

Seminario de Solución de Problemas de Inteligencia Artificial I: Algoritmos Genéticos

M.C. Jesús Hernández Barragán

UDG - CUCEI

Ciclo: 2018-B

Contenido

- Introducción
- 2 Terminología Básica
- 3 Algoritmo Genético Continuo
 - Inicialización
 - Evaluación de la función objetivo
 - Selección
 - Cruza
 - Mutación
- 4 Algoritmo GA

Introducción

Los Algoritmos Genéticos (GA) son simulaciones de la selección natural y pueden resolver problemas de optimización.

Características básicas de la selección natural:

- Un sistema biológico incluye una población de individuos (algunos de ellos se pueden reproducir)
- Los individuos tienen tiempo de vida
- Existe variación en la población (mutación)
- La habilidad de la supervivencia esta correlacionada positivamente con la habilidad de reproducirse

Introducción (continuación)

En general, los GA mejoran los individuos de la población resolviendo las siguientes operaciones durante un proceso iterativo:

- Selección
- Cruza
- Mutación

Terminología Básica

- Población: Conjunto de individuos, donde cada individuo representa una posible solución.
- Individuo: Un solo miembro de la población. Cada individuo contiene un cromosoma.
- Cromosoma: Estructura de datos que contiene una cadena de parámetros de ajuste o diseño.
- Aptitud: El valor que se asigna a cada individuo y que indica que tan bueno es este con respecto a los demás.

Terminología Básica (continuación)

- Generación: Es una iteración de la medida de aptitud y a la creación de una nueva población por medio de los operadores.
- Selección: es el proceso mediante el cual algunos individuos en una población son seleccionados para reproducirse, típicamente con base a su aptitud.
- Cruza o Cruce: Es un operador que forma un nuevo cromosoma combinando partes de cada uno de sus cromosomas padres.
- Mutación: Operador que forma un nuevo cromosoma a través de alteraciones de los valores de los genes del cromosoma.

Algoritmo Genético Continuo

Existen diversas versiones del los GA. Entre los algoritmos clásicos se encuentran el GA discreto y el GA continuo.

Algunas de las diferencias entre estos algoritmos son las siguientes:

- GA discreto: Es el algoritmo pionero. El cromosoma es representado por una cadena binaria conformada por genes. Es necesario decodificar la información binaria. Se utiliza para resolver principalmente problemas de optimización combinatoria.
- GA continuo: En este algoritmo el cromosoma esta conformado por valores continuos. Es una version modificada del GA discreto para resolver problemas de optimización continua.

Algoritmo Genético Continuo (continuación)

Las etapas del GA continuación son los siguientes:

- Generación aleatoria de la población (Inicialización)
- Cálculo de la aptitud de cada individuo (Evaluación de la Función Objetivo)
- Selección de padres (operación de Selección)
- Generación de hijos (operación de Cruza o Cruce)
- Mutación de hijos (operación de Mutación)

Inicialización

La inicialización de los individuos de la población dentro del espacio de trabajo del espacio continuo, se realiza mediante la siguiente ecuación

$$\mathbf{x}_i = \mathbf{x}_l + (\mathbf{x}_u - \mathbf{x}_l) \, \mathbf{r}_i$$

donde $i=1,2,3,\cdots,N$ con N como el tamaño total de la población y

- \bullet \mathbf{x}_i individuo i en la población
- \bullet \mathbf{x}_l límite inferior del espacio de búsqueda
- \bullet \mathbf{x}_n límite superior del espacio de búsqueda
- \bullet \mathbf{r}_i vector de números aleatorios

Además, $\mathbf{x}_i, \mathbf{x}_l, \mathbf{x}_u, \mathbf{r}_i \in \mathbb{R}^D$ con D como el tamaño de la dimension del problema.

Evaluación de la función objetivo

Para minimizar una Función Objetivo $f(\mathbf{x})$ se propone evaluar la aptitud de cada individuo i como sigue

$$aptitud_{i}(\mathbf{x}_{i}) = \begin{cases} \frac{1}{1 + f(\mathbf{x}_{i})} & \text{si } f(\mathbf{x}_{i}) \geq 0\\ 1 + |f(\mathbf{x}_{i})| & \text{si } f(\mathbf{x}_{i}) < 0 \end{cases}$$

esto debido a que los GA por naturaleza maximizan. Además, es necesario obtener valores positivos en la $aptitud_i$ para poder realizar la operación de Selección.

Selección

En la operación de selección, algunos individuos son seleccionados para reproducirse, típicamente con base a su aptitud. Existen diferentes tipos de selección. Como por ejemplo: selección por ruleta, selección por torneo, entre otros.

En la selección por ruleta, cada individuo es asignado dependiendo a la proporción de su aptitud. Una valor de aptitud grande tiene más probabilidades de ser seleccionado.

Selección (continuación)

Selección por ruleta:

Por cada individuo i se asigna una probabilidad de selección como sigue

$$P_i = \frac{aptitud_i}{\sum_{k=1}^{N} aptitud_k}$$

donde

- \bullet aptitud_i es la aptitud del individuo i
- $\bullet~N$ es el total de individuos en la población

Dependiendo del valor P_i , el individuo i puede ser seleccionado como un padre para crear descendencia.

