# Regresi Linear Berganda

### Pendahuluan

- Pada sesi sebelumnya kita hanya menggunakan satu buah X, dengan model Y = α+ βX
- Dalam banyak hal, yang mempengaruhi Y bisa lebih dari satu.
   Model umum regresi linear berganda adalah

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p$$

## Regresi Linear Berganda 2 Variabel Bebas

#### **Bentuk Umum:**

$$\hat{Y} = a + b_1 X_1 + b_2 X_2 + \varepsilon$$

Dengan nilai koefisien regresi sbb:

$$a = \overline{Y} - b_1 \overline{X_1} - b_2 \overline{X_2}$$

$$b_1 = \frac{\left(\sum x_2^2\right)(\sum x_1 y) - (\sum x_1 x_2)(\sum x_2 y)}{\left(\sum x_1^2\right)\left(\sum x_2^2\right) - (\sum x_1 x_2)^2}$$

$$b_2 = \frac{\left(\sum x_1^2\right)(\sum x_2 y) - (\sum x_1 x_2)(\sum x_1 y)}{\left(\sum x_1^2\right)\left(\sum x_2^2\right) - (\sum x_1 x_2)^2}$$

$$\sum x_1^2 = \sum X_1^2 - \frac{(\sum X_1)^2}{n}$$

$$\sum x_2^2 = \sum X_2^2 - \frac{(\sum X_2)^2}{n}$$

$$\sum y^2 = \sum Y^2 - \frac{(\sum Y)^2}{n}$$

$$\sum x_1 x_2 = \sum X_1 X_2 - \frac{(\sum X_1)(\sum X_2)}{n}$$

$$\sum x_1 y = \sum X_1 Y - \frac{(\sum X_1)(\sum Y)}{n}$$

$$\sum x_2 y = \sum X_2 Y - \frac{(\sum X_2)(\sum Y)}{n}$$

### Korelasi & Koefisien Determinasi Regresi Linear Berganda

Koefisien Determinasi untuk Regresi Linear Berganda 2 Variabel Bebas yaitu

$$r^2 = \frac{b_1 \sum x_1 y + b_2 \sum x_2 y}{\sum y^2}$$



Korelasi dari Regresi Linear Berganda:

$$r = \sqrt{r^2}$$

$$\sum y^2 = \sum Y^2 - \frac{(\sum Y)^2}{n}$$

$$\sum x_1 y = \sum X_1 Y - \frac{(\sum X_1)(\sum Y)}{n}$$

$$\sum x_2 y = \sum X_2 Y - \frac{(\sum X_2)(\sum Y)}{n}$$

## Uji Signifikansi Parsial untuk $b_i$

#### Hipotesis

 $H_0: \beta = 0$  (tidak ada pengaruh yang signifikan)

 $H_1: \beta \neq 0$  (ada pengaruh yang signifikan)

- Tingkat Signifikansi :  $\alpha$
- Uji Statistik:

$$t=rac{b_i}{S_{b_i}}$$
 Jika koefisien korelasi tidak diketahui

Dengan  $b_i$  adalah koefisien regresi dan  $S_{b_i}$  adalah standar eror dari koefisien regresi

Atau

$$t=r\sqrt{rac{n-2}{1-r^2}}$$
 Jika koefisien korelasi sudah diketahui

Dengan

$$S_{b_i} = \frac{S_y}{\sqrt{\sum x^2}}$$

Dan  $S_{\mathcal{V}}$  adalah simpangan baku dari penduga nilai y yang dirumuskan dengan

$$S_y = \sqrt{\frac{\sum (y - \bar{y})^2}{n - 2}}$$

• Kriteria penolakan  $H_0$ 

$$H_0$$
 ditolak jika  $\left|t_{hitung}\right| \geq t_{\frac{\alpha}{2};df}$  dengan  $df = n-2$ 

Kesimpulan

## Uji Signifikansi Simultan Hasil Penaksiran

Hipotesis

 $H_0$ : Tidak Ada perbedaan yang signifikan

 $H_1$ : Ada Perbedaan Yang Signifikan

• Tingkat Signifikansi :  $\alpha$ 

#### Uji Statistik

| Sumber<br>Variabilitas | Derajat<br>Kebebasan (df) | Jumlah Kuadrat (JK)            | Rata-Rata Hitung                              | Nilai $oldsymbol{F}_{hitung}$ |
|------------------------|---------------------------|--------------------------------|-----------------------------------------------|-------------------------------|
| Regresi                | k                         | $r^2\left(\sum y^2\right)$     | $JKR = \frac{r^2(\sum y^2)}{k}$               | JKR                           |
| Residu/Eror            | n-k-1                     | $(1-r^2)\left(\sum y^2\right)$ | $JKG = \frac{(1 - r^2)(\sum y^2)}{n - k - 1}$ | $F_{Hitung} = \frac{J}{JKG}$  |
| Total                  | n-1                       | $\sum y^2$                     |                                               |                               |

$$r^2 = \frac{b_1 \sum x_1 y + b_2 \sum x_2 y}{\sum y^2}$$

$$\sum y^2 = \sum Y^2 - \frac{(\sum Y)^2}{n}$$

k: banyaknya variable predictor/bebas

n: banyak data

• Kriteria penolakan  $H_0$ 

$$|H_0|$$
 ditolak jika  $|F_{hitung}| \ge F_{\alpha;df_1;df_2}$  dengan  $df_1 = k$  dan  $df_2 = n - k - 1$ 

