CSE 3010 – Data Structures & Algorithms

Lecture #47

What will be covered today

Huffman coding – Application of heap data structure

Huffman coding

- Developed by David Huffman in 1952
- Published a paper titled 'A Method for construction of minimum redundancy codes'
- Algorithm that works with integer length codes
- Used to encode character in a file
- Huffman code is a special type of optimal prefix code
- Huffman code is used for lossless data compression
- Process of finding the optimal prefix code is called Huffman coding
- Output from Huffman algorithm is a variable-length code for encoding an input symbol

Understanding Huffman algorithm

Letter of the Alphabet	Fixed-length Code	Variable-length Code	Frequency Distribution
е	010	0	20
h	000	01	6
I	011	11	9
О	110	1	16

Word	Encoded Using Fixed- length Code	Encoded Using Variable-length Code
he	000010	010 or 010
hell	000010011011	0101111 or 0101111
hello	000010011011110	Similarly we can have multiple combinations for hello

How does Huffman algorithm work

- Input to the algorithm
 - Character set in the file {e, h, l, o}
 - Frequency of each character in the file [20, 6, 9, 16]
- Output of the algorithm
 - Variable-length code of the encoded input symbol(s)
- Steps [illustrated with the example in the class nores]:
 - 1. Pick the two symbols with the lowest frequencies (h, 1)
 - 2. Make one of them the left child (h-6) and the other the right child (1-9)
 - 3. Add a root to the left and the right child (hl-15)
 - 4. Remove the two symbols (h, 1), used to form the new root, from the character set
 - 5. Replace the character set with the root (hl-15) [this will have h and l as left and right children]
 - Repeat Steps 1 to 5 until only one symbol is left in the character set