Report Submitted

for

Honeywell Campus Connect Hackathon

on the project entitled

Predictive Quality Control for F&B Manufacturing (Brewing Beverage)

in the field of

Machine Learning & Data Science
Bachelor of Technology

in

Computer Science & Engineering

by

Aman Chauhan (22BCE0476)

Honeywell

Department of Computer Science & Engineering

Vellore Institute of Technology Vellore - 632014, INDIA

24, August 2025

F&B Process Anomaly Prediction: A Brewery Case Study

Author: Aman Chauhan

Project Overview and Scope

- **Objective:** To build an end-to-end predictive system that identifies potential quality anomalies in a brewery's manufacturing process in real-time, providing an actionable **Quality Alert**.
- Dataset Selection: After surveying multiple F&B sectors, I selected the Brewery Operations and Market Analysis Dataset for its rich process parameters—including critical fermentation variables (Temperature, pH_Level, Fermentation Time, Gravity), final product attributes (Alcohol_Content, Bitterness, Color), and key performance indicators (Brewhouse Efficiency, various process loss metrics)—alongside a direct Quality Score metric, which were essential for this hackathon.

Proposed Solution:

- A several machine learning models machine learning model analyzes inprocess data to classify each batch as either "Normal" or an "Anomaly".
- The system is delivered via an interactive **Streamlit dashboard** that displays the live prediction and confidence score.
- Crucially, the dashboard uses **SHAP** (SHapley Additive exPlanations) to visually explain the key factors driving each prediction, turning the model from a "black box" into a practical decision-support tool.

Data Sources & References

- Primary Dataset Used:
 - Brewery Operations Dataset (Kaggle):
 https://www.kaggle.com/datasets/aqmarh11/brewery-operations-and-market-analysis-dataset
- Other Datasets Researched:

- Bakery Production Dataset (Mendeley Data): https://data.mendeley.com/datasets/7x5t3rxx5f/1
- Wine Quality Dataset (UCI): https://archive.ics.uci.edu/ml/datasets/wine+quality
- Flavors of Cacao Dataset (Kaggle):
 https://www.kaggle.com/datasets/rtatman/chocolate-bar-ratings

F&B Process and Data Understanding

Manufacturing Process Flow: Beer Production

- Raw Materials: Malted Barley, Hops, Yeast, Water
 - Dataset Parameter: Ingredient Ratio
- Process Flow:

Brewhouse (Mashing & Boiling) -> Fermentation -> Packaging

- Stage Details & Control Parameters:
 - Brewhouse Operations:
 - Equipment: Mash Tun, Kettle
 - o Control Parameters: Brewhouse Efficiency, Bitterness (IBU)
 - Fermentation:
 - **Equipment:** Fermentation Tank

- Control Parameters: Temperature, pH_Level, Gravity, Fermentation Time
- Packaging:
 - o **Equipment:** Bottling/Kegging Lines
 - Control Parameter: Loss_During_Bottling_Kegging

Understanding Process Variations

Our analysis confirmed that process variations are complex; **no single parameter like Temperature guarantees a good or bad batch**. Instead, as revealed by our SHAP analysis, it is the **complex interaction** between multiple variables that determines the final quality.

