3. Localization and Mapping + **SLAM**

Table of Contents

```
3. Localization and Mapping + SLAM
     Table of Contents
    Localization
         Formulation
         Feature-based Localization
    Mapping
          Formulation
    Occupancy Grid Mapping
SLAM : Simultaneous Localization And Mapping
         Formulation
         SLAM Types
Online SLAM
Full SLAM
         SLAM Algo. (4 Main in Thrun - Probabilistic Robotics)
EKF/UKF SLAM
              GraphSLAM
              Sparse Extended Information Filter SLAM FastSLAM
         Main Focus
         Note
         EKF SLAM
              EKF SLAM Algorithm
                   Discussion
```

Localization

Formulation

- Localization:
- using sensor info. to locate the vehicle in a known environment
- Formulation:
 - Given:

 - Control inputs and motion model Sensor measurements and measurement model relative to environment
 - Environment model
 - Find:
 - Vehicle positionProblems:
 - - I.C.
 - Local: Known initial position
 - Tracking position through motions with inputs and measurements
 Global: Unknown initial positions

 - Finding position and then continuing to trackKidnapped: Incorrect initial position

- Correcting incorrect prior beliefs to recover true position and motion
- Assumptions:
 - Known static env.
 - No moving obstacles, or other vehicles that cannot be removed from sensor measurements
 - Passive Estimation
 - Control law does not seek to minimize estimation error
 - Single Vehicle:
 - Only one measurement location is available

Feature-based Localization

- Feature-based localization
 - Most natural formulation of localization problem
 - Sensor measure bearing, range, relative position of features
 - Location based maps can be reduced to a set of measurable features
 - The more features tracked the better the solution
- But the larger the matrix inverse at each timestep
 Ex: Two-wheeled robot

• Vehicle State, Inputs:

$$\left[egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight] = \left[egin{array}{c} x \ y \ heta \end{array}
ight] \quad \left[egin{array}{c} u_1 \ u_2 \end{array}
ight] = \left[egin{array}{c} v \ \omega \end{array}
ight]$$

Motion Model:

$$egin{bmatrix} x_{1,t} \ x_{2,t} \ x_{3,t} \end{bmatrix} = g(x_{t-1},u_t) = egin{bmatrix} x_{1,t} + u_{1,t}\cos x_{3,t-1}dt \ x_{2,t} + u_{1,t}\sin x_{3,t-1}dt \ x_{3,t} + u_{2,t}dt \end{bmatrix}$$

Feature Map:

$$m = \{m^1, \dots, m^M\}.\, m^i = \{m^i_x, m^i_y\}$$

- Assume all features are uniquely identifiable
- Measurement Model:
- Relative range and/or bearing to closest feature m^i , regardless of heading
- Assume measurement of closest feature only

$$egin{bmatrix} y_{1,t} \ y_{2,t} \end{bmatrix} = h(x_t) = egin{bmatrix} an^{-1} rac{m_y^i - x_{2,t}}{m_x^i - x_{1,t}} - x_{3,t} \ \sqrt{(m_x^i - x_{1,t})^2 + (m_y^i - x_{2,t})^2} \end{bmatrix} & \leftarrow ext{Bearing} \ \leftarrow ext{Range}$$

- Two Approaches:
 - 1) **EKF (UKF)** based localization:**
 - Fast computationally
 - Intuitive forumlation
 - Most frequently implemented
 - Possibility for divergence if nonlinearities are severe
 - Additive Gaussian noise:

$$m{\epsilon}_t \sim \mathcal{N}(\mu=0,\,\sigma^2=R_t)$$
 and $\delta_t \sim \mathcal{N}(\mu=0,\,\sigma^2=Q_t)$ 2) **Particle** Filter based localization:

- - Slightly cooler visualizations

 - More expensive computationally
 More capable of handling extreme nonlinearities, constraints,
 discontinuities
- o EKF:
 - Recall:
 - Prediction Update:

$$egin{aligned} G_t &= rac{\partial}{\partial x_{t-1}} g(x_{t-1}, u_t) igg|_{x_{t-1} = \mu_{t-1}} \ ar{\mu}_t &= g(\mu_{t-1}, u_t) \ ar{\Sigma}_t &= G_t \Sigma_{t-1} G_t^T + R_t \end{aligned}$$

Measurement Update:

$$egin{aligned} H_t &= rac{\partial}{\partial x_t} h(x_t) igg|_{x_t = \mu_t} \ K_t &= ar{\Sigma}_t H_t^T (H_t ar{\Sigma}_t H_t^T + Q_t)^{-1} \ \mu_t &= ar{\mu}_t + K_t (y_t - h(ar{\mu}_t)) \ \Sigma_t &= (1 - K_t H_t) ar{\Sigma}_{t-1} \end{aligned}$$

Linearization of Motion Model:

$$egin{bmatrix} x_{1,t} \ x_{2,t} \ x_{3,t} \end{bmatrix} = g(x_{t-1},u_t) = egin{bmatrix} x_{1,t} + u_{1,t}\cos x_{3,t-1}dt \ x_{2,t} + u_{1,t}\sin x_{3,t-1}dt \ x_{3,t} + u_{2,t}dt \end{bmatrix}$$

$$rac{\partial}{\partial x_{t-1}}g(x_{t-1},u_t) = egin{bmatrix} 1 & 0 & -u_{1,t}\cos x_{3,t-1}dt \ 0 & 1 & u_{1,t}\sin x_{3,t-1}dt \ 0 & 0 & 1 \end{bmatrix}$$

• Linearization of Measurement Model:

$$egin{bmatrix} y_{1,t} \ y_{2,t} \end{bmatrix} = h(x_t) = egin{bmatrix} an^{-1}\left(rac{m_y^i - x_{2,t}}{m_x^i - x_{1,t}}
ight) - x_{3,t} \ \sqrt{(m_x^i - x_{1,t})^2 + (m_y^i - x_{2,t})^2} \end{bmatrix} &\leftarrow ext{Bearing} \ &\leftarrow ext{Range} \ \end{pmatrix}$$

$$rac{\partial}{\partial x_t} h(x_t) = egin{bmatrix} rac{(m_y^i - x_{2,t})}{q} & -rac{(m_x^i - x_{1,t})}{q} & -1 \ -rac{(m_x^i - x_{1,t})}{\sqrt{q}} & -rac{(m_y^i - x_{2,t})}{\sqrt{q}} & 0 \end{bmatrix}$$
 Where: $q = (m_x^i - x_{1,t})^2 + (m_y^i - x_{2,t})^2$

• SIMULATION RESULT:

• Five features in a 2D world

- No confusion over which is which with correct correspondence
- Two wheeled robot (x, y, θ)
- Measurement to feature of Range, Bearing, both

• Findings:

```
Moderate noise:
        - both measurements noisy, correct prior, large distubances
      - Elongaté covariance erro elipse
    - Bearing only:
- No idea how deep we are
- Bearing only, incorrect prior (Kidnapped):
- till first feature, it correct the path
- incorrect heading but consistent pathing
8
```

Mapping

- Types:
 - Location based: Occupancy Grid

$$m = \left[egin{array}{cccc} m^1 & \dots & m^N \ dots & \ddots & dots \ m^{M-N+1} & \dots & m^M \end{array}
ight]$$

- Can be probablisitic in formulation with $m^i \in [0,1]$ Scales poorly, but works well in 2D (Plannar Position) Feature based: Set of all features
- - A feature is defined at a specific location, and may have a signature: $m^i = \{x^i, y^i, s^i\}$

$$M_n = \{m^1, \ldots, m^M\}$$

Effective for localizationScales well to larger dimensionsHard to use for collision avoidance

Formulation

- Mapping:
 - Using sensor information known vehicle locations to define a map of the env.
- - Vehicle location model
 - Sensor measurements and inverse measurement model
- Find:
 - Environment Map

Occupancy Grid Mapping

- ullet Find probability at time t that each grid cell contains an obracle
 - $bel_t(m^i) = p(m^i|y_{1:t}, x_{1:t})$
 - \circ Subscript t moved to emphasize that features are **static**
- Assumptions:
- Static env.
 Independence of cells
 Known vehicle state at each time step
 Sensor model is known
 [Recall Discrete Bayes Filter Algorithm]
 - Prediction update (Discrete Total probability)
 - $bel(x_t) = \sum p(x_t|u_t, x_{t-1}) bel(x_{t-1})$ Measurement udpate (Bayes Theorem)
 - - $bel(x_t) = \eta p(y_t|x_t) \, bel(x_t)$
 - η is a normalizing constant that does not depend on the state (will become
- apparent in derivation)=> Bayes Filter with static states
 - Since the cell contents do not move, the motion model is trivial
 - The predicted belief is simply the belief from the previous time step
 - $b\overline{e}l_t(m)=bel_{t-1}(m)$ The prediction step is no longer needed, so we update with each new measurement regardless of vehilce motion
 - $bel_t(m) = \eta \, p(y_t|m) \, \overline{bel}_{t-1}(m)$
- Log Odds Raio (\equiv Logistic Regression \equiv Logit Function)

 - For easy computation (!= 0)
 Instead of tracking the probability, we track the log odds ratio for each cell

$$\log(p) = \log\left(\frac{p}{1-p}\right)$$

 $\circ logit(p) = log(\frac{p}{1-p})$

We get simple addition instead of multiplication, but downside: we need to recompute models in logit space
 Bayesion Log Odds Update

- Derivation:
 - For each cell, we have a measurement update (with the normalizer defined

$$p(m^i|y_{1:t}) = rac{p(y_t|y_{1:t-1},m^i)p(m^i|y_{1:t-1})}{p(y_t|y_{1:t-1})}$$

• We still trust in the Markov assumption

$$p(m^i|y_{1:t}) = \frac{p(y_t|m^i)p(m^i|y_{1:t-1})}{p(y_t|y_{1:t-1})}$$
 apply Bayes rule to measurement model:

$$ullet p(y_t|m^i) = rac{p(m^i|y_t)\,p(y_t)}{p(m^i)}$$

- [Look at slides]
- Shorhand of update rule:

$$ullet \ l_{t,i} = logit(p(m^i|y_t)) + l_{t-1,i} - l_{0,i}$$

- ullet The log odd ratio at t is the sum of the ratio at t-1+ the inverse measurement ratio — the initial belief
- To get the inverse measurement ratio, we need an inverse measurement model
 - Probability of a state given a certain measurement occurs

 $p(m^i|y_t)$ Inverse conditional probability of the measurement models used to date

$$p(y_t|m^i)$$

 $ullet p(y_t|m^i)$ • Examples: Laser Scanner

0

- Returns a range to the closest objects at a set of bearings relative to the vehicle heading
 - Scanner Bearings

$$\quad \bullet \ \phi^s = [-\phi^s_{max} \ \dots \ \phi^s_{max}] \qquad \phi^s_j \in \phi^s$$

•
$$r^s = [-r_1^s \ \dots \ r_J^s]$$
 $r_j^s \in [0, r_{max}^s]$ • Inverse measurement model

o In 2D environment, three regions result

$$y_t = \begin{bmatrix} 40 \\ \vdots \\ 40 \end{bmatrix}$$

$$x_{t} = \begin{bmatrix} 10 \\ 25 \end{bmatrix}$$

Define relative range and bearing to each cell

$$\left[egin{aligned} \phi^i \ r^i \end{aligned}
ight] = \left[egin{aligned} an^{-1}\left(rac{m_y^i - x_{2,t}}{m_x^i - x_{1,t}}
ight) - x_{3,t} \ \sqrt{(m_x^i - x_{1,t})^2 + (m_y^i - x_{2,t})^2} \end{aligned}
ight]$$

- Find relevant range measurement for that cell
 - Closest bearing of a measurement

$$oldsymbol{k} = argmin(|\phi^i - phi^s_i|)$$

 $\ \ \, * k = argmin(|\phi^i - phi^s_j|)$ Identify each of the three regions and assign correct probability of object

$$ullet$$
 if $r^i > \min(r^s_{max}, r^s_k)$ or $|\phi^i - \phi^s_k| > eta/2$

- \blacksquare \Rightarrow then no info.
- ullet else if $r_k^s < r_{max}^s$ and $|r^i r_k^s| < lpha/2$
 - \Rightarrow then high probability of an object
- ullet else if $r^i < r_k^s$
 - $lack \Rightarrow$ then low probability of an object
- α and β defines the extent of the region to be updated:

- Example: Simple Motion
 - Simple motion
 - o Move up until stuck
 - o Turn right
 - Repeat
 - Rotate scanner at each timestep
 - Fixed map

- Example
 - 17 Measurements
 - 46 degree FOV
 - o 30 m max range
 - 1 set of measurements per time step
 - Probability of object at scan range: 0.6
 - Probability of no object in front: 0.4

• Bresenham's line algorithm

- Instead of updating each cell once for a complete scan
 Perform one udpate per range measurement
 Converted ray tracing into integer math update
 [See details in Slides]

Bresenham's line algorithm

- function line(x0, y0, x1, y1)
- dx := abs(x1-x0)
- dy := abs(y1-y0)
- Inc1 = 2*dy
- Inc2 = 2*dy-2*dx
- D = 2*dy-dx
- loop
 - oplot(x0,y0)
 - oif x0 = x1 and y0 = y1
 - return
 - \circ x0 =x0+1;
 - if D < 0
 - o D = D+Inc1
 - Else
 - o D = D+Inc2
 - 0 y0 = y0+1

• Mapping: Computation issues

- Grid size
- Calculation grows as resolution of grid increases
 Topological approximations possible
 Measurement model pre-caching
- - Model does depend on state, but does not change, so entire model can be precalculated
- Sensor subsampling
- Not all measurements need be applied, may be significant overlap in scans
- Selective updating
 - Only update cells for which significant new information is available

SLAM: Simultaneous Localization And Mapping

Formulation

- Given:
 - Motion model

 - Measurement model
 Uniquely identifiable static features
 - \circ Vehicle inputs, u_t
 - Measurements to some features, y_t
- Find:
 - \circ Vehicle State, x_t^T
 - \circ Feature Locations, m^i
- Relative calculation, coord. Sys determinedupon init.
- Significantly larger estimation problem than straight localization

SLAM Types

Online SLAM

- Estimates the current state and the map given all information to date
- $p(x_t^r,m|y_{1:t},u_{1:t})$ Most useful for a moving vehicle that needs to estimate its state relative to env. in real time
- usually run online

Full SLAM

- Estimates the entire state history and the map given all information
- $\circ p(x_{1:t}^r,m|y_{1:t},u_{1:t})$ \bullet Most useful for creating maps froms sensor data after the fact
- Usually run in batch mode

SLAM Algo. (4 Main in Thrun - Probabilistic Robotics)

EKF/UKF SLAM

Extension of EKF localization to online SLAM problem Very commonly used, especially for improving vehicle state estimation when static features are available

GraphSLAM

- Solves the full SLAM problem by storing data as a set of constraints between variables Can create maps based on 1000s of features, not possible with EKF due to matrix inversion limitations
- Many variations, all boild down to a nonlinear optimization that needs to be fast to be
- (Predominant area of research over the last decade) Super-impressive results

Sparse Extended Information Filter SLAM

Approximate application of Extended Information Filter to SLAM problem
 Can create a sparse (nearly diagonal) information matrix, which also enables tracking many features, constant time udpates

FastSLAM

Solves the online SLAM problem simultaneously by combining particles and EKFs

Rao-Blackwellized Particle Filters

- Can track multiple correspondences with different particles
- Show robustness to incorrect correspondence
- Most active area of research, large scale mapping
- => Occupancy Grid SLAM : FastSLAM with mapping by each pixel

Main Focus

- EKF SLAM
 - quick SLAM solution, great for improving vehicle state estimation from information about the environment
 Not too robust to incorrect feature correspondence

A more robust approach, particularly with respect to feature correspondece
 Computationally more expensive, especially with higher dimension vehicle state
 Occupancy Grid SLAM

Note

- Attempting to estimate nT + fM states with MT, 2MT, 3MT Measurements, depending on sensor

T: number of time steps
M: number of features
n: number of vehicle state variables
f: number of map feature variables
Always use many sensors as possible: Wheel encoders + Lidar + IMU

