1. Clasificarea Chomsky a gramaticilor

În funcție de forma producțiilor, lingvistul **Noam Chomsky**, în 1958, a ierarhizat gramaticile astfel:

Tip	Denumire	Forma producțiilor		
0	gramatică generală	oarecare		
1	gramatică dependentă de context	$p \rightarrow q$ cu $ p \le q $ cu p conținând cel puțin un neterminal		
2	gramatică independentă de context	$A \to y \text{ cu } A \in \mathbf{N} \text{ si } y \in (\mathbf{N} \cup \mathbf{T})^*$		
3	gramatică regulată	$A \to aB$ sau $A \to a$ cu $A, B \in \mathbf{N}$ și $a \in \mathbf{T}^*$		

Observația 1. Fie G_i familia gramaticilor de tip i ($i = \overline{0,3}$). Se observă că

$$G_3 \subset G_2 \subset G_1 \subset G_0$$
,

adică orice gramatică se numește de tipul 0.

Exemplul 1. Fie gramatica G = (N, T, S, P). În tabelul de mai jos este indicat tipul gramaticii G în funcție de mulțimea producțiilor P:

$N = \{S, X\},$		$N = \{S, A, B\},\$		$N = \{S, A, B\},\$		$N = \{X\},$		
$T = \{a, b, c\}$		$T = \{a, b, c\}$		$T = \{a, b\}$		$T = \{a, b\}$		
P								
$S \rightarrow abc$	(1)	$S \rightarrow aaAc$	(1)	$A \rightarrow a$	(1)	$X \rightarrow aX$	(1)	
$S \rightarrow aSXc$	(2)	$aAc \rightarrow aAbBc$	(2)	$B \rightarrow b$	(2)	$X \rightarrow bX$	(2)	
$cX \to Xc$	(3)	$bB \rightarrow bBc$	(3)	$S \rightarrow aA$	(3)	$X \to \varepsilon$	(3)	
$bX \rightarrow bb$	(4)	$Bc \rightarrow Abc$	(4)	$A \rightarrow bB$	(4)			
		$A \rightarrow a$	(5)	$B \rightarrow bB$	(5)			
Gramatică generală		Gramatică		Gramatică		Gramatică regulată		
(tip <i>0</i>)		dependentă de		independentă de		(tip <i>3</i>)		
		context (tip 1)		context (tip 2)				

2. Clasificarea limbajelor

Definiția 1.1. Un limbaj L este de tip i ($i = \overline{0,3}$) dacă există o gramatică G de tipul i pentru care L(G) = L.

Observația 1.1. Fie \mathcal{L}_i familia limbajelor de tip i ($i = \overline{0,3}$). Se observă că

$$\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$$
.

Incluziunile sunt stricte:

- Orice limbaj de tip i + 1 este și de tip $i = \overline{0, 2}$
- Există limbaje de tip *i* care nu sunt de tip i + 1, $i = \overline{0,2}$.

Propoziția 1.1. Fie G = (N, T, S, P) o gramatică de tipul i ($i = \overline{1,3}$). Atunci există o gramatică G' echivalentă cu G și de același tip, cu proprietatea că simbolul inițial S nu apare în membrul drept al producțiilor.

Demonstrație:

Fie S' un simbol nou, adică $S' \notin N \cup T$. Construim gramatica $G' = (N \cup \{S'\}, T, S', P')$, unde $P' = P \cup \{S' \to \alpha | S \to \alpha\}$. Se observă ușor că L(G) = L(G').

Observația 1.2. Din forma producțiilor pentru gramaticile de tipul 1,2 sau 3 rezultă că ε nu aparține limbajului generat de ele. Dacă dorim ca și cuvântul vid ε să aparțină limbajului generat de o gramatică, admitem în mod excepțional producția $S \to \varepsilon$, care nu poate avea alte repercusiuni, conform propoziției 1.1. precedente.

3. Metoda șirului crescător de mulțimi

Fie A o mulţime finită şi fie p o proprietate definită pe mulţimea submulţimilor lui A. Fie X o submulţime a lui A cu p(X)=1. Definim următorul şir crescător de mulţimi:

$$X_0 = X$$

 $X_{k+1} = X_k \cup \{x \in A \mid p(X_k \cup \{x\}) = 1\}, \ \forall k > 0$

Evident, $X_0 \subset X_1 \subset ... \subset X_k \subset X_{k+1} \subset ... \subset A$.

Cum A este finită, șirul de submulțimi se va stabiliza.

Propoziția 1.1.1. Dacă $X_{k+1} = X_k$, atunci $X_{k+i} = X_k$, $\forall i \in \mathbb{N}$.

Demonstrație: Se folosește metoda inducției matematice după i.

Pentru *i* = 1 rezultatul este evident.

