第3节 数列综合大题专项(★★★☆)

强化训练

- 1. (2022 •北京模拟 •★★★) 已知数列 $\{a_n\}$ 为等差数列,各项均为正数的等比数列 $\{b_n\}$ 的前 n 项和为 S_n ,
- 且 $a_1 = 1$, $b_1 = 2$, $a_2 + a_8 = 10$, _____. 现有条件: ① $\lambda S_n = b_n 1(\lambda \in \mathbf{R})$; ② $a_4 = S_3 2S_2 + S_1$; ③ $b_n = 2\lambda a_n (\lambda \in \mathbf{R})$.
 - (1) 求数列 $\{a_n\}$ 的通项公式;
 - (2)条件①②③中有一个不符合题干要求,请直接指出;(无需证明)
- (3) 从剩余的两个条件中选一个填到上面的横线上,求数列 $\{a_n + b_n\}$ 的前n项和 T_n .
- 解: (1) 设 $\{a_n\}$ 的公差为d,则 $a_2 + a_8 = a_1 + d + a_1 + 7d = 10$,结合 $a_1 = 1$ 可得d = 1,所以 $a_n = 1 + (n-1) \cdot 1 = n$.
 - (2) ③不符合题干要求,因为 $a_n = n$,所以③即为 $b_n = 2\lambda n$,对任意的 $\lambda \in \mathbb{R}$, $\{b_n\}$ 都不是等比数列.
- (3) 若选①,则 $\lambda S_n = b_n 1$,(已知 b_1 ,可先在此式中取n = 1求出 λ)

所以
$$\lambda S_1 = \lambda b_1 = b_1 - 1$$
,又 $b_1 = 2$,所以 $\lambda = \frac{1}{2}$,故 $\frac{1}{2}S_n = b_n - 1$,

(题干已经给出了 $\{b_n\}$ 为等比数列,故此处无需退n相减,直接再取n=2求出 b_2 即可求得公比)

所以
$$\frac{1}{2}S_2 = b_2 - 1$$
,故 $\frac{1}{2}(2 + b_2) = b_2 - 1$,解得: $b_2 = 4$,所以 $\{b_n\}$ 的公比 $q = \frac{b_2}{b_1} = 2$,故 $b_n = 2 \times 2^{n-1} = 2^n$,

(再求 $\{a_n + b_n\}$ 的前n项和,此为两数列相加,分别求和再相加即可)

所以
$$T_n = a_1 + b_1 + a_2 + b_2 + \dots + a_n + b_n = (a_1 + a_2 + \dots + a_n) + (b_1 + b_2 + \dots + b_n)$$

$$= (1+2+\cdots+n)+(2^1+2^2+\cdots+2^n) = \frac{n(1+n)}{2} + \frac{2(1-2^n)}{1-2} = \frac{n(1+n)}{2} + 2^{n+1} - 2.$$

若选②,则 $a_4 = S_3 - 2S_2 + S_1$,所以 $4 = b_1 + b_2 + b_3 - 2(b_1 + b_2) + b_1 = b_3 - b_2$,

设 $\{b_n\}$ 的公比为q,因为 $\{b_n\}$ 各项均为正数,所以q>0,又 $b_1=2$,所以 $b_3-b_2=4$ 即为 $2q^2-2q=4$,解得: q=2或-1(舍去),所以 $b_n=2\times 2^{n-1}=2^n$,接下来同解法 1.

- 2. (2023 绵阳二诊 ★★★) 已知等比数列 $\{b_n\}$ 的各项都为正数, $b_1 = \frac{2}{3}$, $b_3 = \frac{8}{27}$,数列 $\{a_n\}$ 的首项为
- 1,前 n 项和为 S_n ,请从下面①②③中选一个作为条件,判断是否存在 $m \in \mathbb{N}^*$,使得 $\forall n \in \mathbb{N}^*$, $a_n b_n \leq a_m b_m$ 恒成立? 若存在,求出 m 的值;若不存在,说明理由.

①
$$2a_n - S_n = 1 (n \in \mathbb{N}^*);$$
 ② $a_2 = \frac{1}{4} \mathbb{H} a_{n-1} a_{n-1} = a_n^2 (n \ge 2);$ ③ $a_n - 1 = a_{n-1} (n \ge 2).$

解: (分析后续问题都要用 b_n , 故先求 b_n) 设 $\{b_n\}$ 的公比为q, 因为 $\{b_n\}$ 各项均为正数,所以q>0,

由题意, $\frac{b_3}{b_1} = q^2 = \frac{4}{9}$,结合 q > 0 可得 $q = \frac{2}{3}$,所以 $b_n = b_1 q^{n-1} = (\frac{2}{3})^n$,(接下来分别分析三种选法)

若选①作为条件,则 $2a_n - S_n = 1$,(此为 a_n 与 S_n 混搭的关系式,要求 a_n ,可尝试退 n 相减,消去 S_n)

所以当 $n \ge 2$ 时, $2a_{n-1} - S_{n-1} = 1$,从而 $2a_n - S_n - (2a_{n-1} - S_{n-1}) = 0$,

故 $2a_n - 2a_{n-1} - (S_n - S_{n-1}) = 2a_n - 2a_{n-1} - a_n = 0$,整理得: $a_n = 2a_{n-1}$,

又 $a_1 = 1$,所以 $\{a_n\}$ 是首项为 1,公比为 2 的等比数列,故 $a_n = 2^{n-1}$,所以 $a_n b_n = 2^{n-1} \cdot (\frac{2}{3})^n = \frac{1}{2} \cdot 2^n \cdot \frac{2^n}{3^n} = \frac{1}{2} \cdot (\frac{4}{3})^n$,

("存在 $m \in \mathbb{N}^*$,使得 $\forall n \in \mathbb{N}^*$, $a_n b_n \leq a_m b_m$ "的意思是 $a_m b_m$ 是 $\{a_n b_n\}$ 的最大项,故应分析 $\{a_n b_n\}$ 有无最大项)

因为函数 $y = \frac{1}{2} \cdot (\frac{4}{3})^x$ 在 **R** 上单调递增,所以 $\{a_n b_n\}$ 是递增数列,没有最大项,

故不存在 $m \in \mathbb{N}^*$, 使得 $\forall n \in \mathbb{N}^*$, $a_n b_n \leq a_m b_m$ 恒成立.

若选②作为条件,则 $a_2 = \frac{1}{4}$,且 $a_{n+1}a_{n-1} = a_n^2 (n \ge 2)$,所以 $\frac{a_{n+1}}{a_n} = \frac{a_n}{a_{n-1}}$,故 $\{a_n\}$ 是等比数列,公比 $q = \frac{a_2}{a_1} = \frac{1}{4}$,

所以
$$a_n = (\frac{1}{4})^{n-1}$$
,故 $a_n b_n = (\frac{1}{4})^{n-1} \cdot (\frac{2}{3})^n = 4 \cdot \frac{1}{4^n} \cdot \frac{2^n}{3^n} = 4 \cdot (\frac{1}{6})^n$,

因为 $y=4\cdot(\frac{1}{6})^x$ 在**R**上单调递减,所以 $\{a_nb_n\}$ 为递减数列,故 $\forall n\in \mathbb{N}^*$, $a_nb_n\leq a_1b_1$ 恒成立,所以m=1.

若选③作为条件,则 $a_n-1=a_{n-1}$,所以 $a_n-a_{n-1}=1$,故 $\{a_n\}$ 是公差为1的等差数列,

又
$$a_1 = 1$$
, 所以 $a_n = 1 + (n-1) \times 1 = n$, 故 $a_n b_n = n \cdot (\frac{2}{3})^n$,

(要分析 $\{a_nb_n\}$ 有无最大项,考虑到函数 $y=x\cdot(\frac{2}{3})^x$ 的单调性不易判断,故用作差法来分析 $\{a_nb_n\}$ 的单调性)

$$\exists c_n = n \cdot (\frac{2}{3})^n, \quad \exists c_{n+1} - c_n = (n+1) \cdot (\frac{2}{3})^{n+1} - n \cdot (\frac{2}{3})^n = (\frac{2}{3})^n \cdot \left[\frac{2(n+1)}{3} - n\right] = (\frac{2}{3})^n \cdot \frac{2-n}{3},$$

所以当n=1时, $c_{n+1}-c_n>0$,故 $c_1< c_2$;当n=2时, $c_{n+1}-c_n=0$,所以 $c_2=c_3$;

当 $n \ge 3$ 时, $c_{n+1} - c_n < 0$,所以 $c_n > c_{n+1}$;综上所述, $c_1 < c_2 = c_3 > c_4 > c_5 > \cdots$,

所以 $\{c_n\}$ 有最大项,最大项为 c_2 和 c_3 ,故当m=2或3时,就有 $a_nb_n \le a_mb_m$ 对任意的 $n \in \mathbb{N}^*$ 恒成立.

3. $(2023 \cdot 赤峰模拟 \cdot ★★★)$ 正项数列 $\{a_n\}$ 中, $a_1 = 1$, $a_2 = 3$,数列 $\left\{\frac{1}{a_n}\right\}$ 的前 n 项和为 S_n ,且_____.

从下面的三个条件中选一个填在上面的横线上,并解答后面的两个问题.

① $a_{2k-1} = k(2k-1)$ 且 $a_{2k} = k(2k+1)$, 其中 $k \in \mathbb{N}^*$;② $\{\sqrt{8a_n+1}\}$ 为等差数列;③ $\{(n+1)S_n\}$ 为等差数列.

问题: (1) 求 $\{a_n\}$ 的通项公式; (2) 求证: $S_n a_n = n^2$.

解: (1) 若选①,则 $a_{2k-1} = k(2k-1)$ 且 $a_{2k} = k(2k+1)$,(此为奇数项、偶数项的通项公式,合并成 a_n 即可)

当
$$n$$
 为奇数时,设 $n=2k-1(k \in \mathbb{N}^*)$,则 $k=\frac{n+1}{2}$,所以 $a_n=a_{2k-1}=k(2k-1)=\frac{n+1}{2}\cdot n=\frac{n(n+1)}{2}$;

当 n 为偶数时,设 n=2k,则 $k=\frac{n}{2}$,所以 $a_n=a_{2k}=k(2k+1)=\frac{n}{2}(2\cdot\frac{n}{2}+1)=\frac{n(n+1)}{2}$;

综上所述,对任意的 $n \in \mathbb{N}^*$,都有 $a_n = \frac{n(n+1)}{2}$.

若选②,则 $\{\sqrt{8a_n+1}\}$ 为等差数列,(题干中还给了 a_1 和 a_2 ,故可求出 $\{\sqrt{8a_n+1}\}$ 的前两项,进而求得其通项)

又 $a_1 = 1$, $a_2 = 3$, 所以 $\sqrt{8a_1 + 1} = 3$, $\sqrt{8a_2 + 1} = 5$, 故数列 $\{\sqrt{8a_n + 1}\}$ 的公差为5 - 3 = 2,

所以
$$\sqrt{8a_n+1}=3+(n-1)\cdot 2=2n+1$$
, 从而 $8a_n+1=(2n+1)^2$, 故 $a_n=\frac{(2n+1)^2-1}{8}=\frac{n(n+1)}{2}$.

若选③,则 $\{(n+1)S_n\}$ 为等差数列,(仍可结合 a_1 , a_2 求得数列 $\{(n+1)S_n\}$ 的前两项,进而求得其通项)

因为
$$a_1 = 1$$
, $a_2 = 3$, 所以 $2S_1 = 2 \cdot \frac{1}{a_1} = 2$, $3S_2 = 3(\frac{1}{a_1} + \frac{1}{a_2}) = 4$, 故 $\{(n+1)S_n\}$ 的公差为 $4-2=2$,

所以
$$(n+1)S_n = 2 + (n-1) \cdot 2 = 2n$$
,故 $S_n = \frac{2n}{n+1}$,

所以当
$$n \ge 2$$
时, $\frac{1}{a_n} = S_n - S_{n-1} = \frac{2n}{n+1} - \frac{2(n-1)}{n} = \frac{2n^2 - 2(n-1)(n+1)}{n(n+1)} = \frac{2}{n(n+1)}$,故 $a_n = \frac{n(n+1)}{2}$,

又 $a_1 = 1$ 也满足上式,所以对任意的 $n \in \mathbb{N}^*$,都有 $a_n = \frac{n(n+1)}{2}$.

(2) 由 (1) 可得
$$\frac{1}{a_n} = \frac{2}{n(n+1)} = 2(\frac{1}{n} - \frac{1}{n+1})$$
,

所以
$$S_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} = 2(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1}) = 2(1 - \frac{1}{n+1}) = \frac{2n}{n+1}$$
, 故 $S_n a_n = \frac{2n}{n+1} \cdot \frac{n(n+1)}{2} = n^2$.

- 4. (2023 •阜阳模拟 •★★★)已知数列 $\{a_n\}$ 的通项公式为 $a_n = 2n+1$,等比数列 $\{b_n\}$ 满足 $b_2 = a_1-1$, $b_3 = a_2-1$.
- (1) 求数列 $\{b_n\}$ 的通项公式;
- (2) 记 $\{a_n\}$, $\{b_n\}$ 的前 n 项和分别为 S_n , T_n , 求满足 $T_n = S_m (4 < n \le 10)$ 的所有数对 $\{n, m\}$.

解: (1) 由题意,
$$b_2 = a_1 - 1 = 2$$
, $b_3 = a_2 - 1 = 4$,所以 $\{b_n\}$ 的公比 $q = \frac{b_3}{b_2} = 2$,故 $b_n = b_2 q^{n-2} = 2^{n-1}$.

(2) 由 (1) 可得
$$S_n = \frac{n(3+2n+1)}{2} = n(n+2)$$
, $T_n = \frac{1 \times (1-2^n)}{1-2} = 2^n - 1$,

所以 $T_n = S_m$ 即为 $2^n - 1 = m(m+2)$,整理得: $2^n = (m+1)^2$ ①,

(因为 $4 < n \le 10$,所以n的取值只有6个,逐一代入能求出m,但注意到右侧是正整数的完全平方,故由此对n分析奇偶可以缩小搜索的范围,更简单)

当n=6时, $m=2^3-1=7$; 当n=8时, $m=2^4-1=15$; 当n=10时, $m=2^5-1=31$;

综上所述,满足条件的数对(n,m)有(6,7),(8,15),(10,31).

- 5. (2023•盐城模拟•★★★) 已知等差数列 $\{a_n\}$ 和等比数列 $\{b_n\}$ 满足 $a_1=1$, $b_3=8$, $a_n=\log_2 b_n$.
 - (1) 求数列 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式;
- (2) 设数列 $\{a_n\}$ 中不在数列 $\{b_n\}$ 中的项按从小到大的顺序构成数列 $\{c_n\}$,记 $\{c_n\}$ 的前n项和为 S_n ,求 S_{50} .
- 解: (1) 设 $\{a_n\}$ 的公差为d, $\{b_n\}$ 的公比为q, 因为 $a_n = \log_2 b_n$, 所以 $b_n > 0$, 故q > 0,

在 $a_n = \log_2 b_n$ 中取 n = 1 可得 $a_1 = \log_2 b_1$, 所以 $b_1 = 2^{a_1} = 2$, 又 $b_3 = 8$, 所以 $\frac{b_3}{b_1} = q^2 = 4$,

结合q > 0可得q = 2,所以 $b_n = b_1 q^{n-1} = 2^n$,故 $a_n = \log_2 b_n = \log_2 2^n = n$.

(2) (先分析 $\{a_n\}$ 的前 50 项中有几项也在 $\{b_n\}$ 中)由(1)可得 $a_{50}=50$,因为 $b_5=32<50$, $b_6=64>50$,所以 $\{a_n\}$ 的前 50 项中有 5 项在 $\{b_n\}$ 中,把它们去掉,还剩 45 项,

(故再看 $a_{51},a_{52},a_{53},a_{54},a_{55}$ 中还有没有 $\{b_n\}$ 中的项,若没有,那么直接补上去,总共就 50 项了)

又 $a_{55} = 55 < b_6$,所以 $\{c_n\}$ 的前 50 项即为 $\{a_n\}$ 的前 55 项去掉 $\{b_n\}$ 的前 5 项后余下的,

故
$$S_{50} = (a_1 + a_2 + \dots + a_{55}) - (b_1 + b_2 + \dots + b_5) = \frac{55 \times (1 + 55)}{2} - \frac{2 \times (1 - 2^5)}{1 - 2} = 1478$$
.

- 6. (2023・武汉二调・★★★★) 记数列 $\{a_n\}$ 的前 n 项和为 S_n ,对任意的正整数 n,有 $2S_n = na_n$,且 $a_2 = 3$.
 - (1) 求数列 $\{a_n\}$ 的通项公式;
- (2) 对所有正整数 m,若 $a_k < 2^m < a_{k+1}$,则在 a_k 和 a_{k+1} 两项中插入 2^m ,由此得到一个新的数列 $\{b_n\}$,求 $\{b_n\}$ 的前 40 项和.

解: (1) (给出 S_n 与 a_n 混搭的关系式,要求 a_n ,考虑退n相减消去 S_n)

因为 $2S_n = na_n$,所以当 $n \ge 2$ 时, $2S_{n-1} = (n-1)a_{n-1}$,从而 $2S_n - 2S_{n-1} = na_n - (n-1)a_{n-1}$,故 $2a_n = na_n - (n-1)a_{n-1}$,整理得: $(n-2)a_n = (n-1)a_{n-1}$ ①,

(此式若再化为 $\frac{a_n}{a_{n-1}} = \frac{n-1}{n-2}$, 则可用累乘法求 a_n , 但n = 2时分母为0, 故需单独考虑)

在①中令n=2可得 $a_1=0$, 当 $n\geq 3$ 时, 式①可变形成 $\frac{a_n}{a_{n-1}}=\frac{n-1}{n-2}$,

$$\text{FFUL } a_n = \frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdot \frac{a_{n-2}}{a_{n-3}} \cdots \frac{a_4}{a_3} \cdot \frac{a_3}{a_2} \cdot a_2 = \frac{n-1}{n-2} \cdot \frac{n-2}{n-3} \cdot \frac{n-3}{n-4} \cdots \frac{3}{2} \cdot \frac{2}{1} \cdot 3 = 3(n-1),$$

又 $a_1 = 0$, $a_2 = 3$ 也满足上式,所以对任意的 $n \in \mathbb{N}^*$,都有 $a_n = 3(n-1)$.

(2) (需先分析 $\{b_n\}$ 的前 40 项哪些是原来 $\{a_n\}$ 的,哪些是新插入的,可列出若干项来观察,如图)

由(1)可得 $a_{40} = 3 \times (40-1) = 117$,因为 $2^6 < a_{40} < 2^7$,所以插入后 2^7 不在 $\{b_n\}$ 的前40项中,

(还需说明 64 (即 2°) 在 $\{b_n\}$ 的前 40 项)又 2° < a_{34} = 99,所以 2° 在 $\{b_n\}$ 的前 40 项中,

故 $\{b_n\}$ 的前40项中,有34项是原数列 $\{a_n\}$ 的,有6项是新插入的,分别是 2^1 , 2^2 ,…, 2^6 ,

所以
$$\{b_n\}$$
 的前 40 项和为 $a_1 + a_2 + \dots + a_{34} + 2^1 + 2^2 + \dots + 2^6 = \frac{34 \times (0 + 99)}{2} + \frac{2 \times (1 - 2^6)}{1 - 2} = 1809.$

$$a_n:0$$
 3 6 9 12 15 18 21···63 66 69···114 117···
 a_{40}
 $a_n:0$ 3 6 9 12 15 18 21···63 66 69···114 a_{40}
 a_{40}

7. $(2023 \cdot 新高考 I 卷 \cdot ★★★★)$ 设等差数列 $\{a_n\}$ 的公差为 d,且 d > 1,令 $b_n = \frac{n^2 + n}{a_n}$,记 S_n , T_n 分别 为数列 $\{a_n\}$, $\{b_n\}$ 的前 n 项和.

(1) 若 $3a_2 = 3a_1 + a_3$, $S_3 + T_3 = 21$, 求 $\{a_n\}$ 的通项公式;

(2) 若
$$\{b_n\}$$
为等差数列,且 $S_{99}-T_{99}=99$,求 d .

解: (1) (所给条件容易用公式翻译,故直接代公式,建立关于a,和d的方程组并求解)

因为 $3a_2 = 3a_1 + a_3$,所以 $3(a_1 + d) = 3a_1 + (a_1 + 2d)$,整理得: $a_1 = d$ ①,

$$X S_3 = 3a_1 + \frac{3 \times 2}{2}d = 3a_1 + 3d$$
, $T_3 = b_1 + b_2 + b_3 = \frac{2}{a_1} + \frac{6}{a_2} + \frac{12}{a_3} = \frac{2}{a_1} + \frac{6}{a_1 + d} + \frac{12}{a_1 + 2d}$,

代入
$$S_3 + T_3 = 21$$
可得 $3a_1 + 3d + \frac{2}{a_1} + \frac{6}{a_1 + d} + \frac{12}{a_1 + 2d} = 21$ ②,

将①代入②整理得: $2d + \frac{3}{d} = 7$, 解得: d = 3或 $\frac{1}{2}$,

又由题意,d > 1,所以d = 3,结合①可得 $a_1 = 3$,

所以 $a_n = a_1 + (n-1)d = 3n$.

(2) (条件 $\{b_n\}$ 为等差数列怎样翻译?可先由 b_1 , b_2 , b_3 为等差数列建立方程找 a_1 和d的关系)

曲题意,
$$b_1 = \frac{2}{a_1}$$
, $b_2 = \frac{6}{a_1 + d}$, $b_3 = \frac{12}{a_1 + 2d}$,

因为
$$\{b_n\}$$
为等差数列,所以 $2b_2 = b_1 + b_3$,故 $\frac{12}{a_1 + d} = \frac{2}{a_1} + \frac{12}{a_1 + 2d}$,

(上式要化简,同乘以3个分母即可)

所以
$$12a_1(a_1+2d)=2(a_1+d)(a_1+2d)+12a_1(a_1+d)$$
,

整理得:
$$(a_1-d)(a_1-2d)=0$$
, 所以 $a_1=d$ 或 $a_1=2d$,

(求 d 肯定要由 $S_{00} - T_{00} = 99$ 来建立方程,故讨论上述两种情况,分别求出 S_n 和 T_n)

若
$$a_1 = d$$
,则 $a_n = a_1 + (n-1)d = nd$, $S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(d+nd)}{2} = \frac{n(n+1)}{2}d$, $b_n = \frac{n^2 + n}{nd} = \frac{n+1}{d}$,

所以
$$T_n = \frac{n(b_1 + b_n)}{2} = \frac{n(\frac{2}{d} + \frac{n+1}{d})}{2} = \frac{n(n+3)}{2d}$$
,

故
$$S_{99} - T_{99} = 99$$
 即为 $99 \times 50d - \frac{99 \times 51}{d} = 99$,解得: $d = \frac{51}{50}$ 或 -1 (舍去);

若
$$a_1 = 2d$$
,则 $a_n = a_1 + (n-1)d = (n+1)d$, $S_n = \frac{n(a_1 + a_n)}{2} = \frac{n[2d + (n+1)d]}{2} = \frac{n(n+3)}{2}d$, $b_n = \frac{n^2 + n}{(n+1)d} = \frac{n}{d}$,

所以
$$T_n = \frac{n(b_1 + b_n)}{2} = \frac{n(\frac{1}{d} + \frac{n}{d})}{2} = \frac{n(n+1)}{2d}$$
,

故
$$S_{99} - T_{99} = 99$$
 即为 $99 \times 51d - \frac{99 \times 50}{d} = 99$,解得: $d = -\frac{50}{51}$ 或 1,均不满足 $d > 1$,舍去;

综上所述,
$$d$$
的值为 $\frac{51}{50}$.

【反思】本题第(2)问也可直接设 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式分别为 $a_n=pn+q$, $b_n=rn+s$,利用两个已知条件建立关于系数p,q,r,s 的方程组,进而求出答案. 只是这一解法稍显麻烦,可自行尝试.

《一数•高考数学核心方法》