

Digitális technika 1. BMEVIIIAA04

előadás

Gyakorló feladatok

Írja fel **hexadecimális** alakban az oktális

1234-et!

Írja fel **hexadecimális** alakban az oktális

-et!

Binárisan: 001 010 011 100

Írja fel **hexadecimális** alakban az oktális

1234-et!

Binárisan: 001 010 011 100

1 2 3 4

Binárisan: 0010 1001 1100

Hexadecimális alakban: 2 9 C

Adja meg a **-3.125** tizedes törtszámot **8 bites kettes komplemens** alakban (4 bit egész rész, 4 bit tört rész)!

A szám negatív.

Abszolút értéke: 0011.0010

Kettes komplemens: 11001101

+00000001

1100.1110

Írja fel a **8 bites kettes komplemensben** adott **11101011** értéket **decimális** alakban!

```
A szám negatív.
```

Abszolút értéke (bitenkénti negált +1):

00010100

+00000001

00010101 = 21

A decimális érték: - 21

A	В	С	D	AD	B+C	C+D	F
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

A	В	С	D	AD	B+C	C+D	F
0	0	0	0			0	
0	0	0	1			1	
0	0	1	0			1	
0	0	1	1			1	
0	1	0	0			0	
0	1	0	1			1	
0	1	1	0			1	
0	1	1	1			1	
1	0	0	0			0	
1	0	0	1			1	
1	0	1	0			1	
1	0	1	1			1	
1	1	0	0			0	
1	1	0	1			1	
1	1	1	0			1	
1	1	1	1			1	

A	В	С	D	AD	B+C	C+D	F
0	0	0	0			0	-
0	0	0	1			1	
0	0	1	0			1	
0	0	1	1			1	
0	1	0	0			0	-
0	1	0	1			1	
0	1	1	0			1	
0	1	1	1			1	
1	0	0	0			0	-
1	0	0	1			1	
1	0	1	0			1	
1	0	1	1			1	
1	1	0	0			0	-
1	1	0	1			1	
1	1	1	0			1	
1	1	1	1			1	

A	В	С	D	AD	B+C	C+D	F
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	
0	0	1	0	0	1	1	
0	0	1	1	0	1	1	
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	
0	1	1	0	0	1	1	
0	1	1	1	0	1	1	
1	0	0	0	0	0	0	-
1	0	0	1	1	0	1	
1	0	1	0	0	1	1	
1	0	1	1	1	1	1	
1	1	0	0	0	1	0	-
1	1	0	1	1	1	1	
1	1	1	0	0	1	1	
1	1	1	1	1	1	1	

A	В	С	D	AD	В+С	C+D	F
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	1	1	
0	0	1	1	0	1	1	
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	
0	1	1	0	0	1	1	
0	1	1	1	0	1	1	
1	0	0	0	0	0	0	1
1	0	0	1	1	0	1	
1	0	1	0	0	1	1	
1	0	1	1	1	1	1	0
1	1	0	0	0	1	0	-
1	1	0	1	1	1	1	0
1	1	1	0	0	1	1	
1	1	1	1	1	1	1	0

A	В	С	D	AD	B+C	C+D	F
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	1	1	1
0	0	1	1	0	1	1	1
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	1
0	1	1	0	0	1	1	1
0	1	1	1	0	1	1	1
1	0	0	0	0	0	0	-
1	0	0	1	1	0	1	1
1	0	1	0	0	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	0	1	0	-
1	1	0	1	1	1	1	0
1	1	1	0	0	1	1	1
1	1	1	1	1	1	1	0

F			C	1	_
-	-	0	1	1	
	_	1	1	1	
٨	_	0	0	1	В
A	_	1	0	1	
·			D		-

A	В	С	D	AD	B+C	C+D	F
0	0	0	0	0	0	0	-
0	0	0	1	0	0	1	0
0	0	1	0	0	1	1	1
0	0	1	1	0	1	1	1
0	1	0	0	0	1	0	- 1
0	1	0	1	0	1	1	1
0	1	1	0	0	1	1	1
0	1	1	1	0	1	1	1
1	0	0	0	0	0	0	-
1	0	0	1	1	0	1	1
1	0	1	0	0	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	0	1	0	-
1	1	0	1	1	1	1	0
1	1	1	0	0	1	1	1
1	1	1	1	1	1	1	0

