

⑩ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

Offenlegungsschrift

⑩ DE 199 10 482 A 1

⑪ Int. Cl.⁷:
H 05 K 3/46

- ⑪ Aktenzeichen: 199 10 482.4
- ⑪ Anmeldetag: 10. 3. 1999
- ⑪ Offenlegungstag: 4. 5. 2000

Mit Einverständnis des Anmelders offengelegte Anmeldung gemäß § 31 Abs. 2 Ziffer 1 PatG

⑦1 Anmelder:
STP Elektronische Systeme GmbH, 71065 Sindelfingen, DE

⑦4 Vertreter:
Patentanwälte Wilhelm & Dauster, 70174 Stuttgart

⑦2 Erfinder:
Pohl, Gert, 71067 Sindelfingen, DE; Winter, Ralf, 73529 Schwäbisch Gmünd, DE

⑥5 Entgegenhaltungen:

DE 197 05 003 A1
DE 34 07 114 A1
EP 06 79 052 A1

Pat. Abstr. of Japan E-1509 Febr.16, 1994
Vol.18/No.95 & JP 05-299814 A;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

⑤4 Verfahren zur Herstellung von Leiterplatten-Schaltungsebenen

⑤7 Die Erfindung bezieht sich auf ein Verfahren zur Herstellung einer oder mehrerer übereinanderliegender Leiterplatten-Schaltungsebenen auf einer Unterlage, z. B. auf einem "Multilayer"-Leiterplattenelement. Erfundengemäß wird zur Herstellung der Schaltungsebene zunächst eine Harzschicht ganzflächig aufgebracht und geeignet lithographisch strukturiert. Anschließend wird in den Zwischenräumen der Harzschicht (2) selektiv Metallmaterial aufgewachsen, um die Schaltungsebenen-Metallschicht (5) zu bilden. Diese Bildung der Schaltungsebene (6) kann unter Zwischenfügung einer Metallisierungskeimschicht für stromloses Plättieren direkt auf der Unterlage oder alternativ unter Verwendung einer Übertragungstechnik zunächst auf einem Metallfolienträger (1a, 1b) erfolgen, von dem sie dann auf die Unterlage "up-side-down" übertragen wird.

Verwendung in der Leiterplattenherstellung.

Beschreibung

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung einer oder mehrerer übereinanderliegender Leiterplatten-Schaltungsebenen auf einer Unterlage. Die Unterlage kann insbesondere aus einer Leiterplatte bestehen, auf der bereits eine oder mehrere übereinanderliegende Schaltungsebenen gebildet worden sind und auf der nun die weitere Schaltungsebene aufgebracht werden soll. Derartige Leiterplatten mit mehreren übereinanderliegenden Schaltungsebenen werden häufig auch als "Multilayer" bezeichnet.

Zum Aufbringen einer Schaltungsebene, d. h. einer Schicht, die eine strukturierte, elektrische Schaltkreise bildende Metallisierung beinhaltet, auf einer Leiterplattenunterlage ist prinzipiell zwischen der subtraktiven und der additiven Technik zu unterscheiden. Bei der subtraktiven Technik wird auf die Unterlage ganzflächig eine Metallschicht aufgebracht, die dann lithographisch strukturiert wird, indem ein darüberliegendes Resistmuster erzeugt und die Metallschicht in den freigelassenen Bereichen weggeätzt und anschließend das Resistmuster entfernt wird. Bei der additiven Technik wird herkömmlicherweise auf der Unterlage durch Lithographie ein Resistmuster erzeugt, wonach eine Metallschicht selektiv in den freigelassenen Bereichen gebildet wird, z. B. durch galvanisches oder stromloses Plättieren in einem Metallisierungsbad. Anschließend wird das Resistmuster entfernt. In beiden Fällen liegt am Ende auf der Unterlage eine strukturierte Metallschicht als Schaltungsebene vor, auf die dann bei Bedarf eine Isolationsschicht, z. B. eine dielektrische Schicht, aufgebracht wird, um sie von einer weiteren aufzubringenden Schaltungsebene zu isolieren, wobei an gewünschten Stellen durch entsprechend in die Isolationsschicht eingebrachte Durchkontakte elektrische Verbindungen zwischen den übereinanderliegenden Schaltungsebenen erzeugt werden können. Die Isolationsschicht kann z. B. von einer im B-Zustand als sogenanntes Prepreg auflaminierten Harzschiicht gebildet sein. Eine Schwierigkeit ist hierbei, daß das Harzmaterial einerseits ausreichend fest sein sollte, um als Schicht gehandhabt werden zu können, und andererseits die Zwischenräume zwischen den Leiterbahnen der strukturierten Metallschicht möglichst hohlräumfrei ausfüllen und sich gut haftend mit den angrenzenden Schichten verkleben sollte.

Der Erfindung liegt als technisches Problem die Bereitstellung eines Verfahrens der eingangs genannten Art zugrunde, mit dem eine jeweilige Leiterplatten-Schaltungsebene mit vergleichsweise geringem Aufwand auf einer Unterlage hergestellt werden kann, ohne daß die Notwendigkeit besteht, Zwischenräume zwischen leitenden Bereichen der Schaltungsebene nachträglich mit Isolationsmaterial füllen zu müssen.

Die Erfindung löst dieses Problem durch die Bereitstellung eines Verfahrens mit den Merkmalen des Anspruchs 1 oder 2. Bei diesem Verfahren erfolgt die Herstellung der Schaltungsebene charakteristischerweise unter Verwendung einer lithographisch strukturierbaren Harzschiicht, die auf die Unterlage aufgebracht und dann so strukturiert wird, daß sie nur in den nicht leitenden Bereichen der herzustellenden Schaltungsebene stehen bleibt und dort ein bleibendes, isolierendes Füllmaterial bildet. Die freigelegten Bereiche werden selektiv metallisiert, um die Metallschicht für die Schaltungsebene zu erzeugen. Diese additive Metallisierung kann insbesondere durch galvanisches oder stromloses Plättieren in einem Metallisierungsbad erfolgen, was dementsprechend einen elektrisch leitenden oder Metallisierungskeime bereitstellenden Untergrund erfordert. Da die Harzschiichtdicke frei wählbar ist, kann sie insbesondere so gewählt

werden, daß sie der gewünschten Metalldicke entspricht oder jedenfalls der Unterschied geringer ist als die Metallschichtdicke. Dadurch ergibt sich eine gleichmäßige Topologie, die einfacher mit einer nachfolgenden Prepregschicht oder einer anderen Klebefolienschicht planarisiert werden kann, als dies bei der herkömmlichen Technik mit frei auf der Unterlage aufgebrachter, strukturierter Metallschicht möglich ist.

Beim Verfahren nach Anspruch 1 wird die Schaltungsebene direkt auf der Unterlage gebildet. Um das selektive Aufwachsen der Metallschicht zu ermöglichen, wird vor der Harzschiicht eine dünne, herkömmliche Metallisierungskeimschicht aufgebracht, die z. B. Palladium-Metallisierungskeime beinhaltet, ohne daß sie eine elektrisch leitende Schicht bildet. Nach dem Entfernen der Harzschiicht in den zu metallisierenden Bereichen kann die Metallschicht selektiv auf der dann dort freiliegenden Metallisierungskeimschicht durch stromloses Plättieren gebildet werden.

Das Verfahren nach Anspruch 2 verwendet eine Übertragungstechnik, auch "Upside-down"-Technik bezeichnet, bei der die Schaltungsebene zunächst auf einem Metallfolienträger gebildet und dieser Aufbau dann mit der Schaltungsebenenseite "upside-down" mit der Unterlage verbunden wird. Anschließend wird der Metallfolienträger entfernt, um die nun auf der Unterlage haftende Schaltungsebene freizulegen. Bei dieser Vorgehensweise ist wegen des metallischen Trägers keine Metallisierungskeimschicht erforderlich, wobei die Bildung der selektiven Metallschicht für die Schaltungsebene in diesem Fall auch durch galvanisches Plättieren in einem Metallisierungsbad erfolgen kann, da als Untergrund eine elektrisch leitende Schicht in Form des Metallfolienträgers vorliegt.

