Herramientas de Análisis

Fuente de la imagen: [https://es.wikipedia.org](https://es.wikipedia.org/wiki/Star_Wars:_Episodio_I_-_La_amenaza_fantasma)

NOMBRE: Elizabeth Evelin Peredo Mescco

Índice

```
Herramientas de Análisis
>

Preparación del Entorno \ \ Ejercicio 1 \
```

Preparación del entorno

Padawan! Cuando inicies sesión en Colab, prepara el entorno ejecutando el siguiente código.

```
In [ ]: if 'google.colab' in str(get_ipython()):
    !git clone https://github.com/griu/mbdds_fc20.git /content/mbdds_fc20
    !git -C /content/mbdds_fc20 pull
    %cd /content/mbdds_fc20/Python
    !python -m pip install -r requirementsColab.txt
```

Ejercicio 1

Para realizar el ejercicio cargamos los datos de Especies en STARWARS SWAPI y las librerías principales.

```
In []: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns; sns.set() # para et estito de graficos

In []: entidades = ['planets', 'starships', 'vehicles', 'people', 'species']
    entidades_df = {x: pd.read_pickle('www/' + x + '_df.pkl') for x in entidades}

# Datos principales
    people_df = entidades_df['people'][["height", "mass", "birth_year", "gender", "homeworld"]].dropna()
    people_df
```

	height	mass	birth_year	gender	homeworld
name					
Luke Skywalker	172.0	77.0	19.0	male	http://swapi.dev/api/planets/1/
C-3PO	167.0	75.0	112.0	none	http://swapi.dev/api/planets/1/
R2-D2	96.0	32.0	33.0	none	http://swapi.dev/api/planets/8/
Darth Vader	202.0	136.0	41.9	male	http://swapi.dev/api/planets/1/
Leia Organa	150.0	49.0	19.0	female	http://swapi.dev/api/planets/2/
Owen Lars	178.0	120.0	52.0	male	http://swapi.dev/api/planets/1/
Beru Whitesun lars	165.0	75.0	47.0	female	http://swapi.dev/api/planets/1/
Biggs Darklighter	183.0	84.0	24.0	male	http://swapi.dev/api/planets/1/
Obi-Wan Kenobi	182.0	77.0	57.0	male	http://swapi.dev/api/planets/20/
Anakin Skywalker	188.0	84.0	41.9	male	http://swapi.dev/api/planets/1/
Chewbacca	228.0	112.0	200.0	male	http://swapi.dev/api/planets/14/
Han Solo	180.0	80.0	29.0	male	http://swapi.dev/api/planets/22/
Greedo	173.0	74.0	44.0	male	http://swapi.dev/api/planets/23/
Jabba Desilijic Tiure	175.0	1358.0	600.0	hermaphrodite	http://swapi.dev/api/planets/24/
Wedge Antilles	170.0	77.0	21.0	male	http://swapi.dev/api/planets/22/
Yoda	66.0	17.0	896.0	male	http://swapi.dev/api/planets/28/
Palpatine	170.0	75.0	82.0	male	http://swapi.dev/api/planets/8/
Boba Fett	183.0	78.2	31.5	male	http://swapi.dev/api/planets/10/
IG-88	200.0	140.0	15.0	none	http://swapi.dev/api/planets/28/
Bossk	190.0	113.0	53.0	male	http://swapi.dev/api/planets/29/
Lando Calrissian	177.0	79.0	31.0	male	http://swapi.dev/api/planets/30/
Lobot	175.0	79.0	37.0	male	http://swapi.dev/api/planets/6/
Ackbar	180.0	83.0	41.0	male	http://swapi.dev/api/planets/31/
Wicket Systri Warrick	88.0	20.0	8.0	male	http://swapi.dev/api/planets/7/
Qui-Gon Jinn	193.0	89.0	92.0	male	http://swapi.dev/api/planets/28/
Padmé Amidala	185.0	45.0	46.0	female	http://swapi.dev/api/planets/8/
Jar Jar Binks	196.0	66.0	52.0	male	http://swapi.dev/api/planets/8/
Darth Maul	175.0	80.0	54.0	male	http://swapi.dev/api/planets/36/
Ayla Secura	178.0	55.0	48.0	female	http://swapi.dev/api/planets/37/
Mace Windu	188.0	84.0	72.0	male	http://swapi.dev/api/planets/42/
Ki-Adi-Mundi	198.0	82.0	92.0	male	http://swapi.dev/api/planets/43/
Plo Koon	188.0	80.0	22.0	male	http://swapi.dev/api/planets/49/
Luminara Unduli	170.0	56.2	58.0	female	http://swapi.dev/api/planets/51/
Barriss Offee	166.0	50.0	40.0	female	http://swapi.dev/api/planets/51/
Dooku	193.0	80.0	102.0	male	http://swapi.dev/api/planets/52/
Jango Fett	183.0	79.0	66.0	male	http://swapi.dev/api/planets/53/

