1 Basic definitions

My first attempt at providing a coherent mathematical definition of a repeat element family in the context of a spaced seed.

Definition 1 A repeat element family descriptor (refd) is a string over the alphabet $\{A, C, G, T, *\}$, describing the contents of any string in the family.

Definition 2 Given refds r and r', we will say r' is a slack substring of r (denoted $r' \prec$) if there is a substring r'' of r such that (1) |r'| = |r''|, and (2) for all $0 \le i < |r'|$, either $r'_i = r''_i$, $r'_i = *$, or $r''_i = *$.

(In otherwords, its a substring, with a potentially different * pattern.) Note: I'm not sure if we should be allowing $r_i'' = *$.

Definition 3 We say an refd r matches a Genome G at position i if, for all j such that $r_j \neq *, r_j = G_{i+j}$.

Example: If r = AA * TT, and G = AACTTGGAAGTT, then r matches G at positions i = 0 and i = 7. If G = AAATTT, then r matches G at positions i = 0 and i = 1.

Definition 4 A spaced seed s matches an refd r at position i if, for every $0 \le j < |s|$, $s_j = 0$ whenever $r_{i+j} = *$.

Example: If s = 11011 and r = AAAAA * GGG, then s matches r at positions i = 0 and i = 3, but not at any other i.

Definition 5 Given a seed s and refd r, let $M_s(r)$ be the set of values i such that s matches r at i.

Let s = 11011 and r = AA * CC * GGGGGG. Then $M_s(r) = [0, 3, 6, 7]$.

Definition 6 A spaced seed s is consistent with an refd r if for every i, $0 \le i < |r|$, there is some $i - |s| \le j \le i$ such that s matches r at position j.

In other words: for any position i of the refd, we must be able to match the seed to a position of r such that it then covers position i.

Example: The seed 11011 is compatible with r = AA * AA * AA. (The seed matches at positions 0 and 3, and all positions are covered by these two.) But it is not consistent with AAAAA * *AAAAA, and there is no seed that can match this string at any position that can cover i = 5 or i = 6.

Observation 1 Let L be the sortest sequence of the values in $M_s(r)$. Then s is consistent with r if and only if $\max_{0 \le j \le |s|-1} L[j+1] - L[j] \le |s|$.

That is, in the sorted list, every pair of adjacent elements must be within |s| of each other.

Definition 7 Given a fixed genome G, and fixed spaced seed s, and a fixed value f, we define a elementary repeat family as a set S of genome coordinates, $|S| \ge f$, such that there exists an refd r where:

- r matches the sequence of length |r| starting at each element of S. (S is the set of all instances.)
- s is consistent with r. (r corresponds to the seed.)
- There does not exist an refd r', $r' \prec r$, such that r' is consistent with s and $M_s(r') M_s(r) \neq \emptyset$. (You cannot have a proper substring of r that describes sequences outside of the instances described by r minimality.)
- There does not exist an refd r', $r \prec r'$, such that s is consistent with r', such that the instances defined by $M_s(r')$ contain all the instances of $M_s(r)$. (Maximality.)

2 Random Lemmas

The following are things I wanted to try to prove that may or may not be useful.

Lemma 1 Let s be a seed, r be a refd consistent with s, and r' be an refd consistent with s such that |r'| < |r|.