CLAIMS

We claim:

1	1. A routing protocol for mobile networks comprising a plurality of
2	mobile nodes, comprising the steps of:
3	assigning each of a plurality of mobile nodes an identifier (ID);
4	each of said nodes storing a list of said identifiers of neighboring nodes
5	in a one-hop region to create a one-hop neighbor list;
6	exchanging said one-hop neighbor list with one-hop neighbors;
7	creating a two-hop neighbor list from said exchanged one-hop
8	neighbor lists;
9	selecting a subset of said one-hop neighbors, such that the subset can
10	directly compute a route to all two-hop neighbors when forwarding broadcast
11	traffic;
12	when forwarding broadcast traffic to a destination node beyond said
13	two-hop neighbors of a source node:
14	forwarding a search request packet to said one hop neighbors until said
15	destination node is present in said two-hop neighbor list;
16	storing a reverse path tracking a path of said request packet;
17	forwarding a route return packet via said reverse path to said source
18	node to compute a path to said destination node.
1	2. A routing protocol for mobile networks as recited in claim 1 wherein when
2	a node moves to a new neighborhood one of said one-hop neighbors will
3	recognize a link failure and notify its one-hop neighbors to update their
4	respective one-hop neighbor lists.
1	3. A routing protocol for mobile networks as recited in claim 1 wherein when
2	a node monitors overheard packets for its own destination address to receive

606002AA

3	said overneard packets early.
1	4. A method of routing traffic packets through a mobile network comprising
2	plurality of mobile nodes, comprising the steps of:
3	each node creating a one-hop node list, where said one-hop node list
4	comprises all other nodes within direct radio range;
5	exchanging said one-hop node list with each of said other nodes on
6	said one-hop node list to create a two-hop node list;
7	selecting a subset of nodes on said one-hop list, such that the subset
8	provides a path to all nodes on said two-hop node list;
9	computing a route between a source node and a destination node
10	directly from said source node's one-hop neighbor list and said two-hop
11	neighbor list when said destination node is within two-hops of said source
12	node; and
13	said source node flooding only said subset nodes when searching for a
14	route to a destination node beyond two-hops of said source node.
1	5. A method of routing traffic packets through a mobile network comprising a
2	plurality of mobile nodes, comprising the steps of:
3	assigning each of a plurality of mobile nodes an identifier (ID);
4	each of said nodes storing a list of said identifiers of neighboring nodes
5	in a one-hop region to create a one-hop neighbor list;
6	exchanging said one-hop neighbor list with one-hop neighbors;
7	creating a two-hop neighbor list from said exchanged one-hop
8	neighbor lists; and
9	selecting a subset of said one-hop neighbors, such that the subset can
10	directly compute a route to all two-hop neighbors when forwarding broadcast
11	traffic.
1	6. A method of routing traffic packets through a mobile network as recited in

- 2 claim 5 further comprising the step of discovering outside of said two-hop
- 3 region by flooding.