Institut Clément Ader

Institut Clément Ader

Université de Toulouse

C 13 - GENERATION DE FORCES STATIQUES ET DYNAMIQUES EN TECHNOLOGIE ELECTROMECANQUE SUR UNE CHARGE MOBILE

PRINCIPE	Permet d'évaluer les facteurs limitatifs des actionneurs		
	électromécaniques utilisés en commande d'effort vis-à-vis des		
	performances de puissance, de commande et de durée de vie. La		
	génération d'effort étant quant à elle utilisée pour la validation des		
	performances d'actionneurs aéronautiques ou automobiles		
	(commandé en position) lorsqu'ils fonctionnent sous charge.		

CONSTRUCTEUR	LGMT	
CARACTERISTIQUES	Vérin électromécanique acheté chez SKF (génération d'effort) Vérin hydraulique acheté chez Haenchen (simuler un vérin de commande de vol) Module d'acquisition et de commande XPC-Target box Module d'électronique de puissance Parvey DPM 50/80	
	Module d'électronique de puissance Parvex DPM 50/80	

CAPACITES	Effort max (EMA)	$F_{\text{max.}} = 50 \text{ kN}$	
	Vitesse max (EMA)	$V_{\text{max.}} = 200 \text{ mm/s}$	
	Pas de la vis (EMA)	p = 3mm	
	Inertie du rotor (EMA)	$J_{EMA} = 920 \ 10^{-5} \ kgm^2 (37000 \ kg d'inertie)$	
	apparente sur la tige du vérin)		
	Course max (EMA)	170 mm	
	Inertie de charge	J _{ch.} = 1 kgm ² (600 kg d'inertie apparente)	
	Section de chambre (HA)	30.6 cm ²	
	Pression max (HA)	250 bars	
	Course max (HA)	100 mm	
	Pression de service	80 bars	
	Raideur d'ancrage	3.8 mm / 50 kN	
	Échantillonnage max	5000 Hz	
PRECISION	Effort: 0.04 % (50 kN)		
	LVDT: 0.15 % (100 mm)		

