T2 de Estruturas Discretas 2016.1

Questão 2

Prova

 $T(s, U) \mid s \in U \in U \in o \text{ conjunto de vértices} = Conseguimos$ achar o menor caminho da vértice s para qualquer $u \in U$.

TCB

 $T(s, U) \mid size(U) = 1$: O único caminho é entre s e ele mesmo, de custo 0

TPI

 $T(s, U) \rightarrow T(s, U') \mid U' = U \cup v$: Se sabemos todos os caminhos de menor custo entre s e cada vértice de U, ao adicionar v, basta achar a aresta de menor custo entre v e qualquer vértice (ui) de U. Desse modo também conseguimos o menor caminho entre s e v: s -> ui U ui-> v.

Algorítimo

Ao ler o input, um grafo não direcionado é criado da seguinte maneira:

- Para cada estação um nó é criado guardando a zona e o número desta estação
- Para cada par duas estações pertencentes à uma mesma linha é criada uma aresta com os seguintes dados:
 - O custo: 1 se for uma linha de ônibus, e z*4 se for uma linha de trem z sendo o número de transferências de zonas entre essas duas estações
 - o O tipo de transporte: Podendo ser ônibus ou trem
 - O número da linha

Em seguida o algoritimo de Dijkstra é rodado em cima desse grafo com o nó inicial sendo o da estação de partida

Fazemos um backtracking no output do Dijkstra para achar o menor caminho entre o nó inicial o e nó final (da estação de destino)

Tempos de execução

Z	S	Т	В	X	Υ	time
2	100	50	50	1	100	2.21 ms
10	100	5	50	71	95	240 ms
30	100	50	50	1	100	7945 ms