\mathcal{S}^{\dagger} and Orthoposets

Larry Moss

Indiana University

North American Summer School on Logic, Language, and Information June 23-27, 2025

\mathcal{S}^{\dagger} : SYLLOGISTIC LOGIC WITH COMPLEMENTED NOUNS

We formulate a language S^{\dagger} is syllogistic logic with noun-level negation (i.e., complements on the nouns).

In the syntax, we again begin with a set N of nouns.

Let

Lit =
$$N \cup \{\overline{p} : p \in N\}$$
.

In other words, we have two copies of N, using the "overline" $\bar{}$ to distinguish the copies.

We call the elements of this set literals.

Once again, the elements of **Lit** are either nouns p, q, etc., or complemented nouns \overline{p} , \overline{q} ,

IMPORTANT CHOICE

We always assume that p and \overline{p} are the same.

Sentences of \mathcal{S}^{\dagger}

We consider sentences

All p are q and Some p are q.

Here p and q are any literals.

They could be nouns, they could have the "bar" as in \overline{p} .

We call this language \mathcal{S}^{\dagger} .

We again use letters like φ to denote sentences.

Sentences of \mathcal{S}^{\dagger}

We consider sentences

All p are q and Some p are q.

Here p and q are any literals.

They could be nouns, they could have the "bar" as in \overline{p} .

We call this language S^{\dagger} .

We again use letters like φ to denote sentences.

What about No x are y?

It is an abbreviation for All x are \overline{y} !

We consider sentences

All p are q and Some p are q.

Here p and q are any literals.

They could be nouns, they could have the "bar" as in \overline{p} .

We call this language S^{\dagger} .

We again use letters like φ to denote sentences.

 \mathcal{S}^{\dagger} goes beyond standard syllogistic logic:

All \overline{x} are \overline{y} Some \overline{x} are y A model \mathcal{M} is a set M together with a function

$$\llbracket \ \rrbracket : \mathsf{Lit} \to \mathcal{P}(M)$$

subject to the requirement that

$$\llbracket \overline{p} \rrbracket = M \setminus \llbracket p \rrbracket$$

for all p.

(In words, we have subsets $[\![p]\!]\subseteq M$ for each literal p, satisfying the requirement above.)

This gives a model $\mathcal{M} = (M, [\![\]\!])$.

Then we define

$$\mathcal{M} \models \mathsf{All}\ p \ \mathsf{are}\ q \qquad \qquad \mathsf{iff} \qquad \llbracket p \rrbracket \subseteq \llbracket q \rrbracket \\ \mathcal{M} \models \mathsf{Some}\ p \ \mathsf{are}\ q \qquad \qquad \mathsf{iff} \qquad \llbracket p \rrbracket \cap \llbracket q \rrbracket \neq \emptyset$$

And it follows that

$$\mathcal{M} \models \mathsf{No} \; p \; \mathsf{are} \; q \qquad \mathsf{iff} \qquad \llbracket p \rrbracket \cap \llbracket q \rrbracket = \emptyset$$

We also have derived notions such as $\Gamma \models \varphi$.

CHALLENGE, FOR LATER

Let

 $\Gamma = \{ All \ b \ are \ a, All \ \overline{b} \ are \ a, All \ \overline{c} \ are \ b, All \ c \ are \ \overline{b}, All \ c \ are \ d \}.$

It is not true that

 $\Gamma \models \mathsf{All}\ b \ \mathsf{are}\ d.$

Find a model $\mathcal{M} \models \Gamma$ where $\llbracket b \rrbracket \not\subseteq \llbracket d \rrbracket$.

The details of the completeness proof for our logic will give us a way of automatically solving problems like this!

THE LOGICAL SYSTEM S[†]

In this system, the letters p, q, n, etc. are literals

 $\frac{\text{All } p \text{ are } p}{\text{All } p \text{ are } p} \text{ } \text{AXIOM} \qquad \frac{\text{Some } p \text{ are } q}{\text{Some } p \text{ are } p} \text{ } \text{SOME}_1 \qquad \frac{\text{Some } p \text{ are } q}{\text{Some } q \text{ are } p} \text{ } \text{SOME}_2$ $\frac{\text{All } p \text{ are } n \quad \text{All } n \text{ are } q}{\text{All } p \text{ are } q} \text{ } \text{BARBARA} \qquad \frac{\text{All } q \text{ are } n \quad \text{Some } p \text{ are } q}{\text{Some } p \text{ are } n} \text{ } \text{DARII}$ $[\varphi]$ \vdots \vdots $\frac{\perp}{\varphi} \text{ } \text{RAA}$

WHAT IS PROOF BY CONTRADICTION?

The current logic in has something we have not seen so far, the rule (RAA).

This gives us the ability to do proof by contradiction.

WHAT IS PROOF BY CONTRADICTION?

The sentence Some r are \overline{r} is a contradiction.

We'll indicate contradictions with the symbol \perp .

If we have a node in a proof tree that's a contradiction, we "take back" any assumption that was made "toward a contradiction."

In fact, our taking this back entitles us to withdraw that assumption and indeed to conclude the opposite.

So we put brackets around the withdrawn assumption, and we add a new root to the tree:

$$\frac{\text{All } p \text{ are } q \quad \text{All } q \text{ are } \overline{r}}{\text{All } p \text{ are } \overline{r}} \xrightarrow{\text{BARBARA}} \frac{\text{Some } \overline{p} \text{ are } r}{\text{Some } r \text{ are } \overline{p}} \xrightarrow{\text{DARII}}$$

SEMANTIC NEGATIONS (OPPOSITE SENTENCES)

φ	$\mid \overline{arphi} \mid$
All x are y	Some x are \overline{y}
Some x are y	All x are \overline{y}

Two facts

$$\mathcal{M}\not\models\varphi\quad\text{iff}\quad\mathcal{M}\models\overline{\varphi}$$

$$\overline{\overline{\varphi}} = \varphi$$
 for all φ .

RAA: REDUCTIO AD ABSURDUM

REDUCTION TO ABSURDIDTY

The sentences of the form Some p are \overline{p} are called contradictions in \mathcal{S}^{\dagger} .

We use \perp ("bottom") as a symbol for any of these contradictions.

The rule (RAA) tells us that if we can prove a contradiction with some tree \mathcal{T} ,

then we may take any sentence φ ,

withdraw some or all of the occurrences of φ in the leaves of our derivation by putting brackets around them,

and then using the rule (RAA) to infer \overline{arphi} at the root.

RAA: REDUCTIO AD ABSURDUM

REDUCTION TO ABSURDIDTY

We obtain a new tree \mathcal{T}^+ .

We allow the case when φ does not actually occur in the leaves of the tree $\mathcal{T}.$

So in this case, \mathcal{T} and \mathcal{T}^+ would have the same set of non-withdrawn leaves.

We write $\Gamma \vdash \varphi$ if there is a proof tree \mathcal{T} whose root is φ and all of whose non-withdrawn leaves belong to Γ .

A PROOF USING RAA

No p are $p \vdash All p$ are q

A PROOF USING RAA

No p are $p \vdash All p$ are q

$$\frac{\text{All } p \text{ are } \overline{p}}{\text{Some } p \text{ are } \overline{p}} \xrightarrow{\text{SOME}} \frac{\text{SOME } p \text{ are } p}{\text{All } p \text{ are } q} \xrightarrow{\text{RAA}} \text{DARII}$$

Consistent and Inconsistent sets

We have the possibility that a set Γ is inconsistent.

This means that $\Gamma \vdash Some \ a$ are b and also $\Gamma \vdash No \ a$ are b

Equivalently: $\Gamma \vdash \varphi$ for all φ .

Note that an inconsistent Γ is unsatisfiable: it has no models. (Is this soundness or completeness?)