Adja meg az F(ABC)=AB+AC+BC logikai függvény diszjunktív kanonikus algebrai alakját!

$$F(A,B,C) = AB(C+\overline{C}) + AC(B+\overline{B}) + BC(A+\overline{A})$$

$$F(A,B,C) = ABC + AB\overline{C} + ABC + A\overline{B}C + \overline{A}BC + \overline{A}BC$$

$$F(A,B,C) = AB\overline{C} + ABC + A\overline{B}C + \overline{A}BC + \overline{A}BC$$

F				1	•
1,	1	0	1	1	
	1	0	0	0	
	1	1	0	0	B
A	1	1	0	0	
•			D	•	

Adott az alábbi logikai függvény. Adja meg algebrai alakban a legegyszerűbb kétszintű konjunktív realizációt, és rajzolja fel kizárólag NOR kapuk felhasználásával!

Adott az alábbi logikai függvény. Adja meg algebrai alakban a legegyszerűbb kétszintű konjunktív realizációt, és rajzolja fel kizárólag NOR kapuk felhasználásával!

$$F = B \cdot (A + \overline{C}) \cdot (\overline{C} + D)$$

<u> </u>	<u> </u>	<u>III</u>
	0,1 (1)	
1	0,2 (2)	
✓	1,3 (2)_	
3 ✓	1,5 (4)	
5 ✓	1,9 (8)	
9✓	2,3 (1)	
7 ✓	3,7 (4)	
<u>13</u> ✓	5,7 (2)	
15 ✓	5,13 (8)	
	9,13 (4)	
	7,15 (8)	
	13,15(2)	

<u> </u>	<u>II</u>	<u>III</u>
	0,1 (1) ✓	0,1,2,3 (1,2)
<u> </u>	0,2 (2)	, , , , ,
✓	1,3 (2)	
3 ✓	1,5 (4)	
5 ✓	1,9 (8)	
9✓	<u>2,3 (1)</u> ✓	
7 ✓	3,7 (4)	
<u>13</u> ✓	5,7 (2)	
15 ✓	5,13 (8)	
	9,13 (4)	
	7,15 (8)	
	13,15(2)	

I	<u>II</u>	<u>III</u>
	$0,1 (1) \checkmark$	0,1,2,3 (1,2)
<u>1</u> ✓	$0,2$ (2) \checkmark	0,2,1,3 (2,1)
✓	1,3 (2) ✓	• • • • • •
3 ✓	1,5 (4)	
5 ✓	1,9 (8)	
9 ✓	<u>2,3 (1)</u> ✓	
7 ✓	3,7 (4)	
<u>13</u> ✓	5,7 (2)	
15 ✓	5,13 (8)	
	9,13 (4)	
	7,15 (8)	
	13,15(2)	

I	<u>II</u>	<u>III</u>
0<	$0,1$ (1) \checkmark	0,1,2,3 (1,2)
<u> </u>	$0,2$ (2) \checkmark	0,2,1,3 (2,1)
<u>2</u> ✓		1,3,5,7 (2,4)
3 ✓	1,5 (4)	,
5 ✓	1,9 (8)	
9 ✓	<u>2,3 (1)</u> ✓	
7 ✓	3,7 (4)	
<u>13</u> ✓	5,7 (2) ✓	
15 ✓	5,13 (8)	
	9,13 (4)	
	7,15 (8)	
	13,15(2)	

<u> </u>	<u>II</u>	<u>III</u>
0<	$0,1$ (1) \checkmark	0,1,2,3 (1,2)
<u> </u>		0,2,1,3 (2,1)
<u>2</u> ✓	1,3 (2) 🗸	1,3,5,7 (2,4)
3 ✓	1,5 (4) ✓	1,5,3,7 (4,2)
5 ✓	1,9 (8)	
9 ✓	<u>2,3 (1)</u> ✓	
7 ✓	3,7 (4) ✓	
<u>13</u> ✓	5,7 (2) ✓	
15 ✓	5,13 (8)	
	9,13 (4)	
	7,15 (8)	
	13,15(2)	

