

Міністерство освіти і науки України НТУУ«Київський політехнічний інститут» Фізико-технічний інститут

Лабораторна робота № 4

з предмету «Криптографія» на тему: «Вивчення криптосистеми RSA та алгоритму електронного підпису; ознайомлення з методами генерації параметрів для

асиметричних криптосистем»

Варіант №15

Виконала:

Студентка III курсу

ФТІ группи ФБ-84

Матвієнко В.С.

Перевірив:

Чорний О. М.

Мета роботи

Ознайомлення з тестами перевірки чисел на простоту і методами генерації ключів для асиметричної криптосистеми типу RSA; практичне ознайомлення з системою захисту інформації на основі криптосхеми RSA, організація з використанням цієї системи засекреченого зв'язку й електронного підпису, вивчення протоколу розсилання ключів.

Порядок виконання роботи

- 1. Написати функцію пошуку випадкового простого числа з заданого інтервалу або заданої довжини, використовуючи датчик випадкових чисел та тести перевірки на простоту. В якості датчика випадкових чисел використовуйте вбудований генератор псевдовипадкових чисел вашої мови програмування. В якості тесту перевірки на простоту рекомендовано використовувати тест Міллера-Рабіна із попередніми пробними діленнями. Тести необхідно реалізовувати власноруч, використання готових реалізацій тестів не дозволяється.
- 2. За допомогою цієї функції згенерувати дві пари простих чисел p, q і p_1 , q_1 довжини щонайменше 256 біт. При цьому пари чисел беруться так, щоб $pq \le p_1$ q_1 ; p і q прості числа для побудови ключів абонента A, p_1 , q_1 абонента B.
- 3. Написати функцію генерації ключових пар для RSA. Після генерування функція повинна повертати та/або зберігати секретний ключ (d,p,q) та відкритий ключ (n,e). За допомогою цієї функції побудувати схеми RSA для абонентів A і B тобто, створити та зберегти для подальшого використання відкриті ключі (e,n), (e_1,n_1) та секретні d і d_1 .
- 4. Написати програму шифрування, розшифрування і створення повідомлення з цифровим підписом для абонентів A і B. Кожна з операцій (шифрування, розшифрування, створення цифрового підпису, перевірка цифрового підпису) повинна бути реалізована окремою процедурою, на вхід до якої повинні подаватись лише ті ключові дані, які необхідні для її виконання. За допомогою датчика випадкових чисел вибрати відкрите повідомлення M і знайти криптограму для абонентів A и B, перевірити правильність розшифрування. Скласти для A і B повідомлення з цифровим підписом і перевірити його.
- 5. За допомогою раніше написаних на попередніх етапах програм організувати роботу протоколу конфіденційного розсилання ключів з підтвердженням справжності по відкритому каналу за допомогою алгоритму RSA. Протоколи роботи кожного учасника (відправника та приймаючого) повинні бути реалізовані у вигляді окремих процедур, на вхід до яких повинні подаватись лише ті ключові дані, які необхідні для виконання. Перевірити роботу програм для випадково обраного ключа 0 < k < n. Кожна з наведених операцій повинна бути реалізована у вигляді окремої процедури, інтерфейс якої повинен приймати лише ті дані, які необхідні для її роботи; наприклад, функція Епстурт(), яка шифрує повідомлення для абонента, повинна приймати на вхід повідомлення та відкритий ключ адресата (і тільки його), повертаючи в якості результату шифротекст. Відповідно, програмний код повинен містити сім високорівневих процедур: GenerateKeyPair(), Encrypt(), Decrypt(), Sign(), Verify(), SendKey(), ReceiveKey().

Опис кроків протоколу:

- 1. Програма генерує 2 пари простих чисел. Для абонента Alice p, q та для Bob p_1 , q_1 довжиною 256 біт($p*q \le p_1*q_1$)
- 2. Програма генерує ключові пари RSA для Alice і Bob, де (n,e)-open key, (d,p,q)-secret key.
- 3. Абонент Alice формує повідомлення, використовуючи функцію SendKey(), де ще використовуються функції Encrypt(), Sign().
 - $k_1 = 0x9b82c1937813fae77e9dea1b1af66ff23e949de5b9b3d849440356abe48a70ba3bc209fff23ade53\\cc26605ec58294bf34b8927b028cec3fab88e74e3d483a10$
 - S=0x5f04e97213a60e061f12a43a724bf12d6d1300265282438c0c8ed684048595a2ee082c73f949f1df 973bb22a9a6caf08ce8035570865e04624442fee8c2c6a71
 - $S_1 = 0x766908bd9f0066fceee3e037766511060ed264e38f26847443286603b2ba052339ca68920deea792e929fa7fd50b3c1ebf9b089aeb45fd5ade9dad4609bae7bf$
- 4. Абонент Воb приймає повідомлення і за допомогою свого таємного ключа перевіряє підпис Alice.
 - k = 0x109f95664f4b50b1330d7dccbfcd2b02d1fb407f989406ad8373b0dac022d1d4bf653b5400e05a8b3faa244ea1d1419d7b579b7cfda1dd123bf50b416dee8e8a
 - S=0x5f04e97213a60e061f12a43a724bf12d6d1300265282438c0c8ed684048595a2ee082c73f949f1df 973bb22a9a6caf08ce8035570865e04624442fee8c2c6a71
 - $S^e mod(n) = 0x109f95664f4b50b1330d7dccbfcd2b02d1fb407f989406ad8373b0dac022d1d4bf653b540\\0e05a8b3faa244ea1d1419d7b579b7cfda1dd123bf50b416dee8e8a$
 - S^{e} mod(n)=k, отриманий підпис правильний.

