Simplicial Complexes and Homology

Tao Hou, University of Oregon

Topological invariant

- Recall that a topological invariant is a type of characteristics for spaces that are preserved by topological equivalence (homeomorphism)
- We shall eventually look at the topological invariant called homology, which people heavily rely on in TDA
- But before looking at that, let's first we look at a simpler invariant called Euler characteristic

Euler characteristics

- Here we consider Polyhedron, which is a 3D object whose building blocks are
 - Polygonal faces (2d)
 - Edges (1d)
 - Vertices (0d)

Example:

7 vertices,
9 edges,
2 faces.

Euler characteristic (simple form):

X = number of vertices – number of edges + number of faces

Or in short-hand,

$$\times = |V| - |E| + |F|$$

where V = set of vertices
E = set of edges
F = set of faces

$$\chi = |V| - |E| + |F|$$

$$\chi = |V| - |E| + |F|$$

$$\chi = |V| - |E| + |F|$$

Conclusion

- Euler characteristics is a topological invariant for topological spaces,
 - meaning that for two topological spaces which are equivalent (homeomorphic), their Euler characteristics is the same.

More examples

Name	Image	Vertices V	Edges E	Faces F	Euler characteristic: $\chi = V - E + F$
Tetrahedron					
Hexahedron or cube					
Octahedron					
Dodecahedron					
Icosahedron					

More examples

Name	Image	Vertices V	Edges E	Faces F	Euler characteristic: $\chi = V - E + F$
Tetrahedron		4	6	4	2
Hexahedron or cube		8	12	6	2
Octahedron		6	12	8	2
Dodecahedron		20	30	12	2
Icosahedron		12	30	20	2

0

circle

Annulus

Mobius band

Torus = $S^1 \times S^1$

Euler characteristic		
-1	Solid double torus	
	A graph of two cycles:	
-2	Double torus = boundary of solid double torus	

- Graphs: consist of only vertices and edges
- So, Euler characteristic becomes: V E

- Graphs: consist of only vertices and edges
- So, Euler characteristic becomes: V E
- We can use Euler characteristic to verify whether a graph is a *tree*

- Graphs: consist of only vertices and edges
- So, Euler characteristic becomes: V-E
- We can use Euler characteristic to verify whether a graph is a tree
 - **Definition**: A *tree* is a connected graph that does not contain a cycle

- Graphs: consist of only vertices and edges
- So, Euler characteristic becomes: V-E
- We can use Euler characteristic to verify whether a graph is a *tree*
 - **Definition**: A *tree* is a connected graph that does not contain a cycle
- **Theorem**: The number of edges in a tree is always equal to the number of vertices 1. So the Euler characteristic becomes

$$V - E = V - (V - 1) = 1.$$

Graphs: Identifying Trees

Defn: A *tree* is a connected graph that does not contain a cycle

Representation of shapes

- Before moving on to look at the more important invariant, homology
- We need another important definition that will be utilized throughout the course
- This solves a fundamental problem we face when we try to process shapes in computer: we need a way to represent shapes (topological spaces) that is easy for computer to process
- It turns out there have been such an invention in Mathematics already, which is called **simplicial complex**.

Simplicial Complex

- A simplicial complex is a generalization of a polyhedron, with building blocks called *simplices* in different dimensions:
 - 0-simplex: vertex
 - 1-simplex: edge
 - 2-simplex: triangle
 - 3-simplex: tetrahedron
 - •
 - d-simplex (generalizations)

Simplicial Complex

- The following is a simplicial complex with simplices up to dimension 3:
 - 0-simplices (vertices): 18
 - 1-simplices (edges): 23
 - 2-simplices (triangles): 8
 - 3-simplices (tetrahedra): 1

Simplicial Complex

- The following is a simplicial complex with simplices up to dimension 3:
 - 0-simplices (vertices): 18
 - 1-simplices (edges): 23
 - 2-simplices (triangles): 8
 - 3-simplices (tetrahedra): 1
- **Definition**: The *dimension* of a simplicial complex is the maximum dimension of its simplices
- So the dimension of the left complex is 3
- Note: A simplicial complex is sometimes simply called a complex
- A d-dimensional simplicial complex is sometimes simply called a $simplicial\ d$ complex or d-complex

Triangular meshes

- A very common type of simplicial complexes used in computer graphics are triangular meshes (a 3D object whose surface is made up of glueing small triangle patches)
- From a topological point of view, they are nothing but 2-dimensional simplicial complexes

(figure from favpng.com)

Graphs

- Another more common type of simplicial complexes in CS are graphs.
- A graph is a tuple G = (V, E), where V is the set of 0-simplices and E is the set of 1-simplices. So it's a 1-complex.

