Distribution 1

Bin
$$(n, p): P_X(x) = \binom{n}{x} p^x q^{n-x} \text{ for } x \in [n]_0.$$

$$\mu = np, \sigma^2 = npq, H(X) = \frac{1}{2} \log(2\pi enpq) + O(\frac{1}{n}).$$
Pois $(\lambda): P_X(x) = \frac{\lambda^x e^{-\lambda}}{x!} \text{ for } x \in \mathbb{N}_0.$

$$\mu = \sigma^2 = \lambda.$$
Geo $(p): P_X(x) = q^{x-1}p \text{ for } x \in \mathbb{N}.$

$$\mu = \frac{1}{p}, \sigma^2 = \frac{q}{p^2}, H(X) = \frac{-q \log q - p \log p}{p}.$$
Exp $(\lambda): f_X(x) = \lambda e^{-\lambda x} \text{ for } x \in \mathbb{R}_0^+.$

$$\mu = \frac{1}{\lambda}, \sigma^2 = \frac{1}{\lambda}.$$

$$\mathcal{N}(\mu, \sigma^2): f_X(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}.$$

$$h(X) = \frac{1}{2} \log(2\pi e\sigma^2).$$

$$\text{Lap}(\mu, b): f_X(x) = \frac{1}{2b} e^{-\frac{|x-\mu|}{b}}.$$

$$\sigma^2 = 2b^2, h(X) = \log(2be).$$

2 Markov Chain

 $X_1 - X_2 - \dots - X_n := \forall n, x^n, \ P_{X_{n+1}|X^n}(x_{n+1}|x^n) =$ $P_{X_{n+1}|X_n}(x_{n+1}|x_n).$ Stationary: $P_{X_1,\dots,X_n} = P_{X_{1+l},\dots,X_{n+l}}, \ \forall n,l \in \mathbb{N}.$

3 Central Limit Theorem

Khinchin WLLN: X_1, X_2, \ldots , are i.i.d. $E[|X_i|] < \infty$, then $\forall \epsilon > 0$, $\lim_{n \to \infty} \Pr\{|\bar{X}_n - \mu| \ge \epsilon\} =$ 0.

Central limit theorem: X_1, X_2, \ldots , are i.i.d. with $E[|X_i|] < \infty$, then $\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \stackrel{\text{d}}{\to} Z \sim N(0, 1)$. Berry-Esseen: X_1, X_2, \ldots , are i.i.d. with $E[|X_i|]$ $|\mu|^3$] = $\rho_3 < \infty$. Let $Z_n := \frac{S_n - n\mu}{\sqrt{n}\sigma}, Z \sim N(0,1)$. Then $|F_{Z_n}(z) - F_Z(z)| \le c \frac{\rho_3}{\sigma^3} n^{-1/2}, \ \forall z \in \mathbb{R}, n \in \mathbb{N} \left| \sum_{x,y} P_{X,Y}(x,y) \log \frac{1}{P_{X|Y}(x,y)} \right|$ for constant $c \in (0.4, 0.5)$.

Representing An i.i.d. 4 Sequence Almost Losslessly

DMS: discrete memoryless source. $\mathcal{B}(n,\epsilon)$ is an ϵ high-probability set: $\Pr\{S^n \in \mathcal{B}(n,\epsilon)\} \ge 1 - \epsilon$ s^n is δ -typical: $\left|\frac{1}{n}\sum_{i=1}^n \log P_S(s_i) + H(S)\right| \leq \delta$. δ -typical set $\mathcal{A}_{\delta}^{(n)}(S) := \{s^n | s^n \text{ is } \delta\text{-typical}\}.$

Properties of typical sequences and typical sets:

- $\forall s^n \in \mathcal{A}_{\delta}^{(n)}(S), 2^{-n(H(S)+\delta)} \leq \Pr\{S^n = s^n\} \leq$ $2^{-n(H(S)-\delta)}$
- $\Pr\{S^n \in \mathcal{A}^{(n)}_{\delta}(S)\} \ge 1 \epsilon$ for n large enough.
- $|\mathcal{A}_{\delta}^{(n)}(S)| \leq 2^{n(H(S)+\delta)}$.
- $|\mathcal{A}_{\delta}^{(n)}(S)| > (1-\epsilon)2^{n(H(S)-\delta)}$ for n large enough.

