Beijing Normal University School of Mathematics

Template

app1eDog

2023年10月29日

目录

1	hpp		5
	1.1	heading	5
	1.2	debug.h	6
	1.3	F_p	6
2	\mathbf{she}	ll scripts	8
	2.1	md5er.sh	8
	2.2	formater.sh	8
	2.3	checker.sh	8
3	data	a structure	9
	3.1	stack	9
	3.2	queue	9
	3.3	DSU	9
	3.4	ST	9
	3.5	cartesian tree	10
	3.6	segment tree	10
	3.7	hjt segment tree	16
	3.8	treap	19
	3.9	splay	24
	3.10	tree in tree	27
4	stri	$\mathbf{n}\mathbf{g}$	33
	4.1	kmp	33
	4.2	z function	33
	4.3	trie	34
5	mat	ch - number theory	37
	5.1	Eculid	37
	5.2	inverse	38
	5.3	sieve	39
	5.4	block	40
	5.5	CRT & exCRT	41
	5.6	BSGS & exBSGS	41
	5.7	Miller Rahin	49

目录 3

	5.8	Pollard Rho	43
	5.9	quadratic residu	43
	5.10	Lucas	44
	5.11	Wilson	46
	5.12	LTE	46
	5.13	Mobius inversion	47
6	mat	h - polynomial	49
	6.1	FTT	49
	6.2	FWT	50
	6.3	class polynomial	52
	6.4	wsy poly	55
7	mat	h - game theory	63
	7.1	nim game	63
	7.2	anti - nim game	63
8	mat	h - linear algebra	64
	8.1	matrix	64
	8.2	linear basis	64
	8.3	linear programming	64
9	com	iplex number	65
10	0 .		66
		topsort	66
	10.2	shortest path	66
		minimum spanning tree	70
	10.4	SCC	70
		10.4.1 缩点	71
	10.5	DCC	71
	10.6	two set	72
	10.7	minimum ring	73
	10.8	tree - center of gravity	73
	10.9	tree - DSU on tree	74
	10.10	tree - AHU	75
	10.11	tree - LCA	75
	10.19	tree - HLD	76

	10.13	tree - virtual tree	77
	10.14	tree - pseudo tree	77
	10.15	tree - divide and conquer on tree	78
	10.16	network flow - maximal flow	81
	10.17	network flow - minimum cost flow	84
	10.18	network flow - minimal cut	86
	10.19	matching - matching on bipartite graph	87
	10.20	matching - matching on general graph	88
11	geor	netry	89
11	Ü		89 89
11	11.1	two demention	
11 12	11.1 11.2	two demention	89
	11.1 11.2 offlin	two demention	89 90 91
	11.1 11.2 offlin 12.1	two demention	89 90
	11.1 11.2 offlin 12.1	two demention	89 90 91

1 hpp

1.1 heading

```
#include <bits/stdc++.h>
 \frac{1}{3}
        // using namespace std;
       #define typet typename T
#define typeu typename U
#define types typename... Ts
#define tempt template <typet>
#define temps template <types>
#define temps template <types>
 5
 6
10
        #define tandu template <typet, typeu>
11
12
        using LL = long long;
using i128 = __int128;
using PII = std::pair<int, int>;
13
14
15
16
        using UI = unsigned int;
17
       using ULL = unsigned long;
using ULL = unsigned long long;
using PIL = std::pair<int, LL>;
using PLI = std::pair<LL, int>;
18
19
20
\frac{20}{21}
        using PLL = std::pair<LL, LL>;
23
        */
\overline{24}
        using vi = std::vector<int>;
        using vvi = std::vector<vi>;
using vl = std::vector<LL>;
25
26
27
28
        using vvl = std::vector<vl>;
using vpi = std::vector<PII>;
29
30
        #define ff first
31
        #define ss second
32
        #define all(v) v.begin(), v.end()
33
        #define rall(v) v.rbegin(), v.rend()
34
35
        #ifdef LOCAL
36
        #include "debug.h"
37
        #else
38
        #define debug(...) \
39
             do {
40
               } while (false)
        #endif
41
42
        constexpr int mod = 998244353;
constexpr int inv2 = (mod + 1) / 2;
constexpr int inf = 0x3f3f3f3f;
constexpr LL INF = 1e18;
43
44
45
46
        constexpr double pi = 3.141592653589793;
47
        constexpr double eps = 1e-6;
48
49
50
        constexpr int lowbit(int x) { return x & -x; }
51
       constexpr int add(int x, int y) { return x + y < mod ? x + y : x - mod + y; }
constexpr int sub(int x, int y) { return x < y ? mod + x - y : x - y; }
constexpr int mul(LL x, int y) { return x * y % mod; }
constexpr void Add(int& x, int y) { x = add(x, y); }
constexpr void Sub(int& x, int y) { x = sub(x, y); }
constexpr void Mul(int& x, int y) { x = mul(x, y); }
constexpr not pow(int x, int y) { x = mul(x, y); }
constexpr not pow(int x, int y) { x = mul(x, y); }</pre>
53
54
55
56
57
        constexpr int pow(int x, int y, int z = 1) {
   for (; y; y /= 2) {
      if (y & 1) Mul(z, x);
      }
}
58
59
60
61
                       Mul(x, x);
62
63
               return z;
        }
64
        temps constexpr int add(Ts... x) {
65
               int y = 0;
(..., Add(y, x));
66
67
               return y;
68
69
70
71
        temps constexpr int mul(Ts... x) {
               int y = 1;
(..., Mul(y, x));
72
73
74
75
                return y;
        }
        */
76
77
        tandu bool Max(T& x, const U& y) { return x < y ? x = y, true : false; } tandu bool Min(T& x, const U& y) { return x > y ? x = y, true : false; }
```

6 1 HPP

```
80
    void solut() {
81
82
8\overline{3}
84
     int main() {
85
         std::ios::sync_with_stdio(false);
86
         std::cin.tie(0)
87
         std::cout.tie(0);
88
89
         int t = 1;
         std::cin >> t;
while (t--) {
90
91
92
              solut();
93
94
         return 0;
95
    }
```

1.2 debug.h

md5 为:

```
tandu std::ostream& operator<<(std::ostream& os, const std::pair<T, U>& p) {
   return os << '<' << p.ff << ',' << p.ss << '>';
 1
2
3
4
5
              typet, typename = decltype(std::begin(std::declval<T>())),
typename = std::enable_if_t<!std::is_same_v<T, std::string>>>
 6
7
 8
       std::ostream& operator<<(std::ostream& os, const T& c) {
             auto it = std::begin(c);
if (it == std::end(c)) return os << "{}";
for (os << '{' << *it; ++it != std::end(c); os << ',' << *it)
 9
10
11
12
13
              return os << '}';</pre>
14
      }
15
16
       #define debug(arg...)
17
                    std::cerr << "[" #arg "] :";
18
              dbg(arg);
} while (false)
19
\frac{20}{21}
       temps void dbg(Ts... args) {
    (..., (std::cerr << ' ' << args));
    std::cerr << std::'\n';</pre>
22
23
24
\overline{25}
```

1.3 F_p

```
template <int P>
struct Mint {
 2
3
4
5
6
7
8
9
10
           int v = 0;
            // reflection
           template <typet = int>
            constexpr operator T() const {
                return v;
11
           // constructor //
12
           constexpr Mint() = default;
           template <typet>
13
           constexpr Mint(T x) : v(x % P) {}
constexpr int val() const { return v; }
14
15
16
           constexpr int mod() { return P; }
17
18
19
           // io //
friend std::istream& operator>>(std::istream& is, Mint& x) {
20
21
22
23
24
25
26
27
28
                LL y; is >> y;
                x = y;
                return is;
           friend std::ostream& operator<<(std::ostream& os, Mint x) { return os << x.v; }</pre>
           friend constexpr bool operator==(const Mint& lhs, const Mint& rhs) { return lhs.v == rhs.v; } friend constexpr bool operator!=(const Mint& lhs, const Mint& rhs) { return lhs.v != rhs.v; }
29
```

 $1.3 ext{ } F_p$

```
30
          friend constexpr bool operator < (const Mint& lhs, const Mint& rhs) { return lhs.v < rhs.v; }
          friend constexpr bool operator<=(const Mint& lhs, const Mint& rhs) { return lhs.v <= rhs.v; }
friend constexpr bool operator>(const Mint& lhs, const Mint& rhs) { return lhs.v > rhs.v; }
31
32
          friend constexpr bool operator>=(const Mint& lhs, const Mint& rhs) { return lhs.v >= rhs.v; }
33
34
35
          // arithmetic //
36
          template <typet>
          friend constexpr Mint power(Mint a, T n) {
   Mint ans = 1;
37
38
39
               while (n) {
40
                    if (n & 1) ans *= a;
                    a *= a;
41
42
                   n >>= 1;
               }
43
44
               return ans;
45
46
          friend constexpr Mint inv(const Mint& rhs) { return power(rhs, P - 2); }
          friend constexpr Mint operator+(const Mint& lhs, const Mint& rhs) {
   return lhs.val() + rhs.val() < P ? lhs.val() + rhs.val() : lhs.val() - P + rhs.val();</pre>
47
48
49
          friend constexpr Mint operator-(const Mint& lhs, const Mint& rhs) {
    return lhs.val() < rhs.val() ? lhs.val() + P - rhs.val() : lhs.val() - rhs.val();</pre>
50
51
52
53
          friend constexpr Mint operator*(const Mint& lhs, const Mint& rhs) {
54
               return static_cast<LL>(lhs.val()) * rhs.val() % P;
55
56
          friend constexpr Mint operator/(const Mint& lhs, const Mint& rhs) { return lhs * inv(rhs); }
          Mint operator+() const { return *this; }
Mint operator-() const { return Mint() - *this; }
57
58
59
          constexpr Mint& operator++() {
60
               if (v == P) v = 0;
61
62
               return *this;
63
          constexpr Mint& operator--() {
64
65
               if (v == 0) v = P;
               v--;
66
67
               return *this;
68
          }
69
          constexpr Mint& operator++(int) {
70
71
72
73
74
75
76
77
               Mint ans = *this;
               ++*this;
               return ans;
          constexpr Mint operator--(int) {
   Mint ans = *this;
               --*this;
               return ans;
78
79
          constexpr Mint& operator+=(const Mint& rhs) {
80
               v = v + rhs;
81
               return *this;
82
83
          constexpr Mint& operator==(const Mint& rhs) {
84
               v = v - rhs;
85
               return *this;
86
87
          constexpr Mint& operator*=(const Mint& rhs) {
88
               v = v * rhs;
89
               return *this;
90
91
          constexpr Mint& operator/=(const Mint& rhs) {
92
               v = v / rhs;
93
               return *this;
94
95
     using Z = Mint<998244353>;
96
```

8 2 SHELL SCRIPTS

2 shell scripts

2.1 md5er.sh

得到一份 cpp 代码的 MD5 码.

```
#!/bin/bash
hash=$(md5sum <(tr -d '[:space:]' < "$1") / awk '{print $1}')
echo "$hash"</pre>
```

2.2 formater.sh

修改.out 以及.ans 的格式:

```
#!/bin/bash

if false; then
    if [ ! -f "$1" ]; then
        echo "File not found!"
        exit 1
    fi

fi

# The code above is to ensure the stability of the program

sed -i 's/[[:space:]]*$//' "$1"
sed -i -e '${/^$/!G;}' "$1"
```

2.3 checker.sh

对一份代码跑所有测试样例并比对.

```
#!/bin/bash
# current=$(pwd)
cd "$1"
g++ -o main -02 -std=c++17 -DLOCAL main.cpp
for input in *.in; do
    output=${input%.*}.out
    answer=${input%.*}.ans
    ./main < $input > $output
    echo "case ${input%.*}: "
    echo "My: "
    cat $output
    echo "Answer: "
    cat $answer
    # if you want to check by yourself, then you don't need the code below
    if false; then
        $("$current"/formater.sh $output)
$("$current"/formater.sh $answer)
        if diff $output $answer > /dev/null; then
            echo "${input%.*}: Accepted"
        else
            echo "${input%.*}: Wrong answer"
        cat $output
        cat $answer
        fi
    fi
done
```

3 data structure

3.1 stack

3.2 queue

3.3 DSU

```
vi fa(n + 1);
std::iota(all(fa), 0);
std::function<void(int)> find = [&] (int x) -> int{
    return x == fa[x] ? x : fa[x] = find(fa[x]);
};
auto merge = [&] (int x, int y) -> void{
    x = find(x), y = find(y);
    if (x == y) return;
    /* operations */
    fa[y] = x;
};
```

3.4 ST

用于解决可重复问题的数据结构。

可重复问题是指对运算 opt,满足 x opt x = x。

一维

```
vvi f(n + 1, vi(30));
vi Log2(n + 1);
auto ST_init = [&]() -> void {
 3
             for (int i = 1; i <= n; i++) {
    f[i][0] = a[i];
 5
 6
                   if (i > 1) Log2[i] = Log2[i / 2] + 1;
 7
            int t = Log2[n];
for (int j = 1; j <= t; j++) {
   for (int i = 1; i <= n - (1 << j) + 1; i++) {
     f[i][j] = std::max(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);
}</pre>
 8
 9
10
11
12
13
14
      };
15
16
      auto ST_query = [&](int 1, int r) -> int {
             int t = Log2[r - 1 + 1];
return std::max(f[1][t], f[r - (1 << t) + 1][t]);
17
18
19
      };
```

3 DATA STRUCTURE

二维

10

```
std::vector f(n + 1, std::vector < std::array < std::array < int, 30>, 30>> (m + 1));
  \frac{2}{3}
        vi Log2(n + 1);
        auto ST_init = [&]() -> void {
  for (int i = 2; i <= std::max(n, m); i++) {</pre>
                        Log2[i] = Log2[i / 2] + 1;
  \begin{array}{c} 5 \\ 6 \\ 7 \end{array}
                for (int i = 2; i <= n; i++) {
   for (int j = 2; j <= m; j++) {
     f[i][j][0][0] = a[i][j];
}</pre>
  8 9
10
11
                for (int ki = 0; ki <= Log2[n]; ki++) {
   for (int kj = 0; kj <= Log2[n]; kj++) {
      if (!ki && !kj) continue;
}</pre>
12
13
14
                                for (int i = 1; i <= n - (1 << ki) + 1; i++) {
    for (int j = 1; j <= m - (1 << kj) + 1; j++) {
        if (ki) {</pre>
15
16
17
18
                                                        f[i][j][ki][kj] =
19
                                                                std::max(f[i][j][ki - 1][kj], f[i + (1 << (ki - 1))][j][ki - 1][kj]);
20
                                                } else
21
22
23
24
25
                                                        f[i][j][ki][kj] =
                                                                std::max(f[i][j][ki][kj-1], f[i][j+(1 << (kj-1))][ki][kj-1]);
                                                }
                                        }
                                }
26
                        }
27
                }
28
        };
       | auto ST_query = [&] (int x1, int y1, int x2, int y2) -> int {
    int ki = Log2[x2 - x1 + 1], kj = Log2[y2 - y1 + 1];
    int t1 = f[x1][y1][ki][kj];
    int t2 = f[x2 - (1 << ki) + 1][y1][ki][kj];
    int t3 = f[x1][y2 - (1 << kj) + 1][ki][kj];
    int t4 = f[x2 - (1 << ki) + 1][y2 - (1 << kj) + 1][ki][kj];
    int t4 = f[x2 - (1 << ki) + 1][y2 - (1 << kj) + 1][ki][kj];
29
30
31
32
33
34
35
                return std::max({t1, t2, t3, t4});
36
        };
```

3.5 cartesian tree

一种特殊的平衡树,用元素的值作为平衡点节点的 val,元素的下标作为 key。

```
1  // cartesian tree //
2  vi ls(n + 1), rs(n + 1), stk(n + 1);
3  int top = 1;
4  for (int i = 1; i <= n; i++) {
5     int k = top;
6     while (k and a[stk[k]] > a[i]) k--;
7     if (k) rs[stk[k]] = i;
8     if (k < top) ls[i] = stk[k + 1];
9     stk[++k] = i;
10     top = k;
11 }</pre>
```

3.6 segment tree

维护半群

```
1
    struct Info {
 2
         /* 重载 operator+ */
 3
 4
 5
    struct Tag {
 \begin{matrix} 6\\7\\8\\9\end{matrix}
         /* 重载 operator== */
    void infoApply(Info& a, int 1, int r, const Tag& tag) {}
10
11
     void tagApply(Tag& a, int 1, int r, const Tag& tag) {}
12
13
    template <class Info, class Tag>
14
    class segTree {
    #define Is i << 1
```

3.6 segment tree

```
16
         | #define rs i << 1 | 1
17
            #define mid ((1 + r) >> 1)
            #define lson ls, l, mid
19
            #define rson rs, mid + 1, r
20
\overline{21}
\frac{1}{22} 23
                        std::vector<Info> info;
                        std::vector<Tag> tag;
24
25
                        public:
26
                        segTree(const std::vector<Info>& init) : n(init.size() - 1) {
                                  infectionst std::vector\finto\& init) : in(init.size()
assert(n > 0);
info.resize(4 << std::__lg(n));
tag.resize(4 << std::__lg(n));
auto build = [&](auto dfs, int i, int l, int r) {
    if (1 == r) {
        info[i] = init[l];
        restanting in
27
28
\frac{1}{29}
30
31
32
33
                                                         return;
34
35
                                               dfs(dfs, lson);
36
                                              dfs(dfs, rson);
37
                                              push_up(i);
38
39
                                   build(build, 1, 1, n);
40
                       }
41
42
43
                       private:
                        void push_up(int i) { info[i] = info[ls] + info[rs]; }
44
45
46
                       template <class... T>
void apply(int i, int l, int r, const T&... val) {
47
48
49
                                    ::infoApply(info[i], l, r, val...);
50
                                    ::tagApply(tag[i], l, r, val...);
51
52
53
                        void push_down(int i, int l, int r) {
                                  if (tag[i] == Tag{}) return;
apply(lson, tag[i]);
apply(rson, tag[i]);
tag[i] = {};
54
55
56
57
58
59
                       public:
60
                       template <class... T>
void rangeApply(int ql, int qr, const T&... val) {
61
62
                                   auto dfs = [&] (auto dfs, int i, int l, int r) {
    if (qr < l or r < ql) return;
    if (ql <= l and r <= qr) {
63
64
65
66
                                                         apply(i, l, r, val...);
67
                                                         return;
68
69
                                              push_down(i, 1, r);
\begin{array}{c} 70 \\ 71 \\ 72 \\ 73 \\ 74 \\ 75 \end{array}
                                              dfs(dfs, lson);
                                              dfs(dfs, rson);
                                              push_up(i);
                                   dfs(dfs, 1, 1, n);
76
77
                        Info rangeAsk(int ql, int qr) {
                                   Info res{};
79
                                   auto dfs = [&](auto dfs, int i, int l, int r) {
                                              if (qr < 1 or r < ql) return;
if (ql <= 1 and r <= qr) {</pre>
80
81
                                                         res = res + info[i];
82
83
                                                         return;
84
85
                                              push_down(i, 1, r);
86
                                               dfs(dfs, lson);
87
                                              dfs(dfs, rson);
88
89
                                   dfs(dfs, 1, 1, n);
90
                                   return res;
91
92
93
             #undef rson
            #undef lson
95
            #undef mid
96
            #undef rs
97
            #undef ls
            };
```

3 DATA STRUCTURE

区间修改 (带 add 和 mul 的 lazy tag)

n 个数, m 次操作, 操作分为

1. 1 x y k: 将区间 [x, y] 中的数每个乘以 k. 2. 2 x y k: 将区间 [x, y] 中的数每个加上 k. 3. 3 x y: 输出区间 [x, y] 中数的和. (对 p 取模)

```
// Problem: P3373 【模板】线段树 2
 12
 \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{7}{8}, \frac{9}{9}
      struct Info {
           LL sum = 0;
           Info(LL \_sum = 0) : sum(\_sum) {}
           Info operator+(const Info& b) const { return Info(add(sum + b.sum)); }
10
      struct Tag {
   LL add = 0, mul = 1;
11
12
13
14
           Tag(LL _add = 0, LL _mul = 1) : add(_add), mul(_mul) {}
15
16
           bool operator==(const Tag& b) const { return add == b.add and mul == b.mul; }
17
     };
18
19
     void infoApply(Info& a, int 1, int r, const Tag& tag) {
20
           a.sum = add(mul(a.sum, tag.mul), mul((r - \bar{1} + 1\bar{)}, tag.add));
21
22
23
24
25
26
27
     void tagApply(Tag& a, int 1, int r, const Tag& tag) {
   a.add = add(mul(a.add, tag.mul), tag.add);
           a.mul = mul(a.mul, tag.mul);
28
      template <class Info, class Tag>
     class segTree {
#define ls i << 1</pre>
29
     #define rs i << 1 | 1
     #define mid ((1 + r) >> 1)
#define lson ls, l, mid
32
33
34
35
     #define rson rs, mid + 1, r
36
37
           int n;
           std::vector<Info> info;
38
39
           std::vector<Tag> tag;
40
          public:
41
           segTree(const \ std::vector < Info> \& \ init) \ : \ n(init.size() \ - \ 1) \ \{
                 assert(n > 0);
42
                 info.resize(4 << std::__lg(n));
tag.resize(4 << std::__lg(n));
auto build = [&](auto dfs, int i, int l, int r) {</pre>
43
44
45
                       if (1 == r) {
46
47
                            info[i] = init[l];
48
                            return;
49
50
                      dfs(dfs, lson);
                      dfs(dfs, rson);
push_up(i);
51 \\ 52 \\ 53 \\ 54
                 build(build, 1, 1, n);
55
56
           }
57
58
59
           void push_up(int i) { info[i] = info[ls] + info[rs]; }
60
61
62
           template <class... T>
           void apply(int i, int 1, int r, const T&... val) {
    ::infoApply(info[i], 1, r, val...);
    ::tagApply(tag[i], 1, r, val...);
63
64
65
66
67
           void push_down(int i, int l, int r) {
   if (tag[i] == Tag{}) return;
68
69
70
71
72
73
74
75
76
                 apply(lson, tag[i]);
apply(rson, tag[i]);
tag[i] = {};
           }
            template <class... T>
           void rangeMerge(int ql, int qr, const T&... val) {
```

3.6 segment tree

```
auto dfs = [&](auto dfs, int i, int l, int r) {
 79
                     if (qr < 1 or r < ql) return;</pre>
 80
                     if (q1 \le 1 \text{ and } r \le qr) {
 81
                         apply(i, l, r, val...);
 82
                         return;
 83
                    push_down(i, 1, r);
 84
                    dfs(dfs, lson);
 85
 86
                    dfs(dfs, rson);
 87
                    push_up(i);
 88
 89
               dfs(dfs, 1, 1, n);
 90
 91
 92
           Info rangeQuery(int ql, int qr) {
 93
               Info res{};
               auto dfs = [&] (auto dfs, int i, int l, int r) {
    if (qr < l or r < ql) return;
    if (ql <= l and r <= qr) {
 94
 95
 96
 97
                         res = res + info[i];
 98
                         return;
 99
100
                    push_down(i, 1, r);
                    dfs(dfs, lson);
dfs(dfs, rson);
101
102
103
104
               dfs(dfs, 1, 1, n);
105
               return res;
106
107
108
      #undef rson
109
      #undef lson
110
      #undef mid
111
      #undef rs
112
      #undef ls
     };
113
114
115
      int main() {
           std::ios::sync_with_stdio(false);
116
           std::cin.tie(0);
117
118
           std::cout.tie(0);
119
           int n, m, p;
std::cin >> n >> m >> p;
120
121
122
           std::vector<Info> a(n + 1);
           for (int i = 1; i <= n; i++) std::cin >> a[i].sum;
123
           static segTree<Info, Tag> tr(a);
124
125
126
           while (m--) {
127
               int op, k, 1, r;
               std::cin >> op >> 1 >> r;
if (op == 1) {
128
129
130
                    std::cin >> k;
               tr.rangeMerge(1, r, Tag(0, k));
} else if (op == 2) {
  std::cin >> k;
131
132
133
134
                    tr.rangeMerge(l, r, Tag(k, 1));
               } else {
135
                    std::cout << tr.rangeQuery(1, r).sum << '\n';</pre>
136
137
138
139
140
           return 0;
141
```

动态开点权值线段树

如果要实现 push up 记得先开点再 push.

```
// Problem: P3369 【模板】普通平衡树
\dot{2}
3
    struct node {
4
        int id, l, r;
5
        int ls, rs;
        int sum;
7
8
9
        node(int _id, int _l, int _r) : id(_id), l(_l), r(_r) {
            ls = rs = 0;
10
            sum = 0;
11
    };
12
13
```

```
15
    |// Segment tree //
16
     int idx = 1;
17
     std::vector<node> tree = {node{0, 0, 0}};
18
19
     auto new_node = [&](int 1, int r) -> int {
20
         tree.push_back(node(idx, 1, r));
21
         return idx++;
22
\overline{23}
     auto push_up = [&](int u) -> void {
24
25
         tree[\bar{u}].sum = 0;
\overline{26}
         if (tree[u].ls) tree[u].sum += tree[tree[u].ls].sum;
\overline{27}
          if (tree[u].rs) tree[u].sum += tree[tree[u].rs].sum;
\frac{1}{28}
     };
29
30
     auto build = [&]() { new_node(-10000000, 10000000); };
31
32
     std::function<void(int, int, int, int)> insert = [&](int u, int l, int r, int x) {
33
         if (1 == r) {
34
             tree[u].sum++;
35
             return;
36
         int mid = (1 + r - 1) / 2;
37
38
         if (x <= mid) {</pre>
39
              if (!tree[u].ls) tree[u].ls = new_node(1, mid);
40
              insert(tree[u].ls, l, mid, x);
         } else {
    if (!tree[u].rs) tree[u].rs = new_node(mid + 1, r);
41
42
43
              insert(tree[u].rs, mid + 1, r, x);
44
45
         push_up(u);
46
     };
47
48
     std::function<void(int, int, int, int)> remove = [&](int u, int l, int r, int x) {
49
         if (1 == r) {
50
              if (tree[u].sum) tree[u].sum--;
51
52
             return:
53
54
         int mid = (1 + r - 1) / 2;
         if (x <= mid) {
              if (!tree[u].ls) return;
55
56
              remove(tree[u].ls, 1, mid, x);
57
         } else {
58
              if (!tree[u].rs) return;
59
             remove(tree[u].rs, mid + 1, r, x);
60
61
         push_up(u);
62
     };
63
64
     std::function<int(int, int, int, int) > get_rank_by_key = [&](int u, int l, int r, int x) -> int {
65
         if (1 == r) {
66
             return 1;
67
68
         int mid = (1 + r - 1) / 2;
69
          int ans = 0;
\frac{70}{71}
         if (x <= mid) {
              if (!tree[u].ls) return 1;
72
73
74
75
76
77
78
79
80
             ans = get_rank_by_key(tree[u].ls, 1, mid, x);
         } else {
    if (!tree[u].rs) return tree[tree[u].ls].sum + 1;
              if (!tree[u].ls) {
                  ans = get_rank_by_key(tree[u].rs, mid + 1, r, x);
              } else {
                  ans = get_rank_by_key(tree[u].rs, mid + 1, r, x) + tree[tree[u].ls].sum;
              }
81
         return ans;
82
83
84
     std::function<int(int, int, int, int)> get_key_by_rank = [&](int u, int l, int r, int x) -> int {
85
         if (1 == r) {
86
             return 1;
87
         int mid = (1 + r - 1) / 2;
88
         if (tree[u].ls) {
89
90
              if (x <= tree[tree[u].ls].sum) {</pre>
91
                  return get_key_by_rank(tree[u].ls, 1, mid, x);
92
             } else {
93
                  return get_key_by_rank(tree[u].rs, mid + 1, r, x - tree[tree[u].ls].sum);
             }
94
95
         } else {
96
             return get_key_by_rank(tree[u].rs, mid + 1, r, x);
97
98
    | };
99
100
    | std::function<int(int)> get_prev = [&](int x) -> int {
         int rank = get_rank_by_key(1, -10000000, 10000000, x) - 1;
101
```

3.6 segment tree 15

```
102
         debug(rank);
103
         return get_key_by_rank(1, -10000000, 10000000, rank);
104
     };
105
106
     std::function<int(int)> get_next = [&](int x) -> int {
107
         debug(x + 1);
108
         int rank = get_rank_by_key(1, -10000000, 10000000, x + 1);
109
         debug(rank);
110
         return get_key_by_rank(1, -10000000, 10000000, rank);
     };
111
```

(权值) 线段树合并

首先村落里的一共有 n 座房屋, 并形成一个树状结构. 然后救济粮分 m 次发放, 每次选择两个房屋 (x,y), 然后对于 x 到 y 的路径上每座房子里发放一袋 z 类型的救济粮. 查询所有的救济粮发放完毕后, 每座房子里存放的最多的是哪种救济粮.

```
// Problem: P4556 [Vani有约会]雨天的尾巴 /【模板】线段树合并
 3
     struct node {
 4
         int 1, r, id;
 5
         int ls, rs;
 6
7
         int cnt, ans;
         node(int _id, int _l, int _r) : id(_id), l(_l), r(_r) {
 8
 9
             1s = rs = 0;
             cnt = ans = 0;
10
11
         }
12
    };
13
     int main() {
14
15
         std::ios::sync_with_stdio(false);
16
         std::cin.tie(0)
17
         std::cout.tie(0);
18
19
         int n, m;
         std::cin >> n >> m;
20
\frac{1}{21}
         vvi e(n + 1);
\overline{22}
         vi ans(n + 1);
\frac{23}{24}
         for (int i = 1; i < n; i++) {</pre>
             int u, v;
25
             std::cin >> u >> v;
26
             e[u].push_back(v);
27
             e[v].push_back(u);
28
29
30
         /* Segment tree */
31
         int idx = 1;
         vi rt(n + 1);
32
\begin{array}{c} 33 \\ 34 \end{array}
         std::vector<node> tree = {node{0, 0, 0}};
35
         auto new_node = [&](int 1, int r) -> int {
36
             tree.push_back(node(idx, 1, r));
37
             return idx++;
38
39
40
         auto push_up = [&](int u) -> void {
41
             if (!tree[u].ls) {
42
                  tree[u].cnt = tree[tree[u].rs].cnt;
                  tree[u].ans = tree[tree[u].rs].ans;
43
             } else if (!tree[u].rs) {
   tree[u].cnt = tree[tree[u].ls].cnt;
44
45
                  tree[u].ans = tree[tree[u].ls].ans;
46
             } else {
47
48
                  if (tree[tree[u].rs].cnt > tree[tree[u].ls].cnt) {
49
                      tree[u].cnt = tree[tree[u].rs].cnt;
                      tree[u].ans = tree[tree[u].rs].ans;
50
51
                  } else {
52
                      tree[u].cnt = tree[tree[u].ls].cnt;
                      tree[u].ans = tree[tree[u].ls].ans;
53
54
                  }
55
             }
56
         };
57
58
         std::function<void(int, int, int, int, int) > modify = [&](int u, int l, int r, int x, int k) {
59
             if (1 == r) {
60
                  tree[u].cnt += k;
61
                  tree[u].ans = 1;
62
                  return;
63
             int mid = (1 + r) >> 1;
64
```

```
65
                if (x <= mid) {</pre>
                     if (!tree[u].ls) tree[u].ls = new_node(1, mid);
 66
 67
                     modify(tree[u].ls, l, mid, x, k);
 68
                } else {
                     if (!tree[u].rs) tree[u].rs = new_node(mid + 1, r);
modify(tree[u].rs, mid + 1, r, x, k);
 69
 70
71
72
73
74
75
76
77
78
79
80
81
82
83
                push_up(u);
           };
           std::function<int(int, int, int, int)> merge = [&](int u, int v, int 1, int r) -> int {
                /* v 的信息传递给 u */
                if (!u) return v;
                if (!v) return u;
if (1 == r) {
                     tree[u].cnt += tree[v].cnt;
                     return u;
                int mid = (1 + r) >> 1;
 84
                tree[u].ls = merge(tree[u].ls, tree[v].ls, 1, mid);
 85
                tree[u].rs = merge(tree[u].rs, tree[v].rs, mid + 1, r);
 86
                push_up(u);
 87
                return u;
 88
           };
 89
 90
           /* LCA */
 91
           for (int i = 1; i <= n; i++) {
    rt[i] = idx;</pre>
 92
 93
 94
                new_node(1, 100000);
 95
 96
 97
           for (int i = 1; i <= m; i++) {
 98
                int u, v, w;
 99
                std::cin >> u >> v >> w;
                int lca = LCA(u, v);
100
                modify(rt[u], 1, 100000, w, 1);
modify(rt[v], 1, 100000, w, 1);
modify(rt[lca], 1, 100000, w, -1);
101
102
103
                if (father[lca][0]) {
104
                     modify(rt[father[lca][0]], 1, 100000, w, -1);
105
106
                }
107
           }
108
109
           /* dfs */
           std::function<void(int, int)> Dfs = [&](int u, int fa) {
   for (auto v : e[u]) {
110
111
112
                     if (v == fa) continue;
113
                     Dfs(v, u);
114
                     merge(rt[u], rt[v], 1, 100000);
115
116
                ans[u] = tree[rt[u]].ans;
                if (tree[rt[u]].cnt == 0) ans[u] = 0;
117
118
           }:
119
120
           Dfs(1, 0);
121
\overline{122}
           for (int i = 1; i <= n; i++) {</pre>
123
                std::cout << ans[i] << '\n';
\frac{124}{125}
126
           return 0;
127
      }
```

3.7 hjt segment tree

第1个例题

n 个数, m 次操作, 操作分别为

- 1. v_i 1 loc_i $value_i$: 将第 v_i 个版本的 $a[loc_i]$ 修改为 $value_i$,
- 2. v_i 2 loc_i : 拷贝第 v_i 个版本, 并查询该版本的 $a[loc_i]$.

```
1 // 洛谷 P3919 【模板】可持久化线段树 1 (可持久化数组) struct node {
```

```
4
          int 1, r, key;
 5
     };
 6
7
     int main() {
 8
          std::ios::sync_with_stdio(false);
 9
          std::cin.tie(0);
10
          std::cout.tie(0);
11
          int n, m;
std::cin >> n >> m;
12
13
         vi a(n + 1);
for (int i = 1; i <= n; i++) {</pre>
14
15
               std::cin >> a[i];
16
17
18
19
          /* hjt segment tree */
20
21
          int idx = 0;
          vi root(m + 1);
22
          std::vector<node> tr(n * 25);
\overline{23}
24
          std::function<int(int, int)> build = [&](int 1, int r) -> int {
               int p = ++idx;
if (1 == r) {
25
26
27
                   tr[p].key = a[1];
28
                   return p;
29
30
               int mid = (1 + r) >> 1;
               tr[p].1 = build(1, mid);
tr[p].r = build(mid + 1, r);
31
32
33
               return p;
34
          }:
35
36
          std::function<int(int, int, int, int, int) > modify = [&](int p, int l, int r, int k,
37
               int q = ++idx;
tr[q].l = tr[p].l, tr[q].r = tr[p].r;
if (tr[q].l == tr[q].r) {
38
39
40
41
                   tr[q].key = x;
42
                   return q;
43
44
               int mid = (1 + r) >> 1;
               if (k <= mid) {</pre>
45
46
                   tr[q].l = modify(tr[q].l, l, mid, k, x);
47
               } else {
48
                   tr[q].r = modify(tr[q].r, mid + 1, r, k, x);
49
50
              return q;
51
52
          std::function<int(int, int, int, int)> query = [&](int p, int l, int r, int k) -> int {
    if (tr[p].l == tr[p].r) {
53
54
55
                   return tr[p].key;
56
              int mid = (1 + r) >> 1;
if (k <= mid) {</pre>
57
58
59
                   return query(tr[p].1, 1, mid, k);
60
               } else {
61
                   return query(tr[p].r, mid + 1, r, k);
62
63
64
         root[0] = build(1, n);
65
66
          for (int i = 1; i <= m; i++) {</pre>
67
               int op, ver, k, x;
std::cin >> ver >> op;
68
69
70
71
               if (op == 1) {
                   std::cin >> k >> x;
72
73
74
75
                   root[i] = modify(root[ver], 1, n, k, x);
               } else {
                   std::cin >> k;
                   root[i] = root[ver];
76
77
                    std::cout << query(root[ver], 1, n, k) << ' \n';
               }
78
79
80
          return 0;
81
```

第2个例题

长度为 n 的序列 a, m 次查询, 每次查询 [l,r] 中的第 k 小值.

3 DATA STRUCTURE

```
// 洛谷P3834 【模板】可持久化线段树 2
 1
 \hat{2}
 \frac{1}{3}
    struct node {
         int 1, r, cnt;
 5
 78
    int main() {
         std::ios::sync_with_stdio(false);
 9
         std::cin.tie(0);
10
         std::cout.tie(0);
11
         int n, m;
std::cin >> n >> m;
13
         vi a(n + 1), v;
for (int i = 1; i <= n; i++) {
14
15
16
17
              std::cin >> a[i];
              v.push_back(a[i]);
18
         }
19
         std::sort(all(v));
         v.erase(unique(all(v)), v.end());
auto find = [&](int x) -> int { return std::lower_bound(all(v), x) - v.begin() + 1; };
\begin{array}{c} 20 \\ 21 \\ 22 \end{array}
\frac{23}{24}
         /* hjt segment tree */
         std::vector<node>(n * 25);
25
         vi root(n + 1);
\frac{26}{27}
         int idx = 0;
28
         std::function<int(int, int)> build = [&](int 1, int r) -> int {
29
              int p = ++idx;
if (l == r) return p;
30
              int mid = (1 + r) >> 1;
31
32
33
34
35
36
37
              tr[p].l = build(l, mid), tr[p].r = build(mid + 1, r);
              return p;
         };
         std::function<int(int, int, int, int)> modify = [&](int p, int l, int r, int x) -> int {
              int q = ++idx;
tr[q] = tr[p];
38
39
              if (tr[q].1 == tr[q].r) {
40
                  tr[q].cnt++;
41
                  return q;
42
              }
              int mid = (1 + r) >> 1;
43
              if (x <= mid) {
44
                  tr[q].1 = modify(tr[q].1, 1, mid, x);
45
46
              } else -
47
                   tr[q].r = modify(tr[q].r, mid + 1, r, x);
48
49
              tr[q].cnt = tr[tr[q].1].cnt + tr[tr[q].r].cnt;
50
              return q;
51
         };
52
\overline{53}
54
         55
              if (1 == r) return 1:
              int cnt = tr[tr[p].1].cnt - tr[tr[q].1].cnt;
int mid = (1 + r) >> 1;
56
57
58
59
60
              if (x <= cnt) {
                  return query(tr[p].1, tr[q].1, 1, mid, x);
              } else {
61
                  return query(tr[p].r, tr[q].r, mid + 1, r, x - cnt);
62
              }
63
         };
64
65
         root[0] = build(1, v.size());
66
67
         for (int i = 1; i <= n; i++) {
   root[i] = modify(root[i - 1], 1, v.size(), find(a[i]));</pre>
68
69
70
71
72
73
74
75
76
77
         for (int i = 1; i <= m; i++) {</pre>
              int 1, r, k;
std::cin >> 1 >> r >> k;
              std::cout \ll v[query(root[r], root[l-1], 1, v.size(), k) - 1] \ll '\n';
         }
         return 0;
78
    }
```

3.8 treap 19

3.8 treap

旋转 treap

n 次操作, 操作分为如下 6 种:

- 1. 插入数 x,
- 2. 删除数 x (若有多个相同的数,只删除一个),
- 3. 查询数 x 的排名 (排名定义为小于 x 的数的个数 + 1),
- 4. 查询排名为 x 的数,
- 5. 求 x 的前驱 (前驱定义为小于 x 的最大数),
- 6. 求 x 的后继 (后继定义为大于 x 的最小数).

```
// Problem: P3369 【模板】普通平衡树
 3
     int n, root, idx;
 4
 5
     struct node {
 6
7
           int 1, r;
           int key, val;
           int_cnt, size;
 9
     } treap[N];
10
11
     void push_up(int p) {
   treap[p].size = treap[treap[p].1].size + treap[treap[p].r].size + treap[p].cnt;
12
13
     }
14
     int get_node(int key) {
15
           treap[++idx].key = key;
treap[idx].val = rand();
16
17
18
           treap[idx].cnt = treap[idx].size = 1;
19
           return idx;
20
21
     }
22
     void zig(int &p) {
23
24
           // 右旋 //
           int q = treap[p].1;
treap[p].1 = treap[q].r, treap[q].r = p, p = q;
\frac{1}{25}
26
          push_up(treap[p].r), push_up(p);
     }
27
28
29
     void zag(int &p) {
30
           // 左旋 //
int q = treap[p].r;
31
          treap[p].r = treap[q].l, treap[q].l = p, p = q;
push_up(treap[p].l), push_up(p);
32
33
34
     }
35
36
     void build() {
           get_node(-inf), get_node(inf);
root = 1, treap[1].r = 2;
37
38
           push_up(root);
39
40
           if (treap[1].val < treap[2].val) zag(root);</pre>
     }
41
42
43
     void insert(int &p, int key) {
44
           if (!p) {
           p = get_node(key);
} else if (treap[p].key == key) {
45
46
           treap[p].cnt++;
} else if (treap[p].key > key) {
  insert(treap[p].1, key);
  if (treap[treap[p].1].val > treap[p].val) zig(p);
}
47
48
49
50
51
           } else {
                insert(treap[p].r, key);
if (treap[treap[p].r].val > treap[p].val) zag(p);
52
53
54
55
          push_up(p);
56
     }
57
58
     void remove(int &p, int key) {
           if (!p) return;
```

```
60
            if (treap[p].key == key) {
 61
                 if (treap[p].cnt > 1) {
                   treap[p].cnt--;
else if (treap[p].l || treap[p].r) {
 62
 63
 64
                     if (!treap[p].r || treap[treap[p].l].val > treap[treap[p].r].val) {
 65
                           zig(p)
 66
                           remove(treap[p].r, key);
 67
                     } else {
 68
                           zag(p);
 69
                           remove(treap[p].1, key);
 70
71
72
73
74
75
76
77
78
                     }
                } else {
                     p = 0;
                 }
           } else if {
                 (treap[p].key > key) remove(treap[p].1, key);
                remove(treap[p].r, key);
           push_up(p);
 80
 81
      int get_rank_by_key(int p, int key) {
   // 通过数值找排名 //
 82
 83
 84
           if (!p) return 0;
           if (treap[p].key == key) return treap[treap[p].1].size;
if (treap[p].key > key) return get_rank_by_key(treap[p].1, key);
return treap[treap[p].1].size + treap[p].cnt + get_rank_by_key(treap[p].r, key);
 85
 86
 87
 88
 89
      int get_key_by_rank(int p, int rank) {
    // 通过排名找数值 //
 90
 91
           if (!p) return inf;
 92
           if (treap[treap[p].1].size >= rank) return get_key_by_rank(treap[p].1, rank);
if (treap[treap[p].1].size + treap[p].cnt >= rank) return treap[p].key;
 93
 94
 95
           return get_key_by_rank(treap[p].r, rank - treap[treap[p].1].size - treap[p].cnt);
 96
      }
 97
      int get_prev(int p, int key) {
    // 找前驱 //
 98
 99
100
           if (!p) return -inf;
           if (treap[p].key >= key) return get_prev(treap[p].1, key);
101
102
           return max(treap[p].key, get_prev(treap[p].r, key));
103
104
105
      int get_next(int p, int key) {
           // 找后继 //
106
           if (!p) return inf;
107
108
           if (treap[p].key <= key) return get_next(treap[p].r, key);</pre>
109
           return min(treap[p].key, get_next(treap[p].1, key));
110
111
112
      int main() {
113
           ios::sync_with_stdio(false);
114
           cin.tie(0);
115
           cout.tie(0);
116
117
           cin >> n;
           build();
118
119
           rep(i, 1, n) {
120
                int op, x;
cin >> op >> x;
if (op == 1) {
121
122
123
                      insert(root, x);
124
                 } else if (op == 2) {
                   remove(root, x);
else if (op == 3) {
125
126
                cout << get_rank_by_key(root, x) << '\n';
} else if (op == 4) {</pre>
127
128
                   cout << get_key_by_rank(root, x + 1) << '\n';
else if (op == 5) {</pre>
129
130
131
                     cout << get_prev(root, x) << '\n';</pre>
132
                 } else {
133
                      cout << get_next(root, x) << '\n';</pre>
                }
134
135
136
           return 0;
137
```

无旋 treap

 $3.8 \quad treap$ 21

```
struct node {
          node *ch[2];
 \bar{3}
           int key, val;
 4
           int cnt, size;
 5
          node(int _key) : key(_key), cnt(1), size(1) {
    ch[0] = ch[1] = nullptr;
 67
 8
                val = rand();
 9
10
11
           // node(node *_node) {
           // key = _node->key, val = _node->val, cnt = _node->cnt, size = _node->size;
// }
12
13
14
15
           inline void push_up() {
16
                if (ch[0] != nullptr) size += ch[0]->size;
17
18
                if (ch[1] != nullptr) size += ch[1]->size;
19
20
     };
\overline{21}
22
     struct treap {
#define _2 second.first
#define _3 second.second
\overline{23}
24
\overline{25}
26
           node *root;
\overline{27}
28
           pair<node *, node *> split(node *p, int key) {
\frac{1}{29}
                if (p == nullptr) return {nullptr, nullptr};
if (p->key <= key) {</pre>
30
31
                     auto temp = split(p->ch[1], key);
32
                     p->ch[1] = temp.first;
                     p->push_up();
return {p, temp.second};
33
34
35
                } else {
36
                     auto temp = split(p->ch[0], key);
                     p->ch[0] = temp.second;
37
38
                     p->push_up();
39
                     return {temp.first, p};
                }
40
41
           }
42
          pair<node *, pair<node *, node *> > split_by_rank(node *p, int rank) {
   if (p == nullptr) return {nullptr, {nullptr, nullptr}};
   int ls_size = p->ch[0] == nullptr ? 0 : p->ch[0]->size;
43
44
45
                if (rank <= ls_size) {
   auto temp = split_by_rank(p->ch[0], rank);
   p->ch[0] = temp._3;
46
47
48
49
                     p->push_up();
                     return {temp.first, {temp._2, p}};
50
51
                } else if (rank <= ls_size + p->cnt) {
52
                     node *lt = p->ch[\bar{0}];
                     node *rt = p->ch[1];
p->ch[0] = p->ch[1] = nullptr;
return {lt, {p, rt}};
53
54
55
56
57
                     auto temp = split_by_rank(p->ch[1], rank - ls_size - p->cnt);
                     p->ch[1] = temp.first;
58
59
                     p->push_up();
60
                     return {p, {temp._2, temp._3}};
                }
61
           }
62
63
64
           node *merge(node *u, node *v) {
65
                if (u == nullptr && v == nullptr) return nullptr;
66
                if (u != nullptr && v == nullptr) return u;
                if (u := nullptr && u == nullptr) return v;
if (u->val < v->val) {
   u->ch[1] = merge(u->ch[1], v);
67
68
69
70
71
                     u->push_up();
                     return u;
72
73
74
75
                } else {
                     v \rightarrow ch[0] = merge(u, v \rightarrow ch[0]);
                      v->push_up();
                     return v;
76
77
                }
           }
78
79
           void insert(int key) {
80
                auto temp = split(root, key);
                auto l_tr = split(temp.first, key - 1);
81
82
                node *new_node;
                if (l_tr.second == nullptr) {
83
84
                     new_node = new node(key);
85
                } else {
86
                     1_tr.second->cnt++;
```

3 DATA STRUCTURE

```
l_tr.second->push_up();
 88
 89
                 node *l_tr_combined = merge(l_tr.first, l_tr.second == nullptr ? new_node : l_tr.second);
                 root = merge(l_tr_combined, temp.second);
 90
 91
 92
            void remove(int key) {
 93
                 auto temp = split(root, key);
 94
                 auto temp = split(loot, key),
auto l_tr = split(temp.first, key - 1);
if (l_tr.second->cnt > 1) {
    l_tr.second->cnt-;
}
 95
 96
 97
 98
                      1_tr.second->push_up();
 99
                      l_tr.first = merge(l_tr.first, l_tr.second);
100
                 } else {
                      if (temp.first == l_tr.second) temp.first = nullptr;
delete l_tr.second;
101
102
103
                      l_tr.second = nullptr;
104
105
                 root = merge(l_tr.first, temp.second);
106
107
            int get_rank_by_key(node *p, int key) {
  auto temp = split(p, key - 1);
  int ret = (temp.first == nullptr ? 0 : temp.first->size) + 1;
108
109
110
111
                 root = merge(temp.first, temp.second);
112
                 return ret;
113
114
115
            int get_key_by_rank(node *p, int rank) {
                 auto temp = split_by_rank(p, rank);
int ret = temp._2->key;
116
117
118
                 root = merge(temp.first, merge(temp._2, temp._3));
119
                 return ret;
120
121
122
            int get_prev(int key) {
123
                 auto temp = split(root, key - 1);
124
                 int ret = get_key_by_rank(temp.first, temp.first->size);
125
                 root = merge(temp.first, temp.second);
126
                 return ret;
127
            }
128
129
            int get_nex(int key) {
130
                 auto temp = split(root, key);
                 int ret = get_key_by_rank(temp.second, 1);
root = merge(temp.first, temp.second);
131
132
133
                 return ret;
134
135
      };
136
137
      treap tr;
138
139
      int main() {
           ios::sync_with_stdio(false);
cin.tie(0);
140
141
142
            cout.tie(0);
143
144
            srand(time(0));
145
146
            int n;
            cin >> n;
147
148
            while (n--) {
                 int op, x;
cin >> op >> x;
if (op == 1) {
149
150
151
                 tr.insert(x);
} else if (op == 2) {
152
153
                 tr.remove(x);
} else if (op == 3) {
   cout << tr.get_rank_by_key(tr.root, x) << '\n';
} else if (op == 4) {
   cout << tr.get_rank_by_key(tr.root, x) << '\n';</pre>
154
155
156
157
                      cout << tr.get_key_by_rank(tr.root, x) << '\n';</pre>
158
159
                 } else if (op == 5) {
160
                      cout << tr.get_prev(x) << '\n';</pre>
161
                 } else {
162
                      cout << tr.get_nex(x) << '\n';</pre>
163
                 }
164
165
            return 0;
166
```

 $3.8 \quad treap$ 23

用 01 trie 实现的一种方式

同样的题目, 注意使用 01 trie 只能存在非负数.

速度能快不少,但只能单点操作,而且有点费空间.

```
// 洛谷 P3369 【模板】普通平衡树
 1
 2
     struct Treap {
   int id = 1, maxlog = 25;
   int ch[N * 25][2], siz[N * 25];
 3
 4
 5
 6
          int newnode() {
 8
 9
               ch[id][0] = ch[id][1] = siz[id] = 0;
10
11
13
          void merge(int key, int cnt) {
14
               int \ddot{u} = 1;
               for (int i = maxlog - 1; i >= 0; i--) {
  int v = (key >> i) & 1;
  if (!ch[u][v]) ch[u][v] = newnode();
15
16
17
                    u = ch[u][v];
18
19
                    siz[u] += cnt;
20
21
22
          }
          int get_key_by_rank(int rank) {
   int u = 1, key = 0;
23
\overline{24}
               for (int i = maxlog - 1; i >= 0; i--) {
   if (siz[ch[u][0]] >= rank) {
      u = ch[u][0];
   } else {
25
26
27
\frac{1}{28}
                         key |= (1 << i);
rank -= siz[ch[u][0]];
29
30
                          u = ch[u][1];
31
                    }
32
33
34
               return key;
35
          }
36
37
          int get_rank_by_key(int rank) {
               int key = 0;
int u = 1;
38
39
               for (int i = maxlog - 1; i >= 0; i--) {
   if ((rank >> i) & 1) {
40
41
                         key += siz[ch[u][0]];
42
                         u = ch[u][1];
43
44
                     } else {
                         u = ch[u][0];
45
46
47
                    if (!u) break;
48
49
               return key;
50
51
          int get_prev(int x) { return get_key_by_rank(get_rank_by_key(x)); }
52
53
          int get_next(int x) { return get_key_by_rank(get_rank_by_key(x + 1) + 1); }
54
     } treap;
55
56
     const int num = 1e7;
57
     int n, op, x;
58
59
     int main() {
60
          std::ios::sync_with_stdio(false);
          std::cin.tie(0)
61
62
          std::cout.tie(0);
63
64
          std::cin >> n;
          for (int i = 1; i <= n; i++) {
65
66
                std::cin >> op >> x;
67
                if (op == 1) {
               treap.merge(x + num, 1);
} else if (op == 2) {
68
69
70
                    treap.merge(x + num, -1);
71
               } else if (op == 3) {
72
73
                    {\tt std::cout} << {\tt treap.get\_rank\_by\_key(x + num) + 1} << {\tt '\n';}
               } else if (op == 4) {
                    std::cout << treap.get_key_by_rank(x) - num << '\n';
74
75
               } else if (op == 5) {
                    std::cout << treap.get_prev(x + num) - num << '\n';</pre>
76
77
               } else if (op == 6) {
                     std::cout << treap.get_next(x + num) - num << '\n';</pre>
79
```

3 DATA STRUCTURE

24

```
80 | }
81 | return 0;
82 |}
```

3.9 splay

文艺平衡树

初始为 1 到 n 的序列, m 次操作, 每次将序列下标为 $[l \sim r]$ 的区间翻转.

```
// 洛谷 P3391 【模板】文艺平衡树
 \frac{1}{2}
     struct node {
 \begin{array}{c} 4\\5\\6\\7\end{array}
          int ch[2], fa, key;
          int siz, flag;
          void init(int _fa, int _key) { fa = _fa, key = _key, siz = 1; }
 8
     };
 9
10
     struct splay {
    node tr[N];
11
12
          int n, root, idx;
\overline{13}
          bool get(int u) { return u == tr[tr[u].fa].ch[1]; }
14
15
16
          void pushup(int u) { tr[u].siz = tr[tr[u].ch[0]].siz + tr[tr[u].ch[1]].siz + 1; }
17
18
          void pushdown(int u) {
               if (tr[u].flag) {
19
\frac{20}{21}
                    std::swap(tr[u].ch[0], tr[u].ch[1]);
tr[tr[u].ch[0]].flag ^= 1, tr[tr[u].ch[1]].flag ^= 1;
22
                    tr[u].flag = 0;
\frac{23}{24}
               }
          }
\overline{25}
26
27
28
          void rotate(int x) {
               int y = tr[x].fa, z = tr[y].fa;
int op = get(x);
               tr[y].ch[op] = tr[x].ch[op ^ 1];
if (tr[x].ch[op ^ 1]) tr[tr[x].ch[op ^ 1]].fa = y;
tr[y].ch[op ^ 1] = y;
tr[y].fa = z;
29
30
31
32
33
               if (z) tr[z].ch[y == tr[z].ch[1]] = x;
34
               pushup(y), pushup(x);
35
36
37
          38
39
40
               if (k == 0) root = u;
41
42
          }
43
44
          void output(int u) {
               pushdown(u);
45
46
               if (tr[u].ch[0]) output(tr[u].ch[0]);
               if (tr[u].key >= 1 && tr[u].key <= n) {
    std::cout << tr[u].key << ' ';</pre>
47
48
49
50 \\ 51 \\ 52 \\ 53 \\ 54
               if (tr[u].ch[1]) output(tr[u].ch[1]);
          void insert(int key) {
               idx++;
55
56
               tr[idx].ch[0] = root;
               tr[idx].init(0, key);
57
               tr[root].fa = idx;
58
               root = idx;
59
               pushup(idx);
60
61
62
          int kth(int k) {
63
               int u = root;
64
               while (1) {
65
                    pushdown(u);
                    if (tr[u].ch[0] && k <= tr[tr[u].ch[0]].siz) {</pre>
66
67
                         u = tr[u].ch[0];
                    } else {
    k -= tr[tr[u].ch[0]].siz + 1;
68
69
70
                         if (k <= 0) {
71
                              opt(u, 0);
```

