TRIGONOMETRY INTRODUCTORIO 2023

EXPLORATORIO

1. Del gráfico, calcule $13\tan\alpha - \cot\theta$ si AI = 4 u y $CI = 6\sqrt{3}$ u.

Resolución:

Triángulo notable de 30° y 60°:

En el triángulo rectángulo ABC:

$$3\alpha + 3\theta = 90^{\circ}$$

$$\alpha + \theta = 30^{\circ}$$

Luego: $m \angle AIC = 150^{\circ}$

En el triángulo AIC, tenemos:

En el triángulo rectángulo AEC:

$$tan\alpha = \frac{3\sqrt{3}}{13}$$

En el triángulo rectángulo ADC:

$$\cot\theta = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$$

Por lo tanto:

$$13\left(\frac{3\sqrt{3}}{13}\right) - \left(4\sqrt{3}\right) = 3\sqrt{3} - 4\sqrt{3}$$
$$= -\sqrt{3}$$

 $D) - \sqrt{3}$

2. Calcule senβ.

- A) $\frac{2}{\sqrt{13}}$
- C) $\frac{4}{\sqrt{12}}$
- E) $\sqrt{13}$

Resolución:

En el triángulo rectángulo ABD, por triángulo notable de 37° y 53° : BD=3

En el triángulo rectángulo ABC, por teorema de Pitágoras:

$$AB^2 + BC^2 = AC^2$$
 $\Rightarrow 4^2 + 6^2 = AC^2$
 $52 = AC^2$
 $2\sqrt{13} = AC$

Por lo tanto, en el triángulo rectángulo ABC:

$$sen\beta = \frac{4}{2\sqrt{13}} = \frac{2}{\sqrt{13}}$$

Dado el sistema de ecuaciones

$$tan(\alpha - 25^{\circ}) = cot(\beta - 30^{\circ})$$
$$2\beta - \alpha = 35^{\circ}$$

donde α y β son agudos, efectúe

$$\frac{\tan(\alpha + \beta - 25^{\circ})}{1 + \cos\beta}$$

(Examen de Admisión UNMSM 2007-II)

(Examen de Admisión UNMSM 2007-II)

A)
$$-\frac{2\sqrt{3}}{9}$$
B) $-\frac{3\sqrt{3}}{2}$
C) $\frac{3\sqrt{3}}{2}$

B)
$$-\frac{3\sqrt{3}}{2}$$

C)
$$\frac{3\sqrt{3}}{2}$$

D)
$$\frac{2\sqrt{3}}{3}$$
 E) $-\frac{2}{3}$

Resolución:

Propiedades de razones trigonométricas:

$$tan(x) = cot(y) \Rightarrow x + y = 90^{\circ}$$

Tenemos:
$$tan(\alpha - 25^{\circ}) = cot(\beta - 30^{\circ})$$

$$\Rightarrow$$
 $(\alpha - 25^{\circ}) + (\beta - 30^{\circ}) = 90^{\circ}$

$$\alpha + \beta = 145^{\circ} +$$

Además:

$$\frac{2\beta - \alpha = 35^{\circ}}{3\beta = 180^{\circ}}$$

$$\beta = 60^{\circ}$$

$$\alpha = 85^{\circ}$$

Por lo tanto:
$$\frac{tan(\alpha + \beta - 25^{\circ})}{1 + cos\beta} = \frac{tan(85^{\circ} + 60^{\circ} - 25^{\circ})}{1 + cos60^{\circ}} = \frac{tan120^{\circ}}{1 + cos60^{\circ}}$$

$$=\frac{-\sqrt{3}}{1+\frac{1}{2}} = -\frac{3\sqrt{3}}{2}$$

$$A) -\frac{3\sqrt{3}}{2}$$

$$A) - \frac{3\sqrt{3}}{2}$$

Determine un ángulo en radianes si se cumple que C – S = $\frac{R}{\pi} \sqrt{\frac{SC}{10}}$

A)
$$\frac{\pi}{6}$$
 B) $\frac{\pi}{3}$ C) $\frac{\pi}{2}$

B)
$$\frac{\pi}{3}$$

C)
$$\frac{\pi}{2}$$

D)
$$\frac{\pi}{4}$$
 E) π

Resolución:

Por números convencionales:

$$\frac{S}{9} = \frac{C}{10} = \frac{20R}{\pi} \implies \begin{cases} S = 9k \\ C = 10k \\ R = \frac{\pi k}{20} \end{cases}$$

Tenemos: $C - S = \frac{R}{\pi} \sqrt{\frac{SC}{10}}$

$$10k - 9k = \frac{\frac{\pi k}{20}}{\pi} \sqrt{\frac{(9k)(10k)}{10}}$$

$$k = \frac{k}{20}(3k)$$

$$\frac{20}{3}=k$$

Medida del ángulo en radianes:

$$R = \frac{\pi}{20} \left(\frac{20}{3}\right) rad$$

$$R = \frac{\pi}{3} rad$$

 $A)\frac{\pi}{3}$

De la figura, calcule tanα.

- D) 3

Por razones trigonométricas de un ángulo

a

En el triángulo rectángulo ABC: $tan\alpha = \frac{x}{9}$

En el triángulo rectángulo DBC: $tan\alpha =$

Luego:

$$\frac{x}{9} = \frac{4}{x} \implies x^2 = 36 \implies x = 6$$

Por lo tanto:
$$tan\alpha = \frac{6}{9} = \frac{2}{3}$$

Siendo α y θ ángulos agudos que cumplen $\tan\alpha \cdot \tan\theta = 1$, calcule

$$P = \sqrt{3} \cot \left(\frac{\alpha + \theta}{3} \right) + 2.$$

- A) 2 B) 3

C) 5

Resolución:

Propiedades de razones trigonométricas:

$$tan(x). tan(y) = 1 \Rightarrow x + y = 90^{\circ}$$

Tenemos: $tan\alpha$, $tan\theta = 1 \implies \alpha + \theta = 90^{\circ}$

Luego:
$$P = \sqrt{3}cot\left(\frac{\alpha+\theta}{3}\right) + 2$$

$$P = \sqrt{3}cot\left(\frac{90^{\circ}}{3}\right) + 2$$

$$P = \sqrt{3}cot30^{\circ} + 2$$

$$P=\sqrt{3}(\sqrt{3})+2$$

$$P = 3 + 2$$

$$P=5$$

C) 5

Del gráfico mostrado, calcule el área de la región sombreada.

- A) 10 u² B) 20 u² D) 40 u² E) 60 u²
- C) 30 u²

Resolución:

Área del triángulo:

 $\text{Área del triángulo} = \frac{a \cdot b \cdot sen\theta}{2}$

Tenemos:

$$S = \text{Area}_{\Delta ABC} - \text{Area}_{\Delta DBE}$$

$$(10)(9)\text{sen} 30^{\circ} \quad (2)(5)\text{sen} 3^{\circ}$$

$$S = \frac{(10)(9)sen30^{\circ}}{2} - \frac{(2)(5)sen30^{\circ}}{2}$$

$$S=45\left(\frac{1}{2}\right)-5\left(\frac{1}{2}\right)$$

$$S = \frac{40}{2} = 20$$

 $B) 20 u^2$

8. En la figura mostrada, el valor de $E = \frac{a \tan \alpha \cdot \sin \theta}{b \cos \beta}$ es (UNI 2013-I)

E) 3

Resolución:

En el triángulo rectángulo AEO:

$$EO = asen\theta \implies BF = asen\theta$$

*bcos*β En el triángulo rectángulo BFO:

$$FO = asen\theta tan\alpha$$

En el triángulo rectángulo CGO:

$$CG = bcos\beta$$

Por lo tanto: $asen\theta tan\alpha = bcos\beta$

$$\Rightarrow \frac{asen\theta tan\alpha}{bcos\beta} = 1$$

D) 2

