

9. 고급신경망과 생성형 AI

Contents

- I. 고급 신경망 기술
- II. 생성형 AI
- Ⅲ. 시사점들

영상인식

- 영상 인식(image recognition)
 - 영상 안의 물체를 인식하거나 분류하는 것

전통적인 영상인식 기법 (1/2)

● 여러 개의 특징을 사용

전통적인 영상인식 기법 (2/2)

● 특징을 가지고 물체를 분류

과잉적합 된 분류기

적절한 판단 경계선

영상인식 기법의 문제점

- 훈련 이미지에서 물체의 위치만 살짝 달라도 학습 모델은 전혀 다른 사진으로 인식하게 됨
- ➤ 컨볼루션 신경망(CNN, Convolutional Neural Network)
 - 인간의 대뇌 시각피질 에서 이루어지는 인식과정 : 신경망의 하위층에서는 Edge와 같은 비교적 간단한 것들을 감지하게 되고 점점 신경망 상위 층으로 갈수록 high level의 feature들을 인식

컨볼루션 신경망(CNN) (1/5)

- 컨볼루션 신경망(Convolutional Neural Network)
 - 영상에서 어떤 물체일지의 가능성 측정

- 밝거나 어두운 점, 다양한 방향의 가장자리, 패턴 등과 같은 특징을 탐지
- ▶ 다른 위치, 다른 방향 및 다른 크기의 이미지를 감지할 수 있음 ⇒ 시각세포의 작동 원리를 모방

컨볼루션 신경망 (2/5)

 이미지를 특정한 영역별로 추출하여 학습시키는 특징을 가짐 : 이러한 과정을 통해 부분의 특징을 찾아낼 수 있음

컨볼루션(CNN) 신경망에서는 하위 레이어의 노드들과 상위 레이어의 노드들이 부분적으로만

(a) 컨볼루션 신경망

연결

컨볼루션 신경망 (3/5)

- 컨볼루션(Convolution)
 - 일정 영역의 값들에 대해 가중치를 적용해서 하나의 값을 만드는 연산

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₂₁	x_{22}	x_{23}	x_{24}	<i>x</i> ₂₅
<i>x</i> ₃₁	x_{32}	x_{33}	x ₃₄	x ₃₅
x ₄₁	x ₄₂	<i>x</i> ₄₃	x ₄₄	x ₄₅
<i>x</i> ₅₁	<i>x</i> ₅₂	<i>x</i> ₅₃	<i>x</i> ₅₄	<i>x</i> ₅₅

w_{11}	W_{12}	<i>w</i> ₁₃
w_{21}	W_{22}	W_{23}
W_{31}	W_{32}	W_{33}

y_{11}	<i>y</i> ₁₂	y_{13}
y ₂₁	y ₂₂	y_{23}
<i>y</i> ₃₁	<i>y</i> ₃₂	y_{33}

컨볼루션 결과

입력

컨볼루션 신경망 (4/5)

- 풀링(Pooling)
 - 일정 크기의 블록을 통합해서 하나의 대푯값으로 대체하는 연산
- 풀링 연산의 역할
 - 중간 연산 과정에서 만들어지는 특징지도들의 크기 축소 :
 다음 단계에서 사용될 메모리 크기와 계산량 감소
 - 일정 영역 내에 나타나는 특징들을 결합하거나, 위치 변화에 강건한 특징 선택

컨볼루션 신경망 (5/5)

● 컨볼루션 신경망의 구조

심층신경망의 종류

모델의 종류	주요 용도	
컨볼루션 신경망 (Convolutional Neural Network, CNN)	영상인식, 컴퓨터 비전	
순환 신경망 (Recurrent Neural Network, RNN)	음성인식, 작곡, 주가 예측	
제한적 볼쯔만머신 신경망 (Restricted Boltzmann Machine, RBM)	분류, 회귀 분석	
심층 신뢰 신경망 (Deep Belief Network, DBN)	글씨와 음성 인식	
생성적 적대 신경망 (Generative Adversarial Network, GAN)	영상과 음성 복원	
Transformer 생성형신경망 DALL-E, ChatGPT 등	자연어처리, 이미지처리	

