Math 241, Sections BL1 and BL2

Quiz # 4

October 18, 2012

Solve both exercises. Show work to get credit.

1) [5pts.] Evaluate the line integral

$$\int_C \sin x \, dy + \cos y \, dy,$$

where C consists of the top half of the circle $x^2 + y^2 = 16$ from (4,0) to (-4,0) followed by the line segment from (-4,0) to (-5,5). (Note: One of the properties of conservative vector fields may simplify your calculation.)

2) [5pts.] (a) The figure below shows a curve C and a contour map of a function f whose gradient is continuous. Find

$$\int_C (\nabla f) \cdot d\vec{r}.$$

(b) A table of values of a function f with continuous gradient is given. Find

$$\int_C (\nabla f) \cdot d\vec{r},$$

where C has the parametric equations

$$x = t^4 + 1$$
, $y = t^3 + t$, $t \in [0, 1]$.

x\ ^y	0	1	2
0	1	6	4
1	1	5	9
2	6	3	9