Data Processing and Preparation

Data Quality Analysis & Statistical Methods

We performed a statistical check for data quality. The analysis confirmed the dataset has zero missing values and zero duplicate rows.

```
print("\n--- 2. Data Quality Inspection ---")
                                                                                                               --- 2. Data Quality Inspection ---
 print("\n[INFO] Checking for missing values per column:")
 print(df.isnull().sum())
                                                                                                               [INFO] Checking for missing values per column: Batch ID \phantom{000}\theta
 if df.isnull().sum().sum() == 0:
                                                                                                               Brew_Date
Beer_Style
SKU
      print("Status: No missing values found.")
 print(f"\n[INFO] Number of duplicate rows found: {df.duplicated().sum()}")
 if df.duplicated().sum() == 0:
                                                                                                               Location
                                                                                                               Fermentation_Time
Temperature
pH_Level
      print("Status: No duplicate rows found.")
 print("\n[INFO] Initial data types:")
 print(df.info())
                                                                                                               Gravity
Alcohol_Content
Bitterness
 --- 3. Data Cleaning and Type Correction ---
                                                                                                               Ingredient_Ratio
Volume_Produced
Total_Sales
Quality_Score
 'Brew_Date' column converted to datetime format.
                                                                                                               Brewhouse Efficiency
                                                                                                              Loss_During_Brewing
Loss_During_Fermentation
Loss_During_Bottling_Kegging
 [INFO] Data types after correction:
Batch_ID
                                                                          int64
                                                                                                               dtype: int64
 Brew Date
                                                          datetime64[ns]
                                                                                                              Status: No missing values found.
Beer_Style
                                                                        object
                                                                                                            [INFO] Number of duplicate rows found: 0
Status: No duplicate rows found.
                                                                        object
                                                                                                              [INFO] Initial data types:
Location
                                                                        object
                                                                                                              Calass 'pandas.core.frame.Dataframe'>
RangeIndex: 583 entries, 0 to 582
Data columns (total 20 columns):
# Column
Fermentation Time
                                                                          int64
Temperature
                                                                       float64
                                                                                                                                                       Non-Null Count
                                                                       float64
pH Level
                                                                                                                                                       583 non-null
Gravity
                                                                      float64
                                                                                                                0 Batch ID
                                                                                                                1 Brew_Date
2 Beer_Style
3 SKU
Alcohol_Content
                                                                      float64
                                                                                                                                                       583 non-null
583 non-null
                                                                                                                                                                          object
                                                                          int64
Bitterness
                                                                                                                    Location
                                                                                                                                                       583 non-null
                                                                                                                    Fermentation_Time
Temperature
pH_Level
                                                                                                                                                       583 non-null
583 non-null
583 non-null
583 non-null
                                                                                                                                                                          int64
float64
float64
Color
                                                                          int64
Ingredient_Ratio
                                                                       object
Volume Produced
                                                                                                                    Gravity
                                                                                                                                                                          float64
                                                                                                                                                       583 non-null
583 non-null
583 non-null
                                                                                                                9 Alcohol_Content
10 Bitterness
                                                                                                                                                                          float64
Total_Sales
                                                                      float64
                                                                                                                11 Color
                                                                                                                                                                          int64
Quality_Score
                                                                       float64
                                                                                                               11 Color
12 Ingredient_Ratio
13 Volume_Produced
14 Total_Sales
15 Quality_Score
                                                                                                                                                      583 non-null
583 non-null
 Brewhouse_Efficiency
                                                                      float64
                                                                                                                                                      583 non-null
583 non-null
583 non-null
                                                                                                                                                                          float64
float64
 Loss_During_Brewing
                                                                      float64
 Loss_During_Fermentation
                                                                      float64
                                                                                                                16 Brewhouse Efficiency
                                                                                                                                                                          float64
                                                                                                               16 Brewhouse_Efficiency 583 non-null
17 Loss_During_Brewing 583 non-null
18 Loss_During_Fermentation 583 non-null
19 Loss_During_Bottling_Kegging 583 non-null
dtypes: float64(10), int64(5), object(5)
memory usage: 91.2+ KB
 Loss_During_Bottling_Kegging
                                                                      float64
dtype: object
```

Outlier Detection and Improvement

We used the Interquartile Range (IQR) method to graphically identify outliers in key process parameters. Instead of removing this valuable data, we marked these deviations as a new feature for the model to learn from.

Justification for Quantifying Product Quality

To create an actionable **Quality Alert**, we converted the continuous **Quality_Score** into a **binary target**: Normal (0) for 'OK' batches and Anomaly (1) for 'Warning' or 'Reject' batches. This simplification creates a more robust and practical target for the model.

--- Starting Step 6: Label Definition and Data Splitting ---

[INFO] Descriptive statistics for Quality_Score:

Quality_Score

count	583.000000
mean	9.514237
std	0.462423
min	7.900000
25%	9.200000
50%	9.600000
75%	10.000000
max	10.000000

A

[INFO] Final class distribution: Quality_Label

Reject 0.408233 OK 0.404803

Warning 0.186964

Name: proportion, dtype: float64

4 Application of Machine Learning Models

This section details the modeling process, from establishing initial benchmarks to developing and evaluating the final, high-performance predictive model.

4.1. Baseline Models & Exploratory Analysis

We first established performance baselines using several simple methods to set a benchmark for success. We evaluated a supervised model (Logistic Regression), unsupervised models (Isolation Forest, PCA), and a classic Statistical Process Control (SPC) chart.

Fig5: A traditional SPC Control Chart, a baseline method that detects extreme single-variable outliers but cannot capture complex multivariable anomalies."

4.2. Multivariable Predictive Model Selection

To find the optimal solution, we conducted a comparative analysis ("bake-off") of three powerful, multivariable models: **Random Forest, LightGBM, and XGBoost**. Each was trained on the same balanced dataset to ensure a fair comparison.

"Figure 6: F1-Scores of all advanced models. Random Forest was the clear winner and was selected as our final predictive model."

Performance of All Models (Sorted by F1-Score):							
	Precision	Recall	F1-Score	ROC-AUC			
XGBoost	0.733333	0.753425	0.743243	0.694583	th		
LightGBM	0.701299	0.739726	0.720000	0.728829	7		
Random Forest	0.670886	0.726027	0.697368	0.669521			
Logistic Regression	0.649351	0.684932	0.666667	0.641034			

4.3. Final Model Evaluation & Engineering Judgement

--- Model Performance Comparison ---

The winning **Random Forest** model was rigorously evaluated on the unseen test set. We analyzed its successes and failures to provide actionable engineering judgement. For example, a correctly identified 'Reject' batch often showed a combination of long fermentation time and low temperature, suggesting a potential yeast health issue.

4.4. Explainability & Root-Cause Hints

To transform our model from a "black box" into a practical tool, we used **SHAP** to understand the reasoning behind its predictions. The analysis revealed the most influential factors, allowing us to create simple rules that hint at potential root causes for quality issues.

"Figure 8: SHAP analysis of the final model, showing that Brewhouse_Efficiency and Loss_During_Fermentation are the most significant factors in predicting anomalies."

^{--- 4.} Deriving Root-Cause Rules ---

[#] Simple Root-Cause Analysis Rules

[#] Derived from SHAP value analysis of the XGBoost model.

[#] Rules for 'Reject' Predictions (High-Severity Anomalies)

Rule 1:

- IF: 'Fermentation Time' is high AND 'Temperature' is on the low side.
- THEN LIKELY ROOT CAUSE: Stalled or sluggish fermentation.
- SUGGESTED ACTION: Check yeast health, yeast pitch rate, and glycol chilling system for over-chilling.

Rule 2:

- IF: 'Loss During Fermentation' is high.
- THEN LIKELY ROOT CAUSE: Fermenter overflow (blow-off), a leak, or a yeast harvesting issue.
- SUGGESTED ACTION: Inspect fermenter seals, blow-off bucket, and ensure temperature is not causing excessive activity.

Rule 3:

- IF: 'pH_Level' is abnormally high or low post-fermentation.
- THEN LIKELY ROOT CAUSE: Potential contamination (bacterial infection) or severe water chemistry imbalance.
- SUGGESTED ACTION: Place batch on hold for microbial testing. Review sanitation procedures and water treatment logs.

#	
#	Rules for 'Warning' Predictions (Moderate-Severity Anomalies)
#	

Rule 4:

- IF: 'Brewhouse Efficiency' is low.
- THEN LIKELY ROOT CAUSE: Inconsistent malt crush, incorrect mash temperature, or pH issue during mashing.
- SUGGESTED ACTION: Check mill gap settings. Calibrate brewhouse thermometers and pH meters.

Rule 5:

- IF: 'Bitterness' (IBU) is significantly off-target for the 'Beer_Style'.
- THEN LIKELY ROOT CAUSE: Incorrect hop dosage, old/poorly stored hops, or incorrect boil duration.
- SUGGESTED ACTION: Review brew log for hop additions. Check hop inventory for age and storage conditions.

Root-cause rules successfully saved to: explainability/root_cause_rules.txt

Of course. Here is the concise guide for creating **Section 5** of your report, which focuses on the dashboard.

Visualization and Deployment

5.1. Real-Time Process Dashboard

A key deliverable was a dashboard to visualize the real-time process and predicted quality. We developed an interactive dashboard using Streamlit that allows a user to:

- 1. Select a specific batch from the production history.
- 2. Choose which trained model (e.g., Random Forest, XGBoost) to use for the analysis.
- 3. View the model's live **Normal/Anomaly** prediction and confidence score.
- 4. Understand the prediction through a **SHAP plot** that shows the top contributing features.
- 5. Visually compare the batch's parameters against process averages using a **Radar Chart**.

https://fbmanufacturing.streamlit.app/

Model Explainability and Feature Analysis

- Run your final Streamlit app either locally or on Colab.(with the help of ngrok).
- Select the **Random Forest** model and a batch that was predicted as an "ANOMALY".

• "Figure 9: A visualization schematic of the real-time process dashboard. It displays the predicted quality for a selected batch and the key factors driving the model's decision."(ngrok based)

6. Feasibility and Project Viability

- **Feasibility:** The solution is highly feasible, built entirely with open-source Python libraries (Scikit-learn, SHAP, Streamlit) on a public dataset, and can be run on standard hardware.
- **Potential Challenges & Risks:** The primary risk in a real-world deployment is the quality of input sensor data. The main challenge faced during development was the model's initial struggle with a 3-class problem ('OK', 'Warning', 'Reject').

