**23.** 
$$f(x, y) = \frac{x - y}{x + y}$$

Pemark: 如果其中一個 lavel curve 的 domain 有 作品的,其和ily 也有作的.





Fig. 12.1.23

**24.** 
$$f(x, y) = \frac{y}{x^2 + y^2}$$

> Techique:
Sub f(xiy) = C,
Completing squares

**24.** 
$$f(x, y) = \frac{y}{x^2 + y^2} = C.$$

This is the family  $x^2 + (y - \frac{1}{2C})^2 = \frac{1}{4C^2}$  of circles passing through the origin and having centres on the y-axis. The origin itself is, however, not on any of the level curves.



Fig. 12.1.24



**34.** If we assume  $z \ge 0$ , the equation  $4z^2 = (x-z)^2 + (y-z)^2$  defines z as a function of x and y. Sketch some level curves of this function. Describe its graph.





The graph of the function  $z = z(x, y) \ge 0$  defined by the given equation is (the upper half of) an elliptic cone with axis along the line x = y = z, and circular cross-sections in horizontal planes.

## **EXERCISES 12.1**

Specify the domains of the functions in Exercises 1–10.

1. 
$$f(x, y) = \frac{x + y}{x - y}$$

**2.** 
$$f(x, y) = \sqrt{xy}$$

**6.** 
$$f(x, y) = \frac{1}{\sqrt{x^2 - y^2}}$$
 **7.**  $f(x, y) = \ln(1 + xy)$ 

7. 
$$f(x, y) = \ln(1 + xy)$$

**8.** 
$$f(x, y) = \sin^{-1}(x + y)$$

**9.** 
$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

$$10. \ f(x, y, z) = \frac{e^{xyz}}{\sqrt{xyz}}$$

Sketch the graphs of the functions in Exercises 11-18.

**11.** 
$$f(x, y) = x$$
,  $(0 \le x \le 2, 0 \le y \le 3)$ 

**12.** 
$$f(x, y) = \sin x$$
,  $(0 \le x \le 2\pi, 0 \le y \le 1)$ 

**13.** 
$$f(x, y) = y^2$$
,  $(-1 \le x \le 1, -1 \le y \le 1)$ 

**14.** 
$$f(x, y) = 4 - x^2 - y^2$$
,  $(x^2 + y^2 \le 4, x \ge 0, y \ge 0)$ 

**15.** 
$$f(x, y) = \sqrt{x^2 + y^2}$$
 **16.**  $f(x, y) = 4 - x^2$ 

**16.** 
$$f(x, y) = 4 - x^2$$

**17.** 
$$f(x, y) = |x| + |y|$$

**18.** 
$$f(x, y) = 6 - x - 2y$$

Sketch some of the level curves of the functions in Exercises 19-26.

**19.** 
$$f(x, y) = x - y$$

**20.** 
$$f(x, y) = x^2 + 2y^2$$

$$21. \ f(x,y) = xy$$

**21.** 
$$f(x, y) = xy$$
 **22.**  $f(x, y) = \frac{x^2}{y}$ 

**23.** 
$$f(x, y) = \frac{x - y}{x + y}$$

**23.** 
$$f(x, y) = \frac{x - y}{x + y}$$
 **24.**  $f(x, y) = \frac{y}{x^2 + y^2}$ 

**25.** 
$$f(x, y) = xe^{-y}$$

**26.** 
$$f(x,y) = \sqrt{\frac{1}{y} - x^2}$$

Exercises 27-28 refer to Figure 12.11, which shows contours of a hilly region with heights given in metres.



**Figure 12.11** 

- **27.** At which of the points A or B is the landscape steeper? How do you know?
- **28.** Describe the topography of the region near point C.

**3.** 
$$f(x,y) = \frac{x}{x^2 + y^2}$$
 **4.**  $f(x,y) = \frac{xy}{x^2 - y^2}$ 

**4.** 
$$f(x, y) = \frac{xy}{x^2 - y^2}$$

5. 
$$f(x, y) = \sqrt{4x^2 + 9y^2 - 36}$$



**Figure 12.12** 

Describe the graphs of the functions f(x, y) for which families of level curves f(x, y) = C are shown in the figures referred to in Exercises 29-32. Assume that each family corresponds to equally spaced values of C and that the behaviour of the family is representative of all such families for the function.

