Lenguaje matemático, conjuntos y números

Pregunta 1 (2 puntos)

Se consideran los siguientes subconjuntos de \mathbb{R} :

$$A = \left\{ x \in \mathbb{R} \mid \left| x - \frac{1}{2} \right| \le 2 \right\} \text{ y } B = \left\{ x \in \mathbb{R} \mid 4x^2 - 8x - 5 < 0 \right\}$$

Obtenga $A \cap B$, $A \cup B$, $B \setminus A$ y \overline{B} , expressed mediante intervalos.

Solución: Observemos que

$$\left|x-\frac{1}{2}\right|\leqslant 2\iff -2\leqslant x-\frac{1}{2}\leqslant 2\iff -\frac{3}{2}\leqslant x\leqslant \frac{5}{2}\iff x\in\left[-\frac{3}{2},\frac{5}{2}\right]$$

y por tanto $A = \left[-\frac{3}{2}, \frac{5}{2} \right]$.

Por otro lado las raíces de $4x^2 - 8x - 5 = 0$ son $x = \frac{8 \pm 12}{8} = \begin{cases} 5/2 \\ -1/2 \end{cases}$ y en este caso se obtiene $B = \left(-\frac{1}{2}, \frac{5}{2}\right)$.

En consecuencia:

$$A \cap B = \left[-\frac{3}{2}, \frac{5}{2} \right] \cap \left(-\frac{1}{2}, \frac{5}{2} \right) = \left(-\frac{1}{2}, \frac{5}{2} \right)$$

$$A \cup B = \left[-\frac{3}{2}, \frac{5}{2} \right] \cup \left(-\frac{1}{2}, \frac{5}{2} \right) = \left[-\frac{3}{2}, \frac{5}{2} \right]$$

$$B \setminus A = \left(-\frac{1}{2}, \frac{5}{2} \right) \setminus \left[-\frac{3}{2}, \frac{5}{2} \right] = \emptyset$$

$$\overline{B} = \mathbb{R} \setminus \left(-\frac{1}{2}, \frac{5}{2} \right) = \left(-\infty, -\frac{1}{2} \right] \cup \left[\frac{5}{2}, +\infty \right)$$

Pregunta 2 (2,5 puntos)

Se dice que una relación \mathcal{R} en el conjunto U es circular si satisface la propiedad siguiente:

$$\forall x, y, z \in U$$
 si $x\Re y \in y\Re z$, entonces $z\Re x$.

- 1. Si R es una relación de equivalencia, ¿es R circular? ¿Por qué?
- 2. Si \mathcal{R} es reflexiva y circular, ¿es \mathcal{R} una relación de equivalencia? ¿Por qué?

Solución: 1. Veamos que si \mathcal{R} es una relación de equivalencia, entonces \mathcal{R} es circular. En efecto, supongamos que \mathcal{R} es una relación de equivalencia. Para todo $x,y,z\in U$, si $x\mathcal{R}y$ e $y\mathcal{R}z$ entonces $x\mathcal{R}z$, pues \mathcal{R} es transitiva. En consecuencia, $z\mathcal{R}x$ pues \mathcal{R} es simétrica. Por tanto, \mathcal{R} es circular.

2. Supongamos ahora que ${\mathcal R}$ es reflexiva y circular. Veamos que ${\mathcal R}$ es simétrica y transitiva.

Sim'etrica: Sean $x,y\in U$ tales que $x\Re y$. Como \Re es reflexiva resulta que $y\Re y$. Como \Re es circular, de $x\Re y$ e $y\Re y$ resulta que $y\Re x$.

Transitiva: Sean $x, y, z \in U$ tales que $x\Re y$ e $y\Re z$. Al ser \Re circular, resulta que $z\Re x$. Pero acabamos de demostrar que si \Re es reflexiva y circular entonces \Re es simétrica, y por tanto, $x\Re z$.