Hence if Γ is inconsistent, then $\Gamma \models \varphi$ for all φ .

ORTHOPOSETS

At this point, we take a temporary detour into a topic related to abstract algebra.

Actually, what we are going to do would be called algebraic logic.

DEFINITION

An orthoposet is a tuple $\mathcal{P} = (P, \leq, 0, ^-)$ such that

- **1** (P, \leq) is a partial order: \leq is a reflexive, transitive, and antisymmetric relation on the set P.
- 2 minimum property : $0 \le p$ for all $p \in P$.
- **3** antitone property: if $x \le y$, then $\overline{y} \le \overline{x}$.
- **1** involutive property: $\overline{\overline{x}} = x$.
- **6** complement-order property: If $x \le y$ and $x \le \overline{y}$, then x = 0.

The Chinese Lantern M_2

I APOLOGIZE FOR THIS NAME

What we mean here is that the poset is the set of six points above, with the order as shown.

The 0 is at the bottom.

We define the operation $\bar{0}$ by: $\bar{0} = 1$, $\bar{1} = 0$, $\bar{x}_1 = x_2$, $\bar{x}_2 = x_1$, $\bar{x}_3 = x_4$, and $\bar{x}_4 = x_3$.

You might like to verify the conditions the definition of an orthoposet.

EXAMPLE

For all sets X we have an orthoposet

$$(\mathcal{P}(X),\subseteq,\emptyset,\overline{\ },)$$

where

 $\mathcal{P}(X)$, the power set of X is the set of all subsets of X,

 \leq is the inclusion relation \subseteq ,

0 is the empty set \emptyset ,

and $\overline{A} = X \setminus A$ for all subsets A of p.

A POSET WHICH CANNOT BE MADE INTO AN ORTHOPOSET

ORTHOPOSETS FROM THE LOGIC

Let Γ be any set of sentences in the fragment.

Let Lit be the set of literals

We already know the preorder <:

$$x < y$$
 iff $\Gamma \vdash All \times are y$.

(so Some plays no role)

We have an induced equivalence relation \equiv .

That is, we define $y \equiv z$ to mean that $z \le y \le z$ and we take \mathbf{Lit}_{Γ} to be the quotient \mathbf{Lit}/\equiv .

If there is some x such that $x \leq \overline{x}$, then set 0 to be [x].

We finally define $\overline{[x]} = [\overline{x}]$.

If there is no x such that $x \leq \overline{x}$ we add fresh 0 and 1 to **Lit**/ \equiv .

We have an orthoposet which we call \mathbb{P}_{Γ} .

ORTHOPOSETS FROM LOGIC, CONCRETELY

Let

$$\Gamma = \{ All \ b \ are \ a, All \ \overline{b} \ are \ a, All \ \overline{c} \ are \ b, All \ c \ are \ \overline{b}, All \ c \ are \ d \}$$

Then (after we do a lot of work proving things from Γ) here are the equivalence classes under \equiv , where

$$x \equiv y$$
 iff $x \le y$ and $y \le x$

$$[a] = \{a\} \qquad [\overline{a}] = \{\overline{a}\} \qquad [a] = 1$$

$$[b] = \{b, \overline{c}\} \qquad [\overline{b}] = \{\overline{b}, c\} \qquad [\overline{c}] = [b] \qquad [d]$$

$$[c] = \{\overline{b}, c\} \qquad [\overline{c}] = \{b, \overline{c}\} \qquad [\overline{d}]$$

$$[d] = \{d\} \qquad [\overline{d}] = \{\overline{d}\}$$

Another example of an orthoposet \mathbb{P}_{Γ}

Let Γ be

$$\left\{\begin{array}{l} \mathsf{All}\ \overline{a}\ \mathsf{are}\ c,\\ \mathsf{All}\ b\ \mathsf{are}\ c,\\ \mathsf{All}\ c\ \mathsf{are}\ d,\\ \mathsf{All}\ c\ \mathsf{are}\ \overline{e} \end{array}\right\}$$

