

[Nicolas Douillet]

Binôme de Newton et loi binômiale

1 Binôme de Newton

1.1 Enoncé

$$\forall (a,b) \in \mathbb{R}^2, \forall n \in \mathbb{N}, (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$
 (1)

1.2 Démonstration (par récurrence / induction)

1.2.1 I Initialisation

Soit P_n la propriété à démontrer.

 P_0 , P_1 sont vraies (trivial).

D'après les identités remarquables d'ordre 2 et 3, P_2 et P_3 sont vraies.

1.2.2 II Hypothèse de récurrence

On suppose P_n vraie pour n fixé, $n \in \mathbb{N}$:

$$\forall (a,b) \in \mathbb{R}^2, (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$
(2)

1.2.3 III Hérédité

Montrons P_{n+1} vraie:

$$(a+b)^{n+1} = (a+b)(a+b)^{n}$$

$$(a+b)^{n+1} = (a+b)\sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k}$$

$$(a+b)^{n+1} = \sum_{k=0}^{n} \binom{n}{k} a^{k+1} b^{n-k} + \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k+1}$$

$$(a+b)^{n+1} = \sum_{k=1}^{n+1} \binom{n}{k-1} a^{k} b^{n-k+1} + \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k+1}$$

$$(a+b)^{n+1} = \sum_{k=1}^{n} \left[\binom{n}{k-1} + \binom{n}{k} \right] a^{k} b^{n-k+1} + a^{n+1} + b^{n+1}$$

$$(a+b)^{n+1} = \sum_{k=1}^{n} \binom{n+1}{k} a^{k} b^{n-k+1} + a^{n+1} + b^{n+1}$$

$$(a+b)^{n+1} = \sum_{k=0}^{n+1} \binom{n+1}{k} a^{k} b^{n-k+1}$$

D'où P_{n+1} vraie.

1.2.4 IV Conclusion

On en déduit :

$$\forall (a,b) \in \mathbb{R}^2, \forall n \in \mathbb{N}, (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$
(3)

D'après le principe de récurrence.