Graphentheorie

Graph: G = (V, E) Baum: |E| = |V| - 1

Spannbaum von G: Teilgraph von G und Baum der alle Knoten von G entällt, not unique.

Bipartit: $G = (V_1 \cup V_2, E)$, G ist bipartit \Leftrightarrow G enthällt keinen Kreis gerader länge

Isomorph: G ist isomorph \rightarrow Gradfolge und |V| sowie |E| sind identisch

Paarung P von G: P hat keine gemeinsamen Endpunkte. — $P \subset E$ es gibt nur Paare

Knotenüberdeckung U von G: \forall Kanten uv gilt $u \in U$ OR $v \in U$. — $U \subset V$ s.d. jede Kante hat ein Ende in U

König-Egervary: G bipartit \Rightarrow |maximale Paarung| == |minimale Knotenueberdeckung|

Flussnetze: $N = (D, \kappa, s, q)$, D Digraph, $\kappa : E \to \mathbb{R}_0^+$ Kostenfunktion

Schnitt eines Flussnetzes: Teilmenge S, die die Quelle aber nicht die Senke entällt.

Kapazität eines Schnittes: $\kappa(S) = \text{Kapazität}$ der Endknoten des Schnittes. Minimaler Schnitt $S = \forall S' \ \kappa(S) \le \kappa(S')$

maximaler Fluss == min Schnitt

Planarität

für ebene Darstellungen gelten: n-m+f=2, n=Knoten, m=Kanten, f=Flächen

if n > 3 3n - 6 Kanten höchsten

if $n \ge 3$ hat höchstens $g \ge 3$, $g = \text{Umfang des Graphen????} \max\{g(n-2)/(g-2)mn-1\}Kanten$

ein Graph ist planar \Leftrightarrow kein subgraph von G ist homöomorph zu k_5 , $k_{3,3}$

Datenstrukturen

Adjazenzmatrix

 $n \cdot n$, immer symetrisch $a_{ij} = 1$ falls $v_i v_j \in E$, 0 sonst

Inzidenzmatrix

 $n \cdot m$, $e_{ij} = 1$ wenn v_i mit e_j inzidiert, 0 sonst Spaltensumme= 2, Reihensumme = Grad des Knoten

Netzwerke

Floyd-Warshal (S.288)

Kürzeste Abstände für alle Knoten $O(|V|^3)$

for k=1 to n do: $d(u, w) = min(d^{k-1}(u, w), d^{k-1}(u, v_k) + d^{k-1}(v_k, w))$

Mit jeder Iteration gucken ob es einen kürzeren Weg über den Knoten v_k gibt

Dijkstra (S.289)

Kürzeste Wege für einzelnen Knoten $O(|V|^2)oder O(|E| + |V|log|V|)$

Nachbarkanten untersuchen nach kürzeren Wegen

Kurskal (S.291)

min. Spannbäume

Durchlaufe Kanten nach wachsendem Gewicht, füge hinzu, wenn Komponente noch nicht im Spannbaum

Ford-Fulkerson (S.293)

bestimmet maximalen Fluss in N

erst alle Knoten markieren, dann Fluss vergrössern und erneut markieren.

Optimierung

Entscheidungsprobleme: NP-Vollständig

Opimierungsprobleme: NP-Hart

Eine Maximierung von f entspricht einer Minimierung von -f $[max\{f(x)|x\in X\}==-min\{-f(x)|x\in X\}]$

Backtracking - Kombinatorische Optimierung (S. 307)

Exhaustives durchsuchen des gesamten Suchraumes.

Abschneiden von Teilbäumen durch Bonding-Funktionen: (S. 310)

 $x=(x_1,...,x_k)$ Teillösung und P(x) der zugehörige Maximalwert aller Lösungen von x

Bonding Funktion B(x) s.d. $\forall x B(x) \geq P(x)$. So kann abgeschnitten werden wenn $B(x) \leq \text{dem}$ aktuellen Höchstwert

Heuristiken (S. 313)

Ordnet jeder Lösung eine Nachbarschaft von anderen Lösungen zu. Nachbarschaftsfunktion N(x)

Bergauf-Methode

Als Nachbarschaft von x wird ein Wert y mit f(y) > f(x) gesucht. Sobald f(y) nicht mehr grösser wird aufgehört zu suchen.

