## Live dense reconstruction using a single camera



Richard A. Newcombe [rnewcomb]@doc.ic.ac.uk]

### Motivation



- Within the model based robotics paradigm
- Live reconstruction of scenes for physical prediction
  - Starting with surface geometry of (static) scenes.

### Motivation



 What is the limit of what can be from a multisensory robot platform with multiple passive cameras?

### Motivation



 What is the limit of what can be inferred from a single embodied (moving) passive camera?

### **General Motivation**



 What is the limit of what can be inferred from a single embodied (moving) passive camera?

#### In search of *a* path to live dense reconstruction...

Dense model out.



Passive images in.

## Our (robotics) motivation, live incremental reconstruction

- Would like an dense estimate of the scene geometry that does not require batch processing of all views
  - A robot might need the reconstruction before it can plan where next to move
  - If incrementally estimated the dense geometry can provide useful information to the tracker (occlusion and normals of points)
  - A live pipeline allows the user in the loop to improve reconstruction by inspecting current result.

## Our (robotics) motivation, live incremental reconstruction

- Associated benefits and new challenges over the standard MVS datasets:
- lots of data from a real time camera;
- small baseline between frames;
- user/robot in the loop to get better data if needed
- but the data will have motion blur and camera poses might not be perfect and may not be a global solution.

### **Talk Outline**

#### Part 1

- From sparse structure and motion to dense correspondences
  - Dense surface geometry not utilised in the tracking loop

#### (Quick) Part 2 new work

- Towards fully dense SLAM with a single camera
  - No explicit feature tracking in mapping or tracking:
     Dense geometry back in the tracking loop

# Modern real time structure from motion systems

Camera tracking and point clouds

- Monoslam [Davison et al ~ 01] first demonstration of a realtime structure from motion system. Probabilistic joint estimation of point structure and camera motion.
- **PTAM** [Klein and Murray 07] much improved camera tracking and denser point maps by splitting the tracking and mapping steps.
- Conclusion: that we can obtain live high quality camera motion but we still need surfaces not point clouds.
- Enabling technology to allow development of live dense reconstruction systems

## System Overview (CVPR 2010)

- (a) Utilise state of the art in real-time single camera SLAM.
- (b) For each each new key frame obtain a dense coarse reconstruction by globally fitting a function to the bundle adjusted point cloud
- (c) Chose a bundle of frames (images and poses)
- (d) Obtain a depth map for a reference frame in the bundle
- (e) Place the depth map into the global frame



## Coarse geometry



#### Coarse textured model from point cloud

 Use the currently available point cloud to construction a coarse mesh using a fast surface fitting method

#### Why?

- We can use the coarse model to obtain a predicted view or correspondence field between two images.
- Can be useful in itself

# Fitting a global function to the sparse point cloud

- Most 3D scattered data interpolation methods are designed for densely sampled sets.
- The point data obtained from PTAM is very sparse
- Feature samples exist only at high contrast corners of textured areas of the image
- We need a global function fitting to interpolate across large empty spaces.





# Multi-scale Compactly Supported Basis Functions (1)

- A standard technique to function fitting is to define the dense surface solution implicitly and represent the solution as a sum of RBFs.
- Globally defined solution using RBFs with infinite extent enable large unsampled spaces to be interpolated
  - lead to a dense linear system that is prohibitively expensive to solve for large #points.
- Local function fitting leads to a sparse system, but has limited interpolation capabilities.

## Multi-scale Compactly Supported Basis Functions (2)

 We use MSCSBF interpolation [Ohtake et al] that use "function valued" compact basis functions [H.Wendland 95] defined over multiple scales:

$$f^k(\mathbf{x}) = f^{k-1}(\mathbf{x}) + o^k(\mathbf{x}) \qquad (k = 1, 2, \dots, M),$$

- Good global solution with local function fitting over multiple scales.
- Where a coarse level solution is the offsetting function for the next finer level: enables interpolation of data across large empty regions



Hierarchical octree samples and interpolation function showing 0 level set from Ohtake et al 2003