- 29. See Figure 12.12(a).
- 30. See Figure 12.12(b).
- **31.** See Figure 12.12(c).
- 32. See Figure 12.12(d).
- 33. Are the curves  $y = (x C)^2$  level curves of a function f(x, y)? What property must a family of curves in a region of the xy-plane have to be the family of level curves of a function defined in the region?
- **34.** If we assume  $z \ge 0$ , the equation  $4z^2 = (x z)^2 + (y z)^2$ defines z as a function of x and y. Sketch some level curves of this function. Describe its graph.
- **35.** Find f(x, y) if each level curve f(x, y) = C is a circle centred at the origin and having radius (b)  $C^2$ (c)  $\sqrt{C}$
- **36.** Find f(x, y, z) if for each constant C the level surface f(x, y, z) = C is a plane having intercepts  $C^3$ ,  $2C^3$ , and  $3C^3$  on the x-axis, the y-axis, and the z-axis, respectively.

Describe the level surfaces of the functions specified in Exercises 37-41.

**37.** 
$$f(x, y, z) = x^2 + y^2 + z^2$$

**38.** 
$$f(x, y, z) = x + 2y + 3z$$

**39.** 
$$f(x, y, z) = x^2 + y^2$$

**40.** 
$$f(x, y, z) = \frac{x^2 + y^2}{z^2}$$

**41.** 
$$f(x, y, z) = |x| + |y| + |z|$$

42. Describe the "level hypersurfaces" of the function

$$f(x, y, z, t) = x^2 + y^2 + z^2 + t^2$$
.

Specify the domains of the functions in Exercises 1–10.

**1.** 
$$f(x, y) = \frac{x + y}{x - y}$$

**2.** 
$$f(x, y) = \sqrt{xy}$$

**6.** 
$$f(x, y) = \frac{1}{\sqrt{x^2 - y^2}}$$

7. 
$$f(x, y) = \ln(1 + xy)$$

**8.** 
$$f(x, y) = \sin^{-1}(x + y)$$

**8.** 
$$f(x, y) = \sin^{-1}(x + y)$$
  
**9.**  $f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$ 

$$10. f(x, y, z) = \frac{e^{xyz}}{\sqrt{xyz}}$$

















Specify the domains of the functions in Exercises 1–10.

**1.** 
$$f(x, y) = \frac{x + y}{x - y}$$

**2.** 
$$f(x, y) = \sqrt{xy}$$

**6.** 
$$f(x, y) = \frac{1}{\sqrt{x^2 - y^2}}$$

7. 
$$f(x, y) = \ln(1 + xy)$$

**8.** 
$$f(x, y) = \sin^{-1}(x + y)$$

**8.** 
$$f(x, y) = \sin^{-1}(x + y)$$
  
**9.**  $f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$ 

$$10. \ f(x, y, z) = \frac{e^{xyz}}{\sqrt{xyz}}$$

2. {xy} & xy70, first and third quadrant.



**9.** 
$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

$$\mathbf{10.} \ f(x, y, z) = \frac{e^{xyz}}{\sqrt{xyz}}$$

9. x,y,z 61R3/{0,0,03

10. X14, 270, four quadrant.

**3.** 
$$f(x, y) = \frac{x}{x^2 + y^2}$$
 **4.**  $f(x, y) = \frac{xy}{x^2 - y^2}$ 

**4.** 
$$f(x, y) = \frac{xy}{x^2 - y^2}$$

5. 
$$f(x, y) = \sqrt{4x^2 + 9y^2 - 36}$$

3. x7y2 # 0 / x, y3 E 12 \ 20-03

9. x²-y²+0=) x++y.

J. 42+9y-3670

4x4972 7/36 ontside the ellipse. Sketch the graphs of the functions in Exercises 11-18.

