КРАТЧАЙШИЕ ПУТИ В ГРАФАХ

1. ЦЕЛЬ РАБОТЫ

Изучить и исследовать алгоритмы нахождения кратчайших путей между вершинами графа, получить представление об их использовании при решении практических задач.

2. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

2.1. Постановка задачи

Пусть дан граф $G = (X, \Gamma)$ дугам которого приписаны веса (стоимости), задаваемые матрицей $C = [c_{ii}]$. Задача о кратчайшем пути состоит в нахождении кратчайшего пути от заданной начальной вершины $s \in X$ до заданной конечной вершины $t \in X$, при условии, что такой путь существует, т.е. при условии $t \in R(s)$. Здесь R(s) множество, достижимое из вершины s. Элементы c_{ii} матрицы весов Cбыть положительными, отрицательными ΜΟΓΥΤ или нулями. Единственное ограничение состоит в том, чтобы в G не было циклов с отрицательным суммарным весом. Если такой цикл все же существует и x_i - некоторая его вершина, то, двигаясь от s к x_i , обходя затем цикл достаточно большое число раз и попадая, наконец, в t, мы получим путь со сколь угодно малым весом, означающим, что кратчайшего пути не существует.

Следующие задачи являются обобщениями сформулированной выше задачи о кратчайшем пути.

- 1. Для заданной начальной вершины s найти кратчайшие пути между s и всеми другими вершинами $x_i \in X$.
- 2. Найти кратчайшие пути между всеми парами вершин.

На практике часто требуется найти не только кратчайший путь, но также второй, третий и т.д. кратчайшие пути в графе. Располагая этими результатами, можно решить, какой путь выбрать в качестве наилучшего (указанный подход полезен при использовании таких критериев, которые являются субъективными по своей природе или не могут быть непосредственно включены в алгоритм).

2.2. Алгоритм Дейкстры (случай неотрицательной матрицы весов)

Наиболее эффектный алгоритм решения задачи о кратчайшем (s-t)-пути первоначально дал Дейкстра. Этот метод основан на приписывании вершинам временных пометок, причем пометка вершины дает верхнюю границу длины пути от s к этой вершине. Значения пометок постепенно уменьшаются с помощью некоторой итерационной процедуры, и на каждом шаге итерации одна из временных пометок становится постоянной. Последнее указывает на то, что пометка уже не является верхней границей, а дает точную длину кратчайшего пути от s к рассматриваемой вершине.

Описание алгоритма Дейкстра:

Пусть $l(x_i)$ - пометка вершины x_i .

Шаг 1. Положить l(s)=0 и считать эту пометку постоянной. Положить $l(x_i)=\infty$ для всех $x_i\neq s$ и считать эти пометки временными. Положить p=s.

Шаг 2. Для всех $x_i \in \Gamma(p)$, пометки которых временные, изменить пометки в соответствии со следующим выражением:

$$l(x_i) = \min[l(x_i), l(p) + c(p, x_i)]$$
(1.1)

Шаг 3. Среди всех вершин с временными пометками найти такую, для которой $l(x_i^*) = \min[l(x_i)]$.

Шаг 4. Считать пометку вершины x_i^* постоянной и положить $p = x_i^*$.

Шаг 5.

- 1. Если p = t, то l(p) является длиной кратчайшего пути. Если $p \neq t$, перейти к шагу 2 (для случая поиска пути от s к t.)
- 2. Если все вершины отмечены как постоянные, то эти пометки дают длины кратчайших путей. Если некоторые пометки являются временными перейти к шагу 2 (для случая поиска путей от s ко всем остальным вершинам).

