N5: Mole calculations

Gram formula mass (GFM)

The GFM of a substance is the sum of the relative atomic masses (RAM) of all elements present. It is the mass in grams of one mole of a substance.

Examples:

NaCl

CO₂

 $Mg(NO_3)_2$

Calculate the gram formula mass of these substances

A) K₂O

B) CaCO₃

C) (NH₄)₃PO₄

Moles = mass/gfm

One mole of a substance contains a specific number of particles. This is more useful to use than mass when comparing quantities of different substances reacting.

Moles = mass / gfm mass = moles x gfm

gfm = mass/moles

Examples: Calculate the number of moles present in 10g of Li₂O

Calculate the mass of 0.5 moles of MgCl₂

B) Calculate the number of moles present in 0.5g of NH₃

- C) Calculate the mass of 10 moles of HF
- D) Calculate the mass of 0.01 moles of CaCO₃

Moles = concentration x volume

Concentration is measured in moles per litre (mol I^{-1}). Volume must be in litres to carry out these calculations. To convert from ml to L, divide by 1000.

Moles = concentration x volume

concentration = moles/volume

volume = moles/concentration

Examples: Calculate the number of moles of solute present in 50 ml of a 1 mol l⁻¹ solution.

Calculate the concentration of a 100 ml solution containing 0.5 moles of solute.

Calculate the volume of solution required to make a solution of concentration 0.5 mol l⁻¹ from 0.025 moles of solute.

A) Calculate the number of moles of solute present in 100 ml of a 0.25 mol l⁻¹ solution.

B) Calculate the concentration of a 25 ml solution containing 0.05 moles of solute.

C) Calculate the volume of solution required to make a solution of concentration 0.5 mol l-1 from 1 mole of solute.

Using mass and volume

Examples: Calculate the mass of sodium fluoride (NaF) required to make 500 ml of a 0.5 mol l⁻¹ solution.

Step 1: Calculate the moles of solute needed

Step 2: Calculate the GFM of NaF

Step 3: Calculate the mass required

Calculate the volume of solution required to make a 0.2 mol I⁻¹ solution using 10g of magnesium nitrate (Mg(NO₃)₂).

Step 1: Calculate the GFM of magnesium nitrate

Step 2: Calculate the number of moles of solute needed

Step 3: Calculate the volume required.

A) Calculate the mass of sodium chloride (NaCl) required to make 100ml of 0.2 mol l⁻¹ solution.

B) Calculate the mass of lithium nitrate (LiNO $_3$) required to make 500 ml of 0.01 mol l^{-1} solution.

C) Calculate the volume of solution required to make a 0.5 mol l-1 solution using 50g of potassium chloride (KCl).

D) Calculate the volume of solution required to make a 0.2 mol $I^{\text{-1}}$ solution using 12g of ammonium sulfate ((NH₄)₂SO₄)

Using mass and mass

CH₃OH + 1 1/2 O₂ -> CO₂ + 2H₂O

Step 1: Calculate the GFM of methanol

Step 2: Calculate the moles of methanol

Step 3: Use the mole ratio from the balanced equation to find the moles of carbon dioxide

Step 4: Calculate the GFM of carbon dioxide

A) Calculate the mass of carbon dioxide produced when 60g of ethane burns completely in oxygen.

 $C_2H_6 + 3 \frac{1}{2} O_2 -> 2CO_2 + 3H_2O$

B) Calculate the mass of chlorine required to react with 4.6g of sodium.

 $2Na + Cl_2 -> 2NaCl$

C) Calculate the mass of ethanol burned to produce 160g of carbon dioxide.

Titrations

Titrations are used to find the concentration of a solution by reaction with a solution of accurately known concentration (standard solution). The end point is indicated by the use of an indicator.

Examples: Calculate the concentration of NaOH when 25 ml of solution is neutralised by 19.5 ml of 0.1 mol l⁻¹ HCl.

NaOH + HCl -> NaCl + H₂O

Step 1: Calculate the moles of HCl used

Step 2: Use the mole ratio from the balanced equation to find the moles of sodium hydroxide

Step 3: Calculate the concentration of the sodium hydroxide

Calculate the concentration of sodium hydroxide. $2NaOH + H_2SO_4 -> Na_2SO_4 + 2H_2O$

] - [- - -	
	1 mol l ⁻¹ H ₂ SO ₄
	20 ml NaOH

Titration	Start volume (ml)	End volume (ml)	Added volume (ml)
1	0	21.2	21.2
2	21.2	42.0	20.8
3	0	20.8	20.8

Step 1: Calculate the average titre of sulfuric acid

Step 2: Calculate the moles of sulfuric acid used

Step 3: Use the mole ratio from the balanced equation to find the moles of sodium hydroxide

Step 4: Calculate the concentration of sodium hydroxide

?

A) Calculate the concentration of sodium hydroxide.

143111131 7 14311123					
Titration	Start volume (ml)	End volume (ml)	Added volume (ml)		
1	0	48.7	48.7		
2	0	48.3	48.3		
3	0	48.6	48.6		

Calculate the concentration of potassium hydroxide.

$$3KOH + H_3PO_4 -> K_3PO_4 + 3H_2O$$

0.1 mol I-1 H₃PO₄

10 ml KOH

Titration	Start volume (ml)	End volume (ml)	Added volume (ml)
1	0	21.3	21.3
2	21.3	41.8	20.5
3	0	20.7	20.7

Percentage mass calculations	
Percentage mass calculations are used to find the percentage of elements present in compounds, usually ores or fertilisers.	
% mass = (mass of element present/GFM) x 100%	
Examples: Calculate the percentage mass of magnesium in magnesium oxide (MgO)	
Calculate the percentage mass of sodium in sodium oxide (Na₂O)	
A)Calculate the percentage mass of iron in iron (III) oxide (Fe ₂ O ₃)	
B) Calculate the percentage mass of nitrogen in ammonium phosphate ((NH ₄) ₃ PO ₄)	
C) Calculate the percentage mass of ammonium nitrate (NH ₄ NO ₃)	