Try to draw the picture of this orthoposet. To start, the equivalence classes are all singletons (one-element sets):

$$[a] = \{a\}$$

$$[\overline{a}] = \{\overline{a}\}$$

$$[b] = \{b\}$$

$$[\overline{b}] = \{\overline{b}\}$$

$$[c] = \{c\}$$

$$[\overline{c}] = \{\overline{c}\}$$

$$[d] = \{d\}$$

$$[\overline{d}] = \{\overline{d}\}$$

$$[e] = \{e\}$$

$$[\overline{e}] = \{\overline{e}\}$$

And none of these serve as the 0.

More on this: the orthoposet \mathbb{P}_{Γ}

Γ again is

 $\left\{\begin{array}{l} \mathsf{AII}\ \overline{a}\ \mathsf{are}\ c,\\ \mathsf{AII}\ b\ \mathsf{are}\ c,\\ \mathsf{AII}\ c\ \mathsf{are}\ d,\\ \mathsf{AII}\ c\ \mathsf{are}\ \overline{e} \end{array}\right\}$

Note that we add a fresh 0 and 1, since none of the literals x has $x \le y$ for all y.

ANOTHER EXAMPLE OF AN ORTHOPOSET COMING FROM OUR LOGIC

Let's think about the following "nouns" related to ice cream.

V	favorite flavor of ice cream is vanilla
С	favorite flavor of ice cream is chocolate
5	favorite flavor of ice cream is strawberry
g	favorite flavor of ice cream is garbage-flavored
0	favorite is a flavor other than the four above
W	eats ice cream at least once a week

Another example of an orthoposet coming from our logic

Let's think about the following "nouns" related to ice cream.

V	favorite flavor of ice cream is vanilla	
С	favorite flavor of ice cream is chocolate	
5	favorite flavor of ice cream is strawberry	
g	favorite flavor of ice cream is garbage-flavored	
0	favorite is a flavor other than the four above	
W	eats ice cream at least once a week	

Let's make up a "random" set Γ .

All v are \overline{c}	All v are \overline{o}	All s are w
All s are \overline{c}	All c are \overline{o}	
All s are \overline{v}	All s are \overline{o}	
All g are \overline{g}	All g are \overline{o}	

This is our theory of ice cream flavors and eating habits.

NOW DRAW THE ORTHOPOSET

All v are \overline{c}

All v are \overline{o} All s are wAll s are \overline{c} All c are \overline{o} All s are \overline{v} All s are \overline{o} All g are \overline{g} All g are \overline{o}

STATES OF ORTHOPOSETS

A state of a orthoposet $P = (P, \leq, 0, \overline{\ })$ is a non-empty subset $S \subseteq P$ with the following properties:

UP-CLOSED If $x \in S$ and $x \le y$, then $y \in S$.

COMPLETE For all x, either $x \in S$ or $\overline{x} \in S$.

CONSISTENT For all x, S does not contain both x and \overline{x} .

Where the definition comes from

Let $M = \{1, 2, 3, 4, 5, 6, 7, 8\}$: the orange rectangle.

Let $[a] = \{1, 2, 3, 4, 5, 6\}$, in the black oval.

Let $\llbracket x \rrbracket = \{1, 4\}$, shown in the blue oval.

Let $\llbracket y \rrbracket = \{2,4\}$, in the red oval.

Let $[\![z]\!] = \{8\}$, in the green oval.

Let's take various points x and calculate $S_x = \{u : x \in \llbracket u \rrbracket \}$ as

u ranges over the literals(= nouns and complemented nouns)

$$S_1 = \{x, \overline{y}, \overline{z}, a\}.$$

 $S_2 = \{\overline{x}, y, \overline{z}, a\}.$
 $S_3 = \{\overline{x}, \overline{y}, \overline{z}, a\}.$

The idea of a state is that it should capture the properties of every set S_x .

