Feb 2 Notes: Let {bn} be a segnence. Let {bn} be the tail of {an}, i.e. $\{b_n\}_{n=1}^{\infty} = \{a_n\}_{n=N}^{\infty}$ Let {cn} he the even indexed terms in {an}, io. {Cn? n=1 = {Q2n? n=1 They look like this: an N N+1 N+2 --. Then the following holds: fant 4 Cn 3

Some theorems
Squeeze theorem
Let {an}, {bn}, {cn} be segnences.
Suppose an < bn = (n hr all n, and
lun on = lun Cn = L.
Then Im by exists and BL.
Use this to deal with posky alternating things like (-1)" or cos(n) if they appear in a sequence. (see QI from problem sheet)
things like (-1)" or cos(n) if they appear
in a segnence. (see Q from problem sheet)
Monotone convergence theorem.
106 50 } 100 000000000000000000000000000000
Let {an} ke a sequence. If {an} is monotone and bounded
then Im an exists (an is convergent).
Use this to prove convergence & some
segnences even if you don't know what the
Use this to prove convergence of some segmences even if you don't know what the limit is! (see Q2 from problem sheet)