Corrigé proposé par :

M. Afekir - École Royale de l'Air

CPGE Marrakech

cpgeafek@yahoo.fr

Méthode photothermique de mesure d'une température

Première partie Modélisation et mise en équation

1.1. Étude de l'équilibre thermique initial

1.1.1. Corps noir

1.1.1.1. Un corps noir est un corps capable d'absorber intégralement tout rayonnement incident de fréquence quelconque.

1.1.1.2.

$$\varphi_e^{CN} \; = \; \sigma \, T^4 \quad \sigma \, :$$
 constante de stephan

Loi de Stéphan (1879)

1.1.1.3. Conditions d'application de la loi de Stéphan :

1.1.2. Équilibre thermique

1.1.2.1.

$$u = cT + u_0$$

1.1.2.2.

ightharpoonup Le flux radiatif traversant ΔS ou flux surfacique d'énergie radiative échangée entre le corps opaque et le champ du rayonnement :

$$\Phi^{em}_{rad} \ - \ \Phi^{abs}_{rad} = \sigma \, T_o^4 \ - \ \sigma \, T_a^4 \ = \ \sigma (T_o^4 \ - \ T_a^4)$$

► Le flux surfacique conducto-convectif à la paroi (FS) :

$$\Phi_{cc} = h(T_o - T_a)$$

► Le flux surfacique conductif :

$$\Phi_{cond} = -\lambda \frac{\partial T}{\partial x} = -\lambda \frac{\partial T_o}{\partial x} = 0$$
 Loi de fourier

 \blacktriangleright Le flux surfacique parasite : φ_{pa}

Bilan d'énergie (continuité du flux d'énergie au voisinage de (FS)) :

$$\varphi_{pa} + \Phi_{cond} = \Phi_{cc} + \Phi_{rad}$$

N.B : le flux est compté positif \oplus suivant l'axe Ox. Soit :

$$\varphi_{pa} = h(T_o - T_a) + \sigma(T_o^4 - T_a^4)$$

1.1.2.3.

$$\varphi_{pa} << \Rightarrow (T_o - T_a) \left(h + \sigma \left(T_o^2 + T_a^2\right) (T_o + T_a)\right) \approx 0$$

$$\Rightarrow T_o - T_a = \varepsilon \quad ou \quad T_o - T_a << T_o$$

1.1.2.4. La température T_o est supposée uniforme.

$$\varphi_{pa} = (T_o - T_a) \left(h + \sigma \left(T_o^2 + T_a^2 \right) (T_o + T_a) \right) = (T_o - T_a) \left(h + \sigma \left(2T_a^2 \right) (2T_a) \right)$$

car $T_a \sim T_o$. Finalement :

$$\varphi_{pa} = (T_o - T_a) \left(h + 4\sigma T_a^3 \right) \Leftrightarrow \left[-\varphi_{pa} + h \left(T_o - T_a \right) + 4\sigma T_a^3 \left(T_o - T_a \right) = 0 \right]$$
 (2)

1.2. Ordres de grandeurs

1.2.1. Bilan d'énergie en régime variable

1.2.1.1. $T(\vec{r},t)$

- \diamond Toute rotation autour de l'axe Ox laisse invariante la température T.
- \diamond Toute translation dans le plan yOz laisse invariante T; mais T varie par translation le long de l'axe Ox; d'où : $T(\vec{r},t) = T(x,t)$.
- 1.2.1.2. Considérons un système $fermé(\Sigma)$ constitué d'une tranche cylindrique de l'échantillon, comprise entre x et x + dx et de section S: soit un volume élémentaire (constant) $d\tau$.

La loi de fourier :
$$\overrightarrow{j}_{th} = -\lambda \overrightarrow{grad}T = -\lambda \frac{\partial T}{\partial x} \overrightarrow{u}_x$$
 soit $j_{th}(x,t) = -\lambda \frac{\partial T}{\partial x}$
Le flux thermique : $\phi_{th} = \frac{\delta Q_{th}}{dt} = \iint_{(\Sigma)} \overrightarrow{j}_{th} . d\overrightarrow{S}$

L'énergie thermique δQ_{th} pénétrant dans le volume d au pendant dt :

$$\delta Q_{th} = j_{th}(x,t)Sdt - j_{th}(x+dx,t)Sdt = -\frac{\partial j_{th}(x,t)}{\partial x}d\tau dt$$