**11.** 
$$f(x, y) = x$$
,  $(0 \le x \le 2, 0 \le y \le 3)$ 

**12.** 
$$f(x, y) = \sin x$$
,  $(0 \le x \le 2\pi, 0 \le y \le 1)$ 

**13.** 
$$f(x, y) = y^2$$
,  $(-1 \le x \le 1, -1 \le y \le 1)$ 

**14.** 
$$f(x, y) = 4 - x^2 - y^2$$
,  $(x^2 + y^2 \le 4, x \ge 0, y \ge 0)$ 

**15.** 
$$f(x, y) = \sqrt{x^2 + y^2}$$
 **16.**  $f(x, y) = 4 - x^2$ 

**16.** 
$$f(x, y) = 4 - x^2$$

**17.** 
$$f(x, y) = |x| + |y|$$

**18.** 
$$f(x, y) = 6 - x - 2y$$

11.



Z=X

ld.



**13.** 
$$f(x, y) = y^2$$
,  $(-1 \le x \le 1, -1 \le y \le 1)$   
**14.**  $f(x, y) = 4 - x^2 - y^2$ ,  $(x^2 + y^2 \le 4, x \ge 0, y \ge 0)$ 

**14.** 
$$f(x, y) = 4 - x^2 - y^2$$
,  $(x^2 + y^2 \le 4, x \ge 0, y \ge 0)$ 

13



4-(x2+y2) x70, y7,0-

only & L sphere.



15. 
$$f(x, y) = \sqrt{x^2 + y^2}$$
 16.  $f(x, y) = 4 - x^2$ 



7 = Nr







**17.** 
$$f(x, y) = |x| + |y|$$

**18.** 
$$f(x, y) = 6 - x - 2y$$



18. Z=6-x-2y.





Xt2y +2=6







**23.** 
$$f(x, y) = \frac{x - y}{x + y}$$

**23.** 
$$f(x, y) = \frac{x - y}{x + y}$$
 **24.**  $f(x, y) = \frac{y}{x^2 + y^2}$ 

23.



**24.** 
$$f(x, y) = \frac{y}{x^2 + y^2}$$



y2 x2+y2 x2+y2- y x2+ (y-1) x+y+0

**25.** 
$$f(x, y) = xe^{-y}$$

0x 20



 $-x = e^{4}$ 

Inl-x) = y



1

Exercises 27–28 refer to Figure 12.11, which shows contours of a hilly region with heights given in metres.



**Figure 12.11** 

**27.** At which of the points *A* or *B* is the landscape steeper? How do you know?

B. For same Instance Shorter time to travel.

| <b>28.</b> Describe the topography of the region near point $C$ .                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------|
| 28. Describe the topography of the region near point C.  The is saddle with the following the region near point C.  west alrest m. |
| local min                                                                                                                          |
| Concern ng                                                                                                                         |
| travel north-south directin = Concave                                                                                              |
|                                                                                                                                    |
| local max                                                                                                                          |



Figure 12.12

Describe the graphs of the functions f(x, y) for which families of level curves f(x, y) = C are shown in the figures referred to in Exercises 29–32. Assume that each family corresponds to equally spaced values of C and that the behaviour of the family is representative of all such families for the function.











**33.** Are the curves  $y = (x - C)^2$  level curves of a function f(x, y)? What property must a family of curves in a region of the xy-plane have to be the family of level curves of a function defined in the region?

$$y = x^2 - 2Cx + C^2$$
  
 $y - x^2 + 2Cx = C^2$ 

34. If we assume  $z \ge 0$ , the equation  $4z^2 = (x-z)^2 + (y-z)^2$  defines z as a function of x and y. Sketch some level curves of this function. Describe its graph.









**39.** 
$$f(x, y, z) = x^2 + y^2$$
  
**40.**  $f(x, y, z) = \frac{x^2 + y^2}{z^2}$ 



**40.**  $f(x, y, z) = \frac{x^2 + y^2}{z^2}$ 





**41.** f(x, y, z) = |x| + |y| + |z|

[x1+(y1+(z) = c



42. Describe the "level hypersurfaces" of the function

$$f(x, y, z, t) = x^2 + y^2 + z^2 + t^2.$$