DUE: NOON Friday 25 November 2011 in the drop boxes opposite the Math Tutorial Centre MC 4067 or next to the St. Jerome's library for the St. Jerome's section.

- 1. Let G be the n-cube. Given a breadth-first search tree for G rooted at $0 \cdots 0$, the function level defined on V(G) can be used as a weight function. Compute $\Phi_{V(G)}(x)$.
 - **SOLUTION.** At level 1, we have all the binary strings of length n that have only 1 copy of 1. At level 2, we have all the binary strings of length n that have only 2 copies of 1. At level k, we have all the binary strings of length n that have exactly k copies of 1. So $|\text{level}^{-1}(k)| = \binom{n}{k}$ and so

$$\Phi_{V(G)}(x) = \sum_{k=0}^{n} \binom{n}{k} x^k = (1+x)^n.$$

2. (a) Explain why the search tree, rooted at d and indicated by dotted lines in the graph below is not a breadth-first search tree.

- **SOLUTION.** Note that vertices level(a) = 1 while level(f) = 3. If this drawing represented a breadth-first search tree, these two vertices would be at most one level apart since they are adjacent.
- (b) Can you remove only two edges of that graph to make this search tree a breadth-first search tree? If yes, which edges and what is the sequence of the vertices as they are added to the tree (starting with d); if no, why?
 - **SOLUTION.** Yes! Just remove edges $\{d, e\}$ and $\{a, f\}$. The vertices are added to the tree in the following order:

- 3. (a) Prove that a bipartite planar graph has a vertex of degree at most 3.
 - **SOLUTION.** Suppose G is a bipartite planar graph. If it is a forest, we know it has a vertex of degree 1. Otherwise, it has a cycle. Let q = |E(G)| and p = |V(G)|. Then we know that $q \le 2p 4$. Suppose that all vertices have degree at least 4. Then

$$2q = \sum_{v \in V(G)} \deg(v) \ge 4p$$

hence $q \ge 2p > 2p - 4$. Since it is not possible for q to be both less than or equal and bigger than 2p - 4.

- (b) Deduce that the *n*-cube is not planar for n > 3.
 - **SOLUTION.** For each string $s \in \{0,1\}^n$, there are n positions where one can modify the string. Hence the n-cube is n-regular. The n-cube is bipartite, with bipartition $A = \{s \in \{0,1\}^n \mid s \text{ contains an odd number of } 1\}$, and $B = \{s \in \{0,1\}^n \mid s \text{ contains an even number of } 1\}$. Therefore the result from part a) applies. This result therefore tells us that if the n-cube is planar, we must have $n \leq 3$.

- 4. Suppose that G is a non-empty connected graph with an embedding on the sphere where all the faces are hexagons. Let p be the number of vertices, q the number of edges, and s the number of faces of the embedding.
 - (a) Prove that q = 3s and p = 2 + 2s.

SOLUTION. Since faces are hexagon, their degree is always 6. So

$$2q = \sum_{\text{face}} \deg(\text{face}) = 6s.$$

So q = 3s, as desired. Now using Euler's formula, we have 2 = p - q + s = p - 3s + s = p - 2s, hence p = 2 + 2s, as desired.

(b) Prove that G is bipartite.

SOLUTION. Every cycle C must contain an integral number of faces, say f_1, \ldots, f_k . Let q_{in} be the number of edges in the interior of $f_1 \cup \cdots \cup f_k$ and q_{out} be the number of edges in the boundary walk of $f_1 \cup \cdots \cup f_k$, hence on the cycle C. Every interior edge is in two faces, while every outside edge is on one face only. Hence $6k = 2q_{in} + q_{out}$. That proves that the length of the cycle C is $q_{out} = 2(3k - q_{in})$, so is even. Since that is true for every cycle, G has no odd cycle and is thus bipartite.

(c) Deduce that if G is regular, this embedding of G has exactly two faces.

SOLUTION. From above, since G is bipartite, there is a vertex of degree at most 3. Since G is regular, say k-regular, we have $k \leq 3$. The case k = 1 is impossible since G is connected and has at least 6 vertices. Suppose that k = 3. Then

$$3p = \sum_{v} \sum_{v \in f} 1 = \sum_{f} \sum_{v \in f} 1 = 6s$$

so p = 2s. Since we have from a) that p = 2 + 2s, we must have 2 = 0, that is impossible. Hence the only possibility is k = 2, and in this case we must have exactly one hexagon and exactly two faces.

5. Determine if the following graphs G_1, G_2, G_3, G_4 below are planar graphs. If they are, draw a planar embedding, if they are not, explain why.

SOLUTION. Graph G_1 is **planar**, as can be seen by moving the edges $\{2,5\}$ and $\{3,5\}$ as in the drawing below.

Obviously, G_2-d is $K_{3,3}$ so is **non-planar**. Alternative proof: If $q=|E(G_2)|$ and $p=|V(G_2)|$, we have p=7 and q=11. On one hand, q=11>10=2p-4. On the other hand, G_2 is bipartite, with bipartition ($\{1,2,3\},\{a,b,c,d\}$), so if it is planar, $q\leq 2p-4$. Both inequality cannot be true simultaneously, so G_2 is **non-planar**.

The subgraph \hat{G}_3 of G_3 , depicted below is an edge subdivision of K_5 with $V(K_5) = \{1, 2, 4, 5, 7\}$ and the extra vertices 6 and 12 subdividing the edges $\{2, 5\}$ and $\{1, 4\}$ respectively. The vertices 6 and 12 are drawn in a different style so that the statement is clearer to see. Since G_3 has a subgraph that is an edge subdivision of K_5 , Kuratowski's theorem guarantees that G_3 is **non-planar**.

Graph G_4 is **planar**, as can be seen by drawing the graph above