RWorksheet_Octavio#4c

2023-11-22

#1. Use the dataset mpg #1a. Show your solutions on how to import a csv file into the environment.

```
library(readr)
mpg <- read_csv("mpg.csv")</pre>
## New names:
## Rows: 234 Columns: 12
## -- Column specification
## ------ Delimiter: "," chr
## (6): manufacturer, model, trans, drv, fl, class dbl (6): ...1, displ, year,
## cyl, cty, hwy
## i Use `spec()` to retrieve the full column specification for this data. i
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## * `` -> `...1`
head(mpg)
## # A tibble: 6 x 12
     ...1 manufacturer model displ year
##
                                          cyl trans drv
                                                           cty
                                                                 hwy fl
                                                                           class
##
    <dbl> <chr>
                      <chr> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <chr> <dbl> <dbl> <chr>
                              1.8 1999
## 1
       1 audi
                      a4
                                        4 auto~ f
                                                          18
                                                                  29 p
## 2
        2 audi
                              1.8 1999
                                            4 manu~ f
                      a4
                                                            21
                                                                  29 p
                                                                           comp~
## 3
        3 audi
                      a4
                                   2008
                                           4 manu~ f
                                                            20
                                                                  31 p
                                                                           comp~
## 4
        4 audi
                      a4
                              2
                                   2008
                                            4 auto~ f
                                                                           comp~
                                                            21
                                                                  30 p
## 5
        5 audi
                      a4
                              2.8 1999
                                            6 auto~ f
                                                          16
                                                                  26 p
                                                                           comp~
## 6
                                            6 manu~ f
        6 audi
                      a4
                              2.8 1999
                                                          18
                                                                  26 p
                                                                           comp~
#1b Which variables from mpg dataset are categorical?
str(mpg)
## spc_tbl_ [234 x 12] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
               : num [1:234] 1 2 3 4 5 6 7 8 9 10 ...
## $ manufacturer: chr [1:234] "audi" "audi" "audi" "audi" ...
               : chr [1:234] "a4" "a4" "a4" "a4" ...
## $ model
  $ displ
                : num [1:234] 1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
                 : num [1:234] 1999 1999 2008 2008 1999 ...
##
   $ vear
                 : num [1:234] 4 4 4 4 6 6 6 4 4 4 ...
##
   $ cyl
## $ trans
                : chr [1:234] "auto(15)" "manual(m5)" "manual(m6)" "auto(av)" ...
                : chr [1:234] "f" "f" "f" "f" ...
## $ drv
## $ cty
                 : num [1:234] 18 21 20 21 16 18 18 18 16 20 ...
## $ hwy
                : num [1:234] 29 29 31 30 26 26 27 26 25 28 ...
                : chr [1:234] "p" "p" "p" "p" ...
## $ fl
                 : chr [1:234] "compact" "compact" "compact" ...
## $ class
   - attr(*, "spec")=
##
##
    .. cols(
##
         \dots1 = col_double(),
         manufacturer = col_character(),
##
```

```
##
         model = col_character(),
##
         displ = col_double(),
         year = col_double(),
##
##
         cyl = col_double(),
##
         trans = col_character(),
     . .
         drv = col_character(),
##
         cty = col_double(),
##
     . .
##
         hwy = col_double(),
##
         fl = col_character(),
          class = col_character()
##
##
     ..)
   - attr(*, "problems")=<externalptr>
# manufacturer, model, trans, drv, fl, class variables are categorical
#1c. Which are continuous variables?
summary(mpg)
##
         . . . 1
                     manufacturer
                                           model
                                                               displ
## Min. : 1.00
                     Length:234
                                        Length: 234
                                                                 :1.600
                                                           Min.
   1st Qu.: 59.25
                     Class :character
                                        Class : character
                                                           1st Qu.:2.400
## Median :117.50
                     Mode :character
