РГРпо курсу "Численные методы"

1. Определить корень уравнения методом половинного деления с точностью $\,\epsilon = 0{,}001\,$

1	$2^{x} + 5x - 3 = 0$	8	$\sin(x+\pi/3)-0.5x=0$
2	$3x + 4x^3 - 12x^2 - 5 = 0$	9	$5^{x} - 3x = 0$
3	$0.5^{x} + 1 = (x-2)^{2}$	10	$x^4 - x - 1 = 0$
4	$(x-3) \cdot \cos x = 1, 2\pi \le x \le 2\pi$	11	$x^2 - 2 + 0,5^x = 0$
5	$\arctan x + 1/3x^3 = 0$	12	$(x-1)^2 \lg(x+11) = 1$
6	$2x^3 - 9x^2 - 60x + 1 = 0$	13	$2x - \sin x = 0,25$
7	$\log_2(-x)\cdot(x+2) = -1$	14	$x^3 - 3x^2 - 10 = 0$

2. Решить уравнение методом Ньютона и хорд с точностью $\epsilon = 0{,}001$.

1	$\ln x + \left(x+1\right)^3 = 0$	8	$x^3 + 3x - 1 = 0$
2	$x^3 - 3x^2 + 9x - 15 = 0$	9	$3x + \cos x + 1 = 0$
3	$x^3 + 2x^2 + 2 = 0$	10	$x^3 + x - 3 = 0$
4	$x \cdot 2^x = 1$	11	$x + \lg x = 0.5$
5	$\sqrt{x+1}=1/x$	12	$x^3 + 0,4x^2 + 0,6x - 1,6 = 0$
6	$x^3 - 2x + 2 = 0$	13	$2x - x^3 + 2 = 0$
7	$x - \cos x = 0$	14	$x^3 - 0,2x^2 + 0,4x - 1,4 = 0$

3. Решить систему x = Cx + d методом простой итерации и Зейделя с точностью $\epsilon = 0{,}001$

		(C		d			C	7		d
1	$\int 0$	0,3	-0,1	0,2	$\left(-1\right)$	2	(0	0,13	-0,4	0,2	$\left(-1\right)$
	0,2	0	-0,21	0,2	-4		0,25	0	-0,14	0,2	-4
	0,3	-0,1	0	0,3	2		0,3	-0,1	0	0,3	2
	0,3	-0,1	-0,2	0	(0,1)		0,3	-0,4	-0,2	0	(0,1)
3	$\int 0$	0,27	-0,1	0,2	$\left(-1\right)$	4	$\begin{pmatrix} 0 \end{pmatrix}$	0,23	-0,2	0,2	$\left \left(-1 \right) \right $
	0,2	0	-0,26	0,2	-4		0,1	0	-0,24	-0,1	-2
	0,3	-0,1	0	0,5	2		0,2	-0,1	0	0,2	$\parallel 2 \parallel$
	0,2	-0,1	-0,2	0)	$\left(0,1\right)$		0,23	-0,4	-0,2	0	0,1

5	(0	0.2	Λ 1	0.2	(1)	6	(0	0.2	0.4	0.2	(1)
	$\begin{pmatrix} 0 \end{pmatrix}$	0,3	-0,1	0,2	$\begin{pmatrix} -1 \end{pmatrix}$	U	$\begin{pmatrix} 0 \end{pmatrix}$	0,3	0,4	0,2	$\begin{pmatrix} -1 \end{pmatrix}$
	0,2	0	0,1	-0,2	-4		0,1	0	-0,14	0,14	-1
	0,3	-0,1	0	0,3	2		0,1	0,1	0	0,3	2
	0,3	0,1	-0,2	0)	(0,1)		0,3	-0,4	-0,2	0	(0,1)
7	(0	0,3	-0,4	0,2	(-1)	8	(0	0,1	-0,1	0,2)	(-1)
	0,1	0	-0,14	-0,1	$\ -1 \ $		0,2	0	-0,2	0,1	$\mid \mid -1 \mid \mid$
	0,1	-0,1	0	0,3	$\parallel_2 \mid$		0,13	-0,2	0	0,3	$\parallel 2 \parallel$
	0,3	-0,4	-0,2	0	$\left\ \begin{array}{c} - \\ 0, 1 \end{array} \right\ $		0,1	-0,1	-0,2	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{bmatrix} - \\ 0,1 \end{bmatrix}$
	(0,3	0,4	0,2)(0,1)		(0,1	0,1	0,2	0)	(0,1)
9	(0	0,1	-0,4	1 0,2	$\sqrt{-1}$	10	(0	0,3	-0,1	0,2)	(-1)
	0,15	0	0,1	0,2	$\parallel_{-2} \parallel$		0,2	0	0,1	-0,2	-0,5
	0,3	-0,1		0,3	$\parallel _{2} \mid$		0,1	-0,2	0	0,1	$\begin{vmatrix} 2 \end{vmatrix}$
	0,1	-0.14			$\left\ \overline{0,1} \right\ $		0,1	0,2	-0,2	$\begin{pmatrix} 0 \end{pmatrix}$	$\begin{bmatrix} 0,1 \end{bmatrix}$
	(0,1	0,1	0,2)(0,1)		(0,1	0,2	0,2	0)	(0,1)
11	(0	0,3	0,1	-0,2	(-1)	12	(0	0,3	0,14	0,2	(-1)
	0,2	0	-0,1	-0,2	0,5		0,11	0	-0,41	-0,1	-1
	-0,1	0,2	0	-0,1	-2		0,1	0,1	0	0,13	$\mid 2 \mid \mid$
	0,1	0,2	-0,2	0	$\left(0,1\right)$		0,13	-0,4	-0,2	0	$\left(0,1\right)$
							`				
13	(0	-0,3	0,1	0,2	(1)	14	(0	-0,3	-0,14	0,2	$\sqrt{-1}$
	-0,2	0	0,1	0,2	0,5		0,11	0	0,41	0,1	0,5
	0,1	-0,2	0	-0,1	2		0,1	-0,1	0	-0,13	$ \begin{array}{ c c } \hline -1 \\ 0,5 \\ -2 \\ 0,1 \end{array} $
	0.1	-0.2	0.2	0	0.1		0.13	0.4	-0.2	0	$\begin{vmatrix} 0.1 \end{vmatrix}$
	\ -,-	~ , -	- , —		(- , -)		(-,)	- 7 -	-,-	-	

4. Решить систему методом простой итерации и Ньютона с точностью $\epsilon = 0{,}001.$

1	$\int \sin(y+1) - x = 1,2$	2	$\int \cos(y-1) + x = 0.5$
	$2y + \cos(x) = 2$		$\int y - \cos(x) = 3$
3	$\int \sin(y) + 2x = 2$	4	$\int \cos(y) + x = 1,5$
	$\cos(x-1) + y = 0.7$		$2y - \sin(x - 0.5) = 1$
5	$\int \sin(y+0.5) - x = 1$	6	$\int \cos(y + 0.5) + x = 0.8$
	$\cos(x-2) + y = 0$		$\sin(x) - 2y = 1.6$

7	$\int \sin(y-1) + x = 1,3$	8	$\int 2x - \cos(y+1) = 0$
	$\int y - \sin(x+1) = 0.8$		$y + \sin(x) = -0.4$
9	$\int \cos(y + 0.5) - x = 2$	10	$\int \sin(y+2) - x = 1,5$
	$\int \sin(x) - 2y = 1$		$y + \cos(x - 2) = 0.5$
11	$\int \sin(x+1) - y = 1$	12	$\int \cos(x-1) + y = 0.8$
	$2x + \cos(y) = 2$		$\int x - \cos(y) = 2$
13	$\int \sin(x) + 2y = 1.6$	14	$\int \cos(x) + y = 1,2$
	$\int \cos(y-1) + x = 1$		$2x - \sin(y - 0.5) = 2$

5. Найти собственные значения матрицы: $A = \begin{pmatrix} 1 & 2 & \alpha \\ 2 & 3 & 4 \\ \alpha & 4 & 5 \end{pmatrix}$

1	$\alpha = 1;$	8	$\alpha = -7;$
2	$\alpha = 2;$	9	$\alpha = -6;$
3	$\alpha = 3;$	10	$\alpha = -5;$
4	$\alpha = 4;$	11	$\alpha = -4;$
5	$\alpha = 5;$	12	$\alpha = -3;$
6	$\alpha = 6;$	13	$\alpha = -2;$
7	$\alpha = 7;$	14	$\alpha = -1;$

6. По заданным значениям x и y найти прямую $y = a_0 + a_1 x$ и параболу $y = a_0 + a_1 x + a_2 x^2$ методом наименьших квадратов. Найти погрешность. Построить прямую и кривую в той же системе координат, где нанесены данные точки.

\mathbf{N}	c										
	7	κ	4	S	9	7	8	6	10	11	12
$\mathbf{X} \mid 0,32$	2 0,86	0,90	1,64	1,66	1,80	4,03	4,76	5,11	5.,73	6,70	8,03
$\mathbf{Y} \mid 0,40$	0 2,24	2,10	3,81	4,48	5,00	11,48	13,55	13,79	16,43	18,29	22,58

							7 51							
Z	1	2	8	4	2	9	L	8	6	10	11	12	13	14
X	0,85	1,60	1,72	1,93	2,61	13,57	4,41 4,79		5,18 5,67	5,67	5,84	6,40	7,35	7,42
Y	1,78	1,41	1,44	1,52	1,99 2,77	2,77	2,40	2,80	2,80 2,83	3,11	3,58 3,75		4,13	3,87

	ı	ī	
	15	9,92	-31,11
	14	9,85	-31,60
	13	9,25	-29,61
	12	8,90	-28,43
	11	8,34	-25,93
	10	8,17	-25,47
	6	7,68	-23,71
N <u>º</u> 3	8	7,29	-22,65
	7	6,91	-21,71
	9	6,07	-18,34
	5	3 5,11 6,07 6,91 7,29 7,68 8,17 8,34 8,90 9,25 9,85 9,92	-15,30
	4	4,43	-13,01
	3	4,22	-12,46
	2	4,10	-11,89
	1	3,35	-9,47
	Z	X	Y

						•						
Z	1	2	3	4	5	9	7	8	6	10	11	12
X	0,18	0,67	0,18 0,67 0,84	1,40 2,35 2,42	2,35	2,42	6,60 6,72	6,72	6,93	8,57	9,41	6Ľ6
Y	96,0	1,97	2,11	3,30	5,04	5,39	12,47	0,96 1,97 2,11 3,30 5,04 5,39 12,47 13,03 13,69 16,59 18,22	13,69	16,59	18,22	18,33

						J	Nº 5						
Z	1	2	3	4	5	9	7	8	6	10	11	12	7
X	2,09	2,10	3,67	X 2,09 2,10 3,67 5,66 6,04 6,43 6,92 7,65 7,85	6,04	6,43	6,92	7,65		7,97 8,18 8,60	8,18	9'8	0 9,82
Y	6,76	7,50	10,56	Y 6,76 7,50 10,56 14,35 15,48 15,96 17,50 18,78 19,14 19,23 19,45 20,74 22,91	15,48	15,96	17,50	18,78	19,14	19,23	19,45	20,7	4

Y
۶

))						
Z	1	2	3	7	2	9	7	8	6	10	11	12	13
X	1,07	1,91	2,29	2,68	3,17	3,34	3,90	4,85	4,92	8,35	9,10	9,22	9,43
Y	-4,19	-4,41	-4,34	-4,44	-4,86	-4,79	-5,08	-6,35	-5,93	-7,38	-8,51	<i>1</i> 9'8-	<i>1</i> 9 . 8-

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
3
3
A 5 6 7 8 9 10 11 12 1
5 6 7 8 9 10 11 12 1 1 1 1 1 1 1
N^{9} 6 6 7 8 9 10 11 12 1 3,34 3,90 4,85 4,92 8,35 9,10 9,22 9, No 7 6 7 8 9 10 11 12 13 14 1,36 2,32 4,59 4,60 6,17 8,16 8,54 8,93 9,4 4,36 4,14 -5,41 -5,56 -6,64 -7,30 -7,90 -8,19 -7,9 No 8 6 7 8 9 10 11 12 13 6 7 8 9 10 11 1,38 8,85 6,07 7,77 10,32 11,68 14,17 14,34 16,05 17,72
8 9 10 11 12 1 90 4,85 4,92 8,35 9,10 9,22 9,0 98 -6,35 -5,93 -7,38 -8,51 -8,67 -8, 8 9 10 11 12 13 14 4,59 4,60 6,17 8,16 8,54 8,93 9,4 -5,41 -5,56 -6,64 -7,30 -7,90 -8,19 -7,5 8 9 10 11 12 13 8 9 10 11 12 13 5,08 5,45 6,91 7,21 7,88 8,85 10,32 11,68 14,17 14,34 16,05 17,72
8 9 10 11 12 1 90 4,85 4,92 8,35 9,10 9,22 9,0 98 -6,35 -5,93 -7,38 -8,51 -8,67 -8, 8 9 10 11 12 13 14 4,59 4,60 6,17 8,16 8,54 8,93 9,4 -5,41 -5,56 -6,64 -7,30 -7,90 -8,19 -7,5 8 9 10 11 12 13 8 9 10 11 12 13 5,08 5,45 6,91 7,21 7,88 8,85 10,32 11,68 14,17 14,34 16,05 17,72
35 4,92 8,35 9,10 9,22 9,35 35 -5,93 -7,38 -8,51 -8,67 -8,5 9 10 11 12 13 14 4,60 6,17 8,16 8,54 8,93 9,4 -5,56 -6,64 -7,30 -7,90 -8,19 -7,5 9 10 11 12 13 9 10 11 12 13 5,45 6,91 7,21 7,88 8,85 11,68 14,17 14,34 16,05 17,72
9 10 11 12 13 4,92 8,35 9,10 9,22 9,45 -5,93 -7,38 -8,51 -8,67 -8,6 10 11 12 13 14 6,17 8,16 8,54 8,93 9,42 -6,64 -7,30 -7,90 -8,19 -7,97 10 11 12 13 6,91 7,21 7,88 8,85 9 8 14,17 14,34 16,05 17,72 2
8,35 9,10 9,22 9,45 -7,38 -8,51 -8,67 -8,6 11 12 13 14 8,16 8,54 8,93 9,42 -7,30 -7,90 -8,19 -7,97 1 7,21 7,88 8,85 9 7 14,34 16,05 17,72 2
11 12 13 9,10 9,22 9,45 -8,51 -8,67 -8,6 12 13 14 8,54 8,93 9,42 -7,90 -8,19 -7,97 1 12 13 1 12 13 1 7,88 8,85 1 7,88 8,85 34 16,05 17,72
12 13 9,22 9,45 -8,67 -8,6 13 14 8,93 9,42 -8,19 -7,97 2 13 88 8,85 9 0,05 17,72 2
13 9,45 -8,6 -8,6 14 9,42 -7,97 13 13 13

							0 - 0							
Z	1	2	3	4	2	9	7	8	6	10	11	12	13	14
X	0,40	0.,95	1,12	1,24	2,34	2,78	3,70	80,5	5,45	6,91	7,21	7,88	8,85	9,78
Y	96'0	2,23	2,38	2,98	4,77	20'9	LL'L	10,32	11,68	14,17	14,34	16,05	17,72	20,10

							7 2 7						
Z	1	2	3	4	5	9	7	8	6	10	11	12	13
X	06,0	1,07	1,97	4,36	5,03	5,47	5,70	6,03	6,57	6,82	7,84	7,91	8,50
\mathbf{A}	-3,40	-3,20	-4,24	-7,27	-7,86	-8,02	-8,10	-8,84	-8,90	-9,81	-10,59	-10,36	-11,88

