2009-2010 学年第二学期 高等数学(2-2)期末试卷(A)参考答案

- 一、填空题(6×5分=30分)
 - 1. 若向量 \vec{a} , \vec{b} , \vec{c} 两两互相垂直,且 $|\vec{a}| = 5$, $|\vec{b}| = 12$, $|\vec{c}| = 13$,则 $|\vec{a} + \vec{b} + \vec{c}| = 13\sqrt{2}$
 - 2. 设函数 $z = xy \sin \frac{y^2}{r^2}$, 求 $x \frac{\partial z}{\partial r} + y \frac{\partial z}{\partial v} = \underline{2z}$.
 - 3. 设函数 f(x,y) 为连续函数, 改变下列二次积分的积分顺序:

$$\int_0^1 dy \int_{y^2}^{\sqrt{2-y^2}} f(x,y) dx = \int_0^1 dx \int_0^{\sqrt{x}} f(x,y) dy + \int_1^{\sqrt{2}} dx \int_0^{\sqrt{2-x^2}} f(x,y) dy \quad .$$

- 4. 计算 $I = \int_{(0.0)}^{(1.2)} (e^y + x) dx + (xe^y 2y) dy = e^2 \frac{7}{2}$.
- 5. 幂级数 $\sum_{1}^{\infty} \frac{n}{3^n} x^{2n}$ 的收敛域为: $(-\sqrt{3}, \sqrt{3})$.
- 设 函 数 $f(x) = \pi x + x^2(-\pi < x < \pi)$ 的 傅 里 叶 级 数 为 :

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) ,$$

则其系数
$$b_3 = \frac{2\pi}{3}$$
.

- 二、选择题 (4×5分=20分)
 - 1. 直线 $\frac{x-1}{3} = \frac{y}{-2} = \frac{z-1}{1}$ 与平面 3x + 4y z = 2 的位置关系是(**A**)
 - (A) 直线在平面内; (B) 垂直;
- (C) 平行;
- (D) 相交但不垂直.

C)

- 2. 设函数 $f(x, y) = 4(x y) x^2 y^2$, 则 f(x, y) (

 - (A) 在原点有极小值; (B) 在原点有极大值;
 - (C) 在(2,-2)点有极大值;
- (D) 无极值.
- 3. 设L是一条无重点、分段光滑,且把原点围在内部的平面闭曲线,L的方向为逆时针

$$\operatorname{III} \oint \frac{xdy - ydx}{x^2 + y^2} = (\qquad C \qquad)$$

- (A) $\stackrel{\sim}{0}$; (B) π ; (C) 2π ; (D) -2π . 4. 设 a 为常数,则级数 $\sum_{n=1}^{\infty} \left(\frac{\sin na}{n^2} - \frac{1}{\sqrt{n}} \right)$

- (A) 绝对收敛; (B) 发散; (C) 条件收敛; (D) 敛散性与a值有关.
- 三、计算题 (7+7+7+7+6+8=42 分)
 - 1. $\[\] \[\] \[\frac{xy^2}{x^2 + y^4}, \ (x, y) \neq (0, 0), \] \] \] \] \[\] \[$

求出两个偏导数 $f'_{v}(0,0)$ 和 $f'_{v}(0,0)$. (7分)

解: 令 $x = ky^2$, $\lim_{y \to 0} f(ky, y) = \lim_{y \to 0} \frac{ky^4}{k^2 v^4 + v^4} = \frac{k}{k^2 + 1}$, 随 k 的取值不同,其极限值不同,

 $\lim_{\substack{x\to 0\\y\to 0}} f(x,y)$ 不存在,故 f(x,y) 在原点不连续;

$$f'_x(0,0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x, 0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{0 - 0}{\Delta x} = 0$$
,

$$f_y'(0,0) = \lim_{\Delta y \to 0} \frac{f(0,0 + \Delta y) - f(0,0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{0 - 0}{\Delta y} = 0.$$

2. 计算
$$I = \iiint_{\Omega} \sqrt{x^2 + y^2 + z^2} dx dy dz$$
 其中 Ω 是由上半球面 $z = \sqrt{2 - x^2 - y^2}$ 和锥面 $z = \sqrt{x^2 + y^2}$ 所围成的立体 . (7分)

解:作球面坐标变换: $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$. 则

$$dxdydz = \rho^2 \sin \varphi d\theta d\varphi d\rho$$
, $\Omega: 0 \le \theta \le 2\pi$, $0 \le \varphi \le \frac{\pi}{4}$, $0 \le \rho \le \sqrt{2}$.

$$I = \iiint_{\Omega} \sqrt{x^2 + y^2 + z^2} dx dy dz = \int_{0}^{2\pi} d\theta \int_{0}^{\frac{\pi}{4}} \sin \varphi d\varphi \int_{0}^{\sqrt{2}} \rho^3 d\rho = (2 - \sqrt{2})\pi.$$

