

infoShareAcademy.com

- 1 Flow pracy z danymi
- Biblioteki do pracy z danymi
- 3 Biblioteka NumPy
- 4 Biblioteka Pandas
- 5 Podstawy wizualizacji w matplotlib i seaborn
- 6 Środowisko do analizy danych

- 1 Flow pracy z danymi
- 2 Biblioteki do pracy z danymi
- 3 Biblioteka NumPy
- 4 Biblioteka Pandas
- 5 Podstawy wizualizacji w matplotlib i seaborn
- 6 Środowisko do analizy danych

- 1 Flow pracy z danymi
- Biblioteki do pracy z danymi
- 3 Biblioteka NumPy
- 4 Biblioteka Pandas
- 5 Podstawy wizualizacji w matplotlib i seaborn
- 6 Środowisko do analizy danych

- 1 Flow pracy z danymi
- Biblioteki do pracy z danymi
- 3 Biblioteka NumPy
- 4 Biblioteka Pandas
- 5 Podstawy wizualizacji w matplotlib i seaborn
- 6 Środowisko do analizy danych

- 1 Flow pracy z danymi
- Biblioteki do pracy z danymi
- 3 Biblioteka NumPy
- 4 Biblioteka Pandas
- Podstawy wizualizacji w matplotlib i seaborn
- 6 Środowisko do analizy danych

- 1 Flow pracy z danymi
- Biblioteki do pracy z danymi
- 3 Biblioteka NumPy
- 4 Biblioteka Pandas
- 5 Podstawy wizualizacji w matplotlib i seaborn
- 6 Środowisko do analizy danych

Flow pracy z danymi

Python Praca z Danymi Zbieranie danych

Eksploracyjna Analiza Danych (EDA)

Oczyszczanie Danych

Budowanie

Wizualizacja Danych

Flow pracy z danymi - podsumowanie

Python Praca z Danymi Biblioteki

Biblioteki używane w Data Science

Python Praca z Danymi NumPy

The fundamental package for scientific computing with Python

LATEST RELEASE: NUMPY 1.26. VIEW ALL RELEASES

NumPy 1.26.0 released 2023-09-16

POWERFUL N-DIMENSIONAL ARRAYS

Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the defacto standards of array computing today.

NUMERICAL COMPUTING TOOLS

NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.

OPEN SOURCE

Distributed under a liberal BSD license, NumPy is developed and maintained publicly on GitHub by a vibrant, responsive, and diverse community.

INTEROPERABLE

NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.

PERFORMANT

The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code.

EASY TO USE

NumPy's high level syntax makes it accessible and productive for programmers from any background or experience level.

infoShareAcademy.com

Python Praca z Danymi W jakim języku?

NumPy

array – podstawa NumPy

array([1, 2, 3, 4, 5])

array jednowymiarowa

Python Praca z Danymi array czy lista?

pip install numpy
conda install numpy
conda install -n nazwa_twojego_srodowiska numpy

import numpy as np.

print(np.__version__)

Tworzenie tablicy:

import numpy as np

arr_ld = np.array([1, 2, 3, 4, 5])

tworzenie

jednowymiarowej tablicy

array([1, 2, 3, 4, 5])

NumPy – podstawowe operacje

Operacje matematyczne:

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

result_add = arr + 2

dodawanie

array([3, 4, 5, 6, 7])

result_multiply = arr * 3

mnożenie

array([3, 6, 9, 12, 15])

result_sqrt = np.sqrt(arr)

pierwiastkowanie

array([1., 1.41421356, 1.73205081, 2., 2.23606798])

infoShareAcademy.com

Zadanie 9.1

Podstawowe operacje (instrukcja)

- Stwórz dwie jednowymiarowe tablice NumPy o takiej samej długości zawierające liczby całkowite.
 Następnie wykonaj poniższe operacje:
 - A. Dodaj obie tablice do siebie i wyświetl wynik.
 - B. Pomnóż jedną z tablic przez stałą wartość 3 i wyświetl wynik.
 - C. Oblicz pierwiastek kwadratowy z każdego elementu jednej z tablic i wyświetl wynik.
 - D. Oblicz sumę oraz średnią arytmetyczną elementów drugiej tablicy.