Vorteilhafte Weiterbildungen des Verfahrens nach Anspruch 2 sind in den Unteransprüchen 3 bis 8 angegeben. Gemäß Anspruch 3 ist ein mehrlagiger Metallfolienträger mit wenigstens zwei Folienschichten vorgesehen, die durch Abziehen voneinander lösbar sind. Das Entfernen des Metallfolienträgers kann daher bis auf die direkt an die Schaltungsebene angrenzende Folienschicht durch diese Abziehtechnik erfolgen. Die verbliebene Folienschicht wird dann durch Wegätzen entfernt. In weiterer Ausgestaltung dieses erfindungsgemäßen Verfahrens wird gemäß Anspruch 4 je eine Schaltungsebene auf jeder der beiden Seiten des mehrlagigen Metallfolienträgers gebildet. Auf jede Schaltungsebene kann dann "upside-down" eine zugehörige Unterlage aufgebracht werden, wonach der Metallfolienträger entlang der Trennlinie zwischen zwei seiner Folienschichten durch dieses Abziehen aufgetrennt wird. Auf diese Weise kann simultan je eine Schaltungsebene auf zwei Unterlagen erzeugt werden. Vorteilhaft ist es, einen Metallfolienträger, wie nach Anspruch 5 vorgesehen, mit einer dickeren Folienschicht auf der sich einseitig oder im Fall der simultanen Schaltungsebenenbildung beidseitig je eine dünne, abziehbare Folienschicht befindet, zu verwenden, da dann der größere Teil des Metallfolienträgers in Form der dickeren Folienschicht durch Abziehen entfernt werden kann und nur die dünneren Folienschicht abgeätzt werden muß.

Bei dem nach Anspruch 6 weitergebildeten Verfahren werden vor dem Zusammenfügen des Metallfolienträgerschichtaufbaus mit der Unterlage auf der Schaltungsebene mit der stehengebliebenen Harzschiichtstruktur eine oder mehrere weitere Schaltungsebenen aufgebracht. So kann auf dem Metallfolienträger ein- oder beidseitig jeweils ein Aufbau aus mehreren Schaltungsebenen vorgefertigt werden, der dann auf die zugehörige Unterlage übertragen wird.

Beim nach Anspruch 7 weitergebildeten Verfahren beinhaltet das Übertragen des auf dem Metallfolienträger gebildeten Schaltungsebenenaufbaus auf die zugehörige Unter-

lage die Zwischenfügung einer Prepreg- oder Klebefolien-schicht und ein anschließendes Verpressen dieses Aufbaus, so daß mit relativ geringem Aufwand eine zuverlässige Haf-tung des Schaltungsaufbaus auf der Unterlage erzielt wird. Die Prepreg- oder Klebefolien-schicht kann gleichzeitig als isolierende, dielektrische Schicht fungieren.

Gemäß Anspruch 8 kann die selektive Bildung der Metallschicht wahlweise durch galvanisches oder stromloses Plattieren in einem Metallisierungsbad erfolgen. Der elek-trisch leitende, als Untergrund dieser Metallisierung fungie-rende Metallfolienträger erlaubt beide Metallisierungsvarian-ten.

Vorteilhafte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend be-schrieben. Hierbei zeigen:

Fig. 1 eine schematische Schnittansicht eines zweilagigen Metallfolienträgers,

Fig. 2 den Metallfolienträger von **Fig. 1** nach Aufbringen einer Harzschicht,

Fig. 3 den Aufbau von **Fig. 2** während eines lithographi-schen Belichtungsschrittes,

Fig. 4 den Aufbau von **Fig. 3** nach einem Entwicklungs-schritt,

Fig. 5 den Aufbau von **Fig. 4** nach selektiver Metall-schichtbildung,

Fig. 6 den Aufbau von **Fig. 5** mit auflaminierte Unter-lage,

Fig. 7 den Aufbau von **Fig. 6** beim Abziehen einer Folienschicht des Metallschichtträgers,

Fig. 8 den Aufbau von **Fig. 7** nach komplettem Entfernen des Metallschichtträgers,

Fig. 9 einen Aufbau entsprechend **Fig. 6**, jedoch mit beid-seits eines Metallschichtträgers gebildeten Schaltungsebe-nen und jeweils auflaminierte Unterlage bei beginnendem Auftrennen des Metallschichtträgers und

Fig. 10 eine schematische Schnittansicht einer Unterlage mit darauf direkt gebildeter Schaltungsebene.

Die **Fig. 1** bis **8** illustrieren aufeinanderfolgende Herstel-lungsstufen einer ersten Verfahrensvariante zur Herstellung einer Leiterplatten-Schaltungsebene auf einer zugehörigen Unterlage gemäß einer Übertragungstechnik, bei der zu-nächst auf einer Seite eines Metallfolienträgers die Schal-tungsebene vorgefertigt und dann auf die zugehörige Unter-lage übertragen wird, wonach dann der Metallfolienträger entfernt wird. Dabei zeigt **Fig. 1** in einer schematischen und ausschnittsweisen Schnittansicht den in diesem Beispiel ver-wendeten, zweilagigen Metallfolienträger **1**, der aus einer dickeren Folienschicht **1a** aus Cu oder Al mit einer Dicke vorzugsweise zwischen 50 µm und 150 µm und einer dünnen Folienschicht **1b** aus Cu mit einer Dicke von vorzugs-weise zwischen 3 µm und 10 µm besteht. Die beiden Folien-schichten **1a**, **1b** lassen sich durch einfaches Abziehen von-einander trennen. Solche Metallfolienträger sind als han-delssübliche Produkte erhältlich.

