

MATHEMATIK HINTER WAHLEN

Dokumentation zur eigenständigen Durchführung des Workshops

Studentinnen Sarah Glatt

Beatrice Wellmann

Betreuerin Lea Schenk

Dozentinnen Dr. Ingrid Lenhardt

Stephanie Hofmann

Lea Schenk

Veranstaltung Digitalbasierte Lernkontexte des

Mathematikunterrichts

Datum 11.08.2023

Übersicht

Kurzbeschreibung	. 1
1 Vor dem Workshop	. 2
I Fachliche Einführung	
II Technische Einführung	. 4
III Vorbereitung	. 4
2 Durchführung	. 6
3 Nachbereitung	. 8
4 Anhang	. 9
Materialien	. 9
Literatur- und Quellenverzeichnis	10
Erklärung zur Selbstständigkeit	11

Kurzbeschreibung

Im Rahmen des Workshops soll den Schüler*innen anhand der unterschiedlichen im deutschen Wahlsystem verwendeten Sitzverteilungsverfahren der Einfluss mathematischer Modelle auf den Alltag verdeutlicht werden.

Zielgruppe	Klassenstufe 10-12 (Gymnasien)	
Fachinhalte	Sitzverteilungsverfahren (Niemeyer, D'Hondt, Sainte-Laguë)	
Vorkenntnisse	Vorkenntnisse Prozentrechnung, Grundkenntnisse deutsches Wahlsystem	
Material	Halber Klassensatz Laptops mit Internetzugang, Beamer, Tafel, Handouts	
Digitale Medien Online-Workbook (H5P-Elemente), GeoGebra, PowerPoint-Folien		
Umfang	90 Minuten	
Digitale Medien	Halber Klassensatz Laptops mit Internetzugang, Beamer, Tafel, Handouts Online-Workbook (H5P-Elemente), GeoGebra, PowerPoint-Folien	

1 Vor dem Workshop

Zur Leitung des Workshops ist ein Grundverständnis des Wahlsystems, sowie der drei behandelten Sitzverteilungsverfahren vonnöten. Diese werden im Folgenden kurz vorgestellt.

I Fachliche Einführung

Wahlsysteme

Zu Beginn des Kurses werden die Grundlagen der Verhältniswahl, sowie der absoluten und relativen Mehrheitswahl wiederholt.

Bei der **Verhältniswahl** werden entsprechend des prozentualen Anteils der abgegebenen Stimmen Sitze an die aufgestellten Kandidat*innen verteilt. Dieses Prinzip kommt bei der Zweitstimme der Bundestagswahl zum Einsatz. ¹

Die **Mehrheitswahl** kommt zum Einsatz, wenn nur ein*e Gewinner*in bestimmt wird. Hierbei wird zwischen der relativen und absoluten Mehrheitswahl differenziert.

Bei der **relativen Mehrheitswahl** reicht es aus, wenn ein*e Kandidat*in mehr Stimmen erhält als die anderen. Ein Beispiel ist hierfür in Deutschland die Erststimme bei der Bundestagswahl. ²

Bei der **absoluten Mehrheitswahl** benötigt ein*e Kandidat*in mehr als 50 Prozent der Stimmen, um zu gewinnen. Die absolute Mehrheitswahl wird beispielsweise bei der Präsidentschaftswahl in Frankreich angewandt. ³

Sitzverteilungsverfahren

Bei dem Sitzverteilungsverfahren nach **Niemeyer** wird zunächst berechnet, wie viele der N Sitze den einzelnen Parteien nach der prozentualen Stimmenverteilung zustehen. Da nur ganzzahlige Sitzplätze vergeben werden können, erhalten die Parteien daraufhin nur den ganzzahligen Anteil der ihnen zustehenden Sitzplätze. Zuletzt werden die übrigen Sitzplätze an die Parteien vergeben, welche den höchsten Nachkomma-Anteil besitzen. Das Sitzverteilungsverfahren nach Niemeyer bevorzugt bei Wahlen tendenziell kleinere Parteien mit weniger Stimmen. ^{4 5}

Tab. 1 Berechnung einer Sitzverteilung bei 10 Sitzen nach Niemeyer

	Partei A	Partei B	Partei C
Stimmenverteilung	74	40	6
1. Prozentualer Anteil	61.6 %	33.3 %	5 %
2. Anteil x 10 Sitze	6.16	3.33	0.5
3. Sitze nach Betrachtung des ganzzahligen Anteils	6	3	0
4. Sitze entsprechend der Reihenfolge des Nachkommaanteils	6	3	1

