Optimization and Computational Linear Algebra for Data Science Homework 12: Gradient descent

- **Problem 12.1** (2 points). (a) f has a local maximum at (1.2, 1.3) and a global maximum at (-0.5, -0.7). f has a local minimum at (-0.9, 0.7) and a global minimum at (0.9, -0.9) and a saddle-point at (0.9, 0).
 - (b) When initialized at A, gradient descent is likely to converge to the local minimum at (-0.9, 0.7). When initialized at B, gradient descent is likely to converge to the global minimum at (0.9, -0.9).

Problem 12.2 (5 points).

$$f(x) = \frac{1}{2}x^{\mathsf{T}}Mx - \langle x, b \rangle + c$$

(a) Let $x \in \mathbb{R}^d$. f is twice differentiable and

$$H_f(x) = M.$$

By definition of μ and L, the eigenvalues of M are all above μ and all smaller than L: f is therefore μ -strongly convex and L-smooth. f is therefore convex. Hence

$$x \text{ is a global minimizer of } f \iff \nabla f(x) = 0$$

$$\iff Mx - b = 0$$

$$\iff x = M^{-1}b.$$

 $x^* = M^{-1}b$ is therefore the unique global minimizer of f.

(b) $\nabla f(x) = Mx - b \ hence$

$$x_{t+1} - x^* = x_t - x^* - \beta(Mx_t - b) = x_t - x^* - \beta M(x_t - M^{-1}b)$$

= $x_t - x^* - \beta(x_t - x^*)$
= $(\text{Id} - \beta M)(x_t - x^*).$

(c) Let $B = \text{Id} - \beta M$. B is symmetric and his eigenvalues are:

$$1 - \lambda_1/L, \ldots, 1 - \lambda_d/L$$

which are all between 0 and $1 - \mu/L$. The largest eigenvalue of B^2 is therefore $(1 - \mu/L)^2$. Since the singular values of B are the square root of the eigenvalues of $B^{\mathsf{T}}B = B^2$ because B is symmetric, we get that the largest singular value of B is $1 - \mu/L$.

We know that the spectral norm of a matrix is equal to its largest singular value: $||B||_{Sp} = 1 - \mu/L$. Hence

$$||x_{t+1} - x^*|| = ||B(x_t - x^*)|| \le ||B||_{\text{Sp}} ||x_t - x^*|| = \left(1 - \frac{\mu}{L}\right) ||x_t - x^*||,$$

from which the result follows.

(d) Since $w_{t+1} = (\text{Id} - L^{-1}M)w_t$, we have for $i \in \{1, ..., d\}$

$$\alpha_i(t+1) = v_i^{\mathsf{T}}(\mathrm{Id} - L^{-1}M)w_t = (v_i^{\mathsf{T}} - L^{-1}v_i^{\mathsf{T}}M)w_t.$$

Now, we use the fact that $Mv_i = \lambda_i v_i$ to get $v_i^{\mathsf{T}} M = \lambda_i v_i^{\mathsf{T}}$:

$$\alpha_i(t+1) = (1 - \lambda_i/L)\alpha_i(t).$$

This gives

$$\alpha_i(t) = (1 - \lambda_i/L)^t \alpha_i(0).$$

(e) Let $i \in \{1, ..., d\}$. $|\alpha_i(t)| = |\langle v_i, x_t - x^* \rangle|$ is equal to the norm of the orthogonal projection of $x_t - x^*$ onto $\operatorname{Span}(v_i)$, that is corresponds to «the distance between x_t and x^* in the direction of v_i ».

From the previous we see that at each iteration of gradient descent, this "distance" is multiplied by a factor $1 - \lambda_i/L$, where $i \in [\mu, L]$. Hence, gradient descent converges faster "in the direction of v_i " if λ_i is large (close to L).

(f) $(\alpha_1(t), \ldots, \alpha_d(t))$ are the coordinates of $w_t = x_t - x^*$ in the orthonormal basis (v_1, \ldots, v_d) . Therefore

$$||x_t - x^*|| = \sqrt{\sum_{i=1}^d \alpha_i(t)^2} = \sqrt{\sum_{i=1}^d \left(1 - \frac{\lambda_i}{L}\right)^{2t} \langle v_i, x_0 - x^* \rangle^2}.$$

