Lista 8

Questão 6.

Seja $f: I \to \mathbb{R}$ derivável no intervalo aberto I. Um ponto crítico de f é um ponto $c \in I$ tal que f'(c) = 0. O ponto crítico c é dito não-degenerado quando f''(c) existe e é diferente de zero. Demonstre que:

- (a) Se $f \in C^1$, para cada intervalo compacto $[a, b] \subset I$, o conjunto de pontos críticos de f pertencentes a [a, b] é fechado.
- (b) Os pontos de máximos e mínimos locais de f são críticos. Um ponto crítico nãodegenerado deve ser de máximo local ou de mínimo local.
- (c) Se $c \in I$ é um ponto crítico não degenerado para f, então existe $\delta > 0$ tal que não há outros pontos critícos de f no intervalo $(c \delta, c + \delta)$.

Prova:

(a) Seja $S = \{x \in [a, b] : x \text{ \'e ponto cr\'itico de } f\}$. Devemos demonstrar que S 'e fechado. Sabemos que $S \subset \overline{S}$.

Tomamos $c \in \overline{S}$, então existe uma sequência (x_n) cujos elementos pertencem a S tal que $x_n \longrightarrow c$ $(c \in [a,b])$. Como $f \in C^1$, a função f' é contínua em [a,b]. Usando a continuidade de f' e a convergência $x_n \longrightarrow c$ obtemos

$$\underbrace{f'(x_n)}_{=0} \longrightarrow f'(c).$$

Portanto f'(c) = 0 e $c \in S$.

(b) Seja $c \in I$ um máximo local de f, mostremos que f'(c) = 0. Pela definição de máximo local, existe um $\delta_1 > 0$ tal que

$$f(c) \ge f(x)$$
 para todo $x \in (c - \delta_1, c + \delta_1)$.

Supor que f'(c)>0, por definição de limite existe $\delta>0$ com $\delta<\delta_1$ tal que

$$x \in (c - \delta, c + \delta) \Longrightarrow -f'(c) < \frac{f(x) - f(c)}{x - c} - f'(c) < f'(c) \quad (1)$$

Escolhemos $y \in (c, c + \delta)$ (c < y) então por (1)

$$-f'(c) < \frac{f(y) - f(c)}{y - c} - f'(c) \Longrightarrow 0 < \frac{f(y) - f(c)}{y - c}$$

o que é absurdo pois f(y) < f(c) e c < y. Por tanto $f'(c) \le 0$. Usando a mesma estratégia anterior, podemos demonstrar que f'(c) < 0 é absurdo. Finalmente f'(c) = 0.

Seja $c \in I$ um ponto crítico não degenerado. Suponha que f''(c) > 0, demonstraremos que c é um mínimo local. Pela formula de Taylor

$$f(c+h) = f(c) + \underbrace{f'(c)}_{=0} h + f''(c) \frac{h^2}{2} + r(h)$$
 (1)

onde $\lim_{h\to 0} \frac{r(h)}{h^2} = 0$. Dado $\epsilon = \frac{f''(c)}{2} > 0$ existe um $\delta > 0$ tal que

para cada
$$h \in (-\delta, +\delta) \setminus \{0\} \longrightarrow -\frac{f''(c)}{2} < \frac{r(h)}{h^2} < \frac{f''(c)}{2}$$
 (2)

De (1) e (2), obtemos

$$f(c+h) - f(c) = f''(c)\frac{h^2}{2} + r(h) > 0$$
 para $0 < |h| < \delta$,

isto é, f(c+h) > f(c) para qualquer $h \in (-\delta, +\delta) \setminus \{0\}$. Por conseguinte, c é um mínimo local.

Analogamente se f''(c) < 0, c é um máximo local.

(c) Suponha f''(c)>0. Sabemos que $\lim_{x\to c}\frac{f'(x)-f'(c)}{x-c}=f''(c)$. Por definição de limite, para $\epsilon=f''(c)>0$ existe $\delta>0$ tal que

para cada
$$x \in (c - \delta, c + \delta) \setminus \{c\} \Longrightarrow -f''(c) < \frac{f'(x) - f'(c)}{x - c} - f''(c),$$

ou seja,

para cada
$$x \in (c - \delta, c + \delta) \setminus \{c\} \Longrightarrow 0 < \frac{f'(x)}{x - c}$$
.

Finalmente $f'(x) \neq 0$, $\forall x \in (c - \delta, c + \delta) \setminus \{c\}$, isto significa que $(c - \delta, c + \delta) \setminus \{c\}$ não contem pontos críticos.

Analogamente se f''(c) < 0, repetimos o processo descrito acima.

Questão 10.

Seja $f:[a,b]\to\mathbb{R}$ contínua, derivável em (a,b). Suponha f(a)=f(b)=0. Demonstre que, dado arbitrariamente $k\in\mathbb{R}$, existe $c\in(a,b)$ tal que f'(c)=k.f(c). Sugestão: Tome $p(x)=f(x).e^{-kx}$ e aplique o Teorema de Rolle.

Prova:

Dado $k \in \mathbb{R}$, definimos a função $p(x) = f(x).e^{-kx}$ para $x \in [a, b]$ e afirmamos que:

- p(a) = p(b) = 0;
- $p'(x) = f'(x) \cdot e^{-kx} kf(x) \cdot e^{-kx} = (f'(x) kf(x)) \cdot e^{-kx}$

Aplicando o Teorema de Rolle à função p, existe $c \in (a, b)$ tal que p'(c) = 0, isto é,

$$0 = p'(c) = (f'(c) - kf(c)) \cdot e^{-kc} \Rightarrow 0 = f'(c) - kf(c).$$

Finalmente f'(c) = kf(c).