Intro to IT Security

CS306C-Fall 2022

Prof. Antonio R. Nicolosi

Antonio.Nicolosi@stevens.edu

Data Integrity in the Symmetric Setting

Lecture 1 29 September 2022

Data Integrity

Integrity: Preventing unauthorized changes

Intercept, Tamper, Release

- The receiver should be able to check whether the msg was modified during transmission
 - No one should be able to tamper with the msg, without the recipient noticing the alteration

Data Integrity: Example

- A wants to email an executable file F to B
- A wants to ensure that the executable file is received by B without modifications
 - A sends out the file to B
 - A gives the hash of the file to B
 (out of band, e.g., on a piece of paper)
- Goal: Integrity not Confidentiality
- Idea: Given F and hash(F), very hard to find badF such that hash(F) = hash(badF)

Integrity vs. Confidentiality

- Encryption does not guarantee integrity
 - Attacker may be able to modify the encrypted msg without learning the msg itself
- Example:
 - Use OTP to encrypt m using key k: $c = m \oplus k$
 - Take a different message m'. Compute

$$c' = c \oplus m' = (m \oplus m') \oplus k$$

- c' is a valid encryption of message $\bar{m} = m \oplus m'$

Message Authentication Codes (MACs)

- In the symmetric setting, the correct tool to get msg integrity is a MAC
- Functionality
 - $Mac_k(m) = t$; t is called tag

$$-Vrf_k(m,t) = \begin{cases} 1 & accept \\ 0 & reject \end{cases}$$

- Sender and Receiver share MAC key k
- Sender sends (m, Mac_k(m))
 - m could be $Enc_{k'}(m')$
- Note: Careful with reply attacks!

Message Authentication Codes (MACs) (con'd)

A message authentication code (MAC) is a tuple of probabilistic polynomial-time algorithms (Gen, Mac, Vrf) such that:

- $Gen(1^n)$: A key-generation algorithm that takes as input the security parameter 1^n and outputs a key k with $|k| \ge n$
- $Mac_k(m)$: The tag-generation algorithm that takes as input a key k and a message $m \in \{0, 1\}^*$, and outputs a tag t. Since this algorithm may be randomized, we write this as $t \leftarrow Mac_k(m)$
- $Vrf_k(m, t)$: The verification algorithm that takes as input a key k, a message m, and a tag t. It outputs a bit b, with b=1 meaning valid and b=0 meaning invalid. We assume without loss of generality that Vrf is deterministic, and so write this as $b := Vrf_k(m, t)$

MAC: Security

Attack Game

• A MAC is secure if, for all attacker running for some time T (T=100 years), the probability that the attacker creates a "forgery" is at most $\epsilon=2^{-80}$

Digression: Cryptographic Hash Functions

Let $H: X \to Y$ be a function. H is a *hash function* if it satisfies the following properties:

- It is efficiently computable
- Many elements in the domain are mapped to the same elements in the codomain

Cryptographic Hash Functions: Definition

• $H: \{0,1\}^* \to \{0,1\}^n$

Cryptographic Hash Functions: Definition

- H is a lossy compression function
- H hashes arbitary-length input to fixed-size output
 - Typical output size: 160-512 bits
 - Cheap to compute on large input
- Collision: H(x) = H(x'), for distinct x, x'
- Result of hashing should look random
 - Even if $|x| \neq |x'|$ or x is a prefix of x' (x' = x||x'')

Do we always have collisions? Yes!

- Pigeon Hole Principle
 - On average $\frac{2^{2n}}{2^n} = 2^n$ collisions!

- For a "good" hash function, roughly $\sqrt{2^n} = 2^{n/2}$ evaluations
- Brute-force attack:
 - Take random x_0 ; compute $H(x_0)$

$$H(x_0) = H(x_1)$$

$$H(x_2) = H(x_0) \lor H(x_2) = H(x_1)$$

$$H(x_3) = H(x_0) \lor H(x_3) = H(x_1) \lor H(x_3) = H(x_2)$$

$$H(x_i) = H(x_0) \quad \lor \quad H(x_i) = H(x_1) \quad \lor \quad ... \quad \lor \quad H(x_i) = H(x_{i-1})$$

- For a "good" hash function, roughly $\sqrt{2^n} = 2^{n/2}$ evaluations
- Brute-force attack:
 - Take random x_0 ; compute $H(x_0)$
 - Take random x_1 ; check if

$$H(x_0) = H(x_1)$$

- If not, take random x₂: check if

$$H(x_2) = H(x_0) \quad \lor \quad H(x_2) = H(x_1)$$

If not, take random x₃; check if

$$H(x_3) = H(x_0) \lor H(x_3) = H(x_1) \lor H(x_3) = H(x_2)$$

- If not. . .
- ... take random x_i ; check if

$$H(x_i) = H(x_0) \quad \lor \quad H(x_i) = H(x_1) \quad \lor \quad ... \quad \lor \quad H(x_i) = H(x_{i-1})$$

- For a "good" hash function, roughly $\sqrt{2^n} = 2^{n/2}$ evaluations
- Brute-force attack:
 - Take random x_0 ; compute $H(x_0)$
 - Take random x_1 ; check if

$$H(x_0) = H(x_1)$$

- If not, take random x2; check if

$$H(x_2) = H(x_0) \quad \lor \quad H(x_2) = H(x_1)$$

If not, take random x3; check if

$$H(x_3) = H(x_0) \lor H(x_3) = H(x_1) \lor H(x_3) = H(x_2)$$

- If not. . . .
- ... take random x_i : check if

$$H(x_i) = H(x_0) \quad \lor \quad H(x_i) = H(x_1) \quad \lor \quad ... \quad \lor \quad H(x_i) = H(x_{i-1})$$

