18.701 October 24, 2014

Review for Quiz 2

Some things that you should be familiar with for the quiz, given abstractly. As with the quiz 1 review, it will be best to work with specific examples when studying this.

LINEAR ALGEBRA

- **Definitions:** vector space, linear independence, Span, basis, linear transformation, linear operator, eigenvector, eigenvalue, characteristic polynomial.
- Given a set of vectors $\mathbf{v} = (v_1, ..., v_n)$ in V, the linear transformation

$$F^n \xrightarrow{\mathbf{v}} V$$

that sends a column vector $X \in F^n$ to the vector $\mathbf{v}X = v_1x_1 + \cdots + v_nx_n$ is injective $\Leftrightarrow \mathbf{v}$ is independent, surjective $\Leftrightarrow \mathbf{v}$ spans V, and bijective $\Leftrightarrow \mathbf{v}$ is a basis.

• If **v** is a basis, then for every vector v there is a unique column vector X such that $v = \mathbf{v}X$. That column vector is the *coordinate vector* of v, with respect to the basis.

Changing Basis: If v and v' are two bases of V, the basechange matrix P is the $n \times n$ matrix such that

$$\mathbf{v} = \mathbf{v}' P$$

or $(v_1, ..., v_n) = (v'_1, ..., v'_n)P$. It can be any invertible matrix. Then if X and X' are the coordinate vectors of a vector v with respect to the two bases,

$$X' = PX$$

When $V = F^n$ and \mathbf{v}' is the standard basis $\mathbf{e} = (e_1, ..., e_n)$, the basechange matrix is the matrix $[\mathbf{v}]$ whose columns are the vectors v_i .

Dimension Formula: If $V \xrightarrow{T} W$ is a linear transformation, then

$$\dim V = \dim(\ker T) + \dim(\operatorname{im} T)$$

Matrix of a linear operator: Let \mathbf{v} be a basis of V. The matrix of T is the matrix A such that $T(\mathbf{v}) = \mathbf{v}A$. If the elements v_i are eigenvectors, the matrix A will be diagonal.

- When the basis is changed to \mathbf{v}' with basechange matrix P, the new matrix of T will be $A' = P^{-1}AP$
- The eigenvalues of T are the roots of the characteristic polynomial $p(t) = \det(tI A)$. Eigenvectors $v_1, ..., v_k$ with distinct eigenvalues $\lambda_1, ..., \lambda_k$ are independent.

ORTHOGONALITY

Dot Product $(v \cdot w) = v^t w$ on \mathbb{R}^n . Its main properties are $|v|^2 = (v \cdot v)$, and $v \perp w$ if and only if $(v \cdot w) = 0$.

Orthonormal Basis: a basis **v** with the properties $(v_i \cdot v_i) = 1$ and $(v_i \cdot v_j) = 0$ if $i \neq j$.

Orthogonal Matrix: An $n \times n$ real matrix is *orthogonal* if $A^t A = I$. This is true if and only if the columns of A form an orthonormal basis.

Orthogonal Group: The group O_n whose elements are orthogonal $n \times n$ matrices. An orthogonal matrix has determinant ± 1 . The orthogonal matrices with determinant 1 form the *special orthogonal group* SO_n , which has index 2 in O_n .

• The elements of the special rothogonal group SO_2 are the rotation matrices $\rho_{\theta} = \begin{pmatrix} c & -s \\ s & c \end{pmatrix}$ with $c = \cos \theta$ and $s = \sin \theta$. The orthogonal 2×2 matrices with determinant -1, those not in SO_2 , represent reflections of \mathbb{R}^2 . They can be written as $\rho_{\theta}r$ where r is reflection about the horizontal axis: $r = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. The line of reflection of $\rho_{\theta}r$ makes an angle $\frac{1}{2}\theta$ with the horizontal axis.

Euler's Theorem: The elements of SO_3 are the matrices that define rotations of \mathbb{R}^3 .

ISOMETRIES

An isometry f of \mathbb{R}^n is a map from \mathbb{R}^n to itself that preserves distance: |f(x) - f(y)| = |x - y|. Translation t_v by a vector v is an isometry: $t_v(x) = x + v$. An orthogonal operator φ is an isometry.

