Разбор задаг типового расчета

Типовой расчет по алгебре и геометрии (4 семестр).

Задача 1. Все пункты этой задаги разобраны в пенциях.

1) Перечислите все собственные идеалы кольца \mathbb{Z}_n .

a) $(Z_n, +)$ -isuknureekas ipyma \Rightarrow \Rightarrow \forall ee aggurubnas nogipymna H-isuknureenas $u \ \forall l \in \mathbb{N} : l \mid n, n = lk \ \exists ! nogipynna \ H < \mathbb{Z}_h :$ $|H| = l , a uunenno \ H = \langle k \rangle .$ $(cui. sekisuso \ houeino so cenereija)$ $\delta) \forall$ nogipynna $H < \mathbb{Z}_h$ sleesleich regeanaer \mathbb{Z}_h , $\tau.\kappa. \ \forall h \in H \ \forall l \in \mathbb{Z}_h \ \overline{l}_h = \overline{h} + \overline{h} + ... + \overline{h} \in H$ t pay $t \in \mathbb{N}$ reservices $t \in \mathbb{N}$

2) Укажите среди них максимальные идеалы и найдите факторкольца по ним. (Сем. лекумо 8 и лекезмо 9.)

3) Найдите нильрадикал $Rad\mathbb{Z}_n$ и факторкольцо $\mathbb{Z}_n/Rad\mathbb{Z}_n$. (е.е., межене \mathcal{G})

4) Найдите в \mathbb{Z}_n пару идемпотентов и соответствующее им разложение \mathbb{Z}_n во внутреннюю прямую сумму подколец. (е.е. мизико 10)

5) Выпишите явные формулы прямого и обратного изоморфизма \mathbb{Z}_n и внешней прямой суммы соотвествующих колец. (ем. междено ю)

Задату 1 все домент полностью решет, офоршив решение на одноги отдельные имете так:

TP по амебре и неошетреше. Задага 1.

Вариант 35. Ikobrel Кирин . КМБО-06-18 Zn = Z1000

Данее идет решение всех пунктов в правенения порядке. Нункты нумеруютеля. Каперый пункт манинаетая с формунировки задания.

Pazõeperer gbe zagaru, ananorurure zagare 2 T.P. 2.1. R = { (& B x p): 2, B ∈ F, 3 c ofl(2, F4)

1) Докажите, что множество R является ком-

мутативным подкольцом кольца матриц $\mathfrak{gl}(2,\mathbb{F}_p)$.

легко проверяется, что R-подкольно орв (2, Fz), R конемутаниям.

Raccognatulno, noenosary ofl (2, F7) accognatulnockowayo. R-konogo e equenuesed E. T.O., R-KAK1.

2) Сколько в нем элементов?

IRI=72=49

3) Является ли кольцо R полем?

R serveres nonever => R*=R \ 103.

AER* oletA +0.

@ detA ≠0 > JA = ofl(2, F7) Apolequer, 250 A + R.

A'= detA (2+B-B) ER, T.K. meret nyneseris bug.

Paeeu, $A = \begin{pmatrix} \alpha & \beta \\ -\beta & d+\beta \end{pmatrix} \in \mathbb{R} \setminus \{\overline{0}\} \iff d^2 + \beta^2 \neq 0$ $det A = 0 \iff d^2 + d\beta + \beta^2 = 0 \iff \begin{cases} \lambda = 0 \\ \beta \neq 0 \end{cases}$ $det A = 0 \iff d^2 + d\beta + \beta^2 = 0 \iff \begin{cases} \lambda = 0 \\ \beta \neq 0 \end{cases}$

Obequerence $t = \frac{\lambda}{\beta}$. (*) \Rightarrow $p(t) = t^2 + t + 1 = 0$. Toperalueu bee muceuron f_7 6 p(t), Roperalueu p(t) $L_{t=-3}$ $= \frac{\lambda}{\lambda} = 2\beta$ April mex guarences & 1/0 reapers AER-103 ne weeler ATER,

R he aborderes noveree.

