

幾何学2第2回

ユークリッド距離 (距離の性質、特に三角不等式)

講義のページ

野本 慶一郎 明星大学 教育学部 教育学科

2024年9月25日

スライド

今日の数学パズル

 \blacksquare 1 \sim 1000 の数字が書かれた電球が 1000 個ある. 全て OFF の状態から次の操作を行う.

■ この操作を 1000 回まで行なったとき, 最後に ON の状態の電球の数は何個か.

前回の復習

ユークリッド距離

定義 (教科書 p.101 定義 8.1)

 \mathbb{R}^n の任意の 2 点 $\boldsymbol{x} = (x_1, x_2, \dots, x_n), \boldsymbol{y} = (y_1, y_2, \dots, y_n)$ に対して

$$d(\boldsymbol{x}, \boldsymbol{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \quad \left(= \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2} \right)$$

をx,y間の**ユークリッド距離**という.

例 (\mathbb{R}^2)

$$x = (-1, 2), y = (3, -5)$$
 に対するユークリッド距離は次のように計算される:

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(-1-3)^2 + (2-(-5))^2} = \sqrt{16+49} = \sqrt{65}.$$

ユークリッド空間

■ ユークリッド距離 d(x,y) は、 \mathbb{R}^n の 2 点 x,y に対して距離という実数を対応させる関数 として見ることができる:

$$d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, (\boldsymbol{x}, \boldsymbol{y}) \mapsto d(\boldsymbol{x}, \boldsymbol{y})$$

この写像 d を**ユークリッド距離関数**という.

定義 (教科書 p.102 定義 8.3)

 \mathbb{R}^n とユークリッド距離関数 d の組 (\mathbb{R}^n , d) を n 次元ユークリッド空間といい, \mathbb{E}^n で表す.

$$\mathbb{E}^n = (\mathbb{R}^n, d)$$

 \blacksquare つまり「 $x,y \in \mathbb{E}^n$ 」のように書いたときは, 2 点x,y 間の距離は

ユークリッド距離で測る

ということ.

今日の内容

ユークリッド距離の基本3性質

定理 (教科書 p.103 定理 8.5)

 $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ をユークリッド距離関数とする. このとき任意の 3 点 $x, y, z \in \mathbb{E}^n$ に対して, 以下の 3 つの性質が成り立つ.

- 1. $d(x,y) \ge 0$. さらに $d(x,y) = 0 \iff x = y$.
- **2.** d(x, y) = d(y, x).
- 3. $d(x, z) \le d(x, y) + d(y, z)$. (三角不等式)
 - 三角不等式は

遠回りすると距離が増える

というごく自然な現象を数式で表現し たものである

証明 (n=2 のとき)

以下では $\mathbf{x} = (x_1, x_2), \mathbf{y} = (y_1, y_2), \mathbf{z} = (z_1, z_2)$ と成分表示されているとする.

1. ユークリッド距離の定義より

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} \ge 0$$
 (1)

が成り立つ. さらに式 (1) の等号が成り立つのは $x_1 = y_1$ かつ $x_2 = y_2$ のときに限る. つまり

$$d(\mathbf{x}, \mathbf{y}) = 0 \iff \mathbf{x} = \mathbf{y}.$$

2. 任意の $x, y \in \mathbb{R}$ に対して $(x - y)^2 = (y - x)^2$ であるから

$$d(\boldsymbol{x}, \boldsymbol{y}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2} = d(\boldsymbol{y}, \boldsymbol{x})$$

である.

証明

3. 示したい三角不等式 $d(x, z) \le d(x, y) + d(y, z)$ を書き下すと以下のようになる.

$$\sqrt{(x_1-z_1)^2+(x_2-z_2)^2} \le \sqrt{(x_1-y_1)^2+(x_2-y_2)^2} + \sqrt{(y_1-z_1)^2+(y_2-z_2)^2}$$
(2)

式を簡単にするため, $a_i := x_i - y_i$, $b_i := y_i - z_i$ とおく. このとき $x_i - z_i = a_i + b_i$ であるから, 式 (2) は以下のように書き換えられる.

$$\sqrt{(a_1+b_1)^2+(a_2+b_2)^2} \le \sqrt{a_1^2+a_2^2} + \sqrt{b_1^2+b_2^2}$$
 (3)

式(3)の両辺の値はいずれも非負であるから、両辺を2乗した以下の式を示せばよい.

$$(a_1 + b_1)^2 + (a_2 + b_2)^2 \le \left(\sqrt{a_1^2 + a_2^2} + \sqrt{b_1^2 + b_2^2}\right)^2 \tag{4}$$

証明

(右辺) - (左辺)

$$= (a_1^2 + a_2^2) + 2\sqrt{(a_1^2 + a_2^2)(b_1^2 + b_2^2)} + (b_1^2 + b_2^2) - (a_1 + b_1)^2 - (a_2 + b_2)^2$$

$$= (a_1^2 + a_2^2) + 2\sqrt{(a_1^2 + a_2^2)(b_1^2 + b_2^2)} + (b_1^2 + b_2^2) - (a_1^2 + 2a_1b_1 + b_1^2) - (a_2^2 + 2a_2b_2 + b_2^2)$$

$$= 2\left(\sqrt{(a_1^2 + a_2^2)(b_1^2 + b_2^2)} - (a_1b_1 + a_2b_2)\right)$$
(5)

を得る.

証明

ここで一度,
$$\mathbf{a}=(a_1,a_2), \mathbf{b}=(b_1,b_2)$$
 とおく. ベクトル \mathbf{a},\mathbf{b} のなす角を θ とおくと

$$egin{aligned} \sqrt{(a_1^2 + a_2^2)(b_1^2 + b_2^2)} &= |m{a}||m{b}| \ &\geq |m{a}||m{b}|\cos \theta \ &= m{a} \cdot m{b} \ &= a_1b_1 + a_2b_2 \end{aligned}$$

が成り立つ. よって式(5)より

(右辺)
$$-$$
 (左辺) $= 2\left(\sqrt{(a_1^2 + a_2^2)(b_1^2 + b_2^2)} - (a_1b_1 + a_2b_2)\right) \ge 0$

であるから (右辺) ≥ (左辺) が成り立つ.

Cauchy-Shwartz の不等式

■ 先ほどの証明では不等式

$$(a_1^2 + a_2^2)(b_1^2 + b_2^2) \ge a_1b_1 + a_2b_2$$

を示した. これは Cauchy-Shwartz の不等式の特殊な場合である.

命題 (Cauchy-Shwartz の不等式)

実数 $a_1, \ldots, a_n, b_1, \ldots, b_n$ に対して

$$\left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right) \ge \left(\sum_{i=1}^n a_i b_i\right)^2.$$

補足 pdf(証明)

■ 確認テストでは Cauchy-Shwartz の不等式は証明無しに用いて良いことにします.

ユークリッド距離と似た性質をもつ"距離"

■ ユークリッド距離以外にも、先ほど示した三性質を満たす "距離" がある. $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$ としたとき、例えば次の d_0, d_1 は三性質を満たす.

$$d_0(\boldsymbol{x}, \boldsymbol{y}) = egin{cases} 1 & (\boldsymbol{x}
eq \boldsymbol{y}) \ 0 & (\boldsymbol{x} = \boldsymbol{y}) \end{cases}$$

$$d_1(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^n |x_i - y_i|$$

演習目標: 自身の力で証明を書き切る