Cavallaro, Jeffery Math 221a Homework #1

1.1.6

Construct the addition table for $\mathbb{Z}_2 \bigoplus \mathbb{Z}_2$.

$$\mathbb{Z}_2 = \{0, 1\}$$

\oplus	(0,0)	(0, 1)	(1,0)	(1, 1)					b			
(0,0)	(0,0)	(0,1)	(1,0)	(1,1)		e	e	a	b	С		
(0, 1)	(0,1)	(0,0)	(1, 1)	(1,0)	\Longrightarrow	a	a	e	C	b	\Longrightarrow	K_4
(1,0)	(1,0)	(1, 1)	(0,0)	(0, 1)		b	b	C	e	a		
(1, 1)	(1,1)	(1,0)	(0, 1)	(0,0)		С	С	b	a	e		

1.1.8

Let \sim be a relation on $\langle \mathbb{Q}, + \rangle$ defined by: $a \sim b \iff a - b \in \mathbb{Z}$

a) Prove: \sim is a congruence relation.

First, prove that \sim is an equivalence relation.

R: Assume $a \in \mathbb{Q}$

$$\begin{aligned} a-a &= 0 \in \mathbb{Z} \\ \therefore a \sim a \end{aligned}$$

S: Assume $a \sim b$

$$a - b \in \mathbb{Z}$$

$$-(a - b) \in \mathbb{Z}$$

$$b - a \in \mathbb{Z}$$

$$\therefore b \sim a$$

T: Assume $a \sim b$ and $b \sim c$

$$\begin{aligned} a-b &\in \mathbb{Z} \text{ and } b-c \in \mathbb{Z} \\ (a-b)+(b-c) &\in \mathbb{Z} \\ a-c &\in \mathbb{Z} \\ \therefore a \sim c \end{aligned}$$

 \therefore \sim is an equivalence relation.

Now show that \sim is a congruence relation.

Assume $a_1, a_2, b_1, b_2 \in \mathbb{Q}$ Assume $a_1 \sim a_2$ and $b_1 \sim b_2$ $a_1 - a_2 \in \mathbb{Z}$ and $b_1 - b_2 \in \mathbb{Z}$ $(a_1 + b_1) - (a_2 + b_2) = (a_1 - a_2) + (b_1 - b_2) \in \mathbb{Z}$ $a_1 + b_1 \sim a_2 + b_2$ \therefore \sim is a congruence relation.

b) Prove: \mathbb{Q}/\mathbb{Z} is an infinite abelian group.

 $\langle \mathbb{Q}, + \rangle$ is an abelian group (and thus a monoid)

From part (a), \sim is a congruence relation on $\langle \mathbb{Q}, + \rangle$

 \therefore by Theorem 1.5, G/Z is an abelian group under the binary operation $\overline{a} + \overline{b} = \overline{a+b}$.

To show that G/Z is infinite, start by noting that if $a \sim b$ and $a \neq b$ then $|a - b| \in \mathbb{Z}^+$. Thus, given $a \in \mathbb{Q}$, the closest related values are a + 1 and a - 1.

Assume $a_0 \in \mathbb{Q}$ and consider the interval $(a_0, a_0 + 1)$. a_0 is related to nothing else in this interval.

Claim: $\forall n \in \mathbb{N}$ there exists a unique equivalence class representative in $(a_0, a_0 + 1)$.

Proof by induction on n (the number of steps)

Base: n=1

By the density of \mathbb{Q} there exists a_1 not yet selected in $(a_0, a_0 + 1)$. $|a_0 - a_1| < 1$, so $a_0 \nsim a_1$ and thus $\overline{a_0} \neq \overline{a_1}$.

Assume that n unique representatives have been selected in $(a_0, a_0 + 1)$ by selecting $a_k \in (a_0, a_{k-1})$.

Consider the (n+1) step.

By the density of $\mathbb Q$ there exists $a_{n+1} \in (a_0,a_n)$ not yet selected.

$$|a_{n+1} - a_k| < 1, 1 \le k \le n$$

So $a_{n+1} \nsim a_k$ and thus $\overline{a_{n+1}} \ne \overline{a_k}$.

Let A be the set of unique equivalence class representatives selected in this fashion. Since A has a one-to-one correspondence with \mathbb{N} , A is an infinite set. But since $A\subseteq \mathbb{Q}/\mathbb{Z}$, \mathbb{Q}/\mathbb{Z} is also infinite.

1.1.9

Let p be a prime number.

a) Let $R_p = \left\{ \frac{a}{b} \in \mathbb{Q} \mid (p,b) = 1 \right\}$. Prove $\langle R_p, + \rangle$ is an abelian group.

$$R_p \subset \mathbb{Q}$$

Assume $r = \frac{a}{b} \in R_p$

 $\frac{a}{b}$ may not be in lowest form, so there is a possible issue with R_p being well-formed.

