Příklad

At $N \in Mod-R$, $\{M_i, i \in I\} \subset Mod-R$, $I \neq \emptyset$. Dokažte, že (jako levé $End_R(N)$ -moduly) $Hom_R(\bigoplus_{i \in I} M_i, N) \simeq \prod_{i \in I} Hom(M_i, N)$.

 $D\mathring{u}kaz$

Pravá strana jsou R-homomorfismy do N z $\bigoplus_{i \in I} M_i$, tedy ze souborů $\mathbf{m} = \{m_i, i \in I\}$ (s operacemi po složkách), kde $m_i \in M_i$ a pouze konečně mnoho m_i jsou nenulové. Zatímco pravá strana jsou soubory homomorfismů $\varphi = \{\varphi_i, i \in I\}$ (s operacemi po složkách), kde každé φ_i je homomorfismus z M_i do N.

Rovnost těchto levých $End_R(N)$ -modulů ukážeme tak, že najdeme mezi nimi zobrazení, které je zároveň bijekcí a homomorfismem: Mějme tedy $\varphi \in \prod_{i \in I} Hom(M_i, N)$. Potom definujme $h(\varphi)(\mathbf{m}) = \sum_{i \in I} \varphi_i(m_i)$.

"Dobrá definovanost": Z "konečné nenulovosti" v **m** a jednoznačnosti **m** = $\{m_i, i \in I\}$ (a uzavřenosti N na sčítání) máme dobrou definovanost $h(\varphi)$. Teď ještě potřebujeme $h(\varphi) \in Hom_R(\bigoplus_{i \in I} M_i, N)$: Máme-li $\mathbf{m}, \tilde{\mathbf{m}} \in \bigoplus_{i \in I} M_i$ a $r \in R$, potom (φ_i) jsou homomorfismy)

$$h(\varphi)(\mathbf{m} + \tilde{\mathbf{m}}) = \sum_{i \in I} \varphi_i(m_i + \tilde{m}_i) = \sum_{i \in I} (\varphi_i(m_i) + \varphi_i(\tilde{m}_i)) = \sum_{i \in I} \varphi_i(m_i) + \sum_{i \in I} \varphi_i(\tilde{m}_i) =$$

$$= h(\varphi)(\mathbf{m}) + h(\varphi)(\tilde{\mathbf{m}}),$$

$$h(\varphi)(r\mathbf{m}) = \sum_{i \in I} \varphi_i(r \cdot m_i) = \sum_{i \in I} r \cdot \varphi_i(m_i) = r \cdot \sum_{i \in I} \varphi_i(m_i) = r \cdot h(\varphi)(\mathbf{m}).$$

Zároveň h je prosté, protože když $\varphi \neq \psi$, tj. $\varphi_j(m_j) \neq \psi_j(m_j)$ pro nějaké $j \in I$ a m_j , pak $h(\varphi)(\{m_j\} \cup \{0, i \in I \setminus \{j\}\}) = \varphi_j(m_j) \neq \psi_j(m_j) = h(\psi)(\{m_j\} \cup \{0, i \in I \setminus \{j\}\})$.

h je taktéž homomorfismus (a obdobně pak pro inverzi):

$$h(r \cdot \varphi)(m_i) = \sum_{i \in I} (r \cdot \varphi_i)(m_i) = \sum_{i \in I} r \cdot \varphi_i(m_i) = r \cdot \sum_{i \in I} \varphi_i(m_i) = (r \cdot h(\varphi))(\mathbf{m}),$$

$$h(\varphi + \psi)(m_i) = \sum_{i \in I} (\varphi_i + \psi_i)(m_i) = \sum_{i \in I} (\varphi_i(m_i) + \psi_i(m_i)) = \sum_{i \in I} \varphi_i(m_i) + \sum_{i \in I} \psi_i)(m_i) =$$

$$= (h(\varphi) + h(\psi))(\mathbf{m}).$$

Jediné, co zbývá je surjektivita. Ale to víme z toho, že $f \in Hom_R(\bigoplus_{i \in I} M_i, N)$ je jednoznačně určeno hodnotami na $\{m_j\} \cup \{0, j = i \in I\}$, neboť každý prvek $\bigoplus_{i \in I}$ je konečným součtem těchto hodnot (a f je homomorfismus, takže f na součtu je součet f na sčítancích). A k takovému f tedy můžeme nalézt $(\forall j \in I)$ $h^{-1}(f)_j(m_j) = f(\{m_j\} \cup \{0, j \neq i \in I\})$, tak, že $h^{-1}(f) = \{h^{-1}(f)_i, i \in I\}$ se zřejmě zobrazuje na f.