BÀI 3. HÀM SỐ LIÊN TỤC

- CHƯƠNG 3. GIỚI HẠN. HÀM SỐ LIÊN TỤC
- | FanPage: Nguyễn Bảo Vương

PHẦN C. BÀI TẬP TRẮC NGHIỆM (PHÂN MÚC ĐỘ)

1. Câu hỏi dành cho đối tượng học sinh trung bình – khá

- Cho hàm số y = f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên [a;b] là Câu 1.

- **A.** $\lim_{x \to a^{+}} f(x) = f(a)$ và $\lim_{x \to b^{+}} f(x) = f(b)$. **B.** $\lim_{x \to a^{-}} f(x) = f(a)$ và $\lim_{x \to b^{-}} f(x) = f(b)$. **C.** $\lim_{x \to a^{+}} f(x) = f(a)$ và $\lim_{x \to b^{-}} f(x) = f(b)$. **D.** $\lim_{x \to a^{-}} f(x) = f(a)$ và $\lim_{x \to b^{+}} f(x) = f(b)$.

Theo định nghĩa hàm số liên tục trên đoạn [a;b]. Chọn: $\lim_{x\to a^+} f(x) = f(a)$ và $\lim_{x\to b^-} f(x) = f(b)$.

- Cho hàm số f(x) xác định trên [a;b]. Tìm mệnh đề đúng. Câu 2.
 - **A.** Nếu hàm số f(x) liên tục trên [a;b] và f(a) f(b) > 0 thì phương trình f(x) = 0 không có nghiêm trong khoảng (a;b).
 - **B.** Nếu f(a) f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng (a;b).
 - C. Nếu hàm số f(x) liên tục, tăng trên [a;b] và f(a) f(b) > 0 thì phương trình f(x) = 0không có nghiệm trong khoảng (a;b).
 - **D.** Nếu phương trình f(x) = 0 có nghiệm trong khoảng (a;b) thì hàm số f(x) phải liên tục trên (a;b).

Lời giải

- Vì f(a) f(b) > 0 nên f(a) và f(b) cùng dương hoặc cùng âm. Mà f(x) liên tục, tăng trên [a;b] nên đồ thị hàm f(x) nằm trên hoặc nằm dưới trục hoành trên [a;b] hay phương trình f(x) = 0 không có nghiệm trong khoảng (a;b).
- Câu 3. Cho hàm số y = f(x) liên tục trên đoạn [a;b]. Mệnh đề nào dưới đây đúng?
 - **A.** Nếu f(a).f(b) > 0 thì phương trình f(x) = 0 không có nghiệm nằm trong (a;b).
 - **B.** Nếu f(a). f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm nằm trong (a;b).
 - C. Nếu f(a), f(b) > 0 thì phương trình f(x) = 0 có ít nhất một nghiệm nằm trong (a;b).
 - **D.** Nếu phương trình f(x) = 0 có ít nhất một nghiệm nằm trong (a;b) thì f(a), f(b) < 0.

Lời giải

Chon B

Vì theo đinh lý 3 trang 139/sgk.

Cho đồ thị của hàm số y = f(x) như hình vẽ sau: Câu 4.

Blog: Nguyễn Bảo Vương: https://www.nbv.edu.vn/

Chọn mệnh đề đúng.

- **A.** Hàm số y = f(x) có đạo hàm tại điểm x = 0 nhưng không liên tục tại điểm x = 0.
- **B.** Hàm số y = f(x) liên tục tại điểm x = 0 nhưng không có đạo hàm tại điểm x = 0.
- C. Hàm số y = f(x) liên tục và có đạo hàm tại điểm x = 0.
- **D.** Hàm số y = f(x) không liên tục và không có đạo hàm tại điểm x = 0.

Lời giải

Chon B

Đồ thị là một đường liền nét, nhưng bị "gãy" tại điểm x=0 nên nó liên tục tại điểm x=0 nhưng không có đạo hàm tại điểm x=0.

Câu 5. Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?

Chọn D

Vì $\lim_{x\to 1^+} y \neq \lim_{x\to 1^-} y$ nên hàm số không liên tục tại x=1.

Câu 6. Cho các mệnh đề:

- 1. Nếu hàm số y = f(x) liên tục trên (a;b) và f(a).f(b) < 0 thì tồn tại $x_0 \in (a;b)$ sao cho $f(x_0) = 0$.
- 2. Nếu hàm số y = f(x) liên tục trên [a;b] và f(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm.

: 0946798489 TOÁN 11-CHÂN TRỜI SÁNG TẠO 3. Nếu hàm số y = f(x) liên tục, đơn điệu trên [a;b] và f(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm duy nhất.

A. Có đúng hai mệnh đề sai.

B. Cả ba mênh đề đều đúng.

C. Cả ba mệnh đề đều sai.

D. Có đúng một mệnh đề sai.

Lời giải

Chon D

Khẳng định thứ nhất sai vì thiếu tính liên tục trên đoạn [a;b].

Cho hàm số $y = \begin{cases} \frac{1-x^3}{1-x}, & \text{khi } x < 1 \\ 1, & \text{khi } x \ge 1 \end{cases}$. Hãy chọn kết luận đúng Câu 7.

A. y liên tục phải tại x = 1.

B. y liên tục tại x = 1.

C. y liên tục trái tại x = 1.

D. v liên tục trên \mathbb{R} .

Lời giải

Chon A

Ta có: v(1) = 1.

Ta có: $\lim_{x \to 1^+} y = 1$; $\lim_{x \to 1^-} y = \lim_{x \to 1^-} \frac{1 - x^3}{1 - x} = \lim_{x \to 1^-} \frac{(1 - x)(1 + x + x^2)}{1 - x} = \lim_{x \to 1^-} (1 + x + x^2) = 4$

Nhận thấy: $\lim_{x \to 0} y = y(1)$. Suy ra y liên tục phải tại x = 1.

Cho hàm số $y = \begin{cases} \frac{x^2 - 7x + 12}{x - 3} & \text{khi } x \neq 3 \\ -1 & \text{khi } x = 3 \end{cases}$ Mệnh đề nào sau đây **đúng**? Câu 8.

- **A.** Hàm số liên tục nhưng không có đạo hàm tại $x_0 = 3$.
- **B.** Hàm số gián đoạn và không có đạo hàm tại $x_0 = 3$.
- **C.** Hàm số có đạo hàm nhưng không liên tục tại $x_0 = 3$.
- **D.** Hàm số liên tục và có đạo hàm tại $x_0 = 3$.

Lời giải

Chon D

 $\lim_{x \to 3} \frac{x^2 - 7x + 12}{x - 3} = \lim_{x \to 3} (x - 4) = -1 = y(3) \text{ nên hàm số liên tục tại } x_0 = 3.$

$$\lim_{x \to 3} \frac{\left(x^2 - 7x + 12\right) - \left(3^2 - 7.3 + 12\right)}{x - 3} = \lim_{x \to 3} \frac{\left(x^2 - 7x + 12\right)}{x - 3} = \lim_{x \to 3} \left(x - 4\right) = -1 \Rightarrow y'(3) = -1.$$

Cho hàm số $f(x) = \begin{cases} \frac{x-2}{\sqrt{x+2}-2} & \text{khi } x \neq 2 \\ 4 & \text{khi } x = 2 \end{cases}$. Chọn mệnh đề đúng?

A. Hàm số liên tục tại x=2.

B. Hàm số gián đoan tai x=2.

C.
$$f(4) = 2$$
.

$$\mathbf{D.} \lim_{x \to 2} f(x) = 2.$$

Tập xác định: $D = \mathbb{R}$

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x - 2}{\sqrt{x + 2} - 2} = \lim_{x \to 2} \frac{(x - 2)(\sqrt{x + 2} + 2)}{x - 2} = \lim_{x \to 2} (\sqrt{x + 2} + 2) = 4$$

$$f(2) = 4$$

$$\Rightarrow \lim_{x \to 2} f(x) = f(2)$$

Vậy hàm số liên tục tại x = 2.

Câu 10. Cho hàm số $f(x) = \frac{2x-1}{x^3-x}$. Kết luận nào sau đây đúng?

- **A.** Hàm số liên tục tại x = -1.
- **B.** Hàm số liên tục tại x = 0.

C. Hàm số liên tục tại x = 1.

D. Hàm số liên tục tại $x = \frac{1}{2}$.

Lời giải

Chon D

Tại
$$x = \frac{1}{2}$$
, ta có: $\lim_{x \to \frac{1}{2}} f(x) = \lim_{x \to \frac{1}{2}} \frac{2x-1}{x^3-1} = 0 = f(\frac{1}{2})$. Vậy hàm số liên tục tại $x = 2$.

Câu 11. Hàm số nào sau đây liên tục tại x = 1:

A.
$$f(x) = \frac{x^2 + x + 1}{x - 1}$$
.

A.
$$f(x) = \frac{x^2 + x + 1}{x - 1}$$
. **B.** $f(x) = \frac{x^2 - x - 2}{x^2 - 1}$. **C.** $f(x) = \frac{x^2 + x + 1}{x}$. **D.** $f(x) = \frac{x + 1}{x - 1}$.

A)
$$f(x) = \frac{x^2 + x + 1}{x - 1}$$

 $\lim_{x \to \infty} f(x) = +\infty$ suy ra f(x) không liên tục tại x = 1.

B)
$$f(x) = \frac{x^2 - x - 2}{x^2 - 1}$$

 $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x-2}{x-1} = -\infty \text{ suy ra } f(x) \text{ không liên tục tại } x = 1.$

C)
$$f(x) = \frac{x^2 + x + 1}{x}$$

 $\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 + x + 1}{x} = 3 = f(1) \text{ suy ra } f(x) \text{ liên tục tại } x = 1.$

D)
$$f(x) = \frac{x+1}{x-1}$$

 $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x+1}{x-1} = +\infty \text{ suy ra } f(x) \text{ không liên tục tại } x = 1.$

Câu 12. Hàm số nào dưới đây gián đoạn tại điểm $x_0 = -1$.

A.
$$y = (x+1)(x^2+2)$$
. **B.** $y = \frac{2x-1}{x+1}$. **C.** $y = \frac{x}{x-1}$.

B.
$$y = \frac{2x-1}{x+1}$$
.

c.
$$y = \frac{x}{x-1}$$
.

D.
$$y = \frac{x+1}{x^2+1}$$
.

Ta có $y = \frac{2x-1}{x+1}$ không xác định tại $x_0 = -1$ nên gián đoạn tại $x_0 = -1$.

Câu 13. Hàm số nào sau đây gián đoạn tại x = 2?

A.
$$y = \frac{3x-4}{x-2}$$
.

$$\mathbf{B.} \ \ y = \sin x \ .$$

B.
$$y = \sin x$$
. **C.** $y = x^4 - 2x^2 + 1$ **D.** $y = \tan x$.

D.
$$y = \tan x$$
.

Lời giải

Chon A

Ta có: $y = \frac{3x-4}{x-2}$ có tập xác định: $D = \mathbb{R} \setminus \{2\}$, do đó gián đoạn tại x = 2.

Câu 14. Hàm số $y = \frac{x}{x+1}$ gián đoạn tại điểm x_0 bằng?

A.
$$x_0 = 2018$$
.

B.
$$x_0 = 1$$
.

c.
$$x_0 = 0$$

D.
$$x_0 = -1$$
.

Lời giải

Chon D

Vì hàm số $y = \frac{x}{x+1}$ có TXĐ: $D = \mathbb{R} \setminus \{-1\}$ nên hàm số gián đoạn tại điểm $x_0 = -1$.

Câu 15. Cho hàm số $y = \frac{x-3}{r^2-1}$. Mệnh đề nào sau đây đúng?

A. Hàm số không liên tục tại các điểm $x = \pm 1$.

B. Hàm số liên tục tại mọi $x \in \mathbb{R}$.

C. Hàm số liên tục tại các điểm x = -1.

D. Hàm số liên tục tại các điểm x = 1.

Lời giải

Chon A

Hàm số $y = \frac{x-3}{x^2-1}$ có tập xác định $\mathbb{R} \setminus \{\pm 1\}$. Do đó hàm số không liên tục tại các điểm $x = \pm 1$.

Câu 16. Trong các hàm số sau, hàm số nào liên tục trên \mathbb{R} ?

A.
$$y = x^3 - x$$
.

B.
$$y = \cot x$$
.

C.
$$y = \frac{2x-1}{x-1}$$
.

C.
$$y = \frac{2x-1}{x-1}$$
. D. $y = \sqrt{x^2 - 1}$.

Lời giải

Chon A

Vì $y = x^3 - x$ là đa thức nên nó liên tục trên \mathbb{R} .

