Viterbi Algorithm

Ralph Grishman G22.2590 - Natural Language Processing

Computing Probabilities

```
viterbi [ s, t ] =
  \max(s') ( viterbi [s', t-1] *
  transition probability
  P(s \mid s') *
  emission probability
  P (token[t] | s)
for each s, t:
 record which s', t-1 contributed the maximum
```

Analyzing

Fish sleep.

A Simple POS HMM

Word Emission Probabilities P (word | state)

- A two-word language: "fish" and "sleep"
- Suppose in our training corpus,
 - "fish" appears 8 times as a noun and 5 times as a verb
 - "sleep" appears twice as a noun and 5 times as a verb
- Emission probabilities:
 - Noun
 - P(fish | noun): 0.8
 - P(sleep | noun): 0.2
 - Verb
 - P(fish | verb) : 0.5
 - P(sleep | verb) : 0.5

Viterbi Probabilities

0 1 2 3

start

verb

noun

end

 $0 \qquad 1 \qquad 2 \qquad 3$

start 1

verb 0

noun 0

end 0

Token 1: fish

end

Token 1: fish

0 1 2 3
start 1 0
verb 0 .1
noun 0 .64

end 0 0

Token 3: end

