Optimization Reminder and exercises

Barbara Pascal, Nelly Pustelnik

CNRS, Laboratoire de Physique de l'ENS de Lyon, Univ. Lyon 1 nelly.pustelnik@ens-lyon.fr

barbara.pascal@ens-lyon.fr

$$\widehat{x} \in \underset{x \in \mathcal{H}}{\operatorname{Argmin}} f(x), \quad \mathcal{H} \quad \text{a Hilbert space}$$

with possibility to consider
$$\widetilde{f}(x) = \begin{cases} f(x) & \text{if } x \in D \\ \infty & \text{otherwise} \end{cases}$$

 $D \text{ domain of the function } \dim \widetilde{f} \equiv \{x \in \mathcal{H} \mid \widetilde{f}(x) < \infty\}$

$$\widehat{x} \in \underset{x \in \mathcal{H}}{\operatorname{Argmin}} f(x), \quad \mathcal{H} \quad \text{a Hilbert space}$$

with possibility to consider
$$\widetilde{f}(x) = \begin{cases} f(x) & \text{if } x \in D \\ \infty & \text{otherwise} \end{cases}$$

 $D \text{ domain of the function } \dim \widetilde{f} \equiv \{x \in \mathcal{H} \mid \widetilde{f}(x) < \infty\}$

$$f \in \Gamma_0(\mathcal{H})$$

▶ proper: dom $f \neq \emptyset$,

$$\widehat{x} \in \underset{x \in \mathcal{H}}{\operatorname{Argmin}} f(x), \quad \mathcal{H} \quad \text{a Hilbert space}$$

with possibility to consider $\widetilde{f}(x) = \begin{cases} f(x) & \text{if } x \in D \\ \infty & \text{otherwise} \end{cases}$ $D \text{ domain of the function } \dim \widetilde{f} \equiv \{x \in \mathcal{H} \mid \widetilde{f}(x) < \infty\}$

$f \in \Gamma_0(\mathcal{H})$

- ▶ proper: dom $f \neq \emptyset$,
- lower semi-continuous: closed epigraph

epi
$$f = \{(x, \zeta) \in \text{dom } f \times \mathbb{R} \mid f(x) \le \zeta\},\$$

$$\widehat{x} \in \operatorname*{Argmin}_{x \in \mathcal{H}} f(x), \quad \mathcal{H}$$
 a Hilbert space

with possibility to consider $\widetilde{f}(x) = \begin{cases} f(x) & \text{if } x \in D \\ \infty & \text{otherwise} \end{cases}$ $D \text{ domain of the function } \dim \widetilde{f} \equiv \{x \in \mathcal{H} \mid \widetilde{f}(x) < \infty\}$

$f \in \Gamma_0(\mathcal{H})$

- ▶ proper: dom $f \neq \emptyset$,
- lower semi-continuous: closed epigraph

epi
$$f = \{(x, \zeta) \in \text{dom } f \times \mathbb{R} \mid f(x) \le \zeta\},\$$

convex: convex epigraph.

Questions:

- ightharpoonup Existence and uniqueness of \widehat{x}
 - → coercivity or compactness (existence)
 - → strict convexity (uniqueness)
- ► Characterization of \hat{x}
 - $\rightarrow \nabla f(\hat{x}) = 0$ if f Gâteaux-differentiable
 - $\rightarrow 0 \in \partial f(\widehat{x})$ is f non-smooth

$$\partial f: \left\{ \begin{array}{ccc} \mathcal{H} & \to & 2^{\mathcal{H}} \\ x & \mapsto & \left\{ u \in \mathcal{H} \mid (\forall y \in \mathcal{H}), & \left\langle y - x \mid u \right\rangle + f(x) \leq f(y) \right\} \end{array} \right.$$

Explicit (sub)gradient descent

$$x_{n+1} = x_n - \gamma \partial f(x_n)$$

Explicit (sub)gradient descent

$$x_{n+1} = x_n - \gamma \partial f(x_n)$$

Implicit (sub)gradient descent

$$x_{n+1} = x_n - \gamma \partial f(\mathbf{x_{n+1}})$$

Explicit (sub)gradient descent

$$x_{n+1} = x_n - \gamma \partial f(x_n)$$

Implicit (sub)gradient descent

$$x_{n+1} + \gamma \partial f(x_{n+1}) = x_n$$

Explicit (sub)gradient descent

$$x_{n+1} = x_n - \gamma \partial f(x_n)$$

Implicit (sub)gradient descent

$$(\mathrm{Id} + \gamma \partial f) x_{n+1} = x_n$$

Explicit (sub)gradient descent

$$x_{n+1} = x_n - \gamma \partial f(x_n)$$

Implicit (sub)gradient descent

$$(\mathrm{Id} + \gamma \partial f) x_{n+1} = x_n$$

Proximal operator

$$\operatorname{prox}_{\gamma f}(x) = \operatorname*{arg\,min}_{y \in \mathcal{H}} \frac{1}{2} \|y - x\|^2 + \gamma f(y) = \left(\operatorname{Id} + \gamma \partial f\right)^{-1}(x)$$

