# Lecture 3: Applications

- Least-squares
- Least-norm
- Total least-squares
- Low-rank approximation

Linear algebra with applications (L3)

1 / 42

Linear algebra with applications (L3)

2 / 42

### We are talking about

- Least-squares approximate solution of an overdetermined system
- Least-norm particular solution of an underdetermined system

#### Notes:

- · Least-squares for an underdetermined system, and
- Least-norm for an overdetermined system are meaningless.
- the least-squares approx. solution is (most of the time) not solution
- the least-norm solution is (aways) one of infinitely many solutions

### Over/underdetermined linear equations

Consider Ax = y with  $A \in \mathbb{R}^{m \times n}$ ,  $y \in \mathbb{R}^m$  given and  $x \in \mathbb{R}^n$  unknown. Without loss of generality assume that A is full rank.

- Ax = y is overdetermined if m > n (more eqns than unknowns)
- Ax = y is underdetermined if m < n (more unknowns than eqns)

For most  $y \in \mathbb{R}^m$ 

- overdetermined systems have no solution x
- underdetermined systems have infinitely many solutions x

# Least-squares

- approach for solving approx. overdetermined system Ax = y
- choose x that minimizes 2-norm of the residual (eqn error)

$$e(x) := y - Ax$$

• a minimizing x is called a least-squares approximate solution

$$\widehat{\mathbf{x}}_{\mathrm{ls}} := \arg\min_{\mathbf{x}} \|\underbrace{\mathbf{y} - \mathbf{A}\mathbf{x}}_{\mathbf{e}(\mathbf{x})}\|_{2}$$

### Geometric interpretation: project y onto the span of A

$$(\widehat{y}_{ls} := A\widehat{x}_{ls} \text{ is the projection})$$

$$e_{ls} := \widehat{y}_{ls} - A\widehat{x}_{ls}$$



Linear algebra with applications (L3) 5 / 42

### Another geometric interpretation of the LS approximation:



$$A\widehat{x}_{ls} = \widehat{y}_{ls} \iff \begin{bmatrix} A & \widehat{y}_{ls} \end{bmatrix} \begin{bmatrix} \widehat{x}_{ls} \\ -1 \end{bmatrix} = 0$$

$$\iff \begin{bmatrix} a_i & \widehat{y}_{ls,i} \end{bmatrix} \begin{bmatrix} \widehat{x}_{ls} \\ -1 \end{bmatrix} = 0, \text{ for } i = 1, ..., m$$

$$(a_i \text{ is the } i \text{th row of } A)$$

- $(a_i, \widehat{y}_{ls,i})$ , for all i, lies on the subspace perpendicular to  $(\widehat{x}_{ls}, -1)$
- "data point"  $(a_i, y_i) = (a_i, \widehat{y}_{ls,i}) + (0, e_{ls,i})$
- the approximation error  $(0, e_{ls,i})$  is the vertical distance from  $(a_i, y_i)$  to the subspace

Linear algebra with applications (L3) 6 / 42

### Derivation of the least-squares solution

Assumption  $m \ge n = \text{rank}(A)$ , *i.e.*, A is full column rank.

To minimize the norm of the residual e

$$\|\mathbf{e}(\mathbf{x})\|_{2}^{2} = \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} = (\mathbf{y} - \mathbf{A}\mathbf{x})^{\top}(\mathbf{y} - \mathbf{A}\mathbf{x}) = \mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x} - 2\mathbf{y}^{\top}\mathbf{A}\mathbf{x} + \mathbf{y}^{\top}\mathbf{y}$$

over x, set the gradient with respect to x equal to zero

$$\nabla_{\mathbf{x}} \| \mathbf{e}(\mathbf{x}) \|_{2}^{2} = \nabla_{\mathbf{x}} (\mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - 2 \mathbf{y}^{\top} \mathbf{A} \mathbf{x} + \mathbf{y}^{\top} \mathbf{y}) = 2 \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - 2 \mathbf{A}^{\top} \mathbf{y} = 0.$$

This gives the linear equation  $A^{T}Ax = 2A^{T}y$  in x, called normal equation.

A full column rank, implies that  $A^{T}A$  is nonsingular, so that

$$\widehat{\mathbf{x}}_{ls} = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{y}$$

is the unique least-squares approximate solution.

