Estatística descritiva

Covariância e Correlação Linear

Fabio Cop (fabiocopf@gmail.com) Instituto do Mar - UNIFESP Última atualização em 18 de março de 2022

Conteúdo da aula

O coeficiente de correlação de Pearson

Um pouco de história

Na década de 1890, Karl Pearson foi apresentado a Francis Galton pelo zoólogo Walter Weldon. Juntos fundaram a revista Biometrika. com o objetivo de desenvolver teoria em estatística. Galton (primo de Charles Darwin) e Pearson trabalharam juntos em vários problemas relacionados à teoria da evolução, genética, biometria e estatística. Galton trouxe as primeiras ideias sobre a medida de associação entre duas variáveis quantitativas no contexto da hereditariedade e propôs o coeficiente de correlação linear para medir esta associação. Suas idéias foram estendidas por Karl Pearson e Udny Yule para um contexto estatístico mais geral. Pearson trouxe ainda muitas outras contribuições á estatística como o coeficiente de χ^2 e a ideia de graus de liberdade. O termo distribuição normal para variáveis com dustribuição Gaussiana também surgiu como fruto e seu trabalho (veja em: Karl Pearson).

1. Medindo a intensidade de associações lineares

Soma dos Quadrados de Y

$$SQ_Y = \sum_{i=1}^n (y_i - ar{y})^2 = \sum_{i=1}^n (y_i - ar{y})(y_i - ar{y})^2$$

Variância amostral de Y

$$s_Y^2 = rac{\sum_{i=1}^n (y_i - ar{y})^2}{n-1}$$

Soma dos Quadrados de X

$$SQ_X = \sum_{i=1}^n (x_i - \overline{x})^2 = \sum_{i=1}^n (x_i - \overline{x})(x_i - \overline{x})$$

Variância amostral de X

$$s_X^2 = rac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}$$

Soma dos produtos cruzados de Y e X

$$SQ_{YX} = \sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x}).$$

Covariância amostral entre Y e X

$$s_{YX} = rac{\sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x})}{n-1}$$

Se

$$(y_i-\overline{y})>0$$
; $(x_i-\overline{x})<0$

OU

$$(y_i-ar{y})<0$$
; $(x_i-ar{x})>0$

temos

$$s_{YX}=rac{\sum_{i=1}^n(y_i-ar{y})(x_i-ar{x})}{n-1}<0$$

A covariância pode ser **NEGATIVA**

Se

$$(y_i-\overline{y})>0$$
; $(x_i-\overline{x})>0$

OU

$$(y_i-ar{y})<0$$
; $(x_i-ar{x})<0$

temos

$$s_{YX}=rac{\sum_{i=1}^n(y_i-ar{y})(x_i-ar{x})}{n-1}>0$$

A covariância pode ser **POSITIVA**

Se

$$(y_i - \overline{y}) pprox 0$$
; $(x_i - \overline{x}) pprox 0$

ou

$$(y_i - ar{y}) pprox 0$$
; $(x_i - ar{x}) pprox 0$

Temos

$$s_{YX}=rac{\sum_{i=1}^n(y_i-ar{y})(x_i-ar{x})}{n-1}pprox 0$$

A covariância pode ser **NULA**

Cálculo da covariância entre Y e X									
	Y	X	$(y_i - \overline{y})$	$(x_i-\overline{x})$	$(y_i - \overline{y})(x_i - \overline{x})$				
1	45.26	5.46	-4.88	-0.95	4.63				
2	49.04	6.56	-1.10	0.15	-0.16				
3	51.54	5.84	1.40	-0.57	-0.79				
4	56.46	7.81	6.32	1.40	8.84				
5	48.40	6.38	-1.74	-0.03	0.05				
\sum	50.14	6.41	0.00	0.00	12.57				

$$s_{YX} = rac{\sum_{i=1}^{n}(y_i - ar{y})(x_i - ar{x})}{n-1} \ s_{YX} = rac{12.57}{5-1} = 3.14$$

Cenários possíeis

4. O coeficiente de correlação linear de Pearson

Covariância amostral entre Y e X

$$s_{YX} = rac{\sum_{i=1}^n (y_i - \overline{y})(x_i - \overline{x})}{n-1}$$

Variância amostral de Y

$$s_Y^2 = rac{\sum_{i=1}^n (y_i - ar{y})^2}{n-1}$$

Variância amostral de X

$$s_X^2 = rac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}$$

O coeficiente de correlação linear de Pearson r

$$r = rac{s_{YX}}{\sqrt{s_Y^2} imes \sqrt{s_X^2}}$$

O r de Pearson é a covariância **padronizada** pelos desvios padrões de Y e X

4. O coeficiente de correlação linear de Pearson

A covariância não tem limites negativos ou positivos. A escala depende das magnitudes de Y e de X.

