CPSC 340: Machine Learning and Data Mining

Gradient Descent

Admin

Assignment 2:

- Today is the last day to turn it in (with all late days).
- We will release solutions tomorrow.
- We won't make them available to other students
 - unless I hear from the person who wants to opt out

Assignment 3:

- Due in 11 days
- Volunteers wanted: marking for Math Challengers competition
 - This is a grade 8/9 math competition that I help organize (picking the questions)
 - Saturday Feb 18th 9:30am-2pm, at UBC
 - If interested, email mathchallengersvolunteers@gmail.com and CC me
 - (there are no incentives or anything, just if you actually want to do it)

Admin (continued)

Grading disputes

- If you perceive a problem with your homework grade, you have 1 week to contact us via GitHub
- Make sure to tag @cpsc340/staff or the particular graders listen on Piazza
- Since this is a new policy, you have 1 week from today for hw1
- More detailed info added to General Homework Instructions

hw3 partnerships

- Sorry, I'm going to stick to my guns here
- If you're worried about this happening again, you can open all future issues now (for hw4, hw5, hw6)
- You can still of course discuss the assignment, but will need to write separate solutions and code
- I feel bad about this but need to stand up for myself at some point

Last Time: RBFs and Regularization

- We discussed radial basis functions:
 - Basis functions that depend on distances to training points:

$$y_{i} = w_{i} \exp\left(-\frac{\|x_{i} - x_{i}\|^{2}}{2\sigma^{2}}\right) + w_{2} \exp\left(-\frac{\|x_{i} - x_{2}\|^{2}}{2\sigma^{2}}\right) + \cdots + w_{n} \exp\left(-\frac{\|x_{i} - x_{n}\|^{2}}{2\sigma^{2}}\right)$$

$$= \sum_{j=1}^{n} w_{j} \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\sigma^{2}}\right)$$

- Flexible bases that can model any continuous function.
- We also discussed regularization:
 - Adding a penalty on the model complexity:

$$f(w) = \frac{1}{2} || x_w - y ||^2 + \frac{2}{2} ||w||^2$$

- Best parameter lambda almost always leads to improved test error.
 - L2-regularized least squares is also known as "ridge regression".

Features with Different Scales

Consider features with different scales:

Egg (#)	Milk (mL)	Fish (g)	Pasta (cups)
0	250	0	1
1	250	200	1
0	0	0	0.5
2	250	150	0

- Should we convert to some standard 'unit'?
 - It doesn't matter for least squares:
 - $w_j^*(100 \text{ mL})$ gives the same model as $w_j^*(0.1 \text{ L})$
 - w_i will just be 1000 times smaller.
 - It also doesn't matter for decision trees or naïve Bayes.

Features with Different Scales

Consider features with different scales:

Egg (#)	Milk (mL)	Fish (g)	Pasta (cups)
0	250	0	1
1	250	200	1
0	0	0	0.5
2	250	150	0

- Should we convert to some standard 'unit'?
 - It matters for k-nearest neighbours:
 - KNN will focus on large values more than small values.
 - It matters for regularized least squares:
 - Penalization $|w_i|$ means different things if features 'j' are on different scales.

Standardizing Features

- It is common to standardize features:
 - For each feature:
 - 1. Compute mean and standard deviation:

$$M_{s} = \frac{1}{n} \sum_{i=1}^{n} X_{ij}$$

- $u_{i} = \frac{1}{n} \sum_{j=1}^{n} x_{ij}$ $o_{j} = \frac{1}{n} \sum_{i=1}^{n} (x_{ij} u_{ij})^{2}$
- Subtract mean and divide by standard deviation:

Replace
$$\chi_{ij}$$
 with $\frac{\chi_{ij} - \chi_{ij}}{\sigma_{ij}}$ — Means that change in 'w_j' have similar effect for any feature 'j'.

- Should we regularize the bias?
 - No! The y-intercept can be anywhere, why encourage it to be close to zero?
 - Yes! Regularizing all variables makes solution unique and it easier to compute 'w'.
 - Compromise: regularize the bias by a smaller amount than other variables?
 - I tried digging into the sklearn Ridge Regression code and it looks like "no".

Standardizing Target

- In regression, we sometimes standardize the targets y_i.
 - Puts targets on the same standard scale as standardized features:

Replace
$$y_i$$
 with $\frac{y_i - u_r}{\sigma_y}$

- With standardized target, setting w = 0 predicts average y_i:
 - High regularization makes us predict closer to the average value.
- Other common transformations of y_i are logarithm/exponent:

Use
$$log(y_i)$$
 or $exp(\Upsilon y_i)$

Makes sense for geometric/exponential processes.

Ridge Regression Calculation

Objective:
$$f(w) = \frac{1}{2} || X_w - y ||^2 + \frac{1}{2} w^T w$$

Gradient: $\nabla f(w) = X^T X_w - X^T y + \lambda w$

Set $\nabla f(w) = 0$: $X^T X_w + \lambda w = X^T y$

or

 $\chi^T \chi_w + \lambda I_w = X^T y$
 $\chi^T \chi_w + \lambda I_w = X^T y$

Pre-multiply by $(\chi^T \chi + \lambda I)^{-1}$ which always exists:

 $(\chi^T \chi + \lambda I)^{-1} (\chi^T \chi + \lambda I)^{-1} w = (\chi^T \chi + \lambda I)^{-1} \chi^T y$
 $\chi^T \chi_w + \chi_w = \chi_w + \chi_w = \chi^T y$
 $\chi^T \chi_w + \chi_w = \chi_w + \chi_w + \chi_w = \chi_w + \chi_w +$

Python:

w = solve(X.T@X+lam*np.eye(d), X.T*y)

so
$$w = (X^{T}X + \lambda I)^{T}X^{T}y$$

Least squares is very sensitive to outliers.

