

Bitcoin and Twitter - How to predict the Bitcoin price using tweets?

Felix Fikowski
May 22th, 2023

TU Dortmund University
Advanced Text Mining Methods WS2022/23

Contents

Motivation

Data

Bitcoin Data Twitter Data

Methods

Vector Autoregressive Process Forecasting

Analysis

AR-Process VAR-Processes Model Comparison

Conclusion and Outlook

May 22th, 2023 2 / 45

Motivation

- Popularity of Crypto currencies and social media are closely related
- Tweets of influential people had a reasonable effect on the price development of Bitcoin
- Outstanding in this regard are the tweets of Elon Musk

Motivation

Musks tweets and the Bitcoin price development in 2021 Motivation

May 22th, 2023 4 / 45

Question

How can we formalize this observation in a quantitative framework to forecast the Bitcoin price?

Idea

- Apply a sentiment analysis to the tweets
- Exploit the correlation between the sentiments and the Bitcoin price

How to integrate a sentiment analysis in a forecasting model? - A time series approach

- 1. Get a sufficiently large amount of twitter data
- 2. Generate the sentiment score to each tweet
- 3. Group the tweets in the desired frequency and calculate the mean of the sentiment scores
- 4. Integrate the resulting time series in the used time series model

Bitcoin Data - Source

- Kaggle data set of Klein (2023) which contains csv-files to 400+ crypto currency pairs
- We focus on the Bitcoin US Dollar pair
- The data was collected from 2013 till today at 1-minute resolution
- Columns: time, open, close, high, low, volume
- Restrict the time frame to 2018-11-23 to 2019-03-29

May 22th, 2023 Data: Bitcoin Data 7/45

- Focus on the columns close and volume
 - close: the last price at which the bitcoin traded
 - volume: refers to the total number of coins exchanged between buyers and sellers
- close serve as our dependent variable while the volume is used as independent variable

May 22th, 2023 Data: Bitcoin Data 8 / 45

- Resample the data in a 6 hour frequency
- Take the last closing price and sum the volume
- Example:

	time	close	volume
0	2018-11-23 18:08	4339.10	5.480360
1	2018-11-23 19:50	4373.10	0.136918
2	2018-11-23 21:07	4357.20	0.574062
3	2018-11-23 22:21	4374.80	0.357992
4	2018-11-23 22:30	4427.43	720.260992
5	2018-11-24 00:59	4514.10	32.983137
6	2018-11-24 01:09	4510.00	38.018576
7	2018-11-24 01:28	4480.00	28.228934
8	2018-11-24 01:40	4479.90	135.502252

time	btc_price	volume_sum			
2018-11-23 18:00	4427.43	726.810324			
2018-11-24 00:00	4479.90	234.732898			
Transformed Dataframe					

Original Dataframe

- Resample the data in a 6 hour frequency
- Take the last closing price and sum the volume
- Example:

	time	close	volume	
0	2018-11-23 18:08	4339.10	5.480360	
1	2018-11-23 19:50	4373.10	0.136918	hte pries velume sum
2	2018-11-23 21:07	4357.20	0.574062	btc_price volume_sum
3	2018-11-23 22:21	4374.80	0.357992	time
4	2018-11-23 22:30	4427.43	720.260992	2018-11-23-18:00- → 4427.43 726.810324
5	2018-11-24 00:59	4514.10	32.983137	2018-11-24 00:00 4479.90 234.732898
6	2018-11-24 01:09	4510.00	38.018576	Transformed Dataframe
7	2018-11-24 01:28	4480.00	28.228934	
8	2018-11-24 01:40	4479.90	135.502252	

May 22th, 2023 Data: Bitcoin Data

- Resample the data in a 6 hour frequency
- Take the last closing price and sum the volume
- Example:

Bitcoin Data

- Calculate the percentage changes for the Bitcoin price and the traded volume
- This results in 503 observations for the variables btc_price_per and volume_sum_per

May 22th, 2023 Data: Bitcoin Data

Twitter Data - Source

- Kaggle data set from Bouillet (2021)
- 16M tweets were collected between 2016-01-01 to 2019-03-29
- Tweets contain "Bitcoin" or "BTC"
- Each tweet builds a row
- Columns: User, fullname, tweet-id, timestamp, url, likes, replies, retweets, text

May 22th, 2023 Data: Twitter Data 13 / 4

Twitter Data - Source

	tweets per day
mean	3337
std	31352
min	187
median	700
max	996011

- Days with extreme outlying number of tweets may reflect the relevance on social media or inconsistencies in data procurement
- Assumption: The data set is representative to reflect the sentiment

May 22th, 2023 Data: Twitter Data 14/4

Twitter Data - Noise Elimination

- Tweets containing the words "Giveaway", "Cashback", "Airdrop" and "nft" are seen as spam and get removed
- Usage of a language detection tool to remove non-english tweets
- Restrict the time frame to 2018-11-23 to 2019-03-29
- After the noise elimination and the restriction of the time frame 416,996 tweets remain