• Strategies for Overcoming Challenges: We overcame the modeling challenge by strategically simplifying the problem to a more robust binary classification (Normal vs. Anomaly), which significantly improved the model's performance and practical value.improved performance. Data quality risks would be mitigated in production by implementing data validation checks.

Honeywell F&B Manufacturing: Process Anomaly Prediction

End-to-end pipeline for cleaning, feature engineering, labeling, and anomaly detection on brewery process data, with baselines, advanced models, and explainability.

- Dataset: Brewery batches with process variables, quality score, and losses.
- Targets:
 - Multiclass Quality_Label: OK, Warning, Reject
 - Binary anomaly label (is_anomaly) derived from Quality_Score thresholds
- Models:
 - Baselines: Logistic Regression, Isolation Forest, PCA reconstruction-error, Control chart
 - Advanced: XGBoost multiclass, Autoencoder anomaly detector
- Explainability: SHAP global and local analyses, root-cause rules

Links

- Dataset: https://www.kaggle.com/datasets/aqmarh11/brewery-operations-and-market-analysis-dataset
- Demo dashboard: https://fbmanufacturing.streamlit.app/
- GitHub repo: https://github.com/amanchauhan786/HoneyWell_F-BManufacturing
- Video demo: https://drive.google.com/file/d/1YkbhyUPzWdRO7ZKV9DZL-raHcVcF53GZ/view?usp=sharing

• GOOGLE COLLAB:-

https://colab.research.google.com/drive/19Gnsta9qQuZd3zjNXV8C9FBAsfNoOFbX?usp=sharing

7. Research and References

This section details the primary data source used for modeling, other public datasets reviewed during the research phase, and the core open-source libraries and methodologies that made this project possible.

7.1. Primary Dataset

- Brewery Operations and Market Analysis Dataset
 - o Source: Kaggle
 - Description: The core dataset for this project, containing detailed process parameters and quality scores from a craft brewery.
 - o Link:

```
https://www.kaggle.com/datasets/aqmarh11/brewery-operations-and-market-analysis-dataset
```

7.2. Other Public Datasets Researched

During the initial research phase, several other public F&B datasets were evaluated to understand the availability of process data:

- Bakery Production Dataset
 - o Source: Mendeley Data
 - o Link:

https://data.mendeley.com/datasets/7x5t3rxx5f
/1

- Wine Quality Dataset
 - o Source: UCI Machine Learning Repository
 - o Link:

https://archive.ics.uci.edu/ml/datasets/wine+
quality

- Flavors of Cacao (Chocolate Bar Ratings) Dataset
 - Source: Kaggle
 - o Link:

https://www.kaggle.com/datasets/rtatman/choco
late-bar-ratings

7.3. Core Libraries and Technologies

• **Pandas:** For data manipulation and analysis.

- o Link: https://pandas.pydata.org/
- **Scikit-learn:** For core machine learning models (Random Forest, Logistic Regression) and preprocessing.
 - o Link: https://scikit-learn.org/
- Imbalanced-learn (SMOTE): For handling class imbalance in the training data.
 - o Link: https://imbalanced-learn.org/
- **XGBoost:** For the high-performance gradient boosting model.
 - o Link: https://xgboost.ai/
- **LightGBM:** For the high-performance gradient boosting model.
 - o Link: https://lightgbm.readthedocs.io/
- SHAP (SHapley Additive exPlanations): For model explainability and root-cause analysis.
 - o Link: https://shap.readthedocs.io/
- Streamlit: For building and deploying the interactive web dashboard.
 - o Link: https://streamlit.io/
- Matplotlib & Seaborn: For data visualization and plotting.
 - o Links: https://matplotlib.org/and https://seaborn.pydata.org/

