identifier	Name	Parameter	Response	Default
6 (06h)	GOTO_COMMAND_MODE1	NONE	ACK/NACK	
7 (07h)	GOTO_STREAM_MODE	NONE	ACK/NACK	

IMU ID Settings Command				
Identifier	Name	Parameter	Response	Default
20 (14h)	SET_IMU_ID	Int32	ACK/NACK	
21 (15h)	GET_IMU_ID	NONE	Int32	1

Gyroscope Settings Command					
Identifier	Name	Parameter	Response	Default	
22 (16h)	START_GYR_CALIBRATION	NONE	ACK/NACK		
25 (19h)	SET_GYR_RANGE	Int32	ACK/NACK		
26 (1Ah)	GET_GYR_RANGE	NONE	Int32	2000dps	

Accelerometer Settings Command					
Identifier	Name	Parameter	Response	Default	
31 (1Fh)	SET_ACC_RANGE	Int32	ACK/NACK		
32 (20h)	GET_ACC_RANGE	NONE	Int32	4g	

Magnetometer Settings Command					
Identifier	Name	Parameter	Response	Default	
17 (11h)	START_MAG_CALIBRATION ¹	NONE	ACK/NACK		
33 (21h)	SET_MAG_RANGE	Int32	ACK/NACK		
34 (22h)	GET_MAG_RANGE	NONE	Int32	8Gauss	

Data Transmission Commands					
Identifier	Name	Parameter	Response	Default	
9 (09h)	GET_SENSOR_DATA	NONE			
10 (0Ah)	SET_TRANSMIT_DATA	Int32	ACK/NACK		
11 (0Bh)	SET_STREAM_FREQ	Int32	ACK/NACK		
66 (42h)	SET_TIMESTAMP ¹	Int32	ACK/NACK		
84 (54h)	SET_UART_BAUDRATE	Int32	ACK/NACK		
85 (55h)	GET_UART_BAUDRATE	NONE	Int32		

Register Value Save and Reset Command					
Identifier	Name	Parameter	Response	Default	
15 (0Fh)	WRITE_REGISTERS	NONE	ACK/NACK		
16 (10h)	RESTORE_FACTORY_DEFAULTS	NONE	ACK/NACK		

Reference Setting and Offset Reset Command				
Identifier	Name	Parameter	Response	Default
18 (12h)	SET_ORIENTATION_OFFSET	Int32	ACK/NACK	
82 (52h)	RESET_ORIENTATION_OFFSET	NONE	ACK/NACK	

Filter Settings Command				
Identifier	Name	Parameter	Response	Default
41(29h)	SET_FILTER_MODE	Int32	ACK/NACK	
42(2Ah)	GET_FILTER_MODE	NONE	Int32	1
43(2Bh)	SET_FILTER_PRESET	Int32	ACK/NACK	
44(2Ch)	GET_FILTER_PRESET	NONE	Int32	3

Device Info				
Identifier	Name	Parameter	Response	Default
90(5Ah)	GET_SERIAL_NUMBER	NONE	Char[24]	
92(5Ch)	GET_FIRMWARE_INFO	NONE	Char[16]	

¹Note: These commands are executable in both streaming mode and command mode. Other commands are executable only when the sensor is in command mode.

Acknowledged and Not-acknowledged Identifiers

Identifier	0
Name	REPLY_ACK
Description	Confirms a successful SET command.

Identifier	1
Name	REPLY_NACK
Description	Reports an error during processing a SET command.

