การทดลองที่ 2 เรื่อง ลักษณะเฉพาะทางไฟฟ้าของไดโอด

วัตถุประสงค์

เพื่อศึกษาลักษณะเฉพาะทางไฟฟ้าของไดโอดโดยความสัมพันธ์ระหว่างกระแสไฟฟ้าและความต่างศักย์ ทฤษฎี

1.สารกึ่งตัวนำ (Semiconductors)

สารกึ่งตัวนำมีโครงสร้างของแถบพลังงานแบบเคียวกับฉนวน แต่มีช่องว่างพลังงานเล็กกว่ามาก โดยมี ค่าประมาณ 1eV ตารางที่ 1.1 แสดงค่าช่องว่างพลังงานของวัสคุบางชนิด โครงสร้างของแถบพลังงานของสารกึ่ง ตัวนำแสดงในรูปที่ 1.1 เนื่องจากระดับเฟอร์มิอยู่ในตำแหน่งที่ใกล้กับกึ่งกลางของช่องว่างพลังงานของสารกึ่ง ตัวนำ และ Eg มีค่าที่เล็กพอที่จะทำให้จำนวนอิเล็กตรอนเกิดการกระตุ้นด้วยอุณหภูมิจากแถบวาเลนซ์ไปยังแถบ นำ และเนื่องจากการมีระดับพลังงานที่ว่าง อยู่มากมายเหนือระดับพลังงานที่ถูกเติมเต็มด้วยปัจจัยจากอุณหภูมิใน แถบนำ การป้อนความต่างสักย์ค่าเล็กน้อยก็ทำให้อิเล็กตรอนขึ้นไปอยู่ในแถบนำในสถานะพลังงานที่เป็นไปได้ ทำให้เกิดเป็นกระแสในระดับปานกลาง

ผลึก	E_{g} (eV)		
мын	0 K	300 K	
Si	1.17	1.14	
Ge	0.74	0.67	
InP	1.42	1.34	
GaP	2.32	2.26	
GaAs	1.52	1.42	
CdS	2.58	2.42	
CdTe	1.61	1.56	
ZnO	3.44	3.2	
ZnS	3.91	3.6	

ตารางที่ 1.1 ค่าช่องว่างพลังงานของสารกึ่งตัวนำบางชนิด

ร**ูปที่ 1.1** แถบพลังงานของสารกึ่งตัวนำชนิดหนึ่งที่ระดับอุณหภูมิปกติ (T ≈ 300 K) ค่าช่องว่างพลังงาน มีค่าน้อยกว่าช่องว่างพลังงานในฉนวนมาก

ที่ T = 0 K, อิเล็กตรอนทั้งหมดในวัสดุเหล่านี้จะอยู่ในแถบวาเลนซ์ และไม่มีพลังงานที่จะกระตุ้น อิเล็กตรอนข้ามช่องว่างพลังงาน ดังนั้นสารกึ่งตัวนำจึงเป็นตัวนำที่ไม่ดีในสภาวะที่มีอุณหภูมิต่ำมากๆ และ เนื่องจากการกระตุ้นด้วยอุณหภูมิให้กับอิเล็กตรอนเพื่อที่จะข้ามช่องว่างแคบๆ มีความเป็นไปได้มากขึ้นที่สภาวะ อุณหภูมิสูง ค่าการนำไฟฟ้าของสารกึ่งตัวนำจึงเพิ่มขึ้นอย่างมากด้วยอุณหภูมิ ซึ่งตรงข้ามกับค่าการนำไฟฟ้าใน โลหะอย่างยิ่ง ที่จะลดลงอย่างช้าๆ เมื่ออุณหภูมิเพิ่มขึ้นประจุพาหะในสารกึ่งตัวนำอาจจะเป็นประจุลบ ประจุบวก หรือประจุทั้งสอง เมื่ออิเล็กตรอนตัวหนึ่งเคลื่อนที่จากแถบวาเลนซ์ไปสู่แถบนำ อิเล็กตรอนนั้นจะทิ้งที่ว่างเอาไว้ เรียกว่า โฮล (hole) ในแถบวาเลนซ์ที่มีอิเล็กตรอนตัวอื่นอยู่ โฮลนี้ (บริเวณที่ขาดอิเล็กตรอน) ประพฤติตัวราวกับ เป็นประจุพาหะในลักษณะที่อิเล็กตรอนอิสระที่อยู่บริเวณใกล้ๆ สามารเคลื่อนที่มายังโฮล เมื่อใดก็ตามที่ อิเล็กตรอนทำเช่นนั้นจะเป็นการสร้างโฮลใหม่ในตำแหน่งที่อิเล็กตรอนทิ้งมา ดังนั้นผลสืบเนื่องสุทธิสามารถ แสดงได้ในรูปของการเคลื่อนที่ของโฮลในเนื้อวัสดุในทิสทางที่ตรงกันข้ามกับทิสทางการเคลื่อนที่ของ อิเล็กตรอน โฮลประพฤติตัวราวกับว่าเป็นอนุภาคที่มีประจุ +e