Simulated Annealing (S. 316)

Falls f(y) < f(x) benutzt $random \in [0,1] < e^{\frac{f(y)-f(x)}{T}}$ um zu entscheiden ob x (doch) durch y ersetzt wird. Abkühlungsplan T. T_0 wird hoch gehwählt und nach jeder Iteration um einen Prozensatz gesenkt bis Endtemperatur T_f erreicht ist

Dies soll das verlassen von lokalen Optima am Anfang des Prozesses ermöglichen.

Genetische Algorithmen

Initialisiert Population P mit N Individuen Iteriere: Selektion, Mutation, Kreuzung

Selektion: Wähle die besten N Individuen aus P Mutation: Ersezte Individuen durch Benachbarte Kreuzung: Kreuze Paare aus der Population

Lineare Programmierung S. 327

LP und Dualität S.328

(primales) LP
$$max c^{T}x$$
s.d. $Ax \le b$

$$x \ge 0$$

duales LP
$$\min b^T y$$
 s.d. $A^T y \ge c$ $y \ge 0$

ILP S.336

Total Unimoular, wenn die Determinanten aller quadratischen Untermatrizen +1, 0 oder -1 ist.

Inzidenzmatrix von G ist total Unimoular wenn G bipartit. Inzidenzmatrix von G ist total Unimoular wenn G digraph.

Wenn A total Unimoular und $b \in \mathbb{Z}^m$, dann sind alle Ecken ganzzahlig.

Graphische Lösungen

$$\begin{array}{l} \alpha x_1 + \beta x + 2 = c \\ \text{intersection form: } \frac{x}{a} + \frac{y}{b} = 1 \\ m = -\frac{\alpha}{\beta}; \ b = \frac{c}{\beta} \end{array}$$

Boilerplate

```
\mathbf{Bergauf}
\mathbf{w\ddot{a}hle} \text{ zul\"{a}ssige L\"{o}sung } x \in X \text{ //Startpunkt } x^* \leftarrow x \text{ //beste L\"{o}sung } searching \leftarrow \mathbf{true}
\mathbf{while} \text{ (searching) } \{
y \leftarrow H(x)
\mathbf{if} \text{ (} y == fail)
searching \leftarrow \mathbf{false}
\mathbf{else} \text{ } \{
x \leftarrow y
\mathbf{if} \text{ (} f(x) > f(x^*))
x^* \leftarrow x
\}
\}
\mathbf{w\ddot{a}hle} \text{ } H(x) \text{ Problemspezifisch}
```

```
Backtracking
function_name(...,k) {
    if (k = 0)
        setup...
    if (k=n) {
        if ( check\_valid(x_1, ..., x_k) and k > optSize)
           optSize \leftarrow k
    } else {
        x_k \leftarrow 0
        function_name (x_1, ..., x_k, k+1)
        [if (bonding (x_1,...,x_k))]
        function_name (x_1, ..., x_k, k + 1)
    }
}
main() {
    optSize \leftarrow 0
    n \leftarrow ?
    function_name(0)
    \mathbf{print} problem
Backtracking variations:
use sets instead of bitvector
bonding function also applies to case x_k = 0
```

Simulated Annealing $T \leftarrow T_0$ wähle zulässige Lösung $x \in X$ //Startpunkt $x^* \leftarrow x$ //beste Lösung while $(T \geq T_f)$ { $y \leftarrow H(x)$ if (y == fail)return x^* **if** (f(y) > f(x)) { $x \leftarrow y$ //Aufwärtsbewegung **if** $(f(x) > f(x^*))$ $x^* \leftarrow x$ } else { $r \leftarrow random(0,1)$ //Abwärtsbewegung if $(r < e^{\frac{f(y) - f(x)}{T}})$ $x \leftarrow y$ $\mathbf{T} \leftarrow \alpha \cdot T \ // \ \alpha = .99$ }