Premier principe de la thermodynamique appliqué au volume élémentaire (fermé) donne :

$$dU = \delta Q_{th} = \rho c d\tau dT \Longrightarrow \frac{\delta Q_{th}}{dt} = \rho c d\tau \frac{\partial T}{\partial t} = -\frac{\partial j(x,t)}{\partial x} d\tau = \lambda \frac{\partial^2 T}{\partial x^2} d\tau$$
Soit: $\frac{\partial T}{\partial t} = \frac{\lambda}{\rho c} \frac{\partial^2 T}{\partial x^2} \Longrightarrow \begin{bmatrix} \frac{\partial T}{\partial t} = a \frac{\partial^2 T}{\partial x^2} \end{bmatrix}$ (3)

1.2.1.3. Équation aux dimensions :

$$[Tepmerature \times temps^{-1}] = [a][Tepmerature \times Longueur^{-2}]$$

Donc : a est homogène à une surface par unité du temps, son unité dans le (SI) est : $m^2 s^{-1}$.

On peut, donc, ecrire :
$$a = \frac{L_p^2}{\delta t} \iff \boxed{L_p = \sqrt{a\delta t}}$$

1.2.1.4. Application numérique :

$$L_p \simeq 316 \,\mu m$$

1.2.1.5. On a:
$$L_p << e = 1 \, \mathrm{cm}$$
 et $T(x \geq e, t) = T_o \implies \boxed{T(x >> L_p, t) = T_o}$

1.2.2. Effet d'un flux lumineux incident variable

Densité surfacique de la puissance lumineuse transportée par le faisceau laser $\varphi^o(t)=F(t)\varphi^ocos\omega_ot$

1.2.2.1.

$$\varphi^o = \frac{P}{S} = \frac{P}{\pi r^2} = 25,5 \, kW.m^{-2}$$

C'est une puissance élevée.

1.2.2.2. Allure de $\varphi^o(t)$

1.2.2.3. L_{λ_o} : est la profondeur de pénétration à la la longueur d'onde λ_o .

1.2.2.4.
$$L_p << e = 1 \,\mathrm{cm}$$

1.2.2.5.

1.3. Résolution et conditions aux limites

$$\underline{T}(x,t) = \underline{\theta}(x) \exp i\omega_o t + T_o \qquad (7)$$

1.3.1. Équation différentielle

1.3.1.1. Des équations (3) et (7), on en déduit :

$$i\omega_o \underline{\theta}(x) = a \frac{d^2\underline{\theta}(x)}{dx^2}$$
 ou $\boxed{\frac{d^2\underline{\theta}(x)}{dx^2} - i\frac{\omega_o}{a}\underline{\theta}(x) = 0}$

1.3.1.2. La solution de l'équation différentielle précédente : $\underline{\theta}(x) = \underline{C} \exp rx$, tel que r vérifie l'équation caractéristique

$$r^2 - \beta \frac{\omega_o}{a} = 0 \implies r = \pm (1+i) \sqrt{\frac{\omega_o}{2a}}$$

Donc :
$$\underline{\theta}(x) = \underline{A} \exp \underline{\alpha} x + \underline{B} \exp - \underline{\alpha} x$$
 avec $\underline{\alpha} = (1+i) \sqrt{\frac{\omega_o}{2a}} = \sqrt{\frac{\omega_o}{a}} \exp i \frac{\pi}{4}$

1.3.2. Conditions aux limites

1.3.2.1.

$$\underline{T}(x,t) = (\underline{A}\exp\alpha x + \underline{B}\exp-\alpha x)\exp i\omega_o t + T_o$$

Pour que la température $T(x>>L_p,t)$ soit finie, il faut que \underline{A} soit nul. Dans ce cas :

$$\underline{\theta}(x) = \underline{B}\exp{-\underline{\alpha}x}$$

1.3.2.2. Linéarisation : Flux radiatif surfacique hémisphérique $\varphi_1^R = \sigma[T^4(0,t) - T_a^4]$

$$\varphi_1^R = \sigma[T^4(0,t) - T_a^4] = \sigma(T(0,t) - T_a)(T(0,t) + T_a)(T^2(0,t) + T_a^2) = \sigma(T(0,t) - T_a)(2T_a)(2T_a^2)$$
Soit :
$$\boxed{\varphi_1^R = 4\sigma T_a^3(T(0,t) - T_a)}$$

