Learning Theory

PAC framework

- Train a model ⇔ Take a course
- Training examples ⇔ Take exercises/homework
- Testing ⇔ Take exam
- Can we estimate our performance in exam by performance on exercise?
 - \circ training error \rightarrow testing error
- ullet $E_{in}:=$ the in-sample error i.e. **Error in Training data**
 - \circ Let $h \in \mathcal{H}$
 - e.g. $h(x) = \operatorname{sign}(w^T x + b)$
 - $\circ \;\;$ model function hypothesis o hypothesis space
 - $\circ \ E_{in}(h) = rac{1}{n} \sum_{i=1}^n \mathbb{1}(h(x_i)
 eq y_i)
 ightarrow exttt{Error Rate}$
 - $\circ~\{(x_1,y_1),\ldots,(x_n,y_{,})\}$ are training data, $(x_i,y_i)\sim P_{xy}$
- $E_{out} :=$ the out-of-sample error
 - o measures how well a model generalizes
 - $\circ \ E_{out}(h) := P(h(x)
 eq y) = E_{(x,y) \sim P_{xy}}[1(h(x)
 eq y)]$
- ullet $E_{out}(h)-E_{in}(h)$ is the Generalization Error
- We can say with a large probability $1-\delta$ (δ is small), $E_{out}(h)-E_{in}(h)<\delta$. This is called **Probably Approximately Correct (PAC) Learning**

Hoeffding Inequality

- x_1,\ldots,x_n are independent random variables, $x_i\in[a_i,b_i]$, $\bar x=rac1n\sum_{i=1}^nx_i$. Then $orall\epsilon>0$, we have

 - $egin{array}{l} \circ \ P(ar{x}-E[ar{x}] \geq \delta) \leq \exp(-rac{2n^2\epsilon^2}{\sum_{i=1}^n(b_i-a_i)^2}) \ \circ \ P(E[ar{x}] ar{x} \geq \delta) \leq \exp(-rac{2n^2\epsilon^2}{\sum_{i=1}^n(b_i-a_i)^2}) \end{array}$

Growth Function

- Now for a given fixed h, we have:
 - $P(E_{out}(h) E_{in}(h) \ge \epsilon) \le \exp(-2n\epsilon^2)$ Because

$$egin{aligned} E_{in}(h) &= rac{1}{n} \sum_{i=1}^{n} \mathbb{1}(h(x_i)
eq y_i) = ar{x} &\Rightarrow x_i \in [0,1] \ E[ar{x}] &= E[rac{1}{n} \sum_{i=1}^{n} \mathbb{1}(h(x_i)
eq y_i)] \ &= rac{1}{n} \sum_{i=1}^{n} E_{(x,y) \sim P_{xy}} [\mathbb{1}(h(x_i)
eq y_i)] \ &= rac{1}{n} n E_{out}(h) \ &= E_{out}(h) \ P(E_{out}(h) - E_{in}(h) < \epsilon) > 1 - \exp(2n\epsilon^2) \end{aligned}$$

- \circ with probability at least $1-\delta$, $\exists h \in \mathcal{H}$, $E_{out}(h)-E_{in}(h)<\epsilon$
- But this bound doesn't consider training by assuming h is given before seeing the training data. It's not meaningful in practice.
- Since we cannot know which $h \in \mathcal{H}$ to use before seeing training data, we can bound \mathcal{H} instead, thus independent of particular h. Let's first assume \mathcal{H} is finite, $\mathcal{H} = \{h_1, \dots, h_M\}$.

$$egin{aligned} P(\exists h \in \mathcal{H}, E_{out}(h) - E_{in}(h) \geq \epsilon) & \leq \sum_{i=1}^n P(E_{out}(h_i) - E_{in}(h_i) \geq \epsilon) \ & \leq M \exp(-2n\epsilon^2) \end{aligned}$$

This is the first practical PAC learning bound

$$\delta = M \exp(-2n\epsilon^2)$$

$$\epsilon = \sqrt{\frac{1}{2n} \log \frac{M}{\delta}}$$

With probability at least $1-\delta$, we have $\forall h\in\mathcal{H},\, E_{out}(h)-E_{in}(h)<\sqrt{rac{1}{2n}\lograc{M}{\delta}}$

