Time-Frequency Analysis

Abijith Jagannath Kamath

Indian Institute of Science

August 1, 2025

Vector Spaces

Definition (Vector space)

A vector space over $\mathbb C$ is a set V with addition and multiplication that satisfies $\forall u,v,w\in V$ and $\alpha,\beta\in\mathbb C$

- 1. v + w = w + v
- $2. \ \alpha(\beta v) = (\alpha \beta)v$
- 3. (v+w) + u = v + (w+u)
- 4. $(\alpha + \beta)v = \alpha v + \beta v$
- 5. $\alpha(v+w) = \alpha v + \alpha w$
- 6. v + 0 = v
- 7. v + (-v) = 0
- 8. 1v = v

Vector Spaces

Definition (Subspace)

A subspace is a nonempty subset of a vector space that is closed under addition and scalar multiplication, i.e., $S \subseteq V$ is a subspace of V if $\forall v, w \in S$ and $\alpha \in \mathbb{C}$

- 1. $v + w \in S$
- 2. $\alpha x \in S$

Norms

Definition (Norm)

A norm on a vector space V over $\mathbb C$ (or $\mathbb R$) is a real-valued function $\|\cdot\|:V\to\mathbb R$ with the following properties for any $v,w\in V$ and $\alpha\in\mathbb C$

- 1. $||v|| \ge 0$ and ||v|| = 0 iff v = 0
- 2. $\|\alpha v\| = |\alpha| \|v\|$
- 3. $||v + w|| \le ||v|| + ||w||$

A vector space endowed with a norm is called normed vector space.

Remark

- 1. $||v w|| \ge |||v|| ||w|||$
- 2. $||v + w||^2 + ||v w||^2 = 2(||v||^2 + ||w||^2)$

Norms

Definition (Convergence in normed spaces)

A sequence of vectors (v_0,v_1,\cdots) in a normed vector space V is said to converge to $v\in V$ when $\lim_{k\to+\infty}\|v-v_k\|=0$, i.e., given $\epsilon>0$, there exists a $K=K(\epsilon)$ such that

$$||v - v_k|| < \epsilon, \ \forall k > K.$$

Norms

Definition (Cauchy sequence)

A sequence of vectors (v_0,v_1,\cdots) in a normed vector space is called a Cauchy sequence when given $\epsilon>0$, there exists a $K=K(\epsilon)$ such that

$$||v_k - v_m|| < \epsilon, \ \forall k, m > K.$$

Lemma (Convergent sequences are Cauchy)

Assume that V is a normed vector space, and that (v_0, v_1, \cdots) is a convergent sequence in V. Then (v_0, v_1, \cdots) is a Cauchy sequence.

Banach Spaces

Definition (Banach space)

A normed vector space V with the property that each Cauchy sequence (v_0,v_1,\cdots) in V converges toward some $v\in V$, is called a Banach space.

Banach Spaces

Examples:

lacksquare ℓ_p spaces

lacksquare L_p spaces

Inner Product Spaces

Definition (Inner product space)

An inner product of a vector space V over $\mathbb C$ (or $\mathbb R$) is a complex-valued (or real-valued) function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb C$ with the following properties for any $v, w, u \in V$ and $\alpha \in \mathbb C$ (or $\mathbb R$)

- 1. $\langle \alpha v + \beta w, u \rangle = \alpha \langle v, u \rangle + \beta \langle w, u \rangle$
- 2. $\langle v, w \rangle = \langle w, v \rangle^*$
- 3. $\langle v, v \rangle \geq 0$ and $\langle v, v \rangle = 0$ iff v = 0

Inner Product Spaces

Theorem (Cauchy-Schwarz' inequality)

Let V be a vector space with an inner product $\langle \cdot, \cdot \rangle$. Then,

$$|\langle v,w\rangle| \leq \langle v,v\rangle^{1/2} \langle w,w\rangle^{1/2}, \ \forall v,w \in V.$$

Inner Product Spaces

Lemma (Inner products induces the norm)

Let V be a vector space with an inner product $\langle \cdot, \cdot \rangle$. Then,

$$||v|| = \langle v, v \rangle^{1/2}, v \in V,$$

defines a norm on V.

Hilbert Space

Definition (Hilbert space)

A vector space with an inner product $\langle \cdot, \cdot \rangle$, which is a Banach space with respect to $\|\cdot\| = \langle \cdot, \cdot \rangle^{1/2}$ is called a Hilbert space.

Hilbert Space

Examples:

lacksquare ℓ_2 space

 \blacksquare L_2 space

Orthogonality

Definition (Orthogonality)

Let H be a Hilbert space.

