Продолжение доказательства

Доказательство. По лемме позиция выигрышна хотя бы для одного игрока. Рассмотрим случай, когда она выигрышна для белого игрока.

B точке $A=(0,k)\rightsquigarrow (0,\frac{k}{n})$

$$\left|f_1(\frac{A}{n}) - \frac{A_1}{n}\right| \ge \varepsilon$$

$$A_1=0; f_1(rac{A}{n})\geq 0\Rightarrow$$
 при $v=A$

$$f_1(\frac{v}{n}) - \frac{v_1}{n} \ge 0$$

В точке $B=(n,l) \rightsquigarrow (1,\frac{l}{n})$

$$\left|f_1\left(\frac{B}{n}\right) - \frac{B_1}{n}\right| \geq \varepsilon$$

При v = B

$$f_1\left(\frac{v}{n}\right) - \frac{v_1}{n} \ge -\varepsilon$$

1 Определенный интеграл

1.1 Площадь

Определение. $\mathcal{E}-$ множество всех ограниченных фигур в \mathbb{R}^2 ("фигура" = подмножество \mathbb{R}^2)

Определение. Площадь это $\sigma: \mathcal{E} \to \mathbb{R}_+$, такое что:

- 1. $A \in \mathbb{E}$ $A = A_1 \sqcup A_2$ $\sigma A = \sigma A_1 + \sigma A_2$ (конечная аддитивность)
- 2. $\sigma([a,b] \times [c,d]) = (d-c)(b-a)$

Мы пока что не знаем, существует ли площадь.

Примечание. 1

- 1. Монотонность: $A \subset B$ $\sigma A \leq \sigma B$
- 2. σ (вертик. отр.) = 0

Определение. Ослабленная площадь $\sigma: \mathcal{E} \to \mathbb{R}_+$:

- 1. Монотонна
- 2. Нормировка
- 3. Ослабленная аддитивность: $E\in \mathbb{E}$ $E=E_1\cup E_2$ $E_1\cap E_2$ вертикальный отрезок, E_1 и E_2 лежат каждый в своей полуплоскости относительно этого отрезка $\sigma E=\sigma E_1+\sigma E_2$

Пример. 1. $\sigma E = \inf \left(\sum \sigma P_i : E \subset \bigcup_{\text{конечное}} P_k, P_k -$ прямоугольники $\right)$

2.
$$\sigma E = \inf \left(\sum \sigma P_i : E \subset \bigcup_{\text{счётн.}} P_k, P_k -$$
 прямоугольники $\right)$

Это разные площади. Покажем это на примере фигуры "все точки в квадрате с рациональными координатами". Первая площадь накрывает весь квадрат $\Rightarrow \sigma_1 = 1.$ $\sigma_2 = 0.$ Покажем это, накрыв n-тую точку квадратом размера $\frac{\varepsilon}{2^n} \times \frac{\varepsilon}{2^n}.$ $\sum \frac{\varepsilon}{4^n} = \varepsilon \frac{1}{1-\frac{1}{4}} = \frac{\varepsilon}{3} \to 0 \Rightarrow \inf = 0$

Определение. $f:\langle a,b\rangle \to \mathbb{R}$

 $f_+ := \max(f,0) -$ положительная срезка

 $f_{-} := \max(-f, 0) -$ отризательная срезка

Определение. $f:[a,b] \to \mathbb{R}; f \ge 0$

$$\Pi\Gamma(f, [a, b]) = \{(x, b) : x \in [a, b]; 0 \le y \le f(x)\}$$

Определение. $f:[a,b]\to\mathbb{R}$, непр.

$$\int_a^b f = \int_a^b f(x) dx := \sigma \Pi \Gamma(f_+, [a,b]) - \sigma \Pi \Gamma(f_, [a,b])$$

Примечание.

