Finite element methods in scientific computing

Wolfgang Bangerth, Colorado State University

Lecture 3.95:

The ideas behind the finite element method

Part 6: Error estimates for the Laplace equation

Solutions

Recall (ignoring boundary values):

The "weak solution" $u \in H^1(\Omega)$ of the Laplace equation satisfies the "weak formulation":

$$(\nabla \varphi, \nabla u) = (\varphi, f) \qquad \forall \varphi \in H^1(\Omega)$$

The finite element solution $u_h \in V_h \subset H^1(\Omega)$ satisfies the "discrete weak formulation":

$$(\nabla \varphi_h, \nabla u_h) = (\varphi_h, f) \qquad \forall \varphi_h \in V_h \subset H^1(\Omega)$$

Here: V_h is the space of piecewise polynomial functions of degree p, defined on the mesh.

Previous questions

At the end of Lecture 3.92, we had 3 questions:

Question 3: Is the approximation u_h so defined "close" to the exact solution u?

Question 4: Does u_h "converge" towards u in some useful sense?

Question 5: What is the computational effort to reach a certain accuracy? Optimality?

Measuring errors

How do we *measure* whether u and u_{k} are close?

- We use a "norm" of u-u_n
- There are many possible norms:
 - Choice depends on the application
 - For some, estimating the error is easy, for others not.

Examples:

• Maximal (L^{∞}) error:

$$||u-u_h||_{L^{\infty}} = max_{x \in \Omega} |u(x)-u_h(x)|$$

• Mean square (L^2) error:

$$\|u-u_h\|_{L^2} = \left(\int_{\Omega} |u(x)-u_h(x)|^2 dx\right)^{1/2}$$

• Gradient (
$$H^1$$
, energy) error: $\|\nabla(u-u_h)\|_{L^2} = \left(\int_{\Omega} |\nabla(u(x)-u_h(x))|^2 dx\right)^{1/2}$

Form of error estimates

A priori error estimates (available before computing):

Representations of the (relative) error of the form

$$\frac{\|u-u_h\|_{?}}{\|u\|_{?'}} \leq C(p) h^{\alpha(p)}$$

Typically written as

$$||u-u_h||_{?} \leq C(p) h^{\alpha(p)} ||u||_{?}$$

- Guarantees convergence if $\alpha(p) > 0$
- But absolute level of error unknown because u on the right hand side is unknown.

Form of error estimates

A posteriori estimates (available after computing):

Representations of the (relative) error of the form

$$||u-u_h||_2 \leq C(p) h^{\beta(p)} Q(u_h)$$

- Does not guarantee convergence even if $\beta(p)>0$
- Can only be evaluated after computing u_n
- Allows estimating actual size of the error
- Substantially more complicated to derive! (See Lecture 17.75)

Ingredient #1: Galerkin orthogonality

Starting point for most error estimation approaches:

Discrete solution satisfies

$$(\nabla \varphi_h, \nabla u_h) = (\varphi_h, f) \qquad \forall \varphi_h \in V_h \subset H^1(\Omega)$$

Exact solution satisfies:

$$(\nabla \varphi, \nabla u) = (\varphi, f) \qquad \forall \varphi \in H^1(\Omega)$$

• But because $V_h \subset H^1(\Omega)$, the exact solution also satisfies

$$(\nabla \varphi_h, \nabla u) = (\varphi_h, f) \qquad \forall \varphi_h \in V_h \subset H^1(\Omega)$$

Subtract the first from the third equation:

$$|\nabla \varphi_h, \nabla (u - u_h)| = 0$$
 $\forall \varphi_h \in V_h \subset H^1(\Omega)$

Ingredient #1: Galerkin orthogonality

For finite element discretizations, we have:

$$\left(\nabla \varphi_h, \nabla (u-u_h)\right) = 0 \qquad \forall \varphi_h \in V_h \subset H^1(\Omega)$$

This is called **Galerkin orthogonality**:

The error $e=u-u_h$ is perpendicular to all elements $\varphi_h \in V_h$ with regard to the scalar product $(\nabla \circ, \nabla \circ)$!

Ingredient #2: Interpolation estimates

Recall (a variation of the theorem in) lecture 3.91:

$$\|\nabla (f - I_{h,p}f)\|_{L^{2}} \leq \frac{C(p,\Omega)}{p!} h^{p} \|\nabla^{p+1}f\|_{L^{2}}$$

Here:

- f can be any function that has sufficiently many derivatives
- $I_{h,p} f$ is the function that *interpolates f*:
 - on a mesh with maximal cell diameter h
 - has polynomial degree p on each cell

Start as follows:

$$\begin{split} \|\nabla(u-u_h)\|_{L^2}^2 &= \left(\nabla(u-u_h), \nabla(u-u_h)\right) \\ &= \left(\nabla(u-u_h), \nabla(u-u_h)\right) + \underbrace{\left(\nabla\phi_h, \nabla(u-u_h)\right)}_{=0 \text{ (Galerkin orthogonality)}} \quad \forall \phi_h \in V_h \end{split}$$

We can pick a "convenient" test function: $\varphi_h = u_h - I_{h,p} u \in V_h$

$$= \left(\nabla (u - I_{h,p} u), \nabla (u - u_h) \right)$$

Then apply the Cauchy-Schwarz inequality:

$$\leq \|\nabla(u-I_{h,p}u)\|_{L^{2}}\|\nabla(u-u_{h})\|_{L^{2}}$$

Finally divide by the gradient norm of the error.

Situation now: We are comparing the error in the FE solution with the interpolation error:

$$\frac{\|\nabla(u-u_h)\|_{L^2}}{\text{Finite element error}} \leq \frac{\|\nabla(u-I_{h,p}u)\|_{L^2}}{\text{Piecewise polynomial approximation error}}$$

We call this a "best approximation estimate": the finite element error is at least as good as the interpolation error.

For other equations, error estimation is more difficult. "Best approximation" would then look like this:

$$\frac{\|\nabla(u-u_h)\|_{L^2}}{\text{Finite element error}} \leq \underbrace{C_{\text{equation}}}_{\text{Specifics of the equation}} \underbrace{\|\nabla(u-I_{h,p}u)\|_{L^2}}_{\text{Piecewise polynomial approximation error}}$$

Situation now: We are comparing the error in the FE solution with the interpolation error:

$$\frac{\|\nabla(u-u_h)\|_{L^2}}{\text{Finite element error}} \leq \frac{\|\nabla(u-I_{h,p}u)\|_{L^2}}{\text{Piecewise polynomial approximation error}}$$

Recall the interpolation error estimate ("Ingredient #2") to obtain the final result:

$$\|\nabla(u-u_h)\|_{L^2} \leq \frac{C(p,\Omega)}{p!} \underbrace{h^p}_{\text{convergence!}} \|\nabla^{p+1}u\|_{L^2}$$
property of the solution

For the Laplace equation, we have:

$$\|\nabla(u-u_h)\|_{L^2} \leq \frac{C(p,\Omega)}{p!} \underbrace{h^p}_{\text{convergence!}} \|\nabla^{p+1}u\|_{L^2}$$

$$\underbrace{p!}_{\text{property of the solution}}$$

For many (but not all!) other equations, we get something like this:

$$\|\nabla(u-u_h)\|_{L^2} \leq \underbrace{C_{\text{equation}}}_{\text{specifics of the equations}} \underbrace{\frac{C(p,\Omega)}{p!}}_{\text{constant}} \underbrace{h^p}_{\text{optimal order convergence!}} \underbrace{\|\nabla^{p+1}u\|_{L^2}}_{\text{property of the solution}}$$

Estimating the L² error

For the Laplace equation, we have:

$$\|\nabla(u-u_h)\|_{L^2} \leq \frac{C(p,\Omega)}{p!} \underbrace{h^p}_{\text{convergence!}} \|\nabla^{p+1}u\|_{L^2}$$

$$\underbrace{p!}_{\text{property of the solution}}$$

With work (\rightarrow "Nitsche trick"), we can also estimate the L² error:

$$\|u-u_h\|_{L^2} \leq \frac{C'(p,\Omega)}{p!} h^{p+1} \|\nabla^{p+1}u\|_{L^2}$$

Estimating the L° error

For the Laplace equation, we have:

$$\|\nabla(u-u_h)\|_{L^2} \le \frac{C(p,\Omega)}{p!} \underbrace{h^p}_{\text{convergence!}} \|\nabla^{p+1}u\|_{L^2}$$

With substantially more work, we also get:

$$||u-u_{h}||_{L^{\infty}} \leq \frac{C''(p,\Omega)}{p!} h^{p+1} ||\nabla^{p+1}u||_{L^{2}} \qquad \text{if } p>1$$

$$||u-u_{h}||_{L^{\infty}} \leq \frac{C''(p,\Omega)}{p!} h^{p+1} \left(\log \frac{1}{h}\right) ||\nabla^{p+1}u||_{L^{2}} \qquad \text{if } p=1$$

Summary

For the Laplace equation, estimating errors is based on two fundamental properties:

- Interpolation estimates
- Galerkin orthogonality

With these we get the following estimates that guarantee convergence and tell us how fast the error decreases with mesh refinement:

$$\|\nabla(u-u_h)\|_{L^2} \leq \frac{C(p,\Omega)}{p!} h^p \|\nabla^{p+1}u\|_{L^2}$$
$$\|u-u_h\|_{L^2} \leq \frac{C'(p,\Omega)}{p!} h^{p+1} \|\nabla^{p+1}u\|_{L^2}$$

Finite element methods in scientific computing

Wolfgang Bangerth, Colorado State University