A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 3EJ

Bookmark

Show all steps: ON

Problem

Let f be a homomorphism from G onto H with kernel K:

$$f: G \xrightarrow{\kappa} H$$

If *S* is any subgroup of *H*, let $S^* = \{x \in G: f(x) \in S\}$. Prove:

Let g be the restriction of f to S.*[That is, g(x) = f(x) for every $x \in S^*$, and S^* is the domain of g.] Then g is a homomorphism from S^* onto S, and $K = \ker g$.

Step-by-step solution

Step 1 of 3

Suppose that *G* is any group. Let the mapping

$$f: G_{\kappa} \to H$$

is a homomorphism from G onto H with kernel K. Assume that S is any subgroup of H and consider the following set:

$$S^* = \{x \in G : f(x) \in S\}$$

Note that, the set S^* forms a subgroup of G.

Consider the following restriction map g of f to S^*

$$g: S^* \to S$$

defined as

$$g(x) = f(x)$$
 for every $x \in S^*$.

Objective is to prove that restriction map g is a homomorphism from S^* onto S with $K = \ker g$.

Comment

If G and H are two groups, a homomorphism from G to H is a function $f:G\to H$ such that for any two elements a,b in G ,	
f(ab) = f(a)f(b).	
Assume that $x, y \in S^*$. Then use the homomorphism of mapping f in the following manner:	
g(ab) = f(ab)	
$= f(a) \cdot f(b)$	
$=g(a)\cdot g(b).$	
This shows that g is homomorphism also onto because f is onto.	
Since codomain of g is same as mapping f and K is the kernel of f , therefore $K = \ker g$.	
Comment	
Step 3 of 3	
Hence, the restriction map g is a homomorphism from S^* onto S with $K = \ker g$.	
Comment	