Explicit (sub)gradient descent

$$x_{n+1} = x_n - \gamma \partial f(x_n)$$

Implicit (sub)gradient descent

$$(\mathrm{Id} + \gamma \partial f) x_{n+1} = x_n$$

Proximal operator

$$\operatorname{prox}_{\gamma f}(x) = \arg\min_{y \in \mathcal{H}} \frac{1}{2} \|y - x\|^2 + \gamma f(y) = (\operatorname{Id} + \gamma \partial f)^{-1}(x)$$

Another way to say that $p = \text{prox}_f(x) \Leftrightarrow x - p \in \partial f(p)$.

Provide an example of a function $f:\mathbb{R}\to\mathbb{R}$ and a nonempty set $C\subset\mathbb{R}$ such that

- ► f is nonconvex
- C is convex
- $rac{1}{2} f + \iota_C$ is convex.

$$f(x) = \begin{cases} x^2 & \text{if } |x| \le 1\\ \frac{3}{4}|x| + \frac{1}{4} & \text{otherwise} \end{cases}$$

1. Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a convex function.

Prove that for every $\zeta \in \mathbb{R}$, the lower level set

$$\operatorname{lev}_{\leq \zeta} f = \{ x \in \mathcal{H} \mid f(x) \leq \zeta \}$$

is convex.

Let $x, y \in \text{lev}_{<\zeta} f$, and $\alpha \in [0, 1]$, then

$$f((1-\alpha)x + \alpha y) \leq_{f \text{ convex}} (1-\alpha)f(x) + \alpha f(y)$$
$$\leq_{x,y \in \text{lev}_{<\zeta}} (1-\alpha)\zeta + \alpha \zeta = \zeta$$

1. Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a convex function.

Prove that for every $\zeta \in \mathbb{R}$, the lower level set

$$\operatorname{lev}_{\leq \zeta} f = \{ x \in \mathcal{H} \mid f(x) \leq \zeta \}$$

is convex.

1. Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a convex function.

Prove that for every $\zeta \in \mathbb{R}$, the lower level set

$$\operatorname{lev}_{\leq \zeta} f = \{ x \in \mathcal{H} \mid f(x) \leq \zeta \}$$

is convex.

1. Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a convex function.

Prove that for every $\zeta \in \mathbb{R}$, the lower level set

$$\operatorname{lev}_{\leq \zeta} f = \{ x \in \mathcal{H} \mid f(x) \leq \zeta \}$$

is convex.

1. Let $f: \mathcal{H} \to]-\infty, +\infty]$ be a convex function.

Prove that for every $\zeta \in \mathbb{R}$, the lower level set

$$\operatorname{lev}_{\leq \zeta} f = \{ x \in \mathcal{H} \mid f(x) \leq \zeta \}$$

is convex.

Let $y \in \mathbb{R}$. Show that

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \log(1 + \exp(-yx))$$

is convex. When is it strictly convex?

Let $y \in \mathbb{R}$. Show that

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \log(1 + \exp(-yx))$$

is convex. When is it strictly convex?

$$f'(x) = \frac{-y \exp(-yx)}{1 + \exp(-yx)} = \frac{-y}{\exp(yx) + 1}$$

Let $y \in \mathbb{R}$. Show that

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \log(1 + \exp(-yx))$$

is convex. When is it strictly convex?

$$f'(x) = \frac{-y \exp(-yx)}{1 + \exp(-yx)} = \frac{-y}{\exp(yx) + 1}$$

$$f''(x) = \frac{-(-y) \times y \exp(yx)}{(\exp(yx) + 1)^2} = \frac{y^2 \exp(yx)}{(\exp(yx) + 1)^2} \ge 0$$

Let $y \in \mathbb{R}$. Show that

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \log(1 + \exp(-yx))$$

is convex. When is it strictly convex?

$$f'(x) = \frac{-y \exp(-yx)}{1 + \exp(-yx)} = \frac{-y}{\exp(yx) + 1}$$

$$f''(x) = \frac{-(-y) \times y \exp(yx)}{(\exp(yx) + 1)^2} = \frac{y^2 \exp(yx)}{(\exp(yx) + 1)^2} \ge 0$$

f is strictly convex iff $y \neq 0$.

