PROYECTO DE CONSUMO DE ENERGÍA

Integrantes

Xiomara Arcila Escobar Alejandra Esthefany Nava Bastidas

Fecha de entrega: 30/05/2025

Índice

- 1. 1. Introducción
- 2. 2. Objetivos del sistema
- 3. 3. Análisis
- 3.1 Justificación
- 3.2 Usuarios del sistema
- 3.3 Requisitos funcionales
- 3.4 Requisitos no funcionales
- 4. 4. Diseño
- 4.1 Arquitectura general
- 4.2 Modelo de datos
- 4.3 Diagrama de clases
- 4.4 Diagrama de flujo
- 5. 5. Codificación
- 5.1 Estructura del proyecto
- 5.2 Descripción de clases clave
- 5.3 Lógica de funcionamiento
- 5.4 Validaciones y errores
- 6. 6. Pruebas
- 7. 7. Conclusiones
- 8. 8. Recomendaciones futuras
- 9. 9. Bibliografía
- 10. 10. Anexos

1. Introducción

Este informe presenta el desarrollo de un sistema de software en Java, siguiendo el patrón de diseño Modelo-Vista-Controlador (MVC), para la gestión de clientes no regulados del mercado de energía eléctrica en Colombia.

2. Objetivos del sistema

Desarrollar una aplicación de escritorio utilizando Java y el patrón MVC, que permita gestionar información relevante sobre clientes no regulados del sector energético en Colombia.

3.1 Justificación

Los clientes no regulados en Colombia requieren un control específico para su gestión de consumo y tarifas. Este sistema facilita la organización de sus datos y la toma de decisiones.

3.2 Usuarios del sistema

Asesores comerciales, empresas comercializadoras de energía y personal técnico.

3.3 Requisitos funcionales

Registrar clientes, ingresar consumo, calcular si es no regulado, mostrar resumen de facturación, alertas por incumplimiento.

3.4 Requisitos no funcionales

Interfaz amigable, modularidad, validación de entradas, facilidad de mantenimiento.

4.1 Arquitectura general

Uso del patrón MVC con separación de responsabilidades en paquetes modelo, vista y controlador.

4.2 Modelo de datos

Entidad principal Cliente con atributos: nombre, identificación, consumoMensual, tarifa, esNoRegulado.

4.3 Diagrama de clases

[Insertar imagen del diagrama de clases aquí]

4.4 Diagrama de flujo

[Insertar imagen del diagrama de flujo aquí]

5.1 Estructura del proyecto

El código está organizado en paquetes: modelo, vista, controlador y utilidades.

5.2 Descripción de clases clave

Clase Cliente, Controlador Cliente, Menu Principal. Cada una maneja la lógica de negocio, entrada de datos y operaciones del usuario.

5.3 Lógica de funcionamiento

Vista recibe datos, controlador procesa y devuelve resultados, modelo gestiona la lógica.

5.4 Validaciones y errores

Validaciones numéricas, campos completos, y control de errores para flujo seguro.

6. Pruebas

Se realizaron pruebas manuales para verificar el correcto funcionamiento de cada módulo del sistema.

- Caso 1: Cliente con 60 MWh → marcado como no regulado <
- Caso 2: Cliente con 45 MWh → marcado como regulado <
- Caso 3: Entrada vacía o inválida → mensaje de error mostrado 🔽

Las pruebas demostraron que el sistema responde correctamente a los diferentes escenarios de entrada.

7. Conclusiones

El desarrollo del sistema permitió implementar una solución efectiva para la gestión de clientes no regulados en el mercado eléctrico colombiano. La aplicación, basada en Java y el patrón MVC, demostró ser clara, funcional y escalable.

La separación de responsabilidades facilitó el mantenimiento y mejora del código. Además, la validación de entradas mejoró la experiencia del usuario y la robustez de la aplicación.

8. Recomendaciones futuras

- Implementar almacenamiento en base de datos (JDBC o SQLite).
- Agregar autenticación de usuarios y niveles de acceso.
- Permitir exportar reportes a PDF.
- Mejorar la interfaz gráfica usando JavaFX.
- Realizar pruebas automatizadas para asegurar calidad del software.

9. Bibliografía

- Oracle Java SE Documentation.
- Guía UPME Mercado No Regulado.
- MVC Design Pattern GeeksForGeeks.
- Minenergía Colombia.

10. Anexos

A continuación se incluyen los diagramas y fragmentos del código fuente más representativo.

10.1 Diagrama de clases

10.2 Diagrama de flujo

