Formale Grundlagen der Informatik 3

TECHNISCHE UNIVERSITÄT DARMSTADT

Exkurs: Komplexitätstheorie

Prof. Stefan Katzenbeisser

Security Engineering Group Technische Universität Darmstadt

skatzenbeisser@acm.org http://www.seceng.informatik.tu-darmstadt.de

Komplexität von Algorithmen und Komplexität von Problemen

Komplexität von Algorithmen:

- Analyse eines bestimmten Algorithmus
- Konkrete Laufzeit angängig von Implementierung, daher meist Nutzung von O-Notation
 - LTL-Model Checking: $O(|\mathcal{M}|2^{|\varphi|})$ CTL: $O(|\mathcal{M}||\varphi|)$

Komplexität von Problemen:

- Es kann mehrere Algorithmen geben die das gleiche Ergebnis erzielen, aber drastisch unterschiedliche Laufzeit haben
 - → Beispiel: Sortieralgorithmen
- Versuch die "minimale" Komplexität des Problems zu bestimmen
- Problem: "optimale" Algorithmen sind meist nicht bekannt!

Turing-Maschinen (1)

Quelle: http://aturingmachine.com

Turing-Maschinen (2)

Charakterisiert durch:

- Endlicher Zustand
- Unendliches Band, das in einzelne Zellen eingeteilt ist
- Jede Zelle enthält ein Symbol
- Ein Berechnungsschritt:
 - Liest das "aktuelle" Symbol auf dem Band
 - Bestimmt das neu zu schreibende Symbol basierend auf aktuellem Zustand und aktuellem Bandsymbol; endliches Regelwerk!
 - Schreibt das "neue" Symbol; wechselt Zustand
 - Verschiebt das Band potentiell einen Schritt nach links oder rechts.
- Maschine terminiert falls Endzustand erreicht wird.
- → Formale Definition siehe FGDI1

Entscheidungsprobleme

- Fokus der Komplexitätstheorie sind Entscheidungsprobleme
 - Antwort binär: trifft zu/nicht zu
 - Beispiele: Ist die SAT-Formel erfüllbar? Ist eine Kripke-Struktur Modell einer Formel? Ist der kürzeste Pfad zwischen zwei Knoten in einem Graphen kleiner als 5 Schritte? ...
- Formalisierung durch Sprachen
 - lacktriangle Gegeben: Sprache $L\subseteq \Sigma^*$ über einem endlichen Alphabet Σ
 - Wir codieren Instanzen eines Problems als Element in L
 - Lösung eines konkreten Problems erfordert Entscheidung ob es in L ("positiv") oder $\Sigma^* \setminus L$ ("negativ") liegt.

Deterministische und Nichtdeterministische Turing-Maschinen (1)

Deterministische TM:

- Zu jedem internen Zustand der TM (Zustand und Bandsymbol) gibt es genau eine Möglichkeit die Berechnung fortzusetzen.
- Lösung des Entscheidungsproblems:
 - Probleminstanz wird vor Berechnung auf Band geschrieben
 - Maschine terminiert
 - Maschine endet entweder in akzeptierendem oder nicht akzeptierendem Zustand
- Zeitkomplexität: Zähle die Zahl der Zustandsübergänge einer TM

Eine deterministische TM entscheidet die Sprache L in Zeitf(n) falls die TM für alle Instanzen $x \in L$ nach maximal f(|x|) Schritten in einem akzeptierendem Zustand und für alle $x \not\in L$ nach maximal f(|x|) in einem nicht-akzeptierenden Zustand endet.

Deterministische und Nichtdeterministische Turing-Maschinen (2)

Deterministische TM:

Eine deterministische TM entscheidet die Sprache L in Zeitf(n) falls die TM für alle Instanzen $x \in L$ nach maximal f(|x|) Schritten in einem akzeptierendem Zustand und für alle $x \not\in L$ nach maximal f(|x|) in einem nicht-akzeptierenden Zustand endet.

