- 1. Знайти комутатор операторів $\hat{L_x}$ та \hat{y} .
- 2. Частинка знаходиться в одномірній прямокутній потенційній ямі з нескінченно високими стінками. Знайти квантове число n енергетичного рівня частинки, якщо інтервали енергій до сусідніх з ним рівнів (верхнього та нижнього) відносяться як 1,4:1.
- 3. Скориставшись правилами Хунда знайти основний терм атомів Al, S та Cl.

- 1. Знайти власні значення оператора L^2 , які відповідають функції $Y = A(\cos\theta + 2\sin\theta\cos\phi)$, де A- константа.
- 2. Чи може стан електрону в одномірній нескінченно-глибокій потенціальній ямі шириною 2a описуватись хвильовою функцією $\psi = Ax^2$ (де A константа)? Відповідь обґрунтувати.
- 3. Скориставшись правилами Хунда знайти число електронів в єдиній незаповненій підоболонці атому, основний терм якого $^6\mathrm{S}_{5/2}$.

- 1. Знайти результат дії операторів $\frac{d^2}{\partial x^2}x^2$ та $\left(\frac{d}{\partial x}x\right)^2$ на функцію $\cos x$.
- 2. Як зміниться повна хвильова функція $\Psi(x,t)$, яка описує стаціонарні стани, якщо змінити початок відліку потенційної енергії на деяку постійну величину ΔU ?
- 3. Визначити можливі мультиплетності терму $D_{3/2}$.

- 1. Електрон з кінетичною енергією K = 10 eB локалізований в області розміром l = 1,0 мкм. Оцініть відносну невизначеність швидкості електрону.
- 2. Знайти найбільш ймовірне значення координати частинки, стан якої описується хвильовою функцією $\psi(x) = Bx \exp(-\alpha^2 x^2)$, де B та α відомі сталі.
- 3. Записати спектральне позначення терму, у якого S = 1/2, J = 5/2, g = 6/7.

- 1. Знайти комутатор операторів $\hat{L_x}$ та $\hat{p_z}$.
- 2. Електрон в атомі водню знаходиться в стані, який описується хвильовою функцією $\psi(r) = A(1+B\,r)\exp(\alpha r)$, де A, B та α сталі. За допомогою рівняння Шрьодінгера знайти B, α та енергію E електрону.
- 3. Записати можливі терми атому з електронною конфігурацією $1s^1 2p^1 3p^1$.

- 1. Знайти комутатор операторів \hat{x} та \hat{p}_x^2 .
- 2. Частинка масою m перебуває у деякому одномірному потенціальному полі U(x) в стаціонарному стані, для якого хвильова функція має вигляд $\psi(x) = A \exp(-\alpha x^2)$, де A та α відомі сталі $(\alpha > 0)$. Маючи на увазі, що U(0) = 0, знайти вигляд U(x) та енергію частинки у цьому стані.
- 3. Записати можливі терми атому з електронною конфігурацією $2p^1 3p^1$.

- 1. Відомо, що $[\hat{A}, \hat{B}] = 1$. Знайти комутатор $[\hat{A}, \hat{B}^3]$.
- 2. Частинка, яка перебуває в нескінченно глибокій прямокутній потенціальній ямі, який характеризується квантовим числом n=2. Яка ймовірність виявити частинку в крайній чверті ями?
- 3. Знайти терм, що відповідає основному стану атому електронна конфігурація незаповненої підоболонки якого $5d^7$.

- 1. Знайти комутатор [f(x), $\hat{p_x}$], де f(x) довільна функція координати.
- 2. Для електрону в атомі водню, стан якого описується хвильовою функцією $\psi(r) = Ar \exp(-r/2r_0)$ (A та r_0 константи) розрахувати середнє значення його відстані від ядра.
- 3. Зобразити схему можливих переходів у слабкому магнітному полі для спектральної лінії, яка відповідає переходу $^2D_{\scriptscriptstyle 3/2} \to ^2P_{\scriptscriptstyle 3/2}$.

- 1. У деякий момент часу область локалізації вільного електрону $\Delta x_0 = 0,10$ нм. Оцініть ширину області локалізації цього електрону через проміжок часу t = 1,0 с.
- 2. Стан електрону, що знаходиться в одномірній нескінченно-глибокій потенціальній ямі шириною 2a описується хвильовою функцією $\psi = \frac{1}{\sqrt{a}} \cos \left(\frac{\pi}{2a} x \right)$. Знайти середнє значення імпульсу цієї частинки.
- 3. Записати можливі терми атому з електронною конфігурацією $2p^1 3f^1$.

- 1. Знайти комутатор операторів $\hat{L_x}$ та $\hat{p^2}$.
- 2. Електрон знаходиться в одномірній прямокутній потенціальній ямі шириною $10^{-10}\,$ м з нескінченно високими стінками. Знайти відстань між другим та третім рівнями енергії.
- 3. Атом знаходиться у стані, мультиплетність якого дорівнює 3, а повний механічний момент $\hbar\sqrt{20}$. Яким може бути відповідне квантове число L?

- Знайти комутатор операторів $\hat{A} = 6y + 5x$ та $\hat{B} = \frac{\partial^2}{\partial y \partial x}$ 1.
- 2. Частинка знаходиться в одномірній прямокутній потенційній нескінченно високими стінками. Знайти масу частинки, якщо ширина ями дорівнює 2a, а різниця енергій між 3-ім та 2-им енергетичними рівнями дорівнює ΔE .
- Визначити максимально можливий орбітальний механічний момент атому, 3. що знаходиться в стані, мультиплетність якого п'ять, а число можливих значень проекції повного механічного моменту 7. Записати спектральне позначення цього терму.

- 1. Обчислити середнє значення квадрату моменту імпульсу в стані $\psi(\theta,\phi)=A\sin\theta\cos\phi$.
- 2. Для електрону в атомі водню, стан якого описується хвильовою функцією $\psi(r) = \exp(-r/2r_0)/\sqrt{\pi r_0^3} \ (r_0 \text{стала})$ знайти середню відстань від ядра.
- 3. Користуючись правилами Хунда, обчислити повний магнітний момент основного стану атому, в якому незаповнена під оболонка містить три d-електрони.

- 1. Знайти комутатор операторів $\hat{L_x}$ та \hat{x} .
- 2. Стан електрону в атомі описується хвильовою функцією $\psi = A \frac{r}{r_0} \exp \left(-\frac{r}{2r_0} \right)$, де A та r_0 сталі величини. Знайти його найбільш імовірну відстань від ядра.
- 3. Атом знаходиться у D-стані, повний механічний момент якого дорівнює $\hbar\sqrt{20}$. Знайти можливі значення спінового механічного моменту.