Chapitre 25

Lois de l'induction

1 Flux d'un champ magnétique

1.a Surface orientée

Soit une surface S, choisir une orientation de S, c'est choisir l'un des deux vecteurs unitaires directeurs de la normale à la surface. En général 1 , il existe exactement deux orientations possibles pour une surface.

FIGURE 25.1 – Représentation des deux orientations possibles \vec{u} et \vec{v} de la surface S.

1.b Orientation du contour

le contour d'une surface S orientée est lui-même orienté (on lui donne un sens de parcours) de telle sorte que la surface S se trouve à la gauche d'un observateur qui marche sur le contour de S (avec la normale vers le haut). On peut aussi utiliser la règle de la mobilette ou la règle du tire-bouchon pour déterminer l'orientation du contour en fonction de l'orientation de la surface.

FIGURE 25.2 – Représentation des deux orientations possibles de la surface S et de son contour.

^{1.} Toutes les surfaces ne sont pas forcément orientables, par exemple un anneau de moëbius n'est pas orientable.

1.c Flux d'un champ magnétique

Si S est une surface orientée par sa normale \overrightarrow{n} , le flux de \overrightarrow{B} à travers S est

$$\phi = \iint_{S} \vec{B} \cdot \vec{n} \, dS$$
 (25.1)

Pour une surface plane $(\vec{n} \text{ constant})$ dans un champ magnétique uniforme $(\vec{B} \text{ constant})$, on a

$$\phi = \iint_{S} \vec{B} \cdot \vec{n} \, dS = \vec{B} \cdot \vec{n} \iint_{S} dS = \vec{B} \cdot \vec{n} S = BS \cos(\theta)$$
 (25.2)

où θ est l'angle entre \vec{n} et \vec{B} .

Intuitivement, le flux de \vec{B} correspond au débit du champ magnétique à travers la surface S.

2 Loi de Faraday

2.a Courant induit

Lorsqu'un aimant se déplace à proximité d'une bobine, on observe l'apparition d'un courant électrique dans la bobine. Plus précisément on peut faire les observations suivantes :

— Lorsque le pôle nord de l'aimant s'approche de la bobine, flux du champ magnétique à travers la bobine augmente et on observe une courant induit i dans le sens indiqué sur la figure 25.5.

FIGURE 25.3 – Courant induit lorsque le pôle nord de l'aimant s'approche de la bobine.

— Lorsque l'on éloigne l'aimant de la bobine, on observe que le courant change de sens (figure 25.4).

FIGURE 25.4 – Courant induit lorsque le pôle nord de l'aimant s'éloigne de la bobine.

On en conclut que lorsque le flux du champ magnétique augmente à travers une surface orientée, un courant induit circule dans un sens opposé à l'orientation du contour de la surface. Lorsque le flux du champ magnétique diminue, le courant induit circule dans le sens de l'orientation du contour.

2.b Loi de modération de Lenz

Une manière élégante d'exprimer la même observation est que les effets de l'induction s'opposent aux causes qui l'ont produite. C'est-à-dire que le courant est induit dans le circuit de telle sorte que le champ magnétique produit s'oppose à la variation de flux qui a produit l'induction du courant. En reprenant l'expérience précédente :

- Dans la figure 25.5, le flux du champ magnétique à travers la surface de la spire augmente, le courant induit tend à limiter cette augmentation de flux, donc il doit créer un champ magnétique orienté vers la gauche.
- Dans la figure 25.4, le flux du champ magnétique à travers la surface de la spire diminue, le courant induit tend à limiter cette diminution de flux, donc il doit créer un champ magnétique orienté vers la droite.

MPSI– Physique-Chimie 2/3

2.c Loi de Faraday

On considère un circuit conducteur $\mathscr C$ orienté (arbitrairement) soumis à un champ magnétique \overrightarrow{B} . Lorsque le flux ϕ du champ magnétique à travers le circuit varie, il apparait une force électromotrice (fem) e (orientée dans le même sens que le circuit) telle que

$$e = -\frac{\mathrm{d}\phi}{\mathrm{d}t} \tag{25.3}$$

C'est la loi de Faraday.

Si le circuit conducteur possède une résistance R, alors le courant induit dans le circuit est $i = \frac{e}{R}$.

FIGURE 25.5 – Orientation du circuit et de la force électromotrice induite pour la loi de Faraday

Attention, avant d'appliquer la loi de Faraday, il faut absolument choisir une orientation du circuit, ce qui détermine le signe du flux ϕ , et le sens de e.

MPSI– Physique-Chimie 3/3