Presupunem $X_{k+i} = X_k$ și demonstrăm că $X_{k+i+1} = X_k$:

 X_{k+i+1} = (conform definiției șirului de mulțimi)

Lect. univ. dr. TATIANA-CORINA DOSESCU Facultatea de Informatică Universitatea Titu Maiorescu

=
$$X_{k+i} \cup \{x \in A \mid p(X_{k+i} \cup \{x\}) = 1\}$$
 = (conform ipotezei de inducţie)
= $X_k \cup \{x \in A \mid p(X_k \cup \{x\}) = 1\}$ = (conform definiţiei şirului de mulţimi)
= X_{k+1} = (conform ipotezei)
= X_k

Consecința 1.1.1. Se oprește construcția șirului crescător de mulțimi la primul k pentru care se obține $X_k = X_{k+1}$.

4. Problema apartenenței

Teorema 1.2.1. Pentru gramaticile de tipurile **1**, **2** și **3** este posibil să verificăm apartenența unui cuvânt la limbajul generat de ele.

Demonstrație:

Fie G = (N, T, S, P) o gramatică de tipul 1, 2 sau 3 și fie $w \in T^*$. Dorim să verificăm dacă $w \in L(G)$.

Fie n = |w| și folosim metoda șirului crescător de mulțimi:

$$\begin{cases} T_0 &= \{S\} \\ T_{k+1} &= T_k \cup \left\{ \alpha \in (\mathbf{N} \cup \mathbf{T})^* \middle| \exists \beta \in T_k \text{ cu } \beta \stackrel{*}{\Rightarrow} \alpha \text{ si } |\alpha| \leq n \right\} \end{cases}$$

Deoarece $T_0 \subset T_1 \subset ... \subset T_k \subset T_{k+1} \subset ... \subset F$, unde F este mulţimea finită a cuvintelor de lungime cel mult n formate din simboluri terminale şi neterminale, rezultă că şirul se stabilizează, respectiv $\exists k_0 \in \mathbb{N}$ astfel încât $T_{k_0} = T_{k_0+1} = T_{k_0+2} = \cdots$.

Evident, $w \in L(G) \iff w \in T_{k_0}$.

Exemplul 1.2.1. Fie gramatica regulată G = (N, T, S, P), unde

 $N = \{S, A\}, T = \{a, b, c\}$, iar mulţimea producţiilor P este următoarea:

$$S \rightarrow aS$$
 (1)

$$S \to bA$$
 (2)

$$A \rightarrow cA$$
 (3)

$$A \rightarrow c$$
 (4)

Cuvântul $w_1 = abc \in L(G)$, deoarece se poate obține printr-o derivare din simbolul inițial S astfel:

$$S \overset{*}{\underset{(1)}{\Rightarrow}} aS \overset{*}{\underset{(2)}{\Rightarrow}} abA \overset{*}{\underset{(4)}{\Rightarrow}} abc = w_1 \in L(G)$$

Cuvântul $w_2 = aaabcccc \in L(G)$, deoarece se poate obține printr-o derivare din simbolul initial S astfel:

$$S \overset{*}{\underset{(1)}{\Longrightarrow}} aS \overset{*}{\underset{(1)}{\Longrightarrow}} aaS \overset{*}{\underset{(1)}{\Longrightarrow}} aaaS \overset{*}{\underset{(2)}{\Longrightarrow}} aaabA \overset{*}{\underset{(3)}{\Longrightarrow}} aaabcA \overset{*}{\underset{(3)}{\Longrightarrow}} aaabccA \overset{*}{\underset{(3)}{\Longrightarrow}} aaabcccA \overset{*}{\underset{(3)}{\Longrightarrow}} aaabcccA \overset{*}{\underset{(4)}{\Longrightarrow}} aaabcccc = a^3bc^4.$$
Deci $w_2 \in L(G)$.

Limbajul generat de gramatica G este $L(G) = \{a^nbc^m | n \ge 1, m \ge 1\}$ deoarece se pornește de la simbolul de start S și până când S "dispare", aplicând de n ori producția (1) cuvântul curent are forma g^nS .

După dispariția lui S (aplicând producția (2)), apare neterminalul A care urmează lui b. Aplicând de m-1 ori producția (3), neterminalul A este deplasat, de fiecare dată, la dreapta după terminalul c și cuvântul curent are forma $a^n b c^{m-1}A$. Rezultă că A devine c, conform (4), iar cuvântul, format numai din terminale, este $a^n b c^m$.

Exemplul 1.2.2. Fie gramatica regulată G = (N, T, S, P), unde

 $N = \{S, A, B\}, T = \{a, b, c\}$, iar mulţimea producţiilor P este următoarea:

$$S \rightarrow aA$$
 (1)

$$A \rightarrow aA \mid aB$$
 (2)

$$B \to bC$$
 (3)

$$C \rightarrow cB \mid c$$
 (4)

Cuvântul $w = aabc \in L(G)$ deoarece:

$$S \underset{(1)}{\overset{*}{\Rightarrow}} aA \underset{(2)}{\overset{*}{\Rightarrow}} aaB \underset{(3)}{\overset{*}{\Rightarrow}} aabC \underset{(4)}{\overset{*}{\Rightarrow}} aabc = w \in L(G)$$

Se poate observa că limbajul generat de gramatica \boldsymbol{G} este

$$L(G) = \{a^n(bc)^m | n \ge 2, m \ge 1\}$$
 (temă).