                                        Mode :character
                                                           Median :3.300
         :117.50
## Mean
                                                           Mean
                                                                  :3.472
                                                           3rd Qu.:4.600
##
  3rd Qu.:175.75
##
  Max.
         :234.00
                                                           Max.
                                                                  :7.000
##
                                                          drv
         year
                        cyl
                                      trans
## Min. :1999 Min.
                        :4.000
                                   Length:234
                                                      Length: 234
## 1st Qu.:1999
                  1st Qu.:4.000
                                 Class :character
                                                      Class : character
## Median :2004
                  Median :6.000
                                   Mode :character
                                                      Mode :character
## Mean :2004
                  Mean :5.889
## 3rd Qu.:2008
                   3rd Qu.:8.000
## Max. :2008
                   Max. :8.000
##
        cty
                         hwy
                                         fl
                                                          class
## Min. : 9.00
                  Min.
                           :12.00
                                    Length: 234
                                                       Length: 234
## 1st Qu.:14.00
                   1st Qu.:18.00
                                    Class :character
                                                       Class : character
## Median :17.00
                   Median :24.00
                                    Mode :character
                                                       Mode : character
## Mean :16.86
                    Mean :23.44
## 3rd Qu.:19.00
                    3rd Qu.:27.00
## Max.
           :35.00
                           :44.00
                    Max.
##The categorical variables are the X, displ, year, cyl, cty, hwy are continuous variables
#2.1 Which manufacturer has the most models in this data set? Which model has the most variations? Show
your answer.
manufacturer_asTable <- table(mpg$manufacturer)</pre>
manufacturer_most_models <- names(manufacturer_asTable)[which.max(manufacturer_asTable)]
manufacturer most models
## [1] "dodge"
# The dodge manufacturer has the most models
model_asTable <- table(mpg$model)</pre>
model_most_vars <- names(model_asTable)[which.max(model_asTable)]</pre>
```

```
model_most_vars
## [1] "caravan 2wd"
# The caravan 2wd has the most variations
#2.1a Group the manufacturers and find the unique models. Show your codes and result.
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
manufacturers_models <- data.frame(Manufacturer = mpg$manufacturer, Model = mpg$model)</pre>
manufacturers_models
       Manufacturer
##
                                       Model
## 1
                audi
                                           a4
## 2
                audi
                                           a4
## 3
                audi
                                           a4
## 4
                audi
                                           a4
## 5
                audi
                                           a4
## 6
                audi
                                           a4
## 7
                audi
                                           a4
## 8
                audi
                                  a4 quattro
## 9
                                  a4 quattro
                audi
## 10
                audi
                                  a4 quattro
## 11
                audi
                                  a4 quattro
## 12
                audi
                                  a4 quattro
## 13
                audi
                                  a4 quattro
## 14
                audi
                                  a4 quattro
## 15
                audi
                                  a4 quattro
## 16
                audi
                                  a6 quattro
## 17
                audi
                                  a6 quattro
## 18
                audi
                                  a6 quattro
                         c1500 suburban 2wd
## 19
          chevrolet
## 20
          chevrolet
                          c1500 suburban 2wd
## 21
          chevrolet
                         c1500 suburban 2wd
## 22
          chevrolet
                         c1500 suburban 2wd
## 23
          chevrolet
                         c1500 suburban 2wd
## 24
          chevrolet
                                    corvette
## 25
          chevrolet
                                    corvette
## 26
          chevrolet
                                    corvette
## 27
          chevrolet
                                    corvette
## 28
          chevrolet
                                    corvette
## 29
          chevrolet
                             k1500 tahoe 4wd
## 30
          chevrolet
                             k1500 tahoe 4wd
## 31
          chevrolet
                             k1500 tahoe 4wd
```

