Inductive Representation Learning on Large Graphs

NIPS 2017

William L. Hamilton Rex Ying and Jure Leskovec

Transductive Embedding

deepwalk

LINE

GraRep

node2vec

struc2vec

1st-order and 2nd-order proximity

random walk

Structure similarity

Inductive Learning

Transductive learning:

- 1.focused on embedding nodes from a single fixed graph
- 2.Can not generate embeddings for unseen nodes

Inductive Learning:

- 1.Learning the representation of new nodes
- 2. Using the information of neighbor nodes

GraphSAGE

using aggregated information

Figure 1: Visual illustration of the GraphSAGE sample and aggregate approach.

from neighbors

Learn Aggregate function!!!

Embedding generation

Assume K aggregators have been learned!

```
Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm
   Input: Graph \mathcal{G}(\mathcal{V}, \mathcal{E}); input features \{\mathbf{x}_v, \forall v \in \mathcal{V}\}; depth K; weight matrices
                  \mathbf{W}^k, \forall k \in \{1, ..., K\}; non-linearity \sigma; differentiable aggregator functions
                  AGGREGATE_k, \forall k \in \{1, ..., K\}; neighborhood function \mathcal{N}: v \to 2^{\mathcal{V}}
   Output: Vector representations \mathbf{z}_v for all v \in \mathcal{V}
\mathbf{h}_{v}^{0} \leftarrow \mathbf{x}_{v}, \forall v \in \mathcal{V};
2 for k = 1...K do
                                                                   Each node get information from their neighbor
         for v \in \mathcal{V} do
            \mathbf{h}_{\mathcal{N}(v)}^k \leftarrow \text{AGGREGATE}_k(\{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\});
4
        \mathbf{h}_v^k \leftarrow \sigma\left(\mathbf{W}^k \cdot \text{concat}(\mathbf{h}_v^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^k)\right)
5
         end
6
                                                                              Concatenate and fully connected layer
        \mathbf{h}_v^k \leftarrow \mathbf{h}_v^k / \|\mathbf{h}_v^k\|_2, \forall v \in \mathcal{V}
8 end
9 \mathbf{z}_v \leftarrow \mathbf{h}_v^K, \forall v \in \mathcal{V}
```

Neighbors size is fixed!

Learning the parameters of GraphSAGE

$$J_{\mathcal{G}}(\mathbf{z}_u) = -\log\left(\sigma(\mathbf{z}_u^{\top}\mathbf{z}_v)\right) - Q \cdot \mathbb{E}_{v_n \sim P_n(v)}\log\left(\sigma(-\mathbf{z}_u^{\top}\mathbf{z}_{v_n})\right)$$

v is a node that co-occurs near u on fixed-length random walk

Pn is a negative sampling distribution

Q defines the number of negative samples

Can be replaced by a task-specific loss

Aggregator Architectures

$$\mathbf{h}_v^k \leftarrow \sigma(\mathbf{W} \cdot \text{MEAN}(\{\mathbf{h}_v^{k-1}\} \cup \{\mathbf{h}_u^{k-1}, \forall u \in \mathcal{N}(v)\}).$$

LSTM aggregator.

In a sequential & Random order

$$AGGREGATE_k^{pool} = \max(\{\sigma\left(\mathbf{W}_{pool}\mathbf{h}_{u_i}^k + \mathbf{b}\right), \forall u_i \in \mathcal{N}(v)\}),$$

GraphSAGE: Example

GraphSAGE: Benefits

- Can use different aggregators γ
 - Mean (simple element-wise mean), LSTM (to a random order of nodes), Max-pooling (element-wise max)
- Can use different loss functions:
 - Cross entropy, Hinge loss, ranking loss
- Model has a constant number of parameters
- Fast scalable inference
- Can be applied to any node in any network

Experiments

Table 1: Prediction results for the three datasets (micro-averaged F1 scores). Results for unsupervised and fully supervised GraphSAGE are shown. Analogous trends hold for macro-averaged scores.

	Citation		Reddit		PPI	
Name	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1
Random	0.206	0.206	0.043	0.042	0.396	0.396
Raw features	0.575	0.575	0.585	0.585	0.422	0.422
DeepWalk	0.565	0.565	0.324	0.324		
DeepWalk + features	0.701	0.701	0.691	0.691		
GraphSAGE-GCN	0.742	0.772	0.908	0.930	0.465	0.500
GraphSAGE-mean	0.778	0.820	0.897	0.950	0.486	0.598
GraphSAGE-LSTM	0.788	0.832	0.907	0.954	0.482	0.612
GraphSAGE-pool	0.798	0.839	0.892	0.948	0.502	0.600
% gain over feat.	39%	46%	55%	63%	19%	45%

Figure 2: **A**: Timing experiments on Reddit data, with training batches of size 512 and inference on the full test set (79,534 nodes). **B**: Model performance with respect to the size of the sampled neighborhood, where the "neighborhood sample size" refers to the number of neighbors sampled at each depth for K = 2 with $S_1 = S_2$ (on the citation data using GraphSAGE-mean).