- **1.3.2.3**. Courants volumiques d'énergie thermique à l'interface x = 0:
- o Flux conductif

$$\underline{\varphi_{cond}}(x=0,t) = -\lambda \left(\frac{\partial \underline{T}}{\partial x}\right)_{x=0} = -\lambda \left(\frac{\partial \underline{\theta}}{\partial x}\right)_{x=0} \exp i\omega_o t$$

o Flux radiatif

$$\underline{\varphi_1^R(x=0,t)} = 4\sigma T_a^3 (\underline{\theta}(0) \exp i\omega_o t + T_o - T_a)$$

o Flux conducto-convctif

$$\underline{\varphi}_{cc}(x=0,t) = h(\underline{\theta}(0)\exp i\omega_o t + T_o - T_a)$$

o Puissance lumineuse

$$\varphi^o(t) = \varphi^o \exp i\omega_o t$$

1.3.2.4. Équation de continuité (Équation de conservation de l'énergie en x = 0)

$$\varphi_{pa} + \underline{\varphi}^{o}(t) = \underline{\varphi}_{1}^{R}(x = 0, t) + \underline{\varphi}_{cc}(x, t) + \underline{\varphi}_{cond}(x, 0)$$
Soit :
$$\varphi_{pa} + \underline{\varphi}^{o}(t) = -\lambda \left(\frac{\partial \underline{T}}{\partial x}\right)_{x=0} + \left(h + 4\sigma T_{a}^{3}\right) \left(\underline{T}(0, t) - T_{a}\right)$$

1.3.2.5. En utilisant l'équation (2) (Cf.1.1.2.4. et le résultat de la question précédente, on aura :

$$\underline{\varphi}^{o}(t) + \left(h + 4\sigma T_{a}^{3}\right) \left(T_{o} - T_{a}\right) = -\lambda \left(\frac{\partial \underline{T}}{\partial x}\right)_{x=0} + \left(h + 4\sigma T_{a}^{3}\right) \left(\underline{\theta}(0) \exp i\omega_{o}t + T_{o} - T_{a}\right)$$

$$\underline{\varphi}^{o}(t) = \left(-\lambda \left(\frac{\partial \underline{\theta}}{\partial x}\right)_{x=0} + \left(h + 4\sigma T_{a}^{3}\right) \underline{\theta}(0)\right) \exp i\omega_{o}t$$
Ou : $\varphi^{o} = -\lambda \left(\frac{\partial \underline{\theta}}{\partial x}\right)_{x=0} + \left(h + 4\sigma T_{a}^{3}\right) \underline{\theta}(0)$
Soit : $\varphi^{o} - h_{e}\underline{\theta}(0) = -\lambda \left(\frac{d\underline{\theta}}{dx}\right)_{x=0} \text{ avec } h_{e} = h + 4\sigma T_{a}^{3}$

1.3.2.6.

$$\underline{\theta}(x) = \underline{B}\exp{-\underline{\alpha}x} \implies \underline{\theta}(0) = \underline{B} \text{ et } \left(\frac{d\underline{\theta}}{dx}\right)_{x=0} = -\underline{B}\underline{\alpha}$$

En utilisant l'équation (9) on en déduit que :

$$\varphi_o - h_e \underline{B} = \lambda \underline{B} \underline{\alpha}$$
 ce qui donne : $\underline{B} = \frac{\varphi_o}{h_e + \lambda \underline{\alpha}}$

1.3.2.7. Applications numériques :

$$h_e \sim 26 \, W.K^{-1}.m^{-2} \text{ et } |\underline{\alpha}| \sim 5, 6 \times 10^4 \, W.K^{-1}.m^{-2} \Rightarrow |\underline{\alpha}| >> h_e$$

Par conséquent :

$$\underline{B} = \frac{\varphi_o}{\lambda \underline{\alpha}} \text{ avec } \underline{\alpha} = \sqrt{\frac{\omega_o}{a}} \exp i \frac{\pi}{4} \Rightarrow \boxed{\underline{B} = \frac{\varphi_o}{\lambda} \sqrt{\frac{a}{\omega_o}} \exp - i \frac{\pi}{4}}$$

