Máquinas de Turing Matemáticas Computacionales (TC2020)

M.C. Xavier Sánchez Díaz sax@itesm.mx

Lenguajes

Lo que hemos visto hasta ahora

Un **lenguaje** es un conjunto de **palabras**.

¿Cómo **demostramos** que un lenguaje es regular?

¿Cómo demostramos que un lenguaje es libre de contexto?

Las máquinas y sus lenguajes

Lo que hemos visto hasta ahora

Los Autómatas Finitos, las expresiones regulares y las gramáticas regulares sirven para representar lenguajes regulares.

Los **Autómatas de Pila** y las **gramáticas libres de contexto** sirven para representar lenguajes libres de contexto.

Sin embargo, hay otros lenguajes que no podemos representar con ninguna de estas herramientas.

Las máquinas y sus lenguajes

Lo que hemos visto hasta ahora

Por ejemplo, intentemos representar $\{a^nb^nc^n|n\geq 0\}$ con un AP:

- ullet Por cada a ponemos un contador en la pila
- Por cada b quitamos un contador de la pila
- No podemos contar las cs.

O si cambiamos el orden o usamos más contadores, simplemente no es posible hacerlo con un autómata de pila.

Un mejor uso de la memoria

Turing y su máquina

Claramente el problema que tenemos es de memoria: no tenemos cómo recordar las $c\mathbf{s}$.

En un AP sólo leemos el tope de la pila. ¿Qué pasaría si leyéramos cualquier parte de la misma?

¿Cuál es el límite de la pila? ¿Cuántos símbolos puede guardar?

Una nueva máquina

Turing y su máquina

Una máquina de Turing (MT) soluciona estos problemas, *uniendo* el *in-put* y la memoria. Ahora nuestro Autómata Reloaded tiene los siguientes elementos:

- Un conjunto de estados de control que es finito
- Una cinta infinita que utiliza como su memoria
- Un cabezal en la cinta que puede leer y escribir en una celda a la vez.

En cada paso del cómputo, la máquina

- Escribe un símbolo en la celda donde está el cabezal,
- cambia de estado, y
- mueve el cabezal.

Terminología y lenguaje

Turing y su máquina

Sea M una máquina de Turing:

- M acepta una palabra w si entra al estado de aceptación cuando se lee w. En este caso, M termina.
- M rechaza una palabra w si entra al estado de rechazo cuando se lee w. En este caso, M termina.
- M entra en loop con una palabra w si al leer w no entra ni al estado de aceptación ni al de rechazo. En este caso, M no termina.

¿Qué puede pasar si no se acepta? ¿Qué puede pasar si no se rechaza?

Terminología y lenguaje

Turing y su máquina

El lenguaje de una máquina de Turing M, denotado con L(M) o $\mathfrak{L}(M)$ es el conjunto de todas las palabras que M acepta:

$$\mathfrak{L}(M) = \{ w \in \Sigma^* | M \text{ acepta } w \}$$

Un lenguaje es reconocible si y solo si es el lenguaje de alguna máquina de Turing.

¿Existen más lenguajes?

Turing y el Entscheidungsproblem

Turing y su máquina

En 1928, David Hilbert y Wilhelm Ackermann—ambos matemáticos alemanes—propusieron un problema que llevó cerca de 8 años resolver:

El Entscheidungsproblem

¿Existe algún algoritmo que tome como *input* una proposición de lógica de primer orden, y diga si es o no universalmente válido a partir de sus axiomas?

Turing y el Entscheidungsproblem

Turing y su máquina

En 1936, Alonzo Church—matemático estadounidense—lanza una publicación definiendo el concepto de "calculabilidad efectiva" mediante el cálculo lambda. Esto da nombre a las funciones lambda en lenguajes de programación.

El mismo año, Alan Turing—matemático inglés—publica su trabajo *On Computable Numbers, with an application to the Entscheidungsproblem*¹, donde propone la MT y delimita todo aquello que puede ser "computable".

¹Es altamente probable que tengan que leer el paper para el examen...

¿Qué puede hacer la máquina de Turing?

Turing y su máquina

Aunque dos personas dieron la misma respuesta al *Entscheidungsproblem*—no existe algoritmo alguno para responder—usualmente nos quedamos con la versión de Turing, pues es más contundente al definir lo que es un algoritmo:

Teorema 1

Si lo puede hacer una máquina de Turing, entonces hay un algoritmo para ello.

Lo que significa que la MT puede hacer operaciones aritméticas, trabajar con listas, aceptar palabras y hacer **funciones**.

Formalidades y ejemplos

De nuevo, hay muchas maneras de abordar la definición formal. Por ello, nos enfocaremos en usar lo más parecido a lo que hayamos usado.

Primero, recordemos que una MT para reconocer palabras de un lenguaje tiene

- Un conjunto de estados.
- Un input.
- Una cinta que usa como memoria.
- Un estado inicial.
- Un estado de aceptación.
- Un estado de rechazo.
- Una función de transición que define cómo pasar de un estado a otro, dadas ciertas condiciones.

Formalidades y ejemplos

Definición formal de una máquina de Turing

Una máquina de Turing M para reconocer palabras de un lenguaje es una tupla de la forma $M=(Q,\Sigma,\Gamma,\delta,q,a,r)$ donde:

- ullet Q es un conjunto finito de **estados**,
- Σ es el **alfabeto del input**, donde $\square \not\in \Sigma$,
- Γ es el **alfabeto de la cinta**, donde $\square \in \Gamma$ y $\Sigma \subseteq \Gamma$,
- $q \in Q$ es el **estado inicial**,
- $a \in Q$ es el estado de aceptación,
- $r \in Q$ es el **estado de rechazo**, y
- ullet es la función de transición.

Formalidades y ejemplos

La función de transición δ es una función de la forma:

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, N, R\}$$

Ejemplo

Podemos escribir $q_0 1 \rightarrow q_1 1R$ que significaría que:

- Estando en el estado q_0 ,
- y al leer un 1 en la cinta

Entonces la MT

- cambia al estado q_1 ,
- escribe un 1 en la celda actual, y
- mueve el cabezal hacia la derecha (Right)

Formalidades y ejemplos

La verdad es que...

...es más fácil pensarlo como **flechas** que van **de un estado** q0 **a otro estado** q1 de la forma $x \to y, D$ — si lees x, escribes y y te mueves hacia D:

Configuración inicial

Formalidades y ejemplos

Antes de comenzar el cómputo, la máquina de Turing debe estar en una configuración específica. En esta configuración:

- La cinta está vacía, es decir que tiene sólo símbolos

 en ella.
- 2 La palabra de entrada se copia a algún lugar en la cinta.
- 3 El cabezal se mueve al **inicio** de la palabra de entrada.

EjemplosFormalidades y ejemplos

¿Y los ejemplos?

Se irán agregando con el tiempo.

Mientras, hay que revisar otros enfoques:

- Slides 26 de Ramón Brena/Santiago Conant.
- 2 Slides 18, 19, 20 y 21 de Keith Schwarz.
- Capítulos 4 de Maheshwari y Smid.