Matematinė statistika. Užduotys su R. 2020 / 2021 m.m. pavasario sem.

4 užduotis Parametrinių hipotezių tikrinimas. Tikėtinumų santykio, Voldo ir informantiniai kriterijai.

Sumodeliuokite duomenis ir patikrinkite hipotezes

1 Tegu $X_{i1},...,X_{in_i},\ i=1,...,3,\ n_i\geq 2$, yra trys paprastosios imtys nepriklausomų Veibulo a. d. $X_1,...,X_3$, kurių pasiskirstymo funkcijos yra

$$F_i(x; \eta, \nu) = 1 - \exp\left\{-\left(\frac{x}{\eta_i}\right)^{\nu_i}\right\},\,$$

čia 0 < σ_i < ∞, i = 1, ..., 3.

Rasti tikėtinumų santykį, kai tikrinama hipotezė: a) $H_1: \eta_1 = ... = \eta_3$; b) $H_2: \nu_1 = ... = \nu_3$; c) $H_3: \eta_1 = ... = \eta_3$, kai visi ν_i yra lygūs.

2. Tegu $(X_{1i},...,X_{ki})^T$, i=1,...,n, yra imtis vektoriaus $(X_1,...,X_k)^T$, kurio skirstinys priklauso polinominių skirstinių šeimai $\{\mathcal{P}_k(1,\boldsymbol{\pi})\}$; čia $\boldsymbol{\pi}=(\pi_1,...,\pi_k)^T$ yra k-matis vektorius, kurio koordinatės tenkina sąlygas $0<\pi_i<1,\ \pi_1+...+\pi_k=1$. Įrodykite, kad tikėtinumų santykis hipotezei $H:\pi_1=\pi_1^0,...,\pi_k=\pi_k^0$ tikrinti yra

$$\Lambda = \left(\prod_{i=1}^k \left(\frac{\pi_i^0}{\hat{\pi}_i}\right)^{\hat{\pi}_i}\right)^n;$$

čia $\hat{\pi}_i = V_i/n, \ V_i = X_{i1} + ... + X_{in}, \ i = 1, ..., k.$

3. Tegu $(X_1,...,X_{n_1})^T$ ir $(Y_1,...,Y_{n_2})^T$ yra paprastosios nepriklausomos imtys a.d. $X \sim B(1,p_1), \ 0 < p_1 < 1$, ir $Y \sim B(1,p_2), \ 0 < p_2 < 1$. Raskite tikėtinumų santykį Λ hipotezei $H: p_1 = p_2$ tikrinti.

4. Tegu $(X_1,...,X_{n_1})^T$ ir $(Y_1,...,Y_{n_2})^T$ yra paprastosios nepriklausomos imtys a.d. $X \sim \mathcal{P}(\lambda_1), \ 0 < \lambda_1 < \infty$, ir $Y \sim \mathcal{P}(\lambda_2), \ 0 < \lambda_2 < \infty$. Raskite tikėtinumų santykį Λ hipotezei $H: \lambda_1 = \lambda_2$ tikrinti.

 $\mathbf{5}$. Sumodeliuokite didumo n imtį, gautą stebint a) eksponentinį a.d.; b) Veibulo a.d. Taikydami tikėtinumų santykio, Valdo ir infomatinį kriterijus patikrinkite hipotezę, kad skirstinys eksponentinis, esant alternatyvai, kad skirstinys Veibulo.