Laboratorium 3 Wyznaczanie pierwiastków za pomocą bisekcji

Metoda bisekcji

Jeżeli funkcja rzeczywista f(x) jest ciągła na przedziale $[x_l, x_u]$ i jej wartości na końcach przedziału mają przeciwne znaki $(f(x_l) f(x_u) < 0)$ to wewnątrz tego przedziału jest przynajmniej jedno miejsce zerowe. Twierdzenie to leży u podstaw metody połowienia (ang. bisection, binary chopping, Bolzano's method), której algorytm można zapisać w następującej postaci:

Krok 1: Wybierz jako wartości początkowe x_l i x_u takie, że $f(x_l)$ $f(x_u) < 0$.

Krok 2: Przybliżenie miejsca zerowego obliczamy w następujący sposób:

$$x_r = \frac{x_l + x_u}{2}.$$

Krok 3:

- (a) Jeżeli $f(x_l)$ $f(x_u)$ < 0 to pierwiastek znajduje się w lewej (dolnej) połówce początkowego przedziału $[x_l, x_u]$.
- (b) Jeżeli $f(x_l) f(x_u) > 0$ to pierwiastek znajduje się w prawej (górnej) połówce początkowego przedziału $[x_l, x_u]$.
- (c) Jeżeli $f(x_l)$ $f(x_u) = 0$ to x_r jest pierwiastkiem funkcji i obliczenia zostają przerwane.

Krok 4: Powtórz kroki od 1 do 3 aż do osiągnięcia żądanej dokładności:

$$\varepsilon_a = \left| \frac{x_r^{new} - x_r^{old}}{x_r^{new}} \right| \times 100\%.$$

Zadania do wykonania

1. Szybkość skoczka spadochronowego jako funkcję czasu swobodnego spadku opisuje następujące przybliżone równanie:

$$v(t) = \frac{gm}{c} \left(1 - e^{-\frac{c}{m}t} \right),$$

gdzie c to współczynnik oporu powietrza, $g = 9.81 \text{ m/s}^2$. Używając metody bisekcji oblicz wartość współczynnika oporu powietrza. Skoczek o masie m = 68.1 kg osiąga szybkość 40 m/s po t = 10 s lotu.

Przyjmij $x_l = 12$ i $x_u = 16$. Uzupełnij poniższą tabelę.

Iteracja	x_l	x_u	x_r	ε_a [%]

2. Wyznacz pierwiastki trójmianu

$$f(x) = -0.5x^2 + 2.5x + 4.5$$

używając:

- a) wykresu funkcji
- b) wzoru na pierwiastki trójmianu
- c) metody bisekcji do wyznaczenia największego pierwiastka. Oblicz ε_a i ε_t dla kolejnych iteracji.
- 3. Wyznacz pierwiastki wielomianu

$$f(x) = x^3 + x^2 - 3x - 3$$

na przedziale <1; 2>, używając:

- a) wykresu funkcji
- b) rozkładu wielomianu na czynniki
- c) metody bisekcji do wyznaczenia największego pierwiastka. Oblicz ε_a i ε_t dla kolejnych iteracji.
- **4.** Saturacja tlenu rozpuszczonego w słodkiej wodzie o_f pod ciśnieniem 1 atm może być wyznaczone za pomocą równania:

$$\ln o_f = -139,34411 + \frac{1,575701 \times 10^5}{T_a} - \frac{6,642308 \times 10^7}{T_a^2} + \frac{1,243800 \times 10^{10}}{T_a^3} - \frac{8,621949 \times 10^{11}}{T_a^4}$$

gdzie T_a to temperatura bezwzględna w kelwinach ($T_a = T$ [°C] + 273,15). Zgodnie z tym równaniem saturacja wzrasta ze wzrostem temperatury. Typowa saturacja wód znajduje się w zakresie od 14,621 mg/L w 0°C do 6,413 mg/L w 40°C.

Dla zadanego stężenia tlenu $o_f = 8,10 i 12 mg/L$ wyznacz temperaturę w °C używając metody bisekcji.