NumPy – tablice jedno- i wielowymiarowe

Jednowymiarowa tablica (wektor)

Dwuwymiarowa tablica (macierz)

Trójwymiarowa tablica (tensor)

NumPy – tablice jedno- i wielowymiarowe

Dwuwymiarowa tablica (macierz)

Trójwymiarowa tablica (tensor)

infoShareAcademy.com

Indeksowanie jednowymiarowe

import numpy as np

$$arr = np.array([1, 2, 3, 4, 5])$$

array([1, 2, 3, 4, 5])

dostęp do trzeciego elementu (indeks 2)

3

Indeksowanie dwuwymiarowe (macierz)

matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

dostęp do elementu

w drugim wierszu i trzeciej kolumnie

array([[1, 2, 3],

[4, 5, 6], drugi wiersz

[7,8,9]]) trzecia wiersz

NumPy – wykorzystanie indeksów

Wycinanie (slicing)

arr = np.array([1, 2, 3, 4, 5])

subset_array = arr[1:4] dostęp do podzbioru tablicy (indeks 1 do 3)

array([1, 2, 3, 4, 5])

Zadanie 9.2

Indeksowanie (instrukcja)

- Stwórz dwuwymiarową tablicę NumPy o wymiarach

 (3, 5) zawierającą liczby całkowite. Tablica ta powinna reprezentować macierz danych, gdzie każdy wiersz to zestaw informacji dla danego obiektu, a kolumny to różne cechy.
 - A. Wybierz i wyświetl trzeci wiersz tej macierzy za pomocą indeksowania.
 - B. Otrzymaj i wyświetl fragment macierzy, który zawiera dane z drugiej do czwartej kolumny.
 - C. Przeprowadź warunkowe indeksowanie,wybierając tylko te elementy, które są większe niż5.

infoShareAcademy.com

NumPy – funkcje numeryczne

- np.add()
- np.subtract()
- np.multiply()
- np.divide()
- np.power()
- np.sqrt()
- np.abs()
- ... i wiele innych

NumPy – funkcje numeryczne – sum

import numpy as np

$$arr = np.array([1, 2, 3, 4, 5])$$

obliczanie sumy

sum_result = **np.sum**(arr)

elementów

NumPy – funkcje numeryczne – sum

matrix = np.array([[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

total_sum = np.sum(matrix)

45

suma elementów w całej macierzy

suma elementów

w poszczególnych kolumnach

suma elementów w

poszczególnych

wierszach

column_sums = np.sum(matrix, axis=0) array([12, 15, 18])

row_sums = np.sum(matrix, axis=1)

array([6, 15, 24])

infoShareAcademy.com

info Share

NumPy – funkcje numeryczne – np.mean()

arr = np.array([1, 2, 3, 4, 5])

mean_result = np.mean(arr)

obliczanie średniej arytmetycznej elementów

NumPy – funkcje numeryczne – np.mean()

infoShareAcademy.com

NumPy - funkcje numeryczne - np.std()

arr = np.array([1, 2, 3, 4, 5])

std_result = np.std(arr)

obliczanie odchylenia standardowego elementów

1.4142135623730951

Zadanie 9.3

Funkcje matematyczne (instrukcja)

- 1. Stwórz dwuwymiarową tablicę NumPy reprezentującą dane pomiarowe dla trzech różnych cech w czasie. Każdy wiersz tej macierzy powinien reprezentować różne pomiary dla jednej cechy w kolejnych okresach czasu. Następnie wykonaj następujące operacje statystyczne:
 - A. Oblicz sumę dla każdej cechy.
 - B. Oblicz średnią arytmetyczną dla każdej cechy.
 - C. Oblicz odchylenie standardowe dla każdej cechy.

NumPy – podsumowanie

3D array

info Share

ACADEMY

infoShareAcademy.com

Pandas

About us ▼ Getting started Documentation Community ▼ Contribute

pandas

pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.

nstall pandas now!

Getting started

- Getting started

User guide

- API reference

Documentation

- Contributing to pandas

Latest version: 2.1.3

- What's new in 2.1.3
- · Release date: Nov 10, 2023
- Documentation (web)
- · Download source code

Follow us

Get the book

- Install pandas
- - Release notes

With the support of:

Community

About pandas

Ask a question

Ecosystem

Previous versions

- 2.1.2 (Oct 26, 2023) changelog | docs | code
- 2.1.1 (Sep 20, 2023) changelog | docs | code
- 2.1.0 (Aug 30, 2023) changelog | docs | code
- 2.0.3 (Jun 28, 2023) changelog | docs | code

Show more

Chan Zuckerberg Initiative @

Python Praca z Danymi Pandas – instalacja

pip install pandas

conda install pandas

import pandas as pd
print(pd.__version__)

Pandas – struktury danych

		•		
	-		-	-
. ~	_	rı	$\boldsymbol{-}$	•
\smile	$\mathbf{}$		$\mathbf{}$	J

apples 0 3 1 2 2 0 3 1

+

Series

	oranges
0	0
1	3
2	7
3	2

DataFrame

	apples	oranges
0	3	0
1	2	3
2	0	7
3	1	2

Pandas – struktury danych

Series Series

	apples
0	3
1	2
2	0
3	1

oranges 0 0 1 3 2 7 3 2

DataFrame

	apples	oranges
0	3	0
1	2	3
2	0	7
3	1	2

infoShareAcademy.com

Pandas – Series

import pandas as pd

data = [10, 20, 30, 40, 50]

