Nilpotente deelsemigroepen van matrixen

Jeroen Matthijssens

Vrije Universiteit Brussel

22 mei 2009

Probleemstelling

Wanneer zijn twee k-maximale nilpotente deelsemigroepen in $M(n, \mathbb{F})$ isomorf?

Definities

Een verzameling S, uitgerust met een afbeelding $\cdot: S \times S \to S$ noemt men een **semigroep** als de afbeelding (\cdot) associatief is. Of nog (ab)c = a(bc) voor alle $a, b, c \in S$.

```
x is een neutraal element als \forall s \in S : sx = s = xs. x is een nulelement als \forall s \in S : sx = x = xs.
```


$M(n, \mathbb{F})$

 $M(n,\mathbb{F})=\{f:\mathbb{F}^n \to \mathbb{F}^n \mid f \text{ is lineair}\}$ is een semigroep met nulelement.

- Samenstelling van lineaire functies is lineair.
- Samenstelling is associatief.
- **3** We hebben een eenheid op $M(n, \mathbb{F})$ (de identieke afbeelding).
- We hebben een nulelement op $M(n, \mathbb{F})$ (de nul afbeelding).

Nilpotente deelsemigroep

Zij S een semigroep met nulelement 0. $S' \subset S$ noemen we **nilpotent** als

$$\exists k \in \mathbb{N} : S'^k = \{a_1...a_k \mid a_1,...,a_k \in S'\} = \{0\}$$

De nilpotentie klasse nd(S) is de kleinste $k \in \mathbb{N}$ zodat $S'^k = \{0\}$

We noemen een element $s \in S$ nilpotent als $s^k = 0$ voor een $k \in \mathbb{N}$.

Vlaggen

Zij V een eindig dimensionale vectorruimte. Een **vlag** \mathcal{F} is een rij deel vectorruimten V_i zodat

$$\{0\} = V_0 \subsetneq V_1 \subsetneq ... \subsetneq V_k = V.$$

We noemen $l(\mathcal{F}) = k$ de lengte van de vlag \mathcal{F} .

Een \mathcal{F} -basis is een basis $E = (e_1, ..., e_n)$ zodat $\text{vect}\{e_1, ..., e_{\dim(v_i)}\} = V_i$.

Definitie $\varphi(\mathcal{F})$ en $\psi(S)$

Associëer met een vlag $\mathcal F$ de nilpotente deelsemigroep

$$\varphi(\mathcal{F}) = \{ a \in M(n, \mathbb{F}) \mid \forall i : a(V_i) \subset V_{i-1} \}$$

van $M(n, \mathbb{F})$.

Associëer met een nilpotente deelsemigroep S de vlag $\psi(S)$ gedefinieerd door:

$$\{0\} \subsetneq \langle S^{r-1}(\mathbb{F}^n) \rangle \subsetneq \cdots \subsetneq \langle S(\mathbb{F}^n) \rangle \subsetneq \mathbb{F}^n$$

Eigenschap

 $\varphi(\mathcal{F})$ is een nilpotente deelsemigroep, en $\psi(S)$ is een vlag in \mathbb{F}^n .

r-maximale nilpotente deelsemigroepen

Beschouw

$$N_r(S) = \{S' \subset S \mid S' \text{ nilpotente semigroup, } nd(S') = r\}.$$

We noemen S' r-maximaal als S' maximaal is in $N_r(S)$ voor de inclusie relatie.

Eigenschap

Zij $\mathcal F$ een vlag in $M(n,\mathbb F)$ van lengte k. Dan is $\varphi(\mathcal F)$ een k-maximale nilpotente deelsemigroep, en voor elke k-maximale nilpotente deelsemigroep S bestaat er een vlag $\mathcal F'$ zodat $\varphi(\mathcal F')=S$.

Dus de k-maximale nilpotente deelsemigroepen en de vlaggen van lengte k staan in bijectief verband.

Signature

Voor een vlag \mathcal{F} van lengte r stellen we

$$\operatorname{sig}(\mathcal{F})=(d_1,...,d_r)$$

waar $d_i = \dim(V_i/V_{i-1})$.