Configuration and Status Commands

Identifier	4 (0x04)		
Name	GET CONFIG		
Description	Get the current value of the configuration register of the sensor. The configuration word is read-only. The different parameters are set by their respective SET commands. E.g. SET_TRANSMIT_DATA for defining which data is transmitted from the sensor.		
Parameter	NONE		
Response:	Int32		
	Bit	Reported State / Parameter	
	0 - 2	Stream frequency setting (see SET_STREAM_FREQ)	
	3 - 8	Reserved	
	9	Reserved	
	10	Magnetometer data transmission enabled	
	11	Accelerometer data transmission enabled	
	12	Gyroscope data transmission enabled	
	13	Temperature output enabled	
	14	Reserved	
	15	Reserved	
	16	Angular velocity output enabled	
	17	Euler angle data transmission enabled	
Data format	18	Quaternion orientation output enabled	
Data Iorinat	19	Reserved	
	20	Reserved	
	21	Linear acceleration output enabled	
	22	16-bit data output mode enabled	
	23	Reserved	
	24	Magnetometer compensation enabled	
	25	Accelerometer compensation enabled	
	26	Reserved	
	27	Reserved	
	28	Reserved	
	29	Reserved	
	30	Gyroscope auto-calibration enabled	
	31	Reserved	

Identifier	5 (0x05)	5 (0x05)		
Name	GET_ST	GET_STATUS		
Description	Get the	current value of the status register of the sensor. The status word is		
Booonphon	read-onl	у		
Parameter	NONE			
Response:	Int32	Int32		
	Bit	Indicated state		
	0	COMMAND mode enabled		
	1 2	STREAM mode enabled Reserved		
	3	Gyroscope calibration running		
	4	Magnetometer calibration running		
	5	Gyroscope initialization failed		
	6	Accelerometer initialization failed		
Data format	7	Magnetometer initialization failed		
	8	Reserved		
	9	Gyroscope unresponsive		
	10	Accelerometer unresponsive		
	11	Magnetometer unresponsive		
	12	Flash write failed		
	13-31	Reserved		

Mode Switching Commands

Identifier	6 (0x06)
Name	GOTO_COMMAND_MODE
Description	Switch to command mode. In command mode the user can issue commands to the firmware to perform calibration, set parameters etc.
Parameter	NONE
Response:	ACK (success) or NACK (error)

Identifier	7 (0x07)
Name	GOTO_STREAM_MODE
Description	Switch to streaming mode. In this mode data is continuously streamed from the sensor, and some commands cannot be performed until the sensor receives the GOTO_COMMAND_MODE command.
Parameter	NONE
Response:	ACK (success) or NACK (error)

IMU ID Setting Command

Identifier	20 (0x14)
Name	SET_IMU_ID
Description	Set sensor ID
Parameter	Int32
Response:	ACK (success) or NACK (error)

Identifier	21 (0x15)
Name	GET_IMU_ID
Description	Get sensor ID
Parameter	None
Response:	Int32

Gyroscope Settings Command

Identifier	22 (0x16)
Name	START_GYR_CALIBRATION
Description	Start the calibration of the gyroscope sensor
Parameter	NONE
Response:	ACK (success) or NACK (error)

Identifier	25 (0x19)		
Name	SET_GYR_RANGE		
Description	Set the current range of the gyroscope		
Parameter	Int32		
	Range (deg/s)	Identifier	
	125	125	
	245	245	
	500	500	
	1000	1000	
	2000	2000	
Response:	ACK (success) or NACK (error)		

Identifier	26 (0x1A)		
Name	GET_GYR_RANGE		
Description	Get current gyroscope range.		
Parameter	NONE		
Response:	Int32		
	Range (deg/s)	Identifier	
	125	125	
	245	245	
	500	500	
	1000	1000	
	2000	2000	

Accelerometer Settings Command

Identifier	31 (0x1F)		
Name	SET_ACC_I	RANGE	
Description	Set the curre	ent range of the acce	elerometer
	Int32		
	Range	Identifier	
Dovementor	2g	2	
Parameter	meter 4g 4		
	8g	8	
	16g	16	
Response:	ACK (succe	ss) or NACK (error)	

32 (0x20)		
GET_ACC	_RANGE	
Get the cur	rent range of the a	ccelerometer
NONE		
Int32	,	
Range	Identifier	
2g	2	
4g	4	
8g	8	
16g	16	
	GET_ACC Get the cur NONE Int32 Range 2g 4g 8g	GET_ACC_RANGE Get the current range of the accomposition NONE Int32 Range Identifier 2g 2 4g 4 8g 8

Magnetometer Settings Command

Identifier	17 (0x11)
Name	START_MAG_CALIBRATION
Description	Start the calibration of the magnetometer sensor
Parameter	NONE
Response:	ACK (success) or NACK (error)

