Sorting

- **Sorting** is a process that organizes a collection of data into either ascending or descending order.
- Any computer output is generally arranged in some sorted order so that it can be interpreted.
- Sorting also has indirect uses. An initial sort of the data can significantly enhance the performance of an algorithm.
- Majority of programming projects use a sort somewhere, and in many cases, the sorting cost determines the running time.

The Sorting Problem

Input:

- A sequence of n numbers a_1, a_2, \ldots, a_n

Output:

– A permutation (reordering) a_1', a_2', \ldots, a_n' of the input sequence such that $a_1' \le a_2' \le \cdots \le a_n'$

Stable sort algorithms

- A stable sort keeps equal elements in the same order
- This may matter when you are sorting data according to some characteristic
- Example: sorting students by test scores

Ann	98	Ann	98
Bob	90	Joe	98
Dan	75	Bob	90
Joe	98	Sam	90
Pat	86	Pat	86
Sam	90	Zöe	86
Zöe	86	Dan	75
original array		stab sorte	•

Why Study Sorting Algorithms?

- There are a variety of situations that we can encounter
 - Do we have randomly ordered elements?
 - Are all elements distinct?
 - How large is the set of elements to be ordered?
 - Need guaranteed performance?
- Various algorithms are better suited to some of these situations

Some Definitions

Internal Sort

 The data to be sorted is all stored in the computer's main memory.

External Sort

 Some of the data to be sorted might be stored in some external, slower, device.

In Place Sort

 The amount of extra space required to sort the data is constant with the input size.

- Idea: like sorting a hand of playing cards
 - Start with an empty left hand and the cards facing down on the table.

- Remove one card at a time from the table, and insert it into the correct position in the left hand
 - compare it with each of the cards already in the hand, from right to left
- The cards held in the left hand are sorted
 - these cards were originally the top cards of the pile on the table

To insert 12, we need to make room for it by moving first 36 and then 24.

5 2 4 6 1

at each iteration, the array is divided in two sub-arrays:

INSERTION-SORT

for
$$j \leftarrow 2$$
 to n
do key $\leftarrow A[j]$

key

Insert $A[j]$ into the sorted sequence $A[1..j-1]$
 $i \leftarrow j-1$

while $i > 0$ and $A[i] > key$

do $A[i+1] \leftarrow A[i]$
 $i \leftarrow i-1$
 $A[i+1] \leftarrow key$

Insertion sort – sorts the elements in place

13

Analysis of Insertion Sort

t_i: # of times the while statement is executed at iteration j

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} \left(t_j - 1\right) + c_7 \sum_{j=2}^{n} \left(t_j - 1\right) + c_8 (n-1)$$

14

Best Case Analysis

- The array is already sorted "while i > 0 and A[i] > key"
 - $A[i] \le \text{key upon the first time the while loop test is run}$ (when i = j - 1)
 - $t_{j} = 1$
- $T(n) = c_1 n + c_2 (n 1) + c_4 (n 1) + c_5 (n 1) + c_8 (n 1)$ = $(c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$ = an - b = O(n)

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Worst Case Analysis

- The <u>array is in reverse sorted order</u> order while i > 0 and A[i] > key
 - Always A[i] > key in while loop test
 - Have to compare key with all elements to the left of the j-th position \Rightarrow compare with j-1 elements \Rightarrow t_j = j

using
$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2} \Rightarrow \sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 \Rightarrow \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$
 we have:
$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right) + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1)$$

 $=an^2+bn+c$ a quadratic function of n

• $T(n) = O(n^2)$ order of growth in n^2

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} \left(t_j - 1\right) + c_7 \sum_{j=2}^{n} \left(t_j - 1\right) + c_8 (n-1)$$

Comparisons and Exchanges in Insertion Sort

INSERTION-SORT(A)	cost	times
for j ← 2 to n	c_{1}	n
do key ← A[j]	c_2	n-1
Insert A[j] into the sorted sequence A[1 j -	1] 0	n-1
$i \leftarrow j - 1$ $\approx n^2/2$ comparisons	C ₄	n-1
while i > 0 and A[i] > key	c ₅	$\sum\nolimits_{j=2}^n t_j$
do A[i + 1] ← A[i]	c ₆	$\sum_{j=2}^{n} (t_j - 1)$
$i \leftarrow i - 1 \approx n^2/2$ exchanges	C ₇	$\sum\nolimits_{j=2}^{n}(t_{j}-1)$
A[i + 1] ← key	C ₈	n-1

```
public void insertionSort(int[] list)
     int temp, j;
     for(int j = 1; j < list.length; j++)</pre>
          temp = list[j];
          i = j-1;
          while (i > -1 \&\& temp < list[i])
          { // swap elements
                list[i+1] = list[i];
                i--;
          list[i + 1] = temp;
```

Insertion Sort - Summary

- Advantages
 - Good running time for "almost sorted" arrays O(n)
- Disadvantages
 - O(n²) running time in worst and average case
 - $-\approx n^2/2$ comparisons and exchanges

