FUNDAMENTOS DE COMPUTACIÓN TRABAJO ENTREGABLE 2 ABRIL 2022

Este trabajo tiene un puntaje de 5 puntos, y debe ser realizado en forma **INDIVIDUAL**. Se debe subir a Aulas antes del 10/4/22 a las 21hs.

El conectivo implica tiene la siguiente tabla de verdad:

b1	b2	b1 >> b2
False	False	True
False	True	True
True	False	False
True	True	True

y se define en Haskell como la siguiente función:

SE PIDE:

1) Demuestre que ($\forall x :: Bool$) ($\forall y :: Bool$) ($\forall z :: Bool$) x >> (y >> z) = (x & y) >> z, donde (&&) :: Bool -> Bool -> Bool se define como: (&&) = bloole =

Solución:

$$(\forall x :: Bool)(\forall y :: Bool)(\forall z :: Bool) x >> (y >> z) = (x && y) >> z.$$

Dem. Por casos en x::Bool

Caso x = False: $(\forall y :: Bool)(\forall z :: Bool)$ False >> (y >> z) = (False && y) >> zSean y,z::Bool cualesquiera, reducimos ambos lados de la igualdad:

Ambas expresiones son iguales por reducir a la misma expresión.

Caso x = True: $(\forall y :: Bool)(\forall z :: Bool)$ True >> (y >> z) = (True && y) >> zSean y,z::Bool cualesquiera, reducimos ambos lados de la igualdad:

Ambas expresiones son iguales por reducir a la misma expresión.

2) Defina en Haskell, <u>sin usar funciones auxiliares</u>, la negación del implica como la función (*)::Bool -> Bool -> Bool, que tiene la siguiente tabla de verdad:

b1	b2	b1 * b2
True	True	False
True	False	True
False	True	False
False	False	False

Solución:

3) Demuestre que ($\forall x::Bool$) ($\forall y::Bool$) x * y = not (x >> y), donde: not :: Bool -> Bool se define como: not = b -> case b of {False -> True ; True -> False}.

Solución:

```
(\forall x :: Bool)(\forall y :: Bool) x * y = not (x >> y).
```

Dem. Por casos en x::Bool

Caso x = False: ($\forall y :: Bool$) False * y = not (False >> y) Sea y :: Bool cualquiera, reducimos ambos lados de la igualdad:

Ambas expresiones son iguales por reducir a la misma expresión.

```
Caso x = True: (\forall y :: Bool) True * y = not (True >> y)
Por casos en y:: Bool
```

Reducimos ambos lados de la igualdad:

Ambas expresiones son iguales por reducir a la misma expresión.

Reducimos ambos lados de la igualdad:

Ambas expresiones son iguales por reducir a la misma expresión.

ENTREGA:

Se deberá subir un único archivo a Aulas, que puede ser escrito en máquina o en papel y escaneado.

En caso de que sea lo segundo, pedimos que el documento sea *legible*. Si utilizan fotos, se recomienda utilizar alguna aplicación para escanearlas y generar archivos pdf.