Universidade Federal de Ouro Preto - UFOP
Instituto de Ciências Exatas e Biológicas - ICEB
Departamento de Computação - DECOM
Ciência da Computação

Avaliação Empírica de Algoritmos para o Problema da Mochila 0-1: Programação Dinâmica, Backtracking e Branch-and-Bound

BCC241 - Projeto e Análise de Algoritmos

Bárbara Rodrigues Mateus, Caio Lucas Pereira da Silva, Gustavo Zacarias Souza

Professor: Anderson Almeida Ferreira

Ouro Preto 11 de agosto de 2025

Sumário

1	Resumo					
2	2.1 2.2 2.3	Objetivo do Trabalho	1 1 2 2 2			
3	3.1 3.2 3.3	3.1.1 Complexidade de Tempo	5 5 6 6 7 7 7 8 8			
4	Ava l 4.1	liação experimental Teste estatístico	9			
5	Refe	erências Bibliográficas	11			
L	ista	de Figuras				
	1 2 3 4 5 6 7 8 9 10 11 12	Resultados do Branch and Bound				

Lista de Tabelas

1	Resultados estatísticos por algoritmo	ć
	Comparações estatísticas entre algoritmos	
3	Comparação dos algorítmos por complexidade e perfomance	10

1 Resumo

Neste trabalho, exploramos o famoso problema da mochila 0-1. É um problema muito conhecido e com diversas aplicações práticas, como a divisão de um montante entre várias opções de investimento. Devido à sua importância no campo teórico e por ser um problema NP-difícil, muitos pesquisadores têm se dedicado a ele, procurando criar métodos de resolução mais eficazes que aproveitem as particularidades de cada versão.

Neste estudo, usaremos três métodos tradicionais de resolução: programação dinâmica, retrocesso e branch-and-bound. A avaliação será feita de maneira prática, comparando o desempenho de cada método por meio de testes controlados, com a criação automática de exemplos e a análise dos tempos de execução e da qualidade das soluções obtidas.

2 Introdução

2.1 Problema

Suponhamos um empreendedor que é dono de um pequeno food truck e vai participar de um festival gastronômico. Ele dispõe de um espaço limitado dentro do veículo para transportar ingredientes e equipamentos, mas deseja levar aqueles que possibilitem preparar os pratos mais lucrativos durante o evento.

Ele faz uma lista com todos os itens que poderia levar: sacos de farinha, caixas de legumes, carne, temperos, bebidas, utensílios e até uma chapa extra. Cada item possui um peso (ou volume) e um valor estimado de retorno financeiro, baseado no quanto pode contribuir para suas vendas.

O problema surge porque o espaço dentro do food truck é limitado — por exemplo, se o veículo comporta até 200 kg, não será possível levar tudo. Isso gera a seguinte pergunta: como escolher quais itens levar para maximizar o lucro total?

Uma solução ingênua seria adotar o "método guloso": pegar o item de maior valor de retorno e colocá-lo primeiro, depois o segundo de maior valor que caiba no espaço restante, e assim por diante. Porém, essa abordagem pode levar a escolhas ruins: pode acabar ocupando grande parte do espaço com um item pesado, deixando de fora vários outros mais leves que, juntos, gerariam maior lucro.

Este é o chamado problema da mochila: dado um conjunto de itens, cada um com peso e valor, e uma capacidade máxima do recipiente (no caso, o espaço ou peso suportado pelo food truck), escolher um subconjunto de itens que maximize o valor total, sem ultrapassar a capacidade.

Esse problema é amplamente estudado em ciência da computação, pois modela situações de escolha ótima sob restrição de recursos e pertence à classe dos problemas NP-hard.

2.2 Objetivo do Trabalho

O objetivo deste trabalho é desenvolver, implementar e avaliar empiricamente três algoritmos para a resolução do problema da Mochila 0-1 sem repetição: programação

dinâmica, backtracking e branch-and-bound. Esse problema é um clássico da Computação e pertence à classe dos problemas NP-completos, sendo também NP-difícil na sua formulação de otimização. Isso significa que, para grandes instâncias, não se conhece nenhum algoritmo determinístico de tempo polinomial que garanta a solução ótima, o que torna essencial a análise de diferentes estratégias de resolução.

A proposta envolve analisar o desempenho dessas abordagens em diferentes tamanhos de instâncias, medindo e comparando seus tempos de execução. Para isso, serão geradas instâncias aleatórias com variação no número de itens (n) e na capacidade máxima da mochila (W), de forma a verificar o impacto do crescimento do problema no tempo de execução.

Cada experimento será repetido múltiplas vezes para permitir análise estatística, incluindo teste t pareado com 95

Por fim, pretende-se apresentar e interpretar os resultados por meio de gráficos com intervalos de confiança, destacando as diferenças de eficiência entre os métodos e discutindo suas limitações frente ao crescimento exponencial do espaço de busca inerente a problemas NP-difíceis.

2.3 Resultados obtidos

2.3.1 Experimento 1

Nesse experimento, apenas o número de itens n variou, enquanto a capacidade da mochila (W) foi mantida em um valor fixo. Dito isso, o Branch and Bound apresentou tempos irregulares, pois seu desempenho não depende somente de n, mas também de como os pesos e os valores dos itens encontram-se dispostos na entrada, influenciando na eficiência da poda. Enquanto isso, o Backtracking teve um crescimento mais

2.3.2 Experimento 2

Figura 1: Resultados do Branch and Figura 2: Resultados do Branch and Bound (Escala normalizada)

Figura 3: Resultados do Backtracking (Escala normalizada)

Figura 5: Resultados da Prog. Figura 6: Resultados da Prog. Dinâmica (Escala normalizada)

Figura 7: Resultados do Branch and Figura 8: Resultados do Branch and Bound (Escala normalizada)

Figura 9: Resultados do Backtracking Figura 10: Resultados do Backtracking (Escala normalizada)

Figura 11: Resultados da Prog. Figura 12: Resultados da Prog. Dinâmica (Escala normalizada)

3 Descrição dos algoritmos e análise de complexidade

3.1 Branch and Bound

A ideia do algoritmo é representar todas as combinações possíveis de itens como uma **árvore de decisão**, onde cada nó indica se um item foi incluído ou não. Para reduzir o espaço de busca, é utilizada a técnica de *branch and bound*:

1. Ordenação dos itens

Os itens são ordenados pela razão valor/peso em ordem decrescente (estratégia gulosa para melhorar o cálculo dos limites).

2. Nó raiz

Cria-se um nó inicial (nível -1, lucro e peso zero) e insere-o em uma fila para busca em largura (BFS).

3. Expansão dos nós

Enquanto a fila não estiver vazia:

- Remove-se um nó u da fila.
- Cria-se o nó include (incluindo o próximo item) e calcula-se:
 - Novo peso.
 - Novo lucro.
 - Limite superior (bound) usando uma solução fracionária gulosa.
 - Se o peso for ≤ capacidade e o lucro for melhor, atualiza o melhor lucro.
 - Se o limite (bound) for maior que o melhor lucro atual, mantém o nó para expansão futura.
- Cria-se o nó exclude (excluindo o próximo item) e calcula-se:
 - Limite (bound).
 - Se o limite for promissor, mantém o nó para expansão futura.

4. Reconstrução da solução

Depois de processar todos os nós, volta-se pelo caminho do melhor nó encontrado (bestNode) para determinar quais itens foram escolhidos.

5. Limpeza de memória

Todos os nós alocados são liberados para evitar vazamento de memória.

3.1.1 Complexidade de Tempo

• Pior caso: $O(2^n)$

Mesmo com podas, no pior cenário é preciso visitar praticamente todos os subconjuntos possíveis de itens.

- Melhor caso: $O(n \log n)$ Quando a poda é muito eficiente e poucos nós são explorados (apenas ordenação inicial e poucas expansões).
- Caso médio: Entre $O(2^n)$ e $O(n \log n)$, dependendo da eficiência da poda para os dados de entrada.

O cálculo do *bound* para cada nó é O(n), e pode ocorrer em até $O(2^n)$ nós, mas normalmente o número real de nós é muito menor devido à poda.

3.1.2 Complexidade de Espaço

- Memória para itens: O(n)
- **Memória para nós:** No pior caso, pode chegar a $O(2^n)$ se quase todos os nós forem mantidos na fila.
- **Vetor** takenItems: O(n)
- Fila de BFS: Até $O(2^n)$ nós no pior caso, mas tipicamente bem menor.

