Exact Inference: Variable Elimination

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- Exact Inference
- Variable Elimination (VE)
- Sum-Product Algorithm
- Variable Ordering for VE

Principles of Exact Inference

- We show that same BN structure that allows compaction of complex distributions also helps support inference
 - Consider BN: $A \rightarrow B \rightarrow C \rightarrow D$
 - E.g., sequence of words: CPDs are first order word probabilities
- · We consider phased computation
 - Probabilities of four words: The, quick, brown, fox
 - Use results of a previous phase in computation of next phase
 - Then reformulate this process in terms of a global computation on the joint distribution

Exact Inference: Variable Elimination

- To compute P(B),
 - i.e., distribution of values b of B, we have

$$P(B) = \sum_{a} P(A, B) = \sum_{a} P(a)P(B \mid a)$$

- required P(a), P(b|a) available in BN
- If A has k values and B has m values
 - For each b: k multiplications and k-1 addition
 - Since there are m values of B, process is repeated for each value of b:
 - this computation is $O(k \times m)$

Moving Down BN

- Assume we want to compute P(C)
- Using same analysis

$$P(C) = \sum_{b} P(B, C) = \sum_{b} P(b)P(C \mid b)$$

- -P(c|b) is given in CPD
- But P(B) is not given as network parameters
- It can be computed using

$$P(B) = \sum_{a} P(A, B) = \sum_{a} P(a)P(B \mid a)$$

Computation depends on Structure

- 1. Structure of BN is critical for computation
 - If A had been a parent of C

$$P(C) = \sum P(b)P(C \mid b)$$

- would not have sufficed
- 2. Algorithm does not compute single values but sets of values at a time
 - -P(B) over all possible values of B are used to compute P(C)

Complexity of General Chain

- In general, if we have $X_1 \rightarrow X_2 \rightarrow \dots \rightarrow X_n$
- and there are k values of X_i , total cost is $O(nk^2)$

- Generate entire joint and summing it out
- Would generate k^n probabilities for the events $x_1, \dots x_n$
- In this example, despite exponential size of joint distribution we can do inference in linear time

Srihari

Insight that avoids exponentiality(

The joint probability decomposes as

$$P(A,B,C,D)=P(A)P(B|A)P(C|B)P(D|C)$$

- To compute P(D) we need to sum together all entries where $D=d^{l}$
 - And separately entries where $D=d^2$

```
- Exact computation for P(D) is P(a^1) = P(b^1 \mid a^1) = P(c^1 \mid b^1) = P(d^1 \mid c^1) + P(a^1) = P(b^1 \mid a^2) = P(c^1 \mid b^1) = P(d^1 \mid c^1) + P(a^1) = P(b^2 \mid a^1) = P(c^1 \mid b^2) = P(d^1 \mid c^1) + P(a^1 \mid b^2) = P(a^1 \mid b^2) = P(a^1 \mid c^1) + P(a^1 \mid a^2) = P(a
```

- Examine summation

 - $P(c^l|b^l)P(d^l|c^l)$
 - Modify to first compute
 - $P(a^{1})P(b^{1}|a^{1})+P(a^{2})P(b^{1}|a^{2})$
 - then multiply by common term

$$P(a^1)$$
 $P(b^1 | a^1)$ $P(c^1 | b^1)$ $P(d^2 | c^1)$
 $P(a^2)$ $P(b^1 | a^2)$ $P(c^1 | b^1)$ $P(d^2 | c^1)$

$$+ P(a^{2}) P(b^{2} | a^{2}) P(c^{2} | b^{2}) P(a^{2} | c^{2})$$
 $+ P(a^{1}) P(b^{2} | a^{1}) P(c^{1} | b^{2}) P(d^{2} | c^{1})$

$$+ P(a^2) P(b^2 | a^2) P(c^1 | b^2) P(d^2 | c^1) + P(a^1) P(b^1 | a^1) P(c^2 | b^1) P(d^2 | c^2)$$

$$+ P(a^2) P(b^1 | a^2) P(c^2 | b^1) P(d^2 | c^2) + P(a^1) P(b^2 | a^1) P(c^2 | b^2) P(d^2 | c^2)$$

$$+ P(a^2) P(b^2 | a^2) P(c^2 | b^2) P(d^2 | c^2)$$

First Transformation of sum

- Same structure is repeated throughout table
- Performing the same transformation we get the summation for P(D) as

- Observe certain terms are repeated several times in this expression
- $P(a^{l})P(b^{l}|a^{l})+P(a^{2})P(b^{l}|a^{2})$ and
- $P(a^1)P(b^2|a^1)+P(a^2)P(b^2|a^2)$ are repeated four times

2nd & 3rd transformation on the sum

- Defining τ_1 : $Val(B) \rightarrow R$
 - where $\tau_1(b^1)$ and $\tau_1(b^2)$ are the two expressions, we get

- Can reverse the order of a sum and product
 - sum first, product next

$$(\tau_{1}(b^{1})P(c^{1} \mid b^{1}) + \tau_{1}(b^{2})P(c^{1} \mid b^{2})) \quad P(d^{1} \mid c^{1})$$

$$+ (\tau_{1}(b^{1})P(c^{2} \mid b^{1}) + \tau_{1}(b^{2})P(c^{2} \mid b^{2})) \quad P(d^{1} \mid c^{2})$$

$$(\tau_{1}(b^{1})P(c^{1} \mid b^{1}) + \tau_{1}(b^{2})P(c^{1} \mid b^{2})) \quad P(d^{2} \mid c^{1})$$

$$+ (\tau_{1}(b^{1})P(c^{2} \mid b^{1}) + \tau_{1}(b^{2})P(c^{2} \mid b^{2})) \quad P(d^{2} \mid c^{2})$$

$$10$$

Fourth Transformation of sum

- Again notice shared expressions that are better computed once and used multiple times
 - − We define τ_2 : $Val(C) \rightarrow R$

$$\tau_{2}(c^{1}) = \tau_{1}(b^{1})P(c^{1}|b^{1}) + \tau_{1}(b^{2})P(c^{1}|b^{2})$$
$$\tau_{2}(c^{2}) = \tau_{1}(b^{1})P(c^{2}|b^{1}) + \tau_{1}(b^{2})P(c^{2}|b^{2})$$

$$au_2(c^1) P(d^2 \mid c^1) + au_2(c^2) P(d^2 \mid c^2)$$

Summary of computation

- We begin by computing $\tau_1(B)$
- Requires 4 multiplications and 2 additions
- Using it we can compute τ₂(C) which also requires 4 multis and 2 adds
- Finally we compute P(D) at same cost
- Total no of ops is 18
- Joint distribution requires 16 x 3=48 mps and 14 adds

Computation Summary

Transformation we have performed has steps

$$P(D) = \sum_{C} \sum_{B} \sum_{A} P(A) P(B \mid A) P(C \mid B) P(D \mid C)$$

We push the first summation resulting in

$$P(D) = \sum_{C} P(D \mid C) \sum_{B} P(C \mid B) \sum_{A} P(A) P(B \mid A)$$

- We compute the product $\psi_I(A,B) = P(A)P(B|A)$ and sum out A to obtain the function $\tau_1(B) = \sum_i \psi_1(A,B)$
 - For each value of b, we compute

$$\tau_{1}(b) = \sum_{A} \psi_{1}(A, b) = \sum_{A} P(A)P(b \mid A)$$
$$\psi_{2}(B, C) = \tau_{1}(B)P(C \mid B)$$

- We then continue $\tau_2(C) = \sum_{B} \psi_2(B,C)$
 - Resulting $\tau_2(C)$ is used to compute P(D)

Computation is Dynamic Programming

• Naiive way for $P(D) = \sum_{C} \sum_{B} \sum_{A} P(A)P(B \mid A)P(C \mid B)P(D \mid C)$ would have us compute every

$$P(b) = \sum_{A} P(A)P(b \mid A)$$

- many times, once for every value of C and D
- For a chain of length n this would be computed exponentially many times
- Dynamic Programming inverts order of computation— performing it inside out rather than outside in
 - First computing once for all values in $\tau_I(B)$, that allows us to compute $\tau_2(C)$ once for all, etc.

Ideas that prevented exponential blowup

- Because of structure of BN, some subexpressions depend only on a small no. of variables
- By computing and caching these results we can avoid generating them exponential no. of times

Variable Elimination: Use of Factors

- To formalize VE need concept of factors φ
- χ is a set of r.v.s, X is a subset $X \subseteq \chi$
- We say $Scope[\phi] = X$
- Factor associates a real value for each setting of it arguments $\phi: Val(X) \rightarrow R$
- Factor in BN is a product term
 - say $\phi(A,B,C) = P(A,B/C)$

Factors in BNs and MNs

- Useful in both BNs and MNs
- Factor in BN is a product term, say $\phi(A,B,C)=P(A,B/C)$
- Factor in MN comes from Gibbs distribution,

say $\phi(A,B)$

– Definition of Gibbs:

– Example:

$$P_{\Phi}(X_1,..X_n) = \frac{1}{Z}\tilde{P}(X_1,..X_n)$$

where

$$\left| \tilde{P}(X_1,..X_n) = \prod_{i=1}^m \phi_i(D_i) \right|$$

is an unnomalized measure and

$$Z = \sum_{X_1,..X_n} \tilde{P}(X_1,..X_n)$$
 is a normalizing constant

called the partition function

Role of Factor Operations

The joint distribution is a product of factors

 $P(C,D,I,G,S,L,J,H) = P(C)P(D|C)P(I)P(G|I,D)P(S|I)P(L|G)P(J|L)P(H|G,J) = \phi_C(C) \phi_D(D,C) \phi_I(I) \phi_G(G,I,D) \phi_S(S,I) \phi_L(L,G) \phi_J(J,L,S) \phi_H(H,G,J)$

Inference is a task of marginalization

$$P(J) = \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C, D, I, G, S, L, J, H)$$

 We wish to systematically eliminate all variables other than J

About Factors

- Inference Algorithms manipulate factors
- Occur in both directed and undirected PGMs
- Need two operations:
 - Factor Product: $\Phi_1(X,Y) \Phi_2(Y,Z)$
 - Factor Marginalization: $\psi(X) = \sum_{Y} \phi(X, Y)$

