Hepatitis C Virus cell culture system

Publication number:	EP1043399 (A2)		Also published as
Publication date:	2000-10-11		EP1043399 (A3
Inventor(s):	BARTENSCHLAGER RALF DR [DE] +	1	EP1043399 (B1
Applicant(s):	BARTENSCHLAGER RALF DR [DE] +	懒	EP1043399 (B9
Classification:		13	DE19915178 (A1
- international:	C07K14/02; C12N15/09; C12N15/86; C12N5/08; C12N5/10; C12N7/00; C12N7/01; A61K39/00; A61K48/00; C12R1/91;		US6630343 (B1
	C07K14/005; C12N15/09; C12N15/86; C12N5/08; C12N5/10; C12N7/00; C12N7/01; A61K39/00; A61K48/00; (IPC1-		more >:
	7); A61K48/00; A61K49/00; C07K14/18; C12N15/86; C12N5/10; C12N7/01; C12N7/04		Cited documents
- European:	C07K14/02; C12N15/86; C12N7/00		WO9839031 (A1)
Application number:	EP20000105929 20000323		WO9904008 (A2)
Priority number(s):	DE19991015178 19990403		US5851758 (A)
		3	US5874565 (A
			WO9967394 (A1

Abstract of EP 1043399 (A2)

Hepatitis C virus (HCV) cell culture system comprising human hepatoma cells that contain an integrated HCV-RNA construct (f) new. (f) contains the HCV-Specific RNA segments 5-NTR (non-translated region). NS (non-structural), NSAA, NSSB, NSSB, and 3-NTR, and a selectable (marker) gene (ii). An Independent claim is also included for (i) containing the novel HCV-specific RNA segments.

Data supplied from the especenet database - Worldwide

(19)

Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 1 043 399 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 11.10.2000 Patentblatt 2000/41

(21) Anmeldenummer: 00105929.4

(22) Anmeldetag: 23.03.2000

AL LT LV MK RO SI

(51) Int. Cl.⁷: **C12N 15/86**, C12N 7/01, C12N 7/04, C12N 5/10, C07K 14/18, A61K 49/00, A61K 48/00

(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Benannte Erstreckungsstaaten:

(30) Priorität: 03.04.1999 DE 19915178

(71) Anmelder: Bartenschlager, Ralf, Dr. 55239 Gau-Odernheim (DE) (72) Erfinder: Bartenschlager, Ralf, Dr. 55239 Gau-Odernheim (DE)

(74) Vertreter: Rudolph, Ulrike, Dr. Patentanwältin In der Schanz 10 69198 Schrieshelm (DE)

(54) Hepatitis C Virus Zellkultursystem

(57) Das erfindungsgemäße Hegatitis C Virus (HCV) Zeilkuftrystem bestelft aus humanen Hegatiomazeilen, die mit einem HCV-RNA-Konstrukt transfiziert sind, das die HCV-spezifischen RIVA-Abschnitte S NTR, NSS, NS4A, NSBA, NSSA, NSSA und S NTR und zudern wenigstens ein selektierbares Markergen (Selektionsgen) umfaßt.

Beschreibung

und funktionell aktiven Proteine gespalten.

[0001] Die Erfindung betrifft ein Hepatitis C Virus (HCV) Zellkultursystem, das im wesentlichen eukaryontische Zellen umfaßt, die eingeschleustes HCV-spezifisches Genmaterial enthalten, d.h. die mit HCV-spezifischem Genmaterial transtiziert sind.

[0002] Das Hepatitis C Virus (HCV) jet eine der Hauptursachen chronischer und sporadischer Leberkrankungen weltweit. Die meisten HCV-Hiddionen verlauden nohne erkennbare klinische Symptome, alledringe werden 50-90% der Inflüerten dauerhalten Virusträger und bei 50% dieser dauerhalten Virusträger kommt es zu einer chronischen Leberentzendung mit unterschiedlichen Schwerergaden. Ca. 20% der brunsich liefelzeren entwicklein int Lard von 10 bis 20/20 Jahren eine Leberzinhose, auf deren Basis sich ein primäres Leberzellkarzinom entwicklen kann. Die chronische Hepatitis C ist heute die Hauptindikation für eine Lebertransplantation. Eine Kausalihrenzie gibt es bisher noch nicht. Die einzige derzeit verfügbare Therapie ist die hochdosierte Verabreichung von Interferon-Alpha oder eine Kombination aus interferon-Alpha oder eine Kombination aus interferon-Alpha oder eine Kombination auf dieser Therapie an und bei diesen kommt es in mehr als der Halfe aller Falle nach dem Absezten der Behandrung

Aufgrund der höhen Prävalenz, gerade auch in den Industriellandern, den schwerwiegenden Folgen chronischer Infektionen und dem Fehlen einer Kausaltherapie ist die Entwicklung einer HCV-spezifischen Chemotherapie ein wesentliches Ziel der pharmazeutsischen Forschung und Entwicklung, Hauptproblem hierbei ist bisher das Fehlen eines eigeigneten Zellkultursystems, das ein Studium der Virus-Replikation und der Pathogenese in eukaryontischen Zellen zo ermöglicht.

10033 Aufgrund der geringen Virusmengen im Blut bzw. Gewebe, dem Fehlen geeigneter Zellkultursysteme oder Tiermodelle (bis heute ist der Schimpanse das einzige mögliche Versuchstier) sowie dem Fehlen effüzienter Systeme zur Produktion virus-ahmicher Partikel, konnte die molekulare Zusammensetzung des HCV-Partikels bis heute noch nicht eingehend untersucht bzw. aufgeleich werden. Die derzeit vorliegenden Eirgebnisse lassen sich wie folgt zusammentassen: Das HCV ist ein unthölltes Plusstrang RNA Virus mit einem Partikeluchnensser von 50-60 mm und einer mittleren Dichte von 1,08-1,1gml. Es wurde erstmals 1989 molekular kloriert und charakterisiert (Choo et al., 1999: Science, 24, 399-362). Die HCV-PNA hat eine Lafige von ca. 9,5 ib (6, 9500) Nukloedde), eine positiere Polarität und bestütt ein einziges öffense Leseraster (ORF = open reading frame), das ein lineares Polyprotein von ca 3010 Aminosaturen kordert (sieher Rice 1996), in Virology, 8, N. Fields, D. M. Kringe, P. M. Howley, Eds. (Lippincort-Rawer, Philadelop phia, PA, 1996), vol. 1, pp.931-990; Clarke 1997, J. Gen. Virol. 78, 2397; und Bartenschlager 1997, Intervirology 40, 379 und vol. Fig. 1, A). Bei der Virusreplikation wird das Polyprotein und virale Protessen in die reifen

Innerhalb des Polyproteins sind die Proteine wie folgt angeordnet (vom Amino- zum Carboxyterminus). Core ET-E2-p7-NSZ-NS3-NSA-ANSG-NSA-NSED aus Core Protein ist die Hauptkomponente des Nukleokapsids. Die Glykoproteine ine E1 und E2 sind Transmembranproteine und Hauptkomponenten der Virushülle. Sie spielen wahrscheinlich bei der Anheitung des Virus an die Wirtszelle eine wesentliche Rolle. Diese drie Proteine Core, E1 und E2 bauen den Viruspartible als ur und werden deshaha bei Strukturproteine bezeichnet. Die Fruktien des Proteines p7 sin och unklar. Das Protein NSZ ist wahrscheinlich die katalytische Domaine der NSZ-3 Protesse, die für die Prozesierung zwischen den Proteinen NSZ und NSZ verantvortlich ist. Das Protein NS3 hat zwei Funktionen, nämlich in der ammorterminaten 40 Domaine eine Proteiseaseltivität, die für die Polyproteinprozessierung essentiell ist, und in der carboxyterminaten Domaine eine Proteiseaseltivität, die für die Polyproteinprozessierung essentiell ist, und in der carboxyterminaten Domaine eine Proteisea-Funktion, die wahrscheinlich bei der Rollikätion der viralen RNA eine Rolle sollet Das

Protein NS4A ist ein Kofakfor der NS3-Protease. Die Funktion des Proteins NS4B ist unbekannt. [10004] Das offene Leseraster ist an seinem S Ende von einer au 340 nuMedotid langen nicht translatierten Region (NTR = non-translated region) flankiert, die als interne Ribosomenanstatzstelle (RES = internel ribosome entry site) stungiert, und an seinem 3' Ende von einer ca. 200 NuMedotide langen NTR, die hochswahrscheinlich für die Genomepilkeition von Bedeutung ist. Eine solche 3' NTR ist Gegenstand der Patentammeldung PCT/US 96/14033. Die Strukturproteine in dem amrino terminalen Viertel des Polyproteins werden von der Signalpeptidase der Wirtszelle gespatien. Die Nicht-Strukturproteine (NS) 25 bis (NS) Sis werden von zwei wirden Enzymen prozessiert, namitivo von den NS2-35 behötigt. Die Rolle von NS4B ist nicht bekannt. NSSA, ein hoch phosphoryleires Protein, scheint für die Interferon Resistenz verschiedener HcV-Genotypen verantwortlich zu sein (vgl. Enomoto et al. 1995, J. Clin. Invest. 98, 224; Enomoto et al. 1996, N. Engl. J. Med. 334, 77; Gale J. et al. 1997, Virology 203, 217; Kaneko et al. 1994, Biochem. Biophys. Res. Commun. 205, 320; Reed et al., 1997, J. Virol. 71, 7187) und NSSB wurde als die RNA-abhängige RNA Polymerase identifiziert.

50005 Anhand dieser Erkenntnisse wurden erste Diagnosesysteme entwickelt, die entweder auf dem Nachweis von HU-Cyspezifischen Antiklöper in Pelientenserum oder auf dem Nachweis von HU-Cyspezifischen RNA mittels RT-PCR (= Reverse Transcription Pelymerase Chain Reaction) beruhen, und die mittlenweile routine- und/oder vorschriftsm
äßig bie alle Billutkonserven angewendet werden (müssen).

[9006] Seit der Eristbaschreibung des Genoms 1999 wurden mit Hilfe der PCR-Methode zahlreiche Teil- und Komplettsequenzen des HCV Kloniert und charakterisiert. Ein Vergleich dieser Sequenzen zeigt eine höhe Variabilität des wiralen Genoms, insbesondere im Bereich des NSSS Gens, was letztendich zu einer Eriteilung in Genorypen geführt hat, die sebst nochmals in Subtypen a. b., und c untergliedert sind. Die genomische Varianz ist nicht gleichmäßig über das Genom verteilt. So sind die SNTR und Teile der SNTR hoch konserviert, während bestimmte kodierende Sequenzon z. T. seh statk vanieren, von allem die Hültproibine Et und EZ.

Die klorierten und cherakterisierten Teil- und Kompettsequenzen des HCV-Genoms wurden außerdem hinsichtlich geeigneter Angriffsziele für ein prospektives antivirales Therapeutikum untersucht. Dabei wurden drei virale Enzyme getunden, die sich als solches Angriffsziel arbeiteren. Diese sind (1) der NSSIAA Proteasekomptex, (2) die NSSI Heiklase und (3) die NSSB RNA-abhängige RNA Polymerase. Der NSSIAA Proteasekomptex und die NSSI Heiklase konnten bereits virstallisiert und hinschlicht ihrer dreidimensionalen Struktur aufgeldett werden (Kim et al., 1996, Cell, 87,343; Yern et al., 1998, Protein Science, 7, 837; Love et al., 1996, Cell, 87,311; Kim et al., 1998, Sirukture 6, 89; Yao et al., 1997, Nature Structural Biology, 4, 463, Cho et al., 1996, J. Biol. Chem., 273, 15045); bei der NSSB RNA-abhändien RNA Pürkmerase ist dies bis heuten och richt eleuhoren.

50 Obvohl mit diesen Enzymen bedeutsame Angriffsziele für eine Therapieentwicklung der chronischen HCV-Infektion definiert sind, und obwohl sowohl mit Hille von "raitional dung design" als auch mit Hille von "high hroupptus troenes" weltweit intensiv nach geeigneten Inhibitoren gesucht wird, leidet die Therapieentwicklung an einem großen Defizit, nämilich dem Fehlen von Zeillultursystemen oder einfachen Tiemmodellen, die es erfalzben, HCV-Rink oder HCV-Antigene Griedt, zuverlässig und mit einfachen laborbilichten Mehoden nachzuweisen. Das Fehlen soher Zeillultursyse steme ist auch der Haupfgrund defür, daß das Verständnis der HCV-Replikation bis heute noch sehr lückenhaft und in welten Teilen nur hvoorheitsch ist.

[0008] Obwohl nach Meinung der Fachwelt eine enge evolutionäre Beziehung zwischen HCV und den Flavi- und Prestviren besteht und für diese autnom repitzierende RNAs beschrieben sind, die in verschiedenen Zellnine ohne weitere zur Fapilikation gebracht werden können und dabei relativ hohe Ausbeuten zeigen (siehe Khromykh et al., 1997, J. Virol. 71, 1497; Behrens et al., 1998, J. Virol. 72, 2364; Moser et al., 1998, J. Virol. 72, 5318), waren ähnliche Versuche mit HCV beher nicht erfoltorieih.

[0009] Zwar ist aus verschiederen Publikationen bekannt, daß Zellinien oder primäre Zellkulturen mit HCV-haltgem, hochtirtigem Beitelmenserum inflziert werden können, (Lanford et al. 1994, Virology 202, 666; Shimizu de al. 1993,
Procedings of the National Academy of Sciences, USA, 90, 6037-6041; Mizunal et al. 1996, Journal of Virology, 70,
7219-7223; M. Ikeda et al. 1998, Virus Res. 56, 157; Fournier et al. 1998, J. Gen. Virol. 79, 2376 und darin zilierte Lireatturstellen, Inde et al. 1996, Journal of General Virology, 77, 1043-1054), diese virusitärzierten Zellinien oder Zellkulturen erlauben jedoch nicht den direkten Nachweis von HCV-RNA oder HCV-Antigenen. Die virale RNA in diesen Zellen
ist weder in einem Northern-Biot (einem Standardverfahren zum quartifatierten Nachweis von RNA) noch sind die viralen
Protein in einem Western-Biot oder mittels immungrätzipitation detektierbar. Nur mit sehr aufwendigen und indirekten
Methoden ist es überhaupt gelungen, eine HCV-Repikation nachzuweisen. Diese nachteiligen Umstände zeigen klar,
daß die Reoliktein in diesen bekannten virusifistierten Zellierine der Zellikulturen absobut unzureichend ist.

Desweiteren ist aus den Publikationen von Yoo et al. (1995, Journal of Virology, 69, 32-38) und von Dash et al., (1997, American Journal of Pathology, 151, 363-373) bekannt, daß Hepatomazellinien mit synthetischer HCV-RNA, die mittels in vitro Trankription von kloniertem HCV-Genom gewonnen wurde, transfiziert werden können. In beiden 40 Publikationen gingen die Autoren von dem Grundgedanken aus, daß das virale HCV-Genom eine Plusstrang-RNA ist. die nach dem Einschleusen in die Zelle direkt als mRNA fungiert, an die sich Ribosomen anheften und im Zuge von Translationsprozessen Virusproteine bilden, aus denen sich letztendlich neue HCV-Partikel bilden (können). Diese Virusreplikation, d.h. diese neu gebildeten HCV-Viren bzw. deren RNA wurde mittels RT-PCR nachgewiesen. Die publizierten Ergebnisse der durchgeführten RT-PCR sprechen ledoch dafür, daß die Effizienz der HCV-Replikation in den beschriebenen HCV-transfizierten Hepatomazellen nur sehr gering ist und jedenfalls nicht ausreicht, um Schwankungen in der Replikationsrate nach gezielter Einwirkung mit prospektiven antiviralen Therapeutika auch nur qualitativ, geschweige denn guantitativ zu messen. Außerdem ist im Stand der Technik mittlerweile bekannt (Yanagi et al., Proc. Natl. Acad. Sci. USA, 96, 2291-95, 1999), daß die hochkonservierte 3' NTR essentiell ist für die Virusreplikation, was in klarem Widerspruch zu den Behauptungen von Yoo et al. und Dash et al. steht, die für ihre Versuche in Unkenntnis 50 des authentischen 3' Endes des HCV-Genoms ausschließlich HCV-Genome mit verkürzten 3' NTRs verwendet haben. Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines HCV- Zellkultursystems, bei dem die virale RNA in den transfizierten Zellen autonom und mit so hoher Effizienz repliziert, daß Schwankungen in der Replikationsrate nach gezielter Einwirkung mit virus- und insbesondere HCV-spezifischen prospektiven antiviralen Therapeutika qualitativ und quantitativ und mit Hilfe gängiger, laborüblicher Meßverfahren gemessen werden können.

5 [0012] Eine Lösung dieser Aufgabe besteht in der Bereitstellung eines Zellkultursystems der eingangs genannten Art, bei dem die eukaryontischen Zellen humane Zellen, insbesondere Hepatomazellen sind, die vorzugsweise von einer handelsüblichen Hepatomazellinie abstammen, aber auch aus einer entsprechenden Primärzellkultur gewonnen sein k\u00f6nnen, und bei dem das eingeschleuste HCV-spezifische Germatenial ein HCV-RNA-Konstrukt ist, das im

wesentlichen die HCV-spezifischen RNA-Asschnitte 5 NTR. NS3, NS4A, NS4B, NS5A, NS5B und 3 NTR. vorzugsweise in der genannten Reihenfolge, und zudem weingstens ein selderlicherzens Markegen (Seldelichorgen) unträßt.
"NTR' steht hier und im folgenden für "nicht-translatiente Regien" und ist dem einschlägigen Fachmann als Begriff bzw.
Abkürzung bekannt und geläufig. Der Begriff HCV-RNA-Konstrukt* unfaßt hier und im folgenden sowohl Konstrukte,
die das Komplette HCV-Genom enthalten, als auch sodrhe, die lediglich einem Teil davon, d.n. ein HCV-Sulpenom ent-

Eine bevorzugte Variante des erfindungsgem

ßen Zeilkultursystems, die sich in der Praxis sehr gut bew

ährt hat, ist unter der Nummer DSM ACC2394 (Laborbezeichnung Nutl

ß 1-31) eine der DSM Z. Deutsche Sammtung von Mikroorganismen und Zeilkulturen GnbH in Braunschweig, Deutschland, hinterlegt.

[0013] Mit dem erindungsgemäßen Zellkultursystem wird erstmals ein in-vitro-System bereit gestellt, in dem HCV-RNA intrazellulär, autnom und in ausreichend großen Mengen regitiert und egyntiemt wird, so das eine quantitätive Bestimmung sowöni der HCV-RNA-Mengen als auch der HCV-spezifischen Proteine mit konventionellen und zuverlässig genauen biochemischen Meßmeltnoden durchgeführt werden kann. Das heißt: es steht erstmals ein annähernd aufhentlisches Zellgestützels (Cell-based) HCV-Pepilikationsystem zur Verfügung, das für die Erhücklung und Erpro-

15 bung von anfunden Pramazeutika dringend benötigt wird. Dieses Testsystem bietet nur die Möglichkeit, potentielle Angriffsziele für eine wirksame HCV-spezifische Therapie zu identifizieren und HCV-spezifische Chemotherapeutika zu entwicklein und zu serabieren.

[0014] Die Erfindung basiert auf der überraschenden Erkenntnis, daß eine effizierte Replikation der HCV-RNA nur dann in Zellen stattlindet, wenn dese mit einem HCV-RNA-konstult transfliziert wurden, das mindestense die 5 und die 20 3 richt-translatierten Regionen (NTR) und die Nüchtstrukturproteine (NS) bis 5B umfaßt und zusätzlich ein eeletdiebares Markergen (Selektionsgen) aufweist. Offensichtlich sind die Strukturgene für den Ablauf der Replikation ohne wesentliche Bedeutung, während andererseis eine effizierte Replikation der HCV-RNA anscheinend nur dann stattlindet, wenn die transflizierten Zellen einem permanenten Selektionsdruck unterzogen werden, der durch das mit der HCV-RNA erbundene selektionster Markergen (Selektionsgen) vermittelt wird. Das Markergen (Selektionsgen) ser scheint sonit einerseits die Selektion derjenigen Zellen zu provozieren, in denen die HCV-RNA produktiv repliziert, und andersreits scheint es die Effizierz der RNA-Replikation wesentlicht zu steinern.

[0015] Gegenstand der Erfindung ist auch ein zellfreies HCV-RNA-Konstrukt, das sich dadurch auszeichnet, daß es die HCV-spezifischen RNA-Abschnitte 5 NTR, NS3, NS4A, NS4B, NSSA, NS5B und 3* NTR, vorzugsweise in der genannten Beihenfolge und zudem ein selektlichbares Markeroen (Selektionseen) umfaßt.

30 [0016] Der Begriff 5 NTR bzw. NS4 bzw. NS4A bzw. NS4B bzw. NSSA bzw. NSSB bzw. 3' NTR umfaft im vorliegenden Zusammerhang jede Nukleotidsequenz, die im Stand der Technik als Nukleotidsequenz für den jeweils betrefenden funktionellen Abschnitt des HCV-Genoms beschrieben ist.

[0017] Die Bereitstellung eines solchen HCV-RNA-Konstrukts ermöglicht erstmals eine detaillierte Analyse der HCV - Replikation, - Pathogenesis und - Evolution in Zellkulturen. Die HCV-spezilische virale RNA kann - als vollständiges Genom oder als Subgenom - gezielt in beliebigen Mengen erzeugt werden, und es besteht die Moglichiekt, das RNA-Konstrukt zu manipulieren und damit die HCV-Funktionen auf genetischer Ebene zu untersuchen und aufzuldären.

[0018] Da alle zur Zeit als Hauptangriffsziel für eine Therapie untersuchten HCV-Enzyme, nämlich die NS3/4A Protesse, die NS3 Hellikase und die NSSB Polymerase, in dem erfindungsgemäßen HCV-RNA-Konstrukt enthalten sind, 49 kann es für alle entsorechenden Untersuchungen benutzt werden.

[0019] Eine Ausführungskom des HCV-FINA-Konstrukts, die sich in der praktischen Anwendung sehr gut bewährt hat, zeichnet sich dadurch aus, daß sie die Nukleotidsequenz gemäß Sequenzprotokoll SEQ ID NO:1 untaßt. Weitere Ausführungsvarianten mit vergleichbar guten Eigenschaften für den Einsatz in der Praxis sind dadurch gekennzeichnet, daß sie eine Nukleotidsequenz entweder gemäß Sequenzprotokoll SEQ ID NO:2 oder SEQ ID NO:3 oder SEQ ID NO:6 oder SEQ ID NO:7 oder SEQ ID NO:8 oder SEQ ID NO:9 oder SEQ ID NO:9

[0020] Es besteht die Möglichkeit, das erfindungsgemäße HCV-Subgenom-Konstrukt mit einer 3' NTR zu versehen, die eine im Stand der Technik hierfür bisher unbekannte Nukleotidssequenz aufweist, nämlich eine Nukleotidsequenz, die aus der Gruppe der nachfolgend aufgelisteten Nukleotidssequenzen (a) bis (i) ausgewählt ist:

55

5

15

an

- (b) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT
 TTTTTAGTCT TTTTTTTTC TTTTTTTTGA GAGAGAGAGT CTCACTCTGT
 TGCCCAGACT GGAGC
- (c) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT
 TTTAATCTTT TTTTTTTTCT TTTTTTTTGA GAGAGAGAGT CTCACTCTGT
 TGCCCAGACT GCAGC
- (d) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT TTTTTTAGTC TTTTTTTTT TCTTTTTTT TGAGAGAGAG AGTCTCACTC TGTTGCCAG ACTGGAGT
- - (g) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT TTTTTAGTCT TTTTTTTTTT CTTTTTTTTT GAGAGAGAGAG GTCTCACTCT GTTGCCCAGA CTGGAGT
 - (h) ACGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT TTTTTTTAAT CTTTTTTTTT TTTTTCCTTT TTTTGAGAGA GAGAGTCTCA CTCTGTTGCC CAGACTGGAG T

Das in den erfindungsgemäßen HCV-RNA-Konstrukten enthaltene selektierbare Markergen (Selektionsgen) ist vorzugsweise ein Resistenzgen, insbesondere eine Antibiotikumresistenzgen.

Das hat den Vorteil, deß die mit diesem Konstrukt transfizierten Zellen leicht von den nicht transfizierten Zellen selektiert werden können, indem dem Zellkulturmedium z.B. im Fall eines Antibiotikumreistenzgens das betreffende Antibiotikum zugegeben wird. Unter Äntibiotikum wird im vorliegenden Zusammenhang jede Substanz verstanden, die die hicht-transfizierten Wirtszellen oder Zellen, in denen die HCV-RNA rum mit geringer Effizienz repiziert, am Leben oder Wachstum hindert, insbesondier Zelloffie wie z.B. Puromyn, Hyromyncin, Zeorin, Bleomyncin der Blastioffich.

[0021] Ein bevorzugtes selektierbares Markergen (Selektionsgen) bzw. Resistenzgen, das sich in der Praxis sehr aut bewährt hat, ist das Neomycinohosphotransferasegen.

[0022] Eine Alternative zu den Antibiotikumresistenzgenen ist z.B. das Thymidin-Kinase-Gen, mit dem eine HAT-

Selektion durchgeführt werden kann.

[0023] Die Position des selektierbaren Markergens (Selektionsgens), bzw. des bevorzugten Resistenzgens bzw. des besonders bevorzugten Antibiotikumresistenzgens in dem HGV-RNA-Konstrukt liegt vorzugsweise hinter der HCV S TNTR, d.h. strangsbwärts der 5 TNTR bzw. strangaufwärts des HCV-Leserasters. Denkbar ist aber auch eine Insertion im Bereich der 3' NTR oder an anderer Stelle des HCV-Genoms oder -Subgenoms, z.B. innerhab des Polyproteins.

(1024) Bei einer alternativen Ausführungsform des erfindungsgemäßen HCV-RNA-Konstrukts ist das selektiertser Markergen (Selektionsgen), insbesondere ein Antibiotikumresistenzgen, über ein Ribozym bzw. eine Erkennungsstelle für ein Ribozym mit der HCV-RNA bzw. der HCV-Genom- oder -Subenenwsequenz verbunden.

[0025] Damit geht der Vorteil einher, daß nach erfolgter Selektion derjenigen Zellen, in denen die HCV-RNA produktiv repliziert, in den daraus gewonnen Zellklonen das Resisterzgen durch ribozymwermittelle Spatung von der
HCV-Subgenomsequenz abgetrennt werden kann, namlich durch Aktivierung des einkolnerien Ribozyms oder, im Fall
eines Konstrukts mit einer Erkennungsstelle für ein Ribozym, durch Einschleusen des Ribozyms in die Zellen (z.B. mittels Transfektion eines Ribozymkonstrukts oder Infektion mit einem viralen Expressionsverktor, in den das entsprechende Ribozym einesseltz wurde). Auf diese Weise wird ein aufhentisches HCV-Genom-Konstrukt ohner

16 Resistenzgen erhalten, das zur Bildung authentischer infektiöser Viruspartikel befähigt ist. [0026] Eine weitere bevorzugte Ausführungsform des erfindungsgemäßen HCV-RNA-Konstrukts zeichnet sich dadurch aus. daß das Konstrukt wenistens ein interprierte Reporteren autweist.

[0027] Unter Reportergen wird im folgenden jedes Gen verstanden, dessen Anwesenheit sich nach Überführung in einen Zielorganismus leicht und im allgemeinen mit einfachen biochemischen oder auch histochemischen Melhoden anachweisen läßt, d.h. das für ein Protein kodiert, welches auch in geringen Mengen einfach und zuverlässig mit den labordblüchen Meßmelhoden nachgewiesen und quamfilitziert werden kann.

[0028] Diese Variante des HCV-RNA-Konstrukts hat den Vorteil, daß der Umfang der Replikation dieses Konstrukts anhand des Reportergenprodukts einfach und schnell mit laborüblichen Methoden gemessen werden kann.

[0029] Das Reportergen ist vorzugsweise ein Gen aus der Gruppe der Luzifersasgene, dem CAFGen (Chloram-phenicol-Acetyl-Transferase-Gen), dem lacZ-Gen (beta-Galaktosidasegen), dem GFP-Gen (green-fluorescence-protein-Gen), dem GUS-Gen (Gulduromidasegen) oder dem SEAP-Gen (Sezenarte-Alkalische-Phosphaitase-Gen). Diese Reportergene bzw. deren Produkte, n\u00e4mich die entsprechenden Reporterproteine, k\u00f6nnen z.B. mittles Fluoreszenz, Chemilluminesszenz, colimetrisch oder mit Hille immunolisischer Methoden (z.B. ELISA) bestimmt werden.

[0030] Als Reportergen kommt aber auch ein Surrogatmarkergen in Betracht. Darunter sind in diesem Zusammenhang solche Gene zu werstehen, die für zellukter Proteine, Nuklerinaturen oder – allgenein – (10 solche Funktionen kodieren, die einer von der Virusrepliktation abhängigen Variation unterliegen, und die infolgadessen in denjenigen Zeilen, in denen sich das HCV bzw. das HCV-RNA-Konstrukt vermehrt, entweder reprimiert oder aktiviert werden. Das heißt: die Reduktion bzw. Aktivierung dieser Funktion ist ein Ersatzmarker für die Virusreplikation bzw. die Replikation des HCV-RNA-Konstrukte.

§ [0331] Die Positionen von Reportergen und selektierbarem Markergen (Selektionsgen) k\u00f3nnen so gew\u00e4hit sein, daß ein aus den beiden Genprodukten gebildetes Fusionsprotein exprimiert wird. Hierbei besteht die vorteiln\u00e4nte Möglichkeit, daß diese beiden Gene so in dem HCV-RNA-Konstrukt angeordnet sind, daß ihre beiden exprimierten Proteire zundchst \u00fcber eine Schnittstelle f\u00fcr einer Proteine zundchst \u00fcber eine Schnittstelle f\u00fcr einer Schnittstelle f\u00fcr einer schnittstelle f\u00fcr einer stellt zu betragen zu betragen zu bei zu betragen zu bei zu

40 Ebensogut k\u00f6nnen diese beiden Positionen aber auch derart getrennt voneinander liegen, da\u00e4 beide Genprodukte separat exprimiert werden. (z.B. in der Reihenfolge: Marker- bzw. Resistenzgen — interne Ribosomenbindungsstelle — Reportergen).

Im Fall des Reportergens hat sich eine Ausführungsvariante besonders bewährt, bei der das Reportergen in das öffene Leseraster des HCV-Genoms oder -Subgenoms einkloniert ist, und zwar derart, daß es erst nach einer proteolytischen Prozessierung in eine aktive Form überführt wird.

[0032] Das erfindungsgemäße Zellkultursystem in allen seinen Variationen kann für vielfältige Zwecke eingesetzt werden. Diese umfassen:

- Das Auffinden antiviral wirksamer Substanzen. Dies können beispielsweise sein: organische Verbindungen, die unmittelbar oder mittelbar in die Virusvermehrung eingreifen (z.B. Inhibitioren der viralen Proteasen, der NSS Helikase, der NSSB RNA-abhangigen RNA Polymerase), antisense Oligonukleotide, die an eine beliebige Zielsequenz innerhalb des HCV-RNA-Konstrukts (z.B. die 5' NTR) hybridsieren und unmittelbar oder mittelbar zu einer Beeinflussung der Virusvermehrung führen z.B. auf Grund einer Reduktion der Translation des HCV-Polyproteins oder Ribozyme, die eine beleibie HCV-RNA-Sequerus spallen und damt die Virusregilitation beeinrichtigen.
- 55 Die Evaluierung jeglicher Art antiviral wirksamer Substanzen in Zellkultur. Solche Substanzen k\u00f6nnen beispielsweise mittels rational drug design oder high-throughput screening am isolierten gereinigten Enzym gefunden werden. Unter Evaluierung sind vor allem die Bestimmung der inhibitorischen Eigenschaften der entsprechenden Substanz sowie deren Wirkungsmechanismus zu verstehen.

