Round 3 Geometry

Angles and Triangles

MEET 2 – NOVEMBER 1998

ROUND 3 - Geometry: Angles and Triangles

1.	
	 -

3. _____

DIAGRAMS ARE NOT NECESSARILY DRAWN TO SCALE CALCULATORS ARE NOT ALLOWED ON THIS ROUND

1. Find the measure of \angle AEB in degrees.

If AB is parallel to CD, BE and BF trisects ∠ABD, DA bisects ∠CDB, and m ∠BED = 77°, find z.

3. Given m \angle CBA : m \angle BAC : m \angle ACB = 3:4:8, $\overline{BD} \cong \overline{BC}$, and $\overline{CA} \cong \overline{CE}$, what is measure of \angle AFC in degrees?

MEET 2 – NOVEMBER 1999

ROUND 3 - Geometry: Angles and Triangles

1			
1.			

3. _____

DIAGRAMS ARE NOT NECESSARILY DRAWN TO SCALE CALCULATORS ARE NOT ALLOWED ON THIS ROUND

1. Given m \angle CAB = 36°, m \angle BCD = 56°, m \angle ADC = 141°, AC = AB, and CB = CD, find the measure of \angle BAD in degrees.

2. If $m \angle CAD = (2x^2)^\circ$, $m \angle ABC = (5x+2)^\circ$, $m \angle ACB = (10x+6)^\circ$, and the bisector of $\angle CAD$ intersects \overrightarrow{BC} at point E, find the measure of $\angle AEB$ in degrees.

3. The measures of consecutive angles of a convex polygon are 171°, 173°, 176°, 171°, 173°, 176°, ..., 171°, 173°, 176°, the same group of three measures appearing an integral number of times. Find the number of sides for this polygon.

MEET 2 – NOVEMBER 2000

ROUND 3 – Geometry: Angles and Triangles

1.	

3.

DIAGRAMS ARE NOT NECESSARILY DRAWN TO SCALE CALCULATORS ARE NOT ALLOWED ON THIS ROUND

- 1. The supplement of the complement of an angle is 6° less than the supplement of the angle. Find the number of degrees in the measurement of the angle.
- 2. Given \overline{ABC} , AB = BD = CD, and $m\angle ADC = 66^{\circ}$, compute the number of degrees in $m\angle C$.

3. The ratio of the measures of consecutive exterior angles of convex pentagon ABCDE at vertices A, B, C, D, and E is 2:3:4:5:6, respectively. If \overrightarrow{AD} bisects \angle CAE and \angle ADE $\cong \angle$ ACB, compute the number of degrees in $m\angle$ BAC.

MEET 2 – NOVEMBER 2001

ROUND 3 – Geometry: Angles and Triangles

1.	

3. _____

DIAGRAMS ARE NOT NECESSARILY DRAWN TO SCALE CALCULATORS ARE NOT ALLOWED ON THIS ROUND

1. Given \triangle ABC with \overline{ADC} , $\overline{BD} \perp \overline{AC}$, and $BA:BC:BD=2:\sqrt{2}:1$. Find the number of degrees in the measure of $\angle ABC$.

2. Given \overline{AD} bisects $\angle BAC$, \overline{BD} bisects $\angle ABC$, and $m\angle ACB + m\angle ADB = 210^{\circ}$, find the number of degrees in $m\angle ACB$.

3. Given $\angle C$ is right, \overline{BGHD} , \overline{AHE} , \overline{AGF} , \overline{ADC} , \overline{CEFB} , \overline{BD} bisects $\angle ABC$, \overline{AE} and \overline{AF} trisect $\angle BAC$. If $m\angle EHG - m\angle GFE = 10^{\circ}$, find the number of degrees in $m\angle AGB$.

GREATER BOSTON MATHEMATICS LEAGUE MEET 2 – NOVEMBER 2006

ROUND 3 – Geometry - Angles and Triangles

1.	
2.	
3	

DIAGRAMS ARE NOT NECESSARILY DRAWN TO SCALE. CALCULATORS ARE NOT ALLOWED ON THIS ROUND.

- 1. The exterior angle of the base angle of an isosceles triangle is 12 more than twice the vertex angle. How many degrees are there in the vertex angle?
- 2. In $\triangle ABC$, \overline{PB} bisects $\angle B$ and \overline{PC} divides $\angle C$ so that $m\angle PCB = 2m\angle PCA$. If PB = PC and $m\angle A = m\angle PCA$, find $m\angle BPC$.

3. The complement of the supplement of A is 4 less than $\frac{1}{3}$ the supplement of the complement of C. If $m \angle A = 8m \angle B$, find the measure of $\angle B$.

MEET 2 – NOVEMBER 2007

ROUND 3 – Geometry - Angles and Triangles

1.		
2.		
3.		