Let $A \in \mathbb{R}^{M \times N}$ and $z \in \mathbb{R}^M$. Let $g: \mathbb{R}^N \to \mathbb{R}: x \mapsto ||Ax - z||^2$.

- 1. Prove that g is convex.
- 2. Give a necessary and sufficient condition on A for g to be strictly convex.
- 3. Find the minimizers of g.

Let $A \in \mathbb{R}^{M \times N}$ and $z \in \mathbb{R}^M$. Let $g : \mathbb{R}^N \to \mathbb{R} : x \mapsto ||Ax - z||^2$.

- 1. Prove that g is convex.
- 2. Give a necessary and sufficient condition on A for g to be strictly convex.
- 3. Find the minimizers of g.
- 1. g is twice differentiable and

$$\nabla g(x) = 2A^{\top} (Ax - z),$$

Let $A \in \mathbb{R}^{M \times N}$ and $z \in \mathbb{R}^M$. Let $g : \mathbb{R}^N \to \mathbb{R} : x \mapsto ||Ax - z||^2$.

- 1. Prove that g is convex.
- 2. Give a necessary and sufficient condition on A for g to be strictly convex.
- 3. Find the minimizers of g.
- 1. g is twice differentiable and

$$\nabla g(x) = 2A^{\top} (Ax - z), \quad \nabla^2 g(x) = 2A^{\top} A$$

Let $A \in \mathbb{R}^{M \times N}$ and $z \in \mathbb{R}^M$. Let $g : \mathbb{R}^N \to \mathbb{R} : x \mapsto ||Ax - z||^2$.

- 1. Prove that g is convex.
- 2. Give a necessary and sufficient condition on A for g to be strictly convex.
- 3. Find the minimizers of g.
- 1. g is twice differentiable and

$$\nabla g(x) = 2A^{\top} (Ax - z), \quad \nabla^2 g(x) = 2A^{\top} A$$

The Hessian of g is positive, hence g is convex.

Let $A \in \mathbb{R}^{M \times N}$ and $z \in \mathbb{R}^M$. Let $g : \mathbb{R}^N \to \mathbb{R} : x \mapsto ||Ax - z||^2$.

- 1. Prove that g is convex.
- 2. Give a necessary and sufficient condition on A for g to be strictly convex.
- 3. Find the minimizers of g.
- 1. g is twice differentiable and

$$\nabla g(x) = 2A^{\top} (Ax - z), \quad \nabla^2 g(x) = 2A^{\top} A$$

The Hessian of g is positive, hence g is convex.

2. If $A^{\top}A$ is definite positive, then g is strictly convex. Reciprocally if $A^{\top}A$ is not definite, then $\exists v \in \mathbb{R}^N$ s.t. Av = 0 and thus g(x + v) = g(x), that is g has a "flat" direction (along eigenvector v).

Let $A \in \mathbb{R}^{M \times N}$ and $z \in \mathbb{R}^M$. Let $g : \mathbb{R}^N \to \mathbb{R} : x \mapsto ||Ax - z||^2$.

- 1. Prove that g is convex.
- 2. Give a necessary and sufficient condition on A for g to be strictly convex.
- 3. Find the minimizers of g.
- 3. Since g is convex and coercive, it has (at least) one minimizer and \widehat{x} is a minimizer of g iff $\nabla g(\widehat{x}) = 0$,

Let $A \in \mathbb{R}^{M \times N}$ and $z \in \mathbb{R}^M$. Let $g : \mathbb{R}^N \to \mathbb{R} : x \mapsto ||Ax - z||^2$.

- 1. Prove that g is convex.
- 2. Give a necessary and sufficient condition on A for g to be strictly convex.
- 3. Find the minimizers of g.
- 3. Since g is convex and coercive, it has (at least) one minimizer and \widehat{x} is a minimizer of g iff $\nabla g(\widehat{x}) = 0$, that is iff

$$2A^{\top}(A\widehat{x}-z)=0 \Leftrightarrow A^{\top}A\widehat{x}-A^{\top}z=0$$

Let $A \in \mathbb{R}^{M \times N}$ and $z \in \mathbb{R}^M$. Let $g : \mathbb{R}^N \to \mathbb{R} : x \mapsto ||Ax - z||^2$.

