

Multipath Extensions for QUIC

Quentin De Coninck (UCLouvain, Belgium)

https://qdeconinck.github.io/

5-6 February 2020

QUIC Interim, Zurich

Why Using Multiple Paths?

- Bandwidth aggregation
 - MPTCP: Hybrid networks, 4G/WiFi aggregation in Korea
- Network resiliency
 - E.g., duplicate some frames over multiple networks when paths experience connectivity issues
 - MPTCP: iOS deployment
- 3GPP discussions to integrate MPQUIC solution for 5G

Design Goals

Enable simultaneous usage of multiple network paths while

- Handling network asymmetry
- Keeping control on path management
- Not introducing new privacy concerns
- Validating new addresses before use

Notions of Paths in QUIC

Flow tuples on client and server are not necessarily the same (e.g., NAT)

Idea of "Asymmetric Flows" (a.k.a. Uniflows)

Proposing Uniflows

- Host determines the number of sending uniflows of its peer
 - = number of different Uniflow IDs sent in (MP) NEW CID frames
- Can only use Destination CID from different Uniflow IDs simultaneously
- Path migration of a given Uniflow still possible

Negotiating the Multipath Extensions

Use a transport parameter

- Put a limit on the number of desired sending uniflows
 - Limit number of peer's receiving uniflows
- Initial path has (implicit) uniflow ID 0
- If one does not advertise the TP, extension is disabled

Acknowledging Packets Sent on Uniflows

- One packet number space per uniflow
- (MP)ACK frame indicates the **receiving Uniflow ID** it acknowledges

Cons of using a single packet number space:

- May complexify ACK processing, more ACK blocks if path reordering
- What if a single ACK acknowleges two packets from different uniflows?
 - Uniflow latency estimation?

Advertising Host Addresses

Relies on ADD ADDRESS and REMOVE ADDRESS frames

- Similar to preferred_address here, but can use both IPv4 and IPv6 at the same time
- Enable each host to advertise address changes
- Address ID events ordered by a sequence number

ADD ADDRESS(1, 0, IP1)

ADD ADDRESS(1, 2, IP2)

REMOVE ADDRESS(1, 1)

Estimating the Latency

(MP)ACK frames can be sent on any (sending) uniflow

- Estimate RTT between tuple (sending uniflow ID, receive uniflow ID)
- Would be interesting to estimate One-Way-Delay of uniflows
 - draft-huitema-quic-1wd

Multipath Algorithms

- Path management (link uniflow to a 4-tuple)
 - Client can link a uniflow to pair of local address / remote validated address
 - Server should first wait for client packet to learn client addresses
 - Then link uniflows to pair of local address / seen and validated client address
- Packet scheduling
 - Only applies on sending uniflows
 - Can be lowest-latency oriented, priority based,...
 - Frames like MAX DATA should be duplicated on all sending uniflows
 - To limit head-of-line blocking

Is This Complex to Implement?

- quicly -- ~350 lines of diff
 - Very basic multipath support with round-robin
- PQUIC multipath plugin (based on picoquic) -- 2500 lines of C code
 - Nearly complete implementation, RTT + round-robin schedulers
 - See https://pquic.org
- Connection migration already implements a lot
 - Path validation,...

Next Steps

Multipath ID is ongoing work, feel free to contribute

https://github.com/qdeconinck/draft-deconinck-multipath-quic

Also preparing a new version of the MultipathTester iOS app

- Include support for IETF (multipath) QUIC
- https://apps.apple.com/us/app/multipathtester/id1351286809
- See also https://multipath-quic.org