3.2 Backtracking Iterativo com Poda por Limite Superior

O objetivo do algoritmo é explorar todas as combinações possíveis de inclusão ou exclusão de itens, evitando caminhos que não podem gerar uma solução melhor do que a já encontrada. A técnica foi implementada com **poda por limite superior**, implementado de forma iterativa usando uma pilha para simular a busca em profundidade (DFS).

1. Pré-processamento

Os itens são ordenados pela razão valor/peso em ordem decrescente, para maximizar a eficiência da poda baseada em limite superior.

2. Função de limite superior (upper bound)

Dado um estado (i, peso atual, valor atual), calcula o melhor valor possível que pode ser obtido completando a mochila de forma gulosa (adicionando itens inteiros e fracionados, se necessário).

3. Inicialização

Uma pilha é criada para armazenar o estado da busca: índice do item atual, peso acumulado, valor acumulado e vetor de seleção de itens.

4. Exploração iterativa

Enquanto a pilha não estiver vazia:

- Retira-se um estado do topo.
- Caso base: se todos os itens foram considerados, atualiza-se o lucro máximo se necessário.

• **Poda:** se o limite superior desse estado for menor ou igual ao lucro máximo atual, o caminho é descartado.

Ramos:

- (a) **Excluir** o item atual: adiciona à pilha o estado sem aumentar peso nem valor.
- (b) **Incluir** o item atual (se couber na mochila): adiciona à pilha o estado com peso e valor incrementados, marcando o item como escolhido.

5. Reconstrução da solução

Ao final, o vetor de itens escolhidos é reordenado para corresponder à ordem original de entrada.

3.2.1 Complexidade de Tempo

• Pior caso: $O(2^n)$

O algoritmo pode explorar todas as combinações possíveis de itens.

• Melhor caso: $O(n \log n)$

Quando a poda elimina quase todos os ramos logo no início (apenas a ordenação inicial e poucas expansões são necessárias).

• Caso médio: Entre $O(2^n)$ e $O(n \log n)$, dependendo da eficiência da poda para o conjunto de entrada.

O cálculo do limite superior é O(n) e pode ser realizado para cada estado explorado.

3.2.2 Complexidade de Espaço

- Memória para itens: O(n)
- Memória para vetor de seleção: O(n) por estado na pilha.
- Memória para pilha: no pior caso, $O(2^n)$ estados, mas tipicamente muito menor devido à poda.

3.3 Programação Dinâmica

3.3.1 Descrição do algoritmo

A abordagem utilizada é **bottom-up**, que preenche uma matriz dp onde dp[i][w] representa o lucro máximo que pode ser obtido usando os primeiros i itens com capacidade w. Além disso, o algoritmo armazena soluções parciais em uma tabela bidimensional para evitar recomputações.

1. Inicialização

Criar uma matriz dp de dimensões $(n+1) \times (W+1)$ inicializada com zeros, onde n é o número de itens e W é a capacidade da mochila.

2. Preenchimento da tabela

Para cada item i (de 1 a n) e para cada capacidade w (de 1 a W):

- Se o peso do item i é menor ou igual a w, escolher o melhor entre:
 - Não incluir o item: dp[i-1][w]
 - Incluir o item: valor do item + melhor valor para a capacidade restante dp[i-1][w-peso]
- Caso contrário, herdar o valor de dp[i-1][w].

3. Recuperação da solução

O valor máximo está em dp[n][W]. Para reconstruir os itens escolhidos, percorrese a tabela de baixo para cima verificando quais decisões resultaram na inclusão de cada item.

4. Armazenamento do resultado

O vetor takenItems é atualizado para marcar quais itens foram selecionados.

3.3.2 Complexidade de Tempo

O preenchimento da tabela requer $O(n \times W)$ operações, pois cada célula é calculada em tempo constante.

3.3.3 Complexidade de Espaço

- A matriz dp ocupa $O(n \times W)$ posições.
- O vetor de seleção taken I tems ocupa O(n).

