

Icebreaker

Introduce yourself! Include:

- 1. Your name
- Your major and/or minor(s)
- 3. What you want to learn/achieve in this team
- 4. A hobby not related to academics that you love!

Timeline

October: Understand the project

-Literature Review & Project Scope Definition & Start Data Collection

November: Learn how to do embedding & Store embedding

- -Introduction to Google Cloud Platform Vertex AI embedding tool
- -Test runs with small reddit posts
- -Plan for how to store embeddings -> Pinecone (Vector Database)

December ~ February : Build classifier model

- -Plan for model architecture -> Deep learning based model
- -Find statistical tools for classifier model to capture high dimensional embeddings
- -Collect labeled data to train classifier model
- -Evaluation & Fine tuning

March - April : UI development & Report Writing

-Further fine tuning and advanced prompt engineering if there's time

Previous Project Review

https://epai-sat.w3spaces.com/

Twitter Sentiment Analysis

Natural language processing (NLP) refers to the branch of compute r science—and more specifically, the branch of artificial intelligence or Al—concerned with giving computers the ability to understand te xt and spoken words in much the same way human beings can.

Summary of Analysis	
Respect:	61.12%
Insult:	57.38%
Humiliate:	52.03%
Status:	59.28%
Dehumanize:	43.24%
Violence:	22.4%
Genocide:	18.67%
Attack Defend:	58.99%

Problem: Toxic posts, hate speech, and harmful language.

Dataset: Measuring Hate Speech Dataset (39,565 comments); Label: Respect, Insult, Humiliate, Dehumanize, Violence, and Genocide.

Data Processing: Comments were cleaned and tokenized. Created custom word embeddings due to language complexity, split into training (70%), validation (15%), and testing (15%) sets.

Models: We tested RNN, LSTM, and GRU models. GRU achieved the best performance with an F1 score of 60%.

RNN(Recurrent Neural Network) : Recognize pattern in short term dependencies

LSTM(Long Short-Term Memory): Input, Forget, Output gates

GRU(Gated Recurrent Unit): Reset and Update Gate