Segundo Relatório de Lab de Circuitos

Henrique da Silva hpsilva@proton.me

2 de outubro de 2022

Sumário

1 Introdução

2	ОТ	Pransistor			
3	Analise teorica				
	3.1	Obtendo a resistencia de Theve- nin/Norton			
	3.2	Obtendo a tensão de Thevenin e a corrente de Norton			
4	Res	Resultados Preliminares			
5	Resultados experimentais				
	5.1	Tabela de dados			
	5.2	Convergencia para o limite de $R_L \rightarrow$			

- 6 Grafico teoricos
- 7 Conclusoes

1 Introdução

Neste relatório, vamos discutir transistores, e como controlar a passagem de corrente alta por um circuito a partir de uma corrente mais baixa conectada em um transistor.

Todos arquivos utilizados para criar este relatório, é o relatorio em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/labcircuitos

2 O Transistor

Neste caso o transistor impediria passagem de corrente no circuito maior até haver uma tensão mínima de aproximadamente 0.7V no circuito menor

Podemos também olhar pra ele da seguinte maneira:

Que nos dá uma situação em que se o potencial em I_E for maior que o potencial em I_B nós ativamos a fonte de corrente com βI_B

Podemos ver então β como a proporção entre a corrente no circuito principal e a corrente no circuito de ativação.

$$I_E = I_B + \beta I_B \tag{1}$$

3 Analise teorica

3.1 Obtendo a resistencia de Thevenin/Norton

Primeiro vale lembrar que a resistência de Thevenin e a de Norton são iguais. obtendo uma também obteremos a outra.

Neste caso, resolvendo o sistema vamos obter que esta resistência é igual a R_c

$$R_c = R_{th} = R_{no} \tag{2}$$

3.2 Obtendo a tensão de Thevenin e a corrente de Norton

Basta obtermos um deles, pois temos a seguinte relação:

$$V_{th} = I_{no} * R_{th/no} \tag{3}$$

todas correntes de saem de um nó $\acute{\rm e}={\rm a}~0$ para simplificar os cálculos e minimizar erros de sinal

Isto me dá as seguintes equações:

$$\frac{V_b - V_{cc}}{R_1} + \frac{V_b}{R_2} - I_b = 0$$

$$\frac{V_e - V_{cc}}{R_e} + I_b + \beta * I_b = 0$$

$$-\beta * I_b + \frac{V_c}{R_c} = 0$$

$$V_b + V_b e 0 - V_e = 0$$
(4)

Resultados Preliminares

simplificações $\mathbf{A}\mathbf{s}$ \mathbf{e} resoluções equações (4) foram feitas em python e estão dentro do zip enviado e na pasta do github mencionada na introdução

As resoluções foram analisando o caso particular em que $V_{cc} = 10V, R_1 = 220\Omega, R_2 =$ (1) 1500Ω , $R_e = 150\Omega$, $R_c = 1500\Omega$, $\beta = 100$, $V_{be0} = 0.7V$

Observação: Na aula foi feito $R_1 = 200\Omega$, e no roteiro o $R_1 = 220\Omega$ entao resultados obtidos são um pouco diferentes dos resultados de aula, porém testando com $R_1 = 200\Omega$ obtenho exatamente os mesmos valores obtidos em aula.

Resultados para potência de Thevenin maxima

V_{th}	\rightarrow	5.66V
R_{th}	\rightarrow	1500Ω
I_{no}	\rightarrow	0.00377A
R_{no}	\rightarrow	1500Ω
G_{no}	\rightarrow	0.00067S
R_{max}	\rightarrow	1500Ω
P_{max}	\rightarrow	0.00534W
$P_{V_{cc}}$	\rightarrow	0.1W

Resultados experimentais 5

Com o circuito montado notei uma discrepância entre as tensões de Thevenin, e das tensões em RL esperadas e das encontradas.

Isto ocorreu devido a inicialmente ter cal-E vou usar a convenção que a soma de culado o ganho β do transistor como 100, é o valor real, refazendo a análise teórica para bater com os resultados encontrados está mais próximo de 260.

Além disso a tensão V_{be0} encontrada experimentalmente foi de 0.68V, e não 0.7V como contrados experimentalmente, $V_{th}=6V$ e já havíamos utilizado na análise teórica anteriormente.

Com isto em mente podemos interpretar a tabela de dados experimentais que será apresentada abaixo:

5.1 Tabela de dados

$V_{ij} \rightarrow 6V_{ij}$
V _{th} / OV

R_L	V_{RL}	Potencia
92Ω	0.38	0.00157W
980Ω	2.41	0.00592W
2200Ω	3.59	0.00586W
22150Ω	5.6	0.00142W

Pela dedução teórica, a potência máxima deveria ocorrer quando $R_L = R_c$, que no caso eh $R_L = 1500\Omega$, e esta potência deveria ser 0.00587W.

O resultado está próximo, apesar de não termos testado $R_L = 1500\Omega$, as potencias entre 1000Ω e 2000Ω são muito próximas, e estão também muito próximas a potência máxima teórica.

Que de fato, é o comportamento esperado.

5.2Convergencia para o limite de $R_L \to \infty \Omega$

Também podemos observar que a tensão sobre R_L converge para V_{th} conforme R_L cresce. E isto é dado por:

$$V_L = V_{th} * \frac{R_L}{R_L + R_{th}} \tag{5}$$

Substituindo os valores encontrado acima também verificamos que nossos resultados são coerentes, como por exemplo para o $R_L = 22150\Omega$:

$$V_L = 6 * \frac{22150}{23650} = 5.6V \tag{6}$$

Grafico teoricos 6

Por esta analise obtivemos $V_{th} = 5.84V$, $R_{th} = 1346.2\Omega$

Que estao bem proximos dos valores en- $R_{th} = 1500\Omega$

7 Conclusoes

Vimos que podemos um controlador de corrente, utilizando um transistor e um sistema de corrente mais baixa.

Este circuito tem propriedades bastante convenientes, como por exemplo a sua resistência de Thevenin se resume a ser igual a resistência R_c .

E podemos limitar a corrente de saída do circuito, utilizando um resistor R_L de valor adequado.