Capítulo 8 - Introdução a redes

Quando falamos de redes de computadores, estamos falando de muitos hosts interconectados por alguns aparelhos especiais chamados roteadores. Vamos aprender um pouco mais sobre isso nesse capítulo.

Objetivos

- Introdução a redes de computadores;
 - Conceitos básicos de configurações de redes "Unix";
 - A importância de alguns elementos das redes de computadores.

Sistema operacional de redes

Os sistemas da família UNIX, são intrinsecamente sistemas desenvolvidos para serem utilizados em redes de computadores. Nas provas da LPI é de grande importância dominar alguns assuntos.

- Configurar a rede
- Subnet's
- Ip's Públicos e Privados

Mas afinal o que é a rede?

- Internet?
- ► TCP/IP
- Como tudo começou?
- Vamos ver um vídeo:

The warriors of the net!

Sabendo de tudo isso

- Hubs
- Routers
- Switchs
- Gateways
- Proxys

Elementos fundamentais para configuração de rede

- Endereço IP
- Mascara de rede
- Endereço de rede
- Endereço de BroadCast
- Gateway

IP's Publicos e Privados

- NAT Network Address Translation
- Esgotamento de IP's v4
- ► E sobre IPv6?

IP's Publicos e Privados - Classes

Papel da mascara de rede

Mask

- Classe A 255.0.0.0
- Classe B 255.2550.0.0
- Classe C 255.255.255.0

Bin

11111111.0000000.0000000.000000000

11111111.111111111.00000000.00000000

11111111.111111111.111111111.00000000

IP's Privados

- Classe A 10.0.0.0 até 10.255.255.255
- Classe B 172.16.0.0 até 172.31.255.255
- Classe C 192.168.0.0 até 192.168.255.255

IP's Privados

CIDR address block	Description	Reference
0.0.0.0/8	Current network (only valid as source address)	RFC 1700 🗗
10.0.0.0/8	Private network	RFC 1918 🗗
14.0.0.0/8	Public data networks (per 2008-02-10, available for use ^[1])	RFC 1700 🗗
127.0.0.0/8	Loopback	RFC 3330 🗗
128.0.0.0/16	Reserved (IANA)	RFC 3330 🗗
169.254.0.0/16	Link-Local	RFC 3927 ₺
172.16.0.0/12	Private network	RFC 1918₺
191.255.0.0/16	Reserved (IANA)	RFC 3330 🗗
192.0.0.0/24	Reserved (IANA)	RFC 3330 🗗
192.0.2.0/24	Documentation and example code	RFC 3330 🗗
192.88.99.0/24	IPv6 to IPv4 relay	RFC 3068 🗗
192.168.0.0/16	Private network	RFC 1918 🗗
198.18.0.0/15	Network benchmark tests	RFC 2544 🗗
223.255.255.0/24	Reserved (IANA)	RFC 3330 🗗
224.0.0.0/4	Multicasts (former Class D network)	RFC 3171년
240.0.0.0/4	Reserved (former Class E network)	RFC 1700 🗗
255.255.255	Broadcast	

O loopback

- Pra quê precisamos dele?
- **127.0.0.0**
- localhost

O loopback

Fique atento ao conceito de "loopback" e seus endereços. Algumas vezes podemos ver que o "loopback" é tratado pelo endereço 0.0.0.0, faça o teste:

\$ ping 0.0.0.0

Mão na massa

Verificando interfaces com "mii-tool"

#mii-tool

MiiiiiiiiiiiiaUUUUUU!!

Você sabia que podemos manipular o modo de funcionamento da nossa placa de rede entre "DUPLEX", "HALF DUPLEX" e "SIMPLEX"?

Com o comando "mii-tool" vamos alterar para "HALF-DUPLEX":

\$mii-tool -F 100baseTx-HD

Mão na massa

Configurando endereços de rede

```
#ifconfig <interface> IP
#ifconfig <interface> 0
```

Note que se a máscara for padrão, ela é configurada automáticamente

Ifconfig

O comando "ifconfig" possui muitas opções. Dentre elas algumas muito interessantes como:

\$ ifconfig -a

O comando acima mostra todas as interfaces disponíveis no sistema.