- For a "good" hash function, roughly $\sqrt{2^n} = 2^{n/2}$ evaluations
- Brute-force attack:
 - Take random x_0 ; compute $H(x_0)$
 - Take random x_1 ; check if

$$H(x_0) = H(x_1)$$

- If not, take random x2; check if

$$H(x_2) = H(x_0) \quad \lor \quad H(x_2) = H(x_1)$$

- If not, take random x3; check if

$$H(x_3) = H(x_0) \lor H(x_3) = H(x_1) \lor H(x_3) = H(x_2)$$

- If not. . .
- . . . take random x_i ; check if

$$H(x_i) = H(x_0) \quad \lor \quad H(x_i) = H(x_1) \quad \lor \quad ... \quad \lor \quad H(x_i) = H(x_{i-1})$$

- For a "good" hash function, roughly $\sqrt{2^n} = 2^{n/2}$ evaluations
- Brute-force attack:
 - Take random x_0 ; compute $H(x_0)$
 - Take random x_1 ; check if

$$H(x_0) = H(x_1)$$

- If not, take random x2; check if

$$H(x_2) = H(x_0) \quad \lor \quad H(x_2) = H(x_1)$$

- If not, take random x3; check if

$$H(x_3) = H(x_0) \lor H(x_3) = H(x_1) \lor H(x_3) = H(x_2)$$

- If not. . . .
- ... take random x_i: check if

$$H(x_i) = H(x_0) \lor H(x_i) = H(x_1) \lor ... \lor H(x_i) = H(x_{i-1})$$

- For a "good" hash function, roughly $\sqrt{2^n} = 2^{n/2}$ evaluations
- Brute-force attack:
 - Take random x_0 ; compute $H(x_0)$
 - Take random x1: check if

$$H(x_0) = H(x_1)$$

- If not, take random x_2 ; check if

$$H(x_2) = H(x_0) \lor H(x_2) = H(x_1)$$

- If not, take random x_3 ; check if

$$H(x_3) = H(x_0) \lor H(x_3) = H(x_1) \lor H(x_3) = H(x_2)$$

- If not, ...
- ... take random x_i ; check if

$$H(x_i) = H(x_0) \quad \lor \quad H(x_i) = H(x_1) \quad \lor \quad ... \quad \lor \quad H(x_i) = H(x_{i-1})$$

• After k steps, we have checked roughly $k^2/2$ pairs:

$$\sum_{i=0}^{k-1} i = \frac{k(k-1)}{2} \simeq \frac{k^2}{2}$$

- For each pair, roughly $1/2^n$ chance to get collision
 - Think of one element as fixed, the other as random in $\{0,1\}^n$
- So after $2^{n/2}$ steps = $2^n/2$ pairs, roughly $1/2^n \cdot 2^n/2 = 1/2$ chance of (at least one) collision

Preimage Resistant Hash Functions

- Hard to win the following game b/w adversary A and challenger C
 - Hard = the best you can get is by following the brute-force attack
- $C \rightarrow A : k, y$
- $A \rightarrow C : x' \text{ s.t. } H_k(x') = y$

Second Preimage Resistant Hash Functions

- $C \rightarrow A : k.x$
- $A \rightarrow C : x'$ s.t. $H_k(x) = H_k(x')$

Collision Resistant Hash Functions

- $C \rightarrow A : k$
- $A \rightarrow C: x, x'$ s.t. $H_k(x) = H_k(x')$

Universal One-Way Hash Functions

- $A \rightarrow C : x$
- $C \rightarrow A : k$
- $A \rightarrow C : x' \text{ s.t. } H_k(x) = H_k(x')$

ϵ -Universal Hash Functions Family

- $A \rightarrow C : x, x'$
- $C \rightarrow A : k$
- Again, the goal of the adversary is to pick x, x' such that $H_k(x) = H_k(x')$

Common Hash Functions

- MD5: Message Digest Algorithm 5
 - 128-bit output
 - Designed by Ron Rivest ('91)
 - Collision resistance broken ('04, '08)
 - Pre-image resistance broken ('09)
- SHA: Secure-Hash Algorithm
 - Designed by NSA (National Security Agency)
 - SHA-1: 160-bit output
 - Also, SHA-256, SHA-512
 - Collision resistance broken ('05)

Remarks

- The definition requires not just a family of hash functions, but a parameterized family of families (often called a *function ensemble*)
- Other flavors of hash function defined similarly
 - the power of the adversary varies by increasing or decreasing the information available to her at the time she must guess

A Consequence of the Definition

- At a minimum, all of our definitions require the hash functions to be one way (hard to find preimages of an element)
- Hence, we must have a large domain and generally, a large codomain as well in order to prevent an exhaustive search
- For example, SHA-1 maps $\{0,1\}^* \to \{0,1\}^{160}$

Hash and MAC

- Suppose we want to create a MAC for a long message
 - Hash message to create short "digest"
 - MAC the short digest

MACs in Practice

- $HMAC(k, m) = H(k \oplus opad, H(k \oplus ipad, m))$
 - H: cryptographic hash function
 - ipad is (0011 0110)=0x36 repeated to match the block-length of H
 - opad is (0101 1100)=0x5c repeated to match the block-length of H

Encryption and MAC

- To get confidentiality and integrity
 - Encrypt then MAC

Other Applications of Hash Functions: Fingerprinting

- Suppose two parties have files x, x' and would like to know "does x = x'?"
- Examples:
 - Verifying submitted work (uploads)
 - Verifying binaries and source code (downloads)
- Rather than communicating the entire file x or x', just send H(x)
- This resolves the question with very high probability and very low communication