作业 21 向量的数乘运算

 $1.(\vec{a}+2\vec{b})+2(\vec{a}-\vec{b})$ 等于 ()

A. $2\vec{a}$ B. $3\vec{a}$ C. $-\vec{b}$ D. $\vec{0}$

【答案】B

【详解】依题意得: $(\vec{a}+2\vec{b})+2(\vec{a}-\vec{b})=\vec{a}+2\vec{b}+2\vec{a}-2\vec{b}=3\vec{a}$, 故选: B.

2.设 e_1 , e_2 是两个不共线的向量, 若向量 $m = -e_1 + ke_2$ ($k \in \mathbb{R}$)与向量 $n = e_2 - 2e_1$ 共线,则 ()

A.k=0

B.k=1

C.k=2

 $D.k = \frac{1}{2}$

【答案】D

【详解】:向量m与向量n共线,

∴设 $m = \lambda n(\lambda \in \mathbb{R})$, ∴ $-e_1 + ke_2 = \lambda e_2 - 2\lambda e_1$,

 $:e_1$ 与 e_2 不共线,

3.如图,AB是圆O的一条直径,C,D是半圆弧的两个三等分点,则 $\overrightarrow{AB} = ($)

A. $\overrightarrow{AC} - \overrightarrow{AD}$ B. $2\overrightarrow{AC} - 2\overrightarrow{AD}$ C. $\overrightarrow{AD} - \overrightarrow{AC}$ D. $2\overrightarrow{AD} - 2\overrightarrow{AC}$

【答案】D

【详解】 : C,D是半圆弧的两个三等分点,

∴ CD//AB, △AB = 2CD,

 $\vec{AB} = 2\vec{CD} = 2(\vec{AD} - \vec{AC}) = 2\vec{AD} - 2\vec{AC}.$

故选: D.

4.设点M是线段BC的中点,点A在直线BC外, $|\overrightarrow{BC}|^2 = 16$, $|\overrightarrow{AB} + \overrightarrow{AC}| = |\overrightarrow{AB} - \overrightarrow{AC}|$,则 $|\overrightarrow{AM}| =$ ()

A. 8

B. 4

C. 2

D. 1

【答案】 C

【详解】由 $|\overrightarrow{BC}|^2 = 16$,得 $|\overrightarrow{BC}| = 4$,

$$: |\overrightarrow{AB} + \overrightarrow{AC}| = |\overrightarrow{AB} - \overrightarrow{AC}|,$$

而 $|\overrightarrow{AB} + \overrightarrow{AC}| = 2|\overrightarrow{AM}|$, $\therefore |\overrightarrow{AM}| = 2$, 故选: C.

5.(多选)如图所示,在 $\triangle ABC$ 中,点 D 在边 BC 上,且 CD = 2DB,点 E 在 AD 上,且 $\overrightarrow{AD} = 3\overrightarrow{AE}$, 则 (

A.
$$\overrightarrow{AD} = \frac{1}{3}\overrightarrow{AC} + \frac{2}{3}\overrightarrow{AB}$$
 B. $\overrightarrow{CE} = \frac{1}{3}\overrightarrow{AD} - \overrightarrow{AC}$ C. $\overrightarrow{CE} = \frac{2}{9}\overrightarrow{AB} + \frac{8}{9}\overrightarrow{AC}$

B.
$$\overrightarrow{CE} = \frac{1}{2}\overrightarrow{AD} - \overrightarrow{AC}$$

C.
$$\overrightarrow{CE} = \frac{2}{9}\overrightarrow{AB} + \frac{8}{9}\overrightarrow{AC}$$

D.
$$\overrightarrow{CE} = \frac{2}{9}\overrightarrow{AB} - \frac{8}{9}\overrightarrow{AC}$$

【答案】ABD

【详解】: CD = 2DB, 点 E 在 AD 上, $\overrightarrow{AD} = 3\overrightarrow{AE}$,

$$\overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AC} + \frac{2}{3}\overrightarrow{CB} = \overrightarrow{AC} + \frac{2}{3}(\overrightarrow{AB} - \overrightarrow{AC}) = \frac{1}{3}\overrightarrow{AC} + \frac{2}{3}\overrightarrow{AB},$$

