ANA3 Wichtigstes

Ida Hönigmann

January 24, 2023

Satz (Fubini). f ... Lebesgue-messbare Funktion auf \mathbb{R}^n , integrierbar oder positiv; $i_1, ..., i_n$... Permutation von 1, ..., n

$$\int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f(x_1, ..., x_n) d\lambda(x_{i_1}) \cdots d\lambda(x_{i_k}) \text{ sind } \lambda^{n-k}\text{-messbare Funktionen auf } \mathbb{R}^{n-k}$$

$$und \int_{\mathbb{R}^n} f d\lambda^n = \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} f(x_1, ..., x_n) d\lambda(x_{i_1}) \cdots d\lambda(x_{i_n})$$

Definition (Durchmesser).

$$diam(A) := \sup\{d(x, y) : x, y \in A\}$$

Satz (Isodiametrische Ungleichung). $A \subseteq \mathbb{R}^n$... beschränkt, ω_n ... Volumen der n-dimensionalen Einheitskugel

$$\lambda^n(A) \leq \omega_n(diam(A)/2)^n$$

Satz. $f_t(\omega), t \in (a, b)$... messbar auf $(\Omega, \mu), t \mapsto f_t(\omega)$... für μ -f.a. ω stetig in $t_0, \exists g$... integrierbar auf $\Omega \exists \delta > 0 \forall t : |t - t_0| < \delta \implies |f_t| \leq g\mu$ -f. \ddot{u} .

$$\implies \forall t: |t-t_0| < \delta \implies f_t... \ integierbar \ und \ \int_{\Omega} f_t(\omega) d\mu(\omega)... \ stetig \ in \ t_0$$
$$d.h. \ \lim_{t \to t_0} \int_{\Omega} f_t d\mu = \int_{\Omega} f_{t_0} d\mu$$

Satz. $f_t(\omega), t \in (t_0 - \delta, t_0 + \delta)$... messbar $auf(\Omega, \mu), \exists \frac{\partial f_t}{\partial t}$ für μ -f.a. ω bei $t_0, \exists g$... integrierbar $auf\Omega$: $\forall t: |t - t_0| < \delta \implies \left| \frac{f_t(\omega) - f_{t_0}(\omega)}{t - t_0} \right| \le g(\omega)$ bzw. $\left| \frac{\partial f_t}{\partial t}(\omega) \right| \le g(\omega)$

$$\implies t \mapsto \int_{\Omega} f_t(\omega) d\mu(\omega) \text{ ist in } t_0 \text{ diffbar und } \left. \frac{d}{dt} \int_{\Omega} f_t(\omega) d\mu(\omega) \right|_{t=t_0} = \int_{\Omega} \left. \frac{\partial f_t(\omega)}{\partial t} \right|_{t=t_0} d\mu(\omega)$$

Definition (Vervollständigung). (M,d) ... metr. Raum, $((\tilde{M},\tilde{d}),\iota:M\to \tilde{M})$ heißt Vervollständigung, falls (\tilde{M},\tilde{d}) ... vollständig metr. Raum; ι ... isometrische Abbildung mit dichtem Bild in \tilde{M} .

Definition (Banachraum). Banachraum ist ein normierter Raum, dessen induzierte Metrik vollständig ist.

Lemma. M ... $Menge \implies (l^{\infty}(M,\mathbb{R}),||.||)$... Banachraum (||.|| ist Supremumsnorm).

Lemma. (M,d) ... metr. Raum, $x_0 \in M$ fest $\Longrightarrow M \to l^{\infty}(M,\mathbb{R}), x \mapsto f_x$ mit $f_x(t) := d(x_0,t) - d(x,t)$ ist Isometrie.

Satz. $(X_1, d_1), (X_2, d_2)$... metr. Raum, (X_2, d_2) ... vollständig, $A \subseteq X_1, f: A \to X_2$... glm. stetig

$$\implies \exists ! F : \bar{A} \to X_2 : F|_A = f$$

1

 $F \ \textit{ist glm. stetig und } f \ \dots \ \textit{isometrisch} \implies F \ \dots \ \textit{isometrisch}$

Definition (Operatornorm). $(X, ||.||_X), (Y, ||.||_Y)$... normierter Raum, L(X, Y) ... Raum linearer, beschränkter Funktionen von X nach Y. $||T||_{L(X,Y)} := \sup\{\frac{||Tx||_Y}{||x||_X}: 0 \neq x \in X\}$

Satz. Vollständige metr. Räume und normierte Räume haben jeweils eine eindeutige Vervollständigung bis auf Isometrien.

 $\mathbf{Satz.}\ X\ ...\ nomierter\ Raum,\ Y...\ Banachraum\ \Longrightarrow\ L(X,Y)\ ...\ Banachraum$