Вычисления в NLO QCD и EW приближении с помощью mcsanc-v1.0

Андрей Сапронов

ляп оияи

24.02.2014

Достижения LHC

- LHC RUN-I
 - ▶ Стабильные протон-протонные пучки с 2009 по 2012гг с постепенным повышением энергии от 450GeV до 4TeV
 - ▶ Основные периоды набора данных 2011 и 2012:
 - $-5 {\rm fb}^{-1}$ @ $7 {\rm TeV}$
 - $-20 {\rm fb}^{-1}$ @ 8 TeV
 - ▶ Открыт бозон Хиггса экспериментами ATLAS и CMS
- Результативность детектора ATLAS:
 - lacktriangle Зарегистрировано $\sim 25 {
 m fb}^{-1}$ интегральной светимости
 - Загрузка детектора по времени составила > 99%
 - ightharpoonup Эффективность отбора данных $\sim 93.5\%$

Пример анализа в ATLAS.

Дрелл-Ян: дополнительные поправки

Стандартная цепочка МС в ATLAS использует МС@NLO+РYTHIA для моделирования жесткого процесса в приближении NLO QCD и партонных ливней (PS) и PHOTOS для учета излучения из конечных состояний (FSR):

В дополнение в SANC реализованы следующие поправки NLO EW:

- чисто слабые (PW);
- интерференция между начальным и конечным QED излучением (IFI);
- оставшиеся от ISR после вычитания коллинеарных расходимостей.

Оценка дополнительные поправок

Дополнительные поправки зависят от кинематических ограничений: например, для процесса $pp \to Z \to \mu^+\mu^-$ поправки к распределению по $M_{\mu^+\mu^-}$ меняются от -1% до 5% вокруг Z-резонанса, что делает необходимым их учёт в анализе

$$\delta_{\bar{X}} = \frac{\mathrm{d}\sigma_{\bar{X}}^{\mathrm{SUPL}}}{\mathrm{d}\sigma_{\bar{X}}^{\mathrm{LO}}}, \quad \%$$

◆ロト ◆部 → ◆注 > ◆注 > ・ 注 ・ り Q

Характеристики метода SANC

- Вычисления производятся в схеме перенормировки на массовой поверхности в R_{ε} калибровке;
- Полное сечение NLO делится на несколько вкладов. Например, для электрослабых поправок:

$$\sigma^{\rm NLOEW} = \sigma^{\rm Born} + \sigma^{\rm virt}(\lambda) + \sigma^{\rm soft}(\lambda, \bar{\omega}) + \sigma^{\rm hard}(\bar{\omega}) + \sigma^{\rm subt}$$

- ullet Поддерживаются схемы вычитания $\overline{\mathrm{MS}}$ и DIS.
- На основе модулей SANC было создано несколько Монте-Карло

Свойства интегратора mcsanc

- Вычисляет полностью дифференциальное сечение для ряда процессов протон-протонных столкновений для условий LHC;
- Позволяет вычислять электрослабые и QCD NLO поправки;
- Различные электрослабые схемы $(\alpha(0), \alpha(M_Z), G_\mu)$ и шкалы факторизации и перенормировки;
- Параллелизация вычислений для многоядерных процессоров благодаря библиотеке Cuba (http://www.feynarts.de/cuba/)

pid	ff o
001:003	$I^+I^-(I=e,\mu,\tau)$
004	$Z^0 + H$
$\pm \ 101:103$	$I^{\pm} + \nu_I$
$\pm~104$	$W^{\pm} + H$
105	$t+ar{b}$ (s-channel)
106	t+q (t-channel)
-105	$\overline{t} + b$ (s-channel)
-106	$\overline{t} + q$ (t-channel)

Сравнения с MCFM и FEWZ (EW)

Проводились для условий LHC при $\sqrt{s_0} = 14 \text{TeV}$

Дополнительные поправки для анализа ATLAS.

- Производился на данных, набранных за 2010-2012гг, с интегральной светимостью более 25fb^{-1} .
- Для анализа рождения W/Z бозонов в SANC вычислялись электрослабые NLO поправки.
- Дополнительные поправки вычислялись для $M_{\ell\ell}$ в диапазонах 26-66. 66-116 и 116-1500GeV.
- Также вычисления электрослабых поправок SANC использовались при QCD-анализе данных ATLAS за 2010г, в котором было измерено соотношение плотности морских *s*- и *d*-кварков.

Заключение

- Группа SANC разработала интегратор mcsanc, вычисляющий одновременно NLO QCD и EW-поправки к ряду процессов, включая процессы типа Дрелла—Яна.
- Программа ориентирована на физику LHC и позволяет получать дифференциальные распределения различных наблюдаемых при требуемых входных параметрах и кинематических ограничениях.
- mcsanc активно используется для вычисления дополнительных поправок, необходимых для проведения анализа процессов типа Дрелла—Яна в эксперименте ATLAS.