Graphs

Introduction

Generalization of a tree.

• Collection of vertices (or nodes) and connections between them.

- No restriction on
 - -The number of vertices.
 - The number of connections between the two vertices.
- Have several real life applications.

Definition

- A graph G = (V,E) consists of a
 - Finite, non-empty set V of vertices and

Directed Graph

- Possibly empty set *E* of *edges*. A binary relation on *V*.
- |V| denotes number of vertices.
- | E | denotes number of edges.
- An edge (or arc) is a pair of vertices (v_i, v_i) from V.
 - Simple or undirected graph $(v_i, v_i) = (v_i, v_i)$.
 - Digraph or directed graph $(v_i, v_i) \neq (v_i, v_i)$.
- An edge has an associated weight or cost as well.

Contd...

Undirected Graph

Directed Graph

Weighted Undirected Graph

Complete Graph

Weighted Directed Graph

Cycle Graph

Terminology (Undirected)

- Two vertices u and v are adjacent if {u,v} is an edge in G.
 - Edge {u,v} is incident with vertex u and vertex v.
- Degree of a vertex is the number of edges incident with it.
 - A self-loop counts twice (both ends count).

Terminology (Directed)

- Vertex u is adjacent to vertex v if (u,v) is an edge in G and vertex u is the initial vertex of (u,v).
- Vertex v is adjacent from vertex u, if vertex v is the terminal (or end) vertex of (u,v).
- A vertex has two types of degree.
 - in-degree: The number of edges with the vertex as the terminal vertex.
 - out-degree: The number
 of edges with the vertex
 as the initial vertex

Some Definitions

- Walk or Path
 - An alternating sequence of vertices and connecting edges.
 - Can end on the same vertex on which it began or on a different vertex.
 - Can travel over any edge and any vertex any number of times.
- Path or Simple Path
 - A walk that does not include any vertex twice, except that its first and last vertices might be the same.

Representations of Graphs

Representations of Graphs

- Two standard ways are:
 - Collection of adjacency lists.
 - Adjacency matrix.
- Applies to both directed and undirected graphs.
- Adjacency-list representation provides a compact way to represent sparse graphs ($|E| << |V|^2$).
 - Usually the method of choice.
- Adjacency-matrix representation is preferred when the graph is dense (|E| ≈ |V|²).

Representation – I

- Adjacency matrix
 - -Adjacency matrix for a graph G = (V, E) is a two dimensional matrix of size $|V| \times |V|$ such that each entry of this matrix

a[i][j] =
$$\int 1$$
 (or weight), if an edge (v_i, v_j) exists.
0, otherwise.

-For an undirected graph, it is always a symmetric matrix, as $(v_i, v_i) = (v_i, v_i)$.

- Undirected.
 - $V = \{0, 1, 2, 3\}$
 - $E = \{(0,1), (1,2), (2,3), (3,0)\}$

	0	1	2	3
0	0	1	0	1
1	1	0	1	0
2	0	1	0	1
3	1	0	1	0
	0	0 0 1 1 2 0 3 1	0 1 0 0 1 1 1 0 2 0 1 3 1 0	0 1 2 0 0 1 0 1 1 2 1 1 0 1 2 0 1 0 3 1 0 1

- Directed.
 - $V = \{0, 1, 2, 3\}$
 - $E = \{(0,1), (0,2), (2,1), (3,1)\}$

Contd... (weighted)

Representation – II

- Adjacency list
 - Uses an array of linked lists with size equals to |V|.
 - An i^{th} entry of an array points to a linked list of vertices adjacent to $\mathbf{v_i}$.
 - The weights of edges are stored in nodes of linked lists to represent a weighted graph.