May 22th, 2023 Data: Twitter Data 15 / 4

Twitter Data - Variable Extraction of Meta Variables

- To reflect twitter meta data, we resample the in a 6 hour frequency replies with the mean
- This results in the variable replies_mean

May 22th, 2023 Data: Twitter Data 16 / 45

Sentiment Analysis

- Two different approaches:
 - 1. Dictionary based sentiment using Vader
 - 2. Using a pre-trained Language Model
 - finBERT: Pre-training and fine-tuned BERT model for the financial domain by Araci (2019)
 - TimeLM-19: Pre-training and fine-tuned roBERTa model for text data as tweets by Loureiro (2022)

Vader Sentiment

- Dictionary based sentiment tool designed to work well on social media text and other informal text
- Distinguish between positive (1), negative (-1), and neutral (0) words
- The sentiment score is then computed based on the weighted sum

	sentiment_vader
count	416,996
mean	0.14
std	0.37
min	-0.99
25%	0.00
50%	0.00
75%	0.40
max	0.99

roBERTa - differences to BERT

- Roberta (Robustly Optimized BERT Pretrained Approach) is a variation of BERT and was introduced 2019 by Facebook AI
- Main differences to BERT
 - It was trained on a larger and more diverse corpus of text data which also includes web pages
 - Roberta was trained for a longer period of time and with a different learning rate schedule
- This improvements have resulted in RoBERTa outperforming BERT on a variety of benchmark NLP tasks

finBERT vs. TimeLM-19

	finBERT	TimeLM-19
Pre-	On a financial corpus	On 124M tweets
Training	 of Reuters containing 	 obtained by the
ITallillig	46,143 documents	Twitter Academic API
	With > 29M words	evenly distributed
	and 400K sentences	across time
Fine- Tuning	Sentiment analysis data • set Financial PhraseBank from Malo et al. (2014)	On SemEval-2017 from Rosenthal et al. (2019)
	• 4845 financial news sentences	• 60K tweets chosen based on popular events

Data: Sentiment Analysis

finBERT vs. TimeLM-19

	finBERT	TimeLM-19
Pre- Processing	 Lower casing Replace @user123 with user Remove hashtags Replace links of 	Replace @user123 with user Replace links of websites with http Remove punctuation
	websites with website Remove punktuation including emojies	

Sentiment Analysis - Comparisons

finBERT	-1	0	1	
TimeLM-19				
negative = -1	10915	28695	215	39825
neutral = o	15949	274042	9418	299409
positive = 1	715	68255	8792	77762
	27579	370992	18425	416996

Sentiment Analysis - Comparisons

- As a next step we transform the sentiment score data into a time series as we did with the Bitcoin data
- Results in the variables finBERT_sentiment, TimeLM-19_sentiment and vader_sentiment

May 22th, 2023 Data: Sentiment Analysis 23 / 45

Autoregressive Process (AR process)

lacksquare A time series model in which the value of a variable at time t is a linear function of its past values

Vector Autoregressive Process (VAR Process)

- A multivariate time series model that assumes that each variable in the process depends linearly on the past values of all the variables in the process
- In other words, a VAR process is a collection of multiple AR processes
- Each variable is modeled as a function of its own past values and the past values of all the other variables

VAR Process - Modeling

- According to chapter 2.2 of Kilian and Lütkepohl (2017)
- A VAR process models the K time series variables $y_t = (y_{1t}, ..., y_{Kt})'$

$$y_t = [v, A_1, ..., A_p]Z_{t-1} + u_t$$
 (1)

- v: deterministic part and a vector
- A_i with i = 1, ..., p: $K \times K$ matrices containing the coefficients $a_{nm,i}$ with n, m = 1, ..., K
- $Z_{t-1} \equiv (1, y'_{t-1}, ..., y'_{t-p})'$
- $\mathbf{u}_t = (u_{1t}, ..., u_{Kt})'$: zero mean error process
- p: order of the process
- Estimation of the coefficients via least square estimator

Autoregressive Process

Autoregressive processes of order p can be seen as a VAR(p) processes with K=1:

$$y_t = v + a_1 y_{t-1} + \dots + a_p y_{t-p} + u_t$$
 (2)

The AR model can be estimated through the least-squares method

VAR Process - Forecasting

- In this project we will only focus on one step ahead predictions
- The one-step-ahead prediction is calculated through

$$\hat{y}_t(1) = [\hat{A}_{0|t}, \hat{A}_{1|t}, ..., \hat{A}_{p|t}] Z_t$$
(3)

- $\hat{A}_{0|t}$: estimated constant based on the available observations up to period t
- $\hat{A}_{i|t}$ with $i \in \{1,...,p\}$: the estimated coefficients

 Based on the forecasted value the root mean squared forecasting error can be calculated

Root Mean Squared Forecasting Error

$$RMSFE = \sqrt{(T-1)^{-1} \sum_{t=1}^{T-1} (y_{i+1} - \hat{y}_{t+1|t})^2}$$
 (4)

