Colle MP 10: Séries et séries de fonctions

5 décembre 2016

Colle 1

SALIMI Mehdy (Note: 15): Bien.

GUILLOT Jeanne (Note : 12) : ne pense pas à comparer à une série de Riemann pour montrer CVS. Reste bloquée sur l'exo.

Exercice 1. Propriétés de convergence uniforme d'une série de fonctions. Contre exemple pour la réciproque?

Exercice 2. Soit $f:]0, \infty[\longrightarrow \mathbb{R}, f(x) = \sum_{k=1}^{\infty} \frac{1}{sh(kx)}$. Donner un équivalent de f en ∞ .

Exercice 3. Etudier la convergence simple et uniforme de $\phi: t \longmapsto 2t(1-t)$ sur [0,1].

Montrer que toute fonction constante sur $[a,b] \subset]0,1[$ est limite d'une suite de polynômes à coefficients relatifs, puis que ce résultat subsiste pour toute fonction continue sur [a,b].

Colle 2

ZOUGGARI Raphaël (Note: 9): problèmes dans la preuve de cours, manque de rigueur (écrit $||f_n||$ au lieu de $||f_n(x)||$ par exemple). Dit que $u_n \leq v_n$, v_n diverge $\implies u_n$ diverge.

MAULET Louis (note: 15): Bien.

Exercice 1. CV normale \implies CV unif. Contre exemple pour la réciproque?

Exercice 2. Convergence simple, uniforme, normale sur \mathbb{R} de :

$$\sum (-1)^{n-1} \frac{n}{n^2 + x^2}$$

Exercice 3. Montrer que

$$\int_0^{1/2} \frac{1}{1-x} dx = \sum_{k=1}^{\infty} \frac{1}{k2^k}$$

En déduire $\sum_{k=1}^{\infty} \frac{1}{k2^k}$.

Colle 3

Marion Begey (Note : 12) : ne se souvient pas de la CV normale, peu rigoureuse.

PONS Ariane (Note : 12) : ne sait pas que f' = g' \implies f = g + constante.

Exercice 1. CV absolue \implies CV simple. Réciproque?

Exercice 2. (Étudier la convergence de $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$? regularité de f_n et de f?)

Calculer $\lim_{\infty} \int_{-1}^{1} f_n(x) dx$.

Exercice 3. Montrer que $\forall x \in]-1,1[$, $\arctan(x)=\sum_{k=0}^{\infty}(-1)^k\frac{x^{2k+1}}{2k+1}.$ On rappelle que $\arctan'(x)=\frac{1}{1+x^2}.$