 $s^n \to b^k \to \hat{s}^n$: (n,k) code.

 (n,k,ϵ) code: (n,k) code with $P_e^{(n)} := \Pr\{S^n \neq$ \hat{S}^n } $\leq \epsilon$.

 $k^*(n,\epsilon)$: the smallest k s.t. $\exists (n,k,\epsilon)$ code.

$$R^*(\epsilon) := \lim_{n \to \infty} \frac{k^*(n, \epsilon)}{n}$$

A lossless source coding theorem for DMS: $R^*(\epsilon) =$ $H(S), \forall \epsilon \in (0,1).$

AEP (Asymptotic Equipartition Property): Entropy determines the asymptotic size of a typical set, and determines the probability of a typical sequence asymptotically.

5 Entropy

$$H(X|Y) = \sum_{y} P_{Y}(y)H(X|Y) = y) = \sum_{x,y} P_{X,Y}(x,y) \log \frac{1}{P_{X|Y}(x,y)}.$$

$$0 \le H(X) \le \log |\mathcal{X}|, \text{ where } H(X) = \log |\mathcal{X}| \iff$$

X is uniform distributed over \mathcal{X} .

$$H(X,Y) = H(Y) + H(X|Y) = H(X) + H(Y|X).$$

 $H(X|Y) \le H(X), \text{ but } H(X|Y = y) \text{ may } > H(X).$
 $H(X_1, \dots, X_n) = \sum_{i=1}^n H(X_i|X_1, \dots, X_{i-1}).$
 $H(X|Y,Z) \le H(X|Y).$

The above still holds for h.

Exercise 4: $H(X,Y,Z) \leq H(X,Y) + H(X,Z) - H(X)$.

Concavity of Entropy: $H(\mathbf{p}) := -\sum_{i=1}^{a} p_i \log p_i$ is concave in \mathbf{p} .

That is, $H(\lambda \mathbf{p_1} + (1 - \lambda)\mathbf{p_2}) \ge \lambda H(\mathbf{p_1}) + (1 - \lambda)H(\mathbf{p_2})$. Fano's inequality: $H(U|V) \le H_b(P_e) + P_e \log |\mathcal{U}|$, where $P_e := \Pr\{U \ne V\}$. $\Rightarrow \Pr\{U \ne V\} \ge \frac{H(U|V) - 1}{\log |\mathcal{U}|}$.

Exercise 5: if U, V both take values in \mathcal{U} , then $H(U|V) \leq H_b(P_e) + P_e \log(|\mathcal{U}| - 1)$.

6 Representing A Sequence with Memory Almost Losslessly

Entropy rate:

- $H(\lbrace X_i \rbrace) := \lim_{n \to \infty} \frac{1}{n} H(X_1, \dots, X_n)$ if exists.
- $\tilde{\mathrm{H}}(\{X_i\}) := \lim_{n \to \infty} H(X_n | X^{n-1})$ if exists.

H and \tilde{H} may be different: consider X_1, X_3, \ldots are i.i.d. and $X_{2k} = X_{2k-1}$.

If $\{X_i\}$ is stationary, then $H(X_n|X^{n-1})$ is decreasing in n.

If $\{X_i\}$ is stationary, then $H(\{X_i\}) = \tilde{H}(\{X_i\})$.

Stationary ergodic processes: $\frac{1}{n} \sum_{l=0}^{n-1} f(X_{k_1+l}, \dots, X_{k_m+l}) \xrightarrow{\text{a.s., } L^1} \mathrm{E}[f(X_{k_1}, \dots, X_{k_m})]$

as $n \to \infty$.

