Produits dérivés de change

Richard Guillemot

DIFIQ

22 Avril 2014

Black Scholes : δ versus Vega

$$\delta = \frac{\partial p}{\partial S} = e^{-r^1 \times T} \mathcal{N}(d_1) \mathbf{Vega} = \frac{\partial p}{\partial \sigma} = e^{-r^1 \times T} S \sqrt{T} \mathcal{N}'(d_1)$$

$$\mathbf{Vega} = e^{-r^1 \times T} S \sqrt{T} \mathcal{N}'(\mathcal{N}^{-1}(\delta e^{r^1 \times T})) = f(\delta)$$

Un **zéro delta straddle** EUR/USD est pour un même strike (K^{ATM}) et un même nominal :

- l'achat d'un call EUR
- et l'achat d'un put EUR.

Un **zéro delta straddle** EUR/USD est pour un même strike (K^{ATM}) et un même nominal :

- l'achat d'un call EUR
- et l'achat d'un put EUR.

Un **zéro delta straddle** EUR/USD est pour un même strike (K^{ATM}) et un même nominal :

- l'achat d'un call EUR
- et l'achat d'un put EUR.

Un **zéro delta straddle** EUR/USD est pour un même strike (K^{ATM}) et un même nominal :

- l'achat d'un call EUR
- et l'achat d'un put EUR.

Un **zéro delta straddle** EUR/USD est pour un même strike (K^{ATM}) et un même nominal :

- l'achat d'un call EUR
- et l'achat d'un put EUR.

Un **zéro delta straddle** EUR/USD est pour un même strike (K^{ATM}) et un même nominal :

- l'achat d'un call EUR
- et l'achat d'un put EUR.

25% delta risk reversal

Un **25% delta risk reversal** EUR/USD est pour un même nominal :

- l'achat d'un call EUR de delta égal à 25% de strike K^{25Call}
- et la vente d'un put EUR de delta égal à -25% de strike K^{25Put} .

25% delta risk reversal

Un **25% delta risk reversal** EUR/USD est pour un même nominal :

- l'achat d'un call EUR de delta égal à 25% de strike K^{25Call}
- et la vente d'un put EUR de delta égal à -25% de strike K^{25Put} .

25% delta risk reversal

Un **25% delta risk reversal** EUR/USD est pour un même nominal :

- l'achat d'un call EUR de delta égal à 25% de strike K^{25Call}
- et la vente d'un put EUR de delta égal à -25% de strike K^{25Put} .

25% delta Butterfly

Un 25% delta Butterfly est pour un même nominal :

- l'achat d'un call EUR de strike K^{25Call}
- l'achat d'un call EUR de strike K^{25Put}
- et la vente de 2 calls EUR de strike K^{ATM}.

Payoff et valeur

25% delta Butterfly

Un 25% delta Butterfly est pour un même nominal :

- l'achat d'un call EUR de strike K^{25Call}
- l'achat d'un call EUR de strike K^{25Put}
- et la vente de 2 calls EUR de strike K^{ATM} .

25% delta Butterfly

Un 25% delta Butterfly est pour un même nominal :

- l'achat d'un call EUR de strike K^{25Call}
- l'achat d'un call EUR de strike K^{25Put}
- et la vente de 2 calls EUR de strike K^{ATM} .

Cotation du smile de change

Les différentes options de change ne sont pas cotées en prix mais en volatilité.

	Cotation
070 deita straduie	σ^{ATM}
25% delta risk reversal	$RR^{25} = \sigma^{25Call} - \sigma^{25Put}$
25% delta Butterfly	$BF^{25} = \sigma^{25Call} + \sigma^{25Put} - 2 \times \sigma^{ATM}$

Comment à partir des cotations de marché des différents produits reconstituer le smile de change?

Cotation du smile de change

• Etape 1 : On calcule les 3 points de volatilité de change.

$$\sigma^{25Call} = \sigma^{ATM} + BF^{25} + \frac{1}{2}RR^{25}$$

$$\sigma^{25Put} = \sigma^{ATM} + BF^{25} - \frac{1}{2}RR^{25}$$

• **Etape 2** : On calcule les strikes à partir de la volatilité et du delta.

Construire le smile de change 1 an à partir des données suivantes :

Maturité	1 an	$\sigma^{ extsf{ATM}}$	12%
EUR/USD	1.3889	RR^{25}	-2%
r ^{USD}	0.3%	BF^{25}	1%
r ^{EUR}	0.5%	RR^{10}	-4%
Basis EUR	0.1%	BF10	4%

K ^{10Put}	$\sigma^{ m 10Put}$
K ^{25Put}	$\sigma^{ m 25Put}$
K ^{ATM}	σ ATM
K ^{25Call}	σ 25Call
K ^{10Call}	$\sigma^{ extsf{10Call}}$

K ^{10Put}	$\sigma^{ extsf{10Put}}$	18.0%
K ^{25Put}	$\sigma^{ m 25Put}$	14.0%
K ^{ATM}	σ^{ATM}	12.0%
K ^{25Call}	σ 25Call	12.0%
K ^{10Call}	$\sigma^{ extbf{10Call}}$	14.0%

