Zhengdong Zhang

Email: zhengz@uoregon.edu

Course: MATH 634 - Algebraic Topology

Instructor: Dr.Patricia Hersh

Homework - Week 4

ID: 952091294 Term: Fall 2024

Due Date: 29^{nd} October, 2024

Problem 2.1.15

For an exact sequence $A \to B \to C \to D \to E$ show that C = 0 iff the map $A \to B$ is surjective and $D \to E$ is injective. Hence for a pair of spaces (X, A), the inclusion $A \hookrightarrow X$ induces isomorphisms on all homology groups iff $H_n(X, A) = 0$ for all n.

Solution: Assume C=0. Then $0 \to D \to E$ implies that $\ker(D \to E) = \operatorname{im}(0 \to D) = 0$. So $D \to E$ is injective. Similarly, $\operatorname{im}(A \to B) = \ker(B \to 0) = B$ implies that $A \to B$ is surjective. Conversely, $A \to B$ is surjective implies that $B = \operatorname{im}(A \to B) = \ker(B \to C)$. So $B \to C$ is the zero map. And $\operatorname{im}(B \to C) = \ker(C \to D)$ while $C \to D$ is also the zero map because $\operatorname{im}(C \to D) = \ker(D \to E) = 0$ as $D \to E$ is injective. So $\operatorname{im}(B \to C) = 0$. Thus, we have C = 0.

Let (A, X) be a pair of spaces. Consider the short exact sequence of chain complexes:

$$0 \to C_{\bullet}(A) \to C_{\bullet}(X) \to C_{\bullet}(X, A) \to 0.$$

We have a long exact sequence:

$$\cdots \longrightarrow H_n(A) \longrightarrow H_n(X) \longrightarrow H_n(X, A)$$

$$H_{n-1}(A) \stackrel{\longleftarrow}{\longrightarrow} H_{n-1}(X) \longrightarrow H_{n-1}(X, A) \longrightarrow \cdots$$

where $H_n(A, X) = 0$ for all n if and only if $H_n(A) \xrightarrow{\sim} H_n(X)$ for all n.

Problem 2.1.16

Show that $H_0(X, A) = 0$ iff A meets each path-component of X.

Solution: As the Exercise above shows that we have a long exact sequence:

$$\cdots \longrightarrow H_0(A) \longrightarrow H_0(X) \longrightarrow H_0(X,A) \longrightarrow 0$$

So $H_0(X,A)=0$ if and only if $H_0(A)\to H_0(X)$ is surjective. This map is induced by the inclusion $A\hookrightarrow X$. For a topological space X, we have proved in class that $H_0(X)\cong \bigoplus \mathbb{Z}^d$ where each copy of \mathbb{Z} represents a path-component of X. So $H_0(A)\to H_0(X)\cong \bigoplus \mathbb{Z}^d$ is surjective if and only if for each path-component of X, there exist a 0-chain $a\in C_0(A)$ such that a is generated by points in that path-component. This is the same as saying A meets each path-component of X.