Kesimpulan

### Contoh

Misalnya dalam satu perusahaan ingin melihat hubungan antara pengeluaran untuk iklan  $(X_1)$  dan pengeluaran untuk quality control  $(X_2)$  dengan penerimaan melalui penjualan (sales revenue) (Y) sbb:

| Waktu          | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----------------|----|----|----|----|----|----|----|----|----|----|
| X <sub>1</sub> | 10 | 9  | 11 | 12 | 11 | 12 | 13 | 13 | 14 | 15 |
| X <sub>2</sub> | 3  | 4  | 3  | 3  | 4  | 5  | 6  | 7  | 7  | 8  |
| Υ              | 44 | 40 | 42 | 46 | 48 | 52 | 54 | 58 | 56 | 60 |

#### Tentukan:

- a. Bentuklah Model Regresi Linear Berganda
- b. Interpretasikan model yang diperoleh
- c. Koefisien determinasi dan korelasi
- d. Uji Parsial untuk mengukur seberapa signifikan pengaruh dari koefisien regresinya
- e. Uji Simultan dari hasil penaksiran regresi
- f. Prediksi penerimaan sales revenue apabila biaya iklan 20 juta dan biaya quality control 12 juta

## Penyelesaian

| Waktu  | <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | Y   | $X_1^2$ | $X_2^2$ | <i>Y</i> <sup>2</sup> | $X_1Y$ | $X_2Y$ | $X_1X_2$ |
|--------|-----------------------|-----------------------|-----|---------|---------|-----------------------|--------|--------|----------|
| 1      | 10                    | 3                     | 44  | 100     | 9       | 1936                  | 440    | 132    | 30       |
| 2      | 9                     | 4                     | 40  | 81      | 16      | 1600                  | 360    | 160    | 36       |
| 3      | 11                    | 3                     | 42  | 121     | 9       | 1764                  | 462    | 126    | 33       |
| 4      | 12                    | 3                     | 46  | 144     | 9       | 2116                  | 552    | 138    | 36       |
| 5      | 11                    | 4                     | 48  | 121     | 16      | 2304                  | 528    | 192    | 44       |
| 6      | 12                    | 5                     | 52  | 144     | 25      | 2704                  | 624    | 260    | 60       |
| 7      | 13                    | 6                     | 54  | 169     | 36      | 2916                  | 702    | 324    | 78       |
| 8      | 13                    | 7                     | 58  | 169     | 49      | 3364                  | 654    | 406    | 78       |
| 9      | 14                    | 7                     | 56  | 196     | 49      | 3136                  | 784    | 392    | 98       |
| 10     | 15                    | 8                     | 60  | 225     | 64      | 3600                  | 900    | 480    | 120      |
| Jumlah | 120                   | 50                    | 500 | 1470    | 282     | 25440                 | 6006   | 2610   | 613      |

$$\sum x_1^2 = \sum X_1^2 - \frac{(\sum X_1)^2}{n} = 1470 - \frac{120^2}{10} = 1470 - 1440 = 30$$

$$\sum x_2^2 = \sum X_2^2 - \frac{(\sum X_2)^2}{n} = 282 - \frac{50^2}{10} = 282 - 250 = 32$$

$$\sum y^2 = \sum Y^2 - \frac{(\sum Y)^2}{n} = 25440 - \frac{500^2}{10} = 25440 - 25000 = 440$$

$$\sum x_1 x_2 = \sum X_1 X_2 - \frac{(\sum X_1)(\sum X_2)}{n} = 613 - \frac{120.50}{10} = 613 - 600 = 13$$

$$\sum x_1 y = \sum X_1 Y - \frac{(\sum X_1)(\sum Y)}{n} = 6006 - \frac{120.500}{10} = 6006 - 6000 = 6$$

$$\sum x_2 y = \sum X_2 Y - \frac{(\sum X_2)(\sum Y)}{n} = 2610 - \frac{50.500}{10} = 2610 - 2500 = 110$$

$$\bar{Y} = \frac{\sum Y_i}{n} = \frac{500}{10} = 50$$

$$\overline{X_1} = \frac{\sum X_1}{n} = \frac{120}{10} = 12$$

$$\overline{X_2} = \frac{\sum X_2}{n} = \frac{50}{10} = 5$$

Dengan demikian didapat nilai koefisien regresi sbb:

$$b_1 = \frac{(\sum x_2^2)(\sum x_1 y) - (\sum x_1 x_2)(\sum x_2 y)}{(\sum x_1^2)(\sum x_2^2) - (\sum x_1 x_2)^2} = \frac{32 \cdot 6 - 13 \cdot 110}{30 \cdot 32 - (13)^2} = \frac{192 - 1430}{960 - 169} = -\frac{1238}{791} = -1,5651$$

$$b_2 = \frac{(\sum x_1^2)(\sum x_2y) - (\sum x_1x_2)(\sum x_1y)}{(\sum x_1^2)(\sum x_2^2) - (\sum x_1x_2)^2} = \frac{30 \cdot 110 - 13 \cdot 6}{30 \cdot 32 - (13)^2} = \frac{3300 - 78}{791} = \frac{3222}{791} = 4,073$$

$$a = \overline{Y} - b_1 \overline{X_1} - b_2 \overline{X_2} = 50 + 1,5651(12) - 4,073(5) = 48,4162$$

#### **Model Regresi Linear Berganda:**

$$\hat{Y} = 48,4162 - 1,5651X_1 + 4,073X_2$$

#### Interpretasi:

Nilai awal sale revenue adalah sebesar 48,4162. Ketika biaya iklan meningkat maka nilai sale revenue akan menurun sebesar 1,5651 dan Ketika biaya quality control diperbesar maka nilai Sale revenue akan meningkat sebesar 4,073.

