falsfitfun Take Home Exercise

INDEX

- 1. Problem Definition
 - 1.1 Dataset Attributes
 - 1.2 Objective and Key Questions
 - 1.3 Technologies and Programming Language
- 2. First Steps
- 3. Data GAP
 - 3.1 Campaign ID
 - 3.2 User ID
 - 3.3 Nulls, NaNs and Missings
 - 3.4 Wrong Campaign
 - 3.5 Inconsistence in Window Number
 - 3.6 Missing PK
 - 3.7 N:N Relationship
- 4. Data Analysis
 - 4.1 Valuable Users
 - 4.2 Channels & Valuable Users
 - 4.3 Convertion Rate
 - 4.4 Recommendations
- 5. Recommendations

1.1 DATASET ATTRIBUTES

Acquisitions
userID
ACQUISITION_DATE
ORDER_SEASON
PLAN_CODE
SAME_DAY_REFUND
CURRENT_SUBSCRIPTIO NS_STATE
AGE
USER_REGION
LTV14

Visits
userID
SEASON
CAMPAIGN_ID
WINDOW_NUMBER
CAMPAIGN_TITLE
CAMPAIGN_TYPE
WINDOW_START_TS_PST
WINDOW_END_TS_PST
CHANNEL
NEW_OR_RETURNING_M EMBER
VISIT_CNT

Campaign (DIM)

SEASON

USERIE

CAMPAIGN_ID

CAMPAIGN_TITLE

CAMPAIGN_TYPE

SKU

CART

MSRF

COGS

SALE_
CATE

Purchases
userID
CAMPAIGN_ID
CAMPAIGN_TITLE
SKU
CART_QUANTITY
MSRP
COGS
SALE_PRICE
CATEGORY

1.2 OBJECTIVES AND KEY QUESTIONS

Who are our most valuable members? How are they different from our less valuable members?

Which channels are best at driving these members to sales?

Where are purchase conversion rates strong?

Based on your analysis, provide actionable recommendations to improve the conversion rate from visits to purchases. Explain the rationale behind each recommendation.

1.3 TECHNOLOGIES AND PROGRAMMING LANGUAGE

Environment using Anaconda

- All analysis performed using Python
 - Used libraries: NumPy, Pandas, Matplotlib, Sklearn
- Visual Studio Code used as IDE

2. FIRST STEPS

2. FIRST STEPS

3. DATA GAPS

3.1 CAMPAIGN ID

INSIGHTS

Only 96 campaigns are available in the 3 datasets.

3.2 USER ID

INSIGHTS

Only 873 users are available in the 4 datasets.

3.3 NULLS, NaNs and Missings

INSIGHTS

Ages has the higher quantity of Nulls, preventing its usage for deeper insights about users

3.4 MISSING PRIMARY KEY

Campaign 184 (12 Days of Deals 2022) has 12 different start and end dates.

3.5 INCONSISTENCE WINDOW NUMBER

INSIGHTS

ASSUMPTION:

- Subscription plan changed during campaign
- Error in data ingestion

3.6 MISSING PRIMARY KEY

INSIGHTS

- i. Relationship between
 Visits and Purchases table
 is N:N
- ii. No PK in Visits and Purchases
- iii. There's no Window
 Number in Purchases,
 therefore there's no way
 to identify which window
 it was converted

3.7 JOIN BETWEEN VISITS AND PURCHASES

INSIGHTS

By joining visits and purchases using User ID and Campaign ID, we'll have a GAP of 29.3% of missing values for Window Start and Window End.

In addition, there's no window number in purchases.

4.1 VALUEABLE USERS

By performing this join, we kept 70.71% of the rows from Fact Purchases.

4.1 VALUEABLE USERS

- Sort values by WINDOW_END_TS_PST and drop duplicates of userID and CAMPAIGN_ID
- Inner join Fact Purchases with Fact Visits using of userID and CAMPAIGN_ID
- Calculate TOTAL_REVENUE by performing CART_QUANTITY x SALE_PRICE

By performing this join:

- Kept 70.71% of the rows from Fact Purchases
- Kept 77.77% of the users from Fact Purchases
- Kept 53.33% of the campaigns from Fact Purchases

MAX(WINDOW_END_TS_PST) - 1 YEAR

4.1 VALUEABLE USERS

4.1 VALUEABLE USERS

fabfitfun.

4.1 VALUEABLE USERS

RFM Segment Distribution

INSIGHTS

From 451 customers from 2023-08-06 to 2024-08-06:

- 39.7% have High Value
- 44.1% have Mid Value
- 16.2% have Low Value

4.2 DIFFERENCE BETWEEN VALUEABLE USERS AND OTHER USERS

Create Features Created features that could explain the difference between Cluster clusters, such as: total cart quantity Use unsupervised CORRELATION total revenue Machine Learning • unique SKU count algorithm, K-Means, WITH RFM • Unique cat. Count we need to find the Total visits value of K (clusters). Profit Found k = 3 that average item price better divided the Correlation total visits clusters. with RFM • Revenue per visit Perform the link Margin PCT PCA between RFM ITV14 Apply PCA to classification transform into with the clusters Feature 2D to visually CREATE Importance understand the distribution Use supervised **FEATURES** Machine Learning algorithm, Decision Tree, to understand the importance of each feature for the

clusters

4.2 DIFFERENCE BETWEEN VALUEABLE USERS AND OTHER USERS

Inertia stops to fall aggressively around $k = 3\sim4$. We'll choose 3.

4.2 DIFFERENCE BETWEEN VALUEABLE USERS AND OTHER USERS

Most of the features doesn't represent much of the differences between clusters. Let's create a threshold for over 3% to consider as an important feature

4.2 DIFFERENCE BETWEEN VALUEABLE USERS AND OTHER USERS

Recalculated the new feature importances for the algorithm.

Total revenue is not the main attribute that best divides the cluster, it's the visits and unique skus, meaning: DISCOVERABILITY (visits) and EXPLORABILITY (unique skus)

4.2 DIFFERENCE BETWEEN VALUEABLE USERS AND OTHER USERS

INSIGHTS

Accumulated Variance: 98.6%

4.2 DIFFERENCE BETWEEN VALUEABLE USERS AND OTHER USERS

From 451 customers from 2023-08-06 to 2024-08-06:

- 77.61% are in cluster 0
- 03.10% are in cluster 1
- 19.29% are in cluster 2

4.2 DIFFERENCE BETWEEN VALUEABLE USERS AND OTHER USERS

4.2 DIFFERENCE BETWEEN VALUEABLE USERS AND OTHER USERS

CLUSTER	RFM SCORE	MEAN TOTAL REVENUE	MEAN UNIQUE SKU COUNT	MEAN VISIT CNT	% Of High Value Users	% Of Mid Value Users	% Of Low Value Users
0	6.65	81.10	4.92	11.24	25.71%	20.86%	53.43%
1	11.29	1599.75	79.07	52.93	100%	0.00%	0.00%
2	10.67	398.96	22.56	44.21	86.21%	0.00%	13.79%

Most valueble users are mainly in cluster 1. They differ from cart quantity, total revenue, unique skus and visits.

4.2 CHANNELS

^{*} Considering time window of 1 year, same users and that the last visit was transformed into a convertion.

4.3 STRONG CONVERTION RATE

The locations with a stronger convertion rates are, respectively: Non-continental us (19.4%), us-midwest (14.7%)

INSIGHTS

The locations with a stronger convertion rates are, respectively:

- Non-continental us = 31.82%
- Canada = 27.99%
- Us-midwest = 24.33%

5. RECOMMENDATIONS

5. RECOMMENDATIONS

According to the RFM and K-Means, the focus should be on discoverability and explorability.

Personalized homepage*
using machine learning
models to reorder properly the
SKUs according to users.
E.g. Algorithm: Matrix
Factorization

* In e-commerce, homepage is mainly used to improve discoverability for users.

falfitfun

5. RECOMMENDATIONS

4.3 STRONG CONVERTION RATE

CLUSTER 0 (high volume, less convertion (REVENUE ÷ VISITS)):

- Objective: focus on transform visits into purchases, than improve campaigns
- Discounts in first purchases
- Artificial urgency ("Promotion valid for an hour", "Last unities on stock")

CLUSTER 1 (small group, high convertion):

- Objective: extract more value without pressure
- Cross-sell in checkout ("Also take this item..."
- Rewards for volumes ("Earn one extra product after buying 3")
- Faster checkout (reducing quantity of clicks, save preferences)

CLUSTER 2 (mid size group, mostly with high convertion):

- Objective: convert more in the visits they already perform
- Improve session (visit) performance ("Recently viewed" with easy click to buy button)
- Reduce session (visit) pressure (highlight product rate, buy directly from home)

