- 1 Genomic epidemiology and longitudinal sampling of ward
- 2 wastewater environments and patients reveals complexity
- 3 of the transmission dynamics of bla_{KPC}-carbapenemase-
- 4 producing Enterobacterales in a hospital setting
- 6 1.1 Author names

10

12

- 7 Stoesser N^{a, b, #, *}, George R^{c, *}, Aiken Z^c, Phan HTT^d, Lipworth S^a, Wyllie DH^e, Quan TP^a, Mathers AJ^f,
- B De Maio Ng, Seale ACh, Eyre DWa, b, Vaughan A, Swann J, Peto TEA, Crook DWa, b, i, Cawthorne Jc,
- 9 Dodgson A^c, Walker AS^{a, b, i}, and the TRACE Investigators' Group
- 11 *Contributed equally; NS drafted/submitted the manuscript contributing to the author order.
- 13 1.2 Affiliation(s)
- ^a Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- 15 b NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial
- 16 Resistance at University of Oxford in partnership with Public Health England, Oxford, United
- 17 Kingdom
- 18 ° Manchester University NHS Foundation Trust, Manchester, United Kingdom
- 19 d University of Southampton, Southampton, United Kingdom
- 20 ^e United Kingdom Health Security Agency, United Kingdom
- 21 f University of Virginia, Charlottesville, United States of America
- 22 ^g EMBL-European Bioinformatics Institute, Cambridge, United Kingdom
- 23 h University of Warwick, Coventry, United Kingdom
- 24 NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John
- 25 Radcliffe Hospital, Oxford, United Kingdom
- 27 1.3 Corresponding author and email address
- 28 Nicole Stoesser

29 e-mail: nicole.stoesser@ndm.ox.ac.uk 30 31 1.4 Kevwords 32 Carbapenemase-producing Enterobacterales, genomic epidemiology, blaked, wastewater sites, 33 healthcare-associated 34 1.5 Repositories: 35 Sequence data have been deposited in NCBI's GenBank (BioProject accessions: PRJNA768622 and 36 PRJNA514245). 37 2. Abstract 38 Healthcare-associated wastewater reservoirs and asymptomatic gastrointestinal patient colonisation 39 by carbapenemase-producing Enterobacterales (CPE) contribute to nosocomial CPE dissemination. 40 We systematically sampled wastewater sites (n=4488 sampling events; 349 sites) and patients (n=1247) across six wards over 6-12 months in 2016 to better understand bla_{KPC}-associated CPE 41 (KPC-E) diversity within these niches and transmission potential in an endemic healthcare setting. Up 42 43 to five isolates in KPC-E-positive samples were sequenced (Illumina), Recombination-adjusted 44 phylogenies were used to define genetically related strains; assembly and mapping-based typing 45 approaches were used to characterise antimicrobial resistance genes, insertion sequences, and 46 Tn4401 types/target site sequences. The wider accessory genome was evaluated in a subset of the 47 largest clusters, and those crossing niches. 48 49 Wastewater site KPC-E-positivity was substantial (101/349 sites [28.9%] positive); 228/5,601 (4.1%) 50 patients cultured were CPE culture-positive over the same timeframe. At a genomic-level, 13 KPC-E 51 species and 109 strains were identified, and 24% of wastewater and 26% of patient KPC-E-positive 52 samples harboured ≥1 strain. Most diversity was explained by the individual niche, suggesting 53 localised factors are important in selection and spread. Tn4401+target site sequence diversity was 54 greater in wastewater sites (p<0.001), which might favour Tn4401-associated 55 transposition/evolution. Shower/bath and sluice/mop-associated sites were more likely to be KPC-Epositive (Adjusted Odds Ratio [95% CI]: 2.69 [1.44-5.01], p=0.0019 and 2.60 [1.04-6.52], p=0.0410, 56 57 respectively). Different strains had different transmission and blaked dissemination dynamics. 58 59 There may be substantial KPC-E colonisation of wastewater sites and patients in KPC-E-endemic 60 healthcare settings. Niche-specific factors (e.g. microbial interactions, selection pressure) likely 61 affect carbapenemase gene persistence and evolution, and different strains and mobile genetic 62 elements with different transmission dynamics influence carbapenemase gene dissemination; these 63 factors should be considered in surveillance and control strategies.

3. Impact statement

64

65

66

67

68

69

71

72

73

74

75

76

77

78

79

80

81

84

85

93

Antibiotic resistance is a major healthcare problem, and common infection-causing bacteria known as Enterobacterales have developed resistance to one of the "last-line" antibiotic classes used for treatment, namely carbapenems. Carbapenem resistance in Enterobacterales is largely caused by the presence of carbapenemase enzymes, such as "KPC" (Klebsiella pneumoniae carbapenemase), which has caused outbreaks of antibiotic-resistant healthcare-associated infection in the USA and 70 UK. Many infection-associated Enterobacterales species can also live asymptomatically in the human gut and environmental niches, such as hospital wastewater sites, which act as potential reservoirs for the exchange of the gene encoding for KPC (bla_{KPC}). Diversity within and transmission between these reservoirs remains poorly characterised. We therefore systematically and densely sampled humans and wastewater sites (e.g. sink/shower drains, toilets etc.) on six wards in 2016-2017 and sequenced 1646 isolates in a prospective study in a hospital affected by outbreaks of KPC-Enterobacterales-associated infections. We found that 1 in 20 patients and nearly a third of all wastewater sites were colonised with KPC-Enterobacterales. Samples frequently contained multiple different KPC-positive species or strains at any given time, and different transmission patterns were

evident. This study has major implications for surveillance of carbapenem-resistant Enterobacterales

4. Data summary

- 82 The authors confirm all sequencing data and available metadata has been provided in NCBI
- 83 BioProjects PRJNA768622 and PRJNA514245 and in supplementary dataset 2.

in hospitals, and for designing strategies to mitigate their spread.

5. Introduction

- Carbapenemase-producing Enterobacterales (CPE) are a global health threat¹, and commonly 86
- 87 associated with multi-drug resistance, rendering treatment of CPE infections difficult. Major
- transmissible global carbapenemases include the metallo-beta-lactamases (bla_{NDM}, bla_{VM}, bla_{IMP}), 88
- 89 some oxacillinases (blaOXA-48/48-like variants), and the Klebsiella pneumoniae carbapenemase (KPC,
- 90 encoded by bla_{KPC} ². Intra- and inter-species horizontal transfer of these genes is facilitated by
- mobile genetic elements such as transposons and plasmids, resulting in rapid dissemination of 91
- carbapenem resistance^{3, 4}. 92
- 94 CPE have been isolated from human and animal gastrointestinal tracts, and from sewage, rivers and
- sink drains⁵⁻⁷. Recent studies have highlighted that hospital wastewater sites may act as a CPE 95
- reservoir⁵, but the diversity within these niches, genetic overlap with patient isolates and likely 96
- 97 directionality and rates of transmission remain to be elucidated. Studies evaluating the contribution
- 98 of patient-to-patient transmission as the sole explanatory factor explaining transmission have
- 99 generally been unable to robustly explain the majority of transmission events, suggesting that
- 100 patient, staff and/or environmental reservoirs remain insufficiently sampled to account for the

102

103

104

105

106 107

108

109

110111

112

113

114

115

116

117

118

119

120

121

122

123124

125

126

127

128

129

130

131132

133

134

135

136

diversity observed⁸. Few studies have considered within-niche diversity of strains by sampling multiple isolates per individual and/or site⁹⁻¹¹. The Manchester University NHS Foundation Trust (MFT; Manchester, UK), has experienced on-going transmission and patient acquisition of multi-species CPE, predominantly blaggerpositive Enterobacterales (KPC-E), since 2009. Following a bla_{KPC-2}-ST216-Escherichia coli outbreak on two cardiac wards in the Manchester Royal Infirmary (MRI; part of MFT) and subsequent ward closure and plumbing infrastructure replacement, early environmental sampling after the ward reopened suggested rapid re-colonisation of wastewater sites with KPC-E, likely from transfers of colonised patients to the ward and ongoing evolution of new KPC-E strains in the environment¹². We therefore undertook a prospective study systematically sampling all wastewater sites on six wards for 6-12 months alongside patient rectal screening/clinical sampling, and used an anonymised electronic database to characterise patient admission, ward movement, sampling profiles and culture results. Multiple colonies were isolated from KPC-E-positive samples to define within-niche diversity, and whole genome sequencing (Illumina) of individual isolates was used to characterise this diversity and consider modes of evolution and transmission. 6. Methods Study setting and epidemiological data MFT is a large, regional referral centre in northwest England, UK, managing >10,000 patients/year. In response to the regional emergence of KPC-E¹³, the Trust implemented an extensive Infection Prevention and Control (IPC) programme, consistent with UK CPE guidelines (published in 2014)¹⁴. Despite this, in April 2015 there was a large blager. E. coli outbreak in the cardiac unit¹², leading to its closure (September 2015-January 2016) and complete refurbishment, including plumbing replacement. Subsequently systematic, prospective wastewater site sampling was undertaken (described further below). To evaluate patient-level microbiological and admissions data, MFT electronic bacteriology records were linked, based on NHS numbers, to patient administration data, and anonymised. For this study, we analysed anonymised patient data from 1st January 2016-31st December 2016 inclusive, and included only those patients with exposure to any one of six wards within the three study units (acute medicine, cardiology, geratology) during that time. Environmental sampling and laboratory processing All sink/drain/wastewater sites on six wards in three units were sampled: the cardiac unit (wards 3 [W3] and 4 [W4]); the geratology unit (wards 45 [W45] and 46 [W46]); and the acute medicine unit

138

139140

141

142

143

144

145146

147

148

149

150

151152

153

154155

156157

158

159 160

161

162

163

164

165

166

167

168

169

170

171

(wards AM1 and AM2) (Table S1 shows sampling site designations). All wastewater sites on both W3 and W4 were sampled fortnightly on rotation from 8th January 2016-28th December 2016. W45, W46, AM1, AM2 wastewater sites were similarly sampled fortnightly, but from 18th July 2016-31st December 2016. Wastewater site types are described in the Supplementary methods. Environmental sampling was carried out by aspirating ~20mls of wastewater from sink P-traps, shower drains or toilets and performing enrichment-based culture (see Supplementary methods). Multiplex, real-time, quantitative PCR (for bla_{NDM} , bla_{KPC} , bla_{OXA-48}^{-12}) was performed on broths following incubation. 10µl of any bla_{KPC} -positive-broth were streaked onto CPE-selective agar plates (Chromid CARBA) and re-incubated (aerobically, 37°C). Patient sampling and laboratory processing Routinely collected patient clinical samples for the diagnosis of infection were processed using standard operating procedures in line with UK Standards¹⁵. In addition, a rectal CRE screening programme was in place from 2014 in line with national guidance: This included routine screening of high-risk patients (i.e. previously CRE-positive and/or a history of hospitalization abroad or in UK hospital with a known CRE problem in the last 12 months) on admission and weekly; screening of all patients on wards where CRE-positive patients were identified (either colonised or infected cases); ward closure and twice weekly screening if more than two cases were identified on a ward until no new cases were identified; isolation and/or cohorting of CRE-positive patients. Rectal swabs were screened for CPE using the Cepheid Xpert Carba-R assay or an in-house multiplex PCR (identifying bla_{KPC}, bla_{NDM}, and bla_{OXA-48}). Species identification of isolates was performed by MALDI-ToF (Bruker Biotyper, Bruker MD); antimicrobial susceptibility testing was performed as per EUCAST guidelines¹⁶. Enterobacterales isolates that had resistant or intermediate susceptibility to any carbapenem were classified as a carbapenem-resistant Enterobacterales (CRE). Analyses of within-niche diversity To evaluate within-niche diversity in the environment and patients, up to five different CRE colonies were individually sub-cultured; bla_{KPC} -positivity in sub-cultures was re-confirmed by PCR and species identification performed by MALDI-ToF prior to storage in nutrient broth at -80°C. DNA extraction and isolate sequencing DNA was extracted from frozen sub-culture stocks with the QuickGene kit, as per the manufacturer's instructions, with an additional mechanical lysis step post-chemical lysis (6m/s at 40secs x2 FastPrep, MPBio). Isolates were sequenced on the Illumina HiSeq 4000 generating 150bp paired-end reads.

173

174

175176

177178

179

180 181

182 183

184

185

186 187

188

189

190

191

192

193

194 195

196

197

198

199

200

201 202

203

204

205

206

207

208

Sequence data processing and analysis Sequencing reads were initially processed using an in-house pipeline¹⁷ (details in Supplementary methods); species identification was performed with Kraken2 (default settings)¹⁸. If at least 50 sequenced isolates were of a single species, reads were mapped to species-specific references. Variant calling and filtering was performed, and consensus fasta sequences of variant calls with respect to the reference generated. Recombination-adjusted phylogenies by species were created from core chromosomal single nucleotide variants (SNVs; padded to the length of the reference genome prior to analysis) using IQtree¹⁹ (flags: -m GTR+G -blmin 0.00000001 -t PARS) and then ClonalFrameML²⁰ (default parameters). A distance of ≤400 SNVs was used as a threshold to define clusters based on previous work (threshold used similar to²¹; distribution of SNV distances within clusters displayed in Fig.S2A-E for the most common species identified); indels were not considered in our evaluation of relatedness. For detailed sub-strain analysis for K. pneumoniae strain 9 (see Results), sub-strains were defined on the basis of accessory genome clusters characterised using Panaroo (default parameters including --clean-mode strict²²) and clustered using the R heatmap package. Isolates were assembled using SPAdes (v3.6; default parameters)²³. Multi-locus sequence types were derived using BLASTn and species-specific databases (https://pubmlst.org; Achtman 7-gene MLST for E. coli). AMR genes were identified using ARIBA²⁴ with the CARD database²⁵ and insertion sequences using ISFinder (https://isfinder.biotoul.fr). bla_{KPC} genes, Tn4401 transposon contexts and the 5-bp target site sequences (TSSs) on either side of the Tn4401 transposon reflecting Tn4401 transposition signatures were characterised using TETyper²⁶, a Tn4401b reference sequence, a 5bp flank length and the default structural/SNV profiles. Arbitrary profile numbers were assigned based on the presence of unique profiles of AMR genes, plasmid replicons, IS sequences (see Supplementary dataset 1 for details of which AMR gene variants constitute a given AMR gene profile, and Supplementary dataset 2 for details on plasmid replicon and IS combinations identified). For the analysis of K. pneumoniae strain 9 (see Results), putative transmission networks were inferred first using SCOTTI²⁷ (Supplementary methods), and then heuristically, linking isolates identified as clusters on the basis of accessory component profiles and geographic/temporal overlap (Supplementary methods). Statistical analyses and data visualisation Descriptive statistics were calculated in R v3.6.2 or STATA v16.1. To conduct permutational analyses of variance, we used the adonis function (vegan R package, v2.5-7)²⁸ on a matrix of pairwise Gower distances based on genetic features (i.e. composite of species-strain type, plasmid replicon profile,

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228 229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

AMR gene profile, IS profile, and Tn4401+flanking TSS profiles), which was calculated using the daisy function (R cluster package). To evaluate the impact of unit location or environmental site type on the odds of CPE positivity, we used logistic regression with robust standard errors clustered by environmental site sampled (R rms package, v6.2-0)²⁹. Data visualisation was using the ggplot2³⁰ and scatterpie³¹ (v.0.1.5) R packages, and BioRender (www.biorender.com). Data availability Sequence data have been deposited in NCBI's GenBank (BioProject accession PRJNA768622 and PRJNA514245; accession numbers and metadata for successfully sequenced isolates are in Supplementary dataset 2). We are not able to share the complete database of patient tests, results and admissions episodes; dates for patient admission/sampling are given as month-year only. Of note, labels represented in the figures/supplementary data are anonymised study-specific labels that are not patient-identifiable. 7. Results Environmental sampling revealed high prevalence and clustering of wastewater site KPC-E colonisation 349 sites across the six study wards (i.e. three units) were sampled a total of 4,488 times (Fig. 1): 101/349 (28.9%) sites and 319/4,488 (7.1%) sampling events were KPC-E-positive, with no difference by unit (Fig.2, p=0.908), or over time. Adjusting for environmental site type and unit location, shower/bath drain sites and sluices/sluice sinks/mop sinks were significantly more likely to be positive for KPC-E than others (Adjusted Odds Ratio [AOR] (95% CI): 2.69 (1.44-5.01), p=0.0019 and 2.60 (1.04-6.52), p=0.041, respectively), and toilet water sampling less likely to be positive (AOR (95% CI): 0.28 (0.10-0.78), p=0.015); there was no evidence of a unit-dependent difference (Table 1). 7/349 (2.0%) sites were persistently KPC-E positive (≥10 consecutive KPC-E-positive sampling events); interestingly five of these were medicines/treatment room handwash basin drains (of eight medicines/treatment room sinks in total) likely only accessible to healthcare staff (Table S1, Fig.S3). Approximately one in twenty-five patients was affected by carbapenemase-producing Enterobacterales (CPE), with most cases reflecting rectal colonisation with KPC-producing K. pneumoniae, E. coli or E. cloacae Of 2,529 Enterobacterales positive-samples (2,622 Enterobacterales isolates, 1,247 patients), 439/2,529 (17.4%) samples cultured at least one carbapenem-resistant Enterobacterales (CRE, n=478 isolates in total) (Figs. 1, S4). For 344/439 (78.4%) CRE-positive samples on which carbapenemase PCR data were also available, all contained at least one known carbapenemase gene, of which 303/344 (88.0%) were blaked (Table S2, CRE therefore henceforth denoted as CPE for

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262263

264 265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

simplification). CPEs were cultured from 228 patients (4.1% of all patients cultured, 18.2% of all patients with an Enterobacterales-positive culture) during the study period (median=1, IQR: 1-2, range: 1-17 CPE isolates/patient). The majority of CPE-positive isolates came from rectal screens (n=387/478 [81.0%]); others came from non-screening clinical specimens (91/478 [19.0%]) (Table S3). Most CPE-positive patients (178/228 [78%]) were CPE-positive only on rectal screen, but 23/228 (10%) individuals were positive only on clinical culture, and 27 (12%) on both. By routine laboratory species identification methods, >20 species and eight genera were represented amongst CPEs, with K. pneumoniae, E. coli and E. cloacae complex predominating (434/478 [90.8%]). Notably, the proportions of carbapenemresistant isolates within these top three carbapenem resistance-associated species varied (n=284/593 [48%] vs 106/1,404 [8%] vs 44/110 [40%] respectively; Fisher's exact test, p<0.001, Fig.S4). The proportion of patient CPE-positive cultures was lower than that of environmental site samples, typically ~3% (Fig. 3, bottom panel). Occasional peaks in prevalence were observed, consistent with outbreaks (e.g. week 31, acute medicine unit). CPE prevalence amongst patient cultures on the refurbished cardiology unit was 0% (97.5% CI: 0-0.02) for the first 10 weeks post-reopening, although two utility room sink drains on were positive for KPC-E a day after W3 reopened to patient admissions (11th January 2016) following closure and complete plumbing replacement over three months; thereafter the unit was rapidly re-colonised (Fig. 2). Structuring of diversity by patient and environmental niche, with most diversity explained by the individual niche 1,646 CPE isolates were successfully sequenced (1,275 environmental, 371 patient isolates; Fig.1, Supplementary dataset 2), of which all contained blaggers as the carbapenem resistance variant, and 13 bla_{KPC-2}-Enterobacterales species were identified across patients and environmental reservoirs. Amongst five species with ≥50 sequenced isolates which were evaluated at the strain-level, 109 unique strains were represented. Of the 109 strains, 61 (56%) were found only in the environment, 27 (24%) only in patients and 21 (19%) in both patients and the environment (Fig. 4 for the major species); the median strain cluster size was 5 isolates (range: 1-122), and the median number of unique niches (i.e. unique patients or wastewater sites) affected by a strain was 2 (range: 1-23). Amongst sequenced isolates, 100 plasmid replicon profiles, 754 IS profiles, 939 AMR gene profiles, and 70 Tn4401/TSS types were identified (Supplementary dataset 2). A much greater proportion of all identified Tn4401/TSS types was observed in the environment versus patients (66/70 [94%] of types versus 12/70 [17%] respectively; Fisher's exact test, p<0.001), and all the isolates with >1 set of

283

284

285

286

287

288 289

290

291

292

293

294

295

296 297

298

299

300

301

302 303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

TSSs were seen in environmental sites, consistent with these representing a more favourable niche for Tn4401-associated transposition/evolution and dissemination. For colonised niches (i.e. patient or environmental), using a metric of genomic diversity based on strain, plasmid replicon profile, AMR gene profile, IS profile, and Tn4401+5bp TSS profiles, most variance was explained by the specific individual site sampled (R^2 =50.5%; p<0.001), versus small but significant contributions made by niche type (i.e. patient vs environmental niche; R²=5.6%; p<0.001) and unit location ($R^2=2.8\%$; p<0.001). For the fifteen scenarios where exactly the same strain, AMR gene profile, IS profile, plasmid profile and Tn4401/TSS type were seen in patient and environmental niches (Fig.S5), and considering only the event-pairs where the chromosomal SNP distances were within 5 SNPs of each other and there was a change in sampling site, the temporal relationship of these supported: patient-to-environment transmission in 13/29 (45%) events, environment-to-patient transmission in 2/29 (7%) events, environment-to-environment transmission in 1/29 (3%) events, and patient-to-patient transmission in 13/29 (45%) events (test of equality of proportions, p<0.001). Environmental and patient niches harbour diverse KPC-E within single samples and over time Environmental sites showed evidence of major strain-level diversity: from the 101/349 sites from which blagge-2-Enterobacterales isolates were successfully sequenced at any timepoint, 78/319 (24.4%) KPC-E-positive samples had >1 blaggc.2-Enterobacterales strain, namely 52/319 (16.3%) with two strains, 16/319 (5.0%) with three, 9/319 (2.8%) with four and 1/319 (0.3%) with five strains (Figs. 5, S6). Over the study period, colonised environmental sites had a median of 3 (range: 1-17, IQR: 2-5) bla_{kPC-2}-Enterobacterales strains. 49/101 sites (49%) were apparently colonised by a single bla_{KPC-2}-Enterobacterales strain only, of which 38 were at single sampling-points, and 11 sites positive with the same strain at ≥2 timepoints. For patient samples, based on routine laboratory microbiology, evidence of mixed-species KPC-E colonisation/infection was found in 35/439 (8%) samples from 26/228 (11%) patients; these were mostly E. coli/K. pneumoniae mixtures (n=17 samples; maximum two species identified). To evaluate within-patient diversity with genomic rather than species-level resolution, in a subset of 76 patients, strains were sequenced successfully from at least one CPE-positive sample during the study period; for 97 samples, multiple colonies were picked from single sample sub-cultures. In total 457 sequenced colonies from 97 samples were available for evaluation of within-patient diversity; 25/97 samples (25.7%) had more than one strain per sample, namely 17/97 samples (17.5%) with two bla_{KPC-2}-Enterobacterales strains, 6/97 (6.2%) with three strains and 2/97 (2.0%) with four strains

318 (Figs. 5, S6) - i.e. considerably more diversity identified than based on routine laboratory species 319 identification data (26% vs 8% samples; Fisher's exact test, p<0.001). 320 321 For a subset of 14 patients and 53 wastewater sites where within-sample diversity was evaluated by 322 sequencing multiple isolates from individual samples and ≥2 longitudinal samples were positive, 323 longitudinal switches in blakpc-2-Enterobacterales species-strain composition was common, occurring 324 in 7/14 (50%) of patients and 41/53 (77%) wastewater sites (Figs.5, S6). 325 326 Genomic analysis reveals distinct population biology for different bla_{KPC-2}.Enterobacterales strains 327 To investigate different modes of blakpc-2 dissemination, we characterised in detail several 328 sequenced KPC-E strain clusters, including the largest environmental-only cluster (E. cloacae strain 329 10 [n=122 isolates]), a large cluster involving patients and the environment (K. pneumoniae strain 9 330 [n=106 isolates], and a cluster in which signatures of Tn4401 transposition appeared highly frequent 331 (K. pneumoniae strain 11 [n=96 isolates]). 332 333 Scenario 1: Dynamic changes in AMR gene, IS, plasmid replicon and Tn4401 profiles in E. cloacae 334 strain 10 in sink drain sites 335 E. cloacae strain 10 (eclo10, ST32) appeared a site-restricted but persistent coloniser of three co-336 located sink drains on a geratology ward (in a drug room clinical handwash basin drain [F45], utility 337 sink drain [F46], and a separate treatment room clinical handwash basin drain [F47]) over ~5 months 338 (18/Jul/2016-20/Dec/2016). At the core chromosomal level, strains appeared largely structured by 339 site, with 7 SNVs separating the majority of isolates in F45 from those in F47, and 14 SNVs those in 340 F46 from F45. Three isolates in F47 and one isolate in F46 clustered with the F45-associated isolates; 341 sampling dates suggest that these represented transmission events from F45 (Fig.6A). There was 342 evidence of rapid churn in AMR gene and IS content (111 and 36 different profiles respectively; 343 Fig. 6Bi and 6Bii) in the relatively stable strain background, and almost all isolates in F47 had acquired 344 an additional set of IncHI2/HI2A replicons on a background of FIB/FII, consistent with plasmid 345 gain/loss (Fig.6C). Although the Tn4401 type and flanking sequences were largely identical (Tn4401a-346 ATTGA-ATTGA in 105/122 (86%) isolates across sinks), there was evidence of unique additional 347 Tn4401 deletions occurring in multiple isolates at several distinct timepoints in the three sink sites 348 (Fig.6). 349 350 Scenario 2: Rapid clonal patient-patient transmission of K. pneumoniae strain 9 351 K. pneumoniae strain 9 (kpne9, ST252) was highly related (Fig.S7; maximum 6 SNVs across strain, 68 352 isolates with 0 SNVs between them), and spread amongst 21 patients across three wards on two 353 units (acute medicine AM1 and AM2 and geratology W46), with a dense outbreak in Aug 2016, most

355

356

357

358

359

360 361

362 363

364

365

366

367

368

369 370

371

372

373

374

375

376

377

378

379

380

381

consistent, at least initially, with direct/indirect patient-patient transmission (Fig. 7). blakec was consistently nested in Tn4401-ATTGA-ATTGA, except for one isolate which acquired a Tn4401associated mutation (isolate: 2216698_14, C4620T), and another in which the right target site sequence (TSS) could not be identified (isolate: 2035791 11). Amongst the 106 isolates there was evidence of four transient plasmid replicon acquisitions on a background of the stable presence of a set of IncFIB/IncFII replicons (Fig.S7). Transmission probabilities inferred by SCOTTI were weak (see Supplementary material; Fig.S8), as seen in other studies8, but using accessory cluster profiling to further discriminate amongst strains suggested that there were several discrete transmission clusters (Fig.S9), with some individuals involved in several of these (i.e. harbouring multiple distinct sub-lineages simultaneously, Fig. 7). A single shower drain site was involved (A13), which was likely a seeded by stander from affected patients, but may have contributed to transmission of sub-strain 3g (Fig.7). Scenario 3: Cross-unit dissemination with evidence of significant Tn4401-associated bla_{KPC} transposition in K. pneumoniae strain 11 Given that Tn4401 transposition is associated with blaked dissemination²¹, we also evaluated whether the number of different Tn4401-TSS types was different across strains, noting that the observed frequency of different Tn4401-TSS combinations was higher in K. pneumoniae strain 11 (kpne11, ST11) than in other strains (Fig.S10). On further analysis, Kpne11 represented two sub-clusters, separated by ~40SNVs (Fig.8, designated "cluster 1" and "cluster 2"; Fig.S11), both of which were isolated from patients and wastewater sites across ward settings, including the cardiac unit after plumbing replacement. Within both clusters of isolates there were ten different Tn4401a flanking signatures observed, only one of which was seen in the other >1600 isolates sequenced in the study (Tn4401a-1 ATTGA ATTGA, the most common flanking signature observed overall), and therefore most strongly consistent with the occurrence of an atypical and increased number of transposition

events within this K. pneumoniae strain. Although all isolates contained IncFIB and IncFII plasmid

replicons, evidence of plasmid gain/loss events as demonstrated by changes in plasmid replicon

profiles also appeared common (Fig. 8 for cluster 1).

8. Figures and tables

382

383

Figure 1. Sampling and sequencing flowchart for the study.

Figure 2. bla_{KPC}-Enterobacterales (KPC-E)-positive environmental sites by week in 2016 and hospital unit. The number of environmental site samples performed and KPC-E-positive samples by week of sampling, stratified by unit (top three panels), and the proportion of KPC-E-positive sites by week of sampling, again stratified by unit (bottom panel).

Figure 3. Carbapenem-susceptible Enterobacterales (CSE) and carbapenem-resistant-Enterobacterales (CRE) patient cultures by week in 2016 and hospital unit. Top three panels show counts of Enterobacterales culture-positive samples stratified by unit and carbapenem susceptibility; bottom panel shows the proportion of all cultures taken that were CRE, again stratified by unit.

393

394

395

396

Figure 4. Number of unique patient/environmental niches colonised by common bla_{KPC-2} Enterobacterales species/strains and the total number of isolates for each cluster. Includes species/strains if >50 isolates of a species were identified [see Methods]). Orange stars denote patient niches, black circles wastewater niches; larger shape size denotes a larger number of isolates sequenced. Strains observed in both niches are either overlapping shapes (same number of niches), or joined by a line (different numbers of niches).

400

401

402

403

404

Figure 5. Summary of within-niche and KPC-E sample diversity using genomics.

407

Figure 6. Enterobacter cloacae strain 10 - features of population structure and transmission dynamics - niche restriction, persistence and genetic turnover. Summaries of A) Chromosomal SNP distances for *E. cloacae* strain 10 across the three sites it colonised; Bi) AMR and Bii) IS profiles, C) plasmid replicon profiles, and D) deletions in Tn4401a in isolates with each sequenced isolate plotted as a dot reflecting within-sample diversity at given timepoints and longitudinally.

411

412

413

414

Figure 7. Klebsiella pneumoniae strain 9 - features of population structure and transmission dynamics - rapid patient-patient transmission. Putative transmission network for sub-lineages of K. pneumoniae strain 9, defined by accessory genome clustering (clusters 1, 2, 3a-h). Horizontal bars represent admission episodes to study wards for each patient (pale blue=W45, geratology; pale pink=AM1, acute medicine; pale purple=AM2, acute medicine; A13 represents the only environmental (shower) site involved. Empty black triangles denote CPE-negative rectal screens on patients. Arrows denote possible transmission links (dashed arrows denote events that have no geographic overlap or could be associated with two links based on negative screen, geographic location and timing). For clarity, arrows are not drawn for clusters 3g and 3h, which affected the most patients - these are shown in detail as an inset panel at the bottom right. In some cases patients were colonised by other species-strains contemporaneously (not shown here).

Figure 8. Klebsiella pneumoniae strain 11 cluster - features of population structure and transmission dynamics – multiple Tn4401 transposition events. Examples of possible transmission/genetic events are annotated on the figure. Each isolate sequenced is represented as a dot, with colour denoting the TSS profiles observed. Plasmid replicon profiles are annotated as text.

431

432

433

434

Table 1. Association of environmental site type and unit location with bla_{KPC} -Enterobacterales (KPC-E) positivity in environmental samples. Outputs of a multivariable logistic regression model with robust standard errors clustered by environmental site type and unit location; no other variables were considered in the model. P-values <0.05 were considered significant and are highlighted in bold. No interactions with an interaction Wald p <0.05 were observed.

437

438

439

440

441

Environmental site	Number of sites	Number of sampling events KPC-E-positive (% of total sampling events)	Number of sampling events KPC-E- negative	OR (95% CI)	p
Environmental site type					
Clinical handwash basin drain	96	79 (5.9%)	1270	Reference	
Handwash basin drain	85	52 (4.6%)	1077	0.99 (0.51- 1.93)	0.9735
Shower/bath drain	59	100 (19.2%)	421	2.69 (1.44- 5.01)	0.0019
Sluice/sluice sink/mop sink	16	47 (17.9%)	215	2.60 (1.04- 6.52)	0.0410
Toilet	74	5 (0.5%)	931	0.28 (0.10- 0.78)	0.0152
Utility sink	19	36 (12.4%)	255	1.32 (0.47- 3.68)	0.5965
Environmental site location					
Acute medicine unit	129	86 (6.6%)	1223	Reference	
Cardiac unit	76	111 (7.0%)	1453	1.07 (0.57- 2.00)	0.8412
Geratology unit	144	122 (7.6%)	1493	0.88 (0.52- 1.48)	0.6243

444

445

446

447 448

449

450

451

452

453

454

455

456

457

458 459

460

461

462

463 464

465

466

467

468 469

470

471

472

473

474

475

476 477

478

479

480

9. Discussion This work highlights the substantial KPC-E diversity and flux that can occur in both human and wastewater niches in healthcare settings over variable timeframes, in this case in relation to a large bla_{kPC-2}-associated carbapenemase gene outbreak. KPC-E strains have features likely to make generalising results regarding modes of transmission, evolution and gene sharing of blakec amongst these species very challenging. Although structuring at the strain-level was observed by niche and species (Fig.4), likely transmissions occurred in a non-negligible manner in all directions from patients to other patients and the environment, and from the environment to patients and other environmental sites. Environmental niches and certain lineage contexts appeared to amplify blakpc-2 transposition events. Although some environmental sites were persistently colonised with individual strains over months, many appeared to be only transiently colonised. Sites particularly associated with KPC-E colonisation included sluices, sluice sinks, mop sinks and shower/bath drains, supported by other studies⁵, and consistent with these representing a major interface between human faeces and premise plumbing. Toilets were less likely to be KPC-E-positive, perhaps because of regular flushing or particular cleaning protocols; consistent with this, several studies have demonstrated that daily bleach application decontaminated wastewater sites^{32, 33}. Our study underscores the detailed and dense sampling effort required to understand within-sample diversity and longitudinal flux, and highlights the difficulty in accurately tracking the dissemination of AMR genes and strains across niches. This problem has also been demonstrated in other recent work investigating bla_{OXA-48}, where only patient-based sampling was undertaken and most bla_{OXA-48}associated transmission events were non-delineated or only weakly supported by joint phylogenetic/epidemiological inference⁸. Our study clearly shows that different species and lineages represent different epidemiological risks and have their own behaviours, and a focus on single, clonal strains as mediators of AMR gene transmission is irrelevant in this and potentially many other settings where important AMR genes have become endemic. The importance of evaluating asymptomatic carriage, characterising within-host diversity of strains, considering rapid acquisition/loss of strains over short timeframes, and including environmental sites in transmission networks has been partly demonstrated in previous studies investigating ESBL-E. coli^{10, 34} and Enterococcus spp.³⁵, but generally these features are not jointly investigated because doing so is highly resource-intensive, and there are no robust analysis methods for doing this to our knowledge. However, without this effort, such as in studies which consider only single or infrequent sampling timepoints, and do not investigate asymptomatic colonisation or consider within-site diversity³⁶, our study highlights that relevant events may easily be missed.

There are several limitations to this work. CPE-sample capture for patients for this study was not continuous, and we therefore only evaluated a subset of CPE-positive patients and samples using genomics (33% and 22% respectively); we anticipate many transmission events were missed, but our sampling already reveals the high complexity of blakec transmission. We were not resourced to perform long-read sequencing to enable plasmid sequence reconstruction, and plasmid replicon or bla_{KPC} -contig profiling is relatively low-resolution and can be misleading²¹; we therefore avoided a detailed plasmid analysis which would be important in quantifying horizontal bla_{KPC} transmission. However, the diversity we observed in genetic contexts supporting bla_{KPC} was substantial, consistent with high rates of HGT. A further limitation is the absence of metadata capturing relevant selection pressures in each niche, including cleaning protocols for environmental reservoirs and drug prescription/antimicrobial stewardship data for patients. We only investigated one healthcare setting, but the same polyspecies, polyclonal phenomenon has been seen elsewhere and with other carbapenemase genes^{4,8}. We focused only on Enterobacterales and may have missed wider HGT of carbapenemase genes to other bacteria. In line with this, at least 23 Pseudomonas spp., five Stenotrophomonas maltophilia and two Acinetobacter spp. that were PCR-positive for blakpc or bla_{NDM} were inadvertently picked up on rectal screening. Our approaches to evaluating some of the putative genetic changes and transmission events observed were heuristic and manual, partly because the data were highly hetereogenous and complex. The study is now relatively historic, but these types of polyspecies, polyclonal carbapenemase gene outbreaks associated with hospital wastewater sites continue to be described and as such we believe the findings remain of interest.

Further optimisation of methods to evaluate multi-level genetic transmission and within-sample diversity without individual colony-level characterisation is needed. Holistic approaches using fully reconstructed chromosome/plasmid assemblies to quantify the diverse types of genomic transmission (including clonal transmission, horizontal transfer at the gene, transposon and plasmidlevel) are also required to better understand what facilitates emergence, selection and persistence of different lineages and genetic vectors of blakpc. This information will improve our understanding of how to intervene to limit the transmission of drug-resistant Enterobacterales in healthcare settings, and avoid incorrect inference.

10. Author statements

10.1 Conflicts of interest

481

482

483

484

485

486

487 488

489

490

491

492

493 494

495

496

497 498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

515

516

513 DWE has received lecture fees from Gilead, outside the submitted work. The other authors declare

514 that there are no conflicts of interest.

10.2 Funding information

517 This study was funded by the National Institute for Health Research (NIHR) Health Protection 518

Research Unit in Healthcare Associated Infections and Antimicrobial Resistance (NIHR200915), a

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544 545

546

547

548

549

550

551

partnership between the UK Health Security Agency (UKHSA) and the University of Oxford, and was supported by the NIHR Oxford Biomedical Research Centre (BRC). The computational aspects of this research were funded from the NIHR Oxford BRC with additional support from the Wellcome Trust Core Award Grant Number 203141/Z/16/Z. The views expressed are those of the author(s) and not necessarily those of the NHS, NIHR, UKHSA or the Department of Health and Social Care. For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising. DWE is a Robertson Foundation Fellow and an NIHR Oxford Biomedical Research Centre Senior Fellow. NS is an Oxford Martin Fellow. DWC, TEAP and ASW are NIHR Senior Investigators. 10.3 Ethical approval This study was performed as part of a Trust board-approved and UK Health Security Agency (formerly Public Health England) long-term outbreak response, and ethics approval was not required under NHS governance arrangements; all analyses were undertaken using anonymised data. This was reviewed and agreed by the Joint Research Office of the Oxford University Hospitals NHS Foundation Trust and the University of Oxford (who oversee research governance, ethics and assurance for our institution), and who deemed that neither sponsorship nor research ethics review was required. 10.4 Acknowledgements We are grateful to the microbiology staff and infection prevention and control teams at Manchester University NHS Foundation Trust. The Transmission of Carbapenemase-producing Enterobacteriaceae (TRACE) Investigators' Group is made up of the following (listed alphabetically, includes several of the authors also listed by name in the main author list): Zoie Aiken, Oluwafemi Akinremi, Aiysha Ali, Julie Cawthorne, Paul Cleary, Derrick W. Crook, Valerie Decraene, Andrew Dodgson, Michel Doumith, Matthew J. Ellington, Ryan George, John Grimshaw, Malcolm Guiver, Robert Hill, Katie L. Hopkins, Rachel Jones, Cheryl Lenney, Amy J. Mathers, Ashley McEwan, Ginny Moore, Andrew Mumford, Mark Neilson, Sarah Neilson, Tim E.A. Peto, Hang T.T. Phan, Mark Regan, Anna C. Seale, Nicole Stoesser, Jay Turner-Gardner, Vicky Watts, A. Sarah Walker, Jimmy Walker, David H. Wyllie, William Welfare and Neil Woodford.