- For a simplex σ , we notice that there are other simplices on its boundary, which are called the **faces** of σ .
- If a face τ of σ is a d-dimensional simplex, then we also call it a d-face of σ .
- A convention is that σ is always a face of itself.

- For a simplex σ , we notice that there are other simplices on its boundary, which are called the **faces** of σ .
- If a face τ of σ is a d-dimensional simplex, then we also call it a d-face of σ .
- A convention is that σ is always a face of itself.
- Ex: A vertex has only one face which is itself

- For a simplex σ , we notice that there are other simplices on its boundary, which are called the **faces** of σ .
- If a face τ of σ is a d-dimensional simplex, then we also call it a d-face of σ .
- A convention is that σ is always a face of itself.
- Ex: An edge *ab* has:
 - Two 0-faces: a and b
 - One 1-face: *ab*

- For a simplex σ , we notice that there are other simplices on its boundary, which are called the **faces** of σ .
- If a face τ of σ is a d-dimensional simplex, then we also call it a d-face of σ .
- A convention is that σ is always a face of itself.
- Ex: A triangle *abc* has:
 - Three 0-faces: a, b, and c
 - Three 1-faces: ab, ac, and bc
 - One 2-face: abc

- For a simplex σ , we notice that there are other simplices on its boundary, which are called the **faces** of σ .
- If a face τ of σ is a d-dimensional simplex, then we also call it a d-face of σ .
- A convention is that σ is always a face of itself.
- Ex: A tetrahedron abcd has:
 - Four 0-faces: a, b, c, and d
 - Six 1-faces: ab, ac, ad, bc, bd, cd
 - Four 2-faces: abc, abd, acd, bcd
 - One 3-face: abcd

• **Definition**: a simplicial complex $\mathcal K$ is a set of simplices such that, if a simplex σ is in $\mathcal K$, then all the faces of σ are also in $\mathcal K$.

• **Definition**: a simplicial complex $\mathcal K$ is a set of simplices such that, if a simplex σ is in $\mathcal K$, then all the faces of σ are also in $\mathcal K$.

• **Definition**: a simplicial complex $\mathcal K$ is a set of simplices such that, if a simplex σ is in $\mathcal K$, then all the faces of σ are also in $\mathcal K$.

✓: {abd, ab, bd, ad, bc, cd, af, dd, de, a, b, c, d, e, f}

• **Definition**: a simplicial complex $\mathcal K$ is a set of simplices such that, if a simplex σ is in $\mathcal K$, then all the faces of σ are also in $\mathcal K$.


```
✓: {abd, ab, bd, ad, bc, cd, af, dd, de, a, b, c, d, e, f}
```

```
X: {abd, <del>ab</del>, bd, ad, bc, cd, af, dd, de, <del>a</del>, b, c, d, e, f}
```

- **Definition**: a simplicial complex $\mathcal K$ is a set of simplices such that, if a simplex σ is in $\mathcal K$, then all the faces of σ are also in $\mathcal K$.
- Another example: For a graph (1-complex), each edge must join two vertices in the vertex set (a vertex that is a face of an edge must also be in the complex)

- **Definition**: a simplicial complex $\mathcal K$ is a set of simplices such that, if a simplex σ is in $\mathcal K$, then all the faces of σ are also in $\mathcal K$.
- Another example: For a graph (1-complex), each edge must join two vertices in the vertex set (a vertex that is a face of an edge must also be in the complex)

The condition that faces of any simplex in a complex should also be in the complex is very important part in the definition making it mathematically sound

Some remarks

- For denoting a simplicial complex, we typically first assign labels to the vertices of the complex.
 - In class, the labels could be letters but could also be other things
 - In computer programs, the labels are almost always integers $0, \dots, l-1$.
- Then, each simplex is represented as a set of the vertices on its corner.
- Note: Each d-simplex σ is represented by a set of d+1 vertices
- All the faces of σ are nothing but all subsets of σ , excluding empty set

