

Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks

Patrick Lewis^{†‡}, Ethan Perez^{*},

Aleksandra Piktus[†], Fabio Petroni[†], Vladimir Karpukhin[†], Naman Goyal[†], Heinrich Küttler[†],

Mike Lewis[†], Wen-tau Yih[†], Tim Rocktäschel^{†‡}, Sebastian Riedel^{†‡}, Douwe Kiela[†]

[†]Facebook AI Research; [‡]University College London; *New York University;

HUMANE Lab 박현빈 NeurIPS 2020

25.02.07

Background

- Previous research has used non-parametric memory to provide clear interpretability of the prediction process and reduce hallucinations.
- However, non-parametric memory has only been used for extractive tasks and has not been applied to generation tasks.

- RAG-Sequence Model
 - Referencing a single document z when generating a sequence

$$p_{\text{RAG-Sequence}}(y|x) \approx \sum_{z \in \text{top-}k(p(\cdot|x))} p_{\eta}(z|x) p_{\theta}(y|x,z) = \sum_{z \in \text{top-}k(p(\cdot|x))} p_{\eta}(z|x) \prod_{i}^{N} p_{\theta}(y_{i}|x,z,y_{1:i-1})$$

- RAG-Token Model
 - Referencing multiple documents z when generating each token

$$p_{ ext{RAG-Token}}(y|x) \; pprox \; \prod_i^N \; \sum_{z \in ext{top-}k(p(\cdot|x))} p_{\eta}(z|x) p_{ heta}(y_i|x,z,y_{1:i-1})$$

- Retrieval : DPR
 - Retrieving documents with high MIPS scores for a given query
 - Using two encoders: a document-specific BERT encoder and a query-specific BERT encoder
 - Trained to retrieve documents containing answers to TriviaQA and Natural Questions

$$p_{\eta}(z|x) \propto \exp\left(\mathbf{d}(z)^{\top}\mathbf{q}(x)\right)$$
 $\mathbf{d}(z) = \mathrm{BERT}_d(z), \ \mathbf{q}(x) = \mathrm{BERT}_q(x)$

• Generator : BART-Large

Training

- train without any direct supervision on what document should be retrieved
- minimize the negative (marginal) log-likelihood
- Adam optimizer
- keep the document encoder fixed, only fine-tuning the query encoder BERT and BART generator

- Decoding
 - RAG-Token: searching for the optimal answer using standard beam search
 - RAG-Sequence : performing beam search for each document z

- Open-domain QA
 - Train RAG by directly minimizing the negative log-likelihood of answers

	Model	NQ	TQA	WQ	CT
	T5-11B [52] T5-11B+SSM[52]	34.5 36.6	- /50.1 - /60.5		-
-	REALM [20] DPR [26]		- / - 57.9 / -		46.8 50.6
	RAG-Token RAG-Seq.		55.2/66.1 56.8/ 68.0		

 RAG can generate correct answers even when the correct answer is not in any retrieved document

Abstractive QA

Model	Jeo _j B-1	pardy QB-1	MSM. R-L	ARCO B-1	FVR3 Labe	FVR2 l Acc.
SotA	-	-	49.8*	49.9*	76.8	92.2*
BART	15.1	19.7	38.2	41.6	64.0	81.1
RAG-Tok. RAG-Seq.				41.5 44.2	72.5	89.5

- RAG outperforms BART and achieves results close to state-of-the-art models that use gold passages
- RAG has fewer hallucinations than BART and tends to generate factually correct text more often

- Jeopardy Question Generation
 - A task that generates the question "In 1986 Mexico scored as the first country to host this international sports competition twice." given the answer entity "The World

Model	Jeopardy		MSMARCO		FVR3 FVR2 Label Acc.	
	B-1	QB-1	R-L	B-1	Labe	l Acc.
SotA	-	-	49.8*	49.9*	76.8	92.2*
BART	15.1	19.7	38.2	41.6	64.0	81.1
RAG-Tok. RAG-Seq.				41.5 44.2	72.5	89.5

- Q-BLEU is a variant of BLEU with a higher weight for matching entities and has higher correlation with human judgement
- Human evaluation also determines that RAG generates more factual and specific questions than BART.

Fact Verification

- FEVER requires classifying whether a claim is supported or refuted by Wikipedia, or whether there is not enough information to decide
- Unlike most other approaches to FEVER, supervision on retrieved evidence is not used.
- In real-world applications, retrieval supervision signals aren't available, and models that do not require such supervision will be applicable to a wider range of tasks.

Model	Jeopardy		MSMARCO		FVR3 FVR2 Label Acc.	
	B-1	QB-1	R-L	B-1	Labe	l Acc.
SotA	-	-	49.8*	49.9*	76.8	92.2*
BART	15.1	19.7	38.2	41.6	64.0	81.1
RAG-Tok. RAG-Seq.	17.3 14.7	22.2 21.4	40.1 40.8	41.5 44.2	72.5	89.5

 RAG achieved a score similar to Sota models, which are trained using retrieval supervision, which RAG does not require

Additional Results

• Effect of Retrieving more documents

