CSE 207	Class Test 2 (Dec 23, 2020)	Total pts: 20	Time: 20 minutes

Name:	Std No:	

Q.1 (1.5 * 4 = 6) Circle exactly one best answer for each of the following four multiple-choice problems.

- 1. The class *NP* is the set of all decision problems that:
 - a. Can be solved by polynomial-time algorithms.
 - b. Can definitely *not* be solved by polynomial-time algorithms.
 - c. Have polynomial-time algorithms that can verify potential solutions.
 - d. All of the above.
 - e. None of the above.
- 2. The class *NP*–complete is the set of all decision problems that:
 - a. Can be solved by polynomial-time algorithms.
 - b. Can definitely *not* be solved by polynomial-time algorithms.
 - c. Have polynomial-time algorithms that can verify potential solutions.
 - d. All of the above.
 - e. None of the above.
- 3. Suppose $X \leq_p Y$. Which must be true?
 - a. Problem X is polynomial-time reducible to problem Y.
 - b. Problem Y is polynomial-time reducible to problem X.
 - c. Problems X and Y are equivalent in terms of computational complexity.
 - d. Both (a) and (c).
 - e. None of the above.
- 4. Suppose problem X is in class P, problem Y is in class NP, and $Y \leq_{D} X$. Which must be true?
 - a. Problem Y is in class *P*.
 - b. Problem Y is *NP*-complete.
 - c. P = NP
 - d. Both (a) and (c)
 - e. None of the above.

Q.2 (4*1*5 = 6) Indicate whether the following statements are True or False (T/F)

- i) If PRIME is in NP-complete, then $P \neq NP$.
- ii) NP=co-NP => P = NP.
- iii) NP-hard problems which are not NP-complete are not in NP.
- iv) The TAUTOLOGY problem asks if a given Boolean formula is true for all possible assignments to the Boolean variables. TAUTOLOGY is in co-NP.

Q. 3(4+4=8 pts)

- i) Suppose you have found a problem which is in NP but not in P. Why do you think your finding is important?
 - ii) Point out and briefly discuss the fallacy in the following "proof" that $P \neq NP$: "To see if a 3-SAT formula is satisfiable, we need to look at 2^n possible truth assignments. This takes exponential time, so 3-SAT is not in P. But it is in NP, so $P \neq NP$."