

Dual P-Channel 20-V (D-S) MOSFET

PRODUCT SUMMARY			
V _{DS} (V)	$r_{DS(on)}(\Omega)$	I _D (A)	
	0.075 @ V _{GS} = -4.5 V	±3.4	
-20	0.105 @ V _{GS} = -3.0 V	±2.9	
	$0.115 @ V_{GS} = -2.7 V$	± 2.6	

P-Channel MOSFET

P-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C UNLESS OTHERWISE NOTED)							
Parameter	Symbol	Limit	Unit				
Drain-Source Voltage		V _{DS}	-20	V			
Gate-Source Voltage		V _{GS}	±12	1			
Continuous Drain Current (T _{.I} = 150°C) ^a	T _A = 25°C		±3.4	A			
Continuous Diam Curient (1) = 150 C)	T _A = 70°C	I _D	±2.7				
Pulsed Drain Current		I _{DM}	±16	1 ^			
Continuous Source Current (Diode Conduction) ^a		I _S	-2.0	1			
Maximum Power Dissipation ^a	T _A = 25°C	P _D	2.0	w			
maximum rower dissipation:	T _A = 70°C	rb =	1.3				
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C			

THERMAL RESISTANCE RATINGS				
Parameter	Symbol	Limit	Unit	
Maximum Junction-to-Ambient ^a	R _{thJA}	62.5	°C/W	

Notes

a. Surface Mounted on FR4 Board, $t \le 10$ sec.

For SPICE model information via the Worldwide Web: http://www.vishay.com/www/product/spice.htm

Si9933ADY

Vishay Siliconix

Parameter	Symbol	Test Condition	Min	Typ ^a	Max	Unit
Static					•	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$	-0.8			V
Gate-Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±12 V			±100	nA
Zoro Cata Valtaga Drain Current		$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μΑ
Zero Gate Voltage Drain Current	DSS	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 85^{\circ}\text{C}$			-3	
On-State Drain Current ^b	1	$V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	-16			Α
On-State Drain Current	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -2.7 \text{ V}$	-3			
		$V_{GS} = -4.5 \text{ V}, I_D = -3.2 \text{ A}$		0.06	0.075	
Drain-Source On-State Resistance ^b	r _{DS(on)}	$V_{GS} = -3.0 \text{ V}, I_D = -2.0 \text{ A}$		0.078	0.105	Ω
		$V_{GS} = -2.7 \text{ V}, I_D = -1 \text{ A}$		0.085	0.115	1
Forward Transconductance ^b	9 _{fs}	$V_{DS} = -9 \text{ V}, I_D = -3.4 \text{ A}$		8		S
Diode Forward Voltage ^b	V_{SD}	$I_S = -2.0 \text{ A}, V_{GS} = 0 \text{ V}$		-0.7	-1.2	V
Dynamic ^a	•		-			
Total Gate Charge	Q_g			10	20	nC
Gate-Source Charge	Q _{gs}	$V_{DS} = -6 \text{ V}, \ V_{GS} = -4.5 \text{ V}, \ I_D = -3.2 \text{ A}$		2.1		
Gate-Drain Charge	Q _{gd}			3.3		
Turn-On Delay Time	t _{d(on)}			16	40	
Rise Time	t _r	V_{DD} = -6 V, R_L = 6 Ω $I_D \cong$ -1 A, V_{GEN} = -4.5 V, R_G = 6 Ω		46	80	ns
Turn-Off Delay Time	t _{d(off)}	$I_D \cong -1 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_G = 6 \Omega$		40	70	
Fall Time	t _f			25	40	
Source-Drain Reverse Recovery Time	t _{rr}	$I_F = -2.0 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		60	100	1

Notes a. For design aid only; not subject to production testing.

b. Pulse test; pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

