شبيهسازى كامپيوترى

نيمسال دوم ۲۰-۱۰

شماره دانشجویی: ۹۹۱۰۵۵۶۱ شایان صالحی

دانشکدهی مهندسی کامپیوتر

تمرین سری اول

پاسخ مسئله*ی* ۱.

برای آنکه بتوانیم سوال داده شده را حل کنیم نیاز به استفاده به سه توزیع داریم که به صورت زیر تعریف می کنیم.

$$P \sim Poisson(\Upsilon), \quad P^{'} \sim Poisson(\Upsilon)$$

$$G \sim Gamma(\mathbf{Y}, \mathbf{\Delta}) = \frac{1}{\mathbf{Y}\mathbf{\Delta}}e^{-\frac{x}{\mathbf{\Delta}}}x$$

حال میخواهیم احتمال اینکه در یک بازه ۱۰ دقیقه ای دقیقًا ۵ رویداد رخ دهد را به دست آوریم. برای این کار خواهیم داشت:

$$P(x = \mathbf{\Delta}) = \int_{\mathbf{L}}^{\mathbf{L}} P''(x = \mathbf{\Delta}|T = t)G(T = t)dt$$

که در آن P'' به این صورت تعریف می شود:

$$\begin{split} P^{''}(x = \mathbf{\Delta}|T = t) &= \sum_{i = \bullet}^{\mathbf{\Delta}} \frac{(\mathbf{Y}t)^{i} (\mathbf{Y}^{\bullet} - \mathbf{Y}t)^{k-i} e^{-\mathbf{Y}t} e^{-\mathbf{Y}^{\bullet} + \mathbf{Y}t}}{i!(k-i)!} \\ &= e^{t-\mathbf{Y}^{\bullet}} \sum_{i = \bullet}^{\mathbf{\Delta}} \frac{(\mathbf{Y}t)^{i} (\mathbf{Y}^{\bullet} - \mathbf{Y}t)^{\mathbf{\Delta} - i}}{i!(\mathbf{\Delta} - i)!} = \frac{(\mathbf{Y}^{\bullet} - t)^{\mathbf{\Delta}} e^{t-\mathbf{Y}^{\bullet}}}{\mathbf{\Delta}!} \end{split}$$

به این ترتیب برای حاصل انتگرال خواهیم داشت:

$$\begin{split} P(x = \Delta) &= \int_{\cdot}^{1 \cdot} P^{''}(x = \Delta | T = t) G(T = t) dt = \int_{\cdot}^{1 \cdot} \frac{(\mathbf{Y}^{\bullet} - t)^{\Delta} e^{t - \mathbf{Y}^{\bullet}}}{\Delta !} \frac{1}{\mathbf{Y} \Delta} e^{-\frac{t}{\Delta}} t dt \\ &= \int_{\cdot}^{1 \cdot} \frac{(\mathbf{Y}^{\bullet} - t)^{\Delta} e^{t - \mathbf{Y}^{\bullet}}}{\Delta !} \frac{1}{\mathbf{Y} \Delta} e^{-\frac{t}{\Delta}} t \simeq \mathbf{Y} / \mathbf{Y} \times \mathbf{Y}^{\bullet - \mathbf{Y}^{\bullet}} \end{split}$$

پاسخ مسئلهی ۲.

در این سوال با توجه به تابع I داده شده می دانیم احتمال خراب شدن دستگاه در ۵۰ ساعت اول در دو حالت می بایست بررسی شود.

$$I(t \bmod \ensuremath{\backprime} \cdot \cdot < \Delta) \implies \lambda(t) = \begin{cases} \frac{\ensuremath{\backprime}}{\ensuremath{\vartriangle} \cdot} & \cdot \leqslant t < \Delta \\ \\ \frac{\ensuremath{\backprime}}{\ensuremath{\vartriangle} \cdot} & t > \Delta \end{cases}$$

