Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-228. Вариант 13

- 1. Пусть $z=\frac{3\sqrt{3}}{2}+\frac{3i}{2}$. Вычислить значение $\sqrt[7]{z^2}$, для которого число $\frac{\sqrt[7]{z^2}}{2-2\sqrt{3}i}$ имеет аргумент $\frac{32\pi}{21}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(2+13i) + y(-1+3i) = 110 - 150i \\ x(7-i) + y(10-5i) = -178 + 29i \end{cases}$$

- 3. Найти корни многочлена $-3x^6 + 27x^5 72x^4 138x^3 + 1416x^2 4920x + 7200$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = 4 + 2i$, $x_2 = 1 3i$, $x_3 = 3$.
- 4. Даны 3 комплексных числа: -1-15i, -2+10i, -2-20i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1=1+\sqrt{3}i, z_2=-2$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+6+5i| < 1\\ |arg(z-3i)| < \frac{\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (5, 3, 10), b = (6, -8, -3), c = (-1, 1, 0). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-5,8,-9) и плоскость P:-20x+42y-38z+1026=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-3,-11,10), $M_1(1,-7,0)$, $M_2(-4,-2,0)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 2x - 13y - 9z + 240 = 0 \\ 11x - 20y + 2z + 84 = 0 \end{cases} \qquad L_2: \begin{cases} -9x + 7y - 11z - 1099 = 0 \\ -9x + 18y - 10z - 1513 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.