Amendments to the Claims

1) (Currently Amended) A pigment dispersant of the formula (I)

in which Q is a radical of the diketopyrrolopyrrole compound of the formula (Ia)

- s is a number from 0.1 to 4.0,
- n is a number from 0 to 2 s,
- E^+ is H^+ or the equivalent M^{m+}/m of a metal cation M^{m+} from main groups 1 to 5 or transition groups 1 or 2 or 4 to 8 of the periodic system of the chemical elements, m being 1, 2 or 3, an ammonium ion $N^+R^9R^{10}R^{11}R^{12}$, where the substituents R^9 , R^{10} , R^{11} and R^{12} independently of one another are each a hydrogen atom, C_1-C_{30} -alkyl, C_2-C_{30} -alkenyl, C_5-C_{30} -cycloalkyl, phenyl, (C_1-C_8) -alkyl-phenyl, (C_1-C_4) -alkylene-phenyl, or a (poly)alkyleneoxy group of the formula -[CH(R^{80})-CH(R^{80})-O]_k-H, in

which k is a number from 1 to 30 and the two radicals R^{80} independently of one another are hydrogen, C_1 - C_4 -alkyl or, if k is > 1, a combination thereof; and in which alkyl, alkenyl, cycloalkyl, phenyl or alkylphenyl R^9 , R^{10} , R^{11} , and/or R^{12} may be substituted by amino, hydroxyl and/or carboxyl; or where the substituents R^9 and R^{10} , together with the quaternary nitrogen atom, are able to form a five- to seven-membered saturated ring system containing, if desired, further heteroatoms from the group consisting of O, S and N, or where the substituents R^9 , R^{10} and R^{11} , together with the quaternary nitrogen atom, are able to form a five- to seven-membered aromatic ring system, containing,

if desired, further heteroatoms from the group consisting of O, S and N, and to which

or in which E* defines an ammonium ion of the formula (Ic)

additional rings may be fused if desired,

in which

R¹⁵, R¹⁶, R¹⁷ and R¹⁸ independently of one another are hydrogen or a (poly)alkyleneoxy group of the formula –[CH(R⁸⁰)-CH(R⁸⁰)O]_k-H, in which k is a number from 1 to 30 and the two radicals R⁸⁰ independently of one another are hydrogen, C₁-C₄-alkyl or, if k is > 1, a combination thereof;

q is a number from 1 to 10,

p is a number from 1 to 5, where p is $\leq q+1$;

T is a branched or unbranched C₂-C₆-alkylene radical; or in which T, if q is > 1, may also be a combination of branched or unbranched C₂-C₆-alkylene radicals;

and in which the two radicals Z are identical or different and Z has the definition Z^{1} or Z^{4} , where

 Z^1 is a radical of the formula (lb)

$$-[X-Y]_{\alpha}R^3$$
 (lb)

in which

is a C₂-C₆-alkylene radical, a C₅-C₇-cycloalkylene radical, or a combination of these radicals, it being possible for these radicals to be substituted by from 1 to 4 C₁-C₄-alkyl radicals, hydroxyl radicals, (C₁-C₄)-hydroxyalkyl radicals and/or by 1 or 2 further C₅-C₇-cycloalkyl radicals, or in which X, if q is > 1, may also be a combination of said definitions;

Y is a -O-.

q

or in which Y, if q is > 1, may also be a combination of said definitions; is a number from 1 to 10;

 R^2 and R^3 independently of one another are a hydrogen atom, a substituted or unsubstituted, or partly fluorinated or perfluorinated, branched or unbranched (C_1-C_{20}) -alkyl group, a substituted or unsubstituted C_5-C_7 -cycloalkyl group or a substituted or unsubstituted, or partly fluorinated or perfluorinated (C_2-C_{20}) -alkenyl group, it being possible for the substituents to be hydroxyl, phenyl, cyano, chloro, bromo, amino, C_2-C_4 -acyl or C_1-C_4 -alkoxy, or

R² and R³, together with the nitrogen atom, form a saturated, unsaturated or aromatic heterocyclic 5- to 7-membered ring containing, if desired, 1 or 2 further nitrogen, oxygen or sulfur atoms or carbonyl groups in the ring, being substituted if desired by 1, 2 or 3 of the radicals OH, phenyl, CN, Cl, Br, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₂-C₄-acyl and carbamoyl, and carrying, if desired, 1 or 2 benzo-fused saturated, unsaturated or aromatic, carbocyclic or heterocyclic rings;

