					3 (3)		
$\mathfrak{r}_{1}^{\#2}$	0	0	0	$\frac{2i}{k(1+2k^2)(r_1+r_5)}$	$\frac{i\sqrt{2}(3k^2(r_1+r_5)+2t_3)}{k(1+2k^2)^2(r_1+r_5)t_3}$	0	$\frac{6k^2(r_1+r_5)+4t_3}{(1+2k^2)^2(r_1+r_5)t_3}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{k^2 (1+2 k^2) (r_1+r_5)}$	$\frac{3k^2(r_1+r_5)+2t_3}{(k+2k^3)^2(r_1+r_5)t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_1+r_5)+2t_3)}{k(1+2k^2)^2(r_1+r_5)t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 (r_1 + r_5)}$	$\frac{\sqrt{2}}{k^2 (1+2 k^2) (r_1 + r_5)}$	0	$-\frac{2i}{k(1+2k^2)(r_1+r_5)}$
$\tau_{1}^{\#1}\!$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta} \tau_{1}^{\#1}{}_{\alpha\beta}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{1}{k^2 (2 r_1 + r_5)}$	0	0	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#_2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} + ^{lpha}$	$\tau_1^{\#2} + \alpha$

$f_{1^-}^{\#2}$	0	0	0	$-\frac{2}{3}lkt_3$	$\tfrac{1}{3}\bar{l}\sqrt{2}kt_3$	0	2 k ² t ₃
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	[3]	0	$-\frac{1}{3}i\sqrt{2}kt_3$
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 (r_1 + r_5) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	<u>2 i k t 3</u> 3
$f_{1}^{\#1}\!$	0	0	0	0	0	0	0
$\omega_1^{\#2}$	0	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 (2 r_1 + r_5)$	0	0	0	0	0	0
	$\omega_1^{#1} + \alpha^{\beta} k$	$\omega_1^{\#2} +^{\alpha\beta}$	$f_{1}^{\#1} + \alpha^{\beta}$	$\omega_{1}^{\#_{1}} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{\#2} +^{\alpha}$

Lagrangian density $\frac{2}{3}t_3 \; \omega_{,\alpha}^{\alpha \prime} \; \omega_{\kappa\alpha}^{\ \ \ \ \ \ } -r_5 \partial_{\imath} \omega_{,\kappa}^{\ \ \ \ \ \ \ \ } -\frac{2}{3} r_1 \partial^{\beta} \omega^{\beta\alpha}_{\ \ \ \ \ \ \ } \partial^{\beta} \omega_{,\alpha}^{\beta\alpha} \partial^{\beta} \omega_{,\alpha}^{\ \ \ \ \ \ } -\frac{2}{3} r_1 \partial^{\beta} \omega_{,\alpha}^{\beta\alpha} \partial^{\beta} \omega_{,\alpha}$

 $\sigma_1^{\#2}\alpha\beta$

 $\tau_2^{\#1}\alpha\beta$

 $\sigma_{2}^{\#1}$ $_{\alpha eta \chi}$

0

0

0

0

0

 $f_{0+}^{#2} \omega_{0-}^{#1}$

 $f_{0^{+}}^{\#1}$

 $-i \sqrt{2} kt_3$

 $2k^2t_3$

 $\omega_0^{\#1}$

 $f_{0+}^{\#1} \dagger \sqrt{2} kt_{3}$

?		
? k^{μ}	Quadratic pole	2
?	Pole residue:	$\left -\frac{1}{r_1 (r_1 + r_5) (2 r_1 + r_5) p^2} > 0 \right $
?	Polarisations:	2
?		

 $r_1 < 0 \&\& (r_5 < -r_1 || r_5 > -2 r_1) || r_1 > 0 \&\& -2 r_1 < r_5 < -r_1$

(No massive particles)