Squaring error shrinks small errors, and magnifies large errors:

Outliers (large error) influence 'w' much more than other points.

Squaring error shrinks small errors, and magnifies large errors:

- Outliers (large error) influence 'w' much more than other points.
 - Good if outlier means 'plane crashes', bad if it means 'data entry error'.

Robust Regression

- Robust regression objectives put less focus large errors (outliers).
- For example, use absolute error instead of squared error:

$$f(w) = \sum_{i=1}^{n} |w^{T}x_{i} - y_{i}|$$

- Now decreasing 'small' and 'large' errors is equally important.
- Instead of minimizing L2-norm, minimizes L1-norm of residuals:

Least squares is very sensitive to outlers.

Absolute error is more robust to outliers:

Regression with the L1-Norm

Unfortunately, minimizing the absolute error is harder:

We can't take the gradient at zero.

- Generally, harder to minimize non-smooth than smooth functions.
- Could solve as 'linear program', but harder than 'linear system'.

Smooth Approximations to the L1-Norm

- There are differentiable approximations to absolute value.
- For example, the Huber loss:

$$f(w) = \sum_{i=1}^{n} h(w^{T}x_{i} - y_{i})$$

$$h(r_i) = \begin{cases} \frac{1}{2}r_i^2 & \text{for } |r_i| \leq \varepsilon \\ \varepsilon(|r_i| - \frac{1}{2}\varepsilon) & \text{otherwise} \end{cases}$$

- Setting $\nabla f(x) = 0$ does not give a linear system.
- But we can minimize 'f' using gradient descent:
 - Algorithm for finding local minimum of a differentiable function.

- Gradient descent is an iterative optimization algorithm:
 - It starts with a "guess" w⁰.

• • •

- It uses w⁰ to generate a better guess w¹.
- It uses w¹ to generate a better guess w².
- It uses w² to generate a better guess w³.
- The limit of w^t as 't' goes to ∞ has ∇ f(w^t) = 0.

- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\mathcal{V}f(w)$.

- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\mathcal{V}f(w)$.

- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\mathcal{V}f(w)$.

- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\mathcal{V}f(w)$.

- Gradient descent is based on a simple observation:
 - Give parameters 'w', the direction of largest decrease is $-\mathcal{V}f(w)$.

- Gradient descent is an iterative optimization algorithm:
 - It starts with a "guess" w⁰.
 - Generate new guess by moving in the negative gradient direction:

$$w' = w^0 - \alpha^0 \nabla f(w^0)$$

- This decreases f if the step size α is small enough
- Repeat to successively refine the guess

$$w^{t+1} = w^t - \alpha^t \nabla f(w^t) \quad \text{for } t = 1, 2, 3, \dots$$

Stop if not making progress or

$$||\nabla f(w^t)|| \le S$$

 $|\nabla f(w^t)|| \le S$
 $|\nabla f(w^t)|$

Gradient Descent in 2D

• Under weak conditions, algorithm converges to a local minimum.

Convex Functions

Concave

- Is finding a local minimum good enough?
 - For least squares and Huber loss this is enough: they are convex functions.

- A function is convex if the area above the function is a convex set.
 - All values between any two points above function stay above function.

Convex Functions

All local minima of convex functions are also global minima.

- Gradient descent finds a global minimum on convex functions.
- Next time: how do we know if a function is convex?

Gradient Descent

- Least squares via normal equations vs. gradient descent:
 - Normal equations cost $O(nd^2 + d^3)$.

For ming
$$X^{7}X$$
 costs $O(nd^{2})$ and solving a $d \times d$ linear system costs $O(d^{3})$

— Gradient descent costs $O(ndt)$ to run for 't' iterations.

Computing $\nabla F(w) = X^{7}Yw - X^{7}y$ only costs $O(nd)$

is just two $n \times d$

matrix multiplications.

- Gradient descent can be faster when 'd' is very large:
- Improving on gradient descent: Nesterov and Newton method.
 - For L2-regularized least squares, there is also "conjugate" gradient.

Motivation for Considering Worst Case

'Brittle' Regression

- What if you really care about getting the outliers right?
 - You want best performance on worst training example.
 - For example, if in worst case the plane can crash.
- In this case you can use something like the infinity-norm:

Very sensitive to outliers (brittle), but worst case will be better.

Log-Sum-Exp Function

- As with the L_1 -norm, the L_{∞} norm is convex but non-smooth:
 - We can fit it with gradient descent using a smooth approximation.
- Log-sum-exp function is a smooth approximation to the max function:

$$\max_{i} \{z_i\} \approx \log(\{z_{exp}(z_i)\})$$

- Intuition: largest element is magnified exponentially.
 - Smaller elements become negligible in comparison.
 - Recall that log(exp(z))=z.
- Notation alert: by "log" I always mean the natural logarithm.

Summary

- Robust regression using L1-norm/Huber is less sensitive to outliers.
- Gradient descent finds local minimum of differentiable function.
- Convex functions do not have non-global local minima.
- Log-Sum-Exp function: smooth approximation to maximum.

- Next time:
 - Finding 'important' e-mails, and beating naïve Bayes on spam filtering.