- Die Identifikation neuer Angriffsziele, viralen oder zellul\u00e4ren Ursprungs, f\u00fcr eine HCV-spezifische antivirale Therapie. Ist beispielsweise ein zellul\u00e4res Protein essentielf f\u00fcr die Virusreplikation, kann mittels Hemmung dieses zellul\u00e4ren Proteins die Virusreplikation ebenfalls beeinflu\u00e4t werden. Das Auffinden solcher auxili\u00e4ren Faktoren ist mit
 dem erfinishinsosem\u00e4\u00e46en System ebenfalls m\u00f6\u00fcr\u00e40it.
- 5 Der Einsatz für die Resistenzbesimmung, Es ist anzunehmen, die auf Grund der hohen Mutationsrate des HCV-Genoms Therapieresistenzen auftreten. Solche Resistanzen, die gerade bei der Minschen Zulassung einer Sübstanz von großer Bedeutung sind, lassen sich mit dem erfindungsgemäßen Zellkultursystem ermitteln. Zellinien in deren sich das HCV-RNA-Konstrukt bzw. das HCV-Genom oder Stupenom repliziteri, werden mit steigenden Konzentrationen der ertsprechenden Substanzer inlubtiert und die Replikation der viralen RNA wird entweder anhand eines eingebrachten Reporters oder durch qualitative oder quantitative Bestimmung der viralen Nukleinsäturen oder Protrien bestimmt. Resistenz ist dann gegeben, wenn bei normaler Wirkstöfkonzentration keine Hemmung der Replikation zu beobechten ist. Durch Reldonierung der HCV-RNA (z.B. mittels RTP-CR) und Seguenzanalyse können die für Therapieresistenz veranfworlichen Nukledich zww. Aminosatureusstausche erritet werden. Durch Einklonierun der/des entsprechenden Austausche/s in das Ursprungskonstrukt kann deren Kaussifikt für der Therapieresistenz kowiersen werden.
 - Die Produktion von authentischen Virusproteinen (Antigene) für die Entwicklung und/oder Evaluierung von Diagnostika. Das erfindungsgemäße Zellkultursystem erlaubt auch die Expression von HCV-Antigenen in Zellkulturen. Diese Antigene Können prünzieiell auch für den Aufbau demonstischer Nachweisverfahren einsesetzt werden.
- Die Produktion von HCV Viren und virus-ähnlichen Partikeln insbesondere zur Entwicklung oder Herstellung von Therapeutika und Impfstoffen sowie für diagnostische Zwecke. Insbesondere zellkultur-adaptierte vollständige HCV-Genome, die mit dem erfindungsgemäßen Zellkultursystem hergestellt werden können, sind in der Lage, mit hoher Effizienz in Zellkulturen zu reptizieren. Diese Genome besitzen alle Funktionen des HCV und sind deshalb in der Lage infektöse Viren zu produzieren.
- 25 [0033] Das erfindungsgemäße HCV-RNA-Konstrukt für sich genommen kann in allen seinen Variationen ebenfalls für vielfältige Zwecke eingesetzt werden. Dazu gehören vor allem:
- Die Konstruktion attenuierter Hepatitis C Viren bzw. HCV-ähnlicher Partikel und deren Produktion in Zellkülturen: Durch zufällige oder gezielt hervorgerufene Mutationen, beispielsweise Punktmutationen, Deletionen oder Insertionen, können attenuierte HCV- oder HCV-ähnliche Partikel erzeugt werden, dh. Wren bzw. virusähnliche Partikel mit voller Replikationskompetenz aber verringerter bzw. fehlender Pathogenität. Soliche attenuierte HCV- oder HCV-ähnliche Partikel ist innöstendienes bir möstoff diensetzbar.
 - Die Konstruktion von HCV-RNA-Konstrukten mit integrierten Fremdgenen, beispielsweise zur Verwendung als leberzeilspezifische Genfähren in der Gentherepie. Auf Grund des ausgeprägten Leberzeiltropiersus des HCV und der Möglichkeit, Teile des Genoms durch heterologe Sequenzen zu ersetzen, lassen sich HCV-RNA-Konstrukte herstellen, bei denen bespielsweise die Strukturproteine durch ein therapeutisch wirksames Gen ersetzt werden. Das so erhattene HCV-RNA-Konstrukt wird na Zellen eingeschleust, vorzugsweise mittles Transfektion, die de fehlenden HCV-Funktionen, besipielsweise die Strukturproteine, konstitutiv oder induzierbar exprimieren. Durch diese dem Fachmann unter dem Begriff der Transkomplementation* bekannte Technik lassen sich Viruspartikel erzeugen, in die das HCV-RNA-Konstrukt eingebaut wird. Die so erhaltenen Partikel können für die infektion vorzugsweise von Leberzeilen verwendet werden. In diesen wird das therapeutisch wirksame Fremdgen zur Expression gebracht und entlatlet damit seine therapeutische Wirkrun.

- Das Aufinden permissiver Zellen, Ah. Zellen, in denen eine produktive Virusvermehrung erloigt. Zu diesem Zwock wird erhweder eines der vorgenanten HCV-RNA-Genomknattuke verwendet, das zu Bildung kompletter Intek-48
 tidser Viren befähigt ist, oder es wird eines der vorgenannten HCV-Subgenom-Konstrukte eingesetzt, das allerdings zurachst genaß vorgenanntem Beispiel in eine Zellinie transfizier wird, die die fehlenden Funktionen konstitutiv oder induzierbar exprimiert. In all diesen Fällen entstehen Virusparrikel, die zusätzlich zur HCV-Sequerz ein Resisterz- und/doer Reportregen tagen. Zum Auflinden von Zellen, in denen das HCV replzieren kann, werden diese Zellen mit den so hergestellten Viren infüzier und einer Antbiolikumselsfeldion unterzogen oder.
 in Abhängigkeit vom HCV-RNA-Konstrukt, mittels Nachweis der Expression des Reportregens untersucht. Die eine Antbiolikumselsten zu, eine Expression des Reportregens zur dann nachweisber ist, wenn das HCV-RNA-Konstrukt repliziert, müssen die so gefundenen Zellen permissiv sein. Auf diese Weise lassen sich nahezu beliebige Zellinien oder primiser Zelluturen hinschlich der Permissivität testen und auffünden.
- 50034] Das erfindungsgemäße Zellkultursystem erlaubt auch das gezielbe Auffinden von HCV-RNA-Konstrukten, bei denen es auf Grund von Mutationen, die sich entweder zufällig im Rahmen der HCV-RNA-Repliktion ereignen oder die gezielt in das Konstrukt eingeführt werden, zu einer Steigerung der Replikationseffiziene kommt. Solche Mutationen die zu einer Verhalterung der Replikation des HCV-RNA-Konstrukts führen, sind dem Fechmann als adabüren.

Mutationen bekannt. Die Effindung umfaßt deshalb auch Verfahren zur Gewinnung von zeilkultur-afaghierten Mutanten eines erfindungsgemäßen HCV-RNA-Konstrukts gemäß vorstehender Beschreibung, wobei die Mutanten gegenüber dem originären HCV-RNA-Konstrukt eine erhöhte Replikationseffizienz aufweisen. Sie umfaßt desweiteren ein Verfahren zur Herstellung von Mutanten eines HCV-RNA-Vollangengenomors oder eines HCV-RNA-Follangengenomors oder eines beileibigen HCV-RNA-Konstrukten im im Vergiehz undem ursprünglichen HCV-RNA-Vollangengenomor der -Feilgenom oder HCV-RNA-Konstrukt erhöhter Replikationseffizienz, sowie zellkultur-adaptierte Mutanten von HCV-RNA-Konstrukten, HCV-Vollangengenomen erhöhter Replikationseffizienz, sowie zellkultur-adaptierte Mutanten von HCV-RNA-Konstrukten, HCV-Vollangengenomen erhöhter Replikationseffizienz.

[0035] Das erfindungsgemäße Verfahren zur Gewinnung von zellkultur-adaptierten Mutanten eines erfindungs-10 gemäßen HCV-RA-Konstrukts, wobei die Mutanten gegenüber dem HCV-RNA-Konstrukt eine erhöhte Repikationserfizienz aufweisen, ist dadurch gekennzeichnet, daß man ein Zellkultursystem gemäß Anspruch 1, bei dem das eingeschleuste HCV-spezifische Genmaterial ein HCV-RNA-Konstrukt mit Selektionsgen nach einem der Ansprüche 4 bis 19 ist, auf/in dem dem Selektionsgen entsprechenden Selektionsmedium Mutifviert, daß man die gewachsenen Zellklone erntet, und daß man aus diesen Zellklonen der HCV-RNA-Konstrukt eisolier.

IS (0036) Bei einer vorteilnäten Weitsbildung dieses Herstellungsverfahrens werden die isolierten HCV-RNA-Konstrulde wenigstens einmal erneut passagiert, n\u00e4milch in Zellen eines Zellkultursystems nach Anspruch 1 eingeschleust, das dabei erhaltene Zellkultursystem gem\u00e43 Anspruch 1, bei dem das eingeschleuste HCV-spezifische Genmaterial das isolierte HCV-RNA-Konstrult mit Selektionsgen ist, auf\u00fcn dem dem Selektionsgen entsprechenden Selektionsmedium kulti\u00fcvert, die gewachsenen Zellkohen gewentt und dranzu die HCV-RNA-Konstrult eisoliert.

20 Mit dieser Verfahrensvariante kann der Grad der adaptiven Mutationen und damit der Grad der Replikationseffizienz in den betreffenden HCV-RNA-Konstrukten noch gesteigert werden.

[0037] Das erfindungsgemåße Verfahren zur Herstellung von Mutanten eines HCV - Vollangengenoms oder eines HCV. Feligenoms oder eines beliebigen HCV. RHA-Konstrukts mit im Vergleich zu dem urspünglichen HCV- Vollängengen on der Feligenom oder HCV-RNA-Konstrukt erhöhter Replikationsetfiziertz zeichnet sich dadurch aus, daß man mit Hille eines der bedien vorstehend genannten Herstellungsverfahren her zelkultur-adgierte Mutante eines HCV-RNA-Konstrukts herstelt, diese aus den Zellen isoliert, mit im Stand der Technik bekannten Methoden kloniert und sequenziert und durch Vergleich mit der Nuhleotid- und Aminosäuresequenz des ursprünglichen HCV-RNA-Konstrukts die Art, Anzahl und Positionen der Mutationen dense Mutationen denn entweder durch gezielte Mutages oder durch Ausstausch von Sequenzäbschnitten, weiche die betreffenden Mutationen enhalten, in ein (isoliertes) 10 HCV-Vollängen- oder + teilgenom oder ein beleichges HCV-RNA-Konstrukt einführt.

Zum Nachweis bzw. zur Verfürlerung dejenigen Mutationen, die talstächlich eine Veränderung der Replikation und insbesondere eine Replikationssteigerung bewirken, kann ein Test durchgeführt werden, bei dem die bestimmten Nukfeorüch undrücker Aminosaureaustausche in das ursprüngliche HOV-RNA-Konstrukt eingeführt und dieses wiederum in Zellkultur eingeschleusst wird. Wenn die eingeführte Mutation tassächlich zu einer Steigerung der Replikation führt, sollte im Fall eines HOV-RNA-Konstrukts mit selektierberem Markergen die Zahl der resistenten Zellkone bei dem künstlich mutierten Konstrukt deutlich höher sein als bei dem unbehandelten Konstrukt. Im Fall eines Konstrukt ant einem Reportergen sollte die Aktivität bzw. Menge des Reporters bei dem künstlich mutierten Konstrukt deutlich höher sein als bei dem unbehandelten.

[0038] Die erlindungsgemäßen zellkultur-adaptierten HCV-RNA-Konstrukle mit hoher Regillkationseffizienz sind o daturting deennzischnet, das is de urbn Nuldeotis- und/dos Amhosutareusatusative, bvo en ieme HCV-RNA-Konstrukl nach einem der Ansprüche 4 bis 19 ableitbar sind und daß sie mit einem der beiden vorstehend genannten Herstellungsverbinnen erhältlich sind.

[0039] Diese zellkultur-adaptierten HOV-RNA-Konstrukte k\u00f6nnen dazu verwendet werden, befiebige HOV-RNA-Konstrukte doer HOV-Vollkapen- oder Teilgenome mit erh\u00f6nter Pep\u00edkainsteinze hezustellen. Dabet k\u00f6nnen 45 sowihl Konstrukte mit einem selektleitenzen Flessteinzgen als auch Konstrukte ohne ein solches bzw. mit einem ericht-selektleinbernen Reportengen (z.B. Luziferase) hergestellt werden, denn aufgrund der aler horhen Regikationseftiziert, des zellkultur-adaptierten HOV-RNA-Konstrukts kann dessen Repiktation auch in nicht-selektionierten Zellen nachgewissen werden.

Die erfindungsgemäßen zeilkultur-adspierten Mutanten eines HCV-FINA-Konstrukts oder eines HCV-Vollangengeonns oder eines HCV-Teilporonn mit im vergleicht zu dem unsprünglichen HCV-RNA-Konstrukt oder dem unsprüngichen HCV-Vollangengenom erhöhter Replikationselfizienz , sind dadurch charakterisiert, daß sie mit einem Verfahren erhältlich sind, bei dem man in einem zeilkultur-adspierten HCV-FINA-Konstrukt durch Sequenzanalyse und Sequenzvergleich die Art und Anzalt der Mutationen bestimmt und diese Mutationen in ein HCV-FINA-Konstrukt gemäß einem der Ansprüche 4 bis 19, oder in ein (sollertes) HCV-FINA-Vollangergenom einführt, erhweder durch gezielte Mutagenese oder durch Ausstauch von Sequenzabschnitten, die die betreffenden

Mutationen enthalten.

[0040] Eine Gruppe ganz bevorzugter HCV-RNA-Konstrukte, HCV-Vollängengenome und HCV-Teilgenomen mit hoher und sehr hoher Replikationseffizienz und infolgedessen sehr guter Eignung für die praktische Anwendung ist

dadurch gekennzeichnet, daß sie einen oder mehrere oder alle der in Tabelle 3 aufgelisteten Aminosäure- bzw. Nukleotidaustausche undfoder einen oder mehrere der folgenden Aminosäureaustausch eurweist: 1283 arg > gly , 1383 glu > ala , 1577 lys > arg , 1609 lys > glu , 1936 pro > ser , 2163 glu > gly , 2330 lys > glu , 2442 lie > val. (Die Zahlen beziehen sich auf die Aminosäureoositionen des Potwordeins des HCV-lisolats cont. siehe Täcelle 11.

Besondere Eigenschaften der in den Sequenzprotokollen angegebenen Sequenzen:

SEQ ID-NO: 1

10 [0041]

15

20

30

Name: I389/Core-3'/wt Aufbau (Nukleotidpositionen):

- 1. 1-341: HCV 5' nicht-translatierte Region
- 2, 342-1193; HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker
- 1202-1812: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
 - 4. 1813-10842: HCV Polyprotein von Core bis Nichtstrukturprotein 5B
 - 5. 1813-2385: HCV Core Protein; Strukturprotein
 - 6. 2386-2961: Hüllprotein 1 (envelope protein 1); Strukturprotein
 - 7. 2962-4050: Hüllprotein 2 (envelope protein 2); Strukturprotein
 - 8. 4051-4239: Protein p7
- 9. 4240-4890: Nichtstrukturprotein 2 (NS2); HCV NS2-3 Protease
 - 10. 4891-6783; Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
 - 11. 6784-6945: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
 - 12. 6946-7728: Nichtstrukturprotein 4B (NS4B)
 - 13, 7729-9069; Nichtstrukturprotein 5A (NS5A)
 - 14. 9070-10842: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase
 - 15. 10846-11076: HCV 3' nicht-translatierte Region

SEQ ID-NO: 2

35 [0042]

Name: I337/NS2-3'/wt Aufbau (Nukleotidpositionen):

- 1. 1-341: HCV 5' nicht-translatierte Region
 - 2, 342-1181; HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker
 - 1190-1800: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
 - 4. 1801-8403: HCV Polyprotein von Nichtstrukturprotein 2 bis Nichtstrukturprotein 5B
 - 5. 1801-2451: Nichtstrukturprotein 2 (NS2): HCV NS2-3 Protease
 - 6, 2452-4344; Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
 - 7. 4345-4506: Nichtstrukturprotein 4A (NS4A): NS3 Protease Kofaktor
 - 8. 4507-5289: Nichtstrukturprotein 4B (NS4B)
 - 9. 5290-6630: Nichtstrukturprotein 5A (NS5A)
 - 6631-8403: Nichtstrukturprotein 5B (NS5B): RNA-abhängige RNA-Polymerase
 - 11. 8407-8637: HCV 3' nicht-translatierte Region

55

50

SEQ ID-NO: 3

[0043]

10

Name: I389/NS3-3'/wt

Aufbau (Nukleotidpositionen):

- 1, 1-341; HCV 5' nicht-translatierte Region
- 2. 342-1193: HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker
 - 1202-1812: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus, erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
 - 1813-7767: HCV Polyprotein von Nichtstrukturprotein 3 bis Nichtstrukturprotein 5B
 - 1813-3708: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
- 18 13-3708: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helika
 6. 3709-3870: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
 - 7. 3871-4653: Nichtstrukturprotein 4B (NS4B)
 - 8. 4654-5994: Nichtstrukturprotein 5A (NS5A)
 - 9. 5995-7767: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase
 - 10. 7771-8001: HCV 3' nicht-translatierte Region

SEQ ID-NO: 4

[0044]

25 Name: I337/NS3-3'/wt

Aufbau (Nukleotidpositionen):

- 1. 1-341: HCV 5' nicht-translatierte Region
- 2, 342-1181; HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker
- 30 3. 1190-1800: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
 - 4. 1801-7758: HCV Polyprotein von Nichtstrukturprotein 3 bis Nichtstrukturprotein 5B
 - 5. 1801-3696: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
 - 6. 3697-3858: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
 - 7. 3859-4641: Nichtstrukturprotein 4B (NS4B)
 - 8. 4642-5982: Nichtstrukturprotein 5A (NS5A)
 - 9. 5983-7755: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase
 - 10. 7759-7989: HCV 3' nicht-translatierte Region

SEQ ID-NO: 5

[0045]

95

40

50

55

45 Name: |389/NS2-3"/wt

Aufbau (Nukleotidpositionen):

- 1. 1-341: HCV 5' nicht-translatierte Region
- 2. 342-1193: HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker
- 1202-1812: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
 - 4. 1813-8418: HCV Polyprotein von Nichtstrukturprotein 2 bis Nichtstrukturprotein 5B
 - 5. 1813-2463: Nichtstrukturprotein 2 (NS2); HCV NS2-3 Protease
 - 6. 2464-4356: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
 - 7. 4357-4518: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
 - 8, 4519-5301; Nichtstrukturprotein 4B (NS4B)
 - 9. 5302-6642: Nichtstrukturprotein 5A (NS5A)

- 10. 6643-8415: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase
- 11. 8419-8649: HCV 3' nicht-translatierte Begion

SEQ ID-NO: 6

[0046]

5

15

20

Name: I389/NS3-3'/9-13F

Aufbau (Nukleotidpositionen):

- 1. 1-341: HCV 5' nicht-translatierte Region
 - 2. 342-1193: HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein: selektionierbarer Marker
 - 1202-1812: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
 - 1813-7767: HCV Polyprotein von Nichtstrukturprotein 3 bis Nichtstrukturprotein 5B der zellkultur-adaptierten Mutante 9-13F
 - 5. 1813-3708; Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
 - 6. 3709-3870: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
 - 7. 3871-4653: Nichtstrukturprotein 4B (NS4B)
 - 8. 4654-5994: Nichtstrukturprotein 5A (NS5A)
 - 5995-7767: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase 7771-8001: HCV 3' nicht-translatierte Region

25 SEQ ID-NO: 7

[0047]

Name: I389/Core-3'/9-13F

- 30 Aufbau (Nukleotidpositionen):
 - 1. 1-341: HCV 5' nicht-translatierte Region
 - 2, 342-1193; HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker
 - 1202-1812: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
 - 4. 1813-10842: HCV Polyprotein von Core bis Nichtstrukturprotein 5B der zellkultur-adaptierten Mutante 9-13F
 - 5. 1813-2385: HCV Core Protein: Strukturorotein
 - 6. 2386-2961: Hüllprotein 1 (envelope protein 1); Strukturprotein
 - 7, 2962-4050; Hüllprotein 2 (envelope protein 2); Strukturprotein
 - 8, 4051-4239; Protein p7
 - 9. 4240-4890: Nichtstrukturprotein 2 (NS2): HCV NS2-3 Protease
 - 10. 4891-6783: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase 11. 6784-6945; Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
 - 6946-7728: Nichtstrukturprotein 4B (NS4B)
 - 13. 7729-9069: Nichtstrukturprotein 5A (NS5A)
 - 14. 9070-10842: Nichtstrukturprotein 5B (NS5B): RNA-abhängige RNA-Polymerase
 - 15, 10846-11076; HCV 3' nicht-translatierte Region

50 SEQ ID-NO: 8

[0048]

45

Name: |389/NS3-3'/5 1

Aufbau (Nukleotidpositionen):

- 1, 1-341; HCV 5' nicht-translatierte Region
- 2. 342-1193: HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker

- 3. 1202-1812: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
- 1813-7767: HCV Polyprotein von Nichtstrukturprotein 3 bis Nichtstrukturprotein 5B der zellkultur-adaptierten Mutante 5.1
- 1813-3708: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
 - 6. 3709-3870: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
 - 7. 3871-4653: Nichtstrukturprotein 4B (NS4B)
- 8. 4654-5994: Nichtstrukturprotein 5B (NS5A)
- 9. 5995-7767: Nichtstrukturprotein 5B (NSSB), RNA-abhängige RNA-Polymerase 7771-8001: HCV 3' nicht-translatierte Region

SEQ ID-NO: 9

15 [0049]

20

35

45

50

55

Name: I389/Core-3'/5.1

Aufbau (Nukleotidpositionen):

- 1. 1-341: HCV 5' nicht-translatierte Region
- 2. 342-1193: HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker
- 3. 1202-1812: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des
- dahinterliegenden HCV offenen Leserasters
 4. 1813-10842: HCV Polyprotein von Core bis Nichtstrukturprotein 5B der zellkultur-adaptierten Mutante 5.1
- 25
 - 5. 1813-2385: HCV Core Protein; Strukturprotein
 - 6. 2386-2961: Hüllprotein 1 (envelope protein 1); Strukturprotein
 - 7. 2962-4050: Hüllprotein 2 (envelope protein 2); Strukturprotein
 - 8, 4051-4239; Protein p7
- 9. 4240-4890: Nichtstrukturprotein 2 (NS2); HCV NS2-3 Protease
 - 10. 4891-6783: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
 - 11. 6784-6945: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
 - 12. 6946-7728: Nichtstrukturprotein 4B (NS4B)
 - 13. 7729-9069: Nichtstrukturprotein 5A (NS5A)
 - 14. 9070-10842: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase
 - 15. 10846-11076: HCV 3' nicht-translatierte Region

SEQ ID-NO: 10

40 [0050]

Name: I389/NS3-31/19

Aufbau (Nukleotidpositionen):

- 1. 1-341: HCV 5' nicht-translatierte Region
 - 2. 342-1193: HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker
 - 1202-1812: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters
 - 1813-7767: HCV Polyprotein von Nichtstrukturprotein 3 bis Nichtstrukturprotein 5B der zellkultur-adaptierten Mutante 19
 - 5. 1813-3708; Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
 - 3709-3870: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
 - 7. 3871-4653: Nichtstrukturprotein 4B (NS4B)
 - 8, 4654-5994; Nichtstrukturprotein 4B (NS5A)
 - 9. 5995-7767: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase 7771-8001: HCV 3' nicht-translatierte Region

SEQ ID-NO: 11

[0051]

10

15

20

25

40

50

Name: l389/Core-3/19
 Aufbau (Nukleotidpositionen):

- 1. 1-341: HCV 5' nicht-translatierte Region
- 2. 342-1193: HCV Core Protein-Neomycin Phosphotransferase Fusionsprotein; selektionierbarer Marker
- 1202-1812: Interne Ribosomenbindungsstelle des Encephalomyokarditis Virus; erlaubt die Translation des dahinterliegenden HCV offenen Leserasters

4. 1813-10842; HCV Polyprotein von Core bis Nichtstrukturprotein 5B der zellkultur-adaptierten Mutante 19

- 5. 1813-2385: HCV Core Protein; Strukturprotein
- 6. 2386-2961: Hüllprotein 1 (envelope protein 1); Strukturprotein
- 7. 2962-4050: Hüllprotein 2 (envelope protein 2); Strukturprotein
- 8. 4051-4239: Protein p7
- 9. 4240-4890: Nichtstrukturprotein 2 (NS2); HCV NS2-3 Protease
- 10. 4891-6783: Nichtstrukturprotein 3 (NS3); HCV NS3 Protease/Helikase
- 11. 6784-6945: Nichtstrukturprotein 4A (NS4A); NS3 Protease Kofaktor
- 12. 6946-7728: Nichtstrukturprotein 4B (NS4B)
- 13, 7729-9069; Nichtstrukturprotein 5A (NS5A)
- 14. 9070-10842: Nichtstrukturprotein 5B (NS5B); RNA-abhängige RNA-Polymerase
- 15. 10846-11076: HCV 3' nicht-translatierte Region
- [0052] Die Erfindung wird im folgenden anhand von Ausführungsbeispielen und dazugehörigen Tabellen und Figuren näher erläutert. Die erwähnten Figuren zeigen
- Fig. 1 A: Die Struktur eines erlindungsgem
 ßen HCV-RNA-Konstrukts Ganz oben ist eine schematische Darstellung der Struktur des kompletten parentalen HCV-Genoms gegeben mit der Positionen of Gene für die
 Spaltungsprodukte core, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A und NS5B innerhalb des Polyproteins, und den S und 5 nichttransläterten Regionen (S NTR und 3 NTR) als hörizontalbalken dargestellt –, und mit den beiden für die Erzeuugnu der Subgenom-Konstrukte ausgewährten Positionen,
 nämind der Position der (3Db-katalytischen Domlare der NSSB RNA Polymerase (GIDD) und der Position der 3' Geneze der HCV-HES (Mikelotipositionen to 1bis 37) zu. bis 389) oberhalb des Genomschemas eingezeichnet –, Die Zahlen unterhalb des Genomschemas bezeichnen die entsprechenden
 Nuklestidiositionen.
 - Darunter sind schematische Darstellungen der Strukturen zweier erfindungsgemäßer, modificierter HCV-RNA-Konstrukte (Subgenom) gezeigt, bestehend aus der 5' HCV-IRES, dem Neomyginphosphotransferasegen (Neo⁵), der EMCV-IRES (E-I) und den HCV Sequenzen von NS2 bz. w. NS3 biz zuw authentischen 3' Ende. Die Position der das NSSB Polymerase GDD-Motiv umfassenden 10 Aminosäuren-Deletion ist leweils mit einem Preieck (A) marting.
- Fig. 1 B: Das Ergebnis einer denaturierenden Formaldehyd-Agarose-Gelelektrophorese zum Nachweis von replizierter Plusstrang-RNA in transfizierten subpassagierten Huhr 7 zellkönen.
 Die Positionen der HOV-spæzifischen RNAs (Pfelle) und der 263 RiNA indr archts von Spur 12 angegeben, die Größen (Anzahlen der Nukleotide) der RNA-Marker (M) sind links von Spur 1 angegeben.
 - Fig. 1 C : Das Ergebnis eines PCR-Tests mit nachfolgendem Southern-Blot zum Nachweis der Abwesenheit von integrierter Replikon-DNA in den meistend der selektierten Zellklone. Spuren 1 und 2 zeigen die Positivkontrollen, Spur 13 die Negativ-Kontrolle. Die Zahlenangaben links der
 - Spuren 1 und 2 zeigen die Positivkontrollen, Spur 13 die Negativ-Kontrolle. Die Zahlenangaben links de Spur 1 bezeichnen die Größe der Nukleotid-Marker-Moleküle.
- Fig. 2 A: Das Ergebnis eines PCR-Tests mit nachfolgendem Southern-Blot zum sensitiven Ausschluß integrierter septiron-DNA (Plasmid Motekulle 1₂₇₇/NS3-3/Wt) in einem HCV-RNA-Konstrukt-haltigen Zellklon (9-13). Die Spuren 7 bis 11 repräsentieren das Ergebnis einer Titation von DNA-Molekulen des Konstruks 1₅₇₇/NS3-3/Wt ohne Zugabe von Gesamt-DNA des Zellklons 9-13 und die Spuren 2 - 6 repräsentieren die eleichen Plasmidmoleküle mit Zuoabe von inweis 1 up 9-13 DNA vor der PCR (zwecks Ausschule).

eines Inhibitors der PCR in der DNA-Präparation). Spur 13 repräsentiert die Negativ-Kontrolle (PCR ohne DNA-Sonde). Spur 1 zeigt das Ergebnis, das mit einem µg Gesamt-DNA des Zellkons 9-13 erhalten wurde.

- 5 Fig. 2 B: Das Ergebnis eines Northern-Blot-Tests zur Quantifizierung von HCV Plus- und Mirrusstrang RNA. Die Pfeile markferen die Positionen von Replikon-RNA. Die Plus' und "minus"-Abgaben bezeichnen die positive (plus) bzw. negative (minus) Polarität der RNA-Kontrollen, die auf das Gel aufgetragen wurden. "Mirrusstrand" und "Plusstrand" bezeichnen die Sosziffiat der radioaktiven RNA-Sonden.
- Fig. 2 C: Ergebnis einer Formaldehyd-Agarose-Gelelektrophorese nach radioaktiver Markierung der intrazellulär reolizierten HCV-RNA zum Nachweis der Resistenz der HCV-RNA-Reolikation gegen Dactinomycin.
- Fig. 3 A: Nachweis von HCV-spezifischen Antigenen in den selektierten Zellkönen mittels Immunopräzipitation nach metabolischer Radioaktivmarkierung. Die Spuren 7 9 repräsentieren authentlische Größenmarker (die nach transierter Expression eines HCV-FNNH-Konstrudts in Huh-7-Zellen erhalten wurden); identificitier HCV-Proteine sind am linken Rand von Spur 3 markeiten, die Molekulargewichte (in Kilodalton) sind am rechten Rand von Spur 9 angegeben.
- Fig. 3 B: Ergebnisse eines Immunfluoreszenztests zum Nachweis der subzellulären Lokalisation von HCV Antige-20 nen.
- Fig. 4: Schematische Darstellung der Struktur eines erfindungsgemäßen selektierbaren HCV-RNA-Konsthut (kompletes Genom) bestellenet aus der 5 HCV-RIBES, dem Neonynighnosphotransterasegen (NeoR), einem heterologen IRES-Element, z.B. des Encephalomyocarditeivirus (E-I), dem vollständigen HCV-Leseraster und der aufbertrücknich 3° NTR.
 - Fig. 5: Schematische Darstellung der Struktur von HCV-RNA-Konstrukten mit insertiertem Antibiotikumresisterazgen (A) innerhalb der für das Polyprotein kodierenden Nukleotidsequenz (monocistronische RNA), und (B) innerhalb der 3 NTR (bioistronische RNA)

30

- Fig. 6: Schematische Darstellung der Struktur von HCV-RNA-Konstrukten mit insertiertem Reportergen (A) als Teil eines HCV-Replikons von NS3 bis NS5B; - das Reporterprotein wird letztendlich durch virale oder durch zelluläre Proteasen aus dem Polyprotein gespalten und das selektierbare Markergen (Selektionsgen) bzw. das Resistenzgen durch Kontransfektion in die Zellen einschleust , (B) als Teil eines Fusions-35 gens aus Resistenz- und Reportergen (z.B. für die Neomycinphosphotransferase und green fluorescent Protein) (C) als Teil eines Replikons aus Resistenz- und Reportergen (z.B. für die Neomycinphosphotransferase und das green fluorescent Protein), die über eine Nukleotidsequenz verbunden sind, welche für eine Aminosäuresequenz kodiert (schraffierter Bereich), die von einer Protease gespalten werden kann oder die über eine selbstspaltende (autokatalytische) Aktivität verfügt, (D) als unabhängiges Gen 40 (hier green fluorescent protein), das von einer eigenen internen Ribosomenbindungsstelle (IRES) aus exprimiert wird: — das Resistenzgen (hier: Neomycinphosphotrans(erase-Gen) wird davon unabhängig ebenfalls von einer eigenen internen Ribosomenbindungsstelle (IRES) aus exprimiert (polycistronisches Konstrukt).
- 45 Fig. 7: Schematische Darstellung der Struktur eines HCV-RNA-Konstrukts bei dem das Resistenzgen über ein Ribozym bzw. eine Erkennungsstelle für ein Ribozym mit der HCV-RNA-Sequenz verbunden ist. Die dikken Linien stellen die HCV S und 3 NTRs dar, E1 ist eine heterologe interne Ribosomerbindungsstelle, die für die Expression des Resistenzgens notwendig ist, und das graue Quedrat stellt das Ribozym bzw. eine Erkennungsstelle für ein Ribozym dar.
- Fig. 8: Schematische Darstellung der Struktur eines HCV-RNA-Konstrukts mit Resistenzgen und integriertem Fremdaen.
- Fig. 9: Methodisches Vorgehen zum Vergleich der spezifischen Infektiosität (ausgedrückt als Arzahl gebildeler 255 Zeilkolonien) von Gesamt-RNA versus in vitro Transkripte. HCV-RNA wird mittels in vitro Transkription eines entsprechenden RNA-Konstrukts hergestellt und durch Messung der oplischen Dichte bei 260 nm (OD 260 nm) quantifiziert. Eine definierte Anzahl dieser Moleküle wird mit einer bestimmten Menge Gesamt-RNA von natven Huh-7 Zeilen gemischt und diese Mischung mit Hilfe der Elektroporation in

5

10

15

20

45

50

55

nalve Huh-7 Zellen eingsschleus! Parallel dazu wird die Gesamt-RNA eines Zellklons, der mit der in Figur 1 beschriebenen Methode hergestellt wurde, mit einem im Stand der Technik bekannten Verfahren isoliert und die Merge der darin erhfahtenen HCV-RNA mittels Northern-blot unter Verwendung einer HCV-spezilischen RNA-Sonde und anschließender Quartiflützerung mittels Phosphömiager bestimmt. Eine definierte Menge dieser Gesamt-RNA wird anleg den in vibro Tianskripten in nalve Huh-7 Zellen transtiziert. Diese Zellen in beiden Ansätzen werden danach einer G418-Seletion unterzogen und die Anzahl der geblideten Kolonien durch Auszahlen nach füberen und anfärben mit Commssie-Brilliamt-Blau bestimmt. Zur Bestimmtung der Tiansfektionseftlizierz wird jedem Tiansfektionsansatz 1 jug eines Plasmids zugesetzt, das die Expression der Luziferase erfaubt. Ein Aliquot der transtizierten Zellen wird nach 24 Stunden geerntet und die Luziferaseaktivität im jeweiligen Zellysat bestimmt. Die Anzahl der Klohrien wird leweils auf die Luziferaseawzesion normiert.

- Fig. 10: Sequenzanalyse der 9-18 Klone. Gesamt-RNA des Zellklons. 9-13, der durch Transfektion des HCV-RNA-Konstruks 1977/NS23* entstand, wurde mit einem im Stand der Technik bekannten Verlahren isoliert und dis HCV-RNA-Konstrukt von Nuklediotiposition 59 bis 3938 mit Hille der Tong-distance FTP-CR* unter Verwendung der primer S93 und A9413 amplizifiert. Die PCR-Fragmente wurden klonet und 11 Klone (genannt 9-13 A- K) vollständig sequenzielt, wobei sich die Klone D und I, E und G sowie H und J als identisch erwiesen. Die Positionen der Aninosäureunterschiede in der NS3-58 Region zwischen den reklorierten HCV-PINAs und dem parentaller Konstrukt sind mit einem dicken verklaten Strich beim jeweiligen Klon markert. Jeder Klon wurde mit dem Restriktionsenzym S7 i vardeut und das jeweilige Fragment in das parentale Konstrukt und erm Bestriktionsenzym S7 i vardeut und das jeweilige Fragment in das parentale Konstrukt inseriert. Diese Klone wurden jeweils in Huhr Zellen transfliziert und die Zellen wie in Figur 1 beschrieben einer Selektion unterzogen. Die Anzahl der mit jedem Konstrukt vermerkt.
- 25 Fig. 11 A: Prinzip der Repilitationsbestimmung mit Hilfs eines Reportergens. Im oberen Teil der Figur ist das HCV-DNA-Konstrukt (abg/LucNS-35 d'angestellt, bestehend aus der HCV S Thrg (Nukledrobpssition 1-389) dem Luziferassegen (luc), der IRES des Encephalomyocarditis Virus, dem HCV NS3-58 und der 3' NTR. Die Position des altvieru Zentrums der NS58 RNA-Polymerase, in das ein insältwerender Aminosaturausteusen eingeführt wurde, ist mit GND angedeutet. Die Pläsmide, die für das repilitätionskompetertes bzw. das defekte HCV-RNA-Konstrukt kodieren, werden mit dem Restriktionserunzym Sca I verdaut und in eine in vitor branskription mit der T RNA-Polymerase eingesetzt. Nach Entfertung der Matrize-DNA werden die jeweiligen HCV-RNA-Konstrukt entitles Elektroporation in natve Huh-7 Zellen eingeschleust und diese in receinaßionen Abstanden operintst.
- Fig. 11 B: Vergleich der Luziferaseaktivitäten in Zellen transfiziert mit dem parentalen HCV-RNA-Konstrukt l₃₈₉LuciNS3-3'Mt (wi) oder den folgenden Varienten: Der inaktiven RNA (318 DN), der Variante 9-13F oder der Variante 5-1. Die Zellen wurden 6 (nicht gezeigt), 24, 48, 72, 96, 120, 144 und 188 Stunden nach der Transfektion geerntet und die Luziferaseaktivitäten luminometrisch bestimmt.
- 40 Fig. 12: Selektionierbare HCV-Vollängengenome (Konstrukte I₃₈₉/core-3'/5.1 und I₃₈₉/core-3'/9-13F).
 - (A) Schematische Darstellung des Vollängenkonstrukts. Der Bereich zwischen den beiden angedeuteten Erkennungsstellen für das Restriktionsenzym Sfi I entspricht den Sequenzen der hochadaptierten RNA-Varianten 5.1 oder 9-135.
 - (B) Anzahl der Kolonien die nach Transfektion von jeweils 0,1 µg in vitro transkribierter RNA der unter A dargesetlien Konstrukte l₈₈₉/core-3/5.1 in HUH7-Zellen erhalten wurden. Angegeben ist das Ergebnis eines repräsentativen Experimentes.
 - (C) Nachweis autonom regitzierender HCV-Vollängen-RNAs in G418-resistenten Zellötoner, die nach Transfeldion des entsprechereden in vitro Transferijts erheiten wurden. Die Abtibuling zeigt das Autonadiogramm eines Northern Blots, der mit einer Sonde gegen das nec-Resistenzgen und der RCV 5 NTR hybridiert wurde. Die in Spur 1 und 2 dargestellten Kontrollen entsprechen jeweils 10th Molekülen der angegebenen in vitro Transforpie, gemischt mit Gesamt-RNA aus nativen Huh-7 Zellen. Die Negativichrotifole erthält ausschließlich Gesamt RNA aus nativen Huh-7 Zellen (Spur 3). Die Spuren 4-9 erhteiten 3-10 jug Gesamt-RNA aus G418-resistenten Zellötenen, die nach Transfeldion von in vitro transfribierter [ags/core-3/5-11RNA bzw. [ags/core-3/9-13F-RNA erhalten wurden. Die für die Selektion verwendede G418-Konzentation ist (weite) angegeben. Fürd der dargestellten Zell-klone enthalten die hoch adaptierte RNA-Variante 5-1 (Spur 4-8), einer die adaptierte RNA-Variante 9-13F (Sbur 9-13F).

- Fig. 13: HCV-RNA-Konstrukte mit einem Reportergen. (A) Bicistronische HCV-RNA-Konstrukte. Das Reportergen wird mit Hilfe einer separaten IRES translatiert. (B) Monocistronische HCV-RNA-Konstrukte. Das Reportergenprodukt wird als Fusionsprotein mit einem HCV-Protein exprimiert. Die beiden Anteile sind über eine Erkennungssequenz für eine virale oder zelluläre Protease verbunden, die eine proteolytische Trennung der beiden fusionierten Proteinanteile erlaubt. Im gezeigten Beispiel wurden das Reportergenprodukt und das ieweilige HCV-Protein über eine Erkennungssequenz für Urbünürft Urbünürft Urbünürft Urbünürft Urbünürft Urbünürft.
- Fig. 14: Tricistronisches Vollängen HCV-RNA-Konstrukt, das zusätzlich zum Resistenzgen ein Fremdgen inseriert besitzt.
- Fig. 15: Monocistronische HCV-RNA-Konstrukte, bei denen das Resistenzgenprodukt als Fusionsprotein mit dem HCV-Anteil expriment wird. Das Resistenzgen (RG) jet entweder als Fusionsprotein aktiv oder es wird so mit einer proteolylisch sepalitenare Sequenz mit dem HCV-Anteil kisoniert, das das Resistenzgenprodukt durch eine zelluläre oder virale Protease vom HCV-Anteil abgespalten wird. Im gezeigten Beispiel wurde das Resistenzgen über die für Übliquifin (Lb) kodierende Sequenz mit dem jeweiligen HCV-Anteil füsionier.

Beispiel 1: Herstellung von HCV-RNA-Konstrukten

10

15

20 (A) Synthese und Klonierung eines vollständigen HCV-Konsensusgenoms mittels RT- PCR

[0053] Aus der Leber eines chronisch infizierten Patienten wurde das HCV-Genom, d.h. die HCV-RNA wie nachfolgend beschrieben isoliert:

Aus ca. 100 mg Leber wurde die komplette RNA gemäß dem Verfahren von Chomczynski und Sacci (1987, 25 Anal. Biochem. 162, 156) isoliert, Mit 1 up dieser isolierten RNA wurde eine reverse Transkription mit den Primern. A6103 (GCTATCAGCCGGTTCATCCACTGC) oder A9413 (CAGGATGGCCTATTGG CCTGGAG) und dem 'expand reverse transcriptase'- System (Boehringer Mannheim, Deutschland) nach den Vorschriften des Herstellers durchgeführt. Mit den Produkten dieser reversen Transkription (RT) wurde eine Polymerase-Kettenreaktion (PCR=polymerase chain reaction) durchgeführt, und zwar unter Verwendung des 'expand long template'-Systems (Boehringer Mannheim, 30 Deutschland), wobei der Puffer mit 2% Dimethylsulfoxid-Gehalt eingesetzt wurde. Nach einer Stunde bei 42°C wurde 1/8 dieses Reaktionsansatzes in einem ersten PCR-Durchgang mit den Primern A6103 und S59 (TGTCTCACGCA-GAAAGCGTCTAG) oder A9413 und S4542 (GATGAGCT CGCCGCGAAGCTGTCC) eingesetzt. Nach 40 Zyklen wurde 1/10 dieses Reaktionsansatzes in einem zweiten PCR-Durchgang mit den Primern S59 und A4919 (AGCACA-GCCCGCGTCATAGCACTCG) oder S4542 und A9386 (TTAGCTCCCG TTCATCGGTTGG) eingesetzt. Nach 30 35 Zyklen wurden die PCR-Produkte mittels praparativer Agarose-Gel-Elektrophorese gereinigt und die dabei eluierten Fragmente wurden in den Vektor pCR2.1 (Invitrogen) oder pBSK II (Stratagene) ligiert. Vier Klone von jedem Fragment wurden analysiert und sequenziert, und es wurde eine Konsensus-Sequenz ermittelt. Zu diesem Zweck wurden die DNA-Sequenzen miteinander verglichen. Die Positionen, an denen sich die Sequenz eines der Fragmente von den übrigen unterschied, wurde als unerwünschte Mutation betrachtet. Im Fall von Mehrdeutigkeiten der Sequenz wurden 40 kürzere sich überlappende PCR-Fragmente der betreffenden Region amplifiziert und mehrere Klone seguenziert, Auf diese Weise konnten zahlreiche potentielle Mutationen in jedem Fragment identifiziert und somit eine isolat-spezifische Konsensussequenz etabliert werden. Diese etablierte Konsensussequenz bzw. dieses Genom gehört zum weltweit verbreiteten Genotyp 1b. Die nicht translatierte Region am 3'-Ende (=3' NTR) wurde mittels konventioneller PCR erhalten, wobei ein Antisense-Primer eingesetzt wurde, der die letzten 24 Nukleotide des im Stand der Technik bekannten 45 "X-tails" (Tanaka et al., 1995, Biochem. Biophys. Res. Commun. 215, 744; und Rice, PCT/US 96/14033) abdeckt. Die authentische nicht translatierte Region am 5'-Ende (=5' NTR) strangabwärts vom T7 Promotor wurde mittels PCR erzeugt, wobei zum einen ein Oligonuklegtid verwendet wurde, das einem verkürzten T7 Promotor (TAA TAC GAC TCA CTA TAG) und den ersten 88 Nukleotiden von HCV entspricht, und zum anderen eines der vorgenannten Plasmide eingesetzt wurde, das eines der 5' Fragmente des Genoms trägt. Aus den subgenomischen Fragmenten mit der gering-50 sten Anzahl an Nicht-Konsensus-Austauschen wurde ein komplettes HCV-Konsensusgenom zusammengesetzt und in einen modifizierten pBR322-Vektor insertiert. Abweichungen von der Konsensussequenz wurden mittels ortsgerichteter Mutagenese ("site-directed mutagenesis) beseitigt. Um "run-off"-Transkripte mit einem authentischen 3' Ende herzustellen, wurde die 3'-NTR der Isolate (mit dem Ende TGT) zu AGT modifiziert (gemäß der Sequenz vom Genotyp 3 = Klon 'WS' nach Kolykhalov et al., 1996, J. Virol. 70, 3363) und außerdem wurde ein zusätzlicher Nukleotidaustausch 55 an Position 9562 vorgenommen, um die A:T Basenpaarung in der Haarnadelstruktur am 3' Ende der 3' NTR (Kolyhalov et al. ibid.) beizubehalten. Um eine interne Restriktionsstelle für das Enzym Scal zu beseitigen, wurde ferner ein sog. stiller ("silent") Nukleotidaustausch vorgenommen. Nach dem Zusammenfügen des Vollängen-Genoms mit passenden

5'- und 3' NTRen wurde die komplette HCV-Sequenz überprüft. Dabei wurde kein ungewünschter Nukleotidaustausch

gefunden.

[0055] Das auf diese Weise hergestellte HCV-Genom sollte per Definition hepatotrop sein.

(B) Synthese selektierbarer HCV-Subgenom-Konstrukte

[0056] Unter Verwendrung des unter (A) beschriebenen Korsensusgenoms wurden HCV-Subgenom-Konstrukte hergestellt, die das Antibiolikurmesistenzen Nermynien-Phosphotransterase (NPT) und zwei Sequenzen von internen Ribosomenbindungsstellen (RES) enthalten. Die hierfür angewendeten biochemischen Verfahrenstechniken sind dem Fachmann bekannt und geläufig (eieher. Sambrook, J. E. Fritisch. T. Maniatia, 1989, Mokeculardoning , alboratory manual, 2nd ed., Cold Spring Herbor Laboratory, Cold Spring Herbor, N.Y.; Ausübel et al. (eds.), 1994, Current Protocols in Molecular Biology, Vol. 1-3, John Wiley & Sors inc., New York), Das Ambibolburmesistenzgen wurde unmittelbar hinter der S NTIR insernett-, wouter-in en biostionsiche RNA erhalten wurde (siehe Fig. 1-4). Ebensogut kann das Anti-biofkurmesistenzgen aber auch an andere Stelle des HCV-Subgenom-Konstrukts insertiert werden, beispielsweise innerhalb der für das Polyprotein diederenden Nulderdotsequenz, wodernde nien monostorinsiche RNA erhalten wird (siehe Fig. 5 A) oder in die 3 'NTR (siehe Fig. 5 B). Bei den IRES-Elementen handelt es sich zum einen um eine der beiden HcV-IRES-Varianten Nukdeoriden 1-397 oder hikkeldeide 1-398 und zu zum anderen und ei IRES des Ernephalomyocardities Virus, die die Transtation der HCV Sequenz strangabwärts von den Genen für NS2 oder NS3 bis zu dem authentischen 3 'Erfe de des Geromens steuert.

[0057] Die beiden genannten HoV-IRES-Varianten wurden wie folgt ermittelt: Auf der Basis von Deletionsanalysen zu der 3 Grenze der HoV-IRES (Reynolds et al. 1995; EMBO J. 14, 6010) wurden verschiedene Abschnitte der 5 YTR mit dem NPT Gen fusioniert und anhand von Kotransfektionen mit einem das T7 RNA Polymerase Gen enthaltenden Plasmid hinsichtlich der maximalen Arzahl gebildeter K\u00f6lonien analysiert. Die besten Ergebnisse wurden mit den HCV Sequenzen von 1-377 und 1-398 erhalten. Da sich das AUG-Sterkdon des HCV Polyproteins an Position 342 befindet und somit in der IRES-Sequenz enthalten ist, kommt es zu einer Fusion von 12 bzw. 16 Aminos\u00e4uren des HCV-Kapz-sidorotiens (Tover-Poteins) mit der Neomyton hinde sich von 12 bzw. 16 Aminos\u00e4uren des HCV-Kapz-sidorotiens (Tover-Poteins) mit der Neomyton hinden von 12 bzw. 16 Aminos\u00e4uren des HCV-Kapz-sidorotiens (Tover-Poteins) mit der Neomyton hinden von 12 bzw. 16 Aminos\u00e4uren des HCV-Kapz-sidorotiens (Tover-Poteins) mit der Neomyton hinden von 12 bzw. 16 Aminos\u00e4uren des HCV-Kapz-sidorotiens (Tover-Poteins) mit der Neomyton hinden von 12 bzw. 16 Aminos\u00e4uren des HCV-Kapz-sidorotiens (Tover-Poteins) mit der Neomyton der Verschapen (Sterie hand).

[0058] Diese modifizierten HCV-Subgenom-Konstrukte erhielten dementsprechend die Bezeichnungen l₃₇₇/NS2-3' (oder l₃₇₇/NS3-3') und l₃₈₆/NS2-3' (oder l₃₈₆/NS3-3'). Sie sind in Fig. 1A schematisch dargestellt.

[0059] Mit in-vitro-Transkripten dieser modifizierten parentalen HCV-Subgenom-Konstrukte l₃₇₇/NS2-3' (oder l₃₇₇/NS3-3') und l₃₈₇/NS3-3' (oder l₃₈₈/NS3-3') wurden verschiedene Zellinien und Primärzellikulturen von menischilorben Hepatokorten transfürst.

(C) Synthese selektierbarer HCV-Genom-Konstrukte

[0061] Ein NS2-3' Subgenomkonstrukt, das am 5' Ende mit einem Fragment des Luziferasegens und der vollständigen EMCV-IRES verbunden ist, wurde mitNool und Spel restringiert und mittels präparativer Agarosegeleiektrophorese gereinigt. Der so erhaltene Vektor wurde in einer 3-Faktor Ligation mit einem Not/NotI-HCV-Fragment, entsprechend den Nukleotidpositionen 342 bis 1968 des HCV-Genoms und mit einem Notl/Spel-Fragment, entsprechend den Nukleotidpositionen 1968-8606 ligiert. Das entstanden Konstrukt, bei dem das vollstämdige HCV-Leseraster und die 3' NTR stromebwärts dem Luziferasegenfragment und der EMCV-IRES liegen, wurde danach mit Pmel 4 und Spel restringiert und mit dem analog restringierten l_{ags}NS3-3'/wk-Subgenomkonstrukt-Vektor ligiert. Dieses selektionierbare HCV-Genomkonstrukt sit nFig. 4 dergestellt.

(D) Herstellung von den HCV-RNA-Konstrukten entsprechenden in-vitro-Trnaskripten

[0062] Die vorstehend beschriebenen gereinigten Plasmid DNAs wurden mit Scal linearisiert und nach Phenol/Chloroform-Extraktion und Isopropanol-Präzipitation in eine In-vitro-Tirankriptionsreaktion eingesetzt unter Verwendung der folgenden Komponenten: 80 mM HEPES, pH 7-5, 12,5 mM MgClg, 2 mM Spermdin, 40 mM Dirhiorheinol. 2 mM von jedem NTP, 1 Einheit Rivisinijul, 50 µg/m! restiringierte DNA und ca. 2 Einheiterijul T7 RNA Polymerase. Nach 2 Std. bei 37°C wurde die Hälte der Menge an T7 Polymerase zugegeben und der Reaktionsansstz weiter 2P ninkribeit. Zur Entfernung von DNA wurde die Mischung mit saurem Phenot extrahiert (U. Kedzierski, J.C. Porte, 1991, Bio Techniques 10, 210), mit losporaanol präzipitiert, das Pellet in Wasser gelöst und mit DNase (2 Einheiten pru gp DNA) für 60 Min. bei 37°C inkubiert. Nach anschließender Extraktion mit saurem Phenol, saurem Phenol/Chloroform und Chloroform und lisopropanol-Präzipitiert die gelöste RNA mittel opisischer Dichtemessungen aunaftiziert und

ihre Unversehrtheit mittels Formaldehyd-Agarose-Gelelektrophorese überprüft.

Beispiel 2: Transfektionsexperimente mit der Hepatomazellinie Huh-7

Bei sämtlichen Transfektionsexperimenten wurde sorgfältig darauf geachtet, daß jegliche Matrizen-DNA zuvor entfernt worden war, um zu vermeiden, daß solche DNA in transfizierte Zellen integrieren und diesen unabhängig von einer HCV-Replikation eine Neomycin-Resistenz vermitteln konnte. Deshalb wurde im Anschluß an die in-vitro-Transkription (Beispiel 1 D) die Reaktionsmischung mit 2 Einheiten DNase pro up DNA für 60 Min. bei 37°C behandelt und mit saurem Phenol, saurem Phenol/Chloroform und Chloroform extrahiert. Vor der Verwendung für die Transfektion 10 wurde die pr\u00e4zipitierte RNA mittels Formaldehyd Agarose Gel Elektrophorese analysiert.

Es wurden drei separate Transfektionsxperimente mit der hoch differenzierten humanen Hepatomazellinie Huh-7 (gemäß Nakabayashi et al. 1982, Cancer Res. 42, 3858) durchgeführt. Dabei wurde jeweils 15 μg RNA in 8 x 106 Huh-7-Zellen mit Hilfe der Elektroporation eingebracht und diese Zellen anschließend in Kulturschalen von 10 cm Durchmesser ausgesät, 24 Stunden nach der Aussaat wurde Neomycin (= G418) in einer Endkonzentration von 1

15 mg/ml zugegeben. Das Kulturmedium wurde zweimal pro Woche gewechselt. Nach 3 - 5 Wochen waren kleine Kolonien erkennbar, die isoliert und unter den gleichen Kulturbedingungen passagiert wurden.

Die Zellklone, die im Verlauf des ersten Experiments erhalten wurden, wurden isoliert und subpassagiert. Während dieser Prozedur starben die meisten Klone und die Endausbeute betrug nur noch 9 Klone von Zellen, die mit den parentalen HCV-Subgenom-Konstrukten transfiziert worden waren und 1 Klon (Klone 8-1) von Zellen, die mit 20 einem defekten HCV-Genom-Konstrukt, nämlich einer defekten NS2-3' HCV-RNA transfiziert worden waren. Außer einer verkürzten Verdopplungszeit und dem gelegentlichen Auftreten von irregulär geformten Zellen wurden keine beständigen morphologischen Unterschiede zwischen diesen 9 Zellklonen und dem einen Zellklon (Klon 8-1) oder den parentalen Huh-7 Zellen gefunden.

[0066] Die Hauptkriterien für funktionierende HCV-Genomkonstrukte sind die Bildung von viraler RNA mit korrekter 25 Größe und die Abwesenheit von (integrierter) Plasmid DNA, die eine G418-Resistenz übertragen bzw. vermitteln könnte.

Um die HCV-RNA in den Huh-7-Zellen zu bestimmen, wurde die Gesamt-RNA isoliert und mittels des gängigen Northern-Blot Verfahrens unter Verwendung einer Plusstrang-spezifischen Ribosonde (= RNA-Sonde) analysiert, Hierfür wurde von den ieweiligen Zellklonen Gesamt-RNA nach der Methode von Chomczynski und Sacchi 1987. 30 Anal. Biochem. 162, 156 isoliert, und 10 µg RNA, was dem Gesamt-RNA-Gehalt von 0.5 - 1 x 10⁶ Zellen entspricht. mittels denaturierender Formaldehyd-Agarose-Gelelektrophorese aufgetrennt (Spuren 3 bis 12 der Fig. 1 B). Als Grö-Benmarker mit authentischer Sequenz wurden gleichzeitig 109 in-vitro-Transkripte (ivtr.), die zu den lass/NS2-3/wt oder den Issa/NS3-3'/wt Replikon-RNAs korrespondieren, mit aufgetrennt (Spur 1 bzw. Spur 2). Die aufgetrennte RNA wurde auf Nylon-Membranen transferiert und mit radioaktiv markierter Plusstrang-spezifischer RNA-Sonde, die komplemen-35 tär zu dem kompletten NPT-Gen und der HCV-IRES von Nukleotid 377 bis Nukleotid 1 war, hybridisiert. Die Positionen der HCV-spezifischen RNAs (Pfeile) und der 28S rRNA sind rechts von Sour 12 angegeben, die Größen (Anzahlen der Nukleotide) der RNA-Marker sind links von Sour 1 angegeben. Die RNA Marker-Fragmente enthalten HCV-Sequenzen und hybridisieren deshalb mit der Ribosonde (= RNA-Sonde). Die Ergebnisse dieser Analyse sind in Fig. 1 B dargestellt.

Mit Ausnahme des mit dem defekten HCV-Genom-Konstrukt transfizierten Klons 8-1, lieferten alle Zellklone 40 [0068] homogene HCV-RNAs korrekter Länge (ca. 8640 Nukleotide im Fall des NS2-3' und ca. 7970 Nukleotide im Fall des NS3-3' Replikons). Dieser Befund ist ein Indiz dafür, daß die funktionalen Replikons bzw. die funktionalen HCV-Genom-Konstrukte die G418 Resistenz übertragen. Um auszuschließen, daß die G418 Resistenz auf eine Plasmid-DNA zurückzuführen ist, die in das Genom der Huh-7 Wirtszelle integriert ist und unter der Kontrolle eines zellulären Promo-45 tors transkribiert wird, wurde von jedem Klon die DNA mittels einer NPT-Gen-spezifischen PCR untersucht. Hierbei wurde aus den selektierten Huh-7-Zellklonen die DNA mittels Verdau mit Proteinase K (40μg/ml, 1h, 37°C) in 10mMTris, pH7.5, 1mM EDTA, 0.5% SDS und anschließender Extraktion mit Phenol, Phenol/Chloroform und Isopropanolpräzioitation isoliert. Das DNA-Präzipitat wurde in 10 mM Tris (pH 7.5) und 1 mM EDTA gelöst und 1 Stunde mit Rnase A inkubiert. Im Anschluß an eine Phenol/Chloroform Extraktion und Ethanol Präzipitation wurde 1 μα DNA, ent-50 sprechend 4 - 8 x 10⁴ Zellen, mittels PCR unter Einsatz NPT-Gen-spezifischer Primer (5'-TCAAGACCGACCTG TCCGGTGCCC-3' und 5'-CTTGAGCCTGGCGAACAGTTCGGC-3') analysiert und ein DNA-Fragment bestehend aus 379 Nukleotiden erzeugt. Die Spezifität des PCR-Produkts wurde mittels Southern Blot Verfahren nachgewiesen. wobei ein Digoxigenin-markiertes DNA Fragment eingesetzt wurde, das zu dem NPT-Gen korrespondiert. Als Positiv-Kontrollen (zum Nachweis etwa vorhandener kontaminierender Nukleinsäuren) wurde das PCR-Verfahren mit 107 55 Plasmid Molekülen oder 1 μα DNA aus einer BHK Zellinie, die stabil mit einem Neomycin-Resistenz-Gen transfiziert

war, durchgeführt, und als Negativ-Kontrolle wurde die PCR mit denselben Reagenzien aber ohne zugesetzte DNA Die Ergebnisse dieser Untersuchung sind in Fig. 1 C dargestellt. Die Spuren 1 und 2 repräsentieren die Positiv-Kontrol-

durchaeführt.

Ien, Spur 13 repräsemitert die Negativ-Kontrolle. Die Zahlenangaben links der Spur 1 bezeichnen die Größe der Michedet-Marker-Wolkeiße. Außer in Klor 73 (Fig. 7), CS, pur 3), der von Zellen nach Transfeldon mit einem NS2-3! Replikon/NS2-3*HCV-Genom-Konstrukt stammt, und in Kkin 8-1 (Fig. 1C, Spur 12), der von Zellen nach Transfeldon mit einem delekten HCV-Genom-Konstrukt stammt, war in keinem Zelltdon eine NPF-DNA nachweisbar. Dieser Beitund ist ein welteres indz dafür, daß die C418 Resistenz der meisten Köne durch die replizierende HCV-FNNA wermittelt wurde. Aber auch urabhängig von diesen Erigebnissen ist es unwahrscheinlich, daß HCV-FNNAs mit korrekter Größe on integrierter Plasmid DNA erzeugt wirdt, derm die für die nivroit-Transskription verwordeten Plasmide enthalten weder einen eukaryoritischen Promotor noch ein Polyadenyferungssignal. Im Fall des Klons 7-3 ist die Resistenz deshab höchst wahrscheinlich sowohl durch das HCV-RNA-Korstrukt bw. die replizierende HCV-RNA sa auch durch den integrierte NFT DNA Sequenz vermittelt worden, wahrrend die Resistenz der Zellen von Klon 8-1 ausschließlich auf die integrierte Plasmid DNA, producturführen ist

[0069] Um zu bestätigen, daß die G418 Reisistenz von einer autonom replizierenden HCV-FNN vermittelt ist, wurde der Klon 9-13 (Fig. 1 B. Spur 11) weiteren Tests unterworfen. Klon 8-1, der integrierte Kopien des NPT-Gens tägt, wurde überall als Negatii/kontrolle eingesetzt. Mit dem Ziel, die Anwesenheit von NPT-DNA im Klon 9-13 rigoros auszuschließen, wurde eine PCR durchgeführt, die den Nachweis von < 1000 NPT-Cen-Kopien in < 4.000 Zellen erlaubt. Das Ergebnis dieser PCR ist in Fluz Ad furgestellt in einzelnen wurde bei dieser PCR wie folgt verähren.

Es wurden jeweils 10⁶ - 10² Plasmid Moleküle (I_{SY/I}NS3-3/wt) entweder direkt (Spuren 7 - 11) oder nach Zugabe von jeweils 1 µg 9+13 DNA (Spuren 2 - 6) in dem Test eingesetzt. Die Spezifliät der amplifizierten DNA Fragment wurde mittels Southern Biot unter Verwendung einer NPT-spezifischen Sonde bestimmt. Eine PCR ohne DNA-Sonde wurde als Negativ-Kontrolle durchgeführt (Spur 12).

Seibst mit dieser sensitiven Methode wurde in einem up DNA des Zellidons 9-13 keine Plasmid DNA getunden (Spur 1). Um die Menga en HCV Plas: und Minusstang RNAsi nidesen Zellen abzuschätzen, wurde eine Verdrungsreihe von Gesant-RNA mit dem Northern-Blich-Verlahren unter Verwendung einer Plus- oder Minusstrang-spezifischen redicialisty markierten Bibosonde (e RNA-Sonde) enapyiert. Heiftir wurden jeweils 8, 4 oder 2 µg Gesant-RNA, die aus den Zellidonan 6-13 und 8-1 kojliert worden waren, parallel zu bekannten Mangen analoger in-vitro-Transkripte mit Plus- oder Minusatrang-Polarität (Grotten-BNAs) ein Northern-Blich-Verlahren analysiert und anschließend eine Hybridisierung unterworten. Die Hybridsierung wurde mit einer Plusstrang-spezifischen Ribosonde, die das kompiette NPT-Gen und die HCV-IRES abzeickt plusstrandt, obere Bildstelle), oder mit einer Minusstrang-spezifischen RIVA-Sonde, die zu der NSS-Soleumz-kompienentär war (minusstrand, untere Bildstelle) durchgeführt. Die Pfelle markieren die die zu der NSS-Soleumz-kompienentär war (minusstrand, untere Bildstelle) durchgeführt. Die Pfelle markieren die der verschaften der der verschaften der

Positionen von Replikon-RNA. Die Ergebnisse dieser Analyse sind in Fig. 2. B dargestellt. Im Fall des Plusstrangs wurden ca. 10⁸ Kopien/µg Gesamt-RNA nachgewiesen, was 1000 - 5000 HCV-RNA-Molekülen pro Zelle entspricht, während die Menge am Minusstrang-RNA 5- bis 10-lach niedriger war. Dieses Ergebnis stimmt mit der Annahme überein, daß die Minusstrang RNA die replikative Zwischenform bzw. Zwischenkopie ist, die als Vorlage für die Swihlehee der Plusstrane Molekülle dient.

35 Da die Reaktion im wesentlichen von der viralen RNA-abhängigen RNA Polymerase katalysiert wird, sollte die Synthese der HCV-RNAer resistent gegen Dactinomycin sein, einem Antibiotikum, das selektiv die RNA-Synthese von RNA-Matrizen Uml diese Vermutung zu bestätigen, wurden Zellen mit (1-ft] Urldin in Armesenheit von Dactinomycin inkubiert, die radioaktiv markierten RNAe setrählert, mittels denaturierender Agnorse-Gel-Elektrophorsee autgefernent und mit Hille eines handelsbühlen Bilo-Imagers unter Verwerwerdung einer (²HI-enesitiven Bildplatte analysiert. Hierfür wurden jeweils ca. 5 x 10⁵ Zellen der Klone 9-13 und 8-1 mit 100 µ. Ci (²H] Urldin für 16 Std. in Abwesenheit (1) oder Gegenwart (4) von 4 µg/ml Dactinomycin (Dact) inkubiert. Im Anschluß an diese Markerungsreaktion wurde die Gesamt-RNA prapariert und mittels Formatörbyd-Agarose-Gel Elektrophorses enalysiert. In den beiden ersten Spuren ist nur 1/10 der Gesamt-RNA dargestellt. Die radioaktiv markierte RNA wurden mit einem ABA-2500 Bio-Imager (Firma Füll) sichtbar omandet.

45 Die Ergebnisse dieser Analyse sind in Fig. 2 C dargestellt. In Übereinstimmung mit dem Inhibitor-Profi der NSSB Polymerase (Behrens et al., 1996, EMBOL. 15, 12 und Lohmann et al., 1997, J Virol. 71, 8416) war die Replikation der HCV RNA nicht durch Dactinomyoin beeinflußt worden, während die Gyrithese von zeilulärer RNA gehermt worden war. Um die Identität der viralen RNA zu bestätigen, wurde eine RFPCR zur Rekkonierung der replizierten Sequenzen durchgeführt. Die Sequenzanalyse der reklonierten RNA zeigle, daß die RNA in dem Klon 9-13 HCV-spezifisch ist und mit dem transfizierten Transfizit des HCV-Konstrudis 3/gr/NIS3-3/wit übereinstimmt.

[0070] Zur Analyse der viralen Proteine wurden die betreffenden Zellen zunächst metabolisch mit [415] Mehrich innirOstein radioaktiv markiert, anschließend lysiert und danach die HCV-spezifischen Proteine mittels Immunopräzipitation aus den Zell-Jysaten isoliert. Die Ergebnisse dieser Analysen sind in Fig. 3 A dargestellt. Im einzelnen wurde dabei wie folgt verfahren: Zellen der Zellkone 9-13 (M) und 8-1 (A) waren durch Behandlung für 16 Stunden mit einem Fachmann geläufigen und im Handel erhältlichen Protein-Markierungs-Mischung (z.B. NEN Life Science) metabolisch radioaktiv markiert worden. Mittels Immunopräzipitation (IP) unter nicht denaturie enden Bedingungen (z.B. nach Bartenschläger et al., 1995; J. Virol. 69, 7519) und unter Verwendung von drei verschiedenen Antisseren (34, 54, 58, 58).

trent worden. Die Immunokompleze wurden mittels Tricine SIQS-PAGE analysiert und mittels Autoradographie sichtbar gemacht. Im authentische Golfementier zu entläten, wurde das honologe Replikonkonstrukt ly-yn-Riss-3/w einer transienten Expression mit dem Vaccinia Virus T7-Hybrid System in Huh-7 Zellen unterworden. Die dabei erhaltenen Produkte waren als Größenmarker (Spuren 7 - 9) parallel zu den Zellen der Klone 9-13 und 6-1 behandelt worden. Identitizierte HCVProteine sind am lirken Rand von Spur 1 markiert, die Molekulargewichte (in Kildostlund) sind am rechten Rand von Spur 9 angegeben. Es ist anzumerken, daß das verwendete NS3/4-spezilische Antiserum (3/4) berozuta mit NS4A und NS48 residert, was zu einer Unterreordsentation von NS5 türk.

