Intro to Diffgeo

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: April 17, 2024)

Definition 1. An isometric function between two metric spaces (X, d_1) , (Y, d_2) is a function that preserves norms.

Corollary 2. Isometric functions are injective.

Definition 3. If it is surjective (and hence bijective), it is called an isometry.

Theorem 4. Isometries on euclidean space (\mathbb{R}^n) are linear. Additionally, they are the composition of a translation and a rotation.

$$F = t_v \circ L_A$$
.

Where $L_A : \mathbb{R}^n \to \mathbb{R}^n$, with $L_A(x) = Ax$ and $A \in O(n)$.

Definition 5. An isometry is called orientation preserving if det(A) = 1 and orientation reversenig if det(A) = -1.

Definition 6. The cross product is defined by $\times : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$,

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \times \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{pmatrix}.$$

Theorem 7. The cross product $\times : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ is the unique product sending $x, y \in \mathbb{R}^3$ to the vector z such that

$$det(x, y, v) = \langle v, z \rangle \qquad \forall v \in \mathbb{R}^3.$$

Theorem 8. (Properties of the Cross Product)

1. \times is \mathbb{R} -bilinear

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

2.
$$y \times x = -x \times y$$

3. Suppose $A \in SO(3, \mathbb{R})$. Then

$$Ax \times Ay = A(x \times y).$$

Proof.

$$\langle Ax \times Ay, Av \rangle$$

$$= \det(Ax, Ay, Av)$$

$$= \det(A) \cdot \det(x, y, v)$$

$$= \det(A) \cdot \langle x \times y, v \rangle$$

$$= \det(A) \cdot \langle A(x \times y), v \rangle$$

So if det(A) = 1,

$$\langle Ax \times Ay, w \rangle = \langle A(x \times y), w \rangle \ \forall w \in \mathbb{R}^3.$$

If det(A) = -1, then

$$\langle Ax \times Ay, w \rangle = -\langle A(x \times y), w \rangle \ \forall w \in \mathbb{R}^3.$$

Hence,

$$Ax \times Ay = -A(x \times y) \forall x, y \in \mathbb{R}^3.$$