The Link Layer

Introduction to the Link Layer

- The link layer is responsible for transferring datagrams from one node to another physically adjacent node over a link.
- When working at the **link layer**, we refer to **hosts and routers** as **nodes**.
- When working at the link layer, we refer to communication channels that connect adjacent nodes as links.
 - These links can be wired and wireless.
- When working at the link layer, frames are the unit of data we are interested in transferring; they encapsulate packets.
- Different types of links have different transfer protocols. Different protocols provice different services (eg one may be reliable, the other may not be reliable).

Link Layer Services

- The **framing service** is responsible for **encapsulating datagrams** into frames (adding headers, etc). If there is a shared medium, the channel access needs to be specified. MAC addresses are used in frame headers to identify devices.
- The reliable deliver service is responsible for ensuring every frame is correctly delivered.
- The flow control service is responsible for pacing sending and receiving rates.
- The error detection service is responsible for detecting errors caused by frame drops, noise, signal attenuation, etc.
- The error correction service is responsible for identifying incorrect bits, and correcting them without the need for retransmission.
- With a half-duplex service both nodes can transmit and receive, but not both operations at the same time.
- With a full-duplex service both nodes can transmit and receive at the same time.

Link Layer Implementation

- The link layer is implemented in each and every node.
- Implementations are located in the node's Network Interface Card (NIC). These cards implement the link and physical layer.
- The implementations are connected to the system's bus which allow for data transfer. And a combination of hardware, software, and firmware control the NIC.

Error Detection

- An Error Correction and Detection (EDC) bit is used.
- If an error is detected, the device will either correct the error, or request a retransmission.
- Error detection is not 100% reliable, but it is still useful. Larger EDC fields result in better detection and correction.
- Parity checking is also used.
- Cyclic Redundancy Check (CRC) is a good way of detecting errors.

Multiple Access Protocols

- There are two types of links:
 - 1. **Point-To-Point** Two devices connected directly by a link (for example ethernet between two devices).
 - 2. **Broadcast** Several devices connected by a shared medium that can communicate (for example a shared wire, a shared radio, a switch).
 - 3. When two or more nodes simultaneously transmit, interference can occur.
 - 4. Collision occurs if a single node receives two or more signals at the same time.
 - 5. There are protocols to avoid interference and collision; they involve a distributed algorithm that determins how nodes share a channel.
 - 6. Communication about how to use a channel must be on the channel, out-of-band coordination is not allowed in these protocols.

The Media Access Control (MAC) Protocol

- In the MAC protocol, there are three classifications of channel access control:
 - 1. **Channel Partitioning** Channels are divided into smaller pieces (time slots, requency, code, etc), and pieces of the channel are allocated to nodes for exclusive use.
 - 2. Random Access Channels are not divided, and allow collision, and provides a way to recover from collisions.
 - 3. **Taking Turns** Nodes take turns using the channel, but nodes with more to send can take longer turns.

MAC Channel Partitioning Protocols

- Time Division Multiple Access (TDMA) gives nodes access to the channel in rounds, each node gets a fixed length slot (length = packet transmission time) in each round.
 - Unused slots go idle.
- Frequency Division Multiple Access (FDMA) divides the channel into frequency bands, and each nodes gets a fixed frequency band.
 - Unused frequency bands go idle.

MAC Channel Random Access Protocols

- When a **node has a packet to send**, it transmits to the **full channel** at a data rate *R* without any prior coordination.
- If two nodes transmit at the same time, collision occurs.
- The Random Access protocol specifies how to detect and recover from collisions.
- Exampels of Random Access protocols:

1. **ALOHA**:

- Assumptions:
 - (a) All frames are the same size.
 - (b) Time is divided into equal size transmission slots.
 - (c) Nodes can only start transmitting at a slot beginning.
 - (d) The nodes are all time-synchronized.
 - (e) If two or more nodes transmit in a slot, all nodes detect the collision.