Zur Vorfertigung der Leiterplatten-Schaltungsebene auf dem Metallfolienträger **1** wird zunächst, wie in **Fig. 2** ge-zeigt, auf dessen dünnere Folienschicht **1b** eine Harzschicht **2** aus einem UV-fotosensiblen Harzmaterial aufgebracht. Solche UV-fotosensiblen Harzmaterialien sind sowohl vom lithographisch negativen Typ, bei dem durch das Entwickeln die nicht belichteten Bereiche entfernt werden, als auch vom lithographisch positiven Typ, bei dem durch das Entwickeln die belichteten Bereiche entfernt werden, als handelsübliche Produkte erhältlich. Das Harzmaterial kann zur Bildung der Harzschicht **2** auf die dünnere Metallfolienschicht **1b** aufge-gossen, aufgerakelt oder mittels Trockenfilm auflaminiert werden. Die Dicke der Harzschicht **2** wird vorzugsweise so gewählt, daß sie der gewünschten Leiterbahnhöhe der zu-

fertigenden Schaltungsebene entspricht.

Nach dem Trocknen wird die Harzschicht **2** mit dem für die zu fertigende Schaltungsebene gewünschten Schaltmu-ster belichtet. Dazu wird, wie in **Fig. 3** gezeigt, auf die getrocknete Harzschicht **2** eine Glas- oder Filmvorlage **3** auf-gelegt, die das gewünschte Schaltmuster in Form von für UV-Licht undurchlässigen Bereichen **3a** und durchlässigen Bereichen **3b** trägt. Dann wird die Harzschicht **2**, wie in **Fig. 3** gezeigt, durch ganzflächiges Einstrahlen von UV-Licht **4** auf die Vorlage **3** belichtet.

Im gezeigten Beispiel wird ein Harzmaterial vom litho-graphisch negativen Typ angenommen, so daß nach dem auf die Belichtung folgenden Entwicklungsvorgang die Harz-schicht **2** in denjenigen Bereichen entfernt wird, die beim

15 Belichten von den lichtundurchlässigen Bereichen **3a** der Vorlage **3** abgedeckt wurden und daher unbelichtet blieben. In diesem Fall eines negativen Harztyps entspricht folglich das Muster lichtdurchlässiger Bereiche **3a** auf der Vorlage **3** dem Leiterbahn-muster der zu fertigenden Schaltungsebene. **Fig. 4** zeigt den nach dem Entwickeln erhaltenen Aufbau mit der strukturierten Harzschicht **2**, in welche die geöffneten Bereiche **2a** eingebracht sind, in denen der Metallfolienträger, speziell dessen dünnere Folienschicht **1b**, freigelegt ist. Alternativ zur gezeigten Verwendung der mit dem Schaltmuster strukturierten Vorlage **3** in Verbindung mit einer ganzflächigen UV-Lichteinstrahlung kann die strukturierende Belichtung der Harzschicht **2** mittels einer UV-Laserdirektbelichtung erfolgen, bei der das gewünschte Schaltmuster direkt durch einen UV-Laserstrahl in die Harzschicht **2** geschrieben wird, so daß keine Vorlage als Belich-tungsmaske notwendig ist.

