Monte Carlo Simulation

Photo by Sam Garza

Stanislaw Ulam

We've Been Doing this Already

- •A method of estimating the value of an unknown quantity using principles of inferential statistics.
- •Inferential statistics
 Population: a) set of examples
 - Sample: a proper subset of a population
 - Key fact: a random sample tends to exhibit the same properties as the population from which it is drawn.

Finding Pi

3.1415926535897932384626433832795028841971693

Image from Tom Murphy

$$\frac{circumference}{diameter} = \Pi \quad area = \Pi * radius^2$$

Rhind Papyrus

The Bible

"And he made a molten sea, ten cubits from the one brim to the other: it was round all about, and his height was five cubits: and a line of thirty cubits did compass it round about."

—1 Kings 7.23

Buffon-Laplace

monte carlo simulation

$$A_s = 2*2 = 4$$

$$A_c = \pi r^2 = \pi$$

$$Chypin + Chyph$$

 $\frac{needles \ in \ circle}{needles \ in \ square} = \frac{area \ of \ circle}{area \ of \ square}$

 $\frac{area\ of\ square*needles\ in\ circle}{needles\ in\ square}$

$$I = \frac{4 * needles in circle}{needles in square}$$

Arrows Are More Fun than Needles

Photo Dharma

Not a Practical Method

In the next segment, we take Ana's advice and build a simulation