Linear algebra with applications (L3) 7/42 Linear algebra with applications (L3) 8/42

- $A^+ := (A^T A)^{-1} A^T$  is called the pseudo-inverse of A
- $\hat{x}_{ls}$  is a linear function of y (given by the pseudo inverse matrix  $A^+$ )
- If A is square  $\widehat{x}_{ls} = A^{-1}y$  (in other words  $A^+ = A^{-1}$ )
- $\hat{x}_{ls}$  is an exact solution if Ax = y has an exact solution
- $\widehat{y}_{ls} := A\widehat{x}_{ls} = A(A^{T}A)^{-1}A^{T}y$  is a least-squares approximation of y

The  $m \times m$  matrix

$$\Pi_{\mathsf{image}(A)} := A(A^{\top}A)^{-1}A^{\top}$$

is the orthogonal projector onto  $\mathcal{L} := \text{image}(A)$ .

The columns of A are an arbitrary basis for  $\mathcal{L}$ .

Recall that if the columns of Q are an orthonormal basis for  $\mathscr L$ 

$$\Pi_{\mathsf{image}(\mathsf{Q})} := \mathsf{Q}\mathsf{Q}^{ op}$$

Linear algebra with applications (L3)

9 / 42

Linear algebra with applications (L3)

10 / 42

# Orthogonality principle

The least-squares residual vector

$$e_{ls} := y - A\widehat{x}_{ls} = \underbrace{\left(I_m - A(A^{\top}A)^{-1}A^{\top}\right)}_{\Pi_{(image(A))^{\perp}}} y$$

is orthogonal to image(A)

$$\langle e_{ls}, A\widehat{x}_{ls} \rangle = y^{\top} (I_m - A(A^{\top}A)^{-1}A^{\top}) A\widehat{x}_{ls} = 0, \text{ for all } x \in \mathbb{R}^n$$



# Least-squares via QR factorization

Let A = QR be the QR factorization of A.

$$(A^{\top}A)^{-1}A^{\top} = (R^{\top}Q^{\top}QR)^{-1}R^{\top}Q^{\top}$$
  
=  $(R^{\top}Q^{\top}QR)^{-1}R^{\top}Q^{\top} = R^{-1}Q^{\top}$ 

so that

$$\widehat{\mathbf{x}}_{ls} = \mathbf{R}^{-1} \mathbf{Q}^{\mathsf{T}} \mathbf{y}$$
 and  $\widehat{\mathbf{y}}_{ls} := \mathbf{A} \mathbf{x}_{ls} = \mathbf{Q} \mathbf{Q}^{\mathsf{T}} \mathbf{y}$ 

Let  $A =: [a_1 \cdots a_n]$  and consider the sequence of LS problems

$$A^i x^i = y$$
, where  $A^i := \begin{bmatrix} a_1 & \cdots & a_i \end{bmatrix}$ , for  $i = 1, \dots, n$ 

Define  $R_i$  as the leading  $i \times i$  submatrix of R and  $Q_i := [q_1 \quad \cdots \quad q_i]$ .

$$\widehat{\mathbf{x}}_{\mathrm{ls}}^{i} = \mathbf{R}_{i}^{-1} \mathbf{Q}_{i}^{\top} \mathbf{y}$$

# Weighted least-squares

Given a positive definite matrix  $W \in \mathbb{R}^{m \times m}$ , define wighted 2-norm

$$\|e\|_{W}^{2} := e^{\top} We$$

Weighted least-squares approximate solution

$$\widehat{x}_{W,\mathrm{ls}} := \arg\min_{x} \|y - Ax\|_{W}$$

The orthogonality principle holds by defining the inner product as

$$\langle \mathbf{e}, \mathbf{y} \rangle_{\mathbf{W}} := \mathbf{e}^{\top} \mathbf{W} \mathbf{y}$$

Show that

$$\widehat{\mathbf{x}}_{W.\mathrm{ls}} = (\mathbf{A}^{\top} \mathbf{W} \mathbf{A})^{-1} \mathbf{A}^{\top} \mathbf{W} \mathbf{y}$$

Linear algebra with applications (L3)

13 / 42

# Recursive computation of $\widehat{x}_{ls}(m) = \left(\sum_{i=1}^{m} a_i a_i^{\top}\right)^{-1} \sum_{i=1}^{m} a_i y_i$

- $P(0) = 0 \in \mathbb{R}^{n \times n}, \ q(0) = 0 \in \mathbb{R}^n$
- For m = 0, 1, ...
- $P(m+1) := P(m) + a_{m+1}a_{m+1}^{\top}, q(m+1) := q(m) + a_{m+1}y_{m+1}.$
- If P(m) is invertible,  $x_{ls}(m) = P^{-1}(m)q(m)$ .