ผลึกสารกึ่งตัวนำบริสุทธิ์ที่ประกอบด้วยชาตุเพียงชนิดเดียวหรือสารประกอบเพียงชนิดเดียว เรียกว่า สารกึ่งตัวนำอินทรินสิก (intrinsic semiconductor) ในสารกึ่งตัวนำเหล่านี้จำนวนอิเล็กตรอนนำไฟฟ้าและจำนวน โฮลจะเท่ากัน การจับคู่กันของประจุเหล่านี้เรียกว่า คู่อิเล็กตรอน-โฮล (electron-hole pairs) เมื่อปรากฏว่ามี สนามไฟฟ้าจากภายนอกโฮลจะเคลื่อนที่ในทิศทางของสนามไฟฟ้าและอิเล็กตรอนตัวนำจะเคลื่อนที่ในทิศ ทางตรงข้ามกับสนามไฟฟ้า (รูปที่ 1.2) เนื่องจากอิเล็กตรอนและโฮลเคลื่อนที่ตรงข้ามกัน การเคลื่อนที่ของประจุ ทั้งสองจึงทำให้เกิดเป็นกระแสในทิศทางเคียวกัน

รูปที่ 1.2 การเคลื่อนที่ของประจุ (โฮลและอิเล็กตรอน) ในสารกึ่งตัวนำอินทรินสิกชนิคหนึ่ง

สารกึ่งตัวนำที่ถูกเจือ (Doped Semiconductors)

เมื่อมีการเติมสารเจือลงในสารกึ่งตัวนำจะทำให้เกิดการเปลี่ยนแปลงทั้งโครงสร้างแถบพลังงานของสารกึ่งตัวนำ
และค่าสภาพด้านทานไฟฟ้า การเติมสารอื่นผสมลงไปที่เรียกว่า การเจือ (doping) มีความสำคัญอย่างยิ่งในการ
ควบคุมค่าการนำไฟฟ้าในสารกึ่งตัวนำ ตัวอย่างเช่น ในกรณีที่อะตอมตัวหนึ่งมีอิเล็กตรอนวงนอกสุดห้าตัว เช่น
สารหนู ถูกนำไปเดิมให้กับสารกึ่งดัวนำที่เป็นธาตุหมู่ IV อิเล็กตรอนสี่ตัวจะจับเป็นพันธะโควาเลนต์กับอะตอม
สารกึ่งตัวนำ และเหลือเป็นอิเล็กตรอนว่างอยู่หนึ่งตัว (รูปที่ 1.3a) อิเล็กตรอนที่เกินมานี้เกือบจะเป็นอิสระกับ
อะตอมหลัก และเราสามารถสร้างเป็นแบบจำลองโดยให้มีระดับพลังงานเกิดขึ้นในช่องว่างพลังงานที่ตำแหน่ง
ด้านล่างใกล้กับแถบนำ (รูปที่ 1.3b) การมีอะตอมเพนตะวาเลนต์ (pentavalent atom) ส่งผลให้เกิดการมี
อิเล็กตรอนในโครงสร้าง ดังนั้นจึงถูกเรียกว่าเป็น อะตอมผู้ให้ (donor atom) เนื่องจากระยะห่างระหว่างระดับ
พลังงานของอิเล็กตรอนของอะตอมผู้ให้กับขอบล่างของแถบนำมีค่าน้อย (โดยทั่วไปแล้วมีค่าประมาณ 0.05 eV)
ปริมาณการกระดุ้นด้วยอุณหภูมิเพียงเล็กน้อยก็เพียงพอที่จะทำให้อิเล็กตรอนเหล่านี้เคลื่อนที่ไปสู่แถบนำได้ (จำ
ไว้ว่าพลังงานเฉลี่ยของอิเล็กตรอนตัวหนึ่งที่อุณหภูมิห้องมีค่าประมาณ kBT ≈0.025 eV) สารกึ่งตัวนำที่โด๊ป
ด้วยอะตอมผู้ให้ถูกเรียกว่า สารกึ่งตัวนำชนิด n (n-type semiconductors) เนื่องจากเป็นสารที่มีประจุพาหะข้าง
มากเป็นอิเล็กตรอนซึ่งมีประจุลบ (negatively charged)

- รูปที่ 1.3 (a) ภาพสองมิติของสารกึ่งตัวนำที่ประกอบไปด้วยอะตอมธาตุหมู่ IV (สีเข้ม) และอะตอม สารเจือ (สีจาง) ที่มีอิเล็กตรอนวงนอกสุดห้าตัว
 - (b) แผนภาพแถบพลังงานของสารกึ่งตัวนำที่มีอิเล็กตรอนเกือบเป็นอิสระของอะตอมสารเจือ อยู่ในช่องว่างพลังงาน โดยอยู่ข้างล่างในบริเวณใกล้ๆ ขอบล่างสุดของแถบนำ

- รูปที่ 1.4 (a) ภาพสองมิติของสารกึ่งตัวนำที่ประกอบไปด้วยอะตอมธาตุหมู่ IV (สีเข้ม) และอะตอมสาร (สีจาง) ที่มีอิเล็ตรอนวงนอกสุดสามตัว
 - (b) แผนภาพแถบพลังงานของสารกึ่งตัวน้ำที่ระดับพลังงานตัวแทนของอะตอมสารเจือที่มี อิเล็กตรอนวงนอกสุดสามตัวอยู่ในช่องว่างพลังงาน โดยจะอยู่ข้างบนในบริเวณที่ใกล้ๆ ขอบ บนสุดของแถบวาเลนซ์

ถ้าสารกึ่งตัวนำหมู่ IV ถูกได้ปด้วยอะตอมที่มีอิเล็กตรอนวงนอกสุดสามตัวดังเช่นใน อินเดียม (indium)
และอะลูมิเนียม (aluminum) อิเล็กตรอนสามตัวจะรวมเป็นพันธะ โควาเลนต์กับอะตอมสารกึ่งตัวนำที่อยู่ใกล
เคียง เหลือที่ว่างสำหรับอิเล็กตรอนไว้หนึ่งที่ – โฮลตัวหนึ่ง - ซึ่งจะเป็นพันธะที่สี่ถ้ามีอิเล็กตรอนในอะตอม
สารเจื่อมากพอที่จะรวมตัวเป็นพันธะ (รูปที่ 1.4a) ในสถานะการณ์นี้สามารถสร้างแบบจำลองได้โดยการวาด
ระดับพลังงานในช่องว่างพลังงานในบริเวณที่อยู่เหนือแถบวาเลนซ์ดังในรูปที่ 1.4b อิเล็กตรอนจากแถบวาเลนซ์
ที่มีพลังงงานเพียงพอจากอุณหภูมิห้องเข้าไปเดิมระดับพลังงานที่ว่างนี้จะเหลือโฮลทิ้งไว้ตัวหนึ่งในแถบวาเลนซ์
โฮลตัวนี้สามารถนำกระแสไฟฟ้าได้เมื่อมีสนามไฟฟ้าปรากฏอยู่ เนื่องจากอะตอมไตรวาเลนต์ (trivalent atom)
ใด้รับอิเล็กตรอนจากแถบวาเลนซ์ สารเจือประเภทนี้จึงถูกเรียกว่า อะตอมผู้รับ (acceptor atoms) สารกึ่งตัวนำที่
ถูกโด๊ปด้วยสารเจือแบบไตรวาเลนต์ (ผู้รับ) มีชื่อว่า สารกึ่งตัวนำชนิด p (p-type semiconductor) เนื่องจากประจุ
พาหะข้างมากคือโฮลที่มีประจุบวก (positively charged holes) เมื่อการนำไฟฟ้าในสารกึ่งตัวนำเป็นผล
เนื่องมาจากสารเจือผู้รับหรือสารเจือผู้ให้ วัสดุนั้นจึงถูกเรียกว่า สารกึ่งตัวนำเอ็กซ์ทรินสิก (extrinsic
semiconductor) ช่วงความหนาแน่นของสารเจือทั่วไปสำหรับสารกึ่งตัวนำเอ็กซ์ทรินสิกคือ 1013 ถึง 1019 cm⁻³
ขณะที่ค่าความหนาแน่นของอิเล็กตรอนในสารกิ่งดัวนำทั่วไปมีค่า 1021 cm⁻³ โดยประมาณ