1.
$$f \ge 0 \Rightarrow \int_a^b f \ge 0$$

2.
$$f \equiv c \Rightarrow \int_a^b f = c(b-a)$$

3.
$$\int_a^b -f = -\int_a^b f$$
 — верно, т.к. $(-f)_+ = f_-$

4.
$$\int_a^b 0 = 0$$

Свойства инетгралов:

1. Аддитивность по промежутку $c \in (a,b)$

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Доказательство.

$$\sigma\Pi\Gamma(f_+,[a,b]) = \sigma\Pi\Gamma(f_+,[a,c]) + \sigma\Pi\Gamma(f_+,[c,b])$$

2. Монотонность: $f,g \in C[a,b]$ $f \leq g$. Тогда

$$\int_{a}^{b} f \le \int_{a}^{b} g$$

Доказательство.

$$\begin{split} & \Pi\Gamma(f_+) \subset \Pi\Gamma(g_+) \Rightarrow \sigma\Pi\Gamma(f_+) \leq \sigma\Pi\Gamma(g_+) \\ & \Pi\Gamma(f_-) \supset \Pi\Gamma(g_-) \Rightarrow \sigma\Pi\Gamma(f_-) \geq \sigma\Pi\Gamma(g_-) \\ & \sigma\Pi\Gamma(f_+) - \sigma\Pi\Gamma(f_-) \leq \sigma\Pi\Gamma(g_+) - \sigma\Pi\Gamma(g_-) \end{split}$$

Следствие.

$$\min f \cdot (b-a) \leq \int_a^b f \leq \max f \cdot (b-a)$$

M3137y2019 February 17, 2020

П

3.

$$\left| \int_{a}^{b} f \right| \leq \int_{a}^{b} |f|$$

$$-|f| \leq f \leq |f|$$

$$-\int_{a}^{b} |f| = \int_{a}^{b} -|f| \leq \int_{a}^{b} f \leq \int_{a}^{b} |f|$$

Определение. $f\in C[a,b]$ $\Phi:[a,b]\to\mathbb{R}$ $\Phi(x)=\int_a^x f$ – интеграл с переменным верхним пределом

$$\Phi(a) = 0$$

Теорема 1. $f \in C[a,b]$ Φ — интеграл с переменным верхним пределом. Тогда

$$\forall x \in [a, b] \quad \Phi'(x) = f(x)$$

Доказательство. Зафиксируем $x \in [a, b]$ $y > x, y \le b$

$$\frac{\Phi(y) - \Phi(x)}{y - x} = \frac{\int_x^y f}{y - x} \underset{\exists x \in [x, y]}{=} f(x) \xrightarrow[x \to x + 0]{} f(x)$$

x > y

$$\frac{\Phi(y)-\Phi(x)}{y-x} = \frac{\int_a^y f - \left(\int_a^y f + \int_y^x f\right)}{y-x} = \frac{1}{x-y} \int_y^x f = f(c) \xrightarrow[y \to x-0]{} f(x)$$

Теорема о существовании первообразной — следствие теоремы Барроу.

Примечание.

$$\begin{split} \Psi(x) &= \int_x^b f \\ \Psi'(x) &= -f(x) \\ \left(\int_{x^2}^{10\sqrt{x}+1} f(t) dt\right)' &= f(10\sqrt{x}+1)\frac{5}{\sqrt{x}} - f(x^2)2x \\ \left(\int_{x^2}^{\int_{x^2}^{e^x} \cos y^3 dy} \frac{\sin t}{\sqrt{t}} dt\right)' \end{split}$$

Этот интеграл не написать в word. Тех нормас, как видите. Это единственное, зачем Кохась написал этот интеграл.

Теорема 2. $f \in C[a,b]$ F — первообр. f Тогда $\int_a^b f = F(b) - F(a)$

Доказательство. $\Phi(x) = \int_0^x f$ — первообр.

$$\exists C: F = \Phi + C$$

$$\int_a^b f = \Phi(b) = \Phi(b) - \Phi(a) = F(b) - F(a)$$

Примечание. Все ослабленные площади совпадают на $\Pi\Gamma(f,[a,b]),\quad f\in C[a,b]$

M3137y2019

February 17, 2020

1.2 Правило Лопиталя

Лемма 1. Об ускоренной сходимости

1. $f,g:D\subset X o\mathbb{R}$ a — предельная точка D

$$\exists U(a) : npu \ x \in \dot{U}(a) \cap D \quad f(x) \neq 0, q(x) \neq 0$$

Пусть
$$\lim_{x \to a} f(x) = 0$$
 $\lim_{x \to a} g(x) = 0$

Тогда

$$\forall x_k \rightarrow a \quad (x_k \neq a, x_k \in D) \quad \exists y_k \rightarrow a (y_k \neq a, y_k \in D)$$

такое, что

$$\lim_{k\to +\infty}\frac{f(y_k)}{g(x_k)}=0 \quad \lim_{k\to +\infty}\frac{g(y_k)}{g(x_k)}=0$$

