ECON 711 Midterm Cheatsheet

Nash Equilibria

- 1. Apply IDS_{∞} .
- 2. Find all "best response cycles".
- 3. Look for a Nash equilibrium on support of each cycle.

Nash Equilibria in Continuous Games

- With a continuum of actions, if the payoff function is strictly quasi-concave in one's own action, then there are no mixed Nash equilibria.
- A war of attrition has a fundamental reason to stop u(t) opposed by a strategic incentive v(q) to outlast other players $(v(q) \uparrow)$. e.g. costly war
- A **pre-emption game** has a fundamental reason to delay u(t) opposed by a strategic incentive v(q) to pre-empt other players $(v(q)\downarrow)$. e.g. bank run
- A Nash equilibrium is a quantile function Q whose support contains only maximum payoffs, where quantile q=Q(t) stops at time t.
- Let $\lambda = \arg \max u(t)$.
- In pre-emption game, solve $v(1)u(\lambda) = v(Q(t))u(t)$.
- In war of attribution, solve $v(0)u(\lambda) = v(Q(t))u(t)$.
- Initial rush (cdf jumps from 0 to some q):

$$\frac{1}{q} \int_0^q v(x) dx = v(q)$$

• Terminal rush (cdf jumps from some q to 1):

$$\frac{1}{1-q} \int_q^1 v(x) dx = v(q)$$

Supermodular Games

- A supermodular game is a game of strategic complements. It has payoffs $u_i(s_i, s_{-i})$ with increasing differences $\forall i$.
- $f(x, \theta)$ has increasing differences if for all $x' \ge x$ and $\theta' \ge \theta$:

$$f(x', \theta') - f(x, \theta') \ge f(x', \theta) - f(x, \theta)$$

- If f is continuously differentiable f has ID if $\frac{\partial f}{\partial x} \uparrow \theta$ or $\frac{\partial^2 f}{\partial x \partial \theta} \geq 0$.
- A submodular game is a game of strategic substitutes. It has payoffs $u_i(s_i, s_{-i})$ withh decreasing differences $\forall i$.
- $f(x, \theta)$ has decreasing differences if $f(x, -\theta)$ has increasing differences.

Bayesian Nash Equilibrium

- In **pooling equilibria**, different types take the same action
- In **separating equilibria**, different types take the different action.

Correlated Equilibria

• Correlated Equilibria are supportable if obeying the signal is incentive compatible.