Predicting Patients' Conversation Transitions in Online Health Support Groups

Anusha Prakash, Srividya Potharaju

Advisor: Prof Eduard Hovy w/ Diyi Yang

Carnegie Mellon University
School of Computer Science

Agenda

Carnegie Mellon

- Introduction and Motivation
- Problem Definition
- CSN
- Approach Overview
- User Profile Creation
 - Handcrafted Approach
 - Attention Based Approaches
- User Matching Mechanism
- Results
- Analysis and Visualization
- Conclusion and Future Work
- Key Takeaways
- Q&A

Online Health Support Groups

- Platform where people can connect with others suffering from similar issues
- Hosts Discussion Boards and Chat Rooms
- Hope is that people can find strength and inspiration from each other

Medium of Communication used by Users:

- 1. Thread Creation and Commenting on public discussion boards
- 2. Personal Message Exchanges

Significance of Conversation Medium

Medium used is a conscious choice - influenced by various factors - content of discussion, nature of the user in question, social role of the user (caregiver, care-seeker etc.), health background of the user at that point of time etc.

Helps model users' social relations and concerns

Helps to recommend potential users and helpers to connect

Predicting Patients' Conversation Transitions

"We address the task of predicting patients' conversation transitions, i.e., predicting whether two users will move their conversations to the private chat based on their textual communication in the public discussion board, thereby also making recommendations for people to connect privately"

Cancer Survivors Network

Carnegie Mellon

By iacobmom

CSN

Discussion Boards

Announcements

Member Resource library

CSN Chatroom

cancer.org

Cancer Information

Community Resources Making Strides Against Breast Cancer

ACS News

Caregivers

After Treatment

In Treatment

Rides To Treatment

Lodging

Hair Loss and Mastectomy Products

Breast Cancer Support

Look Good...Feel Better

CSN Home

Discussion boards

Log in to post new content in the forum.

Forum Topics Posts Last post

Cancer specific

Please remember that these discussion boards are a public forum, which means open to the public (i.e. non-CSN members) and the content can be found via internet search engines. Members are strongly advised not to share personal identifiers such as real names, email address, telephone, street address, etc. can be used to identify you and link you to the content you provide. Other areas of CSN are restricted to members only and cannot be found by search engines.

			Бу јасовіноні
☑ Brain Cancer	1557	10755	Apr 29, 2018 - 9:32 am By Josey
	27708	335891	Apr 30, 2018 - 6:51 am By pamelamasterson
Childhood Cancers	365	1913	Apr 25, 2018 - 11:24 am By jnickele
	25991	284686	Apr 30, 2018 - 2:32 pm By ThomasH
⊠ Esophageal Cancer	4424	34245	Apr 26, 2018 - 3:09 pm By paul61
Gynecological Cancers (other than ovarian and uterine)	1077	6680	Apr 23, 2018 - 7:27 am By RobLee
	11653	141710	Apr 30, 2018 - 3:09 pm By GavinP
	5308	64702	Apr 30, 2018 - 11:33 am By CRashster
∠ Leukemia	612	2953	Apr 16, 2018 - 3:10 pm By Mattymix

User Recommendation

Recommending Threads & Members

CSN Data Statistics

Attribute	Value
# of Active Users	65260
# of Threads	142211
# of Comments	1090683
Avg # of Threads created by each User	3.67
Avg # of Comments by each User	22.2
# of Users who have created New Threads	38675
# Avg Body Length of Comments (words)	87.48
# Avg Body Length of Thread (words)	172.66

Approach - Overview

- We frame this task as a binary class classification problem where given two users' public profile, we predict if they are likely to have a private conversation
- We use information from personal chats data as our ground truth
- During training, we create dynamic, temporal based user profile based on the users' discussion in public forum
- We later take the difference of the user profiles thus created, pass it through a feedforward neural network to predict the output

Temporal User Bucketing

We calculated

- Users active in each Time Bucket
- The Time Buckets in which a User is active
- Interactions occurring in each Time Bucket

Dynamic and Temporal User Profiling

uid	comment	thread_id	timestamp	
12	C ₁	th ₁	123476	
	C ₂	th ₂	176549	Train data
				(80%)
			:	- 1
	c ₈	th _i	190654	¥
	C ₉	th _j	201345	Dev data (10%)
	C ₁₀	th _m	203569	Test data (10%)

 User profile for Dev data and Test data is sealed at timestamp of 8th comment i.e., (80% th comment)

Prediction System Components

User Profile / Fingerprint Creation

Created by combining one or more of the following properties:

- Metadata Information
- Content Information

Two approaches for User Profile Creation:

- 1. Handcrafted Based Approach
- 2. Attention Based Approaches

Metadata Information

16 Metadata Fields - Gender, Marital Status, Income, Race, Cancer Type, Diagnosis Date, Insurance Status etc.

Metadata available is very sparse :

- 52.7% Users have metadata
- On an average, 3/16 metadata filled per user

Conclusion: Not used due to extreme sparsity and not much value

Only Content Information Used - Content of Threads and Comments

Profile Creation - Handcrafted Approach

Total of 7 Handcrafted features extracted from Content Information:

1. Unigram TF-IDF - Top 3000 TF vocabulary words

Words - surgery, thorac, therapy, recovery, radioact, vomit, mastectom etc.

2. Bigram TF-IDF - Top 3000 TF vocabulary words

Words - american cancer, back surgery, bad days, abdominal pain, chemo drugs, enlarged lymph, love prayers etc.

Profile Creation - Handcrafted Approach

3. Knowledge Promoters

Has_url_feature

4. Networkers

Has_email Has_phone

5. User Sentiment

Vader Sentiment

Sentiment User Clusters - K-Means

Profile Creation - Handcrafted Approach

6. LDA Topic Modelling - Unigram Topics - 100

```
(40, '0.324*"iodin" + 0.171*"radioact" + 0.161*"thyroid" + 0.116*"yahoo" + 0.019*"send"')
```

(89, '0.381*"cyst" + 0.256*"complex" + 0.079*"marilyn" + 0.035*"ston" + 0.000*"pict"')

(74, '0.286*"im" + 0.092*"leukem" + 0.054*"doesnt" + 0.054*"follicul" + 0.046*"didnt"')

(53, '0.308*"pancrea" + 0.283*"gemz" + 0.109*"brand" + 0.101*"pancr" + 0.080*"oil"')

7. LDA Topic Modelling - Bigram Topics - 100

(16, '0.116*"lymph node" + 0.079*"lymph nodes" + 0.067*"pet scan" + 0.049*"scan showed" + 0.045*"high dose"') 20, '0.065*"triple negativ" + 0.041*"breast cancer" + 0.036*"clear cell" + 0.035*"radiation oncologist" + 0.026*"medical oncologist"')

(30, '0.048*"hair loss" + 0.045*"cancer years" + 0.041*"cancer doct" + 0.040*"high school" + 0.032*"go chemo"') (60, '0.219*"thyroid cancer" + 0.064*"talk someone" + 0.054*"head neck" + 0.047*"neck cancer" + 0.043*"would

appreciat")

Profile Creation - Attention Based Approaches

- All the sentences of the comments encoded and various architectures
 are experimented with on these encoded sentences to create user profile :
- Word level Attention
- 2. Comment level Attention
- 3. HAN (Hierarchical Attention Network)
- We re-trained the Facebook's Infersent Model to encode sentences with 512 embedding dimension
- GRU to obtain the comment and user encoding (all comments)
- Linear function is used for learning attention.

