Elif Tan

Abstract

- Real Vector Spaces and Subspaces
- Spanning Set and Linear Independency
- Basis and Dimension

REAL VECTOR SPACES

• A vector in the plane is a 2×1 matrix (2-vector)

$$x = \begin{bmatrix} x \\ y \end{bmatrix}$$
; $x, y \in \mathbb{R}$.

ullet A vector in the space is a 3×1 matrix (3-vector)

$$x = \begin{bmatrix} x \\ y \\ z \end{bmatrix}; x, y, z \in \mathbb{R}.$$

• We also represent a vector in the plane as a directed line segment \nearrow for physical applications. In \mathbb{R}^2 ,

$$\left[\begin{array}{c}x\\y\end{array}\right]\leftrightarrow\left(x,y\right)$$

• In algebraically, all these representations behave in a same manner.

Definition: A **real vector space** is a set of V of elements on which have two operations \oplus and \odot satisfy the following properties:

(i)
$$\oplus$$
: $V \times V \longrightarrow_{(u,v) \longrightarrow u \oplus v} V$ $u \oplus v \in V$, for all $u, v \in V$

- (1) (Commutative) $u \oplus v = v \oplus u$, for all $u, v \in V$
- (2) (Associative) $u \oplus (v \oplus w) = (u \oplus v) \oplus w$, for all $u, v, w \in V$
- (3) (Identity) For any $u \in V$, $\exists \mathbf{0} \in V$; $u \oplus \mathbf{0} = \mathbf{0} \oplus u = u$
- (4) (Inverse) For each $u \in V$, $\exists -u \in V$; $u \oplus -u = -u \oplus u = \mathbf{0}$

$$\text{(ii)} \quad {}^{\odot}: \mathbb{R} \underset{(c,u) \ \longrightarrow \ c \odot u}{\longleftarrow} V \quad c \odot u \in V \text{,for all } u \in V \text{ and all } c \in \mathbb{R}$$

- $(5) \ c \odot (u \oplus v) = c \odot u \oplus c \odot v, \text{ for all } u, v \in V \text{ and all } c \in \mathbb{R}$
- (6) $(c+d) \odot u = c \odot u \oplus d \odot u$, for all $u \in V$ and all $c, d \in \mathbb{R}$
- (7) $c \odot (d \odot u) = (c.d) \odot u$, for all $u \in V$ and all $c, d \in \mathbb{R}$
- (8) $1 \odot u = u$, for all $u \in V$ and $1 \in \mathbb{R}$

- We denote (V, \oplus, \odot) is a **real vector space**.
- The elements of (V, \oplus, \odot) are called as **vectors**.(0 is zero vector, -u is negative of u)
- ullet The elements of ${\mathbb R}$ are called as **scalars.**
- The operations ⊕ and ⊙ are called as vector addition and scalar multiplication, respectively.

Examples:

- **1.** $(\mathbb{R}, +, .)$ is a real vector space.
- **2.** $(\mathbb{R}^+,+,.)$ is not a real vector space, because the identity element of the operation + doesn't exist.

3. Let
$$\mathbb{R}^n=\left\{\left[egin{array}{c} a_1\\ a_2\\ \vdots\\ a_n \end{array}\right]_{n imes 1}\mid a_1,a_2,\ldots,a_n\in\mathbb{R}
ight\}$$
 . Then $(\mathbb{R}^n,\oplus,\odot)$ is a

real vector space.

- **4.** The set of $m \times n$ matrices with matrix addition and scalar multiplication (M_{mn}, \oplus, \odot) is a vector space.
- **5.** The set of polynomials with degree $\leq n$

$$P_n = \{a_0 + a_1x + a_2x^2 + \dots + a_nx^n \mid a_i \in \mathbb{R}\}$$

is a vector space with the usual polynomial addition and scalar multiplication.

- **5.** The set $V = \left\{ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{22} \mid Tr(A) = a + d = 0 \right\}$ with usual matrix addition and scalar multiplication is a vector space.
- (i) Let $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $\begin{bmatrix} e & f \\ g & h \end{bmatrix} \in V$. Then a+d=0 and e+h=0.