به این ترتیب برای احتمال این قسمت خواهیم داشت:

$$\begin{split} P(x < \Delta \, \raisebox{.4ex}{\raisebox{.4ex}{$\scriptstyle \bullet$}}) &= P(x < \Delta) + P(\Delta \leqslant x < \Delta \, \raisebox{.4ex}{\raisebox{.4ex}{$\scriptstyle \bullet$}}) \\ &= (\, \raisebox{.4ex}{\raisebox{.4ex}{$\scriptstyle \bullet$}} - \exp \left(\frac{- \, \raisebox{.4ex}{$\scriptstyle \bullet$}}{\Delta \, \raisebox{.4ex}{$\scriptstyle \bullet$}} \right)) + \exp \left(\frac{- \, \raisebox{.4ex}{$\scriptstyle \bullet$}}{\square \, \raisebox{.4ex}{$\scriptstyle \bullet$}} \right) (\, \raisebox{.4ex}{\raisebox{.4ex}{$\scriptstyle \bullet$}} - \exp \left(\frac{- \, \raisebox{.4ex}{$\scriptstyle \bullet$}}{\Delta \, \raisebox{.4ex}{$\scriptstyle \bullet$}} \right)) \\ &\simeq {} \ \ \, \raisebox{.4ex}{\raisebox{.4ex}{$\scriptstyle \bullet$}} \times \lambda \, {} \ \, \raisebox{.4ex}{$\scriptstyle \bullet$}} - \ \, \raisebox{.4ex}{\raisebox{.4ex}{$\scriptstyle \bullet$}} \times \lambda \,) \end{split}$$

پاسخ مسئلهی ۳.

الف

در اینجا برای کشیدن زنجیره مارکوف می دانیم هر حالت با احتمال p به حالت بعد رفته و با احتمال p-1 به حالت قبل باز می گردد و این تا بی نهایت ادامه پیدا می کنید. به این ترتیب برای شکل این قسمت خواهیم داشت:

شكل ١: شكل زنجيره ماركوف

ب

برای محاسبه حالت ماندگار خواهیم داشت:

$$P_{\bullet} = (1-p)P_{\bullet} + (1-p)P_{1} \implies P_{1} = \frac{p}{1-p}P_{\bullet}$$

$$P_1 = pP_1 + (1-p)P_1 \implies P_1 = \left(\frac{p}{1-p}\right)^{\Upsilon} P_1$$

$$P_{\Upsilon} = pP_{\Upsilon} + (\Upsilon - p)P_{\Upsilon} \implies P_{\Upsilon} = \left(\frac{p}{\Upsilon - p}\right)^{\Upsilon} P_{\Upsilon}$$

$$\implies P_i = \left(\frac{p}{1-p}\right)^i P.$$

حال باتوجه به جمع احتمالات P_i خواهیم داشت:

$$\sum_{i=\bullet}^{\infty} P_i = \sum_{i=\bullet}^{\infty} \left(\frac{p}{1-p}\right)^i P_{\bullet}$$

$$= \frac{P_{\bullet}}{1 - \left(\frac{p}{1-p}\right)} = 1, \quad p < \bullet / \Delta$$

$$\implies P \cdot = \frac{\mathsf{1} - \mathsf{7}p}{\mathsf{1} - p} \implies P_i = \left(\frac{p}{\mathsf{1} - p}\right)^i \left(\frac{\mathsf{1} - \mathsf{7}p}{\mathsf{1} - p}\right)$$
 به این ترتیب احتمال وقوع هر حالت به این صورت خواهد بود.

ج

با توجه به عبارات به دست آمده بالا می دانیم اگر داشته باشیم $p > \cdot \cdot / 0$ ضریب دنباله هندسی یعنی $\frac{p}{1-p}$ بزرگتر از یک خواهد شد و این نشان می دهد که جمع این دنباله به هیچ عنوان نمی تواند همگرا شود و نخواهیم داشت از یک خواهد شد و این نشان می دهد که جمع این دنباله به هیچ عنوان نمی تواند همگرا شود و نخواهیم داشت $\sum_{i=1}^{\infty} P_i = 1$. به این ترتیب نمی توان برای احتمال وقوع حالت ها در این شرایط تعریفی بیان کرد.

پاسخ مسئلهی ۴.

