스니핑 방지 대책

- 정적 매핑 테이블 사용
 - 각 주소 매핑 테이블이 별다른 인증 절차 없이 동적으로 변경이 가능하다는 점에서 발생하는 보안 취약성
 - → 동적으로 변경을 불가능하게(정적 주소 매핑 테이블)
 - 호스트의 MAC주소, 라우팅 테이블 → ARP Snooping, ICMP Snooping
 - 스위칭 허브의 동적 MAC 주소 매핑 테이블 → Jamming Attack
- 탐지/차단
 - 네트워크에서 스니핑을 탐지하여 문제가 되는 호스트를 네트워크로부터 격리.

Sniffing Detection

Sniffing 을 탐지하는 몇 가지 방법들

• 대부분의 호스트는 별다른 설정을 하지 않았을 경우 ICMP Echo Request 메시지에 ICMP Echo Reply 메시지로 응답하게 되어있음.

• 네트워크에 어떤 호스트가 있는지 알고 있을 때, 존재하지 않는 호스트를 목적지로 하는 ICMP Echo Request 를 전송했을 때 응답이 있는지 확인.

- 존재하지 않는 호스트에 대해 응답이 돌아온다면 어떤 방법으로든 해당 요청을 다른 호스트가 비정상적으로 수신, 응답했다고 판단할 수 있음.
 - → 현재 통신 매체에 Snipping 하는 호스트가 있음.

요청:8 _____

응답: 0

ICMP Head	er IC	MP Data
형식(8bit)	코드(8bit)	검사합(16bit)
식별자(16bit)		순서번호(16bit)
임의의 데이터		

ARP 질의를 통한 탐지

• ICMP 질의 메시지를 통한 탐지와 유사한 방법.

• 존재하지 않는 호스트가 있는지 질의하고 응답하는지 검사 •

ARP 질의를 통한 탐지

Inverse DNS Lookup 을 통한 탐지

• 거의 대부분의 스니핑 도구는 편의를 위해 감지한 호스트의 호스트 이름을 표시해줌 •

• IP 주소로 부터 호스트 이름을 알아내려면 Inverse-DNS Lookup 요청을 해야함.

Inverse DNS Lookup 을 통한 탐지

Inverse DNS Lookup 을 통한 탐지

네트워크 분석 도구인 Wireshark 에서 Sniffing 이후 Inverse-DNS Lookup 으로 IP 주소에서 호스트 이름으로 자동 치환되는 모습

공격자 유인을 통한 탐지

• Sniffing 의 목적이 네트워크 분석 등과 같은 합법적 목적일 수 있지만 합법적 Sniffing 의 경우는 탐지할 이유가 없다.

• 따라서 인가되지 않은 공격자가 있고, 악의적 목적을 가지고 네트워크를 **Sniffing** 하고 있다는 것이다.

• 공격자는 패킷으로 부터 유의미한 정보를 얻기 위한 목적일 것이고, 그 정보는 ID/PW 일 수도 있다.

공격자 유인을 통한 탐지

• 네트워크에 거짓 ID/PW 를 노출 시키고 공격자가 해당 ID/PW 로 어떤 행동을 하는지 추적하고 분석 .

• Sniffing 탐지 및 공격 벡터 분석 이외 사용되지 않는 거짓 ID/PW 가 제 3 자에 의해 사용되었다는 사실은 공격자가 공격을 시도한다는 증거 .

호스트 기반 탐지

• Sniffing 행위가 의심되는 호스트에서 직접 확인하는 방법

• 직접 의심되는 호스트에 물리적으로 접근, 호스트의 Network Interface Card 가 무차별 모드로 동작하고 있는지 검사.

 무차별 모드만 탐지하고, 의심되는 호스트를 직접 확인해야 한다는 단점이 존재함.

호스트 기반 탐지

Windows 10, 11 환경에서 Powershell 을 통한 무차별 모드 확인

Get-NetAdapter | Format-List -Property PromiscuousMode, Name

PromiscuousMode : False Name : 로컬 영역 연결

평상시

PromiscuousMode : True Name : 로컬 영역 연결

Wireshark 에 의해 무차별 모드로 동작 중일 때 (예시)

호스트 기반 탐지

GNU/Linux 환경에서 무차별 모드 확인

\$ ifconfig

최근 배포판은 net-tools 가 iproute2 으로 대체된 경우가 많기에 직접 net-tools 를 설치하거나 iproute2 의 \$ ip link 명령어를 사용 (아마도 될 것으로 예상 ..?)

