ES 50: Introduction to Electrical Eng.

Explore EE, satisfy a Gen Ed requirement & have fun

Lecture 5: Amplifiers (Part 2)

ES 50: Introduction to Electrical Engineering

Announcements

Review / problem sessions Wed & Thur 7-9:30PM moved to MD119 lobby

Last time...

- Dependent (voltage and current) sources
- Thevenin and Norton equivalent circuits
- Operational Amplifiers
 - Ideal characteristics
 - Realistic example
- Op-amp circuits

Today,

- More op-amp circuit topologies
- Several op-amp examples

Operational Amplifier "op-amp" summary

Important Characteristics:

One output terminal (V_o)

Behaves as an ideal voltage source (i.e., no output resistance)

Two input terminals:

- positive (non-inverting):if V₊ increases V_o increases
- negative (inverting):if V₋ increases V_o decreases
- $V_{in}=V_{+}-V_{-}$
- Input resistance between + and terminal is extremely large!

Needs power supply

Often not shown in ES 50 circuits

Op-amp showing power supply rails

Op Amp with power supply rails **not** shown (how we usually show op-amps in ES 50)

Example: Let's build an amplifier that picks up a heart beat and turns it into sound or flashing light

We need a gain of \sim 100, but the op-amp has a gain of A=10⁶. What do we do?

Negative Feedback is used to control the gain

Feedback: Return some of the output to the input

- $\mathbf{v}_n = \mathbf{v}_o$ (shorted)
- Op-Amp Golden rules:
- $i_p = 0 \rightarrow \text{No voltage drop}$ \geqslant_{R_L} across $R_S \rightarrow V_p = V_S$
 - $v_o = A * (v_p v_n)$ then...

As $A \rightarrow \infty$ we get the following approximation:

$$v_o = A(v_s - v_o)$$

$$v_o(1+A) = Av_s$$

$$v_o = v_s \frac{A}{1+A}$$

Negative Feedback is used to control the gain

Feedback: Return some of the output to the input

As $A \rightarrow \infty$ we get the following approximation:

$$v_o = v_s$$

$$v_p = v_n$$

Also called a unity-gain buffer or voltage follower

Important property when solving op-amp circuits

How can we get gain > 1?

$$v_p = v_s$$
 $v_n = v_s - R_2$

$$v_p = v_n$$

$$v_s = v_o \frac{R_2}{R_1 + R_2}$$

$$v_o = v_s \frac{R_1 + R_2}{R_2}$$

10

To get **closed-loop gain** G = 100:

- $R_1 = 99 * R_2$
- Let $R_1 = 100k\Omega \rightarrow R_2 = 1k\Omega$ (sensitive to accurate resistor values)

$$G = \frac{v_o}{v_s} = \frac{R_1 + R_2}{R_2}$$

Can find G using the node voltage method

Recall node voltage method:

Pick nodes w/ unknown voltage and compute KCL

At node
$$v_n$$
:
$$\frac{v_o - v_n}{R_1} = \frac{v_n}{R_2} + i_n$$

$$\frac{v_o}{R_1} = v_n \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

$$v_o = v_n \frac{R_1 + R_2}{R_2}$$

$$G = \frac{v_o}{v_s} = \frac{R_1 + R_2}{R_2}$$

At node
$$v_p$$
:
$$v_p = v_s$$

$$v_p = v_n$$

$$b/c = 0$$

Again, what's going on intuitively?

- Let's go around the loop one more time.
 - Assume v_s starts at 0V (v_o also at 0V) and increases by ΔV .
 - v_p - v_n will increase by ΔV and cause the amplifier to drive v_o towards $A^*\Delta V$ and v_n towards $A^*\Delta V^*(R_2/(R_1+R_2))$.
 - ▶ But with negative feedback, we get $v_0/v_s = (R_1+R_2)/R_2$.

And here is our heart-rate indicator ©

The same circuit can work as a clap-detector: http://www.youtube.com/watch?v=y0Q0ERSP24A (also a very nice tutorial on op-amps!)

Music beat sensor: http://www.youtube.com/watch?v=OTwg2Eal8x4

Or, turn it into an Arduino-based heart rate monitor: http://www.youtube.com/watch?v=5ekHuCT2a1M

Another very common topology: *Inverting* Amplifier

KCL at node v_n :

$$\frac{v_n - v_s}{R_s} + \frac{v_n - v_o}{R_f} + i_n = 0$$

14

$$v_n = v_p = 0$$

$$\frac{v_s}{R_s} + \frac{v_o}{R_f} = 0$$

Notice: Input, v_s , connected to the *inverting* input of the op-amp

$$G = \frac{v_o}{v_s} = -\frac{R_f}{R_s}$$

Inverting amplifier topology: **Negative** closed-loop gain

Summing Amplifier

KCL at node v_n :

$$-\frac{v_o - v_n}{R_f} = \frac{v_1 - v_n}{R_1} + \frac{v_2 - v_n}{R_2}
-\frac{v_o}{R_f} = \frac{v_1}{R_1} + \frac{v_2}{R_2}$$

$$v_o = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2\right)$$

We could have also used superposition

Application of summing amplifier: Music Mixer (any DJs around?)

RC circuits are often used for filtering. Here, amplifier A amplifies a combination of the three incoming signals. Relative amplitudes set via potentiometers (voltage dividers).

Difference Amplifier – Details in HW

$$v_{o} = \left[\left(\frac{R_4}{R_3 + R_4} \right) \left(\frac{R_1 + R_2}{R_1} \right) \right] v_2 - \left(\frac{R_2}{R_1} \right) v_1,$$

Table 4-3: Summary of op-amp circuits.

- 1. Find V_A as a function of V_{in} and all resistor values.
- 2. Repeat for V_B .
- If we define $V_{out} = V_A V_B$, what is the gain, V_{out} / V_{in} ?

For the circuit (a) above, find V_{out} in terms of R_1 , R_f , I_1 , and I_2 . Hint: Can we use Thevenin and Norton equivalent circuits?

$$\frac{V_{out}}{I_1} = R_1$$

For the circuit (b) above, find V_{out} in terms of R_1 , R_f , I_1 , and I_2 . Hint: Can we use Thevenin and Norton equivalent circuits?

Find V_{out} in terms of V_3 , R, R_f, and V_{offset} .

Last example

$$\frac{V_{out}}{V_{in}} = \frac{R_2 R_3 R_5}{R_1 R_3 R_4 - R_1 R_2 R_5}$$

Find V_{out}/V_{in} in terms of $R_1 \sim R_7$.

Feedback: A general discussion (basics of control theory)

- **Feedback:** Used to provide a desired output in spite of fluctuations, disturbances, nonlinearity, etc. in the system
- **The main idea:** The result of an action is fed back to the input and compared to the desired outcome.
- The principles of feedback are widespread, and can be found in many disciplines:
 - Robotics, electrical and mechanical engineering, manufacturing plants, navigation systems, ecology (wolves and rabbits), business & economics, social systems (health care), and many many more