Koefisien Determinasi:  $r^2 = \frac{b_1 \sum x_1 y + b_2 \sum x_2 y}{\sum y^2} = \frac{-1,5651 (6) + 4,073 (110)}{440} = \frac{438,64}{440} = 0,9969$ 

Artinya variable  $X_1$  dan  $X_2$  memberikan pengaruh yang sangat kuat terhadap Y yaitu sebesar 99,69% sedangkan sisanya sebesar 0,31% dipengaruhi oleh variable yang lain.

Koefisien Korelasi  $r=\sqrt{r^2}=\sqrt{0.9969}=0.9984$  artinya hubungan antara variable  $X_1,X_2$  dan Y sangat kuat.

### Uji Signifikansi Parsial untuk $oldsymbol{b}_1$

#### Hipotesis

 $H_0: \beta = 0$  (tidak ada hubungan yang signifikan)

 $H_1: \beta \neq 0$  (ada hubungan yang signifikan)

- Tingkat Signifikansi :  $\alpha = 0.05$
- Uji Statistik:

$$S_y = \sqrt{\frac{\sum (y - \bar{y})^2}{n - 2}} \Longrightarrow S_Y^2 = \frac{n \sum Y_i^2 - (\sum Y_i)^2}{n(n - 2)} = \frac{10(440) - 500^2}{10 \cdot 8} = 23,75$$

Sehingga 
$$S_Y = \sqrt{23,75} = 4,873$$

$$S_{b_1} = \frac{S_y}{\sqrt{\sum x_1^2}} = \frac{4,873}{\sqrt{30}} = 0,8897$$

Dengan demikian, didapat

$$t = \frac{b_1}{S_{b_1}} = -\frac{1,5651}{0,8897} = -1,7591$$

#### Kriteria penolakan $H_0$

 $H_0$  ditolak jika  $\left|t_{hitung}\right| \geq t_{\frac{\alpha}{2};df}$  dengan df=n-2=8. Karena |-1,7591|=1,7591<2,306 maka  $H_0$  tidak ditolak.

#### Kesimpulan

Jadi,  $b_1$  tidak memberikan pengaruh yang cukup signifikan.

### Uji Signifikansi Parsial untuk $oldsymbol{b}_2$

#### Hipotesis

 $H_0: \beta = 0$  (tidak ada hubungan yang signifikan)

 $H_1: \beta \neq 0$  (ada hubungan yang signifikan)

- Tingkat Signifikansi :  $\alpha = 0.05$
- Uji Statistik:

$$S_y = \sqrt{\frac{\sum (y - \bar{y})^2}{n - 2}} \Longrightarrow S_Y^2 = \frac{n \sum Y_i^2 - (\sum Y_i)^2}{n(n - 2)} = \frac{10(440) - 500^2}{10 \cdot 8} = 23,75$$

Sehingga 
$$S_Y = \sqrt{23,75} = 4,873$$

$$S_{b_2} = \frac{S_y}{\sqrt{\sum x_2^2}} = \frac{4,873}{\sqrt{32}} = 0,861$$

Dengan demikian, didapat

$$t = \frac{b_2}{S_{b_2}} = \frac{4,073}{0,861} = 4,7305$$

#### Kriteria penolakan $H_0$

 $H_0$  ditolak jika  $\left|t_{hitung}\right| \ge t_{\frac{\alpha}{2};df}$  dengan df = n - 2 = 8. Karena |4,7305| = 4,7305 > 2,306 maka  $H_0$  ditolak.

#### Kesimpulan

Jadi,  $b_2$  memberikan pengaruh yang cukup signifikan.

## Uji Signifikansi Simultan Hasil Penaksiran

Hipotesis

 $H_0$ : Tidak Ada perbedaan yang signifikan

 $H_1$ : Ada Perbedaan Yang Signifikan

• Tingkat Signifikansi :  $\alpha = 0.05$ 

#### Uji Statistik

| Sumber<br>Variabilitas | Derajat<br>Kebebasan (df)    | Jumlah Kuadrat (JK)                                           | Rata-Rata Hitung                                                          | Nilai $F_{hitung}$                       |
|------------------------|------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------|
| Regresi                | k = 2                        | $ r^{2}(\sum y^{2}) $ = 0,9969(440) = 438,636                 | $JKR = \frac{r^2(\sum y^2)}{k}$ $= \frac{438,636}{2} = 219,318$           | $F_{Hitung} = \frac{JKR}{JKG}$ $219,318$ |
| Residu/Eror            | n-k-1<br>= 10 - 2 - 1<br>= 7 | $(1-r^2)\left(\sum y^2\right)$ = (1 - 0,9969)(440)<br>= 1,364 | $JKG = \frac{(1 - r^2)(\sum y^2)}{n - k - 1}$ $= \frac{1,364}{7} = 0,195$ | $= {0,195}$ $= 1124,7077$                |
| Total                  | n - 1 = 9                    | $\sum y^2 = 440$                                              |                                                                           |                                          |

