

Statistics and Data Science for Engineers E178 / ME276DS

Linear regression Part 2

Recap

Features

Feature: $\phi: \mathbb{R}^D \to \mathbb{R}$ nonlikear transformation.

Takes an input sample and produces a number.

e.g.

 $D=2 : \phi_1(x', x^2) = e^{x'} \sin x^2$

Example: Quadratic fit

, P=2.

$$\begin{array}{c} \text{trivial} \dots \phi_1(x) = x \\ \phi_2(x) = x^2 \end{array} \quad \Rightarrow \quad$$

$$\begin{split} h(x_i;\theta_0,\underline{\theta}_1) &= \theta_0 + \phi_1(x_i)\theta_1 + \phi_2(x_i)\theta_2 \\ &= \theta_0 + x_i\theta_1 + x_i^2\theta_2 \end{split}$$

Least squares solution:

$$\hat{\theta}_0 = -0.0935$$

$$\hat{\theta}_1 = 0.4174$$

$$\hat{\theta}_2 = 0.0467$$

In general: $h(x_i;\theta_0,\underline{\theta}_1)=\theta_0+\phi_1(x_i)\theta_1+\ldots+\phi_P(x_i)\theta_P$

Data transformation: $\Phi = \begin{bmatrix} \phi_1(\mathbf{X}) & \dots & \phi_P(\mathbf{X}) \end{bmatrix}$

P > D

P<D

Solution:

$$\hat{\Theta}_{0} = (\hat{\Phi}_{0}^{T} \hat{\Phi}_{0})^{T} \hat{\Phi}_{0}^{T} Y_{0}$$
 $\hat{\Theta}_{0} = \hat{M}_{V} - \hat{M}_{\bar{\Phi}} \cdot \hat{\Theta}_{1}$

ϕ_1	ϕ_2	ϕ_3	•••	ϕ_P	y
0.247746	36.0	266.0	0.247746	88.019654	57.000823
0.179340	37.0	365.0	0.179340	27.211935	22.471227
0.956807	21.0	151.0	0.956807	97.456012	56.357366
0.869653	43.0	437	869653	43.203221	34.65 4/5
0.825345	47.0	160.0	0.825345	98.933930	64.426163
0.331114	321.0	371.0	0.331114	8.257917	14.218720
0.765523	17.0	364.0	0.765523	96.696783	59.123769
0.956807	21.0	151.0	0.956807	97.456012	52.983470

Minimize
$$2(y_1 - \hat{y}_1)^2 = MSE = \frac{1}{N} 2(y_1 - \hat{y}_1)^2$$

$$P = 1$$

$$P = 2$$

$$P = 3$$

$$P = 10$$

$$P = 17$$

$$P = 23$$

$$P = 23$$

$$P = 10$$

$$P = 17$$

$$P = 23$$

Aside: Bias/Variance tradeoff

Bias/Vaviance decomp.

MSE = Vor + Bias

letrics:		MSE	 •	• •	•			• •													•	•	•		•	•	0 0	
		RMSE	 0	• •	۰		۰	• •	•	•		۰	0		•	•			0					٠			•	,
	• • •		 •	• •	•			 . ; (W?)	•		e	e	·	• •	•	•	•	•	•	• •	•	•	•	• •	
		MAE	 0	• •			•	W	0	Ve	fi	#1	M		۰		• •	0	•	•	•	•	• •		•	•	0 0	
		MAPE	 •	• •												•				•	٠						• •	
		R2	 •	• •	•	• •	•	•	•	•	• •	•	•	•			•	•	•		•	•	•		•	•	0 0	

.

. . . .

.

Aside: Metrics that penalize complexity

$$\mathsf{AIC} = rac{1}{\hat{\sigma}^2}\mathsf{MSE}_{\mathsf{train}} + rac{2}{N}P$$
 .

... Akaike information criterion

$$\mathrm{BIC} = \frac{1}{\hat{\sigma}^2} \mathrm{MSE}_{\mathrm{train}} + \underbrace{\frac{\log(N)}{N}}_{P}$$

... Bayesian information criterion

where

$$\hat{\sigma} = \frac{1}{N-1-P} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 \quad \text{for the "full" model}$$

General feature selection (a.k.a. Model selection)

1. Subset selection.

2. Regularization.

P=10 -> 1024 P things, how many subsets are there?

Best subset selection

```
for k = 1 ... P:
               for \mathcal{A}_{\kappa} in {all k-sized subsets of \mathcal{P}}:
                                     \hat{\theta}_{\kappa} = \operatorname{train}(\mathcal{A}_{\kappa}, \mathcal{D}_{\operatorname{train}})
                                     \ell_{\kappa} = \mathsf{perf}(\mathcal{A}_{\kappa}, \hat{\theta}_{\kappa}, \mathcal{D}_{\mathsf{val}})
               \kappa^* = \operatorname{argbest}(\{\ell_{\kappa}\})
              \mathcal{S}_k = \mathcal{A}_{\kappa^*}
S^* = \mathsf{best} \, \mathsf{of} \, \{S_k\}_P
\hat{	heta}^* = \mathsf{train}(\mathcal{S}^*, \mathcal{D}_{\mathsf{train}})
\ell^* = \mathsf{perf}(\mathcal{S}^*, \widehat{	heta}^*, \mathcal{D}_\mathsf{test})
```

Forward stepwise selection

Assume
$$\mathcal{S}_k \subset \mathcal{S}_{k+1}$$

$$\#$$
 evaluations = $\frac{P}{Z}$ i = $\frac{P(P-1)}{Z}$.

$$\mathcal{P} \; = \; \{\; \phi_1 \; , \; \phi_2 \; , \; \phi_3 \; , \qquad \ldots \qquad , \; \phi_{P-1} \; , \overbrace{\phi_P} \; \}$$

$$\mathcal{S}_0 = \{\}$$

$$.. \mathcal{S}_1 = \{$$

$$S_2 = \{ , \phi_3 , \phi_5 \}$$

•

$$\mathcal{S}_{P} \; = \; \{\; \phi_{1} \; , \; \phi_{2} \; , \; \phi_{3} \; , \qquad \ldots \qquad , \; \phi_{P-1} \; , \; \phi_{P} \; \}$$

Forward stepwise selection

```
set minus.
\mathcal{S}_0 = \{\}
for k = 1 ... P:
                for \kappa, \phi_p \in \text{enumerate}(\mathcal{P} \setminus \mathcal{S}_{k-1})
                                      \mathcal{A}_{\kappa} = \mathcal{S}_{k-1} \cup \phi_n
                                      \hat{\theta}_{\kappa} = \operatorname{train}(\mathcal{A}_{\kappa}, \mathcal{D}_{\operatorname{train}})
                                      \ell_{\kappa} = \mathsf{perf}(\mathcal{A}_{\kappa}, \hat{\theta}_{\kappa}, \mathcal{D}_{\mathsf{val}})
                \kappa^* = \operatorname{argbest}(\{\ell_{\kappa}\})
    {\mathcal S}_k={\mathcal A}_{\kappa^*}
S^* = \mathsf{best} \, \mathsf{of} \, \{S_k\}_P
\hat{\theta}^* \models \mathsf{train}(\mathcal{S}^*, \mathcal{D}_{\mathsf{train}})
|\ell^*| = \mathsf{perf}(\mathcal{S}^*, \hat{\theta}^*, \mathcal{D}_\mathsf{test})
```

```
curlvS = [set() for i in range(P+1)]
ellk = np.full(P+1,np.inf)
for k in range(1,P+1):
    curlyA = [set() for i in range(P-k+1)]
    ellkappa = np.full(P-k+1,np.inf)
    for kappa, phip in enumerate(curlyP-curlyS[k-1]):
        curlyA[kappa] = curlyS[k-1].union({phip})
        thetaOhat, theta1hat = train( curlyA[kappa] , Dtrain)
        ellkappa[kappa] = perf(curlyA[kappa], theta0hat, theta1hat,
                               Dvalidate)
    kappastar = ellkappa.argmin()
    curlyS[k] = curlyA[kappastar]
    ellk[k] = ellkappa[kappastar]
kstar = ellk.argmin()
Sstar = curlyS[kstar]
thetaOstar, thetaIstar = train(Sstar, Dtrain)
ellstar = perf(Sstar, thetaOstar, thetaIstar, Dtest)
# Store the results
f ellk = ellk
f ellstar = ellstar
f kstar = kstar
```

