Decision Theory Theorems

Klejdi Sevdari

September 2021

Chapter 2: Utility Theory

Definition 1 (Utility function). A real values function $u: X \to \mathbb{R}$ is a Paretian utility function for \succsim iff $x \succsim y \iff u(x) \ge u(y)$.

Definition 2 (Quasi-Concave). A function $f: C \to \mathbb{R}$ defined on a convex set of a vector space is quasi-concave if $f(\alpha v + (1 - \alpha)w) \ge min\{f(v), f(w)\}$.

Theorem 1. Concavity implies quasi-concavity.

Theorem 2 (Quasiconcavity and Upper level sets). Let $f: C \to \mathbb{R}$ be defined on a convex set. The following are equivalent:

- a) f is quasiconcave.
- b) the upper level sets $(f \ge t)$ are convex $\forall t \in \mathbb{R}$.
- c) the strict upper level sets (f > t) are strictly convex $\forall t \in \mathbb{R}$.

Theorem 3 (Irreducible quasiconcavity). Let $f: C \to \mathbb{R}$ and $\phi: D \subset \mathbb{R} \to \mathbb{R}$ an increasing function defined on a convex set such that $Im(f) \subset D$. If f is quasiconcave, then so is $\phi \circ f$.

Theorem 4 (Existence of a utility function). A preference relation has a utility representation if it is complete and transitive.

Theorem 5 (Cardinality of X/\sim). A preference relation on a set X of alternatives has a utility representation only if $card(X/\sim) \leq card(\mathbb{R})$.

Theorem 6. A preference relation on a set X with X/\sim at most countable is complete and transitive iff it has a utility representation.

Theorem 7 (Cantor Debreu). Let \succeq be a complete and transitive preference on X. The following conditions are equivalent:

- a) \succeq has an at most countable \succeq -order dense subsets Z in X;
- b) \succeq admits a utility function $u: X \to \mathbb{R}$.

Theorem 8 (Defining a Paretian utility function). Let \succeq be a preference on \mathbb{R}^n_+ . The following conditions are equivalent:

- a) \succsim is transitive, complete, strongly monotone and Archimedean;
- b) There exists a strongly monotone and continuous function $u: \mathbb{R}^n_+ \to \mathbb{R}$ such that, $\forall x, y \in \mathbb{R}^n_+$,

$$x \succsim y \iff u(x) \ge u(y).$$

Moreover, \succeq is (strictly) convex iff u is (strictly) quasiconcave.

Theorem 9 (Lexicographic preferences). Lexicographic preferences admit no utility function.

Chapter 3: Rational Choice

Optimal Choice

Definition 3 (Correspondence). $F: X \rightrightarrows Y$ associates to every $x \in X$ a subset $B \subset Y$. The inverse correspondence: $F^{-1}: Y \rightrightarrows X$, $F^{-1}(y) = \{x \in X : F(x) = y\}$ The graph of $F: GrF = \{(x,y) \in X \times Y : y \in F(x)\}$

Definition 4 (Decision stuff). **X** is an all-inclusive choice set. \mathcal{X} is a nonempty collection of subsets (choice sets) $X \in \mathbf{X}$. Choice sets are alternatives among which the DM might have to choose. $P: X \to \succeq_X$ is the preference map. $(\mathbf{X}, \mathcal{X})$ is a decision framework and $(\mathbf{X}, \mathcal{X}, P)$ is a decision environment, (\mathbf{X}, \succeq_X) is a decision problem.

Definition 5. In a decision problem (X, \succeq_X) , \hat{x} is an optimal alternative if $\exists x \in X : x \succ \hat{x}$.

Theorem 10 (Existence of \hat{x}). In a decision problem (X, \succeq_x) , optimal alternatives exist if X is finite.

Definition 6 (Rational Choice Correspondence). $\sigma: \mathcal{D} \rightrightarrows \mathbf{X}, \ \sigma(X) = \{\hat{x} \in X\}$. (the set of optimal alternatives). Note: \mathcal{D} is the set of the choice sets X that admit at least one \hat{x} , which implies $\emptyset \neq \sigma(X)$.

Theorem 11 (Nature of optimal alternatives). If \succsim_X is a preorder, then optimal alternatives are either incomparable or indifferent. If \succsim is a weak order, then optimal alternatives are indifferent.