Muonecerbo recospanieres menerol R.R*=RiVR2

X=2B R1=2(2BB)=B(21), BEF7} $\alpha = -3\beta$ $R_2 = \left\{ \begin{pmatrix} -3\beta & \beta \\ -\beta & -2\beta \end{pmatrix} = \beta \begin{pmatrix} -3 & 1 \\ -1 & -2 \end{pmatrix}, \beta \in \mathbb{F}_7 \right\}$ |R\R*|=13

А4) Изоморфно ли кольцо
$$R$$
 кольцу \mathbb{Z}_n при некотором n ?

Яуел $R \cong \mathbb{Z}_n \implies |R| = |\mathbb{Z}_n| \implies n = 49$

Ягуел $f: R \longrightarrow \mathbb{Z}_{49}$ изамогемог группо

от $f = 49$, но $f(E) = 1$, а $\operatorname{ord}_+ E = 4$ $\stackrel{\longrightarrow}{=} 2$
 $\mathbb{Z}_+ = \mathbb{Z}_+ = \mathbb{Z$

(R,)-abereba yfynna [K = 49-13 = 36 = 2 ...)

=) R* youroppea updereod cymree princeppeax

seenwereekeex yfynn. Z2 × Z2 × Z3 unu Z2× Z4 × Z9

unu Z4 × Z3× Z3 unu Z4 × Z9. Hypnereo boulereure,

kaken wellereno.

Aнайдите нильрадикал R.

RadR CR R* = R1 UR2 lesko bugeto, 200 epigu meneriolo R1 UR2 HET herpheleianonex nemonorenol. => RadR = 203.

А8) Представьте R в виде внутренней прямой суммы его подколец и изоморфной внешней прямой суммы колец или докажите, что это невоз-

МОЖНО. $\binom{3}{3}\binom{3}{2} \in R_1$ - инфинантый $e_2 = 1 - e_1 = \binom{2-3}{3-1} \in R_2$ - другой иземнотент $= R = (e_1) + (1-e_1) = \binom{-1}{3}\binom{-1}{3} \oplus \binom{2-3}{3-1} = R_1 \oplus R_2 \simeq \mathbb{Z}_2 \oplus \mathbb{Z}_2$

1) R-KAK1

2) $|R| = 5^2 = 25$

Paceuer. $A = \begin{pmatrix} \alpha \beta \\ \beta \alpha + \beta \end{pmatrix} \in \mathbb{R} \setminus \{\bar{0}\} \iff \alpha + \beta^2 \neq 0$ $det A = 0 \iff \alpha^2 + \alpha \beta \quad \beta^2 = 0 \iff \beta^2 = 0 \iff \beta^2 = 0 \iff \beta^2 \neq 0 \iff \beta^2 \neq \beta \quad 1 = 0 \iff \beta^2 \neq \beta^$

Osognarence t= & (x) => p(x) = +2+t-1=0 Hangerer bee represe p(t) 6 F5. F. reperer t=2=> => The 2=20 A ER 103 He noveret Esparnois & R => => Il nouveerle neopanieux meneros R-R*=R1 d=2BR,= {(-8BB)=B(21):BEF5}

AYR AMARONUMA 2.1.

- A6) lerko nouajase, 250 R, IR u gpyrux coverbennox ugeanob & R net.
- A7) RadR = R1 RadRER-R*=R, u R, C RadR (bee memenson
- A8) R nenezes apegerabure le buje aprecede eyenne nogrances; T. R. CR HET HETPHORASSIERX NIGEREпоченя весем вы они были, то они доплени Bany of seneage & RI=R-R*, no take Torono Heursпотенты), а монено просто соспаться на 70, 270 6 R HET 2-x coverbencerx regeards.

Pajosp nyuntol 1,2,3), 84), 85) zagaru 2 T.P.

Pasteperer Capuant jagares 2, 6 xoropone conseso R enajabaetes nouese.

1) Докажите, что множество R является ком-

мутативным подкольцом кольца матриц $\mathfrak{gl}(2,\mathbb{F}_p)$.

Aerro mobepleres, 250 R-nogrosseso ofl(2,F5) R-xoueseyranilno.