네트워크 기반 탐지

• 네트워크를 지속적 모니터링 하여 이상을 감지하는 방법

• 교재에서는 "ARP watch" 라는 도구를 사용해서 ARP 정보를 모니터링 하는 경우를 설명함

네트워크 기반 탐지

Index	IP	MAC
1	10.123.4.2	B4:4E:90:FA:D2:5B
2	10.123.4.3	B0:A9:44:A1:38:C8
3	10.123.4.4	E3:A0:75:80:C6:B5
4	10.123.4.65	7C:DF:E7:8F:F6:26
5	10.123.4.68	2D:91:E6:30:39:DD
6	10.123.4.233	DB:3A:B3:08:CA:89
7	10.123.4.112	0E:BA:0E:A8:50:50
8	10.123.4.109	E8:54:44:56:2C:A0
9	10.123.4.200	93:50:C2:B1:26:BE
10	10.123.4.203	B2:97:CC:2A:AC:42

Index	IP	MAC
1	10.123.4.2	E3:A0:75:80:C6:B5
2	10.123.4.3	E3:A0:75:80:C6:B5
3	10.123.4.4	E3:A0:75:80:C6:B5
4	10.123.4.65	E3:A0:75:80:C6:B5
5	10.123.4.68	E3:A0:75:80:C6:B5
6	10.123.4.233	E3:A0:75:80:C6:B5
7	10.123.4.112	E3:A0:75:80:C6:B5
8	10.123.4.109	E3:A0:75:80:C6:B5
9	10.123.4.200	E3:A0:75:80:C6:B5
10	10.123.4.203	E3:A0:75:80:C6:B5

ARP Spoofing 을 통한 Sniffing 후

정상

Spoofing

호스트를 속이다 , Spoofing

Spoofing

• 사전적 의미는 "속이다"

• 무결성이 보장되지 않거나 취약한 프로토콜에서 정보 조작을 통해 공격

Spoofing

- 공격자가 수신자 행세를 함
 - 원래 수신자에게 가야 할 메시지를 가로챔
 - 수신자는 메시지를 전달 받지 못함.

- 공격자가 송신자 행세를 함
 - 송신자 인척 메시지를 전송함.
 - 수신자에게 조작된 메시지를 전송할 수 있음.

주소 변환 프로토콜 , ARP 를 속이다 .

ARP 개념

• 논리 주소인 IP 주소를 물리 주소인 MAC 으로 동적 매핑 하는데 사용되는 프로토콜

ARP 구조

Hardware Type		Protocol Type
Hardware Length	Protocol Length	Operation
Sender Hardware Address		
Sender Protocol Address		
Target Hardware Address		
Target Protocol Address		

Hardware Type:

LAN 의 유형, Ethernet 의 경우는 1

Protocol Type:

프로토콜의 유형, IPv4의 경우는 2048

Hardware Length:

물리 주소의 길이 (Byte 단위)

Protocol Length:

프로토콜 주소의 길이 (Byte 단위)

Operation:

패킷 유형, 요청 (1)/ 응답 (2)

ARP 동작

Host	IP Addr.	MAC Addr.
local host	Local IP	Local MAC
А	10.12.1.5	6C:A0:9C:75:FC:40
В	10.12.1.6	39:FA:EB:66:39:A0
C	10.12.1.7	65:87:F6:EC:2F:09
D	10.12.1.8	4D:EF:C2:5F:C7:5C
Е	10.12.1.9	28:E6:C5:0D:EE:10
F	10.12.1.10	86:51:53:AC:33:C7

Host	IP Addr.	MAC Addr.
local host	Local IP	Local MAC
А	10.12.1.5	4D:EF:C2:5F:C7:5C
В	10.12.1.6	4D:EF:C2:5F:C7:5C
C	10.12.1.7	4D:EF:C2:5F:C7:5C
D	10.12.1.8	4D:EF:C2:5F:C7:5C
Е	10.12.1.9	4D:EF:C2:5F:C7:5C
F	10.12.1.10	4D:EF:C2:5F:C7:5C

