Company Name		Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	08 /05 /2020	Client

1 Input Parameters

Modu	ıle		Bea	m Coverplate Connection
MainModule			Moment Connection	
Moment(kNm)*				0.0
Shear(l	(N)*			0.0
Axial (l	(N) *			0.0
	·	Section		
	Beam S	lection *		MB 500
	Prefe	rences		Outside
т Ү	Mate	erial *		E 250 (Fe 410 W)A
	Ultimate stren	ngth, fu (MPa)		410
<u>(B-t)</u> t — α Z D	Yield Strength , fy (MPa)	230	R2(mm)	8.5
	Mass	86.9	Iz(mm4)	452280000.0
-R ₁	Area(mm2) -	11100.0	Iy(mm4)	13200000.0
В	D(mm)	500.0	rz(mm)	202.0
Y	B(mm)	180.0	ry(mm)	35.0
	t(mm)	10.2	Zz(mm3)	1809100.0
	T(mm)	17.2	Zy(mm3)	147000.0
	FlangeSlope	98	Zpz(mm3)	2074800.00000000002
	R1(mm)	17.0	Zpy(mm3)	147000.0
		Bolt Details		
Diameter	, ,			16.0, 20.0, 24.0, 30.0, 36.0]
Grade			[3.6, 4.6, 4.8	8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]
Туре				Bearing Bolt
Bolt.	fu			800.0
Bolt.	fy			640.0
Bolt hole	e type			Standard
Slip factor	r (µ_f)			0.3
Type of	edges		a - \$	Sheared or hand flame cut
Gap between beam and	 support (mm)		10.0
Are the members exposed to	 corrosive	influences		False

Company Name		Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	08 /05 /2020	Client

2 Design Checks

2.1 Member Capacity

Check	Required	Provided	Remarks
Axial Capacity (kN)		$Ac = \frac{A * f_y}{\gamma_{m0} * 1000}$ $= \frac{11100.0 * 230}{1.1 * 1000}$ $= 2320.91$	
Shear Capacity (kN)		$S_c = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo} * 1000}$ $= \frac{465.6 * 10.2 * 230}{\sqrt{3} * 1.1 * 1000}$ $= 573.3075600000001$	
Plastic Moment Capacity (kNm)		$Pmc = \frac{\beta_b * Z_p * fy}{\gamma_{mo} * 1000000}$ $= \frac{1 * 552798 * 230}{1.1 * 1000000}$ $= 115.59$	
Moment Deformation Criteria (kNm)		$Mdc = \frac{1.5 * Z_e * fy}{1.1 * 1000000}$ $= \frac{1.5 * 1809100.0 * 230}{1.1 * 1000000}$ $= 567.4$	
Moment Capacity (kNm)		$M_c = min(Pmc, Mdc)$ = $min(115.59, 567.4)$ = 115.59	

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	08 /05 /2020	Client	

2.2 Load Considered

	equired	Provided	Remarks
A	$c_{min} = 0.3 * A_c$	$Au = max(A, Ac_{min})$	
Axial Load (kN)	= 0.3 * 2320.91	= max(0.0, 696.27)	Pass
	=696.27	=696.27	
Se	$c_{min} = 0.6 * A_c$	$Vu = max(V, Vc_{min})$	
Shear Load (kN)	= 0.6 * 573.31	= max(0.0, 343.98)	Pass
	= 343.98	= 343.98	
M	$Ic_{min} = 0.5 * M_c$	$Mu = max(M, Mc_{min})$	
Moment Load (kNm)	= 0.5 * 115.59	= max(0.0, 57.79)	Pass
	= 57.79	= 57.79	
		$A_w = Axial \ force \ in \ web$	
		$=\frac{(D-2*T)*t*Au}{A}$	
		$=\frac{(500.0 - 2 * 17.2) * 10.2 * 696.2}{11100.0}$	<u>27</u>
Forces Carried by Web		= 297.9	
		$M_w = Moment \ in \ web$	
		$=\frac{Z_w*Mu}{Z}$	
		$=\frac{552798*57.79}{2074800.0000000002}$	
		= 15.4	
		$A_f = Axial \ force \ in \ flange$	
		$=\frac{Au*B*T}{A}$	
		$=\frac{696.27*180.0*17.2}{11100.0}$	
		= 194.2	
		$M_f = Moment \ in \ flange$	
		$= Mu - M_w$	
Forces Carried by Flange		$= Mu - M_w$ = 57.79 - 15.4	
		=42.39	
		$F_f = flange\ force$	
		$=\frac{M_f*1000}{D-T}+A_f$	
		\mathcal{L}	
		$=\frac{42.39}{500.0-17.2}+194.2$	
		= 282.01	

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	08 /05 /2020	Client	

2.3 Flange Bolt Checks

Check	Required	Provided	Remarks
Diameter (mm)	Bolt Quantity Optimisation	d = 12.0	
Grade	Bolt Grade Optimisation	8.8	
Hole Diameter (mm)		$d_0 = 13.0$	
Shear Capacity (kN)		$V_{dsb} = \frac{f_{ub} \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{800.0 * 1 * 84.3}{\sqrt{3} * 1.25}$ $= 31.15$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.52 * 12.0 * 17.2 * 410}{1.25}$ $= 88.01$	
Bolt Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (31.15, 88.01)$ = 31.15	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{0.0^{2} + 282.01^{2}}}{31.15}$ $= 20$	20	
No of Columns		$n_c = 10$	
No of Rows		$n_r = 2$	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ = $2.5 * 12.0 = 30.0$	30	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 17.2, \ 300 \ mm)$ = 550.4) 30	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	0.0	N/A
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 17.2, \ 300 \ mm)$ = 550.4	0.0	N/A
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *20.0 * \sqrt{\frac{250}{230}}$ $= 249.6$	25	Pass

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	08 /05 /2020	Client	

Check	Required	Provided	Remarks
Min. Edge Distance (mm) $e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1		33.95	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *20.0 * \sqrt{\frac{250}{230}}$ $= 249.6$	33.95	Pass
Long Joint Reduction	$if \ l \ge 15 * d \ then \ V_{rd} = \beta_{ij} * V_{db}$ $if \ l < 15 * d \ then \ V_{rd} = V_{db}$ $where,$ $l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $\beta_{ij} = 1.075 - l/(200 * d)$ $but \ 0.75 \le \beta_{ij} \le 1.0$	$l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $= (10 - 1) * 30 = 270$ $= (2 - 1) * 0.0 = 0.0$ $l = 270$ $15 * d = 15 * 12.0 = 180.0$ $since, \ l \ge 15 * d \ then \ V_{rd} = \beta_{ij} * V_d$ $\beta_{ij} = 1.075 - 270/(200 * 12.0) = 0.90$ $V_{rd} = 0.96 * 31.15 = 31149.2$	

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	08 /05 /2020	Client	

2.4 Web Bolt Checks

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{dsb} = \frac{f_{ub} \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{800.0 * 2 * 84.3}{\sqrt{3} * 1.25}$ $= 62.3$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.52 * 12.0 * 10.2 * 410}{1.25}$ $= 52.19$	
Bolt Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (62.3, 52.19)$ = 52.19	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{343.98^{2} + 297.9^{2}}}{52.19}$ $= 18$	36	
No of Columns		$n_c = 4$	
No of Rows		$n_r = 9$	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ = $2.5 * 12.0 = 30.0$	30	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 6.0, \ 300 \ mm)$ $= 300$	30	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ = $2.5 * 12.0 = 30.0$	40	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 6.0, \ 300 \ mm)$ $= 300$	40	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *6.0 * \sqrt{\frac{250}{230}}$ $= 74.88$	25	Pass
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	08 /05 /2020	Client	

Check	Required	Provided	Remarks
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *6.0 \ *\sqrt{\frac{250}{230}}$ $= 74.88$	25	Pass
Parameters required for bolt force		$l_n = length \ available$ $l_n = (n_r - 1) * g$ $= (9 - 1) * 40$ $= 320$ $y_{max} = l_n/2$ $= 320/2$ $= 160.0$ $x_{max} = p * (n_c - 1)/2$ $= 30 * (4 - 1)/2$ $= 15.0$	
Moment Demand		$M_d = (V_u * ecc + M_w)$ = $(343.98 * 45.0 + 15.4)$ = 30.88	
Bolt.Force		$vbv = V_u/(n_r * n_c)$ $= \frac{343.98}{(9 * 4)}$ $= 19.11$ $tmh = \frac{M_d * y_{max}}{\Sigma r_i^2}$ $= \frac{30.88 * 160.0}{196.05}$ $= 25.2$ $tmv = \frac{M_d * x_{max}}{\Sigma r_i^2}$ $= \frac{30.88 * 15.0}{196.05}$ $= 2.36$ $abh = \frac{A_u}{(n_r * n_c)}$ $= \frac{297.9}{(9 * 4)}$ $= 16.55$ $vres = \sqrt{(vbv + tmv)^2 + (tmh + abh)^2}$ $= \sqrt{(19.11 + 2.36)^2 + (25.2 + 16.55)^2}$ $= 46.95$	

Co	mpany Name		Project Title
Gre	oup/Team Name		Subtitle
De	signer		Job Number
Da	te	08 /05 /2020	Client

Check	Required	Provided	Remarks
	$if \ l \geq 15 * d \ then \ V_{rd} = \beta_{ij} * V_{db}$		
Long Joint Reduction	if $l < 15 * d$ then $V_{rd} = V_{db}$ where,	= (9-1) * 40 = 320 $l = 320$	
	$l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $\beta_{ij} = 1.075 - l/(200 * d)$	$\begin{array}{c c} 15 * d = 15 * 12.0 = 180.0 \\ since, \ l \ge 15 * d \ then \ V_{rd} = \beta_{ij} * V_{db} \end{array}$	
	$but \ 0.75 \le \beta_{ij} \le 1.0$	$\beta_{ij} = 1.075 - 320/(200 * 12.0) = 0.94$ $V_{rd} = 0.94 * 52.19 = 49.15$	
Capacity (kN)	46.95	49.15	Pass

Company Name		Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	08 /05 /2020	Client

2.5 Outer flange plate Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)		180.0	Pass
Min. Plate Length (mm)	$2[2 * e_{min} + (\frac{bolt \ lines}{2} - 1) * p_{min})] + \frac{gap}{2}]$ $= 2 * [(2 * 22.1 + (\frac{10}{2} - 1) * 30.0]$ $= +\frac{10.0}{2}]$ $= 338.4$	350.0	Pass
Min.Plate Thickness (mm)	$t_w = 17.2$	20.0	Pass