Some remarks

- For denoting a simplicial complex, we typically first assign labels to the vertices of the complex.
 - In class, the labels could be letters but could also be other things
 - In computer programs, the labels are almost always integers $0, \cdots, l-1$.
- Then, each simplex is represented as a set of the vertices on its corner.
- Note: Each d-simplex σ is represented by a set of d+1 vertices
- All the faces of σ are nothing but all subsets of σ , excluding empty set
- Also note: A d-simplex is typically represented by a **sorted** array of d+1 vertices (integers) in computer programs, this makes checking the equality of two simplices easier

Endowing Algebraic Structures to Complexes

- Now we continue towards our goal of defining homology
- There are still a few steps before that
- Recall that homology is a "numeric" invariant that computer can handle
- More formally, it's an "algebraic" invariant.
- So, let's give a simplicial complex and its simplices an algebraic structure, so that we could do algebra on it (just like what we used to do 1+1=2 in primary school).

Chains

- We first introduce an algebraic notion called chains.
- A chain is a summation (formal sum) of a bunch of simplices of the same dimension d, and we also call it a d-chain.
- i.e., it is of the general form: $\sum_{i=1}^k \sigma_i$, where each σ_i is a d-simplex.

Chains

- We first introduce an algebraic notion called chains.
- A chain is a summation (formal sum) of a bunch of simplices of the same dimension d, and we also call it a d-chain.
- i.e., it is of the general form: $\sum_{i=1}^k \sigma_i$, where each σ_i is a d-simplex.

- 0-chain: a + d + f
- 1-chain: ab + cd + de
- 2-chain: abd

Chains

- We first introduce an algebraic notion called chains.
- A chain is a summation (formal sum) of a bunch of simplices of the same dimension d, and we also call it a d-chain.
- i.e., it is of the general form: $\sum_{i=1}^k \sigma_i$, where each σ_i is a d-simplex.

- 0-chain: a + d + f
- 1-chain: ab + cd + de
- 2-chain: *abd*
- Note: we have a special chain '0' which contains no simplices

Summation of Chains

- The summation of two chains is called the "symmetric difference", i.e.,
 - Keep simplices that occurs in exactly one of the chains
 - A simplex occurring in both chains will be cancelled out

Summation of Chains

- The summation of two chains is called the "symmetric difference", i.e.,
 - Keep simplices that occurs in exactly one of the chains
 - A simplex occurring in both chains will be cancelled out

•
$$(a + d + f) + (a + c + e) = c + d + e + f$$

Summation of Chains

- The summation of two chains is called the "symmetric difference", i.e.,
 - Keep simplices that occurs in exactly one of the chains
 - A simplex occurring in both chains will be cancelled out

•
$$(a + d + f) + (a + c + e) = c + d + e + f$$

•
$$(ab + cd + de) + (bd + cd) = ab + bd + de$$

- Next thing we want to define are boundaries for chains
- But before doing that let's try to define boundary for a region in general
- For a two-dimensional region, the boundary is just the "border" of the region

Image source: https://www.geoapify.com/tutorial/getting-administrative-divisions-boundaries/

• Question: what is the boundary for a 1-dimensional line segment?

- Question: what is the boundary for a 1-dimensional line segment?
- Answer: the two end points (because they are the places where we cannot travel any further within the 1-dimensional region)

• **Observation**: the boundary of a d-chain c is also a chain, which is of one dimension lower, so it's a (d-1)-chain. We denote it as $\partial(c)$.

- Since a single simplex is also a chain, we look at the boundary of a simplex:
 - The boundary of a vertex is 0 (empty).

- Since a single simplex is also a chain, we look at the boundary of a simplex:
 - The boundary of a vertex is 0 (empty).
 - The boundary of an edge ab is its two endian vertices:

$$\partial(ab) = a + b$$

- Since a single simplex is also a chain, we look at the boundary of a simplex:
 - The boundary of a vertex is 0 (empty).
 - The boundary of an edge ab is its two endian vertices:

$$\partial(ab) = a + b$$

• The boundary of a triangle abc is the three edges it contains:

$$\partial(abc) = ab + ac + bc$$

- Since a single simplex is also a chain, we look at the boundary of a simplex:
 - The boundary of a vertex is 0 (empty).
 - The boundary of an edge ab is its two endian vertices:

$$\partial(ab) = a + b$$

• The boundary of a triangle abc is the three edges it contains:

$$\partial(abc) = ab + ac + bc$$

• The boundary of a tetrahedron abcd is the four triangles it contains:

$$\partial(abcd) = abc + abd + acd + bcd$$

• **Observation**: The boundary of a chain equals the summation of the boundaries of its simplices, i.e.,

$$\partial(\sigma_1 + \sigma_2 + \dots + \sigma_k) = \partial(\sigma_1) + \partial(\sigma_2) + \dots + \partial(\sigma_k)$$

