Лекция 5

Непрерывные функции в \mathbb{R}^n Свойства функций, заданных на компакте

Пусть $X \subset \mathbb{R}^n$ и $f: X \to \mathbb{R}$, то есть $y = f(x_1, x_2, \dots, x_n)$ – функция n переменных. Пусть \mathbf{a} – предельная точка множества X.

Определение 5.1. Число $A \in \mathbb{R}$ называется *пределом* функции $f: X \to \mathbb{R}$ при $\mathbf{x} \to \mathbf{a}$, если $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall \mathbf{x} \in 0 < \rho(\mathbf{x}, \mathbf{a}) < \delta \Rightarrow \left| f(\mathbf{x}) - A \right| < \varepsilon$. Записывают $\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = A$ или $\lim_{(x_1, \dots, x_n) \to (a_1, \dots, a_n)} f(\mathbf{x}) = A$.

Определение 5.2. (Гейне). Число $A \in \mathbb{R}$ называется npedenom функции $f: X \to \mathbb{R}$ при $\mathbf{x} \to \mathbf{a}$, если для любой последовательности $\{\mathbf{x}_k\}: \mathbf{x}_k \to \mathbf{a}$ при $k \to \infty, \mathbf{x}_k \in X, \mathbf{x}_k \neq \mathbf{a} \ \forall k \in \mathbb{N} \Rightarrow f(\mathbf{x}_k) \to A$ при $k \to \infty$.

Теорема 5.1. Если функция $f: X \to \mathbb{R}$ имеет предел $\mathbf{x} \to \mathbf{a}$, то он единственный.

Теорема 5.2. (**Критерий Коши**). Число $A \in \mathbb{R}$ является пределом функции $f: X \supset \mathbb{R}^n \to \mathbb{R}$ тогда и только тогда, когда $\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0: \; \forall \mathbf{x}_1, \mathbf{x}_2 \in X: \; 0 < \rho(\mathbf{x}_1, \mathbf{a}) < \delta, \; 0 < \rho(\mathbf{x}_2, \mathbf{a}) < \delta \Rightarrow |f(\mathbf{x}_1 - f(\mathbf{x}_2))| < \varepsilon.$

Теорема 5.3. Пусть функции $f:X\to\mathbb{R}$ и $g:X\to\mathbb{R}$ имеют пределы A_1 и A_2 при $\mathbf{x}\to\mathbf{a}$, то есть

$$\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = A_1, \quad \lim_{\mathbf{x}\to\mathbf{a}} g(\mathbf{x}) = A_2.$$

Тогда функции $f \pm g$, $f \cdot g$ и $\frac{f}{g}$ $(g(\mathbf{x}) \neq 0 \ \forall \mathbf{x} \in X, A_2 \neq 0)$ имеют пределы $\mathbf{x} \to \mathbf{a}$, причем

- 1. $\lim_{\mathbf{x}\to\mathbf{a}}(f(\mathbf{x})\pm g(\mathbf{x}))=A_1\pm A_2;$
- 2. $\lim_{\mathbf{x}\to\mathbf{a}}(f(\mathbf{x})g(\mathbf{x})) = A_1A_2;$
- 3. $\lim_{\mathbf{x} \to \mathbf{a}} \frac{f(\mathbf{x})}{g(\mathbf{x})} = \frac{A_1}{A_2}.$

Определение 5.3. Число $A \in \mathbb{R}$ называется *пределом* функции $f: X \to \mathbb{R}$ при $\mathbf{x} \to \infty, \ \forall \varepsilon > 0 \ \exists r \in \mathbb{R}: \ \forall \mathbf{x} \in X, \ \|\mathbf{x}\| > r \Rightarrow \left| f(\mathbf{x}) - A \right| < \varepsilon.$ У функций многих переменных существует понятие *повторного предела*.

Пример 1. Рассмотрим функцию

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases}$$

Найдем повторные пределы, то есть пределы вида $\lim_{x\to 0} (\lim_{y\to 0} f(x,y))$ и $\lim_{y\to 0} (\lim_{x\to 0} f(x,y))$. Имеем

$$\lim_{x \to 0} \left(\lim_{y \to 0} \frac{xy}{x^2 + y^2} \right) = \lim_{x \to 0} 0 = 0.$$

Аналогично
$$\lim_{y\to 0} \left(\lim_{x\to 0} \frac{xy}{x^2+y^2}\right) = 0$$
. Однако $\lim_{(x,y)\to(0,0)} \left(\frac{xy}{x^2+y^2}\right)$ не существует. Действительно,
$$\lim_{(x,y)\to(0,0)} \left(\frac{xy}{x^2+y^2}\right) = \lim_{x\to 0} \frac{x^2}{2x^2} = \frac{1}{2},$$

$$\lim_{\substack{(x,y)\to(0,0)\\y=0}} \left(\frac{xy}{x^2+y^2}\right) = \lim_{x\to 0} \frac{0}{x^2} = \lim_{x\to 0} 0 = 0.$$

Таким образом, из существования повторных пределов не следует существование предела в соответствующей точке и, наоборот, из существования предела в точке не следует существование повторных пределов. Тем не менее связь между этими понятиями может быть установлена.