3.9 splay 25

```
72
73
74
75
76
77
78
79
                                return u;
                           } else {
                                u = tr[u].ch[1];
                      }
                 }
 80
      } splay;
 81
 82
      int n, m, l, r;
83
 84
      int main() {
 85
            std::ios::sync_with_stdio(false);
 86
            std::cin.tie(0);
 87
            std::cout.tie(0);
 88
 89
            std::cin >> n >> m;
 90
           splay.n = n;
 91
            splay.insert(-inf);
 92
           rep(i, 1, n) splay.insert(i);
           splay.insert(inf);
rep(i, 1, m) {
    std::cin >> 1 >> r;
 93
 94
 95
 96
                 1 = \text{splay.kth}(1), r = \text{splay.kth}(r + 2);
                 splay.opt(1, 0), splay.opt(r, 1);
splay.tr[splay.tr[r].ch[0]].flag ^= 1;
 97
98
99
100
            splay.output(splay.root);
101
102
            return 0;
103
```

普通平衡树

- n 次操作, 操作分为如下 6 种:
- 1. 插入数 x 2. 删除数 x (若有多个相同的数,只删除一个) 3. 查询数 x 的排名 (排名定义为小于 x 的数的个数 + 1) 4. 查询排名为 x 的数 5. 求 x 的前驱 (前驱定义为小于 x 的最大数) 6. 求 x 的后继 (后继定义为大于 x 的最小数)

```
// 洛谷 P3369 【模板】普通平衡树
 2
 3
    struct node {
 5
        int ch[2], fa, key, siz, cnt;
 6
        void init(int _fa, int _key) { fa = _fa, key = _key, siz = cnt = 1; }
 8
        void clear() { ch[0] = ch[1] = fa = key = siz = cnt = 0; }
    };
 9
10
    struct splay {
11
12
        node tr[N];
13
        int n, root, idx;
14
        bool get(int u) { return u == tr[tr[u].fa].ch[1]; }
15
16
        void pushup(int u) { tr[u].siz = tr[tr[u].ch[0]].siz + tr[tr[u].ch[1]].siz + tr[u].cnt; }
17
18
        void rotate(int x) {
   int y = tr[x].fa, z = tr[y].fa;
19
20
             int op = get(x);
21
22
             tr[y].ch[op] = tr[x].ch[op ^ 1];
            if (tr[x].ch[op ^ 1]) tr[tr[x].ch[op ^ 1]].fa = y;
tr[x].ch[op ^ 1] = y;
tr[y].fa = x, tr[x].fa = z;
\frac{23}{24}
25
26
             if (z) tr[z].ch[y == tr[z].ch[1]] = x;
27
            pushup(y), pushup(x);
28
29
        30
31
32
33
                     rotate(get(u) == get(f) ? f : u);
34
35
36
             if (k == 0) root = u;
37
38
39
        void insert(int key) {
```

```
40
               if (!root) {
 41
                    idx++;
 42
                    tr[idx].init(0, key);
 43
                    root = idx;
 44
                    return;
 45
 46
               int u = root, f = 0;
 47
               while (1) {
                    if (tr[u].key == key) {
    tr[u].cnt++;
 48
 49
 50
51
52
                         pushup(u), pushup(f);
                         opt(u, 0);
                         break;
 53
 54
                    f = u, u = tr[u].ch[tr[u].key < key];
 55
56
                    if (!u) {
                         idx++;
                         tr[idx].init(f, key);
tr[f].ch[tr[f].key < key] = idx;</pre>
 57
 58
 59
                         pushup(idx), pushup(f);
                         opt(idx, 0);
 60
                         break;
 61
 62
                    }
               }
 63
          }
 64
 65
 66
           // 返回节点编号 //
          int kth(int rank) {
 67
 68
               int u = root;
               while (1) {
 69
 70
71
72
73
74
75
76
77
78
                    if (tr[u].ch[0] && rank <= tr[tr[u].ch[0]].siz) {</pre>
                         u = tr[u].ch[0];
                    } else {
                         rank -= tr[tr[u].ch[0]].siz + tr[u].cnt;
                         if (rank <= 0) {</pre>
                              opt(u, 0);
                              return u;
                         } else {
                             u = tr[u].ch[1];
 80
                    }
 81
               }
 82
          }
 83
           // 返回排名 //
 84
 85
           int nlt(int key) {
               int rank = 0, u = root;
while (1) {
 86
 87
                    if (tr[u].key > key) {
    u = tr[u].ch[0];
 88
 89
 90
                    } else {
 91
                         rank += tr[tr[u].ch[0]].siz;
                         if (tr[u].key == key) {
    opt(u, 0);
 92
 93
 94
                              return rank + 1;
                         }
 95
 96
                         rank += tr[u].cnt;
 97
                         if (tr[u].ch[1])
 98
                             u = tr[u].ch[1];
 99
                         } else {
100
                             return rank + 1;
101
102
                    }
103
               }
          }
104
105
          int get_prev(int key) { return kth(nlt(key) - 1); }
106
107
108
          int get_next(int key) { return kth(nlt(key + 1)); }
109
110
           void remove(int key) {
111
               nlt(key);
112
               if (tr[root].cnt > 1) {
                    tr[root].cnt--;
113
                    pushup(root);
114
115
                    return:
116
               int u = root, l = get_prev(key);
tr[tr[u].ch[1]].fa = l;
117
118
119
               tr[1].ch[1] = tr[u].ch[1];
tr[u].clear();
120
121
               pushup(root);
122
123
          void output(int u) {
   if (tr[u].ch[0]) output(tr[u].ch[0]);
124
125
126
               std::cout << tr[u].key << '
```

3.10 tree in tree

```
127
                if (tr[u].ch[1]) output(tr[u].ch[1]);
128
129
130
      } splay;
131
132
      int n, op, x;
133
134
      int main() {
135
           std::ios::sync_with_stdio(false);
136
           std::cin.tie(0);
137
           std::cout.tie(0);
138
139
           splay.insert(-inf), splay.insert(inf);
140
           std::cin >> n;
for (int i = 1; i <= n; i++) {
141
142
                std::cin >> op >> x;
if (op == 1) {
143
144
145
                     splay.insert(x);
146
                } else if (op == 2)
                splay.remove(x);
} else if (op == 3) {
147
148
                std::cout << splay.nlt(x) - 1 << endl;
} else if (op == 4) {
149
150
                     std::cout << splay.tr[splay.kth(x + 1)].key << endl;</pre>
151
                } else if (op == 5) {
    std::cout << splay.tr[splay.get_prev(x)].key << endl;
} else if (op == 6) {</pre>
152
153
154
155
                     std::cout << splay.tr[splay.get_next(x)].key << endl;</pre>
156
158
159
           return 0;
      }
160
```

3.10 tree in tree

线段树套线段树

n 个三维数对 (a_i,b_i,c_i) , 设 f(i) 表示 $a_j \leq a_i$ 且 $b_j \leq b_i$ 且 $c_j \leq c_i$ 且 $i \neq j$ 的个数. 输出 f(i) $(0 \leq i \leq n-1)$ 的值.

```
// 洛谷 P3810 【模板】三维偏序(陌上花开)
 \bar{2}
 3
     struct node1 {
     int 1, r,
} tr1[N << 2];</pre>
 4
 5
 6
     struct node2 {
          int ch[2], cnt;
     } tr2[N << 7];
10
11
     struct node {
12
          int x, y, z, cnt;
13
          bool operator==(const node& a) { return (x == a.x && y == a.y && z == a.z); }
14
15
16
     } data[N];
17
     bool cmp(node a, node b) {
   if (a.x != b.x) return a.x < b.x;</pre>
18
19
          if (a.y != b.y) return a.y < b.y;
20
21
22
23
          return a.z < b.z;</pre>
     }
24
     int root_tot, n, m, ans[N], anss[N];
25
26
     void build(int u, int l, int r) {
27
          tr1[u].1 = 1, tr1[u].r = r;
if (1 != r) {
28
29
               int mid = (1 + r) >> 1;
               build(u << 1, 1, mid);
build(u << 1 | 1, mid + 1, r);
30
\frac{31}{32}
          }
     }
33
34
     void modify_2(int& u, int 1, int r, int pos) {
   if (u == 0) u = ++root_tot;
35
36
          tr2[u].cnt++;
37
          if (1 == r) return;
```

```
39
           int mid = (1 + r) >> 1;
40
           if (pos <= mid) {</pre>
41
                modify_2(tr2[u].ch[0], 1, mid, pos);
42
                modify_2(tr2[u].ch[1], mid + 1, r, pos);
43
44
45
     }
46
47
     int query_2(int& u, int 1, int r, int x, int y) {
48
           if (u == 0) return 0;
49
           if (x <= 1 && r <= y) return tr2[u].cnt;</pre>
50
           int mid = (1 + r) >> 1, ans = 0;
           if (x \le mid) ans += query_2(tr2[u].ch[0], 1, mid, x, y);
51
52
53
           if (mid < y) ans += query_2(tr2[u].ch[1], mid + 1, r, x, y);</pre>
54
55
     void modify_1(int u, int l, int r, int t) {
   modify_2(tr1[u].root, 1, m, data[t].z);
   if (1 == r) return;
   int mid = (1 + r) >> 1;
   if (data[t].root]
56
57
58
59
           if (data[t].y <= mid) {</pre>
60
                modify_1(u << 1, 1, mid, t);</pre>
61
62
           } else {
63
                modify_1(u << 1 | 1, mid + 1, r, t);
64
65
66
     int query_1(int u, int 1, int r, int t) {
   if (1 <= 1 && r <= data[t].y) return query_2(tr1[u].root, 1, m, 1, data[t].z);
   int mid = (1 + r) >> 1, ans = 0;
67
68
69
           if (1 <= mid) ans += query_1(u << 1, 1, mid, t);
if (mid < data[t].y) ans += query_1(u << 1 | 1, mid + 1, r, t);</pre>
70
71
72
73
74
75
76
77
78
79
           return ans;
     }
     int main() {
           std::ios::sync_with_stdio(false);
           std::cin.tie(0)
           std::cout.tie(0);
80
           std::cin >> n >> m;
81
           rep(i, 1, n) {
                int x, y, z;
std::cin >> x >> y >> z;
82
83
                data[i] = {x, y, z};
84
85
86
           std::sort(data + 1, data + n + 1, cmp);
87
           build(1, 1, m);
88
           rep(i, 1, n) {
                modify_1(1, 1, m, i);
ans[i] = query_1(1, 1, m, i);
89
90
91
           per(i, n - 1, 1) {
    if (data[i] == data[i + 1]) ans[i] = ans[i + 1];
92
93
94
           rep(i, 1, n) anss[ans[i]]++;
rep(i, 1, n) std::cout << anss[i] << endl;</pre>
95
96
97
98
           return 0;
99
     }
```

线段树套平衡树

长度为 n 的序列和 m 此操作, 包含 5 种操作:

1.

1. l r k: 询问区间 $[l \sim r]$ 中数 k 的排名. 2. l r k: 询问区间 $[l \sim r]$ 中排名为 k 的数. 3. pos k: 将序列中 pos 位置的数修改为 k. 4. l r k: 询问区间 $[l \sim r]$ 中数 k 的前驱. 5. l r k: 询问区间 $[l \sim r]$ 中数 k 的后继.

treap 实现

3.10 tree in tree

```
struct node2 {
           node2 *ch[2];
           int key, val;
int cnt, size;
 9
10
           node2(int _key) : key(_key), cnt(1), size(1) {
    ch[0] = ch[1] = nullptr;
11
13
                val = rand();
14
15
16
           // node2(node2 *_node2) {
           // key = _node2->key, val = _node2->val, cnt = _node2->cnt, size = _node2->size;
17
18
19
20
21
           inline void push_up() {
                size = cnt;
if (ch[0] != nullptr) size += ch[0]->size;
if (ch[1] != nullptr) size += ch[1]->size;
22
\frac{-2}{23}
24
25
     };
26
27
     struct treap {
    ...
28
29
     };
30
\frac{31}{32}
      treap tr2[N << 4];
33
      struct node1 {
34
35
     int 1, r, root;
} tr1[N << 4];</pre>
36
      void build(int u, int l, int r) {
    tr1[u] = {1, r, u};
37
38
39
           root_tot = std::max(root_tot, u);
40
           if (1 == r) return;
41
           int mid = (1 + r) >> 1;
42
           build(u << 1, 1, mid), build(u << 1 | 1, mid + 1, r);
     }
43
44
45
      void modify(int u, int pos, int key) {
           tr2[u].insert(key);
if (tr1[u].1 == tr1[u].r) return;
46
47
           int mid = (tr1[u].1 + tr1[u].r) >> 1;
48
49
           if (pos <= mid){</pre>
50
                modify(u << 1, pos, key);</pre>
51
52
           else{
53
                modify(u \ll 1 \mid 1, pos, key);
54
      }
55
56
     int get_rank_by_key_in_interval(int u, int l, int r, int key) {
   if (1 <= tr1[u].1 && tr1[u].r <= r) return tr2[u].get_rank_by_key(tr2[u].root, key) - 2;
   int mid = (tr1[u].l + tr1[u].r) >> 1, ans = 0;
57
58
59
           if (1 <= mid) ans += get_rank_by_key_in_interval(u << 1, 1, r, key);
if (mid < r) ans += get_rank_by_key_in_interval(u << 1 | 1, 1, r, key);</pre>
60
61
62
           return ans;
63
     }
64
     int get_key_by_rank_in_interval(int u, int 1, int r, int rank) {
   int L = 0, R = 1e8;
   while (L < R) {</pre>
65
66
67
                 int mid = (L + R + 1) / 2;
68
                 if (get_rank_by_key_in_interval(1, 1, r, mid) < rank){</pre>
69
70
71
                      L = mid;
72
73
74
75
                else{
                      R = mid - 1;
                }
76
           return L;
77
     }
78
79
      void change(int u, int pos, int pre_key, int key) {
80
           tr2[u].remove(pre_key);
           tr2[u].insert(key);
81
82
           if (tr1[u].l == tr1[u].r) return;
           int mid = (tr1[u].1 + tr1[u].r) >> 1;
if (pos <= mid){
83
84
85
                 change(u << 1, pos, pre_key, key);</pre>
86
87
           else{
88
                change(u << 1 | 1, pos, pre_key, key);</pre>
89
90
91
    int get_prev_in_interval(int u, int l, int r, int key) {
```

3 DATA STRUCTURE

```
93
           if (1 <= tr1[u].l && tr1[u].r <= r) return tr2[u].get_prev(key);</pre>
 94
           int mid = (tr1[u].l + tr1[u].r) >> 1, ans = -inf;
 95
           if (1 <= mid) ans = std::max(ans, get_prev_in_interval(u << 1, 1, r, key));</pre>
           if (mid < r) ans = std::max(ans, get_prev_in_interval(u << 1 | 1, 1, r, key));</pre>
 96
 97
           return ans;
 98
      }
 99
      int get_nex_in_interval(int u, int 1, int r, int key) {
   if (1 <= tr1[u].1 && tr1[u].r <= r) return tr2[u].get_nex(key);</pre>
100
101
           int mid = (tr1[u].1 + tr1[u].r) >> 1, ans = inf;
102
           if (1 <= mid) ans = std::min(ans, get_nex_in_interval(u << 1, 1, r, key));
if (mid < r) ans = std::min(ans, get_nex_in_interval(u << 1 | 1, 1, r, key));</pre>
103
104
105
           return ans;
      }
106
107
108
      int main() {
109
           std::ios::sync_with_stdio(false);
           std::cin.tie(0)
110
111
           std::cout.tie(0);
112
113
           srand(time(0)):
114
115
           std::cin >> n >> m;
           build(1, 1, n);
116
117
           rep(i, 1, n) {
118
                std::cin >> a[i]
119
                modify(1, i, a[i]);
120
121
           rep(i, 1, root_tot) { tr2[i].insert(inf), tr2[i].insert(-inf); }
122
           rep(i, 1, m) {
123
                std::cin >> op;
124
                if (op == 1) {
125
                     std::cin >> 1 >> r >> key;
126
                std::cout << get_rank_by_key_in_interval(1, 1, r, key) + 1 << endl;
} else if (op == 2) {
   std::cin >> 1 >> r >> key;
127
                std::cout << get_key_by_rank_in_interval(1, 1, r, key) << endl;
} else if (op == 3) {</pre>
128
129
130
                     std::cin >> pos >> key;
131
132
                change(1, pos, a[pos], key);
  a[pos] = key;
} else if (op == 4) {
133
134
135
                     std::cin >> 1 >> r >> key;
                std::cout << get_prev_in_interval(1, 1, r, key) << endl;
} else if (op == 5) {</pre>
136
137
138
                     std::cin >> 1 >> r >> key;
139
                     std::cout << get_nex_in_interval(1, 1, r, key) << endl;</pre>
140
141
142
143
           return 0;
144
      }
```

然而洛谷上的会 T 两个点, Loj 和 ACwing 上的能过.

Splay 实现

```
// 洛谷 P3380 【模板】二逼平衡树(树套树)
 3
     int n, m, op, l, r, pos, key, root_tot;
 4
5
    int a[N];
 6
7
8
    struct node{
         int ch[2], fa, key, siz, cnt;
 9
         void init(int _fa, int _key){
   fa = _fa, key = _key, siz = cnt = 1;
10
11
12
13
         void clear(){
14
              ch[0] = ch[1] = fa = key = siz = cnt = 0;
15
16
    tr[N * 30];
17
18
     struct splay{
19
\frac{20}{21}
         int idx;
22
         bool get(int u){
23
              return u == tr[tr[u].fa].ch[1];
\frac{24}{25}
\frac{1}{26}
         void pushup(int u){
\overline{27}
              tr[u].siz = tr[tr[u].ch[0]].siz + tr[tr[u].ch[1]].siz + tr[u].cnt;
28
```

3.10 tree in tree

```
29
 30
           void rotate(int x){
 31
                int y = tr[x].fa, z = tr[y].fa;
 32
                int op = get(x);
                int op = get(x);
tr[y].ch[op] = tr[x].ch[op ^ 1];
if(tr[x].ch[op ^ 1]) tr[tr[x].ch[op ^ 1]].fa = y;
tr[x].ch[op ^ 1] = y;
tr[y].fa = x, tr[x].fa = z;
if(z) tr[z].ch[y == tr[z].ch[1]] = x;
suchum(x)
 33
 34
 35
 36
 37
 38
                pushup(y), pushup(x);
 39
 40
           void opt(int& root, int u, int k){
   for(int f = tr[u].fa; f = tr[u].fa, f != k; rotate(u)){
      if(tr[f].fa != k) rotate(get(u) == get(f) ? f : u);
 41
 42
 43
 44
 45
                if(k == 0) root = u;
 46
           }
 47
           void insert(int& root, int key){
   if(tr[root].siz == 0){
 48
 49
 50
                     idx++:
                     tr[idx].init(0, key);
 51
 52
                     root = idx;
 53
                     return;
 54
 55
                int u = root, f = 0;
                while(1){
 56
 57
                     if(tr[u].key == key){
 58
                          tr[u].cnt++;
 59
                          pushup(u), pushup(f);
 60
                          opt(root, u, 0);
 61
                          break;
 62
                     }
                     f = u, u = tr[u].ch[tr[u].key < key];
if(!u){</pre>
 63
 64
 65
                          idx++:
                          tr[idx].init(f, key);
tr[f].ch[tr[f].key < key] = idx;</pre>
 66
 67
                          pushup(idx), pushup(f);
opt(root, idx, 0);
 68
 69
 70
71
72
73
74
75
                           break;
                     }
                }
           int kth(int& root, int rank){
 76
77
                int u = root;
                while(1){
 78
79
                     else{
 80
                          rank -= tr[tr[u].ch[0]].siz + tr[u].cnt;
 81
                           if(rank \le 0){
 82
                                opt(root, u, 0);
 83
                                return u;
 84
 85
                           else u = tr[u].ch[1];
                     }
 86
 87
                }
 88
           }
 89
 90
           int nlt(int& root, int key){
 91
                int rank = 0, u = root;
                while(1){
 92
 93
                      if(tr[u].key > key) u = tr[u].ch[0];
 94
                      else{
 95
                          rank += tr[tr[u].ch[0]].siz;
 96
                           if(tr[u].key == key){
 97
                               opt(root, u, 0);
 98
                               return rank + 1;
 99
                          rank += tr[u].cnt;
if(tr[u].ch[1]) u = tr[u].ch[1];
100
101
102
                           else return rank + 1;
103
                     }
104
                }
           }
105
106
           int get_prev(int& root, int key){
107
108
                return kth(root, nlt(root, key) - 1);
109
110
111
           int get_next(int& root, int key){
112
                return kth(root, nlt(root, key + 1));
113
114
115
           void remove(int& root, int key){
```

B DATA STRUCTURE

```
116
                 nlt(root, key);
117
                 if(tr[root].cnt > 1){
118
                      tr[root].cnt--;
119
                      pushup(root);
120
                      return;
121
                int u = root, l = get_prev(root, key);
tr[tr[u].ch[1]].fa = l;
122
123
124
                 tr[1].ch[1] = tr[u].ch[1];
125
                 tr[u].clear();
126
                pushup(root);
127
128
129
           void output(int u){
130
                 if(tr[u].ch[0]) output(tr[u].ch[0]);
131
                 std::cout << tr[u].key << '
                 if(tr[u].ch[1]) output(tr[u].ch[1]);
132
133
134
135
      }splay;
136
137
      struct node1{
138
      int 1, r, root;
}tr1[N * 4];
139
140
141
      void build(int u, int 1, int r){
142
           tr1[u] = \{1, r, u\};
143
           root_tot = splay.idx = std::max(root_tot, u);
            if(l == r) return;
144
145
            int mid = (1 + r) >> 1;
           build(u << 1, 1, mid), build(u << 1 | 1, mid + 1, r);
146
147
148
149
      void modify(int u, int pos, int key){
150
           splay.insert(tr1[u].root, key);
151
            if(tr1[u].l == tr1[u].r) return
            int mid = (tr1[u].l + tr1[u].r) >> 1;
152
            if(pos <= mid) modify(u << 1, pos, key);</pre>
153
154
            else modify(u << 1 | 1, pos, key);</pre>
155
      }
156
      int get_rank_by_key_in_interval(int u, int 1, int r, int key){
   if(1 <= tr1[u].1 && tr1[u].r <= r)</pre>
157
158
159
                 return splay.nlt(tr1[u].root, key) - 2;
            int mid = (tr1[u].l + tr1[u].r) >> 1, ans = 0;
160
           if(1 <= mid) ans += get_rank_by_key_in_interval(u << 1, 1, r, key);
if(mid < r) ans += get_rank_by_key_in_interval(u << 1 | 1, 1, r, key);</pre>
161
162
163
           return ans;
164
      }
165
166
      int get_key_by_rank_in_interval(int u, int 1, int r, int rank){
167
            int L = 0, R = 1e8;
            while(L < R){</pre>
168
169
                 int mid = (L + R + 1) / 2;
                 if(get_rank_by_key_in_interval(1, 1, r, mid) < rank) L = mid;
else R = mid - 1;</pre>
170
171
172
173
           return L;
174
175
      void change(int u, int pos, int pre_key, int key){
    splay.remove(tr1[u].root, pre_key);
176
177
178
            splay.insert(tr1[u].root, key);
179
            if(tr1[u].l == tr1[u].r) return;
180
            int mid = (tr1[u].l + tr1[u].r) >> 1;
181
            if(pos <= mid) change(u << 1, pos, pre_key, key);</pre>
182
            else change(u << 1 | 1, pos, pre_key, key);</pre>
183
184
      int get_prev_in_interval(int u, int 1, int r, int key){
   if(1 <= tr1[u].1 && tr1[u].r <= r)</pre>
185
186
            return tr[splay.get_prev(tr1[u].root, key)].key;
int mid = (tr1[u].l + tr1[u].r) >> 1, ans = -inf;
187
188
           if(1 <= mid) ans = std::max(ans, get_prev_in_interval(u << 1, 1, r, key));
if(mid < r) ans = std::max(ans, get_prev_in_interval(u << 1 | 1, 1, r, key));</pre>
189
190
191
           return ans;
192
193
194
195
      int get_next_in_interval(int u, int l, int r, int key){
196
            if(1 <= tr1[u].1 && tr1[u].r <= r)
            return tr[splay.get_next(tr1[u].root, key)].key;
int mid = (tr1[u].l + tr1[u].r) >> 1, ans = inf;
197
198
            if(1 <= mid) ans = std::min(ans, get_next_in_interval(u << 1, 1, r, key));
if(mid < r) ans = std::min(ans, get_next_in_interval(u << 1 | 1, 1, r, key));</pre>
199
200
201
           return ans;
202 | }
```

```
203
204
      int main(){
205
206
          std::ios::sync_with_stdio(false);
207
          std::cin.tie(0);
208
          std::cout.tie(0);
209
210
          srand(time(0));
211
212
          std::cin >> n >> m;
213
          build(1, 1, n);
214
          rep(i, 1, n){
215
              std::cin >> a[i]
216
              modify(1, i, a[i]);
217
218
          rep(i, 1, root_tot){
219
              splay.insert(tr1[i].root, inf), splay.insert(tr1[i].root, -inf);
220
          rep(i, 1, m){
    std::cin >> op;
221
222
              if(op == 1){
223
                   std::cin >> 1 >> r >> key;
224
225
                   std::cout << get_rank_by_key_in_interval(1, 1, r, key) + 1 << endl;</pre>
226
\frac{1}{227}
               else if(op == 2){
228
                   std::cin >> 1 >> r >> key;
229
                   std::cout << get_key_by_rank_in_interval(1, 1, r, key) << endl;</pre>
230
231
               else if(op == 3){
232
                   std::cin >> pos >> key;
                   change(1, pos, a[pos], key);
a[pos] = key;
233
234
235
236
              else if(op == 4){
                   std::cin >> 1 >> r >> key;
237
                   std::cout << get_prev_in_interval(1, 1, r, key) << endl;</pre>
238
239
\frac{1}{240}
              else if(op == 5){
241
                   std::cin >> 1 >> r >> key;
242
                   std::cout << get_next_in_interval(1, 1, r, key) << endl;</pre>
243
244
          }
245
246
          return 0;
247
```

然而洛谷, ACwing 能过, Loj T 一堆。

4 string

4.1 kmp

```
auto get_next = [&](const std::string& s) -> vi {
 3
          int n = s.length();
          vi next(n);
 4
          for (int i = 1; i < n; i++) {</pre>
               int j = next[i - 1];
while (j > 0 and s[i] != s[j]) j = next[j - 1];
if (s[i] == s[j]) j++;
 5
 6
7
 8
               next[i] = j;
 9
10
          return next;
11
     };
```

4.2 z function

```
1 auto z_function = [&](const std::string& s) -> vi {
2    int n = s.size();
3    vi z(n);
4    for (int i = 1, 1 = 0, r = 0; i < n; i++) {
5        if (i <= r and z[i - 1] < r - i + 1) {
6            z[i] = z[i - 1];
7     } else {
8        z[i] = std::max(0, r - i + 1);</pre>
```

34 STRING

```
9
                  while (z[i] + i < n \text{ and } s[z[i]] == s[z[i] + i]) z[i] ++;
10
11
             if (z[i] + i - 1 > r) {
12
                  l = i;
13
                  r = z[i] + i - 1;
14
15
         }
16
         return z;
17
    };
```