Хід роботи:

Таблиці вибраних чисел р, д та кандидатів, що не пройшли тест перевірки простоті

Alice	
p=0xb34313196979640425de085073dc54deef7e7b2ae503ff956995d310b9147861	q=0xabeb62b2ead5987636852146855947b5b740f8cb36e77d56e70df5e9a8daa1f7
0x66e58c407986e08701280c8b0862c53c559994c299fd26fdadf42eb5a82de64f is	0xbb5107a6bcc8b4e80959c217d76776dbfe503847ca7f91fed3963f455de4143f is
not prime number	not prime number
0x7b29e0db2deee9a74fe635c03e838d715c7ba6260e7efbefbbb72245f16c1ff is not	0x6a7eabdda3d69f920469283093bb68636afc904b070d8fb4a9890113ebcbc3e5 is
prime number	not prime number
0x848ff0e571b83203a25335c29c29a7e9098abc0672f173c61a286f768a4f0d5 is	0xa9794fc97deef20e65444bdca66fe61d1914aa28fba873bbe91792da8800e581 is
not prime number	not prime number
0xcb56dba19e0de535874ee41bac209791e4efcdd2607e69ce075cc20caeaaea3f is	0x6031d1751fa6824cd2788a6c5088c099df26ad74a1fe54d5faf07b14859ea235 is
not prime number	not prime number
0xf1d4c8bb900d7cfc89ebd29bce54ef9a1e06adeee1193a95b9b45afede8ae1b7 is	0x7f40f8c67b4710525964716fb3382446a9192e85baabeed356f891a00a59b4a3 is
not prime number	not prime number
0x338735679812af0de62f8eccbc7a5351c30280be3d632330db6682cbf7de4861 is	0xda6ebb3f68c327b8ed6cbeea8cb2f7ccbcf84b871d21b48abeb5d543363c949b is
not prime number	not prime number.

Bob p = 0xdb6858d928f8bb43f783cb6552f05b27d878b3d8d6044830b85b9494f81ee20b $q \!\!=\!\! 0xbc6a8dd6d0d07777cec8f18cae440b1d76ba0a99c1811218961998a8d7cb4291$ 0xb402f0a9660de9b848c09b493e7853b5f4f549f8e5d84c4fd6b46b8bd9c7a81f is 0x35a71c8fdc61028acb13f421e54c0da2cf796ee84b184ea66330c1ca5cb5e93b is not prime number not prime number 0xbe6c43051e6e8fefd80779cc0bf4aaee75afc2c9a785e8f22b7c85d6cdb08989 is 0x443302e7b75f60a0d2632c60e24ea33ac92f105575b571a5cdf4b962b6c0d661 is not prime number not prime number 0xb894c5ebf2a1f64dc6d19b08405e0f481e7e0dbfa0e269f0ce382f700801ac03 is 0x6f00713a6308336f2c819a0645528d67df2a018646b3bb0c99632ed600869199 is not prime number not prime number 0x7ce5491a5c41ae5cef1ecf5db1d38a29de1cef9a907832817244fda623035005 is 0xd5e9a75fdc7c1a48a7c594404a105cfcf98245f4dca900729427ac8ed50e107f is not prime number not prime number 0xe5e17feb3963acae35550e479e1ec376392f252620954639b38b1b83531d5b33 is 0xdb29240f1d787f182f185147b5aa927b69fd933490e2d0c381fabc379d783599 is not prime number 0xed5ccac0c1f9ff632feee9847e4e35425e4e90cd918d030816dd0e7425999c17 is 0xae3aec330782019818d1e4f5dd7fae7557a640a5fec0966399f30a65b2817311 is not prime number. not prime number

