FICHA 10

Aplicações do integral definido:

áreas em coordenadas polares, comprimentos de arcos de curvas, áreas e volumes de sólidos de revolução

1. Use coordenadas polares para determinar a área da região

$$A = \left\{ (x,y) \in \mathbb{R}^2 : \left(x - \frac{1}{2} \right)^2 + y^2 \le \frac{1}{4} \ \land \ x^2 + \left(y - \frac{1}{2} \right)^2 \le \frac{1}{4} \right\}.$$

2. Determine a área da região que é simultaneamente interior à circunferência $\rho = \sqrt{2} \sin \theta$ e à lemniscata $\rho^2 = \sin 2\theta$.

3. Seja \mathcal{A} a região limitada pelas curvas de equação $y = \cosh x$ e $y = \cosh 2$. Determine a medida da área de \mathcal{A} e o comprimento do arco de curva que contorna \mathcal{A} .

4. Calcule o comprimento do arco de curva definido na alínea seguinte:

a)
$$y = \arcsin e^{-x}$$
, para $\frac{1}{2} \le x \le 1$;

5. Determine o volume do sólido que se obtém pela rotação em torno de OX da região limitada pelas curvas $y=x^2$ e $y=\sqrt{x}$, para $0 \le x \le 1$.

6. Resolva um problema idêntico ao anterior no caso da região plana ser limitada pelas curvas y = x e $x = 4y - y^2$.

7. Indique o integral que permite calcular a área das superfícies de revolução obtidas pela rotação em torno de OX das seguintes curvas:

(a)
$$y = x^3$$
, $x \in [0, 1]$;

(b)
$$y = \cos x, -\frac{\pi}{4} \le x \le \frac{\pi}{2};$$

(c)
$$y = \sqrt{r^2 - x^2}$$
, $-r \le x \le r$.