(12) STANDARD PATENT

(11) Application No. AU 2003294953 B2

(19) AUSTRALIAN PATENT OFFICE

(54) Title

Method and device for optimizing a nucleotide sequence for the purpose of expression of a protein

(51) International Patent Classification(s)

C07H 21/00 (2006.01)
C12N 15/11 (2006.01)
C12N 15/19 (2006.01)
C12N 15/27 (2006.01)
C12N 15/31 (2006.01)
C12P 21/00 (2006.01)

- (21) Application No: **2003294953** (22) Date of Filing: **2003.12.23**
- (30) Priority Data
- (31) Number (32) Date (33) Country **102 60 805.9 2002.12.23 DE**
- (87) WIPO No: **WO04/059556**
- (43)
 Publication Date:
 2004.07.22

 (43)
 Publication Journal Date:
 2004.08.26

 (44)
 Accepted Journal Date:
 2009.06.11
- (71) Applicant(s) Geneart AG
- (72) Inventor(s) Wagner, Ralf; Raab, David; Notka, Frank; Graf, Marcus
- (74) Agent/Attorney FB Rice & Co, Level 23 44 Market Street, Sydney, NSW, 2000
- (56) Related Art Williams D P et al, 1988, vol 16, p 10453-10467; Hoover et al, 2002, Nucleic Acids Research, Vol. 30, p e43-1

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 15. Juli 2004 (15.07.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/059556 A2

(51) Internationale Patentklassifikation⁷: G06F 19/00

(21) Internationales Aktenzeichen: PCT/EP2003/014850

(22) Internationales Anmeldedatum:

23. Dezember 2003 (23.12.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

102 60 805.9 23. Dezember 2002 (23.12.2002) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US); GENEART GMBH [DE/DE]; Josef-Engert-Strasse 9, 93053 Regensburg (DE).
- (72) Erfinder; und
- (75) Erlinder/Anmelder (nur für US): RAAB, David [DE/DE]; Gottfried Kölwel Platz 1, 93176 Beratshausen (DE). GRAF, Marcus [DE/DE]; Taubengässchen 1, 93047 Regensburg (DE). NOTKA, Frank [DE/DE]; Franziskanerplatz 19, 93059 Regensburg (DE). WAGNER, Ralf [DE/DE]; Roter Brach Weg 29, 93049 Regensburg (DE).

- (74) Anwälte: SCHOHE, Stefan usw.; Boehmert & Boehmert, Hollerallee 32, 28209 Bremen (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO Patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- $\textbf{(54) Title: } \textbf{METHOD AND DEVICE FOR OPTIMIZING A NUCLEOTIDE SEQUENCE FOR THE PURPOSE OF EXPRESSION OF A PROTEIN$
- (54) Bezeichnung: VERFAREN UND VORRICHTUNG ZUM OPTIMIEREN EINER NUCLEOTIDSEQUENZ ZUR EXPRESSION EINES PROTEINS
- (57) Abstract: The invention relates to a method for optimizing a nucleotide sequence for the purpose of expression of a protein on the basis of the amino acid sequence of said protein. According to the inventive method, a test sequence with moptimization positions is determined for a defined region, in which positions the codon usage is varied. The optimum codon usage on said optimization positions is determined by means of a power function and one or more codons of said optimum usage are determined as the codons of the optimized nucleotide sequence. These steps are iterated, while the codons of the optimized nucleotide sequence determined in the preceding steps remain unchanged during the subsequent iteration steps. The invention further relates to a device for carrying out said method.
- (57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zum Optimieren einer Nucleotidsequenz zur Expression eines Proteins auf der Grundlage der Aminosäurensequenz des Proteins, bei welchem für einen bestimmten Bereich eine Testsequenz mit m Optimierungspositionen festgelegt wird, auf denen die Codonbesetzung variiert wird, wobei mittels einer Gütefunktion die optimale Codonbesetzung auf diesen Optimierungspositionen ermittelt wird und ein oder mehrere Codons dieser optimalen Besetzung als Codons der optimierten Nucleotidsequenz festgelegt werden. Diese Schritte werden iteriert, wobei bei nachfolgenden Iterationsschritten die in vorangehenden Schritten festgelegten Codons der optimierten Nucleotidsequenz unverändert bleiben. Die Erfindung betrifft weiterhin eine Vorrichtung zur Durchführung dieses Verfahrens.

10

Method and device for optimizing a nucleotide sequence for the purpose of expression of a protein

Related application data

5 This application corresponds to international application No. PCT/EP2003/014850 in the Australian national phase and claims priority from DE 10260805.9 filed December 2002, all of which are incorporated in their entirety into this application by way of reference.

Field of the invention

invention relates generally to the production synthetic DNA sequences and to the use thereof producing proteins by introducing these DNA sequences into 15 an expression system, for example into a host organism/a host cell or a system for in vitro expression, any of which expresses the appropriate protein. It relates in particular to methods in which a synthetic nucleotide sequence is optimized for the particular expression 20 system, that is to say for example for an organism/ for a host cell, with the aid of a computer.

General

Throughout this specification and including 25 accompanying claims, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group 30 of elements, integers or steps.

Any description of prior art documents herein is not an admission that the documents form part of the common general knowledge of the relevant art in Australia.

Background to the invention

technique for the preparation and synthesis proteins is the cloning and expression of sequence corresponding to the protein in heterologous 5 systems, e.g. Escherichia coli or yeast. Naturally occurring genes are, however, frequently suboptimal for this purpose. Since in a DNA sequence expressing a protein in each case one triplet of bases (codon) expresses one amino acid, . it is possible for an artificial DNA 10 sequence for expression of the desired protein to be synthesized and to be used for cloning and expression of the protein. One problem with this procedure is that a predefined amino acid sequence does not correspond to a unique nucleotide sequence. This is referred to as the 15 degeneracy of the genetic code. The frequency with which different organisms use codons for expressing an amino acid differs (called the codon usage). There is ordinarily in a given organism one codon which is predominatly used and one or more codons which are used with comparatively 20 low frequency by the organisms for expressing corresponding amino acid. Since the synthesized nucleotide sequence is to be used in a particular organism, the choice of the codons ought to be adapted to the codon usage of the appropriate organism. A further important 25 variable is the GC ~ontent (content of the bases guanine and cytosine in a sequence). Further factors which may influence the result of expression are DNA motifs and repeats or inverse complementary repeats in the sequence. Certain base sequences produce in 30 organism certain functions which may not be desired within a coding sequence. Examples are cis-active sequence motifs such as splice sites or transcription terminators. The unintentional presence of a particular motif may reduce or entirely suppress expression or even have a toxic effect 35 on the host organism. Sequence repeats may lead to lower genetic stability and impede the synthesis of repetitive

segments owing to the risk of incorrect hybridizations. Inverse complementary repeats may lead to the formation of unwanted secondary structures at the RNA level cruciform structures at the DNA level, which 5 transcription and lead to genetic instability, or may have an adverse effect on translation efficiency.

gene ought therefore to be optimized A synthetic relation to the codon usage and the GC content and, on the 10 other hand, substantially avoid the problems associated with DNA motifs and sequence repeats and inverse complementary sequence repeats. These requirements cannot, however, ordinarily be satisfied simultaneously and in an optimal manner. For example, optimization to optimal codon 15 usage may lead to a highly repetitive sequence and a considerable difference from the desired GC content. The aim therefore is to reach a compromise which is as optimal as possible - between satisfying the various requirements. However, the large number of amino acids in a protein 20 leads to a combinatorial explosion of the number possible DNA sequences which, in principle, are able to express the desired protein. For this reason, various computer-assisted methods have been proposed for ascertaining an optimal codon sequence.

25

P.S. Sarkar and Samir Κ. Brahmachari, Nucleic Acids Research 20 (1992) 5713 describe investigations into the role of the choice of codons in the formation of certain spatial structures of a DNA sequence. This involved 30 generation of all the possible degenerate nucleotide sequences. Assessment of the sequences in relation to the presence of structural motifs and to structure-forming segments was performed by a computer using a knowledge base. The use of a quality function is not disclosed.

D.M. Hoover and J. Lubkowski, Nucleic Acid Research 30 (2002), No.10 e43 proposes a computer-assisted method in which the nucleotide sequence is divided into an odd number of segments for each of which a quality function 5 (score) is calculated. The quality function includes inter alia the codon usage, the possibility of forming hairpin structures and the differences from the desired melting temperature. The value of the quality function for complete sequence is determined from the total of 10 values of the quality function for the individual The codon occupation within а segment optimized by a so-called Monte-Carlo method. This entails random selection of codon positions in which the codon of an initial sequence is replaced by a randomly selected 15 equivalent codon. At the same time, the limits of the segments are redefined in an iteration. In this way there is random generation of a complete gene sequence. If the value' of the quality function for the complete sequence is less than the previous sequence, the new sequence is 20 retained. If it is larger, the-new sequence is retained probability, certain this probability controlled by a Boltzmann statistic. If the sequence does not change during a predetermined number of iterations, this sequence is regarded as optimal sequence.

25

Random methods of this type have the disadvantage that they depend greatly on the choice of the convergence criteria.

Summary of the invention

In one example, the invention provides an alternative method for optimizing a nucleotide sequence for the expression of a protein on the basis of the amino acid sequence of the protein, which can be implemented with relatively little storage space and relatively little computing time on a computer, and which avoids in particular the disadvantages of the random methods.

- 10 For example, the invention provides a method for optimizing a nucleotide sequence for the expression of a protein on the basis of the amino acid sequence of the protein, which comprises the following steps carried out on a computer:
- 15 generation of a first test sequence of n codons which correspond to n consecutive amino acids in the protein sequence, where n is a natural number and is less than or equal to N, the number of amino acids in the protein sequence,
- 20 specification of m optimization positions in the test sequence which correspond to the position of m codons, in particular of m consecutive codons, at which the occupation by a codon, relative to the test sequence, is to be optimized, where m < n and m < N,</p>
- 25 generation of one or more further test sequences from the first test sequence by replacing at one or more of the m optimization positions a codon of the first test sequence by another codon which expresses the same amino acid,
- 30 assessment of each of the test sequences with a quality function and ascertaining the test sequence which is optimal in relation to the quality function,

specification of p codons of the optimal test sequence which are located at one of the m optimization positions, as result codons which form the codons of the optimized nucleotide sequence at the positions which corresponds to the position of said p codons in the test sequence, where p is a natural number and $p \le m$,

- iteration of the preceding steps, where in each iteration step the test sequence comprises the appropriate result codon at the positions which correspond to positions of specified result codons in the optimized nucleotide sequence, and the optimization positions are different from positions of result codons.

15

10

5

According to the preferred embodiment of the invention, the aforementioned steps are iterated until all the codons of the optimized nucleotide sequence have been specified, i.e. occupied by result codons.

20

25

30

35

Thus, the optimization according to the invention is not of the sequence as a whole but successively on part regions. The p result codons specified as optimal in iteration step are not changed again in the subsequent iteration steps and, on the contrary, are assumed to be given in the respective optimization steps. It is preferred for the number of result codons which are specified in this way for further iterations and are treated as predefined to be smaller than the number m of optimization positions at which the codons are varied in an iteration step. In at least the majority of iteration steps and, in a particular iteration steps apart from the embodiment, in all first, in turn m is smaller than the number of codons of the test sequence (n). This makes it possible to take account not only of local effects on the m varied positions, but also of wider-ranging correlations, e.g. in connection with the development of RNA secondary structures.

According to the embodiments preferred at present, m is in the range from 3 to 20, preferably in the range from 5 to 10. With this choice of this parameter it is possible to vary the codons with an acceptable usage of storage and computing time and, at the same time, achieve good optimization of the sequence.

According to one embodiment, m need not be the same in the various iteration steps but, on the contrary, may also be different in different iteration steps. It is also possible to provide for variation of the test sequence for different values of m to be carried out in one iteration step and, where appropriate, for taking account only of the optimization result for one value of m, in order to reduce influences of the quantity m on the optimization result, and in order to check whether an increase in the number m leads to a change in the result.

20

According to the preferred embodiment, the m optimization positions or at least some of them are connected and thus form a variation window, on which the codon occupation is varied, in the test sequence.

25

30

The invention can in particular provide for some of the m optimization positions on which the codons are varied to be identical in two or more consecutive iteration steps. If the m positions are connected, this means that the variation window in one iteration step overlaps with the variation window of a preceding iteration step.

The invention can provide for the m optimization positions of the test sequences in one or more iteration steps to follow directly one or more result codons which have been specified as part of the optimized nucleotide sequence.

The invention can likewise provide for the p codons which are specified as result codons of the optimized nucleotide sequence in one or more iteration steps to be p consecutive codons which preferably directly follow one or more result codons which have been specified as part of the optimized nucleotide sequence in an earlier step.

The invention can provide for the nucleotide sequence to be optimized from one of its ends. In particular, 10 the invention can provide for an increase in each iteration step of the length of the test sequence of the previous iteration step by a particular number of codons, which may be different in different iterations, until n = N. If n = N and the number of positions in 15 the test sequence not occupied by result codons smaller than or equal to the value of m used in the iterations, or if this number on use preceding different values of m in different iterations is in the region of the values of m in question, it is possible 20 to set p = m in the corresponding iteration step, where m is at the same time the number of codons not yet specified. The occupation which is found to be optimal for the optimization positions is then accepted for the result codons at these optimization positions. This 25 applies in particular when a test sequence is generated for every possible combination of occupations of the optimization positions.

However, it is also possible to provide for the region of the test sequence within the complete sequence in one iteration step not, or not completely, to include the region of a test sequence in a previous iteration step. For example, the test sequence itself may form a window on the complete sequence, e.g. a window of fixed length, which window is shifted on the complete sequence during the various iterations.

According to a preferred embodiment, the test sequence is extended after each step by p codons, it being possible in particular for m to be constant for all iteration steps.

5

10

15

In analogy to the embodiment of the invention described is also possible to provide it for nucleotide sequence to be optimized from a site in its interior. This can take place for example in such a way that an initial test sequence corresponding to a region in the interior of the nucleotide sequence to be optimized is initially enlarged successively on one side until the end of the nucleotide sequence to be optimized or another predefined point is reached on the nucleotide sequence to be optimized, and then the test sequence is enlarged towards the other side until the other end of the nucleotide sequence to be optimized or another predetermined point is reached there on the nucleotide sequence to be optimized.

20

25

30

35

The invention can also provide for the test sequences in one iteration step to consist of an optimized or otherwise specified partial sequence of length q and two variation regions which are connected on both sides thereof and have a length of respectively m_1 and m_2 codons, where $q + m_1 + m_2 = n$. The occupation of the variation regions can be optimized for both variation together by simultaneously varying optimizing the codons on the m_1 and m_2 locations. It is preferred in such a case for p_1 and p_2 codons in the first and second variation region, which are used as given basis for the further iteration, to be specified in each iteration step. However, it is also possible to provide for the two variation regions to be varied and optimized independently of one another. For example, it is possible to provide for the occupation to be varied in only one of the two variation regions, and for codons to be specified only in the one region, before the variation and optimization in the second region

takes place. In this case, the p_1 specified codons in the first region are assumed as given in the optimization of the second region. This procedure is worthwhile when small correlations at the most are to be expected between the two regions.

According to this embodiment, it is possible to provide for the nucleotide sequence to be optimized starting from a point or a region in the interior of the sequence.

The invention can provide in particular for the region of the test sequence on the complete sequence in each iteration step to include the region of the test sequences in all the preceding iteration steps, and for the region of a test sequence in at least some of the preceding iteration steps to be located in each case in the interior or in each case at the border of the region of the test sequence in the current iteration step.

The invention can provide for the nucleotide sequence to be optimized independently on different part regions. The optimized nucleotide sequence can then be the combination of the different optimized partial sequences. It is also possible to provide for at least some of the respective result codons from two or more optimized part regions to be used as constituent of a test sequence in one or more iterations.

30

35

5

10

15

20

25

A preferred embodiment of the invention provides for test sequences with all possible codon occupations for the m optimization positions to be generated in one iteration step from the first test sequence, and the optimal test sequence to be ascertained from all possible test sequences in which a codon at one or more of the m optimization positions has been replaced by another codon which expresses the same amino acid.

According to one embodiment of the invention, the quality function used to assess the test sequences is the same in all or at least the majority of the iterations. The invention may, however, also provide for different quality functions to be used in different iterations, for example depending on the length of the test sequences.

The method of the invention may comprise in particular 10 the following steps:

- assessment of each test sequence with a quality function,
- ascertaining of an extreme value within the values of the quality function for all partial sequences generated in an iteration step,
 - specification of p codons of the test sequence which corresponds to the extremal value of the weight function as result codons at the appropriate positions, where p is a natural number and $p \le m$.

The quality function can be defined in such a way that either a larger value of the quality function means that the sequence is nearer the optimum, or a smaller value means that it is nearer the optimum.

Correspondingly, the maximum or the minimum of the quality function among the generated codon sequences will be ascertained in the step of ascertaining the extreme value.

20

35

The invention can provide for the quality function to take account of one or more of the following criteria: codon usage for a predefined organism, GC content, sequence motifs, repetitive sequences, secondary structures, inverse repeats.