Theorem 12 (Nature of $\sigma(X)$). Let X be a convex choice set and \succsim_X a weak order.

- a) If \succeq_X is convex, then $\sigma(X)$ is convex.
- b) If \succsim_X is strictly convex, then $\sigma(X)$ is a singleton.

Universal Analysis

Definition 7 (Universal preference). A universal preference \succeq does not depend on the choice set X. That is: $\forall X \in \mathcal{X}, \ x' \succsim_X x \iff x' \succsim_X, \ \forall x, x' \in X$. We assume that \succsim is universal in this subsection.

Theorem 13 (Arrow-Uzawa). Let \succeq be a weak order. For each $X, Y \in \mathcal{D}$, we have:

- 1) $X \subset Y$ implies $X \sigma(X) \subset Y \sigma(Y)$.
- 2) $X \subset Y$ implies $\sigma(Y) \cap X \subset \sigma(X)$ with equality if $\sigma(Y) \cap X \neq \emptyset$.
- 3) if $x \in \sigma(X)$ and $y \in X \sigma(X)$, then there is no $Y \in \mathcal{D}$ such that $x \in Y$ and $y \in \sigma(Y)$. (WARP).

Definition 8 (Menu preference). The menu preference \succeq over the choice sets in \mathcal{D} , induced by a preference \succsim , is defined by:

```
X \succeq Y \iff \forall y \in Y, \ \exists x \in X, x \succsim y, \ \forall X, Y \in \mathcal{D}.
```

Theorem 14 (Kreps). If \succeq is a weak order, so is the menu preference. Moreover, given any $X,Y \in \mathcal{D}$, we have:

- 1) $X \sim \sigma(X)$. Note this is the equivalence for the menu preference.
- 2) $Y \subset X$ implies $X \succ Y$.
- 3) $X \succeq Y$ implies $X \sim X \cup Y$.

Utility Analysis

In this section, it is assume that the universal weak order \succeq has a utility representation u. The optimization problem becomes $\max_{x} u(x)$ sub $x \in X$ and $\sigma(X) = \arg\max_{x \in X} u(x)$.

Definition 9 (Value function). $v: \mathcal{D} \to \mathbb{R}$ such that $v(X) = \max_{x \in X} u(x)$. Then the menu preference becomes $X \succeq Y \iff v(X) \geq v(Y)$.

Contextualized Analysis

In this section we allow for context (framing effects).

Definition 10 (contextualized alternatives). (x, X) with $x \in X$ is a contextualized alternative. \mathcal{C} is the collection of all contextualized alternatives. A preference on \mathcal{C} has the form $(x, X) \succsim (y, Y)$.

Definition 11 (contextualized universal preference). \succsim is a CUP over \mathcal{C} if $\forall X \in \mathcal{X}$: $(x,X) \succsim (x',X) \iff x \succeq_X x', \ \forall x', x \in X \ \text{with} \ \succsim_{X} = P(X).$

Definition 12 (Menus with context). Assume \succsim is a CUP, then $X\succeq Y\iff \forall y\in Y, \exists x\in X, (x,X)\succsim (y,Y).$

Parametrized Analysis

Choice sets are usually parametrized by elements of a set Θ . Parametrization is carried out via a correspondence: $\varphi:\Theta \rightrightarrows \mathbf{X}$. Each θ is associated to a choice set $X(\theta)$. Thus, $\mathcal{X}=\{\varphi(\theta):\theta\in\Theta\}$ and $\mathcal{D}=\{\varphi(\theta):\theta\in\}$ Get Back to This!!

Decision problems under certainty

All inclusive set **A** of actions, all inclusive set **C** of consequences, a consequence function $\rho(a) = c$ and a collection set \mathcal{A} with sets A from which the DM may have to choose from. $(\mathbf{A}, \mathcal{A}, \mathbf{C}, \rho)$ is a decision pre-framework under certainty. A preference \succeq over actions and a preference \succeq° over consequences. $(\mathbf{A}, \mathcal{A}, \mathbf{C}, \rho, \succeq, \succeq^{\circ})$ is a decision pre-environment under certainty.