2) Сколько в нем элементов?

3) Является ли кольцо R полем?

R-accouguantehoe konoiso, T. K. Ofl (2, 45-) accous. R-renses e equinque É > R-KAKI.

/R/>1

R Abaseted nonce (R -{0} = R*.

(=) uybeerno

detA + 0 It = ofl (Q, F5). Apolepuler, 200 A-ER. A-1= 1 (2-B) ER, T. R. Meller nymenai beg.

Pagence. A = (& B) ER Nog () 2+ B + 0.

 $det A = d^2 - 2p^2 = 0 \iff \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} det A = 0 \iff 0$

Oбegnarence &-t. (+)=> t=2- ke uncei Kappell & F. => detA ≠0 + A ∈ R- 103 = R-103= R* =>

=> R orba. nonene.

В4) Найдите характеристику
$$R$$
 и его простое подполе F .

ord,
$$E = 5 \implies charR = 5$$

$$F = \{ \alpha E, \alpha \in F_5 \} = \{ (\alpha \alpha), \alpha \in F_5 \}$$

$$F \simeq F_5$$

В5) Найдите базис и степень расширения поля
$$R$$
 над полем F .

Plangeen dague
$$R = \{(2\beta Z), 3\beta \in F_5\}$$
-unennon apoerpanerla hag $F = \{3E, x \in F_5\} \cong F_5$.

(Ha carecose gene, konerno, F recueno croneger burs c F5, rorga lece Sygens janceros barres sonce pomenansno.).

```
Payoep nymnob B6), B7), B8) jagare 2TP
       Apogouneure pagoiepar lapreaux
      R = 2(2 B): 2,B & F53 C ofl(2, F5), Kerepais pagoupasus
    6 upoceeroris pay-
    Mor garaganer, 250 R-nove,
   Mor geraganes, is the magnesses F \cong F_5, E = (0,0), B = (0,0), E = (0,0), E = (0,0),
      \dim_F R = \dim_{F_S} R = 2.
B6) Укановете коной-неибуде применентивной, жением равненере-
ния поля R нар F, найдите его порядок в мультипикативной
предпле поля R.
     R= {xE+BB: x,BEF3=>R=F[B]=#5[B]=>
  => B-nprenerraburis menerent paremerens R >F=F5.
  R*=R 103-legastennukarubnas rpynnic noneR, 12*1=24
  Haigere ordB & R*
   B2=(20)(20)=(20)=2E(x)=)B=4E=-E=>B=E=> ordB=8
   T. K. B3 = 2B + E, B6 = 4B2 = 42E = 2E + E
ВТ) Наприте менененанний многотьем указанного примитев-
  horo menerara,
 (*) (>) B<sup>2</sup>=2E => B-regime h(x)=x<sup>2</sup>-2 ∈ F, [x] {0}
   1) h(B) = 0.
   2) degh(x)=2 = min filegflx): f(x) = F_5[x] (03, f(B)=03, T.R. 1 + deg f(b): f(B)=0
  поскольку Е, В-мнейто недависения нед Ту. (сестено вмест г) доказат г) h(х)-непривозний над Пумин).
  3) старший когручиных h(x) равен 1.
  1,2,3) => MB(x) = h(x) = x2-2 - menuneanonni син- н В нау F5.
ВЯ) Уканиете премеррное полю Я данториолого колода
 unovornessed Fo[x] no renoroposey ugeany.
  R = F[B] = F_{S}[B] \simeq F_{S}[x] / (m_{B}(x)) = F_{S}[x] / (x^{2}-2)
```

