Syntax Analysis: Bottom-Up Parsing

Lecture 5

Objectives

By the end of this lecture you should be able to:

- 1 Identify bottom-up parsing.
- Onstruct reductions of a given string and grammar.
- 3 Construct a shift-reduce PDA.
- **4** Identify types of shift-reduce conflicts.

Outline

Bottom-Up Parsing

2 Shift-Reduce Parsing

Outline

Bottom-Up Parsing

2 Shift-Reduce Parsing

What is Bottom-Up Parsing?

Definition

Bottom-up parsing consists in the construction of a parse tree starting with the leaves up towards the root.

A particular style of bottom-up parsing may be equivalently defined thus:

Definition

Bottom-up parsing consists in finding a right-most derivation of a given string in a given CFG.

What is Bottom-Up Parsing?

Definition

Bottom-up parsing consists in the construction of a parse tree starting with the leaves up towards the root.

A particular style of bottom-up parsing may be equivalently defined thus:

Definition

Bottom-up parsing consists in finding a right-most derivation of a given string in a given CFG.

Example: G_2

Example

$$\begin{array}{ccc} E & \longrightarrow & E+T \mid T \\ T & \longrightarrow & T*F \mid F \\ F & \longrightarrow & (E) \mid \mathbf{id} \mid \mathbf{number} \end{array}$$

Input: id * id.

Example: Bottom-Up Parsing

Reductions

• A reduction is the reverse of a derivation.

Definition

A sentential form α reduces to a sentential form β , denoted $\alpha \stackrel{*}{\mapsto} \beta$ if $\beta \stackrel{*}{\Rightarrow} \alpha$.

Example

$$id*id \mapsto F*id \mapsto T*id \mapsto T*F \mapsto T \mapsto E$$

• At every step of a reduction, we replace a sentential form by a variable

Reductions

• A reduction is the reverse of a derivation.

Definition

A sentential form α reduces to a sentential form β , denoted $\alpha \stackrel{*}{\mapsto} \beta$ if $\beta \stackrel{*}{\Rightarrow} \alpha$.

Example

$$id*id \mapsto F*id \mapsto T*id \mapsto T*F \mapsto T \mapsto E$$

• At every step of a reduction, we replace a sentential form by a variable.

Bottom-Up Parsing, Again

Definition

Given a CFG $G = \langle V, \Sigma, R, S \rangle$ and $w \in \Sigma^*$, bottom-up parsing, with a left-to-right scan of the input, is the problem of constructing a reduction from w to S such that if

$$\alpha\gamma\beta\mapsto\alpha A\beta$$

is a step in the reduction, then no subsequent step may be of the form

$$\delta_1 \delta_2 \delta_3 \lambda \mapsto \delta_1 B \delta_3 \lambda$$

where $A\beta \stackrel{*}{\mapsto} \lambda$ and $\delta_1 \delta_2 \delta_3 = \alpha$.

Thus constrained, such a reduction is the reverse of a right-most derivation.

Bottom-Up Parsing, Again

Definition

Given a CFG $G = \langle V, \Sigma, R, S \rangle$ and $w \in \Sigma^*$, bottom-up parsing, with a left-to-right scan of the input, is the problem of constructing a reduction from w to S such that if

$$\alpha\gamma\beta\mapsto\alpha A\beta$$

is a step in the reduction, then no subsequent step may be of the form

$$\delta_1 \delta_2 \delta_3 \lambda \mapsto \delta_1 B \delta_3 \lambda$$

where $A\beta \stackrel{*}{\mapsto} \lambda$ and $\delta_1 \delta_2 \delta_3 = \alpha$.

Thus constrained, such a reduction is the reverse of a right-most derivation.

Given $G = \langle V, \Sigma, R, S \rangle$ and w.

- \bigcirc For $SF = \alpha \beta$, choose one the following.

1a. Choose $\gamma(\neq \varepsilon)$, δ , α_1 , and α_2 such that $\beta = \gamma \delta$ and $\alpha = \alpha_1 \alpha_2$

1b. Choose $(A \to \alpha_2 \gamma) \in \mathbb{R}$

1c. $SF = \alpha_1 A \delta$

1d. $\alpha = \alpha_1$

2a. Choose γ . δ and λ such that $\beta = \gamma \delta \lambda$

2b Choose $(A \rightarrow \delta) \in R$

2c. $SF = \alpha \gamma A \lambda$

2d. $\alpha = \alpha^2$

- If no choices are available, then fail.
- \bigcirc If SF = S then return
- **6** Goto 3.