Most important: each S_x contains exactly one of u or \overline{u}

STATES ARE SETS

Look back at the Chinese lantern.

There are four states here: the sets marked •, •, •, and •:

UP-CLOSED If $x \in S$ and $x \le y$, then $y \in S$.

COMPLETE For all x, either $x \in S$ or $\overline{x} \in S$.

CONSISTENT For all x, S does not contain both x and \overline{x} .

WHAT ARE THE STATES?

$$[a] = \{a\} \qquad [\overline{a}] = \{\overline{a}\}$$

$$[b] = \{b, \overline{c}\} \qquad [\overline{b}] = \{\overline{b}, c\} \qquad [\overline{c}] = \{c\} \qquad [\overline{d}] = \{d\} \qquad [\overline{d}] = \{\overline{d}\}$$

$$[\overline{c}] = [b]$$
 $[d]$ $[\overline{b}] = [c]$ $[\overline{a}] = 0$

UP-CLOSED If $x \in S$ and $x \le y$, then $y \in S$.

COMPLETE For all x, either $x \in S$ or $\overline{x} \in S$.

CONSISTENT For all x, S does not contain both x and \overline{x} .

WHAT ARE THE STATES?

It is not obvious, but there are exactly three states.

$$[a] = \{a\}$$

$$[\overline{a}] = \{\overline{a}\}$$

$$[b] = \{b, \overline{c}\}$$

$$[\overline{b}] = \{\overline{b}, c\}$$

$$[\overline{c}] = \{b, \overline{c}\}$$

$$[\overline{d}] = \{d\}$$

$$[\overline{d}] = \{\overline{d}\}$$

$$[\overline{a}] = 0$$

$$[a] = 1$$

$$[d] = [d]$$

$$[\overline{d}] = [c]$$

The three states are:

$$S = \{ [\overline{d}], [b], [a] \}, T = \{ [\overline{b}], [d], [a] \}, U = \{ [b], [d], [a] \}.$$

RETURN TO A PREVIOUS EXAMPLE

We saw this set Γ : $\{a, b, c, d, \overline{e}, 1\}$ $\{\overline{a}, \overline{b}, c, d, \overline{e}, 1\}$ $\{a, \overline{b}, \overline{c}, \overline{d}, e, 1\}$

The \mathcal{S}^{\dagger} canonical model of a set Γ

DEFINITION

Suppose that $\Gamma \subseteq \mathcal{S}^{\dagger}$.

The S^{\dagger} canonical model \mathcal{M}^* is defined as follows: Recall \mathbb{P}_{Γ} , the orthoposet defined from Γ .

Let M^* be $states(\mathbb{P}_{\Gamma})$, the set of states of \mathbb{P}_{Γ} .

We interpret nouns by

$$[\![u]\!] = \{S \in M^* : [u] \in S\}.$$

If \mathbb{P}_{Γ} doesn't use equivalence classes (only literals, not sets of them), then

$$\llbracket u \rrbracket = \{ S \in M^* : u \in S \}.$$

Example of $\llbracket u \rrbracket = \{ C \in M^* : [u] \in C \}$

Let

$$\Gamma = \{ All \ b \ are \ a, All \ \overline{b} \ are \ a, All \ \overline{c} \ are \ b, All \ c \ are \ \overline{b}, All \ c \ are \ d \}.$$

We have already seen the \mathbb{P}_{Γ} and the set of states on it.

$$S = \{ [\overline{d}], [b], [a] \}$$

$$[a] = 1$$

$$[\overline{c}] = [b]$$

$$[d]$$

$$[\overline{b}] = [c]$$

$$[a] = 0$$

$$M^* = \{S, T, U\}$$

$$[a] = \{S, T, U\}$$

$$[b] = \{S, U\}$$

$$[c] = \{T\}$$

$$[d] = \{T, U\}$$

Example of $\llbracket u \rrbracket = \{ C \in M^* : [u] \in C \}$

Let

 $\Gamma = \{ All \ b \ are \ a, All \ \overline{b} \ are \ a, All \ \overline{c} \ are \ b, All \ c \ are \ \overline{b}, All \ c \ are \ d \}.$

