

IMPROVEMENTS IN INSULATED PANELSBACKGROUND

5 The present invention relates to improvements in insulated glass door and window structures and more particularly relates to an apparatus and method for eliminating or reducing condensation on the external face of such glass doors and the internal face of window structures. More particularly the present invention relates to improvements in the structure of insulated glass door/window structures such as are used in connection with insulated glazed windows (for use in both thermal and sound insulation applications) and refrigeration, and particularly in industrial and commercial refrigeration. The invention also relates to improvements in the economics of manufacture of insulated glass doors and windows. Although the invention will primarily be
10 described with reference to its application in glass doors and particularly triple glazed doors used in such applications as refrigeration, it will be appreciated by persons skilled in the art that the invention has applications in other areas such as in windows and any structure which utilizes glass and particularly though not exclusively double or triple glazing.

20

PRIOR ART

In industrial and commercial refrigeration, and particularly refrigeration cabinets employed at points of sale and in a variety of establishments, double and/or triple glazed doors are used to insulate the refrigerated contents.
25

In some glass door structures, for example those in refrigerators, freezers, and the like, where a temperature differing substantially from that of the surrounding atmosphere is to be maintained within a storage compartment, an electrical current and metallic film is employed heating the door frame and outer glass pane in an effort to eliminate condensation and provide clear visibility to the goods contained.
30

Such conventional glass doors demand not only electrical heating themselves but, due to heat transfer, require additional energy in order to maintain internal refrigeration.

In addition, conventional insulated glass doors comprise parallel panes 5 of glass affixed with spacer bars to form one complete glass unit. This glass pane assembly is then enclosed within a metal or composite structural peripheral door frame in order to complete the construction of the insulated glass door. The heating apparatuses required to maintain the door panels and door frame at an optimum temperature add to the cost of the doors and fridge/freezer overall, 10 complicate the construction of the door panels and door frame, require additional circuitry, and add to the running costs of the fridge/freezer as well as the air conditioning generally employed.

There has been a long felt want in the industry to provide a more efficient and 15 economic means to reduce or eliminate condensation in or on a fridge/freezer door and particularly on those doors having double/triple glazing.

INVENTION

The present invention provides improvements in the structure of 20 insulated glass door structures such as are used in connection with refrigeration and particularly in industrial and commercial refrigeration wherein means are provided to reduce or eliminate condensation on glass and door frame surfaces. Glass surfaces of such fridge/freezer doors are required to remain clear so that 25 the contents of the fridge/freezer may be inspected by a consumer.

It will be appreciated by persons skilled in the art that while this invention to be described herein is open to various variations and modifications, the illustrated 30 embodiments set out herein are non-limiting. It should therefore be understood that the embodiments of the drawing are merely an example of one implementation of the invention. There are a variety of embodiments and

alternative constructions and equivalents falling within the scope of the invention.

5 The invention to be described below in its application to a fridge/freezer cabinet door can also be adapted in various applications wherein a door or window or the like separate a region of low temperature relatively dry air from a region having higher temperature and high relative humidity. In the latter case the panel according to the invention may be used to prevent condensation which would normally occur on an outer surface where the temperature on one side is 10 low enough and is transmitted to the other side to cause condensation.

15 It is one object of the invention to provide means that reduces or eliminates condensation on glass doors of a refrigerator/freezer but without the need for electrical heating of glass surfaces and door frame comprising the door.

20 It is another object of the invention to provide means that reduce/eliminate condensation on glass surfaces and door frame of a refrigerator/freezer and which substantially reduces operating and manufacturing costs.

25 It is another object of the invention to provide mechanical means that reduce/eliminate condensation on glass doors of a refrigerator/freezer and obviates the need for electrical heating of glass surfaces and door frame comprising the door.

30 It is a further object of the invention to provide an alternative means for insulation of double/tripple glazed structures such as but not limited to windows and doors and to reduce or eliminate unwanted condensation on such structures.

It is a further object of the invention to provide mechanical means that reduce/eliminate condensation on glass surfaces and door frames of a

refrigerator/freezer but without the costs and maintenance associated with the electrical heating of glass surfaces and door frames of fridge/freezer doors.

5 It is a further object of the invention to provide an alternative means for the construction of glazed fridge/freezer doors in which glazed panels are set into a prefabricated frame without the need for mounting an enclosed glass unit into an enclosed metal, composite, or thermal plastics frame.

10 It is a further object of the invention to provide an alternative means for the construction of glazed fridge/freezer doors without the need for manufacturing an enclosed glass unit.

15 It is a further object of the invention to provide an alternative means for the construction of glazed fridge/freezer doors without using steel fasteners and the like to fasten the door frame.