Shannon-McMillan-Breiman theorem: if $\{S_i\}$ is stationary ergodic, then $\frac{1}{n}\log\frac{1}{P(S^n)}\stackrel{\text{a.s., }L^1}{\to} \mathrm{H}(\{S_i\})$ as $n\to\infty$.

A Lossless Source Coding Theorem for Ergodic DSS: For a discrete stationary ergodic source $\{S_i\}$, $R^*(\epsilon) = H(\{S_i\}) \forall \epsilon \in (0,1)$.

Let \mathcal{X} be the state space of a Markov process.

- 1. A Markov process is irreducible if $\forall x, y \in \mathcal{X}$, it is possible to reach to start at x and reach y in a finite number of steps.
- 2. The period of a state is the g.c.d. of the # of times that a state can return to itself. A Markov process is aperiodic if all states have period = 1.
- 3. A Markov process is homogeneous (or time-invariant) if $\forall n > 1$, $P_{X_n|X_{n-1}} = P_{X_2|X_1}$. Hence, a homogeneous Markov process is completely defined by its initial state distribution P_{X_1} and transition probability $P_{X_2|X_1}$.
- 4. A steady-state distribution $\pi: \mathcal{X} \to [0,1]$ is one such that the distribution does not change after one transition: $\pi(x) = \sum_{y \in X} \pi(y) P_{X_{n+1}|X_n}(x|y), \ \forall x \in \mathcal{X}, \ n \in \mathbb{N}$. For a finite-alphabet homogeneous Markov process, steady-state distribution always exists, and it is unique if the process is irreducible.
- 5. For a finite-alphabet homogeneous Markov process that is both irreducible and aperiodic, $\lim_{n\to\infty} \Pr\{X_{n+1} = y | X_1 = x\} = \pi(y), \ \forall x,y \in \mathcal{X},$ where $\pi(\cdot)$ is the unique steady-state distribution. If $P_{X_1} = \pi$, the Markov process becomes a stationary process.

For a homogeneous, irreducible, and aperiodic Markov process $\{X_i\}$, $\mathrm{H}(\{X_i\}) = \tilde{\mathrm{H}}(\{X_i\}) = \left\{ 1/0, \text{ if } \sum_{i=1}^n LLR(x_i) \geq \eta_n \right\}$ $H(X_2|X_1)|_{P_{X_1}=\pi} = \sum_{x \in \mathcal{X}} \pi(x)H(X_2|X_1 = x), \text{ where } \left\{ \gamma_n, \text{ if } \sum_{i=1}^n LLR(x_i) = \eta_n \right\}$ π is the unique steady-state distribution.

Information for Continuous 7 Distributions

The covariance of n-dimensional X is k, then $h(X) \le h(X^G) = \frac{1}{2} \log((2\pi e)^n \det(k)).$

Learning a Bit of Informa-8 tion

 $\pi_{1|0}(\phi)$: false alarm, false positive, false rejection, type I error.

 $\pi_{0|1}(\phi)$: miss detection, false negative, false acceptance, type II error.

 $\mathcal{A}_{\theta}(\phi)$: acceptance region of H_{θ} .

Likelihood ratio $LR(x) := \frac{P_1(x)}{P_0(x)}$, Log likelihood ratio $LLR(x) := \log LR(x)$.

Likelihood ratio test (LRT) with parameter $\tau \in \mathbb{R}_0^+$ is $\phi_{\tau}^{LRT}(x) := \mathbb{I}\{LR(x) > \tau\}.$

$$\text{(Randomized) LRT } \phi_{\gamma,\tau}(x) = \begin{cases} 1, \text{ if } LR(x) > \tau & \\ \gamma, \text{ if } LR(x) = \tau & \cdot \\ 0, \text{ if } LR(x) < \tau & \end{cases} \begin{cases} P_0, P_1 \text{ are given.} \\ P_{\lambda}(a) := \frac{P_0(a)^{1-\lambda} P_1(a)^{\lambda}}{\sum_b P_0(b)^{1-\lambda} P_1(b)^{\lambda}}. \\ \text{Exercise 6: } D(P_{\lambda} || P_0) \text{ is a continuous and strictly} \end{cases}$$

Neyman-Pearson problem: minimize $\pi_{0|1}(\phi)$ subject to $\pi_{1|0}(\phi) \leq \epsilon$.