Разбер задат селененара 10. и пунктов 1-5) задати 3 тинового растега, (2) Решим задачу в общени виде. Доканени, го /(x2+ux+v) ~ C, een & = u2-4v <0. Pacerecopeur f: R[x] -> C +p(x)∈R[x] +(p(x))=p(z), rge z-koperes x²+ux+v, $Z = -\frac{4}{2} + i \frac{\sqrt{181}}{2}$ Z = -4 - i VIDI - Toule kepere x2-ux+V $(x-2)(x-\bar{2}) = x^2 + ux + V$ ∀p(x) ∈ R[x] p(x) = (x²+ux+v)q(x)+r(x)=(x²+ux+v)q(x)+e+dx, f(p(æ)) = p(≥) = e+d≥ = e+d(-4+i√2)=(e-4d)+i√2d∈C 1) f-romonoppegne nogeranokue 2) Orebugno, Juf CC Viewigno, ont = C $\forall a+ib \in C \ni p(x)=c+dx \in R(x): \int 1c+(-\frac{4}{2})d=a$ $\forall a+ib \in C \ni p(x)=c+dx \in R(x): \int 1c+(-\frac{4}{2})d=a$ $\forall a+ib \in C \ni p(x)=c+dx \in R(x): \int 1c+(-\frac{4}{2})d=a$ $\forall a+ib \in C \ni p(x)=c+dx \in R(x): \int 1c+(-\frac{4}{2})d=a$ $\forall a+ib \in C \ni p(x)=c+dx \in R(x): \int 1c+(-\frac{4}{2})d=a$ I! peucenue (c,d) TENAY (x), nockonouy $\Delta = \begin{vmatrix} 1 - \frac{1}{2} \\ 0 \end{vmatrix} = \frac{1}{2} \neq 0$ => f(p(x)) = f(e+dx) = e+dz = a+li => C c Jul T.O., Juf = C 3) Kerf = {p(x): p(2) = 0} = {p(x): p(x) = (x2+ux+v)q(x)} = = (x2+ux+v). 1),2),3) no teopere o romoneoppegene

 $\mathbb{R}[x]/\mathbb{R}[x]/\mathbb{R}$ $\cong \mathbb{C}$. $\mathbb{R}[x]/\mathbb{R}[x]$ $\cong \mathbb{R}$ $\cong \mathbb{$

```
lerko genazare gns 4: Z[x] -> Zn[x]

∀ p(x) = aox + a1x<sup>m-1</sup> + ... + am ∈ Z[x] φ(p(x)) = [ao]<sub>n</sub>x<sup>m</sup> + [ao]<sub>n</sub>x<sup>m-1</sup> + ... + [am]<sub>n</sub>
                      ) &-romanoppujen,
                        2) Jm 4 = Zn[x],
                         3) Her 4 = (n) = n Z[x]
              1, 2), 3) => no recpeser o romonoppyme Z[x]/(n) = Zn[x]
 (4) Dokajaro, 120 Z[x]/2-2) ~ Z[v2] = 1 a+6v2; a, 6 ∈ Z]
           Решаетая тонее по теорение о гомонеорредия.
                                                                                                                                          Mouero crietari,
            Paeener. P: Z[x]→Z[væ]
                                                                                                                                             e dérarkous
                                                                                                                                             происходит в
            ¥p(x) € Z[x] φ(p(x)) = p([2)
                                                                                                                                             Q[X], no noeworky
                 p(x) = (x2-2)q(x) + r(x) = (x2-2)q(x) + a+6x
                                                                                                                                             стариий когр.
                                                                                                                                             x2-2 egunuga,
                               4(p(x))=a+bv2 + 2[v2]
                                                                                                                                             q(x), r(x) = Z[x]
                                                                                                                                              (Q[x]-EK)
              1) 4-гоновеорреди подстановки
              2) Orebugno, Truf CZ[V2].
                     Y a+BN2 = p(x) = a+bx ∈ Z(x): y (p(x))=a+BN2 > Z(√2) c Jmy
                                   Im 4=2[12]
               3) Ker \varphi = (x^2 - 2)
(13, 1), 2), 3) no respectie o romaneropoeque \Rightarrow Z[x] \sim Z(x2)
      3 Coвершенно анамочить докозогвается, что
                                Q[X] ~ Q[V2].
       6 Dongast, 200 Z[x]/(x2-2) 7 Z[x]/(x2-3)
                Benauemen, nan songerbaeres, 250 V3 & Q.
           fyero \sqrt{3} = \frac{m}{n}, m, n \in \mathbb{Z}, n \neq 0, (m, n) = 1.
                3 = \frac{m^2}{n^2} \iff 3n^2 = m^2 \implies m = 3k \implies 3n^2 = 3^2 k^2 \implies n^2 = 3k^2 \implies n = 3k
            1m=3k, 40 (m,n)=1 & => \(\sigma \) \(\frac{1}{3} \operatornamed \(\mathbb{Q}\)\(\frac{1}{1} \operatornamed \mathbb{Q}\)\(\frac{1}{1} \operatornamed \mathbb{Q}\)\(\
             иниет разичностьих корпей)
```