The invention can provide in particular for the quality function to take account of one or more of the following criteria:

cis-active sequence motifs, especially DNA/protein interaction binding sites RNA/protein and interaction binding sites, preferably splice motifs, transcription factor binding sites, 5 transcription terminator binding sites, polyadenylation signals, endonuclease recognition sequences, immunomodulatory DNA motifs, ribosome binding sites, recognition sequences for recombination enzymes, recognition signals for 10 DNA-modifying enzymes, recognition sequences for RNA-modifying enzymes, sequence motifs which are underrepresented in a predefined organism.

The invention can also provide for the quality function to take account of one or more of the following criteria:

- exclusion or substantial exclusion of inverse complementary sequence identities of more than 20 nucleotides to the transcriptome of a predefined organism,
- exclusion or substantial exclusion of homology regions of more than 1000 base pairs, preferably 500 base pairs, more preferably 100 base pairs, to a predefined DNA sequence, for example to the genome of predefined organism or to the DNA sequence of a predefined vector construct.

20

The first of the two criteria relates to the exclusion of the mechanism known as RNA indifference, with which 30 an organism eliminates or deactivates RNA sequences with more than 20 nucleotides exactly identical another RNA sequence. The intention of the second criterion is to occurrence prevent the of recombination, that is to say incorporation of the 35 sequence into the genetic material of the organism, or mobilization of DNA sequences through recombination with other vectors. Both criteria can be used as absolute exclusion criteria, i.e. sequences for which one or both of these criteria are satisfied are not

taken into account. The invention can also provide, as explained in more detail below in connection with sequence motifs, for these criteria to be assigned a weight which in terms of contribution is larger than the largest contribution of criteria which are not exclusion criteria to the quality function.

The invention can also, where appropriate together with other criteria, provide the criterion that no homology regions showing more than 90% similarity and/or 99% identity to a predefined DNA sequence, for example to the appropriate genome sequence of the predefined organism or to the DNA sequence of a predefined vector construct, are generated. This criterion can also be implemented either as absolute exclusion criterion or in such a way that it makes a very large contribution, outweighing the contribution of other criteria which are not exclusion criteria, to the quality function.

- It is possible to provide in particular for the quality function to be a function of various single terms, in particular a total of single terms, which in each case assess one criterion from the following list of criteria:
- 25 codon usage for a predefined organism, GC content, DNA motifs, repetitive sequences, secondary structures, inverse repeats.
- Said function of single terms may be in particular a linear combination of single terms or a rational function of single terms. The criteria mentioned need not necessarily be taken completely into account in the weight function. It is also possible to use only some of the criteria in the weight function.

35

The various single terms in said function are called criterion weights hereinafter.

The invention can provide for the criterion weight relating to the codon usage (CU score) to be proportional to $\sum_i f_{ci}/f_{cmaxi}$, where

- f_{ci} is the frequency of the codon placed at site i of the test sequence for the relevant organism to express the amino acid at site i in the amino acid sequence of the protein to be expressed, and
- $f_{\text{cmax}i}$ is the frequency of the codon which expresses most frequently the amino acid at site i in the corresponding organism.

The measure f_{ci}/f_{cmaxi} is known as the relative adaptiveness (cf. P.M. Sharp, W.H. Li, Nucleic Acids Research 15 (3) (1987), 1281 to 1295)...

15

10

5

The local weight of the most frequently occurring codon is in this case, irrespective of the absolute frequency with which this codon occurs, set at a particular value, for example 1. This avoids the positions at which only a few codons are available for selection making a greater contribution to the total weight than those at which a larger number of codons are available for selection for expression of the amino acid. The index i may run over the entire n codons of the test sequence or a part thereof. In particular, it is possible to provide in one embodiment for i to run only over the m codons of the optimization positions.

The invention can provide for the criterion weight 30 relating to the codon usage to be used only for the m ordering positions.

Ιt is possible to use instead of the relative adaptiveness also the so-called RSCU (relative synonymous codon usage; cf. P.M. Sharp, W.H. Li, 35 cit.). The RSCU for a codon position is defined by

where the sum in the denominator runs over all the codons which express the amino acid at site i, and where d; indicates the number of codons which express said amino acid. In order to define a criterion weight on the basis of the RSCU it is possible to provide for the RSCU to be summed for the respective test sequence over all the codons of the test sequence or a part thereof, in particular over the m codons of the positions. The difference from optimization the criterion weight derived from the relative adaptiveness is that with this weighting each codon position is weighted with the degree of degeneracy, di, so that positions at which more codons are available selection participate more in the criterion weight than positions at which only a few codons or even only a single codon are available for selection.

With the criterion weights described above for the codon usage, the arithmetic mean was formed over the local weights (relative adaptiveness, RSCU).

It can also be provided for the criterion weight relating to the codon usage to be proportional to the geometric mean of the local relative adaptiveness or the local RSCU, so that the following therefore applies

CUScore = $K(\Pi_i RSCU_i)^{1/L}$

or

30

25

10

15

20

CUScore = $K(\Pi_i f_{ci}/f_{cmaxi})^{1/L}$

where K is a scaling factor, and L is the number of positions over which the product is formed. Once again, it is possible in this case to form the product over the complete test sequence or a part, in particular over the m optimization positions.

In this connection, the invention also provides a method for optimizing a nucleotide sequence for expression of a protein on the basis of the amino acid sequence of the protein, which comprises the following steps carried out on a computer:

5

10

15

- generation of one or more test sequences of n codons which correspond to n consecutive amino acids in the protein sequence, where n is a natural number less than or equal to N, the number of amino acids in the protein sequence,
- assessment of the one or more test sequences on the basis of a quality function which comprises a geometric or arithmetic mean of the relative adaptiveness or of the RSCU over a number of L codon positions, where L is less than or equal to N,
- generation of one or more new test sequences depending on the result of said assessment.
- It is moreover possible for the generation of one or more new test functions in the manner described above to take place in such a way that the new test sequences comprise a particular number of result codons specified on the basis of the preceding iterations but, for example, also in such a way that a particular test sequence is used with a particular probability, which depends on the value of the quality function, as basis for further iterations, in particular the further generation of test sequences, as is the case with Monte-Carlo methods.

Whereas the quality of a codon in the abovementioned methods is defined through the frequency of use in the transcriptome or a gene reference set of the expression organism, the quality of a particular codon can also alternatively be described by the biophysical properties of the codon itself. Thus, for example, it is known that codons with an average codon-anticodon binding energy are translated particularly efficiently.

It is therefore possible to use as measure of the translational efficiency of a test sequence for example the P2 index which indicates the ratio of the frequency of codons with average binding energy and codons with extremely strong or weak binding energy. It is also alternatively to utilize possible data obtained experimentally or by theoretical calculations for the translational efficiency or translation accuracy of a codon for the quality assessment. The abovementioned assessment criteria may be advantageous especially when the tRNA frequencies of the expression system need not be taken into account, because they can be specified by the experimentor as, for example, in in vitro translation systems.

15

20

10

The invention can provide for the criterion weight relating to the GC content (GCScore) to be a function of the contribution of the difference of the ascertained GC content of the partial sequence, GCC, to the optimal GC content, GCCopt, where the GG content means the relative proportion of guanine and cytosine, for example in the form of a particular percentage proportion.

25 The criterion weight GCScore can have the following form, in particular:

$$GCScore = |\overline{GCC} - GCC_{opt}|^{g} \cdot h$$

30 where

35

GCC is the actual GC content of the test sequence or of a predetermined part of the test sequence, GCC, or the average GC content of the test sequence or of a predetermined part of the test sequence, <GCC>,

 GCC_{opt} is the desired (optimal) GC content, g is a positive real number, preferably in the range from 1 to 3, in particular 1.3,

h is a positive real number.

10

30

35

The factor h is essentially a weighting factor which defines the relative weight of the criterion weight GCScore vis-à-vis the other criterion weights. Preferably, h is chosen so that the amount of the maximally achievable value of GCScore is in a range from one hundredth of up to one hundred times another criterion weight, in particular all criterion weights which represent no exclusion condition, such as, for example, the weights for a wanted or unwanted sequence motif.

To determine the average GC content it is possible to 15 provide for a local GC content relating to a particular base position to be defined by the GC content on a window which was a particular size and which comprises this base and which, in particular, can be centered on this base. This local GC content is then averaged over 20 the test sequence or a part region of the sequence, in particular over the m optimization positions, it being possible to use both an arithmetic mean and a geometric mean here too. On use of an average GC content defined in this way there are fewer 25 variations between test sequences differing in length n.

The invention can provide for the GC content to be ascertained over a window which is larger than the region of the m optimization positions and includes this. If the optimization positions form a coherent variation window it is possible to provide for b bases before and/or after the variation window to be included in the determination of the criterion weight for the GC content (GCScore), where b can be in a range from 15 to 45 bases (corresponding to 5 to 15 codons), preferably in a range from 20 to 30 bases.

invention can further provide, inasmuch as the quality function is maximized, for a fixed amount to be subtracted for each occurrence of a sequence motif which is not permitted or is unwanted, and for a fixed amount to be added for each wanted or required motif, when ascertaining the value of the quality function vice versa for minimization of the quality function). This amount for unwanted or required motifs can be distinctly larger than all other criterion so that the other criteria are unimportant 10 weights, compared therewith. An exclusion criterion is achieved thereby, while at the same time there differentiation according to whether motif has more than once. However, occurred once or it is 15 likewise possible to define worthwhile а function and carry out an assessment test of the sequences with the quality function even if condition relating to the sequence motif (non-presence of a particular motif/presence of a particular motif) cannot be satisfied for all test sequences produced in 20 an iteration step. This will be the case in particular when the length n of the test sequences is relatively small compared with N, because a particular motif can often occur only when n is relatively large, because of 25 the predefined amino acids of the protein sequence.

The invention can further provide for the complete test sequence or part thereof to be checked for whether particular partial sequence segments or sequence 30 segments similar to particular partial sequence segments occur in another region of the test sequence or of a given region of the test sequence or whether particular partial sequence segments orsequence segments similar particular to partial sequence 35 in the segments occur inverse complementary test sequence or part of the inverse complementary sequence, and for a criterion weight for sequence repeats (repeats) and/or inverse sequence (inverse repeats) to be calculated dependent thereon.

Ordinarily, the sequence will be checked not only for whether a particular sequence segment is present identically in the test sequence or the inverse complementary test sequence or of a part 5 thereof, but also for whether a similar, i.e. partially matching, sequence is present in the test sequence or the inverse complementary test sequence or part thereof. Algorithms for finding matches (global alignment algorithms) or local matches (local alignment algorithms) of two 10 sequences generally known in bioinformatics. Suitable methods include, for example, the dynamic programming algorithms generally known in bioinformatics, e.g. the so-called Needleman-Wunsch algorithm for 15 aligment and the Smith-Waterman algorithm for local alignment. In this regard, reference is made example to Michael S. Waterman, Introduction Computational Biology, New London, York especially pages 207 to 209 or Dan Gusfield, Algorithms 20 Strings, Trees and Sequences, Cambridge, on especially pages 215 to 235.

The invention can in particular provide for every repeat of a partial sequence segment in another part of 25 the test sequence or of a predefined region of the test sequence to be weighted with a particular weight which represents a measure of the degree of match and/or the size of the mutually similar segments, and for the weights of the individual repeats to be added to 30 ascertain the criterion weight relating to the repeats inverse complementary repeats. Ιt is likewise possible to provide for the weights of the individual repeats to be exponentiated with a predefined exponent whose value is preferably between 1 and 2, and then for 35 the summation to ascertain the criterion relating to the repeats or inverse complementary repeats to be carried out. It is moreover possible to provide for repeats below a certain length and/or repeats whose weight fraction is below a certain

threshold not to be taken into account. The invention can provide, for the calculation of the appropriate criterion weight, for account to be taken only of the repeats or inverse complementary repeats of a partial sequence segment which is located in a predefined part region of the test sequence (test region), e.g. at its end and/or in a variation window. It is possible to provide for example for only the last 36 bases of the test sequence to be checked for whether a particular sequence segment within these 36 bases matches with another sequence segment of the complete test sequence or of the complete inverse complementary test sequence.

The invention can provide for only the segment or the M segments of the test sequence which provide the largest, or largest in terms of amount, contribution to the criterion weight, where M is a natural number, preferably between 1 and 10, to be taken into account in the criterion weights relating to repeats, inverse complementary repeats and/or DNA motifs.

According to one embodiment of the invention, it is possible to provide for generation of a matrix whose number of columns corresponds to the number of positions of the region of the test sequence (test region) which is to be checked for repeats in other regions, and whose number of rows corresponds to the number of positions of the region of the test sequence with which comparison is intended (comparison region). Both the test region and the comparison region may include the complete test sequence.

The invention can further provide for the total weight function TotScore to be determined as follows:

TotScore = CUScore - GCScore - REPScore - SiteScore

where CUScore is the criterion weight for the codon usage, GCScore is the criterion weight for the GC

35

5

10

15

20

25

30

content, REPScore is the criterion weight for repeats and inverse complementary repeats of identical or similar sequence segments, and SiteScore is the criterion weight for the occurrence of unwanted or required motifs.

5

10

15

20

25

30

35

The weight REPScore can, according to one embodiment of the invention, consist of a sum of two components, of which the first indicates the criterion weight for the repeat of identical or similar sequence segments in the test sequence itself or of a part region thereof, and the second component indicates the criterion weight for inverse complementary repeats of identical or similar sequence segments in the test sequence or of a part region thereof.

If the quality function is composed of portions of a plurality of test criteria, especially when the quality function consists of a linear combination of criterion weights, a test sequence need not necessarily be assessed according to all criteria in an iteration step. On the contrary, the assessment can be stopped as soon as it is evident that the value of the quality function is less or, speaking more generally, optimal than the value of the quality function of a test sequence which has already been assessed. In the embodiments described previously, most of the criteria, such as the criterion weights for repetitive elements, motifs to be excluded etc., are included negatively in quality function. If, the after calculating criterion weights which are included positively in the quality function and, where appropriate, some of the criterion weights which are included negatively in the quality function, the summation corresponding to the linear combination, defined by the quality function, of the appropriate previously calculated criterion weights gives a value which is smaller than a previously calculated value of the complete quality function for another test sequence, the currently assessed test

sequence can be eliminated at once. It is likewise frequently possible, for example when a criterion weight is considerably larger in terms of amount than all the other weights, for the assessment to be stopped at once after ascertaining the corresponding criterion weight. If, for example, an unwanted motif has not appeared in a first test sequence, and the unwanted motif appears in a second test sequence, the second test sequence can be immediately excluded, because the criterion weight for the motif search is so large that it cannot be compensated by other criterion weights.

10

The invention can provide in particular in embodiments which the quality function can be calculated 15 iteratively for there to be, in at least one iteration, determination of upper (or in the an optimization to the minimum of the quality function lower) limit below (or above) which the value of the complete quality function lies, and for the iteration of the quality function to be stopped when this value 20 is below (or above) the value which has previously been ascertained for the complete quality function for a test sequence.

The invention can provide in these cases for said upper 25 or lower limit to be used if necessary as value of the quality function in the further method for this test sequence, and/or for the corresponding test sequence to be eliminated in the algorithm, for example through the variable for the optimized test sequence remaining 30 occupied by a previously found test sequence for which function a higher value quality than abovementioned limit, and the algorithm to go on to the assessment of the next test sequence. The invention can 35 moreover, especially when the quality function is a linear combination of criterion weights, provide for the first iterations calculation in of contribution or those contributions whose highest value or whose minimal value has the highest absolute value.

The invention can provide in the case of a quality function which is optimized to its maximum and which is formed by a linear combination of criterion weights for firstly the positive portions of the linear combination to be calculated and the iteration to be stopped when, in one iteration after the calculation of all positive criterion weights, the value of the quality function in this iteration is smaller than the value of the complete quality function for another test sequence.

10

15

The invention can also provide for an iteration of the quality function to be stopped when it is found in an iteration that the sum of the value of the quality function calculated in this iteration and the maximum value of the contribution of the as yet uncalculated criterion weights is below the value of the complete quality function of another test sequence.

The method of the invention may include the step of synthesizing the optimized nucleotide sequence.

It is possible to provide in this connection for the step of synthesizing the optimized nucleotide sequence to take place in a device for automatic synthesis of nucleotide sequences, for example in an oligonucleotide synthesizer, which is controlled by the computer which optimizes the nucleotide sequence.

30 in particular The invention can provide for the computer, as soon as the optimization process complete, to transfer the ascertained data concerning the optimal nucleotide sequence to an oligonucleotide synthesizer and cause the latter to carry out the 35 synthesis of the optimized nucleotide sequence.

This nucleotide sequence can then be prepared as desired. The protein is expressed by introducing the appropriate nucleotide sequence into host cells of a

host organism for which it is optimized and which then eventually produces the protein.