- 1. Prove that g is convex.
- 2. Give a necessary and sufficient condition on A for g to be strictly convex.
- 3. Find the minimizers of g.
- 3. Since g is convex and coercive, it has (at least) one minimizer and \widehat{x} is a minimizer of g iff $\nabla g(\widehat{x}) = 0$, that is iff

$$2A^{\top} (A\widehat{x} - z) = 0 \quad \Leftrightarrow \quad A^{\top} A\widehat{x} - A^{\top} z = 0$$
$$\Leftrightarrow \quad \widehat{x} = \left(A^{\top} A\right)^{-1} A^{\top} z$$

if $A^{\top}A$ is *definite* positive.

Let \mathcal{H} be a Hilbert space and let $f:\mathcal{H}\to]-\infty,+\infty]$ be a convex function. Let g be the perspective function of f defined as

$$(\forall (x,t) \in \mathcal{H} \times \mathbb{R})$$
 $g(x,t) = \begin{cases} t \, f(x/t) & \text{if } t > 0 \\ +\infty & \text{otherwise.} \end{cases}$

- 1. How is the epigraph of g related to the epigraph of f?
- 2. Deduce that g is a convex function.
- As a consequence of this result, show that the Kullback-Leibler divergence defined as

$$(\forall x = (x^{(i)})_{1 \leq i \leq N} \in \mathbb{R}^N) (\forall y = (y^{(i)})_{1 \leq i \leq N} \in \mathbb{R}^N)$$

$$h(x,y) = \begin{cases} \sum_{i=1}^N x^{(i)} \ln(x^{(i)}/y^{(i)}) & \text{if } (x,y) \in (]0, +\infty[^N)^2 \\ +\infty & \text{otherwise,} \end{cases}$$

is convex.

Let \mathcal{H} be a Hilbert space and let $f: \mathcal{H} \to]-\infty, +\infty]$ be a convex function. Let g be the perspective function of f defined as

$$(\forall (x,t) \in \mathcal{H} \times \mathbb{R})$$
 $g(x,t) = \begin{cases} t \, f(x/t) & \text{if } t > 0 \\ +\infty & \text{otherwise.} \end{cases}$

1. Link between epigraphs

$$\begin{aligned} \operatorname{epi} g &= \{(y,\zeta) \in \operatorname{dom} g \times \mathbb{R} \mid g(y) \leq \zeta\} \\ &= \{(x,t,\zeta) \in \operatorname{dom} f \times \mathbb{R}_+^* \times \mathbb{R} \mid tf(x/t) \leq \zeta\} \\ &= \{(x,t,\zeta) \in \operatorname{dom} f \times \mathbb{R}_+^* \times \mathbb{R} \mid f(x/t) \leq \zeta/t\} \\ &= \{(x,t,\zeta), \ t \in \mathbb{R}_+^*, (x/t,\zeta/t) \in \operatorname{epi} f\} \\ &= \{(tx',t\zeta',t), \ t \in \mathbb{R}_+^*, (x',\zeta') \in \operatorname{epi} f\} \end{aligned}$$
 setting $x' = x/t, \zeta' = \zeta/t$.

The epigraph of g is the perspective of the epigraph of f.

Let \mathcal{H} be a Hilbert space and let $f:\mathcal{H}\to]-\infty,+\infty]$ be a convex function. Let g be the perspective function of f defined as

$$(\forall (x,t) \in \mathcal{H} \times \mathbb{R})$$
 $g(x,t) = \begin{cases} t \, f(x/t) & \text{if } t > 0 \\ +\infty & \text{otherwise.} \end{cases}$

- 2. f convex \Leftrightarrow epi f convex \Rightarrow epi g convex \Leftrightarrow g convex
- 3. One remarks that the function $g(x^{(i)}, y^{(i)}) =$

$$\begin{cases} x^{(i)} \ln(x^{(i)}/y^{(i)}) = x^{(i)} \left(-\ln(y^{(i)}/x^{(i)}) \right) & \text{if } x^{(i)}, y^{(i)} > 0 \\ +\infty & \text{otherwise} \end{cases}$$

is the perspective function of the **convex** function $-\ln$, and thus it is convex. h being the sum of convex functions it is convex.

