

Uživatelské jméno: stae07

Obsah

1	Pop	Popis zvolené výseče světa – zadání		
2		, nceptuální schéma reality		
3		nceptuální datový model		
4	Dok	kumentace databáze	б	
	4.1	Fyzický datový model	6	
	4.2	Definice relačních tabulek a souvisejících objektů	7	
	4.3	Integritní omezení	7	
	4.4	Definice přístupových práv	12	
	4.5	Definice dalších databázových objektů	ána.	
5	Obs	sah databáze	13	
	5.1	SQL příkazy pro naplnění databáze daty	13	
	5.2	Opis vložených dat	14	

1 Popis zvolené výseče světa – zadání

České dráhy se momentálně snaží najít efektivní a spolehlivý systém pro sledování a řízení pohybu svých vlaků, a to s ohledem na potřeby cestujících. Centrálním prvkem tohoto systému jsou samotné koleje, které propojují různé stanice a zajišťují bezpečný a efektivní pohyb vlaků přes rozsáhlou síť železničních tratí.

Pro každého cestujícího, který využívá služby Českých drah, je vytvořen jedinečný identifikátor. Kromě toho jsou potřebné informace, jako jméno a věk cestujícího, aby bylo možné ověřit jeho totožnost. Každý cestující je následně přiřazen k vozu konkrétního vlaku a určitému místu v tomto voze. Tímto způsobem se zabezpečuje, že každý cestující může cestovat pouze jedním vlakem, ačkoliv jeden vlak může obsahovat více cestujících.

Vlaky jsou identifikovány svým názvem, což usnadňuje cestujícím identifikaci a orientaci. Například vlak označený jako R715 – Vltava má specifikaci podle typu a informace o konečné stanici. Tyto údaje jsou obvykle jasně viditelné na boku vlaku, což poskytuje cestujícím nezbytné informace o čísle vlaku, směru a výběru kolejí, čímž se minimalizuje riziko ztráty.

V síti železničních tratí může být v provozu několik vlaků současně, přičemž mohou pohybovat po různých kolejích. Koleje jsou číslovány a obsahují také informace o délce a aktuálním stavu. Nové koleje jsou navrženy s důrazem na moderní technologie a minimální údržbu. Starší koleje jsou podrobeny pečlivé údržbě s cílem prodloužení jejich životnosti.

Koleje jsou lineárně propojeny s jednotlivými stanicemi, přičemž každá stanice má svůj unikátní identifikátor, jméno a přesnou lokaci. Jedna kolej může spojovat několik stanic, zatímco každá stanice je propojena pouze s jednou konkrétní kolejí, což usnadňuje organizaci železniční infrastruktury.

2 Konceptuální schéma reality

3 Konceptuální datový model

4 Dokumentace databáze

4.1 Fyzický datový model

4.2 Definice relačních tabulek a souvisejících objektů

```
/*=======*/
/* Table: CESTUJICI
/*----*/
CREATE TABLE CESTUJICI (
              VARCHAR(5)
ID CES
                                        NOT NULL,
                                       NOT NULL,
JMENO
              VARCHAR(60)
               INTEGER
VEK
                                       NOT NULL
   CONSTRAINT CKC_OMEZENI_VEK CHECK (VEK >=6),
NAZEV
               VARCHAR(30)
                                        NOT NULL,
               VARCHAR(20)
                                        NOT NULL
   CONSTRAINT CKC_OMEZENI_VUZ CHECK (VUZ BETWEEN 'V367' AND 'V372'),
MIST0
               INTEGER
                                        NOT NULL
   CONSTRAINT CKC_OMEZENI_MISTO CHECK (MISTO BETWEEN 1 AND 100),
   CONSTRAINT UQ_CESTUJICI_VUZ_MISTO UNIQUE (VUZ, MISTO),
   CONSTRAINT PK CESTUJICI PRIMARY KEY (ID CES)
);
GRANT SELECT ON CESTUJICI TO STUDENT;
GRANT DELETE, INSERT, SELECT, UPDATE ON CESTUJICI TO DB4IT218;
/*----*/
                                            */
/* Table: VLAK
/*----*/
CREATE TABLE VLAK (
NAZEV
               VARCHAR(30)
                                        NOT NULL,
TYP
              VARCHAR(20)
                                        NOT NULL,
DESTINACE VARCHAR(40)
                                       NOT NULL,
   CONSTRAINT PK VLAK PRIMARY KEY (NAZEV)
);
GRANT SELECT ON VLAK TO STUDENT;
GRANT DELETE, INSERT, SELECT, UPDATE ON VLAK TO DB4IT218;
/*----*/
/* Table: KOLEJ
/*----*/
CREATE TABLE KOLEJ (
C KOLEJE
              VARCHAR(5)
                                        NOT NULL,
               VARCHAR(10)
DELKA
                                        NOT NULL,
STATUS
                                        NOT NULL,
               VARCHAR(20)
   CONSTRAINT PK KOLEJ PRIMARY KEY (C KOLEJE)
);
GRANT SELECT ON KOLEJ TO STUDENT;
GRANT DELETE, INSERT, SELECT, UPDATE ON KOLEJ TO DB4IT218;
```

```
/*----*/
/* Table: SE POHYBUJE
/*----*/
CREATE TABLE SE POHYBUJE (
NAZEV VARCHAR(30)
C_KOLEJE VARCHAR(5)
                                             NOT NULL,
                                             NOT NULL,
   CONSTRAINT PK_SE_POHYBUJE PRIMARY KEY (NAZEV, C_KOLEJE)
);
GRANT SELECT ON SE POHYBUJE TO STUDENT;
GRANT DELETE, INSERT, SELECT, UPDATE ON SE POHYBUJE TO DB4IT218;
/*=======*/
/* Table: STANICE
/*----*/
CREATE TABLE STANICE (
ID_STANICE
                      VARCHAR(20)
                                             NOT NULL,
                      VARCHAR(60) NOT NULL,
VARCHAR(40) NOT NULL,
JMENO
LOKACE
   CONSTRAINT PK_STANICE PRIMARY KEY (ID_STANICE)
);
GRANT SELECT ON STANICE TO STUDENT;
GRANT DELETE, INSERT, SELECT, UPDATE ON STANICE TO DB4IT218;
ALTER TABLE CESTUJICI
ADD CONSTRAINT FK CESTUJIC CESTUJE VLAK FOREIGN KEY (NAZEV)
REFERENCES VLAK (NAZEV);
ALTER TABLE SE POHYBUJE
ADD CONSTRAINT FK_SE_POHYB_SE_POHYBU_VLAK FOREIGN KEY (NAZEV)
REFERENCES VLAK (NAZEV);
ALTER TABLE SE_POHYBUJE
ADD CONSTRAINT FK_SE_POHYB_SE_POHYBU_KOLEJ FOREIGN KEY (C_KOLEJE)
REFERENCES KOLEJ (C KOLEJE)
ON DELETE CASCADE;
ALTER TABLE STANICE
ADD CONSTRAINT FK STANICE SPOJUJE KOLEJ FOREIGN KEY (C KOLEJE)
REFERENCES KOLEJ (C KOLEJE)
ON DELETE CASCADE;
4.3 Integritní omezení
Tabulka CESTUJICI
Entitní integrita
Atributy tvořící primární klíč: ID_CES
SQL kód pro definici primárního klíče:
CONSTRAINT PK CESTUJICI PRIMARY KEY (ID CES)
```

Pozn.: Out-of-line definice primárního klíče v rámci příkazu pro vytvoření tabulky CESTUJICI.

Doménová integrita

Věk cestujícího musí být větší než 6

Popis omezení: Z důvodu omezení věku cestujících musí být věk větší než 6 let.

SQL kód příslušného omezení:

CONSTRAINT CKC_OMEZENI_VEK CHECK (VEK >=6)

Pozn.: Inline specifikace omezení v rámci definice sloupce VEK, která je součástí příkazu pro vytvoření tabulky CESTUJICI.

<u>Číslo místa musí být v rozmezí od 1 do 100</u>

Popis omezení: Z důvodu kapacity vozu musí být číslo místa v rozmezí od 1 do 100.

SQL kód příslušného omezení:

CONSTRAINT CKC_OMEZENI_MISTO CHECK (MISTO BETWEEN 1 AND 100)

Pozn.: Inline specifikace omezení v rámci definice sloupce MISTO, která je součástí příkazu pro vytvoření tabulky CESTUJICI.

Označení vozu od V367 do V372

Popis omezení: Vlak obsahuje pouze vozy označené od V367 do V372.

SQL kód příslušného omezení:

CONSTRAINT CKC_OMEZENI_VUZ CHECK (VUZ BETWEEN 'V367' AND 'V372')

Pozn.: Inline specifikace omezení v rámci definice sloupce VUZ, která je součástí příkazu pro vytvoření tabulky CESTUJICI.

Každý vůz má 100 míst, na kterých může být jen jeden cestující

Popis omezení: K zabránění obsazení jednoho místa dvěma cestujícími a zajištění, aby každý vůz měl pouze 100 míst.

SQL kód příslušného omezení:

CONSTRAINT UQ_CESTUJICI_VUZ_MISTO UNIQUE (VUZ, MISTO)

Pozn.: Inline specifikace omezení v rámci definice sloupců VUZ a MISTO, která je součástí příkazu pro vytvoření tabulky CESTUJICI.

Referenční integrita

Sloupec NAZEV v tabulce CESTUJICI představuje cizí klíč

Popis omezení: Každý cestující je asociován s konkrétním vlakem, identifikovaným názvem. Cestující nemůže být přiřazen k neexistujícímu vlaku.

Druh použitého řešení referenční integrity pro operaci DELETE: RESTRICT.

SQL kód příslušného omezení:

ALTER TABLE CESTUJICI

ADD CONSTRAINT FK_CESTUJIC_CESTUJE_VLAK FOREIGN KEY (NAZEV)

REFERENCES VLAK (NAZEV);

Tabulka VLAK

Entitní integrita

Atributy tvořící primární klíč: NAZEV

SQL kód pro definici primárního klíče:

CONSTRAINT PK_VLAK PRIMARY KEY (NAZEV)

Pozn.: Out-of-line definice primárního klíče v rámci příkazu pro vytvoření tabulky VLAK.

Doménová integrita

V tabulce VLAK se nenachází žádná doménová integrita.

Referenční integrita

V tabulce VLAK žádný ze sloupců nepředstavuje cizí klíč.

Tabulka SE POHYBUJE

Entitní integrita

Atributy tvořící primární klíč: NAZEV, C_KOLEJE

SQL kód pro definici primárního klíče:

CONSTRAINT PK SE POHYBUJE PRIMARY KEY (NAZEV, C KOLEJE)

Pozn.: Out-of-line definice primárního klíče v rámci příkazu pro vytvoření tabulky SE_POHYBUJE.

Doménová integrita

V tabulce SE_POHYBUJE není žádná doménová integrita.

Referenční integrita

Sloupec NAZEV v tabulce SE_POHYBUJE představuje cizí klíč

Popis omezení: Tabulka SE_POHYBUJE je tabulkou zajišťující realizaci vztahu M:N mezi entitními množinami Kolej a Vlak. Záznamy v tabulce jsou tak tvořeny dvojicemi cizích klíčů identifikujících související záznamy v tabulkách KOLEJ a VLAK.

Druh použitého řešení referenční integrity pro operaci DELETE: CASCADE.

SQL kód příslušného omezení:

```
ALTER TABLE SE_POHYBUJE

ADD CONSTRAINT FK_SE_POHYB_SE_POHYBU_VLAK FOREIGN KEY (NAZEV)

REFERENCES VLAK (NAZEV)

ON DELETE CASCADE;
```

Sloupec C_KOLEJE v tabulce SE_POHYBUJE představuje cizí klíč

Popis omezení: Tabulka SE_POHYBUJE je tabulkou zajišťující realizaci vztahu M:N mezi entitními množinami Kolej a Vlak. Záznamy v tabulce jsou tak tvořeny dvojicemi cizích klíčů identifikujících související záznamy v tabulkách KOLEJ a VLAK.

Druh použitého řešení referenční integrity pro operaci DELETE: CASCADE.

SQL kód příslušného omezení:

```
ALTER TABLE SE_POHYBUJE

ADD CONSTRAINT FK_SE_POHYB_SE_POHYBU_VLAK FOREIGN KEY (C_KOLEJE)

REFERENCES KOLEJ (C_KOLEJE)

ON DELETE CASCADE;
```

Tabulka KOLEJ

Entitní integrita

Atributy tvořící primární klíč: C_KOLEJE

SQL kód pro definici primárního klíče:

CONSTRAINT PK_KOLEJ PRIMARY KEY (C_KOLEJE)

Pozn.: Out-of-line definice primárního klíče v rámci příkazu pro vytvoření tabulky KOLEJ.

Doménová integrita

V této tabulce se nenachází žádná doménová integrita.

Referenční integrita

V této tabulce se nevyskytuje žádná referenční integrita.

Tabulka STANICE

Entitní integrita

Atributy tvořící primární klíč: ID_STANICE

SQL kód pro definici primárního klíče:

CONSTRAINT PK_STANICE PRIMARY KEY (ID_STANICE)

Pozn.: Out-of-line definice primárního klíče v rámci příkazu pro vytvoření tabulky STANICE.

Doménová integrita

Tato tabulka neobsahuje doménovou integritu.

Referenční integrita

Sloupec C_KOLEJE v tabulce STANICE představuje cizí klíč

Popis omezení: Každá stanice je spojena s určitou kolejí. Nemůžeme přiřadit stanici ke koleji, která neexistuje.

Druh použitého řešení referenční integrity pro operaci DELETE: RESTRICT.

SQL kód příslušného omezení:

```
ALTER TABLE STANICE

ADD CONSTRAINT FK_STANICE_SPOJUJE_KOLEJ FOREIGN KEY (C_KOLEJE)

REFERENCES KOLEJ (C_KOLEJE);
```

4.4 Definice přístupových práv

Definice přístupových práv pro uživatele STUDENT

```
GRANT SELECT ON CESTUJICI TO STUDENT;
GRANT SELECT ON VLAK TO STUDENT;
GRANT SELECT ON SE_POHYBUJE TO STUDENT;
GRANT SELECT ON KOLEJ TO STUDENT;
GRANT SELECT ON STANICE TO STUDENT;
```

Definice přístupových práv pro uživatele DB4IT218

```
GRANT DELETE, INSERT, SELECT, UPDATE ON CESTUJICI TO DB4IT218;
GRANT SELECT, INSERT, UPDATE, DELETE ON VLAK TO DB4IT218;
GRANT DELETE, INSERT, SELECT, UPDATE ON SE_POHYBUJE TO DB4IT218;
GRANT DELETE, INSERT, SELECT, UPDATE ON KOLEJ TO DB4IT218;
GRANT DELETE, INSERT, SELECT, UPDATE ON STANICE TO DB4IT218;
```

5 Obsah databáze

5.1 SQL příkazy pro naplnění databáze daty

INSERT INTO CESTUJICI (ID_CES, JMENO, VEK, NAZEV, VUZ, MISTO) VALUES ('C1', 'Pavel Nový', 20, 'R 734 Vltava', 'V368', 12);

INSERT INTO CESTUJICI (ID_CES, JMENO, VEK, NAZEV, VUZ, MISTO) VALUES ('C2', 'Jan Hrůza', 21, 'R 734 Vltava', 'V367', 12);

INSERT INTO CESTUJICI (ID_CES, JMENO, VEK, NAZEV, VUZ, MISTO) VALUES ('C3', 'Markéta Horká', 20, 'Sp 1731','V368', 13);

INSERT INTO CESTUJICI (ID_CES, JMENO, VEK, NAZEV, VUZ, MISTO) VALUES ('C4', 'Ludmila Starostová', 30, 'Ex 601 TATRAN', 'V368', 5);