O r de Pearson varia entre -1 e +1.

4. O coeficiente de correlação linear de Pearson

$$r = rac{\sum_{i=1}^{n}(y_i - \overline{y})(x_i - \overline{x})}{\sqrt{\sum_{i=1}^{n}(y_i - \overline{y})^2}\sqrt{\sum_{i=1}^{n}(x_i - \overline{x})^2}}$$

- r=-1 (Associção linear perfeitamente **negativa**)
- r=0 (Associção linear inexistente)
- r=1 (Associção linear perfeitamente **positiva**)

5. Linearidade e Causalidade

O r mede associações lineares

Correlação não implica causalidade

Dada uma **amostra** com n observações para os pares Y e X, a correlação entre Y e X na **população estatística** é diferente de zero?

 $H_0:
ho=0$

 $H_a:
ho
eq 0$

n = 10

$$H_0:
ho=0$$

 $H_a:
ho
eq 0$

Os dados segundo $H_{ m 0}$

Assumimos que distribuição conjunta entre f(Y,X) é Normal.

$$H_0:
ho=0$$

$$H_a:
ho
eq 0$$

$$\alpha = 0.05$$

$$n = 10$$

$$r = -0.32$$

Estatística do teste - t

$$t_{calculado} = rac{r}{\sqrt{rac{1-r^2}{n-2}}}$$

Segundo H_0

Teste de hipótese sobre ρ

$$\overline{Y} = 98.85; \overline{X} = 69.94; n = 10$$

$$r = -0.32$$

$$t_{calculado} = rac{r}{\sqrt{rac{1-r^2}{n-2}}} = rac{-0.32}{\sqrt{rac{1-(-0.32)^2}{8}}} = -0.965$$

$$p = 0.363$$

Assumindo $\alpha=0.05$, **Aceito** H_0 :

Não há evidências de correlação entre Y e X.

Cálculo do coeficiente de correlação

	Y	X	$\sum (y_i - \overline{y})^2$	$\sum (x_i - \overline{x})^2$	$(y_i-\overline{y})(x_i-\overline{x})$
1	95.9	69.63	8.72	0.10	0.92
2	101.8	66.27	8.68	13.50	-10.83
3	100.85	69.98	4.01	0.00	0.08
4	99.75	73.43	0.81	12.13	3.14
5	93.88	74.63	24.69	21.95	-23.28
6	97.33	66.9	2.30	9.27	4.62
7	96.68	71.19	4.71	1.55	-2.70
8	100.85	68.96	3.99	0.97	-1.97
9	96.14	68.52	7.36	2.03	3.87
10	105.32	69.93	41.87	0.00	-0.06
\sum			107.15	61.52	-26.21

Aumentando o tamanho amostral

$$H_0:
ho=0$$

$$H_a:
ho
eq 0$$

$$lpha=0.05$$

$$n = 50$$

$$r = -0.32$$

Estatística do teste - t

$$t_{calculado} = rac{r}{\sqrt{rac{1-r^2}{n-2}}}$$

Segundo H_0

Teste de hipótese sobre ρ

$$\overline{Y} = 100.41; \overline{X} = 69.64; n = 50$$

$$r = -0.32$$

$$t_{calculado} = rac{r}{\sqrt{rac{1-r^2}{n-2}}} = rac{-0.32}{\sqrt{rac{1-(-0.32)^2}{48}}} = -2.363$$

$$p = 0.022$$

Assumindo $\alpha=0.05$, **Rejeito** H_0 :

Há evidências de correlação entre Y e X

Segundo H_0

$$r = -0.32$$
; $n = 10$

$$t_{calculado} = -0.965; p = 0.363$$

$$r = -0.32$$
; $n = 50$

$$t_{calculado}=-2.363$$
; $p=0.022$