The invention also provides a device for optimizing a nucleotide sequence for the expression of a protein on the basis of the amino acid sequence of the protein, which has a computer unit which comprises:

5

15

- a unit for generation of a first test sequence of n codons which correspond to n consecutive amino acids in the protein sequence, where n is a natural number less than or equal to N, the number of amino acids in the protein sequence,
 - a unit for specification of m optimiziation positions in the test sequence which correspond to the position of m codons at which the occupation by a codon, relative to the test sequence, is to be optimized, where m ≤ n and m < M,</p>
- a unit for generation of one or more further test sequences from the first test sequence by replacing at one or more of the m optimization positions a codon of the first test sequence by another codon which expresses the same amino acid,
- a unit for assessment of each of the test sequences with a quality function and for ascertaining the test sequence which is optimal in relation to the quality function,
- a unit for specification of p codons of the optimal test sequence which are located at one of the m optimization positions, as result codons which form the codons of the optimized nucleotide sequence at the positions which correspond to the positions of said p codons in the test sequence, where p is a natural number and p ≤ m,
- a unit for iteration of the steps of generation of
 a plurality of test functions, of assessment of
 the test sequences and of specification of result
 codons, preferably until all the codons of the
 optimized nucleotide sequence have been specified,
 where in each iteration step the test sequence

appropriate result codon at the comprises the correspond to of which positions positions specified result codons in the optimized the optimization and nucleotide sequence, positions are different from positions of result codons.

The aforementioned units need not be different but may, in particular, be implemented by a single device which implements the functions of the aforementioned units.

The device of the invention may generally have a unit for carrying out the steps of the methods described above.

15

10

5

The device of the invention may have an oligonucleotide synthesizer which is controlled by the computer so that it synthesizes the optimized nucleotide sequence.

In this embodiment of the invention, the optimized nucleotide sequence can be synthesized either automatically or through an appropriate command from the user, without data transfers, adjustment of parameters and the like being necessary.

25

.30

35

The invention also provides a computer program which comprises program code which can be executed by a computer and which, when it is executed on a computer, causes the computer to carry out a method of the invention.

The program code can moreover, when it is executed on a computer, cause a device for the automatic synthesis of nucleotide sequences to prepare the optimized nucleotide sequence.

The invention also provides a computer-readable data medium on which a program of the invention is stored in computer-readable form.

The invention further provides a nucleic acid which has been or can be prepared by a method of the invention, and a vector which comprises such a nucleic acid. The invention further provides a cell which comprises such a vector or such a nucleic acid, and a non-human organism or a non-human life form which comprises such a cell, it also being possible for such a non-human life form to be mammal.

10

15

20

25

Whereas in random methods there is no correlation between a sequence in a preceding iteration step and the sequence in a subsequent iteration step, there is according to the invention new specification of a codon in each iteration step. Since the test sequence is varied on only part of the complete sequence, the method can be carried out with less effort. It is in particular evaluate possible to all possible combinations of codons in the variation region. The invention makes use in an advantageous manner of the circumstance that long-range correlations within a nucleotide sequence are of minor importance, i.e. that to achieve an acceptable optimization result it codons possible to vary the at one position substantially independently of the codons at a more remote position.

The method of the invention makes it possible to a greater extent than previous methods for relevant biological criteria to be included in the assessment of a test sequence. For example, with the method of the invention it is possible to take account of wanted or unwanted motifs in the synthetic nucleotide sequence. Since in a motif search even an individual codon may be crucial for whether a particular motif is present or not, purely stochastic methods will provide optimized sequences which comprise a required motif only with a very low probability or not at all. However, this is possible with the method of the invention because all

codon combinations are tested over a part region of the sequence. It is possible where appropriate in order to ensure the presence or non-presence of a particular sequence motif to make the number m of optimization positions so large that it is larger than the number of codon positions (or the number of base positions divided by 3) of the corresponding motif. If the m optimization positions connected, is are it ensured that the occurrence of a particular sequence 10 motif can be reliably detected and the corresponding motif can be ensured in the sequence or excluded from the latter. The numerical calculation of the quality function has particular advantages on use of weight matrix scans. Since in this case a different level of importance for recognition or biological activity can 15 be assigned to the different bases of a recognition in the method it is possible sequence, invention, in which all possible codon combinations are tested over a part region of the sequence, to find the 20 sequence which, for example, switches off effectively a DNA motif by eliminating the bases which are most important for the activity, or it is possible to find an optimized compromise solution with inclusion of other criteria.

25

30

35

The invention is not in principle restricted to a particular organism. Organisms for which an optimization of a nucleotide sequence for expression of a protein using the method of the invention is of particular interest are, for example, organisms from the following groups:

- viruses, especially vaccinia viruses,
- prokaryotes, especially Escherichia coli,
 Caulobacter cresentus, Bacillus subtilis,
 Mycobacterium spec.,
- yeasts, especially Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris, Pichia angusta,

- insects, especially Sprodoptera frugiperda,
 Drosophila spec.,
- mammals, especially Homo sapiens, Macaca mulata, Mus musculus, Bos taurus, Capra hircus, Ovis aries, Oryctolagus cuniculus, Rattus norvegicus, Chinese hamster ovary,

5

- monocotyledonous plants, especially Oryza sativa, Zea mays, Triticum aestivum,
- dicotyledonous plants, especially Glycin max,
 Gossypium hirsutum, Nicotiana tabacum, Arabidopsis thaliana, Solanum tuberosum.

Proteins for which an optimized nucleotide sequence can be generated using the method of the invention are, for 15 example:

- enzymes, especially polymerases, endonucleases, ligases, lipases, proteases, kinases, phosphatases, topoisomerases,
- cytokines, chemokines, transcription factors oncogenes,
 - proteins from thermophilic organisms, from cryophilic organisms, from halophilic organisms, from acidophilic organisms, from basophilic organisms,
- 25 proteins with repetitive sequence elements, especially structural proteins,
 - human antigens, especially tumor antigens, tumor markers, autoimmune antigens, diagnostic markers,
- viral antigens, especially from HAV, HBV, HCV,
 HIV, SIV, FIV, HPV, rinoviruses, influenza viruses, herpesviruses, poliomaviruses, hendra virus, dengue virus, AAV, adenoviruses, HTLV, RSV,
 - antigens of protozoa and/or disease-causing parasites, especially those causing malaria,
- leishmania, trypanosoma, toxoplasmas, amoeba,
 - antigens of disease-causing bacteria or bacterial pathogens, especially of the genera Chlamydia, staphylococci, Klebsiella, Streptococcus, Salmonella, Listeria, Borrelia, Escherichia coli,

25

- antigens of organisms of safety level L4, especially Bacillus anthracis, Ebola virus, Marburg virus, poxviruses.
- 5 The preceding list of organisms and proteins for which the invention is used is by no means restrictive and is intended merely as example for better illustration.

Brief description of the drawings

10 Figures la, 1b show a flow diagram of an exemplary embodiment of the method of the invention,

Figure 2 illustrates the ratio of test sequence, optimized DNA sequence, combination DNA sequence and amino acid sequence for an exemplary embodiment of the invention,

Figure 3 shows the regions for determining the sequence repeat,

20 Figure 4a and 4b show diagrammatically a scheme for determining sequence repeats,

Figure 5a shows the codon usage on exclusive optimization for codon usage,

Figure 5b shows the GC content on optimization for codon usage,

Figure 6a shows the codon usage on use of a first quality 30 function,

Figure 6b shows the GC content on use of a first quality function,

35 Figure 7a shows the codon usage on use of a second quality function,

Figure 7b shows the GC content on use of a second quality function,

Figure 8a shows the codon usage on use of a third quality 5 function,

Figure 8b shows the GC content on use of a third quality function,

10 Figure 9 shows a representative murine MIP1alpha calibration line in connection with example 3,

Figure 10 illustrates the percentage increase in the total amount of protein after transfection of synthetic 15 expression constructs compared with wild-type expression constructs in connection with example 3,

Figure 11 shows a representative ELISA analysis of the cell lysates and supernatants of transfected H1299 cells 20 in connection with example 3 and

Figures 12A to 12C show the expression analysis of the synthetic reading frames and of the wild-type reading frames in connection with example 3.

25

Detailed description of the preferred embodiments

Further features and advantages of the invention are evident from the following description of exemplary embodiments of the invention with reference to the 30 appended drawings.

According to a preferred embodiment of the invention, in one iteration the choice of the codon for the ith amino acid of an amino acid sequence of length N is considered.

35 For this purpose, all possible codon combinations of the available codons for the amino

acids at positions i to i + m - 1 are formed. These positions form a variation window and specify the optimization positions at which the sequence is to be varied. Every combination of codons on this variation window results in a DNA sequence with 3 m bases, which is called combination DNA sequence (CDS) hereinafter. In each iteration step, a test sequence which comprises the CDS at its end is formed for each CDS. In the first iteration step, the test sequences consist only of the 10 combination DNA sequences. The test sequences are weighted with a quality function which is described in detail below, and the first codon of the CDS which exhibits the maximum value of the quality function is retained for all further iterations as codon of the 15 optimized nucleotide sequence (result codon). means that when the ith codon has been specified in an iteration, each of the test sequences comprises in the next iteration this codon at position i, and the codons of the various combination DNA sequences at positions i + 1 to i + m. Thus, in the jth iteration, all test 20 sequences consist at positions 1 to j - 1 of the codons found to be optimal in the preceding iterations, while the codons at positions j to j + m - 1 are varied. The quality of the DNA sequence can be expressed as criterion weight (individual score) for each individual 25 test criterion. A total weight (total score) is formed by adding the criterion weights weighted according to specifications defined by the user and indicates the value of the quality function for the complete test sequence. If j = N - m + 1, the optimal test sequence 30 is at the same time the optimized nucleotide sequence according to the method of the invention. Allcodons of the optimal CDS in this (last) step are specified codons of therefore as the optimized 35 nucleotide sequence.

The procedure described above is illustrated diagrammatically in figure 1. The algorithm starts at the first amino acid (i=1). A first CDS of the codons

for amino acids i to i + m - 1 is then formed (in the first iteration, these are amino acids 1 to m). This CDS is combined with the previously optimized DNA sequence to give a test sequence. In the first step, the optimized DNA sequence consists of 0 elements. The test sequence therefore consists in the first iteration only of the previously formed (first) CDS.

then evaluated according test sequence is The criteria defined by the user. The value of a quality 10 is calculated by criterion weights function calculated for various assessment criteria and being calculated in an assessment function. If the value of the quality function is better than a stored value of the quality function, the new value of the quality 15 function is stored. At the same time, the first codon of the relevant CDS which represents amino acid i is also stored. If the value of the quality function is worse than the stored value, no action is taken. The next step is to check whether all possible CDS have 20 been formed. If this is not the case, the next possible formed and combined with the previously is optimized DNA sequence to give a new test sequence. The steps of evaluating, determining a quality function and comparing the value of the quality function with a 25 stored value are then repeated. If, on the other hand, possible CDS have been formed, and if all $i \neq N - m + 1$, the stored codon is attached at previously formed optimized DNA position i to the sequence. In the first iteration, the optimized DNA 30 sequence is formed by putting the stored codon on position 1 of the optimized DNA sequence. The process is then repeated for the next amino acid (i + 1). If, on the other hand, i = N - m + 1, the complete CDS of the optimal test sequence is attached to the optimized 35 DNA sequence previously formed, because it is already optimized in relation to the assessment criteria. Output of the optimized sequence then follows.

The relationship of the various regions is depicted diagrammatically in figure 2. The combination DNA sequence and the region of the previously specified optimized DNA sequence are evident.

5

10

30

The parameter m can be varied within wide limits, the aim being to maximize the number of varied codons for the purpose of the best possible optimization. A worthwhile optimization result can be achieved within an acceptable time with a size of the variation window of from m=5 to m=10 using the computers currently available.

Besides the individual weighting of the criterion 15 weights, it is possible to define both the total weight and the criterion weights by suitable mathematical functions which are modified compared with the simple relations such as difference or proportion, e.g. by segmentally defined functions which define a threshold 20 value, or nonlinear functions. The former is worthwhile example in assessing repeats or complementary repeats which are to be taken account only above a certain size. The latter worthwhile for example in assessing the codon usage or 25 the CG content.

Various examples of weighting criteria which can be used according to the invention are explained below without the invention being restricted to these criteria or the weighting functions described below.

Adaptation of the codon usage of the synthetic gene to the codon usage of the host organism is one of the most important criteria in the optimization. It is necessary to take account in this case of the different degeneracy of the various codons (one-fold to six-fold). Quantities suitable for this purpose are, for example, the RSCU (relative synonymous codon usage) or relative frequencies (relative adaptiveness) which are

standardized to the frequency of the codon most used by the organism (the codon used most thus has the codon usage of 1), cf. P.M. Sharp, W.H. Li, Nucleic Acid Research 15 (1987), 1281 to 1295.

5

To assess a test sequence in one embodiment of the invention, the average codon usage is used on the variation window.

10 When assessing the GC content, a minimal difference in the average GC content from the predefined desired GC content is necessary. An additional aim should be to keep the variations in the GC content over the course of the sequence small.

15

To evaluate a test sequence, the average percentage GC content of that region of the test sequence which includes the CDS and bases which are located before the start of the CDS and whose number b is preferably between 20 and 30 bases is ascertained. The criterion weight is ascertained from the absolute value of the difference between the desired GC content and the GC content ascertained for the test sequence, it being possible for this absolute value to enter as argument into a nonlinear function, e.g. into an exponential function.

If the variation window has a width of more than 10 codon positions, variations in the GC content within 30 the CDS may be important. In these cases, as explained GC content for above, the each base position which ascertained on а window is aligned particular way in relation to the base position and may include a particular number of, for example 40, bases, 35 and the absolute values of the difference between the desired GC content and the "local" GC ascertained for each base position are summed. Division sum by the number of individual ascertained results in the average difference from the

desired GC content as criterion weight. In the procedure described above it is possible for the location of the window to be defined so that said base position is located for example at the edge or in the center of the window. An alternative possibility is 5 also to use as criterion the absolute amount of the difference between the actual GC content in the test sequence or on a part region thereof to the desired GC content or the absolute amount of the difference 10 between the average of the abovementioned "local" GC content over the test sequence or a part thereof and the desired GC content as criterion. In a modification it is also possible to provide for the appropriate criterion weight to be used proportionally 15 to the square of the difference between the actual GC content and the desired GC content, the square of the difference between the GC content averaged over the base positions and the desired GC content average of the square of the differences between the 20 local GC content and the desired GC content criterion. The criterion weight for the GC content has the opposite sign to the criterion weight for the codon usage.

25 Local recognition sequences or biophysical characteristics play a crucial role in cell biology molecular biology. Unintended generation of corresponding motifs inside the sequence the gene synthesized may have unwanted effects. For 30 example, the expression may be greatly reduced or entirely suppressed; an effect toxic for organism may also arise. It is therefore desirable in the optimization of the nucleotide sequence to preclude unintended generation of such motifs. In the simplest 35 case, the recognition sequence can be represented by a well-characterized consensus sequence (e.g. restriction enzyme recognition sequence) using appropriate IUPAC base symbols. Carrying out a simple regular expression search within the test sequence results in the number

positions found for calculating the appropriate certain number of Ιf а imperfections weight. (mismatches) is permitted, the number of imperfections in a recognized match must be taken into account when ascertaining the weight function, for example by the weight for a base position being proportional to the number of bases which are assigned to an IUPAC consensus symbol. However, in many cases the consensus sequence is not sufficiently clear (cf., for example, K. Quandt et al., Nucleic Acid Research 23 10 (1995), 4878). It is possible in such cases to have recourse to a matrix representation of the motifs or use other recognition methods, e.g. by means of neural networks.

15

In the preferred embodiment of the invention, a value between 0 and 1 which, in the ideal case, reflects the binding affinity of the (potential) site found or its biological activity or else its reliability of recognition is determined for each motif found. The criterion weight for DNA motifs is calculated by multiplying this value by a suitable weighting factor, and the individual values for each match found are added.

25

The weight for unwanted motifs is included with the opposite sign to that for the codon usage in the overall quality function.

30 It is possible in the same way to include in the weighting the presence of certain wanted DNA motifs, e.g. RE cleavage sites, certain enhancer sequences or immunostimulatory or immunosuppressive CpG motifs. The weight for wanted DNA motifs is included with the same sign as the weight for the codon usage in the overall assessment.

Highly repetitive sequence segments may, for example, lead to low genetic stability. The synthesis of

repetitive segments is also made distinctly difficult because of the risk of faulty hybridization. According preferred embodiment of the invention, therefore, the assessment of a test sequence includes it comprises identical or mutually sequence segments at various points. The presence of corresponding segments can be established for example with the aid of a variant of a dynamic programming algorithm for generating a local alignment of mutually similar sequence segments. It is important in this embodiment of the invention that the algorithm which used generates а value is suitable quantitative description of the degree of and/or the length of the mutually similar sequence segments (alignment weight). For further relating to a possible algorithm, reference is made to the abovementioned textbooks by Gusfield or Waterman and M.S. Waterman, M. Eggert, J. Mol. Biology, (1987) 197, 723 to 728.

20

25

10

15

To calculate the criterion weight relating to the repetitive elements, the individual weights of all the local alignments where the alignment weight exceeds a certain threshold value are summed. Addition of these individual weights gives the criterion weight which characterizes the repetitiveness of the test sequence.

In a modification of the embodiment described above, only the one region which includes the variation window, and a certain number of further bases, e.g. 20 30 to 30, at the end of the test sequence is checked for whether a partial segment of the test sequence occurs in identical or similar way in this region of another site of the test sequence. This is depicted 35 digrammatically in figure 3. The full line in the middle represents the complete test sequence. The upper the CDS, represents while the lower represents the comparison region of the test sequence, which is checked for matching sequence segments with the remainder of the test sequence. The checking of the test sequences for matching or similar segments of the comparison region (cf. figure 3) using the dynamic programming matrix technique is illustrated in figure 4 and 4b. Figure 4a shows the case where similar or matching sequence segments A and B are present in the comparison region itself. Figure 4b shows the case where a sequence segment B in the comparison region matches or is similar to a sequence segment A outside the comparison region.

As alternative to the summation of individual weights it is also possible to provide for only the alignment which leads to the highest individual weight or, more generally only the alignments with the m largest individual weights, to be taken into account.

10

15

20

With the weighting described above it is possible to include both similar sequences which are present for example at the start and at the end of the test sequence, and so-called tandem repeats where the similar regions are both located at the end of the sequence.

25 Inverse complementary repeats can be treated in the same way as simple repeats. The potential formation of secondary structures and the RNA level or cruciform structures at the DNA level can be recognized on the sequence by the presence of such 30 complementary repeats (inverse repeats). Cruciform structures at the DNA level may impede translation and lead to genetic instability. It is assumed that the formation of secondary structures at the RNA level has adverse effects on translation efficiency. 35 connection, inverse repeats of particular importance those which form hairpin loops or cruciform structures. Faulty hybridizations or hairpin loops may also have adverse effects in the synthesis of the former from oligonucleotides.

checking for inverse complementary repeats principle takes place in analogy to the checking for simple repeats. The test sequence or the comparison region of the test sequence is, however, compared with the inverse complementary sequence. In a refinement, the thermodynamic stability can be taken into account in the comparison (alignment), in the simplest case by using a scoring matrix. This involves for giving higher weight to a CC or GG match, because the base pairing is more stable, than to a TT or AA match. Variable weighting for imperfections (mismatches) also possible correspondingly. More specific weighting is possible by using nearest neighbor parameters for calculating the thermodynamic stability, although this makes the algorithm more complex. Concerning a possible algorithm, reference is made for example L. Kaderali, A. Schliep, Bioinformatics 18 (10) 2002, 1340 to 1349.

20

25

30

35

5

10

15

For all the assessment criteria, the invention can provide for the corresponding weighting function to be position-dependent. For example, a larger weight can be given to the generation of an RE cleavage sequence at a particular site, or a larger weight can be given to secondary structures at the 5' end, because they show stronger inhibition there. It is likewise possible to take account of the codon context, i.e. the preceding or following codon(s). It is additionally possible to provide for certain codons whose use at the domain limits plays a role in cotranslational protein folding to make a contribution to the quality function, which contribution depends on whether this codon is nearer to the domain limit or not. Further criteria which may be included in the quality function are, for example, biophysical properties such as the rigidity or the curvature of the DNA sequence. Depending on the area of use it is also possible to include criteria which are associated with further DNA sequences. For example it

is crucial in the area of DNA vaccination that the sequences used for vaccination show no significant similarity to the pathogenic elements of the natural viral genome, in order to reliably preclude unwanted recombination events. In the same way, vectors used for gene therapy purposes ought to show minimal similarity to sequences of the human genome in order firstly to preclude homologous recombination into the human genome and secondly to avoid vital genes being selectively switched off in transcription through RNA interference phenomena (RNAI phenomena). The latter is also of general importance in the production of recombinant cell factories and, in particular, in transgenic organisms.

15

10

5

The various criterion weights for various criteria can according to the invention be included differently in the overall weight function. In this connection the difference which can be maximally achieved through the 20 corresponding criteria in the value of the quality function is important for the test sequence formed. a large proportion of certain criterion weights have DNA bases which cannot be changed by different CDS, such as, for example, the nucleotides in 25 front of the CDS, which are also included in the calculation of the average GC content, and nucleotides which are unaltered within synonymous codons. The individual weighting of a criterion vis-àvis other criteria can therefore be made dependent on 30 how greatly the quality of the test sequence differs from the target. It may be worthwhile to split up the criterion weights for further processing mathematical functions for calculating the function into a part which is a measure of the portion 35 of a criterion which is variable on use of different CDS, and a part which is a measure of the unaltered portions.

The embodiments of the invention which are described above are explained further below with reference to two specific examples.

5 Example 1

The intention is to ascertain the optimal DNA sequence pertaining to the (fictional) amino acid sequence AASeq1 from below. A conventional back-translation with optimization for optimal codon usage serves as reference.

AASeq1:

ASSeq1:

9 10 11 12 6 7 8 5 I I K N M F I I K N A GAA CAG TTT ATT ATT AAA AAC ATG TTT ATT ATT AAA AAC GCG TTC ATC ATC AAG AAT GCC GAG CAA TTC ATC ATC AAG AAT GCA ATA ATA ATA ATA GCT

The optimization is based on the following criteria:

- the codon usage is to be optimized to the codon usage of E. Coli K12.
- 20 the GC content is to be as close as possible to 50%.
 - repetitions are to be excluded as far as possible
 - the Nla III recognition sequence CATG is to be excluded

The assessment function used for the codon usage is the following function:

CUScore = <CU>

30

25

15

where <CU> in this example is the arithmetic mean of the relative adaptiveness over the codon positions of the test sequence.

5 To represent the codon usage of a codon, for better comparability of the codon quality of different amino acids, the best codon in each case for a particular amino acid is set equal to 100, and the worse codons are rescaled according to their tabulated percentage content. A CUScore of 100 therefore means that only the codons optimal for E. Coli K12 are used.

The weight for the percentage GC content is calculated as follows:

15

$$GCScore = |\langle GC \rangle - GC_{desire}|^{1.3} \times 0.8$$

To ascertain the individual weights of the alignments (alignment score), an optimal local alignment of the test sequence with a part region of the test sequence which includes a maximum of the last 36 bases of the complete test sequence is generated with exclusion of the identity alignment (alignment of the complete part region with itself) (cf. fig. 3, 4a, 4b).

25

The assessment parameter for a base position used in this case for calculating the dynamic programming matrix are:

Match = 1; Mismatch = -2; Gap = -2.

The corresponding criterion weight is specified by a power of the optimal alignment score in the examined region of the test sequence:

```
REPScore = (Score_{alignment})^{1.3}
```

A site score of 100 000 is allocated for each CATG sequence found.

5 The overall quality function TotScore results

TotScore = CUScore - GCScore - REPScore - SiteScore

The CDS length m is 3 codons (9 bases).

10

An optimization only for optimal codon usage results in the following sequence:

15

It is characterized by the following properties:

highly repetitive, caused by the amino acid sequence
 F_I_I_K_N which appears twice (the repetitive sequence
 with the highest score (18) is shown):

- GC content: 21.4%
- 25 the Nla III recognition sequence CATG is present
 - average codon usage: 100

If the optimization is carried out according to the algorithm of the invention with the abovementioned assessment functions and parameters, the following DNA sequence is obtained:

It is characterized by the following properties:

- scarcely repetitive (the alignment shown below with the highest contribution has a score of 6)
 - 11 TCATCA
 | | | | | | | |
 8 TCATCA
 - GC content: 31.0%
- 10 the Nla III recognition sequence CATG has been avoided
 - average codon usage: 88

In the optimization result according to the invention, the codon optimal in relation to codon usage was not chosen at five amino acid positions. However, the sequence found a represents an optimal balance of the various requirements in terms of codon usage, GC content and ideal sequence properties (avoidance of repetitions).

20 For the amino acids with the numbers 3, 4, 5, the higher GC content of the codons which are worse in terms of codon usage is the reason for the choice. At position 6, however, on comparison of the codons AAA and AAG, the considerably better codon usage of the AAA codon is dominant, although choice of the AAG codon would lead to a better GC score. On 25 formation of the CDS at base position 13, the codon AAC is preferred for amino acid No. 7 since, with a window size of 3 codons for the CDS, it is not yet evident that this choice will lead to the formation of the CATG DNA motif 30 which is to be avoided (the genetic code is not degenerate for methionine, i.e. there is only one codon for expression of methionine). In the formation of the CDS at base position 16, however, this has been recognized consequently the codon AAT is chosen. Besides codon usage 35 and GC content, also the avoidance of a repetitive DNA sequence plays in the choice of the codon for amino acids 9 to 13. Because of the identical amino acid sequences of

amino acids Nos. 3 to 7 and 9 to 13 a crucial role. For this reason, the codons TTT and ATT are preferred for amino acids 9 and 10, in contrast to previously (Aad. 3,4).

5 The following table illustrates the individual steps of the algorithm which have led to the optimization result indicated above. It enables the progress of the algorithm to be understood step by step. Moreover, all combination DNA sequences (CDS) formed by the software are listed in detail for each starting position.

The following information is given for each possible CDS:

- the test sequence which was formed from each CDS and
 the previously optimized DNA sequence which is used
 for evaluating the CDS,
 - the scores which were ascertained for codon usage, GC content, repetitiveness and DNA sites found (CU, GC, Rep, Site)
- 20 the repetitive element with the highest alignment score ascertained for the particular test sequence,
 - the total score ascertained.

The CDS are in this case arranged according to decreasing total score, i.e. the first codon of the first CDS shown is attached to the previously optimized DNA sequence.

CDS starting p	osition	l f	or amino aci	id	1 E	
CDS test sequence	CŲ	GC	Site	Rep	Alignment	Total Score
GAACAGTTC GAACAGTTC	92	5	0	0,0	Ę	87,0
GAACAGTTT GAACAGTTT	100	19	0	0,0	. [81,0
GAGCAGTTT GAGCAGTTT	82	5	. 0	0,0	хо Да	77,0
GAGCAGTTC GAGCAGTTC	73	5	0	0,0	Ĭ	68,0
GAACAATTC GAACAATTC	76	19	. 0	0,0	ũ	57,0
GAGCAATTC GAGCAATTC	58	5	0	0,0	g. G	53,0
GAACAATTT GAACAATTT	85	38	0	0,0	Ü	47,0
GAGCAATTT GAGCAATTT	.66	19	0	0,0	Ţ	47,0
CDS starting pos	sition	4	for amino a	cid	2 Q	
CDS test sequence	CU	GC	Site	Rep	Alignment	Total Score
CAGTTCATC GAACAGTTCATC	86	8	0	0,0	Ĭ,	78,0
CAGTITATC GAACAGTITATC	94	19	0	0,0	<u> </u>	75,0
CAGTTCATT GAACAGTTCATT	92	19	0	0,0	Ħ,	73,0
CAGTITATY GAACAGTITATY	100	33	0	0,0	·Щ	67,0
CAATTCATC GAACAATTCATC	70	19	0	0,0	· X	. 51,0
CAATTTATC GAACAATTTATC	.79	33	0	0,0	Ŭ	. 46,0
CAGTTCATA GAACAGTTCATA	63	19	0	0,0	I	44,0
CAATTCATT GAACAATTCATT	76	33	0	0,0	ÎII.	43,0
CAGTITATA GAACAGTITATA	71	33	. 0	0,0	I I,	38,0
CAATITATT GAACAATTTATT	85	48	0	0,0	Î	37,0
CAATTCATA GAACAATTCATA	48	33	Q	0,0	Ĭ	15,0
CAATITATA GAACAATITATA	5 6	48	0	0,0	ĵ,	0,8
CDS starting positi			ramino acid		3 F	
CDS (test sequence	CU (3C		Rep	Alignment	Total Score
TTCATCATC {	80 :c	10	0	0,0	- triti	70,0 .

TTTAICATC 88	19	(0.0	Ήį	
TTCATTATC 86	19	0	0,0	Arc Ch Ll	
TTCATCATT 86 GAACAGTTCATCATT	19	0	0,0	III I	
TITATTATC 94	30	0	0,0	- III	6
TITATCATT 94	30	0	0,0	· įį	б
TTCATTATT 92 GAACAGTTCATTATT	30	0	0,0	ĮĮĮ.	ó
TTTATTATT 100	42	O	0,0	· IXII	5
TTCATCATA 57 GRACAGTTCATCATA	19	0	0.0	M	3
TTCATAATC 57	19	C	0,0	Ŭ	3.
TTTATCATA 65 GAACAGTTTATCATA	30	0	. 0,0	ä	3:
TTTATAATC 65 GAACAGTTTATAATC	30	0	0,0	. H	. 33
TTCATTATA 63 GAACAGTTCATTATA	30	0	0,0	j)	33
TTCATAATT 63	· 30	0	0,0	· Û	33
TITATTATA 71 GAACAGTTTATTATA	42	0	0,0	ŢŅ.	29
TTTATAATT 71 .	42	0	0,0	· II	. 29
TTCATAATA 34 GAACAGTTCATAATA	30	0	0,0	ÎÎ	4
TITATAATA 43	42	. 0	0,0	ÌÌ	1
	() for a	ımino ac		4 I	
cos CU (Rep	Alignment	Total Sco
ATCATCAAA 88 GAACAGTTCATCATA	19	0	0,0		69,0
	28	0	0,0	III	66,0
	28	0 .	0,0	IQI	66,0
	38	0	0,0) III	62,0
ATCATGAAG 65 GAACAGTTCATCAAG	11	0	0,0	MA	54,0
	19 -	0	0,0	ĬŨ	52,0
ATCATTAAG 71 1	19	0 (0,0	<u>IN</u>	52,0
GAACAGTTCATCATTAAG				1	

ATCATAAAA 65 28 0 0,0	ĮĮĮ į	37,0
ATAATCAAA 65 28 0 0,0		37,0
ATTATAAA 71 38 0 0,0		33,0
ATAATTAAA 71 38 0 0,0	Įù	33,0
ATCATAAAG 43 19 0 0,0	III.	24,0
ATAATCAAG 43 19 0 0,0 GACAGTCATAATCAAG	II.	24,0
ATTATAAAG 49 28 0 0,0 GAACAGTTGATTATAAAG	Ũ	21,0
ATAATTAAG 49 28 0 0,0 GAACASTTCATAATTAAG	ДĴ	21,0
ATAATAAAA 43 38 0 0,0	. ÎŢĨ	5,0
ATAATAAAG 20 28 0 0,0 GAACAGTTCATAATAAAG	ÌĮI	-8,0
	•	
CDS starting position 13 for amino acid	5 I i	•
CDS CU GC Site Rep	. Alignment	Total Score
ATCAAAAAC 94 19 0 0,0	TÜÜ	75,0
ATTAAAAC 100 27 0 0,0 GACAGTTCATCATTAAAAC	ĮŭĮ –	73,0
ATCAAAAT 88 27 0 0,0	TÜİÜ	61,0
ATTAAAAT 94 35 0 0,0	IMI	59,0
ATTANGAAC 77 19 0 0,0 GALCHOTTCATCATTANGAAC	ewe ewe	58,0
ATCAAGAAC 71 13 0 0,0 GAACAGTTCATCATCAAGAAC	IIII	58,0
ATCAAGAAT 65 19 0 0,0 GAACAGTTCATCAAGAAT	Mill	46,0
ATTAAGAAT 71 27 0 0,0 GAACAGTTCATCATTAAGAAT	ŢĬŢ	44,0
ATALALAC 71 27 0 0,0 GAICAGTTCATCATALLALC	III 1 mil	44,0
ATAAAAAT 65 35 0 0,0 GACAGTTCATCATAAAAAT		30,0
ATANGAAC 49 19 0 0,0 GACAGITCATCATANGAAC	<u> </u>	30,0
ATAAAGAAT 43 27 0 0,0 GACAGTTCATCATAAAGAAT	ŢŅĪ	16,0
CDS starting position 16 for amino acid 6	к .	
CDS CU GC Site Rep	Alignment	Total Score .
AAAAATATG 94 26 0 0,0 GACAGTTCATCATCATATATG		68,0 .
	ļ	

	AAGAATATS 71 19 '0 0,0 GAACAGTICATCATCAAGAATATG	IIII III	52,0
	AAAAACATG 100 19 200000 0,0 GAACAGTICATGATGAAAAACATG	III II	919,0
	AAGAACATG 77 13 200000 0,0 GAACAGTTCATCAAGAACATG	illii	936,0
	CDS starting position 19 for amino acid 7 N		
	CDS CU GC Site Rep	Alignment	Total Score
	AATATOTIT 94 35 0 0,0 .	IIII	59,0
	ANTATOTIC 86 28 0 0,0 GAACAGITCATCAAAAATATGTTC	Mill	58,0
	AACATGTTT 100 28 200000 0,0 GAACAGTTCATCATCATCATCATCATCATCATCATCATCATCATCA	IIII .	928,0
	AACATOTIC 92 21 200000 0,0 GAACAOTICATCATCATAAACATOTIC	MAZHE	929,0
	CDS station acid 8 M		
	CDS starting position 22 for amino acid .8 M. CDS CU GC Site Rep test sequence	Alignment	Total Score
	ATCTITATC 94 35 0 0,0	ILLI	59,0
	ATGTTTATT 100 42 0 0,0	MI	58,0
	ATGTTCATT 92 35 0 0,0		57,0
	ATGITCATC 85 .28 0 12,5	MAN	45,0
	GAACAGTTCATCAAAATATGTTCATC ATGTTTATA 71 42 0 0,0	MM	29,0
	GACAGTTCATCATCAAAATATGTTTATA ATGTTCATA 63 35 0 0,0 GACAGTTCATCAAAAATATGTTCATA	<u>inai</u>	28,0
	CDS starting position 25 for amino acid 9 F	Alignment	Total Score
	CDS CU . GC Site Rep test sequence		52,0
	TITATTATC 94 42 0 0,0 GAICAGTTCATCATCATTATTATTATTATC	INIU TOTO	52,0
	TITATCATT 94 42 0 0,0 GAICAGITCATCANAATATGTTIATCATT	- HILLI	50,0
	TTCATTATT 92 42 0 0,0 GACCAGTICATCALLALATATOTTCATTATT	TIGI TIGI	40,0
	TITATCATC 88 35 0 12,5 GARCAGTTCATCATAAATATGTTTATCATC	CHICATOLIC CONTRACTOR OF THE PROPERTY OF THE P	38,0
	TTTATTATT 100 49 0 12,5 GAICAGTTCATCATCATCATATATTATTATT		
•	TTCATTATC 86 35 0 12,5 GAICAGTTCATCATCATATC	III LII LII	38,0
		GTTCATCAT	34,0

