Testes Estatísticos e Nível de Significância

João Carlos Xavier Júnior

jcxavier@imd.ufn.br

Introdução

- ☐ Testes paramétricos:
 - * Exigem que as amostras tenham uma distribuição normal;
 - * Também são chamados de testes t;
 - * Não se pode garantir que as amostras possuam uma distribuição normal de valores;
 - * Indicado para amostras grandes (>= 30).

Introdução

- ☐ Testes não-paramétricos:
 - * Não exigem requisitos tão fortes (distribuição normal);
 - * São indicados para amostras pequenas (< 30);
 - * São mais indicados para a área da Ciências dos Dados;
 - * São não tão potentes quanto os paramétricos;

Nível de Significância

- ☐ Nível de Significância (NS):
 - * Tipo de estimativa por intervalo de um parâmetro populacional desconhecido.
 - ❖ Podem ser mostrados em vários níveis de confiança como 90%, 95% e 99%.
 - Porém, 95% é o mais comum.

Teste de Hipóteses

\square Hipótese nula (H_0):

- * Hipótese tida como verdadeira até que provas estatísticas indiquem o contrário.
- Em geral, consiste em afirmar que os parâmetros ou características matemáticas de duas ou mais populações são idênticos.
- Exemplo: "a média das alturas da cidade A é igual à da cidade B" ou não há diferença significativa.

\square Hipótese alternativa (H_A):

- * Deve ser contrária, oposta, antagônica à hipótese nula.
- ❖ Também designada por H₁.

Decisão do Teste

p-Value:

- Valor de significância do resultado.
- * Utilizado para aceitar ou rejeitar uma hipótese nula.

p-value =
$$0.025 + 0.025 => 0.05$$

p-value < $0.05 => rejeitar H_0$

Decisão do Teste

p-Value:

p-value	Descrição
> 0,05	Não significante
0,01 até 0,05	Significante
0,001 até 0,005	Muito significante
< 0,001	Extremamente significante

Testes não Paramétricos

- Segue os seguintes passos:
 - * Formular as hipóteses (nula => $\mathbf{H_0}$ ou alternativa);
 - * Estabelecer a estatística (estimador) a ser utilizada;
 - * Fixar o nível de significância do teste;
 - * Calcular a estatística teste (a estimativa).
 - * Tomar a decisão:
 - Se o valor da estatística observada na amostra estiver na região crítica rejeitar \mathbf{H}_0 , caso contrário aceitar \mathbf{H}_0 .

Testes não Paramétricos

	TESTES ESTATÍSTICOS NÃO-PARAMÉTRICOS					
Nível de	Caso de uma Caso de duas Amostras		Caso de k amostras		Medidas de	
mensuração	amostra	Amostras re- lacionadas	Amostras indepen- dentes	Amostras re- lacionadas	Amostras inde- pendentes	correlação não- paramétricas
Nominal	Binomial e χ ²	McNemar	Fisher e χ ²	Q de Cochram	χ^2	De contingência
Ordinal	Kolmogorov- Smirnov Iterações	Sinais Wilcoxon	Mediana U de Mann-Withney Kolmogorov-Smirnov Iterações de Wald- Wolfowitz Moses	Friedman	Extensão da mediana Kruskal-Wallis	Por postos de Spear- mann Por postos de Kendall Parcial de postos de Kendall Concordância de Ken- dall
Intervalar		Walsh Aleatoriedade	Aleatoriedade			

- ☐ Teste de Friedman:
 - Indicado para mais de duas amostras.
 - ❖ Pretende testar se as diferentes amostras provêm de uma mesma população ou de populações diferentes.
- O teste de Friedman também utiliza as duas hipóteses:
 - ❖ H₀: as distribuições das k amostras são idênticas;
 - ❖ H_A: as distribuições das k amostras diferem.

Significance Level:

https://www.socscistatistics.com/tests/friedman/Default.aspx

Treatment 1	Treatment 2	Treatment 3	Treatment 4
0.3191	0.3467	0.2936	0.2882
0.3002	0.323	0.2851	0.2739
0.3094	0.3377	0.2844	0.2715
0.3092	0.3158	0.2841	0.2938
0.3104	0.3206	0.2677	0.3244
0.3119	0.2976	0.2799	0.2829
0.1441	0.0938	0.1736	0.0947
0.2103	0.1914	0.1802	0.1236
0.1962	0.1727	0.1558	0.1631
0.0859	0.0153	0.0765	0.0014
0.0857	0.0188	0.0773	0.0015
0.0857	0.0196	0.0772	0.0016
0.1599	0.2863	0.3126	0.1901
0.1468	0.3524	0.3273	0.1278
0.1704	0.3125	0.2713	0.1533

