An Automata Based Approach for Verification of Information Flow Properties

Deepak D'Souza, Raghavendra K.R., Barbara Sprick

Indian Institute of Science, Bangalore, India

Granting, restricting & controlling the flow of information

Granting, restricting & controlling the flow of information

Goguen, Meseguer, '82 - Non-Interference

"What one group of users does has no effect on what other group of users does"

Granting, restricting & controlling the flow of information

Goguen, Meseguer, '82 - Non-Interference

"What one group of users does has no effect on what other group of users does"

Granting, restricting & controlling the flow of information

Goguen, Meseguer, '82 - Non-Interference

"What one group of users does has no effect on what other group of users does"

Granting, restricting & controlling the flow of information

Goguen, Meseguer, '82 - Non-Interference

"What one group of users does has no effect on what other group of users does"

Can we automate Verification of Security?

Events. V isible, C onfidential, N either

Events. V isible, C onfidential, N either

Trace: finite sequence of events

Events. V isible, C onfidential, N either

Trace: finite sequence of events

System: sets of traces

Events. V isible, C onfidential, N either

Trace: finite sequence of events

System: sets of traces

Trace based information flow properties in BSPs

Events. V isible, C onfidential, N either

Trace: finite sequence of events

System: sets of traces

Trace based information flow properties in BSPs

BSP Deletion (D)

Events. V isible, C onfidential, N either

Trace: finite sequence of events

System: sets of traces

Trace based information flow properties in BSPs

BSP Insertion (I)

Events. *V* isible, *C* onfidential, *N* either

Trace: finite sequence of events

System: sets of traces

Trace based information flow properties in BSPs

BSP Insert X-Admissible (IA^X)

Events. *V* isible, *C* onfidential, *N* either

Trace: finite sequence of events

System: sets of traces

Trace based information flow properties in BSPs

BSP Insert X-Admissible (IA^X)

Generalized Non-Interference - I and D

Noninference - R


```
V = \{SendPIN, Repl\} C = \{SetPIN\} N = \phi
```



```
V = \{SendPIN, Repl\}
C = \{SetPIN\}
N = \phi
Tr = \{ \begin{array}{c} SetPIN \ SendPIN \ Repl, \\ SendPIN \end{array} \} + \text{prefixes}
```



```
V = \{SendPIN, Repl\}
C = \{SetPIN\}
N = \phi
Tr = \{SetPIN \ SendPIN \ Repl, SendPIN \} + \text{prefixes}
```

Confidentiality compromised. BSP Deletion fails


```
V = \{SendPIN, Repl\} C = \{SetPIN\} N = \phi
```

 $C = \{SetPIN\}$

 $N = \phi$


```
V = \{SendPIN, Repl\}
C = \{SetPIN\}
N = \phi
Tr = \{ \begin{array}{c} SetPIN \ SendPIN \ Repl, \\ SendPIN \ Repl \end{array} \} + \text{prefixes}
```

Confidentiality maintained. BSP Deletion holds

Can we automate the verification of security properties?

Can we automate the verification of security properties?

Properties of sets of traces, Classical Model-checking techniques (Temporal Logic etc) cannot be used

Can we automate the verification of security properties?

Properties of sets of traces, Classical Model-checking techniques (Temporal Logic etc) cannot be used

Unwinding verification technique - Not Complete

Can we automate the verification of security properties?

Properties of sets of traces, Classical Model-checking techniques (Temporal Logic etc) cannot be used

Unwinding verification technique - Not Complete

Good News. For finite systems, Yes

Can we automate the verification of security properties?

Properties of sets of traces, Classical Model-checking techniques (Temporal Logic etc) cannot be used

Unwinding verification technique - Not Complete

Good News. For finite systems, Yes

Automated Verification technique - BSP on Finite State Automaton

L be a language over Σ , X subset of Σ

L be a language over Σ , X subset of Σ

L be a language over Σ , X subset of Σ

L be a language over Σ , X subset of Σ

 $\begin{array}{l} L\!\upharpoonright_{\!X}:=\{\tau\!\upharpoonright_{\!X}\mid\tau\ \text{in}\ L\},\\ \tau\!\upharpoonright_{\!X}, \ \text{deletes events that are not elements of}\ X \end{array}$

L be a language over Σ , X subset of Σ

```
\begin{array}{l} L\!\upharpoonright_{\!X}:=\{\tau\!\upharpoonright_{\!X}\mid\tau\ \text{in}\ L\},\\ \tau\!\upharpoonright_{\!X}, \ \text{deletes events that are not elements of}\ X \end{array}
```

 $I\text{-del}(L) := \{\alpha\beta \mid \alpha c\beta \text{ in } L, \text{ no } C \text{ events in } \beta\}$ deletes the last occurring C-event

L be a language over Σ , X subset of Σ

```
\begin{array}{l} L\!\upharpoonright_{\!X}:=\{\tau\!\upharpoonright_{\!X}\mid\tau\ \text{in}\ L\},\\ \tau\!\upharpoonright_{\!X}, \ \text{deletes events that are not elements of}\ X \end{array}
```

I- $del(L) := {\alpha\beta \mid \alpha c\beta \text{ in } L, \text{ no } C \text{ events in } \beta}$ deletes the last occurring C-event

I-ins(L) := { $\alpha c\beta \mid \alpha\beta$ in L, no C events in β } inserts a C-event in a position after which no C-events occur

L be a language over Σ , X subset of Σ

```
\begin{array}{l} L\!\upharpoonright_{\!X}:=\{\tau\!\upharpoonright_{\!X}\mid\tau\ \text{in}\ L\},\\ \tau\!\upharpoonright_{\!X}, \ \text{deletes events that are not elements of}\ X \end{array}
```