TTEATCATC 80 28 0 29,0 GAACAGTTCATCAAAAATATGTTCATCATC		32,0
TTTATCATA 65 42 0 0,0 GARCAGITCATCATCATATATATCATTATCATC	MÜ	23,0
TITATANTC 65 42 0 0,0 GACAGITCATCATCAAAAATATGTTTATAATC	<u>ilijū</u>	23,0
TITATTATA 71 49 0 0,0 GACAGTICATCATCANAATATGTTTATTATA		22,0
TTTATAATT 71 49 0 0,0 GAACAGTTCATCATCAAATATGTTTATAATT		22,0
TTCATAATT 63 42 0 0,0 GAACAGTTCATCAAAAATATGTTCATAATT		21,0
TTCATTATA 63 42 0 0,0 GARCAGTTCATCATCAACAATATGTTCATTATA		21,0
TTCATAATC 57 35 0 12,5 GARCAGTICATCATCATCATATCTCATCATCATCATCATCATCATCAT		9,0
TTCATCATA 57 35 0 17,4 GALCAGTICATCATCATCATCATCATCATCATCATCATCATCATCATC		5,0
TTTATAATA 43 49 0 0,0 GAACAGTTCATCATCATCATCATCATCATCATCATCATCATCATCA		-6,0
TTCATAATA 34 42 0 0,0 GAACAGTTCATCATCATCATCATCATCATCATCATCATCATCATCA	III II	-8,0
CDS starting position 28 for amino acid · 10 I CDS CU GC Site Rep	Alignment	Total Score
test sequence		
ATTATCAAA 94 49 0 12.5	GITTATTATCANA GHCATCATCANA	32,0
ATTATCAAA 94 49 0 12,5 GAACAGTTCATCATCAAAAATATGTTTATTATCAAA ATCATTAAA 94 49 0 12,5		32,0 32,0
ATTATCAAA 94 49 0 12,5 GAACAGTTCATCAAAAATATGTTTATTATCAAA		·
ATTATCAAA 94 49 0 12,5 GAACAGTICATCAAAAATATGTTTATTATCAAA ATCATTAAA 94 49 0 12,5 GAACAGTICATCAACAAATATGTTTATCATTAAA ATTATCAAAG 71 42 0 0,0		32,0
ATTATCAAA 94 49 0 12,5 GAACAGTTCATCACACAAATATGTTTATTATCAAA ATCATTAAA 94 49 0 12,5 GAACAGTTCATCACACAAATATGTTTATCATTAAA ATTATCAAG 71 42 0 0,0 GAACAGTTCATCACAAATATGTTTATTATCAAC ATCATTAAG 71 42 0 0,0		29,0 29,0 29,0 28,0
ATTATCAAA 94 49 0 12,5 GAACAGTTCATCAAAATATGTTTATTATCAAA ATCATTAAA 94 49 0 12,5 GAACAGTTCATCAAAATATGTTTATCATTAAA ATTATCAAG 71 42 0 0,0 GAACAGTTCATCAAAATATGTTTATCATCAAG ATCATTAAG 71 42 0 0,0 GAACAGTTCATCAAAATATGTTTATCATCAAG ATCATTAAA 100 57 0 14,9		29,0 29,0 29,0 28,0 26,0
ATTATCAAA 94 49 0 12,5 GAACAGTICATCAAAAATATGTTTATTATCAAA ATCATTAAA 94 49 0 12,5 GAACAGTTCATCAAAAATATGTTTATTATCATAAA ATTATCAAG 71 42 0 0,0 GAACAGTTCATCAAAAATATGTTTATTATCAAC ATCATTAAG 71 42 0 0,0 GAACAGTTCATCAAAAATATGTTTATTATCATTAAG ATTATTAAA 100 57 0 14,9 GAACAGTTCATCAAAAATATGTTTATTATAAA ATCATCAAA 88 42 0 20,0		29,0 29,0 29,0 28,0 26,0
ATTATCAAA 94 49 0 12,5 GAACAGTICATCATAAAATATGTTTATTATCAAA ATCATTAAA 94 49 0 12,5 GAACAGTICATCATCATAAAATATGTTTATCATTAAA ATTATCAAG 71 42 0 0,0 GAACAGTICATCATAAAATATGTTTATCATTAAG ATCATTAAG 71 42 0 0,0 GAACAGTICATCATAAAATATGTTTATCATTAAG ATTATTAAA 100 57 0 14,9 GAACAGTTCATCATAAAATATGTTTATCATTAAA ATCATCAAA 88 42 0 20,0 GAACAGTTCATCATAAAATATGTTTATCATCAAA ATTATAAAA 71 57 0 0,0		32,0 29,0 29,0 28,0 26,0 14,0
ATTATCAAA 94 49 0 12,5 GAACAGTTCATCAMAATATGTTTATTATCAAA ATCATTAAA 94 49 0 12,5 GAACAGTTCATCAMAATATGTTTATCATTAAA ATTATCAAG 71 42 0 0,0 GAACAGTTCATCAMAATATGTTTATCATCAAG ATCATTAAG 71 42 0 0,0 GAACAGTTCATCAMAATATGTTTATCATTAAG ATTATTAAA 100 57 0 14,9 GAACAGTTCATCAMAATATGTTTATTATTATAAA ATCATCAAA 88 42 0 20,0 GAACAGTTCATCAMAATATGTTTATCATCAAA ATTATAAAA 71 57 0 0,0 GAACAGTTCATCAMAATATGTTTATTATAAAA ATTATAAAA 71 57 0 0,0		32,0 29,0 29,0 28,0 26,0 14,0 14,0
ATTATCAAA 94 49 0 12,5 GAACAGTTCATCAAAAATATGTTTATTATCAAA ATCATTAAA 94 49 0 12,5 GAACAGTTCATCAAAAATATGTTTATCATTAAA ATTATCAAG 71 42 0 0,0 GAACAGTTCATCAAAAATATGTTTATCATCAAC ATCATTAAG 71 42 0 0,0 GAACAGTTCATCAAAAATATGTTTATCATCAAC ATTATTAAA 100 57 0 14,9 GAACAGTTCATCAAAAATATGTTTATTATTAAA ATCATCAAA 88 42 0 20,0 GAACAGTTCATCAAAAATATGTTTATCATCAACAA ATTATTAAAA 71 57 0 0,0 GAACAGTTCATCAAAAATATGTTTATTATAAAAAAA 71 57 0 0,0 GAACAGTTCATCAAAAATATGTTTATTATAAAAAAAAAA		32,0 29,0 29,0 28,0 26,0 14,0 14,0 13,0
ATTATCAAA 94 49 0 12,5 GAACAGTTCATCAMAATATGTTTATTATCAAA ATCATTAAA 94 49 0 12,5 GAACAGTTCATCAMAATATGTTTATCATTAAA ATTATCAAG 71 42 0 0,0 GAACAGTTCATCAMAATATGTTTATCATCAAG ATCATTAAG 71 42 0 0,0 GAACAGTTCATCAMAATATGTTTATCATCAAG ATTATTAAA 100 57 0 14,9 GAACAGTTCATCAMAATATGTTTATCATTAAA ATTATCAAA 88 42 0 20,0 GAACAGTTCATCAMAATATGTTTATCATCAMA ATTATAAAA 71 57 0 0,0 GAACAGTTCATCAMAATATGTTTATCATAMAA ATTATTAAA 71 57 0 0,0 GAACAGTTCATCAMAATATGTTTATTATATAMA ATTATTAAA 71 57 0 0,0 GAACAGTTCATCAMAATATGTTTATTATATAMA ATTATTAAA 71 57 0 0,0 GAACAGTTCATCAMAATATGTTTATTATATAMA ATTATTAAAG 77 49 0 14,9 GAACAGTTCATCAMAATATGTTTATTATTAAG ATCATCAAG 65 35 0 17,4		32,0 29,0 29,0 28,0 26,0 14,0 13,0 13,0 3,0
ATTATCAAA 94 49 0 12,5 GAACAGTTCATCAMAATATGTTTATTATCAAA ATCATTAAA 94 49 0 12,5 GAACAGTTCATCAMAATATGTTTATCATTAAA ATTATCAAG 71 42 0 0,0 GAACAGTTCATCAMAATATGTTTATCATCAAG ATCATTAAA 100 57 0 14,9 GAACAGTTCATCAMAATATGTTTATTATAAA ATCATCAAA 88 42 0 20,0 GAACAGTTCATCAMAATATGTTTATCAACAAAAAATATGTTTATCAACAAAAAAAA		32,0 29,0 29,0 28,0 26,0 14,0 13,0 13,0 3,0 1,0
ATTATCAAA 94 49 0 12,5 GAACAGTICATCAAAAATATGTTTATTATCAAA ATCATTAAA 94 49 0 12,5 GAACAGTICATCAACAAAATATGTTTATCAATATATATATATAAA ATTATCAAG 71 42 0 0,0 GAACAGTICATCAACAAATATGTTTATCAATAAA ATCATTAAA 100 57 0 14,9 GAACAGTICATCAACAAAATATGTTTATCATTAAA ATCATCAAA 88 42 0 20,0 GAACAGTICATCAACAAAATATGTTTATCATCAAA ATCATCAAA 88 42 0 20,0 GAACAGTICATCAACAAAATATGTTTATCATCAAA ATTATAAAA 71 57 0 0,0 GAACAGTICATCAACAATATGTTTATCATCAAAA ATTATTAAA 73 49 0 14,9 GAACAGTICATCAACAATATATTTATCATCAAG ATCATCAAA 65 49 0 12,5 GAACAGTICATCAACAATATATCATCAAAAA ATCATCAAA 65 49 0 14,9 ATCATCAAAA 65 49 0 14,9		32,0 29,0 29,0 28,0 26,0 14,0 13,0 13,0 3,0

ATAATTAAG . 49 49 0 0,0	MIN	0.0
ATCATAAAG 43 42 0 12,5 0AACAGITCATCAACAAATATGTTTATCATAAAG		-12,0
ATANTAMA 43 57 0 0.0 GALERGITEATCATCATCATATATATA	ŢŢŢŢŢ	-14,0
ATAATAAG 20 49 0 0,0 GAACAGTTCATCATCATATATTTTTTTTTTTTTTTTTTT	MII	-29,0
CDS starting position 31 for amino acid 11	I	
CDS CU GC Site Rep	Alignment .	Total Score
ATCAAGAAC 71 42 0 0,0 GAACAGTTCATCAACAAC	UUI	29,0
ATTAAAAAC 100 57 0 14,9 GAACAGTTCATCATCATAAAAAC		ÀTTÀ 28,0
ATCAAAAAC 94 49 0 17,4 GAACAGTTCATCATCAAAATATGTTTATTATCAAAAAC	सिदीसी	. 28,0
ATTAAAAT 94 64 0 14.9 GAACAGTTCATCATCAAAAATATGTTTATTAAAAAT		15,0
ATTAAGAAC 77 49 0 14,9 GAACAGTTCATCATCAAAAATATGTTTATTATTATGAAC		13,0
ATCAAAAAT 88 57 0 20,0 GAACAGTTCATCAAAAATATGTTTATTATCAAAAAT	Hatatami	11,0
ATCAAGAAT 65 49 0 12,5 GAACAGTTCATCAAAAATATGTTTATTATCAAGAAT	Hararani Hararani	3,0
ATANAGAAC 49 49 0 0,0 GANCHOTTEATENTALANATATOTTEATTATANAGAAC	IIII	0,0
ATTAAGAAT 71 57 0 14.9 GAACAGTTCATCAAAATAAGTTTATTATTAAGAAT		-1,0
ATAMMAC 71 57 0 14.9 GUCAGTICATCALANATATGTTTATTATAMAAC	icatea - aanatatet ta	-Ta-anna -1,0
ATAMAMAT 65 64 0 14,9 CALCAGTTCATCATCATAMATATOTTTATTATAMATAT		-Tà-2222 -14,0
ATAAAGAAT 43 57 0 0,0 GACAGTTCATCATCATCATCATCATCATCATCATATATTATATATATATATATATATATATATATATATATA	IIII III	-14,0
CDS starting position 34 for amino acid 12 k	•	
CDS CU GC Site Rep	Alignment	Total Score
AAGAACGCG 77 28 0 0,0 GAACAGTTCATCATAAAATATGTTTATTATCAAGAACGCS	顶顶	49,0
AAAACGCG 100 35 0 17,4 GAACAGTTCATCATCAAAATATGTTTATTATCAAAAACGCG		48,0
ANGANCGCC 69 28 0 0,0 GARCAGTICATCATCALALATATGTTTATTATCALGARCGCC		41,0
MAAACGCC 92 35 0 17,4 GAACAGTTCATCAACAGCC	GHTATTATE AND	40,0
AAAATGCG 94 42 0 20,0 GAACAGTTCATCAAAAATATGTTTATTATCAAAAATGCG	Hilianiii.	32,0 .
AGAACGCA 63 35 0 0,0 CAACAGTTCATCAAAATATGTTTATTATCAAGAACGCA	IDID	28,0
MAACGCA 86 42 0 17.4 GENERATICATICATICATURATATOTTTATTATCANIAGGCA	- EH-AT-AT-CAMI	27,0

(...

	- 52 -	
AAAAATGCC 86 42 0 20,0 GAALAGTTCATCATCATCATCCC	Hichelilli	24,0
AAGAACGCT 59 35 0 0,0 GAACAGTTCATCATCALAAATATGTTTATTATCAGGAACGCT	<u>IIII</u>	24,0
AAGAATGCG 71 35 0 12,5 GAACAGTTCATCATCAAAATATGTTTATTATCAAGAATGCG	SHCHCHILLIII	23,0
AAAACGCT 81 42 0 17,4 GAACAGTTCATCAAAAATATGTTTATTATCAAAAACGCT	SHI LATCATCANANA	22,0
AGAATGCC 63 35 0 12,5 GAACAGTTCATCAACAATATGTTTATTATCAAGAATGCC	GHICATCATCAAAAT	15,0
AAAAATGCA 80 49 0 20,0 GAACAGTTCATCATCATCATATATGTTTATTATCATCATATGCA		11,0
AAAAATGCT 75 49 0 20,0 GAACAGTTCATCATCATCAAAAATATGCT		6,0
AAGAATGCA 57 42 0 12,5 GAACAGTTCATCATCAAAATATGTTTATTATCAAGAATGCA	attattateaaaa	2,0
AAGAATEET 53 42 0 12,5 GAACAGTTCATCAAGAATGET GAACAGTTCATCAAGAATGET	GTTATTATCAGAAT GTTCATCATCAAAAT	-2,0

.

Example 2

This example considers the optimization of GFP for expression in E. Coli.

5

Origin of the amino acid sequence:

DEFINITION Aequorea victoria green-fluorescent protein mRNA, complete cds. ACCESSION M62654

MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFSYGVQCFSRYP DHMKQHDFFKSAMPEGYVQERIIFYKDDGNYKSRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKMEYNYNSHNV YIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMILLEFVT AAGITHGMDELYK

10 Codon usage table used: Escherichia coli K12

Origin: codon usage database on www.kazusa.or.ip/codon

The meanings below are:

<CU> : average renormalized codon usage of the CDS

15 (15 bases long)

<GC> : average percentage GC content of the last 35 bases

of the test sequence

GCdesire: desired GC content

20 The size of the window on which the GC content was calculated for the graphical representation in fig. 5b to 8b was 40 bases

Fig 5a and 5b show the results for the quality function:

25

Score = <CU>

Fig. 6a and 6b show the results for the quality function

30 Score = $\langle CU \rangle$ - $|\langle GC \rangle$ - $|\langle GC \rangle$ - $|\langle GC \rangle$ | 1.3 \times 0.8

Fig. 7a and 7b show the results for the quality function

Score =
$$\langle CU \rangle$$
 - $|\langle GC \rangle$ - $|\langle GC \rangle$ - $|\langle GC \rangle$ | 1.3 \times 1.5

Fig. 8a and 8b show the results for the quality function

Score =
$$\langle CU \rangle$$
 - $|\langle GC \rangle$ - $GC_{desire}|^{1.3} \times 5$

5

10

15

Figures 5 to 8 illustrate the influence of the different weighting of two optimization criteria on the optimization result. The aim is to smooth the GC content distribution over the sequence and approach the value of 50%. In the case shown in fig. 5a and 5b, optimization was only for optimal codon usage, resulting in a very heterogeneous GC distribution which in some cases differed greatly from the target content. In the case of fig. 6a and 6b there is an ideal conjunction of a smoothing of the GC content to a value around 50% with a good to very good codon usage. The cases of fig. 7a and 7b, and 8a and 8b, finally illustrate that although a further GC content optimization is possible, it is necessarily at the expense of a poor codon usage in places.

20

25

30

35

Example 3

The efficiency of the method of the invention is illustrated by the following exemplary embodiment in which expression constructs with adapted and RNA- and codon-optimized reading frames were prepared, and in which the respective expression of the protein was quantified.

Selected cytokine genes and chemokine genes from various organisms (human: IL15, GM-CSF and mouse: GM-CSF, pcDNA3.1(+) MIP1alpha) were cloned into the plasmid (Invitrogen) to prepare expression plasmids. The reading frames of the corresponding genes were optimized using a codon choice like that preferentially found in human and murine cells, respectively, and using the optimization method described herein for maximal expression in the relevant The organism. corresponding genes artificially assembled after the amino acid sequence of the genes was initially translated into a nucleotide sequence

like that calculated by the described method taking account of various parameters.

The optimization of the cytokine genes was based on the following parameters:

the following quality function was used to assess the test sequence:

10 TotScore = CUScore - GCScore - REPScore - SEKscore - SiteScore

The CDS length was 5 codons.

15 The individual scores are in this case defined as follows:

a) CUScore = <CU>

20 where <CU> represents the arithmetic mean of the relative adaptiveness values of the CDS codons, multiplied by 100, i.e. to represent the codon usage of a codon, for better comparability of the codon quality of different amino acids the codon which is best in 25 each case for a particular amino acid is set equal to 100, and the worst codons are rescaled according to their tabulated percentage content. A CUScore of 100 therefore means that only codons optimal for the expression system are used. In the cytokine genes to be optimized, the CUScore was calculated on the basis of 30 the codon frequencies in humans (Homo sapiens) which are listed in the table below. Only codons whose relative adaptiveness is greater than 0.6 are used in the optimizations.

AmAcid	Codon	Frequency	AmAcid	Codon	Frequency
Ala	GCG	0.10	Leu	TTG	0.12
	GCA	0.23		TTA	0.08
	GCT	0.26	·	CTG	0.38
	GCC	0.40		ÇTA	0.09
Arg	AGG	0.20		CTT	0.13
-	- AGA	0.20		CTC	0.20
	CGG	0.20	Lys	AAG	0.56
	CGA	0.11		AAA	0.44
	CGT	0.08	Met	ATG	1.00
	CGC	0.19	Phe	TTT	0.45
Asn	AAT	0.45		TTC	0.55
	AAC	0.55	Pro	CCG	0.11
Asp	GAT	0.46		CCA	0.27
•	GAC	0.54		CCT	0.28
Cys	TGT	0.45		CCC	0.34
-	TGC	0.55	Ser	AGT	0.15
End	TGA	0.61		AGC	0.24
	TAG	0.17		TCG	0.05
	TAA	0.21	_1 1	TCA	0.15
iln	CAG	0.73	┑ !	TCT	0.18

AmAcid	Codon	Frequency	AmAcid	Codon	Frequency
	CAA	0.27		TCC	0.22
Glu	GAG	0.58	Thr	ACG	0.11
	GAA	0.42		ACA	0.29
Gly	GGG	0.25		ACT	0.24
	GGA	0.25		ACC	0.37
	GGT	0.16	Trp	TGG	1.00
	GGC	0.34	Tyr	TAT	0.44
His	CAT	0.41		TAC	0.56
	CAC	0.59	Val	GTG	0.45
Ile	ATA	0.18		GTA	0.12
	ATT	0.35		GTT	0.18
	ATC	0.47		GTC	0.24

Scource: GenBank release 138.0 [October 15 2003] codon usage database, http://www.kazusa.or.jp/codon/

5 b)
$$GCScore = |\langle GC \rangle - GC_{desire}| \times 2$$

with <GC>: average percentage GC content of the last 35 bases of the test sequence $GC_{desire} \colon \mbox{ desired percentage GC content of 60\%}$

 \underline{c}) REPScore = (Score_{alignment, max})

10

To ascertain the individual weights of the alignments (alignment score), a local alignment of a terminal part region of the test sequence which includes a maximum of the last 35 bases of the complete test sequence is carried out with the region located in front in the test sequence.

Assessment parameters used in this case for a base 20 position are:

Match = 10; Mismatch = -30; Gap = -30.

5

10

The corresponding criterion weight REPScore is defined as the highest alignment score $Score_{alignment,maxt}$ reached in the checked region of the test sequence. If the value of $Score_{alignment,max}$) is < 100, then REPScore is set equal to 0.

d) SEKScore = (Score_{InvAligne nl max)})

The criterion weight SEKScore weights inverse alignments in the sequence produced. To ascertain the individual weight of an alignment (Score_{InvAlignment,max}), a local alignment of the inverse complementary of the test sequence is carried out with the part region of the test sequence which includes a maximum of the last 35 bases of the complete test sequence.

The assessment parameters used for a base position in this case are:

Match = 10; 25 Mismatch = -30; Gap = -30.

The corresponding criterion weight SEKScore is defined as the highest alignment score $Score_{InvAlignment,max}$ reached in the checked region of the test sequence. If the value of $Score_{InvAlignment,max}$ is < 100, then SEKScore is set equal to 0.

e) Sitescore

The following table lists the sequence motifs taking into account in ascertaining the SITEScore. Where a y appears on the heading "REVERSE", both the stated sequence motif and the relevant inverse complementary sequence motif was taken into account. If an n is

indicated under this heading, only the stated sequence motif, but not the sequence motif inverse complementary thereto, was taken into account. For each occurrence of the sequence motifs listed in the table (or their inverse complementary if REVERSE = y) within the last 35 bases of the test sequence, the criterion weight SITEScore is increased by a value of 100 000.

NAME PARTIES AND THE PARTIES OF THE	SEQUENCE	REVERSE!
Kpnl	GGTACC	n
Sacl	GAGCTC	n
Eukaria: (consensus) branch point	YTRAY	ń
Eukaria: (consensus) Spice Acceptor	YYYYYYYN(1,10)AG	D.
Eukaria: (consensus) Splice-Donor1	RGGTANGT	n
Eukaria: poly(A)-site (1)	AATAAA	n
Eukaria: poly(A)-site (2)	TTTTTATA ,	n
Eukaria: poly(A)-site (3)	TATATA	n
Eukaria: poly(A)-site (4)	TACATA	n
Eukaria: poly(A)-site (5)	TAGTAGTA	n
Eukaria: poly(A)-site (6)	ATATATTT	n
Eukaria: (consensus) Splice-Donor2	ACGTANGT	n
Eukaria: (Cryptic) Splice-Donor1	RGGTNNGT;	n
BsmBl	ССТСТС	у
Bbsl	GAAGAC	у
Eukaria; (Cryptic) Splice-Donor2	RGGTNNHT	n
Eukaria: (Cryptic) Splice-Donor3	NGGTNNGT	n
Eukaria: RNA inhib. Sequence	IWWWATTTAWWW	n

GC-Stretch	SSSSSSSS	n
Chi-Sequence	GCTGGTGG	у
Repeats	RE (\w(9.))\1	n
Prokaria: RBS-Entry (2)	AAGGAGN(3,13)ATG	у
Prokaria: RBS-Entry (1)	AGGAGGN(3,13)ATG	y
Prokaria: RBS-Entry (3)	TAASGAGG [N(3,13)DTG	у
Prokaria: RBS-Entry (4)	AGAGAGN(3,13)ATG	у
Prokarla: RBS-Entry (5)	AAGGAGGN(3,13)ATG	у
Prokaria: RBS-Entry (6)	AACGGAGGN(3,13)ATG	у
Prokaria: RBS-Entry (7)	AAGAAGGAAN(3,13)ATG	у
HindIII	AAGCTT	n
Noti	GCGGCCGC	ń
BamHI	GGATCC	n
E∞RI	GAATTC	n
Kbal	TCTAGA	n
Xhol	CTCGAG	n

Appropriate unique restriction cleavage sites were introduced for subcloning. The complete nucleotide sequences are indicated in the annex. The sequences modified in this way were prepared as fully synthetic

10

15

genes (Geneart, Regensburg). The resulting coding DNA fragments was placed under the transcriptional control of the cytomegalo virus (CMV) early promotor/enhancer the expression vector pcDNA3.1(+) using restriction cleavage sites HindIII and NotI. To prepare expression plasmids which are analogous but unaltered in their codon choice (wild-type reference constructs), the coding regions (c-DNA constructs were produced from cloned after PCR amplification RZPD) were appropriate oligonucleotides likewise using the HindIII and NotI restriction cleavage sites in pcDNA3.1(+).

To quantify cytokine/chemokine expression, human cells were transfected with the respective expression constructs, and the amount of protein in the cells and in the cell culture supernatant was measured by using commercial ELISA test kits.

10

- A11 the cell culture products were from Life Technologies (Karlsruhe). Mammalian cell 20 lines were cultivated at 37°C and 5% CO2. The human lung carcinoma cultivated in Dulbecco's cell line H1299 was with L-glutamine, modificated Eagle medium (DMEM) D-glucose (4.5 mg/ml), sodium pyruvate, 10% inactivated penicillin (100 U/ml) 25 fetal bovine serum, streptomycin (100 μ g/ml). The cells were subcultivated in the ratio 1:10 after reaching confluence.
- 2.5×10^5 cells were seeded in 6-well cell culture h, transfected by calcium after 24 30 dishes and, phosphate coprecipitation (Graham and Eb, 1973) with 15 μg of expression plasmids or pcDNA 3.1 vector (mock control). Cells and culture supernatants were harvested 48 h after the transfection. Insoluble constituents in 35 the supernatants were removed by centrifugation and 10 000 xg and 4°C for 10 min. The transfected cells were washed twice with ice-cold PBS (10 mM Na₂HPO₄, 1.8 mM KH_2PO_4 , 137 ml NaCl, 2.7 mM KCl), detached with 0.05% trypsin/EDTA, centrifuged at 300 ×g for 10 min

and lysed in 100 μ l of lysis buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.1% SDS (w/v), 1% Nonidet P40 (v/v), 0.5% Na deoxycholate (w/v)) on ice for 30 min. Insoluble constituents of the cell lysate were removed by centrifugation at 10 000 xg and 4°C for 30 min. The total amount of protein in the cell lysate supernatant was determined using the Bio-Rad protein assay (Bio-Rad, Munich) in accordance with the manufacturer's instructions.

10

35

The specific protein concentrations in the cell lysates and cell culture supernatants were quantified by ELISA tests (BD Pharmingen for IL15 and GM-CSF; R & D Systems for MIPlalpha). Appropriate amounts of total protein of the cell lysate (0.2 to 5 μg) and dilutions of the 15 1:200) analyzed supernatant (undiluted to were according to the manufacturer's instructions, and the concentration was calculated by means calibration plot. Fig. 9 shows a representative calibration plot for calculating the murine MIP1alpha 20 MIP1alpha concentration. Recombinant murine adjusted in accordance with the manufacturer's instructions by serial two-fold dilutions to increasing concentrations and employed in parallel with the samples from the cell culture experiments 25 specific ELISA test. The concentrations MIP1alpha (x axis) were plotted against the measured O.D. values (450 nm, y axis), and a regression line was calculated using MS Excel (the regression coefficient R² 30 indicated).

This was supplemented by carrying out a detection by Western blot analyses for suitable samples. For GM-CSF samples, total proteins were precipitated from in each case 1 ml of cell culture supernatant by Na DOC (sodium deoxycholate) and TCA (trichloroacetic acid) and resuspended in 60 μ l of 1x sample buffer (Laemmli, 1970). 20 μ l were employed for each of the analyses. For IL15 detection, 25 μ g of total protein from cell

lysates were used. The samples were heated at 95°C for 5 min, fractionated on a 15% SDS/polyacrylamide gel (Laemmli, 1970) electrotransferred to a nitrocellulose and analyzed with appropriate membrane (Bio-Rad) monoclonal antibodies (BD Pharmingen), detected using a secondary, AP (alkaline phosphatase)-coupled antibody and demonstrated by chromogenic staining. Fig. 12A to C show the expression analysis of the synthetic reading frame and of the wild-type reading frames. H1299 cells were transfected with the stated constructs, and the 10 production was detected by conventional protein immunoblot analyses. In this case, fig. 12A shows the analysis of the cell culture supernatants after Na Doc/TCA precipitation of human GM-CSF transfected H1299 cells, fig. 12B shows the analysis of the cell culture 15 supernatants after Na Doc/TCA precipitation of murine GM-CSF transfected H1299 cells, fig. 12C shows analysis of lysates from human the cell IL15 transfected H1299 cells. Molecular weights (precision plus protein standard, Bio-Rad) and loading of the 20 wild-type, synthetic and mock-transfected samples are indicated. Mock transfection corresponds to transfection with original pcDNA3.1 plasmid.

25 The following table summarizes the expression with all ELISA-analyzed differences averages of experiments. The data correspond to the percentage difference in the total amount of protein (total amount of protein in cell lysate and supernatant) related to the corresponding wild-type construct (wt corresponds 30 to 100%).

Comparision of the total amounts of protein after transfection of wild-type vs. synthetic expression constructs

Construct	Organism	MW*	StdDev**	n=
GM-CSF	human	173%	53%	4
IL15	human	181%	37%	3
GM-CSF	mouse	127%	12%	2
MIP11alpha	mouse	146%	48%	2

* percentage average of the amount of protein from n experiments (in duplicate) related to the total amount of protein for the corresponding wild-type construct

10 ** standard deviation

5

15

20

25

30

Fig. 10 shows in the form of a bar diagram the relative amount of protein in relation to the respective wildtype construct (corresponds to 100%) and illustrates the percentage increase in the total amount of protein after transvection of synthetic expression constructs compared with wild-type expression constructs. H1299 cells were transfected with 15 μ g of cytokine/chemokine constructs. The respective protein production was quantified by conventional ELISA tests in the cell culture supernatant and in the cell lysate by means of appropriate standard plots (see fig. 9). The ratio of the total amount of protein of synthetic to wild-type protein was calculated in each experiment (consisting of two independent mixtures) and indicated as percent of the total wild-type protein. The bars represent the average of four experiments for human GM-CSF, of three experiments for human IL15 and of two experiments for murine MIPlalpha and GM-CSF, in each case in indépendent duplicates. The error bars correspond to the standard deviation.

Fig. 11 depicts a representative ELISA analysis of the cell lysates and supernatants of transfected H1299

cells for human GM-CSF. H1299 cells were transfected with 15 μg each of wild-type and optimized human GM-CSF contructs. The respective protein concentration was quantified by conventional ELISA tests in the cell culture supernatant and in the cell lysate by means of appropriate standard plots. The bars represent the value of the total amount of protein in the cell lysate (CL), in the cell culture supernatant (SN) and the total of these values (total) for in each case 2 independent mixtures (1 and 2).

5

10

15

20

This analysis shows that the increase in expression after optimization (hu GM-CSF opt) is consistently detectable in the cell lysate and supernatant. It also illustrates by way of example that secretion of the cytokines is unaffected by the optimization by this method. A distinct and reproducible increase in protein expression was detectable for all optimized constructs, with the synthesis efficiencies of the optimized genes being improved by comparison with the wild-type genes in each individual experiment.

Expression was additionally checked in Western blot analyses (fig. 12 A to C). Human and murine GM-CSF were 25 detectable in the cell culture supernatant (after Na DOC/TCA precipitation) (fig. 12A and B), while human IL15 was detectable in the cell lysates (fig. 12C). The proteins were analyzed, compared with commercially available recombinant proteins (BD) and the molecular 30 weight was correspondingly confirmed. Ιt was possible in these transient transfection experiments to detect murine MIP1alpha by immunoblot staining. Comparison of the wild-type with the synthetic proteins in these representative immunoblots confirms the data 35 of the ELISA analyses of an improved protein synthesis through multiparameter optimization of these genes.

The features disclosed in the claims, the drawings and the description may be essential both singly and in any

combination for implementation of the invention in its various embodiments.