20 The present invention seeks to provide a novel alternative to the known methods of reducing/eliminating condensation on glass refrigerator/freezer doors without the need for electrical heating elements.

The present invention also seeks to provide a novel alternative to the known methods of insulating and manufacturing double/triple-glazed windows.

25 In a broad form of an apparatus aspect the present invention comprises:
a door for the use in insulating contents of a cooling cupboard, fridge, freezer, or the like, the door comprising;
a peripheral frame,
a first wall connected to the frame,
a second wall connected to the frame and opposing the first wall such that said
30 first and second walls define an internal space there between;

the door further comprising in said internal space an intermediate wall member which insulates said first wall from the second wall thus comprising a triple glazed unit.

- 5 In another broad form the present invention comprises:
a double/tripple glazed insulated fridge/freezer door having inner and outer glass panels which together define an internal space wherein the internal space includes a planar insulating wall member which insulates one said glass panel from the other panel, thereby reducing/eliminating condensation on the said
10 glass panels.

According to a preferred embodiment the first and second panels comprise glass panes that define the said internal space. The planar insulating wall member is preferably a transparent thermal plastics material mounted midway between the
15 glass panes.

Preferably the skins are transparent and may be glass, Perspex, thermal plastics or the like. According to one embodiment, plastic extrusions may be used to provide the door/window-frame that also acts as glass panel spacers and
20 mounts.

In another broad form the present invention comprises:
a panel including a frame in which is disposed two glass panes defining an internal space; the internal space including at least one internal planar member
25 which forms at least two internal spaces of optimum dimensions which combined with the thermal plastics frame, insulates the two glass panes thereby reducing or eliminating condensation on the glass panes.

- 30 In another broad form of a method aspect, the present invention comprises a method for constructing a panel including a thermal plastics frame in which is disposed two glass panes defining an internal space; the internal space including

at least one internal planar member which insulates the two glass panes thereby reducing or eliminating condensation on the glass panes and door frame;

the method comprising the steps of:

- 5 a) taking two glass panes of a predetermined size;
- b) taking an insulating member;
- c) constructing a frame from a thermal plastics extrusion;
- d) fitting said first glass panel to an inner bearing surface of the frame;
- e) fitting said insulating member to said frame in a central position defined by the central spacer bar incorporated within the frame structure; and
- f) fitting said second glass panel to an outer surface of the frame such that the panels are in opposing relationship and define the internal space housing the insulating member.

15 The method comprises the further step of placing the planar insulating member at an optimum spacing and equidistant from the first and second skins.

In another broad form of a method aspect, the present invention comprises;
20 a method for constructing a panel including a thermal plastics peripheral frame in which is disposed two panes defining an internal space; the internal space including at least one internal planar insulating member which insulates the two glass panes thereby reducing or eliminating condensation on the glass panes and frame;

the method comprising the steps of:

- 25 a) taking two panes of a predetermined size;
- b) taking an insulating member;
- c) constructing a frame from a thermal plastics extrusion so that the completed frame includes three shoulder regions;
- d) fitting said first pane to an inner shoulder of the frame;

- e) fitting said insulating member to a second shoulder on said frame which is disposed in a central position relative to outside surfaces of the frame; and
- f) fitting said second pane to a third shoulder to form an outer surface of the panel;

5 wherein the panes are arranged so that the first and second panes define an internal panel and the insulating member is located intermediate the first and second panes.

10 Preferably the panes are transparent glass.

Preferably, a completed insulated glass door/window includes: a door-frame; at least two glass and/or plastic panes fixed with rigid adhesive to the frame; sealant; moisture absorption granules; air and/or argon gas; and a gasket.

15 Preferably the glass or plastics panes are supported by a plastic extrusion forming both the door-frame and pane mounts. The extruded plastic is preferably cut and welded to suite each door or window unit. Glass panels are preferably mounted on mounting surfaces of the extrusion and a clear rigid thermal plastics pane is mounted midway between the glass panes. Preferably a 20 rigid adhesive is used for attachment of the panes to the mounting surfaces:

25 Preferably the glass and plastic panes are spaced to provide optimum insulation with air and/or argon gas filled cavities whereby gas is injected via latex valves located in the horizontal door-frame members. Desiccant chambers are formed in the plastic extrusion and are filled with desiccant moisture absorption granules and sealed using plastic caps prior to welding.

Throughout the specification, a reference to a door may be taken as a reference 30 to a window as the context allows, and a reference to a window may be taken to include a door as the context allows. Although the invention will be described with primary reference to use of a panel as a door, it will be appreciated by

persons skilled in the art that the panel may be used in a variety of applications to reduce/eliminate unwanted condensation on one or other of outer walls of the panel and door frame.

