

Universidad Nacional de Colombia Facultad de Ciencias

Análisis Funcional

Sandra Natalia Florez Garcia Edgar Santiago Ochoa Quiroga María Alajandra Rodríguez Ríos

María Alejandra Rodríguez Ríos

Ejercicio 9 Sea $(E, \|\cdot\|)$ un espacio vectorial normado. Dado r > 0, considere $C = B(0, r) = \{y \in E : \|y\| < r\}$. Determine el funcional de Minkowski de C.

Solución:

Dado que $(E, \|\cdot\|)$ es un espacio vectorial normado, se deduce que el conjunto C = B(0, r) es abierto, convexo y $0 \in C$.

Por consiguiente, el funcional de Minkowski asociado a C se define como:

$$\rho(x) = \inf \left\{ \alpha > 0 : \alpha^{-1} x \in C \right\}, \qquad x \in E.$$

Ahora, sea $x \in B(0, r)$. Entonces, para todo $\alpha > 0$ tal que $\alpha^{-1}x \in C$, se tiene:

$$\|\alpha^{-1}x\| < r.$$

Esto implica que:

$$\alpha^{-1}\|x\| < r,$$

y despejando α , se obtiene:

$$\frac{\|\mathbf{x}\|}{\mathbf{r}} < \alpha$$
.

En general, si $x \in B(0, r)$, tenemos:

$$\|\alpha^{-1}x\| < r \quad \Rightarrow \quad \alpha^{-1}\|x\| < r \quad \Rightarrow \quad \frac{\|x\|}{r} < \alpha.$$

Supongamos por contradicción que $\rho(x) \neq \frac{\|x\|}{r}$. Entonces debe ocurrir que:

$$\frac{\|\mathbf{x}\|}{\mathbf{r}} < \rho(\mathbf{x}).$$

Tomemos el promedio entre $\frac{\|x\|}{r}$ y $\rho(x)$:

$$\beta = \frac{\frac{\|\mathbf{x}\|}{r} + \rho(\mathbf{x})}{2}.$$

Este valor cumple que:

$$\frac{\|x\|}{r} < \beta < \rho(x).$$

Pero entonces:

$$\|\beta^{-1}x\| = \beta^{-1}\|x\| < \frac{r}{\|x\|} \cdot \|x\| = r,$$

lo cual implica que $\beta^{-1}x \in B(0,r)$, es decir, $\beta^{-1}x \in C$. Por tanto, $\beta \in \{\alpha > 0 : \alpha^{-1}x \in C\}$. Esto contradice el hecho de que $\rho(x)$ es la ínfimo de ese conjunto, ya que $\beta < \rho(x)$. Por lo tanto, concluimos que:

$$\rho(x) = \frac{\|x\|}{r}.$$

Ejercicio 12 Sea E un espacio vectorial normado.

(i) Sea $W \subset E$ un subespacio propio de E y $x_0 \in E \setminus W$, tal que $d := dist(x_0, W) > 0$. Demuestre que existe $f \in E^*$ tal que f = 0 restricto a W, $f(x_0) = d$ y $||f||_{E^*} = 1$.

Definamos el espacio $W' = W + \text{Gen}\{x_0\}$ y tomemos la aplicación

$$T: W' \longrightarrow \mathbb{R}$$
 donde $w + tx_0 \mapsto T(w + tx_0) = td$

Veamos que $T \in \mathcal{L}(W', \mathbb{R})$

Para eso debemos ver que T es lineal, por lo cual tomamos $v_1, v_2 \in W'$, entonces $v_1 = w_1 + t_1x_0$ y $v_2 = w_2 + t_2x_0$, con $w_1, w_2 \in W$ y $t_1, t_2 \in \mathbb{R}$. Tenemos que,

$$T(v_1 + v_2) = T((w_1 + t_1x_0) + (w_2 + t_2x_0)) = T((w_1 + W_2) + (t_1 + t_2)x_0) = (t_1 + t_2)d$$

