Cluster of emerging technology: evaluation of a production HPC system based on A64FX

Fabio Banchelli fabio.banchelli@bsc.es

Kilian Peiro kilian.peiro@bsc.es

David Vicente david.vicente@bsc.es

Guillem Ramirez-Gargallo guillem.ramirez@bsc.es

Marta Garcia-Gasulla marta.garcia@bsc.es

Joan Vinyals joan.vinyals@bsc.es

Filippo Mantovani filippo.mantovani@bsc.es

Emerging Technology Clusters deployed at BSC

MareNostrum 4

General purpose block

Emerging Technology Clusters (CTEs)

Intel Xeon Platinum

CTE Arm - A64FX processors

CTE AMD - AMD Rome + AMD Radeon Instinct MI50

CTE Power - IBM POWER9 + NVIDIA Volta GPUs

Machine under study: CTE-Arm

MareNostrum4 Emerging Technology Clusters (CTEs) General purpose block Intel Xeon Platinum CTE Arm - A64FX processors

Hardware specification

	CTE-Arm	MareNostrum 4
System integrator	Fujitsu	Lenovo
Core architecture	Armv8	Intel x86
SIMD extensions	NEON, SVE	AVX512
CPU name	A64FX	Intel Xeon Platinum 8160
Frequency [GHz]	2.20	2.10
Turbo Boost	Disabled	Disabled
Simultaneous Multi-Threading	Disabled	Disabled
Sockets / node	1	2
Core / node	48	48
DP Peak / core [GFlop/s]	70.40	67.20
DP Peak / node [GFlop/s]	3379.20	3225.60
L1 cache size / core	64 kB	32 kB
L2 cache size / core	32 MB	1 MB
L3 cache size / core	-	33 MB
Memory / node [GB]	32	96
Memory tech.	HBM	DDR4-2666
Memory channels	4	6 per socket
Peak memory bandwidth [GB/s]	1024 GB/s	256 GB/s
Num. of nodes	192	3456
Interconnection	TofuD	Intel OmniPath
Peak network bandwidth [GB/s]	6.80	12.00

Scope of our work

Test if CTE-Arm matches specifications

- Run simple codes that stress one specific aspect of the system at a time
- Repeat tests across all nodes of the system

Emulate end-user experience

- Run complex scientific applications: Alya, NEMO, Gromacs, OpenIFS, and WRF
- Try to compile and run codes "as is"

Micro-Benchmarks

Floating-Point Throughput

Custom kernel that performs

Fused-Multiply-Add instructions back-to-back

- Measured performance matches theoretical peak
- Performance degrades in MN4 when adding more threads
- We verified our measurements are consistent across all nodes of CTE-Arm

Memory Bandwidth

STREAM benchmark using OpenMP

- In CTE-Arm, we measure 29% of the theoretical peak
- We tried different combinations of compiler flags with no improvements
- Behavior is consistent for all kernels of STREAM

Build Compiler Compiler Flags

CTE-Arm OpenMP Fujitsu/1.2.26b -Kfast,parallel -KA64FX -KSVE -KARMV8_3_A -Kopenmp -Kzfill=100 -Kprefetch_sequential=soft -Kprefetch_iteration=8 -Kprefetch_iteration_L2=16 -Knounroll -mcmodel=large

Memory Bandwidth

STREAM benchmark using MPI + OpenMP

- Processes pinned to different Core
 Memory Groups (CMGs)
- Noticeable bandwidth difference between C and Fortran codes
- The Fortran version reaches 84% of the theoretical peak

STREAM - Triad

Build	Compiler	Compiler Flags
CTE-Arm MPI+OpenMP	Fujitsu/1.2.26b	-Kfast,parallel -KA64FX -KSVE -KARMV8_3_A -Kopenmp -Kzfill=100 -Kprefetch_sequential=soft -Kprefetch_iteration=8 -Kprefetch_iteration_L2=16 -Knounroll

Memory Bandwidth

STREAM benchmark across nodes

- We repeated our STREAM study on all node of the CTE-Arm cluster
- We observe that there are "fast" and "slow" nodes
- Consistent difference in bandwidth of ~10GB/s (2%)

Network Bandwidth

MPI Ping-pong between nodes

- For messages above 16 KiB, we measure 93% of theoretical peak
- Network topology has a noticeable impact on network bandwidth
- Job scheduler allocates close nodes to reduce this impact
- We detected a "slow" receiver node

