

INDUSTRIAL PLACEMENT WORK DIARY

Academic Year: 2022/2023

20 February – 11 June 2023

Student's Name:	Hanlin Cai
Student ID (MU/FZU):	20122161 / 832002117
Module Code / Name:	EE382 (EE388FZ)
Programme:	Robotics and Intelligent Devices
Company & Address:	Fujian Huading Intelligent Manufacturing Technology Co. LTD
	Building 44, Zone C, Fuzhou Software Park, Software Avenue
	Fuzhou City, Fujian Province, China

THE INDUSTRIAL PLACEMENT WORK DIARY MUST BE UPDATED WEEKLY BY THE END OF EACH WEEK IN MOODLE AS A SINGLE DOCUMENT.

Week	Day / Date	Activity / Portfolio				
	Mon 20/2/2023	Supervised by Prof. Zhezhuang Xu, I participate in the Mathematical Contest in Modeling (MCM 2023), which is a highly acclaimed contests for international undergraduates. During this competition, I cooperate with Yufei Wu and Wenxuan Luo. Our team once won the First Prize in China Undergraduate Mathematical Contest in Modeling. Besides, the MCM contest lasts for five days. And in the first day, we decided to choose the Topic B (Reimagine Maasai Mara), which is a discrete problem . Based on the problem background, we have comprehensively reviewed the related research and resource. Finally, I finished to write the part of Introduction and Literature Review of our competition paper. For details, our final paper can be accessed here: https://caihanlin.com/mypaper/modeling/202302COMAP.pdf				
1	Tue 21/2/2023	The MCM Problem B required us to resolve four objective , hence we have made a suitable time schedule in advance. On Tuesday, we build our model I (Human-land Relationship Coupling Analysis) to address the objective of human-land interaction analysis and area classification. The following Figure 1 illustrates the classification of the Maasai Mara area. $\frac{45^\circ \le \alpha_4 < 90^\circ}{\text{Overdeveloped Area}}$ Overdeveloped Area $\frac{\alpha_4}{\alpha_4}$ Finally, we suggest six specific strategies for practical implementation.				
	Wed 22/2/2023	On Day 3, we firstly propose a four-layer strategy evaluation model based on the AHP method to evaluate and rank the policies. The following Figure 2 shows the structure of the strategy evaluation model. Human-Land Relationship Human Society Subsystem Land Resource Subsystem Flanting Tourist Vegetation Development Strategy Evaluation Model BD EQ EB DI Second, we present the multi-objective optimization model to quantify the economic and ecological impact of the optimal combination of the strategies and policies. Finally, we utilized our proposed model to test a representative grid in the MMNR area. The simulation results verify the effectiveness and rationality of our model.				

Thu 23/2/2023 On Day 4, considering to resolve the Objective III, we design a long-term trend prediction model to project and assess the long-term ecological and economic situation in the MMNR area based on the optimal management strategies. First, we quantify the reflection of trend using the change of animal numbers and resident economic incomes. Second, we propose the specific expression of the Logistic Equation, maximum environmental capacity and resident economic incomes. Third, based on mathematical definitions, we design a Python program for our trend prediction models. Finally, we obtain and present twelve 100-year prediction results referring to twelve different sets of parameter configurations. On the last day, we firstly design a two-page non-technical report for the Kenyan Tourism and Wildlife Committee (Objective IV). After finishing the first version of main body. I begin to write the conclusion

On the last day, we firstly design a two-page **non-technical report** for the Kenyan Tourism and Wildlife Committee (Objective IV). After finishing the first version of main body, I begin to write the conclusion and summary. Also, I draw a 'fantastic' figure to show the overview of our works, as follows:

Fri 24/2/2023

Ultimately, I review and polish the whole paper under the guidance of Prof. Xu, and we upload the final manuscript to the COMAP committee.

Summary: In brief, I take part in the 2023 Mathematical Contest in Modeling (MCM) in the first week. Advised by Prof. Xu, we present a paper called Reshape the Crowning Glory of Maasai Mara. Since the MCM contest only lasts for **five days**, it is impossible for our paper to be comprehensive and perfect. Therefore, I plan to further improve and refine our paper in the following weeks. Finally, our final paper can be accessed here: https://caihanlin.com/mypaper/modeling/202302COMAP.pdf

Week	Day / Date	Activity / Portfolio						
	Mon 27/2/2023	In this week, we are required to finish the Intern Proposal of Industrial Placement (IP). Therefore, firstly I have a face-to-face talk with my supervisor. And based on the suggestions given by Prof. Xu, I choose the research topic of Exploring Multiple IoT Security Attacks with Machine Learning Based Schemes. Then, I take the most of time to read the related paper. Also, I begin to write the Literature Review of my IP proposal. For details, my IP proposal can be accessed here: https://caihanlin.com/mypaper/IP/Proposal.pdf						
		In Day 2, I continue to review the existing research works and write the part of Related Literature. Based on the reference, I obtain that many papers have proposed various ML-based methods to prevent specific IoT attacks and improve IoT security. For instance, the Q-learning schemes proposed by Xiao, et al. performed well in the face of both spoofing and jamming attacks. While the SVM schemes proposed by Ozay, et al. could effectively identify and defend against intrusion and spoofing attacks. And the following Table shows the Summary of my reviewing works.						
		Attacks	Security Schemes	ML Methods	Performance			
		Spoofing	Authentication	Q-learning ^[8]	Average loss rate			
			Authentication	$SVM^{[9]}$	Classification accuracy			
	Tue 28/2/2023		Authentication	$DNN^{[10]}$	False alarm rate			
2	28/2/2023		Authentication	dFW ^[11]	Misdetection rate			
		DoS	Secure IoT offloading	$MLP^{[12]}$	Detection accuracy			
			Access Control	MCA ^[13]	Root mean error			
			Flow Detection	NFS ^[3]	Storage efficiency			
		Intrusion	Access Control	Naive Bayes ^[14]	False alarm rate			
			Access Control	SVM ^[9]	Classification accuracy			
		Sybil	Dual Identity	THC-RPL ^[4]	Power consumption			
		Jamming	Secure IoT offloading	Q-learning ^[8]	Energy consumption			
		Note that my literature exploring is heavily based on the Review Paper published by Xiao, et al in 2020.						
	Wed	As for Day 3, today I have already finished the part of Related Literature, and begin to analyze and compare the methodologies and experimental results between different research. Besides, I write the part of Gap in Existing Knowledge to show the possible improvements we can conduct in the near future.						
	1/3/2022	Through in-deep literature review, I find that most of the solutions proposed by existing studies can address specific security attacks but cannot to define more patterns for detecting dynamic multiple attacks . Therefore, it is feasible for us to design a hybrid defense scheme to resolve this challenge. And it may lead to the potential publication opportunities and positive contributions.						

Thu 2/3/2023	organi my res schedu Indu Project 1.1 1.1 1.1 1.2 1.3 2 R A 4 C 4 C 4 C 5 C 7 P	7 4, after presenting ze the workflow at ze the workflow at zearch scientifically alle as follows: strial Placement Schedule Lead: Zherzhuang Xu, Bantin Cal Tank n-depth literature review Go through the advanced paper Repeat the experiments Explore the gaps of existing methods decisigs none advanced III. algorithms ry to integrate different security modeled comprehensive experiments (Collect the data Contrast various results Analyze and comment on the experiments perpetr writing and revise (Repeatedly) inal demo slides perpared for the research de inal research report revision and submission thonest, I understan nned, so I will modi:	Priority NORMAL NORMAL LOV HIGH NORMAL LOV HORM NORMAL NORMAL NORMAL NORMAL NORMAL NORMAL NORMAL HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIG	Resource FZU, Hanlin Cai HZU, HZ, CAI	Start Pri 10-Feb-23 Fri 10-Feb-23 Fri 10-Feb-23 Fri 24-Feb-23 Fri 24-Feb-23 Fri 24-Feb-23 Sat 01-4pr-23 Sat 01-4pr-23 Sat 02-4pr-23 To 30-4br-23 To 30-4br-23 To 30-4br-23 To 30-4br-23 To 30-4br-23 To 30-4br-23	Finish Fri 24-Feb-23 Tue 21-Feb-23 Tue 21-Feb-23 Fri 24-Feb-23 Fri 24-Feb-23 Fri 24-Feb-23 Mon 24-Apr-23 Mon 24-Apr-24 Mon 24-A	Duration Done 12 8 4 0 24 16 23 14 9 0 0 14 ceed sm	* Complete GON 80% 60% 40% 20% 50% 60% 60% 60% 60% 60% 60% 60% 60% 60% 6
Fri 3/3/2023	RQ1 RQ2 RQ3 Beside	to address the rese e specific research Question What are the common secu- of current IoT systems and specific security attacks, su denial of service (DoS) and What is machine learning to scheme and the state-of-th- for preventing specific IoT spoofing attacks and DoS a What is multiple IoT attack combine the advantages of security methods to defend IoT attacks?	blem sy is listed Cobilities Tes of reg, settacks? In the sy property of the sy property	background and existing gaps, in a systematically, I have divided it ted in the following table. Objective				

Summary: In a word, this week I take most of my time to write the IP Proposal and read related research paper. An in-deep literature review has been conducted to analyse and compare the strength and weakness of existing works. Based on the review, I organize the research workflow and develop an experimental schedule. Finally, a research questions table is presented to illustrate the main challenge and objective in my future research. Again, my IP proposal can be accessed here: https://caihanlin.com/mypaper/IP/Proposal.pdf