编译原理第二次实验

171250013 常卓

源文件目录截图

产生式资源文件截图

U 1	P -> C{F}	20	E'' -> = NUM
2	C -> M CLASS ID	21	Ε'' -> ε
3	C -> CLASS ID	22	E''' -> =E''''
4	F->MF	23	E''' -> > ID
5	F -> ε	24	E''' -> < ID
6	F -> T ID (B) {E}	25	E'''' -> NUM
7	M -> PUBLIC	26	E'''' -> ID E''''
8	M -> STATIC	27	E'''' -> +NUM
9	T -> VOID	28	Ε'''' -> ε
10	T -> STRING	29	E -> ID H
11	T -> INT	30	E -> T ID E'' ; E
12	B -> TB'	31	E -> FOR(E'; E'; E') { E } E
13	B' -> [] ID B''	32	Ε -> ε
14	B' -> ID B''	33	H -> E'''; E
15	B'' -> ,B	34	H -> F'' (B'); E
16	Β" -> ε	35	F' -> ID F''
17	E' -> T ID E"	36	F'' -> .F'
18	E' -> ID E'''	37	F'' -> ε
19	Ε' -> ε	38	B' -> LITERAL

输入文件/流内容截图

```
<NUM, 100>
<SEMICOLON>
1
2
3
     <BRACKET, LCU> 22 <BRACKET, LRO>
                                       37 <BRACKET, RRO>
                        <ID, i>
    <PUBLIC> 23
<STATIC> 24
5
                                             <BRACKET, LCU>
                                      38
6
                  25
                                             <ID, System>
                                      39
    7
                         <ASSIGN OP>
                                      40
                                             <DOT>
8
                                      41
                                             <ID, out>
9
                         <SEMICOLON>
                                       42
                                             <DOT>
    10
                                             <ID, println>
                                      43
44
                                       43
11
                                             <BRACKET, LRO>
                                       45 <LITERAL, Hello World!>
                  31 <SEMICOLON>
     <ID, args>
13
                                       46 <BRACKET, RRO>
     <BRACKET, RRO>
<BRACKET, LCU>
14
                  32
                         <ID, i>
                                             <SEMICOLON>
                                       47
                  33
15
                         <ASSIGN OP>
                                             <BRACKET, RCU>
                                       48
16
     <INT>
                         <ID, i>
<RELOP, ADD>
                   34
                                       49
17
     <ID, n>
                   35
                                             <BRACKET, RCU>
                                       50
    <ASSIGN OP>
18
                 36 <NUM, 1>
```

输出推导序列截图

```
1 P -> C { F }
                                                 T -> INT
                                                  E'' -> = NUM
                                           20
 2
       C -> M CLASS ID
                                                  E' -> ID E'''
                                           21
 3
       M -> PUBLIC
                                                  E''' -> < ID
       F -> M F
                                           22
                                                  E' -> ID E'''
      M -> PUBLIC
                                           23
 5
                                                  E''' -> = E''''
 6
       F -> M F
                                           24
                                                  E'''' -> ID E''''
                                           25
 7
      M -> STATIC
                                                  E'''' -> + NUM
      F -> T ID ( B ) { E }
                                           26
8
                                           27
                                                  E -> ID H
9
      T -> VOID
                                                  H -> F'' ( B' ); E
10
      B -> T B'
                                           28
                                                  F'' -> . F'
      T -> STRING
                                           29
11
                                                  F' -> ID F''
       B' -> [ ] ID B''
                                           30
12
       Β'' -> ε
                                                  F'' -> . F'
13
                                           31
                                                  F' -> ID F''
       E -> T ID E''; E
14
                                           32
                                                  F'' -> ε
       T -> INT
15
                                           33
      E'' -> = NUM
                                                  B' -> LITERAL
16
                                           34
      E -> FOR ( E' ; E' ; E' ) { E } E 35
E' -> T ID E'' 36
17
                                                  E -> ε
```

正文

1. Motivation/Aim

通过构造语法分析程序、输出推导序列、对程序的语法正确性进行验证。

2. Content description

本实验使用 LL(1)分析法对第一次实验产生的 TOKEN 序列进行分析验证,最终输出推导序列。首先自定义出程序的产生式,然后对产生式中的最大公共左因子进行提取,消除左递归后求出非终结符的 First,求产生空的生成式求 Follow,填表,根据产生的预测分析表进行推导,得到推导序列。