 Used as a measure for evaluating the performance of a forecasting model

VAR Process - Lag-Order Selection Procedure

- Determine the model order based on Akaike's Information Criterion (AIC) according to chapter 2.6.3 of Kilian and Lütkepohl (2017)
- The AIC is defined as

$$AIC(m) = log(det(\tilde{\Sigma}_u(m))) + \frac{2}{T}(mK^2 + K)$$
 (5)

- $\tilde{\Sigma}_u(m) = rac{1}{T} \sum_{i=1}^T \hat{u}_i \hat{u}_i'$: residual covariance matrix estimator of a VAR model
- m: lag order
- \hat{u}_i : residuals based on the least-square estimator

May 22th, 2023 Methods: Forecasting 29 / 4

VAR Process - Lag-Order Selection Procedure

- Trade-off between the goodness of fit and increasing complexity with increasing lag order
- With increasing lag order the second part of the AIC, $\frac{2}{\pi}(mK^2+K)$ increases and penalizes for higher lag orders for a given sample size T
- \blacksquare The m for which the AIC is minimal, is the determined lag-order

Analysis

Steps

- A stochastic process is defined to be weakly stationary, if:
 - 1. AR-Process
 - 2. VAR-Processes
 - 2.1 Lag Order Selection
 - 2.2 Forecasting
 - 3. Model Comparison

AR-Process

- A 6-hours-ahead forecast for the btc_price_per is generated using an AR(1) model
- The first three observations are needed to generate the first model
- Forecasts are calculated for 2018-11-25 00:00 to 2019-03-29 18:00

AR-Process

VAR-Process - Setup

- Reminder: We have the time series variables btc_price_per, volume_per and replies_per
- Plus the sentiment related time series finBERT_sentiment, TimeLM-19_sentiment and vader_sentiment
- Combine each sentiment with the time series btc_price_per, volume_per and replies_per to a data set
- This results in three different data sets

VAR-Process - Lag Order Selection

- For all three data sets the optimal lag-order is determined
- lue The maximal possible lag-order is set to p=5

AIC(n)	1	2	3	4	5
finBERT	-14.099	-14.108	-14.084	-14.115	-14.09
TimeLM-19	-12.551	-12.579	-12.581	-12.600	-12.598
Vader	-12.998	-13.028	-13.045	-13.065	-13.062

- The first 21 observations are needed to generate the first model
- Forecasts are calculated for 2018-11-29 12:00 to 2019-03-29 18:00

VAR-Process - finBERT

VAR-Process - TimeLM-19

VAR-Process - Vader

Model Comparison

- The VAR(4) models have a clearly smaller RMSFE compared to the AR(1) model
- Among the VAR(4) models the one using the finBERT_sentiment has the lowest RMSE
- However, the result should be treated with caution, since it is not clear to what extent it is distorted by the first deviating values

	RMSE
AR(1)	0.138
VAR(4) finBERT	0.0206
VAR(4) TimeLM-19	0.0213
VAR(4) Vader	0.0217

Conclusion

- We have performed a sentiment analysis on tweets which contained #btc or #bitcoin using finBERT, TimeLM-19 and Vader
- The different sentiment tools showed diavating outcomes on certain time frames
- This result should be treated with caution, since the integrity of the Twitter data is not clear
- Further, we used the sentiment data to integrate it in different VAR model forecasts
- We showed that the VAR processes yield a much lower RMSFE compared to a simple AR(1) process
- It is not clear yet to what extent it is distorted by the first deviating values of the forecast

Outlook

- Train a individual Language model for this task
- Include time series which consider other factors like energy prices or the stock market
- Forecast using rolling window approach
- Try different model approach

Literature

Bouillet, Alexandre (2021)

Bitcoin tweets - 16M tweets

https://www.kaggle.com/datasets/alaix14/bitcoin-tweets-20160101-to-20190329

Klein, Carsten (2023)

400+ crypto currency pairs at 1-minute resolution

https://www.kaggle.com/datasets/tencars/392-crypto-currency-pairs-at-minute-resolution?select=btceur.csv

Araci, Dogu (2019)

FinBERT: Financial Sentiment Analysis with Pre-trained Language Models https://arxiv.org/abs/1908.10063)

Literature

D. Loureiro and F. Barbieri and L. Neves and L. E. Anke and J. Camacho-Collados (2022)

TimeLMs: Diachronic Language Models from Twitter https://arxiv.org/abs/2202.03829)

S. Rosenthal, N. Farra, and P. Nakov (2019) Semeval-2017 task 4: Sentiment analysis in twitter

https://arxiv.org/abs/1912.00741)

L. Kilian and H. Lütkepohl (2017) Structural Vector Autoregressive Analysis https://doi.org/10.1017/9781108164818

J. D. Cryer and K. Chan (2008)

Time Series Analysis https://doi.org/10.1007/978-0-387-75959-3

Literature

P. Malo, A. Sinha, P. Korhonen, J. Wallenius, and P. Takala (2008) Time Series Analysis

https://doi.org/10.1007/978-0-387-75959-3

Thanks for your Attention!