Reporte Tarea 2 Evolutivos. Evolución Diferencial.

Implementación:

1. Mutation

Strategies:

$$\mathbf{v}_i = \mathbf{x}_{i_1} + F \cdot (\mathbf{x}_{i_2} - \mathbf{x}_{i_3}) \tag{2}$$

$$\mathbf{v}_i = \mathbf{x}_{best} + F \cdot (\mathbf{x}_{i_1} - \mathbf{x}_{i_2}) \tag{2}$$

$$\mathbf{v}_i = \mathbf{x}_i + F \cdot (\mathbf{x}_{best} - \mathbf{x}_i) + F \cdot (\mathbf{x}_{i_1} - \mathbf{x}_{i_2})$$
(3)

$$\mathbf{v}_i = \mathbf{x}_{best} + F \cdot (\mathbf{x}_{i_1} - \mathbf{x}_{i_2}) + F \cdot (\mathbf{x}_{i_3} - \mathbf{x}_{i_4})$$
 (4)

$$\mathbf{v}_i = \mathbf{x}_{i_1} + F \cdot (\mathbf{x}_{i_2} - \mathbf{x}_{i_3}) + F \cdot (\mathbf{x}_{i_4} - \mathbf{x}_{i_5}) \tag{5}$$

 v_i = Mutated individuals

 i_i = random integers

F = scale factor

2. Crossover

(1)
$$\mathbf{u}_i(j) = \begin{cases} \mathbf{v}_i(j), & \text{if } U_j(0,1) \leq CR \text{ or } j = j_{rand} \\ \mathbf{x}_i(j), & \text{otherwise.} \end{cases}$$

 u_i = crossed individuals

 $U_{i}(0,1)$ = uniformly distributed random number in (0,1)

CR = crossover rate

ensures population u is different than population *x*

3. Selection

$$\mathbf{x}_i' = \left\{ egin{array}{ll} \mathbf{u}_i, & if \ f(\mathbf{u}_i) \leq f(\mathbf{x}_i) \\ \mathbf{x}_i, & otherwise. \end{array}
ight. \quad \left. egin{array}{ll} x_i' = \text{ selected individuals} \\ f() = \text{ fitness evaluation} \end{array}
ight.$$

Funciones e intervalos que se utilizaron en esta practica:

- 1. Sphere, [-5.12, 5.12]
- 2. Ackley, [-32.768, 32.768]
- 3. Griewank, [-600, 600]
- 4. Rastrigin, [-5.12, 5.12]
- 5. Rosenbrock, [-2.048, 2.048]

Sphere	$f_{sph}(\vec{\mathbf{x}}) = \sum_{i=1}^{N} x_i^2$
Ackley	$ f_{ack}(\vec{\mathbf{x}}) = 20 + e - 20e^{\left(-0.2\sqrt{\left(\frac{1}{N}\sum_{i=1}^{N}x_i^2\right)}\right)} - e^{\left(\frac{1}{N}\sum_{i=1}^{N}\cos(2\pi x_i)\right)} $
Rastrigin	$f_{ras}(\vec{\mathbf{x}}) = 10N + \sum_{i=1}^{N} (x_i^2 - 10\cos(2\pi x_i))$
Griewank	$f_{grw}(\vec{\mathbf{x}}) = \sum_{i=1}^{N} x_i^2 / 4000 - \prod_{i=1}^{N} \cos(x_i / \sqrt{i}) + 1$
Rosenbrock	$f_{ros}(\vec{\mathbf{x}}) = \sum_{i=1}^{N-1} (100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2)$

Resultados.

La siguiente Tabla muestra los resultados que se obtuvieron al correr 30 ejecuciones del programa hasta que el fitness mínimo alcanzara un valor por debajo de 1 x10⁻⁸, o hasta que ocurrieran 1x10⁵xd (d=dimensión) evaluaciones de función, para dimensión 50 en general se obtuvieron malos resultados, para dimensión 30 se obtuvieron resultados bastante buenos, con excepción del caso de la función Rastrigin, el resultado obtenido en la tabla se obtuvo con la estrategia de mutación DE/current_to_best/2, (Ecuación (3) descrita en la sección de implementación).

