Juster Linear Programming

11/4/2015

| Max CTX | Max cTX | New CTX |
|---------|---------|---------|
| AXSb    | Axsb    | Ax = b  |
|         | X30     | X ≥ D   |

$$a_i^T x = b_i$$
  $\iff$   $a_i^T x \leq b_i$ 

$$a_i^T x \geq b_i$$

$$a_{i}^{T} x \leq b_{i} \iff a_{i}^{T} x + a_{i} = b_{i}$$

$$a_{i} \geq 0$$

Du Perblem:  $Jx: Ax \leq b$ ,  $C^{T}x \geq 2$ 

ENP I give x (caution: # bit should be

poly in input age

E (O-NP?? Hors to prove \$1 x ?

Max  $X_1 + 5X_2 - X_3$ 

$$(1) 2x_1 - X_2 - 2X_3 \le 10$$

(2) 
$$4x_1 + x_2 + x_3 \le 20$$

$$(3) -X_1 + 2X_2 + X_3 \le 4$$

(1,2,1)  $\frac{x_1, x_2, x_3 \ge 0}{7 = 10}$ 

5× (2) 
$$20x_1 + 5x_2 + 5x_3 \leq 100$$
 $x_1 + 5x_2 - x_3$ 

(2) +  $2x(3)$   $2x_1 + 5x_2 + 3x_3 \leq 28$ 
 $2 \leq 28$ 

More generally

 $y_1 \times 0 + y_2 \times 2 + y_3 \times 3$  is a valid inequality it is brefil as an appen bond if the coefficients of  $x_1, x_2, x_3$  are  $\geq$  the coefficients in the objective function

 $(2y_1 + 4y_2 - y_3)x_1 + (-y_1 + y_2 + 2y_3)x_2 + (-2y_1 + y_2 + y_3)x_3$ 
 $\leq 10y_1 + 20y_2 + 4y_3$ 

So we would like

Min  $[0y_1 + 20y_2 + 4y_3]$ 

15

 $2y_1 + 4y_2 - y_3 \geqslant 1$ 
 $-y_1 + y_2 + 2y_3 \geqslant 5$ 
 $-2y_1 + y_2 + y_3 \geqslant -1$ 
 $y_1, y_2, y_3 \geqslant 0$ 

Dual Lipear Program 1

| Weak Duality wax cix & Min by                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c cccc} \hline (P) & AXLB & Ay > C \\ \hline (P) & x>0 & y>0 \end{array} $                                                              |
| (P) AXEB A'y>C (D)<br>X>0 Y>0                                                                                                                           |
| (0) :1 (0) (70) 1 :10:10                                                                                                                                |
| (or if (P) is inborded, (D) is infeasible                                                                                                               |
| — (D) — (P) — ·                                                                                                                                         |
| Win CTY                                                                                                                                                 |
| (P) $Ax=b$ (D) $A^{T}y>c$                                                                                                                               |
| AX=b A 9 VC                                                                                                                                             |
| X ≫o                                                                                                                                                    |
|                                                                                                                                                         |
| The (LP duality). If both (P) and (D) we famble                                                                                                         |
| then their values are goal!                                                                                                                             |
| This is on Co-NP cutificate.                                                                                                                            |
| To prove it, we first posse a more                                                                                                                      |
| besic fact.                                                                                                                                             |
| Leena (FARKAS) Given $A \in \mathbb{R}^{n \times n}$ $b \in \mathbb{R}^{n \times n}$ one of the following is time:  (1) $\exists X \ge 0$ s.t. $Ax = b$ |
| one of the flowing is true:                                                                                                                             |
| $(1)  \exists x \ge 0  \text{s.t.}  Ax = b$                                                                                                             |
|                                                                                                                                                         |
| (2) $\exists y: A^T y > 0 b^T y < 0$                                                                                                                    |
| Proof ( )                                                                                                                                               |
| $C(A) = \begin{cases} x_1(A_1) + \dots + x_n(A_n), & x \ge 0 \end{cases}$                                                                               |
| Gove garated by $A$ .                                                                                                                                   |
|                                                                                                                                                         |