Adjacency List

Contd...(weighted)

Weighted Digraph

Adjacency Lists

	V_0	V_1	V_2	V_3	V ₄
V_0	0	1	1	0	0
V_1	1	0	1	1	0
V_2	1	1	0	0	1
V_3	0	1	0	0	1
V_4	0	0	1	1	0

	V_0	V_1	V_2	V_3	V_4
V_0	0	1	1	0	0
V_1	0	0	0	1	0
V_2	0	1	0	0	0
V_3	0	0	0	0	1
V_4	0	0	1	0	0

Adjacency List

	V_0	V_1	V_2	V_3	V ₄
V_0	0	2	3	0	0
V_1	2	0	5	2	0
V_2	3	5	0	0	3
V_3	0	2	0	0	9
V_4	0	0	3	9	0

	V_0	V_1	V_2	V_3	V_4
V_0	0	2	3	0	0
V_1	0	0	5	2	0
V_2	0	5	0	0	0
V_3	0	0	0	0	9
V_4	0	0	3	0	2

Adjacency List

Representation – III

Incidence Matrix

For directed graph:

M(i, j) = 1 if edge i is leading away from vertex j

$$M(i, j) = -1$$
 if edge i is leading to vertex j

Representation – IV

Incidence List

Graph Searching

Breadth-first search

Depth-first search

Breadth-first search (BFS)

- Given a graph G = (V,E) and a distinguished source vertex s, BFS systematically explores the edges of G to "discover" every vertex that is reachable from s.
- Discovers all vertices at distance k from a source vertex s before discovering any vertices at distance k + 1.
- It computes the distance (smallest number of edges) from s to each reachable vertex.
- It produces a "breadth-first tree" with root s that contains all reachable vertices.
- It works on both directed and undirected graphs.

• BFS:

Predecessor sub-graph

(s)

Breadth-first tree

• Queue: s

• BFS: s

• Queue: r w

• BFS: s r

• Queue: | w | v

X

• BFS: srw

• Queue: | v | t |

• BFS: srwv

• Queue: | t | x

• BFS: srwvt

• Queue: x u

• BFS: srwvtx

• Queue: | u | y

• BFS: srwvtxu

• Queue: y

• BFS: srwvtxuy

• Queue:

s s wr sw rxt swr xtv swrx tvyu swrxt vyu swrxtv yu swrxtv u	BFS	Queue
sw rxt swrx tvyu swrxt vyu swrxtv yu swrxtvy u		S
swr xtv swrx tvyu swrxt vyu swrxtv yu swrxtvy u	S	wr
swrx tvyu swrxt vyu swrxtv yu swrxtvy u	S W	rxt
swrxt vyu swrxtv yu swrxtvy u	swr	xtv
swrxtv yu swrxtvy u	swrx	tvyu
swrxtvy u	swrxt	vyu
	swrxtv	y u
	swrxtvy	u
s w r x t v y u	swrxtvyu	

• BFS:

Predecessor sub-graph

 $\overline{\mathbf{r}}$

Breadth-first tree

• Queue: r

• BFS: r

• Queue: s v

• BFS: rs

• Queue:

v w

• BFS: rs v

• Queue: w

Compute BFS - Directed

• BFS: rsvw

• Queue: t

Compute BFS - Directed

• BFS: rsvwt

• Queue: x

Compute BFS - Directed

• BFS: rsvwtx

Queue:

BFS	Queue
	r
r	V S
rv	S
rvs	w
rvsw	t
r v s w t	х
rvswtx	

Procedure BFS

Assumptions:

- The input graph G = (V,E) is represented using adjacency lists.
- Each vertex in the graph has following additional attributes.
 - Color: Can be white (undiscovered), gray (may have some adjacent white vertices), or black (all adjacent vertices have been discovered).
 - π : predecessor of a vertex. Can be NIL.
 - d: The distance from the source vertex computed by the algorithm.
- The queue Q is used to manage the set of gray vertices.

```
BFS(G, s)
```

```
O(V+E)
   for each vertex u \in G.V - \{s\}
       u.color = WHITE
       u.d = \infty
                                 while Q \neq \emptyset
                            10
       u.\pi = NIL
                            11
                                     u = \text{DEQUEUE}(Q)
   s.color = GRAY
                                     for each v \in G.Adj[u]
                            12
   s.d = 0
                            13
                                          if v.color == WHITE
   s.\pi = NIL
                            14
                                              v.color = GRAY
8 Q = \emptyset
                                              v.d = u.d + 1
                            15
   ENQUEUE(Q, s)
                            16
                                              \nu.\pi = u
                            17
                                              ENQUEUE(Q, v)
                            18
                                     u.color = BLACK
```

Execution example

s is the starting vertex.

