(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 24. Februar 2005 (24.02.2005)

PCT

(10) Internationale Veröffentlichungsnummer

WO 2005/016965 A1

not. JS

- (51) Internationale Patentklassifikation⁷: C07K 14/705, A61P 9/06
- (21) Internationales Aktenzeichen: PCT/EP2004/007364
- (22) Internationales Anmeldedatum:

6. Juli 2004 (06.07.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

103 32 685.5

18. Juli 2003 (18.07.2003) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BAYER HEALTHCARE AG [DE/DE]; 51368 Leverkusen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): ELLINGHAUS, Peter [DE/DE]; Ausblick 100, 42113 Wuppertal (DE). MÜNTER, Klaus [DE/DE]; Memeler Str. 54, 42489 Wülfrath (DE).
- (74) Gemeinsamer Vertreter: BAYER HEALTHCARE AG; Law and Patents, Patents and Licensing, 51368 Leverkusen (DE).

- (81) Bestimmungsstaaten (soweit nicht anders angegeben. für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(eA 36 823

(54) Title: MODULATORS OF THE POTASSIUM CHANNELS TWIK-1, TASK-1, GIRK1, SK2 OR PCN1, USED TO TREAT ARRHYTHMIA, CORONARY HEART DISEASE OR HYPERTENSION

- (54) Bezeichnung: MODULATOREN DER KALIUMKANÄLE TWIK-1, TASK-1, GIRK1, SK2 ODER PCN1 ZUR BEHAND-LUNG VON ARRHYTHMIEN, KORONARER HERZKRANKHEITEN ODER BLUTHOCHDRUCK
- (57) Abstract: The invention relates to the use of modulators of the potassium channels TWIK-1, TASK-1, GIRK1 SK2 and PCN1 in the production of a medicament for the treatment and/or prophylaxis of cardiac dysrhythmia (arrhythmia), coronary heart disease and hypertension.
- (57) Zusammenfassung: Die Erfindung betrifft die Verwendung von Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1 SK2 und PCN1 zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten, sowie Bluthochdruck.

BEST AVAILABLE COPY

5

10

15

20

25

30

MODULATOREN DER KALIUMKANÄLE TWIK-1, TASK-1, GIRK1, SK2 ODER PCN1 ZUR BEHANDLUNG VON ARRHYTHMIEN, KORONARER HERZKRANKHEITEN ODER BLUTHOCHDRUCK

Die Erfindung betrifft die Verwendung von Kaliumkanal-Modulatoren zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen, koronaren Herzkrankheiten sowie Bluthochdruck oder einer Kombination der genannten Erkrankungen.

Die Zellen des Sinusknotens im rechten Vorhof des Herzens haben die Funktion eines physiologischen Schrittmachers, da dort in regelmäßigen Intervallen eine elektrische Erregung ihren Ursprung hat. Verantwortlich für die Erregungsleitung ist eine Membranpotentialänderung, die durch die Konzentration verschiedener Ionen auf beiden Seiten einer Zellmembran bestimmt wird (Na⁺, K⁺ und Ca²⁺). Diese Ionen passieren die Zellmembran durch ionenselektive Kanäle, die aus mehreren Untereinheiten bestehen und zusammen eine Pore bilden. Während einer Herzaktion (Systole) durchläuft die Herzmuskelzelle ein Aktionspotential, das sich aus den Phasen 0-3 zusammensetzt und an dem alle drei o. g. Typen von Ionenkanälen beteiligt sind. Die Aktion beginnt mit einer raschen Depolarisation (Phase 0), an der vor allem Na⁺-Kanäle beteiligt sind, gefolgt von einer transienten, unvollständigen Repolarisation (Phase 1) die in die lang anhaltende Plateauphase (Phase 2) übergeht und an der vor allem Ca²⁺-Kanäle beteiligt sind. Die Phase 3 repräsentiert die Repolarisation und ist damit für die Wiederherstellung des Ruhezustandes verantwortlich. Der zur Repolarisation notwendige K⁺-Ausstrom wird durch Kaliumkanäle vermittelt. Während des gesamten Aktionspotentials ist die Membran vor einem weiteren depolarisierenden Reiz geschützt, sie ist refraktär (1).

Bei Arrhythmien kommt es entweder zu Störungen der Erregungsbildung, der Erregungsleitung oder einer Kombination aus beiden. Ursache hierfür können Ischämien, entzündliche Erkrankungen des Herzmuskels aber auch Intoxikationen oder vegetative Einflüsse sein. Substanzen und Verfahren, die die Erregungsbildung oder Weiterleitung beeinflussen, werden therapeutisch zur Behandlung von Arrhythmien eingesetzt. Substanzen, die den repolarisienden K⁺-Strom verzögern und dadurch Aktionspotentialdauer und Refraktärzeit verlängern, gehören zu den sog. Klasse-III-Antiarrhythmika von denen zur Zeit in Deutschland Amiodaron und Sotalol zugelassen sind (1).

Beide Substanzen sind allerdings keine selektiven Kaliumkanalblocker: So zeigt Sotalol neben einer Blockade verschiedener K⁺-Kanäle (z. B. HERG) auch antagonistische Eigenschaften für beta-adrenerge Rezeptoren während Amiodaron neben HERG auch den L-Typ Ca²⁺-Kanal und Na⁺-Kanäle blockiert (1), (2).

5

15

25

30

Ebenso wie die anderen Klassen von Antiarrhytmika besitzen auch die Klasse-III Kaliumkanalblocker ein beträchtliches pro-arrhythmisches Potential, welches auf die gleichzeitige Beeinflussung der Kaliumkanäle im Ventrikel zurückgeführt wird und den klinischen Einsatz limitiert. Insofern kommt der Identifizierung von bevorzugt im Vorhof exprimierten Kaliumkanälen als möglichen Antiarrhythmika-targets ein besondere Bedeutung zu, da hierdurch die Nebenwirkungen, die bis zu tödlichem Kammerflimmern reichen, gesenkt werden könnten (3).

Neben Kaliumkanalblockern wie Sotalol und Amiodaron sind auch anti-arrhythmische Wirkungen von Kaliumkanalöffnern z. B. für den ATP-abhängigen Kaliumkanal beschrieben (4).

In der vorliegenden Arbeit wurden mittels Affymetrix-MicroArray-Technologie Gene identifiziert, die im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden. (s. Fig. 1). Die Verifizierung der differentiellen Expression ausgewählter Gene erfolgte mittels Real-time PCR (TaqMan). Dabei zeigte sich, das bei allen 6 untersuchten Patienten die Kaliumkanäle TWIK-1 (5), TASK-1 (6), GIRK1 (7), SK2 (8) und PCN1 (9) deutlich stärker im Vorhof als im Ventrikel exprimiert werden (s. Fig. 3).

Die vorliegende Erfindung betrifft daher die Verwendung von Modulatoren der zuvor genannten Kaliumkanäle zur Herstellung eines Arzneimittels zur Behandlung und/oder der Prophylaxe der oben genannten Krankheiten.

Kaliumkanalmodulatoren im Sinne der vorliegenden Offenbarung sind Substanzen welche die Öffnungsdauer der genannten Kaliumkanäle verlängern oder verkürzen.

Modulatoren im Sinne der Erfindung sind alle Substanzen, die eine Veränderung der biologischen Aktivität der Kanäle bewirken. Besonders bevorzugte Modulatoren sind Nükleinsäuren inklusive "locked nucleic acids", "peptide nucleic acids" und "Spiegelmere", Proteine inklusive Antikörper und niedermolekulare Substanzen, ganz besonders bevorzugte Modulatoren sind niedermolekulare Substanzen.

Die Erfindung betrifft die Verwendung von Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronarer Herzkrankheiten oder Bluthochdruck.

Desweiteren betrifft die Erfindung die Verwendung von Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 mit einem IC₅₀ von < 1 μM, besonders bevorzugt von < 100 nM zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronarer Herzkrankheiten oder Bluthochdruck.

Ein weiterer Erfindungsgegenstand ist eine Methode zum Screenen von Testverbindungen zur Identifizierung von Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1, welche geeignet sind für die Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronarer Herzkrankheiten oder Bluthochdruck.

Gegenstand der Erfindung ist ebenfalls eine pharmazeutische Zusammensetzung, enthaltend einen Modulator oder mehrere Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronarer Herzkrankheiten oder Bluthochdruck.

5

10

15

20

25

30

Erfindungsgegenstand ist des weiteren die Verwendung von Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 für die Regulation der Aktivität der entsprechenden Kaliumkanäle in einem Lebewesen einschließlich des Menschen zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronarer Herzkrankheiten oder Bluthochdruck.

Die Erfindung betrifft auch Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronarer Herzkrankheiten oder Bluthochdruck.

Erfindungsgemäß ist ebenfalls die Verwendung von Modulatoren von Genprodukten, welche im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden, zur Herstellung eines Arzneimittels zur Behandlung von Arrhythmien, koronaren Herzkrankheiten, Bluthochdruck und den Folgen der Atherosklerose. Da in Abhängigkeit von der Funktion des Genproduktes durchaus auch eine verstärkte Expression im Ventrikel bevorzugt sein kann (z. B. für den Endothelin A-Rezeptor), wird hier der Begriff differentielle Genexpression verwendet.

Ein weiterer Erfindungsgegenstand ist eine Methode zum Screenen von Testverbindungen zur Identifizierung von Modulatoren von Genprodukten, welche im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden, die geeignet sind für die Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronarer Herzkrankheiten oder Bluthochdruck.

Gegenstand der Erfindung ist ebenfalls eine pharmazeutische Zusammensetzung, enthaltend einen Modulator oder mehrere Modulatoren von Genprodukten, welche im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden, zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronarer Herzkrankheiten oder Bluthochdruck.

Erfindungsgegenstand ist des weiteren die Verwendung von Modulatoren von Genprodukten, welche im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden, für die Regulation der Aktivität der entsprechenden Genprodukte in einem Lebewesen einschließlich des Menschen zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronarer Herzkrankheiten oder Bluthochdruck.

Die Erfindung betrifft auch Modulatoren von Genprodukten, welche im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden, zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronarer Herzkrankheiten oder Bluthochdruck.

Substanzen, die eine modulierende Wirkung auf die Aktivität der genannten Kanäle haben, können mit dem unten beschriebenen Assay identifiziert werden (Screening).

Die Testung der anti-arrhythmischen Wirkung in vivo erfolgt mit dem unten beschriebenen Tierversuch.

Beschreibung der Figuren

15

Figur 1: Tabellarisch aufgelistet sind Gene, die bei allen 6 untersuchten Patienten übereinstimmend differentiell exprimiert zwischen Vorhof und Ventrikel gefunden wurden.

Figur 2: Tabellarisch aufgelistet sind die Genbank Accession-Nunmern der mittels TaqMan-PCR verifizierten Gene sowie die dafür verwendeten Primer/Sonden-Sequenzen.

Figur 3: Dargestellt ist die relative mRNA-Expression der Kaliumkanäle TWIK-1, TASK-1, GIRK1 SK2 und PCN1 in humanen Herzen (linker Vorhof [schwarz] und linker Ventrikel [weiss].

Figur 4: Dargestellt ist die relative Proteinexpression des Kaluiumkanals TASK-1 in humanen Herzen als Mittelwert aus allen 6 Patienten. (linker Vorhof [schwarz] und linker Ventrikel [weiss].