در اینجا سه حالت داریم که از حالت بی علامت می توانیم با احتمال $\frac{1}{4}$ به تمام حالات برویم. از حالت علامت دار با احتمال $\frac{1}{4}$ به خود و حالت مرده می توان رفت و در نهایت برای حالت مرده فقط با احتمال یک می توان در خود ماند. به این ترتیب برای شکل زنجیره مارکوف آن خواهیم داشت:

شكل ٢: شكل زنجيره ماركوف براي حالتهاي توصيف شده

به همین طریق برای ماتریس آن هم خواهیم داشت:

که در آن سطر و ستون اول مربوط به حالت بدون علامت بوده، سطر و ستون دوم مربوط به بیماران دارای علائم است. همانطور می دانیم حالتی جادب است که در نمایش ماتریس آن دارای درایه $a_{i,j}=1$ باشد که در اینجا داریم است. حال برای حساب کردن امید ریاضی نیز خواهیم داشت: $a_{r,r}=1$

$$P_{\bullet} = \frac{1}{7}((P_{\bullet} + 1) + (P_{1} + 1) + 1), P_{1} = \frac{1}{7}((P_{1} + 1) + 1)$$

$$\implies P_1 = Y \implies YP_2 = \Delta \implies P_2 = Y/\Delta$$

که نشان دهنده این است ۲/۵ روز امید ریاضی زمانی است که طول می کشد تا یک فرد سرطاندار بی عالمت بمیرد.

پاسخ مسئلهی ۵.

ابتدا برای شکل زنجیره مارکوف سکه توصیف شده خواهیم داشت: حال برای آنکه توالی خط - شیر - خط را به

شکل ۳: زنجیره مارکوف برای سکه مفروض

دست آوریم کافی است برای اساس زنجیره مارکوف این سکه را بررسی کنیم.

می دانیم برای شروع با احتمال $\frac{1}{4}$ در همان حالت می مانیم و با احتمال $\frac{1}{4}$ به حالت خط برویم پس از آن یا با احتمال $\frac{1}{4}$ در این استیت باقی می مانیم یا با احتمال $\frac{1}{4}$ به حالت خط – شیر می رویم در اینجا نیز با احتمال $\frac{1}{4}$ به حالت مطلوب رسیده و با احتمال $\frac{1}{4}$ به استیت شروع می رویم. به این ترتیب برای امید ریاضی آن خواهیم داشت:

$$P \cdot = \frac{1}{\pi}(P \cdot + 1) + \frac{1}{\pi}(P_1 + 1)$$

$$P_1 = \frac{7}{\pi}(P_1 + 1) + \frac{1}{\pi}(P_1 + 1)$$

$$P_7 = \frac{7}{\pi} + \frac{1}{\pi}(P \cdot + 1)$$

$$\Rightarrow P \cdot = \frac{7}{\pi} \cdot P_1 = \frac{7}{\pi} \cdot P_2 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_1 = \frac{7}{\pi} \cdot P_2 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_2 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_3 = \frac{7}{\pi} \cdot P_4 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_3 = \frac{7}{\pi} \cdot P_4 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_3 = \frac{7}{\pi} \cdot P_4 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_3 = \frac{7}{\pi} \cdot P_4 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_3 = \frac{7}{\pi} \cdot P_4 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_4 = \frac{7}{\pi} \cdot P_5 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_5 = \frac{7}{\pi} \cdot P_5 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_5 = \frac{7}{\pi} \cdot P_5 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_5 = \frac{7}{\pi} \cdot P_5 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_5 = \frac{7}{\pi} \cdot P_5 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_5 = \frac{7}{\pi} \cdot P_5 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_5 = \frac{10}{\pi} \cdot P_5 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_5 = \frac{10}{\pi} \cdot P_5 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_5 = \frac{10}{\pi} \cdot P_5 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_5 = \frac{10}{\pi} \cdot P_5 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_5 = \frac{10}{\pi} \cdot P_5 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_5 = \frac{10}{\pi} \cdot P_5 = \frac{10}{\pi} \cdot P_5 = \frac{10}{\pi}$$

$$\therefore P \cdot e^{\frac{7}{\pi}} \cdot P_5 = \frac{10}{\pi} \cdot P_$$