Теорема 5.4. Пусть функция $f: X \to \mathbb{R}$ определена в окрестности $O((x_0, y_0); r)$ точки (x_0, y_0) за исключением, быть может, точки (x_0, y_0) . Пусть $\lim_{(x,y)\to(x_0,y_0)} f(x,y) =$ A, и существует предел $\lim_{x \to x_0} f(x,y) = \varphi(y) \ \forall y: \ 0 < |y-y_0| < r.$ Тогда существует повторный предел

$$\lim_{y \to y_0} \left(\lim_{x \to x_0} f(x, y) \right) = A.$$

Доказательство. Имеем $\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0 : \; \forall (x,y) \in O((x_0,y_0);r) : 0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta \Rightarrow \left| f(x,y) - A \right| < \varepsilon.$ Перейдем в предыдущих формулах к пределу при $x \to x_0$, получим, что при $0 < |y - y_0| < \delta \Rightarrow \left| \lim_{x \to x_0} f(x, y) - A \right| < \varepsilon$, то есть $|\varphi(y) - A| < \varepsilon$, то есть $\lim_{y \to y_0} \varphi(y) = A$.

Определение 5.4. Функция $f: X \to \mathbb{R}$ называется пепрерывной в точке $x_0 \in X$,

если $\lim_{x \to x_0} f(x) = f(x_0).$

Определение 5.5. Функция $f: X \to \mathbb{R}$ называется *непрерывной* в точке $x_0 \in X$, если $\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0 : \; \forall x \in X, \rho(x, x_0) < \delta \Rightarrow \big| f(x) - f(x_0) \big| < \varepsilon.$

Теорема 5.5. Пусть функции $f: X \to \mathbb{R}, g: X \to \mathbb{R}$ непрерывны в точке $x_0 \in X$. Тогда функции $f \pm g, f \cdot g, \frac{f}{g} (g(x) \neq 0 \ \forall x \in X)$ непрерывны в точке x_0 .

Теорема 5.6. Если функция $f: X \to \mathbb{R}$ непрерывна в точке $x_0 \in X$, то существует окрестность точки x_0 , в которой функция f является ограниченной.

Теорема 5.7. Пусть функция $f: X \to \mathbb{R}$ непрерывна в точке $x_0 \in X$ и $f(x_0) \neq 0$, тогда существует окрестность точки x_0 , в которой функция f сохраняет знак.

Пусть обозначено на рисунке $y = f \circ \mathbf{g}; \ \mathbf{y}(\mathbf{x}) = f(\mathbf{g}(\mathbf{x})) = f(g^1(\mathbf{x}), g^2(\mathbf{x}), \dots, g^m(\mathbf{x})), \ \mathbf{x} =$ $(x^1, x^2, \dots, x^n), z^k = g^k(x^1, x^2, \dots, x^n), k = 1, \dots, m, \mathbf{b} = (b^1, b^2, \dots, b^m), X \subset$ \mathbb{R}^n , $Z \subset \mathbb{R}^m$.

Теорема 5.8. Пусть заданы функции g^k $k=1,\ldots,m$ в окрестности точки $\mathbf{a}\in X\subset$ \mathbb{R}^n , и они являются непрерывными в точке \mathbf{a} . Пусть в окрестности точки $\mathbf{b} = \mathbf{g}(\mathbf{a})$ задана функция f со значениями в \mathbb{R} , и она является непрерывной в точк \mathbf{k} b. Тогда сложная функция $y = f(\mathbf{g}(\mathbf{x}))$ определена в окрестности точки \mathbf{a} и непрерывна в точке а.

Доказательство. Поскольку функция f непрерывна в точке в точке \mathbf{b} , то $\forall \varepsilon > 0 \; \exists \delta = 0$ $\delta(\varepsilon) > 0$: $\forall z \in V(\mathbf{b}) \rho(\mathbf{z}, \mathbf{b}) < \delta \Rightarrow |f(\mathbf{z}) - f(\mathbf{b})| < \varepsilon$. Учитывая, что функции g^k , $k = 1, \ldots, m$ непрерывны в точке \mathbf{a} , то для выбранного $\delta \exists \sigma_k = \sigma_k(\delta) > 0$ $k = 1, \ldots, m$: $|g^k(\mathbf{x}) - g^k(\mathbf{a})| < \frac{\delta}{\sqrt{m}} \ \forall x \in U(\mathbf{a}) \rho(\mathbf{x}, \mathbf{a}) < \sigma_k$. Обозначим $\sigma \Rightarrow \{\sigma_1, \sigma_2, \ldots, \sigma_m\}$.