∴
$$\overrightarrow{CE} = \overrightarrow{AE} - \overrightarrow{AC} = \frac{1}{3}\overrightarrow{AD} - \overrightarrow{AC} = \frac{1}{9}\overrightarrow{AC} + \frac{2}{9}\overrightarrow{AB} - \overrightarrow{AC} = \frac{2}{9}\overrightarrow{AB} - \frac{8}{9}\overrightarrow{AC}$$
. 故选: ABD.

6.(多选)在 $\triangle ABC$ 中,D,E,F 分别是边 BC,CA,AB 的中点,点 G 为 $\triangle ABC$ 的重心,则下列结论中 正确的是

 $A.\overrightarrow{AB}-\overrightarrow{BC}=\overrightarrow{CA}$

 $B.\overrightarrow{AG} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC})$

 $C.\overrightarrow{AF} + \overrightarrow{BD} + \overrightarrow{CE} = 0$

 $D.\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \mathbf{0}$

【答案】BCD

【详解】 $\overrightarrow{AB} - \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{CB} = 2\overrightarrow{EB} \neq \overrightarrow{CA}$,故A错误;因为点G为 $\triangle ABC$ 的重心,所以 $\overrightarrow{AG} = \frac{2}{3}\overrightarrow{AD} = \frac{2}{3} \times \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}) = \frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AC})$,故 B 正确; $\overrightarrow{AF} + \overrightarrow{BD} + \overrightarrow{CE} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}) = \mathbf{0}$,故 C 正确;连接 GD,因为 $\overrightarrow{GD} = \frac{1}{2}(\overrightarrow{GB} + \overrightarrow{GC})$,所以 $\overrightarrow{GA} = -2\overrightarrow{GD} = -2 \times \frac{1}{2}(\overrightarrow{GB} + \overrightarrow{GC})$,即 $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \mathbf{0}$,故 D 正确.故选 BCD. 7.(多选)已知 m, n 是实数, a, b 是向量,则下列说法中正确的是(

A.m(a-b)=ma-mb;

B.(m-n)a=ma-na;

C.若 ma=mb, 则 a=b;

D.若 $m\mathbf{a} = n\mathbf{a}$, 则 m = n.

【答案】AB

【详解】由向量数乘的运算律知 AB 正确; C 中当 m=0 时,ma=mb,但 a 不一定等于 b,故错误; D 中当 a=0 时等式成立,但 m 不一定等于 n,故错误.

8.已知向量 a,b 满足|a|=3,|b|=5,且 $a=\lambda b$,则实数 λ 的值是______.

【答案】
$$\pm \frac{3}{5}$$

【详解】由 $a=\lambda b$,得 $|a|=|\lambda b|=|\lambda||b|$.

9.设 D, E 分别是 $\triangle ABC$ 的边 AB, BC 上的点, $AD = \frac{1}{2}AB$, $BE = \frac{2}{3}BC$.若 $\overrightarrow{AB} = \boldsymbol{a}$, $\overrightarrow{AC} = \boldsymbol{b}$, 则 \overrightarrow{DE} = _____.(用 \boldsymbol{a} , \boldsymbol{b} 表示)

【答案】
$$-\frac{1}{6}a + \frac{2}{3}b$$

【详解】
$$\overrightarrow{DE} = \overrightarrow{DB} + \overrightarrow{BE} = \frac{1}{2}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{BC} = \frac{1}{2}\overrightarrow{AB} + \frac{2}{3}(\overrightarrow{BA} + \overrightarrow{AC}) = -\frac{1}{6}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC} = -\frac{1}{6}a + \frac{2}{3}b.$$

10.如图,在五边形 ABCDE 中,四边形 ABCD 是平行四边形,且 $\overrightarrow{DE} = \overrightarrow{a}$, $\overrightarrow{AD} = \overrightarrow{b}$, $\overrightarrow{CD} = \overrightarrow{c}$, 试用 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 分别表示 \overrightarrow{AE} , \overrightarrow{CE} , \overrightarrow{AB} , \overrightarrow{BE} 及 \overrightarrow{AC} .

【详解】:: $\overrightarrow{DE} = \overrightarrow{a}, \overrightarrow{AD} = \overrightarrow{b}, \overrightarrow{CD} = \overrightarrow{c}$,

$$\therefore \overrightarrow{AE} = \overrightarrow{AD} + \overrightarrow{DE} = \vec{b} + \vec{a} = \vec{a} + \vec{b} , \quad \overrightarrow{CE} = \overrightarrow{CD} + \overrightarrow{DE} = \vec{c} + \vec{a} = \vec{a} + \vec{c} ,$$

$$\overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AD} + \left(-\overrightarrow{CD} \right) = \vec{b} - \vec{c} .$$

因为四边形 ABCD 为平行四边形,

所以
$$\overrightarrow{AB} = \overrightarrow{DC} = -\overrightarrow{CD} = -\overrightarrow{c}$$
 , $\overrightarrow{BE} = \overrightarrow{BA} + \overrightarrow{AE} = -\overrightarrow{AB} + \overrightarrow{AE} = \overrightarrow{c} + \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$.
综上, $\overrightarrow{AE} = \overrightarrow{a} + \overrightarrow{b}$, $\overrightarrow{CE} = \overrightarrow{a} + \overrightarrow{c}$, $\overrightarrow{AB} = -\overrightarrow{c}$, $\overrightarrow{BE} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ 及 $\overrightarrow{AC} = \overrightarrow{b} - \overrightarrow{c}$.

11.已知 $\vec{e_1}$ 与 $\vec{e_2}$ 不共线, \vec{AB} = $\vec{e_1}$ + $\vec{e_2}$, \vec{BC} = $2\vec{e_1}$ + $8\vec{e_2}$, \vec{CD} = $3(\vec{e_1}$ - $\vec{e_2})$.求证: A,B,D 三

点共线,

【详解】: $\overrightarrow{BC} = 2\overrightarrow{e_1} + 8\overrightarrow{e_2}$, $\overrightarrow{CD} = 3(\overrightarrow{e_1} - \overrightarrow{e_2})$,

$$\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD} = 5\overrightarrow{e_1} + 5\overrightarrow{e_2}$$
,

$$\nabla \overrightarrow{AB} = \overrightarrow{e_1} + \overrightarrow{e_2}$$
, $\therefore \overrightarrow{AB} = \frac{1}{5}\overrightarrow{BD}$, $\therefore \overrightarrow{AB} / \overrightarrow{BD}$,

又: AB 与 BD 有交点 B,

∴*A*, *B*, *D* 三点共线.

【拓展探究※选做】

12.(多选)在 $\triangle ABC$ 中,D为 BC上一点.若 $\overrightarrow{AD} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AC}(\lambda > 0, \mu > 0)$,则 $\frac{2}{\lambda} + \frac{1}{\mu}$ 的值可以

为()

A.
$$\sqrt{2}$$

B.
$$2 + 2\sqrt{2}$$

B.
$$2+2\sqrt{2}$$
 C. $3+2\sqrt{2}$ D. $4+2\sqrt{2}$

D.
$$4 + 2\sqrt{2}$$

【答案】CD

【详解】由于 B,C,D 三点共线, 所以 $\lambda + \mu = 1$,

$$\text{FT is } \frac{2}{\lambda} + \frac{1}{\mu} = \left(\frac{2}{\lambda} + \frac{1}{\mu}\right) \left(\lambda + \mu\right) = 3 + \frac{2}{\lambda} + \frac{\lambda}{\mu} \geq 3 + 2\sqrt{\frac{2\mu}{\lambda} \cdot \frac{\lambda}{\mu}} = 3 + 2\sqrt{2} \text{ ,}$$

当且仅当
$$\frac{2\mu}{\lambda} = \frac{\lambda}{\mu}$$
, $\lambda = \sqrt{2}\mu$, $\begin{cases} \lambda = \sqrt{2}\mu \\ \lambda + \mu = 1 \end{cases} \Rightarrow \lambda = 2 - \sqrt{2}$, $\mu = \sqrt{2} - 1$.

13.如图,AB是圆O的直径,C、D是圆O上的点, $\angle CBA = 60^{\circ}$, $\angle ABD = 45^{\circ}$, $\overrightarrow{CD} = x\overrightarrow{OA} + y\overrightarrow{BC}$, 则 $x + y = ___$

【答案】 $-\frac{\sqrt{3}}{3}$

【详解】如图过C作 $CE \perp OB$ 于E,

因为AB是圆O的直径,C、D是圆O上的点, $\angle CBA = 60$ °

所以E为OB的中点,连结OD,则 $\overrightarrow{CE} = \frac{\sqrt{3}}{2}\overrightarrow{OD}$,

$$\therefore \overrightarrow{CD} = \overrightarrow{CO} + \overrightarrow{OD} = \overrightarrow{OA} - \overrightarrow{BC} + \frac{2}{\sqrt{3}}\overrightarrow{CE}, \quad \overrightarrow{CE} = \overrightarrow{CB} + \overrightarrow{BE} = -\overrightarrow{BC} + \frac{1}{2}\overrightarrow{OA},$$

$$\overrightarrow{CD} = \overrightarrow{OA} - \overrightarrow{BC} + \frac{2}{\sqrt{3}} \left(-\overrightarrow{BC} + \frac{1}{2} \overrightarrow{OA} \right) = \left(\frac{1}{\sqrt{3}} + 1 \right) \overrightarrow{OA} - \left(1 + \frac{2}{\sqrt{3}} \right) \overrightarrow{BC},$$

 $\nabla \overrightarrow{CD} = x\overrightarrow{OA} + y\overrightarrow{BC},$

$$x + y = (\frac{1}{\sqrt{3}} + 1) - (1 + \frac{2}{\sqrt{3}}) = -\frac{\sqrt{3}}{3}.$$

故答案为: $-\frac{\sqrt{3}}{3}$.

14.如图, 已知 D, E, F 分别为 $\triangle ABC$ 的三边 BC, AC, AB 的中点, 求证: $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \vec{0}$.

【详解】由题意知 $\overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{CD}$, $\overrightarrow{BE} = \overrightarrow{BC} + \overrightarrow{CE}$, $\overrightarrow{CF} = \overrightarrow{CB} + \overrightarrow{BF}$,

由题意可知 $\overrightarrow{EF} = \overrightarrow{CD}$, $\overrightarrow{BF} = \overrightarrow{FA}$.

$$\therefore \overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \left(\overrightarrow{AC} + \overrightarrow{CD} \right) + \left(\overrightarrow{BC} + \overrightarrow{CE} \right) + \left(\overrightarrow{CB} + \overrightarrow{BF} \right)$$

$$= \left(\overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{CE} + \overrightarrow{BF}\right) + \left(\overrightarrow{BC} + \overrightarrow{CB}\right)$$

$$= \left(\overrightarrow{AE} + \overrightarrow{EC} + \overrightarrow{CD} + \overrightarrow{CE} + \overrightarrow{BF}\right) + \overrightarrow{0} = \overrightarrow{AE} + \overrightarrow{CD} + \overrightarrow{BF} = \overrightarrow{AE} + \overrightarrow{EF} + \overrightarrow{FA} = \overrightarrow{0} \ .$$