DIAGRAMS ARE NOT NECESSARILY DRAWN TO SCALE. CALCULATORS ARE NOT ALLOWED ON THIS ROUND.

1. Given $\triangle ABC$, $m \angle A = (4x)^{\circ}$, $m \angle B = (6x-10)^{\circ}$ and $m \angle ACD = (9x+2)^{\circ}$. The supplement of the smallest angle of $\triangle ABC$ is 6° less than three times the complement of an angle whose measure is t° . Find the value of t.

2. Given the diagram, $m \angle A = 68^{\circ}$, $m \angle ABC : m \angle ACB = 4:3$, $\angle ABC$ is bisected by \overline{BF} , and $\angle ACB$ is trisected by \overline{EC} and \overline{DC} . Find $m \angle BHC - m \angle EGH$.

3. The supplement of the complement of $m\angle A$ is 8° more than the $m\angle ACD$. Find the measure $\angle B$.

MEET 2 – NOVEMBER 2008

ROUND 3 – Geometry - Angles and Triangles

1.	
2.	
3.	

DIAGRAMS ARE NOT NECESSARILY DRAWN TO SCALE. CALCULATORS ARE NOT ALLOWED ON THIS ROUND.

- 1. In $\triangle ABC$, the ratio of the measures of the angles is 3:4:8. In $\triangle DEF$, $m \angle D$ is the same as the measure of the smallest angle of $\triangle ABC$. If angles E and F are bisected, what is the measure of the obtuse angle formed by the bisectors?
- 2. In an isosceles triangle the exterior angle of one of the base angles has measure $(3x+3)^{\circ}$ The vertex angle has measure $(x-9)^{\circ}$ Find the ratio of the numerical measure of the vertex angle to the measure of a base angle.
- 3. In $\triangle ABC$, \overline{MC} bisects $\angle ACB$, \overline{BD} and \overline{BE} are drawn such that the ratio of the measures of $\angle BMN : \angle BNP : \angle BPC : \angle MCB = 9:10:11:3$. Determine the numerical value of the ratio $m \angle BDE : m \angle ABE$.

MEET 2 – NOVEMBER 2009

ROUND 3 – Geometry - Angles and Triangles

DIAGRAMS ARE NOT NECESSARILY DRAWN TO SCALE. CALCULATORS ARE NOT ALLOWED ON THIS ROUND.

- 1. The complement of the supplement of an angle G is trisected and the result is 14°. How many degrees are in the supplement of G?
- 2. In $\triangle ABC$, m $\angle BCD = 114^{\circ}$, \overline{CE} bisects $\angle ACB$, \overline{EF} bisects $\angle AEC$ and m $\angle B = 28^{\circ}$. How many degrees are in the complement of $\angle AEF$?

3. Find the exact numerical value of $\frac{y}{x}$ as a simplified fraction.

MEET 2 – NOVEMBER 2010

ROUND 3 – Geometry - Angles and Triangles

- 1.
- 2. :_____:

DIAGRAMS ARE NOT NECESSARILY DRAWN TO SCALE. CALCULATORS ARE NOT ALLOWED ON THIS ROUND.

- 1. The supplement of the complement of the supplement of an angle whose measure is x° equals $\left(\frac{2}{3}x\right)^{\circ}$. Compute the value of x.
- 2. Given: $\angle ABC$ is bisected by ray $\stackrel{\text{UR.NB}}{BF}$ $\angle ACB$ is trisected by rays CD and CE $m\angle BFC$: $m\angle BAC = 13:8$ $m\angle BGC = 116^{\circ}$ Compute $m\angle AEC$: $m\angle BHC$.

3. In $\triangle ABC$, $m \angle B = (4x)^\circ$, $m \angle DAC = (185 - 7x)^\circ$ and $5m \angle BAC = 6(m \angle C) - 24^\circ$. If the ratio of $m \angle BAC : m \angle C = P : Q$, where P and Q are relatively prime, compute the ordered triple (x, P, Q).

Created with

GBML 98

ROUND 3

- 13x + 110 + 180 6x = 360 (Sum of ext. angles = 360°) $\Rightarrow x = 10 \Rightarrow y = 10 \Rightarrow m \angle AEB =$ $13x = 3y + 10y \Rightarrow x = y$ Also,
 - 110° $3x + 2y = 180^{\circ}$ and because of Because of the parallel lines: $x = 26^{\circ}$ and z = 180 - 78 =**A** BED, $2x + y = 103^{\circ}$ ⇒ $180^{\circ} - 100^{\circ} = 80^{\circ}$ 102 ci

(13x)[°]

Ω 36°, 48°, and 96° are the angles of the triangle. \Rightarrow and m \angle BCD = (180° – 36°) + 2 = 72° \Rightarrow $m \angle AEC = (180^{\circ} - 96^{\circ}) \div \bar{2} = 42^{\circ}$ $3x + 4x + 8x = 180^{\circ} \Rightarrow x = 12^{\circ} \Rightarrow$ $m \angle AFC = 42^{\circ} + 72^{\circ} = 114^{\circ}$ 3