1.3.2.8. Expression de $\underline{\theta}(x,t) = \underline{\theta}(x) \exp i\omega_o t$

$$\underline{\theta}\left(x,t\right) \ = \ \underline{B} \ \exp\left(-\underline{\alpha}x \ + \ i\omega_{o}t\right) \ = \ \frac{\varphi^{o}}{\lambda}\sqrt{\frac{a}{\omega_{o}}}\exp\left(-i\frac{\pi}{4} \ - \ \sqrt{\frac{\omega_{o}}{2a}}(1+i)x \ + \ i\omega_{o}t\right)$$

Soit:

$$\underline{\theta}(x,t) = \frac{\varphi^o}{\lambda} \sqrt{\frac{a}{\omega_o}} \exp\left(-\sqrt{\frac{\omega_o}{2a}}x\right) \exp\left(\omega_o t - \frac{\pi}{4} - \sqrt{\frac{\omega_o}{2a}}x\right)$$

1.3.2.9. Expression du champ de température $T(x,t) = \theta(x,t) + T_o$ dans le solide (Σ)

$$\underline{T}\left(x,t\right) = T_{o} + \frac{\varphi^{o}}{\lambda}\sqrt{\frac{a}{\omega_{o}}}\exp\left(-\sqrt{\frac{\omega_{o}}{2a}}x\right)\exp{i\left(\omega_{o}t - \frac{\pi}{4} - \sqrt{\frac{\omega_{o}}{2a}}x\right)}$$

D'où:

$$T(x,t) = T_o + \frac{\varphi^o}{\lambda} \sqrt{\frac{a}{\omega_o}} \exp\left(-\sqrt{\frac{\omega_o}{2a}}x\right) \cos\left(\omega_o t - \frac{\pi}{4} - \sqrt{\frac{\omega_o}{2a}}x\right)$$

En absence du faisceau laser ($\varphi_o = 0$), donc $T(x,t) = T_o$ (situation statique)

Deuxième partie Détection et analyse du signal

2.1. Détection du signal

2.1.1. Densité spectrale

2.1.1.1. Représentation graphique de $\tau(\lambda)$

2.1.1.2. Loi de Plank du rayonnement du corps noir

$$\varphi_{\lambda}^{P} = \frac{2\pi h c_{o}^{2}}{\lambda^{5}} \frac{1}{\exp\left(\frac{hc_{o}}{k_{B}T\lambda}\right) - 1} \quad \text{tels que} \quad : \begin{cases} h : \text{ constante de Plank} \\ c_{o} : \text{ célérité de la lumière dans le vide} \\ k_{B} : \text{ constante de Boltzman} \end{cases}$$

2.1.1.3.

$$\frac{\partial \varphi_{\lambda}^{P}}{\partial T} = \frac{2\pi h^{2} c_{o}^{3}}{k_{B} T^{2} \lambda^{6}} \frac{\exp\left(\frac{hc_{o}}{k_{B} T \lambda}\right)}{\left(\exp\left(\frac{hc_{o}}{k_{B} T \lambda}\right) - 1\right)^{2}} = \frac{p \exp\left(\frac{b}{T \lambda}\right)}{T^{2} \lambda^{6} \left(\exp\left(\frac{b}{T \lambda}\right) - 1\right)^{2}} \text{ avec} \begin{bmatrix} b = \frac{hc_{o}}{k_{B}} \\ p = \frac{2\pi h^{2} c_{o}^{3}}{k_{B}} \end{bmatrix}$$

2.1.2. Signal délivré par le détecteur

$$S_{\lambda}(t) = D_{\lambda}\tau(\lambda)L_{\lambda}(T)\Delta\lambda = D_{\lambda}\tau(\lambda)\varphi_{\lambda}^{P}(T)\Delta\lambda$$

2.1.2.1. Au voisinage de la température T_o :

$$L_{\lambda}(T) \; \approx \; L_{\lambda}(T_o) \; + \; (T \; - \; T_o) \left(\frac{\partial L_{\lambda}}{\partial T}\right)_{T=T_o} \; \approx \; L_{\lambda}(T_o) \; + \; \Delta T(0,t) \left(\frac{\partial L_{\lambda}}{\partial T}\right)_{T=T_o}$$