#### • Kriteria penolakan $H_0$

 $H_0$  ditolak jika  $\left|F_{hitung}\right| \geq F_{\alpha\;;df1;df_2}$  dengan  $df_1=k=2$  dan  $df_2=n-k-1=7$ . Karena  $F_{hitung}=1124,7077>4,74$  maka  $H_0$  ditolak.

#### Kesimpulan

Jadi, Hasil penaksiran sales revenue ada perbedaan yang cukup signifikan dengn hasil sesungguhnya.

Hasil Prediksi dengan  $X_1 = 20 \operatorname{dan} X_2 = 12 \operatorname{adalah}$ 

$$\hat{Y} = 48,4162 - 1,5651(20) + 4,073(12) = 65,9902$$

Jadi, diprediksikan hasil sales revenue saat biaya iklan 20 juta dan biaya quality control 12 juta adalah sebesar 65,9902.

### Regresi Linear Berganda Untuk 3 Prediktor

Model:

$$Y = a + b_1 X_1 + b_2 X_2 + b_3 X_3$$
 ...

Dengan menggunakan metode skor deviasi yaitu

$$y=\widehat{Y}-\overline{Y}$$
,  $x_1=X_1-\overline{X_1}$ ,  $x_2=X_2-\overline{X_2}$  dan  $x_3=X_3-\overline{X_3}$ 

maka persamaan \* dapat disederhanakan menjadi

$$y = b_1 x_1 + b_2 x_2 + b_3 x_3 + \cdots **$$

Untuk memperoleh nilai koefisien regresi dapat dilakukan dengan menyelesaikan SPL berikut:

$$\begin{cases} \sum x_1 y = b_1 \sum x_1^2 + b_2 \sum x_1 x_2 + b_3 \sum x_1 x_3 \\ \sum x_2 y = b_1 \sum x_1 x_2 + b_2 \sum x_2^2 + b_3 \sum x_2 x_3 \\ \sum x_3 y = b_1 \sum x_1 x_3 + b_2 \sum x_2 x_3 + b_3 \sum x_3^2 \end{cases}$$

#### Dengan

$$\sum x_1^2 = \sum X_1^2 - \frac{(\sum X_1)^2}{N} \qquad \sum x_1 x_2 = \sum X_1 X_2 - \frac{\sum X_1 \sum X_2}{N} \qquad \sum x_2 y = \sum X_2 Y - \frac{\sum X_2 \sum Y}{N}$$

$$\sum x_2^2 = \sum X_2^2 - \frac{(\sum X_2)^2}{N} \qquad \sum x_1 x_3 = \sum X_1 X_3 - \frac{\sum X_1 \sum X_3}{N} \qquad \sum x_3 y = \sum X_3 Y - \frac{\sum X_3 \sum Y}{N}$$

$$\sum x_3^2 = \sum X_3^2 - \frac{(\sum X_3)^2}{N} \qquad \sum x_2 x_3 = \sum X_2 X_3 - \frac{\sum X_2 \sum X_3}{N}$$

$$\sum y^2 = \sum Y^2 - \frac{(\sum Y)^2}{N} \qquad \sum x_1 y = \sum X_1 Y - \frac{\sum X_1 \sum Y}{N}$$

### Korelasi & Koefisien Determinasi Regresi Linear Berganda

Koefisien Determinasi untuk Regresi Linear Berganda 3 Variabel Bebas yaitu

$$r^{2} = \frac{b_{1} \sum x_{1}y + b_{2} \sum x_{2}y + b_{3} \sum x_{3}y}{\sum y^{2}}$$



Korelasi dari Regresi Linear Berganda:

$$r = \sqrt{r^2}$$

$$\sum y^2 = \sum Y^2 - \frac{(\sum Y)^2}{n}$$

$$\sum x_1 y = \sum X_1 Y - \frac{(\sum X_1)(\sum Y)}{n}$$

$$\sum x_2 y = \sum X_2 Y - \frac{(\sum X_2)(\sum Y)}{n}$$

$$\sum x_3 y = \sum X_3 Y - \frac{(\sum 3)(\sum Y)}{n}$$

$$\sum x_3 y = \sum X_3 Y - \frac{(\sum 3)(\sum Y)}{n}$$

## Uji Signifikansi Parsial untuk $b_i$

#### Hipotesis

 $H_0: \beta = 0$  (tidak ada pengaruh yang signifikan)

 $H_1: \beta \neq 0$  (ada pengaruh yang signifikan)

- Tingkat Signifikansi :  $\alpha$
- Uji Statistik:

$$t=rac{b_i}{S_{b_i}}$$
 Jika koefisien korelasi tidak diketahui

Dengan  $b_i$  adalah koefisien regresi dan  $S_{b_i}$  adalah standar eror dari koefisien regresi