k1500 tahoe 4wd

32

chevrolet

##	33	chevrolet	mal	Libu
##	34	chevrolet	mal	Libu
##	35	chevrolet	mal	Libu
##	36	chevrolet	mal	Libu
##	37	chevrolet	mal	Libu
##	38	dodge	caravan	2wd
##	39	dodge	caravan	2wd
##	40	dodge	caravan	2wd
##	41	dodge	caravan	2wd
##	42	dodge	caravan	2wd
##	43	dodge	caravan	2wd
##	44	dodge	caravan	2wd
##	45	dodge	caravan	2wd
##	46	dodge	caravan	2wd
##	47	dodge	caravan	2wd
##	48	dodge	caravan	2wd
##	49	dodge	dakota pickup	4wd
##	50	dodge	dakota pickup	4wd
##	51	dodge	dakota pickup	4wd
##	52	dodge	dakota pickup	4wd
##	53	dodge	dakota pickup	
##	54	dodge	dakota pickup	
##	55	dodge	dakota pickup	
##	56	dodge	dakota pickup	
##	57	dodge	dakota pickup	
##	58	dodge	durango	
##	59	dodge	durango	4wd
##	60	dodge	durango	
##	61	dodge	durango	4wd
##	62	dodge	durango	
##	63	dodge	durango	4wd
##	64	dodge	durango	4wd
##	65	dodge	ram 1500 pickup	4wd
##	66	dodge	ram 1500 pickup	
##	67	dodge	ram 1500 pickup	
##	68	dodge	ram 1500 pickup	
##	69	dodge	ram 1500 pickup	
##	70	dodge	ram 1500 pickup	
##	71	dodge	ram 1500 pickup	4wd
##	72	dodge	ram 1500 pickup	4wd
##	73	dodge	ram 1500 pickup	
##	74	dodge	ram 1500 pickup	
##	75	ford	expedition	2wd
##	76	ford	expedition	2wd
##	77	ford	expedition	2wd
##	78	ford	explorer	4wd
##	79	ford	explorer	4wd
##	80	ford	explorer	4wd
##	81	ford	explorer	4wd
##	82	ford	explorer	4wd
##	83	ford	explorer	4wd
##	84	ford	f150 pickup	
##	85	ford	f150 pickup	4wd
##	86	ford	f150 pickup	4wd
		= = = •	rP	

##	87	ford	f150 pickup 4wd
##	88	ford	f150 pickup 4wd
##	89	ford	f150 pickup 4wd
##	90	ford	f150 pickup 4wd
##	91	ford	mustang
##	92	ford	mustang
##	93	ford	mustang
##	94	ford	mustang
##	95	ford	mustang
##	96	ford	mustang
##	97	ford	mustang
##	98	ford	mustang
##	99	ford	mustang
##	100	honda	civic
##	101	honda	civic
##	102	honda	civic
##	103	honda	civic
##	104	honda	civic
##	105	honda	civic
##	106	honda	civic
##	107	honda	civic
##	108	honda	civic
##	109	hyundai	sonata
##	110	hyundai	sonata
##	111	hyundai	sonata
##	112	hyundai	sonata
##	113	hyundai	sonata
##	114	hyundai	sonata
##	115	hyundai	sonata
##	116	hyundai	tiburon
##	117	hyundai	tiburon
##	118	hyundai	tiburon
##	119	hyundai	tiburon
##	120	hyundai	tiburon
##	121	hyundai	tiburon
##	122	hyundai	tiburon
##	123	jeep	grand cherokee 4wd
##	124	jeep	grand cherokee 4wd
##	125	jeep	grand cherokee 4wd
##	126	jeep	grand cherokee 4wd
##	127	jeep	grand cherokee 4wd
##	128	jeep	grand cherokee 4wd
##	129	jeep	grand cherokee 4wd
##	130	jeep	grand cherokee 4wd
##	131	land rover	range rover
##	132	land rover	range rover
##	133	land rover	range rover
##	134	land rover	range rover
##	135	lincoln	navigator 2wd
##	136	lincoln	navigator 2wd
##	137	lincoln	navigator 2wd
##	138	mercury	mountaineer 4wd
##	139	mercury	mountaineer 4wd
##	140	mercury	mountaineer 4wd