Тогда $\forall x \in U(\mathbf{a})$ $\rho(\mathbf{x}, \mathbf{a}) < \sigma \Rightarrow \rho(\mathbf{g}(\mathbf{x}), \mathbf{g}(\mathbf{a})) = \sqrt{\sum_{i=1}^{m} (g^i(\mathbf{x}) - g^i(\mathbf{a}))^2} < \sqrt{\frac{\delta^2}{m}} m = \delta.$ При указанных значениях \mathbf{x} имеем $|f(\mathbf{g}(\mathbf{x})) - f(\mathbf{g}(\mathbf{a}))| = |f(\mathbf{z}) - f(\mathbf{b})| < \varepsilon,$

$$|f(\underline{\mathbf{g}}(\mathbf{x})) - f(\underline{\mathbf{g}}(\mathbf{a}))| = |f(\mathbf{z}) - f(\mathbf{b})| < \varepsilon,$$

то есть сложная функция $y = f(\mathbf{g}(\mathbf{x}))$ определена в окрестности точки \mathbf{a} и непрерывна в этой точке.

Теорема 5.9. (Вейерштрасс). Пусть X – компакт в \mathbb{R}^n , а $f:X\to\mathbb{R}$ – непрерывная функция. Тогда f является ограниченной на X.

Теорема 5.10. (Вейерштрасс). Пусть X – компакт в \mathbb{R}^n , а $f: X \to \mathbb{R}$ – непрерывная функция. Тогда существуют точки $x_1, x_2 \in X$ $\sup_{x \in X} f(x) = f(x_1), \inf_{x \in X} f(x) = f(x_2).$

Определение 5.6. Функция $f: X \to \mathbb{R}$ называется равномерно непрерывной на X, если $\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0: \; \forall \underline{x_1, x_2} \in X: \; \rho(x_1, x_2) < \delta \Rightarrow \left| f(x_1) - f(x_2) \right| < \varepsilon.$

Теорема 5.11. Функция f, непрерывная на компакте, является равномерно непрерывной на ней .

Дифференцируемые функции в \mathbb{R}^n

Пусть X – открытое множество в \mathbb{R}^n , и $f: X \to \mathbb{R}$. Пусть $\mathbf{x}_0 = (x_0^1, x_0^2, \dots, x_0^n)$ – точка их X.

ка их X. Считая, что $\Delta \mathbf{x} = \mathbf{x} - \mathbf{x}_0$, $(\mathbf{x}_0 + \Delta \mathbf{x}) \in X$, рассмотрим полное приращение функции f

$$\Delta f(\mathbf{x}_0) = f(\mathbf{x}_0 + \Delta \mathbf{x}) - f(\mathbf{x}_0) = f(\mathbf{x}) - f(\mathbf{x}_0).$$

Обозначим $\Delta_k f(\mathbf{x}_0) = f(x_0^1, x_0^2, \dots, x_0^{k-1})$ $x_0^k + \Delta x^k$, $x_0^{k+1}, \dots, x_0^n) - f(x_0^1, x_0^2, \dots, x_0^k)$. Определение 5.7. Если существует предел $\lim_{\Delta x^k \to 0} \frac{\Delta_k f(\mathbf{x}_0)}{\Delta x^k}$, то он называется uacmной $npouseo\partial$ ной функции f по переменной x^k в точке \mathbf{x}_0 . Обозначим $\frac{\partial f}{\partial x^k}(\mathbf{x}_0)$. $\frac{\partial f(\mathbf{x}_0)}{\partial x^k} = f(x_0^k)$.

Обозначим $\frac{\partial f}{\partial x^k}(\mathbf{x}_0)$, $\frac{\partial f(\mathbf{x}_0)}{\partial x^k}$, $f_{x^k}(\mathbf{x}_0)$, $D_{x^k}f(x_0)$.

Пример 2. Найти
$$\frac{\partial f}{\partial x}(0,0,0), \ \frac{\partial f}{\partial y}(0,0,0)$$
 и $\frac{\partial f}{\partial z}(0,0,0),$ если $\underline{f(x,y)} = \underline{xy^2 + xy + x + 2y} + 1 + \sin(xy) + z$. Имеем

$$\frac{\partial f}{\partial x} = y^2 + y + 1 + y\cos(xy); \quad \frac{\partial f}{\partial x}(0,0,0) = 1;$$
$$\frac{\partial f}{\partial y} = 2xy + x + 2 + x\cos(xy); \quad \frac{\partial f}{\partial y}(0,0,0) = 2;$$

$$\frac{\partial f}{\partial z} = 1$$