Given $G = \langle V, \Sigma, R, S \rangle$ and w.

- S For $SF = \alpha \beta$, choose one the following.

1a. Choose $\gamma(\neq \varepsilon)$, δ , α_1 , and α_2 such that $\beta = \gamma \delta$ and $\alpha = \alpha_1 \alpha_2$.

1b. Choose $(A \to \alpha_2 \gamma) \in R$

1c. $SF = \alpha_1 A \delta$

1d. $\alpha = \alpha_1$

2a. Choose γ , δ and, λ such that $\beta = \gamma \delta \lambda$

2h Choose $(A \rightarrow \delta) \subseteq R$

2c. $SF = \alpha \gamma A \lambda$

2d. $\alpha = \alpha r$

- If no choices are available, then fail.
- \bigcirc If SF = S then return
- **6** Goto 3.

Given $G = \langle V, \Sigma, R, S \rangle$ and w.

- **6** For $SF = \alpha \beta$, choose one the following.

```
1a. Choose \gamma(\neq \varepsilon), \delta, \alpha_1, and \alpha_2 such that \beta = \gamma \delta and \alpha = \alpha_1 \alpha_2.
```

1b. Choose
$$(A \to \alpha_2 \gamma) \in R$$

1c.
$$SF = \alpha_1 A \delta$$
.

1d.
$$\alpha = \alpha_1$$

2a. Choose
$$\gamma$$
, δ and, λ such that $\beta = \gamma \delta \lambda$

2b. Choose
$$(A \rightarrow \delta) \in R$$
.

$$2c$$
 $SF = \alpha \gamma A \lambda$

2d.
$$\alpha = \alpha \gamma$$

- If no choices are available, then fail.
- \bigcirc If SF = S then return
- **6** Goto 3.

Given $G = \langle V, \Sigma, R, S \rangle$ and w.

- **6** For $SF = \alpha \beta$, choose one the following.

```
1a. Choose \gamma(\neq \varepsilon), \delta, \alpha_1, and \alpha_2 such that \beta = \gamma \delta and \alpha = \alpha_1 \alpha_2.
```

1b. Choose
$$(A \rightarrow \alpha_2 \gamma) \in I$$

1c.
$$SF = \alpha_1 A \delta$$
.

1d.
$$\alpha = \alpha_1$$

2a. Choose
$$\gamma$$
, δ and, λ such that $\beta = \gamma \delta \lambda$

2b. Choose
$$(A \rightarrow \delta) \in R$$
.

$$2c$$
 $SF = \alpha \gamma A \lambda$

2d.
$$\alpha = \alpha \gamma$$

- 4 If no choices are available, then fail.
- \bigcirc If SF = S then return
- **6** Goto 3.

Given $G = \langle V, \Sigma, R, S \rangle$ and w.

- § For $SF = \alpha \beta$, choose one the following.
 - 1a. Choose $\gamma(\neq \varepsilon)$, δ , α_1 , and α_2 such that $\beta = \gamma \delta$ and $\alpha = \alpha_1 \alpha_2$.
 - 1b. Choose $(A \to \alpha_2 \gamma) \in R$.
 - 1c. $SF = \alpha_1 A \delta$.
 - 1d. $\alpha = \alpha_1$
 - 2a. Choose γ , δ and, λ such that $\beta = \gamma \delta \lambda$.
 - 2b Choose $(A \rightarrow \delta) \in R$
 - $\frac{2c}{2c} \frac{SE cosA}{c}$
 - 2d. $\alpha = \alpha \gamma$
- If no choices are available, then fail.
- \bigcirc If SF = S then return
- **6** Goto 3.

Given $G = \langle V, \Sigma, R, S \rangle$ and w.