# Multi-scale Compactly Supported Basis Functions (2)

Each scale utilises the well defined CSBF  $\phi$  weighted by a local quadric fit  $g(\mathbf{x})$  of the local node mean point and normal: sparse system to solve.

$$o^{k}(\mathbf{x}) = \sum_{\mathbf{p}_{i}^{k} \in \mathscr{P}^{k}} \left[ g_{i}^{k}(\mathbf{x}) + \lambda_{i}^{k} \right] \phi_{\sigma^{k}}(\|\mathbf{x} - \mathbf{p}_{i}^{k}\|).$$

Fast solution using gradient descent



### MSCSRBF with PTAM point clouds



Bundle adjusted point cloud input from PTAM



Function fit with polygonisation of the surface level set using Bloomenthal's method.

• Alternatives include full tetrahedralisation of the point clouds using the visibility constraints [Qi Pan et al '09].

## Dense correspondences



#### Obtain dense correspondences

- Dense correspondences between the reference and several target frames are used to obtain a per pixel point estimate by minimising the per pixel re-projection error.
- Our estimated correspondence field allows us to initialise a coarse to fine optical flow algorithm to give high accuracy dense correspondences.

#### Why

 We are interested in obtaining a reconstruction of surfaces even in low textured areas. In this case the binary point features used in the SLAM system will not initialise or track.

## Simple least squares depth map given multiple correspondences

 Minimise sum of L2 norm re-projection errors for each individual pixel.

$$E_j = \sum_{i=1}^n \|\mathbf{P}^i(\mathbf{x}_j + \lambda_j \mathbf{r}_j) - \mathbf{u}_j\|_2^2$$

• Gradient descent by linearising around each  $\lambda$  to obtain a linear least squares problem



## GPU friendly Dense correspondences

- Most accurate correspondences are obtained using global optimisation methods that utilise a point wise data term with a spatial regularisation
- Assuming pixel value constancy data term\* a general regularised flow field problem is:

$$\min_{\mathbf{u}} \left\{ \int_{\Omega} \psi(\mathbf{u}, \nabla \mathbf{u}, \dots) d\Omega + \lambda \int_{\Omega} \phi \left( I_0(\mathbf{x}) - I_1(\mathbf{x} + \mathbf{u}(\mathbf{x})) \right) d\Omega \right\}$$

- \*Note: the data term can be used on pre-processed input data (i.e. a structure texture decomposition)
- Original variational formulation for dense small displacement field by Horn and Shunck 1981 The  $\psi$ =L2 on grad(u)  $\phi$ =L2 on the linearised data term.

### TV-L1 optic flow

- Much work has gone into obtaining a robust, discontinuity preserving, solution by utilising the L1 norm on both the data and regularisation terms.
- We will give an overview of the solution we've employed from Zach, Pock, Cremers et al.
- Setting  $\phi(x) = |x| \text{ and } \psi(\nabla u) = |\nabla u|$
- We have the TV-L1 energy

$$\min_{\boldsymbol{u}} \left\{ \int_{\Omega} |\nabla \boldsymbol{u}| \, d\Omega + \lambda \int_{\Omega} |I_0(\boldsymbol{x}) - I_1(\boldsymbol{x} + \boldsymbol{u}(\boldsymbol{x}))| \, d\Omega \right\}$$

Use the linearised data term

$$\rho(\mathbf{u}) = I_1(\mathbf{x} + \mathbf{u}_0) + \langle \nabla I_1, \mathbf{u} - \mathbf{u}_0 \rangle - I_0(\mathbf{x})$$

## TV-L1 optic flow Solution

 Quadratic splitting [Aujol et al] allows the data and regularisation term to be split:

$$\min_{\boldsymbol{u},\boldsymbol{v}} \left\{ \int_{\Omega} \sum_{d} |\nabla u_{d}| \, d\Omega + \frac{1}{2\theta} \sum_{d} \int_{\Omega} (u_{d} - v_{d})^{2} \, d\Omega + \lambda \int_{\Omega} |\rho(\boldsymbol{v})| \, d\Omega \right\}$$

- The first part is a well understood TV-L2 (ROF) model. Can be solved exactly using projected gradient via its dual formulation.
- The second part involves a point wise optimisation that be solved exactly too.
- Optimisation is now over 2 fields u and v. Both are a sum of convex functions
- Modern convex optimisation provides optimal solutions