IP:10.12.1.5 MAC:6C:A0:9C:75:FC:40

IP:10.12.1.6 MAC:39:FA:EB:66:39:A0

MAC:65:87:F6:EC:2F:09

MAC:4D:EF:C2:5F:C7:5C

IP:10.12.1.9 MAC:28:E6:C5:0D:EE:10

IP:10.12.1.10 MAC:86:51:53:AC:33.27

MAC:39:FA:EB:66:39:A0

000000000

MAC:28:E6:C5:0D:EE:10

IP:10.12.1.10 MAC:86:51:53:AC:33.27

MAC:39:FA:EB:66:39:A0

000000000

IP:10.12.1.8 MAC:4D:EF:C2:5F:C7:5C

MAC:28:E6:C5:0D:EE:10

IP:10.12.1.10 MAC:86:51:53:AC:33.27

ARP Spoofing Detection

ARP Spoofing 을 감지하는 몇 가지의 방법들

ARP Spoofing 시 발생하는 이상 증상

• 지속적인 ARP 응답 발생

- ARP 테이블에서 중복된 MAC 주소 확인
 - ARP 테이블 감시 프로그램 활용

• 네트워크 속도 저하

지속적인 ARP 응답 발생

* 공격자는 정상 ARP 응답보다 조작된 응답이 희생자에 컴퓨터에 먼저 도달하도록 해야 공격에 성공할 가능성이 증가함.

• 그렇기 때문에 공격자는 ARP 응답을 주기적으로 그리고 많이 전송함.

* 비 정상적으로 많은 ARP 패킷이 탐지되면 공격자가 ARP Spoofing 공격을 수행하고 있다고 의심해 볼 수 있음.

ARP 테이블에서 중복된 MAC 주소 확인

• 특별한 상황이 아니고서야 IP 주소와 MAC 주소는 1:1 부합.

• 여러 개의 IP 주소가 하나의 MAC 주소를 가리킨다면 각각의 호스트로 가야 할 메시지들이 하나의 호스트로 전송되고 있는 것일 수 있음 •

* 중복되는 하나의 MAC 주소가 Spoofing 중인 호스트의 MAC 주소.

ARP 테이블에서 중복된 MAC 주소 확인

• Windows 환경에서 arp -a 명령을 통해 ARP 테이블 확인이

가능하다.

ARP 테이블에서 중복된 MAC 주소 확인

GNU/Linux 환경에서 "arp -a"(net-tools) 명령 또는 "ip neighbour"(iproute2) 명령으로 ARP 테이블 확인이 가능하다.

ARP 테이블에서 중복된 MAC 주소 확인

- 사람이 매번 ARP 테이블을 모니터링 하는 건 상당히 불편하고 실수가 발생할 가능성이 높음
 - → ARP 테이블 모니터링을 자동화 하자!

- 교재에서 소개된 도구
 - Xarp
 - arpwatch

네트워크 속도 저하

• ARP Spoofing 시 지속적인 ARP 응답 발생으로 인한 트래픽 증가

• 공격 호스트를 거쳐서 PDU 가 전달되기 때문에 그 만큼의 지연시간 증가

ARP Spoofing 방지 대책

• 정적 ARP Table 관리

- ARP Spoofing 은 MAC 주소 변조가 가능하기에 할 수 있는 공격 MAC 주소 변조가 불가능하게 정적으로 관리 .
 - 장점 :ARP Spoofing 을 해결할 수 있는 간단한 방법 단점 : 네트워크를 구성하는 호스트에 변경이 생길 경우 네트워크에 속한 모든 호스트의 ARP Table 수정이 필요함 .

• 네트워크 내 호스트 보안 수준 강화

- 네트워크 내 호스트가 공격자에게 탈취당해 Bot 으로 동작할 경우 해당 Bot 이 연결된 네트워크는 ARP Spoofing 공격이 가능해짐.

39

IP 를 속이다

- IP 주소를 변조하는 공격 방법
 - IP 헤더의 주소 필드를 변조
 - 2 계층의 MAC 주소를 변조하는 ARP Spoofing 보다 공격 가능 범위가 넓음.

