9T1: Spectral-based audio features

Xavier Serra

Universitat Pompeu Fabra, Barcelona

Index

- Introduction: audio features
- Single-frame spectral features
- Multiple-frames spectral features

Audio features

Essentia descriptors

- Spectral descriptors: BarkBands, MelBands, ERBBands, MFCC, GFCC, LPC, HFC, SpectralContrast, Inharmonicity and Dissonance, ...
- Time-domain descriptors: EffectiveDuration, ZCR, Loudness, . . .
- Tonal descriptors: PitchSalienceFunction, PitchYinFFT, HPCP, TuningFrequency, Key, ChordsDetection, ...
- Rhythm descriptors: BeatTrackerDegara,
 BeatTrackerMultiFeature, BpMHistogramDescriptors,
 NoveltyCurve, OnsetDetection, Onsets, ...
- SFX descriptors: LogAttackTime, MaxToTotal, MinToTotal, TCToTotal, ...
- High-level descriptors: Danceability, DynamicComplexity, FadeDetection, SBic, ...

Single-frame spectral features

- Energy, RMS, Loudness
- Spectral centroid
- Mel-frequency cepstral coefficients (MFCC)
- Pitch salience
- Chroma (Harmonic pitch class profile, HPCP)

Energy, RMS, Loudness

Energy:

$$energy_l = \sum_{k=0}^{N-1} |X_l[k]|^2$$

Root mean square:

$$RMS_{l} = \sqrt{\frac{1}{N^{2}} \sum_{k=0}^{N-1} |X_{l}[k]|^{2}}$$

Steven's power law:

loudness_l=
$$\left(\sum_{k=0}^{N-1} |X_{l}[k]|^{2}\right)^{0.67}$$

Spectral centroid

$$centroid_{l} = \frac{\sum_{k=0}^{N/2} k |X_{l}[k]|}{\sum_{k=0}^{N/2} |X_{l}[k]|}$$

Mel frequency cepstral coefficients

$$mfcc_{l} = DCT(\log_{10}(\sum_{k=0}^{N/2} |X_{l}[k]| |H_{i}[k]))$$

where

|X[k]| is the positive magnitude spectrum

 $H_i[k]$ is the mel scale filter bank for each filter i

$$DCT[m]$$
(Discrete Cosine Transform) = $\sum_{n=0}^{N-1} f[n] \cos(\frac{\pi}{N}(n+\frac{1}{2})m)$

$$|X_l[k]|$$
 \longrightarrow $|X_l[k]|$ \longrightarrow $|X_l$

MFCC: Mel scale

$$mel = 2595 \cdot \log_{10}(1 + \frac{f}{700})$$

Pitch salience

$$S[b] = \sum_{h=1}^{H} \sum_{p=1}^{P} e(A_p) g(b, h, f_p) (A_p)^{\beta}$$

where

S[b] = salience at bin frequency b (b expressed in cent scale)

e() = magnitude threshold function

g() = weighting function applied to peak p

 β = magnitude compression value

Chroma (Harmonic Pitch Class Profile)

$$hpcp[k] = \sum_{p=1}^{P} w(k, f_p) A_p^2$$

where

 A_p =amplitude of spectral peak p $w(k, f_p)$ = weight of the peak frequency f_p for bin k k=spectral bin locations of the chosen HPCP frequencies

Multiple-frames spectral features

- Event segmentation, onsets
- Predominant pitch
- Statistics of single-frame features

Event segmentation, onsets

Spectral flux (used in segmentation)

$$SF_{l} = \sum_{k=0}^{N/2} H(|X_{l}[k]| - |X_{(l-1)}[k]|)$$

where $H(x) = \frac{x + |x|}{2}$

Onset detection based on high-frequency content

Onset detection function = $HFC_l - HFC_{(l-1)}$

where
$$HFC_{l} = \sum_{k=1}^{N/2} |X_{l}[k]| k^{2}$$

Predominant pitch

Statistics of single frame features

Arithmetic mean (first moment)

$$mean = \frac{1}{N} \sum_{i=0}^{N-1} y[i]$$

Variance (second moment)

$$variance = \frac{1}{N} \sum_{i=0}^{N-1} (y[i] - mean)^2$$

Skewness (third moment)

$$skewness = \frac{\frac{1}{N} \sum_{i=0}^{N-1} (y[i] - mean)^{3}}{\left[\frac{1}{N-1} \sum_{i=0}^{N-1} (y[i] - mean)^{2}\right]^{3/2}}$$

References

- Essentia: http://essentia.upf.edu
- http://en.wikipedia.org/wiki/Spectral_centroid
- http://en.wikipedia.org/wiki/Mel-frequency_cepstrum
- http://en.wikipedia.org/wiki/Loudness
- http://en.wikipedia.org/wiki/Harmonic_pitch_class_profiles
- http://en.wikipedia.org/wiki/Onset_(audio)
- http://en.wikipedia.org/wiki/Moment_(mathematics)
- Slides released under CC Attribution-Noncommercial-Share Alike license and code under Affero GPL license; available from https://github.com/MTG/sms-tools

9T1: Spectral-based audio features

Xavier Serra

Universitat Pompeu Fabra, Barcelona