2.อุปกรณ์สารกึ่งตัวนำ

อิเล็กทรอนิกส์ในช่วงครึ่งแรกของสตวรรษที่ 20 นั้นสร้างจากหลอดสุญญากาศ ซึ่งทำงานโดยการผ่าน อิเล็กตรอนไปในบริเวณที่ว่างระหว่างแคโทด (cathode) และแอโนด (anode) ทรานซิสเตอร์ถูกประดิษฐ์ขึ้นในปี ค.ศ. 1948 ทำให้เกิดการเปลี่ยนแปลงจากการใช้หลอดสุญญากาศ ไปสู่การใช้สารกึ่งตัวนำมาประดิษฐ์เป็น อุปกรณ์อิเล็กทรอนิกส์ ในยุคอิเล็กทรอนิกส์นี้ได้ดำเนินมาอย่างต่อเนื่องเป็นเวลาหลายสิบปี ในยุคต่อไปของ อิเล็กทรอนิกส์ในอนาคตอันใกล้นี้จะมีการนำอุปกรณ์จากนาโนเทคโนโลยี เช่น ควอนตัมดอต (quantum dots) และโครงสร้างนาโนแบบอื่นๆ (nanoscale stretures) มาใช้แทนอุปกรณ์อิเล็กทรอนิกส์เดิม

ในการทดลองนี้จะเป็นการศึกษาสมบัติทางไฟฟ้าของได โอดแบบรอยต่อ ซึ่งยังคงมีการใช้งานอย่าง กว้างขวาง และจะยังคงใช้งานต่อไปในอนาคตอีกเป็นเวลาหลายปี

ใดโอดแบบรอยต่อ (The Junction Diode)

หน่วยพื้นฐานของอุปกรณ์สารกึ่งตัวนำถูกสร้างขึ้นจากการเชื่อมต่อสารกึ่งตัวนำชนิด p กับสารกึ่งตัวนำ ชนิด n ให้เกิดเป็น รอยต่อ p-n (p-n junction) โดย **ไดโอดแบบรอยต่อ** (junction diode) เป็นอุปกรณ์ชนิดหนึ่งที่

เกิดจากรอยต่อ p-n รอยต่อเคียว บทบาทการทำงานของไดโอดชนิดต่างๆ ก็คือ การที่สามารถผ่านกระแสไฟฟ้า ได้ในทิศทางหนึ่ง และไม่สามารถผ่านกระแสไฟฟ้าได้ในทิศทางตรงข้าม ดังนั้นไดโอดจึงประพฤติตัวเป็นวาล์ว ให้กระแสไฟฟ้าไหลได้ทางเดียว

