Cálculo diferencial e Integral I Semestre 2023-1 Grupo 4031

Problemas de: funciones Torres Brito David Israel

September 12, 2022

1. Encuentre el dominio de las siguientes funciones:

i)
$$f(x) = \sqrt{1 - x^2}$$

$$0 \le 1 - x^2$$
$$x^2 \le 1$$
$$\sqrt{x^2} = |x| \le 1 = \sqrt{1}$$

Tenemos dos casos:

- a) Si $x \ge 0$, entonces $|x| = x \le 1$. Por lo que dom(f) = [0, 1].
- **b)** Si x < 0, entonces $|x| = -x \le 1$, osea, $-1 \le x$. Por lo que dom(f) = [-1, 0].

Por tanto, $dom(f) = [0, 1] \cup [-1, 0]$.

ii)
$$f(x) = \sqrt[3]{1+x}$$

 $dom(f) = \mathbb{R}.$

iii)
$$f(x) = \sqrt{|1 - x^2|}$$

como $|x| \ge 0, \forall x \in \mathbb{R}$, tenemos que $dom(f) = \mathbb{R}$.

iv)
$$f(x) = \frac{1}{1-x} + \frac{1}{x-2}$$

Tenemos que $1 - x \neq 0$ y $x - 2 \neq 0$. Entonces, $x \neq 1$ y $x \neq 2$. Por lo que $dom(f) = \mathbb{R} \setminus \{1, 2\}$.

v)
$$f(x) = \sqrt{1 - \sqrt{x^2 - 1}}$$

Tenemos que $x^2 - 1 \ge 0$ (a) y $\sqrt{x^2 - 1} \ge 1$ (b).

1)

$$0 \le x^2 - 1$$
$$1 \le x^2$$
$$\sqrt{1} = 1 \le |x| = \sqrt{x^2}$$

Tenemos dos casos:

- a) Si $x \ge 0$, entonces $|x| = x \le 1$.
- **b)** Si x < 0, entonces $|x| = -x \le 1$, osea, $-1 \le x$.

$$1 \le \sqrt{x^2 - 1}$$
$$1^2 = 1 \le |x^2 - 1| = \left(\sqrt{x^2 - 1}\right)^2$$

Tenemos dos casos:

- a) Si $x^2 1 \ge 0$, obtenemos los casos de (1).
- **b)** Si $x^2 1 < 0$, entonces $|x^2 1| = -x^2 + 1 \ge 1$, osea, $0 \ge x^2$, lo que es solo es válido cuando x = 0.

Por tanto, dom(f) = [-1, 1].

vi)
$$f(x) = \frac{x^2 - 1}{x + 1}$$

Tenemos que $x + 1 \neq 0$, por lo que $x \neq -1$. Entonces $dom(f) = \mathbb{R} \setminus \{-1\}$.

- 2. Si f(x) = 1/(1+x), calcule las siguientes expresiones:
 - i) f(f(x)).

$$f(f(x)) = f\left(\frac{1}{1+x}\right)$$

$$= \frac{1}{1+\frac{1}{1+x}}$$

$$= \frac{1}{\frac{1+x}{1+x} + \frac{1}{1+x}}$$

$$= \frac{1}{\frac{1+x+1}{1+x}}$$

$$= \frac{1}{\frac{2+x}{1+x}}$$

$$= \frac{1+x}{2+x}$$

ii) f(1/x)

$$f\left(\frac{1}{x}\right) = \frac{1}{1 + \frac{1}{x}}$$

$$= \frac{1}{\frac{x}{x} + \frac{1}{x}}$$

$$= \frac{1}{\frac{1+x}{x}}$$

$$= \frac{x}{1+x}$$

iii) 1/f(x).

$$\frac{1}{f(x)} = \frac{1}{\frac{1}{1+x}}$$
$$= \frac{1+x}{1}$$
$$= 1+x$$

iv)
$$f(cx)$$
.