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	08 /05 /2020	Client	

2.6 Member Checks

Check	Required	Provided	Remarks
		$T_{dg} = \frac{l * t_p * f_y}{\gamma_{mo}}$	
		γ_{mo}	
Flange Tension Yielding		$= \frac{180.0 * 17.2 * 230}{1.1}$	
Capacity (kN)			
		=647.35	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
Flange Tension Rupture			410
Capacity (kN)		$= \frac{0.9 * (180.0 - 2 * 13.0) * 17.2 *}{1.25}$	410
Capacity (KIV)		5 01.00	
		$A_{va}f_{v} = 0.9A_{tn}f_{v}$	
		$ = 781.93 $ $ T_{db1} = \frac{A_{vg} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}} $	
Flange Block Shear Ca-		$0.9 * A_{vv} f_{v} A_{ta} f_{v}$	
pacity (kN)		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
[P. 33213] (222.1)			
		$T_{db} = min(T_{db1}, T_{db2}) = 751335.905$ $T_d = Min(T_{dq}, T_{dn}, T_{db})$	
Flange Tension Capacity	$f_f = 282.01$	= Min(647.35, 781.93, 751.34)	Pass
(kN)	ff = 282.01		1 ass
(KIV)		= 647.35	
		$T_{dg} = \frac{l * t_p * f_y}{\gamma_{mo}}$	
Web Tension Yielding Ca-		465.6 * 10.2 * 230	
pacity (kN)		$=\frac{465.6*10.2*230}{1.1}$	
Process (const)			
		$= 993.0$ $T_{dn} = \frac{0.9 * A_n * f_u}{2}$	
		$I_{dn} \equiv \frac{\gamma_{m1}}{\gamma_{m1}}$	
Web Tension Rupture Ca-		$= \frac{0.9 * (465.6 - 9 * 13.0) * 10.2 *}{1.25}$	410
pacity (kN)		$\equiv \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
		= 1049.65	
		$= 1049.65$ $T_{db1} = \frac{A_{vg} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$	
		$\sqrt{3}\gamma_{m0}$ γ_{m1}	
Web Block Shear Capac-		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
ity (kN)		$\sqrt{3}\gamma_{m1}$ γ_{m0}	
		$T_{db} = min(T_{db1}, T_{db2}) = 861.11$ $T_d = Min(T_{dg}, T_{dn}, T_{db})$	
		$T_d = \overline{Min(T_{dg}, T_{dn}, T_{db})}$	
Web Tension Capacity	$A_w = 297.9$	= Min(993.0, 1049.65, 861.11)	Pass
(kN)		= 861.11	

Company Name		Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	08 /05 /2020	Client

2.7 Flange Plate Capacity Checks in Axial-Outside

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t_p * f_y}{\gamma_{mo}}$ $= \frac{180.0 * 20.0 * 230}{1.1}$ $= 752.73$	
Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (180.0 - 2 * 13.0) * 20.0 *}{1.25}$ $= 909.22$	410
Block Shear Capacity (kN)		$T_{db1} = \frac{A_{vg} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$ $T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$ $T_{db} = min(T_{db1}, T_{db2}) = 1058.48$	
Plate Tension Capacity (kN)	$f_f = 282.01$	$T_d = Min(T_{dg}, T_{dn}, T_{db})$ $= Min(752.73, 909.22, 1058.48)$ $= 752.73$	Pass

Company Name		Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	08 /05 /2020	Client

2.8 Web Plate Capacity Checks in Axial

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t_p * f_y}{\gamma_{mo}}$ $= \frac{370 * 6.0 * 230}{1.1}$ $= 928.36$	
Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (370 - 9 * 13.0) * 6.0 * 410}{1.25}$ $= 896.23$)
Block Shear Capacity (kN)		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$ $T_{db2} = \frac{0.9 * A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$ $T_{db} = min(T_{db1}, T_{db2}) = 1013.07$	
Plate Tension Capacity (kN)	$A_w = 297.9$	$T_d = Min(T_{dg}, T_{dn}, T_{db})$ $= Min(928.36, 896.23, 1013.07)$ $= 896.23$	Pass

Company Name		Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	08 /05 /2020	Client

2.9 Web Plate Capacity Checks in Shear

Check	Required	Provided	Remarks
		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$	
Shear yielding Capacity (V_dy) (kN)		$=\frac{370*6.0*230}{\sqrt{3}*1.1}$	
		= 535.99	
		$V_{dn} = \frac{0.9 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$	
Shear Rupture Capacity (V_dn) (kN)		= 0.9 * (370 - (2.0 * 13.0)) * 6.0 *	410
(*_un) (m*)		=517.44	
		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
Block Shear Capacity in Shear (V_db) (kN)		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
		$T_{db} = min(T_{db1}, T_{db2}) = 617.6$	
		$V_d = Min(V_{dy}, V_{dn}, V_{db})$	
Plate Shear Capacity (kN)	$V_u = 343.98$	= Min(535.99, 517.44, 1013.07)	Pass
		=517.44	

Company Name		Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	08 /05 /2020	Client

3 3D View

Figure 1: 3D View