• **Observation**: The boundary of a chain equals the summation of the boundaries of its simplices, i.e.,

$$\partial(\sigma_1 + \sigma_2 + \dots + \sigma_k) = \partial(\sigma_1) + \partial(\sigma_2) + \dots + \partial(\sigma_k)$$

 This helps us very easily calculate boundaries for chains, because the boundary of a simplex is immediately available.

• **Observation**: The boundary of a chain equals the summation of the boundaries of its simplices, i.e.,

$$\partial(\sigma_1 + \sigma_2 + \dots + \sigma_k) = \partial(\sigma_1) + \partial(\sigma_2) + \dots + \partial(\sigma_k)$$

- This helps us very easily calculate boundaries for chains, because the boundary of a simplex is immediately available.
- Ex:

$$\partial(ab + bc + cd) = a + d$$

• **Observation**: The boundary of a chain equals the summation of the boundaries of its simplices, i.e.,

$$\partial(\sigma_1 + \sigma_2 + \dots + \sigma_k) = \partial(\sigma_1) + \partial(\sigma_2) + \dots + \partial(\sigma_k)$$

- This helps us very easily calculate boundaries for chains, because the boundary of a simplex is immediately available.
- Ex:

$$\partial(ab + bc + cd) = a + d$$
$$\partial(abc + bcd) = ab + ac + bd + cd$$

Quick Question

• What is the boundary of the following 1-chain?

Boundaries of Some Special Chains

• What is the boundary of a circle?

Boundaries of Some Special Chains

• What is the boundary of a circle?

- Answer: 0 (empty)
- **Definition**: We generalize a circle and define a d-cycle as a d-chain whose boundary is 0.

Cycles

• Example of a 1-cycle (the same as a cycle on graphs):

Cycles

• Example of a 1-cycle (the same as a cycle on graphs):

• Example of a 2-cycle (triangulated sphere):

- Recall that the boundary of a d-chain c is also a chain, which is a (d-1)-chain, and we denote it as $\partial(c)$.
- Since $\partial(c)$ is also a chain, what is its boundary?

- Recall that the boundary of a d-chain c is also a chain, which is a (d-1)-chain, and we denote it as $\partial(c)$.
- Since $\partial(c)$ is also a chain, what is its boundary?
- **Theorem**: the boundary of a chain is always a cycle, aka. boundaries have empty boundaries, or simply
 - For any chain c, $\partial(\partial(c)) = 0$.

- Recall that the boundary of a d-chain c is also a chain, which is a (d-1)-chain, and we denote it as $\partial(c)$.
- Since $\partial(c)$ is also a chain, what is its boundary?
- **Theorem**: the boundary of a chain is always a cycle, aka. boundaries have empty boundaries, or simply
 - For any chain c, $\partial(\partial(c)) = 0$.
- The above theorem is a fundamental fact making homology theory possible

• The proof of it and any further algebraic interpretations of it are beyond the

ALGEBRAIC

TOPOLOGY
Allen Hatcher

scope of this course.

• A simple exercise: calculate the boundary of $\partial(abc + acd + ade)$.

- Terminology:
 - Boundaries: **Trivial** cycles
 - Cycles that are not boundaries: Non-trivial cycles

- Terminology:
 - Boundaries: **Trivial** cycles
 - Cycles that are not boundaries: Non-trivial cycles
- We can classify the set of all chains for a simplicial complex into:

- Terminology:
 - Boundaries: **Trivial** cycles
 - Cycles that are not boundaries: Non-trivial cycles
- We can classify the set of all chains for a simplicial complex into:
- Homology is a theory studying those *cycles that are not boundaries* for a simplicial complex.

- Terminology:
 - Boundaries: **Trivial** cycles
 - Cycles that are not boundaries: Non-trivial cycles
- We can classify the set of all chains for a simplicial complex into:
- Homology is a theory studying those *cycles that are not boundaries* for a simplicial complex.

