AKA Network Interface Cards (NIC)

- Components
- Options for Use
 - Data Motion
 - Event Notification
- Potential performance bottlenecks
- Programming device drivers

Network Adaptor

- Adaptor Implements:
 - Encoding
 - Framing
 - Error detection
 - Medium access control
- Data Motion
 - Direct Memory Access (DMA)
 - Programmed Input/Output (PIO)

input/output bus (I/O BUS)

Network Adaptor: DMA

Network Adaptor: DMA

Network Adaptor: PIO

Network Adaptor: PIO

- Data Motion
 - Direct Memory Access (DMA)
 - Processor free to do other things
 - Can be faster than memory copy through CPU
 - Start up cost
 - Programmed Input/Output (PIO)
 - Processor manages each access (loads/stores)
 - Faster than DMA for small amounts of data

- Event Notification
 - Hardware interrupts
 - Processor free to do other things
 - Events delivered immediately
 - State (register) save/restore expensive
 - Context switches more expensive
 - Event polling
 - Processor must periodically check
 - Events wait until next check
 - No extra state changes

Network Adaptor Performance

- Potential bottlenecks
 - Link capacity
 - I/O bus bandwidth
 - Memory bus bandwidth
 - Processor computing power

Programming Device Drivers

- Sample device driver in P&D
- Better examples in Linux
- Key Features
 - Memory-mapped control registers
 - Interrupt driven
 - Handler code must execute quickly
 - Logically concurrent with other processors

Direct Link Examples

- Goal
 - Explain real systems in terms of direct link topics
- TCP transport layer
- IP network layer
- Two examples of data link/physical layers
 - Ethernet
 - FDDI
- merely case studies—no need to memorize details

Example

- TCP transport layer (reliable transmission)
 - sliding window algorithm
 - adaptive window sizes
 - heuristics to address contention
 - aim at global optimum
 - see P&D 6.3 for details or wait until April
- IP network layer (error detection)
 - IP checksum
 - backs up stronger data link barriers (usually CRC)

Example

- 10 Mbps Ethernet (Xerox)
 - Encoding
 - Manchester
 - 10 Mbps, so transitions at 20 MHz
 - Error detection
 - Cyclic redundancy check (probably CRC-32)

- Framing
 - Sentinel marks end-of-frame
 - Bit-oriented (similar to HDLC)
 - Variable length
 - Data-dependent length
- Medium access control
 - CSMA/CD

10Mb Ethernet Frame Format

Ethernet Frame Components

- Preamble + Start of Frame
 - 7 bytes of 10101010, 1 byte of 10101011
 - Encoded as 10Mhz square wave
 - Synchronize receiver's clock
- Source and Destination Address
 - Unique unicast Ethernet addresses
 - 20 bit manufacturer prefix + 28 bit ID
 - Broadcast address: FF:FF:FF:FF:FF
 - Multicast address: MSB set (80:00:...)

Ethernet Frame Components

- Type
 - 2 bytes
 - Used to demultiplex higher layers
- Body + Padding
 - Minimum data size = 46 (minimum frame size = 64)
 - Data padded to minimum value
 - Maximum data size = 1500

Ethernet Frame Components

- CRC
 - 4 byte
- End of frame marker
 - 1 byte
- Total of 27 bytes header and trailer
- Xerox vs. 802.3
 - 802.3 replaces type with length
 - 802.3 drops EOF

IEEE 802.11 Frame Format

Types

- control frames,
 management
 frames, data
 frames
- Sequence numbers
 - important against duplicated frames due to lost ACKs

Addresses

- receiver,
 transmitter
 (physical), BSS
 identifier, sender
 (logical)
- Miscellaneous
 - sending time,
 checksum, frame
 control, data

-IEEE 802.11 Data Frame Format

-IEEE 802.11 Control Frame Format

Acknowledgement

Request To Send

Clear To Send