Since
$$a + d + e + h = 0$$
, $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \oplus \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a + e & b + f \\ c + g & d + h \end{bmatrix} \in V$

$$(1) \begin{bmatrix} a & b \\ c & d \end{bmatrix} \oplus \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a + e & b + f \\ c + g & d + h \end{bmatrix} =$$

$$\begin{bmatrix} e+a & f+b \\ g+c & h+d \end{bmatrix} = \begin{bmatrix} e & f \\ g & h \end{bmatrix} \oplus \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

- (2) Associative (verify)
- (3) Since $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \oplus \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $\mathbf{0} := \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in V$ is the zero element.
- (4) Since -(a+d)=0, $\begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix} \in V$ is the inverse of $\begin{bmatrix} a & b \\ c & d \\ \frac{a}{2} & \frac{1}{2} = 0 \end{bmatrix}$.

(ii) Let
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in V$$
 and $k \in \mathbb{R}$. Then $k (a+d) = 0$. Thus $k \odot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix} \in V$

(5) $k \odot (\begin{bmatrix} a & b \\ c & d \end{bmatrix} \oplus \begin{bmatrix} e & f \\ g & h \end{bmatrix}) = k \odot (\begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}) = \begin{bmatrix} k(a+e) & k(b+f) \\ k(c+g) & k(d+h) \end{bmatrix} = \begin{bmatrix} ka+ke & kb+kf \\ kc+kg & kd+kh \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix} \oplus \begin{bmatrix} ke & kf \\ kg & kh \end{bmatrix} = k \odot \begin{bmatrix} a & b \\ c & d \end{bmatrix} \oplus k \odot \begin{bmatrix} e & f \\ g & h \end{bmatrix}$

(6) $(k+t) \odot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} (k+t) & a & (k+t) & b \\ (k+t) & c & (k+t) & d \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix} \oplus \begin{bmatrix} ta & tb \\ tc & td \end{bmatrix} = k \odot \begin{bmatrix} a & b \\ c & d \end{bmatrix} \oplus t \odot \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

$$(7) \ k \odot \left(t \odot \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = k \odot \begin{bmatrix} ta & tb \\ tc & td \end{bmatrix} = \begin{bmatrix} k (ta) & k (tb) \\ k (tc) & k (td) \end{bmatrix} = \begin{bmatrix} (kt) \ a & (kt) \ b & (kt) \ c & (kt) \ d & c & d \end{bmatrix}$$

$$(8) \, 1 \odot \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

6.
$$\mathbb{R}^3 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\}$$
 with operations

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \boxplus \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} : = \begin{bmatrix} x + x' \\ y + y' \\ z + z' \end{bmatrix}$$
$$k \boxdot \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} : = \begin{bmatrix} x' \\ 1 \\ z' \end{bmatrix}$$

is not a vector space. Since from (5),

$$k \boxdot \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \boxplus \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x+x' \\ 1 \\ z+z' \end{bmatrix}$$

$$\neq k \boxdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} \boxplus k \boxdot \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} x+x' \\ 2 \\ z+z' \end{bmatrix}.$$

7.
$$\mathbb{R}^3 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\}$$
 with operations

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \oplus \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} : = \begin{bmatrix} x' \\ y+y' \\ z+z' \end{bmatrix}$$
$$k \odot \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} : = \begin{bmatrix} kx' \\ ky' \\ kz' \end{bmatrix}$$

is not a vector space. Properties (1), (3), (4), (6) fail to hold.

Theorem

The inverse of a vector is unique.

Theorem

Let (V, \oplus, \odot) be a real vector space. For $u \in V$ and $c \in \mathbb{R}$,

- (*i*) $0 \odot u = \mathbf{0}$
- (ii) $c \odot \mathbf{0} = \mathbf{0}$
- (iii) $c \odot u = \mathbf{0} \Rightarrow c = 0$ or $u = \mathbf{0}$
- $(iv) (-1) \odot u = -u$.

SUBSPACES

Definition (Subspace)

Let (V, \oplus, \odot) be a real vector space and $\emptyset \neq W \subseteq V$. If W is a real vector space with the operations in V, then W is called a **subspace** of V $(W \leq V)$.

To verify that a subset W of a vector sace V is a subspace, it is enough to check the following conditions.

Theorem

Let (V, \oplus, \odot) be a real vector space and $\emptyset \neq W \subseteq V$. Then

$$W \leq V \iff egin{array}{l} (i) & u \oplus v \in W & \textit{for all } u, v \in W \\ (ii) & c \odot u \in W & \textit{for all } u \in W & \textit{and all } c \in \mathbb{R}. \end{array}$$

Subspaces

Examples:

1. Let V be a vector space and W be the subset consisting of the zero vector $\{\mathbf{0}\}$.

Since $\mathbf{0} \oplus \mathbf{0} = \mathbf{0}$, $c \odot \mathbf{0} = \mathbf{0}$, W is a subspace of V.