##	141	mercury	mountaineer 4wd
##	142	nissan	altima
##	143	nissan	altima
##	144	nissan	altima
##	145	nissan	altima
##	146	nissan	altima
##	147	nissan	altima
##	148	nissan	maxima
##	149	nissan	maxima
##	150	nissan	maxima
##	151	nissan	pathfinder 4wd
##	152	nissan	pathfinder 4wd
##	153	nissan	pathfinder 4wd
##	154	nissan	pathfinder 4wd
##	155	pontiac	grand prix
##	156	pontiac	grand prix
##	157	pontiac	grand prix
##	158	pontiac	grand prix
##	159	pontiac	grand prix
##	160	subaru	forester awd
##	161	subaru	forester awd
##	162	subaru	forester awd
##	163	subaru	forester awd
##	164	subaru	forester awd
##	165	subaru	forester awd
##	166	subaru	impreza awd
##	167	subaru	impreza awd
##	168	subaru	impreza awd
##	169	subaru	-
##	170	subaru	· •
##	171	subaru	impreza awd
##	172		impreza awd
##	173	subaru	impreza awd
		subaru	impreza awd
##	174	toyota	4runner 4wd
##	175	toyota	4runner 4wd
##	176	toyota	4runner 4wd
##	177	toyota	4runner 4wd
##	178	toyota	4runner 4wd
##	179	toyota	4runner 4wd
##	180	toyota	camry
##	181	toyota	camry
##	182	toyota	camry
##	183	toyota	camry
##	184	toyota	camry
##	185	toyota	camry
##	186	toyota	camry
##	187	toyota	camry solara
##	188	toyota	camry solara
##	189	toyota	camry solara
##	190	toyota	camry solara
##	191	toyota	camry solara
##	192	toyota	camry solara
##	193	toyota	camry solara
##	194	toyota	corolla
		•	

```
## 195
             toyota
                                     corolla
## 196
             toyota
                                     corolla
## 197
             toyota
                                     corolla
## 198
             toyota
                                     corolla
## 199
             toyota land cruiser wagon 4wd
## 200
             toyota land cruiser wagon 4wd
## 201
             toyota
                          toyota tacoma 4wd
## 202
             toyota
                          toyota tacoma 4wd
## 203
             toyota
                          toyota tacoma 4wd
## 204
                          toyota tacoma 4wd
             toyota
## 205
             toyota
                          toyota tacoma 4wd
## 206
             toyota
                          toyota tacoma 4wd
## 207
             toyota
                          toyota tacoma 4wd
## 208
         volkswagen
                                         gti
## 209
         volkswagen
                                         gti
## 210
         volkswagen
                                         gti
## 211
         volkswagen
                                         gti
## 212
         volkswagen
                                         gti
## 213
         volkswagen
                                       jetta
## 214
         volkswagen
                                       jetta
## 215
         volkswagen
                                       jetta
## 216
         volkswagen
                                       jetta
## 217
         volkswagen
                                       jetta
## 218
         volkswagen
                                       jetta
## 219
         volkswagen
                                       jetta
## 220
         volkswagen
                                       jetta
## 221
         volkswagen
                                       jetta
## 222
         volkswagen
                                  new beetle
## 223
         volkswagen
                                  new beetle
## 224
         volkswagen
                                  new beetle
## 225
         volkswagen
                                  new beetle
## 226
         volkswagen
                                  new beetle
## 227
         volkswagen
                                  new beetle
## 228
         volkswagen
                                      passat
## 229
         volkswagen
                                      passat
## 230
         volkswagen
                                      passat
## 231
         volkswagen
                                      passat
## 232
         volkswagen
                                      passat
## 233
         volkswagen
                                      passat
## 234
         volkswagen
                                      passat
```

unique_models <- unique(manufacturers_models)
unique_models</pre>

##		Manufacturer	Model
##	1	audi	a4
##	8	audi	a4 quattro
##	16	audi	a6 quattro
##	19	chevrolet	c1500 suburban 2wd
##	24	chevrolet	corvette
##	29	chevrolet	k1500 tahoe 4wd
##	33	chevrolet	malibu
##	38	dodge	caravan 2wd
##	49	dodge	dakota pickup 4wd
##	58	dodge	durango 4wd

```
## 65
              dodge
                        ram 1500 pickup 4wd
## 75
               ford
                             expedition 2wd
                               explorer 4wd
## 78
               ford
## 84
               ford
                            f150 pickup 4wd
## 91
               ford
                                     mustang
## 100
                                       civic
              honda
## 109
            hyundai
                                      sonata
            hyundai
## 116
                                     tiburon
## 123
                jeep
                         grand cherokee 4wd
## 131
         land rover
                                range rover
## 135
            lincoln
                              navigator 2wd
## 138
                            mountaineer 4wd
            mercury
## 142
             nissan
                                      altima
## 148
             nissan
                                      maxima
                             pathfinder 4wd
## 151
             nissan
## 155
            pontiac
                                 grand prix
## 160
             subaru
                               forester awd
## 166
             subaru
                                impreza awd
## 174
                                4runner 4wd
             toyota
## 180
             toyota
                                       camry
## 187
             toyota
                               camry solara
## 194
             toyota
                                     corolla
## 199
             toyota land cruiser wagon 4wd
## 201
                          toyota tacoma 4wd
             toyota
## 208
         volkswagen
                                         gti
## 213
         volkswagen
                                       jetta
## 222
         volkswagen
                                 new beetle
## 228
         volkswagen
                                      passat
unique_models_factor <- factoredManufacturer <- as.factor(unique_models$Manufacturer)</pre>
#2.1 b Graph the result by using plot() and ggplot(). Write the codes and its result.
#install.packages("ggplot2")
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following object is masked _by_ '.GlobalEnv':
##
##
#install.packages("dplyr")
library(dplyr)
unique_count <- unique_models %>%
  count(Manufacturer)
ggplot(unique_count, aes(x = Manufacturer, y = n, fill = "orange")) +
  geom_bar(stat = "identity") +
  labs(title = "Unique Models of Manufacturers",
       x = "Manufacturer")
```

Unique Models of Manufacturers

- #2. Same dataset will be used. You are going to show the relationship of the modeland the manufacturer.
- #2a. . Group the manufacturers and find the unique models. Show your codes and result.
- # It creates ascatterplot of the mpg dataset with model on the x-axis and manufacturer on the y-axis. # In this plot, Each point on the plot represents a specific model and its corresponding manufacturer.
- 2b. For you, is it useful? If not, how could you modify the data to make it more informative?

#The plot may be useful for visualizing the distribution of models across manufacturers, but it could b

#3. Plot the model and the year using ggplot(). Use only the top 20 observations. Write the codes and its results.

```
top_20_data <- head(mpg[order(mpg$year, decreasing = TRUE), ], 20)
ggplot(top_20_data, aes(x = year, y = model)) +
   geom_point() +
   labs(title = "Top 20 Observations: Model vs Year", x = "Year", y = "Model") + theme(axis.text.x = elections)</pre>
```


4. Using the pipe (%>%), group the model and get the number of cars per model. Show codes and its result

```
cars_per_model <- mpg %>%
  group_by(model) %>%
  summarise(num_cars = n())
print(cars_per_model)
## # A tibble: 38 x 2
##
      model
                          num_cars
##
      <chr>
                             <int>
##
    1 4runner 4wd
                                 6
                                 7
##
    2 a4
   3 a4 quattro
                                 8
##
   4 a6 quattro
                                 3
##
    5 altima
                                 6
                                 5
    6 c1500 suburban 2wd
                                 7
##
    7 camry
                                 7
##
    8 camry solara
##
   9 caravan 2wd
                                11
## 10 civic
                                 9
```

4a. Plot using geom_bar() using the top 20 observations only. The graphs should have a title, labels and colors. Show code and results.

i 28 more rows

```
top_20_data <- head(mpg[order(mpg$year, decreasing = TRUE), ], 20)</pre>
```

```
ggplot(top_20_data, aes(x = model)) +
  geom_bar(fill = "pink", color = "black") +
  labs(title = "Top 20 Observations: Number of Cars per Model",
      x = "Model", y = "Number of Cars") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

Top 20 Observations: Number of Cars per Model

Model

#4b. Plot using the geom_bar() + coord_flip() just like what is shown below. Show codes and its result.

```
ggplot(top_20_data, aes(y = model)) +
  geom_bar(fill = "violet", color = "black") +
  labs(title = "Top 20 Observations: Number of Cars per Model",
      x = "Number of Cars", y = "Model") +
  coord_flip() +
  theme(axis.text.y = element_text(angle = 45, hjust = 1))
```


5. Plot the relationship between cyl - number of cylinders and displ - engine displacement using geom_point with aesthetic color = engine displacement. Title should be "Relationship between No. of Cylinders and Engine Displacement".

5a. How would you describe its relationship? Show the codes and its result.

