Hardness HW 9 solution

TAMREF

tamref.yun@snu.ac.kr

Due: December 15, 2022

•

Rules

- You can just link your former post instead of the solution. Otherwise, it is recommended to write the proof in your language.
- You are qualified if you **read** all the problems, and answered **at least 2** of them.

Homework 9 Project-Hardness

Question 1. Counting Bipartite Matching is Hard

Imitating the proof of $\sharp BPM \leq_{p.o.} \sharp BMM$, show that counting the number of bipartite matching is $\sharp \mathbb{P}$ —complete.

Proof. Given a graph $G=(A\sqcup B,E)$ with |A|=|B|=n, add nk additional vertices and nk additional edges to graph G_k . For each $b_i\in B$, connect b_i with k additional nodes. Given a matching $N\subseteq E$ with |N|=r, there are $(k+1)^r$ matchings M in the extended graph satisfying $M\cap E=N$. Thus

$$\sharp BM(G_k) = \sum_r m_{n-r}(k+1)^r \tag{1}$$

Where m_k is the number of bipartite matchings with cardinality k. Evaluating above for $k=0,\cdots,n$, we obtain the polynomial f(x) with $[x^i]f(x)=m_{n-i}$. Hence $m_n=\sharp \mathrm{BPM}(G)$ is easily obtained from $\sharp \mathrm{BM}$ oracles.

Question 2. Another proof for hardness of $\sharp \mathrm{CLIQUE}$

Construct a parsimonious reduction $TH - POS - 2SAT \rightarrow CLIQUE$. This gives an alternative proof about $\sharp \mathbb{P}$ -completeness of $\sharp CLIQUE$.

Proof. One can easily find that $\mathrm{TH} - \mathrm{POS} - 2\mathrm{SAT}$ is just a Vertex Cover Problem written in the language of SAT. Motivated by this, given a $\mathrm{TH} - \mathrm{POS} - 2\mathrm{SAT}$ instance (ϕ, t) , design a graph G_{ϕ} . The vertices of G_{ϕ} corresponds to each variable, and an edge e = uv presents in G_{ϕ} iff a clause $x_u \vee x_v$ is **not** present in ϕ . Then ϕ is satisfied if and only if there is a clique with size $\geq t$ in G_{ϕ} . And the variable assigned to be **false** precisely correspond to the vertex set giving the clique, proving the parsimonity of the reduction.

Homework 9 Project-Hardness

Question 3. UP-hardness of Permanent modulo k

In this problem, we investigate how Valiant(1979) could separate the complexity of $per(M) \mod 2^d$ and other $per(M) \mod k$ for $k \neq 2^d$.

Definition. A decision problem $A = \{x : \exists^p y \text{ s.t. } (x,y) \in B\} \in \mathbb{NP} \text{ is called } \mathbb{UP} \text{ if } x \in A \text{ implies that there is$ **only one** $<math>y \text{ such that } (x,y) \in B.$

Given the lemmas below, define the reduction for \mathbb{UP} and deduce that computing $\operatorname{per}(M) \mod k$ is \mathbb{UP} -hard. According to complexityzoo, it is not known whether \mathbb{UP} possess a complete problem.

(a) **(Valiant 1979, Lemma 3.1)** Given a CNF formula F, there is a function $f \in \mathbb{FP}$ such that f(F) is a $\{-1, 0, 1, 2, 3\}$ -matrix such that

$$\operatorname{per}(f(F)) = 4^{t(F)} \cdot \sharp \operatorname{SAT}(F)$$

- t(F): twice the number of occurrences of literals the number of clauses in F. The only important fact is that t(F) is a positive integer.
- (b) **(Valiant 1979, Lemma 3.2)** For any $A \in \mathbb{NP}$, there is a parsimonious reduction $A \leq_p 3SAT$.

Proof. Given a problem $A \in \mathrm{UP}$, take a parsimonious reduction $g: A \to 3\mathrm{SAT}$, according to the lemma (b). Given an input x, $\sharp \mathrm{SAT}(g(x)) = 1$ if and only if $x \in A$. For $k \neq 2^d$, we can determine the condition above by computing $\mathrm{per}(f(g(x))) \mod k$, and the oracle is provided by the lemma (a).

Question 4. Computing volume of a polytope is $\sharp P$ -hard

Here, we define a **polytope** as an intersection of half-planes in n-dimension.

Definition. Given an n-element POSET (P, <), order polytope \mathcal{O}_P of P is given by the sub-polytope of $C = [0, 1]^n$, defined by

$$\mathcal{O}_P := C \cap \bigcap_{p < q} \{ (x_1, \cdots, x_n) : x_p < x_q \}$$

It is known that computing the number of **linear extensions (or, topological sorts)** of **POSETs (or, DAGs)** is $\sharp P$ —complete. (Brightwell & Winkler, 1991). Assuming the previous fact, deduce that computing volume of the polytope is $\sharp P$ -hard, even for order polytopes.

Homework 9 Project-Hardness

Proof. Refer to https://infossm.github.io/blog/2022/11/08/toposort/. $\hfill\Box$