Copyless cost-register automata

Filip Mazowiecki

MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS, GERMANY

WATA 2020/2021

Copyless cost-register automata

Filip Mazowiecki

MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS, GERMANY

WATA 2020/2021

Outline

1. Introduction: copyless linear CRA etc

2. Undecidability of equivalence

3. Future questions?

Let $\mathbb{S}(\oplus, \odot)$ be a semiring, e.g. $\mathbb{Q}(+, \cdot)$ or $\mathbb{Z}(\min, +)$

Let $\mathbb{S}(\oplus, \odot)$ be a semiring, e.g. $\mathbb{Q}(+, \cdot)$ or $\mathbb{Z}(\min, +)$

Example ${\mathcal A}$

Let
$$\mathbb{S}(\oplus, \odot)$$
 be a semiring, e.g. $\mathbb{Q}(+, \cdot)$ or $\mathbb{Z}(\min, +)$

Example ${\mathcal A}$

Output on aabba

• Over \mathbb{Q} : $\mathcal{A}(aabba) = 2^3 + 2^2$

Let $\mathbb{S}(\oplus, \odot)$ be a semiring, e.g. $\mathbb{Q}(+, \cdot)$ or $\mathbb{Z}(\min, +)$

Example ${\mathcal A}$

 $\begin{array}{c|c}
a & 2 \\
b & 1
\end{array}$ $\begin{array}{c}
1 & 1 \\
\end{array}$

Output on aabba

- Over \mathbb{Q} : $\mathcal{A}(aabba) = 2^3 + 2^2$
- Over \mathbb{Z} : $\mathcal{A}(aabba) = \min(1 + 8 + 1, 1 + 7 + 1)$

Let $\mathbb{S}(\oplus, \odot)$ be a semiring, e.g. $\mathbb{Q}(+, \cdot)$ or $\mathbb{Z}(\min, +)$

Example ${\mathcal A}$

 $\begin{array}{c|c}
a & 2 \\
b & 1
\end{array}$ $\begin{array}{c}
1 \\
\end{array}$

Output on aabba

- Over \mathbb{Q} : $\mathcal{A}(aabba) = 2^3 + 2^2$
- Over \mathbb{Z} : $\mathcal{A}(aabba) = \min(1 + 8 + 1, 1 + 7 + 1)$

Matrix definition

$$M_a = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
, $M_b = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $I = F = (1, 1)$

Let
$$\mathbb{S}(\oplus, \odot)$$
 be a semiring, e.g. $\mathbb{Q}(+, \cdot)$ or $\mathbb{Z}(\min, +)$

Example ${\mathcal A}$

Output on aabba

- Over \mathbb{Q} : $\mathcal{A}(aabba) = 2^3 + 2^2$
- Over \mathbb{Z} : $\mathcal{A}(aabba) = \min(1 + 8 + 1, 1 + 7 + 1)$

Matrix definition

$$M_a = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
, $M_b = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $I = F = (1, 1)$

$$\mathcal{A}(aabba) = I^{\mathsf{T}} M_a M_a M_b M_b M_a F$$

$$M_a=egin{pmatrix} 2&0\0&1 \end{pmatrix}$$
, $M_b=egin{pmatrix} 1&0\0&2 \end{pmatrix}$, $I=F=(1,1)$

$$M_a = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
, $M_b = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $I = F = (1, 1)$

Equivalently

two registers x, y

$$M_a = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
, $M_b = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $I = F = (1, 1)$

Equivalently

two registers x, y

initialised (1)

$$x := 1$$
 $y := 1$

$$M_a = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
, $M_b = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $I = F = (1, 1)$

Equivalently

two registers x, y

initialised (I)

update on letter $a(M_a)$

$$a \begin{cases} x := x \odot 2 \\ y := y \odot 1 \end{cases}$$

$$x := 1$$
 $y := 1$

$$M_a = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
, $M_b = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $I = F = (1, 1)$

Equivalently

two registers x, y

initialised (1)

update on letter $a (M_a)$

update on letter $b (M_b)$

$$a \begin{cases} x := x \odot 2 \\ y := y \odot 1 \end{cases}$$

$$x := 1$$

$$y := 1$$

$$b \begin{cases} x := x \odot 1 \\ y := y \odot 2 \end{cases}$$

$$M_a = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
, $M_b = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $I = F = (1, 1)$

Equivalently

two registers x, y initialised (I)

update on letter $a(M_a)$

update on letter b (M_b)

output: x + y (F)

$$a \begin{cases} x := x \odot 2 \\ y := y \odot 1 \end{cases}$$

$$b \begin{cases} x := x \odot 1 \\ y := y \odot 2 \end{cases}$$

$$M_a = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
, $M_b = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $I = F = (1, 1)$

Equivalently

two registers x, y initialised (I) update on letter a (M_a) update on letter b (M_b) output: x + y (F)

These are (almost) CRA

$$a \begin{cases} x := x \odot 2 \\ y := y \odot 1 \end{cases}$$

$$x := 1$$

$$y := 1$$

$$b \begin{cases} x := x \odot 1 \\ y := y \odot 2 \end{cases}$$

$$M_a = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
, $M_b = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $I = F = (1, 1)$

Equivalently

two registers x, y initialised (I) update on letter a (M_a) update on letter b (M_b) output: x + y (F)

These are (almost) CRA

• States, deterministic transitions

$$a\begin{cases} x := x \odot 2 \\ y := y \odot 1 \end{cases}$$

$$x := 1$$

$$y := 1$$

$$b\begin{cases} x := x \odot 1 \\ y := y \odot 2 \end{cases}$$

$$M_a = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
, $M_b = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $I = F = (1, 1)$