- $2 \alpha = \varepsilon.$
- **6** For $SF = \alpha \beta$, choose one the following.
 - 1a. Choose $\gamma(\neq \varepsilon)$, δ , α_1 , and α_2 such that $\beta = \gamma \delta$ and $\alpha = \alpha_1 \alpha_2$.
 - 1b. Choose $(A \to \alpha_2 \gamma) \in R$.
 - 1c. $SF = \alpha_1 A \delta$.
 - 1d. $\alpha = \alpha_1$
 - 2a. Choose γ , δ and, λ such that $\beta = \gamma \delta \lambda$
 - 2b. Choose $(A \rightarrow \delta) \in R$.
 - $2c \quad SE = co(A)$
 - $2d \quad \alpha = \alpha \alpha$
- If no choices are available, then fail.
- \bigcirc If SF = S then return
- **6** Goto 3.

Given $G = \langle V, \Sigma, R, S \rangle$ and w.

- **6** For $SF = \alpha \beta$, choose one the following.
 - 1a. Choose $\gamma(\neq \varepsilon)$, δ , α_1 , and α_2 such that $\beta = \gamma \delta$ and $\alpha = \alpha_1 \alpha_2$.
 - 1b. Choose $(A \to \alpha_2 \gamma) \in R$.
 - 1c. $SF = \alpha_1 A \delta$.
 - 1d. $\alpha = \alpha_1$.
 - 2a. Choose γ , δ and, λ such that $\beta = \gamma \delta \lambda$.
 - 2b. Choose $(A \rightarrow \delta) \in R$.
 - 2c. $SF = \alpha \gamma A$.
 - 2d $\alpha = \alpha \gamma$
- If no choices are available, then fail.
- \bigcirc If SF = S then return
- **6** Goto 3.

Given $G = \langle V, \Sigma, R, S \rangle$ and w.

- $2 \alpha = \varepsilon.$
- **6** For $SF = \alpha \beta$, choose one the following.
 - 1a. Choose $\gamma(\neq \varepsilon)$, δ , α_1 , and α_2 such that $\beta = \gamma \delta$ and $\alpha = \alpha_1 \alpha_2$.
 - 1b. Choose $(A \to \alpha_2 \gamma) \in R$.
 - 1c. $SF = \alpha_1 A \delta$.
 - 1d. $\alpha = \alpha_1$.
 - 2a. Choose γ , δ and, λ such that $\beta = \gamma \delta \lambda$.
 - 2b. Choose $(A \to \delta) \in R$.
 - 20 SE 00.4)
 - 2d. $\alpha = \alpha \gamma$
- If no choices are available, then fail.
- **6** Goto 3.

Given $G = \langle V, \Sigma, R, S \rangle$ and w.

- $2 \alpha = \varepsilon.$
- **6** For $SF = \alpha \beta$, choose one the following.
 - 1a. Choose $\gamma(\neq \varepsilon)$, δ , α_1 , and α_2 such that $\beta = \gamma \delta$ and $\alpha = \alpha_1 \alpha_2$.
 - 1b. Choose $(A \to \alpha_2 \gamma) \in R$.
 - 1c. $SF = \alpha_1 A \delta$.
 - 1d. $\alpha = \alpha_1$.
 - 2a. Choose γ , δ and, λ such that $\beta = \gamma \delta \lambda$.
 - 2b. Choose $(A \rightarrow \delta) \in R$.
 - 2c. $SF = \alpha \gamma A \lambda$.
 - 2d. $\alpha = \alpha'$
- If no choices are available, then fail.
- \bigcirc If SF = S then return
- **6** Goto 3.

Given $G = \langle V, \Sigma, R, S \rangle$ and w.

- $2 \alpha = \varepsilon.$
- **6** For $SF = \alpha \beta$, choose one the following.
 - 1a. Choose $\gamma(\neq \varepsilon)$, δ , α_1 , and α_2 such that $\beta = \gamma \delta$ and $\alpha = \alpha_1 \alpha_2$.
 - 1b. Choose $(A \to \alpha_2 \gamma) \in R$.
 - 1c. $SF = \alpha_1 A \delta$.
 - 1d. $\alpha = \alpha_1$.
 - 2a. Choose γ , δ and, λ such that $\beta = \gamma \delta \lambda$.
 - 2b. Choose $(A \rightarrow \delta) \in R$.
 - 2c. $SF = \alpha \gamma A \lambda$.
 - $2d \quad \alpha = \alpha \alpha$
- If no choices are available, then fail.
- \bigcirc If SF = S then return
- **6** Goto 3.

Given $G = \langle V, \Sigma, R, S \rangle$ and w.