Vertex	Color	Distance (d)	Predecessor (π)
r	White	∞	NIL
S	Gray	0	NIL
t	White	∞	NIL
u	White	∞	NIL
V	White	∞	NIL
W	White	∞	NIL
X	White	∞	NIL
У	White	∞	NIL

BFS:

s is the starting vertex.

Vertex	Color	Distance (d)	Predecessor (π)
r	White	∞	NIL
S	Gray	0	NIL
t	White	∞	NIL
u	White	∞	NIL
V	White	∞	NIL
W	White	∞	NIL
X	White	∞	NIL
У	White	∞	NIL

```
while Q \neq \emptyset

u = \text{DEQUEUE}(Q)

for each v \in G.Adj[u]

if v.color == \text{WHITE}

v.color = \text{GRAY}

v.d = u.d + 1

v.\pi = u

\text{ENQUEUE}(Q, v)

u.color = \text{BLACK}
```


Vertex	Color	Distance (d)	Predecessor (π)
r	Gray	1	S
S	Gray	0	NIL
t	White	∞	NIL
u	White	∞	NIL
V	White	∞	NIL
W	White	∞	NIL
X	White	∞	NIL
У	White	∞	NIL

```
while Q \neq \emptyset

u = \text{DEQUEUE}(Q)

for each v \in G.Adj[u]

if v.color == \text{WHITE}

v.color = \text{GRAY}

v.d = u.d + 1

v.\pi = u

\text{ENQUEUE}(Q, v)

u.color = \text{BLACK}
```

BFS: s

Vertex	Color	Distance (d)	Predecessor (π)
r	Gray	1	S
S	Gray	0	NIL
t	White	∞	NIL
u	White	∞	NIL
V	White	∞	NIL
W	Gray	1	S
X	White	∞	NIL
У	White	∞	NIL

```
while Q \neq \emptyset

u = \text{DEQUEUE}(Q)

for each v \in G.Adj[u]

if v.color == \text{WHITE}

v.color = \text{GRAY}

v.d = u.d + 1

v.\pi = u

\text{ENQUEUE}(Q, v)

u.color = \text{BLACK}
```


BFS: s

Vertex	Color	Distance (d)	Predecessor (π)
r	Gray	1	S
S	Black	0	NIL
t	White	∞	NIL
u	White	∞	NIL
V	White	∞	NIL
W	Gray	1	S
X	White	∞	NIL
У	White	∞	NIL

```
while Q \neq \emptyset
u = \text{DEQUEUE}(Q)
for each v \in G.Adj[u]
if v.color == \text{WHITE}
v.color = \text{GRAY}
v.d = u.d + 1
v.\pi = u
\text{ENQUEUE}(Q, v)
u.color = \text{BLACK}
```

BFS: s

Vertex	Color	Distance (d)	Predecessor (π)
r	Gray	1	S
S	Black	0	NIL
t	White	∞	NIL
u	White	∞	NIL
V	Gray	2	r
w	Gray	1	S
X	White	∞	NIL
У	White	∞	NIL

```
while Q \neq \emptyset

u = \text{DEQUEUE}(Q)

for each v \in G.Adj[u]

if v.color == \text{WHITE}

v.color = \text{GRAY}

v.d = u.d + 1

v.\pi = u

\text{ENQUEUE}(Q, v)

u.color = \text{BLACK}
```

