

Willkommen im

Vorstellung

Wir, der Oberlab e.V. sind ein eingetragener, gemeinnütziger Verein und eine frei zugängliche Forschungswerkstatt, die Hightech-Geräte für Bastler, Technik-Interessierte und Unternehmen bereitstellt. Wir sind ein Maker Space, der Jung und Alt für Wissenschaft, Technologie und Digital Fabrication begeistern will. Hier ist Platz für Design, Prototyping und Experimente.

Kurz: Das OberLab ist ein offener Technik-Spielplatz für kleine und große Tüftler!

Unsere Ausstattung

- Lasercutter und Schneidplotter
- 3D-Drucker
- Fachbereiche Software, Textil,
- Holz- und Elektrotechnik
- Software- und Coding-Tools
- Experimentier-Labor
- Mehr Infos unter www.oberlab.de

Hygiene-Regeln

- Abstand halten, direkten Kontakt vermeiden.
- Niesen oder Husten in die Armbeuge.
- Vor und nach dem Toilettengang die Hände waschen und desinfizieren. Mund und Nasenschutz verwenden.
- Die Hygiene-Regeln auch in den Pausen befolgen.
- Hygiene Mittel stehen kostenlos zur Nutzung bereit.

Im Oberlab steht ein FabCore 40W CO₂-Laser der Klasse I zur Verfügung. Der Lasercutter hat einen Arbeitsbereich von 600x300x50mm und kann die Dateiformate SVG, DXF, Ai, PDF, BMP, PNG und JPEG verarbeiten.

LASERKLASSEN NACH EN 60825-1

Klasse	Beschreibung
1	zugängliche Laserstrahlung ungefährlich
1M	zugängliche Laserstrahlung ungefährlich, ohne optische Instrumente (Lupen, Ferngläser)
2	zugängliche Laserstrahlung im sichtbaren Spektralbereich (400 nm bis 700 nm), bei kurzzeitiger Bestrahlungsdauer für das Auge ungefährlich
2M	wie Klasse 2, ohne optische Instrumente (Lupen, Ferngläser)
3R	Laserstrahlung gefährlich für das Auge
3B	Laserstrahlung gefährlich für das Auge, in besonderen Fällen auch für die Haut
4	Laserstrahlung sehr gefährlich für das Auge und gefährlich für die Haut, Brand- und Explosionsgefahr

Mit dem Lasercutter können wir Material schneiden, beschriften und gravieren.

Beispiele:

Der CO₂-Laser ist ein Gaslaser, der auf einem Kohlenstoffdioxid-Gasgemisch basiert.

LASER steht für 'Light Amplification by Stimulated Emission of Radiation'.

Laserstrahlen sind elektromagnetische Wellen in einem sehr engem Frequenzbereich mit scharfer Strahlbündelung.

Gestreutes Licht

Laser Licht

Ein CO₂-Laser funktioniert im Prinzip wie eine Gasentladungslampe. Baut sich eine elektrische Spannung auf, wird das Gas zum Leuchten gebracht.

Innerhalb der Laserkammer wird ein Gasgemisch aus Kohlenstoffdioxid und Stickstoff zum Reagieren durch Schwingen angeregt. Kollidieren beide Gase, entstehen Photonen (Träger des Lichts) die zu einem Infrarot-Lichtstrahl mit 10,6 μ m gebündelt werden. Das Kohlenstoffdioxid wird anschließend durch Helium wieder in den Ausgangszustand

gebracht.

CO2 Laser

Laserstrahl

Laserkammer

Geregelte
Gleichspannung

Laseroptik

Die Fokussieroptik besteht im Wesentlichen aus einer optischen Sammellinse und einer Schneiddüse. Der parallele Laserstrahl wird somit nur wenige Millimeter unterhalb der Schneiddüse, an der Oberkante des Bearbeitungsmaterials fokussiert. Dieser extrem scharf gebündelte Energiestrahl mit sehr hoher Energiedichte muss nun im konstanten Abstand und mit gleichförmiger Vorschubgeschwindigkeit die Schneid- oder Gravierkonturen gesteuert abfahren. Die Bearbeitung mit Laserlicht erfolgt vollkommen berührungslos. Krafteinwirkungen durch Vorschubkräfte von Werkzeugen finden nicht statt. Eine Fixierung der Werkstücke entfällt, es gibt keinen Werkzeugverschleiß im herkömmlichen Sinne.

