Today: HW by 5 Thurs: *Seminar

* New HWart

Restel 32 4.1-04.2. 4.4.

Fri:

Multiple qubit states

Consider two distinct qubits, labeled A and B. In order to accommodate all possible measurement outcomes we will have to represent the states of the system using tensor products. The standard basis vectors are

10> A 10>B = 10>A ⊗ 10>B = 100>

10)A (1)B = 10)A & 11)B = 101>

117 A 107B = 117A @ 107B = 110>

LIDA LIDB = LIDA @ LIDB = LID

The general state of such a two qubit system can be represented via:

14)= a.lo>10) + a.lo>11> + a211>10> + a811>11>.

We need to interpret this in terms of measurements. We want to use the same basic rules:

Given an outcome of a measurement and associated state 14), the probability of the outcome is ((PII))?

In order for this to make sense we need rules for inner products + bras. Suppose II) and II) are of the form

then

$$\langle \Phi | = | \Phi \rangle^+ = \langle \phi_A | \langle \phi_B |$$

and

$$\langle \Phi | \Psi \rangle = \langle \phi_A | \Psi_A \rangle \langle \phi_B | \Psi_B \rangle$$

We can extend this by requiring linearity on the right element and

$$|\overline{\Phi}\rangle = \alpha_1 |\overline{\Phi}_1\rangle + \alpha_2 |\overline{\Phi}_2\rangle = 0 \quad \langle \overline{\Phi}| = \alpha_1^* \langle \overline{\Phi}_1| + \alpha_2^* \langle \overline{\Phi}_2|$$

Using this we can show that the basis { loxlo>, loxlo> is orthonormal. Then we can see that for the generic state

the measurement in this basis yields outcomes with probabilities $Prob(oc) = |\langle oo| \Psi \rangle|^2 = |ao|^2$

$$Prob(c_1) = |\langle c_1 | \Psi \rangle|^2 = |a_1|^2$$

These must add to 1 so we get (|a0|2+1a112+1a212+1a312-1)

Measurements on multiple qubits

We can calculate outcome probabilities via

Prob
$$(a, AND b) = |\langle 4, |\langle x, | | \Psi \rangle|^2$$

Prob (a, AND bz) =
$$|\langle \ell_1 | \langle \chi_2 | | \bar{\psi} \rangle|^2$$

0

We can eventually combine these probabilities into probabilities of outcomes of measurements on one particle regardless of the other. For example:

Prob (a, regardless of b) = Prob (a, AND b,) + Prob (a, AND bz)
$$= |\langle \Psi_1 | \langle \chi_1 | \Psi \rangle|^2 + |\langle \Psi_1 | \langle \chi_2 | \Psi \rangle|^2$$

etc,...

1 Measurements on two qubits

Consider two qubits ("1" on the left and "2" on the right) in the state

$$|\Psi\rangle = \frac{1}{2} (|00\rangle + i |01\rangle + |10\rangle + i |11\rangle).$$

In the following a measurement is performed on "1" and a measurement on "2."

- a) Determine the probabilities of all four outcomes if the measurement basis for "1" is $\{|0\rangle, |1\rangle\}$ and the measurement basis "2" is $\{|0\rangle, |1\rangle\}$.
- b) Determine the probabilities of all four outcomes if the measurement basis for "1" is

$$\left\{ \frac{1}{\sqrt{2}} \ket{0} + \frac{1}{\sqrt{2}} \ket{1}, \frac{1}{\sqrt{2}} \ket{0} - \frac{1}{\sqrt{2}} \ket{1} \right\}$$

and the measurement basis "2" is

$$\left\{\frac{1}{\sqrt{2}}\ket{0} + \frac{1}{\sqrt{2}}\ket{1}, \frac{1}{\sqrt{2}}\ket{0} - \frac{1}{\sqrt{2}}\ket{1}\right\}.$$

c) Determine the probabilities of all four outcomes if the measurement basis for "1" is

$$\left\{\frac{1}{\sqrt{2}}\left|0\right\rangle+\frac{1}{\sqrt{2}}\left|1\right\rangle,\frac{1}{\sqrt{2}}\left|0\right\rangle-\frac{1}{\sqrt{2}}\left|1\right\rangle\right\}$$

and the measurement basis "2" is

$$\left\{ \frac{1}{\sqrt{2}} \ket{0} + \frac{i}{\sqrt{2}} \ket{1}, \frac{1}{\sqrt{2}} \ket{0} - \frac{i}{\sqrt{2}} \ket{1} \right\}.$$

Ans: a) We need to compute

Prob (co) = $|\langle c|\langle c| \Psi \rangle|^2 = |\langle c|\langle c|\Psi \rangle|^2$ $\langle c|\Psi \rangle = \frac{1}{2} \langle c|c|c\rangle + \frac{1}{2} \langle c|c|c\rangle +$

Prob (a) =
$$|\langle a|\Psi \rangle|^2 = \frac{|a|^2}{|a|^2} = \frac{|a|^2}{|a|^2}$$

Prob (a) = $|\langle a|\Psi \rangle|^2 = \frac{|a|^2}{|a|^2} = \frac{|a|^2}{|a|^2}$

Prob (a) = $|\langle a|\Psi \rangle|^2 = \frac{|a|^2}{|a|^2} = \frac{|a|^2}{|a|^2}$

b) Prob (++) =
$$|\langle P_1 | X_1 | P_2 \rangle|^2$$

 $\langle P_1 | = \frac{1}{\sqrt{2}} \langle O_1 + \frac{1}{\sqrt{2}} \langle I_1 |$
 $\langle X_1 | = \frac{1}{\sqrt{2}} \langle O_1 + \frac{1}{\sqrt{2}} \langle I_1 |$

Prob (++) =
$$\left| \frac{1}{4} \left(1 + i + 1 + i \right) \right|^2 = \left| \frac{1 + i}{2} \right|^2 = \frac{\left(1 + i \right) \left(1 - i \right)}{4} = \frac{1}{2}$$

$$Prob(+-) = \left| \frac{1}{4} \left(1 - i + 1 - i \right) \right|^2 = \frac{1}{2}$$

$$\langle \Psi_z | \chi_1 \rangle = \frac{1}{z} \langle \langle ool + \langle oil - \langle iol - \langle iii \rangle \rangle$$

$$Prob(-+) = \left| \frac{1}{4} \left(1 + i - 1 - i \right) \right| = 0$$

For -- we need
$$\langle \Psi_z | \langle \chi_z | = \frac{1}{z} (\langle \zeta_0 \rangle) - \langle \zeta_0 \rangle + \langle \zeta_1 \rangle$$

$$Prob(--) = \left|\frac{1}{4}(1-i-1+i)\right|^2 = 0$$
 $Prob(--) = 0$

$$Prob(++) = \left| \frac{1}{4} (1+1+1+1) \right| = 1$$

$$Prob(+-) = \left| \frac{1}{4} (1-1+1-1) \right| = 0$$

$$Prob(-+) = \left|\frac{1}{4}(1+1-1-1)\right| = 0$$

$$Prob(--) = \left| \frac{1}{4} \left(1 - 1 - 1 + 1 \right) \right| = 0$$

国

Part b) of the example illustrates: If we are only interested in the outcome of measurement on "1" regardless of that on "2", then

Prob (+ regardless of "2") =
$$Prob(++) + Prob(+-) = 1$$

 $Prob (- "2") = 0$

Thus if we measure {\var_{\pi}(10)+11\right)}, \var_{\pi}(10)-11\right)} on "1" we will be assured of the "+" outcome regardless of the outcome of the same on "2".

The measurement of part c) indicates that we will definitely attain the outcomes associated with

$$\frac{1}{\sqrt{2}}(10)+11) \quad \text{on "1"}$$

$$\frac{1}{\sqrt{2}}(10)+i11) \quad \text{on "2"}$$

This suggests that the state of the combined system is $|\Psi\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right)$ state of "2" and multiplication reveals that this is indeed true.

Gereral measurements

Suppose that we only measure on system "I" and want statistics regardless of any measurement on system "z". Thus suppose that we measure A with the given associated states. How can we get the probabilities of outcomes?

One way is to express the state as some state; not necessarily normalized. $|\Psi\rangle = |\Psi_1\rangle |\phi_1\rangle + |\Psi_2\rangle |\phi_2\rangle$

where {14,>,142} are the states associated with measurement A. Then:

Prob
$$(a_1) = \langle \phi_1 | \phi_1 \rangle$$

Prob $(a_2) = \langle \phi_2 | \phi_2 \rangle$

If one cannot de this, then an alternative is:

- * Given one wants to measure on "I" with a measurement with states 14i) and outcomes ai:
 - 1) Express

$$|\Psi\rangle = |\phi_0\rangle|_0\rangle + |\phi_1\rangle|_1\rangle$$

where $\{10\},11\}$ are a measurement basis for "2" Here $\{100\},100\}$ will not necessarily be orthonormal.

