ТЕХНИЧЕСКИ УНИВЕРСИТЕТ - ГАБРОВО КАТЕДРА "КОМПЮТЪРНИ СИСТЕМИ И ТЕХНОЛОГИИ"

Дата на задаване: 29.01.2025 г.	Оценка:
Срок на предаване	
и защита: 19.02.2025 г.	Преподавател:
	/подпис/
	Дата:

ЗАДАНИЕ

за курсов (а) проект (работа) по дисциплината: Микропроцесорна техника

1. Тема:

Създаване на 3D модел в Blender на корпус за потребителски интерфейс към машина

2. Изисквания по съдържанието:

2.1. Теоретична част:

- 2.1.1. Представяне на потребителския интерфейс за машина елементи на интерфейса, форма, разположение, закрепване и др.
- 2.1.2. Представяне на примери за подобни разработки.
- 2.1.3. Представяне на някои от основните възможности и инструменти на Blender за графичен дизайн.

2.2. Практическо изпълнение:

2.2.1. Проектиране на частите на корпуса и представяне на работата по създаването на 3D модела — поетапно описание на работата, използваните инструменти с техните параметри и получените резултати.

2.3. Обем на чертежите:

- Изглед отпред
- Изглед отгоре
- Изглед отстрани
- Изометричен изглед
- Детайл на клавиатурата и бутоните
- Изглед на задната страна с платката

3. Задължителни консултации:

Студент: Виктор Иванов Крумов Преподавател: /име, презиме, фамилия/ /име, фамилия и подпис/

курс: 3 група: 1 фак.№ 22235411 //

спец.: КСТ форма: 3O e-mail: viktor.krumov@abv.bg

КУРСОВ ПРОЕКТ

по дисциплината: Микропроцесорна техника

ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – ГАБРОВО

Катедра "Компютърни системи и технологии"

Тема:

Създаване на 3D модел в Blender на корпус за потребителски интерфейс към машина

Студент: Виктор Иванов Крумов

Курс: 3 Група: 1

Фак. №: 22235411

Спец.: КСТ Форма: 30

E-mail: viktor.krumov@abv.bg

1. Теоретична част

1.1 Представяне на потребителския интерфейс за машина

Потребителският интерфейс представлява контролен панел за управление на CNC машина от тип FANUC. Интерфейсът се състои от следните основни елементи:

- Дисплей използван за визуализиране на информация за работния процес.
- Клавиатура и бутони за въвеждане на данни и управление на машината.

Формата на корпуса е съобразена с типичните индустриални панели, като са предвидени отвори за дисплея и бутоните.

1.2 Примери за подобни разработки

Съществуват различни типове индустриални контролни панели, използвани в CNC машините, например FANUC, Siemens SINUMERIK и други. На фигура 1, по-долу е представен пример за такъв тип интерфейс:

Фиг.1

1.3 Инструменти в Blender за графичен дизайн

При изработката на модела в Blender са използвани следните основни инструменти и техники:

- Mesh Modeling създаване и модификация на основната форма на корпуса чрез *Extrude*, *Bevel*, *Loop cut* и др.
- Boolean Modifier за създаване на отвори за дисплея и бутоните.
- **Array Modifier** за подреждане на бутоните в редове.
- Mirror Modifier за симетрично моделиране на корпуса.
- **Snapping и измерване** за точно позициониране на компонентите.
- Solidify Modifier за придаване на реалистична дебелина на корпуса.

2. Практическо изпълнение

2.1. Проектиране на частите на корпуса и създаване на 3D модела

Стъпка 1: Добавяне на Reference Image и създаване на основните бутони

Проектът започна с добавяне на референтна снимка на потребителски интерфейс на CNC машина (тип FANUC) за улесняване на работата и правилно мащабиране на модела. След това бяха създадени основните бутони, използвайки примитивни форми (Cylinder) и инструментите за трансформация. За по-добра визия върху тях беше приложен **Bevel Modifier**, за да се заоблят ръбовете.

фиг.2

Стъпка 2: Добавяне на Reference Image за ключовете и моделирането му

Добавих и референтно изображение на ключ за CNC машина, който е част от елементите на реалната система. Също така бе моделиран ключът и основата в която влиза

фиг.3

фиг.4

Стъпка 4: Моделиране на ключове и въртящи се елементи

Създадох ключовете и въртящите се бутони с помощта на **Extrude** за изтегляне на формите и оформяне на основните профили. Създадени бяха:

- стандартен въртящ се бутон (тип Rotary Encoder)
- по-широк въртящ се бутон (например за Feed или Spindle Override)

фиг.5

фиг.6

Стъпка 5: Останалите бутони върху основата

Бяха добавени и останалите по-малки бутони директно върху основата (панела), без да засягат зоната на клавиатурата.

фиг.7

Стъпка 6: Заглаждане на корпуса

Корпусът беше моделиран като основа и допълнително загладен с **Bevel** и **Subdivision Surface**, за да придобие по-мек и реалистичен вид.

фиг.8

Стъпка 7: Добавяне на специалните бутони с LED индикация

Създадени бяха специални бутони с добавени LED лампички в горната им част, характерни за индустриалните панели.

фиг.9

Стъпка 8: Моделиране на червения STOP бутон

Проектиран беше и аварийният STOP бутон, който е задължителен за CNC интерфейсите. Той беше оцветен в червено и със съответната форма за лесно разпознаване.

фиг.10

фиг.11

Стъпка 9: Разположение на всички елементи върху корпуса

Всички създадени елементи бяха прецизно подредени върху корпуса съгласно референтната снимка и стандартните индустриални разположения.

фиг.12

Стъпка 10: Добавяне на изображение на екрана

На екрана (Face-а на монитора) беше поставена текстура - изображение, взето от реална FANUC система, за да се доближи моделът максимално до оригинала, тук бе използван UV Editor и Material Assign.

фиг.13

Стъпка 12: Бутони за менюто и капак за слот (Floppy/USB)

До монитора бяха добавени бутони за навигация в менюто, както и капак за достъп до флопи диск/USB порт за прехвърляне на програми към CNC машината.

фиг.14

Стъпка 13: Добавяне на лого и оцветяване

Поставено беше лого на производителя върху корпуса, както и бяха добавени основни цветове и материали върху всеки компонент отново използвайки инструментите от **Стъпка 10**.

фиг.15

фиг.16

Стъпка 14: Създаване на платката

Създадена беше и платката, която е разположена отдолу и е свързана с бутоните на клавиатурата. За оформяне на монтажните отвори за болтовете беше използван **Boolean Modifier**, за да се изрежат отворите директно в корпуса.

фиг.17

фиг.18

3. Обем на чертежите

Представям следните изгледи на модела:

• Изглед отпред

фиг.19

• Изглед отгоре

фиг.20

• Изглед отстрани

фиг.21

• Изометричен изглед

фиг.21

• Детайл на клавиатурата и бутоните

фиг.22

• Изглед на задната страна с платката

