```
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.model selection import train test split
from sklearn.naive bayes import GaussianNB
from sklearn import preprocessing
train_transaction = pd.read_csv("/content/drive/My Drive/train_transaction.csv", index_col= 'Transact
train_identity = pd.read_csv("/content/drive/My Drive/train_identity.csv",index_col= 'TransactionID
test_transaction = pd.read_csv("/content/drive/My Drive/test_transaction.csv",index_col= 'Transaction'.
test identity = pd.read csv("/content/drive/My Drive/test identity.csv",index col= 'TransactionID')
associated train data = np.sum(train transaction.index.isin(train identity.index.unique()))
associated test data = np.sum(test transaction.index.isin(test identity.index.unique()))
train_association = associated_train_data/len(train_transaction.index)*100
test_association = associated_test_data/len(test_transaction.index)*100
print(train_association,'%','have associated identity information in training data')
print(test_association,'%','have associated identity information in testing data')
#merging data
train_data = train_transaction.merge(train_identity, how = "left",left_index = True, right_index = T
test_data = test_transaction.merge(test_identity, how = "left", left_index = True, right_index = True
train_data.head()
train_data = train_data.filter(['TransactionID','DeviceType','DeviceInfo','TransactionDT','TransactionDT','addr1','addr2','card4','card6','dist1','dist2','P_emaildomain','R_emaildomain',
features_train = train_data.drop('isFraud', axis = 1)
label_train = train_data['isFraud']
features_test = test_data.copy()
for feature in features train:
  if features_train[feature].dtype == 'object' or features_test[feature].dtype == 'object':
    le = preprocessing.LabelEncoder()
    le.fit(list(features train[feature].values) + list(features test[feature].values))
    features train[feature] = le.transform(list(features train[feature].values));
    features_test[feature] = le.transform(list(features test[feature].values))
```

```
features train.head()
#replacing NaN values with -1
#features_train.fillna(-1,inplace = True)
#features_test.fillna(-1,inplace = True)
features train.fillna(features train.mean(), inplace = True)
features test.fillna(features test.mean(), inplace = True)
x train = features train
y train = label train
x test = features test
from sklearn.linear model import LogisticRegression
clf = LogisticRegression(solver='lbfgs')
clf.fit(x train, y train)
preds = clf.predict(x test)
    /usr/local/lib/python3.6/dist-packages/sklearn/linear_model/logistic.py:947: Convergence
       "of iterations.", ConvergenceWarning)
sub = pd.read csv('/content/drive/My Drive/sample submission.csv', index col='TransactionID')
sub['isFraud'] = preds
sub.to csv('myPrediction.csv')
from sklearn.tree import DecisionTreeClassifier
clf2 = DecisionTreeClassifier()
clf2.fit(x_train, y_train)
preds2 = clf2.predict(x_test)
sub = pd.read csv('/content/drive/My Drive/sample submission.csv', index col='TransactionID')
sub['isFraud'] = preds2
sub.to csv('myPrediction8.csv')
from sklearn.ensemble import RandomForestClassifier
clf3 = RandomForestClassifier()
clf3.fit(x train, y train)
preds3 = clf3.predict(x_test)
sub = pd.read csv('/content/drive/My Drive/sample submission.csv', index col='TransactionID')
sub['isFraud'] = preds3
sub.to csv('myPrediction9.csv')
    /usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:245: FutureWarning: Th
       "10 in version 0.20 to 100 in 0.22.", FutureWarning)
```

```
df = pd.DataFrame(train_transaction)
print("Correlation Matrix")
print(df.corr())
print()
```

₽

Correlation Matrix

COLLETACTOR MAI	-1 TV				
	isFraud	TransactionDT		V338	V339
isFraud	1.000000	0.013103		-0.019356	-0.014663
TransactionDT	0.013103	1.000000		0.210240	0.167524
TransactionAmt	0.011320	0.011920		0.082064	0.105996
card1	-0.013640	0.010625		0.118885	0.091271
card2	0.003388	-0.019202		0.055566	0.043249
card3	0.154151	-0.011222		0.001970	0.001800
card5	-0.033580	-0.024132		-0.233342	-0.182758
addr1	0.005596	-0.000051		0.034816	0.026908
addr2	-0.030387	0.051972		0.003999	0.003237
dist1	0.021522	-0.027295		NaN	NaN
dist2	-0.019054	-0.026860		-0.024142	-0.018521
C1	0.030570	-0.049318		-0.001844	0.000636
C2	0.037229	-0.051126			-0.000788
C3	-0.006833	-0.007546		0.019139	0.026224
C4	0.030382	-0.053104	• • •	-0.002631	0.000040
C5	-0.030754	0.023800		NaN	NaN
C6	0.020909	-0.046612		-0.006151	-0.002677
C7	0.028160	-0.055402			NaN
			• • •	NaN	
C8	0.032139	-0.056288	• • •	0.008200	0.007812
C9	-0.031703	0.032732	• • •	NaN	NaN
C10	0.028396	-0.057734	• • •	-0.002643	-0.001228
C11	0.027484	-0.050181	• • •	-0.000769	0.001452
C12	0.031905	-0.054738	• • •	NaN	NaN
C13	-0.011146	-0.015022	• • •	0.076952	0.058586
C14	0.007921	-0.039721	• • •	0.001260	0.002883
D1	-0.067193	0.074031	• • •	0.016462	0.009810
D2	-0.083583	0.027109	• • •	-0.226233	-0.208795
D3	-0.046271	-0.007200		-0.254541	-0.234136
D4	-0.067216	0.059797		-0.046530	-0.040483
D5	-0.064638	0.001767		-0.146667	-0.141390
• • •		• • •			
V310	0.011071	0.061206		0.453877	0.338102
V311	0.001300	-0.000028		0.003111	0.003675
V312	0.037578	0.039969		0.318674	0.245361
V313	0.041494	0.029642		0.195048	0.145857
V314	0.038535	0.042646		0.627145	0.476594
V315	0.048298	0.028649		0.178293	0.134305
V316	-0.002960	0.060300		0.680669	0.472927
V317	0.005010	0.059212		0.750318	0.515846
V318	0.000997	0.065552		0.763977	0.537431
V319	0.000061	0.018373		0.488169	0.581797
V320	0.004961	0.055153		0.817420	0.749238
V321	0.001677	0.041065		0.695989	0.713821
V322	-0.021541	0.207888		0.678443	0.471132
V323	-0.023329	0.230193		0.759181	0.525305
V324	-0.024006	0.234674		0.767756	0.544056
V325	0.007792	0.091039	• • •	0.240886	0.209176
V325	-0.006838	0.257295		0.617962	0.455429
V327	-0.001050	0.248494		0.648252	0.485927
V327 V328	-0.011053	0.247530	• • •	0.721737	0.463927
V328 V329	-0.023099	0.252599	• • •	0.721737	0.586808
			• • •		
V330	-0.021164	0.258603	• • •	0.780555	0.611463
V331	-0.021982	0.205671	• • •	0.752075	0.572187
V332	-0.023468	0.226312	• • •	0.800310	0.579686
V333	-0.024134	0.231072	• • •	0.823754	0.620566

V334	-0.000451	0.005762	 0.054911	0.055864
V335	-0.005456	0.184407	 0.552533	0.411911
V336	-0.002402	0.105783	 0.353950	0.274392
V337	-0.005702	0.075892	 0.742652	0.907378
V338	-0.019356	0.210240	 1.000000	0.940009
V339	-0.014663	0.167524	 0.940009	1.000000

[379 rows x 379 columns]