 $\{\mathbf{0}\}$ is called the **zero subspace**.

Every vector space has at least two subspace, itself and zero subspace.

2. Let
$$V = M_{22}$$
 and $W = \{A \in M_{22} \mid \det(A) = 0\}$.

For
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in W$$
 and $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in W$,

$$A \oplus B = \left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight]
otin W$$
, since $det(A \oplus B) = 1
eq 0$.

Thus $W \not \leqslant V$.

Subspaces

3. $V = \mathbb{R}^3$ is a real vector space with the standart operations \oplus and \odot .

•
$$W_1 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix}; x+z=0 \right\} \leq V.$$

•
$$W_2 = \left\{ \left| \begin{array}{c} x \\ y \\ z \end{array} \right| ; x+z=7 \right\} \nleq V.$$

•
$$W_3 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix}; x+y=0, z>0 \right\} \nleq V$$
, since

$$(-1)\odot\left[\begin{array}{c}1\\-1\\2\end{array}\right]=\left[\begin{array}{c}-1\\1\\-2\end{array}\right]\notin W_3.$$

SPANNING SET and LINEAR INDEPENDENCY

A simple way to construct a subspace in a vector space (V, \oplus, \odot) is as follows:

- Let v_1 and v_2 be fixed vectors in V.
- Let $W = \{a_1 \odot v_1 \oplus a_2 \odot v_2 \mid a_1, a_2 \in \mathbb{R}\}$.
- For $w_1 = a_1 \odot v_1 \oplus a_2 \odot v_2$, $w_2 = b_1 \odot v_1 \oplus b_2 \odot v_2 \in W$,

$$w_1 \oplus w_2 \in W$$
 and $c \odot w_1 \in W$.

Thus $W \leq V$.

It can be performed more than 2 vectors. To do this, now we give the definition of "linear combination".

To describe a vector space, "linear combination" plays an important role.

Linear Combination

Definition (Linear Combination)

Let $v_1, v_2, ..., v_k$ be vectors in (V, \oplus, \odot) a vector space. A vector $v \in V$ is called a **linear combination** of $v_1, v_2, ..., v_k$ if

$$v = c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus \ldots \oplus c_k \odot v_k,$$

for the scalars $c_1, c_2, ..., c_k$.

Example: Let $V = \mathbb{R}^3$. The vector $v = \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}$ is a linear combination of

$$v_1=\left[egin{array}{c}1\\2\\1\end{array}
ight]v_2=\left[egin{array}{c}1\\0\\2\end{array}
ight]$$
 , $v_3=\left[egin{array}{c}1\\1\\0\end{array}
ight]$, since

$$v=1\odot v_1\oplus 2\odot v_2\oplus (-1)\odot v_3.$$

Definition (Spannig Set)

Let $S = \{v_1, v_2, ..., v_k\}$ be a set of vectors in a vector space V. Then the set of all vectors in V that are linear combinations of the vectors in S is called the **span of S**, denoted by Span S; that is,

$$\textit{Span S} := \left\{ c_1 \odot \textit{v}_1 \oplus \textit{c}_2 \odot \textit{v}_2 \oplus \ldots \oplus \textit{c}_k \odot \textit{v}_k \mid \textit{c}_1, \textit{c}_2, ..., \textit{c}_k \in \mathbb{R} \right\}.$$

If every vector in V is a linear combination of the vectors in S, the set S is said to **span** V, or V is **spanned by** S; that is, Span S = V.

Theorem

Let $S = \{v_1, v_2, ..., v_k\}$ be a set of vectors in a vector space V. Then

Span
$$S \leq V$$
.

Examples:

1. Let
$$V = \mathbb{R}^2$$
 and $S = \left\{ v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$, then
$$Span \ S = \left\{ a \odot v_1 \oplus b \odot v_2 \mid a, b \in \mathbb{R} \right\}$$
$$= \left\{ a \odot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \oplus b \odot \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mid a, b \in \mathbb{R} \right\}$$
$$= \left\{ \begin{bmatrix} a \\ a+b \end{bmatrix} \mid a, b \in \mathbb{R} \right\}.$$

2. Let $V = M_{23}$ and

$$S = \left\{ \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right], \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right], \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right], \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right] \right\}.$$

$$\begin{array}{lll} \textit{Span S} & = & \left\{ a \odot \textit{v}_1 \oplus \textit{b} \odot \textit{v}_2 \oplus \textit{c} \odot \textit{v}_3 \oplus \textit{d} \odot \textit{v}_4 \mid \textit{a,b} \in \mathbb{R} \right\} \\ & = & \left\{ a \odot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \oplus \textit{b} \odot \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right. \\ & & \oplus \textit{c} \odot \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \oplus \textit{d} \odot \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mid \textit{a,b,c,d} \in \mathbb{R} \right\} \\ & = & \left\{ \begin{bmatrix} a & \textit{b} & 0 \\ 0 & \textit{c} & \textit{d} \end{bmatrix} \mid \textit{a,b,c,d} \in \mathbb{R} \right\}. \end{array}$$

To determine whether a vector v of V is in $Span\ S$, we investigate the consistency of the corresponding linear system.

