Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження рекурсивних алгоритмів»

Варіант 15

Виконав студент ІП-15, Костін Вадим Анатолійович (шифр, прізвище, ім'я, по батькові)

Перевірив Вєчерковська Анастасія Сергіївна (прізвище, ім'я, по батькові)

Лабораторна робота 6

Дослідження рекурсивних алгоритмів

Мета — дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 15

Задача

Обчислити добуток елементів арифметичної прогресії, що зростає: початкове значення — 2, кінцеве — 30, крок — 4.

Постановка задачі

За умовою задачі прогресіє є зростаючою. В умові задачі вказано початкове значення, кінцеве та крок збільшення. Щоб знайти добуток всіх елементів арифметичної прогресії, треба перелічувати кожен із них та помножувати на добуток попередніх елементів.

Математична модель

Перелічувати елементи можна за допомогою ітерації або рекурсії. У цьому завданні будемо використовувати рекурсію. Для цього потрібно створити підпрограму, в якій буде виконуватись звернення підпрограми до самої, але в цьому зверненні вже будуть інші формальні параметри, а саме замість формального параметру кінцевого значення п в зверненні буде формальний параметр кінцевого значення, зменшеного на крок d.

Змінна	Тип	Ім'я	Призначення
Початкове	Цілочисельне	Α	Фактичний
значення			параметр
Кінцеве значення	Цілочисельне	N	Фактичний
			параметр
Крок	Цілочисельне	D	Фактичний
			параметр
Добуток	Цілочисельне	S	Результат
елементів			

Формальний	Цілочисельне	а	Формальний
параметр			параметр
початкового			
значення			
Формальний	Цілочисельне	n	Формальний
параметр			параметр
кінцевого			
значення			
Формальний	Цілочисельне	d	Формальний
параметр кроку			параметр
Добуток	Цілочисельне	S	Результат
елементів у			підпрограми
підпрограмі			

Для виразу x = x * y будемо використовувати x *= y

Для перевірки на рівність будемо використовувати логічні вирази ==, !=,>,<

Крок 1 Деталізуємо основні дії

Крок 2 Деталізуємо дію знаходження добутку елементів арифметичної прогресії, опис термінальної та рекурсивної гілки та повернення результату у підпрограмі

Псевдокод

Крок 1	Підпрограма f(a,n,d)
Початок	Початок
Ініціалізування A,N,D	Опис термінальної та рекурсивної гілки
Деталізуємо дію знаходження добутку	підпрограми
елементів арифметичної прогресії	Повернення результату підпрограми
Виведення S	Кінець
Кінець	

Блок-схеми

Крок 1

Код програми

```
    Lab6.cpp > 
    main()

      #include <iostream>
      using namespace std;
       int f(int a, int n, int d){
           int s;
           if (a==n)
               s = a;
           else
               s = n * f(a,n-d,d);
 10
 11
           return s;
 12
       }
 13
       int main(){
 14
           int A = 2, N = 30, D = 4, S;
 15
           cout << "The first member: " << A << endl;</pre>
 16
           cout << "The last member: " << N << endl;</pre>
 17
           cout << "The step: " << D << endl;</pre>
 18
           S = f(A,N,D);
 19
           cout << "Result: " << S << endl;</pre>
 20
           system("pause");
 21
 22
```

Результат роботи програми

```
Enter the first member: 2
Enter the last member: 30
Enter the step: 4
Result: 518918400
Press any key to continue . . .
```

Висновки

Протягом шостої лабораторної роботи ми дослідили особливості роботи рекурсивних алгоритмів та набули практичних навичок їх використання під час складання програмних специфікацій. Основними преревагами методу рекурсії над ітерацією є легкість в написанні, а недоліком — довгий час виконання програми.