Астрофиз Взлёт 3.11.2024

- 1. Определите, во сколько раз Сириус (-1.46^m) ярче Ригеля (0.12^m) .
- 2. Экзопланета может быть обнаружена транзитным методом (изменение яркости звезды в моменты прохождения планеты по диску звезды), если диск планеты перекроет 1% поверхности звезды. Определите, насколько изменяется звездная величина звезды в такие моменты?
- 3. Двойная система состоит из звезд 5^m и 3^m . Определите суммарную звездную величину двойной системы.
- 4. Тройная система состоит из звезд 3^m , 4^m и 6^m . Определите суммарную звездную величину тройной системы.
- 5. Определите звездные величины компонент A и B звезды α Cen, если суммарная звездная величина -0.27^m , а соотношение светимостей компонент 3.47.
- 6. На рисунке приведена кривая блеска затменно-переменной звезды. Определите по графику блеск компонентов двойной системы.

- 7. Определите суммарную звездную величину шарового скопления с 10^6 звезд звездной величины 19^m .
- 8. Шаровое скопление содержит 10^6 звезд звездной величины 22^m и 10000 сверхгигантов со звездной величиной 17^m . Сможем ли мы увидеть это шаровое скопление глазом?
- 9. Определите видимую звездную величину компонентов тройной звезды, если ее суммарный блеск равен 3.7^m , второй компонент ярче третьего в 2.8 раза, а первый ярче третьего на 3.32^m .

10. Кривая блеска соответствует затменно-переменной двойной системе, наблюдаемой «с ребра», с компонентами X и Y (радиусы r_X и r_Y , светимости L_X и L_Y , соответственно). Звезда X ярче, но звезда Y – горячее.

- (a) Какая из двух звёзд лежит на главной последо- вательности? Выберите более вероятный вариант: X или Y .
- (b) Определите:
- (с) і. период системы;
 - іі. звездную величину каждой компоненты;
 - ііі. отношение радиусов, температур и светимостей звезд.
- 11. Определите суммарную звездную величину скопления содержащего звезды 1^m , 1.2^m , 1.4^m , 1.6^m и т.д.
- 12. Согласно древней средневолжской легенде, в далёком прошлом на небе существовало созвездие Белого Барса (Pardus Album), число звёзд в котором было в точности равно числу букв греческого алфавита, и звёзды эти имели величины α PaA 0.10^m , β PaA 0.20^m , γ PaA 0.30^m , δ PaA 0.40^m и так далее с увеличением на 0.10^m вплоть до ω PaA. Вычислите суммарную звёздную величину звёзд этого созвездия.
- 13. Рассчитайте звездную величину звезды, от которой на каждый квадратный метр поверхности Земли приходит около 1000 фотонов за час.
- 14. Известно, что когда Вега находится в зените, от нее на каждый квадратный сантиметр поверхности Земли приходит около 10^6 фотонов за секунду. Оцените,

- сколько фотонов за одну секунду приходит на главное зеркало космического телескопа им. Хаббла (HST) от объекта с видимой звездной величинй 30^m . Диаметр главного зеркала HST составляет 2.4 метра.
- 15. На Земле появился человек с исключительно острым зрением. Чтобы заметить звезду на небе, ему достаточно зафиксировать каждым глазом в среднем по одному фотону от звезды за такт фиксации изображения (0.04 секунды). Диаметр зрачка глаза при этом равен 8 мм, спектральные свойства зрения такие же, как у обычного человека. Какой будет проницающая способность зрения такого человека в звездных величинах? Условия для наблюдений идеальные, атмосферные эффекты не учитывать.
- 16. Видимая звездная величина Сириуса -1.46^m . Расстояние до нее составляет 2.64 пк. Определите абсолютную звездную величину самой яркой звезды на земном небе.
- 17. Вычислите абсолютную звёздную величину Антареса, если его параллакс $\pi = 0.0059''$, а видимая звёздная величина $m = 0.91^m$.
- 18. В некотором созвездии расстояние между звёздами Альфа и Бета на небесной сфере составляет 18°, а их звёздные величины равны 2.96^m и 3.07^m соответственно. Известно, что абсолютные звёздные величины этих звёзд одинаковы. Какую звёздную величину будет иметь звезда Альфа, если смотреть на неё из окрестностей звезды Бета?
- 19. Рассчитайте суммарный блеск 100 одинаковых звезд с абсолютной звездной величиной $M=5^m$, первая из которых находится на расстоянии 1 пк, а каждая следующая в 1.2 раза дальше предыдущей.
- 20. Астроном наблюдает два объекта на угловом удалении друг от друга $\alpha=10'$. Параллакс первого объекта 0.7'', а параллакс второго объекта 140 миллисекунд дуги. Один из объектов виден на пределе возможности невооруженного глаза. Определите видимую звездную величину этого объекта при наблюдении со второго. Межзвездным поглощением пренебречь.
- 21. Мы находимся в центре плотного шарового звездного скопления, имеющего радиус 30 пк. Во сколько раз больше звезд на всем небе видно в телескоп с проницающей способностью 15^m , нежели невооруженным глазом? Считайте, что звезды скопления похожи на Солнце и равномерно распределены внутри скопления. Влиянием фона неба пренебречь.
- 22. В справочных данных про одно из самых ярких шаровых скоплений NGC 104 или же Тис 47 сказано следующее: «Центральная часть (ядро) шарового звездного скопления имеет светимость равную $10^{4.88}~L_{\odot}$ на кубический парсек и угловой радиус центральной части скопления 0.36'.» Определите видимую звездную величину ядра шарового скопления, если расстояние до него r_0 = 4.5 кпк. Межзвездным поглощением пренебречь.