Exemplul 1.2.3. Fie gramatica G = (N, T, S, P), $N = \{S\}$, $T = \{a, b\}$, iar mulțimea producțiilor P constă din:

$$S \rightarrow \varepsilon$$
 (1)

$$S \rightarrow a$$
 (2)

$$S \rightarrow b$$
 (3)

$$S \rightarrow aSa$$
 (4)

$$S \rightarrow bSb$$
 (5).

Cuvântul $w = aababaa \in L(G)$ deoarece

$$S \overset{*}{\underset{(4)}{\Longrightarrow}} aSa \overset{*}{\underset{(4)}{\Longrightarrow}} aaSaa \overset{*}{\underset{(5)}{\Longrightarrow}} aabSbaa \overset{*}{\underset{(2)}{\Longrightarrow}} aababaa = w.$$

Se poate observa că limbajul generat de gramatica G este format din toate palindroamele formate din literele a și b.

Exemplul 1.2.4. Fie gramatica G = (N, T, S, P), $N = \{S, B, C\}$, $T = \{a, b, c\}$, iar multimea productiilor P constă din:

$$S \rightarrow aSBC$$
 (1)

$$S \rightarrow aBC$$
 (2)

$$CB \rightarrow BC$$
 (3)

$$aB \rightarrow ab$$
 (4)

$$bB \rightarrow bb$$
 (5)

$$bC \rightarrow bc$$
 (6)

$$cC \rightarrow cc$$
 (7)

Fie cuvântul $w = aabbcc = a^2b^2c^2$. Cuvântul $w \in L(G)$, deoarece se poate obține printr-o derivare din simbolul initial S astfel:

$$S \overset{*}{\underset{(1)}{\Rightarrow}} aSBC \overset{*}{\underset{(2)}{\Rightarrow}} aaBCBC \overset{*}{\underset{(4)}{\Rightarrow}} aabCBC \overset{*}{\underset{(3)}{\Rightarrow}} aabBCC \overset{*}{\underset{(5)}{\Rightarrow}} aabbCC \overset{*}{\underset{(6)}{\Rightarrow}} aabbCC \overset{*}{\underset{(6)}{\Rightarrow}} aabbcC \overset{*}{\underset{(7)}{\Rightarrow}} aabbcC = a^2b^2c^2$$
.

Rezultă că $w \in L(G)$.

Se demonstrează că $L(G) = \{a^n b^n c^n \mid n>0\}$ astfel:

se pornește de la simbolul de start S și până când S "dispare", cuvântul curent are forma $a^n S \alpha$, unde în α există:

- n de B și b
- *n* de *C* și *c*.

După dispariția lui S:

- toate C-urile sunt deplasate la dreapta după b -uri, conform producției (3)
- toate B -urile care urmează lui α sau b trec în b, conform producțiilor (4) și (5)
- toate C -urile care urmează lui b sau c trec în b, conform (6) și (7),

și se obține cuvântul $a^nb^nc^n$, n > 0, format numai din terminale.

Temă:

1. Fie gramatica $G = (N, T, S, P), N = \{S\}, T = \{a, b\}$, iar mulţimea producţiilor Pconstă din:

$$S \rightarrow a$$
 (1)

$$S \rightarrow b$$
 (2)

$$S \rightarrow aSa$$
 (3)

$$S \rightarrow bSb$$
 (4).

De ce tip este gramatica G? Demonstrați că $w = ababa \in L(G)$.

2. Fie gramatica $G = (N, T, S, P), N = \{S\}, T = \{(,)\}, \text{ iar mulțimea producțiilor } P$ constă din:

$$S \rightarrow ()$$
 (1)
 $S \rightarrow (S)$ (2)

$$S \rightarrow SS$$

De ce tip este gramatica **G**?

Demonstrați că

$$w_1 = ((\))(\) \in L(G), \text{ iar } w_2 = ())(() \notin L(G).$$

3. Fie gramatica G = (N, T, S, P), $N = \{S, A, B\}$, $T = \{a, b\}$, iar mulţimea producţiilor Peste indicată în tabelul de mai jos. Completați pe ultima linie a tabelului tipul fiecărei gramatici.

P						
$A \rightarrow a$	$A \rightarrow a$	$A \rightarrow a$	$A \rightarrow a$			
$A \rightarrow b$	$B \rightarrow b$	$B \rightarrow b$	$B \rightarrow b$			
$S \rightarrow aA$	$S \rightarrow aA$	$S \rightarrow aAa$	$S \rightarrow aA$			
$A \rightarrow bB$	$A \rightarrow aB$	$A \rightarrow bBb$	$aA \rightarrow bbbB$			
$B \to A$	$B \rightarrow bA$	$B \to A$	$bbB \rightarrow A$			