Exercise 6: Huber function

Let $\rho > 0$ and set

$$f: \mathbb{R} \to \mathbb{R}: \mapsto \begin{cases} \frac{x^2}{2}, & \text{if } |x| \le \rho \\ \rho |x| - \frac{\rho^2}{2}, & \text{otherwise} \end{cases}$$

- 1. What is the domain of f?
- 2. Is f differentiable? twice-differentiable?
- 3. Prove that f is convex.
- 1. $(\forall x \in \mathbb{R})$ $f(x) < \infty$, thus dom $f = \mathbb{R}$.
- 2. f is differentiable on $\mathbb{R} \setminus \{\pm \rho\}$. Further

$$\lim_{x \to \rho^{-}} \underbrace{f'(x)}_{=x} = \rho = \lim_{x \to \rho^{+}} \underbrace{f'(x)}_{=\rho}$$

Thus f is differentiable at $x = \rho$ and by symmetry, f is also differentiable at $-\rho$. Finally f is differentiable on \mathbb{R} .

Exercise 6: Huber function

Let $\rho > 0$ and set

$$f: \mathbb{R} \to \mathbb{R}: \mapsto \begin{cases} \frac{x^2}{2}, & \text{if } |x| \le \rho \\ \rho |x| - \frac{\rho^2}{2}, & \text{otherwise} \end{cases}$$

- 1. What is the domain of f?
- 2. Is f differentiable? twice-differentiable?
- 3. Prove that f is convex.
- 2. f is twice-differentiable on $\mathbb{R} \setminus \{\pm \rho\}$ and

$$f''(x) = \begin{cases} 1 & \text{if } |x| < \rho \\ 0 & \text{if } |x| > \rho \end{cases}$$

thus it is not twice-differentiable.

Exercise 6: Huber function

Let $\rho > 0$ and set

$$f: \mathbb{R} \to \mathbb{R}: \mapsto \begin{cases} \frac{x^2}{2}, & \text{if } |x| \le \rho \\ \rho |x| - \frac{\rho^2}{2}, & \text{otherwise} \end{cases}$$

- 1. What is the domain of f?
- 2. Is f differentiable? twice-differentiable?
- 3. Prove that f is convex.
- 3. f is differentiable on \mathbb{R} and

$$f'(x) = \begin{cases} -\rho & \text{if } x < -\rho \\ x & \text{if } |x| < \rho \\ \rho & \text{otherwise} \end{cases}$$

which is increasing. Thus f is convex.

Exercise 1: Huber function

Let $\rho > 0$ and set

$$f \colon \mathbb{R} o \mathbb{R} \colon \mapsto egin{cases} rac{x^2}{2}, & ext{if } |x| \le
ho \\
ho |x| - rac{
ho^2}{2}, & ext{otherwise}. \end{cases}$$

- 1. What is the domain of f?
- 2. Plot the subdifferential of f.
- 3. Is f differentiable? Prove that f is convex.
- 2. (See the computation of f'(x) done above.) For $\rho = 1$

Let \mathcal{H} be a Hilbert space. Let $f : \mathcal{H} \to]-\infty, +\infty]$ and let $\mathcal{C} \subset \mathcal{H}$ such that $\operatorname{dom} f \cap \mathcal{C} \neq \emptyset$.

- ▶ Give a sufficient condition for $x \in \mathcal{H}$ to be a global minimizer of $f + \iota_C$.
- Assume that $f \in \Gamma_0(\mathcal{H})$ and that C is a closed convex set.

Then, from the properties of C, $\iota_C \in \Gamma_0(\mathcal{H})$.

From Fermat's rule,

$$\widehat{x}$$
 is a minimizer of $f + \iota_C$ iff $0 \in \partial (f + \iota_C)(\widehat{x})$.

Since dom $f \cap C \neq \emptyset$, then $\partial (f + \iota_C) = \partial f + \partial \iota_C$.

Moreover $(\forall x \in \mathcal{H})$ $\partial \iota_{\mathcal{C}}(x) = N_{\mathcal{C}}(x)$, the normal cone of \mathcal{C} at x.

Thus, \hat{x} is a minimizer of $f + \iota_C$ iff $0 \in \partial f(\hat{x}) + N_C(\hat{x})$.

That is if the normal cone of C at \hat{x} contains a subgradient of f at \hat{x} .

Féjer monotonicity

Definition

A sequence $(x_n)_{n\in\mathbb{N}}$ is said to be Féjer monotone with respect to a set C if

$$(\forall c \in C)(\forall n \in \mathbb{N}) \quad ||x_{n+1} - c|| \le ||x_n - c||.$$