Identifier	33 (0x21)			
Name	SET_MAG_F	RANGE		
Description	Set the curre	ent range of the gyro	scope	
	Int32			
	Range	Identifier]	
	4 Gauss	4]	
Parameter	8 Gauss	6	1	
	12 Gauss	12		
	16 Gauss	16]	
Response:	ACK (succes	s) or NACK (error)		

Identifier	34 (0x22)		
Name	GET_MAG_I	RANGE	
Description	Get current n	nagnetometer ran	
Parameter	NONE		
	Int32		
	Range	Identifier	
Deemanas	4 Gauss	4	
Response:	8 Gauss	6	
	12 Gauss	12	
	16 Gauss	16	

Data Transmission Commands

Identifier	9 (0x09)
Name	GET_SENSOR_DATA
	Retrieves the latest set of sensor data. A data packet will be composed as
Description	defined by SET_TRANSMIT_DATA. The currently set format can be
	retrieved with the sensor configuration word.
Parameter	NONE
Pagnanga	See the LPBUS protocol explanation for a description of the measurement
Response:	data format.

Identifier	10 (0x0A)		
Name	SET_TRA	NSMIT_DATA	
Description	Set the cu	ırrent transmit data	
	Int32		
	Bit	Reported State / Parameter	
	0 - 9	0	
	10	Magnetometer data transmission enabled	
	11	Accelerometer data transmission enabled	
	12	Gyroscope data transmission enabled	
	13	Temperature output enabled	
	14	0	
	15	0	
Parameter	16	Angular velocity output enabled	
aramotor	17	Euler angle data transmission enabled	
	18	Quaternion orientation output enabled	
	19	0	
	20	0	
	21	Linear acceleration output enabled	
	22	16-bit data output mode enabled	
	23	0	
	24	Magnetometer compensation enabled	
	25	Accelerometer compensation enabled	
	26-31	0	
Response:	ACK (suc	cess) or NACK (error)	

Identifier	11 (0x0B)			
Name	SET_STREAM_FR	EQ		
Description	Set the current stre	aming freque	ncy	
	Int32			
	Frequency (Hz)	Identifier	Bit : 0~2	
			(GET_CONFIG return data)	
	5	5	000	
Parameter	10	10	001	
	25	25	010	
	50	50	011	
	100	100	100	
	200	200	101	
	400	400	110	
Response:	ACK (success) or N	IACK (error)		

Identifier	66 (0x42)
Name	SET_TIMESTAMP
Description	Set the current sensor timestamp counter. Counter updates at 400Hz, i.e.
Description	setting timestamp counter equates to setting the timestamp to 1s.
Parameter	Int32
Response:	ACK (success) or NACK (error)

Identifier	84 (0x54)		
Name	SET_UART_BAUDRATE		
Description	Set the current UART baudrate		
	Int32		
	Baud rate	Identifier	
	19200	0	
	38400	1	
Parameter	57600	2	
	115200	3	
	230400	4	
	256000	5	
	460800	6	
	921600	7	
Response:	ACK (success) or NACK (error)		

Identifier	85 (0x55)
Name	GET_UART_BAUDRATE
Description	Get the current UART baudrate
Parameter	NONE

	Int32		
	Baud rate	Identifier	
	19200	0	
	38400	1	
Response:	57600	2	
	115200	3	
	230400	4	
	256000	5	
	460800	6	
	921600	7	

Register Value Save and Reset Command

Identifier	15 (0x0F)
Name	WRITE_REGISTERS
Description	Write the currently set parameters to flash memory.
Parameter	NONE
Response:	ACK (success) or NACK (error)

Identifier	16 (0x10)
Name	RESTORE_FACTORY_DEFAULTS
Description	Reset the LPMS parameters to factory default values. Please note that upon
	issuing this command your currently set parameters will be erased.
Parameter	NONE
Response:	ACK (success) or NACK (error)