- If the corresponding system is consistent, then $v \in Span\ S$. That is, if there exist scalars c_1, c_2, \ldots, c_k such that $v = c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus \cdots \oplus c_k \odot v_k$, then $v \in Span\ S$.
- If the corresponding system is inconsistent, then $v \notin Span S$. That is, if there does not exist scalars c_1, c_2, \ldots, c_k such that $v = c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus \cdots \oplus c_k \odot v_k$, then $v \notin Span S$.

Example

Let $V = \mathbb{R}^3$, consider the vectors

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

Determine whether $Span\{v_1, v_2, v_3\} = \mathbb{R}^3$.

Solution: Let $v = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ be an arbitrary vector in \mathbb{R}^3 . If we find the

scalars c_1 , c_2 , c_3 such that $v = c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus c_3 \odot v_3$, then $Span\{v_1, v_2, v_3\} = \mathbb{R}^3$.

The corresponding linear system

$$c_1 + c_2 + c_3 = x$$

 $2c_1 + c_3 = y$
 $c_1 + 2c_2 = z$

is consistent. Since

$$\begin{bmatrix} 1 & 1 & 1 & : & x \\ 2 & 0 & 1 & : & y \\ 1 & 2 & 0 & : & z \end{bmatrix} \approx \dots \approx \begin{bmatrix} 1 & 0 & 0 & : & \frac{-2x+2y+z}{3} \\ 0 & 1 & 0 & : & \frac{x-y+z}{3} \\ 0 & 0 & 1 & : & \frac{4x-y-2z}{3} \end{bmatrix},$$

$$c_1 = \frac{-2x+2y+z}{3} \in \mathbb{R}$$

$$c_2 = \frac{x-y+z}{3} \in \mathbb{R}$$

Thus, $Span\{v_1, v_2, v_3\} = \mathbb{R}^3$.

 $c_3 = \frac{4x - y - 2z}{2} \in \mathbb{R}.$

Consider the set
$$\left\{v_1=\left[\begin{array}{c}1\\2\\1\end{array}\right],v_2=\left[\begin{array}{c}1\\0\\2\end{array}\right]\right\}$$
 , then $Span\left\{v_1,v_2\right\}
eq \mathbb{R}^3$.

Since

$$\begin{bmatrix} 1 & 1 & : & x \\ 2 & 0 & : & y \\ 1 & 2 & : & z \end{bmatrix} \approx \cdots \approx \begin{bmatrix} 1 & 0 & : & x \\ 0 & 1 & : & \frac{2x-y}{2} \\ 0 & 0 & : & \frac{4x+y+2z}{2} \end{bmatrix}.$$

If $\frac{4x+y+2z}{2} \neq 0$, the system is inconsistent.

Remark: A vector space may have many spanning sets and these spanning sets need not have the same number of vectors.

Let $S = \{v_1, v_2, ..., v_j, ..., v_k\}$ and SpanS = V. If v_j is a linear combination of the preceding vectors in S, then the set $S - \{v_j\}$ also spans V.

Example: Let $V = \mathbb{R}^3$ and $v = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ be an arbitrary vector in \mathbb{R}^3 .

- If $S_1 = \left\{ v_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$, then $Span\{v_1, v_2, v_3\} = \mathbb{R}^3$.
- If $S_2 = \left\{ v_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, v_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$, then $Span\{v_1, v_2, v_3, v_4\} = \mathbb{R}^3$.

• If
$$S_3 = \left\{ v_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, v_4 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \right\}$$
, then $Span\{v_1, v_2, v_3, v_4\} = \mathbb{R}^3$.