We have already seen the \mathbb{P}_Γ and the set of states on it.

$$S = \{ [\overline{d}], [b], [a] \}$$

$$T = \{ [\overline{b}], [d], [a] \}$$

$$U = \{ [b], [d], [a] \}$$

$$[\overline{d}]$$

$$[\overline{b}] = [c]$$

$$[a] = \{S, T, U\}$$

 $[b] = \{S, U\}$
 $[c] = \{T\}$

 $M^* = \{S, T, U\}$

What are $[\![\overline{a}]\!]$, $[\![\overline{b}]\!]$, $[\![\overline{c}]\!]$, and $[\![\overline{d}]\!]$?

They have to be the complement sets since this how the overall semantics of \mathcal{S}^{\dagger} works

Example of $\llbracket u \rrbracket = \{ C \in M^* : [u] \in C \}$

Let

$$\Gamma = \{ All \ b \ are \ a, All \ \overline{b} \ are \ a, All \ \overline{c} \ are \ b, All \ c \ are \ \overline{b}, All \ c \ are \ d \}.$$

We have already seen the \mathbb{P}_Γ and the set of states on it.

$$S = \{ [\overline{d}], [b], [a] \}$$

$$T = \{ [\overline{b}], [d], [a] \}$$

$$U = \{ [b], [d], [a] \}$$

$$[\overline{d}]$$

$$[\overline{b}] = [c]$$

$$M^* = \{S, T, U\}$$

$$[\![a]\!] = \{S, T, U\}$$

$$[\![b]\!] = \{S, U\}$$

$$[\![c]\!] = \{T\}$$

$$[\![d]\!] = \{T, U\}$$

$$[\![\overline{d}\!] = \{S\} \text{ Check that } \mathcal{M}^* \models \Gamma$$

ONE MORE EXAMPLE

We saw this set Γ:

$$\begin{cases}
All \ \overline{a} \ \text{are } c, \\
All \ b \ \text{are } c, \\
All \ c \ \text{are } d, \\
All \ c \ \text{are } \overline{e}
\end{cases}$$

We also saw the states of its canonical preorder:

$$\begin{array}{lll} S_1 &=& \{a,b,c,d,\overline{e},1\} \\ S_2 &=& \{\overline{a},\overline{b},c,d,\overline{e},1\} \\ S_3 &=& \{a,b,\overline{c},\overline{d},\overline{e},1\} \\ S_4 &=& \{a,\overline{b},\overline{c},d,e,1\} \\ S_5 &=& \{a,\overline{b},\overline{c},d,\overline{e},1\} \\ S_6 &=& \{a,\overline{b},\overline{c},\overline{d},\overline{e},1\} \\ S_7 &=& \{a,\overline{b},\overline{c},\overline{d},\overline{e},\overline{e},1\} \end{array}$$

So we get the \mathcal{S}^{\dagger} canonical model as $\mathcal{M}^*(\Gamma)$ by

$$\textit{M}^* = \{\textit{S}_1, \dots, \textit{S}_6\}$$

and

$$\begin{array}{lll} [\![a]\!] & = & \{S_1, S_4, S_5, S_6, S_7\} \\ [\![b]\!] & = & \{S_1, S_3\} \\ [\![c]\!] & = & \{S_1, S_2\} \\ [\![d]\!] & = & \{S_1, S_2, S_4, S_5\} \\ [\![e]\!] & = & \{S_4, S_6\} \end{array}$$

And we can again compute $[\![\overline{x}]\!]$ by taking complements, for each noun x.

An important fact on this model \mathcal{M}^*

The definition of the semantics is:

$$[\![x]\!] = \{S \in M^* : [x] \in S\}$$

This was for the basic nouns, which are not complemented.

This holds even when x is complemented

$$\llbracket \overline{x} \rrbracket = \{ S \in M^* : [\overline{x}] \in S \}$$

The reason: for a state S, $[x] \in S$ if and only if $\overline{[x]} \notin S$.

This is due to the requirements that states are complete and consistent.

And $\overline{[x]}$ in this orthoposet is exactly $[\overline{x}]$.

So we soose that: for a state S, $[x] \in S$ if and only if $[\overline{x}] \notin S$.

And

$$[\![\overline{x}]\!] = \overline{\{S \in M^* : [x] \in S\}}$$

= $\{S \in M^* : [x] \notin S\}$
= $\{S \in M^* : [\overline{x}] \in S\}$

A LEMMA FOR YOU TO TRY

Lemma

Let Γ be any set.

Then $\mathcal{M}^* \models \Gamma_{all}$.

A LEMMA FOR YOU TO TRY

Lemma

Let Γ be any set.

Then $\mathcal{M}^* \models \Gamma_{all}$.

Later: $\mathcal{M}^* \models \Gamma_{some}$.

This is for Γ consistent.

EXTENDIBLE SETS

DEFINITION

A subset $S \subseteq P$ is extendible if

for all $p, q \in S$, $p \not \leq \overline{q}$.

EXTENDIBLE SETS

DEFINITION

A subset $S \subseteq P$ is extendible if

for all $p, q \in S$, $p \not \leq \overline{q}$.

LEMMA

Let S be a set with just two elements, say $S = \{x, y\}$.

Then S is extendible if and only if $x \not \leq \overline{y}$.

EXTENDIBLE SETS ARE, WELL, EXTENDIBLE

LEMMA

Let $S \subseteq P$ be extendible: for all $p, q \in S$, $p \not \leq \overline{q}$.

Then for all $x \in P$, either $S \cup \{x\}$ or $S \cup \{\overline{x}\}$ is again extendible.

EXTENDIBLE SETS EXTEND TO STATES

LEMMA

For a subset S_0 of an orthoposet $P = (P, \leq, 0, ^-)$, the following are equivalent:

- **1** S_0 is a subset of a state S in P.
- \bigcirc S_0 is extendible.

EXTENDIBLE SETS EXTEND TO STATES

This is "Lindenbaum's Lemma"

Example

Extend $\{a, b\}$ to a state.

We list our elements in a sequence any way we like. For example

$$a \overline{a} b \overline{b} c \overline{c} d \overline{d} e \overline{e} 0 1$$

Go through them one at a time, either adding x or \overline{x} : whichever preserves extendibility.

EXTENDIBLE SETS EXTEND TO STATES

This is "Lindenbaum's Lemma"

EXAMPLE

Extend $\{a, b\}$ to a state.

We list our elements in a sequence any way we like. For example

$$a \overline{a} b \overline{b} c \overline{c} d \overline{d} e \overline{e} 0 1$$

Go through them one at a time, either adding x or \overline{x} : whichever preserves extendibility.

You get $\{a, b, c, d, \overline{e}, 1\}$.

Note that the order of our listing makes a difference.

The \mathcal{S}^{\dagger} canonical model (review)

<u>De</u>finition

Let \mathbb{P}_{Γ} be the orthoposet for Γ .

Let $M^* = states(\mathbb{P}_{\Gamma})$.

The interpretation function is given by

$$\llbracket u \rrbracket = \{ \mathcal{S} \in M^* : [u] \in \mathcal{S} \}$$

LEMMA

$$\mathcal{M}^* \models \Gamma_{all}$$

The \mathcal{S}^{\dagger} canonical model

DEFINITION

 Γ is inconsistent if $\Gamma \vdash \bot$.

(That is, there is a proof tree over Γ whose root is a contradiction like Some x are \overline{x} .)

 Γ is consistent if it is not inconsistent.

Our next result

If Γ is consistent, then $\mathcal{M}^* \models \Gamma_{some}$

ON CONSISTENT AND SATISFIABLE SETS

DEFINITION

Γ is satisfiable if it has a model.

LEMMA

If Γ is satisfiable, then Γ is consistent.

Proof.

We show the contrapositive: an inconsistent set cannot have a model.

Assume towards a contradiction that $\Gamma \vdash \bot$ and $\mathcal{M} \models \Gamma$.

By soundness, $\Gamma \models \bot$.

Since $\mathcal{M} \models \Gamma$, $\mathcal{M} \models \bot$.

But this is a contradiction – no model can satisfy a sentence like Some x are \overline{x} .

The \mathcal{S}^{\dagger} canonical model, finishing the story

LEMMA

Let Γ be consistent in S^{\dagger} .

Then $\mathcal{M}^* \models \Gamma$.

Another way to say it: every consistent set has a model.

Proof.

First, suppose that Γ contains All p are q.

We check that $\llbracket p \rrbracket \subseteq \llbracket q \rrbracket$.

$$\llbracket p \rrbracket = \{ S \in M^* : [p] \in M^* \}$$

 $\subseteq \{ S \in M^* : [q] \in M^* \}$ Why?? This is the key step!
 $= \llbracket q \rrbracket$

The \mathcal{S}^{\dagger} canonical model, finishing the story

LEMMA

Let Γ be consistent in S^{\dagger} .

Then $\mathcal{M}^* \models \Gamma$.

Another way to say it: every consistent set has a model.

Proof.

Second, suppose that Γ contains Some u are v.

Key point There is a state S such that $\{[u], [v]\} \subseteq S$.

If no state S has $\{[u],[v]\}\subseteq S,$ then $\{[u],[v]\}$ is not extendible. And so $u<\overline{v}.$

This means that $\Gamma \vdash All \ u \text{ are } \overline{v}$. Using (DARII) and (RAA), $\Gamma \vdash Some \ v \text{ are } \overline{v}$.

So we get a contradiction!

And now $S \in \llbracket u \rrbracket \cap \llbracket v \rrbracket$, so $\mathcal{M}^* \models \mathsf{Some}\ u$ are v.

ONE MORE LEMMA

LEMMA

If $\Gamma \cup \{\varphi\} \vdash \bot$, then $\Gamma \vdash \overline{\varphi}$.

If $\Gamma \not\vdash \varphi$, then $\Gamma \cup \{\overline{\varphi}\} \not\vdash \bot$.

Proof.

For the first one, this is exactly (RAA)!

We have a proof tree that ends in \bot , and the leaves are all in $\Gamma \cup \{\varphi\} \vdash \bot$.

So we can withdraw φ and infer $\overline{\varphi}$ thus:

LEMMA

If $\Gamma \cup \{\varphi\} \vdash \bot$, then $\Gamma \vdash \overline{\varphi}$.

If $\Gamma \not\vdash \varphi$, then $\Gamma \cup \{\overline{\varphi}\} \not\vdash \bot$.

Proof.

For the second part, let's fix φ and write the first part with $\overline{\varphi}$ instead of φ :

If $\Gamma \cup \{\overline{\varphi}\} \vdash \bot$, then $\Gamma \vdash \overline{\overline{\varphi}}$.

That is,

If $\Gamma \cup \{\overline{\varphi}\} \vdash \bot$, then $\Gamma \vdash \varphi$.

Now we take the contrapositive to get the first part.

Completeness:

If $\Gamma \not\vdash \varphi$, there is a model of Γ falsifying φ .

Here is the proof:

Assume that $\Gamma \not\vdash \varphi$.

By our last lemma, $\Gamma \cup \{\overline{\varphi}\}$ is consistent.

And we also proved that every consistent set has a model.

So, there is a model of Γ where $\overline{\varphi}$ is true and hence φ is false!

We did it!