EKF SLAM

- Variables
 - Full State
 - Vehicle States
 - Feature locations
 - Signatures (Not included here)

$$x_t = egin{bmatrix} x_t^r \ m_x^1 \ m_y^1 \ dots \ m_x^M \ m_y^M \end{bmatrix}$$

- Brief: Full state mean and covariance
 - Components for vehicle state and map state

$$\mu_t = egin{bmatrix} \mu_t^r \ \mu_t^m \end{bmatrix} \leftarrow Robot \ \leftarrow Map \end{pmatrix} \Sigma_t = egin{bmatrix} \Sigma_t^{rr} & \Sigma_t^{rm} \ \Sigma_t^{mr} & \Sigma_t^{mm} \end{bmatrix}$$

• [Recall 2-wheel robot] Models:

С

$$egin{bmatrix} x_1^r \ x_2^r \ x_2^r \end{bmatrix} = egin{bmatrix} x \ y \ heta \end{bmatrix} \qquad egin{bmatrix} u_1 \ u_2 \end{bmatrix} = egin{bmatrix} v \ \omega \end{bmatrix}$$

• Motion models:

$$egin{bmatrix} x^r_{1,t} \ x^r_{2,t} \ x^r_{3,t} \end{bmatrix} = g(x^r_{t-1}, u_t, \epsilon_t) = egin{bmatrix} x^r_{1,t} + u_{1,t} \cos x^r_{3,t-1} dt \ x^r_{2,t} + u_{1,t} \sin x^r_{3,t-1} dt \ x^r_{3,t} + u_{2,t} dt \end{bmatrix} + \epsilon_t \sim \mathcal{N}(\mu = 0, \, \sigma^2 = R_t)$$

- Measurement models:
 - ullet Relative range and / or bearing to numerous features m^i in field of view

$$ullet$$
 Define $\delta x_t^i = m_x^i - x_{1,t}$, $\, \delta y_t^i = m_y^i - x_{2,t} \,$

•
$$r_t^i = \sqrt{(\delta x_t^i)^2 + (\delta y_t^i)^2}$$

■ Then:

$$egin{aligned} \begin{bmatrix} y_{1,t}^i \ y_{2,t}^i \end{bmatrix} = h^i(x_t,\delta_t) = egin{bmatrix} \phi_t^i \ r_t^i \end{bmatrix} = egin{bmatrix} an^{-1}\left(rac{\delta y_t^i}{\delta x_t^i}
ight) - x_{3,t}^r \ \sqrt{(\delta x_t^i)^2 + (\delta y_t^i)^2} \end{bmatrix} + \delta_t \sim \mathcal{N}(\mu=0,\,\sigma^2=Q_t) \end{aligned} \qquad egin{bmatrix} Beaing \ Range \end{aligned}$$

Vehicle Prior

- In localization or mapping, coordinate system was clearly defined
- Localization relative to fixed map
 Mapping relative to known vehicle motion
 In pure SLAM, neither is known, so coordinate system is arbitrary choice
 - Assume vehicle starts at origin with zero heading
 - Know this with absolute certainty

$$oldsymbol{x}_0^r = egin{bmatrix} 0 & 0 & 0\end{bmatrix}^T & \Sigma_0^{rr} = egin{bmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}$$

Map Prior

- No clue where any of the features are:
 - Theoretically we may say:

$$x_0^m = \left[egin{array}{cccc} 0 & 0 & \dots & 0 \end{array}
ight]^T & \Sigma_0^{rr} = egin{bmatrix} \infty & 0 & 0 \ 0 & \ddots & 0 \ 0 & 0 & \infty \end{array}
ight]$$

- In Practice, **not very useful:**
 - Linearization with all features assumed to be at the origin performs very poorly

Inversion with infinite diagonal numerically difficult Preferred Method:

- Initialize each feature location based on first set of measurements
 - Measurements must uniquely define feature position
 - Bearing and range + vehicle state required

$$\mu_t^i = \begin{bmatrix} x_{1,t}^r + y_{2,t}^i \cos(y_{1,t}^i + x_{3,t}^r) \\ x_{2,t}^r + y_{2,t}^i \cos(y_{1,t}^i + x_{3,t}^r) \end{bmatrix}$$
 Can define covariance based on measurement noise and vehicle state uncertainty, or predefine explicitly