Backward stepwise selection

Assume
$$\mathcal{S}_k \subset \mathcal{S}_{k+1}$$

$$\begin{split} \mathcal{S}_{P} &= \{ \, \phi_{1} \, , \, \phi_{2} \, , \, \phi_{3} \, , & \ldots \, , \, \phi_{P-1} \, , \, \phi_{P} \, \} \\ \mathcal{S}_{P-1} &= \{ \, \phi_{1} \, , \, \phi_{2} \, , \, \phi_{3} \, , & \ldots \, , \, \phi_{P-1} \, , \, \phi_{P} \, \} & \text{P-1 evaluations.} \\ \mathcal{S}_{P-2} &= \{ \, \phi_{1} \, , \, \phi_{2} \, , \, \phi_{3} \, , & \ldots \, , \, \phi_{P-1} \, , \, \phi_{P} \, \} \\ &\vdots \\ \mathcal{S}_{0} &= \{ \, \} \end{split}$$

Parameter shrinkage, a.k.a. Regularization the size of the parameters. O. $\hat{\theta} = \operatorname*{argmin}_{\theta} \left(\sum_{i=1}^{N} L(y_i, \hat{y}_i) \right. \\ \left. + \lambda R(\theta) \right)$ 1051 minimization. - overfitting large — less overfitting.

R can be a norm function.

a 2 norm (Euclidean) Ridge.

Ridge regression

$$\begin{aligned} & \widehat{\theta}_{\text{ridge}} = \underset{\theta_{0} \dots \theta_{P}}{\operatorname{argmin}} \left(\sum_{i=1}^{N} \left(y_{i} - \widehat{y}_{i} \right)^{2} + \lambda \sum_{j=1}^{P} \theta_{j}^{2} \right) & \theta = \\ & = \underset{\theta_{0}, \underline{\theta}_{1}}{\operatorname{argmin}} \left(\left\| \mathbf{Y} - \widehat{\mathbf{Y}} \right\|_{2}^{2} + \lambda \left\| \underline{\theta}_{1} \right\|_{2}^{2} \right) & \\ & = \underset{\theta_{0}, \underline{\theta}_{1}}{\operatorname{argmin}} \left(\left\| \mathbf{Y} - \widehat{\mathbf{Y}} \right\|_{2}^{2} + \lambda \left\| \underline{\theta}_{1} \right\|_{2}^{2} \right) & \end{aligned}$$

Solution:

$$\begin{split} \hat{\theta}_0 &= \hat{\mu}_Y - \hat{\mu}_X \underline{\hat{\theta}}_1 \\ \underline{\hat{\theta}}_1 &= ((\mathbf{X}^c)^T \mathbf{X}^c + \lambda I)^{-1} (\mathbf{X}^c)^T \mathbf{Y}^c \end{split}$$

Ridge regularized linear regression

Lasso regression

$$\begin{split} \hat{\theta}_{\text{lasso}} &= \underset{\theta_{0} \dots \theta_{P}}{\operatorname{argmin}} \left(\sum_{i=1}^{N} \left(y_{i} - \hat{y}_{i} \right)^{2} \; + \; \lambda \sum_{j=1}^{P} |\theta_{j}| \right) \\ &= \underset{\theta_{0}, \underline{\theta}_{1}}{\operatorname{argmin}} \left(\left\| \left. \mathbf{Y} - \hat{\mathbf{Y}} \right\|_{2}^{2} \; + \; \lambda \; \left\| \underline{\theta}_{1} \right\|_{1} \right) \end{split}$$

Creates sparse moduls. Several d's = 0.

Lasso regularized linear regression

A different perspective on Ridge and Lasso

$$\hat{\theta}_{\text{ridge}} = \overline{\underset{\theta_0, \underline{\theta}_1}{\operatorname{argmin}} \left(\left\| \mathbf{Y} - \hat{\mathbf{Y}} \right\|^2 + \lambda \left\| \underline{\theta}_1 \right\|_2^2 \right)} \quad \hat{\theta}_{\text{lasso}} = \overline{\underset{\theta_0, \underline{\theta}_1}{\operatorname{argmin}} \left(\left\| \mathbf{Y} - \hat{\mathbf{Y}} \right\|^2 + \lambda \left\| \underline{\theta}_1 \right\|_1 \right)} \\ = \overline{\underset{\theta_0, \underline{\theta}_1}{\operatorname{argmin}} \left\| \mathbf{Y} - \hat{\mathbf{Y}} \right\|^2} \quad = \overline{\underset{\theta_0, \underline{\theta}_1}{\operatorname{argmin}} \left\| \mathbf{Y} - \hat{\mathbf{Y}} \right\|^2} \\ \text{s.t.} \quad \underline{\|\underline{\theta}_1\|}_2 \leq t \quad \text{s.t.} \quad \underline{\|\underline{\theta}_1\|}_1 \leq t$$