IP Header

[공격 시나리오 (예)]

a. 어느 기업의 서버들은 관리를 위한 Dumb Terminal 이 사용되고 있다.

b.관리자 편의를 위해 암호 기반의 인증 대신 IP 기반의 인증을 사용하고 있고 서버는 10.203.222.200 로 부터 도착하는 관리자 명령을 신뢰하고 받아들이게 되어있다.

c. 공격자는 Source IP 주소 필드를 Dumb Terminal 의 IP 주소로 변조하여 기업의 네트워크로

203.232.153.22 전송한다.

43

- [공격 시나리오 (예)] a. 이전 슬라이드와 비슷한 환경
- b. Dumb Terminal 에서 주기적으로 보안 정책을 확인하고 이상을 발견하면 원래 정책으로 덮어쓰기.
- c. 공격자는 DoS 공격을 통해
 Dumb Terminal 의 보안 정책
 복구 기능이 작동하지 않게 한 뒤
 IP Spoofing 을 통해 원격 명령
 실행 .

IP Spoofing 의 합법적 사용

• 웹 성능 테스트

 HP(Hewlett-Packard) 의 LoadRunner 는 IP Spofing 을 사용해서 서로 다른 IP 주소를 가진 다수의 여러 사용자가 접속하는 듯한 효력을 내고 이 결과를 토대로 웹 서비스의 성능을 평가합니다.

IP Spoofing 방어

• IP 기반 Trust 사용하지 않기

- IP 주소는 Spoofing 이 가능하기 때문에 취약, 사용하지 않음.
- 그럼에도 트러스트를 사용해야 한다면 트러스트 관계의 호스트들의 보안 수준을 강화해야 함 .(보안 업데이트,정기점검,모니터링)

Packet Filtering

- 네트워크 경계 (Border) 를 기준, 인바운드 패킷 중 소스 IP 주소가 내부 IP 주소 대역으로 설정된 패킷이 있다면 해당 패킷을 Drop.
 - 이 방법은 내부에서 발생하는 IP Spoofing 에 대응하지 못함.

HTTPS IP Spoofing 이 사용되는 예 (번외)

ICMP 를 속이다

ICMP

• 정의

- Internet Control Message Protocol (인터넷 제어 메시지 프로토콜)

• 용도

- 네트워크 진단
- 네트워크 흐름 통제

ICMP

• 네트워크 진단

ICMP ECHO

요청 : 8 _____

응답:0

ICMP Head	er IC	MP Data
형식(8bit)	코드(8bit)	검사합(16bit)
식별자(16bit)		순서번호(16bit)
임의의 데이터		

ICMP

ICMP

ICMP Redirection

- 0: 네트워크 지정 경로를 위한 재지정
- 1: 호스트 지정 경로를 위한 재지정
- 2: 특정한 서비스 유형에 기초한 네트워크 지정 경로를 위한 재지정
- 3: 특정한 서비스 유형에 기초한 호스트 지정 경로를 위한 재지정

ICMP Spoofing 방어

- ICMP Redirection 메시지 차단
 - ICMP Redirection 메시지에 의해서 기본 게이트웨이가 변경되지 않도록 함.

DNS Spoofing

DNS 를 속이다

DNS

· DNS

- Domain Name System
- 문자로 된 이름을 숫자인 주소 체계로 변환하는 시스템

DNS Message

| Second Personnel | Second Per

QR(Query/Response): Query(0)/Response(1)

OpCode: 표준 (0)/ 역조회 (1)/ 서버상태요청 (2)

AA(Authoritative Answer): (0)/ 권한인정 (1)

TC(Truncated): 512 바이트 이내 (0), 512 바이트 이상, 잘림 (1)

RD(Recursion Desired): (0)/ 재귀 응답 요청 (1) RA(Recursion Available): (0)/ 반복 응답 가능 (1)

61

DNS Message

응답 메시지

<u>0</u> 1	6 32	
Identification	Q OPCode A T R R O O O rCode	
질문 레코드 수	응답 레코드 수	
권한 레코드 수	추가 레코드 수	
도메인 이름 이름(가변적)		
도메인 유형	도메인 클래스	
수명(Time To Live)		
자원 데이터 길이		
(Resource data length)		
자원 데이터(Resource Data)		

