TABLA 1

Nombre Preprocesamiento	Explicación	Nombre de función		
rfe_and_iterative_imputer	Convierte algunas columnas usando hashing_trick, rellena los missings con IterativeImputer, luego reduce la cantidad de columnas del dataset a las halladas con RFE.	preprocesamiento_arbol		
hashing_trick_forward_selec tion_iterative_imputer_scale r	Convierte algunas columnas usando hashing_trick, reduce la cantidad de columnas usando VarianceThreshold y forward selection, y rellena los missings con IterativeImputer. Por último se escalan todos los valores numéricos a un rango entre cero y uno.	preprocessing_knn		
continuous_mean_filler	Se queda con los features continuos y rellena los missings con el promedio.	preprocessing_continuos		
hashing_trick_mean_scaler	Convierte algunas columnas categóricas a numéricas usando hashing trick, rellena los missings con el promedio y escala los datos	preprocessing_mean_scale d		
regularization_iterative_imp uter	Reduce la cantidad de columnas del dataset debido al análisis de regularización, luego rellena los missings con IterativeImputer.	preprocessing_imputer_filter ed		
hashing_trick_simple_imput er	Convierte algunas columnas usando hashing_trick, luego rellena los missings con SimpleImputer.	preprocessing_gb		

TABLA 2

Nombre Modelo	Nombre Preprocesamiento	AUC ROC	Accuracy	Precisión	Recall	F1 Score
Árbol de decisión	rfe_and_iterative_ imputer	0.849	0.84	0.83	0.84	0.83
KNN	hashing_trick_for ward_selection_it erative_imputer_s caler	0.840	0.84	0.83	0.84	0.83
Naive Bayes	continuous_mean _filler	0.828	0.82	0.81	0.82	0.81
SVM	hashing_trick_me an_scaler	0.743	0.74	0.76	0.74	0.75
Redes Neuronales	regularization_iter ative_imputer	0.843	0.84	0.82	0.84	0.82
Gradient Boosting	hashing_trick_sim ple_imputer	0.888	0.86	0.85	0.86	0.85

El modelo que más recomendamos es Gradient Boosting ya que es el que presenta un AUC ROC mayor. Las demás métricas también son significativamente superiores al usar este modelo.

Si quisiéramos tener la menor cantidad de falsos positivos posible, el modelo que más conviene es Gradient Boosting, ya que es el que presenta una mayor precisión (TP / (TP+FP)). Por otra parte, si se quiere tener una lista con todos los días que potencialmente lloverán también recomendamos Gradient Boosting, porque es el que mayor recall tiene (menor cantidad de falsos negativos, es decir, positivos que fueron mal predichos).