Reference Setting and Offset Reset Command

Identifier	18 (0x12)		
Name	SET_OFFSET		
Description	Sets the orientation	offset using o	ne of the three offset methods.
	Int32		
Parameter	Mode	Value	
Parameter	Object reset	0	
	Heading reset	1	
Response:	ACK (success) or N	ACK (error)	

Identifier	82 (0x52)
Name	RESET_ORIENTATION_OFFSET
Description	Reset the orientation offset to 0 (unity quaternion).
Parameter	NONE
Response:	ACK (success) or NACK (error)

Filter Settings Command

Identifier	41 (0x29)	
Name	SET_FILTER_MODE	
Description	Set the sensor filter mode	
Parameter	Int32 Mode Gyroscope only Accelerometer + gyroscope (Kalman filter) Accelerometer+ gyroscope+ magnetometer (Kalman filter) Accelerometer + gyroscope (DCM filter) Accelerometer + gyroscope + Magnetometer (DCM filter)	Value 0 1 2 3 4
Response:	ACK (success) or NACK (error)	

Identifier	42 (0x2A)	
Name	GET_ FILTER_MODE	
Description	Get the sensor filter mode	
Parameter	NONE	
Response:	Int32 Mode Gyroscope only Accelerometer + gyroscope (Kalman filter) Accelerometer+ gyroscope+ magnetometer (Kalman filter) Accelerometer + gyroscope (DCM filter) Accelerometer + gyroscope + Magnetometer (DCM filter)	Value 0 1 2 3

Identifier	43 (0x2B)		
Name	SET_FILTER_PRESET		
Description	Set one of the filter param covariance strength	eter presets	for accelerometer and magnetometer
Parameter	Int32 Correction strength Weak Medium Strong Dynamic	Value 0 1 2 3	
Response:	ACK (success) or NACK (error)	

Identifier	44 (0x2C)		
Name	GET_FILTER_PRESET		
Description	Get current filter preset		
Parameter	NONE		
	Int32		
Response:	Correction strength	Value	
	Dynamic	0	
	Strong	1	
	Medium	2	
	Weak	3	

Device Info

Identifier	90 (0x5A)
Name	GET_SERIAL_NUMBER
Description	Get sensor serial number
Parameter	NONE
Pagnanagi	Char[24]
Response:	Character array of length 24

Identifier	92 (0x5C)
Name	GET_FIRMARE_INFO
Description	Get firmware info
Parameter	NONE
Response:	Char[16]
	Firmware name - version

8.2 Register Map

ME1 寄存器映射

寄存器地址	寄存器名称	读/写	默认值
0x00	FUN_CONFIG	可读可写	0x00
0x01	SYS_CONFIG	可读可写	0x01
0x02	DATA_CTRL	可读可写	0x03
0x03	DATA_ENABLE	可读可写	0x3F
0x04	CTRL_0_A	可读可写	0x08
0x05	CTRL_1_G	可读可写	0x0C
0x06	CTRL_2_M	可读可写	0x20
0x07	STATUS	只读	0x00
0x08	FILTER_CONFIG	可读可写	0x01
0x09	OFFSET_SETTING	可读可写	0x00
0x0A~0x19	-	-	-
0x20	TIMESTAMP_0	只读	0x00
0x21	TIMESTAMP_1	只读	0x00
0x22	TIMESTAMP_2	只读	0x00
0x23	TIMESTAMP_3	只读	0x00
0x24	ACC_X_0	只读	0x00
0x25	ACC_X_1	只读	0x00
0x26	ACC_X_2	只读	0x00
0x27	ACC_X_3	只读	0x00
0x28	ACC_Y_0	只读	0x00
0x29	ACC_Y_1	只读	0x00
0x2A	ACC_Y_2	只读	0x00
0x2B	ACC_Y_3	只读	0x00
0x2C	ACC_Z_0	只读	0x00
0x2D	ACC_Z_1	只读	0x00
0x2E	ACC_Z_2	只读	0x00
0x2F	ACC_Z_3	只读	0x00
0x30	GYR_X_0	只读	0x00
0x31	GYR_X_1	只读	0x00
0x32	GYR_X_2	只读	0x00
0x33	GYR_X_3	只读	0x00

