Représentation binaire d'un entier relatif

Bruno Darid

20 novembre 2019

PLAN

1	Encodage des entiers relatifs	2
	1.1 Valeur maximale et dépassement de capacité	2
	1.2 Propriétés à vérifier et première solution	2
	1.3 Exemple	
	1.4 Une solution satisfaisante : le complément à deux	2
2	Comment utiliser le complément à deux?	3
3	Domaine couvert avec une capacité de n bits	3
	3.1 Entiers positifs	3
	3.2 Entiers négatifs	3
	3.3 Conclusion	
4	À retenir	4

1 Encodage des entiers relatifs

1.1 Valeur maximale et dépassement de capacité

On suppose dans cette leçon que l'on travaille avec une capacité fixe de n bits. Rappel : avec n bits on peut représenter 2^n valeurs comprises dans l'intervalle $[0; 2^n - 1]$. Que se passe-t-il si on ajoute une unité à la valeur maximale? Pour n = 4 bits par exemple :

La valeur obtenue 2^n n'est pas représentable sur n bits (on ignore la retenue) : on obtient que des zéros! Ce phénomène traduit un **dépassement de capacité**.

1.2 Propriétés à vérifier et première solution

L'encodage choisi doit respecter deux propriétés essentielles :

$$\checkmark a + (-a) = 0$$
 (propriété 1)

$$\checkmark$$
 $-(-a) = a$ (propriété 2)

La première idée est d'utiliser un bit (généralement **le bit de poids fort**) pour représenter le signe et les autres bits pour représenter la valeur absolue du nombre. Par convention, le signe + est codé par 0 et le signe - par 1.

Avec *n* bits, on aurait ainsi 1 bit pour le signe et n-1 bits pour coder les 2^{n-1} valeurs différentes.

1.3 Exemple

Soit à coder -5 sur 4 bits. On a $|-5|=5=101_2$, le bit de signe valant 1 car -5<0. On aurait donc le codage suivant : $-5\to 1$ 1 0 1. La première propriété ci-dessus est-elle vérifiée ? Ajoutons les représentations de 5 et -5 :

La valeur obtenue est différente de zéro : cette solution n'est pas satifaisante.

Remarque : un problème supplémentaire peut être mis en évidence : l'existence de **deux** représentations pour zéro.

1.4 Une solution satisfaisante : le complément à deux

Cette solution exploite le dépassement de capacité. Sur n bits, le plus grand nombre représentable est $2^n - 1$. Ce qui implique que $2^n - 1 + 1 = 2^n$ sera représenté par 0 0 ... 0 (dépassement de capacité).

$$(2^n-1)+1\to 0$$

La quantité $2^n - 1$ peut être considérée comme une représentation de -1.

Généralisons ce résultat : pour une capacité de n bits et pour un entier x, $2^n - x$ est une représentation valable de -x.

2

Vérifions que les propriétés citées précédemment sont vérifiées.

$$x + (2^n - x) = 2^n$$

Or, 2^n est représenté par 0 0 ... 0, la propriété (1) est vérifiée. En ce qui concerne la propriété (2) :

$$-(-x) = -(2n - x)$$
$$= 2n - (2n - x)$$
$$= x$$

Conclusion:

pour une capacité de n bits et pour un entier naturel x, la quantité $2^n - x$ appelée **complément à deux** de x est une bonne représentation de -x.

2 Comment utiliser le complément à deux?

Il s'agit de présenter une méthode permettant d'obtenir une représentation de $2^n - x$ soit l'opposé de x.

$$2^{n} - x = 2^{n} - 1 + 1 - x$$
$$= (2^{n} - 1) - x + 1$$

Or, réaliser $(2^n - 1) - x$ (appelé aussi complément à un) consiste à **inverser tous les bits** de x (sauriez-vous le montrer?).

D'où la méthode pour représenter l'opposé d'un entier relatif :

- Écrire la valeur absolue du nombre en binaire naturel avec le nombre de bits spécifié (compléter si besoin avec des zéros);
- Inverser tous les bits (complément à un);
- Ajouter 1 au résultat précédent

3 Domaine couvert avec une capacité de n bits

3.1 Entiers positifs

On a des valeurs allant de $0.0 \dots 0$ à $0.1 \dots 1$ soit de 0.0 à $2^{n-1} - 1$.

3.2 Entiers négatifs

Si on ajoute 1 au nombre positif maximal, on obtient : 1 0 ... 0, soit un nombre négatif! Ce phénomène est appelé overflow et est à l'origine de bug célèbre comme celui ayant entrainé la destruction d'Ariane5 pour son vol inaugural.

Les entiers négatifs sont donc étalés de 1 1 ... 1 soit -1 (montrez le!) à 1 0 ... 0 soit -2^{n-1} .

3.3 Conclusion

Avec *n* bits, en arithmétique signée, on peut coder les entiers appartenant à l'intervalle :

$$[-2^{n-1},...,-1,0,...,2^{n-1}-1]$$

4 À retenir

Pour coder un entier relatif, on utilise la méthode du complément à deux. Pour cela, si la capcité est fixée à n bits :

- Écrire la valeur absolue du nombre en binaire naturel avec le nombre de bits spécifié (compléter si besoin avec des zéros);
- Inverser tous les bits (complément à un);
- Ajouter 1 au résultat précédent.

Avec n bits, on peut coder les entiers appartenant à l'intervalle $[-2^{n-1},...,-1,0,...,2^{n-1}-1]$. Si une opération conduit à un nombre se situant en dehors de cet intervalle, on a un phénomène d'overflow se traduisant par un résultat aberrant.

Ce(tte) œuvre est mise à disposition selon les termes de la Licence Creative Commons Attribution - Pas d'Utilisation Commerciale 4.0 International.