2) Then

 $Prob(ai) = \left| \langle \ell_i | \phi_0 \rangle \right|^2 + \left| \langle \psi_i | \phi_i \rangle \right|^2$

One can see that this is plausible if we measure:

- * In basis { [4,], 14, } for ","
- * In basis { (0), (1) } for "z"
- * Add each probability for "1" over entranes for "2".

$$|\Psi\rangle = \frac{1}{\sqrt{3}} \left(|00\rangle + |01\rangle + |10\rangle \right)$$

Determine probabilities for the following measurements on the left qubit:

b)
$$\left\{ \begin{array}{c} 10) + 11 \\ \sqrt{2} \end{array}, \begin{array}{c} 10) - 11 \\ \sqrt{2} \end{array} \right\}$$

Answer: a)
$$19\rangle = \frac{1}{\sqrt{3}}(10) + 111) 10\rangle + \frac{1}{\sqrt{3}}(10) 11\rangle$$

Prob (a) =
$$|\langle c|4a\rangle|^2 + |\langle o|4i\rangle|^2$$

= $|\frac{1}{\sqrt{3}}|^2 + |\frac{1}{\sqrt{3}}|^2 = \frac{2}{3}$

$$Prob(1) = |\langle 1|\phi_0\rangle|^2 + |\langle 1|\phi_1\rangle|^2$$
$$= \left(\frac{1}{\sqrt{3}}\right)^2 + 0 = \frac{1}{3}$$

b) Prob (+) =
$$\left| \left(\frac{1}{\sqrt{2}} \left\langle 61 + \left\langle 11 \right\rangle \left(\frac{1}{\sqrt{3}} \left(\left| 6 \right\rangle + \left| 11 \right\rangle \right) \right) \right|^{2}$$

+ $\left| \frac{1}{\sqrt{2}} \left(\left\langle 61 + \left\langle 11 \right\rangle \right) \left(\frac{1}{\sqrt{3}} \left| 6 \right\rangle \right) \right|^{2}$
= $\frac{1}{6} 2^{2} + \frac{1}{6} = \frac{5}{6}$

$$Prob(-) = \left| \frac{1}{\sqrt{2}} ((0) - (1)) (\frac{1}{\sqrt{3}} (10) + 10)) \right|^{2} + \left| \frac{1}{\sqrt{2}} ((0) - (1)) \frac{1}{\sqrt{3}} \right|^{2}$$

$$= \frac{1}{6} 0 + \frac{1}{6} = \frac{1}{6}$$

Entangled slates

We have seen an example where a superposition can be written as a product. So

$$|\Psi\rangle = \frac{1}{2} \left(|00\rangle + |101\rangle + |10\rangle + |11\rangle \right)$$
$$= \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right)$$

and we saw that, for such a state there is a pair of measurements, one on each qubit so that the pair give one outcome with certainty.

This is an example of the following:

A state
$$14$$
) is a product state if there exist states $14a$) and $18b$ for the two subsystems such that 14) = $14a$ > $1xb$ >

The physical interpretation of this is:

there is some choice of measurement, one on each subsystem so that the combination always gives one particular pair of outcomes.

There is a sense of independence between the two systems. Specifically one can show that

If the two systems are in a product state then the statistics of any measurement on a single system are independent of the choice of measurement on the other system

But is it always possible to express states in this form? The following exercise illustrates this

Exercise: Let

a) Consider a measurement in {10,11)} List possible outcomes + probabilities. Is there a correlation between outcomes on the two systems? Is either outcome on one system definite?

6) Using

and
$$(c) = \sqrt{2}(1+)+(-)$$

$$|11\rangle = \sqrt{2} (1+>-1-7)$$

rewrite 17) in terms of {1+>,1->}. Use the result to list probabilities of outcomes of measurements in basis {1+),1-)} ls there a correlation between outcomes?

c) By considering arbitrary general single qubit states
$$|\Psi\rangle = a_0(c) + a_1(l)$$

$$|\chi\rangle = b_0(c) + b_1(l)$$

Can one find a, b s.t. 19=14)1x).

Answer: a)
$$\frac{\text{outcomes}}{0} = \frac{\text{state}}{0} = \frac{\text{prob}}{0}$$

0 0 100) $\frac{|\langle col F \rangle|^2}{0} = 0$

1 0 110) $\frac{|\langle col F \rangle|^2}{0} = 0$

Yes one will always get opposites "O" for one and "I" for other

No, connet say which

Similar to a) Prob(++)=0 $Prob(-+)=\frac{1}{2}$ 2 always opposite $Prob(+-)=\frac{1}{2}$ Prob(--)=0

c) If the
$$|\Psi\rangle = a_0b_0|c_0\rangle + a_0b_1|c_1\rangle + a_1b_0|c_0\rangle + a_1b_1|c_1\rangle$$
.

Then $a_0b_0=0$ $a_0b_1=1/52$ f weither $a_0=0$ nor $b_0=0$
 $a_1b_0=1/52$ f contradict.

This particular state cannot be written as a product state. Then:

An entangled state is one which cannot be written as a product state.

In terms of measurements

14) entangled

No choice of single qubit
measurements that yield one pair
with certainty.