TEMA 2: ÁLGEBRA DE BOOLE

Índice:

- 1. Introducción al Álgebra de Boole
- 2. Puertas Lógicas Digitales
- 3. Funciones Lógicas
- 4. Simplificación e Implementación de Funciones

TEMA 2: ÁLGEBRA DE BOOLE

Bibliografía:

- T.L.Floyd. <u>Fundamentos de Sistemas Digitales</u>.
 - o Cap. 3: Puertas Lógicas
 - o Cap. 4: Álgebra de Boole y Simplificación Lógica
 - o Cap. 5: Lógica Combinacional
- C.Blanco. <u>Fundamentos de Electrónica Digital</u>.
 - o Cap. 2: Álgebra de Boole y Funciones Lógicas
- J.Mª Angulo y J. García. <u>Sistemas Digitales y Tecnología de Computadores</u>.
 - o Cap 3. Álgebra de Boole
- E. Mandado. <u>Sistemas Electrónicos Digitales</u>.
 - o Cap 2. Álgebra de Boole
 - Cap. 3 Sistemas Combinacionales

1. Introducción al Álgebra de Boole

1. Introducción al Álgebra de Boole. Definición. Axiomas

Es un conjunto de elementos que pueden tomar dos valores perfectamente diferenciados (que representaremos con $\mathbf{0}$ y $\mathbf{1}$) relacionados por los operadores + (suma lógica) y · (producto lógico), que cumplen los siguientes axiomas:

• Ambas operaciones son conmutativas:

$$a + b = b + a$$

$$a \cdot b = b \cdot a$$

• Existen dos elementos neutros, uno por operación:

$$0 + a = a$$

$$a \cdot 1 = a$$

Cada operación es distributiva respecto a la otra:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

$$a+(b\cdot c)=(a+b)\cdot (a+c)$$

•Para todo elemento a existe un elemento complementario \bar{a} , que cumple:

$$a+\bar{a}=1$$

$$a \cdot \bar{a} = 0$$

1. Introducción al Álgebra de Boole

Leyes y Teoremas

Principio de dualidad: Cada identidad deducida de los anteriores axiomas permanece válida si las operaciones de suma lógica y producto lógico y los elementos 0 y 1 se intercambian entre si.

Idempotencia:

$$a+a=a$$

 $a \cdot a = a$ $\forall a \in B$

Elemento absorbente:

$$a+1=1$$

 $a\cdot 0=0$ $\forall a\in B$

Estas dos leyes, junto con el postulado que establece la existencia del elemento neutro, definen la suma y el producto lógico:

1. Introducción al Álgebra de Boole

$$a+a\cdot b=a$$

$$a\cdot (a+b)=a$$

$$\forall a,b\in B$$

$$\bar{a} = a$$

$$\forall a \in B$$

$$a+(b+c)=(a+b)+c$$

$$a\cdot(b\cdot c)=(a\cdot b)\cdot c$$

$$\forall a,b,c\in B$$

$$ab + \overline{a}c = ab + \overline{a}c + bc$$

$$\frac{\overline{a+b} = \overline{a} \cdot \overline{b}}{\overline{a \cdot b} = \overline{a} + \overline{b}} \forall a, b \in B$$

2. Puertas Lógicas Digitales

Puertas Lógicas Digitales: Puertas Básicas

Inversor o Negador:

Puerta AND:

Puerta OR:

$$\begin{array}{c}
a \\
b
\end{array}$$

$$f = a + b$$

a	b	f
0	0	0
0	1	1
1	0	1
1	1	1

2. Puertas Lógicas Digitales

Puerta NAND:

Puerta NOR:

a	b	f
0	0	1
0	1	0
1	0	0
1	1	0

Puerta OR Exclusiva (EXOR o XOR):

$$\begin{array}{cccc}
a & & \\
b & & \\
\end{array}$$

$$f = \overline{a}b + a\overline{b} = a \oplus b$$

<u>a</u>	b	f
0	0	0
0	1	1
1	0	1
1	1	0

Funciones Lógicas. Definición

Una función lógica es un conjunto de variables relacionadas entre si por las operaciones básicas definidas de suma lógica, producto lógico y negación:

$$f = f(a,b,c,...)$$

$$f_1(a,b,c) = abc + \overline{a}b\overline{c} + a\overline{b}c + \overline{a}bc$$

$$f_2(a,b,c,d) = a + bc + a(\overline{b}+d)(c+\overline{d})$$

Toda función booleana se comporta como una variable del sistema.

