Assessment Schedule - 2017 V FINAL

Chemistry: Demonstrate understanding of the properties of organic compounds (91391)

Evidence Statement

Q	Evidence	Achievement	Merit	Excellence
ONE (a)	See Appendix A.	SIX correct.	ALL correct.	
(b)	Reagent $1 = \text{NaBH}_4 / \text{LiAlH}_4$ Reduction $CH_3 - CH - CH_3$ OH Reagent $2 = \text{conc. H}_2SO_4 \text{ (heat) } / \text{Al}_2O_3$ Elimination $H_2C = CH - CH_3$	 ONE correct reagent and one reaction type. TWO correct structures. 	SEVEN correct. OR All correct showing understanding of the chemistry but with repeated error.	ALL NINE correct, including identification of both minor and major products.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
(c)(i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Any of the following to a maximum of three: • One correct 3-D Drawing OR two 3-D drawings with the four correct groups • States that four-different	Correct 3-D drawings and partial explanation. OR Full explanation with correct but careless drawings.	Correct 3-D drawings with full explanation.
(ii)	There must be a carbon atom that has four different species (groups) attached to it. This creates two molecules that are mirror images of each other that are non-superimposable . The different isomers will rotate (plane)-polarised light in opposite directions . This will distinguish the isomers.	 species are required Mirror images Non-superimposable Enantiomers will rotate plane-polarised light. 		

NCEA Level 3 Chemistry (91391) 2017 — page 2 of 8

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	5a	2m	3m	1e + 2m	2e + 1m

Q	Evidence	Achievement	Merit	Excellence
TWO (a)	See Appendix B.	• FOUR structures / reagents correct.	SEVEN structures / reagents correct OR All correct showing understanding of the chemistry, but with repeated error.	ALL correct.
(b)(i)	Aldehyde (propanal) is obtained by distillation of propan-1-ol with acidified (potassium) dichromate $(Cr_2O_7^{2-}/H^+)$. The orange colour of the $Cr_2O_7^{2-}/H^+$ changes to (blue) green (Cr^{3+} ions). The reaction is an oxidation reaction. Distillation is a way to separate the aldehyde (propanal) from the reactant alcohol (propan-1-ol) which has a higher boiling point. The aldehyde (propanal) can react further to form a carboxylic acid (propanoic acid). This reaction is prevented if the aldehyde is removed as it is formed – distillation achieves this by evaporating the aldehyde and then allowing it to condense for collection.	 Distillation identified. Identifies oxidation reaction. Correct colour change. 	Correct colour change, reaction type and recognises the need for distillation related to different boiling points / preventing further reaction. OR Correct answer, with one omission, e.g. oxidation or colour change.	Full explanation of how only propanal is produced in the laboratory.
(ii)	Adding blue Benedict's solution to a warmed / heated sample of propanal will cause a (brick) red colour to form. This happens because the propanal has been oxidised to propanoic acid / carboxylic acid (red colour is copper(I) oxide). CH ₃ CH ₂ CH + Benedict's reagent ○ CH ₃ CH ₂ COH □ □ O No change will occur when blue Benedict's solution is added to propanone, as it cannot be further oxidised / won't react.	 Recognises that only propanal will react. ONE of the following: EITHER correct colour change OR reaction type OR equation. 	Only propanal reacts, plus any TWO of: correct reaction type, correct colour change, correct equation.	Explanation for both aldehyde and ketone, with correct equation.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	5a	2m	3m	1e + 2m	2e + 1m

Q	Evidence	Achievement	Merit	Excellence
THREE (a)(i)	SH OH $-CH_2$ O	ONE correct dipeptide. OR Correct section of protein (a continuing structure) OR Both essentially correct, but includes careless errors.	BOTH dipeptides correct.	
(ii)	Second dipeptide the same structure above, with the CH_2SH swapped with CH_2OH . O II $-C-N-$ H Amide linkage group circled on one of the dipeptides.	Amide linkage group circled.		

(b)	Nomex® has an amide linkage – see (a)(ii) above. Monomers: HO O O H C OH	ONE correct monomer OR both correct but includes careless error.	Both monomers correct. Condensation reaction fully explained.	Full evaluation of Nomex®.
	OR OR CI — C NH ₂ CI — C O This is a condensation polymer / polyamide, as monomers join / amide link forms and a molecule of water or HCl is released during the reaction.	 Amide functional group named and polymer, or reaction described as condensation or a polyamide States condensation reaction with some explanation. 		

(c) (i)(ii)	Two forms of hydrolysis:	ONE structure correctly drawn in part (i).	ONE correct reaction. (part (i) or (ii) correct).	BOTH reactions correct.
	HCI/heat NaOH/heat	ONE structure correctly drawn in part (ii).	OR • All correct showing understanding of the chemistry, but with repeated error.	
	$^{+}H_{3}N$ NH_{3}^{+} $H_{2}N$ NH_{2}			
	HO-C OH O-C O-O			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	5a	2m	3m	1e + 2m	2e + 1m

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 – 7	8 – 14	15 – 19	20 – 24

APPENDIX A.

Question One (a)

Boxes in grey are part of the question – answers are in white boxes.

Functional group	Structural formula	IUPAC (systematic) name
Alkene	CH ₃ CH ₂ CH= CH ₂	but-1-ene
Amine	CH ₃ CH CH ₂ - N - H I I CH ₃ H	2-methylpropan-1-amine
Acyl chloride	CH ₃ CH ₂ CH ₂ C — CI II O	butanoyl chloride 2-methylpropanoyl chloride
Ester	H-C-O-CH ₂ CH ₂ CH ₃ II O	propyl methanoate
Ketone	CH ₃ CH ₂ - C - CH ₃ II O	Butanone Butan-2-one
Aldehyde	CH ₃ CH ₂ CH ₂ - C - H II O	Butanal 2-methylpropanal
Amide	CH ₃ CH ₂ CH ₂ - C - NH ₂ II O	butanamide

APPENDIX B.

Question Two (a)

Compound	Structure
P	CH ₃ CH ₂ CHCH ₃ I OH
Q	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ - OH
R	CH ₃ CH=CHCH ₂ CH ₃
S	CH ₂ =CHCH ₂ CH ₂ CH ₃
Т	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ — CI
U	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ -NH ₂
V	CH ₃ CH ₂ CH ₂ C – OH II O
W	CH ₃ CH ₂ CH ₃ II O

Reagent I	SOCl ₂ / PCl ₃ / PCl ₅
Reagent 2	conc. H ₂ SO ₄