Data Preperation Report

dataMineR

19/6/2013

CONTENTS

Co	Contents 2						
1 Introduction							
	1.1	Information on Dataset	4				
	1.2	Variabele types	4				
	1.3	Target defenition	5				
	1.4	Missing values	5				
	1.5	Variable interactions	6				
2	Beha	aviour analysis summary	7				
3	Deta	iled variable behaviour analysis	9				
	3.1	Behaviour for variable age	9				
	3.2	Behaviour for variable customer_lifetime	9				
	3.3	Behaviour for variable contact_channel	9				
	3.4	Behaviour for variable product_grp	9				
	3.5	Behaviour for variable action	12				
	3.6	Behaviour for variable sales_channel	12				
	3.7	Behaviour for variable months_under_contract	12				
	3.8	Behaviour for variable P1_amount	12				
	3.9	Behaviour for variable contract_type	12				
	3.10	Behaviour for variable usage	15				
		Behaviour for variable usage2	15				
	3.12	Behaviour for variable donwpayment	15				
	3.13	Behaviour for variable extra_payment	15				
	3.14	Behaviour for variable city_code	17				
	3.15	Behaviour for variable unkown_amount	18				
	3.16	Behaviour for variable product_detail	18				
	3.17	Behaviour for variable tax_amount	18				
		Behaviour for variable P2-amount	18				
	3.19	Behaviour for variable P1_turnover	18				
	3.20	Behaviour for variable P2_turnover	20				
	3.21	Behaviour for variable index1	20				
		Behaviour for variable days_since_last_sale_p1	20				
	3.23	Behaviour for variable days_since_last_sale_p2	22				
		Behaviour for variable days_since_last_contract_adj	23				
	3.25	Behaviour for variable days_since_last_sale	23				
	3.26	Behaviour for variable target	23				

4 Model Set 25

INTRODUCTION

This analysis report is generated using R, R-studio and knitr to knitr R code from mark-down into html and later LateX format. We have the option to include all R code that is used to generate the plots and calculations. By default this feature is dissabled.

The data preperation step is the second step in a datamining analysis. Steps identified in the datamining process are:

- Data analysis
- · Behaviour analysis
- Missing value analysis
- Missing value imputation (optional)
- Binning
- Feature selection
- Model development
- Model analysis
- Model deployment

1.1 Information on Dataset

Basic information from the dataset we are using.

We are using data from file : ../data/data-set.Rdata. The dataset has 26 variables and 92467 rows.

1.2 Variabele types

The following variabeles are present in the dataset: age, customer_lifetime, contact_channel, product_grp, action, sales_channel, months_under_contract, P1_amount, contract_type, usage, usage2, donwpayment, extra_payment, city_code,

unkown_amount, product_detail, tax_amount, P2-amount, P1_turnover, P2_turnover, index1, days_since_last_sale_p1, days_since_last_sale_p2, days_since_last_contract_adj, days_since_last_sale, target

We have 19 numeric variables and 7 categorical variables (or factors in R).

1.3 Target defenition

This analysis aims to report of the behaviour of each individual 'predictor' to a target variable. The target variable should be a categorical variable having two categories(or factor levels).

The target variable is defined in the previous step.

The target has the following proportion of outcomes:

```
## Attaching package: 'pander'

## The following object is masked from 'package:knitr':

##
## pandoc
```

	count	%
N	76680	82.93
Y	15787	17.07

1.4 Missing values

Before we can do model analysis we need to take care of missing values. The simplest appraoch, if the missing data in Missing Completly at Random(MCAR) or Missing at Random(MAR), is to delete cases including one or more missing entries but this can remove a large proportion of valuable data.

We can also remove individual variables if they have a high percentage of missing atributes. Or we can replace or impute missing data with for instance an average or most frequent value. In R we can use the function na.roughfix() from the package randomForest for this. Actually changing the data. For this we can use kNN nearest neighbors algorithm implemented in package DMwR or rfImpute() from the package RandomForest.

