### Lecture 30: Probability Theory

Chapter 2.4-2.5

# Random Variable

Say you have a random variable X:

|                     | 2   | 3   | 1   | 10  | 11  |
|---------------------|-----|-----|-----|-----|-----|
| ^                   | ~   | 3   | 4   | 10  | TT  |
| Pr(X = x)           | 15  | 25  | 10  | 30  | 20  |
| $\frac{11(X-X)}{X}$ | 100 | 100 | 100 | 100 | 100 |

E.g. We observe X = 3 with prob .25

Say you have a random variable X:

| X         | 2                | 3                | 4                | 10               | 11               |
|-----------|------------------|------------------|------------------|------------------|------------------|
| Pr(X = x) | $\frac{15}{100}$ | $\frac{25}{100}$ | $\frac{10}{100}$ | $\frac{30}{100}$ | $\frac{20}{100}$ |

E.g. We observe X=3 with prob .25

Is the value we expect to observe:

$$\frac{2+3+4+10+11}{5} = 6?$$

No, each of the x's have different probability of occurring.

No, each of the x's have different probability of occurring.

For each x, we assign different weights Pr(X = x) and not  $\frac{1}{5}$ :

$$2 \times \frac{15}{100} + 3 \times \frac{25}{100} + 4 \times \frac{10}{100} + 10 \times \frac{30}{100} + 11 \times \frac{20}{100} = 6.65$$

# **Expected Value**

# **Expected Value**

You can also think of the mean as the center of mass or balance point (marked with red point):



Consider the following (continuous) distribution with  $\mu=0$ . Let's build a measure of expected "spread".



Consider the following (continuous) distribution with  $\mu=0$ . Let's build a measure of expected "spread".



Let's define "spread" as the absolute deviation from  $\mu$ :  $|x - \mu|$ . i.e. +'ve & -'ve deviations are treated the same.

When x=-3.0, the abs. deviation from  $\mu$  is  $|-3.0-\mu|=3.0$ . Note P(X=x)=0.066.



When x=7.0, the abs. deviation from  $\mu$  is  $|7.0 - \mu| = 7.0$ . Note P(X=x) = 0.030.



When x=10.0, the abs. deviation from  $\mu$  is  $|10.0-\mu|=10.0$ . Note P(X=x)=0.011.



So say we do this for all x and take a weighted average of the  $|x - \mu|$  where the weights are P(X = x).

Voilà: Our notion of expected spread.

# Variance

#### **Estimators**

# Sample Mean as an Estimator

# Bias

#### Recall from Earlier

One example of a non-representative sample is a biased sample. For example, convenience samples are samples where individuals who are easily accessible are more likely to be included.

#### Recall from Earlier

- 1. The Royal Air Force wants to study how resistant their airplanes are to bullets. They study the bullet holes on all the airplanes on the tarmac after an air battle against the Luftwaffe (German Air Force).
- 2. I want to know the average income of Reed graduates in the last 10 years. So I get the records of 10 randomly chosen Reedies. They all answer and I take the average.
- Imagine it's 1993 i.e. almost all households have landlines. You
  want to know the average number of people in each household in
  Portland. You randomly pick out 500 phone numbers from the
  phone book and conduct a phone survey.
- 4. You want to know the prevalence of illegal downloading of TV shows among Reed students. You get the emails of 100 randomly chosen Reedies and ask them "How many times did you download a pirated TV show last week?"