Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

Iowa State University

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

Joint Distributions
Marginal Distributions
Conditional
Distributions

The Continuous

Outline

The Discrete Case

Joint Distributions Marginal Distributions Conditional Distributions Independence

The Continuous Case

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

The Discrete Case

Joint Distributions
Marginal Distributio
Conditional
Distributions

- Consider multiple random variables at the same time.
- Suppose you're manufacturing ring bearings (nominal inner diameter 1.00 in) on rods (nominal diameter 0.99 in). Let:
 - ightharpoonup X = the inside diameter of the next ring bearing
 - Y = rod diameter where the ring is located
- ▶ We might want to know probabilities like

since if X < Y, the assembly cannot be made.

▶ A **joint probability function** for discrete random variables X and Y is a nonnegative function f(x, y) such that:

$$f(x,y) = P(X = x \text{ and } Y = y)$$

as a distribution, $f \ge 0$ and:

$$\sum_{x,y} f(x,y) = 1$$

- ► For the discrete case, it is useful to give f(x, y) in a table.
- Example: suppose:
 - ▶ X =torque required to loosen bolt #3 in the next apparatus.
 - ightharpoonup Y =torque for bolt #4.

where all torques are rounded to the nearest integer.

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

The Discrete Case Joint Distributions Marginal Distributions Conditional Distributions

Example: torque (blank entries are 0)

f(x, y) for the Bolt Torque Problem

у \	x	11	12	13	14	15	16	17	18	19	20
20									2/34	2/34	1/34
19								2/34			
18				1/34	1/34			1/34	1/34	1/34	
17						2/34	1/34	1/34	2/34		
16					1/34	2/34	2/34			2/34	
15		1/34	1/34			3/34					
14						1/34			2/34		
13						1/34					

►
$$P(X = 18 \text{ and } Y = 17) = \frac{2}{34}$$

$$P(X = 14 \text{ and } Y = 19) = 0$$

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

The Discrete Case
Joint Distributions

oint Distributions
larginal Distributions
onditional
istributions

Your turn: torque

f(x, y) for the Bolt Torque Problem

<i>y</i> \	x	11	12	13	14	15	16	17	18	19	20
20									2/34	2/34	1/34
19								2/34			
18				1/34	1/34			1/34	1/34	1/34	
17						2/34	1/34	1/34	2/34		
16					1/34	2/34	2/34			2/34	
15		1/34	1/34			3/34					
14						1/34			2/34		
13						1/34					

Calculate:

- 1. $P(X \geq Y)$
- 2. $P(|X Y| \le 1)$

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions

Answers: torque

Combinations of bolt 3 and bolt 4 torques with $x \ge y$

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions

$$P(X \ge Y) = \sum_{x \ge y} f(x, y)$$

= $f(20, 20) + f(20, 19) + f(20, 18) + \dots + f(13, 13)$

Dropping all the f(x, y) values that equal 0:

$$= f(15,13) + f(15,14) + f(15,15) + f(16,16) + f(17,17) + f(18,14) + f(18,17) + f(18,18) + f(19,16) + f(19,18) + f(20,20) \frac{1}{34} + \frac{1}{34} + \frac{3}{34} + \frac{2}{34} + \dots + \frac{1}{34} = \frac{17}{34}$$

Answers: torque

Combinations of bolt 3 and bolt 4 torques with $|x - y| \le 1$

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions

$$P(X \ge Y) = \sum_{x \ge y} f(x, y)$$

= $f(13, 13) + f(14, 13) + f(14, 14) + \dots + f(20, 20)$

Dropping all the f(x, y) values that equal 0:

$$= f(15, 14) + f(15, 15) + f(15, 16) + f(16, 16)$$

$$+ f(16, 17) + f(17, 17) + f(17, 18) + f(18, 17)$$

$$+ f(18, 18) + f(19, 18) + f(19, 20) + f(20, 20)$$

$$= \frac{18}{34}$$

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

Joint Distributions
Marginal Distribution
Conditional
Distributions
Independence

The Continuous Case

▶ The marginal distributions of X and Y, which have joint pmf f(x, y), are:

$$f_X(x) = \sum_y f(x, y)$$
$$f_Y(y) = \sum_y f(x, y)$$

• $f_X(x)$ is just the ordinary, univariate pmf of X.

Your turn: torque

► Calculate the marginal pmfs of X and Y

f(x, y) for the Bolt Torque Problem

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
19	у \	x	11	12	13	14	15	16	17	18	19	20
18	20									2/34	2/34	1/34
17 2/34 1/34 1/34 2/34 16 1/34 2/34 2/34 2/34 2/34 15 1/34 1/34 3/34 14 1/34 2/34	19								2/34			
16 1/34 2/34 2/34 2/34 15 1/34 1/34 3/34 14 1/34 2/34	18				1/34	1/34			1/34	1/34	1/34	
15 1/34 1/34 3/34 14 1/34 2/34	17						2/34	1/34	1/34	2/34		
14 1/34 2/34	16					1/34	2/34	2/34			2/34	
· · · · · · · · · · · · · · · · · · ·	15		1/34	1/34			3/34					
13 1/34	14						1/34			2/34		
	13						1/34					

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions

Answers: torque

- ▶ Take the column sums to calculate f_X at each x.
- ▶ Take the row sums to calculate f_Y at each y.

X	$f_X(x)$	у	$f_Y(y)$
11	1/34	13	5/34
12	1/34	14	2/34
13	1/34	15	5/34
14	2/34	16	6/34
15	9/34	17	7/34
16	3/34	18	7/34
17	4/34	19	3/34
18	7/34	20	1/34
19	5/34		
20	1/34		

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

The Discrete Case Joint Distributions Marginal Distributions Conditional Distributions

Answers: torque

▶ It is customary to write the marginal pmfs in the margins of the table of the joint pmf.

Joint and Marginal Probabilities for X and Y

у \	x	11	12	13	14	15	16	17	18	19	20	$f_Y(y)$
20									2/34	2/34	1/34	5/34
19								2/34				2/34
18				1/34	1/34			1/34	1/34	1/34		5/34
17						2/34	1/34	1/34	2/34			6/34
16					1/34	2/34	2/34			2/34		7/34
15		1/34	1/34			3/34						5/34
14						1/34			2/34			3/34
13						1/34						1/34
$f_X(x)$		1/34	1/34	1/34	2/34	9/34	3/34	4/34	7/34	5/34	1/34	

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

The Discrete Case Joint Distributions Marginal Distributions Conditional Distributions

The Continuous

The Continuous Case

▶ The **conditional distribution** of Y given X = x is a function, $f_{Y|X=x}$, given by:

$$f_{Y|X=x}(y) = \frac{f(x,y)}{f_X(x)}$$

► To make sense of conditional distributions, return to the torque example...

у \	x	11	12	13	14	15	16	17	18	19	20	$f_Y(y)$
20									2/34	2/34	1/34	5/34
19								2/34	0			2/34
18				1/34	1/34			1/34	1/34	1/34		5/34
17						2/34	1/34	1/34	2/34			6/34
16					1/34	2/34	2/34		0	2/34		7/34
15		1/34	1/34			3/34			0			5/34
14						1/34			2/34			3/34
13						1/34			0			1/34
$f_X(x)$		1/34	1/34	1/34	2/34	9/34	3/34	4/34	7/34	5/34	1/34	

- For example, $f_{Y|X=18}(20) = \frac{2/34}{7/34} = 2/7$. That makes sense because:
 - ► Since $f_X(18) = 7/34$, we expect roughly 7 out of every 34 cases to have X = 18.
 - Since $f_{X,Y}(18,20) = 2/34$, we expect roughly 2 of those 7 cases to also have Y = 20.

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

The Discrete Case Joint Distributions Marginal Distributions Conditional Distributions

Example: torque

У	13	14	15	16	17	18	19	20
$f_{X,Y}(18,y)$								
$f_{Y X=18}(y)$	2/7	0	1/7	2/7	0	0	2/7	0

- ► The conditional distribution, $f_{Y|X=18}$ is the renormalized column of the joint distribution corresponding to X=18.

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

Joint Distributions
Marginal Distributions
Conditional
Distributions

Your turn: torque

Joint and Marginal Probabilities for X and Y

y	\ <i>x</i>	11	12	13	14	15	16	17	18	19	20	$f_Y(y)$
20									2/34	2/34	1/34	5/34
19								2/34				2/34
18				1/34	1/34			1/34	1/34	1/34		5/34
17						2/34	1/34	1/34	2/34			6/34
16					1/34	2/34	2/34			2/34		7/34
15		1/34	1/34			3/34						5/34
14						1/34			2/34			3/34
13						1/34						1/34
$f_X(x)$		1/34	1/34	1/34	2/34	9/34	3/34	4/34	7/34	5/34	1/34	

Calculate:

- 1. $f_{Y|X=15}(y)$ 2. $f_{Y|X=20}(y)$ 3. $f_{X|Y=18}(x)$

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

Conditional Distributions

Answers: torque

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

I he Discrete Case Joint Distributions Marginal Distributions Conditional Distributions

The Continuous

1.
$$\frac{y}{f_{Y|X=15}(y)}$$
 13 14 15 16 17 18 19 20 $\frac{y}{f_{Y|X=15}(y)}$ 1/9 1/9 3/9 2/9 2/9 0 0 0

2.
$$\frac{y}{f_{Y|X=20}(y)}$$
 13 14 15 16 17 18 19 20 0 0 0 0 0 0 1

X										
$f_{X Y=18}(x)$	0	0	1/5	1/5	0	0	1/5	1/5	1/5	0

Given a set of marginal distributions, there are many possible joint distributions.

What do you notice about each of the following joint distributions?

Distribution 1

y^{x}	1	2	3	L
3	.4	0	0	.4
2	0	.4	0	.4
1	0	0	.2	.2
	1	1	2	

Distribution 2

y^x	1	2	3	
3	.16	.16	.08	.4
2	.16	.16	.08	.4
1	.08	.08	.04	.2
	.4	.4	.2	

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

Joint Distributions
Marginal Distributions
Conditional
Distributions

Independence
The Continuous
Case

Given a set of marginal distributions, there are many possible joint distributions.

What do you notice about each of the following joint distributions?

Distribution 1

y^{x}	1	2	3	
3	.4	0	0	.4
2	0	.4	0	.4
1	0	0	.2	.2
	.4	.4	.2	

Distribution 2

- 1. Given X = x, you know what Y has to be (and vice versa).
- 2. Each P(X = x, Y = y) is just $P(X = x) \cdot P(Y = y)$; i.e., X and Y have no influence on each other.

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

Joint Distributions
Marginal Distributions
Conditional
Distributions
Independence

A look at distribution 2

y^x	1	2	3	
3	.16	.16	.08	.4
2	.16	.16	.08	.4
1	.08	.08	.04	.2
\dashv	4	4	2	

- Among just the cases when X = 1:
 - ► Y = 3 every 16 out of (16 + 16 + 8) = 40 times: i.e., with probability $\frac{16}{40} = 0.4$
 - Same with Y = 2
 - Y = 1 every 8 out of (16 + 16 + 8) = 40 times: i.e., with probability 0.2
- So pmf of Y given X = 1 is the same as the marginal pmf of Y.

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions
Independence

▶ Discrete random variables X and Y are independent (written $X \perp Y$) if for all x and y,

$$P(Y = y \mid X = x) = P(Y = y)$$

where | means "given".

▶ If $X \perp Y$, then:

$$P(Y = y \text{ and } X = x) = P(X = x) \cdot P(Y = y)$$
$$f(x, y) = f_X(x) \cdot f_Y(y)$$

If X and Y are not only independent but also have the same marginal distribution, then they are independent and identically distributed, abbreviated iid.

Outline

The Discrete Case

Joint Distributions
Marginal Distributions
Conditional Distributions
Independence

The Continuous Case

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

Joint Distributions
Marginal Distribution
Conditional
Distributions

The Continuous Case

▶ A joint probability density function (pdf) for two continuous random variables X and Y is a nonnegative function with:

$$\int \int f(x,y)dxdy = 1$$
$$P((X,Y) \in R) = \int \int_{R} f(x,y)dxdy$$

where R is some region of \mathbb{R}^2 .

- ► *S* = true excess time (over a 7.5 s threshold) required to complete the next sale
- ightharpoonup R =excess time measured with a stopwatch

$$f(s,r) = egin{cases} rac{1}{16.5}e^{-s/16.5}rac{1}{\sqrt{2\pi(0.25)}}e^{-(r-s)^2/2(0.25)} & s>0 \ 0 & ext{otherwise} \end{cases}$$

f(s, r) is valid.

$$\int \int f(s,r)ds \ dr = \int_0^\infty \int_{-\infty}^\infty \frac{1}{16.5\sqrt{2\pi(0.25)}} e^{-(s/16.5) - ((r-s)^2/2(0.25))} dr \ ds$$

$$= \int_0^\infty \frac{1}{1.65} e^{-s/16.5} \left\{ \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi(0.25)}} e^{-(r-s)^2/2(0.25)} dr \right\} ds$$

$$= \int_0^\infty \frac{1}{16.5} e^{-s/16.5} ds$$

$$= 1$$

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

The Discrete Case
Joint Distributions

Independence
The Continuous

Case

A look at f(s, r)

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

The Discrete Case
Joint Distributions

Marginal Distributions
Conditional
Distributions
Independence

Checking for measurement bias: P(measured excess time > actual excess time)

$$P(R > S) = \int \int_{r>s} f(s, r) ds dr$$

$$= \int_0^\infty \int_s^\infty f(s, r) dr ds$$

$$= \int_0^\infty \frac{1}{16.5} e^{-s/16.5} \left\{ \int_s^\infty \frac{1}{\sqrt{2\pi (0.25)}} e^{-(r-s)^2/2(0.25)} dr \right\} ds$$

$$= \int_0^\infty \frac{1}{16.5} e^{-s/16.5} \left\{ \frac{1}{2} \right\} ds$$

$$= \frac{1}{2}$$

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

The Discrete Case

Joint Distributions
Marginal Distribution
Conditional
Distributions

Checking for measurement bias: region of integration

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

Joint Distributions
Marginal Distribution
Conditional
Distributions

Probability of taking too long

$$P(S > 20) = \int \int_{s>20} f(s,r) dr ds$$

$$= \int_{20}^{\infty} \int_{-\infty}^{\infty} f(s,r) dr ds$$

$$= \int_{20}^{\infty} \frac{1}{16.5} e^{-s/16.5} \left\{ \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi(0.25)}} e^{-(r-s)^2/s(0.25)} \right\} ds$$

$$= \int_{20}^{\infty} e^{-s/16.5} ds$$

$$= e^{-20/16.5}$$

$$\approx 0.30$$

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

The Discrete Case

Marginal Distributions
Conditional
Distributions
Independence

Probability of taking too long: region of integration

Joint Distributions and Independence (Ch. 5.4)

Yifan Zhu

Joint Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions

The Continuous Case

► For continuous random variables X and Y, the marginal distribution of X is:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

▶ The **conditional distribution** of *Y* given X = x is:

$$f_{Y|X=x}(y) = \frac{f(x,y)}{f_X(x)}$$