TERMODINÁMICA

Examen Intersemestral

Nombre	Grupo

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Problema -1 (5 puntos)

En un cilindro horizontal aislado de 200 mm de diámetro, cerrado por un pistón situado a 200 mm de su base, se tienen 30 gramos de agua (gas ideal, M=18 kg/kmol), a una presión de 15bar. El pistón, también aislado, está inicialmente sujeto en su posición por unos pasadores, y el conjunto está en equilibrio.

Conectado al pistón por medio de un vástago rígido de diámetro despreciable hay un sistema de amortiguación, compuesto por un cilindro-pistón de 80 mm de diámetro, relleno con 5 gramos de gas nitrógeno (M=28 kg/kmol; Cv=0,7434 kJ/kg-K), inicialmente con el pistón a 600 mm de la base del cilindro (ver figura adjunta). Sus paredes se consideran diatermas, e inicialmente está también en equilibrio.

El ambiente se encuentra a 20°C y 94kPa.

En un momento dado, se liberan los pasadores del cilindro que contiene agua, y simultáneamente se quita el aislamiento de su base. Se deja evolucionar el sistema hasta que alcanza el equilibrio.

Calcular:

- a) Distancia que se desplaza hacia la derecha el pistón del cilindro que contiene agua
- b) Calor intercambiado por el conjunto de ambos cilindros

Tabla del agua como gas ideal

i abia dei agua como gas ideai				
T [°C]	u	h		
	[kJ/kmol]	[kJ/kmol]		
10	-244671	-242317		
20	-244417	-241980		
30	-244163	-241642		
40	-243909	-241305		
50	-243654	-240967		
60	-243399	-240630		
70	-243144	-240291		
80	-242889	-239953		
90	-242633	-239613		
100	-242376	-239274		
110	-242119	-238933		
120	-241861	-238592		
130	-241603	-238251		
140	-241343	-237908		
150	-241083	-237565		
160	-240822	-237220		
170	-240560	-236875		
180	-240297	-236529		
190	-240033	-236182		
200		-235834		
	-239768			
210	-239502	-235485		
220	-239235	-235135		
230	-238967	-234784		
240	-238698	-234432		
250	-238428	-234078		
260	-238157	-233724		
270	-237884	-233368		
280	-237610	-233011		
290	-237336	-232653		
300	-237060	-232294		
310	-236782	-231934		
320	-236504	-231572		
330	-236224	-231210		
340	-235944	-230846		
350	-235661	-230480		
360	-235378	-230114		
370	-235094	-229746		
380	-234808	-229377		
390	-234521	-229007		
400	-234232	-228636		
410	-233943	-228263		
420	-233652	-227889		
430	-233360	-227513		
440	-233066	-227137		
450	-232771	-226759		

Octubre 2022

INTERSEMESTRAL

Probleme 1.

A Agua (G.I. M=18 EYkund)

$$M_{A}=0.03 kg$$
 $\Phi_{A}=0.2 m$
 $P_{A_1}=0.2 m$
 $P_{A_1}=15 \text{ bar}$
 $V_{A_1}=15 \text{ bar}$
 $V_{A_1}=0.20944 \text{ m}^3/kg$
 V_{A

$$N_2$$
 (G.P. $M=28 + 9/kml$)
 $M_3 = 0.005 kg$
 $\Phi_8 = 0.08 m$
 $l_{B_1} = 0.6 m$
 $T_{B_1} = T_0 = 20 ° C$
 $V_{S_1} = T_0 = 20 ° C$
 $V_{S_2} = T_0 = 20 ° C$
 $V_{S_3} = T_0 = 20 ° C$
 $V_{S_4} = T_0 = 20 ° C$

a) Towards los dos pistores ou conjunto, estado final (2)

PAZ [Po Po Po PBZ (PAZ-PO)AA - (PBZ-PO)AB=0 (i)

Además, el desplatamiento (x) de ambos es ignal, por la que $\nabla_{A2} = \nabla_{A} + A_{A} \times V_{B_2} = \nabla_{B_1} - A_8 \times$

$$V_{Az} = V_{A_1} + \frac{Aax}{m_A} (ii)$$
 $V_{B_2} = V_{B_4} - \frac{Aax}{m_B} (iii)$

