Modelagem do Pêndulo Simples em LAT_EX Trabalho com Tabelas e Figuras

Guilherme Turina de Melo Bárbara Bueno

20 de janeiro de 2024

1 Introdução

O estudo do pêndulo simples é essencial para compreender sistemas dinâmicos, servindo como base valiosa para análises mais complexas, como o pêndulo duplo. Neste relatório, iniciamos nossa exploração pelo pêndulo simples para estabelecer conceitos essenciais antes de nos aprofundarmos no pêndulo duplo.

Exploraremos a derivação das equações de movimento, considerando forças gravitacionais e condições iniciais. A escolha do pêndulo simples proporciona uma base sólida para o entendimento de princípios fundamentais aplicados ao pêndulo duplo.

2 Modelamento Matemático

O pêndulo simples é descrito por equações diferenciais que modelam o movimento angular da massa suspensa. Consideramos um pêndulo de comprimento L com uma massa pontual m na extremidade.

A equação diferencial que governa o movimento angular θ do pêndulo simples é derivada da segunda lei de Newton para rotação:

$$\frac{d^2\theta}{dt^2} = -\frac{g}{L}\sin(\theta)\tag{1}$$

As condições iniciais do problema são θ_0 (ângulo inicial), ω_0 (aceleração angular inicial), g (gravidade), L (tamanho do fio do pêndulo).

3 Metodologia Numérica

Para a análise desse problema, usamos o método de Euler e Euler modificado com $\theta_0 = \frac{\pi}{4}$ e $\omega_0 = 0$. Desenvolvemos o método em Python [2] para estudar o problema.

4 Resultados

Os resultados numéricos do método de Euler são apresentados na Tabela 1. Como esperado, o gráfico mostra um movimento harmônico simples. A sensibilidade do método de Euler ao tamanho do passo foi mitigada ajustando o passo para 0,001s.

Tempo (s)	Ângulo (Graus)	$ m Aceleração~Angular~(Rad/s^2)$
0.00	45.00	0.0000
0.50	3.01	-2.3957
1.00	-44.83	-0.3044
1.50	-9.05	2.3608
2.00	43.88	0.6098

Tabela 1: Dados de Resultados do Pêndulo Simples.

Figura 1: Movimento do Pêndulo Simples.

Trabalhando com Euler modificado, obtemos os resultados esperados com passos maiores (0,01s, por exemplo), como mostra a figura:

Figura 2: Movimento do Pêndulo Simples com Euler Modificado.

Assim, nosso estudo mostra que há métodos mais precisos, algo que será levado em conta em futuras análises.

5 Conclusão

Este relatório proporcionou uma abordagem prática à modelagem do pêndulo simples, utilizando LaTeX e métodos numéricos. Os resultados destacam a precisão do modelo. A sensibilidade do método de Euler ressalta a importância da escolha cuidadosa de métodos numéricos.

A combinação de teoria, modelagem e implementação oferece uma perspectiva holística na compreensão de fenômenos físicos. Este trabalho serve como base para estudos futuros de pêndulo duplo.

Referências

[1] João Pedro de Sá Moreira, Eduarda Neves da Silva, Lucas de Oliveira Dalbeto, Mariana de Morais Ribeiro Lião, Amauri Dias Carvalho, ESTUDO E MODELAGEM DE UM PÊNDULO SIMPLES ATRAVÉS DE EQUAÇÕES DIFERENCIAIS E ANÁLISE DE VÍDEO ASSISTIDA POR COMPUTADOR, REVISTA ACADÊMICA - ENSINO DE CIÊNCIAS E TECNOLOGIAS,

Tempo (s)	Ângulo (Graus)	$ m Aceleração \ Angular \ (Rad/s^2)$
0.00	45.00	-6.9296
0.50	2.99	-0.5104
1.00	-44.62	6.8841
1.50	-8.90	1.5164
2.00	43.50	-6.7463

Tabela 2: Dados de Resultados Adicionais do Pêndulo Simples com Euler Modificado.

 $2019, \ Disponível \ em: \ https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwig5Mm4meyDAxXdLrkGHdFEC4sQFnoECBQQAQ&url=https%3A%2F% 2Fintranet.cbt.ifsp.edu.br%2Fqualif%2Fvolume05%2F1.Engenharias%2FEd05_EN_04_37_58.pdf&usg=A0vVaw2CnmAdnInCrznbCj19aNd7&opi=89978449.$

- [2] Prof. Alexandre Roma Disponível em: https://edisciplinas.usp.br/course/view.php?id= 115492
- [3] Guilherme Turina, Barbara Bueno Disponível em: https://github.com/Turina7/Calculo-Numerico/tree/main