Aufgrund der Verteilungsvorschrift kann bei Niemeyer das sogenannte **Sitzzuwachs**- oder auch **Alabama-Paradoxon** auftreten. In solchen Fällen erhält eine Partei weniger Sitze, wenn insgesamt ein

Tab. 2 Berechnung einer Sitzverteilung bei 11 Sitzen nach Niemeyer

	Partei A	Partei B	Partei C
Stimmenverteilung	74	40	6
1. Prozentualer Anteil	61.6 %	33.3 %	5 %
2. Anteil x 11 Sitze	6.78	3.67	0.55
3. Sitze nach Betrachtung des ganzzahligen Anteils	6	3	0
4. Sitze entsprechend der Reihenfolge des Nachkommaanteils	7	4	0

¹ (Korte, Verhältniswahl, 2021)

² (Korte, Wahlsysteme, 2021)

³ (Landeszentrale für politische Bildung Baden-Württemberg, 2022)

⁴ (Fehndrich, Hare/Niemeyer, 2013)

⁵ (Korte, Verhältniswahl, 2021)

Sitz mehr vergeben wird. Grund hierfür ist die vertauschte Reihenfolge der Nachkommaanteile bei Division durch eine andere Sitzanzahl. Aufgrund des Paradoxons, welches im Bundesstaat Alabama das erste Mal bei einer Wahl aufgetreten ist, wird das Verfahren nach Niemeyer beispielsweise in Alabama nicht mehr verwendet. ⁶

In Deutschland wird das Sitzverteilungsverfahren nach Niemeyer Stand 2023 bei den Landtagswahlen in Berlin, Brandenburg, Hamburg, Hessen, Mecklenburg-Vorpommern, Sachsen-Anhalt und Thüringen eingesetzt. ⁷

Die Funktionsweisen der Sitzverteilungsverfahren nach **D'Hondt** und **Sainte-Laguë** ähneln sich stark. Zunächst werden bei beiden Verfahren die Stimmen der einzelnen Parteien durch eine Anzahl vorgegebener Teiler dividiert. Die so errechneten Vergleichszahlen werden in eine Tabelle übertragen. Bei D'Hondt sind die Teiler ganzzahlig (1 - 2 - 3 ...), bei Sainte-Laguë betragen sie 0.5 – 1.5 – 2.5 etc. Anschließend werden die größten N Vergleichszahlen in absteigender Reihenfolge ermittelt. N entspricht dabei der Anzahl Sitze. Jede Partei erhält Sitzplätze entsprechend der ermittelten Vergleichszahlen. ^{8 9}

Partei A Partei B Partei C Partei A Partei B Partei C Teiler 0.5 148 80 12 Teiler 1 74 40 6 Teiler 1.5 49.33 26.67 4 Teiler 2 37 20 3 Teiler 2.5 29.6 2.4 Teiler 3 24.67 13.33 2 16 Teiler 3.5 21.14 11.43 1.71 Teiler 4 18.50 10 1.5 Teiler 4.5 16.44 8.89 1.33 Teiler 5 14.80 8 1.2 Teiler 5.5 13.45 7.27 1.09 Teiler 6 12.33 6.67 1

Teiler 7

Sitze

10.57

7

5.71

3

0.86

0

Tab. 3 Verfahren nach Sainte- Laguë und D'Hondt für 10 Sitze

Da für die Berechnung der Vergleichszahlen die Gesamtzahl Sitze nicht benötigt wird, kann das Sitzzuwachsparadoxon bei keinem der Verfahren auftreten. ¹⁰ ¹¹

0.92

1

Das Verfahren nach D'Hondt wird bei den deutschen Landtagswahlen in Saarland, Sachsen und Niedersachsen verwendet. ¹² D'Hondt bevorzugt bei Wahlen tendenziell größere Parteien mit mehr Stimmen. ¹³

Sainte-Laguë wird bei den Landtagswahlen in Baden-Württemberg, Bayern, Bremen, Hamburg, Nordrhein-Westfalen, Rheinland-Pfalz und Schleswig-Holstein sowie bei der Bundestagswahl eingesetzt. ¹⁴ Das Verfahren bevorzugt bei Wahlen weder große noch kleine Parteien systematisch. ¹⁵

