St.JOSEPH's COLLEGE OF ENGINEERING, CHENNAI-119

DEPARTMENT OF MATHEMATICS FORMULA LIST

UNIT-I ORDINARY DIFFERENTIAL EQUATIONS

1. General form of linear Differential equation of the nth order with constant co-efficients is

$$a_0 \frac{d^n y}{dx^n} + a_1 \frac{d^{n-1} y}{dx^{n-1}} + a_2 \frac{d^{n-2} y}{dx^{n-2}} + ... + a_n y = X(A) \text{ Where } a_0, a_1, a_2, ... a_n \text{ are } a_0, a_1$$

constants, X is the functions of x alone.

i.e
$$(a_0D^n + a_1D^{n-1} + a_2D^{n-2} + ... + a_n)y = X$$

here
$$D = \frac{d}{dx}$$
 $D^2 = \frac{d^2}{dx^2}$ $D^n = \frac{d^n}{dx^n}$

- 2. <u>General Solution</u> of equation of (A) is y = Complimentary Function + Particular Integral.
- 3. The General form of the linear differential equation of second order is

$$\frac{d^2y}{dx^2} + a_1 \frac{d^{n-1}y}{dx^{n-1}} + a_2 y = X$$

$$(D^2 + a_1D + a_2)y = X$$
> (B)

Finding Complimentary function:

Step 1: Finding the Auxiliary equation by putting $D^2 y = m^2$ Dy = m

$$m^2 + a_1 m + a_2 = 0$$

Step2: Compare the roots of m & Write the complimentary function

	Roots of A.E	C.F
1.	Roots are real and different	$Ae^{m_1x} + Be^{m_2x}$
	$m_1, m_2 (m_1 \neq m_2)$	Ae 1 + Be 2
2.	Roots are real and equal	$(Ax + B)e^{mx}$
	$m_1, m_2 (m_1 = m_2) = m$	
3	Roots are imaginary	$e^{\alpha x}(A\cos\beta x + B\sin\beta x)$
	$\alpha \pm i\beta$	

4. Consider the fourth order differential equation $(D^4 + a_1D^3 + a_2D^2 + a_3D + a_4)y = X$

Finding Complimentary function:

Step 1: Finding the Auxiliary equation by putting $D^4y=m^4$, $D^3y=m^3$ $D^2y=m^2$ Dy=m $m^4+a_1m^3+a_2m^2+a_3m+a_4=0$

Step2: Solving A.E we get the roots m_1, m_2, m_3, m_4

Step3: Compare the roots of m & Write the complimentary function

	•	,
	Roots of A.E	C.F
1.	Roots are real and different	
	$m_1, m_2, m_3, m_4 (m_1 \neq m_2 \neq m_3 \neq m_4)$	$Ae^{m_1x} + Be^{m_2x} + Ae^{m_3x} + Ae^{m_4x}$
2.	Roots are real and equal	$(Ax^3 + Bx^2 + Cx + D)e^{mx}$
	m_1, m_2, m_3, m_4 ($m_1 = m_2 = m_3 = m_4$)	
3	Two Roots are real and equal & Two	$(Ax + B)e^{mx} + Ce^{m_3x} + De^{m_4x}$
	Roots are real and distinct.	
	$\mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3, \mathbf{m}_4$	

	$(m_1 = m_2 = m, m_3 = m_4)$	
4	Two pairs of equal roots.	$(Ax + B)e^{m_1x} + (Cx + D)e^{m_2x}$
	$\mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3, \mathbf{m}_4$	
	$(m_1 = m_2 = m_1, m_3 = m_4 = m_2)$	
5	Two Roots are real and equal & other	$e^{\alpha x}(A\cos\beta x + B\sin\beta x) + (Cx + D)e^{mx}$
	Two Roots are imaginary.	
	$\mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3, \mathbf{m}_4$	
	$(\mathbf{m}_1 = \mathbf{m}_2 = \mathbf{m}_1, \ \alpha \pm \mathbf{i}\beta)$	
6	Two Roots are real and different &	$e^{\alpha x}(A\cos\beta x + B\sin\beta x) + Ce^{m_1}x + De^{m_2}x$
	other Two Roots are imaginary.	$e^{\omega A}(A\cos\beta x + B\sin\beta x) + Ce^{-1} + De^{-2}$
	$\mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3, \mathbf{m}_4$	
	$(m_1 \neq m_2 \ \alpha \pm i\beta)$	
7	Two pairs of imaginary roots are equal	$e^{\alpha x} [(Ax+B)\cos \beta x + (Cx+D)\sin \beta x]$
	$(m_1 = m_2 = \alpha + i\beta \& m_1 = m_2 = \alpha - i\beta)$	

Rules of finding Particular Integral.