### Coarse to fine solution

To ensure the linearised data term

$$\rho(\mathbf{u}) = I_1(\mathbf{x} + \mathbf{u}_0) + \langle \nabla I_1, \mathbf{u} - \mathbf{u}_0 \rangle - I_0(\mathbf{x})$$

- is meaningful for larger displacements a coarse to fine solution is employed.
- Problems with a coarse to fine warping scheme?
- Initialise flow field with coarse geometry flow: Set the initial flow field to the predicted flow field computed from the coarse model given the estimated camera motion.

# Result: Initialising the flow field with the dense prediction

- Resulting least squares depth map for correspondences with and without the dense prediction initialisation of the flow field.
- Despite using the coarse to fine scheme there is often too much rotational velocity between frames with agile camera to compute correspondences.

Correspondence field with Coarse initial geometry estimate.

**Standard coarse** to fine optic flow.



## Iterating the solution

- Example result using 4 target images (4 flow fields generated), first solution shown from the base mesh initialisation followed by a second iteration using reinitialisation.
- Least squares residual colouring and visibility brightness.



## Augmented reality application

- Reconstructing the desktop, and playing a simple car game.
- Dense surface reconstruction allows occlusion boundaries and physics (point clouds don't!)
- Simple ray-cast physics vehicle



### Part 1 Conclusions and future

- This work was a departure from our usual monocular SLAM work where we work on binary associated point based feature tracking.
- The (projected) gradient descent methods and point-wise data terms are trivial to implement on modern GPU technology.

## Quick Part 2 overview

- [Newcombe, Lovegrove and Davison '11] New work:
- Dense tracking and mapping: given the dense textured surface, align current live camera frame by full image allginment (2 ½D Lucas-Kanade style optimisation)
  - No explicit point feature matching.
  - For 6DOF using all pixels in the image makes a massively over determined system with increased robustness to fast motion.

## Quick Part 2 overview

- [Newcombe, Lovegrove and Davison '11] New work:
- Exact Data term search in photometric cost volume: we are now utilising the idea that the convex regularisation can be used with any sampled data term [Steinbrücker et al]
  - No explicit correspondences between frames.
  - We can use 100s of images for a single depth map.
  - No need to linearise the photometric error term, so no coarse to fine warping needed.

#### Further work



- A single moving camera is a very rich sensor!
- We are forced to **model and utilise prior knowledge** about the scene.
- We are now moving towards modelling more in the scene
  - Lighting
  - Surface material properties.

### References

- G. Klein and D. W. Murray. Parallel tracking and mapping for small AR workspaces. In Proceedings of the International Symposium on Mixed and Augmented Reality (IS-MAR), 2007
- Y. Ohtake, A. Belyaev, and H.-P. Seidel. A multi-scale approach to 3D scattered data interpolation with compactly supported basis functions. In Proceedings of Shape Modeling International, 2003.
- *J. Bloomenthal.* **An implicit surface polygonizer**. In Graphics Gems IV, pages 324–349. Academic Press, 1994.
- T. Pock Fast Total Variation for Computer Vision. PhD thesis, Graz University of Technology, January 2008.
- A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow. In Proceedings of the Dagstuhl Seminar on Statistical and Geometrical Approaches to Visual Motion Analysis, 2009.
- C. Zach. Fast and high quality fusion of depth maps. In Proceedings of the International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT), 2008
- Q. Pan, G. Reitmayr, and T. Drummond. **ProFORMA:Probabilistic feature-based on-line rapid model acquisition.** In Proceedings of the British Machine Vision Conference (BMVC), 2009
- M. Pollefeys, et al Detailed real-time urban 3D reconstruction from video. International Journal of Computer Vision (IJCV), 78(2-3):143–167, 2008.

## Acknowledgements

- We thank Thomas Pock for discussions in understanding the primal-dual approaches and other useful practicalities of computing the variational solution.
- Also members of the robot vision Lab including Steven Lovegrove and Margarita Chli for useful discussions during the development of this work