[0071] Alle viralen Antigene waren eindeutig nachweisbar und ihre apparenten Molekulargewichte zeigten keine Abweichungen gegenüber denlenigen, die nach transienter Expression desselben bicistronischen HCV-RNA-Kontrukts in den ursprünglichen Huhr-7 Zellen ermittelt wurden. Um die subzeillufae Verteilung der viralen Antigene zu bestimmen, wurde eine Immunofluoreszenz-Nachweisreaktion unter Einsatz von NS3- und NSSA-spezitischen Antiseren durchgeltührt (z.B. nach Bartenschlager et al., 1995, J. Virol, 69, 7519). Heirfür wurden Zellen der Kinoe 9-13 (w), und 8-1 (a) 24 Std. nach dem Aussäten auf Deckgläsern mit Methanol/Azeton fixiert und mit polykionalen NS3- oder NSSA-spezitischen Antiseren inkubiert. Die gebundenen Antikfürper wurden mit einem kommerziell erhältlichen FTICformachten Anti-Kanincher-Antiserum sichtbar gemacht. Zur Unterfückung unspezitischer Fluoreszenzsignale wur-

den die Zellen mit dem Fachstoff Evens Blue' gegengelarbt.
[0072] Die Ergebnisse dieses Nachweistests sind in Fig. 3 B dargestellt. Mit beiden Antiseren war eine starke Fluoreszenz im Zytoplasma nachweisbar. Die NSSA-spezifischen Antiseren führten außerdem zu einer schwachen Zellkern-Fluoreszenz, was darauf hindeutet, daß zumindest leiene Mengen dieses Antigens auch zum Zellkern gelangen.
20 Die generell domnierender Präsenz der viralen Antigene im Zytoplasma sit jedoch ein starkes jurid zufür, daß die Hotzl.

RNA Replikation im Zytopiasma stattfitdet — so wie das bei den meisten RNA-Viren der Fall ist.

[0073] Diese Ergebnisse belegen klar, daß mit dem hier beschribenen Versuchsansatz der Aufbau eines Zellkultursystems für das HCV gelungen ist, dessen Effizienz alles bisher bekannte um Größenordnungen übersteigt und erstmalig den Nachweis viraler Nukfeinsaturen und Proteine mit konwertionalen und bewährten bischernischen Methoden
ze erlaubt. Erst diese Effizienz zelaubt überhaugt der detallerte Untersuchungen der HCV-Pathogenese, generische Analysen
verschiedener HCV-Funktionen und ein genause Studium der Virus-Mirtszellwechselwirkungen, wodurch sich neue
Ansatzpunkte für die Ernikvölkung einer antivitären Theragie definieren lassen.

Beispiel 3: Transfektion von Huh-7 Zellen mit HCV-Genomkonstrukten

30

Huh-7 Zellen werden wie in Beispiel 2 beschrieben transfiziert und selektioniert, wobei hier jedoch selektionierbare Konstrukte verwendet werden, die das vollständige Virusgenom enthalten. Die erhaltenen Zellklone werden analog dem Beispiel 2 mittels PCR auf Abwesenheit von HCV-DNA untersucht und die produktive Replikation der HCV-RNA wird danach mittels Northern Blot, [8H]Uridinmarkierung in Anwesenheit von Dactinomycin, Nachweis der viralen 35 Proteine bzw. Antigene vorzugsweise mit Hilfe des Western Blots, der Immunopräzipitation oder der Immunfluoreszenz nachgewiesen. Im Gegensatz zu den im Beispiel 2 beschriebenen Ansätzen lassen sich mit dem hier beschriebenen Konstrukt außerdem vollständige und sehr wahrscheinlich infektiöse Viren erhalten, was bei den dort (in Beispiel 2) beschriebenen Subgenomkonstrukten nicht der Fall ist. Diese Viren, die in der Zelle und dem Zellkulturüberstand vorhanden sind, werden beispielsweise mittels Ultrazentrifugation, Immunpräzipitation oder Fällung mit Polyethylenglykol 40 konzentriert und alle exogenen, d.h. nicht im Viruspartikel eingebauten Nukleinsäuren werden mittels Inkubation mit Nukleasen (RNase, DNase, Mikrococusnuklease) verdaut, Auf diese Weise lassen sich alle kontaminierenden Nukleinsäuren, die nicht im schützenden Viruspartikel enthalten sind, entfernen. Die geschützte virale RNA wird nach Inaktivierung der Nukleasen, beispielsweise mittels Inkubation mit Proteinase K in einem SDS-haltigen Puffer durch Extraktion mit Phenol und Phenol/Chloroform isoliert und mittels Northern Blot oder RT-PCR unter Verwendung HCV-45 spezifischer Primer nachgewiesen. Auch in diesem Versuchsansatz ist die Kombination des beschriebenen HCV-Konsensusgenoms mit einem Selektionsmarker entscheidend für die effiziente Produktion von viraler RNA, viralem Protein und damit von HCV-Partikeln.

Beispiel 4: Herstellung und Anwendung eines HCV-RNA Konstrukts, bei dem das Resistenzgen über ein Ribozym bzw. eine Erkennungsstelle für ein Ribozym mit der HCV-Subgenom-Sequenz verbunden ist.

[0073] Es wird ein HCV-RNA-Konstrukt gemäß Beispiel 1 oder Beispiel 3 hergestellt, bei dem ein Antbiotlikurresisteragen der ein Riborym Two eine Erkennungstelle für ein Riborym mit der HCV-RNA-Sequere vorbunden ist. Solche Konstrukte sind in Fig. 7 schematisch dargestellt. Huh-7 Zellen werden wie in Beispiel 2 beschrieben mit diesem 5H CV-RNA-Konstrukt transfiziert. Nach der Transfektion in die Zellen erfolgt zunächst die Selektion mit dem entsprechenden Anfabilitöhitum. In den dabei erhaftenen Zellkonen wird das einkolonierte Ribozym aktiviert oder, im Fall eines Konstrukts, das eine Erkennungsstelle für ein Ribozym tägt, wird das Ribozym in die Zelle eingeschleust (E. Brittels Transfektion eines Ribozymkonstrukts der Infelion mit einem virallen Eurosissonsveltor, in die das entsprechenden.

Ribozym eingesetzt wurde). In beiden Fällen wird durch die ribozymvermittelte Spaltung das Resistenzgen von der HCV-RNA-Sequenz abgetennt. Das Ergebnis ist im Fall des HCV-Genom-Konstrukts ein aufhentsches HCV-Genom ohne Resistenzgen, das zur Bildung authentischer infektiöser Viruspartikel befähigt ist. Im Fall des HCV-Subgenom-Konstrukts entsteht ein HCV-Replikon ohne Resisistenzoen.

Beispiel 5: Kotransfektion eines HCV-RNA-Konstrukts mit einem separaten Luziferase-Transfektionskonstrukt

Es wird ein HCV-RNA-Konstrukt gemäß Beispiel 1 (A) oder Beispiel 3 oder Beispiel 4 hergestellt. Parallel dazu wird ein Transfektionskonstrukt hergestellt, welches das Luziferasegen umfaßt, wobei dieses Luziferasegen ver-10 mittels einer ersten Nukleotidsequenz, die für eine HCV-Protease- (z.B. NS3-Protease-) Spaltungsstelle kodiert, mit einer zweiten Nukleotidseguenz, die für ein anderes Protein oder einen Teil eines anderen Proteins kodiert, verbunden ist. HCV-RNA-Konstrukt und Transfektionskonstrukt werden in beliebige Wirtszellen, vorzugsweise Hepatomazellen, insbesondere Huh-7-Zellen, eingeschleust. Dies kann auf die in Beispiel 2 beschriebene Art und Weise geschehen, Das Produkt des modifizierten Luziferasegens ist ein Luziferase-Fusionsprotein, in dem die Luziferase auf Grund der 15 Fusion mit dem Fremdanteil inaktiv ist. In transfizierten Zellen mit hoher HCV-Replikation wird das Fusionsprotein, das ja eine Schnittstelle für eine HCV-Protease enthält, gespalten und damit die aktive Form der Luziferase freigesetzt, die , sich durch luminometrische Messung bestimmen läßt. Wird die Replikation des HCV-RNA-Konstrukts gehemmt, wird das Fusionsprotein nicht gespalten und keine aktive Luziferase freigesetzt. Infolgedessen ist die quantitative Bestimmung der Luziferase ein Maß für die Replikation des HCV-Subgenom-Konstrukts. Anstelle des Luziferasegens kann 20 ebensogut ein anderes Reportergen verwendet werden, das in analoger Weise modifiziert ist, so daß seine Expression von der Virusreplikation abhängt, obwohl dieses Reportergen nicht Bestandteil des HCV-Subgenom-Konstrukts ist. Es kann auch ein zelluläres Protein, welches durch die HCV-Proteine oder Nukleinsäure inaktiviert oder aktiviert wird, als sogenannter Surrogatmarker verwendet werden. In diesem Fall ist die Expression bzw. Aktivität dieses Surrogatmarkers ein Maß für die Replikation der viralen DNA.

<u>Beispiel 6</u>: Herstellung von HCV-Subgenom-Konstrukten mit integrierten Fremdgenen zur Verwendung als leberzellspezifische Genfähren für die Gentherapie

[0077] Diese rekombinanten und selektionierbaren HCV-Subgenom-Konstrukte werden in trans-komplementierende Helterzellnien transfiziert, d.h. in Zellinien, die induzierbar oder konstitutiv die tehlenden Funktionen (beispielsweise die Strukturprotien) apprinieren. Zellikione, die ein funktionalles HCV-Subgenom-Konstrukt erithatten, lassen sich durch entsprechende Selektion etablieren. Die von der Wirtszelle exprimierten Virus-Strukturprotienie erlauben die Bildung von Virusparliken, in die die RN4 der HCV-Subgenom-Konstrukt einschleißlich des einkonierten Frendsgenaften HCV-Subgenom-Konstrukt einschleißlich des einkonierten Frendsgenaften der auf andere Zellen übertragen können. Ein Beispiel für ein solches Konstrukt ist in Fig. 8 dargestellt. Es besteht auch die Möglichkeit, das hier beschriebene erlindungsgemaße HCV-Subgenom-Konstrukt mit integriertem Frendsgen direkt als Expressionsvelktor einzusetzen. Dabei wird analog dem vorgenannten Verkihnen vorgegangen, allerdings mit dem Unterschleid, das Zellinien transfiziert waden, die keine transf

Beispiel 7: Herstellung zellkultur-adaptierter HCV-RNA-Konstrukte

(A) Isolationsverfahren

10078] Für die Bestimmung adaptiver Mutationen und die Herstellung zellkultur-adaptierter HCV-RNA-Konstrukte wurde wie bigt verfathern: Zellem wurden mit einem HCV-RNA-Konstrukt wie unter den Beispielen 1 und 2 beschrieben nanfzieler und G18-resiestente zellelkone hergestellt. Zur Bestimmung der Replikationskompetenz (darnuter wird in diesem Zusammenhang die Anzahl C418-resiestenter Zellkone verstanden, die pro Mikrogramm transfizierter HCV-RNA bew. HCV-RNA-Konstrukt erhalten wird ywurde exemplansch die Gesam-RNA und seinem der Zellkone, genannt 9-13 (Fig. 18, Spur 11) isoliert und die Menge der derin enthaltenen HCV-RNA mittels Northern-blot wie in Fig. 2 Beschrieben bestemmt. 10 Mikrogramm der Gesam-RNA, dies a. 10th Modelle HCV-RNA entheit, wurde anschließend per Elektroporation in nahv Huhr-Zellen eingeschleust (Fig. 9). Parallel dazu wurden 10th in vitro Transkripte der anagen der Verfallen werden vollen der Verfallen verfa

ben Menge in vitro transkribierter HCV-RNA nur 30 - 50 Kolonien erhalten. Dieses Ergebnis belegt, daß die spezifische Infektiosität der HCV-RNA, die aus den Zellklonen isoliert wurde, ca. 1.000 - 10.000-fach höher ist als die Infektiosität der analogen in vitro Transkripte. Das methodische Vorgehen ist in Fig. 9 dargestellt.

Mit Hilfe der long-distance RT-PCR' wurde die HCV-RNA aus der Gesamt-RNA der 9-13 Zellen amplifiziert. die PCR-Amplifikate kloniert und zahlreiche Klone sequenziert. Ein Vergleich der Sequenzen dieser reklonierten RNAs mit der Sequenz der RNA, die ursprünglich in die naiiven Huh-7 Zellen eingeschleust wurde ergab, daß die reklonierten RNAs zahlreiche Aminosäureaustausche besaßen, die über die gesamte HCV-Seguenz verteilt waren (Fig. 10), Sfil-Fragmente dieser reklonierten Mutanten wurden im Austausch gegen das analoge S/II-Fragment des ursprünglichen Replikonkonstrukts in dieses eingeführt und RNAs der jeweiligen Mutanten wurden in naïve Huh-7 Zellen einge-10 schleust, Nach Selektion mit G418 wurde dann f
ür iede HCV-RNA-Mutante die Zahl der gebildeten Kolonien bestimmt. Während mit der Ausgangs-RNA nur 30 - 50 Kolonien pro Mikrogramm RNA erhalten wurde war die Koloniezahl bei zwei der reklonierten Varianten deutlich höher (Fig. 10). Im Fall der HCV-RNA-Konstrukte 9-13I und 9-13C betrug die spezifische Infektiosität 100 - 1.000 cfu pro Mikrogramm RNA und beim 9-13F Replikon sogar 1.000 - 10.000 cfu pro Mikrogramm RNA. Diese Ergebnisse zeigen, daß die Aminosäureaustausche in dem analysierten NS3-5B-Bereich der

15 Mutanten 9-13I, 9-13C und insbesondere 9-13F zu einer deutlichen Erhöhung der Replikationskompetenz führten. Demgegenüber waren alle anderen HCV-RNA-Konstrukte (9-13 A, B, G, H und K) nicht mehr replikationskompetent, enthielten also letale Mutationen.

Zwecks Beantwortung der Frage, welche der Aminosäureaustausche im 9-13F-Konstrukt zur Steigerung der Replikation führten, wurden die Austausche einzeln oder in Kombination in das Ausgangs-HCV-RNA-Konstrukt ein-20 geführt und die entsprechenden RNAs in na\u00e4ve Huh-7 Zellen eingeschleust. Das Ergebnis der Transfektionen mit diesen RNAs ist in Tabelle 1 zusammengefaßt. Daraus wird ersichtlich, daß im vorliegenden Beispiel die hohe Replikationskompetenz durch mehrere Mutationen bedingt ist. Den größten Beitrag leisten die Aminosäureaustausche in den HCV-RNA-Abschnitten NS5A und NS4B. Auch die einzelnen Austausche in der NS3-Region leisten einen Beitrag, der möglicherweise auf einem Synergismus dieser Einzelaustausche beruht.

25 Diese Befunde belegen, daß es durch die G418-Selektion der Zellen, die mit den neg-HCV-RNA-Konstrukten transfiziert wurden, zur Anreicherung solcher HCV-RNAs kam, die eine deutlich höhere Replikationskompetenz hatten. Mit dem hier beschriebenen Versuchsansatz lassen sich HCV-RNA-Konstrukte mit sehr unterschiedlicher Replikationseffizienz selektionieren. Je höher die Konzentration des Antibiotikums in dem Selektionsmedium ist, in/auf dem die HCV-RNA-Konstrukt-haltigen Zellen zwecks Selektion kultiviert werden, desto höher muß der Grad an adaptiven Mutationen 30 und damit die Replikationseffizienz in den betreffenden HCV-RNA-Konstrukten sein, damit die Zellen auswachsen können. Werden die Selektionen mit niedrigeren Antibiotikum-Konzentrationen durchgeführt, können auch solche Zellen überleben und sich vermehren, die im Vergleich geringer adaptive Mutationen und eine weniger hohe Replikationseffizienz aufweisen.

Das bisher beschriebene HCV-RNA-Konstrukt 9-13F, das mehrere adaptive Mutationen enthielt, hatte eine erwiesener-35 maßen höhere Replikationseffizienz als die parentale HCV-RNA. Um HCV-RNAs mit noch höherer Replikation in Zellkultur zu erhalten, wurde die HCV-RNA, die in der Gesamt-RNA eines ausgewählten Zellklons enthalten war, mehrfach in naïven Huh-7 Zellen passagiert. Dieser ausgewählte Zellklon, genannt 5-15, wurde durch Transfektion mit dem HCV-RNA-Konstrukt Isso/NS3-3' erhalten (Fig. 1). Er entspricht weitgehend dem Zellklon 9-13, der durch Transfektion mit einem HCV-RNA-Konstrukt hergestellt wurde, das eine um 22 Nukleotide kürzere HCV-IRES besaß (1277/NS3-3'; Fig. 1). 10 Mikrogramm Gesamt-RNA, isoliert aus dem Zellklon 5-15, wurden mittels Elektroporation in nailve Huh-7 Zellen eingeschleust und die Zellen einer Selektion mit 1 mg/ml G418 unterzogen. Aus einem der so erzeugten Zellklone wurde wiederum Gesamt-RNA isoliert, in naïve Huh-7 Zellen transfiziert und analog selektioniert. Dieser Vorgang wurde insgesamt viermal wiederholt. Nach der vierten Passage wurde aus einem Zellklon die Gesamt-RNA isoliert und die neo-HCV-RNA mit Hilfe der 'long-distance RT-PCR' amplifiziert. Das amplifizierte DNA-Fragment wurde mit dem 45 Restriktionsenzym Sfil verdaut und in das Sfil-restringierte Ausgangskonstrukt I₃₈₉/NS3-3' inseriert. Insgesamt wurden über 100 DNA-Klone erhalten und zunächst mittels Restriktionsverdau analysiert. In vitro transkribierte RNA von ca. 80 dieser Klone wurde ieweils in naïve Huh-7 eingeschleust und einer Selektion mit 500mg/ml G418 unterzogen. Von den 80 untersuchten neo-HCV-RNA-Varianten erwiesen sich die allermeisten als replikationsdefekt. Bei zwei Mutanten. genannt 5.1 und 19, war die spezifische Infektiosität, ausgedrückt als 'colony forming units' pro Mikrogramm RNA, 50 jedoch sehr deutlich erh\u00f6ht (Tabelle 2). Durch mehrfache Passage der RNA in Zellkultur lassen sich offensichtlich HCV-

(B) Modifikationsverfahren

Solche nach (A) erzeugtenn und identifizierten adaptiven Mutationen können in ein wenig replikationskompetentes HCV-RNA-Konstrukt übertragen werden und führen zu einer massiven Steigerung der Replikation dieses Konstrukts. Diese Steigerung ist so hoch, daß damit nachweislich HCV-RNAs in Zellkultur zur Replikation gebracht

RNAs herstellen, deren Replikationseffizienz aufgrund von Mutationen (sog. "adaptiven Mutationen) mehrere Größen-

ordnungen höher ist als die der ursprünglich aus dem Patienten klonierten RNA.

werden Konnen, die kein selektierbares Markergen mehr besitzen. Fig. 12 zeigt einen Vergleich der Regilieitonseffizier von HCV-RNAs, die entweder der Ausgangssegunz oder den adaptierten Sequenzen 1915 zw. 5. entsprachen. Zwecks einfachter Messung wurde das nor-Gen entfern und durch das Gen für die Luziferase ersetzt. Als Negatik-kontrolle diente wiederum ein HcV-RNA-Konstrukt, das auf Curund einer inaktivierenden Mutation der RSV-RNA-Polymerase regiliektionseffeld war. Schon 24 Sunden nach der Transfeldion erkennt man einen deutlichen Unterschied in der Luziferaseeldivität zwischen der defekten RNA und den 9-195 zw. 5.1-Konstrukten während zwischen der defekten RNA (19 BD N) und dem Auggange-RNA-Konstrukt (wijd sie keine adaptiven Mutationen beseits, kaum ein Unterschied zu sehen war. Während des gesamten Beobachtungszeitraums wurde die hochste Luziferaseeldivität und damit die hochste Replikation mit der 5.1-RNA erhälten. Diese Behande belegen nicht nur die hoch Replikationseffzierenz dieser RNA, sondern zeigen auch, daß es möglich ist, mit adaptierten HCV-RNA-Konstrukten ein Zellicultursystem aufzubauen, für das die Anwesenheit eines selektierberen Gens nicht mehr notwendig ist. Eine zusammenfassende Übersicht der Nukleoßeit und Aminosalureunterschiede zwischen dem Ausgangskonstrukt und den Mutanten 9-187, 5.1 und 19 ist in Täbelle 3 gegeben.

15 Beispiel 8: Herstellung zellkultur-adaptierter HCV-RNA-Vollängengenome

In den Beispielen 1 bis 7 wurde stets eine subgenomische HCV-RNA verwendet, der die gesamte Strukturproteinregion von Core bis einschließlich p7 bzw. NS2 fehlte. Im vorliegenden Beispiel 8 wird gezeigt, daß es möglich ist, mit Hilfe der adaptierten NS3-5B-Sequenz ein HCV-Vollängengenom in Zellkultur zur Replikation zu bringen. Zu 20 diesem Zweck wurde zunächst das Sfil-Fragment der gemäß Beispiel 7 hergestellten, hoch adaptierten HCV-RNA 5.1 in ein selektionierbares HCV-Vollängengenom transferiert (Fig. 12). Dieses HCV-Genom wurde in naïve Huh-7 Zellen transfiziert und einer Selektion mit unterschiedlichen G418-Konzentrationen unterzogen. In Abhängigkeit von der Selektionsstärke (der G418-Konzentration) wurde eine unterschiedlich große Zahl an Zellklonen erhalten (Fig. 12 B) . Im Vergleich dazu wurden mit dem unveränderten HCV-Vollängengenom, das keine-adaptiven Mutationen enthielt, keine Kolonien erhalten, ebenso mit der Negativkontrolle, die auf Grund einer inaktivierenden Mutation in der NS5B RNA-Polymerase replikationsdefekt war. Zum Nachweis dafür, daß die so entstandenen Zellklone tatsächlich ein autonom replizierendes HCV-Vollängenkonstrukt enthielten, wurde Gesamt-RNA aus mehreren Zellklonen isoliert und mittels Northern-Blot analysiert. In allen Zellklonen war die Vollängen HCV-RNA eindeutig nachweisbar (Fig. 12). Damit ist eindeutig belegt, daß es mit Hilfe der an Zellkulturen adaptierten HCV-Seguenzen möglich ist, ein HCV-Vollängengenom herzustellen, das mit hoher Effizienz und autonom in einer Zellinie repliziert, d.h. es können mit dem erfindungsgemäßen System auch adaptierte HCV-Vollängengenome hergestellt werden. Da dieser Klon darüber hinaus die vollständige HCV-Sequenz besitzt, also auch die für die Viruspartikelbildung notwendigen Strukturproteine, ist es mit diesem System möglich, große Mengen infektiöser Viruspartikel in Zellkulturen herzustellen. Zum Nachweis dieser Viren werden zellfreie Überstände von Zellen, die ein replizierendes HCV-Vollängengenom tragen, auf naive Huh-7 Zellen gegeben und die so infizierten Zellen einer Selektion mit G418 unterzogen. Jeder Zellklon, der unter diesen Bedingungen auswächst, geht auf eine infizierte Zelle zurück. Die Viren in den Zellkulturüberständen von Zellen, die ein replizierendes HCV-Vollängengenom besitzen, können aber auch mit verschiedenen im Stand der Technik bekannten Verfahren wie Ultrazentrifugation oder Mikrodialyse angereichert und gereinigt werden und dann zur Infektion naiver Zellen verwendet werden. Mit diesem Verfahren ist eindeutig gezeigt, daß mit dem erfindungsgemäßen HCV-Zellkultursystem zellkultur-adaptierte HCV-Vollängengenome hergestellt werden können, die mit hoher Effizienz in Zellen replizieren und infektiöse Viren produzieren. Diese können ebenfalls durch Infektion eines Versuchstiers, vorzugsweise dem Schimpansen, nachgewiesen werden.

Beispiel 9: Herstellung von HCV-Vollängen-Konstrukten und HCV-Subgenom-Konstrukten mit Reportergen.

[0083] Es wird ein HCV-RNA-Konstrukt hergestellt, bei dem anstelle des Antibiotikumresistenzgens ein Reportergen eingelügt wird (Fig. 13). Dabei kann die Replikation anhand der Menge bzw. der Aktivität des Reportergens bzw.
Reportergenzrodukts bestimmt werden. Dus Reportergen ist vorzugewise ein Gen aus der Gruppe der Luziferasegene, dem CAT-Gen (Chloramphenicol-Acstyl-Transferase-Gen), dem lacz-Gen (beta-Galaktrosidasegen), dem GiPGen (green füruresecence protein Gen, dem GUS-Gen (Galuturonidasegen) oder dem SEAP-Gen (gezenmerte alkalische Phosphaltasegen). Diese Reportergene bzw. deren Produkte, nämlich die entsprechenden Reporterproteine, könen z. B. mittels Fluoreszenz, Chemiltuminsezzen, colorimerisch oder mit Hilfe immunologischer Methoden (z.B.
enzyme-linked immunosorbent assay, ELISA) bestimmt werden. Das Reportergen kann entweder von einer eigenen
IESE septimier werden oder in Form eines Fusionsproteins, das entweder als solches aktiv ist oder mittels einer proteolytisch spaltbaren Aminosituresquenz so mit einem HCV-Protein verbunden ist, daß es von einer zellulären oder
virlaen (HCV-Proteise von diesem abbessablen wirk).

<u>Beispiel 10</u>: Herstellung von HCV-Vollängen-Konstrukten mit integrierten Fremdgenen zur Verwendung als leberzellspezifische Genfähre für die Gentherapie oder als Expressionsvektor.

[0084] Das Konstrukt (Fig. 14) wird in Zellen eingeschleust und führt dort zur Biktung von HCVV/iruspartiket nie zur Infektion weister Zellen verwendet werden konnen. Da die Viruspartikel eine RNA mit einem Fremdigen enkapsidiert haben kann dieses in den so inflüsteren Zellen zur Produktion des von diesem Fremdigen kodierten Proteins berutzt werden. Zellen die mit dem Konstrukt transfiziert wurden, zowirmieren eberfalls das Fremdoen.

Beispiel 11: Herstellung von monocistronischen HCV-RNA-Konstrukten, bei denen das Resistenzgenprodukt
als Fusionsprotein mit dem HCV-Anteil exprimiert wird.

[0085] Für bestimmte Untersuchungen ist es von Vorteil, wenn das HCV-RNA-Konstrukt kein heterologes IRES-Element besitzt. Solche Untersuchungen sind beispielsweise die Bestimmung der Interferoniessieterz. Wird eine Zelle, die ein HCV-RNA-Konstrukt eisetzt, mit Interferon-alpha der bed inkubiert, kommt es zu einer Reduktion der Repit-15 kation der HCV-RNA. Zur Aufklärung des Wirkungsmechanismus ist es notwendig, daß das HCV-RNA-Konstrukt keine heterologe IRES besitzt, da ansonsten nicht bestimmt werden kann, ob die Interferon-vermittelle Hermung durch eine Hemmung der HCV-Repilkation oder durch eine Hemmung der heterologen IRES vermittelt wird. Deshalb werden Konstrukte hergestellt, bei denen das Reissteragen mit einem HCV-Protein fusioniert wird (Fig. 15). Ertiweder das Fusionsprotein ist als solches aktiv oder das Resisteragenprotudt wird mittels einer proteolyjsich spatibaren 20 Aminosaturesequenz so mit einem HCV-Protein verbunden ist, daß es von einer zellulären oder viralen (HCV-)Protease von dissem abbessalten wird.

Tabelle 1

labelle 1		
Spezifische Infektiositäten (cfu/µg RNA) der HCV-RNA-Konstr Mutante gefunden und in das parentale HCV-RNA-Ko		
Aminosäureaustausch ¹	HCV-Protein	cfu/μg RNA ²
kein		30 - 60
1283 arg -> gly	NS3	200 - 250
1383 glu -> ala	NS3	30 - 60
1577 lys -> arg	NS3	30 - 60
1609 lys -> glu	NS3	160 - 300
(1283 arg -> gly + 1383 glu -> ala + 1577 lys -> arg + 1609 lys - > glu)	NS3	360 - 420
1936 pro -> ser	NS4B	500 - 1000
2163 glu -> gly	NS5A	1000-5000
2330 lys -> glu	NS5A	30 - 60
2442 ile -> val	NS5B	30 - 60
alle zusammen		5000

¹ Aminosaureaustausch im Polyprotein des HCV-Isolats Con-1 (EMBL-Genbank No. AJ238799); die Aminosauren sind im Dreibuchstabenkode angegeben.

55

² Colony forming units (Anzahl der Zellklone) bei einer Selektion von 500μg/ml G418.

Tabelle 2

Spezifische Infektiositäten (cfu/µg RNA) des parenta- len HCV-RNA-Konstrukts I ₃₈₉ /NS3-3'/wt und der Vari- anten 9-13C, 9-13I, 9-13F, 5.1 und 19.					
Transfizierte ante	RNA-Vari-	cfu/µg RNA ¹			
Wildty	yp	30 - 50			
9-13	С	100 - 1.000			
9-13	I	100 - 1.000			
9-13	F	1.000 - 10.000			
5.1		50.000 - 100.000			
19		50.000 - 100.000			

¹ Colony forming units (Anzahl der Zellklone) bei einer Selektion von 500µg/ml G418.

Tabelle 3: Nukleotid- und Aminosäureunterschiede zwischen dem parentalen HCV-RNA-Konstrukt I₃₈₉/NS3-3'/wt und den Mutanten 9-13I, 9-13F, 5.1 und 19

HCV Mutante	Nukleotidposition	Nukleotidaustausch	Aminosäureaustausc
			h
9-13 I	3685	C > T	Pro > Leu
	4933	C > T	Thr > Met
	5249	T>C	-
	8486	C > T	-
	8821	G > A	Trp > stop
	8991	C > G	Arg > Gly
	9203	A > G	
	9313	T > C	Phe > Ser
	9346	T > C	Val > Ala
9-13 F	3866	C > T	1.
	4188	A > G	Arg > Gly
	4489	A>C	Glu > Ala
	4562	G > A	-
	4983	T>C	-
	5071	A > G	Lys > Arg
	5166	A > G	Lys > Glu
	6147	C > T	Pro > Ser
	6829	A > G	Glu > Gly
	7329	A > G	Lys > Glu
	7664	A > G	Ile > Val
	8486	C > T	-
	8991	C > G	Arg > Gly
NK5.1	4180	C > T	Thr > Ile
	4679	C>T	1-

		4682	T > C	-
5		5610	C > A	Leu > Ile
		6437	A > G	-
10		6666	A > G	Asn > Asp
10		6842	C > T	-
		6926	C > T	-
15		6930	T > C	Ser > Pro
		7320	C > T	Pro > Ser
		7389	A > G	Lys > Glu
20	NK19	3946	A > G	Glu > Gly
		4078	C > G	Ala > Gly
		4180	C > T	Thr > Ile
25		4682	T > C	-
		5610	C > A	Leu > Ile
30		5958	A > T	Met > Leu
		6170	T > A	-
		6596	G > A	-
35		6598	C > G	Ala > Gly
		6833	C > T	-
		6842	C > T	-
40		6930	T > C	Ser > Pro
		7141	A > G	Glu > Gly
45		7320	C > T	Pro > Ser
40		7389	A>G	Lys > Glu
		7735	G > A	Ser > Asn

[0086] Angegeben sind die Unterschiede der Nukleotid- und Aminosäuresequenzen zwischen der Ausgangs-HCV-RNA-Sequenz Con 1 (EMBL-Gerbank No. AL239799) und denen der zellkulturadaptierten HCV-RNAs. Die Zahlen 59 beziehen sich auf die Nukledoti- und Aminosäurepositionen des HCV-Isolatis Con1.