Atau

$$t=r\sqrt{rac{n-2}{1-r^2}}$$
 Jika koefisien korelasi sudah diketahui

Dengan

$$S_{b_i} = \frac{S_y}{\sqrt{\sum x^2}}$$

Dan  $S_{\mathcal{V}}$  adalah simpangan baku dari penduga nilai y yang dirumuskan dengan

$$S_y = \sqrt{\frac{\sum (y - \bar{y})^2}{n - 2}}$$

• Kriteria penolakan  $H_0$ 

$$H_0$$
 ditolak jika  $\left|t_{hitung}\right| \geq t_{\frac{\alpha}{2};df}$  dengan  $df = n-2$ 

Kesimpulan

## Uji Signifikansi Simultan Hasil Penaksiran

Hipotesis

 $H_0$ : Tidak Ada perbedaan yang signifikan

 $H_1$ : Ada Perbedaan Yang Signifikan

• Tingkat Signifikansi :  $\alpha$ 

#### Uji Statistik

| Sumber<br>Variabilitas | Derajat<br>Kebebasan (df) | Jumlah Kuadrat (JK)            | Rata-Rata Hitung                              | Nilai $oldsymbol{F}_{hitung}$ |
|------------------------|---------------------------|--------------------------------|-----------------------------------------------|-------------------------------|
| Regresi                | k                         | $r^2\left(\sum y^2\right)$     | $JKR = \frac{r^2(\sum y^2)}{k}$               | JKR                           |
| Residu/Eror            | n-k-1                     | $(1-r^2)\left(\sum y^2\right)$ | $JKG = \frac{(1 - r^2)(\sum y^2)}{n - k - 1}$ | $F_{Hitung} = \frac{J}{JKG}$  |
| Total                  | n-1                       | $\sum y^2$                     |                                               |                               |

$$r^2 = \frac{b_1 \sum x_1 y + b_2 \sum x_2 y}{\sum y^2}$$

$$\sum y^2 = \sum Y^2 - \frac{(\sum Y)^2}{n}$$

k: banyaknya variable predictor/bebas

n: banyak data

• Kriteria penolakan  $H_0$ 

$$|H_0|$$
 ditolak jika  $|F_{hitung}| \ge F_{\alpha;df_1;df_2}$  dengan  $df_1 = k$  dan  $df_2 = n - k - 1$ 

Kesimpulan

### Contoh

Seorang peneliti ingin mengkaji hubungan antara skor tes masuk perguruan tinggi dengan IPK mahasiswa setelah kuliah selama 1 tahun. Tes masuk tersebut meliputi tes TPA, Bahasa Indonesia dan Bahasa Inggris. Hasil yang diperoleh peneliti disajikan dalam Tabel.

| Mahasiswa | TPA (X1) | B. Indo (X2) | B. Inggris<br>(X3) | IPK (Y) |
|-----------|----------|--------------|--------------------|---------|
| 1         | 98       | 44           | 40                 | 3.25    |
| 2         | 95       | 46           | 35                 | 3.4     |
| 3         | 95       | 44           | 33                 | 3.35    |
| 4         | 91       | 40           | 35                 | 3.05    |
| 5         | 90       | 40           | 35                 | 3       |
| 6         | 85       | 42           | 33                 | 3.15    |
| 7         | 85       | 40           | 33                 | 3.1     |
| 8         | 80       | 36           | 30                 | 2.85    |
| 9         | 76       | 38           | 30                 | 2.95    |
| 10        | 76       | 35           | 30                 | 2.85    |
| 11        | 75       | 35           | 28                 | 2.75    |
| 12        | 70       | 32           | 28                 | 2.65    |

#### Tentukan:

- a. Bentuklah Model Regresi Linear Berganda
- b. Interpretasikan model yang diperoleh
- c. Koefisien determinasi dan korelasi berganda
- d. Uji Parsial untuk mengukur seberapa signifikan pengaruh dari koefisien regresinya
- e. Uji Simultan dari hasil penaksiran regresi
- f. Prediksi IPK mahasiswa selama 1 tahun apabila skor TPAnya 100, Bahasa Indonesia 40 dan Bahasa Inggris 37