Teiler 6.5

Sitze

11.38

6

6.15

8 (Fehndrich, D'Hondt, 2012)

⁶ (Pohlkamp, Normative Modellierung im Mathematikunterricht, 2021)

⁷ (Zicht, 2023)

⁹ (Fehndrich, Sainte-Laguë, 2013)

^{10 (}Fehndrich, D'Hondt, 2012)

^{11 (}Fehndrich, Sainte-Laguë, 2013)

^{12 (}Zicht, 2023)

^{13 (}Korte, Verhältniswahl, 2021)

¹⁴ (Zicht, 2023)

^{15 (}Korte, Verhältniswahl, 2021)

II Technische Einführung

Der Workshop ist darauf ausgelegt, auch mit wenigen technischen Vorkenntnissen durchgeführt werden zu können. Zur Vorbereitung folgt hier eine Übersicht der verwendeten Medien.

Online Workbook

Der Kurs wird mithilfe eines **Online-Workbooks** des Anbieters <u>Notion</u> durchgeführt. Notion ermöglicht es, interaktive H5P- und GeoGebra-Elemente einzubetten, sodass beim Bearbeiten des Workbooks nicht zwischen verschiedenen Medien und Webseiten gewechselt werden muss. Für jede Arbeitsphase sind ein bis zwei Seiten des Workbooks eingeplant. Das Ende einer Arbeitsphase wird durch ein STOPP-Feld gekennzeichnet. Verlinkungen zu den Weiterführenden Seiten finden sich am Ende der Seiten.

H5P-Elemente

Die H5P-Elemente können per Texteingabe, Drag&Drop oder Mausklick bearbeitet werden.

Viele der Eingaben der H5P-Elemente können mithilfe des Knopfs "Überprüfen" auf Korrektheit geprüft und beliebig oft wiederholt werden. Es kann eventuell vorkommen, dass ein Element nicht auf Eingaben reagiert. In diesem Fall muss die Seite neu geladen werden. Dabei ist zu beachten, dass alle vorherigen Eingaben zurückgesetzt werden.

Sollten die H5P-Elemente zu klein sein, können diese über die Funktion "Original anzeigen" vergrößert werden. Alternativ kann das Element auch im Vollbildmodus geöffnet werden. Dieser kann mit der ESC-Taste verlassen werden.

GeoGebra-Elemente

Die **GeoGebra**-Elemente beschränken sich auf Texteingaben und Tabellen. Letztere können ähnlich wie Excel-Tabellen ausgefüllt werden. Bei einigen Tabellen wird die Eingabe überprüft und durch eine farbige Markierung (rot/grün) bewertet. Diese Markierung kann entfallen, wenn ein*e Schüler*in das Eingabefeld zuvor durch "Entfernen" geleert hat. Dieses Problem kann durch erneutes Laden der Seite behoben werden.

III Vorbereitung

Gruppeneinteilung

Im Rahmen des Workshops ist erst eine Einteilung des Kurses in zwei und später in drei Gruppen notwendig. Die Aufteilung sollte im Idealfall so erfolgen, dass in den drei Gruppen jeweils Mitglieder vertreten sind, die D'Hondt und Sainte-Laguë bearbeitet haben. Die Lehrkraft sollte sich vorher Gedanken machen, ob eine Einteilung nach Sitzplatz oder eine andere Art der Verteilung zu wählen ist.

(Bürgermeister-)Wahl

Zu Beginn des Workshops findet eine "Bürgermeisterwahl" statt. Diese kann per Handzeichen, Zettel oder einem digitalen Werkzeug, wie <u>Mentimeter</u> durchgeführt werden. Wenn die Wahl mit einem solchen Werkzeug durchgeführt werden soll, ist dieses vorzubereiten.

Handout

Die Schüler*innen bekommen als Ergebnissicherung zum Ende des Workshops ein Handout ausgeteilt. Dieses muss im Vorfeld in entsprechender Anzahl ausgedruckt werden. Da die Grafiken eingefärbt sind, ist ein Farbdruck zu empfehlen.

