Part 1: Categorical/Linguistic Analysis

Stakeholder Category/Text Analysis Needs

- **Restaurants and Food Delivery Services:** Need insights into the most popular food categories to optimize menus, manage inventory, and plan promotions.
- **Delivery Logistics Teams:** Need to understand how traffic and weather conditions impact delivery time and performance.
- **Customers:** May benefit from knowing which food categories are trending, helping them make ordering decisions.
- **City and Traffic Planners:** Can analyze how road traffic density affects food delivery delays, which can inform better city planning.

Data Assessment

• Categorical Data:

- Type_of_order (e.g., Snacks, Drinks, Buffet)
- City (e.g., Urban, Metropolitan)
- Road traffic density (Low, Medium, High, Jam)
- Weatherconditions (Sunny, Cloudy, Stormy, etc.)

Text Data:

- Type_of_order can be analyzed using word frequency analysis (Word Cloud).
- Weatherconditions can be used to track seasonal trends in deliveries.

• Data Quality Checks:

- Remove any missing values in Type_of_order, Road_traffic_density, and Weatherconditions.
- Standardize city names to maintain consistency.

• What is the quality and consistency of your categorical/textual data?

The dataset appears well-structured, but some data cleaning is needed:

- o Standardizing weather conditions (Sunny, Cloudy, Stormy, etc.).
- o Ensuring order categories (Snack, Meal, etc.) are correctly classified.

• What additional context might be needed?

- o Information about order volume by time of day could help identify peak demand times.
- Understanding customer feedback or ratings for different food categories would improve service insights.

Initial Design Exploration

I chose two different visualization approaches to analyze categorical patterns in food delivery:

1. Treemap: Delivery Performance by Traffic Conditions

• Why this visualization?

 It helps visualize the impact of traffic conditions on delivery performance across different cities.

• How is the data structured?

- o **Hierarchy:** Road_traffic_density → City
- o **Size Metric:** Number of orders (count of deliveries).
- o **Filters:** Type of vehicle (motorcycle, scooter, bicycle).

• Insights from this treemap:

- o Which traffic conditions cause the most delays?
- How urban and metropolitan areas compare in delivery efficiency.
- o How different vehicle types perform under different traffic conditions.

2. Word Cloud: Most Ordered Food Categories

Why this visualization?

o It provides a quick visual representation of the most popular food categories.

How is the data structured?

- o **Data Source:** Type_of_order column (e.g., Snack, Meal, Buffet, Drinks).
- o **Processing:**
 - Convert categories into a text corpus.
 - Generate a word cloud where larger words represent more frequent orders.

- Insights from this word cloud:
 - o Which food categories are most popular?
 - o Are certain categories more ordered in specific seasons or cities?

Part 2: AI-Assisted Design Process

AI Interactions & Tools Used

- AI Model Used: ChatGPT-40
- Prompts Used:
 - 1. "How can I visualize the most popular food categories in a dataset?"
 - AI suggested word cloud analysis, which was implemented.
 - 2. "What's the best way to compare traffic impact on deliveries in Power BI?"
 - AI recommended a stacked column chart, which worked well.

Implementation Plan

1. Data Cleaning:

- **Remove missing values** in Type_of_order, Road_traffic_density, and Weatherconditions to ensure accurate visualization.
- **Standardize food category names** (e.g., ensuring "Snack" and "snacks" are grouped correctly).
- **Fix inconsistent city names** for better grouping in the treemap visualization.

2. Tools Used:

- **Python (Matplotlib, WordCloud)** for text analysis and generating the word cloud of most ordered food categories.
- **Power BI** for the treemap visualization, allowing interactive filtering by traffic conditions, cities, and vehicle types.

3. Interactive Features in Power BI:

- Filter by City analyze how delivery performance varies across different locations.
- **Select Vehicle Type** (**Motorcycle, Scooter, Bicycle**) to check which mode of transport is most efficient under different traffic conditions.

Challenges & AI Limitations

- AI Didn't Consider Data Cleaning Needs:
 - Had to manually clean food order categories and standardize city names for consistent visualization in Power BI.
- Suggested Default Colors Without Accessibility Considerations:
 - o AI did not optimize for readability, so I had to adjust colors in Power BI to ensure charts were easy to interpret for all users.
- AI Missed the Importance of Interactive Filtering in Power BI:
 - o Had to manually add vehicle-type filters to improve analysis in the treemap.