Revisão de Probabilidade e Estatística

Aula 4 - Parte 1

Aishameriane Schmidt

PPGECO/UFSC

Março de 2018.

Aula 4

1. Algumas coisas da vida aula passada

Aula 4

- 1. Algumas coisas da vida aula passada
- 2. Função geradora de momentos

Aula 4

- 1. Algumas coisas da vida aula passada
- 2. Função geradora de momentos
- 3. Distribuição normal multivariada

Aula 4

- 1. Algumas coisas da vida aula passada
- 2. Função geradora de momentos
- 3. Distribuição normal multivariada
- 4. Estatística
 - ► Distribuições amostrais
 - Função de Verossimilhança
 - Estimação pontual
- 5. Introdução à inferência bayesiana

Coisas da aula passada

Aula 4

Exemplo

► Se $f_{X,Y}(x,y) = \frac{e^{-\frac{X}{y}}e^{-y}}{y}$ para $0 < x, y < +\infty$, qual é a distribuição de X|Y=y?

Coisas da aula passada

Aula 4

Exemplo

- ► Se $f_{X,Y}(x,y) = \frac{e^{-\frac{x}{y}}e^{-y}}{y}$ para $0 < x,y < +\infty$, qual é a distribuição de X|Y=y?
- ► Prove que se $X \sim \text{Poisson}(\lambda_1)$ e $Y \sim \text{Poisson}(\lambda_2)$ são independentes e Z = X + Y, então

$$X|Z = n \sim Binomial\left(n, \frac{\lambda_1}{\lambda_1 + \lambda_2}\right)$$

Definição

(Função Geradora de Momentos) A função geradora de momentos de uma variável aleatória X é uma função $M_X:\mathbb{R}\to\mathbb{R}$ definida por:

$$M_X(t) = \mathbb{E}[e^{tX}] \tag{1}$$

Isto é, a função geradora de momentos é calculada através da esperança da função e^{tX} .

Lema

► Se $X \sim Bernoulli(p)$, então a f.g.m. de X é dada por $M_X(t) = (1 - p) + e^t \cdot p$;

Lema

- ► Se $X \sim Bernoulli(p)$, então a f.g.m. de X é dada por $M_X(t) = (1 p) + e^t \cdot p$;
- ► Se $X \sim Binomial(n, p)$, então a f.g.m. de X é dada por $M_X(t) = \left[(1 p) + e^t \cdot p \right]^n$;
 - É possível usar a f.g.m. para provar que soma de Bernoulli é Binomial, mas aqui vamos fazer o caminho inverso e assumir que isso é verdade para encontrar a forma da f.g.m. de forma mais fácil.

Lema

• Se $X \sim Normal(0, 1)$, então a f.g.m. de X é dada por $M_X(t) = e^{\frac{t^2}{2}}$;

Lema

- Se $X \sim Normal(0, 1)$, então a f.g.m. de X é dada por $M_X(t) = e^{\frac{t^2}{2}}$;
- ► Se $X \sim Normal(\mu, \sigma^2)$, então a f.g.m. de X é dada por $M_X(t) = e^{t\mu + \frac{(t\sigma)^2}{2}}$:

Lema

- ► Se $X \sim Normal(0, 1)$, então a f.g.m. de X é dada por $M_X(t) = e^{\frac{t^2}{2}}$;
- ► Se $X \sim Normal(\mu, \sigma^2)$, então a f.g.m. de X é dada por $M_X(t) = e^{t\mu + \frac{(t\sigma)^2}{2}}$;
- ► Se $X \sim \text{Normal}(\mu_Y, \sigma_Y^2)$ e $Y \sim \text{Normal}(\mu_Y, \sigma_Y^2)$ (independentes), então a f.g.m. de X + Y é dada por $M_X(t) = e^{t(\mu_X + \mu_Y) + \frac{\left(t\sqrt{\sigma_X^2 + \sigma_Y^2}\right)^2}{2}}$;

Lema

► Se $X \sim Poisson(\lambda)$, então a f.g.m. de X é dada por $M_X(t) = exp\{\lambda(e^t - 1)\};$

Lema

- ► Se $X \sim Poisson(\lambda)$, então a f.g.m. de X é dada por $M_X(t) = exp\{\lambda(e^t 1)\};$
- ► Se $X_i \sim Poisson(\lambda_i)$ para i = 1, 2, ..., n e X_i é independente de X_j (para $i \neq j$), então a f.g.m. de $\sum_{i=1}^n X_i$ é dada por $M_X(t) = exp\left\{\sum_{i=1}^n \lambda_i \left(e^t 1\right)\right\}$;