Summary/Appendix:-

- Data source
 - data/raw/brewery_data.csv → primary dataset (583 rows, 20 columns) used across notebooks.
- Cleaning and preprocessing
 - notebooks/01_preprocessing.ipynb (as reflected in HoneyWell_F-BManufacturing.ipynb-Colab-cold-run.pdf and HoneyWell_Brew_F-BManufacturing.ipynb-Colabfinal.pdf)
 - Tasks covered: missing values check, duplicates check, dtype fixes, unit consistency notes, timestamp parsing, IQR outlier detection, index alignment on Brew Date.
 - Key saves:
 - data/cleaned/brewery data cleaned.csv
 - Notable columns engineered/parsed:
 - Ratio_1, Ratio_2, Ratio_3 parsed from Ingredient_Ratio
 - Outlier flags (Temperature_is_outlier, pH_Level_is_outlier, Fermentation_Time_is_outlier, Gravity_is_outlier, Brewhouse_Efficiency_is_outlier) in Colabfinal flow
 - Notes:
 - Rolling window features introduce 4 NaNs per series due to window=5; later handled downstream.
- Feature engineering
 - Same preprocessing notebook and subsequent sections (both PDFs)
 - Time-based features: Brew_Month, Brew_DayOfWeek, Brew_WeekOfYear
 - Rolling features (window=5) on Temperature, pH_Level, Fermentation_Time, Brewhouse_Efficiency with shift(1) in Colabfinal flow
 - Gradients: diff() for major TS columns
 - Peaks: find_peaks-derived rolling peak counts
 - Duty cycle: Temperature_above_20.0_duty_cycle_5 example
 - Cumulative sums: Volume_Produced_cumulative, Total_Sales_cumulative
 - One-hot encoding: Beer_Style, SKU, Location
 - Scaling: StandardScaler saved at models/scaler.joblib (Colabfinal)
 - Key saves:
 - data/features/engineered_features.csv (Colabfinal)
 - data/features/brewery_data_engineered_features.csv (cold-run)

- Labeling:
 - Quality_Label with thresholds OK/Warning/Reject at 9.8 and 9.5 (Colabfinal)
 - Binary is_anomaly from scaled Quality_Score < -1.5 (cold-run)
- Splits and labels
 - Time-based split
 - Colabfinal: 80/20 split by index position → train 466, test 117; files:
 - data/features/train_dataset.csv
 - data/features/test dataset.csv
 - data/labels.csv (Batch ID, Quality Label)
 - Cold-run: date split at 2020-11-01 \rightarrow train 491, test 92; files:
 - data/features/brewery data labels.csv (is anomaly)
- Baseline models and outputs
 - Logistic Regression (binary Reject vs others)
 - Inputs: features excluding Batch_ID, Brew_Date, Quality_Score, Quality_Label
 - Result (test, 117 rows): accuracy 0.59, class-wise precision/recall in Colabfinal
 - Figures saved:
 - plots/cm_logistic_regression.png
 - plots/feature importance logreg.png
 - Isolation Forest
 - Colabfinal (test=117): accuracy 0.55
 - Cold-run (test=92): ROC AUC ~0.6914, PR AUC ~0.2611; Confusion matrix [,]
 - Figures saved:
 - plots/cm_isolation_forest.png
 - PCA reconstruction error
 - Threshold at 95th percentile of train error
 - Colabfinal (test=117): accuracy 0.53, poor recall for Reject; figure:
 - plots/pca reconstruction error.png
 - Control chart (Temperature)
 - Using train mean/std; figure:
 - plots/control_chart_temperature.png
- Advanced models and explainability
 - XGBoost (multiclass OK/Reject/Warning)
 - Parameters: objective=multi:softprob, n_estimators=200, learning_rate=0.1, max_depth=5
 - Colabfinal (test=117): accuracy ~0.50; Reject precision 0.55, recall 0.59; macro metrics reported

- Saves:
 - models/xgb classifier.joblib
 - models/label encoder.joblib
- SHAP:
 - explainability/shap summary plot.png
 - explainability/shap_bar_plot.png
 - explainability/global_shap_summary.png
 - explainability/local waterfall reject.png (if TP exists)
- Root-cause rule text:
 - explainability/root cause rules.txt
- Autoencoder (dense)
 - Trained on OK only; 99th percentile MAE threshold ~0.7406; Colabfinal (test=117): Not Reject precision 0.60 recall 0.92; Reject precision 0.33 recall 0.07
 - Saves:
 - models/autoencoder model.h5
- SMOTE and interactions (experimentation)
 - SMOTE \rightarrow X train from (466,51) to (576,51)
 - Interaction features: Temp_x_pH, Grav_x_Alc (added to train/test)
- Alternative pipelines (cold-run notebook)
 - RandomForestClassifier (class_weight='balanced')
 - Test (92): accuracy 0.95; ROC AUC 1.0; PR AUC 1.0; Confusion matrix [,]
 - SHAP summary plotted inline
 - LSTM autoencoder (look back=5)
 - Preprocessed to sequences; Test (aligned 88 sequences): ROC AUC 0.9277; PR AUC 0.7266; Confusion [,]
- Results and artifacts (cold-run)
 - results/baseline model/
 - isolation_forest_model.joblib
 - evaluation metrics.txt
 - key_features_scatter_plots.png
 - quality score timeseries anomalies.png