September 28	September 2019
Tutorial 7: Problems	
Course Instructor: Himanshu Tyagi	Prepared by: Karthik

 ${\bf Note:}\ \textit{LaTeX template courtesy of UC Berkeley EECS dept.}$

${\bf Contents}$

7.1	Problems	7-2
7.2	Exercises	7-6

7.1 Problems

1. Let $X \sim P$ be a discrete random variable with pmf p taking values in the set \mathcal{X} . For $\alpha > 0$, $\alpha \neq 1$, the Rényi entropy of order α of the distribution P is denoted by $H_{\alpha}(P)$ and is defined as

$$H_{\alpha}(P) := \frac{1}{1-\alpha} \log \sum_{x \in \mathcal{X}} (p(x))^{\alpha}.$$

Show that for every $\alpha \in (0,1)$ and $\epsilon > 0$,

$$L_{\epsilon}(P) \leq H_{\alpha}(P) + \frac{1}{1-\alpha} \log \frac{1}{\epsilon} + 1.$$

Also show that for every $\beta > 1$ and $\delta \in (0, 1 - \epsilon)$,

$$L_{\epsilon}(P) \ge H_{\beta}(P) - \frac{1}{\beta - 1} \log \frac{1}{\delta} - \log \frac{1}{1 - \epsilon - \delta}.$$

Solution:

We know¹ that given $\epsilon > 0$ and a discrete random variable $X \sim P$ with pmf p, if there exists a constant λ such that $P(-\log p(X) \le \lambda) \ge 1 - \epsilon$, then $L_{\epsilon}(P) \le \lambda$. From the upper bound for $L_{\epsilon}(P)$ given in the question, a natural choice for λ is

$$\lambda = \lambda_{\alpha} = H_{\alpha}(P) + \frac{1}{1-\alpha} \log \frac{1}{\epsilon} + 1.$$

Therefore, it suffices to show that for this choice of λ_{α} , $P(-\log p(X) \le \lambda_{\alpha}) \ge 1 - \epsilon$.

We shall show that $P(-\log p(X) > \lambda_{\alpha}) \leq \epsilon$. Towards this, we have

$$P(-\log p(X) > \lambda_{\alpha}) = P\left(-\log p(X) > \frac{1}{1-\alpha} \log \sum_{x \in \mathcal{X}} (p(x))^{\alpha} + \frac{1}{1-\alpha} \log \frac{1}{\epsilon} + 1\right)$$

$$\leq P\left(-\log p(X) > \frac{1}{1-\alpha} \log \sum_{x \in \mathcal{X}} (p(x))^{\alpha} + \frac{1}{1-\alpha} \log \frac{1}{\epsilon}\right)$$

$$= P\left((p(X))^{1-\alpha} < \frac{\epsilon}{\sum_{x \in \mathcal{X}} (p(x))^{\alpha}}\right).$$

Denoting by A_{α} the set

$$A_{\alpha} := \left\{ x \in \mathcal{X} : (p(x))^{1-\alpha} < \frac{\epsilon}{\sum\limits_{x \in \mathcal{X}} (p(x))^{\alpha}} \right\},$$

it follows from the above set of inequalities that

$$P(-\log p(X) > \lambda_{\alpha}) \le P(A_{\alpha})$$

$$= \sum_{x \in A_{\alpha}} p(x)$$

$$= \sum_{x \in A_{\alpha}} (p(x))^{\alpha} (p(x))^{1-\alpha}$$

$$\le \sum_{x \in A_{\alpha}} (p(x))^{\alpha} \frac{\epsilon}{\sum_{x \in \mathcal{X}} (p(x))^{\alpha}}$$

$$\le \epsilon.$$

 $^{^1\}mathrm{See}\ \mathrm{Lemma}\ 3.2.1\ \mathrm{in}\ \mathrm{https://drive.google.com/file/d/1id5BXdm9JCThZJVKgn-6vGzIPJUCrkZj/view.}$

Hence, the first inequality follows.