<u>I</u>	<u>II</u>	<u>III</u>
	0,1 (1) 🗸	0,1,2,3 (1,2) a
1	$0,2$ (2) \checkmark	0,2,1,3 (2,1)
<u>2</u> ✓	1,3 (2) ✓	$\overline{1,3,5,7}$ (2,4) b
3 ✓	1,5 (4) ✓	1,5,3,7 (4,2)
5 ✓	1,9 (8) ✓	1,5,9,13 (4,8) c
9✓	<u>2,3 (1)</u> ✓	1,9,5,13 (8,4)
7 ✓	3,7 (4) ✓	5,7,13,15 (2,8) d
<u>13</u> ✓	5,7 (2) ✓	5,13,7,15 (8,2)
15 ✓	5,13 (8) ✓	
	9,13 (4)	
	7,15 (8) ✓	
	13,15(2) 🗸	

Kiegészített primimplikánstábla segítségével írja fel azt az S segédfüggvényt, amely F legegyszerűbb kétszintű hazárdmentes konjuktív realizációjának meghatározásához szükséges. Feltételezzük, hogy a közömbös bemeneti kombinációk fizikailag nem fordulhatnak elő.

Az előző S függvény alapján írja fel az F függvényt.

$$\prod^{4} \left[(0,1,2,3,5,13) + (7,9,15) \right]$$

<u>I</u>	<u>II</u>	III
	0,1 (1) ✓	0,1,2,3 (1,2) a
1 ✓	<u>0,2 (2)</u> ✓	0,2,1,3 (2,1)
2✓	1,3 (2) ✓	$\overline{1,3,5,7}$ (2,4) b
3 ✓	1,5 (4) ✓	1,5,3,7 (4,2)
5 ✓	1, 9 (8) ✓	1,5,9,13 (4,8) c
9✓	2,3 (1) ✓	1,9,5,13 (8,4)
7 ✓	3, 7 (4) ✓	5,7,13,15 (2,8) d
13✓	5, 7 (2) ✓	5,13,7,15 (8,2)
15 ✓	5,13 (8) <	
	9 ,13 (4) ✓	
	7,15 (8) ✓	
	13, 15 (2) ✓	

	0	1	2	3	5	13	0 1	0 2	1 3	1 5	2 3	5 13	
0,1,2,3 (1,2) a	X	X	X	X			X	X	X		X		
1,3,5,7 (2,4) b		X		X	X				X	X			
1,5,9,13 (4,8) c		X			X	X				X		X	
5,7,13,15 (2,8) d					X	X						X	

$$S = a(b+c+d)(c+d)(b+c) = ac+abd$$

$$ac: F = (\overline{A} + \overline{B})(\overline{C} + D)$$

Jelölje meg, hogy az alábbi hazárdok közül melyek fordulhatnak elő és melyek nem a **következő** hálózatba

A F

	igen	nen
Funkcionális hazárd		
Statikus hazárd		
Dinamikus hazárd		
Lényeges hazárd		

Jelölje meg, hogy az alábbi hazárdok közül melyek fordulhatnak elő és melyek nem a **következő** hálózatba

A F

	igen	Helli
Funkcionális hazárd	X	
Statikus hazárd		
Dinamikus hazárd		
Lényeges hazárd		

Jelölje meg, hogy az alábbi hazárdok közül melyek fordulhatnak elő és melyek nem a **következő**

hálózatba

	igen	Helli
Funkcionális hazárd	X	
Statikus hazárd	X	
Dinamikus hazárd		
Lényeges hazárd		

Jelölje meg, hogy az alábbi hazárdok közül melyek fordulhatnak elő és melyek nem a **következő** hálózatba

A F

igen nem
Funkcionális hazárd X □
Statikus hazárd X □
Dinamikus hazárd □ X
Lényeges hazárd □ □

Jelölje meg, hogy az alábbi hazárdok közül melyek fordulhatnak elő és melyek nem a **következő**

inan

hálózatba

	igen	nem
Funkcionális hazárd	X	
Statikus hazárd	X	
Dinamikus hazárd		X
Lényeges hazárd		X

Tartalmaz-e dinamikus hazárdot az alábbi hálózat? Ha igen, jelölje meg, milyen bemeneti kombináció változásnál fordulhat elő.