Dans la bande $\Delta \lambda$,le coefficient de transmission $\tau(\lambda)=1$, d'où :

$$S_{\lambda}(T) \approx D_{\lambda} \left(L_{\lambda}(T_o) + \Delta T(0, t) \left(\frac{\partial L_{\lambda}}{\partial T} \right)_{T=T_o} \right) \Delta \lambda$$

2.1.2.2. Expression du signal $S_{\lambda}^{'}(t)$ délivré par le détecteur synchrone

$$S_{\lambda}^{'}(T) = S_{\lambda}(T) - D_{\lambda}L_{\lambda}(T_{o}) = D_{\lambda}\Delta T(0,t) \left(\frac{\partial L_{\lambda}}{\partial T}\right)_{T=T_{o}} \Delta \lambda = D_{\lambda}\Delta T(0,t) \left(\frac{\partial \varphi_{\lambda}^{P}}{\partial T}\right)_{T=T_{o}} \Delta \lambda$$

$$S'_{\lambda}(T) = D_{\lambda} \Delta T(0, t) \frac{p \exp\left(\frac{hc_o}{k_B T_o \lambda}\right)}{T_o^2 \lambda^6 \left(\exp\left(\frac{hc_o}{k_B T_o \lambda}\right) - 1\right)^2} \Delta \lambda = \frac{D_{\lambda} \Delta \lambda}{T_o^2 \lambda^7} p \varphi_o \sqrt{\frac{a}{\omega_o}} \frac{\exp\left(\frac{hc_o}{k_B T_o \lambda}\right)}{\left(\exp\left(\frac{hc_o}{k_B T_o \lambda}\right) - 1\right)^2} \cos\left(\omega_o t - \frac{\pi}{4}\right)$$

2.2. Analyse du signal

La valeur efficace $S_{\lambda}^{'}$ de $S_{\lambda}^{'}(t)$ est tel que :

$$S_{\lambda}' = \frac{D_{\lambda} \Delta \lambda}{T_o^2 \lambda^7} p \varphi_o \sqrt{\frac{a}{2\omega_o}} \frac{\exp\left(\frac{b}{T_o \lambda}\right)}{\left(\exp\left(\frac{b}{T_o \lambda}\right) - 1\right)^2}$$

Pour les longueurs d'onde respectives λ_1 et λ_2 , le rapport des valeurs efficaces des signaux respectifs correspondants :

$$S = \frac{\Delta \lambda_1}{\Delta \lambda_2} \left(\frac{\lambda_2}{\lambda_1}\right)^7 \exp\left[\frac{b}{T_o} \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right)\right] \left(\frac{\exp\left(\frac{b}{\lambda_2 T_o}\right) - 1}{\exp\left(\frac{b}{\lambda_1 T_o}\right) - 1}\right)^2 = f(T_o)$$

En particulier:

 \diamond Pour $b >> \lambda T_o$

$$S \approx \frac{\Delta \lambda_1}{\Delta \lambda_2} \left(\frac{\lambda_2}{\lambda_1}\right)^7 \exp\left[-\frac{b}{T_o} \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right)\right] \Leftrightarrow \left[T_o \approx \frac{\frac{b(\lambda_2 - \lambda_1)}{\lambda_1 \lambda_2}}{\ln\left[\frac{\Delta \lambda_1}{S \Delta \lambda_2} \left(\frac{\lambda_2}{\lambda_1}\right)^7\right]} = f_1(S)$$

 \diamond Pour $b << \lambda T_o$

$$S \approx \frac{\Delta \lambda_1}{\Delta \lambda_2} \left(\frac{\lambda_2}{\lambda_1}\right)^5 \exp\left[\frac{b}{T_o} \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right)\right] \Leftrightarrow \left[T_o \approx \frac{\frac{b(\lambda_2 - \lambda_1)}{\lambda_1 \lambda_2}}{\ln\left[\frac{S\Delta \lambda_2}{\Delta \lambda_1} \left(\frac{\lambda_1}{\lambda_2}\right)^5\right]} = f_2(S)\right]$$

On pourra, donc, conclure que le rapport S des valeurs efficaces des signaux relatifs aux longueurs d'onde λ_1 et λ_2 , et délivrés par le détecteur, permet la mesure de la température T_o .