Mathematical Logic Homework 01

Qiu Yihang

Sept.20, 2022

0 Some Lemmas

Thm. The set X is countable iff. exists one-to-one mapping $f: X \to \mathbb{N}$. [Already proved in class.]

Thm. When $f: B \to C$ is surjective and $g: A \to B$ is bijective, $f \circ g: A \to C$ is surjective.

Proof. f is surjective \Rightarrow For any $c \in C$, we can always find some $b \in B$ s.t. f(b) = c. g is bijective \Rightarrow g is surjective \Rightarrow For any $b \in B$, we can always find some $a \in A$ s.t. g(a) = b. Thus, for any $c \in C$, we can always find some $a \in A$ s.t. $f \circ g(a) = f(g(a)) = c$. i.e. $f \circ g$ is surjective.

1 Question 01

1.1 Domain and Range of R

Solution. By the definition of domain and range, we know

$$\label{eq:domain} \begin{split} \operatorname{domain}(R) &= \left\{1, 2, 3\right\}, \\ \operatorname{range}(R) &= \left\{1.1, 3.2, 2.0\right\} \end{split}$$

1.2 R is Not a Function

Solution. Since for $2 \in B$, exist 1.1 and 3.2 s.t. $\langle 2, 1.1 \rangle \in R$ and $\langle 2, 3.2 \rangle \in R$, by the definition of functions, we know R is **not** a function.

2 Question 02

2.1 $f: \mathbb{N} \to A$ is Surjective $\Rightarrow A$ is Countable

Proof. When $f: \mathbb{N} \to A$ is surjective, for any $a \in A$, we know exists some $n \in \mathbb{N}$ s.t. f(n) = a.

Then we can construct a function $g:A\to\mathbb{N}$ as follows.

For any $a \in A$, we can pick a $n \in \mathbb{N}$ s.t. f(n) = a. Set g(a) = n.

Now we prove g is injective.

$$g(x) = g(y) \Rightarrow f(g(x)) = f(g(y))$$
 (f is a function.) $\Rightarrow x = y$ (by the definition of g).

Thus, $g: A \to \mathbb{N}$ is a one-to-one mapping from A to \mathbb{N} .

Therefore, A is countable.

2.2 $f: A \to \mathbb{N}$ is Surjective $\Rightarrow A$ is Infinite

Proof. We prove it by contradiction.

Assume A is finite. Then exists a bijective $g: A \to \{0, 1, 2, ..., |A| - 1\}$.

When $f: A \to \mathbb{N}$ is surjetcive, we know for any $n \in \mathbb{N}$, we can find some $a \in A$ s.t. f(a) = n.

Then $f \circ g^{-1} : \{0, 1, 2, ... |A| - 1\} \to \mathbb{N}$ is surjective, i.e. for any $n \in \mathbb{N}$, we can always find a $a \in \{0, 1, 2, ... |A| - 1\}$ s.t. $f \circ g^{-1}(a) = n$.

Since f and g are functions, i.e. $f \circ g^{-1} : A \to \mathbb{N}$ is a function, we know $\mathtt{range}(f \circ g^{-1})$ is finite.

Therefore, exists $n \in \mathbb{N} \setminus \text{range}(f \circ g^{-1})$ s.t. for any $a \in \{0, 1, 2, ... |A| - 1\}$, $f \circ g^{-1}(a) \neq n$.

Contradiction!

Thus, A is not finite, i.e. A is infinite.

3 Question 03

Proof. We can construct a listing without repetitions as follows.

Thus, $\mathbb{N} \times \mathbb{N}$ is enumerable.