For now we will impute using na.roughfix().

This dataset has 0 incomplete cases out of 92467, which is 0 percent.

```
## Loading required package: randomForest
## randomForest 4.6-7
## Type rfNews() to see new features/changes/bug fixes.
```

1.5 Variable interactions

Hierarchical clustering is a good technique to visualize interactions between numeric variables.

Variable Correlation Clusters data using Pearson

Figure 1.1: plot of chunk cluster

BEHAVIOUR ANALYSIS SUMMARY

The selected inputs have the following raw predictive capacity for predicting the target outcome:

```
## Loading required package: survival

## Loading required package: splines

## Loading required package: Formula

## Hmisc library by Frank E Harrell Jr

## Type library(help='Hmisc'), ?Overview, or ?Hmisc.Overview') to see overall

## documentation.

## Attaching package: 'Hmisc'

## The following object is masked from 'package:survival':

## "# untangle.specials

## The following object is masked from 'package:randomForest':

## ## combine

## The following object is masked from 'package:base':

## ## format.pval, round.POSIXt, trunc.POSIXt, units
```

variable	Kendalls Tau	Somers Dxy
product_detail	-0.1156	-0.2117
months_under_contract	-0.09281	-0.1672
age	-0.04564	-0.08661
unkown_amount	-0.02596	-0.04905
city_code	-0.006576	-0.01238

contact_channel	0.01124	0.0203
extra_payment	0.01756	0.02863
sales_channel	0.01966	0.03517
usage2	0.0246	0.04668
usage	0.02715	0.05152
days_since_last_sale_p1	0.02854	0.05073
days_since_last_sale_p2	0.02856	0.05124
P1_amount	0.02966	0.05615
product_grp	0.03664	0.06479
contract_type	0.04086	0.06435
donwpayment	0.04273	0.08074
customer_lifetime	0.04742	0.08827
P1_turnover	0.04915	0.09324
action	0.06138	0.1111
P2-amount	0.06357	0.1203
P2_turnover	0.07075	0.1342
index1	0.09422	0.1788
days_since_last_sale	0.104	0.1947
days_since_last_contract_adj	0.1084	0.2051
tax_amount	0.1167	0.2046

Table 2.1: Rank correlation measures!

DETAILED VARIABLE BEHAVIOUR ANALYSIS

Now we look at individual variables and analyse it's relation with the target. We visualize numerical variables different then categorical ones.

3.1 Behaviour for variable age

Here we wil look into the relation of variable age with the target.

```
## Attaching package: 'plyr'

## The following object is masked from 'package:Hmisc':
##
## is.discrete, summarize

## geom_smooth: method="auto" and size of largest group is >=1000, so using
## gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the
## smoothing method.
```

3.2 Behaviour for variable customer_lifetime

Here we wil look into the relation of variable customer_lifetime with the target.

```
## geom_smooth: method="auto" and size of largest group is >=1000, so using
## gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the
## smoothing method.
```

3.3 Behaviour for variable contact_channel

Here we wil look into the relation of variable contact_channel with the target.

3.4 Behaviour for variable product_grp

Here we wil look into the relation of variable product_grp with the target.

3.5 Behaviour for variable action

Here we wil look into the relation of variable action with the target.

3.6 Behaviour for variable sales_channel

Here we wil look into the relation of variable sales_channel with the target.

3.7 Behaviour for variable months_under_contract

Here we wil look into the relation of variable months_under_contract with the target.

```
## geom_smooth: method="auto" and size of largest group is >=1000, so using ## gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the ## smoothing method.
```

3.8 Behaviour for variable P1_amount

Here we wil look into the relation of variable P1_amount with the target.

```
## geom_smooth: method="auto" and size of largest group is >=1000, so using ## gam with formula: y \sim s(x, bs = "cs"). Use 'method = x' to change the ## smoothing method.
```

3.9 Behaviour for variable contract_type

Here we wil look into the relation of variable contract_type with the target.