5

DETAILED DESCRIPTION

The present invention will now be described in more detail according to preferred but non-limiting embodiment and with reference to the accompanying 10 illustrations whereint:

Figure 1 shows an exploded perspective view of a door panel according to one embodiment.

15 Figure 2 shows a front elevation of a refrigeration unit having three doors according to one embodiment.

Figure 3 is an enlarged cross sectional view of an abbreviated frame extrusion including fitted glass panels and an intermediate insulating panel.

20

Figure 4 is a cross sectional diagram of a frame extrusion for an insulated glass door according to one embodiment.

Figure 5 shows a part elevation view of a door panel frame from a front view.

Figure 6 shows a part elevation view of a door panel frame from a rear view.

25

Figure 7 shows an isometric view of a section of a panel with panes fitted according to a preferred embodiment.

Figure 8 shows an enlarged cross sectional view of an extrusion used in a door frame according to one embodiment.

Figure 9 shows a cross sectional view of a section of a panel with panes fitted.

30

Referring to figure 1 there is shown an exploded perspective view of a door panel 1 according to one embodiment. Door panel 1 comprises a peripheral

frame 2 having long sides 3 and 4 and short sides 5 and 6. Fitted inside frame 2 are glass panels 7 and 8 which are disposed in opposing relationship and define an internal space 9 there between. Internal space 9 receives and retains therein an insulating member 10 which is preferably spaced so it is equidistant from panels 7 and 8 so that panels 7 and 8 are mutually isolated from each other.

Panel 1 further comprises a magnetic gasket 11 which is fixed in a gasket groove (see figure 3).

Figure 2 shows a front elevation of a refrigeration unit 12 having three doors 13, 14 and 15 constructed in accordance with the panel 1 arrangement described in figure 1. Fridge/freezer unit 12 is typically an industrial fridge/freezer having a cooled interior and transparent doors so that the contents of the fridge/freezer may be viewed from the outside. In the past the problem has been condensation forming on the outer surfaces of the doors as one side is exposed to refrigeration temperature and the other side is exposed to ambient room temperature. This inevitably leads to potential condensation on the outside of the glass panes and door frame thus obscuring the fridge contents. Doors 13, 14 and 15 have an insulating member corresponding to insulation member 10 as described with reference to figure 1

Figure 3 is an enlarged cross sectional view of an abbreviated frame 16 including an extrusion including fitted glass panels and an intermediate insulating panel. Extrusion 20 which is manufactured from thermal plastics, comprises an outer wall 21 and inner wall 22 which define internal spaces 23, 24, 25 and 26. Preferably a plastics extrusion is provided forming a panel which functions as either a window or door. The plastics frame extrusion 20 is cut and welded to suit the refrigeration unit 27 to which the door/window will be attached. Glass panes 28 and 29 are mounted on the respective mounting surfaces 30 and 31. Also fitted to extrusion 20 via surface 32 is a clear rigid thermal plastic insulating member 33 mounted midway between glass panes 28 and 29. Glass panes 28 and 29 and insulating member 33 are attached to their

respective mounting surfaces using a rigid adhesive. Glass panels 28 and 29 and plastics insulating member 33 are spaced to provide optimum insulation with air and/or argon gas filled cavities 34 and 35. Additional features in the plastic extrusion 20 include a hinge and torsion bar mounting point 36 and excess rigid adhesive traps 37, 38 and 39. A magnetised flexible gasket 44 is inserted into the gasket retaining groove 45 providing an airtight seal between the insulated glass door and the door fascia of the refrigerator/freezer unit 27.

Figure 4 is a cross sectional diagram of a frame extrusion 40 for an insulated glass door according to one embodiment. The air and/or argon gas is inserted via latex valves (not shown) located in a horizontal door-frame formed by extrusion 40. Desiccant chambers 41 and 42 formed in the plastics extrusion 40 are filled with desiccant moisture absorption granules in the vertical frame sections and sealed using plastic caps (see figure 3) prior to welding.

Figure 5 shows a part elevation view of a door panel frame 50 from a front view. Panel 50 includes an upper frame member 52 and side member 53. Figure 6 shows from a rear (reverse side) view an elevation view of the part door panel frame 50 comprising upper frame member 52 and side frame member 53. Frame 50 which is formed from a preferably plastics extrusion is adapted with three shoulder regions 54, 55 and 56 which define recesses which each receive and retain panes 57, 58 and 59 as shown in figure 7.

