CIS102 Tutorial 4 Answers

Goldsmiths College, University of London

November 28 2006

1. (a)

- (b) domain of $f = \{u, v, w, s\}$ co-domain of $f = \{a, b, c, d, e\}$ range of $f = \{a, c, d\}$
- (c) f(v) = athe set of pre-images of $d = \{a, w\}$
- (d) f is not one-to-one, since f(u) = f(w) f is not onto, since b and e have no pre-image.
- 2. $\lfloor x \rfloor = n$ where $n \leq x < n+1$, $n \in \mathbb{Z}$

(a)
$$[5.67] = 5$$

 $[-2.97] = -3$
 $[17] = 17$

(b)
$$|x| = n$$

 $|x-3| = |x| - 3$
 $|x-3| = n - 3$

(c)
$$[2.1-0.9] = [1.2] = 1$$

 $[2.1] - [0.9] = 2 - 0 = 2$
 $\therefore [x-y] \neq [x] - [y]$

3. (a)

- (b) range of exp is $y : y \in \mathbb{R}, y > 0$
- (c) |exp(1.3)| = 2|exp(-1.3)| = 0

4. A function has an inverse if and only if it is one-to-one and onto.

- (a) domain of $f^{-1} = \{1, 2, 3, 4\}$ co-domain of $f^{-1} = \{a, b, c, d\}$
- (b) [x] is *not* invertible, since it is not one-to-one

5. $g: \mathbb{R} \to \mathbb{R}$, g(x) = 3x - 5

- (a) g(6)=13
- (b) y = 3x 5 $\frac{y+5}{3} = x$ For any y we can find an x

- \therefore g is onto
- (c) g(a) = g(b)3a - 5 = 3b - 53a = 3b

a = b

∴ g is one-to-one

- (d) $g^{-1}(x) = \frac{x+5}{3}$
- 6. (a) $81 = 3^4$ $\log_3 81 = 4$
 - (b) $9\sqrt{3} = 3^{2.5}$
 - $\therefore \log_3 9\sqrt{3} = 2.5$
 - (c) $\frac{1}{\sqrt{3}} = 3^{-0.5}$
 - $\log_3 \frac{1}{\sqrt{3}} = -0.5$
 - (d) $\frac{1}{9\sqrt{3}} = 3^{-2.5}$ $\therefore \log_3 \frac{1}{9\sqrt{3}} = -2.5$

- $[\log_3 20] = 2$
- 8. (a) $f(x) = x^3$ $f^{-1}(x) = \sqrt[3]{x}$ $f^{-1}: X \to X$
 - (b) $g(x) = x^{\frac{1}{2}}$ $g^{-1}(x) = x^2$ $g^{-1}: X \to X$