Lecture 2

Divide-and-conquer, MergeSort, and Big-O notation

Announcements

- Homework!
 - HW1 will be released Friday.
 - It is due the following Friday.
- See the website for guidelines on homework, including:
 - Collaboration policy
 - Best practices/style guide
 - Will be posted by Friday!

Last time

Philosophy

- Algorithms are awesome and powerful!
- Algorithm designer's question:
 Can I do better?

Technical content

- Karatsuba integer multiplication
- Example of "Divide and Conquer"
- Not-so-rigorous analysis

Cast

Plucky the pedantic penguin

Lucky the lackadaisical lemur

Ollie the over-achieving ostrich

Siggi the studious stork

Today

- Things we want to know about algorithms:
 - Does it work?
 - Is it efficient?

 We'll start to see how to answer these by looking at some examples of sorting algorithms.

- InsertionSort
- MergeSort

The plan

- Part I: Sorting Algorithms
 - InsertionSort: does it work and is it fast?
 - MergeSort: does it work and is it fast?
 - Skills:
 - Analyzing correctness of iterative and recursive algorithms.
 - Analyzing running time of recursive algorithms (part 1...more next time!)

- Part II: How do we measure the runtime of an algorithm?
 - Worst-case analysis
 - Asymptotic Analysis

Sorting

- Important primitive
- For today, we'll pretend all elements are distinct.

I hope everyone did the pre-lecture exercise!

What was the mystery sort algorithm?

- 1. MergeSort
- 2. QuickSort
- 3. InsertionSort
- 4. BogoSort

```
def MysteryAlgorithmTwo(A):
    for i in range(1,len(A)):
        current = A[i]
        j = i-1
        while j >= 0 and A[j] > current:
              A[j+1] = A[j]
              j -= 1
        A[j+1] = current
```

Benchmark: insertion sort

We're going to go through this in some detail – it's good practice!

• Say we want to sort:

Insert items one at a time.

• How would we actually implement this?

In your pre-lecture exercise...

```
def InsertionSort(A):
    for i in range(1,len(A)):
        current = A[i]
        j = i-1
        while j >= 0 and A[j] > current:
            A[j+1] = A[j]
            j -= 1
        A[j+1] = current
```

InsertionSort

example

Start by moving A[1] toward the beginning of the list until you find something smaller (or can't go any further):

Then move A[2]:

Then move A[3]:

Then we are done!

Insertion Sort

- 1. Does it work?
- 2. Is it fast?

Empirical answers...

- Does it work?
 - You saw it worked on the pre-Lecture exercise.
- Is it fast?
 - IPython notebook lecture2_sorting.ipynb says:

Insertion Sort

- 1. Does it work?
- 2. Is it fast?

- The "same" algorithm can be faster or slower depending on the implementation...
- We are interested in how fast the running time scales with n, the size of the input.

Insertion Sort: running time

```
def InsertionSort(A):
    for i in range(1,len(A)):
        current = A[i]
        j = i-1
    while j >= 0 and A[j] > current:
        A[j+1] = A[j]
        j -= 1
        A[j+1] = current
```

In the worst case, about n iterations of this inner loop

Running time scales like n²

Insertion Sort

1. Does it work?

2. Is it fast?

• Okay, so it's pretty obvious that it works.

 HOWEVER! In the future it won't be so obvious, so let's take some time now to see how we would prove this rigorously.

Why does this work?

Say you have a sorted list, 3 4 6 8 , and another element 5 .

• Insert 5 right after the largest thing that's still smaller than 5. (Aka, right after 4).

• Then you get a sorted list: 3 4

So just use this logic at every step.

This slide skipped in class; for reference only.

Recall: proof by induction

Maintain a loop invariant.

A loop invariant is something that should be true at every iteration.

- Proceed by <u>induction</u>.
- Four steps in the proof by induction:
 - Inductive Hypothesis: The loop invariant holds after the ith iteration.
 - Base case: the loop invariant holds before the 1st iteration.
 - Inductive step: If the loop invariant holds after the ith iteration, then it holds after the (i+1)st iteration
 - Conclusion: If the loop invariant holds after the last iteration, then we win.

Formally: induction

• Loop invariant(i): A[:i+1] is sorted.

A "loop invariant" is something that we maintain at every iteration of the algorithm.

- Inductive Hypothesis:
 - The loop invariant(i) holds at the end of the ith iteration (of the outer loop).
- Base case (i=0):
 - Before the algorithm starts, A[:1] is sorted. ✓
- Inductive step:

This logic (see Lecture Notes for details)

Conclusion:

4

- At the end of the n-1'st iteration (aka, at the end of the algorithm),
 A[:n] = A is sorted.
- That's what we wanted! ✓

4 6 3 8 5

6

3 5

The first two elements, [4,6], make up a sorted list.

This was iteration i=2.

So correctly inserting 3 into the list [4,6] means that [3,4,6] becomes a sorted list.

Aside: proofs by induction

- We're gonna see/do/skip over a lot of them.
- I'm assuming you're comfortable with them from CS103.
 - When you assume...
- If that went by too fast and was confusing:
 - Slides [there's a hidden one with more info]
 - Lecture notes
 - Book
 - Office Hours

Make sure you really understand the argument on the previous slide!

To summarize

InsertionSort is an algorithm that correctly sorts an arbitrary n-element array in time that scales like n².

Can we do better?

The plan

- Part I: Sorting Algorithms
 - InsertionSort: does it work and is it fast?
 - MergeSort: does it work and is it fast?

- Skills:
 - Analyzing correctness of iterative and recursive algorithms.
 - Analyzing running time of recursive algorithms (part A)

- Part II: How do we measure the runtime of an algorithm?
 - Worst-case analysis
 - Asymptotic Analysis

Can we do better?

- MergeSort: a divide-and-conquer approach
- Recall from last time:

MergeSort

MERGE!

1 2 3 4 5 6 7 8

How would you do this in-place?

Code for the MERGE step is given in the Lecture2 notebook or the Lecture Notes

Ollie the over-achieving Ostrich

Sort the left half

MergeSort Pseudocode

```
MERGESORT(A):
```

- n = length(A)
- if n ≤ 1: If A has length 1, It is already sorted!
 - return A
- L = MERGESORT(A[0 : n/2])
- R = MERGESORT(A[n/2 : n]) Sort the right half
- return MERGE(L,R) Merge the two halves

What actually happens?

First, recursively break up the array all the way down to the base cases

Then, merge them all back up!

A bunch of sorted lists of length 1 (in the order of the original sequence).

Two questions

- 1. Does this work?
- 2. Is it fast?

Empirically:

- 1. Seems to.
- 2. Maybe?

IPython notebook says...

It works Let's assume n = 2^t

Again we'll use induction.
This time with an invariant that will remain true after every recursive call.

Inductive hypothesis:

"In every recursive call,
MERGESORT returns a sorted array."

- Base case (n=1): a 1-element array is always sorted.
- Inductive step: Suppose that L and R are sorted. Then MERGE(L,R) is sorted.
- Conclusion: "In the top recursive call, MERGESORT returns a sorted array."

- n = length(A)
- if $n \leq 1$:
 - return A
- L = MERGESORT(A[1 : n/2])
- R = MERGESORT(A[n/2+1 : n])
- return MERGE(L,R)

Fill in the inductive step! (Either do it yourself or read it in CLRS!)

It's fast Let's keep assuming n = 2^t

CLAIM:

MERGESORT requires at most 11n (log(n) + 1) operations to sort n numbers.

What exactly is an "operation" here? We're leaving that vague on purpose. Also I made up the number 11.

How does this compare to InsertionSort?

Scaling like n² vs scaling like nlog(n)?

Empirically

The constant doesn't matter: eventually, $n^2 > 111111 \cdot n \log(n)$

Quick log refresher

All logarithms in this course are base 2

 log(n): how many times do you need to divide n by 2 in order to get down to 1?

```
64
32
                                     log(128) = 7
                  32
                                     log(256) = 8
16
                                     log(512) = 9
                   16
                                                         Moral: log(n)
8
                                                       grows very slowly with n.
                  8
                                     log(number of particles in
                                     the universe) < 280
                  log(64) = 6
log(32) = 5
```

It's fast!

CLAIM:

MERGESORT requires at most 11n (log(n) + 1) operations to sort n numbers.

