Homework 4

Computer Vision, 2018 Spring

May 3, 2018

Instructions

- Deadline: 2018/5/18 11:59:59 pm
- Hand in: through E3
- Tasks:
 - 1. Tiny images representation + nearest neighbor classifier (accuracy of about 18-25%)
 - 2. Bag of SIFT representation + nearest neighbor classifier (accuracy of about 50-60%)
 - 3. Bag of SIFT representation + linear SVM classifier (accuracy of about 60-70%)

Extra bonus: try to use deep learning! (you can choose any type of neural network model)

- You need to evaluate the accuracy of your model.
- You can use http://www.vlfeat.org/download.html http://www.vlfeat.org/matlab/matlab.html

Goal: builds a classifier to categorize images into one of 15 scene types!

Example scenes from each category in the 15 scene dataset. Figure from Lazebnik et al. 2006.

1. Tiny images representation + nearest neighbor classifier

Tiny images representation

- Simply resizes each image to a small, fixed resolution (16*16).
- You can either resize the images to square while ignoring their aspect ratio or you can crop the center square portion out of each image.
- The entire image is just a vector of 16*16 = 256 dimensions.
- You can use functions (MATLAB): imread, imresize

1. Tiny images representation + nearest neighbor classifier

Nearest neighbor classifier

 Instead of 1 nearest neighbor, you can vote based on k nearest neighbors which will increase performance (although you need to pick a reasonable value for k).

 $f(\mathbf{x})$ = label of the training example nearest to \mathbf{x}

- All we need is a distance function for our inputs
- No training required!

Bag of SIFT representation

Bag of SIFT representation

3. Bag of SIFT representation + linear SVM classifier

SVM

• Find a *linear function* to separate the classes:

$$f(\mathbf{x}) = \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$$

• You can use functions (MATLAB): fitcsvm, predict

Example: cat facial recognition

Training Phase

SVM model

Example: cat facial recognition Detection Phase

Example: Convolutional Neural Network (CNN)