I- $del(L) := {\alpha\beta \mid \alpha c\beta \text{ in } L, \text{ no } C \text{ events in } \beta}$ deletes the last occurring C-event

 $\emph{I-ins}(L) := \{ \alpha \emph{c} \beta \mid \alpha \beta \text{ in } L, \text{ no } \emph{C} \text{ events in } \beta \}$ inserts a \emph{C} -event in a position after which no \emph{C} -events occur

I-ins-adm^X(L):= { $\alpha c\beta \mid \alpha\beta$ in L, no C events in β , there exists γc in L, $\gamma = \bar{\chi} \alpha$ }

Language Inclusion Problem

"L satisfies a BSP P" is reduced to " $op_1(L) \subseteq op_2(L)$ "

Language Inclusion Problem

"L satisfies a BSP P" is reduced to " $op_1(L) \subseteq op_2(L)$ "

- Removal R iff $L \upharpoonright_V \subseteq_N L$.
- Deletion D iff I-del $(L) \subseteq_N L$.
- Insertion I iff I-ins $(L) \subseteq_N L$.
- Strict Removal SR iff $L \upharpoonright_{\overline{C}} \subseteq L$.
- Strict Deletion SD iff I- $del(L) \subseteq L$.

Any τ in I-del(L)

Any τ in *I-del*(L)

 $\tau - \alpha \beta$, no *C* events in β , $\alpha c \beta$ in *L*

Language Inclusion Problem for BSP D

L satisfies BSP D

Any τ in *I-del*(L)

 $\tau - \alpha \beta$, no *C* events in β , $\alpha c \beta$ in *L*

Since L sat D, there exists $\tau' = \alpha'\beta'$ in L such that $\alpha = N \alpha'$ and $\beta = N \beta'$

Language Inclusion Problem for BSP D

L satisfies BSP D

Any τ in *I-del*(L)

 $\tau - \alpha \beta$, no C events in β , $\alpha c \beta$ in L

Since L sat D, there exists $\tau' = \alpha'\beta'$ in L such that $\alpha = N \alpha'$ and $\beta = N \beta'$

au' equivalent to au modulo $extit{N}$ -corrections

$$I$$
-del $(L) \subseteq_{\mathbb{N}} L$

$$I$$
-del $(L) \subseteq_{\mathbb{N}} L$

Any τ of form $\alpha c\beta$ in L, no C-events in β

$$I$$
-del $(L) \subseteq_{\mathbb{N}} L$

Any τ of form $\alpha c\beta$ in L, no C-events in β

 $\alpha\beta$ belongs to *I-del*(L)

Language Inclusion Problem for BSP D

$$I$$
-del $(L) \subseteq_{\mathbb{N}} L$

Any τ of form $\alpha c\beta$ in L, no C-events in β

 $\alpha\beta$ belongs to *I-del*(L)

Since I- $del(L) \subseteq_N L$, there exists $\tau' =_N \tau$

Language Inclusion Problem for BSP D

$$I$$
-del $(L) \subseteq_{\mathbb{N}} L$

Any τ of form $\alpha c\beta$ in L, no C-events in β

 $\alpha\beta$ belongs to *I-del*(L)

Since I- $del(L) \subseteq_N L$, there exists $\tau' =_N \tau$

au' as lpha'eta'

How to automate the checking of Language Inclusion?

How to automate the checking of Language Inclusion?

$$L(\mathcal{A}_1) \subseteq L(\mathcal{A}_2)$$

How to automate the checking of Language Inclusion?

$$L(\mathcal{A}_1) \subseteq L(\mathcal{A}_2)$$

Given automata for L, algorithm for constructing automata for op(L)?

How to automate the checking of Language Inclusion?

$$L(\mathcal{A}_1) \subseteq L(\mathcal{A}_2)$$

Given automata for L, algorithm for constructing automata for op(L)?

$$L\!\upharpoonright_{\!X}$$

by replacing transitions $p \xrightarrow{a} q$, with $a \notin X$, in A, by an ϵ -transition $p \xrightarrow{\epsilon} q$

How to automate the checking of Language Inclusion?

$$L(\mathcal{A}_1) \subseteq L(\mathcal{A}_2)$$

Given automata for L, algorithm for constructing automata for op(L)?

I-del(L)

How to automate the checking of Language Inclusion?

$$L(\mathcal{A}_1) \subseteq L(\mathcal{A}_2)$$

Given automata for L, algorithm for constructing automata for op(L)?

I-ins(L)

How to automate the checking of Language Inclusion?

$$L(\mathcal{A}_1) \subseteq L(\mathcal{A}_2)$$

Given automata for L, algorithm for constructing automata for op(L)?

 $\emph{I-ins-adm}^X(L)$

To sum up

To sum up

To sum up

Running time is exponential in the number of states of the given finite state transition system $2^{O(n)}$

Running time is exponential in the number of states of the given finite state transition system $2^{O(n)}$

Sound and Complete characterisation of Security properties in terms of Language-theoretic Operations

Running time is exponential in the number of states of the given finite state transition system $2^{O(n)}$

Sound and Complete characterisation of Security properties in terms of Language-theoretic Operations

Automatically verify trace based information flow properties for finite state systems

Running time is exponential in the number of states of the given finite state transition system $2^{O(n)}$

Sound and Complete characterisation of Security properties in terms of Language-theoretic Operations

Automatically verify trace based information flow properties for finite state systems

For infinite state systems?

Thank You