```
# It will generate a scatter plot showing the relationship between the number of cylinders and engine d
# As the number of cylinders increases, the engine displacement tends to increase as well. This suggest
```

6. Plot the relationship between displ (engine displacement) and hwy(highway miles per gallon). Mapped it with a continuous variable you have identified in #1-c. What is its result? Why it produced such output?

Relationship between Engine Displacement and Highway MPG

- # This is a scatterplot with engine displacement on the x-axis and highway miles per gallon on the y-ax # Using this plot, we can understand the relationship between the displ, hwy, and cty. By mapping the c # This can provide understanding of the fuel efficiency of vehicle with different engine sizes
 - 6. Import the traffic.csv onto your R environment.

```
library(readr)
traffic <- read_csv("traffic.csv")</pre>
## Rows: 48120 Columns: 4
## -- Column specification -
## Delimiter: ","
## dbl (3): Junction, Vehicles, ID
## dttm (1): DateTime
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
traffic
## # A tibble: 48,120 x 4
```

```
##
     DateTime
                        Junction Vehicles
                                                  ID
                           <dbl>
                                   <dbl>
##
     <dttm>
                                               <dbl>
  1 2015-11-01 00:00:00
                             1
                                      15 20151101001
  2 2015-11-01 01:00:00
                             1
                                      13 20151101011
  3 2015-11-01 02:00:00
                             1
                                      10 20151101021
## 4 2015-11-01 03:00:00
                                       7 20151101031
                              1
```

```
## 5 2015-11-01 04:00:00
                                    1
                                              9 20151101041
## 6 2015-11-01 05:00:00
                                              6 20151101051
                                    1
## 7 2015-11-01 06:00:00
                                   1
                                              9 20151101061
## 8 2015-11-01 07:00:00
                                             8 20151101071
                                   1
## 9 2015-11-01 08:00:00
                                    1
                                             11 20151101081
## 10 2015-11-01 09:00:00
                                             12 20151101091
                                    1
## # i 48,110 more rows
num obs <- nrow(traffic)</pre>
num_obs
## [1] 48120
num_vars <- ncol(traffic)</pre>
num_vars
## [1] 4
vars <- colnames(traffic)</pre>
vars
## [1] "DateTime" "Junction" "Vehicles" "ID"
6a. How many numbers of observation does it have? What are the variables of the traffic dataset the Show
your answer.
num_obs <- nrow(traffic)</pre>
num_obs
## [1] 48120
num_vars <- ncol(traffic)</pre>
num_vars
## [1] 4
vars <- colnames(traffic)</pre>
## [1] "DateTime" "Junction" "Vehicles" "ID"
6b. subset the traffic dataset into junctions. What is the R codes and its output?
junctions_subset_1 <- subset(traffic, Junction == 1)</pre>
junctions_subset_2 <- subset(traffic, Junction == 2)</pre>
junctions_subset_3 <- subset(traffic, Junction == 3)</pre>
junctions_subset_4 <- subset(traffic, Junction == 4)</pre>
6c. Plot each junction in a using geom_line(). Show your solution and output.
#7. From alexa_file.xlsx, import it to your environment
library(readxl)
alexa_file <- read_excel("alexa_file.xlsx")</pre>
alexa_file
## # A tibble: 3,150 x 5
##
                                                                                  feedback
      rating date
                                    variation
                                                          verified_reviews
##
       <dbl> <dttm>
                                    <chr>>
                                                          <chr>>
                                                                                      <dbl>
```

