

Background

Methodology

Data Acquisition

Classification Model

Application Implementation

Conclusion

Background

Fake content

Misinformation

Disinformation

Background

Reported seeing fake news on social media

Problem Statement

Cause economic loss

• Fake shop

Gain advantage by bad intention

• Gain vote in election by spread disinformation

Cause social panic

- False COVID-19 treatments
- Panic Buying

Objectives

Verify fake content

Analysis of fake content

Rising awareness of fake content

Problem Framing

Data Acquisition

Exploratory Data Analysis

Methodology

Fake content detector

Tool for general public

System Component

Fake Content Detector

Fake content detector

Simple Rule

Application

Feature Based Approach (Machine Learning)

Learning Based
Approach
(Deep Learning)

Analysis

Chrome Plugin

Web Dashboard

Data Acquisition

Data Acquisition – Data Source

Data Acquisition – Fetch from Twitter

Tweet

Content

Public metrics

Hashtag

URL

Context Domain

Created Time

Label

User

Public metrics

Description

Created time

Data Acquisition – Pre-Processing

Python Spacy

- Tokenization
- Remove
 - Stop word
 - Number
- Lemmatization
- Lower case

Data Acquisition — Pre-Processing

```
marina Control of the control of the
```

Data Source

Fetch from data

Data Acquisition — Split Data

Exploratory Data Analysis (EDA)

Total Record

Label Distribution

Sentence Length

- Word
- Character

Term Frequency

- Word Cloud
- Word Ranking

Meta data

- Hashtag
- Domain (Annotated by Twitter)

EDA — Label ExDistribution

False (Fake)	478069
True (Real)	956506

EDA – Sentence Length

EDA - Word Cloud of Content

False Label

All

True Label

EDA - Word Cloud of Content

False Label

All

True Label

EDA – Top 10 Hashtags

Classification Model

Word Embedding

Model Selection

Evaluation

Classification Model – Procedure

Word Embedding – Frequency

- Count (BOW)
- TF-IDF


```
array([[0.
            , 0. , 0. , 0. , 0.
            , 0. , 0.20412415, 0.20412415, 0.20412415,
            , 0. , 0.20412415, 0.
            , 0.20412415, 0. , 0.
                                      , 0.
            , 0. , 0. , 0.
                                      , 0.20412415,
     0.20412415, 0.20412415, 0.20412415, 0.20412415, 0.20412415,
     0.20412415, 0. , 0. , 0.
                                      , 0.20412415,
            , 0. , 0. , 0. , 0. ,
            , 0. , 0. , 0.20412415, 0.20412415,
            , 0.20412415, 0.20412415, 0.
                                      , 0.20412415,
            , 0.20412415, 0.20412415, 0.
                                      , 0.20412415,
            , 0. , 0. , 0.
            , 0. , 0.20412415, 0.20412415, 0.20412415]])
```