Laptops und Workbook-Link

Der Workshop arbeitet mit einem Online-Workbook, welches über einen Link geöffnet werden kann. Die Verknüpfung zur Webseite sollte zuvor auf den Laptops der Schüler*innen hinterlegt werden. Für einen direkten Start in die Arbeitsphase der Schüler*innen sind die Laptops bereits vor dem

Workshopstart hochzufahren und die Links zu öffnen. Um Probleme während der Durchführung zu vermeiden, sollten die Laptops vollgeladen sein oder im Kursraum entsprechende Lademöglichkeiten angeboten werden.

Vertraut machen mit Online-Workbook

Die Schüler*innen werden im Workbook angeleitet und können selbständig die Aufgaben bearbeiten. Sollte es zu Rückfragen oder ähnlichem kommen, ist es jedoch empfehlenswert, dass sich die Lehrkraft mit der Technik vertraut macht und die Aufgabentypen kennt (siehe <u>II Technische Einführung</u>).

Workbook-Seite auf dem Lehrer-Laptop

Die wichtigsten Elemente des Online-Workbooks, die Verlinkungen zwischen den Seiten, die Stoppzeichen und die ausklappbaren Tipps, werden zu Beginn des Workshops kurz vorgestellt. Dazu sollte das Online-Workbook auf dem Laptop der Lehrkraft bereits geöffnet werden.

GeoGebra Datei auf dem Lehrer-Laptop

Zur Vorstellung des Sitzverteilungsverfahrens nach Niemeyer gibt es eine Datei für die Lehrkraft, welche automatisch die benötigten Prozentzahlen und Zwischenwerte berechnet. Dadurch bleibt der Fokus auf der eigentlichen Vergabe der Sitzplätze. Diese Datei sollte vor dem Workshop auf dem Laptop der Lehrkraft geöffnet werden. Auch ist ein Testen der Datei von der Lehrkraft zu empfehlen.

Präsentationfolien

In dem Workshop wird mit Präsentationsfolien gearbeitet, zu denen Notizen hinterlegt sind. Die Folien sind ebenfalls auf dem Laptop der Lehrkraft zu öffnen. Auch hier ist ein vorheriges Durchgehen der Folien empfohlen.

Beamer

Für eine erfolgreiche Durchführung sollte der Laptop der Lehrkraft an den Beamer angeschlossen und die korrekte Darstellung geprüft werden.

Alle Vorbereitungspunkte sind in folgender Checkliste nochmals zusammengefasst.

Gruppeneinteilung des Kurses in zwei bzw. drei Gruppen vorbereiten
Bürgermeisterwahl per Handzeichen oder einem anderen Werkzeug vorbereiten
"Handout.pdf" entsprechend der Schüler*innen Anzahl ausdrucken
S-Laptops laden oder für Lademöglichkeiten im Kursraum sorgen
Links auf S-Laptops hinterlegen und öffnen (für je 2 Schüler*innen ein Laptop)
Mit dem Online-Workbook vertraut machen
Online-Workbook auf L-Laptop öffnen
Lokale Datei "Sitzverteilungsverfahren_Niemeyer_L.ggb" mit GeoGebra auf L-Laptop öffnen
und sich damit vertraut machen
Folien "Workhop_Folien" als PowerPoint oder PDF auf L-Laptop öffnen und sich mit den
Notizen vertraut machen
Beamer anschalten und mit L-Laptop verbinden

2 Durchführung

Der Kurs wechselt mehrmals zwischen Arbeitsphasen der Schüler*innen und Austausch oder Inputphasen der Lehrkraft. Die Arbeitsphasen sind in untenstehender Tabelle farbig markiert. Jeder Arbeitsphase sind ein bis zwei Online-Workbook Seiten zugeordnet. Für die Austausch- und Inputphasen wird ein kommentierter Foliensatz zur Verfügung gestellt.

Der Stundenverlauf gliedert sich in drei Teilabschnitte. In der Tabelle werden diese durch eine doppelte Trennlinie gekennzeichnet.

Der erste Abschnitt dient der **Einführung ins Thema**. Im Anschluss an die Begrüßung werden die Kenntnisse der Schüler*innen zu den Wahlsystemen am Beispiel einer Bürgermeisterwahl in Entenhausen aufgefrischt und ein erstes, eigenes Sitzverteilungsverfahren entwickelt. In diesem Abschnitt sollen die Schüler*innen sich Gedanken dazu machen, welche Qualitätskriterien ein gutes Sitzverteilungsverfahren ausmachen.

Im zweiten Abschnitt werden drei in Deutschland verwendete **Sitzverteilungsverfahren erarbeitet** und die Vor- und Nachteile der Verfahren angeschnitten. Die Schüler*innen erfahren am Beispiel, wie das Sitzzuwachsparadoxon beim Verfahren nach Niemeyer sich auf die Sitzverteilung auswirken kann. Dies dient als Motivator zur Untersuchung zweier weiterer, sich ähnelnder Verfahren (D'Hondt und Sainte-Laguë).

Der dritte Abschnitt dient der **Diskussion** der gewonnenen Erkenntnisse. Als Diskussionsgrundlage kann dazu die letzte Seite im Workbook (s. Arbeitsphase IV) dienen, in der alle Erkenntnisse noch einmal wiederholt werden. Bei Zeitdruck kann diese Wiederholung gekürzt werden.

Die Diskussionsphase gliedert sich in zwei Abschnitte. Im ersten Teil argumentieren die Schüler*innen aus Sicht "ihrer" Partei für ein Verfahren gefolgt von einer allgemeinen Diskussion mit Bezug zu aktuellen politischen Fällen.

Tab. 4 Stundenverlaufsplan

Dauer	Phase	Was	Medium	Meth.
10 min	Einstieg	Begrüßung	PPT 01	LSG
		Kennenlernen des Kurses mit kurzen Ja/Nein Fragen	PPT 02-03	
		Umfrage Bürgermeisterwahl in Entenhausen. Ergebnis an der Tafel festhalten	PPT 04, Tafel	
	Theorie- input I	Erklärung der Mehrheitswahl anhand des Wahlergebnisses Übergang zu den unterschiedlichen Wahlsystemen	PPT 05-06	
8 min	Überleitung	Vorstellung des Online- Workbooks -> Verlinkungen, Stoppzeichen, Tipps SuS öffnen Laptops	Workbook (WB)	LV
	Arbeits- phase I	Aufgaben: + Wiederholung Wahlsysteme + Entwicklung eines eigenen Verfahrens + ggf. Überlegen von Qualitätskriterien	PPT 07, <u>WB 1</u> – <u>WB 2</u>	EA
5 min	Ergebnis- sicherung I	Sammeln der Verteilungsergebnisse Max. 2 SuS stellen Vorgehensweise ihres Verfahrens vor.	PPT 08, Tafel	SV
	Erarbeitung I	Erarbeitung von <u>Qualitätskriterien</u> für Sitzverteilungsverfahren	PPT 08, Tafel	LSG
3 min	Theorie- input II	Vorstellung des Verfahrens nach Niemeyer am Wahlergebnis der SuS (meistens entdecken die SuS das Verfahren bereits im vorherigen Schritt)	<u>GeoGebra</u>	LSG
		Aufteilung des Kurses in zwei Gruppen A,B für Übung		
9 min	Arbeits- phase II	Aufgabe: + Niemeyer selbständig durchführen, Gruppe A für 10 und Gruppe B für 11 Sitzplätze + Gruppe A schätzt die Verteilung für Gruppe B und umgekehrt	PPT 09, <u>WB 3A,</u> <u>WB 3B</u>	EA
3 min	Ergebnis- sicherung II	Abfrage der Schätzergebnisse von Gruppe B für Gruppe A per Handzeichen (11->10 Sitzplätze)	PPT 10	LSG
		Abgleich Schätzung mit Ergebnis Gruppe A (10 Sitzplätze)	PPT 11	
		Abfrage der Schätzergebnisse von Gruppe A für Gruppe B per Handzeichen (10->11 Sitzplätze)	PPT 12	
		Abgleich Schätzung mit Ergebnis Gruppe B (11 Sitzplätze)	PPT 13	
	Theorie- input III	Aufzeigen des Paradoxons: M-Partei verliert einen Sitzplatz, obwohl insgesamt mehr Sitzplätze vergeben werden	PPT 14	
15 min	Arbeits- phase III	Aufgabe: + Erarbeitung zweier alternativer Verfahren (A: Sainte-Laguë, B: D'Hondt)	PPT 15, <u>WB 4A,</u> <u>WB 4B</u>	EA