4.3 trie

普通字典树 (单词匹配)

```
int cnt;
     std::vector<std::array<int, 26>> trie(n + 1);
 \frac{3}{4} \frac{4}{5} \frac{6}{7} \frac{8}{9}
      vi exist(n + 1);
      auto insert = [&](const std::string& s) -> void {
  int p = 0;
           for (const auto ch : s) {
  int c = ch - 'a';
  if (!trie[p][c]) trie[p][c] = ++cnt;
10
                 p = trie[p][c];
11
12
           exist[p] = true;
13
14
15
      auto find = [&](const string& s) -> bool {
           int p = 0;
for (const auto ch : s) {
16
17
                 int c = ch - 'a';
if (!trie[p][c]) return false;
18
19
20
                 p = trie[p][c];
\overline{21}
22
           return exist[p];
\frac{1}{23}
     };
```

01 字典树 (求最大异或值)

给定 n 个数, 取两个数进行异或运算, 求最大异或值.

```
// trie //
      int cnt = 0;
 \frac{3}{4} \\ \frac{4}{5} \\ \frac{6}{7}
      std::vector<std::array<int, 2>> trie(N);
      auto insert = [&](int x) -> void {
  int p = 0;
  for (int i = 30; i >= 0; i--) {
 8 9
                   int c = (x >> i) & 1;
if (!trie[p][c]) trie[p][c] = ++cnt;
                   p = trie[p][c];
10
11
            }
12
13
      auto find = [&](int x) -> int {
14
            int sum = 0, p = 0;
for (int i = 30; i >= 0; i--) {
15
16
                   int c = (x >> i) & 1;
if (trie[p][c ^ 1]) {
    p = trie[p][c ^ 1];
17
18
19
20
                         sum += (1 << i);
21
22
23
24
                   } else {
                         p = trie[p][c];
                   }
            }
25
            return sum;
26
      };
```

字典树合并

来自浙大城市学院 2023 校赛 E 题。

4.3 trie 35

给定一棵根为 1 的树, 每个点的点权为 w_i . 一共 q 次询问, 每次给出一对 u,v,询问以 v 为根的子树上的点与 u 的权值最大异或值.

```
int main() {
           std::ios::sync_with_stdio(false);
 3
           std::cin.tie(0);
 \frac{4}{5}
           std::cout.tie(0);
 67
           int n, m;
std::cin >> n;
 8 9
           vi w(n + 1);
for (int i = 1; i <= n; i++) {</pre>
10
                std::cin >> w[i];
11
12
13
           vvi e(n + 1);
           for (int i = 1; i < n; i++) {</pre>
14
                int u, v;
std::cin >> u >> v;
16
                e[u].push_back(v);
e[v].push_back(u);
17
18
19
20
           /* 离线询问 */
21
22
           std::cin >> m;
23
           std::vector\langle vpi \rangle q(n + 1);
24
           vi ans(m + 1);
25
           for (int i = 1; i <= m; i++) {</pre>
26
                int u, v;
27
                std::cin >> u >> v;
28
                q[v].emplace_back(u, i);
29
30
31
           /* 01 trie */
32
33
           std::vector<std::array<int, 2>> tr(1);
           auto new_node = [&]() -> int {
34
35
                tr.emplace_back();
36
                return tr.size() - 1;
37
38
39
           vi id(n + 1);
40
41
           auto insert = [&](int root, int x) {
                int p = root;
42
                for (int i = 29; i >= 0; i--) {
   int c = x >> i & 1;
43
44
                      if (!tr[p][c]) tr[p][c] = new_node();
45
46
                      p = tr[p][c];
47
48
           };
49
50
           auto query = [&](int root, int x) -> int {
                int ans = 0, p = root;
for (int i = 29; i >= 0; i--) {
  int c = x >> i & 1;
  if (tr[p][c ^ 1]) {
     p = tr[p][c ^ 1];
     root = (1 < 1);
}</pre>
51
52
53
54
55
56
                           ans += (1 << i);
57
                      } else {
                           p = tr[p][c];
58
59
                      }
60
61
                return ans;
62
63
           std::function<int(int, int)> merge = [&](int a, int b) -> int {
64
65
                // b 的信息挪到 a 上 //
                if (!a) return b;
if (!b) return a;
tr[a][0] = merge(tr[a][0], tr[b][0]);
tr[a][1] = merge(tr[a][1], tr[b][1]);
66
67
68
69
70
71
72
73
74
75
           std::function<void(int, int)> dfs = [&](int u, int fa) {
                id[u] = new_node();
                insert(id[u], w[u]);
for (auto v : e[u]) {
   if (v == fa) continue;
76
77
78
79
                      dfs(v, u);
id[u] = merge(id[u], id[v]);
80
                for (auto [v, i] : q[u]) {
   ans[i] = query(id[u], w[v]);
81
82
83
```

4 STRING

```
84 | };

85 | dfs(1, 0);

86 | for (int i = 1; i <= m; i++) std::cout << ans[i] << endl;

88 | return 0;

90 | }
```

5 math - number theory

5.1 Eculid

欧几里得算法

```
1 std::gcd(a, b)
```

扩展欧几里得算法

```
1 auto exgcd = [&](auto&& self, LL a, LL b, LL& x, LL& y) {
2     if (!b) {
        x = 1, y = 0;
        return;
     }
6     self(self, b, a % b, y, x);
7     y -= a / b * x;
};
```

```
1 auto exgcd = [&](auto&& self, LL a, LL b, LL& x, LL& y) {
2    if (!b) {
        x = 1, y = 0;
        return a;
}
LL d = self(self, b, a % b, y, x);
y -= a / b * x;
return d;
};
```

类欧几里得算法

一般形式: 求
$$f(a,b,c,n) = \sum_{i=0}^{n} \lfloor \frac{ai+b}{c} \rfloor$$

f(a,b,c,n) 可以单独求.

$$f(a, b, c, n) = nm - f(c, c - b - 1, a, m - 1)$$

```
LL f(LL a, LL b, LL c, LL n) {
   if (a == 0) return ((b / c) * (n + 1));
   if (a >= c || b >= c)
        return f(a % c, b % c, c, n) + (a / c) * n * (n + 1) / 2 + (b / c) * (n + 1);
   LL m = (a * n + b) / c;
   LL v = f(c, c - b - 1, a, m - 1);
   return n * m - v;
}
```

更进一步,求:
$$g(a,b,c,n) = \sum\limits_{i=0}^n i \lfloor \frac{ai+b}{c} \rfloor$$
 以及 $h(a,b,c,n) = \sum\limits_{i=0}^n \left\lfloor \frac{ai+b}{c} \right\rfloor^2$

直接记吧.

$$g(a, b, c, n) = \lfloor \frac{mn(n+1) - f(c, c-b-1, a, m-1) - h(c, c-b-1, a, m-1)}{2} \rfloor$$

$$h(a,b,c,n) = nm(m+1) - 2f(c,c-b-1,a,m-1) - 2g(c,c-b-1,a,m-1) - f(a,b,c,n)$$

```
| const int inv2 = 499122177;
 2
3
       const int inv6 = 166374059;
       LL f(LL a, LL b, LL c, LL n);
LL g(LL a, LL b, LL c, LL n);
LL h(LL a, LL b, LL c, LL n);
 4
       struct data {
 9
              LL f, g, h;
10
11
       data calc(LL a, LL b, LL c, LL n) {
    LL ac = a / c, bc = b / c, m = (a * n + b) / c, n1 = n + 1, n21 = n * 2 + 1;
12
13
14
               data d;
15
               if (a == 0) {
16
                       d.f = bc * n1 \% mod;
                       d.g = bc * n % mod * n1 % mod * inv2 % mod;
d.h = bc * bc % mod * n1 % mod;
17
18
19
                      return d;
20
21
               if (a >= c || b >= c) {
22
23
                      d.f = n * n1 % mod * inv2 % mod * ac % mod + bc * n1 % mod;
                      d.g =
                      a.g =
    ac * n % mod * n1 % mod * n21 % mod * inv6 % mod + bc * n % mod * n1 % mod * inv2 % mod;
d.h = ac * ac % mod * n % mod * n1 % mod * n21 % mod * inv6 % mod +
    bc * bc % mod * n1 % mod + ac * bc % mod * n % mod * n1 % mod;
d.f %= mod, d.g %= mod, d.h %= mod;
data e = calc(a % c, b % c, c, n);
d.h += e.h + 2 * bc % mod * e.f % mod + 2 * ac % mod * e.g % mod;
24
25
\frac{26}{27}
\frac{1}{28}
29
30
                      d.g += e.g, d.f += e.f;
d.f %= mod, d.g %= mod, d.h %= mod;
31
32
                      return d;
               }
33
              data e = calc(c, c - b - 1, a, m - 1);
d.f = n * m % mod - e.f, d.f = (d.f % mod + mod) % mod;
d.g = m * n % mod * n1 % mod - e.h - e.f, d.g = (d.g * inv2 % mod + mod) % mod;
d.h = n * m % mod * (m + 1) % mod - 2 * e.g - 2 * e.f - d.f;
34
36
37
38
               d.h = (d.h \% mod + mod) \% mod;
39
               return d;
       }
40
```

5.2 inverse

线性递推

```
a^{-1} \equiv -\lfloor \frac{p}{a} \rfloor \times (p\%a)^{-1}
\begin{array}{c} 1 \\ 2 \\ \text{auto sieve\_inv} = [\&] (\text{int n}) \\ 3 \\ 4 \\ \text{for (int i = 2; i <= n; i++)} \\ 5 \\ 6 \\ 7 \\ \end{array}
\begin{array}{c} \text{inv[i] = 1;} \\ \text{for (int i = 2; i <= n; i++)} \\ \text{inv[i] = 111 * (p - p / i) * inv[p % i] % p;} \\ \text{} \\
```

求 n 个数的逆元

```
auto get_inv =[&](const vi& a) {
 23
            int n = a.size();
            vi b(n), f(n), ivf(n);
            f[0] = a[0];

for (int i = 1; i < n; i++) {

   f[i] = 111 * f[i - 1] * a[i] % p;
 4
 5
 \frac{\tilde{6}}{7}
            ivf.back() = quick_power(f.back(), p - 2, p);
for (int i = n - 1; i; i--) {
   ivf[i - 1] = 111 * ivf[i] * a[i] % p;
 8
 9
10
11
12
            b[0] = ivf[0];
13
            for (int i = 1; i < n; i++) {</pre>
14
                  b[i] = 111 * ivf[i] * f[i - 1] % p;
15
16
            return b:
     };
17
```

5.3 sieve 39

5.3 sieve

素数

```
vi prime, is_prime(n + 1, 1);
auto Euler_sieve = [&](int n){
    for (int i = 2; i <= n; i++) {
        if (is_prime[i]) prime.push_back(i);
        for (auto p : prime) {
            if (i * p > n) break;
            is_prime[i * p] = 0;
            if (i % p == 0) break;
        }
}

// Results is_prime[i * p] = 0;
// Results is_prime[i * p]
```

欧拉函数

```
vi phi(n + 1), prime;
vi is_prime(n + 1, 1);
auto get_phi = [&](int n) {
                  int cnt = 0;
                 int cnc = 0,
phi[1] = 1;
for (int i = 2; i <= n; i++) {
    if (is_prime[i]) {
        rough back(i);
}</pre>
 5
 6
7
 8
                                   prime.push_back(i);
 9
                                   phi[i] = i - 1;
10
                          for (auto p : prime) {
    if (i * p > n) break;
    is_prime[i * p] = 0;
    if (i % p) {
        phi[i * p] = phi[i] * phi[p];
    } else {
11
12
13
14
15
16
                                            phi[i * p] = phi[i] * p;
break;
17
18
19
                          }
20
\overline{21}
                 }
        };
```

约数和

$$d(n) = \sum_{k|n} k$$

```
3
 \begin{array}{c} 4\\5\\6\\7 \end{array}
 8 9
                                prime.push_back(i);
d[i] = g[i] = i + 1;
10
                        for (auto p : prime) {
    if (i * p > n) break;
    is_prime[i * p] = 0;
    if (i % p == 0) {
        g[i * p] = g[i] * p + 1;
        d[i * p] = d[i] / g[i] * g[i * p];
    }
}
11
12
13
14
15
16
                                          break;
17
18
                                  } else {
                                         d[i * p] = d[i] * d[p];
g[i * p] = 1 + p;
19
20
21
22
                        }
\frac{1}{23}
                }
        };
```

莫比乌斯函数

```
vi mu(n + 1), prime;
vi is_prime(n + 1, 1);
auto get_mu = [&](int n) {

  \begin{array}{c}
    1 \\
    2 \\
    3 \\
    4 \\
    5 \\
    6 \\
    7
  \end{array}

                   m\ddot{u}[1] = 1;
                   prime.push_back(i);
mu[i] = -1;
  8 9
                             for (auto p : prime) {
    if (i * p > n) break;
    is_prime[i * p] = 0;
    if (i % p == 0) {
        mu[i * p] = 0;
        break;
    }
}
10
11
12
13
14
15
                                                 break;
16
                                       mu[i * p] = -mu[i];
17
18
                             }
19
                   }
20
         };
```

5.4 block

分块的逻辑

下取整 $\lfloor \frac{n}{g} \rfloor = k$ 的分块 $()g \leqslant n)$

```
for(int l = 1, r, k; l <= n; l = r + 1){
    k = n / 1;
    r = n / (n / 1);
    debug(l, r, k);
}</pre>
```

 $k = \lfloor \frac{n}{g} \rfloor$ 从大到小遍历 $\lfloor \frac{n}{g} \rfloor$ 的所有取值, [l, r] 对应的是 g 取值的区间.

上取整 $\left\lceil \frac{n}{g} \right\rceil = k$ 的分块 (g < n)

```
for(int l = 1, r, k; l < n; l = r + 1){
    k = (n + l - 1) / l;
    r = (n + k - 2) / (k - 1) - 1;
    debug(l, r, k);
}</pre>
```

 $k = \lceil \frac{n}{q} \rceil$ 从大到小遍历 $\lceil \frac{n}{q} \rceil$ 的所有取值, [l, r] 对应的是 g 取值的区间.

一般形式

```
\sum_{i=1}^{n} f(i) \lfloor \frac{n}{i} \rfloor
```

设 s(i) 为 f(i) 的前缀和。

```
1 for (int l = 1, r; l <= n; l = r + 1) {
```

 $5.5 \quad CRT \& exCRT$

```
2 | r = n / (n / 1);
3 | ans += (s[r] - s[1 - 1]) * (n / 1);
4 |}
```

```
\sum_{i=1}^{n} f(i) \lfloor \frac{a}{i} \rfloor \lfloor \frac{b}{i} \rfloor
```

```
for (int 1 = 1, r, r1, r2; 1 <= n; 1 = r + 1) {
    if (a / 1) {
        r1 = a / (a / 1);
    } else {
        r1 = n;
    }
    if (b / 1) {
        r2 = b / (b / 1);
    } else {
        r2 = n;
    }
    results for results f
```

5.5 CRT & exCRT

求解

```
\begin{cases}
N \equiv a_1 \mod m_1 \\
N \equiv a_2 \mod m_2 \\
\dots \\
N \equiv a_n \mod m_n
\end{cases}
```

```
有 N \equiv \sum_{i=1}^{k} a_i \times \operatorname{inv}\left(\frac{M}{m_i}, m_i\right) \times \left(\frac{M}{m_i}\right) \mod M
```

```
1 auto crt = [&](int n, const vi& a, const vi& m) -> LL{
2     LL ans = 0, M = 1;
3     for(int i = 1; i <= n; i++) M *= m[i];
4     for(int i = 1; i <= n; i++){
5         ans = (ans + a[i] * inv(M / m[i], m[i]) * (M / m[i])) % M;
6     }
7     return (ans % M + M) % M;
8 };</pre>
```

扩展中国剩余定理

```
auto excrt = [&](int n, const vi& a, const vi& m) -> LL{

LL A = a[1], M = m[1];

for (int i = 2; i <= n; i++) {

    LL x, y, d = std::gcd(M, m[i]);

    exgcd(M, m[i], x, y);

    LL mod = M / d * m[i];

    x = x * (a[i] - A) / d % (m[i] / d);

    A = ((M * x + A) % mod + mod) % mod;

    M = mod;
}

return A;
};</pre>
```

5.6 BSGS & exBSGS

求解满足 $a^x \equiv b \mod p$ 的 x

```
/* return value = -1e18 means no solution */
auto BSGS = [&](LL a, LL b, LL p) {
    if (1 % p == b % p) return Oll;
    LL k = std::sqrt(p) + 1;
    std::unordered_map<LL, LL> hash;
    for (LL i = 0, j = b % p; i < k; i++) {
        hash[j] = i;
        j = j * a % p;
    }
}</pre>
```

 $(a,p) \neq 1$ 的情形

```
/* return value < 0 means no solution */
auto exBSGS = [&] (auto&& self, LL a, LL b, LL p) {
    b = (b % p + p) % p;
    if (111 % p == b % p) return Oll;
    LL x, y, d = std::gcd(a, p);
    exgcd(exgcd, a, p, x, y);
    if (d > 1) {
        if (b % d != 0) return -INF;
        exgcd(exgcd, a / d, p / d, x, y);
        return self(self, a, b / d * x % (p / d), p / d) + 1;
}
return BSGS(a, b, p);
};
```

5.7 Miller Rabin

原理基于: 对奇素数 p, $a^2 \equiv 1 \mod p$ 的解为 $x \equiv 1 \mod p$ 或 $x \equiv p-1 \mod p$, 以及费马小定理.

随机一个底数 x, 将 $a^{p-1} \mod p$ 的指数 p-1 分解为 $a \times 2^b$, 计算出 x^a , 之后进行最多 b 次平方操作, 若发现非平凡平方根时即可判断出其不是素数, 否则通过此轮测试.

test_time 为测试次数, 建议设为不小于 8 的整数以保证正确率, 但也不宜过大, 否则会影响效率.

```
auto miller_rabin = [&](LL n) -> bool {
 \begin{array}{c} 1\\2\\3\\4\\5\end{array}
            if (n <= 3) return n == 2 || n == 3;
           LL a = n - 1, b = 0;
           while (!(a & 1)) a >>= 1, b++;
           for (int i = 1, j; i <= 10; i++) {    /* test time = 10 */
    LL x = rand() % (n - 2) + 2, v = quick_power(x, a, n);</pre>
 6
7
8
9
                 if (v == 1 || v == n - 1) continue;
                 for (j = 0; j < b; j++) {
    if (v == n - 1) break;
10
                       v = (i28) v * v % n;
11
12
                 if (j >= b) return false;
13
14
           return true;
15
     };
```

事实上底数没必要随机 10 次, 检验如下数即可. 快速幂记得要 i128.

- 1. int 范围: 2,7,61.
- 2. LL 范围: 2,325,9375,28178,450775,9780504,1795265022.

```
vl vv = {2, 3, 5, 7, 11, 13, 17, 23, 29};
auto miller_rabin = [&](LL n) -> bool {
 \frac{1}{2} \frac{3}{4} \frac{4}{5} \frac{6}{6} \frac{7}{7}
           auto test = [&](LL n, int a) {
                 if (n == a) return true;
                 if (n % 2 == 0) return false;
                LL d = (n - 1) >> _builtin_ctzll(n - 1);
LL r = quick_power(a, d, n);
 8 9
                 while (d < n - 1) and r != 1 and r != n - 1) {
                      d <<= 1;
10
                      r = (i128) r * r % n;
11
12
                return r == n - 1 or d & 1;
          };
if (n == 2 or n == 3) return true;
13
14
           for (auto p : vv) {
15
16
                 if (test(n, p) == 0) return false;
```

5.8 Pollard Rho 43

```
18 return true;
19 }
```

5.8 Pollard Rho

能在 $O(n^{\frac{1}{4}})$ 的时间复杂度随机出一个 n 的非平凡因数.

```
auto pollard_rho = [&](LL x) -> LL{
    LL s = 0, t = 0, val = 1;
    LL c = rand() % (x - 1) + 1;
    for(int goal = 1;; goal <<= 1, s = t, val = 1){
        for(int step = 1; step <= goal; step++){
            t = ((i128) t * t + c) % x;
            val = (i128) val * abs(t - s) % x;
            if(step % 127 == 0){
            LL d = std::gcd(val x).</pre>
  3
  4
  5
6
7
  8 9
                                                                  LL d = std::gcd(val, x);
                                                                  if(d > 1) return d;
10
                                                     }
11
12
                                        LL d = std::gcd(val, x);
if(d > 1) return d;
13
14
15
                          }
16
              };
```

利用 Miller Rabin 和 Pollard Rho 进行素因数分解

```
auto factorize = [&](LL a) -> v1{
 2
           vl ans, stk;
 3
           for (auto p : prime) {
    if (p > 1000) break;
    while (a % p == 0) {
 4
 5
 6
7
                      ans.push_back(p);
                      a /= p;
 8 9
                 if (a == 1) return ans;
10
           }
           /* 先筛小素数, 再跑 Pollard-Rho */
11
12
           stk.push_back(a);
           while (!stk.empty()) {
   LL b = stk.back();
13
14
                 stk.pop_back();
15
                 if (miller_rabin(b)) {
    ans.push_back(b);
16
17
18
                      continue;
19
                LL c = b;
while (c >= b) c = pollard_rho(b);
20
\tilde{21}
22
23
                 stk.push_back(c);
                 stk.push_back(b / c);
\overline{24}
25
           return ans;
     };
```

5.9 quadratic residu

Cipolla 算法

```
auto cipolla = [&](int x) {
 3
            std::srand(time(0));
            auto check = [\&] (int x) -> bool { return pow(x, (mod - 1) / 2) == 1; };
            if (!x) return 0;
if (!check(x)) return -1;
 4
 5
 6
7
            int a, b;
            while (1) {
                  a = rand() % mod;
b = sub(mul(a, a), x);
if (!check(b)) break;
 8 9
10
11
            PII t = {a, 1};
PII ans = {1, 0};
auto mulp = [&] (PII x, PII y) -> PII {
12
13
14
                  auto [x1, x2] = x;
auto [y1, y2] = y;
15
16
                  int c = add(mul(x1, y1), mul(x2, y2, b));
int d = add(mul(x1, y2), mul(x2, y1));
17
```

```
19 | return {c, d};

20 | };

21 | for (int i = (mod + 1) / 2; i; i >>= 1) {

22 | if (i & 1) ans = mulp(ans, t);

23 | t = mulp(t, t);

24 | }

25 | return std::min(ans.ff, mod - ans.ff);
```

5.10 Lucas

卢卡斯定理

用于求大组合数,并且模数是一个不大的素数.

$$\left(\begin{array}{c} n \\ m \end{array}\right) \bmod p = \left(\begin{array}{c} \lfloor n/p \rfloor \\ \lfloor m/p \rfloor \end{array}\right) \cdot \left(\begin{array}{c} n \bmod p \\ m \bmod p \end{array}\right) \bmod p$$

$$\begin{pmatrix} n \mod p \\ m \mod p \end{pmatrix}$$
 可以直接计算, $\begin{pmatrix} \lfloor n/p \rfloor \\ \lfloor m/p \rfloor \end{pmatrix}$ 可以继续使用卢卡斯计算.

递归至 m=0 的时候, 返回 1.

p 不太大, 一般在 10^5 左右.

```
auto C = [&](LL n, LL m, LL p) -> LL {
    if (n < m) return 0;
    if (m == 0) return 1;
    return fac[n] * inv_fac[m] % p * inv_fac[n - m] % p;
};

auto lucas = [&](auto&& self, LL n, LL m, LL p) -> LL {
    if (n < m) return 0;
    if (m == 0) return 1;
    return C(n % p, m % p, p) * self(self, n / p, m / p, p) % p;
}</pre>
```

素数在组合数中的次数

Legengre 给出一种 n! 中素数 p 的幂次的计算方式为:

$$\sum_{1 \leqslant j} \lfloor \frac{n}{p^j} \rfloor.$$

另一种计算方式利用 p 进制下各位数字和:

$$v_p(n!) = \frac{n - S_p(n)}{p - 1}.$$

则有

$$v_p(C_m^n) = \frac{S_p(n) + S_p(m-n) - S_p(m)}{p-1}.$$

扩展卢卡斯定理

计算

$$\binom{n}{m} \mod p$$
,

p 可能为合数.

第一部分: CRT.

5.10 Lucas 45

原问题变成求

$$\begin{cases}
\begin{pmatrix} n \\ m \end{pmatrix} \equiv a_1 \bmod p_1^{\alpha_1} \\
\begin{pmatrix} n \\ m \end{pmatrix} \equiv a_2 \bmod p_2^{\alpha_2} \\
\dots \\
\begin{pmatrix} n \\ m \end{pmatrix} \equiv a_k \bmod p_k^{\alpha_k}
\end{cases}$$

在求出 a_i 之后就可以利用 CRT 求出答案.

第二部分: 移除分子分母中的素数

问题转换成求解

 $\binom{n}{m} \mod q^k$.

等价于

$$\frac{\frac{n!}{q^x}}{\frac{m!}{q^y}\frac{(n-m)!}{q^z}}q^{x-y-z} \bmod q^k,$$

其中 x 表示 n! 中 q 的次数, y, z 同理.

第三部分: 威尔逊定理的推论

问题转换为求

 $\frac{n!}{q^x} \bmod q^k$.

可以利用威尔逊定理的推论.

```
auto exLucas = [&](LL n, LL m, LL p) {
   auto inv = [&](LL a, LL p) {
  3
                         LL x, y;
exgcd(a, p, x, y);
return (x % p + p) % p;
  \frac{4}{5} \frac{6}{6} \frac{7}{8} \frac{8}{9}
                 auto func = [&](auto&& self, LL n, LL pi, LL pk) {
   if (!n) return 111;
                         LL ans = 1;

for (LL i = 2; i <= pk; i++) {

    if (i % pi) ans = ans * i % p;
10
11
12
13
                         ans = quick_power(ans, n / pk, pk);
for (LL i = 2; i <= n % pk; i++) {
   if (i % pi) ans = ans * i % pk;</pre>
14
15
16
17
18
                          ans = ans * self(self, n / pi, pi, pk) % pk;
19
                         return ans;
20
                 };
\overline{21}
\overline{22}
                  auto multiLucas = [&](LL n, LL m, LL pi, LL pk) {
                         b multilucas = [a](LL ii, LL ii, LL iii, LL iii, LL iii, LL iii)
LL cnt = 0;
for (LL i = n; i; i /= pi) cnt += i / pi;
for (LL i = m; i; i /= pi) cnt -= i / pi;
for (LL i = n - m; i; i /= pi) cnt -= i / pi;
LL ans = quick_power(pi, cnt, pk) * func(func, n, pi, pk) % pk;
ans = ans * inv(func(func, m, pi, pk), pk) % pk;
ans = ans * inv(func(func, n - m, pi, pk), pk) % pk;
\overline{23}
\overline{24}
\overline{25}
26
27
28
29
30
                          return ans;
31
                 };
32
33
                  auto crt = [&](const vl& a, const vl& m, int k) {
34
                          LL ans = 0;
35
                          for (int i = 0; i < k; i++) {
   ans = (ans + a[i] * inv(p / m[i], m[i]) * (p / m[i])) % p;</pre>
36
37
                          }
38
39
                          return (ans % p + p) % p;
```

5.11 Wilson

简单结论

对于素数 p 有

$$(p-1)! \equiv -1 \mod p$$
.

推论

令 $(n!)_p$ 表示不大于 n 且不被 p 整除的正整数的乘积.

特殊情形: n 为素数 p 时即为上述结论.

一般结论: 对素数 p 和正整数 q 有

$$((p^q)!)_p \equiv \pm 1 \bmod p^q.$$

详细定义:

$$((p^q)!)_p = \begin{cases} 1 & \text{if } p = 2 \text{ and } q \geqslant 3, \\ -1 & \text{other wise.} \end{cases}$$

更进一步的推论

5.12 LTE

将素数 p 在整数 n 中的个数记为 $v_p(n)$.

