Proposition: For all $n \in \mathbb{N}$, it follows that

$$S_n: \left(1-\frac{1}{2}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{8}\right)...\left(1-\frac{1}{2^n}\right) \ge \frac{1}{4} + \frac{1}{2^{k+1}}.$$

Proof. (Induction).

Basis step. Suppose n = 1.

Observe that
$$1 - \frac{1}{2^1} = \frac{1}{2} = \frac{2}{4} = \frac{1}{4} + \frac{1}{2^{1+1}}$$
.

Thus S_1 .

Inductive step. Suppose S_k for $n \in \mathbb{N}$.

We now show S_k implies S_{k+1} . Observe that

$$\frac{1}{4} + \frac{1}{2^{k+1}} = \frac{1}{2} * \frac{1}{2} + \frac{1}{2} * \frac{1}{2^k} \tag{1}$$

$$= \left(\frac{1}{2} + \frac{1}{2^k}\right)\frac{1}{2} \tag{2}$$

$$\leq \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{4}\right) \dots \left(1 - \frac{1}{2^k}\right) \left(\frac{1}{2}\right) \tag{3}$$

$$\leq \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{4}\right) \dots \left(1 - \frac{1}{2^k}\right) \left(\frac{1}{2}\right) \left(2 - \frac{1}{2^k}\right) \tag{4}$$

$$\leq \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{4}\right) \dots \left(1 - \frac{1}{2^k}\right) \left(2 * \frac{1}{2} - \frac{1}{2} * \frac{1}{2^k}\right)$$
 (5)

$$\leq \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{4}\right) \dots \left(1 - \frac{1}{2^k}\right) \left(1 - \frac{1}{2^{k+1}}\right). \tag{6}$$

Thus S_{k+1} .

It follows by mathematical induction that S_n for all $n \in \mathbb{N}$.