Dauer	Phase	Was	Medium	Meth.
5 min	Ergebnis-	Vorstellung der Verfahren in Kurzpräsentation	PPT 16-17	SV
	sicherung III	mithilfe der Folien (SuS)		
	Erarbeitung 	Kann Paradoxon bei D'Hondt und Sainte-Laguë	PPT 18	LSG
	II	auftreten?		
		Erklärung warum nicht		
2 min	Theorie-	Aufzeigen der Bevorteilung der verschiedenen	PPT 19	LV
	input IV	Verfahren an einem weiteren (konstruierten) Fallbeispiel		
		Aufteilung des Kurses in drei Gruppen Micky		
		Maus-, Daisy Duck-, Goofy- Partei für die		
		anschließende Diskussion		
10 min	Arbeits-	Aufgaben: + Wiederholung der Verfahren (kann bei	PPT 20,	GA
	phase IV	Zeitdruck weggelassen werden)	<u>WB 5</u>	
		+ Argumente sammeln für die anschließende		
		Diskussion auf Basis des eigenen Wahlergebnisses		
		des Kurses, wenn es deutliche Unterschiede		
		zwischen den Stimmen gibt		
		Alternativ mit dem Übungsbeispiel (6-40-74).		
5 min	Diskussion I	Diskussion zur Auswahl eines	PPT 20,	SG
		Sitzverteilungsverfahrens zwischen drei	Tafel	
		Vertreter*innen der Parteien		
		Die Vertreter*innen dürfen wechseln		
		Notieren der Standpunkte pro Partei an der Tafel		
10	Diskussion II	Optionale Fragen: 1,2 SuS setzen sich zurück auf den Platz	DDT 20 22	LCC
10 min	DISKUSSION II		PPT 20-22, Tafel	LSG
		Diskussion allgemeiner Fragestellungen, losgelöst vom Beispiel	Talei	
		ggf. Verweis auf aktuelle politische Diskussionen		
		Optionale Fragen: 3-6		
10 min	Puffer	Diskussion: Warum ist das Thema wichtig?		LSG
	,,	Optionale Fragen: 7,8		
		<u> </u>		
5 min	Abschluss	Zusammenfassen der Kernaussage des Workshops	PPT 23,	LV
		im Fazit	<u>Handout</u>	
		Austeilen der Handouts		
		Abschluss		

3 Nachbereitung

Es ist keine weitere Nachbereitung nötig.

Potenziell kann die betreuende Lehrkraft im Anschluss an den Workshop das ergänzende Material zur normativen Modellierung mit dem Kurs bearbeiten. Die Materialien sind <u>hier</u> hinterlegt.

4 Anhang

Materialien

Mögliche Qualitätskriterien

Das Verfahren ist

- **1 wiederholbar** mit gleichem Ergebnis (→ keine Auslosung der Sitze)
- 2 nachvollziehbar (→ verständlich, was passiert, keine Blackbox)
- 3 mathematisch korrekt
- **4 Verhältnis-/Mehrheitserhaltend** (→ Rangfolge der Parteien wird eingehalten)
- **5 demokratisch** (→ Verfahren bevorzugt keine Partei, beispielsweise durch Vergabe eines übrig gebliebenen Sitzes an die größte Partei,...)

6 ...

(Optionale) Diskussionsfragen

- I. Welches Verfahren soll im Sinne deiner Partei verwendet werden?
- II. Würde sich etwas an deiner Meinung ändern, wenn das Wahlergebnis noch unbekannt ist?
- III. Welches Verfahren sollte in Deutschland verwendet werden? Auch im Hinblick auf die Qualitätskriterien.
- IV. Gibt es ein bestes Verfahren?
- V. Sind die anderen Verfahren falsch?
- VI. Wie argumentieren Politiker? (→ Verweis auf Zeitungsberichte auf Folien PPT 21-22)
- VII. Warum beschäftigen wir uns mit dem Thema?
- VIII. Wo nehmen mathematische Vorgaben noch Einfluss auf unseren Alltag?

Linksammlung (Stand 10.07.2023)

• Workbook-Übersichtsseite: https://hallowed-sight-392.notion.site/Mathematik-hinter-Wahlen-f4380162b4b3453bb6503cf0479ad1a3

Workbook-Startseite: https://hallowed-sight-392.notion.site/1-Wichtiges-zu-Wahlsystemen-bd47e4197d844a79b032d9af482c195f

Workbook-Zusätzliche Materialien: https://hallowed-sight-392.notion.site/F-r-Lehrkr-fte-Vorund-Nach-dem-Workshop-6716a1f54523418a92260cb404edba10?pvs=25

- Foliensatz: Downloadlink als PPT(<u>Workhop Folien.pptx</u>), PDF(<u>Workshop Folien.pdf</u>) oder annotierte PDF(<u>Workshop Folien Annotiert.pdf</u>)
- Handout: Downloadlink (<u>Handout.pdf</u>)
- GeoGebra-Datei zur Erarbeitung des Sitzverteilungsverfahren nach Niemeyer als Download-Link (<u>Sitzverteilungsverfahren Niemeyer L.ggb</u>) oder Online-Version: https://www.geogebra.org/m/dussnheh

Literatur- und Quellenverzeichnis

- Bayerische Staatszeitung. (13. März 2017). *CSU will sich mit geänderter Auszählmethode bei Wahlen begünstigen*. Von https://www.bayerischestaatszeitung.de/staatszeitung/kommunales/detailansicht-kommunales/artikel/csu-will-sichmit-geaenderter-auszaehlmethode-bei-wahlen-beguenstigen.html#topPosition abgerufen
- Fehndrich, M. (15. April 2012). *D'Hondt*. Von Das Divisorverfahren mit Abrundung: https://www.wahlrecht.de/verfahren/dhondt.html abgerufen
- Fehndrich, M. (01. September 2013). *Hare/Niemeyer*. Von Das Quotenverfahren mit Restausgleich nach größten Bruchteilen: https://www.wahlrecht.de/verfahren/hare-niemeyer.html abgerufen
- Fehndrich, M. (17. April 2013). *Sainte-Laguë*. Von Das Divisorverfahren mit Standardrundung: https://www.wahlrecht.de/verfahren/stlague.html abgerufen
- Korte, K.-R. (01. Juli 2021). *Verhältniswahl*. Von https://www.bpb.de/themen/politischessystem/wahlen-in-deutschland/335619/verhaeltniswahl/ abgerufen
- Korte, K.-R. (01. Juli 2021). *Wahlsysteme*. Von https://www.bpb.de/themen/politischessystem/wahlen-in-deutschland/335656/wahlsysteme/ abgerufen
- Landeszentrale für politische Bildung Baden-Württemberg. (2022). *Das französische Wahlsystem*. Von https://www.lpb-bw.de/das-franzoesische-wahlsystem abgerufen
- Pohlkamp, S. (26. Juli 2021). *Normative Modellierung im Mathematikunterricht*. Von https://web.archive.org/web/20211009140458id_/https://publications.rwth-aachen.de/record/825689/files/825689.pdf abgerufen
- Pohlkamp, S. (25. Februar 2023). Ist modellieren politisch? Mathematik hinter Wahlen. Karlsruhe, Baden-Württemberg, Deutschland. Von https://www.math.kit.edu/didaktik/seite/stoffdidaktik/media/23_kit-didaktikws_pohlkamp.pdf abgerufen
- Sächsische Staatskanzlei. (02. Juli 2019). Sächsisches Wahlgesetz. Von § 6 Wahl nach Landeslisten: https://www.revosax.sachsen.de/vorschrift/2876-Saechsisches-Wahlgesetz#p6 abgerufen
- Schleswig-Holstein. (29. März 2011). Wahlgesetz für den Landtag von Schleswig-Holstein (Landeswahlgesetz LWahlG). Von § 3 Wahl der Abgeordneten aus den Landeslisten: https://www.gesetze-rechtsprechung.sh.juris.de/bssh/document/jlr-WahlGSHV7P3 abgerufen
- Uelzener Presse. (14. Januar 2022). FDP klagt gegen neues Sitzverteilungsverfahren für kommunale Ausschüsse. Von https://uelzener-presse.de/2022/01/14/fdp-klagt-gegen-neues-sitzverteilungsverfahren-fuer-kommunale-ausschuesse/ abgerufen
- Zicht, W. (08. Mai 2023). *Landtagswahlrecht*. Von Übersicht über die Wahlsysteme bei Lantagswahlen: https://www.wahlrecht.de/landtage/ abgerufen

Erklärung zur Selbstständigkeit

Hiermit versichern wir, dass wir die Dokumentation und alle angegebenen Materialien selbständig verfasst haben und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht haben und die Satzung des Karlsruher Instituts für Technologie zur Sicherung guter wissenschaftlicher Praxis in der gültigen Fassung beachtet haben.

Karlsruhe, den 14.07.2023	
S. G WA	
Sarah Glatt	Reatrice Wellmann