Таким образом, $g(y_k) \to 0$ быстрее, чем $g(x_k) \to 0$

2. То же самое, но $\lim f(x) = +\infty, \lim g(x) = +\infty$

Доказательство. 1. Очевидно.

$$\forall k \quad \exists N \quad \forall n > N \quad |f(x_n)| < |g(x_k)| \frac{1}{k} \quad |g(x_n)| < |g(x_k)| \frac{1}{k}$$

 $\varepsilon := |g(x_k)|$

$$k=1$$
 $y_1:=$ какой-нибудь $x_n:\left|rac{f(x_n)}{g(x_k)}
ight|<1$ $\left|rac{g(x_n)}{g(x_k)}
ight|<1$

$$k=2$$
 $y_2:=$ какой-нибудь $x_n:\left|rac{f(x_n)}{g(x_k)}
ight|<rac{1}{2}$ $\left|rac{g(x_n)}{g(x_k)}
ight|<rac{1}{2}$

:

2. (а) Частный случай: Пусть $g(x_n)$ возрастает. Берем $k:m:=\min\{n:|f(x_n)|\geq \sqrt{g(x_k)}$ или $|g(x_n)|\geq \sqrt{g(x_k)}\}$ $y_k:=x_{m-1}$

$$\left|\frac{f(y_k)}{g(x_k)}\right| \leq \frac{\sqrt{g(x_k)}}{g(x_k)} = \frac{1}{\sqrt{g(x_k)}} \xrightarrow[k \to +\infty]{} 0$$

Зачем нужно возрастание? Кохась не знает.

(b) Общий случай: $\tilde{g}(x_k):=\inf\{g(x_n),n=k,k+1\ldots\}\quad \tilde{g}(x_k)\to +\infty$ $\tilde{g}(x_k)\uparrow, \tilde{g}(x_k)\leq g(x_k).$ Как в пункте (a) построим y_k

$$\frac{f(y_k)}{g(x_k)} \le \frac{f(y_k)}{\tilde{g}(x_k)} \le \frac{1}{\sqrt{\tilde{g}(x_k)}} \xrightarrow[k \to +\infty]{} 0$$

$$\frac{g(y_k)}{g(x_k)} \le \frac{g(x_k)}{\tilde{g}(x_k)} \le \frac{1}{\sqrt{\tilde{g}(x_k)}} \to 0$$

M3137y2019

Теорема 3.
$$f,g:(a,b)\to\mathbb{R}$$
 $a\in\overline{\mathbb{R}}$ $f,g-\partial u \phi \phi,g'\neq 0$ на (a,b) Пусть $\frac{f'(x)}{g'(x)}\xrightarrow[x\to a+0]{}A\in\overline{\mathbb{R}}$ Пусть $\lim_{x\to a}\frac{f(x)}{g(x)}$ — неопределенность $\left\{\frac{0}{0},\frac{+\infty}{+\infty}\right\}$ Тогда $\exists \lim_{x\to a}\frac{f(x)}{g(x)}=A$

Доказательство. $g'\neq 0\Rightarrow g'-\text{coxp.}$ знак $\Rightarrow g-$ монотонна. Для $\frac{0}{0}-g(x)\neq 0$ в (a,b) По Гейне $x_k\to a\ (x_k\neq a,x_k\in (a,b))$

Выберем y_k по лемме

$$\frac{f(x_k) - f(y_k)}{g(x_k) - g(y_k)} = \frac{f'(\xi_k)}{g'(\xi_k)} - \text{т. Коши}$$

$$\frac{f(x_k)}{g(x_k)} - \frac{f(y_k)}{g(x_k)} = \frac{f'(\xi_k)}{g'(\xi_k)} \left(1 - \frac{g(y_k)}{g(x_k)}\right)$$

 $x_k \to a \quad y_k \to a \quad \xi_k \to a$

Пример. $\frac{\pi}{2} - \operatorname{arctg} x \underset{x \to +\infty}{\sim} g(x)$

$$\begin{split} \lim_{x\to +\infty} \frac{\frac{\pi}{2} - \operatorname{arctg} x}{g(x)} &= \lim_{x\to +\infty} \frac{\frac{1}{x^2+1}}{g'(x)} = 1 \\ &\int_0^x e^{t^2} dt \underset{x\to +\infty}{\sim} g(x) \\ &\lim \frac{\int_0^x e^{t^2} dt}{g(x)} = \lim \frac{e^{x^2}}{g'(x)} = 1 \end{split}$$

M3137y2019 February 17, 2020