Mão na massa

Pingando os colegas

\$ ping <IP>

Mas como eu ping em Bradcast

Para "pingar" em "broadcast" basta usar a flag "-b" junto com o endereço da rede, por exemplo::

\$ ping -b 192.168.0.0

Percebam que nenhuma máquina responde, pois na nossa distribuição, o Debian, essa opção é desabilitada por padrão. Para habilitar a resposta de "ping broadcast":

sysctl net.ipv4.icmp_echo_ignore_broadcasts=0

Mas como eu ping em Bradcast

Para "pingar" em "broadcast" basta usar a flag "-b" junto com o endereço da rede, por exemplo::

\$ ping -b 192.168.0.0

Percebam que nenhuma máquina responde, pois na nossa distribuição, o Debian, essa opção é desabilitada por padrão. Para habilitar a resposta de "ping broadcast":

O arquivo hosts

Lista de nomes associados a números

vim /etc/hosts

<u>IP</u> 192.168.0.254

<u>nome</u> instrutor

Falando em hostname

 O nome da máquina é essencial para o correto funcionamento de diversos serviços

vim /etc/hostname **micro1**

#hostname micro1

FQDN

Quando precisamos trabalhar com servidores que usam nomes, precisamos saber o significado da sigla FQDN.

"Fully Qualified Domain Name"

O FQDN é formado por:

hostname.domainname

Para ver nosso FQDN, execute:

\$ hostname -f

Falando em hostname

FQDN – FULLY QUALIFIED DOMAIN NAME

vim /etc/hosts

127.0.1.1 hostname.domainname hostname 127.0.1.1 micro1.4linux.com.br micro1

Configurando o gateway

- Porta de saída
- Alguém que conhece outras redes

route -n

Para adicionar um "gateway" padrão:

route add default gw <IP>

Configurando o gateway

Já estamos na internet?????

ping 4.2.2.2

É preciso compreender que a internet é baseada em números, ou seja, o DNS não faz parte da configuração primária da rede.

Sim, Já estamos na rede =D

Configurando o DNS

Ninguém anda com listas de IP's no caderno

vim /etc/resolv.conf nameserver 4.2.2.2

Configurando a rede, arquivos.

vim /etc/network/interfaces

auto eth0 inet dhcp

auto eth0 inet static

address 192.168.200.x

netmask 255.255.25.0

broadcast 192.168.200.255

network 192.168.200.0

gateway 192.168.200.254

Configurando a rede, arquivos.

No Red Hat Isso muda: /etc/sysconfig/network

\$service network restart

Configurando a rede, arquivos.

/etc/nsswitch.conf

Network Service Switch

Determina a ordem na qual os usuários são buscados no sistema.

Configurando a rede

ifup ethX

Ativa determinada placa de rede

ifdown ethX

Desativa determinada placa de rede

ARP e RARP

- ARP converte IP em "MAC Address"
- RARP Converte "MAC ADDRESS" em IP

arp -n

Exercícios:

Respostas dos Exercícios

- 1. Determinar em qual rede o "host" se encontra
- 2. ifconfig, ifup
- **3.** 0.0.0.0
- 4. Fazer o papel de meio de campo entre duas redes. É uma porta de saída.
- **5.** /etc/resolv.conf, adicionando mais uma linha com um DNS secundário.

Respostas do Laboratório

- 1.
- 2. ifconfig ethX:redeB <IP>
- **3.** ping <IP>

Conclusão

- Aptidão para montar um rede simples composta de máquinas GNU/Linux com os mais diversos tipos de distro's.
- O aluno também estará apto para configurar interfaces especiais com 2 endereços afim de participar de mais redes.

No próximo capítulo iremos estudar os dispositivos que utilizamos no GNU/Linux.