Параметри криптосистеми RSA для абонентів Alice і Bob

	Alice	Bob			
	Open key				
n	0x7862a171782bcb501cc82eb0b5d766237c5634fced632d6902d3c 2b0491c3a65e2f6da61264cec93f05fc2ac4f5e9c115b09726ab98494	0xa17bf404d922f4f984be115c21bff1d01ea372fa8192f4f9f7a5efcd 4a4d9a4f433605872e75d7e88f42ca77d6e67484be4f486b4615cd1			
	417dc2993f9d0f2697	ba63e1fe4fb7dde3b			
e	0x50ebb13e701f9a8ff567d7f75ce2e1f5648857e3a241273cb0f1fa8	0x17c80be95940b64a7ee818a057bf0677f3cc2fb9d12c0d3c0d9664			
	44c5aef907d8311605dbec41d7332257745611a052d8ae754d70750 6441589b261c60b36f	eca8e746e2d3d982afe346fdc6b08ea4a9cb816c2ec09d42523684a7 f25fef41b84e244f55			
Secret key					
d	0x44aee938daa81a74b91ed7ed505d5f7b884948b4c4b10279d596d	0x6dffddd3fb30c189fe3c718a453e3fc7b516a58e9d0b4af46538e03			
	cdbd778f62aa00a0e6d2563e8ac3adbffe61c0606121a5ff765c28004	57fca171fd91fa6ec27ae2eacab5d4568d8e4f16d17693ac70ba85fec			
	b18ace867cc678b80f	69e30e6250095dfd			
p	0xb34313196979640425de085073dc54deef7e7b2ae503ff956995d3	0xdb6858d928f8bb43f783cb6552f05b27d878b3d8d6044830b85b9			
•	10b9147861	494f81ee20b			
q	0xabeb62b2ead5987636852146855947b5b740f8cb36e77d56e70df	0xbc6a8dd6d0d07777cec8f18cae440b1d76ba0a99c181121896199			
1	5e9a8daa1f7	8a8d7cb4291			

Чисельні значення прикладів ВТ, ШТ

BT	ШТ
0x109f95664f4b50b1330d7dccbfcd2b02d1fb407f989406ad8373b0da	0x9b82c1937813fae77e9dea1b1af66ff23e949de5b9b3d849440356a
c022d1d4bf653b5400e05a8b3faa244ea1d1419d7b579b7cfda1dd123	be48a70ba3bc209fff23ade53cc26605ec58294bf34b8927b028cec3fa
bf50b416dee8e8a	b88e74e3d483a10

Цифровий підпис для Alice і Bob

Alice	Bob
0x5f04e97213a60e061f12a43a724bf12d6d1300265282438c0c8ed68	0x766908bd9f0066fceee3e037766511060ed264e38f2684744328660
4048595a2ee082c73f949f1df973bb22a9a6caf08ce8035570865e0462	3b2ba052339ca68920deea792e929fa7fd50b3c1ebf9b089aeb45fd5ad
4442fee8c2c6a71	e9dad4609bae7bf

Обмін ключами з сайтом

На сайті було згенеровано 512 бітне випадкове число-значення n-для Website, а також значення e.

	Alice	Bob			
	Open key				
n	0x7f116c387731b412c4ec52f80ed37a696ca47f8830f5fb3d3a0 b58a678c1e68e03cbb32b61e1235d6b79778cf82bb7e4ed296e3	0x8B856D59DE4C42D743D2A1F90915A2B57BB93FB6A18C642F9 54F0011296E322185D566CBB6083E6E5CDC10143EF991960E7D68			
	62af3fcc709f0be4310d1368f	9D4B4DD77C7C84878433575445			
e	0xfa74848502db5fd417d9d153c40c8b633b1eae26647ddadc33 99c00915df7ed7a05631d19c227ec08992172deaf16984418ca2 59e14294b8617a50bc4386427	0x10001			
	Secret key				
d	0xd40c351292618a9035bb41d2aa7e615778dc25bd459aa154fa 1cac24b557d62fd78de911ae3cf36e6a72d627fd3311546a1253 c527b4b0c92ab1448a5e63297				
p	0x953fa7873e14e1bda27ae479fb1b612e94d17bc464eb4133cc 71a60053e574f1				
\mathbf{q}	0xd9f45d8e697ca42837f3a9b2159d2769efdbf8c8d26323954c 6d3aa105f3637f				

SendKey() повернуло значення ключів від Alice:

 $k_1 = 7a7c3323220f74da1fade97587dff135d2d662bcfbefddf3c106f910e98c422f0fa7344d2955d74fcc556ebfcfc152fe42a8071a569876ebc76813468112aeea$

 $S_1 = 6d0c825f28fbe4e8dc238377b48c53eb6ab69e54f1351e139672ba994f67dd864bb121c8f7e9a5fdc72ba64f3ad8e832\\09e0366df60ad308522279b9cec3d706$

n=7f116c387731b412c4ec52f80ed37a696ca47f8830f5fb3d3a0b58a678c1e68e03cbb32b61e1235d6b79778cf82bb7e4ed296e362af3fcc709f0be4310d1368f

e=fa74848502db5fd417d9d153c40c8b633b1eae26647ddadc3399c00915df7ed7a05631d19c227ec08992172deaf16984418ca259e14294b8617a50bc4386427

ReceiveKey():

Receive key

Висновки:

Під час виконання лабораторної роботи №4 я ознайомилась з асиметричною криптосистемою RSA, генерацією ключів для цієї криптосистеми, а також з тестами перевірки чисел на простоту. У ході роботи реалізувала функції шифрування, розшифрування, підпису, перевірки підпису для RSA. RSA-алгоритм з відкритим ключем, що часто використовується в криптографічних застосунках. Складність задачі цього алгоритму полягає у великих цілих простих числах.