Nach dem vollständigen Aushärten der entwickelten, strukturierten Harzschicht **2** wird der Aufbau von **Fig. 4** in ein galvanisches oder alternativ in ein stromlos arbeitendes 35 Metallisierungsbad eingebracht, welches das Schaltebenen-metall, z. B. Cu, in ionisierter Form enthält. Bei Wahl eines galvanischen Metallisierungsbades wird an den elektrisch leitenden Metallfolienträger eine entsprechende Metallisie-rungsspannung angelegt, d. h., der Metallfolienträger dient als Stromzuführung zu den harzfreien, zu metallisierenden Bereichen **2a**. Wie für diese selektive, additive Metallisie-rungstechnik dem Fachmann geläufig, läßt sich auf diese Weise mit geeigneter Einstellung der Metallisierungspara-meter eine gleichmäßige Schicht aus dem im Metallisie-rungsbad enthaltenen Metall in den freien Harzschichtberei-chen **2a** auf der dünnen Metallfolienschicht **1b** in beliebiger, gewünschter Dicke aufbauen. Die auf der dünnen Metallfolienschicht **1b** verbliebenen, ausgehärteten Bereiche der Harzschicht **2** verhindern an diesen Stellen die Metallisie-rung. Bevorzugt wird die Metallscheidung dann beendet, wenn die Metallschichtdicke der Harzschichtdicke entspricht, so daß die auf diese Weise erzeugte Metallschicht **5**, wie in **Fig. 5** gezeigt, an ihrer Oberfläche im wesentlichen planar mit der Harzschicht **2** abschließt. Die Harzschicht **2** und die in sie eingebettete Metallschicht **5** bilden somit eine oberflächenplanare, elektrische Schaltungsebene **6**, die fest auf der dünnen Metallfolienschicht **1b** haftet. Die gute Ober-flächenplanarität des im Stadium der **Fig. 5** erhaltenen Auf-baus erleichtert dessen weitere Verarbeitung.

60 Diese besteht im gezeigten Beispiel darin, den Aufbau von **Fig. 5** mit einer "upside-down" aufgelegten Unterlage **7** unter Zwischenfügung einer dünnen Prepregschicht **8**, alter-nativ einer anderen Klebefolien-schicht, zusammenzulami-nieren, um die Schaltungsebene **6** unter Zwischenfügung der Prepregschicht **8**, die nach dem Aushärten eine isolie-rende, dielektrische Harzschicht bildet, auf die Unterlage **7** zu übertragen, wie in **Fig. 6** gezeigt. Um eine ausreichende Verklebung mittels der klebefähigen Prepregschicht **8** zu er-

reichen, wird der gesamte Aufbau von Fig. 6 geeignet verpreßt. Die Unterlage 7 kann insbesondere aus einem Leiterplattenrohling bestehen, bei dem über einer Trägerschicht bereits eine oder mehrere Leiterplatten-Schaltungsebenen in einer herkömmlichen oder der erfindungsgemäßen Weise aufgebracht worden sind. Speziell kann die Unterlage 7 ein "Multilayer"-Element sein, auf das die weitere Schaltungsebene 6 aufgebracht werden soll.

Alternativ zum gezeigten Beispiel kann vorgesehen sein, vor dem Auflaminieren der Unterlage 7 auf der im Stadium von Fig. 5 fertiggestellten Schaltungsebene 6 eine oder weitere Schaltungsebenen nach einer erfindungsgemäßen Verfahrensvariante, wie unten zu Fig. 10 erläutert, oder einem herkömmlichen Verfahren aufzubringen. Dies kann beispielsweise dadurch geschehen, daß auf die Schaltungsebene 6 eine dielektrische Schicht auflaminiert, aufgegossen oder aufgerakelt und auf Wunsch fotolithographisch oder durch Laserbohren mit Durchkontaktlöchern, z. B. sogenannten Mikro-Löchern, versehen wird. Dann wird die dielektrische Schicht einschließlich eventueller Durchkontaktlöcher zur Metallisierung aktiviert und anschließend metallisiert, z. B. verkupfert. Die dadurch ganzflächig gebildete Metallschicht wird durch einen herkömmlichen Lithographieprozeß strukturiert und bildet dann eine weitere, elektrische Schaltungsebene. Diese herkömmliche Vorgehensweise kann je nach Bedarf zum Aufbringen weiterer Schaltungsebenen wiederholt werden. Daraufhin wird dann auf die oberste Schaltungsebene die Unterlage analog zur Vorgehensweise von Fig. 6 auflaminiert.

Es versteht sich, daß je nach Anwendungsfall für die Metallschicht 5 auch eine von denjenigen der Harzschiicht 2 verschiedene Dicke gewählt werden kann, was dann zu einem entsprechenden Höhenunterschied beider Schichten 2, 5 innerhalb der Schaltungsebene 6 führt, der jedoch im allgemeinen geringer sein wird, als bei der herkömmlichen Technik, bei welcher der Höhenunterschied in diesem Stadium der Dicke der freistehenden Metallschicht entspricht.