#### Notes:

- On each step, the algorithm requires inversion of an  $n \times n$  matrix
- P(m) invertible  $\implies P(m')$  invertible, for all m' > m

### Recursive least-squares

Let  $a_i^{\top}$  be the *i*th row of A

$$egin{aligned} A = egin{bmatrix} - & a_1^ op & - \ & dots \ - & a_m^ op & - \end{bmatrix} \end{aligned}$$

with this notation,  $||y - Ax||_2^2 = \sum_{i=1}^m (y_i - a_i^\top x)^2$  and

$$\widehat{\mathbf{x}}_{\mathrm{ls}} = \left(\sum_{i=1}^{m} \mathbf{a}_{i} \mathbf{a}_{i}^{\top}\right)^{-1} \sum_{i=1}^{m} \mathbf{a}_{i} \mathbf{y}_{i}$$

- $(a_i, y_i)$  correspond to a measurement
- often the measurements  $(a_i, y_i)$  come sequentially (e.g., in time)

Linear algebra with applications (L3)

14 / 42

Rank-1 update formula

$$(P+aa^{\top})^{-1} = P^{-1} - \frac{1}{1+a^{\top}P^{-1}a}(P^{-1}a)(P^{-1}a)^{\top}$$

#### Notes:

- gives an  $O(n^2)$  method for computing  $P^{-1}(m+1)$  from  $P^{-1}(m)$
- standard methods for computing  $P^{-1}(m+1)$  require  $O(n^3)$  operations (for dense matrices)

# Multiobjective least-squares

least-squares minimizes the cost function  $J_1(x) := ||Ax - y||_2^2$ .

Consider a second cost function  $J_2(x) := \|Bx - z\|_2^2$ ,

which we want to minimize together with  $J_1$ .

Usually the criteria  $\min_{x} J_1(x)$  and  $\min_{x} J_2(x)$  are competing.

Common example:  $J_2(x) := ||x||_2^2$  — minimize  $J_1$  with small x

- achievable objectives:
  - $\{(\alpha,\beta)\in\mathbb{R}^2\mid\exists\;x\in\mathbb{R}^n\;\text{subject to}\;J_1(x)=\alpha,\;J_2(x)=\beta\,\}$
- optimal trade-off curve: boundary of the achievable objectives
- the corresponding x are called Pareto optimal

Linear algebra with applications (L3)

17 / 42

# Regularized least-squares

Tychonov regularization

$$\hat{x} = \arg\min_{x} ||Ax - b||_{2}^{2} + \mu ||x||_{2}^{2}$$

the solution

$$\widehat{\mathbf{x}} = (\mathbf{A}^{\top} \mathbf{A} + \mu \mathbf{I}_{\mathbf{n}})^{-1} \mathbf{A}^{\top} \mathbf{y}$$

exists for any  $\mu > 0$ , independent on size and rank of A.

Trade-off between

- fitting accuracy  $||Ax b||_2$ , and
- solution size  $||x||_2$

### Scalarization of multiobjective problem

For any  $\mu \ge 0$ ,  $\hat{\mathbf{x}}(\mu) = \operatorname{argmin}_{\mathbf{x}} \mathbf{J}_1(\mathbf{x}) + \mu \mathbf{J}_2(\mathbf{x})$  is Pareto optimal.

By varying  $\mu \in [0, \infty)$ ,  $\widehat{\mathbf{x}}(\mu)$  sweeps all Pareto optimal solutions



Linear algebra with applications (L3)

18 / 42

### Least-norm solution

Consider an underdetermined system Ax = y, with full rank  $A \in \mathbb{R}^{m \times n}$ .

