Azure ML Labs

Outline

- VM1: Compute Server
 - Lab1: Run Python notebook on Azure ML
 - Lab2: Azure ML via GUI (manually drag & drop)
 - Lab3: AutoML
- VM2: API End-point server
 - Lab4: AutoML Deployment & API

Lab1: Run Python notebook on

Azure ML

Steps

- Create "Azure Machine Learning"
- Create "Compute Instance"
- Upload notebook "DecisionTree.ipynb" to Azure Machine Learning

Create "Azure Machine Learning"

Basics	Networking	Advanced	Tags	Review + create
Resourc	ce details			
folders t		anage resource	es, includi	bscription, which is where billing happens. You use resource groups like ing the workspace you're about to create.
Subscription * ①			Azur	e subscription 1
Resource group * ①		Adm Create		
Worksp	ace details			
Configur	re your basic work	kspace settings	like its st	orage connection, authentication, container, and more. Learn more 🗗
Workspa	ace name * (i)		mits	ubishi-admin ✓
Region *	• (i)		Sout	heast Asia 🗸
Storage	account * ①		(new	r) mitsubishiadmi4746563080 Venew
Key vaul	t* i)		(new	r) mitsubishiadmi9042664255 V
Applicati	ion insights * i) mitsubishiadmi2775649231 V
Containe	er registry * 🛈		None	

Create "Compute Instance"

Upload notebook "DecisionTree.ipynb" to Azure Machine Learning

Notebooks is your space to add, browse, and edit files.

You can add files of any type, including Jupyter Notebooks (.ipynb). The files you see here are stored in the workspace file share, and are accessible and shared within the workspace.

In order to run notebooks and scripts, you must connect to an Azure Machine Learning compute resource. Once a notebook or terminal is connected, you can access all workspace assets including experiment details, data, models, and more. Learn more

Run the code

- Select compute that we created
- Run all code blocks

Lab2: Azure ML via GUI (manually drag & drop)

Steps

- Create "Pipeline"
- Import data "vehicle.csv"
- Generate (data) profile
- Create pipeline flow
- Run pipeline

Create "Pipeline"

Designer

New pipeline

Classic prebuilt Custom

Show more samples V

This low-code option uses existing prebuilt components and earlier dataset types (tabular, file), and is best suited for data processing and traditional machine learning tasks like regression and classification. This option continues to be supported but will not have any new components added.

Create a new pipeline using classic prebuilt components (i)

Image Classification using DenseNet (i)

Binary Classification using Vowpal Wabbit Model - A... (i)

Wide & Deep based Recommendation - Restau... (i)

Regression - Automobile Price Prediction (Basic) (i)

Import data "vehicle.csv"

Data

Import data "vehicle.csv" (cont.)

Import data "vehicle.csv" (cont.)

Generate (data) profile

Create pipeline flow

- Import data
- Clean missing data
- Split data
- Linear Regression
- Train Model
- Score Model
- Evaluate Model

Run pipeline

Lab3: AutoML

Steps

- Create "Automated ML"
- View AutoML Models
- View Model Explanation

Create "Automated ML"

Create "Automated ML" (cont.)

Select task and settings Select the machine learning task type for the experiment. To fine tune the experiment, choose additional configuration or featurization settings. Classification To predict one of several categories in the target column, yes/no, blue, red, green.

Create "Automated ML" (cont.)

Select the validation and test type

You can choose a validation type and select a test data asset as an optional step. Providing your own validation and test data assets are currently preview features.

View AutoML Models

View Model Explanation

Lab4: AutoML Deployment & API

Steps

- Create "Deploy Real-Time Endpoint" from AutoML
- Test endpoint
- Run "deploy.ipynb"

Create "Deploy Real-Time Endpoint" from AutoML

Deploy

Cancel

More options

Test endpoint

Run "deploy.ipynb"

- Edit these fields
 - Data
 - API URL
 - API Key
- Edit parameters and run the script