Message size 256 B

Network Bandwidth

- Histogram of network bandwidth across node pairs
 - Light green → Low occurrences
 - Dark blue → High occurrences
- Bimodal distribution for messages between 1 KiB and 256 KiB
- Messages bigger than 1 MiB have more variability

HPC Benchmarks

Linpack

- Vendor provided binaries
- CTE-Arm → 4 MPI ranks mapped to different CMGs
- MareNostrum4 → 1 MPI rank per node

- We observe a higher performance of CTE-Arm compared to MareNostrum4
- CTE-Arm also achieves a higher percentage of the peak

HPCG

- Vanilla → compiled "as-is" from the HPCG repository
- Optimized → vendor provided binary

- CTE-Arm achieves higher efficiency than MareNostrum4
- With 192 nodes, CTE-Arm reaches
 2.96% efficiency, close to the 3.62% of
 Fugaku in the Top500 of Nov. 2020

Scientific Applications

Software environment in CTE-Arm

Compilers

- Fujitsu Compiler 1.2.26.b
- GNU 8.3.1 (SVE enabled by Fujitsu)
- GNU 10.2.0 (SVE enabled upstream)
- Arm compiler 20.3

- None of the applications could be compiled with Fujitsu Compiler
- Used GNU 8.3.1 (SVE enabled by Fujitsu)

MPI library

Custom OpenMPI from Fujitsu

- Only installed custom MPI library supports
 TofuD
- Using custom OpenMPI + GNU "not out of the box"

Software environment in CTE-Arm

Fujitsu Compiler

- Alya
 - Prohibitive compilation times
- NEMO
 - Compilation errors
- Gromacs
 - CMake and compilation errors
- OpenIFS
 - Required modifications to the code in order to compile
 - Runtime errors
- WRF
 - Compilation errors

Software environment in CTE-Arm

Fujitsu Compiler

- Alya
 - Prohibitive compilation times
- NEMO
 - Compilation errors
- Gromacs
 - CMake and compilation errors
- OpenIFS
 - Required modifications to the code in order to compile
 - Runtime errors
- WRF
 - Compilation errors

In modern clusters, one software toolchain is not enough

Performance Results

Number of Nodes

Performance Results

If we compile and run "out-of-the-box", CTE-Arm is between 1.50x and 3.42x slower than MareNostrum 4

Performance Results

If we compile and run "out-of-the-box", CTE-Arm is between 1.50x and 3.42x slower than MareNostrum 4

We know that the performance is there, we just need a toolchain that takes advantage of it

Conclusions

Summary

 Simple kernels like micro-benchmarks reach close to peak performance

Classical benchmarks (HPL & HPCG)
 yield good performance and efficiency

TABLE IV
SPEEDUP OF CTE-ARM RELATIVE TO MARENOSTRUM 4

	Number of compute nodes					
Applications	1	16	32	64	128	192
LINPACK	1.25	1.28	1.38	1.35	1.70	1.40
HPCG	2.50	N/A	N/A	N/A	N/A	3.24
Alya	NP	0.30	0.31	0.37	N/A	N/A
OpenIFS	0.31	NP	0.28	0.31	0.39	N/A
Gromacs	0.32	0.36	0.38	0.43	0.54	0.33
WRF	0.49	0.46	0.60	0.64	N/A	N/A
NEMO	NP	0.56	N/A	N/A	N/A	N/A

Summary

- Software ecosystem still maturing
 - Unable to compile and run applications with Fujitsu compiler
 - GNU compiler required some tweaks to work

 Applications have to be optimized in order to leverage the hardware

TABLE IV
SPEEDUP OF CTE-ARM RELATIVE TO MARENOSTRUM 4

	Number of compute nodes					
Applications	1	16	32	64	128	192
LINPACK	1.25	1.28	1.38	1.35	1.70	1.40
HPCG	2.50	N/A	N/A	N/A	N/A	3.24
Alya	NP	0.30	0.31	0.37	N/A	N/A
OpenIFS	0.31	NP	0.28	0.31	0.39	N/A
Gromacs	0.32	0.36	0.38	0.43	0.54	0.33
WRF	0.49	0.46	0.60	0.64	N/A	N/A
NEMO	NP	0.56	N/A	N/A	N/A	N/A

