1 More on Polynomial Rings

We now continue our discussion on polynomial rings.

1.1 Zeros

Theorem 1.1

A polynomial of degree n with coefficients in a field F has at most n zeros, counted with multiplicity.

Proof. We use induction on n, the degree of the polynomial.

- Base Case: Suppose n = 0. This means that the polynomial has degree zero, which clearly doesn't have any zeros.
- Inductive Step: Suppose this theorem is true for all polynomials of degree less than or equal to n-1. Then, let f(x) be a polynomial of degree n.
 - 1. Case 1: Suppose f(x) has no roots^a. Then, we have 0 roots which is clearly less than n roots, so we are done by $0 \le n$.
 - 2. Case 2: Suppose a is a root of f(x) of multiplicity $k \ge 1$. By definition, $f(x) = (x-a)^k g(x)$, where $g(a) \ne 0$ by k being maximal (or else we could add one more to k). If $b \ne a$ is a root of f(x), then $0 = f(b) = (b-a)^k g(b)$, where b-a is non-zero. Since F is a field, it is an integral domain so

$$b - a \neq 0 \implies (b - a)^k \neq 0$$

and

$$0 = (b-a)^k g(b) \implies g(b) = 0$$

In other words, every other root must come from g(x). Note that $\deg g(x) = n - k \le n - 1$. So, by the inductive hypothesis, g(x) has at most n - k roots with multiplicity, so f(x) has less than or equal to k + n - k = n roots (where k is the number of a roots with multiplicity; and n - k, which are the roots of g with multiplicity).

This completes the proof.

^aFor example, consider $x^2 + 1 \in \mathbb{R}[x]$. This doesn't have any real roots.

1.1.1 Example: Integers Modulo 6

Consider $x^2 - x \in \mathbb{Z}/6\mathbb{Z}$. This is *not* a field because it is not an integral domain. This polynomial has roots 0, 1, 3, and 4.

Note that this particular polynomial has 4 zeros. The theorem we discussed above states that if the polynomial has coefficients in a *field*, then we should not expect this to happen.

1.2 Principal Ideal Domain

Definition 1.1: Principal Ideal Domain

A **principal ideal domain** (PID) is an integral domain R in which every ideal has the form $\langle a \rangle$ for some $a \in R$.

1.2.1 Example: The Integers

 \mathbb{Z} is a PID with

$$n\mathbb{Z} = \langle n \rangle$$

1.3 PIDs and Polynomial Rings

Theorem 1.2

Let F be a field. Then, F[x] is a PID.

Proof. We know F[x] is an integral domain. Let $I \subseteq F[x]$ be an ideal.

- 1. Case 1: Consider $I = \{0\}$. This is a principal ideal since $I = \{0\} = \langle 0 \rangle$.
- 2. Case 2: Suppose $I \neq \{0\}$. Choose some $g(x) \in I \subseteq \{0\}$ of minimal degree. Clearly, $\langle g(x) \rangle = \{g(x) \cdot f(x) \mid f(x) \in F[x]\} \subseteq I$ by property of an ideal. Now, take any element $f(x) \in I$. Write f(x) = g(x)q(x) + r(x) where $\deg r(x) < \deg g(x)$ by the division theorem. This implies that r(x) = f(x) g(x)q(x). Now, $f(x) \in I$ and $g(x) \in I$, and since ideals are closed it follows that $g(x)q(x) \in I$. Additionally, since ideals are closed under addition, $f(x) g(x)q(x) \in I$ and thus $r(x) \in I$. Note that $r(x) \in I$ with $\deg r(x) < \deg g(x)$, so by $g(x) \in I \setminus \{0\}$ of minimal degree, $r(x) \notin I \setminus \{0\}$. This implies that r(x) = 0 so $f(x) = g(x)q(x) \in \langle g(x) \rangle$ and thus $I \subseteq \langle g(x) \rangle$.

This concludes the proof.

Corollary 1.1

Let F be a field and $I \subseteq F[x]$ a non-zero ideal. Then, $I = \langle g(x) \rangle$ if and only if $g(x) \in I \setminus \{0\}$ of minimal degree.

1.3.1 Example: Homomorphism

Consider the homomorphism

$$\varphi: \mathbb{R}[x] \to \mathbb{C}$$

defined by the evaluation map

$$f(x) \mapsto f(i)$$

By the first isomorphism theorem,

$$\mathbb{R}[x]/\ker\varphi\cong\varphi(\mathbb{R}[x])$$

Note that

$$\varphi(\mathbb{R}[x])=\mathbb{C}$$

because

$$\varphi(a+bx) = a+bi \in \mathbb{C} \text{ for all } a+bi \in \mathbb{C}$$

Additionally, note that

$$x^2+1\in\ker\varphi$$

because

$$\varphi(x^2+1) = i^2+1 = -1+1 = 0$$

And so $\ker \varphi = \langle x^2 + 1 \rangle$. This is specifically due to us trying every lower degree (from the proof above); that is:

- $0 \neq a \implies \varphi(2) = 2 \neq 0$, so degree 0 is not possible.
- a + bx, $b \neq 0 \implies \varphi(a + bx) = a + bi \neq 0$, so degree 1 is not possible.
- But, we have a quadratic polynomial that works.