CRML 93

 $m \angle ADB = 360^{\circ} - 141^{\circ} - 62^{\circ} = 157^{\circ}; m \angle ABD = 72^{\circ} - 62^{\circ} = 10^{\circ}$ $m \angle ACB = m \angle ABC = 72^\circ$; $m \angle CDB = m \angle CBD = 62^\circ$; $m \angle BAD = 180^{\circ} - 157^{\circ} - 10^{\circ} = 13^{\circ}$

c;

 $2x^2 = 15x + 8 \Rightarrow 2x^2 - 15x - 8 = 0 \Rightarrow (2x+1)(x-8) = 0 \Rightarrow x = 8;$ By the exterior angle theorem:

 $\frac{1}{2}$ leads to a negative measure for \angle ABC. Note x = -

m \angle CAD = 128°; m \angle ABC = 42°; Therefore m \angle AEB = 64° – 42° = 22°

The exterior angles are 9°, 7°, 4°, 9°, 7°, 4°, ..., 9°, 7°, 4° where every three add to 20°, since the exterior angles must add to 360°, the number of sides = $360 + 20 \times 3 = 54$. \tilde{c}

58MC 00

$$180 - (90 - x) = (180 - x) - 6 \rightarrow 90 + x = 174 - x \rightarrow 2x = 84 \rightarrow x = 42$$

 $180 - 4x + x = 66 \rightarrow 3x = 114 \rightarrow x = 38$ $\rightarrow 2x = 76$

 $m\angle DAE = 108 - x \rightarrow 108 - x = 2x - 18 \rightarrow x = 42 \rightarrow$ $m\angle AED = 180 - 6(18) = 72$; $m\angle ADC = 90 - x$ and $2a + 3a + 4a + 5a + 6a = 360 \rightarrow 20a = 360 \rightarrow$ $m\angle ACD = 108 - x \rightarrow m\angle DAC = 2x - 18;$ $a = 18 \rightarrow m\angle ABC = 180 - 3(18) = 126$; $m\angle BCD = 180 - 4(18) = 108;$ $m\angle CDE = 180 - 5(18) = 90$ mZBAC= 54-42=12 3

GBMC01

 $m\angle ABD = 60^{\circ}$ and $m\angle CBD = 45^{\circ} \Rightarrow m\angle ABC = 105^{\circ}$. There is no loss of generality to let AB = 2, BD = 1and $BC = \sqrt{2} \Rightarrow AD = \sqrt{3}$ and $DC = 1 \Rightarrow$

 $m\angle ADB = (180 - z)^{\circ} \Rightarrow 360 - 3z = 210 \Rightarrow z = 50 \Rightarrow$ Let $z = x + y \Rightarrow m\angle ACB = (180 - 2z)^{\circ}$ and $m\angle ACB = 80^{\circ}$

d

 $\Rightarrow x - y = 10 \Rightarrow 2x - 2y = 20 \Rightarrow 5x = 110 \Rightarrow x = 22 \Rightarrow$ and $m\angle GFE = (2y + x)^{\circ} \Rightarrow (2x + y) - (2y - x) = 10$ by the exterior angle theorem, $m\angle EHG = (2x + y)^{\circ}$ $y = 12 \Rightarrow m\angle AGB = (180 - 22 - 12)^{\circ} = 146^{\circ}$. let $m\angle ABD = m\angle CBD = y^{\circ}; 3x + 2y = 90;$ Let $m\angle CAE = m\angle FAE = m\angle BAF = x^{\circ}$;

- 1. Let the measure of the base angle be x° . Then the vertex angle is $(180-2x)^{\circ}$ and the exterior angle at the base is $(180-x)^{\circ}$. $180-x=12+2(180-2x) \rightarrow 180-x=372-4x \rightarrow 3x=192 \rightarrow x=64$ Thus, the vertex angle measures $180-2(64)=\underline{52}^{\circ}$.
 - The given information allows marking ΔABC as indicated at the right.
 - $m\angle BPC = 180 4x$. Since $8x = 180 \rightarrow m\angle BPC = 180 90 = 90^{\circ}$

 $8x - 90 = 90 - 3x - 4 \Rightarrow 11x = 176 \Rightarrow x = 16^{\circ}$

 $90 - (180 - 8x) = \frac{1}{2}(90 + 180 - 9x) - 4$

3. $90 - (B + C) = \frac{1}{3}(180 - (90 - C)) - 4$

GRMC 07

- $m\angle ACD = 110^{\circ}$ Thus, $\angle A$ is the smallest angle. \rightarrow mZA = 48°, mZB = 62°, mZACB = 70° and 1. $(9x + 2) = 4x + (6x - 10) = 10x - 10 \implies x = 12$ $132 = 3(90 - t) - 6 = 264 - 3t \rightarrow 3t = 132$ ROUND 3
- 9x+2