Туре

e ax

Х

P.I

$$P.I = \frac{1}{f(D)}e^{ax}$$

Replace D by 'a'

P.I=
$$e^{ax} \frac{1}{f(a)}$$
, $f(a) \neq 0$ If $f(a)=0$ then

P.I=
$$xe^{ax} \frac{1}{f'(a)}$$
, $f'(a) \neq 0$ if $f'(a) = 0$ then

P.I=
$$x^2 e^{ax} \frac{1}{f''(a)}$$
, $f''(a) \neq 0$ if $f''(a) = 0$

Continuing this process until $Dr \neq 0$

$$P.I = \frac{1}{f(D)} sin ax (or) cos ax$$

Replace D^2 by $-(a^2)$ if Dr = 0 continuing the above process.

$$P.I = \frac{1}{f(D)} x^{n}$$

$$P.I = [f(D)]^{-1}x^{n}$$

Expand $[f(D)]^{-1}$ by using the following formula

1)
$$(1+D)^{-1} = 1-D+D^2-D^3+...$$

2)
$$(1-D)^{-1} = 1 + D + D^2 + D^3 + \dots$$

3)
$$(1+D)^{-2} = 1-2D+3D^2-4D^3+...$$

4)
$$(1-D)^{-2} = 1 + 2D + 3D^2 + 4D^3 + \dots$$

$$P.I = \frac{1}{f(D)} e^{ax} [sin ax(or) cos ax(or) x^n]$$

 $\begin{array}{ccc} \text{IV} & e^{ax} & V \\ & \text{Where} \end{array}$

$$V = sin ax (or) cos ax (or) x^n$$

P.I=
$$e^{ax} \frac{1}{f(D+a)} [sin ax(or) cos ax(or) x^n] e^{ax}$$

Then apply Type II (or) Type III depending on X.

$$P.I = \frac{1}{f(D)} x^{n} \sin ax \text{ (or)} x^{n} \cos ax$$

Apply
$$\frac{1}{f(D)}xV = x\frac{1}{f(D)}V - \frac{f'(D)}{[f(D)]^2}V$$
(or)

1)
$$P.I = \frac{1}{f(D)} x^n \cos ax$$

 $P.I = R.P. \text{ of } \frac{1}{f(D)} x^n e^{ia x}$

Then apply Type (IV)

2)
$$P.I = \frac{1}{f(D)} x^{n} \sin ax$$

 $P.I = I.P. \text{ of } \frac{1}{f(D)} x^{n} e^{ia x}$

Then apply Type (IV)

 $x^n / sin ax (or) cos ax 1$

$$\frac{d^2y}{dx^2} + a_1 \frac{d^{n-1}y}{dx^{n-1}} + a_2y = X..... > (1)$$

Complimentary function of (1) is

$$C.F = Ay_1 + By_2$$

Where A & B are constants and $y_1 & y_2$ are functions of x.

Then

٧

$$P.I = Py_1 + Qy_2$$

Where
$$P = -\int \frac{y_2 X}{y_1 y_1 - y_1 y_2} dx$$
, $P = -\int \frac{y_1 X}{y_1 y_1 - y_1 y_2} dy$

General Solution $y = Ay_1 + By_2 + P.I$

6 Linear Differential Equations With variable coefficients:

1. Homogeneous equations of Euler type: (Cauchy's type) An equation of the form

$$x^{n} \frac{d^{n} y}{dx^{n}} + a_{1} x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + a_{2} x^{n-2} \frac{d^{n-2} y}{dx^{n-2}} + \dots + a_{n} y = X$$

$$(x^{n} D^{n} + a_{1} x^{n-1} D^{n-1} + a_{2} x^{n-2} D^{n-2} + \dots + a_{n}) y = X \dots (A)$$

Where X is the function of x alone.

Equation (A) can be reduced to linear differential equation with constant coefficients by putting $x = e^z$, z = log x

$$xD = D'$$
and $x^2D^2 = D'(D'-1)$

$$x^{3}D^{3} = D'(D'-1)(D'-2)$$
 and so on

7 Legendre's Linear Differential Equations.

$$(ax+b)^{n} \frac{d^{n}y}{dx^{n}} + a_{1}(ax+b)^{n-1} \frac{d^{n-1}y}{dx^{n-1}} + a_{2}(ax+b)^{n-2} \frac{d^{n-2}y}{dx^{n-2}} + ... + a_{n}y = X$$

Where X is the function of x alone.

Equation (A) can be reduced to linear differential equation with constant coefficients by putting $ax + b = e^z$, z = log(ax + b)

$$(ax + b)D = aD'$$

and
$$(ax + b)^2 D^2 = a^2 D'(D'-1)$$

$$(ax + b)^3 D^3 = a^3 D'(D'-1)(D'-2)$$
 and so on