Boudnaries \subseteq Cycles \subseteq Chains

• Homology is a theory studying those cycles that are not boundaries for a simplicial complex.

• Homology is a theory studying those cycles that are not boundaries for a simplicial complex.

 Homology is a theory studying those cycles that are not boundaries for a simplicial complex.

 Homology is a theory studying those cycles that are not boundaries for a simplicial complex.

 Homology is a theory studying those cycles that are not boundaries for a simplicial complex.

- The reason we focus on non-boundary cycles is that:
 - We can "squeeze" a boundary cycle into a single point within the simplicial complex, so it doesn't seem to represent an interesting "feature" of the data

- The reason we focus on non-boundary cycles is that:
 - We can "squeeze" a boundary cycle into a single point within the simplicial complex, so it doesn't seem to represent an interesting "feature" of the data
 - On the other hand, a non-boundary cycle typically represents a "hole" in the complex, which represents some "essential feature" of the data

- The reason we focus on non-boundary cycles is that:
 - We can "squeeze" a boundary cycle into a single point within the simplicial complex, so it doesn't seem to represent an interesting "feature" of the data
 - On the other hand, a non-boundary cycle typically represents a "hole" in the complex, which represents some "essential feature" of the data
- Ex: For the right simplicial complex, do you think the green boundary cycle represent the shape, or the red non-boundary one?

- The reason we focus on non-boundary cycles is that:
 - We can "squeeze" a boundary cycle into a single point within the simplicial complex, so it doesn't seem to represent an interesting "feature" of the data
 - On the other hand, a non-boundary cycle typically represents a "hole" in the complex, which represents some "essential feature" of the data
- Ex: For the right simplicial complex, do you think the green boundary cycle represent the shape, or the red non-boundary one?

- The reason we focus on non-boundary cycles is that:
 - We can "squeeze" a boundary cycle into a single point within the simplicial complex, so it doesn't seem to represent an interesting "feature" of the data
 - On the other hand, a non-boundary cycle typically represents a "hole" in the complex, which represents some "essential feature" of the data
- Ex: For the right simplicial complex, do you think the red boundary cycle represent the shape, or the large blue non-boundary one?

- The reason we focus on non-boundary cycles is that:
 - We can "squeeze" a boundary cycle into a single point within the simplicial complex, so it doesn't seem to represent an interesting "feature" of the data
 - On the other hand, a non-boundary cycle typically represents a "hole" in the complex, which represents some "essential feature" of the data
- Ex: For the right simplicial complex, do you think the red boundary cycle represent the shape, or the large blue non-boundary one?
- Trying to capture the something like the major blue cycle to represent the shape of data is an aim of TDA and the course!!

- So far we have been showing **1-dimensional non-boundary cycles** (aka. holes) captured by homology theory, partially because it's easy to visualize
- But notice that homology can capture holes in any dimension (≥ 0).
- What about holes in other dimensions?

• **0-dimensional holes** capture "gaps" between different connected components:

• 2-dimensional holes capture "cavity" or "hollowness" inside:

- Okay, now we know that homology studies cycles that are not boundaries
- But we can observe more algebraic structures on the cycles in a simplicial complex
- Fact: Each d-cycle of a simplicial complex is "generated by" a set of non-trivial d-cycles called the **homology basis**.

- Okay, now we know that homology studies cycles that are not boundaries
- But we can observe more algebraic structures on the cycles in a simplicial complex
- Fact: Each d-cycle of a simplicial complex is "generated by" a set of non-trivial d-cycles called the **homology basis**.
- Formally, a d-cycle z being "generated by" cycles in the homology basis means that z can be written as:
 - A sum of cycles in the basis + a boundary (which is "trivial").

• Ex: A homology basis for the 1-cycles in the right simplicial complex contains the single red 1-cycle

- Ex: A homology basis for the 1-cycles in the right simplicial complex contains the single red 1-cycle
- Suppose we have another green 1-cycle

- Ex: A homology basis for the 1-cycles in the right simplicial complex contains the single red 1-cycle
- Suppose we have another green 1-cycle
- The green 1-cycle equals:
 - red 1-cycle + boundary of shaded 2-chain

- Ex: A homology basis for the 1-cycles in the right simplicial complex contains the single red 1-cycle
- Suppose we have another green 1-cycle
- The green 1-cycle equals:
 - red 1-cycle + boundary of shaded 2-chain
- In a sense, the red cycle "generates" the green cycle because you can continuously stretch the red one to the green one