Definimos un término suma como una suma de variables bien en su forma directa o complementada:

$$\bar{a} + b + \bar{c};$$
 $a + \bar{b} + c;$

Si, por el contrario, dichas variables están relacionadas mediante productos lógicos diremos que se trata de un término producto:

$$\overline{a} \cdot b \cdot \overline{c}$$
; $a \cdot \overline{b} \cdot c$;

Tabla de Verdad

Una tabla de verdad de una función lógica es una forma de representación de la misma, en la que se indica el valor (0 ó 1) que toma la función para cada una de las combinaciones posibles de las variables de las cuales depende.

	abc	f
$c = \overline{i}$, -1 , $\overline{i} = 1$	000	0
$f = \bar{a}\bar{b}c + \bar{a}bc + a\bar{b}\bar{c} + abc$	001	1
$f = \sum (1,3,4,7)$	010	0
3	011	1
$f = (a + b + c)(a + \bar{b} + c) (\bar{a} + b + \bar{c}) (\bar{a} + \bar{b} + c)$	100	1
f = (0,2,5,6)	101	0
3	110	0
	111	1

Funciones Lógicas. Representación estándar

Cuando relacionamos dos o más términos producto mediante la suma lógica, la expresión resultante diremos que queda expresada en forma de Suma de Productos: $f_1(a,b,c) = abc + \overline{a}b\overline{c} + a\overline{b}c + \overline{a}bc$

Cuando relacionamos dos o más términos suma mediante el producto lógico, la expresión resultante estará expresada en forma de Producto de Sumas:

$$f_2(a,b,c,d) = (a + \overline{b} + c + d)(a + b + c + \overline{d})$$

Se llama término canónico o estándar de una función lógica a todo producto o suma en la cual aparecen todas las variables que forman parte de la función, bien sea en su forma directa o inversa. En las funciones:

$$f(a,b,c) = ab\overline{c} + a\overline{b}\overline{c} + ac + \overline{b}c$$

 $ab\overline{c}$ y $a\overline{b}\overline{c}$ son productos canónicos

$$f(a,b,c) = (b+\overline{c})(a+\overline{b}+\overline{c})(a+c)(\overline{a}+\overline{b}+\overline{c})$$

$$(a+\overline{b}+\overline{c}) \ y \ (\overline{a}+\overline{b}+\overline{c}) \ son sumas canónicas$$

Una función formada únicamente por términos canónicos diremos que es una función canónica o estándar.

Las expresiones en forma estándar pueden expresarse de forma mas sencilla a través de su equivalente numérico:

$$f(a,b,c) = \overline{a}\overline{b}\overline{c} + \overline{a}b\overline{c} + a\overline{b}\overline{c} + abc$$

$$\overline{a}\overline{b}\overline{c} = 000_2 = 0_{10}$$

$$\overline{a}b\overline{c} = 010_2 = 2_{10}$$

$$a\overline{b}\overline{c} = 100_2 = 4_{10}$$

$$abc = 111_2 = 7_{10}$$

De forma similar:

$$f(a,b,c) = \overline{a}\overline{b}\overline{c} + \overline{a}b\overline{c} + a\overline{b}\overline{c} + abc = \sum_{3}(0,2,4,7)$$

$$f = (a+b+\overline{c}+d)(a+\overline{b}+\overline{c}+d)(a+b+c+\overline{d})(\overline{a}+\overline{b}+\overline{c}+\overline{d}) = \prod_{4}(2,6,1,15)$$

Equivalencia entre Formatos.

Sea la función expresada en forma de suma de productos:

$$f(a,b,c) = \overline{a}\overline{b}c + a\overline{b}\overline{c} + a\overline{b}c = \sum_{3} (1,4,5)$$

La expresión negada de esta función estará compuesta por todos los elementos que no la cumplen:

$$\overline{f} = \sum_{3} (0,2,3,6,7)$$

En forma algebraica:

$$\overline{f} = \overline{a}\overline{b}\overline{c} + \overline{a}b\overline{c} + \overline{a}bc + ab\overline{c} + abc$$

Y puesto que

$$f = \overline{\overline{f}} = \overline{a}\overline{b}\overline{c} + \overline{a}b\overline{c} + \overline{a}bc + ab\overline{c} + abc$$

Y aplicando ahora los teoremas de DeMorgan:

$$f = \overline{a}\overline{b}\overline{c} + \overline{a}b\overline{c} + \overline{a}bc + ab\overline{c} + abc =$$

$$= \overline{a}\overline{b}\overline{c} \cdot \overline{a}\overline{b}\overline{c} \cdot \overline{a}\overline{b}\overline{c} \cdot \overline{a}\overline{b}\overline{c} \cdot \overline{a}\overline{b}\overline{c} =$$

$$= (a + b + c)(a + \overline{b} + c)(a + \overline{b} + \overline{c})(\overline{a} + \overline{b} + c)(\overline{a} + \overline{b} + \overline{c})$$

Luego:

$$f = \sum_{3} (1,4,5) = \prod_{3} (0,2,3,6,7)$$

En resumen, la forma canónica estándar equivalente está formada por los términos numéricos que no aparecen en la forma original.

