Problem set 12.

NP-completeness.

- 1. Prove that the following language is NP-complete.
 - ALMOST-HAMCYCLE = $\{G|G \text{ is an undirected graph with a cycle on all but one vertex. } \}$ (So if the graph has n vertices and a cycle on n-1 vertices then it belongs to ALMOST-HAMCYCLE).
- 2. Assume $P \neq NP$, and that X is a language such that $X \in P$. Is it possible that,
 - (a) X has a Karp-reduction to a NP-complete problem Y (i.e. $X \leq_P Y$)?
 - (b) there is a Karp-reduction of a NP-complete problem Y to X (i.e. $Y \leq_P X$)?
 - (c) X is a language in the class NP?
- 3. Show that the following language is NP-complete: 3EQUAL- $COLOR = \{G|G \text{ is an undirected graph with a proper 3-coloring such that each color class has the same number of vertices. }$
- $4.\ \,$ Prove that TSP (travelling salesman problem) is NP-complete.
 - $TSP = \{(G, k) | G \text{ is an undirected weighted graph}, k \text{ a positive integer}, \text{ and } G \text{ has a hamiltonian cycle with total weight at most } k. \}$
- 5. Show the following Karp-reductions:
 - (a) SUBSETSUM \leq_P 3-COLOR
 - (b) CONNECTED \leq_P HAMPATH
 - (r) CONNECTED \leq_P BIPARTITE
 - where, CONNECTED = $\{G|G \text{ is an undirected connected graph }\}$ and BIPARTITE = $\{G|G \text{ is an undirected bipartite graph }\}$.
- 6. An organisation of n people has b different committees. We want to find a schedule for the committee meetings. Two different committees can meet on the same day if they don't have a common member. We are given a positive number k and a list of names of members of each committee. We want to decide if the b committee meetings can be held in at most k days. Provide a polynomial time algorithm for this problem, or prove that it is NP-complete.
- 7. Decide if the following problems are in P or are NP-complete:
 - (a) ATLEAST-kPATH = $\{(G,k)|G \text{ is an undirected graph with a path of length at least } k\}$
 - (b) $kPATH = \{(G, k) | G \text{ is an undirected graph with a path of length exactly } k\}$
 - (c) ATMOST-kPATH = $\{(G,k)|G$ is an undirected graph with a path of length at most $k\}$
- 8. We know that $X_1 \leq_P X_2$. Assume further that we have a Karp-reduction of the complement of X_2 to PARTITION. Prove that $X_1 \in \text{coNP}$.
- 9. Prove that SUBSET-SUM is NP-complete using the fact that PARTITION is NP-complete.
 - SUBSET-SUM = $\{(s_1, s_2, ..., s_n, b) | s_i$'s and b are positive integers and there is a subset of the s_i 's whose sum is exactly b}
 - PARTITION = $\{(s_1, s_2, ..., s_n) | s_i$'s are positive integers and there is a partition of the s_i 's into two subsets of equal sum $\}$
- 10. Prove that KNAPSACK is NP-complete using the fact that SUBSET-SUM is NP-complete.
- 11. Is it possible that CONNECTED \leq_P HAMCYCLE? Is it possible that HAMCYCLE \leq_P CONNECTED?
- 12. Determine if the following language is in P or NP-complete: $12\text{-}4\text{COLOR} = \{G|G \text{ is an undirected graph with a proper 4-coloring such that two color classes have exactly 1 and 2 vertices in them respectively \}.$