

PRUEBA Y CALIDAD DE SOFTWARE

CLASIFICACIÓN AMPLIADA DE LOS INDICADORES DE DESEMPEÑO

CLASIFICACIÓN AMPLIADA DE LOS INDICADORES DE DESEMPEÑO

A medida que las organizaciones escalan sus procesos de calidad, se vuelve necesario contar con una tipología más rica y funcional de los indicadores, que permita segmentar los análisis, según el propósito, el nivel organizacional, el tipo de dato y el uso práctico.

A continuación, se presenta una clasificación integral, que puede ser utilizada como referencia para implementar sistemas de medición complejos y orientados a la mejora continua.

Tabla 1. Según el enfoque de evaluación

Enfoque	Descripción	Ejemplo aplicado
Indicadores de producto.	Evalúan atributos del software entregado.	Número de bugs en producción, por módulo.
Indicadores de proceso.	Miden el rendimiento y calidad del proceso de desarrollo y pruebas.	% de historias de usuario cubiertas por pruebas.
Indicadores de proyecto.	Evalúan tiempos, recursos y planificación general.	Cumplimiento de cronograma vs. sprints reales.
Indicadores de cliente.	Miden la percepción del usuario o cliente final.	Puntuación CSAT post-release.

Tabla 2. Según el nivel de uso organizacional

Nivel	Usuario principal	Función
Operativo.	Testers, desarrolladores.	Seguimiento diario, corrección inmediata.
Táctico.	Líderes de QA, Product Owners.	Identificación de tendencias, control de calidad.
Estratégico.	Alta gerencia, dirección.	Toma de decisiones estratégicas, evaluación de objetivos.

Tabla 3. Según la naturaleza de los datos

Tipo	Descripción	Ejemplo
Cuantitativos.	Expresan medidas numéricas precisas.	Tasa de errores por KLOC, % de cobertura.
Cualitativos.	Recogen juicios, opiniones o valoraciones.	Encuesta de satisfacción, evaluación heurística.

Tabla 4. Según el uso final del indicador

Uso funcional	Descripción	Ejemplo
Control.	Detectar desviaciones de procesos.	% de casos de prueba fallidos por sprint.
Evaluación.	Comparar rendimiento frente a un estándar o meta.	Tiempo medio de resolución frente a objetivo mensual.
Predicción.	Anticipar comportamientos o riesgos.	Tasa de recurrencia de errores en QA vs. producción.
Justificación.	Respaldar decisiones de inversión o mejora.	ROI de automatización de pruebas de regresión.

Ejemplo aplicado. Mapa de cobertura de indicadores frente a ISO/IEC 25010

A continuación, se presenta una visualización tipo gráfico radar que permite observar cómo los indicadores pueden alinearse con las características de calidad propuestas por la norma ISO/IEC 25010.

Figura 1. Cobertura de indicadores vs ISO/IEC 25010

Cobertura de indicadores vs. ISO/IEC 25010

Rendimigratio

Rendimigratio

100

80

100

Funcionalidad

Seguridad

Seguridad

Interpretación:

- Puntos fuertes: el sistema de indicadores actual refleja un buen seguimiento en rendimiento, seguridad y funcionalidad.
- Áreas críticas: mantenibilidad y portabilidad muestran baja medición, lo cual podría representar una debilidad estructural del proceso.
- Oportunidad de mejora: diseñar métricas específicas para trazabilidad, compatibilidad, y refactorización del código.