```
##
           5 2018-07-31 00:00:00 Charcoal Fabric
                                                      Love my Echo!
                                                                                    1
                                                      Loved it!
##
           5 2018-07-31 00:00:00 Charcoal Fabric
                                                                                    1
    2
                                                      Sometimes while play~
##
   3
           4 2018-07-31 00:00:00 Walnut Finish
                                                                                    1
           5 2018-07-31 00:00:00 Charcoal Fabric
##
   4
                                                      I have had a lot of ~
                                                                                    1
##
    5
           5 2018-07-31 00:00:00 Charcoal Fabric
                                                                                    1
   6
           5 2018-07-31 00:00:00 Heather Gray Fabric I received the echo ~
##
                                                                                    1
   7
           3 2018-07-31 00:00:00 Sandstone Fabric
##
                                                      Without having a cel~
                                                                                    1
           5 2018-07-31 00:00:00 Charcoal Fabric
##
   8
                                                      I think this is the ~
                                                                                    1
           5 2018-07-30 00:00:00 Heather Gray Fabric looks great
##
   9
                                                                                    1
           5 2018-07-30 00:00:00 Heather Gray Fabric Love it! I've listen~
## 10
                                                                                    1
## # i 3,140 more rows
```

7a. How many observations does alexa_file has? What about the number of columns? Show your solution and answer.

```
number_obs <- nrow(alexa_file)
number_obs

## [1] 3150
number_cols <- ncol(alexa_file)
number_cols</pre>
```

[1] 5

7b. group the variations and get the total of each variations. Use dplyr package. Show solution and answer.

```
groupA <- alexa_file %>%
  group_by(variation) %>%
  summarise(totalcount_=n())
groupA
```

```
## # A tibble: 16 x 2
##
      variation
                                   totalcount_
##
      <chr>
                                          <int>
   1 Black
##
                                            261
##
   2 Black Dot
                                            516
##
  3 Black Plus
                                            270
  4 Black Show
                                            265
                                            241
## 5 Black Spot
## 6 Charcoal Fabric
                                            430
  7 Configuration: Fire TV Stick
                                            350
   8 Heather Gray Fabric
                                            157
## 9 Oak Finish
                                             14
## 10 Sandstone Fabric
                                             90
## 11 Walnut Finish
                                             9
## 12 White
                                             91
## 13 White Dot
                                            184
## 14 White Plus
                                             78
## 15 White Show
                                             85
## 16 White Spot
                                            109
```

7c. Plot the variations using the ggplot() function. What did you observe? Complete the details of the graph. Show solution and answer.

```
library(ggplot2)
ggplot(alexa_file, aes(x = variation)) +
```

Distribution of Variations

Black Black

7d. Plot a geom_line() with the date and the number of verified reviews. Complete the details of the graphs. Show your answer and solution.

Number of Verified Reviews Per Month

7e. Get the relationship of variations and ratings. Which variations got the most highest in rating? Plot a graph to show its relationship. Show your solution and answer.

```
library(dplyr)
variation_ratings <- alexa_file %>%
  group_by(variation) %>%
  summarise(avg_rating = mean(rating))
variation_ratings
```

```
## # A tibble: 16 x 2
##
      variation
                                   avg_rating
      <chr>
##
                                        <dbl>
                                         4.23
##
   1 Black
                                         4.45
##
   2 Black Dot
  3 Black Plus
                                         4.37
                                         4.49
## 4 Black Show
## 5 Black Spot
                                         4.31
## 6 Charcoal Fabric
                                         4.73
  7 Configuration: Fire TV Stick
                                         4.59
## 8 Heather Gray Fabric
                                         4.69
## 9 Oak Finish
                                         4.86
## 10 Sandstone Fabric
                                         4.36
## 11 Walnut Finish
                                         4.89
                                         4.14
## 12 White
## 13 White Dot
                                         4.42
## 14 White Plus
                                         4.36
## 15 White Show
                                         4.28
```

```
## 16 White Spot
                                         4.31
highest_ratings <- variation_ratings %>%
  filter(avg_rating == max(avg_rating))
highest_ratings
## # A tibble: 1 x 2
##
     variation
                  avg_rating
##
     <chr>
                        <dbl>
## 1 Walnut Finish
                         4.89
# The walnut finish variation has the highest rating
ggplot(variation_ratings, aes(x = variation, y = avg_rating)) +
  geom_bar(stat = "identity", fill = "blue") +
  labs(title = "Average Ratings by Variation",
       x = "Variation",
       y = "Average Rating")
```

Average Ratings by Variation