Lema

1. A f.g.m. (quando pode ser definida) caracteriza unicamente uma distribuição;

Lema

- **1.** A f.g.m. (quando pode ser definida) caracteriza unicamente uma distribuição;
- **2.** Se X_1, \ldots, X_n são i.i.d.,

$$M_{\sum X_i}(t) = (M_{X_i}(t))^n$$

(Vamos usar esse resultado hoje)

Lema

- **1.** A f.g.m. (quando pode ser definida) caracteriza unicamente uma distribuição;
- **2.** Se X_1, \ldots, X_n são i.i.d.,

$$M_{\sum X_i}(t) = (M_{X_i}(t))^n$$

(Vamos usar esse resultado hoje)

3. Se $M_X(t)$ é a f.g.m. de X, então,

$$\left. \frac{\partial^n M_X(t)}{\partial t^n} \right|_{t=0} = \mathbb{E}\left[X^n\right] \quad \forall n \in \{1,2,\dots,\}.$$

A demonstração do item 2 é sugerida como exercício.

Exemplo

Vimos que se $X \sim \text{Normal}(\mu, \sigma^2)$, então a f.g.m. de X é dada por $M_X(t) = e^{t\mu + \frac{(t\sigma)^2}{2}}$. Vamos calcular o primeiro e o segundo momento de X usando a f.g.m..

Definição

Seja $X: (X_1, \dots, X_j)$ um vetor aleatório. Então:

► Sua esperança é dada por

$$\mathbb{E}[\tilde{X}] = (\mathbb{E}[X_1], \dots, \mathbb{E}[X_d])$$

Definição

Seja $X: (X_1, \dots, X_j)$ um vetor aleatório. Então:

► Sua esperança é dada por

$$\mathbb{E}[\tilde{X}] = (\mathbb{E}[X_1], \dots, \mathbb{E}[X_d])$$

A matriz de variâncias e covariâncias de um vetor aleatório
X = (X₁,..., X_d), V[X], é a matriz d x d cujo componente (i, j) é dado
por Cov(X_i, X_j), isto é,

$$\mathbb{V}[X] = \begin{bmatrix} Var[X_1] & Cov[X_1, X_2] & \dots & Cov[X_1, X_j] \\ Cov[X_2, X_1] & Var[X_2] & \dots & Cov[X_2, X_j] \\ \vdots & \vdots & \ddots & \vdots \\ Cov[X_1, X_j] & Cov[X_2, X_j] & \dots & Var[X_j] \end{bmatrix}$$

A normal multivariada

Vimos, utilizando a função geradora de momentos, que a soma de normais independentes segue também uma distribuição normal. Vamos continuar mexendo na distribuição normal, porém usando a versão multivariada da f.g.m.

A normal multivariada

Vimos, utilizando a função geradora de momentos, que a soma de normais independentes segue também uma distribuição normal. Vamos continuar mexendo na distribuição normal, porém usando a versão multivariada da f.g.m.

Definição

 $\underline{X}:(X_1,\ldots,X_n)$ um vetor aleatório. Definimos a f.g.m. de \underline{X} por

$$M_X:\mathbb{R}^n\to\mathbb{R}$$

$$M_{X_i}(t_1,\ldots,t_n) = \mathbb{E}\left[e^{\sum_{i=1}^n t_i X_i}\right]$$

A normal multivariada

Exemplo

1. Sejam X e Y i.i.d. com distribuição $N(\mu, \sigma^2)$. Encontre a distribuição conjunta de Z = X + Y e W = X - Y.

A normal multivariada

Exemplo

- **1.** Sejam X e Y i.i.d. com distribuição $N(\mu, \sigma^2)$. Encontre a distribuição conjunta de Z = X + Y e W = X Y.
- **2.** Se $\tilde{X}:(X_1,\ldots,X_d)\sim \text{Normal}(\mu,\Sigma)$, então,

$$M_{\underline{X}}(t_1,\ldots,t_d) = exp\left\{\underbrace{\mu \underline{t}}_{\underline{z}} + \frac{1}{2}\underline{t} \Sigma \underline{t}'\right\}, \qquad \underline{t} = (t_1,\ldots,t_d)$$

A normal multivariada

Exemplo

- **1.** Sejam X e Y i.i.d. com distribuição $N(\mu, \sigma^2)$. Encontre a distribuição conjunta de Z = X + Y e W = X Y.
- **2.** Se $X : (X_1, \dots, X_d) \sim \text{Normal}(\mu, \Sigma)$, então,

$$M_{\underline{X}}(t_1,\ldots,t_d) = \exp\left\{ \underbrace{\mu \underline{t}}_{\underline{z}} + \frac{1}{2} \underline{t} \; \Sigma \; \underline{t}' \right\}, \qquad \underline{t} = (t_1,\ldots,t_d)$$

 Mostre que se Σ é diagonal, as componentes de X são independentes e diga qual a sua distribuição. O que isso significa?