- $2 \alpha = \varepsilon.$
- **6** For $SF = \alpha \beta$, choose one the following.
 - 1a. Choose $\gamma(\neq \varepsilon)$, δ , α_1 , and α_2 such that $\beta = \gamma \delta$ and $\alpha = \alpha_1 \alpha_2$.
 - 1b. Choose $(A \to \alpha_2 \gamma) \in R$.
 - 1c. $SF = \alpha_1 A \delta$.
 - 1d. $\alpha = \alpha_1$.
 - 2a. Choose γ , δ and, λ such that $\beta = \gamma \delta \lambda$.
 - 2b. Choose $(A \rightarrow \delta) \in R$.
 - 2c. $SF = \alpha \gamma A \lambda$.
 - 2d. $\alpha = \alpha \gamma$.
- If no choices are available, then fail.
- \bigcirc If SF = S then return
- **6** Goto 3.

Given $G = \langle V, \Sigma, R, S \rangle$ and w.

- $2 \alpha = \varepsilon.$
- **3** For $SF = \alpha \beta$, choose one the following.
 - 1a. Choose $\gamma(\neq \varepsilon)$, δ , α_1 , and α_2 such that $\beta = \gamma \delta$ and $\alpha = \alpha_1 \alpha_2$.
 - 1b. Choose $(A \to \alpha_2 \gamma) \in R$.
 - 1c. $SF = \alpha_1 A \delta$.
 - 1d. $\alpha = \alpha_1$.
 - 2a. Choose γ , δ and, λ such that $\beta = \gamma \delta \lambda$.
 - 2b. Choose $(A \rightarrow \delta) \in R$.
 - 2c. $SF = \alpha \gamma A \lambda$.
 - 2d. $\alpha = \alpha \gamma$.
- If no choices are available, then fail.
- \bigcirc If SF = S then return
- **6** Goto 3.

Given $G = \langle V, \Sigma, R, S \rangle$ and w.

- **6** For $SF = \alpha \beta$, choose one the following.
 - 1a. Choose $\gamma(\neq \varepsilon)$, δ , α_1 , and α_2 such that $\beta = \gamma \delta$ and $\alpha = \alpha_1 \alpha_2$.
 - 1b. Choose $(A \to \alpha_2 \gamma) \in R$.
 - 1c. $SF = \alpha_1 A \delta$.
 - 1d. $\alpha = \alpha_1$.
 - 2a. Choose γ , δ and, λ such that $\beta = \gamma \delta \lambda$.
 - 2b. Choose $(A \rightarrow \delta) \in R$.
 - 2c. $SF = \alpha \gamma A \lambda$.
 - 2d. $\alpha = \alpha \gamma$.
 - If no choices are available, then fail.
- \bigcirc If SF = S then return.
- **6** Goto 3.

Given $G = \langle V, \Sigma, R, S \rangle$ and w.

- $2 \alpha = \varepsilon.$
- **6** For $SF = \alpha \beta$, choose one the following.
 - 1a. Choose $\gamma(\neq \varepsilon)$, δ , α_1 , and α_2 such that $\beta = \gamma \delta$ and $\alpha = \alpha_1 \alpha_2$.
 - 1b. Choose $(A \to \alpha_2 \gamma) \in R$.
 - 1c. $SF = \alpha_1 A \delta$.
 - 1d. $\alpha = \alpha_1$.
 - 2a. Choose γ , δ and, λ such that $\beta = \gamma \delta \lambda$.
 - 2b. Choose $(A \rightarrow \delta) \in R$.
 - 2c. $SF = \alpha \gamma A \lambda$.
 - 2d. $\alpha = \alpha \gamma$.
- 4 If no choices are available, then fail.
- **5**If <math>SF = S then return.
- **6** Goto 3.

Given $G = \langle V, \Sigma, R, S \rangle$ and w.

- $2 \alpha = \varepsilon.$
- **6** For $SF = \alpha \beta$, choose one the following.
 - 1a. Choose $\gamma(\neq \varepsilon)$, δ , α_1 , and α_2 such that $\beta = \gamma \delta$ and $\alpha = \alpha_1 \alpha_2$.
 - 1b. Choose $(A \to \alpha_2 \gamma) \in R$.
 - 1c. $SF = \alpha_1 A \delta$.
 - 1d. $\alpha = \alpha_1$.
 - 2a. Choose γ , δ and, λ such that $\beta = \gamma \delta \lambda$.
 - 2b. Choose $(A \rightarrow \delta) \in R$.
 - 2c. $SF = \alpha \gamma A \lambda$.
 - 2d. $\alpha = \alpha \gamma$.
- 4 If no choices are available, then fail.
- **5**If <math>SF = S then return.
- **6** Goto 3.