Much faster than InsertionSort for large n! (No matter how the algorithms are implemented). (And no matter what that constant "11" is).

Let's prove the claim

ways of analyzing divide-andconquer algs.

How much work in this sub-problem?

How much work in this sub-problem?

Let k=n/2^t...

How long does it take to MERGE?

Code for the MERGE step is given in the Lecture 2 notebook.

How long does it take to MERGE?

k/2 k/2

Code for the MERGE step is given in the Lecture 2 notebook.

- Plus the time to initialize three counters
- Plus the time to increment two of those counters k/2 times each
- Plus the time to compare two values at least k times
- Plus the time to copy k values from the existing array to the big array.
- Plus...

There's some justification for this number "11" in the lecture notes, but it's really pretty arbitrary.

Lucky the lackadaisical lemur

Pedantic Penguin

Recursion tree

Size of

Total runtime...

- 11n steps per level, at every level
- log(n) + 1 levels
- 11n (log(n) + 1) steps total

That was the claim!

A few reasons to be grumpy

Sorting

should take zero steps...

- What's with this 11k bound?
 - You (Mary) made that number "11" up.
 - Different operations don't take the same amount of time.

How we will deal with grumpiness

- Take a deep breath...
- Worst case analysis
- Asymptotic notation

The plan

- Part I: Sorting Algorithms
 - InsertionSort: does it work and is it fast?
 - MergeSort: does it work and is it fast?
 - Skills:
 - Analyzing correctness of iterative and recursive algorithms.
 - Analyzing running time of recursive algorithms (part A)

- Part II: How do we measure the runtime of an algorithm?
 - Worst-case analysis
 - Asymptotic Analysis

Worst-case analysis

Sorting a sorted list should be fast!!

1 2 3 4 5 6 7 8

• In this class, we will focus on worst-case analysis

Here is my algorithm!

Algorithm:
Do the thing
Do the stuff
Return the answer

Algorithm designer

- Pros: very strong guarantee
- Cons: very strong guarantee

Big-O notation

How long does an operation take? Why are we being so sloppy about that "11"?

- What do we mean when we measure runtime?
 - We probably care about wall time: how long does it take to solve the problem, in seconds or minutes or hours?
- This is heavily dependent on the programming language, architecture, etc.
- These things are very important, but are not the point of this class.
- We want a way to talk about the running time of an algorithm, independent of these considerations.

Main idea:

Focus on how the runtime scales with n (the input size).

Asymptotic Analysis

How does the running time scale as n gets large?

One algorithm is "faster" than another if its runtime scales better with the size of the input.

Pros:

- Abstracts away from hardware- and languagespecific issues.
- Makes algorithm analysis much more tractable.

Cons:

• Only makes sense if n is large (compared to the constant factors).

 $2^{10000000000000}$ n is "better" than n^2 ?!?!

O(...) means an upper bound

- Let T(n), g(n) be functions of positive integers.
 - Think of T(n) as being a runtime: positive and increasing in n.
- We say "T(n) is O(g(n))" if g(n) grows at least as fast as T(n) as n gets large.
- Formally,

$$T(n) = O(g(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s.t. } \forall n \ge n_0,$$

$$0 \le T(n) \le c \cdot g(n)$$

Example $2n^2 + 10 = O(n^2)$

$$T(n) = O(g(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s.t. } \forall n \ge n_0,$$

$$0 \le T(n) \le c \cdot g(n)$$

Example $2n^2 + 10 = O(n^2)$

$$T(n) = O(g(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s.t. } \forall n \ge n_0,$$

$$0 \le T(n) \le c \cdot g(n)$$

Formally:

- Choose c = 3
- Choose $n_0 = 4$
- Then:

$$\forall n \ge 4,$$

$$0 \le 2n^2 + 10 \le 3 \cdot n^2$$

same Example $2n^2 + 10 = O(n^2)$

$$T(n) = O(g(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s. t. } \forall n \ge n_0,$$

$$0 \le T(n) \le c \cdot g(n)$$

Formally:

- Choose c = 7
- Choose $n_0 = 2$
- Then:

$$\forall n \ge 2,$$

$$0 \le 2n^2 + 10 \le 7 \cdot n^2$$

There is not a "correct" choice of c and n₀

Another example:

$$n = O(n^2)$$

$$T(n) = O(g(n))$$

$$\Leftrightarrow$$

$$\exists c, n_0 > 0 \text{ s.t. } \forall n \ge n_0,$$

$$0 \le T(n) \le c \cdot g(n)$$

- Choose c = 1
- Choose $n_0 = 1$
- Then

$$\forall n \ge 1,$$

$$0 \le n \le n^2$$

$\Omega(...)$ means a lower bound

• We say "T(n) is $\Omega(g(n))$ " if g(n) grows at most as fast as T(n) as n gets large.

Formally,

Example $n \log_2(n) = \Omega(3n)$

$$T(n) = \Omega(g(n))$$
 \Leftrightarrow
$$\exists c, n_0 > 0 \text{ s.t. } \forall n \geq n_0,$$

$$0 \leq c \cdot g(n) \leq T(n)$$

- Choose c = 1/3
- Choose $n_0 = 3$
- Then

$$\forall n \geq 3$$
,

$$0 \le \frac{3n}{3} \le n \log_2(n)$$

$\Theta(...)$ means both!

• We say "T(n) is Θ(g(n))" if:

$$T(n) = O(g(n))$$

$$-AND$$

$$T(n) = \Omega(g(n))$$

Some more examples

- All degree k polynomials* are O(n^k)
- For any $k \ge 1$, n^k is not $O(n^{k-1})$

*Need some caveat here...what is it?

(On the board if we have time... if not see the lecture notes!)

Take-away from examples

• To prove T(n) = O(g(n)), you have to come up with c and n_0 so that the definition is satisfied.

- To prove T(n) is NOT O(g(n)), one way is proof by contradiction:
 - Suppose (to get a contradiction) that someone gives you a c and an n_0 so that the definition *is* satisfied.
 - Show that this someone must by lying to you by deriving a contradiction.

Yet more examples

•
$$n^3 + 3n = O(n^3 - n^2)$$

•
$$n^3 + 3n = \Omega(n^3 - n^2)$$

•
$$n^3 + 3n = \Theta(n^3 - n^2)$$

- 3ⁿ is **NOT** O(2ⁿ)
- $\log(n) = \Omega(\ln(n))$ $\log(n) = \Theta(2^{\log\log(n)})$

Work through any of these that we don't have time to go through in class!

Siggi the Studious Stork

Some brainteasers

- Are there functions f, g so that NEITHER f = O(g) nor f = $\Omega(g)$?
- Are there non-decreasing functions f, g so that the above is true?
- Define the n'th fibonacci number by F(0) = 1, F(1) = 1, F(n) = F(n-1) + F(n-2) for n > 2.
 - 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

True or false:

- $F(n) = O(2^n)$
- $F(n) = \Omega(2^n)$

Thi hap

What have we learned?

Asymptotic Notation

- This makes both Plucky and Lucky happy.
 - Plucky the Pedantic Penguin is happy because there is a precise definition.
 - Lucky the Lackadaisical Lemur is happy because we don't have to pay close attention to all those pesky constant factors like "11".
- But we should always be careful not to abuse it.
- In the course, (almost) every algorithm we see will be actually practical, without needing to take $n \ge n_0 = 2^{10000000}$.

The plan

- Part I: Sorting Algorithms
 - InsertionSort: does it work and is it fast?
 - MergeSort: does it work and is it fast?
 - Skills:
 - Analyzing correctness of iterative and recursive algorithms.
 - Analyzing running time of recursive algorithms (part A)

- Part II: How do we measure the runtime of an algorithm?
 - Worst-case analysis
 - Asymptotic Analysis

Recap

- InsertionSort runs in time O(n²)
- MergeSort is a divide-and-conquer algorithm that runs in time O(n log(n))

- How do we show an algorithm is correct?
 - Today, we did it by induction
- How do we measure the runtime of an algorithm?
 - Worst-case analysis
 - Asymptotic analysis

Next time

 A more systematic approach to analyzing the runtime of recursive algorithms.

Before next time

- Pre-Lecture Exercise:
 - A few recurrence relations (see website)