Ranks T1	Ranks T2	Ranks T3	Ranks T4
3	4	2	1
3	4	2	1
3	4	2	1
3	4	1	2
2	3	1	4
4	3	1	2
3	1	4	2
4	3	2	1
4	3	1	2
4	2	3	1
4	2	3	1
4	2	3	1
1	3	4	2
2	4	3	1
2	4	3	1
Sum: 46	Sum: 46	Sum: 35	Sum: 23

https://www.socscistatistics.com/tests/friedman/Default.aspx

Estatística de Friedman:

$$\chi^2 = \frac{12}{nk(k+1)} \sum_{j=1}^{k} R_j^2 - 3n(k+1)$$
, onde

n = número de linhas,

k = número de colunas,

R_i = soma dos postos da coluna j

The X^2_r statistic is 14.44 (3, N = 15).

The p-value is .00236.

The result is significant at p < .05.

O que isso significa?

The X^2_r statistic is 14.44 (3, N = 15).

The p-value is .00236.

The result is significant at p < .05.

O que isso significa?

The X^2_r statistic is 14.44 (3, N = 15).

The p-value is .00236.

The result is significant at p < .05.

Você vai precisar de um teste Pos-Hoc

https://www.rdocumentation.org/packages/PMCMR/versions/4.3/topics/posthoc.kruskal.nemenyi.test

☐ Teste Pos-hoc:

Config	Base	K-NN	J48	NB	MLP
10 fold	Credit	0,3191	0,3467	0,2936	0,2882
70/30	Credit	0,3002	0,323	0,2851	0,2739
60/40	Credit	0,3094	0,3377	0,2844	0,2715
10 fold	Diabetes	0,3092	0,3158	0,2841	0,2938
70/30	Diabetes	0,3104	0,3206	0,2677	0,3244
60/40	Diabetes	0,3119	0,2976	0,2799	0,2829
10 fold	Ionosphere	0,1441	0,0938	0,1736	0,0947
70/30	Ionosphere	0,2103	0,1914	0,1802	0,1236
60/40	Ionosphere	0,1962	0,1727	0,1558	0,1631
10 fold	Nursery	0,0859	0,0153	0,0765	0,0014
70/30	Nursery	0,0857	0,0188	0,0773	0,0015
60/40	Nursery	0,0857	0,0196	0,0772	0,0016
10 fold	Sonar	0,1599	0,2863	0,3126	0,1901
70/30	Sonar	0,1468	0,3524	0,3273	0,1278
60/40	Sonar	0,1704	0,3125	0,2713	0,1533
Mé	dia	0,2097	0,2269	0,2231	0,1728
Desvio	Padrão	0,0922	0,1301	0,0909	0,1141

Nemenyi test

	K-NN	J48	NB
J48	1,0000	•	-
NB	0,4043	0,4043	-
MLP	0,0063	0,0063	0,3252
	^	^	

☐ Resultados

Config	Base	K-NN	J48	NB	MLP
10 fold	Credit	0,3191	0,3467	0,2936	0,2882
70/30	Credit	0,3002	0,323	0,2851	0,2739
60/40	Credit	0,3094	0,3377	0,2844	0,2715
10 fold	Diabetes	0,3092	0,3158	0,2841	0,2938
70/30	Diabetes	0,3104	0,3206	0,2677	0,3244
60/40	Diabetes	0,3119	0,2976	0,2799	0,2829
10 fold	Ionosphere	0,1441	0,0938	0,1736	0,0947
70/30	Ionosphere	0,2103	0,1914	0,1802	0,1236
60/40	Ionosphere	0,1962	0,1727	0,1558	0,1631
10 fold	Nursery	0,0859	0,0153	0,0765	0,0014
70/30	Nursery	0,0857	0,0188	0,0773	0,0015
60/40	Nursery	0,0857	0,0196	0,0772	0,0016
10 fold	Sonar	0,1599	0,2863	0,3126	0,1901
70/30	Sonar	0,1468	0,3524	0,3273	0,1278
60/40	Sonar	0,1704	0,3125	0,2713	0,1533
Me	édia	0,2097	0,2269	0,2231	0,1728
Desvio	Padrão -	0,0922	0,1301	0,0909	0,1141

Nemenyi test

	K-NN	J48	NB
J48	1,0000	•	-
NB	0,4043	0,4043	-
MLP	0,0063	0,0063	0,3252
	A	A	

☐ Salvando o melhor Modelo:

☐ Salvando o melhor Modelo:

☐ Salvando o segundo melhor Modelo:

