NOTE on R

zy

2021年3月5日

目录

1	创建数据集			2		1.2.5 因子	5
	1.1	数据集	真的定义	2		1.2.6 列表	5
	1.2	数据结	· 构	2	1.3	数据的输入	6
		1.2.1	向量	2			
		1.2.2	矩阵	3		数据集的标注	
		1.2.3	数组	3		1.4.1 值标签	6
		1.2.4	数据框	4	1.5	处理数据对象的实用函数	6

Chapter 1

创建数据集

1.1 数据集的定义

不同的行业对于数据集的行和列叫法不同。统计学家称它们为观测(observation)和变量 (variable),数据库分析师则称其为记录(record)和字段(field),数据挖掘/机器学习学科的研究者则把它们叫做示例(example)和属性(attribute)。我们在本书中通篇使用术语观测和变量。

1.2 数据结构

1.2.1 向量

向量是用于存储数值型、字符型或逻辑型数据的一维数组。执行组合功能的函数 $\mathbf{c}()$ 可用来创建向量.

```
1 > data("iris")
  > iris <- data.frame(iris)</pre>
  > sl <- iris$Sepal.Length
  > sl
6 [1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9 5.4 4.8 4.8 4.3
  [15] 5.8 5.7 5.4 5.1 5.7 5.1 5.4 5.1 4.6 5.1 4.8 5.0 5.0 5.2
  [29] 5.2 4.7 4.8 5.4 5.2 5.5 4.9 5.0 5.5 4.9 4.4 5.1 5.0 4.5
  [43] 4.4 5.0 5.1 4.8 5.1 4.6 5.3 5.0 7.0 6.4 6.9 5.5 6.5 5.7
 [57] 6.3 4.9 6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7 5.6 5.8 6.2 5.6
 [71] 5.9 6.1 6.3 6.1 6.4 6.6 6.8 6.7 6.0 5.7 5.5 5.5 5.8 6.0
12 [85] 5.4 6.0 6.7 6.3 5.6 5.5 5.5 6.1 5.8 5.0 5.6 5.7 5.7 6.2
13 [99] 5.1 5.7 6.3 5.8 7.1 6.3 6.5 7.6 4.9 7.3 6.7 7.2 6.5 6.4
14 [113] 6.8 5.7 5.8 6.4 6.5 7.7 7.7 6.0 6.9 5.6 7.7 6.3 6.7 7.2
  [127] 6.2 6.1 6.4 7.2 7.4 7.9 6.4 6.3 6.1 7.7 6.3 6.4 6.0 6.9
  [141] 6.7 6.9 5.8 6.8 6.7 6.7 6.3 6.5 6.2 5.9
17
  > summary(s1)
18
  Min. 1st Qu.
                 Median Mean 3rd Qu.
                                           Max.
19
          5.100
                 5.800 5.843
                                   6.400
                                           7.900
  4.300
21 > str(sl)
```

```
22 num [1:150] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

23

24 > sl[4]

25 [1] 4.6

26 > sl[c(1,2,3)]

27 [1] 5.1 4.9 4.7

28 > sl[1:5]

29 [1] 5.1 4.9 4.7 4.6 5.0
```

1.2.2 矩阵

```
1 > i1 <- iris[1:4,1:4]</pre>
2 > i1 <- as.matrix(i1)</pre>
  > i1
     Sepal.Length Sepal.Width Petal.Length Petal.Width
               5.1
                                           1.4
                            3.5
  1
               4.9
                            3.0
                                           1.4
   2
                                                        0.2
                            3.2
   3
               4.7
                                           1.3
                                                        0.2
  4
               4.6
                            3.1
                                           1.5
                                                        0.2
  > i1 <- as.vector(i1)</pre>
10
12 [1] 5.1 4.9 4.7 4.6 3.5 3.0 3.2 3.1 1.4 1.4 1.3 1.5 0.2 0.2
13 [15] 0.2 0.2
  > i2 <- matrix(i1,nrow = 4,ncol = 4,byrow = T,dimnames = list(c("a1","a2","a3","</pre>
       a4"), c("b1", "b2", "b3", "b4")))
  > i2
       b1 b2 b3 b4
16
  a1 5.1 4.9 4.7 4.6
  a2 3.5 3.0 3.2 3.1
   a3 1.4 1.4 1.3 1.5
   a4 0.2 0.2 0.2 0.2
20
22 > i2[1,]
23 b1 b2 b3 b4
24 5.1 4.9 4.7 4.6
25 \rightarrow i2[1,4]
  [1] 4.6
  \rightarrow i2[1,c(2,3)]
  b2 b3
  4.9 4.7
```

1.2.3 数组

数组(array)与矩阵类似,但是维度可以大于 2.

```
1 > i3 <- array(iris$Sepal.Length[1:24],c(2,3,4))</pre>
2 > i3
3 , , 1
  [,1] [,2] [,3]
  [1,] 5.1 4.7 5.0
  [2,] 4.9 4.6 5.4
  , , 2
10
  [,1] [,2] [,3]
  [1,] 4.6 4.4 5.4
  [2,] 5.0 4.9 4.8
14
  , , 3
16
  [,1] [,2] [,3]
  [1,] 4.8 5.8 5.4
18
  [2,] 4.3 5.7 5.1
19
20
  , , 4
21
22
  [,1] [,2] [,3]
23
  [1,] 5.7 5.4 4.6
  [2,] 5.1 5.1 5.1
```

