Objective Function:

Minimize (or Maximize)

$$\vec{c}^T \vec{x}$$

where (\vec{c}) is a vector of coefficients and (\vec{x}) is a vector of decision variables.

Subject to Constraints:

1. Linear Constraints:

$$\mathbf{A}\vec{x} \leq \vec{b}$$

where ($\bf A$) is a matrix of coefficients, ($\vec x$) is a vector of decision variables, and ($\vec b$) is a vector of constants.

2. Integer Constraints:

$$x_i \in \mathbb{Z}$$
 for some i

where (${f Z}$) denotes the set of integers.

3. Continuous Constraints:

$$x_i \ge 0$$
 for all i

where (\vec{x}) are the continuous decision variables.

General MILP Formulation:

Minimize (or Maximize)

$$\vec{c}^T \vec{x}$$

Subject to:

$$\mathbf{A}_1 \vec{x} \leq \vec{b}_1$$

$$\mathbf{A}_2 \vec{x} = \vec{b}_2$$

 $x_i \in \mathbb{Z}$ for integer variables

 $x_i \ge 0$ for continuous variables