Transformadas de Fourier Discretas

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

24 de mayo de 2021

Agenda Transformadas de Fourier Discretas

De integrales a sumatorias

2 Series discretas complejas

Series de Fourier Discretas

Si el período es T genérico, definimos una serie de Fourier como

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2\pi nt}{T}\right) + b_n \sin\left(\frac{2\pi nt}{T}\right) \right] \quad \text{con} \quad \begin{cases} a_0 = -\frac{2}{T} \int_{t_0}^{t_0 + T} dt \ f(t) \\ a_n = -\frac{2}{T} \int_{t_0}^{t_0 + T} dx \ f(t) \cos\left(\frac{2\pi nt}{T}\right) \\ b_n = -\frac{2}{T} \int_{t_0}^{t_0 + T} dt \ f(t) \sin\left(\frac{2\pi nt}{T}\right) \end{cases}$$

Las integrales no se pueden resolver analíticamente entonces convertimos integrales en sumatorias. Pero primero

• Dividimos el intervalo T=Nh en N+1 segmentos de ancho $h=t_{i+1}-t_i$, entonces $(t_0,\ldots,t_0+T)\underbrace{\longrightarrow}_{N+1}(t_0,\ldots,t_N)$

Series de Fourier Discretas

Si el período es T genérico, definimos una serie de Fourier como

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{2\pi nt}{T} \right) + b_n \operatorname{sen} \left(\frac{2\pi nt}{T} \right) \right] \quad \operatorname{con} \quad \begin{cases} a_0 = -\frac{2}{T} \int_{t_0}^{t_0 + T} dt \ f(t) \\ a_n = -\frac{2}{T} \int_{t_0}^{t_0 + T} dx \ f(t) \cos \left(\frac{2\pi nt}{T} \right) \\ b_n = -\frac{2}{T} \int_{t_0}^{t_0 + T} dt \ f(t) \operatorname{sen} \left(\frac{2\pi nt}{T} \right) \end{cases}$$

Las integrales no se pueden resolver analíticamente entonces convertimos integrales en sumatorias. Pero primero

- Dividimos el intervalo T=Nh en N+1 segmentos de ancho $h=t_{i+1}-t_i$, entonces $(t_0,\ldots,t_0+T)\underbrace{\longrightarrow}_{N+1}(t_0,\ldots,t_N)$
- Supondremos f(t) periódica $f(t_0) = f(t_{t_0+T}) \equiv f(t_N) = f_i$ con i = 0, ..., N

De integrales a sumatorias

Con lo cual como T = Nh

$$a_0 = \frac{2}{T} \int_{t_0}^{t_0+T} \mathrm{d}t \ f(t) \quad \Rightarrow a_0 \approx \frac{2h}{T} \sum_{i=1}^N f_i = \frac{2}{N} \sum_{i=1}^N f_i$$

$$a_n = \frac{2}{T} \int_{t_0}^{t_0+T} dx \ f(t) \cos\left(\frac{2\pi nt}{T}\right) \quad \Rightarrow a_n \approx \frac{2}{N} \sum_{i=1}^{N} f_i \cos\left(\frac{2\pi nt_i}{Nh}\right)$$

$$b_n = \frac{2}{T} \int_{t_0}^{t_0+T} dt \ f(t) \operatorname{sen}\left(\frac{2\pi nt}{T}\right) \quad \Rightarrow b_n \approx \frac{2}{N} \sum_{i=1}^{N} f_i \operatorname{sen}\left(\frac{2\pi nt_i}{Nh}\right)$$

Entonces

$$f(t) = \frac{\frac{2}{N} \sum_{i=1}^{N} f_i}{2} + \sum_{n=1}^{\infty} \left[\left\{ \frac{2}{N} \sum_{i=1}^{N} f_i \cos\left(\frac{2\pi n t_i}{Nh}\right) \right\} \cos\left(\frac{2\pi n t}{Nh}\right) + \left\{ \frac{2}{N} \sum_{i=1}^{N} f_i \sin\left(\frac{2\pi n t_i}{Nh}\right) \right\} \sin\left(\frac{2\pi n t}{Nh}\right) \right]$$

Finalmente

$$f_m = \frac{\frac{2}{N} \sum_{i=1}^{N} f_i}{2} + \sum_{n=1}^{N} \left[\left\{ \frac{2}{N} \sum_{i=1}^{N} f_i \cos \left(\frac{2\pi n t_i}{Nh} \right) \right\} \cos \left(\frac{2\pi n t_m}{Nh} \right) + \left\{ \frac{2}{N} \sum_{i=1}^{N} f_i \sin \left(\frac{2\pi n t_i}{Nh} \right) \right\} \sin \left(\frac{2\pi n t_m}{Nh} \right) \right]$$

