Improve visual perception and human understanding of Big Data using graph/hypergraph based visualisation

PhD student: Xavier Ouvrard xavier.ouvrard@etu.unige.ch PhD supervisor: Pr. S. Marchand-Maillet CERN supervisor: Dr. J.-M. Le Goff

CERN Project

- PhD:
 - started in 10.2016 @ UniGe
 - done within the Collaboration Spotting project @ CERN
- Aim:

Developping a generic web application to visually query datasets by enabling raw or processed links in datasets

cf: ERCIM News 111 Le Goff et al. [2017], Agocs et al. [2017]

- Different applications:
 - With JRC, EC: TIM: http://www.timanalytics.eu/
 - Used in ARIADNE, LHCb
 - Collaboration with Wigner Institute (Hungary)
 - Other applications queuing

Problematic of the PhD

- In project, before PhD:
 - Datasets
 - mostly textual data
 - stored as labelled graphs.
 - Collaborations are built choosing a reference.
 - Multiple facets of dataset are visualized.
 - Represented by pairwise relationships => graphs
- But ...
 - Collaborations:
 - sets of elements
 - n-adic relationships
 - Hypergraphs fits for n-adic relationships

RQs induced

- One global RQ:
 How to visually render collaborations so it allows smooth interaction with the data for knowledge discovery?
- Different facets of the global RQ:
 - Modelisation of dataset with collaborations:
 - Are hypergraphs pertinent to achieve interactive navigation and visualisation of facets in an information space?
 - Visualisation of hypergraphs and KD:
 - => implies answering theoretical RQ on hypergraphs:
 - How to extend the concept of adjacency in a hypergraph?
 - How to coarsen a hypergraph?

Table of contents

- Hypergraph framework
- Visualisation of large hypergraphs
- 3 Coarsening
- Adjacency and e-adjacency in hypergraphs
- 5 Towards an unnormalized e-adjacency tensor
- 6 Future work

Collaborations, KD and visualisation

- Global research question:
 How to visually render collaborations so it allows smooth interaction with the data for knowledge discovery?
- Different tasks attached to the visualisation and knowledge discovery
 - Showing the global and local structure of the data
 - Showing the links in between data
 - Showing temporal evolution
- Requirements
 - Visualisation should be quickly computed (web browsing)
 - Give optimal information depending on the task to be solved
- Evaluation
 User evaluation through task solving with baseline

Information space, facets and hypergraphs I

RQ1: Are hypergraphs pertinent to achieve interactive navigation and visualisation of facets in an information space?

Hypergraph framework designed in Ouvrard et al. [2017a].

- Building the (extended) schema hypergraph=> metadata level
- Building the reachability hypergraph=> metadata level
- Building the navigation hypergraph=> metadata level
- Building the visualisation hypergraph=> data level

DataHyperCube

Figure 1: DataHyperCube

Table of contents

- Hypergraph framework
- Visualisation of large hypergraphs
- 3 Coarsening
- Adjacency and e-adjacency in hypergraphs
- 5 Towards an unnormalized e-adjacency tensor
- 6 Future work

Visualizing hypergraphs I

Venn diagram representation and 2-section of the hypergraph

Venn diagram representation and extra-node representation of hypergraph

Visualizing hypergraphs II

"PaintSplash" representation of hypergraph

Visualizing hypergraphs III

Visualization of large hypergraphs

Research question:

How to visualize large graphs with maximal knowledge discovery, nice layouts in a time acceptable for the user?

Scaling up: raises many challenges

- hypergraphs should have nice aesthetics
- they should give meaningfull information
- allow to interact with data
- compute fast in a reasonnable time (0.5-10 s).

State of the Art: vast domain, one good reference: Tamassia [2013]

Results: article under writting

Evaluation: using metrics for visualization + user evaluation

Challenge of computations

Layout building process I

- Force directed algorithms don't scale up well
- Clusters based on modularity have problem in scaling up
- Divide and conquer approach:
 - Working on different quotient hypergraphs at different levels
 - Work separately on each component
 - Gathering

Layout building process II

Layout building process III

Layout building process IV

Advantages:

- better identification of communities
- force-directed algorithm is more efficient

Remaining problems:

- Overlapping issues=> necessity to spread information
- Nodes are not always well distributed
- Main nodes are not always clearly identifiable
- Main collaborations are not highlighted sufficiently
- => finding way of coarsening the hypergraph

Table of contents

- Hypergraph framework
- Visualisation of large hypergraphs
- 3 Coarsening
- Adjacency and e-adjacency in hypergraphs
- 5 Towards an unnormalized e-adjacency tensor
- 6 Future work

Coarsening of hypergraphs I

- Research question: How to coarsen a hypergraph?
- Task to be solved:
 - spot out the important structures of a hypergraph
- Important for
 - spraying the information shown
 - give focus on important information
- Different way of spotting out the important nodes
 - k-core approach
 - diffusion approach
 - exchange approach
 - spectral approach
- Evaluation
 - on random hypergraphs with chosen parameters,
 - on open dataset

Table of contents

- Hypergraph framework
- Visualisation of large hypergraphs
- Coarsening
- Adjacency and e-adjacency in hypergraphs
- 5 Towards an unnormalized e-adjacency tensor
- 6 Future work

Adjacency in hypergraphs I

Pu [2013] makes clear distinction between:

- pairwise relationship: relation between two entities
- co-occurence extends pairwise relations to a p-adic relationship

But in this article:

- co-occurence is represented by a 2D-matrix: pairwise view
- co-occurence is used for text.

Adjacency in hypergraphs II

In graph:

- Two nodes are said adjacent if it exists an edge linking them
 - => pairwise relationship
- Nodes incident to one given edge are said e-adjacent.
 also pairwise relationship
- E-adjacency and adjacency are equivalent in graphs

Adjacency in hypergraphs III

Extending to hypergraph:

- Two nodes are said adjacent if it exists an hyperedge linking them
 - => pairwise relationship
- Taking all nodes from one hyperedge: they are all incident to this hyperedge and these nodes are said to be e-adjacent.
 - => n-adic relationship
- There is no more equivalence in between the two notions in the general case

Adjacency in hypergraphs IV

- Research question:
 How to extend the concept of adjacency in a hypergraph?
- Motivated by the diffusion approach
- Adjacency = pairwise concept cf Pu [2013]
- In hypergraphs adjacency is more complex
- In Ouvrard and Marchand-Maillet [2017]:
 - definition of k-adjacency
 - definition of e-adjacency
 - building of an e-adjacency tensor

Table of contents

- Hypergraph framework
- Visualisation of large hypergraphs
- Coarsening
- Adjacency and e-adjacency in hypergraphs
- 5 Towards an unnormalized e-adjacency tensor
- 6 Future work

Expectations.

Slides from this part are built from Ouvrard and Marchand-Maillet [2017]

The tensor should be:

- invariant to vertex permutations either globally or at least locally.
- allow the retrieval of the hypergraph in its original form.
- the sparsest possible in between two possible choices.
- allow the retrieval of the degrees of the nodes

Decomposition of hypergraphs I

Decomposition of the hypergraph in layers

Decomposition of hypergraphs II

• Defining a direct summation of hypergraphs: Sum of two hypergraphs $\mathcal{H}_1 = (V_1, E_1)$ and $\mathcal{H}_2 = (V_2, E_2)$:

$$\mathcal{H}_1 + \mathcal{H}_2 = (V_1 \cup V_2, E_1 \cup E_2)$$
.

Direct sum if $E_1 \cap E_2 = \emptyset$. In this case the sum is written $\mathcal{H}_1 \oplus \mathcal{H}_2$.

Decomposition of hypergraphs III

Layers are k-uniform hypergraphs

$$\mathcal{H} = \bigoplus_{k=1}^{k_{\text{max}}} \mathcal{H}_k.$$

• Each layer can be modeled by a hypercubic and hypersymmetric tensor of order k and dimension n => family of e-adjacency tensors $\mathcal{A}_{\mathcal{H}} = (\mathcal{A}_k)$

Tensor, hypermatrix and homogeneous polynomials I

Technical part:

- allow to associate a tensor to a hypermatrix by choosing a basis
- ullet a hypermatrix of order k and dimension n which is symmetrical and cubical to an homogeneous polynomial of degree k

Tensor, hypermatrix and homogeneous polynomials II

Applied to hypergraphs:

- Hypergraph
- => layers of *k*-uniform hypergraphs
- => family of unnormalized tensor $\mathcal{A}_{\mathcal{H}}=(\mathcal{A}_k)$ and hypermatrix (A_k) symmetric and cubical
- \Rightarrow family of homogeneous polynomials P_k
- => homogeneous polynomials can be reduced and ordered

Gathering layers I

• Key idea behind:

$$(k) + 1 = (k+1)$$

- Layer k: k-uniform hypergraph
- Adding one element to each hyperedge allows to have k + 1-uniform hypergraph
- Merging of layer k and layer k+1 is now possible
- Iterative process

Gathering layers II

Additional element in the lower level and merging (step 1)

Gathering layers III

Additional element in the lower level and merging (step 2)

Gathering layers IV

Table of contents

- Hypergraph framework
- Visualisation of large hypergraphs
- Coarsening
- Adjacency and e-adjacency in hypergraphs
- 5 Towards an unnormalized e-adjacency tensor
- 6 Future work

Coarsening the hypergraph

- Spectral techniques for hypermatrix exist: cf Qi and Luo [2017]
- Apply them to the e-adjacency tensor => can help in finding good approximation of the original hypergraph
- Tücker decomposition of tensors => higher order SVD could help reduce the hypergraph
- Diffusion/Exchange in hypergraphs