- \circ $n \nearrow$, $M \searrow$, generalization error \searrow
- $\circ M \nearrow$, will be overfitting
- What if *H* is infinite?
 - These different hypotheses(hyperplane) give the same classification results on finite examples.
 - \circ Union bound counts each h once, but if one h satisfies **PAC learning bound**, then all other h (with same classification results) will also satisfy the PAC bound.
- · Growth Function
 - \circ measure effective # of hypotheses in ${\cal H}$ on finite data
 - Assume binary classification $y \in \{-1, 1\}, x \in X$

Given n training samples $x_1,\ldots,x_n\in X$, apply $h\in\mathcal{H}$ to them to get n-tople $(h(x_1),\ldots,h(x_n))$ of ± 1 s. (called a *dichotomy*)

Let $\mathcal{H}(x_1,\ldots,x_n)=\{ig(h(x_1),\ldots,h(x_n)ig)|h\in\mathcal{H}\}$. (set has no repeated elements)

then $m_{\mathcal{H}}(h):=\max_{x_1,\ldots,x_n\in X}|\mathcal{H}(x_1,\ldots,x_n)|$ \circ e.g. $m_{\mathcal{H}}(3)=2^3=8$

- \circ e.g. $m_{\mathcal{H}}(4) = 14 < 2^4$
- If $\mathcal{H}(x_1,\ldots,x_n)$ contains all possible ± 1 s assignments to a subset of $\{x_1,\ldots,x_n\}$, denoted by S. We say $\mathcal{H}(x_1,\ldots,x_n)$ shatters S.
 - \circ If ${\mathcal H}$ shatters S, then ${\mathcal H}$ shatters all subsets of S.

Vapnik-Chervonenkis (VC) dimension

- ullet We call the maximum n s.t. $m_{\mathcal{H}}(n)=2^n$ the VC dimension of \mathcal{H} , denoted by $d_{VC}(H)$ (d_{VC} for short)
 - $\circ~\#$ of parameters $pprox d_{VC}$
 - \circ e.g. \mathbb{R}^d -dimension space, linear classifier $\mathcal{H} o d_{VC}(\mathcal{H}) = d+1$
 - $\circ \ d_{VC}(\mathcal{H})$ measures effective dimensions of \mathcal{H}
 - \circ small $d_{VC} \Leftrightarrow$ small hypothesis space \Leftrightarrow less separating power \Leftrightarrow more generalizing power
 - 。 VC维表明,只有这么多的数据能够被模型打散,如果数据更多,就不可能有一个模型能将它们在各种情况下都分类正确. 比如对于4个样本点而 言,异或的情况使得任何一个线性分类器都不能对其正确分类.可以说,VC维越大,对应空间的模型就越复杂
- Saucer's Lemma

$$m_{\mathcal{H}}(n) \leq \sum_{i=1}^{d_{VC}} inom{n}{i} = O(n^{d_{VC}})$$

- Proof:
 - First prove a stronger Lemma:

On any points $x_1, \ldots, x_n \in X$, the # of subsets of $\{x_1, \ldots, x_n\}$ that can be shattered by $\mathcal{H}(x_1, \ldots, x_n)$ is at least $|\mathcal{H}(x_1, \ldots, x_n)|$

- e.g. $\mathcal{H}(x_1, x_2, x_3) = \{(+1, -1, -1), (-1, +1, -1), (-1, +1, +1)\}$. So $|\mathcal{H}(x_1, x_2, x_3)| = 3$ Let's check all subsets of $\{x_1, x_2, x_3\}$ to see whether it is shattered by \mathcal{H} :
- $\emptyset, \{x_1\}, \{x_2\}, \{x_3\}$ are shattered by \mathcal{H} , so $\#=4\geq 3$
- e.g. $\mathcal{H}(x_1, x_2, x_3) = \{(-1, +1, -1), (-1, +1, +1)\}.$ $\emptyset, \{x_3\}$ are shattered by \mathcal{H} , so $\#=2\geq 2$
- Prove by induction.