and where

- Z^4 is hydrogen, hydroxyl, amino, phenyl, (C_1-C_4) -alkylene-phenyl, C_5-C_7 -cycloalkyl or C_1-C_{20} -alkyl, it being possible for the phenyl ring, the (C_1-C_4) -alkylene-phenyl group and the alkyl group to be substituted by one or more substituents from the group consisting of Cl, Br, CN, NH₂, OH, C_6H_5 , mono-, di- or tri- C_1-C_4 -alkoxy-substituted C_6H_5 , carbamoyl, C_2-C_4 -acyl and C_1-C_4 -alkoxy, and it being possible for the phenyl ring and the (C_1-C_4) -alkylene-phenyl group to be substituted by NR²R³, or the alkyl group is perfluorinated or partly fluorinated.
- 2) (Currently Amended) The pigment dispersant as claimed in claim 1, wherein s is a number from 0.2 to 3.0, preferably from 0.5 to 2.5; and n is a number from 0 to 0.5, preferably from 0 to 0.2.
- 3) (Currently Amended) The pigment dispersant as claimed in claim 1-or-2, wherein R²-and R³—independently of one another are a hydrogen atom, a C₁-C₆-alkyl group or a C₁-C₆-alkyl group substituted by 1 or 2 substituents from the group consisting of hydroxyl, acetyl, methoxy, ethoxy, chloro and bromo, or
- R² and R³, together with the adjacent nitrogen atom, form an imidazolyl, piperidinyl, morpholinyl, pipecolinyl, pyrrolyl, pyrrolidinyl, pyrazolyl, pyrrolidinonyl, indolyl or piperazinyl ring.
- 4) (Currently Amended) The pigment dispersant as claimed in one or more of claims 1 to 3 claim 1, wherein Z^1 has the definition

 $-[(CH_2)_3-NH]_2-H$, $-(CH_2-CH_2-NH)_2H$,

 $-(CH_2)_3$ -NH $-(CH_2)_2$ -NH $-(CH_2)_3$ -NH $_2$,

 $-(CH_2)_3-N(CH_3)-(CH_2)_3-NH_2$, $-(CH_2)_3-O-(CH_2)_2-O-(CH_2)_3-NH_2$,

 $-(CH_2)_3-O-(CH_2)_3-O-(CH_2)_3-NH_2$, $-(CH_2)_2-NH-(CH_2)_3-NH_2$, $-(CH_2)_3-NH_2$, $-(CH_2)_3-NH$

-(CH₂-CH₂-NH)₃-H, -(CH₂-CH₂-NH)₄-H, -(CH₂-CH₂-NH)₅-H,

 $-(CH_2)_3 - O - (CH_2)_2 - O - (CH_2)_3 - O + (CH_2)_3 - O - (CH_2)_3 - O - (CH_2)_4 - O - (CH_2)_3 - O + (CH_2)_3 - O - (CH$

$$\begin{array}{c} \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_3 \\ \text{CH}_4 \\ \text{CH}_5 \\ \text{CH}_5 \\ \text{CH}_6 \\ \text{CH}_7 \\ \text{CH}_7 \\ \text{CH}_8 \\ \text{CH}_8 \\ \text{CH}_8 \\ \text{CH}_8 \\ \text{CH}_8 \\ \text{CH}_9 \\$$

-CH₂-CH(CH₃)-NH₂, -CH₂-C(CH₃)₂-CH₂-NH₂,

 $-(CH_2)_2-N(CH_3)_2, \ -(CH_2)_2-NH-CH_2-CH_3, \ -(CH_2)_2-N(CH_2-CH_3)_2, \ -(CH_2)_3-N(CH_3)_2, \ -(CH_2)_3-N(CH_3)_2, \ -(CH_2)_3-NH-CH_2-CH_3 \ \ or \ -(CH_2)_3-N(CH_2-CH_3)_2.$

- 5) (Currently Amended) The pigment dispersant as claimed in one or more of elaims 1 to 4claim 1, wherein Z^4 has the definition hydrogen, amino, phenyl, benzyl, NR^2R^3 -substituted phenyl or benzyl, C_1 - C_6 -alkyl, or a C_2 - C_6 -alkyl, phenyl or benzyl substituted by 1 or 2 substituents from the group consisting of hydroxyl, acetyl, methoxy and ethoxy.
- 6) (Currently Amended) The pigment dispersant as claimed in one or more of claims 1 to 5 claim 1, wherein X is a C_2 - C_4 -alkylene radical or cyclohexylene.

7) (Currently Amended) A process for preparing a pigment dispersant as claimed in one or more of claims 1 to 6, which comprises claim 1 comprising the steps of chlorosulfonating a diketopyrrolopyrrole compound of the formula (Ia)

$$\bigcirc \bigvee_{N} \bigcirc \bigvee_{O} \bigvee_{O}$$

and reacting the resultant sulfochloride with an amine of the formula (V)

- 8) (Currently Amended) A pigment preparation comprising
- a) at least one organic base pigment, and
- b) at least one pigment dispersant of the formula (I) as claimed in one or more of claims 1 to 6 claim 1.

9 - 16 (Cancelled)