0.60

## I. RBC with Variable Labor Supply

Table 1 compares volatilities across different parameterizations of  $\eta$  with what is observed in the data. Larger values of  $\eta$  improve the fit of the model. There is greater persistence since more elastic labor supply means shocks affect hours and wages to a greater extent. Consumption and labor supply, however, remain excessively smooth. The classical RBC model implies a greater Frisch elasticity based on the data.

|             | Data | $\eta = 0.5$ | $\eta = 1$ | $\eta = 2$ |
|-------------|------|--------------|------------|------------|
| Consumption | 1.27 | 0.97         | 1.03       | 1.09       |
| Output      | 1.72 | 1.56         | 1.67       | 1.79       |

0.41

0.24

Table 1: Comparing second moments of output, consumption, and labor supply

## II. RBC with Variable Capital Utilization

1.59

Hours

The firm solves the profit maximization problem.

$$\max_{\{N_t, I_t, U_t\}} E \sum_{t=0}^{\infty} \prod_{s=0}^{t} (1 + r_t)^{-1} (Y_t - N_t w_t - I_t)$$
$$Y_t = (U_t K_t)^{\alpha} (Z_t N_t)^{1-\alpha}$$
$$K_{t+1} = (1 - \delta(U_t)) K_t + I_t$$

We equalize prices of capital and the consumption good as in equilibrium.

1. The first order conditions are given by

Labor demand: 
$$w_t = (1 - \alpha)Z_t^{1-\alpha} \left(\frac{U_t K_t}{N_t}\right)^{\alpha}$$
  
Shadow value of capital:  $q_t = 1$   
Euler equation:  $\mathrm{E}(1+r_t)^{-1} \left(\alpha U_{t+1}^{\alpha} \left(\frac{K_{t+1}}{Z_{t+1} N_{t+1}}\right)^{\alpha-1} + q_{t+1} (1-\delta_{t+1})\right)$   
Utilization:  $\alpha K_t^{\alpha} \left(\frac{U_t}{Z_t N_t}\right)^{\alpha-1} = q_t \delta'(U_t) K_t$   

$$1 + r_t = \alpha U_{t+1}^{\alpha} \left(\frac{K_{t+1}}{Z_{t+1} N_{t+1}}\right)^{\alpha-1} + 1 - \delta(U_t)$$

Rental rate depends on the marginal product of capital and depreciation which are themselves both dependant on  $U_t$ .

2. Utilization satisfies  $\alpha K_t^{\alpha} \left( \frac{U_t}{Z_t N_t} \right)^{\alpha - 1} = q_t \delta'(U_t) K_t$ .

$$\ln \alpha + \alpha \ln K_t + (\alpha - 1)(\ln U_t - \ln Z_t - \ln N_t) = \ln q_t + \ln \delta'(U_t) + \ln K_t$$

$$\ln \alpha + (\alpha - 1)(\ln K_t + \ln U_t - \ln Z_t - \ln N_t) = \ln q_t + \ln \delta'(U_t)$$

$$(\alpha - 1)(\check{K}_t + \check{U}_t - \check{Z}_t - \check{N}_t) = \check{q}_t + \frac{\delta''(\bar{U})}{\delta'(\bar{U})}(U_t - \bar{U})$$

$$(\alpha - 1)(\check{K}_t + \check{U}_t - \check{Z}_t - \check{N}_t) = \check{q}_t + \frac{\delta''(\bar{U})\bar{U}}{\delta'(\bar{U})}\check{U}_t = \check{q}_t + \Delta$$

$$\check{U}_t = \frac{\check{q}_t + \Delta}{\alpha - 1}(\check{Z}_t + \check{N}_t - \check{K}_t) = \frac{1}{1 + \Delta}(\check{Y}_t - \check{K}_t)$$

The final equality uses  $\check{q}_t = 0$  from the first order condition and log linearized production.

3. We can use the previous derivation to reduce  $\check{Y}_t$  as a function of technology and inputs.

$$\check{Y}_t = \alpha(\check{U}_t + \check{K}_t) + (1 - \alpha)(\check{Z}_t + \check{N}_t) 
= \frac{\alpha}{1 + \Delta}(\check{Y}_t - \check{K}_t) + \alpha\check{K}_t + (1 - \alpha)(\check{Z}_t + \check{N}_t) 
\frac{1 - \alpha + \Delta}{1 + \Delta}\check{Y}_t = \frac{\alpha\Delta}{1 + \Delta}\check{K}_t + (1 - \alpha)(\check{Z}_t + \check{N}_t) 
\check{Y}_t = \frac{\alpha\Delta}{1 - \alpha + \Delta}\check{K}_t + \frac{(1 - \alpha)(1 + \Delta)}{1 - \alpha + \Delta}(\check{Z}_t + \check{N}_t)$$

 $\Delta$  governs the sensitivity of  $\check{U}_t$  to the marginal rate of capital. The limiting case where  $\Delta \to \infty$  is the standard (linearized) model and  $\check{U}_t$  is fixed at full utilization. The limit  $\delta \to 0$  represents the case of no utilization so that  $\check{Y}_t$  depend solely on technology and labor.

4. The linearized labor demand function is  $\check{w}_t = \check{Y}_t - \check{N}_t$ . Substituting the expression for  $\check{Y}_t$ ,

$$\check{w}_t = \frac{\alpha \Delta}{1 - \alpha + \Delta} \check{K}_t + \frac{(1 - \alpha)(1 + \Delta)}{1 - \alpha + \Delta} (\check{Z}_t + \check{N}_t) - N_t$$

We can obtain an upward sloping demand function if labor exhibits increasing returns to scale.

$$\frac{(1-\alpha)(1+\Delta)}{1-\alpha+\Delta} > 1$$
$$(1-\alpha)(1+\Delta) > 1-\alpha+\Delta$$
$$1-\alpha+\Delta-\Delta\alpha > 1-\alpha+\Delta$$
$$-\Delta\alpha > 1$$

Since  $\Delta, \alpha > 0$ , indeterminacy is impossible in this model. One way to achieve indeterminacy is to incorporate positive production externalities so that aggregate labor has increasing returns to scale. A model with endogenous capital utilization is more likely to exhibit indeterminacy because it amplifies the importance of labor in production.