Topic 3

Revision Practice – Trigonometry

Question 1

(i) Find the exact value of x such that

$$3 \tan^{-1} (x-2) + \pi = 0.$$
 [3]

(ii) Solve, for $-\pi < \theta < \pi$, the equation

$$\cos 2\theta - \sin \theta - 1 = 0,$$

giving your answers in terms of π .

[5]

Question 2

Question 3

- (i) Express $2 \sin x^{\circ} 3 \cos x^{\circ}$ in the form $R \sin (x \alpha)^{\circ}$ where R > 0 and $0 < \alpha < 90$.
- (ii) Show that the equation

$$\csc x^{\circ} + 3 \cot x^{\circ} = 2$$

can be written in the form

$$2\sin x^{\circ} - 3\cos x^{\circ} = 1.$$

(iii) Solve the equation

$$\csc x^{\circ} + 3 \cot x^{\circ} = 2$$
.

for x in the interval $0 \le x \le 360$, giving your answers to 1 decimal place. [4]

Find, to 2 decimal places, the solutions of the equation

$$3 \cot^2 x - 4 \csc x + \csc^2 x = 0$$

in the interval $0 \le x \le 2\pi$. [6]

Question 4

(i) Prove that, for $\cos x \neq 0$,

$$\sin 2x - \tan x \equiv \tan x \cos 2x.$$
 [5]

[4]

(ii) Hence, or otherwise, solve the equation

$$\sin 2x - \tan x = 2 \cos 2x$$
.

for x in the interval $0 \le x \le 180^{\circ}$.

Question 5

- (i) Given that $\cos x = \sqrt{3} 1$, find the value of $\cos 2x$ in the form $a + b\sqrt{3}$, where a and b are integers. [3]
- (ii) Given that

$$2\cos(y+30)^{\circ} = \sqrt{3}\sin(y-30)^{\circ}$$
,

find the value of $\tan y$ in the form $k\sqrt{3}$ where k is a rational constant. [5] Question 6

- (i) Express $4 \sin x + 3 \cos x$ in the form $R \sin (x + \alpha)$ where R > 0 and $0 < \alpha < \frac{\pi}{2}$. [3]
- (ii) State the minimum value of $4 \sin x + 3 \cos x$ and the smallest positive value of x for which this minimum value occurs. [3]
- (iii) Solve the equation

$$4\sin 2\theta + 3\cos 2\theta = 2,$$

for θ in the interval $0 \le \theta \le \pi$, giving your answers to 2 decimal places. [4]

Question 7

(i) Show that

$$\sin (x+30)^{\circ} + \sin (x-30)^{\circ} \equiv a \sin x^{\circ},$$

where a is a constant to be found. [3]

(ii) Hence find the exact value of $\sin 75^{\circ} + \sin 15^{\circ}$, giving your answer in the form $b\sqrt{6}$. [3]

Question 8

(i) Prove the identity

$$2 \cot 2x + \tan x \equiv \cot x, \quad x \neq \frac{n}{2} \pi, \quad n \in \mathbb{Z}.$$
 [5]

(ii) Solve, for $0 \le x < \pi$, the equation

$$2 \cot 2x + \tan x = \csc^2 x - 7,$$

giving your answers to 2 decimal places.

[6]

Question

It is given that $\cos a = \frac{3}{5}$, where $0^{\circ} < a < 90^{\circ}$. Showing your working and without using a calculator to evaluate a,

- (i) find the exact value of $\sin(a 30^{\circ})$, [3]
- (ii) find the exact value of $\tan 2a$, and hence find the exact value of $\tan 3a$. [4]

Question 10

- (i) Express $(\sqrt{6})\cos\theta + (\sqrt{10})\sin\theta$ in the form $R\cos(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the value of α correct to 2 decimal places.
- (ii) Hence, in each of the following cases, find the smallest positive angle θ which satisfies the equation

(a)
$$(\sqrt{6})\cos\theta + (\sqrt{10})\sin\theta = -4$$
, [2]

(b)
$$(\sqrt{6})\cos\frac{1}{2}\theta + (\sqrt{10})\sin\frac{1}{2}\theta = 3.$$
 [4]

Answers - Revision Practice

1.	i) $x = 2 - \sqrt{3}$ ii) $\theta = -\frac{5\pi}{6}, -\frac{\pi}{6}, 0$
2.	$\sqrt{13}$, 56.3 (3sf) $x = 72.4$, 220.2 (1dp)
3.	x = 0.73, 2.41 (2dp)
4.	ii) $x = 45^{\circ}$, 63.4° (3sf), 135°
5.	$(3)^{7} - 4\sqrt{3} (3)^{\frac{3}{5}\sqrt{3}}$
6.	i) 5, $\alpha = 0.644$ (3sf) ii) -5, $x = 4.07$ (3sf) iii) $\theta = 1.04$, 3.03 (2dp)
7.	i) $a = \sqrt{3}$ ii) $\frac{1}{2}\sqrt{6}$
8.	x = 0.32, 2.68 (2dp)
9.	$\frac{1}{10}(4\sqrt{3}-3)$ ii) $-\frac{24}{7}$, $-\frac{44}{117}$
10.	i) <i>R</i> = 4, α = 52.24, ii)a) 232.2 b) 21.7