BFS: sr

Vertex	Color	Distance (d)	Predecessor (π)
r	Black	1	S
S	Black	0	NIL
t	White	∞	NIL
u	White	∞	NIL
V	Gray	2	r
w	Gray	1	S
X	White	∞	NIL
У	White	∞	NIL

```
while Q \neq \emptyset

u = \text{DEQUEUE}(Q)

for each v \in G.Adj[u]

if v.color == \text{WHITE}

v.color = \text{GRAY}

v.d = u.d + 1

v.\pi = u

\text{ENQUEUE}(Q, v)

u.color = \text{BLACK}
```

BFS: sr

Vertex	Color	Distance (d)	Predecessor (π)
r	Black	1	S
S	Black	0	NIL
t	Gray	2	w
u	White	∞	NIL
V	Gray	2	r
w	Gray	1	S
X	White	∞	NIL
У	White	∞	NIL

```
while Q \neq \emptyset

u = \text{DEQUEUE}(Q)

for each v \in G.Adj[u]

if v.color == \text{WHITE}

v.color = \text{GRAY}

v.d = u.d + 1

v.\pi = u

\text{ENQUEUE}(Q, v)

u.color = \text{BLACK}
```


BFS: srw

Vertex	Color	Distance (d)	Predecessor (π)
r	Black	1	S
S	Black	0	NIL
t	Gray	2	w
u	White	∞	NIL
V	Gray	2	r
w	Gray	1	S
X	Gray	2	w
У	White	∞	NIL

```
while Q \neq \emptyset

u = \text{DEQUEUE}(Q)

for each v \in G.Adj[u]

if v.color == \text{WHITE}

v.color = \text{GRAY}

v.d = u.d + 1

v.\pi = u

\text{ENQUEUE}(Q, v)

u.color = \text{BLACK}
```

BFS: srw

Vertex	Color	Distance (d)	Predecessor (π)
r	Black	1	S
S	Black	0	NIL
t	Gray	2	w
u	White	∞	NIL
V	Gray	2	r
W	Black	1	S
x	Gray	2	w
У	White	∞	NIL

```
while Q \neq \emptyset

u = \text{DEQUEUE}(Q)

for each v \in G.Adj[u]

if v.color == \text{WHITE}

v.color = \text{GRAY}

v.d = u.d + 1

v.\pi = u

\text{ENQUEUE}(Q, v)

u.color = \text{BLACK}
```

BFS: srw

Vertex	Color	Distance (d)	Predecessor (π)
r	Black	1	S
S	Black	0	NIL
t	Gray	2	w
u	White	∞	NIL
V	Black	2	r
W	Black	1	S
X	Gray	2	w
У	White	∞	NIL

```
while Q \neq \emptyset

u = \text{DEQUEUE}(Q)

for each v \in G.Adj[u]

if v.color == \text{WHITE}

v.color = \text{GRAY}

v.d = u.d + 1

v.\pi = u

\text{ENQUEUE}(Q, v)

u.color = \text{BLACK}
```

BFS: srwv

Vertex	Color	Distance (d)	Predecessor (π)
r	Black	1	S
S	Black	0	NIL
t	Gray	2	w
u	Gray	3	t
V	Black	2	r
W	Black	1	S
X	Gray	2	w
У	White	∞	NIL

```
while Q \neq \emptyset

u = \text{DEQUEUE}(Q)

for each v \in G.Adj[u]

if v.color == \text{WHITE}

v.color = \text{GRAY}

v.d = u.d + 1

v.\pi = u

\text{ENQUEUE}(Q, v)

u.color = \text{BLACK}
```

BFS: srwvt

Vertex	Color	Distance (d)	Predecessor (π)
r	Black	1	S
S	Black	0	NIL
t	Black	2	w
u	Gray	3	t
V	Black	2	r
W	Black	1	S
X	Gray	2	w
У	White	∞	NIL

```
while Q \neq \emptyset

u = \text{DEQUEUE}(Q)

for each v \in G.Adj[u]

if v.color == \text{WHITE}

v.color = \text{GRAY}

v.d = u.d + 1

v.\pi = u

\text{ENQUEUE}(Q, v)

u.color = \text{BLACK}
```

BFS: srwvt

Vertex	Color	Distance (d)	Predecessor (π)
r	Black	1	S
S	Black	0	NIL
t	Black	2	w
u	Gray	3	t
V	Black	2	r
w	Black	1	S
х	Gray	2	W
У	Gray	3	X

```
while Q \neq \emptyset

u = \text{DEQUEUE}(Q)

for each v \in G.Adj[u]

if v.color == \text{WHITE}

v.color = \text{GRAY}

v.d = u.d + 1

v.\pi = u

\text{ENQUEUE}(Q, v)

u.color = \text{BLACK}
```

BFS: srwvtx

Vertex	Color	Distance (d)	Predecessor (π)
r	Black	1	S
S	Black	0	NIL
t	Black	2	W
u	Gray	3	t
V	Black	2	r
w	Black	1	S
X	Black	2	W
У	Gray	3	x

```
while Q \neq \emptyset

u = \text{DEQUEUE}(Q)

for each v \in G.Adj[u]

if v.color == \text{WHITE}

v.color = \text{GRAY}

v.d = u.d + 1

v.\pi = u

\text{ENQUEUE}(Q, v)

u.color = \text{BLACK}
```

BFS: srwvtx

Vertex	Color	Distance (d)	Predecessor (π)
r	Black	1	S
S	Black	0	NIL
t	Black	2	w
u	Black	3	t
v	Black	2	r
W	Black	1	S
х	Black	2	w
у	Gray	3	X

```
while Q \neq \emptyset

u = \text{DEQUEUE}(Q)

for each v \in G.Adj[u]

if v.color == \text{WHITE}

v.color = \text{GRAY}

v.d = u.d + 1

v.\pi = u

\text{ENQUEUE}(Q, v)

u.color = \text{BLACK}
```

BFS: srwvtxu

Vertex	Color	Distance (d)	Predecessor (π)
r	Black	1	S
S	Black	0	NIL
t	Black	2	w
u	Black	3	t
V	Black	2	r
W	Black	1	S
X	Black	2	w
У	Black	3	X

```
while Q \neq \emptyset

u = \text{DEQUEUE}(Q)

for each v \in G.Adj[u]

if v.color == \text{WHITE}

v.color = \text{GRAY}

v.d = u.d + 1

v.\pi = u

\text{ENQUEUE}(Q, v)

u.color = \text{BLACK}
```


BFS: srwvtxuy

Q: **•**

Depth-first search (DFS)

- Search "deeper" in the graph whenever possible.
- If any undiscovered vertices remain, then DFS selects one of them as a new-source, and it repeats the search from that source.
- The algorithm continues until it has discovered every vertex.
- It produces a "depth-first forest" comprising several "depth-first trees".
- It works on both directed and undirected graphs.

Procedure DFS

Assumptions:

- The input graph G = (V,E) is represented using adjacency lists.
- Each vertex in the graph has following additional attributes.
 - Color: Can be white (undiscovered), gray (when discovered), or black (all adjacent vertices have been examined completely).
 - π : predecessor of a vertex. Can be NIL.
 - d: Timestamp to record when the vertex is first discovered.
 - f: Timestamp to record when the vertex is examined completely.

Predecessor sub-graph

(u)

Depth-first forest

• DFS: u

Predecessor sub-graph

• DFS: ut

• DFS: utw

Predecessor sub-graph

Depth-first forest

w

Depth-first forest Predecessor sub-graph • DFS: utws 2/ u S W t u X Stack

Predecessor sub-graph

Depth-first forest

Procedure DFS

```
DFS(G)
   for each vertex u \in G.V
                               DFS-Visit(G, u)
       u.color = WHITE
       u.\pi = NIL
                                  time = time + 1
   time = 0
                                2 \quad u.d = time
   for each vertex u \in G.V
                                3 \quad u.color = GRAY
6
       if u.color == WHITE
                                  for each v \in G.Adj[u]
            DFS-Visit(G, u)
                                5
                                       if v.color == WHITE
                                            \nu.\pi = u
                                            DFS-VISIT(G, v)
                                   u.color = BLACK
                                  time = time + 1
                                  u.f = time
```

Let's start with vertex u.

Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	White			NIL
V	White			NIL
W	White			NIL
X	White			NIL
У	White			NIL
Z	White			NIL

Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Gray	1		NIL
V	White			NIL
W	White			NIL
X	White			NIL
У	White			NIL
Z	White			NIL

```
DFS-Visit(G, u)
   time = time + 1
   u.d = time
  u.color = GRAY
  for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```


u = u time = 1

Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Gray	1		NIL
V	White			u
W	White			NIL
X	White			NIL
У	White			NIL
Z	White			NIL

```
DFS-Visit(G, u)
   time = time + 1
   u.d = time
  u.color = GRAY
  for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```


u = u time = 1

Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Gray	1		NIL
V	Gray	2		u
W	White			NIL
X	White			NIL
У	White			NIL
Z	White			NIL

```
DFS-Visit(G, u)
   time = time + 1
  u.d = time
  u.color = GRAY
  for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```


u = v time = 2

Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Gray	1		NIL
V	Gray	2		u
W	White			NIL
X	White			NIL
У	White			V
Z	White			NIL

```
DFS-Visit(G, u)
   time = time + 1
   u.d = time
  u.color = GRAY
  for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```


u = v time = 2

Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Gray	1		NIL
V	Gray	2		u
W	White			NIL
X	White			NIL
У	Gray	3		V
Z	White			NIL

```
DFS-Visit(G, u)
   time = time + 1
  u.d = time
  u.color = GRAY
  for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```


u = y time = 3

Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Gray	1		NIL
V	Gray	2		u
W	White			NIL
X	White			у
У	Gray	3		V
Z	White			NIL

```
DFS-Visit(G, u)
   time = time + 1
   u.d = time
  u.color = GRAY
   for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```


u = y time = 3

Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Gray	1		NIL
V	Gray	2		u
W	White			NIL
X	Gray	4		у
У	Gray	3		V
Z	White			NIL

```
DFS-Visit(G, u)
   time = time + 1
   u.d = time
  u.color = GRAY
   for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```


u = x time = 4

Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Gray	1		NIL
V	Gray	2		u
W	White			NIL
X	Black	4	5	у
У	Gray	3		V
Z	White			NIL

```
DFS-Visit(G, u)
   time = time + 1
   u.d = time
  u.color = GRAY
   for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```


u = x time = 5

Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Gray	1		NIL
V	Gray	2		u
W	White			NIL
X	Black	4	5	у
У	Gray	3		V
Z	White			NIL

```
DFS-Visit(G, u)
   time = time + 1
  u.d = time
  u.color = GRAY
  for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
  u.f = time
```


u = y time = 5

Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Gray	1		NIL
V	Gray	2		u
W	White			NIL
X	Black	4	5	у
У	Black	3	6	V
Z	White			NIL

```
DFS-Visit(G, u)
   time = time + 1
   u.d = time
  u.color = GRAY
   for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```


u = y time = 6

Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Gray	1		NIL
V	Gray	2		u
W	White			NIL
X	Black	4	5	у
У	Black	3	6	V
Z	White			NIL

```
DFS-Visit(G, u)
   time = time + 1
   u.d = time
  u.color = GRAY
   for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```


u = v time = 6

Vertex	Color	Timestamp		Predecessor
		d f		(π)
u	Gray	1		NIL
V	Black	2	7	u
W	White			NIL
X	Black	4	5	У
У	Black	3	6	V
Z	White			NIL

```
DFS-Visit(G, u)
   time = time + 1
   u.d = time
  u.color = GRAY
   for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```


u = v time = 7

Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Gray	1		NIL
V	Black	2	7	u
W	White			NIL
X	Black	4	5	у
У	Black	3	6	V
Z	White			NIL

```
DFS-Visit(G, u)
   time = time + 1
   u.d = time
  u.color = GRAY
  for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```


u = u time = 7

Vertex	Color	Timestamp		Predecessor
		d f		(π)
u	Black	1	8	NIL
V	Black	2	7	u
W	White			NIL
X	Black	4	5	у
У	Black	3 6		V
Z	White			NIL

```
DFS-Visit(G, u)
   time = time + 1
  u.d = time
  u.color = GRAY
  for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
  u.f = time
```


u = u time = 8

Vertex	Color	Timestamp		Predecessor
		d f		(π)
u	Black	1	8	NIL
V	Black	2	7	u
W	White			NIL
X	Black	4	5	у
У	Black	3 6		V
Z	White			NIL

```
DFS(G)

1 for each vertex u \in G.V

2 u.color = WHITE

3 u.\pi = NIL

4 time = 0

5 for each vertex u \in G.V

6 if u.color == WHITE

7 DFS-VISIT(G, u)
```


Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Black	1	8	NIL
V	Black	2	7	u
w	Gray	9		NIL
X	Black	4	5	у
У	Black	3 6		V
Z	White			NIL

```
DFS-Visit(G, u)
   time = time + 1
  u.d = time
  u.color = GRAY
  for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
  u.f = time
```


u = w time = 9

Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Black	1	8	NIL
V	Black	2	7	u
W	Gray	9		NIL
X	Black	4	5	у
У	Black	3 6		V
Z	White			W

```
DFS-Visit(G, u)
   time = time + 1
  u.d = time
  u.color = GRAY
  for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```


u = w time = 9

Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Black	1	8	NIL
V	Black	2	7	u
W	Gray	9		NIL
X	Black	4	5	у
у	Black	3	6	V
Z	Gray	10		W

```
DFS-Visit(G, u)
   time = time + 1
   u.d = time
  u.color = GRAY
  for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```


u = z time = 10

Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Black	1	8	NIL
V	Black	2	7	u
W	Gray	9		NIL
X	Black	4	5	у
У	Black	3	6	V
Z	Black	10	11	W

```
DFS-Visit(G, u)
   time = time + 1
  u.d = time
  u.color = GRAY
  for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
  u.f = time
```


u = z time = 11

Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Black	1	8	NIL
V	Black	2	7	u
w	Gray	9		NIL
X	Black	4	5	у
У	Black	3	6	V
Z	Black	10	11	W

```
DFS-Visit(G, u)
   time = time + 1
   u.d = time
  u.color = GRAY
   for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```


u = w time = 11

Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Black	1	8	NIL
V	Black	2	7	u
W	Black	9	12	NIL
X	Black	4	5	у
у	Black	3	6	V
Z	Black	10	11	W

```
DFS-Visit(G, u)
   time = time + 1
   u.d = time
  u.color = GRAY
   for each v \in G.Adj[u]
       if v.color == WHITE
           \nu.\pi = u
         DFS-VISIT(G, v)
   u.color = BLACK
   time = time + 1
   u.f = time
```


Vertex	Color	Timestamp		Predecessor
		d	f	(π)
u	Black	1	8	NIL
V	Black	2	7	u
W	Black	9	12	NIL
X	Black	4	5	у
У	Black	3	6	V
Z	Black	10	11	W

u	\rightarrow	V	\rightarrow	X
V	\rightarrow	y		
W	\rightarrow	y	\rightarrow	Z
X	\rightarrow	V		
у	\rightarrow	X		
Z	\rightarrow	Z		

DFS: uvyxwz

```
DFS(G)

1 for each vertex u \in G.V

2 u.color = WHITE

3 u.\pi = NIL

4 time = 0

5 for each vertex u \in G.V

6 if u.color == WHITE

7 DFS-VISIT(G, u)
```


