PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 2 (Jan 23 – Jan 31).

- 1 (20+20) For each of the following pairs of polynomials f and g:
 - (i) find the quotient and remainder on dividing f by g;
 - (ii) use the Euclidean Algorithm to find gcd(f, g);
 - (iii) find polynomials a and b with the property that gcd(f,g) = af + bg.
 - a) $f = t^3 + 4t^2 + t 2$, g = t + 1 over \mathbb{Z} .
 - b) $f = t^7 3t^6 + t + 4$, $g = 2t^3 + 1$ over \mathbb{F}_5 .
- **2** (5+15) 1) Prove that $f(t) = t^3 + t^2 + 1$ is irreducible in $\mathbb{Q}[t]$.
 - 2) Suppose that $\alpha \in \mathbb{C}$ is a root of f. Express α^{-1} and $(\alpha + 2)^{-1}$ as linear combinations, with rational coefficients, of $1, \alpha, \alpha^2$.
- 3 (5+10+5+10) 1) Let p>2 be a prime number and consider $P(x)=x^4+2ax^2+b^2$, where $a,b\in\mathbb{Z}$. Show that

$$P(x) = (x^2 + a)^2 - (a^2 - b^2) = (x^2 + b)^2 - (2b - 2a)x^2 = (x^2 - b)^2 - (-2a - 2b)x^2.$$

- 2) Noticing $(2b-2a)(-2a-2b) = 4(a^2-b^2)$, derive that one of the numbers $(a^2-b^2), (2b-2a), (-2a-2b)$ is a square modulo p.
- 3) Prove that $P(x) = x^4 + 2ax^2 + b^2$, $a, b \in \mathbb{Z}$ is reducible over $\mathbb{F}_p[x]$ for any prime p.
- 4) Prove that $f(x) = x^4 + 1$ is irreducible over \mathbb{Z} but reducible over \mathbb{F}_p for any prime p.
- **4** (10+10) 1) Prove that \mathbb{C} is isomorphic to the set of matrices $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, where $a, b \in \mathbb{R}$.
 - 2) Given a matrix A denote by exp A the matrix $I + \frac{A}{1!} + \frac{A^2}{2!} + \dots$ Using the isomorphism above and the Euler formula,

1

prove that

$$\exp\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right) = \left(\begin{array}{cc} e^a \cos b & -e^a \sin b \\ e^a \sin b & e^a \cos b \end{array}\right) \,.$$

- **5** (5+5+10) 1) Let $[L:K] < \infty$ be a finite extension. Prove that L:K is an algebraic extension, that is any $\alpha \in L$ is algebraic over K.
 - 2) Let $\alpha \in L/K$ and $[L:K] < \infty$. Then $K[\alpha] = K(\alpha)$.
 - 3) Suppose that L:K is an extension and any $\alpha \in L$ is algebraic. Is it true that $[L:K]<\infty$?

Solutions

General remark. If there is a typo in any task, then the maximum score will be awarded for that task.

- 1 (20+20) For each of the following pairs of polynomials f and g:
 - (i) find the quotient and remainder on dividing f by g;
 - (ii) use the Euclidean Algorithm to find gcd(f, g);
 - (iii) find polynomials a and b with the property that gcd(f,g) = af + bg.
 - a) $f = t^3 + 4t^2 + t 2$, g = t + 1 over \mathbb{Z} .
 - b) $f = t^7 3t^6 + t + 4$, $g = 2t^3 + 1$ over \mathbb{F}_5 .

Solution: (a, i) The quotient is $t^2 + 3t - 2$ and the remainder is zero.

- (a, ii) $f = g \cdot (t^2 + 3t 2)$ and hence gcd(f, g) = g.
- (a,iii) Take a=0 and b=1. Then $\gcd(f,g)=g=0\cdot f+1\cdot g$.
- (b,i) The quotient is $3t^4 4t^3 4t + 2$ and the remainder is 2.
- (b,ii) We have $f=(3t^4-4t^3-4t+2)g+2$ and hence gcd(f,g)=2 (or any other non-zero element of \mathbb{F}_5).
- (b, iii) We have $f (3t^4 4t^3 4t + 2)g = 2$. Take a = 1 and $b = -(3t^4 4t^3 4t + 2) = 2t^4 t^3 t 2$.
- **2** (5+15) 1) Prove that $f(t) = t^3 + t^2 + 1$ is irreducible in $\mathbb{Q}[t]$.
 - 2) Suppose that $\alpha \in \mathbb{C}$ is a root of f. Express α^{-1} and $(\alpha + 2)^{-1}$ as linear combinations, with rational coefficients, of $1, \alpha, \alpha^2$.

Solution: 1) In the lecture we showed that f is irreducible in $\mathbb{F}_2[t]$ and, therefore, in $\mathbb{Q}[t]$.

