Prof. Lucio A. Rocha

Engenharia de Computação Universidade Tecnológica Federal do Paraná, UTFPR Campus Apucarana, Brasil

2° semestre / 2023

Sumário

- Computabilidade
- Tese de Church-Turing
- Redutibilidade
- Decidibilidade
- Problema da Parada
- Intratabilidade

Computabilidade

•0000000

- Computabilidade é a investigação da existência ou não de algoritmos que solucionam determinada classe de problemas.
- Pesquisar os limites da computabilidade é estudar os limites do que pode ser efetivamente implementado por um computador.
- Evitar a pesquisa de soluções não-computáveis.

Computabilidade 0000000

Função computável

Def.: Uma função é computável se existe um algoritmo que calcula os valores de saída a partir dos valores de entrada.

- Ex.: $\pi = \frac{comprimento}{diametro}$
- Ex.: $y = \sqrt{x}$

00000000

Função não-computável

Def.: Se não existe algoritmo que resolva um problema, então esse problema não é computável (Gödel).

- Ex.: Problema da parada: dada uma entrada P qualquer, a função reconhece (informa) que há um loop.
- Ex.: Problema da totalidade: há uma função que decide (implementa a ação) que o programa sempre pára, para qualquer entrada.

00000000

Figura: Classes de Problemas.

Computabilidade

Figura: Classes de Problemas.

 Computabilidade
 Tese de Church-Turing
 Redutibilidade
 Decidibilidade
 Problema da Parada
 Intratabilidade

 00000000
 0
 0
 00000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Computabilidade

Problema Solucionável

Def.: Um problema é solucionável se existe um algoritmo (Máquina Universal) que soluciona o problema.

O algoritmo sempre pára para qualquer entrada em um estado de ACEITA ou REJEITA.

Problema Não-Solucionável

Def.: Um problema é <u>não-solucionável</u> se <u>não</u> existe um algoritmo (Máquina Universal) que soluciona o problema e que sempre pára para qualquer entrada.

 Computabilidade
 Tese de Church-Turing
 Redutibilidade
 Decidibilidade
 Problema da Parada
 Intratabilidade

 000000●0
 0
 0
 0
 0
 0
 0
 0
 0

Computabilidade

Problema Parcialmente Solucionável (ou Computável)

Def.: Um problema é <u>parcialmente</u> solucionável (ou computável) se existe um algoritmo (Máquina Universal) que soluciona o problema, e que pára quando a resposta é ACEITA.

Porém, quando a resposta não é aceita, o algoritmo pode parar (REJEITA) ou entrar em loop.

Problema Não-Computável

Def.: Um problema é completamente insolúvel (ou não-computável) se $\underline{não}$ existe um algoritmo (Máquina Universal) que soluciona o problema, e que pára quando a resposta é ACEITA.

0000000

Problema Não-Solucionável

Def.: Um problema é não-solucionável, completamente insolúvel ou não-computável se não existe um algoritmo (Máquina Universal) que soluciona o problema, e que pára quando a resposta é ACEITA.

Tese de Church-Turing

Tese de Church-Turing

Tese de Church-Turing

Def.: Se uma função é efetivamente computável então ela é computável por meio de uma Máquina de Turing.

- Na prática:
 - Se um problema tem solução então ele é computável com uma MT.
 - Ou seja: existe um algoritmo que expressa a solução do problema.
 - Todo algoritmo pode ser expresso por uma MT.

- Investigar a solução de um problema, a partir de um caso particular de outro problema.
 - Sejam A e B dois problemas de decisão. Suponha que seja possível modificar ("reduzir") o problema A para que este se torne um caso particular do problema B.
 - 2 Se A não é solucionável (i.e.,não-computável) então B também não é solucionável (i.e.,não-computável).
 - Se B é solucionável (i.e.,parcialmente solucionável) então como A é um caso particular de B, o problema A também é solucionável (i.e., parcialmente solucionável).

- Exemplo aplicado na Lógica de Predicados:
- $\forall x (P_x \land Q_x) \vdash \forall x P_x \land \forall x Q_x$
 - 1. $\forall x(P_x \wedge Q_x)$ hip.
 - 2. $P_a \wedge Q_a$ EU 1
 - 3. P_a SP 2
 - 4. Q_a SP 2
 - 5. $\forall x P_x$ IU 3
 - 6. $\forall x Q_{y}$ IU 4
 - 0. $\forall x Q_x$ 10 4
 - 7. $\forall x P_x \land \forall x Q_x$ Conj. 5,6

Tese de Church-Turing Redutibilidade Decidibilidade Problema da Parada Intratabilidade

Figura: Redutibilidade.

- Decidibilidade é a verificação se a função associada a um problema de decisão é ou não computável em uma Máquina Universal.
- Um problema é decidível se existe uma MT que o resolve.
- Um Problema é indecidível (insolúvel) se não pode ser expresso em Máquina Universal.
- Decidibilidade: Dado um programa P para uma Máquina Universal M, decidir se a função computada < P, M > é total, ou seja, se a computação é finita.

- Problema de decisão: é uma pergunta sobre um problema com uma resposta binária: sim ou não.
- Problema de decisão: determinar se um elemento pertence ou não a um conjunto.
 - Ex.: 7 é primo?
- O método utilizado para resolver um problema de decisão é o algoritmo.

Tese de Church-Turing Redutibilidade **Decidibilidade** Problema da Parada Intratabilidade

○ ○○ ○○ ○○ ○○ ○ ○ ○ ○ ○

Decidibilidade

Problema de decisão decidível

Def.: Dado um conjunto A, o problema de decisão é decidível (ou solucionável) se A é um conjunto recursivo.

- Conjunto recursivo (computável ou decidível): é um conjunto de números Naturais sobre o qual existe um algoritmo que termina após um tempo finito e decide (informa) se o número pertence ou não ao conjunto.
- Ex.: $A = \{$ Conjunto dos números primos menores que 10 $\}$

- Conjunto recursivamente enumerável (ou semidecidível): é um conjunto de números Naturais sobre o qual existe um algoritmo que termina após um tempo finito e decide (informa) apenas se o elemento pertence ao conjunto.
 - Porém, o algoritmo pode não dar uma resposta (mas não uma resposta errada) caso o elemento não pertença ao conjunto.
- Todo conjunto recursivo é recursivamente enumerável.
- Ex.: $A = \{$ Conjunto dos números primos menores que 10 $\}$
- Ex.: $B = \{ \text{ Conjunto dos números primos } \}$

Problema da Parada

Problema da Parada

Problema da Parada

Def.: Dado um programa e uma entrada quaisquer, não existe um algoritmo genérico capaz de verificar se o programa vai parar ou não para a entrada.

• O problema da parada é um problema de decisão que, dado um programa *P* e uma entrada finita, decide (verifica) se o programa termina de executar, ou entra em loop.

Intratabilidade

Tese de Church-Turing Redutibilidade Decidibilidade Problema da Parada Intratabilidade

Intratabilidade

Problemas intratáveis

Problemas intratáveis são aqueles que, teoricamente, podem ser resolvidos, mas que, na prática, levam muito tempo para que as suas soluções sejam úteis.

