Optimization Assignment - 1

Mandava.Gowthami

I. QUESTION

For $\mathbf{x} \in (0, 5\pi/2)$ $define\ \mathbf{f}(\mathbf{x}) = \int_0^x \sqrt{t} sint\ dt$.Then \mathbf{f} has

II. SOLUTION

STEP-1 The given function f(x) is defined in given range and derivative of this fuction exists.

STEP-2 we can find the maxima of f(x) by using gradient ascent method

$$\implies x_{n+1} = x_n + \alpha \nabla f(x_n)$$

$$\implies x_{n+1} = x_n + \alpha \left(\sqrt{x} sinx \right)$$
 (1)

Taking $x_0 = 0.5, \alpha = 0.001$ and precision = 0.00000001, values obtained using python are:

$$Maxima = 9.9979e - 06$$
 (2)

$$Maxima Point = 3.141$$
 (3)

STEP-3 we can find the minima of eq(1) by using gradient descent method

$$\implies x_{n+1} = x_n - \alpha \nabla f(x_n)$$

$$\implies x_{n+1} = x_n - \alpha \left(\sqrt{x} sinx \right) \tag{4}$$

Taking $x_0 = 4$, $\alpha = 0.001$ and precision = 0.00000001, values obtained using python are:

$$Minima = -09.9951e - 06$$
 (5)

$$Minima Point = 6.283$$
 (6)

Fig. 1. plot of f(x) with maxima and minima points

Get the python code of the figures from

https://github.com/gowthami/GOWTHAMI_FWC/blob/main/optimization_1/code/optimization1.py