0x34	GYR_Y_0	只读	0x00
0x35	GYR_Y_1	只读	0x00
0x36	GYR_Y_2	只读	0x00
0x37	GYR_Y_3	只读	0x00
0x38	GYR_Z_0	只读	0x00
0x39	GYR_Z_1	只读	0x00
0x3A	GYR_Z_2	只读	0x00
0x3B	GYR_Z_3	只读	0x00
0x3C	MAG_X_0	只读	0x00
0x3D	MAG_X_1	只读	0x00
0x3E	MAG_X_2	只读	0x00
0x3F	MAG_X_3	只读	0x00
0x40	MAG_Y_0	只读	0x00
0x41	MAG_Y_1	只读	0x00
0x42	MAG_Y_2	只读	0x00
0x43	MAG_Y_3	只读	0x00
0x44	MAG_Z_0	只读	0x00
0x45	MAG_Z_1	只读	0x00
0x46	MAG_Z_2	只读	0x00
0x47	MAG_Z_3	只读	0x00
0x48	EULER_X_0	只读	0x00
0x49	EULER_X_1	只读	0x00
0x4A	EULER_X_2	只读	0x00
0x4B	EULER_X_3	只读	0x00
0x4C	EULER_Y_0	只读	0x00
0x4D	EULER_Y_1	只读	0x00
0x4E	EULER_Y_2	只读	0x00
0x4F	EULER_Y_3	只读	0x00
0x50	EULER_Z_0	只读	0x00
0x51	EULER_Z_1	只读	0x00
0x52	EULER_Z_2	只读	0x00
0x53	EULER_Z_3	只读	0x00
0x54	QUAT_W_0	只读	0x00
0x55	QUAT_W_1	只读	0x00

0x56	QUAT_W_2	只读	0x00
0x57	QUAT_W_3	只读	0x00
0x58	QUAT_X_0	只读	0x00
0x59	QUAT_X_1	只读	0x00
0x5A	QUAT_X_2	只读	0x00
0x5B	QUAT_X_3	只读	0x00
0x5C	QUAT_Y_0	只读	0x00
0x5D	QUAT_Y_1	只读	0x00
0x5E	QUAT_Y_2	只读	0x00
0x5F	QUAT_Y_3	只读	0x00
0x60	QUAT_Z_0	只读	0x00
0x61	QUAT_Z_1	只读	0x00
0x62	QUAT_Z_2	只读	0x00
0x63	QUAT_Z_3	只读	0x00
0x64	LIN_ACC_X_0	只读	0x00
0x65	LIN_ACC_X_1	只读	0x00
0x66	LIN_ACC_X_2	只读	0x00
0x67	LIN_ACC_X_3	只读	0x00
0x68	LIN_ACC_Y_0	只读	0x00
0x69	LIN_ACC_Y_1	只读	0x00
0x6A	LIN_ACC_Y_2	只读	0x00
0x6B	LIN_ACC_Y_3	只读	0x00
0x6C	LIN_ACC_Z_0	只读	0x00
0x6D	LIN_ACC_Z_1	只读	0x00
0x6E	LIN_ACC_Z_2	只读	0x00
0x6F	LIN_ACC_Z_3	只读	0x00
0x70	TEMP_0	只读	0x00
0x71	TEMP_1	只读	0x00
0x72	TEMP_2	只读	0x00
0x73	TEMP_3	只读	0x00
0x74	WHO AM I	只读	0x32
0x75	FIRMWARE_VERSION_0	只读	-
0x76	FIRMWARE_VERSION_1	只读	-

FUN_CONFIG 寄存器(0x00)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
寄存器是否使能	-	-	-	-	-	-	_

Bit7 置 1 使能寄存器的修改,使后续对其他寄存器的修改有效,置 0 则相反。 流程如下:

如要开关 LED,应先将 FUN CONFIG 的 Bit7 置 1,再将 SYS CONFIG 的 Bit0 置 1。

SYS CONFIG 寄存器(0x01)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SYS_RESET	SYS_REBOOT	-	-	-	-	-	LED 开/闭