Tartalmaz-e dinamikus hazárdot az alábbi hálózat? Ha igen, jelölje meg, milyen bemeneti kombináció változásnál fordulhat elő.

 $f1 = A \cdot \overline{C} + \overline{A} \cdot D$

Tartalmaz-e dinamikus hazárdot az alábbi hálózat? Ha igen, jelölje meg, milyen bemeneti kombináció változásnál fordulhat elő. — — —

$$f1 = A \cdot \overline{C} + \overline{A} \cdot D$$

$$f2 = D \cdot (\overline{A} + C) \cdot (B + C)$$

Tartalmaz-e dinamikus hazárdot az alábbi hálózat? Ha igen, jelölje meg, milyen bemeneti kombináció változásnál fordulhat elő. — —

$$f1 = A \cdot \overline{C} + \overline{A} \cdot D$$

$$f2 = D \cdot (\overline{A} + C) \cdot (B + C)$$

$$F = f1 \cdot f2$$

Tartalmaz-e dinamikus hazárdot az alábbi hálózat? Ha igen, jelölje meg, milyen bemeneti kombináció változásnál fordulhat elő.

$$f1 = A \cdot \overline{C} + \overline{A} \cdot D$$
 $f2 = D \cdot (\overline{A} + C) \cdot (B + C)$ $F = f1 \cdot f2$

Tartalmaz-e dinamikus hazárdot az alábbi hálózat? Ha igen, jelölje meg, milyen bemeneti kombináció változásnál fordulhat elő.

$$f1 = A \cdot \overline{C} + \overline{A} \cdot D$$
 $f2 = D \cdot (\overline{A} + C) \cdot (B + C)$ $F = f1 \cdot f2$

Statikus hazárd

 $0101 \to 1101$

 $\mathbf{0001} \to \mathbf{1001}$

Tartalmaz-e dinamikus hazárdot az alábbi hálózat? Ha igen, jelölje meg, milyen bemeneti kombináció változásnál fordulhat elő.

$$f1 = A \cdot \overline{C} + \overline{A} \cdot D$$
 $f2 = D \cdot (\overline{A} + C) \cdot (B + C)$ $F = f1 \cdot f2$

Statikus hazárd 0101 → 1101 0001 → 1001

Nincs hazárd

lartalmaz-e dinamikus hazárdot az alábbi hálózat? Ha igen, jelölje meg, milyen bemeneti kombináció változásnál fordulhat elő.

$$f1 = A \cdot \overline{C} + \overline{A} \cdot D$$
 $f2 = D \cdot (\overline{A} + C) \cdot (B + C)$ $F = f1 \cdot f2$

$$F = f1 \cdot f2$$

Statikus hazárd $0101 \to 1101$ $0001 \to 1001$

Nincs hazárd

artalmaz-e dinamikus hazárdot az alábbi hálózat? Ha igen, jelölje meg, milyen bemeneti kombináció változásnál fordulhat elő.

$$f1 = A \cdot \overline{C} + \overline{A} \cdot D$$
 $f2 = D \cdot (\overline{A} + C) \cdot (B + C)$

$$f2 = D \cdot (\overline{A} + C) \cdot (B + C)$$

$$F = f1 \cdot f2$$

Statikus hazárd $0101 \to 1101$ $0001 \to 1001$

Nincs hazárd

Dinamikus hazárd $0101 \to 1101$

X1,X2:	00	01	11	10
Α	A, 1	D, 1	A, 1	B, 1
В	A, 0	B,0	C,0	B,0
С	C, 1	C, 1	C, 1	D, 1
D	C,0	В,0	D,0	D,0

Szinkron működést feltételezve milyen modell szerint működik a hálózat? Indokolja a válaszát!

