Random Variables-Introduction, Distributions, Density and Mass Functions

February 25, 2024

Contents	
1 Introduction	1
2 Random Variables	1
3 Probability Distributions	3
4 Cumulative Distribution Function (CDF)	4
5 Probability Density and Mass Functions 5.1 Probability Density Function (PDF) 5.2 Mass function	5 5 6
6 Mathematical Expectation	7
7 Variance and standard deviation of a random variable	8

1 Introduction

- △ Statistical analysis involves focusing on numerical aspects of data, such as sample proportions, means, and standard deviations, regardless of whether the experiment yields qualitative or quantitative outcomes.
- A Random variables serve as a bridge between experimental outcomes and numerical functions, allowing us to quantify and analyze data effectively.
- Two main types of random variables exist: discrete and continuous.

2 Random Variables

Definition 2.1. let S be a sample space of a considered random experience, a random variable (rv) is any rule that associates a number with each outcome in S.

Random variable

- In mathematical language a random variable is a real function that maps the set of all experimental outcomes of a sample space S into a set of real numbers IR.
- We shall represent a random variable by a capital letter (such as X, Y, or W) and any particular value of the random variable by a lower case letter (such as x, y, or w)
- Given an experiment defined by a sample space S with elements s, we assign to every s a real number X(s) according to some rule and call X(s) a random variable.
- There are three types of random variables:
 - **Discrete Random Variable** (random variables have discrete values; the sample space can be discrete, continuous or even mixture of discrete and continuous)
 - **Continuous Random Variable** (continuous range of values, it cannot be produced from a discrete sample space or a mixed sample space).

Example: (Discrete Random Variable):

- An experiment consists of **rolling a die** and **flipping a coin**. The sample space is shown in Fig. below and the random variable X maps the sample space of 12 elements into 12 values of X.
- Function X chosen such that:
 - $lue{}$ A coin Head (H) outcome corresponds to positive values of X that are equal to the numbers that show up on the die.
 - $lue{}$ A coin is Tail (T) outcome corresponds to the negative values of X that are equal in magnitude to twice the number that shows up on the die

Conditions for a Function to be a Random Variable:

It not be multivalued

- The set $\{X \leq x\}$ shall be an event for any real number x
- $p(x \le x)$ is equal to the sum of the probabilities of all the elementary events corresponding to $\{x \le x\}$.
- The probabilities of events $\{x = +\infty\}$ and $\{x = -\infty\}$ be 0:

$$p(x = +\infty) = p(x = -\infty) = 0$$

3 Probability Distributions

- A probability distribution consists of the values of a random variable and their corresponding probabilities.
- There are two kinds of probability distributions: discrete and continuous.
- If X is discrete, then the values $p(X = a_1)$, $p(X = a_2)$, ... tell us everything we need to know about X.
- Let X be a discrete random variable, and suppose that the possible values that it can assume are given by x_1, x_2, x_3, \ldots , arranged in some order. Suppose also that these values are assumed with probabilities given by

$$p(X = x_k) = f(x_k), \qquad k = 1, 2, 3....$$

• Probability function, also referred to as probability mass function (PMF), given by

$$p(X = x) = f(x)$$

 \triangle In general, f(x) is a probability function if

1.
$$f(x) \ge 0$$

2. $\sum_{x} f(x) = 1$

- 1. The f(x) is a function with nonnegative values
- 2. The sum of the probabilities of a probability distribution must be 1.
 - Example When a die is rolled

Value, x	1	2	3	4	5	6
Probability, $p(X=x)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- Example Construct a discrete probability distribution for the number of heads when three coins are tossed.
- - (a) Recall that the sample space for tossing three coins is

- (b) The outcomes can be arranged according to the number of heads, as shown.
 - * 0 heads TTT
 - * 1 head TTH, THT, HTT
 - * 2 heads THH, HTH, HHT
 - * 3 heads HHH
- (c) Finally, the outcomes and corresponding probabilities can be written in a table, as shown.

Outcome, x	0	1	2	3
Probability, $p(X=x)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

 \triangle Roll two dice, let Y be the maximum of their outcomes.

```
1. p(Y=1)=p(\{(1,1)\})=\frac{1}{36}
```

2.
$$p(Y=2)=p(\{(1,2),(2,1),(2,2)\})=\frac{3}{36}=\frac{1}{12}$$

3.
$$p(Y=3)=p(\{(1,3),(2,3),(3,1),(3,2),(3,3)\})=\frac{5}{36}$$

4.
$$p(Y=4)=p(\{(1,4),(2,4),(3,4),(4,1),(4,2),(4,3),(4,3)\})=\frac{7}{36}$$

5.
$$p(Y=5)=p(\{(1,5),(2,5),(3,5),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)\})=\frac{9}{36}$$

6.
$$p(Y=6)=p(\{(1,6),(2,6),(3,6),(4,6),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}) = \frac{11}{36}$$

 \triangle Roll two dice, let X be the sum of their outcomes.

1.
$$p(X=2)=p(\{(1,1)\})=\frac{1}{36}$$

2.
$$p(X=3)=p(\{(1,2),(2,1)\})=\frac{2}{36}=\frac{1}{18}$$

3.
$$p(X=4)=p(\{(1,3),(2,3),(3,1),(2,2)\})=\frac{4}{36}$$

4.
$$p(X=5)=p(\{(1,4),(2,3),(3,2),(4,1)\})=\frac{4}{36}$$

5.
$$p(X=6)=p(\{(1,5),(2,4),(3,3),(4,2),(5,1)\})=\frac{5}{36}$$

6.
$$p(X=7)=p(\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}) = \frac{6}{36}$$

7.
$$p(X=8)=p(\{(2,6),(3,5),(4,4),(5,3),(6,2)\}) = \frac{4}{36}$$

8.
$$p(X=9)=p(\{(3,6),(4,5),(5,4),(6,3)\}) = \frac{3}{36}$$

9.
$$p(X=10)=p(\{(4,6),(5,5),(6,4)\})=\frac{3}{36}$$

10.
$$p(X=11)=p(\{(5,6),(5,6)\})=\frac{2}{36}$$

11.
$$p(X=12)=p(\{,(6,6)\})=\frac{1}{36}$$

A discrete probability distribution can also be shown graphically by labeling the x axis with the values of the outcomes and letting the values on the y axis represent the probabilities for the outcomes.

4 Cumulative Distribution Function (CDF)

 \triangle The probability of the event $\{X \leq x\}$ must depend on x. Denote

$$p(X \le x) = F_X(x)$$

Where x is any real number

We call this function, denoted $F_X(x)$ the cumulative probability distribution function (CDF) of the random variable X (or just the distribution function of X)

Properties Distribution Functions:

- 1. $F_X(-\infty)=p(X \le -\infty)=p(\emptyset)=0$
- 2. $F_X(+\infty) = p(X \le +\infty) = p(S) = 1$
- 3. $0 \le F_X(x) \le 1$
- 4. $F_X(x_1) \le F_X(x_2)$ if $x_1 \le x_2$
- 5. $p(x_1 < X \le x_2) = F_X(x_2) F_X(x_1)$

🙇 Distribution Function for Discrete Random Variable:

The distribution function of a discrete random variable X can be obtained from its probability function by noting that, for all $x \in (-\infty, +\infty)$

$$F_X(x) = p(X \le x) = \sum_{Xlex} p(X \le x)$$

If X takes on only a finite number of values x_1, x_2, \ldots, x_n , then the distribution function is given by

$$F_X(x) = \begin{cases} 0 & if - \infty < x < x_1 \\ f(x_1) & if x_1 < x < x_2 \\ f(x_1) + f(x_2) & if x_2 < x < x_3 \\ \vdots & & & \\ f(x_1) + f(x_2) + \dots + f(x_n) & if x_n < x < \infty \end{cases}$$

The distribution function of a discrete random variable X is given by:

$$F_X(x) = \sum_{i=0}^n p(X \le x)u(x - x_i)$$

5 Probability Density and Mass Functions

 \triangle If the events $B_1, B_2, ?B_N$ constitute a partition of the sample space S such that

5.1 Probability Density Function (PDF)

Definition 5.1 (Continuous Random Variables). A non-discrete random variable X is said to be absolutely continuous, or simply continuous, if its distribution function may be represented as

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt \quad (-\infty < x < \infty)$$

where the function f(x) has the properties

$$\int_{-\infty}^{+\infty} f(t)dt = 1$$

A function f(x) is more often called a probability density function or simply density function

Definition 5.2. Interval probability that X lies between two different values, say, a and b, is given by

$$p(q < X < b) = \int_{q}^{b} f(t)dt$$

Property 5.3. The probability density function (or density function) (PDF) is defined as the derivative of the distribution function:

$$f_X(x) = \frac{dF_X(x)}{dx}$$

1. $f_X(x) \ge 0 \quad \forall x$

$$2. \int_{-\infty}^{+\infty} f_X(x) dx = 1$$

3.
$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$

4.
$$p(x_1 < X < x_2) = \int_{x_1}^{x_2} f_X(x) dx$$

5.2 Mass function

The probability density function (or density function) (PDF) is defined as the derivative of the distribution function:

Definition 5.4 (Mass function). The density function of a discrete random variable X (mass function) is given by:

$$f_X(x) = \sum_{i=1}^{N} p(X = x_i)\delta(x - x_i)$$

Example 1.

$$\delta(x) = \frac{du(x)}{dx}$$

Example 2. Let X have the discrete values in the set $\{-1, -0.5, 0.7, 1.5, 3\}$. The corresponding probabilities are $\{0.1, 0.2, 0.1, 0.4, 0.2\}$: The distribution function:

$$F_X(x) = 0.1u(x+1) + 0.2u(x+0.5) + 0.1u(x-0.7) + 0.4u(x-1.5) + 0.2u(x-3)$$

1.
$$p(X \le 1.5) = 0.1 + 0.2 + 0.1 + 0.4 = 0.8$$

2.
$$p(X \le 2) = 0.1 + 0.2 + 0.1 + 0.4 = 0.8$$

The density function:

$$f_X(x) = 0.1\delta(x+1) + 0.2\delta(x+0.5) + 0.1\delta(x-0.7) + 0.4\delta(x-1.5) + 0.2\delta(x-3)$$

The density function:

Example 3. The corresponding distribution and the density functions for the wheel of chance experiment are shown in Fig.

- 1. $p(X \le 6) = F_X(x) = 0.5$
- 2. Or $=\int_{-\infty}^{6} f_X(x) dx = 0.5$

The corresponding distribution and the density functions for the wheel of chance experiment are shown in Fig.

Example 4. 1. Find the constant c such that the function

$$f_X(x) = \begin{cases} c.(4x - 2x^2), & 0 < x < 2\\ 0, & otherwise \end{cases}$$

Is a density function,

- 2. Compute p(1 < X < 2).
- 3. Find the distribution function for the random variable
- 4. Use the result of (3) to find p(1 < x < 2)

6 Mathematical Expectation

- The Expected Value of a Random Variable
- Expectation is the name given to the process of averaging when
- random variable is involved. The Mean value, the Statistical average, or the Expected Value of a random variable X are different terms for the Expectation and denoted as E[X] or \bar{X}
- Mathematical expectation can be thought of more or less as an average over the long run.
- The expectation of X is very often called the mean of X and is denoted by $\mu_{??}$, or simply μ and it is often called a measure of central tendency.

Definition 6.1 (Expected Value). • If X is a discrete random variable and f(x) is the value of its probability mass function at x, the expected value of X is.

$$E[X] = \sum_{x} x f(x)$$

• if X is a continuous random variable and f(x) is the value of its probability density at x, the expected value of X is

$$E[X] = \int_{-\infty}^{+\infty} x f(x) dx$$

Example 5. In example 4, if we calculate the mathematical expectation, we find:

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{-\infty}^{0} x \cdot 0 dx + \frac{3}{8} \int_{0}^{2} x (4x - 2x^{2}) dx + \int_{2}^{+\infty} x \cdot 0 dx$$
$$= \frac{3}{8} \int_{0}^{2} (4x^{2} - 2x^{3}) dx$$
$$= \frac{3}{8} (\frac{4}{3}x^{3} - \frac{1}{2}x^{4}) \Big|_{0}^{2} = 1$$

Property 6.2. The mathematical expectation of a random variable X satisfies

- 1. $E(\alpha) = \alpha, \forall \alpha \text{ a constant of } \mathbf{R}$
- 2. $E(X + \alpha) = E(X) + \alpha, \forall \alpha \text{ a constant of } \mathbf{R}$
- 3. $E(X_1 + X_2) = E(X_1) + E(X_2)$

Variance and standard deviation of a random variable

Definition 7.1. • We call variance of a discrete random variable X the quantity given by the formula:

$$Var(X) = \sum_{k} (x_k - E(X))^2 P(X = x_k), \tag{1}$$
 provided that this series is convergent

• We call variance of a continuous random variable X the quantity given by the formula:

$$Var(X) = \int_{-\infty}^{+\infty} (x - E(X))^2 f(x) dx, \tag{2}$$

provided that this integral absolutely converges

Example 6. In the previous example if we calculate the variance we find:

$$Var(X) = \int_{-\infty}^{+\infty} (x - E(X))^2 f(x) dx$$

$$= \int_{-\infty}^{0} (x - 1)^2 \cdot 0 dx + \frac{3}{8} \int_{0}^{2} (x - 1)^2 (4x - 2x^2) dx + \int_{2}^{+\infty} (x - 1)^2 \cdot 0 dx$$

$$= \frac{3}{8} \int_{0}^{2} (-2x^4 + 8x^3 - 10x^2 + 4x) dx$$

$$= \frac{3}{8} (-\frac{2}{5}x^5 + 2x^4 - \frac{10}{3}x^3 + 4x^2) \Big|_{0}^{2} = \frac{1}{5}$$

Property 7.2. The following properties are verified

$$Var(X) == E(X^2) - E(X)^2$$

 $Var(\alpha X + \beta) = \alpha^2 Var(X), \forall \alpha \text{ and } \beta \text{ constants of } \mathbf{R}$

Definition 7.3. Let X be a real random variable and $r \in \mathbb{N}^*$, we call the moment of order r of X the quantity:

$$E(X^r) = \sum_{k} (x_k)^r P(X = x_k), \tag{3}$$

and the centered moment of order r of X is the quantity:

$$E(X - E(X))^r = \sum_{k} (x_k - E(X))^r P(X = x_k).$$
(4)

Remark. The variance is the centered moment of the second order.

Definition 7.4. The standard deviation noted σ of a random variable X is defined as the root of its variance:

$$\sigma(X) = \sqrt{Var(X)}. (5)$$