Câu 17. Cho bốn hàm số $f_1(x) = 2x^3 - 3x + 1$, $f_2(x) = \frac{3x + 1}{x - 2}$, $f_3(x) = \cos x + 3$ và $f_4(x) = \log_3 x$. Hỏi có bao nhiệu hàm số liên tục trên tập \mathbb{R} ?

A. 1.

B. 3.

c. 4.

D. 2.

Lời giải

* Ta có hai hàm số $f_2(x) = \frac{3x+1}{x-2}$ và $f_4(x) = \log_3 x$ có tập xác định không phải là tập $\mathbb R$ nên không thỏa yêu cầu.

* Cả hai hàm số $f_1(x) = 2x^3 - 3x + 1$ và $f_3(x) = \cos x + 3$ đều có tập xác định là $\mathbb R$ đồng thời liên tục trên $\mathbb R$.

Câu 18. Trong các hàm số sau, hàm số nào liên tục trên \mathbb{R} ?

$$\mathbf{A.} \ f(x) = \tan x + 5.$$

B.
$$f(x) = \frac{x^2 + 3}{5 - x}$$

$$\mathbf{C.} \ f(x) = \sqrt{x-6} \ .$$

A.
$$f(x) = \tan x + 5$$
. **B.** $f(x) = \frac{x^2 + 3}{5 - x}$. **C.** $f(x) = \sqrt{x - 6}$. **D.** $f(x) = \frac{x + 5}{x^2 + 4}$.

Lời giải

Chon D

Hàm số $f(x) = \frac{x+5}{x^2+4}$ là hàm phân thức hữu tỉ và có TXĐ là $D = \mathbb{R}$ do đó hàm số $f(x) = \frac{x+5}{x^2+4}$ liên tục trên \mathbb{R} .

2. Câu hỏi dành cho đối tượng học sinh khá-giỏi

Câu 19. Cho hàm số
$$f(x) = \begin{cases} \frac{1-\cos x}{x^2} & \text{khi } x \neq 0 \\ 1 & \text{khi } x = 0 \end{cases}$$
.

Khẳng định nào đúng trong các khẳng định sau?

A.
$$f(x)$$
 có đạo hàm tại $x = 0$.

B.
$$f(\sqrt{2}) < 0$$
.

C.
$$f(x)$$
 liên tục tại $x = 0$.

D.
$$f(x)$$
 gián đoạn tại $x = 0$.

Lời giải

Hàm số xác định trên R

Ta có
$$f(0) = 1$$
 và $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{4 \cdot \left(\frac{x}{2}\right)^2} = \frac{1}{2}$

Vì $f(0) \neq \lim_{x \to 0} f(x)$ nên f(x) gián đoạn tại x = 0. Do đó f(x) không có đạo hàm tại x = 0.

$$\forall x \neq 0$$
 $f(x) = \frac{1 - \cos x}{x^2} \ge 0$ nên $f(\sqrt{2}) > 0$. VậyA, B,C sai.

Câu 20. Cho hàm số
$$f(x) = \begin{cases} -x \cos x, x < 0 \\ \frac{x^2}{1+x}, 0 \le x < 1. \text{ Khẳng định nào sau đây đúng?} \\ x^3, x \ge 1 \end{cases}$$

- **A.** Hàm số f(x) liên tục tại mọi điểm x thuộc $\mathbb R$.
- **B.** Hàm số f(x) bị gián đoạn tại điểm x = 0.
- **C.** Hàm số f(x) bị gián đoạn tại điểm x = 1.
- **D.** Hàm số f(x) bị gián đoạn tại điểm x = 0 và x = 1.

*
$$f(x)$$
 liên tục tại $x \neq 0$ và $x \neq 1$.

* Tại
$$x = 0$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (-x \cos x) = 0, \ \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{x^{2}}{1+x} = 0, \ f(0) = 0.$$

Suy ra
$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = f(0)$$
. Hàm số liên tục tại $x=0$.

* Tai
$$x = 1$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{x^{2}}{1+x} = \frac{1}{2}, \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} x^{3} = 1.$$

Suy ra $\lim_{x\to 1^-} f(x) \neq \lim_{x\to 1^+} f(x)$. Hàm số gián đoạn tại x=1.

Câu 21. Tìm m để hàm số $f(x) = \begin{cases} \frac{x^2 - 4}{x + 2} & khi \ x \neq -2 \\ m & khi \ x = -2 \end{cases}$ liên tục tại x = -2 **A.** m = -4. **B.** m = 2. **C.** m = 4.

- **D.** m = 0.

Chon A

Hàm số liên tục tại x = -2 khi và chỉ khi $\lim_{x \to -2} \left(\frac{x^2 - 4}{x + 2} \right) = \lim_{x \to -2} m = m \iff m = -4$

Câu 22. Cho hàm số $y = f(x) = \begin{cases} \frac{x^3 - 1}{x - 1} & \text{khi } x \neq 1 \\ 2m + 1 & \text{khi } x = 1 \end{cases}$. Giá trị của tham số m để hàm số liên tục tại điểm

 $x_0 = 1$ là:

- **A.** $m = -\frac{1}{2}$.
- **B.** m = 2. **C.** m = 1.
- **D.** m = 0.

Lời giải

Chọn C

Ta có f(1) = 2m + 1

$$\lim_{x \to 1} y = \lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \lim_{x \to 1} (x^2 + x + 1) = 3$$

Để hàm số liên tục tại điểm $x_0 = 1$ thì $f(1) = \lim_{x \to 1} y \Rightarrow 2m + 1 = 3 \Leftrightarrow m = 1$.

Câu 23. Để hàm số $y = \begin{cases} x^2 + 3x + 2 & \text{khi} & x \le -1 \\ 4x + a & \text{khi} & x > -1 \end{cases}$ liên tục tại điểm x = -1 thì giá trị của a là

- **B.** 4.

 D_{-1} .

Lời giải

Chon B

Hàm số liên tục tại x = -1 khi và chỉ khi $\lim_{x \to -1^+} y = \lim_{x \to -1^-} y = y(-1)$

$$\Leftrightarrow \lim_{x \to -1^+} \left(4x + a \right) = \lim_{x \to -1^-} \left(x^2 + 3x + 2 \right) = y \left(-1 \right) \iff a - 4 = 0 \Leftrightarrow a = 4.$$

Câu 24. Tìm giá trị thực của tham số m để hàm số $f(x) = \begin{cases} \frac{x^3 - x^2 + 2x - 2}{x - 1} & khi \ x \neq 1 \\ 3x + m & khi \ x = 1 \end{cases}$ liên tục tại x = 1.

- **A.** m = 0.
- **B.** m = 6.
- C. m = 4.
- **D.** m = 2.

Lời giải

Chon A

Ta có: f(1) = m + 3.

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^3 - x^2 + 2x - 2}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + 2)}{x - 1} = \lim_{x \to 1} (x^2 + 2) = 3.$$

Để hàm số f(x) liên tục tại x=1 thì $\lim_{x\to 1} f(x) = f(1) \Leftrightarrow 3 = m+3 \Leftrightarrow m=0$.

Câu 25. Cho hàm số
$$f(x) = \begin{cases} \frac{x^{2016} + x - 2}{\sqrt{2018x + 1} - \sqrt{x + 2018}} & khi \ x \neq 1 \\ k & khi \ x = 1 \end{cases}$$
. Tìm k để hàm số $f(x)$ liên tục tại

x=1.

A.
$$k = 2\sqrt{2019}$$

A.
$$k = 2\sqrt{2019}$$
. **B.** $k = \frac{2017.\sqrt{2018}}{2}$. **C.** $k = 1$. **D.** $k = \frac{20016}{2017}\sqrt{2019}$.

D.
$$k = \frac{20016}{2017} \sqrt{2019}$$

Lời giải

Chon A

Ta có:
$$\lim_{x \to 1} \frac{x^{2016} + x - 2}{\sqrt{2018x + 1} - \sqrt{x + 2018}} = \lim_{x \to 1} \frac{\left(x^{2016} - 1 + x - 1\right)\left(\sqrt{2018x + 1} + \sqrt{x + 2018}\right)}{2017x - 2017}$$
$$= \lim_{x \to 1} \frac{\left(x - 1\right)\left(x^{2015} + x^{2014} + \dots + x + 1 + 1\right)\left(\sqrt{2018x + 1} + \sqrt{x + 2018}\right)}{2017(x - 1)} = 2\sqrt{2019}$$

Để hàm số liên tục tại $x = 1 \iff \lim_{x \to 1} f(x) = f(1) \iff k = 2\sqrt{2019}$.

Câu 26. Cho hàm số $f(x) = \begin{cases} \frac{\sqrt{x} - 1}{x - 1} & khi \ x \neq 1 \\ a & khi \ x = 1 \end{cases}$. Tìm a để hàm số liên tục tại $x_0 = 1$.

A.
$$a = 0$$
.

B.
$$a = -\frac{1}{2}$$
.

A.
$$a = 0$$
. **B.** $a = -\frac{1}{2}$. **C.** $a = \frac{1}{2}$.

D.
$$a = 1$$

Chon C

$$\text{Ta có } \lim_{x \to 1} f\left(x\right) = \lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} \frac{\sqrt{x} - 1}{\left(\sqrt{x} - 1\right)\left(\sqrt{x} + 1\right)} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{2} \, .$$

Để hàm số liên tục tại $x_0=1$ khi $\lim_{x\to 1}f\left(x\right)=f\left(1\right) \Leftrightarrow a=\frac{1}{2}$.

Câu 27. Biết hàm số $f(x) = \begin{cases} 3x+b & khi \ x \leq -1 \\ x+a & khi \ x > -1 \end{cases}$ liên tục tại x=-1. Mệnh đề nào dưới đây đúng? A. a=b-2. B. a=-2-b. C. a=2-b. D. a=b+2. Lời giải

A.
$$a = b - 2$$

B.
$$a = -2 - b$$

c.
$$a = 2 - b$$
.

D.
$$a = b + 2$$
.

Chon A

 $\lim_{x\to -1^-} f\left(x\right) = f\left(-1\right) = b-3 \, ; \, \lim_{x\to -1^+} f\left(x\right) = a-1 \, . \, \text{ $D\mathring{\hat{\mathbf{e}}}$ liên tục tại x=-$$$$} \, ta \, \text{c\'o} \, \, b-3 = a-1 \Leftrightarrow a=b-2$

Câu 28. Cho hàm số $f(x) = \begin{cases} \frac{3-x}{\sqrt{x+1}-2} & \text{khi } x \neq 3 \\ m & \text{khi } x=3 \end{cases}$. Hàm số đã cho liên tục tại x=3 khi m=?

$$\mathbf{A} \cdot -1$$

Chọn D

$$f(3) = m$$

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{3 - x}{\sqrt{x + 1} - 2} = \lim_{x \to 3} \frac{(3 - x)(\sqrt{x + 1} + 2)}{x - 3} = \lim_{x \to 3} (-\sqrt{x + 1} - 2) = -4$$

Để hàm số liên tục tại x=3 thì $\lim_{x\to 3} f(x) = f(3)$

Suy ra, m = -4.

Câu 29. Biết hàm số $f(x) = \begin{cases} ax^2 + bx - 5 & \text{khi} & x \le 1 \\ 2ax - 3b & \text{khi} & x > 1 \end{cases}$ liên tục tại x = 1 Tính giá trị của biểu thức

P = a - 4b.

A.
$$P = -4$$

A.
$$P = -4$$
. **B.** $P = -5$.

C.
$$P = 5$$
.

$$\mathbf{D}. P = 4$$

Lời giải

Chon B

Ta có:
$$\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (ax^2 + bx - 5) = a + b - 5 = f(1)$$
.

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (2ax - 3b) = 2a - 3b.$$

Do hàm số liên tục tại x = 1 nên $a + b - 5 = 2a - 3b \Rightarrow a - 4b = -5$.

Tìm m để hàm số $f(x) = \begin{cases} \frac{x^2 - x}{x - 1} & khi \ x \neq 1 \\ m - 1 & khi \ x = 1 \end{cases}$ liên tục tại x = 1A. m = 0.

B. m = -1.

C. m = 1D. m = 2.

A.
$$m = 0$$
.

B.
$$m = -1$$

$$^{\circ}$$
C. $m=1$

D.
$$m = 2$$

Lời giải

Chon D

TXĐ: D = R

Ta có
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - x}{x - 1} = \lim_{x \to 1} x = 1$$

Và
$$f(1) = m - 1$$
.

