Прикладные модели оптимизации

Доцент, к.ф.-м.н., доцент кафедры № 43 *Фаттахова Мария Владимировна mvfa@yandex.ru*

Тема 2. Транспортная задача в сетевой постановке

Теорема (о максимальном потоке и минимальном сечении)

В произвольной сети (N,u) существует максимальный поток $\bar{f}: N \times N \to Z$ и минимальное сечение $(\bar{S}, \bar{S'}), \bar{S} \subset N, \bar{S'} \subset N$, при этом мощность максимального потока совпадает с пропускной способностью минимального сечения, т.е.

$$\overline{f}(s,N) = u(\overline{S},\overline{S'}).$$

Понятие пути, ненасыщенного потоком

• Пусть $f: N \times N \to Z$, – поток в сети (N, u). Будем говорить, что ребро (x, y) не насыщено потоком f, если

$$f(x,y) < u(x,y).$$

- Путём P(s,s') из источника в сток будем называть последовательность рёбер вида: $P(s,s') = \{(s,x_1),(x_1,x_2),...,(x_n,s')\}.$
- Будем говорить, что **путь не насыщен относительно потока**, если каждое ребро не насыщено относительно этого потока.

Теорема (о максимальном потоке и минимальном сечении)

В произвольной сети (N,u) существует максимальный поток $\bar{f}: N \times N \to Z$ и минимальное сечение $(\bar{S}, \bar{S}'), \bar{S} \subset N, \bar{S}' \subset N$, при этом мощность максимального потока совпадает с пропускной способностью минимального сечения, т.е.

$$\overline{f}(s,N) = u(\overline{S},\overline{S'}).$$

Доказательство

Пусть \bar{f} – максимальный поток. Докажем, что существует минимальное сечение (\bar{S}, \bar{S}') : $\bar{f}(s, N) = u(\bar{S}, \bar{S}')$.

Построим сечение : пусть \bar{S} – множество узлов в сети, которые можно достичь из s по ненасыщенному относительно потока \bar{f} пути.

Возможны два случая:

- 1. $s' \notin \overline{S}$
- 2. $s' \in \bar{S}$

Случай 1: $s' \notin \bar{S}$

$$s' \notin \bar{S} \implies s' \in N \setminus \bar{S} = \bar{S}'$$

 \Rightarrow (\bar{S}, \bar{S}') – сечение.

Покажем, что это сечение – минимальное, т.е.

$$\bar{f}(s,N) = u(\bar{S},\bar{S}').$$

 $\bar{f}(s,N) = \bar{f}(\bar{S},\bar{S}') =$

От противного: пусть $\bar{f}(s, N) < u(\bar{S}, \bar{S}')$.

Из доказат. Леммы 1

$$= \sum_{x \in \overline{S}, y \in \overline{S}'} \overline{f}(x, y) < \sum_{x \in \overline{S}, y \in \overline{S}'} u(x, y)$$

 \Rightarrow существует вершина $y_0 \in \overline{S}'$, такая, что для ребра (x, y_0) , где $x \in \overline{S}$, справедливо неравенство:

$$\bar{f}(x, y_0) < u(x, y_0).$$

 $\Rightarrow y_0 \in \overline{S}$ по построению. Но $y \in \overline{S}'! \Rightarrow$ противоречие!

$$\Rightarrow \bar{f}(s, N) = u(\bar{S}, \bar{S}').$$

Случай 2: $s' \in \bar{S}$

 \Longrightarrow существует ненасыщенный путь $\overline{P}(s,s')$ относительно потока \overline{f} .

Найдём
$$\boldsymbol{\delta} = \min_{(x,y) \in \overline{P}} \left[\boldsymbol{u}(x,y) - \overline{f}(x,y) \right] > \boldsymbol{0}.$$

Строим новый поток по правилу:

$$f_{1} = \begin{cases} \overline{f}(x, y) + \delta, (x, y) \in \overline{P} \\ \overline{f}(x, y) - \delta, (y, x) \in \overline{P} \\ \overline{f}(x, y), (x, y) \notin \overline{P}, (y, x) \notin \overline{P} \end{cases}$$

Случай 2: $s' \in \bar{S}$

Можно проверить по определению, что f_1 – поток.

Его мощность:

$$f_1 = \overline{f}(s, N) + \delta > \overline{f}(s, N)$$

Но это противоречит предположению, что \bar{f} – максимальный поток!

Следовательно, если \bar{f} – максимальный поток, то случай 2 невозможен!