SEQUENCE LISTING

```
<110> Bartenschlager, Ralf
                  <120> Hepatitis C Virus cell culture system
                  <140> 199 15 178.4
                  <141> 1999-04-03
10
                  <160> 11
                  <170> PatentIn Ver. 2.1
                  <210> 1
15
                  <211> 11076
                  <212> DNA
                  <213> Hepatitis C Virus
                  gccagccccc gattgggggc gacactccac catagatcac tcccctgtga ggaactactg 60
                  tetteacgea gamagegtet agecatggeg ttagtatgag tgtegtgeag cetecaggae 120
20
                  cccccctccc gggagagcca tagtggtctg cggaaccggt gagtacaccg gaattgccag 180
                  gacgaccggg tcctttcttg gatcaaccog ctcaatgcct ggagatttgg gcgtgccccc 240
                  gcgagactgc tagccgagta gtgttgggtc gcgaaaggcc ttgtggtact gcctgatagg 300
                  gtgottgoga gtgococggg aggtotogta gacogtgoac catgagoacg aatoctaaac 360
ctcaaagaaa aaccaaacgt aacaccaacg ggcgcgccat gattgaacaa gatggattgc 420
                  acqcagttc tccggccqct tgggtgqaga ggctattcgg ctatgactgg gcacaacaga 480 caatcggctg ctctgatgcc gccgtgttcc ggctgtcagc gcaggggcgc ccggttcttt 540
25
                  tigicaágac cgacctgice ggigecetga algaactgea ggacgággea gegeggetat 600 egiggetgge caegaeggge giteettigeg eagetgiget egaegtigte aetgaagegg 660
                  gaagggactg getgetattg ggcgaagtge eggggcagga teteetgtea teteacettg 720
                  ctcctgccga gaaagtatcc atcatggctg atgcaatgcg gcggctgcat acgcttgate 780
                  oggotacoty occattogac caccaagoga aacatogcat cgagogagoa ogtactogga 840
                  tggaagccgg tettgtcgat caggatgate tggacgaaga gcatcagggg etegegccag 900
30
                  cogaactytt ogcoagott aaggogogoa tyccogaacyg ogaggatote gtogtgacce 960
atggogatge etgettgoog aatateatgg tygaaaatgg cegettttet ggatteateg 1020
                  actgtggccg gctgggtgtg gcggaccgct atcaggacat agcgttggct acccgtgata 1080
                  ttgctgaaga gcttggcggc gaatgggctg accgcttcct cgtgctttac ggtatcgccg 1140
                  ctcccgattc gcagcgcatc gccttctatc gccttcttga cgagttcttc tgagtttaaa 1200
                  cagaccacaa cggtttccct ctagcgggat caattccgcc cctctccctc cccccccct 1260
35
                  aacqttactq googaagoog ottggaataa ggooggtqtq cqtttqtcta tatgttattt 1320
                  tocaccatat tgccgtcttt tggcaatgtg agggcccgga aacctggccc tgtcttcttg 1380
                  acqaqcatte etaqqqtet ttecectete gecaaaqqaa tqcaaqqtet qttqaatqte 1440
qtqaaqqaaq caqtteetet gqaaqettet tqaaqacaaa caacqtetqt agcqaccett 1500
                  tgcaggcage ggaacccccc acctggcgac aggtgcctct gcggccaaaa gccacgtgta 1560
                  taagatacac ctgcaaaggc ggcacaaccc cagtgccacg ttgtgagttg gatagttgtg 1620
                  gaaagagtca aatggctctc ctcaagcgta ttcaacaagg ggctgaagga tgcccagaag 1680
40
                  gtaccccatt gtatgggatc tgatctgggg cctcggtgca catgctttac atgtgtttag 1740
                  togaggttaa aaaacgtota ggccccccga accacgggga cgtggttttc ctttgaaaaa 1800
                  cacqataata ccatgggcac gastoctaaa cctcaaagaa aaaccaaacg taacaccaac 1860
                  ogcogoccac aggacgicaa gitocogggo ggiggicaga togloggigg agittacotg 1920
                  ttgccgcgca ggggccccag gttgggtgtg cgcgcgacta ggaagacttc cgagcggtcg 1980
                  caacctogtg gaaggogaca acctatococ aaggotogoc agooogaggg tagggootgg 2040
                  gctcagcccg ggtacccctg gcccctctat ggcaatgagg gcttggggtg ggcaggatgg 2100
45
                  ctectgtcac cccgtggetc teggectagt tggggcccca eggacccccg gcgtaggteg 2160
                  cqcaatttqq gtaaqqtcat cqataccctc acqtqcqqct tcqccqatct catqqqqtac 2220
                  attocgotog toggogococ cotaggggge gotgocaggg cootggegea tggogtocgg 2280
                  gttctggagg acggcgtgaa ctatgcaaca gggaatctgc ccggttgctc ctttctatc 2340
                  tteettttgg etttgetgte etgtttgace atcccagett eegettatga agtgegeaac 2400
                  gtatocqqaq tqtaccatqt cacqaacqac tqctccaacq caaqcattqt qtatqaqqca 2460
50
                  geggacatga teatgeatae eccegggtge gtgccctqeg ttegggagaa caacteetee 2520
                  egetgetggg tagegeteac teccaegete geggeragga acgetagegt ceccaetaeg 2580
                  acquiacque gocatgtega tittgetegti ggggeggetg etetetgete egetatgtae 2640
gtgggagate tetegegate tatticete gtegeeage tgtteacett etegeetege 2700
```

	cggcacgaga	cagtacagga	ctgcaattgc	tcaatatatc	ccggccacgt	gacaggtcac	2760
	cgtatggctt	gggatatgat	gatgaactgg	tcacctacag	cagccctagt	ggtatcgcag	2820
	ttactccgga	teccacaage	tqtcqtqqat	atggtggcgg	qqqcccattq	qqqaqtccta	2880
	acanacetta	cctactattc	catogtoggg	aactgggcta	aggttetgat	totoatocta	2940
5		gcgttgacgg					
		cqtccctctt	55 gaace	5	ggaogaoggo	********	2066
	aacggcagct	ggcacatcaa	caggactgcc	ctgaactgca	atgactccct	caacactggg	3120
	ttccttgctg	cgctgttcta	cgtgcacaag	ttcaactcat	ctggatgccc	agagcgcatg	3180
	gccagctgca	qccccatcga	cgcgttcgct	caggggtggg	ggcccatcac	ttacaatgag	3240
	tcacacaget	cggaccagag	gccttattgt	togcactacg	caccccggcc	gtgcggtatc	3300
10	gtaccccccg	cgcaggtgtg	taatccaata	tactocttca	CCCCAACCC	tatcataata	3360
	audacuaccu	accggttcgg	cotcectaco	tacagttggg	gggagaatga	naconacoto	3420
	ataattatta	acaacacgcg	agaaaaaaaa	gggaagtggt	ttaaatataa	atagataaat	2490
		tcaccaagac					
		cctgccccac					
	tgtggttcgg	ggccttggtt	gacacccaga	tgcttggtcc	actacccata	caggetttgg	3660
	cactacccct	gcactgtcaa	ctttaccatc	ttcaaggtta	ggatgtacgt	ggggggagtg	3720
15	gagcacaggc	tegaageege	atgcaattgg	actcgaggag	agcgttgtaa	cctggaggac	3780
	agggaragat	cagagettag	cecactacta	ctotctacaa	conantonca	ggtattgccc	3840
	tatteettee	ccaccctacc	aactetatee	actootttoa	tecateteca	transacuto	3900
	-tt-	aatacctgta	agat at agas	teggggggt	tataatttaa	22tgaacgcc	3060
	gagtatgtcc	tgttgctctt	cerrerrerd	geggaegege	gegreegee	cractratag	4020
	atgatgctgc	tgatagctca	agctgaggcc	gccctagaga	acctggtggt	cctcaacgcg	4080
20		ccggggcgca					
	tacatcaagg	gcaggctggt	ccctggggcg	gcatatgccc	tctacgqcgt	atggccgcta	4200
	ctcctactcc	tgctggcgtt	accaccacga	gcatacgcca	tagaccagga	gatggcagca	4260
	tentacagaa	gcgcggtttt	catagateta	atactettea	ccttatcacc	gcactataag	4320
	ctattcctca	ctaggctcat	atontontta	caatatttta	traccanno	canadacacac	4380
	thecoords	ggatccccc	cotossantt	0000000000	geastageat	catactacta	4446
	ccycaaycyc	ggacccccc	ccccaacycc	cggggggcc	gcgacgccgt	Cattottott	4500
25	acgtgcgcga	tccacccaga	gctaatettt	accattacca	aaatettget	egecatacte	4500
20	ggtccactca	tggtgctcca	ggctggtata	accaaagtgc	cgtacttcgt	gcgcgcacac	4560
		gtgcatgcat					
	gctctcatga	agttggccgc	actgacaggt	acgtacgttt	atgaccatct	caccccactg	4680
	cgggactggg	cccacgcggg	cctacgagac	cttgcggtgg	cagttgagcc	catcatcttc	4740
	tctgatatgg	agaccaaggt	tatcacctgg	ggggcagaca	ccacaacata	tggggacatc	4800
	atcttgggcc	tgcccgtctc	caccacaga	gggagggaga	tacatctggg	асседсацас	4860
	accettasea	ggcaggggtg	acaactcctc	acacctatta	caacatactc	CCAACAGAGG	4920
30							
	cgaggectae	ttggctgcat	Cattactage	cccacaggee	gggacaggaa	ccaggicgag	4900
	ggggaggtcc	aagtggtctc	caccgcaaca	Caatctttcc	tggcgacetg	cgtcaatggc	5040
	gtgtgttgga	ctgtctatca	tggtgccggc	tcaaagaccc	ttgccggccc	aaagggccca	5100
	atcacccaaa	tgtacaccaa	tgtggaccag	gacctcgtcg	gctggcaagc	gccccccggg	5160
	gcqcqttcct	tgacaccatg	cacctgcggc	agctcggacc	tttacttggt	cacqaqqcat	5220
	gccgatgtca	ttocggtgcg	ccaacaaaac	gacagcaggg	ggagcctact	ctccccagg	5280
35	cccatctcct	acttgaaggg	ctcttcgggc	gatecactac	tetaccete	agaggagget	5340
	ataggeatet	ttogggctgc	catatacacc	caaaaaatta	casagggggt	ggactttgta	5400
	9099900000		ogegegeace	bassassassassassassassassassassassassass	oguaggogge	gguoccogcu	E 466
	cocyccyaye	ctatggaaac	caccacgogg	cccccggccc	ccacggacaa	cccgccccc	EEOC
	ceggeegtae	cgcagacatt	ccaggcggcc	catetacacg	cecetactgg	Lageggeaag	3520
	agcactaagg	tgccggctgc	gtatgcagec	caagggtata	aggtgcttgt	cctgaacccg	5580
	tecgtegeeg	ccaccctagg	tttcggggcg	tatatgtcta	aggcacatgg	tatcgaccct	5640
40	aacatcagaa	ccggggtaag	gaccatcacc	acgggtgccc	ccatcacgta	ctccacctat	5700
	ggcaagtttc	ttgccgacgg	tggttgctct	gagagcacct	atgacatcat	aatatgtgat	5760
	gagt gccact	caactgactc	gaccactate	ctgggcatcg	gragagtect	плассавлен	5820
		gagcgcgact					
	ataccacata	caaacatcga	agaggggggg	statesassa	ataaaaaa	coccttttat	5940
	ggcaaagcca	tececatega	gaccatcaag	ggggggaggc	accidatett	etgecattee	6000
45	aagaagaaat	gtgatgagct	cgccgcgaag	ctgtccggcc	tcggactcaa	tgctgtagca	6060
40	tattaccggg	gccttgatgt	atccgtcata	ccaactagcg	gagacgtcat	tgtcgtagca	6120
	acggacgctc	taatgacggg	ctttaccggc	gatttcgact	cagtgatcga	ctgcaataca	6180
	tgtgtcaccc	agacagtcga	cttcagcctg	gacccgacct	tcaccattga	gacgacgacc	6240
	gtgccacaag	acgcggtgtc	accetegeag	caacaaaaca	ggactggtag	gggcaggatg	6300
	ggcatttaca	ggtttgtgac	tecaggagaa	concept con	gcatgttcga	ttectegett	6360
		gctatgacgc					
50		gggcttacct					
		gcgtctttac					
	aagcaggcag	gagacaactt	cccctacctg	gtagcatacc	aggctacggt	gtgcgccagg	6600
	gctcaggctc	cacctccatc	gtgggaccaa	atgtggaagt	gtctcatacg	gctaaagcct	6660

EP 1 043 399 A2 acgctgcacy ggccaacycc cctgctgtat aggctgggag ccgttcaaaa cgaggttact 6720

		ggccaacycc					
	accacacacc	ccataaccaa	atacatcatg	gcatgcatgt	cggctgacct	ggaggtcgtc	6780
	acqaqcacct	gggtgctggt	aggcggagtc	ctagcagete	tggccgcgta	ttqcctqaca	6840
		tqqtcattqt					
5		teetttaceg					
	gacayyyaay	cccccaccy	ggageeegae	gagatggaag	agegegeeee	acacttcct	7020
	Lacategaac	agggaatgca	gecegeegaa	Caattcaaac	agaaggcaac	egggregerg	7020
	caaacagcca	ccaagcaagc	ggaggctgct	gctcccgtgg	tggaatccaa	gtggcggacc	7080
	ctcgaagcct	tctgggcgaa	gcatatgtgg	aatttcatca	gcgggataca	atatttagca	7140
	ggcttgtcca	ctctgcctgg	caaccccgcg	atagcatcac	tgatggcatt	cacagcctct	7200
		coctcaccac					
		ttgctcctcc					
10							
	gcggctgttg	gcagcatagg	ccttgggaag	gtgcttgtgg	atattttggc	aggttatgga	7380
	gcaggggtgg	caggcgcgct	cgtggccttt	aaggtcatga	gcggcgagat	gccctccacc	7440
	gaggacctgg	ttaacctact	ccctqctatc	ctctcccctq	gcgccctagt	cqtcqqqqtc	7500
		cgatactgcg					
		tagogttogo					
15		ctgcagcacg					
10	ctgaagaggc	ttcaccagtg	gatcaacgag	gactgctcca	cgccatgctc	cggctcgtgg	7740
	ctaagagatg	tttgggattg	gatatgcacg	gtgttgactg	atttcaagac	ctggctccag	7800
	tecaagetee	tgccgcgatt	gccgggagtc	cocttettet	catgtcaacg	toggtacaag	7860
		qqqqcqacqq					
	ggacatgtga	aaaacggttc	catgaggate	geggggeeta	ggacetgeag	caacacgigg	/200
		tecceattaa					
20	aattattcta	gggcgctgtg	gcgggtggct	gctgaggagt	acgtggaggt	tacgcgggtg	8100
	ggggatttcc	actacgtgac	gggcatgacc	actgacaacg	taaaqtqccc	gtgtcaggtt	8160
		aattcttcac					
		tcctacggga					
		tcccatgcga					
	gacccctccc	acattacggc	ggagacggct	aagcgtaggc	tggccagggg	atctccccc	8400
	tecttqqcca	gctcatcagc	tagecagetg	tctgcqcctt	ccttgaaggc	aacatgcact	8460
25	accepteate	actccccgga	cactaacctc	atcgaggcca	acctcctgtg	psppspppp	8520
		acatcacccg					
	gageegeeee	aagcggagga	ygacgagagg	gaagcacccg	ccccggcgga	gaccutgugg	0700
	aggtccagga	aattccctcg	agcgatgccc	acatgggcac	geceggatta	CAACCCCCCCA	0/00
		cctggaagga					
	ccqcctqcca	aggcccctcc	gataccacct	ccacggagga	aqaqgacgqt	tgtcctgtca	8820
90		tgtcttctgc					
30		tcgacagcgg					
		ccgacgttga					
	yacycygyac	ccyacyccya	gecgcacecc	cccacycccc	cccccgaggg	ggaguugggg	2000
		tcagcgacgg					
	gtctgctgct	cgatgtccta	cacatggaca	ggcgccctga	tcacgccatg	cgctgcggag	9120
	qaaaccaaqc	tgcccatcaa	tgcactgage	aactctttgc	tccqtcacca	caacttggtc	9180
		catctcgcag					
35		acgaccacta					
		aacttctatc					
		ttggctatgg					
	cacatccgct	ccgtgtggaa	ggacttgctg	gaagacactg	agacaccaat	tgacaccacc	9480
	atcatggcaa	aaaatgaggt	tttctacatc	caaccagaga	agggggggg	caagccagct	9540
		tattcccaga					
40	grygrerea	ccctccctca	ggccgcgacg	ggcccccac	acygatteta	atactette	0000
		tcgagttcct					
		cccgctgttt					
	tcaatctacc	aatgttgtga	cttaaccccc	gaagccagac	aggccataag	gtcgctcaca	9840
		acatcggggg					
	castagosas	cgagcggtgt	natenagara	ageteegeta	atagetese	atattaatta	9960
45	aaggccgctg	cggcctgtcg	agcugcgaag	ccccaggact	gcacgatgct	cgtatgcgga	10020
45	gacgaccttg	tegttatetg	tgaaagcgcg	gggacccaag	aggacgaggc	gagcctacgg	10080
	gccttcacqq	aggctatgac	tagatactet	qeccccctq	gggacccgcc	caaaccagaa	10140
	tacqactton	agttgataac	atcatoctor	tocaatotot	cagtegegea	cgatgcatct	10200
		battagtetet	222224	accepted to	continuena	agat santas	10260
	gycaaaaggg	tgtactatct	caccogtgac	cccaccacce	coccagegeg	qquugegegg	10200
		gacacactcc					
		caaggatgat					
50		aagccctaga					
~~		agatcattca					
	tetecareta	agatonetea	agt another	tacctores	and tage	acconscit	10560
		agatcaatag					
	cgagtctgga	gacatcgggc	cagaagtgtc	cgcgctaggc	tactgtccca	gggggggagg	10620

	<210> 2						
	<211> 8637						
	<212> DNA						
_	<213> Hepat	itis C Viru	18				
5							
	<400> 2						
	gccagccccc	gattgggggc	qacactccac	catagatcac	tcccctgtga	qqaactactq	60
	tcttcacqca	gaaagcqtct	agccatggcg	ttagtatgag	tgtcgtgcag	cctccaggac	120
	ccccctccc	gggagagcca	tagtggtctg	cqqaaccqqt	gagtacaccq	gaattgccag	180
						gogtgcccc	
10						qcctgatagg	
						aatcctaaac	
						gcaggttctc	
						atcggctgct	
						gtcaagaccg	
						tggctggcca	
						agggactggc	
15						cctgccgaga	
						gctacctgcc	
						gaagccggtc	
						gaactgttcg	
						ggcgatgcct	
						tgtggccggc	
20							
20						gctgaagagc	
						gaccacaacg	
						cgttactggc	
						caccatattg	
						gagcattcct	
25						gaaggaagca	
						caggcagcgg	
						agatacacct	
						aagagtcaaa	
						accccattgt	
						gaggttaaaa	
30						cgataatacc	
30						gatactcttg	
						acaatatttt tcqqqqqqqc	
						taccatcacc	
						aaccaaagtg	
						gaaggttgct	
35						tacgtacgtt	
						ccttgcggtg	
						gggggcagac	
	accgcggcgt	gtggggacat	catcttgggc	ctgcccgtct	ccgcccgcag	ggggagggag	2400
	atacatetgg	gaccggcaga	cagcettgaa	gggcaggggt	ggcgactcct	cgcgcctatt	2460
						cetcacagge	
40	cgggacagga	accaggtcga	gggggaggtc	caagtggtct	ccaccgcaac	acaatctttc	2580
70						ctcaaagacc	
						ggacctcgtc	
						cagctcggac	
						cgacagcagg	
	gggagcctac	tctcccccag	gcccgtctcc	tacttgaagg	gctcttcggg	cggtccactg	2880
						ccgaggggtt	
45						gtccccggtc	
	ttcacggaca	actcgtcccc	tccggccgta	ccgcagacat	tccaggtggc	ccatctacac	3060
						ccaagggtat	
	aaggtgcttg	tcctgaaccc	gtccgtcgcc	gccaccctag	gtttcggggc	gtatatgtct	3180
	aaggcacatg	gtatcgaccc	taacatcaga	accggggtaa	ggaccatcac	cacgggtgcc	3240
						tgggggggc	
F0						cctgggcatc	
50						cgccaccgct	
						tetgtecage	
						qqqqqqqaqq	
				,			

	cacctcattt	tctgccattc	caaqaaqaaa	tqtqatqaqc	tcqccqcqaa	gctgtccggc	3600
	ctcggactca	atgctgtage	atattaccgg	ggccttgatg	tatccgtcat	accaactage	3660
						cgatttcgac	
						ggacccgacc	
5	thereeste	202000000	cataccaca	ancacaatat	cacacacaca	gcggcgaggc	3840
	Lecaceacty	agacgacgac	cycyccacaa	gacgeggege	cacqcccqca	acqqccctcq	3000
						ttggtacgag	
	ctcacgcccg	ccgagacctc	agttaggttg	cgggcttacc	taaacacacc	agggttgccc	4020
	gtctgccagg	accatctgga	gttctgggag	agcgtcttta	caggcctcac	ccacatagac	4080
						ggtagcatac	
10	caggetacgg	tqtqcqccag	ggctcaggct	ccacctccat	cgtgggacca	aatgtggaag	4200
	tgtctcatac	ggctaaagcc	tacqctqcac	gggccaacgc	ccctgctgta	taggctggga	4260
						ggcatgcatg	
	teggetgace	tagaagtcat	cacgaggagg	tagatactag	taggcggagt	cctagcagct	4380
	ctaaccacat	attricctrac	aacaggcagg	gtggtcattg	taggcaggat	catcttgtcc	4440
	ggaaagccgg	ccatcattcc	спасапппаа	gtcctttacc	aggaattega	tgagatggaa	4500
						acaattcaaa	
15	Gagagagaga a	toggattact	acanacagaa	2002240030	caalaactac	tgctcccqtq	4620
						gaatttcatc	
	geggaateea	agragagagac	ccccgaagee	Eccegggega	agcatatgtg	gaatttcatc	4240
	agegggatae	aatatttage	aggettgtee	actetgeetg	geaaccccgc	gatagcatca	1/10
	ctgatggcat	tcacagcete	tatcaccagc	ccgctcacca	cccaacatac	ceteetgttt	4800
						ttctgctttc	
	gtaggcgccg	gcatcgctgg	agcggctgtt	ggcagcatag	gccttgggaa	ggtgcttgtg	4920
20	gatattttgg	caggttatgg	agcaggggtg	gcaggcgcgc	tcgtggcctt	taaggtcatg	4980
	agcggcgaga	tgccctccac	cgaggacctg	gttaacctac	tccctgctat	cctctcccct	5040
	ggcgccctag	tcgtcggggt	cgtgtgcgca	gcgatactgc	gtcggcacgt	gggcccaggg	5100
	gagggggtg	tgcagtggat	gaaccggctg	atagcqttcq	cttcqcqqqq	taaccacgtc	5160
	teccecacae	actatatacc	tgagagcgac	actacaacac	atatcactca	gatcctctct	5220
	agtettacca	tcactcagct	actgaagagg	cttcaccagt	ggatcaacga	ggactgctcc	5280
	acgccatgct	ccaactcata	gctaagagat	gtttgggatt	ggatatgcac	ggtgttgact	5340
25	datttcaada	cctaactcca	atccaaactc	ctaccacast	taccangent	ccccttcttc	5400
	testatesse	atagaticas	gaatatataa	cagaagagaa	acatestaca	aaccacctgc	5460
	ccatgicaac	graygracaa	canacatata	ananacaatt	ccatagga	cgtggggcct	5520
	ccacgcggag	cacagaccac	cygacucycy	theresees	ccacgaggac	cycyyyccc	EFRO
	aggacctgta	gtaacacgtg	gcatggaaca	ttecceatta	acgegracae	cacgggcccc	5560
	tgcaegecet	ccccggcgcc	adattattet	agggcgccgc	ggcgggcggc	tgctgaggag	5640
	tacgtggagg	ttacgcgggt	gggggatttc	cactacgtga	cgggcatgac	cactgacaac	5700
30	gtaaagtgcc	cgtgtcaggt	tccggccccc	gaattettea	cagaagtgga	tggggtgcgg	5/60
	ttgcacaggt	acgctccagc	gtgcaaaccc	ctcctacggg	aggaggtcac	attcctggtc	5820
	gggctcaatc	aatacctggt	tgggtcacag	ctcccatgcg	agcccgaacc	ggacgtagca	5880
	gtgctcactt	ccatgctcac	cgacccctcc	cacattacgg	cggagacggc	taagcgtagg	5940
	ctggccaggg	gatctccccc	ctccttggcc	agctcatcag	ctagccagct	gtctgcgcct	6000
	tccttgaagg	caacatgcac	tacccgtcat	gactccccgg	acgctgacct	catcgaggcc	6060
	aacctcctgt	ggcggcagga	gatgggcggg	aacatcaccc	gcgtggagtc	agasaataag	6120
35	gtagtaattt	tqqactcttt	cgagccgctc	caagcggagg	aggatgagag	ggaagtatcc	6180
	attccaacaa	agatectgcg	gaggtccagg	aaattccctc	gagcgatgcc	catatgggca	6240
	coccognat t	acaaccetee	actottagag	tectggaagg	accondacta	cgtccctcca	6300
	gtagtagagg	agtatccatt	accacctacc	aangcccctc	coataccacc	tccacggagg	6360
	339900000	ttatectate	ageatotaco	atatetteta	ccttaacaaa	gctcgccaca	6420
	angaggacgg	acamet com	atostorec	gtgtttttg	ccccggcgga	ggcctctcct	6480
	aagucccccg	gcagccccga	accyccyycc	geogacageg	gcacggcaac	ctccatgccc	6540
40	gaccagcccc	ccyacyacyy	cyacycygya	cocyacyccy	agecycacce	teccatgeee	6600
	ccccttgagg	gggageeggg	ggatcccgat	cccagegacg	ggeceeggee	taccgtaagc	6600
						aggcgccctg	
	atcacgccat	gcgctgcgga	ggaaaccaag	ctgcccatca	atgcactgag	caactctttg	6/20
						gcggcagaag	
	aaggtcacct	ttgacagact	gcaggtcctg	gacgaccact	accgggacgt	gctcaaggag	6840
	atgaaggcga	aggcgtccac	agttaaggct	aaacttctat	ccgtggagga	agcctgtaag	6900
45	ctgacgcccc	cacattcggc	cagatctaaa	tttgqctatq	qqqcaaagqa	cgtccggaac	6960
	ctatccagca	aggccgttaa	ccacatccgc	tccqtqtqqa	aggacttgct	ggaagacact	7020
	gagacaccaa	ttgacaccac	catcatggca	aaaaatgagg	ttttctacat	ccaaccagag	7080
	aagggggggCC	gcaagccagc	togcottato	gtattcccag	at ttgggggt	tcgtgtgtgc	7140
						gggctcttca	
	tacqqattcc	aatactctcc	tagacageee	atcaaattco	tootgaatge	ctggaaagcg	7260
						ggtcactgag	
50	anyanangee	atattasaaa	ogcatatgac	contestata	agt tageses	cgaagccaga	7290
	caggggatte	grycrgagga	gicaatciac	tagatage	accoggecee	taattata	7444
	cayyccataa	gyccgctcac	ayayeggett	Lacalogggg	geococtgae	taattctaaa	7440
	gggcagaact	goggetatog	ccggraccgc	gegageggtg	racigacgac	cagctgcggt	/300

						gctccaggac	
	tgcacgatgc	tcgtatgcgg	agacgacctt	gtcgttatct	gtgaaagcgc	ggggacccaa	7620
	gaggacgagg	cgagcctacg	ggccttcacg	gaggctatga	ctagatactc	tgcccccct	7680
5	ggggacccgc	ccaaaccaga	atacgacttg	gagttgataa	catcatgctc	ctccaatgtg	7740
	tcagtcgcgc	acgatgcatc	tggcaaaagg	gtgtactatc	tcacccgtga	cccaccacc	7800
	ccccttgcgc	gggctgcgtg	ggagacagct	agacacactc	cagtcaattc	ctggctaggc	7860
	aacatcatca	tgtatgcgcc	caccttgtgg	gcaaggatga	tectgatgac	tcatttcttc	7920
	tccatccttc	tagctcagga	acaacttgaa	aaagccctag	attgtcagat	ctacggggcc	7980
10	tgttactcca	ttgagccact	tgacctacct	cagatcattc	aacgactcca	tggccttagc	8040
	gcattttcac	tccatagtta	ctctccaggt	gagatcaata	gggtggcttc	atgcctcagg	8100
	aaacttgggg	taccgccctt	gcgagtctgg	agacatcggg	ccagaagtgt	ccgcgctagg	8160
	ctactgtccc	agggggggag	ggctgccact	tgtggcaagt	acctcttcaa	ctgggcagta	8220
	aggaccaagc	tcaaactcac	tccaatcccg	gctgcgtccc	agttggattt	atccagctgg	8280
	ttcgttgctg	gttacagcgg	gggagacata	tatcacagcc	tgtctcgtgc	ccgaccccgc	8340
15	tggttcatgt	ggtgcctact	cctactttct	gtaggggtag	gcatctatct	actccccaac	8400
	cgatgaacgg	ggagctaaac	actccaggcc	aataggccat	cctgtttttt	tcccttttt	8460
	tttttcttt	tttttttt	tttttttt	tttttttt	ctcctttttt	tttcctcttt	8520
	ttttcctttt	ctttcctttg	gtggctccat	cttagcccta	gtcacggcta	gctgtgaaag	8580
	gtccgtgagc	cgcttgactg	cagagagtgc	tgatactggc	ctctctgcag	atcaagt	8637
20							

	<210> 3						
	<211> 8001						
	<212> DNA						
5	<213> Hepat	itis C Vir	15				
-							
	<400> 3						
						ggaactactg	
						cctccaggac	
	ccccctccc	gggagagcca	tagtggtctg	cggaaccggt	gagtacaccg	gaattgccag	180
						gcgtgccccc	
10						gcctgatagg	
						aatcctaaac	
						gatggattgc	
						gcacaacaga	
						ecggttett	
						gcgcggctat	
15						actgaagcgg	
						tctcaccttg	
						acgcttgatc	
						cgtactcgga	
						ctcgcgccag	
						gtcgtgaccc	
20						ggattcatcg acccgtgata	
EV							
	ttgctgaaga	gereggegge	gaacgggccg	acceptitetta	cgcgccccac	ggtatcgccg tgagtttaaa	1200
	cccccgaccc	gcagcgcacc	gtettetate	gccccccga	cgagttcccc	ccccccct	1260
						tatgttattt	
						tgtcttcttg	
						gttgaatgtc	
25						agegaceett	
						gccacgtgta	
						gatagttgtg	
						tgcccagaag	
						atgtgtttag	
						ctttgaaaaa	
30						cctacttggc	
						ggtccaagtg	
						ttqqactqtc	
						ccaaatgtac	
						ttccttgaca	
						tgtcattccg	
35						ctcctacttg	
	aagggctctt	cagacaatee	actoctotoc	ccctcqqqqc	acqctqtqqq	catctttcqg	2280
						cgagtctatg	
						cgtaccgcag	
	acattccagg	tgqcccatct	acacgcccct	actggtagcg	gcaagagcac	taaggtgccg	2460
	gctgcgtatg	cagcccaagg	gtataaggtg	cttgtcctga	acccgtccgt	cgccgccacc	2520
	ctaggtttcg	gggcgtatat	qtctaagqca	catggtatcg	accctaacat	cagaaccggg	2580
40						gtttcttgcc	
	gacggtggtt	gctctggggg	cgcctatgac	atcataatat	gtgatgagtg	ccactcaact	2700
	gactcgacca	ctatcctggg	catcggcaca	gtcctggacc	aagcggagac	ggctggagcg	2760
	cgactcgtcg	tgctcgccac	cgctacgcct	ccgggatcgg	tcaccgtgcc	acatccaaac	2820
	atcgaggagg	tggctctgtc	cagcactgga	gaaatcccct	tttatggcaa	agccatcccc	2880
	atcgagacca	tcaagggggg	gaggcacctc	attttctgcc	attccaagaa	gaaatgtgat	2940
45	gagetegeeg	cgaagctgtc	cggcctcgga	ctcaatgctg	tagcatatta	ccggggcctt	3000
	gatgtatccg	tcataccaac	tagcggagac	gtcattgtcg	tagcaacgga	cgctctaatg	3060
						cacccagaca	
						acaagacgcg	
	gtgtcacgct	cgcagcggcg	aggcaggact	ggtaggggca	ggatgggcat	ttacaggttt	3240
	gtgactccag	gagaacggcc	ctcgggcatg	ttcgattcct	cggttctgtg	cgagtgctat	3300
50						gttgcgggct	
						ggagagcgtc	
						ggcaggagac	
	aacttcccct	acctggtage	ataccagget	acggtgtgcg	ccagggctca	ggctccacct	3540

	ecategtgg	g accaaatgtg	gaagtgtctc	atacggctaa	agcctacgct	gcacgggcca	3600
	acgcccctg	: tgtataggct	gggagccgtt	caaaacgagg	ttactaccac	acaccccata	3660
	accaaatac	a tcatggcatg	catqtcqqct	qacctqqaqq	tegteacqag	cacctgggtg	3720
	ctggtagge	gagtcctagc	agetetggee	gcgtattgcc	tgacaacagg	cagcgtggtc	3780
5		ggatcatctt					
		tcgatgagat					
		ccgaacaatt					
	caagcggag	ctgctgctcc	cgcggcggaa	tecaagtgge	ggacccccga	agecttetgg	4020
		tgtggaattt					
		ccgcgatagc					
10		ataccetect					
	cctcccago	ctgcttctgc	tttcgtaggc	gccggcatcg	ctggagcggc	tgttggcagc	4260
	ataggcctte	ggaaggtgct	tgtggatatt	ttggcaggtt	atggagcagg	ggtggcaggc	4320
	gcactcata	cctttaaggt	catgagegge	gagatgccct	ccaccgagga	cctggttaac	4380
		ctatectete					
		acqtqqqccc					
	thoachtea	ggggtaacca					
15		ctcagatect					
		acquagacta					
		gcacggtgtt					
	cyattyccg	gagtecett	ctteteatgt	caacgrgggc	acaagggagt	euggegggge	4000
	gacggcatc	tgcaaaccac	ctgcccatgt	ggagcacaga	tcaccggaca	tgtgaaaaac	4860
		a ggatcgtggg					
20	attaacgcg:	: acaccacggg	cccctgcacg	ccctccccgg	cgccaaatta	ttctagggcg	4980
		g tggctgctga					
	gtgacgggc	ı tgaccactga	caacgtaaag	tgcccgtgtc	aggttccggc	ccccgaattc	5100
		g tggatggggt					
	cqqqaqqaq	tcacattcct	ggtcgggctc	aatcaatacc	tqqttqqqtc	acagetecca	5220
	tgcgagccc	g aaccggacgt	agcagtgctc	acttccatgc	tcaccgaccc	ctcccacatt	5280
	acggcggag	cggctaagcg	taggetggee	aggggatete	cccctcctt	ggccagctca	5340
28	tcagctagc	agctgtctgc	accttcctta	aaggcaacat	gcactacccg	tcatgactcc	5400
		acctcatcga					
		gagtcagaaaa					
	gaggaggag	, agagggaagt	atacattaca	acaasastco	tacaasaata	caggaaattc	5590
		tqcccatatq					
		actacgtccc					
30		cacctccacg					
		g cggagetege					
		g caacggcctc					
	gttgagtcg	actcctccat	gcccccctt	gaggggggc	cgggggatcc	cgatctcagc	5940
	gacgggtct	ggtctaccgt	aagcgaggag	gctagtgagg	acgtcgtctg	ctgctcgatg	6000
		ggacaggcgc					
38		tgagcaactc					
30	cgcagcgca	a gcctgcggca	gaagaaggtc	acctttgaca	gactgcaggt	cctggacgac	6180
	cactaccgg	g acgtgctcaa	ggagatgaag	gcgaaggcqt	ccacagttaa	ggctaaactt	6240
	ctatccgtg	gaggaagcctg	taagctgacg	ccccacatt	cooccapate	taaatttggc	6300
	tatogggca	aggacgtccg	gaacctat.cc	agcaaggccg	ttaaccacat	ccactccata	6360
	tggaaggac	tgctggaaga	cactgagaca	ccaattgaca	ccaccatcat	ggcaaaaaat	6420
	gaggttttc	gcgtccaacc	agagagggg	auccacasac	carctcacct	tatogtatto	6480
40		gggttcgtgt					
40	cctcaaaca	tgatgggctc	ttootagaaa	ttggattagt	ctactacaca	acaaatcasa	6600
	ttackast -	atgcctggaa	cccacacgga	taccentatac	cettercata	tananacaaa	6660
	ccccggcg	acycccygaa	aycyaayaaa	cyccccacyy	gccccgcaca	cyacacccyc	6720
	Egeceegae	caacggtcac	cgagaacgac	accegegeeg	aggagccaac	ctaccaatgt	6720
		ccccgaage					
	gggggcccc	tgactaattc	taaagggcag	aactgcggct	atcgccggtg	ccgcgcgagc	6840
45		cgaccagctg					
7.	Egregager	g cgaagctcca					
		a gcgcggggac					
	atgactaga:	actotyccco	ccctggggac	ccgcccaaac	cagaatacga	cttggagttg	7080
	ataacatca	gctcctccaa	tgtgtcagtc	gcgcacgatg	catctggcaa	aagggtgtac	7140
		gtgaccccac					
	actccagtc	attcctggct	aggcaacatc	atcatgtatg	coccacctt	qtqqqcaaqq	7260
50	atgatecto	tgactcattt	cttctccate	cttctacctc	aggaacaact.	tgaaaaagcc	7320
00	ctagattgt	agatotacgg	ggcctgttac	tccattgage	cacttgacct	acctcagate	7380
		tccatggcct					
	an todatoya	cttcatgcct	cammagactt	aganta conc	cettacaaat	ctangagatt	7500
	aacagggcg	, certainly	cuyyuaaccc	ggggcaccgc	coccycyayc	ccyyuyacac	, 500

