

Learning

A computer program is said to

- Learn from experience E
- With respect to some class of tasks T
- And performance measure P, if its performance at tasks in T, as measured by P, improves with experience E

Rule Based Learning

하늘	기온	습도	바람	수온	예보	Picnic
맑음	따뜻	적당	적당	따듯	변동 없음	가능
맑음	따뜻	높음	강함	따듯	변동 없음	가능
구름	추움	높음	적당	차가움	변화	불가능
비	추움	높음	강함	차가움	변동 없음	불가능

If Else 문장의 나열

Picnic|하늘 = True, Picnic|기온 = True, Everything is True!!

In real World

Probability Theory

불확실성(uncertainty)는 현실에서 중요한 개념 중 하나

TO BE OR NOT TO BE, THAT IS THE QUESTION.

- William Shakespeare

결정장애(햄릿 증후군)

불확실성이 발생하는 이유?

- 너무 적은양의 데이터 (위험 요소 회피)
- 너무 많은 데이터 (너무 많은 데이터)
- 관찰데이터에 포함된 노이즈

Probability Theory

- 불확실성을 정확하고 정량적으로 표현
- 신뢰 할 만한 수학적인 프레임워크를 제공

Term Frequency - Inverse Document Frequency(TF-IDF)

TF-IDF는 TF X IDF 연산 결과

TF: (단어 빈도, Term Frequency)

IDF: (역문서 빈도, Inverse Document Frequency)

DF: (문서 빈도, Document Frequency)

TF 표현식

Boolean Frequency : tf(t,d) = 0 or 1

Log scale Frequency : $tf(t,d) = \log(f(t,d) + 1)$

IDF 표현식

$$idf(t,D) = \log \frac{|D|}{|\{d \in D : t \in d\}|+1}$$

Measuring similarity

