UNIT-1

- · definition and scope of network security
 - strategies + policies + practices desgined to protect network sys + data + services from unauthorized access + misuse + disruption + destruction + modification
 - scope protection of physical devices, S/W, data and protection of the CIA triad
 - confidentiality
 - integrity
 - availability
 - authentication
 - authorization
 - cryptography
 - wireless security
 - components
 - firewalls barriers between trusted and utnrusted networks by filterinwhy g incoming + ougoing traffic based on security rules
 - IDS detect malicious activities within a network
 - IPS precent malicious activities within a network
 - VPN securely connect remote users to a network via encrypted tunnels
 - access control ensures that only authorized users have access to a network resources
 - encryption secures data in transit and at rest by covnerting it into an unreadable format
 - endpoint security protects devices connected to networks
 - authentication mechanisms passwords, MFA, biometrics to verify user identities

[&]quot;security in a system is as good as the security of its weakest link"

- levels of impact
 - low
 - limited adverse effect on org's operations, organisational assets, individuals
 - moderate
 - could have serious effect on org's operations, organisational assets, individuals
 - high
 - severe adverse effect on org's operations, organisational assets, individuals
- · security services*
 - mechanisms designed to ensure protection of data, systems, and communication in a network
 - implement security policies to achieve confidentiality, integirty, aithentication, and other security goals
 - o X.800
 - a service provided by protocol layer of communicatin gopen sys, which ensures adequate security of the systems or of the data transfers
 - consists of
 - authentication
 - access control
 - data confidentiality
 - data integrity
 - non-repudiation
 - availability
- security mechanisms*
 - feature desgined to detect, prevent and recover from attack
 - employs cryptographic techniques
 - types
 - specific
 - encipherment
 - digi signatures
 - access control
 - authentication exhcange
 - routing control
 - pervasive
 - trusted functionality
 - event detection
 - security recovery
- · security models + frameworks
 - Bell-LaPadula model
 - maintaining data confidentiality using access controls
 - no-read-up and no-write-down
 - used in military settings
 - Biba model
 - data integrity

- no-write-up and no-read-down
- used in commercial settings
- Clark-Wilson
 - emphasizes data integirty trhough well-formed transactions and separation of duties
 - suitable for banking applications
- Zero Trust model
 - assumes that no entity is inherently trusted and requires continuous verification
 - least privilege access, micro-segmentation(division of networks to limit spread of potential breaches, etc.), verify identities of users explicitly
- NIST
 - core functions include idnetify, protect, detect, repsond and recover
 - used by government agencies and healthcare enterprises
- MITRE ATT&CK
 - helps identify and classify attacker tactics and techniques used in cyber intrusions

Model for Network Security

- · network attacks
 - active
 - involves the active participation of the malicious actor
 - types
 - spoofing impersonating a trusted entity
 - DoS overloading a network to make it unavailable for genuine clients
 - MitM intercepting + altering communication b/w 2 parties

• replay attacks - resuing captured data packets to gain unauthorized access

- passive
 - does not involve the active participation of the malicious actor
 - types
 - eavesdropping intercepting data durinf transmission

• traffic analysis - observing communication patterns to infer info

- · risk management
 - process of identifying, assessing, mititgating risks to ensure security and resilience of a network
 - steps
 - risk identification
 - objective identify all assets, threats and vulnerabilites in the network
 - activities create inventory of H/W, S/W and data; evaluate potential risks
 - risk assessment
 - objective determine likelihood and impact of identified risks
 - techniques
 - qualititative assessment

- quantitative assessment
- outcome prioritize risks based on their potential effect on network operations
- risk mitigation
 - objective implement measures to minimize or elimiate risks
 - strategies
 - preventive measures deploy firewalls, IPS, etc.
 - detective measures use monitoring tools like IDPS and log analysis to identify threats early
 - corrective measures develop incident response plans and backup strategies to recover from security breaches
- monitoring and review
 - objective ensure continious effectiveness of security controls
 - activities
 - regularly update security plocies and tools to address emerging threats
 - conduct perioidc vulnerability assessments and penetration tests
 - monitor network traffic and maintain logs
- risk acceptance or transfer
 - risk acceptance decide to adcept a certain level of risk is mitigation outweights the potential impact
 - risk transfer use third party services like cyber insurance to shift the financial burden of specific risks