$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	$\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$\frac{2 k^2 (6 k^2 r_5 + t_1 + 4 t_3)}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	$\frac{6k^2r_5+t_1+4t_3}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$-\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1t_3+2 k^2 r_5 (t_1+t_3))}$	0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\tau_{1}^{\#1}_{+}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1 + k^2 t_1}$	0	0	0	0
	$J_1^{\#1} + \alpha \beta$	$r_1^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{#2} + ^{\alpha}$

	$\sigma_{0}^{\#1}$	$ au_{0}^{\#1}$	$ au_{0^{+}}^{#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$

onstraints eps $ik \ \sigma_{1}^{\#2} = 0$ $ik \ \sigma_{1}^{\#2} \alpha = 0$ $ik \ \sigma_{1}^{\#2} \alpha \beta = 0$ $ik \ \sigma_{2}^{\#1} \alpha \beta = 0$		#	П	1	Ж	Ж	С	2	16
Source c SO(3) irr $ \frac{r_0^{\#2}}{r_0^{\#1}} = 0 $ $ \frac{r_0^{\#1}}{r_1^{1}} = 0 $ $ \frac{r_1^{\#1}\alpha\beta + i}{r_1^{1}} $ Total #:	Source constraints	SO(3) irreps	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$\alpha + 2ik \sigma_{1}^{\#2}$	$t_1^{\#1}\alpha == 0$	$+\bar{l}k\sigma_1^{\#2}{}^{\alpha\beta}$	$-2 \overline{\imath} k \sigma_2^{\# 1} ^{\alpha\beta}$	Total #:

$\omega_{2}^{\#1}_{+}$ $\beta_{2}^{\#1}_{+}$ $\alpha_{2}^{\#1}_{-}$ $\alpha_{eta\chi}$	0	0	2 2
$f_2^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1}{}_+\alpha\beta$	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0
	$\omega_2^{\#1} + ^{lphaeta}$	$f_{2+}^{#1} + ^{\alpha\beta}$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

$f_{1^-}^{\#2}$	0	0	0	$\frac{1}{3}$ \vec{l} k $(t_1 - 2t_3)$	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$	
$f_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3) \hspace{0.2cm} 0$	
$\omega_{1^-}^{\#1}_{\alpha}$	0	0	0	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_3 \right)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3} \bar{l} k (t_1 - 2 t_3)$	
$_{1}^{\#2}_{1}+_{\alpha\beta}f_{1}^{\#1}_{1}$	$-\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0	
$_{1}^{\#2}$	$\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0	

$\alpha \beta \chi$								
$\sigma_{2}^{\#1}$	0	0	2 t1	$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	<i>-t</i> ₁
$\alpha\beta$	$\frac{\sqrt{2} k}{2)^2 t_1}$	$\frac{2}{2^{2}t_{1}}$		$f_{0}^{\#2}$	0	0	0	0
$\tau_2^{\#1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	$f_{0}^{\#1}$	$\sqrt{2} kt_3$	$2 k^2 t_3$	0	0
$\alpha\beta$	$\frac{2}{t_1}$	$\frac{2}{2}k$)	\			
$\sigma_{2}^{\#1}{}_{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	$\omega_{0}^{\#1}$	<i>t</i> ₃	1 1/2 kt3	0	0
	$+^{\alpha\beta}$	$+^{\alpha\beta}$	$\alpha eta \chi$			Ī		
	$\sigma_{2}^{\#1}$ †	$\tau_{2}^{\#1}$ †	$\sigma_{2}^{\#1} + ^{\epsilon}$		$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ †	$f_{0}^{#2} \uparrow$	$\omega_{0}^{\#1}\dagger$

Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

Lagrangian density

 $-\frac{1}{3}t_{1} \omega_{i}^{\alpha i} \omega_{\kappa\alpha}^{\kappa} + \frac{2}{3}t_{3} \omega_{i}^{\alpha i} \omega_{\kappa\alpha}^{\kappa} - t_{1} \omega_{i}^{\kappa\lambda} \omega_{\kappa\lambda}^{i} - r_{5} \partial_{i}\omega^{\kappa\lambda}_{\kappa} \partial^{i}\omega_{\lambda}^{\alpha} - r_{5} \partial_{\alpha}\omega_{\lambda}^{\alpha} \partial_{\kappa}\omega^{\kappa\lambda} + r_{5} \partial_{\theta}\omega_{\lambda}^{\alpha} \partial_{\kappa}\omega^{\kappa\lambda} - r_{5} \partial_{\alpha}\omega_{\lambda}^{\alpha} \partial_{\kappa}\omega^{\kappa\lambda\theta} + 2r_{5} \partial_{\theta}\omega_{\lambda}^{\alpha} \partial_{\kappa}\omega^{\kappa\lambda} - r_{5} \partial_{\alpha}\omega_{\lambda}^{\alpha} \partial_{\kappa}\omega^{\kappa\lambda\theta} + 2r_{5} \partial_{\theta}\omega_{\lambda}^{\alpha} \partial_{\kappa}\omega^{\kappa\lambda\theta} - \frac{1}{2}t_{1} \partial^{\alpha}f_{\theta\kappa}\partial^{\kappa}f_{\alpha}^{\theta} - \frac{1}{2}t_{1} \partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\theta} - \frac{1}{2}t_{1} \partial^{\alpha}f_{\kappa}\partial^{\kappa}f_{\alpha}^{\theta} - \frac{1}{2}t_{1} \partial^{\alpha}f_{\kappa}\partial^{\kappa}f_{\alpha}^{i} - \frac{1}{3}t_{1} \omega_{\kappa\lambda}^{\lambda} \partial^{\kappa}f_{\alpha}^{i} - \frac{1}{3}t_{1} \omega_{\kappa\lambda}^{\lambda} \partial^{\kappa}f_{\alpha}^{i} - \frac{1}{3}t_{1} \partial_{\kappa}f_{\kappa\lambda}^{\lambda} \partial^{\kappa}f_{\alpha}^{i} + \frac{1}{3}t_{1} \omega_{\kappa\lambda}^{\lambda} \partial^{\kappa}f_{\alpha}^{i} - \frac{1}{3}t_{1} \omega_{\kappa\lambda}^{\alpha} \partial^{\kappa}f_{\alpha}^{i} - \frac{1}{3}t_{1} \partial_{\kappa}f_{\lambda}^{\lambda} \partial^{\kappa}f_{\alpha}^{i} + \frac{1}{2}t_{1} \omega_{\kappa\lambda}^{\alpha} \partial^{\kappa}f_{\kappa}^{i} - \frac{1}{3}t_{1} \omega_{\kappa\lambda}^{\alpha} \partial^{\kappa}f_{\kappa}^{i} + \frac{1}{2}t_{1} \partial_{\kappa}f_{\kappa}^{\lambda} \partial^{\kappa}f_{\kappa}^{i} - \frac{1}{3}t_{1} \partial_{\kappa}f_{\kappa}^{\lambda} \partial^{\kappa}f_{\kappa}^{i} + \frac{1}{2}t_{1} \partial_{\kappa}f_{\kappa}^{\lambda} \partial^{\kappa}f_{\lambda}^{i} + \frac{1}{2}t_{1} \partial$

?
$$J^{P} = 1 - \frac{?}{k^{\mu}}$$
?

? —? `?	Massive partic	Massive particle						
	Pole residue:	$\frac{6t_1t_3(t_1+t_3)-3r_5(t_1^2+2t_3^2)}{2r_5(t_1+t_3)(-3t_1t_3+r_5(t_1+t_3))} > 0$						
	Polarisations:	3						
	Square mass:	$-\frac{3t_1t_3}{2r_5t_1+2r_5t_3} > 0$						
	Spin:	1						
	Parity:	Odd						

Unitarity conditions

 $r_5 < 0 \&\& (t_1 < 0 \&\& 0 < t_3 < -t_1) || (t_1 > 0 \&\& (t_3 < -t_1) || t_3 > 0))$

(No massless particles)