# Control Systems

# G V V Sharma\*

### **CONTENTS**

#### 1 Frequency Response Analysis

| 1 | E D A A                                     |                                     | 1                     | 1.1 Polar Plot                                                                                                                                                                |
|---|---------------------------------------------|-------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Frequency Response Analysis  1.1 Polar Plot |                                     | 1                     | 1.2 Direct and Inverse Polar Plot                                                                                                                                             |
|   | 1.1<br>1.2                                  | Polar Plot                          | 1                     | 1.3 Bode Plot                                                                                                                                                                 |
| 2 | 1.3<br>1.4<br><b>Stabil</b><br>2.1<br>2.2   | Bode Plot                           | 1<br>1<br>1<br>1<br>1 | <ul> <li>1.4 Transient Response from Bode Plot</li> <li>2 Stability in Frequency Domain</li> <li>2.1 Nyquist Criterion</li> <li>2.2 Nyquist Criterion</li> <li>2.3</li> </ul> |
|   | 2.3<br>2.4<br>2.5<br>2.6                    | Nyquist and Routh-Hurwitz . Nyquist | 1<br>1<br>1<br>1      | <ul> <li>2.4 Nyquist and Routh-Hurwitz</li> <li>2.5 Nyquist</li> <li>2.6 Nyquist</li> <li>3 Drawy v Eppoyrycy Downy</li> </ul>                                                |
| 3 | Design in Frequency Domain                  |                                     | 1                     | 3 Design in Frequency Domain                                                                                                                                                  |
|   | 3.1<br>3.2<br>3.3<br>3.4                    | Lag Compensator Lead Compensator    | 1<br>1<br>1<br>1      | <ul><li>3.1</li><li>3.2</li><li>3.3 Lag Compensator</li><li>3.4 Lead Compensator</li></ul>                                                                                    |
|   | 3.5<br>3.6                                  | Compensator for Overshoot .         | 1 3                   | 3.5 Compensator for Overshoot                                                                                                                                                 |
|   | 3.7<br>3.8<br>3.9<br>3.10                   | Lead Compensator                    | 3<br>3<br>3<br>3      | 3.1. For a unity feedback system given below refer, 3.5.1, with $G(s) = \frac{K}{s(s+5)(s+11)}$ (3.1.1)                                                                       |
| 4 |                                             | Controller Design                   | 3 3                   | S(s+5)(s+11) $Y(s)$                                                                                                                                                           |

Abstract—The objective of this manual is to introduce control system design at an elementary level.

Download python codes using

4.2

svn co https://github.com/gadepall/school/trunk/ control/ketan/codes

\*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.



Fig. 3.5.1

Find the value of the gain, K, of the uncompensated system operating at 30% overshoot.

#### **Solution:**

The damping ratio  $\zeta$  is given by:

$$\zeta = -\frac{\ln \frac{\%OS}{100}}{\sqrt{\pi^2 + \ln \frac{\%OS}{100}^2}}$$
(3.1.2)

Therefore, solving the above equation with %OS = 30, we get,

$$\zeta = 0.358$$
 (3.1.3)

Further, we need to find the point on the root locus which crosses the 0.358 damping ratio line.

Let this point be  $-\sigma_d + j\omega_d$ , where  $\sigma_d$  is the exponential damping frequency and  $\omega_d$  is the damped frequency of oscillation.

And the relation between  $\sigma_d$  and  $\omega_d$  is given by,

$$\omega_d = \sigma \tan(\arccos \zeta)$$
 (3.1.4)

where,

$$\sigma_d = \zeta \omega_n \tag{3.1.5}$$

$$\omega_d = \omega_n \sqrt{1 - \zeta^2} \tag{3.1.6}$$

 $\omega_n$  is the natural frequency.

Now, by solving the below equation and equating the real and imaginary parts to zero,

$$1 + G(-\sigma_d + i\omega_d) = 0 (3.1.7)$$

We get,

$$\sigma_d = 1.464$$
 (3.1.8)

$$\omega_d = 3.818 \tag{3.1.9}$$

$$Gain, K = 218.6$$
 (3.1.10)

3.2. Evaluate the performance in terms of peak time and settling time as well as find  $K_{\nu}$  of the uncompensated system.

#### **Solution:**

The peak time,  $T_p$  is given by,

$$T_p = \frac{\pi}{\omega_d} \tag{3.2.1}$$

And, settling time is given by,

$$T_s = \frac{4}{\sigma_d} \tag{3.2.2}$$

So, we get,

$$T_p = 0.823 \tag{3.2.3}$$

$$T_s = 2.732$$
 (3.2.4)

$$K_{v} = \lim_{s \to 0} sG(s) \tag{3.2.5}$$

$$\lim_{s \to 0} \left( \frac{K}{(s+5)(s+11)} \right) = \frac{218.6}{(5)(11)}$$
 (3.2.6)

$$\implies K_{v} = 3.975$$
 (3.2.7)

- 3.3. Design a lag-lead compensator to:
  - a) Decrease the peak time by a factor of 2
  - b) Decrease the percent overshoot by a factor of 2
  - c) Improve the steady state error by a factor of 30

#### **Solution:**

**Lead Design:** Using the required specifications, we can calculate the damping ratio and the natural frequency, Using eq. 3.1.2, we get,

$$\zeta = 0.517 \tag{3.3.1}$$

And,

$$\omega_d = \frac{\pi}{T_p} = \omega_n \sqrt{1 - \zeta^2} = 7.634.$$
 (3.3.2)

Hence,  $\omega_n = 8.919$ .

Thus, the desired pole is located at,

Refer figure 3.5.2 for clarification.

$$-\zeta\omega_n + j\omega_n \sqrt{1 - \zeta^2} = -4.61 + j7.634$$
(3.3.3)

Let us now assume a lead compensator zero at -5. The summation of the system's original poles and lead compensator zero to the design point is -171.2°. Thus, the compensator pole must contribute  $171.2^{\circ}$  -  $180^{\circ}$  =  $-8.8^{\circ}$ .

$$\tan(8.8^\circ) = \frac{7.634}{p_0 - 4.61} \tag{3.3.4}$$

Hence,  $p_c = 53.92$ .

Therefore, the compensated open-loop transfer



Fig. 3.5.2



Fig. 3.5.3

4 PID Controller Design

function is,

$$\frac{K}{s(s+11)(s+53.92)} \tag{3.3.5}$$

3.6

3.8 3.9

3.10

4.1 PD

4.2 PID

(3.3.7)

3.7 Lead Compensator

Evaluating the gain for this function at the desired pole, we get K = 4430.

## Lag Design:

The lead compensated  $K_v = 7.469$ .

We need an improvement over the lead compensated system of,

 $\implies$  = 15.97

$$\frac{(30)(3.975)}{7.469} = \frac{119.25}{7.469} \tag{3.3.6}$$

$$K_{v} = \lim_{s \to 0} sG(s)$$
 (3.3.8)

Choose  $p_c$  (compensator pole) = 0.001, we get  $z_c$  (compensator zero) = 0.001597. Thus, the compensator is given by,

$$G_{lag}(s) = \frac{s + 0.01597}{s + 0.001}$$
 (3.3.9)

So, the final compensated open loop transfer function is,

$$C(s)G(s) = \frac{4430(s + 0.01597)}{s(s + 11)(s + 53.92)(s + 0.001)}$$
(3.3.10)

Plot the graph after adding a lag-lead compensator.

#### **Solution:**

See Fig. 3.5.3 generated by

codes/ep18btech11016/ep18btech11016.py