## DEFINIČNÝ OBOR A OBOR HODNÔT FUNKCIE

Pr.1: Opakovanie: Ktoré krivky môžu byť grafom funkcie?



A: je funkcia (každé x má priradené len 1 y)

B: je funkcia

C: nie je funkcia (napr. všetky kladné x majú priradené 2 y)

D: je funkcia

**Pr.2: Opakovanie:** Funkcia je daná usporiadanými dvojicami: A[2;3], B[-1;2], C[-2;-3], D[1;-2], E[0;2]. Zostrojte jej graf v pravouhlej sústave súradníc.



Pr.3: Opakovanie: Rozhodnite, ktorá z uvedených zápisov je zadaním funkcie. Ak to je funkcia, určte jej definičný obor D(f) a obor hodnôt H(f):

|    | Х | 1  | 2 | 3 | 4 | 5 | 6 |
|----|---|----|---|---|---|---|---|
| a) | у | -1 | 0 | 1 | 2 | 3 | 4 |

je funkcia  $D(f) = \{1,2,3,4,5,6\}$   $H(f) = \{-1,0,1,2,3,4\}$ 

$$H(f) = \{-1.0.1.2.3.4\}$$

## **b**) {[1,5],[2,4],[3,5],[1,2],[2,1],[4,0]}

NIE je funkcia (lebo napr. x=1 má priradené až dve hodnoty y)

je funkcia  $D(f) = \{-1,0,1,2,3,4\}$   $H(f) = \{-1,0,1,2,3,4\}$ 

NIE je funkcia (lebo x=3 má priradené až dve hodnoty y)

## **Pr.4.** Z grafu funkcie určte jej D(f) a H(f):



a)





b)

$$D(f) = <-3,3>$$

$$H(f) = <-1,4>$$



$$D(f) = <-3,5)$$
  $H(f) = <-2,4)$ 



$$D(f)=(-\infty,\infty)=R$$

$$H(f) = (-\infty, 0) = R_0$$



$$D(f) = (-2,4)$$

$$H(f)=(0,2>$$



$$D(f) = <-5,4)$$

$$H(f) = <-3,3>$$



$$D(f) = (-4,5)$$

$$H(f) = <-4,2>$$



$$D(f)=(-\infty,\infty)-\{0\}=(-\infty,0)\ U\ (0,\infty)=R-\{0\}$$

$$H(f) = (-\infty, \infty) - \{0\}$$

Pr.5 Určte definičný obor funkcie (pomocou podmienok pre nezávislú premennú x)

a) f:y = 
$$\frac{3-x}{2}$$
 P: nie sú  $\mathbf{D}(\mathbf{f}) = \mathbf{R}$ 

b) f:y= 
$$\frac{3}{2-x}$$
 P: 2-x $\neq$ 0 => x $\neq$ 2 **D(f)=R-{2} =(- $\infty$ ,2) U (2, $\infty$ )**

c) f:y=
$$\sqrt{3x-4}$$
 P:  $3x-4 \ge 0 => 3x \ge 4 => x \ge 4/3$  **D**(f)=<4/3, $\infty$ )

d) f:y=
$$\frac{\sqrt{x-3}}{4-x}$$
 P1:  $x\neq 4$  P2:  $x-3 \ge 0 \implies x \ge 3$   

$$\mathbf{D(f)} = <3,\infty) - \{4\} = <3,4) \text{ U } (4,\infty)$$

e) f:y= 
$$\frac{4-x}{\sqrt{x-3}}$$
 P1: x-3\neq 0 =>  $\underline{x} \neq 3$  P2: x-3\ge 0 =>  $\underline{x} \geq 3$  obe podmienky musia platit' súčasne, preto x > 3 .....  $D(f) = (3,\infty)$ 

f) f: 
$$y=2x+6$$
 P: nie sú => **D**(**f**) = **R**

g) f:y= 
$$\frac{2x^2 - x}{x^2 - x}$$
 P:  $x^2 - x \neq 0$  =>  $x(x-1) \neq 0$  =>  $x \neq 0$   $\wedge$   $x-1 \neq 0$  =>  $x \neq 0$   $\wedge$   $x \neq 1$    
**D**(f) = **R** - {0,1}

h) f:y= 
$$\frac{2x^2 - x}{x}$$
 P.: x $\neq 0 => \mathbf{D(f)} = \mathbf{R} - \{0\}$