Z[x] = Z[v2], Z[x] = Z[v3].

Sokaneau , 20 Z[v2] + Z[v3] or morehero.

Nyer
$$\varphi: Z[v2] \rightarrow Z[v3]$$
 uponopousu

 $\varphi(v2) = a + bv3$, $a, b \in Z$
 $\varphi(x) = \varphi(v2) = \varphi(v2)\varphi(v2) = (a + bv3)^2$
 $egynoù eropoun $\varphi(2) = \varphi(1+1) = \varphi(4) + \varphi(1) = 1+1 = 2$
 $\Rightarrow 2 = (a + bv3)^2$.

Sokaneau, 200 no nebozuoneno, T.e. 250 v2 \(\frac{2}{2}\)[v3].

Nyer $2 = a^2 + 2abv3 + 3b^2$
 $2abv3 = 2 - a^2 - b^2$

Eenu $2abv3 = 2 - a^2 - b^2$

Seenu $2abv3 = 2 - a^2 - b^2$

Seenu $2abv3 = 2 - a^2 - b^2$

Seenu $2abv3 = 2 - a^2 - b^2$
 $2avav3 = 2 - a^2 - b^2$
 $2avav3 = 2 - a^2 - b^2$$

Anauourno ecoueno generato, 250 $\mathbb{Q}[x]_{(x^2-2)}$ $\mathbb{Q}[x]_{(x^2-3)}$.

Т.Р. Задача 3. Разберене пункто 1)-5).

Пусть A — наименьшее целостное подкольцо поля \mathbb{R} , содержащее число $\alpha = \sqrt[s]{d}$ (α – корень $f(x) = x^s - d$). K = Quot A — его поле отношений. 1) Найдите общий вид элементов кольца A. Покажите, что $A = \mathbb{Z}[\alpha]$, где α – корень f(x).

B engrae
$$8=2$$
 $\begin{cases} A-UK \Rightarrow 1 \in A \Rightarrow \mathbb{Z} \subset A \\ d \in A \end{cases} \Rightarrow a+bd \in A \quad \forall a,b \in \mathbb{Z} \Rightarrow A$

$$\Rightarrow \mathbb{Z}[L] = \{a+bd: a,b \in \mathbb{Z}\} \subset A$$

B engrare S=3 | ALUK => 1 E A => Z/C A => a+b2+e2 EA Ya, b, e EZ => 2 d EA => 2 EA

>Z[2]= fa+8s+cd2: a, b, c∈ Z3 CA

lerko mpokepseras i 250 Z[2]-nogranyo R=Z[2]-yk Z[2] CA, no no yenobuso A-naverenousee UX 6R, cogepneausee 2, => Z[2] = A

2) Докажите, что $\mathbb{Z}[\alpha] \simeq \mathbb{Z}[x]/(f(x))$. — еме. \mathfrak{P} вошее. (B cryrae S=3 r(x) = a+6x + ex2)

3) Найдите общий вид элементов $\mathbb{Q}[\alpha]$, где α – корень f(x). Докажите, TO $\mathbb{Q}[\alpha] \simeq \mathbb{Q}[x]/(f(x))$. — ananomises (4):

4) Докажите, что $\mathbb{Q}[\alpha] \simeq \mathbb{Q}[x]/(f(x))$ является полем.

Дня жого пупено показать, что ф(к)-шногогием, henpulogueeris reag Q.

