

Introduce to Coreset

Outline of presentation:

- Motivation & Coreset
- How to compute a Coreset?
- (III) Applications

I: Motivation & Coreset

1.1 Motivation

1.2 What is coreset?

(1.3) Coreset properties

I.1: Motivation

Motivation: Big Data

How BIG is Big Data?

Limited hardware

- Computation: IoT
- Energy: smartphones

Limited time

- Real-time decision making

Motivation: Streaming & Distributed Data

New computation model

Streaming real-time data

- Data is being received in chunks
- Or one by one

Distributed data

- Across multiple machine
- Or in the cloud

Motivation: Incorrectly labeled data

Motivation: Data quality

1.2: What is Coreset?

A general Machine Learning Procedure

New approach is needed

Common approach: Design faster algorithms

Alternative approach: Make the data smaller

A Coreset

Warm-up

Give a set P of n point on a line, another point q

Goal:

Return the farthest point in P from q in O(1) time

Warm-up

Give a set P of n point on a line, another point q

The farthest point is one of the two end points => Delete all others points

Defining a problem

We need to define:

The input set (denote by P)

The query set (denote by X)

The cost function:

$$cost: P \times X \rightarrow [0, \infty)$$
 we need to optimize

Defining a problem

Ex: Linear regression

The input set: P of n points in R^a and their label $y: P \rightarrow R$

The query set X is composed of every vector in \mathbb{R}^d

The cost function to optimize:

$$\sum_{p \in P} \left(p^T x - y(p) \right)^2$$

Defining a coreset

Let P be an input set

Let X be the query set

Let $cost: P \times X \rightarrow [0, \infty)$ be a cost function

A coreset is pair of (C, w)where $C \subset P$ and $w: C \rightarrow R$ such that for every query $x \in X: cost(P, x) \approx cost((C, w), x)$

$$\sum_{p \in P} ||p^T x - y(p)||^2 \sim \sum_{c \in C} w(c) \cdot ||c^T x - y(c)||^2$$

I.3: Coreset properties

Coreset approximate any query (solution)

Union of Coreset is Coreset

Coreset of Coreset is Coreset

II: How to compute a Coreset?

Computing a Coreset

- Let P be an input set.
- Let X be the query set.
- Let $cost: P \times X \rightarrow [0, \infty)$ be a cost function.

For every $p \in P$ let $s(p) \in [0, 1]$ be a number defining its importance/sensitivity.

- 1. Set $t = \sum_{p \in P} s(p)$
- 2. C := Sample m (m > 1) points according to s(p) / t
- 3. For every $p \in C$: $w(p) = \frac{t}{s(p)|C|}$.

With high probability (C, w) is a coreset for (P, X, cost), $C \subset P$, w: $C \to R$ such that for every query $x \in X$: $cost(P, x) \approx cost((C, w), x)$

How to compute the importance s(p)?

• For every $p \in P$:

$$s(p) \ge \sup_{x \in X} \frac{cost(p,x)}{cost(P,x)}$$
.

• To explain the definition of sensitivity/importance let's look at the following two cases, when s(p) is high and when s(p) is low and see the difference between them.

If s(p) is high If s(p) is low

There exists a solution $x \in X$, such that Paffects the loss too much (P is important).

For every solution $x \in X$, P does not affect the loss, hence, it is not important.

 $\exists x \in X: cost(p, x)$ affects cost(P, x). $\forall x \in X: cost(p, x)$ does not affect cost(P, x).

III: Applications

Limited hardware/time

Limited hardware

- Computation: IoT

- Energy: smartphones,

Limited time

- Real-time decision making

Streaming Coresets

Streaming tree + Distributed data

High-Quality Data