Definition 13 (Outcome Consequentialism). $a \gtrsim b \iff \rho(a) \gtrsim^{\circ} \rho(b) \ \forall a, b \in \mathbf{A}$.

Theorem 15 (Concatenation of utilities). If \succeq° admits a utility function u, then $u = u \circ p$ is a utility function for \succeq .

Note: $(\mathbf{A}, \mathcal{A}, u^{\cdot} \circ p)$ is a decision environment under certainty.

Definition 14. Certainty definitions:

- Optimization problem under certainty: $\max u^{\cdot}(\rho(a))$ sub $a \in A$.
- Rational Choice correspondence: $\sigma(A) = argmax_{a \in A}u^{\cdot}(\rho(a))$.
- Value function: $v(A) = max_{a \in A}u^{\cdot}(\rho(a))$.

Theorem 16 (Reduced Form). Assume that $C = Im \rho$ and let $c, d \in C$. Under OC,

$$c \gtrsim^{\circ} d \iff a \gtrsim b \ \forall (a,b) \in \rho^{-1}(x) \times \rho^{-1}(d)$$

Definition 15 (Consequence Stuff). An action set A induces by a consequence fuction a consequence set $C = \rho(A)$. If consequence $\hat{c} \in C$ is optimal, then any action $\hat{a} \in \rho^{-1}(\hat{c}) \cap A$ is optimal in A. Hence, the decision pre-environment admits a reduced form given by the decision environment $(\mathbf{C}, \mathcal{C}, \succeq^{\circ})$. (C, \succeq°) is a decision problem, $(\mathbf{C}, \mathcal{C}, u)$ and (C, u) are respectively decision environment and decision problem under certainty.

The consumer problem

Definition 16. Budget set: $B(p,w) = \{c \in \mathbb{R}^n_+ : p \cdot c \leq w\}$. Budget correspondence $B : \mathbb{R}^{n+1}_+ \rightrightarrows \mathbb{R}^n_+$ describes how budget sets vary with prices and wealth. This is getting boring. Make a big table with all the environments.

Definition 17 (Budget line). $\Delta(p, w) = \{c \in \mathbb{R}^n_+ : p \cdot c = w\}$

Definition 18 (Optimal consumption bundle). Given (p, w), \hat{c} is optimal if $u(\hat{c}) \geq u(c) \forall c \in B(p, w)$.

Definition 19 (Walrasian demand correspondence). $d: D \rightrightarrows \mathbb{R}^n_+$ given by $d(p, w) = arg \ max_{c \in B(p, w)} u(c)$.

Definition 20. Value function: $v: D \to \mathbb{R}$ given by $v(p, w) = \max_{c \in B(p, w)} u(c)$

Lemma 17. If $p \gg 0$, then the budget set B(p, w) is compact.

Theorem 18. If u is continuous, then $\mathbb{R}^n_{++} \times \mathbb{R}_+ \subseteq D$. Equality holds if u is strictly monotone.

Theorem 19 (Homogeneity of the demand). $\forall (p, w) \in D, \ d(p, w) = d(\alpha p, \alpha w) \ \forall \alpha > 0.$

Theorem 20 (Walras' law). If u is strictly monotone, then $\forall (p, w) \in D, \ p \cdot \hat{c} = w \ \forall \hat{c} \in d(p, w)$.

Theorem 21 (Topology of demand correspondence). d(p, w) is:

- convex-valued if u is quasiconcave.
- single-valued if u is strictly quasiconcave.

Theorem 22 (Homogeneity of the value function). $v(p, w) = v(\alpha p, \alpha w) \ \forall \alpha > 0$

Theorem 23 (Monotonicity of the value function). The value function(indirect utility function) is:

- increasing in $w: w \ge w' \Rightarrow v(p, w) \ge v(p, w')$.
- decreasing in $p: p \ge p' \Rightarrow v(p, w) \le v(p', w)$.

Remark: if u is strongly monotone, the monotonicities above are strict.

Theorem 24. The value function is quasiconvex.

Theorem 25. The value function is (strictly) concave in w if u is (strictly) concave.

Price Theory

In this chapter all utility functions are continuous, strongly monotone and strictly quasiconcave.