Pregunta 3 (3 puntos)

Se define en \mathbb{N} la operación interna \star y, por inducción, $a^{(n)}$ mediante:

$$a \star b = 2a + b$$
 y
$$\begin{cases} a^{(1)} = a \\ a^{(n+1)} = a^{(n)} \star a \text{ si } n \geqslant 1 \end{cases}$$

- 1. Estudie si la operación \star es conmutativa, asociativa, posee elemento neutro y en su caso, si todo elemento tiene simétrico.
- 2. Calcule $a^{(2)}$, $a^{(3)}$, $a^{(4)}$ y exprese $a^{(n)}$, respecto de las operaciones usuales de \mathbb{N} . Demuestre por inducción la validez de la expresión hallada para $a^{(n)}$ si $n \ge 1$.

Solución:

1. La operación ★ no es conmutativa pues

$$a \star b = 2a + b$$
$$b \star a = 2b + a$$

 $y 2a + b \neq 2b + a$ si $a \neq b$.

La operación ★ no es asociativa pues

$$a \star (b \star c) = 2a + (b \star c) = 2a + 2b + c$$

 $(a \star b) \star c = 2(a \star b) + c = 2(2a + b) + c = 4a + 2b + c$

y $4a + 2b + c \neq 2a + 2b + c$ si $a \neq 0$.

No existe elemento neutro para \star pues no existe $e \in \mathbb{N}$ tal que la igualdad $b \star e = e \star b = b$, es decir, 2b + e = 2e + b = b, sea verdadera para cualquier valor $b \in \mathbb{N}$. Obsérvese que ya sólo con la primera igualdad se obtiene e = b donde se pone de manifiesto que el valor de e no sería independiente de b.

2. Observemos que $a^{(n+1)} = a^{(n)} \star a = 2a^{(n)} + a$ para todo $n \geqslant 1$. Así pues:

$$a^{(2)} = 2a^{(1)} + a = 2a + a = 3a$$

 $a^{(3)} = 2a^{(2)} + a = 6a + a = 7a$
 $a^{(4)} = 2a^{(3)} + a = 14a + a = 15a$

Veamos por inducción que para todo $n \in \mathbb{N}^*$ se tiene:

$$a^{(n)} = (2^n - 1) a$$

- i) La igualdad es verdadera para n=1 pues $a^{(1)}=a$ y $\left(2^{1}-1\right)a=1\cdot a=a$.
- ii) Supongamos que la igualdad es verdadera para n, esto es, $a^{(n)} = (2^n 1) a$, y veamos que es cierta para n + 1, esto es, $a^{(n+1)} = (2^{n+1} 1) a$. En efecto:

$$\begin{array}{lll} a^{(n+1)} & = & 2a^{(n)} + a \\ & = & 2\left(2^n - 1\right)a + a & \text{por la hipótesis de inducción,} \\ & = & 2^{n+1}a - 2a + a = 2^{n+1}a - a = \left(2^{n+1} - 1\right)a \end{array}$$

Pregunta 4 (2,5 puntos)

Resuelva en $\mathbb C$ la ecuación:

$$(z-1-i)(z+1+i)(z-1+i)(z+1-i) = 5$$

Solución: Observemos que

$$(z-1-i)(z+1+i)(z-1+i)(z+1-i) = (z-(1+i))(z+(1+i))(z-(1-i))(z+(1-i))$$

$$= (z^2-(1+i)^2)(z^2-(1-i)^2)$$

$$= (z^2-(1-1+2i))(z^2-(1-1-2i)) = (z^2-2i)(z^2+2i)$$

$$= z^4+4$$

Sustituyendo en la ecuación se obtiene $z^4 + 4 = 5$, esto es,

$$z^4 = 1$$

cuyas soluciones son las raíces de grado cuartas de la unidad, $z_k = e^{i\frac{2k\pi}{4}}, k = 0, 1, 2, 3 \iff z \in \{1, i, -1, -i\}.$