Nach dem Verpressen des in Fig. 6 gezeigten Aufbaus und einer bei Bedarf anschließenden Randbeschneidung wird, wie in Fig. 7 gezeigt, die dickere Metallfolienschicht 1a von der dünneren Metallfolienschicht 1b durch Abziehen abgelöst, wonach die dünne Metallfolienschicht 1b auf dieser Seite die Außenlage darstellt. Diese wird dann in herkömmlicher Weise durch einen ganzflächigen Ätzvorgang weggeätzt, wofür wegen der geringen Dicke dieser Folien schicht 1b ein kurzes, sogenanntes "Flash"-Ätzen genügt.

Das auf diese Weise bewirkte Entfernen des Metallfolienträgers ist folglich aufgrund von dessen zweilagiger Gestaltung mit relativ geringem Aufwand verbunden. Die dünne Folien schicht 1b ist gerade so dick gewählt, daß sie die auf ihr gebildete Schaltungsebene 6 beim Abziehen der dickeren Folien schicht 1a zuverlässig schützt, während die dikkere Folien schicht 1a so dick ist, daß die gewünschte Stabilität des Metallfolienträgers gewährleistet ist. Da die dickere Folien schicht 1a abgezogen wird, ist der Aufwand für ihre Entfernung unabhängig von ihrer Dicke gering. Insgesamt ist daher der Aufwand zur Entfernung dieses zweilagigen Metallfolienträgers im allgemeinen merklich geringer als für die Entfernung eines alternativ verwendbaren einlagigen Metallfolienträgers, der dann in seiner gesamten Dicke weggeätzt oder anderweitig sukzessive abgetragen werden muß.

Nach vollständiger Entfernung des Metallfolienträgers liegt dann das gewünschte Produkt mit der auf der Unterlage 7 hergestellten Schaltungsebene 6 vor, wie es in Fig. 8 mit der Schaltungsebenenseite nach unten gezeigt ist. Je nach Anwendungsfall können Durchkontakte in die zur Verklebung zwischengefügte, dielektrische Schicht 8 nach einem herkömmlichen Verfahren, z. B. Laserbohren, von der

Schaltungsebenenseite her eingebracht werden, um die Metallschicht 5 der neu aufgebrachten Schaltungsebene 6 mit einer oder mehreren Schaltungsebenen der Unterlage 7 an gewünschten Stellen elektrisch zu verbinden.

Fig. 9 zeigt in einer schematischen, ausschnittsweisen Schnittansicht einen Aufbau, wie er in einem zweiten Ausführungsbeispiel des erfindungsgemäßen Verfahrens erhalten wird, bei dem simultan auf beiden Seiten eines Metall schichtträgers je eine Schaltungsebene vorgefertigt wird, die dann auf eine jeweils zugehörige Unterlage übertragen wird. Dazu wird ein dreilagiger Metallfolienträger mit einer dickeren Folienschicht 10a, die der dickeren Folienschicht 1a im obigen, ersten Ausführungsbeispiel entspricht, und je einer dünneren Folienschicht 10b, 10c, die jeweils der dünneren Folienschicht 1b des ersten Ausführungsbeispiels entspricht, auf beiden Seiten der dickeren Folienschicht 10a verwendet. Beispielhaft können die dicke Folienschicht 10a aus Aluminium und die beiden dünneren Folienschichten 10b, 10c aus Kupfer bestehen. Unter Anwendung der oben zu den Fig. 1 bis 5 erläuterten Vorgehensweise nun nicht nur für eine sondern für beide Seiten des dreilagigen Metallfolienträgers werden dann parallel je eine Schaltungsebene 12, 13 bestehend aus einer strukturierten Harzschiicht 14, 15 und einer in deren Zwischenräumen durch galvanische oder stromlose Metallisierung aufgewachsenen Metallschicht 11, 16 auf der jeweiligen dünnen Folienschicht 10b, 10c gebildet. Dabei können die beiden Schaltungsebenen 12, 13 verschiedene Schaltmuster beinhalten, wie gezeigt, oder alternativ dazu identisch strukturierte Metallschichten aufweisen.

