Flux optique

Traitement de l'information et vision artificielle

Victor Marchais, Tong Zhao

Mai 2017

Ecole Nationale des Ponts et Chaussées

Sommaire

- 1. Introduction
- 2. Modélisation
- 3. La méthode de Lucas-Kanade
- 4. La méthode de Horn-Schunck
- 5. Application

Introduction

Introduction

Définition : Le mouvement relatif entre un observateur(caméra) et la scène.

Objectif : Estimer le champ de mouvement à l'aide d'une série d'images.

2

Introduction

Champ de mouvement (dim = 3) \xrightarrow{proj} Flux optique en (dim=2)

Modélisation

Hypothèses

Hypothèse:

- l'intensité lumineuse se conserve entre deux images successives
- le déplacement entre deux images est faible

La première hypothèse

$$I(x, y, t) = I(x + dx, y + dy, t + dt)$$

La seconde hypothèse + la série de Taylor de l'ordre 1

$$I(x+dx,y+dy,t+dt) = I(x,y,t) + \frac{\partial I}{\partial x}dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt$$

Equation de contrainte du flux optique

$$I_x dx + I_y dy + I_t dt = 0 \Rightarrow I_x u + I_y v + I_t = 0$$
 (1)

Interprétation

$$I_x u + I_y v + I_t = 0$$

• I_x : La dérivée partielle de l'intensité lumineuse par rapport à x

$$I_x = I(x, y, t) - I(x - 1, y, t)$$

ullet I_y : La dérivée partielle de l'intensité lumineuse par rapport à y

$$I_x = I(x, y, t) - I(x, y - 1, t)$$

ullet I_t : La dérivée partielle de l'intensité lumineuse par rapport au temps

$$I_x = I(x, y, t) - I(x, y, t - 1)$$

• u_x, u_y : Le flux optique à calculer

6

La méthode de Lucas-Kanade

Hypothèse

Hypothèse : le déplacement (le flux optique) entre deux images adjacentes est constant sur un voisinage local du pixel considéré

Conséquence : on peut résoudre le problème par les équations simultanées.

7

Algorithme

On prend un bloque de taille $k \times k$ ($3 \le k \le 15$ typiquement), et on obtient les équations suivantes :

$$\begin{cases} I_{x}(p_{1})u + I_{y}(p_{1})v &= -I_{t}(p_{1}) \\ I_{x}(p_{2})u + I_{y}(p_{2})v &= -I_{t}(p_{2}) \\ & \dots & \\ I_{x}(p_{k^{2}})u + I_{y}(p_{k^{2}})v &= -I_{t}(p_{k^{2}}) \end{cases} \rightarrow \begin{cases} I_{x}(p_{1}) & I_{y}(p_{1}) \\ I_{x}(p_{2}) & I_{y}(p_{2}) \\ & \dots & \dots \\ I_{x}(p_{k^{2}}) & I_{y}(p_{k^{2}}) \end{cases} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -I_{t}(p_{1}) \\ -I_{t}(p_{2}) \\ & \dots \\ -I_{t}(p_{k^{2}}) \end{bmatrix} \rightarrow Ax = b$$

Par la méthode des moindres carrés, on obtient la solution suivante :

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \sum_i I_x(p_i)^2 & \sum_i I_x(p_i)I_y(p_i) \\ \sum_i I_y(p_i)I_x(p_i) & \sum_i I_y(p_i)^2 \end{bmatrix} \begin{bmatrix} -\sum_i I_x(p_i)I_t(p_i) \\ -\sum_i I_y(p_i)I_t(p_i) \end{bmatrix}$$

8

Exemple

Figure 2 - k=9

Figure 3 – k=5

Figure 4 - k=12

Figure 5 – k=7

Figure 6 - k=15

Avantages et Inconvénients

Avantages

- Le calcul est rapide et facile
- L'évolution temporelle est exacte

Désavantages

- Une forte erreur sur les bords des objets mobiles
- La qualité de l'algorithme dépend de celle des points clés.
- L'hypothèse est forte

Application

Cette méthode convient à un ensemble de points bien choisis

La méthode de Horn-Schunck

Hypothèse

On suppose que le déplacement entre deux images adjacentes se différencie sur chaque point et on le considère comme un problème d'optimisation

Algorithme

Fonction d'énergie globale

• Point-wise energy :

$$E_d(i,j) = (I_x u_{ij} + I_y v_{ij} + I_t)^2$$

• Pair-wise energy :

$$E_s(i,j) = \frac{1}{4}[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2]$$

Fonction objective

$$\min_{u,v} \sum_{i,j} (E_d(i,j) + \lambda E_s(i,j))$$

La descente du gradient

A la k-ème itération, le gradient se calcule comme ce qui suit :

$$u^{k+1} = \bar{u}^k - \frac{I_x(I_x\bar{u}^k + I_y\bar{v}^k + I_t)}{\lambda + I_x^2 + I_y^2}$$
$$v^{k+1} = \bar{v}^k - \frac{I_y(I_x\bar{u}^k + I_y\bar{v}^k + I_t)}{\lambda + I_x^2 + I_y^2}$$

d'où

$$\bar{u}^{k}(x,y) = \frac{1}{4}(u_{i-1,j} + u_{i+1,j} + u_{i,j+1} + u_{i,j-1})$$
$$\bar{v}^{k}(x,y) = \frac{1}{4}(v_{i-1,j} + v_{i+1,j} + v_{i,j+1} + v_{i,j-1})$$

Exemple

Figure 7 - L'image originale

Figure 8 - Le flux optique

Avantages et Inconvénients

Avantage

- Le flux est continu
- On calcule le flux global
- La flexibilité

Désavantage

- La vitesse particulièrement lente
- Le bord d'object mobile n'est pas clair.

Application

Cette méthode parvient à trouver le flux optique dense. Cependant, à cause de sa vitesse lente, on n'utilise plus cet algorithme dans la pratique.

Application

Application

Necessite : équilibre entre

- Vitesse de calcul
- Précision

Lucas-Kanade

- Points précis bien définis
- Hypothèses respectées

Horn-Schunck

- Mouvement des points diffèrent
- Mouvement de chaque point

Application

Applications

Figure 9 – Utilisations de l'optical flow

References i

- V
 - Wikipedia, Optical flow https://en.wikipedia.org/wiki/Optical_flow
- Wikipedia, Horn-Schunck method
 - https://en.wikipedia.org/wiki/Horn-Schunck_method
- Eric Yuan's Blog, Coarse-to-fine Optical Flow (Lucas & Kanade) http://eric-yuan.me/coarse-to-fine-optical-flow/