Как только длины кратчайших путей от s будут найдены, то сами пути можно получить при помощи рекурсивной процедуры с использованием соотношения (1.2). Так как вершина x'_i непосредственно предшествует вершине x_i в кратчайшем пути от s к x_i , то для любой вершины x_i соответствующую вершину x'_i можно найти как одну из оставшихся вершин, для которой

$$l(x'_i) + c(x'_i, x_i) = l(x_i). (1.2)$$

Если кратчайший путь от s до любой вершины x_i является единственным, то дуги (x_i^i, x_i^i) этого кратчайшего пути образуют ориентированное дерево с корнем s. Если существует несколько "кратчайших" путей от s к какой-либо другой вершине, то при некоторой фиксированной вершине x_i^i соотношение (2) будет выполняться для более чем одной вершины x_i . В этом случае выбор может быть либо произвольным (если нужен какой-то один кратчайший путь между s и x_i^i), либо таким, что рассматриваются все дуги (x_i^i, x_i^i) , входящие в какой-либо из кратчайших путей, и при этом совокупность всех таких дуг образует не ориентированное дерево, а общий граф, называемый базой относительно s.

Пример

Рассмотрим граф G, изображенный на рис. 1.1, где каждое неориентированное ребро рассматривается как пара противоположно ориентированных дуг равного веса. Матрица весов C приведена ниже.

Рис. 1.1. Граф *G*.

Требуется найти все кратчайшие пути от вершины x_1 ко всем остальным вершинам. Постоянные пометки будем снабжать знаком +, остальные пометки рассматриваются как временные.

Воспользуемся алгоритмом Дейкстры.

Шаг 1.
$$l(x_1) = 0^+$$
, $l(x_i) = \infty \ \forall x_i \neq x_1$, $p = x_1$.

Первая итерация

Шаг 2. $\Gamma(p) = \Gamma(x_1) = \{x_2, x_7, x_8, x_9\}$ - все пометки временные. Возьмем сначала x_2 . Из (1.1) получаем

$$l(x_2) = \min[\infty, 0^+ + 12] = 12$$
,

аналогично $l(x_7) = 5$, $l(x_8) = 2$, $l(x_9) = 10$.

Шаг 3. min
$$\begin{bmatrix} 12, 5, 2, 10, & \infty \\ x_2 & x_7 & x_8 & x_9 & x_3, x_4, x_5, x_6 \end{bmatrix} = 2$$
 соответствует x_8 .

Шаг 4. x_8 получает постоянную пометку $l(x_8) = 2^+$, $p = x_8$.

Шаг 5. Не все вершины имеют постоянные пометки, поэтому переходим к шагу 2. Пометки в начале следующей итерации показаны на рис. 1.2(a).

Вторая итерация

Шаг 2. $\Gamma(p) = \Gamma(x_8) = \{x_5, x_6, x_9\}$ - все пометки временные. Из соотношения (1.1) имеем

$$l(x_5) = \min[\infty, 2^+ + 24] = 26,$$

аналогично $l(x_6)=13$, $l(x_9)=9$. Пометки изображены на рис. 1.2(б).

Шаг 3. min
$$\begin{bmatrix} 12,26,13,5,9,\infty \\ x_2 & x_5 & x_6 & x_7 & x_9 & x_3,x_4 \end{bmatrix} = 5$$
 соответствует x_7 .

Шаг 4. x_7 получает постоянную пометку $l(x_7) = 5^+$, $p = x_7$.

Шаг 5. Перейти к шагу 2.

Третья итерация

Шаг 2. $\Gamma(p) = \Gamma(x_7) = \{x_2, x_4, x_6, x_9\}$ - из соотношения (1.1) получаем

$$l(x_2) = \min[12, 5^+ + 4] = 9,$$

и аналогично $l(x_4)=10$, $l(x_6)=13$, $l(x_9)=9$.

Шаг 3. min
$$\begin{bmatrix} 9,10,26,13,9,\infty\\ x_2 & x_4 & x_5 & x_6 & x_9 & x_3 \end{bmatrix}$$
 = 9 соответствует x_2 .

Шаг 4. x_2 получает постоянную пометку $l(x_2) = 9^+$, $p = x_2$.

Шаг 5. Перейти к шагу 2.

Четвертая итерация

Шаг $\bar{2}$. $\Gamma(p) = \Gamma(x_2) = \{x_3, x_7, x_9\}$ - не все пометки временные, поэтому из соотношения (1.1) получаем

$$l(x_3) = \min[\infty, 9^+ + 14] = 23$$
,

и аналогично $l(x_9) = 9$.

