Projeto 4

Anna Clara Ferraz cc23306@g.unicamp.br

Vinícius Dos Santos Andrade cc22333@g.unicamp.br

1 Introdução

Uma rede neural artificial busca simular os processos que o cérebro realiza para aprender e tomar decisões com base em padrões. Dentre os diversos tipos de redes neurais, destaca-se a Rede Neural Convolucional (ConvNet/CNN), que foi aplicada com sucesso pela primeira vez em 1998 por *Yann LeCun*. Essa rede é capaz de identificar informações significativas em imagens, vídeos e outras entradas visuais, diferenciando-as a partir dessas características. A CNN foi inspirada nos estudos de *Hubel e Wiesel*, realizados em 1962, que demonstraram que certos neurônios são ativados conjuntamente quando expostos a linhas ou curvas. Assim, a CNN reproduz o reconhecimento visual, filtrando linhas e curvas em cada camada para, ao final, reconstruir a imagem analisada. Atualmente, as aplicações da ConvNet podem ser observadas nas áreas de marketing, saúde, varejo e automotivo.

A estrutura de uma **Rede Neural Convolucional** é constituída por diversas camadas que podem ser generalizadas como: **Camadas Convolucionais**, **Camadas de Pooling** e **Camadas Fully Connected**. Seu funcionamento consiste em:

1.1 Entrada

A rede recebe como entrada uma imagem que é vista como uma matriz de 3 dimensões, sendo a altura e largura determinantes do tamanho da imagem, e a profundidade, que indica os canais de cores **RGB**.

1.2 Camadas Convolucionais

A imagem passa pelas **camadas convolucionais** que são consideradas o núcleo dessa rede, o que justifica o nome dado a ela. Essas camadas são responsáveis por aplicar **filtros** (também chamados de **Kernels**) a pequenas regiões da entrada, gerando mapas de características. Detectam padrões locais como bordas, texturas e formas na imagem. Esses **Kernels** são aplicados em uma janela deslizante que percorre toda a imagem e aplica o filtro a cada parte dela. Nessas camadas existe a **Rectified Linear Unit**, uma função de ativação que aplica uma transformação não linear, mantendo os valores positivos e zerando os negativos, ajudando a introduzir não-linearidade no modelo, o que permite o aprendizado de relações mais complexas.

1.3 Camadas de Pooling

Junto das **camadas Convolucionais**, a imagem é tratada nas **camadas de Pooling**, que reduzem a dimensionalidade dos mapas de características, resumindo a informação e tornando o processo mais eficiente. Existem dois tipos principais de **pooling**: **Max Pooling**, que seleciona o valor máximo em uma região específica do mapa de características; e **Average Pooling**, que calcula a média dos valores em uma região específica.

1.4 Camadas Fully Connected

As características obtidas são passadas para as **camadas Fully Connected**, onde o objetivo dessas camadas é combinar as características extraídas pelas **camadas convolucionais** e realizar a classificação final. Também chamadas de **camadas totalmente conectadas**, as **camadas Fully Connected** são mais parecidas com as camadas em redes neurais tradicionais, onde cada neurônio está conectado a todos os neurônios da camada anterior.

1.5 Saída

A saída é uma probabilidade associada a cada classe. Como exemplo, pode-se pensar que a entrada foi a foto de um gato e a saída pode indicar uma alta probabilidade de que a imagem seja de um gato.

2 Problema proposto

O problema que será apresentado nesse relatório foi proposto pelo professor da matéria de Tópicos em Inteligência Artificial, o qual consiste em completar a implementação das funções load_data e get_model a fim de treinar e validar uma **Rede Neural Convolucional** com o intuito de fazê-la reconhecer e distinguir sinais de trânsito com base em imagens desses sinais – um desafio inspirado diretamente pela aplicação da **visão computacional** no avanço dos **carros autônomos**.

3 Implementação

O desenvolvimento da **Rede Neural Convolucional** foi feito utilizando a linguagem de programação **Python**, junto das bibliotecas **TensorFlow** (usado para a construção, treinamento e avaliação da rede neural), **NumPy** (para o processamento eficiente de dados numéricos), **Pillow** (usada para manipulação e pré-processamento de imagens) e **scikit-learn** (usada para dividir os dados em conjuntos que serão utilizados para o treinamento da rede neural ou para o teste dela). Os dados utilizados para o treinamento e testes foram sinais de trânsito do conjunto de dados **GTSRB** (*German Traffic Sign Recognition Benchmark*), esses dados serão chamados também de "classes"ao longo do relatório.

4 Resultados

Os resultados obtidos tanto na fase de treinamento quanto na de validação foram extremamente positivos, como possível constatar nos gráficos abaixo:

Figura 1: Gráfico ilustrativo da Acurácia durante o Treinamento e Validação

A figura 1 demonstra a acurácia da resposta que a rede neural retornou e a resposta correta. Pode-se observar que o treinamento foi muito bem sucedido pois a partir da 3ª época o nível de proximidade entre a resposta da CNN e da resposta correta está grande e começa a ser um nível de acurácia constante. E a precisão nos testes de validação é ainda melhor, pois já na 2ª época a ConvNet já mostra mais de 90% de precisão em suas respostas.

Figura 2: Gráfico ilustrativo da perda durante o treinamento e validação

A figura 2 demonstra a perda, ou seja, a diferença entre as previsões do modelo e os valores reais. Observa-se que nas primeiras épocas a rede apresenta uma grande perda mas que começa a apresentar uma diminuição contínua tanto no treinamento quanto na validação, o que mostra que a rede neural está aprendendo de forma eficaz.