Bibliography I

- A. Agocs, D. Dardanis, J.-M. Le Goff, and D. Proios. Interactive graph query language for multidimensional data in collaboration spotting visual analytics framework. *ArXiv e-prints*, December 2017.
- Claude Berge and Edward Minieka. *Graphs and hypergraphs*, volume 7. North-Holland publishing company Amsterdam, 1973.
- Alain Bretto. Hypergraph theory. *An introduction. Mathematical Engineering. Cham: Springer*, 2013. doi: 10.1007/978-3-319-00080-0. URL
 - http://dx.doi.org/10.1007/978-3-319-00080-0.
- Jean-Marie Le Goff, Adam Agocs, Dimitris Dardanis, Richard Forster, Xavier Ouvrard, and André Rattinger. Collaboration spotting: A visual analytics platform to assist knowledge discovery. *ERCIM News*, (111), October 2017.

Bibliography II

- Xavier Ouvrard and Stéphane Marchand-Maillet. Adjacency matrix and co-occurrence tensor of general hypergraphs: Two well separated notions. *arXiv* preprint to be published, 2017.
- Xavier Ouvrard, Jean-Marie Le Goff, and Stéphane Marchand-Maillet. An hypergraph based framework for modelisation and visualisation of high dimension multi-facetted data. *to be published*, 2017a.
- Xavier Ouvrard, Jean-Marie Le Goff, and Stéphane Marchand-Maillet. Networks of collaborations: Hypergraph modeling and visualisation. *arXiv preprint arXiv:1707.00115*, 2017b.
- Li Pu. Relational learning with hypergraphs. 2013.

Bibliography III

- L. Qi and Z. Luo. *Tensor Analysis*. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2017. doi: 10.1137/1.9781611974751. URL http://epubs.siam.org/doi/abs/10.1137/1.9781611974751.
- Roberto Tamassia, editor. Handbook on Graph Drawing and Visualization. Chapman and Hall/CRC, 2013. ISBN 978-1-5848-8412-5. URL https://www.crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125.

Hypergraphs

- Hypergraphs introduced by Berge and Minieka [1973].
- Definition of Bretto [2013]:

A hypergraph $\mathcal H$ on a finite set $V=\{v_1\,;\,v_2;\,...\,;\,v_n\}$ is a family of hyperedges $E=\{e_1,e_2,...,e_p\}$ where each hyperedge is a non-empty subset of V

Order of \mathcal{H} : |V| = nSize of \mathcal{H} : |E| = p

- Two visions of hypergraphs
 - set of elements of power set of nodes => set view
 - **extension of graphs** => *n*-adic relationship view

Adjacency in hypergraphs I

- k nodes are said k-adjacent if it exists a hyperedge that hold them.
 - k = 2: usual notion of adjacency is retrieved
 - If k vertices are k-adjacent then each subset of this k vertices of size $l \le k$ is l-adjacent.
- The nodes belonging to one given hyperedge are said e-adjacent.
- In k-uniform hypergraph:
 k-adjacency is equivalent to e-adjacency.
- In general hypergraphs: nodes that are k-adjacent with $k < k_{\max} = \max_{e \in E} |e|$ have to co-occur potentially with other nodes => k-adjacency is distinct from e-adjacency.

Example I

Reminder:
$$e_1 = \{v_1, v_2, v_3\}, e_2 = \{v_1, v_2, v_7\}, e_3 = \{v_6, v_7\}, e_4 = \{v_5\}, e_5 = \{v_4\}, e_6 = \{v_3, v_4\} \text{ and } e_7 = \{v_4, v_7\}.$$

Using:

■ the degree-normalized adjacency tensor

$$\mathcal{A}_k = \frac{1}{(k-1)!} \mathcal{A}_{k \, raw}$$

lacksquare and the normalizing coefficients $c_k=rac{1}{k}$

It follows:

$$\blacksquare R_1(z) = z_4 + z_5$$

$$R_2(z) = z_4 y_1 + z_5 y_1 + \frac{2!}{2} (z_3 z_4 + z_6 z_7 + z_4 z_7)$$

Example II

Reminder:
$$e_1 = \{v_1, v_2, v_3\}, e_2 = \{v_1, v_2, v_7\}, e_3 = \{v_6, v_7\}, e_4 = \{v_5\}, e_5 = \{v_4\}, e_6 = \{v_3, v_4\} \text{ and } e_7 = \{v_4, v_7\}.$$

• e-adjacency tensor of ${\cal H}$ is a symmetric cubical tensor of order 3 and dimension 9, described by:

$$r_{489} = r_{589} = r_{349} = r_{679} = r_{479} = r_{123} = r_{127} = \frac{1}{3!}.$$

The other remaining not null elements are obtained by permutation on the indices.

• Degree of one vertex: $deg(v_4) = 3!(r_{489} + r_{349} + r_{479}) = 3.$