Bit7 置 1 复位寄存器。

Bit6 置 1 传感器复位 (重启)。

Bit0 置 1 打开 LED 显示,置 0 关闭 LED 显示。

DATA CTRL 寄存器(0x02)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
-	-	重置时间戳	-		频率	设置	

Bit5 置 1 则重置时间戳,数据传输完成后该位自动清零。

Bit3 到 Bit0 配置数据传输的频率,见表 4-3。

表 4-3 数据传输频率设置

Bit3~Bit0	传输频率
0000	5 Hz
0001	10 Hz
0010	50 Hz
0011	100 Hz (默认)
0100	200 Hz
0101	400 Hz

DATA_ENABLE 寄存器(0x03)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
温度	线性加速度	四元数	欧拉角	磁力计	陀螺仪	加速度计	时间戳

数据输出使能,相应的位置1则允许对应数据输出,置0则不输出。

CTRL_0_A 寄存器(0x04)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
-	-	-	-	加速度计范围		-	-

Bit3 和 Bit2 配置加速度计检测范围,见表 4-4。

表 4-4 加速度计范围设置

Bit3~Bit2	加速度计范围
00	±2 g
01	±16 g
10	±4g (默认)
11	±8 g

CTRL_1_G 寄存器(0x05)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
陀螺仪静态偏差校准	_	-	-	陀螺仪范围		-	

Bit7 置 1 开始校准陀螺仪,校准完成后清零。

Bit3 到 Bit1 配置陀螺仪检测范围, 见表 4-5。

表 4-5 陀螺仪范围设置

Bit3~Bit1	陀螺仪范围		
000	245 dps		
010	500 dps		
100	1000 dps		
110	2000 dps (默认)		
001	125 dps		

CTRL 2 M 寄存器(0x06)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
磁力计校准	磁力计范围		-	-	-	-	-

Bit7 置 1 开始校准磁力计,校准完成后清零。

Bit6 和 Bit5 配置磁力计检测范围,见表 4-6。

表 4-6 磁力计范围设置

Bit6~Bit5	磁力计范围
00	4 gauss
01	8 gauss (默认)
10	12 gauss

11	16 gauss
----	----------

STATUS 寄存器(0x07)(只读取)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	CAL		GYR	MAG			DATA
-		CALIBRATING	CALIBRATING	-	-	READY	

Bit4 为 1 表示陀螺仪在校准中。

Bit3 为 1 表示磁力计在校准中。

Bit0 为 1 表示传感器数据准备好,可读取。

FILTER_CONFIG 寄存器(0x08)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
-	-	任	低通滤波系数			滤波模式	

Bit5 到 Bit3 决定低通滤波的滤波系数,见表 4-7。

Bit2 到 Bit0 决定数据的滤波模式,见表 4-8。

表 4-7 低通滤波系数设置

Bit5~Bit3	低通滤波系数		
000	无 (默认)		
001	0.1		
010	0.05		
011	0.01		
100	0.005		
101	0.001		

表 4-8 滤波模式设置

Bit2~Bit0	滤波模式
000	GYR
001	GYR+ACC (Kalman)
010	GYR+ACC+MAG (Kalman)
011	GYR+ACC (DCM)
100	GYR+ACC_MAG (DCM)

OFFSET_SETTING 寄存器(0x09)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
					RESET	HEADING	OBJECT
-	_	_	_	_	OFFSET	RESET	RESET

Bit0 置 1 执行 Object Reset,操作完成后自动清零。

Bitl 置 1 执行 Heading Reset,操作完成后自动清零。

Bit2 置 1 执行 Reset Offset,操作完成后自动清零。

FIRMWARE_VERSION_0 寄存器(0x75)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
-	-	-	-	固件版本修订号			

FIRMWARE_VERSION_0 寄存器低四位决定固件版本的修订号。

FIRMWARE_VERSION_1 寄存器(0x76)

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
固件版本主号					固件版	本次号	

FIRMWARE_VERSION_1 寄存器高四位决定固件版本的第一位号码, 低四位决定固件版本的第二位号码。

广州阿路比电子科技有限公司——版权所有——2017 Guangzhou Alubi Electronic Technology Co.,Ltd. http://www.alubi.cn