บทที่ 2 :

ฐานข้อมูลแบบ Relational และ NoSQL

- ลักษณะสำคัญของ ฐานข้อมูลแบบ Relational และ NoSQL
- ตัวอย่างการใช้งานของฐานข้อมูลทั้ง 2 แบบ
- เทคโนโลยี
- ข้อดี ข้อเสียของฐานข้อมูลทั้ง 2 แบบ
- วิธีการเลือกใช้

ลักษณะสำคัญ

Relational Database	No Relational (NoSQL) Database
 มีการระบุโครงสร้างฐานข้อมูล (Database schema) ไม่สามารถเปลี่ยน schema จัดเก็บข้อมูลในรูปแบบตาราง เชื่อมโยงข้อมูลจากหลายตารางได้อย่างง่าย 	 - ไม่จำเป็นต้องระบุโครงสร้างฐานข้อมูล - สามารถเปลี่ยน schema - จัดเก็บข้อมูลหลายรูปแบบ เช่น key-value, graph - มีความซับซ้อนในการเชื่อมโยงข้อมูล

ตัวอย่างการเก็บข้อมูลในฐานข้อมูลแบบ Relational และ NoSQL

Relational Database

ตัวอย่างการเก็บข้อมูลในฐานข้อมูลแบบ Relational และ NoSQL

```
Value
  key
"Order id": "O123",
"date": "10/10/2020",
"channel":"Online"
"link": "facebook"
"orderitems": [
     "itemid": "4348",
     "price": 10.00
     "itemid": "5648",
     "price": 15.00
```

```
"Order id": "S823",
"date": "1/1/2017",
"channel":"Shop"
"branch": "B001"
"orderitems": [
     "itemid": "1348",
     "price": 13.00
     "itemid": "2311",
    "price": 63.00
```

NoSQL Database (IIUU key-value)

ตัวอย่าง RDBMS

Mar 2021	Rank Feb 2021	Mar 2020	DBMS
1.	1.	1.	Oracle 🚹
2.	2.	2.	MySQL [1]
3.	3.	3.	Microsoft SQL Server [1]
4.	4.	4.	PostgreSQL [1]
5.	5.	5.	IBM Db2 🖽
6.	6.	↑ 7.	SQLite [1]
7.	7.	4 6.	Microsoft Access
8.	8.	8.	MariaDB 🖽
9.	9.	9.	Hive
10.	1 1.	10.	Teradata

ประเภทของ ฐานข้อมูลแบบ NoSQL

- Key-value model
- Column store
- Document database
- Graph database

ตัวอย่าง NoSQL

Mar 2021	Rank Feb 2021	Mar	DBMS	Database Model
1.	1.	1.	MongoDB 🚹	Document, Multi-model 👔
2.	2.	2.	Amazon DynamoDB 🚹	Multi-model 👔
3.	3.	1 4.	Microsoft Azure Cosmos DB 🖽	Multi-model 👔
4.	4.	4 3.	Couchbase 🖪	Document, Multi-model 🛐
5.	5.	1 6.	Firebase Realtime Database	Document

Rank				
Mar 2021	Feb 2021	Mar 2020	DBMS	Database Model
1.	1.	1.	Redis 🛨	Key-value, Multi-model 🛐
2.	2.	2.	Amazon DynamoDB 🚹	Multi-model 👔
3.	3.	3.	Microsoft Azure Cosmos DB 🖪	Multi-model 👔
4.	4.	4.	Memcached	Key-value
5.	1 6.	5.	Hazelcast 🚦	Key-value, Multi-model 📵

@cloudtxt http://www.aryannava.com

Mar 2021	Rank Feb 2021	Mar	DBMS	Database Model
1.	1.	1.	InterSystems Caché	Multi-model 🛐
2.	↑ 5.	1 6.	InterSystems IRIS 🖽	Multi-model 🔃
3.	4 2.	4 2.	Actian NoSQL Database	Object oriented
4.	4 3.	4 3.	Db4o	Object oriented
5.	4 .	4 .	ObjectStore	Object oriented

การพิจารณาเลือกใช้ฐานข้อมูล

• จะใช้ RDBMS เมื่อ

- O ต้องการ ACID (Atomicity, Consistency, Isolation, Durability)
 - Atomicity หมายถึง การทำงานและขั้นตอนต่างๆ ที่ประกอบเป็น transaction ที่กระทำต่อ database จะต้องสำเร็จ ทุกขั้นตอน
 - Consistency หมายถึง ความสอดคล้องกันของข้อมูล
 - Isolation หมายถึงว่า หากมี transaction เกิดขึ้นพร้อมๆ กัน แต่ละ transaction จะถูกประมวลผลตามลำดับ
 - Durability หมายถึงว่า เมื่อ transaction จะถูกประมวลผลสำเร็จแล้ว ก็จะสำเร็จตลอดไป
- 🔾 ข้อมูลมีโครงสร้าง และโครงสร้างไม่มีการเปลี่ยนแปลง หรือเปลี่ยนแปลงช้า

• จะใช้ NoSQL เมื่อ

- O ต้องการ CAP (Consistency, Availability, Partition Tolerance)
- 🔾 ข้อมูลไม่ค่อยมีโครงสร้าง หรือโครงสร้างมีการเปลี่ยนแปลอย่างรวดเร็ว