# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

### КАФЕДРА № 51

| ОТЧЕТ                     | <b>.</b> ₩ |                                                     |                   |
|---------------------------|------------|-----------------------------------------------------|-------------------|
| защищен с оценко          | ЭИ         |                                                     |                   |
| ПРЕПОДАВАТЕЛЬ             |            |                                                     |                   |
| ассистент                 |            |                                                     | Исаева М.Н.       |
| должность, уч. степень, з | вание      | подпись, дата                                       | инициалы, фамилия |
| ИССЛЕД<br>по курсу: КРИІ  | ОВАНИЕ     | АБОРАТОРНОЙ РАБ<br>СИММЕТРИЧНІ<br>ЕСКИЕ МЕТОДЫ ЗАЩІ | ЫХ ШИФРОВ         |
| РАБОТУ ВЫПОЛНИЛ           |            |                                                     |                   |
| СТУДЕНТ ГР.               | 5912       |                                                     | Льдокова С.В.     |
|                           |            | подпись, дата                                       | инициалы, фамилия |

#### 1. Цель

Вариант 8.

Исследовать влияние различных ключей на результаты шифрования для одного блока. Провести N (N зависит от алгоритма шифрования) раундов шифрования на ключах, например, из всех нулей/единиц, с сериями нулей и единиц. Провести N раундов шифрования с использованием псевдослучайных ключей. Провести для полученных шифртекстов: автокорреляционный тест, тест серий, частотный тест. Проанализируйте частоту изменения битов внутри блока в процессе шифрования для обоих вариантов ключей внутри, продемонстрировать частоту изменения битов. Сравнить полученные результаты. Чтобы было нагляднее, позиции, которые изменяются, можно выделить цветом - цвет выбирать в зависимости от количества изменений.

## 2. Тестируемый алгоритм

Blowfish — алгоритм 64-битного блочного шифра с ключом переменной длины. Размер ключа алгоритма от 32 до 448 битов.

#### 3. Описание статистический тестов

Для определения, обладает ли двоичная последовательность некоторыми специфическими характеристиками, которые, скорее всего, демонстрировала бы истинно случайная последовательность, существуют статистические тесты. Однако, исход каждого теста является не точным, а скорее вероятностным. Если последовательность прошла все тесты, нет гарантии, что она действительно произведена генератором случайных бит.

# 3.1 Частотный тест (однобитный тест)

Цель этого теста — определить, является ли примерно равным количество 0 и 1 в последовательности s, как это ожидается для случайной последовательности. Пусть  $n_0$ ,  $n_1$  обозначают количество 0 и 1 в s, соответственно. Используется статистика:

$$X_1 = \frac{(n_0 - n_1)^2}{n},\tag{1}$$

которая примерно следует  $\chi^2$  распределению с 1 степенью свободы, если  $n \ge 10^7$ .

## 3.2 Тест серий

Цель теста серий — определить, является ли количество серий (состоящих либо из нулей, либо из единиц) различных длин в последовательности s таким, как ожидается для случайной последовательности.

Ожидаемое число разрывов (или блоков) длины і в случайной последовательности длины п равно  $e_i = \frac{(n-i+3)}{2^{i+2}}$ . Пусть k равен наибольшему целому і, для которого  $e_i \geq 5$ . Пусть  $B_i$ ,  $G_i$  — количество блоков и разрывов длины і в s соответственно для каждого  $1 \leq i \leq k$ .

Используется статистика:

$$X_2 = \sum_{i=1}^k \frac{(B_i - e_i)^2}{e_i} + \sum_{i=1}^k \frac{(G_i - e_i)^2}{e_i},$$
 (2)

которая примерно следует  $\chi^2$  распределению с 2k-2 степенью свободы.

# 3.3 Автокорреляционный тест

Цель этого теста — проверить корреляции между последовательностью s и ее (нециклическими) сдвигами. Пусть d — фиксированное целое число,  $1 \le d \le \lfloor n/2 \rfloor$ . Число бит в s, не равных их d-сдвигам, есть  $A(d) = \sum_{i=0}^{n-d-1} s_i \oplus s_{i+d}$ , где  $\oplus$  обозначает операцию XOR.

Используется статистика:

$$X_3 = 2\left(A(d) - \frac{n-d}{2}\right) / \sqrt{n-d},\tag{3}$$

которая примерно следует распределению N (0,1), если  $n-d \ge 10$ . Так как малые значения A(d) столь же мало ожидаемы, как и большие значения A(d), должен быть использован двусторонний тест.

## 4. Примеры использования тестов

Различные ключи:

Ключ  $K_1$  (ключ из всех единиц)

Ключ К2 (ключ из серии нулей и единиц)

Ключ К<sub>3</sub> (псевдослучайный ключ)

Первый блок исходного текста после шифрования различными ключами:

После шифрования ключом  $K_1$  (последовательность  $S_1$ )

После шифрования ключом  $K_2$  (последовательность  $S_2$ )

#### 4.1 Частотный тест

Оценим количество единиц и количество нулей.

Для первой последовательности  $S_1$ :

Количество единиц — 33;

Количество нулей — 31;

Всего бит — 64.

По формуле (1) получаем:

$$X_1 = \frac{(31 - 33)^2}{64} = 0.0625$$

Для второй последовательности S<sub>2</sub>:

Количество единиц — 31;

Количество нулей — 33;

Всего бит — 64.

По формуле (1) получаем:

$$X_1 = \frac{(33 - 31)^2}{64} = 0.0625$$

Для третьей последовательности S<sub>3</sub>:

Количество единиц — 37;

Количество нулей — 27;

Всего бит — 64.

По формуле (1) получаем:

$$X_1 = \frac{(27 - 37)^2}{64} = 1.5625$$

Для уровня значимости  $\alpha = 0.05$  пороговое значение для  $X_1 = 3.8415$ , следовательно, все последовательности прошли частотный тест.

# 4.2 Тест серий

Для каждой последовательности оценим ожидаемое число разрывов или блоков, найдем значение k и реальные количества разрывов и блоков.

Для первой последовательности  $S_1$ :

Ожидаемое число разрывов или блоков длины  $1-e_1=8.25,$  длины  $2-e_2<5,$  следовательно, k=1;

Количество разрывов длины  $1 - G_1 = 11$ ;

Количество блоков длины  $1 - B_1 = 10$ ;

По формуле (2) получаем:

$$X_2 = \sum_{i=1}^{1} \frac{(B_i - e_i)^2}{e_i} + \sum_{i=1}^{1} \frac{(G_i - e_i)^2}{e_i} = 1.287$$

Для второй последовательности S<sub>2</sub>:

Ожидаемое число разрывов или блоков длины  $1-e_1=8.25$ , длины  $2-e_2<5$ , следовательно, k=1;

Количество разрывов длины  $1 - G_1 = 8$ ;

Количество блоков длины  $1 - B_1 = 9$ ;

По формуле (2) получаем:

$$X_2 = \sum_{i=1}^{1} \frac{(B_i - e_i)^2}{e_i} + \sum_{i=1}^{1} \frac{(G_i - e_i)^2}{e_i} = 0.075$$

Для третьей последовательности S<sub>3</sub>:

Ожидаемое число разрывов или блоков длины  $1-e_1=8.25,$  длины  $2-e_2<5,$  следовательно, k=1;

Количество разрывов длины  $1 - G_1 = 8$ ;

Количество блоков длины  $1 - B_1 = 6$ ;

По формуле (2) получаем:

$$X_2 = \sum_{i=1}^{1} \frac{(B_i - e_i)^2}{e_i} + \sum_{i=1}^{1} \frac{(G_i - e_i)^2}{e_i} = 0.621$$

Для уровня значимости  $\alpha = 0.05$ , пороговое значение для  $X_2 = 9.4877$ , следовательно, все последовательности прошли тест серий.

# 4.3 Автокорреляционный тест

По формуле (3) для последовательности  $S_1$  получаем(рис.1):



Рисунок 1 - Автокорреляционный тест первой последовательности



Рисунок 2 - Автокорреляционный тест второй последовательности

1.8 1.6 1.4 1.2 0.8 0.6 0.4 0.2

По формуле (3) для последовательности S<sub>3</sub> получаем(рис.3):

Рисунок 3 - Автокорреляционный тест третьей последовательности

Для уровня значимости  $\alpha = 0.05$ , пороговое значение для  $X_3 = 1.96$ , следовательно первая вторая прошли последовательности не автокорреляционный тест.

# Частота изменения битов внутри последовательностей

Возвращаясь к полученным последовательностям, определим частоту изменения битов внутри каждой из последовательностей.

Последовательность S<sub>1</sub>:

0

Изменения битов на соответствующих позициях:

11 9 7 8 9 8 5 2 4 4 10 2 7 7 7 8 6 11 6 9 8 7 8 11 8 7 6 10 9 4 5 7 11 6 7 6 10 9 10 7 11 11 8 3 8 7 8 6 5 10 8 10 8 5 10 5 9 10 9 10 9 9 9 9

Всего изменений: 493

Последовательность S<sub>2</sub>:

Изменения битов на соответствующих позициях:

11 7 11 4 10 9 9 9 8 7 6 10 6 9 5 7 7 8 5 9 7 9 8 9 6 9 4 7 7 10 6 7 8 10 8 6 8 10 11

11 7 8 5 8 6 10 10 7 11 11 7 9 5 7 8 7 5 7 6 10 8 9 4 10

Всего изменений: 503

Последовательность S<sub>3</sub>:

Изменения битов на соответствующих позициях:

88889911796869697987798118107981091271012107999

97710119911799105910106697671069

Всего изменений: 541

9. Вывод

В данной работе были проведены статистические тесты для алгоритма

шифрования Blowfish. Было выяснено, что алгоритм проходит частотный тест,

но проваливает тест серий и автокорреляционный тест. Однако, даже если

последовательность прошла все тесты, нет гарантии, что она действительно

произведена генератором случайных бит. Ведь исход каждого теста является

не точным, а скорее вероятностным. Поэтому алгоритм Blowfish не является

не криптографически стойким из-за того, что провалил автокорреляционный

тест.

Также было выяснено, что при использовании рандомного ключа

последовательность терпит больше изменений, чем при использовании

ключей из единиц или ключей из серий нулей и единиц.

# 10. Список литературы

- 1. Менезес A., Handbook of applied cryptography, 1965 1997, CRC Press
- 2. Лидл Р., Нидеррайтер Г. Конечные поля. В 2-х томах. -Москва: Мир, 1988