Beispiele

5

10

15

20

25

30

<u>Beispiel 1</u>: Identifizierung differentiell exprimierter Gene zwischen humanem Ventrikel und Vorhof

Kleine Stücke (ca. 0,5 g) vom linken Ventrikel bzw. vom linken Vorhof explantierter Herzen wurden mit Einverständnis der Spender vom Herzzentrum Halle (Prof. Morawietz) erhalten. Die Gesamt-RNA hieraus wurde nach Homogenisierung der Gewebe mittels RNaesy-Säulen (Fa. Qiagen) gemäß der Anleitung isoliert. Die Umschreibung von jeweils 10 µg Gesamt-RNA in cDNA, deren anschließende lineare Amplifikation sowie die Hybridisierung der biotinylierten cRNA auf humanen HG-U133A Arrays erfolgte gemäß dem "Affymetrix User Guide" unter Verwendung von Superscript-II (Fa. Gibco) und des "High Yield cRNA labeling Kits (Fa. Enzo). Der HG-U133A Array erlaubt prinzipiell die simultane mRNA-Analyse von ca. 22.600 humanen Genen. Die Auswertung der Arrays erfolgte mit der Software MAS 5.0 (Fa. Affymetrix) und Gene Spring 5.0 (Fa. Silicon Genetics). In Fig. 1 sind die Gene zusammengefasst, die in allen 6 untersuchten Patienten zwischen Vorhof und Ventrikel differentiell exprimiert wurden. Angegeben ist der Quotient der normierten Expression aus Vorhof und Ventrikel, und zwar jeweils als Mittelwert aus allen 6 Probanden.

Die mittels Array zwischen Vorhof und Ventrikel gefundene differentielle Expression der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 und PCN1 wird durch die Quantifizierung der mRNA in einer Echtzeit-Polymerasekettenreaktion verifiziert (10). Hierzu wird die Gesamt-RNA wie oben beschrieben aus den humanen Myokardproben isoliert und je 1 µg davon zur Entfernung von Kontaminationen genomischer DNA mit 1 Einheit DNase I (Fa. Gibco) für 15 min bei Raumtemperatur umgesetzt. Die Inaktivierung der DNase I erfolgt durch Zugabezvon 1 µl EDTA (25 mM) und nachfolgendes Erhitzen auf 65°C (10 min). Anschließend wird im selben Reaktionsansatz die cDNA-Synthese gemäß der Anleitung zum "SUPERSCRIPT-II RT cDNA synthesis kit" (Fa. Gibco) durchgeführt und das Reaktionsvolumen mit destilliertem Wasser auf 200 µl aufgefüllt.

Für die PCR wird zu je 5 µl der verdünnten cDNA-Lösung 7,5 µl Gemisch von Primer und Sonde sowie 12,5 µl TaqMan-Reaktionslösung [Universal Master Mix (Fa. Applied Biosytems] gegeben. Die Endkonzentration der Primer ist jeweils 300 nM, die der Sonde 150 nM. Die Sequenzen der Primer sowie die Genbank Accession-Nummern der analysierten Gene sind in Fig. 2 angegeben. Die Identifizierung geeigneter Primer- und Sondensequenzen erfolgte mit dem Programm Primer Express 5.0 (Fa. Applied Biosystems), die PCR erfolgt auf einem ABI-Prism-SDS-7700-Gerät (Fa. Applied Biosystems) gemäß der Anleitung des Herstellers. Aufgezeichnet wird bei der Real-time PCR der sog. Ct-Wert, der für das betreffende Gen im untersuchten Gewebe erhalten wird. Dieser

5

10

15.

20

25.

30

entspricht dem Zyklus, in dem die Fluoreszenzintensität der freigesetzten Sonde ca. 10 Standardabweichungen über dem Hintergrundsignal liegt. Je niedriger der Ct-Wert, umso früher beginnt also die Vervielfältigung, d. h. je mehr mRNA ist in der ursprünglichen Probe enthalten. Zum Ausgleich eventueller Schwankungen bei der cDNA-Synthese wird in allen untersuchten Geweben auch die Expression eines sog. "Haushaltsgenes" analysiert. Dieses sollte in allen Geweben ungefähr gleich stark exprimiert werden. Für die Normierung der Kaliumkanalexpressionen wurde für Vorhof und Ventrikel einheitlich ß-Actin verwendet. Für die graphische Darstellung der relativen mRNA-Expression wird für jedes Gen und jedes Gewebe der dCt-Wert berechnet. Der dCt-Wert ist die Differenz zwischen dem Ct-Wert des untersuchten Kaliumkanals und dem Ct-Wert des Haushaltsgens im jeweiligen Gewebe. Aus diesem Wert wird nach folgender Formel die relative Expression rE berechnet: rE = 2 (20-dCt) Diese ist in Fig. 3 als dimensionslose Zahl angegeben.

Für den Kaliumkanal TASK-1 wurde unter Verwendung eines käuflichen Antikörpers (Fa. Santa Cruz) die Protein-Expression analysiert. Hierzu wurden kleine Gewebestücke (ca. 50 mg) in 1 X PBS (mit 1 % Triton) homogenisiert und nach Zentrifugation und Konzentrationsbestimmung (BCA-Tet, Fa. Pierce) ein Western Blot durchgeführt (10 % Nupage-Gel). Die Detektion erfolgte mittels des ECL-Systems (Fa. Amersham) unter Verwendung eines HRP-konjugierten Anti-goat IgG-Antikörpers. Der belichtete Film wurde in einem Bioimager (Fa. Fuji) densitrometrisch ausgewertet. Das Ergebnis in Fig. 4 als dimensionslose Zahl angegeben.

Beispiel 2: Identifizierung von Kaliumkanalmodulatoren

Die Identifizierung von Kaliumkanalmodulatoren erfolgt in einem zellulären Assay bei dem CHO-Zellen den jeweiligen Ionenkanal rekombinant exprimieren und unter Verwendung des potentialsensitiven Farbstoffs Dye B aus dem "FLIPR membrane potential assay kit" (Fa. Molecular Probes). Eine Depolarisation der Zellen durch eine chemische Substanz führt zu einer vermehrten Aufnahme des Farbstoffs "Dye B" und dadurch zu einer erhöhten intrazellulären Fluoreszenzintensität. Eine Hyperpolarisation der Zelle durch eine chemische Substanz führt dagegen zu einer Abnahme der Farbstoffkonzentration in der Zelle und damit auch zu einer Abnahme der Fluoreszenzintensität, da die Quantenausbeute von Dye B in wässriger Lösung geringer ist. Zur Messung werden konfluente Zellen verwendet, die nach Entfernen des Mediums entsprechend den Vorschriften des Kit-Herstellers (Molecular Probes) bei Raumtemperatur mit dem Farbstoff Dye B beladen werden. Die Fluoreszenzmessung erfolgt ebenfalls bei Raumtemperatur in einer Fluobox (Fa. Tecan) bei einer Anregungswellenlänge von 520 nm und einer Absorptionswellenlänge von 575 nm, wie zum Beispiel beschrieben in (11).

5

10

15

20

30

Beispiel 3: Testung der in vivo Wirkung von Kaliumkanalmodulatoren

Der Einfluss der Kaliumkanalmodulatoren auf die Herzfrequenz wird an narkotisierten Ratten untersucht. Hierzu werden männliche Wistarratten (250-300g) mit 10mg/kg Thiobutabarbital i. p. (Inactin, Byk Gulden) narkotisiert und anschließend getötet. Nach Thoraxeröffnung wird das Herz freigelegt, der rechte Vorhof isoliert und unter einer 1g-Vorspannung in einer 30°C warmen Krebs-Henseleit-Lösung (in einem 10 ml Organbad) aufbewahrt. Diese Lösung wird mit Carbogen (95% O₂, 5% CO₂) bei pH 7.2-7.4 begast. Die Vorhöfe schlagen spontan und nach Aufzeichnung einer Kontrollperiode (Parameter: Frequenz) werden die Testsubstanzen in einer Dosisreihe appliziert. Pro Dosis wird die Veränderung der Frequenz im Vergleich zu Placebo-behandelten Kontrollen ausgewertet.

Beispiel 4: Kaliumkanalmodulator-Formulierungen

Die Kaliumkanalmodulatoren können in bekannter Weise in die üblichen Formulierungen überführt werden, wie Tabletten, Dragees, Pillen, Granulate, Aerosole, Sirupe, Emulsionen, Suspensionen und Lösungen, unter Verwendung inerter, nicht toxischer, pharmazeutisch geeigneter Trägerstoffe oder Lösungsmittel. Hierbei soll die therapeutisch wirksame Verbindung jeweils in einer Konzentration von 0,5 bis 90 Gew.-% der Gesamtmischung vorhanden sein, d.h. in Mengen, die ausreichend sind, um den angegebenen Dosierungsspielraum zu erreichen.

Die Formulierungen werden beispielsweise hergestellt durch Strecken der Wirkstoffe mit Lösungsmitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emulgiermitteln und/oder Dispergiermitteln, wobei z.B. im Fall der Benutzung von Wasser als Verdünnungsmittel gegebenenfalls organische Lösungsmittel als Hilfslösungsmittel verwendet werden können.

Die Applikation erfolgt in üblicher Weise, vorzugsweise oral, transdermal, intravenös oder parenteral, insbesondere oral oder intravenös. Sie kann aber auch durch Inhalation über Mund oder Nase, beispielsweise mit Hilfe eines Sprays erfolgen, oder topisch über die Haut.

Im Allgemeinen hat es sich als vorteilhaft erwiesen, Mengen von etwas 0,001 bis 10 mg/kg, bei oraler Anwendung vorzugsweise etwa 0,005 bis 3 mg/kg Körpergewicht zur Erzielen wirksamer Ergebnisse zu verabreichen.

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit vom Körpergewicht bzw. der Art des Applikationsweges, vom individuellen Verhalten gegenüber dem Medikament, der Art von dessen Formulierung und dem Zeitpunkt bzw. Intervall, zu welchen die Verabreichung erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die

genannte obere Grenze überschritten werden muss. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

Literatur

10

20

- 1. Forth, Henschler, Rummel; Allgemeine und spezielle Pharmakologie und Toxikologie; Urban & Fischer Verlag München, 8. Auflage 2001, 429-433
- Numaguchi H. et al., Probing the interaction between inactivation gating and Dd-solatol block of HERG, Circ. Res. 11 (2000) 1012-1018.
 - 3. Nattel, S. et al., Evolution, machanisms, and classification of antiarrhythmic drugs: focus on class III actions, Am. J. Cardiol. 84 (1999) 11R-19R.
 - 4. Workmann, A. J. et al., A K(ATP) channel opener inhibited myocardial reperfusion action potential shortening and arrhythmias.
 - 5. Lesage, F. et al., TWIK-1, a ubiquitous human weakly inward rectifying K⁺ channel with a novel structure, EMBO J. 15 (1996) 1004-1011.
 - 6. Duprat, F. et al., TASK, a human background K+ channel to sense external pH variations near physiological pH, EMBO J. 16 (1997) 5464-5471.
- 7. Stoffel, M. et al., Human G-protein-coupled inwardly rectifying potassium channel (GIRK1) gene (KCNJ3): localization to chromosome 2 and identification of a simple tandem repeat polymorphism, Genomics 21 (1994) 254-256.
 - 8. Desai, R. et al., Ca²⁺-activated K⁺ channels in human leukemic Jurkat T cells. Molecular cloning, biochemical and functional characterization, J. Biol. Chem. 275 (2000) 39954-39963.
 - 9. Tamkun M. et al., Molecular cloning and characterization of two voltage-gated K+ channel cDNAs from human ventricle, FASEB J. 5 (1991) 331-337.
 - 10. Heid C. et al., Real time quantitative PCR, Genome Res. 6 (1996) 986-9954.
 - 11. EP906572(B1)

5

15

20

Patentansprüche

- Verwendung von Modulatoren oder eines Modulators der Kaliumkanäle TWIK-1, TASK1, GIRK1, SK2 oder PCN1 zur Herstellung eines Arzneimittels zur Behandlung und/oder
 Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronarer Herzkrankheiten oder
 Bluthochdruck.
- 2. Eine Methode zum Screenen von Testverbindungen zur Identifizierung von Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1, welche geeignet sind für die Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronarer Herzkrankheiten oder Bluthochdruck.
- 3. Eine pharmazeutische Zusammensetzung, enthaltend einen Modulator oder mehrere Modulatoren der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronarer Herzkrankheiten oder Bluthochdruck.
 - Modulator der Kaliumkanäle TWIK-1, TASK-1, GIRK1, SK2 oder PCN1 zur Behandlung und/oder Prophylaxe von Herzrhythmusstörungen (Arrhythmien), koronarer Herzkrankheiten oder Bluthochdruck.
 - 5. Verwendung von Modulatoren von Genprodukten, welche im humanen Herz differentiell zwischen linkem Vorhof und linkem Ventrikel exprimiert werden, zur Herstellung eines Arzneimittels zur Behandlung von Herzrhythmusstörungen (Arrhythmien), koronaren Herzkrankheiten, oder Bluthochdruck.

Fig. 1

Gen	x-fach stärker im Vorhof MW n=6	Genbank-Acc. No.
sarcolipin	9,6	NM_003063
myosin, light polypeptide 4, alkali; atrial, embryonic	9,2	M36172
A kinase (PRKA) anchor protein 3	8,7	NM_006422
potassium channel, subfamily K, member 1 (TWIK-1)	6,7	U90065
up-regulated by BCG-CWS	5,6	AB040120
myosin, heavy polypeptide 6, cardiac muscle, alpha (cardiomyopathy, hypertrophic 1)	5,3	D00943
titin immunoglobulin domain protein (myotilin)	5,2	NM_006790
signal transducer and activator of transcription 4	4,9	NM_003151
nuclear receptor subfamily 2, group F, member 1 (COUP-TF 1)	4,2	AI951185
NADP-dependent retinol dehydrogenase/reductase	4,2	NM_005771
natriuretic peptide precursor B	4,2	NM_002521
desmocollin 1	4,1	NM_004948
potassium voltage-gated channel, shaker-related subfamily, member 5 (KCNA5)	4,0	NM_002234
secreted frizzled-related protein 1	4,0	NM_003012
phospholipase A2, group IIA (platelets, synovial fluid)	3,8	NM_000300
keratin 18	3,7	NM_000224
dickkopf homolog 3 (Xenopus laevis)	3,7	NM_013253

Gen	Į.	Genbank-Acc. No.
natriuretic peptide precursor A	3,5	M30262
guanine nucleotide binding protein (G protein), beta 5	3,4	NM_006578
potassium channel, subfamily K, member 3 (TASK-1)	3,3	NM_002246
H factor 1 (complement)	3,1	X04697
up-regulated by BCG-CWS	3,0	NM_022154
phosphodiesterase SB	3,0	AK023913
cartilage oligomeric matrix protein (pseudoachondroplasia, epiphyseal dysplasia 1, multiple)	2,9	NM_000095
complement component 3	2,7	NM_000064
sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican)	2,7	AF231124
phospholipase C, beta 1 (phosphoinositide-specific)	2,7	AL049593
actin, alpha 2, smooth muscle, aorta	2,7	NM_001613
chromosome 1 open reading frame 15	2,6	AF288395
corin	2,6	NM_006587
myosin light chain 2a	2,5	NM_021223
transmembrane 6 superfamily member 1	2,4	NM_023003
FK 506 binding protein 11, 19 kDa	2,4	NM_016594
visinin-like 1	2,4	NM_003385
angiotensin II receptor, type 1	2,4	NM_004835

	x-fach stärker	Genbank-Acc.
Gen .	im Vorhof	No.
	MW n =6	
H factor (complement)-like 2	2,3	X56210
NY-REN-58 antigen	2,3	NM_016122
similar to neuralin 1	2,2	AL049176
Duffy blood group	2,1	NM_002036
transgelin	2,0	NM_003186
potassium intermediate/small conductance calcium-	2,0	NM_021614
activated channel, subfamily N, member 2	*	
endothelin receptor type A	2,0	NM_001957
spermidine/spermine N1-acetyltransferase	2,0	NM_002970
transmembrane 4 superfamily member 2	2,0	NM_004615
B-cell translocation gene 1, anti-proliferative	2,0	NM_001731
phospholipase A2, group V	1,9	AL158172
fibulin 1	1,9	Z953 <u>3</u> 1
spermidine/spermine N1-acetyltransferase	1,9	M55580
peptidylglycine alpha-amidating monooxygenase	1,9	BF038548
spermidine/spermine N1-acetyltransferase	1,9	BE971383
hephaestin	1,9	NM_014799
Ras-related-associated with-diabetes	1;9	NM_004165
growth hormone receptor	1,8	NM_000163
peptidylglycine alpha-amidating monooxygenase	1,8	NM_000919

Con :		Genbank-Acc.
Gen	im Vorhof	No.
·	MW n =6	
WNT1 inducible signaling pathway protein 2	1,8	NM_003881
melanophilin	1,8	NM_024101
B-cell translocation gene 1, anti-proliferative	1,8	AL535380
adipose specific 2	1,8	NM_006829
reticulon 4	1,8	AF333336
protein kinase, AMP-activated, gamma 2 non-catalytic	1,8	NM_016203
subunit		
proteolipid protein 2 (colonic epithelium-enriched)	1,8	NM_002668
CD44 antigen (homing function and Indian blood group	1,8	BE903880
system)		
T-box 5	1,8	NM_000192
actinin, alpha 1	1,7	AI082078
D123 gene product	1,7	NM_006023
Ris	1,7	NM_016563
complement component 1, r subcomponent	1,7	AL573058
peroxiredoxin 1	1,7	L19184
S100 calcium binding protein A4 (calcium protein,	1,6	NM_002961
calvasculin, metastasin, murine placental homolog)		
annexin A4	1,6	NM_001153
phospholipase A2, group V	1,6	NM_000929
tubulin, beta polypeptide	1,6	NM_001069

Gen		Genbank-Acc. No.
prostaglandin I2 (prostacyclin) synthase	1,6	NM_000961
Homo sapiens clone 24416 mRNA sequence	1,6	AV712602
complement component 7	1,6	NM_000587
epidermal growth factor receptor pathway substrate 8	1,6	NM_004447
aldo-keto reductase family 1, member C2 (dihydrodiol dehydrogenase 2; bile acid binding protein; 3-alpha hydroxysteroid dehydrogenase, type III)	1,6	M33376
Clq and tumor necrosis factor related protein 1	1,6	NM_030968
reticulon 4	1,5	AB015639
CD47 antigen (Rh-related antigen, integrin-associated signal transducer)	1,5	BG230614
hypothetical protein FLJ10097	1,5	AL523320
peptidylglycine alpha-amidating monooxygenase	1,5	AI022882
glutathione peroxidase 3 (plasma)	1,5	AW T 49846
catenin (cadherin-associated protein), alpha-like 1	1,5	NM_003798
DKFZP586A0522 protein	1,5	NM_014033
integrin associated protein mRNA	1,5	Z25521
homolog of yeast long chain polyunsaturated fatty acid elongation enzyme 2	1,5	AL136939
reticulon 4	1,5	AF320999
annexin A1	1,5	NM_000700

Gen	Į.	Genbank-Acc. No.
HIV-1 TAR RNA binding protein (TARBP-b)	1,5	L22453
DEK oncogene (DNA binding)	1,5	NM_003472
CCAAT/enhancer binding protein (C/EBP), delta	1,5	NM_005195
aldo-keto reductase family 1, member A1 (aldehyde reductase)	1,5	NM_006066
KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 2	1,4	NM_006854
tropomyosin 1 (alpha)	1,4	Z24727
hydroxysteroid (17-beta) dehydrogenase 12	1,4	NM_016142
tissue inhibitor of metalloproteinase 3 (Sorsby fundus dystrophy, pseudoinflammatory)	1,4	NM_000362
ADP-ribosylation factor-like 5	1,4	NM_012097
nucleosome assembly protein 1-like 1	1,4	NM_004537
peptidylprolyl isomerase B (cyclophilin B)	1,4	NM _0 00942
	·	
delta-like 1 homolog (Drosophila)	0,1	U15979
myosin, light polypeptide 3, alkali; ventricular, skeletal, slow	0,1	NM 000258
HSKM-B protein	0,1	AF070592
ankyrin repeat domain 2 (stretch responsive muscle)	0,2	NM 020349

Gen	1	Genbank-Acc. No.
KIAA1733 protein	0,2	AW054711
four and a half LIM domains 2	0,2	NM_001450
carboxypeptidase, vitellogenic-like	0,3	NM_031311
protein tyrosine phosphatase, non-receptor type 3	. 0,3	NM_002829
myosin, light polypeptide 2, regulatory, cardiac, slow	0,3	AF020768
gamma-aminobutyric acid (GABA) A receptor, alpha 4	0,3	NM_000809
dihydropyrimidinase-like 4	0,3	NM_006426
hypothetical protein FLJ20156	0,4	NM_017691
hypothetical protein FLJ14054	0,4	NM_024563
potassium inwardly-rectifying channel, subfamily J,	0,4	AF153820
member 2		
hypothetical protein FLJ32389	0,4	AL551046
ribosomal protein L3-like	0,4	NM <u>:</u> 005061
NDRG family member 4	0,4	AV724216
hairy/enhancer-of-split related with YRPW motif 2	0,4	NM_012259
Homo sapiens, clone MGC:8772 IMAGE:3862861,	0,4	BG332462
mRNA, complete cds		
isocitrate dehydrogenase 2 (NADP+), mitochondrial	0,4	U52144
likely ortholog of mouse limb-bud and heart gene	0,5	NM_030915
hypothetical protein FLJ21901	0,5	NM_024622

Gen	x-fach stärker im Vorhof	Genbank-Acc. No.
	MW n =6	
phospholipase C-like 1	0,5	NM_006226
lipoprotein lipase	0,5	NM_000237
LRP16 protein	0,5	NM_014067
phosphofructokinase, muscle	0,5	U24183
LIM domain binding 3	0,5	AA211481
protein kinase (cAMP-dependent, catalytic) inhibitor	0,6	NM_006823
alpha		
potassium inwardly-rectifying channel, subfamily J,	0,6	BF514158
member 8		
H2B histone family, member Q	0,6	NM_003528
NS1-binding protein	0,6	AF205218
acetyl-Coenzyme A acetyltransferase 1 (acetoacetyl	0,6	NM_000019
Coenzyme A thiolase)	12	
hyaluronoglucosaminidase 1	0,6	AF173154
potassium inwardly-rectifying channel, subfamily J,	0,6	NM_004981
member 4		
ras-like protein TC10	0,6	BF348067
crystallin, mu	0,6	NM_001888
ubiquitin specific protease 13 (isopeptidase T-3)	0,6	NM 003940
ras-like protein TC10	0,7	BF348067
actin, alpha 1, skeletal muscle	0,7	NM_001100

Gen		Genbank-Acc. No.
	MW n =6	
L-3-hydroxyacyl-Coenzyme A dehydrogenase, short chain	0,7	AF001903
heat shock 27kDa protein family, member 7 (cardiovascular)	0,7	NM_014424

Fig. 2:

Gen	Genbank Accession	Sequenz	Sequenz	Sequenz
	Nummer.	Primer 1	Primer 2	Sonde/"Probe"
		5'-3'	5'-3'	5'-3'
TWIK-1	NM_002245	tgaagaaggacaaggacgagga	gcctggtctgtgatcgagga	caggtgcacatcatagagcatgaccaa
	SEQ ID NO:1	SEQ ID NO:2	SEQ ID NO:3	SEQ ID NO:4
TASK-1	AF065163	acgtctacgcggaggtgct	tctcgcggctcttgtacc	cacttccagtccatgtgctcgtgcct
	SEQ ID NO:5	SEQ ID NO:6	SEQ ID NO:7	SEQ ID NO:8
GIRK1	NM_002239	gttccacgcaacatttgaag	gggacgacatgagaagcatt	cccacccaccttacagtgtgaaa
•	SEQ ID NO:9	SEQ'ID NO:10	SEQ ID NO:11	SEQ ID NO:12
SK2	AF239613	tgcacagccctggtggtag	tccatcatgaaattgtgcacg	tggcaaggaagctagaacttaccaaagcaga
	SEQ ID NO:13	SEQ ID NO:14	SEQ ID NO:15	SEQ ID NO:16
PCN1	NM_002234	cagggaacccatttctctagcat	tgtcccgtagcccacagt	acgccttctggtgggcagtggtc
	SEQ ID NO:17	SEQ ID NO:18	SEQ ID NO:19	SEQ ID NO:20
beta-Aktin	NM_001101	tccaccttccagcagatgtg	ctagaagcatttgcggtggac	atcagcaagcaggagtatgacgagtccg
	SEQ ID NO:21	SEQ ID NO:22	SEQ ID NO:23	SEQ ID NO:24

Fig. 3

Fig. 3, Fortsetzung

Fig. 3, Fortsetzung

Fig. 4

WO 2005/016965

PCT/EP2004/007364

- 1 IAP12 Rec'd PCT/PTO 18 JAN 2006

SEQUENCE LISTING

<110> Bayer AG, BHC

<120> Vorhof-selektiv exprimierte Kaliumkanäle

<130> Le A 36 823

J <160> 24

<170> PatentIn version 3.1

<210> 1

<211> 1901

<212> DNA

<213> Homo sapiens

<400> 1

gggcaggaag	acggcgctgc	ccggaggagc	ggggcgggcg	ggcgcgcggg	ggagcgggcg	60
gcgggcggga	gccaggcccg	ggcgggggcg	aaaacaacaa	ggccagaaga	ggcggcgggc	120
cgcgctccgg	ccggtctgcg	gcgttggcct	tggetttgge	tttggeggeg	gcggtggaga	180
agatgctgca	gtecetggee	ggcagctcgt	gcgtgcgcct	ggtggagcgg	caccgctcgg	240
cctggtgctt	eggetteetg	gtgctgggct	acttgctcta	cctggtcttc	ggcgcagtgg	300
tetteteete	ggtggagctg	ccctatgagg	acctgctgcg	ccaggagctg	cgcaagctga	360
agcgacgctt	cttggaggag	cacgagtgcc	tgtctgagca	gcagctggag	cagttcctgg	420
gccgggtgct	ggaggccagc	aactacggcg	tgtcggtgct	cagcaacgcc	tcgggcaact	480
ggaactggga	cttcacctcc	gcgctcttct	tcgccagcac	cgtgctctcc	accacaggtt	540
atggccacac	cgtgcccttg	tcagatggag	gtaaggcctt	ctgcatcatc	tactccgtca	600
ttggcattcc	cttcaccctc	ctgttcctga	cggctgtggt	ccagcgcatc	accgtgcacg	660
tcacccgcag	gccggtcctc	tacttccaca	teegetgggg	cttctccaag	caggtggtgg	720
ccatcgtcca	tgccgtgctc	cttgggtttg	tcactgtgtc	ctgcttcttc	ttcatcccgg	780
ccgctgtctt	ctcagtcctg	gaggatgact	ggaacttcct	ggaateettt	tatttttgtt	840
ttatttccct	gagcaccatt	ggcctggggg	attatgtgcc	tggggaaggc	tacaatcaaa	900
aattcagaga	gctctataag	attgggatca	cgtgttacct	gctacttggc	cttattgcca	960
tgttggtagt	tctggaaacc	ttctgtgaac	tccatgagct	gaaaaaattc	agaaaaatgt	1020
tctatgtgaa	gaaggacaaġ	gacgaggatc	aggtgcacat	catagagcat	gaccaactgt	1080
ccttctcctc	gatcacagac	caggcagctg	gcatgaaaga	ggaccagaag	caaaatgagc	1140
cttttgtggc	cacccagtca	tetgeetgeg	tggatggccc	tgcaaaccat	tgagcgtagg	1200

atttgttgca	ttatgctaga	gcaccagggt	cagggtgcaa	ggaagaggct	taagtatgtt	1260
catttttatc	agaatgcaaa	agcgaaaatt	atgtcacttt	aagaaatagc	tactgtttgc	1320
aatgtcttat	taaaaaacaa	caaaaaaaga	cacatggaac	aaagaagctg	tgaccccagc	1380
aggatgtcta	atatgtgagg	aaatgagatg	tccacctaaa	attcatatgt	gacaaaatta	1440
tctcgacctt	acataggagg	agaatacttg	aagcagtatg	ctgctgtggt	tagaagcaga	1500
tttatactt	ttaactggaa	actttggggt	ttgcatttag	atcatttagc	tgatggctaa	1560
atagcaaaat	ttatattţag	aagcaaaaaa	aaaaagcata	gagatgtgtt	ttataaatag	1620
gtttatgtgt	actggtttgc	atgtacccac	ccaaaatgat	tatttttgga	gaatctaagt	1680
caaactcact	atttataatg	cataggtaac	cattaactat	gtacatataa	agtataaata	1740
tgtttatatt	ctgtacatat	ggtttaggtc	accagatcct	agtgtagttc	tgaaactaag	1800
actatagata	ttttgtttct	tttgatttct	ctttatacta	aagaatccag	agttgctaca	1860
ataaaataag	gggaataata	aacttgagag	tgaataacca	t.		1901

<210> 2

<211> 22

<212> DNA

<213> artificial sequence

<220>

<223> primer 1

<400> 2

tgaagaagga caaggacgag ga

÷

·

<210> 3

<211> 20 <212> DNA

<213> artificial sequence

<u>ا</u> ا

<220>

<223> primer 2

<400> 3

gcctggtctg tgatcgagga

20

22

<210> 4

<211> 27 <212> DNA

<213> artificial sequence

<220> <223> probe

<400> 4

caggtgcaca tcatagagca tgaccaa

27

<210> 5 <211> 2590 <212> DNA <213> Homo sapiens

<400> 5

tgccctgcgc ggagagcggc gagcgcagcc atgccccagg ccgcctccgg ggcagcagca geggeggeeg gggeegatge gegggeeggg ggeeegggg ggeeggegge ggeeeggeg 120 ggacgatgaa geggeagaac gtgegeacge tggegeteat egtgtgeace tteacetace 180 tgctggtggg cgccgcggtc ttcgacgcgc tggagtcgga gcccgagctg atcgagcggc 240 300 ageggetgga getgeggeag caggagetge gggegegeta caaceteage cagggegget acgaggaget ggagegegte gtgetgegee teaageegea caaggeegge gtgeagtgge 360 gettegeegg etecttetae ttegecatea eegteateae caccategge taegggeaeg 420 cggcacccag cacggatggc ggcaaggtgt tctgcatgtt ctacgcgctg ctgggcatcc 480 egeteaeget egteatgite cagageetgg gegagegeat caacacettg gigaggiaee tgctgcaccg cgccaagaag gggctgggca tgcggcgcgc cgacgtgtcc atggccaaca 600 tggtgctcat cggcttcttc tcgtgcatca gcacgctgtg catcggcgcc gccgccttct 660 cccactacga gcactggace ttettecagg cetactacta etgetteate acceteacea 720 780 ccatcggett cggcgactac gtggcgctgc agaaggacca ggccctgcag acgcagccgc agtacgtggc cttcagcttc gtctacatcc ttacgggcct cacggtcatc ggcgccttcc 900 tcaacctcgt ggtgctgcgc ttcatgacca tgaacgccga ggacgagaag cgcgacgccg ageacegege getgeteacg egeaacggge aggegggegg eggeggaggg ggtggeageg 960 1020 egeacactae ggacacegee teatecaegg eggeageggg eggeggegge tteegeaaeg tctacgcgga ggtgctgcac ttccagtcca tgtgctcgtg cctgtggtac aagagccgcg 1080 agaagetgca gtactccate eccatgatea teeegeggga ectetecaeg teegacaegt 1140 gegtggagea gagecacteg tegeegggag ggggeggeeg etacagegae acgecetege 1200 gacgctgcct gtgcagcggg gcgccacgct ccgccatcag ctcggtgtcc acgggtctgc 1260 1320 acagoctyte caectteege gyeeteatga agegeaggag eteegtytga etgeeeegag ggacctggag cacctggggg cgcgggcggg ggacccctgc tgggaggcca ggagactgcc 1380

cctgctgcct	tctgcccagt	gggaccccgc	acaacatccc	tcaccactct	ccccagcac	1440
ccccatctcc	gactgtgcct	gcttgcacca	gcćągcagga	ggccgggctc	tgaggacccc	1500
tggggccccc	atcggagccc	tgcaaattcc	gagaaatgtg	aaacttggtg	gggtcaggga	1560 .
ggaaaggcag	aagctgggag	cctcccttcc	ctttgaaaat	ctaagaagct	cccagtcctc	1620
agagaccctg	ctggtaccac	accccacctt	cggaggggac	ttcatgttcc	gtgtacgttt	1680
gcatctctat	ttatacctct	gtcctgctag	gtctcccacc	ttcccttggt	tccaaaagcc	1740
agggtgtcta	tgtccaagtc	accectaete	agececaete	cccttcctca	tccccagctg	1800
tgtctcccaa	cctcccttcg	tgttgttttg	catggctttg	cagttatgga	gaaagtggaa	1860
acccagcagt	 ccctaaagct	ggtccccaga	aagcaggaca	gaaagaagga	gggacaggca	1920
ggcagcagga	ggggcgagct	gggaggcagg	aggcagcggc	ctgtcagtct	gcagaatggt	1980
cgcactggag	gttcaagcta	actggcctcc	agccacattc	tcatagcagg	taggacttca	2040
gccttccaga	cactgccctt	agaatctgga	acagaagact	tcagactcac	cataattgct	2100
gataattacc	cactcttaaa	tttgtcgagt	gatttttagc	ctctgaaaac	tctatgctgg	2160
ccactgattc	ctttgagtct	cacaaaaccc	tacttaggtc	atcagggcag	gagttctcac	2220
tcccatttta	cagatgagaa	tactgaggcc	tggacaggitg	aagtgaccag	agagcaaaag	2280
gcaaaggggt	99999ct999	tgcagtggct	cacacctgta	ttcccaacac	ttttggaggc	2340
tgaggttgga	ggattgcttg	agcccaggaa	ttcgagacca	gcctaggtga	catagtgaga	2400
ccccatctct	acaaaaaata	aaaaattaac	caggtgtggt	ggcacgtgcc	tgggagtccc	2460
agegaettgg	gaggctgagg	tgggaggatt	gtttgagcct	gggaggtcga	ggctgtagtg	2520
agccctgatt	gcaccactgt	actccagcct	gggtgacagg	gcaagaccct	gtctcaaaaa	2580
aaaaaaaaaa	پ					2590
					_	

