Income estimation

Based on skills

Can we calculate salaries for jobs in any industry based only on skills and location?				

Datasets

Salary data from Bureau of Labor Statistics:

- Occupation
- State
- Annual Salary

Skills data from Onet

There are two scales, impotence and level

For this exercise we choose importance with a scale of 1-5

Target feature

	Annual	Hourly	
Mean	57,448	27.34	
Min	17,300	8.32	
Max	315830	151.84	

Features

Features

states

788 occupations

35 skills

379 locations

States

Skills scale

1 to 5

Just looking at these histograms, we can see that Installation, Equipment Maintenance, Equipment Selection, and Repairing are highly skewed to the right. Most of their values are concentrated around 1.

Most of the distributions above are bimodal. Time Managment and Service Orientation have the most normal distributions. Technology design and Programming have most of their values concentrated below 2. Science has a high value at 1 which means that science is not ranked as important for many occupations! We also see this features in Troubleshooting, Programming and Operations and Control.

Relationship between target feature (salary) and variables (skills)

Relationship between target feature (salary) and variables (skills)

Correlation between each feature

Heatmaps, pairplots

PCA

Baseline model

Uses mean as the best estimate

Get basically zero for R^2 error: the model does a terrible job

Fit time = 0.5

Score time = 0.08

Regression Models

	OLS	Ridge	SVR
R-squared	0.606	0.606	0.586
Fit time	12.88	0.93	91.27
Score time	0.58	0.066	0.0198
MAE test	\$14,251		

Basic Linear Regressions

Management of Financial Resources Science

Judgment and Decision Making

Persuasion

Critical Thinking

Active Learning

Reading Comprehension

Management of Personnel Resources

Time Management

Monitoring

Ridge Regression

Management of Financial Resources
Science

Persuasion

Judgment and Decision Making

Active Learning

Critical Thinking

Reading Comprehension

Management of Personnel Resources

Time Management

Monitoring

sterial Resources -

000

Support Vector Regression(LinearSVR)

Management of Financial Resources
Judgment and Decision Making
Science

Reading Comprehension

Persuasion

Critical Thinking

Management of Personnel Resources

Speaking

Systems Evaluation

Active Learning

service Orienta Active Lister

Random Forest Model

 $(0.8875267860497988,\, 0.0031824517006334503)$

Fit time: 92.8323

Score time: 0.5231

Random Forest Model

Complex Problem Solving
Critical Thinking
Management of Financial Resources

Science

Systems Analysis

Monitoring

Systems Evaluation

Operations Analysis

Social Perceptiveness

