Bilan ETZ sur une equation de réaction 0= \ vak Ak on fixe · Direction de réaction · Qui est réactif et qui est produit · Vk, nb stockiometrique Vk ∈ { [Entier], [Décimal] [Fraction]} On donne une condition initiale pour cette transformation · Mk.o. Ck.o. etal pour Ak o P (gazonse) · Tableau d'avancement On peut indiquer l'activité ako . Émax, Tomax, Qu . ak ∈ { } O SHAX E 0 Tomax = • Q = Si on ajoute T alors on peut trouver KT, Séglt >+ +00

A nkieg, Ckieg 0 K7 =

0 Sig =

· nkieg =

· Ck.ég =

En comparant KT et Q on sait

· Évolution de réaction

TITRAGES

Cours ET3.1 Principe d'un titrage (1/1)

- J. Joubert et Z.Chen

▶ Plan du cours

- 1. Principe d'un titrage
 - 1.1. Objectif
 - 1.2. Réaction de titrage
 - 1.3. Équivalence

▶ Compétences spécifiques

▶ Écrire l'expression d'une constante d'acidité K_a ou de basicité K_b en fonction de concentrations à l'équilibre chimique.

COURS ET3 - PLAN DU COURS

1. Principe d'un titrage

1.1. Objectif

On cherche la composition d'un système. On fait réagir le système inconnu avec un autre système connu par une réaction connue.

1.2. Réaction de titrage

A (système inconnu) réagit avec B (système connu)

COURS ET3 - 1. PRINCIPE D'UN TITRAGE

1.2. Réaction de titrage

1.2. Réaction de titrage

$$v_A A + v_B B \rightarrow connu$$

EL $m_{A,0} \quad m_{B,0} = C_B V$

Par un titrage:

 $B_{(aq)}$ ajoute petit à petit avec un volume mesuré précisément: avec une

burette en prélevé précisément un volume V_p de la solution de $A_{(aq)}$

COURS ET3 - 1. PRINCIPE D'UN TITRAGE