(n,p)=1

对所有素数 p 和满足 (n,p)=1 的整数 n, 有

1. 若 $p \mid x - y$, 则有

$$v_p(x^n - y^n) = v_p(x - y).$$

2. 若 $p \mid x - y$, 则对奇数 n 有

$$v_p(x^n + y^n) = v_p(x + y).$$

5.13 Mobius inversion 47

p 是奇素数

对所有奇素数 p 有

1. 若 $p \mid x - y$, 则有

$$v_p(x^n - y^n) = v_p(x - y) + v_p(n).$$

2. 若 $p \mid x - y$, 则对奇数 n 有

$$v_p(x^n + y^n) = v_p(x + y) + v_p(n).$$

p=2

对 p=2 且 $p \mid x-y$ 有

1. 对奇数 n 有

$$v_2(x^n - y^n) = v_2(x - y).$$

2. 对偶数 n 有

$$v_2(x^n - y^n) = v_2(x - y) + v_2(x + y) + v_2(n) - 1.$$

除此之外, 对上述 x, y, n, 若 $4 \mid x - y$, 有

- 1. $v_2(x+y)=1$.
- 2. $v_2(x^n y^n) = v_2(x y) + v_2(n)$.

5.13 Mobius inversion

莫比乌斯函数

$$\mu(n) = \begin{cases}
1 & n = 1, \\
0 & n 含有平方因子, \\
(-1)^k & k 为 n 的本质不同素因子个数.
\end{cases}$$

性质

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & n = 1 \\ 0 & n \neq 1 \end{cases}.$$
$$\varphi(n) = \sum_{d|n} d \cdot \mu(\frac{n}{d}).$$

反演结论

$$[\gcd(i,j)=1] = \sum_{d|\gcd(i,j)} \mu(d).$$

 $O(n \log n)$ 求莫比乌斯函数

```
1  mu[1] = 1;
2  for (int i = 1; i <= n; i++){
3  for (int j = i + i; j <= n; j += i){</pre>
```

莫比乌斯变换

设
$$f(n), F(n)$$
.

1.
$$F(n) = \sum_{d|n} f(d)$$
, 则 $f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right)$.

2.
$$F(n) = \sum_{n|d} f(d)$$
, 则 $f(n) = \sum_{n|d} \mu\left(\frac{d}{n}\right) F(d)$.

6 math - polynomial

6.1 FTT

FFT 与拆系数 FFT

```
const int sz = 1 \ll 23;
     int rev[sz];
 3
     int rev_n;
     void set_rev(int n) {
          if (n == rev_n) return;
 6
          for (int i = 0; i < n; i++) rev[i] = (rev[i / 2] | (i & 1) * n) / 2;
 8
     }
 9
     tempt void butterfly(T* a, int n) {
10
         set_rev(n);
for (int i = 0; i < n; i++) {</pre>
11
12
              if (i < rev[i]) std::swap(a[i], a[rev[i]]);</pre>
13
14
     }
15
16
     namespace Comp {
18
     long double pi = 3.141592653589793238;
19
20
     tempt struct complex {
         T x, y;
complex(T x = 0, T y = 0) : x(x), y(y) {}
complex operator+(const complex& b) const { return complex(x + b.x, y + b.y); }
21
22
23
24
25
26
27
          complex operator*(const complex& b) const {
28
              return complex<T>(x * b.x - y * b.y, x * b.y + y * b.x);
29
30
          complex operator~() const { return complex(x, -y); }
31
          static complex unit(long double rad) { return complex(std::cos(rad), std::sin(rad)); }
    };
32
33
     }
34
           // namespace Comp
35
     struct fft_t {
    typedef Comp::complex<double> complex;
36
37
38
          complex wn[sz];
39
40
         fft_t() {
41
              for (int i = 0; i < sz / 2; i++) {
                   wn[sz / 2 + i] = complex::unit(2 * Comp::pi * i / sz);
42
43
44
              for (int i = sz / 2 - 1; i; i--) wn[i] = wn[i * 2];
45
46
47
          void operator()(complex* a, int n, int type) {
48
              if (type == -1) std::reverse(a + 1, a + n);
              butterfly(a, n);
for (int i = 1; i < n; i *= 2) {</pre>
49
50
                   const complex* w = wn + i;
51
                   for (complex *b = a, t; b != a + n; b += i + 1) {
52
53
                        t = b[i];
                       t = b[i] = *b - t;
*b = *b + t;
for (int j = 1; j < i; j++) {
    t = (++b)[i] * w[j];</pre>
54
55
56
57
                            b[i] = *b - t;
58
                            *b = *b + t;
59
60
                   }
61
62
63
              if (type == 1) return;
              for (int i = 0; i < n * 2; i++) ((double*) a)[i] /= n;</pre>
64
65
66
     } FFT;
67
68
     typedef decltype(FFT)::complex complex;
69
\frac{70}{71}
     vi fft(const vi& f, const vi& g) {
    static complex ff[sz];
72
          int n = f.size(), m = g.size();
73
          vi h(n + m - 1);
          if (std::min(n, m) <= 50) {</pre>
              for (int i = 0; i < n; i++) {</pre>
```

```
for (int j = 0; j < m; ++j) {
   h[i + j] += f[i] * g[j];</pre>
 76
 77
78
79
                     }
 80
                     return h;
 81
 82
               int c = 1:
               while (c + 1 < n + m) c *= 2;
 83
               std::memset(ff, 0, sizeof(decltype(*(ff))) * (c));
for (int i = 0; i < n; i++) ff[i].x = f[i];
 84
 85
 86
87
               for (int i = 0; i < m; i++) ff[i].y = g[i];
              FFT(ff, c, 1);
 88
               for (int i = 0; i < c; i++) ff[i] = ff[i] * ff[i];</pre>
 89
               FFT(ff, c, -1);
 90
               for (int i = 0; i + 1 < n + m; i++) h[i] = std::llround(ff[i].y / 2);</pre>
 91
 92
 93
        vi mtt(const vi& f, const vi& g) {
    static complex ff[3][sz], gg[2][sz];
    static int s[3] = {1, 31623, 31623 * 31623};
 94
 95
 96
 97
               int n = f.size(), m = g.size();
 98
               vi h(n + m - 1);
 99
               if (std::min(n, m) <= 50) {</pre>
                     for (int i = 0; i < n; ++i) {
   for (int j = 0; j < m; ++j) {
     Add(h[i + j], mul(f[i], g[j]));
}</pre>
100
101
102
103
104
                     }
105
                     return h;
106
107
               int c = 1;
              while (c + 1 < n + m) c *= 2;
for (int i = 0; i < 2; ++i) {
108
109
                     std::memset(ff[i], 0, sizeof(decltype(*(ff[i]))) * (c));
std::memset(gg[i], 0, sizeof(decltype(*(ff[i]))) * (c));
for (int j = 0; j < n; ++j) ff[i][j].x = f[j] / s[i] % s[1];
for (int j = 0; j < m; ++j) gg[i][j].x = g[j] / s[i] % s[1];</pre>
110
111
112
113
114
                     FFT(ff[i], c, 1);
115
                     FFT(gg[i], c, 1);
116
               for (int i = 0; i < c; ++i) {
    ff[2][i] = ff[1][i] * gg[1][i];
    ff[1][i] = ff[1][i] * gg[0][i];
    gg[1][i] = ff[0][i] * gg[1][i];
    ff[0][i] = ff[0][i] * gg[0][i];</pre>
117
118
119
120
121
122
123
               for (int i = 0; i < 3; ++i) {</pre>
124
                     FFT(ff[i], c, -1);
for (int j = 0; j + 1 < n + m; ++j) {
125
126
                            Add(h[j], mul(std::llround(ff[i][j].x) % mod, s[i]));
127
128
              FFT(gg[1], c, -1);
for (int i = 0; i + 1 < n + m; ++i) {
129
130
                      Add(h[i], mul(std::llround(gg[1][i].x) % mod, s[1]));
131
132
133
               return h;
        }
134
```

6.2 FWT

and

$$C_i = \sum_{i=j\&k} A_j B_k$$

分治过程

```
\begin{aligned} & \text{FWT}[\mathbf{A}] = merge(\text{FWT}[\mathbf{A}_0] + \text{FWT}[\mathbf{A}_1], \text{FWT}[\mathbf{A}_1]), \\ & \text{UFWT}[\mathbf{A}'] = merge(\text{UFWT}[\mathbf{A}'_0] - \text{UFWT}[\mathbf{A}'_1], \text{UFWT}[\mathbf{A}'_1]). \end{aligned}
```

```
1    /* mod 998244353 */
2    auto FWT_and = [&](vi v, int type) -> vi {
3        int n = v.size();
4        for (int mid = 1; mid < n; mid <<= 1) {
5             for (int block = mid << 1, j = 0; j < n; j += block) {
</pre>
```

 $6.2 ext{ FWT}$

```
for (int i = j; i < j + mid; i++) {
   LL x = v[i], y = v[i + mid];
   if (type == 1) {</pre>
 6
7
8
9
                                         v[i] = add(x, y);
                                   } else {
   v[i] = sub(x, y);
10
11
12
13
                            }
                     }
14
15
16
              return v;
17
       };
```

 \mathbf{or}

$$C_i = \sum_{i=j|k} A_j B_k$$

分治过程

```
\begin{aligned} & \text{FWT}[\mathbf{A}] = merge(\text{FWT}[\mathbf{A}_0], \text{FWT}[\mathbf{A}_0] + \text{FWT}[\mathbf{A}_1]), \\ & \text{UFWT}[\mathbf{A}'] = merge(\text{UFWT}[\mathbf{A}'_0], -\text{UFWT}[\mathbf{A}'_0] + \text{UFWT}[\mathbf{A}'_1]). \end{aligned}
```

```
/* mod 998244353 */
     auto FWT_or = [&](vi v, int type) -> vi {

    \begin{array}{r}
      2 \\
      3 \\
      4 \\
      5 \\
      6 \\
      7 \\
      8 \\
      9
    \end{array}

           int n = v.size();
          v[i + mid] = add(x, y);
10
                             else {
11
                                v[i + mid] = sub(y, x);
12
13
                     }
14
                }
          }
15
16
          return v;
     };
```

xor

$$C_i = \sum_{i=j \oplus k} A_j B_k$$

分治过程

$$\begin{aligned} & \text{FWT}[\mathbf{A}] = merge(\text{FWT}[\mathbf{A}_0] + \text{FWT}[\mathbf{A}_1], \text{FWT}[\mathbf{A}_0] - \text{FWT}[\mathbf{A}_1]), \\ & \text{UFWT}[\mathbf{A}'] = merge\left(\frac{\text{UFWT}[\mathbf{A}'_0] + \text{UFWT}[\mathbf{A}'_1]}{2}, \frac{\text{UFWT}[\mathbf{A}'_0] - \text{UFWT}[\mathbf{A}'_1]}{2}\right) \end{aligned}$$

```
/* mod 998244353 */

\begin{array}{c}
\bar{2} \\
3 \\
4 \\
5
\end{array}

         auto FWT_xor = [&](vi v, int type) -> vi {
                  int n = v.size();
                          (int mid = 1; mid < n; mid <<= 1) {
                          for (int block = mid << 1, j = 0; j < n; j += block) {
  for (int i = j; i < j + mid; i++) {
    LL x = v[i], y = v[i + mid];
    v[i] = add(x, y);
    v[i + mid] = cub(x, y);
}</pre>
 6
7
8
9
                                           v[i] - adu(x, y,
v[i + mid] = sub(x, y);
if (type == -1) {
   Mul(v[i], inv2);
   Mul(v[i + mid], inv2);
}
10
11
12
13
                                   }
14
15
                          }
16
                 return v;
         };
```

```
统一地,
```

```
1    a = FWT(a, 1),    b = FWT(b, 1);
2    for (int i = 0; i < (1 << n); i++) {
3        c[i] = mul(a[i], b[i]);
4    }
5    c = FWT(c, -1);</pre>
```

6.3 class polynomial

```
class polynomial : public vi {
   public:
 2
 \frac{1}{3}
            polynomial() = default;
            polynomial(const vi& v) : vi(v) {}
 5
6
7
8
9
            polynomial(vi&& v) : vi(std::move(v)) {}
            int degree() { return size() - 1; }
            void clearzero() {
10
                 while (size() && !back()) pop_back();
11
12
      };
13
14
15
      polynomial& operator+=(polynomial& a, const polynomial& b) {
   a.resize(std::max(a.size(), b.size()), 0);
   for (int i = 0; i < b.size(); i++) {</pre>
16
17
18
                  Add(a[i], b[i]);
19
\begin{array}{c} 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \end{array}
            a.clearzero();
            return a;
      polynomial operator+(const polynomial& a, const polynomial& b) {
            polynomial ans = a;
            return ans += b;
\overline{27}
28
     polynomial& operator-=(polynomial& a, const polynomial& b) {
   a.resize(std::max(a.size(), b.size()), 0);
   for (int i = 0; i < b.size(); i++) {</pre>
29
30
31
32
                  Sub(a[i], b[i]);
33
34
35
36
            a.clearzero();
            return a;
      }
37
38
      polynomial operator-(const polynomial& a, const polynomial& b) {
39
            polynomial ans = a;
40
            return ans -= b;
41
42
43
      class ntt_t {
          public:
44
45
            static const int maxbit = 22;
            static const int sz = 1 << maxbit;
static const int mod = 998244353;</pre>
46
47
48
            static const int g = 3;
49
            std::array<int, sz + 10> w;
std::array<int, maxbit + 10> len_inv;
50 \\ 51 \\ 52 \\ 53 \\ 54
            ntt_t() {
                 int wn = pow(g, (mod - 1) >> maxbit);
                 w[0] = 1;
for (int i = 1; i <= sz; i++) {
55
56
57
                        w[i] = mul(w[i - 1], wn);
58
                 len_inv[maxbit] = pow(sz, mod - 2);
for (int i = maxbit - 1; ~i; i--) {
59
60
                        len_inv[i] = add(len_inv[i + 1], len_inv[i + 1]);
61
62
63
            }
64
            void operator()(vi& v, int& n, int type) {
   int bit = 0;
   while ((1 << bit) < n) bit++;
   int tot = (1 << bit);</pre>
65
66
67
68
                  v.resize(tot, 0);
69
70
                 vi rev(tot);
71
                 n = tot;
72
                 for (int i = 0; i < tot; i++) {</pre>
```

```
73
74
75
76
77
78
79
                         rev[i] = rev[i >> 1] >> 1;
                         if (i & 1) {
    rev[i] |= tot >> 1;
                   for (int i = 0; i < tot; i++) {</pre>
                         if (i < rev[i]) {</pre>
80
                               std::swap(v[i], v[rev[i]]);
81
82
                   for (int midd = 0; (1 << midd) < tot; midd++) {
   int mid = 1 << midd;</pre>
 83
 84
                        int len = mid << 1;
for (int i = 0; i < tot; i += len) {
    for (int j = 0; j < mid; j++) {
        int w0 = v[i + j];
    }
}</pre>
 85
 86
 87
 88
 89
                                     int w1 = mul(
                                           w[type == 1 ? (j << maxbit - midd - 1) : (len - j << maxbit - midd - 1)],
 90
                                    v[i + j + mid]);
v[i + j] = add(w0, w1);
v[i + j + mid] = sub(w0, w1);
 91
92
93
94
                              }
                         }
95
96
                   if (type == -1) {
97
 98
                        for (int i = 0; i < tot; i++) {</pre>
                              v[i] = mul(v[i], len_inv[bit]);
99
100
101
                   }
102
       } NTT;
103
```

乘法

```
polynomial& operator*=(polynomial& a, const polynomial& b) {
          if (!a.size() || !b.size()) {
 3
               a.resize(0);
 4
               return a;
 5
 6
7
          polynomial tmp = b;
int deg = a.size() + b.size() - 1;
int temp = deg;
 8 9
10
          // 项数较小直接硬算
11
12
          if ((LL) a.size() * (LL) b.size() <= (LL) deg * 50LL) {</pre>
13
               tmp.resize(0);
14
               tmp.resize(deg, 0);
               for (int i = 0; i < a.size(); i++) {
    for (int j = 0; j < b.size(); j++) {
        tmp[i + j] = add(tmp[i + j], mul(a[i], b[j]));
}</pre>
15
16
17
18
19
               }
20
               a = tmp;
\frac{20}{21}
               return a;
\overline{22}
23
24
          // 项数较多跑 NTT
25
26
          NTT(a, deg, 1);
27
          NTT(tmp, deg, 1);
for (int i = 0; i < deg; i++) {
28
29
               Mul(a[i], tmp[i]);
30
31
          NTT(a, deg, -1);
32
          a.resize(temp);
33
          return a;
34
     }
35
36
     polynomial operator*(const polynomial& a, const polynomial& b) {
          polynomial ans = a;
37
38
          return ans *= b;
39
     }
```

逆

```
polynomial inverse(const polynomial& a) {
   polynomial ans({pow(a[0], mod - 2)});
```

```
3
          polynomial temp;
 4
5
          polynomial tempa;
          int deg = a.size();
for (int i = 0; (1 << i) < deg; i++) {
 6
7
               tempa.resize(0);
 8
               tempa.resize(1 << i << 1, 0);
 9
               for (int j = 0; j != tempa.size() and j != deg; j++) {
   tempa[j] = a[j];
10
11
               temp = ans * (polynomial({2}) - tempa * ans);
12
               if (temp.size() > (1 << i << 1)) {
   temp.resize(1 << i << 1, 0);</pre>
13
14
15
16
               temp.clearzero();
17
               std::swap(temp, ans);
18
19
          ans.resize(deg);
20
          return ans;
21
     }
```

对数

```
polynomial diffrential(const polynomial& a) {
 \begin{array}{c} 2\\ 3\\ 4\\ 5 \end{array}
          if (!a.size()) {
               return a;
          polynomial ans(vi(a.size() - 1));
          for (int i = 1; i < a.size(); i++) {
    ans[i - 1] = mul(a[i], i);</pre>
 6
7
 8
          return ans;
10
11
     polynomial integral(const polynomial& a) {
12
          polynomial ans(vi(a.size() + 1));
for (int i = 0; i < a.size(); i++) {
13
14
               ans[i + 1] = mul(a[i], pow(i + 1, mod - 2));
15
16
17
          return ans;
18
     }
19
20
21
     polynomial ln(const polynomial& a) {
          int deg = a.size();
22
          polynomial da = diffrential(a);
23
          polynomial inva = inverse(a);
24
          polynomial ans = integral(da * inva);
25
          ans.resize(deg);
\frac{1}{26}
          return ans;
     }
```

指数

```
polynomial exp(const polynomial& a) {
           polynomial ans({1});
 \begin{array}{c}2\\3\\4\\5\\6\\7\end{array}
           polynomial temp;
           polynomial tempa;
           polynomial tempaa;
           int deg = a.size();
for (int i = 0; (1 << i) < deg; i++) {</pre>
 8
                 tempa.resize(0);
                 tempa.resize(1 << i << 1, 0);
for (int j = 0; j != tempa.size() and j != deg; j++) {
   tempa[j] = a[j];
}</pre>
10
11
12
13
                 tempaa = ans;
14
                 tempaa.resize(1 << i << 1);</pre>
                 temp = ans * (tempa + polynomial({1}) - ln(tempaa));
if (temp.size() > (1 << i << 1)) {</pre>
15
16
                       temp.resize(1 << i << 1, 0);
17
18
19
                 temp.clearzero();
\frac{20}{21}
                 std::swap(temp, ans);
22
           ans.resize(deg);
23
           return ans:
24
```

6.4 wsy poly 55

根号

```
polynomial sqrt(polynomial& a)
           polynomial ans({cipolla(a[0])});
 3 4
           if (ans[0] == -1) return ans;
           polynomial temp;
 5
           polynomial tempa;
           polynomial tempa,
polynomial tempaa;
int deg = a.size();
for (int i = 0; (1 << i) < deg; i++) {</pre>
 6
 7
 8
                tempa.resize(0);
tempa.resize(1 << i << 1, 0);
for (int j = 0; j != tempa.size() and j != deg; j++) {
    tempa[j] = a[j];</pre>
 9
10
11
12
13
14
                tempaa = ans;
15
                tempaa.resize(1 << i << 1);
                temp = (tempa * inverse(tempaa) + ans) * inv2;
if (temp.size() > (1 << i << 1)) {</pre>
16
                      temp.resize(1 << i << 1, 0);
18
19
20
                temp.clearzero();
21
                std::swap(temp, ans);
22
23
           ans.resize(deg);
24
           return ans;
25
     }
26
      // 特判 //
27
28
\overline{29}
     int cnt = 0;
for (int i = 0; i < a.size(); i++) {
    if (a[i] == 0) {</pre>
30
31
32
                cnt++;
33
           } else {
34
                break;
35
36
37
      if (cnt) {
38
           if (cnt == n) {
                for (int i = 0; i < n; i++) {
    std::cout << "0";
39
40
41
42
                std::cout << endl;
43
                return 0;
44
           if (cnt & 1) {
45
                std::cout << "-1" << endl;
46
47
                return 0;
48
49
           polynomial b(vi(a.size() - cnt));
           for (int i = cnt; i < a.size(); i++) {
   b[i - cnt] = a[i];</pre>
50
51
52
53
           a = b;
54
55
     a.resize(n - cnt / 2);
     a = sqrt(a);
if (a[0] == -1) {
56
57
           std::cout << "-1" << endl;
58
59
           return 0;
60
      }
61
     reverse(all(a));
62
     a.resize(n);
63
     reverse(all(a));
```

6.4 wsy poly

```
#include <bits/stdc++.h>

using ul = std::uint32_t;
using li = std::int32_t;
using ll = std::int64_t;
using ull = std::uint64_t;
using ull = std::uint64_t;
using llf = long double;
using lf = double;
using vul = std::vector;
using vul = std::vector<vul>;
using vul = std::vector<vul>;
using vulb = std::vector<vul>;
```

```
14
      using vb = std::vector<bool>;
 15
 16
       const ul base = 998244353;
 17
 18
      std::mt19937 rnd;
 19

  \begin{array}{c}
    20 \\
    21 \\
    22
  \end{array}

      ul plus(ul a, ul b) { return a + b < base ? a + b : a + b - base; }
      ul minus(ul a, ul b) { return a < b ? a + base - b : a - b; }
 23
 \frac{24}{25}
      ul mul(ul a, ul b) { return ull(a) * ull(b) % base; }
 26
       void exgcd(li a, li b, li& x, li& y) {
 \overline{27}
           exgcd(b, a % b, y, x);
y -= x * (a / b);
} else {
            if (b) {
 \frac{1}{28}
 29
 30
31
32
33
34
                 x = 1;
                 y = \bar{0};
            }
      }
 35
 36
      ul inverse(ul a) {
 37
            li x, y;
exgcd(a, base, x, y);
return x < 0 ? x + li(base) : x;</pre>
 38
 39
 40
 41
 42
      ul pow(ul a, ul b) {
 43
            ul ret = 1;
            ul temp = a;
while (b) {
    if (b & 1) {
 44
 45
 46
 47
                      ret = mul(ret, temp);
 48
 49
                 temp = mul(temp, temp);
 50
                 b > > = 1;
 51
 52
            return ret;
 53
54
 55
 56
      ul sqrt(ul x) {
 57
            ula;
 58
            ul w2;
 59
            while (true) {
    a = rnd() % base;
 60
                 w2 = minus(mul(a, a), x);
if (pow(w2, base - 1 >> 1) == base - 1) {
 61
 62
63
                       break;
                 }
 64
 65
 66
            ul b = base + 1 >> 1;
            ul rs = 1, rt = 0;
ul as = a, at = 1;
 67
 68
            ul qs, qt;
while (b) {
 69
 70
71
72
73
74
75
76
77
78
79
80
                 if (b & 1) {
                       qs = plus(mul(rs, as), mul(mul(rt, at), w2));
qt = plus(mul(rs, at), mul(rt, as));
                      rs = qs;
                      rt = qt;
                 b >>= 1;
                 qs = plus(mul(as, as), mul(mul(at, at), w2));
                 qt = plus(mul(as, at), mul(as, at));
                 as = qs;
 81
82
83
84
                 at = qt;
            return rs + rs < base ? rs : base - rs;</pre>
 85
 86
      ul log(ul x, ul y, bool inited = false) {
 87
            static std::map<ul, ul> bs;
 88
            const ul d = std::round(std::sqrt(lf(base - 1)));
 89
            if (!inited) {
                 bs.clear();
for (ul i = 0, j = 1; i != d; ++i, j = mul(j, x)) {
 90
 91
                       bs[j] = i;
 92
 93
 94
 95
            ul temp = inverse(pow(x, d));
for (ul i = 0, j = 1;; i += d, j = mul(j, temp)) {
    auto it = bs.find(mul(y, j));
 96
 97
                 if (it != bs.end()) {
 98
 99
                       return it->second + i;
100
                 }
```

6.4 wsy poly 57

```
101
            }
102
      }
103
104
      ul powroot(ul x, ul y, bool inited = false) {
   const ul g = 3;
   ul lgx = log(g, x, inited);
105
106
            li s, t;
exgcd(y, base - 1, s, t);
if (s < 0) {</pre>
107
108
109
110
                 s += base - 1;
111
112
            return pow(g, ull(s) * ull(lgx) % (base - 1));
113
      }
114
115
       class polynomial : public vul {
116
            void clearzero() {
   while (size() && !back()) {
117
118
119
                      pop_back();
120
121
            polynomial() = default;
122
            polynomial(const vul& a) : vul(a) {}
123
            polynomial(vul&& a) : vul(std::move(a)) {}
ul degree() const { return size() - 1; }
124
125
126
            ul operator()(ul x) const {
                 ul ret = 0;
127
                 for (ul i = size() - 1; ~i; --i) {
    ret = mul(ret, x);
128
129
130
                      ret = plus(ret, vul::operator[](i));
131
132
                 return ret;
133
            }
134
      };
135
      polynomial& operator+=(polynomial& a, const polynomial& b) {
   a.resize(std::max(a.size(), b.size()), 0);
   for (ul i = 0; i != b.size(); ++i) {
136
137
138
                 a[i] = plus(a[i], b[i]);
139
140
            a.clearzero();
141
142
            return a;
143
      }
144
145
      polynomial operator+(const polynomial& a, const polynomial& b) {
146
            polynomial ret = a;
147
            return ret += b;
148
       }
149
      polynomial& operator==(polynomial& a, const polynomial& b) {
   a.resize(std::max(a.size(), b.size()), 0);
   for (ul i = 0; i != b.size(); ++i) {
150
151
152
153
                 a[i] = minus(a[i], b[i]);
154
155
            a.clearzero();
156
            return a;
157
       }
158
159
      polynomial operator-(const polynomial& a, const polynomial& b) {
160
            polynomial ret = a;
161
            return ret -= b;
      }
162
163
164
       class ntt_t {
            public:
static const ul lgsz = 20;
165
166
            static const ul sz = 1 << lgsz;</pre>
167
            static const ul g = 3;
168
            ul w[sz + 1];
ul leninv[lgsz + 1];
169
170
171
            ntt_t() {
172
                 ul_{\underline{u}} = pow(g, (base - 1) >> lgsz);
                 w[0] = 1;
173
174
                 for (ul i = 1; i <= sz; ++i) {</pre>
175
                      w[i] = mul(w[i - 1], wn);
176
                 leninv[lgsz] = inverse(sz);
for (ul i = lgsz - 1; ~i; --i) {
    leninv[i] = plus(leninv[i + 1], leninv[i + 1]);
177
178
179
180
181
182
            void operator()(vul& v, ul& n, bool inv) {
183
                 ul lgn = 0;
while ((1 << lgn) < n) {
184
185
                      ++lgn;
186
187
                 n = 1 \ll lgn;
```

```
188
                 v.resize(n, 0);
                 for (ul i = 0, j = 0; i != n; ++i) {
    if (i < j) {</pre>
189
190
191
                           std::swap(v[i], v[j]);
192
193
                      ul k = n >> 1;
                      while (k & j) {
194
                           j &= ~k;
k >>= 1;
195
196
197
                      j |= k;
198
199
                 for (ul lgmid = 0; (1 << lgmid) != n; ++lgmid) {
   ul mid = 1 << lgmid;</pre>
200
201
202
                      ul len = mid << 1;
                      for (ul i = 0; i != n; i += len) {
  for (ul j = 0; j != mid; ++j) {
    ul t0 = v[i + j];
203
204
205
206
                                ul t1 =
                                     mul(w[inv ? (len - j << lgsz - lgmid - 1) : (j << lgsz - lgmid - 1)],
    v[i + j + mid]);</pre>
207
208
                                v[i + j] = plus(t0, t1);
v[i + j + mid] = minus(t0, t1);
209
210
211
212
                      }
213
214
                 if (inv) {
\overline{215}
                      for (ul i = 0; i != n; ++i) {
216
                           v[i] = mul(v[i], leninv[lgn]);
217
218
                 }
219
           }
220
      } ntt;
221
      polynomial& operator*=(polynomial& a, const polynomial& b) {
   if (!b.size() || !a.size()) {
222
223
224
225
                 a.resize(0);
                return a;
226
227
           polynomial temp = b;
            ul npmp1 = a.size() + b.size() - 1;
228
\frac{1}{229}
            if (ull(a.size()) * ull(b.size()) <= ull(npmp1) * ull(50)) {</pre>
230
                 temp.resize(0);
231
                 temp.resize(npmp1, 0);
                for (ul i = 0; i != a.size(); ++i) {
   for (ul j = 0; j != b.size(); ++j) {
      temp[i + j] = plus(temp[i + j], mul(a[i], b[j]));
}
232
233
234
235
236
                }
237
                 a = temp;
\frac{1}{238}
                 a.clearzero();
239
                return a;
240
241
           ntt(a, npmp1, false);
           ntt(temp, npmp1, false);
for (ul i = 0; i != npmp1; ++i) {
242
243
244
                 a[i] = mul(a[i], temp[i]);
245
246
           ntt(a, npmp1, true);
247
           a.clearzero();
248
           return a;
249 }
\frac{1}{250}
251
252
253
      polynomial operator*(const polynomial& a, const polynomial& b) {
           polynomial ret = a;
            return ret *= b;
254
\frac{1}{255}
25\underline{6}
      polynomial& operator*=(polynomial& a, ul b) {
257
           if (!b) {
258
                a.resize(0);
259
                return a;
260
261
           for (ul i = 0; i != a.size(); ++i) {
262
                a[i] = mul(a[i], b);
263
264
           return a;
265
      }
266
267
      polynomial operator*(const polynomial& a, ul b) {
   polynomial ret = a;
268
269
            return ret *= b;
270
271
272
      polynomial inverse(const polynomial& a, ul lgdeg) {
273
           polynomial ret({inverse(a[0])});
274
           polynomial temp;
```