(linovornen brepois venu perseed esenence

henpulogueer reag nonevert) on me muces

kepned 6 store none) f(x) ne mueer ropned 6 Q. (Doragn Baeres аналогично началу 6.1

5) Докажите, что $K = \mathbb{Q}[\alpha]$.

A=Z[] CQ[x] CQuotZ[x]=QuotA=K novement movements

By) gorazolaeras, 200 Q[L]-none, no K=QuotAnanuentine none, cogépheausee A, => K=Q[].

 $K = Q[X] \simeq Q[X]/(flx))$, rge $f(x) = X^S - d$ - reenful equation nay Q envorance Q6) Найдите простое подполе поля K. chark = 0 => Moetee nogrone nons & -Q. QCK 7) Найдите степень расширения поля K над его простым подполем. QCK, K= Q[x](f(x)), rge flx)=x -d-reenperboguseeni, key Q au-n= \Rightarrow dim K = deg f(x) = S8) Найдите все подполя поля K. К не имеет другия собывания педполег, кроше upoeroro negnones (), T.K. dim K = 9- whoeve receno => => Q-equirerbennoe coverbennoe nograne K. 9) Найдите минимальный многочлен $\gamma=1+\alpha\in K$ над простым под-K=Q[X]= Q[X](f(x)), rge f(x)=x5-d-reenpubeguseni, nay Quen-k =) $m_{\chi}(x) = f(x) = x^{s} - d$, $deg_{\chi}(x) = s^{s}$ ma (x) = f(x) = 23-d=0; 0= 1-1 => f(x-1)=(x-1)-d=0 Pageoneene f(y-1) no evenerally f, naufuneep, 3=3 = 3 $y^3-3y^2+3y-1-d=0$ y-kopers $h(x)=x^3-3x^2+3x-(d+1)$, deph(y=3=9)2) eenu eu de crenent annynegeprousero Jelenoronnena sorna de Tour menoure S, TO 4 crenere preseprespipousero & un no доска бы мении s × = degh(x) = min flog(x): g(x) ∈ Q[x] to 3: g(y) = 0 3= s $1),21,3) => m_{\chi}(x) = h(x)$ 10) Найдите явную формулу для обратного элемента в K^* .

PaySep nymotol 6),7,8),9),10) gagare 3 TP

(1, λ , λ^2) - bague K may $\Omega_r \tau. \kappa.$ o) $1/\lambda$, $\lambda^2 \in K$, $1/\lambda$, λ^2 - neutral energeic. $\ell K = \Omega[\lambda]$, ℓL and ℓL are the ℓL are the ℓL are the ℓL are the ℓL and ℓL are the ℓL are the

десенения для ощерененности 9=3.

Пусть R = A/(p), где A — кольцо из задачи 3.

1) Найдите общий вид элементов кольца R. Покажите, что $R = \mathbb{F}_p[\beta]$, где β – корень $g(x) = x^s - [d]_p \in \mathbb{F}_p[x]$.

Hyer, nanpuseep,

A= Z[d]={a+bd+cd2: a, b, e ∈ Z, 23-d=03=>

=> R = 20) = {[a]+[6][a]+[e][a]; [a], [6], [c] = Zp=Fp, [a]3-[d]p=60]} =

Oбодначения K=[a]p, l=[6]p, m=[c]p, p=[d]p

R = 1k+lp+mp2: k,l,mEFp, p3-[d]p=03= Fp[p], rge B- repense g(x) = x3-[d]p = Fp[x]

Manpuellep, eence d=14, p=13, g(x) = x3-1 ∈ Fp[x] 2) наидите |R|. 3) Докажите, что $R\simeq \mathbb{F}_p[x]/(g(x))$.

4) Выясните, является ли R полем. R = Fp[x]/(g(x)) abnatus noneus (=> g(x) - reenpulogs and elenormen mag #p.

Если R не является полем, выполните пункты задания A. R не ава. полем => g(x)-приводимент меногоглен. Рассиентрием 2 принединистоко разиля варианта.

nyen p = 13 1) d-kepens f(x) = x3-13 => B-kepens g(x) = x3 => R= F3 [3] = (x3) 2) 2 - repens f(x) = x3-14 => B repens g(x)=x3-1 =(x-1)(x2+x+1),

x, x2+x+1 teenpue boguelet leag F13 4 ((x-1), (x2+x+1))=1.

$$R = F_{i3}[p] \simeq F_3[x]$$

$$((x-1)(x^2+x+1))$$

A5) Найдите нильрадикал Rad R.

[h(x)] \in F13[x]/(x3) - munonovens (=)

 $(\Rightarrow) \exists n \in \mathbb{N} : [h(x)]^n = [\bar{o}], \bar{\tau}. e. h(x) = x^3 q_1(x) \Leftrightarrow h(x) = x q_2(x) \Leftrightarrow \theta \text{ curry quarrepresentation of } f(x) = [x]$ $(\Rightarrow) [h(x)] = [x].$ $f_{13}[x] u \text{ nempulsoyumos of } x.$

Cregobarenoseo, Rad F13[x] = ([x]), T.e.

Raol R = (B) = {0+lB+mB29} (Монено доло сразу найти радикал в ташем виде. Я специально разбирано более свизий спукай, т. к. тапие) конструкции пепоперуются в тестах.

2) $R = F_{13}[\beta] \simeq F_{13}[x]$ $((x-1)(x^2+x+1))$

[h(x)] = F13[x] - munsnorens = IneN: [h(x)] = [0], T. e.

 $h(x) = (x-1)(x^2+x+1)q_1(x) \Rightarrow h(x) = (x-1)(x^2+x+1)q_2(x) \Rightarrow h(x) = [0]$ пескольку (x-1), (x2+x+1)-неприводинете взаинию прости енноготлено, а F13[x]-факториальное колько.

Cregobarenoseo, Rad R = { 0 9.

 $\stackrel{\smile}{\mathrm{A}}$ 6) Представьте R в виде внутренней прямой суммы его подколец и изоморфной внешней прямой суммы колец или докажите, что это невозможно. Сформерируйте критерей разлошения кольня в пряменую сумму nogroney,

1) R ~ F13(x3)

nyers [h x)]-uguenoven => [h(x)]=[h(x)] ([h(x)-[1])=[0]>

 $\Rightarrow h(x)(h(x)-1)=x^3q(x)$, no $(h(x),h(x)-1)=1 \Rightarrow$

 $=) \begin{bmatrix} h(x) = x^3 q_1(x) & \Leftrightarrow [h(x)] = [0] \\ h(x) - 1 = x^3 q_2(x) & \Leftrightarrow [h(x)] = [1] \end{bmatrix} \Rightarrow BR \text{ wer}$

интривиальных прешнотентов ЭР невозмение разложенть в преченде сумену колец.

« F₁₃ ⊕ F₁₃² - внешние премеая сумена конез (в данные спутае полей, поскольну (х-1) и (х²+х-1)-неприводимые сеньгоглены).

(OTENOGA TORRE PREMO, 250 R HE RELEET HET REBERANDIEMS (HUENDROSENSOB, T. K. $(a,b)^h = (a',b'')$, a b nonex tees recent noteniob, reposel b.)

Разполения теперь R во внугренного принцю сумму подколен, Яля жого неумено канти пару негрывналоных пременовеннов.

 $((x-1), (x^2+x+1)) = 1 \Rightarrow \exists u(x), v(x) \in F_{13}[x]: (x-1)u(x) + (x^2+x+1)v(x) = 1.$

R=F13[B]= (4) \((42) = (-4-4B-4B^2) \((5+4B+4B^2) \)

А7) Найдите порядок группы R^* обратимых элементов кольца.

) $\mathbb{R} \simeq \mathbb{F}_3[x]$ - konverse konsiso (=) [h(x)]-ospanium, shewer $\cong [h(x)]$ we above see generales O, [h(x)]-runon. \cong generale hypol.

Nyer [h(x)] & Rad #3[x](x3), Torga eenu [h(x)]g(x)] = [o] =)

=)
$$fh(x)g(x) = x^3q_1(x)$$
 => $g(x) = x^3q_3(x)$ => $g(x) = [5] => [h(x)] + e$
 $h(x) \neq x q_2(x)$ => $g(x) = x^3q_3(x)$ => $g(x) = [5] => [h(x)] + e$
Above, geometrices region => $[h(x)] - exparaments games =>$
 $\Rightarrow R^* = R \setminus RadR$, $|R| = [3^3, |RadR| = 3^2] => |R^*| = [3^3 - 3^2]$

2)
$$R \simeq F_{13}[x]$$
 $\simeq F_{13} \oplus F_{13^2}$
 $(a,b) \in (F_{13} \oplus F_{13^2})^* \iff (a,b) \in F_{13}^* \oplus F_{13^2}$
 $|R^*| = |F_{13}^*| |F_{13^2}| = (134) \cdot (13^2 - 1)$

Если R является полем, выполните пункты задания B.

В5) Найдите в поле R его простое подполе и степень расширения R над простым подполем. Найдите минимальный многочлен элемента β .

Вб) Какой известной группе изоморфна мультипликативная группа

поля R^* ? Найдите порядок элемента β в R^* .

В еледующей менции бурет зоказано, гто муньтики-

В7) Разложите многочлен g(x) на линейные множители над R. Докажите, что R является полем разложения многочлена g(x).

Аришер разполения кеприводишого миногогнено над Fp на менейноге меконеменение расслеб — рен в меня им 14, Ягом разможение по включению меногогнено — это каменентие по включению поле, кар когорогия многогне раскладавается на менейные меногогне венедномой имоготых раскладавается на менейные меноментеми. (Будет в следующей менейные менейные менейные венедномой менейные менейные менетеми.

Payoop jayares N5 TP. (3 geer es pacemas pubous none F5, a nel F3, Kan 6 TP). Tyero flx) = x4+2x3+2x2-2x+2 & F_5-[x], $g(x) = x^3 - x^2 - x - 2$

1) Разложите f(x) на неприводимые множители над \mathbb{F}_3 .

Найдите поле разложения K многочлена f(x).

Подбираем корим в(x) в F5 и раскладоваем $f(x) = (x-1)(x+1)(x^2+2x-2) = (x-1)(x+1)f_1(x).$

fi(x) = x2+2x-2 ne muever ropned 6 Fs => fi(x)-nenferboquienti unovornen nog F5.

Thursequenue & Fo kopens fi(x) &.

Paceuoque #5[2] = #5[x]/(x2+2x-2) = #5[x]/(f1(x)),

F5[2]= {a+62: 2+22-2=0, a,6 = F53

F5[2] cogepneur soa repres f2(x) (bropoli respens f2(x)

paken 25=-2-2).

Hay F5[2] flx) paeunagabaeres no menerdune меночения f(x)=(x-1)(x+1)(x-2)(x+2+2) и F5[2]-нашины une none, rosopoe eegepueer 2=> => K = F_[x]-noue payuoneenen f(x).

2) Найдите $dim_{\mathbb{F}_{\mathbf{5}}}K$ и |K|.

din F K = dim F [x] = degf2(x) = 2, 1K1 = 52

3) Решите в поле K уравнение g(x) = 0.

Charana pajeonemes gix) na renpulsopmente elekonementen nag F_5 anonomirao flx) 6 1), $g(x)=(x-2)(x^2+x+1)=(x-2)g_1(x)$ g,(x)=x2+x+1 nenqueequeu mag F5. Horizere ero repres 6 K=F56 hogeralness 6 g1(x)=0 x = a+bd, 2=2-2d.

Ариравнивая когранизиент при базиентя венторах 1,2,

nougralell cuerelly gows reaxonegenees a 4 6.

(April 2004 gos pemenes klaspathoro ypakherius monero uenone jobat oборгино форменут, по помия о том, 250 мен провориме выгиеления с поле #5).

Находими корим 92(x) 81 = 1-2, 82 = -2+2.

T.o., Replus g(x) 6 K: 1=1-2, 12=-2+2, 13=2, g(x)=(x-2)(x-1+2)(x+2-d)

4), 5) едекайте съмостоятельно.