Econ 204 – Problem Set 3

Due Friday, August 7, 2015

- 1. Take any mapping f from a metric space X into a metric space Y. Prove that f is continuous if and only if $f(\overline{A}) \subseteq \overline{f(A)}$. (Hint: use the closed set characterization of continuity).
- 2. A function $f: X \to Y$ is open if for every open set $A \subset X$, its image f(A) is also open. Show that any continuous open function from \mathbb{R} into \mathbb{R} (with the usual metric) is strictly monotonic.
- 3. Suppose f, g are continuous functions from metric spaces (X, d) into (Y, ρ) . Let E be a dense subset of X (in a metric space, a set A is dense in B if $\overline{A} \supset B$). Show that f(E) is dense in f(X). Further, if f(x) = g(x) for every $x \in E$, then f(x) = g(x) for every $x \in X$.
- 4. Show that in a metric space, a set is closed if and only if its intersection with any compact set is closed.
- 5. Show that a metric space X is connected if and only if every continuous function $f: X \to \{0,1\}$ is constant.
- 6. Let (X,d) be a compact metric space and let $\Phi(x): X \to 2^X$ be a upper-hemicontinuous, compact-valued correspondence, such that $\Phi(x)$ is non-empty for every $x \in X$. Prove that there exists a compact non-empty subset K of X, such that $\Phi(K) \equiv \bigcup_{x \in K} \Phi(x) = K$.