

CDRH HPC Clusters

CDRH HPC Team

Stuart Barkley Rusif Eyvazli Nadia Guimont Fu-Jyh Luo Mike Mikailov Nicholas Petrick

HPC Computational Environments

- CDRH Betsy/Bluefin Environments
 - General purpose HPCs to support a wide array of projects
 - Web-based bioinformatics analysis (Galaxy)
 - Artificial intelligence/machine learning
 - Genomics, next-generation sequence analysis and alignment,
 - Modeling and simulation
 - Statistical analysis and more

Betsy Cluster

per node

Bluefin Cluster

- Bluefin is a "mobile" computing platform
 - Currently located at CVM facility in Beltsville

Betsy/Bluefin Utilization

Scientific Applications

300 FDA-approved applications:

- Computational Chemistry: Amber, Autodock, Desmond, LAMMPS, ...
- Computational Fluid Dynamics: OpenFoam
- Image Analysis: CellProfiler, Freesurfer, FSL, ImageJ ...
- Linkage/Phylogenetics: CD-HIT, GARLI, Mothur, PHYLOSHOP, POY, QIIME ...
- Mass Spectrometry: TPP (PeptideProphet, ProteinProphet, ASAPRatio, ...)
- Mathematical/Statistics/Modeling & Simulation: R, SAS, Chaste, FluTE, GridMathematica, ...
- **Next-Generation Sequencing:** ABySS, ALLPATHS-LG, Bcl2fastq, Bedtools, Bowtie, Bowtie2, Bwa, CCMpred, Cufflinks, GATK, GNUMAP, HIVE, Kraken, Mira, Picard, Samtools, Tophat
- Sequence Analysis & Alignment: Blast, Blat, Cortex, Dfam, Exonerate, Geneious, GotoBLAS2, HMMER, Jalview, JELLYFISH, Mauve, mpiBLAST, Mugsy, MUMmer, MUSCLE, NovoAlign, ParSNP, Pfam, PRINSEQ, ScalaBLAST, SGA Assembler, SNP Pipeline, SPAdes, SUPERFAMILY, Tablet
- Multi-paradigm environments: Parallel MATLAB, Octave, R, Galaxy, ...

Galaxy Web Annalistic Platform

Open-source platform

- Enables researchers without informatics expertise to perform computational analyses through web
 - Users upload data and define/run analysis pipelines
- Galaxy Tutorials
 - Galaxy 101. How to create workflows.
 - <u>Uploading data</u> How to get data into Galaxy.
 - Learn Galaxy

MATLAB Parallel Server

MATLAB Parallel Server

- Lets users scale MATLAB® and Simulink® programs to
 HPC cluster
- Runs programs/ simulations as scheduled applications on cluster
- Desktop license profile dynamically enabled on cluster, so no need to supply MATLAB licenses for cluster

HPC Application Scaling

Mike Mikailov CDRH/OSEL/DIDSR

Process Scaling

Before Concatenation, parallelization After parallelization summarization Single run Many parallel runs within minutes max=2000 [partial results for (i in 1:max) i=2000concatenation] i=1[computations] [computations] [computations] [partial results-1] [partial results-2000] [summarization] [summarization] [final results] [final results]

Data Scaling

Before scaling: Time needed T

After scaling: Time needed ~T/N

Scaling Techniques

Scaling Technique	Advantages	Disadvantages
Multi-threading,	 Multiple parallel threads 	 Scaling is limited to cores on one node
OpenMP	within a node	
MPI	 Multiple parallel threads 	 Overhead for I/O coordination and load
	across one or more nodes	balancing
		 In practice, all requested resources must be
		available to start
		 No checkpointing
		 Cannot exceed max capacity of the cluster
Scientific	 Scalable computational or 	 Does not offer integrated approach for
workflows,	data manipulation tasks on	scaling multi-level nested loops or random
MapReduce, Spark,	one or more nodes	number generation
Hadoop		
Single loop	 Multiple parallel tasks on 	 Does not parallelize multilevel nested loops
parallelization	one or more nodes	
Array-based	 Multiple parallel tasks across 	 Overhead for setup/convergence phases
parallelization	one or more nodes	

HPC DLNN Project

Weizhe Li, Weijie Chen, Mike Mikailov CDRH/OSEL/DIDSR

DLNN AI/ML with WSI data

- DLNN pipeline for digital pathology
- Training
 - Normal/tumor image patches randomly extracted
 - Normal (green)
 - Tumor (red)
 - Patches used to optimize NN using GPUs
 - HPC implementation generates pixel-wise heatmap via a sliding window

DLNN AI/ML with WSI data

- Scaling DDLN testing on HPC
 - Reformat/group patches into HDF5 file format for improved parallel I/O
 - Job splitting/scaling for parallel HPC implementations

DLNN AI/ML with WSI data