The set of solutions is

$$\{x \in \mathbb{R}^n \mid Ax = y\} = \{x_p + z \mid \ker(A)\}$$

where  $x_p$  is a particular solution, *i.e.*,  $Ax_p = y$ .

least-norm solution

$$x_{ln} := \underset{x}{\operatorname{argmin}} ||x||_2$$
 subject to  $Ax = y$ 

### Geometric interpretation:

- $x_{ln}$  is the projection of 0 onto the solution set
- orthogonality principle x<sub>In</sub> ⊥ ker(A)



Linear algebra with applications (L3)

### Solution via QR factorization

Let  $A^{\top} = QR$  be the QR factorization of  $A^{\top}$ .

$$A^{\top}(AA^{\top})^{-1} = QR(R^{\top}Q^{\top}QR)^{-1} = Q(R^{\top})^{-1}$$

is a right inverse of A. Then

$$x_{\text{ln}} = Q(R^{\top})^{-1}y$$

# Derivation of the solution: Lagrange multipliers

Consider the least-norm problem with A full rank

$$\min_{x} ||x||_2^2$$
 subject to  $Ax = y$ 

introduce Lagrange multipliers  $\lambda \in \mathbb{R}^m$ 

$$L(\mathbf{x}, \lambda) = \mathbf{x} \mathbf{x}^\top + \lambda^\top (\mathbf{A} \mathbf{x} - \mathbf{y})$$

the optimality conditions are

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \lambda) = 2\mathbf{x} + \mathbf{A}^{\top} \lambda = 0$$
$$\nabla_{\lambda} L(\mathbf{x}, \lambda) = \mathbf{A}\mathbf{x} - \mathbf{y} = 0$$

from the first condition  $x = -A^{T}\lambda/2$ , substituting into the second

$$\lambda = -2(AA^{\top})^{-1}y \implies \mathbf{x}_{ln} = A^{\top}(AA^{\top})^{-1}y$$

Linear algebra with applications (L3)

22 / 42

### Total least-squares (TLS)

The LS method minimizes 2-norm of the equation error e(x) := y - Ax.

$$\min_{x,e} \|e\|_2$$
 subject to  $Ax = y - e$ 

alternatively the equation error *e* can be viewed as a correction on *y*.

The TLS method is motivated by the asymmetry of the LS method:

both A and y are given data, but only y is corrected.

TLS problem: 
$$\min_{x,\widetilde{A},\widetilde{y}} \| [\widetilde{A} \ \widetilde{y}] \|_{F}$$
 subject to  $(A + \widetilde{A})x = y + \widetilde{y}$ 

- $\widetilde{A}$  correction on A,  $\widetilde{y}$  correction on y
- Frobenius matrix norm:  $\|C\|_{\mathrm{F}} := \sqrt{\sum_{i=1}^m \sum_{j=1}^n c_{ij}^2}$ , where  $C \in \mathbb{R}^{m \times n}$

21 / 42

# Geometric interpretation of the TLS criterion

In the case n = 1, the problem of solving approximately Ax = y is

$$\begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix} \mathbf{x} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}, \qquad \mathbf{x} \in \mathbb{R}$$

### Geometric interpretation:

fit a line  $\mathcal{L}(x)$  passing through 0 to the points  $(a_1, y_1), \dots, (a_m, y_m)$ 

- LS minimizes
   sum of squared vertical distances from (a<sub>i</sub>, y<sub>i</sub>) to L(x)
- TLS minimizes sum of squared orthogonal distances from  $(a_i, y_i)$  to  $\mathcal{L}(x)$

(Show this algebraically.)

Linear algebra with applications (L3)

25 / 42

# Solution of the TLS problem

Let  $\begin{bmatrix} A & y \end{bmatrix} = U\Sigma V^{\top}$  be the SVD of the data matrix  $\begin{bmatrix} A & y \end{bmatrix}$  and

$$\Sigma = \text{diag}(\sigma_1, \dots, \sigma_{n+1}), \quad U = \begin{bmatrix} u_1 & \cdots & u_{n+1} \end{bmatrix}, \quad V = \begin{bmatrix} v_1 & \cdots & v_{n+1} \end{bmatrix}.$$

A TLS solution exists iff  $v_{n+1,n+1} \neq 0$  (last element of  $v_{n+1}$ ) and is unique iff  $\sigma_n \neq \sigma_{n+1}$ .

