Aula 18: Árvores rubro-negras

David Déharbe
Programa de Pós-graduação em Sistemas e Computação
Universidade Federal do Rio Grande do Norte
Centro de Ciências Exatas e da Terra
Departamento de Informática e Matemática Aplicada

Download me from http://DavidDeharbe.github.io.

Plano da aula

Introdução Propriedades Operações

Árvores rubro-negra

- Em 1972, Rudolf Bayer projetou a estrutura de dados árvores
 B binárias simétricas.
- Popularizada sob o nome árvores rubro-negras (Guibas & Sedgewick 1978)
- Complexidade
 - busca em $O(\lg n)$,
 - remoção em $\Theta(\lg n)$ e
 - ▶ inserção em $\Theta(\lg n)$
- Menos restritivas que árvores AVL, com alturas tendendo a ser maiores
 - busca: menos eficiente
 - inserção e remoção: mais eficiente
- bastante usadas na prática (escalonador Linux, STL)

Árvores rubro-negra

Especificação

- 1. árvore binária de busca
- 2. os nós tem um atributo $color \in \{\text{Red}, \text{Black}\}.$ Convenção: NIL. color = Black
- 3. A raiz é negra root. color = BLACK
- Qualquer caminho da raiz até uma sub-árvore vazia tem o mesmo número de nós negros.

$$bh(\text{NiL}) = 0$$

 $bh(x) = 1 + bh(x.left) \text{ se } x.left.color = \text{Black}$
 $bh(x) = bh(x.left) \text{ se } x.left.color = \text{Red}$

5. Os descendentes de um nó rubro são negros: $x.color = \text{RED} \Rightarrow x.left.color = \text{Black} \land x.right.color = \text{Black}.$

llustração

Exercício

Existe outras maneiras de colorir os nós da seguinte árvore de tal forma que respeite as propriedades de árvores rubro-negras?

Altura de árvores rubro-negras

Teorema

Seja T uma árvore rubro-negra, com n nós, então $\alpha(T.root) \in \Theta(\lg n)$.

Demonstração.

- ▶ seja p = bh(T) (a altura negra de T)
- ▶ há pelo menos $2^p 1$ nós negros, logo $n \ge 2^p 1$
- ▶ a altura máxima α_m de T é 2p (alternando nós rubros e negros)
- $\alpha_m \le 2p \text{ e } n \ge 2^p 1$, $\log \alpha_m \le 2 \log_2(n+1)$.
- em uma árvore binária $\alpha_m \in \Omega(\log n)$
- ▶ logo $\alpha_m \in \Theta(\log n)$.

Implementação

 $ightharpoonup x. color \in \{\text{Red}, \text{Black}\}$

Operação de busca

- A busca não modifica a árvore.
- O algoritmo de busca em árvores rubro-negra é o mesmo da busca em árvores binárias de busca qualquer.
- ightharpoonup a complexidade é $O(\log n)$

Operação de inserção

- 1. inserção em árvore binária de busca
- 2. se necessário, re-balanceamento

Inserção

Propriedade 2: qual cor escolher para o novo nó?

- se for negro, e a árvore inicialmente não vazia, quebra a propriedade 4
- se for rubro, e a árvore inicialmente vazia, quebra a propriedade 3

Inserção

Propriedade 2: qual cor escolher para o novo nó?

- se for negro, e a árvore inicialmente não vazia, quebra a propriedade 4
- se for rubro, e a árvore inicialmente vazia, quebra a propriedade 3

solução

- ▶ é criado um nó, q
- ▶ a cor defaut é rubro: q.color = Red
- após a inserção, a raiz é atribuída a cor negro root.color = Black

Inserção

Propriedade 5: nó rubro não pode ter descendente direto rubro

- seja v o nó ascendente de q
- ▶ se *v* for negro, não ha desequilibro
- ▶ se *v* for rubro, a propriedade 5 é violada

Inserção

Propriedade 5: nó rubro não pode ter descendente direto rubro

- seja v o nó ascendente de q
- se v for negro, não ha desequilibro
- ▶ se *v* for rubro, a propriedade 5 é violada

solução

- como v é rubro, tem um nó ascendente, w, tal que w.color == Black
- ▶ seja t a outra sub-árvore de w
 - 1. t.color == Red
 - 2. t.color == Black


```
INSERT(T, k)
1     if T.root == NIL
2          T.root = MAKE-NODE(k)
3     else v = NIL
4          w = NIL
5          INSERT-AUX(T.root, v, w, k)
6     T.root.color = BLACK
```

O caso t.color == RED

- t.color == Red
 - ▶ logo $t \neq Nil$
 - ▶ inversão das cores de v, w e t.

O caso t.color == RED

t.color == Red

- 1. se w era a raiz, é atribuído a cor negro
- 2. se w não era a raiz, opera-se eventual rebalanceamento em nível superior
- 3. a operação não alterou bh(w)

O caso t.color == BLACK

$$t.color == Black$$

- 1. w.left == v e v.left == q
- 2. w.left == v e v.right == q
- 3. w.right == v e v.right == q (simétrico de 1)
- 4. w.right == v e v.left == q (simétrico de 2)

O caso t.color == BLACK e w.left == v e v.left == q

t.color == BLACK e w.left == v e v.left == q

rotação simples a direita + inversão cores de v e w

O caso t.color == BLACK e w.left == v e v.left == q

t.color == BLACK e w.left == v e v.left == q

rotação simples a direita + inversão cores de v e w O resultado é uma árvore rubro-negra? Justifique.

O caso t.color == BLACK e w.left == v e v.right == q

t.color == BLACK e w.left == v e v.right == q

rotação dupla a direita + inversão cores de q e w

O caso t.color == BLACK e w.left == v e v.right == q

t.color == BLACK e w.left == v e v.right == q

rotação dupla a direita + inversão cores de q e w O resultado é uma árvore rubro-negra? Justifique.

Algoritmo de inserção

```
INSERT-AUX(k, q, v, w)

1 if q == \text{NIL}

2 q = \text{Make-Node}(k)

3 elseif k < q. \text{ key}

4 INSERT-AUX(l, q. \text{ left}, q, v)

5 if q. \text{ color} == \text{Red and } q. \text{ left. color} == \text{Red}

6 BALANCE(q. \text{ left}, q, v)

7 elseif k > q. \text{ key}

8 ...
```

Algoritmo de inserção

```
BALANCE(q, v, w)
   if v == w.esq
        t = w.right
 3 else t = w.left
   if t.color == RED
 5
         t.color = v.color = Black
         w.color = Red
    else if q == v. left and v == w. left
8
             v.color = BLACK, w.color = RED
9
             ROTATE-SIMPLE-RIGHT(w)
10
        elseif q == v. right and v == w. left
11
             q.color = BLACK, w.color = RED
12
             ROTATE-DOUBLE-RIGHT(w)
13
        elseif q == v. right and v == w. right
14
15
    else
16
```


A operação de remoção

- 1. remoção em árvore binária de busca
- 2. se necessário, re-balanceamento
- 3. o nó removido tem pelo menos uma sub-árvore vazia

O que fazer quando o nó a remover tem a cor rubro ?

negro?

O que fazer quando o nó a remover tem a cor rubro ? Nada, pois nenhuma propriedade pode ser quebrada.

O que fazer quando o nó a remover tem a cor

rubro ? Nada, pois nenhuma propriedade pode ser quebrada.

Exercício: remover os nós com valores 15 e 50 na árvore seguinte:

O que fazer quando o nó a remover tem a cor rubro ? Nada, pois nenhuma propriedade pode ser quebrada.

Remoção de um nó negro

Seja y o nó a remover.

- ▶ todos os caminhos da raiz até uma folha passando por y tem um nó negro a menos
- seja x a sub-árvore após a remoção de y
 - x é a sub-árvore vazia (y era uma folha), ou
 - x era a sub-árvore não vazia de y
- ▶ solução: incrementar a altura negra de x.
 - se a raiz de x era de cor rubro, passa a ser de cor negro
 - ▶ se a raiz de x era de cor negra, a cor é duplamente negro
- ightharpoonup se x é a raiz da árvore (global): atribuir negro à cor de x
- se x não é a raiz da árvore:
 - seja v : x. up, o ascendente direto de x
 - seja w a outra sub-árvore de v w não pode ser a árvore vazia

Remoção de um nó negro

Seja y o nó a remover.

- ▶ todos os caminhos da raiz até uma folha passando por y tem um nó negro a menos
- seja x a sub-árvore após a remoção de y
 - x é a sub-árvore vazia (y era uma folha), ou
 - x era a sub-árvore não vazia de y
- ▶ solução: incrementar a altura negra de x.
 - se a raiz de x era de cor rubro, passa a ser de cor negro
 - ▶ se a raiz de x era de cor negra, a cor é duplamente negro
- ightharpoonup se x é a raiz da árvore (global): atribuir negro à cor de x
- se x não é a raiz da árvore:
 - seja v : x. up, o ascendente direto de x
 - seja w a outra sub-árvore de v w não pode ser a árvore vazia explique o motivo.

Os diferentes casos

$$x \neq root, x. color == BLACK, x. up == v, w. up == v, w \neq x$$

- 1. w.color == Red
- 2. w.color == BLACK, as sub-árvores de w são de cor negro.
- 3. w.color == Black, w.left.color == Red, w.right.color == Black.
- 4. w.color == BLACK, w.right.color == RED.

 $x \neq root, x. color == BLACK, x. up == v, w. up == v, w \neq x, w. color == RED$

O nó irmão de x tem a cor negra: caso 2, 3 ou 4.

 $x \neq root, x. color == BLACK, x. up == v, w. up == v, w \neq x, w. color == BLACK, w. left. color == BLACK$

 $x \neq root, x. color == BLACK, x. up == v, w. up == v, w \neq x, w. color == BLACK, w. left. color == RED, w. right. color == BLACK$

 $x \neq root, x. color == BLACK, x. up == v, w. up == v, w \neq x, w. color == BLACK, w. right. color == RED$

(Antes) (Depois) w_c w_c z δ η α β

Exercícios

- 1. Repetidamente remove o valor na raiz até a árvore se tornar vazia
- 2. Repetidamente remove o menor valor até a árvore se tornar vazia
- 3. Repetidamente remove o maior valor até a árvore se tornar vazia

Exercícios

- 1. Repetidamente remove o valor na raiz até a árvore se tornar vazia
- 2. Repetidamente remove o menor valor até a árvore se tornar vazia
- 3. Repetidamente remove o maior valor até a árvore se tornar vazia