	4 7	01,0	, , ,	, ,	,	0,0		,,	0,0	, , ,	1		1,7,		0,0
	Y	-3,40	-3,20	-4,24	-7,27	<i>-7,27 -7,86 -8,02 -8,10 -8,84 -8,90 -9,81 -10,59 -10,36 -11,88</i>	-8,02	-8,10	-8,84	-8,90	8,6-	1 -10,	59 -1(),36 -1	1,88
							S.	Nº 10							
Z	1	2	3	4	S	9	7	∞	6	10	11	12	13	14	15
×	1,59	1,65	2,20	2,37	3,16	3,16 5,10 6,03 6,33 6,70 7,49 8,46 8,59 9,03 9,13	6,03	6,33	6,70	7,49	8,46	8,59	9,03	9,13	9,95
>	-2,09	-1,99	-3,88	-4,41	-7,04	17,04 -13,99 -16,77 -17,62 -18,76 -21,28 -24,60 -24,78 -26,21 -27,15 -29,39	-16,77	-17,62	-18,76	-21,28	-24,60	-24,78	-26,21	-27,15	-29,39

Nº 11

Z	1	2	8	4	5	9	7	8	6	10	11	12	13
X	0,61	1,28	1,72	2,32	3,07	4,16	6,95	7,15	7,28	7,82	8,22	60,6	9,75
Y	0,59	2,68	4,54	85'9	8,69	12,08	21,98	12,08 21,98 21,75 22,18	22,18	24,84 25,96	25,96	28,64	30,45

Nº 12

Z	1	2	3	4	5	9	7	8	6	10	11	12
X	0,38	1,35	2,28	2,90	3,45	3,74	5,28	6,20	7,58	7,95	9,41	9,71
Y	-0,41	-1,07	-2,20	-3,18	-3,15	-3,87	-4,99	-6,14	-6,98	-7,44	-8,92	-9,84

Nº 13

Z	-	2	3	4	٧	9	7	×	6	10	-	12	13	14
•	-	1	,				,		`					
X	0,34	0,41	1,00	1,00 3,40	3,57	4,25	4,47	6.86 7.53	7,53	7.97	1,97 8,20 8,53 9,07	8.53	9.07	9,32
	ì	Ì	ì	`	`	`	`	`	`	Ì	`	`	`	
>	0.85	103	1,53	1.53 2.73	3 22 3 99	3,99	3.45	5.24	6.20	6.74	5.24 6.20 6.74 6.55 6.45 6.96	6.45		7.46
1	5	, ,	,	;) 	1,00	;	<u>,</u>	,	,))	,		

Nº 14

Z	1	2	3	4	5	9	7	8	6	10	11	12
X	96,0	1,53	1,63	2,45	4,15	4,70	5,66	7,60	8,53	8,83	9.,20	66,6
Y	-2,91	-3,21	-3,09	-2,49	-3,35	-3,52	-3,54	-3,79	-3,52	-3,28	-3,19	-3,21

1) Заданы значения функции f(x) в узлах x_i , получающиеся делением отрезка $\begin{bmatrix} 1,2 \end{bmatrix}$ на 5 частей. Найти значения функции f(x) при $x_1=1,1$ и $x_2=2,1$ с помощью интерполяционных формул Ньютона.

Xi	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1,0	1,0	1,1	0,9	0,9	0,8	1,1	1,0	1,2	1,2	1,1	0,8	0,8	0,8	1,1
1,2	2,1	2,2	2,0	1,9	2,0	2,2	2,1	1,8	2,0	1,9	2,0	2,2	1,8	2,2
1,4	2,9	3,2	3,0	3,2	2,9	3,2	3,1	3,2	3,0	3,2	2,8	2,9	2,9	3,0
1,6	3,8	4,2	3,8	3,8	4,2	4,2	3,8	4,1	3,8	3,8	4,0	4,0	4,0	4,1
1,8	5,2	5,2	5,1	5,1	5,2	5,1	5,2	5,2	5,0	4,9	5,2	5,2	4,9	4,9
2,0	5,9	6,0	5,8	6,1	5,8	5,9	6,2	6,1	6,1	5,8	6,0	5,8	6,1	5,9

2) Заданы значения y_i функции f(x) в точках x_i . Найти значение функции f(x) при $x=x^*$. Задачу решить с помощью интерполяционного многочлена Лагранжа.

