

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра вычислительных методов

Построение разреженной матрицы и решение СЛАУ

Параллельные высокопроизводительные вычисления

выполнил: Петров Т. П. группа 504

Содержание

1	Опи	исание	задания и программной реализации	
	1.1	Крать	сое описание задания	•
			кое описание программной реализации	
2	Исс	следова	ание производительности	4
	2.1	Харак	теристики вычислительной системы	4
			ьтаты измерений производительности	
		2.2.1	Последовательная производительность	ļ
			Параллельное ускорение	
3	Ана	ализ п	олученных результатов	8

1 Описание задания и программной реализации

1.1 Краткое описание задания

Необходимо реализовать многопоточную программу для решения систем линейных алгебраически уравнений (СЛАУ) на неструктурированной сетке с использованием OpenMP. Алгоритм должен состоять из нескольких этапов:

- 1. Генерация графа сетки и его матричного представления создание графа, связей элементов и его представление в разреженном формате CSR
- 2. Заполнение матрицы СЛАУ построение матрицы коэффициентов и вектора правой части с использованием тестовых формул
- 3. Решение СЛАУ реализация итерационного метода сопряженных градиентов для решения уравнения с поддержкой параллелизма
- 4. Проверка производительности измерение времени выполнения каждого этапа и анализ многопоточного ускорения и эффективности алгоритма

1.2 Краткое описание программной реализации

• • •

2 Исследование производительности

2.1 Характеристики вычислительной системы

	PC	Polus
CPU	i5-12400F	IBM POWER 8
Cores	6	20
Threads	2	8
TPP	384 GFLOPS	290 GFLOPS
RAM	2xDDR5-5600	4xDDR4-2400
$_{ m BW}$	$89.6~\mathrm{GB/s}$	$307.2~\mathrm{GB/s}$

Для того, чтобы собрать программу и скомпилировать все файлы, необходимо выполнить ряд следующих действий.

```
mkdir build && cd build
cmake .. -DENABLE_TESTS=<On|Off>
make -j 4
cd ../bin
```

Для запуска на локальных системах достаточно указать количество нитей, а также все необходимые параметры:

```
OMP_NUM_THREADS=k ./a.out Nx Ny K1 K2
```

Для запуска на кластере, использующем систему очередей, запускается скрипт со следующими параметрами.

```
mpisubmit.pl params a.out -- a.out params
```

Однако желательно редактирование командного файла для запуска на заданных узлах и привязки к определенному сокету узла.

```
source /polusfs/setenv/setup.SMPI
#BSUB -W 00:15
#BSUB -o ../out/DotMeasure.%J.out
#BSUB -e ../out/DotMeasure.%J.err
#BSUB -m polus-c4-ib
#BSUB -R affinity[core(10):distribute=pack(socket=1)]
OMP_NUM_THREADS=1
/polusfs/lsf/openmp/launchOpenMP.py ../DotMeasure
```

2.2 Результаты измерений производительности

2.2.1 Последовательная производительность

Рис. 1: Зависимость производительности от размера входных данных

Рис. 2: Зависимость времени выполнения (а) и выделяемой памяти (б) в зависимости от размера входных данных

2.2.2 Параллельное ускорение

Рис. 3: Зависимость производительности от числа нитей (РС)

Рис. 4: Зависимость производительности от числа нитей на (Polus)

Т	2	4	8	16	32	40	64	80
Dot								
AXpY								
SpMV								
CGSolve								

Рис. 5: Расчеты ускорения для каждой из операций при $N=10^8$

 sdfs

3 Анализ полученных результатов

 $TPP_{Polus} = 290GFLOPS$

```
BW_{PC} = 2 \; Channels \cdot 5600 \; MT/s \cdot 8 \; bytes = 89,6 \; GB/s \\ BW_{Polus} = 8 \; Channels \cdot 2400 \; MT/s \cdot 8 \; bytes = 153,6 \; GB/s \\ AI_{dot} = 2 \; FLOP/(3 \cdot 8 \; bytes) = 1/12 \\ AI_{AXpY} = 2 \; FLOP/(3 \cdot 8 \; bytes) = 1/12 \\ AI_{SpMV} = \\ TBP = \min(TPP, BW \cdot AI) \\ TBP_{PC,dot} = \min(384 \; GFLOPS, 89,6 \; GB/s \cdot 1/8) = 5.6GFLOPS = 0.8\% \; TPP_{PC} \\ TBP_{PC,AXpY} = \min(384 \; GFLOPS, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{PC} \\ TBP_{PC,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{POlus} \\ TBP_{Polus,dot} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,AXpY} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = \min(6.4e11, 1.28e11/24) = 5.3GFLOPS = 0.8\% \; TPP_{Polus} \\ TBP_{Polus,SpMV} = 0.8\% \; TPP_{
```

 $TPP_{PC} = 4 \ GHz \cdot 6 \ Cores \cdot 2 \ Threads/Core \cdot 512/64 = 384 \ GFLOPS$

	Dot	AXpY	SpMV
PC			
polus			

Рис. 6: