Нетерівські (Noether-type) симетрії роторного поля: геометричні струми, дуальності та збережені заряди

В'ячеслав Логінов¹

¹Київ, Україна, barthez.slavik@gmail.com

13 жовтня 2025 р.

Анотація

Ми виконуємо систематичний аналіз законів збереження для просторово-часового роторного поля $R(x) \in \mathrm{Spin}(1,3)$, визначеного в геометричній алгебрі через $R = \exp\left(\frac{1}{2}B\right)$ із бі-векторним генератором B(x). Виходячи з перших принципів сигма-моделі ротора на кривих фонах, ми виводимо неочікуване багатство збережених структур: (і) глобальні та локальні Spin-калібрувальні струми, що кодують внутрішній кутовий момент; (іі) струм 6i-векторної ϕ ази ("роторний заряд"), який вимірює когерентність локальних площинних обертань; (ііі) ∂ уальний струм, що узагальнює електромагнітну гелікальність на повну роторну конфігурацію; (іv) спіновий струм і удосконалений Белінфанте тензор енергії-імпульсу; та (v) топологічні поверхневі заряди, що випливають із форм Мора—Картана. Ці симетрії розширюють стандартну відповідність Нетер і прояснюють, як маса, енергія, спін і когерентність роторної фази постають як різні аспекти єдиного геометричного принципу інваріантності.

Ключові слова: роторне поле; геометрична алгебра; нетерівські струми; калібрувальна симетрія Spin; дуальність; гелікальність; енерго-імпульсний тензор

1 Вступ

1.1 Проблема симетрій у теорії роторного поля

Одне з найглибших відкриттів фізики XX століття— теорема Нетер: кожній неперервній симетрії фізичної системи відповідає закон збереження. Трансляційна інваріантність простору веде до збереження імпульсу; часової інваріантності відповідає збереження енергії. Цей зв'язок між симетрією та збереженням скеровував розвиток сучасної теорії поля— від електродинаміки до Стандартної моделі.

Якщо ж розглянути теорію поля, засновану не на скалярних чи векторних полях, а на $po-mophux\ nonsx$ — полях зі значеннями в групі $\mathrm{Spin}(1,3)$, що параметризує локальні лоренцові обертання, — постає питання: які нові симетрії з'являються? Які збережені величини характеризують динаміку такої геометрично насиченої структури?

Роторне поле R(x) принципово відрізняється від звичних полів. Це одиничний парний мультивектор у геометричній алгебрі, що подається як $R=\exp(\frac{1}{2}B)$, де B — бі-вектор, орієнтований елемент площини. Ця експонента з бі-векторної алгебри до роторної групи — геометричний аналог $e^{\mathrm{i}\theta}$ у комплексній площині, але тепер діє на шестивимірному просторі площин простору-часу.

Роторне поле кодує і напрям привілейованої площини (які компоненти бі-вектора активні), і величину обертання в цій площині (кут ϕ). Така подвійна структура натякає на багатший ландшафт симетрій, ніж у скалярних чи векторних полях. Чи існують збережені струми, пов'язані з перетвореннями бі-векторної фази? Що відбувається, коли ми обертаємо саму площину через дуальні трансформації? Як внутрішній спін ротора зчіплюється з просторово-часовими трансляціями?

1.2 Ландшафт роторних симетрій

У стандартній калібрувальній теорії група діє множенням на матерні поля, і теорема Нетер дає збережені струми. Для роторів ситуація тонша. Група $\mathrm{Spin}(1,3)$ може діяти на R(x) щонайменше трьома способами:

- 1. **Ліве множення**: $R(x) \to S R(x)$, $S \in \mathrm{Spin}(1,3)$ сталий ротор. Це генерує глобальні лоренцові перетворення і дає шість струмів, пов'язаних із генераторами обертань і бустів.
- 2. **Праве множення**: $R(x) \to R(x) S$, що зберігає індуковану тетраду $e_a = R \gamma_a \widetilde{R}$, але змінює спінорний вміст. Такі перетворення породжують *внутрішні* симетрії.
- 3. Зсуви бі-векторної фази: якщо $R = \exp(\frac{1}{2}\phi \, \hat{B})$ з одиничним бі-вектором $\hat{B}^2 = -1$, то $\phi \to \phi + \alpha$ зсуває кут обертання за фіксованої площини. Це нагадує U(1)-калібрувальні перетворення в ЕМТ, але діє в бі-векторному секторі.