รอยต่อ p-n ที่แสดงอยู่ในรูปที่ 1.5a ประกอบด้วยส่วนสำคัญที่อยู่ในสามบริเวณ: บริเวณ p บริเวณ n และบริเวณส่วนขยายในระดับหลายไมโครเมตรไปสู่ในแต่ละด้านของรอยต่อที่เรียกว่า บริเวณดีพลีชัน (depletion region) บริเวณดีพลีชันอาจมองได้เป็นบริเวณที่เกิดจากสองบริเวณของรอยต่อที่เชื่อมกัน อิเล็กตรอน ผู้ให้จากด้าน n ที่เป็นอนุภาคที่เคลื่อนที่ได้ที่อยู่ใกล้กับรอยต่อ (พื้นที่สีเข้มด้านขวามือในรูปที่ 1.5a) แพร่เข้าไปสู่ ด้าน p และเข้าเติมเต็มกับโฮลที่อยู่ในบริเวณนั้น เหลือทิ้งไว้เพียงใอออนบวกที่ไม่สามารถเคลื่อนที่ได้ เมื่อ กระบวนการนี้เกิดขึ้นเราก็สามารถจำลองแบบโฮลที่ถูกเติมเต็มด้วยกระบวนการแพร่เข้าสู่ด้าน n เหลือทิ้งไว้เป็น บริเวณ (พื้นที่สีเข้มด้านซ้ายมือในรูปที่ 1.5a) ไอออนลบที่ไม่สามารถเคลื่อนที่ได้ เนื่องจากทั้งสองด้านของ บริเวณดีพลีชันในแต่ละด้านเกิดเป็นประจุสุทธิที่ก่าสนามไฟฟ้าภายในอยู่ในช่วง 10 ให้ Vcm เกิดขึ้นที่ บริเวณดีพลีชัน (ดูรูปที่ 1.5b) สนามไฟฟ้านี้ทำให้เกิดแรงทางไฟฟ้ากับประจุพาหะเคลื่อนที่ได้ที่หลงเหลืออยู่ให้ ออกไปจากบริเวณดีพลีชัน ดังชื่อที่ตั้งให้กับริเวณนี้เนื่องจากเป็นบริเวณที่ปลอดจากประจุพาหะเคลื่อนที่ได้ สนามไฟฟ้าภายในนี้ทำให้เกิดเป็นความต่างศักย์ภายใน (ΔV_0) ที่ป้องกันการแพร่ต่อไปของโฮลและอิเล็กตรอน ข้ามรอยต่อ และทำให้กระแสในรอยต่อเป็นศูนย์เมื่อไม่มีการป้อนความต่างศักย์จากภายนอก

รูปที่ 1.5 (a) การจัดเรียงทางกายภาพของรอยต่อ p-n

- (b) องค์ประกอบ E_x ของสนามไฟฟ้าภายใน เทียบกับ x ของรอยต่อ p-n
- (c) ความต่างศักย์ใฟฟ้าภายใน ($\Delta {
 m V_0}$) เทียบกับ x ของรอยต่อ p-n

รูปที่ 1.6 (a) รอยต่อ p-n รอยหนึ่งภายใต้สภาวะ ใบอัสตรง แผนภาพตรงกลางแสดงให้เห็นศักย์ใฟฟ้าที่
ถูกป้อนให้กับแต่ละปลายของรอยต่อ ภาพล่างเป็นแผนภาพวงจรไฟฟ้าแสดงให้เห็นแบตเตอรี่ ที่สามารถ
ปรับค่าแรงดันไฟฟ้าได้ แผนภาพบนแสดงให้เห็นว่าศักย์ไฟฟ้ามีการเปลี่ยนแปลงข้ามรอยต่ออย่างไร
เส้นประแสดงความต่างศักย์ภายใต้สภาวะของรอยต่อที่ไม่มีการไบอัส

- (b) เมื่อแบตเตอรีต่อกลับทิศ และรอยต่อ p-n อยู่ในสภาวะ ใบอัสย้อนกลับ กระแสจะมีค่าน้อย มาก
 - (c) กราฟคุณลักษณะจริงของรอยต่อ p-n

การทำงานของรอยต่อในฐานะเป็นไดโอคสามารถเข้าใจได้ง่ายที่สุดด้วยการพิจารณากราฟความต่าง ศักย์ที่แสดงในรูปที่ 1.5c ถ้าแรงคันไฟฟ้าค่าหนึ่ง ($\Delta \mathbf{V}$) ถูกป้อนให้กับรอยต่อในลักษณะที่ด้าน p ต่อกับปลาย บวกของแหล่งจ่ายแรงคันดังที่แสดงในรูปที่ 1.6a ความต่างศักย์ภายใน ($\Delta \mathbf{V}_0$) คร่อมรอยต่อนั้นจะลดลงคังที่ได้ แสดงในภาพบน การลดลงของความต่างศักย์นี้ส่งผลในรูปของกระแสที่มีการเพิ่มขึ้นแบบเอ็กโพเนลเชียลกับค่า แรงคันตรงที่เพิ่มขึ้น หรือ *ไบอัสตรง* (forward bias) ในส่วนการ*ไบอัสย้อนกลับ* (reverse bias) (เมื่อด้าน n ของ รอยต่อต่อเข้ากับปลายบวกของแหล่งจ่ายแรงคันไฟฟ้า) ความต่างศักย์นี้ส่งผลในรูปของกระแสย้อนกลับค่าเล็กๆ ซึ่งสามารถมีค่าถึงค่าอิ่มตัว (satulation value) \mathbf{I}_v ได้อย่างรวดเร็ว ความสัมพันธ์กระแส-แรงคันของไดโอดใน อุดมคติคือ