Шаг 3. min
$$\begin{bmatrix} 23,10,26,13,9\\ x_3 & x_4 & x_5 & x_6 & x_9 \end{bmatrix} = 9$$
 соответствует x_9 .

Шаг 4. x_9 получает постоянную пометку $l(x_9) = 9^+$, $p = x_9$.

Шаг 5. Перейти к шагу 2.

Пятая итерация

Шаг 2. $\Gamma(p) = \Gamma(x_9) = \{x_2, x_6, x_7, x_8\}$ - не все пометки временные, поэтому из соотношения (1.1) получаем

$$l(x_6) = \min[13, 9^+ + 10] = 13.$$

Шаг 3. min
$$\begin{bmatrix} 23,10,26,13\\ x_3 & x_4 & x_5 & x_6 \end{bmatrix} = 10$$
 соответствует x_4 .

Шаг 4. x_4 получает постоянную пометку $l(x_4) = 10^+$, $p = x_4$.

Шаг 5. Перейти к шагу 2.

Шестая итерация

Шаг 2. $\Gamma(p) = \Gamma(x_4) = \{x_3, x_5, x_6\}$ - все пометки временные, из соотношения (1.1) получаем

$$l(x_3) = \min[23, 10^+ + 20] = 23,$$

и аналогично $l(x_5)=12$, $l(x_6)=13$.

Шаг 3. min
$$\begin{bmatrix} 23,12,13 \\ x_3 & x_5 & x_6 \end{bmatrix} = 12$$
 соответствует x_5 .

Шаг 4. x_5 получает постоянную пометку $l(x_5) = 12^+$, $p = x_5$.

Шаг 5. Перейти к шагу 2.

Седьмая итерация

Шаг 2. $\Gamma(p) = \Gamma(x_5) = \{x_4, x_6\}$ - не все пометки временные, поэтому из соотношения (1.1) получаем

$$l(x_6) = \min[13, 12^+ + 8] = 13.$$

Шаг 3. min
$$\begin{bmatrix} 23,13 \\ x_3 & x_6 \end{bmatrix} = 13$$
 соответствует x_6 .

Шаг 4. x_6 получает постоянную пометку $l(x_6) = 13^+$, $p = x_6$.

Шаг 5. Перейти к шагу 2.

Восьмая итерация

Шаг 2. $\Gamma(p) = \Gamma(x_6) = \{x_3, x_5, x_8, x_9\}$ - не все пометки временные, поэтому из соотношения (1.1) получаем

$$l(x_3) = \min[23, 13^+ + 25] = 23.$$

Шаг 3.
$$\min \begin{bmatrix} 23 \\ x_3 \end{bmatrix} = 23$$
 соответствует x_3 .

Шаг 4. x_3 получает постоянную пометку $l(x_6) = 23^+$, $p = x_3$.

Шаг 5. Все вершины имеют постоянные пометки. Конец работы алгоритма. Пометки полученные в результате работы алгоритма показаны на рис. 1.2(в).

Найдем кратчайший путь между вершиной x_2 и начальной вершиной x_1 , последовательно используя соотношение (1.2). Таким образом, полагая $x_i = x_2$, находим вершину x'_2 , непосредственно предшествующую x_2 в кратчайшем пути от x_1 к x_2 : вершина x'_2 должна удовлетворять соотношению

$$l(x'_2)+c(x'_2,x_2)=l(x_2)=9.$$

Единственной такой вершиной является x_7 . Далее, применяем второй раз соотношение (1.2), беря $x_i = x_7$; получаем вершину x'_7 , непосредственно предшествующую x_7 в кратчайшем пути от x_1 к x_2 . Вершина x'_7 удовлетворяет соотношению

$$l(x'_7)+c(x'_7,x_7)=l(x_7)=5.$$

Единственной такой вершиной является x_1 и поэтому кратчайший путь от x_1 к x_2 есть (x_1, x_7, x_2) .

 x_1 - база, дающая все кратчайшие пути от x_1 , представляет собой дерево, изображенное жирными линиями на рис. 1.2 (в).

Рис. 1.2. (а) Пометки в конце 1-й итерации. (б) Пометки в конце шага 2 на 2-й итерации. (в) Окончательные пометки вершин и x_1 - база.