1.2.4 数据框

数据框可通过函数data.frame()创建:

```
mydata <- data.frame(col1, col2, col3,...)
```

其中的列向量*col1*, *col2*, *col3*,... 可为任何类型(如字符型、数值型或逻辑型)。每一列的名称可由函数names指定。代码清单2-4清晰地展示了相应用法。

```
> head(iris)
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
                                                     0.2 setosa
              5.1
                           3.5
                                         1.4
  1
3
              4.9
                           3.0
                                                     0.2 setosa
  2
                                         1.4
  3
              4.7
                           3.2
                                         1.3
                                                     0.2 setosa
              4.6
                           3.1
                                         1.5
                                                     0.2 setosa
  5
              5.0
                           3.6
                                         1.4
                                                     0.2 setosa
                           3.9
                                         1.7
                                                     0.4 setosa
              5.4
8
  > head(iris[1:2])
10
     Sepal.Length Sepal.Width
11
```

```
1
                5.1
                              3.5
12
                4.9
                              3.0
   2
13
                4.7
                              3.2
   3
14
   4
                4.6
                              3.1
15
                5.0
                              3.6
   5
16
                5.4
                              3.9
   6
17
   > head(iris[c("Sepal.Length","Sepal.Width")])
18
     Sepal.Length Sepal.Width
19
  1
                5.1
20
                              3.0
   2
                4.9
21
   3
                4.7
                              3.2
22
                4.6
                              3.1
23
  5
                5.0
                              3.6
24
                5.4
25
  > head(iris$Petal.Length)
  [1] 1.4 1.4 1.3 1.5 1.4 1.7
```

函数 attach() 可将数据框添加到 R 的搜索路径中。R 在遇到一个变量名以后,将检查搜索路径中的数据框,以定位到这个变量。

函数 detach() 将数据框从搜索路径中移除。值得注意的是,detach() 并不会对数据框本身做任何处理。这句是可以省略的,但其实它应当被例行地放入代码中,因为这是一个好的编程习惯。

函数 attach() 和 detach() 最好在你分析一个单独的数据框,并且不太可能有多个同名对象时使用。任何情况下,都要当心那些告知某个对象已被屏蔽(masked)的警告。

1.2.5 因子

如你所见,变量可归结为名义型、有序型或连续型变量。名义型变量是没有顺序之分的类别变量。有序型变量表示一种顺序关系,而非数量关系。类别(名义型)变量和有序类别(有序型)变量在 R 中称为因子(factor)。因子在 R 中非常重要,因为它决定了数据的分析方式以及如何进行视觉呈现。你将在本书中通篇看到这样的例子。函数 factor() 以一个整数向量的形式存储类别值,整数的取值范围是 [1… k](其中 k 是名义型变量中唯一值的个数),同时一个由字符串(原始值)组成的内部向量将映射到这些整数上。

要表示有序型变量,需要为函数 factor() 指定参数 ordered=TRUE。你可以通过指定 levels 选项来覆盖默认排序。

1.2.6 列表

列表(list)是R的数据类型中最为复杂的一种。一般来说,列表就是一些对象(或成分,component)的有序集合。列表允许你整合若干(可能无关的)对象到单个对象名下。例如,某个列表中可能是若干向量、矩阵、数据框,甚至其他列表的组合。可以使用函数 list() 创建列表

```
mylist <- list(object1, object2, ...)</pre>
```

其中的对象可以是目前为止讲到的任何结构。你还可以为列表中的对象命名:

```
mylist <- list(name1=object1, name2=object2, ...)</pre>
```

1.3 数据的输入

图 1.1: 可供 R 导入的数据源

R 中的函数 edit() 会自动调用一个允许手动输入数据的文本编辑器。

1 > iris2 <- edit(iris)</pre>

1.4 数据集的标注

1.4.1 值标签

函数factor()可为类别型变量创建值标签。继续上例,假设你有一个名为gender的变量,其中1表示男性,2表示女性。你可以使用代码:

来创建值标签。这里levels代表变量的实际值,而labels表示包含了理想值标签的字符型向量。

1.5 处理数据对象的实用函数

函 数	用 途
length(object)	显示对象中元素/成分的数量
dim(object)	显示某个对象的维度
str(object)	显示某个对象的结构
class(object)	显示某个对象的类或类型
mode(object)	显示某个对象的模式
names(object)	显示某对象中各成分的名称
c(object, object,)	将对象合并入一个向量

cbind(object, object,)	按列合并对象
rbind(object, object,)	按行合并对象
Object	输出某个对象
head(object)	列出某个对象的开始部分
tail(object)	列出某个对象的最后部分
ls()	显示当前的对象列表
rm(object, object,)	删除一个或更多个对象。语句rm(list = ls()) 将删除当前工作环境中的几乎所有对象*
<pre>newobject <- edit(object)</pre>	编辑对象并另存为newobject
fix(object)	直接编辑对象