En el estedo final, $T_{B_2} = T_{A_2} = 20^{\circ}\text{C} = 293 \text{ K} = T_2$ Utilibendo la ecuación de estado, e introduciendo ii) y iii) en i) tenemos:

$$\left(\frac{R_{A}T_{2}}{V_{Az}} - \rho_{o}\right) A_{B} - \left(\frac{R_{B}T_{z}}{V_{Bz}} - \rho_{o}\right) A_{B} = 0$$

$$\left(\frac{R_{A}T_{z}}{V_{A_{1}} + A_{A} \times W_{A}} - \rho_{o}\right) A_{A} - \left(\frac{R_{B}T_{z}}{V_{B_{1}} - A_{B} \times W_{B}} - \rho_{o}\right) A_{B} = 0$$

Ecuación en la que sólo tenemo como incógnito la X Sustituyendo valores:

$$f(x) = \frac{4,2516}{0,20944 + 4,0472 \times} - \frac{0,43731}{0,60319 - 1,0053 \times} - 2,4806 = 0$$

y alora tenemos dos opciones:

 OPCION 11
 Aproximation mediante iteración

 \times f(x)

 0,2
 6,58

 0,3
 4,19

 0,4
 2,11

 0,5
 -1,03

 \times (x)

 0,45
 0,87

 0,475
 0,05

 0,477
 -0,02

 0,477
 -0,02

$$X = 0,475 + \frac{0,477 - 0,475}{-0,02 - 0,05} (0 - 0,05) = \frac{0,4765 \text{ m}}{-0,02 - 0,05}$$

OPCIÓN 2 | Resolviendo la ecuación de 2º grado

$$\frac{4.2516}{0.26944 + 1.0472 \times} = \frac{0.43731 + 1.4963 - 2.4938 \times}{0.60319 - 1.0053 \times}$$

4, 2516 (0,60319 - 1,0053 x) = (0,20944+1,0472 x)(1,93357 - 2,4938x) 2,5645 - 4,2442 x = 0,405 - 0,52129 x + 2,0248 x - 2,6115x² 2,6115 x^2 - 5,7767 x + 2,1596 = 0

$$X = \frac{5,7767 \pm \sqrt{5,7767^2 - 4.2.6115 \cdot 2.1596}}{2 \times 2.1596}$$

$$X_1 = 0,4765 \text{ m}$$

$$X_2 = 1.736 \text{ m} \text{ is compatible con cilindro}$$

$$de 0,6 \text{ m}$$

b) Aphands el 1º PPio al conjunto de ambos cilindres. esagrendo el sistema formado por ambos gases:

El trabajo lo podemos obtener con la integral de las fueros exteriores, en este caso Solo la Po

$$W_{12} = -\int_{1}^{2} f_{ext} dx^{2} = \int_{1}^{2} p_{ext} dx = p_{o}(A_{A} \cdot x - A_{B} \cdot x) =$$

$$= p_{o} \times (A_{A} - A_{B}) = 1/182 \text{ KJ}$$

Por tablas:

$$U_{A_1} = -234232 + \frac{-233943 + 234232}{410 - 400} (407, 16 - 400) =$$

= -234025 KJ/Kwol

la variación de U en el subsistema 2 es Ø, parque acaba a la ruisma temperaturz que empezó, así que:

TERMODINÁMICA

Examen Intersemestral

Nombre	Grup	00	

No está permitido el empleo de calculadoras programables ni la consulta de libro, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Problema -2 (5 puntos)

La figura adjunta muestra el esquema de una planta de refrigeración que opera según un ciclo termodinámico recorrido por amoniaco (sustancia pura, ver tablas) con un evaporador inundado. La instalación consta de un compresor adiabático que consume 62 kW, un condensador (intercambiador de calor que cede calor al ambiente), una válvula adiabática, un separador de líquido (intercambiador de calor de mezcla o abierto) y un evaporador (intercambiador de calor que toma calor de la cámara frigorífica).

