Simulation Result For Two-Level Intercept Model With Low Prevalence

The mean prevalence for this simulation is $10\ \%$

Shafayet Khan Shafee

29 August 2023

Figure 3: For cluster size 30

Figure 4: For cluster size 50

Figure 7: For cluster size 30

Figure 8: For cluster size 50

Figure 11: For cluster size 30

Figure 12: For cluster size 50

Figure 13: For cluster size 5

Figure 14: For cluster size 10

Figure 15: For cluster size 30

Figure 16: For cluster size 50

Simulation Result Table

Number of Cluster	Cluster Size	$\widehat{eta_0}$	$\widehat{eta_1}$	$\widehat{eta_2}$	$\widehat{\sigma_u^2}$	\widehat{MOR}	Relative Bias (%)	\widehat{SE}_{MOR}	Simulation \widehat{SE}_{MOR}	Ratio ¹	CI coverage (95%)	Model Conver- gence
10	5	-4.09	1.94	0.77	2.19	4.84	7.08	4.69	2.50	1.87	0.91	0.55
10	10	-4.30	1.93	0.70	2.67	5.48	21.26	2.85	2.30	1.24	0.92	0.87
10	30	-4.24	1.82	0.67	2.50	4.82	6.59	1.80	1.77	1.02	0.89	0.99
10	50	-4.17	1.79	0.66	2.34	4.53	0.24	1.62	1.65	0.98	0.86	1.00
30	5	-4.37	1.92	0.64	3.02	6.01	32.91	2.61	2.15	1.21	0.97	0.93
30	10	-4.24	1.81	0.69	2.64	4.94	9.28	1.69	1.65	1.03	0.97	0.99
30	30	-4.14	1.77	0.65	2.52	4.63	2.54	1.37	1.39	0.99	0.91	1.00
30	50	-4.13	1.77	0.65	2.46	4.52	-0.04	1.32	1.30	1.01	0.94	1.00
50	5	-4.29	1.87	0.67	2.88	5.56	23.12	1.94	1.88	1.03	0.99	0.96
50	10	-4.19	1.79	0.69	2.65	4.88	7.92	1.48	1.48	0.99	0.96	1.00
50	30	-4.11	1.77	0.66	2.47	4.53	0.24	1.27	1.28	1.00	0.93	1.00
50	50	-4.12	1.76	0.67	2.47	4.51	-0.11	1.24	1.23	1.00	0.95	1.00
100	5	-4.19	1.80	0.69	2.67	4.92	8.87	1.52	1.51	1.01	0.98	1.00
100	10	-4.14	1.77	0.66	2.54	4.64	2.62	1.30	1.31	1.00	0.94	1.00
100	30	-4.11	1.76	0.67	2.47	4.49	-0.58	1.19	1.18	1.00	0.94	1.00
100	50	-4.12	1.75	0.67	2.47	4.49	-0.60	1.16	1.16	1.00	0.93	1.00

Note:

The mean prevalence for this simulation is 10%
$$^{1}\ \mathrm{Ratio} = \ \frac{\widehat{SE}_{MOR}}{Simulation\ \widehat{SE}_{MOR}}$$

Here,

- True MOR is 4.52

- True σ_u² is 2.5
 True Values of β₀ = -4.1, β₁ = 1.75, β₂ = 0.67
 "Runs used" column represent how many simulation runs were used to calculate the numbers in the corresponding row.