Factor Product

- Let X, Y and Z be three disjoint sets of variables and let $\Phi_1(X,Y)$ and $\Phi_2(Y,Z)$ be two factors.
- The factor product is the mapping $Val(X,Y,Z) \rightarrow R$ as follows

$$\psi(X,Y,Z) = \Phi_1(X,Y) \Phi_2(Y,Z)$$

An example:

 Φ_1 : 3 x 2 = 6 entries Φ_2 : 2 x 2= 4 entries yields

 ψ : 3 x 2 x 2= 12 entries

Factor Marginalization

- X is a set of variables and $Y \notin X$ is a variable
- $\phi(X,Y)$ is a factor
- We wish to eliminate Y
- Factor marginalization of Y is a factor ψ s.t.

$$\psi(X) = \sum_{Y} \phi(X, Y)$$

 $\Phi(A,B,C)$

Example of Factor Marginalization: Summing-out Y=B when $X=\{A,C\}$

- Process is called summing out of Y in Φ
- We sum up entities in the table only when the values of X match up
- If we sum out all variables we get a factor which is a single value of 1
- If we sum out all of the variables in an unnormalized distribution $\tilde{P}_{\phi} = \prod_{i=1} \phi_i (D_i)$ we get the partition function

Distributivity of product over sum

Example with nos.

 $a.b_1+a.b_2=a(b_1+b_2)$: product is distributive $(a+b_1).(a+b_2)$. $ne.\ a+(b_1b_2)$: sum is not Product distributivity allows fewer operations

$$\psi \Big(A, B \Big) = \sum_{A=a_1}^{a_2} \sum_{B=b_1}^{b_2} A \cdot B = a_1 b_1 + a_1 b_2 + a_2 b_1 + a_2 b_2 \quad \text{requires 4 products, 3 sums}$$

Alternative formulation requires 2 sums, 2 products

$$\psi(A,B) = \sum_{A=a_1}^{a_2} A \cdot \tau(B)$$

$$where \quad \tau(B) = \sum_{B=b_1}^{b_2} B = b_1 + b_2$$

$$\psi(A,B) = a_{\scriptscriptstyle 1}\tau(B) + a_{\scriptscriptstyle 2}\tau(B)$$

Sum first
Product next
Saves ops over
Product first
Sum next

- Factor product and summation behave exactly like product and summation over nos.
- If $X \notin Scope(\phi_1)$ then $\sum_{X} (\phi_1 \cdot \phi_2) = \phi_1 \sum_{X} \phi_2$

Sum-Product Variable Elimination Algorithm

- Task of computing the value of an expression of the form $\sum_{\tau} \prod_{\phi \in \Phi} \phi$
- Called sum-product inference task
 - Sum of Products
- Key insight is that scope of the factors is limited
 - Allowing us to push in some of the summations, performing them over the product of only some of the factors
 - We sum out variables one at a time

Inference using Variable Elimination

Example: Extended Student BN

• We wish to infer P(J)

$$P(J) = \sum_{H} \sum_{L} \sum_{S} \sum_{G} \sum_{I} \sum_{D} \sum_{C} P(C, D, I, G, S, L, J, H)$$

By chain rule:

$$P(C,D,I,G,S,L,J,H) =$$

$$P(C)P(D|C)P(I)P(G|I,D)P(S|I)P(L|G)P(J|L)P(H|G,J)$$

Which is a Sum of Product of factors

Sum-product VE

$$P(J) = \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C, D, I, G, S, L, J, H)$$

 $P(C,D,I,G,\overline{S,L,J,H}) = P(C)P(D/C)P(I)P(G/I,D)P(S/I)P(L/G)P(J/L)P(H/G,J) = P(C,D,I,G,\overline{S,L,J,H}) = P(C)P(D/C)P(I)P(G/I,D)P(S/I)P(L/G)P(J/L)P(H/G,J) = P(C)P(D/C)P(I)P(G/I,D)P(S/I)P(L/G)P(J/L)P(I/G)P(I/G)$

 $\phi_{C}(C) \phi_{D}(D,C) \phi_{I}(I) \phi_{G}(G,I,D) \phi_{S}(S,I) \phi_{I}(L,G) \phi_{I}(J,L,S) \phi_{H}(H,G,J)$

Elimination ordering *C,D,I,H.G,S,L*

1.Eliminating *C*:

$$\boldsymbol{\tau}_{_{\boldsymbol{1}}}\!\left(\boldsymbol{D}\right)\!=\sum_{\boldsymbol{C}}\psi_{_{\boldsymbol{1}}}\!\left(\boldsymbol{C},\boldsymbol{D}\right)$$

Each step involves factor product and factor marginalization

Compute the factors

Eliminating *D*:

$$\psi_{\scriptscriptstyle 2}(G,I,D) = \phi_{\scriptscriptstyle G}(G,I,D) \tau_{\scriptscriptstyle 1}(D) \qquad \tau_{\scriptscriptstyle 2}\!\left(G,I\right) = \sum_{\scriptscriptstyle D} \psi_{\scriptscriptstyle 2}\!\left(G,I,D\right)$$

Note we already eliminated one factor with D, but introduced τ_I involving D

Eliminating *I*: 3.

$$\left| \psi_{_{3}}\!\left(G,I,S\right) = \phi_{_{I}}\!\left(I\right) \phi_{_{S}}\!\left(S,I\right) \tau_{_{2}}\!\left(G,I\right) \quad \tau_{_{3}}\!\left(G,S\right) = \sum_{I} \psi_{_{3}}\!\left(G,I,S\right) \right|$$

Eliminating *H*:

Note
$$\tau_{\mathcal{A}}(G,J)=1$$

$$\bigg|\psi_{_{4}}\Big(G,J,H\Big) = \phi_{_{\!H}}(H,G,J) \qquad \tau_{_{4}}\Big(G,J\Big) = \sum_{\!H} \psi_{_{\!4}}\Big(G,J,H\Big)$$

5. Eliminating *G*:

$$\bigg|\psi_{\scriptscriptstyle 5}\!\left(G,J,L,S\right) = \tau_{\scriptscriptstyle 4}\!\left(G,J\right)\tau_{\scriptscriptstyle 3}\!\left(G,S\right)\phi_{\scriptscriptstyle L}\!\left(L,G\right) \qquad \tau_{\scriptscriptstyle 5}\!\left(J,L,S\right) = \sum_{\scriptscriptstyle G}\psi_{\scriptscriptstyle 5}\!\left(G,J,L,S\right)$$

6. Eliminating *S*:

$$\boxed{\psi_{\scriptscriptstyle 6}\!\left(J,L,S\right) = \tau_{\scriptscriptstyle 5}\!\left(J,L,S\right) \cdot \phi_{\scriptscriptstyle J}\!\left(J,L,S\right) \quad \tau_{\scriptscriptstyle 6}\!\left(J,L\right) = \sum_{S} \psi_{\scriptscriptstyle 6}\!\left(J,L,S\right)}$$

Eliminating *L*:

$$\boxed{\psi_{\scriptscriptstyle 7}\!\left(J,L\right) = \tau_{\scriptscriptstyle 6}\!\left(J,L\right) \qquad \tau_{\scriptscriptstyle 7}\!\left(J\right) = \sum_L \psi_{\scriptscriptstyle 7}\!\left(J,L\right)}$$

Computing $\tau(A,C)$ = $\Sigma_{B}\psi(A,B,C)=\Sigma_{B}\phi(A,B)\phi(B,C)$

1.Factor product

$$\psi(A,B,C) = \phi(A,B)\phi(B,C)$$

2. Factor marginalization

$$\tau(A,C) = \Sigma_B \psi(A,B,C)$$

a ¹	b^1	c^1	0.25			
a ¹	b^1	c^2	0.35			
a ¹	b^2	c^1	0.08			
a ¹	b^2	c^2	0.16	a^1	c^1	0.33
a^2	b^1	c^1	0.05	a^1	c^2	0.51
a^2	b^1	c^2	0.07	a^2	c^1	0.05
a^2	b^2	c^1	0	a^2	c^2	0.07
a^2	b^2	c^2	0	a^3	c^1	0.24
a^3	b^1	c^1	0.15	a^3	c^2	0.39
a^3	b^1	c^2	0.21			
a^3	b^2	c^1	0.09			
a^3	b^2	c^2	0.18			

Sum-Product VE Algorithm

To compute

$$\sum_{Z} \prod_{\phi \in \Phi} \phi$$

- First procedure
 specifies ordering of k variables Z_i
- Second procedure
 eliminates a single
 variable Z (contained
 in factors Φ') and
 returns factor τ

```
Procedure Sum-Product-VE (
                    // Set of factors
                    // Set of variables to be eliminated
                   // Ordering on \boldsymbol{Z}
          Let Z_1, \ldots, Z_k be an ordering of Z such that
              Z_i \prec Z_j if and only if i < j
          for i = 1, \ldots, k
              \Phi \leftarrow \text{Sum-Product-Eliminate-Var}(\Phi, Z_i)
4
          \phi^* \leftarrow \prod_{\phi \in \Phi} \phi
           return \phi^*
       Procedure Sum-Product-Eliminate-Var (
                     // Set of factors
                   // Variable to be eliminated
          \Phi' \leftarrow \{ \phi \in \Phi : Z \in \mathit{Scope}[\phi] \}
          \Phi'' \leftarrow \Phi - \Phi'
          \begin{array}{ll} \psi \leftarrow & \prod_{\phi \in \Phi'} \phi \\ \tau \leftarrow & \sum_{Z} \psi \end{array}
                                                                                    27
           return \Phi'' \cup \{\tau\}
```