$$T(v_1) + T(v_2) = T(w_1 + t_1x_0) + T(w_2 + t_2x_0) = t_1d + t_2d = (t_1 + t_2)d$$

por lo cual, tenemos que T es lineal. Ahora veamos que T es acotada, $w \in W$ y $t \in \mathbb{R}$

$$\|w + tx_0\|_F = \|t(t^{-1}w + x_0)\| = |t|\|t^{-1}w + x_0\| = |t|\|x_0 - (-t^{-1}w)\|$$

como W es espacio vectorial, $-t^{-1}w \in W$, así, $\|x_0 - (t^{-1}w)\| \ge \operatorname{dist}(x_0, W) = d$ y $T(x_0) = d$ por lo que

$$||w + tx_0||_E \ge |t|d = |td| = |T(w + tx_0)|.$$

Por el corolario de Hahn-Banach, se tiene que al ser $W' \subseteq E$ un subespacio y T es un funcional continuo, entonces existe $f \in E^*$ que extiende a T y

$$\|f\|_{E^*} = \sup_{x \in E, \|x\| \le 1} |\langle f, x \rangle| = \|T\|_{W'^*}.$$

Además por la definición de f, tenemos que para todo $x \in W$ se cumple que $f|_W = 0$ y que $f(x_0) = d$. Para calcular $\|T\|_{E^*}$, basta con tomar la sucesión $\left(\frac{1}{d} + \frac{1}{n}\right)_{n \in \mathbb{N}}$ donde tenemos que la sucesión está en \mathbb{R} , con $\lim_{n \to \infty} \left(\frac{1}{d} + \frac{1}{n}\right) = \frac{1}{d}$. Así,

$$\|T\|_{W'^*} = \sup_{\substack{x \in W^* \\ x \neq 0}} |T(x)| \ge T\left(\left(\frac{1}{d} + \frac{1}{n}\right)x_0\right),$$

si tomamos $n \to \infty$, tenemos que,

$$\|T\|_{W'^*} \ge \lim_{n \to \infty} T\left(\left(\frac{1}{d} + \frac{1}{n}\right)x_0\right) = \frac{1}{d}T(x_0) = 1.$$

Ahora como $||w + tx_0|| \ge |T(w + tx_0)|$, se tiene que,

$$1 \ge \left| rac{\mathsf{T}(w + \mathsf{t} \mathsf{x}_0)}{\|w + \mathsf{t} \mathsf{x}_0\|} \right| \quad \text{ para todo } w \in W', \ \text{ donde } \mathsf{t} \in \mathbb{R}$$

por lo que,

$$\|T\|_{W'^*} \le 1 \quad \Rightarrow \quad \|T\|_{W'^*} = 1$$

(ii) Sea $W \subset E$ un subespacio propio cerrado de E y $x_0 \in E \setminus W$. Demuestre que existe $f \in E^*$ tal que f = 0 restricto a W y $f(x_0) \neq 0$.

Como $W \subset E$ es un subespacio propio cerrado, se tiene que $W = \overline{W}$. Por lo tanto, para todo $x \in W^c$ se cumple que la distancia de x a W es estrictamente mayor que cero, es decir,

$$dist(x, W) > 0$$
.

De lo contrario, si dist(x, W) = 0, entonces x sería un punto de acumulación de W, y como W es cerrado, implicaría que $x \in W$, lo cual contradice que $x \in W^c$.

En particular, como $x_0 \in E \setminus W$, se tiene que $dist(x_0, W) > 0$. Por el numeral (i), existe entonces un funcional lineal continuo $f \in E^*$ tal que

$$f|_W = 0$$
 y $f(x_0) \neq 0$.

Ejercicio 13 Sean $(E, \|\cdot\|)$ y $(F, \|\cdot\|)$ espacios de Banach.