Moore modell, mert Z = f(y)

X1,X2:	00	01	11	10
A	A , 1	D, 1	A, 1	B,1
В	A, 0	B,0	C, 0	B,0
С	C,1	C, 1	C, 1	D, 1
D	C,0	B,0	D, 0	D, 0

x1,x2	00	10	01	11	10	00
y	A					
Z						

X1,X2:	00	01	11	10
A	A, 1	D, 1	A, 1	B , 1
В	A, 0	B,0	C, 0	B,0
С	C,1	C, 1	C, 1	D, 1
D	C,0	B,0	D, 0	D, 0

x1,x2	00	10	01	11	10	00
y	A	В				
Z						

X1,X2:	00	01	11	10
Α	A, 1	D, 1	A, 1	B,1
В	A, 0	B , 0	C,0	B,0
С	C,1	C, 1	C, 1	D, 1
D	C,0	B,0	D, 0	D, 0

x1,x2	00	10	01	11	10	00
У	A	В	В			
Z						

X1,X2:	00	01	11	10
А	A, 1	D, 1	A, 1	B,1
В	A, 0	B,0	C , 0	B,0
С	C,1	C, 1	C, 1	D, 1
D	C,0	B,0	D, 0	D,0

x1,x2	00	10	01	11	10	00
y	A	В	В	С		
Z						

X1,X2:	00	01	11	10
А	A, 1	D, 1	A, 1	B,1
В	A, 0	B,0	C, 0	B,0
С	C,1	C, 1	C, 1	D , 1
D	C,0	B,0	D, 0	D, 0

x1,x2	00	10	01	11	10	00
y	A	В	В	С	D	
Z						

X1,X2:	00	01	11	10
Α	A, 1	D, 1	A, 1	B,1
В	A, 0	B,0	C, 0	B,0
С	C,1	C, 1	C, 1	D, 1
D	C , 0	B,0	D,0	D,0

x1,x2	00	10	01	11	10	00
y	A	В	В	С	D	С
Z						

X1,X2:	00	01	11	10
A	A, 1	D, 1	A, 1	B, 1
В	A, 0	B, 0	C, 0	B, 0
С	C,1	C, 1	C, 1	D, 1
D	C, 0	B, 0	D, 0	D, 0

x1,x2	00	10	01	11	10	00
y	A	В	В	С	D	С
Z	1	0	0	1	0	1

X1,X2:	00	01	11	10
Α	Ą0	C,0	Ą0	B,1
В	Ą0	B,0	D,0	B,1
С	C,1	C,0	C,0	D,0
D	C,1	B,1	B,1	D,0

Szinkron működést feltételezve milyen modell szerint működik a hálózat? Indokolja a válaszát!

Mealy modell, mert Z = f(x,y)

