Problem S5: Good Influencers

Problem Description

There are N ($N \ge 2$) students in a computer science class, with distinct student IDs ranging from 1 to N. There are N-1 friendships amongst the students, with the ith being between students A_i and B_i ($A_i \ne B_i$, $1 \le A_i \le N$ and $1 \le B_i \le N$). Each pair of students in the class are either friends or socially connected. A pair of students a and b are socially connected if there exists a set of students m_1, m_2, \ldots, m_k such that

- a and m_1 are friends,
- m_i and m_{i+1} are friends (for $1 \le i \le k-1$), and
- m_k and b are friends.

Initially, each student i either intends to write the CCC (if P_i is Y) or does not intend to write the CCC (if P_i is N). Initially, at least one student intends to write the CCC, and at least one student does not intend to write the CCC.

The CCC has allocated some funds to pay some students to be influencers for the CCC. The CCC will repeatedly choose one student i who intends to write the CCC, pay them C_i dollars, and ask them to deliver a seminar to all of their friends, and then all of their friends will intend to write the CCC.

Help the CCC determine the minimum cost required to have all of the students intend to write the CCC.

Input Specification

The first line contains the integer N.

The next N-1 lines each contain two space-separated integers, A_i and B_i $(1 \le i \le N-1)$.

The next line contains N characters, $P_1 \dots P_N$, each of which is either Y or N.

The next line contains N space-separated integers, $C_1 \dots C_N$.

The following table shows how the available 15 marks are distributed.

Marks	Number of		Additional
Awarded	students	Payment	Constraints
5 marks	$2 \le N \le 2000$	$1 \le C_i \le 1\ 000$	$A_i = i$ and $B_i = i + 1$ for each i
7 marks	$2 \le N \le 2000$	$1 \le C_i \le 1\ 000$	None
3 marks	$2 \le N \le 200\ 000$	$1 \le C_i \le 1\ 000$	None

Output Specification

Output the minimum integer number of dollars required to have all of the students to intend to write the CCC.

La version française figure à la suite de la version anglaise.

```
Sample Input 1
4
1 2
2 3
3 4
YNYN
4 3 6 2
```

Output for Sample Input 1

6

Explanation of Output for Sample Input 1

The CCC should pay \$6 to student 3 to deliver a seminar to their friends (students 2 and 4), after which all 4 students will intend to write the CCC.

Sample Input 2

```
15
1 5
5 2
2 15
15 4
2 10
8 3
3 1
1 6
11 6
12 6
11 9
11 14
12 7
13 7
NNYYYNYYNNNNNN
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
```

Output for Sample Input 2

6

Explanation of Output for Sample Input 2

One optimal strategy is for the CCC to ask students 5, 1, 6, 11, 7, and 2 to deliver seminars, in that order, paying them \$1 each.

La version française figure à la suite de la version anglaise.

Problème S5: De bons influenceurs

Énoncé du problème

Il y a N ($N \ge 2$) élèves dans une classe d'informatique. Les élèves ont des identifiants distincts allant de 1 à N. Parmi les élèves, il y a N-1 liens d'amitié. Le $i^{\rm e}$ lien d'amitié est entre les élèves A_i et B_i ($A_i \ne B_i$, $1 \le A_i \le N$ et $1 \le B_i \le N$). Chaque couple d'élèves est soit ami soit socialement lié. Un couple d'élèves a et b est socialement lié s'il existe un ensemble d'élèves m_1, m_2, \ldots, m_k tel que

- a et m_1 sont amis
- m_i et m_{i+1} sont amis (pour $1 \le i \le k-1$) et
- m_k et b sont amis.

Initialement, chaque élève i a soit l'intention de rédiger le CCI (si P_i est Y) ou n'a pas l'intention de rédiger le CCI (si P_i est N). Initialement, au moins un élève a l'intention de rédiger le CCI et au moins un élève n'a pas l'intention de rédiger le CCI.

Le CCI a alloué des fonds pour payer certains élèves afin que ces derniers jouent le rôle d'influenceurs pour le CCI. Le CCI choisira à plusieurs reprises un élève i qui a l'intention de rédiger le CCI, le paiera C_i dollars, et lui demandera de donner un séminaire à tous ses amis, après quoi tous ses amis auront l'intention de rédiger le CCI.

Aidez le CCI à déterminer le coût minimum nécessaire pour que tous les élèves aient l'intention de rédiger le CCI.

Précisions par rapport aux données d'entrée

La première ligne des données d'entrée contient l'entier N.

Les N-1 prochaines lignes contiennent chacune deux entiers, soit A_i and B_i $(1 \le i \le N-1)$, les deux étant séparés par un espace.

La prochaine ligne contient N caractères, $P_1 \dots P_N$, chacun d'entre eux étant soit Y ou N.

La prochaine ligne contient N entiers, soit $C_1 \dots C_N$, chacun des entiers étant séparé des autres par un espace.

Le tableau suivant indique la manière dont les 15 points disponibles sont répartis.

Attribution	Nombre		Restrictions
des points	d'élèves	Paiement	${f addition nelles}$
5 points	$2 \le N \le 2000$	$1 \le C_i \le 1\ 000$	$A_i = i$ et $B_i = i + 1$ pour chaque i
7 points	$2 \le N \le 2000$	$1 \le C_i \le 1\ 000$	Aucune
3 points	$2 \le N \le 200\ 000$	$1 \le C_i \le 1\ 000$	Aucune

Précisions par rapport aux données de sortie

Les données de sortie devraient afficher le coût minimum nécessaire (ce dernier étant un entier) pour que tous les élèves aient l'intention de rédiger le CCI.

English version appears before the French version

Données d'entrée d'un 1^{er} exemple 4 1 2 2 3 3 4 YNYN 4 3 6 2

Données de sortie du 1^{er} exemple

Justification des données de sortie du 1er exemple

Le CCI devrait donner 6 \$ à l'élève 3 pour qu'il présente un séminaire à ses amis (élèves 2 et 4), après quoi les 4 élèves auront l'intention de rédiger le CCI.

Données d'entrée d'un 2e exemple

```
15
1 5
5 2
2 15
15 4
2 10
8 3
3 1
1 6
11 6
12 6
11 9
11 14
12 7
13 7
NNYYYNYYNNNNNN
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
```

Données de sortie du 2^e exemple

6

Justification des données de sortie du 2^e exemple

Une stratégie optimale serait de demander aux élèves 5, 1, 6, 11, 7 et 2 de présenter des séminaires, dans cet ordre, et de payer ces élèves 1 \$ chacun.