Since the corresponding linear system is consistent:

$$\begin{bmatrix} 1 & 1 & 1 & 2 & : & x \\ 2 & 0 & 1 & 1 & : & y \\ 1 & 2 & 0 & 2 & : & z \end{bmatrix} \approx \cdots \approx \begin{bmatrix} 1 & 0 & 0 & 0 & : & \frac{-2x+2y+z}{3} \\ 0 & 1 & 0 & 1 & : & \frac{x-y+z}{3} \\ 0 & 0 & 1 & 1 & : & \frac{4x-y-2z}{3} \end{bmatrix},$$

$$c_{1} = \frac{-2x + 2y + z}{3} - t \in \mathbb{R}, \ c_{2} = \frac{x - y + z}{3} - t \in \mathbb{R},$$

$$c_{3} = \frac{4x - y - 2z}{3} - t \in \mathbb{R}, \ c_{4} = t \in \mathbb{R}.$$

Our goal is to find the minimum number of vectors for a spanning set.

Exercises

1. Let
$$u = \begin{bmatrix} 1 \\ 6 \\ 8 \end{bmatrix}$$
 and $v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $v_2 = \begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 \\ 1 \\ \mathbf{t} \end{bmatrix} \in \mathbb{R}^3$. Find the value of \mathbf{t} which makes $u \in Span\{v_1, v_2, v_3\}$.

Solution: If $\exists c_1, c_2, c_3 \in \mathbb{R}$ such that $u = c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus c_3 \odot v_3$, then $u \in Span\{v_1, v_2, v_3\}$.

$$c_1 + 3c_2 + c_3 = 1$$

 $4c_2 + c_3 = 6$
 $2c_2 + \mathbf{t}c_3 = 8$

$$\begin{bmatrix} 1 & 3 & 1 & : & 1 \\ 0 & 4 & 1 & : & 6 \\ 0 & 2 & t & : & 8 \end{bmatrix} \approx \cdots \approx \begin{bmatrix} 1 & 3 & 1 & : & 1 \\ 0 & 1 & 1/4 & : & 3/2 \\ 0 & 0 & (2t-1)/4 & : & 5/2 \end{bmatrix}.$$

If $\frac{2t-1}{4} \neq 0$, then the system is consistent. Thus $t \in \mathbb{R} - \left\{ \frac{1}{2} \right\}$.

Exercises

2. Let
$$u = \begin{bmatrix} 1 & 0 \\ 2 & t \end{bmatrix}$$
 and

$$v_1=\left[egin{array}{cc} 1 & -1 \ 0 & 3 \end{array}
ight]$$
 , $v_2=\left[egin{array}{cc} 1 & 1 \ 0 & 2 \end{array}
ight]$, $v_3=\left[egin{array}{cc} 2 & 2 \ -1 & 1 \end{array}
ight]$

be vectors in M_{22} . Find the value of **t** which makes $u \in Span\{v_1, v_2, v_3\}$. **Answer:** $t = \frac{17}{2}$.

3. Find a vector in \mathbb{R}^3 which can not be spanned by the vectors

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $v_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$.

Hint: If we could not find any scalars $c_1, c_2 \in \mathbb{R}$ such that $u = c_1 \odot v_1 \oplus c_2 \odot v_2$, then $u \notin Span\{v_1, v_2\}$. Corresponding linear system will be inconsistent.

Definition

The vectors v_1 , v_2 , ..., v_k in a vector space (V, \oplus, \odot) are said to be **linearly dependent** if there exist scalars c_1 , c_2 , ..., c_k , not all zero, such that

$$c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus \ldots \oplus c_k \odot v_k = \mathbf{0}$$

Otherwise, the vectors $v_1, v_2, ..., v_k$ are called **linearly independent**, that is, the vectors $v_1, v_2, ..., v_k$ are called linearly independent, if $c_1 = c_2 = \cdots = c_k = 0$ such that

$$c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus \ldots \oplus c_k \odot v_k = \mathbf{0}$$

If $S = \{v_1, v_2, ..., v_k\}$, then we say that the set S is linearly dependent (independent).

To determine whether a set of vectors is linearly independent (dependent), we investigate the trivial (nontrivial) solution of the corresponding homogenous linear system.

- If the system has only trivial (zero) solution, then the vectors are linearly independent.
- If the system has a nontrivial solution, then the vectors are linearly dependent.

Example

Determine whether the vectors

$$v_1=\left[egin{array}{c}1\2\1\end{array}
ight]$$
 , $v_2=\left[egin{array}{c}1\0\2\end{array}
ight]$, $v_3=\left[egin{array}{c}1\1\0\end{array}
ight]$

are linearly independent.

Solution: Let

$$c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus c_3 \odot v_3 = \mathbf{0}$$
.