- When a node obtains a fresh frame, it will transmit it in the next slot, if collision occurs, retransmit, otherwise send the next frame.
- Suppose N nodes with many frames to send, each transmit in a slot with probability P, each time a node attempts to transmit, 37% ($\frac{100}{e}\%$) of the time, nodes will be able to transmit without collision.
- Pros:
 - (a) Single active node can continuously transmit at full rate.
 - (b) Highly decentralized.
 - (c) Simple.
- Cons:
 - (a) Collision occurs, wasting time slots.
 - (b) Some slots are idle.
 - (c) Nodes may be able to detect collision in lass than time to transmit a packet.
 - (d) Clock synchronization is difficult.

2. Pure ALOHA:

- Pure ALOHA is ALOHA without the timeslots. When a frame first arrives, nodes can attempt to transmit it immediately.
- The probability for collision increases with no synchronization.
- Suppose N nodes with many frames to send, each transmit with probability P, each time a node attempts to transmit, 18% ($\frac{100}{2e}\%$) of the time, nodes will be able to transmit without collision.

3. Simple Carrier Sense Multiple Access (Simple CSMA):

- CSMA requires nodes to listen before they transmit. If the channel is idle, they can transmit the entire frame. If the channel is busy, they can defer the transmission.

4. CSMA/CD:

- CSMA/CD is Simple CSMA with Collision Detection.
- Collision can be detected within a short period of time.
- Colliding transmissions are aborted, and rescheduled, reducing channel waste.
- Collision detection is easy in wired links, but difficult in wireless links.
- CSMA/CD is more efficient than ALOHA.

MAC Taking Turns Protocols

- Taking turns uses polling, a master invites other nodes to transmit in turn.
- Concerns with this type of protocol are: polling overhead, latency, and a single point of failiure (master).
- Another way to implement taking turns is with token passing. A control token is passed sequentially from one node to the next.
- Concerns with token passing are: token overhead, latency, single point of failiure (token).

Local Area Networks (LANs)

MAC Addresses

- A MAC Address is a 48-bit number that uniquely identifies a Network Interface Controller (NIC).
- MAC Address allocation is adiministered by IEEE. Manufacturers buy MAC Address ranges and assign those to devices they make (this is done to ensure uniqueness).
- MAC Addresses are used on layer 2.

The Address Resolution Protocol (ARP)

- The Address Resolution Protocol (ARP) is a communication protocol that is used for discovering the link-layer address of devices.
- ARP is a request-response protocol, where messages are directly encapsulated by a link layer protocol. Such messages are only communicated within the boundaries of a single network, they are never routed across internetworking nodes.
- Each IP node on a local area network has an ARP table. These tables are used to maintain a mapping between each MAC address and it's corresponding IP addresses.
- ARP table entries consist of: a MAC address, IP Addresses, and a TTL.
- To find the MAC Address of a node, the following must be done:
 - 1. The request node broadcasts an ARP query containing the target node's IP addres. The target MAC Address field in the request is set to FF:FF:FF:FF:FF:FF:(which broadcasts it to all devices in the local network).
 - All nodes receive the ARP query, and check if the target IP matches their IP Address.
 - 3. The node whose IP Address matches will send an ARP response giving it's MAC Address. All other nodes will ignore the ARP request.
 - 4. The requesting node will recieve the ARP response, and put it into it's ARP table.

ARP — Routing to Another Network

- If a **node A** wants to send a **datagram** to another **node B**, through a **router R**, the following must happen:
 - 1. Node A creates an IP datagram with IP source A, and IP destination B.
 - 2. Node A creates a link-layer frame containing an A-to-B IP datagram, with R's MAC Address in the frame's destination.
 - 3. The frame is sent from A to R.
 - 4. The **frame** is **received at R**, and the **datagram is removed**, and passed up to the **IP**.
 - 5. R will change the source MAC Address to be it's own address, and the destination MAC Address to B's MAC Address.
 - 6. R creates a link-layer frame containing the datagram.
 - 7. R will send the new frame.
 - 8. **B** will **receive** the **frame**, and extract the **datagram**.
 - 9. **B** will pass the **datagram** up the protocol stack to the **IP**.

• Every time a packet passes through a router, the source and destination MAC Addresses change.