X1,X2:	00	01	11	10
Α	Ą0	C,0	Ą0	B,1
В	A,0	B,0	D,0	B,1
С	C,1	C,0	C,0	D,0
D	C,1	B,1	B,1	D,0

X1,X2:	00	01	11	10
Α	Ą0	C,0	Ą0	B,1
В	Ą0	B,0	D,0	B,1
С	C,1	C,0	C,0	D,0
D	C ,1	B,1	B,1	D,0

X1,X2:	00	01	11	10
Α	Ą0	C,0	Ą0	B,1
В	A,0	B,0	D,0	B,1
С	C,1	C,0	C,0	D ,0
D	C,1	B,1	B,1	D,0

X1,X2:	00	01	11	10
Α	Ą0	C,0	Ą0	B,1
В	A,0	B,0	D,0	B,1
С	C,1	C,0	C,0	D,0
D	C,1	B,1	B ,1	D,0

X1,X2:	00	01	11	10
Α	Ą0	C,0	Ą0	B,1
В	Ą0	B,0	D,0	B ,1
С	C,1	C,0	C,0	D,0
D	C,1	B,1	B,1	D,0

X1,X2:	00	01	11	10
Α	Ą0	C,0	Ą0	B,1
В	Ą0	B ,0	D,0	B,1
С	C,1	C,0	C,0	D,0
D	C,1	B,1	B,1	D,0

X1,X2:	00	01	11	10
Α	Ą0	C,0	Ą0	B,1
В	Ą0	B,0	D ,0	B,1
С	C,1	C,0	C,0	D,0
D	C,1	B,1	B,1	D,0

X1,X2:	00	01	11	10
Α	Ą0	C,0	Ą0	B,1
В	A,0	B,0	D,0	B,1
С	C,1	C,0	C,0	D,0
D	C,1	B,1	B,1	D,0

X1,X2:	00	01	11	10
Α	Ą0	C,0	Ą0	B,1
В	A,0	B,0	D,0	B,1
С	C,1	C,0	C,0	D,0
D	C,1	B,1	B,1	D,0

X1,X2:	00	01	11	10
Α	Ą0	C,0	Ą0	B,1
В	A,0	B,0	D,0	B,1
С	C,1	C,0	C,0	D, 0
D	C,1	B,1	B,1	D,0

X1,X2:	00	01	11	10
Α	Ą0	C,0	Ą0	B,1
В	A,0	B,0	D,0	B,1
С	C,1	C,0	C,0	D,0
D	C,1	B,1	B,1	D, 0

X1,X2:	00	01	11	10
Α	Ą0	C,0	Ą0	B,1
В	A,0	B,0	D,0	B,1
С	C,1	C,0	C,0	D,0
D	C,1	B,1	B, 1	D,0

X1,X2:	00	01	11	10
Α	Ą0	C,0	Ą0	B,1
В	Ą0	B,0	D,0	B,1
С	C,1	C,0	C,0	D,0
D	C,1	B,1	B,1	D,0

	0	1
a		
b		
c		
d		
e		
f		
g		

kezd
eddig 0
eddig 1
eddig 00
eddig 01
eddig 10
eddig 11

	0	1	
a	b,0	c,0	kezd
b			eddig 0
c			eddig 1
d			eddig 00
e			eddig 01
f			eddig 10
g			eddig 11

	0	1	
a	b,0	c,0	kezd
b	d,0	e,0	eddig 0
c	f,0	g,0	eddig 1
d			eddig 00
e			eddig 01
f			eddig 10
g			eddig 11

	0	1	
a	b,0	c,0	kezd
b	d,0	e,0	eddig 0
c	f,0	g,0	eddig 1
d	d,1	e,0	eddig 00
e			eddig 01
f			eddig 10
g			eddig 11

	0	1	
a	b,0	c,0	kezd
b	d,0	e,0	eddig 0
c	f,0	g,0	eddig 1
d	d,1	e,0	eddig 00
e	f,0	g,0	eddig 01
f	d,0	e,0	eddig 10
g	f,0	g ,1	eddig 11

J-K

 $\left(\begin{array}{c} \mathbf{0} \end{array}\right)$

(1)

Kódolt állapottábla:

y∖x	0	1
00	00,0	01,0
01	11,1	10,0
11	00,0	11,0
10	11,1	01,1

Vezérlési tábla:

y∖x	0	1
00		
01		
11		
10		

J-K

Kódolt állapottábla:

y∖x	0	1
00	00,0	01,0
01	11,1	10,0
11	00,0	11,0
10	11,1	01,1

Vezérlési tábla:

y∖x	0	1
00		
01		
11		
10		

J-K

Kódolt állapottábla:

y∖x	0	1
00	0,0	01,0
01	11,1	10,0
11	00,0	11,0
10	11,1	01,1

Vezérlési tábla:

y∖x	0	1
00	0-	
01		
11		
10		

J-K

Kódolt állapottábla:

y\x	0	1
00	00,0	01,0
01	11,1	10,0
11	00,0	11,0
10	11,1	01,1

Vezérlési tábla:

y∖x	0	1
00	0- 0-	0- 1-
01		
11		
10		

J-K

Kódolt állapottábla:

y∖x	0	1
00	00,0	01,0
01	11,1	10,0
11	00,0	11,0
10	11,1	01,1

Vezérlési tábla:

y∖x	0	1
00	0- 0-	0- 1-
01	10	11
11	-1 -1	-0 -0
10	-0 1-	-1 1-

Állapotgráfjával adott az alábbi LM és E flip-flop.

Adja meg az LM flip-flop és az E flip-flop állapottábláját!

LM

	00	01	11	10
0	1	1	0	0
1	0	1	1	0

 \mathbf{E}

	0	1
0	1	0
1	1	0

Állapotgráfjával adott az alábbi LM és E flip-flop.

Valósítson meg E flipflopot LM flip-flop felhasználásával!

