Προγραμματισμός 1 Μάθημα 1°.

Βασικά τμήματα ενός προγράμματος C

- 1. Τμήμα ορισμού απαραίτητων βιβλιοθηκών πχ #include stdio.h (standard input output) Αυτά είναι τα λεγόμενα αρχεία επικεφαλίδας- header files
- 2. τμήμα δήλωσης σταθερών , **καθολικών** μεταβλητών , τύπων οριζόμενων από το χρήστη και ορισμού συναρτήσεων
- 3. τμήμα κύριας συνάρτησης. Θα το δούμε σαν main() ή int main()

```
| Aσκηση |
| Πρόγραμμα που τυπώνει το μήνυμα στην οθόνη : «Σήμερα είναι Τετάρτη» #include<stdio.h>//dilosi aparaithtis bibliothikis void main() {
| printf("Simera einai Tetarth\n");
| }
| intf("Simera einai Tetarth\n");
| Simera einai Tetarth
| Press any key to continue_
```

Αν σήμερα ήταν άλλη μέρα τι θα εμφανιζόταν στο πρόγραμμα;

```
Ερωτήσεις.
Στο παραπάνω παράδειγμα με arithmos1=9 και arithmos2=4 εκτελώντας τις παρακάτω εντολές:
printf("EROTISEIS....\n");
printf("%d\n",arithmos1/arithmos2);
printf("%5.4f\n",arithmos1/(arithmos2*1.0));
printf("%5.4f\n",arithmos1/arithmos2*1.0);
printf("%5.4f\n",(float)arithmos1/arithmos2);

Γιατί πήρα τα παρακάτω αποτελέσματα;
```

```
EROTISEIS....
2
2.2500
2.0000
2.2500
Press any key to continue
```

Άσκηση2 Πρόγραμμα που δέχεται δύο ακέραιους αριθμούς από το πληκτρολόγιο και εμφανίζει: 1. το άθροισμά τους 2. το πηλίκο τους 3. το ακέραιο πηλίκο τους 4. το υπόλοιπο της διαίρεσής τους 5. το μέσο όρο των δύο αριθμών #include<stdio.h> Τα πιο συχνά... void main(){ int arithmos1, arithmos2; //dilosi topikon metavliton %d για ακέραιο float piliko; %ς για χαρακτήρες printf("Pliktrologise ton proto arithmo.."); % για κινητής scanf("%d",&arithmos1); υποδιαστολής (float) printf("Pliktrologise ton deytero arithmo.."); %ς για αλφαριθμητικά scanf("%d",&arithmos2); %lf για κινητής //ENALLAKTIKA scanf("%d %d",&arithmos1,&arithmos2); υποδιαστολής (double) printf("To athrisma tous htan %d \n",arithmos1+arithmos2); piliko=arithmos1/(float)arithmos2; Γράψε στην οθόνη σύνολο 4 στοιχεία το ελάχιστο (ψηφία printf("To piliko tous htan %4.3f\n",piliko); + υποδιαστολή), εκ των οποίων τα 3 θα ανήκουν στο printf("To AKERAIO piliko tous htan %d\n",arithmos1/arithmos2); κλασματικό-δεκαδικό μέρος. $\Pi \chi 3.278$. printf("To ypoloipo the diairesis tous htan %dn", arithmos 1% arithmos 2) printf("O mesos oros tous htan %4.3f\n",(arithmos1+arithmos2)/2.0); // ENALLAKTIKA ((float)(arithmos1)+arithmos2)/2 παράδειγμα με τους αριθμούς 4 και 7...

Προσοχή! :Στο παραπάνω παράδειγμα έκανα πράξεις με δύο ακεραίους. Η διαίρεση μεταξύ τους θεωρείται ακέραιο αποτέλεσμα και όχι αποτέλεσμα κινητής υποδιαστολής. Για να πάρω σωστό αποτέλεσμα πρέπει ο ένας από τους δύο αριθμούς που λαμβάνουν μέρος στην πράξη της διαίρεσης να γίνει με κάποιο τρόπο float. Αυτό γίνεται με :

- 1. πολλαπλασιάζω με 1.0 κάποιον από τους δύο ακεραίους
- 2. Βάζοντας τη λέξη float μπροστά από τον int που θέλω να μετατρέψω (casting).

Τελεστές μοναδιαίας αύξησης -μείωσης.

```
Άσκηση3
Τι θα εμφανιστεί στην οθόνη μετά την εκτέλεση του παρακάτω προγράμματος και γιατί;
#include<stdio.h>
void main()
int x=2, y=4;
                                                  Πρώτα χρησιμοποιεί τον x και
float z;
printf("O x einai: %d\n",x);
                                                   μετά αυξάνει την τιμή του.
printf("O y einai: %d\n",y);
printf("O x tora einai: %d\n",x++\rightarrow
printf("O x tora einai: %d\n",++x);
y=x++;
                                                    Πρώτα αυξάνει τον x και μετά
printf("\nO y tha einai: %d\n",y);
                                                     χρησιμοποιεί την νέα αυξημένη
printf("O x einai: %d\n",x);
                                                     τιμή του.
y=++x;
printf("\nO y tora tha einai: %d\n",y);
y=y*++x-y++; ←
                                                     Αν έβαζα y=y*++x-++y τι θα
printf("\nO y tora tha einai: %d\n",y);
                                                     έβγαζε και γιατί;
                     εργα<u>ν</u>εια τιι<u>ν</u>ακας <u>Γι</u>αρα<del>σ</del>υρο
                  "C:\Users\mihalis\Desktop\Xara&Katerina\ -__üὑ'H卤1'
0 y tha e....
0 x einai: 5
                y tha einai: 4
              O y tora tha einai: 6
              O y tora tha einai: 37
Press any key to continue_
```

Λογικές πράξεις

Πίνακας αληθείας λογικού ΑΝΟ (&&)

Ā	B	A&&B
FALSE (0)	FALSE (0)	FALSE (0)
FALSE (0)	TRUE (1)	FALSE (0)
TRUE (1)	FALSE (0)	FALSE (0)
TRUE (1)	TRUE (1)	TRUE (1)

Πίνακας αληθείας λογικού ΟR (||)

A	В	A B
FALSE (0)	FALSE (0)	FALSE (0)
FALSE (0)	TRUE (1)	TRUE (1)
TRUE (1)	FALSE (0)	TRUE (1)
TRUE (1)	TRUE (1)	TRUE (1)

Το αποτέλεσμα ενός ελέγχου εκτιμάται σαν true (1) /false (0). Πχ if (a>b) then Αν το a έχει την τιμή 5 και το b την τιμή 6 τότε αυτό που υπάρχει στην παρένθεση γίνεται false δηλαδή 0. Μπορεί να έχουμε και σύνθετες εντολές στη συνθήκη. Τί αποτέλεσμα δίνουν οι παρακάτω λογικές πράξεις;

Έστω a=5, b=7, c=true

- 1. (a = b) or c
- 2. $(a \Leftrightarrow b)$ and not(c)
- 3. not((a > b) and c)

```
Ασκηση 4 Τι αποτέλεσμα έχουν οι παρακάτω προτάσεις και γιατί;
#include<stdio.h>
void main(){
int a=1,b=0,c;
                                                 telestes ayx meiosis - Microsoft Visu
c=b&&a;
printf("c=\%d\n",c);
                                                   "C:\Users\mihalis\Desktop\Xara8
c=a&&(++b);
printf("c=\%d\n",c);
                                                  c=1
c=a&&(b++);
                                                  b=2
printf("c=\%d\n",c);
                                                  |c =0
printf("b=%d\n",b);
                                                  c=0
b=a=0;
                                               kst b=1
c=a&++b;
printf("c=\%d\n",c);
printf("b=\%d\n",b);
                                                  Press any key to continue
c=(!b&&a)&&(++b):
printf("c=\%d\n",c);
printf("b=%d\n",b);
                                                  Τι θα γινόταν εδώ και γιατί αν
printf("%d\n",a==b && !(c||a||b));
                                                  έγραφα;
                                                  c=(!b\&\&a)\&(++b);
```

Άσκηση 5

Να γίνει πρόγραμμα που να υπολογίζει την τιμή της συνάρτησης

$$y = \frac{\sqrt{e^3 + \sin^{\frac{1}{2}}(x)}}{\sqrt{\sqrt{\ln^2(x)}}}.$$
 Η τιμή του x θα δίνεται από το χρήστη μετά από

σχετικό μήνυμα που θα εμφανίζεται στην οθόνη και το αποτέλεσμα του y θα εμφανίζεται στην οθόνη.

Βοήθεια:

- $e^3 => \exp(3)$
- $\sqrt{e^3} = \operatorname{sqrt}(\exp(3))$
- $\sin^{\frac{1}{2}}(x) => pow(\sin(x), 0.5)$
- $ln^2(x) = log(x) * log(x) => pow(log(x), 2)$
- $\sqrt{\ln^2(x)}$ = sqrt(sqrt($\ln^2(x)$)

Προσέχω τις προτεραιότητες πράξεων και βάζω όσες παρενθέσεις χρειάζομαι. Πχ ό,τι χρειάζομαι για τον αριθμητή το βάζω σε παρένθεση για να διαιρεθεί ολόκληρος σωστά με τον παρονομαστή.

```
Λύση:
#include<stdio.h>
#include<math.h>
void main()
float x;
double y;
printf("Pliktrologiste timh gia to x\n");
scanf("%d",&x);
y=(sqrt(exp(3))+pow(sin(x),0.5))/sqrt(sqrt(pow(log(x),2)));
printf("o apotelesma htan %4.3lf\n",y);
🥙 askisi5_synarthsh - Microsoft Visual C++ - [askisi5_synart
 File Edi "C:\Users\mihalis\Desktop\Xara&Katerina\
           Pliktrologiste timh gia to x
             o apotelesma htan 0.444
Press any key to continue
```

(Globals)

⊕ esl