Example: Letter Frequencies

\overline{i}	a_i	p_i	•	
	$\frac{\alpha_t}{}$			
1	a	0.0575	a	
2	b	0.0128	b	
3	С	0.0263	С	
4	d	0.0285	d	
5	е	0.0913	е	
6	f	0.0173	f	
7	g	0.0133	g	
8	h	0.0313	h	
9	i	0.0599	i	
10	j	0.0006	j	
11	k	0.0084	k	
12	1	0.0335	1	
13	m	0.0235	m	
14	n	0.0596	n	
15	0	0.0689	0	
16	р	0.0192	р	
17	q	0.0008	q	
18	r	0.0508	r	
19	s	0.0567	S	
20	t	0.0706	t	
21	u	0.0334	u	
22	v	0.0069	v	
23	W	0.0119	W	
24	х	0.0073	х	
25	У	0.0164	У	
26	z	0.0007	z	
27	_	0.1928	_	

Figure 2.1. Probability distribution over the 27 outcomes for a randomly selected letter in an English language document (estimated from *The Frequently Asked Questions Manual for Linux*). The picture shows the probabilities by the areas of white squares.

Example: Letter Frequencies

Figure 2.1. Probability distribution over the 27 outcomes for a randomly selected letter in an English language document (estimated from *The Frequently Asked Questions Manual for Linux*). The picture shows the probabilities by the areas of white squares.

Example: Surprisal Values

from http://www.umsl.edu/~fraundorfp/egsurpri.html

situation	probability p = 1/2 ^{#bits}	surprisal #bits = In ₂ [1/p]
one equals one	1	0 bits
wrong guess on a 4-choice question	3/4	In ₂ [4/3] ~0.415 bits
correct guess on true-false question	1/2	In ₂ [2] =1 bit
correct guess on a 4-choice question	1/4	In ₂ [4] =2 bits
seven on a pair of dice	6/6 ² =1/6	In ₂ [6] ~2.58 bits
snake-eyes on a pair of dice	1/62 = 1/36	In ₂ [36] ~5.17 bits
random character from the 8-bit ASCII set	1/256	In ₂ [2 ⁸] =8 bits =1 byte
N heads on a toss of N coins	1/2 ^N	In ₂ [2 ^N] =N bits
harm from a smallpox vaccination	~1/1,000,000	~ln ₂ [10 ⁶] ~19.9 bits
win the UK Jackpot lottery	1/13,983,816	~23.6 bits
RGB monitor choice of one pixel's color	1/256 ³ ~5.9×10 ⁻⁸	In ₂ [2 ^{8*3}] =24 bits
gamma ray burst mass extinction event TODAY!	<1/(10 ⁹ *365) ~2.7×10 ⁻¹²	hopefully >38 bits
availability to reset 1 gigabyte of random access memory	1/2 ^{8E9} ~10 ^{-2.4E9}	8×10 ⁹ bits ~7.6×10 ⁻¹⁴ J/K
choices for 6×10 ²³ Argon atoms in a 24.2L box at 295K	~1/2 ^{1.61E25} ~10 ^{-4.8E24}	~1.61×10 ²⁵ bits ~155 J/K
one equals two	0	∞ bits

i	a_i	p_i	$h(p_i)$	
1	a	.0575	4.1	
2	b	.0128	6.3	
3	С	.0263	5.2	
4	d	.0285	5.1	
5	е	.0913	3.5	
6	f	.0173	5.9	
7	g	.0133	6.2	
8	h	.0313	5.0	
9	i	.0599	4.1	
10	j	.0006	10.7	
11	k	.0084	6.9	
12	1	.0335	4.9	
13	m	.0235	5.4	
14	n	.0596	4.1	
15	0	.0689	3.9	
16	р	.0192	5.7	
17	q	.0008	10.3	
18	r	.0508	4.3	
19	s	.0567	4.1	
20	t	.0706	3.8	
21	u	.0334	4.9	
22	V	.0069	7.2	
23	W	.0119	6.4	
24	x	.0073	7.1	
25	У	.0164	5.9	
26	Z	.0007	10.4	
27	-	.1928	2.4	
$\sum_{i} p_i \log_2 \frac{1}{p_i} \qquad 4.1$				

Table 2.9. Shannon information contents of the outcomes a-z.

Book by David MacKay

convex

convex

convex

convex convec-smile

convex convec-smile

concave conca-frown

Book by David MacKay

Book by David MacKay

Binary Entropy Function

Figure 1.3. The binary entropy function.

Order These in Terms of Entropy

Order These in Terms of Entropy

Mutual Information and Entropy

Theorem: Relationship between mutual information and entropy.

$$I(X;Y) = H(X) - H(X|Y)$$

 $I(X;Y) = H(Y) - H(Y|X)$
 $I(X;Y) = H(X) + H(Y) - H(X,Y)$
 $I(X;Y) = I(Y;X)$ (symmetry)
 $I(X;X) = H(X)$ ("self-information")

Chain Rule for Entropy

Theorem: (Chain rule for entropy): $(X_1, X_2, ..., X_n) \sim p(x_1, x_2, ..., x_n)$

$$H(X_1, X_2, ..., X_n) = \sum_{i=1}^n H(X_i | X_{i-1}, ..., X_1)$$

$$H(X_1,X_2,X_3)$$
 = $H(X_1)$ + $H(X_2|X_1)$ + $H(X_3|X_1,X_2)$

Chain Rule for Mutual Information

Theorem: (Chain rule for mutual information)

$$I(X_1, X_2, ..., X_n; Y) = \sum_{i=1}^{n} I(X_i; Y | X_{i-1}, X_{i-2}, ..., X_1)$$

What are the Grey Regions?