6.4 wsy poly 59

```
275
           polynomial tempa;
276
           for (ul i = 0; i != lgdeg; ++i) {
277
                tempa.resize(0);
                tempa.resize(1 << i << 1, 0);
278
                for (ul j = 0; j != tempa.size() && j != a.size(); ++j) {
   tempa[j] = a[j];
279
280
281
                temp = ret * (polynomial({2}) - tempa * ret);
if (temp.size() > (1 << i << 1)) {
    temp.resize(1 << i << 1, 0);
}</pre>
282
283
284
285
286
                temp.clearzero();
287
                std::swap(temp, ret);
288
289
           return ret;
290
      }
291
      void quotientremain(const polynomial& a, polynomial b, polynomial& q, polynomial& r) {
   if (a.size() < b.size()) {</pre>
292
293
294
                q = polynomial();
295
                r = std::move(a);
296
                return;
297
298
           std::reverse(b.begin(), b.end());
299
           auto ta = a;
           std::reverse(ta.begin(), ta.end());
300
           ul n = a.size() - 1;
ul m = b.size() - 1;
301
302
303
           ta.resize(n - m + 1);
304
           ul lgnmmp1 = 0;
           while ((1 << lgnmmp1) < n - m + 1) {
305
                ++lgnmmp1;
306
307
           }
308
           q = ta * inverse(b, lgnmmp1);
309
           q.resize(n - m + 1);
           std::reverse(b.begin(), b.end());
310
311
           std::reverse(q.begin(), q.end());
312
           r = a - b * q;
313
      }
314
315
      polynomial mod(const polynomial& a, const polynomial& b) {
316
           polynomial q, r;
317
           quotientremain(a, b, q, r);
318
           return r;
319
      }
320
321
      polynomial quotient(const polynomial& a, const polynomial& b) {
322
           polynomial q, r;
323
           quotientremain(a, b, q, r);
324
           return q;
325
      }
326
327
      polynomial sqrt(const polynomial& a, ul lgdeg) {
328
           polynomial ret({sqrt(a[0])});
329
           polynomial temp;
330
           polynomial tempa;
for (ul i = 0; i != lgdeg; ++i) {
331
332
                tempa.resize(0);
333
                tempa.resize(1 << i << 1, 0);
                for (ul j = 0; j != tempa.size() && j != a.size(); ++j) {
   tempa[j] = a[j];
334
335
336
                temp = (tempa * inverse(ret, i + 1) + ret) * (base + 1 >> 1);
if (temp.size() > (1 << i << 1)) {</pre>
337
338
                    temp.resize(1 << i << 1, 0);
339
340
341
                temp.clearzero();
342
                std::swap(temp, ret);
343
344
           return ret;
345
346
347
      polynomial diffrential(const polynomial& a) {
348
           if (!a.size()) {
349
               return a:
350
351
           polynomial ret(vul(a.size() - 1, 0));
           for (ul i = 1; i != a.size(); ++i) {
    ret[i - 1] = mul(a[i], i);
352
353
354
355
           return ret;
      }
356
357
358
      polynomial integral(const polynomial& a) {
           polynomial ret(vul(a.size() + 1, 0));
for (ul i = 0; i != a.size(); ++i) {
359
360
361
                ret[i + 1] = mul(a[i], inverse(i + 1));
```

```
362
363
           return ret;
364
365
      polynomial ln(const polynomial& a, ul lgdeg) {
   polynomial da = diffrential(a);
366
367
           polynomial da = difficultation;
polynomial inva = inverse(a, lgdeg);
polynomial ret = integral(da * inva);
if (ret.size() > (1 << lgdeg)) {
    ret.resize(1 << lgdeg);</pre>
368
369
370
371
372
                ret.clearzero();
373
           }
374
           return ret;
      }
375
376
      polynomial exp(const polynomial& a, ul lgdeg) {
    polynomial ret({1});
377
378
379
           polynomial temp;
           polynomial tempa;
380
381
            for (ul i = 0; i != lgdeg; ++i) {
                tempa.resize(0);
382
                tempa.resize(1 << i << 1, 0);
for (ul j = 0; j != tempa.size() && j != a.size(); ++j) {
    tempa[j] = a[j];
}</pre>
383
384
385
386
387
                 temp = ret * (polynomial({1}) - ln(ret, i + 1) + tempa);
                if (temp.size() > (1 << i << 1)) {
    temp.resize(1 << i << 1, 0);</pre>
388
389
390
391
                temp.clearzero();
392
                std::swap(temp, ret);
393
394
           return ret:
395
396
      polynomial pow(const polynomial& a, ul k, ul lgdeg) { return exp(ln(a, lgdeg) * k, lgdeg); }
397
398
      polynomial alpi[1 << 16][17];</pre>
399
400
401
      polynomial getalpi(const ul x[], ul l, ul lgrml) {
402
            if (lgrml == 0) {
403
                return alpi[l][lgrml] = vul({minus(0, x[1]), 1});
404
           return alpi[1][lgrml] = getalpi(x, 1, lgrml - 1) * getalpi(x, 1 + (1 << lgrml - 1), lgrml - 1);</pre>
405
406
407
      void multians(const polynomial& f, const ul x[], ul y[], ul l, ul lgrml) {
408
           if (f.size() <= 700) {
   for (ul i = 1; i != 1 + (1 << lgrml); ++i) {</pre>
409
410
                      y[i] = f(x[i]);
411
                }
412
413
                return;
414
415
            if (lgrml == 0) {
416
                y[1] = f(x[1]);
417
418
           multians(mod(f, alpi[1][lgrml - 1]), x, y, 1, lgrml - 1);
multians(mod(f, alpi[1 + (1 << lgrml - 1)][lgrml - 1]), x, y, 1 + (1 << lgrml - 1), lgrml - 1);</pre>
419
420
421
422
423
      ul sqrt(ul x) {
424
           ul a;
425
           ul w2;
426
           while (true) {
    a = rnd() % base;
427
428
                w2 = minus(mul(a, a), x);
429
                if (pow(w2, base - 1 >> 1) == base - 1) {
430
                      break;
431
432
433
           ul b = base + 1 >> 1;
434
           ul rs = 1, rt = 0;
           ul as = a, at = 1;
435
436
           ul qs, qt;
while (b) {
437
                if (b & 1) {
438
439
                      qs = plus(mul(rs, as), mul(mul(rt, at), w2));
                      qt = plus(mul(rs, at), mul(rt, as));
440
441
                      rs = qs;
442
                      rt = qt;
443
444
445
                 qs = plus(mul(as, as), mul(mul(at, at), w2));
                 qt = plus(mul(as, at), mul(as, at));
446
447
                as = qs;
                at = qt;
448
```

 $6.4 \quad \text{wsy poly}$

```
449
450
           return rs + rs < base ? rs : base - rs;
451
      }
452
      ul log(ul x, ul y, bool inited = false) {
    static std::map<ul, ul> bs;
453
454
455
           const ul d = std::round(std::sqrt(lf(base - 1)));
           if (!inited) {
456
                bs.clear();
for (ul i = 0, j = 1; i != d; ++i, j = mul(j, x)) {
457
458
459
                     bs[j] = i;
460
461
           ul temp = inverse(pow(x, d));
for (ul i = 0, j = 1;; i += d, j = mul(j, temp)) {
462
463
464
                auto it = bs.find(mul(y, j));
                if (it != bs.end()) {
465
466
                     return it->second + i;
467
468
           }
469
      }
\begin{array}{c} 470 \\ 471 \end{array}
      ul powroot(ul x, ul y, bool inited = false) {
           const ul g = 3;
ul lgx = log(g, x, inited);
472
473
474
           li s, t;
           exgcd(y, base - 1, s, t);
if (s < 0) {
475
476
477
                s += base - 1;
478
479
           return pow(g, ull(s) * ull(lgx) % (base - 1));
480
      }
481
482
      ul n;
483
484
      int main() {
485
           std::scanf("%u", &n);
486
           polynomial f;
487
           for (ul i = 0; i <= n; ++i) {
488
                ul t;
                std::scanf("%u", &t);
f.push_back(t % base);
489
490
491
           polynomial g = \exp(\ln(f * inverse(f[0]), 17) * inverse(3), 17) * powroot(f[0], 3); while (g.size() \le n) {
492
493
                g.push_back(0);
494
495
           for (ul i = 0; i <= n; ++i) {
    if (i) {</pre>
496
497
                     std::putchar(' ');
498
499
500
                std::printf("%u", g[i]);
501
502
           std::putchar('\n');
503
           return 0;
504
```

Lagrange interpolation

一般的插值

给出一个多项式 f(x) 上的 n 个点 (x_i, y_i) , 求 f(k).

插值的结果是

$$f(x) = \sum_{i=1}^{n} y_i \prod_{j \neq i} \frac{x - x_j}{x_i - x_j},$$

直接带入 k 并且取模即可, 时间复杂度 $O(n^2)$.

```
10 | Add(ans, mul(s1, quick_power(s2, mod - 2, mod)));
11 | }
12 | return ans;
13 |};
```

坐标连续的插值

给出的点是 (i, y_i) .

$$f(x) = \sum_{i=1}^{n} y_{i} \prod_{j \neq i} \frac{x - x_{j}}{x_{i} - x_{j}}$$

$$= \sum_{i=1}^{n} y_{i} \prod_{j \neq i} \frac{x - j}{i - j}$$

$$= \sum_{i=1}^{n} y_{i} \cdot \frac{\prod_{j=1}^{n} (x - j)}{(x - i)(-1)^{n+1-i}(i - 1)!(n + 1 - i)!}$$

$$= \left(\prod_{j=1}^{n} (x - j)\right) \left(\sum_{i=1}^{n} \frac{(-1)^{n+1-i}y_{i}}{(x - i)(i - 1)!(n + 1 - i)!}\right),$$

时间复杂度为 O(n).

7 math - game theory

7.1 nim game

若 nim 和为 0, 则先手必败.

暴力打表.

```
1 vi SG(21, -1); /* 记忆化 */
std::function<int(int, int)> sg = [&](int x) -> int {
    if (/* 为最终态 */) return SG[x] = 0;
    if (SG[x] != -1) return SG[x];
    vi st;
    for (/* 枚举所有可到达的状态 y */) {
        st.push_back(sg(y));
    }
    std::sort(all(st));
    for (int i = 0; i < st.size(); i++) {
        if (st[i] != i) return SG[x] = i;
    }
    return SG[x] = st.size();
}
```

7.2 anti - nim game

若

- 1. 所有堆的石子均为一个, 且 nim 和不为 0,
- 2. 至少有一堆石子超过一个, 且 nim 和为 0,

则先手必败.

8 math - linear algebra

8.1 matrix

determinant mod 998244353

```
auto det = [&](int n, vvi e) -> int {
            2
 \begin{array}{c} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{array}
                                       for (int k = i; k <= n; k++) {
                                             std::swap(a[i][k], a[j][k]);
10
                                       ans = sub(mod, ans);
11
                                       break;
12
13
                         }
14
15
                   if (a[i][i] == 0) return 0;
                   Mul(ans, a[i][i]);
16
                   int x = pow(a[i][i], mod - 2);
17
18
                   for (int k = i; k <= n; k++) {
19
                         Mul(a[i][k], x);

  \begin{array}{c}
    20 \\
    21 \\
    22
  \end{array}

                   for (int j = i + 1; j <= n; j++) {
   int x = a[j][i];
   for (int k = i; k <= n; k++) {
      Sub(a[j][k], mul(a[i][k], x));
}</pre>
\frac{23}{24}
25
26
27
                   }
\overline{28}
             return ans;
\overline{29}
      };
```

matrix multiplication

 $A_{n \times m}$ 与 $B_{m \times k}$ 相乘并模 998244353.

8.2 linear basis

```
vi p(35);
auto add_basis = [&](int x) {
    for (int i = 31; i >= 0; i--) {
        if (~(x >> i) & 1) continue;
        if (!p[i]) {
            p[i] = x;
            break;
        }
        x ^= p[i];
    }
}
```

8.3 linear programming

9 complex number

```
tandu struct Comp {

  \begin{array}{c}
    2 \\
    3 \\
    4 \\
    5 \\
    6 \\
    7 \\
    8 \\
    9
  \end{array}

         T a, b;
         Comp(T _a = 0, T _b = 0) { a = _a, b = _b; }
         Comp operator+(const Comp& x) const { return Comp(a + x.a, b + x.b); }
         Comp operator-(const Comp& x) const { return Comp(a - x.a, b - x.b); }
10
         Comp operator*(const Comp& x) const { return Comp(a * x.a - b * x.b, a * x.b + b * x.a); }
11
12
         bool operator==(const Comp& x) const { return a == x.a and b == x.b; }
13
14
         T real() { return a; }
15
         T imag() { return b; }
16
17
18
         U norm() { return (U) a * a + (U) b * b; }
19
20
21
         Comp conj() { return Comp(a, -b); }
\overline{22}
         Comp operator/(const Comp& x) const {
\frac{1}{23}
             Comp y = x;
Comp c = Comp(a, b) * y.conj();
24
25
             T d = y.norm();
return Comp(c.a / d, c.b / d);
26
27
28
    };
29
30
     typedef Comp<LL, LL> complex;
31
     complex gcd(complex a, complex b) {
         LL d = b.norm();
if (d == 0) return a;
33
34
35
         std::vector<complex> v(4);
         36
37
38
39
40
41
         v[3] = v[0] + complex(1, 1);
42
         for (auto& x : v) {
43
             x = a - x * b;
44
45
         std::sort(all(v), [&](complex a, complex b) { return a.norm() < b.norm(); });</pre>
46
         return gcd(b, v[0]);
    };
47
```

66 10 GRAPH

10 graph

10.1 topsort

```
vi top;

  \begin{array}{c}
    1 \\
    2 \\
    3 \\
    4 \\
    5 \\
    6 \\
    7
  \end{array}

       auto top_sort = [&]() -> bool {
               vi d(n + 1);
               std::queue<int> q;
for (int i = 1; i <= n; i++) {
    d[i] = e[i].size();</pre>
                      if (!d[i]) q.push(i);
 8 9
               while (!q.empty()) {
   int u = q.front();
10
                      q.pop();
11
\frac{12}{13}
                      top.push_back(u);
for (auto v : e[u]) {
    d[v]--;
14
15
                             if (!d[v]) q.push(v);
16
                      }
17
18
               if (top.size() != n) return false;
19
               return true;
20
       };
```

10.2 shortest path

Floyd

```
auto floyd = [&]() -> vvi {
 vvi dist(n + 1, vi(n + 1, inf));
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= n; j++) {
        Min(dist[i][j], e[i][j]);
    }</pre>
                       dist[i][i] = 0;
               for (int k = 1; k \le n; k++) {
10
                       for (int i = 1; i <= n; i++) {
   for (int j = 1; j <= n; j++) {
      Min(dist[i][j], dist[i][k] + dist[k][j]);
}</pre>
11
12
13
14
                       }
15
               }
16
               return dist;
17
       };
```

Dijkstra

```
auto dijkstra = [&](int s) -> vl {
         vl dist(n + 1, INF);
 \begin{array}{c} 2\\ 3\\ 4\\ 5 \end{array}
         vi vis(n + 1, 0);
         dist[s] = 0;
         6
7
 8 9
             q.pop();
if (vis[u]) continue;
vis[u] = 1;
10
11
12
             for (const auto& [v, w] : e[u]) {
                 if (dist[v] > dis + w) {
    dist[v] = dis + w;
13
14
15
                      q.emplace(dist[v], v);
16
17
             }
18
19
         return dist;
    };
20
```

10.2 shortest path 67

Bellman - Fold

```
int n, m, s;
int dist[N];
    struct node{
       int from, to, w;
    }edge[M];
    void bellman_fold(int s){
       memset(dist, 0x3f, sizeof(dist));
       dist[s] = 0;
for(int i = 1; i <= n; i++){
8
9
           10
11
12
13
14
                  dist[b] = dist[a] + w;
15
16
                  flag = false;
17
19
           if(flag) break;
20
21
    }
```

SPFA

```
int n, m, s;
      vl dist(n + 1, INF);
      std::vector<bool> vis(n + 1);
      std::vector<PLI > e(n + 1);
 6
      void spfa(int s){
           rep(i, 1, n) dist[i] = INF;
dist[s] = 0;
 7
 8
            std::queue<int> q;
10
            q.push(s);
vis[s] = true;
11
            while(q.size()){
12
13
                  auto u = q.front();
                  q.pop();
vis[u] = false;
14
15
                 vis[u] = ialse,
for(auto j : e[u]){
   int v = j.ff; LL w = j.ss;
   if(dist[v] > dist[u] + w){
      dist[v] = dist[u] + w;
}
16
17
18
19
20
                              if(!vis[v]){
21
                                   q.push(v);
22
                                   vis[v] = true;
23
\frac{23}{24}
                       }
25
                 }
26
           }
27
```

Johnson

```
auto johnson = [&]() -> vvl {
            /* 负环 */
           vl dist1(n + 1);
vi vis(n + 1), cnt(n + 1);
auto spfa = [&]() -> bool {
    std::queue<int> q;
 3
 4
 5
6
                 for (int u = 1; u <= n; u++) {
 7
                       q.push(u);
vis[u] = false;
 9
10
                 while (!q.empty()) {
   auto u = q.front();
11
13
                       q.pop();
                      14
15
16
17
                                  Max(cnt[v], cnt[u] + 1);
if (cnt[v] >= n) return true;
if (!vis[v]) {
18
19
20
21
                                        q.push(v);
```

68 10 GRAPH

```
22
                                        vis[v] = true;
\frac{22}{23} 24
                                  }
                             }
25
                       }
26
\overline{27}
                 return false;
28
           };
29
30
            /* dijkstra */
31
32
            vl dist2(n + 1);
            auto dijkstra = [&](int s) {
33
34
                 for (int u = 1; u <= n; u++) {
    dist2[u] = 1e9;</pre>
35
                       vis[u] = false;
36
                 std::priority_queue<PLI, std::vector<PLI>, std::greater<PLI>> q;
q.emplace(0, s);
37
38
39
                 while (!q.empty()) {
    auto [d, u] = q.top();
40
41
42
                       q.pop();
43
                       if (vis[u]) continue;
44
                       vis[u] = true;
                       for (const auto& [v, w] : e[u]) {
    if (dist2[v] > d + w) {
45
46
                                   dist2[v] = d + w;
47
                                   q.emplace(dist2[v], v);
48
49
50
51
                 }
52
53
54
55
           };
           if (spfa()) return vvl{};
for (int u = 1; u <= n; u++) {
   for (auto& [v, w] : e[u]) {
      w += dist1[u] - dist1[v];
}</pre>
56
57
58
59
           }
60
           vvl dist(n + 1, vl(n + 1));
61
           for (int u; u <= n; u++) {</pre>
                 dijkstra(u);
62
                 for (int v = 1; v <= n; v++) {
    if (dist2[v] == 1e9) {
63
64
                             dist[u][v] = INF;
65
66
                       } else {
                             dist[u][v] = dist2[v] + dist1[v] - dist1[u];
67
68
69
                 }
70
71
           return dist;
72
```

最短路计数 - Dijkstra

```
auto dijkstra = [&](int s) -> std::pair<vl, vi> {
            vl dist(n + 1, INF);
vi cnt(n + 1), vis(n + 1);
 3
            dist[s] = 0;
cnt[s] = 1;
 \begin{array}{c} 4\\5\\6\\7\end{array}
            std::priority_queue<PLI, std::vector<PLI>, std::greater<PLI>> q;
q.emplace(OLL, s);
 8 9
            while (!q.empty()) {
                  auto [dis, u] = q.top();
                  q.pop();
if (vis[u]) continue;
10
11
12
                  vis[u] = 1;
13
                  for (const auto& [v, w] : e[u]) {
14
                        if (dist[v] > dis + w) {
                              dist[v] = dis + w;
cnt[v] = cnt[u];
15
16
                              q.push({dist[v], v});
17
18
                        } else if (dist[v] == dis + w) {
                              // cnt[v] += cnt[u];
cnt[v] += cnt[u];
cnt[v] %= 100003;
19

  \begin{array}{c}
    20 \\
    21 \\
    22
  \end{array}

23
                  }
24
25
            return {dist, cnt};
26
      };
```

10.2 shortest path 69

最短路计数 - Floyd

```
auto floyd() = [&] -> std::pair<vvi, vvi> {
  3
                     vvi dist(n + 1, vi(n + 1, inf));
                    vvi cnt(n + 1, vi(n + 1));
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= n; j++) {
        Min(dist[i][j], e[i][j]);
    }</pre>
  4
  5
  6
  7
                               dist[i][i] = 0;
  8
  9
10
                     for (int k = 1; k <= n; k++) {</pre>
11
                               for (int i = 1; i <= n; i++) {</pre>
                                        for (int j = 1; j <= n; j++) {
   if (dist[i][j] == dist[i][k] + dist[k][j]) {
      cnt[i][j] += cnt[i][k] * cnt[k][j];
   } else if (dist[i][j] > dist[i][k] + dist[k][j]) {
      cnt[i][j] = cnt[i][k] * cnt[k][j];
      cnt[i][j] = cnt[i][k] * cnt[k][j];
      cnt[i][j] = cnt[i][h] * cnt[k][j];
      cnt[i][i] = cnt[i][h] * cnt[k][i].
12
13
14
15
16
                                                              dist[i][j] = dist[i][k] + dist[k][j];
17
18
                                                   }
19
                                         }
                               }
20
21
22
                     return {dist, cnt};
23
           };
```

负环

判断的是最短路长度.

```
auto spfa = [&]() -> bool {
 2
              std::queue<int> q;
 3
              vi vis(n + 1), cnt(n + 1);
for (int i = 1; i <= n; i++) {
 4
 5
                     q.push(i);
 6
                     vis[i] = true;
              while (!q.empty()) {
 9
                    auto u = q.front();
                     q.pop();
10
                    q.pop();
vis[u] = false;
for (const auto& [v, w] : e[u]) {
    if (dist[v] > dist[u] + w) {
        dist[v] = dist[u] + w;
        cnt[v] = cnt[u] + 1;
    if (cnt[v] >= n) return to
11
12
13
14
15
                                   if (cnt[v] >= n) return true;
if (!vis[v]) {
16
17
18
                                          q.push(v);
19
                                          vis[v] = true;
20
                                   }
21
                            }
22
                     }
23
\overline{24}
              return false;
25
       }
```

分层最短路

有一个 n 个点 m 条边的无向图,你可以选择 k 条道路以零代价通行,求 s 到 t 的最小花费。

```
int main() {
           std::ios::sync_with_stdio(false);
3
           std::cin.tie(0);
\frac{4}{5}
           std::cout.tie(0);
6
7
           int n, m, k, s, t;
std::cin >> n >> m >> k;
std::cin >> s >> t;
 8
           std::vector<PIL>> e(n * (k + 1) + 1);
9
10
           for (int i = 1; i <= m; i++) {</pre>
                 int a, b, c;
std::cin >> a >> b >> c;
11
12
                 e[a].emplace_back(b, c);
13
                 e[b].emplace_back(a, c);
for (int j = 1; j <= k; j++) {
    e[a + (j - 1) * n].emplace_back(b + j * n, 0);</pre>
14
15
```

70 10 GRAPH

```
 \begin{array}{l} e[b+(j-1)*n].emplace\_back(a+j*n,0); \\ e[a+j*n].emplace\_back(b+j*n,c); \\ e[b+j*n].emplace\_back(a+j*n,c); \end{array} 
17
18
19
20
                         }
21
22
                 }
\begin{array}{c} 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \end{array}
                 auto dijkstra = [&](int s) -> vl {};
                 vl dist = dijkstra(s);
LL ans = INF;
for (int i = t; i <= n * (k + 1); i += n) {</pre>
                         Min(ans, dist[i]);
                 std::cout << ans << endl;
                 return 0;
34
        }
```

10.3 minimum spanning tree

Kruskal

```
std::vector<std::tuple<int, int, int>> edge;
auto kruskal = [&]() -> int {
    std::sort(all(edge), [&](std::tuple<int, int, int> a, std::tuple<int, int, int> b) {
        auto [x1, y1, w1] = a;
        auto [x2, y2, w2] = b;
        return w1 < w2;
}</pre>

  \begin{array}{c}
    2 \\
    3 \\
    4 \\
    5 \\
    6 \\
    7 \\
    8 \\
    9
  \end{array}

                 int res = 0, cnt = 0;
for (int i = 0; i < m; i++) {</pre>
10
                         auto [a, b, w] = edge[i];
                         a = find(a), b = find(b);
if (a != b) {
11
12
13
                                 fa[a] = b;
14
                                 res += w;
15
                                  /* res = std::max(res, w); */
16
                                 cnt++;
                         }
17
18
19
                 if (cnt < n - 1) return -1;
20
                 return res;
21
```

10.4 SCC

Tarjan

```
vi dfn(n + 1), low(n + 1), stk(n + 1), belong(n + 1);
int timestamp = 0, top = 0, scc_cnt = 0;
std::vector<bool> in_stk(n + 1);
auto tarjan = [&] (auto&& self, int u) -> void {
    dfn[u] = low[u] = ++timestamp;
    stk[+++ton] = u;
}
  \begin{array}{c} 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array}
                   stk[++top] = u;
                   in_stk[u] = true;
                   for (const auto& v : e[u]) {
  9
                             if (!dfn[v]) {
                            self(self, v);
    Min(low[u], low[v]);
} else if (in_stk[v]) {
    Min(low[u], dfn[v]);
10
11
12
13
14
15
                   if (dfn[u] == low[u]) {
16
\begin{array}{c} 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \end{array}
                            scc_cnt++;
                             int v;
                                      v = stk[top--];
in_stk[v] = false;
                                      belong[v] = scc_cnt;
23
                             } while (v != u);
\overline{24}
                   }
25
         };
```