	1	2	2	(3	4	4	5	5	(5	7	7
X	У	X	У	X	У	X	У	X	У	X	У	X	У
0	11	0	11	0	11	0	11	0	11	0	11	0	11
2	13	1	12	2	12	2	12	1	12	2	12	2	10
3	13	3	13	4	12	3	14	3	13	4	11	3	10
5	14	5	14	5	13	5	15	5	14	5	10	5	12
\mathbf{x}^*	=1	X *	= 2	X *	=3	X *	=1	X *	= 2	x*	= 3	X *	= 1
	8	9)	1	0	1	1	1	2	1	3	1	4
X	y	X	У	X	У	X	У	X	У	X	У	X	У
Λ													
0	11	0	11	0	11	0	11	0	11	0	11	0	11
1	11 12	0 2	11 12	0 2	11 13	0 2	11 13	0	11 12		11 12		11 12
	<u> </u>					_	<u> </u>			0		0	
1	12	2	12	2	13	2	13	1	12	0 2	12	0 2	12

8. Вычислить определённый интеграл с точностью $\epsilon_{=0,01}$ методом Симпсона.

No॒	интеграл	3	№	интеграл	3
1	$\int_{1}^{2} \frac{\sin x}{x} dx$	0,01	8	$\int_{1}^{2} \frac{x+1}{2+\ln\left(1+x^{2}\right)} dx$	0,01
2	$\int_{1}^{3} \frac{\sin 2x + e^{-x}}{x} dx$	0,01	9	$\int_{-1}^{2} \left x - \sin \sqrt{x^3 + 1} \right dx$	0,01
3	$\int_{1}^{2} \frac{1}{x^2 + \ln\left(1 + x^2\right)} dx$	0,01	10	$\int_{1,1}^{3,4} \frac{\sin^2 x}{\lg \sqrt{x}} dx$	0,01

4	$\int_{-1}^{2} \left \sin \sqrt{x^2 + x^4} \right dx$	0,01	11	$\int_{1}^{2} \frac{\sin^{1,4} x}{x^3} dx$	0,01
5	$\int_{1}^{1,4} \frac{\sin x + x}{tg\sqrt{x}} dx$	0,01	12	$\int_{-1}^{2} \left x - \sqrt{x^2 + x^4} \right dx$	0,01
6	$\int_{1}^{2} \frac{x + \sqrt[4]{x}}{\sqrt{x+1}} dx$	0,01	13	$\int_{1}^{1,4} \frac{\sin x}{\lg \sqrt{x+2}} dx$	0,01
7	$\int_{1}^{3} \frac{\sin(2^{x})}{x^{2}+2} dx$	0,01	14	$\int_{1}^{3} \frac{\sin\left(3^{-x}\right)}{x+1} dx$	0,01

9. Решить задачу Коши методом Эйлера и Рунге – Кутта.

No	Дифференциальное уравнение	Начальное условие	$[t_0,T]$	N
1	$y'(t) = \sin ty^2$	y(0) = 1	[0,2]	10
2	$y'(t) = \cos t + y^2$	y(0) = 2	[0,2]	10
3	$y'(t) = \cos ty^2$	y(0) = 3	[0,2]	10
4	$y'(t) = \sin(t/(1+y^2))$	y(0) = 1	[0,2]	10
5	$y'(t) = tg \frac{t^2 + y^2}{1 + t^2 + y^2}$	y(0) = 2	[0,2]	10
6	$y'(t) = t + y^2$	y(0) = 3	[1,2]	10
7	$y'(t) = \frac{ty}{1+t^2+y^2}$	y(0) = 1	[1,2]	10
8	$y'(t) = \cos\sqrt{ty^2}$	y(0) = 2	[1,2]	10
9	$y'(t) = \sin(t\sqrt{1+y^2})$	y(0) = 3	[1,2]	10
10	$y'(t) = \frac{t^2 + y^2}{\sqrt[3]{1 + t^2 + y^2}}$	y(0) = 1	[1,2]	10
11	$y'(t) = t \cdot \ln(1 + y^2)$	y(0) = 2	[0,3]	10
12	$y'(t) = y \cdot \cos(t + y^2)$	y(0) = 3	[0,3]	10
13	$y'(t) = e^t \cdot t + y^2$	y(0) = 1	[0,3]	10
14	$y'(t) = \sin(t(1+y^2))$	y(0) = 2	[0,3]	10