- 0 10
- 1 20
- 2 30
- 3 40
- 4 50

Name: test series, dtype: int64

infoShareAcademy.com

Pandas – DataFrame

Series

apples 0 3 1 2 2 0 3 1

+

Series

	oranges
0	0
1	3
2	7
3	2

DataFrame

	apples	oranges
0	3	0
1	2	3
2	0	7
3	1	2

Pandas - DataFrame

import pandas as pd

data = {'Imię': ['Anna', 'Bartek', 'Celina'],

'Wiek': [25, 30, 22],

'Miasto': ['Warszawa', 'Kraków', 'Gdańsk']}

tworzenie DataFrame

z listy słowników

df = pd.DataFrame(data)

	lmię	Wiek	Miasto
0	Anna	25	Warszawa
1	Bartek	30	Kraków
2	Celina	22	Gdańsk

infoShareAcademy.com

Tworzenie Series i DataFrame (instrukcja)

 Twoim zadaniem jest stworzenie danych w formie Series i DataFrame, aby przeprowadzić prostą analizę danych osobowych kursantów.
 Poniżej znajdują się dane kilku kursantów z kursu programowania.
 Twoim celem jest stworzenie odpowiednich struktur danych w Pandas, aby móc łatwo analizować te informacje

Kursant 1: Imię: Adam, Wiek: 26, Znane języki programowania: ['Python', 'JavaScript']
Kursant 2: Imię: Marta, Wiek: 22, Znane języki programowania: ['Java', 'C++', 'Python']
Kursant 3: Imię: Michał, Wiek: 24, Znane języki programowania: ['JavaScript', 'HTML', 'CSS']

- A. Stwórz obiekt Series dla jednego z kursantów, zawierający informacje o imieniu, wieku i znanych językach programowania.
- B. Stwórz DataFrame, w którym każdy wiersz będzie reprezentować jednego kursanta, a kolumny będą odpowiadać imieniu, wiekowi i znającym językom programowania.
- C. Wyświetl informacje o wszystkich kursantach, takie jak imię, wiek i języki programowania.

infoShareAcademy.com

Pandas – DataFrame czy array?

array([[70,	90,	80],	`
[68,	80,	93],	\rightarrow
ſ86.	72.	6811)	,

	0	1	2	
0	70	90	80	
1	68	80	93	
2	86	72	68	

Python Praca z Danymi źródła danych

import pandas as pd

df = pd.read_excel('nazwa_pliku.xlsx')

from sqlalchemy import create_engine

engine = create_engine
('nazwa_bazy_danych://użytkownik:hasło@host:port/baza_dan
ych')

df = pd.read_sql_query('SELECT * FROM tabela', engine)

Wczytywanie danych .csv (instrukcja)

- Pobierz dane ze stronyo pasażerach Titanica:
 https://www.kaggle.com/datasets/brendan45774/test-file
 - A. Wczytaj dane z pliku CSV do DataFrame w sytuacji gdy plik CSV jest w tym samym folderze, co skrypt na którym pracujesz. informacje o imieniu, wieku i znanych językach programowania.
 - B. Wczytaj dane z pliku CSV do DataFrame, umieść plik CSV w innym folderze niż skrypt na którym pracujesz.

Pandas – eksploracyjna analiza danych

Exploratory

Data

Analysis

Pandas – przeglądanie danych

df = pd.read_csv('Life Expectancy Data.csv')

Wczytanie danych

Head

df.head()

	Country	Year	Status	Life expectancy	Adult Mortality		Alcohol	percentage expenditure	Hepatitis B	Measles	 Polio	Total expenditure	Diphtheria	HIV/AIDS	GDP	Population
0	Afghanistan	2015	Developing	65.0	263.0	62	0.01	71.279624	65.0	1154	 6.0	8.16	65.0	0.1	584.259210	33736494.0
1	Afghanistan	2014	Developing	59.9	271.0	64	0.01	73.523582	62.0	492	 58.0	8.18	62.0	0.1	612.696514	327582.0
2	Afghanistan	2013	Developing	59.9	268.0	66	0.01	73.219243	64.0	430	 62.0	8.13	64.0	0.1	631.744976	31731688.0
3	Afghanistan	2012	Developing	59.5	272.0	69	0.01	78.184215	67.0	2787	 67.0	8.52	67.0	0.1	669.959000	3696958.0
4	Afghanistan	2011	Developing	59.2	275.0	71	0.01	7.097109	68.0	3013	 68.0	7.87	68.0	0.1	63.537231	2978599.0

Tail

df.tail()

	Country	Year	Status	Life expectancy		infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	 Polio	Total expenditure	Diphtheria	HIV/AIDS	GDP	Population
2933	Zimbabwe	2004	Developing	44.3	723.0	27	4.36	0.0	68.0	31	 67.0	7.13	65.0	33.6	454.366654	12777511.0
2934	Zimbabwe	2003	Developing	44.5	715.0	26	4.06	0.0	7.0	998	 7.0	6.52	68.0	36.7	453.351155	12633897.0
2935	Zimbabwe	2002	Developing	44.8	73.0	25	4.43	0.0	73.0	304	 73.0	6.53	71.0	39.8	57.348340	125525.0
2936	Zimbabwe	2001	Developing	45.3	686.0	25	1.72	0.0	76.0	529	 76.0	6.16	75.0	42.1	548.587312	12366165.0
2937	Zimbabwe	2000	Developing	46.0	665.0	24	1.68	0.0	79.0	1483	 78.0	7.10	78.0	43.5	547.358878	12222251.0

infoShareAcademy.com

Pandas – przeglądanie danych

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2938 entries, 0 to 2937
Data columns (total 22 columns):

Data	columns (cocal 22 columns).		
#	Column	Non-Null Count	Dtype
	T.T. B.T. T.T.		
0	Country	2938 non-null	object
1	Year	2938 non-null	int64
2	Status	2938 non-null	object
3	Life expectancy	2928 non-null	float64
4	Adult Mortality	2928 non-null	float64
5	infant deaths	2938 non-null	int64
6	Alcohol	2744 non-null	float64
7	percentage expenditure	2938 non-null	float64
8	Hepatitis B	2385 non-null	float64
9	Measles	2938 non-null	int64
10	BMI	2904 non-null	float64
11	under-five deaths	2938 non-null	int64
12	Polio	2919 non-null	float64
13	Total expenditure	2712 non-null	float64
14	Diphtheria	2919 non-null	float64
15	HIV/AIDS	2938 non-null	float64
16	GDP	2490 non-null	float64
17	Population	2286 non-null	float64
18	thinness 1-19 years	2904 non-null	float64
19	thinness 5-9 years	2904 non-null	float64
20	Income composition of resources	2771 non-null	float64
21	Schooling	2775 non-null	float64
o Laconson	61 (64/46) 1 (64/4) 11	(2)	

dtypes: float64(16), int64(4), object(2)

memory usage: 505.1+ KB

infoShareAcademy.com

Pandas – przeglądanie danych

df.shape

infoShareAcademy.com

Pandas – przeglądanie danych

df.describe()

	Year	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	ВМІ
count	2938.000000	2928.000000	2928.000000	2938.000000	2744.000000	2938.000000	2385.000000	2938.000000	2904,000000
mean	2007.518720	69.224932	164.796448	30.303948	4.602861	738.251295	80.940461	2419.592240	38.321247
std	4.613841	9.523867	124.292079	117.926501	4.052413	1987.914858	25,070016	11467.272489	20.044034
min	2000.000000	36.300000	1.000000	0.000000	0.010000	0.000000	1.000000	0.000000	1.000000
25%	2004.000000	63.100000	74.000000	0.000000	0.877500	4.685343	77.000000	0.000000	19.300000
50%	2008.000000	72.100000	144.000000	3.000000	3.755000	64.912906	92.000000	17.000000	43.500000
75%	2012.000000	75.700000	228.000000	22.000000	7.702500	441.534144	97.000000	360.250000	56.200000
max	2015.000000	89.000000	723.000000	1800.000000	17.870000	19479.911610	99.000000	212183.000000	87.300000

Analiza danych (instrukcja)

Na podstawie zbioru danych o pasażerach Titanica użyj
poznanych funkcji z biblioteki Pandas do analizy
danych(head(), tail(), info(), decribe(), size, shape).
 Stwórz raport, w którym wyświetlisz zebrane informacje
o zbiorze danych.

Pandas – brakujące wartości

df.isnull()

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol
0	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False
	1						
2933	False	False	False	False	False	False	False
2934	False	False	False	False	False	False	False
2935	False	False	False	False	False	False	False
2936	False	False	False	False	False	False	False
2937	False	False	False	False	False	False	False

Pandas – brakujące wartości

df.isnull().sum()

Country	6
Year	6
Status	6
Life expectancy	10
Adult Mortality	10
infant deaths	6
Alcohol	194
percentage expenditure	6
Hepatitis B	553
Measles	6
BMI	34
under-five deaths	6
Polio	19
Total expenditure	226
Diphtheria	19
HIV/AIDS	6
GDP	448
Population	652
thinness 1-19 years	34
thinness 5-9 years	34
Income composition of resources	167
Schooling	163
dtype: int64	

infoShareAcademy.com

Pandas – brakujące wartości

df_new = df.dropna()

usunięcie wierszy, w których występują brakujące wartości

df.shape

(2938, 22)

usunięto 1649 wierszy

df_new.shape

(1649, 22)

Pandas – brakujące wartości

pandas.DataFrame.dropna

DataFrame.dropna(*, axis=0, how=_NoDefault.no_default,
thresh=_NoDefault.no_default, subset=None, inplace=False, ignore_index=False)

Remove missing values.

[source]

Parameters:

axis: {0 or 'index', 1 or 'columns'}, default 0

Determine if rows or columns which contain missing values are removed.

