Sortieren

ist das am häufigsten auftretende algorithmische Problem.

Definition:

Sei $n \in \mathbb{N}$ und $a = a_0, a_1, ..., a_{n-1}$ eine endliche Folge mit $a_i \in \mathbb{N}$ (i=0, 1, ..., n-1).

Das **Sortierproblem** besteht darin, eine Folge $a_{\phi(0)}, ..., a_{\phi(n-1)}$ zu finden, derart, dass $a_{\phi(i)} \le a_{\phi(j)}$ für alle i, $j \in \{0, 1, ..., n-1\}$ mit i < j und derart, dass die Abbildung ϕ eine Permutation der Indexmenge $\{0, 1, ..., n-1\}$ ist.

Definition:

Eine n - stellige Permutation ($n \in N$) ist eine bijektive Abbildung (umkehrbar eindeutige Abbildung) : $\sigma: X_n \to X_n$ einer n-elementigen Menge X_n auf sich selbst.

Für eine n-elementige Menge gibt es jeweils **n!** mögliche Permutationen.

Beispiel:

$$i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$$

$$a_i = 3 \ 8 \ 1 \ 4 \ 3 \ 3 \ 2 \ 6$$

$$\phi(i) = 2 \ 6 \ 5 \ 0 \ 4 \ 3 \ 7 \ 1$$

$$2 \ 6 \ 5 \ 0 \ 4 \ 5 \ 7 \ 1$$

$$2 \ 6 \ 4 \ 5 \ 0 \ 5 \ 7 \ 1$$

$$2 \ 6 \ 4 \ 0 \ 5 \ 5 \ 7 \ 1$$

$$2 \ 6 \ 4 \ 0 \ 5 \ 5 \ 7 \ 1$$

$$2 \ 6 \ 5 \ 4 \ 0 \ 5 \ 7 \ 1$$

$$2 \ 6 \ 5 \ 4 \ 0 \ 5 \ 7 \ 1$$

$$2 \ 6 \ 5 \ 4 \ 0 \ 5 \ 7 \ 1$$