IC272-ASSIGNMENT2

ROLLNO: B19084

NAME: SRISHTI GINJALA

PHONE: 9440000900

QUESTION1)

The number of missing values in all attributes are shown in this graph.

Hence, we conclude that skin has the highest number of missing values and Number of Pregnancies (pregs) the lowest.

QUESTION2)

Now we delete the tuples having equal to or more than one third of attributes with missing values. The row numbers of the deleted tuples are: [1, 39, 40, 53, 54, 83, 89, 103, 125, 136, 145, 210, 211, 212, 213, 249, 250, 254, 280, 281, 284, 314, 321, 335, 429, 430, 449, 450, 451, 471, 472, 473, 474, 718, 719, 720, 721, 753, 766]. Number of tuples deleted are 39.

We also delete tuples (rows) having missing value in the target (class) attribute. The row numbers of the tuples having missing value in the target (class) attribute are:

[1, 8, 13, 28, 29, 35, 54, 62, 92, 95, 107, 110, 130, 131, 132, 133, 149, 182, 188, 218, 249, 250, 254, 280, 281, 284, 308, 746, 748]

Number of tuples deleted are 29.

QUESTION3)

The number of missing values in attributes are

pregs 0

plas 12

pres 9

skin 8

test 8

BMI 12

pedi 2

Age 18

class 0

The total number of missing values in the file are 69. (after the deletion of tuples).

QUESTION4)

a) Replacing the missing values by mean of their respective attribute, we get

	pregs	plas	pres	skin	test	bmi	pedi	age	class
mean	3.886	120.67	69.00	20.35	77.83	32.01	0.476	33.1	0.343
median	3.000	118.0	72.00	23.00	36	32.06	0.382	29	0
mode	1.0	99,100	70.00	0	0	32.00	0.254	22	0

std	3.374	30.99	19.69	15.95	115.2	7.765	0.333	11.52	0.475
rmse	0	42.65	8.944	15.89	55.23	10.46	0.04	15.36	0

b) Replacing the missing values by interpolation, we get

	pregs	plas	pres	skin	test	bmi	pedi	age	class
mean	3.886	120.35	69.10	20.39	77.35	32.05	0.477	33.21	0.343
median	3.000	117.0	72.00	23.00	27	32.25	0.382	29	0
mode	1.0	99,100	70.00	0	0	32.00	0.258	22	0
std	3.374	31.27	19.73	15.97	110.75	7.793	0.334	11.65	0.475
rmse	0	57.05	13.77	14.87	68.98	12.82	0.5	17.39	0

QUESTION5)

The outliers in Age are [69.0, 67.0, 72.0, 81.0, 67.0, 70.0, 68.0, 69.0]

The outliers in BMI are [0.0, 0.0, 0.0, 53.2, 67.1, 52.3, 52.3, 52.9, 0.0, 0.0, 59.4, 0.0, 0.0, 57.3, 0.0, 0.0]

The above figures are the boxplots for Age and BMI. We observe that there are many outliers. After replacing the outliers with median, we get the following boxplots.

We get outliers even after replacing with median because the quartiles change as the numbers get rearranged and there are again chances of outliers.

Thank you