Из доказательства теоремы следует алгоритм поиска максимального потока и минимального сечения в сети:

Алгоритм построения максимального потока и минимального сечения (алгоритм Форда – Фалкерсона)

- 1. Построить произвольный поток (можно нулевой): f_0 в сети (N, u).
- 2. Построить множество достижимости S_0 множество вершин, которые могут быть достигнуты из s по пути, ненасыщенныму потоком f_0 .

Алгоритм построения максимального потока и минимального сечения

- 3. Если $s' \notin S_0$, то поток f_0 максимален, и сечение (S_0, S_0') , $S_0' = N \setminus S_0$, минимальное сечение в сети.
- 4. Если $s' \in S_0$, то от s к s' имеется ненасыщенный путь, на который можно наложить дополнительный поток δ_0 , получив новый поток :

$$f_1 = f_0 + \delta_0$$

большей мощности, который строят по правилу:

Алгоритм построения максимального потока и минимального сечения

- а) Находим ненасыщенный путь $P_0(s,s')$ относительно потока f_0 .
- b) Вычисляем величину

$$\delta_0 = \min_{(x,y)\in P_0} [u(x,y) - f_0(x,y)] > 0.$$

с) Вычисляем новый поток по правилу:

$$f_{1} = \begin{cases} f_{0}(x, y) + \delta_{0}, (x, y) \in P_{0} \\ f_{0}(x, y) - \delta_{0}, (y, x) \in P_{0} \\ f_{0}(x, y), (x, y) \notin P_{0}, (y, x) \notin P_{0} \end{cases}$$

5. Переходим к п. 1 алгоритма, но с потоком f_1

Тема 2. Транспортная задача как частный случай ЗЛП

Лекция 5

Пример 1. Песчаные карьеры

Транспортные издержки c_{ij} :

	Завод В1	Завод В2	Завод ВЗ
Карьер А1	4	6	3
Карьер А2	8	4	5

Пример 1. Песчаные карьеры

Заводы

Карьеры

Транспортные издержки c_{ij}

	Завод В1	Завод В2	Завод ВЗ
Карьер А1	4	6	3
Карьер А2	8	4	5

Транспортная задача

имеет целью *минимизацию транспортных* издержек при перевозках однотипных грузов от нескольких поставщиков (с различных складов), расположенных в разных местах, к разным потребителям.

Аналитическая постановка Т3

Для аналитической постановки ТЗ необходимо задать две таблицы: таблицу издержек и таблицу перевозок.

Таблица издержек

Пункты отправления	_	ікты на потреб	Запасы		
(поставщики)	B ₁	B ₂	•••	B _n	
A ₁	C ₁₁	C ₁₂		C _{1n}	a ₁
A_2	C ₂₁	C ₂₂		C _{2n}	a ₂
A _m	C _{m1}	C _{m2}		C _{mn}	a _m
Потребности	b ₁	b ₂		b _n	

 c_{ij} , $i=1,\ldots,m$, $j=1,\ldots,n$, — стоимость перевозки единицы груза от поставщика i к потребителю j.

Таблица перевозок

Поставщики	Потребители				
	B ₁	B_n			
\mathbf{A}_1	X ₁₁	X ₁₂	•••	X _{1n}	
A_2	X ₂₁	X ₂₂		X _{2n}	
•••			•••	•••	
\mathbf{A}_{m}	X _{m1}	X _{m2}	***	X _{mn}	

 x_{ij} , $i=1,\ldots,m$, $j=1,\ldots,n$, - количество единиц перевозимого груза от поставщика i к потребителю j.

– переменные решения транспортной задачи

В Т3 **т** • **п** переменных

Целевая функция

Постав-		Потребители			
щики	B ₁	B ₂	•••	B _n	
\mathbf{A}_1	X ₁₁	X ₁₂	;	X _{1n}	
\mathbf{A}_{2}	X ₂₁	X ₂₂		X _{2n}	
•••					
A _m	X _{m1}	X _{m2}		X _{mn}	

Пункты отправле-	ı	Пун назна	Запасы	
ния	B ₁	B ₂	 B _n	
A ₁	C ₁₁	C ₁₂	 C _{1n}	a ₁
A ₂	C ₂₁	C ₂₂	 C _{2n}	a ₂
A _m	C _{m1}	C ₁₂	 C _{mn}	a _m
Потребн.	b ₁	b ₂	 b _n	

- суммарные издержки:

$$L = c_{11}x_{11} + c_{12}x_{12} + \dots + c_{1n}x_{1n} + c_{21}x_{21} + \dots + c_{mn}x_{mn} \to \min$$

$$L = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \longrightarrow \min$$

Ограничения в транспортной задаче

 ${\color{blue}\Pio}$ поставщики A_i хотят вывезти весь объём груза a_i ,

$$i=1,\ldots,m$$
.

