The forward and backward computation are given below. NOTE: We assume no regularization, so you can omit the terms involving The forward step is:
Next, please derive the following. Hint: you should substitute the updated values for the gradient g in each step and simplify as much as possible. Useful information about vectorized chain rule and backpropagation: If you are struggling with computing the vectorized version of chain rule for the backpropagation question in problem set 4, you not this example helpful: https://web.stanford.edu/class/cs224n/readings/gradient-notes.pdf It also contains some helpful shortcuts for computing gradients. $[5pts] \ \mathbf{Q1.1:} \ \nabla_{a^{(2)}} J$ $\nabla_{a^{(2)}} J = \frac{\partial J}{\partial a^{(2)}} = \frac{\partial J}{\partial h^{(2)}} \frac{\partial h^{(2)}}{\partial a^{(2)}} = \frac{h^{(2)} - y}{(1 - h^{(2)})h^{(2)}} f'(a^{(2)}) = \frac{h^{(2)} - y}{(1 - h^{(2)})h^{(2)}} [\frac{e^{-a^{(2)}}}{(e^{-a^{(2)}} + 1)^2}]$
$\begin{split} & [\mathbf{5pts}] \ \mathbf{Q1.2:} \ \nabla_{b^{(2)}} J = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial b^{(2)}} = \frac{h^{(2)} - y}{(1 - h^{(2)})h^{(2)}} \big[\frac{e^{-a^{(2)}}}{(e^{-a^{(2)}} + 1)^2} \big] \\ & [\mathbf{5pts}] \ \mathbf{Q1.3:} \ \nabla_{W^{(2)}} J \\ & \textit{Hint: this should be a vector, since } W^{(2)} \ \textit{is a vector.} \\ & \nabla_{W^{(2)}} J = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial W^{(2)}} = \frac{h^{(2)} - y}{(1 - h^{(2)})h^{(2)}} \big[\frac{e^{-a^{(2)}}}{(e^{-a^{(2)}} + 1)^2} \big] \nabla_{W^{(2)}} \big[h^{(1)} W^{(2)} + b^{(2)} \big] = \frac{h^{(2)} - y}{(1 - h^{(2)})h^{(2)}} \big[\frac{e^{-a^{(2)}}}{(e^{-a^{(2)}} + 1)^2} \big] h^{(1)} \\ & [\mathbf{5pts}] \ \mathbf{Q1.4:} \ \nabla_{h^{(1)}} J \end{split}$
$\nabla_{h^{(1)}}J = \frac{\partial J}{\partial a^{(2)}} \frac{\partial a^{(2)}}{\partial h^{(1)}} = \frac{h^{(2)} - y}{(1 - h^{(2)})h^{(2)}} \left[\frac{e^{-a^{(2)}}}{(e^{-a^{(2)}} + 1)^2} \right] \nabla_{h^{(1)}} \left[h^{(1)} W^{(2)} + b^{(2)} \right] = \frac{h^{(2)} - y}{(1 - h^{(2)})h^{(2)}} \left[\frac{e^{-a^{(2)}}}{(e^{-a^{(2)}} + 1)^2} \right] W^{(2)}$ $[\mathbf{5pts}] \mathbf{Q1.5:} \nabla_{b^{(1)}} J, \nabla_{W^{(1)}} J$ $\nabla_{b^{(1)}} J = \frac{\partial J}{\partial h^{(1)}} \frac{\partial h^{(1)}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial b^{(1)}} = \frac{h^{(2)} - y}{(1 - h^{(2)})h^{(2)}} \left[\frac{e^{-a^{(2)}}}{(e^{-a^{(2)}} + 1)^2} \right] W^{(2)} \left[\frac{e^{-a^{(1)}}}{(e^{-a^{(1)}} + 1)^2} \right]$ $\nabla_{W^{(1)}} J = \frac{\partial J}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial W^{(1)}} = \frac{h^{(2)} - y}{(1 - h^{(2)})h^{(2)}} \left[\frac{e^{-a^{(2)}}}{(e^{-a^{(2)}} + 1)^2} \right] W^{(2)} \left[\frac{e^{-a^{(1)}}}{(e^{-a^{(1)}} + 1)^2} \right] h^{(0)}$ $[\mathbf{5pts}] \mathbf{Q1.6} Briefly, explain how the computational speed of backpropagation would be affected if it did not include a forward passing the properties of $
[30pts] Problem 2 (Programming): Implementing a simple MLP In this problem we will develop a neural network with fully-connected layers, or Multi-Layer Perceptron (MLP). We will use it in clatasks. In the current directory, you can find a file mlp.py, which contains the definition for class TwoLayerMLP. As the name suggestimplements a 2-layer MLP, or MLP with 1 hidden layer. You will implement your code in the same file, and call the member function notebook. Below is some initialization. The autoreload command makes sure that mlp.py is periodically reloaded. # setup import numpy as np
<pre>import numpy as np import matplotlib.pyplot as plt from mlp import TwoLayerMLP %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # for auto-reloading external modules # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython %load_ext autoreload %autoreload 2 def rel_error(x, y): """ returns relative error """ return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))</pre>
Next we initialize a toy model and some toy data, the task is to classify five 4-d vectors. # Create a small net and some toy data to check your implementations. # Note that we set the random seed for repeatable experiments. input_size = 4 hidden_size = 10 num_classes = 3 num_inputs = 5 def init_toy_model(actv, std=1e-1): np.random.seed(0) return TwoLayerMLP(input_size, hidden_size, num_classes, std=std, activation=actv) def init_toy_data():
<pre>np.random.seed(1) X = 10 * np.random.randn(num_inputs, input_size) y = np.array([0, 1, 2, 2, 1]) return X, y X, y = init_toy_data() print('X = ', X) print() print('y = ', y) X = [[16.24345364 -6.11756414 -5.28171752 -10.72968622] [8.65407629 -23.01538697 17.44811764</pre>
[5pts] Q2.1 Forward pass: Sigmoid Our 2-layer MLP uses a softmax output layer (note: this means that you don't need to apply a sigmoid on the output) and the mu cross-entropy loss to perform classification. Softmax function: For class j: $P(y_{(j)} x) = \frac{\exp(z_j)}{\sum_{c=1}^{C} \exp(z_c)}$ Where C is the number of classes and z is class-wise output of the network.
Multiclass cross-entropy loss function: $J = \frac{1}{m} \sum_{i=1}^{m} \sum_{c=1}^{C} \left[-y_{(c)} log(P(y_{(c)} x^{(i)})) \right]$ $y_{(c)} = 1$ for the ground truth class and 0 otherwise. m is the number of inputs in a batch and C is the number of classes. Please take a look at method <code>TwoLayerMLP.loss</code> in the file <code>mlp.py</code> . This function takes in the data and weight parameters, computes the class scores (aka logits), the loss L , and the gradients on the parameters. • Complete the implementation of forward pass (up to the computation of <code>scores</code>) for the sigmoid activation: $\sigma(x) = \frac{1}{1 + exp(x)}$. Note 1: Softmax cross entropy loss involves the <u>log-sum-exp operation</u> . This can result in numerical underflow/overflow. Read at
Solution in the link, and try to understand the calculation of loss in the code. Note 2: You're strongly encouraged to implement in a vectorized way and avoid using slower for loops. Note that most numpy support vector inputs. Check the correctness of your forward pass below. The difference should be very small (<1e-6). net = init_toy_model('sigmoid') loss, _ = net.loss(x, y, reg=0.1) correct_loss = 1.182248 print(loss) print('Difference between your loss and correct loss:') print(np.sum(np.abs(loss - correct_loss))) 1.1822479803941373
Difference between your loss and correct loss: 1.9605862711102873e-08 [10pts] Q2.2 Backward pass: Sigmoid • For sigmoid activation, complete the computation of grads, which stores the gradient of the loss with respect to the variab b1, W2, and b2. Now debug your backward pass using a numeric gradient check. Again, the differences should be very small. # Use numeric gradient checking to check your implementation of the backward pass.
<pre># If your implementation is correct, the difference between the numeric and # analytic gradients should be less than 1e-8 for each of W1, W2, b1, and b2. from utils import eval_numerical_gradient loss, grads = net.loss(X, y, reg=0.1) # these should all be very small for param_name in grads: f = lambda W: net.loss(X, y, reg=0.1)[0] param_grad_num = eval_numerical_gradient(f, net.params[param_name], verbose=False) print('%s max relative error: %e'% (param_name, rel_error(param_grad_num, grads[param_name])) W2 max relative error: 8.048892e-10 b2 max relative error: 5.553999e-11 W1 max relative error: 1.126755e-08</pre>
[5pts] Q2.3 Train the Sigmoid network To train the network we will use stochastic gradient descent (SGD), implemented in TwoLayerNet.train. Then we train a two network on toy data. • Implement the prediction function TwoLayerNet.predict, which is called during training to keep track of training and valaccuracy.
You should get the final training loss around 0.1, which is good, but not too great for such a toy problem. One problem is that the magnitude for W1 (the first layer weights) stays small all the time, and the neural net doesn't get much "learning signals". This has with the saturation problem of the sigmoid activation function. net = init_toy_model('sigmoid', std=le-1) stats = net.train(X, y, X, y,
<pre>ax1.set_ylabel('training loss') ax1.set_title('Training Loss history') ax2.plot(stats['grad_magnitude_history']) ax2.set_xlabel('iteration') ax2.set_ylabel(r'\$ \nabla_{\mathbf{W1}} \$') ax2.set_title('Gradient magnitude history ' + r'(\$\nabla_{\mathbf{W1}}\$)') ax2.set_ylim(0,1) fig.tight_layout() plt.show() Final training loss: 0.10926794610680679 Training Loss history</pre>
1.0 0.8 0.6 0.4 0.2 0.2 0.0
0.8 -
 [5pts] Q2.4 Using ReLU activation The Rectified Linear Unit (ReLU) activation is also widely used: ReLU(x) = max(0, x). Complete the implementation for the ReLU activation (forward and backward) in mlp.py. Train the network with ReLU, and report your final training loss. Make sure you first pass the numerical gradient check on toy data. net = init_toy_model('relu', std=1e-1) loss, grads = net.loss(X, y, reg=0.1)
<pre>print('loss = ', loss) # correct_loss = 1.320973 # The differences should all be very small print('checking gradients') for param_name in grads: f = lambda W: net.loss(X, y, reg=0.1)[0] param_grad_num = eval_numerical_gradient(f, net.params[param_name], verbose=False) print('%s max relative error: %e'% (param_name, rel_error(param_grad_num, grads[param_name])) loss = 1.3037878913298206 checking gradients W2 max relative error: 3.440708e-09 b2 max relative error: 3.865091e-11 W1 max relative error: 3.561318e-09 b1 max relative error: 8.994864e-10</pre>
Now that it's working, let's train the network. Does the net get stronger learning signals (i.e. gradients) this time? Report your final loss. net = init_toy_model('relu', std=le-1) stats = net.train(X, y, X, y,
<pre>ax1.set_ylabel('training loss') ax1.set_title('Training Loss history') ax2.plot(stats['grad_magnitude_history']) ax2.set_xlabel('iteration') ax2.set_ylabel(r'\$ \nabla_{W1} \$') ax2.set_title('Gradient magnitude history ' + r'(\$\nabla_{W1}\$)') fig.tight_layout() plt.show() Final training loss: 0.0178562204869839 Training Loss history 12 10</pre>
0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.2 - 1.0 - 0.6 - 0.4 - 0.2 - 0.0 - 10 20 iteration
Load MNIST data Now that you have implemented a two-layer network that works on toy data, let's try some real data. The MNIST dataset is a star machine learning benchmark. It consists of 70,000 grayscale handwritten digit images, which we split into 50,000 training, 10,000 validation and 10,000 testing. The images are of size 28x28, which are flattened into 784-d vectors. Note 1: the function <code>get_MNIST_data</code> requires the <code>scikit-learn</code> package. If you previously did anaconda installation to see Python environment, you should already have it. Otherwise, you can install it following the instructions here: http://scikit-learn.org/stable/install.html Note 2: If you encounter a <code>HTTP 500</code> error, that is likely temporary, just try again. Note 3: Ensure that the downloaded MNIST file is 55.4MB (smaller file-sizes could indicate an incomplete download - which is possible.
<pre># load MNIST from utils import get_MNIST_data X_train, y_train, X_val, y_val, X_test, y_test = get_MNIST_data() print('Train data shape: ', X_train.shape) print('Train labels shape: ', y_train.shape) print('Validation data shape: ', X_val.shape) print('Validation labels shape: ', y_val.shape) print('Test data shape: ', X_test.shape) print('Test labels shape: ', y_test.shape) Train data shape: (50000, 784) Train labels shape: (50000,) Validation data shape: (10000, 784) Validation labels shape: (10000,)</pre>
Train a network on MNIST We will now train a network on MNIST with 64 hidden units in the hidden layer. We train it using SGD, and decrease the learning ran exponential rate over time; this is achieved by multiplying the learning rate with a constant factor <code>learning_rate_decay</code> (less than 1) after each epoch. In effect, we are using a high learning rate initially, which is good for exploring the solution space, a lower learning rates later to encourage convergence to a local minimum (or saddle_point , which may happen more often). • Train your MNIST network with 2 different activation functions: sigmoid and ReLU. We first define some variables and utility functions. The plot_stats function plots the histories of gradient magnitude, training accuracies on the training and validation sets. The show net_weights function visualizes the weights learned in the first layer
network. In most neural networks trained on visual data, the first layer weights typically show some visible structure when visualize functions help you to diagnose the training process. input_size = 28 * 28 hidden_size = 64 num_classes = 10 # Plot the loss function and train / validation accuracies def plot_stats(stats): fig, (ax1, ax2, ax3) = plt.subplots(3, 1) ax1.plot(stats['grad_magnitude_history']) ax1.set_title('Gradient magnitude history ' + r'\$(\nabla_{W1})\$') ax1.set_xlabel('Iteration') ax1.set_ylabel(r'\$ \nabla_{W1} \$')
<pre>ax1.set_ylim(0, np.minimum(100,np.max(stats['grad_magnitude_history']))) ax2.plot(stats['loss_history']) ax2.set_title('Loss history') ax2.set_xlabel('Iteration') ax2.set_ylabel('Loss') ax2.set_ylim(0, 100) ax3.plot(stats['train_acc_history'], label='train') ax3.plot(stats['val_acc_history'], label='val') ax3.set_title('Classification accuracy history') ax3.set_xlabel('Epoch') ax3.set_ylabel('Clasification accuracy') fig.tight_layout() plt.show()</pre>
<pre># Visualize the weights of the network from utils import visualize_grid def show_net_weights(net): W1 = net.params['W1'] W1 = W1.T.reshape(-1, 28, 28) plt.imshow(visualize_grid(W1, padding=3).astype('uint8')) plt.gca().axis('off') plt.show()</pre> Sigmoid network sigmoid_net = TwoLayerMLP(input_size, hidden_size, num_classes, activation='sigmoid', std=1e-1)
<pre># Train the network sigmoid_stats = sigmoid_net.train(X_train, y_train, X_val, y_val,</pre>
<pre>print('Sigmoid test accuracy: ', test_acc) # show stats and visualizations plot_stats(sigmoid_stats) show_net_weights(sigmoid_net) /Users/khoatran/Documents/School/CS542/pset_new/mlp.py:86: RuntimeWarning: overflow encountered p hidden = 1/(1+np.exp(-z1)) /Users/khoatran/Documents/School/CS542/pset_new/mlp.py:141: RuntimeWarning: overflow encountered xp dz1 = (1/(1+np.exp(-z1))) * (1 - (1/(1+np.exp(-z1)))) Epoch 1: loss 79.040004, train_acc 0.160000, val_acc 0.266300 Epoch 2: loss 49.814996, train_acc 0.500000, val_acc 0.461100</pre>
Epoch 3: loss 32.419904, train_acc 0.640000, val_acc 0.568300 Epoch 4: loss 21.756599, train_acc 0.630000, val_acc 0.639700 Epoch 5: loss 15.148895, train_acc 0.680000, val_acc 0.685000 Epoch 6: loss 10.909900, train_acc 0.680000, val_acc 0.712600 Epoch 7: loss 8.078106, train_acc 0.760000, val_acc 0.737900 Epoch 8: loss 6.166522, train_acc 0.830000, val_acc 0.755600 Epoch 9: loss 4.948016, train_acc 0.780000, val_acc 0.772900 Epoch 10: loss 4.113118, train_acc 0.760000, val_acc 0.7785000 Epoch 11: loss 3.455138, train_acc 0.840000, val_acc 0.797000 Epoch 12: loss 3.026239, train_acc 0.840000, val_acc 0.808100 Epoch 13: loss 2.702231, train_acc 0.840000, val_acc 0.819600 Epoch 14: loss 2.438965, train_acc 0.820000, val_acc 0.830900 Epoch 15: loss 2.258613, train_acc 0.900000, val_acc 0.839900 Epoch 16: loss 2.166625, train_acc 0.860000, val_acc 0.846800 Epoch 17: loss 2.098843, train_acc 0.840000, val_acc 0.852800 Epoch 18: loss 1.975990, train acc 0.910000, val_acc 0.859300
Epoch 19: loss 1.898398, train_acc 0.900000, val_acc 0.862300 Epoch 20: loss 1.876564, train_acc 0.910000, val_acc 0.866400 Sigmoid final training accuracy: 0.8721 Sigmoid final validation accuracy: 0.8664 Sigmoid test accuracy: 0.8639 Gradient magnitude history (\nabla_{W1}) 10
Loss history Loss history 100 80 40 20 2000 4000 Iteration Classification accuracy history
0.8 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ReLU network relu_net = TwoLayerMLP(input_size, hidden_size, num_classes, activation='relu', std=le-1) # Train the network relu_stats = relu_net.train(X_train, y_train, X_val, y_val,
<pre>reg=0.5, verbose=True) # Predict on the training set train_acc = (relu_net.predict(X_train) == y_train).mean() print('ReLU final training accuracy: ', train_acc) # Predict on the validation set val_acc = (relu_net.predict(X_val) == y_val).mean() print('ReLU final validation accuracy: ', val_acc) # Predict on the test set test_acc = (relu_net.predict(X_test) == y_test).mean() print('ReLU test accuracy: ', test_acc) # show stats and visualizations plot_stats(relu_stats)</pre>
Epoch 1: loss 77.388737, train_acc 0.890000, val_acc 0.873300 Epoch 2: loss 47.541612, train_acc 0.940000, val_acc 0.889400 Epoch 3: loss 29.860753, train_acc 0.950000, val_acc 0.905500 Epoch 4: loss 19.524630, train_acc 0.940000, val_acc 0.920900 Epoch 5: loss 13.036263, train_acc 0.940000, val_acc 0.927000 Epoch 6: loss 8.991060, train_acc 0.930000, val_acc 0.933400 Epoch 7: loss 6.140631, train_acc 0.970000, val_acc 0.941700 Epoch 8: loss 4.525491, train_acc 0.940000, val_acc 0.945600 Epoch 9: loss 3.237307, train_acc 0.980000, val_acc 0.950800 Epoch 10: loss 2.411025, train_acc 0.970000, val_acc 0.954300 Epoch 11: loss 1.849688, train_acc 0.980000, val_acc 0.956700 Epoch 12: loss 1.393526, train_acc 0.990000, val_acc 0.959200 Epoch 13: loss 1.163209, train_acc 0.980000, val_acc 0.958700 Epoch 14: loss 0.995684, train_acc 0.940000, val_acc 0.961000
Epoch 15: loss 0.815607, train_acc 0.970000, val_acc 0.961700 Epoch 16: loss 0.683446, train_acc 0.960000, val_acc 0.962200 Epoch 17: loss 0.626478, train_acc 0.980000, val_acc 0.962700 Epoch 18: loss 0.488054, train_acc 0.990000, val_acc 0.965200 Epoch 19: loss 0.451426, train_acc 0.990000, val_acc 0.965200 Epoch 20: loss 0.404632, train_acc 0.980000, val_acc 0.966000 ReLU final training accuracy: 0.97276 ReLU final validation accuracy: 0.966 ReLU test accuracy: 0.9657 Gradient magnitude history (Vw1)
60 200 4000 8000 10000 Loss history 100 600 8000 10000
0 0 2000 4000 6000 8000 10000 Classification accuracy history 0.975 0.950 0.925 0.900 0.875 0.00 12.5 15.0 17.5