DNS

DNS Spoofing

Spoofing

- Spoofing 으로 DNS 요청 메시지를 확인하면 정상 DNS 응답 보다 먼저 변조된 DNS 응답이 희생 호스트에 전송되도록 하는 방법

DNS Cache Poisoning

- DNS 서버의 순환 질의 동작 과정을 공격하여 DNS 캐시를 오염시키는 방법
 - Spoofing
 - 무작위 ID 생성 기반의 DNS 캐시 포이즈닝

DNS Spoofing

DNS Recursive Query

DNS Cache Poisoning

DNS Cache Poisoning

DNS Cache Poisoning 방어

- DNS 서버 소프트웨어 보안 수준 강화
 - 보안 취약점이 수정된 최선 버전으로 업데이트

- 순환 질의를 사용하지 않음
 - 순환 질의를 사용하지 않거나, 신뢰 가능한 경우에만 제한적 허용

- 암호화
 - 요청 / 응답을 암호화

비둘기 집 원리

 n+1 마리의 비둘기를 n 개의 비둘기 집에 모두 넣었다고 했을 때 비둘기 집 중 하나는 2 마리가 들어가야 한다는 원리

https://ko.wikipedia.org/wiki/%EB%B9%84%EB%91%98%EA%B8%B0%EC%A7%91_%EC %9B%90%EB%A6%AC

70

생일 문제

• 임의의 사람들 중에 생일이 같은 사람이 존재할 확률을 구하는 문제 •

- 윤일을 포함한 1 년은 366 일 일때, 366 명을 초과하는 사람들이 모여야 100% 로 생일이 겹치게 된다.(비둘기 집 원리)
 - 실제로는 366 명 보다 많이 적어도 생일이 겹칠 확률이 아주 높아지게 된다.

- https://ko.wikipedia.org/wiki/%EC%83%9D%EC%9D%BC_%EB%AC%B8%EC%A0%9C

생일 공격

• 생일 문제의 정리 결과를 기반으로 암호를 찾아내거나 해시 충돌을 찾아내는 등의 수학적 확률에 기반을 둔 공격 ...

DoS Attack

서비스 거부 공격

Denial of Service Attack

DoS Attack

- Denial of Service Attack, 서비스 거부 공격
- 서비스가 정상적으로 제공되지 못하도록 시스템의 가용성을 저하시키는 공격
 - 주로 대규모의 가짜 요청을 만들어서 공격 대상 시스템에 과부하를 유발함.
- 공격 종류
 - 대역폭 소진 공격
 - 네트워크 자원을 소진 시키는 공격
 - 서버 마비 공격
 - 서버의 소프트웨어 또는 하드웨어 자원을 소진 시키는 공격

Denial of Service Attack 유형

	대역폭 소진 공격	서버 마비 공격
공격의 형태	TCP SYN flooding ICMP/UDP flooding IP flooding: LAND, Teardrop	HTTP GET flooding
공격 대상	네트워크 인프라	웹 서버, 정보보호 장비 등
증상	네트워크 대역폭 고갈	공격 대상 시스템만 피해

반 (Half) 개방 공격

- TCP 의 연결 과정을 공격하는 방법
 - TCP는 3-Way Handshake, 연결 설정이 3 단계에 걸쳐 이루어짐
 - SYN, SYN+ACK, ACK
 - TCP 연결을 절반만 열기 때문에 반 (half) 개방 공격이라고도 불림

희생자 호스트의 대기 큐 :

Request	Status
0	Waiting ACK
1	Waiting ACK
2	Waiting ACK
3	Waiting ACK
4	Waiting ACK
•••	•••
n	Waiting ACK

• TCP SYN flooding 방어

- 대기 큐의 크기 늘리기
 - 대기 큐의 크기를 늘림으로써 공격자가 발생하는 요청보다 많은 요청을 수용할 수 있게 함 .
- 최대 접속 대기 시간 줄이기
 - 느린 네트워크 환경의 정상 호스트와 연결에 문제가 있을 것으로 예상
- 보안 솔루션 사용
 - 비정상 연결 요청을 탐지하고 차단함

ICMP flooding

스머프 (Smurf) 공격

ICMP flooding

Internet Control Message Protocol Flooding

- 발신지 IP 주소가 희생자의 IP 주소로 변조된 ICMP Echo Request 를 특정 네트워크의 브로드캐스트 주소로 보내서 다수의 ICMP Echo Reply 가 희생자에게 전송 되도록 하는 공격