- . 0, or 'index': Drop rows which contain missing values.
- 1, or 'columns': Drop columns which contain missing value.
 Only a single axis is allowed.

how: {'any', 'all'}, default 'any'

Determine if row or column is removed from DataFrame, when we have at least one NA or all NA.

- · 'any' : If any NA values are present, drop that row or column.
- 'all': If all values are NA, drop that row or column.

Pandas – brakujące wartości

df_filled = df.fillna(df.mean())

df	df_	filled
----	-----	--------

		Country	0
Country	0	Year	0
Year	0	Status	0
Status	0	Life expectancy	0
Life expectancy	10	Adult Mortality	0
Adult Mortality	10	infant deaths	0
infant deaths	0	Alcohol	0
Alcohol	194	percentage expenditure	0
percentage expenditure	0	Hepatitis B	0
Hepatitis B	553	Measles	0
Measles	0	BMI	0
BMI	34	under-five deaths	0
under-five deaths	0	Polio	0
Polio	19	Total expenditure	0
Total expenditure	226	Diphtheria	0
Diphtheria	19	HIV/AIDS	0
HIV/AIDS	0	GDP	0
GDP	448	Population	0
Population	652	thinness 1-19 years	0
thinness 1-19 years	34	thinness 5-9 years	0
thinness 5-9 years	34	Income composition of resources	0
Income composition of resources	167	Schooling	0
Schooling	163	dtype: int64	
dtype: int64		100.00	

infoShareAcademy.com

Imputacja braków danych (instrukcja)

- 1. Dla zbioru danych o pasażerach Titanica:
 - A. Sprawdź statystykę brakujących danych.
 - B. Usuń kolumnę z największą liczbą brakujących danych.
 - C. Uzupełnij brakujące dane dla pozostałych kolumn średnią arytmetyczną wartości tych kolumn.

Pandas – średnia, mediana, moda, odchylenie

moda może mieć

więcej niż jedną

wartość, dlatego

wybieramy pierwszą

srednia = df['Life expectancy '].mean()

Średnia: 69.22493169398908

mediana = df['Life expectancy '].median()

Mediana: 72.1

moda = df['Life expectancy '].mode()[0]

Moda: 73.0

odchylenie_std = df['Life expectancy '].std()

Odchylenie standardowe: 9.523867487824301

infoShareAcademy.com

 Dla zbioru danych o pasażerach Titanica oblicz: średnią arytmetyczną, medianę, modę oraz odchylenie standardowe dla kolumny wiek (Age).

Pandas – operacje na kolumnach DataFrame

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})

Dodawanie nowej kolumny:

Bezpośrednie przypisanie wartości

$$df['C'] = [7, 8, 9]$$

df['C'] = [7, 8, 9] nowa kolumna C

Wykorzystanie istniejącej kolumny do obliczeń

$$df['D'] = df['A'] * 2$$
 nowa kolumna D

Użycie funkcji do tworzenia nowej kolumny

def oblicz_nowa_wartosc(x):

infoShareAcademy.com

info Share

Pandas – operacje na kolumnach DataFrame

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})

Usuwanie kolumny:

1. Metoda drop:

df = df.drop('B', axis=1)

2. Metoda pop:

 $kolumna_b = df.pop('B')$

Dodawanie/usuwanie kolumn (instrukcja)

- Utwórz DataFrame o nazwie dane, zawierający dwie kolumny: "Imię" i "Wiek". Wypełnij go dowolnymi danymi dla co najmniej trzech osób.
- Dodaj nową kolumnę o nazwie "Miejscowość", która będzie zawierała informacje o miejscu zamieszkania każdej osoby.
- 3. Usuń kolumnę "Wiek" z DataFrame.
- 4. Dodaj nową kolumnę "Zawód" z informacjami o zawodach osób.

Pandas – zmiany nazwy kolumn

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})

df = df.**rename**(columns={'A': 'Nowa_A', 'B': 'Nowa_B'})

df = pd.DataFrame({'Nowa_A': [1, 2, 3], 'Nowa_B': [4, 5, 6]})

Zmiana nazw kolumn (instrukcja)

- Utwórz DataFrame o nazwie oceny, zawierający trzy kolumny: "Przedmiot", "Ocena_Pisemna" i "Ocena_Ustna". Wypełnij go danymi dotyczącymi ocen studentów w dwóch kategoriach.
- 2. Przemianuj kolumnę "Ocena_Pisemna" na "Ocena_Sprawdzian", aby lepiej odzwierciedlić naturę ocen.
- 3. Dodaj nową kolumnę "Ocena_Końcowa", która będzie średnią ważoną z ocen pisemnych i ustnych (zakładamy wagę 70% dla ocen pisemnych i 30% dla ustnych).

Pandas – operacje na kolumnach i wierszach

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=['X', 'Y', 'Z'])

loc() – indeksowanie za pomocą etykiet

wybrane_dane = df.loc['Y', 'B'] #wynik 5

infoShareAcademy.com

Pandas – operacje na kolumnach i wierszach

	Α	В
Χ	1	4
Υ	2	5
Z	3	6

iloc() – indeksowanie za pomocą indeksu numerycznego

wybrane_dane = df.iloc[1, 0] # wynik 2

loc/iloc (instrukcja)

- Utwórz DataFrame o nazwie dane, zawierający trzy kolumny: "Imię", "Wiek" i "Wzrost". Wypełnij go danymi dla co najmniej pięciu osób.
- 2. Za pomocą funkcji loc, wybierz dane dla osoby o imieniu "Anna".
- 3. Za pomocą funkcji iloc, wybierz dane dla drugiej osoby w DataFrame.
- 4. Utwórz nowy DataFrame o nazwie podsumowanie zawierający tylko kolumny "lmię" i "Wiek" z oryginalnego DataFrame.

info Share A C A D E M Y

Pandas – filtrowanie

Filtrowanie na podstawie warunków logicznych:

	lmię	Wiek	Wzrost
0	Anna	25	165
1	Jan	30	175
2	Katarzyna	22	160
3	Michał	28	180
4	Ewa	35	160

wyniki_filtracji = df[df['Wiek'] > 30]

	lmię	Wiek	Wzrost
4	Ewa	35	160

Filtrowanie (instrukcja)

- Utwórz DataFrame o nazwie dane, zawierający trzy kolumny: "Produkt", "Ilość" i "Cena". Wypełnij go danymi dotyczącymi zakupów w sklepie.
- Za pomocą filtrowania logicznego (df[df['warunek']]), wybierz wszystkie zakupy, gdzie ilość zakupionego produktu jest większa niż 2 jednostki.
- 3. Stwórz nowy DataFrame o nazwie tanie_produkty, który zawiera zakupy, gdzie cena jednostkowa produktu jest mniejsza lub równa 5, a ilość zakupionego produktu jest większa niż 1.

Pandas – sortowanie

df -> df_sortowane = df.sort_values(by='Wiek') -> df_sortowane

	lmię	Wiek	Wzrost
0	Anna	25	165
1	Jan	30	175
2	Katarzyna	22	160
3	Michał	28	180

	lmię	Wiek	Wzrost
2	Katarzyna	22	160
0	Anna	25	165
3	Michał	28	180
1	Jan	30	175

Sortowanie malejąco:

df_sortowane_malejąco = df.sort_values(by='Wiek', ascending=False)

infoShareAcademy.com

Pandas – sortowanie wielu kolumn

df -> df_sortowane = df.sort_values(by=['Wiek', 'Wzrost']) -> df_sortowane

	lmię	Wiek	Wzrost		lmię	Wiek	Wzrost
0	Anna	25	165	2	Katarzyna	22	160
1	Jan	30	175	0	Anna	25	165
2	Katarzyna	22	160	3	Michał	28	180
3	Michał	28	180	1	Jan	30	175
		1	1				1

1. Oblicz dla poniższego dataframe:

```
data = {'Tytuł': ['Pan Tadeusz', 'Lalka', 'Krzyżacy', 'Ogniem i Mieczem', 'Quo Vadis'],
   'Autor': ['Adam Mickiewicz', 'Bolesław Prus', 'Henryk Sienkiewicz', 'Henryk Sienkiewicz', 'Henryk Sienkiewicz'],
```

'Rok_wydania': [1834, 1890, 1900, None, 1896],
'Liczba_stron': [400, None, 600, 850, None],
'Ocena_czytelników': [4.5, 4.2, None, 4.8, 4.0]}

- A. Uzupełnij brakujące dane w kolumnach 'Rok_wydania', 'Liczba_stron' i 'Ocena_czytelników'.
- B. Określ, która książka jest najstarsza w bibliotece.
- C. Oblicz średnią liczbę stron we wszystkich książkach.
- D. Stwórz nową ramkę danych, która zawiera tylko książki z oceną czytelników powyżej 4.5.

infoShareAcademy.com

info Share A C A D E M Y

Pandas – podsumowanie

Python Praca z Danymi matplotlib

infoShareAcademy.com

matplotlib – typy wykresów

plot(x, y)

hist(x)

scatter(x, y)

boxplot(X)

bar(x height)

errorbar(x, y, yerr, xerr)

stem(x, y)

violinplot(D)

pip install matplotlib

conda install matplotlib

import matplotlib.pyplot as plt

matplotlib – wykres liniowy

info Share A C A D E M Y

matplotlib – wykres liniowy

import matplotlib.pyplot as plt import numpy as np

angles = np.linspace(0, 2*np.pi, 100)

generowanie danych
sin_values = np.sin(angles)

plt.plot(angles, sin_values , label='sin(x)') tworzenie wykresu liniowego

plt.xlabel('Kąt (radiany)')
plt.ylabel('Wartość sin(x)')
—dodanie etykiet i tytułu
plt.title('Wykres Liniowy - Funkcja Sinusoidalna')
plt.legend() # Dodanie legendy

plt.show() wyświetlenie wykresu

infoShareAcademy.com

Zadanie 9.14

Wykres liniowy (instrukcja)