Ejercicio 1.1.

Out[]:

Construye un gráfico de dispersión de los personajes donde se visualice: la altura (height), el peso (mass), la edad en años BBY (birth_year) y el género (gender). Para ello utiliza la función sns.scatterplot() de la

librería seaborn. Aprovecha todos los parámetros: x, y, size, hue y style (consulta la ayuda de la función .scatterplot().

Ejercicio 1.2.

Sobre el gráfico del ejercicio 1.1:

- Pon título al gráfico y a los ejes x e y.
- Modifica los límites del eje y para que aparezcan sólo personajes de menos de 150 Kg de peso.
- Sitúa en el gráfico los nombres de "Darth Vader" y "Anakin Skywalker". ¿Cómo es posible tengan un peso y altura tan distintos si eran la misma persona?

```
In [ ]: # Solución:
        grafico1=sns.scatterplot(
            data=people_df,
            x="mass",
            y="height",
            hue="birth_year",
            style="gender",
            palette='cool')
        grafico1.legend(loc='center left', bbox_to_anchor=(1, 0.5))
        # Titulo al g´raficos y a los ejes x e y
        grafico1.set_title("Altura y masa")
        grafico1.set(xlabel='Masa', ylabel='Altura')
        # Limite del eje x = masa
        grafico1.set_xlim([0,150])
        people_df1=people_df.reset_index(drop=False)
        for i in range(0,people_df1.shape[0]):
          if people_df1.name[i]=="Darth Vader" or people_df1.name[i]=="Anakin Skywalker":
            # Forma 1: text
              """plt.text(people_df1.mass[i],
                       people_df1.height[i],
                       people_df1.name[i],
                       horizontalalignment='left',
                       size='medium')"""
              # Forma 2: annotate
              plt.annotate(people_df1.name[i],
```


Ejercicio 1.3.

Utiliza las list comprehension para calcular el cuadrado de los valores positivos de la siguiente lista:

Muestra el resultado por pantalla.

```
In [ ]: val = [5, 6, -1, 2, -3, -7, 9, 1]
In [ ]: # Solución:
    new_val = [x*x for x in val if x>0]
    print(new_val)
    [25, 36, 4, 81, 1]
```

Ejercicio 1.4.

Construye un diccionario donde se identifique, mediante claves y valores, las siguientes características del personaje Yoda: "nombre", "altura", "peso", "edad" y "genero". Utiliza los datos de people_df.

Muestra el diccionario por pantalla.

Ejercicio 1.5.

Calcula, a partir de los vectores numpy de altura y peso, definidos a continuación, el índice de masa corporal (IMC) de los personajes de star wars contenidos en people_df:

```
IMC = rac{peso}{altura^2} donde altura está en metros y el peso en kg.
```

Muestra los datos por pantalla.

Ejercicio 1.6.

