Chapter 1

Machine Learning

1.1 Machine Learning Basics

Machine Learning focuses on the development of algorithms and models that enable computers to learn from data with the aim of making predictions without being explicitly programmed.

The machine learning model is built using one or more input variables which are also called **predictors** or independent variables. The output of this model is the **response** or dependent variable which we want to predict. Machine learning is about learning an approximate function that can be used to predict the value of response variable.

We can think about learning as the way we understand it as a human. We can classify a learning problem based on the degree of feedback. Machine learning models fall into three primary categories:

- Supervised learning, where we have immediate feedback.
- Reinforcement learning, where we have indirect feedback. For example when we are playing the game of chess.
- Unsupervised learning, where we have non-feedback signal. For example, deducing which dog belongs to each owner.

Machine learning models simplify reality for the purposes of understanding or prediction. This prediction can be either a numerical prediction or a classification prediction. Several machine learning algorithms are commonly used, for example to name a few: linear regression, logistic regression, decision trees, random forests...

1.1.1 Motivation

In order to motivate our study of machine learning, we are going to present some examples.

Example 1. Let us consider the following hypothetical scenario. Imagine that we are the Data Scientist of a big football club. The club needs a new main striker for the next season and we are tasked with evaluating each candidate and decide whether to sign them or not. We have loads of data from each player.

Player Attributes Last Season:	
Age	21
Matches Played	38
Goals	14
Assists	11
Expected goals	10.56
Shots on target	32

- Input: $x_c = (x_{c_1}, ..., x_{c_d})$ "attributes of the player".
- Output:

$$y = \begin{cases} sign \\ not sign \end{cases}$$

- Target function: f "ideal player signing formula".
- The dataset $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$ consists of historical records of strikers, where x_i represents the player's attributes and y_i indicates the classification of whether they were signed or not.

We are looking for the function f such that $f(x_c) = y$.

An important aspect of machine learning is that many supervised learning tasks are about function learning. In general, a fundamental problem in machine learning can be defined as follows: given a dataset of the form $\{(x_i, y_i)\}_{i=1}^m \subset \mathbb{R}^n \times \mathbb{R}$, the goal is to find a model f that accurately predicts the output y_i for a given input x_i .

Example 2. An example of a supervised learning task is digit recognition. The objective is to identify handwritten digits (0-9) based on input images. In this task, we aim to learn a probability distribution function denoted as f, which maps a set of pixel values ranging from 0 (black) to 255 (white), representing a 28x28 image, to a probability distribution over the digits 0 to 9. In practice, we often learn the function

$$f: \{0, ..., 255\}^{28 \times 28} \longrightarrow \mathbb{R}^{10}$$

where big values represent that is very likely and small very unlikely.

Example 3. Example of a classification problem. We want to classify if an image is a dog or not a dog. We would like to produce a value which is correlated with the probability of this image being a dog or not a dog. We can approach the problem in the following way. We want to find a function that takes very high values when dog-image and very low values when non dog images and takes the value 0 when its uncertain. That function is

$$d: \mathbb{R}^{\# \text{pixels in image}} \to \mathbb{R}$$
.

This is what we mean by many problems can be recast as function learning. Note that there is not a God-given reason why this function should exist. We know that certain points in space, and they have certain values associated to them, but we dont know that there is some function.

1.1.2 Linear Regression

A linear regression algorithm is used to predict numerical values, based on a linear relationship between different values. A simple linear model is defined by the following equation:

$$y_i = w_0 + w_1 x_i + \epsilon_i$$

where i = 1, ..., n.

Note that y is the dependent variable (response), x is the independent variable (predictor), w_0 is the intercept, w_1 is the slope coefficient and ϵ is the error term or the residual.

Figure 1.1: y response variable: unemployment rate, x predictor: GDP growth. [?]

We can add additional p predictors to a simple linear model, transforming it into a multivariate linear model, which we define as follows:

$$y_i = w_0 + w_1 x_{1i} + \ldots + w_n x_{ni} + \epsilon_i$$
.

More commonly, the multivariate linear regression equation is expressed in matrix form as: $y = w^T x + \theta$.

1.1.3 Logistic Regression

Logistic regression is a model for predicting the probability that a binary response is 1. It is suitable for classification tasks, as well as for prediction of probabilities. From a statistical perspective, it is defined by assuming that the distribution of the binary response variable, y, given the features, x, follows a Bernoulli distribution with success probability p.

$$P(y = 1|X = x) = p$$
 and $P(y = 0|X = x) = 1 - p$.