Hàm số liên tục tại $x = 1 \Leftrightarrow m - 1 = 1 \Leftrightarrow m = 2$

Câu 31. Có bao nhiều số tự nhiên m để hàm số $f(x) = \begin{cases} \frac{x^2 - 3x + 2}{x - 1} & khi \ x \neq 1 \\ m^2 + m - 1 & khi \ x = 1 \end{cases}$ liên tục tại điểm x = 1?

A. 0.

B. 3.

D. 1.

Lời giải

$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x - 2)}{x - 1} = \lim_{x \to 1} (x - 2) = -1.$$

Để hàm số f(x) liên tục tại điểm x = 1 cần: $\lim_{x \to 1} f(x) = f(1)$

$$\Leftrightarrow m^2 + m - 1 = -1$$

$$\Leftrightarrow m^2+m=0 \Leftrightarrow \begin{bmatrix} m=0 & (\text{TM}) \\ m=-1 & (\text{L}) \end{bmatrix}.$$

Câu 32. Tìm
$$a$$
 để hàm số $f(x) = \begin{cases} \frac{\sqrt{x+2}-2}{x-2} & \text{khi } x \neq 2 \\ 2x+a & \text{khi } x = 2 \end{cases}$ liên tục tại $x = 2$?

A.
$$\frac{15}{4}$$
.

B.
$$-\frac{15}{4}$$
. **C.** $\frac{1}{4}$.

C.
$$\frac{1}{4}$$

Lời giải

Chon B

Ta có
$$f(2) = 4 + a$$
.

Ta tính được
$$\lim_{x\to 2} f(x) = \lim_{x\to 2} \frac{x+2-4}{(x-2)(\sqrt{x+2}+2)} = \lim_{x\to 2} \frac{1}{\sqrt{x+2}+2} = \frac{1}{4}$$
.

Hàm số đã cho liên tục tại x = 2 khi và chỉ khi $f(2) = \lim_{x \to 2} f(x) \Leftrightarrow 4 + a = \frac{1}{4} \Leftrightarrow a = -\frac{15}{4}$.

Vậy hàm số liên tục tại x = 2 khi $a = -\frac{15}{4}$.

Câu 33. Cho hàm số $f(x) = \begin{cases} \frac{x^2 - 3x + 2}{\sqrt{x + 2} - 2} & khi \ x > 2\\ m^2x - 4m + 6 & khi \ x \le 2 \end{cases}$, m là tham số. Có bao nhiều giá trị của m để hàm

số đã cho liên tục tại x = 2?

D. 1

Chọn D

Ta có

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} \frac{x^{2} - 3x + 2}{\sqrt{x + 2} - 2} = \lim_{x \to 2^{+}} \frac{(x - 2)(x - 1)(\sqrt{x + 2} + 2)}{x - 2} = \lim_{x \to 2^{+}} (x - 1)(\sqrt{x + 2} + 2) = 4$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (m^{2}x - 4m + 6) = 2m^{2} - 4m + 6$$

$$f(2) = 2m^{2} - 4m + 6$$

Để hàm số liên tục tại x = 2 thì

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{-}} f(x) = f(2) \Leftrightarrow 2m^{2} - 4m + 6 = 4 \Leftrightarrow 2m^{2} - 4m + 2 = 0 \Leftrightarrow m = 1$$

Vậy có một giá trị của m thỏa mãn hàm số đã cho liên tục tại x = 2.

Câu 34. Cho hàm số $f(x) = \begin{cases} \frac{\sqrt{3x^2 + 2x - 1} - 2}{x^2 - 1}, & x \neq 1 \\ 4 - m, & x = 1 \end{cases}$. Hàm số f(x) liên tục tại $x_0 = 1$ khi A. m = 3. B. m = -3. C. m = 7. D. m = -7.

$$\Delta m = 3$$

R.
$$m = -3$$

C.
$$m = 7$$

D.
$$m = -7/1$$

Lời giải

Chon A

Tập xác định
$$D = \mathbb{R}$$
, $x_0 = 1 \in \mathbb{R}$.

Ta có
$$f(1) = 4 - m$$
.

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{\sqrt{3x^2 + 2x - 1} - 2}{(x+1)(x-1)} = \lim_{x \to 1} \frac{(x-1)(3x+5)}{(x+1)(x-1)(\sqrt{3x^2 + 2x - 1} + 2)}$$

$$= \lim_{x \to 1} \frac{3x + 5}{(x+1)(\sqrt{3x^2 + 2x - 1} + 2)} = 1$$

Hàm số f(x) liên tục tại $x_0 = 1$ khi và chỉ khi $\lim_{x \to 1} (x) = f(1) \Leftrightarrow 4 - m = 1 \Leftrightarrow m = 3$.

Câu 35. Tìm giá trị của tham số m để hàm số $f(x) = \begin{cases} \frac{x^2 + 3x + 2}{x^2 - 1} & \text{khi } x < -1 \\ mx + 2 & \text{khi } x \ge -1 \end{cases}$ liên tục tại x = -1.

A.
$$m = \frac{-3}{2}$$
.

B.
$$m = \frac{-5}{2}$$

B.
$$m = \frac{-5}{2}$$
. **C.** $m = \frac{3}{2}$. **D.** $m = \frac{5}{2}$.

D.
$$m = \frac{5}{2}$$
.

Lời giải

Chon D

- Ta có:

$$+ f(-1) = -m + 2$$

$$+\lim_{x\to(-1)^+} f(x) = -m+2.$$

$$+ \lim_{x \to (-1)^{-}} f(x) = \lim_{x \to (-1)^{-}} \frac{x^{2} + 3x + 2}{x^{2} - 1} = \lim_{x \to (-1)^{-}} \frac{(x+1)(x+2)}{(x-1)(x+1)} = \lim_{x \to (-1)^{-}} \frac{x+2}{x-1} = \frac{-1}{2}.$$

- Hàm số liên tục tại
$$x = -1 \Leftrightarrow f(-1) = \lim_{x \to (-1)^+} f(x) = \lim_{x \to (-1)^-} f(x) \Leftrightarrow -m + 2 = \frac{-1}{2} \Leftrightarrow m = \frac{5}{2}$$
.

Câu 36. Cho hàm số $f(x) = \begin{cases} \frac{\sqrt{x^2 + 4 - 2}}{x^2} & \text{khi } x \neq 0 \\ 2a - \frac{5}{4} & \text{khi } x = 0 \end{cases}$. Tìm giá trị thực của tham số a để hàm số f(x)

liên tuc tai x = 0.

A.
$$a = -\frac{3}{4}$$

B.
$$a = \frac{4}{3}$$

A.
$$a = -\frac{3}{4}$$
. **B.** $a = \frac{4}{3}$. **C.** $a = -\frac{4}{3}$. **D.** $a = \frac{3}{4}$.

D.
$$a = \frac{3}{4}$$

Lời giải

Chon D

Tập xác định: $D = \mathbb{R}$.

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sqrt{x^2 + 4} - 2}{x^2} = \lim_{x \to 0} \frac{\left(\sqrt{x^2 + 4} - 2\right)\left(\sqrt{x^2 + 4} + 2\right)}{x^2\left(\sqrt{x^2 + 4} + 2\right)}$$

$$= \lim_{x \to 0} \frac{x^2 + 4 - 4}{x^2 (\sqrt{x^2 + 4} + 2)} = \lim_{x \to 0} \frac{1}{\sqrt{x^2 + 4} + 2} = \frac{1}{4}.$$

$$f(0) = 2a - \frac{5}{4}.$$

Hàm số f(x) liên tục tại $x = 0 \Leftrightarrow \lim_{x \to 0} f(x) = f(0) \Leftrightarrow 2a - \frac{5}{4} = \frac{1}{4} \Leftrightarrow a = \frac{3}{4}$

$$V_{ay}^{a} = \frac{3}{4}.$$

Câu 37. Cho hàm số
$$f(x) = \begin{cases} x^2 - 2x + 3 & \text{khi } x \neq 1 \\ 3x + m - 1 & \text{khi } x = 1 \end{cases}$$
. Tìm m để hàm số liên tục tại $x_0 = 1$.

A.
$$m = 1$$
.

B.
$$m = 3$$

C.
$$m = 0$$
.

D.
$$m = 2$$
.

Lời giải

Chon C

TXĐ
$$D = \mathbb{R}$$

Ta có
$$f(1) = 2 + m$$
.

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} (x^2 - 2x + 3) = 2.$$

Hàm số liên tục tại $x_0 = 1 \Leftrightarrow \lim_{x \to 1} f(x) = f(1) \Leftrightarrow 2 = m + 2 \Leftrightarrow m = 0$.

- Cho hàm số $f(x) = \begin{cases} \frac{x^2 3x + 2}{x 2} & \text{khi } x \neq 2 \\ a & \text{khi } x = 2 \end{cases}$. Hàm số liên tục tại x = 2 khi a bằng
 - **A.** 1.

- **D.** −1.

Lời giải

Chon A

Hàm số liên tục tại $x = 2 \Leftrightarrow \lim_{x \to 2} f(x) = f(2)$.

Ta có
$$f(2) = a$$
, $\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 - 3x + 2}{x - 2} = \lim_{x \to 2} (x - 1) = 1$. Do đó $a = 1$

- Câu 39. Cho hàm số $f(x) = \begin{cases} \frac{3-x}{\sqrt{x+1}-2} & khi & x \neq 3 \\ mx+2 & khi & x = 3 \end{cases}$ Hàm số liên tục tại điểm x = 3 khi m bằng:

 A. -2.

 B. 4.

 C. -4.

 Lời giải

Chon A

Tập xác định $D = \mathbb{R}$.

Ta có
$$f(3) = 3m + 2$$
 và $\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{3 - x}{\sqrt{x + 1} - 2} = \lim_{x \to 3} \left[-\left(\sqrt{x + 1} + 2\right) \right] = -4$.

Hàm số đã cho liên tục tại điểm $x=3 \Leftrightarrow \lim_{x\to 3} f\left(x\right) = f\left(3\right) \Leftrightarrow 3m+2=-4 \Leftrightarrow m=-2$.

- **Câu 40.** Tìm m để hàm số $f(x) = \begin{cases} \frac{x^2 16}{x 4} & khi \, x > 4 \\ mx + 1 & khi \, x \le 4 \end{cases}$ liên tục tại điểm x = 4. **A.** $m = \frac{7}{4}$. **B.** m = 8. **C.** $m = -\frac{7}{4}$. **D.** m = -8.

Chon A

Ta có
$$\lim_{x \to 4^{-}} f(x) = f(4) = 4m + 1$$
; $\lim_{x \to 4^{+}} f(x) = \lim_{x \to 4^{+}} \frac{x^{2} - 16}{x - 4} = \lim_{x \to 4^{+}} (x + 4) = 8$.

Hàm số liên tục tại điểm $x = 4 \Leftrightarrow \lim_{x \to 4^-} f(x) = \lim_{x \to 4^+} f(x) = f(4) \Leftrightarrow 4m + 1 = 8 \Leftrightarrow m = \frac{7}{4}$.

Câu 41. Tìm tất cả các giá trị của tham số
$$m$$
 để hàm số $f(x) = \begin{cases} \frac{x^2 - 2x}{x - 2} & \text{khi } x > 2 \\ mx - 4 & \text{khi } x \le 2 \end{cases}$ liên tục tại $x = 2$.

A.
$$m = 3$$
.

B.
$$m = 2$$
.

C.
$$m = -2$$
.

D. Không tồn tại m.

Lời giải

Chon A

Ta có
$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{x^2 - 2x}{x - 2} = \lim_{x \to 2^+} \frac{x(x - 2)}{x - 2} = \lim_{x \to 2^+} x = 2$$
.

$$\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (mx - 4) = 2m - 4$$

Hàm số liên tục tại x = 2 khi $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} f(x) \Leftrightarrow 2m - 4 = 2 \Leftrightarrow m = 3$.

thức (m+n) tương ứng bằng:

A.
$$\frac{3}{4}$$
.

B. 1.

$$\mathbf{C.} - \frac{1}{2}$$
.

D. $\frac{9}{4}$.

Lời giải

Chọn D

Ta có:
$$f(1) = n$$
.

