Graphs

A graph¹ is a set of nodes² V connected by a set of edges E.

The set V can be anything but the set E must be a set of 2subsets of V. For example, V might be the set of cities in Ireland and E might represent motorways connecting cities. A motorway in this case would be defined by the two cities it connects.

Set Notation

A set is a collection of objects, usually denoted using curly braces.³ For example, the set A below contains the three objects 1, 2, and 3. The objects are usually called elements of the set.

$$A = \{1, 2, 3\}$$

Sets can be infinite, in which case the elements can be identified by an algorithm or property. In this case we usually assume the infinite set of counting numbers $\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$ is a given $\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$

In the below, the set T of even positive natural numbers is given by an algorithm. The algorithm says start with a natural number and multiply it by two. The set P is given by the property that each element is prime.

$$T = \{2n \mid n \in \mathbb{N}\}$$
$$P = \{p \in \mathbb{N} \mid p \text{ is prime}\}$$

Two important properties of sets are that sets are unordered and that each element is distinct. Note there is no mention of order in the definition collection of objects⁶. Likewise, the idea of an object is that it is unique — we did not say an instance of an object or anything like that.

We say B is a subset of A if all of the elements on B are also in A. When B has k elements, we sometimes say B is a k-subset of A. Under this definition, the empty set and A itself are always subsets of a set A.

Note that a set B is an object itself, and so might be an element of a set A. In this case, we are not saying that the elements of Bare individually in A, although that could also be the case. The distinction is important⁷.

 4 The numbers are usually called the natural numbers and \mathbb{N}_0 is the set of natural numbers including zero. ⁵ Sometimes it is convenient to not include the element 0, in which case we denote the set \mathbb{N} .

⁶ We can create an order or ordering of a set if we wish but that is something we must treat alongside the set.

¹ Michael Sipser. Introduction to the Theory of Computation. Third. Boston, MA: Course Technology, 2013. ISBN: 113318779X, p. 10. ² Nodes are sometimes also called vertices.

³ Sipser, Introduction to the Theory of Computation, p. 3.

⁷ Bertrand Russel is known for Russell's paradox about a set Rwhich is the set of all sets that do not contain themselves. A set seemingly may contain itself consider the set of all sets. Does Rcontain itself?

Tuple Notation

When order matters, we use tuples. Tuples are basically the same as lists of arrays in programming languages.

A tuple is a finite sequence.⁸ A sequence is a list of objects, usually stipulated to come from a set or sets. A tuple of length k is sometimes called a k-tuple, although a 2-tuple is usually just called a

The word *list* implies an order — we can talk about the first thing on a list, if it exists.

Graph Notation

A simple graph G is a pair G = (V, E) where V is a set and E is a set of 2-subsets of V.

Isomorphism

Graphs
$$G_1 = (V_1, E_1)$$
 and $G_2 = (V_2, E_2)$. Bijection $f : V_1 \to V_2$ such that $f(E_1) = E_2$ where $f(E_1) = \{\{f(v_1), f(v_2)\} | \{v_1, v_2\} \in E_1\}$.

Example

$$f(E_1) = \{\{f(a), f(b)\}, \{f(a), f(c)\},$$

$$\{f(a), f(d)\}, \{f(c), f(d)\}\}$$

$$= \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{3, 4\}\} = E_2$$

Non-isomorphism

⁸ Sipser, Introduction to the Theory $of\ Computation,\ p.\ 6.$

No of maps

 $f(a) \to 6$ choices; $f(b) \to 5$ choices; $f(c) \to 4$ choices; etc. So, n! maps between the vertex sets of two graphs with n vertices.

$Some\ invariants$

- Degrees.
- Paths.
- Connection.

Adjacency matrix

Fix a listing of V. $[a_{ij}]$ where a_{ij} is 1 if $\{v_i, v_j\} \in E$ else 0.

Example

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Permutation matrix

Isomorphic $\leftrightarrow \exists P \text{ such that } A = PBP^{\mathsf{T}}.$

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Binary encoding

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$\rightarrow 0110011011111110111011000011001111010$

or 111011011011101

$Decision\ problem$

$$f(110101, 101011) \rightarrow \text{Yes}$$
 $f(111011011011101, 1011111101110011) \rightarrow \text{No}$
 $f: \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{0, 1\} = 1 \text{ iff isomorphic}$

$$\mathbf{GRAPHISO} = \{(G_1, G_2) | f(G_1, G_2) = 1\}$$

References

Sipser, Michael. $Introduction\ to\ the\ Theory\ of\ Computation.$ Third. Boston, MA: Course Technology, 2013. ISBN: 113318779X.