On similar lines, we know² that given $\epsilon > 0$, $\delta \in (0, 1 - \epsilon)$, and a discrete random variable $X \sim P$ with pmf p, if there exists a constant λ such that $P(-\log p(X) \ge \lambda) \ge 1 - \delta$, then $L_{\epsilon}(P) \ge \lambda - \log \frac{1}{1 - \epsilon - \delta}$. From the lower bound for $L_{\epsilon}(P)$ given in the question, a natural choice for λ is

$$\lambda = \lambda_{\beta} = H_{\beta}(P) - \frac{1}{\beta - 1} \log \frac{1}{\delta}.$$

Therefore, it suffices to show that for this choice of λ_{β} , $P(-\log p(X) \ge \lambda_{\beta}) \ge 1 - \delta$. In what follows, we shall show that $P(-\log p(X) < \lambda_{\beta}) \le \delta$. Towards this, we have

$$P(-\log p(X) < \lambda_{\beta}) = P\left(-\log p(X) < H_{\beta}(P) - \frac{1}{\beta - 1}\log\frac{1}{\delta}\right)$$
$$= P\left(-\log p(X) < \frac{1}{\beta - 1}\log\frac{\delta}{\sum_{x \in \mathcal{X}} (p(x))^{\beta}}\right)$$
$$= P\left((p(X))^{\beta - 1} > \frac{\sum_{x \in \mathcal{X}} (p(x))^{\beta}}{\delta}\right).$$

Denoting by B_{β} the set

$$B_{\beta} := \left\{ x \in \mathcal{X} : (p(x))^{\beta - 1} > \frac{\sum\limits_{x \in \mathcal{X}} (p(x))^{\beta}}{\delta} \right\},$$

it follows from the above set of inequalities that

$$P(-\log p(X) < \lambda_{\beta}) = P(B_{\beta})$$

$$= \sum_{x \in B_{\beta}} p(x)$$

$$= \sum_{x \in B_{\beta}} \frac{(p(x))^{\beta}}{(p(x))^{\beta-1}}$$

$$\leq \delta \cdot \frac{\sum_{x \in B_{\beta}} (p(x))^{\beta}}{\sum_{x \in \mathcal{X}} (p(x))^{\beta}}$$

$$< \delta.$$

The second inequality thus follows.

2. Consider random variables X and Y such that Y is uniformly distributed over $\{0,1\}^b$. Let \hat{Y} be an estimate of Y obtained from observing X. Show that

$$P(\hat{Y} \neq Y) \ge 1 - \frac{I(X \land Y) + 1}{h}.$$

Now, suppose that X_1, \ldots, X_n, Y are random variables such that X_1, \ldots, X_n are mutually independent and Y is as before. For each $i \in \{1, \ldots, n\}$, let \hat{Y}_i denote an estimate of Y obtained from observing X_i . Show that

$$\max_{i \leq i \leq n} P(\hat{Y}_i \neq Y) \geq 1 - \frac{1}{n} - \frac{1}{b}.$$

 $^{^2 \}mathrm{See}\ \mathrm{Lemma}\ 3.2.2\ \mathrm{in}\ \mathtt{https://drive.google.com/file/d/1id5BXdm9JCThZJVKgn-6vGzIPJUCrkZj/view.}$

Solution:

Let $p = P(\hat{Y} \neq Y)$. Then, by Fano's inequality,

$$H(Y|X) \le p \log(|\{0,1\}^b| - 1) + h(p)$$

 $\le bp + 1,$

where in the last line above, h(p) denotes the binary entropy function, which is upper bounded by 1. Also, we have

$$H(Y|X) = H(Y) - I(X \wedge Y)$$

= $b - I(X \wedge Y)$.

Therefore, we have

$$b - I(X \wedge Y) \le bp + 1$$
,

which upon rearrangement yields the first inequality.