# Penyelesaian

| Mahasis<br>wa | TPA (X1) | B. Indo<br>(X2) | B. Inggris<br>(X3) | IPK (Y)  | X1^2  | X2^2  | X3^2  | Y^2      | X1X2  | X1X3  | X2X3  | X1Y    | X2Y    | ХЗҮ     |
|---------------|----------|-----------------|--------------------|----------|-------|-------|-------|----------|-------|-------|-------|--------|--------|---------|
| 1             | 98       | 44              | 40                 | 3.25     | 9604  | 1936  | 1600  | 10.5625  | 4312  | 3920  | 1760  | 318.5  | 143    | 130     |
| 2             | 95       | 46              | 35                 | 3.4      | 9025  | 2116  | 1225  | 11.56    | 4370  | 3325  | 1610  | 323    | 156.4  | 119     |
| 3             | 95       | 44              | 33                 | 3.35     | 9025  | 1936  | 1089  | 11.2225  | 4180  | 3135  | 1452  | 318.25 | 147.4  | 110.55  |
| 4             | 91       | 40              | 35                 | 3.05     | 8281  | 1600  | 1225  | 9.3025   | 3640  | 3185  | 1400  | 277.55 | 122    | 106.75  |
| 5             | 90       | 40              | 35                 | 3        | 8100  | 1600  | 1225  | 9        | 3600  | 3150  | 1400  | 270    | 120    | 105     |
| 6             | 85       | 42              | 33                 | 3.15     | 7225  | 1764  | 1089  | 9.9225   | 3570  | 2805  | 1386  | 267.75 | 132.3  | 103.95  |
| 7             | 85       | 40              | 33                 | 3.1      | 7225  | 1600  | 1089  | 9.61     | 3400  | 2805  | 1320  | 263.5  | 124    | 102.3   |
| 8             | 80       | 36              | 30                 | 2.85     | 6400  | 1296  | 900   | 8.1225   | 2880  | 2400  | 1080  | 228    | 102.6  | 85.5    |
| 9             | 76       | 38              | 30                 | 2.95     | 5776  | 1444  | 900   | 8.7025   | 2888  | 2280  | 1140  | 224.2  | 112.1  | 88.5    |
| 10            | 76       | 35              | 30                 | 2.85     | 5776  | 1225  | 900   | 8.1225   | 2660  | 2280  | 1050  | 216.6  | 99.75  | 85.5    |
| 11            | 75       | 35              | 28                 | 2.75     | 5625  | 1225  | 784   | 7.5625   | 2625  | 2100  | 980   | 206.25 | 96.25  | 77      |
| 12            | 70       | 32              | 28                 | 2.65     | 4900  | 1024  | 784   | 7.0225   | 2240  | 1960  | 896   | 185.5  | 84.8   | 74.2    |
| Jumlah        | 1016     | 472             | 390                | 36.35    | 86962 | 18766 | 12810 | 110.7125 | 40365 | 33345 | 15474 | 3099.1 | 1440.6 | 1188.25 |
| Mean          | 84.66667 | 39.33333        | 32.5               | 3.029167 |       |       |       |          |       |       |       |        |        |         |

# Model Regresi

| Sigm x1^2 | 940.6667 | Sigm x1x2 | 402.3333 | Sigm x1y | 21.46667 |
|-----------|----------|-----------|----------|----------|----------|
| Sigm x2^2 | 200.6667 | Sigm x1x3 | 325      | Sigm x2y | 10.83333 |
| Sigm x3^2 | 135      | Sigm x2x3 | 134      | Sigm x3y | 6.875    |
| Sigm y^2  | 0.602292 |           |          |          |          |

$$\sum x_1^2 = \sum X_1^2 - \frac{(\sum X_1)^2}{N} = 940,67$$

$$\sum x_1 x_2 = \sum X_1 X_2 - \frac{\sum X_1 \sum X_2}{N} = 402,33$$

$$\sum x_2 y = \sum X_2 Y - \frac{\sum X_2 \sum Y}{N} = 10,83$$

$$\sum x_2^2 = \sum X_2^2 - \frac{(\sum X_2)^2}{N} = 200,67$$

$$\sum x_1 x_3 = \sum X_1 X_3 - \frac{\sum X_1 \sum X_3}{N} = 325$$

$$\sum x_3 y = \sum X_3 Y - \frac{\sum X_3 \sum Y}{N} = 6,875$$

$$\sum x_3^2 = \sum X_3^2 - \frac{(\sum X_3)^2}{N} = 135$$

$$\sum x_2 x_3 = \sum X_2 X_3 - \frac{\sum X_2 \sum X_3}{N} = 134$$

$$\sum y^2 = \sum Y^2 - \frac{(\sum Y)^2}{N} = 0,602$$

$$\sum x_1 y = \sum X_1 Y - \frac{\sum X_1 \sum Y}{N} = 21,47$$

• Untuk memperoleh nilai  $b_1$ ,  $b_2$ ,  $b_3$  maka perlu menyelesaikan SPL berikut

$$\begin{cases} \sum x_1 y = b_1 \sum x_1^2 + b_2 \sum x_1 x_2 + b_3 \sum x_1 x_3 \\ \sum x_2 y = b_1 \sum x_1 x_2 + b_2 \sum x_2^2 + b_3 \sum x_2 x_3 \\ \sum x_3 y = b_1 \sum x_1 x_3 + b_2 \sum x_2 x_3 + b_3 \sum x_3^2 \end{cases}$$

Ekuivalen dengan

$$940,67b_1 + 402,33b_2 + 325b_3 = 21,47$$
  
 $402,33b_1 + 200,67b_2 + 134b_3 = 10,83$   
 $325b_1 + 134b_2 + 135b_3 = 6,875$ 

### Menggunakan Aturan Cramer diperoleh

$$\det A = \begin{vmatrix} 940,67 & 402,33 & 325 \\ 402,33 & 200,67 & 134 \\ 325 & 134 & 135 \end{vmatrix} = 587304,4$$

$$\det B = \begin{vmatrix} 21,47 & 402,33 & 325 \\ 10,83 & 200,67 & 134 \\ 6,875 & 134 & 135 \end{vmatrix} = 1811,046$$

$$\det C = \begin{vmatrix} 940,67 & 21,47 & 325 \\ 402,33 & 10,83 & 134 \\ 325 & 6,875 & 135 \end{vmatrix} = 32636,79$$

$$\det D = \begin{vmatrix} 940,67 & 402,3 & 21,47 \\ 402,33 & 200,67 & 10,83 \\ 325 & 134 & 6,875 \end{vmatrix} = -6845,94$$