Cluster of emerging technology: evaluation of a production HPC system based on A64FX

Fabio Banchelli fabio.banchelli@bsc.es

Kilian Peiro kilian.peiro@bsc.es

David Vicente david.vicente@bsc.es

Guillem Ramirez-Gargallo guillem.ramirez@bsc.es

Marta Garcia-Gasulla marta.garcia@bsc.es

Joan Vinyals [joan.vinyals@bsc.es

Filippo Mantovani filippo.mantovani@bsc.es

Back-up Slides

STREAM OpenMP

Build configurations

Application		CTE-Arm	MareNostrum 4
Alya	Compiler Flags MPI Flavor Metis	GNU/8.3.1-sve -03 -march=armv8.2-a+sve -msve-vector-bits=512 -ffree-line-length-512 -DNDIMEPAR -DVECTOR_SIZE=16 -DMETIS Fujitsu/1.1.18 mctis/4.0	GNU/8.4.2 -03 -march=skylake-avx512 -ffree-line-length-none -fimplicit-none -DNDIMEPAR -DVECTOR_SIZE=16 -DMETIS OpenMPI/4.0.2 metis/4.0
NEMO	Compiler MPI Flavor Dependencies C Flags Fortran Flags	GNU/8.3.1-sve Fujitsu/1.2.26b HDF5/1.12.0 NetCDF-C/4.7.4 NetCDF-F/4.5.3 -03 -fdefault-real-8 -03 -funroll-all-loops -fcray-pointer -ffree-line-length-none	Intel/2017.4 Intel/2018.4 HDF5/1.8.19 NetCDF-C/4.2 NetCDF-F/4.2 -03 -g -i4 -r8 -03 -xCORE-AVX512 -mtune=skylake -fp-model strict -fno-alias -traceback
Gromacs	Compiler Flags MPI Flavor Dependencies	GNU/11.0.0 -03 -fopenmp -march=armv8.2-a+sve -msve-vector-bits=512 Fujitsul/.2.26b fftw3/3.3.9-sve Fujitsu SSL2/1.2.26b	Intel/2018.4 -O3 -qopenmp -xCORE-AVX512 -qopt-zmm-usage=high Intel/2018.4 fftw/3.3.8 MKL/2018.4
OpenIFS	Compiler C Flags Fortran Flags MPI Flavor Dependencies	GNU/8.3.1-sve -00 -02 -fconvert=big-endian -fopenmp -ffree-line-length-none -fdefault-real-8 -fdefault-double-8 Fujitsu/1.2.26b HDF5/1.12.0 NetCDF-C/4.7.4 NetCDF-F/4.5.3 ec- codes/2.18.0 BLAS/Internal LAPACK/Internal	Intel/2018.4 -00 -m64 -02 -fpe0 -fp-model precise -fp-speculation=safe -convert big_endian -r8 Intel/2018.4 HDF5/1.8.19 NetCDF-C/4.4.1.1 NetCDF-F/4.4.1.1 eccodes/2.18.0 MKL/2018.4
WRF	Compiler MPI Flavor Dependencies CFLAGS_LOCAL FCOPTIM FORMAT_FIXED FORMAT_FREE BYTESWAPIO FCBASEOPTS_NO_G	GNU/8.3.1-sve Fujitsu/1.2.26b NETCDF/4.2 HDF5/1.8.19 -w -03 -c -02 -ftree-vectorize -funroll-loops -ffixed-form -ffree-form -ffree-line-length-none -fconvert=big-endian -frecord-marker=4 -w \$(FORMAT_FREE) \$(BYTESWAPIO)	Intel/2017.4 Intel/2017.4 NETCDF/4.4.1.1 HDF5/1.8.19 -w -O3 -ip -O3 -FI -cpp -FR -cpp -convert big_endian -ip -fp-model precise -w -ftz -align all -fno-alias \$(FORMAT_FREE) \$(BYTESWAPIO)
	FCBASEOPTS	\$ (FCBASEOPTS_NO_G) \$ (FCDEBUG)	\$(FCBASEOPTS_NO_G) \$(FCDEBUG)

