

DASY5 Validation Report for Body TSL

Date: 16.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:853

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; σ = 2.02 S/m; ϵ_r = 51.9; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.0 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 25.6 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.1 W/kgMaximum value of SAR (measured) = 21.0 W/kg

0 dB = 21.0 W/kg = 13.22 dBW/kg

Certificate No: D2450V2-853_Jul18

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-853_Jul18 Page 8 of 8

2600 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the sign

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CTTL (Auden)

Certificate No: D2600V2-1012_Jul18

CALIBRATION CE	RIIFICATE		
Dbject	D2600V2 - SN:10	012	
Calibration procedure(s)	QA CAL-05.v10 Calibration procedure for dipole validation kits above 700 MHz		ve 700 MHz
Calibration date:	July 26, 2018		
	ed in the closed laborator	robability are given on the following pages and $_{ m ry}$ facility: environment temperature (22 \pm 3) $^{\circ}$ C	
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
	ID#	Check Date (in house)	Scheduled Check
Secondary Standards	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power meter EPM-442A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power meter EPM-442A Power sensor HP 8481A	A-15	07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	In house check: Oct-18 In house check: Oct-18
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	In house check: Oct-18 In house check: Oct-18
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: US37292783 SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: US37292783 SN: MY41092317 SN: 100972	07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	In house check: Oct-18 In house check: Oct-18
Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 31-Mar-14 (in house check Oct-17)	In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 31-Mar-14 (in house check Oct-17) Function	In house check: Oct-18 In house check: Oct-18 In house check: Oct-18

Certificate No: D2600V2-1012_Jul18

Page 1 of 8

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1012_Jul18 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	16.30
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

_	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.2 ± 6 %	2.02 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.9 W/kg ± 16.5 % (k=2)

Body TSL parameters

he following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.5 ± 6 %	2.20 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1012_Jul18

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.4 Ω - 7.4]Ω	
Return Loss	- 21.9 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.1 Ω - 4.9 jΩ
Return Loss	- 21.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.154 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 30, 2007

DASY5 Validation Report for Head TSL

Date: 26.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 37.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.7, 7.7, 7.7) @ 2600 MHz; Calibrated: 30.12.2017

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 26.10.2017

• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 118.3 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.33 W/kg

Maximum value of SAR (measured) = 23.7 W/kg

0 dB = 23.7 W/kg = 13.75 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 26.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.2$ S/m; $\epsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.81, 7.81, 7.81) @ 2600 MHz; Calibrated: 30.12.2017

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 26.10.2017

• Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.5 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.17 W/kg

Maximum value of SAR (measured) = 22.6 W/kg

0 dB = 22.6 W/kg = 13.54 dBW/kg

Impedance Measurement Plot for Body TSL

ANNEX I Sensor Triggering Data Summary

Reduce Power for SAR sensor

	LTE				
LTE Band	Power	Tolerance			
1	22. 5	+1dBm/ -1dBm			
2	21. 5	+1dBm/ -1dBm			
3	22	+1dBm/ -1dBm			
4	21.5	+1dBm/ -1dBm			
7	21.5	+1dBm/ -1dBm			
	GSM				
Mode/		Voice			
and of the	Janu.	(dBm)			
GSM/GPRS/EDGE	Max Power	30			
1800	Nom	29			
GSM/GPRS/EDGE	Max Power	29			
1900	Nom	28			
	WCDM	A			
		Modulated Average			
Mode/1	Band	(dBm)			
		WCDMA			
UMTS 2100	Мах	23, 5			
uaio 1100	Nom	22.5			
UMTS 1900	Max	22.5			
		04 5			
	Non	21.5			
mm 4000	Nom Max	22. 5			
UMTS 1700		17000			
UNTS 1700	Мах	22. 5			
Antenna	Мах	22.5 21.5 Reduced power			
01000000000000000000000000000000000000	Meux Nom	22.5 21.5 Reduced power			
01000000000000000000000000000000000000	Meux Nom	22.5 21.5 Reduced power Target Level			

Antenna	Trigger Position	Trigger Distance(mm)
	Rear	15
1# Main Antenna	Bottom	15
main miceina	Front	10

According to the above description, this device was tested by the manufacturer to determine the SAR sensor triggering distances for the rear and bottom edge of the device. The measured power state within ± 5 mm of the triggering points (or until touching the phantom) is included for rear and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom with the device at maximum output power without power reduction.

We tested the power and got the different proximity sensor triggering distances for rear and bottom edge. But the manufacturer has declared 15mm is the most conservative triggering distance for main antenna. So base on the most conservative triggering distance of 15mm, additional SAR measurements were required at 14mm from the highest SAR position between rear and bottom edge of main antenna.

Rear

Moving device toward the phantom:

The power state											
Distance [mm]	Distance [mm] 20 19 18 17 16 15 14 13 12 11 10								10		
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

The power state									
Distance [mm]	Distance [mm] 10 11 12 13 14 15 16 17 18 19 20								20
Main antenna Low Low Low Low Low Low Normal Normal Normal Normal Normal Normal									

Bottom Edge

Moving device toward the phantom:

The power state											
Distance [mm]	20	19	18	17	16	15	14	13	12	11	10
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

The power state											
Distance [mm] 10 11 12 13 14 15 16 17 18 19 20							20				
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

The influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0° .

The rear evaluation for main antenna

The bottom edge evaluation for main antenna

Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the ±45° range at the smallest sensor triggering test distance declared by manufacturer.

ANNEX J Variant Product Test

J.1 Dielectric Performance

Table J.1-1: Dielectric Performance of Tissue Simulating Liquid

Measurement Date yyyy/mm/dd	Frequency	Туре	Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)
2019-7-14	1750 MHz	Body	52.5	-1.69	1.471	-1.28
2019-7-13	1900 MHz	Head	39.93	-0.18	1.405	0.36

J.2 System Verification

Table J.2-1: System Verification of Head

Measurement Date		Target value (W/kg)		Measured value (W/kg)		Deviation		
(yyyy-mm-dd)	Frequency	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average	
2019-7-13	1900 MHz	21.3	40.4	21.64	40.48	1.60%	0.20%	

Table J.2-2: System Verification of Body

Measurement Date		Target value (W/kg)		Measure (W/		Deviation		
(yyyy-mm-dd)	Frequency	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average	
2019-7-14	1750 MHz	19.3	36.4	19.56	36.68	1.35%	0.77%	

J.3 Measurement results for spot check

Table J.3-1: The spot check results

Test Band	Channe I	Freque ncy	Test Position	Figure	Conducted Power (dBm)	Tune-u p Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reporte d SAR(1g) (W/kg)	Power Drift (dB)
WCDMA1900	9538	1907.6	Left Cheek	Fig J.7-1	23.26	24.50	0.152	0.20	0.242	0.32	0.04
LTE Band4	20050	1720	Rear 10mm	Fig J.7-2	21.34	22.50	0.378	0.49	0.632	0.83	0.05

J.4 Reported SAR Comparison

Exposure Configuration	Technology Band	Reported SAR 1g (W/Kg): spot check	Reported SAR 1g (W/Kg): original
	GSM 850	\	0.18
	PCS 1900	\	0.13
	UMTS FDD 5	\	0.22
	UMTS FDD 4	\	0.21
Head	UMTS FDD 2	0.32	0.25
(Separation Distance	LTE Band 2	\	0.24
0mm)	LTE Band 4	\	0.20
	LTE Band 5	\	0.22
	LTE Band 7	\	0.08
	LTE Band 12	\	0.17
	WLAN 2.4 GHz	\	0.23
	GSM 850	\	0.66
	PCS 1900	\	0.90
	UMTS FDD 5	\	0.56
	UMTS FDD 4	\	0.82
Hotspot	UMTS FDD 2	\	0.89
(Separation Distance	LTE Band 2	\	0.99
10mm/14mm)	LTE Band 4	0.83	1.06
	LTE Band 5	\	0.54
	LTE Band 7	\	0.81
	LTE Band 12	\	0.31
	WLAN 2.4 GHz	\	0.11

Note: All the spot check results marked blue are larger than the original results. So it replace the original results and others are shared.