Annex: SEQ-IDs and alignments of the DNA sequences used

SEQ-ID of the indicated constructs:

```
SEQ-ID1 (human GM-CSF wild type):
         1 atgtggctgc agagectgct getettgggc actgtggcct gcagcatete tgcaccegee
        61 cgctcgccca gccccagcac gcagccctgg gagcatgtga atgccatcca ggaggcccgg
       121 cgtctcctga acctgagtag agacactgct gctgagatga atgaaacagt agaagtcatc
       181 toagaaatgt tigaccicca ggagoogaco igoctacaga occgootgga gotgtacaag
       241 cagggeetge ggggeageet caccaagete aagggeeeet tgaccatgat ggeeageeae
       301 tacaagcago actgocotoo aaccooggaa acttootgtg caaccoagat tatcacottt
       361 gaaagtttca aagagaacct gaaggacttt ctgcttgtca tcccctttga ctgctgggag
       421 ccagtccagg agtag
SEQ-ID2 (human GM-CSF optimized):
        1 atgtggctgc agagectgct getgetggga acagtggcet gtagcatete tgeecetgce
        61 agaageeeta geeetageae acageettgg gageaegtga atgecateea ggaggeeagg
       121 agactgctga acctgagcag agatacagcc gccgagatga acgagaccgt ggaggtgatc
      181 agogagatgt togacotgca ggagootaca tgoptgcaga cocggotgga gotgtataag
      241 cagggectga gaggetetet gaccaagetg aagggeeecc tgacaatgat ggeeageeac
      301 tacaagcage actgeoctee tacceetgag acaagetgeg ceacecagat cateacette
      361 gagagettea aggagaacet gaaggaette etgetggtga teccettega ttgetgggag
      421 cccgtgcagg agtag
SEO-ID3 (human IL15 wild type):
        1 atgagaattt cgaaaccaca tttgagaagt atttccatcc agtgctactt gtgtttactt
       61 ctaaacagtc attitictaac tgaagcigge atteatgiet teatititggg cigitteagt
      121 geagggette etaaaacaga ageeaactgg gtgaatgtaa taagtgattt gaaaaaaatt
      181 gaagatotta ttoaatotat goatattgat gotactttat atacggaaag tgatgttoac
      241 cccagttgca aagtaacagc aatgaagtgc tttctcttgg agttacaagt tatttcactt
      301 gagtccggag atgcaagtat tcatgataca gtagaaaatc tgatcatcct agcaaacaac
      361 agtttgtctt ctaatgggaa tgtaacagaa tctggatgca aagaatgtga ggaactggag
      421 gaaasaaata ttaaagsatt tttgcagagt tttgtacata ttgtccaaat gttcatcaac
      481 acttcttag
SEQ-ID4 (human IL15 optimized):
        1 atgcggatca gcaagcccca cetgaggagc atcagcatec agtgctacet gtgcctgetg
       61 ctgaacagec acttectgae agaggeegge ateçaegtgt ttateetggg etgettetet
      121 geoggeotge ctaagacaga ggeoaactgg gtgaacgtga teagegacet gaagaagate
      181 gaggacetga tecagageat geacategae gecáceetgt acacagagag egaegtgeae
      241 cottagetgta aggtgacege catgaagtge ttootgetgg agetgeaggt gateagestg
      301 gagageggeg atgecageat ceaegacace gtggagaace tgateateet ggecaacaac
      361 agcotgagoa goaacggoaa tgtgacogag agoggotgoa aggagtgtga ggagotggag
      421 gagaagaaca tcaaggagtt cctgcagagc ttcgtgcaca tcgtgcagat gttcatcaac
      481 accagctag
SEQ-ID5 (murine GM-CSF wild type):
        1 atgtggctgc agaatttact tttoctgggc attgtggtct acagcctctc agcacccacc
       61 cgctcaccca tcactgtcac coggeettgg aagdatgtag aggeeatcaa agaageeetg
      121 aaceteetgg atgacatgee tgteacattg aatgaagagg tagaagtegt etetaaegag
      181 tteteettea agaagetaae atgtgtgeag accegeetga agatattega geagggteta
      241 cggggcaatt tcaccaaact caagggcgcc ttgaacatga cagccagcta ctaccagaca
      301 tactgccccc caacteegga aacggactgt gaadcacaag ttaccaccta tgcggatttc
      36) atagacagee ttaaaacett tetgaetgat atedeetttg aatgeaaaaa aeeaggeeaa
      421 aaatag.
SEQ-ID6 (murine GM-CSF optimized):
       1 atgtggetge agaacetget gtteetggge ategtggtgt acageetgag egeeceace
       61 aggageeeca teacegtgae caggeeetgg aagdaegtgg aggeeateaa ggaggeeetg
     121 aacctgctgg acgacatgcc cgtgaccctg aacdaggagg tggaggtggt gagcaacgag
     181 ttcagettca agaagetgae etgegtgeag accaggetga agatettega geagggeetg
```

- 241 aggggcaact teaccaaget gaagggcgcc etgaacatga eegecageta etaccagaec 301 tactgcccc ccacccccga gaecgactgc gagacccagg tgaccaccta cgccgactte
- 361 ategacagee tgaagacett cetgacegae ateceetteg agtgeaagaa geeeggeeag
- 421 aagtag

SEQ-ID7 (murine MIPlapha wild type):

- 1 atgaaggtot ocaccactge cottgetgtt ottetetgta coatgacact otgeaaccaa
- 61 gtottotoag ogcoatatgg agotgacace ocgactgcot gotgottoto etacageogg 121 aagattocac gocaattoat ogttgactat tttgaaacca gcagootttg otoccagoca
- 181 ggtgtcattt tcctgactaa gagaaaccgg cagatctgcg ctgactccaa agagacctgg
- 241 gtccaagaat acatcactga cctggaactg aatgcctag

SEQ-ID8 (murine MIPlapha optimized):

- 1 atgaaggtga gcaccacage tetggetgtg etgetgtgca ceatgaccet gtgcaaccag
- 61 gtgttcagcg ctccttacgg cgccgatacc cctacagcct gctgcttcag ctacagcagg
- 121 aagateecca ggeagtteat egtggaetae ttegagaeca geageetgtg tteteageee
- 181 ggcgtgatct teetgaceaa geggaacaga cagatetgeg eegacageaa ggagacatgg
- 241 gtgcaggagt acatcaccga cctggagctg aacgcctag

Alignments of the DNA sequences used

1. Human GM-CSF:

421

CCCGTGCAGGAGTAG

Upper line: SEQ-ID1 (human GM-CSF wild type), from 1 to 435 Lower line: SEQ-ID2 (human GM-CSF optimized), from 1 to 435 Wild type: optimized identity = 83.45% (363/435) gap = 0.00% (0/435) ATGTGGCTGCAGAGCCTGCTGCTCTTGGGCACTGTGGCCTGCAGCATCTCTGCACCCGCC 1 ATGTGGCTGCAGAGCCTGCTGCTGCGGAACAGTGGCCTGTAGCATCTCTGCCCCTGCC 1 CGCTCGCCCAGCCCCAGCACGCCCTGGGAGCATGTGAATGCCATCCAGGAGGCCCGG 61 AGAAGCCCTAGCCCTAGCACACACCTTGGGAGCACGTGAATGCCATCCAGGAGGCCAGG 121 agactgctgaacctgagcagagatacagccgccgagatgaaccagaccgtggaggtgatc 121 181 TCAGAAATGTTTGACCTCCAGGAGCCGACCTGCCTACAGACCCGCCTGGAGCTGTACAAG AGCGAGATGTTCGACCTGCAGGAGCCTACATGCCTGCAGACCCGGCTGGAGCTGTATAAG 181 241 241 TACAAGCAGCACTGCCCTCCAACCCCGGAAACTTCCTGTGCAACCCAGATTATCACCTTT 301 111 / 1111111 11111 TACAAGCAGCACTGCCCTCCTACCCCTGAGACAAGCTGCGCCACCCAGATCATCACCTTC 301 361 GAAAGTTTCAAAGAGAACCTGAAGGACTTTCTGCTTGTCATCCCCTTTGACTGCTGGGAG 361 GAGAGCTTCAAGGAGAACCTGAAGGACTTCCTGCTGGTGA†CCCCTTCGATTGCTGGGAG 421 CCAGTCCAGGAGTAG 11 11 1111111

2. Human IL15:

Upper line: SEQ-ID3 (human IL15 wild type), from 1 to 489 Lower line: SEQ-ID4 (human IL15 optimized), from 1 to 489

Wild type: optimized identity = 70.55% (345/489) gap = 0.00% (0/489)

	·
1	ATGAGAATTTCGAAACCACATTTGAGAAGTATTTCCATCCA
1	ATGCGGATCAGCAAGCCCCACCTGAGGAGCATCAGCATCCAGTGCTACCTGTGCCTGCTG
61	CTAAACAGTCATTTTCTAACTGAAGCTGGCATTCATGTCTTCATTTTGGGCTGTTTCAGT
61	CTGAACAGCCACTTCCTGACAGAGGCCGGCATCCACGTGTTTATCCTGGGCTGCTTCTCT
121	GCAGGGCTTCCTAAAACAGAAGCCAACTGGGTGAATGTAATAAGTGATTTGAAAAAATT
121	GCCGGCCTGCCTAAGACAGAGGCCAACTGGGTGAACGTGATCAGCGACCTGAAGAAGATC
181	GAAGATCTTATTCAATCTATGCATATTGATGCTACTTTATATACGGAAAGTGATGTTCAC
181	GAGGACCTGATCCAGAGCATGCACATCGACGCCACCCTGTACACAGAGAGCGACGTGCAC
242	CCCAGTTGCAAAGTAACAGCAATGAAGTGCTTTCTCTTTGGAGTTACAAGTTATTTCACTT
241	CCTAGCTGTAAGGTGACCGCCATGAAGTGCTTCCTGCTGGAGCTGCAGGTGATCAGCCTG
301	GAGTCCGGAGATGCAAGTATTCATGATACAGTAGAAAATCTGATCATCCTAGCAAACAAC
301	GAGAGCGGCGATGCCAGCATCCACGACACCGTGGAGAACCTGATCATCCTGGCCAACAAC
361	AGTTTGTCTTCTAATGGGAATGTAACAGAATCTGGATGCAAAGAATGTGAGGAACTGGAG
361	AGCCTGAGCAACGGCAATGTGACCGAGAGCGGCTGCAAGGAGTGTGAGGAGCTGGAG
421	GAAAAAATATTAAAGAATTTTTGCAGAGTTTTGTACATATTGTCCAAATGTTCATCAAC
421	GAGAAGAACATCAAGGAGTTCCTGCAGAGCTTCGTGCACATCGTGCAGATGTTCATCAAC
481	ACTTCTTAG
481	ACCAGCTAG

3. Murine GM-CSF:

Upper line: SEQ-ID5 (murine GM-CSF wild type), from 1 to 426 Lower line: SEQ-ID6 (murine GM-CSF optimized), from 1 to 426

Wild type: optimized identity = 80.75% (344/426) gap = 0.00% (0/426)

1	አመድኮድር መድረብ ድርስ ት መመን መመመው እስከ
+	ATGTGGCTGCAGAATTTACTTTTCCTGGGCATTGTGGTCTACAGCCTCTCAGCACCCACC
1	ATGTGGCTGCAGAACCTGCTGTTCCTGGGCATCGTGGTGTACAGCCTGAGCGCCCCCACC
61	CGCTCACCCATCACTGTCACCCGGCCTTGGAAGCATGTAGAGGCCCATCAAAGAAGCCCTG
61	ACCHECACON TO A COMPANY OF THE ACC
01	AGGAGCCCCATCACCGTGACCAGGCCCTGGAAGCACGTGGAGGCCATCAAGGAGGCCCTG
121	AACCTCCTGGATGACATGCCTGTCACATTGAATGAAGGGTAGAAGTCGTCTCTAACGAG
121	AACCTGCTGGACGACATGCCCGTGACCCTGAACGAGGAGGTGGAGGTGGTGAGCAACGAG
181	##C#CC################################
	TTCTCCTTCAAGAAGCTAACATGTGTGCAGACCCGCCTGAAGATATTCGAGCAGGGTCTA
181	TTCAGCTTCAAGAAGCTGACCTGCGTGCAGACCAGGCTGAAGATCTTCGAGCAGGGCCTG
241	CGGGGCAATTTCACCAAACTCAAGGGCGCCTTGAACATGACAGCCAGC
241	AGGGGCAACTTCACCAAGGTCAAG
~	AGGGGCAACTTCACCAAGCTGAAGGGCGCCCTGAACATGACCGCCAGCTACTACCAGACC
301	TACTGCCCCCAACTCCGGAAACGGACTGTGAAACACAAGTTACCACCTATGCGGATTTC
301	TACTGCCCCCCACCCCCGAGACCGACTGCGAGACCCAGGTGACCACCTACGCCGACTTC
361	ATAGACAGCCTTAAAACCTTTCTGACTGATATCCCCTTTGAATGCAAAAAACCAGGCCAA
	II 1/11/11/1 1 1/1/1 1/1/1 1/1/1/1/1/1/1
361	ATCGACAGCCTGAAGACCTTCCTGACCGACATCCCCTTCGAGTGCAAGAAGCCCGGCCAG
	:
421	AAATAG
421	AAGTAG
	1412 1119

4. Murine MIP1alpha:

Upper line: SEQ-ID7 (murine MIPlalpha wild type), from 1 to 279 Lower line: SEQ-ID8 (murine MIPlalpha optimized), from 1 to 279 Wild type: optimized identity = 78.49% (219/279) gap = 0.00% (0/279) ATGAAGGTCTCCACCACTGCCCTTGCTGTTCTTCTCTGTACCATGACACTCTGCAACCAA 1 ATGAAGGTGAGCACCACAGCTCTGGCTGTGCTGCTGTGCACCATGACCCTGTGCAACCAG 61 GTGTTCAGCGCTCCTTACGGCGCCGATACCCCTACAGCCTGCTGCTTCAGCTACAGCAGG 61 121 AAGATTCCACGCCAATTCATCGTTGACTATTTTGAAACCAGCAGCCTTTGCTCCCAGCCA 121 AAGATCCCCAGGCAGTTCATCGTGGACTACTTCGAGACCAGCAGCCTGTGTTCTCAGCCC 181 GGTGTCATTTTCCTGACTAAGAGAAACCGGCAGATCTGCGCTGACTCCAAAGAGACCTGG GGCGTGATCTTCCTGACCAAGCGGAACAGACAGATCTGCGCCGACAGCAAGGAGACATGG 181 241 GTCCAAGAATACATCACTGACCTGGAACTGAATGCCTAG 11 11 11 fressies service (1111 feet)

GTGCAGGAGTACATCACCGACCTGGAGCTGAACGCCTAG

The claims defining the invention are as follows:

- 1. A method for optimizing a nucleotide sequence comprising the following steps carried out on a computer:
- generating a first test sequence of n codons which correspond to n consecutive amino acids in a protein sequence, wherein n is a natural number and is less than or equal to N, and wherein N defines the number of amino acids in the protein sequence;
- determining m optimization positions in the test sequence which correspond to the position of m codons at which the occupation by a codon relative to the test sequence is to be optimized, wherein $m \le n$ and m < N;
- generating one or more further test sequences from the first test sequence by replacing a codon of the first test sequence by another codon which encodes the same amino acid at one or more of the m optimization positions;
- assessing each of the test sequences with a quality function and selecting a test sequence which is optimal in relation to the quality function;
- determining p codons of the test sequence which is relation to the quality optimal in function result codons which are located at one of the moptimization positions, and wherein the result codons form the codons of the optimized nucleotide sequence at positions which corresponds position of said p codons in the test sequence, wherein p is a natural number and $p \le m$; and
- result codons at positions that are different from the positions of result codons determined in one or more preceding iterations, wherein at each iteration step the test sequence comprises the result codons from the preceding iteration(s) at positions which correspond to their positions in the optimized nucleotide sequence of the preceding iteration(s).

- 2. The method according to claim 1, wherein for one or more iteration steps the *m* optimization positions of the test sequences directly follow one or more result codons which have been determined as part of the optimized nucleotide sequence in a preceding iteration.
- 3. The method according to claim 1 or 2, wherein for one or more iteration steps the p codons which are determined as result codons of the optimized nucleotide sequence are p consecutive codons.
- 4. The method according to any one of claims 1 to 3, wherein for one iteration step test sequences with all possible codon occupations for the *m* optimization positions are generated from the first test sequence, and the optimal test sequence is ascertained from these test sequences.
- 5. The method according to any one of claims 1 to 4 comprising:
- assessing each test sequence with a quality function;
- ascertaining an extreme value within the values of the quality function for all partial sequences generated in an iteration step; and
- determining p codons of the test sequence which corresponds to the extreme value of the quality function as result codons, wherein p is a natural number and $p \le m$.
- 6. The method according to claim 5, wherein the quality function takes account of one or more criteria selected from: codon usage for a predefined organism, GC content, repetitive sequences, secondary structures, inverse complementary sequence repeats and sequence motifs.
- 7. The method according to claim 6, wherein the quality function is a function of various single terms each of

which assess one criterion selected from: codon usage for a predefined organism, GC content, sequence motifs, repetitive sequences, secondary structures, and inverse complementary sequence repeats.