6

3. 180 - (90 - x) = 8 + (x + y)

4 + x = x + y + 8

6 BM C 0 8

ROUND 3

1. $3n + 4n + 8n = 180 \rightarrow n = 12 \rightarrow \text{angles in } \triangle ABC \text{ are: } 36^{\circ}, 48^{\circ} \text{ and } 96^{\circ}$ → m∠D = 36° Then:

- $m\angle D + m\angle E + m\angle F = 36 + 2x + 2y = 180 \rightarrow x + y = 72$ But z = 180 - (x + y) = 108
- 2. Let the base angle be represented by y. $3x+3+y=180 \rightarrow y=177-3x$.
 - $2(177-3x)^3 + (x-9)^3 = 180^3 \rightarrow x = 24^3, y = 78^3 \rightarrow 24:78 \rightarrow 4:13$

 $m \angle MCB = 3x$. Since $\angle BPC$ and $\angle BNP$ are exterior angles of 3. Let $m \angle BMN = 9x$, $m \angle BNP = 10x$, $m \angle BPC = 11x$ and ΔBNP and ΔBMN respectively, we have

 $m \angle NBP = m \angle MBN = x$. Since $\angle BPC$ is also an exterior angles of ΔPEC , we have $m \angle PEC = 8x$. Since $\angle BEC$ is an exterior angles of $\triangle BDE$, we have $m \angle BDE = 7x$.

10×

Thus, the required ratio is 7:2.

98210 09

ROUND 3

1. $\frac{90 - (180 - G)}{14} = 14 \implies G - 90 = 42 \implies G = 132$ and the supplement is $\frac{48}{12}$

- 2. $2x = 66 \Rightarrow x = 33$, $114 = 28 + m \angle 4 \Rightarrow A = 86$ $2y + 33 + 86 = 180 \Rightarrow y = 30.5 \Rightarrow \text{complement is } \underline{59.5}$
- 3. $45^{\circ} \rightarrow y + z = 8$
- $30^{\circ} \rightarrow x + y + z = 8\sqrt{3} \rightarrow x = 8\sqrt{3} 8$
 - $60^{\circ} \rightarrow z = \frac{8}{\sqrt{3}} \rightarrow y = 8 \frac{8}{\sqrt{3}}$
- Thus, the required ratio is
- $\frac{y}{x} = \frac{8 \frac{8}{\sqrt{3}}}{8\sqrt{3} 8} = \frac{1 \frac{1}{\sqrt{3}}}{\sqrt{3} 1} = \frac{\sqrt{3} 1}{3 \sqrt{3}} = \frac{3\sqrt{3} + 3 3 \sqrt{3}}{3 \sqrt{3}} = \frac{2\sqrt{3}}{6} = \frac{2\sqrt{3}}{6}$
- G B R L 10 1. Supplement of x: 180 -x Complement of (180 -x):

Complement of (180 - x): 90 - (180 - x) = x - 90Supplement of (x - 90): 180 - (x - 90) = 270 - x

Thus, $270 - x = \frac{2}{x} \Rightarrow 810 - 3x = 2x \Rightarrow 5x = 810 \Rightarrow x = \underline{162}$.

The given information is marked in the diagram at the right.

13x is an exterior angle of $\triangle ABF \Rightarrow m \angle ABF = 5x$ BF bisects $\angle ABC \Rightarrow m \angle FBC = 5x$ also CD and CE trisects $\angle ACB$

→ ∠ACE = ∠ECD = ∠DCB = a

Substituting, $5x + 2(60 - 6x) = 64 \implies 7x = 56 \implies x = 8, a = 12$ ΔBFC : $18x + 3a = 180 \Rightarrow a = 60 - 6x$ ΔBGC : 5x + 2a = 64

 $\rightarrow m\angle AEC = 180 - (64 + 12) = 104$

→ m∠BHC = 180 - (40 + 12) = 128→ m∠AEC: m∠BHC = 104 : 128 = 13 : 16

3. As the supplement of $\angle DAC$, $m\angle DAC = 180 - (185 - 7x) = 7x - 5$. Applying the exterior angle theorem or invoking the sum of the interior angles of a triangle, $m\angle C = 185 - 11x$. Therefore, 5(7x - 5) = 6(185 - 11x) - 24 $\Rightarrow 35x - 25 = 1110 - 66x - 24$ $\Rightarrow 101x = 1111 \Rightarrow x = 11$. (7x - 5) : (185 - 11x) = 72 : 64 = 9 : 8 $\Rightarrow (x, P, Q) = (111, 91, 8)$.