Voor een r-maximale nilpotente deelsemigroep S stellen we $\mathrm{sig}(S) = \mathrm{sig}(\psi(S)).$

Voor r=2

Als $\mathbb F$ eindig is en $S=\varphi(\mathcal F),\,T=\varphi(\mathcal F')$ 2-maximale nilpotente deelsemigroepen zijn, dan zijn T en S isomorf als en slechts als

$$\{\dim(V_1),\dim(V_1/V_2)\}=\{\dim(W_1),\dim(W_1/W_2)\}.$$

Als \mathbb{F} one indig is, dan zijn alle 2-maximale nilpotente semigroepen isomorf.

Hoofdstelling

Eigenschap

zij S en T r-maximaal nilpotente deelsemigroepen, met r > 3.

Als
F eindig is, dan

$$\varphi(\mathcal{F})\cong\varphi(\mathcal{F}')\Leftrightarrow \mathrm{sig}(\mathcal{F})=\mathrm{sig}(\mathcal{F}').$$

2 Als \mathbb{F} one indig is en $sig(\mathcal{F}) = (k, 1, l)$, dan

$$\varphi(\mathcal{F}) \cong \varphi(\mathcal{F}') \Leftrightarrow \operatorname{sig}(\mathcal{F}') = (k', 1, l').$$

3 Als \mathbb{F} one indig is, en $sig(\mathcal{F}) \neq (k, 1, l)$, dan

$$\varphi(\mathcal{F}) \cong \varphi(\mathcal{F}') \Leftrightarrow \operatorname{sig}(\mathcal{F}) = \operatorname{sig}(\mathcal{F}').$$

Voor
$$sig(\mathcal{F}) = (k, 1, l)$$

Eigenschap

Zij $\mathbb F$ een oneindig veld. Zij S en T 3-maximale nilpotente deelsemigroepen van $M(n,\mathbb F)$ met signature (k,1,l) en (k',1,l') met k,l,k',l'>1. Dan zijn S en T isomorf.

Maak gebruik van de vorm van $A \in \varphi(\mathcal{F})$ om rechtstreeks een isomorfisme te definieren.

probeer de d_i in $sig(\mathcal{F})$ te caracterizeren door iets dat bewaard blijft onder isomorfisme van semigroepen.

Zij T een nilpotente deelsemigroep, en $A \in T$. A is onontbindbaar als $\forall B, C \in T : A \neq BC$

Relaties ≺ en ≪

Zij $X \subseteq M(n, \mathbb{F}) \setminus \{0\}$.

Stel voor $A, B \in X$, $A \prec_X B$ als

$$\forall C \in X : AC = 0 \Rightarrow BC = 0.$$

Stel voor $A, B \in X$, $A \ll_X B$ als

$$\forall C \in X : CA = 0 \Rightarrow CB = 0.$$

 \prec en \ll zijn preordes op X, ze zijn reflexief en transitief.

 $Zij \le een partiele orde op X, Y \subseteq X. Y is een ketting als$

$$\forall x, y \in Y : x \le y \lor y \le x.$$

Stel

 $m_y = \max\{\operatorname{card}(Y) \mid Y \text{ is een ketting op } X, \forall x \in Y : y \leq x\}$

de diepte van y

Stel

$$M_i^{\leq} = \{ y \in X \mid m_v = i \}$$

Super rank

Definieer verzamelingen

$$K_{1,0}=M_1^\prec\cap M_0^\ll$$

$$K_{0,1}=M_0^\prec\cap M_1^\ll$$

$$K_{1,1}=\{A\in M_1^\prec\cap M_1^\ll\mid TAT\neq 0\}$$

Zij A onontbindbaar voor T, als $A \in K_{1,0} \cup K_{0,1} \cup K_{1,1}$, dan stellen we $\sup R(A) = 1$.