Base case is $|\mathcal{H}(x_1,\ldots,x_n)|=1$, then \emptyset can be shattered.

Assume the lemma is true for all \mathcal{H}' s.t. $|\mathcal{H}'(x_1,\ldots,x_n)| < |\mathcal{H}(x_1,\ldots,x_n)|, \quad |\mathcal{H}(x_1,\ldots,x_n)| \geq 2$

Without loss of generality (W.L.O.U), let x_1 be a point that can take both +1 and -1 in $\mathcal{H}(x_1,\ldots,x_n)$. x_1 must exist, otherwise $|\mathcal{H}(x_1,\ldots,x_n)|=1$

Then divide $\mathcal{H}(x_1,\ldots,x_n)$ into $\mathcal{H}_1(x_1,\ldots,x_n)$ and $\mathcal{H}_2(x_1,\ldots,x_n)$, s.t. $\mathcal{H}_1(x_1,\ldots,x_n)$ only contains $x_1:+1$ dichotomies and $\mathcal{H}_2(x_1,\ldots,x_n)$ only contains $x_1:-1$ dichotomies.

By induction hypothesis:

of subsets shattered by $\mathcal{H}_1 + \#$ of subsets shattered by \mathcal{H}_2 $|\geq |\mathcal{H}_1(x_1,\ldots,x_n)| + |\mathcal{H}_2(x_1,\ldots,x_n)|$

Now consider a subset S of $\{x_1, \ldots, x_n\}$:

- lacksquare If S is only shattered by \mathcal{H}_1 or \mathcal{H}_2 , then S is shattered by \mathcal{H}
- If S is shattered by both \mathcal{H}_1 and \mathcal{H}_2 , then S is shattered by \mathcal{H} and $S \cup \{x_1\}$ is also shattered by \mathcal{H} Firstly, S doesn't contain x_1 , because either \mathcal{H}_1 or \mathcal{H}_2 only contains one assignment to $x_1 o$ cannot cover both ± 1 of x_1

Secondly, every dichotomy of $S \bigcup \{x_1\}$ must correspond to a dichotomy of $S \bigoplus \{x_1 : +1\}$ or a dichotomy of $S \bigoplus \{x_1 : -1\}$, where the former appears in \mathcal{H}_1 and the latter appears in \mathcal{H}_2 .

So

of subsets shattered by
$$\mathcal{H}$$

 $\geq \#$ of subsets shattered by $\mathcal{H}_1 + \#$ of subsets shattered by \mathcal{H}_2
 $\geq |\mathcal{H}_1(x_1, \dots, x_n)| + |\mathcal{H}_2(x_1, \dots, x_n)|$
 $= |\mathcal{H}(x_1, \dots, x_n)|$

Finally, if $\mathcal H$ has a finite VC dimension d_{VC} (no subsets of size $\geq d_{VC}+1$ can be shattered by $\mathcal H$), then we have on any $x_1,\dots,x_n\in X$:

$$|\mathcal{H}(x_1,\ldots,x_n)| \leq \# ext{ of subsets shattered by } \mathcal{H}(x_1,\ldots,x_n) \ \leq \sum_{i=1}^{d_{VC}} inom{n}{i}$$

So

$$m_{\mathcal{H}}(n) = \max_{x_1,\dots,x_n} |\mathcal{H}(x_1,\dots,x_n)| \leq \sum_{i=1}^{d_{VC}} inom{n}{i}$$

The VC Generalization bound

With probability at least $1-\delta$, $\forall h\in\mathcal{H}$,

$$E_{out}(h) - E_{in}(h) < \sqrt{rac{8}{n}\lograc{2m_{\mathcal{H}}(2n)}{\delta}} = O(\sqrt{d_{VC}rac{\log n}{n} - rac{\log \delta}{n}})$$

- \circ $n \nearrow d_{VC} \searrow \Rightarrow$ generalization error \searrow
- o This is a very loose bound, because we always consider the worst cases.