QUESTION 5

CS663 (DIGITAL IMAGE PROCESSING) ASSIGNMENT 3

ATISHAY JAIN (210050026) CHESHTA DAMOR (210050040) KANAD SHENDE (210050078)

210050026@iitb.ac.in 210050040@iitb.ac.in 210050078@iitb.ac.in

Contents

Ι	Question 5	1
1	Proof (a) $F^*(u, v) = F(-u, -v)$ 1.1 LHS 1.2 RHS	1 1 2
2	Proof (b)	2

Problem 1

If a function f(x,y) is real, prove that its Discrete Fourier transform F(u,v) satisfies $F^*(u,v) = F(-u,-v)$. If f(x,y) is real and even, prove that F(u,v) is also real and even. The function f(x,y) is an even function if f(x,y) = f(-x,-y). [15 points]

Properties

- Given that f(x, y) is real, we know that $f^*(x, y) = f(x, y)$, where * denotes complex conjugation.
- The function f(x,y) is an even function if f(x,y) = f(-x,-y)

Section 1

Proof (a)
$$F^*(u, v) = F(-u, -v)$$

Proof

By definition, the 2D DFT of a function f(x,y) of size $W_1 \times W_2$ is given by:

$$F(u,v) = \frac{1}{\sqrt{W_1 W_2}} \sum_{x=0}^{W_1 - 1} \sum_{y=0}^{W_2 - 1} f(x,y) e^{-j2\pi(\frac{ux}{W_1} + \frac{vy}{W_2})}$$

Subsection 1.1

LHS

Taking the complex conjugate of F(u, v):

$$F^*(u,v) = \frac{1}{\sqrt{W_1 W_2}} \sum_{x=0}^{W_1 - 1} \sum_{y=0}^{W_2 - 1} f^*(x,y) e^{j2\pi \left(\frac{ux}{W_1} + \frac{vy}{W_2}\right)}$$

Since f(x, y) is real, using the above stated property 1, we can further write this as

$$F^*(u,v) = \frac{1}{\sqrt{W_1 W_2}} \sum_{x=0}^{W_1 - 1} \sum_{y=0}^{W_2 - 1} f(x,y) e^{j2\pi \left(\frac{ux}{W_1} + \frac{vy}{W_2}\right)}$$

Proof (b)

Subsection 1.2

RHS

Now, calculating F(-u, -v)

$$F(-u, -v) = \frac{1}{\sqrt{W_1 W_2}} \sum_{x=0}^{W_1 - 1} \sum_{y=0}^{W_2 - 1} f(x, y) e^{-j2\pi \left(\frac{-ux}{W_1} + \frac{-vy}{W_2}\right)}$$

$$F(-u, -v) = \frac{1}{\sqrt{W_1 W_2}} \sum_{x=0}^{W_1 - 1} \sum_{y=0}^{W_2 - 1} f(x, y) e^{j2\pi \left(\frac{ux}{W_1} + \frac{vy}{W_2}\right)}$$

Therefore, LHS = RHS. Hence proved.

Section 2

Proof (b)

Now we will prove that if f(x, y) is real and even, prove that F(u, v) is also real and even.

$$F(u,v) = \frac{1}{\sqrt{W_1 W_2}} \sum_{x=0}^{W_1 - 1} \sum_{y=0}^{W_2 - 1} f(x,y) e^{-j2\pi(\frac{ux}{W_1} + \frac{vy}{W_2})}$$

Taking the complex conjugate of F(u, v) and considering f(x, y) is real:

$$F^*(u,v) = \frac{1}{\sqrt{W_1 W_2}} \sum_{x=0}^{W_1 - 1} \sum_{y=0}^{W_2 - 1} f(x,y) e^{j2\pi \left(\frac{ux}{W_1} + \frac{vy}{W_2}\right)}$$

Now, let's change the indices in the equation by substituting -x for x and -y for y:

$$F^*(u,v) = \frac{1}{\sqrt{W_1 W_2}} \sum_{-x=0}^{W_1 - 1} \sum_{-y=0}^{W_2 - 1} f(-x, -y) e^{j2\pi \left(\frac{u(-x)}{W_1} + \frac{v(-y)}{W_2}\right)}$$

$$F^*(u,v) = \frac{1}{\sqrt{W_1 W_2}} \sum_{x=1-W_1}^{0} \sum_{y=1-W_2}^{0} f(-x,-y) e^{-j2\pi \left(\frac{ux}{W_1} + \frac{vy}{W_2}\right)}$$

Since f(x, y) is even, using property 2 we can write:

$$F^*(u,v) = \frac{1}{\sqrt{W_1 W_2}} \sum_{x=1-W_1}^{0} \sum_{y=1-W_2}^{0} f(x,y) e^{-j2\pi \left(\frac{ux}{W_1} + \frac{vy}{W_2}\right)}$$

Proof (b)

Properties

Periodic property:

• For integers k_1 and k_2

$$f(x,y) = f(x + k_1W_1, y + k_2W_2)$$

$$f(x,y) = f(x - W_1, y - W_2)$$

•

$$e^{-j2\pi \frac{ux}{W_1}} = e^{-j2\pi \frac{u(x-W_1)}{W_1}}$$
$$e^{-j2\pi(\frac{ux}{W_1} + \frac{vy}{W_2})} = e^{-j2\pi(\frac{u(x-W_1)}{W_1} + \frac{v(y-W_2)}{W_2})}$$

Remark Since in the above equation of $F^*(u, v)$, $x \in [1 - W_1, 0]$ and $y \in [1 - W_2, 0]$, therefore when we replace x by $x - W_1$ and y by $y - W_2$, we get

$$x - W_1 \in [1 - W_1, 0] \implies x \in [1, W_1]$$

and

$$y - W_2 \in [1 - W_2, 0] \implies y \in [1, W_2]$$

Now, using the periodic properties of f(x, y) and $e^{-j2\pi(\frac{ux}{W_1} + \frac{vy}{W_2})}$ and replacing x by $x - W_1$ and y by $y - W_2$ in the above equation of $F^*(u, v)$, we get:

$$F^*(u,v) = \frac{1}{\sqrt{W_1 W_2}} \sum_{x=1}^{W_1} \sum_{y=1}^{W_2} f(x,y) e^{-j2\pi \left(\frac{ux}{W_1} + \frac{vy}{W_2}\right)}$$

Remark Note that $f(0,0) = f(W_1, W_2)$ and considering $g(x,y) = e^{-j2\pi(\frac{ux}{W_1} + \frac{vy}{W_2})}$, $g(0,0) = g(W_1, W_2)$

Therefore, the above equation can be written as:

$$F^*(u,v) = \frac{1}{\sqrt{W_1 W_2}} \sum_{x=0}^{W_1 - 1} \sum_{y=0}^{W_2 - 1} f(x,y) e^{-j2\pi \left(\frac{ux}{W_1} + \frac{vy}{W_2}\right)}$$

Hence, we can see that

$$F^*(u, v) = F(u, v)$$
 (2.1)

We also know from proof (a) that

$$F^*(u,v) = F(-u,-v)$$
 (2.2)

Therefore, from equation (2.1) and (2.2), we say that

$$F^*(u,v) = F(u,v) = F(-u,-v)$$
(2.3)

Hence, from equation (2.3),

Proof (b)

 $F(\mathbf{u}, \mathbf{v})$ is real and even if $f(\mathbf{x}, \mathbf{y})$ is real and even.