- (ロ) (部) (注) (注) 注 り(()

Selección (continuación)

Algorithm 1 Selección por ruleta

```
1: aptitud_{total} \leftarrow 0
 2. Desde i = 1 Hasta N
         aptitud_{total} \leftarrow aptitud_{total} + aptitud_i
 3:
 4 Fin Desde
 5: Desde i = 1 Hasta N
         P_i \leftarrow \frac{aptitud_i}{aptitud_{total}}
 7: Fin Desde
 8: r \leftarrow generar número aleatorio tal que r \in [0,1]
 9: P_{sum} \leftarrow 0
10: Desde i = 1 Hasta N
    P_{sum} \leftarrow P_{sum} + P_i
11:
12: Si P_{sum} > r Entonces
13:
               seleccionar individuo i como padre
14:
               Regresar
         Fin Si
15:
16: Fin Desde
```

17: seleccionar individuo $i \leftarrow N$ como padre

En la operación de Cruza, dos padres son seleccionados en base a su aptitud para generar dos hijos. Importante: Un padre no se puede cruzar consigo mismo, pero si puede ser seleccionado varias veces.

Se deben seleccionar tantos padres necesarios parar crear hijos suficientes y mantener el tamaño de la población N.

Cruza (continuación)

En la operación Cruza, los padres intercambian información del cromosoma a partir de un punto de cruce p_c . Dados dos padres \mathbf{x}_1^p y \mathbf{x}_2^p , generamos dos hijos \mathbf{x}_1^h y \mathbf{x}_2^h como sigue:

el punto de cruce p_c se calcula aleatoriamente tal que $p_c \in [1, D]$ con D como la dimension del problema, en este caso D = 6.

Mutación

En la operación de Mutación, cada elemento del cromosoma $j \in [1, D]$ de cada hijo generado $i \in [1, N]$, tiene la probabilidad de ser mutado.

La Mutación se calcula de la siguiente manera

$$x_{ij} = \begin{cases} x_{ij} & \text{si } r_a \ge p_m \\ x_{lj} + (x_{uj} - x_{lj}) r_b & \text{si } r_a < p_m \end{cases}$$

donde p_m es la probabilidad de mutación y $r_a, r_b \in [0,1]$ son números aleatorios. La probabilidad de mutación es seleccionada por el usuario tal que $p_m \in [0,1]$.

Además, x_{lj} y x_{uj} son elementos de los limites de trabajo inferior \mathbf{x}_l y superior \mathbf{x}_u , respectivamente.

Mutación (continuación)

Algorithm 2 Mutación

```
1: N \leftarrow definir población total
 2: D \leftarrow definir dimension del problema
 3: p_m \leftarrow definir probabilidad de mutación
    Desde i = 1 Hasta N
          Desde i = 1 Hasta D
 5:
                r_a \leftarrow \text{generar número aleatorio tal que } r \in [0, 1]
 6:
                Si r_a < p_m Entonces
 7:
                     r_b \leftarrow \text{generar número aleatorio tal que } r \in [0, 1]
8:
                     x_{ij} \leftarrow x_{lj} + (x_{uj} - x_{lj}) r_b
9:
                Si No
10:
11:
                     x_{ij} \leftarrow x_{ij}
                Fin Si
12:
          Fin Desde
13:
14: Fin Desde
```

Algoritmo GA

Finalmente, el algoritmo GA es descrito a continuación:

Algorithm 3 Algoritmo GA

```
1: N \leftarrow definir población total
 2: \mathbf{x}_{i}^{p} \leftarrow \text{inicializar } N \text{ padres aleatoriamente, } i \in [1, N]
 3: Hacer
              aptitud_i \leftarrow calcular la aptitud de cada individuo (padres) i
 4.
              \mathbf{x}^h \leftarrow \{\emptyset\} generar conjunto vacío de hijos
 5:
              Mientras |\mathbf{x}^h| < |\mathbf{x}^p|
 6:
                      selección de padres por ruleta
 7:
                      padres \{\mathbf{x}_{r_1}^p, \mathbf{x}_{r_2}^p\} generan hijos \{\mathbf{x}_1^h, \mathbf{x}_2^h\}
 8:
                     \mathbf{x}^h \leftarrow \mathbf{x}^h \cup \left\{\mathbf{x}_1^h, \mathbf{x}_2^h\right\}
 9:
              Fin Mientras
10:
              Mutar aletaoriamente a los hijos \mathbf{x}_{i}^{h}
11:
              \mathbf{x}_{i}^{p} \leftarrow \mathbf{x}_{i}^{h}
12:
```

 r_1 y r_2 indican padres escogidos por selección de ruleta tal que $r_1 \neq r_2$.

Mientras que se cumpla el total de generaciones

Gracias por tu atención!

Información de contacto:

M.C. Jesús Hernández Barragán

 $\hbox{E-mail: jesus.hdez.barragan@gmail.com.}\\$