# Første Aflevering (Genaflevering) OR1

Nikolaj Dybdahl Rathcke (rfq695)

March 5, 2015

## Opgave 1

a

Vi lader  $x_1$  være antal 100 liter vin og  $x_2$  være antal 100 liter øl og skriver da P som.

Hvor vi vil maksimere den negative objektfunktion da det er et minimerings problem. Vi har desuden multipliceret nogle af bibetingelser med -1 så problemet er på standard form.

b

Det duale problem bliver da

### $\mathbf{c}$

Her er problemet, P, skitseret



Hvor den stiplede linje er object funktionen.

## $\mathbf{d}$

Først omskriver viP med slackvariablene  $w_i$ .

Herefter skriver viDmed slackvariablene  $z_i$ 

Min: 
$$\xi = 2y_1 - \frac{1}{2}y_2 - \frac{5}{2}y_3$$
  
u.b.  $y_1 - y_3 - z_1 = -1$   
 $-y_2 - y_3 - z_2 = -2$   
 $y_1, y_2, y_3, z_1, z_2 \ge 0$  (4)

 $\mathbf{e}$ 

Sortering stigende  $x_1, x_2$  og så  $y_3$  da de to x-variable er byttet om. Hvis vi observerer billedet fra (c), kan vi finde  $(x, w) = (x_1, x_2, w_1, w_2, w_3)$  til

$$a = \left(0, 0, 2, -\frac{1}{2}, -\frac{5}{2}\right)$$

$$b = \left(0, \frac{1}{2}, 2, 0, -2\right)$$

$$c = \left(0, \frac{5}{2}, 2, 2, 0\right)$$

$$d = \left(2, 0, 0, -\frac{1}{2}, -\frac{1}{2}\right)$$

$$e = \left(2, \frac{1}{2}, 0, 0, 0\right)$$

$$f = \left(2, \frac{1}{2}, 0, 0, 0\right)$$

$$g = \left(2, \frac{1}{2}, 0, 0, 0\right)$$

$$h = \left(\frac{5}{2}, 0, -\frac{1}{2}, -\frac{1}{2}, 0\right)$$

Ligeledes finder vi $(z, y) = (z_1, z_2, y_1, y_2, y_3)$  til

$$a = (1, 2, 0, 0, 0)$$

$$b = (1, 0, 0, 2, 0)$$

$$c = (-1, 0, 0, 0, 2)$$

$$d = (0, 2, -1, 0, 0)$$

$$e = (0, 0, -1, 2, 0)$$

$$f = (0, 0, 0, 1, 1)$$

$$g = (0, 0, 1, 0, 2)$$

$$h = (0, 1, 0, 0, 1)$$

 $\mathbf{f}$ 

Nedenfor ses et skema for om de er primtalt/dualt brugbare eller ej.

Fra opgave (c) kan vi se punkterne c, e, f og g er primalt brugbare.

Nu skal vi finde ud af om punkterne er dualt brugbare. Fra opgave (e) ser vi at basis variablene er negative for c, d og e, altså er de ubrugbare.

| Punkt | Primalt brugbar | Dualt brugbar |
|-------|-----------------|---------------|
| a     | %               | <b>✓</b>      |
| b     | %               | <b>✓</b>      |
| c     | <b>✓</b>        | %             |
| d     | %               | %             |
| e     | <b>✓</b>        | %             |
| f     | <b>✓</b>        | <b>✓</b>      |
| g     | <b>✓</b>        | <b>✓</b>      |
| h     | %               | <b>✓</b>      |

 $\mathbf{g}$ 

Vi ved at et af de primalt brugbare punkter er optimale. Altså kan vi udregne objektværdien af c og en af e, f, g (da disse har samme objektværdi). Punktet c giver objektværdien  $-2 \cdot \frac{5}{2} = -5$  og punkterne e, f, g giver  $-2 - 2 \cdot \frac{1}{2} = -3$ .

Eftersom punktet  $e, \bar{f}$  og g er de optimale punkter, ser vi, at 200 liter vin og 50 liter øl er optimalt og derfor billigst.

## Opgave 2

 $\mathbf{a}$ 

Vi vil løse følgende hjælpeproblem med simplex metoden

$$\frac{\text{Max: } -x_0}{\text{u.b.}} \quad \frac{x_1}{x_1} \quad -x_0 \leq 2 \\
-x_2 - x_0 \leq -\frac{1}{2} \\
-x_1 - x_2 - x_0 \leq -\frac{5}{2} \\
x_1, x_2, x_0 \geq 0$$
(5)

Vi starter med at tilføje slack variablene og får

$$\frac{\xi = -x_0}{w_1 = 2 - x_1 + x_0} 
w_2 = -\frac{1}{2} + x_2 + x_0 
w_3 = -\frac{5}{2} + x_1 + x_2 + x_0$$
(6)

Indgående:  $x_0$ Udgående:  $w_3$ 

Isolering af  $x_0$  i ligningen for  $w_3$  giver

$$x_0 = \frac{5}{2} - x_1 - x_2 + w_3$$

Dette giver os at  $\xi, w_1$  og  $w_2$  er

$$\xi = -\frac{5}{2} + x_1 + x_2 + w_3$$

$$w_1 = \frac{9}{2} - 2x_1 - x_2 + w_3$$

$$w_2 = 2 - x_1 + w_3$$

Dette giver os det nye tableau

$$\frac{\xi = -\frac{5}{2} + x_1 + x_2 - w_3}{w_1 = \frac{9}{2} - 2x_1 - x_2 + w_3} \\
w_2 = 2 - x_1 + w_3 \\
x_0 = \frac{5}{2} - x_1 - x_2 + w_3$$
(7)

Indgående:  $x_2$  Ratio:  $\left(-\frac{-1}{\frac{9}{2}},0,-\frac{-1}{\frac{5}{2}}\right)=\left(\frac{2}{9},0,\frac{2}{5}\right)$ 

Max:  $\frac{2}{5}$ 

Udgående:  $x_0$ 

Isolering af  $x_2$  i  $x_0$  giver

$$x_2 = \frac{5}{2} - x_1 + w_3 - x_0$$

Som giver os vores tredje tableau

$$\frac{\xi = -x_0}{w_1 = 2 - x_1 + x_0} 
w_2 = 2 - x_1 + w_3 
x_2 = \frac{5}{2} - x_1 + w_3 + x_0$$
(8)

Variablen  $x_0$  forsvinder da det er optimalt. Nu introducerer vi den originale object funktion og vi får følgende tableau.

$$\begin{array}{rclcrcr}
\xi & = & -5 & + & x_1 & - & 2w_3 \\
\hline
w_1 & = & 2 & - & x_1 & & & \\
w_2 & = & 2 & - & x_1 & + & w_3 & & \\
x_2 & = & \frac{5}{2} & - & x_1 & + & w_3
\end{array} \tag{9}$$

Indgående:  $x_1$  Ratio:  $\left(-\frac{-1}{2}, -\frac{-1}{2}, -\frac{-1}{\frac{5}{2}}\right) = \left(\frac{1}{2}, \frac{1}{2}, \frac{2}{5}\right)$  Max:  $\frac{1}{2}$ 

Udgående:  $w_1$ 

Isolering af  $x_1$  i  $w_1$  giver

$$x_1 = 2 - w_1$$

Som giver os følgende tableau

$$\frac{\xi = -3 - w_1 - 2w_3}{x_1 = 2 - w_1} 
w_2 = w_1 + w_3 
x_2 = \frac{1}{2} + w_1 + w_3$$
(10)

Nu er den optimal idet der kun er negative koefficient i objektfunktionen.

#### b

Den gennemløb først punktet a i (0,0), derefter c fra (9) som lægger i  $(0,\frac{5}{2})$  og herefter ramte den punktet  $g i (2, \frac{1}{2}) (10).$ 

#### $\mathbf{c}$

Nu løses det duale problem med simplex metoden.

Min: 
$$\xi = 2y_1 - \frac{1}{2}y_2 - \frac{5}{2}y_3$$
  
u.b.  $y_1 - y_3 \ge -1$   
 $y_2 - y_3 \ge -2$   
 $y_1, y_2, y_3 \ge 0$  (11)

Det skriver vi om så vi får

$$\frac{-\xi = -2y_1 + \frac{1}{2}y_2 + \frac{5}{2}y_3}{z_1 = 1 + y_1 - y_3} 
z_2 = 2 - y_2 - y_3$$
(12)

Indgående:  $y_3$ Ratio:  $(-\frac{-1}{1}, -\frac{-1}{2}) = (1, \frac{1}{2})$ 

Max: 1 Udgående:  $z_1$ 

Isolering af  $y_3$  i  $z_1$  giver

$$y_3 = 1 + y_1 - z_1$$

Som giver os følgende tableau

$$\frac{-\xi = \frac{5}{2} + \frac{1}{2}y_1 + \frac{1}{2}y_2 - \frac{5}{2}z_1}{y_3 = 1 + y_1 - z_1} 
z_2 = 1 - y_1 - y_2 + z_1$$
(13)

Indgående:  $y_1$ Ratio:  $\left(-\frac{1}{1}, -\frac{-1}{1}\right) = \left(-1, 1\right)$ 

Max: 1 Udgående:  $z_2$ 

Isolering af  $y_1$  i  $z_2$  giver

$$y_1 = 1 - y_2 + z_1 - z_2$$

Dette giver det næste tableau

$$\frac{-\xi = 3}{y_3 = 2 - y_2 - z_2} 
y_1 = 1 - y_2 + z_1 - z_2$$
(14)

Og nu er den optimal.

#### $\mathbf{d}$

Den starter i punkt  $a \mod (z_1, z_2, y_1, y_2, y_3) = (1, 2, 0, 0, 0)$ . Derefter gennemløb metoden punkt h i (13) med  $(z_1, z_2, y_1, y_2, y_3) = (0, 1, 0, 0, 1)$  samt punktet g i (14) med  $(z_1, z_2, y_1, y_2, y_3) = (0, 0, 1, 0, 2)$ .

#### $\mathbf{e}$

Variablene (x, w) kan aflæses fra skemaerne ved at kigge på konstanterne i rækkerne under objektfunktionen, så i (9) får vi at:  $w_1 = 2, w_2 = 2$  og  $x_2 = \frac{5}{2}$  for punktet c.

Desuden kan variablene (z, y) aflæses ud fra objektfunktionen hvor i vores tilfælde vi har  $(x_1, x_2, w_1, w_2, w_3) = (z_1, z_2, y_1, y_2, y_3)$ . Her er det koefficienterne negeret. Altså fra (9) får vi at  $x_1 = z_1 = -1$  og  $w_3 = y_3 = 2$ . De variable der ikke indgår bliver sat til 0 i begge tilfælde.

### $\mathbf{f}$

Dette er egentligt bare det omvendte af (e). Så (x,w) aflæses ved at kigge på objektfunktionen. I (13) har vi derfor at  $y_1=w_1=-\frac{1}{2}, y_2=w_2=-\frac{1}{2}$  og  $z_1=x_1=\frac{5}{2}$  Ligeledes har vi at (z,y) i (13) er (0,1,0,0,1) (punkt h) - aflæst direkte fra rækkerne.

#### $\mathbf{g}$

Det var lettest at løse D idet der ikke var brug for et hjælpeproblem og derved var der færre iterationer.

## Opgave 3

#### a

Eftersom dette svarer til en ændring af tredje begrænsning,  $b_3$ , fra  $-x_1 - 2x_2 \le -\frac{5}{2}$  til  $-x_1 - 2x_2 \le -5$  får vi at  $\Delta b_3 = -\frac{5}{2} - (-5) = \frac{5}{2}$ . Idet vores optimale basis var (1,0,2) må det betyde at vi får en ændring i vores objektfunktion på  $\Delta b_3 y_3 = \frac{5}{2} \cdot 2 = 5$  - altså en objektværdi på 3 + 5 = 8 da objektværdien var 3 før

Hvis vi observeret skitseringen fra (1c), så er dette i orden da punktet blot forskydes op ad linjen for  $b_1$  og derfor stadig ligger i løsningsmængden.

#### b

Hvis vi kigger på det grafiskt, vil de duale variable ikke kunne bruges da en ændring af den tredje betingelse,  $b_3$ , vil forskyde det optimale punkt ned af linjen for  $b_1$ . Derved vil punktet når  $w_1 = 0$  og  $w_3 = 0$  ligge under løsningsmængde på grund af linjen for  $b_2$ . Altså kan den givne basis ikke bruges og vi kan derfor ikke afgøre værdien for 250 inviterede.

På næste side ses en skitsering der illustrerer situationen.



 $\mathbf{c}$ 

Vi kalder den ændrede værdi som er prisen på at levere vin for c' og sætter den lig den oprindelige pris samt ændringen, altså  $c'_1 = \Delta c_1 + c_1 = \Delta c_1 - 1$ . Derved er vores nye objekt funktion

$$(\Delta c_1 - 1)x_1 - 2x_2$$

Derefter indsætter vi værdierne fra vores optimale simplex tableau (10).

$$(\Delta c_1 - 1)x_1 - 2x_2 = (\Delta c_1 - 1)(2 - w_1) - 2(\frac{1}{2} + w_1 + w_3)$$
$$= 2\Delta c_1 - w_1 \Delta c_1 - 2 + w_1 - 1 - 2w_1 - 2w_3$$
$$= 2\Delta c_1 - w_1(\Delta c_1 + 1) - 2w_3 - 3$$

For at den samme basis stadig er optimal skal alle koefficienter i objektfunktionen være mindre eller lig 0, derfor har vi fra andet led, at

$$\Delta c_1 + 1 \ge 0 \Leftrightarrow \Delta c_1 \ge -1$$

Vi kan derfor ændre  $c_1$  med ned til -1 (den dobbelte pris) for at den nuværende løsning er optimal.