 Przyjęto, że firma A-B Corporation prowadzi analizę wzrostu swojej sprzedaży w ciągu ostatnich 12 miesięcy. Dane o miesięcznych dochodach ze sprzedaży zostały zebrane i przedstawione poniżej.
 Twoim zadaniem jest stworzenie wykresu liniowego, który zobrazuje zmiany w sprzedaży w kolejnych miesiącach.

Dane miesięczne sprzedaży:

 Styczeń: 50 000
 Kwiecień: 60 000
 Lipiec: 70 000
 Październik: 68 000

 Luty: 52 000
 Maj: 58 000
 Sierpień: 75 000
 Listopad: 75 000

 Marzec: 55 000
 Czerwiec: 62 000
 Wrzesień: 72 000
 Grudzień: 80 000

- 1. Zaimportuj bibliotekę Matplotlib.
- 2. Użyj funkcji plt.plot() do stworzenia wykresu liniowego.
- 3. Oznacz osie x i y etykietami odpowiednio, dodaj tytuł wykresu.
- 4. Upewnij się, że wykres jest czytelny i estetyczny.
- 5. Dodaj legendę, aby oznaczyć dane.

infoShareAcademy.com

matplotlib – wykres słupkowy

matplotlib - wykres słupkowy

import matplotlib.pyplot as plt

kategorie = ['Elektronika', 'Odzież', 'Książki'] sprzedaz = [120, 85, 200]

dane o sprzedaży w trzech kategoriach

plt.bar(kategorie, sprzedaz, color=['blue', 'green', 'orange'])

tworzenie wykresu słupkowego

plt.xlabel('Kategorie')
plt.ylabel('Ilość Sprzedaży')
plt.title('Wykres Słupkowy - Sprzedaż w Kategoriach')

dodawanie etykiet i tytułu

plt.show() wyświetlenie wykresu

infoShareAcademy.com

Zadanie 9.15

Wykres słupkowy (instrukcja)

Przyjmijmy, że wyniki testów matematycznych z trzech klas (A, B, C) zostały zebrane, a twoim zadaniem jest stworzenie wykresu słupkowego przedstawiającego średnie wyniki każdej z klas. Poniżej znajdują się wyniki testów dla każdego ucznia w poszczególnych

klasach:	Klasa A:	Klasa B:	Klasa C:
	Uczeń 1: 85	Uczeń 1: 90	Uczeń 1: 75
	Uczeń 2: 78	Uczeń 2: 82	Uczeń 2: 80
	Uczeń 3: 92	Uczeń 3: 78	Uczeń 3: 68
	Uczeń 4: 88	Uczeń 4: 85	Uczeń 4: 72
	Uczeń 5: 95	Uczeń 5: 88	Uczeń 5: 85

- a. Stwórz wykres słupkowy przedstawiający średnie wyniki matematyczne w każdej z klas.
- b. Oznacz osie x etykietami dla klas (A, B, C) i osie y etykietami jako 'Średni Wynik'.
- c. Użyj kolorów do odróżnienia słupków dla każdej z klas.
- d. Dodaj tytuł wykresu, który jednoznacznie opisuje przedstawione dane.

infoShareAcademy.com

matplotlib – wykres kołowy

Udziały Procentowe w Całości

import matplotlib.pyplot as plt

udzialy = [30, 40, 20, 10] etykiety = ['Kategoria A', 'Kategoria B', 'Kategoria C', 'Inne']

plt.pie(udzialy, labels=etykiety, autopct='%1.1f%%', colors=['blue', 'green', 'orange', 'gray'])

plt.title('Udziały Procentowe w Całości')

plt.show()

Zadanie 9.16

Wykres kołowy (instrukcja)

Zakładamy, że prowadzisz analizę wydatków w swoim domowym budżecie. Masz informacje na temat procentowego udziału wydatków w kilku kategoriach. Twoim zadaniem jest stworzenie wykresu kołowego, który przedstawi te udziały procentowe. Poniżej znajdziesz dane dotyczące procentowego udziału w trzech kategoriach:

Jedzenie: 35% Mieszkanie: 40% Rozrywka: 25%

Treść zadania:

- Stwórz wykres kołowy przedstawiający procentowy udział wydatków w trzech kategoriach.
- 2. Dodaj etykiety dla każdej kategorii na wykresie.
- 3. Skonfiguruj kolor kawałków wykresu.
- 4. Dodaj procentowe etykiety do kawałków wykresu.

