Definição

O número cromático de G é o menor número de cores das possíveis colorações de G e ele é denotado com $\chi(G)$.

Diz-se que G é $\chi(G)$ -cromático.

Exemplo: No exemplo das rotas, G é 3-colorível. E dado que k3 é um subgrafo de G, não existe coloração com menos de 3 cores, logo, G é 3-cromático?

Número Cromático de G: $\chi(G)$ tal que G é $\chi(G)$ -colorível, mas não é $(\chi(G)-1)$ -colorível.

Teorema de Vizing

Se G é um grafo simples, então:

$$\Delta(G) \le \chi'(G) \le \Delta(G) + 1$$

Dem/ Não será aberta neste curso. Referências no livro do Wilson: "Introduction to Graph Theory". Observação: Não existe uma caracterização dos grafos cujo número cromático p.a é $\Delta(G)$ (ou $\Delta(G)+1$)

Exemplo

In this case, the maximum degree of a vertex in G, d = 4 but we need 5 colors for there not to be any edges sharing colors that are incident to the same vertex. Therefore, the edge chromatic number of G is d+1=4+1=5.

Teorema 2-Cromático

Proposição: Um grafo conexo não-trivial é 2-cromático se e somente se ele é bipartido.

2-Cromático \Leftrightarrow Grafo conexo não trivial Bipartido.

Fonte: Livro do Wilson "Introduction to Graph Theory"

ps:. Grafo trivial: K_1

Prova

 \Leftarrow) G = (V, E) conexo bipartido não trivial.

$$V=V_1\cup V_2$$
 , $V_1\cap V_2=\phi$

E toda aresta de G é incidente num vértice de V_1 e num vértice V_2 .

Dado $C=\{c_1,c_2\}$ consideramos a coloração:

$$v o f(v) = egin{cases} c_1 ext{ se } v \in V_1 \ c_2 ext{ se } v \in V_2 \end{cases}$$

Se v_i e v_j são adjacentes, necessariamente:

$$f(v_i)
eq f(v_j)$$

Então f é uma 2-coloração. Concluímos que G é 2-cromático.

(⇒) Rascunho:

$$f: V \to C = \{c_1, c_2\}$$

Definimos:

$$V_1 = f^{-1}(c_1)$$

$$V_2 = f^{-1}(c_2)$$

(pré-imagem)

$$f^{-1}(c_1)=\{v\in V, f(v)=c_1\}\subseteq V$$
 , $i=1,2,\ldots$

$$f^{-1}(c_1) = f^{-1}(c_1)$$

 $f^{-1}(c)$ é um subconjunto de c.

Teorema G bipartido $\Rightarrow \chi'(G) = \Delta(G)$

(Kong, 1916)

Teorema: Se G é bipartido, então:

$$\chi'(G) = \Delta(G)$$

Prova

A prova é por indução no número de arestas. Se ${\cal G}$ é bipartido com 1 aresta, a tese vale trivialmente.

Supomos que a tese vale para todo grafo bipartido com no máximo n arestas, e seja G bipartido com n+1 arestas.

Seja G' p grafo obtido removendo a aresta $\{v,w\}$. Consideramos uma coloração de arestas de G' com $K=\Delta(G)$ cores.

Dado que o grau v em G' é menor a $K=\Delta(G)$, então há uma cor c_{α} que não está sendo usada nas arestas incidentes em v. De forma análoga, seja c_{β} uma cor não usada nas arestas de wl.

Se $c_{\alpha}=c_{\beta}$, então podemos obter uma coloração p/ G a partir da coloração escolhida de G' e pintado $\{v,w\}$ com $c_{\alpha}(=c_{\beta})$.

Se $c_{\alpha} \neq c_{\beta}$, consideramos o subgrafo conexo $H_{\beta\alpha}$ que consiste nos caminhos que começam em v e alteram as cores c_{β} e c_{α} . Observemos que $H_{\beta\alpha}$ não contém o vértice w. Em $H_{\alpha\beta}$ trocamos c_{α} por c_{β} , e c_{β} por c_{α} , e pintamos $\{v,w\}$ com c_{β} . Obtemos assim uma coloração com k p/G.

Colorário:

$$\chi'(G) = \max\{r,s\}$$