HOMEWORK 8

Due date: Nov 20, Monday of Week 13

Exercises: 2, 4, 7, 8, 9, page 123

Exercises: 1, 2, 3, 4, 5, 6, page 126-127

Let \mathbb{F}_p be the field with p-elements, where p is a prime number. Recall that this field is constructed using equivalence classes. A different way to write this field is \mathbb{Z}/p .

Let F be a fixed field. Let $V_n = V_n(F)$ be the F-vector space of F-polynomials of degree $\leq n$. Then $\dim_F V_n = n+1$ and thus $\dim_F V_n^* = n+1$. Given $t \in F$, we have defined $L_t \in V_n^*$ by $L_t(f) = f(t)$ for $f \in V_n$. Lagrange interpolation says that if t_0, \ldots, t_n are distinct points in F, then $\{L_{t_i}: 0 \leq i \leq n\}$ is a basis of V_n^* .

Problem 1. Let $F = \mathbb{F}_5 = \{0, 1, 2, 3, 4\}$ be the field of 5 elements. Consider $V_3^*(F)$ which has dimension 4 and thus $L_0, L_1, L_2, L_3, L_4 \in V_3^*$ are linearly dependent. Write L_4 as a linear combination of L_0, L_1, L_2, L_3 .

Problem 2. Let S be any subset of F. Show that the subset $\{L_s : s \in S\} \subset \operatorname{Hom}_F(F[x], F)$ is linearly independent where L_s is viewed as a linear function on F[x] defined by $L_s(f) = f(s), f \in F[x]$.

The formal power series algebra F[[x]] is written as F^{∞} in the book. We also used the notation $F^{\mathbb{N}}$ to denote F[[x]].

Problem 3. Given a formal power series $f = (f_0, f_1, \ldots, f_n, \ldots, f$

$$\phi_f(x^i) = f_i$$

or

$$\phi_f(a_0 + a_1x + a_2x^2 + \dots + a_nx^n) = a_0f_0 + a_1f_i + \dots + a_nf_n.$$

- (1) Show that ϕ_f is linear and thus $\phi_f \in \text{Hom}_F(F[x], F)$.
- (2) Show that the map $\phi : F[[x]] \to \operatorname{Hom}_F(F[x], F)$ is linear as F-vector spaces.
- (3) Show that ϕ is an isomorphism by explicitly constructing an inverse of ϕ .
- (4) Given an element $t \in F$. By part (3), we know that L_t must be of the form ϕ_f for some $f \in F[[x]]$. Describe f in terms of t.

(Comment: Even we cannot compare dimensions because both F[x] and F[[x]] are infinite dimensional as F-vector spaces, it should be clear that F[[x]] is strictly larger than F[x]. Actually one can show that F[x] and F[[x]] are not isomorphic as F-vector spaces (You might search a proof of this online. But we won't show it in this course.) This problem shows that the dual of F[x] is strictly larger than F[x], which never happens in the finite dimension case.)

(Comment: In HW6, Problem 1, we know that $\operatorname{Hom}(V,W) \cong W^n$ if $\dim V = n$. From this problem we know that $\operatorname{Hom}(F[x],F) \cong F[[x]]$. Both isomorphisms is a special case of something you might learn in the future.)

You can do the above 3 problems after Wednesday's class.

Problem 4. (1) Find a nonzero polynomial $f \in \mathbb{F}_p[x]$ such that f(a) = 0 for any $a \in \mathbb{F}_p$.

- (2) Let $f \in \mathbb{F}_p[x]$ be a nonzero polynomial such that f(a) = 0 for any $a \in \mathbb{F}_p$. Show that $\deg(f) \geq p$.
- (3) Consider the set $I = \{ f \in \mathbb{F}_p[x] : f(a) = 0, \forall a \in \mathbb{F}_p \}$. Show that I is ideal of F[x].

Hint: (2) is a consequence of Lagrange interpolation. Of course, you can also compare the number of roots of a polynomial and the degree of the given polynomial.

2 HOMEWORK 8

Problem 5. Let $A \in \operatorname{Mat}_{n \times n}(F)$ be a fixed non-zero polynomial. Consider the set

$$I = \{ f \in F[x] : f(A) = 0 \}.$$

Show that I is an ideal. Suppose that d is nonzero monic polynomial such that I = dF[x]. Show that $deg(d) \leq n^2$.

You can do the above two problems after Friday's class.