J.5 Evaluation of Simultaneous

Table J.5-1: The sum of reported SAR values for main antenna and WiFi

				=
	Position	Main antenna	WiFi	Sum
Highest reported SAR value for Head	Left hand, Touch cheek	0.32	0.23	0.55
Highest reported SAR value for Body	Rear 10mm	1.06	0.11	1.17

Table J.5-2: The sum of reported SAR values for main antenna and BT

	Position	Main antenna	ВТ	Sum	
Maximum reported	Left hand, Touch cheek	0.22	0.33	0.65	
SAR value for Head	Left hand, Touch cheek	0.32			
Maximum reported	Door 10mm	4.06	0.47	4 22	
SAR value for Body	Rear 10mm	1.06	0.17	1.23	

J.6 List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	E5071C	MY46110673	January 24, 2019	One year
02	Power meter	NRVD	102196	October 24, 2019	One year
03	Power sensor	NRV-Z5	100596	October 24, 2018	
04	Signal Generator	E4438C	MY49070393	January 4, 2019	One Year
05	Amplifier	60S1G4	0331848	No Calibration Requested	
06	BTS	E5515C	MY50263375	January 17, 2019	One year
07	BTS	CMW500	159890	January 3, 2019	One year
08	E-field Probe	SPEAG EX3DV4	7514	August 27, 2018	One year
09	DAE	SPEAG DAE4	1525	September 18, 2018	One year
10	Dipole Validation Kit	SPEAG D1750V2	1003	July 20, 2018	One year
11	Dipole Validation Kit	SPEAG D1900V2	5d101	July 24, 2018	One year

J.7 Graph Results

WCDMA 1900 Left Cheek High

Date: 2019-7-13

Electronics: DAE4 Sn1525 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1907.6 MHz; $\sigma = 1.407$ mho/m; $\epsilon r = 39.89$; $\rho = 1.407$ mho/m; $\epsilon r = 39.89$; $\epsilon = 1.407$ mho/m; $\epsilon r = 1.407$ mho/m; ϵr

 1000 kg/m^3

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: WCDMA 1900 Frequency: 1907.6 MHz Duty Cycle: 1:1

Probe: EX3DV4–SN7514 ConvF(7.73, 7.73, 7.73)

Area Scan (81x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.243 W/kg

Zoom Scan (7x7x7) Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Maximum value of SAR (interpolated) = 0.337 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.064 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.375 W/kg

SAR(1 g) = 0.242 W/kg; SAR(10 g) = 0.152 W/kg

Maximum value of SAR (measured) = 0.329 W/kg

Fig J.7-1 WCDMA1900

LTE Band4 Body Rear Low with QPSK_20M_1RB_Middle

Date: 2019-7-14

Electronics: DAE4 Sn1525 Medium: Body 1750 MHz

Medium parameters used: f = 1720 MHz; $\sigma = 1.462 \text{ mho/m}$; $\epsilon r = 52.62$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: LTE Band4 Frequency: 1720 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7514 ConvF(7.82, 7.82, 7.82)

Area Scan (141x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.859 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.082 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.632 W/kg; SAR(10 g) = 0.378 W/kgMaximum value of SAR (measured) = 0.849 W/kg

Fig J.7-2 LTE Band4

J.8 System Verification Results

1900 MHz

Date: 7/13/2019

Electronics: DAE4 Sn1525 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.471 \text{ mho/m}$; $\varepsilon_r = 52.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7514 ConvF(7.73,7.73,7.73)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Reference Value = 112.39 V/m; Power Drift = 0.06

Fast SAR: SAR(1 g) = 10.15 W/kg; SAR(10 g) = 5.31 W/kg

Maximum value of SAR (interpolated) = 15.15 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value =112.39 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 17.75 W/kg

SAR(1 g) = 10.12 W/kg; SAR(10 g) = 5.41 W/kg

Maximum value of SAR (measured) = 14.71 W/kg

0 dB = 14.71 W/kg = 11.68 dB W/kg

Fig.J.8-1 validation 1900 MHz 250mW

1750 MHz

Date: 7/14/2019

Electronics: DAE4 Sn1525 Medium: Body 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.405$ mho/m; $\varepsilon_r = 39.93$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7514 ConvF(7.82,7.82,7.82)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Reference Value = 100.33 V/m; Power Drift = -0.02

Fast SAR: SAR(1 g) = 9.15 W/kg; SAR(10 g) = 4.75 W/kg

Maximum value of SAR (interpolated) = 13.16 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value =100.33 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 15.96 W/kg

SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.89 W/kg

Maximum value of SAR (measured) = 13.52 W/kg

0 dB = 13.52 W/kg = 11.31 dB W/kg

Fig.J.8-2 validation 1750 MHz 250mW

ANNEX K Accreditation Certificate

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 600118-0

Telecommunication Technology Labs, CAICT

Beijing China

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2018-09-28 through 2019-09-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program