$$0.3 = \frac{30}{BC}$$

$$\overline{BC} = \frac{30}{0.3}$$

$$\overline{BC} = 100m$$

In A AOC

$$\tan 14^\circ = \frac{\overline{OC}}{AC}$$

$$0.2493 = \frac{30}{AB + BC}$$

$$0.2493 = \frac{30}{x + 100}$$

$$0.2493(x+100)=30$$

$$0.2493x + 24.93 = 30$$

$$0.2493x = 30 - 24.93$$

$$0.2493x = 5.07$$

$$x = \frac{5.07}{0.2493}$$

$$x = 20.33 \text{ m}$$

SOLVED MISCELLANEOUS EXERCISE - 7

Q1. Multiple Choice Questions

Four possible answers are given for the following questions. Tick (\checkmark) the correct answer.

- (i) The union of two non-collinear rays, which have common end point is called
 - (a) an angle
- (b) a degree
- (c) a minute
- (d) a radian
- (ii) The system of measurement in which the angle is measured in radians is called
 - (a) CGS system

(b) sexagesimal system

(c) MKS system

(d) circular system

- (III) 20° =
 - (a) 360°
- (b) 630'
- (c) 1200'
- (d) 3600'

- (iv) $\frac{3\pi}{4}$ radians =
 - (a) 115°
- (b) 135°
- (c) 150°
- (d) 150°

- (v) If $\tan \theta = \sqrt{3}$, then θ is equal to
 - (a) 90°
- (b) 45°
- (c) 60°
- (d) 30°

(vi) $\sec 2\theta =$

(a)
$$1 - \sin^2 \theta$$

(b)
$$1 + \sin^2 \theta$$

(a)
$$1 - \sin^2 \theta$$
 (b) $1 + \sin^2 \theta$ (c) $1 + \cos^2 \theta$ (d) $\cos \theta$

(d)
$$\cos \theta$$

(vii)
$$\frac{1}{1+\sin\theta} + \frac{1}{1-\sin\theta}$$

(a)
$$2 \sec^2 \theta$$

(b)
$$2 \cos^2 \theta$$

(c)
$$\sec^2\theta$$

(d)
$$\cos\theta$$

(viii) $\frac{1}{2}$ cosec45°

(a)
$$\frac{1}{2\sqrt{2}}$$

(b)
$$\frac{1}{\sqrt{2}}$$

(c)
$$\sqrt{2}$$

(c)
$$\sqrt{2}$$
 (d) $\frac{\sqrt{3}}{2}$

(ix) $\sec\theta\cot\theta =$

(b)
$$\frac{1}{\cos\theta}$$

(c)
$$\frac{1}{\sin \theta}$$

(b)
$$\frac{1}{\cos \theta}$$
 (c) $\frac{1}{\sin \theta}$ (d) $\frac{\sin \theta}{\cos \theta}$

(x)
$$\csc^2\theta - \cot^2\theta =$$

$$(a) -1$$

Answer

(i)	а	(ii)	d	(iii)	c	(iv)	b	(v)	С
(vi)	Ь	(vii)	a	(viii)	Ь	(ix)	С	(x)	Ь

Q2. Write short answers of the following questions.

(i) Define an angle.

Ans:

an angle is defined as the union of two non- collinear rays with some common end point.

(ii) What is the sexagesimal system of measurement of angles?

Ans:

In sexagesmal system of measurement of angles, we find angles in degree, minutes and seconds.

(iii) How many minutes are in two right angles?

Ans:

In two right angles, we have 10800 minutes.

(iv) Define radian measure of an angle.

Ans:

The angle subtended at the centre of the circle b an are, whose length is equal to the radius of the circle, is called one radian.

(v) Convert J radian to degree measure.

Ans:

$$\frac{\pi}{4} = \frac{\pi}{4} \operatorname{radian} = \frac{\pi}{4} \times \frac{180^{\circ}}{\pi} = 45^{\circ}$$

(vi) Convert 15° to radians.

Ans:

$$15^{\circ} = 15 \times 1^{\circ} = 15 \times \frac{\pi}{180} = \frac{\pi}{12}$$
 radians.

(vii) What is radian measure of the central angle of an arc 50m long on the circle of radius 25m.