- 1. Two elements $v, w \in H$ are orthogonal if $\langle v, w \rangle = 0$ and we write $v \perp w$
- 2. A collection of vectors $\{v_k\}_{k\in\mathbb{N}}$ in H is an orthogonal system if $\langle v_k, v_\ell \rangle = 0, \ \forall k \neq \ell$
- 3. An orthogonal system $\{v_k\}_{k\in\mathbb{N}}$ for which $\|v_k\|=1,\ \forall k\in\mathbb{N}$ is called an *orthonormal system*

Definition (Basis)

A set of vectors $\Phi = \{\varphi_k\}_{k \in \mathcal{K}} \subset V$, where \mathcal{K} is countable, is called a *basis* for a normed vector space V when

• it is complete in V, i.e., for any $f \in V$, there exists a sequence $\alpha : \mathcal{K} \to \mathbb{C}$ such that

$$f = \sum_{k \in \mathcal{K}} \alpha_k \varphi_k,$$

• for any $f \in V$, the sequence α is unique.

Definition (Orthonormal Basis)

A set of vectors $\Phi=\{\varphi_k\}_{k\in\mathcal{K}}\subset H$, where \mathcal{K} is countable, is called a *orthonormal basis* for the Hilbert space H when

- \blacksquare it is a basis for H, and
- it is an orthonormal set, i.e., $\langle \varphi_i, \varphi_k \rangle = \delta_{i-k} \ \forall i, k \in \mathcal{K}$.

Theorem (Orthogonal Basis Expansion)

Let $\Phi = \{\varphi_k\}_{k \in \mathcal{K}}$ be an orthonormal basis for a Hilbert spaces H. The unique expansion expansion coefficients for any $f \in H$ are given by

$$\alpha_k = \langle f, \varphi_k \rangle.$$

Synthesis with these coefficients yield

$$f = \sum_{k \in \mathcal{K}} \langle f, \varphi_k \rangle \varphi_k.$$

Theorem (Parseval Equality)

Let $\Phi = \{\varphi_k\}_{k \in \mathcal{K}}$ be an orthonormal basis for a Hilbert spaces H. The expansion coefficients satisfies the Parseval equality

$$||f||^2 = \sum_{k \in \mathcal{K}} |\langle f, \varphi_k \rangle|^2 = ||\alpha||^2.$$

The generalised Parseval equality:

$$\langle f, g \rangle = \langle \alpha, \beta \rangle.$$

Examples:

■ Discrete Fourier basis for \mathbb{C}^N

• Fourier basis for $L_2([-\pi,\pi])$

Bandlimited Signals

Definition (Paley-Wiener space)

A function $f \in L_2(\mathbb{R})$ is bandlimited if its Fourier transform \hat{f} has compact support. The Paley-Wiener space is the prototype bandlimited space, defined as

$$\mathrm{PW} := \left\{ f \in L_2(\mathbb{R}) : \mathsf{supp} \; \hat{f} \subset [-\pi, \pi]
ight\},$$

Bandlimited Signals

Lemma

If $f \in \mathrm{PW}$, then $\hat{f} \in L_1(\mathbb{R})$

Bandlimited Signals

Theorem (Continuity of functions in PW)

Let $f \in PW$. Then, f is equivalent to a continuous function.

Basis for PW

Theorem (Shannon sampling theorem)

The set $\{\operatorname{sinc}(\cdot - n)\}_{n \in \mathbb{Z}}$ form an orthonormal basis for PW. If $f \in \operatorname{PW}$, then:

$$f(t) = \sum_{n \in \mathbb{Z}} f(n) \operatorname{sinc}(t - n),$$

with two interpretations of convergence of the infinite series:

1. The symmetric partial sum converges pointwise,

$$\lim_{N \to \infty} \sum_{n=-N}^{N} f(n) \operatorname{sinc}(t-n) = f(t), \ \forall t \in \mathbb{R}.$$

2. The symmetric partial sum converges in $L_2(\mathbb{R})$,

$$\lim_{N \to \infty} \int_{\mathbb{R}} \left| f(t) - \sum_{n=-N}^{N} f(n) \operatorname{sinc}(t-n) \right|^{2} dt = 0.$$

E9 213 A. J. Kamath 23/27

Basis for PW

Orthogonality

Basis for PW

Sampling and Fourier analysis

Shannon Sampling

Theorem (Shannon sampling theorem)

If a function f contains no frequencies higher than γ_N , it is completely described by giving its ordinates at a series of points spaced $\frac{1}{2\gamma_N}$ apart.

Maximally Bandlimited Signals

Theorem (Optimality of Shannon Sampling)

Suppose
$$f \notin PW$$
, $\Pi_{PW}f = \arg\min_{g \in PW} \|f - g\|_2^2$

$$\Pi_{PW} f(t) = \sum_{n \in \mathbb{Z}} \langle f, \operatorname{sinc}(\cdot - n) \rangle \operatorname{sinc}(t - n).$$