- 2) We have $\alpha^3 + \alpha^2 + 1 = 0$ and hence $\alpha^{-1} = -\alpha \alpha^2$. Further by the Euclidean algorithm, we have $t^3 + t^2 + 1 = (t^2 t)(t + 2) + 2t + 1$ and hence $t^3 + t^2 + 1 = (t^2 t)(t + 2) + 2(t + 2) 3$. Substituting α , we obtain $0 = (\alpha + 2)(\alpha^2 \alpha + 2) 3$. Hence $(\alpha + 2)^{-1} = (\alpha^2 \alpha + 2)/3$.
- 3 (5+10+5+10) 1) Let p>2 be a prime number and consider $P(x)=x^4+2ax^2+b^2$, where $a,b\in\mathbb{Z}$. Show that

$$P(x) = (x^2 + a)^2 - (a^2 - b^2) = (x^2 + b)^2 - (2b - 2a)x^2 = (x^2 - b)^2 - (-2a - 2b)x^2.$$

- 2) Noticing $(2b-2a)(-2a-2b)=4(a^2-b^2)$, derive that one of the numbers $(a^2-b^2), (2b-2a), (-2a-2b)$ is a square modulo p.
- 3) Prove that $P(x) = x^4 + 2ax^2 + b^2$, $a, b \in \mathbb{Z}$ is reducible over $\mathbb{F}_p[x]$ for any prime p.
- 4) Prove that $f(x) = x^4 + 1$ is irreducible over \mathbb{Z} but reducible over \mathbb{F}_p for any prime p.

Solution: 1) This is a direct calculation.

- 2) The set of squares R in \mathbb{F}_p is a subgroup of index two. Therefore, if $(2b-2a), (-2a-2b) \notin R$, then the product $4(a^2-b^2)$ belongs to R. Hence $(a^2-b^2) \in R$.
- 3) For p=2 the polynomials x^4 , $x^4+1=(x+1)^4$ are reducible. For p>2 use the previous computations.
- 4) It is enough to show that f(x) is irreducible over \mathbb{Z} . It has roots $(\pm 1 \pm i)/2$ and if f(x) = g(x)h(x), where g(x) = g(x)h(x), where g(x) = g(x)h(x) and if g(x) = g(x)h(x), where g(x) = g(x)h(x) and if g(x) = g(x)h(x) and
- **4** (10+10) 1) Prove that \mathbb{C} is isomorphic to the set of matrices $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, where $a, b \in \mathbb{R}$.
 - 2) Given a matrix A denote by $\exp A$ the matrix $I + \frac{A}{1!} + \frac{A^2}{2!} + \dots$ Using the isomorphism above and the Euler formula, prove that

$$\exp\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right) = \left(\begin{array}{cc} e^a \cos b & -e^a \sin b \\ e^a \sin b & e^a \cos b \end{array}\right).$$

Solution: 1) Let \mathcal{M} be the set of our matrices. Consider the map $\varphi : \mathcal{M} \to \mathbb{C}$, namely, for $m \in \mathcal{M}$ one has $\varphi(m) = a + bi$. Clearly, $\varphi(I) = 1$ and $\varphi(m + m_*) = \varphi(m) + \varphi(m_*)$. We have

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} a_* & -b_* \\ b_* & a_* \end{pmatrix} = \begin{pmatrix} aa_* - bb_* & -(ba_* + ab_*) \\ ba_* + ab_* & aa_* - bb_* \end{pmatrix},$$

and

$$(a+ib)(a_*+ib_*) = (aa_*-bb_*) + i(ba_*+ab_*)$$

and hence φ preserves the multiplication. Finally, $\operatorname{Ker}(\varphi) = 0$. Thus φ is an isomorphism.

2) Thanks to the Euler formula one has (the convergence is obvious)

$$\exp\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right) = \varphi^{-1}\varphi\left(\exp\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right)\right) = \varphi^{-1}(e^{a+ib}) = \varphi^{-1}(e^a(\cos b + i\sin b)) = \left(\begin{array}{cc} e^a\cos b & -e^a\sin b \\ e^a\sin b & e^a\cos b \end{array}\right).$$

- **5** (5+5+10) 1) Let $[L:K] < \infty$ be a finite extension. Prove that L:K is an algebraic extension, that is any $\alpha \in L$ is algebraic over K.
 - 2) Let $\alpha \in L/K$ and $[L:K] < \infty$. Then $K[\alpha] = K(\alpha)$.
 - 3) Suppose that L: K is an extension and any $\alpha \in L$ is algebraic. Is it true that $[L:K] < \infty$?

Solution: 1) Consider $1, \alpha, \alpha^2, \ldots$ Since $[L:K] < \infty$ it follows that these numbers are dependent over K. Hence there is $f \in K[t]$ such that $f(\alpha) = 0$ and therefore α is algebraic.

- 2) As we have seen α is algebraic and hence we know that $K[\alpha] = K(\alpha)$ (see lectures).
- 3) No. Take $K = \mathbb{Q}$ and let $L = \mathbb{A}$ be the field of all algebraic numbers. Then, clearly, $[L:K] = \infty$.