In the case when a TLS solution exists and is unique, it is given by

$$\widehat{\mathbf{x}}_{\text{tls}} = -\frac{1}{\mathbf{v}_{n+1,n+1}} \begin{bmatrix} \mathbf{v}_{1,n+1} \\ \vdots \\ \mathbf{v}_{n,n+1} \end{bmatrix}$$

and the corresponding TLS corrections are  $\left[\widetilde{A}_{tls}\ \widetilde{y}_{tls}\right] = -\sigma_{n+1}u_{n+1}v_{n+1}^{\top}$ . (Corollary of the low-rank approximation theorem, see page 29.)



Linear algebra with applications (L3)

26 / 42

### Low-rank approximation

#### Given

- a matrix  $A \in \mathbb{R}^{m \times n}$ ,  $m \ge n$ , and
- an integer *r*, 0 < *r* < *n*,

#### find

$$\widehat{A} := \underset{\widehat{A}}{\operatorname{arg\,min}} \|A - \widehat{A}\| \quad \text{subject to} \quad \operatorname{rank}(\widehat{A}) \leq r.$$

### Interpretation:

 $\widehat{A}^*$  is optimal rank-*r* approximation of *A* w.r.t. the norm  $\|\cdot\|$ , *e.g.*,

$$||A||_{\mathrm{F}}^2 := \sum_{i=1}^m \sum_{j=1}^n a_{ij}^2$$
 or  $||A||_2 := \max_x \frac{||Ax||_2}{||x||_2}$ 

Linear algebra with applications (L3) 27 / 42 Linear algebra with applications (L3) 28 / 42

### Solution via SVD

$$\widehat{A}^* := \arg\min_{\widehat{\mathbf{A}}} \|\mathbf{A} - \widehat{\mathbf{A}}\|_{\mathrm{F}} \quad \text{subject to} \quad \operatorname{rank}(\widehat{\mathbf{A}}) \leq r \tag{LRA}$$

Theorem Let  $A = U\Sigma V^{\top}$  be the SVD of A and define

$$U =: \begin{bmatrix} r & r-n \\ U_1 & U_2 \end{bmatrix} \quad n \; , \quad \Sigma =: \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \quad \begin{matrix} r \\ r-n \end{matrix} \quad \text{and} \quad V =: \begin{bmatrix} V_1 & V_2 \end{bmatrix} \quad n \; .$$

An solution to (LRA) is

$$\widehat{A}^* = U_1 \Sigma_1 V_1^{\top}.$$

It is unique if and only if  $\sigma_r \neq \sigma_{r+1}$ .

(Outline of the proof.)

Linear algebra with applications (L3)

29 / 42

# Link to the sum-of-damped-exponentials model

Model the signal w as

$$w(t) = \sum_{i=1}^{\ell} a_i e^{d_i t} e^{\mathbf{i}(\omega_i t + \phi_i)}$$
 (SDE)

where  $a_i$ ,  $d_i$ ,  $\phi_i$ , and  $\omega_i$  are parameters of the model

 $a_i$  — amplitudes  $d_i$  — dampings  $\omega_i$  — frequencies  $\phi_i$  — initial phases

For all  $\{a_i, d_i, \omega_i, \phi_i\}$  there are  $p_i$  and  $w(-\ell+1), \dots, w(0)$ , s.t. the solution of (LP) coincides with (SDE) and vice verse.

the LP problem ←⇒ modelling by (SDE)

### Example: linear prediction problem

Future values of w are estimated as linear comb. of past values

$$w(t) = p_1 w(t-1) + p_2 w(t-2) + \dots + p_{\ell} w(t-\ell)$$
 (LP)

 $p_i$  are the linear prediction coefficients

Given an observed signal w, how do we find the coefficients  $p_i$ ?

