Serie de Fourier

Lali Barrière

Octubre 2011

1 Introducción

• Representamos una onda sonora por una función del tiempo

$$t \to s(t)$$
.

ullet Una función es periódica, con periodo T si se cumple

$$s(t) = s(t+T)$$

para cualquier valor de t, y la igualdad anterior no se cumple con valores más pequeños de T. **Observación** Una función periódica con periodo T cumple

$$s(t) = s(t+T) = s(t+2T) = s(t+3T) = \dots$$

• Una sinusoide es una función que se puede expresar como un seno, con una determinada amplitud, frecuencia y fase:

$$s(t) = A \cdot \sin(\omega \cdot t + \Phi)$$

Observación 1 En esta igualdad, A es la amplitud, ω es la frecuencia angular y Φ es la fase. La frecuencia en ciclos por segundo es $f = \frac{\omega}{2\pi}$.

Observación 2 El periodo es $T = \frac{1}{f}$. El periodo también se llama longitud de onda.

Observación 3 Las sinusoides son las funciones oscilatorias más simples.

Representación gráfica de una sinusoide: http://es.wikipedia.org/wiki/Sinusoide Ejemplo de longitud de onda: http://www.phys.unsw.edu.au/jw/fluteacoustics.html

2 Teorema de Fourier

Cualquier función periódica, con periodo T, se puede representar como suma de sinusoides de frecuencias f, 2f, 3f,..., llamadas arm'onicos. (La relación entre el periodo y la frecuencia es $f=\frac{1}{T}$.)

Observación Los armónicos también se suelen llamar *parciales*. De hecho, los parciales son componentes frecuenciales de una onda no necesariamente periódica. Por lo tanto, el término *parcial* es más general que el término *armónico*.

2.1 Serie de Fourier trigonométrica

Si $s: \mathbb{R} \to \mathbb{R}$ es una función periódica con periodo T, la serie de Fourier de s es

$$s(t) \sim \frac{a_0}{2} + \sum_{n>1} a_n \cos \frac{2\pi nt}{T} + \sum_{n>1} b_n \sin \frac{2\pi nt}{T}$$

con coeficientes

$$a_n = \frac{2}{T} \int_0^T s(t) \cos \frac{2\pi nt}{T} dt \quad \left(\Rightarrow a_0 = \frac{1}{\pi} \int_0^T s(t) dt \right)$$
$$b_n = \frac{2}{T} \int_0^T s(t) \sin \frac{2\pi nt}{T} dt.$$

Estos coeficientes se pueden calcular integrando entre -T/2 i T/2 o, en general, entre t_0 i $t_0 + T$, con t_0 un valor real cualquiera.

Observación En las ondas sonoras, $a_0 = 0$.

2.2 Expresiones alternativas de la serie de Fourier

• La frecuencia angular fundamental es $\omega_0 = \frac{2\pi}{T}$. La frecuencia angular del armónico n-ésimo es $n\omega_0 = \frac{2\pi n}{T}$. La serie se puede escribir

$$s(t) \sim \frac{a_0}{2} + \sum_{n>1} a_n \cos n\omega_0 t + \sum_{n>1} b_n \sin n\omega_0 t$$

• Si t es el tiempo en segundos, la frecuencia fundamental en Hz es $f_0 = \frac{1}{T}$. La frecuencia en Hz del armónico n-ésimo es $f_n = nf_0 = \frac{n}{T}$. La serie se puede escribir

$$s(t) \sim \frac{a_0}{2} + \sum_{n>1} a_n \cos 2\pi n f_0 t + \sum_{n>1} b_n \sin 2\pi n f_0 t$$

2.3 Forma amplitud-fase de la serie de Fourier

$$\frac{a_0}{2} + \sum_{n \ge 1} a_n \cos n\omega_0 t + \sum_{n \ge 1} b_n \sin n\omega_0 t = A_0 + \sum_{n \ge 1} A_n \cos(n\omega_0 t + \Phi_n)$$

- $A_0 = \frac{a_0}{2}$ (En las ondas sonoras $A_0 = 0$.)
- Amplitud: $A_n = \sqrt{a_n^2 + b_n^2}$
- Fase: $\Phi_n = \arctan \frac{a_n}{b_n}$

Observación La forma amplitud-fase de la serie de Fourier se deduce de la fórmula trigonométrica:

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

Por lo tanto, la expresión amplitud-fase de la onda $t \to s(t)$ es:

$$s(t) = A_1 \cos(\omega_0 t + \Phi_1) + A_2 \cos(2\omega_0 t + \Phi_2) + A_3 \cos(3\omega_0 t + \Phi_3) + A_4 \cos(4\omega_0 t + \Phi_4) + \dots$$

2.4 Espectro

Sabiendo que la frecuencia fundamental de una onda s(t) es ω , únicamente se requieren los valores de amplitud y fase de cada uno de los parciales para reconstruir la onda. El conjunto de estos valores se llama espectro.

$$\{(A_1,\Phi_1),(A_2,\Phi_2),(A_3,\Phi_3),\dots\}$$

• Espectro de amplitud Representación frecuencia-amplitud.

• Espectro de fase Representación frecuencia-fase.

3 Ejemplo: la onda cuadrada

La onda cuadrada de periodo 2π es la función definida por

$$s(t) = \begin{cases} 1, \text{ si } 0 \le t < \pi; \\ -1, \text{ si } \pi \le t < 2\pi; \\ \text{extendida con periodo } 2\pi. \end{cases}$$

Los coeficientes de Fourier de esta función son

$$a_n = 0$$

$$b_n = \frac{1}{\pi} \left(\int_{-\pi}^0 -\sin nt \, dt + \int_0^{\pi} \sin nt \, dt \right) = \begin{cases} \frac{4}{\pi n}, & \text{si } n \text{ es impar;} \\ 0, & \text{si } n \text{ es par.} \end{cases}$$

La suma de los primeros 8 parciales es

La suma de los primers 60 parciales es

La suma de los primeros 200 parciales es

Todos los parciales tienen fase 0. Si desfasamos el parcial n=5 en $\frac{\pi}{2}$, es decir, en la serie trigonométrica, $a_5=b_5$ i $b_5=0$, obtenemos:

