IMPORTING LIBRARIES

import pandas as pd
import pandas_profiling
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

READING .CSV FILE

data = pd.read_csv('dataset.csv')

data

	Relative	Compactness	Surface Area	Wall Area	Roof Area	0verall
Heig 0 7.0	t \	0.98	514.5	294.0	110.25	
7.0 1 7.0		0.98	514.5	294.0	110.25	
7.0 2 7.0		0.98	514.5	294.0	110.25	
7.0 3 7.0		0.98	514.5	294.0	110.25	
7.0 4 7.0		0.90	563.5	318.5	122.50	
• •						
763 3.5		0.64	784.0	343.0	220.50	
764 3.5		0.62	808.5	367.5	220.50	
765 3.5		0.62	808.5	367.5	220.50	
766 3.5		0.62	808.5	367.5	220.50	
767 3.5		0.62	808.5	367.5	220.50	

	Orientation	Glazing Area	Glazing Area Distribution	Heating
Load	\			
0	2	0.0	0	
15.5	5			
1	3	0.0	0	
15.5	5			
2	4	0.0	0	
15.5	5			
3	5	0.0	0	
15.5	5			

4 20.84	2	0.0	0
	• • •	• • •	
763 17.88	5	0.4	5
764 16.54	2	0.4	5
765 16.44	3	0.4	5
766	4	0.4	5
16.48 767 16.64	5	0.4	5
Cool	ing Load		
0	21.33		
1 2 3	21.33		
2	21.33 21.33		
4	28.28		
 763	21.40		
764	16.88		
765	17.11		
766	16.61		
767	16.03		

[768 rows x 10 columns]

FIRST FIVE ROWS OF THE DATASET

data.head()

	Compactness	Surface Area	Wall Area	Roof Area	0verall
Heigt \ 0	0.98	514.5	294.0	110.25	
7.0 1	0.98	514.5	294.0	110.25	
7.0	0.98	514.5	294.0	110.25	
7.0 3	0.98	514.5	294.0	110.25	
7.0 4	0.90	563.5	318.5	122.50	
7.0					
Orientat:	ion Glazing	Area Glazing	Area Distri	bution Hea	ting Load

Orientation Glazing Area Glazing Area Distribution Heating Load

0 2 0.0 0 15.55

1	3	0.0	0	15.55
2	4	0.0	Θ	15.55
3	5	0.0	0	15.55
4	2	0.0	0	20.84

	Cooling Load
0	21.33
1	21.33
2	21.33
3	21.33
4	28.28

LAST FIVE ROWS OF THE DATASET

data.tail()

Relat	ive Compactness	Surface Area	Wall Area	Roof Area	0verall
Heigt \					
763	0.64	784.0	343.0	220.5	
3.5 764	0.62	808.5	367.5	220.5	
3.5	0.60	222 5	267.5	222 5	
765 3.5	0.62	808.5	367.5	220.5	
766	0.62	808.5	367.5	220.5	
3.5 767	0.62	808.5	367.5	220.5	
3.5	0.02	808.3	307.3	220.3	

	Orientation	Glazing Area	Glazing Area Distributio	n Heating
Load	\	_	-	_
763	5	0.4		5
17.88				
764	2	0.4		5
16.54				
765	3	0.4		5
16.44				
766	4	0.4		5
16.48				
767	5	0.4		5
16.64				

	Cooling	Lo	ad
763	- 2	21.	40
764	-	16.	88

```
17.11
765
            16.61
766
            16.03
767
```

ANALYSING THE SHAPE OF THE DATASET

```
print("shape of the dataset :", data.shape)
print("Number of rows :", data.shape[0])
print("Number of columns :", data.shape[1])
shape of the dataset: (768, 10)
Number of rows
                    : 768
Number of columns
                     : 10
```

The data.info() function provides information about a dataset, including the data types and number of non-null values for each column.

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 10 columns).
```

	columns (total 10 columns)		_
#	Column	Non-Null Count	Dtype
0	Relative Compactness	768 non-null	float64
1	Surface Area	768 non-null	float64
2	Wall Area	768 non-null	float64
3	Roof Area	768 non-null	float64
4	Overall Heigt	768 non-null	float64
5	Orientation	768 non-null	int64
6	Glazing Area	768 non-null	float64
7	Glazing Area Distribution	768 non-null	int64
8	Heating Load	768 non-null	float64
9	Cooling Load	768 non-null	float64
dtype	es: float64(8), int64(2)		
	CO 1 KD		

memory usage: 60.1 KB

The data.describe() function provides statistical information about a dataset, including measures of central tendency, dispersion, and distribution for numerical columns.

data.describe()

	Relative Compactness	Surface Area	Wall Area	Roof Area	\
count	768.000000	768.000000	768.000000	768.000000	
mean	0.764167	671.708333	318.500000	176.604167	
std	0.105777	88.086116	43.626481	45.165950	
min	0.620000	514.500000	245.000000	110.250000	
25%	0.682500	606.375000	294.000000	140.875000	
50%	0.750000	673.750000	318.500000	183.750000	
75%	0.830000	741.125000	343.000000	220.500000	
max	0.980000	808.500000	416.500000	220.500000	

		Orientation	Glazing Area	Glazing Area
Distribut count 768.00000	768.00000	768.000000	768.000000	
mean 2.81250	5.25000	3.500000	0.234375	
std 1.55096	1.75114	1.118763	0.133221	
min 0.00000	3.50000	2.000000	0.000000	
25%	3.50000	2.750000	0.100000	
1.75000 50%	5.25000	3.500000	0.250000	
3.00000 75%	7.00000	4.250000	0.400000	
4.00000 max 5.00000	7.00000	5.000000	0.400000	
Не	ating Load	Cooling Load		
count	768.000000	768.000000		
mean	22.307201			
std	10.090196			
min	6.010000			
25%	12.992500	15.620000		
50%	18.950000	22.080000		
75% max	31.667500 43.100000	33.132500 48.030000		
IIIax	42.100000	40.030000		

The data.isnull().sum() function returns the number of missing values (null values) in each column of a dataset

data.isnull().sum()

Relative Compactness	0
Surface Area	0
Wall Area	0
Roof Area	0
Overall Heigt	0
Orientation	0
Glazing Area	0
Glazing Area Distribution	0
Heating Load	0
Cooling Load	0
dtype: int64	

Data Visualization

PLOTTING HISTOGRAM

```
data.hist(figsize = (20,15), bins=20, legend=True)
```

```
array([[<Axes: title={'center': 'Relative Compactness'}>,
         <Axes: title={'center': 'Surface Area'}>,
         <Axes: title={'center': 'Wall Area'}>],
        [<Axes: title={'center': 'Roof Area'}>,
         <Axes: title={'center': 'Overall Heigt'}>,
         <Axes: title={'center': 'Orientation'}>],
        [<Axes: title={'center': 'Glazing Area'}>,
         <Axes: title={'center': 'Glazing Area Distribution'}>,
         <Axes: title={'center': 'Heating Load'}>],
        [<Axes: title={'center': 'Cooling Load'}>, <Axes: >, <Axes:</pre>
>]],
       dtype=object)
                                                                  Wall Area
                                                        200
  50
  40
                                                        100
  30
  20
                                      Overall Heigt
                                                                 Orientation
    Roof Area
  300
                             300
                                                        150
                             200
                                                        100
  200
                                      Overall Heigt
           Glazing Area
  250
                             140 Glazing Area Distribution
                  Glazing Area
                                                                        Heating Load
                                                        100
  200
                             100
  150
                                                        60
  100
    0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
  120 -
                 Cooling Load
  100
  60
BAR CHART
import pandas as pd
import matplotlib.pyplot as plt
# read the data from CSV file into a pandas DataFrame
df = pd.read csv('dataset.csv')
# iterate through the columns of the DataFrame and create a bar plot
for each column
for col in df.columns:
     fig, ax = plt.subplots(figsize=(20, 15))
```

```
df[col].value_counts().plot(kind='bar', ax=ax)
ax.set_xlabel(col)
ax.set_ylabel('Count')
ax.set_title(f'{col} Distribution')
ax.legend()
plt.show()
```


SCATTER PLOT

```
# read the data from CSV file into a pandas DataFrame
df = pd.read_csv('dataset.csv')
# iterate through pairs of columns in the DataFrame and create a
scatter plot for each pair
for i, coll in enumerate(df.columns):
    for j, col2 in enumerate(df.columns):
        if i < j:
            fig, ax = plt.subplots(figsize=(20, 15))
            df.plot.scatter(x=col1, y=col2, ax=ax)
            ax.set xlabel(col1)
            ax.set ylabel(col2)
            ax.set title(f'{col1} vs {col2}')
            ax.legend()
            plt.show()
/usr/local/lib/python3.9/dist-packages/pandas/plotting/ matplotlib/
core.py:1114: UserWarning: No data for colormapping provided via 'c'.
Parameters 'cmap' will be ignored
  scatter = ax.scatter(
WARNING: matplotlib.legend: No artists with labels found to put in
         Note that artists whose label start with an underscore are
ignored when legend() is called with no argument.
```


WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

DOT PLOT

```
# read the data from CSV file into a pandas DataFrame
df = pd.read_csv('dataset.csv')

# iterate through the columns of the DataFrame and create a dot plot
for each column
for col in df.columns:
    fig, ax = plt.subplots(figsize=(20, 15))
    df[col].value_counts().sort_index().plot(style='o', ax=ax)
    ax.set_xlabel(col)
    ax.set_ylabel('Count')
    ax.set_title(f'{col} Distribution')
    ax.legend()
    plt.show()
```


3D BAR CHART

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from mpl toolkits.mplot3d import Axes3D
# load data from csv file
data = pd.read csv("dataset.csv")
# create a 3D bar chart for each attribute in the data
for column in data.columns:
    fig = plt.figure(figsize=(10, 8))
    ax = fig.add subplot(111, projection='3d')
    x data = np.arange(len(data[column]))
    y data = np.zeros(len(data[column]))
    z data = data[column]
    dx = np.ones(len(data[column]))
    dy = np.ones(len(data[column]))
    dz = z data
    ax.bar3d(x data, y data, np.zeros like(z data), dx, dy, dz)
    ax.set xlabel('Index')
    ax.set ylabel(column)
    ax.set zlabel('Frequency')
    plt.show()
```


RADIAL BAR PLOT

```
# Load data from CSV file
data = pd.read_csv('dataset.csv')

# Define function to create radial bar plot
def radial_bar_plot(data, attribute):
    angles = np.linspace(0, 2*np.pi, len(data[attribute]),
endpoint=False)
    angles = np.concatenate((angles,[angles[0]]))
    values = data[attribute].values.tolist()
    values.append(values[0])

fig = plt.figure(figsize=(8, 8))
    ax = fig.add_subplot(111, polar=True)
    labels = data.index.tolist()
```

```
labels.append('')
ax.plot(angles, values, 'o-', linewidth=2)
ax.fill(angles, values, alpha=0.25)
ax.set_thetagrids(angles * 180/np.pi, labels)
ax.set_title(attribute)
ax.grid(True)

for attribute in data.columns:
    radial_bar_plot(data, attribute)

plt.show()
```


BOX PLOT

```
# Load data from CSV file
data = pd.read_csv('dataset.csv')

# Create box plot for each attribute in data
fig, axes = plt.subplots(nrows=1, ncols=len(data.columns),
figsize=(20, 5))
for i, attribute in enumerate(data.columns):
    axes[i].boxplot(data[attribute])
    axes[i].set_title(attribute)
plt.show()
```


The command pandas_profiling.ProfileReport(data) generates a report that provides a comprehensive summary of a pandas DataFrame.

The pandas_profiling library generates a HTML report that includes statistics such as the number of missing values, the range of values, the data type of each column, and correlation between columns. The report also includes histograms, scatterplots, and other visualizations that can be useful for exploring the data.

```
pandas_profiling.ProfileReport(data)
{"model_id":"8eaaf1a162b44828b46b518496824ed3","version_major":2,"version_minor":0}
{"model_id":"d22f5ee9c2924b53b9abe712d59a569b","version_major":2,"version_minor":0}
{"model_id":"233c76cf8698414bb1be95987b30bc56","version_major":2,"version_minor":0}
<IPython.core.display.HTML object>
PLOTTING HEATMAP
plt.figure(figsize=(15,15))
sns.heatmap(data.corr(), annot=True)
```

<Axes: >

This code has two parts, let me explain them one by one:

pd.set_option('display.float_format',lambda x: '{:,.2f}'.format(x) if abs(x) < 10000 else '{:,.0f}'.format(x)) This line of code is using the set_option method from the pandas library to set the formatting of float values that are displayed in the output. Specifically, it is setting the float format to display two decimal places if the absolute value of the float is less than 10,000, and to display no decimal places if the absolute value of the float is greater than or equal to 10,000. The lambda function is used to define the formatting behavior for each float value. It takes a single input (x), which is the float value being formatted, and applies the appropriate formatting rule based on the absolute value of x.

data.corr() This line of code is calling the corr() method on a pandas DataFrame named 'data'. The corr() method calculates the pairwise correlation between columns of a DataFrame, returning a new DataFrame of correlation coefficients. The resulting

DataFrame will have the same column and index labels as the original DataFrame, with correlation values ranging from -1 to 1.

pd.set_option('display.float_format',lambda x: '{:,.2f}'.format(x) if
abs(x) < 10000 else '{:,.0f}'.format(x))
data.corr()</pre>

data.corr()					
	Relative	Compactne	ss Surf	ace Area	Wall
Area \ Relative Compactness		1.	00	-0.99	_
0.20					
Surface Area 0.20		-0.	99	1.00	
Wall Area		-0.	20	0.20	
1.00 Roof Area		-0.	87	0.88	_
0.29		0	00	0.06	
Overall Heigt 0.28		0.	83	-0.86	
Orientation		0.	00	-0.00	-
0.00 Glazing Area		-0.	00	0.00	-
0.00 Glazing Area Distribution		-0.	00	0.00	
0.00 Heating Load		0.	62	-0.66	
0.46 Cooling Load		Θ.	63	-0.67	
0.43		01		0107	
Relative Compactness Surface Area Wall Area Roof Area Overall Heigt Orientation Glazing Area Glazing Area Distribution Heating Load Cooling Load	Roof Area -0.87 0.88 -0.29 1.00 -0.97 -0.00 -0.00 -0.86 -0.86	3 9 9 7 9 9 9	Heigt 0.83 -0.86 0.28 -0.97 1.00 0.00 0.00 -0.00 0.89 0.90	Orientati 0. -0. -0. -0. 1. -0. -0. 0.	90 90 90 90 90 90 90
Relative Compactness Surface Area Wall Area Roof Area Overall Heigt Orientation Glazing Area	(- (- (- (Area Glaz 9.00 9.00 9.00 9.00 9.00 9.00	ing Area	- I	tion \ 0.00 0.00 0.00 0.00 0.00 0.00 0.21

Glazing Area Distribution	0.21		1.00
Heating Load	0.27		0.09
Cooling Load	0.21		0.05
Relative Compactness Surface Area Wall Area Roof Area Overall Heigt Orientation Glazing Area Glazing Area Distribution Heating Load Cooling Load	Heating Load 0.62 -0.66 0.46 -0.86 0.89 -0.00 0.27 0.09 1.00 0.98	Cooling Load 0.63 -0.67 0.43 -0.86 0.90 0.01 0.21 0.05 0.98 1.00	