3.10 Behaviour for variable usage

Here we wil look into the relation of variable usage with the target.

```
## geom_smooth: method="auto" and size of largest group is >=1000, so using
## gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the
## smoothing method.
```


3.11 Behaviour for variable usage2

Here we wil look into the relation of variable usage2 with the target.

```
## geom_smooth: method="auto" and size of largest group is >=1000, so using
## gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the
## smoothing method.
```

3.12 Behaviour for variable donwpayment

Here we wil look into the relation of variable donwpayment with the target.

```
## geom_smooth: method="auto" and size of largest group is >=1000, so using
## gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the
## smoothing method.
```

3.13 Behaviour for variable extra_payment

Here we wil look into the relation of variable extra_payment with the target.

```
## geom_smooth: method="auto" and size of largest group is >=1000, so using ## gam with formula: y \sim s(x, bs = "cs"). Use 'method = x' to change the ## smoothing method.
```


3.14 Behaviour for variable city_code

Here we wil look into the relation of variable city_code with the target.

geom_smooth: method="auto" and size of largest group is >=1000, so using
gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the
smoothing method.

3.15 Behaviour for variable unkown_amount

Here we wil look into the relation of variable unkown_amount with the target.

```
## geom_smooth: method="auto" and size of largest group is >=1000, so using
## gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the
## smoothing method.
```


3.16 Behaviour for variable product_detail

Here we wil look into the relation of variable product_detail with the target.

3.17 Behaviour for variable tax_amount

Here we wil look into the relation of variable tax_amount with the target.

```
## geom_smooth: method="auto" and size of largest group is >=1000, so using
## gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the
## smoothing method.
```

3.18 Behaviour for variable P2-amount

Here we wil look into the relation of variable P2-amount with the target.

```
## Error: object 'P2' not found
```

3.19 Behaviour for variable P1_turnover

Here we wil look into the relation of variable P1_turnover with the target.

geom_smooth: method="auto" and size of largest group is \geq 1000, so using ## gam with formula: y \sim s(x, bs = "cs"). Use 'method = x' to change the ## smoothing method.

3.20 Behaviour for variable P2_turnover

Here we wil look into the relation of variable P2_turnover with the target.

```
## geom_smooth: method="auto" and size of largest group is >=1000, so using
## gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the
## smoothing method.
```

3.21 Behaviour for variable index1

Here we wil look into the relation of variable index1 with the target.

```
## geom_smooth: method="auto" and size of largest group is >=1000, so using ## gam with formula: y \sim s(x, bs = "cs"). Use 'method = x' to change the ## smoothing method.
```

3.22 Behaviour for variable days_since_last_sale_p1

Here we wil look into the relation of variable days_since_last_sale_p1 with the target.

```
## geom_smooth: method="auto" and size of largest group is >=1000, so using ## gam with formula: y \sim s(x, bs = "cs"). Use 'method = x' to change the ## smoothing method.
```


3.23 Behaviour for variable days_since_last_sale_p2

Here we wil look into the relation of variable days_since_last_sale_p2 with the target.

```
## geom_smooth: method="auto" and size of largest group is >=1000, so using ## gam with formula: y \sim s(x, bs = "cs"). Use 'method = x' to change the ## smoothing method.
```


3.24 Behaviour for variable days_since_last_contract_adj

Here we wil look into the relation of variable days_since_last_contract_adj with the target.

```
## geom_smooth: method="auto" and size of largest group is >=1000, so using
## gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the
## smoothing method.
```


3.25 Behaviour for variable days_since_last_sale

Here we wil look into the relation of variable days_since_last_sale with the target.

```
## geom_smooth: method="auto" and size of largest group is >=1000, so using
## gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the
## smoothing method.
```

3.26 Behaviour for variable target

Here we wil look into the relation of variable target with the target.

CHAPTER

MODEL SET

We save the resulting set for moddeling as 'r datasetName'.

The next step in Model development.