Theorem: If an isometry fixes the origin, it is an orthogonal operator.

Corollary: Every isometry f is a composition $t_v\varphi$ of a translation and an orthogonal operator. Every isometry of \mathbb{R}^2 can be written, either as $f = t_a \rho_\theta$, or as $f = t_a \rho_\theta r$.

• You should know how to work out the rules for multiplying, but you needn't memorize them. For example,

$$\rho_{\theta}t_a = t_{\rho_{\theta}}(a)$$
 because for any x , $\rho_{\theta}t_a(x) = \rho_{\theta}(x+a) = \rho_{\theta}(x) + \rho_{\theta}(a) = t_{\rho_{\theta}(x)}\rho_{\theta}(x)$

- An isometry of the plane is one of the following: a translation, a rotation about some point in the plane, or a reflection or glide reflection about some line in the plane.
- An isometry $f = t_a \rho_\theta$ with $\theta \neq 0$ is a rotation about a fixed point p that can found by solving the equation $t_a \rho_\theta(x) = x$. The rotation about p can also be written as $t_p \rho_\theta t_{-p}$.

Theorem: Let G be a finite subgroup of the group M of isometries of the plane. There is a point fixed by all elements of G, namely the centroid of any orbit.

Theorem: The finite subgroups of M are the cyclic groups C_n and the dihedral groups D_n . With the fixed point at the origin, C_n is the group of order n generated by the rotation ρ_{θ} with $\theta = 2\pi/n$, and D_n is the group of order 2n generated by that rotation and a reflection such as r.

• Let $x = \rho_{\theta}$ and y = r. The rules for computing in D_n are $x^n = 1$, $y^2 = 1$, and $yx = x^{-1}y$.

Discrete Group: A subgroup G of the group M of isometries of the plane is *discrete* if there is a positive real number ϵ such that, if a translation t_a is in G and $a \neq 0$, then $|a| > \epsilon$, and if $\rho_{p,\theta}$ is a rotation in G about a point p with angle θ and $\theta \neq 0$, then $|\theta| > \epsilon$.

Translation Group: L is the set of vectors v such that t_v is in G. It is a discrete subgroup of the additive group of vectors: Every nonzero vector in L has length $> \epsilon$. Therefore it is one of these three: $\{0\}$, the set $\mathbb{Z}a$ of integer multiples of a nonzero vector a, or the set $\mathbb{Z}a + \mathbb{Z}b$ of integer combinations of two independent vectors a, b. In the last case, L is a *lattice*.

Point Group: The map $M \to O_2$ that sends an isometry $t_v \varphi$ to the orthogonal operator φ is a homomorphism. The point group \overline{G} is the image of G in the orthogonal group. It is a finite subgroup of O_2 , and is therefore cyclic or dihedral.

the Operation of \overline{G} on L: The elements of \overline{G} carry L to itself. If $\overline{\varphi} \in \overline{G}$ and $v \in L$, then $\overline{\varphi}(v) \in L$.

Crystallographic Restriction If G is a discrete subgroup of M whose translation group L is a lattice, its point group \overline{G} can be C_n or D_n , with n = 1, 2, 3, 4 or 6.

GROUP OPERATIONS

An operation of a group G on a set S is a map $G \times S \to S$, usually written multiplicatively, as $g, s \to gs$ such that 1s = s and g(hs) = (gh)s for all g, h in G and all s in S.

- Orbit of an element s: the set of all elements $s' \in S$ such that s' = gs for some g in G. The orbits partition the set S.
- Stabilizer of an element s: the set of all elements $g \in G$ such that gs = s. The stabilizer is a subgroup of G.
- Let s be an element of S, and let s' = gs be an element in its orbit. If an element g of G stabilizes s, gs = s, then the conjugate gxg^{-1} stabilizes s'.
- Counting: For any $s \in S$, $|G| = |\operatorname{Orbit} s||\operatorname{Stab}(s)|$. Therefore $|\operatorname{Orbit}(s)|$ and $|\operatorname{Stab}(s)|$ divide |G|.
- Let $O_1, ..., O_k$ be the orbits making up S. Then $|S| = |O_1| + \cdots + |O_k|$. Each term on the right side of this equation divides |G|.