Задача 2.2

Агафонов Артём

• p_1 – доля вакцинированных заболевших; p_2 – доля невакцинированных заболевших.

$$H_0: p_1 \ge p_2$$

 $H_1: p_2 > p_1$

Воспользуемся аналогом Z-критериея для разности двух долей в последовательном анализе. $u=rac{rac{p_1}{1-p_1}}{rac{p_2}{1-p_2}}$ — относительный риск.

Коридор отклонений:

$$0.5 = u_L < u < u_U = 2.$$

Тогда задачу можно записать в следующем виде:

$$H_0: u \ge u_U$$

$$H_1: u \le u_L$$

статистика :
$$d_m(X_1^m, X_2^m) = \sum_{i=1}^m (1 - X_{1i}) X_{2i}$$
.

$$\alpha = 0.05, \ \beta = 0.2$$

• Константы:

$$A = \frac{1-\beta}{\alpha} = 16; \quad B = \frac{\beta}{1-\alpha} = \frac{4}{19}.$$

Вычислим h:

$$\frac{u}{u+1} = \frac{1 - \left(\frac{1+u_L}{1+u_U}\right)^h}{\left(\frac{u_U(1+u_L)}{u_L(1+u_U)}\right)^h - \left(\frac{1+u_L}{1+u_U}\right)^h}$$

Подставив значения u_L и u_U , получим

$$\frac{1}{5} = \frac{1 - \left(\frac{1}{2}\right)^h}{2^h - \left(\frac{1}{2}\right)^h} = \frac{2^h - 1}{4^h - 1} \implies 2^{2h} - 5 \cdot 2^h + 4 = 0 \implies h = 2.$$

Найдем L(u):

$$L(u) = \frac{A^h - 1}{A^h - B^h} = \frac{16^2 - 1}{16^2 - \left(\frac{4}{19}\right)^2} \approx 0.996.$$

Момент остановки:

$$\mathbb{E}_{u}(n) = \frac{L(u) \ln B + (1 - L(u)) \ln A}{\frac{u}{u + 1} \ln \frac{u_{U}(1 + u_{L})}{u_{L}(1 + u_{U})} + \frac{1}{u + 1} \ln \frac{1 + u_{L}}{1 + u_{U}}} / (p_{1}(1 - p_{2}) + p_{2}(1 - p_{1})) =$$

$$= \frac{0.996 \cdot \ln \frac{4}{19} + (1 - 0.996) \ln 16}{\left(\frac{1}{5} \ln \frac{2(1 + \frac{1}{2})}{\frac{1}{2}(1 + 2)} + \frac{4}{5} \ln \frac{1 + \frac{1}{2}}{1 + 2}\right) \cdot 0.5} \approx 7.44.$$

• Вычислим константы последовательного анализа $a_m, r_m.$

$$\frac{\ln \frac{1+u_U}{1+u_L}}{\ln u_U - \ln u_L} = \frac{\ln \frac{1+2}{1+\frac{1}{2}}}{\ln 2 - \ln \frac{1}{2}} = \frac{1}{2}.$$

Тогда

$$a_m = \frac{m}{2} + \frac{\ln B}{\ln 4} \approx -1.12 + \frac{m}{2}; \quad r_m = \frac{m}{2} + \frac{\ln A}{\ln 4} = \frac{m}{2} + 2.$$

Применим последовательный анализ:

\overline{k}	vaccinated	unvaccinated	d_k	a_k	r_k
1	0	0	skip		
2	0	1	1	-0.62	2.5
3	0	1	2	-0.12	3
4	0	0	skip		
5	0	0	skip		
6	0	1	3	0.38	3.5
7	0	0	skip		
8	0	1	4	0.88	4

Получили, что на 8-ой день $d_m \geq r_m \Rightarrow H_0$ отвергается. Таким образом, мы не можем сказать, что доля невакцинированных заболевших меньше или равна доле вакцинированных заболевших. За 8 дней удалось показать, что результаты данного теста не противоречат тому, что вакцина помогает. Это согласуется с ожидаемым числом шагов метода.