Platzkomlexität:

Zähle die Anzahl der "benutzen" Zellen auf TM-Band bis TM

Eine deterministische TM entscheidet die Sprache L in Platz f(n) falls die TM für alle Instanzen $x \in L$ in einem akzeptierenden und für alle Instanzen $x \notin L$ in einem nicht akzeptierenden Zustand endet und dabei maximal f(|x|) Zellen des Bandes nutzt.

Deterministische und Nichtdeterministische Turing-Maschinen (3)

Deterministische Komplexitätsklassen:

Die Klasse $\mathbf{TIME}(f(n))$ ist die Menge aller Sprachen $L \subseteq \Sigma^*$ für die eine deterministische Turing-Maschine existiert, die L in Zeit f(n) entscheidet.

Die Klasse $\mathbf{SPACE}(f(n))$ ist die Menge aller Sprachen $L\subseteq \Sigma^*$ für die eine deterministische Turing-Maschine existiert, die L in Platz f(n) entscheidet.

Deterministische und Nichtdeterministische Turing-Maschinen (4)

Nichtdeterministische TM:

- Zu jedem internen Zustand der TM (Zustand und Bandsymbol) gibt es mehrere Möglichkeiten die Berechnung fortzusetzen.
- Berechnungsbaum: Knoten sind Konfigurationen der Maschine, Kanten mögliche Nachfolger

Deterministische und Nichtdeterministische Turing-Maschinen (5)

Nichtdeterministische TM:

- Für "positive" Probleminstanzen reicht ein akzeptierender Pfad aus!
- Zeitkomplexität ist die maximale Tiefe des Baumes.

Eine nichtdeterministische TM entscheidet die Sprache L in Zeitf(n) falls es für alle $x \in L$ einen Berechnungspfad gibt, der in einem akzeptierenden Zustand endet sowie für alle $x \notin L$ alle Berechnungspfade in einem nicht-akzeptierenden Zustand enden und alle Pfade maximal f(|x|) Schritte lang sind.

Eine nichtdeterministische TM entscheidet die Sprache L in Platz f(n) falls es für alle $x \in L$ einen Berechnungspfad gibt, der in einem akzeptierenden Zustand endet sowie für alle $x \not\in L$ alle Berechnungspfade in einem nicht-akzeptierenden Zustand enden und in jedem Pfad maximal f(|x|) Zellen des Bandes nutzt.

Deterministische und Nichtdeterministische Turing-Maschinen (6)

Nichtdeterministische Komplexitätsklassen:

Die Klasse $\mathbf{NTIME}(f(n))$ ist die Menge aller Sprachen $L \subseteq \Sigma^*$ für die eine nichtdeterministische Turing-Maschine existiert, die L in Zeit f(n) entscheidet.

Die Klasse $\mathbf{NSPACE}(f(n))$ ist die Menge aller Sprachen $L\subseteq \Sigma^*$ für die eine nichtdeterministische Turing-Maschine existiert, die L in Platz f(n) entscheidet.

Konkrete Komplexitätsklassen

Zeitkomplexität:

- Polynomielle Zeit: $\mathbf{P} = \mathbf{TIME}(n^k)$
- Nichtdeterministisch-polynomielle Zeit: $NP = NTIME(n^k)$
- Exponentielle Zeit: $\mathbf{EXP} = \mathbf{TIME}(2^{n^k})$

Platzkomplexität

- Logarithmischer Platz: $L = SPACE(\log n)$
- Nichtdeterministischer logarithmischer Platz: $NL = NSPACE(\log n)$
- Polynomieller Platz: $\mathbf{PSPACE} = \mathbf{SPACE}(n^k)$
- Exponentieller Platz: $\mathbf{EXPSPACE} = \mathbf{SPACE}(2^{n^k})$

Typische Probleme: Klasse P

- P enthält alle in polynomieller Zeit lösbaren Entscheidungsprobleme
- CIRCUITVALUE liegt in P

CIRCUITVALUE

Eingabe: Boolescher Schaltkreis und Werte aller Drähte der Eingabe

Ausgabe: (Boolescher) Wert des Schaltkreises

Klasse NP

 NP enthält alle Probleme, die von einer nichtdeterministischen TM in polynomieller Zeit gelöst werden können.

 Äquivalent: NP enthält alle Probleme bei denen man in polynomieller Zeit eine Lösung "verifizieren kann".

Idee: rate einen "Zeugen" für die Lösung und verifiziere dass diesen Zeugen; ist beides polynomiell möglich so ist das Problem in NP.

 "Zeuge" kann Pfad im Berechnungsbaum sein.

Typische Probleme: Klasse NP

- NP enthält alle Probleme, die von einer nichtdeterministischen TM in polynomieller Zeit gelöst werden können.
- SAT liegt in NP

SAT

Eingabe: Aussagenlogische Formel

Ausgabe: 1 falls Formel erfüllbar ist, d.h. eine Belegung der Variablen existiert

die die Formel zu TRUE evaluiert

Beweisidee: "rate" Belegung und verifiziere dass diese Belegung die Formel zu TRUE evaluieren lässt. Existiert daher eine "erfolgreiche" Belegung, so gibt es einen Berechnungspfad der in einen akzeptierenden Zustand führt; gibt es keine "erfolgreiche" Belegung so enden alle Pfade in einem nicht-akzeptierenden Zustand.

Typische Probleme: Klasse NL

- NL enthält alle Probleme, die von einer nichtdeterministischen TM mit logarithmischem Platz gelöst werden können.
- REACHABILITY liegt in NL

REACHABILITY

Eingabe: Graph G sowie zwei Knoten x und y

Ausgabe: 1 falls in G zwischen x und y ein Pfad existiert

Beweisidee: Schreibe x aufs Band; rate iterativ die Nummer eines neuen Knotens z und teste ob dieser von x erreichbar ist: falls z=y, gib 1 aus, falls z nicht erreichbar gib o aus, sonst ersetze y mit z und führe die nächste Iteration aus. Nach |G| Iterationen bricht der Algorithmus mit Ausgabe o ab.

→ Gibt es einen Pfad, so gibt es einen Ablauf des Algorithmus der 1 ausgibt!
Platz (=2 Knotennummern!) ist maximal logarithmisch in der Größe der Eingabe

Relationen zwischen den Klassen

Es gilt nach Definition:

 $\mathbf{L} \subseteq \mathbf{NL}$

 $\mathbf{P} \subseteq \mathbf{NP}$

Für jede Space-Klasse gilt:

 $\mathbf{NSPACE}(f(n)) \subseteq \mathbf{TIME}(k^{f(n) + \log n})$

 $\mathbf{NTIME}(f(n)) \subseteq \mathbf{SPACE}(f(n))$

Daher:

 $\mathbf{NL}\subseteq \mathbf{P}$

 $\mathbf{NP} \subseteq \mathbf{PSPACE}$

Aber: $\mathbf{P} \subset \mathbf{EXP}$

Reduktionen

- Problem: wie kann man die Komplexität verschiedener Probleme vergleichen?
- Der "bestmögliche" Algorithmus ist oft nicht bekannt!
- Daher: Vergleich zwischen Problemen in einer Klasse die beste Option
- Reduktion ermöglicht das "Umschreiben" einer Probleminstanz in eine andere.
- Reduktion selbst muss ein "effizientes" Verfahren sein
 - ... in der Regel ein polynomieller Algorithmus
 - ... oder sogar schwächer: logspace-Reduktionen

Beispiel: Hamilton-Pfad in einem Graphen

HAMILTON PATH

Eingabe: Graph G

Ausgabe: 1 wenn ein Pfad existiert, der alle Knoten von G besucht, sonst o

Beispiel:

- Reduziere HAMILTON PATH auf SAT
- Wenn wir SAT lösen können, dann auch HAMILTON PATH mit einem ähnlich hohen Aufwand!