E
y\E 0 1
0 1 0
1 1 0

vezérlési tábla

y∖E	0	1
0	L M	
U	0 -	1 -
1	1	0
1	- 1	- 0

$$L = E$$
 $M = \overline{E}$

Jelölje meg, hogy hol tartalmaz lényeges hazárdot a következő állapottábla, és adja meg, hogy melyik szekunder változót kell késlelteni a kiküszöböléséhez

x1,x2/ y1,y2	00	01	11	10
00	00,0	01,0	00,0	01,0
01	10,0	01,0	11,0	01,0
11	11,1	01,1	11,1	11,1
10	10,0	01,0	10,0	11,0

Jelölje meg, hogy hol tartalmaz lényeges hazárdot a következő állapottábla, és adja meg, hogy melyik szekunder változót kell késlelteni a kiküszöböléséhez

x1,x2/ y1,y2	00	01	11	10
00	00,0	01,0	00,0	01,0
01 _	10,0	01,0	11,0	01,0
11	11,1	01,1	11,1	11,1
10 *	10,0	01,0	10,0	11,0

y2-t kell késlelteni

y \ X1X2	00	01	11	10
A	C 1	C 1	A 1	D 1
В	B 1	D 1	A 1	C 1
C	C 0	A 0	A 0	B 0
D	C 0	C 0	A 0	D 0

y \ X1X2	00	01	11	10
A	C 1	C 1	A 1	D 1
В	B 1	D 1	A 1	C 1
C	C 0	A 0	A 0	B 0
D	C 0	C 0	A 0	D 0

I A ABCD B C

y \ X1X2	00	01	11	10
A	C 1	C 1	A 1	D 1
В	B 1	D 1	A 1	C 1
C	C 0	A 0	A 0	B 0
D	C 0	C 0	A 0	D 0

```
I
A ABCD
B
C
D
```


y \ X1X2	00)	0	1	1	1	1	0
A	C	1	C	1	A	1	D	1
В	В	1	D	1	A	1	C	1
C	C	0	A	0	A	0	В	0
D	C	0	C	0	A	0	D	0

```
A ABCD
B -
C ACD,AD
D
```


y \ X1X2	00	01	11	10
A	C 1	C 1	A 1	D 1
В	B 1	D 1	A 1	C 1
C	C 0	A 0	A 0	B 0
D	C 0	C 0	A 0	D 0

```
A ABCD
B -
C ACD,AD
D AD
```


y \ X1X2	00	01	11	10
A	C 1	C 1	A 1	D 1
В	B 1	D 1	A 1	C 1
C	C 0	A 0	A 0	B 0
D	C 0	C 0	A 0	D 0

		y1
	A	C
y2	D	В

		00	01	11	10
A	00	01,1	01,1	00,1	01,1
D	01	10,0	10,0	0,00	01,0
В	11	11,1	01,1	00,1	10,1
C	10	10,0	0,00	0,00	11,0

Egy 8/1-es multiplexert az alábbiak szerint kötöttek be. Határozzuk meg a hálózat igazságtáblázatát.

Egy 8/1-es multiplexert az alábbiak szerint kötöttek be. Határozzuk meg a hálózat igazságtáblázatát.

A	В	С	Melyik	F
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Egy 8/1-es multiplexert az alábbiak szerint kötöttek be. Határozzuk meg a hálózat igazságtáblázatát.

A	В	С	Melyik	F
0	0	0	D0	0
0	0	1		
0	1	0		
0	1	1		
1	0	0	D0	0
1	0	1		
1	1	0		
1	1	1		

Egy 8/1-es multiplexert az alábbiak szerint kötöttek be. Határozzuk meg a hálózat igazságtáblázatát.

A	В	С	Melyik	F
0	0	0	D0	0
0	0	1	D2	0
0	1	0		
0	1	1		
1	0	0	D0	0
1	0	1	D2	1
1	1	0		
1	1	1		

Egy 8/1-es multiplexert az alábbiak szerint kötöttek be. Határozzuk meg a hálózat igazságtáblázatát.

A	В	С	Melyik	F
0	0	0	D0	0
0	0	1	D2	0
0	1	0	D4	1
0	1	1		
1	0	0	D0	0
1	0	1	D2	1
1	1	0	D4	1
1	1	1		

Egy 8/1-es multiplexert az alábbiak szerint kötöttek be. Határozzuk meg a hálózat igazságtáblázatát.