- Ex: A homology basis for the 1-cycles in a torus (the surface of a donut) contains two 1-cycles:
 - a (longitude) and b (meridian)

- Ex: A homology basis for the 1-cycles in a torus (the surface of a donut) contains two 1-cycles:
 - a (longitude) and b (meridian)
- One way to differentiate trivial and nontrivial cycles on a torus:
 - a non-trivial cycle does not cut the torus into two pieces

- Ex: A homology basis for the 1-cycles in a torus (the surface of a donut) contains two 1-cycles:
 - a (longitude) and b (meridian)
- One way to differentiate trivial and nontrivial cycles on a torus:
 - a non-trivial cycle does not cut the torus into two pieces
 - while a trivial cycle (such as c) does

- Ex: A homology basis for the 1-cycles in a torus (the surface of a donut) contains two 1-cycles:
 - a (longitude) and b (meridian)
- One way to differentiate trivial and nontrivial cycles on a torus:
 - a non-trivial cycle does not cut the torus into two pieces
 - while a trivial cycle (such as c) does
- Example of how a and b generate cycles in torus: the cycle in the lower torus equals

- Ex: A homology basis for the 1-cycles in a torus (the surface of a donut) contains two 1-cycles:
 - a (longitude) and b (meridian)
- One way to differentiate trivial and nontrivial cycles on a torus:
 - a non-trivial cycle does not cut the torus into two pieces
 - while a trivial cycle (such as c) does
- Example of how a and b generate cycles in torus: the cycle in the lower torus equals
 - a + b + a boundary

• We will briefly explain the full algebraic structures for the cycles and boundaries we described so far; see the textbooks for detailed formulation

- Recall the following picture.
- We have that all p-chains for simplicial complex K not only form a set, but also form a **vector space** (object studied by linear algebra; see: https://en.wikipedia.org/wiki/Vector_space), denoted by $C_p(K)$

- Recall the following picture.
- We have that all p-chains for simplicial complex K not only form a set, but also form a **vector space** (object studied by linear algebra; see: https://en.wikipedia.org/wiki/Vector_space), denoted by $C_p(K)$

- Recall the following picture.
- We have that all p-chains for simplicial complex K not only form a set, but also form a **vector space** (object studied by linear algebra; see: https://en.wikipedia.org/wiki/Vector_space), denoted by $C_p(K)$
- Furthermore, boundaries and cycles are not only subsets but also **vector** subspaces of $Z_p(K)$, denoted $B_p(K)$ and $Z_p(K)$ respectively.

$$H_p(K) = Z_p(K)/B_p(K)$$

$$H_p(K) = Z_p(K)/B_p(K)$$

- Note: a quotient group is a notion in abstract algebra that is beyond the scope of this course.
- But in a nutshell, by letting the boundaries $B_p(K)$ be denominator, we are discarding the effect of boundaries among the cycles, so that we only focus on the non-trivial cycles.

$$H_p(K) = Z_p(K)/B_p(K)$$

- Note: a quotient group is a notion in abstract algebra that is beyond the scope of this course.
- But in a nutshell, by letting the boundaries $B_p(K)$ be denominator, we are discarding the effect of boundaries among the cycles, so that we only focus on the non-trivial cycles.
- Also notice that $H_p(K)$ is also a vector space. And the homology basis we mentioned previously is indeed a **basis for the vector space** $H_p(K)$.
 - See: https://en.wikipedia.org/wiki/Basis (linear algebra)

$$H_p(K) = Z_p(K)/B_p(K)$$

- Note: a quotient group is a notion in abstract algebra that is beyond the scope of this course.
- But in a nutshell, by letting the boundaries $B_p(K)$ be denominator, we are discarding the effect of boundaries among the cycles, so that we only focus on the non-trivial cycles.
- Also notice that $H_p(K)$ is also a vector space. And the homology basis we mentioned previously is indeed a **basis for the vector space** $H_p(K)$.
 - See: https://en.wikipedia.org/wiki/Basis (linear algebra)
- BTW, the cardinality (number of elements) of the homology basis for the p-dimensional cycles is called the p-th Betti number, denoted β_p .

Betti number

•
$$\beta_1 = 1$$

Betti number

• $\beta_1 = 2$

