Задачи к семинару «Матрицы плотности»

Упражнения (20 баллов)

Упражнение 1 (10 баллов) Вычислите среднее значение спина $\langle S \rangle$ и его дисперсию $\langle (S - \langle S \rangle)^2 \rangle$ для чистого $|\chi\rangle = (|\uparrow\rangle + |\downarrow\rangle)/\sqrt{2}$ и смешанного $\hat{\rho} = (\hat{\mathbb{P}}_{\uparrow} + \hat{\mathbb{P}}_{\downarrow})/2$ состояний спина 1/2. Комментарий: первая величина — это вектор, а вторая — это скаляр, длина вектора. Указание: Для частицы со спином 1/2 (например, электрон) оператор спина (собственного момента) равен $\hat{S} = (\hbar/2)\hat{\sigma}$ (то есть $\hat{S}_x = (\hbar/2)\hat{\sigma}_x$ и т. д.).

Упражнение 2 (10 баллов) Предположим, наблюдатель C хочет придумать эксперимент, который сможет отличить состояние «ЭПР» от классически запутанного («Носки») (из семинара). Какую наблюдаемую ему нужно придумать? Выразите её через матрицы Паули (и их тензорные произведения)

Задачи (80 баллов)

Задача 1. Блоховское представление двухуровневой системы (10 баллов)

1. Покажите, что матрицу плотности произвольной двухуровневой системы самого общего вида можно разложить по матрицам Паули в следующем виде:

$$\hat{\rho} = \frac{1}{2}(\hat{\mathbb{I}} + \hat{\boldsymbol{\sigma}} \cdot \boldsymbol{n}),\tag{1}$$

где n — какой-то вектор. При каком условии на n, это — корректная матрица плотности?

- 2. При каком условии на n, эта матрица плотности описывает чистое состояние?
- 3. Вычислите средние значения $\langle \hat{\sigma}_{x,y,z} \rangle$ по состоянию, описываемому такой матрицей плотности.

Задача 2. Термодинамика двухуровневой системы (10 баллов)

Двухуровневая система описывается гамильтонианом $\hat{H} = -\mathbf{h} \cdot \hat{\boldsymbol{\sigma}}$, где $\mathbf{h} = (h_x, h_y, h_z)$, и находится при температуре T. Вычислите средние значения $\langle \hat{\sigma}_{x,y,z} \rangle$. Указание: воспользуйтесь результатом упражнений из первого семинара.

Задача 3*. Квантовый парадокс Зенона (30 баллов)

Рассмотрите двухуровневую систему, описываемую следующим гамильтонианом:

$$\hat{H} = \begin{pmatrix} E_0 & -\Delta \\ -\Delta & E_0 \end{pmatrix} \tag{2}$$

В начальный момент система приготовлена в состоянии $|\psi(0)\rangle = |\uparrow\rangle$. Если бы мы позволили системе эволюционировать самой по себе, то она бы совершала осцилляции Раби; в частности, через время $T = \frac{\pi\hbar}{2\Delta}$ мы бы обнаружили её в состоянии $|\downarrow\rangle$ с вероятностью $P_{\downarrow}(T) = 1$. Однако теперь вместо этого через каждый промежуток времени $\tau \ll T$ мы проводим измерение наблюдаемой $\hat{\sigma}^z$. Определите вероятность $P_{\downarrow}(T)$ в таком случае.

Задача 4*. Дефазировка (30 баллов)

Спин-1/2 находится в магнитном поле, направленном вдоль оси z:

$$\hat{H} = -B \cdot \hat{\sigma}^z \tag{3}$$

В результате взаимодействия с окружающей средой, магнитное поле испытывает случайные флуктуации: $B \equiv B_0 + \delta B(t)$, которые мы предполагаем гауссовыми с нулевым средним и коррелятором $\langle \delta B(t) \delta B(t') \rangle = \Gamma \delta(t-t')$. Пусть в начальный момент времени, матрица плотности была самого общего вида:

$$\hat{\rho}(0) = \begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix} \tag{4}$$

Определите зависимость усреднённой по таким флуктуациям 1 матрицы плотности от времени $\langle \hat{\rho}(t) \rangle$.

 $У \kappa a s a n u e$: в процессе решения вам будет необходимо вычислять средние типа $\left\langle \exp(i \int_{t_1}^{t_2} \delta B(t) dt) \right\rangle$. Это предлагается сделать двумя способами:

- 1. Воспользоваться теоремой Вика, из которой следует, что для любой гауссовой величины с нулевым средним выполнено $\langle e^A \rangle = e^{\frac{1}{2} \langle A^2 \rangle}$.
- 2. Дискретизовать время, разбив на маленькие участки $t \in (n\delta t, (n+1)\delta t)$, и предположив $\delta B_n = \text{const}$; тогда такой локальный по времени коррелятор эквивалентен $\langle \delta B_n \delta B_m \rangle = \delta_{nm} \cdot \frac{\Gamma}{\delta t}$. В результате вы получите дискретное Гауссово распределение, с которым вы уже умеете работать.

 $^{^{1}}$ Поскольку выражение для произвольной наблюдаемой линейно по $\hat{\rho}$, то её можно и нужно усреднять (в отличие от, например, волновой функции, усреднять которую бессмысленно)