### Dengan demikian diperoleh

$$b_1 = \frac{\det B}{\det A} = \frac{1811,046}{587304,4} = 0,0031$$

$$b_2 = \frac{\det C}{\det A} = \frac{32636,79}{587304,4} = 0,0556$$

$$b_3 = \frac{\det D}{\det A} = -\frac{6845,94}{587304,4} = -0,0117$$

Dengan demikian, sesuai dengan persamaan \*\* diperoleh

$$y = 0.0031x_1 + 0.0556x_2 - 0.0117x_3$$

Karena 
$$y=\hat{Y}-\overline{Y}$$
,  $x_1=X_1-\overline{X_1}$ ,  $x_2=X_2-\overline{X_2}$  dan  $x_3=X_3-\overline{X_3}$  sehingga diperoleh

$$y = 0.0031x_1 + 0.0556x_2 - 0.0117x_3$$

$$\hat{Y} - \bar{Y} = 0.0031(X_1 - \overline{X_1}) + 0.0556(X_2 - \overline{X_2}) - 0.0117(X_3 - \overline{X_3})$$

$$\hat{Y} - 3,029 = 0,0031(X_1 - 84,67) + 0,0556(X_2 - 39,33) - 0,0117(X_3 - 32,5)$$

$$\hat{Y} = 0.0031X_1 + 0.0556X_2 - 0.0117X_3 + (3.029 - (0.0031)(84.67) - (0.0556)(39.33) + (0.0117)(32.5))$$

$$\hat{Y} = 0.0031X_1 + 0.0556X_2 - 0.0117X_3 + 0.96$$

Model Regresi:  $\hat{Y} = 0.0031X_1 + 0.0556X_2 - 0.0117X_3 + 0.96$  (Coba Interpretasikan!!)

# Koefisien Determinasi & Korelasi Berganda

Korelasi Berganda

$$R_{y123} = \sqrt{\frac{b1\sum x_1y + b_2\sum x_2y + b_3\sum x_3y}{\sum y^2}}$$

$$= \sqrt{\frac{0,0031(21,47) + 0,0556(10,83) - 0,0117(6,875)}{0,6023}} = 0,9883$$

Koefisien Determinasi

$$R_{y123}^2 = (0.9883)^2 = 0.9767$$

## Uji Signifikansi Parsial untuk $oldsymbol{b}_1$

### Hipotesis

 $H_0: \beta = 0$  (tidak ada hubungan yang signifikan)

 $H_1: \beta \neq 0$  (ada hubungan yang signifikan)

- Tingkat Signifikansi :  $\alpha = 0.05$
- Uji Statistik:

$$S_y = \sqrt{\frac{\sum (y - \bar{y})^2}{n - 2}} \Longrightarrow S_Y^2 = \frac{n \sum Y_i^2 - (\sum Y_i)^2}{n(n - 2)} = \frac{12(110,7125) - (3,029)^2}{12 \cdot 10} = 10,99$$

Sehingga 
$$S_Y = \sqrt{10,99} = 3,315$$

$$S_{b_1} = \frac{S_y}{\sqrt{\sum x_1^2}} = \frac{3,315}{\sqrt{940,67}} = 0,1081$$

Dengan demikian, didapat

$$t = \frac{b_1}{S_{b_1}} = \frac{0,0031}{0,1081} = 0,0287$$

### Kriteria penolakan $H_0$

 $H_0$  ditolak jika  $\left|t_{hitung}\right| \geq t_{\frac{\alpha}{2};df}$  dengan df=12-2=10. Karena |0,0287|=0,0287<2,228 maka  $H_0$  tidak ditolak.

#### Kesimpulan

Jadi,  $b_1$  tidak memberikan pengaruh yang cukup signifikan.

## Uji Signifikansi Parsial untuk $oldsymbol{b}_2$

### Hipotesis

 $H_0: \beta = 0$  (tidak ada hubungan yang signifikan)

 $H_1: \beta \neq 0$  (ada hubungan yang signifikan)

- Tingkat Signifikansi :  $\alpha = 0.05$
- Uji Statistik:

$$S_y = \sqrt{\frac{\sum (y - \bar{y})^2}{n - 2}} \Longrightarrow S_Y^2 = \frac{n \sum Y_i^2 - (\sum Y_i)^2}{n(n - 2)} = \frac{12(110,7125) - (3,029)^2}{12 \cdot 10} = 10,99$$

Sehingga  $S_Y = \sqrt{10,99} = 3,315$ 

$$S_{b_2} = \frac{S_y}{\sqrt{\sum x_2^2}} = \frac{3,315}{\sqrt{200,67}} = 0,234$$

Dengan demikian, didapat

$$t = \frac{b_2}{S_{b_2}} = \frac{0,0556}{0,234} = 0,2376$$

### Kriteria penolakan $H_0$

 $H_0$  ditolak jika  $\left|t_{hitung}\right| \ge t_{\frac{\alpha}{2};df}$  dengan df = 12 - 2 = 10. Karena |0,2376| = 0,2376 < 2,228 maka  $H_0$  tidak ditolak.