$$I = I_o(e^{\frac{q\Delta V}{k_B T}} - 1) \tag{1.1}$$

เมื่อ q เป็นตัวแทนของขนาดประจุอิเล็กตรอน $k_{\scriptscriptstyle B}$ คือค่าคงที่ของโบทซ์มานน์ และ T คืออุณหภูมิ สัมบูรณ์ รูปที่ 1.6c แสดงกราฟคุณลักษณะ I- ΔV ของรอยต่อจริง p-n ซึ่งแสดงให้เห็นคุณสมบัติของใดโอด

ดังนั้นในทางอิเล็กทรอนิกส์จึงนิยมนำไดโอดมาสร้างเป็นวงจรที่ใช้กำหนดทิศทางการไหลของ กระแสไฟฟ้า เช่น สร้างเป็นวงจรเรียงกระแสเพื่อเปลี่ยนจากไฟฟ้ากระแสสลับเป็นไฟฟ้ากระแสตรง เป็นต้น ใน การทดลองนี้จะทำการศึกษาการต่อวงจรไดโอดแบบ forward bias พร้อมทั้งสร้างกราฟ I-V เพื่อแสดง ลักษณะเฉพาะของไดโอด

อุปกรณ์

1.	ชุควงจรใค โอค	1	ชุด
2.	คิจิตอลมัลติมิเตอร์ (ใช้วัดกระแสและแรงคัน)	2	ตัว
3.	แหล่งจ่ายไฟกระแสตรง	1	ตัว
1	สายไฟ	6	เส้า

วิธีทำการทดลอง

1. ต่อวงจรคังรูปที่ 1.7

รูปที่ 1.7 วงจรการทคลองใคโอค

- 2. ต่อวงจรไดโอดเป็น forward bias
- 3. ขณะปิดสวิทซ์ ถ้า โวลต์มิเตอร์ไม่อ่านค่าเป็นศูนย์ให้ปรับตัวต้านทานจนกระทั่งโวลต์มิเตอร์อ่านค่าได้ ศูนย์
- 4. สับสวิทซ์ไปที่ตำแหน่ง ON ค่อยๆ ปรับตัวต้านทานปรับค่าได้ จนกระทั่ง โวลต์มิเตอร์ (V_D) อ่านค่าได้ 0.05~V อ่านค่ากระแสไฟฟ้า (I_D) บันทึกผลลงในตาราง
- 5. ปรับค่าความต้านทานไปเรื่อยๆ จนกระทั่งความต่างศักย์ (V_D) เป็นไปตามตารางบันทึกผล อ่านค่า I_D ที่ ได้ (ห้ามหมุนตัวต้านทานจนค่า V_D เกิน 0.75~V) ทำซ้ำ 3 ครั้ง
 - 6. เขียนกราฟระหว่าง ${
 m I}_{
 m D}$ - ${
 m V}_{
 m D}$ ให้ ${
 m I}_{
 m D}$ เป็นแกน у และ ${
 m V}_{
 m D}$ ให้เป็นแกน ${
 m x}$ สังเกตลักษณะกราฟที่ได้

บันทึกผลการทดลองที่ 2 ลักษณะเฉพาะทางไฟฟ้าของไดโอด

()	I _D (mA)			
$V_{D}(V)$	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เฉลี่ย
0	6	0	0	0
0.05	0	0	0	0
0.10	0	0	0	0
0.15	0	0	0	0
0.20	0	0	0	0
0.25	0	0	0	O
0.30	0	0	0	0
0.35	0	0	Ô	0
0.40	0.001	0.001	0.001	0,001
0.45	0.003	0.003	0.004	0.003
0.50	0.009	0.009	0.009	0.009
0.55	0.026	0.024	0.023	0.024
0.60	0.058	0.059	0.061	0.059
0.65	0.140	0.137	0.137	0.138
0.70	0.307	0.302	0.306	0.305

วิธีการคำนวณ

สรุปและวิจารณ์ผลการทดลอง