In order to obtain the second inequality, we note that

$$\max_{1 \le i \le n} P(\hat{Y}_i \ne Y) \ge \frac{1}{n} \sum_{i=1}^n P(\hat{Y}_i \ne Y)$$

$$\stackrel{(a)}{\ge} \frac{1}{n} \sum_{i=1}^n \left(1 - \frac{I(X_i \land Y) + 1}{b} \right)$$

$$= 1 - \frac{1}{nb} \sum_{i=1}^n I(X_i \land Y) - \frac{1}{b}.$$

where the last line is from the first inequality of the question proved before. Now, we note that

$$b = H(Y)$$

$$= I((X_1, ..., X_n) \land Y) + H(Y|X_1, ..., X_n)$$

$$\geq I((X_1, ..., X_n) \land Y)$$

$$= \sum_{i=1}^{n} H(X_i|X_1, ..., X_{i-1}) - H(X_i|X_1, ..., X_{i-1}, Y)$$

$$\stackrel{(b)}{\geq} \sum_{i=1}^{n} H(X_i) - H(X_i|Y)$$

$$= \sum_{i=1}^{n} I(X_i \land Y),$$

where in (b) above, we combine the fact that X_i 's are mutually independent along with the fact that conditioning reduces entropy. The second inequality of the question now follows.

3. Show that

$$H(X_1, X_2, X_3) \le \frac{1}{2} (H(X_1, X_2) + H(X_2, X_3) + H(X_1, X_3)).$$

Also show that

$$H(X_1, X_2, X_3) \ge \frac{1}{2} (H(X_1, X_2 | X_3) + H(X_2, X_3 | X_1) + H(X_1, X_3 | X_2)).$$

Solution:

Using the chain rule for entropy, we have

$$2H(X_{1}, X_{2}, X_{3}) = H(X_{1}, X_{2}) + \underbrace{H(X_{3}|X_{1}, X_{2})}_{\leq H(X_{3})} + \underbrace{H(X_{1}|X_{2}, X_{3})}_{\leq H(X_{1}|X_{3})} + H(X_{2}, X_{3})$$

$$\stackrel{(a)}{\leq} H(X_{1}, X_{2}) + \underbrace{H(X_{3}) + H(X_{1}|X_{3})}_{=H(X_{1}, X_{3})} + H(X_{2}, X_{3})$$

$$= H(X_{1}, X_{2}) + H(X_{2}, X_{3}) + H(X_{1}, X_{3}),$$

where (a) above follows from the fact that conditioning reduces entropy.

On similar lines, we have

$$2H(X_1, X_2, X_3) = H(X_1) + H(X_2, X_3|X_1) + H(X_2) + H(X_1, X_3|X_2)$$

$$\stackrel{(b)}{\geq} H(X_1, X_2) + H(X_2, X_3|X_1) + H(X_1, X_3|X_2)$$

$$\geq H(X_1, X_2|X_3) + H(X_2, X_3|X_1) + H(X_1, X_3|X_2),$$

where (b) above follows from the subadditivity of entropy, and the last line above follows from the fact that conditioning reduces entropy.

4. Show that X, Y and Z constitute a Markov chain (in the same order). Then, show that $I(X \wedge Y|Z) \leq I(X \wedge Y)$. When does equality hold? Give an example where $I(X \wedge Y|Z) > I(X \wedge Y)$.

Solution:

We have

$$\begin{split} I(X \wedge Y|Z) &= H(X|Z) - H(X|Y,Z) \\ &\stackrel{(a)}{=} H(X|Z) - H(X|Y) \\ &\stackrel{(b)}{\leq} H(X) - H(X|Y) \\ &= I(X \wedge Y), \end{split}$$

where (a) above follows from the fact that X, Y, Z constitute a Markov chain (in the same order), and (b) follows from the fact that conditioning reduces entropy. Equality holds if and only if H(X|Z) = H(X), which happens if and only if $I(X \wedge Z) = 0$, i.e., X and Z are independent.

An example for the case $I(X \wedge Y|Z) > I(X \wedge Y)$ is as follows. Let X and Y be independent Bernoulli random variables with parameter p = 0.5. Let $Z = X \bigoplus Y$, where the operator \bigoplus denotes the 'XOR' operation between X and Y. Then, it can be easily verified that $Z \sim \text{Ber}(0.5)$.

Since X and Y are independent, $I(X \wedge Y) = 0$, while

$$I(X \wedge Y|Z) = H(X|Z) - H(X|Y,Z)$$

$$\stackrel{(a)}{=} H(X|Z)$$

$$= 1,$$

where (a) above follows by noting that given Y, Z, the value of X is completely determined. The value of H(X|Z) in the last line is easy to arrive at.

7.2 Exercises

1. It is of interest to determine the bias of a coin by observing n independent tosses from it. Towards this, consider the following M-ary hypothesis testing problem.

$$\mathcal{H}_1: X_1 \dots, X_n \overset{iid}{\sim} \operatorname{Ber}(p_1)$$
 $\mathcal{H}_2: X_1 \dots, X_n \overset{iid}{\sim} \operatorname{Ber}(p_2)$
 \vdots
 $\mathcal{H}_M: X_1 \dots, X_n \overset{iid}{\sim} \operatorname{Ber}(p_M).$

- (a) Describe the maximum likelihood rule for this problem.
- (b) Fix $\epsilon > 0$. Assuming that all the p_i 's are distinct, use the union bound to determine the largest value of M such that the average probability of error for the ML rule above under a uniform prior on the hypotheses remains below ϵ .

Hint: For each $i \neq j$, define the set B_{ij} as $B_{ij} = \{x : P_i(x) \geq P_j(x)\}$. Suppose A_1, \ldots, A_M denotes the partition of $\mathcal{X} = \{0,1\}^n$ corresponding to the ML test. Show that $A_i \subseteq B_{ij}$ for all $j \neq i$. Then, we have

$$P_e(\text{ML test}) = \frac{1}{M} \sum_{i=1}^{M} P_i(A_i^c)$$
$$= \sum_{i=1}^{M} P_i \left(\bigcup_{j \neq i} A_j \right).$$

Use the above relation and union bound. Get an upper bound in terms of $\max_{j\neq i} P_i(B_{ji})$ and use the results from binary hypothesis testing for P_i vs P_j to upper bound $P_i(B_{ji})$.

2. Given $\alpha > 0$, show that among all positive integer-valued random variables with mean equal to α , the entropy is maximised for a Geometric random variable.

Hint: Let $Z \sim P = \text{Geo}(\mu)$, where μ is such that $E[Z] = \alpha$. Let $X \sim Q$ be any other random variable satisfying $E[X] = \alpha$. Write down the formula for D(Q||P) and conclude that $H(P) \geq H(Q)$.

- 3. Can you find random variables X, Y and Z such that all of the following conditions hold.
 - (a) X is independent of Y.
 - (b) X is a function of (Y, Z).
 - (c) H(X) = 2 and H(Z) = 1.

If yes, give an example. If no, justify why.

Hint: Since X and Y are independent, $I(X \wedge Y) = 0$. Manipulate this mutual information (try to bring in the random variable Z somehow) and show eventually that $H(X) \leq H(Z)$, thereby yielding that there cannot be such random variables as specified in the question.

4. Let W be an $m \times m$ matrix with nonnegative entries w_{ij} , $1 \le i, j \le m$. Suppose that W is a stochastic matrix. That is, for all $i \in \{1, \ldots, m\}$, $\sum_{j=1}^{m} w_{ij} = 1$. Let $p = (p_1, \ldots, p_m)$ be a probability mass function. Define \hat{p} as

$$\hat{p} = pW$$
.

(a) Show that \hat{p} is a valid probability mass function.

(b) Suppose $q = (q_1, \ldots, q_m)$ is any other probability mass function. Then, show that $D(pW||qW) \le D(p||q)$. Identify the condition for equality.

(c) Suppose now that W is doubly stochastic, i.e.,

$$\sum_{j=1}^{m} w_{ij} = 1 \text{ for all } i \in \{1, \dots, m\}, \quad \sum_{i=1}^{m} w_{ij} = 1 \text{ for all } j \in \{1, \dots, m\}.$$

Then show that $H(pW) \ge H(p)$.