Wydział	lmię i nazwisko		Rok	Grupa	Zespół	
	1.					
	2.					
PRACOWNIA	Temat:				Nr ćwiczenia	
FIZYCZNA						
WFiIS AGH						
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA	

Ćwiczenie nr 32: Mostek Wheatstone'a

Cel ćwiczenia

Praktyczne zastosowanie praw Kirchhoffa i sprawdzenie zależności określających opór zastępczy dla połączeń szeregowych, równoległych oraz mieszanych.

Zagadnienia do opracowania						
1. Omów prawa Kirchhoffa.						
2. Wyprowadź wzory na opór zastępczy dla połączenia szeregowego i równoległego dwóch oporników R_1 i R_2 .						
3. Co to jest opór właściwy i przewodność właściwa? Od czego zależy opór danego odcinka drutu przewodzącego?						
4. Omów zależność oporności elektrycznej metali od temperatury.						
5. Narysuj schemat układu dla mostka Wheatstone'a i wyprowadź wzór na wartość nieznanego oporu dla mostka zrównoważonego.						
6. Udowodnij, że opór zastępczy dwóch oporników połączonych równolegle jest mniejszy od oporu mniejszego z nich.						
7. Zdefiniuj i omów pojęcia natężenia prądu elektrycznego oraz ładunku. Podaj definicje odpowiadających im jednostek.						
8. Zdefiniuj i omów pojęcia napięcia oraz oporu elektrycznego. Podaj definicje odpowiadających im jednostek.						
9. Jak stwierdzić, że dwie wielkości A i B onarczone niepewnościami $u(A)$ oraz $u(B)$ są sobie równe w granicach błędu?						

1. Układ pomiarowy

Układ mostka Wheatstone'a przedstawia rys. w1. W skład obwodu wchodzą:

- 1. Listwa z drutem oporowym, zaopatrzona w podziałkę milimetrową i kontakt ślizgowy, umożliwiający zmiany długości odcinków *a* i *b*.
- 2. Opornica dekadowa R_2
- 3. Symbolem R_{χ} oznaczono zestaw oporników wmontowanych na odpowiedniej płytce z pleksiglasu.
- 4. Mikroamperomierz G jako wskaźnik zerowania mostka Jego czułość można regulować.
- 5. Zasilacz stabilizowany 3A/30 V.

Rys. w1. Schemat elektryczny mostka.

2. Wykonanie ćwiczenia

- 1. Połącz obwód elektryczny według schematu przedstawionego na rysunku i po sprawdzeniu przez prowadzącego włacz zasilanie.
- 2. Wykonaj pomiary wszystkich nieznanych oporów wskazanych przez prowadzącego, za każdym razem zmieniając nastawy na oporniku wzorcowym. Wyniki wpisz do Tabeli 1.
- 3. Wykonaj analogiczne pomiary dla równoległego, szeregowego i mieszanego połączenia wybranych oporników. Wyniki wpisz do Tabeli 1.

Wariant do wykonania (określa prowadzący):

3. Wyniki pomiarów

Tabela 1		Długość drutu l _o :	[cm]					
Opór wzor- cowy								
a [mm]								
R_{x_1} [Ω]								
$\overline{R}_{x_1} = \dots \dots \dots$	$u(R_{x1}) = \dots$							
Opór wzor- cowy								
<i>a</i> [mm]								
$R_{x_2}[\Omega]$								
$\overline{R}_{x_2} = \dots \dots \dots$	$u(R_{x2}) = \dots$							
Opór wzor- cowy								
a [mm]								
$R_{x_3}[\Omega]$								
$\overline{R}_{x3} = \dots \dots \dots$	$u(R_{x3}) = \dots$							
Opór wzor- cowy								
<i>a</i> [mm]								
$R_{x_{-4}}[\Omega]$								
$\overline{R}_{x4} = \dots \dots \dots$	$u(R_{x4}) = \dots$							
Opór wzor- cowy								
<i>a</i> [mm]								
$R_{x_5}[\Omega]$								
$\overline{R}_{x5} = \dots \dots \dots$	$u(R_{x5}) = \dots$							
Połączenie szeregowe:								
Opór wzor- cowy								
a [mm]								
R [Ω]								
$\overline{R} = \dots \qquad u$	$(R) = \dots \dots \dots \dots$	$R_{obl} = \dots \dots \dots$	$u(R_{obl}) =$					

Połączenie równoległe:											
Opór wzor- cowy											
<i>a</i> [mm]											
$R [\Omega]$											
$\overline{R} = \dots \dots \dots$		$u(R) = \dots \dots \dots$			R_{obl}	$R_{obl} = \dots \dots \dots$			$u(R_{obl}) =$		
Połączenie mieszane:											
Opór wzor- cowy											
<i>a</i> [mm]											
$R [\Omega]$											
$\overline{R} = \dots \dots$		$u(R) = \dots \dots \dots$		R_{obl}	$R_{obl} = \dots \dots \dots$			$u(R_{obl}) =$			

4. Opracowanie wyników pomiarów

Wyznaczanie oporu nieznanego (wyniki pomiarów należy wpisać do Tabeli):

- 1. Wyznacz wartości nieznanych oporów na podstawie wzoru (1)
- 2. Oblicz wartość średnią dla każdego nieznanego oporu oraz jej niepewność pomiarową.
- 3. Przeprowadź analogiczne obliczenia dla połączenia szeregowego i równoległego.
- 4. Oblicz wartość oporu zastępczego dla połączenia szeregowego korzystając ze wzoru

$$R_{ab} = R_a + R_b$$

Oszacuj niepewność wyznaczenia R_{ab} na podstawie prawa przenoszenia niepewności pomiarowych.

5. Oblicz wartość oporu zastępczego dla połączenia równoległego korzystając ze wzoru

$$\frac{1}{R_{ab}} = \frac{1}{R_a} + \frac{1}{R_b}$$

Oszacuj niepewność wyznaczenia R_{ab} na podstawie prawa przenoszenia niepewności pomiarowych.

- 6. Oblicz wartość oporu zastępczego dla połączenia mieszanego i oszacuj jego niepewność z prawa przenoszenia niepewności pomiarowych. We wnioskach zapisz zastosowane wzory.
- 7. Porównaj opory zmierzone w połączeniach równoległym, szeregowym i mieszanym, z analogicznymi oporami zastępczymi wyznaczonymi na podstawie odpowiednich wzorów. Sprawdź, czy są one równe w granicach niepewności pomiarowych. Wynik porównania zapisz we wnioskach.

4. Pozostałe obliczenia i wnioski