Aula 5 – Circuitos Combinacionais

Prof. Dr. Emerson Carlos Pedrino

024376 – Circuitos Digitais

DC/UFSCar

www.dc.ufscar.br/~emerson

Simplificação de Circuitos Lógicos

- Determinar a expressão de saída
- Simplificar a expressão (álgebra de Boole)
- Montagem do novo circuito

Circuito Simplificado

Projeto de Circuitos Digitais

- Montagem da Tabela Verdade;
- Determinação da "expressão de saída" do circuito;
- Simplificação da expressão de saída
 - Álgebra Booleana
- Montagem do circuito lógico

Expressão de Saída

- Existem 4 maneiras possíveis de fazer a operação AND com dois sinais de entrada;
- Essas saídas são chamadas de produtos fundamentais ou produtos canônicos
- Para esses produtos, só existe uma combinação possível para que o resultado seja 1.

A	В	Produto Fundamental
0	0	A-B
0	1	A·B
1	0	A·B
1	1	A·B

Produtos Canônicos

- Método utilizado para encontrar a equação lógica de um circuito digital;
- A equação fica como uma soma dos produtos canônicos que produzem uma saída alta;
- A expressão do circuito fica sempre correta pois, para uma soma ter resultado alto (= 1), basta que apenas um dos termos da soma seja igual a 1: (A + 1 = 1)

 Por exemplo, se na tabela verdade as entradas A=1, B=0 e C=0 resultam em uma saída alta, então seu produto fundamental é:

$$1 \cdot \overline{0} \cdot \overline{0} = A \overline{B} \overline{C} = 1$$

 Dada a tabela-verdade, localize as saídas altas e escreva o produto fundamental delas

	A	В	C	У	
	0	0	0	0	
	0	0	1	0	
	0	1	0	0	
	0	1	1	1	\supset
	1	0	0	0	
	1	0	1_	1_	\supset
\subseteq	1	1	0	1	\supset
	1	1	1	1	
	•	•			

 Localizado as saídas altas na tabela anterior, a equação da soma de produtos é:

$$0 \cdot 1 \cdot 1 = 1 \rightarrow \overline{ABC}$$

 $1 \cdot 0 \cdot 1 = 1 \rightarrow \overline{ABC}$
 $1 \cdot 1 \cdot 0 = 1 \rightarrow \overline{ABC}$
 $1 \cdot 1 \cdot 1 = 1 \rightarrow \overline{ABC}$

Portanto, a equação de saída do circuito é:

$$Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

- Método também utilizado para encontrar a equação lógica de um circuito digital;
- A equação fica como um produto das somas do das entradas que produzem uma saída baixa;
- A expressão do circuito fica sempre correta pois, para um produto ter resultado baixo (= 0), basta que apenas um dos termos seja igual a 0: (A · 0 = 0)

 Por exemplo, se na tabela verdade as entradas A=1, B=0 e C=0 resultam em uma saída baixa, então sua soma é:

$$\overline{1} + 0 + 0 = \overline{A} + B + C = 0$$

 Dada a tabelaverdade, localize as saídas baixas e escreva a soma que resulta em 0

	A	В	C	У	
\subseteq	0	0	0	0	\supset
	0	0	1	0	\supset
	0	1	0	0	\supset
	0	1	1	1	
	1	0	0	0	\supset
	1	0	1	1	
	1	1	0	1	
	1	1	1	1	

 Localizado as saídas baixas na tabela anterior, a equação das somas ficam:

$$0 + 0 + 0 = 0 \rightarrow A+B+C$$

 $0 + 0 + 1 = 0 \rightarrow A+B+C$
 $0 + 1 + 0 = 0 \rightarrow A+B+C$
 $1 + 0 + 0 = 0 \rightarrow A+B+C$

Portanto, a equação de saída do circuito é:

$$Y = (A+B+C) \cdot (A+B+C) \cdot (A+B+C) \cdot (A+B+C)$$
+C)

Exercícios*©

Exercício 1

- Dada a Tabela Verdade ao lado, ache a equação <u>simplificada</u> de saída utilizando:
 - a) Soma de produtos
 - b) Produto das somas

A	В	C	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Exercícios*©

Exercício 2

- Projetar um circuito para uma máquina copiadora.
 Um LED de advertência deve acender quando o papel enroscar ou quando faltar papel na bandeja.
- Três sensores são instalados na máquina. Eles fornecem nível lógico 1 na saída na presença de papel.
- O sensor A indica a presença (1) ou ausência (0) de papel na bandeja e os sensores B e C indicam que o papel enroscou se ambos os sensores estiverem em (1) ao mesmo tempo;

Exercícios*©©

 Exercício 3 – Para acionar o LED na saída do circuito anterior, utilize um transistor NPN com resistor de base de 33KΩ e de coletor de 100Ω. Mostre o diagrama esquemático completo do circuito final. Qual CI TTL poderia ser usado para implementar tal circuito?

Exercícios*©

 Exercício 4 – Na figura a seguir, um conversor AD (analógico-digital) está monitorando a tensão CC de uma bateria de 12 V de uma certa espaçonave em órbita. A saída de tal conversor é um número binário de 1 nibble, que corresponde à tensão da bateria em degraus de 1 V, sendo a variável A o MSB. Suas saídas são as entradas de um circuito que gera uma saída em nível Alto, sempre que o valor binário for maior que 6 (dec). Projete esse circuito lógico.

Exercício 4*©©

Referências

- Tocci, R. J. et al. Sistemas Digitais (princípios e aplicações), 10a Edição. Pearson, 2007.
- Vieira, M. A. C. SEL-0414-Sistemas Digitais, EESC-USP.