A normal multivariada

Exemplo

- **1.** Sejam X e Y i.i.d. com distribuição $N(\mu, \sigma^2)$. Encontre a distribuição conjunta de Z = X + Y e W = X Y.
- **2.** Se $X : (X_1, \dots, X_d) \sim \text{Normal}(\mu, \Sigma)$, então,

$$M_{\underline{X}}(t_1,\ldots,t_d) = exp\left\{\underbrace{\mu \underline{t}}_{\underline{z}} + \frac{1}{2}\underline{t} \Sigma \underline{t}'\right\}, \qquad \underline{t} = (t_1,\ldots,t_d)$$

- Mostre que se Σ é diagonal, as componentes de X são independentes e diga qual a sua distribuição. O que isso significa?
- A Normal é um dos poucos casos onde ausência de correlação implica independência!

► Enquanto a probabilidade é uma área da matemática, a estatística é considerada uma ciência;

 Enquanto a probabilidade é uma área da matemática, a estatística é considerada uma ciência;

 Enquanto a probabilidade é uma área da matemática, a estatística é considerada uma ciência;

O problema fundamental da estatística

O problema fundamental da estatística

O problema fundamental da estatística

Amostras aleatórias

Oi, você por aqui?

Definição

(Amostra Aleatória) Sejam as variáveis aleatórias X_1, X_2, \ldots, X_n com densidade conjunta dada por $f_{X_1, X_2, \cdots, X_n}(\cdot, \ldots, \cdot)$ que pode ser escrita da seguinte forma:

$$f_{X_1,X_2,\cdots,X_n}(\cdot,\ldots,\cdot)=f_{X_1}(x_1)f_{X_2}(x_2)\cdots f_{X_n}(x_n)$$

onde $f(\cdot)$ é a densidade de cada X_i . Então, X_1, X_2, \ldots, X_n é definida como sendo *uma amostra aleatória* de tamanho n de uma população com densidade $f(\cdot)$.

Amostras aleatórias

Oi, você por aqui?

Definição

(Amostra Aleatória) Sejam as variáveis aleatórias $X_1, X_2, ..., X_n$ com densidade conjunta dada por $f_{X_1, X_2, ..., X_n}(\cdot, ..., \cdot)$ que pode ser escrita da seguinte forma:

$$f_{X_1,X_2,\dots,X_n}(\cdot,\dots,\cdot) = f_{X_1}(x_1)f_{X_2}(x_2)\cdots f_{X_n}(x_n)$$

onde $f(\cdot)$ é a densidade de cada X_i . Então, X_1, X_2, \ldots, X_n é definida como sendo *uma amostra aleatória* de tamanho n de uma população com densidade $f(\cdot)$.

Observação 1: Note que necessariamente os X_i precisarão ser amostrados *COM* reposição.

Observação 2: Para ser uma a.a., precisa ser i.i.d..

Amostras aleatórias

Oi, você por aqui?

Exemplo

a.a. com n = 2 de uma Bernoulli

Suponha que X só pode assumir dois valores, 0 e 1, com probabilidades p e q = 1 - p, respectivamente. Isto é, X é uma variável aleatória discreta com distribuição de Bernoulli:

$$p_X(x) = p^x q^{1-x} \mathbb{I}_{\{0,1\}}(x)$$

Onde \mathbb{I} é a função *indicadora*, que será igual a 1 se x=0 ou x=1 e será igual a 0 em todos os outros casos.

Oi, você por aqui?

Exemplo

a.a. com n = 2 de uma Bernoulli

Suponha que X só pode assumir dois valores, 0 e 1, com probabilidades p e q = 1 - p, respectivamente. Isto é, X é uma variável aleatória discreta com distribuição de Bernoulli:

$$p_X(x) = p^x q^{1-x} \mathbb{I}_{\{0,1\}}(x)$$

Onde \mathbb{I} é a função *indicadora*, que será igual a 1 se x=0 ou x=1 e será igual a 0 em todos os outros casos.

A função densidade conjunta para uma amostra aleatória da $f(\cdot)$ que tenha 2 valores é:

$$f_{X_1,X_2}(x_1,x_2)=f(x_1)f(x_2)=p^{x_1+x_2}q^{2-x_1-x_2}\mathbb{I}_{\{0,1\}}(x_1)\mathbb{I}_{\{0,1\}}(x_2)$$

Oi, você por aqui?

Exemplo

Distribuição amostral da exponencial (Retirado de [Casella and Berger, 2002])

Seja X_1, \ldots, X_n uma a.a. de uma população com distribuição exponencial de parâmetro λ . Então, a densidade conjunta é dada por:

Oi, você por aqui?