Пункты отправле-	$x_{12} + $	П <u>у</u> н назна	Запасы			
ния $\chi_{21} + .$	$\mathbf{B_1} + \mathbf{X_{22}} +$	B ₂	 X2 =	$\mathbf{B_n} = a_2$		
A ₁ 21	C ₁₁	C ₁₂	2n	C _{1n}	a ₁	
A ₂	C ₂₁	C ₂₂	 v	c _{2n}	a ₂	
m1	m_2		mn	<i>a</i> _n	n	
Потр	ебм'	геля	<u>м</u> :-П	O 9 %pe	би ч ели	B
преревъ г	й Д Н	и₿а	каза	л ы , ј	= 1,,	n
Y Y				h		
$\lambda_{11} + \lambda$	21	1 ./	m_1	$-\nu_1$		-

A ₁	X ₁₁	X ₁₂		X _{1n}		
\mathbf{A}_2	X ₂₁	X ₂₂	:	X _{2n}		
A _m	X _{m1}	X _{m2}		X _{mn}		
сят получить тот объём груза h_{i}						

Потребители

 B_2

 B_n

 B_j хотят получить тот объём груза b_j ,

B₁

$$x_{ij} \ge 0, i = 1,...,m, j = 1,...,n.$$

Постав-

• • •

$$x_{1n} + x_{2n} + \dots + x_{mn} = b_n$$

 $x_{12} + x_{22} + \dots + x_{m2} = b_2$

В Т3 m + n ограничений.

Математическая модель (аналит.)

$$L = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \longrightarrow \min$$

Ограничения по поставщикам:

$$\sum_{j=1}^{n} x_{ij} = a_i, \ i = 1, ..., m$$

Ограничения по потребителям:

$$\sum_{i=1}^{m} x_{ij} = b_j, \ j = 1, ..., n$$

$$x_{ij} \ge 0, i = 1,...,m, j = 1,...,n.$$

Постав-	Потребители			
щики	B ₁	B ₂		B _n
A ₁	X ₁₁	X ₁₂		X _{1n}
A_2	X ₂₁	X ₂₂		X _{2n}
A _m	X _{m1}	X _{m2}		X _{mn}

Пункты отправле-	ŀ	Пун назна	Запасы	
РИН	B ₁	B ₂	 B _n	
A ₁	C ₁₁	C ₁₂	 C _{1n}	a ₁
A ₂	C ₂₁	C ₂₂	 C _{2n}	a ₂
A _m	C _m	C ₁₂	 C _m	a _m
Потребн.	b ₁	b ₂	 b _n	

Математическая модель (сеть)

$$L = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \longrightarrow \min$$

Ограничения по поставщикам:

$$\sum_{i=1}^{n} x_{ij} = a_i, \ i = 1, ..., m$$

$$x_{ij} \ge 0, i = 1,...,m, j = 1,...,n.$$

Ограничения по потребителям:

$$\sum_{i=1}^{m} x_{ij} = b_j, \ j = 1, ..., n$$

Двойственная задача к Т3

Прямая задача

$$L = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \longrightarrow \min$$

$$-y_i: \sum_{j=1}^n x_{ij} = a_i, i = 1,...,m$$

$$p_j: \sum_{i=1}^m x_{ij} = b_j, \ j = 1,...,n$$

$$x_{ij} \ge 0, i = 1,...,m, j = 1,...,n.$$

<u>Двойственная задача</u>

$$W = -\sum_{i=1}^{m} a_i y_i + \sum_{j=1}^{n} b_j p_j \longrightarrow \max$$

$$x_{ij}: p_j - y_i \leq c_{ij}$$

$$i = 1, ..., m;$$

j = 1, ..., n

Экономическая интерпретация двойственной задачи к Т3

 y_i — **цена** на продукцию, производимую у *i***-го** производителя (отпускная цена), $i=1,\dots,m$

 p_j – цена за единицу той же продукции, но у $\emph{j-ro}$ потребителя, j=1,...,n

 $\sum_{j=1}^n b_j p_j$ – суммарная выручка у потребителей

 $\sum_{i=1}^{m} a_{i} y_{i}$ – суммарная выручка у производителей.

Экономическая интерпретация Д3 к Т3

ЦФ – прибыль от реализации перевезенной продукции:

$$W = -\sum_{i=1}^{m} a_i y_i + \sum_{j=1}^{n} b_j p_j \longrightarrow \max$$

Ограничения:

разность в ценах у производителя и потребителя не должна превышать затраты на перевозки:

$$p_{j} - y_{i} \leq c_{ij}$$

Экономическая интерпретация Д3 к Т3

Требуется назначить цены у производителя и у потребителя таким образом, чтобы прибыль от реализации продукции была максимальной, перевозки – не убыточными.

$$W = -\sum_{i=1}^{m} a_i y_i + \sum_{j=1}^{n} b_j p_j \longrightarrow \max$$

$$p_j - y_i \le c_{ij}$$

$$i = 1, ..., m;$$

$$j = 1, ..., n$$

Когда Т3 имеет решение?

$$L = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \longrightarrow \min$$

$$\sum_{j=1}^{n} x_{ij} = a_i, \ i = 1, ..., m$$

$$\sum_{i=1}^{m} x_{ij} = b_j, \ j = 1, ..., n$$

$$x_{ij} \ge 0, i = 1,...,m, j = 1,...,n.$$

Постав-		Потре	бителі	бители		
щики	B ₁	B ₂		B _n		
A ₁	X ₁₁	X ₁₂		X _{1n}		
A_2	X ₂₁	X ₂₂		X _{2n}		
A _m	X _{m1}	X _{m2}		X _{mn}		

Пункты отправле-	Пунн	сты на	Запасы	
НИЯ	B ₁	B ₂	 B _n	
A ₁	C ₁₁	C ₁₂	 C _{1n}	a ₁
A ₂	C ₂₁	C ₂₂	 C _{2n}	a ₂
A _m	C _{m1}	C ₁₂	 C _{mn}	a _m
Потребн.	b ₁	b ₂	 b _n	

Условие сбалансированности Т3

• ТЗ является сбалансированной, если

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$

• ТЗ является **несбалансированной**, если это условие нарушено

Теорема (Критерий разрешимости Т3)

Для того, чтобы ТЗ имела оптимальное решение, необходимо и достаточно, чтобы она была сбалансирована.

Пример «Песчаные карьеры»

В районе имеется 2 *песчаных карьера*, с которых песок вывозится на 5-тонных грузовиках.

Предприятия – поставщики, разрабатывающие карьеры, могут поставлять соответственно **100** и **200** грузовиков в день.

В этом районе имеется 3 **завода железобетонных конструкций** – *потребители* песка, которым требуется соответственно **80**, **90** и **130** грузовиков в день.

Таблица параметров (транспортные издержки)

S_i	$oldsymbol{D_1}$	D_2	D_3	Запасы
$\boldsymbol{S_1}$	4	6	3	100
S_2	8	4	5	200
Заказы	80	90	130	

Таблица параметров (транспортные издержки)

S_i	D_1	D_2	D_3	Запасы
S_1	4	6	3	100
S_2	8	4	5	200
Заказы	80	90	130	300=300

Математическая модель

S_i	D_1	D ₂	D ₃	Запасы
S_1	4	6	3	100
S_2	8	4	5	200
Заказы	80	90	130	300=300

- *Переменные модели*: x_{ij} , i=1,2,j=1,2,3, количество грузовиков, которое нужно отправить с карьера S_i на завод D_j .
- *Целевая функция* суммарные издержки

$$L = 4x_{11} + 6x_{12} + 3x_{13} + 8x_{21} + 4x_{22} + 5x_{23} o \min$$

$$\begin{bmatrix} x_{11} + x_{12} + x_{13} = 100 \\ x_{21} + x_{22} + x_{23} = 200 \end{bmatrix}$$
 по поставщика м $x_{11} + x_{21} = 80$ $x_{12} + x_{22} = 90$ по потребител ям $x_{13} + x_{23} = 130$ $x_{ij} \geq 0, i = 1, 2, j = 1, 2, 3$

Решение в Excel

		Потребители - заводы					
		D1	D2	D3			
Предприятия -	S1	\$4	\$6	\$3			
поставщики	S2	\$8	\$4	\$5			
,,,,,,						Сум	марная стоимость
							\$1 290
Объем поста	аєки (є шт. гру	зовиков)					
		Потребит	гели - заво	оды			
		D1	D2	D3	Всего поставлено		Максимально возможный объем ежедневной поставки (шт. грузовиков)
Предприятия -	S1	80	0	20	100	"="	100
поставщики	S2	0	90	110	200	"="	200
	Всего получено	80	90	130			
	Deciro nony teno	"="	"="	"="			
	Ежедневные заказы потребителей (шт. грузовиков)	80	90	130			

Случаи несбалансированной задачи

Перепроизводство:

$$\sum_{i=1}^m a_i > \sum_{j=1}^n b_j$$

Дефицит:

$$\sum_{i=1}^m a_i < \sum_{j=1}^n b_j$$

Пример 1*. Перепроизводство.

S_i	D_1	D_2	D_3	Запасы
S_1	4	6	3	150
S_2	8	4	5	200
Заказы	80	90	130	300<350

Математическая модель

S_i	D_1	D_2 D_3		Запасы
S_1	4	6	3	150
S_2	8	4 5		200
Заказы	80	90	130	300<350

$$L = \sum_{i=1}^{2} \sum_{j=1}^{4} c_{ij} x_{ij} = 4x_{11} + 6x_{12} + 3x_{13} + 8x_{21} + 4x_{22} + 5x_{23} \rightarrow \min$$

По поставщикам

$$x_{11} + x_{12} + x_{13} \le 150$$

$$x_{21} + x_{22} + x_{23} \le 200$$

По потребителям

$$x_{11} + x_{21} = 80$$

$$x_{12} + x_{22} = 90$$

$$x_{13} + x_{23} = 130$$

$$x_{ij} \ge 0$$
, $i = 1, 2, j = 1, 2, 3$.

$$x_{ij}$$
-целые, $i = 1, 2, j = 1, 2, 3$.

Перепроизводство

$$\sum_{i=1}^m a_i > \sum_{j=1}^n b_j$$

- Вводят фиктивного потребителя $B_{{}_{n+1}}$
- «Заказ» (спрос) фиктивного потребителя объем перепроизводства: $b_{n+1} = \sum_{i=1}^m a_i \sum_{i=1}^n b_j$
- Транспортные издержки $C_{i,n+1}$ штрафы за «невывоз» единицы продукта от производителя i (затраты на хранение, контрактные обязательства и пр.).
- Если штрафов нет, $C_{i,n+1} = 0$.
- $x_{i,n+1}^*$ объем продукта, который мы **не** вывозим от производителя i.

Таблица издержек

S_i	D_1	D_2	D_3	D _{fict}	Запасы
$\boldsymbol{S_1}$	4	6	3	0 (x ₁₄)	150
S_2	8	4	5	0 (x ₂₄)	200
Заказы	80	90	130	50	350=350

Математическая модель

S_i	D_1	D_2	D ₃	D_{fict}	Запасы
S_1	4	6	3	0 (x ₁₄)	150
S_2	8	4	5	0 (x ₂₄)	200
Заказы	80	90	130	50	350=350

$$L = \sum_{i=1}^{2} \sum_{j=1}^{4} c_{ij} x_{ij} = 4x_{11} + 6x_{12} + 3x_{13} + 6x_{14} + 6x_{15} +$$

$$+0 \cdot x_{14} + 8x_{21} + 4x_{22} + 5x_{23} + 0 \cdot x_{24} \rightarrow \min$$

По поставщикам

$$x_{11} + x_{12} + x_{13} + x_{14} = 150$$

$$x_{21} + x_{22} + x_{23} + x_{24} = 200$$

$$x_{ij} \ge 0$$
, $i = 1, 2$, $j = 1, ... 4$.

$$x_{11} + x_{21} = 80$$

$$x_{12} + x_{22} = 90$$

$$x_{13} + x_{23} = 130$$

$$x_{14} + x_{24} = 50$$

Решение в Excel

				1 - заводы				
		D1	D2	D3	D-fict			
Предприятия -	S1	\$4	\$ 6	\$3	0			
поставщики	S2	\$8	\$4	\$ 5	0			
							Сум	марная стоимост
								\$1 19
Объем поста	еки (в шт. гр)	/зовиков)					
		По	требителі	1 - заводы				
		D1	D2	D3	D-fict	Всего поставлено		Максимально возможный объем ежедневной поставки (шт. грузовиков)
Предприятия -	S1	80	0	70	0	150	"="	15
поставщики	S2	0	90	60	50	200	"="	20
	Всего получено	80	90	130	50			
		"="	"="	"="	"="			
	Ежедневные заказы потребителей (шт. грузовиков)	80	90	130	50			