NEMO Error

Compilation error

```
[...]
Fortran diagnostic messages: program name(lib_fortran)
Module subprogram name(glob_sum_1d)
 jwd2516i-s "/fefs/scratch/bsc99/bsc99461/apps/NEMO/release-4.0.2/
     tests/BENCH_ARM_error/BLD/ppsrc/nemo/lib_fortran.f90", line 143,
      column 12: Reference to 'mpp_sum' not consistent with any
     specific interface of the generic interface.
Module subprogram name(glob_sum_2d)
 jwd2516i-s "/fefs/scratch/bsc99/bsc99461/apps/NEMO/release-4.0.2/
     tests/BENCH_ARM_error/BLD/ppsrc/nemo/lib_fortran.f90", line 182,
      column 12: Reference to 'mpp_sum' not consistent with any
     specific interface of the generic interface.
Module subprogram name(glob_sum_full_2d)
 jwd2516i-s "/fefs/scratch/bsc99/bsc99461/apps/NEMO/release-4.0.2/
     tests/BENCH_ARM_error/BLD/ppsrc/nemo/lib_fortran.f90", line 220,
      column 12: Reference to 'mpp_sum' not consistent with any
     specific interface of the generic interface.
Module subprogram name(glob_sum_3d)
 jwd2516i-s "/fefs/scratch/bsc99/bsc99461/apps/NEMO/release-4.0.2/
     tests/BENCH_ARM_error/BLD/ppsrc/nemo/lib_fortran.f90", line 259,
      column 12: Reference to 'mpp_sum' not consistent with any
     specific interface of the generic interface.
 {...]
```


Gromacs Error

```
## Error during cmake:
/fefs/apps/GROMACS/SRC/gromacs-2021-beta1/build-sve-fuji-error/
    CMakeFiles/CMakeTmp/src.cxx:2:31: error: cannot initialize a
    variable of type '__attribute__((__vector_size__(16 * sizeof(
        float32_t)))) float32_t' (vector of 16 'float32_t' values) with
    an rvalue of type 'svfloat32_t' (aka '__SVFloat32_t') int main()
    {float32_t x __attribute((vector_size(512/8))) = svdup_f32(0.5f)
    ; return 0;}
```

CMake error

OpenIFS Error

```
[FAIL] mpifrt -oo/sufpwfpbuf.o -c -DBLAS -DLITTLE -DLINUX -
DINTEGER_IS_INT -DECMWF -I./include -g -02 -m64 -fopenmp -Nclang
-CcdRR8 -I/fefs/scratch/bsc10/bsc10623/benchmarks/openIFS/
eccodes/include -I/fefs/apps/NETCDF/4.2/FUJI/FMPI/include /fefs/
scratch/bsc10/bsc10623/benchmarks/openIFS/oifs43r3_repo/oifs43r3-
master/src/ifs/fullpos/sufpwfpbuf.F90 # rc=1
[FAIL] Fortran diagnostic messages: program name(SUFPWFPBUF)
[FAIL] jwd2518i-s "/fefs/scratch/bsc10/bsc10623/benchmarks/openIFS/
oifs43r3_repo/oifs43r3-master/src/ifs/fullpos/sufpwfpbuf.F90",
line 182, column 12: Shape of actual argument must be the same
as that of dummy argument for procedure 'SUHOX1'.
```

Compilation error - Solved with minor modifications to the source code

```
MPL_BUFFER_METHOD: 2 128000000
jwe0021i-s line 73 An endfile record was detected in a READ statement
     (unit=57).
error occurs at su_mcica_
                                                line 73 loc
     00000000009ff264 offset 0000000000001c4
su_mcica_
                                    at loc 00000000009ff0a0 called
     from loc 00000000009f0840 in suecrad
                                               line 911
             at loc 00000000009ed9e0 called from loc 00000000009ebfe0
 suecrad
      in suphec_
                      line 280
 suphec_
             at loc 0000000009eb960 called from loc 0000000009eb070
      in suphy_
                      line 80
             at loc 00000000009eaffc called from loc 0000000000488ca8
      in su0yomb_
                      line 536
             at loc 000000000487620 called from loc 000000000040ab64
 su0yomb_
                     line 134
      in cnt0
 cnt0_
             at loc 000000000409614 called from loc 0000000000408468
     in MAIN__
                      line 91
MAIN__
             at loc 00000000004083e4 called from o.s.
jwe0903i-u Error number 0021 was detected. Maximum error count
     exceeded.
error summary (Fortran)
error number error level error count
 iwe0021i
total error count = 1
```

Runtime error