Public Content Structure

Carnegie Mellon

Word level Attention - Architecture

Word level Attention - Architecture

Comment level Attention

Two level Attention

Attention Over Words
Attention Over Comments

Carnegie Mellon

Two level Attention

Attention Over Sentences Attention Over Comments

Carnegie Mellon

Three level Attention

Attention Over Words
Attention Over Sentences
Attention Over Comments

ARE WE NOT WRITING ALSO ABOUT NARRE / DEEPCONN - I THINK WE SHOULD PUT SOMETHING - WITH THAT ARCHI DIAG - ELSE WILL SEEM LIKE WE DIDNT DO MUCH

Too many architecture diagrams can confuse

Dataset for Training

- Training data instance (u₁,u₂, i), where u₁ and u₂ are the users' profiles and i is either 0 or 1, based on the personal chat ground truth
- Data set split Train set (29338), Dev set (3668) and Test set (3668) -80:10:10 ratio
- Only user pairs where each user has made between 5 and 500 comments used
- Subsampled from total of 106794 positive interaction pairs of users

User Matching Mechanism

Feed Forward Neural Network Approach

- (u1-u2) is used as the input
- Interleaved linear and leakyReLU layers with reducing dimension

Approach	Train Accuracy	Dev Accuracy	Test Accuracy
Word level Attention	0.9266	0.8772	0.8869
Comment level Attention	0.7042	0.7075	0.7193
HAN	0.7329	0.7199	0.7255
Handcrafted	0.9321	0.8791	0.8813

Word level attention performs best. User profiling with hand crafted features approach performs similar to the best model emphasizing the fact that categorizing users based on their topics, sentiment is indeed applicable in this scenario.

Other Architectures Experimented (NARRE)

Carnegie Mellon

Other Architectures Experimented (DeepCoNN)

Carnegie Mellon

- We analyzed the predictions made by our model and visualized how the importance i.e., attention weight is distributed across different words in a sentence to get a representation.
- We noticed two major categories in which the model's predictions are interpretable

Users with similar journey scenario

User 1: "I was in hospital for few weeks as left lymph node required surgery."

User 2: "I too had surgery to remove more tissue and lymph nodes."

 This can be seen as an example of users who had undergone or who are undergoing similar surgery/therapy process

Similar User Attention Visualization

Carnegie Mellon

User 2

CareGiver - CareSeeker scenario

User 1: "I hope of my journey I can be a supporter, encourager to others battling this disease."

User 2: "Your courage inspired me and I now have hope."

 This can be seen as an example of a user providing support (care-giver) and another user seeking support (care-seeker)

Caregiver - Careseeker Attention Visualization

Carnegie Mellon

Conclusion & Future Work

- We proposed a novel task of predicting conversation transitions from public discussion forum to private chats
- Experimented with various approaches to user profile creation
- Contrasted the approaches and analysed the same through attention visualization
- Track the users' activity to use the feedback for further improvements
- Statistical tests to validate our hypothesis about word level attention model

Key Takeaways

- Application of techniques learnt through courses at CMU
- Handling real world large dataset.
- Dataset creation is not always trivial.
- Approaching a problem by framing it as a known task.
- Symbolic vs Neural learnings.
- Simple models often give strong baselines. Should always verify that first.

Timeline - On Track

Check point	Date	Action Item
0	1 st September 2018	IRB Certification
1	15 th September 2018	Set up and Replicate Existing System Baseline
2	25 th September 2018	Text-based Feature Extraction
3	1 st October 2018	Handcrafted feature based approach
4	15 th October 2018	Deep Learning based approaches
5	1 st November 2018	More Complex Neural Approaches
6	15 th November 2018	More textual Features
7	25 th November 2018	Matching
8	1 st December 2018	Results , Analysis and Conclusion
9	12 th December 2018	Report and Final Presentation

References

- 1) Alexis Conneau, Douwe Kiela, Holger Schwenk, Lo ic Barrault, and Antoine Bordes. 2017. Supervised learning of universal sentence representations from natural language inference data. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 670–680, Copenhagen, Denmark. Association for Computational Linguistics
- Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. 2016. Hierarchical attention networks for document classification. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1480–1489
- 3) Lei Zheng, Vahid Noroozi, and Philip S. Yu. 2017. Joint deep modeling of users and items using reviews for recommendation. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM '17, pages 425–434, New York, NY, USA. ACM.
- 4) Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. 2018. Neural attentional rating regression with review-level explanations. In Proceedings of the 2018 World Wide Web Conference on World Wide Web, pages 1583–1592. International World Wide Web Conferences Steering Committee.

Carnegie Mellon

Q&A?

Thank You