Comparison of Sorting Algorithms

Sorting Algorithm	Best Case time	Worst Case time	Avg. Case time
Insertion Sort	$\Theta(n)$	$\Theta(n^2)$	$\Theta(n^2)$

Internal Sort Yes
External Sort No
Stable Sort Yes
In Place Yes

Bubble Sort

- Idea:
 - Repeatedly pass through the array
 - Swaps adjacent elements that are out of order

Easier to implement, but slower than Insertion sort

Example

Bubble Sort

```
Alg.: BUBBLESORT(A)

for i \leftarrow 1 to length[A]

do for j \leftarrow length[A] downto i + 1

do if A[j] < A[j - 1]

then exchange A[j] \leftrightarrow A[j - 1]

i \longrightarrow [8]{4} 6 9 2 3 1
i = 1
```

Bubble-Sort Running Time

Alg.: BUBBLESORT(A)

for
$$i \leftarrow 1$$
 to length[A]

do for $j \leftarrow$ length[A] downto $i + 1$

Comparisons: $\approx n^2/2$ do if A[j] < A[j-1]

Exchanges: $\approx n^2/2$ then exchange A[j] \leftrightarrow A[j-1]

C4

T(n) = $c_1(n+1) + c_2 \sum_{i=1}^{n} (n-i+1) + c_3 \sum_{i=1}^{n} (n-i) + c_4 \sum_{i=1}^{n} (n-i)$
 $= O(n) + (c_2 + c_2 + c_4) \sum_{i=1}^{n} (n-i)$

where $\sum_{i=1}^{n} (n-i) = \sum_{i=1}^{n} n - \sum_{i=1}^{n} i = n^2 - \frac{n(n+1)}{2} = \frac{n^2}{2} - \frac{n}{2}$

Thus, $T(n) = O(n^2)$

Comparison of Sorting Algorithms

Sorting Algorithm	Best Case time	Worst Case time	Avg. Case time
Insertion Sort	Θ(n)	$\Theta(n^2)$	$\Theta(n^2)$
Bubble Sort	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$

Internal Sort Yes
External Sort No
Stable Sort Yes
In Place Yes

Selection Sort

Idea:

- Find the smallest element in the array
- Exchange it with the element in the first position
- Find the second smallest element and exchange it with the element in the second position
- Continue until the array is sorted

Disadvantage:

 Running time depends only slightly on the amount of order in the file

Selection Sort: Example

The Brute Force Method: Selection Sort

Selection Sort: Algorithm

Algorithm:

- For j=1 .. last
- find smallest element M in subarray j .. last
- if M != element at j: swap elements

Selection Sort

```
Alg.: SELECTION-SORT(A)
   n \leftarrow length[A]
                                                   6
  for j \leftarrow 1 to n - 1
       do smallest \leftarrow j
            for i \leftarrow j + 1 to n
                  do if A[i] < A[smallest]
                         then smallest \leftarrow i
            exchange A[j] \leftrightarrow A[smallest]
```

Analysis of Selection Sort

```
Alg.: SELECTION-SORT(A)
                                                                              times
                                                                   cost
      n \leftarrow length[A]
                                                                     C_1
     for j \leftarrow 1 to n - 1
           do smallest \leftarrow i
                                                                                n-1
                                                                     C_3
for i \leftarrow j + 1 to n comparisons
                                                                     C<sub>4</sub> \sum_{i=1}^{n-1} (n-j+1)
                        do if A[i] < A[smallest]
                                                                     C_5 \sum_{j=1}^{n-1} (n-j)
≈n
                                  then smallest \leftarrow i
                                                                     C_6 \sum_{j=1}^{n-1} (n-j)
exchanges
                  exchange A[j] \leftrightarrow A[smallest] c_7
                                                                                n-1
 T(n) = c_1 + c_2 n + c_3 (n-1) + c_4 \sum_{j=1}^{n-1} (n-j+1) + c_5 \sum_{j=1}^{n-1} (n-j) + c_6 \sum_{j=2}^{n-1} (n-j) + c_7 (n-1) = \Theta(n^2)
```

Analysis of Selection Sort

Number of comparisons:

- (n-1) + (n-2) + ... + 3 + 2 + 1 =
- n * (n-1)/2 =
- $(n^2 n)/2$
- \rightarrow O(n²)

Number of exchanges (worst case):

- n − 1
- \rightarrow O(n)

Overall (worst case) $O(n) + O(n^2) = O(n^2)$ ('quadratic sort')

```
public static void selectionSort(int[] list)
      int min;
      int temp;
      for (int j=1; i<=list.length -1; j++)
            min = j;
            for(int i=j+1; i <= list.length; i++)</pre>
                  if( list[i] < list[min] )</pre>
                         min = i;
            temp = list[j];
            list[j] = list[min];
            list[min] = temp;
```

Comparison of Sorting Algorithms

Sorting Algorithm	Best Case time	Worst Case time	Avg. Case time
Insertion Sort	Θ(n)	$\Theta(n^2)$	$\Theta(n^2)$
Bubble Sort	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$
Selection Sort	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$

Internal Sort Yes
External Sort No
Stable Sort No
In Place Yes

Can be made stable?