Two runs of Variable Elimination

• Elimination Ordering: C,D,I,H,G,S,L

			<u> </u>	· · ·
Step	Variable	Factors	Variables	New
отор	eliminated	used	involved	factor
1	C	$\phi_C(C), \overline{\phi_D(D,C)}$	C,D	$ au_1(D)$
2	D	$\phi_G(G,I,D), au_1(D)$	G, I, D	$ au_2(G,I)$
3	I	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	G, S, I	$ au_3(G,S)$
4	H	$\phi_H(H,G,J)$	H,G,J	$ au_4(G,J)$
5	G	$\tau_4(G,J), \tau_3(G,S), \phi_L(L,G)$	G, J, L, S	$ au_5(J,L,S)$
6	$\stackrel{\circ}{S}$	$\tau_5(J,L,S), \phi_J(J,L,S)$	J, L, S	$ au_6(J,L)$
7	$\stackrel{\sim}{L}$	$ au_6(J,L)$	J, L	$ au_7(J)$
1	1	1		

• Elimination Ordering: G,I,S,L,H,C,D

Step	Variable eliminated	Factors used	Variables involved	New factor
1	G	$\phi_G(G,I,D), \phi_L(L,G), \phi_H(H,G,J)$	G, I, D, L, J, H	$ au_1(I,D,L,J)$
2	I	$\phi_I(I)$, $\phi_S(S,I)$, $\tau_1(I,D,L,S,J,H)$	S, I, D, L, J, H	$ au_2(D,L,S,J)$
3	S	$\phi_J(J,L,S), au_2(D,L,S,J,H)$	D, L, S, J, H	$ au_3(D,L,J,\mathbf{H})$
	7	$ au_3(D,L,J,H)$	D, L, J, H	$ au_4(D,J,H)$
4	L			$ au_5(D,J)$
5	$^{\prime}H$	$ au_4(D,J,H)$	D, J, H	
6	C	$ au_5(D,J),\phi_C(C),\phi_D(D,C)$	D, J, C	$ au_6(D,J)$
7	D .	$ au_6(D,J)$	D, J	$ au_7(J)$

Factors with much larger scope

Dealing with Evidence

- We observe student is intelligent (i^I) and is unhappy (h^0)
- What is the probability that student has a job?

$$P(J \mid i^{1}, h^{0}) = \frac{P(J, i^{1}, h^{0})}{P(i^{1}, h^{0})}$$

– For this we need unnormalized distribution $P(J,i^1,h^0)$. Then we compute conditional distribution by renormalizing by $P(e)=P(i^1,h^0)$

BN with evidence e is Gibbs with Z=P(e)

Defined by original factors reduced to context E=e

- B is a BN over χ and E=e an observation. Let $W=\chi -E$.
 - Then $P_R(W|e)$ is a Gibbs distribution with factors

$$\Phi = \{\phi_{Xi}\} X_i \varepsilon \chi \text{ where } \phi_{Xi} = P_B(X_i|Pa_{Xi})[E=e]$$

• Partition function for Gibbs distribution is P(e). Proof follows:

$$\begin{split} & P_{B}\left(\chi\right) = \prod_{i=1}^{N} P_{B}\left(X_{i} \mid Pa_{X_{i}}\right) \\ & P_{B}(W \mid E = e) = \frac{P_{B}(W) \left[E = e\right]}{P_{B}(E = e)} = \frac{\prod_{i=1}^{N} P_{B}\left(X_{i} \mid Pa_{X_{i}}\right) \left[E = e\right]}{\sum_{W} P_{B}\left(\chi\right) \left[E = e\right]} = \frac{\prod_{i=1}^{N} P_{B}\left(X_{i} \mid Pa_{X_{i}}\right) \left[E = e\right]}{\sum_{W} \prod_{i=1}^{N} P_{B}\left(X_{i} \mid Pa_{X_{i}}\right) \left[E = e\right]} \end{split}$$

- Thus any BN conditioned on evidence can be regarded as a Markov network
 - and use techniques developed for MN analysis

Sum-Product for Conditional Probabilities

- Apply Sum-product VE to χ-Y-E
- Returned factor ϕ^* is P(Y,e)
- Renormalize by P(e), sum over entries in unormalized distribution

```
Procedure Cond-Prob-VE (

\mathcal{K}, // A network over \mathcal{X}
\mathbf{Y}, // Set of query variables
\mathbf{E} = \mathbf{e} // Evidence
)

\Phi \leftarrow \text{Factors parameterizing } \mathcal{K}
Replace each \phi \in \Phi by \phi[\mathbf{E} = \mathbf{e}]
Select an elimination ordering \prec
\mathbf{Z} \leftarrow = \mathcal{X} - \mathbf{Y} - \mathbf{E}
\phi^* \leftarrow \text{Sum-Product-VE}(\Phi, \prec, \mathbf{Z})
\alpha \leftarrow \sum_{\mathbf{y} \in Val(\mathbf{Y})} \phi^*(\mathbf{y})
\mathbf{return } \alpha, \phi^*
```

Run of Sum-Product VE

Computing

$$P(J,i^{1},h^{0})$$

Step	Variable	Factors	Variables	New
T T	eliminated	used	involved	factor
1'	C	$\phi_C(C), \phi_D(D,C)$	C, D	$ au_1'(D)$
2'	D	$\phi_G[I=i^1](G,D), \phi_I[I=i^1](), \tau_1'(D)$	G, D	$ au_2'(G)$
5'	G	$\tau'_2(G), \phi_L(L, G), \phi_H[H = h^0](G, J)$	G, L, J	$ au_5'(L,J)$
6'	S	$\phi_S[I=i^1](S), \phi_J(J,L,S)$	J, L, S	$ au_6'(J,L)$
7'	$\stackrel{\circ}{L}$	$ au_6'(J,L), au_5'(J,L)$	J, L	$ au_7'(J)$

Compare with previous elimination ordering:

- Steps 3,4 disappear
- Since *I* and *H* need not be eliminated

Step	Variable	Factors	Variables	New
otop	eliminated	used	involved	factor
1	C	$\phi_C(C)$, $\phi_D(D,C)$	C,D	$ au_1(D)$
2	D	$\phi_G(G,I,D), au_1(D)$	G, I, D	$ au_2(G,I)$
3	I	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	G, S, I	$ au_3(G,S)$
4	H	$\phi_H(H,G,J)$	H,G,J	$ au_4(G,J)$
5	G	$\tau_4(G,J), \tau_3(G,S), \phi_L(L,G)$	G, J, L, S	$ au_5(J,L,S)$
6	S	$\tau_5(J,L,S), \phi_J(J,L,S)$	J, L, S	$ au_6(J,L)$
7	L	$ au_6(J,L)$	J, L	$ au_7(J)$

By not eliminating *I* we avoid step that correlates *G* and *I*

Complexity of VE: Simple Analysis

- If *n* random variables and *m* initial factors:
 - We have m=n in a BN
 - In a MN we may have more factors than variables
- VE picks a variable X_i then multiplies all factors involving that variable
 - Result is a single factor ψ_i
- If N_i is no. of factors in ψ_i and $N_{max} = max N_i$
- Overall amount of work required is $O(mN_{max})$
- Inevitable exponential blowup is exponential size of factors ψ_i

Complexity: Graph-Theoretic Analysis

- VE can be viewed as operating on an undirected graph with factors Φ
- If P is distribution defined by multiplying factors in Φ
 - Defining $X = Scope[\Phi]$

$$P(X) = \frac{1}{Z} \prod_{\phi \in \Phi} \phi$$
 where $Z = \sum_{X} \prod_{\phi \in \Phi} \phi$

Then the directed graph defined by VE algorithm is precisely the Moralized BN

Factor Reduction: Reduced Gibbs

- Factor $\psi(A,B,C)$
- Context $C=c^1$

a^1	b^1	c^1	$0.5 \cdot 0.5 = 0.25$
a^1	b^1	c^2	$0.5 \cdot 0.7 = 0.35$
a^1	b^2	c^1	0.8.0.1 = 0.08
a^1	b^2	c^2	0.8.0.2 = 0.16
a^2	b^1	c^1	$0.1 \cdot 0.5 = 0.05$
a^2	b^1	c^2	$0.1 \cdot 0.7 = 0.07$
a^2	b^2	c^1	0.0.1 = 0
a^2	b^2	c^2	0.0.2 = 0
a^3	b^1	c^1	$0.3 \cdot 0.5 = 0.15$
a^3	b^1	c^2	$0.3 \cdot 0.7 = 0.21$
a^3	b^2	c^1	$0.9 \cdot 0.1 = 0.09$
a^3	b^2	c^2	$0.9 \cdot 0.2 = 0.18$

Value of C determines the factor $\tau(A,B)$

 $C=c^{1}$

$$\tau(A,B) = \Sigma_{C=c} l \quad \psi(A,B,C)$$

Initial Set of Factors

Context G=g

Context G=g, S=s

VE as graph transformation

When a variable X is eliminated from Φ , Fill edges are introduced in Φ_X

After eliminating *C*

After eliminating *D* No fill edges

After eliminating *I* Fill edge *G-S*

Induced Graph

- Union of all graphs generated by VE
- Every factor generated is a clique
- Every maximal clique is the scope of some intermediate factor

Induced Graph due to VE using elimination order:

Step	Variable	Factors	Variables	New
отор	eliminated	used	involved	factor
1	C	$\phi_C(C)$, $\phi_D(D,C)$	C,D	$ au_1(D)$
2	D	$\phi_G(G,I,D)$, $\tau_1(D)$	G, I, D	$ au_2(G,I)$
3	I	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	G, S, I	$ au_3(G,S)$
4	H	$\phi_H(H,G,J)$	H,G,J	$ au_4(G,J)$
5	G	$\tau_4(G,J), \tau_3(G,S), \phi_L(L,G)$	G, J, L, S	$ au_5(J,L,S)$
6	S	$\tau_5(J,L,S), \phi_J(J,L,S)$	J, L, S	$ au_6(J,L)$
7	L	$ au_6(J,L)$	J, L	$ au_7(J)$

Width of induced graph= no. of nodes in largest clique minus 1

Minimal induced width over all orderings is bound on VE performance

Finding Elimination Orderings

- Max-cardinality Search
 - Induced graphs are chordal
 - Every minimal loop is of length 3
 - $-G \rightarrow L \rightarrow J \rightarrow H$ is cut by chord $G \rightarrow J$
- Greedy Search

Max-Cardinality Search

Procedure Max-Cardinality (

```
H // An undirected graph over \chi
```

```
Initialize all nodes in \mathcal{X} as unmarked

for k = |\mathcal{X}| \dots 1

X \leftarrow unmarked variable in \mathcal{X} with largest number of marked neighbors

\pi(X) \leftarrow k

Mark X

return \pi
```