Word Embedding — Similarity

- Custom Train from Pre-trained
 - Word2Vec

Score: 0.450461

- FastText
 - Score: 0.226015

```
[array([-1.37580594e-03, 4.09214903e-04, 5.96588070e-04, 2.64996081e-03,
        1.13608001e-03, -1.46295107e-03, 6.14558463e-04, 1.70401973e-03,
        3.30420304e-03, 2.79012532e-03, -3.24355159e-03, 2.74727470e-03,
       -2.65695970e-03, -2.59202556e-03, 3.22233234e-03, -3.06893699e-03,
        2.79565738e-03, 4.54730995e-04, 1.58272230e-03, -2.70356610e-03,
        3.09149414e-07, 1.47710997e-03, -8.24286544e-04, 3.28807037e-05,
       -2.13393616e-03, 1.78915425e-03, -3.03259096e-03, -2.91191530e-03,
       -1.22472644e-03, -2.69813766e-03, 2.12775706e-03, -2.23468145e-04,
        2.42928579e-03, -5.67265342e-05, 6.86294225e-04, 5.81473520e-04,
       -3.40201048e-04, 3.82943166e-04, 1.94435276e-03, 5.21874426e-05,
       -1.01595884e-03, -1.09761755e-03, 2.32108077e-03, 1.63793925e-03,
       -1.28087564e-03, -3.34937969e-04, 8.01253336e-05, 3.08109843e-03,
        8.75867205e-04. 9.39769321e-04. -1.10188725e-04. 1.45377475e-03.
       -2.89244810e-03, 2.32184818e-03, -2.92601460e-03, 2.46695476e-03,
       -9.36010270e-04, 1.06095074e-04, 2.21983111e-03, -5.98342041e-04,
        3.01886559e-03, -2.19842838e-03, -3.21475673e-05, -1.11663574e-03,
       -2.75980006e-03, -1.65496941e-03, 2.93200091e-03, -3.21979634e-03,
       -2.71169731e-04, 2.17943662e-03, 2.33856984e-03, 1.79669863e-04,
       -2.05347533e-04, -7.92702835e-04, 3.11502768e-03, 6.21795654e-04,
       -3.04901670e-03, 1.76885363e-03, 2.68233335e-03, -2.81894603e-03,
       -2.95429421e-03, 1.08170512e-04, 2.72298767e-03, 3.02190776e-03,
       -2.25638435e-03, 1.59449060e-03, 2.32931506e-03, 2.64079124e-03,
       -1.10500818e-03, 1.19683659e-03, -8.74649675e-04, 8.33770027e-04,
       -2.21340265e-03, -2.88497214e-03, 4.06281142e-05, 2.51009432e-03,
        1.98661396e-03, -1.35250727e-03, 1.50568213e-03, 2.67130928e-03,
       -1.32449425e-03, 2.26230314e-03, 1.74366042e-03, -3.27439629e-03,
       -3.06188618e-03, 7.78549525e-04, 1.01096230e-03, -1.85043609e-03,
        6.62251725e-04, -4.11865709e-04, 1.29415316e-03, 1.19691691e-03,
       -2.42851180e-04, 2.23734463e-03, 9.15137934e-05, -2.60731066e-03,
        3.23507912e-03, 2.46511027e-03, 1.80545961e-03, -1.13686321e-04])]
```

Classification Model

Classification Model – Result (Accuracy)

Transformer Model

Transformer Model – BERT on different data size

Transformer Model – BERT on different token size

Transformer Model – BERT and XLNet

Model – Result conclusion

Feature-based

- Achieve more than 80% accuracy
- Neural Network work well with Similarity Word Embedding Model

Learning-based

- Achieve over 90% accuracy
- More data result in more
- Short-text classification, smaller token size not sightly affect the result
- Same training data size, XLNet may perform better

Overfit

No limitation on maximum feature

Application

Verify fake content

• Fake content detector

Analysis of fake content

• Simple Rule to Classify fake content

Rising awareness of fake content

• Tool for general public

Application

Chrome Plugin

• Perform detection

Web Dashboard

- Perform detection
- Data Visualization of dataset

System Architecture

Database

Chrome Plugin

Select the text

Click the icon

Detect

Web Dashboard

Web Dashboard Detection

Web Dashboard – Home Screen

- Home Page
 - Overview of Word Cloud
 - Perform Detection

Web Dashboard - Detection

Web Dashboard - Detection

Detection Textbox

Detection History

Web Dashboard – Dataset Analysis

Dataset Information

Tweets' Information

Users' Information

Web Dashboard – Dataset Information

- General Dataset Information
 - Label Distribution
 - Possible Sensitive Content
 - Data Amount through time
 - Word Cloud

Web Dashboard – Tweets Information

- Statistic
- Label Distribution
 - All
 - Through Time
- Public Metrics
- Term Frequency
 - Content
 - Entity
 - Context Domain
 - Annotation
 - Hashtag
 - Cashtag
 - Url

Web Dashboard – Users Information

- Data Statistic
- User Description information

Deployment

Deployment

Future work and Improvement

Analysis

- More detail on analysis
- Unsupervised learning on feature
- Clustering

Model

Expand dataset

Application

- Optimize detection performance
- Real time analysis
- Scrap social media content
- Perform detection and analysis in data pipeline

Classification Model

- Different model algorithm
- Different token size, data size

Implementation

- Web dashboard
- Chrome Plugin

The End **Q&A** Section