Let $\frac{a}{b} = \frac{a'}{b'}$, where $\frac{a'}{b'}$ is in lowest form. Let d = (a, b) $b' = \frac{b}{d}$ $b = b^{\prime} d$ b' | b, so (b, b') = b'(p, b) = 1(p, b, b') = ((p, b), b') = (1, b') = 1(p, b, b') = (p, (b, b')) = (p, b')(p, b') = 1 $\therefore \frac{a'}{b'} \in R_p$ and R_p is well-defined.

Assume $r, s \in R_p$ $\exists a_1, b_1 \in \mathbb{Z}, r = \frac{a_1}{b_1}, b_1 \neq 0, (p, b_1) = 1$ $\exists a_2, b_2 \in \mathbb{Z}, s = \frac{a_2}{b_2}, b_2 \neq 0, (p, b_2) = 1$ $r + s = \frac{a_1b_2 + a_2b_1}{b_1b_2} \in \mathbb{Q}$ $a_1b_2 + a_2b_1 \in \mathbb{Z}$ $b_1 \neq 0$ and $b_2 \neq 0$ so $b_1 b_2 \neq 0$ $p \nmid b_1$ and $p \nmid b_2$ so $p \nmid b_1b_2$

But p is prime and thus has no divisors other than p and 1, so $(p, b_1b_2) = 1$ $\therefore r + s \in R_p \text{ and } \langle R_p, + \rangle \text{ is closed.}$

 $\langle \mathbb{Q}, + \rangle$ is associative, so $\langle R_p, + \rangle$ is associative.

$$\begin{array}{l} (p,1)=1, \text{so } \frac{0}{1} \in R_p \\ \text{Assume } r = \frac{a}{b} \in R_p \\ \frac{0}{1} + r = \frac{0}{1} + \frac{a}{b} = \frac{0b+1a}{1b} = \frac{a}{b} = r \\ r + \frac{0}{1} = \frac{a}{b} + \frac{0}{1} = \frac{1a+0b}{1b} = \frac{a}{b} = r \\ \therefore \frac{0}{1} \text{ is a two-sided identity for } R_p. \end{array}$$

Assume
$$r = \frac{a}{b} \in R_p$$

$$-r = -\frac{a}{b} = \frac{(-a)}{b} \in R_p$$

$$-r + r = -\frac{a}{b} + \frac{a}{b} = 0 = \frac{0}{1}$$

$$r + (-r) = \frac{a}{b} - \frac{a}{b} = 0 = \frac{0}{1}$$

 \therefore -r is a two-sided inverse for r.

 $\langle \mathbb{Q}, + \rangle$ is commutative, so $\langle R_p, + \rangle$ is commutative.

 $\therefore \langle R_p, + \rangle$ is an abelian group.

b) Let
$$R^p=\left\{\frac{a}{b}\in\mathbb{Q}\mid b=p^n, n\geq 0\right\}$$
 Prove $\langle R^p,+\rangle$ is an abelian group. $R^p\subset\mathbb{Q}$

Once again, there are well-formed worries.

Assume $r = \frac{a}{b} \in \mathbb{R}^p$.

If $\frac{a}{b}$ is not in lowest form then $\exists \frac{a'}{b'} \in \mathbb{R}^p$ in lowest form such that $\frac{a}{b} = \frac{a'}{b'}$. Assume d = (a, b)

$$a' = \frac{a}{d}$$
 and $b' = \frac{b}{d}$

But all the factors of b are non-negative powers of p,

so d must also be a non-negative power of p.

Since $d \le b$, b' must also be a non-negative power of p.

 $\therefore R^p$ is well-defined.

Assume $r, s \in R_p$

$$\exists a_1, b_1 \in \mathbb{Z}, r = \frac{a_1}{b_1}, b_1 = p^{k_1}, k_1 \in \mathbb{Z}^+ \cup \{0\} \ \exists a_2, b_2 \in \mathbb{Z}, s = \frac{a_2}{b_2}, b_2 = p^{k_2}, k_2 \in \mathbb{Z}^+ \cup \{0\}$$
$$r + s = \frac{a_1b_2 + a_2b_1}{b_1b_2} \in \mathbb{Q}$$
$$a_1b_2 + a_2b_1 \in \mathbb{Z}$$

 $b_1 \neq 0$ and $b_2 \neq 0$ so $b_1 b_2 \neq 0$

 $b_1b_2 = p^{k_1}p^{k_2} = p^{k_1+k_2}$

But $k_1 + k_2 \in \mathbb{Z}^+ \cup \{0\}$

 $\therefore r + s \in \mathbb{R}^p$ and $\langle \mathbb{R}^p, + \rangle$ is closed.

