MA2102: LINEAR ALGEBRA

Lecture 7: Dimension

1st September 2020

Let us recall the notion of a basis of a vector space.

Definition [Basis] A basis β of a vector space V is a subset such that β is linearly independent and spans V.

Proposition Let V be a vector space that admits a finite subset S that spans V. Then there exists a subset $\beta \subseteq S$ which is a basis for V. Proof.

If $S = \emptyset$ or $\{0\}$, then $\operatorname{span}(S) = \{0\}$. We may choose $\beta = \emptyset \subseteq S$ to be our basis. If $S \neq \emptyset$, then choose a non-zero $u_1 \in S$. By choice, $\{u_1\}$ is linearly independent. If possible, choose $u_2 \in S$ such that $\{u_1, u_2\}$ is linearly independent. If no such choice is possible, then any for $v \in S - \{u_1\}$, the set $\{u_1, v\}$ is linearly dependent, i.e., $cu_1 + dv = 0$ for some scalars c, d, at least one of these being non-zero. As $d \neq 0$, $v \in \operatorname{span}(\{u_1\})$, implying that $V = \operatorname{span}(S) = \operatorname{span}(\{u_1\})$.

Iterate this process to choose $u_1, u_2, \dots, u_k \in S$ such that $\beta = \{u_1, \dots, u_k\}$ is linearly independent and one of the two mutually cases happen:

(a) $S = \beta$ and we are done;

(b) for any $v \in S - \beta$, the set $\beta \cup \{v\}$ is linearly dependent.

As S is finite, such a selection can always be made. Now focus on case (b): for any such v we have a non-trivial linear combination

$$c_1u_1 + \dots + c_ku_k + dv = 0.$$

If d = 0, then that contradicts the linear independence of u_j 's. Thus, $d \neq 0$ and

$$v = -\frac{c_1}{d}u_1 - \dots - \frac{c_k}{d}u_k \in \operatorname{span}(\beta).$$

Hence, $S \subseteq \text{span}(\beta)$.

Now, taking spans on both sides we obtain

$$V = \operatorname{span}(S) \subseteq \operatorname{span}(\operatorname{span}(\beta)) = \operatorname{span}(\beta) \subseteq V.$$

This means that $span(\beta) = span(S) = V$. As β is linearly independent and spans V, we have found a finite basis of V.

Prove the proposition by eliminating vectors from *S* one at a time, using an earlier observation from lecture 6.

Remark The above proof will not work if S is not finite. However, there are vector spaces which do not have finite basis. One may consider $P(\mathbb{R})$ or the set of real sequences, for instance.

Definition Let *V* be a vector space. We say *V* is infinite dimensional if it has no finite basis.

Replacement Theorem

Let V be a vector space that is spanned by a set S of size n. Let L be a linearly independent set of size m. Then

- (i) $m \le n$ and
- (ii) there exists $T \subseteq S$ of size n-m such that $T \cup L$ spans V.

Remark It follows from the proof of the previous proposition and (ii) that L can be extended to a basis of V. We also know that S can be reduced to a basis of V. We shall see that any two basis have the same size for a vector space as above. Thus, part (i) $m \le n$ is often rephrased as L can be extended to a basis and S can be reduced to a basis.

Corollary A Let *V* be a vector space with a finite basis. Then any two bases have the same size.

This common integer is called the dimension of the vector space V over the field F. We denote this number by $\dim_F(V)$.

Proof.

Let β be a basis of V of size n. If β' is another basis of size m, then

$$m \le n (S = \beta, L = \beta')$$
 and $n \le m (S = \beta', L = \beta)$

due to (i). If β' is infinite, then choose $L = \{u_1, \dots, u_{n+1}\} \subset \beta'$. As L is linearly independent, applying (i) to L and $S = \beta$ we obtain $n+1 \le n$, a contradiction.

Corollary B Let V be a vector space of dimension n.

- (a) Any spanning set S of V contains at least n elements. If S is of size n, then S is a basis.
 - (b) Any linearly independent set consisting of *n* vectors is a basis.
 - (c) Any linearly independent set can be extended to a basis.

(1) The dimension of \mathbb{R}^n over \mathbb{R} is n. Example

- (2) The dimension of $M_n(F)$ over F is n^2 .
- (3) The dimension of $P_n(\mathbb{R})$ over \mathbb{R} is n+1.
- (4) The dimension of $n \times n$ real traceless matrices W_n is
- $n^2 1$.
 - (5) The dimension of $n \times n$ real symmetric matrices Sym, is $1 + 2 + \cdots + n$.
 - (6) The dimension of \mathbb{C} over \mathbb{C} is 1, i.e., $\dim_{\mathbb{C}}(\mathbb{C}) = 1$.

The dimension of \mathbb{C} over \mathbb{R} is 2, i.e., $\dim_{\mathbb{R}}(\mathbb{C}) = 2$.

What is the dimension of the subspace of real skew-symmetric $n \times n$ matrices?

Proof.

- (a) If S is linearly independent, then S is a basis. By Corollary A, |S|=n.

If S is linearly dependent, then by proposition choose $T \subset S$ such that T is a basis. By Corollary A, |T| = n, whence $|S| \ge |T| = n$. If |S| = n, then T = S is a basis.

(b) Let L be a linearly independent set of size n. Let β be a basis of size n. Apply (ii) of Theorem to $S = \beta$ and L = L to obtain T, of size 0 = n - n, such that $T \cup L = L$ spans V.

(c) Let L be a linearly independent set of size m and β be a basis of size n. By (ii) of Theorem, there exists $T \subset \beta$ of size n-m such that $T \cup L$ spans V. Thus, $|T \cup L| \le n$ while using (a) of this corollary, we get $|T \cup L| \ge n$. Therefore, $T \cup L$ is a spanning set of size n and by (a) of this corollary, it is a basis.