Average of a Discrete Random Variable

• Def 2.14 The expected value of X is

$$E[X] = \mu_X = \sum_{x \in S_X} x P_X(x).$$

$$P_X(x) = \begin{cases} 2 & \text{for } x = 0 \\ \frac{1}{1000} & \text{for } x = 0 \end{cases}$$

$$P_X(x) = \begin{cases} 2 & \text{for } x = 0 \\ \frac{1}{1000} & \text{for } x = 10 \end{cases}$$

$$E[X] = \mu_X = \sum_{x \in S_X} x P_X(x).$$

Average of a Discrete Random Variable

Def 2.14 The expected value of X is

$$E[X] = \mu_X = \sum_{x \in S_X} x P_X(x).$$

Is E[X] a random variable?

Average of a Discrete Random Variable

Def 2.14 The expected value of X is

$$E[X] = \mu_X = \sum_{x \in S_X} x P_X(x).$$

Thinking like a frequentist...

$$\frac{1}{n} \sum_{x=1}^{n} \chi(x) = \frac{1}{n} \sum_{x \in S_{x}} (n(x))x$$

$$\frac{1}{n} \sum_{x \in S_{x}} n(x)x$$

Expected Value

- Consider n trials of an experiment.
- We obtain x(1), x(2), ..., x(n)

The empirical average is

$$m_n = \frac{1}{n} \sum_{i=1}^n x(i)$$

Expected Value

• For a range S_{X_i} write as a sum over the range space

• Say N_x is the number of times the value x in S_X occurs during the n trials

Expected Value

$$m_n = \frac{1}{n} \sum_{x \in S_X} N_x x$$

As
$$n \to \infty$$
, $N_x/n \to P_X(x)$, and we say that $m_n \to E[X]$.

We used the relative frequency definition of probability to link empirical averages obtained from multiple experiment trials with the expected value of the RV X.

Some Examples of E[X]

 Def 2.5: X is a Bernoulli(p) RV if the PMF of X has the form

$$P_X(x) = \begin{cases} 1 - p & x = 0, \\ p & x = 1, \\ 0 & \text{otherwise.} \end{cases}$$

where 0 .

- E[X] = ?
 - p

Some Examples of E[X]

Geometric(p)

$$P_X(x) = \begin{cases} p(1-p)^{x-1} & x = 1, 2, \dots, \\ 0 & \text{otherwise.} \end{cases}$$

$$E[X] = \sum_{x=1}^{\infty} x P_X(x)$$

$$= \sum_{x=1}^{\infty} x p (1-p)^{x-1}$$

$$= p \sum_{x=1}^{\infty} x q^{x-1} \longleftarrow \text{We define q=1-p}$$

$$= \frac{1}{p}.$$

E[X] Examples

- When X is Geometric(p)
 - E[X] = 1/p
- A 0.1 probability of a faulty device =>
 - On an average the 10th device will be the first to be found faulty
 - This does not mean that every 10th device will be faulty.
 In fact P[X=10] = 0.03!
- Please see Theorem 2.6 and 2.7 for E[.] of other RVs

Problem 2.5.10

$$\frac{1}{2} \sum_{i=0}^{n} \frac{1}{2} \frac{1}{4} = \frac{1}{2} \frac{1}{4}$$
 $\frac{1}{2} \sum_{i=0}^{n} \frac{1}{4} = \frac{1}{4}$

Let binomial random variable X_n denote the number of successes in n Bernoulli trials with success probability p. Prove that $E[X_n] = np$. Hint:

Use the fact that $\sum_{x=0}^{n-1} P_{X_{n-1}}(x) = 1$.

$$X(k,p) = \sum_{k=1}^{k} N_{i}$$
, $N_{i} \sim Geore$

$$E(x) = \sum_{i=1}^{k} E(N_i) = \sum_{i=1}^{k} \frac{1}{p} = \frac{k}{p}$$

Your experiment involves observing arrived over time I sec

T= nDt

$$P(X_{n}=x) = I_{\infty} p^{x} (i-p)^{n-x}$$

$$P(X_{n}=x) = I_{\infty} p^{x} (i-p)^{n-x}$$

$$P(X_{n}=x) = I_{\infty} \frac{I_{\infty}}{I_{\infty}} \frac{I$$

Theorem 2.8

Perform n Bernoulli trials. In each trial, let the probability of success be α/n , where $\alpha>0$ is a constant and $n>\alpha$. Let the random variable K_n be the number of successes in the n trials. As $n\to\infty$, $P_{K_n}(k)$ converges to the PMF of a Poisson (α) random variable.

The Properties of the E[.] Operator

• E[.] is a linear operator

$$E(CX+bY)=E(CX)$$

$$+E(bY)$$

Every linear operator has two properties:

$$\widehat{A}(f+g) = \widehat{A}f + \widehat{A}g \qquad (1) + \widehat{B} = \widehat{A}f$$

$$\widehat{A}(cf) = c\widehat{A}f \qquad (2)$$

where \widehat{A} is the operator, c is a scalar, f and g are functions.

$$E(X+Y)=E(X)+E(Y)$$

$$E(X+Y)=E(X)+E(Y)$$

$$E(X+Y)=E(X)+E(Y)$$

$$E(X+Y)=E(X)+E(Y)$$

The Properties of the E[.] Operator

- Scalar Multiplication of a Random Variable
 - E[aX] = a E[X]
 - $E[aX^2] = a E[X^2]$ (Note that X^2 is a RV)
- $E[X + X^2] = E[X] + E[X^2]$
- $E[(X + c)^2] = E[X^2 + c^2 + 2cX] = E[X^2] + E[c^2] + 2E[cX]$ = $E[X^2] + c^2 + 2cE[X]$