Machine Learning

Prof. Dr. Stefan Kramer Johannes Gutenberg-Universität Mainz

Outline

- Bagging and Random Forests
- Boosting
- Bias-Variance Decomposition

Bagging and Random Forests

Bagging

- Bootstrap <u>agg</u>regating
- Simplest way of combining predictions: voting/averaging, where each model receives equal weight
- How can we vote if we have only one dataset?

Bootstrap

- Resampling with replacement
- Repeatedly: Given dataset of size n, sample new dataset of size n by drawing with replacement (also called 0.632 bootstrap)
- A particular instance has a probability of 1-1/n of not being picked
- Thus its probability of ending up in the test data is: $\left(1 \frac{1}{n}\right)^n \approx e^{-1} = 0.368$
- Thus, a bootstrap sample will contain approx.
 63.2% of the instances

More on Bagging

- Bagging reduces the variance component of the expected error by voting/averaging
- Improves performance almost always if the base classifier is unstable and the data are noisy

Bagging Classifiers

model generation

Let n be the number of instances in the training data. For each of t iterations:

Sample n instances with replacement from training set. Apply the learning algorithm to the sample. Store the resulting model.

classification

For each of the t models:

Predict class of instance using model.

Return class that has been predicted most often.

Example

Tree with simulated data

Elements of Statistical Learning (c) Hastie, Tibshirani & Friedman 2001

Example

Bootstrap Tree 2

Bootstrap Tree 4

Bootstrap Tree 3

Bootstrap Tree 5

Elements of Statistical Learning (c) Hastie, Tibshirani & Friedman 2001

Example

CART (Classification And Regression Trees)

Rick Higgs & Dave Cummins, Statistical & Information Sciences, Lilly Research Laboratories, 2003

Random Forests

- Due to Breiman (2001)
- Combines his bagging idea with random feature selection
- Parameters:
 - n, the number of instances
 - m, the number of features
 - k, the number of randomly selected features
 - I, the number of iterations

Training RandomForest(D_{Trg}, k)

```
for i := 1 to I
 (D'<sub>Trg</sub>, D'<sub>Tst</sub>) :=
   CreateBootstrapSample(D<sub>Trg</sub>)
 % sample n times with replacement
 t<sub>i</sub> := fully grown (i.e. unpruned) decision
   tree; for each node, randomly sample
   k variables from which the best is chosen
   based on D'<sub>Trg</sub>
  % many possible uses of D'<sub>Tst</sub>: estimate out-of-
   % bag error, evaluate features, etc.
                                                             12
```

Random Forests

 Testing (prediction): majority vote among the ensemble members

- Currently, next to support vector machines (SVMs), among the best performing simpler machine learning algorithms, but typically faster than (non-linear) SVMs
- Question of performance on highdimensional data

Boosting

- Stems from computational learning theory (weak and strong PAC learning)
- Weighted voting
- Not parallelizable: sequence of learning tasks
- New model is encouraged to become expert for instances incorrectly classified by previous models

PAC Learning

- PAC: Probably Approximately Correct
- Concept class C, hypothesis language H, instance space X, learning algorithm L
- C is PAC-learnable by L using H, if,
 - for any $c \in C$
 - for any distribution D over X
 - $0 < \varepsilon < 0.5$
 - $0 < \delta < 0.5$

• ...

PAC Learning

• ...

- Algorithm L will output with probability 1- δ a hypothesis h with error_D(h) < ϵ in time that is polynomial in $1/\epsilon$, $1/\delta$, |X| and size(c).
- Learning algorithm has to achieve arbitrarily small values for ϵ and δ , and the runtime is polynomially bounded by $1/\epsilon$ and $1/\delta$

Note

- Why distinct C and H?
- Can be identical
- But definition with C and H also allows statements like:
 - L learns k-term DNF (maximally k disjunctions) via k-CNF (maximally k variables in each disjunction)

The Boosting Problem

- "strong" PAC algorithm
 - for any distribution
 - $\forall \ \epsilon > 0 \text{ and } \delta > 0$
 - given polynomially many random examples
 - finds hypothesis with error $\leq \epsilon$ with probability \geq 1- δ
- "weak" PAC algorithm
 - same, but only for error < 0.5
 (just a bit better than random guessing)
- What is the relationship between strong and weak PAC learning?