Definition 21 (Type of goods). A good k is:

- normal if, for all $(p, w'), (p, w) \in D, w > w' \to d_k(p, w) \ge d_k(p, w')$
- inferior if, for all $(p, w'), (p, w) \in D, w > w' \rightarrow d_k(p, w) \leq d_k(p, w')$

Definition 22 (Locality). We say that a good k at (p, w), is locally:

- normal: $\frac{\partial d_k(p,w)}{\partial w} \geq 0$
- inferior: $\frac{\partial d_k(p,w)}{\partial w} \leq 0$

Definition 23 (Giffen Good). A good k is Giffen if there exists two price vectors p and p' with $p'_k > p_k$ and $p'_i = p_i \ \forall i \neq k$, such that $d_k(p', w) > d_k(p, w)$.

Definition 24 (Slutsky's Wealth Adjustment). Suppose that prices increase from $p \to p'$. Slutsky's Wealth Adjustmenet is the amount of wealth that makes $\hat{c} \in (p, w)$ still feasible. That is $p' \cdot \hat{c} = w'$.

Theorem 26 (p). Let $(p', w'), (p, w) \in D$. Then

$$p' \cdot \hat{c} \le w'$$
 and $\hat{c} \ne \hat{c}' \rightarrow p \cdot \hat{c}' > w$

Theorem 27 (p, Slutksy Law of Demand). Let $(p', w'), (p, w) \in D$ be such that $p' \cdot \hat{c} = w'$. Then:

$$(p'-p)(\hat{c}'-\hat{c}) \le 0$$

with strict inequality when $\hat{c} \neq \hat{c}'$.

Definition 25 (Rewriting demand).

$$d(p', w) - d(p, w) = d(p', w) - d(p', w') + d(p', w') - d(p, w)$$

Theorem 28 (p, Normal Law of Demand). If income and other prices do not change, an increase in the price of a normal good decreases its demand. That is: if $p' = p + \Delta_k$, then $d(p', w) \leq d(p, w)$.

Theorem 29 (p, Local Normal Law of Demand). Let the demand function $d: D \to \mathbb{R}$ be differentiable at $(p, w) \gg 0$. If good k is normal at (p, w), then

$$\frac{\partial d_k(p, w)}{\partial p_k} \le 0$$

Theorem 30. (p) If the demand function is differentiable, then:

$$\frac{d_k(p,w)}{\partial p_j} = s_{k,j} - \frac{\partial d_k(p,w)}{\partial w} d_j(p,w) \quad \forall j,k = 1,\dots, n$$

Theorem 31. If the indirect utility function is twice differentiable at $(p, w) \gg 0$, with $\partial v(p, w)/\partial w \neq 0$, then $s_{k,j}(p, w) = s_{j,k}(p, w)$.

Definition 26. Assume that the demand function is differentiable at $(p, w) \gg 0$

Chapter 7

Definition 27 (Convex Structure). The space of lotteries **L** has a convex structure. Given two lotteries l and l' and any weight $q \in [0, 1]$, the convex combination ql + (1 - q)l' is an element of **L**.

Definition 28 (Random Consequentialism). Actions are ranked according to their random consequences:

$$a \succsim b \iff \rho(a) \ddot{\succsim} \rho(b)$$

for all $a, b \in \mathbf{A}$.

Definition 29. Lingo:

- optimization problem: max $\ddot{u}(\rho(a))$ sub $a \in A$.
- $\sigma(A) = \operatorname{argmax} \ddot{u}(\rho(a))$
- $v(A) = \max \ddot{u}(\rho(a))$ sub $a \in A$.

Definition 30. In reduced form:

• optimization problem: max $\ddot{u}(l)$ sub $l \in L$.

Once we have found a solution \hat{l} of this problem, any action $\hat{a} \in \rho^{-1}(\hat{l}) \cup A$ solves the original problem.

Expected utility theory

Definition 31. Axioms on lotteries:

- B.1 WEAK ORDER: \succeq is complete and transitive.
- B.2 INDEPENDENCE: $l > l' \rightarrow pl + (1-p)l'' > pl' + (1-p)l'' \quad \forall p \in (0,1).$
- B.3 ARCHIMEDEAN: Let l > l' > l''. There exists $p, q \in (0, 1)$ such that pl + (1-p)l'' > l' > ql + (1-q)l''.