<210>

19

<212> DNA

artificial sequence <213>

<220> <223> primer 1

<400> 6

acgtctacgc ggaggtgct

19

<210> 7 <211> 18 <212> DNA

600

660

720

780

<213> artificial sequence <220> primer 2 <223> <400> tctcgcggct cttgtacc 18 <210> 8 <211> 26 <212> DNA <213> artificial sequence <220> <223> probe <400> cacttccagt ccatgtgctc gtgcct 26 <210> . 9 <211> 2890 <212> DNA Homo sapiens <400> 9 ctccgtccca ggggagaagg agaggcgtct gcagggggca gagaccgcag ctacctgccg 60 ggtgcgcccc ccacccagga gegetegett cgcccccttt cctcccccgc ccccacctcc 120 ttattggtgc tagtttgcag cgcccagctc ctgcgccttc gcttcgcgtt tgaatctggc 180 tcgccccttc gtattatgtc tgcactccga aggaaatttg gggacgatta tcaggtagtg 240 accacategt ccageggete gggettgeag ccccagggge caggecagga ccctcageag 300 cagcitigige ccaagaagaa geggeagegg tiegtggaca agaacggeeg gigeaatgta cagcacggca acctgggcag cgagacaagc cgctacctct cggacctctt caccacgctg 420 gtggacctca agtggcgctg gaacctcttc atcttcattc tcacctacac cgtggcctgg 480 cttttcatgg cgtccatgtg gtgggtgatc gcctacactc ggggcgacct gaacaaagcc 540

cacgicggta actacacgcc tigcgtggcc aatgictata acticccitc tgccttcctc

ttcttcatcg agacggaggc caccatcggc tatggctacc gatacatcac agacaagtgc

cccgagggca tcatcctctt cctcttccag tccatcctgg gctccatcgt ggacgccttc

ctcatcggct gcatgttcat caagatgtcc cagcccaaga agcgcgccga gaccctcatg

840	gttccgggtg	tcacgcttat	gacggaaaac	ctccatgagg	acgcggtgat	ttcagcgagc
. 900	gctcaaatct	gctgcaagct	gcgcagattc	catggtctcc	gcaacagcca	ggcaacctgc
960	tgtaggtttt	ttgaactgga	cttgaccaac	gtteetteee	ctgagggtga	cggcagacac
1020	cgtgatcgat	caatttgcca	teccecetea	ttttcttgtg	cagatcaact	agtacagggg
1080	gttcgagatt	aaactgaaca	cgaagcatgc	cctatcccag	ccttttatga	gccaaaagcc
1140	tegaacatca	cttgtcaagc	actgggatga	tgtggaaaca	tagaaggcat	gtcgtcatcc
1200	cttagaagag	ctgtaatttc	cgttttttc	ttggggtcat	atgaagttct	tatactgaag
1260	caccccacct	ttgaagtccc	catgcaacat	ctcccagttc	aagttgatta	ggattetta
1320	agcaccagcc	ccctttaat	ctcatgtcgt	ggaaatgctt	aagagcagga	tacagtgtga
1380	agatgatatt	tagatggact	gtggaatgct	acataattct	gcaaagaaag	ataactaaca
1440	tcccaaaaaa	gagaagactt	attactggaa	gctgcagaaa	taccatctaa	actacaaaac
1500	cttgcccatg	gcttgggaga	aaagcctaca	aacttcagaa	tgagttctac	ctcttgagga
1560	atctaaaacc	aaaaactggt	aactcagaag	agttccgggc	gaataagttc	azacttcaac
1620	aaagcttcaa	atttgccacc	tctgtggctg	catgagccag	tatctgatcc	accaagatgt
1680	aagaaaaatg	cagccaaatt	gggaaccttc	taggatggaa	gaggagcagc	aagatggctg
1740	tttgatttag	ttatttaatg	cccttaggca	acaaagcact	gcttcacata	aactctgatc
1800	gtatatttťc	gaatctgaaa	tctccctaag	atgaggtaat	atatttggcg	taatagtcca
. 1860	gaatgtgcag	caagtattgc	cttcctttcc	tttgagaacc	tacaagcata	ctcccagttc
1920	tgtattatca	ttaacgggca	aaggaagtta	aggacatcat	ttacggaggg	aaagcaacag
1980	tttatatatg	tatggcatga	catttagttt	gcaaattttg	gcaataatgt	catcaagcat
2040	ggggagatac	tatatttaaa	aatatatata	ctggaaaaaa	attgtatatt	gcatatttat
2100	tttcagggcg	agtgaatagc	gccaaacatg	tatgtattaa	atttctaaca	tctccctgac
2160	acatatatat	acacacatat	gtgtatgtat	gtgtgtgtgt	atatatgtct	ataaaactaa
. 2220	tgtgatgttt	ctgataaaat	acatatatat	atacatacat	atacacatac	atacacatac
2280	ctactggcat	agtaggaagg	actttattag	gtgcatgttt	tgtagttctt	tgttcaaagt
2340	ctgatttaat	attttaaaat	aatttttgto	tttagcctta	ı taccaaatat	taattattaa
2400	gagaatcaca	ttttatatga	ttcaattgta	ttgggaggct	gtttaaggtc	gttttctgct
2460	aattgtaaat	tacatgttta	atataaccat	ccctgcaaaa	ctatctatgg	caagtttgtg
					accagtactc	
2580	tagactaatt	attectttee	tttgagaatt	tgttgattaa	g gagaaataat	tagtactggg
2640	aacaaacact	atgagctctg	: taatacaaag	gtatatgato	a aatctgtttt	aaaatctgga
2700	gtgtgaagtt	atcagaatct	tattgaatat	agccaagtta	aatagacagt	gaatcatgtt

					•			
acacaa	attaa	ttgtcc	ctgt	ttcaaactga	gtaaattgga	aacattttct	ttctttttct	2760
ggaaat	tttg	tccatt	ttaa	aaaccaatca	ttttaagaag	acatgacaat	gcaatgaaac	2820
agatga	taaa	tatttai	tgct	taaaatatgt	atgtctaatt	gagtctcttt	tttattctgt	2880
tttctt	gttt							2890
<210><211><211><212><213>		ficial		engo.	•			
.(213)	·.	riciai	sequ			•		
<220> <223>	prim	mer 1						
400.1							•	
<400>								
gttcca	cgca	acatttg	aag				•	20
	•							
<210>	11							
<211>	20							
<212>	DNA			•				
<213>	arti	ficial	sequ	ence				
		-		•	•	20		
<220> <223>	prim	er 2						
				•				
<400>	11							
gggacga	acat g	gagaagc	att				•	20
	٠	4					Ė	
<210>	12							
<211>	24					•	0	
<212>	DNA				-			
<213>	arti	ficial	seque	ènce .				•
<220>								
<223>	probe	3						
<400>	12							
eccaceo	ceae-	ct-tacag	tgt e	gaaa				24

<210> 13 <211> 2510 <212> DNA-<213> Homo sapiens

<400> 13

eggeggeage ageceatgee teeggtgeaa cagetgegee teeteeggtg eeeeggegge 60 ggggggggg gataacetgt ccctgctgct ccgcacetec tcgcccggcg gcgccttccg 120 gaccogcacc testegeege tgtegggete gteetgetge tgetgetget getegtegeg 180 ccggggcagc cagctcaatg tgagcgagct gacgccgtcc agccatgcca gtgcgctccg 240 gcagcagtac gcgcagcagt ccgcgcagca gtcggcgtcc gcctcccagt accaccagtg 300 ccacagectg cageeegeeg ecageeeca gggeageete ggeagtetgg geteegegee 360 cccgctctcg caccaccacc accacccgca cccggcgcac caccagcacc accagcccca 420 ggegegeege gagageaace cetteacega aatagecatg ageagetgea ggtacaaegg 480 gggcgtcatg cggccgctca gcaacttgag cgcgtcccgc cggaacctcc acgagatgga 600 ctcagaggeg cagecectge agecececge gtetgtegga ggaggtggeg gegegteete 660 congretion gargetgong concentrate teagercong agategtagt gtctaagccc gagcacaaca actccaacaa cctggcgctc tatggaaccg gcggcggagg 720 cagcactgga ggaggcggcg gcggtggagg gagcgggcac ggcagcagca gtggcaccaa 780 gtccagcaaa aagaaaaacc agaacatcgg ctacaagctg ggccaccggc gcgccctgtt 840 900 cgaaaagcgc aagcggctca gcgactacgc gctcatcttc ggcatgttcg gcatcgtggt catggtcatc gagaccgagc tgtcgtgggg cgcctacgac aaggcgtcgc tgtattcctt 960 agetetgaaa tgeettatea gteteteeac gateateetg eteggtetga teategtgta 1020 1080 ccacgccagg gaaatacagt tgttcatggt ggacaatgga gcagatgact ggagaatagc 1140 catgacttat gagcgtattt tcttcatctg cttggaaata ctggtgtgtg ctattcatcc catacctggg aattatacat tcacatggac ggcccggctt gccttctcct atgccccatc 1200 cacaaccacc gctgatgtgg atattatttt atctatacca atgttcttaa gactctatct 1260 gattgccaga gtcatgcttt tacatagcaa acttttcact gatgcctcct ctagaagcat 1320 1380 tggagcactt aataagataa acttcaatac acgttttgtt atgaagactt taatgactat atgcccagga actgtactct tggtttttag tatctcatta tggataattg ccgcatggac 1440 1500 tgtccgagct tgtgaaaggt accatgatca acaggatgtt actagcaact tccttggagc 1560 gatgtggttg atatcaataa cttttctctc cattggttat ggtgacatgg tacctaacac atactgtgga aaaggagtct gcttacttac tggaattatg ggtgctggtt gcacagccct 1620 1680 ggtggtagct gtagtggcaa ggaagctaga acttaccaaa gcagaaaaac acgtgcacaa tttcatgatg gatactcagc tgactaaaaag agtaaaaaat gcagctgcca atgtactcag 1740 1800 ggaaacatgg ctaatttaca aaaatacaaa gctagtgaaa aagatagatc atgcaaaagt 1860 aagaaaacat caacgaaaat tootgoaago tattoatoaa ttaagaagtg taaaaatgga

gcagaggaaa	ctgaatgacc	aagcaaacac	tttggtggac	ttggcaaaga	cccagaacat	1920
catgtatgat	atgatttctg	acttaaacga	aaggagtgaa	gacttcgaga	agaggattgt	1980
taccctggaa	acaaaactag	agactttgat	tggtagcatc	cacgccctcc	ctgggctcat	2040
aagccagacc	atcaggcagc	agcagagaga	tttcattgag	gctcagatgg	agagctacga	2100
caagcacgtc	acttacaatg	ctgagcggtc	ccggtcctcg	tccaggaggc	ggcggtcctc	2160
ttccacagca	ccaccaactt	catcagagag	tagctagaag	agaataagtt	aaccacaaaa	2220
taagactttt	tgccatcata	tggtcaatat	tttagctttt	attgtaaagc	ccctatggtt	2280
ctaatcagcg	ttatccgggt	tctgatgtca	gaatcctggg	aacctgaaca	ctaagtttta	2340
ggccaaaatg	agtgaaaact	ctttttttt	ctttcagatg	cacagggaat	gcacctatta	2400
ttgctatata	gattgttcct	cctgtaattt	cactaacttt	ttattcatgc	acttcaaaca	2460
aactttacta	ctacattata	tgatatataa	taaaaaagt	taatttcgga		2510

