Measurement Phase (1) For level $i \in \{US, state, county, tract, block group, block\}$ (a) Determine the privacy-loss budget for the level i; (b) Take differentially private noisy measurements \mathbf{M}_{γ} for all nodes in level i. Estimation Phase (1) For the US root node γ_0 estimate the contingency table vector \mathbf{x}_{γ_0} by (a) Estimating a non-negative solution $\tilde{\mathbf{x}}_{\gamma_0}$ from the set of differentially private noisy measurements \mathbf{M}_{γ_0} , invariants, and edit constraints at the US level; (b) Estimating a non-negative integer solution $\hat{\mathbf{x}}_{\gamma_0}$ from $\tilde{\mathbf{x}}_{\gamma_0}$ by controlled rounding. (2) For level $i \in \{\text{state, county, tract, block group, block}\}$, let P_i represent the set of distinct parents among all nodes at level i. For each parent node $\gamma \in P_i$, estimate the joint contingency table vector $\mathbf{x}_{\text{children}(\gamma)}$ by (a) Estimating a non-negative solution $\tilde{\mathbf{x}}_{\text{children}(\gamma)}$ from the set of differentially private noisy measurements $\mathbf{M}_{\text{children}(\gamma)}$, invariants, edit constraints, and aggregate constraints enforcing that the children sum to $\hat{\mathbf{x}}_{\gamma}$; (b) Estimating a non-negative integer solution $\hat{\mathbf{x}}_{\text{children}(\gamma)}$ from $\tilde{\mathbf{x}}_{\text{children}(\gamma)}$ by controlled rounding.