Aus:

$$\theta = ?$$
, $l = 50$ m, $r = 25$ m
We know that
 $l = r\theta$
 $\theta = \frac{1}{r} = \frac{50}{25} = 2$ radian

(vili) Find r when l = 56 cm and $0 = 45^{\circ}$

Ans:

$$r = ?$$
, $1 = 56$ cm, $\theta = 45^{\circ} = 45 \times 1^{\circ} = 45 \times \frac{\pi}{180} = \frac{\pi}{4} = 0.7854$ radians
We know that

$$l = r\theta$$

 $r = \frac{1}{\theta} = \frac{56}{0.7854}$
= 71.30 cm

(ix) Find tan θ when $\cos\theta \frac{9}{41}$ = and θ terminal side of the angle θ is in fourth quadrant.

Ans:

$$\cos \theta = \frac{9}{41}$$

$$\Rightarrow x = 9 \text{ and } r = 41$$

By Pythagoras theorem, we have

$$r^{2} = x^{2} + y^{2}$$

$$y^{2} = r^{2} - x^{2}$$

$$y = \sqrt{r^{2} - x^{2}}$$

$$= \sqrt{(41)^{2} - (9)^{2}}$$

$$= \sqrt{1681 - 81}$$

$$= \sqrt{1600}$$

$$= 40$$

Now $\tan \theta = \frac{y}{x} = \frac{40}{9}$

(i) Prove that $(1 - \sin^2 \theta) (1 + \tan^2 \theta) = 1$:

Ans:

L.H.S. =
$$(1 - \sin^2\theta) (1 + \tan^2\theta)$$

= $(1 - \sin^2\theta) \left(1 + \frac{\sin^2\theta}{\cos^2\theta}\right)$
= $(\cos^2\theta) \left(\frac{\cos^2\theta + \sin^2\theta}{\cos^2\theta}\right)$
= $(\cos^2\theta) \left(\frac{1}{\cos^2\theta}\right)$
= 1
= R.H.S
Hence proved

Q3. Fill in the blanks

- (i) radians = ____degree.
- (ii) The terminal side of angle 235° lies in ____quadrant.
- (iii) Terminal side of the angle -30° lies in ____quadrant.
- (iv) Area of a circular sector is _____.
- (v) If r = 2 cm and $\theta = 3$ radian, then area of the circular sector is
- (vi) The general form of the angle 480° is _____.
- (vii) If $\sin\theta = \frac{1}{2}$, then $\theta = \underline{\hspace{1cm}}$.
- (viii) If $\theta = 300^{\circ}$, then sec $(-300)^{\circ} =$
- (ix) $1 + \cot^2 \theta =$ ____.
- (x) $\sec\theta \tan\theta =$ _____.

Answer

(i)	180	(ii)	1[]	(iii)	IV
(iv)	$\frac{1}{2}r^2\theta$	(v)	6cm ²	(vi)	$2k\pi + 120^{\circ},$ where $k = 1$
(vii)	$\theta=30^{\circ} \text{ or }$ $\frac{\pi}{6} \text{ rad}$	(viii)	2	(ix)	cosec²θ
(x)	$\frac{1-\sin\theta}{\cos\theta}$				

SUMMARY

- If we divide the circumference of a circle into 360 equal arcs. Then the angle subtended %t the centre of the Circle by one arc is called one degree and is denoted by 1°.
- The angle subtended at the centre of the circle by an arc, whose length is equal to the radius of the circle, is called one radian.
- Relationship between radian and degree measure $1^{\circ} = \frac{\pi}{180}$ radians ≈ 0.0175 radian and $1 \text{ radian} = \left(\frac{180}{\pi}\right)^{\circ} \approx 57.295$ degrees
- Relation between central angle and arc length of a circle: $t = r\theta$
- Area of a circular sector, $A = \frac{1}{2} r^2 \theta$.
- Two or more than two angles with the same initial and terminal sides are called cotenninal angles.
- An angle is called a quadrantal angle, if its terminal side lies on the axis or-axis.
- A general angle is said to be in standard position if its vertex is at the origin and its initial side is directed along the positive direction of the x-a.y.is of a rectangular coordinate system.
- There are six fundamental trigonometric ratios (functions) known, as sine, cosine, tangent, cotangent, secant and cosecant.
- Trigonometric Identities:

(a)
$$\cos^2\theta + \sin^2\theta = 1$$
 (b) $1 + \tan^2\theta = \sec^2\theta$ (c) $1 + \cot^2\theta = \csc^2\theta$

00000000000