Поза цими діями, геометрична алгебра надає специфічну для бі-векторів симетрію: ∂y альність. Подібно до того, як рівняння Максвелла допускають перетворення, що взаємообмінює електричні й магнітні поля, бі-вектори можна обертати в їх Годжеві двоїсті множенням на псевдоскаляр I. Якщо динаміка поважає цю дуальність, має існувати відповідний збережений струм.

Нарешті, ізометрії простору-часу — трансляції та лоренцові бусти, застосовані до самих координат — дають звичний тензор енергії-імпульсу. Оскільки ротор несе внутрішній спін, канонічний тензор загалом не симетричний, і потрібна процедура Белінфанте для побудови симетричного, калібрувально-інваріантного тензора, придатного для гравітаційного зв'язку.

1.3 Фізичний зміст і обсяг

Навіщо нам ці збережені величини? Відповідь — у фізичній інтерпретації роторних полів. Якщо, як стверджує гіпотеза роторного поля, фундаментальний опис матерії й геометрії містить бі-векторне поле B(x), з якого постають і метричні, і спінорні структури, тоді виведені тут збережені заряди — найпервинніші спостережувані величини теорії.

Роторно-фазовий заряд вимірює *когерентність* обертальних осциляцій — аналог довжини когерентності в надпровідниках чи Бозе-Ейнштейнівських конденсатах. Області з великим роторно-фазовим зарядом відповідають квантово-когерентній матерії. Дуальний заряд узагальнює гелікальність: балансує "електричні" та "магнітні" компоненти бі-вектора. У гравітації це може стосуватися гравітомагнітного поля; у квантових контекстах — хиральності ферміонів.

Спіновий струм описує внутрішню густину кутового моменту, яку несе саме роторне поле. На кривих фонах цей струм робить внесок у загальний кутовий момент і пов'язаний із асиметрією тензора енергії-імпульсу через спін-орбітальне зчеплення.

1.4 Організація роботи

У цій праці ми систематично виводимо та класифікуємо нетерівські закони збереження для роторів. Підхід конструктивний: починаючи з першопринципної дії сигма-моделі, розглядаємо кожну неперервну симетрію, обчислюємо відповідний струм та тлумачимо його фізичний сенс.

Структура. У Section 2 встановлюємо математичний каркас: ротор у геометричній алгебрі, його коваріантну похідну та струм Мора—Картана. Section 3 адаптує загальну машину Нетер до роторних змінних і виводить головну формулу для струмів.

У Section 4 — серце роботи — каталогізуємо симетрії та струми: калібрувальну Spin-симетрію, роторно-фазову, дуальність, праву дію та внутрішні автоморфізми, ізометрії простору-часу (тензор енергії-імпульсу) і топологічні заряди з кривини Мора—Картана.

Section 5 ілюструє прикладами: вільні роторні конфігурації, зв'язок із ферміонами Дірака, випадки порушення дуальності. ?? висвітлює поліпшення Белінфанте. Насамкінець, Section 6 синтезує результати, накреслює зв'язки та відкриті питання. Додатки містять деталі виведень.

2 Математичний каркас: роторне поле та його струми

2.1 Геометрична алгебра та група роторів

Нехай $\mathcal{G}(1,3)$ — кліфордова алгебра, породжена ортонормованим базисом $\{\gamma_a\}$, a=0,1,2,3, із відношенням

$$\gamma_a \gamma_b + \gamma_b \gamma_a = 2\eta_{ab}, \qquad \eta = \text{diag}(+1, -1, -1, -1).$$
 (2.1)

Геометричний добуток породжує шістнадцятивимірну алгебру зі скалярами, векторами, бі-векторами, три-векторами та псевдоскаляром. Загальний бі-вектор має вигляд

$$B = B^{ab} \gamma_a \wedge \gamma_b = \frac{1}{2} B^{ab} (\gamma_a \gamma_b - \gamma_b \gamma_a). \tag{2.2}$$

Pomop — одиничний парний мультивектор $R \in \mathcal{G}^+(1,3)$, що задовольняє

$$R\widetilde{R} = 1, (2.3)$$

де \widetilde{R} — реверсія. Множина таких R утворює групу $\mathrm{Spin}(1,3)$ — подвійне накриття $\mathrm{SO}^+(1,3)$. Кожен ротор має експоненціальну параметризацію через бі-вектор:

$$R = \exp\left(\frac{1}{2}B\right) = \cosh\left(\frac{1}{2}|B|\right) + \frac{B}{|B|}\sinh\left(\frac{1}{2}|B|\right),\tag{2.4}$$

де $|B|^2 = \frac{1}{2} \operatorname{Tr}(B^2)$. Це встановлює $\mathfrak{spin}(1,3)$ як лі-алгебру $\operatorname{Spin}(1,3)$.

2.2 Роторне поле та індукована геометрія

Роторне поле R(x) приписує кожній точці x^{μ} ротор $R(x) \in \text{Spin}(1,3)$ та індукує локальний ортонормований репер (тетраду) через

$$e_a(x) \equiv R(x) \gamma_a \widetilde{R}(x).$$
 (2.5)

Тоді

$$e_a \cdot e_b = \eta_{ab}. \tag{2.6}$$

Компоненти e^{μ}_a визначають метрику

$$g_{\mu\nu}(x) = e^a_{\mu} e^b_{\nu} \eta_{ab}. \tag{2.7}$$

Отже, R(x) кодує геометрію простору-часу: плоскість відповідає сталому R, кривина — просторовим змінам.

2.3 Спіновий зв'язок і коваріантна похідна

Для коваріантної похідної вводимо *спіновий зв'язок* $\Omega_{\mu}(x)$ — бі-векторну 1-форму:

$$\nabla_{\mu}R \equiv \partial_{\mu}R + \frac{1}{2}\Omega_{\mu}R. \tag{2.8}$$

Безкручення (Леві-Чівіта) вимагає

$$de^a + \Omega^a_b \wedge e^b = 0. (2.9)$$

2.4 Струм Мора—Картана

Визначимо праворівноважний струм

$$\mathcal{A}_{\mu} \equiv 2(\nabla_{\mu}R)\widetilde{R} \in \mathfrak{spin}(1,3), \tag{2.10}$$

який при правому множенні $R \to RS$ трансформується як

$$A_{\mu} \to S^{-1} A_{\mu} S. \tag{2.11}$$

Обернене співвідношення:

$$\nabla_{\mu}R = \frac{1}{2}\mathcal{A}_{\mu}R. \tag{2.12}$$

Кривина:

$$\mathcal{F}_{\mu\nu} \equiv \partial_{\mu} \mathcal{A}_{\nu} - \partial_{\nu} \mathcal{A}_{\mu} + [\mathcal{A}_{\mu}, \mathcal{A}_{\nu}]. \tag{2.13}$$

2.5 Лагранжіан ротора

Розглянемо сигма-модель ротора:

$$\mathcal{L}_R = \frac{\rho}{8} g^{\mu\nu} \operatorname{Tr}(\mathcal{A}_{\mu} \mathcal{A}_{\nu}) - V(R), \qquad (2.14)$$

де $\rho>0$ — константа, Tr — вбивча форма на $\mathfrak{spin}(1,3),\,V(R)$ — потенціал (самодія/зв'язки). Приклади:

- V залежить лише від інваріантів (напр., $\mathrm{Tr}(B^2))$ поважає глобальні обертання.
- V залежить від фази ϕ у $R = \exp(\frac{1}{2}\phi\,\hat{B})$ порушує роторно-фазову симетрію.
- \bullet V різнить "електричні" та "магнітні" компоненти порушує дуальність.

2.6 Рівняння руху

Варіювання $S_R = \int \mathrm{d}^4 x \sqrt{-g} \, \mathcal{L}_R$ за R дає

$$\nabla_{\mu} \mathcal{A}^{\mu} = -\frac{4}{\rho} \frac{\partial V}{\partial R} \, \widetilde{R} \in \mathfrak{spin}(1,3). \tag{2.15}$$

Для V=0:

$$\nabla_{\mu} \mathcal{A}^{\mu} = 0. \tag{2.16}$$

3 Механіка Нетер для роторних симетрій

3.1 Нагадування про теорему Нетер

Нехай поля ϕ трансформуються як $\delta\phi=\epsilon^A(x)\delta_A\phi$. Якщо дія інваріантна (з точністю до країв), існує струм J_A^μ із

$$\partial_{\mu}J_{A}^{\mu}=0$$
 (на оболонці). (3.1)

3.2 Інфінітезимальні перетворення ротора

Нехай генератори — бі-вектори G_A , тоді

$$\delta R = \frac{1}{2} \epsilon^A(x) G_A R. \tag{3.2}$$

Струм Мора-Картана змінюється як

$$\delta \mathcal{A}_{\mu} = \nabla_{\mu} \epsilon^{A} G_{A} + [\mathcal{A}_{\mu}, \ \epsilon^{A} G_{A}]. \tag{3.3}$$

3.3 Варіація лагранжіана

Кінетичний член:

$$\delta \mathcal{L}_R = \frac{\rho}{4} \nabla_\mu \epsilon^A \operatorname{Tr} (G_A \mathcal{A}^\mu) - \delta_A V, \tag{3.4}$$

де

$$\delta_A V \equiv \frac{1}{2} \epsilon^A \frac{\partial V}{\partial R} \cdot (G_A R). \tag{3.5}$$

3.4 Головна формула для нетерівських струмів

Інтегруючи частинами, отримуємо тотожність Варда:

$$\nabla_{\mu}J_{A}^{\mu} = -\delta_{A}V,\tag{3.6}$$

де нетерівський струм

$$J_A^{\mu} = \frac{\rho}{4} \operatorname{Tr}(\mathcal{A}^{\mu} G_A). \tag{3.7}$$

За глобальної симетрії та $\delta_A V = 0$:

$$\nabla_{\mu}J_{A}^{\mu} = 0. \tag{3.8}$$

Заряд:

$$Q_A = \int_{\Sigma} d^3 x \, n_{\mu} J_A^{\mu}. \tag{3.9}$$

4 Ландшафт роторних симетрій

4.1 Spin-калібрувальна симетрія: внутрішній кутовий момент

4.1.1 Фізичний зміст

Ліве множення $R \to SR$ (S сталий) змінює репер $e_a = R\gamma_a\widetilde{R}$ як

$$e_a \to Se_a \widetilde{S}$$
. (4.1)

Інваріанти на кшталт $\mathrm{Tr}(\mathcal{A}_{\mu}\mathcal{A}^{\mu})$ залишаються сталими.

4.1.2 Струми та збереження

Генератори

$$G_{ab} = \frac{1}{2} \gamma_a \wedge \gamma_b, \quad a < b, \tag{4.2}$$

дають спін-калібрувальний струм

$$J_{ab}^{\mu} = \frac{\rho}{4} \operatorname{Tr} (\mathcal{A}^{\mu} G_{ab}). \tag{4.3}$$

За клас-функційного V(R):

$$\nabla_{\mu}J_{ab}^{\mu} = 0. \tag{4.4}$$

4.2 Роторно-фазова симетрія: заряд когерентності

4.2.1 Декомпозиція на площину й кут

Для простого ротора:

$$R = \exp(\frac{1}{2}\phi \,\hat{B}), \quad \hat{B}^2 = -1.$$
 (4.5)

4.2.2 Струм і інтерпретація

Для $\delta R = \frac{1}{2} \alpha \, \hat{B} R$ маємо

$$J_{\text{rot}}^{\mu} = \frac{\rho}{4} \operatorname{Tr} (\mathcal{A}^{\mu} \hat{B}), \tag{4.6}$$

і за $\delta_{\hat{B}}V=0, \ \nabla_{\mu}J_{\mathrm{rot}}^{\mu}=0.$ Відповідний заряд Q_{rot} вимірює когерентність обертальних осциляцій у площині \hat{B} .

4.3 Дуальність: гелікальність і Годжеве обертання

4.3.1 Геометричний зміст

Для бі-вектора B Годжева двоїстість: $\star B = IB$, I — псевдоскаляр. Інфінітезимально:

$$\delta R = \frac{1}{2}\theta \left(I\hat{B}\right)R. \tag{4.7}$$

4.3.2 Дуальний струм

$$J_{\text{dual}}^{\mu} = \frac{\rho}{4} \operatorname{Tr}(\mathcal{A}^{\mu} I \hat{B}), \tag{4.8}$$

і за дуальної інваріантності V — збереження. Заряд Q_{dual} узагальнює $\mathit{гелікальність}$.

4.4 Права дія та внутрішні автоморфізми

Праве множення $R \to RS$ загалом не змінює фізичної геометрії, але змінює параметризацію. За бі-інваріантного V існують додаткові збережені праві струми (деталі — у додатку).

4.5 Ізометрії простору-часу та тензор енергії-імпульсу

4.5.1 Трансляції та енерго-імпульс

Канонічний тензор:

$$T^{\mu}_{\nu} = \frac{\rho}{4} \operatorname{Tr} \left(\mathcal{A}^{\mu} \mathcal{A}_{\nu} \right) - \delta^{\mu}_{\nu} \mathcal{L}_{R}, \tag{4.9}$$

а на оболонці $\nabla_{\mu}T^{\mu}_{\ \nu}=0.$

4.5.2 Проблема асиметрії

Загалом $T^{\mu}_{\ \nu} \neq T^{\nu}_{\ \mu}$ через спін. Потрібне поліпшення Белінфанте для симетризації.

4.6 Поліпшення Белінфанте

4.6.1 Спіновий струм

$$S^{\lambda\mu\nu} = \frac{\rho}{4} \operatorname{Tr}(\mathcal{A}^{\lambda} G^{\mu\nu}). \tag{4.10}$$

4.6.2 Симетризований тензор

$$\Theta^{\mu\nu} \equiv T^{\mu\nu} + \frac{1}{2} \nabla_{\lambda} (S^{\lambda\mu\nu} + S^{\mu\nu\lambda} + S^{\nu\lambda\mu} - S^{\lambda\nu\mu} - S^{\mu\lambda\nu} - S^{\nu\mu\lambda}), \tag{4.11}$$

який симетричний та збережений і збігається (варіаційно) з гільбертівським тензором.

4.7 Топологічні заряди з кривини Мора-Картана

4.7.1 Густина Черна—Понтрягіна

$$\mathcal{P} \equiv \text{Tr}(\mathcal{F} \wedge \mathcal{F}) = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} \text{Tr}(\mathcal{F}_{\mu\nu}\mathcal{F}_{\rho\sigma}) = \partial_{\mu}K^{\mu}. \tag{4.12}$$

4.7.2 Топологічний заряд

$$Q_{\text{top}} = \frac{1}{32\pi^2} \int_{\mathbb{R}^4} \text{Tr}(\mathcal{F} \wedge \mathcal{F}) \, d^4 x \in \mathbb{Z}.$$
 (4.13)

Це аналог індексу Понтрягіна (інстантони, скірміони тощо).

5 Приклади та фізичні застосування

5.1 Вільний ротор із бі-інваріантним потенціалом

5.1.1 Вибір потенціалу

$$V(R) = V_0 + \frac{\lambda}{2} \operatorname{Tr}(\mathcal{A}_{\mu} \mathcal{A}^{\mu}) \quad \text{afo} \quad V(R) = m^2 \operatorname{Tr}(B^2).$$
 (5.1)

5.1.2 Збережені величини

Тоді збережені J_{ab}^{μ} , $J_{\rm rot}^{\mu}$, $J_{\rm dual}^{\mu}$ та симетризований $\Theta^{\mu\nu}$. Для плоскої хвилі $R=\exp[\frac{1}{2}(\omega t - \mathbf{k} \cdot \mathbf{x})\hat{B}]$ енергія стала, $Q_{\rm rot} \propto \omega V$, а $Q_{\rm dual}$ залежить від домішки $I\hat{B}$.

5.2 Зв'язок із ферміонами Дірака

5.2.1 Лагранжіан ферміона

$$\mathcal{L}_{\psi} = \bar{\psi}(i\gamma^{\mu}\nabla_{\mu} - m)\psi, \qquad \mathcal{L}_{\text{total}} = \mathcal{L}_{R} + \mathcal{L}_{\psi}.$$
 (5.2)

5.2.2 Сумарний спін-струм

$$J_{ab}^{\mu}(\text{total}) = J_{ab}^{\mu}(R) + \bar{\psi}\gamma^{\mu}\Sigma_{ab}\psi. \tag{5.3}$$

5.2.3 Інтерпретація

Фон із $Q_{\rm rot} \neq 0$ індукує ефективне геометричне поле для ферміона (аналог фази Ааронова—Бома).

5.3 Порушення дуальності в анізотропних середовищах

5.3.1 Анізотропний потенціал

$$V(R) = \frac{m_E^2}{2} \operatorname{Tr}(B_E^2) + \frac{m_M^2}{2} \operatorname{Tr}(B_M^2), \quad B_M = IB_E, \, m_E \neq m_M.$$
 (5.4)

5.3.2 Дуальна "аномалія"

$$\nabla_{\mu} J_{\text{dual}}^{\mu} = -(m_M^2 - m_E^2) \text{ Tr}(B_E \cdot B_M). \tag{5.5}$$

5.3.3 Наслідки

Гравітомагнетизм поблизу обертових тіл (втягування системи відліку), космологічна анізотропія, спін-хвилі в твердих тілах — можливі місця проявів.

6 Обговорення: єдність роторних симетрій

6.1 Єдиний ландшафт

Симетрія	Струм	Фізичний заряд
Ліва дія Spin(1, 3)	J^{μ}_{ab}	Внутрішній спін і буст
Зсув бі-векторної фази	$J_{ m rot}^{\mu}$	Когерентність (ротор-фаза)
Дуальність (Годж-обертання)	$J_{ m dual}^{\mu}$	Узагальнена гелікальність
Трансляції простору-часу	$T^{\mu}_{\ u},\ \Theta^{\mu u}$	Енергія та імпульс
Топологічна	$\star\operatorname{Tr}(\mathcal{F}\wedge\mathcal{F})$	$Q_{\mathrm{top}} \in \mathbb{Z}$

Белінфанте явно пов'язує спін і енерго-імпульс; J_{rot} і J_{dual} — прояви перетворень у бівекторному секторі.

6.2 Зв'язки з іншими підходами

6.2.1 Порівняння з калібрувальною теорією

 \mathcal{A}_{μ} — аналог з'єднання, $\mathcal{F}_{\mu\nu}$ — аналог напруженості, але тут *сам ротор* — фундаментальне поле (сігма-модельна природа).

6.2.2 Гравітація як калібрувальна теорія

У підході Лазенбі—Доран—Галл спіновий зв'язок — калібрувальне поле. Тут струм спіну ротора джерелить симетризований тензор; у варіанті з індукованою метрикою $g_{\mu\nu}$ все визначається самим R.

6.2.3 Відлуння квантової механіки

Роторно-фазова симетрія нагадує U(1) фази хвильової функції; у формулюванні Гестенеса спінор — парний мультивектор, тож J_{rot}^{μ} корелює з квантовим струмом імовірності.

6.3 Відкриті питання

6.3.1 Квантування та аномалії

Чи збережуться закони на квантовому рівні? Чи виникнуть аномалії (зокрема для дуальної симетрії)?

6.3.2 Солітони та топологічні збудження

Чи існують скінчено-енергетичні "роторні вузли", класифіковані $(Q_{\text{rot}}, Q_{\text{dual}}, Q_{\text{top}})$? Чи можна пов'язати з баріонним/лептонним числом?

6.3.3 Спостережні сигнатури в гравітаційних системах

Модулювання хвиль гравітації внутрішніми роторними частотами, поляризаційне змішування за $Q_{\rm dual} \neq 0$.

6.3.4 Космологія

Фонове R(x,t) як темна матерія/енергія; глобальний Q_{dual} — хиральна анізотропія; Q_{top} — фазові стани раннього Всесвіту.

6.4 Філософські ремарки

Теорема Нетер висвітлює єдність симетрій і збережень. Ротор $R(x) \in \mathrm{Spin}(1,3)$ — геометричний об'єкт, а збережені заряди — геометричні інваріанти. Якщо фундамент — геометрична алгебра, то шлях до уніфікації — пошук правильного геометричного каркаса.

7 Висновки

Ми здійснили систематичне дослідження симетрій і законів збереження роторного поля $R(x) \in \mathrm{Spin}(1,3)$ у геометричній алгебрі: вивели спін-калібрувальні, роторно-фазові, дуальні струми; тензор енергії-імпульсу (та його симетризацію Белінфанте); а також топологічний заряд з густини Черна—Понтрягіна. Усі вони зрештою зводяться до фундаментального струму $\mathcal{A}_{\mu} = 2(\nabla_{\mu}R)\widetilde{R}$ і взаємопов'язані. Приклади показали, як ці структури проявляються фізично. Попереду — квантування, солітони, зв'язок із динамічною гравітацією й пошук спостережних сигнатур.

Дослідження симетрій триває, ведене подвійною зорею геометрії та збереження.

Подяки

Автор завдячує Еммі Нетер, чия теорема вела покоління фізиків. Розвиток геометричної алгебри Девідом Гестенесом і її застосування до гравітації Ентоні Лазенбі, Крісом Дораном

та Стівеном Галлом стали наріжними каменями. Корисними були розмови про нетерівські струми, спін-зв'язки та топологічні заряди. Роботу виконано незалежно, без зовнішнього фінансування. За можливі похибки відповідає автор.

А Детальний вивід Нетер у роторних змінних

(Технічні кроки ідентичні оригіналу; перекладено коротко для компактності.)

Починаючи з (2.14) і трансформації (3.2), отримаємо (3.3). Варіація кінетичного члена зводиться до терміна з $\nabla_{\mu} \epsilon^{A}$, комутаторний внесок зануляється циклічністю трас. Інтегрування частинами приводить до тотожності Варда (3.6) з струмом (3.7).

Б Поліпшення Белінфанте: побудова

Канонічний тензор (4.9) загалом асиметричний. Визначимо спіновий струм (4.10) та додамо дивергенцію надлишкового потенціалу (суперпотенціалу), отримуючи симетричний $\Theta^{\mu\nu}$ (4.11), що збігається з гільбертівським тензором і збережений на оболонці.

Література

- [1] E. Noether. Invariante Variationsprobleme. Nachr. d. Königl. Ges. d. Wiss. zu Göttingen, Math-phys. Klasse, 1918, 235–257.
- [2] D. Hestenes. Space-Time Algebra. Gordon and Breach, New York, 1966.
- [3] C. Doran and A. Lasenby. *Geometric Algebra for Physicists*. Cambridge University Press, Cambridge, 2003.
- [4] F. J. Belinfante. On the spin angular momentum of mesons. Physica 7 (1940) 449–474.
- [5] L. Rosenfeld. Sur le tenseur d'impulsion-énergie. Mém. Acad. Roy. Belg. 18 (1940) 1–30.
- [6] A. Lasenby, C. Doran, and S. Gull. Gravity, gauge theories and geometric algebra. *Philosophical Transactions of the Royal Society A*, 356(1737):487–582, 1998.
- [7] S. S. Chern and J. Simons. Characteristic forms and geometric invariants. *Annals of Mathematics*, 99(1):48–69, 1974.