机器学习Homework 5——聚类分析实验报告

第1节 DBSCAN的算法框架

算法1随机森林算法

输入: 训练样本集 $D = \{(x_i)\}_{i=1}^N, x_i \in X, i = 1, 2, \dots, N;$ 邻域参数 $(\epsilon, MinPts)$

输出: 样本簇划分 $C = \{C_k\}$ (簇的个数依赖于邻域参数的选择)

- 1. 初始化核心对象集合 $\Omega = \emptyset$,初始化簇的类别 $C_0, k = 0$ 。
- 2. 遍历D的元素,如果当前遍历的元素是核心对象,则将其加入核心对象集合Ω当中,如果不是核心对象,则将其标记为噪声。
- 3. 在核心对象集合 Ω 中,随机选择一个未访问的核心对象o,首先将o标记为已访问,然后将o标记类别 C_0 ,最后将o的 ϵ -邻域中未访问的数据,存放到种子集合seeds中。
- 4. 如果种子集合 $seeds = \emptyset$,则当前聚类簇 C_k k生成完毕,且k = k + 1,跳转到步5,否则,从种子集合seeds中挑选一个种子点s,首先将其标记为已访问,标记类簇 C_k ,然后判断s是否为核心对象,如果s是核心对象,则将s的 ϵ -邻域中未访问的数据加入到种子集合seeds中,跳转步4。
- 5. 如果核心对象集合Ω中元素都已经被访问,则算法结束,否则转入步骤3。

第2节 DBSCAN算法的实验分析

本节实验旨在对DBSCAN算法进行实验分析,我使用python语言的sklearn机器学习软件包进行实验。

第2.1小节 数据集简介

为方便可视化分析,我选用了sklearn中两个数据生成函数来生成数据进行实验:

- 1. make_blobs: 生成各向同性高斯点用于聚类,设定四个均值中心,即真实的类别应该有4个。
- 2. make_circles: 生成在二维空间中生成一个大圆包含着一个小圆,即真实的类别应该有2个。

用以上两个函数分别生成750条数据用于聚类实验分析。

第2.2小节 DBSCAN算法与其他聚类算法实验对比

我使用K-Means聚类算法和高斯混合模型(GMM)与DBSCAN算法进行对比,其中DBSCAN算法默认设定 ϵ 为0.3,MinPts为15,最终各聚类算法的表现如下表1、2所示:

表 1: 不同聚类算法在make blobs生成数据上的表现

衣 I: 个问家尖昇伝住Make_blobs生成剱循工的衣塊					
聚类算法	可视化图片	轮廓系数	V-measure	噪声点	
DBSCAN	2.0 1.5 1.0 0.5 -0.5 -1.0 -1.5 -1.0 -2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0	0.575	0.865	36	
K-Means(k=4)	2.0 1.5 1.0 0.5 0.0 0.5 1.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.0	0.612	0.918	0	
GMM(k=4)	2.0 1.5 1.0 0.5 0.5 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0	0.612	0.918	0	

表 2: 不同聚类算法在make circles生成数据上的表现

聚类算法	可视化图片	轮廓系数	V-measure	噪声点
DBSCAN	2.0 1.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.113	1.0	0
K-Means(k=2)	20 15 10 00 00 -0.5 -10 -2.0 -15 -1.0 -0.5 0.0 0.5 10 15 2.0	0.354	0.0	0
GMM(k=2)	2.0 1.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.352	0.0	0

首先对于以四个均值中心生成的各向同性高斯点数据而言,虽然从量化指标上看,轮廓系数和V-measure都不如预先设定簇数为4的K-Means和GMM算法,但从可视化图片上观察,DBSCAN和k为4的K-Means、GMM算法均能够很好地将数据聚成4个簇。另外,由于DBSCAN其算法原理中存在将非核心对象结点标记为噪声点的一个步骤,对于make_blobs生成的数据,DBSCAN算法的聚类结果存在36个噪声点,在可视化图片中使用黑色标注出,可以发现,这些噪声点都是处于离各个簇的簇心都很远的位置。

另外,在make_circles生成的数据上DBSCAN则表现出了其作为基于密度的聚类算法的优越性,如表2所示,DBSCAN将内外两个圆分别正确划分成两个类别,而K-Means、GMM算法都形成了错误的超平面,将两个圆进行了错误的划分,这一点从V-measure指标中也可以明显看出, V-measure 作为聚类结果同质性和完整性的调和均值,DBSCAN达到了1.0这个完美的分数。然而,如表2所示,在轮廓系数指标上,正确聚类的DBSCAN依然不如错误聚类的K-Means和GMM,经过查阅资料之后我发现,对于簇结构为凸的数据轮廓系数值高,而对于簇结构非凸需要使用DBSCAN进行聚类的数据,轮廓系数值低,因此,轮廓系数在make_circles生成的非凸的结构不能正确描述DBSCAN与其他算法的对比。

总体而言,DBSCAN可以对任意形状的稠密数据集进行聚类,相对的,K-Means、GMM等聚类算法一般只适用于凸数据集;另外DBSCAN算法可以在聚类的同时发现噪声点,对数据集中的异常点不敏感;最后DBSCAN对初始值不敏感,不需要预先设定簇数k,相对的,正如下一节内容所分析的那样,K-Means、GMM等聚类算法k值的选取对聚类结果有很大影响。

第3节 关于簇数k对聚类算法影响的讨论

本节实验中,我选取了K-Means算法来研究簇数k对聚类结果的影响,并确定出k值的确定策略。对此,我对K-Means算法选取了不同的k值,得到k值与聚类簇的平均直径的关系图1和不同k值在可视化图片以及量化指标的表格3。

图 1: k值与平均直径的关系

表 3: 不同k值对于K-Means算法的影响

k	可视化图片	轮廓系数		平均直径
K		化净尔效	v-illeasure	一一一一
2	2.0 1.5 1.0 -0.5 -1.0 -2.0 -1.5 -1.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0	0.434	0.605	3.671
3	15	0.484	0.746	2.896
4	15	0.612	0.918	2.072
5	15 10 05 00 00 00 00 00 00 00 00 0	0.535	0.862	1.999
6	1.5 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.454	0.803	1.842

从表3中可以看出,随着k值的选择越接近数据本身正确的簇数,可视化结果和量化指标的表现越好。另一方面,从图1可以看出,只要我预先设定的类簇的k等于或者高于真实的类簇的数目时,随着k的减小平均直径上升会很缓慢,而一旦k值少于真实数目的类簇时,该指标就会急剧上升,即k值与聚类簇的平均直径关系图中的拐点的k值即为最接近真实的类簇的数目的取值,在本实验情况下,该取值为4。因此在实验中可以采用二分查找的策略快速找到最优的k值。

第4节 总结

在本作业中,我首先给出了DBSCAN完整的算法框架,并生成了两类数据,分别对比DBSCAN算法和K-Means、GMM算法在凸数据和非凸数据下的聚类表现,由此展现了DBSCAN在对非凸结构数据进行聚类时的优越性。另外在我继续研究了预先设定的簇数k对K-means算法的影响,确定了依据聚类簇平均直径通过二分查找快速确定最优k值的策略。