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x + 3 - m^2}{(x - 1)(\sqrt{x + 3} + m)}.$$

Hàm số liên tục tại
$$x=1 \Leftrightarrow \lim_{x\to 1} f\left(x\right) = f\left(1\right) \Leftrightarrow n = \lim_{x\to 1} \frac{x+3-m^2}{\left(x-1\right)\left(\sqrt{x+3}+m\right)}$$
 (1).

$$\lim_{x\to 1} f\left(x\right) t \grave{\text{o}} \text{n tại khi 1 là nghiệm của phương trình: } 1+3-m^2 = 0 \Rightarrow \begin{bmatrix} m=2\\ m=-2 \end{bmatrix}.$$

$$+\operatorname{Khi}\ m=2\ \operatorname{thì}\left(1\right) \Rightarrow n=\lim_{x\to 1}\frac{x-1}{\left(x-1\right)\left(\sqrt{x+3}+2\right)} \Rightarrow n=\lim_{x\to 1}\frac{1}{\sqrt{x+3}+2} \Rightarrow n=\frac{1}{4}.$$

+ Khi
$$m=-2$$
 thì $\left(1\right)\Rightarrow n=\lim_{x\to 1}\frac{1}{\sqrt{x+3}-2}$ suy ra không tồn tại $n.$

Vậy
$$m + n = 2 + \frac{1}{4} = \frac{9}{4}$$
.

Câu 43. Cho hàm số $f(x) = \begin{cases} \frac{x^3 - 6x^2 + 11x - 6}{x - 3} & \text{khi } x \neq 3 \\ m & \text{khi } x = 3 \end{cases}$. Tìm giá trị của m để hàm số liên tục tại

x = 3?

A. m = 1.

B. m = 2.

C. m = 3.

D. m = 0.

Chon B

Ta có: f(3) = m

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{x^3 - 6x^2 + 11x - 6}{x - 3} = \lim_{x \to 3} (x^2 - 3x + 2) = 2.$$

Giới hạn $\lim_{x\to 0} \frac{\cos 3x - \cos 7x}{x^2}$. Tìm giá trị của m để hàm số liên tục tại x=3?

A. 40.

B. 0.

Lời giải

Chon B

Ta có: $\lim_{x\to 0} \frac{\cos 3x - \cos 7x}{x^2} = \lim_{x\to 0} \frac{2\sin 5x \sin 2x}{x^2} = 2.5.2 = 20$.

Câu 45. Tìm m để hàm số $f(x) = \begin{cases} \frac{x^2 - x - 2}{x + 1} & \text{khi } x > -1 \\ mx - 2m^2 & \text{khi } x \le -1 \end{cases}$ liên tục tại x = -1.

A.
$$m \in \left\{1; -\frac{3}{2}\right\}$$

A. $m \in \left\{1; -\frac{3}{2}\right\}$. **B.** $m \in \left\{1\right\}$. **C.** $m \in \left\{-\frac{3}{2}\right\}$. **D.** $m \in \left\{-1; \frac{3}{2}\right\}$..

Lời giải

Chon A

Tập xác đinh D = R.

*
$$f(-1) = -m - 2m^2$$

*
$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} (mx - 2m^2) = -m - 2m^2$$
.

Tập xác định
$$D = R$$
.
* $f(-1) = -m - 2m^2$
* $\lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} (mx - 2m^2) = -m - 2m^2$.
* $\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} \frac{x^2 - x - 2}{x + 1} = \lim_{x \to -1^+} \frac{(x + 1)(x - 2)}{x + 1} = \lim_{x \to -1^+} (x - 2) = -3$.

Hàm số liên tục tại x = -1 khi và chỉ khi $\lim_{x \to -1^-} f(x) = \lim_{x \to -1^+} f(x) = f(-1)$

$$\Leftrightarrow -m - 2m^2 = -3 \Leftrightarrow 2m^2 + m - 3 = 0 \Leftrightarrow \begin{bmatrix} m = 1 \\ m = -\frac{3}{2} \end{bmatrix}.$$

Vậy các giá trị của m là $m \in \left\{1; -\frac{3}{2}\right\}$.

Tìm các giá trị của tham số m để hàm số $f(x) = \begin{cases} \frac{x^2 - 3x + 2}{x^2 - 2x} & khi \ x < 2 \\ \frac{x^2 - 2x}{x^2 - 2x} & khi \ x > 2 \end{cases}$ liên tục tại điểm

x = 2.

A.
$$m = \frac{1}{6}$$

B.
$$m = -\frac{1}{6}$$

A.
$$m = \frac{1}{6}$$
. **B.** $m = -\frac{1}{6}$. **C.** $m = -\frac{1}{2}$. **D.** $m = \frac{1}{2}$.

D.
$$m = \frac{1}{2}$$
.

Chon B

Ta có:
$$\lim_{x\to 2} \frac{x^2 - 3x + 2}{x^2 - 2x} = \lim_{x\to 2} \frac{(x-2)(x-1)}{x(x-2)} = \lim_{x\to 2} \frac{x-1}{x} = \frac{1}{2}$$
.

$$f(2) = 3m + 1$$
.

Để hàm số liên tục tại điểm $x = 2 \Leftrightarrow 3m + 1 = \frac{1}{2} \Leftrightarrow m = -\frac{1}{\epsilon}$.

Câu 47. Cho hàm số $f(x) = \begin{cases} \frac{\sqrt{x^2 + 4 - 2}}{x^2} & \text{khi } x \neq 0 \\ 2a - \frac{5}{4} & \text{khi } x = 0 \end{cases}$. Tìm các giá trị thực của tham số a để hàm

 $s \hat{o} f(x)$ liên tục tại x = 0.

A.
$$a = -\frac{3}{4}$$
. **B.** $a = \frac{4}{3}$.

B.
$$a = \frac{4}{3}$$

C.
$$a = -\frac{4}{3}$$
. **D.** $a = \frac{3}{4}$.

D.
$$a = \frac{3}{4}$$
.

Lời giải

Chon D

+ Ta có
$$f(0) = 2a - \frac{5}{4}$$
.

$$+ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sqrt{x^2 + 4} - 2}{x^2} = \lim_{x \to 0} \frac{x^2}{x^2 \left(\sqrt{x^2 + 4} + 2\right)} = \lim_{x \to 0} \left(\frac{1}{\sqrt{x^2 + 4} + 2}\right) = \frac{1}{4}.$$

Hàm số f(x) liên tục tại x = 0 khi $\lim_{x \to 0} f(x) = f(0) \Leftrightarrow 2a - \frac{5}{4} = \frac{1}{4} \Leftrightarrow a = \frac{3}{4}$.

Câu 48. Cho hàm số $f(x) = \begin{cases} \frac{\sqrt{ax^2 + 1 - bx - 2}}{4x^3 - 3x + 1} & \text{khi } x \neq \frac{1}{2}, (a, b, c \in \mathbb{R}). \text{ Biết hàm số liên tục tại } x = \frac{1}{2}. \\ \frac{c}{2} & \text{khi } x = \frac{1}{2}. \end{cases}$

Tính S = abc.

A.
$$S = -36$$
.

B.
$$S = 18$$

B.
$$S = 18$$
. **C.** $S = 36$. **D.** $S = -18$.

D.
$$S = -18$$
.

Chon A

$$\operatorname{Ta c\'o} \frac{\sqrt{ax^2+1}-bx-2}{4x^3-3x+1} = \frac{\left(\sqrt{ax^2+1}\right)^2-\left(bx+2\right)^2}{\left(2x-1\right)^2\left(x+1\right)\left(\sqrt{ax^2+1}+bx+2\right)} = \frac{\left(a-b^2\right)x^2-4bx-3}{\left(2x-1\right)^2\left(x+1\right)\left(\sqrt{ax^2+1}+bx+2\right)}.$$

$$\text{Dể hàm số liên tục tại } x = \frac{1}{2} \Rightarrow \begin{cases} \left(a - b^2\right) x^2 - 4bx - 3 = m \left(2x - 1\right)^2 \\ \sqrt{\frac{a}{4} + 1} + \frac{b}{2} + 2 \neq 0 \end{cases} \\ \Leftrightarrow \begin{cases} m = -3 \\ b = -3 \\ a = -3 \end{cases} .$$

Khi đó
$$\lim_{x \to \frac{1}{2}} \frac{\sqrt{ax^2 + 1} - bx - 2}{4x^3 - 3x + 1} = \lim_{x \to \frac{1}{2}} \frac{-12x^2 + 12x - 3}{(2x - 1)^2 (x + 1) \left(\sqrt{-3x^2 + 1} - 3x + 2\right)}$$

$$= \lim_{x \to \frac{1}{2}} \frac{-3}{(x+1)\left(\sqrt{-3x^2+1} - 3x + 2\right)} = \frac{-3}{\frac{3}{2}} = -2 = \frac{c}{2} \Rightarrow c = -4.$$

Vậy
$$S = abc = -3(-3)(-4) = -36$$
.

Câu 49. Tìm a để hàm số $f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{khi } x \neq 1 \\ \frac{x}{x - 1} & \text{khi } x \neq 1 \end{cases}$ liên tục tại điểm $x_0 = 1$.

A.
$$a = 1$$
.

B.
$$a = 0$$
.

C.
$$a = 2$$
.

D. a = -1.

Lời giải

Chon C

Tập xác định D=R.

$$f(1) = a$$
.

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} (x + 1) = 2.$$

f(x) liên tục tại $x_0 = 1$ khi và chỉ khi $\lim_{x \to 1} f(x) = f(1) \Leftrightarrow a = 2$.

Tìm giá trị thực của tham số m để hàm số $f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{khi } x \neq 2 \\ m & \text{khi } x = 2 \end{cases}$ liên tục tại x = 2.

A m = 3 B. m = 1. C. m = 2. D. m = 0.

A.
$$m = 3$$
.

B.
$$m = 1$$

C.
$$m = 2$$
.

D.
$$m = 0$$
.

Lời giải

Chon A

Ta có:
$$\lim_{x\to 2} \frac{x^2 - x - 2}{x - 2} = \lim_{x\to 2} \frac{(x - 2)(x + 1)}{x - 2} = \lim_{x\to 2} (x + 1) = 3.$$

Hàm số liên tục tại $x=2 \Leftrightarrow \lim_{x\to 2} f(x) = f(2) \Leftrightarrow m=3$.

Câu 51. Để hàm số $f(x) = \begin{cases} \frac{2x^2 - 3x + 1}{2(x - 1)} & khi \quad x \neq 1 \\ m & khi \quad x = 1 \end{cases}$ liên tục tại x = 1 thì giá trị m bằng $khi \quad x = 1$ A. 0,5.

B. 1,5.

C. 1.

Lời giải

Chon A

$$f(1) = m$$
.

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{2x^2 - 3x + 1}{2(x - 1)} = \lim_{x \to 1} \frac{(x - 1)(2x - 1)}{2(x - 1)} = \lim_{x \to 1} \frac{2x - 1}{2} = \frac{1}{2}.$$

Để hàm số f(x) liên tục tại x = 1 thì $\lim_{x \to 1} f(x) = f(1) \Leftrightarrow m = \frac{1}{2}$.

Câu 52. Cho hàm số $f(x) = \begin{cases} \frac{x^2 + x - 2}{x - 1} & \text{khi } x \neq 1 \\ 3m & \text{khi } x = 1 \end{cases}$. Tìm tất cả các giá trị thực của tham số m để hàm số

gián đoạn tại x = 1.

A. $m \neq 2$.

B. $m \ne 1$.

C. $m \neq 2$.

D. $m \ne 3$.

Lời giải

Tập xác định của hàm số là \mathbb{R} .

Hàm số gián đoạn tại x = 1 khi $\lim_{x \to 1} f(x) \neq f(1) \Leftrightarrow \lim_{x \to 1} \frac{x^2 + x - 2}{x - 1} \neq 3m$

$$\Leftrightarrow \lim_{x \to 1} \frac{(x-1)(x+2)}{x-1} \neq 3m \Leftrightarrow \lim_{x \to 1} (x+2) \neq 3m \Leftrightarrow 3 \neq 3m \Leftrightarrow m \neq 1.$$

Tìm tất cả các giá trị của m để hàm số $f(x) = \begin{cases} \frac{\sqrt{1-x} - \sqrt{1+x}}{x} & \text{khi } x < 0 \\ m + \frac{1-x}{1+x} & \text{khi } x \ge 0 \end{cases}$ liên tục tại x = 0.

A.
$$m = 1$$
.

B.
$$m = -2$$

C.
$$m = -1$$

D.
$$m = 0$$
.

Lời giải

Ta có

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(m + \frac{1 - x}{1 + x} \right) = m + 1.$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(\frac{\sqrt{1-x} - \sqrt{1+x}}{x} \right) = \lim_{x \to 0^{-}} \frac{-2x}{x \left(\sqrt{1-x} + \sqrt{1+x} \right)} = \lim_{x \to 0^{-}} \frac{-2}{\left(\sqrt{1-x} + \sqrt{1+x} \right)} = -1.$$

$$f(0) = m + 1$$

Để hàm liên tục tại x = 0 thì $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) = f(0) \Leftrightarrow m+1 = -1 \Rightarrow m = -2$.

Câu 54. Cho hàm số $f(x) = \begin{cases} \frac{e^{-x} - 1}{x} & \text{khi } x \neq 0 \\ \frac{1}{2} & \text{khi } x = 0 \end{cases}$. Tìm giá trị của a để hàm số liên tục tại $x_0 = 0$.

A.
$$a = 1$$
.

B.
$$a = \frac{1}{2}$$

C.
$$a = -1$$
.

B.
$$a = \frac{1}{2}$$
. **C.** $a = -1$. **D.** $a = -\frac{1}{2}$.

Tập xác đinh: $D = \mathbb{R}$.

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{e^{ax} - 1}{x} = \lim_{x \to 0} \frac{e^{ax} - 1}{ax} \cdot a = a.$$

$$f(0) = \frac{1}{2}$$
; hàm số liên tục tại $x_0 = 0$ khi và chỉ khi: $\lim_{x \to 0} f(x) = f(0) \Leftrightarrow a = \frac{1}{2}$.

Câu 55. Cho hàm số $f(x) = \begin{cases} \frac{ax^2 - (a-2)x - 2}{\sqrt{x+3} - 2} & \text{khi } x \neq 1 \\ 8 + a^2 & \text{khi } x = 1 \end{cases}$. Có tất cả bao nhiều giá trị của a để hàm số

liên tục tại x = 1?

A. 1.

B. 0.

C. 3.

D. 2.

Lời giải

Tập xác định: $D = [-3; +\infty)$.

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{ax^2 - (a-2)x - 2}{\sqrt{x+3} - 2}.$$

$$= \lim_{x \to 1} \frac{(x-1)(ax+2)(\sqrt{x+3}+2)}{x-1}.$$

$$= \lim_{x \to 1} (ax+2)(\sqrt{x+3}+2) = 4(a+2).$$

$$f(1) = 8 + a^2$$
.

Hàm số đã cho liên tục tại x = 1 khi $\lim_{x \to 1} f(x) = f(1) \Leftrightarrow 4(a+2) = 8 + a^2 \Leftrightarrow \begin{vmatrix} a = 0 \\ a = 4 \end{vmatrix}$.

Vậy có 2 giá trị của a để hàm số đã cho liên tục tại x = 1.

Câu 56. Giá trị của tham số a để hàm số $y = f(x) = \begin{cases} \frac{\sqrt{x+2}-2}{x-2} & \text{khi } x \neq 2 \\ a+2x & \text{khi } x = 2 \end{cases}$ liên tục tại x = 2.

A. $\frac{1}{4}$.

- $C_{\bullet} \frac{15}{4}$.
- **D.** 4.

Ta có:
$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{\sqrt{x+2}-2}{x-2} = \lim_{x \to 2} \frac{x-2}{(x-2)(\sqrt{x+2}+2)} = \lim_{x \to 2} \frac{1}{\sqrt{x+2}+2} = \frac{1}{4}.$$

Hàm số liên tục tại $x = 2 \Leftrightarrow \lim_{x \to 2} f(x) = f(2) \Leftrightarrow a + 4 = \frac{1}{4} \Leftrightarrow a = -\frac{15}{4}$.

Câu 57. Hàm số $f(x) = \begin{cases} x^2 + 1 & khi \ x \le 1 \\ x + m & khi \ x > 1 \end{cases}$ liên tục tại điểm $x_0 = 1$ khi m nhận giá trị

- **D.** m = 1.

Ta có $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x^2 + 1) = 2$; $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x + m) = 1 + m$. Để hàm số liên tục tại $x_0 = 1$ thì $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x) \Leftrightarrow 2 = m+1 \Leftrightarrow m=1$.

Câu 58. Cho hàm số $f(x) = \begin{cases} \frac{\sqrt{2x+1} - \sqrt{x+5}}{x-4} & \text{khi } x \neq 4 \\ a+2 & \text{khi } x = 4 \end{cases}$. Tìm tất cả các giá trị thực của tham số a

để hàm số liên tục tại $x_0 = 4$.

A.
$$a = \frac{5}{2}$$
.

A.
$$a = \frac{5}{2}$$
. **B.** $a = -\frac{11}{6}$. **C.** $a = 3$. **D.** $a = 2$.

c.
$$a = 3$$

D.
$$a = 2$$

$$\lim_{x \to 4} f(x) = \lim_{x \to 4} \frac{\sqrt{2x+1} - \sqrt{x+5}}{x-4} = \lim_{x \to 4} \frac{x-4}{(x-4)(\sqrt{2x+1} + \sqrt{x+5})} = \lim_{x \to 4} \frac{1}{\sqrt{2x+1} + \sqrt{x+5}} = \frac{1}{6}$$

$$f(4) = a + 2.$$

Hàm số liên tục tại $x_0 = 4$ khi: $\lim_{x \to 4} f(x) = f(4) \Leftrightarrow \frac{1}{6} = a + 2 \Leftrightarrow a = -\frac{11}{6}$.

Câu 59. Tìm tham số thực m để hàm số $y = f(x) = \begin{cases} \frac{x^2 + x - 12}{x + 4} & \text{khi } x \neq -4 \\ mx + 1 & \text{khi } x = -4 \end{cases}$ liên tục tại điểm $x_0 = -4$.

- **A.** m = 4.
- **B.** m = 3.
- **C.** m = 2.
- **D.** m = 5.

Lời giải

Tập xác định: $D = \mathbb{R}$.

Ta có:

$$+ \lim_{x \to -4} f(x) = \lim_{x \to -4} \frac{x^2 + x - 12}{x + 4} = \lim_{x \to -4} \frac{(x - 3)(x + 4)}{x + 4} = \lim_{x \to -4} (x - 3) = -7.$$

$$+ f(-4) = -4m + 1.$$

Hàm số f(x) liên tục tại điểm $x_0 = -4$ khi và chỉ khi $\lim_{x \to -4} f(x) = f(-4) \Leftrightarrow -4m + 1 = -7$ $\Leftrightarrow m=2$.

- Tìm giá trị của tham số m để hàm số $f(x) = \begin{cases} \frac{\sqrt{3x+1}-2}{x-1} & \text{khi } x \neq 1 \\ m & \text{khi } x = 1 \end{cases}$ liên tục tại điểm $x_0 = 1$.
 - **A.** m = 3.
- **B.** m = 1. **C.** $m = \frac{3}{4}$. **D.** $m = \frac{1}{2}$.

Ta có
$$\lim_{x \to 1} \frac{\sqrt{3x+1}-2}{x-1} = \lim_{x \to 1} \frac{3x+1-2^2}{(x-1)(\sqrt{3x+1}+2)} = \lim_{x \to 1} \frac{3}{\sqrt{3x+1}+2} = \frac{3}{4}.$$

Với f(1) = m ta suy ra hàm số liện tục tại x = 1 khi $m = \frac{3}{4}$.

Câu 61. Cho hàm số $f(x) = \begin{cases} \frac{\sqrt{x+3-2}}{x-1} & \text{khi } (x>1) \\ m^2+m+\frac{1}{4} & \text{khi } (x \le 1) \end{cases}$. Tìm tất cả các giá trị của tham số thực m để

(x) liên tục tại x = 1. **A.** $m \in \{0;1\}$. **B.** $m \in \{0;-1\}$. **C.** $m \in \{1\}$. **D.** $m \in \{0\}$. hàm số f(x) liên tục tại x = 1.

Ta có
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{\sqrt{x+3}-2}{x-1} = \lim_{x \to 1^+} \frac{1}{\sqrt{x+3}+2} = \frac{1}{4}; \ f(1) = \lim_{x \to 1^-} f(x) = m^2 + m + \frac{1}{4}.$$

Để hàm số f(x) liên tục tại x = 1 thì $m^2 + m + \frac{1}{4} = \frac{1}{4} \Leftrightarrow \begin{vmatrix} m = -1 \\ m = 0 \end{vmatrix}$.

- **Câu 62.** Tìm a để hàm số liên tục trên \mathbb{R} : $f(x) = \begin{cases} 2x + a & \text{khi } x \le 1 \\ \frac{x^3 x^2 + 2x 2}{x 1} & \text{khi } x > 1. \end{cases}$
 - **A.** a = -2.

Lời giải

- Khi x < 1 thì f(x) = 2x + a là hàm đa thức nên liên tục trên khoảng $(-\infty; 1)$.
- Khi x > 1 thì $f(x) = \frac{x^3 x^2 + 2x 2}{x 1}$ là hàm phân thức hữu tỉ xác định trên khoảng $(1; +\infty)$ nên

liên tục trên khoảng $(1; +\infty)$.

- Xét tính liên tục của hàm số tại điểm x = 1, ta có:
- + f(1) = 2 + a.
- + $\lim_{x\to 1^{-}} f(x) = \lim_{x\to 1^{-}} (2x+a) = 2+a$.

$$+ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x^3 - x^2 + 2x - 2}{x - 1} = \lim_{x \to 1^+} \frac{(x - 1)(x^2 + 2)}{x - 1} = \lim_{x \to 1^+} (x^2 + 2) = 3.$$

• Hàm số f(x) liên tục trên $\mathbb{R} \iff \text{hàm số } f(x)$ liên tục tại x=1

$$\Leftrightarrow \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1) \Leftrightarrow 2a + 1 = 3 \Leftrightarrow a = 1.$$

Câu 63. Tìm tất cả các giá trị thực của m để hàm số $f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & khi \ x \neq 2 \\ m^2 & khi \ x = 2 \end{cases}$ liên tục tại x = 2.

A.
$$m = \sqrt{3}$$
.

B.
$$m = 1$$
.

C.
$$m = \pm \sqrt{3}$$
.

D.
$$m = \pm 1$$

Lời giải

Hàm số
$$f(x)$$
 liên tục tại $\Leftrightarrow \lim_{x\to 2} f(x) = f(2) \Leftrightarrow \lim_{x\to 2} \frac{x^2 - x - 2}{x - 2} = m^2 \Leftrightarrow 3 = m^2 \Leftrightarrow m = \pm \sqrt{3}$.

Câu 64. Tìm *m* để hàm số $f(x) = \begin{cases} \frac{x^2 + 4x + 3}{x + 1} & khi \ x > -1 \\ mx + 2 & khi \ x \le -1 \end{cases}$ liên tục tại điểm x = -1.

A.
$$m = 2$$
.

B.
$$m = 0$$
.

C.
$$m = -4$$

D.
$$m = 4$$
.

Ta có:
$$\lim_{x \to (-1)^+} f(x) = \lim_{x \to (-1)^+} \frac{x^2 + 4x + 3}{x + 1} = \lim_{x \to (-1)^+} \frac{(x+1)(x+3)}{x+1} = \lim_{x \to (-1)^+} (x+3) = 2.$$

$$\lim_{x \to (-1)^{-}} f(x) = \lim_{x \to (-1)^{-}} (mx + 2) = -m + 2.$$

$$f\left(-1\right) = -m + 2.$$

Để hàm số đã cho liên tục tại điểm x = -1 thì

$$\lim_{x \to (-1)^{+}} f(x) = \lim_{x \to (-1)^{-}} f(x) = f(-1) \Leftrightarrow 2 = -m + 2 \Leftrightarrow m = 0.$$

Câu 65. Cho hàm số $f(x) = \begin{cases} \frac{x^3 - 8}{x - 2} & khi \ x \neq 2 \\ 2m + 1 & khi \ x = 2 \end{cases}$. Tìm m để hàm số liên tục tại điểm $x_0 = 2$. **A.** $m = \frac{3}{2}$. **B.** $m = \frac{13}{2}$. **C.** $m = \frac{11}{2}$. **D.** $m = -\frac{1}{2}$.

A.
$$m = \frac{3}{2}$$

B.
$$m = \frac{13}{2}$$

C.
$$m = \frac{11}{2}$$
.

D.
$$m = -\frac{1}{2}$$
.

$$f(2) = 2m + 1.$$

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^3 - 8}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)}{x - 2} = \lim_{x \to 2} (x^2 + 2x + 4) = 12.$$

Hàm số liên tục tại
$$x_0 = 2 \iff f(2) = \lim_{x \to 2} f(x) \iff 2m + 1 = 12 \iff m = \frac{11}{2}$$
.

Câu 66. Cho hàm số $f(x) = \begin{cases} \frac{-x^2 + 2x + 8}{x + 2} & \text{khi } x \neq -2 \\ \frac{1}{x^2 + 2} & \text{khi } x \neq -2 \end{cases}$ ($m \in \mathbb{R}$). Biết hàm số f(x) liên tục tại $x_0 = -2$.

Số giá trị nguyên của m thỏa mãn yêu cầu bài toán là

Lời giải

TXĐ:
$$D = \mathbb{R}$$
; có: $\lim_{x \to -2} f(x) = \lim_{x \to -2} \frac{-x^2 + 2x + 8}{x + 2} = 6, f(2) = 4m^2 - 10m$.

Hàm số liên tục tại
$$x_0 = -2$$
 khi và chỉ khi $4m^2 - 10m = 6 \Leftrightarrow 4m^2 - 10m - 6 = 0 \Leftrightarrow m = -\frac{1}{2}$

Mà m là số nguyên nên m = 3.

Câu 67. Cho hàm số $y = \begin{cases} -x^2 + x + 3 & \text{khi } x \ge 2 \\ 5x + 2 & \text{khi } x < 2 \end{cases}$. Chọn mệnh đề **sai** trong các mệnh đề sau:

- **A.** Hàm số liên tục tại $x_0 = 1$.
- **B.** Hàm số liên tục trên \mathbb{R} .
- C. Hàm số liên tục trên các khoảng $(-\infty; 2), (2; +\infty)$.
- **D.** Hàm số gián đoạn tại $x_0 = 2$.

Lời giải

Chon B

+ Với x > 2, ta có $f(x) = -x^2 + x + 3$ là hàm đa thức

- \Rightarrow hàm số f(x) liên tục trên khoảng $(2; +\infty)$.
- + Với x < 2, ta có f(x) = 5x + 2 là hàm đa thức
- \Rightarrow hàm số f(x) liên tục trên khoảng $(-\infty; 2)$.

+ Tai
$$x = 2$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (-x^{2} + x + 3) = 1$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (5x + 2) = 12$$

- $\Rightarrow \lim_{x \to 2^+} f(x) \neq \lim_{x \to 2^-} f(x) \Rightarrow$ không tồn tại $\lim_{x \to 2} f(x) \Rightarrow$ hàm số gián đoạn tại $x_0 = 2$.
- \Rightarrow Hàm số không liên tục trên \mathbb{R} .

Câu 68. Hàm số nào sau đây liên tục trên \mathbb{R} ?

A.
$$f(x) = \sqrt{x}$$

B.
$$f(x) = x^4 - 4x^2$$
.

A.
$$f(x) = \sqrt{x}$$
. **B.** $f(x) = x^4 - 4x^2$. **C.** $f(x) = \sqrt{\frac{x^4 - 4x^2}{x+1}}$. **D.** $f(x) = \frac{x^4 - 4x^2}{x+1}$.

Lời giải

Chon B

Vì hàm số $f(x) = x^4 - 4x^2$ có dạng đa thức với TXĐ: $D = \mathbb{R}$ nên hàm số này liên tục trên \mathbb{R}

Câu 69. Cho hàm số $f(x) = \begin{cases} \frac{x^2}{x} & \text{khi } x < 1, x \neq 0 \\ 0 & \text{khi } x = 0 \\ \sqrt{x} & \text{khi } x \ge 1 \end{cases}$. Khẳng định nào đúng

- A. Hàm số liên tục tại mọi điểm trừ các điểm thuộc đoạn [0;1].
- **B.** Hàm số liên tục tại mọi điểm trừ điểm x = 0.
- C. Hàm số liên tục tại mọi điểm thuộc \mathbb{R} .
- **D.** Hàm số liên tục tại mọi điểm trừ điểm x = 1.

Tập xác định $D = \mathbb{R}$.

- Nếu $x \neq 0$, $x \neq 1$ thì hàm số y = f(x) liên tục trên mỗi khoảng $(-\infty; 0), (0; 1)$ và $(1; +\infty)$.
- Nếu x = 0 thì f(0) = 0 và $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{x^2}{x} = \lim_{x \to 0^-} x = 0$; $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x^2}{x} = \lim_{x \to 0^+} x = 0$.

Suy ra: $\lim_{x\to 0} f(x) = 0 = f(0)$.

Do đó, hàm số y = f(x) liên tục tại x = 0.

• Nếu x = 1 thì f(1) = 1 và $\begin{cases} \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{x^2}{x} = \lim_{x \to 1^-} x = 1 \\ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \sqrt{x} = 1 \end{cases} \Rightarrow \lim_{x \to 1} f(x) = 1 = f(1).$

Do đó, hàm số y = f(x) liên tục tại x = 1.

Vậy hàm số y = f(x) liên tục trên \mathbb{R} .

- **Câu 70.** Cho hàm số $f(x) = \begin{cases} \sin \pi x & \text{khi } |x| \le 1 \\ x+1 & \text{khi } |x| > 1 \end{cases}$. Mệnh đề nào sau đây là đúng?
 - **A.** Hàm số liên tục trên \mathbb{R} .
 - **B.** Hàm số liên tục trên các khoảng $(-\infty;-1)$ và $(-1;+\infty)$.
 - C. Hàm số liên tục trên các khoảng $(-\infty;1)$ và $(1;+\infty)$.
 - **D.** Hàm số gián đoan tai $x = \pm 1$.

Lời giải

Ta có: $\lim_{x \to 1^+} (x+1) = 2$ và $\lim_{x \to 1^-} \sin \pi x = 0 \Rightarrow \lim_{x \to 1^+} f(x) \neq \lim_{x \to 1^-} f(x)$ do đó hàm số gián đoạn tại x = 1

Turong tự: $\lim_{x \to (-1)^{-}} (x+1) = 0$ và $\lim_{x \to (-1)^{+}} \sin \pi x = 0$

 $\Rightarrow \lim_{x \to (-1)^+} f(x) = \lim_{x \to (-1)^-} f(x) = \lim_{x \to -1} f(x) = f(-1) \text{ do d\'o hàm s\'o liên tục tại } x = -1.$

Với $x \neq \pm 1$ thì hàm số liên tục trên tập xác định.

Vậy hàm số đã cho liên tục trên các khoảng $(-\infty;1)$ và $(1;+\infty)$.

Câu 71. Hàm số nào trong các hàm số dưới đây **không** liên tục trên \mathbb{R} ?

$$\mathbf{A.} \ \ y = |x|.$$

B.
$$y = \frac{x}{x+1}$$
. **C.** $y = \sin x$.

$$\mathbf{C.} \ \ y = \sin x \ .$$

D.
$$y = \frac{x}{|x|+1}$$
.

Lời giải

Tập xác định của hàm số $y = \frac{x}{x+1}$ là $\mathbb{R} \setminus \{1\}$.

Hàm số liên tục trên từng khoảng $(-\infty;1)$ và $(1;+\infty)$ nên hàm số **không** liên tục trên \mathbb{R} .

- Câu 72. Cho hàm số $f(x) = \begin{cases} \sin x & \text{neu } \cos x \ge 0 \\ 1 + \cos x & \text{neu } \cos x < 0 \end{cases}$. Hỏi hàm số f có tất cả bao nhiều điểm gián đoạn trên khoảng (0;2018)?
 - **A.** 2018.
- **B.** 1009.
- **C.** 642.
- **D.** 321.

: 0946798489 TOÁN 11-CHÂN TRỜI SÁNG TẠO Vì f là hàm lượng giác nên hàm số f gián đoạn khi và chỉ khi hàm số f gián đoạn tại x làm

$$\cosh \cos x = 0 \iff x = \frac{\pi}{2} + k\pi \left(k \in \mathbb{Z} \right) \in \left(0; 2018 \right) \iff 0 < \frac{\pi}{2} + k\pi < 2018 \iff 0 < \frac{1}{2} + k < \frac{2018}{\pi}$$

$$\Leftrightarrow -\frac{1}{2} < k < \frac{2018}{\pi} - \frac{1}{2} \Leftrightarrow 0 \le k \le 641 \, .$$

Câu 73. Tìm m để hàm số $y = \begin{cases} \frac{2\sqrt[3]{x} - x - 1}{x - 1}, & x \neq 1 \\ mx + 1, & x = 1 \end{cases}$ liên tục trên \mathbb{R} . **A.** $m = -\frac{4}{3}$. **B.** $m = -\frac{1}{3}$. **C.** $m = \frac{4}{3}$.

A.
$$m = -\frac{4}{3}$$

B.
$$m = -\frac{1}{3}$$

C.
$$m = \frac{4}{3}$$

D.
$$m = \frac{2}{3}$$
.

Chon A

+) Xét $x \ne 1$, hàm số $y = \frac{2\sqrt[3]{x} - x - 1}{x - 1}$ liên tục trên khoảng $(-\infty; 1)$ và $(1; +\infty)$.

+) Xét
$$x = 1$$
, ta có $y(1) = m + 1$ và

$$\lim_{x \to 1} y = \lim_{x \to 1} \frac{2\sqrt[3]{x} - x - 1}{x - 1} = \lim_{x \to 1} \frac{2\left(\sqrt[3]{x} - 1\right) - \left(x - 1\right)}{x - 1} = \lim_{x \to 1} \frac{2}{\sqrt[3]{x^2} + \sqrt[3]{x} + 1} - 1 = \frac{2}{3} - 1 = -\frac{1}{3}.$$

Đề hàm số liên tục tại x = 1 thì $\lim_{x \to 1} y = y(1) \Leftrightarrow m+1 = -\frac{1}{3} \Leftrightarrow m = -\frac{4}{3}$.

Vậy với $m = -\frac{4}{3}$ thì hàm số liên tục trên \mathbb{R} .

 Câu 74. Cho hàm số $f(x) = \begin{cases} \frac{\sqrt[3]{4x} - 2}{x - 2} &, & x \neq 2 \\ ax + 3 &, & x = 2 \end{cases}$ Xác định a để hàm số liên tục trên \mathbb{R} .

 A. a = -1.
 B. $a = \frac{1}{6}$.
 C. $a = \frac{4}{3}$.
 D. $a = -\frac{4}{3}$.

A.
$$a = -1$$
.

B.
$$a = \frac{1}{6}$$
.

C.
$$a = \frac{4}{3}$$
.

D.
$$a = -\frac{4}{3}$$
.

Lời giải

Chon D

Tập xác định của hàm số là $D = \mathbb{R}$.

Nếu $x \ne 2$, ta có $f(x) = \frac{\sqrt[3]{4x} - 2}{x - 2}$. Hàm số $f(x) = \frac{\sqrt[3]{4x} - 2}{x - 2}$ xác định và liên tục trên mỗi khoảng $(-\infty;2)$ và $(2;+\infty)$.

Tai x=2, ta có:

$$f(2) = 2a + 3.$$

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{\sqrt[3]{4x} - 2}{x - 2}$$

$$= \lim_{x \to 2} \frac{\left(\sqrt[3]{4x} - 2\right) \left[\left(\sqrt[3]{4x}\right)^2 + 2\sqrt[3]{4x} + 4\right]}{\left(x - 2\right) \left[\left(\sqrt[3]{4x}\right)^2 + 2\sqrt[3]{4x} + 4\right]}$$

$$= \lim_{x \to 2} \frac{4(x - 2)}{\left(x - 2\right) \left[\left(\sqrt[3]{4x}\right)^2 + 2\sqrt[3]{4x} + 4\right]}$$

$$= \lim_{x \to 2} \frac{4}{\left(\sqrt[3]{4x}\right)^2 + 2\sqrt[3]{4x} + 4}$$

$$= \frac{1}{3}$$

Hàm số liên tục tại x=2 khi và chỉ khi $\lim_{x\to 2} f(x) = f(2) \Leftrightarrow 2a+3=\frac{1}{3} \Leftrightarrow a=-\frac{4}{3}$.

Vậy hàm số liên tục trên \mathbb{R} khi và chỉ khi $a = -\frac{4}{2}$.

Câu 75. Cho hàm số $f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{khi } x \neq 1 \\ m - 2 & \text{khi } x = 1 \end{cases}$. Tìm m để hàm số f(x) liên tục trên \mathbb{R} .

A.
$$m = 1$$
.

B.
$$m = 2$$
.

$$\mathbf{C} \cdot m = 4$$

D.
$$m = -4$$
.

Chon C

Do $\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} (x + 1) = 2$ nên hàm số liên tục tại x = 1 khi

 $\lim_{x\to 1} f(x) = f(1) \Leftrightarrow m-2 = 2 \Leftrightarrow m = 4$. Khi đó hàm số liên tục trên $\mathbb R$.

