ESTRUCTURA DE COMPUTADORES

Ejercicios Tema 5

1.- Expresar cada uno de los tamaños de memoria indistintamente en unidades de Byte, KB, MB y GB.

GB	MB	KB	Bytes
4	4.096	4.194.304	4.294.967.296
0,25	256	262.144	268.435.456
0,03125	32	32.768	33.554.432
488,28125×10 ⁻⁶	0,5	512	524.288

2.- Expresar cada una de las capacidades de memoria en los diferentes formatos de Bytes, bits, LxW bytes, LxW bits de acuerdo al tamaño del bus de datos de la CPU.

Bytes	Bits	L×W bits	L×W bytes	Bus datos CPU
128 MB	1 Gb	32 M × 32 bits	32 M × 4 bytes	32 bits
2 GB	16 Gb	512 M × 32 bits	512 M × 4 bytes	32 bits
512 MB	4 Gb	128 M × 32 bits	128 M × 4 bytes	32 bits
16 MB	128 Mb	4 M × 32 bits	4 M × 4 bytes	32 bits
128 MB	1 Gb	16 M × 64 bits	16 M × 8 bytes	64 bits
2 GB	16 Gb	256 M × 64 bits	256 M × 8 bytes	64 bits
512 MB	4 Gb	64 M × 64 bits	64 M × 8 bytes	64 bits
16 MB	128 Mb	2 M × 64 bits	2 M × 8 bytes	64 bits
128 KB	1 Mb	16 K × 16 bits	16 K × 2 bytes	16bits
2 MB	16 Mb	1 M × 16 bits	1 M × 2 bytes	16 bits
512 KB	4 Mb	256 K × 16 bits	256 K × 2 bytes	16 bits
1 GB	8 Gb	512 M × 16 bits	512 M × 2 bytes	16 bits

3.- Expresar cada uno de los valores de ancho de banda indistintamente en unidades de GB/s, MB/s, KB/s, Gb/s, Mb/s y Kb/s.

GB/s	MB/s	KB/s	Gb/s	Mb/s	Kb/s
5×10 ⁻⁴	0,5	500	4×10 ⁻³	4	4000
1,6	1600	1,6×10 ⁶	12,8	12.800	12,8×10 ⁶
0,25	250	25×10 ⁴	2	2000	2×10 ⁶
0,5	500	5×10 ⁵	4	4000	4×10 ⁶

4.- Completar la tabla indicando los correspondientes valores de anchos de banda (en MB/s), tamaño de bus de datos, frecuencia de transmisión y tiempo de ciclo.

Ancho de Banda (MB/s)	Tamaño bus datos	Frecuencia transmisión	Tiempo de Ciclo
128 MB/s	32 bits	32 MHz	31,25 ns
1600 MB/s	64 bits	200 MHz	5 ns
312,5 MB/s	1 bit	2,5 GHz	0,4 ns
266 MB/s	16 bits	133 MHz	7,5 ns

5.- Cierto sistema de memoria proporciona un ancho de banda de 1 GB/s ¿cuánto se tardará en acceder a 1 GB (2³⁰) de datos? ¿y a 8 GB (2³⁰) de datos? ¿y a 16 GB (2³⁰) de datos?

1 GB	<i>Tiempo</i> ≈ 1,07374 s
8 GB	Tiempo ≈ 8,59 s
16 GB	Tiempo ≈ 17,18 s

6.- Cierto sistema de memoria proporciona un ancho de banda de 1,6 Gb/s ¿cuánto se tardará en acceder a 1 GB (2³⁰) de datos? ¿qué cantidad de información en MB (2²⁰) es capaz de proporcionar en 1 s?

Tiempo ≈ 5,3687 s
Información proporcionada en 1 s ≈ 190,73 MB

7.- Acceder a 8 GB (2³⁰) de datos en cierto sistema de memoria cuesta 27,48 segundos ¿cuál es el ancho de banda que el mismo es capaz de proporcionar? Sabiendo que el

ancho del bus es de 1 bit ¿cuál es el tiempo de ciclo de la memoria? ¿a qué frecuencia transmite?

$$Frec \approx 2.5 GHz$$
 $T_{ciclo} = 0.4 \text{ ns}$

8.- El ancho de banda de un cierto sistema de memoria es de 200 MB/s ¿qué cantidad de bytes se podrán acceder en 5 segundos?

$$Tamaño\ datos = 10^9\ bytes$$

9.- Cierta memoria ofrece un ancho de banda de 400 Mb/s. Sabiendo que trabaja a una frecuencia de reloj de 100 MHz ¿qué cantidad de información (en bits) se transmite cada ciclo de reloj?

$$Tama\~no~bus=4~bits$$

10.- Un chip de memoria SRAM posee un tiempo de acceso de 7,5 ns y un tiempo de ciclo de 10 ns. Sabiendo que su bus de datos es de 16 bits ¿cuánto tiempo se necesitará para acceder a 1 MB (2²⁰)? ¿cuántos MB (2²⁰) se transferirán en 1 ms? ¿qué ancho de banda ofrece esta memoria?

$$Tiempo \approx 5,243 \ ms$$

$$Información \ tranferida \ en \ 1 \ ms \approx 0,19 \ MB$$

$$Ancho \ Banda= 200 \ MB/s$$

11.- La lectura de 20 KB desde cierto chip SRAM cuesta 153,6 μs. Sabiendo que posee un tiempo de acceso es de 10 ns y que el bus de datos tiene un tamaño de 16 bits ¿cuál es el tiempo de ciclo de esta memoria? ¿qué ancho de banda ofrece?

$$Frec. = 66,6 \, MHz$$