Exemplo

Distribuição amostral da exponencial (Retirado de [Casella and Berger, 2002])

Seja X_1, \ldots, X_n uma a.a. de uma população com distribuição exponencial de parâmetro λ . Então, a densidade conjunta é dada por:

$$f(x_1, \dots, x_n | \lambda) = \prod_{i=1}^n f(x_i | \lambda)$$

$$= \prod_{i=1}^n \frac{1}{\lambda} e^{-\frac{x_i}{\lambda}}$$

$$= \frac{1}{\lambda^n} e^{-\frac{x_1 + x_2 + \dots + x_n}{\lambda}} = \frac{1}{\lambda^n} e^{-\frac{1}{\lambda} \sum_{i=1}^n x_i}$$

Oi, você por aqui?

Exemplo

Distribuição amostral da exponencial (Retirado de [Casella and Berger, 2002])

Seja X_1, \ldots, X_n uma a.a. de uma população com distribuição exponencial de parâmetro λ . Então, a densidade conjunta é dada por:

$$f(x_1, \dots, x_n | \lambda) = \prod_{i=1}^n f(x_i | \lambda)$$

$$= \prod_{i=1}^n \frac{1}{\lambda} e^{-\frac{x_i}{\lambda}}$$

$$= \frac{1}{\lambda^n} e^{-\frac{x_1 + x_2 + \dots + x_n}{\lambda}} = \frac{1}{\lambda^n} e^{-\frac{1}{\lambda} \sum_{i=1}^n x_i}$$

Podemos usar a f.g.m. para calcular densidades de a.a.!

Estatística

Definição

Estatística

Seja X_1, \ldots, X_n uma a.a. de tamanho n de uma população e seja $T(X_1, \ldots, X_n)$ uma função real (ou um vetor de funções reais) cujo domínio inclui o espaço amostral de (X_1, \ldots, X_n) . Então a v.a. ou o vetor aleatório $Y = T(X_1, \ldots, X_n)$ é chamado de *estatística*. A função densidade de probabilidade de uma estatística Y é chamada de *distribuição amostral de Y*.

Observação: Note que a definição de estatística é bastante abrangente e não necessariamente Y irá ser uma função do parâmetro populacional θ .

Estatística

Exemplo

Distribuição amostral de \bar{X} para a distribuição Normal

Considere uma a.a. de tamanho n de uma população com distribuição Normal de média μ e variância σ^2 , isto é, X_1,\ldots,X_n são i.i.d. com $X_i \sim \mathcal{N}(\mu,\sigma^2)$. Defina a estatística \bar{X} como sendo:

$$\bar{X} := \sum_{i=1}^{n} \frac{X_i}{n}$$

Estatística

Exemplo

Distribuição amostral de \bar{X} para a distribuição Normal

Considere uma a.a. de tamanho n de uma população com distribuição Normal de média μ e variância σ^2 , isto é, X_1, \ldots, X_n são i.i.d. com $X_i \sim \mathcal{N}(\mu, \sigma^2)$. Defina a estatística \bar{X} como sendo:

$$\bar{X} := \sum_{i=1}^{n} \frac{X_i}{n}$$

Utilizando a função geradora de momentos, podemos encontrar qual a densidade de \bar{X} !

Função de Verossimilhança

Definição

Função de Verossimilhança

Seja $f(\mathbf{x}|\theta)$ a densidade conjunta de uma amostra $\mathbf{X}=(X_1,\ldots,X_n)$. Então, dado que $\mathbf{X}=\mathbf{x}$ foi observada, a função de θ definida como

$$L(\theta|\mathbf{x}) = f(\mathbf{x}|\theta)$$

é chamada de função de verossimilhança.

Em particular, se X_1, \ldots, X_n é uma amostra aleatória, então:

$$L(\theta|\mathbf{x}) = f(\mathbf{x}|\theta) = \prod_{i=1}^{n} f(x_i|\theta)$$

Função de Verossimilhança

- A função de verossimilhança contém toda a informação que a amostra tem sobre θ.
 - Se houver um escalar α tal que, para duas observações de uma distribuição com parâmetro θ , denotadas por X_1 e X_2 , seja possível escrever $\ell(\theta|X_1) = \alpha \cdot \ell(\theta|X_2)$ para todo θ , então X_1 e X_2 levam às mesmas conclusões no processo de inferência.

Função de Verossimilhança

- A função de verossimilhança contém toda a informação que a amostra tem sobre θ.
 - Se houver um escalar α tal que, para duas observações de uma distribuição com parâmetro θ , denotadas por X_1 e X_2 , seja possível escrever $\ell(\theta|X_1) = \alpha \cdot \ell(\theta|X_2)$ para todo θ , então X_1 e X_2 levam às mesmas conclusões no processo de inferência.
 - ► Ela NÃO é uma densidade!

Estatística Bayesiana

Referências I

Casella, G. and Berger, R. (2002). Statistical inference. Duxbury, 2nd edition.