Quantum Theory, Groups and Representations

October 22, 2024

Definition 0.1. A representation (π, V) of a group G over a vector space V is an application $\pi: G \to GL(V)$ such that $\forall g_1, g_2 \in G, \ \pi(g_1 \cdot g_2) = \pi(g_1) \pi(g_2)$.

- A representation (π, V) is said *irreducible* if there is no proper subset $W \subset V$ such that $\pi_W : G \to GL(W)$ is a representation.
- Otherwise, (π, V) is said reducible.

Definition 0.2. A unitary representation (π, V) , where V is a \mathbb{K} -EV equiped with an inner product $\langle , \rangle : V \times V \to \mathbb{K}$, is a representation which preserves the inner product such that:

$$\forall g \in G, \ \forall v, w \in V, \ \langle v, w \rangle = \langle \pi(g)v, \pi(g)w \rangle.$$

If V is finite dimensionnal (of dimension n), we can treat the representation as an element of $\mathcal{M}_{n\times n}$ (\mathbb{K}), and for a unitary transformation, $\forall g \in G, \pi(g) \in U(n)$.

Definition 0.3. (Direct sum representation). Given representations π_1 and π_2 of dimensions n_1 and n_2 , there is a representation of dimension $n_1 + n_2$ called the direct sum of the two representations, denoted $\pi_1 \oplus \pi_2$. This representation is given by the homomorphism:

$$(\pi_1 \oplus \pi_2) : g \in G \mapsto \begin{pmatrix} \pi_1(g) & \mathbf{0} \\ \mathbf{0} & \pi_2(g) \end{pmatrix}.$$

Theorem. A unitary transformation π over a finite dimensionnal vector space V can be written as $\oplus \pi_i$, where $\{\pi_i\}$ is a set of irreducible representations.

Proof. If (π, V) is irreducible, then it's obvious.

Otherwise, there exists $W \subset V$ such that (π_W, W) is a representation.

Since $V = W \oplus W^{\perp}$, we want to check if $(\pi_{W^{\perp}}, W^{\perp})$ is a representation.

• Let $w \in W$ and $v \in W^{\perp}$, then obviously $v \perp w \Leftrightarrow \langle v, w \rangle = \langle \pi(g)v, \pi(g)w \rangle = 0$. Since (π_W, W) is a representation, $\pi(g)w \in W$ and thus $\forall g \in G, \ \pi(g)v \perp W$. This means that $\forall g \in G, \ \forall v \in W^{\perp}, \ \pi(g)v \in W^{\perp}$. Thus, $\pi_{W^{\perp}}, W^{\perp}$ is a representation.(It respects the group product since (π, V) is a representation.)

Thus:

$$(\pi, V) = (\pi_W, W) \oplus (\pi_{W^{\perp}}, W^{\perp}).$$

We can then repeat this process until each subrepresentation is irreducible.

Theorem. Schur's Lemna: If a **complex** representation (π, V) is irreducible, then the only application $M: V \to V$ commuting with all the $\pi(g)$ is $M = \lambda \mathbb{I}$, $\lambda \in \mathbb{C}$.

Proof. Let's assume that (π, V) is an irreducible representation and that $\forall g \in G, [M, \pi(g)] = 0$. Since V is a \mathbb{C} -vector space, the equation:

$$\det(M - \lambda \mathbb{I}) = 0$$

has n roots (counting the multiplicity) and thus we can find all the eigenspaces:

$$U_{\lambda} = \{ v \in V | Mv = \lambda v \} = \ker (M - \lambda \mathbb{I}) \neq \emptyset.$$

Since π and M commute, $v \in \ker(M - \lambda \mathbb{I}) \implies \forall g \in G \ \pi(g)v \in \ker(M - \lambda \mathbb{I})$. As a consequence, $(\pi, \ker(M - \lambda \mathbb{I}))$ is a representation of G since $\ker(M - \lambda \mathbb{I})$ is stable under the action of π . Since we supposed that (π, V) is irreducible then either:

- $U_{\lambda} = \ker (M \lambda \mathbb{I}) = \emptyset$, but it's not possible since U_{λ} is an eignespace.
- $U_{\lambda} = \ker (M \lambda \mathbb{I}) = V \Leftrightarrow \forall v \in V, (M \lambda \mathbb{I})v = 0$, which implies that $M = \lambda \mathbb{I}$.

Theorem. If G is an abelian group, then all of its irreducible representations are one dimensionnal.

Proof. Consider an abelian (=commutative) group G and $g \in G$. Any representation (π, V) of G will satisfy:

$$\forall h \in G, \ \pi(g)\pi(h) = \pi(h)\pi(g).$$

and if π is irreducible, by using Schur's Lemna, $\pi(h) = \lambda \mathbb{I} \simeq \lambda$ for $\lambda \in \mathbb{C}$.