

Globale Strukturen und Gruppen

Jürgen Pfeffer

Technical University of Munich

Bavarian School of Public Policy

juergen.pfeffer@tum.de | @JurgenPfeffer

Cutpoints

Nodes which, if deleted, would disconnect net

Bridge

A tie that, if removed, would disconnect the network

Brokerage

Burt, Ronald S. 1990. Detecting Role Equivalence, Social Networks, Nr.12.

Gould, Roger V, & Fernandez R. M. 1989. Structures of Mediation, in: Sociological Methodology, San Francisco: Jossey-Bass.

Micro/Macro Connection

Micro-Macro Connection

Micro (Ego Networks)	Macro (Entire Network)
Maximum number of alters	Maximum degree of network
Average degree of egos $ar{e}$	1. Average degree of all nodes
	2. Number of edges $E = \frac{\bar{e}N}{2}$
	3. Network density = $\frac{\bar{e}}{N-1}$
Degree distribution of egos	Degree distribution of entire
	network
Degree skewness, degree	Degree skewness, degree
variance of egos	variance of the entire network
Clustering coefficient C_{ν}	Clustering coefficient $C = \frac{1}{N} \sum C_v$

Random Links in Structured Networks

Stylized interpersonal communication network

4k nodes, 47.7k edges

Avg. degree 23.8, max. degree 65

Random Links in Structured Networks

Stylized interpersonal communication network

4k nodes, 47.7k edges

Avg. degree 23.8, max. degree 65

Intervention: 1 new node + 23 new edges (0.05%)

We know a lot about this network

Stylized interpersonal communication network

Limited degree, Low density, Differences in degree

Right tailed degree distribution, Degree correlation

High clustering, Community structure

Short average path length

Random Links in Structured Networks

Betweenness Centrality in altered network:

Change in Betweenness Centrality of existing nodes:

• 17/20 relative winners are connected with the new node

Groups & Communities

Different definitions of groups

How to detect communities?

Different algorithms for different community definitions

To summarize / predict the high level structure of the graph

Components

Disconnected network

$$\mathbf{A} = \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix}. \dots$$

What about directed networks (e.g. www)?

- 2 undirected (weak) components
- 5 directed (strong) components
 - Contain cycles for (every) node

→ Acyclic directed networks have no strong components

Out-Component

How far can you get from one point (no walk back)?

Reachability of nodes

Strongly connected components have identical outcomponents

The intersection of in- and out-components are strong components

Visualize Components

Largest Component

In real-world networks, most of the time, 90+% of nodes are in largest component In most studies, we focus on analysis of larges component

Cliques

Clique = Fully connected group of nodes

CON = Rarely found in real data

CON = Hard to calculate

Clique Relaxations

N-Clique = Connected with path distance N, normally 2

• CON: Nodes could be connected by nodes outside the clique

C-Clan = N-Clique + all links within group

K-Cores = Connected to at least k other members of a "clique"

K-Plex = Node is a member of a "clique" of size n if it has direct ties to n-k members of that clique

Community Detection

Goals:

Newman/Girvan Grouping

Newman & Girvan [2004]

• Calculate edge betweenness centrality

• Remove edge with highest betweenness centrality

Repeat process

When to stop?

• K-groups or modularity

How to Evaluate Grouping?

Fewer links between groups "than expected"

Count links within and between groups

All = within + between

→ Goal: Optimize links within groups compared to what is expected

Modularity maximization: most commonly used

Perfect solution = exponential time complexity

Efficient heuristic optimization algorithms

Modularity

Fraction of the edges that fall within the given groups minus the expected such fraction if edges were distributed at random

Degrees k_i and k_j

 $S_i = 1$ for group 1, $S_i = -1$ for group 2

2m = number of ends of edges

$$\frac{1}{4m}\sum_{ij}\left(A_{ij}-\frac{k_ik_j}{2m}\right)s_is_j,$$

Simple Modularity Maximization

Two random communities of equal size

Algorithm:

- For every node:
 - How much would modularity change if node would move
 - Move best node
- Repeat until no improvement

No constraint on group size

Quite fast O(nm)

More Than Two Groups

Modularity maximization works

Repeatedly bisecting the network

Stop when modularity does not increase anymore

Important to Know!

Community/Partitioning algorithm find a best solution regardless whether a good solution exists!

Modularity value serves as a kind of a significance level for clustering

"Our mission is to go forward, and it has only just begun. There's still much to do, still so much to learn. Engage!" Jean-Luc Picard, Star Trek TNG, Season 1 Episode 26

Juergen.Pfeffer@tum.de @JurgenPfeffer Mirco.Schoenfeld@tum.de