Basics of Cryptography

Otakar A.

Introduction

- "Hidden writing"
- Increasingly used to protect information
- Can ensure confidentiality
 - Integrity and Authenticity too

History - The Manual Era

- Dates back to at least 2000 B.C.
- Pen and Paper Cryptography
- Examples
 - Scytale
 - Atbash
 - Caesar
 - Vigenère

History - The Modern Era

- Computers!
- Examples
 - Lucifer
 - Rijndael
 - RSA
 - ElGamal

Speak Like a Crypto Geek

- Plaintext A message in its natural format readable by an attacker
- Ciphertext Message altered to be unreadable by anyone except the intended recipients
- *Key* Sequence that controls the operation and behavior of the cryptographic algorithm
- Keyspace Total number of possible values of keys in a crypto algorithm

Speak Like a Crypto Geek (2)

Initialization Vector – Random values used with ciphers to ensure no patterns are created during encryption

Ensures the encryption of the same string twice does not return the same result.

Types of Cryptography

- Stream-based Ciphers
 - One at a time
 - Good for real-time services
- Block Ciphers
 - Substitution and transposition

Encryption Systems

- Substitution Cipher
 - Convert one letter to another
 - Cryptoquip
- Transposition Cipher
 - Change position of letter in text
 - Word Jumble (Anagram)
- Monoalphabetic Cipher
 - Caesar

Encryption Systems

- Polyalphabetic Cipher
 - Vigenère
- Modular Mathematics
 - Running Key Cipher
- One-time Pads
 - Randomly generated keys

Steganography

- Hiding a message within another medium, such as an image
- No key is required
- Example
 - Modify color map of JPEG image

Cryptographic Methods

Symmetric

- Same key for encryption and decryption
- Key distribution problem

Asymmetric

- Mathematically related key pairs for encryption and decryption
- Public and private keys

Cryptographic Methods

Hybrid

- Combines strengths of both methods
- Asymmetric distributes symmetric key
 » Also known as a session key
- Symmetric provides bulk encryption
- Example:
 - » SSL negotiates a hybrid method

Hashing Algorithms

MD5

- Computes 128-bit hash value
- Widely used for file integrity checking
- SHA-1
 - Computes 160-bit hash value
 - NIST approved message digest algorithm

Birthday Attack

- Collisions
 - Two messages with the same hash value
- Based on the "birthday paradox"
- Hash algorithms should be resistant to this attack

Message Authentication Codes

- Small block of data generated with a secret key and appended to a message
- HMAC (RFC 2104)
 - Uses hash instead of cipher for speed
 - Used in SSL/TLS and IPSec

Digital Signatures

- Hash of message encrypted with private key
- Digital Signature Standard (DSS)
 - DSA/RSA/ECD-SA plus SHA
- DSS provides
 - Sender authentication
 - Verification of message integrity
 - Nonrepudiation

Encryption Management

- Key Distribution Center (KDC)
 - Uses master keys to issue session keys
 - Example: Kerberos
- ANSI X9.17
 - Used by financial institutions
 - Hierarchical set of keys
 - Higher levels used to distribute lower

Public Key Infrastructure

- All components needed to enable secure communication
 - Policies and Procedures
 - Keys and Algorithms
 - Software and Data Formats
- Assures identity to users
- Provides key management features

PKI Components

- Digital Certificates
 - Contains identity and verification info
- Certificate Authorities
 - Trusted entity that issues certificates
- Registration Authorities
 - Verifies identity for certificate requests
- Certificate Revocation List (CRL)

PKI Cross Certification

- Process to establish a trust relationship between CAs
- Allows each CA to validate certificates issued by the other CA
- Used in large organizations or business partnerships

Cryptanalysis

- The study of methods to break cryptosystems
- Often targeted at obtaining a key
- Attacks may be passive or active

Cryptanalysis

- Kerckhoff's Principle
 - The only secrecy involved with a cryptosystem should be the key
- Cryptosystem Strength
 - How hard is it to determine the secret associated with the system?

- Brute force
 - Trying all key values in the keyspace
- Frequency Analysis
 - Guess values based on frequency of occurrence
- Dictionary Attack
 - Find plaintext based on common words

- Replay Attack
 - Repeating previous known values
- Factoring Attacks
 - Find keys through prime factorization
- Ciphertext-Only
- Known Plaintext
 - Format or content of plaintext available

- Chosen Plaintext
 - Attack can encrypt chosen plaintext
- Chosen Ciphertext
 - Decrypt known ciphertext to discover key
- Differential Power Analysis
 - Side Channel Attack
 - Identify algorithm and key length

- Social Engineering
 - Humans are the weakest link
- RNG Attack
 - Predict IV used by an algorithm
- Temporary Files
 - May contain plaintext

E-mail Security Protocols

- Privacy Enhanced Email (PEM)
- Pretty Good Privacy (PGP)
 - Based on a distributed trust model
 - Each user generates a key pair
- S/MIME
 - Requires public key infrastructure
 - Supported by most e-mail clients

Network Security

- Link Encryption
 - Encrypt traffic headers + data
 - Transparent to users
- End-to-End Encryption
 - Encrypts application layer data only
 - Network devices need not be aware

Network Security

SSL/TLS

- Supports mutual authentication
- Secures a number of popular network services

IPSec

- Security extensions for TCP/IP protocols
- Supports encryption and authentication
- Used for VPNs