$$\frac{1}{1+cx}$$

$$\mathbf{v)} \ f(x+y)$$

$$\frac{1}{1+x+y}$$

vi)
$$f(x) + f(y)$$

$$\frac{1}{1+x} + \frac{1}{1+y} = \frac{(1+y) + (1+x)}{(1+x)(1+y)}$$
$$= \frac{2+x+y}{1+x+y+xy}$$

- 3. Sean f, g y h tres funciones. Demuestre o de un contraejemplo para determinar si las siguientes afirmaciones son verdaderas o falsas.
 - i) $f \circ (g+h) = f \circ g + f \circ h$. La afirmación es falsa.

Contraejemplo: sean $f(x) = \sqrt{x}$, g(x) = x, $h(x) = \frac{1}{x}$. Tenemos que

$$f \circ (g+h) = f(g+h)$$

$$= f\left(x + \frac{1}{x}\right)$$

$$= f\left(\frac{2x+1}{x}\right)$$

$$= \sqrt{\frac{2x+1}{x}}$$

$$= \sqrt{\frac{2x+1}{x}}$$

$$f \circ g + f \circ h = f(g(x)) + f(h(x))$$

$$= f(x) + f\left(\frac{1}{x}\right)$$

$$= \sqrt{x} + \sqrt{\frac{1}{x}}$$

Evaluando x=1 en ambas funciones tenemos que $f\circ (g+h)=\sqrt{3}\neq 2=f\circ g+f\circ h.$

ii) $(g+h) \circ f = g \circ f + h \circ f$. La afirmación es verdadera, como consecuencia inmediata de la definición de composición de funciones.

Por definición, $(g+h) \circ f$ implica evaluar elementos de la imágen de f en la suma de g+h, lo que a su vez implica evaluar g y h en elementos de la imágen de f simultáneamente y luego sumar g(f(x)) y h(f(x)), es decir $g \circ f + h \circ f$.

iii) $\frac{1}{f \circ g} = \frac{1}{f} \circ g$. La afirmación es verdadera, como consecuencia inmediata de la definición de composición de funciones.

Por definición, $\frac{1}{f} \circ g$ implica evaluar elementos de la imágen de g en f, conservando la forma $\frac{1}{f}$, es decir, $\frac{1}{f \circ g}$.

iv) $\frac{1}{f \circ g} = f \circ \left(\frac{1}{g}\right)$. La afirmación es falsa.

Contraejemplo: sean f(x) = -x y $g(x) = \sqrt{x}$. Tenemos que

$$\frac{1}{f \circ g} = \frac{1}{f(g(x))}$$

$$= \frac{1}{f(-x)}$$

$$= \frac{1}{\sqrt{-x}}$$

$$f \circ \frac{1}{g} = f\left(\frac{1}{g}\right)$$

$$= f\left(\frac{1}{\sqrt{x}}\right)$$

$$= -\frac{1}{\sqrt{x}}$$

Evaluando x=-1 en ambas funciones tenemos que $\frac{1}{f \circ g}=1 \neq -1=f \circ \frac{1}{g}.$

7. Pruebe que si f es una función tal que para toda función g se satisface que $(f \circ g)(x) = (g \circ f)(x)$ para toda $x \in \mathbb{R}$, entonces f(x) = x para toda $x \in \mathbb{R}$.

Demostración: Por hipótesis,

$$(f \circ g)(x) = (g \circ f)(x)$$
$$f(g(x)) = g(f(x))$$

para toda función g, por lo que —en particular, debe ser cierto para una función constante g(x) = c, es decir, f(g(x)) = f(c). De la hipótesis sigue que f(c) = g(f(x)), y como g es constante, tenemos que g(f(x)) = c, por lo que f(c) = c. Como g(x) puede ser cualquier constante, en particular c = x, para cualquier $x \in \mathbb{R}$. Por tanto, $f(x) = x, \forall x \in \mathbb{R}$.