We need to define the concept of sigmoid function that will be important along the work. A *sigmoid function* is a mathematical function that maps input values to a range between 0 and 1. We consider the following sigmoid function, the logit inverse function:

$$logit: (0,1) \to \mathbb{R}$$
 and is expressed as: $logit(x) = log\left(\frac{x}{x-1}\right)$

$$logit^{-1}: \mathbb{R} \to (0,1)$$
 and is expressed as: $logit^{-1}(x) = \frac{e^x}{1+e^x}$

The linear predictor, $w^T x + \theta$, fluctuates between $(-\infty, \infty)$ where x represents all predictors in the model. To address this difference in scale, the outcome variable is transformed using the logit function. The logistic regression model assumes a linear (affine) relationship between the feature vector x_i and the log odds of p. Namely,

$$logit(p) = w^T x + \theta.$$

The logistic model can be alternatively expressed using the inverse logit function:

$$P(y = 1|X = x) = \text{logit}^{-1}(w^T x + \theta).$$

1.2 Multilayer Feedforward Networks

Artificial Neural Networks (ANN) are the quintessential deep learning models, especially multilayer feedforward networks. They are widely used for nonlinear function approximation. The goal of an artificial neural network is to approximate some function f^* . For example, for a classifier, $y = f^*(x)$ maps an input x to a category y.

The term neural refers to the fact that this model was originally inspired by how biological neurons process information.

The term *feedforward* indicates the direction of information flow within the network, moving only forward in contraposition to backwards. Each layer processes the input data and passes its output to the next layer, creating a sequence of transformations until the final output is produced.

The term *network* refers to the interconnected structure of artificial neurons. A multilayer network consists of multiple layers, including an input layer, one or more hidden layers, and an output layer.

The architecture of the network entails determining its depth, width, and activation functions used. Depth is the number of hidden layers. Width is the number of units (nodes) on each hidden layer. The activation function defines how the weighted sum of the input is transformed into an output from a node in a layer of the network. Because the activation function plays a crucial role in our work, further details regarding its importance will be provided in the next section.

1.3 Architecture of a Multilayer Feedforward Network

1.3.1 Artificial neuron

The equation

$$y = \sigma(w^T x + \theta) \tag{2}$$

represents what we may call a single layer of a deep learning model, also called an artificial neuron. Observe that the artificial neuron is composed of an affine transformation $z = w^T x + \theta$ followed by a (generally) non-linear transformation $\sigma(z)$.

In more detail, $x \in \mathbb{R}^n$ is the input vector and represents a set of n features or predictors, $w \in \mathbb{R}^n$ is the weights vector where each element of the weights vector w_i corresponds to the importance assigned to the corresponding input feature x_i . θ is the bias and σ is the activation function. The result variable is a scalar output $y \in \mathbb{R}$.

Figure 1.2: Components of an artificial neuron. [?]

1.3.2 Activation Function

The introduction of the activation function in ANN was inspired by biological neural networks whose purpose is to decide whether a particular neuron fires or not. The simple addition of such function can tremendously help the network to exploit more, thereby learning faster. There are various activation functions proposed in the literature, and it is difficult to find the optimal activation function that can tackle any problem.

Note that a logistic regression is an artificial neuron where the activation function σ is $logit^{-1}$. Two widely popular activation functions are the Hyperbolic Tangent and Rectified Linear Unit (ReLU):

Hyperbolic Tangent (tanh):
$$\mathbb{R} \to (-1,1)$$

and

 $ReLU : \mathbb{R} \to (0, \infty)$ and is expressed as: $ReLU(x) = \max(0, x)$

Figure 1.3: Graphs of the sigmoid, hyperbolic tangent, and ReLU functions.

1.3.3 Definition

The general architecture of a multilayer feedforward network consists of an input layer with n input-units, an output layer with m output-units, and one or more hidden layers consisting of intermediate processing units.

Because a mapping $f: \mathbb{R}^n \to \mathbb{R}^m$ can be computed by m mappings: $f_j: \mathbb{R}^n \to \mathbb{R}$ it is (theoretically) sufficient to focus on networks with one output-unit only. In addition, since our findings require only a single hidden layer, we will assume hereafter that the network consists of three layers only: input, hidden, and output.

The Figure 2.4 show a more general network with several hidden layers and several outputs, meanwhile the Figure 2.4 depricates a simplifyed one with one output and one hidden layer.

Figure 1.4: Neural Network with 3 hidden layers and 4 outputs.

Figure 1.5: Neural Network with 1 hidden layer and 1 output.

Definition 1. A multilayer feedforward network is the function

$$f(x) = \sum_{j=1}^{k} \beta_j \cdot \sigma(w_j \cdot x - \theta_j)$$

where $x \in \mathbb{R}^n$ is the input vector, $k \in \mathbb{N}$ is the number of processing units in the hidden layer, $w_j \in \mathbb{R}^n$ is the weight vector that connects the input to processing unit j in the hidden layer, $\sigma : \mathbb{R} \to \mathbb{R}$ is an activation function, $\theta_j \in \mathbb{R}$ is the threshold (or bias) associated with processing unit j in the hidden layer, and $\beta_j \in \mathbb{R}$ is the weight that connects the processing unit j in the hidden layer to the output of the network.

Let N_w be the family of all functions that can be describe with a given network architecture. If we can show that N_w is dense in $C(\mathbb{R}^n)$, we can conclude that for every continuous function $g \in C(\mathbb{R}^n)$ and each compact set $K \subset \mathbb{R}^n$, there is a function $f \in N_w$ such that f is a good approximation to g on K.

The guiding question of the present work is: under which necessary and sufficient conditions on σ will the family of networks N_w be capable of approximating to any desired accuracy any given continuous function?