A	В	С	Melyik	F
0	0	0	D0	0
0	0	1	D2	0
0	1	0	D4	1
0	1	1	D6	1
1	0	0	D0	0
1	0	1	D2	1
1	1	0	D4	1
1	1	1	D6	1

Egy 8/1-es multiplexert az alábbiak szerint kötöttek be. Határozzuk meg a hálózat igazságtáblázatát.

A	В	С	Melyik	F
0	0	0	D0	0
0	0	1	D2	0
0	1	0	D4	1
0	1	1	D6	1
1	0	0	D0	0
1	0	1	D2	1
1	1	0	D4	1
1	1	1	D6	1

Adott az alábbi hálózat. Adja meg **decimálisan**, hogy a következő 4 órajelperiódusban milyen érték jelenik meg az $N_3...N_0$ kimeneteken (N_3 a legmagasabb helyérték), ha a pillanatnyi érték 4.

Észrevételek:

- 1. Invertált kimenet → visszaszámlálás
- 2. Betöltés:

$$Q_DQ_CQ_BQ_A = 1011 \rightarrow N_3N_2N_1N_0 = 0100 (4)$$

Új érték:

$$Q_DQ_CQ_BQ_A = 0101 \rightarrow N_3N_2N_1N_0 = 1010 (10)$$

- 3. Egy számlálási ciklus: 10,9,8,7,6,5,4→10,9,8,7...
- 4. A feladat által kért értékek: 10,9,8,7

Adott egy $X(x_6,...x_0)$ hét bites előjel nélküli egész szám. **Határozza meg** azokat a X számtartományokat, ahol az F1 és az F2 kimenet 1 értéket ad.

Υ.	/E1,/E2	E3	$S_2S_1S_0$	/Y ₀	/Y ₁	/Y ₂	/Y ₃	/Y ₄	/Y ₅	/Y ₆	/Y ₇
X_2 X_3 S_1 $\overline{Y_1}$	00	1	000	0	1	1	1	1	1	1	1
x_4 $\xrightarrow{S2}$ $\xrightarrow{52}$ $\xrightarrow{72}$ $\xrightarrow{73}$ $\xrightarrow{74}$	00	1	001	1	0	1	1	1	1	1	1
x_4	00	1	010	1	1	0	1	1	1	1	1
$X_5 \longrightarrow \overline{E1} \stackrel{\infty}{\underset{}{\times}} \stackrel{14}{\underset{}{\times}} -$	00	1	011	1	1	1	0	1	1	1	1
$x_6 - E_3 \overline{y_7} -$	00	1	100	1	1	1	1	0	1	1	1 _s
	00	1	101	1	1	1	1	1	0	1	1
	00	1	110	1	1	1	1	1	1	0	1
	00	1	111	1	1	1	1	1	1	1	0
	1-	-		1	1	1	1	1	1	1	1
	-1	-									
	00	0									

Adott egy $X(x_6,...x_0)$ hét bites előjel nélküli egész szám. **Határozza meg** azokat a X számtartományokat, ahol az F1 és az F2 kimenet 1 értéket ad.

Engedélyezés

Adott egy X(x₆,...x₀) hét bites előjel nélküli egész szám. **Határozza meg** azokat a X számtartományokat, ahol az F1 és az F2 kimenet 1 értéket ad.

Kiválasztás

Adott egy X(x₆,...x₀) hét bites előjel nélküli egész szám. **Határozza meg** azokat a X számtartományokat, ahol az F1 és az F2 kimenet 1 értéket ad.

Tartományok:

x₁ és x₀ nincs bekötve, ezért minden lehetséges értéket felvehet

F1: 10001 00...10010 11 →44h...4Bh

Adott egy X(x₆,...x₀) hét bites előjel nélküli egész szám. **Határozza meg** azokat a X számtartományokat, ahol az F1 és az F2 kimenet 1 értéket ad.

Tartományok:

x₁ és x₀ nincs bekötve, ezért minden lehetséges értéket felvehet

F1: 10001 00...10010 11 →44h...4Bh

F2: 10110 00...10111 11 →54h...5Fh