Figure 7 shows an isometric view of a section of a panel with panes fitted according to a preferred embodiment. According to one embodiment of a method aspect, a typical panel may be constructed in accordance with a method to be described with reference to figure 7.

Peripheral frame 50 may be constructed from a metal or plastics material. Preferably the frame material is an extruded plastics. Typically, a frame will comprise upper member 52 and lower member 53 formed from an extrusion and which includes recesses which form bearing shoulders 54, 55 and 56 which respectively receive panes 57, 58 and 59.

Pane 57 forms an outer door surface and pane 59 an inner door surface which each define an internal space 60 . Pane 58 locates on shoulder 55 in inner space 60 and provides an insulation of panes 57 and 59 to prevent condensation.

5 The preferred method comprises the steps of:

- a) taking two panes 57 and 59 of a predetermined size;
- b) taking an insulating member 58;
- c) constructing a frame 50 from a thermal plastic extrusion having a profile so that the completed frame includes three shoulder regions 54, 55 and 56;
- d) The first pane 57 is fitted so that its periphery engages shoulder recess 54. Preferably the pane is glued peripherally to shoulder 54;
- e) Next, insulating member 58 is glued to shoulder recess 55 which is disposed in a central position relative to outside surfaces of the door panel;
- f) Finally pane 59 is seated on and glued to shoulder 56 to seal internal space 60. Pane 57 forms an outer surface of the panel 50;

wherin the panes are arranged so that the first and second panes 57 and 59 define an internal space 60 divided by the insulating panel 58 is located intermediate the first and second panes. Preferably the panes are transparent glass.

Figure 8 shows an enlarged cross sectional view of an abbreviated frame extrusion 70 used in a door frame according to one embodiment.

25 Frame Extrusion 70 which is preferably manufactured from thermal plastics, comprises an outer wall 71 and inner wall 72. Inner wall 72 defines internal spaces 73, 74. Frame extrusion profile 70 provides an outer panel structure which may be a window, door or the like. The plastics frame extrusion 70 is cut and welded to suit its particular application and in a preferred embodiment is adapted as a fridge or freezer door. Panes 77 and 79 are 30 preferably manufactured from glass and are mounted on the respective

mounting surfaces 80, and 82. Also fitted to extrusion 70 via surface 81 is a clear rigid thermal plastic insulating member 78 mounted intermediate glass panes 77 and 79. Glass panes 77 and 79 and insulating member 78 are attached to their respective mounting surfaces 80, 82 and 81 using a suitable rigid sealing adhesive. Glass panels 77 and 79 and plastics insulating member 78 are spaced to provide optimum insulation with air and/or argon gas filled cavities 73 and 74. Additional features in the plastics extrusion 70 include a hinge and torsion bar (not shown) for mounting purposes.

Figure 9 shows a half section of the door panel 70 of figure 8 constructed in accordance with the invention and with corresponding numbering. Panel 70 is shown including a magnetised flexible gasket 83 inserted into the gasket retaining groove 84 providing an airtight seal between the insulated glass door and the door fascia of the refrigerator/freezer unit 85.

From the foregoing, it can be seen that the insulated door/window assembly of the present invention has a modern substantially all glass front appearance but increasing the efficiency and strength of conventional insulated doors and windows to which the industry has been accustomed. Since the door/window assembly requires fewer components such that it comprises a single unit, structural instability causing sag is eliminated, manufacturing costs are greatly reduced, and operational costs are substantially lowered with the removal of electrical heating.

Manufacture of a panel in accordance with the invention results in potentially a 60% parts saving and 50% labour saving by comparison with a known typically available commercial fridge or freezer door having a heating element apparatus. Panels or doors made in accordance with the invention do not require any ancillary heating elements or associated heating apparatuses, nor the associated materials and labour. The method of construction allows the panel to function so that condensation is eliminated without the use of a heating element. Consequently, since no heating element is required, energy savings are

estimated to be up to 55% in comparison to a panel or door of similar proportions requiring a heating element.

One advantage of the present invention is that it obviates the need for spacers previously used to space apart glass panels prior to final enclosure in a peripheral frame. In the past a panel was constructed by setting the panels in layers and keeping them spaced apart by spaces which set a predetermined distance between the panels. A metal frame was fitted around the pane edges to complete the panel. This makes panels relatively heavy and their construction labor intensive. The panels according to the invention do not require spacers and are lightweight in comparison to the known panels of a similar size. The preferred frame is manufactured from extruded plastics contributing significantly to weight reduction.

It will be recognized by persons skilled in the art that numerous variations and modifications may be made to the invention as broadly described herein without departing from the spirit and scope of the invention.

20

25

30