

Sistema Computacional Embarcado

Sistema Computacional

Processador + Memória + Periféricos

Embarcado

- Faz parte de outro sistema
- Exemplos: aeronave, automóvel, eletrodoméstico, equipamento agrícola, equipamento médico, equipamento de telecomunicações, etc.

Reage a eventos externos e internos

Sistema Computacional Embarcado

Sistema Computacional Embarcado

Características

- Um sistema embarcado pode ser microprocessado ou microcontrolado, no qual o "computador" é completamente encapsulado ou dedicado ao dispositivo ou sistema que o mesmo controla.
 - É desenvolvido para uma tarefa específica. Por questões como segurança e usabilidade, pode possuir restrições para computação em tempo real.
 - O software escrito para sistemas embarcados é muitas vezes chamado firmware, e armazenado em uma memória ROM ou memória flash ao invés de um disco rígido.
 - Por vezes o sistema também é executado com recursos computacionais limitados: sem teclado, sem tela e com pouca memória.
- Em geral os sistemas embarcados possuem uma capacidade de processamento reduzida em comparação com computadores pessoais (notebooks e desktops).

Processamento de Sinais

Aplicações que envolvem um grande volume de informação a ser processado em curto espaço de tempo.

Os sinais a serem tratados são digitalizados através de ADs, processados, e novamente convertidos em sinais analógicos por DAs. Exemplos: compressores de vídeo, radares e sonares, etc.

Comunicações e Redes

Chaveamento e distribuição de informações. Sistemas de telefonia e telecomunicações, equipamentos de redes e internet.

Sistemas de Controle

Controles em malha fechada com realimentação em tempo real.

Geralmente são as aplicações mais robustas, com placas dedicadas e múltiplos sensores de entrada e saída que fornecem pouca interação com o usuário.

Usados nos motores de automóveis, processos químicos, controle de voo, usinas

nucleares, etc.

Sistemas Automotivos

CAMINHOS

QUE CONECTAM

COM O FUTURO

Definição

- Um microcontrolador é um pequeno computador em um único circuito integrado.
 Um microcontrolador contem um ou mais núcleos de processamento junto com uma memória e periféricos de entrada e saída programáveis.
- Esses dispositivos são utilizados em produtos com controle automático de sua operação. Por meio da redução de tamanho e custo comparado à um projeto que utiliza microprocessador, memória e dispositivos separados, os microcontroladores tornam mais econômicas as digitalizações realizadas em sistemas legados.

Componentes

- CPU (Unidade de Processamento Central) tem a finalidade de interpretar as instruções de programa.
- Na memória somente de leitura na qual são gravadas as instruções do programa.
- A memória RAM (Memória de Acesso Aleatório) é utilizada para memorizar as variáveis utilizadas pelo programa.

Componentes

- O conjunto de LINHAS de I/O é utilizado para controlar dispositivos externos ou receber impulsos de sensores, interruptores, etc.
- O conjunto de dispositivos auxiliares d\u00e3o suporte ao funcionamento do componente, ou seja, gerador de clock, contadores, UASART para comunica\u00e7\u00e3o, etc.

Arquitetura Genérica

Arquitetura ATMEGA 328

Flash (32KByte) SRAM

(2KByte)

Arquiteturas Harvard e Von Neuman

Quando um sistema de processamento de dados (processadores e microcontroladores) possui uma única área de memória na qual ficam armazenados os dados (variáveis) e o programa a ser executado (software), dizemos que esse sistema segue a arquitetura de Von Neuman. No caso em que os dados (variáveis) ficam armazenados em uma área de memória e o programa a ser executado (software) fica armazenado em outra área de memória, dizemos que esse sistema segue a arquitetura Harvard.

Set de Instruções – RISC x CISC

Cada processador possui seu próprio conjunto de instruções, o que inviabiliza a portabilidade.

CISC (COMPLEX Instruction Set Computing) – utilizam o conceito de microcódigo, ou seja, um conjunto de códigos instruções, armazenados no componente. Isto faz com que o programa possa ser desenvolvido em linguagem muito mais próxima ao nível de máquina, o que reduz seu tamanho.

Set de Instruções – RISC x CISC

Cada processador possui seu próprio conjunto de instruções, o que inviabiliza a portabilidade.

RISC (Reduced Instruction Set Computing) - oferecem um número pequeno de instruções que são decodificadas pelo hardware, já que não dispõem de microcódigo. Isto faz com que o desenvolvimento de firmware seja mais simples, porém demande um número maior de instruções.

Prof. João Magalhães

Horário de Atendimento:

Quarta-feira: 17h30

Quinta-feira: 17h30

• Sexta-feira: 15h30

E-mail: joao.magalhaes@inatel.br

Celular: (35) 99895-4450

Linkedin: https://www.linkedin.com/in/joaomagalhaespaiva/

