Exercise 29

Sample Variance

In the following X_1 , ..., X_n are the square-integrable, pairwise uncorrelated and real-valued variables with variance σ^2 and mean μ .

a) Test whether the formula of the arithmetic mean (1) is an **unbiased estimator** of the mean μ of the population. If the estimator is not unbiased, look for an appropriate correction.

For an unbiased estimator, the following statement has to be true: Expected value = true value. If this is not the case, the estimator is biased. In the following we will therefore check if $\langle \hat{\mu} \rangle = \mu$.

$$\langle \hat{\mu} \rangle = \langle \bar{X} \rangle = \langle \frac{1}{n} \sum_{i=1}^{n} X_i \rangle = \frac{1}{n} \sum_{i=1}^{n} \langle X_i \rangle$$

$$= \frac{1}{n} \sum_{i=1}^{n} \mu = \frac{1}{n} \cdot n \cdot \mu = \mu$$

This means, that the arithmetic mean is an unbiased estimator of the mean μ . It'd be very well biased, if it were tested for the variance for example.

b) The standard error of the arithmetic mean (1) is defined as the square root of the variance of \bar{X} . Show that (2) is true.

$$\langle (\bar{X} - \mu)^2 \rangle = \langle \bar{X}^2 - 2\bar{X}\mu + \mu^2 \rangle = \langle \bar{X}^2 \rangle - 2\mu^2 + \mu^2 = \langle \bar{X}^2 \rangle - \mu^2 = \operatorname{Var}(\bar{X})$$

I wasn't completely sure how to show the first equal-symbol in (2), since the left side is literally the definition of the Variance. I will continue on with showing the right side of the equation (which is most likely more interesting)

The following rules for calculating with variances will be used:

$$Var(aX) = a^2 Var(X)$$

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i,j=1}^{n} \operatorname{Cov}(X_{i}, X_{j}) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i \neq j} \operatorname{Cov}(X_{i}, X_{j})$$

$$\operatorname{Var}(\bar{X}) = \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\operatorname{Var}\left(\sum_{i=1}^{n}X_{i}\right)$$

Since the random variables are pairwise uncorrelated, the Covariance term is zero.

.

$$=\frac{1}{n^2}\sum_{i=1}^n \text{Var}(X_i) = \frac{1}{n^2}\sum_{i=1}^n \sigma^2 = \frac{\sigma^2}{n}$$

c) Test whether the formula (3) is an unbiased estimator of the variance σ^2 of the population. If the estimator is not unbiased, look for an appropriate correction.

$$\langle \sigma^2 \rangle = \langle \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 \rangle$$

$$= \frac{1}{n} \langle \sum_{i=1}^n X_i^2 - 2\mu X_i + \mu^2 \rangle = \frac{1}{n} \sum_{i=1}^n \langle X_i^2 \rangle - 2\mu \langle X_i \rangle + \mu^2$$

$$= \frac{1}{n} \sum_{i=1}^n \langle X_i^2 \rangle - 2\mu^2 + \mu^2 = \frac{1}{n} \sum_{i=1}^n \langle X_i^2 \rangle - \mu^2$$

$$= \frac{1}{n} \sum_{i=1}^n \operatorname{Var}(X_i) = \frac{1}{n} \sum_{i=1}^n \sigma^2 = \sigma^2$$

The given formula is an unbiased estimator for the variance and hence needs no correction.

d) Usually the variance σ^2 of the population is unknown and the estimator (1) is used instead of μ . Then (3) becomes (4). Test whether (4) is an unbiased estimator of the variance σ^2 of the population. If the estimator is not unbiased, look for an appropriate correction. Hint: Expand the summand with $-\mu + \mu$ and use the given relation (2).

$$\begin{split} \langle \hat{\sigma}^{2} \rangle &= \langle \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \rangle \\ &= \frac{1}{n} \langle \sum_{i=1}^{n} (X_{i} - \bar{X} - \mu + \mu)^{2} \rangle \\ &= \frac{1}{n} \langle \sum_{i=1}^{n} \left((X_{i} - \mu)^{2} - 2(X_{i} - \mu)(\bar{X} - \mu) + (\bar{X} - \mu)^{2} \right) \rangle \\ &= \frac{1}{n} \langle \sum_{i=1}^{n} (X_{i} - \mu)^{2} - 2 \sum_{i=1}^{n} (X_{i} - \mu)(\bar{X} - \mu) + \sum_{i=1}^{n} (\bar{X} - \mu)^{2} \rangle \end{split}$$

With use of (2):

$$= \frac{1}{n} \langle \sum_{i=1}^{n} (X_i - \mu)^2 - 2n(\bar{X} - \mu)(\bar{X} - \mu) + n(\bar{X} - \mu)^2 \rangle$$

$$= \frac{1}{n} \langle \sum_{i=1}^{n} (X_i - \mu)^2 - 2n(\bar{X} - \mu)^2 + n(\bar{X} - \mu)^2 \rangle = \frac{1}{n} \langle \sum_{i=1}^{n} (X_i - \mu)^2 - n(\bar{X} - \mu)^2 \rangle$$

$$= \frac{1}{n} \sum_{i=1}^{n} \langle X_i - \mu \rangle^2 - n(\bar{X} - \mu)^2$$

With the definition of the variance which was derived earlier:

$$=\frac{1}{n}\left(\operatorname{Var}(X_i)-n\operatorname{Var}(\bar{X})\right)$$

And (3):

$$=\sigma^2-\frac{\sigma^2}{n}=\frac{(n-1)\sigma^2}{n}$$

And with that we get the correction term of $\frac{n}{(n-1)} \langle \hat{\sigma}^2 \rangle = \sigma^2$