 $10.5 \quad DCC$

10.4.1 缩点

10.5 DCC

点双连通分量

求点双连通分量.

```
vi dfn(n + 1), low(n + 1), is_bcc(n + 1), stk;
     int timestamp = 0, bcc_cnt = 0, root = 0;
vvi bcc(2 * n + 1);
     std::function<void(int, int)> tarjan = [&](int u, int fa) {
    dfn[u] = low[u] = ++timestamp;
 5
 6
7
          int child = 0;
          stk.push_back(u);
if (u == root and e[u].empty()) {
 8 9
               bcc_cnt++;
10
               bcc[bcc_cnt].push_back(u);
11
               return;
12
13
          for (auto v : e[u]) {
               if (!dfn[v]) {
14
15
                    tarjan(v, u);
                    low[u] = std::min(low[u], low[v]);
16
                    if (low[v] >= dfn[u]) {
17
18
                         child++;
19
                         if (u != root or child > 1) {
20
                              is_bcc[u] = 1;
21
22
                         bcc_cnt++;
23
                         int z;
24
                         do {
25
                             z = stk.back();
                        stk.pop_back();
bcc[bcc_cnt].push_back(z);
} while (z != v);
26
\overline{27}
28
29
                         bcc[bcc_cnt].push_back(u);
                    }
30
31
               } else if (v != fa) {
32
                   low[u] = std::min(low[u], dfn[v]);
33
34
35
     };
36
    for (int i = 1; i <= n; i++) {
         if (!dfn[i]) {
    root = i;
37
38
39
               tarjan(i, i);
40
     }
41
```

求割点.

```
vi dfn(n + 1), low(n + 1), is_bcc(n + 1);
int timestamp = 0, bcc = 0, root = 0;
std::function<void(int, int)> tarjan = [&](int u, int fa) {
    dfn[u] = low[u] = ++timestamp;
 3
 4
 5
           int child = 0;
 6
           for (auto v : e[u]) {
 7
                 if (!dfn[v]) {
 8
                      tarjan(v, u);
low[u] = std::min(low[u], low[v]);
 9
10
                      if (low[v] >= dfn[u]) {
11
                            child++;
                            if ((u != root or child > 1) and !is_bcc[u]) {
13
                                  bcc++;
14
                                  is_bcc[u] = 1;
15
                            }
16
17
                 } else if (v != fa) {
                      low[u] = std::min(low[u], dfn[v]);
18
19
20
21
22
23
           }
     for (int i = 1; i <= n; i++) {</pre>
           if (!dfn[i]) {
24
                root = i;
25
                 tarjan(i, i);
26
27
      }
```

72 10 GRAPH

边双连通分量

求边双连通分量.

```
std::vector<vpi> e(n + 1);
for (int i = 1; i <= m; i++) {</pre>
 2
 \begin{array}{c} 3 \\ 4 \\ 5 \end{array}
           int u, v;
std::cin >> u >> v;
           e[u].emplace_back(v, i);
 6
           e[v].emplace_back(u, i);
     vi dfn(n + 1), low(n + 1), is_ecc(n + 1), fa(n + 1), stk; int timestamp = 0, ecc_ent = 0;
 9
     vvi ecc(2 * n + 1);
std::function<void(int, int)> tarjan = [&](int u, int id) {
10
11
           low[u] = dfn[u] = ++timestamp;
12
           stk.push_back(u);
for (auto [v, idx] : e[u]) {
   if (!dfn[v]) {
13
14
15
                      tarjan(v, idx);
low[u] = std::min(low[u], low[v]);
16
17
                 } else if (idx != id) {
18
                      low[u] = std::min(low[u], dfn[v]);
19
20 \\ 21 \\ 22 \\ 23 \\ 24
            if (dfn[u] == low[u]) {
                 ecc_cnt++;
                 int v;
25
26
27
                 do {
                       v = stk.back();
                       stk.pop_back();
\frac{1}{28}
                       ecc[ecc_cnt].push_back(v);
29
                 } while (v != u);
\frac{23}{30}
           }
32
     for (int i = 1; i <= n; i++) {</pre>
33
           if (!dfn[i]) {
34
                 tarjan(i, 0);
35
36
     }
```

求桥. (可能有诈)

```
vi dfn(n + 1), low(n + 1), is_ecc(n + 1), fa(n + 1);
int timestamp = 0, ecc = 0;
std::function<void(int, int)> tarjan = [&](int u, int faa) {
 3
 4
5
             fa[u] = faa;
             low[u] = dfn[u] = ++timestamp;
for (auto v : e[u]) {
 6
7
                    if (!dfn[v]) {
 8 9
                          tarjan(v, u);
low[u] = std::min(low[u], low[v]);
if (low[v] > dfn[u]) {
10
11
                                 is_ecc[v] = 1;
12
13
14
                    } else if (dfn[v] < dfn[u] && v != faa) {</pre>
15
                          low[u] = std::min(low[u], dfn[v]);
16
17
             }
18
      for (int i = 1; i <= n; i++) {
    if (!dfn[i]) {</pre>
19
20
21
                    tarjan(i, i);
\overline{22}
\frac{22}{23}
      }
```

10.6 two set

给出 n 个集合,每个集合有 2 个元素,已知若干个数对 (a,b),表示 a 与 b 矛盾.要从每个集合各选择一个元素,判断能否一共选 n 个两两不矛盾的元素.

10.7 minimum ring 73

```
\frac{6}{7}
            std::vector<bool> in_stk(2 * n);
 8
9
            auto tarjan = [&](auto&& self, int u) -> void {
                  dfn[u] = low[u] = ++timestamp;
10
                  stk[++top] = u;
                  in_stk[u] = true;
11
                  for (const auto& v : e[u]) {
12
                        if (!dfn[v]) {
13
                             self(self, v);
Min(low[u], low[v]);
14
15
16
                        } else if (in_stk[v]) {
17
                             Min(low[u], dfn[v]);
18
19
20
                  if (dfn[u] == low[u]) {
21
                        scc_cnt++;
                        int v;
22
23
24
                        do {
                             v = stk[top--];
in_stk[v] = false;
belong[v] = scc_cnt;
25
26
\overline{27}
                        } while (v != u);
28
                  }
29
            };
/* end tarjan */
30
31
            for (const auto& [a, b] : v) {
    e[a].push_back(b ^ 1);
    e[b].push_back(a ^ 1);
32
33
34
35
            for (int i = 0; i < 2 * n; i++) {
    if (!dfn[i]) tarjan(tarjan, i);</pre>
36
37
38
39
            vi ans;
           for (int i = 0; i < 2 * n; i += 2) {
   if (belong[i] == belong[i + 1]) return vi{};
   ans.push_back(belong[i] > belong[i + 1] ? i + 1 : i);
40
41
42
43
44
            return ans;
45
      };
```

上述将 i 与 i+1 作为一个集合里的元素, 编号为 0 至 2n-1.

10.7 minimum ring

Floyd

```
auto min_circle = [&]() -> int {
                vvi dist(n + 1, vi(n + 1, inf));
for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= n; j++) {
        Min(dist[i][j], g[i][j]);
}</pre>
 \bar{2}
 3
 5
 6
7
                        dist[i][i] = 0;
 8
9
                for (int k = 1; k <= n; k++) {</pre>
                        for (int i = 1; i < k; i++) {
    for (int j = 1; j < i; j++) {
        Min(ans, dist[i][j] + g[i][k] + g[k][j]);
    }
10
11
12
13
14
                        for (int i = 1; i <= n; i++) {
   for (int j = 1; j <= n; j++) {
      Min(dist[i][j], dist[i][k] + dist[k][j]);
}</pre>
15
16
17
18
19
                        }
20
21
                return ans;
22
        };
```

tree - diameter

10.8 tree - center of gravity

```
/* 点权和 */
    int sum;
     vi size(n + 1), weight(n + 1), w(n + 1), depth(n + 1);
std::array<int, 2> centroid = {0, 0};
 3
     auto get_centroid = [&](auto&& self, int u, int fa) -> void {
 5
           size[u] = w[u];
 6
7
           weight[u] = 0;
           for (auto v : e[u]) {
   if (v == fa) continue;
 8
 9
                self(self, v, u);
size[u] += size[v];
10
                Max(weight[u], size[v]);
11
12
           Max(weight[u], sum - size[u]);
if (weight[u] <= sum / 2) {</pre>
13
14
                centroid[centroid[0] != 0] = u;
15
16
     };
17
```

10.9 tree - DSU on tree

给出一课 n 个节点以 1 为根的树, 每个节点染上一种颜色, 询问以 u 为节点的子树中有多少种颜色.

```
// Problem: U41492 树上数颜色

    \begin{array}{r}
      23456789
    \end{array}

     int main() {
          std::ios::sync_with_stdio(false);
          std::cin.tie(0);
          std::cout.tie(0);
          int n, m, dfn = 0, cnttot = 0;
          std::cin >> n;
10
          vvi e(n + 1);
           vi siz(n + 1), col(n + 1), son(n + 1), dfnl(n + 1), dfnr(n + 1), rank(n + 1);
11
          vi ans(n + 1), cnt(n + 1);
12
13
14
          for (int i = 1; i < n; i++) {</pre>
               int u, v;
std::cin >> u >> v;
15
16
17
                e[u].push_back(v);
18
               e[v].push_back(u);
19
\frac{10}{20} 21
          for (int i = 1; i <= n; i++) {
    std::cin >> col[i];
22
23
24
25
26
27
          auto add = [&](int u) -> void {
                if (cnt[col[u]] == 0) cnttot++;
                cnt[col[u]]++;
          auto del = [&](int u) -> void {
28
                cnt[col[u]]-
29
                if (cnt[col[u]] == 0) cnttot--;
30
          auto dfs1 = [&](auto&& self, int u, int fa) -> void {
    dfnl[u] = ++dfn;
31
32
\frac{33}{34}
\frac{35}{36}
               rank[dfn] = u;
                siz[u] = 1;
               for (auto v : e[u]) {
   if (v == fa) continue;
37
                     self(self, v, u);
38
                     siz[u] += siz[v];
39
                     if (!son[u] or siz[son[u]] < siz[v]) son[u] = v;</pre>
40
41
               dfnr[u] = dfn;
42
          };
          auto dfs2 = [&](auto&& self, int u, int fa, bool op) -> void {
43
               for (auto v : e[u]) {
   if (v == fa or v == son[u]) continue;
44
45
46
                     self(self, v, u, false);
47
48
                if (son[u]) self(self, son[u], u, true);
               for (auto v : e[u]) {
   if (v == fa or v == son[u]) continue;
   rep(i, dfnl[v], dfnr[v]) { add(rank[i]); }
49
50
51
52
53
54
               add(u);
ans[u] = cnttot;
55
56
               if (op == false)
                     rep(i, dfnl[u], dfnr[u]) { del(rank[i]); }
57
58
          dfs1(dfs1, 1, 0);
dfs2(dfs2, 1, 0, false);
59
60
```

 $10.10 \quad \text{tree - } AHU$

```
61 | std::cin >> m;

62 | for (int i = 1; i <= m; i++) {

63 | int u;

64 | std::cin >> u;

65 | std::cout << ans[u] << endl;

66 | }

67 | return 0;

68 |}
```

10.10 tree - AHU

```
std::map<vi, int> mapple;
     std::function<int(vvik, int, int)> tree_hash = [&](vvi& e, int u, int fa) -> int {
 3
          vi code;
          if (u == 0) code push_back(-1);
for (auto v : e[u]) {
   if (v == fa) continue;
 4
 5
 67
               code.push_back(tree_hash(e, v, u));
 8
 9
          std::sort(all(code));
10
          int id = mapple.size();
          auto it = mapple.find(code);
if (it == mapple.end()) {
11
12
13
              mapple[code] = id;
14
            else {
15
               id = it->ss;
16
17
          return id;
     };
18
```

10.11 tree - LCA

```
vvi e(n + 1), fa(n + 1, vi(50));
vi dep(n + 1);
 3
       auto dfs = [&](auto&& self, int u) -> void {
   for (auto v : e[u]) {
      if (v == fa[u][0]) continue;
      dep[v] = dep[u] + 1;
      fall[0]
 4
5
 6
7
                       fa[v][0] = u;
 8
 9
                       self(self, v);
10
        };
12
13
        auto init = [&]() -> void {
               dep[root] = 1;
14
               defices i ;
dfs(dfs, root);
for (int j = 1; j <= 30; j++) {
    for (int i = 1; i <= n; i++) {
        fa[i][j] = fa[fa[i][j - 1]][j - 1];
}</pre>
15
16
17
18
19
20
               }
21
        };
22
        init();
23
        auto LCA = [&](int a, int b) -> int {
    if (dep[a] > dep[b]) std::swap(a, b);
    int d = dep[b] - dep[a];
    for (int i = 0; (1 << i) <= d; i++) {
        if (d & (1 << i)) b = fa[b][i];
    }</pre>
24
25
26
27
28
\frac{1}{29}
30
               if (a == b) return a;
               for (int i = 30; i >= 0 and a != b; i--) {
    if (fa[a][i] == fa[b][i]) continue;
31
32
33
                       a = fa[a][i];
                       b = fa[b][i];
34
35
36
               return fa[a][0];
37
        };
        auto dist = [\&] (int a, int b) -> int { return dep[a] + dep[b] - dep[LCA(a, b)] * 2; };
```

10.12 tree - HLD

对一棵有根树进行如下 4 种操作:

- 1. $1 \times y z$: 将节点 x 到节点 y 的最短路径上所有节点的值加上 z.
- 2. $2 \times y$: 查询节点 x 到节点 y 的最短路径上所有节点的值的和.
- 3. $3 \times z$: 将以节点 x 为根的子树上所有节点的值加上 z.
- 4. 4 x: 查询以节点 x 为根的子树上所有节点的值的和.

```
/* HLD */
 2
3
     int cnt = 0;
     vi son(n + 1), fa(n + 1), siz(n + 1), depth(n + 1);
vi dfn(n + 1), rank(n + 1), top(n + 1), botton(n + 1);
 4
5
 6
7
      auto dfs1 = [&](auto&& self, int u) -> void {
           son[u] = -1, siz[u] = 1;

for (auto v : e[u]) = 0;

if (depth[v]) != 0) continue;
 8
 9
10
                 depth[v] = depth[u] + 1;
11
                 fa[v] = u;
12
                 self(self, v);
13
                 siz[u] += siz[v];
14
                 if (son[u] == -1 or siz[v] > siz[son[u]]) son[u] = v;
15
16
     };
17
18
      auto dfs2 = [&] (auto&& self, int u, int t) -> void {
           top[u] = t;
dfn[u] = ++cnt;
19
20
           rank[cnt] = u;
botton[u] = dfn[u];
21
22
23
24
25
26
27
28
           if (son[u] == -1) return;
           self(self, son[u], t);
           Max(botton[u], botton[son[u]]);
           for (auto v : e[u]) {
   if (v != son[u] and v != fa[u]) {
                      self(self, v, v);
29
                      Max(botton[u], botton[v]);
30
\begin{array}{c} 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \end{array}
           }
     };
     depth[root] = 1;
     dfs1(dfs1, root);
dfs2(dfs2, root, root);
38
39
     /* 求 LCA */
auto LCA = [&](int a, int b) -> int {
    while (top[a] != top[b]) {
        if (depth[top[a]] < depth[top[b]]) std::swap(a, b);
        folial;
40
41
42
43
44
45
46
           return (depth[a] > depth[b] ? b : a);
     };
48
     /* 维护 u 到 v 的路径 */
while (top[u] != top[v]) {
49
50
51
           if (depth[top[u]] < depth[top[v]]) std::swap(u, v);</pre>
52
           opt(dfn[top[u]], dfn[u]);
53
           u = fa[top[u]];
54
55
     if (dfn[u] > dfn[v]) std::swap(u, v);
opt(dfn[u], dfn[v]);
56
57
     /* 维护 u 为根的子树_*/
58
59
     opt(dfn[u], botton[u]);
60
61
      */
62
63
     线段树的 build() 函数中
64
65
     if(1 == r) tree[u] = {1, 1, w[rank[1]], 0};
66
67
    build(1, 1, n);
```

10.13 tree - virtual tree

77

```
for (int i = 1; i <= m; i++) {</pre>
70
71
72
73
74
75
76
77
            int op, u, v;
           LL k;
std::cin >> op;
            if (op == 1) {
                78
79
                      u = fa[top[u]];
 80
                 if (dfn[u] > dfn[v]) std::swap(u, v);
 81
           modify(1, dfn[u], dfn[v], k);
} else if (op == 2) {
 82
 83
 84
                 std::cin >> u >> v;
 85
                 LL ans = 0;
                 while (top[u] != top[v]) {
    if (depth[top[u]] < depth[top[v]]) std::swap(u, v);
    ans = (ans + query(1, dfn[top[u]], dfn[u])) % p;
    u = fa[top[u]];</pre>
 86
 87
 88
 89
 90
 91
                 if (dfn[u] > dfn[v]) std::swap(u, v);
                 ans = (ans + query(1, dfn[u], dfn[v])) % p;
std::cout << ans << endl;</pre>
 92
 93
           } else if (op == 3) {
   std::cin >> u >> k;
 94
 95
 96
                 modify(1, dfn[u], botton[u], k);
 97
            } else {
 98
                 std::cin >> u;
99
                 std::cout << query(1, dfn[u], botton[u]) % p << endl;</pre>
100
101
      }
```

10.13 tree - virtual tree

```
auto build_vtree = [&](vi ver) -> void {
          std::sort(all(ver), [&](int x, int y) { return dfn[x] < dfn[y]; });</pre>
 3
          vi stk = {1};
         for (auto v : ver) {
   int u = stk.back();
 4
 5
              int lca = LCA(v, u);
 6
7
              if (lca != u) {
 8
                   while (dfn[lca] < dfn[stk.end()[-2]]) {
   g[stk.end()[-2]].push_back(stk.back());</pre>
 9
10
                        stk.pop_back();
11
                   u = stk.back();
if (dfn[lca] != dfn[stk.end()[-2]]) {
12
13
                        g[lca].push_back(u);
14
15
                        stk.pop_back();
                        stk.push_back(lca);
16
                   } else {
17
18
                        g[lca].push_back(u);
19
                        stk.pop_back();
20
                   }
21
22
              stk.push_back(v);
23
24
          while (stk.size() > 1) {
25
              int u = stk.end()[-2];
26
              int v = stk.back();
27
              g[u].push_back(v);
28
              stk.pop_back();
29
30
     };
```

10.14 tree - pseudo tree

```
10
11
               } else if (vis[v] == 1) {
                   ring.push_back(v);
for (auto x = u; x != v; x = fa[x]) {
12
13
                        ring.push_back(x);
14
15
16
17
                    reverse(all(ring));
                    return true;
18
19
              }
20
21
22
23
24
25
26
         vis[u] = 2;
          return false;
    for (int i = 1; i <= n; i++) {
    if (!vis[i]) {</pre>
              if (dfs(dfs, i)) {
                   // operations //
\overline{27}
28
          }
29
30
     }
31
32
     /* cycle detection (undirected) */
     vi vis(n + 1), ring;
33
     vpi fa(n + 1);
34
     auto dfs = [&](auto&& self, int u, int from) -> bool {
35
          vis[u] = 1;
          for (const auto& [v, id] : e[u]) {
   if (id == from) continue;
36
37
38
               if (!vis[v]) {
39
                    fa[v] = {u, id};
                    if (self(self, v, id)) {
40
41
                         return true;
                   }
42
43
               } else if (vis[v] == 1) {
44
                    ring.push_back(v);
45
                    for (auto x = u; x != v; x = fa[x].ff) {
46
                         ring.push_back(x);
47
48
                    return true;
49
               }
50
51
          vis[u] = 2;
52
          return false;
53
54
55
56
    for (int i = 1; i <= n; i++) {
    if (!vis[i]) {</pre>
               if (dfs(dfs, i, 0)) {
57
                    // operations //
58
59
          }
60
     }
```

10.15 tree - divide and conquer on tree

点分治

第一个题

一棵 $n \le 10^4$ 个点的树, 边权 $w \le 10^4$. $m \le 100$ 次询问树上是否存在长度为 $k \le 10^7$ 的路径.

```
// 洛谷 P3806 【模板】点分治1
 \frac{1}{2} \frac{3}{4} \frac{4}{5} \frac{6}{7}
      int main() {
           std::ios::sync_with_stdio(false);
           std::cin.tie(0);
           std::cout.tie(0):
 8 9
           int n, m, k;
std::cin >> n >> m;
10
\frac{11}{12}
           std::vector<vpi> e(n + 1);
std::map<int, PII> mp;
13
14
           for (int i = 1; i < n; i++) {</pre>
                 int u, v, w;
std::cin >> u >> v >> w;
15
16
                 e[u].emplace_back(v, w);
17
18
                 e[v].emplace_back(u, w);
19
20
           for (int i = 1; i <= m; i++) {</pre>
```

```
21
                std::cin >> k;
 22
                mp[i] = \{k, 0\};
 23
 24
 25
           /* centroid decomposition */
           int top1 = 0, top2 = 0, root;
vi len1(n + 1), len2(n + 1), vis(n + 1);
static std::array<int, 20000010> cnt;
 26
 27
 28
 29
           std::function<int(int, int)> get_size = [&](int u, int fa) -> int {
 30
\frac{31}{32}
                if (vis[u]) return 0;
                int ans = 1:
                for (auto [v, w] : e[u]) {
   if (v == fa) continue;
 33
 34
 35
                     ans += get_size(v, u);
 36
 37
                return ans;
 38
 39
 40
           std::function<int(int, int, int, int&)> get_root = [&] (int u, int fa, int tot,
 41
                                                                                int& root) -> int {
 42
                if (vis[u]) return 0;
 43
                int sum = 1, maxx = 0;
                for (auto [v, w] : e[u]) {
    if (v == fa) continue;
 44
 45
                     int tmp = get_root(v, u, tot, root);
 46
                     Max(maxx, tmp);
 47
 48
                     sum += tmp;
 49
 50
                Max(maxx, tot - sum);
 51
                if (2 * maxx <= tot) root = u;
 52
                return sum;
 53
 54
 55
           std::function<void(int, int, int)> get_dist = [&](int u, int fa, int dist) -> void {
                if (dist <= 10000000) len1[++top1] = dist;
 56
                for (auto [v, w] : e[u]) {
   if (v == fa or vis[v]) continue;
 57
 58
 59
                     get_dist(v, u, dist + w);
 60
                }
 61
           };
62
63
           auto solve = [&](int u, int dist) -> void {
 64
                top2 = 0;
                for (auto [v, w] : e[u]) {
   if (vis[v]) continue;
 65
 66
                     top1 = 0;
 67
                     get_dist(v, u, w);
for (int i = 1; i <= top1; i++) {</pre>
 68
69
                          for (int tt = 1; tt <= m; tt++) {
    int k = mp[tt].ff;
70
71
72
73
                               if (k >= len1[i]) mp[tt].ss |= cnt[k - len1[i]];
                          }
\begin{array}{c} 74 \\ 75 \end{array}
                     for (int i = 1; i <= top1; i++) {
   len2[++top2] = len1[i];</pre>
76
77
                          cnt[len1[i]] = 1;
 78
 79
 80
                for (int i = 1; i <= top2; i++) cnt[len2[i]] = 0;</pre>
 81
 82
 83
           std::function<void(int)> divide = [&](int u) -> void {
 84
                vis[u] = cnt[0] = 1;
                solve(u, 0);
 85
 86
                for (auto [v, w] : e[u]) {
                     if (vis[v]) continue;
 87
 88
                     get_root(v, u, get_size(v, u), root);
 89
                     divide(root);
 90
                }
 91
           };
 92
93
           get_root(1, 0, get_size(1, 0), root);
 94
           divide(root);
 95
           for (int i = 1; i <= m; i++) {
   if (mp[i].ss == 0) {</pre>
 96
97
                     std::cout << "NAY" << endl;
98
99
                } else {
                     std::cout << "AYE" << endl;
100
101
102
           }
103
104
           return 0;
105
```

第二个题

一棵 $n \le 4 \times 10^4$ 个点的树, 边权 $w \le 10^3$. 询问树上长度不超过 $k \le 2 \times 10^4$ 的路径的数量.

```
// 洛谷 P4178 Tree
 2
 \begin{array}{c} 3 \\ 4 \\ 5 \end{array}
     int main() {
         std::ios::sync_with_stdio(false);
         std::cin.tie(0)
 6
7
         std::cout.tie(0);
 8 9
          int n, k;
         std::cin >> n;
10
          std::vector<vpi> e(n + 1);
11
         for (int i = 1; i < n; i++) {
              int u, v, w;
std::cin >> u >> v >> w;
12
13
              e[u].emplace_back(v, w);
14
15
              e[v].emplace_back(u, w);
16
17
         std::cin >> k;
18
19
20
          /* centroid decomposition */
         int root;
21
22
23
24
25
26
27
28
29
          vi len, vis(n + 1);
         std::function<int(int, int)> get_size = [&](int u, int fa) -> int {
              if (vis[u]) return 0;
              int ans = 1;
              for (auto [v, w] : e[u]) {
   if (v == fa) continue;
                   ans += get_size(v, u);
30
              return ans;
31
         };
32
33
34
35
36
37
         std::function<int(int, int, int, int&)> get_root = [&] (int u, int fa, int tot,
                                                                            int& root) -> int {
              if (vis[u]) return 0;
              int sum = 1, \max = 0;
              for (auto [v, w] : e[u]) {
   if (v == fa) continue;
38
39
                   int tmp = get_root(v, u, tot, root);
40
                   maxx = std::max(maxx, tmp);
41
                   sum += tmp;
42
43
              maxx = std::max(maxx, tot - sum);
44
              if (2 * maxx <= tot) root = u;
45
              return sum:
46
         };
47
48
         std::function<void(int, int, int)> get_dist = [&](int u, int fa, int dist) -> void {
49
50
              len.push_back(dist);
              for (auto [v, w] : e[u]) {
    if (v == fa || vis[v]) continue;
51
52
                   get_dist(v, u, dist + w);
53
              }
54
55
         };
56
         auto solve = [&](int u, int dist) -> int {
              len.clear();
get_dist(u, 0, dist);
std::sort(all(len));
57
58
59
              60
61
62
63
                        ans += r - 1++;
64
                   } else {
65
                        r-
                   }
66
              }
67
68
              return ans;
69
70
71
72
73
74
75
76
77
78
79
         std::function<int(int)> divide = [&](int u) -> int {
              vis[u] = true;
              int ans = solve(u, 0);
for (auto [v, w] : e[u]) {
    if (vis[v]) continue;
                   ans -= solve(v, w);
                   get_root(v, u, get_size(v, u), root);
                   ans += divide(root);
80
              return ans;
81
         };
82
```

```
83 | get_root(1, 0, get_size(1, 0), root);

84 | std::cout << divide(root) << endl;

85 | return 0;

87 |}
```

10.16 network flow - maximal flow

Dinic

理论

通过 BFS 将网络根据点到原点的距离 (每条边长度定义为 1) 分层, 然后通过 DFS 暴力地在有效的网络中寻找增广路, 不断循环上述步骤直至图中不存在增广路.

BFS 逻辑:

 $u \rightarrow v$ 的条件满足下面两条:

- 1. v 未必走过;
- 2. $e: u \to v$ 上还有残余流量, 即当前 e 的流量未达到其上限.

DFS 逻辑:

维护两个值: u: 当前搜索到哪个点; now: 可以增加的流量. $u \rightarrow v$ 的条件:

- 1. 在上一次 BFS 时, v 在 u 下面一层, 即 $d_v = d_u + 1$.
- 2. 递归 dfs(v, now), 这时可增加的流量上限要与 $e: u \to v$ 中可增加的流量上限取最小值, 递归结果大于零才意味着可以增加流量.