<210> 14

<211> 19

<212> DNA

<213> artificial sequence

<220>

<223> primer 1

<400> 14

tgcacagccc tggtggtag

19

<210> 15

<211> 21

<212> DNA

<213> artificial sequence

<220>

<223> primer 2

<400> 15

tccatcatga aattgtgcac g

21

<210> 16

<211> 31

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 16

tggcaaggaa gctagaactt accaaagcag a

31

<210> 17 <211> 2865 <212> DNA

<213> Homo sapiens

<400> 17

ttttcggctg cttggtaacg ggctgccaga agagagagag gcagagagca gggcagcggc 60 ttcttgacgt cagggccaag cgaggggatc gcgccagcaa ccccagctct ccccagagag 120 gggccggccg accgctggag cggagcctga cgccaggcgc ccgcggagcg tgagtagggg 180 gcgcgggagc cggtcagctg gggcgcagca tgccctctgc tcccgcgcca tggagatcgc 240 cctggtgccc ctggagaacg gcggtgccat gaccgtcaga ggaggcgatg aggcccgggc 300 aggetgegge caggecacag ggggagaget ceagtgteee eegaeggetg ggeteagega 360 tgggcccaag gagccggcgc caaaggggcg cggcgcgcag agagacgcgg actcgggagt 420 geggeeettg eeteegetge eggaeeeggg agtgeggeee ttgeeteege tgeeagagga 480 gctgccacgg cctcgacggc cgcctcccga ggacgaggag gaagaaggcg atcccggcct 540 gggcacggtg gaggaccagg ctctgggcac ggcgtccctg caccaccagc gcgtccacat 600 caacatetee gggetgeget ttgagaegea getgggeace etggegeagt teeceaacae 660 actcctgggg gaccccgcca agegectgcg ctacttcgac cccctgagga acgagtactt 720 cttcgaccgc aaccggccca gettcgacgg tatectetac tactaccagt ccgggggccg 780 cctgcggagg ccggtcaacg tctccctgga cgtgttcgcg gacgagatac gcttctacca 900 gctgggggac gaggccatgg agcgcttccg cgaggatgag ggcttcatta aagaagagga gaageceetg eccegeaacg agttecageg ecaggtgtgg ettatetteg agtateegga 960 gagetetggg teegegeggg ceategeeat egteteggte ttggttatee teateteeat 1020 catcacette tgettggaga ceetgeetga gtteagggat gaaegtgage tgeteegeea 1080 ccctccggcg ccccaccagc ctcccgcgcc cgcccctggg gccaacggca gcggggtcat 1140 1200 ggccccgccc tctggcccta cggtggcacc gctcctgccc aggaccctgg ccgacccctt 1260 cttcatcgtg gagaccacgt gcgtcatctg gttcaccttc gagctgctcg tgcgcttctt cgcctgcccc agcaaggcag ggttctcccg gaacatcatg aacatcatcg atgtggtggc 1320 catcttcccc tacttcatca ccctgggcac cgaactggca gagcagcagc cagggggtgg 1380

•	aggaggcggc	cagaatgggc	agcaggccat	gtccctggcc	atcctccgag	tcatccgcct	1440
,	ggtccgggtg	ttccgcatct	tcaagctctc	ccgccactcc	aaggggctgc	agatcctggg	1500
	caagaccttg	caggcctcca	tgagggagct	ggggctgctc	atcttcttcc	tcttcatcgg	1560
	ggtcatcctc	ttctccagtg	ccgtctactt	cgcagaggct	gacaaccagg	gaacccattt	1620
	ctctagcatc	cctgacgcct	tctggtgggc	agtggtcacc	atgaccactg	tgggctacgg	1680
!	ggacatgagg	cccatcactg	ttgggggcaa	gategtggge	tcgctgtgtg	ccatcgccgg	1740
,	ggtcctcacc	attgccctgc	ctgtgcccgt	categtețee	aacttcaact	acttctacca	1800
,	ccgggaaacg	gatcacgagg	agccggcagt	ccttaaggaa	gàgcagggca	ctcagagcca	1860
•	9999cc9999	ctggacagag	gagtccagcg	gäaggtcagc	gggagcaggg	gatecttetg	1920
٠,	caaggctggg	gggaccctgg	agaatgcaga	cagtgcccga	aggggcagct	gccccctaga	1980
•	gaagtgtaac	gtcaaggcca	agagcaacgt	ggacttgcgg	aggtcccttt	atgccctctg	2040
,	cctggacacc	agccgggaaa	cagatttgtg	aaaggagatt	caggcagact	ggtggcagtg	2100
9	gagtagggaa	tgggaggctt	gctgaacatg	gatatctaca	ttataccgca	gagtatttga	2160
i	agtcacactg	taacctcagt	ctacccctct	cctttcactc	ctttcctccc	tecetegate	2220
,	ccccatttt	ctctattctt	tccatgacac	ccaagggtcg	cctattttta	aaaagtacca	2280
(cattccatga.	cgcaggagct	gtggaaatgg	tgagcgctgt	gagatggatg	tatttgtagc	2340
•	cagteteeta	tacccagcag	agggataacc	caaacaaaaa	tgactctaaa	tagcccagat	2400
	cccaagagat	tatgtaactc	ctccatccat	gtgttccaaa	tttgctttac	atatgattgt	2460
ě	atttgtgtat	aggggaaaat	attattttta	tgcctggtaa	gtggcttttt	gtactgtagt	2520
1	tcagatagag	atattttggg	tatattttca	agatacatgt	tgtatttatg	gaagaaagag	2580
1	ttgtcctgat	gtttttctgt	gttacttata	ttagagtcag	agatcttggt	atgggctgtt <u>÷</u> ,	2640
(ctgtttcctg	tgtctccaag	cctctgtctt	ttctgggatg	tggtattggt	gctttgtgtc	2700
1	tagggcagag	tatgttcttg	aagaaaggca	aatctgactt	tttctgtgcg	ccttaaacaa	2760
1	ttcttgtaac	tttcttcaaa	aagcatttta	atgatattgg	aggaatactt	ctgataattt	2820
;	attgtcttta	tttttatccc	aggaaataaa	aggttacctt	gttga		2865

<210> 18 <211> 23

<212> DNA

<213> artificial sequence

<220> <223> primer 1

PCT/EP2004/007364

600

Cadddaac	cc atttctctag	cat				23	
cagggaac	ec accectag	cac				23	
					;		
<210> 1	9		•			•	
<211> 1	9						
<212> D	NA				•		
	rtificial seq	uence					
	•					•	
224							
<220>	n						
<223> p	rimer 2						
*							
<400> 1	9 [*] ·						
						•	
tatecees:	ta gcccacagt					19	
rgueceeg	un geceatage					13	
			•			•	
					•		
	•	•				•	
<210> 2	0					•	
<211> 23	3					-	
	AN						
<213> a:	rtificial sequ	uence					
·							
<220>			•		:		
	robe				÷		•
(1237 F	.*	•					
		•					
		•					
_				,			
<400> 20				•			•
<400> 20				,			
	o ng gtgggcagtg	ģtc	÷	•		23	· .
		ġtc				23	
		gtc				23	
		ġtc				23	· .
acgccttct	eg gtgggcagtg	ġtc .				23	· .
acgccttct	eg gtgggcagtg	ġtc .				· 23 ·	
<210> 23	eg gtgggcagtg L 793	ġtc .				23	
<210> 21 <211> 17 <212> DN	cg gtgggcagtg L 793 VA	ġtc				23	
<210> 21 <211> 17 <212> DN	eg gtgggcagtg L 793	ġtc				23	
<210> 21 <211> 17 <212> DN	cg gtgggcagtg L 793 VA	ġtc				23	
<210> 21 <211> 17 <212> DN <213> Ho	tg gtgggcagtg 1 793 VA omo sapiens	ġtc				23	
<210> 21 <211> 17 <212> DN	tg gtgggcagtg 1 793 VA omo sapiens	ġtc				23	
<210> 21 <211> 17 <212> DN <213> Ho	tg gtgggcagtg 1 793 VA omo sapiens	ġtc					
<210> 21 211 17 212 DN 213 Ho	tg gtgggcagtg 1 793 NA omo sapiens		ctttgccgat	ccgccgcccg	tecacacecg		****
<210> 21 211 17 212 DN 213 Ho	tg gtgggcagtg 1 793 VA omo sapiens		ctttgccgat	ccgccgcccg	tecacaeceg		***
<210> 21 <211> 17 <212> DN <213> Ho <400> 21 cgcgtccgd	tg gtgggcagtg	agagcctcgc					
<210> 21 <211> 17 <212> DN <213> Ho <400> 21 cgcgtccgd	tg gtgggcagtg 1 793 NA omo sapiens	agagcctcgc					****
<pre> acgccttct <210> 21 <211> 17 <212> DN <213> Ho <400> 21 cgcgtccgc ccgccagct</pre>	g gtgggcagtg 1 793 NA omo sapiens	agagcctcgc atgatatcgc	cgcgctcgtc	gtcgacaacg	gctccggcat	60	
<pre> acgccttct <210> 21 <211> 17 <212> DN <213> Ho <400> 21 cgcgtccgc ccgccagct</pre>	tg gtgggcagtg	agagcctcgc atgatatcgc	cgcgctcgtc	gtcgacaacg	gctccggcat		
<pre> acgccttct <210> 21 <211> 17 <212> DN <213> Ho <400> 21 cgcgtccgc ccgccagct</pre>	g gtgggcagtg 1 793 NA omo sapiens	agagcctcgc atgatatcgc	cgcgctcgtc	gtcgacaacg	gctccggcat	60	*****
<pre> acgccttct <210> 21 <211> 17 <212> DN <213> Ho <400> 21 cgcgtccgd ccgccagct gtgcaaggd</pre>	eg gtgggcagtg 1 793 NA omo sapiens	agagcetege atgatatege gegaegatge	cgcgctcgtc	gtcgacaacg gtcttcccct	gctccggcat	60	*****
<pre> acgccttct <210> 21 <211> 17 <212> DN <213> Ho <400> 21 cgcgtccgd ccgccagct gtgcaaggd</pre>	g gtgggcagtg 1 793 NA omo sapiens	agagcetege atgatatege gegaegatge	cgcgctcgtc	gtcgacaacg gtcttcccct	gctccggcat	60	
<pre></pre>	eg gtgggcagtg 1,793 NA omo sapiens cc ccgcgagcac cc accatggatg cc ggcttcgcgg gg caccagggcg	agagcetege atgatatege gegaegatge tgatggtggg	cgcgctcgtc cccccgggcc catgggtcag	gtcgacaacg gtcttcccct aaggattcct	gctccggcat ccatcgtggg atgtgggcga	60 120 180 240	
<pre></pre>	eg gtgggcagtg 1 793 NA omo sapiens	agagcetege atgatatege gegaegatge tgatggtggg	cgcgctcgtc cccccgggcc catgggtcag	gtcgacaacg gtcttcccct aaggattcct	gctccggcat ccatcgtggg atgtgggcga	60	****
<pre></pre>	eg gtgggcagtg 1,793 NA omo sapiens cc ccgcgagcac cc accatggatg cc ggcttcgcgg gg caccagggcg ag agcaagagag	agagcetege atgatatege gegaegatge tgatggtggg gcatecteae	cgcgctcgtc cccccgggcc catgggtcag cctgaagtac	gtcgacaacg gtcttcccct aaggattcct cccatcgagc	gctccggcat ccatcgtggg atgtgggcga acggcatcgt	60 120 180 240	***
<pre></pre>	eg gtgggcagtg 1,793 NA omo sapiens cc ccgcgagcac cc accatggatg cc ggcttcgcgg gg caccagggcg	agagcetege atgatatege gegaegatge tgatggtggg gcatecteae	cgcgctcgtc cccccgggcc catgggtcag cctgaagtac	gtcgacaacg gtcttcccct aaggattcct cccatcgagc	gctccggcat ccatcgtggg atgtgggcga acggcatcgt	60 120 180 240	
acgcettet <210> 21 <211> 17 <212> DN <213> Ho <400> 21 cgcgtccgc ccgccaget gtgcaaggc gtgcaaggc ccgagcccag cgaggcccag cgaggcccag cgaggcccag cgaggcccag caccaactg	eg gtgggcagtg 1 793 VA como sapiens cc ccgcgagcac cc accatggatg cc ggcttcgcgg gg caccagggcg ag agcaagagag gg gacgacatgg	agagcetege atgatatege gegaegatge tgatggtggg geatecteae agaaaatetg	cgcgctcgtc cccccgggcc catgggtcag cctgaagtac gcaccacacc	gtcgacaacg gtcttcccct aaggattcct cccatcgagc ttctacaatg	gctccggcat ccatcgtggg atgtgggcga acggcatcgt agctgcgtgt	60 120 180 240	
acgcettet <210> 21 <211> 17 <212> DN <213> Ho <400> 21 cgcgtccgc ccgccaget gtgcaaggc gtgcaaggc ccgagcccag cgaggcccag cgaggcccag cgaggcccag cgaggcccag caccaactg	eg gtgggcagtg 1 793 VA como sapiens cc ccgcgagcac cc accatggatg cc ggcttcgcgg gg caccagggcg ag agcaagagag gg gacgacatgg	agagcetege atgatatege gegaegatge tgatggtggg geatecteae agaaaatetg	cgcgctcgtc cccccgggcc catgggtcag cctgaagtac gcaccacacc	gtcgacaacg gtcttcccct aaggattcct cccatcgagc ttctacaatg	gctccggcat ccatcgtggg atgtgggcga acggcatcgt agctgcgtgt	60 120 180 240	****
acgcettet <210> 21 <211> 17 <212> DN <213> Ho <400> 21 cgcgtccgc ccgccaget gtgcaaggc gtgcaaggc ccgagcccag cgaggcccag cgaggcccag cgaggcccag cgaggcccag caccaactg	eg gtgggcagtg 1,793 NA omo sapiens cc ccgcgagcac cc accatggatg cc ggcttcgcgg gg caccagggcg ag agcaagagag	agagcetege atgatatege gegaegatge tgatggtggg geatecteae agaaaatetg	cgcgctcgtc cccccgggcc catgggtcag cctgaagtac gcaccacacc	gtcgacaacg gtcttcccct aaggattcct cccatcgagc ttctacaatg	gctccggcat ccatcgtggg atgtgggcga acggcatcgt agctgcgtgt	60 120 180 240 300 360	*****
acgcettet <210> 21 <211> 17 <212> DN <213> Ho <400> 21 cgcgtccgc ccgccaget gtgcaaggc gtgcaaggc ccgaggcccag cgaggcccag cgag	eg gtgggcagtg 1,793 NA DIMO sapiens 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,	agagcetege atgatatege gegaegatge tgatggtggg geatecteae agaaaatetg tgetgetgae	cgcgctcgtc cccccgggcc catgggtcag cctgaagtac gcaccacacc cgaggccccc	gtcgacaacg gtcttcccct aaggattcct cccatcgagc ttctacaatg ctgaaccca	gctccggcat ccatcgtggg atgtgggcga acggcatcgt agctgcgtgt aggccaaccg	60 120 180 240 300 360 420	
acgcettet <210> 21 <211> 17 <212> DN <213> Ho <400> 21 cgcgtccgc ccgccaget gtgcaaggc gtgcaaggc ccgaggcccag cgaggcccag cgag	eg gtgggcagtg 1 793 VA como sapiens cc ccgcgagcac cc accatggatg cc ggcttcgcgg gg caccagggcg ag agcaagagag gg gacgacatgg	agagcetege atgatatege gegaegatge tgatggtggg geatecteae agaaaatetg tgetgetgae	cgcgctcgtc cccccgggcc catgggtcag cctgaagtac gcaccacacc cgaggccccc	gtcgacaacg gtcttcccct aaggattcct cccatcgagc ttctacaatg ctgaaccca	gctccggcat ccatcgtggg atgtgggcga acggcatcgt agctgcgtgt aggccaaccg	60 120 180 240 300 360	***
acgcettet <210> 21 <211> 17 <212> DN <213> Ho <400> 21 cgcgtccgc ccgccaget gtgcaaggc gtgcaaggc ccgaggcccag cgaggcccag cgagaagat	eg gtgggcagtg 1,793 NA DIMO sapiens 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,	agagcetege atgatatege gegaegatge tgatggtggg geatecteae agaaaatetg tgetgetgae tgtttgagae	cgcgctcgtc cccccgggcc catgggtcag cctgaagtac gcaccacacc cgaggccccc cttcaacacc	gtcgacaacg gtcttccct aaggattcct cccatcgagc ttctacaatg ctgaaccca ccagccatgt	gctccggcat ccatcgtggg atgtgggcga acggcatcgt agctgcgtgt aggccaaccg acgttgctat	60 120 180 240 300 360 420	

tgacggggtc acccacactg tgcccatcta cgaggggtat gccctccccc atgccatcct

gcgtctggac	ctggctggcc	gggacctgac	tgactacctc	atgaagatcc	tcaccgagcg	660
cggctacago	ttcaccacca	cggccgagcg	ggaaatcgtg	cgtgacatta	aggagaagct	720
gtgctacgtc	gccctggact	tcgagcaaga	gatggccacg	gctgcttcca	getectecct	780
ggagaagagc	tacgagctgc	ctgacggcca	ggtcatcacc	attggcaatg	agcggttccg	840
ctgccctgag	gcactcttcc	agccttcctt	cctgggcatg	gagtcctgtg	gcatccacga	900
aactaccttc	aactccatca	tgaagtgtga	cgtggacatc	cgcaaagacc	tgtacgccaa	960
cacagtgctg	tctģgcggca	ccaccatgta	ccctggcatt	gccgacagga	tgcagaagga	1'020
gatcactgcc	ctggcaccca	gcacaatgaa	gatcaagatc	attgctcctc	ctgagcgcaa	1080
gtactccgtg	tggatcggcg	gctccatcct	ggcctcgctg	tecacettee	agcagatgtg	1140
gatcagcaag	caggagtatg	acgagtccgg	cccctccatc	gtccaccgca	aatgcttcta	1200
ggcggactat	gacttagttg	cgttacaccc	tttcttgaca	aaacctaact	tgcgcagaaa	1260
acaagatgag	attggcatgg	ctttatttgt	tttttttgtt	ttgttttggt	tttttttt	1320
tttttggctt	gactcaggat	ttaaaaactg	gaacggtgaa	ggtgacagca	gtcggttgga	1380
gcgagcatcc	cccaaagttc	acaatgtggc	cgaggacttt	gattgcacat	tgttgttttt	1440
ttaatagtca	ttccaaatat	gagatgcatt	gttacaggaa	gtcccttgcc	atcctaaaag	1500
ccaceccact	tctctctaag	gagaatggcc	cagtcctctc	ccaagtccac	acaggggagg	1560
tgatagcatt	gctttcgtgt	aaattatgta	atgcaaaatt	tttttaatct	tcgccttaat	1620
acttttttat	tttgttttat	tttgaatgat	gagccttcgt	gccccccctt	ccccttttt .	1680
gtcccccaac	ttgagatgta	tgaaggcttt	tggtctccct	gggagtgggt	ggaggcagcc	1740
agggcttacc	tgtacactga	cttgagacca	gttgaataaa	agtgcacacc	tta	1793

<210> 22

<211> 20

<212> DNA <213> artificial sequence

<220>

<223> primer 1

<400> 22

tccaccttcc agcagatgtg

20

<210> 23

<211> 21 <212> DNA

<213> artificial sequence

PCT/EP2004/007364

<220> <223> primer 2	
<400> 23	
ctagaagcat ttgcggtgga c	21
<210> 24 <211> 28 <212> DNA <213> artificial sequence	

<400> 24

<220> <223> probe

atcagcaagc aggagtatga cgagtccg

28

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP2004/007364

		PCT/I	EP2004/007364
a. classi IPC 7	FICATION OF SUBJECT MATTER C07K14/705 A61P9/06		
	o International Patent Classification (IPC) or to both national class	sification and IPC .	
	SEARCHED ocumentation searched (classification system followed by classification system followed by classifi	cation symbols)	
IPC 7	C07K	oation symbolsy	
Documenta	tion searched other than minimum documentation to the extent the	nat such documents are included in th	e fields searched
			f
Electronic d	data base consulted during the International search (name of data	a base and, where practical, search te	rms used)
EPO-In	ternal, BIOSIS, WPI Data, PAJ, MEI	DLINE, EMBASE	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the	e relevant passages	Relevant to claim No.
Х	US 2002/094558 A1 (FINK MICHEL 18 July 2002 (2002-07-18)		1–5
	paragraphs '0088!, '0089!; cla	aims 17,18	• .
X	US 5 670 335 A (KUBO YOSHIHIRO 23 September 1997 (1997-09-23)	ET AL)	1-5
	column 5, lines 1-44 columns 27-28	•	
X	US 2003/124568 A1 (EISENHARDT (AL) 3 July 2003 (2003-07-03) paragraphs '0015!, '0017!, '0108!		3,4
ļ		-/ 	
Ī			
			1 22
	· ·		·
χ Furt	ther documents are listed in the continuation of box C.	Palent family members a	are listed in annex.
Special ca	alegories of cited documents :	"T" later document published after	er the international filing date
	ent defining the general state of the an which is not dered to be of particular relevance	cited to understand the princ	nflict with the application but apple or theory underlying the
"E" earlier	document but published on or after the international	invention "X" document of particular releva	
	ent which may throw doubts on priority claim(s) or	cannot be considered novel involve an inventive step wh	or cannot be considered to en the document is taken alone
citatio	n is clied to establish the publication date of another on or other special reason (as specified)		olve an inventive step when the
	nent referring to an oral disclosure, use, exhibition or means	ments, such combination be	one or more other such docu- ing obvious to a person skilled
	nent published prior to the international filing date but than the priority date claimed	in the art. *&' document member of the san	ne patent family
Date of the	actual completion of the international search	Date of mailing of the Interna	tional search report
2	27 October 2004	11/11/2004	
Name and	mailing address of the ISA	Authorized Officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk		
	. Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Deck, A	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichu , die zur selben Patentfamilie gehören

nales Aldenzeichen
PCT/EP2004/007364

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentiamilie		Datum der Veröffentlichung	
US 2002094558	A1	18-07-2002	US US	6309855 2002032322		30-10-2001 14-03-2002	
US 5670335	Α	23-09-1997	US WO	5492825 9504820		20-02-1996 16-02-1995	
US 2003124568	A1	03-07-2003	DE AU WO EP	10007468 5032201 0161001 1255836	A A2	23-08-2001 27-08-2001 23-08-2001 13-11-2002	

INTERNATIONAL SEARCH REPORT

Interptional Application No PC1/EP2004/007364

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	· · · · · · · · · · · · · · · · · · ·	
Calegory *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
X	KINDLER CHRISTOPH H ET AL: "Local anesthetic inhibition of baseline potassium channels with two pore domains in tandem" ANESTHESIOLOGY (HAGERSTOWN), vol. 90, no. 4, April 1999 (1999-04), pages 1092-1102, XP009038911 ISSN: 0003-3022 the whole document		3,4
X	TALLEY EDMUND M ET AL: "Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels. Volatile anesthetics and neurotransmitters share a molecular site of action" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 277, no. 20, 17 May 2002 (2002-05-17), pages 17733-17742, XP001203547 ISSN: 0021-9258 page 17741, paragraph 3		3,4
X	TERSTAPPEN GEORG C ET AL: "The antidepressant fluoxetine blocks the human small conductance calcium-activated potassium channels SK1, SK2 and SK3." NEUROSCIENCE LETTERS, vol. 346, no. 1-2, 14 June 2003 (2003-06-14), pages 85-88, XP002302907 ISSN: 0304-3940 *Veröffentlicht im Internet am 14. Juni 2003* the whole document		3,4
Y	BARBUTI ANDREA ET AL: "Block of the background K+ channel TASK-1 contributes to arrhythmogenic effects of platelet-activating factor" AMERICAN JOURNAL OF PHYSIOLOGY, vol. 282, no. 6 Part 2, June 2002 (2002-06), pages H2024-H2030, XP009038912 ISSN: 0002-9513 the whole document		교 1-5
Υ	WANG ZHIGUO ET AL: "Differential distribution of inward rectifier potassium channel transcripts in human atrium versus ventricle" CIRCULATION, vol. 98, no. 22, 1 December 1998 (1998-12-01), pages 2422-2428, XP002302908 ISSN: 0009-7322 the whole document	16	1-5

INTERNATIONALER RECHERCHENBERICHT

\/Ea=	ALC WECCHIT ION AND COURTED IN THE AND COLUMN	TOT/EFZ	004/007364
	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
(etegorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	nenden Telle	Betr. Anspruch Nr.
X	NATTEL STANLEY ET AL: "Evolution, mechanisms, and classification of antiarrhythmic drugs: Focus on class III actions"		1,3-5
	AMERICAN JOURNAL OF CARDIOLOGY, Bd. 84, Nr. 9A, 4. November 1999 (1999-11-04), Seiten 11R-19R, XP009038876		
9	ISSN: 0002-9149 in der Anmeldung erwähnt Abbildung 3		
	MAINGRET FRANCOIS ET AL: "The endocannabinoid anandamide is a direct and selective blocker of the background K+ channel TASK-1"	· ·	3,4
	EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL, Bd. 20, Nr. 1-2, 15. Januar 2001 (2001-01-15), Seiten 47-54, XP001203548		
	ISSN: 0261-4189 Seite 52, Absatz 3		
	LESAGE F ET AL: "Molecular and functional properties of two-pore-domain potassium channels" AMERICAN JOURNAL OF PHYSIOLOGY: RENAL, FLUID AND ELECTROLYTE PHYSIOLOGY, AMERICAN PHYSIOLOGICAL SOCIETY, US, Bd. 279, Nr. 5 Part 2, November 2000 (2000-11), Seiten F793-F801,		3,4
	XP002256647 ISSN: 0363-6127 Tabelle 2		
	MATSUDA TOMOYUKI ET AL: "Effect of NIP-142 on carbachol-induced myocardial action potential shortening and human GIRK1/4 channel current" JAPANESE JOURNAL OF PHARMACOLOGY, Bd. 88, Nr. Supplement 1, 2002, Seite		1,3-5
-	260P, XP009038919 & 75TH ANNUAL MEETING OF THE JAPANESE PHARMACOLOGICAL SOCIETY; KUMAMOTO, JAPAN; MARCH 13-15, 2002 ISSN: 0021-5198 Absatz '0796!	. · ·	
	 ·		

INTERNATIONALER RECHERCHENBERICHT

Interptionales Aktenzeichen PC1/EP2004/007364

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07K14/705 A61P9/06

Nach der Internationalen Palentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C07K

Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchlerten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, BIOSIS, WPI Data, PAJ, MEDLINE, EMBASE

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angal	he der in Betracht kommenden Teile	Betr. Anspruch Nr.
		20 23 N. Dollatin Kollitteriaen 1688	Dett. Allsprüch Mr.
X	US 2002/094558 A1 (FINK MICHEL 18. Juli 2002 (2002-07-18)		1-5
•	Absātze '0088'!, '0089'!; Ánsprüc	he 17,18	
X	US 5 670 335 A (KUBO YOSHIHIRO 23. September 1997 (1997-09-23) Spalte 5, Zeilen 1-44 Spalten 27-28	ET AL)	1-5
X	US 2003/124568 A1 (EISENHARDT GI AL) 3. Juli 2003 (2003-07-03) Absätze '0015!, '0017!, '0075!		3,4
		-/	
	7 3		=
		•••	
χ Weit	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Patentfamilie	
"A" Veröffer aber ni "E" älteres l	Kalegorien von angegebenen Veröffentlichungen : ntlichung, die den allgemeinen Stand der Technik definiert, icht als besonders bedeutsam anzusehen ist Dokument, das jedoch erst am oder nach dem internationalen dedatum veröffentlicht worden ist	*T* Spätere Veröffentlichung, die nach de oder dem Prioritätsdatum veröffentlic Anmeldung nicht kollidiert, sondern r Erfindung zugrundellegenden Prinztp Theorie angegeben ist	cht worden ist und mit der nur zum Verständnis des der os oder der ihr zugrundeliegenden
'L' Veröffer schein andere	itlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- en zu lassen, oder durch die das Veröffentlichungsdatum einer in im Recherchenbericht genannten Veröffentlichung beledt werden	 X. Veröffenllichung von besonderer Bed kann allein aufgrund dieser Veröffent erfindenscher Täligkeit beruhend bet Y. Veröffenllichung von besonderer Bed 	lichung nicht als neu oder auf trachtet werden
ausgef 'O' Veröffer elne Be 'P' Veröffer	er die aus einem anderen besonderen Grund angegeben ist (wie ibint) allichung, die sich auf eine mündliche Offenbarung, enutzung, eine Ausstellung oder andere Maßnahmen bezieht auf ander Ausstellung oder andere Maßnahmen bezieht eine Ausstellung die vor dem internationalen Anmetdedatum, aber nach eanspruchten Prioritätsdatum veröffentlicht worden ist	kann nicht els auf erfinderischer Tätig werden, wenn die Veröffentlichung in Veröffentlichungen dieser Kategorie diese Verbindung für einen Fachman *&* Veröffentlichung, die Mitglied derselbe	gkeil beruhend betrachtet uit einer oder mehreren anderen in Verbindung gebracht wird und un nahellegend ist
	Abschlusses der internationaten Recherche	Absendedatum des internationalen F	techerchenberichts
2	7. Oktober 2004	11/11/2004	
Name und P	ostanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk	Bevollmächtigter Bediensteter	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Deck, A	

INTERNATIONAL SEARCH REPORT

Information on patent family members

Interplonal Application No PCT/EP2004/007364

Patent document Publication deed in search report date			Patent family member(s)		Publication date
US 2002094558	A1	18-07-2002	US US	6309855 B1 2002032322 A1	30-10-2001 14-03-2002
US 5670335	Α	23-09-1997	US WO	5492825 A 9504820 A1	20-02-1996 16-02-1995
US 2003124568	A1	03-07-2003	DE AU WO EP	10007468 A1 5032201 A 0161001 A2 1255836 A2	23-08-2001 27-08-2001 23-08-2001 13-11-2002

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PC1/EP2004/007364

Kalegorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
(KINDLER CHRISTOPH H ET AL: "Local anesthetic inhibition of baseline potassium channels with two pore domains	3,4
	in tandem" ANESTHESIOLOGY (HAGERSTOWN), Bd. 90, Nr. 4, April 1999 (1999-04)	
	Seiten 1092-1102, XP009038911 ISSN: 0003-3022 das ganze Dokument	
	TALLEY EDMUND M ET AL: "Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels. Volatile anesthetics and neurotransmitters share a molecular site of action" JOURNAL OF BIOLOGICAL CHEMISTRY,	3,4
,	Bd. 277, Nr. 20, 17. Mai 2002 (2002-05-17), Seiten 17733-17742, XP001203547 ISSN: 0021-9258 Seite 17741, Absatz 3	181
	TERSTAPPEN GEORG C ET AL: "The antidepressant fluoxetine blocks the human small conductance calcium-activated potassium channels SK1, SK2 and SK3." NEUROSCIENCE LETTERS, Bd. 346, Nr. 1-2,	3,4
	14. Juni 2003 (2003-06-14), Seiten 85-88, XP002302907 ISSN: 0304-3940 *Veröffentlicht im Internet am 14. Juni 2003* das ganze Dokument	
	BARBUTI ANDREA ET AL: "Block of the background K+ channel TASK-1 contributes	≘ 1−5
	to arrhythmogenic effects of platelet-activating factor" AMERICAN JOURNAL OF PHYSIOLOGY, Bd. 282, Nr. 6 Part 2, Juni 2002 (2002-06), Seiten H2024-H2030, XP009038912 ISSN: 0002-9513 das ganze Dokument	
	WANG ZHIGUO ET AL: "Differential distribution of inward rectifier potassium channel transcripts in human atrium versus ventricle" CIRCULATION, Bd. 98, Nr. 22, 1. Dezember 1998 (1998-12-01), Seiten 2422-2428, XP002302908 ISSN: 0009-7322	1-5
	das ganze Dokument	

INTERNATIONAL SEARCH REPORT

Internal Application No PCI/EP2004/007364

NATTEL STANLEY ET AL: "Evolution, mechanisms, and classification of antiarrhythmic drugs: Focus on class III actions" AMERICAN JOURNAL OF CARDIOLOGY, vol. 84, no. 9A, 4 November 1999 (1999-11-04), pages 11R-19R, XP009038876 ISSN: 0002-9149 cited in the application figure 3 MAINGRET FRANCOIS ET AL: "The endocannabinoid anandamide is a direct and	1,3-5	
mechanisms, and classification of antiarrhythmic drugs: Focus on class III actions" AMERICAN JOURNAL OF CARDIOLOGY, vol. 84, no. 9A, 4 November 1999 (1999-11-04), pages 11R-19R, XP009038876 ISSN: 0002-9149 cited in the application figure 3 MAINGRET FRANCOIS ET AL: "The	1,3-5	
11R-19R, XP009038876 ISSN: 0002-9149 cited in the application figure 3 MAINGRET FRANCOIS ET AL: "The		
MAINGRET FRANCOIS ET AL: "The endocannabinoid anandamide is a direct and	'	•
selective blocker of the background K+ channel TASK-1" EMBO (EUROPEAN MOLECULAR BIOLOGY	3,4	
ORGANIZATION) JOURNAL, vol. 20, no. 1-2, 15 January 2001 (2001-01-15), pages 47-54, XP001203548 ISSN: 0261-4189 page 52, paragraph 3		
LESAGE F ET AL: "Molecular and functional properties of two-pore-domain potassium channels"	3,4	
AMERICAN JOURNAL OF PHYSIOLOGY: RENAL, FLUID AND ELECTROLYTE PHYSIOLOGY, AMERICAN PHYSIOLOGICAL SOCIETY, US, vol. 279, no. 5 Part 2, November 2000 (2000-11), pages F793-F801, XP002256647 ISSN: 0363-6127 table 2		
MATSUDA TOMOYUKI ET AL: "Effect of NIP-142 on carbachol-induced myocardial action potential shortening and human GIRK1/4 channel current" JAPANESE JOURNAL OF PHARMACOLOGY, vol. 88, no. Supplement 1, 2002, page	1,3-5	, ~ \.
260P, XP009038919 & 75TH ANNUAL MEETING OF THE JAPANESE PHARMACOLOGICAL SOCIETY; KUMAMOTO, JAPAN; MARCH 13-15, 2002 ISSN: 0021-5198 paragraph '0796!		

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
\square image cut off at top, bottom or sides
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
\square REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.