Select S first Next is a neighbor, say JLargest no of marked neighbors are H and I

Greedy Search

• Procedure Greedy- Ordering(

```
H // An undirected graph over χs // An evaluation metric
```

```
Initialize all nodes in \mathcal{X} as unmarked

for k = 1 \dots |\mathcal{X}|

Select an unmarked variable X \in \mathcal{X} that minimizes s(\mathcal{H}, X)

\pi(X) \leftarrow k

Introduce edges in \mathcal{H} between all neighbors of X

Mark X

return \pi
```

Evaluation metric s(H,X):

- Min-neighbors
- Min-weight
- Min-fill
- Weighted min-fill

Comparison of VE Orderings

- Different heuristics for variable orderings
- Testing data:
 - 8 standard BNs ranging from 8 to 1,000 nodes
- Methods:
 - Simulated annealing, BN package
 - Four heuristics

Comparison of VE variable ordering algorithms

- Evaluation metric
 s(H,X):
- Min-neighbors
- Min-weight
- Min-fill
- Weighted min-fill
- For large networks worthwhile to run several heuristic algorithms to find best ordering

Two Simple Inference Cases

- 1. Bayes theorem as inference
- 2. Inference on a chain

1. Bayes Theorem as Inference

Joint distribution p(x,y) over two variables x
 and y

- Factors p(x,y)=p(x)p(y|x)
 - represented as directed graph (a)
 - We are given CPDs p(x) and p(y|x)
- If we observe value of y as in (b)
 - Can view marginal p(x) as prior
 - Over latent variable x
- Analogy to 2-class classifier
 - Class $x \in \{0,1\}$ and feature y is continuous
 - Wish to infer a posteriori distribution p(x|y)

Inferring posterior using Bayes

- Using sum and product rules, we can evaluate marginal $p(y) = \sum p(y|x')p(x')$
 - Need to evaluate a summation
- Which is then used in Bayes rule to calculate

$$p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)}$$

- Observations
 - Joint is now expressed as

$$p(x,y)=p(y)p(x|y)$$

- Which is shown in (c)
- Thus knowing value of y
 we know distribution of x

2. Inference on a Chain

- Graphs of this form are known as Markov chains
 - Example: N = 365 days and x is weather (cloudy,rainy,snow..)
- Analysis more complex than previous case
- In this case directed and undirected are exactly same since there is only one parent per node (no additional links needed)
- Joint distribution has form

$$p(\mathbf{x}) = \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) ... \psi_{N-1,N}(x_{N-1}, x_N)$$

Product of potential functions over pairwise cliques

- Specific case of N discrete variables
 - Potential functions are K x K tables
 - Joint distribution has $(n-1)K^2$ parameters

Inferring marginal of a node

- Wish to evaluate marginal distribution $p(x_n)$
 - What is the weather on November 11?
- For specific node x_n part way along chain
- As yet there are no observed nodes
- Required marginal obtained summing joint distribution over all variables except x_n

$$p(x_n) = \sum_{x_1} ... \sum_{x_{n-1}} \sum_{x_{n+1}} ... \sum_{x_N} p(x)$$
By application of sum rule

Naive Evaluation of marginal

$$p(x_n) = \sum_{x_1} \dots \sum_{x_{n-1}} \sum_{x_{n+1}} \dots \sum_{x_N} p(x)$$

$$= \sum_{x_1} \dots \sum_{x_{n-1}} \sum_{x_{n+1}} \dots \sum_{x_N} \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \dots \psi_{N-1,N}(x_{N-1}, x_N)$$

Joint

- 1. Evaluate joint distribution
- 2. Perform summations explicitly
- Joint can be expressed as set of numbers one for each value of x
- There are N variables with K states
 - $-K^N$ values for x
- Evaluation of both joint and marginal
 - Exponential with length N of chain
 - Impossible with K=10 and N=365

Efficient Evaluation

$$p(x_n) = \sum_{x_1} ... \sum_{x_{n-1}} \sum_{x_{n+1}} ... \sum_{x_N} \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) ... \psi_{N-1,N}(x_{N-1}, x_N)$$

- We are adding a bunch of products
- But multiplication is distributive over addition

$$ab+ac=a(b+c)$$

- Perform summation first and then do product
- LHS involves 3 arithmetic ops,
- RHS involves 2
- Sum-of-products evaluated as sums first

Efficient evaluation:

exploiting conditional independence properties

$$p(x_n) = \sum_{x_1} ... \sum_{x_{n-1}} \sum_{x_{n+1}} ... \sum_{x_N} \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) ... \psi_{N-1,N}(x_{N-1}, x_N)$$

- Rearrange order of summations/multiplications
 - to allow marginal to be evaluated more efficiently
- Consider summation over x_N
 - Potential $\psi_{N-1,N}(x_{N-1},x_N)$ is only one that depends on x_N
 - So we can perform $\sum_{x_N} \psi_{N-1,N}(x_{N-1},x_N)$
 - To give a function of x_{N-1}
- Use this to perform summation over x_{N-1}
- Each summation removes a variable from distribution or removal of node from graph