K ^{10Put}	1.1201	$\sigma^{ m 10Put}$	18.0%
K ^{25Put}	1.2755	$\sigma^{ m 25Put}$	14.0%
KATM	1.3975	$\sigma^{ extsf{ATM}}$	12.0%
K ^{25Call}	1.5148	σ 25Call	12.0%
K ^{10Call}	1.6760	$\sigma^{ extsf{10Call}}$	14.0%

Interpolation linéaire

$$y = q(x) = (1-t) \times y_1 + t \times y_2$$

$$t = \frac{x - x_1}{x_2 - x_1}$$

$$y = q(x) = (1-t) \times y_1 + t \times y_2 + \underbrace{t \times (1-t) \times (\mathbf{a} \times (1-t) + \mathbf{b} \times t)}_{=}$$

$$t = \frac{x - x_1}{x_2 - x_1}$$

$$y = q(x) = (1 - t) \times y_1 + t \times y_2 + \underbrace{t \times (1 - t) \times (\mathbf{a} \times (1 - t) + \mathbf{b} \times t)}_{\mathsf{Termes quadratiques et cubiques}}$$

$$t = \frac{x - x_1}{x_2 - x_1}$$

$$y = q(x) = (1 - t) \times y_1 + t \times y_2 + \underbrace{t \times (1 - t) \times (\mathbf{a} \times (1 - t) + \mathbf{b} \times t)}_{\mathsf{Termes quadratiques et cubiques}}$$

$$t = \frac{x - x_1}{x_2 - x_1}$$

On peut facilement calculer les dérivés premières et secondes de q aux points x_1 et x_2 :

$$\begin{array}{lll} q'(x) & = \frac{\partial q}{\partial x} & q'(x_1) & = \frac{y_2 - y_1}{x_2 - x_1} + \frac{a}{x_2 - x_1} & q'(x_2) & = \frac{y_2 - y_1}{x_2 - x_1} - \frac{b}{x_2 - x_1} \\ q''(x) & = \frac{\partial^2 q}{\partial x^2} & q''(x_1) & = 2\frac{b - 2a}{(x_2 - x_1)^2} & q''(x_2) & = 2\frac{a - 2b}{(x_2 - x_1)^2} \end{array}$$

On peut facilement calculer *a* et *b* en fonction des dérivées premières :

$$a = \underbrace{q'(x_1)}_{k_1}(x_2 - x_1) - (y_2 - y_1)$$
$$b = -\underbrace{q'(x_2)}_{k_2}(x_2 - x_1) + (y_2 - y_1)$$

On considère n tronçons de spline qui raccordent les n+1 points de (x_0, y_0) à (x_n, y_n) .

$$\frac{k_{i-1}}{\frac{y_i - y_{i-1}}{x_i - x_{i-1}} + \frac{a_i}{x_i - x_{i-1}}} \quad \frac{y_{i+1} - y_i}{x_{i+1} + x_i} + \frac{a_{i+1}}{x_{i+1} - x_i}}{\frac{y_i - y_{i-1}}{x_i - x_{i-1}} - \frac{b_i}{x_i - x_{i-1}}} \quad \frac{y_{i+1} - y_i}{x_{i+1} + x_i} - \frac{b_{i+1}}{x_{i+1} - x_i}}$$

$$q''(x_i) = 2\frac{b_i - 2a_i}{(x_i - x_{i-1})^2} = 2\frac{a_{i+1} - 2b_{i+1}}{(x_{i+1} - x_i)^2}$$

$$\frac{k_{i-1}}{\frac{y_i - y_{i-1}}{x_i - x_{i-1}} + \frac{a_i}{x_i - x_{i-1}}} \quad \frac{y_{i+1} - y_i}{x_{i+1} + x_i} + \frac{a_{i+1}}{x_{i+1} - x_i}}{\frac{y_i - y_{i-1}}{x_i - x_{i-1}} - \frac{b_i}{x_i - x_{i-1}}} \quad \frac{y_{i+1} - y_i}{x_{i+1} + x_i} - \frac{b_{i+1}}{x_{i+1} - x_i}}$$

$$\underbrace{\frac{1}{x_{i} - x_{i-1}} k_{i-1}}_{a_{i,i-1}} + 2 \left[\frac{1}{x_{i} - x_{i-1}} + \frac{1}{x_{i+1} - x_{i}} \right] k_{i} + \underbrace{\frac{1}{x_{i+1} - x_{i}}}_{a_{i,i+1}} k_{i+1}$$

$$= 3 \left[\frac{y_{i} - y_{i-1}}{(x_{i} - x_{i-1})^{2}} + \frac{y_{i+1} - y_{i}}{(x_{i+1} - x_{i})^{2}} \right]$$

Pour les points extrêmes on suppose que la dérivée seconde est nulle :

$$q''(x_0) = \frac{b_1 - 2a_1}{(x_1 - x_0)^2} = 0$$
$$q''(x_n) = \frac{a_n - 2b_n}{(x_n - x_{n-1})^2} = 0$$

Pour les points extrêmes on suppose que la dérivée seconde est nulle :

$$2\underbrace{\frac{1}{x_{1}-x_{0}}}_{a_{0,0}}k_{0} + \underbrace{\frac{1}{x_{1}-x_{0}}}_{a_{0,1}}k_{1} = \underbrace{3\underbrace{\frac{y_{1}-y_{0}}{(x_{1}-x_{0})^{2}}}_{b_{0}}}_{b_{0}}$$

$$\underbrace{\frac{1}{x_{n}-x_{n-1}}}_{a_{n,n-1}}k_{n-1} + 2\underbrace{\frac{1}{x_{1}-x_{0}}}_{a_{n,n}}k_{n-1} = \underbrace{3\underbrace{\frac{y_{1}-y_{0}}{(x_{1}-x_{0})^{2}}}_{b_{n}}}_{b_{n}}$$

Il nous faut maintenant résoudre le système linéaire précédemment défini où K est l'inconnue :

$$A \times K = B$$

Il nous faut maintenant résoudre le système linéaire précédemment défini où K est l'inconnue :

$$\underbrace{ \begin{pmatrix} a_{0,0} & a_{0,1} & \dots & \dots & \dots & 0 \\ a_{1,0} & \ddots & \ddots & \ddots & & & \vdots \\ \vdots & & a_{i,i-1} & a_{i,i} & a_{i,i+1} & & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & \dots & a_{n,n-1} & a_{n,n} \end{pmatrix}}_{\mathbf{A}} \underbrace{ \begin{pmatrix} k_0 \\ \vdots \\ k_i \\ \vdots \\ k_n \end{pmatrix}}_{\mathbf{K}} = \underbrace{ \begin{pmatrix} b_0 \\ \vdots \\ b_i \\ \vdots \\ b_n \end{pmatrix}}_{\mathbf{B}}$$

Interpolation spline cubique - Exercice

Construire un spline cubique à partir des points de smile calculés précédemment.

k	a	b

Interpolation spline cubique - Exercice

Construire un spline cubique à partir des points de smile calculés précédemment.

	k	a	b
0		-	-
1			
2			
3			
4			

Interpolation spline cubique - Exercice

Construire un spline cubique à partir des points de smile calculés précédemment.

	k	a	b
0	-27.43%	-	-
1	-22.38%	-0.26%	-0.52%
2	-8.37%	-0.73%	-0.98%
3	7.09%	-0.98%	-0.83%
4	15.07%	-0.86%	-0.43%

Sensibilités au change et aux paramètres de smile

On peut calculer la sensibilité de chacun des 5 produits

• **ZDS** : Zéro Delta Straddle

• RR25, RR10 : Risk Reversal 25 et 10 delta

• **BF25**, **BF10** : Butterfly 25 et 10 delta

aux paramètres du smile :

Avec Smile	Delta FX	Sensi ATM	Sensi RR25	SensiBF25
ZDS	5%	0.56%	0.00%	0.00%
RR25	38%	0.03%	0.39%	0.01%
BF25	-2%	-0.16%	0.00%	0.35%
RR10	10%	-0.00%	0.32%	-0.09%
BF10	-4%	-0.39%	-0.00%	0.55%

Sensibilités au change et aux paramètres de smile

On peut calculer la sensibilité de chacun des 5 produits

• **ZDS** : Zéro Delta Straddle

• RR25, RR10 : Risk Reversal 25 et 10 delta

• **BF25**, **BF10** : Butterfly 25 et 10 delta

aux paramètres du smile :

Sans Smile	Delta FX	Sensi ATM	Sensi RR25	SensiBF25
ZDS	0%	0.55%	0.00%	0.00%
RR25	50%	0.00%	0.44%	-0.02%
BF25	-0%	-0.10%	-0.01%	0.39%
RR10	20%	0.00%	0.48%	-0.05%
BF10	-0%	-0.29%	-0.00%	0.73%

Forward FX Range

Un **Forward FX Range** permet de garantir un taux de change K dans le futur. Cette garantie est active à condition que le taux de change soit compris dans un intervalle (range) $[K_{Min}, K_{Max}]$.

L'objectif de ce produit est de proposer au client un taux de change forward bonifié en lui faisant courir un risque minimum.

Exemple de Forward FX Range

Considérons un Forward FX Range de maturité 1 an qui se désactive si le cours de l'EUR/USD s'écarte de plus de 30% de sa valeur spot à terme.

La banque propose d'améliorer de **30 pips** le taux de change forward classique dans le cas **d'une vente à terme d'euros** contre l'achat de dollars dans un an.

Exercice

- Comment répliquer le Forward FX Range avec des options de change "vanille" ?
- 2 Déterminer la marge réalisée par la banque à partir des données de marché précédemment utilisées.
- Quelle est la probabilité (risque neutre et non pas historique) que le produit se désactive en la défaveur du client.
- Calculer la couverture nécessaire en utilisant les produits de marché standard, Spot, Money Market, Basis, Risk Reversal Butterfly.