Câu 76. Tìm m để hàm số $y = f(x) = \begin{cases} x^2 + 2\sqrt{x-2} & khi \ x \ge 2 \\ 5x - 5m + m^2 & khi \ x < 2 \end{cases}$ liên tục trên \mathbb{R} ?

$$\Lambda m = 2 \cdot m = 3$$

A.
$$m = 2; m = 3$$
. **B.** $m = -2; m = -3$. **C.** $m = 1; m = 6$. **D.** $m = -1; m = -6$.

C.
$$m = 1; m = 6$$
.

D.
$$m = -1$$
: $m = -6$.

Lời giải

Chon A

TXĐ: \mathbb{R} .

+ Xét trên $(2;+\infty)$ khi đó $f(x) = x^2 + 2\sqrt{x-2}$.

 $\forall x_0 \in \left(2; +\infty\right): \lim_{x \to x} \left(x_0^2 + 2\sqrt{x_0 - 2}\right) = x_0^2 + 2\sqrt{x_0 - 2} = f\left(x_0\right) \Rightarrow \text{ hàm số liên tục trên }\left(2; +\infty\right).$

+ Xét trên $(-\infty; 2)$ khi đó $f(x) = 5x - 5m + m^2$ là hàm đa thức liên tục trên $\mathbb{R} \Rightarrow$ hàm số liên tục trên $(-\infty;2)$

+ Xét tại $x_0 = 2$, ta có: f(2) = 4.

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} \left(x^{2} + 2\sqrt{x - 2} \right) = 4; \lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \left(5x - 5m + m^{2} \right) = m^{2} - 5m + 10.$$

Để hàm số đã cho liên tục trên \mathbb{R} thì nó phải liên tục tại $x_0 = 2$.

$$\Leftrightarrow \lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{-}} f(x) = f(2) \Leftrightarrow m^{2} - 5m + 10 = 4 \Leftrightarrow m^{2} - 5m + 6 = 0 \Leftrightarrow \begin{bmatrix} m = 2 \\ m = 3 \end{bmatrix}.$$

Câu 77. Cho hàm số $f(x) = \begin{cases} 3x + a - 1 & khi \ x \le 0 \\ \frac{\sqrt{1 + 2x} - 1}{x} & khi \ x > 0 \end{cases}$. Tìm tất cả giá trị thực của a để hàm số đã cho liên

tuc trên $\mathbb R$.

A. a = 1.

B. a = 3.

C. a = 4.

D. a = 2.

Lời giải

Chon D

Hàm số liên tục tại mọi điểm $x \neq 0$ với bất kỳ a.

Với
$$x = 0$$
 Ta có $f(0) = a - 1$;

$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} (3x+a-1) = a-1;$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{\sqrt{1 + 2x} - 1}{x} = \lim_{x \to 0^{+}} \frac{2x}{x \left(\sqrt{1 + 2x} + 1\right)} = \lim_{x \to 0^{+}} \frac{2}{\sqrt{1 + 2x} + 1} = 1;$$

Hàm số liên tục trên \mathbb{R} khi và chỉ khi hàm số liên tục tại $x = 0 \Leftrightarrow a - 1 = 1 \Leftrightarrow a = 2$.

Câu 78. Cho biết hàm số $f(x) = \begin{cases} \frac{x^2 - 3x^2 + 2x}{x(x-2)} & \text{khi } x(x-2) \neq 0 \\ a & \text{khi } x = 0 \\ b & \text{khi } x = 2 \end{cases}$ liên tục trên \mathbb{R} . Tính $T = a^2 + b^2$.

A.
$$T = 2$$
.

R.
$$T = 122$$

$$C_{1}$$
 $T = 101$

D.
$$T = 145$$
.

Lời giả

Chọn A

Vì hàm số f(x) liên tục trên $\mathbb R$ suy ra hàm số cũng liên tục tại x=0 và x=2 . Do đó

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x^3 - 3x^2 + 2x}{x(x-2)} = \lim_{x \to 0} \frac{x(x-1)(x-2)}{x(x-2)} = f(0) \Leftrightarrow \lim_{x \to 0} \frac{(x-1)(x-2)}{x-2} = a \Leftrightarrow a = -1.$$

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^3 - 3x^2 + 2x}{x(x - 2)} = \lim_{x \to 2} \frac{x(x - 1)(x - 2)}{x(x - 2)} = f(2) \iff \lim_{x \to 2} \frac{x(x - 1)}{x} = b \iff b = 1.$$

Vậy
$$T = a^2 + b^2 = 1 + 1 = 2$$
.

Câu 79. Tìm tất cả các giá trị của tham số m để hàm số sau liên tục trên \mathbb{R}

$$f(x) = \begin{cases} \frac{x-1}{\ln x} & khi \quad x > 1\\ m.e^{x-1} + 1 - 2mx^2 & khi \quad x \le 1 \end{cases}$$

A. m = 1.

B. m = -1.

C. $m = \frac{1}{2}$.

D. m = 0.

Lời giải

Tập xác định $D = \mathbb{R}$, f(1) = 1 - m.

Ta thấy hàm số f(x) liên tục trên các khoảng $(-\infty;1)$ và $(1;+\infty)$.

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{x - 1}{\ln x} = 1, \ \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \left(m \cdot e^{x - 1} + 1 - 2mx^{2} \right) = 1 - m.$$

Hàm số f(x) liên tục trên \mathbb{R} khi và chỉ khi hàm số f(x) liên tục tại x = 1

$$\Leftrightarrow \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{-}} f(x) = f(1).$$

$$\Leftrightarrow 1 - m = 1 \Leftrightarrow m = 0$$

Có bao nhiều giá trị thực của tham số m để hàm số $f(x) = \begin{cases} m^2 x^2 & \text{khi } x \le 2 \\ (1-m)x & \text{khi } x > 2 \end{cases}$ liên tục trên \mathbb{R} ?

A. 0.

B. 2.

C. 3.

Lời giải

Ta có hàm số luôn liên tục $\forall x \neq 2$.

Tại
$$x = 2$$
, ta có $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^-} (1 - m)x = (1 - m)2$;
 $\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (m^2 x^2) = 4m^2$; $f(2) = 4m^2$.

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (m^{2}x^{2}) = 4m^{2}; \ f(2) = 4m^{2}$$

Hàm số liên tục tại x = 2 khi và chỉ khi

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} f(x) = f(2) \Leftrightarrow 4m^{2} = (1-m)2 \Leftrightarrow 4m^{2} + 2m - 2 = 0(1)$$

Phương trình (1) luôn có hai nghiệm thực phân biệt. Vậy có hai giá trị của m.

Câu 81. Cho hàm số $f(x) = \begin{cases} \sqrt{x} - m & \text{khi } x \ge 0 \\ mx + 1 & \text{khi } x < 0 \end{cases}$. Tìm tất cả các giá trị của m để f(x) liên tục trên \mathbb{R} .

D. m = -2.

Lời giải

Hàm số f(x) liên tục trên $\mathbb{R} \Leftrightarrow f(x)$ liên tục tại x = 0.

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left(\sqrt{x} - m \right) = -m; \ \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(mx + 1 \right) = 1; \ f(0) = -m.$$

$$f(x)$$
 liên tục tại $x = 0 \Leftrightarrow \lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) = f(0) \Leftrightarrow -m = 1 \Leftrightarrow m = -1$.

Câu 82. Tìm P để hàm số $y = \begin{cases} \frac{x^2 - 4x + 3}{x - 1} & \text{khi } x > 1 \\ 6Px - 3 & \text{khi } x \le 1 \end{cases}$ liên tục trên \mathbb{R} . **A.** $P = \frac{5}{6}$. **B.** $P = \frac{1}{2}$. **C.** $P = \frac{1}{6}$. **D.** $P = \frac{1}{3}$.

Hàm số y = f(x) liên tục trên $\mathbb{R} \implies y = f(x)$ liên tục tại x = 1

$$\Rightarrow \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{-}} f(x) = f(1)$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x^2 - 4x + 3}{x - 1} = \lim_{x \to 1^+} (x - 3) = -2$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (6Px - 3) = 6P - 3$$

$$f(1) = 6P - 3$$

Do đó
$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{-}} f(x) = f(1) \Leftrightarrow 6P - 3 = -2 \Leftrightarrow P = \frac{1}{6}$$
.

Câu 83. Hàm số $f(x) = \begin{cases} ax + b + 1, khi \ x > 0 \\ a\cos x + b\sin x, khi \ x \le 0 \end{cases}$ liên tục trên \mathbb{R} khi và chỉ khi

A.
$$a - b = 1$$
.

B.
$$a - b = -1$$
.

C.
$$a + b = 1$$

D.
$$a + b = 1$$

Lời giải

Khi x < 0 thì $f(x) = a \cos x + b \sin x$ liên tục với x < 0.

Khi x > 0 thì f(x) = ax + b + 1 liên tục với mọi x > 0.

Tại x = 0 ta có f(0) = a.

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (ax + b + 1) = b + 1.$$

$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} (a\cos x + b\sin x) = a.$$

Để hàm số liên tục tại x=0 thì $\lim_{x\to 0^+} f\left(x\right) = \lim_{x\to 0^-} f\left(x\right) = f\left(0\right) \Leftrightarrow a=b+1 \Leftrightarrow a-b=1$.

Câu 84. Cho hàm số $y = \begin{cases} 3x+1 & khi \ x \ge -1 \\ x+m & khi \ x < -1 \end{cases}$, m là tham số. Tìm m để hàm số liên tục trên \mathbb{R} .

A.
$$m = 5$$

B.
$$m = -1$$

c.
$$m = 3$$
.

D.
$$m = -3$$
.

Lời giải

Ta có hàm số liên tục trên các khoảng $(-\infty;-1)$ và $(-1;+\infty)$.

Xét tính liên tục của hàm số tại x = -1.

Có
$$y(-1) = -2 = \lim_{x \to -1^+} y$$
 và $\lim_{x \to -1^-} y = -1 + m$.

Để hàm số liên tục trên $\mathbb R$ thì $y\left(-1\right)=\lim_{x\to-1^+}y=\lim_{x\to-1^-}y\Leftrightarrow -2=-1+m\Leftrightarrow m=-1$.

Câu 85. Tìm tất cả các giá trị thực của m để hàm số $f(x) = \begin{cases} \frac{\sqrt{x+1}-1}{x} & khi & x>0\\ \sqrt{x^2+1}-m & khi & x\leq 0 \end{cases}$ liên tục trên \mathbb{R} .

A.
$$m = \frac{3}{2}$$

A.
$$m = \frac{3}{2}$$
. **B.** $m = \frac{1}{2}$. **C.** $m = -2$. **D.** $m = -\frac{1}{2}$.

C.
$$m = -2$$

D.
$$m = -\frac{1}{2}$$

Lời giải

Khi x > 0 ta có: $f(x) = \frac{\sqrt{x+1-1}}{x}$ liên tục trên khoảng $(0; +\infty)$.

Khi x < 0 ta có: $f(x) = \sqrt{x^2 + 1} - m$ liên tục trên khoảng $(-\infty; 0)$.

Hàm số liên tục trên \mathbb{R} khi và chỉ khi hàm số liên tục tại x = 0.

Ta có:
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sqrt{x+1} - 1}{x} = \lim_{x \to 0^+} \frac{1}{\sqrt{x+1} + 1} = \frac{1}{2}$$
.

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(\sqrt{x^2 + 1} - m \right) = 1 - m = f(0).$$

Do đó hàm số liên tục tại x = 0 khi và chỉ khi $\frac{1}{2} = 1 - m \Leftrightarrow m = \frac{1}{2}$.

Câu 86. Cho hàm số $y = f(x) = \begin{cases} \frac{\sqrt{x^2 + 16} - 5}{x - 3} & \text{khi } x \neq 3 \\ a & \text{khi } x = 3 \end{cases}$. Tập các giá trị của a để hàm số đã cho liên

tục trên ℝ là:

A.
$$\left\{\frac{2}{5}\right\}$$
.

B.
$$\left\{\frac{1}{5}\right\}$$
.

D.
$$\left\{ \frac{3}{5} \right\}$$
.

Lời giải:

Tập xác đinh $D = \mathbb{R}$.

Khi $x \ne 3$ thì $f(x) = \frac{\sqrt{x^2 + 16 - 5}}{x - 3}$ xác định và liên tục trên các khoảng $(-\infty; 3)$ và $(3; +\infty)$.

Khi
$$x = 3$$
 thì $f(3) = a$ và $\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{\sqrt{x^2 + 16} - 5}{x - 3} = \lim_{x \to 3} \frac{x + 3}{\sqrt{x^2 + 16} + 5} = \frac{3}{5}$.

