This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

FIG.1

FIG.2

DOMAINS :	NH ₂ -TERMINAL	DNA BINDING	LIGAND BINDING
HOMOLOGY	: Hypervariable	> 40%	About 20%
FUNCTION:	Transactivation	DNA Binding Dimerization	LIGAND Binding Dimerization Transactivation Nuclear translocation Hsp binding

FIG.3A

Ž,

FIG.3B

FIG.3C

FIG.3D

300

241

FIG.3E

FIG.3F

FIG.3G

FIG.3H

FIG.3.

099	DS	DS	EG	DK	DK	NK	XX	DR	ER	or	2AVLQPQMSA	IN	D	D		
	PSYLDKDEQC VVCGDKATGY HYRCITCEGC KGFFRRTIQK NLHPTYSCKY DS	HYRCITCEGC KGFFRRIQK NLHPTYSCKY DS	NLHPSYSCKY	NHVYTCHR	HYGVSSCEGC KGFFRRSIQK NMVYTCHR DK	NMASFIKHIC AICGDRSSGK HYGVYSCEGC KGFFKRIVRK DLIYICRD NK	.KRLC AICGDRSSGK HYGVYSCEGC KGFFKRTIRK DLTYSCRD NK	SPSGALNIEC RICGDKASGY HYGVHACEGC KGFFRRTIRL KLVYDKC DR	HYGVHACEGC KGFFRRIIRM KLEYEKC ER	KLIYDRC DL	PTATV ATLPGLAAAS PAGGLLKLPF AGLQAATVLN SVQTQLQAPA QAVLQPQMSA	HN. DYMCPA IN	QHNYLCAGRN 1		PSKIC LVCGDEASGC HYGVVTCGSC KVFFKRAVEG QHNYLCAGRN D	PQKTC LICGDKASGC HYGALTCGSC KVFFKRAAEG KQKYLCASRN D
	KGFFRRTIQK	KGFFRRTIQK	HYRCITCEGC KGFFRTIQK NLHPSYSCKY	HYGVSACEGC KGFFRRSIQK NM VYTCHR	KGFFRRSIQK	KGFFKRTVRK	KGFFKRTIRK	KGFFRRTIRL	KGFFRRTIRM	KGFFRRTIRL	AGLQAATVLN	KAFFKRSIQG		LICGDEASGC HYGVLTCGSC KVFFKRAMEG QHNYLCAGRN	KVFFKRAVEG	KVFFKRAAEG
	HYRCITCEGC		HYRCITCEGC	HYGVSACEGC	HYGVSSCEGC	HYGVYSCEGC	HYGVYSCEGC	HYGVHACEGC	HYGVHACEGC	PSNSLMAIEC RVCGDKASGF HYGVHACEGC KGFFRRIIRL	PAGGLLKLPF	RYC AVCNDYASGY HYGVWSCEGC KAFFKRSIQG	HYGVLTCGSC KVFFKRAVEG	HYGVLTCGSC	HYGWYCGSC	HYGALTCGSC
	VVCGDKATGY	PSYLDKDEQC VVCGDKATGY	PSYLDKDELC VVCGDKATGY	PPLPRIYKPC FVCQDKSSGY	FVCNDKSSGY	AICGDRSSGK	AICGDRSSGK	RICGDKASGY	ASCGSLNMEC RVCGDKASGF	RVCGDKASGF	ATLPGLAAAS	AVCNDYASGY	PPKLC LVCSDEASGC	LICCDEASGC	LVCGDEASGC	LICGDKASGC
601	PSYLDKDEQC	PSYLDKDEQC	PSYLDKDELC	PPLPRIYKPC	PPPPRVYKPC	NMASFTKHIC	PGAGKRLC	SPSGALNIEC	ASCGSLNMEC	PSNSLMAIEC	AVLTLPTATV	KETRYC	ATTGPPPKLC	SFESLPQKIC	TGSSRPSKIC	PQKTC
	rTRalpha	hTRalpha	hTRbeta	hRARalpha	hRARgamma	hRXRalpha	hRXRbeta	hPPARalpha	hPPARbeta	hPPARgamma	hvdr	her	hgr	hPR	hMR	har

