

16SrRNA Intermediate Bioinformatics Online Course: Int_BT_2019

16S rRNA analysis pipeline Taxonomic classification and alignment using the dada2 pipeline

Module 5: 16S rRNA Analysis Pipeline

• <u>Session 1</u>:

QC and ASV picking using the dada2 pipeline

Session 2:

Taxonomic classification and alignment using the dada2 pipeline

Outline

- Quality Control
- DADA2 background

DADA2 workflow

Imane Allali

Merge Reads

merge.reads <- mergePairs(dadaF, filt.dataF, dadaR, filt.dataR, verbose=TRUE)</pre>

76306 paired-reads (in 1153 unique pairings) successfully merged out of 82378 (in 2526 pairings) input.

54948 paired-reads (in 720 unique pairings) successfully merged out of 60139 (in 1811 pairings) input.

83013 paired-reads (in 843 unique pairings) successfully merged out of 89310 (in 2175 pairings) input.

74533 paired-reads (in 1093 unique pairings) successfully merged out of 81135 (in 2674 pairings) input.

67364 paired-reads (in 855 unique pairings) successfully merged out of 71053 (in 1743 pairings) input.

69262 paired-reads (in 1194 unique pairings) successfully merged out of 76778 (in 2891 pairings) input.

mergePairs merges reads only if they exactly overlap.

The length of your overlap, by default is 20 nt for DADA2, you can lower it by using this parameter minOverlap.

Merge Reads

head(merge.reads[[1]])

##

sequence

##		abundance	forward	reverse	nmatch	${\tt nmismatch}$	nindel	prefer	accept
##	1	460	2	1	253	0	0	2	TRUE
##	2	456	1	1	253	0	0	2	TRUE
##	3	421	5	1	253	0	0	2	TRUE
##	4	414	7	2	252	0	0	2	TRUE
##	5	401	6	1	253	0	0	2	TRUE
##	6	400	4	1	253	0	0	2	TRUE

CC (I) (S) (O) BY NC SA

H3ABioNet

Construct Amplicon Sequence Variant (ASV) Table

```
seqtab <- makeSequenceTable(merge.reads)
dim(seqtab)</pre>
```

```
## [1] 15 13527
```

```
table(nchar(getSequences(seqtab)))
```

```
##
## 311 312 313 315
## 107 9136 4283 1
```


Construct Amplicon Sequence Variant (ASV) Table

	A	В	С	D	E	F	G	Н	100 mm (100 mm)	J	K	L	M
1		TTGTGTGCC/	TTGTGTGCC	TGTGTGCCA	TGTGTGCCA	TTGTGTGCCA	TTGTGTGCC/	TGTGTGCCA	TGTGTGCCA	TTGTGTGCC	TTGTGTGCCA	TGTGTGCCA	TTGTGTGCC/
2	Dog1	0	0	242	205	0	0	0	223	0	0	195	0
3	Dog10	0	0	0	0	0	0	0	0	0	0	0	0
4	Dog15	0	0	0	0	0	0	0	0	0	0	0	0
5	Dog16	0	0	0	0	0	0	0	0	0	0	0	0
6	Dog17	0	0	0	0	0	0	0	0	0	0	0	0
7	Dog2	373	0	0	0	276	0	0	0	283	277	0	322
8	Dog22	1926	0	0	0	1516	0	0	0	1453	1459	0	1366
9	Dog23	0	955	0	0	0	805	0	0	0	0	0	0
10	Dog24	0	0	0	0	0	0	1747	0	0	0	0	0
11	Dog29	0	0	0	0	0	0	0	0	0	0	0	0
12	Dog3	0	921	0	0	0	944	0	0	0	0	0	0
13	Dog30	0	0	0	0	0	0	0	0	0	0	0	0
14	Dog31	0	0	1596	1625	0	0	0	1523	0	0	1536	0
15	Dog8	0	0	0	0	0	0	0	0	0	0	0	0
16	Dog9	0	0	0	0	0	0	0	0	0	0	0	0
17													
18													

Chimera Sequence

- Chimeras are sequences formed from two or more biological sequences joined together.
- Amplicons with chimeric sequences can be formed during PCR.
- Chimeras are rare with shotgun sequencing but are common in amplicon sequencing when closely related sequences are amplified.

Chimera Sequence

https://help.ezbiocloud.net/

Chimera Checking and Removal

seqtab.nochim <- removeBimeraDenovo(seqtab, method="consensus", multithread=TRUE, verbose=TRUE)</pre>

Identified 9112 bimeras out of 13527 input sequences.

dim(seqtab.nochim)

[1] 15 4415

sum(seqtab.nochim)/sum(seqtab)

[1] 0.5094968

- It uses *de novo* to check for two parent chimeras.
- Chimeric sequences are identified if they can be exactly reconstructed by combining a left-segment and a rightsegment from two more abundant "parent" sequences.

Chimera Checking and Removal

Chimera Checking and Removal

Chimera Checking and Removal

seqtab.nochim <- removeBimeraDenovo(seqtab, method="consensus", multithread=TRUE, verbose=TRUE)</pre>

Identified 9112 bimeras out of 13527 input sequences.

dim(seqtab.nochim)

[1] 15 4415

sum(seqtab.nochim)/sum(seqtab)

[1] 0.5094968

- It uses *de novo* to check for two parent chimeras.
- Chimeric sequences are identified if they can be exactly reconstructed by combining a left-segment and a rightsegment from two more abundant "parent" sequences.