Reduktion: HAMILTON PATH auf SAT (1)

- Idee: Konstruiere eine SAT-Formel, die genau dann erfüllbar ist wenn es in einem Graphen einen Hamilton-Pfad gibt
- Nutzung von Variablen x_{ij}
- Intuitiv: die i-te Position des Hamilton-Pfades wird von Knoten j eingenommen
- Konstruktion der SAT-Formel:
 - Jeder Knoten muss auf dem Pfad vorkommen: für alle j:

$$x_{1j} \vee x_{2j} \vee \ldots \vee x_{nj}$$

• Kein Knoten kommt zwei Mal vor: für alle $i, j, k, i \neq k$:

$$\neg x_{ij} \lor \neg x_{kj}$$

Jede Position im Pfad muss "besetzt" sein: für alle i:

$$x_{i1} \vee x_{i2} \vee \ldots \vee x_{in}$$

...

Reduktion: HAMILTON PATH auf SAT (2)

- **-**
- Keine zwei Knoten besetzen die gleiche Stelle des Pfades: für alle $i,j,k,\ j \neq k$ $\neg x_{ij} \lor \neg x_{ik}$
- Nicht benachbarte Knoten können nicht benachbart im Pfad sein:

$$\neg x_{ki} \lor \neg x_{k+1,j}$$
 für alle $(i,j) \neq G, \ k=1,2,\ldots,n-1$

- Alle so generierten Disjunktionen werden durch Konjunktionen verbunden; man erhält eine CNF
- So erzeugte Formel ist nur dann erfüllbar wenn ein Hamilton-Pfad existiert
- Größe der Formel: $O(n^3)$

Vollständigkeit (1)

- Idee: bestimme die "härtesten" Probleme in einer Klasse
- Ein Problem ist vollständig für eine Klasse wenn...
 - es in der Klasse liegt und
 - alle anderen Probleme der Klasse auf das gegebene Problem reduziert werden können.

Vollständigkeit (2)

- Ist ein Problem f
 ür eine Klasse vollst
 ändig, so ist es "genau so" hart wie alle anderen Probleme der Klasse.
- Es ist daher "unwahrscheinlich" dass effizientere Algorithmen existieren – es sei denn zwei Klassen fallen gänzlich zusammen.
- Offenes Problem der Informatik: Ist P=NP?

Vollständiges Problem für NP (1)

SAT ist NP-vollständig

Beweisidee (Satz von Cook-Levin):

- SAT ist in NP: NP-Maschine rät Belegung aller Variablen und verifiziert dass Belegung korrekt ist
- Alle anderen Probleme in NP lassen sich auf SAT reduzieren
 - Transformiere Berechnungsbaum einer beliebigen NP-TM in SAT-Formel
 - Variablen beschreiben Konfiguration der TM zu einem gewissen Zeitpunkt
 - Formel beschreibt Startzustände, Bandinhalte, Endbedingungen und Übergangsrelation
 - Formel ist genau dann erfüllbar wenn es einen akzeptierenden Berechnungspfad gibt
 - Länge der Formel ist polynomiell

Vollständiges Problem für NP (2) Satz von Cook-Levin

Nutze folgende Variable:

Q(t,k) ... zum Zeitpunkt t befindet sich die TM im Zustand k

H(t,j) ... zum Zeitpunkt t befindet sich der Lesekopf im Zustand j

 $S(t,j,a) \dots$ zum Zeitpunkt t steht auf Zelle j des Bandes der Inhalt a

Resultierende Formel:

Vollständige Probleme

Komplexität der Model-Checking Probleme

CTL Model-Checking ist P-vollständig

LTL Model-Checking ist PSPACE-vollständig

CTL* Model-Checking ist PSPACE-vollständig

