# **Asset Pricing and Valuation**

Lecture 6: Options

**Matthew Smith** 

# Options

### Options, Forwards and Futures

- Options different from forward and futures contracts.
  - Options give the holder the right to do something but they do not have to exercise this right.
  - Forward and Futures, the two parties have committed themselves to some action.
  - Forwards and Futures cost the trader nothing
  - Options requires an up-front payment

## Types of options

- A call options gives the holder of the option the right to buy an asset by a certain date for a certain price.
- A put option gives the holder the right to sell an asset by a certain date for a certain price.
  - American options can be exercised at any time up to the date of expiration
  - European options can be exercised only on the expiration date.

## A call option



#### A call option

#### **Example (hope stock price increases)**

- Suppose current stock price is \$98
- We buy a European call option with a strike of \$100, expiry is 4 months
- The price of the option is \$5
- Initial investment is \$500

#### Stock price less than \$100 on expiry

- If stock price is less than \$100 at expiry, the investor will choose not to exercise
  - Suppose stock price is \$90 on expiry
  - We do not exercise the contract since its cheaper to buy at \$90 on the market.
  - No point buying a stock for \$100 when its trading at \$90
  - We don't exercise the contract losing \$500

#### Stock price more than \$100 on expiry

- If stock price is \$115 on expiry
  - We exercise the option
  - buy 100 shares for \$100 each
  - Sell shares immediately, we make \$15 per share (minus \$5 cost)

## A put option



#### A put option

#### **Example (hope stock price decreases)**

- We buy a European put option with a strike of \$70
- Suppose current stock price is \$65, expiry in 3 months
- The price of the option is \$7
- The initial investment is \$700

#### Stock price less than \$70 on expiry

- Suppose stock price is \$55 on expiry
  - The we exercise the contract
  - Why? because we can sell the stock for \$70 when its trading at \$55
  - Our gain is \$15 per share \$7 intial cost = \$8 per share

#### Stock price more than \$70 on expiry

- The **put** contract is worthless (don't exercise)
- Lose the initial investment of \$700

## Writing a call





## Writing a put

Profit from writing a European put option on one share of a stock.



#### **Option payoffs**

- Its more *useful* to characterize a European option in terms of its payoff to the **purchaser** of the option.
- Then the initial cost of the option is not included in our calculations.
- Define K as the strike price and  $S_T$  as the final price of the **underlying asset** at expiry.
- The payoff in a **long call** option is  $max(S_T-K,0)$ 
  - lacktriangle Exercise if  $S_T > K$
- The payoff to the **short call** holder is  $-max(S_T-K,0)$
- The payoff to the **long put** holder is  $max(K-S_T,0)$
- The payoff to the **short put** is  $-max(K-S_T,0)$

Option payoffs (Buyer Call vs Writter Call - Example (1) S(T) > K)

#### Option payoffs (Buyer Put vs Writter Put - Example (1) S(T) > K)

- ullet Assume  $S_T=120$  and K=100
- Buyer of put payoff:
  - Buy the right to sell a share at K to somebody (Writer of put)
  - $\blacksquare max(K-S_T,0)$
  - max(100 120, 0)
  - -max(-20,0)
  - As the buyer of a **put** contract, we do not exercise the contract.
  - ullet Why would we sell for \$100 something that is worth \$120 in the market at T
- Writer of put payoff:
  - Sell somebody (buyer of the put) the right to sell a share at K to us (writer of the put)
  - $-max(K-S_T,0)$
  - -max(100-120,0)
  - -max(-20,0)
  - Recall, buyer of put did not exercise.
  - So we earn 0 payoff (in reality we would have earned the contract premium)

#### Option payoffs (Buyer Call vs Writter Call - Example (2) S(T) < K)

- ullet Assume  $S_T=80$  and K=100
- Buyer of call payoff:
  - Buy the right to buy a share at K from somebody (Writer of the call)
  - $\blacksquare max(S_T K, 0)$
  - max(80 100, 0)
  - -max(-20,0)
  - Do not exercise contract (lose the premium we paid for the contract)
- Writer of call payoff:
  - Sell somebody (buyer of call) the right to buy a share at K from us (Writer of call)
  - $-max(S_T-K,0)$
  - -max(80-100,0)
  - -max(-20,0)
  - Buyer never exercised, so we earn the options premium they paid to us

Option payoffs (Buyer Put vs Writter Put - Example (2) S(T) < K)

## **Option payoffs**









# Properties of stock options

- ullet The current stock price,  $S_0$
- ullet The strike price, K
- ullet The time to expiration, T
- The volatility of the underlying stock price,  $\sigma$
- The risk-free interest rate, *r*
- The dividends that are expected to be paid

| Variable                   | European<br>call | European<br>put | American<br>call | American<br>put |
|----------------------------|------------------|-----------------|------------------|-----------------|
| Current stock price        | +                | _               | +                | _               |
| Strike price               | _                | +               | _                | +               |
| Time to expiration         | ?                | ?               | +                | +               |
| Volatility                 | +                | +               | +                | +               |
| Risk-free rate             | +                | _               | +                | _               |
| Amount of future dividends | _                | +               | _                | +               |

<sup>\* +</sup> indicates that an increase in the variable causes the option price to increase;
- indicates that an increase in the variable causes the option price to decrease;
? indicates that the relationship is uncertain.

Effect on the price of an option when increasing one variable while keeping all others fixed.

- The effect of changes in **stock prices**
- ullet Assuming  $S_0=50, K=50, T=1, r=5\%, \sigma=30\%$
- ullet Keeping (all variables) fixed, as  $S_t$  increases, the value of our option c increases (call)
- ullet Keeping (all variables) fixed, as  $S_t$  increases, the value of our option c goes to zero (put)





The effect of changes in stock prices

- The effect of changes in **strike prices**
- ullet Assuming  $S_0 = 50, K = 50, T = 1, r = 5\%, \sigma = 30\%$
- ullet Keeping all variables fixed, as the value of K increases, the options price decreases (call)
  - ullet We keep  $S_0=50$  fixed, and we buy a **call** contract with K=1000 we are buying an out-of-the-money contract.
  - Further out-of-the-money we go, the cheaper the **call** contract.
- ullet Keeping all variables fixed, as the value of K increases, the options price increase
  - lacktriangledown We keep  $S_0=50$  fixed, and we buy the right to sell at K=1000, we are buying in-the-money
  - lacktriangledown At time T=1 when stock price is at, say 100 we are still deep in the money





The effect of changes in strike prices

- The effect of changes in **expiration date**
- ullet Assuming  $S_0=50, K=50, T=1, r=5\%, \sigma=30\%$
- ullet Keeping  $S_0=50$  and K=50 fixed, we are at-the-money
  - As we get closer to expiration T the options price increases in both put and call
  - Like a 50-50 coin toss.





The effect of changes in expiration date

- ullet The effect of changes in **volatility**  $\sigma$
- ullet Assuming  $S_0=50, K=50, T=1, r=5\%, \sigma=30\%$
- High volatility increases likelihood that option ends in the money.





#### • Call Options

- lacksquare payoff  $S_T > K$  stock price higher than strike
- Stock price
  - o call options become more valuable as the stock price increases
- Strike Price
  - o call options become less valuable as the strike price increases
- Volatility  $\sigma$ 
  - o call options become more valuable as the volatility increases
  - o Limited downside risk when prices decrease since the most we can lose is the price of the option contract

#### • Put Options

- lacksquare payoff  $K>S_T$  strike price exceeds stock price
- Stock price
  - put options become less valuable as the stock price increases Strike Price
  - $\circ$  **put** options become **more** valuable as the **strike** price increases **Volatility**  $\sigma$
  - put owners of puts benefit from price decrease and has limited downside risk in the event of price increases (value of the contract)

# **Options chains**

## What is an option chain?

- What is an option chain?
- It's a table listing all the calls, puts and strike prices for a given option expiration for a single underlying asset
- We can quickly scan for **open interest**, **price changes** and **volume**.

#### Options chain example (TSLA trading at \$212.14 a share - 19/01/2024)

| Cadenas de opciones — |           |                        |           |       |       |       |        |           |                   |                |            |              |                |       |             |
|-----------------------|-----------|------------------------|-----------|-------|-------|-------|--------|-----------|-------------------|----------------|------------|--------------|----------------|-------|-------------|
|                       |           | MAR 01 '24"<br>42 DÍAS |           | MÁS ▼ |       |       |        |           | VIST              | A EN PESTAÑA ▼ | PUT/CALL ▼ | 10 STRIKES ▼ | SMART ▼ TSLA ▼ | 100   | Mis cadenas |
|                       |           |                        | CALLS     |       |       |       |        | EJERCICIO |                   |                | PUTS       |              |                |       | VI: 2.9%    |
| BID x                 | ASK       | VÖLUMEN INT            | TERÉS ABI | DELTA | GAMMA | VEGA  | THETA  |           | BID x ASK         | VÖLUMEN II     | NTERÉS ABI | DELTA        | GAMMA          | VEĠA  | THETA       |
| + 27.50 x             | 28.35 +   |                        | 36        | 0.787 | 0.008 | 0.206 | -0.141 | 190       | + 4.50 x 4.70 +   | 199            | 690        | -0.215       | 0.008          | 0.207 | -0.114      |
| • 24.10 x             | 24.40 •   |                        | 38        | 0.740 |       | 0.237 |        | 195       | ◆ 5.75 x 5.95 ◆   | 325            | 472        | -0.262       |                | 0.237 | -0.125      |
| • 20.70 x             | 21.00 •   |                        | 155       | 0.688 | 0.011 | 0.261 | -0.162 | 200       | 7.35 x 7.55 ↔     | 166            | 294        | -0.315       | 0.011          | 0.262 | -0.134      |
| + 17.55 x             | 17.85 •   | 184                    | 146       |       |       | 0.266 | -0.169 | 205       | + 9.20 x 9.40 +   | 84             | 130        | -0.372       |                | 0.267 | -0.140      |
| + 14.75 x             | 15.05 +   | 673                    | 310       | 0.573 | 0.012 | 0.282 | -0.171 | 210       | + 11.35 x 11.50 + | 205            | 370        | -0.431       | 0.012          | 0.282 | -0.142      |
| • 12.30 x             | ( 12.55 • | 171                    | 516       | 0.513 | 0.012 | 0.287 | -0.171 | 215       | • 13.85 x 14.15 • | 405            | 502        | -0.492       | 0.012          | 0.287 | -0.141      |
| • 10.10 x             | (10.35 •  | 306                    | 341       | 0.453 | 0.012 | 0.281 | -0.168 | 220       | • 16.70 x 16.95 • | 338            | 293        | -0.554       | 0.012          | 0.280 | -0.138      |
| + 8.25 x              | 8.45 +    | 874                    | 409       | 0.395 | 0.012 | 0.286 | -0.162 | 225       | + 19.55 x 20.35 + | 228            | 429        |              | 0.012          | 0.282 | -0.132      |
| + 6.65 x              | 6.90 +    | 959                    | 732       | 0.340 | 0.011 | 0.268 | -0.152 | 230       | + 23.00 x 23.70 + |                | 297        | -0.669       | 0.012          | 0.264 | -0.122      |
| • 5.35 x              | (5.55 +   | 920                    | 780       | 0.290 | 0.011 | 0.242 | -0.141 | 235       | • 26.70 x 27.40 • | 18             | 71         | -0.721       | 0.011          | 0.237 | -0.111      |

#### Options chain example (TSLA trading at \$212.14 a share - 19/01/2024)

#### Calls

- **Bid** price buyers offer the price they are willing to pay for the option
- Ask price sellers ask for the price they want to sell the option
- Bid-Ask-spread difference between the bid and ask price
  - If **bid** price is **12.30** and ask is **12.55** then the mid-price is **12.425** (different for each option contract)
- Open interest number of contracts that have not been settled (more open interest the closer we are to expiry)
- **Volume** number of contract that have been bought and sold today
- Delta Measures the impact of a change in the price of the underlying
  - If the **delta** is 0.20 for a strike, then for ever \$1 move in the underlying our option contract would increase/decrease by \$0.20 cents
  - $\circ~$  e.g. a **delta** of 0.513 suggests that for every \$1 move in the underlying, the option will change by \$0.513
  - TSLA: https://finance.yahoo.com/quote/TSLA/
  - $\circ$  If TSLA went from 212 to 210 (\$2 decrease) then the **call** option would decrease by 0.513 \* 2 = 1.026
    - If we paid the mid-price: 12.425 call option then it would be worth 11.399
  - $\circ$  If TSLA went from 212 to 150 (\$62 decrease) then the **call** option would decrease by 0.513 \* 62 = 31.81
    - Basically worthless

#### **Probability distribution**

- X-axis is the underlying price (or **strike prices**) on a Feb17 '23 call option currently trading at 179 dollars
  - has probabilities



#### **Probability distribution**

- i.e. 1.35% probability that the stock will close on expiry at 162 a share.
- 2.54% chance it closes at 165
- 24.98% at close 175
- Therefore probability the stock closes **between** 162-165 is (2.54% 1.35%) = 1.19%
- For the stock to close above 172 the probability is (100-15.15) = 84.85
  - 85% chance the stock closes above 172 on expiry



#### **Probability distribution**

- A year long options chain Jan 2025
- Has a wide distribution



# Trading strategies involving options

# Strategy 1: Covered Calls

#### **Covered call**

- Objective Sell a call option whilst owning at least 100 shares of the same stock.
- Writing just a call option is risky (unlimited loss potential)



- Combining with 100 shares of stock, we add no additional risk
- We can profit when stock price remains flat or declines
- Income generating strategy for equity owners (who believe stock will not go higher)
- Sell out-of-the-money calls which have a higher probability of expiring worthless

#### Covered call

- Suppose we bought 100 shares of NVDA in Sept 2022 at 121.39
- Its now trading at 594
- ullet We can sell covered calls at K=650 for T=3months
- Collect premiums
- ullet Hope  $S_T > K$  so we can keep the premium and the stock
- ullet Assume at expiry  $S_T=500$  we keep the premium and stock
- ullet Create a new covered call for T=3months



#### Covered call

- When we sell a call, we are selling somebody the right, but not the obligation to buy a stock at a strike price on a specific date
- Selling covered calls we get paid extra money as we hold a stock (we will be obligated to sell it if the contract is exercised)
- Generate money in the meantime whilst we hold the stock (best in flat / bearish markets)
- If we bought a stock at a good price and are willing to hold onto it for years, and if we think its overvalued, we can sell covered calls to generate income
  - of course, we risk losing the stock if the contract is exercised.
- We determine a price that our shares are overvalued (DCF, paying less dividends today than last year, PE ratio has fallen etc.)
  - Instead of waiting for the share price to become overvalued, we can plan the sale in advance
  - Determine a fair value and then sell covered calls at strike prices above these fair values
  - Generating extra income whilst we hold the stock

#### **Covered call**

- Consider the table for 4-month call options
- **strike** we would be obligated to **sell** the shares at, if options buyer decides to exercise their option
- change shows recent changes in options pricing
- **Bid** approximately what we will receive in option premiums per share if we sell the call
  - We get paid this amount by the buyer of the option
- overview
  - the **Strike** is the amount we agree to sell the shares for (if option exercised)
  - The big is roughly the premium we can expect to receive when we sell the option

| ■ Calls |       |        |      |      |        |          |
|---------|-------|--------|------|------|--------|----------|
| Strike  | Price | Change | Bid  | Ask  | Volume | Open Int |
| 41.00   | 4.55  | 0.00   | 4.45 | 4.70 | -      | 161      |
| 42.00   | 3.65  | 0.00   | 3.65 | 3.90 | -      | 155      |
| 43.00   | 2.70  | 0.00   | 3.00 | 3.15 | -      | 136      |
| 44.00   | 2.33  | +0.32  | 2.35 | 2.41 | 13     | 607      |
| 45.00   | 1.72  | +0.30  | 1.76 | 1.81 | 4      | 703      |
| 46.00   | 1.25  | +0.26  | 1.25 | 1.30 | 28     | 1649     |
| 47.00   | 0.82  | +0.12  | 0.85 | 0.89 | 1      | 1378     |
| 48.00   | 0.55  | +0.08  | 0.54 | 0.58 | 2      | 286      |
| 49.00   | 0.33  | +0.04  | 0.32 | 0.35 | 13     | 321      |

#### Example of covered call

- Suppose we bought 100 shares of a dividend paying stock (yield 3.33%) for \$30 per share 5 years ago
  - We considered at \$30 the stock to be undervalued
  - Today the stock is trading at \$45 a share and paying dividends of 2.77% (we feel is now overvalued)
- Suppose we **sell** an option with a strike of \$47 (above the stock price  $S_0 = \$45$ )
- We will receive a premium bid of 0.85 for writing the contract (0.85 \* 100 = \$85)
- So we are obligated to sell our shares (if exercised) for \$47\*100=\$4700

#### Example of covered call (possibility A)

- ullet  $S_T < \$47$  stock price below strike 47
- Option buyer does not exercise the option (no need to sell our shares)
- We keep the premium of \$85 and the shares (plus dividends it pays out)
- We can sell another option
  - If share price increased to \$46 we can set a new strike of \$48 (maintain same margin)
  - ullet Options premiums will be similar to what we received when setting the strike at \$47

#### Example of covered call (possibility A)

- If dividends are \$1.25 a share (\$0.3125 per quarter) over 4 months we receive 1 dividend payment or possibly 2 payments (\$0.625) or annualized \$1.25
- We earned \$0.85 in premiums if we sold this 4 times in a year we would get \$2.55 in premiums (more than dividends)
- So annually we earn \$1.25 in dividends and \$2.55 in premiums (total \$3.80)
- $\bullet$  The yields are \$1.25/\$45=2.77% and  $\$\,\$2.55\,/\,\$45$  = 5.66%\$ total return of 8.44%

#### Example of covered call (possibility B)

- $S_T > \$47$  stock price above strike 47
- ullet Buyer exercises and we have to sell 100 shares at \$47
- ullet If stock is trading at \$50 we still have to sell them for \$47
- ullet We made \$2 in capital appreciation ( $S_T=47-K=45$ ), 0.85 in premiums plus dividends paid \$0.625
- Total gains per share \$3.475 for putting up a \$45 share principal (7% return, 22.5% annualized)
- We didn't sell for \$50 but we still made a good return (but we thought the stock was already overvalued)
- If the share price went to \$60 then we missed out on a lot of upside returns potential.

### Example of covered call (payoff)





# Strategy 2: Selling puts

#### Selling puts

- ullet Selling put options, we give somebody the right, but not the obligation to force us to buy 100 shares of a company at a certain price K (strike price)
- They pay a premium to increase their flexibility and decrease our flexibility
- Get paid to do something we want to do?
  - Want to enter into an equity position
  - Say, we want to buy a company at a specific price but its trading higher than that price.

#### Selling puts

- ullet Say, we want to buy shares of a company trading at \$30.50 per share
- Determine what a fair value for a stock is, using DCF etc.
- The fair value is less \$30
- We would wait for the stock to fall to buy it, invest in something else
- What is the whole market is overvalued and you can't find anything to invest in?
- **Sell a putt** option to have the obligation to buy the stock at a price on a specific date.
- We wanted to do this, but now we get paid to do it.

### Selling puts (Example)

- **Strike** price we are obligated to buy the shares (if options buyer exercised)
- Price What the option has been trading at.
- Bid Approximately what we get in premiums for selling the option
- Stike and Bid are the most important for option sellers

| □ Puts |       |        |      |      |        |          |
|--------|-------|--------|------|------|--------|----------|
| Strike | Price | Change | Bid  | Ask  | Volume | Open Int |
| 26.00  | 0.34  | -0.02  | 0.36 | 0.42 | 1      | 668      |
| 27.00  | 0.48  | -0.05  | 0.53 | 0.57 | 1      | 151      |
| 28.00  | 0.70  | -0.05  | 0.75 | 0.79 | 3      | 628      |
| 29.00  | 1.01  | -0.05  | 1.04 | 1.10 | 1      | 490      |
| 30.00  | 1.46  | +0.01  | 1.43 | 1.49 | 8      | 927      |
| 31.00  | 1.76  | -0.12  | 1.93 | 2.00 | 8      | 3754     |
| 32.00  | 2.48  | 0.00   | 2.48 | 2.61 | -      | 87       |
| 33.00  | 3.37  | 0.00   | 3.15 | 3.35 | -      | 11       |
| 34.00  | 4.85  | 0.00   | 4.05 | 4.15 | -      | 1        |

### Selling puts (Example)

- Suppose we want to write a put option with a strike price of \$30 with current stock price trading at \$30.50 and the bid price is \$1.43 (premium for writing the contract)
  - We receive \$143 today obligating ourselves to buy 100 shares if exercised at \$30 \$3000
  - We need to have the cash available in our accounts in case of exercise.
  - If we did not have the cash it would be a naked put more risky.
  - Upfront cash needs \$2,857

### Selling puts (Example) - Possibility A

- Stock price stays above \$30
- Option buyer does not exercise the contract (expires worthless)
- ullet Why would the buyer force us to pay \$30 when the market is higher?
- Rate of Return = \$143/\$2857 = 5% over 4 months
- ullet We can write another contract with T=4months and "roll the contract over"

### Selling puts (Example) - Possibility B

- Stock price falls below \$30 to \$29.50
- ullet We still keep the premium but we need to buy the stock for \$30
- ullet Essentially we paid \$28.57 (\$30 \$1.43) of \$2857
- So we own the company (what we wanted) at a price less than the market price

#### Bull call spread

- Profit from a stock we feel mildly bullish about
- Combining a buy call and sell call simultaneously
- Net debit (sell call) less expensive than (buy call)
- Predefined risk/reward (know max gain / loss)

#### Bull call spread (example)

- Suppose  $S_0=700$  and we think the stock is going to go up
- We don't want to spend 700 to buy the stock
  - lacktriangle We can buy a **call** option (cheaper) for \$10 with a strike K
    - $\circ$  Need to wait until the stock price goes up \$10 to start making money
  - ullet We think the stock is going to go up but no more than \$720
  - So we want to buy the stock at 700 but would be happy selling at 720
    - $\circ$  We can sell a **call** option at 720 at \$5
  - We put a cap on the upside
    - $\circ$  Now our initial investment is less since we receive the premium \$5
    - putting a cap lowered our initial investment/risk (but limit profits)

## Bull call spread (example)