- 8. The method according to any one of claims 1 to 6, wherein the quality function takes account of one or more of the following criteria:
- exclusion of inverse complementary sequence identities of more than 20 nucleotides to the transcriptome of a predefined organism; and/or
- exclusion of homology regions of more than 100 base pairs to a predefined DNA sequence; and/or
- exclusion of homology regions with more than 90% similarity of the nucleotide sequence to a predefined DNA sequence.
- 9. The method according to any one of claims 1 to 8, further comprising synthesizing nucleic acid comprising the optimized nucleotide sequence.
- 10. The method according to claim 9, wherein synthesis of the optimized nucleotide sequence is in a device for automatic synthesis of nucleotide sequences which is controlled by a computer which optimizes the nucleotide sequence.
- 11. The method according to claim 9 or 10, further comprising isolating the synthesized nucleic acid.
- 12. A method for synthesizing nucleic acid comprising:
- generating a first test sequence of n codons which correspond to n consecutive amino acids in a protein sequence, wherein n is a natural number and is less than or equal to N, and wherein N defines the number of amino acids in the protein sequence;
- determining m optimization positions in the test sequence which correspond to the position of m

codons at which the occupation by a codon relative to the test sequence is to be optimized, wherein $m \le n$ and m < N;

- generating one or more further test sequences from the first test sequence by replacing a codon of the first test sequence by another codon which encodes the same amino acid at one or more of the m optimization positions;
- assessing each of the test sequences with a quality function and selecting a test sequence which is optimal in relation to the quality function;
- determining p codons of the test sequence which is optimal in relation to the quality function result codons which are located at one of the moptimization positions, and wherein the result codons form the codons of the optimized nucleotide sequence at positions which corresponds position of said p codons in the test sequence, wherein p is a natural number and $p \le m$; and
- result codons at positions that are different from the positions of result codons determined in one or more preceding iterations wherein at each iteration step the test sequence comprises the result codons from the preceding iteration(s) at positions which correspond to their positions in the optimized nucleotide sequence of the preceding iteration(s); and
- synthesizing nucleic acid.
- 13. A method for isolating nucleic acid comprising:
- generating a first test sequence of n codons which correspond to n consecutive amino acids in a protein sequence, wherein n is a natural number and is less than or equal to N, and wherein N defines the number of amino acids in the protein sequence;
- determining m optimization positions in the test sequence which correspond to the position of m

codons at which the occupation by a codon relative to the test sequence is to be optimized, wherein $m \le n$ and m < N;

- generating one or more further test sequences from the first test sequence by replacing a codon of the first test sequence by another codon which encodes the same amino acid at one or more of the m optimization positions;
- assessing each of the test sequences with a quality function and selecting a test sequence which is optimal in relation to the quality function;
- determining p codons of the test sequence which is optimal in relation to the quality function as result codons which are located at one of the m optimization positions, and wherein the result codons form the codons of the optimized nucleotide sequence at positions which corresponds to the position of said p codons in the test sequence, and wherein p is a natural number and $p \le m$; and
- result codons at positions that are different from the positions of result codons determined in one or more preceding iterations wherein at each iteration step the test sequence comprises the result codons from the preceding iteration(s) at positions which correspond to their positions in the optimized nucleotide sequence of the preceding iteration(s);
- synthesizing nucleic acid; and
- isolating the synthesized nucleic acid.
- 14. A device for optimizing a nucleotide sequence for the expression of a protein on the basis of the amino acid sequence of the protein, wherein said device comprises a computer unit comprising:
- means for generating a first test sequence of n codons which correspond to n consecutive amino acids in a protein sequence, wherein n is a natural number and is less than or equal to N, and wherein N

defines the number of amino acids in the protein sequence;

- means for determining m optimization positions in the test sequence which correspond to the position of m codons at which the occupation by a codon relative to the test sequence is to be optimized, wherein $m \le n$ and m < N;
- means for generating one or more further test sequences from the first test sequence by replacing a codon of the first test sequence by another codon which encodes the same amino acid at one or more of the m optimization positions;
- means for assessing each of the test sequences with a quality function and for selecting a test sequence which is optimal in relation to the quality function;
- means for determining p codons of the test sequence which is optimal in relation to the quality function as result codons which are located at one of the m optimization positions, and wherein the result codons form the codons of the optimized nucleotide sequence at positions which corresponds to the position of said p codons in the test sequence, and wherein p is a natural number and $p \le m$; and
- means for iterating the preceding steps to thereby determine result codons at positions that are different from the positions of result determined in one or more preceding iterations wherein at each iteration step the test sequence comprises the result codons from the preceding iteration(s) at positions which correspond to their positions in the optimized nucleotide sequence of the preceding iteration(s).
- 15. The device according to claim 14, wherein the computer unit performs a method according to any one of claims 1 to 7.

- 16. The device according to claim 14 or 15, wherein said device further comprises means for controlling a device for automatic synthesis of nucleic acid.
- 17. The device according to any one of claims 14 to 16, wherein said device further comprises a device for automatic synthesis of nucleic acid and means for controlling the device for automatic synthesis of nucleic acid.
- 18. A computer program comprising a program code capable of being executed by a computer to thereby perform the method according to any one of claims 1 to 8.
- 19. The computer program according to claim 18, further comprising a program code that is capable of being executed by a computer to thereby cause a device for the automatic synthesis of nucleotide sequences to prepare nucleic acid comprising an optimized nucleotide sequence.
- 20. A computer-readable data medium comprising a computer program according to claim 18 or 19 stored in computer-readable form.
- 21. A method of synthesizing nucleic acid comprising:
- (i) obtaining an optimized nucleotide sequence by the method according to any one of claims 1 to 8 or using the device according to any one of claims 14 to 17 or the computer program according to claim 18 or 19 or the computer-readable data medium of claim 20; and
- (ii) synthesizing nucleic acid corresponding to the optimized nucleotide sequence.
- 22. A nucleic acid comprising an optimized nucleotide sequence coding for a protein when obtained by performing the method according to any one of claims 9 to 13 or 21.

- 23. The nucleic acid according to claim 22, wherein the optimized nucleotide sequence encodes a protein in a cell or organism and wherein said optimized nucleotide sequence is not present in the naturally occurring genome of the cell or organism.
- 24. The nucleic acid according to claim 23, wherein the cell is a Chinese hamster ovary (CHO) cell or the organism is selected from the group consisting of:
- viruses;
- prokaryotes;
- yeasts;
- insects;
- mammals; and
- plants.
- 25. The nucleic acid according to claim 24, wherein:
- the virus is a vaccinia virus; and/or
- the prokaryote is selected from Escherichia coli,
 Caulobacter cresentus, Bacillus subtilis and
 Mycobacterium sp and/or
- the yeast is selected from Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris and Pichia angusta; and/or
- the insect is selected from Spodoptera frugiperda and Drosophila sp; and/or
- the mammal is selected from Homo sapiens, Macaca mulata, Mus musculus, Bos taurus, Capra hircus, Ovis aries, Oryctolagus cuniculus, Rattus norvegicus and Chinese hamster; and/or
- the plant is a monocotyledonous plant selected from Oryza sativa, Zea mays and Triticum aestivum or a dicotyledonous plant selected from Glycine max, Gossypium hirsutum, Nicotiana tabacum, Arabidopsis thaliana and Solanum tuberosum.
- 26. The nucleic acid according to any one of claims 23 to 25, wherein the protein encoded by the optimized

nucleotide sequence is selected from the group consisting of:

- an enzyme;
- a cytokine;
- a chemokine;
- a transcription factor;
- an oncogene;
- a protein from a thermophilic organism, a cryophilic organism, a halophilic organism, an acidophilic organism or a basophilic organism;
- a protein comprising repetitive sequence elements;
- a human antigen;
- a viral antigen;
- an antigen of a disease-causing parasite;
- an antigen of a disease-causing bacterium or bacterial pathogen; and
- an antigen of an organism requiring containment at safety level L4.
- 27. The nucleic acid according to claim 26, wherein:
- the enzyme is selected from a polymerase, an endonuclease, a ligase, a lipase, a protease, a kinase, a phosphatase and a topoisomerase; and/or
- the protein with repetitive sequence elements is a structural protein; and/or
- the human antigen is a tumor antigen, tumor marker, autoimmune antigen or a diagnostic marker; and/or
- the viral antigen is from HAV, HBV, HCV, HIV, SIV, FIV, HPV, a rhinovirus, influenza virus, a herpes virus, a poliomavirus, a hendra virus, dengue virus, AAV, an adenovirus, HTLV or RSV; and/or
- the disease-causing parasite is from a protozoan; and/or
- the disease-causing bacteria or bacterial pathogen is of the genera *Chlamydia*, *Staphylococcus*, *Klebsiella*, *Streptococcus*, *Salmonella*, *Listeria* or *Borrelia*, or the disease-causing bacteria or bacterial pathogen is *Escherichia coli*; and/or

- the organism requiring containment at safety level L4 is *Bacillus anthracis*, Ebola virus, Marburg virus or a poxvirus.
- 28. The nucleic acid according to claim 27, wherein the protozoan causes malaria or the protozoan is of the genera *Leishmania*, *Trypanosoma* or *Toxoplasma* or the protozoan is an amoeba.
- 29. The nucleic acid according to any one of claims 23 to 25, wherein the optimized nucleotide sequence is obtained using a quality function that takes account at least one criteria selected from the group consisting of:
- GC content;
- codon usage of the predefined organism;
- exclusion of inverse complementary sequence identities of more than 20 nucleotides to the transcriptome of a predetermined organism;
- complete or substantial exclusion of homology regions of more than 100 base pairs to a predefined DNA sequence; and
- complete or substantial exclusion of homology regions with a similarity of more than 90% to a predefined DNA sequence.
- 30. The nucleic acid according to any one of claims 22 to 29, wherein said nucleic acid comprises a nucleotide sequence selected from the group consisting of: SEQ ID NO: 2, SEQ ID NO:4, SEQ ID NO:6 and SEQ ID NO: 8.
- 31. A vector comprising the nucleic acid according to any one of claims 22 to 30.
- 32. A cell comprising the vector according to claim 31 or the nucleic acid according to any one of claims 22 to 30.

- 33. An organism comprising at least one cell according to claim 32.
- 34. Use of the nucleic acid according to any one of claims 22 to 30 or a vector or cell comprising same to express a protein.
- Use of an optimized nucleotide sequence to express a protein wherein said optimized nucleotide sequence is obtained by performing the method according to any one of claims 1 to 13 or using the device according to any one of claims 14 to 17 or the computer program of claim 18 or 19 or the computer-readable data medium of claim 20.
- The method according to any one of claims 1 to 13 or 21 or the device according to any one of claims 14 to 17or the computer program according to claim 18 or 19 or the computer-readable data medium according to claim 20 or the nucleic acid according to any one of claims 22 to 30 or the vector according to claim 31 or the cell according to claim 32 or the organism according to claim 33 or the use according to claim 34 or 35 substantially hereinbefore described with reference accompanying examples and/or drawings.

DATED this EIGHTEENTH day of MAY 2009

Geneart AG

by Patent Attorneys for the applicant FB RICE & CO

Fig. 1b

Fig. 6a

Fig. 6b

Fig. 7a

Fig. 8a

Fig. 9

Fig. 10

Fig. 11

Human GM-CSF

1: wild type 2: optimized 3: mock

Fig. 12A

Murine GM-CSF

1: wild type 2: mock

3: optimized

Fig. 12B

Human IL15

1:rec. IL15

(BD) 2: wild type

3: mock

Fig. 12C

SEQUENCE LISTING

<110> GeneArt GmbH

<120> Method and device for optimizing a nucleotide sequence for the purpose of expression of a protein

<130> G30036PCT	
<160> 8	
<170> PatentIn version 3.2	
<210> 1 <211> 435 <212> DNA <213> Homo sapiens	
<400> 1	٠,
atgtggctgc agagcetget getettggge actgtggeet geageatete tgeaecegee	60
cyctogecca geoceageae geagecetgg gageatgtga atgecateca ggaggeeegg	120
cgtctcctga acctgagtag agacactgct gctgagatga atgaaacagt agaagtcatc	180
tcagaaatgt ttgacctcca ggagccgacc tgcctacaga cccgcctgga gctgtacaag	240
cagggeetge ggggeageet caccaagete aagggeeeet tgaecatgat ggeeageeae	300
tacaagcage actgeeetee aacceeggaa actteetgtg caacceagat tateacettt	360
gaaagtttca aagagaacct gaaggacttt ctgcttgtca tcccctttga ctgctgggag	420
Ccagtccagg agtag	435
<210> 2 <211> 435 <212> DNA <213> Homo sapiens	
<400> 2 :	
atgtggctgc agagcctgct gctgctggga acagtggcct gtagcatctc tgcccctgcc	60
agaageeeta geeetageae acageettgg gageaegtga atgeeateea ggaggeeagg	120
agactgctga acctgagcag agatacagcc gccgagatga accagaccgt ggaggtgatc	180
agegagatgt tegacetgca ggageetaca tgeetgeaga eeeggetgga getgtataag	240
cagggcctga gaggetetet gaccaagetg aagggeeece tgacaatgat ggceageeac	300
tacaagcage actgocotoc taccootgag acaagetgog coaccoagat catcacetto	360
gagagettea aggagaectt gaaggaette etgetggtga teeeettega tegetgggag	420
cccgtgcagg agtag	435
<210> 3 <211> 489	

<210> 3 <211> 489 <212> DNA <213> Homo sapiens

<400> 3 atgagaattt ogaaaceaca titgagaagt atticcatee agigetaett gigittaett	60
ctaaacagtc attrictaac tgaagctggc attcatgtct tcattttggg ctgtttcagt	120
gcagggette ctammacaga agecometgg gtgmatgtmm tamgtgmttt gmmammatt	180
gaagatotta ticaatotat goatattgat gotactttat atacggaaag tgatgitcac	240
cccagttgca aagtaacago aatgaagtgo tttotottgg agttacaagt tatttcactt	300
gagteeggag atgeaagtat teatgataca gtagaaaate tgateateet ageaaacaac	360
agtttgrott ctaatgggaa tgtaacagaa totggatgca aagaatgtga ggaactggag	420
gasassasta ttaaagaatt tttgcagagt tttgtacata ttgtccaaat gttcatcaac	480
acttettag	489
•	
<210> 4 · · · · · · · · · · · · · · · · · ·	
<212> DNA (213> Homo sapiens)	
<400> 4	
atgoggatoa gcaageeeca cetgaggage atcageatee agtgetacet gtgeetgetg i	60
ctgaacagcc acttectgac agaggeegge atceaegtgt tratectggg etgettetet	120
gccggcctgc ctaagacaga ggccaactgg gtgaacgtga tcagcgacct gaagaagatc	180
gaggacetga tecagageat geacategae gecaceetgt acacagagag egaegtgeae	240
cotagotyta aggtgacogo catgaagtgo ttootgotgg agetgeaggt gateagcotg	300
gagagoggog atgocageat coacgacace gtggagaace tgatcatoot ggccaacaac	360
agcetgagea geaacggeaa tgtgaeegag ageggetgea agdagtgtga ggagetggag .	420
gagaagaaca teaaggagtt cetgeagage ttegtgeaca tegtgeagat gtteateaac	480
accagetag	489
<210> 5	
<211> 426 <212> DNA	
<213> Mus musculus	
<400> 5	
atgtggctgc agaatttact tttcctgggc attgtggtct acagcctctc agcacccacc	60
cgctcaccca tcactgtcae coggocttgg aagcatgtag aggccatcaa agaagccctg	120
aacctcctgg atgacatgcc tgtcacattg aatgaagagg tagaagtcgt ctctaacgag	180
ttotoottoa agaagotaac atgtgtgoag accogcotga agatattoga gcagggtota	240
cggggcaatt tcaccaaact caagggcgcc ttgaacatga cagccagcta ctaccagaca	300
tactgoccoc caactcogga aacggactgt gaaacacaag ttaccaccta tgoggattto	360

atagaçages tta	aaacctt totgactçat	atocectttg &	atgcaaaaa	accaggocaa	420
aaatag					426
<210> 6 <211> 426					
<212> DNA <213> Mus musc					
	cdina				
<400> 6 atgtggctgc agaa	acetget gtteetggge	atcgtggtgt ac	agcetgag (cgccccacc	60
aggagececa teac	ccgtgac caggccctgg	aagcacgtgg ag	gccatcaa (ggaggeeetg	120
aacctgctgg acga	catgos ogtgaccotg	aacgaggagg tg	igaggtggt (gagcaacgag	180
ttcagcttca agaa	gctgac ctgcgtgcag	accaggotga ag	atcttoga ç	gcagggcctg	240
aggggcaact tcac	caaget gaagggegee	ctgaacatga cc	gccagota c	ctaccagacc	300
tactgccccc ccac	ccccga gaccgactge	gagacccagg tg	accaccta c	googactto	360
atcgacagcc tgaa	gacctt cotgacogac	atccccttcg ag	tgcaagaa g	jcccggccag	420
aagtag					426
<210> 7					
<211> 279		•			
<212> DNA <213> Mus muscu	าในธ	:	<u>;</u>		
<400> 7		: !			
	cactgo cottgotgtt	cttctctgta cc	atgacact c	tgcaaccaa	60
gtcttctcag cgcca	atatgg agctgacacc	ccgactgeet get	igottoto o	tacagcegg	120
aagattccac gccaa	attcat cgttgactat	tttgaaacca gca	ageetttg c	tcccagcca .	180
ggtgtcattt tcctg	gactaa gagaaacc g g	cagatotgog oto	jactccaa a	gagacctgg	240
gtccaagaat acatc	actga ectggaactg	aatgcctag	,		279
<210> 8			I		
<211> 279					
<212> DNA <213> Mus muscu	lus				
<400> 8		į		•	
atgaaggtga gcacc	acage tetggetgtg o	tgetgtgca ccd	tgaccct gt	tgcaaccag	60
gtgttcagcg ctcct	tacgg cgccgatacc c	ctacageet get	gcttcag ct	acagcagg	120
aagatoocca ggcag	ttcat cgtggactac t	togagacca gca	gcctgtg tt	ctcagece	180
ggcgtgatet teetga	accaa goggaacaga o	cagatotgog cog	acagcaa gg	gagacatgg	240
gtgcaggagt acatca	accga cctggagctg a	acgcctag	į		279