Definition 32. A binary relation \succeq on **L** is a vN-M preference if it satisfies axioms B.1, B.2 and B.3.

Theorem 32 (vN-M). Let \succeq be a preference on \boldsymbol{L} . TFAE:

- \succeq satisfies B.1, B.2 and B.3.
- $\exists u : C \to \mathbb{R}$ (vN-M) utility function such that

$$\ddot{u}(l) = \sum_{i=1}^{n} u(c_i) p_i$$

represents \succeq .

Definition 33. A binary relation on L is a:

- monotone preference if it satisfies strong monotonicity.
- monotone vN-M preference if it satisfies axioms B.1-B.3 and strong monotonicity.

Risk Aversion

Definition 34. A preference \succeq on **L** is called:

- risk averse if, for each lottery in **L**, it holds $\mathbb{E}(l) \succeq l$
- risk loving if, for each lottery in **L**, it holds $l \succeq \mathbb{E}(l)$.
- risk neutral if, for each lottery in **L**, it holds $l \sim \mathbb{E}(l)$.

Theorem 33 (p). A vN-M preference \succeq is risk averse iff its vN-M utility function $u: \mathbb{C} \to R$ is concave. (convex if risk loving, affine if risk neutral).

Theorem 34. A vN-M preference is risk neutral iff it ranks lotteries according to their expected value:

$$l \succsim l' \iff \mathbb{E}(l) \ge \mathbb{E}(l)$$

Definition 35 (Comparitive Risk Aversion). A preference \succeq_1 is more risk averse than a preference \succeq_2 if, for all $c \in \mathbf{C}, l \in \mathbf{L}$, both:

$$l \succsim_1 c \to l \succsim_2 c$$
 $l \succ_1 c \to l \succ_2 c$

hold.

Definition 36 (B.5 Certainty Equivalent). : each lottery in **L** has a price $c_l \in \mathbf{C}$ such that $l \sim c_l$.

Theorem 35. A monotone vN-M preference \succeq satisfies B.5 iff its vN-M utility function is continuous.

Theorem 36 (p). If \succeq is a monotone (satisfying B.4 Strong Monotonicity) preorder, then every lottery has at most a unique certainty equivalent.

Definition 37 (Certainty equivalent function). $c(l) = c_l$

Definition 38 (Risk premia). Let \succeq be a preference satisfying axiom B.5. The risk premium of a lottery $l \in \mathbf{L}$ is the difference

$$\pi_l = \mathbb{E}(l) - c_l$$

between its expected value and its certainty equivalent.

Definition 39 (Risk premium function). $\pi(l) = \pi_l$

Theorem 37 (p). A monotone preorder that satisfies axiom B,4 is risk averse if and only if every lottery has a positive risk premium.

Theorem 38 (p). A monotone preorder that satisfies the certainty equivalent axiom is risk averse iff it is more risk averse than a risk neutral one.

Theorem 39. Let \succeq_1 and \succeq_2 be two monotone vN-M preferences. The following conditions are equivalent:

- \succsim_1 is more risk averse than \succsim_2 .
- \exists a strictly increasing concave transformation $g: Imu_2 \to \mathbb{R}$ such that $u_1 = g \circ u_2$.

Definition 40. Arrow Pratt index:

$$\lambda(c) = -\frac{u''(c)}{u'(c)}$$

Theorem 40. Let \succsim_1 and \succsim_2 be two monotone preorders that satisfy axiom B.5. TFAE:

- \succsim_1 is more risk averse than \succsim_2 .
- $c_1 \le c_2$.
- $\pi_1 \geq \pi_2$.
- $\lambda_1 \geq \lambda_2$.