Der G-Code

Ist die Zeichnung in LightBurn importiert, generiert die Software die Zeichnung in eine maschinenverständliche Sprache. Dabei wird z.B. die Ansteuerung der Schrittmotore oder Laser ein/aus in einen Steuercode umgewandelt. Diesen Steuercode nennt man G-Code. Der Name "-Code" rührt von der Tatsache her, dass die meisten Befehle mit einem G beginnen. Der G-Code ist eine Standardsprache, die auch bei 3D-Druckern oder CNC-Maschinen verwendet wird. Sehen wir uns die Maschinenbefehle an, die für das Lasern eines "A" benötigt werden.

Beispiel der Steuerpunkte beim Buchstaben A

Der G-Code

;HEADER	Optionale Kommandozeile für den Programm-Kopf
G21	Setzt die Einheit auf mm fest
G1 100	Setzt die Geschwindigkeit auf 100mm/sek
G90	Setzt die Koordinaten auf absolut
G92 X0 Y0	Setzt die aktuelle Position des Lasers fest
;MAIN	Kommentar-Zeile Hauptprogramm
G0 X10 Y10	Positioniert den Laser auf x=10 und y=10 – Punkt 1
M3 S500	Schaltet den Laser mit 50% Leistung ein (1000 = 100%)
G1 X30 Y60	Fährt zum Punt 2
G1 X40	Fährt zum Punt 3
G1 X60 Y10	Fährt zum Punt 4
G1 X50	Fährt zum Punt 5
G1 X45 Y25	Fährt zum Punt 6
G1 X25	Fährt zum Punt 7
G1 X20 Y10	Fährt zum Punt 8
G1 X10 Y10	Fährt zum Punt 1
M3 S0	Schaltet den Laser auf 0% Leistung
G0 X30 Y35	Fährt zum Punt 9
M3 S500	Schaltet den Laser mit 50% Leistung ein (1000 = 100%)
G1 X35 Y50	Fährt zum Punt 10
G1 X40 Y35	Fährt zum Punt 11
G0 X30 Y35	Fährt zum Punt 9
M3 S0	Schaltet den Laser auf 0% Leistung
;FOOTER	Kommentarzeile für Schlussteil
M5	Schaltet den Laser ab
G1 X0 Y0	Fährt in die Ausgangsposition

Beispiel der Steuerpunkte beim Buchstaben A

X-Y Antrieb

Das Drehen beider Motoren in die gleiche Richtung führt zu horizontaler Bewegung. Das Drehen beider Motoren in entgegengesetzte Richtungen führt zu vertikaler Bewegung.

Bild: X-Y Antrieb

Quelle: www.mikrocontroller.net

CO₂-Laser werden zum Bearbeiten von nicht-metallischen Materialien verwendet.

- √ Holz
- ✓ Acryl
- ✓ Glas
- ✓ Papier
- ✓ Textilien und Leder
- √ Kunststoffe
- √ Folien
- √ Stein

Verbotene Materialien

- × nicht eindeutig identifizierbare Materialen/Kunststoffe
- × Verleimte Materialien
- × spritzendes oder stark wässriges Material (Schokolade, ...)
- × ABS, Epoxidharz (GFK, CFK, Platinen), weil es übelst stinkt
- × PS Polystyrol / PC Polycarbonat dicker als 1 mm, weil es beim Lasern spritzt
- × PA Polyamid / PU Polyurethan / Textilien mit Nylon- oder Elastan-Anteil / NBR-Gummi Nitrilkautschuk / alle Stoffe, die gleichzeitig H-, C- und N-Atome enthalten: entwickelt Blausäure (HCN)
- × halogenhaltige Kunststoffe: PVC = Vinyl = Neopren, PTFE = Teflon (z.B. als "glitschige" Beschichtung von Taschenmessern), PFA,
- × Akkus, Feuerzeuge, Gaskartuschen oder ähnliches

Fertigungsablauf

Zeichnung erstellen

Zeichnung in LightBurn laden

Ebenen festlegen

Fertigungsablauf

Schnittoptimierung festlegen

Einstellungen mit der Vorschau prüfen

Lasern

Was ist zu beachten?

- Sicherheitshinweise beachten!
- Materialeigenschaften beachten, Giftstoffe ausschließen (Formaldehyd)!
- Wenn die Strukturformel "Cl", "Fl" oder "Br" enthält, also giftige Stoffe wie Chlor oder Brom, dann Finger weg!
- Brandgefahr vermeiden, Wärmeverformung vermeiden (Leder)!
- Materialtest durchführen.
- Schnittparameter festlegen.
- Zeichnung in LightBurn positionieren und Testlauf starten.

Vielen Dank für deine Aufmerksamkeit!