순환 신경망 (RNN) (1/2)

- 순차 데이터나 시계열 데이터를 이용하는 인공 신경망
 - 이 딥러닝 알고리즘은 언어 변환, 자연어 처리(nlp), 음성 인식, 이미지 캡션과 같은 순서 문제나 시간 문제에 사용 됨
 - Siri, 음성 검색, Google 번역과 같이 널리 쓰이는 응용에도 통합되어 있음
- 유닛 간의 연결이 순환적 구조를 갖는 특징
 - 순환 신경망의 출력은 시퀀스 내의 이전 요소에 의존
 - "메모리"에 의해 구별되는 특징
 - 과거의 입력으로부터 정보를 얻어 현재의 입력과 출력에 영향을 주기 때문

순환 신경망 (RNN) (2/2)

- 기본 구조
 - 셀(메모리 셀 또는 RNN 셀) : 이전의 값을 기억하는 일종의 메모리 역할을 수행

트랜스포머 (1/2)

- 트랜스포머(Transformer)
 - 2017년 구글이 발표, Seq2Seq 구조에서 착안
 - Seq2Seq 모델은 RNN의 조합으로 이루어진 인코더-디코더 구조
 - 인코더: 입력 시퀀스를 하나의 벡터 표현으로 압축
 - 디코더: 벡터 표현을 통해 출력 시퀀스를 만듬
 - 문제점: 인코더의 압축 과정에서 정보가 손실
 - ➤스텝마다 입력 전체 문장을 참고하며 각 시점에서 예측할 단 어에 더 집중하는 어텐션(Attention) 기법을 고안하여 해결함

트랜스포머 (2/2)

- 트랜스포머는 셀프 어텐션(Self-Attention)이라 불리는 방식을 사용
 - 병렬처리가 어려워 연산속도가 느리던 RNN의 한계를 극복하기 위해 만듦
 - 문장 전체를 병렬 구조로 번역해 멀리 있는 단어까지도 연관성을 만들어 유사성을 높임
- GPT-3, BERT 등에서 사용

딥러닝의 활용과 동향 (1/3)

- 딥러닝을 이용한 구글의 고양이 인식
 - 구글의 브레인팀 1만 6천 개의 컴퓨터로 심층신경망 구현

인식된 고양이들

고양이 얼굴과 사람 얼굴인식을 위한 딥러닝

➤ 알파고, 텐서플로우, GPT 등이 개발됨

딥러닝의 활용과 동향 (2/3)

- 딥러닝의 컴퓨터 게임에의 활용
 - 슈퍼마리오 게임에서 장애물 피하기에도 딥러닝 적용
- 세계적 IT 기업들이 딥러닝 연구개발에 과감하게 투자
 - 딥러닝의 활용 분야는 주로 사진과 동영상을 분류하거나 음성 정보를 인식하는 영역
 - 구글, MS, 페이스북, 트위터, 바이두, 네이버, 다음카카오 등

딥러닝의 활용과 동향 (3/3)

- 진화하는 딥러닝 기술
 - 인식의 정확도가 높아지고, 인식 시간도 단축
 - 가까운 미래에 XAI(설명가능 인공지능)가 가능해 질 것으로 전망
 - 예) 현재 영상인식에서는 'cat'이란 결과만 알 수 있음 ⇒ 미래엔 XAI가 'cat'이라 판정된 이유까지 알려줄 것

인공지능 트렌드 2024

- 음성 및 언어기반 지능
- 윤리적이고 설명가능한 AI
- AI기반 사이버보안
- 생성형 AI
- 지속가능한 AI
- MLOps
- Federated Learning(제휴학습)
- LLM(Large Language Model)
- AR과 결합
- AloT