3. Description of important Data Structures

使用二维数组保存预测分析表,使用 map 保存不同非终结符和终结符对应的序号

4. Description of core Algorithms

a. 首先定义出产生式(其中 P 代表程序, C 代表类定义, F 代表函数, E 代表表达式, B 代表参数序列, T 代表类型)

b. 消除左递归 & 提取最大公共左因子

c. 求出 First、Follow

```
构《建预测转换表PPT U1CLASS]
 First (P) = First (C) = First (M) = (PUBLIC
 = { PUBLIC, STATIC, CLASS }
First (F) = First (M) U First (1)
 = 1 PUBLIC, STANTIC VOID, INT, STRING }
 First (M) = {PUBLIC, STAT STATIC}
 First (]) = { VOID, INT, STRING }
 First (B) = First (T)
 First (B') = { [ ID]
 First (B") = 1. ]
 First (E') = First (T) U (ID)={VOID, INT, STRING, ID}
 First (E") = {NUM} (= }
 First (E") = [=, <, >]
 First (E"") = { NUM, ID}
First (E"") = {+}
First (E) = First (E') * U First (F') U (FOR)
         = (PUBLIC, STATIC, VOID, INT, STRING, ID, FOR
First (F') = ID
```

```
First (F") = [.]

First (B') = [ID. LITERAL]

Follow (B*) = Follow (B') = Follow (B). *U[)] = []

Follow (E") = Follow (E') = [].)

Follow (E") = Follow (E"") = Follow (E") = Follow (E")

= [].) ].

Follow (E') = [].) ]

Follow (E) = [].] First(F) U[].
```

d. 构造预测分析表 PPT (此处对产生式进行了拆分和标号,产生式与标号的对应如下)

	PUBLIC	STATIC	CLASS	VOID	INT	STRING	[ID	,	NUM	=	<	>	+	FOR		LITERAL	()	;	}	\$
Р	1	1	1																			
С	2	2	3																			
F	4	4		6	6	6															5	,
F'								35														
М	7	8																				
Т				9	11	10																
В				12	12	12																
B'							13	14									39					
В''									15										16			
Ε				30	30	30		29							31						32	2
E'				17	17	17		18											19	19		
Ε"											20								21	21		
E'''											22	24	23									
E''''								26		25												
E'''''														27					28	28		
F"								35								36		37				
Н								34			33	33	33			34						

U 1	P -> C{F}	20	E'' -> = NUM
2	C -> M CLASS ID	21	Ε'' -> ε
3	C -> CLASS ID	22	E''' -> =E''''
4	F -> MF	23	E''' -> > ID
5	F -> ε	24	E''' -> < ID
6	F -> T ID (B) {E}	25	E'''' -> NUM
7	M -> PUBLIC	26	E'''' -> ID E''''
8	M -> STATIC	27	E'''' -> +NUM
9	T -> VOID	28	Ε'''' -> ε
10	T -> STRING	29	E -> ID H
11	T -> INT	30	E -> T ID E" ; E
12	B -> TB'	31	E -> FOR(E'; E'; E') { E } E
13	B' -> [] ID B''	32	Ε -> ε
14	B' -> ID B''	33	H -> E'''; E
15	B'' -> ,B	34	H -> F'' (B'); E
16	Β" -> ε	35	F' -> ID F''
17	E' -> T ID E''	36	F'' -> .F'
18	E' -> ID E'''	37	F'' -> ε
19	Ε' -> ε	38	B' -> LITERAL