Marginal Expression

 Group potentials and summations together to give marginal

$$p(x_n) = \frac{1}{Z}$$

$$\left[\sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1},x_n) ... \left[\sum_{x_2} \psi_{2,3}(x_2,x_3) \left[\sum_{x_1} \psi_{1,2}(x_1,x_2)\right]\right]..\right]$$

$$\left[\sum_{x_{n-1}} \psi_{n,n+1}(x_n, x_{n+1}) ... \left[\sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N)\right] ..\right]$$

Key concept:

Multiplication is distributive over addition ab+ac=a(b+c)LHS involves 3 arithmetic ops, RHS involves 2

$$\mu_{\beta}(x_n)$$

Computational cost

- Evaluation of marginal using reordered expression
- *N-1* summations
 - Each with K states
 - Each a function of 2 variables
 - Summation over x_1 involves only $\psi_{1,2}(x_1,x_2)$
 - A table of K x K numbers
 - Sum table over x_1 for each x_2
 - $-O(K^2)$ cost
- Total cost is $O(NK^2)$
- Linear in chain length vs. exponential cost of naïve approach
 - Able to exploit many conditional independence properties of simple graph

Interpretation as Message Passing

- Calculation viewed as message passing in graph
- Expression for marginal decomposes into

$$p(x_n) = \frac{1}{Z} \mu_{\alpha}(x_n) \mu_{\beta}(x_n)$$

- Interpretation
 - Message passed forwards along chain from node x_{n-1} to x_n is $\mu_{\alpha}(x_n)$
 - Message passed backwards from node x_{n+1} to x_n is $\mu_{\beta}(x_n)$
 - Each message comprises of K values one for each choice of x_n

Recursive evaluation of messages

• Message $\mu_{\alpha}(x_n)$ can be evaluated as

$$\mu_{\alpha}(x_{n}) = \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_{n}) \left[\sum_{x_{n-2}} \dots \right]$$

$$= \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_{n}) \mu_{\alpha}(x_{n-1}) \qquad (1)$$

Therefore first evaluate x_{n-1}

$$\mu_{\alpha}(x_2) = \sum_{x_1} \psi_{1,2}(x_1, x_2)$$

- Apply (1) repeatedly until we reach desired node
- Note that outgoing message $\mu_{\alpha}(x_n)$ in (1) is obtained by
 - multiplying incoming message $\mu_{\alpha}(x_{n-1})$ by the local potential involving the node variable and
 - the outgoing variable
 - and summing over node variable

Recursive message passing

• Similarly message $\mu_b(x_n)$ can be evaluated recursively starting with node x_n

$$\mu_{\beta}(x_{n}) = \sum_{x_{n+1}} \psi_{n+1,n}(x_{n+1}, x_{n}) \left[\sum_{x_{n+2}} \dots \right]$$

$$= \sum_{x_{n+1}} \psi_{n+1,n}(x_{n+1}, x_{n}) \mu_{\beta}(x_{n+1})$$

Message passing
equations known as
Chapman-Kolmogorov
equations for
Markov processes

- Normalization constant Z is easily evaluated
 - By summing $\frac{1}{Z}\mu_{\alpha}(x_n)\mu_{\beta}(x_n)$ over all state of x_n
 - An O(K) computation

Evaluating marginals for every node

- Evaluate $p(x_n)$ for every node n = 1,...N
- Simply applying above procedure is $O(N^2M^2)$
- Computationally wasteful with duplication
 - To find $p(x_1)$ we need to propagate message $m_b(.)$ from node x_N back to x_2
 - To evaluate $p(x_2)$ we need to propagate message $m_b(.)$ from node x_N back to x_3

Instead

- launch message $m_b(x_{N-1})$ starting from node x_N and propagate back to x_1
- launch message $m_a(x_2)$ starting from node x_2 and propagate forward to x_N
- Store all intermediate messages along the way
- Then any node can evaluate its marginal by $p(x_n) = \frac{1}{Z} \mu_{\alpha}(x_n) \mu_{\beta}(x_n)$
- Computational cost is only twice as finding marginal of single node instead of N times 56

Joint distribution of neighbors

- Wish to calculate joint distribution $p(x_{n-1},x_n)$ for neighboring nodes
- Similar to previous computation
- Required joint distribution can be written as

$$p(x_{n-1}, x_n) = \frac{1}{Z} \mu_{\alpha}(x_{n-1}) \psi_{n-1}, n(x_{n-1}, x_n) \mu_{\beta}(x_n)$$

- Obtained once message passing for marginals is completed
- Useful result if we wish to use parametric forms for conditional distributions

Tree structured graphs

- Local message passing can be performed efficiently on trees
- Message passing can be generalized to give sum-product algorithm

Tree

- a graph with only one path between any pair of nodes
- Such graphs have no loops
- In directed graphs a tree has a single node with no parents called a *root*
- Directed to undirected will not add moralization links since every node has only one parent

Polytree

- A directed graph has nodes with more than one parent but there is only one path between nodes (ignoring arrow direction)
- Moralization will add links

Undirected tree

Directed tree