Equivalently

two registers x, y initialised (I)
update on letter a (M_a)
update on letter b (M_b)
output: x + y (F)

These are (almost) CRA

- States, deterministic transitions
- Linear CRA = WA (CRA are nonlinear in general)

$$a \begin{cases} x := x \odot 2 \\ y := y \odot 1 \end{cases}$$

$$x := 1$$

$$y := 1$$

$$x + y$$

$$x := x \odot 1$$

$$b \begin{cases} x := x \odot 1 \\ y := y \odot 2 \end{cases}$$

1. Ambiguity of A: bound on accepting runs (WA)

1. Ambiguity of A: bound on accepting runs (WA) (previous example: bound was 2)

1. Ambiguity of A: bound on accepting runs (WA) (previous example: bound was 2)

finitely-ambiguous WA \subsetneq polynomially-ambiguous WA \subsetneq WA

1. Ambiguity of A: bound on accepting runs (WA) (previous example: bound was 2)

finitely-ambiguous WA \subsetneq polynomially-ambiguous WA \subsetneq WA

2. Copyless restriction: registers used at most once (CRA)

Correct:
$$\begin{cases} x := x \odot y \\ y := 1 \end{cases}$$

1. Ambiguity of A: bound on accepting runs (WA) (previous example: bound was 2)

finitely-ambiguous WA \subsetneq polynomially-ambiguous WA \subsetneq WA

2. Copyless restriction: registers used at most once (CRA)

Correct:
$$\begin{cases} x := x \odot y \\ y := 1 \end{cases}$$

$$\begin{cases} x := x \oplus y \\ y := y \end{cases}$$

1. Ambiguity of A: bound on accepting runs (WA) (previous example: bound was 2)

finitely-ambiguous WA \subsetneq polynomially-ambiguous WA \subsetneq WA

2. Copyless restriction: registers used at most once (CRA)

Correct:
$$\begin{cases} x := x \odot y \\ y := 1 \end{cases}$$

$$\begin{cases} x := x \oplus y \\ y := y \end{cases}$$

copyless linear CRA \subsetneq copyless CRA \subsetneq linear CRA

1. Ambiguity of A: bound on accepting runs (WA) (previous example: bound was 2)

finitely-ambiguous WA \subsetneq polynomially-ambiguous WA \subsetneq WA

2. Copyless restriction: registers used at most once (CRA)

Correct:
$$\begin{cases} x := x \odot y \\ y := 1 \end{cases}$$

$$\begin{cases} x := x \oplus y \\ y := y \end{cases}$$

copyless linear CRA \subseteq copyless CRA \subseteq linear CRA

Notation:

- $A \subseteq B$: for all (commutative) semirings A is contained in B
- $A \nsubseteq B$: there exists a (commutative) semiring s.t. A is not contained in B

A lot of my work is dedicated to understand this picture

A lot of my work is dedicated to understand this picture

Recently in [Barloy et al., 2020] 1-letter WA over $\mathbb{Q}(+,\cdot)$

- WA = linear recursive sequences (LRS)
- poly-amb WA = LRS whose eigenvalues are roots of rationals (e.g. i)

A lot of my work is dedicated to understand this picture

Recently in [Barloy et al., 2020] 1-letter WA over $\mathbb{Q}(+,\cdot)$

- WA = linear recursive sequences (LRS)
- poly-amb WA = LRS whose eigenvalues are roots of rationals (e.g. i)
- (un)fortunately copyless WA = poly-amb

A lot of my work is dedicated to understand this picture

Recently in [Barloy et al., 2020] 1-letter WA over $\mathbb{Q}(+,\cdot)$

- WA = linear recursive sequences (LRS)
- poly-amb WA = LRS whose eigenvalues are roots of rationals (e.g. i)
- (un)fortunately copyless WA = poly-amb

In this talk I'll focus on copyless linear CRA

A lot of my work is dedicated to understand this picture

Recently in [Barloy et al., 2020] 1-letter WA over $\mathbb{Q}(+,\cdot)$

- WA = linear recursive sequences (LRS)
- poly-amb WA = LRS whose eigenvalues are roots of rationals (e.g. i)
- (un)fortunately copyless WA = poly-amb

In this talk I'll focus on copyless linear CRA mostly over $\mathbb{Z}(\min, +)$

Introduced by [Alur et al., 2013]

Some papers write copyless CRA for copyless linear CRA

Introduced by [Alur et al., 2013]

Some papers write copyless CRA for copyless linear CRA

Laure writes copyless linear CRA with resets

Introduced by [Alur et al., 2013]

Some papers write copyless CRA for copyless linear CRA

Laure writes copyless linear CRA with resets

• States, registers, updates copyless and linear, transitions deterministic

Introduced by [Alur et al., 2013]

Some papers write copyless CRA for copyless linear CRA

Laure writes copyless linear CRA with resets

• States, registers, updates copyless and linear, transitions deterministic

Lemma

finitely-ambiguous WA $\not\subseteq \not\supseteq$ copyless linear CRA

Introduced by [Alur et al., 2013]

Some papers write copyless CRA for copyless linear CRA

Laure writes copyless linear CRA with resets

• States, registers, updates copyless and linear, transitions deterministic

Lemma

finitely-ambiguous WA $\not\subseteq \not\supseteq$ copyless linear CRA

1. ⊈ Laure's talk or [Almagor et al., 2018]

Introduced by [Alur et al., 2013]

Some papers write copyless CRA for copyless linear CRA

Laure writes copyless linear CRA with resets

• States, registers, updates copyless and linear, transitions deterministic

Lemma

finitely-ambiguous WA $\not\subseteq \not\supseteq$ copyless linear CRA

- 1. ⊈ Laure's talk or [Almagor et al., 2018]
- **2.** $\not\supseteq$ e.g. f(w) = |w| over \mathbb{Q}

$$a \mid x := x + 1$$

CRA

Introduced by [Alur et al., 2013]

Some papers write copyless CRA for copyless linear CRA

Laure writes copyless linear CRA with resets

• States, registers, updates copyless and linear, transitions deterministic

Lemma

finitely-ambiguous WA $\not\subseteq \not\supseteq$ copyless linear CRA

- 1. ⊈ Laure's talk or [Almagor et al., 2018]
- **2.** $\not\supseteq$ e.g. f(w) = |w| over \mathbb{Q}

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Copyless linear CRA ⊊ poly-amb WA

After resets the paths are deterministic (due to copyless assumption)

Lemma

Copyless linear CRA \subsetneq poly-amb WA

After resets the paths are deterministic (due to copyless assumption)

Lemma

Copyless linear CRA \subsetneq poly-amb WA

$$\begin{cases} x := y \odot 1 \\ y := x \odot 3 \end{cases}$$

$$\begin{cases} x := 2 \\ y := x \oplus y \end{cases}$$

$$\begin{cases} x := y \odot 2 \\ y := 2 \end{cases}$$

$$\begin{cases} x := x \odot 1 \\ y := y \odot 2 \end{cases}$$

After resets the paths are deterministic (due to copyless assumption)

Which registers were just reset

Update of every register

Lemma

Copyless linear $CRA \subseteq poly-amb WA$

After resets the paths are deterministic (due to copyless assumption)

Which registers were just reset

Update of every register

This is even linear ambiguous

Equivalence: given \mathcal{A} and \mathcal{B} is $\mathcal{A}(w) = \mathcal{B}(w)$ for all w?

Equivalence: given \mathcal{A} and \mathcal{B} is $\mathcal{A}(w) = \mathcal{B}(w)$ for all w?

Over $\mathbb{Z}(\min, +)$ or $\mathbb{N}(\min, +)$

• Undecidable for polynomially ambiguous WA [Almagor et al., 2011]

Equivalence: given \mathcal{A} and \mathcal{B} is $\mathcal{A}(w) = \mathcal{B}(w)$ for all w?

Over $\mathbb{Z}(\min, +)$ or $\mathbb{N}(\min, +)$

- Undecidable for polynomially ambiguous WA [Almagor et al., 2011]
- Decidable for finitely ambiguous WA [Filiot et al., 2017]

Equivalence: given \mathcal{A} and \mathcal{B} is $\mathcal{A}(w) = \mathcal{B}(w)$ for all w?

Over $\mathbb{Z}(\min, +)$ or $\mathbb{N}(\min, +)$

- Undecidable for polynomially ambiguous WA [Almagor et al., 2011]
- Decidable for finitely ambiguous WA [Filiot et al., 2017]

In both cases the proofs are standard

Equivalence: given \mathcal{A} and \mathcal{B} is $\mathcal{A}(w) = \mathcal{B}(w)$ for all w?

Over $\mathbb{Z}(\min, +)$ or $\mathbb{N}(\min, +)$

- Undecidable for polynomially ambiguous WA [Almagor et al., 2011]
- Decidable for finitely ambiguous WA [Filiot et al., 2017]

In both cases the proofs are standard

Is equivalence decidable for copyless linear CRA?

Equivalence: given \mathcal{A} and \mathcal{B} is $\mathcal{A}(w) = \mathcal{B}(w)$ for all w?

Over $\mathbb{Z}(\min, +)$ or $\mathbb{N}(\min, +)$

- Undecidable for polynomially ambiguous WA [Almagor et al., 2011]
- Decidable for finitely ambiguous WA [Filiot et al., 2017]

In both cases the proofs are standard

Is equivalence decidable for copyless linear CRA?

No: (and that's a big part of the talk

Equivalence: given \mathcal{A} and \mathcal{B} is $\mathcal{A}(w) = \mathcal{B}(w)$ for all w?

Over $\mathbb{Z}(\min, +)$ or $\mathbb{N}(\min, +)$

- Undecidable for polynomially ambiguous WA [Almagor et al., 2011]
- Decidable for finitely ambiguous WA [Filiot et al., 2017]

In both cases the proofs are standard

Is equivalence decidable for copyless linear CRA?

No : (and that's a big part of the talk

But we have new conjectures :)

Outline

1. Introduction: copyless linear CRA etc

2. Undecidability of equivalence

3. Future questions?

Theorem (Almagor, Cadilhac, M., Pérez, 2018)

The equivalence problem is undecidable for copyless linear CRA over $\mathbb{Z}(\min, +)$

Theorem (Almagor, Cadilhac, M., Pérez, 2018)

The equivalence problem is undecidable for copyless linear CRA over $\mathbb{Z}(\min, +)$

We simulate counter machines (with zero tests)

Theorem (Almagor, Cadilhac, M., Pérez, 2018)

The equivalence problem is undecidable for copyless linear CRA over $\mathbb{Z}(\min, +)$

We simulate counter machines (with zero tests)

inc_x
$$\begin{cases} x^{+} := x + 1 \\ x^{-} := x - 1 \\ x^{0} := x^{0} \end{cases}$$

Theorem (Almagor, Cadilhac, M., Pérez, 2018)

The equivalence problem is undecidable for copyless linear CRA over $\mathbb{Z}(\min, +)$

We simulate counter machines (with zero tests)

$$inc_{x}$$
 $\begin{cases} x^{+} := x + 1 \\ x^{-} := x - 1 \end{cases}$ dec_{x} $\begin{cases} x^{+} := x - 1 \\ x^{-} := x + 1 \end{cases}$ $x^{0} := x^{0}$

Theorem (Almagor, Cadilhac, M., Pérez, 2018)

The equivalence problem is undecidable for copyless linear CRA over $\mathbb{Z}(\min, +)$

We simulate counter machines (with zero tests)

$$inc_{x}$$
 $\begin{cases} x^{+} := x + 1 \\ x^{-} := x - 1 \\ x^{0} := x^{0} \end{cases}$ dec_{x} $\begin{cases} x^{+} := x - 1 \\ x^{-} := x + 1 zero_{x} \\ x^{0} := x^{0} \end{cases}$ $\begin{cases} x^{+} := 0 \\ x^{-} := 0 \\ x^{0} := min(x^{+}, x^{-}, x^{0}) \end{cases}$

Theorem (Almagor, Cadilhac, M., Pérez, 2018)

The equivalence problem is undecidable for copyless linear CRA over $\mathbb{Z}(\min, +)$

We simulate counter machines (with zero tests)

Alphabet: $\{inc_x, dec_x, zero_x\}$

$$inc_{x}$$
 $\begin{cases} x^{+} := x + 1 \\ x^{-} := x - 1 \end{cases}$ dec_{x} $\begin{cases} x^{+} := x - 1 \\ x^{-} := x + 1 zero_{x} \end{cases}$ $\begin{cases} x^{+} := 0 \\ x^{-} := 0 \end{cases}$ $x^{0} := min(x^{+}, x^{-}, x^{0})$

Output: $min(x_1, \ldots, x_n)$

A mistake propagates forever

Theorem (Almagor, Cadilhac, M., Pérez, 2018)

The equivalence problem is undecidable for copyless linear CRA over $\mathbb{Z}(\min, +)$

We simulate counter machines (with zero tests)

Alphabet: $\{inc_x, dec_x, zero_x\}$

$$inc_{x}$$
 $\begin{cases} x^{+} := x + 1 \\ x^{-} := x - 1 \end{cases}$ dec_{x} $\begin{cases} x^{+} := x - 1 \\ x^{-} := x + 1 zero_{x} \end{cases}$ $\begin{cases} x^{+} := 0 \\ x^{-} := 0 \end{cases}$ $x^{0} := min(x^{+}, x^{-}, x^{0})$

Output: $min(x_1, \ldots, x_n)$

A mistake propagates forever

 \mathcal{A} is defined as above, $\mathcal{B} = 0$.

Is equivalence still undecidable over $\mathbb{N}(\min, +)$?

Is equivalence still undecidable over $\mathbb{N}(\min, +)$?

Usual fix: check $A + c \equiv B + c$ for some $c \in \mathbb{N}$

Is equivalence still undecidable over $\mathbb{N}(\min, +)$?

Usual fix: check $A + c \equiv B + c$ for some $c \in \mathbb{N}$

$$\mathcal{B}(w) = c|w|$$
, which is ok

Is equivalence still undecidable over $\mathbb{N}(\min, +)$?

Usual fix: check $A + c \equiv B + c$ for some $c \in \mathbb{N}$

$$\mathcal{B}(w) = c|w|$$
, which is ok

For A(w) there is a problem with resets

$$x := 0$$

Is equivalence still undecidable over $\mathbb{N}(\min, +)$?

Usual fix: check $A + c \equiv B + c$ for some $c \in \mathbb{N}$

$$\mathcal{B}(w) = c|w|$$
, which is ok

For A(w) there is a problem with resets

$$x := 0$$

It would work if we could reset x := "current length of the word"

Is equivalence still undecidable over $\mathbb{N}(\min, +)$?

Usual fix: check $A + c \equiv B + c$ for some $c \in \mathbb{N}$

$$\mathcal{B}(w) = c|w|$$
, which is ok

For A(w) there is a problem with resets

$$x := 0$$

It would work if we could reset x := "current length of the word"

Naive fixes are not copyless or not linear

Undecidability for $\mathbb N$

Theorem (Almagor, Cadilhac, M., Pérez, 2018)

The equivalence problem is undecidable for copyless linear CRA over $\mathbb{N}(\min, +)$

Undecidability for $\mathbb N$

Theorem (Almagor, Cadilhac, M., Pérez, 2018)

The equivalence problem is undecidable for copyless linear CRA over $\mathbb{N}(\min, +)$

More registers

• x^+ , x^- , x^0 : count increments, decrements and test

Undecidability for $\mathbb N$

Theorem (Almagor, Cadilhac, M., Pérez, 2018)

The equivalence problem is undecidable for copyless linear CRA over $\mathbb{N}(\min, +)$

More registers

- x^+ , x^- , x^0 : count increments, decrements and test
- x^u: count number of both increments and decrements

Undecidability for $\mathbb N$

Theorem (Almagor, Cadilhac, M., Pérez, 2018)

The equivalence problem is undecidable for copyless linear CRA over $\mathbb{N}(\min, +)$

- x^+ , x^- , x^0 : count increments, decrements and test
- x^u: count number of both increments and decrements
- $x^{\frac{u}{2}}$: it will be exactly half of x^{u}

Undecidability for $\mathbb N$

Theorem (Almagor, Cadilhac, M., Pérez, 2018)

The equivalence problem is undecidable for copyless linear CRA over $\mathbb{N}(\min, +)$

- x^+ , x^- , x^0 : count increments, decrements and test
- x^u: count number of both increments and decrements
- $x^{\frac{u}{2}}$: it will be exactly half of x^{u}
- x^{cb} , x^{2cb} : to rebuild counters

Theorem (Almagor, Cadilhac, M., Pérez, 2018)

The equivalence problem is undecidable for copyless linear CRA over $\mathbb{N}(\min, +)$

- x^+ , x^- , x^0 : count increments, decrements and test
- x^u: count number of both increments and decrements
- $x^{\frac{u}{2}}$: it will be exactly half of x^{u}
- x^{cb} , x^{2cb} : to rebuild counters

inc
$$\begin{cases} x^{+} := x^{+} + e \\ x^{0} = x^{0} + \frac{e}{2} \\ x^{u} := x^{u} + e \\ x^{\frac{u}{2}} := x^{\frac{u}{2}} + \frac{e}{2} \end{cases}$$

Theorem (Almagor, Cadilhac, M., Pérez, 2018)

The equivalence problem is undecidable for copyless linear CRA over $\mathbb{N}(\min, +)$

- x^+ , x^- , x^0 : count increments, decrements and test
- x^u: count number of both increments and decrements
- $x^{\frac{u}{2}}$: it will be exactly half of x^{u}
- x^{cb} , x^{2cb} : to rebuild counters

inc
$$\begin{cases} x^{+} := x^{+} + e \\ x^{0} = x^{0} + \frac{e}{2} \\ x^{u} := x^{u} + e \\ x^{\frac{u}{2}} := x^{\frac{u}{2}} + \frac{e}{2} \end{cases} dec \begin{cases} x^{-} := x^{-} + e \\ x^{0} = x^{0} + \frac{e}{2} \\ x^{u} := x^{u} + e \\ x^{\frac{u}{2}} := x^{\frac{u}{2}} + \frac{e}{2} \end{cases}$$

Theorem (Almagor, Cadilhac, M., Pérez, 2018)

The equivalence problem is undecidable for copyless linear CRA over $\mathbb{N}(\min, +)$

- x^+ , x^- , x^0 : count increments, decrements and test
- x^u: count number of both increments and decrements
- $x^{\frac{u}{2}}$: it will be exactly half of x^{u}
- x^{cb} , x^{2cb} : to rebuild counters

inc
$$\begin{cases} x^{+} := x^{+} + e \\ x^{0} = x^{0} + \frac{e}{2} \\ x^{u} := x^{u} + e \\ x^{\frac{u}{2}} := x^{\frac{u}{2}} + \frac{e}{2} \end{cases} dec \begin{cases} x^{-} := x^{-} + e \\ x^{0} = x^{0} + \frac{e}{2} \\ x^{0} = x^{0} + \frac{e}{2} \end{cases} zero \begin{cases} x^{+} := 0 \\ x^{-} := 0 \\ x^{u} := x^{u} + e \\ x^{\frac{u}{2}} := x^{\frac{u}{2}} + \frac{e}{2} \end{cases} \end{cases}$$

Theorem (Almagor, Cadilhac, M., Pérez, 2018)

The equivalence problem is undecidable for copyless linear CRA over $\mathbb{N}(\min, +)$

- x^+ , x^- , x^0 : count increments, decrements and test
- x^u: count number of both increments and decrements
- $x^{\frac{u}{2}}$: it will be exactly half of x^{u}
- x^{cb} , x^{2cb} : to rebuild counters

finc
$$\begin{cases} x^{+} := x^{+} + e \\ x^{0} = x^{0} + \frac{e}{2} \\ x^{u} := x^{u} + e \\ x^{\frac{u}{2}} := x^{\frac{u}{2}} + \frac{e}{2} \end{cases}$$

$$\begin{cases} x^{-} := x^{-} + e \\ x^{0} = x^{0} + \frac{e}{2} \\ x^{u} := x^{u} + e \\ x^{\frac{u}{2}} := x^{\frac{u}{2}} + \frac{e}{2} \end{cases}$$
 zer

Ideally 0 should be
$$x^{\frac{u}{2}}$$

$$inc \begin{cases} x^{+} := x^{+} + e \\ x^{0} = x^{0} + \frac{e}{2} \\ x^{u} := x^{u} + e \\ x^{\frac{u}{2}} := x^{\frac{u}{2}} + \frac{e}{2} \end{cases} dec \begin{cases} x^{-} := x^{-} + e \\ x^{0} = x^{0} + \frac{e}{2} \\ x^{u} := x^{u} + e \end{cases} zero \begin{cases} x^{+} := 0 \\ x^{-} := 0 \\ x^{u} := x^{u} + e \end{cases}$$

$$x^{+}, x^{-}, x^{0}, x^{u}, x^{\frac{u}{2}}, x^{cb}, x^{2cb}$$

$$x^{+}, x^{-}, x^{0}, x^{u}, x^{\frac{u}{2}}, x^{cb}, x^{2cb}$$

Registers are:

• **Ready**: if
$$x^+ = x^- = x^{\frac{u}{2}} = \frac{1}{2}x^u$$
, $x^{cb} = x^{2cb} = 0$

$$x^{+}, x^{-}, x^{0}, x^{u}, x^{\frac{u}{2}}, x^{cb}, x^{2cb}$$

Registers are:

- **Ready**: if $x^+ = x^- = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **To-climb**: if $x^+ = x^- = 0$ and $x^0 = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$

$$x^{+}, x^{-}, x^{0}, x^{u}, x^{\frac{u}{2}}, x^{cb}, x^{2cb}$$

Registers are:

- **Ready**: if $x^+ = x^- = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **To-climb**: if $x^+ = x^- = 0$ and $x^0 = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **Dead**: if $x^0 < x^{\frac{u}{2}}$

$$x^{+}, x^{-}, x^{0}, x^{u}, x^{\frac{u}{2}}, x^{cb}, x^{2cb}$$

Registers are:

- **Ready**: if $x^+ = x^- = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **To-climb**: if $x^+ = x^- = 0$ and $x^0 = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **Dead**: if $x^0 < x^{\frac{u}{2}}$

Idea: after zero_x we rebuild x^+ , x^- to $x^{\frac{u}{2}} = \frac{1}{2}x^u$

$$x^{+}$$
, x^{-} , x^{0} , x^{u} , $x^{\frac{u}{2}}$, x^{cb} , x^{2cb}

Registers are:

- **Ready**: if $x^+ = x^- = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **To-climb**: if $x^+ = x^- = 0$ and $x^0 = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **Dead**: if $x^0 < x^{\frac{u}{2}}$

Idea: after zero_x we rebuild x^+ , x^- to $x^{\frac{u}{2}} = \frac{1}{2}x^u$

Two extra letters cb and chkcb
 after zero read cbⁱ to rebuild the value

$$x^{+}, x^{-}, x^{0}, x^{u}, x^{\frac{u}{2}}, x^{cb}, x^{2cb}$$

Registers are:

- **Ready**: if $x^+ = x^- = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **To-climb**: if $x^+ = x^- = 0$ and $x^0 = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **Dead**: if $x^0 < x^{\frac{u}{2}}$

Idea: after zero_x we rebuild x^+ , x^- to $x^{\frac{u}{2}} = \frac{1}{2}x^u$

Two extra letters cb and chkcb
 after zero read cbⁱ to rebuild the value
 then read chkcb to check if i is correct

$$x^{+}$$
, x^{-} , x^{0} , x^{u} , $x^{\frac{u}{2}}$, x^{cb} , x^{2cb}

Registers are:

- **Ready**: if $x^+ = x^- = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **To-climb**: if $x^+ = x^- = 0$ and $x^0 = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **Dead**: if $x^0 < x^{\frac{u}{2}}$

Idea: after zero_x we rebuild x^+ , x^- to $x^{\frac{u}{2}} = \frac{1}{2}x^u$

Two extra letters cb and chkcb
 after zero read cbⁱ to rebuild the value
 then read chkcb to check if i is correct
 x^{cb}, x^{2cb} are nonzero only when reading cb

- **Ready**: if $x^+ = x^- = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **To-climb**: if $x^+ = x^- = 0$ and $x^0 = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **Dead**: if $x^0 < x^{\frac{u}{2}}$

- **Ready**: if $x^+ = x^- = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **To-climb**: if $x^+ = x^- = 0$ and $x^0 = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **Dead**: if $x^0 < x^{\frac{u}{2}}$

$$cb \begin{cases} x^{+} := x^{+} + e \\ x^{-} := x^{-} + e \\ x^{0} := x^{0} + \frac{e}{2} \\ x^{\frac{u}{2}} := x^{\frac{u}{2}} + \frac{e}{2} \\ x^{cb} := x^{cb} + e \\ x^{2cb} := x^{2cb} + 2e \end{cases}$$

$$chkcb \begin{cases} x^{cb} := 0 \\ x^{2cb} := 0 \\ x^{u} := x^{2cb} \\ x^{0} := \min(x^{0}, x^{cb}, x^{u}) \end{cases}$$

- **Ready**: if $x^+ = x^- = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **To-climb**: if $x^+ = x^- = 0$ and $x^0 = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **Dead**: if $x^0 < x^{\frac{u}{2}}$

$$cb \begin{cases} x^{+} := x^{+} + e \\ x^{-} := x^{-} + e \\ x^{0} := x^{0} + \frac{e}{2} \\ x^{\frac{u}{2}} := x^{\frac{u}{2}} + \frac{e}{2} \\ x^{cb} := x^{cb} + e \\ x^{2cb} := x^{2cb} + 2e \end{cases}$$

$$chkcb \begin{cases} x^{cb} := 0 \\ x^{2cb} := 0 \\ x^{2cb} := x^{2cb} \\ x^{0} := \min(x^{0}, x^{cb}, x^{u}) \end{cases}$$

Lemma

Once registers are dead they always remain dead

- **Ready**: if $x^+ = x^- = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **To-climb**: if $x^+ = x^- = 0$ and $x^0 = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **Dead**: if $x^0 < x^{\frac{u}{2}}$

- **Ready**: if $x^+ = x^- = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **To-climb**: if $x^+ = x^- = 0$ and $x^0 = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **Dead**: if $x^0 < x^{\frac{u}{2}}$

Lemma

if **ready** after reading $(inc + dec)^*zero$ registers become: either **to-climb** (if #(inc) = #(dec)), or **dead** (otherwise)

- **Ready**: if $x^+ = x^- = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **To-climb**: if $x^+ = x^- = 0$ and $x^0 = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **Dead**: if $x^0 < x^{\frac{u}{2}}$

Lemma

if **ready** after reading $(inc + dec)^*zero$ registers become: either **to-climb** (if #(inc) = #(dec)), or **dead** (otherwise)

Proof. Notice that $x^+ + x^- = 2x^{\frac{u}{2}}$.

- **Ready**: if $x^+ = x^- = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **To-climb**: if $x^+ = x^- = 0$ and $x^0 = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **Dead**: if $x^0 < x^{\frac{u}{2}}$

Lemma

if **ready** after reading $(inc + dec)^*zero$ registers become: either **to-climb** (if #(inc) = #(dec)), or **dead** (otherwise)

Proof. Notice that $x^+ + x^- = 2x^{\frac{u}{2}}$.

Lemma

if **to-climb** after reading $cb^i chkcb$ registers become: either **ready** (if $i = x^u \cdot \frac{1}{a}$), **dead** (otherwise)

- **Ready**: if $x^+ = x^- = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **To-climb**: if $x^+ = x^- = 0$ and $x^0 = x^{\frac{u}{2}} = \frac{1}{2}x^u$, $x^{cb} = x^{2cb} = 0$
- **Dead**: if $x^0 < x^{\frac{u}{2}}$

Lemma

if **ready** after reading $(inc + dec)^*zero$ registers become: either **to-climb** (if #(inc) = #(dec)), or **dead** (otherwise)

Proof. Notice that $x^+ + x^- = 2x^{\frac{u}{2}}$.

Lemma

if **to-climb** after reading $cb^i chkcb$ registers become:

either **ready** (if $i = x^u \cdot \frac{1}{e}$), **dead** (otherwise)

Proof. Notice that $x^u + x^{cb} = 2x^{\frac{u}{2}}$.

If everything went ok then $x_i^0 = x_i^{\frac{u}{2}}$ Otherwise $x_i^0 < x_i^{\frac{u}{2}}$

If everything went ok then $x_i^0 = x_i^{\frac{u}{2}}$ Otherwise $x_i^0 < x_i^{\frac{u}{2}}$

• We need one more register x^{avg}

And k more letters z_1, \ldots, z_k (streamed at the end)

If everything went ok then $x_i^0 = x_i^{\frac{u}{2}}$ Otherwise $x_i^0 < x_i^{\frac{u}{2}}$

- We need one more register x^{avg} And k more letters z_1, \ldots, z_k (streamed at the end)
- Whenever $x_i^{\frac{u}{2}} := x_i^{\frac{u}{2}} + \frac{e}{2}$, update $x^{avg} := x^{avg} + \frac{e}{2k}$ $z_i \begin{cases} x_i^0 := x_i^0 + \frac{e}{2} \\ x^{avg} := x^{avg} + \frac{e}{2k} \end{cases}$

If everything went ok then $x_i^0 = x_i^{\frac{u}{2}}$ Otherwise $x_i^0 < x_i^{\frac{u}{2}}$

- We need one more register x^{avg} And k more letters z_1, \ldots, z_k (streamed at the end)
- Whenever $x_i^{\frac{u}{2}} := x_i^{\frac{u}{2}} + \frac{e}{2}$, update $x^{avg} := x^{avg} + \frac{e}{2k}$

$$Z_{i} \begin{cases} x_{i}^{0} := x_{i}^{0} + \frac{e}{2} \\ x^{avg} := x^{avg} + \frac{e}{2k} \end{cases}$$

e = 4k so all values always even

If everything went ok then $x_i^0 = x_i^{\frac{u}{2}}$ Otherwise $x_i^0 < x_i^{\frac{u}{2}}$

- We need one more register x^{avg} And k more letters z_1, \ldots, z_k (streamed at the end)
- Whenever $x_i^{\frac{u}{2}} := x_i^{\frac{u}{2}} + \frac{e}{2}$, update $x^{avg} := x^{avg} + \frac{e}{2k}$ $z_i \begin{cases} x_i^0 := x_i^0 + \frac{e}{2} \\ x^{avg} := x^{avg} + \frac{e}{2k} \end{cases}$ so all values always even
- Output: in A: min $(x^{avg}, x_1^0 + 1, \dots, x_k^0 + 1)$, in B: min $(x_1^0 + 1, \dots, x_k^0 + 1)$

If everything went ok then $x_i^0 = x_i^{\frac{u}{2}}$ Otherwise $x_i^0 < x_i^{\frac{u}{2}}$

- We need one more register x^{avg} And k more letters z_1, \ldots, z_k (streamed at the end)
- Whenever $x_i^{\frac{u}{2}} := x_i^{\frac{u}{2}} + \frac{e}{2}$, update $x^{avg} := x^{avg} + \frac{e}{2k}$ $z_i \begin{cases} x_i^0 := x_i^0 + \frac{e}{2} \\ x^{avg} := x^{avg} + \frac{e}{2k} \end{cases}$ so all values always even
- Output: in A: $\min(x^{avg}, x_1^0 + 1, \dots, x_k^0 + 1)$, in B: $\min(x_1^0 + 1, \dots, x_k^0 + 1)$

 \mathcal{A} outputs \mathbf{x}^{avg} only if nothing was **dead** and \mathbf{x}_i^0 are all equal

Outline

1. Introduction: copyless linear CRA etc

2. Undecidability of equivalence

3. Future questions?

Is there a nontrivial fragment of WA with decidable equivalence for $\mathbb{N}(\min, +)$?

Is there a nontrivial fragment of WA with decidable equivalence for $\mathbb{N}(\min, +)$?

Maybe. Bounded alternation for CRA?

Is there a nontrivial fragment of WA with decidable equivalence for $\mathbb{N}(\min, +)$?

Maybe. Bounded alternation for CRA?

Is there a nontrivial fragment of WA with decidable equivalence for $\mathbb{N}(\min, +)$?

Maybe. Bounded alternation for CRA?

Label nonleafs with the semiring operation

x := x has no label

Is there a nontrivial fragment of WA with decidable equivalence for $\mathbb{N}(\min, +)$?

Maybe. Bounded alternation for CRA?

Label nonleafs with the semiring operation x := x has no label

Bounded alternation: on every path there is a uniform bound on alternations \odot and \oplus

Is there a nontrivial fragment of WA with decidable equivalence for $\mathbb{N}(\min, +)$?

Maybe. Bounded alternation for CRA?

Label nonleafs with the semiring operation x := x has no label

Bounded alternation: on every path there is a uniform bound on alternations \odot and \oplus

In this talk consider:

bounded alternation copyless linear CRA (BACL)

An equivalent definition of BACL

Definition

BACL is a copyless linear CRA s.t.

- Registers are ordered $x_1 < x_2 \ldots < x_k$
- x_i can only use x_i or $x_j < x_i$ in the updates
- Each registers uses always ⊙ or always ⊕

An equivalent definition of BACL

Definition

BACL is a copyless linear CRA s.t.

- Registers are ordered $x_1 < x_2 \ldots < x_k$
- x_i can only use x_i or $x_j < x_i$ in the updates
- Each registers uses always ⊙ or always ⊕

Example: "shortest block of b's"

$$b\begin{cases} x_1 := x_1 + 1 \\ x_2 := x_2 \end{cases}$$

$$0$$

$$a\begin{cases} x_1 := 0 \\ x_2 := \min(x_1, x_2) \end{cases}$$

An equivalent definition of BACL

Definition

BACL is a copyless linear CRA s.t.

- Registers are ordered $x_1 < x_2 \ldots < x_k$
- x_i can only use x_i or $x_j < x_i$ in the updates
- Each registers uses always ⊙ or always ⊕

Example: "shortest block of b's"

$$b\begin{cases} x_1 := x_1 + 1 \\ x_2 := x_2 \end{cases}$$

$$\begin{cases} x_1 := 0 \\ x_2 := \min(x_1, x_2) \end{cases}$$

$$cb \begin{cases} x^{+} := x^{+} + e \\ x^{-} := x^{-} + e \\ x^{0} := x^{0} + \frac{e}{2} \\ x^{\frac{u}{2}} := x^{\frac{u}{2}} + \frac{e}{2} \\ x^{cb} := x^{cb} + e \\ x^{2cb} := x^{2cb} + 2e \end{cases}$$

$$chkcb \begin{cases} x^{cb} := 0 \\ x^{2cb} := 0 \\ x^{u} := x^{2cb} \\ x^{0} := \min(x^{0}, x^{cb}, x^{u}) \end{cases}$$

$$cb \begin{cases} x^{+} := x^{+} + e \\ x^{-} := x^{-} + e \end{cases}$$

$$x^{0} := x^{0} + \frac{e}{2}$$

$$x^{\frac{u}{2}} := x^{\frac{u}{2}} + \frac{e}{2}$$

$$x^{cb} := x^{cb} + e$$

$$x^{2cb} := x^{2cb} + 2e$$

$$chkcb \begin{cases} x^{cb} := 0 \\ x^{2cb} := 0 \\ x^{u} := x^{2cb} \\ x^{0} := \min(x^{0}, x^{cb}, x^{u}) \end{cases}$$

No

$$cb \begin{cases} x^{+} := x^{+} + e \\ x^{-} := x^{-} + e \end{cases}$$

$$x^{0} := x^{0} + \frac{e}{2}$$

$$x^{\frac{u}{2}} := x^{\frac{u}{2}} + \frac{e}{2}$$

$$x^{cb} := x^{cb} + e$$

$$x^{2cb} := x^{2cb} + 2e$$

$$chkcb \begin{cases} x^{cb} := 0 \\ x^{2cb} := 0 \\ x^{u} := x^{2cb} \\ x^{0} := \min(x^{0}, x^{cb}, x^{u}) \end{cases}$$

No

Unfortunately the encoding over $\mathbb{Z}(\min, +)$ yes

$$cb \begin{cases} x^{+} := x^{+} + e \\ x^{-} := x^{-} + e \\ x^{0} := x^{0} + \frac{e}{2} \\ x^{\frac{u}{2}} := x^{\frac{u}{2}} + \frac{e}{2} \\ x^{cb} := x^{cb} + e \\ x^{2cb} := x^{2cb} + 2e \end{cases}$$

$$chkcb \begin{cases} x^{cb} := 0 \\ x^{2cb} := 0 \\ x^{u} := x^{2cb} \\ x^{0} := \min(x^{0}, x^{cb}, x^{u}) \end{cases}$$

No

Unfortunately the encoding over $\mathbb{Z}(\min, +)$ yes

Equivalence is:

- open for BACL over $\mathbb{N}(\min, +)$
- undecidable for BACL over $\mathbb{Z}(\min, +)$

Conclusion

ullet Equivalence is undecidable for copyless linear CRA over ${\mathbb N}$

Conclusion

ullet Equivalence is undecidable for copyless linear CRA over ${\mathbb N}$

• Some hopes for the bounded alternation fragment

Conclusion

- Equivalence is undecidable for copyless linear CRA over N
- Some hopes for the bounded alternation fragment
- Is there a nice theory to understand the picture?

Bibliography

- [Almagor et al. 2011] What's Decidable about Weighted Automata? ATVA 2011. S. Almagor, U. Boker, O. Kupferman
- [Almagor et al. 2018] Weak Cost Register Automata Are Still Powerful DLT 2018. S. Almagor, M. Cadilhac, F. Mazowiecki, G. A. Pérez.
- [Alur et al. 2013] Regular Functions and Cost Register Automata LICS 2013. R. Alur, L. D'Antoni, J. V. Deshmukh, M. Raghothaman, Y. Yuan
- [Barloy et al. 2020] A Robust Class of Linear Recurrence Sequences CSL 2020. C. Barloy, N. Fijalkow, N. Lhote, F. Mazowiecki
- [Filiot et al. 2017] Decidable Weighted Expressions with Presburger Combinators FCT 2017. E. Filiot, N. Mazzocchi, J.-F. Raskin