Conjuntos Completos. Implementación

Un conjunto completo está compuesto por un grupo de puertas mínimo necesario que permita implementar cualquier función:

Ejemplos: Inversor, puerta AND y puerta OR. Puerta NAND. Puerta NOR

$$f = \overline{a}\overline{d} + b\overline{d} + \overline{a}c$$

Puerta NAND como Elemento Universal

Inversor:

Puerta AND:

$$a \rightarrow b = a \cdot b \equiv$$

$$a - b - a \cdot b$$

Puerta OR:

$$a \rightarrow b = a+b \equiv$$

Puerta NOR como Elemento Universal

Inversor:

Puerta OR:

$$a \rightarrow b \rightarrow a+b$$

$$a \rightarrow b \rightarrow a + b$$

Puerta AND:

$$a - b - a \cdot b$$

Conjuntos completos. Implementación

$$f = \overline{a}\overline{d} + b\overline{d} + \overline{a}c = \overline{\overline{a}\overline{d} + b\overline{d} + \overline{a}c} = \overline{\overline{a}\overline{d}} \cdot \overline{b}\overline{\overline{d}} \cdot \overline{\overline{a}c}$$

Conjuntos completos. Implementación

$$f = \overline{a}\overline{d} + b\overline{d} + \overline{a}c = \overline{\overline{a}\overline{d} + b\overline{d} + \overline{a}c} = \overline{\overline{a}\overline{d}} \cdot \overline{b}\overline{\overline{d}} \cdot \overline{\overline{a}c} = \overline{\overline{a}\overline{d}} \cdot \overline{b}\overline{\overline{d}} \cdot \overline{\overline{a}c}$$

Simplificación mediante Álgebra de Boole

Se basa en la aplicación sistemática de los axiomas, teoremas y leyes ya comentadas. Partiendo de la expresión canónica, básicamente se apoya en la propiedad:

$$abc + ... + \overline{a}bc = bc + ...$$

 $(a + b + c)(\overline{a} + b + c)... = (b + c)...$

$$abc + ab\overline{c} = ab(c + \overline{c})$$
$$(\overline{a} + b + c)(\overline{a} + \overline{b} + c)... = (\overline{a} + c) + b\overline{b}$$

$$abc + ab\overline{c} + a\overline{b}\overline{c} + a\overline{b}c = ab(c + \overline{c}) + a\overline{b}(c + \overline{c}) =$$

$$= ab + a\overline{b} = a(b + \overline{b}) = a$$

$$(a + b + c)(a + b + \overline{c})(a + \overline{b} + c) =$$

$$= [(a + b) + c\overline{c}][(a + c) + b\overline{b}] = (a + b)(a + c)$$

Simplificación mediante Tablas (o mapas) de Karnaugh

Se basa en sistematizar la aplicación del método algebraico ya descrito mediante la construcción de tablas.

Estas tablas están constituidas por celdas a las que asignaremos una combinación de tal forma que cada una de ellas esta rodeada únicamente por otras en las que difiere en una sola variable.

De 3 variables:

De 4 variables:

cd ab	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

De 5 Variables:

cde ab	000	001	011	010	110	111	101	100
00	0	1	3	2	6	7	5	4
01	8	9	11	10	14	15	13	12
11	24	25	27	26	30	31	29	28
10	16	17	19	18	22	23	21	20

Para completar las tablas procederemos como si se tratase de una tabla de verdad, colocando un 1 en las casillas de los términos que cumplen la función en forma de suma de productos y un 0 en las que no.

Simplificación en forma de PoS y SoP

$$f = (\overline{a} + \overline{d})(\overline{a} + \overline{b})(c + \overline{d})$$

Universitat d'Alacant

$$f = \sum_{n=0}^{\infty} (0,2,4,6,9,13,16,18,20,22,26,29,30,31)$$

 $f = (\overline{a}b\overline{d}e + abce + \overline{b}\overline{e} + ad\overline{e})$

Funciones Incompletas. Simplificación

Son aquellas que no tienen un valor definido para todas las posibles combinaciones de las variables de las que dependen.

a la a	f
abc	1
000	0
001	X
010	X
011	1
100	1
101	0
110	X
111	0

$f = \sum_{3} (3,4) + \sum_{\varnothing} (1,2,6)$								
bc a	00	01	11	10				
0	0	X	1	X				
1	1	0	0	X				
•								

$$f = \overline{a}b + a\overline{c}$$

c c a b	0 0	0 1	1 1	1 0
0 0	1	0	0	1
0 1	1	1	1	0
1 1	1	1	1	0
1 0	1	0	0	1

cde	000	001	011	010	110	111	101	100
00	0	I ₁	I 3	I 2	I 6	7	5	4
01	8	9	11	X ₁₀	X ₁₄	15	13	12
11	24	25	27	X ₂₆	X ₃₀	31	29	28
10	16	17	19	18	22	23	21	20

25