Deep Learning Workshop - Music Generation via S4

Gal Bezalel

Tel-Aviv University

10 November 2024

Motivation

Preliminaries

Experiments

Results & Demo

Motivation

Preliminaries

Experiments

Results & Demo

Motivation

- ► Can we use SSM to generate high-fidelity music?
- ▶ Can we do it with a small-scale model ($\ll 10^9$ params)?
- Can it be productized?

Motivation

Preliminaries

Experiments

Results & Demo

Preliminaries - S4¹

► A state-space model:

$$\frac{dx}{dt} = Ax(t) + Bu(t)$$
$$y(t) = Cx(t)$$

- ▶ Discretizing dt allows us to apply the model on sequential data $\rightarrow dt$ is a learnable parameter!
- Moreover, we can unroll the (discrete) model and create a convolutional kernel (a huge filter).
- A should be HiPPO matrix, modeling Legendre polynomial coefficients → good for long sequences, but compute intensive.
 - Instead, using Diagonal + Low Rank (DPLR: $A = \lambda + pq^*$) factorization speeds up computation.
- More neat math in the Annotated S4.
- ¹Albert Gu, Karan Goel, and Christopher Ré. *Efficiently Modeling Long Sequences with Structured State Spaces*. 2022. arXiv: 2111.00396 [cs.LG].

Perliminaries - SaShiMi²

- ► S4 block a S4 unit with 2-layer FF with GELU activation, layer norm and skip connection.
- Multiscale architecture:
 - ▶ Repeated S4 blocks with varying hidden dimension $(H = 2^k)$.
 - ▶ Input is passed to the S4 block + down-sampled (pooling) for encoding, up-sampled for decoding.

2022. arXiv: 2202.09729 [cs.SD]. URL:

◆ロト ◆問 ▶ ◆ ヨ ト ◆ ヨ ・ か ♀ へ の へ ○

²Karan Goel et al. It's Raw! Audio Generation with State-Space Models.

Motivation

Preliminaries

Experiments

Results & Demo

Dataset

- Original dataset used in the article³: YouTubeMix
 - 4 hours of classical piano music.
 - A previous attempt to replicate and improve NLL
- ► Our dataset: YouTubeBigBand⁴
 - 2 hours of jazz trio.
 - A more complex waveform (multiple instruments, percussion).
 - Improvisation is inherent.
- Preprocessing (both):
 - Resampled at 16khz
 - 1min chunks

https://github.com/deepsound-project/samplernn-pytorch. 2017. URL:

https://huggingface.co/datasets/krandiash/youtubemix.

⁴Gal Bezalel. YouTubeBigBand.

https://huggingface.co/datasets/galbezalel/youtube_bigband. 2024

³DeepSound. SampleRNN.

Experiment 1 - Complete Training of 8 Layers SaShiMi Model

- Basically, replicate the original experiment, but with our Big Band dataset
- ▶ 19M params
- ▶ 1000 epochs, no regularization
- ➤ Time: 4 days on a single A100 (in practice, over a week using spot GCP instance, Colab)

Experiment 2 - Complete Training of *Ablated* 2 Layers SaShiMi Model

- As in the original article, validate the assumption that a smaller model can achieve similar results to larger model (and reduce costs).
- ▶ 1.5M params
- ▶ 1000 epochs (in the original article: 500 epochs), no regularization
- ➤ Time: 50 hours on a single A100 (in practice, 2 days using spot GCP instance, Colab)

Motivation

Preliminaries

Experiments

Results & Demo

Metrics

Test metric	YouTubeMix - 8 layers	YouTubeBigBand - 8 layers	YouTubeBigBand - 2 layers
final/test/accuracy	0.4203284681	0.2766689062	0.274307102
final/test/accuracy@10	0.9719890952	0.8476241231	0.8452669382
final/test/accuracy@3	0.8351296782	0.5846688747	0.5805157423
final/test/accuracy@5	0.9241486192	0.7164889574	0.7128702998
final/test/bpb	2.063964605	3.149125099	3.16355896
final/test/loss	1.430631161	2.182806969	2.192811012
final/val/accuracy	0.4274106026	0.200661391	0.1991965473
final/val/accuracy@3	0.8423588276	0.4834408164	0.4809091985
final/val/accuracy@5	0.9283464551	0.6362654567	0.6337321401
final/val/bpb	2.029698849	3.614607096	3.624292135
final/val/loss	1.40688026	2.505454779	2.512167692

Generation examples - Demo

- ➤ ★ We will listen to a few (cherry-picked...) generated examples
- ► Generation is unbounded can be conditioned (on a prefix of the dataset, up to ~8s in our experiment) or not.
- ▶ Default generation hyperparams are: Temperature = 1, Top-P: 1
 - ► Traditional Temp. values (0.2-0.5) yielded samples with long, silent / noisy parts.
 - ightharpoonup To preserve some consistency, we set Temp. = 0.8.

Motivation

Preliminaries

Experiments

Results & Demo

Have we met our expectations?

- Can we use SSM to generate high-fidelity music? Potentially, yes.
- ► Can we do it with a small-scale model ($\ll 10^9$ params)? Potentially, yes.
- Can it be productized? No.
 - Currently, prompts are only taken from validation split
 - ➤ Time: Takes 10 minutes to generate 10s samples using ablated model, 30 minutes using full models (still follows logarithmic scale though!)

Lessons learned

- Audio generation is costly.
- Good audio generation is difficult (noted also by the original authors).
- ► In practice:
 - ▶ The ablated version is *indeed* on-par with the deeper model.
 - ► High temperature works great in musical domains (creativity?)
- ► The good stuff:
 - Relatively cheap model with a promise
 - Experience with preprocessing audio
 - Experience with tools: Hydra, GCP

Action Items

- Continue training, improve metrics WIP
- Experiment with regularization it's possible to add dropout and weight decay, will be tested on ablated version
- "Productize" find a way to use prompts from completely new data
 - Condition on a short (few seconds), single prompt + concat the output
 - Could probably be engineered (create config, etc.)
- ▶ Many more things that might not be covered...
 - Audio signal: different sampling rate, quantization, chunk length.
 - Training: different LRs, fine-tuning, transfer learning.
 - Inference: grid search for Temp., Top-P.