Hàm số đã cho liên tục trên \mathbb{R} khi và chỉ khi nó liên tục tại điểm $x = 3 \Leftrightarrow a = \frac{3}{5}$.

Tìm tất cả các giá trị thực của tham số m để hàm số $f(x) = \begin{cases} \frac{x^2 - 16}{x - 4} & \text{khi } x > 4 \\ mx + 1 & \text{khi } x \le 4 \end{cases}$ liên tục trên

 \mathbb{R} .

A.
$$m = 8$$
 hoặc $m = -\frac{7}{4}$. **B.** $m = \frac{7}{4}$.

c.
$$m = -\frac{7}{4}$$
.

c.
$$m = -\frac{7}{4}$$
. **d. d. d.** $m = -8$ hoặc $m = \frac{7}{4}$.

Lời giải

- *) Với x > 4 thì $f(x) = \frac{x^2 16}{x 4}$ là hàm phân thức nên liên tục trên TXĐ của nó $\Rightarrow f(x)$ liên tục trên $(4; +\infty)$.
- *) Với x < 4 thì f(x) = mx + 1 là hàm đa thức nên liên tục trên $\mathbb{R} \Rightarrow f(x)$ liên tục trên $(-\infty, 4)$.

Do vậy hàm số f(x) đã liên tục trên các khoảng $(4; +\infty)$, $(-\infty; 4)$.

Suy ra: Hàm số f(x) liên tục trên $\mathbb{R} \iff f(x)$ liên tục tại x = 4.

$$\Leftrightarrow \lim_{x \to 4^{+}} f(x) = \lim_{x \to 4^{-}} f(x) = f(4) \Leftrightarrow \lim_{x \to 4^{+}} \frac{x^{2} - 16}{x - 4} = \lim_{x \to 4^{-}} (mx + 1) = 4m + 1 \Leftrightarrow \lim_{x \to 4^{+}} (x + 4) = 4m + 1$$

$$\Leftrightarrow 4m+1=8 \Leftrightarrow m=\frac{7}{4}$$
.

 $\int x^2 + ax + b \text{ khi } x < -5$ **Câu 88.** Nếu hàm số $f(x) = \begin{cases} x+17 \\ khi-5 \le x \le 10 \end{cases}$ liên tục trên \mathbb{R} thì a+b bằng |ax+b+10| khi x > 10

A.
$$-1$$
.

D. 2.

Lời giải

Với x < -5 ta có $f(x) = x^2 + ax + b$, là hàm đa thức nên liên tục trên $(-\infty, -5)$.

Với -5 < x < 10 ta có f(x) = x + 7, là hàm đa thức nên liên tục trên (-5;10).

Với x > 10 ta có f(x) = ax + b + 10, là hàm đa thức nên liên tục trên $(10; +\infty)$.

Để hàm số liên tục trên \mathbb{R} thì hàm số phải liên tục tại x = -5 và x = 10.

Ta có:

$$f(-5) = 12$$
; $f(10) = 17$.

$$\lim_{x \to -5^{-}} f(x) = \lim_{x \to -5^{-}} \left(x^2 + ax + b \right) = -5a + b + 25.$$

$$\lim_{x \to -5^+} f(x) = \lim_{x \to -5^+} (x+17) = 12.$$

$$\lim_{x \to 10^{-}} f(x) = \lim_{x \to 10^{-}} (x+17) = 27.$$

$$\lim_{x \to 10^+} f(x) = \lim_{x \to 10^+} (ax + b + 10) = 10a + b + 10.$$

Hàm số liên tục tại x = -5 và x = 10 khi

$$\begin{cases} 5a+b+25=12\\ 10a+b+10=27 \end{cases} \Leftrightarrow \begin{cases} -5a+b=-13\\ 10a+b=17 \end{cases} \Leftrightarrow \begin{cases} a=2\\ b=-3 \end{cases} \Rightarrow a+b=-1$$

- Câu 89. Cho phương trình $2x^4 5x^2 + x + 1 = 0$ (1). Chọn khẳng định **đúng** trong các khẳng định sau
 - **A.** Phương trình (1) có đúng một nghiệm trên khoảng (-2;1).
 - **B.** Phương trình (1) vô nghiệm.
 - **C.** Phương trình (1) có ít nhất hai nghiệm trên khoảng (0;2).
 - **D.** Phương trình (1) vô nghiệm trên khoảng (-1;1).

Lời giải

Chọn C

Vì ta có:
$$\begin{cases} f(0) = 1 \\ f(1) = -1 \\ f(2) = 15 \end{cases}$$

- Câu 90. Phương trình nào dưới đây có nghiệm trong khoảng (0;1)

 - **A.** $2x^2 3x + 4 = 0$. **B.** $(x-1)^5 x^7 2 = 0$.
 - **C.** $3x^4 4x^2 + 5 = 0$. **D.** $3x^{2017} 8x + 4 = 0$.

Lời giải

Xét hàm số $f(x) = 3x^{2017} - 8x + 4$.

Hàm số liên tục trên đoạn [0;1] và $f(0).f(1) = 4.(-1) = -4 \implies f(0).f(1) < 0$.

Vậy phương trình $3x^{2017} - 8x + 4 = 0$ có nghiệm trong khoảng (0,1).

Câu 91. Cho phương trình $4x^4 + 2x^2 - x - 3 = 0$ (1). Mênh đề nào dưới đây đúng?

- **A.** Phương trình (1) vô nghiệm trên khoảng (-1;1).
- **B.** Phương trình (1) có đúng một nghiệm trên khoảng (-1;1).
- **C.** Phương trình (1) có đúng hai nghiệm trên khoảng (-1;1).
- **D.** Phương trình (1) có ít nhất hai nghiệm trên khoảng (-1,1).

Lời giả

Xét $f(x) = 4x^4 + 2x^2 - x - 3 = 0$ trên khoảng [-1;1].

Ta có f(x) liên tục trên đoạn [-1;1].

$$f(-1) = 4$$
, $f(0) = -3$, $f(1) = 2 \Rightarrow f(-1).f(0) < 0$, $f(1).f(0) < 0$.

Như vậy phương trình f(x) = 0 có hai nghiệm trong khoảng (-1;1).

Mặt khác $f'(x) = 6x^3 + 4x - 1$. Ta có f'(-1) = -11, $f'(1) = 9 \Rightarrow f'(-1).f'(1) < 0$. Do đó phương trình f'(x) = 0 có nghiệm trong khoảng (-1;1).

 $f''(x) = 18x^2 + 4 > 0$ với $\forall x \in (-1;1)$ nên f'(x) là hàm số đồng biến trên khoảng $(-1;1) \Rightarrow$ phương trình f'(x) = 0 có duy nhất nghiệm trên khoảng (-1;1). Do đó f(x) = 0 có tối đa hai nghiệm trên khoảng (-1;1).

Vậy phương trình (1) có đúng hai nghiệm trên khoảng (-1;1).

Câu 92. Phương trình $3x^5 + 5x^3 + 10 = 0$ có nghiệm thuộc khoảng nào sau đây?

A.
$$(-2;-1)$$
.

B.
$$(-10;-2)$$
.

D.
$$(-1;0)$$
.

gyith Hide Lời giải

Chon A

Đặt
$$f(x) = 3x^5 + 5x^3 + 10$$

f(x) liên tục trên \mathbb{R} nên f(x) liên tục trên [-2;-1] (1)

Ta có:
$$\begin{cases} f(-2) = -126 \\ f(-1) = 2 \end{cases}$$

Suy ra
$$f(-2).f(-1) = -126.2 = -252 < 0$$
 (2)

Từ (1) và (2) suy ra f(x) = 0 có nghiệm thuộc khoảng (-2;-1).

Câu 93. Cho phương trình $2x^3 - 8x - 1 = 0$ (1). Khẳng định nào **sai**?

- **A.** Phương trình không có nghiệm lớn hơn 3.
- **B.** Phương trình có đúng 3 nghiệm phân biệt.
- ${\bf C.}$ Phương trình có $\,2\,$ nghiệm lớn hơn $\,2\,$.
- **D.** Phương trình có nghiệm trong khoảng $\left(-5;-1\right)$.

Lời giải

Chọn C

Hàm số $f(x) = 2x^3 - 8x - 1$ liên tục trên \mathbb{R} .

Do f(-5) = -211, f(-1) = 5 > 0, f(2) = -1 < 0, f(3) = 29 > 0 nên phương trình có ít nhất 3 nghiệm trên (-5;-1), (-1;2), (2;3). Mà phương trình bậc ba có tối đa 3 nghiệm nên phương trình có đúng 3 nghiệm trên \mathbb{R} . Do đó \mathbb{C} sai.

Câu 94. Cho hàm số y = f(x) liên tục trên đoạn [a;b] và thỏa mãn f(a) = b, f(b) = a với a,b > 0, $a \neq b$. Khi đó phương trình nào sau đây có nghiệm trên khoảng (a;b).

A.
$$f(x) = 0$$
.

B.
$$f(x) = x$$
.

C.
$$f(x) = -x$$
.

D.
$$f(x) = a$$
.

Lời giải

Chon B

Hàm số y = f(x) - x liên tục trên đoạn [a;b].

$$\lceil f(a) - a \rceil \lceil f(b) - b \rceil = (b - a)(a - b) = -(a - b)^{2} < 0.$$

Suy ra: phương trình f(x) = x có nghiệm trên khoảng (a;b).

Câu 95. Cho số thực a, b, c thỏa mãn $\begin{cases} -8+4a-2b+c>0\\ 8+4a+2b+c<0 \end{cases}$. Số giao điểm của đồ thị hàm số

 $y = x^3 + ax^2 + bx + c$ và trục Ox là

A. 2.

B. 0.

C. 3.

D. 1.

Lời giải

Chọn C

Đặt
$$f(x) = x^3 + ax^2 + bx + c$$
. Khi đó
$$\begin{cases} f(2) = 8 + 4a + 2b + c < 0 \\ f(-2) = -8 + 4a - 2b + c > 0 \end{cases}$$

 $f\left(x
ight)$ là hàm đa thức liên tục trên $\mathbb R$.

 $\begin{cases} f(2) < 0 \\ f(-2) > 0 \end{cases} \Rightarrow f(-2).f(2) < 0 \Rightarrow \text{ d\`o thị hàm số } y = f(x) \text{ cắt trục } Ox \text{ tại ít nhất một điểm trong}$ khoảng (-2;2).

$$\begin{cases} f(2) < 0 \\ \lim_{x \to +\infty} f(x) = +\infty \end{cases} \Rightarrow \text{d\"o thị hàm số } y = f(x) \text{ cắt trục } Ox \text{ tại ít nhất một điểm trong khoảng} \\ (2; +\infty).$$

$$\begin{cases} f\left(-2\right) > 0 \\ \lim_{x \to -\infty} f\left(x\right) = -\infty \end{cases} \Rightarrow \text{d\"o thị hàm số } y = f\left(x\right) \text{ cắt trục } Ox \text{ tại ít nhất một điểm trong khoảng } \left(-\infty; -2\right).$$

Mà hàm số f(x) là hàm bậc ba nên đồ thị của nó cắt trục Ox tối đa tại 3 điểm.

Vậy đồ thị hàm số y = f(x) cắt trục Ox tại đúng 3 điểm.

Câu 96. Cho các số thực a, b, c thỏa mãn $\begin{cases} a+c>b+1 \\ a+b+c+1<0 \end{cases}$. Tìm số giao điểm của đồ thị hàm số $y = x^3 + ax^2 + bx + c$ và trục Ox.

Blog: Nguyễn Bảo Vương: https://www.nbv.edu.vn/

A. 0.

B. 1.

C. 2

D. 3.

Lời giải

Vì hàm số đã cho là hàm đa thức bậc ba nên đồ thị hàm số liên tục trên \mathbb{R} và số giao điểm của đồ thị hàm số với trục Ox nhiều nhất là 3.

Theo đề bài ta có $\lim_{x \to \infty} y = -\infty$, $\lim_{x \to \infty} y = +\infty$

$$y(-1) = a+c-b-1 > 0, y(1) = a+b+c+1 < 0,$$

Do đó hàm số đã cho có ít nhất một nghiệm trên mỗi khoảng $(-\infty;-1)$, (-1;1), $(1;+\infty)$.

Từ đó suy ra số giao điểm cần tìm là 3.

Theo dõi Fanpage: Nguyễn Bảo Vương 🏲 https://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương Fhttps://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỆU TOÁN) * https://www.facebook.com/groups/703546230477890/

Án sub kênh Youtube: Nguyễn Vương

https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: https://www.nbv.edu.vn/

Aguja Bio Vione