4 Avaliação experimental

- Experimento 1:
 - Objetivo: medir o tempo de execução dos algoritmos variando somente o números de itens (n), mantendo a capacidade da mochila (W) fixa.
 - Instâncias: Foram geradas instâncias com n variando de 100 a 1100, incrementado em passos de 100. Para cada valor de n, foram geradas 10 instâncias independentes. Os pesos dos itens foram sorteados de forma uniforme no intervalo [1, n/4] e os valores no intervalo [1, 1000]. As instâncias do primeiro experimento foram salvas em arquivos separados na pasta instâncias, com nomes no formato instancia_n{n}{i}.txt.
 - Configuração inicial: começa com n = 100 e W = 100.
 - Procedimento: A cada iteração n aumenta em 100, mas W permanece constante. Exemplos de valores:
 - * Iteração 1: n = 100, W = 100
 - * Iteração 2: n = 200, W = 100

* Iteração 3: n = 300, W = 100

• Experimento 2:

- Objetivo: medir o tempo de execução variando ambos o número de itens n e a capacidade da mochila W.
- Instâncias: Foram geradas instâncias com n variando de 100 a 900, também em passos de 100, com 10 instâncias para cada configuração. Enquanto a capacidade da mochila (W) variou simultaneamente a n, assumindo o mesmo valor de n a cada instância. Os pesos dos itens foram sorteados de forma uniforme no intervalo [1, n/4] e os valores no intervalo [1, 1000].
- Configuração inicial: começa com n = 100 e W = 100.
- Procedimento: A cada iteração n e W aumentam em 100. Exemplos de valores:

Iteração 1: n = 100, W = 100

* Iteração 2: n = 200, W = 200

Iteração 3: n = 300, W = 300

4.1 Teste estatístico

Para realizar os testes estatísticos requeridos no trabalho, foi criado um arquivo .cpp afim de realizar os cálculos do teste t onde $t=\frac{\bar{x}_d}{\frac{\bar{x}_d}{\sqrt{n}}}$. Os resultados obtidos foram os seguintes:

Algoritmo	Média (s)	Desvio Padrão (s)	Erro Padrão (s)	Número de Instâncias
Branch And Bound	0.612199	0.244367	0.025617	91
Dynamic Backtracking	0.001638 0.000408	0.006623 0.001069	0.000694 0.000112	91 91

Tabela 1: Resultados estatísticos por algoritmo

A partir desta tabela, as seguintes comparações foram realizadas: **Comparação entre algoritmos**

Comparaçõ	e £ statística t	Valor p	Intervalo Confiança (±s)	Rejeita H0	Conclusão
Branch And Bound vs Dynamic	23.7394	0.001	0.050410	SIM	Algoritmo 2 é estatisticamente melhor (p ; 0.05)
Branch And Bound vs Back- tracking	23.9043	0.001	0.050163	SIM	Algoritmo 2 é estatisticamente melhor (p; 0.05)
Dynamic vs Back- tracking	1.7385	0.100	0.001387	NÃO	EMPATE ES- TATÍSTICO - Não há diferença significa- tiva (p ≥ 0.05)

Tabela 2: Comparações estatísticas entre algoritmos

Algoritmo	Complexidade de	Complexidade de	Uso prático
	tempo	espaço	
Branch & Bound	$O(2^n)$	$O(2^n)$	Bom para $n < 100$
Programação	O(nW)	O(nW)	Bom para W pe-
Dinâmica			queno
Backtracking	$O(2^n)$	O(n)	Parecido com o
			B&B

Tabela 3: Comparação dos algorítmos por complexidade e perfomance.

5 Referências Bibliográficas

Referências

- [1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to Algorithms*. MIT Press, 3rd edition, 2009.
- [2] Jon Kleinberg and Éva Tardos. *Algorithm Design*. Addison-Wesley, 1st edition, 2005.
- [3] Silvano Martello and Paolo Toth. *Knapsack Problems: Algorithms and Computer Implementations*. John Wiley & Sons, Inc., 1990.
- [4] Michael R. Garey and David S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W. H. Freeman and Company, 1979.
- [5] S. He and Q. Gu. A new hybrid algorithm for the 0-1 knapsack problem. *2011 International Conference on Signal Processing, Communication, Computing and Mechatronics (SPCCM)*, pages 729–732, 2011.
- [6] Bernard M.E. Moret. On the Art of Comparing Algorithms. *Journal of Experimental Algorithmics*, 7:1, 2002.