Chapter 11: A portfolio illustration

In this chapter we consider two assets, a risk free asset that return r_f per euro invested for sure, and a risky asset with an uncertain gross return represented by the lottery:

$$l = \{r_1, p_1; \dots; r_k, p_k\}$$

The investor invests an amount $\alpha_1 \geq 0$ in the risky asset and an amount $\alpha_2 \geq 0$ in the risk-free asset. The vector $\alpha = (\alpha_1, \alpha_2)$ represents the overall investment. The random gross return portfolio is then described by:

$$l_{\alpha} = \{\alpha_1 r_1 + \alpha_2 r_f, p_1; \dots; \alpha_1 r_k + \alpha_2 r_f, p_k\} = l + \alpha_2 r_f$$

A(w) is the collection of portfolios the investor with wealth w is able to trade. An investor evaluates a portfolio α :

$$u(\alpha) = (\ddot{u} \circ \rho)(\alpha) = \sum_{i=1}^{k} \dot{u}(\alpha_1 r_i + \alpha_2 r_f) p_i$$

where \dot{u} is a vN-M utility function. Throughout this chapter, we assume that \dot{u} is strictly increasing and strictly concave with $u'_{+} > 0$. Thus investors in this chapter are strictly risk averse. The portfolio optimization problem is $\max_{\alpha} u(\alpha)$ sub $\alpha \in A(w)$. A portfolio is optimal if $u(\hat{\alpha}) \geq u(\alpha) \ \forall \alpha \in A(w)$.

If the portfolio is constrained in the following way $\alpha_1 + \alpha_2 = w$, then we can focus only on the investment on the risky asset $alpha_1 = a$ and denote by $w - a = \alpha_2$, reducing a 2D problem into a 1D one. The uncertain payoff of a is then:

$$l_{a,w} = \{ar_1 + (w-a)r_f, p_1; \dots; ar_k + (w-a)r_f, p_k \qquad u_w(a) = \sum_i \dot{u}(ar_i + (w-a)r_f)p_i$$

Theorem 41. The porfolio has a unique solution \hat{a}_w for each wealth level $w \geq 0$.

Definition 41 (p, Risky asset demand function). $a(w) = a_w$. It associates to each wealth level the corresponding optimal risky investment.

Definition 42 (Expected excess asset return). $\bar{E}(l) = E(l) - r_f$

Theorem 42 (p). $\bar{E}(l) \leq 0$ if and only if $a(w) = 0 \ \forall w \geq 0$.

Theorem 43. If an analytical investor \succeq_1 is more risk averse than an analytical investor \succeq_2 , then $a_2 \geq a_1$.

Chapter 12: Wealth effects

In this chapter we consider the DM's wealth as a factor in determining a choice between lotteries. That is:

$$l = \{c_1, p_1; \dots; c_n, p_n\}$$
 translates to $l^w = \{c_1 + w, p_1; \dots; c_n + w, p_n\}$

 \succeq induces a preference \succeq_w as follows:

$$l \succeq_w \tilde{l} \iff l^w \succeq \tilde{l}^w$$

Definition 43 (DARA). A preference on L is DARA (decreasingly absolute risk averse) if $w' \ge w$, $\succsim_{w'}$ is less risk averse than \succsim_w .

Definition 44 (Certainty Equivalent). The wealth adjusted certainty equivalent is defined as $c_l^w \sim_w l$. For a weak order satisfying certainty equivalent, the certainty equivalent function $\mathbf{c} : [0, \infty) \times L \to \mathbb{R}$ is defined as $\mathbf{c}(w, l) = c_l^w$. The risk premium function is $\pi(w, l) = E(l) - \mathbf{c}(w, l)$.

Theorem 44. Let \succeq be a monotone weak order satisfying B.5 on L. The following conditions are equivalent:

- \succeq is DARA.
- c_l is increasing in w for each $l \in L$.
- π_l is decreasing in w for each $l \in L$.

Theorem 45 (Arrow Pratt). Let \succeq be a vN-M preference with a twice continosly differentiable vN-M utility function $u:(a,\infty)\to\mathbb{R}$ with u'>0 and $a\in\mathbb{R}$. TFAE:

- \succeq is DARA.
- its Arrow-Pratt index $\lambda:(a,\infty)\to\mathbb{R}$ is decreasing.

Theorem 46 (Uniqueness of CARA). A twice differentiable vN-M utility function with u' > 0 is CARA iff up to a affine transformation:

$$u(c) = \begin{cases} -e^{\lambda c} & \text{if } \lambda > 0\\ c & \text{if } \lambda = 0\\ e^{\lambda c} & \text{if } \lambda < 0 \end{cases}$$

Theorem 47. The risky asset demand $a:[0,\infty)\to\mathbb{R}$ is increasing in w if an investor is DARA.