Then the corresponding homogenous linear system is

$$c_1 + c_2 + c_3 = 0$$

$$2c_1 + c_3 = 0$$

$$c_1 + 2c_2 = 0$$

Since

$$\begin{bmatrix} 1 & 1 & 1 & : & 0 \\ 2 & 0 & 1 & : & 0 \\ 1 & 2 & 0 & : & 0 \end{bmatrix} \approx \cdots \approx \begin{bmatrix} 1 & 0 & 0 & : & 0 \\ 0 & 1 & 0 & : & 0 \\ 0 & 0 & 1 & : & 0 \end{bmatrix},$$

we get $c_1=c_2=c_3=0$ which indicates the linear system has only zero solution. Thus the vectors are linearly independent.

Theorem

Let $S = \{v_1, v_2, ..., v_n\}$ be a set of vectors in a vector space \mathbb{R}^n . Let A be the matrix whose columns are the elements of S. Then

S is linearly independent \Leftrightarrow det $(A) \neq 0$.

Example: From the former example, since

$$\det(A) = \left| \begin{array}{ccc} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \end{array} \right| = 3 \neq 0$$

which indicates the vectors are linearly independent.

Remarks:

- **1** Let S_1 and S_2 be finite subset of a vector space V and $S_1 \subset S_2$. Then
 - (i) S_1 is linearly dependent $\Rightarrow S_2$ is linearly dependent
 - (ii) S_2 is linearly independent $\Rightarrow S_1$ is linearly independent.
- ② If $S = \{\mathbf{0}\}$, then S is linearly dependent. (Exp: $5 \odot \mathbf{0} = \mathbf{0}$)
- **1** If $S = \{v_1, v_2, ..., \mathbf{0}, ..., v_k\}$, then S is linearly dependent.
- If $S = \{v\}$ with $\mathbf{0} \neq v$, then S is linearly independent.
- **1** If $S = \{v_1, v_2, ..., v_k\}$ is linearly independent, then the vectors $v_1, v_2, ..., v_k$ must be distinct and nonzero. Also neither vector is a multiple of the other.

Example: In \mathbb{R}^3 ,

$$S = \left\{ v_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} -3 \\ 2 \\ -1 \end{bmatrix}, v_4 = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \right\}$$

is linearly dependent. Since

$$1 \odot \mathsf{v}_1 \oplus 1 \odot \mathsf{v}_2 \oplus 0 \odot \mathsf{v}_3 \oplus (-1) \odot \mathsf{v}_4 = \mathbf{0}.$$

Also observe that $v_4 = v_1 \oplus v_2$.

Linear dependency & linear independency

Example: In \mathbb{R}^2 ,

$$S_1 = \left\{ \left[\begin{array}{c} 1 \\ 0 \end{array} \right] \right\}$$

is linearly independent. Since unique nonzero vector is always linearly independent.

$$S_2=\left\{ oldsymbol{v}_1=\left[egin{array}{c}1\0\end{array}
ight],\,oldsymbol{v}_2=\left[egin{array}{c}0\1\end{array}
ight]
ight\}$$

is linearly independent. Since $c_1\odot v_1\oplus c_2\odot v_2=\mathbf{0}\Rightarrow c_1=c_2=0$.

$$S_3=\left\{v_1=\left[egin{array}{c}1\0\end{array}
ight]$$
 , $v_2=\left[egin{array}{c}0\1\end{array}
ight]$, $v_3=\left[egin{array}{c}2\1\end{array}
ight]
ight\}$

is linearly dependent. Since $v_3 = 2 \odot v_1 \oplus 1 \odot v_2$.

Linear dependency & linear independency

Remark: Lets construct the set of linear independent vectors in a given vector space V.

- $S_1 = \{v_1\}$ where $v_1 \neq 0$
- $S_2 = \{v_1, v_2\}$ where $v_2 \notin SpanS_1$
- $S_3 = \{v_1, v_2, v_3\}$ where $v_3 \notin SpanS_2$
- $S_n = \{v_1, v_2, \dots, v_n\}$ where $v_n \notin SpanS_{n-1}$ and $SpanS_n = V$.

Our goal is to find the maximum number of linearly independent vectors.

1. For what values of t, the vectors

$$v_1 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} -3 \\ 8 \\ -6 \end{bmatrix}$, $v_3 = \begin{bmatrix} 5 \\ -7 \\ \mathbf{t} \end{bmatrix} \in \mathbb{R}^3$ are linearly dependent?

2. Are the vectors

$$v_1=\left[\begin{array}{cc}2&1\\0&1\end{array}\right]$$
 , $v_2=\left[\begin{array}{cc}1&2\\1&0\end{array}\right]$, $v_3=\left[\begin{array}{cc}0&-3\\-2&1\end{array}\right]\in M_{22}$

linearly independent?

