第8周作业

董仕强

Monday 25th November, 2024

0 说明

可以将作业中遇到的问题标注在此. 如有, 请补充.

目录

0	<mark>说明</mark>	0
1	Problem 1	1

1 PROBLEM 1

1 Problem 1

记 $f(x) = x^3 + bx^2 + cx + d$ 是有理系数多项式 $(b, c, d \in \mathbb{Q})$.

视个人情况完成 $\{1,2\}$. 完成 $\{3,5,7\}$ 或 $\{4,6,8\}$, 这两组题是对称的.

问题 1.1. 数域是什么?

解答 设 P 是由一些复数构成的集合, 其中包括 0 和 1. 如果 P 中的任何两个数 (可以相同) 的和, 差, 积, 商 (除数不为 0) 仍是 P 中的数, 则称 P 是一个数域.

问题 1.2. 假设 f(x) 在 \mathbb{Q} 上无法因式分解. 任取多项式的一根 $x_0 \in \mathbb{C}$, 证明三维空间 \mathbb{Q} — 线性空间

$$V = \{r + sx_0 + tx_0^2 \mid r, s, t \in \mathbb{Q}\}$$
(1.1)

是一个数域.

证明. 容易验证 V 是线性空间, 因此仅验证对乘除封闭. 对乘法,

$$(r_1 + s_1 x_0 + t_1 x_0^2)(r_2 + s_2 x_0 + t_2 x_0^2) = C_1 + C_2 x_0 + C_3 x_0^2 + C_4 x_0^3 + C_5 x_0^4 \quad (C_i \in \mathbb{Q})$$

再利用 $x_0^3 = -(bx_0^2 + cx_0 + d)$ 降次即可, 且系数是有理数经有限次加减乘法得到, 仍为有理数. 对除法,

先考虑将 V 中的元素 $v = r + sx_0 + tx_0^2$ 视作有理数的向量 $(r, s, t) \in \mathbb{Q}^3$.

取 V 中的元素 $v \notin \mathbb{Q}$, 由于 V 的维数是 3, 因此 $\{1,v,v^2,v^3\}$ 必定关于域 \mathbb{Q} 线性相关. 即存在不全为 0 的数 a_0,a_1,a_2,a_3 使得 $g(v)=a_0+a_1v+a_2v^2+a_3v^3=0$

不妨设 q 无法分解成真因子的乘积, 即 $q(0) \neq 0$, 那么

$$v^{-1} = \frac{a_1 + a_2 v + a_3 v^2}{-a_0} \in V$$

完证 毕明

问题 1.3. 取定 V 的一组 $\mathbb{Q}-$ 基 $B=(v_1,v_2,v_3)$. 对任意 $\lambda\in V$, 存在矩阵 $M_\lambda^B\in\mathbb{Q}^{3\times 3}$ 使得

$$\lambda \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = M - \lambda^B \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \tag{1.2}$$

若另取一组基 $B' = (v'_1, v'_2, v'_3)$,同样可定义 $\lambda \mapsto M_{\lambda}^{B'}$. 试证明: $\det(M_{\lambda}^B) = \det(M_{\lambda}^{B'})$.换言之, $\det(M_{\lambda})$ 不依赖基的选取. 1 PROBLEM 1

证明. $\diamondsuit X = (v_1 \quad v_2 \quad v_3)^T$, 即

$$\lambda X = MX$$

$$\lambda X' = M'X'$$

. 由于 $X, X' \neq 0$, 有

$$\det(\lambda I - B) = \det(\lambda I - M') = 0$$

这个两个方程是与 X 无关的. 也就是说 λ 是下面两个方程的根

$$\lambda^3 - tr(B)\lambda^2 + C\lambda - \det(B) = 0$$

$$\lambda^3 - tr(B')\lambda^2 + C'\lambda - \det(B') = 0$$

做差并带入 λ 可以得到关于 x_0 的二次有理方程, 结合 f 不能因式分解, 因此做差得到的只能是恒等式.

因此
$$tr(B) = r(B')$$
, $\det(B) = \det(B')$.

问题 1.4. 仍假定 f(x) 在 \mathbb{Q} 上无法因式分解. 记 $\{x_1, x_2, x_3\}$ 是 f 在 \mathbb{C} 上的根, 证明

$$\det(M_{x_1}) = \det(M_{x_2}) = \det(M_{x_3})$$

.

证明. 假定 $V = \{r + sx_1 + tx_2^2 \mid r, s, t \in \mathbb{Q}\}.$

由于基的选取不影响 M 的特征值. 因此计算时取基为 $(1, x_1, x_1^2)$, 求得此时 $M_{x_1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -d & -c & -b \end{pmatrix}$

其特征值为 -d.

同理取基 $(1,x_2,x_2^2)$ 得到 M_{x_2} 的行列式, 也算出来是 -d. 对 M_{x_3} 同理. 因此

$$\det(M_{x_1}) = \det(M_{x_2}) = \det(M_{x_3}).$$

完证 毕明