ΗΛΕΚΤΡΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ Θέματα Εξέτασης Θεωρίας 16 Σεπτεμβρίου 2011

- Να βρεθεί με τη μέθοδο Newton-Raphson η τρίτη ρίζα του 20. Προσεγγίστε τη λύση με 5 σημαντικά ψηφία.
 (3.0 μονάδες)
- 2. Να βρεθεί αριθμητικά η λύση y(x) της διαφορικής εξίσωσης y'=0.2y με αρχική τιμή y(0)=5 με τη μέθοδο Euler (την απλούστερη από τις μεθόδους Taylor) και βήμα h=0.1 στο σημείο x=0.5. Συγκρίνετε με την αναλυτική λύση και βρέστε το σχετικό σφάλμα. Στους υπολογισμούς χρησιμοποιείστε 6 σημαντικά ψηφία. (3.5 μονάδες)
- 3. Να βρεθούν οι ιδιοτιμές και τα κανονικοποιημένα ιδιοδιανύσματα του πίνακα

 $\left(\begin{array}{cc} 2 & -4 \\ -1 & -1 \end{array}\right)$

(3.5 μονάδες)

ΗΛΕΚΤΡΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ

Θέματα Εργαστηρίου Σεπτέμβριος 2011

- 1. Σε ποιά σημεία τέμνονται οι καμπύλες $f(x) = x^2 5$ και $g(x) = x^2 e^{-x^2}$; 4/10
- 2. Ένας τρόπος για να υπολογίσουμε ιδιοτιμές και ιδιοδιανύσματα ενός 6/10 πραγματικού (τετραγωνικού) πίνακα A με πραγματικές ιδιοτιμές είναι ο ακόλουθος:
 - (α) Επιλέγουμε ένα τυχαίο μη μηδενικό διάνυσμα, v_1 , το οποίο κανονικοποιούμε (δηλ. διαιρούμε τα στοιχεία του με το μέτρο του).
 - (β΄) Υπολογίζουμε το $\lambda_1=v_1^TAv_1$. Τα λ_1 , v_1 , είναι οι πρώτες προσεγγίσεις για μια ιδιοτιμή και το αντίστοιχό ιδιοδιάνυσμά της, αντίστοιχα.
 - (y) Για i = 1, 2, ... επαναλαμβάνουμε τα εξής:
 - Ελέγχουμε αν οι τρέχουσες προσεγγίσεις στο ιδιοδιάνυσμα και στην ιδιοτιμή είναι "ικανοποιητικές" (δείτε παρακάτω). Αν όχι, συνεχίζουμε στα επόμενα βήματα.
 - Επιλύουμε το σύστημα $(A \lambda_i I)w = v_i$. Το διάνυσμα w, αφού κανονικοποιηθεί, είναι το v_{i+1} , η νέα προσέγγιση του ιδιοδιανύσματος.
 - Υπολογίζουμε το $\lambda_{i+1} = v_{i+1}^T A v_{i+1}$. Το λ_{i+1} είναι η νέα προσέγγιση στην ιδιοτιμή.

Κάποιο ζεύγος (λ_i, v_i) είναι "ικανοποιητικό" αν ισχύουν μία ή περισσότερες από τις συνθήκες

- το μέτρο του $Av_i \lambda_i v_i$ είναι "μικρό".
- η διαφορά $\lambda_{i+1} \lambda_i$ είναι "μικρή".
- το γινόμενο $v_{i+1}^T v_i$ είναι "κοντά" στο 1.

Παρατήρηση: Αν δώσουμε συγκεκριμένη τιμή στο λ_1 και όχι την $v_1^T A v_1$ τότε τα λ_i θα τείνουν σε ιδιοτιμή του A που βρίσκεται "κοντά" στο λ_1 .

Υλοποιήστε τον παραπάνω αλγόριθμο και υπολογίστε με αυτόν μια ιδιοτιμή του πίνακα

16.63	-7.75	18.56	19.41	10.05	11.73
20.41	2.94	21.32	20.59	6.891	17.61
13.91	4.74	12.68	11.96	1.952	-1.023
24.47	4.29	13.35	-32.76	2.138	6.183
-7.37	8.35	23.15	16.91	-8.237	20.77
8.562	7.75	21.44	5.184	0.053	-1.784

Διάρκεια: 90 λεπτά Καλή επιτυχία!