

Section 11.7

B.H.

Section 11.7 Cylindrical and Spherical Coordinates

MATH211 Calculus III

Instructor: Ben Huang

DEPARTMENT OF COMPUTING, MATHEMATICS AND PHYSICS

Section 11.7 B.H.

How to express x and y in terms of r and θ ?

Section 11.7

B.H.

How to express x and y in terms of r and θ ?

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$$

Section 11.7 B.H.

How to express x and y in terms of r and θ ?

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$$

Remark: (r, θ) is the polar coordinates of the point.

Section 11.7 B.H. What are the spherical coordiates in 3-D space?

Section 11.7 B.H. What are the spherical coordiates in 3-D space?

Spherical coordinates

Section 11.7 B.H.

Section 11.7

B.H.

What are the cylindrical coordiates in 3-D space?

Section 11.7

B.H.

What are the cylindrical coordiates in 3-D space?

Section 11.7

B.H.

Example

Sketch the graph of the spherical coordinates equation.

(a)
$$\phi = \frac{\pi}{4}$$
.

(b)
$$\theta = \frac{\pi}{4}$$
.

(c) $\rho = 1$.

Section 11.7

B.H.

Example

Sketch the graph of the spherical coordinates equation.

(a)
$$\phi = \frac{\pi}{4}$$

(b)
$$\theta = \frac{\pi}{4}$$
.

(c)
$$\rho = 1$$
.

Section 11.7

B.H.

Example

Convert the rectangular equation to an equation in spherical coordinates.

$$x^2 + y^2 + z^2 = 16.$$

Section 11.7

B.H.

Example

Convert the rectangular equation to an equation in spherical coordinates.

$$x^2 + y^2 + z^2 = 16.$$

Solution.

$$(\rho\cos\theta\sin\phi)^2 + (\rho\sin\theta\sin\phi)^2 + (\rho\cos\phi)^2 = 16$$

$$(\cos^2\theta + \sin^2\theta)(\rho\sin\phi)^2 + (\rho\cos\phi)^2 = 16$$

$$\rho^2(\sin^2\phi + \cos^2\phi) = 16$$

$$\rho^2 = 16$$

$$\rho = 4.$$

Triple Integrals in Spherical Coordinates

Section 11.7 B.H.

$$\Delta V_i \approx \rho_i^2 \sin \phi_i \Delta \rho_i \Delta \phi_i \Delta \theta_i$$

Section 11.7

B.H.

Example

Consider the following points in spherical coordinates

$$A(\rho = 1, \ \theta = \pi/4, \ \phi = \pi/4), \qquad B(\rho = 1, \ \theta = 5\pi/4, \ \phi = 7\pi/4).$$

Plot these points in the coordinate space, and find the rectangular coordinates of them.

Section 11.7

B.H.

Example

Consider the following points in spherical coordinates

$$A(\rho = 1, \ \theta = \pi/4, \ \phi = \pi/4), \qquad B(\rho = 1, \ \theta = 5\pi/4, \ \phi = 7\pi/4).$$

Plot these points in the coordinate space, and find the rectangular coordinates of them.

Answer: Rectangular coordinates $A = (1/2, 1/2, \sqrt{2}/2) = B$.