Anschließend wird auf jede der beiden Schaltungsebenen 12, 13 eine jeweils zugehörige Unterlage 17, 18 unter Zwischenfügung einer jeweiligen Prepreg- oder Klebefolien schicht 19, 20 auflaminiert und durch Verpressen des ent standenen, in Fig. 9 gezeigten Aufbaus fest mit ihr verbunden. Danach kann dieser Aufbau an den in Fig. 9 mit Pfeilen T1, T2 markierten Grenzflächen zwischen der dickeren Folienschicht 10a und der jeweiligen dünneren Folienschicht 10b, 10c des Metallfolienträgers durch einfaches Abziehen aufgetrennt werden, da die dünneren Folienschichten 10b, 10c auf den beiden Seiten der dickeren Folienschicht 10a abziehbar haften. Fig. 9 zeigt den Fall, daß der Aufbau an der Grenzfläche T1 zwischen der dickeren Folienschicht 10a und der in Fig. 9 darüberliegenden dünnen Folienschicht 10b aufgetrennt wird.

In nicht mehr gezeigter Weise werden dann die Metallfolien schichten 10a, 10b, 10c von den beiden durch die Auf trennung erhaltenen Leiterplattenelementen, die jeweils aus der Unterlage 17, 18 und der darauf verklebten Schaltungsebene 12, 13 bestehen, entfernt. Dazu wird von dem in Fig. 9 oberen Leiterplatten element die verbliebene, dünne Folienschicht 10b weggeätzt, während das in Fig. 9 untere Leiterplatten element, auf dem sich zunächst noch zusätzlich die dikkere Folienschicht 10a befindet, entsprechend der oben zu den Fig. 6 bis 8 beschriebenen Vorgehensweise weiter behandelt wird. Die bedeutet, daß von ihm zunächst die dikkere Folienschicht 10a entlang der Trennstelle T2 zur dünneren Folienschicht 10c abgezogen und anschließend die verbliebene dünne Folienschicht 10c weggeätzt wird. Am Ende werden dann zwei parallel hergestellte Leiterplatten elemente mit auf einer Unterlage aufgebrachter Schaltungsebene erhalten. Wie im obigen ersten Ausführungsbeispiel kann auch hier das jeweilige Leiterplatten element oder auch schon die Unterlage ein "Multilayer" darstellen. Auch im übrigen sind die oben zum ersten Verfahrensbeispiel erwähnten Varianten in gleicher Weise für das Verfahrensbeispiel mit beidseitiger Schaltungsebenen-Vorfertigung auf einem Metallfolienträger anwendbar.

Fig. 10 zeigt in einer schematischen, ausschnittsweise Schnittansicht ein Leiterplattenelement mit einer Unterlage 21, auf die gemäß eines dritten Verfahrensbeispiels eine Schaltungsebene 22 direkt aufgebracht wurde. Für die Herstellung dieses Leiterplattenelementes wird die Unterlage 21 auf der Seite, auf der die Schaltungsebene 22 gebildet werden soll, zunächst ganzflächig mit einer Metallisierungskeimschicht 23 beschichtet, die zur Metallisierungsaktivierung dient. Solche Metallisierungskeimschichten sind an sich bekannt und haben die Eigenschaft, daß sie einerseits Metallatome, z. B. Palladiumatome, enthalten, die als Metallisierungskeime für ein stromloses Plattieren dienen können, und andererseits noch eine ausreichend elektrisch isolierende Schicht darstellen, so daß sie keine elektrischen Verbindungen zwischen getrennten Bereichen einer auf ihnen aufzuwachsenden Metallstruktur erzeugen. Auf der Metallisierungskeimschicht 23 wird dann eine strukturierte Harzschiicht 24 entsprechend der oben zu den Fig. 2 bis 4 beschriebenen Vorgehensweise gebildet. Danach wird der stromlose Plattievorgang durch Eintauchen des Aufbaus in ein geeignetes Metallisierungsbad durchgeführt, wodurch in den Zwischenräumen der Harzschiicht 24 selektiv eine Metallschicht 25 aufwächst, vorzugsweise, wie gezeigt, in einer der Harzschiicht 24 entsprechenden Dicke.

Auch bei dieser Verfahrensvariante wird der Vorteil erzielt, daß die auf der Unterlage 21 herstellte Schaltungsebene 22 eine vor der Metallschichtbildung erzeugte und als Maske für den Metallisierungsvorgang dienende Harzschiicht beinhaltet, so daß die Schaltungsebene vor dem eventuellen Aufbringen einer weiteren Schicht, wie einer auflaminierten Prepregschicht, eine deutlich gleichmäßige Oberflächentopologie aufweisen kann, als eine herkömmlich in Form einer freistehenden Metallschicht vorliegende Schaltungsebene. Zudem kommt die Verfahrensvariante von **Fig. 10** ohne Übertragungstechnik aus. Im übrigen gelten die oben für die beiden ersten Verfahrensbeispiele gemachten Ausführungen für dieses Verfahrensbeispiel entsprechend. Insbesondere kann die Unterlage auch hier aus einem "Multilayer" bestehen, und bei Bedarf können auf der erfundungsgemäß aufgebrachten Schaltungsebene eine oder mehrere weitere Schaltungsebenen in der erfundungsgemäß oder einer herkömmlichen Vorgehensweise aufgebracht werden.