 $\langle \mathbb{Q}, + \rangle$ is associative, so $\langle R^p, + \rangle$ is associative.

$$\begin{array}{l} p^0 = 1, \, \text{so} \, \frac{0}{1} \in R^p \\ \text{Assume} \, r = \frac{a}{b} \in R_p \\ \frac{0}{1} + r = \frac{0}{1} + \frac{a}{b} = \frac{0b + 1a}{1b} = \frac{a}{b} = r \\ r + \frac{0}{1} = \frac{a}{b} + \frac{0}{1} = \frac{1a + 0b}{1b} = \frac{a}{b} = r \\ \therefore \, \frac{0}{1} \, \text{is a two-sided identity for} \, R_p. \end{array}$$

Assume $r = \frac{a}{b} \in R_p$

$$-r = -\frac{a}{b} = \frac{(-a)}{b} \in R_p$$

$$-r + r = -\frac{a}{b} + \frac{a}{b} = 0 = \frac{0}{1}$$

$$r + (-r) = \frac{a}{b} - \frac{a}{b} = 0 = \frac{0}{1}$$

$$\therefore -r \text{ is a two-sided inverse for } r.$$

$$-r + r = -\frac{a}{b} + \frac{a}{b} = 0 = \frac{0}{1}$$

 $r + (-r) = \frac{a}{b} - \frac{a}{b} = 0 = \frac{0}{1}$

 $\langle \mathbb{Q}, + \rangle$ is commutative, so $\langle R^p, + \rangle$ is commutative.

 $\therefore \langle R^p, + \rangle$ is an abelian group.

1.1.12

Let G be a group such that $\forall a, b \in G, \exists r \in \mathbb{Z}^+, bab^{-1} = a^r$.

Prove: $\forall a, b \in G, \forall n \in \mathbb{Z}^+, b^n a b^{-n} = a^{r^n}$

Proof by induction on n

Base: n=1

$$b^1 a b^{-1} = b a b^{-1} = a^r = a^{r^1}$$

Assume $\forall a, b \in G, \forall n \in \mathbb{Z}^+, b^n a b^{-n} = a^{r^n}$

Consider (n+1)

$$b^{n+1}ab^{-(n+1)} = b(b^nab^{-n})b^{-1}$$

$$= b(a^{r^n})b^{-1}$$

$$= b(b^{-1}ba)^{r^n}b^{-1}$$

$$= (bb^{-1})(bab^{-1})^{r^n}$$

$$= e(a^r)^{r^n}$$

$$= (a^r)^{r^n}$$

$$= a^{rr^n}$$

$$= a^{r^{(n+1)}}$$

1.1.13

Let G be a group. Prove: $(\forall a \in G, a^2 = e) \implies G$ is abelian.

Assume $\forall a \in G, a^2 = e$ Assume $a, b \in G$ $ab \in G$ $(ab)^2 = e$ (ab)(ab) = e a(ab)(ab)b = aeb (aa)(ba)(bb) = ab ebae = ab ba = ab $\therefore G$ is abelian.

1.1.15

Let G be a semigroup such that the left and right cancellation rules hold.

a) Prove: G is finite $\implies G$ is a group.

Assume G is finite Let |G|=n Assume $a\in G$ By closure of the binary operation, $\forall\, m\in\mathbb{Z}^+, a^m\in G$ Let $S=\{a^m\mid 1\leq m\leq n+1\}$ $S\subseteq G$, but |S|=n+1>n=|G| Thus, S must have duplicates Assume $a^j=a^k, j< k$

Case 1:
$$j=1$$

$$a=a^k=a^{k-1+1}=a^{k-j+1}$$
 Case 2: $j>1$
$$G \text{ is associative, and thus so is } S$$

$$aa^{j-1}=a^{k-j+1}a^{j-1}$$
 So, by right cancellation, $a=a^{k-j+1}$

Thus, combining the two cases, $a=a^{k-j+1}\in S$ and also in G

 ${\cal G}$ is a semigroup and is thus associative.

Now, assume
$$b \in G$$
 $ba = ba^{k-j+1} = ba^{k-j}a$ By right cancellation, $b = ba^{k-j}$ $ab = a^{k-j+1}b = aa^{k-j}b$ By left cancellation, $b = a^{k-j}b$ $\therefore a^{k-j}$ is a two-sided identity for G .

Remember that a was selected as any arbitrary element in G

Since
$$e \in G$$
, $e = a^0$ is defined $a = a^{k-j+1}$ $ea = a^{k-j-1}aa$
By right cancellation, $e = a^{k-j-1}a$ $ae = aaa^{k-j-1}$
By left cancellation, $e = aa^{k-j-1}$ $\therefore a^{k-j-1}$ is a two-sided inverse for a .

 $\therefore G$ is a group.

b) If G is infinite, then the implication does not hold. As a counter-example, consider $\langle Z^+, + \rangle$. It is a semigroup and the cancellation rules hold; however, there is no identity or inverses and thus it is not a group.