Practical One

Sbonelo Gumede

2025-02-06

Air quality data set

Remove missing values

```
data <- na.omit(airquality)</pre>
```

Temperature statistics

Statistics	Values
Mean	77.792793
Standard Deviation	9.529969
Minimum	57.000000
Maximum	97.000000

Ozone level statistics

Statistics	Values
Mean	42.09910
Standard Deviation	33.27597
Minimum	1.00000
Maximum	168.00000

Cars data set

Remove missing values

```
cars <- na.omit (cars)</pre>
```

Declare variables

```
X <- cbind(1, cars$speed)
Y <- cars$dist</pre>
```

Calculate beta estimates

```
beta_coefficients <- solve (t(X) %*% X) %*% t(X) %*% Y
knitr::kable (beta_coefficients)</pre>
```

 $\begin{array}{c} -17.579095 \\ 3.932409 \end{array}$

Fit a linear model

```
model <- lm (dist ~ speed, data = cars)</pre>
```

Display the summary

```
summary_table <- as.data.frame(summary(model)$coefficients)
knitr::kable(summary_table, caption = "Model Coefficients")</pre>
```

Table 4: Model Coefficients

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-17.579095	6.7584402	-2.601058	0.0123188
speed	3.932409	0.4155128	9.463990	0.0000000