infoShareAcademy.com

matplotlib – wykresy do analizy rozkładu, trendów i zależności

hist(x)

boxplot(X)

errorbar(x, y, yerr, xerr)

violinplot(D)

seaborn - nakładka matplotlib

info Share ACADEMY

infoShareAcademy.com

Python Praca z Danymi seaborn

matpletlib

Python Praca z Danymi seaborn - instalacja

pip install seaborn

conda install seaborn

Instalacja biblioteki

import seaborn as sns — Import biblioteki

seaborn - histogram

seaborn - histogram

import seaborn as sns import matplotlib.pyplot as plt

data = sns.load_dataset("tips")

sns.histplot(data["total_bill"], bins=30, kde=False, color='skyblue')

plt.title('Histogram Total Bill')
plt.xlabel('Total Bill')
plt.ylabel('Frequency')

plt.show()

- 1. Załaduj zbiór danych "flights" z biblioteki Seaborn.
- 2. Przygotuj histogram dla kolumny "passengers".
- 3. Dostosuj liczbę przedziałów (bins) i kolor histogramu.
- 4. Dodaj tytuł wykresu oraz opisy osi.
- 5. Wyświetl ostateczny histogram.

seaborn - boxploty

Python Praca z Danymi seaborn - boxploty

import seaborn as sns import matplotlib.pyplot as plt

dane_restauracyjne = sns.load_dataset("tips")

sns.boxplot(x="day", y="total_bill", data=dane_restauracyjne, palette="Set2")

plt.title('Box Plot - Total Bill by Day')
plt.xlabel('Day of the Week')
plt.ylabel('Total Bill')

plt.show()

Zadanie 9.18

boxplot (instrukcja)

Przygotuj box plot, aby zobaczyć rozkład cen biletów w zależności od klasy podróżnej na statku Titanic.

- 1. Załaduj zbiór danych "titanic" z biblioteki Seaborn.
- 2. Przygotuj box plot dla kolumny "fare" (cena biletu).
- 3. Podziel wykres na trzy pudełka, przedstawiające różne klasy podróżne.
- 4. Dostosuj paletę kolorów, aby podkreślić różnice między pudełkami.
- 5. Dodaj tytuł wykresu i opisy osi.
- 6. Wyświetl ostateczny box plot.

seaborn – violin ploty

seaborn – violin ploty

import seaborn as sns import matplotlib.pyplot as plt

iris_data = sns.load_dataset("iris")

sns.violinplot(x="species", y="petal_length", data=iris_data, palette="Set2")

plt.title('Violin Plot - Długość Płatków w Zależności od Gatunku Irisa') plt.xlabel('Gatunek Irisa') plt.ylabel('Długość Płatków (cm)')

plt.show()

Zadanie 9.19

violin plot (instrukcja)

Przygotuj violin plot, aby zobaczyć rozkład długości płetw pingwinów w zależności od ich gatunku.

- 1. Załaduj zbiór danych "penguins" z biblioteki Seaborn.
- 2. Przygotuj violin plot dla kolumny "species" (gatunek) na osi X i "flipper_length_mm" (długość płetwy) na osi Y.
- 3. Dostosuj paletę kolorów, aby podkreślić różnice między gatunkami.
- 4. Dodaj tytuł wykresu i opisy osi.
- 5. Wyświetl ostateczny violin plot.

Zadanie 9.20

Podsumowanie (instrukcja)

- Załadowanie Danych: Wczytaj zbiór danych "car_crashes" dostępny w bibliotece Seaborn.
- 2. **Analiza i Przetwarzanie Danych:** Sprawdź podstawowe informacje o danych, takie jak liczba wierszy, kolumn, typy danych itp. Zidentyfikuj i usuń ewentualne duplikaty. Przetwórz dane, jeśli to konieczne (np. zamień wartości null, dostosuj typy danych).
- 3. **Eksploracyjna Analiza Danych:** Stwórz histogram dla rozkładu liczby wypadków. Wygeneruj wykres punktowy, aby zobaczyć zależność między prędkością a średnią liczba wypadków. Przy użyciu Seaborn, stwórz pair plot, aby zbadać korelacje między różnymi cechami.
- 4. **Statystyki i Grupowanie:** Oblicz średnią, medianę i odchylenie standardowe dla liczby wypadków. Utwórz wykres słupkowy przedstawiający średnią liczbę wypadków dla różnych stanów.
- 5. **Violin Plot:** Użyj Seaborn do stworzenia violin plotu przedstawiającego rozkład liczby wypadków w zależności od rodzaju alkoholu (prawne lub nielegalne).
- 6. **Podsumowanie:** Na podstawie przeprowadzonych analiz, sformułuj kilka wniosków dotyczących wypadków samochodowych.

info Share ACADEMY

infoShareAcademy.com

seaborn – podsumowanie

conda create --name moje_srodowisko python=3.8

conda activate moje_srodowisko

conda install pandas numpy matplotlib seaborn

Podsumowanie