3. 求锥面
$$z = \sqrt{x^2 + y^2}$$
 被柱面 $x^2 + y^2 = 2x$ 所割下部分的曲面面积 . (7分)

解: 锥面
$$\Sigma$$
: $z = \sqrt{x^2 + y^2}$, $(x, y) \in D_{xy} = \{x^2 + y^2 \le 2x\}$. $z'_x = \frac{x}{\sqrt{x^2 + y^2}}$, $z'_y = \frac{y}{\sqrt{x^2 + y^2}}$,

$$\therefore S = \iint_{\Sigma} dS = \iint_{D_{yy}} \sqrt{1 + {z'_{x}}^{2} + {z'_{y}}^{2}} dxdy = \sqrt{2} \iint_{D_{yy}} dxdy = \sqrt{2} \pi.$$

4. 计算曲面积分 $I = \iint_{\Sigma} y^2 z dx dy + z^2 x dy dz + x^2 y dz dx$, 其中 Σ 是由 $z = x^2 + y^2$, $x^2 + y^2 = 1$,

$$x = 0, y = 0, z = 0$$
 围在第一卦限的立体的外侧表面 . (7分)

解: 设 Ω 为 Σ 所 围 立 体 , $P = z^2 x$, $Q = x^2 y$, $R = y^2 z$, $\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = x^2 + y^2 + z^2$, 由

$$I = \iint_{\Sigma} y^2 z dx dy + z^2 x dy dz + x^2 y dz dx = \iiint_{\Omega} (x^2 + y^2 + z^2) dx dy dz$$

作柱面坐标变换: $x = r\cos\theta$, $y = r\sin\theta$, z = z. 则

$$dxdydz = rd\theta drdz$$
, $\Omega: 0 \le \theta \le \frac{\pi}{2}$, $0 \le r \le 1$, $0 \le z \le r^2$.

$$\therefore I = \int_0^{\frac{\pi}{2}} d\theta \int_0^1 r dr \int_0^{r^2} (r^2 + z^2) dz = \frac{5}{48} \pi.$$

5. 讨论级数 $\sum_{n=1}^{\infty} \frac{\ln n}{n^{\frac{3}{2}}}$ 的敛散性. (6 分)

解:
$$\lim_{n\to\infty} n^{\frac{5}{4}} \cdot \frac{\ln n}{n^{\frac{3}{2}}} = \lim_{n\to\infty} \frac{\ln n}{n^{\frac{1}{4}}} = 0$$
, $\therefore \sum_{n=1}^{\infty} \frac{\ln n}{n^{\frac{3}{2}}}$ 收敛.

6. 把级数
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)! 2^{2n-1}} x^{2n-1}$$
的和函数展成 $x-1$ 的幂级数. (8分)

解: 设级数的和函数为S(x),则

$$S(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)! \, 2^{2n-1}} x^{2n-1} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)!} \left(\frac{x}{2}\right)^{2n-1} = \sin\left(\frac{x}{2}\right), \quad x \in (-\infty, +\infty).$$

$$\mathbb{E}[S(x)] = \sin\left(\frac{x}{2}\right) = \sin\left(\frac{x-1}{2} + \frac{1}{2}\right) = \sin\frac{x-1}{2} \cdot \cos\frac{1}{2} + \cos\frac{x-1}{2} \cdot \sin\frac{1}{2}$$

$$= \sin\frac{1}{2} \cdot \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(\frac{x-1}{2}\right)^{2n} + \cos\frac{1}{2} \cdot \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \left(\frac{x-1}{2}\right)^{2n+1}$$

$$= \sin\frac{1}{2} \cdot \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)! \cdot 2^{2n}} (x-1)^{2n}$$

$$+ \cos\frac{1}{2} \cdot \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)! \cdot 2^{2n+1}} (x-1)^{2n+1}, \quad x \in (-\infty, +\infty).$$

四、设曲线L是逆时针方向圆周 $(x-a)^2+(y-a)^2=1$, $\varphi(x)$ 是连续的正函数,

证明:
$$\oint_{L} \frac{xdy}{\varphi(y)} - y\varphi(x)dx \ge 2\pi. \quad (8 \ \%)$$

证明: 设 $D:(x-a)^2+(y-a)^2\leq 1$, 由 Green 公式,

$$\oint_{L} \frac{xdy}{\varphi(y)} - y\varphi(x)dx = \iint_{D} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})dxdy = \iint_{D} (\varphi(x) + \frac{1}{\varphi(y)})dxdy \quad (丽 D 美于 y = x 对称)$$

$$= \iint_{D} (\varphi(x) + \frac{1}{\varphi(x)})dxdy \ge \iint_{D} 2\sqrt{\varphi(x) \cdot \frac{1}{\varphi(x)}} dxdy = 2\iint_{D} dxdy = 2\pi.$$
即
$$\oint_{L} \frac{xdy}{\varphi(y)} - y\varphi(x)dx \ge 2\pi.$$