CSC 411

Wildfire Prediction

By James McSweeney Supervised by Professor Aguiar-Pulido

Table of contents

O1. Introduction

02.

Data

O3.

Variables

O4.

Classification

Demo

06.

Conclusion

Introduction

- Negative effect
 - o Public health
 - Natural environment
 - Federal and State budgets

17,300

Fires since Jan 13th 2022

831,842

Acres burned since Jan 13th 2022

Current Wildfires on April 28nd, 2022

O2. Data

Data Source

Application for Extracting and Exploring Analysis Ready Samples (AppEEARS)

National Snow and Ice Data Center
Distributed Active Archive Center

Requesting Data

1000m, Daily -

1000m, Daily -

- Input coordinates
- Select the satellite
- Select the variables you need
- Input the date range
- Submit

Enter a name to identify your sample

Uploaded coordinates (ID, Category, Lat, Long): 3

36.7136, -96.2458

36.7808, -95.8378

37, -97

Selected layers

- 1 dayl 1000m, Daily -
- prcp
- srad 1000m, Daily -
- swe
- ① vp
 - 1000m, Daily -

Sample_name

Data Capturing

- Two different Satellites
 - o MODIS
 - Daymet

Wildfire Points

- Federal
- State
- Local

Remote Sensing Advantages

- Remote Areas
- Fast upload speeds
- Can cover a lot of land

Remote Sensing Disadvantages

- Spatial resolution
- Temporal resolution
- Spectral resolution

O3. Variables

Feature Selection

- Longitude and Latitude
- Quality of measurement
- High, medium, and low classes
- Visible clouds
- SMAP

Daylight

- Units: seconds per day of daylight
- Daylight can infer the season
- Considered very significant in the model

Short Wave Radiation

- Units:W/m^2
- Considered very significant in the model
- The intensity of the sunlight reflected off the earth

Vapor Pressure

- Units:Pa
- Measures humidity
- Considered very significant in the model
- Low pressure indicates active weather
 - High winds
 - Rain

Vegative Indexes

- Enhanced vegetation index (EVI)
- EVI was considered very significant
- Normalized vegetation index (NDVI)
- NDVI was considered insignificant

Near Infrared Reflectance Spectroscopy

- Unit:nanometers
- Different organisms absorb different wavelengths of infrared waves
- Helps remotely classify different organisms
- Considered very significant in the model

Classification Methods

K-Nearest Neighbors

- Classifies based on its similarity to neighbors
- K is amount of neighbors to be considered for each new point
- Euclidean distance is used to find the closest K Neighbors
- Hyper parameter optimization found 5 as the optimal K value
- train(Formula, data,"KNN",CV,tunelength)

Truth

	Non-Fire	Fire
NonFire	50	4
Fire	0	43

Prediction

- A mapping of binary decisions that leads to a classification
- Best visually understandable classification method
- Splitting each decision into subpopulation based off binary decisions
- tree(Variable Formula, dataframe)

Truth

Prediction

	Non-Fire	Fire
Non-Fire	40	6
Fire	1	50

Tree Visualization

- Hyperparameter tuning found number of variable to be considered at each step to be 3
- train(Formula, data, subset, "RF", tuneGrid, trControl)

Truth

	Non-Fire	Fire
Non-Fire	50	1
Fire	0	46

Prediction

Random Forest Visualization

- Probabilistic classification
- Applies Bayes theorem with a strong assumption of independence between the variables

Prediction

naiveBayes(Formula, data,trControl)

LIKELIHOOD

The probability of "B" being True, given "A" is True

PRIOR

The probability "A" being True. This is the knowledge.

P(A|B) =

POSTERIOR

The probability of "A" being True, given "B" is True

P(B)

MARGINALIZATION

The probability "B" being True.

Truth

	Non-Fire	Fire
Non-Fire	31	35
Fire	0	66

Support Vector Machines

- Supervised learning method
- Non-probabilistic binary linear classifier
- tune(svm,Formula, data,kernel,ranges,trControl)
- svm(Formula data, kernel, cost, scale)

Truth

Non-Fire Fire

Non-Fire 44 2

Fire 46

Prediction

Results

Classification Method	Accuracy	Runtime in Seconds
KNN	95.8%	3.1
Classification Tree	92.7%	.7
Random Forest	98%	40
Naive Bayes	73.5%	.4
SVM	93.8%	1.09

Demo

03.

Conclusion

Summary

- Classifies areas that are susceptible to wildfires
- Compared different classification models
- Preformed with NASA satellite data

Challenges

- Getting useable satellite data
- Time between data requests
- File organization

Future Work

- Results could be found in real time with a large server
- Coordinate with government models
- Add live weather data
- Factor humans into the model

Acknowledgements

The University of Miami

Dr Aguiar

Github

https://github.com/JamesMcSweeney/WildFires