Ethernet

- Ethernet is the first widely used Local Area Network (LAN) technology.
- Ethernet is simple, cheap, and has a fast data transfer rate.
- Another bennified to **ethernet** is that **a single chip can support multiple transfer speeds**.
- Ways to implement ethernet connections:
 - 1. Bus A bus allows several devices to communiate with each other over a single coaxial cable. Such a implementation is susceptible to collision.
 - 2. Switches A switch is a physical device that allows several devices to connect to it over a physical link. It then performs switching, which is essentially forwarding frames from one node to another. Such an implementation is not susceptible to collision.

- Using switches is a modern way of connecting devices on a LAN.
- Ethernet frames consist of six parts:
 - 1. **Preamble** Preamble is used to synchronize sender and receiver clock rates. This consists of **7-bytes** of **10101010**, followed by one byte of **10101011**.
 - 2. **Destination Address** The 6-byte destination MAC Address.
 - 3. **Source Address** The 6-byte source MAC Address.
 - 4. **Type** The type indicates the higher-level protocol (for example IP). This is also used to demultiplex at the receiver.
 - 5. Payload The datagram.
 - 6. **CRC** A cyclic redundancy check at the receiver. If an error is detected, the frame is dropped.

• Ethernet proerties:

- Connectionless No handshaking is performed between the sending and receiving NICs.
- 2. **Unreliable** The receiving NIC does not send ACKs or NAKs to the sending NIC. Dropped frames are only recovered if the inital sender uses a higher layer RDT (eg TCP).
- 3. MAC Protocol Ethernet's MAC protocol is the unslotted CSMA/CD with binary backoff.
- There are many ethernet standards, they all have the same MAC protocol, and frame format. However, they can transmit data at different rates.

Ethernet Switches

- An ethernet switch is a link-layer device that takes an active role.
- Ethernet switches store and forward ethernet frames.
- Ethernet switches also examing the MAC addresses of incoming frames, and selectively forward the frame to on or more outgoing links via CSMA/CD.
- Ethernet switches are transparent; nodes are unaware of the presence of switches.
- Ethernet switches are plug-and-play and self-learning. They do not need to be configured.
- Nodes have a direct, dedicated connection to switches. This avoids collisions.
- Ethernet switches are full duplex with buffering used on the incoming data to switches.
- Each ethernet switch has a switch table that stores the MAC address, interface number, and timestamp or each node that is connected to it.
- As the ethernet switch is self-learning it can learn which nodes can be reached, and what interfaces they can be reached through. As it learns this information, it stores it in the switch table.
 - There are two ways a switch can learn the MAC address of connected devices:
 - 1. When a **frame** is sent to the **switch**, it contains a **source MAC address**, the switch "learns" that address, and adds it to the switch table.
 - 2. When a **frame** is sent to the **switch**, and has a **unmapped destination address**, it will **flood all interfaces** (except the sending interface), with the **frame** until one **responds**. Once a **node responds**, the **switch** will know that the **MAC** address blongs to that node.

Switches vs Routers

- Routers are network-layer devices.
- Switches are link-layer devices.
- Routers and switches both store-and-forward units of data.

Virtual Local Area Networks (VLANs)

VLAN Motivation

- If a Local Area Network (LAN) scales to a very large size, then all layer-2 broadcast traffic (ARP, DHCP, unknown MAC, etc) must cross the entire LAN.
- Broadcast traffic on a large scale can lead to low efficiency and security / privacy issues.
- To overcome this issue, we can create Virtual Local Area Networks (VLANs).

Port-Based VLANs

• Port-based Virtual Local Area Networks (VLANs) can be configured so specific port ranges are part of specific VLANs. Effectively allowing a single physical switch to operate as several virtual switches.

- Traffic isolation refers to the isolation of traffic within virtual networks. The traffic within a virtual network cannot leave that network on layer 2.
- Dynamic membership refers to the dynamic assigning of ports among VLANs.
- Forwarding between VLANs can be done via routing through a router. In practice, vendors sell switches with build-in routers for this reason.
- VLANs that span multiple switches use trunk ports that carry frames between VLANs defined over multiple physical switches.

- A problem with Port-Based VLANs is that a malicious actor can obtain access to a virtual network simply by connecting their device to one of the ports on the virtual network.
 - To get around this issue, VLANs can be defined by device MAC addresses. You simply list all of the MAC addresses that are a part of the VLAN.