- If initial measurements are insufficient, can accumulate multiple measurements before initialization
 - Bearing only SLAM (for vision data)

o Sketch:

Description	Sketch
1. A vehicle and a set of features, perfect knowledge of vehicle location initially	* * *
2. The vehicle measures the location of two featuers and moves one time step forward - Measurement and motion uncertainty	* * *
3. At the next time step: two new features are observed with more uncertainty - Combination of vehicle and measurement uncertainty - Motion uncertainty continues to grow	* *
4. The next set of measurements includes a feature that has already observed The vehicle uncertainty can be reduced The additional features are not as uncertain	*

The result: as old features are discarded and new features are added, uncertainty grows

EKF SLAM Algorithm

- Prediction step
 - Only vehicle states and covariance change
 - Map states and covariance are unaffected
 - Quick 3x3 update

$$egin{aligned} G_t &= rac{\partial}{\partial x_{t-1}^r} g(x_{t-1}^r, u_t) igg|_{x_{t-1}^r = \mu_{t-1}^r} \ ar{\mu}_t^r &= g(\mu_{t-1}^r, u_t) \ ar{\Sigma}_t^{rr} &= G_t \Sigma_{t-a}^{rr} G_t^T + R_t \end{aligned}$$

• Linearization of Motion Model, as before:

0

$$G_t = rac{\partial}{\partial x_{t-1}^r} g(x_{t-1}^r, u_t) = egin{bmatrix} 1 & 0 & -u_{1,t} \cos x_{3,t-1}^r dt \ 0 & 1 & u_{1,t} \sin x_{3,t-1}^r dt \ 0 & 0 & 1 \end{bmatrix}$$

- Measurement Update, for feature i
 - Since each measurement pair depends on one feature,
 - independence means updates can be performed one feature at a time

0

$$egin{aligned} H^i_t &= rac{\partial}{\partial x_t} h^i(x_t)igg|_{x_t = \mu_t} \ K^i_t &= ar{\Sigma}_t (H^i_t)^T (H^i_t ar{\Sigma}_t (H^i_t)^T + Q_t)^{-1} \ \mu_t &= ar{\mu}_t + K^i_t (y_t - h(ar{\mu}_t)) \ \Sigma_t &= (1 - K_t H^i_t) ar{\Sigma}_{t-1} \end{aligned}$$

• Linearization of measurement Model:

0

$$H^i_t = rac{\partial}{\partial x_t} h(x_t) = egin{bmatrix} rac{dy^i_t}{r^2} & rac{-dx^i_t}{r^2} & -1 & 0 & \dots & 0 & rac{-dy^i_t}{r^2} & rac{dx^i_t}{r^2} & 0 & \dots & 0 \ rac{-dx^i_t}{r^2} & rac{-dy^i_t}{r^2} & 0 & 0 & \dots & 0 & rac{dx^i_t}{r^2} & rac{dy^i_t}{r^2} & 0 & \dots & 0 \end{bmatrix}$$

- \circ Derivatives w.r.t. m^i in appropriate columns
- Example:

Example

- 22 features in two lines
- Same circular motion as for localization example
- Field of view similar to camera
 - +/- 45 degrees
 - o 5 m range

Discussion

- Vehicle state error correlates feature estimates
 - If vehicle state known exactly (mapping) features could be estimated independently
 Knowing more about one feature improves estimates about entire map
 Covariance matrix divided in 3x3 structure

- Vehicle state and two sets of features
 Each row of features strongly connected
 Rows weakly connected by uncertain multiple time step motion
 Growth in state uncertainty without loop closure
- - When first feature is re-observed, all estimates improve

Correction information carried in covariance matrix
 Wrong correspondence can be catastrophic

- - Linearization about wrong point can cause deterioration of estimate, divergence of covariance
- Strategies:
 - Provisional Feature List

 - Features on the list are tracked identically to other features
 Not used to update vehicle state or vehicle/map covariance
 Once trace of covariance drops below threshold, incorporate feature into map
 - - Features are selected so as to avoid correspondence issues
 - Spatially distributed
 Distinct signatures
 Feature Tracking and Windowed Correspondence
 - Features can be expected to move in a consistent way from frame to frame, so only a subset of features need be considered for matches