

A Story of Two Streams: Reinforcement Learning Models from Human Behavior and Neuropsychiatry

Baihan Lin^{1,2}, Djallel Bouneffouf², Guillermo Cecchi², Jenna Reinen², Irina Rish^{2,3}

¹ Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA ² IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA ³ Mila, Université de Montréal, Montreal, Quebec H3T, Canada

Abstract

Drawing an inspiration from behavioral studies of human decision making, we propose here a more general and flexible parametric framework for reinforcement learning that extends standard Q-learning to a two-stream model for processing positive and negative rewards, and allows to incorporate a wide range of reward-processing biases – an important component of human decision making which can help us better understand a wide spectrum of multi-agent interactions in complex real-world socioeconomic systems, as well as various neuropsychiatric conditions associated with disruptions in normal reward processing. From the computational perspective, we observe that the proposed Split-QL model and its clinically inspired variants consistently outperform standard Q-Learning and SARSA methods, as well as recently proposed Double Q-Learning approaches, on simulated tasks with particular reward distributions, a real-world dataset capturing human decision-making in gambling tasks, and the Pac-Man game in a lifelong learning setting across different reward stationarities.

Split Q Learning (SQL)

Reward Processing Bias

	λ_{+}	$ w_+ $	λ	w_{-}
"Addiction" (ADD)	1 ± 0.1	1 ± 0.1	0.5 ± 0.1	1 ± 0.1
"ADHD"	0.2 ± 0.1	1 ± 0.1	0.2 ± 0.1	1 ± 0.1
"Alzheimer's" (AD)	0.1 ± 0.1	1 ± 0.1	0.1 ± 0.1	1 ± 0.1
"Chronic pain" (CP)	0.5 ± 0.1	0.5 ± 0.1	1 ± 0.1	1 ± 0.1
"bvFTD"	0.5 ± 0.1	100 ± 10	0.5 ± 0.1	1 ± 0.1
"Parkinson's" (PD)	0.5 ± 0.1	1 ± 0.1	0.5 ± 0.1	100 ± 10
"moderate" (M)	0.5 ± 0.1	1 ± 0.1	0.5 ± 0.1	1 ± 0.1
Standard Split-QL (SQL)	1	1	1	1
Positive Split-QL (PQL)	1	1	0	0
Negative Split-QL (NQL)	0	0	1	1

Clinical Inspirations

From the perspective of evolutionary psychiatry, various mental disorders, including depression, anxiety, ADHD, addiction and even schizophrenia can be considered as "extreme points" in a continuous spectrum of behaviors and traits developed for various purposes during evolution, and somewhat less extreme versions of those traits can be actually beneficial in specific environments. Thus, modeling decision-making biases and traits associated with various disorders may actually enrich the existing computational decision-making models, leading to potentially more flexible and betterperforming algorithms.

Nonstationary PacMan RL

Markov Decision Process (MDP) with not-Gaussian rewards

Figure 1: Example bi-modal MDP scenario where SQL performs better than QL and DQL.

	QL	DQL	SQL	PQL	NQL	SARSA										
QL	-	49: 51	28: 72	59:41	40: 60	45: 55	SQL		ADD	ADHD	AD	CP	bvFTD	PD	M	avg wins (%)
DQL	51:49	-	21: 79	51:49	42:58	52:48	28: 72	QL	65:35	67:33	82:18	50:50	76:24	44:56	55:45	0.627
SQL PQL	72:28	79:21	-	72:28	64:36	69:31		~								
PQL	41: 59	49: 51	28: 72	-	40: 60	41: 59	21: 79	DQL	51:49	71:29	78:22	61:39	67:33	48: 52	51:49	0.610
NQL	60:40	58:42	36: 64	60:40	-	59:41	-	SQL	78:22	90:10	94:6	72:28	86:14	61:39	78:22	0.799
SARSA	55:45	48: 52	31: 69	59:41	41: 59	_		avg wins (%)	0.353	0.240	0.153	0.390	0.237	0.490	0.387	
avg wins (%)	0.442	0.434	0.712	0.398	0.546	0.468	-	avg wiiis (%)	0.555	0.240	0.133	0.390	0.437	0.490	0.567	_ -

Figure 2: MDP Task with 100 randomly generated scenarios of Bi-modal reward distributions.

lowa Gambling Task (IGT) with reward-biased mental agents

Table 4: Iowa Gambling Task schemes loss per card expected value Decks win per card scheme Frequent: -150 (p=0.1), -200 (p=0.1), -250 (p=0.1), -300 (p=0.1), -350 (p=0.1) A (bad) +100 -25 B (bad) +100 Infrequent: -1250 (p=0.1) +50 Frequent: -25 (p=0.1), -75 (p=0.1), -50 (p=0.3) C (good) +50 Infrequent: -250 (p=0.1) D (good) +100 Frequent: -150 (p=0.1), -200 (p=0.1), -250 (p=0.1), -300 (p=0.1), -350 (p=0.1) A (bad) +100 Infrequent: -1250 (p=0.1) B (bad) +50 C (good) Infrequent: -50 (p=0.5) Infrequent: -250 (p=0.1) D (good)

Figure 3: Short-term learning curves of different mental agents in IGT scheme 1.

Ongoing directions

avg wins (%) 0.442 0.434 **0.712** 0.398 0.546 0.468

- Investigate the optimal reward bias parameters in a series of computer games evaluated on different criteria, for example, longest survival time vs. highest final score.
- Explore the multi-agent interactions given different reward processing bias.
- Tune and extend the proposed model to better capture observations in literature.
- Learn the parameteric reward bias from actual patient data.
- Test the model on both healthy subjects and patients with specific mental conditions.
- Evaluate the merit in two-stream processing in deep Q networks.