Linearna algebra nad polkolobarji

Jimmy Zakeršnik

mentor: prof. dr. Tomaž Košir

15. november 2021

Napovednik:

- Motivacija
- Uvodne definicije
- Polmoduli
- 4 Linearne preslikave nad polkolobarji
- Bideterminanta
- Bipolinom
- Cayley-Hamiltonov izrek

Motivacija:

Polkolobarjev je veliko - pojavljajo se v skoraj vsakem področju matematike. Nekateri primeri so:

- \mathbb{N}_0 oz. \mathbb{Z}^+ , \mathbb{Q}^+ , \mathbb{R}^+ za standardne operacije + in *
- max-plus algebra $(\mathbb{R} \cup \{-\infty\}, max, +)$ in min-plus algebra $(\mathbb{R} \cup \{\infty\}, min, +)$
- Boolove algebre
- Polkolobarji (pod)množic za ∪ in ∩

Uvodne definicije

Definicija

Za neprazno množico R, ki je opremljena z operacijama \oplus in \otimes pravimo, da je *polkolobar*, če zanjo velja naslednje:

- \bullet (R, \oplus) je komutativen monoid z nevtralnim elementom 0,
- **2** (R, \otimes) je monoid z enoto 1,
- 3 $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$ in $(b \oplus c) \otimes a = (b \otimes a) \oplus (c \otimes a); \ \forall a, b, c \in R$,
- $0 \otimes a = 0 = a \otimes 0; \forall a \in R.$

Oznaka: (R, \oplus, \otimes) .

Polkolobar nad množicami

Naj bo X neprazna množica in $S\subseteq P(X)$ neprazen nabor podmnožic množice X. Nabor S je polkolobar (pod)množic za operaciji unije in preseka, če zanj velja:

- $E, F \in S \Rightarrow E \cap F \in S$
- \bullet Če sta $E, F \in S$, potem obstaja končno mnogo disjunktnih množic $C_1, C_2, \ldots, C_n \in S$, da je $E \setminus F = \bigcup_{i=1}^n C_i \in S$.

Obravnavan tip polkolobarjev se uporablja v teoriji mere. Konkreten primer takega polkolobarja je nabor polzaprtih intervalov $[a,b)\subset\mathbb{R}$ za unijo in presek.

Polmoduli

Definicija

Naj bo R polkolobar. *Levi R-polmodul* je komutativen monoid (M,+) z aditivno identiteto θ , na katerem imamo definirano množenje s skalarjem $\cdot: R \times M \to M$, ki zadošča naslednjim pogojem za vsaka $\lambda, \mu \in R$ in vsaka $a,b \in M$:

- 2 $\lambda \cdot (a+b) = \lambda \cdot a + \lambda \cdot b$ in $(\lambda + \mu) \cdot a = \lambda \cdot a + \mu \cdot a$,

Analogno definiramo desni R-polmodul.

Linearne preslikave in matrike nad polkolobarji

Tudi na polmodulih lahko definiramo linearne preslikave: Zahtevamo aditivnost in homogenost.

Nad polkolobarjem $(R,+,\cdot)$ lahko definiramo mxn matrike, za poljubna $m,n\in\mathbb{N}$. Pri tem seštevanje definiramo enako kot za matrike nad obsegi (po komponentah), množenje pa na sledeč način za $A\in M_{m\times n}(R), B\in M_{n\times l}(R)$:

$$A \times B = C \in M_{m \times l}(R); \ c_{ij} = \sum_{k=1}^{n} (a_{ik}b_{kj}) \forall i \in \underline{m} \ \& \ \forall j \in \underline{l}$$

Bideterminante

Definicija:

Naj bo A neka $n \times n$ matrika nad komutativnim polkolobarjem R. Bideterminanta matrike A je urejeni par $(det^+(A), det^-(A))$, kjer sta vrednosti $det^+(A)$ in $det^-(A)$ definirani na naslednji način:

$$det^{+}(A) = \sum_{\pi \in Per^{+}(n)} (\prod_{i=1}^{n} (a_{i,\pi(i)}))$$

$$det^{-}(A) = \sum_{\pi \in Per^{-}(n)} (\prod_{i=1}^{n} (a_{i,\pi(i)}))$$

Karakteristični bipolinom

Definicija:

Naj bo A neka $n \times n$ matrika nad komutativnim polkolobarjem R. Karakteristični bipolinom matrike A je dvojica $(P_A^+(\lambda), P_A^-(\lambda))$, kjer sta $P_A^+(\lambda)$ in $P_A^-(\lambda)$ polinoma stopnje n v spremenljivki λ , definirana na naslednji način:

$$\begin{split} P_A^+(\lambda) &= \sum_{q=1}^n \left(\left(\sum_{\substack{\sigma \in Part^+(n) \\ |dom(\sigma)| = q}} \left(\prod_{i \in dom(\sigma)}^n (a_{i,\sigma(i)}) \right) \right) * \lambda^{n-q} * \lambda^n \right) \\ P_A^-(\lambda) &= \sum_{q=1}^n \left(\left(\sum_{\substack{\sigma \in Part^-(n) \\ |dom(\sigma)| = q}} \left(\prod_{i \in dom(\sigma)}^n (a_{i,\sigma(i)}) \right) \right) * \lambda^{n-q} \right) \end{split}$$

Cayley-Hamiltonov izrek nad polkolobarji

Izrek:

Naj bo A neka $n \times n$ matrika nad komutativnim polkolobarjem z nevtralnim elementom 0 in enoto 1 in naj bo $(P_A^+(\lambda), P_A^-(\lambda))$ bipolinom, ki pripada matriki A. Tedaj velja:

$$P_A^+(A) = P_A^-(A) {1}$$

kjer sta $P_A^+(A)$ in $P_A^-(A)$ matriki, ki ju dobimo, če v $P_A^+(\lambda)$ in $P_A^-(\lambda)$ λ^{n-q} zamenjamo z A^{n-q} . Pri tem razumemo A^0 kot multiplikativno identiteto v polkolobarju $M_n(R)$.

Literatura:

- Yi-Jia Tan Invertible matrics over semirings, https://www.tandfonline.com/doi/abs/10.1080/ 03081087.2012.703191
- Yi-Jia Tan Bases in semimodules over commutative semirings,, https://www.sciencedirect.com/ science/article/pii/S0024379513007234
- Yi-Jia Tan Determinants of matrices over semirings, https://www.tandfonline.com/doi/abs/10.1080/ 03081087.2013.784285
- Michel Gondran, Michel Minoux Combinatorial Properties of (Pre)-Semirings, https://www.researchgate.net/ publication/319772435_Combinatorial_ Properties_of_Pre-Semirings

Literatura:

Jonathan S. Golan Semirings and their applications,

```
https:
```

//books.google.si/books?id=ssDxCAAAQBAJ&lpg= PP7&lr&pg=PP1#v=onepage&q&f=false

Semiring,

https://en.wikipedia.org/wiki/Semiring