Patentansprüche

45

1. Verfahren zur Herstellung einer oder mehrerer übereinanderliegender Leiterplatten-Schaltungsebenen auf einer Unterlage, gekennzeichnet durch folgende Schritte:

- ganzflächiges Aufbringen einer Metallisierungskeimschicht (23) auf die Unterlage (21),
- Aufbringen einer belichtungsstrahlungssensitiven Harzschiicht (22) auf die Metallisierungskeimschicht (23),
- lithographisches Strukturieren der Harzschiicht (22) durch Belichten mit einem Schaltkreismuster und Entwickeln zur Entfernung der Harzschiicht in zu metallisierenden Schaltkreisbereichen und
- selektives Aufwachsen von Metallmaterial in den zu metallisierenden Schaltkreisbereichen durch stromloses Plattieren zur Bildung einer entsprechenden Schaltungsebene-Metallschicht (25).

2. Verfahren zur Herstellung einer oder mehrerer übereinanderliegender Leiterplatten-Schaltungsebenen auf einer Unterlage, gekennzeichnet durch folgende Schritte:

- a) Bereitstellen der Unterlage (7) und eines Metallfolienträgers (1),
- b) Aufbringen einer belichtungsstrahlungssensitiven Harzschiicht (2) auf wenigstens eine Seite des Metallfolienträgers,
- c) lithographisches Strukturieren der Harzschiicht (2) durch Belichten mit einem Schaltkreismuster und Entwickeln zur Entfernung der Harzschiicht in zu metallisierenden Schaltkreisbereichen (2a),
- d) Bilden einer Schaltungsebene-Metallschicht (5) selektiv in den zu metallisierenden Schaltkreisbereichen,
- e) Anbringen der Unterlage (7) an der Schaltungsebenseite des resultierenden Metallfolienträger-Schichtaufbaus und Zusammenfügen von Unterlage und Metallfolienträger-Schichtaufbau und
- f) Entfernen des Metallfolienträgers.

3. Verfahren nach Anspruch 2, weiter dadurch gekennzeichnet, daß der Metallfolienträger (1) mehrlagig aus mehreren übereinanderliegenden, voneinander durch Abziehen trennbaren Folienenschichten (1a, 1b) besteht und der Schritt f) das Auftrennen wenigstens zweier benachbarter Folienenschichten (1a, 1b) durch Abziehen voneinander beinhaltet.

4. Verfahren nach Anspruch 3, weiter dadurch gekennzeichnet, daß die Schritte b) bis e) auf beiden Seiten des Metallfolienträgers durchgeführt werden und der Schritt f) das Auftrennen des Metallfolienträgers durch Abziehen wenigstens zweier benachbarter Folienenschichten voneinander beinhaltet.

5. Verfahren nach Anspruch 3 oder 4, weiter dadurch gekennzeichnet, daß als Metallfolienträger ein solcher verwendet wird, der eine dickere Metallfolienschicht beinhaltet, auf die ein- oder beidseitig eine jeweilige dünnere Metallfolienschicht abziehbar aufgebracht ist.

6. Verfahren nach einem der Ansprüche 2 bis 5, weiter dadurch gekennzeichnet, daß im Anschluß an den Schritt d) und vor Durchführen des Schrittes e) auf der gebildeten Schaltungsebene eine oder mehrere übereinanderliegende, weitere Schaltungsebenen gebildet werden.

7. Verfahren nach einem Ansprache 2 bis 6, weiter dadurch gekennzeichnet, daß das Zusammenfügen im Schritt e) durch Verpressen unter Verwendung einer zwischengefügten Prepreg- oder Klebefolienschicht (8) erfolgt.

8. Verfahren nach einem der Ansprüche 2 bis 7, weiter dadurch gekennzeichnet, daß das Bilden der Metallschicht im Schritt d) durch galvanisches oder stromloses Plattieren in einem Metallisierungsbad erfolgt.

Hierzu 3 Seite(n) Zeichnungen

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