INSERT INTO CESTUJICI (ID_CES, JMENO, VEK, NAZEV,VUZ, MISTO) VALUES ('C5', 'Agáta Rychlá',6, 'Os 8301', 'V372', 5);

```
INSERT INTO VLAK (NAZEV, TYP, DESTINACE) VALUES ('R 734 VItava', 'Rychlík', 'Praha');
INSERT INTO VLAK (NAZEV, TYP, DESTINACE) VALUES ('Sp 1731', 'Spěšný', 'České Budějovice');
INSERT INTO VLAK (NAZEV, TYP, DESTINACE) VALUES ('Ex 601 TATRAN', 'Express', 'Košice');
INSERT INTO VLAK (NAZEV, TYP, DESTINACE) VALUES ('RJ 1003 RegioJet', 'Express', 'Košice');
INSERT INTO VLAK (NAZEV, TYP, DESTINACE) VALUES ('OS 8301', 'Osobní', 'Veselí n.Lužnicí');
INSERT INTO KOLEJ (C_KOLEJE, DELKA, STATUS) VALUES ('K150', '150km', 'Stará');
INSERT INTO KOLEJ (C_KOLEJE, DELKA, STATUS) VALUES ('K151', '250km', 'Nová');
INSERT INTO KOLEJ (C_KOLEJE, DELKA, STATUS) VALUES ('K50', '400km', 'Stará');
INSERT INTO KOLEJ (C_KOLEJE, DELKA, STATUS) VALUES ('K10', '500km', 'Nová');
INSERT INTO KOLEJ (C_KOLEJE, DELKA, STATUS) VALUES ('K201', '350km', 'Nová');
INSERT INTO SE_POHYBUJE (NAZEV, C_KOLEJE) VALUES ('R 734 VItava', 'K150');
INSERT INTO SE_POHYBUJE (NAZEV, C_KOLEJE) VALUES ('R 734 VItava', 'K151');
INSERT INTO SE_POHYBUJE (NAZEV, C_KOLEJE) VALUES ('R 734 VItava', 'K151');
```

INSERT INTO SE_POHYBUJE (NAZEV, C_KOLEJE) VALUES ('RJ 1003 RegioJet', 'K10');

INSERT INTO SE_POHYBUJE (NAZEV, C_KOLEJE) VALUES ('Os 8301', 'K201');

INSERT INTO STANICE (ID_STANICE, JMENO, LOKACE, C_KOLEJE) VALUES ('S001', 'Praha Hlavní Nádraží', 'Praha', 'K150');

INSERT INTO STANICE (ID_STANICE, JMENO, LOKACE, C_KOLEJE) VALUES ('S002', 'Brno Hlavní Nádraží', 'Brno', 'K150');

INSERT INTO STANICE (ID_STANICE, JMENO, LOKACE, C_KOLEJE) VALUES ('S003', 'Ostrava Hlavní Nádraží', 'Ostrava', 'K50');

INSERT INTO STANICE (ID_STANICE, JMENO, LOKACE, C_KOLEJE) VALUES ('S004', 'Plzeň Hlavní Nádraží', 'Plzeň', 'K10');

INSERT INTO STANICE (ID_STANICE, JMENO, LOKACE, C_KOLEJE) VALUES ('S005', 'Liberec Hlavní Nádraží', 'Liberec','K201');

5.2 Opis vložených dat

Tabulka CESTUJICI

ID_CES	JMENO	VEK	NAZEV	VUZ	MISTO
C1	Pavel Nový	20	R 734 Vltava	V368	12
C2	Jan Hrůza	21	R 734 Vltava	V367	12
C3	Markéta Horká	20	Sp 1731	V368	13
C4	Ludmila Starostová	30	Ex 601 TATRAN	V368	5
C5	Agáta Rychlá	6	Os 8301	V372	5

Tabulka VLAK

NAZEV	TYP	DESTINACE
R 734 Vltava	Rychlík	Praha
Sp 1731	Spěšný	České Budějovice
Ex 601 TATRAN	Express Košice	
RJ 1003 RegioJet	Express	Košice
Os 8301', 'Osobní	Osobní	Veselí n.Lužnicí

Tabulka SE POHYBUJE

NAZEV	C_KOLEJE
R 734 Vltava	K150
R 734 Vltava	K151
Ex 601 TATRAN	K50
RJ 1003 RegioJet	K10
Os 8301	K201

Tabulka KOLEJ

C_KOLEJE	DELKA	STATUS
K150	150km	Stará
K151	250km	Nová
K50	400km	Stará
K10	500km	Nová
K201	350km	Nová

Tabulka STANICE

ID_STANICE	JMENO	LOKACE	C_KOLEJE
S001	Praha Hlavní Nádraží	Praha	K150
S002	Brno Hlavní Nádraží	Brno	K150
S003	Ostrava Hlavní Nádraží	Ostrava	K50
S004	Plzeň Hlavní Nádraží	Plzeň	K10
S005	Liberec Hlavní Nádraží	Liberec	K201