A partir del IMC que has calculado en el ejercicio 1.5. Construye un panel con dos histogramas:

- Un histograma con toda la muestra
- Un histograma seleccionando los valores con un IMC inferior a 100.

```
In []: # Solución:
    fig, (ax1, ax2) = plt.subplots(2)
    fig.suptitle('Histograma IMC')
    ax1.hist(x=IMC, color='#483D8B')
    ax1.legend((["IMC"]), loc='best',prop={'size': 9})
    ax2.hist(IMC[IMC<100], color='#ADFF2F')
    ax2.legend((["IMC<100"]), loc='best',prop={'size': 9})

plt.show()</pre>
```

Histograma IMC

Ejercicio 1.7.

A partir del vector 1 y 2 que se definen a continuación contesta las siguientes preguntas:

- Calcula el shape, ndim, size del vector1 y vector2
- Explica cual es la diferencia entre vector1 y vector2 a partir de los que hayas observado

```
"NDIM: ",str(vector2.ndim),
"SIZE: ",str(vector2.size))
         La diferencia entre hstack y vstack es
         que la primera muestra la unión en forma
         horizontal (hstack) por eso el shape es '72',
         por otro lado vstack muestra la unión de
         forma vertical '2,36'
        HSTACK -> SHAPE: (72,) NDIM: 1 SIZE:
        VSTACK -> SHAPE: (2, 36) NDIM: 2 SIZE: 72
         " \nLa diferencia entre hstack y vstack es \nque la primera muestra la unión en forma\nhorizontal (h
Out[]:
        stack) por eso el shape es '72',\npor otro lado vstack muestra la unión de\nforma vertical '2,36'\n"
                                                                        np.hstack((a, c))
                                                  C
                            5
                                6
                                    7
                                                3
                                                    4
                                                                             6
                                                                                        3
                                                                                            4
                            9
                                                5
                                                                         9
                                                                            10
                                                                                11
                               10
                                   11
                                       12
                                                    6
                                                                                    12
                                                                                        5
                                                                                            6
                                  b
                       np.vstack((a, b))
                                2
                                    3
                            5
                                6
                                    7
                            9
                               10
                                   11
                                       12
                                    3
```

Ejercicio 1.8.

Crea una copia de people_df llamada personajes_df y renombra las columnas con su traducción al castellano.

Muestra los 5 primeros registros del nuevo data frame con .head().

7

```
In [ ]: # Solución:
         personajes_df=people_df.rename_axis(index='nombre')
         personajes_df.columns=['altura','peso','edad','género','home']
         personajes_df.head(5)
Out[]:
                         altura peso edad género
                                                                           home
                nombre
         Luke Skywalker
                          172.0
                                 77.0
                                       19.0
                                                male http://swapi.dev/api/planets/1/
                  C-3PO
                          167.0
                                 75.0
                                       112.0
                                                none http://swapi.dev/api/planets/1/
                  R2-D2
                           96.0
                                 32.0
                                        33.0
                                               none http://swapi.dev/api/planets/8/
            Darth Vader
                          202.0 136.0
                                                male http://swapi.dev/api/planets/1/
                                        419
            Leia Organa
                          150.0
                                 49.0
                                        19.0
                                              female http://swapi.dev/api/planets/2/
```

Ejercicio 1.9.

Haz el mismo cálculo de IMC que has hecho en 1.5. pero directamente sobre el objeto personajes_df.

Ordena el data frame de mayor a menor IMC y muestra el nombre e IMC de los personajes con IMC por encima de 30.

¿Sabias que IMC por encima de 30 se considera obeso?

Ejercicio 1.10.

Darth Vader 33.330066

IG-88 35.000000 **R2-D2** 34.722222

Inserta un valor faltante en los valores de IMC que sean superiores a 100 y dibuja el histograma del IMC transformado con .plot.hist().

```
In []: # Solución:
    personajes_df[personajes_df.IMC > 100] = np.nan

plt.hist(personajes_df.IMC, color='#F2AB6D', rwidth=0.85)
    plt.title("Histograma - IMC")
    plt.xlabel('IMC')
    plt.ylabel('Frecuencia')

plt.xlim([0,100])
    plt.show()
```