El amoniaco sale del separador de líquido por el punto (5) como líquido saturado para dirigirse al evaporador, del que retorna al separador con un título del 90% y sin perder presión. La otra salida del separador de líquido se da por el punto (1) como vapor saturado, que conduce al compresor.

La presión en el evaporador y en el separador de líquido es de 1,2 bar. La presión en el condensador de 20 bar, saliendo el amoniaco del mismo (3) como líquido saturado. El calor retirado en el evaporador de la cámara frigorífica es de 100 kW.

Se pide:

- a) Flujo másico que pasa por el evaporador
- b) Flujo másico que pasa por el condensador
- c) Calor cedido al ambiente por el condensador

Tabla de saturación del amoniaco (líquido - vapor)

Tabla de Saturación del amoniaco (nquido - vapor)							
p	T	$v_{\rm f}$	V_{g}	$\mathbf{u}_{\mathbf{f}}$	u_{g}	\mathbf{h}_{f}	h_{g}
[bar]	[°C]	[m ³ /kg]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]
0,6	-43,26	0,00144112	1,83438	4,9246	1292,4	5,0111	1402,4
8,0	-37,92	0,00145465	1,40204	28,455	1298,9	28,571	1411,1
1	-33,58	0,00146598	1,13809	47,671	1304,0	47,818	1417,8
1,2	-29,90	0,00147585	0,959663	64,045	1308,3	64,222	1423,4
1,4	-26,68	0,00148466	0,830727	78,391	1311,9	78,599	1428,2
1,6	-23,81	0,00149266	0,733054	91,211	1315,0	91,450	1432,3
1,8	-21,22	0,00150004	0,656419	102,83	1317,8	103,10	1436,0
2	-18,85	0,00150689	0,594629	113,49	1320,3	113,80	1439,2
6	9,273	0,00159793	0,210335	242,01	1345,2	242,97	1471,4
8	17,84	0,00162996	0,159537	282,01	1350,9	283,31	1478,5
10	24,89	0,00165821	0,128488	315,29	1354,8	316,95	1483,3
12	30,93	0,00168397	0,107482	344,11	1357,6	346,13	1486,6
14	36,25	0,00170797	0,0922929	369,71	1359,5	372,11	1488,8
16	41,03	0,00173067	0,0807813	392,89	1360,9	395,66	1490,1
18	45,37	0,00175238	0,0717448	414,16	1361,7	417,31	1490,9
20	49,36	0,00177333	0,0644557	433,88	1362,2	437,43	1491,1
22	53,06	0,00179367	0,0584469	452,33	1362,3	456,28	1490,9
24	56,52	0,00181355	0,0534046	469,70	1362,1	474,06	1490,3
26	59,77	0,00183305	0,0491104	486,16	1361,7	490,92	1489,4
28	62,84	0,00185227	0,0454072	501,82	1361,1	507,00	1488,2

Tabla de vapor sobrecalentado del amoniaco

1,2 bar (Tsat = -29,9 ° C)			
T	v	u	h
[°C]	[m ³ /kg]	[kJ/kg]	[kJ/kg]
sat	0,959663	1308,3	1423,4
-25	0,981719	1316,9	1434,7
-20	1,00399	1325,7	1446,2
-15	1,02606	1334,3	1457,4
-10	1,04795	1342,9	1468,6
-5	1,06969	1351,4	1479,7
0	1,09129	1359,8	1490,8
5	1,11277	1368,2	1501,8
10	1,13416	1376,6	1512,7
15	1,15545	1385,0	1523,6

20 bar (Tsat = 49,36 °C)			
T	v [m³/kg]	u [kJ/kg]	h
[°C]			[kJ/kg]
sat	0,0644557	1362,2	1491,1
50	0,0647268	1364,0	1493,5
55	0,0667872	1378,2	1511,8
60	0,0687522	1391,7	1529,2
65	0,0706391	1404,6	1545,8
70	0,0724614	1416,9	1561,9
75	0,0742290	1428,9	1577,4
80	0,0759499	1440,6	1592,5
85	0,0776305	1452,0	1607,3
90	0,0792758	1463,2	1621,8

Apellidos:	Prob
Nombre:	Grupo: 1NFD 22/23

Apellidos:	Problema:
Nombre:	Grupo:

