Introduction to Network Flows

Admin

- Assignment 6 will be released today afternoon
 - More practice with dynamic programming
 - Shortest path with negative weights
- Some network flow questions (topic we'll start today)
- Due next week (Wed 11 pm, April 14)
 - In a week & a half
 - Utilize office & TA hours this week as well as next

Story So Far

- Algorithmic design paradigms:
 - Greedy: simplest to design but works only for certain limited class of optimization problems
 - A good starting point for most problems but rarely optimal

Divide and Conquer

- Solving a problem by breaking it down into smaller subproblems and recursing
- Dynamic programming
 - Recursion with memoization: avoiding repeated work
 - Trading off space for time

New Algorithmic Paradigm

- Network flows model a variety of optimization problems
- These optimization problems look complicated with lots of constraints; on the face of it seem to have nothing to do with networks or flows
- Very powerful problem solving frameworks
- We'll focus on the concept of problem reductions
 - Problem A reduces to B if a solution to B leads to a solution to A
- Learn how to prove that our reductions are correct

What's a Flow Network?

- A flow network is a directed graph G = (V, E) with a
 - A **source** is a vertex s with in degree 0
 - A **sink** is a vertex t with out degree 0
 - Each edge $e \in E$ has edge capacity c(e) > 0

Assumptions

- Assume that each node v is on some s-t path, that is, $s \leadsto v \leadsto t$ exists, for any vertex $v \in V$
 - Implies G is connected and $m \ge n-1$
- Assume capacities are integers
 - Will revisit this assumption and what happens if its not
- Directed edge (u, v) written as $u \to v$
- For simplifying expositions, we will sometimes write $c(u \rightarrow v) = 0$ when $(u, v) \notin E$

What's a Flow?

- Given a flow network, an (s, t)-flow or just flow (if source s and sink t are clear from context) $f: E \to \mathbb{Z}^+$ satisfies the following two constraints:
- [Flow conservation] $f_{in}(v) = f_{out}(v)$, for $v \neq s, t$ where

$$f_{in}(v) = \sum_{u} f(u \to v)$$

$$f_{out}(v) = \sum_{w} f(v \to w)$$

$$f_{out}(v) = \sum_{w} f(v \to w)$$

flow

capacity

• To simplify, $f(u \rightarrow v) = 0$ if there is no edge from u to v

Feasible Flow

 And second, a feasible flow must satisfy the capacity constraints of the network, that is,

[Capacity constraint] for each $e \in E$, $0 \le f(e) \le c(e)$

• **Definition.** The **value** of a flow f, written v(f), is $f_{out}(s)$.

$$v(f) = 5 + 10 + 10 = 25$$

• **Definition.** The **value** of a flow f, written v(f), is $f_{out}(s)$.

Intuitively, why do you think this is true?

- Lemma. $f_{out}(s) = f_{in}(t)$
- Proof. Let $f(E) = \sum_{e \in E} f(e)$

Then,
$$\sum_{v \in V} f_{in}(v) = f(E) = \sum_{v \in V} f_{out}(v)$$

- For every $v \neq s, t$ flow conversation implies $f_{in}(v) = f_{out}(v)$
- Thus all terms cancel out on both sides except $f_{in}(s) + f_{in}(t) = f_{out}(s) + f_{out}(t)$
- But $f_{in}(s) = f_{out}(t) = 0$

- Lemma. $f_{out}(s) = f_{in}(t)$
- Corollary. $v(f) = f_{in}(t)$.

Max-Flow Problem

 Problem. Given an s-t flow network, find a feasible s-t flow of maximum value.

Minimum Cut Problem

Cuts are Back!

- Cuts in graphs played a lead role when we were designing algorithms for MSTs
- What is the definition of a cut?

Cuts in Flow Networks

- Recall. A cut (S,T) in a graph is a partition of vertices such that $S \cup T = V$, $S \cap T = \emptyset$ and S,T are non-empty.
- **Definition**. An (s, t)-cut is a cut (S, T) s.t. $s \in S$ and $t \in T$.

Cut Capacity

- Recall. A cut (S,T) in a graph is a partition of vertices such that $S \cup T = V$, $S \cap T = \emptyset$ and S,T are non-empty.
- **Definition**. An (s, t)-cut is a cut (S, T) s.t. $s \in S$ and $t \in T$.
- Capacity of a (s, t)-cut (S, T) is the sum of the capacities of edges leaving S:

$$c(S,T) = \sum_{v \in S, w \in T} c(v \to w)$$

Quick Quiz

 $c(S,T) = \sum c(v \to w)$

 $v \in S, w \in T$

Question. What is the capacity of the *s-t* given by grey and white nodes?

A. 11
$$(20 + 25 - 8 - 11 - 9 - 6)$$

C.
$$45 (20 + 25)$$

D. 79
$$(20 + 25 + 8 + 11 + 9 + 6)$$

Min Cut Problem

Problem. Given an s-t flow network, find an s-t cut of minimum capacity.

Relationship between Flows and Cuts

- Cuts represent "bottlenecks" in a flow network
- For any cut, our flow needs to "get out" of that cut on its route from s to t
- Let us formalize this intuition

- Claim. Let f be any s-t flow and (S,T) be any s-t cut then $v(f) \le c(S,T)$
- There are two *s-t* cuts for which this is easy to see, which ones?

- Claim. Let f be any s-t flow and (S,T) be any s-t cut then $v(f) \le c(S,T)$
- There are two *s-t* cuts for which this is easy to see, which ones?

- To prove this for any cut, we first relate the flow value in a network to the net flow leaving a cut
- **Lemma**. For any flow f on G = (V, E) and any (s, t)-cut, then $v(f) = f_{out}(S) f_{in}(S)$, where

$$f_{out}(S) = \sum_{v \in S, w \in T} f(v \to w) \text{ (sum of flow 'leaving' } S)$$

$$f_{in}(S) = \sum_{v \in S, w \in T} f(w \to v) \text{ (sum of flow 'entering' } S)$$

• Note: $f_{out}(S) = f_{in}(T)$ and $f_{in}(S) = f_{out}(T)$

Proof. $f_{out}(S) - f_{in}(S)$

$$= \sum_{v \in S, w \in T} f(v \to w) - \sum_{v \in S, u \in T} f(u \to v) \quad \text{[by definition]}$$

Adding zero terms

$$= \left[\sum_{v,w\in S} f(v\to w) - \sum_{v,u\in S} f(u\to v)\right] + \sum_{v\in S,w\in T} f(v\to w) - \sum_{v\in S,u\in T} f(u\to v)$$

These are the same sum: they sum the flow of all edges with both vertices in S

Proof. $f_{out}(S) - f_{in}(S)$

Rearranging terms

$$= \left[\sum_{v,w\in S} f(v\to w) - \sum_{v,u\in S} f(u\to v)\right] + \sum_{v\in S,w\in T} f(v\to w) - \sum_{v\in S,u\in T} f(u\to v)$$

$$= \sum_{v,w \in S} f(v \to w) + \sum_{v \in S,w \in T} f(v \to w) - \sum_{v,u \in S} f(u \to v) - \sum_{v \in S,u \in T} f(u \to v)$$

$$= \sum_{v \in S} \left(\sum_{w} f(v \to w) - \sum_{u} f(u \to v) \right)$$

$$= \sum_{v \in S} f_{out}(v) - f_{in}(v)$$

$$= f_{out}(s) = v(f) \quad \blacksquare$$

- We use this result to prove that the value of a flow cannot exceed the capacity of any cut in the network
- Claim. Let f be any s-t flow and (S,T) be any s-t cut then $v(f) \le c(S,T)$
- Proof. $v(f) = f_{out}(S) f_{in}(S)$

$$\leq f_{out}(S) = \sum_{v \in S, w \in T} f(v \to w)$$

$$\leq \sum_{v \in S, w \in T} c(v, w) = c(S, T)$$

When is v(f) = c(S, T)?

$$f_{in}(S) = 0, f_{out}(S) = c(S, T)$$

Max-Flow & Min-Cut

- Suppose the $c_{
 m min}$ is the capacity of the minimum cut in a network
- What can we say about the feasible flow we can send through it
 - cannot be more than c_{\min}
- In fact, whenever we find any s-t flow f and any s-t cut (S,T) such that, v(f)=c(S,T) we can conclude that:
 - f is the maximum flow, and,
 - (S, T) is the minimum cut
- The question now is, given any flow network with min cut c_{\min} , is it always possible to route a feasible s-t flow f with $v(f)=c_{\min}$

Max-Flow Min-Cut Theorem

- A beautiful, powerful relationship between these two problems in given by the following theorem
- Theorem. Given any flow network G, there exists a feasible (s,t)-flow f and a (s,t)-cut (S,T) such that,

$$v(f) = c(S, T)$$

- Informally, in a flow network, the max-flow = min-cut
- This will guide our algorithm design for finding max flow
- (Will prove this theorem by construction in a bit.)

Network Flow History

- In 1950s, US military researchers Harris and Ross wrote a classified report about the rail network linking Soviet Union and Eastern Europe
 - Vertices were the geographic regions
 - Edges were railway links between the regions
 - Edge weights were the rate at which material could be shipped from one region to next
- Ross and Harris determined:
 - Maximum amount of stuff that could be moved from Russia to Europe (max flow)
 - Cheapest way to disrupt the network by removing rail links (min cut)

Network Flow History

- We will prove the max-flow min-cut theorem constructively
- Said differently, we will design a max-flow algorithm and prove its correctness by showing that there is a s-t cut s.t.
 - Value of flow computed by algorithm = capacity of cut
- Let's start with a greedy approach
 - Push as much flow as possible down a s-t path
 - This won't actually work
 - But gives us a sense of what we need to keep track off to improve upon it

- Greedy strategy:
 - Start with f(e) = 0 for each edge
 - Find an $s \sim t$ path P where each edge has f(e) < c(e)
 - "Augment" flow (as much as possible) along path P
 - Repeat until you get stuck
- Let's take an example

- Start with f(e) = 0 for each edge
- Find an s
 ightharpoonup t path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path ${\it P}$
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path ${\it P}$
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \leadsto t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path ${\it P}$
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \leadsto t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path ${\it P}$
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path ${\it P}$
- Repeat until you get stuck

ending flow value = 16

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path ${\it P}$
- Repeat until you get stuck

max-flow value = 19

Why Greedy Fails

- Problem: greedy can never "undo" a bad flow decision
- Consider the following flow network

Why Greedy Fails

- Problem: greedy can never "undo" a bad flow decision
- Consider the following flow network
 - Unique max flow has $f(v \rightarrow w) = 0$
 - Greedy could choose $s \to v \to w \to t$ as first P

Summary: Need a mechanism to "undo" bad flow decisions

Ford-Fulkerson Algorithm

Ford Fulkerson: Idea

- Want to make "forward progress" while letting ourselves undo previous decisions if they're getting in our way
- Idea: keep track of where we can push flow
 - Can push more flow along an edge with remaining capacity
 - Can also push flow "back" along an edge that already has flow down it
- Need a way to systematically track these decisions

Residual Graph

- Given flow network G = (V, E, c) and a feasible flow f on G, the residual graph $G_f = (V, E_f, c_f)$ is defined as:
 - Vertices in G_f same as G
 - (Forward edge) For $e \in E$ with residual capacity $c_r = c(e) f(e) > 0$ create $e \in E_f$ with capacity c_r
 - (Backward edge) For $e \in E$ with f(e) > 0, create $e_{\text{reverse}} \in E_f$ with capacity f(e)

original flow network G

Augmenting Path & Flow

- An augmenting path P is a simple $s \leadsto t$ path in the residual graph G_f
- The **bottleneck capacity** b of an augmenting path P is the minimum capacity of any edge in P.

```
Augment(f, P)

b \leftarrow \text{bottleneck capacity of augmenting path } P.

Foreach edge e \in P:

If (e \in E, that is, e is forward edge)

Increase f(e) in G by b

Else

Decrease f(e) in G by b

RETURN f.
```

Ford-Fulkerson Algorithm

- Start with f(e) = 0 for each edge $e \in E$
- Find an s
 ightharpoonup t path P in the residual network $G_{\!f}$
- Augment flow along path P
- Repeat until you get stuck

```
FORD–FULKERSON(G)

FOREACH edge e \in E: f(e) \leftarrow 0.

G_f \leftarrow residual network of G with respect to flow f.

WHILE (there exists an s \sim t path P in G_f)

f \leftarrow \text{AUGMENT}(f, P).

Update G_f.

RETURN f.
```

Quick Check in

- Are we making forward progress here? (An augmenting path can "push flow back")
- Yes: cannot push flow back out of t or back into s
- Each augmenting path always increases the flow out of \boldsymbol{s} and into \boldsymbol{t} by at least 1 unit

residual network Gf

P in residual network Gf

residual network Gf

P in residual network Gf

residual network Gf

P in residual network Gf

residual network Gf

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf)
 - Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)