Siempre podremos expresar la serie de Fourier compleja como

$$f(t) = \sum_{k=-\infty}^{\infty} \tilde{C}_k e^{-ikt} \Leftrightarrow f(t) = \sum_{n=-\infty}^{\infty} C_n e^{i\frac{2n\pi}{T}t} = \sum_{n=-\infty}^{\infty} C_n e^{i\omega_n t},$$

donde $\omega_n=rac{2n\pi}{T}$ el espectro vendrá dado por $|\mathcal{C}_n|^2$

• Siempre podremos expresar la serie de Fourier compleja como

$$f(t) = \sum_{k=-\infty}^{\infty} \tilde{C}_k e^{-ikt} \Leftrightarrow f(t) = \sum_{n=-\infty}^{\infty} C_n e^{i\frac{2n\pi}{T}t} = \sum_{n=-\infty}^{\infty} C_n e^{i\omega_n t},$$

donde $\omega_n=rac{2n\pi}{T}$ el espectro vendrá dado por $|\mathcal{C}_n|^2$

• Entonces $f(t_m) \equiv f_m = \sum_{n=0}^{N} C_n e^{i\omega_n t_m} \Rightarrow$

$$\begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_N \end{pmatrix} = \begin{pmatrix} e^{i\omega_0t_0} & e^{i\omega_1t_0} & \cdots & e^{i\omega_Nt_0} \\ e^{i\omega_0t_1} & e^{i\omega_1t_1} & \cdots & e^{i\omega_Nt_1} \\ \vdots & \ddots & & \vdots \\ e^{i\omega_0t_N} & e^{i\omega_1t_N} & \cdots & e^{i\omega_Nt_N} \end{pmatrix} \begin{pmatrix} C_0 \\ C_1 \\ \vdots \\ C_N \end{pmatrix}$$

• Siempre podremos expresar la serie de Fourier compleja como

$$f(t) = \sum_{k=-\infty}^{\infty} \tilde{C}_k e^{-ikt} \Leftrightarrow f(t) = \sum_{n=-\infty}^{\infty} C_n e^{i\frac{2n\pi}{T}t} = \sum_{n=-\infty}^{\infty} C_n e^{i\omega_n t},$$

donde $\omega_n=rac{2n\pi}{T}$ el espectro vendrá dado por $|\mathcal{C}_n|^2$

• Entonces $f(t_m) \equiv f_m = \sum_{n=0}^N C_n e^{i\omega_n t_m} \Rightarrow$

$$\begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_N \end{pmatrix} = \begin{pmatrix} e^{i\omega_0t_0} & e^{i\omega_1t_0} & \cdots & e^{i\omega_Nt_0} \\ e^{i\omega_0t_1} & e^{i\omega_1t_1} & \cdots & e^{i\omega_Nt_1} \\ \vdots & \ddots & & \vdots \\ e^{i\omega_0t_N} & e^{i\omega_1t_N} & \cdots & e^{i\omega_Nt_N} \end{pmatrix} \begin{pmatrix} C_0 \\ C_1 \\ \vdots \\ C_N \end{pmatrix}$$

• Es decir, en notación vectorial

$$f = \mathbb{T}C \quad \Rightarrow C = \mathbb{T}^{-1}f$$

• Siempre podremos expresar la serie de Fourier compleja como

$$f(t) = \sum_{k=-\infty}^{\infty} \tilde{C}_k e^{-ikt} \Leftrightarrow f(t) = \sum_{n=-\infty}^{\infty} C_n e^{i\frac{2n\pi}{T}t} = \sum_{n=-\infty}^{\infty} C_n e^{i\omega_n t},$$

donde $\omega_n=rac{2n\pi}{T}$ el espectro vendrá dado por $|\mathcal{C}_n|^2$

• Entonces $f(t_m) \equiv f_m = \sum_{n=0}^N C_n e^{i\omega_n t_m} \Rightarrow$

$$\begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_N \end{pmatrix} = \begin{pmatrix} e^{i\omega_0t_0} & e^{i\omega_1t_0} & \cdots & e^{i\omega_Nt_0} \\ e^{i\omega_0t_1} & e^{i\omega_1t_1} & \cdots & e^{i\omega_Nt_1} \\ \vdots & \ddots & & \vdots \\ e^{i\omega_0t_N} & e^{i\omega_1t_N} & \cdots & e^{i\omega_Nt_N} \end{pmatrix} \begin{pmatrix} C_0 \\ C_1 \\ \vdots \\ C_N \end{pmatrix}$$

• Es decir, en notación vectorial

$$\mathbf{f} = \mathbb{T}\mathbf{C} \quad \Rightarrow \mathbf{C} = \mathbb{T}^{-1}\mathbf{f}$$

• $T = Nh = 2^{\eta}h$ tendremos FFT, pasamos de $(N+1)^2$ operaciones a $(N+1)\log_2(N+1)$