Distirbutional Robust Optimization Theorem and Application

Lu Sun 228002579

2019.05.08

Lu Sun (UEA) MATH491 Final 2019.05.08 1 / 32

Content

- Introduction
- 2 Definition and Difference
- Theorem and Methods
- Examples and Results

Lu Sun (UEA) MATH491 Final 2019.05.08 2 / 32

Content

- Introduction
- 2 Definition and Difference
- Theorem and Methods
- Examples and Results

3 / 32

Lu Sun (UEA) MATH491 Final 2019.05.08

Robust Optimization (RO)

- "Quite small(just 0.1%) pertubations of 'obviously uncertain' data coefficients can make the 'nominal' optimal solution x* heavily infeasible and thus practically meaningless."
- Only 2% error in the estimation of the conversion can results in 22% drop for profit.
- The method RO comes out to overcome the dependence on parameters.

Lu Sun (UEA) MATH491 Final 2019.05.08 4 / 32

Popularity of RO

Figura: Rise in popularity of "robust optimization" in the scientific literature

5 / 32

Characteristic of RO

- Uncertainty set of parameters is the most important part of RO.
- The number of values or parameters is large enough
- Eg. semi-infinite dimension problem (number of decision variables is infinite and of constraints is finite)

Lu Sun (UEA) MATH491 Final 2019.05.08 6 / 32

Distributional Robust Optimization (DRO)

- Traditional RO is called Static Robust Optimization(SRO)
- DRO comes from SRO model
- DRO is used for stochastic programming (SP)
- Uncertainty set of distributional functions : the most important part of DRO.

Lu Sun (UEA) MATH491 Final 2019.05.08 7 / 32

Content

- Introduction
- 2 Definition and Difference
- Theorem and Methods
- Examples and Results

8 / 32

Lu Sun (UEA) MATH491 Final 2019.05.08

Definition

$$\min_{x \in X} \max_{\epsilon \in D} h(x, \epsilon) \quad or \quad \min_{x \in X} \quad h_1(x)$$

$$s.t. \quad h_2(x, \epsilon) \le 0, \forall \epsilon \in D$$
(1)

Here, D includes any feasible parameter and D,h are not related to probability.

Remark

- We can always choose one in set D to be the worst case
- The solution in worst case may act in-feasible in real life
- SRO is too conservation.

9 / 32

Lu Sun (UEA) MATH491 Final 2019.05.08

Definition

$$\min_{x \in X} \mathbb{E}_{F_{\epsilon}}[h(x, \epsilon)] \tag{2}$$

Here, F_{ϵ} is a fixed distribution.

Remark

- The distribution F_{ϵ} is not available
- Sub-optimal or meaningless solution can come out
- SP problem need to decide an infinite time's activity
- RO method can be used on SP problem

Lu Sun (UEA) MATH491 Final 2019.05.08 10 / 32

Definition

$$\min_{x \in X} \max_{F_{\epsilon} \in D} \mathbb{E}_{F_{\epsilon}}[h(x, \epsilon)]$$
 (3)

Here, D is the uncertainty set of distributions, which only includes part of distributional functions.

Remark

- $D, \mathbb{E}_{F_{\epsilon}}[h(x, \epsilon)]$ are related to probability
- An example of set D:

$$D := \{p : dist|p - p_{ref}| \le \sigma\}$$

Here, p_{ref} is based on historical data choosing from basic known distributions(e.g. Guassian); Wasserstein metric is used for probability distance; σ is choosen to suit well for some percentage interval.

Lu Sun (UEA) MATH491 Final 2019.05.08 11 / 32

Content

- Introduction
- 2 Definition and Difference
- Theorem and Methods
- Examples and Results

Lu Sun (UEA) MATH491 Final 2019.05.08 12 / 32

Methods to construct D

Definition

$$\min_{x \in X} \sup_{F \in D} \mathbb{E}_F[h(x, \epsilon)] \tag{4}$$

- Moment based models
 - 1.mean and support models
 - 2.mean and variance models
 - 3.moment uncertainty models
- Scenario-based models
- Wasserstein distance based models

Definition

$$D(Z,\mu) := \left\{ F \in M \middle| egin{array}{l} \mathbb{P}(\epsilon \in Z) = 1 \ \mathbb{E}[\epsilon] = \mu \end{array}
ight\}$$

Here, M is the set of all probability measures on the measurable space (\mathbb{R}^m, B) , B is the Borel σ -algebra on \mathbb{R}^m , and Z is a Borel set in \mathbb{R}^m .

Rewrite half part of equation(4)

Definition

$$\max_{F \in M} \int_{Z} h(x, \epsilon) dF(\epsilon)$$

$$s.t. \quad \int_{Z} dF(\epsilon) = 1$$

$$\int_{Z} \epsilon dF(\epsilon) = \mu$$
(5)

Here, we further assume that h(x, .) is real-valued measurable in (\mathbb{R}^m, B) .

Lu Sun (UEA) MATH491 Final 2019.05.08 14 / 32

Theorem (3.1)

Let $D(Z, \mu)$ be a distribution set for which there exists a feasible solution $F_0 \in D(Z, \mu)$, then the moment problem (5) is equivalent to the following robust optimization problem:

$$\min_{q} \sup_{z \in Z} h(x, z) + (\mu - z)^{T} q \tag{6}$$

proof:

Step 1: Construct Lagrangean equation

$$L(F, r, q) = \int_{Z} h(x, \epsilon) dF(\epsilon) + r(1 - \int_{Z} dF(\epsilon)) + q^{T}(\mu - \int_{Z} \epsilon dF(\epsilon))$$

= $r + \mu^{T} q + \int_{Z} (h(x, \epsilon) - r - q^{T} \epsilon) dF(\epsilon)$

4□ > 4♂ > 4 ₹ > ₹ > √2(

15 / 32

Step 2: Analysis properties of *L*

$$\begin{aligned} &\sup_{R}\inf_{r,q}L(F,r,q)\\ &\leq &\inf_{r,q}\sup_{F}L(F,r,q)\\ &= &\inf_{r,q} \left\{ \begin{array}{ll} r+\mu^{T}q & if \ h(x,z)-r-q^{T}z \leq 0, \forall z \in Z\\ &\infty & otherwise \end{array} \right. \end{aligned}$$

Here, we have the assumption that $D(Z, \mu) \neq \emptyset$

Step 3: Translate the right part into program

$$\min_{r,q} \ \mu^T q + r$$

 $s.t. \ z^T + r \ge h(x,z), \forall z \in Z,$

Step 4: Translate into (6)

$$z^T + r = h(x, z), \forall z \in Z.$$

$$\min_{q} \sup_{z \in Z} h(x, z) + (\mu - z)^T q$$

Theorem (3.2)

Let $Z \in \mathbb{R}^m$ be a Borel set, and F_0 be some feasible distribution according to $D(Z,\mu)$, then problem (5) is equivalent to the following nite dimensional optimization problem

$$\max_{p,\{z_{i}\}_{i=1}^{m+1}} \sum_{i=1}^{m+1} p_{i}h(x, z_{i})$$

$$s.t. \qquad \sum_{i=1}^{m+1} p_{i} = 1\&p \ge 0$$

$$\sum_{i=1}^{m+1} p_{i}z_{i} = \mu$$

$$z_{i} \in Z, \forall i = 1, ..., m+1,$$

$$(7)$$

where $p \in \mathbb{R}^{m+1}$ and each $z_i \in \mathbb{R}^m$.

Lu Sun (UEA) MATH491 Final

17 / 32

Theorem (3.3)

When Z is a convex set and $h(x,z) := \max_{k=1,...,K} h_k(x,z)$ for some K with each $h_k(x,z)$ a concave function of z, then problem (5) is equivalent to

$$\max_{p,\{z_{k}\}_{k=1}^{K}} \sum_{k=1}^{K} p_{k} h_{k}(x, z_{k})$$
s.t.
$$\sum_{k=1}^{K} p_{k} = 1, p \ge 0$$

$$\sum_{k=1}^{K} p_{k} z_{k} = \mu$$

$$z_{k} \in Z, \forall k = 1, ..., K.$$
(8)

Corollary

When Z is a convex set and h(x,z) is a concave function of z, then the DRO problem presented in (4) is equivalent to

$$\min_{\mathbf{x} \in X} h(\mathbf{x}, \mu) \tag{9}$$

Lu Sun (UEA) MATH491 Final 2019.05.08 18 / 32

Theorem

Let $D(Z, \mu)$ be a distribution set for which there exists a feasible solution $F_0 \in D(Z, \mu)$, the DRO problem presented in (4) is equivalent to the following robust optimization problem:

$$\min_{x \in X, q} \sup_{z \in Z} h(x, z) + (\mu - z)^{T} q$$
 (10)

Moreover, the problem can be reformulated as follows when Z is a convex set and $h(x,z) := \max_k h_k(x,z)$ where each $h_k(x,z)$ is a concave function of z:

$$\min_{\substack{x,q,\{v_k\}_k,t\\ s.t.}} t \\
t \ge \delta^*(v_k|Z) + \mu^T q - h_*^k(x,v_k+q), \forall k$$
(11)

where for each k, $v_k \in \mathbb{R}^m$, while $\delta^*(v|Z)$ is the support function of Z and $h_*^k(x,v)$ is the partial concave conjugate function of $h_k(x,z)$.

Mean and Variance Models

Definition

$$D(\mu, \sigma^2) := \left\{ F \in M \middle| \begin{array}{l} \mathbb{P}(\epsilon \in \mathbb{R}) = 1 \\ \mathbb{E}[\epsilon] = \mu \\ \mathbb{E}[(\epsilon - \mu)^2] = \sigma^2 \end{array} \right\}$$

Step 1:Assume
$$Z' := \{z' \in \mathbb{R}^2 | z_2' = (z_1' - \mu)^2\}$$

Step 2:Equivalent form $D(\mu, \sigma) = D(Z', [\mu, \sigma^2]^T)$

Step 3:Change into non-linear robust optimization model

$$\min_{x \in X, q_1, q_2 \ge 0, t} t
s.t. t \ge \sup_{z_1 \in \mathbb{R}} h_k(x, z) + \mu q_1 + (\sigma^2 - \mu^2) q_2
- (q_1 - 2q_2\mu) z_1 - q_2 z_1^2, \forall k,$$
(12)

when $h(x,z) := \max_k h_k(x,z)$

- (ロ) (個) (差) (差) (差) の(C)

2019.05.08

20 / 32

Lu Sun (UEA) MATH491 Final

Moment Uncertainty Models

Definition

$$\min_{x \in X} \sup_{\mu \in U, F \in D(Z, \mu)} \mathbb{E}_F[h(x, z)] \tag{13}$$

Corollary

Let $D(Z, \mu)$ be a distribution set and $U \in \mathbb{R}^m$ be a bounded and convex uncertainty set for the moment vector μ . Given that for all $\mu \in U$, there exists an $F \in D(Z, \mu)$, the DRO problem presented in (14) is equivalent to the following robust optimization problem:

$$\min_{x \in X, q} \sup_{z \in Z} h(x, z) - z^T q + \delta^*(q|U)$$
 (14)

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

2019.05.08

21 / 32

Moment Uncertainty Models

Moreover, the problem can be reformulated as follows when Z is a convex set and $h(x,z) := \max_k h_k(x,z)$ where each $h_k(x,z)$ is a concave function:

$$\min_{x \in X, q, \{v_k\}_k, t} \quad t + \delta^*(q|U) \\ s.t. \quad t \ge \delta^*(v_k|Z) - h_*^k(x, v_k + q), \forall k$$
 (15)

where for each k, $v_k \in \mathbb{R}^m$, while $\delta^*(v|Z)$ is the support function of Z and $h_*^k(x,v)$ is the partial concave conjugate function of $h_k(x,z)$.

Lu Sun (UEA) MATH491 Final 2019.05.08 22 / 32

Scenario-Based Models

Basic form

$$\min_{x \in X} \sup_{p \in U} \sum_{k=1}^{K} p_k h(x, z^k),$$

where $Z:=\{z^1,z^2,...,z^K\}$ is a set of scenarios, $p\in\mathbb{R}^K$ is a vector describing the probability of obtaining each of the K scenarios for ϵ while $U\subseteq\{p\in\mathbb{R}^K|p\geq0,\sum_{k=1}^Kp_k=1\}$ is the uncertainty set for the distribution, which can also be calibrated using historical data.

<□ > <□ > <□ > < = > < = > < > < ○

2019.05.08

Lu Sun (UEA) MATH491 Final

Wassertein Distance Based Models

- Finite sample guarantee: The property that the optimal value of the DRO model is guaranteed with high probability to bound from above the expected cost when a finte number of i.i.d. realizations have been observed.
- Consistency: The property that the optimal solution will eventually converge to the optimal solution of the stocastic program(2) as more i.i.d. realizations are used to construct the distribution set D.
- **Tractability:** The DRO model can be solved using convex optimization algorithms for a large class of problems.

Content

- Introduction
- 2 Definition and Difference
- Theorem and Methods
- Examples and Results

Lu Sun (UEA) MATH491 Final 2019.05.08 25 / 32

Problem

min
$$\max_{\mathbb{P} \in \mathbb{F}} \mathbb{E}_{\mathbb{P}}[y(\bar{z})]$$

s.t. $y(z) \ge z$, $\forall z \in Z$
 $y(z) \ge -z$, $\forall z \in Z$

where \mathbb{P} is the distribution of random variable \bar{z}, Z is the support set of \bar{z} , which is set to be [-2,2], and \mathbb{F} is the ambiguity set that characterizes a collection of distributions, which is expressed in the equation below.

$$\mathbb{F} = \left\{ egin{aligned} & ar{z} \in \mathbb{R} \ & \mathbb{E}_{\mathbb{P}}(ar{z}) = 0 \ & \mathbb{E}_{\mathbb{P}}(ar{z}^2) \leq 1 \ & \mathbb{P}\{ar{z} \in \} = \mathbb{P}\{-2 \leq ar{Z} \leq 2\} = 1 \end{aligned}
ight\}$$

◆ロト ◆回 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

26 / 32

Lu Sun (UEA) MATH491 Final 2019.05.08

Solution

$$\mathbb{G} = \left\{ egin{array}{ll} ar{z} \in \mathbb{R}, ar{u} \in \mathbb{R} \ \mathbb{E}_{\mathbb{Q}}(ar{z}) = 0 \ \mathbb{E}_{\mathbb{Q}}(ar{u}) \leq 1 \ \mathbb{Q} \left\{ egin{array}{ll} -2 \leq ar{z} \leq 2 \ ar{z}^2 \leq ar{u} \leq 4 \end{array}
ight\} = 1 \end{array}
ight\}$$

$$\bar{y} = \frac{1+z^2}{2}$$

Lu Sun (UEA) MATH491 Final 2019.05.08 27 / 32

Problem

$$\mathbb{F} = \left\{ \begin{array}{c} \bar{z} \in \mathbb{R} \\ \mathbb{E}_{\mathbb{P}}(\bar{z}) = 0 \\ \mathbb{E}_{\mathbb{P}}(\bar{z}^2) \leq 1 \\ \mathbb{P}\{\bar{z} \in Z\} = \mathbb{P}\{-2 \leq \bar{z} \leq 2\} = 1 \\ \mathbb{P}\{\bar{z} \in Z_1\} = \mathbb{P}\{-1 \leq \bar{z} \leq 1\} = 0.9 \\ \mathbb{P}\{\bar{z} \in Z_2\} = \mathbb{P}\{-0.5 \leq \bar{z} \leq 0.5\} \in [0.6, 0.7] \end{array} \right\}$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

28 / 32

Lu Sun (UEA) MATH491 Final 2019.05.08

Solution

$$\mathbb{G} = \left\{ \begin{array}{c} \bar{z} \in \mathbb{R}, \, \bar{u} \in \mathbb{R} \\ \mathbb{E}_{\mathbb{Q}}(\bar{z}) = 0 \\ \mathbb{E}_{\mathbb{Q}}(\bar{u}) \leq 1 \\ \mathbb{Q} \left\{ \begin{array}{c} -2 \leq \bar{z} \leq 2 \\ \bar{z}^2 \leq \bar{u} \leq 4 \end{array} \right\} = 1 \\ \mathbb{Q} \left\{ \begin{array}{c} -1 \leq \bar{z} \leq 1 \\ \bar{z}^2 \leq \bar{u} \leq 1 \end{array} \right\} = 0.9 \\ \mathbb{Q} \left\{ \begin{array}{c} -0.5 \leq \bar{z} \leq 0.5 \\ \bar{z}^2 \leq \bar{u} \leq 0.25 \end{array} \right\} \in [0.6, 0.7] \end{array} \right\}$$

Lu Sun (UEA) MATH491 Final 2019.05.08 29 / 32

$$\bar{y} = 0.9920 + 0.4610 * z^2$$

Lu Sun (UEA) MATH491 Final 2019.05.08 30 / 32

Reference I

2019.05.08

Lu Sun (UEA) MATH491 Final

Distirbutional Robust Optimization Theorem and Application

Thank You!

Lu Sun (UEA) MATH491 Final 2019.05.08 32 / 32