AdaBoost.M1

Two-class problem $Y \in \{-1, 1\}$

G() produces a prediction from a vector of variables X

Final prediction obtained by using a weighted vote

$$G(x) = sign(\sum_{m=1}^{M} \alpha_m G_m(x))$$

Discrete AdaBoost

initialize the observation weights (set w_i to 1/N)

for m=1 to M do

induce a classifier $G_m(x)$ to the training data using weights w_i

$$err_{m} = \sum_{J=1}^{N} w_{J} \times I(y_{J} \neq G_{m}(x_{J}))$$

$$\alpha_{m} = \frac{1}{2} \log(\frac{1 - err_{m}}{err_{m}})$$

$$0 < err_{m} < 0.5$$

for j=1 to N do if $y \neq G(x)$ t

if
$$y_j \neq G(x_j)$$
 then

$$w_j \leftarrow w_j \cdot (1 - err_m) / err_m$$

renormalize such that $\sum_{j=1}^{N} w_j = 1$

output
$$G(x) = sign(\sum_{m=1}^{M} \alpha_m G_m(x))$$

Discrete AdaBoost

initialize the observation weights (set w_i to 1/N)

for m=1 to M do

induce a classifier $G_m(x)$ to the training data using weights w_i

$$err_{m} = \sum_{J=1}^{N} w_{J} \times I(y_{J} \neq G_{m}(x_{J}))$$

$$\alpha_{m} = \frac{1}{2} \log(\frac{1 - err_{m}}{err_{m}})$$

$$0 < err_{m} < 0.5$$

for j=1 to N do

if
$$y_i = G(x_i)$$
 then

$$w_j \leftarrow w_j \cdot err_m / (1 - err_m)$$

renormalize such that $\sum_{j=1}^{N} w_j = 1$

output
$$G(x) = sign(\sum_{m=1}^{M} \alpha_m G_m(x))$$

Adaboost with Confidence Weighted Predictions (RealAB)

initialize the observation weights (set W_i to 1/N) for m=1 to M do

induce a classifier $G_m(x)$ to the training data using weights w_i

$$G_m \in [-1,+1]$$

find
$$\alpha_m \in \Re$$

$$w_j \leftarrow w_j \cdot \exp(-\alpha_m y_j G_m(x_j))/Z_m$$

$$0 < err_m < 0.5$$

output
$$G(x) = sign(\sum_{m=1}^{M} \alpha_m G_m(x))$$

Comparison

Notes

- Theory: training error decreases exponentially
- Boosting works with weak learners:
 only condition is that error does not exceed 0.5
- Base classifier should be able to handle weighted instances
- However, can be applied without weights using resampling with probability determined by weights:
 - disadvantage: not all instances are used
 - advantage: resampling can be repeated if error exceeds 0.5

Observation with AdaBoost

Expected learning curve

Observed learning curve

What's going on? (Occam's Razor)

Thesis

 Paradox disappears if we consider the "confidence" in the prediction, the socalled margin:

$$G(x) = \sum_{m=1}^{M} \alpha_m G_m(x)$$

$$G_{final}(x) = sign(G(x))$$

$$m_G(x, y) = y \cdot G(x)$$

 "Larger margins on the training set yield smaller generalization errors."

Boosting

- Empirical results: boosting can reduce the error dramatically, helps almost always
- (Quinlan 96): sometimes it is fooled by noise in the data and not as stable as bagging (though bagging performs not as well on average)
- Boosted learning algorithms have quite a low bias

Example: Performance Boosting

Bias-Variance Decomposition

Introduction

- Why do ensemble methods work?
- Decomposition of error into so-called bias and variance term
- Bagging reduces variance
- Boosting usually (with simple models) first reduces bias, then variance

Bias and Variance

- Bias measures how close the average classifier produced by the learning algorithm will be to the target function (kind of systematic error)
- Variance measures how much each of the learning algorithm's guesses will vary with respect to each other / how the error depends on a particular training set

Bias/Variance Decomposition

- Assume we have an infinite number of classifiers built from different training sets of size n
- Bias: expected error of the combined model on new data
- Variance: expected error of a learning scheme due to a particular training set
- Total expected error =
 bias + variance + irreducible error

Bias-Variance Decomposition for Regression

Assume $Y = f(X) + \varepsilon$, where $E(\varepsilon) = 0$, then the expression for the expected *prediction* error of a regression fit with squared-error loss is

$$PE(f(.,T)) = E_{X,Y}(Y - f(X,T))^{2}$$

$$PE*(f) = E_{T}[PE(f(.,T))] =$$

$$= E\varepsilon^{2} + E_{X}[f^{*}(X) - \hat{f}(X)]^{2} + E_{X,T}[f(X,T) - \hat{f}(X)]^{2}$$

$$= E\varepsilon^{2} + \text{Bias}(\hat{f}(X))^{2} + \text{Var}(\hat{f}(X))$$

$$= \text{Irreducible Error} + \text{Bias}^{2} + \text{Variance}$$

34

Bias and Variance

Behavior of test sample and training sample error as the model complexity is varied

Conclusion

- Ensembles: mostly motivated by theory
- Comprehensibility suffers
- Standard methods for improving performance of relatively simple basic models