3. Are the vectors

$$v_1 = x^3 + x + 2$$
, $v_2 = 2x^2 + x$, $v_3 = 3x^2 + 2x + 2 \in P_2$

linearly independent?

BASIS and DIMENSION

Motivation: We want to describe every vector in V. To do this, we consider the set of vectors $S = \{v_1, v_2, ..., v_k\}$ of V.

$$\mathit{SpanS} = \{c_1 \odot \mathsf{v}_1 \oplus c_2 \odot \mathsf{v}_2 \oplus \ldots \oplus c_k \odot \mathsf{v}_k \mid c_1, c_2, ..., c_k \in \mathbb{R}\}$$

If it spans (generates) all the vectors in V, then SpanS = VA spanning set can have many different spanning sets and these sets need not have the same number of vectors.

- Our goal is to find a more efficient spanning set, that is, we are looking for the minimum number of vectors for a spanning set that generate the whole vector space.
- On the other hand, we are looking for the maximum number of linearly independent vectors in V.

BASIS and DIMENSION

Definition (Basis and Dimension)

Let $v_1, v_2, ..., v_k$ be vectors in a vector space (V, \oplus, \odot) . The vectors $v_1, v_2, ..., v_k$ are said to form a **basis** for V if

- (i) $Span\{v_1, v_2, ..., v_k\} = V$
- (ii) $\{v_1, v_2, ..., v_k\}$ is linearly independent.

The number of vectors in a basis for the vector space V is called as a **dimension** of V (dim V). The dimension of the zero vector space $\{0\}$ is defined as zero.

A vector space can have many different basis but the dimension of the vector space is always the same.

Examples:

1. $B = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ is a basis (**standard basis**) for the vector space \mathbb{R}^2 and dim $\mathbb{R}^2 = 2$.

$$B_1 = \left\{ \left[egin{array}{c} 1 \\ 1 \end{array} \right], \left[egin{array}{c} 2 \\ 1 \end{array} \right] \right\}$$
 is a basis for the vector space \mathbb{R}^2 .

2. $B = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ is the standard basis for the vector space \mathbb{R}^3 and dim $\mathbb{R}^3 = 3$.

Generally, the standard basis for the vector space \mathbb{R}^n is defined by $B = \{e_1, e_2, ..., e_n\}$, where e_j is an $n \times 1$ matrix whose j-th row is 1 and 0 elsewhere. Also dim $\mathbb{R}^n = n$.

3.

$$B = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right] \right\}$$

is the standard basis for M_{22} and dim $M_{22} = 4$.

In general,

$$\dim M_{mn} = m \times n$$
.

4.
$$W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a+d=0 \right\} < M_{22}.$$

$$B = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\} \text{ is a basis for } W.$$

(i) Since any vector $\begin{bmatrix} a & b \\ c & -a \end{bmatrix}$ in W can be written as

$$\left[\begin{array}{cc} a & b \\ c & -a \end{array}\right] = b\odot \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right] \oplus c\odot \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right] \oplus a\odot \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]$$

then SpanB = W.

(ii)

$$c_1\odot\left[egin{array}{cc} 0 & 1 \ 0 & 0 \end{array}
ight]\oplus c_2\odot\left[egin{array}{cc} 0 & 0 \ 1 & 0 \end{array}
ight]\oplus c_3\odot\left[egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight]=\left[egin{array}{cc} 0 & 0 \ 0 & 0 \end{array}
ight]$$

$$\Rightarrow \begin{vmatrix} c_3 & c_1 \\ c_2 & -c_3 \end{vmatrix} = \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix} \Rightarrow c_1 = c_2 = c_3 = 0 \Rightarrow B$$
 is linearly ind.

Thus B is a basis for W and dim W = 3.

Theorem

If $B = \{v_1, v_2, ..., v_n\}$ is a basis for a vector space V, then every vector in V can be written uniquely as a linear combination of the vectors in B.

Example: $B_1 = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$ is a basis for the vector space \mathbb{R}^2 .