Neyman-Pearson: LRT is optimal.

 $\phi_{\eta_n,\gamma_n}^n(x^n)$ Generalized i.i.d.:

$$\begin{cases} 1/0, & \text{if } \sum_{i=1}^{n} LLR(x_i) \geq \eta_n \\ \gamma_n, & \text{if } \sum_{i=1}^{n} LLR(x_i) = \eta_n \end{cases}$$

$$\text{Chernoff-Stein lemma: } \lim_{n \to \infty} -\frac{1}{n} \log \omega_{0|1}^*(n, \epsilon) = D(P_0 \| P_1).$$

Typical set:

Information Divergence 9

$$D(P||Q) := \sum_{a} P(a) \log \frac{P(a)}{Q(a)}.$$

$$D(P||Q) \ge 0, \text{ with equality } \iff P(x) = Q(x), \ \forall x.$$

$$D(P_{Y|X}||Q_{Y|X}||P_X) := \mathbb{E}_{X \sim P_X} [D(P_{Y|X}(\cdot|X)||Q_{Y|X}(\cdot|X))].$$

Chain rule for information divergence: $D(P_{X,Y}||Q_{X,Y}) = D(P_{Y|X}||Q_{Y|X}||P_X) + D(P_X||Q_X).$ $D(P_Y||Q_Y) \leq D(P_{Y|X}||Q_{Y|X}||P_X)$, with equality iff $D(P_{X|Y}||Q_{X|Y}||P_{Y}) = 0.$

Donsker-Varadhan theorem: D(P||Q) $\max_{f:\mathcal{X}\to\mathbb{R}} E_{X\sim P}[f(X)] - \log \mathcal{E}_{X\sim Q}[2^{f(X)}]$ $E_{X\sim Q}[2^{f(X)}] < \infty.$ s.t.

Error Exponents and Cher-10 noff Information

increasing function of λ for $\lambda \in [0, 1)$.

 $P_e^*(\pi(=(\pi_0,\pi_1)),n) := \min_{\phi} \{ \pi_0 \pi_{1|0}^{(n)}(\phi) + \pi_1 \pi_{0|1}^{(n)}(\phi) \}.$ $\bar{P}_e^*(n) := \min_{\phi} \{ \max\{\pi_{1|0}^{(n)}, \pi_{0|1}^{(n)}\} \}.$

= | Chernoff Information: $CI(P_0, P_1)$

$$\max_{\lambda \in (0,1)} \underbrace{-\log \sum_{a \in \mathcal{X}} P_0(a)^{1-\lambda} P_1(a)^{\lambda}}_{f(\lambda)}.$$
 Theorem 11:
$$\lim_{n \to \infty} \{-\frac{1}{n} \log P_e^*(\pi, n)\} = \lim_{n \to \infty} \{-\frac{1}{n} \log \bar{P}_e^*(n)\} = CI(P_0, P_1).$$

11 Deviverling Information Reliably

BSC(p): flip the bit i.i.d. with probability $p \in (0, \frac{1}{2})$.

12 Mutual Information

$$I(X;Y) = D(P_{X,Y} || P_X \times P_Y).$$
 Exercise 1:
$$I(X;Y)$$

$$\min_{Q_Y:D(P_Y || Q_Y) < \infty} D(P_{Y|X} || Q_Y || P_X).$$

$$I(X;Y|Z) := H(X|Z) - H(X|Y,Z).$$
 Chain rule:
$$I(X;Y^n) = \sum_{i=1}^n I(X;Y_i|Y^{i-1}).$$

$$X - Y - Z, \text{ then } I(X;Y) \ge I(X;Z).$$

$$X - Y - Z, \text{ then } I(X;Y) \ge I(X;Y|Z).$$

13 Noisy Channel Coding Theorem

An (n,k) code with $P_e^{(n)}:=\Pr\{W\neq \hat{W}\}\leq \epsilon$ is called an (n,k,ϵ) code.

 $k^*(n,k)$ is the largest k s.t. $\exists (n,k,\epsilon)$ code.

$$C(\epsilon) := \lim_{n \to \infty} \frac{1}{n} k^*(n, \epsilon).$$

Channel coding theorem for DMC without feedback:

$$C(\epsilon) = C^I := \max_{P_X} I(X;Y), \ \forall \epsilon \in (0,1).$$

 x^n is robust typical sequence: $|\hat{P}_{x^n}(a) - P_X(a)| \le \epsilon P_X(a)$, where $\hat{P}_{x^n}(a) := \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{x_i = a\}$.

The set of ϵ -robust typical sequence with respect to $X \colon \mathcal{T}_{\epsilon}^{(n)}(X)$.

14 Channel Coding with a Cost Constraint

Constraint: $\frac{1}{n} \sum_{i=1}^{n} b(x_i) \le B$. $(n, \lceil nR \rceil, B)$ code.

 $C(B) := \sup\{R|R : \text{achievable }\}.$

Channel coding for DMC with average input cost constraint: $C(B) = C^{I}(B) := \max_{P_X: \to P_X} I(X;Y).$

The above also holds for CMC.

 $C^I(B)$ is non-decreasing, concave, continuous in B. AWGN (additive with Gaussian noise) channel: noise is Gaussian and independent of others, and constraint: $\frac{1}{n}\sum_{i=1}^{n}|x_i|^2\leq B$.

The capacity of the AWGN channel with input power constraint B and noise variance σ^2 is given by $C(B) = \sup_{X:E[|X^2|] \leq B} I(X;Y) = \frac{1}{2}\log(1 + \frac{B}{\sigma^2}), \text{ which is achieved by } X \sim N(0,B).$

Proposition 2: $X^G \sim N(0,B), Y = X^G + Z$ where $Var[Z] = \sigma^2, Z \perp X^G$, then $I(X^G;Y) \geq \frac{1}{2}\log(1+\frac{B}{\sigma^2})$.

15 Lossy Source Coding

 $d(s^n, \hat{s}^n) := \frac{1}{n} \sum_{i=1}^n d(s_i, \hat{s}_i), \text{ where } d(s, \hat{s}) := (s - \hat{s})^2.$ $(R, D) \text{ achievable: } \exists \text{ sequence of } (n, \lfloor nR \rfloor) \text{ codes}$ s.t. $\limsup_{n \to \infty} D^{(n)} \leq D.$

Rate distortion function $R(D) := \inf\{R | (R, D) : achievable \}.$

$$\begin{split} D_{\min} &:= \min_{\hat{s}(s)} \mathrm{E}[d(S,\hat{s}(S))]. \\ D_{\max} &:= \min_{\hat{s}} \mathrm{E}[d(S,\hat{s})]. \\ R(D) &= R^I(D) := \min_{P_{\hat{S}|S}: \mathrm{E}[d(S,\hat{S})] \leq D} I(S;\hat{S}). \\ R^I(D_{\min}) &\leq H(S), R^I(D) = 0 \text{ if } D \geq D_{\max}. \\ \mathrm{Ber}(p) & \text{source:} & R(D) \\ &= \begin{cases} H_b(p) - H_b(D), \text{ if } 0 \leq D \leq \min\{p, 1-p\} \\ 0, \text{ if } D > \min\{p, 1-p\} \end{cases} \\ \mathrm{Gaussian} & \text{source:} & R(D) \end{cases} = \begin{cases} \frac{1}{2} \log(\frac{\sigma^2}{D}), \text{ if } 0 \leq D \leq \sigma^2 \\ 0, \text{ if } D > \sigma^2 \\ R(D) \leq R^G(D). \end{cases} \end{split}$$