Também é possível visualizar os resultados dos testes de validação da CNN através de uma tabela que possuí métricas para cada classe (placa de trânsito) individualmente:

	precision	recall	f1-score	support
Limite de Velocidade (20km/h)	0.99	0.97	0.98	150
Limite de Velocidade (30km/h)	0.99	0.99	0.99	1500
Limite de Velocidade (50km/h)	1.00	0.99	0.99	1500
Limite de Velocidade (60km/h)	0.97	1.00	0.98	960
Limite de Velocidade (70km/h)	0.99	1.00	0.99	1320
Limite de Velocidade (80km/h)	0.99	0.97	0.98	1260
Fim do Limite de Velocidade (80km/h)	1.00	1.00	1.00	300
Limite de Velocidade (100km/h)	1.00	0.98	0.99	960
Limite de Velocidade (120km/h)	0.98	0.99	0.99	960
Proibido Ultrapassar	0.99	0.99	0.99	990
Proibido Ultrapassar Veículos acima de 3.5t	1.00	0.99	1.00	1350
Interseção com Prioridade	1.00	1.00	1.00	900
Estrada Principal	1.00	1.00	1.00	1410
Dê a Preferência	1.00	1.00	1.00	1440

	precision	recall	f1-score	support
Pare	1.00	1.00	1.00	540
Trânsito Proibido	1.00	0.99	0.99	420
Caminhões Proibidos	1.00	1.00	1.00	300
Entrada Proibida	1.00	1.00	1.00	750
Perigo	1.00	1.00	1.00	810
Curva Perigosa à Esquerda	0.98	0.99	0.99	150
Curva Perigosa à Direita	1.00	0.97	0.99	240
Dupla Curva	1.00	0.99	1.00	240
Desnível na Pista	0.99	1.00	0.99	270
Pista Escorregadia	1.00	0.99	1.00	360
Estreitamento de Pista	0.99	1.00	1.00	180
Obras	0.99	1.00	1.00	1020
Semáforo à Frente	1.00	0.99	1.00	420
Pedestres	1.00	0.98	0.99	180
Crianças	0.99	1.00	1.00	360
Ciclistas	1.00	0.98	0.99	180
Perigo de Neve/Gelo	0.99	1.00	1.00	300
Animais Selvagens	1.00	1.00	1.00	540
Fim de Todas as Restrições	0.99	1.00	0.99	180
Vire à Direita	1.00	1.00	1.00	480
Vire à Esquerda	0.99	1.00	1.00	300
Siga em Frente	0.99	1.00	1.00	810
Em Frente ou à Direita	1.00	1.00	1.00	270
Em Frente ou à Esquerda	1.00	0.99	0.99	150
Mantenha-se à Direita	1.00	1.00	1.00	1380
Mantenha-se à Esquerda	1.00	1.00	1.00	210
Rotatória Obrigatória	0.99	1.00	0.99	240
Fim da Proibição de Ultrapassar	1.00	0.98	0.99	180
Fim da Proibição de Ultrapassar Caminhões	0.99	1.00	0.99	180
accuracy	_	_	0.99	26640
macro avg	0.99	0.99	0.99	26640
weighted avg	0.99	0.99	0.99	26640

A métrica **precison** indica a proporção de verdadeiros positivos em relação ao total de positivos previstos, **recall** é a proporção de verdadeiros positivos em relação ao total de positivos reais, o **f1-score** indica a média harmônica entre precisão e recall, fornecendo uma

única métrica que balanceia ambos, já o **support** é o número de ocorrências reais de cada classe no conjunto de dados. Inclusive, o valor do **f1-score** estar alto é um ótimo sinal de que o modelo está performando bem tanto em precisão quanto em recall para a classe.

Figura 3: Matriz de Confusão

Na matriz de confusão ambos os eixos representam classes, onde no eixo Y (vertical) tem-se as classes verdadeiras e no eixo X (horizontal) as classes previstas pela CNN. Cada célula (i, j) representa o número de vezes que a classe verdadeira *i* foi prevista como classe *j*, o que faz com que a diagonal indique os acertos enquanto as células fora dessa diagonal indicam erros de classificação. Como observado na Matriz de Confusão apresentada, os valores na diagonal principal estão altos, o que significa que o modelo está classificando corretamente os dados com uma alta frequência.

5 Conclusão

A implementação da Rede Neural Convolucional para a classificação de sinais de trânsito apresentou resultados altamente satisfatórios, atingindo e superando os objetivos propostos. Os dados demonstram que, a partir da terceira época, a acurácia de treinamento estabilizou-se em níveis elevados, indicando um aprendizado consistente dos padrões presentes nos sinais. Além disso, a precisão obtida nos testes de validação ultrapassou 90% já na segunda época, evidenciando a eficácia e a capacidade de generalização do modelo desenvolvido.

Esses resultados reforçam o potencial das redes neurais convolucionais em aplicações críticas como a identificação de sinais de trânsito, essencial para o avanço de veículos autônomos. O alto desempenho alcançado em classes fundamentais, como "Pare"e "Dê a Preferência", destaca a robustez do modelo e sua relevância para a segurança viária. Os insights derivados das análises confirmam que a combinação adequada de técnicas de pré-processamento, arquitetura de rede e seleção de hiperparâmetros é crucial para o sucesso em tarefas de visão computacional. O projeto abre caminho para futuras pesquisas visando aprimorar ainda mais a precisão e a eficiência desses sistemas.