There are many methods for doing this:

- Pisarenko, Prony, Kumaresan-Tufts methods
- subspace methods
- · frequency domain methods
- maximum likelihood method

Linear algebra with applications (L3)

30 / 42

# Linear prediction problem as low-rank approx.

$$w = (w(1), ..., w(T))$$
 sum-of-damped-exp.  $\Longrightarrow w$  satisfies  $p_0w(t) + p_1w(t+1) + \cdots + p_\ell w(t+\ell) = 0$ , for  $t = 1, ..., T - \ell$ 

Written in a matrix form these equations are

$$\begin{bmatrix} \rho_0 & \rho_1 & \cdots & \rho_\ell \end{bmatrix} \underbrace{\begin{bmatrix} w(1) & w(2) & \cdots & w(T-\ell) \\ w(2) & w(3) & \cdots & w(T-\ell+1) \\ \vdots & \vdots & & \vdots \\ w(\ell+1) & w(\ell+2) & \cdots & w(T) \end{bmatrix}}_{\mathcal{H}(w)} = 0$$

which shows that the Hankel matrix  $\mathscr{H}_{\ell}(w)$  is rank deficient

$$\operatorname{rank} (\mathscr{H}_{\ell}(w)) \leq \ell$$

# Structured low-rank approximation

#### Given

- a vector  $p \in \mathbb{R}^{n_p}$ .
- a mapping  $\mathscr{S}: \mathbb{R}^{n_p} \to \mathbb{R}^{m \times n}$  (structure specification)
- a vector norm || · ||, and
- an integer r,  $0 < r < \min(m, n)$ ,

### find

$$\widehat{p}^* := \arg\min_{\widehat{p}} \|p - \widehat{p}\| \quad \text{subject to} \quad \operatorname{rank} \left(\mathscr{S}(\widehat{p})\right) \leq r.$$

### Interpretation:

 $\widehat{D}^* := \mathscr{S}(\widehat{p}^*)$  is optimal rank-r (or less) approx. of  $D := \mathscr{S}(p)$ , within the class of matrices with the same structure as D.

Linear algebra with applications (L3)

33 / 42

#### 34 / 42

# Variable projection vs. alternating projections

Two ways to approach the double minimization:

 Variable projections (VARPRO): solve the inner minimization analytically

$$\min_{R,RR^\top = I_{m-r}} \text{vec}^\top \left( R \mathscr{S}(\widehat{p}) \right) \left( G(R) G^\top(R) \right)^{-1} \text{vec} \left( R \mathscr{S}(\widehat{p}) \right)$$

- $\rightarrow$  a nonlinear least squares problem for R only.
- Alternating projections (AP): alternate between solving two least squares problems

VARPRO is globally convergent with a super linear conv. rate.

AP is globally convergent with a linear convergence rate.

### Solution methods for structured low-rank appr.

No closed form solution is known for the general SLRA problem

$$\widehat{p}^* := \arg\min_{\widehat{p}} \|p - \widehat{p}\|$$
 subject to  $\operatorname{rank}\left(\mathscr{S}(\widehat{p})\right) \leq r$ .

NP-hard, consider solution methods based on local optimization

Representing the constraint in a kernel form, the problem is

$$\min_{R,RR^\top=I_{m-r}} \left( \min_{\widehat{\rho}} \| p - \widehat{\rho} \| \quad \text{subject to} \quad R\mathscr{S}(\widehat{\rho}) = 0 \right)$$

Note: Double minimization with bilinear equality constraint.

There is a matrix G(R), such that  $R\mathcal{S}(\widehat{p}) = 0 \iff G(R)p = 0$ .

Linear algebra with applications (L3)

# Software implementation

The structure of  $\mathscr{S}$  can be exploited for efficient  $O(\dim(p))$ cost function and first derivative evaluations.

SLICOT library includes high quality FORTRAN implementation of algorithms for block Toeplitz matrices.

VARPRO approach based on the Levenberg–Marguardt alg. implemented in MINPACK.

# Another extension: weighted low-rank approx.

The basic low-rank approximation

$$\widehat{D}^* := \arg\min_{\widehat{D}} \|D - \widehat{D}\| \quad \text{subject to} \quad \operatorname{rank}(\widehat{D}) \leq \mathsf{m}.$$

is a maximum liklihood estimate assuming  $cov(vec(\widetilde{D})) = I$ .

If  $\operatorname{cov}(\operatorname{vec}(\widetilde{D})) = W$ , the maximum liklihood estimate is given by  $\min_{\widehat{D}} \operatorname{vec}^\top (D - \widehat{D}) W \operatorname{vec}(D - \widehat{D}) \quad \text{subject to} \quad \operatorname{rank}(\widehat{D}) \leq \operatorname{m}$ 

weighted low-rank approximation (maximum likelihood PCA)

### NP-hard problem

Linear algebra with applications (L3)

37 / 42

# Data fitting by a second order model

 $\mathscr{B}(A, b, c) := \{ d \in \mathbb{R}^d \mid d^\top A d + b^\top d + c = 0 \}, \text{ with } A = A^\top$ Consider first exact data:

$$\begin{aligned} d \in \mathscr{B}(A,b,c) &\iff d^{\top}Ad + b^{\top}d + c = 0 \\ &\iff \left\langle \underbrace{\operatorname{col}(d \otimes_{\operatorname{s}} d,d,1)}, \underbrace{\operatorname{col}\left(\operatorname{vec}_{\operatorname{s}}(A),b,c\right)}_{\boldsymbol{\theta}} \right\rangle = 0 \\ \left\{ d_{1},\ldots,d_{N} \right\} \in \mathscr{B}(\theta) &\iff \theta \in \operatorname{leftker}\left[\underbrace{d_{\operatorname{ext},1} \quad \cdots \quad d_{\operatorname{ext},N}}_{\boldsymbol{D}_{\operatorname{ext}}}\right], \quad \theta \neq 0 \\ &\iff \operatorname{rank}(\boldsymbol{D}_{\operatorname{ext}}) \leq \operatorname{d} - 1 \end{aligned}$$

Therefore, for measured data  $\rightsquigarrow$  LRA of  $D_{\text{ext}}$ .

#### Notes:

- Special case  $\mathcal{B}$  an ellipsoid (for A > 0 and  $4c < b^{\top} A^{-1} b$ ).
- Related to kernel PCA

# Another extension: nonnegative low-rank approx.

Constrained LRA arise in Markov chains and image mining

$$\min_{\widehat{D}} \|D - \widehat{D}\| \quad \text{subject to} \quad \operatorname{rank}(\widehat{D}) \leq \mathfrak{m} \text{ and } \widehat{\underline{D}}_{ij} \geq 0 \text{ for all } i,j.$$

Using an image representation, an equivalent problem is

$$\min_{P \in \mathbb{R}^{d \times m}, L \in \mathbb{R}^{m \times N}} \|D - PL\| \quad \text{subject to} \quad P_{ik}, L_{kj} \geq 0 \text{ for all } i, k, j.$$

### Alternating projections algorithm:

- Choose an initial approximation  $P^{(0)} \in \mathbb{R}^{d \times m}$  and set k := 0.
- Solve:  $L^{(k)} = \operatorname{argmin}_{L} ||D P^{(k)}L||$  subject to  $L \ge 0$ .
- Solve:  $P^{(k+1)} = \operatorname{argmin}_P ||D PL^{(k)}||$  subject to P > 0.
- Repeat until convergence.

Linear algebra with applications (L3)

38 / 42

# Example: ellipsoid fitting



dashed — kernel PCA solid — modified method

dashed-dotted — orthogonal regression (geometric fitting)

o — data points × — centers

### Rank minimization

Approximate modeling is a tradeoff between:

- fitting accuracy and
- model complexity

Two possible scalarizations of the bi-objective optimization are:

- · LRA: minimize misfit under a constraint on complexity
- RM: minimize complexity under a constraint ( $\mathscr C$ ) on misfit

minimize<sub>X</sub> rank(X) subject to  $X \in \mathscr{C}$ 

RM is also NP-hard, however, there are effective heuristics, e.g.,

with X = diag(x), rank(X) = card(x),

 $\ell_1$  heuristic: minimize<sub>x</sub>  $||x||_1$  subject to diag $(x) \in \mathscr{C}$ 

Linear algebra with applications (L3)

41 / 42

### References

- S. Boyd, EE263: Linear dynamical systems
- Golub & Van Loan, An analysis of the total least-squares problem, *SIAM J. Numer. Anal.*, volume 17, pages 883–893, 1980
- Van Huffel & Vandewalle, The total least-squares problem: Computational aspects and analysis, SIAM, 1991
- Markovsky & Van Huffel, Overview of total least-squares methods, Signal Processing, volume 87, pages 2283–2302, 2007

42 / 42

 Markovsky, Structured low-rank approximation and its applications, Automatica, 2008

Linear algebra with applications (L3)