Recherche Opérationnelle et Intelligence Artificielle

Théorie des graphes -ESGI-Planche Exercices 3

Exercice 1

Pour chacun des graphes suivants, indiquer :

	Graphe 1	Graphe 2
Le Degré de chaque sommet		
Nombre d'Arcs		
Nombre d'Arrêtes		
Nombre de chemins Hamiltoniens		
Nombre de chaînes Hamiltoniennes		
Nombre de chemins Eulériens		
Nombre de chaînes Eulériennes		

Exercice 2

Appliquer d'algorithme A* à la grille suivante, permettant de trouver le chemin optimal entre la case de départ et la case d'arrivée sachant que :

- L'heuristique utilisée est la distance de Manhattan à vol d'oiseau
- Se déplacer d'une case blanche à une case blanche coûte 1.
- Se déplacer d'une case blanche à une case noire est impossible (coût infini).
- On ne peut se déplacer qu'horizontalement ou verticalement et d'une case à la fois.

Devront être indiqués :

- Les étapes de déroulement de l'algorithme (indication du coût réel + coût estimé sur chaque case)
- Les cases explorées.
- Les cases appartenant au chemin optimal trouvé.
- Le coût minimal pour se rendre de la case de départ à la case d'arrivée.

Exercice 3

Appliquer d'algorithme de Dijkstra au graphe pondéré suivant, permettant de trouver le chemin optimal entre le sommet de départ et le sommet d'arrivée.

Devront être indiqués :

- Les étapes de déroulement de l'algorithme (indication du coût réel et provenance sur chaque sommet), ne pas hésiter à laisser les ratures indiquant la mise à jour des coûts.
- Les sommets explorés.
- Les sommets appartenant au chemin optimal trouvé.
- Le coût minimal pour se rendre du sommet de départ au sommet d'arrivée.

Correction

Exercice 1

Pour chacun des graphes suivants, indiquer :

	Graphe 1	Graphe 2
Degré	A:2,B:2,C:2,D:2,E:2	A:3,B:1,C:1,D:1
Nombre d'Arcs	5	-
Nombre d'Arrêtes	-	3
Nombre de chemins Hamiltoniens	5	-
Nombre de chaînes Hamiltoniennes	-	0
Nombre de chemins Eulériens	5	-
Nombre de chaînes Eulériennes	-	0

Exercice 2

Appliquer d'algorithme A* à la grille suivante, permettant de trouver le chemin optimal entre la case de départ et la case d'arrivée sachant que :

- L'heuristique utilisée est la distance de Manhattan à vol d'oiseau
- Se déplacer d'une case blanche à une case blanche coûte 1.
- Se déplacer d'une case blanche à une case noire est impossible (coût infini).
- On ne peut se déplacer qu'horizontalement ou verticalement et d'une case à la fois.

R: 7,E: 4	R: 6,E: 3			Arr	ivée	
			1	R; 9	9.50	
R: 6,E: 5	R: 5,E: 4	R: 4,E: 3		R: 8	E: 1	R: 9,E: 2
R: 5,E: 6	R: 4,E: 5	R: 3,E: 4		R: 7	E: 2	R: 8,E: 3
			à			
R: 4,E: 7	R: 3,E: 6	R: 2,E: 5		R: 6	E: 3	R: 7,E: 4
R: 3,E: 8	R: 2,E: 7	R: 1,E: 6		R: 5	E : 4	R: 6,E: 5
R: 2,E: 9	R: 1,E: 8	Départ		R: 4	E : 5	R: 5,E: 6
		R: 0 E: 7				
	R: 2,E: 9	R: 1 E: 8	R: 2,E: 7	R: 3	E: 6	R: 4,E: 7
						•

Devront être indiqués :

- Les étapes de déroulement de l'algorithme (indication du coût réel + coût estimé sur chaque case)
- Les cases explorées.
- Les cases appartenant au chemin optimal trouvé.
- Le coût minimal pour se rendre de la case de départ à la case d'arrivée.

Exercice 3

Appliquer d'algorithme de Dijkstra au graphe pondéré suivant, permettant de trouver le chemin optimal entre le sommet de départ et le sommet d'arrivée.