딥러닝을 지원하는 하드웨어

- NPU(Neural Processing Unit, 신경망처리장치)
 - 딥러닝 알고리즘은 수많은 연산을 동시에 처리할 필요
 - 병렬처리 할 하드웨어인 NPU가 개발됨(퀄컴과 삼성전자)
 - NPU는 복잡한 연산의 실시간 처리가 가능한 차세대 반도체
 ⇒ AI 구현의 핵심 기술, 인공지능 장치들에 탑재될 것

구글의 TPU와 Coral Dev Board

생성형 AI (1/2)

- 머신러닝 모델이 하는 일에 따라 구분하면
 - 판별모델(Discriminative model): 입력된 데이터셋을 특정 기준에 따라 분류하거나 특정 값을 맞추는 모델. 분류 경계를 찾는 것을 목적으로 학습
 - 생성형 모델(Generative model) : 데이터셋과 비슷하면서도 기존에 없던 새로운 데이터셋을 생성하고, 데이터의 분포를 학습
 - 언어 생성모델
 - 이미지 생성모델
 - 음성 생성모델
 - 비디오 생성모델 등

생성형 AI (2/2)

- 언어생성모델
 - Transformer: 2017년 구글이 발표 (파운데이션 모델)
 - BERT : 2018년 구글이 공개한 사전훈련 모델. Transformer를 이용하여 구현. 한국어 처리 모델의 기반
 - GPT(Generative Pre-trained Transformer) : 오픈 AI가 개발한 초거대 언어모델(LLM, Large Language Model)
 - GPT-1(2018년), GPT-2(2019년), GPT-3(2020년), GPT-4(2023년) 시리즈로 발전
 - 2023년 11월에는 GPT-4 Turbo가 발표됨

Prediction 1: Al will continue to be all around us

Al making a difference

Prediction 2: the Terminator isn't coming

시사점 1 – 알고리즘적 편향성

데이터에 나타난 인간의 편향성은 알고리즘 편향성을 유발

온라인 광고(Online advertising)

편향적 광고 노출

소셜 네트워크(Social networks)

투명성 부족

차별을 감소시킬 수 있도록 알고리즘 편향을 피해야 한다.

유럽의 데이터 보호정책

- 유럽연합 일반 데이터 보호규칙(General Data Protection Regulation, GDPR)
 - 접근 권한(Right of access) : 요청 시 개인에 대해 수집한 데이터 공개
 - 잊혀질 권리(Right to be forgotten) : 요청 시 다른 의무와 함께 보관할 필요가 없는 데이터 삭제
 - 설명 권리(Right to explanation) : 고객 데이터에 대해 수행된 데이터 처리에 대한 설명 제공

시사점 2 – 보는 것이 믿는 것?

증거조작 가능성을 새로운 차원으로 끌어올린 AI

Face2Face

유튜브 영상에서 사람의 표정을 식별해 다른 사람의 얼굴에 올려놓을 수 있는 시스템

Lyrebird

몇 분간의 샘플 녹음에서 사람의 목소리를 자동으로 모방하는 도구

- 우리가 보는 것에 대한 비판적인 법을 배워야 한다.
- 날조하는 것보다 사기를 감지하는데 도움이 되는 AI를 개발해야 한다.

시사점 3 – 프라이버시 개념의 변화

- Facebook, Google, Amazon과 같은 Tech company들은 사용자에 대한 많은 정보를 수집
- 데이터 분석을 사용해서 개인을 식별

우리가 안전하다고 생각할 수 있는 데이터의 익명성을 깨뜨림

사생활에 대한 권리를 가지며, 이 권리를 위반할 경우 엄격하게 처벌받을 수 있는 규정을 마련해야 한다.

시사점 4 – 작업의 변화

- 자율 로봇(Autonomous robotics)
 - 자동차, 드론, 페리를 포함한 자율주행 차량
- 고객 서비스 애플리케이션
 - 헬프데스크, 레스토랑 예약 또는 이발 예약

업무의 진화와 AI가 가져온 변화를 모든 사람들이 평등하게 누리고 사용할 수 있어야 한다.