Given $G = \langle V, \Sigma, R, S \rangle$ and w.

- $2 \alpha = \varepsilon.$
- **6** For $SF = \alpha \beta$, choose one the following.
 - 1a. Choose $\gamma(\neq \varepsilon)$, δ , α_1 , and α_2 such that $\beta = \gamma \delta$ and $\alpha = \alpha_1 \alpha_2$.
 - 1b. Choose $(A \to \alpha_2 \gamma) \in R$.
 - 1c. $SF = \alpha_1 A \delta$.
 - 1d. $\alpha = \alpha_1$.
 - 2a. Choose γ , δ and, λ such that $\beta = \gamma \delta \lambda$.
 - 2b. Choose $(A \rightarrow \delta) \in R$.
 - 2c. $SF = \alpha \gamma A \lambda$.
 - 2d. $\alpha = \alpha \gamma$.
- 4 If no choices are available, then fail.
- **6** Goto 3.

Outline

Bottom-Up Parsing

2 Shift-Reduce Parsing

PDA Perspective

- You may think of a shift-reduce parser as a PDA P.
- P has three main states: q_s , q_{loop} , and q_a .
- In q_s , it pushes \$ and enters q_{loop} .
- While in q_{loop}
 - nondeterministically, do one of the following:
 - **1** Shift, by reading an input symbol and pushing it onto the stack.
 - **Reduce**, by popping zero or more stack symbols $s_1 \cdots s_n$, with s_n on top of the stack, and pushing a variable A, where $A \rightarrow s_1 \cdots s_n$ is a nondeterministically chosen rule of the grammar.
 - **3** Pop the start symbol and then \$ and enter q_a .

Exercise

Example

Draw the state diagram of the shift-reduce PDA which is equivalent to the CFG G_2 \bigcirc .

Do it yourself.

Exercise (Cont'd)

Example

STACK	INPUT	ACTION
\$	$id_1 * id_2 \$$	shift
$\mathbf{\$id}_1$	$*id_2\$$	reduce by $F \to \mathbf{id}$
\$F	$*$ \mathbf{id}_2 $\$$	reduce by $T \to F$
T	$*id_2\$$	shift
T *	$\mathbf{id}_2\$$	\mathbf{shift}
$T * id_2$	\$	reduce by $F \to \mathbf{id}$
T * F	\$	reduce by $T \to T * F$
T	\$	reduce by $E \to T$
\$E	\$	accept

Conflicts

- Given the nondeterminism of a shift-reduce parser, two types of conflicts may be encountered during parsing:
 - Shift/Reduce conflict, which occurs when it is possible to shift and to reduce. This can only happen when there is at least one remaining input symbol.
 - Reduce/Reduce conflict, which occurs when there is more than one way to reduce. This depends on the grammar rules.
 - In particular, it will occur whenever there are two rules $A \longrightarrow \alpha$ and $B \longrightarrow \beta$ with β a suffix of α .

Dangling Else (I)

Example

```
stmnt \longrightarrow \mathbf{if} \ bexpr \ \mathbf{then} \ stmnt
stmnt \longrightarrow \mathbf{if} \ bexpr \ \mathbf{then} \ stmnt \ \mathbf{else} \ stmnt
stmnt \longrightarrow \dots
\vdots \qquad \vdots \qquad \vdots
bexpr \longrightarrow \dots
```

What should the PDA do in the following configuration?

```
STACK INPUT ... if bexpr then stmnt else ...
```

Dangling Else (II)

Example

- This is a shift/reduce conflict.
- We may impose the common disambiguation strategy by preferring shifting over reducing.

Arrays and Procedures (I)

Example

What should the PDA do in the following configuration?

```
STACK INPUT \dots id ( id \dots , id ) \dots
```

Arrays and Procedures (II)

Example

- Assume the PDA can cheat and detect that shifting is no good.
- Which rule should be used to reduce id?
- This is a reduce/reduce conflict.