Fmin = Mínimo valor de fitness obtenido en las 30 ejecuciones.

Fmax = Máximo valor de fitness obtenido en las 30 ejecuciones.

CR = Probabilidad de cruza.

F = Factor de escalamiento

S_ratio = Ratio de éxito al alcanzar un valor menor a 1x10⁻⁸.

Function	Dimension	Fmin	Fmax	CR	F	iterations	S_ratio
Sphere	30	6.15E-009	9.97E-009	0.9	0.59	2168	100
Ackley	30	8.71E-009	1.155149	0.9	0.58	4193	96.67
Griewank	30	6.90E-009	0.01722629	0.9	0.59	2833	83.33
Rastrigin	30	14.81588	36.07782	0.8	0.2	15000	0
Rosenbrock	30	5.44E-009	3.986624	0.9	0.59	7303	93.33
Sphere	50	0.9182847	4.822462	0.8	0.6	25000	0
Ackley	50	3.639631	6.368319	0.9	0.6	25000	0
Griewank	50	4.815635	22.78373	0.7	0.6	25000	0
Rastrigin	50	28.75764	82.36113	1	0.1	25000	0
Rosenbrock	50	78.00365	144.5629	0.8	0.6	25000	0

En esta otra tabla se muestran los resultados obtenidos al ejecutar 30 corridas del programa con 1x10⁵xd evaluaciones de función, de nuevo se observa que los resultados obtenidos en dimensión 30 son bastante aceptables, con excepción de la función Rastrigin (aquí también se utilizó la Ecuación (3) para la Rastrigin, y la Ecuación (1) para las demás funciones).

Fmean=Valor medio de Fitness obtenido de las 30 ejecuciones.

Fmedian = Mediana de los 30 valores obtenidos.

FstdDev = Desviación Típica.

Function	Dimension	Fmin	Fmax	Fmean	Fmedian	FstdDev	CR	F	iterations
Sphere	30	6.93E-072	8.79E-065	5.84402E-066	9.56619E-069	2.10371E-065	0.9	0.59	15000
Ackley	30	4.00E-015	4.31E-014	1.05101E-014	7.54952E-015	8.94472E-015	0.9	0.58	15000
Griewank	30	0	0.02212673	0.001805738	0	0.004665626	0.9	0.59	15000
Rastrigin	30	14.81588	36.07782	24.57453	23.10583	5.159775	0.8	0.2	15000
Rosenbrock	30	0	3.986624	0.2657749	0	0.9944387	0.9	0.59	15000
Sphere	50	0.9182847	4.822462	2.265549	2.142002	0.9546053	0.8	0.6	25000
Ackley	50	3.639631	6.368319	5.144957	5.098365	0.6607936	0.9	0.6	25000
Griewank	50	4.815635	22.78373	10.51345	9.389001	4.261979	0.7	0.6	25000
Rastrigin	50	28.75764	82.36113	46.69583	47.35783	10.67869	1	0.1	25000
Rosenbrock	50	78.00365	144.5629	104.5199	100.7628	19.08619	8.0	0.6	25000

Compilación/Ejecución.

El programa implementado incluye un makefile para compilarse, que soporta los comandos *make*, *make run* y *make clean*, así como un script de ejecución en el cluster para correr todas las instancias, los resultados se generan en un archivo para cada programa.

El programa recibe tres parámetros:

- 1. Tamaño de la población, número entero (se utilizó 200 en esta implementación).
- 2. Dimensión de las variables, número entero (se utilizó 30 y 50)
- 3. Referencia a la función objetivo a evaluar:

```
Sphere (0) [-5.12, 5.12]
Ackley (1) [-32.768, 32.768]
Griewank (2) [-600, 600]
Rastrigin (3) [-5.12, 5.12]
Rosenbrock (4) [-2.048, 2.048]
```

- 4. Probabilidad de cruza CR
- 5. Valor del factor de escalamiento

Compilación del script:

Compilación del programa:

Ejecución del script: