Теормин. Раздел 1. Ответы на вопросы.

Определения

1. Аксиома непрерывности (полноты) множества R

Пусть $X,Y\subset\mathbb{R}$, причем $X\neq\varnothing$ и $Y\neq\varnothing$. Тогда

$$(\forall x \in X \ \forall y \in Y \ x \le y) \ \Rightarrow \ (\exists c \in \mathbb{R}: \ x \le c \le y \ \forall x \in X \ \forall y \in Y).$$

2. Индуктивное множество

Определение 3 (Понятие индуктивного множества).

Множество $X \subset \mathbb{R}$ называется индуктивным, если

$$\forall x \in X \ (x+1) \in X.$$

3. Множество натуральных чисел

Множеством натуральных чисел называется пересечение всех индуктивных множеств, содержащих число 1. Обозначается множество натуральных чисел как N.

4. Расширенное множество R

Определение 8.

Множество $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ называется расширенным множеством вещественных чисел, а символы $-\infty, +\infty$ – минус и плюс бесконечностями, соответственно, причем для вновь введенных символов постулируются следующие возможные операции:

$$x + (\pm \infty) = (\pm \infty) + x = \pm \infty, \quad x \in \mathbb{R},$$

$$x \cdot (\pm \infty) = (\pm \infty) \cdot x = \begin{cases} \pm \infty, & x > 0 \\ \mp \infty, & x < 0 \end{cases},$$

$$\frac{x}{\pm \infty} = 0, \quad x \in \mathbb{R},$$

$$(\pm \infty) + (\pm \infty) = \pm \infty,$$

$$(+\infty) \cdot (+\infty) = (-\infty) \cdot (-\infty) = +\infty,$$

$$(+\infty) \cdot (-\infty) = (-\infty) \cdot (+\infty) = -\infty,$$

$$-\infty < x < +\infty, \quad x \in \mathbb{R}.$$

5. Окрестность и проколотая окрестность точки

Определение 14.

Проколотой окрестностью точки $x_0 \in \mathbb{R}$ называется множество $U(x_0) \setminus \{x_0\}$, то есть произвольная окрестность точки x_0 без самой этой точки.

Аналогично, проколотой ε -окрестностью точки $x_0 \in \mathbb{R}$ называется множество $U_{\varepsilon}(x_0) \setminus \{x_0\}$.

Определение 11.

Окрестностью точки $x_0 \in \mathbb{R}$ называется произвольный интервал, содержащий x_0 .

6. Окрестности элементов +оо и -оо

Определение 13.

Окрестностью элемента $+\infty$ в $\overline{\mathbb{R}}$ называется множество вида

$$(a, +\infty], a \in \mathbb{R}.$$

Окрестностью элемента $-\infty$ в $\overline{\mathbb{R}}$ называется множество вида

$$[-\infty, a), a \in \mathbb{R}.$$

7. Ограниченность множества сверху, верхняя граница

Определение 15 (Понятие границы множества).

Множество $X \subset \overline{\mathbb{R}}$ называется ограниченным сверху, если

$$\exists M \in \mathbb{R} : \forall x \in X \ x \leq M.$$

Найденное число M называется верхней границей для X.

8. Ограниченность множества снизу, нижняя граница

Множество $X \subset \overline{\mathbb{R}}$ называется ограниченным снизу, если

$$\exists m \in \mathbb{R} : \forall x \in X \ x \ge m.$$

Найденное число m называется нижней границей для X.

9. Ограниченное множество

Определение 16 (Понятие ограниченности множества).

Множество $X \subset \mathbb{R}$ называется ограниченным, если оно ограничено как сверху, так и снизу, то есть

$$\exists M, m \in \mathbb{R} : \forall x \in X \ m \le x \le M.$$

10. Максимальный и минимальный элемент множества

Определение 17 (Понятие максимального элемента).

Элемент $M \in X \subset \overline{\mathbb{R}}$ называется максимальным (наибольшим) элементом множества X, если

$$\forall x \in X \ x \leq M.$$

Обозначают это так: $M = \max X$.

Элемент $m \in X \subset \mathbb{R}$ называется минимальным (наименьшим) элементом множества X, если

$$\forall x \in X \ x \ge m.$$

Обозначают это так: $m = \min X$.

11. Точная верхняя грань

Пусть $X \subset R$ ограничено сверху и не пусто.

Наименьший элемент множества верхних границ называется супремумом (или точной верхней гранью) множества X и обозначается sup X.

12. Точная нижняя грань

Пусть $X \subset R$ ограничено сверху и не пусто.

Наибольший элемент множества нижних границ называется инфимумом (или точной нижней гранью) множества X и обозначается inf X.

13. Целая и дробная части числа

Для любого числа $x \in R$ существует единственное $k \in Z$ такое, что $k \le x < k+1$. Число k называется целой частью числа x и обозначается [x].

Величина $\{x\} = x - [x]$ называется дробной частью числа x.

14. Последовательность

Определение 20 (Понятие последовательности).

Функция $f: \mathbb{N} \to \mathbb{R}$ называется последовательностью.

15. Предел последовательности на языке неравенств

Определение 21 (Предел последовательности через $\varepsilon - n$).

Число $A \in \mathbb{R}$ называется пределом последовательности x_n , если

$$\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N} : \forall n > n_0 \ |x_n - A| < \varepsilon.$$

Обозначают это так:

$$\lim_{n\to\infty} x_n = A, \quad x_n \xrightarrow[n\to\infty]{} A, \quad x_n \longrightarrow A.$$

16. Сходящаяся последовательность

Определение 23 (Понятие сходящейся последовательности).

Если последовательность x_n имеет предел $A \in \mathbb{R}$ (число!), то говорят, что она сходится. Иначе говорят, что она расходится.

17. Бесконечные пределы последовательностей

Определение 24 (Понятия бесконечных пределов).

Элемент $+\infty$ называется пределом последовательности x_n , если

$$\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N} : \forall n > n_0 \ x_n > \frac{1}{\varepsilon}.$$

Элемент $-\infty$ называется пределом последовательности x_n , если

$$\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N} : \forall n > n_0 \ x_n < -\frac{1}{\varepsilon}.$$

Обозначают это так:

$$\lim_{n\to\infty} x_n = \pm \infty, \quad x_n \underset{n\to\infty}{\longrightarrow} \pm \infty, \quad x_n \longrightarrow \pm \infty.$$

18. Возрастающая и строго возрастающая последовательности

Говорят, что последовательность x_n возрастает, если

$$\forall n_1, n_2 \in \mathbb{N} : n_1 > n_2 \ x_{n_1} \ge x_{n_2}.$$

Говорят, что последовательность x_n строго возрастает, если

$$\forall n_1, n_2 \in \mathbb{N} : n_1 > n_2 \quad x_{n_1} > x_{n_2}.$$

19. Убывающая и строго убывающая последовательности

Говорят, что последовательность x_n убывает, если

$$\forall n_1, n_2 \in \mathbb{N} : n_1 > n_2 \ x_{n_1} \le x_{n_2}.$$

Говорят, что последовательность x_n строго убывает, если

$$\forall n_1, n_2 \in \mathbb{N} : n_1 > n_2 \quad x_{n_1} < x_{n_2}.$$

20. Подпоследовательность

Определение 28 (Понятие подпоследовательности).

Пусть дана последовательность x_n и возрастающая последовательность

$$n_1 < n_2 < n_3 < \ldots < n_k < \ldots$$

натуральных чисел.

Последовательность $y_k = x_{n_k}$ называется подпоследовательностью последовательности x_n .

21. Частичные пределы последовательности

Определение 29 (Понятие частичных пределов).

Пределы (имеющих предел) подпоследовательностей последовательности x_n называются частичными пределами этой последовательности.

22. Верхний и нижний пределы последовательности

Определение 30 (Понятия верхнего и нижнего пределов).

Пусть E — (непустое) множество частичных пределов последовательности x_n .

Верхним пределом последовательности x_n называется $\sup E$ и обозначается $\overline{\lim_{n\to\infty}}x_n$ или $\limsup x_n$.

Нижним пределом последовательности x_n называется $\inf E$ и обозначается $\lim_{n\to\infty} x_n$ или $\lim_n \inf x_n$.

23. Фундаментальная последовательность

Определение 31 (Понятие фундаментальной последовательности).

Последовательность x_n называется фундаментальной, если

$$\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N} : \ \forall n > n_0 \ \forall p \in \mathbb{N} \ |x_{n+p} - x_n| < \varepsilon.$$

24. Предельная точка множества

Определение 32 (Понятие предельной точки).

Точка $x_0 \in \mathbb{R}$ называется предельной для множества $E \subset \mathbb{R}$, если в любой окрестности x_0 содержится бесконечное число элементов множества E, то есть

$$\forall U(x_0) \ U(x_0) \cap E$$
 бесконечно.

25. Предел функции по Коши на языке неравенств

Определение 33 ($\varepsilon - \delta$ определение предела функции).

Пусть $f:E\to\mathbb{R},\ x_0\in\mathbb{R}$ – предельная точка для E. Число $A\in\mathbb{R}$ называется пределом функции f в точке $x_0,$ если

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : 0 < |x - x_0| < \delta \ |f(x) - A| < \varepsilon.$$

Обозначают это так:

$$\lim_{x \to x_0} f(x) = A, \quad f(x) \xrightarrow[x \to x_0]{} A.$$

26. Бесконечные пределы функции в конечной точке (на языке неравенств)

Пусть $f: E \to \mathbb{R}, x_0$ – предельная для E.

Элемент $-\infty$ называется пределом функции f в точке $x_0 \in \mathbb{R}$, если

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : 0 < |x - x_0| < \delta \ f(x) < -\frac{1}{\varepsilon}.$$

27. Конечные пределы функции в бесконечных элементах (на языке неравенств)

Элемент $+\infty$ называется пределом функции f в точке $x_0 = -\infty$, если

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : x < -\frac{1}{\delta} \ f(x) > \frac{1}{\varepsilon}.$$

Число A называется пределом функции f в точке $x_0 = +\infty$, если

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : x > \frac{1}{\delta} \ |f(x) - A| < \varepsilon.$$

28. Определение предела по Гейне

Определение 36 (Определение предела по Гейне).

Пусть $f: E \to \mathbb{R}, x_0 \in \overline{\mathbb{R}}$ — предельная точка для E. Элемент $A \in \overline{\mathbb{R}}$ называется пределом функции f в точке x_0 , если **для любой** последовательности x_n такой, что:

- 1. $x_n \in E$.
- 2. $x_n \neq x_0$.
- $3. \lim_{n \to \infty} x_n = x_0.$

выполняется равенство

$$\lim_{n\to\infty} f(x_n) = A.$$

29. Возрастающая и строго возрастающая функция

Пусть $f:E\to\mathbb{R}$. Говорят, что функция f возрастает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \quad f(x_1) \le f(x_2).$$

Говорят, что функция f строго возрастает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \quad f(x_1) < f(x_2).$$

30. Убывающая и строго убывающая функция

Говорят, что что функция f убывает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \ f(x_1) \ge f(x_2).$$

Говорят, что функция f строго убывает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \quad f(x_1) > f(x_2).$$

31. Правосторонний и левосторонний пределы функции в конечной точке

Определение 39 (Понятие правостороннего предела).

Пусть $f: E \to \mathbb{R}, x_0 \in \mathbb{R}$ – предельная точка для множества $U_+(x_0) = \{x \in E: x > x_0\}.$

Говорят, что элемент $A \in \overline{\mathbb{R}}$ является пределом функции f в точке x_0 справа, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in E : 0 < x - x_0 < \delta \ f(x) \in U_{\varepsilon}(A).$$

Обозначается это так: $\lim_{x \to x_0 + 0} f(x) = A$.

Определение 40 (Понятие левостороннего предела).

Пусть $f: E \to \mathbb{R}, x_0 \in \mathbb{R}$ – предельная точка для множества $U_-(x_0) = \{x \in E: x < x_0\}.$

Говорят, что элемент $A \in \overline{\mathbb{R}}$ является пределом функции f в точке x_0 слева,

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x \in E : 0 < x_0 - x < \delta \; f(x) \in U_{\varepsilon}(A),$$

Обозначается это так: $\lim_{x \to x_0 = 0} f(x) = A$.

32. Бесконечно малая и бесконечно большая функции

Определение 41 (Понятие бесконечно малой функции).

Функция $\alpha(x)$ называется бесконечно малой при $x \to x_0$, если

$$\lim_{x \to x_0} \alpha(x) = 0.$$

Определение 42 (Понятие бесконечно большой функции).

Функция $\beta(x)$ называется бесконечно большой при $x \to x_0$, если

$$\lim_{x \to x_0} |\beta(x)| = +\infty.$$

33. О-большое от функции

Определение 59.

Пусть $f,g:E\to\mathbb{R},\ x_0$ — предельная для E, и существует окрестность $\overset{\circ}{U}(x_0)$ такая, что $f(x)=\alpha(x)g(x)$ при $x\in\overset{\circ}{U}(x_0)\cap E$.

1. Если $\alpha(x)$ ограничена на множестве $U(x_0) \cap E$, то говорят, что функция f(x) есть «О большое» от функции g(x) при $x \to x_0$ (или что функция f(x) ограничена по сравнению с функцией g(x) при $x \to x_0$) и пишут

$$f(x) = O(g(x)), \quad x \to x_0.$$

34. о-малое от функции

2. Если $\lim_{x\to x_0}\alpha(x)=0$, то говорят, что функция f(x) есть «о малое» от функции g(x) при $x\to x_0$ (или что функция f(x) бесконечно малая по сравнению с функцией g(x) при $x\to x_0$) и пишут

$$f(x) = o(g(x)), \quad x \to x_0.$$

35. Эквивалентная функция

3. Если $\lim_{x\to x_0} \alpha(x) = 1$, то говорят, что функция f(x) эквивалентна функции g(x) при $x\to x_0$ и пишут

$$f(x) \sim g(x), \quad x \to x_0.$$

Определения

36. Принцип математической индукции

Теорема 1 (Принцип математической индукции).

Если множество $X \subset \mathbb{N}$ таково, что $1 \in X$ и $\forall x \in X \ (x+1) \in X$, то $X = \mathbb{N}$.

37. Принцип точной грани

Теорема 4 (Принцип точной грани).

Пусть $X \subset \mathbb{R}$, не пусто и ограничено сверху (снизу). Тогда существует единственный $\sup X$ (inf X).

38. Принцип Архимеда

Теорема 6 (Принцип Архимеда).

Пусть $x\in\mathbb{R},\,x>0.$ Для любого $y\in\mathbb{R}$ существует единственное целое $k\in\mathbb{Z}$ такое, что

$$(k-1)x \le y < kx.$$

39. Свойства последовательностей, имеющих конечный предел

- 1) При $A \in R$ последовательность x_n ограничена.
- 2) В любой окрестности A ∈ R содержатся все элементы последовательности x_n, за исключением не более чем конечного числа.

40. Арифметические свойства пределов последовательностей в расширенном R

Теорема 8 (Арифметические свойства пределов в $\overline{\mathbb{R}}$).

Пусть $\lim_{n\to\infty} x_n = A$, $\lim_{n\to\infty} y_n = B$, $A, B \in \overline{\mathbb{R}}$. Тогда, если определена соответствующая операция (сложения, умножения или деления) в $\overline{\mathbb{R}}$, то:

1. Предел суммы равен сумме пределов, то есть

$$x_n + y_n \xrightarrow[n \to \infty]{} A + B.$$

2. Предел произведения равен произведению пределов, то есть

$$x_n y_n \xrightarrow[n \to \infty]{} AB.$$

3. Предел частного равен частному пределов, то есть

$$\frac{x_n}{y_n} \xrightarrow[n \to \infty]{} \frac{A}{B}, \quad y_n \neq 0.$$

41. Предельный переход в неравенствах для последовательностей

Следствие 11 (Предельный переход в неравенствах).

Пусть $\lim_{n\to\infty} x_n = A$, $\lim_{n\to\infty} y_n = B$, $A, B \in \overline{\mathbb{R}}$.

- 1. Если $x_n > y_n$, начиная с какого-либо номера n_0 , то $A \ge B$.
- 2. Если $x_n \geq y_n$, начиная с какого-либо номера n_0 , то $A \geq B$.

42. О сжатой переменной для последовательностей

Теорема 10 (О сжатой переменной).

Пусть, начиная с какого-то номера n_0 , выполняется $x_n \leq z_n \leq y_n$. Пусть, кроме того, $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = A, \ A \in \overline{\mathbb{R}}$. Тогда

$$\lim_{n \to \infty} z_n = A.$$

43. Теорема Вейерштрасса о пределе монотонной последовательности

Теорема 11 (Вейерштрасса).

Возрастающая последовательность x_n сходится тогда и только тогда, когда она ограничена сверху, причем

$$\lim_{n \to \infty} x_n = \sup_n x_n.$$

Убывающая последовательность x_n сходится тогда и только тогда, когда она ограничена снизу, причем

$$\lim_{n \to \infty} x_n = \inf_n x_n.$$

44. О связи пределов последовательности и её подпоследовательностей

Лемма 27.

Пусть последовательность x_n имеет предел. Тогда любая ее подпоследовательности имеет тот же самый предел.

45. Теорема Больцано-Вейерштрасса

Теорема 15 (Теорема Больцано-Вейерштрасса).

У любой ограниченной последовательности x_n существует сходящаяся подпоследовательность.

46. Критерий Коши для последовательностей

Теорема 16 (Критерий Коши).

Последовательность x_n сходится (в \mathbb{R}) тогда и только тогда, когда она фундаментальна.

47. Локальные свойства функций, имеющих предел

Теорема 18 (Локальные свойства функций, имеющих предел).

Пусть $f: E \to \mathbb{R}$ и $\lim_{x \to x_0} f(x) = A$. Тогда:

- 1. При $A \in \overline{\mathbb{R}}$ предел единственен.
- 2. При $A \in \mathbb{R}$ существует окрестность $U(x_0)$ такая, что в $U(x_0) \cap E$ функция f(x) ограничена.
- 3. Если $A \neq 0$, $A \in \mathbb{R}$, то существует окрестность $\mathring{U}(x_0)$ такая, что в $\mathring{U}(x_0) \cap E$ знаки f(x) и A совпадают.

48. Арифметические свойства пределов функций в расширенном R

Теорема 19 (Арифметические свойства пределов в $\overline{\mathbb{R}}$).

Пусть $f, g: E \to \mathbb{R}$, $\lim_{x \to x_0} f(x) = A$, $\lim_{x \to x_0} g(x) = B$, $A, B \in \overline{\mathbb{R}}$. Тогда, если определена соответствующая операция (сложения, умножения или деления) в $\overline{\mathbb{R}}$, то:

1. Предел суммы равен сумме пределов, то есть

$$f(x) + g(x) \xrightarrow[x \to x_0]{} A + B.$$

2. Предел произведения равен произведению пределов, то есть

$$f(x)g(x) \xrightarrow[x \to x_0]{} AB.$$

3. Если $g(x) \neq 0$ в некоторой $\overset{\circ}{U}(x_0)$, то предел частного равен частному пределов, то есть

$$\frac{f(x)}{g(x)} \xrightarrow[x \to x_0]{} \frac{A}{B}.$$

49. Предельный переход в неравенствах для функций

Следствие 13 (Предельный переход в неравенствах).

Пусть $f, g: E \to \mathbb{R}$, $\lim_{x \to x_0} f(x) = A$, $\lim_{x \to x_0} g(x) = B$, $A, B \in \overline{\mathbb{R}}$.

- 1. Если f(x) > g(x) на E, то $A \ge B$.
- 2. Если $f(x) \ge g(x)$ на E, то $A \ge B$.

50. О сжатой переменной для функций

Теорема 21 (О сжатой переменной).

Пусть $f,g,h:E\to\mathbb{R},$ $f(x)\leq h(x)\leq g(x)$ на E и $\lim_{x\to x_0}f(x)=\lim_{x\to x_0}g(x)=A,$ $A\in\overline{\mathbb{R}}.$ Тогда $\lim_{x\to x_0}h(x)=A.$

51. Теорема Вейерштрасса о пределах возрастающей и убывающей функций

Теорема 22 (О пределе монотонной функции).

Пусть $f:E \to \mathbb{R}$ — возрастающая (на E) функция, $s=\sup E$ — предельная для E. Тогда

$$\lim_{x \to s} f(x) = \sup_{x \in E} f(x).$$

Конечность последнего предела равносильна ограниченности f (на E) сверху.

52. Критерий Коши для функции

Теорема 23 (Критерий Коши).

Пусть $f:E \to \mathbb{R}, x_0$ – предельная точка для E. Тогда

$$\lim_{x \to x_0} f(x) = A \in \mathbb{R} \iff \forall \varepsilon > 0 \ \exists \delta > 0 : \forall x', x'' \in \overset{\circ}{U}_{\delta}(x_0) \cap E \ |f(x') - f(x'')| < \varepsilon.$$

53. Критерий существования предела через односторонние

Теорема 24 (Критерий существования предела через односторонние).

Пусть $f:E \to \mathbb{R}$ и $x_0 \in \mathbb{R}$ — предельная точка для множеств

$$U_-(x_0) = \{x \in E : x < x_0\}, \quad U_+(x_0) = \{x \in E : x > x_0\}.$$

Тогда

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \lim_{x \to x_0 + 0} f(x) = \lim_{x \to x_0 - 0} f(x) = A, \quad A \in \overline{\mathbb{R}}.$$

54. О связи бесконечно большой и бесконечно малой функций

Лемма 31 (О связи бесконечно большой и бесконечно малой функций).

Пусть $\beta(x)$ – бесконечно большая при $x \to x_0$. Тогда

$$\alpha(x) = \frac{1}{\beta(x)}$$

– бесконечно малая при $x \to x_0$.

Пусть $\alpha: E \to \mathbb{R}$ – бесконечно малая при $x \to x_0$ и

$$\exists \delta > 0 : \forall x \in \overset{o}{U}_{\delta}(x_0) \cap E \quad \alpha(x) \neq 0.$$

Тогда

$$\beta(x) = \frac{1}{\alpha(x)}$$

— бесконечно большая при $x \to x_0$.

55. О свойствах бесконечно малых функций

Лемма 32.

Пусть $\alpha, \beta: E \to \mathbb{R}$ — бесконечно малые при $x \to x_0$. Тогда:

- 1. Функция $\alpha(x) + \beta(x)$ бесконечно малая при $x \to x_0$.
- 2. Функция $\alpha(x)\beta(x)$ бесконечно малая при $x \to x_0$.
- 3. Если функция $\theta: E \to \mathbb{R}$ ограничена в некоторой проколотой окрестности $\overset{o}{U}_{\delta}(x_0) \cap E$, то функция $\alpha(x)\theta(x)$ бесконечно малая при $x \to x_0$.

56. Критерий существования конечного предела в терминах бесконечно малых функций

Теорема 25 (Критерий существования конечного предела в терминах б.м.).

Пусть $f: E \to \mathbb{R}, x_0$ — предельная для E. Тогда

$$\lim_{x \to x_0} f(x) = A \in \mathbb{R} \iff f(x) = A + \alpha(x),$$

где $\alpha(x)$ — бесконечно малая при $x \to x_0$.