5	aagtacctct tcccagttgg agcctgtctc gtaggcatct ccatcctgtt ttttctcctt cctagtcacg	tcaactgggc atttatccag gtgcccgacc atctactccc tttttccctt ttttttcct	agtaaggacc ctggttcgtt ccgctggttc caaccgatga ttttttttc ctttttttc aaaggtccgt	aagctcaaac gctggttaca atgtggtgcc acggggagct ttttttttt ttttctttcc	tcactccaat gcgggggaga tactcctact aaacactcca ttttttttt tttggtggct	cacttgtggc cccggctgcg catatatcac ttctgtaggg ggccaatagg ttttttttt ccatcttagc gtgctgatac	7620 7680 7740 7800 7860 7920
15							
20							
25							
30							
35							
40							
45							

	<210> 4						
	<211> 7989						
	<212> DNA						
5	<213> Hepat	itis C Vir	15				
	<400> 4						
						ggaactactg	
						cctccaggac	
						gaattgccag	
						gcgtgccccc	
10	gcgagactgc	tagccgagta	gtgttgggtc	gcgaaaggcc	ttgtggtact	gcctgatagg	300
						aatcctaaac	
						gcaggttctc	
						atcggctgct	
						gtcaagaccg	
						tggctggcca	
15						agggactggc	
						cctgccgaga	
	aagtatccat	catggctgat	gcaatgcggc	ggctgcatac	gcttgatccg	gctacctgcc	780
						gaagecggte	
						gaactgttcg	
						ggcgatgcct	
						tgtggccggc	
20						gctgaagagc	
						cccgattcgc	
						gaccacaacg	
						cgttactggc	
						caccatattg	
						gagcattcct	
25						gaaggaagca	
						caggcagcgg	
						agatacacct	
						aagagtcaaa	
						accccattgt	
						gaggttaaaa	
30						cgataatacc	
30						catcatcact ctccaccgca	
						tcatggtgcc caatgtggac	
						atgcacctgc	
						dedeeddedd	
						gggctcttcg	
35						tgccgtgtqc	
						aaccactatg	
						attccaggtg	
						tgcgtatgca	
						aggtttcggg	
						aaggaccatc	
40						cggtggttgc	
						ctcqaccact	
						actcgtcgtg	
	ctcaccacca	ctacacctcc	aggat cagt c	accortoccac	atecaaacat	cgaggaggtg	2820
						cgagaccatc	
						gctcgccgcg	
45						tgtatccgtc	
***						gggctttacc	
						cqacttcaqc	
						gtcacgctcg	
						gactccagga	
						cgcgggctgt	
						cctaaacaca	
50						tacaggcctc	
	acccacatan	accccattr	cttatcccan	actaagcagg	caggagacaa	cttcccctac	3480
						atcqtqqqac	
	33	,,,	., , 5-5			- ,-999	

	caaatgtgga	agtgtctcat	acggctaaag	cctacgctgc	acgggccaac	gcccctgctg	3600
	tataggctgg	gagccgttca	aaacgaggtt	actaccacac	accccataac	caaatacatc	3660
						ggtaggcgga	
5						tgtgggcagg	
	atcatcttgt	ccggaaagcc	ggccatcatt	cccgacaggg	aagtccttta	ccgggagttc	3840
						gcagctcgcc	
						agcggaggct	
						gaagcatatg	
						tggcaacccc	
						cacccaacat	
10						teccageget	
	gcttctgctt	tcgtaggcgc	cggcatcgct	ggagcggctg	ttggcagcat	aggccttggg	4260
						gctcgtggcc	
						actccctgct	
						gcgtcggcac	
						cgcttcgcgg	
15						acgtgtcact	
	cagacccccc	ccagccccac	caccacccag	tagataga	ggccccacca	gtggatcaac ttggatatgc	4620
						attgccggga	
						cggcatcatg	
						ttccatgagg	
						taacgcgtac	
20						gtggcgggtg	
r.v						qacqqcatq	
						cacagaagtg	
						ggaggaggtc	
						cgagcccgaa	
						ggcggagacg	
						agctagccag	
25						ggacgctgac	
	ctcatcgagg	ccaacctcct	gtggcggcag	gagatgggcg	qqaacatcac	ccgcgtggag	5460
	tcagaaaata	aggtagtaat	tttggactct	ttcgagccgc	tccaagcgga	ggaggatgag	5520
	agggaagtat	ccgttccggc	ggagatcctg	cggaggtcca	ggaaattccc	tcgagcgatg	5580
						ggacccggac	
						tccgatacca	
30						tgccttggcg	
	gagctcgcca	caaagacctt	cggcagctcc	gaatcgtcgg	ccgtcgacag	cggcacggca	5820
						tgagtcgtac	
	tcctccatgc	cccccttga	gggggagccg	ggggatcccg	atctcagcga	cgggtcttgg	5940
	tctaccgtaa	gcgaggaggc	tagtgaggac	gtcgtctgct	gctcgatgtc	ctacacatgg	6000
						caatgcactg	
35						cagcgcaagc	
						ctaccgggac	
						atccgtggag	
						tggggcaaag gaaggacttg	
						ggttttctgc	
						agatttgggg	
40	attcatatat	acasassa.t	aggetttac	gatgtggtct	ccaccetere	tcaggccgtg	6540
70						cctggtgaat	
						ttttgactca	
						tgacttggcc	
						gggccccctg	
						tgtactgacg	
						tcgagctgcg	
45						ctgtgaaagc	
						gactagatac	
						aacatcatgo	
	tcctccaatq	tgtcagtcgc	gcacgatgca	totggcaaaa	gggtgtacta	tctcacccgt	7140
	gaccccacca	cccccttgc	gegggetgeg	tgggagacag	ctagacacac	tccagtcaat	7200
	tcctggctag	gcaacatcat	catgtatgcg	cccaccttgt	gggcaaggat	gatoctgatg	7260
50	actcatttct	tctccatcct	tctagctcag	gaacaacttg	aaaaagccct	agattgtcag	7320
	atctacgggg	cctgttactc	cattgagcca	cttgacctac	ctcagatcat	tcaacgactc	7380
	catggcctta	gcgcattttc	actccatagt	tactctccag	gtgagatcaa	tagggtggct	7440
	tcatgcctca	ggaaacttgg	ggtaccgccc	ttgcgagtct	ggagacatcg	ggccagaagt	7500

	<210> 5						
	<211> 8649						
	<212> DNA						
5	<213> Hepat	itis C Vir	ıs				
	<400> 5						
	gccagccccc	gattgggggc	gacactccac	catagatcac	tcccctgtga	ggaactactg	60
	tcttcacgca	gaaagcgtct	agccatggcg	ttagtatgag	tgtcgtgcag	cctccaggac	120
						gaattgccag	
						gcgtgccccc	
10						gcctgatagg	
						aatcctaaac	
						gatggattgc	
						gcacaacaga	
						ccggttcttt gcgcggctat	
						actgaagcgg	
15						tctcaccttq	
						acgettgate	
	cggctacctg	cccattcgac	caccaagcga	aacatcgcat	cgagcgagca	cgtactcgga	840
						ctcgcgccag	
	ccgaactgtt	cgccaggctc	aaggcgcgca	tgcccgacgg	cgaggatete	gtcgtgaccc	960
						ggattcatcg	
20						acccgtgata	
						ggtatcgccg	
						tgagtttaaa	
						cccccccct	
						tgtcttcttg	
						gttgaatgtc	
25	gtgaaggaag	cagttcctct	ggaagettet	tgaagacaaa	caacatctat	agcgaccctt	1500
						gccacgtgta	
	taagatacac	ctqcaaaqqc	ggcacaaccc	cagtqccacq	ttgtgagttg	gatagttgtg	1620
	gaaagagtca	aatggctctc	ctcaagcgta	ttcaacaagg	ggctgaagga	tgcccagaag	1680
						atgtgtttag	
						ctttgaaaaa	
30						tttcgtaggt	
						catatggtgg	
						ccccctcaac agagctaatc	
						ccaggctggt	
						catgctggtg	
35						cqcactqaca	
35						gggcctacga	
						ggttatcacc	
						ctccgcccgc	
	agggggaggg	agatacatct	gggaccggca	gacagecttg	aagggcaggg	gtggcgactc	2460
	ctcgcgccta	ttacggccta	ctcccaacag	acgcgaggcc	tacttggctg	catcatcact	2520
40	agcctcacag	gccgggacag	gaaccaggtc	gagggggagg	tecaagtggt	ctccaccgca	2580
70						tcatggtgcc	
						caatgtggac	
	caggacctcg	reggetggea	agegeeeeee	ggggcgcgtt	testteeget	atgcacctgc gcgccggcgg	2820
						gggctcttcg	
						tgccqtqtqc	
45						aaccactatg	
	caatccccaa	tcttcacgga	caactcgtcc	cctccaacca	taccgcagac	attccaqqtq	3060
						tgcgtatgca	
						aggtttcggg	
						aaggaccatc	
	accacgggtg	ccccatcac	gtactccacc	tatggcaagt	ttcttgccga	cggtggttgc	3300
50						ctcgaccact	
						actcgtcgtg	
						cgaggaggtg	
	gctctgtcca	gcactggaga	aatccccttt	tatggcaaag	ccatccccat	cgagaccatc	3540

	aaggggggga	ggcacctcat	tttctgccat	tecaagaaga	aatgtgatga	gctcgccgcg	3600
						tgtatccgtc	
	ataccaacta	gcggagacgt	cattotcota	gcaacggacg	ctctaatgac	gggctttacc	3720
						cgacttcagc	
5	ctagacccaa	cettcaccat	tgagacgacg	accornecac	aagacgcggt	gtcacgeteg	3840
	caggaccoga	geaggactag	tannancana	atggggattt	acagggtttgt	gactccagga	3900
						cqcqqqctqt	
						cctaaacaca	
						tacaggcctc	
						cttcccctac	
10	ctggtagcat	accaggetac	ggtgtgcgcc	agggctcagg	ctccacctcc	atcgtgggac	4200
	caaatgtgga	agtgtctcat	acggctaaag	cctacgctgc	acgggccaac	gcccetgetg	4260
	tataggctgg	gagccgttca	aaacgaggtt	actaccacac	accccataac	caaatacatc	4320
						ggtaggcgga	
						tgtgggcagg	
	atcatcttgt	ccggaaaqcc	ggccatcatt	cccgacaggg	aagtccttta	ccgggagttc	4500
	qatqaqatqq	aaqagtgcqc	ctcacacctc	ccttacatcg	aacagggaat	gcagctcgcc	4560
15	gaacaattca	aacagaaggc	aatcgggttg	ctgcaaacag	ccaccaaqca	agcggaggct	4620
	actactceca	tootogaate	caagtggcgg	accetogaag	ccttctaaac	gaagcatatg	4680
	togaatttca	tcagcgggat	acastattta	geaggettat	ccactetgee	tggcaacccc	4740
	gcgatagcat	cactgatggc	atteacage	tetateacca	accepteac	cacccaacat	4800
	accetectet	traacatect	aaaaaaataa	atageogee	aacttoctcc	tcccagcgct	4860
	acttctactt	teataggege	caacatcact	agaggaggta	ttaacaacat	aggccttggg	4920
	anatactta	tagetettt	aggaattat	adadeadaca	taggaagaac	gctcqtqqcc	4980
20	hannaman	tanagagaga	ggcaggccac	ggagcagggg	taattaaaat	actecetget	5040
	cccaaggcca	cgagcggcga	gatgetette	accyayyacc	cggccaaccc	acceccegee	6100
	acconected	ccggcgcccc	agicgicggg	guegegegeg	Cagogatact	gcgtcggcac	5100
						cgcttcgcgg	
	ggtaaccacg	teteccecae	gcactatgtg	cctgagagcg	acgetgeage	acgtgtcact	5220
	cagatectet	ctagtettae	catcactcag	ctgctgaaga	ggcttcacca	gtggatcaac	5280
25						ttggatatgc	
20	acggtgttga	ctgatttcaa	gacctggctc	cagtccaagc	tcctgccgcg	attgccggga	5400
	gtccccttct	tctcatgtca	acgtgggtac	aagggagtct	ggcggggcga	cggcatcatg	5460
	caaaccacct	gcccatgtgg	agcacagatc	accggacatg	tgaaaaacgg	ttccatgagg	5520
	atcgtggggc	ctaggacctg	tagtaacacg	tggcatggaa	cattecccat	taacgcgtac	5580
	accacgggcc	cctgcacgcc	ctccccggcg	ccaaattatt	ctagggcgct	gtggcgggtg	5640
	gctgctgagg	agtacgtgga	ggttacgcgg	qtqqqqqatt	tccactacqt	gacgggcatg	5700
30	accactgaca	acqtaaaqtq	cccqtqtcag	qttccqqccc	ccqaattctt	cacagaagtg	5760
••	gatggggtgc	ggttgcacag	gtacgeteca	gcgtgcaaac	ccctcctacq	ggaggaggtc	5820
	acattcctgg	tegggeteaa	tcaatacctg	gttoggtcac	ageteccate	cgagcccgaa	5880
	congacutan	cagtgctcac	ttccatcctc	accoaccct	cccacattac	ggcggagacg	5940
	actaaacata	aactaaccaa	gggatetece	cectecttag	ccaget cate	agctagccag	6000
	ctatctacac	cttccttcaa	aacaacatac	actaccoate	atgactcccc	ggacgctgac	6060
						ccgcgtggag	
35						ggaggatgag	
	ccayaaaaca	aggiagiaai	cccggacccc	cccgageege	cccaagcgga	ggaggacgag	6240
	agggaagtat	cogcccegge	ggagaccecg	cygagyteca	ggaaaccccc	tcgagcgatg	5240
	cccatatggg	cacgcccgga	ttacaaccct	ccactgttag	agtcctggaa	ggacccggac	6300
	tacgtccctc	cagtggtaca	cgggtgtcca	ttgccgcctg	ccaaggcccc	tccgatacca	6360
	cctccacgga	ggaagaggac	ggttgtcctg	tcagaatcta	ccgtgtcttc	tgccttggcg	6420
	gagetegeca	caaagacctt	cggcagctcc	gaatcgtcgg	ccgtcgacag	cggcacggca	6480
40	acggcctctc	ctgaccagcc	ctccgacgac	ggcgacgcgg	gatccgacgt	tgagtcgtac	6540
	tectecatge	cccccttga	gggggagccg	ggggatcccg	atctcagcga	cgggtcttgg	6600
	tctaccgtaa	gcgaggaggc	tagtgaggac	gtcgtctgct	gctcgatgtc	ctacacatgg	6660
	acaggcgccc	tgatcacgcc	atgcgctgcg	gaggaaacca	agctgcccat	caatgcactg	6720
	agcaactctt	tgctccqtca	ccacaacttq	gtctatgcta	caacateteg	cagcgcaagc	6780
	ctgcggcaga	agaaggtcac	ctttgacaga	ctgcaggtcc	tggacgacca	ctaccqqqac	6840
						atccgtggag	
45	gaagestata	agetgaegee	cccacattco	accagateta	aatttggcta	tggggcaaag	6960
	ganguocgoa	acctatecad	caaggccgtt	aaccacat cc	acticcatata	gaaggacttg	7020
						ggttttctgc	
	ataanaaaa	ccyayacacc	aaccyacacc	actaccateg	togtattoga	agatttgggg	7340
	gcccaaccag	ayaayggggg	cogcaageca	ge togetta	agrant Con	tonggogg	7200
	gutegtgtgt	gugagaaaat	ggccctttac	gatgtggtct	CLACCETCCC	tcaggccgtg	7200
						cctggtgaat	
50	gcctggaaag	cgaagaaatg	ccctatgggc	tregcatatg	acacccgctg	ttttgactca	/320
	acggtcactg	agaatgacat	ccgtgttgag	gagtcaatct	accaatgttg	tgacttggcc	7380
	cccgaagcca	gacaggccat	aaggtcgctc	acagagegge	tttacatcgg	gggccccctg	7440
	actaattcta	aagggcagaa	ctgcggctat	cgccggtgcc	gcgcgagcgg	tgtactgacg	7500

					ctgcggcctg		
	aagctccagg	actgcacgat	gctcgtatgc	ggagacgacc	ttgtcgttat	ctgtgaaagc	7620
	gcggggaccc	aagaggacga	ggcgagccta	cgggccttca	cggaggctat	gactagatac	7680
5	tetgececce	ctggggaccc	gcccaaacca	gaatacgact	tggagttgat	aacatcatgc	7740
	tcctccaatg	tgtcagtcgc	gcacgatgca	tctggcaaaa	gggtgtacta	tctcacccgt	7800
	gaccccacca	cccccttgc	gcgggctgcg	tgggagacag	ctagacacac	tccagtcaat	7860
	tcctggctag	gcaacatcat	catgtatgcg	cccaccttgt	gggcaaggat	gatcctgatg	7920
	actcatttct	tctccatcct	tctagctcag	gaacaacttg	aaaaagccct	agattgtcag	7980
10	atctacgggg	cctgttactc	cattgagcca	cttgacctac	ctcagatcat	tcaacgactc	8040
	catggcctta	gcgcattttc	actccatagt	tactctccag	gtgagatcaa	tagggtggct	8100
	tcatgcctca	ggaaacttgg	ggtaccgccc	ttgcgagtct	ggagacatcg	ggccagaagt	8160
	gtccgcgcta	ggctactgtc	ccaggggggg	agggetgeca	cttgtggcaa	gtacctcttc	8220
	aactgggcag	taaggaccaa	gctcaaactc	actccaatcc	cggctgcgtc	ccagttggat	8280
	ttatccagct	ggttcgttgc	tggttacagc	gggggagaca	tatatcacag	cctqtctcqt	8340
15	gcccgacccc	gctggttcat	gtggtgccta	ctcctacttt	ctgtaggggt	aggcatctat	8400
	ctactcccca	accgatgaac	ggggagctaa	acactccagg	ccaataggcc	atcctgtttt	8460
	tttccctttt	ttttttttt	tttttttt	tttttttt	tttttttt	ttctcctttt	8520
	tttttcctct	ttttttcctt	ttctttcctt	tggtggctcc	atcttagccc	tagtcacggc	8580
					gctgatactg		
20	agatcaagt						8649
20							

	<210> 6						
	<211> 8001						
	<212> DNA						
5	<213> Hepat	itis C Vir	15				
•							
	<400> 6						
						ggaactactg	
	tcttcacgca	gaaagcgtct	agccatggcg	ttagtatgag	tgtcgtgcag	cctccaggac	120
						gaattgccag	
	gacgaccggg	tcctttcttg	gatcaacccg	ctcaatgcct	ggagatttgg	gegtgeecce	240
10						gcctgatagg	
						aatcctaaac	
						gatggattgc	
						gcacaacaga	
	caatcggctg	ctctgatgcc	gccgtgttcc	ggctgtcagc	gcaggggcgc	ccggttcttt	540
						gcgcggctat	
15						actgaagcgg	
	gaagggactg	gctgctattg	ggcgaagtgc	cggggcagga	tctcctgtca	tctcaccttg	720
						acgcttgatc	
	cggctacctg	cccattcgac	caccaagcga	aacatcgcat	cgagcgagca	cgtactcgga	840
						ctcgcgccag	
						gtcgtgaccc	
						ggattcatcg	
20	actgtggccg	gergggrgrg	gcggaccgct	atcaggacat	agcgttggct	acccgtgata	1080
						ggtatcgccg	
						tgagtttaaa	
						tatgttattt	
						tgtcttcttg	
						qttqaatqtc	
25						agegaceett	
	taceaaaceaac	dageccccc	acctagease	agatacetet	acaaccesse	gccacgtgta	1560
	taagataga	ctacasaga	acceggegac	cagtgccaca	ttatasatta	gatagttqtq	1620
						tgcccagaag	
						atgtgtttag	
						ctttgaaaaa	
30	cacgataata	ccatagege	tattacccc	tactcccaac	agacacaaga	cctacttggc	1860
						ggtccaagtg	
						ttqqactgtc	
						ccaaatgtac	
						ttccttgaca	
						tgtcattccg	
35						ctectacttq	
**	aagggctctt	cagacaatee	actgctctgc	ccctcqqqqc	atgctgtggg	catctttcgg	2280
	gctgccgtgt	gcacccqagg	qqttgcqaag	gcggtggact	ttgtacccgt	cgagtctatg	2340
	gaaaccacta	tgcggtcccc	ggtcttcacg	gacaactcgt	cccctccggc	cgtaccgcag	2400
	acattccagg	tggcccatct	acacgcccct	actggtagcg	gcaagagcac	taaggtgccg	2460
	gctgcgtatg	cagcccaagg	gtataaggtg	cttgtcctga	accogtocgt	cgccgccacc	2520
40						cagaaccggg	
40						gtttcttgcc	
	gacggtggtt	gctctggggg	cgcctatgac	atcataatat	gtgatgagtg	ccactcaact	2700
	gactcgacca	ctatcctggg	catcggcaca	gtcctggacc	aagcggagac	ggctggagcg	2760
						acatccaaac	
						agccatcccc	
						gaaatgtgat	
45						ccggggcctt	
	gatgtatccg	tcataccaac	tagcggagac	gtcat*gtcg	tagcaacgga	cgctctaatg	3060
						cacccagaca	
	gtcgacttca	gcctggaccc	gaccttcacc	attgagacga	cgaccgtgcc	acaagacgcg	3180
						ttacaggttt	
						cgagtgctat	
50						gttgcgggct	
•						ggagagcgtc	
						ggcaggagac	
	aacttcccct	acctggtage	ataccagget	acggtgtgcg	ccagggctca	ggctccacct	3540

	ccatcgtggg	accaaatgtg	ggagtgtctc	atacggctaa	agcctacgct	gcacqqqcca	3600
	acgcccctgc	tgtataggct	gggagccgtt	caaaacgagg	ttactaccac	acaccccata	3660
	accaaataca	tcatggcatg	catqtcqqct	qacctggagg	tcgtcacgag	cacctgggtg	3720
		gagtcctagc					
5		ggatcatctt					
		togatgagat					
		ccgaacaatt					
	caageggagg	ctgctgctcc	cataataaa	tecaagtgge	ggaccet ega	ageettetag	4020
		tgtggaattt					
		ccgcgatagc					
10	accacceaac	ataccetcet	gtttaacatc	ctagagagat	agat agecae	ccaacttact	4200
	cctcccagcg	ctgcttctgc	tttcgtaggc	accadeated	ctggagggg	tattaggagg	4260
	ataggccttg	ggaaggtgct	tgtggatatt	ttagcaggtt	atggaggagg	agtaggaage	4320
	acact.cat.ga	cctttaaggt	catgaggggg	gagat good	ссасспаппа	cctaattaac	4380
	ctactccctg	ctatcctctc	ccctaacacc	ctagtcgtcg	gagtcatata	cocancoat a	4440
		acgtgggccc					
	ttcgcttcgc	ggggtaacca	catctcccc	acquactatq	totctgagag	cgacgctgca	4560
15	gcacgtgtca	ctcagatcct	ctctagtctt	accateacte	agetgetgaa	gaggetteac	4620
		acgaggactg					
		gcacggtgtt					
		gagtcccctt					
		tgcaaaccac					
	ggttccatga	ggatcgtggg	gcctaggacc	tgtagtaaca	cataggatag	aacattcccc	4920
20		acaccacggg					
EV.	ctataacaga	tggctgctga	ggagtacgtg	gangtracec	agat agagaa	tttccactac	5040
		tgaccactga					
	ttcacagaag	tggatggggt	acaattacac	aggtacgctc	cagcotocaa	acceptante	5160
		tcacattcct					
		aaccggacgt					
		cggctaagcg					
25	tcagctagcc	agctgtctgc	accttectta	aaggcaacat	gcactacccg	tcatdactcc	5400
		acctcatcga					
	according	agtcagaaaa	taaggtagta	attttggact	ctttcgagcc	gctccaagcg	5520
		agagggaagt					
		tgcccatatg					
		actacgtccc					
30		cacctccacg					
		cggagctcgc					
	agcggcacgg	caacggcctc	tectgaccag	ccctccaaca	acqqcqacqc	gggatccgac	5880
	gttgagtcgt	actcctccat	qcccccctt	gaggggagc	coggggatcc	cgatctcagc	5940
		ggtctaccgt					
	tcctacacat	ggacaggcgc	cctgatcacg	ccatgcgctg	CGGAGGAAAC	caagetgee	6060
	gtcaatgcac	tgagcaactc	tttqctccqt	caccacaact	togtctatgc	tacaacatct	6120
35	cqcaqcqcaa	gcct.gcggca	qaaqaaqqtc	acctttgaca	gactgcaggt	cctggacgac	6180
	cact.accggg	acgtgctcaa	ggagatgaag	gcgaaggcgt	ccacagttaa	ggctaaactt	6240
		aggaagcctg					
		aggacgtccg					
		tgctggaaga					
		gcgtccaacc					
40		gagttcqtqt					
70		tgatgggctc					
		atgcctggaa					
		caacggtcac					
		ccccgaage					
		tgactaattc					
		ogaccagetg					
45	totcoagcto	cgaagctcca	ggact.gcacg	at oct cot at.	acadadacaa	ect tot cot t	6960
		gcgcggggac					
		actetgeece					
		gctcctccaa					
		gtgaccccac					
		attcctggct					
50	atgatectga	tgactcattt	cttctccatc	cttctagctc	aggaacaact	tgaaaaagcc	7320
		agatctacgg					
	attcaacqac	tccatggcct	tagogcattt	tcactccata	gttactctcc	aggtgagate	7440
		etteatgeet					

						cacttgtggc	
	aagtacctct	tcaactgggc	agtaaggacc	aagctcaaac	tcactccaat	cccggctgcg	7620
	tcccagttgg	atttatccag	ctggttcgtt	gctggttaca	gcgggggaga	catatatcac	7680
5						ttctgtaggg	
						ggccaatagg	
	ccatcctgtt	tttttccctt	ttttttttc	tttttttt	tttttttt	tttttttt	7860
	ttttctcctt	tttttttcct	cttttttcc	ttttctttcc	tttggtggct	ccatcttagc	7920
	cctagtcacg	gctagctgtg	aaaggtccgt	gagccgcttg	actgcagaga	gtgctgatac	7980
10	tggcctctct	gcagatcaag	t				8001

	<210> 7
	<211> 11076
	<212> DNA <213> Hepatitis C Virus
5	(213) Repairies C virus
	<400> 7
	gccagccccc gattgggggc gacactccac catagatcac tcccctgtga ggaactactg 60
	tetteaegea gaaagegtet agecatggeg ttagtatgag tgtegtgeag cetecaggae 120
	cccccctccc gggagagcca tagtggtctg cggaaccggt gagtacaccg gaattgccag 180 qacqaccggq tcctttcttg gatcaacccg ctcaatgcct ggagatttgg gcgtqcccc 240
10	gegagactge tageegagta gtgttgggte gegaaaggee ttgtggtaet geetgatagg 300
	gtgettgega gtgecceggg aggtetegta gaeegtgeae catgageaeg aateetaaae 360
	ctomangamm ancommandt macaccaming ggogogocat gattgamcam gatggattgc 420
	acgcaggttc tecggeoget tgggtggaga ggctattcgg ctatgactgg gcacaacaga 480
	caateggetg etetgatgee geegtgttee ggetgteage geaggggege eeggttettt 540 ttgteaagae egacetgtee ggtgeeetga atgaactgea ggaegaggea gegeggetat 600
	egtqqctqqc cacgacqqqc gttccttqcq cagctqtgct cqacgttqtc actqaaqcqq 660
15	qaaqqqactq qetqctattq qqcqaaqtqc cqqqqcagga tctcctqtca tctcaccttq 720
	ctcctgccga gaaagtatcc atcatggctg atgcaatgcg gcggctgcat acgcttgatc 780
	eggetacetg eccattegae caccaagega aacategeat egagegagea egtactegga 840
	tggaagccgg tcttgtcgat caggatgatc tggacgaaga gcatcagggg ctcgcgccag 900
	ccgaactgtt cgccaggctc aaggcgcgca tgcccgacgg cgaggatctc gtcgtgaccc 960 atggcgatgc ctgcttgccg aatatcatgg tggaaaatgg ccgcttttct ggattcatcg 1020
20	actqtqqccq gctgggtgtg qcqqaccgct atcaggacat aqcqttgqct acccqtgata 1080
	ttgctgaaga gcttggcggc gaatgggctg accgcttcct cgtgctttac ggtatcgccg 1140
	ctcccgattc gcagcgcatc gccttctatc gccttcttga cgagttcttc tgagtttaaa 1200
	cagaccacaa eggttteeet etagegggat caatteegee ceteteeete eeeeceeet 1260 aaegttaetg geegaageeg ettggaataa ggeeggtgtg egtttgteta tatgttattt 1320
	tecaccatat tgeographic tqqcaatqtq aqqqcccqqa aacctqqccc tqtcttettq 1380
05	acgagcatte ctaggggtet ttecestete gecaaaggaa tgcaaggtet gttgaatgte 1440
25	gtgaaggaag cagttcetet ggaagettet tgaagacaaa caacgtetgt agegaceett 1500
	tgcaggcage ggaaccccc acctggcgae aggtgcctct gcggccaaaa gccacgtgta 1560
	taagatacac ctgcaaaggc ggcacaaccc cagtgccacg ttgtgagttg gatagttgtg 1620
	gaaagagtoa aatggototo otoaagogta ttoaacaagg ggotgaagga tgoocagaag 1680 qtaccocatt gtatgggato tgatotgggg cotoggtgca catgotttac atgtgtttag 1740
	togaggitaa aaaacgtota ggooccooga accacgggga cqtggtttto ctttqaaaaa 1800
30	cacgataata ccatgggcac gaatcctaaa cctcaaagaa aaaccaaacg taacaccaac 1860
	cgccgcccac aggacgtcaa gttcccgggc ggtggtcaga tcgtcggtgg agtttacctg 1920
	ttgccgcgca ggggccccag gttgggtgtg cgcgcgacta ggaagacttc cgagcggteg 1980
	caacetegtg gaaggegaca acetateeec aaggetegee ageeegaggg tagggeetgg 2040 geteageeeg ggtaceeetg geeectetat ggeaatgagg gettggggtg ggeaggatgg 2100
	ctcctgtcac cccgtggctc tcqqcctagt tgqgqcccca cqqacccccg gcqtaggtcg 2160
35	cgcaatttgg gtaaggteat cgataccete acgtgegget tegeogatet catggggtac 2220
	attocycleg teggegeece cetaggggge getgecaggg ceetggegca tggcgteegg 2280
	gttctggagg acggcgtgaa ctatgcaaca gggaatctgc ccggttgctc cttttctatc 2340
	ttocktttgg ctttgctgtc ctgtttgacc atcccagctt ccgcttatga agtgcgcaac 2400 gtatccggag tgtaccatgt cacqaacqac tgctccaacg caagcattgt gtatgaggca 2460
	gcggacatga tcatgcatac coccgggtgc gtgccctgcg ttcgggagaa caactcctcc 2520
	cgctgctggg tagcgctcac teccaegete geggecagga aegetagegt ecceaetaeg 2580
40	acgatacgac gccatgtega tttgctcgtt ggggcggctg ctctctgctc cgctatgtac 2640
	gtgggagate tetgeggate tgtttteete gtegeceage tgttcacett etegectoge 2700
	cggcacgaga cagtacagga ctgcaattgc tcaatatatc ccggccacgt gacaggtcac 2760 cgtatggctt gggatatgat gatgaactgg tcacctacag cagccctagt ggtatcgcag 2820
	ttactccgga tcccacaagc tgtcgtggat atggtggcgg gggcccattg gggagtccta 2880
	gcgggccttg cctactattc catggtgggg aactgggcta aggttctgat tgtgatgcta 2940
45	ctctttgccg gcgttgacgg gggaacctat gtgacagggg ggacgatggc caaaaacacc 3000
	ctogggatta ogtocotott ttoaccoggg toatoccaga aaatocagot tgtaaacacc 3060
	aacggcagct ggcacatcaa caggactgcc ctgaactgca atgactccct caacactggg 3120
	ttoottgotg ogotgttota ogtgoacaag ttoaactoat otggatgood agagogoatg 3180 gocagotgoa goodcatoga ogogttogot daggggtggg ggoodatoad ttadaatgag 3240
	tcacacaget cggaccagag gccttattgt tggcactacg caccccggcc gtgcggtate 3300
50	gtaccogogg ogcaggtgtg tygtocagtg tactgottca coccaagooc tgtogtggtg 3360
~	gggacgaccg accggttegg cgtccctacg tacagttggg gggagaatga gacggacgtg 3420
	etgettetta acaacacgeg geegeegeaa ggcaactggt ttggetgtac atggatgaat 3480
	agcaetgggt teaccaagae gtgegggge eeceegtgta acateggggg gateggeaat 3540
55	

	aaaaccttga	cctgccccac	ggactgcttc	cggaagcacc	ccgaggccac	ttacaccaag	3600
	tgtggttcgg	ggccttggtt	gacacccaga	tgcttggtcc	actacccata	caggctttgg	3660
	cactacccct	gcactgtcaa	ctttaccatc	ttcaaggtta	ggatgtacgt	qqqqqqqqtq	3720
	gagcacaggc	tegaageege	atocaattoo	actcgaggag	agcottotaa	cctggaggac	3780
		cagagettag					
	tattactta	ccaccctacc	aactetatee	actactttaa	tocatotoca	tcagaacgtc	3900
	at age control	aatacctgta	ggccccgccc	tongonetta	totactttac	zetosesteo	2060
	guggacguae	aatacccgca	cygcacaggg	coggoggecg	coccected	aaccaaacyy	3900
	gagtatgicc	tgttgctctt	ccttcttctg	geggaegege	dedrerarde	ccacccacad	4020
		tgatagctca					
		ccggggcgca					
10	tacatcaagg	gcaggctggt	ccctggggcg	gcatatgccc	tctacggcgt	atggccgcta	4200
	ctcctgctcc	tgctggcgtt	accaccacga	gcatacgcca	tggaccggga	gatgqcagca	4260
	togtgcggag	gcgcggtttt	cqtaqqtctq	atactettga	ccttqtcacc	gcactataag	4320
		ctaggeteat					
		ggatccccc					
	acatacacaa	tecacecaga	actaatett	accateacca	asatottoot	eaccetacte	4500
		tggtgctcca					
	gggerearce	gtgcatgcat	gcragracaa	aagguuguug	ggggccacta	ratecaaatg	4520
	gctctcatga	agttggccgc	actgacaggt	acgtacgttt	atgaccatct	caccccactg	4680
	cgggactggg	cccacgcggg	cctacgagac	cttgcggtgg	cagttgagcc	cgtcgtcttc	4740
	tetgatatgg	agaccaaggt	tatcacctgg	ggggcagaca	ccgcggcgtg	tggggacatc	4800
	atcttgggcc	tgcccgtctc	cgcccgcagg	gggagggaga	tacatctggg	accggcagac	4860
	agccttgaag	ggcaggggtg	gcgactcctc	qcqcctatta	cqqcctactc	ccaacagacg	4920
20	cgaggeetae	ttggctgcat	catcactage	ctcacaggcc	gggacaggaa	ccaggtcgag	4980
	ggggangtec	aagtggtctc	caccoccaaca	caatctttcc	tagcaaccta	cotcaatooc	5040
		ctgtctatca					
	atcacccasa	tgtacaccaa	tataanacaa	ascataataa	actaacesac	accececaaa	51.60
		tgacaccatg					
	geegatgtea	ttccggtgcg	ccggcgggge	gacagcaggg	ggagcctact	ccccccagg	5200
25	cccgtctcct	acttgaaggg	CECEECGGGC	ggtccactgc	tergececte	ggggcatgct	5340
		ttcgggctgc					
		ctatggaaac					
		cgcagacatt					
	agcactaagg	tgccggctgc	gtatgcagcc	caagggtata	aggtgcttgt	cctgaacccg	5580
	tccgtcgccg	ccaccctagg	tttcqqqqcq	tatatgtcta	aggcacatgg	tatcgaccct	5640
	aacatcagaa	ccggggtagg	gaccatcacc	acqqqtqccc	ccatcacqta	ctccacctat	5700
		ttgccgacgg					
••	gagtgccact	caactgactc	gaccactate	ctgggcat.cg	gcacagtcct	ggaccaagcg	5820
	gagacggcto	gagcgcgact	catcatacta	accaccacta	cacct ccaga	atcontracc	5880
	gtgccacatc	caaacatcga	ageagtaact	ctatecaaca	Changages	ccccttttat	5940
		tececatege					
	ggcaaagcca	gtgatgagct	gaccaccang	gggggaggc	*	togccarece	6060
35	caccaccagg	gccttgatgt	accepteata	ccaaccageg	gagacgccac	tgtcgtagca	6120
		taatgacggg					
		agacagtcga					
	gtgccacaag	acgcggtgtc	acgctcgcag	cggcgaggca	ggactggtag	gggcaggatg	6300
	ggcatttaca	ggtttgtgac	tccaggagaa	eggeeetegg	gcatgttcga	ttcctcggtt	6360
	ctgtgcgagt	gctatgacgc	gggctgtgct	tggtacgagc	tcacqcccqc	cgagacctca	6420
	gttaggttgc	gggcttacct	aaacacacca	gggctgcccg	tetgecagga	ccatctggag	6480
40	ttctgggaga	gcgtctttac	aggesticase	cacatagacg	cccatttctt	otcccagact	6540
40	aggrangeng	gagacaactt	cccctaccta	ntancatacc	angetacout	atacaccaaa	6600
	actcagactc	cacctccatc	ctcccaccca	atataggaat	atctcataca	actasaacct	6660
	accet good	ggccaacgcc	gegggaeeaa	acquiggage	geetteras	gocaaageet	6720
	accacacacc	ccataaccaa	atacatcatg	gcatgcatgt	eggergaeer	ggaggccgcc	6100
	acgagcacct	gggtgctggt	aggcggagtc	ctagcagctc	tggccgcgta	ttgcctgaca	6840
45		tggtcattgt					
***		tcctttaccg					
	tacatcgaac	agggaatgca	gctcgccgan	caattcaaac	agaaggcaat	cgggttgctg	7020
	caaacagcca	ccaagcaagc	ggaggctgct	gctcccgtqq	tggaatccaa	gtggcggacc	7080
		tetgggegaa					
	ggettgteca	ctctgcctgg	caaccccccc	atagcatcac	tgatggcatt	cacagootot	7200
	atcaccagoo	cgctcaccac	ccaacatacc	ctcctatt+a	acatectore	gggat gggt g	7260
		ttgctcctcc					
		gcagcatagg					
	gaggaagataa	caggcgcgct	catagogete	g og occuping g	geaggagast	aggetacyga	7440
	yaqyacccgg	ttaacctact	Coccidente	ccccccctg	yugucuta g t	categgagte	7500

	gtgtgcgcag	cgatactgcg	toggcacgtg	ggcccagggg	agggggctgt	gcagtggatg	7560
						ctatgtgtct	
						cactcagctg	
-						cggctcgtgg	
5							
						ctggctccag	
						tgggtacaag	
						acagatcacc	
	ggacatgtga	aaaacggttc	catgaggatc	gtggggccta	ggacctgtag	taacacgtgg	7980
	catggaacat	tccccattaa	cgcgtacacc	acgggcccct	gcacgccctc	cccggcgcca	8040
10						tacgcgggtg	
						gtgtcaggtt	
						cgctccagcg	
						atacctggtt	
						catgctcacc	
						atctccccc	
15	tccttggcca	gctcatcagc	tagccagctg	tctgcgcctt	ccttgaaggc	aacatgcact	8460
	acceptcate	actccccgga	cgctgacctc	atcgaggcca	acctcctgtg	gcggcaggag	8520
	atgggcggga	acatcacccg	cgtggagtca	gaaaataagg	tagtaatttt	ggactctttc	8580
						gatcctgcgg	
						caaccctcca	
						gtgtccattg	
20							
ev .						tgtcctgtca	
						cagctccgaa	
						cgacgacggc	
						ggagccgggg	
	gatcccgatc	tcagcgacgg	gtcttggtct	accgtaagcg	aggaggctag	tgaggacgtc	9060
	gtctgctgct	cgatgtccta	cacatggaca	ggcgccctga	tcacgccatg	cgctgcggag	9120
25	gaaaccaagc	tgcccgtcaa	tgcactgagc	aactctttgc	tccgtcacca	caacttggtc	9180
	tatoctacaa	catctcqcaq	cqcaaqcctq	cggcagaaga	aggtcacctt	tgacagactg	9240
						ggcgtccaca	
						acatteggee	
						ggccgttaac	
						tgacaccacc	
30							
50						caagccagct	
						cctttacgat	
						atactctcct	
						tatgggcttc	
	gcatatgaca	cccgctgttt	tgactcaacg	gtcactgaga	atgacatccg	tgttgaggag	9780
	tcaatctacc	aatgttgtga	cttggccccc	gaagccagac	aggccataag	gtcgctcaca	9840
35						cggctatcgc	
						atgttatttg	
						cgtatgcgga	
						gagcctacgg	
						caaaccagaa	
40	tacgacttgg	agttgataac	accatgetee	tecaatgtgt	cagtegegea	cgatgcatct	10200
40	ggcaaaaggg	tgtactatct	cacccgtgac	cccaccaccc	cccttgcgcg	ggctgcgtgg	10260
	gagacagcta	gacacactcc	agtcaattcc	tggctaggca	acatcatcat	gtatgcgccc	10320
	accttgtggg	caaggatgat	cctgatgact	catttcttct	ccatccttct	agctcaggaa	10380
	caacttgaaa	aagccctaga	ttgtcagatc	tacgggggct	gttactccat	tgagccactt	10440
	gacctacctc	agatcattca	acquetccat	gaccttagcg	cattttcact	ccatagttac	10500
	tetecanata	agatcaatag	aataacttca	tacct cagga	aacttggggt	accgcccttg	10560
45	casatetaga	ancetoaaaa	gagagatata	cacactaga	tactatacas	ggggggagg	10620
	cgugecegga	gacaccgggc	cagaagtgtc	cycyccayyc	Lacegececa	9999999999	10600
						caaactcact	
						ttacagcggg	
						gtgcctactc	
						gagctaaaca	
	ctccaggcca	ataggccatc	ctgtttttt	ccctttttt	ttttctttt	ttttttttt	10920
50						tttcctttgg	
						gcttgactgc	
		gatactgqcc			,	, ,	11076
		,,900	oo o y o a y a				

	<210> 8					
	<211> 8001 <212> DNA					
	<213> Hepatitis C Vir	15				
5	TELOS REPUESES O TEL					
	<400> 8					
	gccagccccc gattgggggc					
	tetteacgea gaaagegtet ceccecteee gggagageea					
	gacqaccqqq tcctttcttg					
10	gcgagactgc tagccgagta					
	gtgcttgcga gtgccccggg					
	ctcaaagaaa aaccaaacgt					
	acgcaggttc tccggccgct caatcggctg ctctgatgcc					
	ttgtcaagac cgacctgtcc					
15	cgtggctggc cacgacgggc					
10	gaagggactg gctgctattg					
	ctcctgccga gaaagtatcc					
	cggctacctg cccattcgac tggaagccgg tcttgtcgat					
	ccgaactgtt cgccaggctc					
	atggcgatgc ctgcttgccg	aatatcatgg	tggaaaatgg	ccgcttttct	ggattcatcg	1020
20	actgtggccg gctgggtgtg	gcggaccgct	atcaggacat	agcgttggct	acccgtgata	1080
	ttgctgaaga gcttggcggc					
	ctcccgattc gcagcgcatc cagaccacaa cggtttccct					
	aacgttactg gccgaagccg					
	tccaccatat tgccgtcttt	tggcaatgtg	agggcccgga	aacctggccc	tgtcttcttg	1380
25	acgagcattc ctaggggtct					
	gtgaaggaag cagttcctct					
	tgcaggcagc ggaacccccc taagatacac ctgcaaaggc	ggcacaaccc	cantaccaca	ttataaatta	gatagttgta	1620
	gaaagagtca aatggctctc					
	gtaccccatt gtatgggatc	tgatctgggg	cctcggtgca	catgctttac	atgtgtttag	1740
30	tcgaggttaa aaaacgtcta					
50	cacgataata ccatggcgcc tgcatcatca ctagcctcac					
	qtctccaccq caacacaatc					
	tatcatggtg ccggctcaaa					
	accaatgtgg accaggacct	cgtcggctgg	caagcgcccc	ccggggcgcg	ttccttgaca	2100
	ccatgcacct gcggcagctc					
35	gtgcgccggc ggggcgacag aagggctctt cgggcggtcc					
	gctgccgtgt gcacccgagg					
	gaaaccacta tgcggtcccc					
	acattccagg tggcccatct	acacgcccct	actggtagcg	gcaagagcac	taaggtgccg	2460
	gctgcgtatg cagcccaagg					
40	ctaggtttcg gggcgtatat gtaaggacca tcaccacggg					
	gacggtggtt gctctggggg	cacctatac	atcataatat	gtgatgagtg	ccactcaact	2700
	gactcgacca ctatcctggg					
	cgactcgtcg tgctcgccac					
	atcgaggagg tggctctgtc					
45	atcgagacca tcaagggggg gagctcgccg cgaagctgtc	gaggcacctc	attitetgee	taggatatta	gaaatgtgat	3000
***	gatgtatccg tcataccaac					
	acgggcttta ccggtgactt	cgactcagtg	atcgactgca	atacatgtgt	cacccagaca	3120
	gtcgacttca gcctggaccc	gaccttcacc	attgagacga	cgaccgtgcc	acaagacgcg	3180
	gtgtcacgct cgcagcggcg					
	gtgactccag gagaacggcc gacgcgggct gtgcttggta					
50	tacctaaaca caccagggtt					
	tttacaggcc tcacccacat	agacgcccat	ttcttgtccc	agactaagca	ggcaggagac	3480
	aacttcccct acctggtagc					
55						

	ccatcqtqqq	accaaatqtq	gaagtgtctc	atacggctaa	agcctacqct	gcacgggcca	3600
						acaccccata	
						cacctgggtg	
						cagcgtggtc	
5						ggaagtcctt	
						cgaacaggga	
	caccogggage	cogacgagac	gguagagege	geecedeece	testesses	cguacaggga	2060
						agccaccaag	
						agccttctgg	
						gtccactctg	
						cagcccgctc	
10						ccaacttgct	
	cctcccageg	ctgcttctgc	tttcgtaggc	gccggcatcg	ctggagcggc	tgttggcagc	4260
	ataggccttg	ggaaggtgct	tgtggatatt	ttggcaggtt	atggagcagg	ggtggcaggc	4320
	gegetegtag	cctttaaggt	catgagcggc	gagatgccct	ccaccqaqqa	cctggttaac	4380
	ctactccctq	ctatcctctc	ccctggcgcc	ctagtcgtcg	gggtcgtgtg	cgcagcgata	4440
						gctgatagcg	
						cgacqctqca	
15						gaggetteac	
						agatgtttgg	
						gctcctgccg	
						ctggcggggc	
	gacggcarca	tgcaaaccac	cegcecatge	ggggcacaga	teaceggaca	tgtgaaaaac	4000
	ggttccatga	ggatcgtggg	gcctaggacc	tgtagtaaca	cgtggcatgg	aacattcccc	4920
20						ttctagggcg	
						tttccactac	
						ccccgaattc	
	ttcacagaag	tggatggggt	gcggttgcac	aggtacgctc	cagcgtgcaa	acccctccta	5160
	cgggaggagg	tcacattcct	ggtcgggctc	aatcaatacc	tggttgggtc	acagctccca	5220
	tgcgagcccg	aaccqqatqt	agcagtgctc	acttccatgc	tcaccgaccc	ctcccacatt	5280
	acqqcqqaqa	cggctaagcg	taggctggcc	aggggatete	ctccccctt	ggccagctca	5340
25	tcagctagcc	agetgtetge	gccttccttg	aaggcaacat	gcactacccg	tcatgactcc	5400
						cgggaacatc	
	accorcator	agtcagaaaa	taaggtagta	attttggact	ctttcgagec	gctccaagcg	5520
	gaggaggatg	agagggaagt	atcogttoog	acanagator	tacagagate	caggaaattc	5580
						agagtcctgg	
						tgccaaggcc	
						taccgtgtct	
30							
	tetgeettgg	eggagetege	cacagagacc	ttcggcaget	ccgaatcgtc	ggccgtcgac	5020
	ageggeaegg	caacggcctc	ccccgaccag	ccctccgacg	acggcgacgc	gggatccgac	2000
						cgatctcagc	
						ctgctcgatg	
						caagctgccc	
						tacaacatct	
35	cgcagcgcaa	gcct.gcggca	gaagaaggtc	acctttgaca	gactgcaggt.	cctggacgac	6180
	cactaccggg	acgtgctcaa	ggagatgaag	gcgaaggcqt	ccacaqttaa	ggctaaactt	6240
	ctatccqtqq	aggaagcctg	taagctgacg	ccccacatt	cggccagatc	taaatttggc	6300
						ccgctccgtg	
	t.ggaaggact.	tactagaaga	cactgagaca	ccaattgaca	ccaccatcat	ggcaaaaaat	6420
	gaggetttet	acat ccaace	agagaagggg	aaccacaaac	canchegeet	tatcgtattc	6480
	ccagatttag	gagtteatat	atacaaaaaa	atggcccttt	acquentquat	ctccaccctc	6540
40	cctcagacca	tastagacte	ttcataccca	teccastact	ctcctggaca	gcgggtcgag	6600
	thattaghan	et acat ace	Licatacyga	tacastatas	anthomests.	basassasas	6660
	LLCCLGGLGA	acycciggaa	aycyaayaaa	cyccccatgy	gccccgcaca	tgacacccgc	6720
						ctaccaatgt	
	tgtgacttgg	cccccgaagc	cagacaggcc	ataaggtcgc	tcacagageg	gctttacatc	6/60
	gggggccccc	tgactaattc	taaagggcag	aactgcggct	ategeeggtg	ccgcgcgagc	0040
	ggtgtactga	cgaccagctg	cggtaatacc	ctcacatgtt	acttgaaggc	cgctgcggcc	6900
45	tgtcgagctg	cgaageteca	ggactgcacg	atgctcgtat	gcggagacga	ccttgtcgtt	6960
						cacggaggct	
	atgactagat	actetgeece	ccctggggac	ccgcccaaac	cagaatacga	cttggagttg	7080
						aagggtgtac	
	tatctcaccc	gtgaccccac	caccccctt	gcgcgggcta	cgtgggagac	agctagacac	7200
						gtgggcaagg	
50						tgaaaaagcc	
DV	ctagattete	agatetacee	geoctaties	tecattgage	cacttgacct	acctcagatc	7380
	attcaaccec	tccatcacct	tancocates	tcactccate	attactetee	aggtgagatc	7440
	aatagggtgg	cttcatacct	caggagaactt	aggataccac	cettacaaat	ctggagacat	7500

5	aagtacetet teccagttgg ageetgtete gtaggeatet ceateetgtt tttteteett	tcaactgggc atttatccag gtgcccgacc atctactccc tttttccctt ttttttcct	agtaaggacc ctggttcgtt ccgctggttc caaccgatga ttttttttc	aagctcaaac gctggttaca atgtggtgcc acggggagct ttttttttt ttttcttcc	tcactccaat gcgggggaga tactcctact aaacactcca ttttttttt tttggtggct	cacttgtggc cccggctgcg catatatcac ttctgtaggg ggccaatagg ttttttttt ccatcttagc	7620 7680 7740 7800 7860 7920
10		gctagctgtg gcagatcaag		gageegettg	actgcagaga	gtgctgatac	7980 8001
15							
20							
25							
30							
35							
40							

	<210> 9
	<211> 11076
	<212> DNA
5	<213> Hepatitis C Virus
	<400> 9
	gecagecccc gattgggggc gacactccac catagatcac teceetgtga ggaactactg 60
	tetteacgca gaaagegtet agccatggcg ttagtatgag tgtegtgcag cetecaggae 120
	cocccctccc gggagageca tagtggtctg cggaaccggt gagtacaccg gaattgccag 180 gacqaccqqq tcctttcttq qatcaacccq ctcaatqcct qqaqatttqq qcqtqcccc 240
10	gegagactgc tagecgagta gtgttgggte gegaaaggee ttgtgggtaet gestgatagg 300
	gtgcttgcga gtgccccggg aggtctcgta gaccgtgcac catgagcacg aatcctaaac 360
	ctcmaagaam aaccmaacgt macaccmacg ggcgcgccat gattgmacam gatggattgc 420
	acgcaggttc tccggccgct tgggtggaga ggctattcgg ctatgactgg gcacaacaga 480 caatcggctg ctctgatgcc gccgtgttcc ggctgtcagc gcaggggcgc ccggttcttt 540
	ttqtcaaqac cqacctgtcc ggtgccctga atqaactgca ggacqaqqca gcqcqqctat 600
15	cqtqqctqqc cacqacqqgc qttccttqcq caqctqtqct cqacqttqtc actqaaqcqq 660
15	gaagggactg gctgctattg ggcgaagtgc cggggcagga tctcctgtca tctcaccttg 720
	ctcctgccga gaaagtatcc atcatggctg atgcaatgcg gcggctgcat acgcttgatc 780
	eggetacetg eccattegae caccaagega aacategeat egagegagea egtactegga 840 tggaageegg tettgtegat eaggatgate tggaegaaga geateagggg etegegeeag 900
	ccgaactgtt cgccaggetc aaggegegea tgcccgacgg cgaggatete gtcgtgacce 960
	atggcgatgc ctgcttgccg aatatcatgg tggaaaatgg ccgcttttct ggattcatcg 1020
20	actgtggccg gctgggtgtg gcggaccgct atcaggacat agcgttggct acccgtgata 1080
	ttgctgaaga gcttggcggc gaatgggctg accgcttcct cgtgctttac ggtatcgccg 1140 ctcccgattc gcagcgcatc gccttctatc gccttcttga cgagttcttc tgagtttaaa 1200
	cagaccacaa eggittecet ctagegggat caatteegee ceteteeete eccececet 1260
	aacgttactg gccgaagccg cttggaataa ggccggtgtg cgtttgtcta tatgttattt 1320
	tecaccatat tgccgtcttt tggcaatgtg agggcccgga aacctggccc tgtcttcttg 1380
25	acgageatte ctaggggtet tteccetete gecaaaggaa tgcaaggtet gttgaatgte 1440
	gtgaaggaag cagttcctct ggaagcttct tgaagacaaa caacgtctgt agcgaccctt 1500 tgcaggcagc ggaacccccc acctggcgac aggtgcctct gcggccaaaa gccacgtgta 1560
	taagatacac ctgcaaaggc ggcacaaccc cagtgccacg ttgtgagttg gatagttgtg 1620
	gaaagagtca aatggotete etcaagegta tteaacaagg ggetgaagga tgeecagaag 1680
	gtaccccatt gtatgggatc tgatctgggg cctcggtgca catgctttac atgtgtttag 1740
30	togaggttaa aaaacgtota ggccccccga accacgggga cgtggttttc ctttgaaaaa 1800 cacgataata ccatgggcac gaatcctaaa cctcaaagaa aaaccaaacg taacaccaac 1860
	cgccqcccac aqgacqtcaa gttcccqqqc gqtqqtcaqa tcqtcqqtqq agtttacctg 1920
	ttgccgcgca ggggccccag gttgggtgtg cgcgcgacta ggaagacttc cgagcggtcg 1980
	caacctcgtg gaaggcgaca acctatcccc aaggctcgcc agcccgaggg tagggcctgg 2040
	gctcagcccg ggtacccctq gcccctctat ggcaatgagg gcttggggtg ggcaggatgg 2100 ctcctqtcac cccqtqgctc tcqqcctaqt tqqqqccca cqqaccccq gcqtaqqtcq 2160
35	cgcaatttgg gtaaggteat cgatacecte acgtgcgget tegeogatet catggggtac 2220
35	attecquing togqcgcccc cctagggggc gctgccaggg ccctggcqca tqqcqtccqq 2280
	gttetggagg acggcgtgaa ctatgcaaca gggaatetge eeggttgete ettttetate 2340
	ttccttttgg ctttgctgtc ctgtttgacc atcccagctt ccgcttatga agtgcgcaac 2400
	gtatccggag tgtaccatgt cacgaacgac tgctccaacg caagcattgt gtatgaggca 2460 gcggacatga tcatgcatac ccccgggtgc gtgccctgcg ttcgggagaa caactcctcc 2520
	cqctqctqqq taqcqctcac teccacqctc qcqqccaqqa acqctaqcqt ccccactacq 2580
40	acgatacgac gccatgtcga tttgctcgtt ggggcggctg ctctctgctc cgctatgtac 2640
	gtgggagate tetgeggate tgtttteete gtegeecage tgtteacett etegeetege 2700
	eggeacgaga cagtacagga ctgcaattgc tcaatatatc ccggccacgt gacaggtcac 2760 cgtatggctt gggatatgat gatgaactgg tcacctacag cagccctagt ggtatcgcag 2820
	thactoraga toccacaago tgtoqtagat atggtqqcqq qqqcccattq qqqaqtocta 2880
	gegggeettg ectactatte catggtgggg aactgggeta aggttetgat tgtgatgeta 2940
45	ctctttgccg gcgttgacgg gggaacctat gtgacagggg ggacgatggc caaaaacacc 3000
	ctogggatta ogtocotott ttoaccoggg toatocoaga aaatocagot tgtaaacaco 3060
	aacggcaget ggcacateaa caggactgee etgaactgea atgacteeet caacactggg 3120 tteettgetg egetgtteta egtgcacaag tteaacteat etggatgeec agagegeatg 3180
	gocaquigoa gococatoga ogogitogot caggggtggg ggcccatcac ttacaatgag 3240
	tracacaget eggaceagag geettattgt tggcactaeg caceceggee gtgeggtate 3300
50	gtaccogogg cgcaggtgtg tggtccagtg tactgcttca coccaagece tgtcgtggtg 3360
	gggacgaceg accqgttcgg cgtccctacg tacagttggg gggagaatga gacggacgtg 3420 ctgcttctta acaacacgcg gccgccgcaa ggcaactggt ttggctgtac atggatgaat 3480
	agcactgggt tcaccaagac gtgcggggc cccccgtgta acatcggggg gatcggcaat 3540
	. ,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
55	

						ttacaccaag	
	tgtggttcgg	ggccttggtt	gacacccaga	tgcttggtcc	actacccata	caggctttgg	3660
						ggggggagtg	
	gagcacaggc	tcgaagccgc	atgcaattgg	actcgaggag	agcgttgtaa	cctggaggac	3780
5	agggacagat	cagagettag	cccgctgctg	ctgtctacaa	cggagtggca	ggtattgccc	3840
	tgttccttca	ccaccctacc	ggctctgtcc	actggtttga	tccatctcca	tcagaacgtc	3900
	gtggacgtac	aatacctgta	cggtataggg	toggoggttg	tctcctttgc	aatcaaatgg	3960
	gagtatgtcc	tgttgctctt	ccttcttctg	gcggacgcgc	gcgtctgtgc	ctgcttgtgg	4020
	atgatgctgc	tgatagetea	agctgaggcc	gccctagaga	acctggtggt	cctcaacgcg	4080
	gcatccgtgg	ccggggcgca	tggcattctc	tecttecteg	tgttcttctg	tgctgcctgg	4140
10	tacatcaagg	gcaggctggt	ccctggggcg	gcatatgccc	tctacggcgt	atggccgcta	4200
	ctcctgctcc	tgctggcgtt	accaccacga	gcatacgcca	tggaccggga	gatggcagca	4260
	tcgtgcggag	gcgcggtttt	cgtaggtctg	atactcttga	ccttgtcacc	gcactataag	4320
	ctgttcctcg	ctaggctcat	atggtggtta	caatatttta	tcaccagggc	cgaggcacac	4380
	ttgcaagtgt	ggatcccccc	cct.caacgtt	cgggggggcc	gcgatgccgt	catcctcctc	4440
	acgtqcgcga	tccacccaga	gctaatcttt	accatcacca	aaatcttgct	cqccatactc	4500
	ggtccactca	tggtgctcca	ggctggtata	accasagtgc	cgtacttcgt	gegegeacae	4560
15	gggctcattc	gtgcatgcat	gctggtgcgg	aaggttgctg	ggggtcatta	tgtccaaatg	4620
	gctctcatga	agttggccgc	actgacaggt	acgtacgttt	atgaccatct	caccccactg	4680
						cgtcgtcttc	
						tggggacatc	
						accggcagac	
						ccaacagacg	
20						ccaggtcgag	
LV						cgtcaatggc	
						aaagggccca	
						gcccccggg	
						cacgaggcat	
						ctcccccagg	
	cccatctcct	acttgaaggg	ctcttcgggc	ggtccactgc	tetgecete	ggggcacgct	5340
25						ggactttgta	
						ctcqtcccct	
						tagcggcaag	
						cctgaacccg	
						tatcgaccct	
						ctccacctat	
						aatatgtgat	
30						ggaccaagcg	
						atoggtcacc	
	gtgccacate	caaacatcca	ggaggtggct	ctatccagca	ctggagaaat	cccctttat	5940
	gegeeacace	tccccatcga	gauggeggee	aaaaaaaaaa	acctcatttt	ctgccattcc	6000
						tgctgtagca	
						tgtcgtagca	
35						ctgcaataca	
						gacgacgacc	
						gggcaggatg	
						ttecteggtt	
						cgagacetca	
						ccatctggag	
40						gtcccagact	
40						gtgcgccagg	
	actcadactc	cacctccatc	ataggagga	atataaaaat	atctcataca	gctaaagcct	6660
						cgaggttact	
	acquirector	ggccaacgcc	atacatoata	aggicegggag	cagatasaat	ggaggtcgtc	6780
	accacacacc	agat agt agt	acaccate	gtacgtacgt	tancananta	ttgcctgaca	6940
						catcattccc	
45						acacctccct	
	tacategaaa	agggaat gen	gatgacagae	gayacgguag	agegegeeee	cgggttgctg	2020
						gtggcggacc	
						atatttagca	
						cacageetet	
						gggatgggtg	
50						catcgctgga	
						aggttatgga	
						gccctccacc	
	yaggacctgg	LLMACCEACE	coctgetate	ulctcccctg	gugecetagt	cgtcggggtc	1200

	gtgtgcgcag	cgatactgcg	tcggcacgtg	ggcccagggg	agggggctgt	gcagtggatg	7560
	aaccggctga	tagcgttcgc	ttcgcggggt	aaccacgtct	ccccacgca	ctatgtgcct	7620
	gagagcgacg	ctgcagcacg	tgtcactcag	atcctctcta	gtcttaccat	cactcagctg	7680
5	ctgaagaggc	ttcaccagtg	gatcaacgag	gactgctcca	cgccatgctc	cggctcgtgg	7740
	ctaagagatg	tttgggattg	gatatgcacg	gtgttgactg	atttcaagac	ctggctccag	7800
	tccaagctcc	tgccgcgatt	gccgggagtc	cccttcttct	catgtcaacg	toggtacaag	7860
	ggagtctggc	ggggcgacgg	catcatgcaa	accacctgcc	catgtggggc	acagatcacc	7920
	ggacatgtga	aaaacggttc	catgaggatc	gtggggccta	ggacctgtag	taacacgtgg	7980
	catqqaacat	tccccattaa	cqcqtacacc	acgggcccct	gcacqccctc	cccqqcqcca	8040
10	aattattcta	gggcgctgtg	qcqqqtqqct	qctqaqqaqt	acqtqqaqqt	tacgcgggtg	8100
						gtgtcaggtt	
						cgctccagcg	
						atacctggtt	
						catgctcacc	
						atctcctccc	
15						aacatgcact	
						gcggcaggag	
						ggactctttc	
						gatcctgcgg	
						caaccttcca	
						gtgtccattg	
20						tgtcctgtca	
						cagctccgaa	
						cgacgacggc	
						ggagccgggg	
						tgaggacgtc	
						cgctgcggag	
25						caacttggtc	
						tgacagactg	
	caratectaa	accaccacta	ccaaaacata	ctcaaggaaga	trascreras	ggcgtccaca	9300
						acattcggcc	
						ggccgttaac	
						tgacaccacc	
30						caagccagct	
	caccttatca	tattcccaca	tttaaaaatt	catatataca	aggggggccg	cctttacgat	9600
						atactctcct	
						tatgggcttc	
						tgttgaggag	
						gtcgctcaca	
35						cggctatcgc	
						atgttacttg	
						cqtatqcqqa	
						gagcctacgg	
						caaaccagaa	
						cgatgcatct	
40						ggctgcgtgg	
						gtatgcgccc	
						agctcaggaa	
						tgagccactt	
	gacctacctc	agattattta	acgactccat	ggeettageg	cattttcatt	ccatagttac	10560
45	coccaygog	agaccaacag	ggeggeeeea	caccacagga	tacteteces	accycccccg	10620
	cyaytotyya	gacaccygyc	cagaagcgcc	tagage	racegeeeca	gggggggagg	10620
	gorgocactt	grygraagta	ccccctcaac	tagagetaa	teattaatea	caaactcact	10740
						ttacagcggg	
						gtgcctactc	
	clacticity	Laggggtagg	catctatcta	CCCCCAACC	gatgaacggg	gagetaaaca	10000
50	cccaggcca	acaggecate	CLGLETTE	CCCLLTTTT	LLLCCCCCC	tttttttt	10000
						tttcctttgg	
					Lucgigagee	gcttgactgc	11040
	ayagagtgct	gatactggcc	LUCCTGCAGA	ccaagt			110/6

	<210> 10 <211> 8001 <212> DNA						
5	<213> Hepat	itis C Vin	ıs				
	<400> 10						
						ggaactactg cctccaggac	
						gaattgccag	
						gegtgeecce	
10						gcctgatagg	
						aatcctaaac	
						gatggattgc	
						gcacaacaga ccggttcttt	
						gegeggetat	
15						actgaagegg	
10						tctcaccttg	
						acgcttgatc	
						cgtactcgga ctcgcgccag	
						gtcgtgaccc	
						ggattcatcq	
20						acccgtgata	
						ggtatcgccg	
						tgagtttaaa	
						tatgttattt	
						tgtcttcttg	
25						gttgaatgtc	
						agcgaccctt	
						gccacgtgta	
						gatagttgtg tqcccagaaq	
						atgtgtttag	
						ctttgaaaaa	
30						cctacttggc	
						ggtccaagtg	
						ttggactgtc	
						ttccttgaca	
						tgtcattccg	
35						ctcctacttg	
						catctttcgg	
						cgagtctatg	
						cgtaccgcag taaggtgccg	
						cgccgccacc	
40	ctaggtttcg	gggcgtatat	gtctaaggca	catggtatcg	accctaacat	cagaatcggg	2580
40						gtttcttgcc	
						ccactcaact	
						ggctggagcg acatccaaac	
						agccatcccc	
						gaaatgtgat	
45						ccggggcctt	
						cgctctaatg	
						cacccagaca	
						acaagacgcg ttacaggttt	
						cgagtgctat	
50						gttgcgggct	
						ggagagcgtc	
						ggcaggagac	
	aactteccct	acceggeage	acaccagget	auggtgtgeg	ccagggctca	ggctccacct	3540

	ccatcgtggg	accasatgtg	gaagtgtctc	atacggctaa	agcctacgct	gcacgggcca	3600
						acaccccata	
	accaaataca	tcatggcatg	catgtcggct	gacctggagg	tcgtcacgag	cacctgggtg	3720
_	ctggtaggcg	gagtcctagc	agetetggee	gcgtattgcc	tgacaacagg	cagcgtggtc	3780
5						ggaagtcctt	
	taccoggagt	tcgatgagat	ggaagagtgc	gcctcacacc	tcccttacat	cgaacaggga	3900
	atgcagctcg	ccgaacaatt	caaacagaag	gcaatcgggt	tgctgcaaac	agccaccaag	3960
	caagcggagg	ctgctgctcc	cgtggtggaa	tccaagtggc	ggaccatcga	agccttctgg	4020
						qtccactctq	
	cctggcaacc	ccgcgatage	atcactgatg	gcattcacag	cctctatcac	cagcccqctc	4140
10	accacccaac	ataccctcct	gtttaacatc	ctggggggat	aggtagccac	ccaacttgct	4200
						tgttggcagc	
						ggtggcaggc	
						cctggttaac	
	ctactccctq	ctatcctctc	ccctqqcqcc	ctagtcgtcg	agatcatata	cgcagcgata	4440
	ctgcgtcggc	acqtqqqccc	aggggagggg	gctgtgcagt	ggatgaaccg	gctgatagcg	4500
	tteactteac	ggggtaacca	catctccccc	acccactato	tacctaagag	cgacgctgca	4560
15						gaggetteac	
	cagtggatca	acqaqqactq	ctccacacca	tactccaact	cgtggctaag	agatgtttgg	4680
						gctcctqccq	
						ctggcggggc	
						tgtgaaaaac	
	ggttccatga	ggatcgtggg	acctaggacc	totactaaca	cataggatag	aacattcccc	4920
20						ttctagggcg	
ev .	ctataacaaa	taggtgctga	ggagtacgtg	gaggttacgc	agatagagaa	tttccactac	5040
	atgacagaga	traccactra	caacutaaau	tacccatate	aggttccggc	ccccgaattc	5100
						acccctccta	
						acagetecca	
	tacasaccta	aaccagatat	accantacto	acttccatcc	traccoacco	ctcccacatt	5280
						ggccagctca	
25						tcatgactcc	
						cgggaacatc	
						gctccaagcg	
						caggaaattc	
	cctcaaacaa	tacccatata	acceptacea	gattacaacc	ctccactatt	agagtcctgg	5640
	aarracccar	actacatacg	tccagtggta	cacaaatatc	cattoccocc	tgccaaggcc	5700
	cctcccatac	caccttcacc	nannaanann	acagttatee	tatcagaatc	taccgtgtct	5760
30						ggccgtcgac	
						gggatccgac	
						cgatctcagc	
	geegageege	actetecent	2200000000	actactasac	acatoatota	ctgctcgatg	6000
						caagetgeee	
						tacaacatct	
35						cctggacgac	
						ggctaaactt	
	cactaccggg	acgigeccaa	ggagatgaag	gcgaaggcgt	ccacagecaa	taaatttggc	6200
						ccgctccgtg	
	taassaas	tackeasses	gaacccaccc	agenaggeeg	ecaecatcat	ggcaaaaaat	6420
	cggaaggact	cyclygaaga	cactyayata	ccaaccyaca	ccaccaccac	tatcgtattc	6400
	gaggeeeee	gcgtccaacc	ayagaayyyy	ggccgcaagc	cagetegeet	caccycacte	6540
40	ccayacttyg	gggttcgtgt	gtgcgagaaa	atggccccct	acquegege	ctccaccctc	6600
	ceceaggeeg	tgatgggctc	ttcatacgga	ttecaatact	ecceeggaca	gcgggtcgag	6660
	tteetggtga	atgcctggaa	agcgaagaaa	Egecetatgg	gettegeata	tgacacccgc	6300
	tgttttgaet	caacggtcac	tgagaatgac	accegugeeg	aggagicaat	ctaccaatgt	6300
	egegaceegg	cccccgaage	cagacaggee	ataaggtege	ccacagageg	gctttacatc	6040
	gggggccccc	Egactaattc	taaagggcag	aactgcggct	arcgccggrg	ccgcgcgagc	6040
45	ggtgtactga	cgaccagetg	cggtaatacc	ctcacatgtt	acttgaagge	cgctgcggcc	6900
10	tgtcgagctg	cgaagctcca	ggactgcacg	atgctcgtat	gcggagacga	ccttgtcgtt	5960
	atctgtgaaa	gcgcggggac	ccaagaggac	gaggcgagcc	tacgggcctt	cacggaggct	7020
						cttggagttg	
	ataacatcat	gctcctccaa	tgtgtcagtc	gcgcacgatg	catctggcaa	aagggtgtac	/140
	tatctcaccc	gtgaccccac	cacccccctt	gcgcgggctg	ogtgggagac	agctagacac	7200
						gtgggcaagg	
50	atgatectga	tgactcattt	cttctccatc	cttctagctc	aggaacaact	tgaaaaagcc	7320
	ctagattgtc	agatctacgg	ggcctgttac	tccattgagc	cacttgacct	acctcagate	7380
						aggtgagatc	
	aatagggtgg	cttcatgcct	caggaaactt	ggggtaccgc	ccttgcgagt	ctggagacat	7500

						cacttgtggc	
	aagtacctct	tcaactgggc	agtaaggacc	aagctcaaac	tcactccaat	cccggctgcg	7620
	tcccagttgg	atttatccag	ctggttcgtt	gctggttaca	gcgggggaga	catatatcac	7680
5	agcctqtctc	gtgcccqacc	ccgctqqttc	atgtggtgcc	tactcctact	ttctgtaggg	7740
	qtaqqcatct	atctactccc	caaccgatga	acggggaget	aaacactcca	ggccaatagg	7800
	ccatcctqtt	tttttccctt	ttttttttc	tttttttt	tttttttt	tttttttt	7860
	ttttctcctt	tttttttcct	cttttttcc	ttttctttcc	tttggtggct	ccatcttage	7920
	cctagtcacg	gctagctgtg	aaaggtccgt	gagecgettg	actgcagaga	gtgctgatac	7980
10	taacctctct	gcagatcaag	t				8001
10		, , ,					

	<210> 11	
	<211> 11076	
	<212> DNA	
5	<213> Hepatitis C Virus	
5		
	<400> 11	
	gecagecccc gattgggggc gacactccac catagatcac tccc	ctgtga ggaactactg 60
	tettcacqca qaaaqcqtct aqccatgqcq ttagtatgag tqtc	qtqcaq cctccaqqac 120
	cececeteec gggagageca tagtggtetg eggaaceggt gagt	acaccq gaattqccaq 180
	gacgaccggg tcctttcttg gatcaacccg ctcaatgcct ggag	atttqq qcqtqccccc 240
10	gegagactgc tagecqagta gtgttgggtc gegaaaggcc ttgt	ggtact gcctgatagg 300
	qtqcttqcqa gtqccccgqg aqgtctcqta qaccqtqcac catq	
	ctcaaagaaa aaccaaacgt aacaccaacg ggcgcgccat gatt	
	acgcaggttc teeggeeget tgggtggaga ggctattegg ctat	gactor gcacaacaga 480
	caatoggotg ctctgatgcc gccqtqttcc ggctgtcagc gcaq	
	ttgtcaagac cgacctgtcc ggtgccctga atgaactgca ggac	
	cgtggctggc cacgacgggc gttccttgcg cagctgtgct cgac	
15	qaaqqqactq qctqctattq qqcqaaqtqc cqqqqcagqa tctc	
	ctcctgccqa qaaaqtatcc atcatggctg atgcaatgcg gcgg	
	eggetacetg cecattegac caccaagega aacategeat egag	
	tqqaaqccqq tcttqtcqat caqqatqatc tqqacqaaqa qcat	
	cegaactgtt cgccaggctc aaggcgcgca tgcccgacgg cgag	
	atggcgatgc ctgcttgccg aatatcatgg tggaaaatgg ccgc	ttttct ggattcatcg 1020
20	actgtggccg gctgggtgtg gcggaccgct atcaggacat agcg	ttaget acceptgata 1080
	ttgctgaaga gcttggcggc gaatgggctg accgcttcct cgtg	
	ctcccqattc qcaqcqcatc qccttctatc qccttcttqa cqaq	
	cagaccacaa cqqtttccct ctagcqqqat caattccqcc cctc	
	aacqttactq gccqaaqccq cttqqaataa qqccqqtqtq cqtt	
	tocaccatat tgccqtcttt tggcaatgtg agggcccgga aacc	
	acqaqcattc ctaqqqqtct ttcccctctc qccaaaqqaa tqca	
25	qtqaaqqaaq caqttcctct qqaaqcttct tgaaqacaaa caac	
	tgcaggcagc ggaacccccc acctggcgac aggtgcctct gcgg	
	taaqatacac ctqcaaaqqc qgcacaaccc caqtgccacg ttqt	
	gaaagagtca aatggctctc ctcaagcgta ttcaacaagg ggct	
	gtaccccatt gtatgggatc tgatctgggg cctcggtgca catg	ctttac atototttag 1740
	togaggitaa aaaacgicta ggccccccga accacgggga cqtq	
30	cacgataata ccatgggcac gaatcctaaa cctcaaagaa aaac	
	cgccgcccac aggacgtcaa gttcccgggc ggtggtcaga tcgt	contag satttaccta 1920
	ttqccqcqca qqqqccccaq qttqqqtqtq cqcqcqacta qqaa	
	caacctcgtg gaaggcgaca acctatcccc aaggctcgcc agcc	
	qctcaqcccq qqtacccctq qcccctctat qqcaatqaqq qctt	
	ctcctqtcac cccqtqqctc tcqqcctaqt tqqqqcccca cqqa	
	cqcaatttqq gtaaqqtcat cqataccctc acqtqcqqct tcqc	
35	attecqctcq tcqqcqcccc cctaqqqqqc qctqccaqqq ccct	
	gttctggagg acggcgtgaa ctatgcaaca gggaatctgc ccgg	
	ttoottttqq otttqctqtc ctgtttqacc atcccaqctt ccgc	
	gtatcoggag tgtaccatgt cacgaacgac tgctccaacg caag	
	goggacatga toatgcatac occogggtgo gtgccctgog ttog	
	egetgetggg tagegeteac teccaegete geggecagga acge	
40		
	acgatacgac gccatgtcga tttgctcgtt ggggcggctg ctct gtgggagatc tctgcggatc tqttttcctc gtcqcccaqc tgtt	
	cggcacgaga cagtacagga ctgcaattgc tcaatatatc ccgg	
	egtatggett gggatatgat gatgaactgg teacetacag eage ttacteegga teecacaage tqteqtggat atggtqgeqg qqqe	cccage ggtategeag 2020
	gegggeettg cetactatte catggtgggg aactgggeta aggt	
45	ctctttgccg gcgttgacgg gggaacctat gtgacagggg ggac	
	ctcgggatta cgtccctctt ttcacccggg tcatcccaga aaat	
	aacggcagct ggcacatcaa caggactgcc ctgaactgca atga	
	ttccttgctg cgctgttcta cgtgcacaag ttcaactcat ctgg	
	gecagetgca gecccatcga cgcgtteget caggggtggg ggcc	
	tcacacagct cggaccagag gccttattgt tggcactacg cacc	ecoggec gtgcggtatc 3300
50	gtaccogcgg cgcaggtgtg tggtccagtg tactgcttca cccc	magece tgtegtggtg 3360
	gggacgaccg accggttcgg cgtccctacg tacagttggg ggga	
	etgettetta acaacaegeg geogeogeaa ggcaactggt ttgg	
	agcactgggt tcaccaagac gtgcgggggc cccccgtgta acat	cggggg gatcggcaat 3540
55		

	aaaaccttga	cctgccccac	ggactgcttc	cggaagcacc	ccgaggccac	ttacaccaag	3600
	tgtggttcgg	ggccttggtt	gacacccaga	tgcttgqtcc	actacccata	caggetttqg	3660
	cactacccct	gcactgtcaa	ctttaccatc	ttcaaggtta	ggatgtacgt	ggggggagtg	3720
						cctggaggac	
5						ggtattgccc	
						tcagaacgtc	
						aatcaaatgg	
						ctgcttgtgg	
						cctcaacqcq	
						tgctgcctgg	
10						atggccgcta	
						gatggcagca	
						gcactataag	
						cgaggcacac	
	ttgcaagtgt	ggatcccccc	cctcaacgtt	cgggggggcc	gcgatgccgt	catcctcctc	4440
	acgtgcgcga	tccacccaga	gctaatcttt	accatcacca	aaatcttgct	cgccatactc	4500
						q cqcqcacac	
15						tgtccaaatg	
						caccccactg	
						cgtcgtcttc	
	tetestates	2020033999	tatesectes	aaaacsaascs	concentrate	tggggacatc	4900
						accggcagac	
						ccaacagacg	
20						ccaggtcgag	
						cgtcaatggc	
						aaagggccca	
	atcacccaaa	tgtacaccaa	tgtggaccag	gacctcgtcg	gctggcaagc	gcccccggg	5160
	gcgcgttcct	tgacaccatg	cacctgcggc	agctcggacc	tttacttggt	cacgaggcat	5220
	gccgatgtca	ttccggtgcg	ccggcggggc	gacagcaggg	ggagcctact	ctccccagg	5280
	cccqtctcct	acttgaaggg	ctcttcgggc	ggtccactgc	tctgcccctc	ggggcacgct	5340
25						ggactttgta	
	cccgt.cgagt	ctatgggaac	cactatocoo	tecccaatet	tcacggacaa	ctcqtcccct	5460
						tagcqqcaaq	
						cctgaacccg	
	tecateacca	ccaccctage	tttcaaaaca	tatatotota	aggegeetge	tatcgaccct	5640
						ctccacctat	
						aatatgtgat	
30							
						ggaccaagcg	
	gagacggctg	gagcgcgact	cgtcgtgctc	gccaccgcta	cgcctccggg	atcggtcacc	5880
	gtgccacatc	caaacatcga	ggaggtggct	ctgtccagca	ctggagaaat	ccccttttat	5940
						ctgccattcc	
						tgctgtagca	
	tattaccggg	gccttgatgt	atccgtcata	ccaactagcg	gagacgtcat	tgtcgtagca	6120
35	acggacgctc	taatgacggg	ctttaccggc	gacttcgact	cagtgatcga	ctgcaataca	6180
	tgtgtcaccc	agacagtcga	cttcagcctg	gacccgacct	tcaccattga	gacgacgacc	6240
						gggcaggatg	
	ggcatttaca	gatttataac	tocaggagaa	concept con	ncatottcoa	ttcctcggtt	6360
						cgagacctca	
						ccatctggag	
	bbobasses	gggcccaccc	auacacacca	gggttgcccg	cocgoouggu	gtcccagact	6540
40	ccccgggaga	gegeetetae	aggeeteace	cacacagacg	CCCatttcct	geccoagace	6600
						gtgcgccagg	
						gctaaagcct	
						cgaggttact	
						ggaggtcgtc	
						ttgcctgaca	
	acaggcagcg	tggtcattgt	gggcaggatc	atcttgtccg	gaaagccggc	catcattccc	6900
45	qacaqqqaaq	tectttaccq	ggagttcgat	gagatggaag	agtgcgcctc	acacctccct	6960
	tacatcgaac	agggaatgea	getegecgaa	caattcaaac	agaaggcaat	cgggttgctg	7020
						qtqqcqqacc	
						atatttagca	
	aacttatcca	ctctacctaa	caaccccaca	ataccatcac	tratracett	cacagostst	7200
	atcaccacca	cactcaccac	ccascataca	ctcctattat	acatostera	gggatgggtg	7260
50						catcgctgga	
						aggttatgga	
						gccctccacc	
	gaggacctgg	ttaacctact	cectgetate	ctctccctg	gcgccctagt	cgtcggggtc	7500

	gtgtgcgcag	cgatactgcg	toggcacgtg	ggcccagggg	agggggctgt	gcagtggatg	7560
	aaccqqctga	tagcgttcgc	ttcgcggggt	aaccacgtct	ccccacgca	ctatqtqcct	7620
	gagagggagg	ctgcagcacg	agtcactcag	atecteteta	gtcttaccat	cactcagetq	7680
5						caactcataa	
9						ctqqctccaq	
						tgggtacaag	
						acagatcacc	
						taacacgtgg	
						cccggcgcca	
10						tacgcgggtg	
						gtgtcaggtt	
	ccggcccccg	aattcttcac	agaagtggat	ggggtgcggt	tgcacaggta	cgctccagcg	8220
	tgcaaacccc	tcctacggga	qqaqqtcaca	ttcctggtcg	ggctcaatca	atacctggtt	8280
						catgctcacc	
						atctccccc	
15						aacatgcact	
10						gcggcaggag	
						ggactctttc	
						gatectgegg	
						caaccctcca	
						gtgtccattg	
20						tgtcctgtca	
	gaatctaccg	tgtcttctgc	cttggcggag	ctcgccacag	agaccttcgg	cagctccgaa	8880
	tcgtcggccg	tcgacagcgg	cacggcaacg	gcctctcctg	accagecete	cgacgacggc	8940
	qacqcqqqat	ccgacgttga	qtcqtactcc	tccatgcccc	cccttgaggg	ggagccgggg	9000
						tgaggacgtc	
						cgctgcggag	
25						caacttggtc	
20	tatactacaa	cateteggag	caceaacata	caaceaaeaa	aggtoagett	tgacagactg	9240
						ggcgtccaca	
						acattcggcc	
						ggccgttaac	
						tgacaccacc	
30						caagccagct	
						cctttacgat	
	gtggtctcca	ccctccctca	ggccgtgatg	ggctcttcat	acggattcca	atactctcct	9660
	ggacagcggg	tcgagttcct	ggtgaatgcc	tqqaaaqcqa	agaaatgccc	tatgggcttc	9720
						tgttgaggag	
						gtcgctcaca	
35	gaggggttt	acateggggg	cccctract	aattotaaag	ggcagaact g	cggctatcgc	9900
						atgttacttg	
						cgtatgcgga	
						gagcctacgg	
						caaaccagaa	
						cgatgcatct	
40	ggcaaaaggg	tgtactatct	cacccgtgac	cccaccaccc	cccttgcgcg	ggctgcgtgg	10260
	gagacagcta	gacacactcc	agtcaattcc	tggctaggca	acatcatcat	gtatgcgccc	10320
						agctcaggaa	
	caacttgaaa	aagccctaga	ttgtcagatc	tacggggcct	gttactccat	tgagccactt	10440
	gacctacctc	agatcattca	acqactccat	ggccttageg	cattttcact	ccatagttac	10500
	tetecaggta	agatcaatag	aataacttca	tocctcagga	aacttagggt	accgcccttg	10560
45	coant ct aga	gacateggge	canagatate	cacactagac	tactotocca	gggggggagg	10620
						caaactcact	
	coastocca	otacatacas	atteasttts	tacagatagt	toattactaa	ttacaccacc	10740
	ccaaccccgg	Lugegueeca	guuggaudta	ccagerage	cogregeogg	ttacagcggg	10000
						gtgcctactc	
						gagctaaaca	
60						tttttttt	
50						tttcctttgg	
	tggctccatc	ttagccctag	tcacggctag	ctgtgaaagg	tccgtgagcc	gcttgactgc	11040
		gatactggcc					1107€
			, , , , ,				

Patentansprüche

30

40

45

50

- Hepatitis C Virus (HCV) Zellkultursystem, das im wesentlichen eukaryontische Zellen umfaßt, die eingeschleustes HCV-spezifisches Genmaterial enthalten, dadurch gekennzeichnet,
 - daß die eukaryontischen Zellen humane Hepatomazellen sind und daß das eingeschleuste HCV-spezifische Genmaterial ein HCV-RNA-Konstrukt ist, das die HCV-spezifischen RNA-Abschnitte 5 'NTR, NS3, NS4A, NS4B, NSSB und 3 'NTR und zusätzlich ein selektienberse Markeroen Gelektionseen) unfaßt.
- 10 2. Zellkultursystem nach Anspruch 1, dadurch gekennzeichnet.
 - daß die Hepatomazellen von einer handelsüblichen Hepatomazellinie abstammen .
 - Zellkultursystem nach Anspruch 1, dadurch gekennzeichnet,
 - daß die Hepatomazellen aus einer Hepatomaprimärzellkultur gewonnen sind.
 - 4. HCV-RNA-Konstrukt, dadurch gekennzeichnet.
- 20 daß es die HCV-spezifischen RNA-Abschnitte 5' NTR, NS3, NS4A, NS4B, NS5A, NS5B und 3' NTR und zusätzlich ein selektierbares Markergen (Selektionsgen) umfaßt.
 - 5. HCV-RNA-Konstrukt nach Anspruch 4, dadurch gekennzeichnet,
- daß es eine Nukleotidsequenz gemäß einem der Sequenzprotokolle SEQ ID NO: 1 bis SEQ ID NO: 11 umfaßt.
 - 6. HCV-RNA-Konstrukt nach Anspruch 4, dadurch gekennzeichnet,
 - daß die 3' NTR eine Nukleotidsequenz aufweist, die aus der Gruppe der nachfolgend aufgelisteten Nukleotidsequenzen (a) bis (i) ausgewählt ist:

	(b) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT TTTTTAGTCT TTTTTTTTC TTTTTTTTGA GAGAGAGAGT CTCACTCTGT TGCCCAGACT GGAGC
	(c) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT TTTAATCTTT TTTTTTTTCT TTTTTTTTGA GAGAGAGAGT CTCACTCTGT TGCCCAGACT GCAGC
	(d) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT TTTTTTAGTC TTTTTTTTT TCTTTTTTT TGAGAGAGAG AGTCTCACTC TGTTGCCCAG ACTGGAGT
	(e) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT TTTTTAGTCT TTTTTTTTT TCTTTTTTT TGAGAGAGAG AGTCTCACTC TGTTGCCCAG ACTGGAGT
	(f) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT TTTTTAGTCT TTTTTTTTT TCTTTTTTT TTGAGAGAGA GAGTCTCACT CTGTTGCCCA GACTGGAGT
	(g) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT TTTTTAGTCT TTTTTTTTT CTTTTTTTT GAGAGAGAGAG GTCTCACTCT GTTGCCCAGA CTGGAGT
	(h) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT TTTTTTTAAT CTTTTTTTT TTTTTCCTTT TTTTGAGAGA GAGAGTCTCA CTCTGTTGCC CAGACTGGAG T
	(i) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT TTTTTTAATC TTTTTTTTT TTTTCTTTT TTTTTGAGAG AGAGAGTCTC ACTCTGTTGC CCAGACTGGA GT
7.	HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet,
	daß das selektierbare Markergen ein Resistenzgen und insbesondere eine Antibiotikaresistenzgen ist.
8.	HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet,
	daß das selektierbare Markergen ein Neomycinphosphotransferasegen ist.
9.	HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet,
	8.

daß das selektierbare Markergen strangabwärts der 5' NTR in die HCV-RNA integriert ist.

10. HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet,

daß das selektierbare Markergen über ein Ribozym bzw. eine Erkennungsstelle für ein Ribozym mit der HCV-RNA verbunden ist

- HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 10. dadurch gekennzeichnet.
 - daß es ein integriertes Reportergen aufweist.
- HCV-RNA-Konstrukt nach Anspruch 11, dadurch gekennzeichnet,
- daß das Reportergen ein Gen aus der Gruppe der Luziferasegene, dem CAT-Gen (Chloramphenicol-Acetayl-Transferase-Gen), dem lack-Zen (beta-Galikodsidasegen), der GFP-Gene (genen-fluorescence-protein-Gene), dem GUS-Gen (Glukuronidasegen) und dem SEAP-Gen (Sezemierte-Alkalische-Phosphatase-Gen) etc.
 - HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 11, dadurch gekennzeichnet.
 - daß deren Replikation die Expression eines (zellulären) Surrogatmarkergens beeinflußt.
 - HCV-RNA-Konstrukt nach einem der Ansprüche 11 bis 13. dadurch gekennzeichnet.
- 20 daß das Resistenzgen derart in das offene Leseraster der HCV-RNA einkloniert ist, daß es erst nach einer proteolytischen Prozessierung in eine aktive Form überführbar ist.
 - 15. HCV-RNA-Konstrukt nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet,
 - daß das Reportergen und das selektierbare Markergen derart räumlich in dem Konstrukt angeordnet sind, daß sie gemeinsam ein Fusionsprotein exprimieren.
 - 16. Zellkultursystem nach einem der Ansprüche 1 bis 3 dadurch gekennzeichnet,
- daß das HCV-RNA-Konstrukt ein Konstrukt gemäß wenigstens einem der Ansprüche 4 bis 15 ist.
 - 17. Zellkultursystem nach Anspruch 1, dadurch gekennzeichnet,

- daß die das HCV-RNA-Konstrukt enthaltenden Zellen bei der DSMZ, Braunschweig, BRD, unter der Hinterlegungsnummer DSM ACC2394 (Laborbezeichnung HuBI 9-13) hinterlegt sind.
- 18. Verwendung eines Zelllwitursystems nach einem der Ansprüche 1 bis 3 oder 16 bis 17 und/oder eines HOV-RNA-Konstrukts nach einem der Ansprüche 4 bis 15 zur Herstellung und/oder Evaluierung und/oder Testung von Therapeutika und/oder Diagnostika zur Behandlung von insbesondere HOV-Infektionen.
- Verwendung eines Zellkultursystems nach einem der Ansprüche 1 bis 3 oder 16 bis 17 und/oder eines HCV-RNA-Konstrukts nach einem der Ansprüche 4 bis 15 zur Herstellung eines Impfstoffes gegen HCV-Infektionen.
- Verwendung eines HCV-RNA-Konstrukts nach einem der Ansprüche 4 bis 15 zur Herstellung einer leberzellspezi fischen Genfähre für die Gentherapie.
 - 21. HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 15. dadurch gekennzeichnet.
- daß es ein integriertes Fremdgen aufweist und dazu geeignet ist, dieses Fremdgen in eine Zielzelle einzuschleusen, die zur Expression dieses Fremdgens geeignet ist.
 - Verfahren zur Gewinnung von zellkultur-adaptierten Mutanten eines HCV-RNA-Konstrukts gemäß einem der Ansprüche 4 bis 15, wobei die Mutanten gegenüber dem HCV-RNA-Konstrukt eine erhöhte Replikationseffizienz aufweisen, dadurch gekennzeichnet,
 - daß man ein Zellkultursystem gemäß Anspruch 1, bei dem das eingeschleuste HCV-spezifische Genmaterial ein HCV-RNA-Konstrukt mit Selektionsgen nach einem der Ansprüche 4 bis 15 ist, auffindem dem Selektionsein entsprechenden Selektionsmedium kultiviert, daß man die gewachsenen Zellklone erntet, und daß man

aus diesen Zellklonen die HCV-RNA-Konstrukte oder Teile davon isoliert.

- 23. Verfahren nach Anspruch 22, dadurch gekennzeichnet,
 - daß man die isolierten HCV-RINA-Konstrukta wenigstens einmal erneut passagiert, nämlich in Zellen eines Zeilkultursystems nach Anspruch 1 einschleust, das dabei erhaltene Zellkultursystem gemäß Anspruch 1, bei dem das eingeschleuste HCV-spezifische Germaterial das isolierte HCV-RINA-Konstrukt mit Selektionsgen ist, auf/in dem dem Selektionsgen entsprechenden Selektionsmedium kultiviert, die gewachsenen Zellklone erntet und aus diesen Zellklonen die HCV-RINA-Konstrukte sloeiert.
- 24. Verfahren zur Herstellung von Mutanten eines HCV-Vollängengenoms oder eines HCV-Teilgenoms oder eines beliebigen HCV- Konstrukts mit im Vergleich zu dem ursprünglichen HCV-Vollängengenom oder -Teilgenom oder HCV-FNN-Konstrukt erhöhter Repliktätionseführenz, dadurch gekennzeichnet.
- daß man mit einem Verfahren nach Anspruch 22 oder 23 eine zellkultur-adaptierte Mutante eines HCV-RNA-Konstrukts herstellt und isoliert.
 - daß man die Nukleotid- und Aminosäuresequenz dieser Mutante bestimmt und durch Vergleich mit der Nukleotid- und Aminosäuresequenz des ursprünglichen HCV-RNA-Konstrukts die Art, Anzahl und Positionen der Nukleotid- und Aminosäuremutationen bestimmt.
- 20 und daß man diese Mutationen entweder durch gezielte Mutagenese oder durch Austausch von Sequenzabschnitten, die die betreffenden Mutationen erhalten, in ein (selbertes) HCV- Vollängengenom oder ein HCV- Teilgenom oder ein beleibigse HCV-MN-Konstrukt einführt.
 - 25. Zellkultur-adaptiertes HCV-RNA-Konstrukt mit hoher Replikationseffizienz, dadurch gekennzeichnet,
 - daß es durch Nukleotid- und/oder Aminosäure -Mutationen von einem HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 15 ableitbar ist und daß es mit einem Verfahren nach einem der Ansprüche 22 bis 24 erhältlich ist.
- 30 26. Zellkultur-adaptiertes HCV-RNA-Konstrukt nach Anspruch 25, dadurch gekennzeichnet,
 - daß es einen oder mehrere der nachfolgend aufgeführten Aminosaureaustausche autweist, nämlich 1283 arg
 > gly und/oder 1383 glu -> alta und/oder 1577 gl> arg und/oder 1696 lys. syla und/oder 1996 pro -> ser und/oder 2163 glu -> gly und/oder 2330 lys. - glu und/oder 2424 gl -> val autweist.
 - 27. Zellkultur-adaptiertes HCV-RNA-Konstrukt nach Anspruch 25 oder 26, dadurch gekennzeichnet,
 - daß es einen oder mehrere der in Tabelle 3 aufgeführten Nukleotid- und/oder Aminosäureaustausche aufweist, wobei Tabelle 3 Bestandteil dieses Anspruchs ist.
 - Zellkultur-adaptierte Mutanten eines HCV-RNA-Konstrukts oder eines HCV-Vollängengenoms mit im Vergleich zu
 dem ursprünglichen HCV-RNA-Konstrukt oder dem ursprünglichen HCV-Vollängengenom erhöhter Replikationselfläzienz, daufurch gekennzeichnet.
 - daß sie mit einem Verfahren erhällich ist, bei dem man in einem zellkultur-adapitierten HCV-RNA-Konstrukt nach Anspruch 24 durch Sequenzanalyse und Sequenzvergleich die Art und Anzahl der Mulationen bestimmt und diese Mulationen in ein HCV-RNA-Konstrukt, indbesondere in ein HCV-RNA-Konstrukt gemäß einem der Ansprüche 4 bis 15, oder in ein (solientes) HCV-RNA-Vollangengenom einführt, entweder durch gezielte Mulaenese oder durch Justusch von Sexuenzabschritten die die betreffenden Mulationen enthalten.
 - 29. Hepatitis C Viruspartikel oder virus-ähnliche Partikel dadurch gekennzeichnet.

- daß sie mit einem Verfahren nach einem der Ansprüche 22-24 erhältlich sind.
- 55 30. Zellen, infiziert mit Hepatitis C Viruspartikeln oder virus-ähnliche Partikeln gemäß Anspruch 29.

Fig. 1

Fig. 2

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 11

B G418-Konzentration: 500 μg/ml 250 μg/ml 100 μg/ml

Anzahl erhaltener Kolonien: 1 23 75

Fig. 12

	Ë H	, ,		<u>,</u>	i L
	58	88		88	58
	Н	Н		Н	-
	ξ	₹		\$	₹S
	48	Δà 84		8	48
	₽₽	₩		₽₽	A
	3	3		6	3
	2	IRES		2	9
	E2	ortergene		E2 07	5' Reportengene Ub
	<u> </u>	- M		Ē	Repo
	ပ	5		o	ີດ
į	1			S	
	ortergene			ortengene	
	Rep			Rep P	
	5,		6	ίς. 	

ώ L		ń
\perp		Ľ
5B		58
5A		5A
48		4B
ΨÞ		ΔÞ
3		3
2		g
Zď		
E2		RG
E1		Ļ
ပ		ίς I
٩		
RG		
5,	ř	