Дефицит
$$\sum_{i=1}^m a_i < \sum_{j=1}^n b_j$$

- Вводят фиктивного поставщика $A_{\scriptscriptstyle m+1}$
- «Запас» фиктивного поставщика объем дефицита

$$a_{m+1} = \sum_{j=1}^{n} b_j - \sum_{i=1}^{m} a_i$$

- Транспортные издержки $C_{m+1,j}$ штрафы за единицу неудовлетворенного спроса у потребителя ј.
- Если штрафов нет, $C_{m+1,j} = 0$.
- $x_{m+1,j}^*$ объем продукта, который **не** получит потребитель ј (неудовлетворенный спрос потребителя

Математическая модель

S_i	D_1	D ₂	D_3	Запасы
S_1	4	6	3	100
S_2	8	4	5	150
Заказы	80	90	130	300>250

$$L = \sum_{i=1}^{2} \sum_{j=1}^{4} c_{ij} x_{ij} = 4x_{11} + 6x_{12} + 3x_{13} + 8x_{21} + 4x_{22} + 5x_{23} \rightarrow \min$$

По поставщикам

$$x_{11} + x_{12} + x_{13} = 100$$

$$x_{21} + x_{22} + x_{23} = 150$$

По потребителям

$$x_{11} + x_{21} \le 80$$

$$x_{12} + x_{22} \le 90$$

$$x_{13} + x_{23} \le 130$$

$$x_{ij} \ge 0$$
, $i = 1,2$, $j = 1,2,3$.

$$x_{ij}$$
-целые, $i = 1, 2, j = 1, 2, 3.$

Таблица издержек

S_i	D_1	D_2	D_3	Запасы
S_1	4	6	3	100
$\boldsymbol{S_2}$	8	4	5	150
S_{fict}	0 (x ₃₁)	0 (x ₃₂)	0 (x ₃₃)	50
Заказы	80	90	130	300=300

Математическая модель

$$L = \sum_{i=1}^{3} \sum_{j=1}^{3} c_{ij} x_{ij} = 4x_{11} + 6x_{12} +$$

S_i	D ₁	D ₂	D ₃	Запасы
S_1	4	6	3	100
S_2	8	4	5	150
S_{fict}	0 (x ₃₁)	0 (x ₃₂)	0 (x ₃₃)	50
Заказы	80	90	130	300=300

$$+3x_{13}+8x_{21}+4x_{22}+5x_{23}+0\cdot x_{31}+0\cdot x_{32}+0\cdot x_{33} \rightarrow \min$$

По поставщикам

$$x_{11} + x_{12} + x_{13} = 100$$

$$x_{21} + x_{22} + x_{23} = 150$$

$$x_{31} + x_{32} + x_{33} = 50$$

По потребителям

$$x_{11} + x_{21} + x_{31} = 80$$

$$x_{12} + x_{22} + x_{32} = 90$$

$$x_{13} + x_{23} + x_{33} = 130$$

$$x_{ij} \ge 0$$
, $i = 1,2,3$, $j = 1,2,3$.

Решение в Excel

		Потре	ебители	- заводы				
		D1	D2	D3				
Предприятия - поставщики	S1	\$4	\$6	\$3				
	S2	\$8	\$4	\$ 5				
	S-fict	\$0	\$0	\$0				
							Сум	марная стоимост
								\$990
Объем поста	вки (в шт. гр	узовиков))					
		Потребители - заводы						
					Всего		Максимально возможный объем ежедневной поставки (шт.	
		D1	D2	D3	поставлено		грузовиков)	
	S1	30	0	70	100	"="	100	
Предприятия - поставщики	S2	0	90	60	150	"="	150	
	S-fict	50	0	0	50	"="	50	
Всего получено		80	90	130				
		"="	"="	"="				
	Ежедневные заказы потребителей (шт. гоузовиков)							
	(шт. грузовиков)	80	90	130				

Лабораторная работа 2

- СРОК: 2 НЕДЕЛИ
- Решение ТЗ всегда начинается с проверки сбалансированности! Проверьте БАЛАНС В ЗАДАЧЕ Вашего варианта и сбалансируйте её при необходимости.
- Составьте математическую модель сбалансированной задачи.
- Реализуйте мат. модель в Excel.