

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Selected Topics in Cryptography Quantum cryptanalysis

Szymon Szozda

Department of Telecommunications

04.12.2017

Quantum crypanalysis

Agenda

- 1. Bra-ket notation
- 2. Quantum gates
- 3. Grover's Database Search
- 4. Shore's factorization algorithm
 - Fast modular exponentiation
 - Quantum Fourier Transform

Bra-ket notation Origins

Bra–ket notation: $\langle x|y\rangle$ is a standard notation for describing quantum states. It can also be used to denote abstract vectors, linear functionals and scalar product in mathematics.

The left part: $\langle x |$, called the bra, is a row vector.

3/15

The right part: $|y\rangle$, called the ket, is a column vector.

Qbit

Origins

A pure qubit state is a linear superposition of the basis states. This means that the gubit can be represented as a linear combination of $|0\rangle$ and $+|1\rangle$:

$$|\psi\rangle=\alpha|\mathbf{0}\rangle+\beta|\mathbf{1}\rangle$$

When we measure this qubit in the standard basis, the probability of outcome $|0\rangle$ is $|\alpha|^2$ and the probability of outcome $|1\rangle$ is $|\beta|^2$. Because the absolute squares of the amplitudes equate to probabilities, it follows that α and β must be constrained by the equation

$$|\alpha|^2 + |\beta|^2 = 1$$

Gates Definition

In quantum computing and specifically the quantum circuit model of computation, a quantum gate (or quantum logic gate) is a basic quantum circuit operating on a small number of qubits.

.

Gates example

Gate	Notation	Matrix
NOT (Pauli-X)	<u></u>	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli- Z	<u>_Z</u> _	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard	-H	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
CNOT (Controlled NOT)		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

Grover's database search

Grover's database search uses possibility to pararell process of qbit. The algorithm allows us to find selected element in unsorted set with complexity \sqrt{n}

Grover's database search

Grover diffusion operator

Repeat $O(\sqrt{N})$ times

Fast exponentiation

We can calculate $A^B mod C$ quickly, using modular multiplication rules:

$$A^2 modC = (A*A) modC = ((A modC)*(A modC)) modC$$

3.MixColumns

Each column is represented as four-bytes vector.

Each column of State is replaced by a new column which is formed by multiplying that column by a certain matrix of elements of the field.

Together with ShiftRows, MixColumns provides *diffusion* in the cipher.

MixColumns step is used in every cycle **except** the last one cycle.

3.MixColumns

It is also possible to see this operation as polynomial multiplication where each column is represented with polynomial a(x):

$$a(x) = c(x).a(x)modx^4 + 1 = (03x^3 + 01x^2 + 01x + 02).(a_3x^3 + a_2x^2 + a_1x^1 + a_0)modx^4 + 1$$

$$c(x) = \left[\begin{array}{cc} 02 & 03 \\ 01 & 02 \end{array} \right]$$

Key Schedule: Rcon Table

Rcon Constants				
Round	Constant(Rcon)	Round	Constant(Rcon)	
1	01 00 00 00	6	20 00 00 00	
2	02 00 00 00	7	40 00 00 00	
3	04 00 00 00	8	80 00 00 00	
4	08 00 00 00	9	1B 00 00 00	
5	10 00 00 00	10	36 00 00 00	

Time for questions

Bibliography

Bibliography:

- Joan Daemen, Vincent Rijmen, "The Design of Rijndael: AES The Advanced Encryption Standard", Springer, 2002.
- Joshua Holden, "The Mathematics of Cryptography", Princeton University Press, 2017
- Federal Information Processing Standards Publication 197: the official AES standard, United States National Institute of Standards and Technology, 2001
- Wikipedia, Advanced Encryption Standard, https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

Thank you for attention!