# Álgebra III Semana 3

# Alejandro García Montoro agarciamontoro@correo.ugr.es

### 24 de octubre de 2015

#### Ejercicio 1.

**Solución.** Considerando  $\mathbb{F}_p$ , el cuerpo F es un espacio vectorial sobre  $\mathbb{F}_p$ . Así, como espacio vectorial, tenemos que

$$F \cong \mathbb{F}_p^n$$

con un  $n \in \mathbb{N}$ . Por tanto, concluimos que F tiene  $p^n$  elementos.

### Ejercicio 2.

#### Solución.

Apartado 2.1. Sea  $\alpha = \sqrt{7}$ .  $\alpha$  es claramente algebraico sobre  $\mathbb{Q}$ , pues es raíz del polinomio  $p(X) = X^2 - 7 \in \mathbb{Q}[X]$ .

Apartado 2.2. Sea  $\alpha = \sqrt[3]{3}$ .  $\alpha$  es claramente algebraico sobre  $\mathbb{Q}$ , pues es raíz del polinomio  $p(X) = X^3 - 3 \in \mathbb{Q}[X]$ .

Apartado 2.3. Supongamos que  $\pi^2$  es algebraico sobre  $\mathbb Q.$  Consideramos la extensión de cuerpos siguiente:



Como  $\pi^2$  es algebraico sobre  $\mathbb{Q}$ , al ser el generador de  $\mathbb{Q}(\pi^2)$ , concluimos que  $\mathbb{Q}(\pi^2)/\mathbb{Q}$  es una extensión algebraica.

Sabemos por teoría que dada una torre de cuerpos  $K \subset F \subset E, K/E$  es algebraica  $\iff E/F$  y F/K son algebraicas. Por tanto, como  $\mathbb{Q}(\pi^2)/\mathbb{Q}$  es una extensión algebraica, también lo es  $\mathbb{Q}(\pi)/\mathbb{Q}$ .

Concluimos que  $\pi$  —por pertenecer a la extensión algebraica  $\mathbb{Q}(\pi)$ — es algebraico, lo que es una contradicción. Por tanto, nuestra hipótesis era falsa:  $\pi^2$  es trascendente sobre  $\mathbb{Q}$ .

Apartado 2.4. Sea  $\alpha = e^3 + 1$ . Podemos escribir  $e^3 + 1 - \alpha = 0$ , luego concluimos que e es algebraico en la extensión  $\mathbb{Q}(\alpha)/\mathbb{Q}$ .

Por el mismo razonamiento anterior, el suponer que  $\alpha$  es algebraico sobre  $\mathbb{Q}$  nos lleva a concluir que e también lo es. Eso es una contradicción, luego  $\alpha = e^3 + 1$  es trascendente sobre  $\mathbb{Q}$ .

Apartado 2.5. Sea  $\alpha = \sqrt{i} + 2$ . Manipulando un poco esta igualdad tenemos:

$$\alpha - 2 = \sqrt{i}$$
$$(\alpha - 2)^4 = -1$$
$$\alpha^4 - 8\alpha^3 - 32\alpha + 17 = 0$$

Es claro entonces que  $\alpha$  es raíz del polinomio  $p(X) = X^4 - 8X^3 - 32X + 17 \in \mathbb{Q}[X]$ , con lo que  $\alpha$  es algebraico.

## Ejercicio 3.

**Solución.** Sea  $f(X) = X^3 + 3X + 1$  un polinomio en  $\mathbb{Q}[X]$ . No podemos usar el criterio de Eisenstein para ver que es irreducible, pero sabemos por Ruffini que todas las raíces que ese polinomio puede tener en  $\mathbb{Q}$  son de la forma

$$\frac{p}{q} / p, q \in \mathbb{Z}, p|1 \le q|1$$

Por tanto, el conjunto de posibles raíces es  $\{1, -1\}$ . Pero ninguna de esas es raíz de f(X):

$$f(-1) = -3 \neq 0$$
$$f(1) = 5 \neq 0$$

Como f(X) no tiene raíces en  $\mathbb{Q}$  y es un polinomio de grado 3 —entre sus raíces hay al menos una real—, concluimos que f(X) es un polinomio irreducible en  $\mathbb{Q}[X]$ .

Apartado 3.1. Calculemos  $(1 + \alpha)(1 + \alpha + \alpha^2)$ , con  $\alpha$  raíz de f(X). Desarrollando:

$$(1 + \alpha)(1 + \alpha + \alpha^2) = 1 + 2\alpha + 2\alpha^2 + \alpha^3$$

Sabemos, por ser  $\alpha$  raíz de f(X), que  $\alpha^3 + 3\alpha + 1 = 0$ . Si manipulamos la igualdad anterior teniendo en cuenta esta condición, llegamos a lo que queremos:

$$(1+\alpha)(1+\alpha+\alpha^2) = \alpha^3 + 3\alpha + 1 + 2\alpha^2 - \alpha$$
$$(1+\alpha)(1+\alpha+\alpha^2) = 2\alpha^2 - \alpha$$

Aquí termina el cálculo, pues los elementos de  $\mathbb{Q}(\alpha)$ , que es la extensión que estamos considerando, son de la siguiente forma:

$$\mathbb{Q}(\alpha) = \frac{\mathbb{Q}[X]}{X^3 + 3X + 1} = \{a + b\alpha + c\alpha^2/a, b, c \in \mathbb{Q}\}$$

Apartado3.2. Calculemos  $\frac{1+\alpha}{1+\alpha+\alpha^2},$  con  $\alpha$ raíz de f(X):

Queremos obtener los a, b, c que satisfacen la siguiente igualdad:

$$\frac{1+\alpha}{1+\alpha+\alpha^2} = a + b\alpha + c\alpha^2$$

Multiplicando por  $1 + \alpha + \alpha^2$  y desarrollando:

$$1 + \alpha = (a + b\alpha + c\alpha^{2})(1 + \alpha + \alpha^{2})$$
  

$$1 + \alpha = a + (a + b)\alpha + (a + b + c)\alpha^{2} + (b + c)\alpha^{3} + c\alpha^{4}$$

Simplificamos la parte de la derecha tomando el resto de dividir el polinomio asociado,  $a+(a+b)X+(a+b+c)X^2+(b+c)X^3+cX^4$  entre  $1+3X+X^3$ ; que vale  $(a-b-c)+(a-2b-4c)X+(a+b-2c)X^2$ . Llegamos entonces a la igualdad

$$1 + \alpha = (a - b - c) + (a - 2b - 4c)X + (a + b - 2c)X^{2}$$

De aquí, igualando coeficientes tenemos un sistema de ecuaciones —esto lo podemos hacer porque los elementos de  $\mathbb{Q}(\alpha)$  se escriben de forma única—:

$$1 = a - b - c$$
$$1 = a - 2b - 4c$$
$$0 = a + b - 2c$$

cuya solución es  $a=\frac{5}{7}, b=-\frac{3}{7}, c=\frac{1}{7}$ . Por tanto, concluimos el ejercicio:

$$\frac{1+\alpha}{1+\alpha+\alpha^2} = \frac{5}{7} - \frac{3}{7}\alpha + \frac{1}{7}\alpha^2$$

# Ejercicio 4.

#### Solución.

Apartado 4.1. Sea  $\alpha = 2 + \sqrt{5}$ .

Manipulando esta igualdad:

$$\alpha - 2 = \sqrt{5}$$

$$\alpha^2 - 4\alpha + 4 = 5$$

$$\alpha^2 - 4\alpha - 1 = 0$$

Por tanto,  $\alpha$  es raíz de  $p(X)=X^2-4X-1.$  Como las raíces de p(X) son  $2\pm\sqrt{5}\notin\mathbb{Q},$  concluimos que

$$Irr(2+\sqrt{5},\mathbb{Q}) = X^2 - 4X - 1$$

Es claro además que  $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{5})$ .

Apartado 4.2. Sea  $\alpha = \sqrt[4]{5} + \sqrt{5}$ . Manipulando esta igualdad:

$$\alpha - \sqrt{5} = \sqrt[4]{5}$$

$$\alpha^2 - 2\alpha\sqrt{5} + 5 = \sqrt{5}$$

$$\alpha^2 + 5 = \sqrt{5}(1 - 2\alpha)$$

$$\alpha^4 + 25 + 10\alpha^2 = 5 + 20\alpha^2 - 20\alpha$$

$$\alpha^4 - 10\alpha^2 + 20\alpha + 20 = 0$$

Por tanto,  $\alpha$  es raíz de  $p(X) = X^4 - 10X^2 + 20X + 20$ . Para ver que es irreducible, basta aplicar Eisenstein con el primo 5. Concluimos que

$$Irr(\sqrt[4]{5} + \sqrt{5}, \mathbb{Q}) = X^4 - 10X^2 + 20X + 20$$

Es claro además que  $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt[4]{5})$ , pues  $\sqrt{5} = \sqrt[4]{5}^4$ . Apartado 4.3. Sea  $\alpha = \sqrt[3]{2} + \sqrt[3]{4}$ .

Elevando al cuadrado:

$$\alpha^3 = 2 + 6\sqrt[3]{2} + 6\sqrt[3]{4} + 4$$

Como  $\sqrt[3]{2} + \sqrt[3]{4} = \alpha$ , tenemos lo siguiente:

$$\alpha^3 = 2 + 6\alpha + 4$$
$$\alpha^3 - 6\alpha - 6 = 0$$

Por tanto,  $\alpha$  es raíz de  $p(X) = X^3 - 6X - 6$ . Aplicando el criterio de Eisenstein con el primo 3, concluimos que es irreducible. Así:

$$Irr(\sqrt[3]{2} + \sqrt[3]{4}, \mathbb{Q}) = X^3 - 6X - 6$$

Es claro además que  $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt[3]{2})$ , pues  $\sqrt[3]{4} = \sqrt[3]{2}^2$ .