优化:

- 1. 一次可以处理多条增广路.
- 2. 每一条有向边事实上只会增加一次流量, 引入 cur 记录处理到了每个点的哪一条边以加快 DFS.

```
struct edge {

  \begin{array}{c}
    2 \\
    3 \\
    4 \\
    5 \\
    6 \\
    7
  \end{array}

             int from, to;
             LL cap, flow;
             edge(int u, int v, LL c, LL f) : from(u), to(v), cap(c), flow(f) {}
      };
 8 9
       struct Dinic {
             int n, m = 0, s, t;
10
             std::vector<edge> e;
             vi g[N];
11
             int d[N], cur[N], vis[N];
12
13
             void init(int n) {
14
                   for (int i = 0; i < n; i++) g[i].clear();</pre>
15
16
                   e.clear();
17
18
19
            void add(int from, int to, LL cap) {
    e.push_back(edge(from, to, cap, 0));
    e.push_back(edge(to, from, 0, 0));
    g[from].push_back(m++);
20
\overline{21}
22
\frac{1}{23}
24
25
26
27
                   g[to].push_back(m++);
             bool bfs() {
28
                   for (int i = 1; i <= n; i++) {</pre>
29
                         vis[i] = 0;
```

```
30
31
               32
33
34
                     q.pop();
for (int i = 0; i < g[u].size(); i++) {
    edge& ee = e[g[u][i]];
    if (int i = 1) and as can be a flow
</pre>
35
\begin{array}{c} 36 \\ 37 \\ 38 \\ 39 \\ 40 \end{array}
                          if (!vis[ee.to] and ee.cap > ee.flow) {
   vis[ee.to] = 1;
                                d[ee.to] = d[u] + 1;
41
                                q.push(ee.to);
42
                          }
43
44
                }
45
               return vis[t];
46
47
          48
49
50
51
52
53
54
55
56
57
58
                           ee.flow += f, er.flow -= f;
                          flow += f, now -= f;
if (now == 0) break;
                }
60
               return flow;
61
62
63
          LL dinic() {
               LL ans = 0;
64
65
                while (bfs()) {
                     for (int i = 1; i <= n; i++) cur[i] = 0;
ans += dfs(s, INF);
66
67
68
69
                return ans;
\begin{array}{c} 70 \\ 71 \end{array}
          }
     } maxf;
```

HLPP

抄板子吧,别管原理了,留一个图吧.


```
1 struct HLPP {
2 int n, m = 0, s, t;
3 std::vector<edge> e; /* 边 */
4 std::vector<node> nd; /* 点 */
5 std::vector<int> g[N]; /* 点的连边编号 */
```

```
std::priority_queue<node> q;
           std::queue<int> qq;
 8
           bool vis[N];
 9
           int cnt[N];
10
11
           void init() {
12
                e.clear():
13
                nd.clear();
                for (int i = 0; i <= n + 1; i++) {
    nd.pushback(node(inf, i, 0));</pre>
14
15
16
                     g[i].clear();
17
                     vis[i] = false;
18
19
           }
20
21
           void add(int u, int v, LL w) {
               e.pushback(edge(u, v, w));
e.pushback(edge(v, u, 0));
g[u].pushback(m++);
22
23
24
\overline{25}
                g[v].pushback(m++);
26
27
28
           void bfs() {
\frac{1}{29}
                nd[t].hight = 0;
30
                qq.push(t);
               31
32
33
34
35
36
37
38
39
40
                                     qq.push(v);
41
                                     vis[v] = true;
42
43
                          }
44
                     }
45
                }
46
               return;
47
48
          void _push(int u) {
   for (auto j : g[u]) {
49
50
                     edge &ee = e[j], &er = e[j ^ 1];
\frac{51}{52}
                     int v = ee.to;
                     node &nu = nd[u], &nv = nd[v];
53
                     if (ee.cap && nv.hight + 1 == nu.hight) {
54
55
                          LL flow = std::min(ee.cap, nu.flow);
                          ee.cap -= flow, er.cap += flow;
nu.flow -= flow, nv.flow += flow;
if (vis[v] == false && v != t && v != s) {
56
57
58
59
                                q.push(nv);
60
                                vis[v] = true;
61
62
                          if (nu.flow == 0) break;
                     }
63
                }
64
          }
65
66
           void relabel(int u) {
67
68
                nd[u].hight = inf;
                for (auto j : g[u]) {
   int v = e[j].to;
69
70 \\ 71 \\ 72
                     if (e[j].cap && nd[v].hight + 1 < nd[u].hight) {</pre>
                          nd[u].hight = nd[v].hight + 1;
73
74
                }
75
76
77
           }
          LL hlpp() {
78
                bfs();
                if (nd[s].hight == inf) return 0;
79
                nd[s].hight = n;
for (int i = 1; i <= n; i++) {
80
81
82
                     if (nd[i].hight < inf) cnt[nd[i].hight]++;</pre>
83
               for (auto j : g[s]) {
   int v = e[j].to;
   int flow = e[j].cap;
   int flow = e[j].cap;
84
85
86
                     if (flow) {
87
                          e[j].cap -= flow, e[j ^ 1].cap += flow;
88
                          nd[s].flow -= flow, nd[v].flow += flow;
if (vis[v] == false && v != s && v != t) {
89
90
91
                                q.push(nd[v]);
                                vis[v] = true;
```

```
93
                          }
 94
                     }
 95
 96
                while (!q.empty()) {
                     int u = q.top().id;
q.pop();
vis[u] = false;
 97
 98
 99
                     push(u);
if (nd[u].flow) {
100
101
102
                          cnt[nd[u].hight]--;
                          if (cnt[nd[u].hight] == 0) {
103
                               for (int i = 1; i <= n; i++) {
    if (i != s && i != t && nd[i].hight > nd[u].hight && nd[i].hight < n + 1) {</pre>
104
105
106
                                         nd[i].hight = n + 1;
107
108
                               }
109
                          }
                          relabel(u);
110
111
                          cnt[nd[u].hight]++;
112
                          q.push(nd[u]);
113
                          vis[u] = true;
                     }
114
115
116
                return nd[t].flow;
117
           }
118
      } maxf;
```

10.17 network flow - minimum cost flow

在网络中获得最大流的同时要求费用最小.

Dinic + SPFA

```
struct edge {
 \begin{array}{c} 2\\ 3\\ 4\\ 5 \end{array}
            int from, to;
            LL cap, cost;
            edge(int u, int v, LL c, LL w) : from(u), to(v), cap(c), cost(w) {}
 6
7
     };
 8 9
      struct MCMF {
            int n, m = 0, s, t;
10
            std::vector<edge> e;
            vi g[N];
11
            int cur[N], vis[N];
12
           LL dist[N], minc;
13
14
15
            void init(int n) {
16
                 for (int i = 0; i < n; i++) g[i].clear();</pre>
                  e.clear();
17
18
                 minc = m = 0;
19
            }
20 \\ 21 \\ 22 \\ 23
            void add(int from, int to, LL cap, LL cost) {
    e.push_back(edge(from, to, cap, cost));
    e.push_back(edge(to, from, 0, -cost));
\frac{24}{25}
                  g[from].push_back(m++);
                 g[to].push_back(m++);
\frac{26}{27}
28
29
30
31
32
33
           bool spfa() {
    rep(i, 1, n) { dist[i] = INF, cur[i] = 0; }
                  std::queue<int> q;
q.push(s), dist[s] = 0, vis[s] = 1;
                  while (!q.empty()) {
                        int u = q.front();
34
                        q.pop();
35
                        vis[u] = 0;
                       for (int j = cur[u]; j < g[u].size(); j++) {
   edge& ee = e[g[u][j]];
   int v = ee.to;</pre>
36
37
38
                             if (ee.cap && dist[v] > dist[u] + ee.cost) {
   dist[v] = dist[u] + ee.cost;
39
40
41
                                   if (!vis[v]) {
42
                                         q.push(v);
43
                                         vis[v] = 1;
                                   }
44
45
                             }
46
                       }
```

```
47
48
               return dist[t] != INF;
49
50
          LL dfs(int u, LL now) {
   if (u == t) return now;
51
52
53
               vis[u] = 1;
54
               LL ans = 0;
               for (int& i = cur[u]; i < g[u].size() && ans < now; i++) {
   edge &ee = e[g[u][i]], &er = e[g[u][i] ^ 1];</pre>
55
56
57
                    int v = ee.to;
58
                    if (!vis[v] && ee.cap && dist[v] == dist[u] + ee.cost) {
59
                         LL f = dfs(v, std::min(ee.cap, now - ans));
                         if (f) {
60
61
                             minc += f * ee.cost, ans += f;
62
                              ee.cap -= f;
63
                              er.cap += f;
64
65
                    }
66
               }
               vis[u] = 0;
67
68
              return ans;
69
70
71
72
73
74
          PLL mcmf() {
               LL \max f = 0;
               while (spfa()) {
                    LL tmp;
75
                    while ((tmp = dfs(s, INF))) maxf += tmp;
76
77
               return std::makepair(maxf, minc);
79
     } minc_maxf;
```

Primal-Dual 原始对偶算法

```
struct edge {
 3
           int from, to;
 4
 5
          edge(int u, int v, LL c, LL w) : from(u), to(v), cap(c), cost(w) {}
 6
     };
 8
     struct node {
 9
          int v, e;
10
11
          node(int _v = 0, int _e = 0) : v(_v), e(_e) {}
     };
12
13
14
     const int maxn = 5000 + 10;
15
     struct MCMF {
16
          int n, m = 0, s, t;
17
18
          std::vector<edge> e;
19
          vi g[maxn];
20
          int dis[maxn], vis[maxn], h[maxn];
\frac{21}{22}
          node p[maxn * 2];
23
          void add(int from, int to, LL cap, LL cost) {
               e.push_back(edge(from, to, cap, cost));
e.push_back(edge(to, from, 0, -cost));
g[from].push_back(m++);
24
25
26
27
               g[to].push_back(m++);
28
          }
29
30
          bool dijkstra() {
31
32
               std::priority_queue<PII, std::vector<PII>, std::greater<PII>> q;
for (int i = 1; i <= n; i++) {
                    dis[i] = inf;
33
34
                    vis[i] = 0;
35
36
               dis[s] = 0;
               q.push({0, s});
37
               while (!q.empty()) {
39
                    int u = q.top().ss;
                    q.pop();
if (vis[u]) continue;
40
41
42
                    vis[u] = 1;
43
                    for (auto i : g[u]) {
44
                          edge ee = e[i];
                         int v = ee.to, nc = ee.cost + h[u] - h[v];
if (ee.cap and dis[v] > dis[u] + nc) {
    dis[v] = dis[u] + nc;
45
46
```

```
48
                                p[v] = node(u, i);
49
                                if (!vis[v]) q.push({dis[v], v});
50
51
                     }
52
                }
53
54
55
56
57
                return dis[t] != inf;
          void spfa() {
                std::queue<int> q;
for (int i = 1; i <= n; i++) h[i] = inf;
58
59
                h[s] = 0, vis[s] = 1;
60
                q.push(s);
61
                while (!q.empty()) {
62
                     int u = q.front();
                     q.pop();
vis[u] = 0;
63
64
                     for (auto i : g[u]) {
   edge ee = e[i];
65
66
                          edge ee - e[1];
int v = ee.to;
if (ee.cap and h[v] > h[u] + ee.cost) {
    h[v] = h[u] + ee.cost;
    if (!vis[v]) {
67
68
69
70
71
72
73
74
75
76
77
78
80
81
82
83
                                     vis[v] = 1;
                                     q.push(v);
                                }
                          }
                     }
                }
          }
          PLL mcmf() {
                LL maxf = 0, minc = 0;
                spfa();
                while (dijkstra()) {
                     LL minf = INF;
84
                     for (int i = 1; i <= n; i++) h[i] += dis[i];</pre>
85
                     for (int i = t; i != s; i = p[i].v) minf = std::min(minf, e[p[i].e].cap);
                     for (int i = t; i != s; i = p[i].v) {
86
                          e[p[i].e].cap -= minf;
e[p[i].e ^ 1].cap += minf;
87
89
90
                     maxf += minf;
91
                     minc += minf * h[t];
92
93
                return std::make_pair(maxf, minc);
          }
94
95
     } minc_maxf;
```

存在负环的网络

10.18 network flow - minimal cut

最小割解决的问题是将图中的点集 V 划分成 S 与 T, 使得 S 与 T 之间的连边的容量总和最小.

最大流最小割定理

网络中s到t的最大流流量的值等于所要求的最小割的值, 所以求最小割只需要跑 Dinic 即可.

获得 S 中的所有点

在 Dinic 的 bfs 函数中,每次将所有点的 d 数组值改为无穷大,最后跑完最大流之后 d 数组不为无穷大的就是和源点一起在 S 集合中的点.

例子

最小割的本质是对图中点集进行 2-划分, 网络流只是求解答案的手段.

1. 在图中花费最小的代价断开一些边使得源点 s 无法流到汇点 t.

直接跑最大流就得到了答案.

2. 在图中删除最少的点使得源点 s 无法流到汇点 t. 对每个点进行拆点, 在 i 与 i' 之间建立容量为 1 的有向边.

10.19 matching - matching on bipartite graph

二分图最大匹配

Kuhn-Munkres

时间复杂度: $O(n^3)$.

```
auto KM = [&](int n1, int n2, vvi e) -> std::pair<vi, vi> {
 2
           vi vis(n2 + 1);
           vi l(n1 + 1, -1), r(n2 + 1, -1);
std::function<br/>bool(int)> dfs = [&](int u) -> bool {
 3
 4 5
                for (auto v : e[u]) {
                      if (!vis[v]) {
   vis[v] = 1;
   if (r[v] == -1 or dfs(r[v])) {
 6
7
 8 9
                                 r[v] = u;
10
                                 return true;
11
12
                      }
13
                }
14
                return false;
15
16
           for (int i = 1; i <= n1; i++) {</pre>
                std::fill(all(vis), 0);
17
18
                dfs(i);
19
20
           for (int i = 1; i <= n2; i++) {
    if (r[i] == -1) continue;</pre>
21
22
                1[r[i]] = i;
23
24
           return {1, r};
25
     auto [mchl, mchr] = KM(n1, n2, e);
std::cout << mchl.size() - std::count(all(mchl), -1) << endl;</pre>
26
```

Hopcroft-Karp

据说时间复杂度是 $O(m\sqrt{n})$ 的, 但是快的飞起.

```
vpi e(m);
       auto hopcroft_karp = [&](int n, int m, vpi& e) -> std::pair<vi, vi> {
   vi g(e.size()), l(n + 1, -1), r(m + 1, -1), d(n + 2);
   for (auto [u, v] : e) d[u]++;
 3
 4
             for (auto [u, v] : e) d[u]++;
std::partial_sum(all(d), d.begin());
for (auto [u, v] : e) g[--d[u]] = v;
for (vi a, p, q(n + 1);;) {
    a.assign(n + 1, -1);
    p.assign(n + 1, -1);
    int + = 1.
 5
 6
 7
 8 9
10
                    int t = 1;
                    for (int i = 1; i <= n; i++) {
11
                          if (l[i] == -1) {
12
                                 q[t++] = a[i] = p[i] = i;
13
14
15
16
                    bool match = false;
                   17
18
19
20
21
\overline{22}
23
                                       while (v != -1) {
\frac{23}{24}
                                              r[v] = u;
25
                                              std::swap(1[u], v);
26
                                              u = p[u];
27
28
                                       match = true;
```

```
29
                           break;
30
31
                       if (p[r[v]] == -1) {
32
                           q[t++] = v = r[v];
                           p[v] = u;
33
34
                           a[v] = a[u];
35
36
37
38
                  }
             }
              if (!match) break;
39
         }
40
         return {1, r};
    };
```

二分图最大权匹配

Kuhn-Munkres

注意是否为完美匹配, 非完美选 0, 完美选 -INF. (存疑)

```
auto KM = [&] (int n, vvl e) -> std::tuple<LL, vi, vi> {
   vl la(n + 1), lb(n + 1), pp(n + 1), vx(n + 1);
   vi l(n + 1, -1), r(n + 1, -1);
   vi va(n + 1), vb(n + 1);
   LI delta:

    \begin{array}{r}
      23456789
    \end{array}

               LL delta;

auto bfs = [&](int x) -> void {

   int a, y = 0, y1 = 0;

   std::fill(all(pp), 0);

   std::fill(all(pp), TMF).
                       std::fill(all(vx), INF);
10
                       r[y] = x;
11
                       do {
                              a = r[y], delta = INF, vb[y] = 1;
for (int b = 1; b <= n; b++) {
   if (!vb[b]) {</pre>
12
13
14
                                              if (vx[b] > la[a] + lb[b] - e[a][b]) {
    vx[b] = la[a] + lb[b] - e[a][b];
15
16
17
                                                      pp[b] = y;
18
19
                                              }
                                              if (vx[b] < delta) {</pre>
20 \\ 21 \\ 22 \\ 23 \\ 24
                                                      delta = vx[b];
                                                      y1 = b;
                                              }
                                      }
25
26
27
                               for (int b = 0; b <= n; b++) {
    if (vb[b]) {
        la[r[b]] -= delta;
}</pre>
28
                                              lb[b] += delta;
29
30
31
32
33
                                      } else
                                              vx[b] -= delta;
                              }
                       y = y1;
} while (r[y] != -1);
                       while (y) {
    r[y] = r[pp[y]];
34
35
36
                              y = pp[y];
37
38
39
               for (int i = 1; i <= n; i++) {
    std::fill(all(vb), 0);</pre>
40
41
                       bfs(i);
               }
42
               LL ans = 0;
43
               for (int i = 1; i <= n; i++) {
    if (r[i] == -1) continue;
44
45
                       l[r[i]] = i;
46
47
                       ans += e[r[i]][i];
48
49
               return {ans, 1, r};
50
       };
51
        auto [ans, mchl, mchr] = KM(n, e);
52
```

11 geometry

11.1 two demention

点与向量

```
tandu struct pnt {
        T x, y;
 3
 4
5
        pnt(T_x = 0, T_y = 0) \{ x = _x, y = _y; \}
 6
7
        pnt operator+(const pnt& a) const { return pnt(x + a.x, y + a.y); }
 8 9
        pnt operator-(const pnt& a) const { return pnt(x - a.x, y - a.y); }
10
        bool operator<(const pnt& a) const {</pre>
11
12
            if (std::is_same<T, double>::value) {
13
                if (fabs(x - a.x) < eps) return y < a.y;
14
15
                if (x == a.x) return y < a.y;
16
17
            return x < a.x;
18
19
        */
20
        /* 注意数乘会不会爆 int */
21
22
        pnt operator*(const T k) const { return pnt(k * x, k * y); }
\overline{2}3
24
        U operator*(const pnt& a) const { return (U) x * a.x + (U) y * a.y; }
25
26
        U operator^(const pnt& a) const { return (U) x * a.y - (U) y * a.x; }
27
28
        U dist(const pnt a) { return ((U) a.x - x) * ((U) a.x - x) + ((U) a.y - y) * ((U) a.y - y); }
29
30
        U len() { return dist(pnt(0, 0)); }
31
        /* a, b, c 成逆时针 */
32
33
        friend U area(pnt a, pnt b, pnt c) { return (b - a) ^ (c - a); }
34
35
        /* 两向量夹角, 返回 cos 值 */
        double get_angle(pnt a) {
36
37
            return (double) (pnt(x, y) * a) / sqrt((double) pnt(x, y).len() * (double) a.len());
38
39
    };
```

线段

```
12
     struct line {
         point a, b;
 3
 4
5
          line(point _a = {}, point _b = {}) { a = _a, b = _b; }
          /* 交点类型为 double */
 6
7
8
          friend point iPoint(line p, line q) {
              point v1 = p.b - p.a;
point v2 = q.b - q.a;
 9
              point u = q.a - p.a;
10
11
              return q.a + (q.b - q.a) * ((u ^ v1) * 1. / (v1 ^ v2));
12
13
          /* 极角排序 */
14
          bool operator<(const line& p) const {
   double t1 = std::atan2((b - a).y, (b - a).x);</pre>
15
16
17
               double t2 = std::atan2((p.b - p.a).y, (p.b - p.a).x);
              if (fabs(t1 - t2) > eps) {
    return t1 < t2;</pre>
18
19
20
21
              return ((p.a - a) ^ (p.b - a)) > eps;
22
         }
23
     };
```

90 11 GEOMETRY

11.2 convex

2D

```
auto andrew = [&](std::vector<point>& v) -> std::vector<point> {
           std::sort(all(v));

    \begin{array}{r}
      23 \\
      45 \\
      67 \\
      89
    \end{array}

           std::vector<point> stk;
for (int i = 0; i < n; i++) {</pre>
               point x = v[i];
while (stk.size() > 1 and ((stk.end()[-1] - stk.end()[-2]) ^ (x - stk.end()[-2])) <= 0) {
                     stk.pop_back();
                stk.push_back(x);
10
           }
11
           int tmp = stk.size();
           for (int i = n - 2; i >= 0; i--) {
    point x = v[i];
12
13
14
                while (stk.size() > tmp and ((stk.end()[-1] - stk.end()[-2]) ^ (x - stk.end()[-2])) <= 0) {
15
                     stk.pop_back();
16
17
                stk.push_back(x);
           }
18
19
           return stk;
20
     };
```

half plane

```
auto halfPlane = [&](std::vector<line>& ln) -> std::vector<point> {
 \begin{array}{c} 2\\ 3\\ 4\\ 5 \end{array}
               std::sort(all(ln));
              ln.erase(
                     unique(
                             all(ln),
                             all(in),
[](line& p, line& q) {
    double t1 = std::atan2((p.b - p.a).y, (p.b - p.a).x);
    double t2 = std::atan2((q.b - q.a).y, (q.b - q.a).x);
 6
7
8
9
                                    return fabs((t1 - t2)) < eps;</pre>
10
                            }),
              ln.end());
auto check = [&](line p, line q, line r) -> bool {
   point a = iPoint(p, q);
   return ((r.b - r.a) ^ (a - r.a)) < -eps;</pre>
11
12
13
14
15
16
              line q[ln.size() + 2];
              int hh = 1, tt = 0;
q[++tt] = ln[0];
17
18
               q[++tt] = ln[1];
19
              for (int i = 2; i < (int) ln.size(); i++) {
    while (hh < tt and check(q[tt - 1], q[tt], ln[i])) tt--;
    while (hh < tt and check(q[hh + 1], q[hh], ln[i])) hh++;</pre>
20
21
22
23
24
25
26
27
28
29
30
                      q[++tt] = ln[i];
              while (hh < tt and check(q[tt - 1], q[tt], q[hh])) tt--; while (hh < tt and check(q[hh + 1], q[hh], q[tt])) hh++; q[tt + 1] = q[hh];
               std::vector<point> ans;
              for (int i = hh; i <= tt; i++) {</pre>
                      ans.push_back(iPoint(q[i], q[i + 1]));
31
              return ans;
33
       };
```

12 offline algorithm

12.1 discretization

```
1 | std::sort(all(a));
2 | a.erase(unique(all(a)), a.end());
3 | auto get_id = [&](const int& x) -> int { return lower_bound(all(a), x) - a.begin() + 1; };
```

12.2 Mo algorithm

普通莫队

```
int block = n / sqrt(2 * m / 3);
      std::sort(all(q), [&] (node a, node b) {
    return a.l / block == b.l / block ? (a.r == b.r ? 0 : ((a.l / block) & 1) ^ (a.r < b.r))
 \begin{array}{c} 2 \\ 3 \\ 4 \end{array}
                                                                 : a.l < b.l;
     });
 5
6
7
8
9
      auto move = [&](int x, int op) -> void {
            if (op == 1) {
                 /* operations */
10
11
                  /* operations */
     };
13
14
      for (int k = 1, 1 = 1, r = 0; k <= m; k++) {
  node Q = q[k];
  while (1 > Q.1) {
      move(--1, 1);
}
15
16
17
18
19
20
            while (r < Q.r) {
21
                 move(++r, 1);
22
23
            while (1 < Q.1) {
24
                 move(1++, -1);
25
26
            while (r > Q.r) {
    move(r--, -1);
\overline{27}
28
29
      }
```

12.3 CDQ

n 个三维数对 (a_i, b_i, c_i) , 设 f(i) 表示 $a_j \leq a_i, b_j \leq b_i, c_j \leq c_i (i \neq j)$ 的个数. 输出 f(i) $(0 \leq i \leq n-1)$ 的值.

```
// 洛谷 P3810 【模板】三维偏序 (陌上花开)
 2
 3
     struct data {
 4
         int a, b, c, cnt, ans;
 5
         data(int _a = 0, int _b = 0, int _c = 0, int _cnt = 0, int _ans = 0) {
   a = _a, b = _b, c = _c, cnt = _cnt, ans = _ans;
 67
 8
9
         bool operator!=(data x) {
10
              if (a != x.a) return true;
if (b != x.b) return true;
11
12
              if (c != x.c) return true;
13
14
              return false;
         }
15
    };
16
17
18
     int main() {
19
          std::ios::sync_with_stdio(false);
20
          std::cin.tie(0);
21
          std::cout.tie(0);
22
23
         int n, k;
```

```
25
              std::cin >> n >> k;
              static data v1[N], v2[N];
for (int i = 1; i <= n; i++) {
    std::cin >> v1[i].a >> v1[i].b >> v1[i].c;
 26
 27
 28
 29
 30
              std::sort(v1 + 1, v1 + n + 1, [&](data x, data y) {
    if (x.a != y.a) return x.a < y.a;
    if (x.b != y.b) return x.b < y.b;
    return x.c < y.c;
}</pre>
 31
 32
 \begin{array}{c} 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ \end{array}
              int t = 0, top = 0;
for (int i = 1; i <= n; i++) {</pre>
                    t++;
                     if (v1[i] != v1[i + 1]) {
 40
 41
                           v2[++top] = v1[i];
                            v2[top].cnt = t;
 42
 43
 44
                     }
 45
 46
 47
              vi tr(N);
 48
              auto add = [&](int pos, int val) -> void {
   while (pos <= k) {</pre>
 49
 50
                           tr[pos] += val;
 51
 52
                           pos += lowbit(pos);
 53
 54
              };
 55
 56
57
              auto query = [&](int pos) -> int {
                     int ans = 0;
                    while (pos > 0) {
    ans += tr[pos];
 58
 59
                           pos -= lowbit(pos);
 60
 61
 62
                    return ans;
 63
 64
 65
              std::function<void(int, int)> CDQ = [&](int 1, int r) -> void {
                     if (1 == r) return;
int mid = (1 + r) >> 1;
 66
 67
                    CDQ(1, mid), CDQ(mid + 1, r);

std::sort(v2 + 1, v2 + mid + 1, [&](data x, data y) {

    if (x.b != y.b) return x.b < y.b;

    return x.c < y.c;
 68
 69
 70
71
72
73
74
75
76
77
78
79
80
                     });
                     std::sort(v2 + mid + 1, v2 + r + 1, [&](data x, data y) {
                           if (x.b != y.b) return x.b < y.b;
return x.c < y.c;
                     });
                    int i = 1, j = mid + 1;
while (j <= r) {</pre>
                           while (i <= mid && v2[i].b <= v2[j].b) {</pre>
                                  add(v2[i].c, v2[i].cnt);
 81
 82
 83
                           v2[j].ans += query(v2[j].c);
 84
 85
                    for (int ii = 1; ii < i; ii++) {
   add(v2[ii].c, -v2[ii].cnt);</pre>
 86
 87
 88
                    }
 89
                    return;
 90
              };
 91
 92
              CDQ(1, top);
              vi ans(n + 1);
for (int i = 1; i <= top; i++) {
    ans[v2[i].ans + v2[i].cnt] += v2[i].cnt;</pre>
 93
 94
 95
 96
 97
              for (int i = 1; i <= n; i++) {
    std::cout << ans[i] << endl;</pre>
 98
 99
100
101
              return 0;
       }
102
```