Teorema:

Teorema:

Teorema:

Teorema:

A classe de linguagens regulares é fechada sob a operação de união.

Seja $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, e $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Teorema:

A classe de linguagens regulares é fechada sob a operação de união.

Seja $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, e $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Construa $N = (Q, \Sigma, \delta, q_0, F)$ para reconhecer $A_1 \cup A_2$.

Teorema:

A classe de linguagens regulares é fechada sob a operação de união.

Seja $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, e $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Construa $N = (Q, \Sigma, \delta, q_0, F)$ para reconhecer $A_1 \cup A_2$.

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$.

Os estados de N são todos estados de N_1 e N_2 , com a adição de um novo estado q_0 .

Teorema:

A classe de linguagens regulares é fechada sob a operação de união.

Seja $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, e $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Construa $N = (Q, \Sigma, \delta, q_0, F)$ para reconhecer $A_1 \cup A_2$.

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$.

Os estados de N são todos estados de N_1 e N_2 , com a adição de um novo estado q_0 .

2. O estado q_0 é o estado inicial de N.

Teorema:

A classe de linguagens regulares é fechada sob a operação de união.

Seja $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, e $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Construa $N = (Q, \Sigma, \delta, q_0, F)$ para reconhecer $A_1 \cup A_2$.

1. $Q = \{q_0\} \cup Q_1 \cup Q_2$.

Os estados de N são todos estados de N_1 e N_2 , com a adição de um novo estado q_0 .

- 2. O estado q_0 é o estado inicial de N.
- 3. Os estados de aceitação $F = F_1 \cup F_2$.

Os estados de aceitação de N são todos os estados de aceitação de N_1 e N_2 . Dessa forma N aceita se N_1 aceita ou N_2 aceita.

Teorema:

A classe de linguagens regulares é fechada sob a operação de união.

Seja $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, e $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Construa $N = (Q, \Sigma, \delta, q_0, F)$ para reconhecer $A_1 \cup A_2$.

- 1. $Q=\{q_0\}\cup Q_1\cup Q_2$. Os estados de N são todos estados de N_1 e N_2 , com a adição de um novo estado q_0 .
- 2. O estado q_0 é o estado inicial de N.
- 3. Os estados de aceitação $F = F_1 \cup F_2$. Os estados de aceitação de N são todos os estados de aceitação de N_1 e N_2 . Dessa forma N aceita se N_1 aceita ou N_2 aceita.
- 4. Defina δ de modo que para qualquer $q \in Q$ e qualquer $a \in \Sigma_{\varepsilon}$,

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \\ \delta_2(q, a) & q \in Q_2 \\ \{q_1, q_2\} & q = q_0 e a = \varepsilon \\ \emptyset & q = q_0 e a \neq \varepsilon \end{cases}$$

Teorema:

Teorema:

Teorema:

Teorema:

Teorema:

A classe de linguagens regulares é fechada sob a operação de concatenação.

Suponha que N_1 $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ reconhece A_1 , e $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ reconhece A_2 . Construa $N=(Q,\Sigma,\delta,q_1,F_2)$ para reconhecer $A_1\circ A_2$.

1.
$$Q = Q_1 \cup Q_2$$
.

Os estados de N são todos os estados de N_1 e N_2 .

Teorema:

A classe de linguagens regulares é fechada sob a operação de concatenação.

Suponha que N_1 $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ reconhece A_1 , e $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ reconhece A_2 . Construa $N=(Q,\Sigma,\delta,q_1,F_2)$ para reconhecer $A_1\circ A_2$.

- 1. $Q=Q_1\cup Q_2.$ Os estados de N são todos os estados de N_1 e $N_2.$
- 2. O estado q_1 é o mesmo que o estado inicial de N_1 .

Teorema:

Suponha que
$$N_1$$
 $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ reconhece A_1 , e $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ reconhece A_2 . Construa $N=(Q,\Sigma,\delta,q_1,F_2)$ para reconhecer $A_1\circ A_2$.

- 1. $Q=Q_1\cup Q_2.$ Os estados de N são todos os estados de N_1 e $N_2.$
- 2. O estado q_1 é o mesmo que o estado inicial de N_1 .
- 3. Os estados de aceitação F_2 são os mesmos que os estados de aceitação de N_2 .

Teorema:

A classe de linguagens regulares é fechada sob a operação de concatenação.

Suponha que N_1 $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ reconhece A_1 , e $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ reconhece A_2 . Construa $N=(Q,\Sigma,\delta,q_1,F_2)$ para reconhecer $A_1\circ A_2$.

- 1. $Q = Q_1 \cup Q_2$. Os estados de N são todos os estados de N_1 e N_2 .
- 2. O estado q_1 é o mesmo que o estado inicial de N_1 .
- 3. Os estados de aceitação F_2 são os mesmos que os estados de aceitação de N_2 .
- 4. Defina δ tal que para qualquer $q \in Q$ e qualquer $a \in \Sigma_{\varepsilon}$

$$\delta(q,a) = egin{cases} \delta_1(q,a) & q \in Q_1 ext{ and } q
otin F_1 \ \delta_1(q,a) & q \in F_1 ext{ and } a
otin arepsilon arepsilon \ \delta_1(q,a) \cup \{q_2\} & q \in F_1 ext{ and } a = oldsymbol{arepsilon} \ \delta_2(q,a) & q \in Q_2. \end{cases}$$

18

Teorema:

A classe de linguagens regulares é fechada sob a operação estrela.

Teorema:

A classe de linguagens regulares é fechada sob a operação estrela.

Teorema:

A classe de linguagens regulares é fechada sob a operação estrela.

Teorema:

A classe de linguagens regulares é fechada sob a operação estrela.

Prova.

Suponha que $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ reconhece A_1 . Construa $N = (Q, \Sigma, \delta, q_0, F)$ para reconhecer A_1^* .

Teorema:

A classe de linguagens regulares é fechada sob a operação estrela.

Suponha que $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ reconhece A_1 . Construa $N = (Q, \Sigma, \delta, q_0, F)$ para reconhecer A_1^* .

1.
$$Q = \{q_0\} \cup Q_1$$
.

Os estados de N são os estados de N_1 mais um novo estado inicial.

Teorema:

A classe de linguagens regulares é fechada sob a operação estrela.

Prova.

Suponha que $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ reconhece A_1 . Construa $N = (Q, \Sigma, \delta, q_0, F)$ para reconhecer A_1^* .

1. $Q = \{q_0\} \cup Q_1$.

Os estados de N são os estados de N_1 mais um novo estado inicial.

2. O estado q_0 é o novo estado inicial.

Teorema:

A classe de linguagens regulares é fechada sob a operação estrela.

Prova.

Suponha que $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ reconhece A_1 . Construa $N = (Q, \Sigma, \delta, q_0, F)$ para reconhecer A_1^* .

1. $Q = \{q_0\} \cup Q_1$.

Os estados de N são os estados de N_1 mais um novo estado inicial.

- 2. O estado q_0 é o novo estado inicial.
- 3. $F = \{q_0\} \cup F_1$.

Os estados de aceitação são os antigos estados de aceitação mais o novo estado inicial.

Teorema:

A classe de linguagens regulares é fechada sob a operação estrela.

Prova.

Suponha que $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ reconhece A_1 . Construa $N = (Q, \Sigma, \delta, q_0, F)$ para reconhecer A_1^* .

1. $Q = \{q_0\} \cup Q_1$.

Os estados de N são os estados de N_1 mais um novo estado inicial.

- 2. O estado q_0 é o novo estado inicial.
- 3. $F = \{q_0\} \cup F_1$.

Os estados de aceitação são os antigos estados de aceitação mais o novo estado inicial.

4. Defina δ tal que para qualquer $q \in Q$ e qualquer $a \in \Sigma_{\varepsilon}$

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ e } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ e } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ e } a = \varepsilon \\ \{q_1\} & q = q_0 \text{ e } a \neq \varepsilon \end{cases}$$