11. References

- 553 1. Munoz-Price LS, Poirel L, Bonomo RA et al. Clinical epidemiology of the global expansion of
- Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013; 13: 785-96.
- 555 2. Logan LK, Weinstein RA. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae:
- The Impact and Evolution of a Global Menace. J Infect Dis 2017; 215: S28-S36.
- 557 3. Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the
- 558 storm! Trends Mol Med 2012; 18: 263-72.
- 559 4. Mathers AJ, Cox HL, Kitchel B et al. Molecular dissection of an outbreak of carbapenem-
- 560 resistant enterobacteriaceae reveals Intergenus KPC carbapenemase transmission through a
- promiscuous plasmid. MBio 2011; **2**: e00204-11.
- 562 5. Kizny Gordon AE, Mathers AJ, Cheong EY et al. Is the hospital water environment a reservoir
- 563 for carbapenem-resistant organisms causing hospital-acquired infections? A systematic review of the
- literature. Clin Infect Dis 2017.
- 565 6. Bleichenbacher S, Stevens MJA, Zurfluh K et al. Environmental dissemination of
- 566 carbapenemase-producing Enterobacteriaceae in rivers in Switzerland. Environ Pollut 2020; 265.
- 567 7. Cahill N, O'Connor L, Mahon B et al. Hospital effluent: A reservoir for carbapenemase-
- producing Enterobacterales? The Science of the total environment 2019; 672: 618-24.
- 569 8. León-Sampedro R, DelaFuente J, Díaz-Agero C et al. Pervasive transmission of a carbapenem
- 570 resistance plasmid in the gut microbiota of hospitalized patients. Nat Microbiol 2021; **6**: 606-16.
- 571 9. Weingarten RA, Johnson RC, Conlan S et al. Genomic Analysis of Hospital Plumbing Reveals
- 572 Diverse Reservoir of Bacterial Plasmids Conferring Carbapenem Resistance. MBio 2018; 9.
- 573 10. Stoesser N, Sheppard AE, Moore CE et al. Extensive Within-Host Diversity in Fecally Carried
- 574 Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli Isolates: Implications for
- 575 Transmission Analyses. J Clin Microbiol 2015; **53**: 2122-31.
- 576 11. Ludden C, Coll F, Gouliouris T et al. Defining nosocomial transmission of Escherichia coli and
- antimicrobial resistance genes: a genomic surveillance study. The Lancet Microbe 2021; 2: e472-e80.
- 578 12. Decraene V, Phan HTT, George R et al. A Large, Refractory Nosocomial Outbreak of Klebsiella
- 579 pneumoniae Carbapenemase-Producing Escherichia coli Demonstrates Carbapenemase Gene
- 580 Outbreaks Involving Sink Sites Require Novel Approaches to Infection Control. Antimicrob Agents
- 581 Chemother 2018; **62**.
- 582 13. England PH. Carbapenemase-producing Enterobacteriaceae: laboratory confirmed cases,
- 583 2003 to 2015. London: Public Health England, 2016.
- 584 14. England PH. Carbapenemase-producing Enterobacteriaceae: early detection, management
- and control toolkit for acute trusts. 2014.

- 586 15. Investigations USfM.
- 587 16. Testing ECoAS. Breakpoint tables for interpretation of MICs and zone diameters. 2017.
- 588 17. Stoesser N, Sheppard AE, Peirano G et al. Genomic epidemiology of global Klebsiella
- pneumoniae carbapenemase (KPC)-producing Escherichia coli. Sci Rep 2017; 7: 5917.
- 590 18. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact
- 591 alignments. Genome Biol 2014; **15**: R46.
- 592 19. Nguyen LT, Schmidt HA, von Haeseler A et al. IQ-TREE: a fast and effective stochastic
- algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; **32**: 268-74.
- 594 20. Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial
- 595 genomes. PLoS Comput Biol 2015; **11**: e1004041.
- 596 21. Sheppard AE, Stoesser N, Wilson DJ et al. Nested Russian Doll-Like Genetic Mobility Drives
- 597 Rapid Dissemination of the Carbapenem Resistance Gene blaKPC. Antimicrob Agents Chemother
- 598 2016; **60**: 3767-78.
- 599 22. Tonkin-Hill G, MacAlasdair N, Ruis C et al. Producing polished prokaryotic pangenomes with
- the Panaroo pipeline. Genome Biol 2020; 21: 180.
- 601 23. Bankevich A, Nurk S, Antipov D et al. SPAdes: a new genome assembly algorithm and its
- applications to single-cell sequencing. J Comput Biol 2012; **19**: 455-77.
- 603 24. Hunt M, Mather AE, Sánchez-Busó L et al. ARIBA: rapid antimicrobial resistance genotyping
- directly from sequencing reads. Microb Genom 2017; **3**: e000131.
- 605 25. Jia B, Raphenya AR, Alcock B et al. CARD 2017: expansion and model-centric curation of the
- comprehensive antibiotic resistance database. Nucleic Acids Res 2017; **45**: D566-D73.
- 607 26. Sheppard AE, Stoesser N, German-Mesner I et al. TETyper: a bioinformatic pipeline for
- 608 classifying variation and genetic contexts of transposable elements from short-read whole-genome
- sequencing data. Microb Genom 2018; 4.
- 610 27. De Maio N, Wu CH, Wilson DJ. SCOTTI: Efficient Reconstruction of Transmission within
- Outbreaks with the Structured Coalescent. PLoS Comput Biol 2016; 12: e1005130.
- 612 28. Oksanen JB, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; , McGlinn DM, P.R.; O'Hara, R.B.;
- 613 Simpson, G.L.; Solymos, P.; Henry, M.; Stevens, H.;, Szoecs E.; Wagner H. vegan: Community Ecology
- 614 Package. 2020.
- 615 29. Harrell Jr FE. rms: Regression Modeling Strategies. 2021.
- 616 30. Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2016.
- 617 31. Yu G. scatterpie: Scatter Pie Plot. 2020.

- 618 32. Valentin AS, Santos SD, Goube F et al. A prospective multicentre surveillance study to
- 619 investigate the risk associated with contaminated sinks in the intensive care unit. Clin Microbiol
- 620 Infect 2021; 27: 1347.e9-.e14.
- 621 33. Heireman L, Hamerlinck H, Vandendriessche S et al. Toilet drain water as a potential source
- of hospital room-to-room transmission of carbapenemase-producing Klebsiella pneumoniae. The
- 623 Journal of hospital infection 2020; **106**: 232-9.
- 624 34. Kantele A, Kuenzli E, Dunn SJ et al. Dynamics of intestinal multidrug-resistant bacteria
- 625 colonisation contracted by visitors to a high-endemic setting: a prospective, daily, real-time sampling
- 626 study. The Lancet Microbe 2021; 2: e151-e8.
- 627 35. Gouliouris T, Coll F, Ludden C et al. Quantifying acquisition and transmission of Enterococcus
- faecium using genomic surveillance. Nat Microbiol 2021; **6**: 103-11.
- 629 36. Qiao F, Wei L, Feng Y et al. Handwashing Sink Contamination and Carbapenem-resistant
- 630 Klebsiella Infection in the Intensive Care Unit: A Prospective Multicenter Study. Clin Infect Dis 2020;
- 631 **71**: S379-s85.