- (i) Sea K \subset E un subespacio cerrado de E. Definimos la relacion sobre E dada por $x \sim_K y$ si y solo si $x y \in K$.
 - (a) Muestre que \sim_K es una relacion de equicalencia sobre E.
 - (b) Muestre que el espacio cociente E/K es un espacio de Banach con la norma

$$\|x + K\|_{E/K} = \inf \|x - k\|, \quad x \in E.$$

Es decir, debe verificar que el espacio cociente es un espacio vectorial, normado, cuya norma lo hace completo.

(ii) Sea $T \in L(E, F)$ tal que existe c > 0 para el cual

$$\|\mathsf{T}\mathsf{x}\|_{\mathsf{F}} \geq c\|\mathsf{x}\|_{\mathsf{E}},$$

para todo $x \in E$. Si K denota el espacio nulo de T y R(T) el rango de T, muestre que $\overline{T}: E/K \to R(T)$ dada por $\overline{T}(x+K) = T(x), x \in E$, esta bien definida y es un isomorfismo. Esto es $\overline{T} \in L(E/K, R(T))$ y $\overline{T}^{-1} \in L(R(T), E/K)$.

Ejercicio 15 Considere los espacios C([0,1]) y $C^1([0,1])$ ambos equipados con la norma del supremo $\|f\|_{L^\infty} = \sup_{x \in [0,1]} |f(x)|$. Definimos el operador derivada $D: C^1([0,1]) \to C([0,1])$ dado por $f \mapsto f'$.

Muestre que D es un operador no acotado, pero su grafico G(D) es cerrado.

Demostración.

Supongamos, por contradicción, que D es un operador acotado. Entonces existe una constante M > 0 tal que,

$$||f'|| = ||Df|| \le M||f||$$
 para todo $f \in C^1([0,1])$.

Definimos una sucesión de funciones $\{f_n\}_{n\in\mathbb{N}}$ dada por,

$$f_n:[0,1]\to\mathbb{R},\quad f_n(x)=x^n.$$

Claramente $f_n \in C^1([0,1])$ para todo $n \in \mathbb{N}$. Además, se cumple que,

$$\begin{split} \|f_n\| &= \sup_{x \in [0,1]} |x^n| = 1, \\ \|Df_n\| &= \sup_{x \in [0,1]} |nx^{n-1}| = n. \end{split}$$

Entonces:

$$||Df_n|| = n \le M||f_n|| = M.$$

Esto implica que $n \le M$ para todo n, lo cual es una contradicción, ya que siempre existe un $n \in \mathbb{N}$ tal que n > M. Por lo tanto, el operador D no es acotado.

Ahora veamos que, aunque el operador D no es acotado, su gráfico

$$G(D) = \{(f, f') : f \in C^1([0, 1]) \text{ y } f' \in C([0, 1])\}$$

sí es un conjunto cerrado.

Para demostrarlo, tomemos una sucesión $\{(f_n,f'_n)\}_{n\in\mathbb{N}}\subset G(D)$ tal que

$$(f_n, f'_n) \rightarrow (f, g)$$

en la norma del gráfico, es decir, en la norma

$$\|(f_n, f'_n) - (f, g)\|_{G(D)} = \|f_n - f\|_{L^{\infty}} + \|f'_n - g\|_{L^{\infty}}.$$

Esto significa que, para todo $\varepsilon > 0$, existe un $N \in \mathbb{N}$ tal que si n > N, entonces

$$\|f_n - f\|_{L^{\infty}} + \|f'_n - g\|_{L^{\infty}} < \varepsilon.$$

Por lo tanto,

 $f_n \to f \quad \text{uniformemente}, \quad y \quad f_n' \to g \quad \text{uniformemente}.$

Ahora, dado que cada f_n es de clase $C^1([0,1])$, y que tanto f_n como f'_n convergen uniformemente, se sigue que $f \in C^1([0,1])$ y que f' = g, con $g \in C([0,1])$. Es decir, la función límite f es derivable y su derivada es g, que es continua. Esto implica que $(f,f') \in G(D)$.

Por lo tanto, el gráfico G(D) es un conjunto cerrado.