5.8 Part 3: Fitzhugh-Nagumo Equations

The Fitzhugh-Nagumo Equations

• We couple the sodium channel to the potassium channel mechanism as follows:

$$\frac{dv}{dt} = \underbrace{-v(v-a)(v-1)}^{\text{Na-Channel}} \underbrace{-w}^{\text{K-channel affect on voltage}} \underbrace{-w}^{\text{K-channel affect on voltage}} \underbrace{-w}^{\text{K-channel}}$$

- These are called the Fitzhugh-Nagumo equations.
- Warning: these are a simplified version of a more complicated set of DE's modeling a neuron, called the *Hodgkin-Huxley* equations (which are derived by treating the neuron like a circuit).

Analysis

- Nullclines:
- w-nullcline:

$$- \epsilon(v - \gamma w) = 0$$

$$-w = \frac{1}{\gamma}v$$

- This is a straight line in the phase-plane of slope γ .
- \bullet *v*-nullcline:

$$-v(v-a)(v-1)-w=0$$

$$- \text{ or, } w = -v(v-a)(v-1).$$

- Neat feature: we can graph both of these.
- Do set of parameters with $\epsilon = 1$, a = 0.3, $\gamma = 2.5$.
- Do one with a bunch of equilibria ($\epsilon = 1, a = 0.2, \gamma = 10$).
- Do one with small γ , with a = 0.4 and $\gamma = 1$.
- Sketch the v(t) and w(t) curves for each. (Then check with a computer).

With constant applied voltage

- If the neuron has a bunch of applied voltage, will it make use of it in an interesting way?
- \bullet Add in a number I_a to the voltage equation.

$$\frac{dv}{dt} = -v(v-a)(v-1) - w + I_a$$

$$\frac{dw}{dt} = \epsilon(v - \gamma w)$$

• This has the effect of shifting the v-nullcline up.