Super rank

$$K_{2,0} = M_2^{\prec} \cap M_0^{\ll}$$

$$K_{0,2} = M_0^{\prec} \cap M_2^{\ll}$$

$$K_{2,1} = \{A \in M_2^{\prec} \cap M_1^{\ll} \mid \mathit{TAT} \neq 0\}$$

$$K_{1,2} = \{A \in M_1^{\prec} \cap M_2^{\ll} \mid \mathit{TAT} \neq 0\}$$

$$K_{2,2} = \{A \in M_2^{\prec} \cap M_2^{\ll} \mid \mathit{TAT} \neq 0; \forall B \in \mathit{M}(n, \mathbb{F})$$
 met $\sup R(B) = 1 : \mathit{TAT} \neq \mathit{TBT}\}$

Zij A onontbindbaar voor T, Als $A \in K_{2,0} \cup K_{0,2} \cup K_{1,2} \cup K_{2,1} \cup K_{2,2}$. Dan stellen we $\sup R(A) = 2$.

Isorfisme bewaard supR

Eigenschap

Zij T_1 en T_2 twee deelsemigroepen van $M(n, \mathbb{F})$, en $\phi: T_1 \to T_2$ een isomorfisme. Zij $A \in T_1$ een onontbindbaar element zodat $\sup R(A) = 1$, dan is ook $\phi(A)$ onontbindbaar en $\sup R(\phi(A)) = 1$.

Uitbreiding supR

Zij $A \in T \setminus \{0\}$ een ontbindbaar element,

$$\sup_{\triangle} R(A) = 1$$

 $A = A_1...A_m, A_i$ onontbindbaar, $\exists i : \text{supR}(A_i) = 1$

$$supR(A) = 2$$

 \Rightarrow

 $\sup R(A) \neq 1, A = A_1...A_m, A_i$ on on the indbaar,

$$\exists i : \sup R(A_i) = 2$$

Eigenschap

Zij T_1 en T_2 twee isomorfe r-maximale nilpotente deelsemigroepen van $M(n,\mathbb{F})$, met $r\geq 3$. Schrijf $\operatorname{sig}(T_1)=(i_1,...,i_r)$ en $\operatorname{sig}(T_2)=(j_1,...,j_r)$. Dan is $i_l=j_l$ voor $2\leq l\leq r-1$.

Door gebruik te maken van cardinaliteit van verzamelingen gedefiniëerd aan de hand van supR.

Overige gevallen

S en T twee isomorfe r-maximale nilpotente deelsemigroepen, met $sig(S) = (i_1, ..., i_r)$.

- $i_1 \geq 1, i_r \geq 2, \sum_{r=1}^{s=2} i_s \geq 1,$
- $i_1 = 1, \sum_{r=1}^{s=2} i_s \ge 2,$
- **4** $r = 3, i_1 \ge 2, i_2 = 1, i_3 \ge 2$ indien \mathbb{F} eindig.

Blijft te tonen dat in deze gevallen ook $i_1 = j_1$ en $i_r = j_r$.

Overige gevallen

S en T twee isomorfe r-maximale nilpotente deelsemigroepen, met $sig(S) = (i_1, ..., i_r)$.

- $i_1 \ge 1, i_r \ge 2, \sum_{r=1}^{s=2} i_s \ge 1,$
- $-i_1=1, \sum_{r=1}^{s=2}i_s\geq 2,$
- r = 3, $i_1 = 1$, $i_3 = 1$,
- $r = 3, i_1 \ge 2, i_2 = 1, i_3 \ge 2$ indien \mathbb{F} eindig.

Blijft te tonen dat in deze gevallen ook $i_1 = j_1$ en $i_r = j_r$.

Overige gevallen

S en T twee isomorfe r-maximale nilpotente deelsemigroepen, met $sig(S) = (i_1, ..., i_r)$.

- $i_1 \ge 1, i_r \ge 2, \sum_{r=1}^{s=2} i_s \ge 1,$
- $-i_1=1, \sum_{r=1}^{s=2}i_s\geq 2,$
- r = 3, $i_1 = 1$, $i_3 = 1$,
- $r = 3, i_1 \ge 2, i_2 = 1, i_3 \ge 2$ indien \mathbb{F} eindig.

Blijft te tonen dat in deze gevallen ook $i_1 = j_1$ en $i_r = j_r$.