FIG.3K

FIG.3M

hPPARbeta

781

hRARalpha

	901					096
rTRalpha	SLSAFNLDDT	SLSAFNLDDT EVALLQAVLL MSTD	MSTD	RSGLLCVD	RSGLLCVD KIEKSQEAYL LAFEHYV	LAFEHYV
hTRalpha	SLSAFNLDDT	SLSAFNLDDT EVALLQAVLL MSTD.	MSTD	RSGLLCVD	KIEKSQEAYL LAFEHYV	LAFEHYV
hTRbeta	SLSSFNLDDT	EVALLQAVLL	MSSD	RPGLACVE	RIEKYQDSFL	LAFEHYI
hRARalpha	QLLPLEMDDA	ETGILSAICL	ICGD	RQDLEQPD	RQDLEQPD RVDMLQEPLL EALKVYV	EALKVYV
hRARgamma	QLLPLEMDDT	ETGLLSAICL	ICGD		RHDLEEPE KVDKLQEPLL EALRLYA	EALRLYA
hRXRalpha	KMRDMQMDKT	KARDHQMDKI ELGCLRAIVL FNPDS	FNPDS	KGLSNPA	KGLSNPA EVEALREKVY ASLEAYC	ASLEAYC
hRXRbeta	KMRDMRMDKT	KMRDMRMDKT ELGCLRAIIL	FNPDA	KGLSNPS	KGLSNPS EVEVLREKVY ASLETYC	ASLETYC
hPPARalpha	KFNALELDDS	DISLEVAAII	cccb	RPGLLNVG	RPGLLNVG HIEKMQEGIV HVLRLHL	HVLRLHL
hPPARbeta	KFNALELDDS	KFNALELDDS DLALFIAAII LCGD	LCGD	RPGLMNVP	RPGLMNVP RVEAIQDTIL RALEFHL	RALEFHL
hPPARgamma	KFNALELDDS	KFNALELDDS DLAIFIAVII LSGD	LSGD	RPGLLNVK	RPGLLNVK PIEDIQDNLL QA LELQL	QALELQL
hvdr	NFKIRRLSLG	NFKIRRLSLG LTQTQVGQAL TATEGPAYSQ	TATEGPAYSQ	SAICRFEKLD	SAICRFEKLD ITPKSAQKLK PVLERWLAEA	PVLERWLAEA
her	RFRMMNLQGE	RFRMMNLQGE EFVCLKSIIL LNSGVYTFLS	LNSGVYTFLS	STLKSLEEKD	STLKSLEEKD HIHRVLDKIT	DTLIHLMAKA
hGR	ELHRLQVSYE	ELHRLQVSYE EYLCHKTLLL	LSS	VPKDGLKSQE	VPKDGLKSQE LFDEIRHTYI	KELGKAIVKR
hPR	EFVKLQVSQE	EFVKLQVSQE EFLCMKVLLL	LNT	IPLEGLRSQT	IPLEGLRSQT QFEEMRSSYI	RELIKAIGLR
hMR	OFVRLQLTFE	QFVRLQLTFE EYTIMKVLLL LST	LST	IPKDGLKSQA	IPKDGLKSQA AFEEMRTNYI KELRKMVTKC	KELRKMVTKC
har	EFGWLQITPQ	EFGWLQITPQ EFLCMKALLL FSI	FSI	IPVDGLKNQK	IPVDGLKNOK FFDELRMNYI KELDRIIACK	KELDRIIACK

Ē

FIG.3P

FIG.3R

socr:<5>

FIG. 4

FIG. 5

FIG.6

FIG. 7

FIG. 8

FIG. 9

AGONISTS

Retinoic Acid

(CH₂)₁₀ CON(CH₃)(CH₂)₃CH₃

Tamoxifen

Diethylstilbestrol

Progesterone

N(CH₃)₂

vompouna	RGUX
TSI	Ph2CHCO2NHS
TS2	C ₁₆ H ₃₃ CO ₂ NHS
TS3	FMOC-CI
TS4	tB0C ₂ 0
TS5	tB0C ₂ 0
	—

NH2

NH2

$$CO_2H$$
 O_2N
 O

FIG.13

15-5

1.
$$nC_8 H_{17} MgX$$
2. H_2 , Pd
3. H_2 , Pd
4. H_1 H_2 H_2 H_2 H_3 H_4 H

FIG.14A

NHCOCF3

HBr, AcoH

FIG.14B

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

FIG.17A

FIG.17B

FIG. 21

FIG. 22

FIG. 23

FIG. 24

FIG. 25

FIG. 26A

FIG. 26B

Thyroid Hormone Receptor Beta with GC1

Thyroid Hormone Receptor Beta with Triac

Structural Differences Between TR-b with GC1 and TR-a with Dimit

Structural Differences between TR LBD isoforms with Triac

FIG. 30

FIG.31

Atomic Numbering for Thyronine-like Ligands

$$C10 - C12$$
 $C9 = C11$
 $R4' - C8'$ $C2 - X - C7$ $C1 - R1$
 $C6 = C4$ $C5 - C3$
 $C7$
 $C1$
 $C4$
 $C5$
 $C5$

Ligand	R1	R3	R5	X	R3'	R4'
Dimit	amino propionic	C19	C20	02	iPr	O1
IpBr ₂	amino propionic	BR1	BR2	O 2	iPr	O 1
T.	amino propionic	I1	I3	O2	I2	O 1
Triac	acetic acid	I1	I3	02	12	O 1
GC1	oxyacetic acid	C19	C20	C21	iPr	O1

FIG.32