ICMP flooding

UDP flooding

프래글 (Fraggle) 공격

UDP flooding

User Datagram Protocol Flooding

- ICMP Flooding 과 유사한 형태의 공격.
- UDP Flooding 의 경우는 Agent 의 7 번 포트로 UDP PDU 전송.
- 7 번 포트는 Echo 로 수신된 데이터를 송신측에 전송

UDP flooding

Broadcasting 기반의 DoS 공격 방어

• 패킷 필터링

- 외부에서 내부로 전달되는 브로드캐스트 (directed broadcast) 패킷을 차단

Distribute Denial of Service

DDoS

- Distribute Denial of Service: 분산 서비스 거부 공격
 - 공격자가 여러 곳에서 동시에 서비스 거부 공격을 하는 방법
 - ICMP Flooding, UDP Flooding 에서는 게이트웨이나 라우터가 Master 역할을 함.
 - 최근의 DDoS 공격은 악성코드를 활용해서 불특정 다수의 호스트를 Agent 로 하여 공격을 수행함
 - 이 악성코드들은 대부분 자체적으로 증식하고 전파하는 기능을 포함하고 있어 네트워크에 하나의 호스트만 감염되어도 쉽게 전파됨
 - 공격자→ [Master] → Agent → 희생자 로 공격이 이루어지기 때문에 Agent 를 찾는 것은 비교적 쉽지만 실질적 공격자를 찾는 것은 어려움
- Master: 공격자로부터 직접 공격 명령을 전달 받아 각 Agent 에게 공격 명령을 전달.
- Agent: 공격 대상자에게 실제 공격을 하는 주체

IP Flooding

LAND, Teardrop 공격

LAND:Local Area Network Denial

- 송신 IP 주소와 수신 IP 주소를 희생자 호스트의 IP 주소로 조작한 패킷을 전송하는 공격 방법
 - 희생 호스트는 패킷의 송신 IP 주소 필드의 주소로 응답하지만 이 주소는 스스로의 주소이므로 스스로 메시지를 무한정 주고받는 루프상태에 빠짐
 - 현재 대부분의 네트워크 장비와 운영체제에서는 소스 IP 주소와 목적지 IP 주소가 동일한 패킷에 대해서 예외 처리하기에 공격이 유효하지 않음.

Teardrop

- IP Header 의 Fragment Offset field 의 값을 조작하여 수신 호스트에서 재조립 시 중복 / 생략이 발생하도록 하는 공격
 - 재조립 과정에서 Fragment Offset 값으로 위치를 계산하고 단편을 복사하는데 Offset 값을 조작하여 계산 결과가 음수가 되게 하면 memcpy() 함수의 데이터 타입 차이로 인해서 잘못된 메모리 접근이 발생함.

- https://news.sbs.co.kr/news/endPage.do?news_id=N0311200908

HTTP GET Flooding

웹 서버 소프트웨어를 대상으로 한 공격

HTTP GET Flooding

- 다수의 Agent 를 이용하여 웹 서버에 Get 요청을 보내 과부하를 유발하는 공격 방법
 - 기본적인 HTTP Get Flooding 도 있지만 변종 공격이 있음
 - HTTP CC(Cache-Control) 공격
 - 동적 HTTP 요청 공격

HTTP GET Flooding

HTTP CC(Cache-Control) 공격

- HTTP 헤더의 Cache-Control 지시문으로 공격 목표의 처리 부하량을 증가.
 - no-cache
 - 서버 유효성 재검사 없이 응답을 재사용하는 것을 방지
 - no-store
 - 아무것도 저장하지 않음 (캐시 사용하지 않음)
 - must-revalidate
 - 만료된 캐시만 서버에 유효성 재검사 후 사용

동적 HTTP Get 공격

- Get 요청하는 URL 을 무작위 또는 인간을 모사
 - 정상 요청과 구별하기 어렵게 하여 탐지하고 방어하기 어렵게 함.

HTTP GET Flooding 방어

• 요청 임계치 기반

- 특정 IP 주소로 부터 오는 요청이 임계치를 넘을 경우 해당 IP 주소의 요청을 위해로 판단하고 일시적 또는 영구적 차단.
- Cache-Control 헤더 옵션 별로 다르게 임계치를 설정할 수 있으면 더 효과적 .

Question & Answer

Connection Closed

