图论作业(第12周)

黄瑞轩 PB20111686

10.9

将基本圈矩阵通过交换列向量变换为 $(I_{\varepsilon-\nu+1}:C_{12})$ 的形式:

$$\mathcal{C}_f(G) = egin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \end{pmatrix} \Rightarrow egin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

所以得到
$$C_{12}=egin{pmatrix}1&1&0&0\\1&0&1&1\\0&0&1&1\\1&1&1&1\end{pmatrix}$$
,由于 $\mathcal{S}_f(G)=(S_{11}:I_{\nu-1}),S_{11}=C_{12}^T$,可以写出基本割集矩阵:

$$\mathcal{S}_f(G) = egin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

10.11

- (1) 否,因为 $\{b,e,f\}\subset\{b,c,e,f\}$,而前者构成一个圈,树上没有圈。
- (3) 否,因为根据 $C_f(G)$ 可以写出 $S_f(G)$:

$${\mathcal S}_f(G) = egin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

可以看出 $\{a,b,e\}\subset\{a,b,e,g\}$ 是一个基本割集,由割集的定义,后者不可能是割集。

(5) 是,设 $\mathcal{S}_f(G)$ 的行向量从上往下分别记为 S_1,S_2,S_3,S_4 ,则 $\{d,e,f,g\}$ 对应的边向量为 $S_1+S_2+S_3+S_4$ 。割集一定是断集,但通过这里的基本割集组无法生成 $\{d,e,f,g\}$ 的任何真子集对应的边向量,所以 $\{d,e,f,g\}$ 是割集。

10.14

这里应该默认 G 是简单图,即没有环或重边,否则信息不够不能求出。

- (1) $\sum_{i=1}^{
 u} a_{ii}^2 = \sum_{i=1}^{
 u} \deg(v_i) = 2arepsilon \Rightarrow arepsilon = 50$.
- (2) 对于某个顶点 v_i , a_{ii}^3 即图中的一个三角形,但是一个三角形由三个顶点共同构成,所以一个顶点的贡献只有 1/3 ,并且由于最后一条边也是 v_i 关联的一条边,因此交换始边和终边是同一个三角形,所以

$$|\{A|A\cong K_3, A\subseteq G\}|=\sum_{i=1}^{
u}a_{ii}^3 imesrac{1}{3} imesrac{1}{2}=100$$

11.1

	度中心性	接近中心性	中介中心性	PageRank中心性
v_1	3	$\frac{6}{7}$	7.5	1.188
v_2	3	$\frac{6}{7}$	7.5	1.188
v_3	2	$\frac{3}{4}$	6.5	0.792
v_4	3	$\frac{6}{7}$	8	1.188
v_5	2	$\frac{3}{4}$	6.5	0.792
v_6	3	$\frac{6}{7}$	7	1.188

• 计算接近中心性时所做的工作: 计算每个顶点到其他顶点的距离

顶点标号	1	2	3	4	5	6
1	0	1	2	2	1	1
2	1	0	1	2	2	1
3	2	1	0	1	2	2
4	2	2	1	0	1	1
5	1	2	2	1	0	2
6	1	1	2	1	2	0

• 计算中介中心性时所做的工作: 计算 n_{st}^u, g_{st}

顶点对\ u	1	2	3	4	5	6	g
1,2	1	1	0	0	0	0	1
1,3	1	1	1	0	0	0	1
1,4	2	0	0	2	1	1	2
1,5	1	0	0	0	1	0	1
1,6	1	0	0	0	0	1	1
2,3	0	1	1	0	0	0	1
2,4	0	2	1	2	0	1	2
2,5	1	1	0	0	1	0	1
2,6	0	1	0	0	0	1	1
3,4	0	0	1	1	0	0	1
3,5	0	0	1	1	1	0	1
3,6	0	1	2	1	0	2	2
4,5	0	0	0	1	1	0	1
4,6	0	0	0	1	0	1	1
5,6	1	0	0	1	2	2	2
1,1	1	0	0	0	0	0	1
2,2	0	1	0	0	0	0	1
3,3	0	0	1	0	0	0	1
4,4	0	0	0	1	0	0	1
5,5	0	0	0	0	1	0	1
6,6	0	0	0	0	0	1	1

• 计算PageRank中心性所做的工作:令所有顶点的初始中心性为 $\chi\equiv 1$,每条边权重为 1 , $\alpha=1,\beta=0$,迭代计算:

 $v_1: 1.167, v_2: 1.222, v_3: 0.741, v_4: 1.204, v_5: 0.790, v_6: 1.198\\ v_1: 1.202, v_2: 1.170, v_3: 0.791, v_4: 1.190, v_5: 0.797, v_6: 1.187\\ v_1: 1.184, v_2: 1.186, v_3: 0.792, v_4: 1.190, v_5: 0.792, v_6: 1.187\\ v_1: 1.187, v_2: 1.187, v_3: 0.793, v_4: 1.188, v_5: 0.792, v_6: 1.187\\ v_1: 1.187, v_2: 1.188, v_3: 0.792, v_4: 1.187, v_5: 0.792, v_6: 1.187\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.187, v_5: 0.792, v_6: 1.187\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.187, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.187, v_3: 0.792, v_4: 1.187, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.187, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.188\\ v_1: 1.187, v_2: 1.187, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.187\\ v_1: 1.187, v_2: 1.187, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.187\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.188, v_3: 0.792, v_4: 1.188, v_5: 0.792, v_6: 1.188\\ v_1: 1.188, v_2: 1.188, v_3:$

11.2

设此图是 ν 阶的,由概率转移矩阵的定义, $\forall i \text{ s.t. } 1 \leq i \leq \nu, \sum_{j=1}^{\nu} p_{ij} = 1$ 。设 $e_i (1 \leq i \leq \nu)$ 是 \mathbb{R}^{ν} 的标准正交基,记 $\mathbf{x} = \sum_{i=1}^{\nu} e_i$,则显然有 $P\mathbf{x} = \mathbf{x}$,所以 P 有一个特征值是1。