Arnav Patri

10 Graphs

A graph G = (E, V) is comprised of edge set E and vertex set V.

Graph Terminology			
Type	Directed?	Multiple Edges?	Loops?
Simple	N	N	N
Multi-	N	Y	N
Psuedo-	N	Y	Y
Simple Directed	Y	N	N
Simple Multi-	Y	Y	Y
Mixed	Y/N	Y	Y

Two vertices are *adjecent/neighbors* if there is an edge connected them. Such an edge is *incident* with both vertices.

The set of all neighbors of a vertex v, denoted N(v), is the neighborhood of v. The neighborhood of $A \subset V$, denoted N(A), is the set of all vertices in G that are adjectent to at least one vertex in A.

A vertex v's degree, denoted deg v, in an undirected graph is the number of edges incident with it, with loops being counted twice.

The initial vertex of a directed edge or arc (u, v) in a digraph is u while the terminal/end vertex is u. (u, v) is adjacent from u and adjacent to v.

A vertex v's in-degree, denoted $\deg^- v$, is the number of edges that terminate at v, while its out-degree, denoted $\deg^+ v$, is the number of edges that start at v.

A complete graph on n vertices, denoted K_n , is the simple graph that contains exactly one edge between each pair of distinct vertices. Its outline can be drawn as a regular polygon with n vertices. Each pair of nodes can then be connected.

A cycle C_n for $n \geq 3$ consists of n vertices and edges connecting each vertex to exactly two other nodes. It can be drawn as a regular polygon with n vertices.

A wheel W_n is obtained by adding an additional vertex to C_n that all other vertices connect to. This can be drawn as a regular polygon with n vertices with an additional node in the center that connects to all other vertices.

An n-dimensional hypercube or n-cube Q_n is a graph with 2^n vertices representing all bit strings of length n with edges connecting vertices differing in exactly one bit position. Q_1 is a line, Q_2 a square, Q_3 a cube, and so on.

A simple graph is bipartite if V can be partitioned into two disjoint subsets V_1 and V_2 such that every edge connects a vertex in V_1 to one in V_2 ; that is to say, no two edges in the same subset are connected.

A complete bipartite graph $K_{m,n}$ is a bipartite graph with $|V_1| = m$ and $|V_2| = n$ such that there is an edge from every vertex in V_1 to every vertex in V_2 .

The union of 2 simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph $G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$.

A graph's adjacency matrix is the $|V| \times |V|$ matrix $\mathbf{A}_G = [a_{i,j}]$ where $a_{i,j}$ is equal to the number of edges connecting v_i and v_j . The ordering may be arbitrary.

A graph's incidence matrix is the $|V| \times |E|$ matrix $\mathbf{M}_G = [m_{i,j}]$ where $m_{i,j}$ is 1 if e_j is incident to m_i and 0 otherwise.

Two simple graphs are isomorphic if there is a one-to-one and onto function f between the vertex sets with the property that a and b are adjacent in the first graph if and only if f(a) and f(b) are in the other. Such a function is called an isomorphism. Two simple graphs that are not isomorphic are nonisomorphic.

A path is a sequence of connected edges. It is denoted by the sequence of edges. It passes through nodes while traversing edges.

A path is a *circuit* if it begins and ends at the same node.

A path is *simple* if it does not contain the same

edge more than once.

An undirected graph is *connected* if there is a path between every pair of vertices. One that is not connected is *disconnected*. To *disconnect* a graph is to remove vertices and/or edges to produce a disconnected subgraph.

A connected component of a graph G is a connected subgraph of it that is not a proper subgraph of another connected subgraph of G. A digraph is strongly connected if there is a path from u to v and from v to u for any pair of vertices in the graph. It is weakly connected if there is a path between every pair of nodes in the underlying undirected graph.

An *Euler circuit* is a simple circuit containing every edge. An *Euler path* is a simple path containing every edge.

Every vertex of graph with an Euler circuit must be of even degree. All but 2 nodes of a graph with an Euler path must be of even degree. These conditions are necessary and sufficient.