e. 根据 PPT 编写程序,得到推导序列

5. Use cases on running

输入 TOKEN 序列

1	<public></public>	19	<num, 100=""></num,>		
2	<class></class>	20	<semicolon></semicolon>		
3	<id, input=""></id,>	21	<for></for>		
4	<bracket, lcu=""></bracket,>	22	<bracket, lro=""></bracket,>	37	<bracket, rro=""></bracket,>
5	<public></public>	23	<int></int>	38	<bracket, lcu=""></bracket,>
6	<static></static>	24	<id, i=""></id,>	39	<id, system=""></id,>
7	<void></void>	25	<assign_op></assign_op>	40	<dot></dot>
8	<id, main=""></id,>	26	<num, 0=""></num,>	41	<id, out=""></id,>
9	<pre></pre>				
10	<string></string>	28	<id, i=""></id,>	42	<dot></dot>
11	<bracket, lsq=""></bracket,>	29	<relop, lt=""></relop,>	43	<id, println=""></id,>
12	<bracket, rsq=""></bracket,>	30	<id, n=""></id,>	44	<bracket, lro=""></bracket,>
13	<id, args=""></id,>	31	<semicolon></semicolon>	45	<pre><literal, hello="" world!=""></literal,></pre>
14	<bracket, rro=""></bracket,>	32	<id, i=""></id,>	46	<bracket, rro=""></bracket,>
15	<bracket, lcu=""></bracket,>	33	<assign op=""></assign>	47	<semicolon></semicolon>
16	<int></int>	34	<id, i=""></id,>	48	<bracket, rcu=""></bracket,>
17	<id, n=""></id,>	35	<relop, add=""></relop,>	49	<bracket, rcu=""></bracket,>
18	<assign_op></assign_op>	36	<num, 1=""></num,>	50	<bracket, rcu=""></bracket,>

输出的推导序列

```
1 P -> C { F }
                                          20
                                                 E'' -> = NUM
       C -> M CLASS ID
                                                 E' -> ID E'''
 3
     M -> PUBLIC
                                          21
                                                 E''' -> < ID
       F -> M F
                                          22
                                                 E' -> ID E'''
                                          23
 5
       M -> PUBLIC
       F -> M F
                                          24
 6
                                                       -> ID E'''
     M -> STATIC
                                          25
 7
                                                 E'''' -> + NUM
      F -> T ID ( B ) { E }
                                          26
8
                                          27
 9
      T -> VOID
                                                 E -> ID H
                                                 H -> F'' (B'); E
10
       B -> T B'
                                          28
                                                 F'' -> . F'
       T -> STRING
11
                                          29
       B' -> [ ] ID B''
                                          30
12
       Β'' -> ε
                                                 F'' -> . F'
13
                                          31
                                                 F' -> ID F''
       E -> T ID E'' ; E
                                          32
14
       T -> INT
15
                                          33
       E'' -> = NUM
                                                 B' -> LITERAL
16
                                          34
       E -> FOR ( E' ; E' ; E' ) { E } E 35
17
     E' -> T ID E''
```

6. 错误处理

在遇到 1.没有记录的 TOKEN, 2.查表为空, 3.指针指向终结符和栈顶的终结符不同, 三种情况时, 程序会打印出报错。

7. Problems occurred and related solutions

本次实验遇到的最大的问题在于如何用数据结构保存 PPT 表,并把产生式右边的非终结符/终结符从右向左压入栈内。最开始的想法是使用一个二维矩阵,每个项都是一个列表,保存待压入栈的非终结符/终结符,但由于 PPT 表是一个稀疏的矩阵,而产生式的右边也大小不定,所以这个方法会浪费大量内存,初始化也很困难。最后采用了两种数据结构共同解决了这个问题,首先用一个整型的矩阵保存产生式的编号,然后用 map 保存编号到产生式的对应关系,最后分析产生式字符串,逐个压栈。

另一个问题是需不需要区分非终结符和终结符,因为都需要压栈,所以应该是同一种数据类型,但是两种的处理方法完全不同,需要加以区分。最后使用了同一个类来表示,但用一个布尔值来区分两种,并用两个不同的 map 来索引。

8. My feelings and comments

通过这次实验,我深入了解了 LL(1)的分析过程,并且尝试了自己构造一组可以分析完整程序的生成式。由于真正的程序语法比较复杂,所以我简化了可能的程序结构,在适用于本程序的情况下使之尽可能适用于更多的程序。另一方面,在进行提取最大公共左因子时,由于没有深入分析每一个生成式,所以最后出现了遗漏的情况,在编程结束后报错才发现,然后进行了修改。

感想就是分析真正的程序的工作量还是很大的,即使是一个简化的版本也需要超出预期 的工作。