Every vector $v = \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$ can be written uniquely as

$$\left[\begin{array}{c} x \\ y \end{array}\right] = (2y - x) \odot \left[\begin{array}{c} 1 \\ 1 \end{array}\right] \oplus (x - y) \odot \left[\begin{array}{c} 2 \\ 1 \end{array}\right].$$

Theorem

Let $V = \mathbb{R}^m$, $S = \{v_1, v_2, ..., v_n\}$, $(n \ge m)$ be a set of nonzero vectors in V and SpanS = W. Then some subset of S is a basis for W. The procedure for finding this basis is in the following:

- **1** Form equation $c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus \ldots \oplus c_n \odot v_n = \mathbf{0}$
- 2 Construct the augmented matrix associated with the corresponding homogenous linear system and transform it to the reduced row echelon form.
- **1** The vectors corresponding to the columns containing the **leading 1**'s form a basis for W.

Example: $V = \mathbb{R}^3$,

$$S = \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ -3 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 7 \\ 1 \end{bmatrix}, \begin{bmatrix} 5 \\ -2 \\ 0 \end{bmatrix} \right\}.$$

It is easy to show that SpanS = V. Lets find a subset of S that is a basis for \mathbb{R}^3 .

$$c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus c_3 \odot v_3 \oplus c_4 \odot v_4 \oplus c_5 \odot v_5 = \mathbf{0}$$

$$\Rightarrow \left[\begin{array}{ccccc} 1 & 2 & 3 & -1 & 5 \\ 2 & 1 & -3 & 7 & -2 \\ 1 & -1 & 1 & 1 & 0 \end{array}\right] \approx \cdots \approx \left[\begin{array}{ccccc} \boldsymbol{1} & 0 & 0 & 2 & 0 \\ 0 & \boldsymbol{1} & 0 & 0 & 1 \\ 0 & 0 & \boldsymbol{1} & -1 & 1 \end{array}\right].$$

Then, the **leading 1**'s appears in columns 1,2,3, so $\{v_1, v_2, v_3\}$ is a basis for \mathbb{R}^3 .

$$v_4=2\odot v_1\oplus -1\odot v_3$$
, $v_5=v_2\oplus v_3$.

Let $S = \{v_1, v_2, ..., v_n\}$ and $W = \{w_1, w_2, ..., w_r\}$ be sets of vectors in V.

Theorem

- **1** If S is a basis and W is linearly independent $\Rightarrow r \leq n$.
- ② If S is a basis and $SpanW = V \Rightarrow r \geq n$.
- **3** Let dim V = n. If S is linearly independent $\Rightarrow S$ is a basis for V.
- Let dim V = n. If $SpanS = V \Rightarrow S$ is a basis for V.

Example: $V = \mathbb{R}^3$,

$$S = \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ -3 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 7 \\ 1 \end{bmatrix}, \begin{bmatrix} 5 \\ -2 \\ 0 \end{bmatrix} \right\}.$$

SpanS = V. Since dim $\mathbb{R}^3 = 3$, S can not be a basis for \mathbb{R}^3 .

1. Find a basis for the subspace $U = \left\{ \left[egin{array}{c} U \\ 2a \\ a \\ b \end{array} \right] \mid a,b \in \mathbb{R} \right\}$ of \mathbb{R}^4 .

$$U = \left\{ a \odot \left[egin{array}{c} 0 \ 2 \ 1 \ 0 \end{array}
ight] \oplus b \odot \left[egin{array}{c} 0 \ 0 \ 0 \ 1 \end{array}
ight] \mid a,b \in \mathbb{R}
ight\}$$

which implies $Span\{v_1, v_2\} = U$. Also these vectors are linearly independent.

Thus $\{v_1, v_2\}$ is a basis for U and dim U = 2.

2. Find a basis for the subspace $U = \left\{ \begin{array}{c|c} a+c \\ a-b \\ b+c \\ b-a \end{array} \middle| a,b,c \in \mathbb{R} \right\}$ of \mathbb{R}^4 .

$$U = \left\{ a \odot egin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix} \oplus b \odot egin{bmatrix} 0 \\ -1 \\ 1 \\ 1 \end{bmatrix} \oplus c \odot egin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \mid a,b,c \in \mathbb{R}
ight\}$$

then $Span\{v_1, v_2, v_3\} = U$.

But $\{v_1, v_2, v_3\}$ is linearly dependent, since

$$c_1 \odot v_1 \oplus c_2 \odot v_2 \oplus c_3 \odot v_3 = \mathbf{0}$$

$$\Rightarrow \left[\begin{array}{ccc} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \\ -1 & 1 & 0 \end{array} \right] \approx \cdots \approx \left[\begin{array}{ccc} \mathbf{1} & 0 & 1 \\ 0 & \mathbf{1} & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right].$$

If we remove the linearly dependent vector

$$v_3 = v_1 \oplus v_2$$

from our set, then $\{v_1, v_2\}$ is a basis for U and dim U = 2.