#### Kesimpulan

Jadi,  $b_2$  tidak memberikan pengaruh yang cukup signifikan.

## Uji Signifikansi Parsial untuk $oldsymbol{b}_3$

### Hipotesis

 $H_0: \beta = 0$  (tidak ada hubungan yang signifikan)

 $H_1: \beta \neq 0$  (ada hubungan yang signifikan)

- Tingkat Signifikansi :  $\alpha = 0.05$
- Uji Statistik:

$$S_y = \sqrt{\frac{\sum (y - \bar{y})^2}{n - 2}} \Longrightarrow S_Y^2 = \frac{n \sum Y_i^2 - (\sum Y_i)^2}{n(n - 2)} = \frac{12(110,7125) - (3,029)^2}{12 \cdot 10} = 10,99$$

Sehingga  $S_Y = \sqrt{10,99} = 3,315$ 

$$S_{b_3} = \frac{S_y}{\sqrt{\sum x_3^2}} = \frac{3,315}{\sqrt{135}} = 0,258$$

Dengan demikian, didapat

$$t = \frac{b_3}{S_{b_3}} = \frac{-0,0117}{0,258} = -0,0435$$

### Kriteria penolakan $H_0$

 $H_0$  ditolak jika  $\left|t_{hitung}\right| \ge t_{\frac{\alpha}{2};df}$  dengan df = 12 - 2 = 10. Karena |-0,0435| = 0,0435 < 2,228 maka  $H_0$  tidak ditolak.

#### Kesimpulan

Jadi,  $b_3$  tidak memberikan pengaruh yang cukup signifikan.

# Uji Signifikansi Simultan Hasil Penaksiran

Hipotesis

 $H_0$ : Tidak Ada perbedaan yang signifikan

 $H_1$ : Ada Perbedaan Yang Signifikan

• Tingkat Signifikansi :  $\alpha = 0.05$ 

### Uji Statistik

| Sumber<br>Variabilitas | Derajat<br>Kebebasan<br>(df) | Jumlah Kuadrat (JK)                                             | Rata-Rata Hitung                                                            | Nilai $F_{hitung}$                |
|------------------------|------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------|
| Regresi                | k = 3                        | $r^{2}\left(\sum y^{2}\right)$ = 0,9767(0,602) = 0,588          | $JKR = \frac{r^2(\sum y^2)}{k}$ $= \frac{0,588}{3} = 0,196$                 | $F_{Hitung} = \frac{JKR}{JKG}$    |
| Residu/Eror            | n - k - 1 = 8                | $(1-r^2)\left(\sum y^2\right)$ = (1 - 0,9767)(0,602)<br>= 0,014 | $JKG = \frac{(1 - r^2)(\sum y^2)}{n - k - 1}$ $= \frac{0,014}{8} = 0,00175$ | $= \frac{0,196}{0,00175}$ $= 112$ |
| Total                  | n - 1 = 11                   | $\sum y^2 = 0,602$                                              |                                                                             |                                   |

### • Kriteria penolakan $H_0$

 $H_0$  ditolak jika  $\left|F_{hitung}\right| \geq F_{\alpha\;;df1;df_2}$  dengan  $df_1=k=3$  dan  $df_2=n-k-1=8$  diperoleh bahwa  $F_{hit}=112>8$ ,85 =  $F_{tabel}$ . Akibatnya,  $H_0$  ditolak.

### Kesimpulan

Jadi, ada perbedaan yang cukup signifikan dari setiap variable predictor

### Prediksi

Prediksi IPK mahasiswa selama 1 tahun apabila skor TPAnya 100, Bahasa Indonesia 40 dan Bahasa Inggris 37

Model Regresi: 
$$\hat{Y} = 0.0031(100) + 0.0556(40) - 0.0117(37) + 0.96 = 3.0611$$

Jadi, IPK mahasiswa tersebut adalah 3,0611

### Latihan

Data rata-rata lama belajar (jam/hari), sikap terhadap perkuliahan, sifat kemandirian dan IPK untuk 10 mahasiswa diberikan sbb:

| No | Lama Belajar | Sikap | Kemandirian | IPK  |  |
|----|--------------|-------|-------------|------|--|
| 1  | 2,45         | 85    | 75          | 3,22 |  |
| 2  | 2            | 82    | 80          | 3,08 |  |
| 3  | 2,3          | 76    | 92          | 2,96 |  |
| 4  | 3            | 96    | 95          | 3,12 |  |
| 5  | 2            | 78    | 90          | 3,16 |  |
| 6  | 2,3          | 94    | 90          | 3,46 |  |
| 7  | 1,5          | 84    | 80          | 3,02 |  |
| 8  | 1,45         | 75    | 80          | 2,88 |  |
| 9  | 2,45         | 90    | 84          | 3,33 |  |
| 10 | 2,15         | 80    | 86          | 3,42 |  |

#### Tentukan:

- a. Bentuklah Model Regresi Linear Berganda
- b. Interpretasikan model yang diperoleh
- c. Koefisien determinasi dan korelasi berganda
- d. Uji Parsial untuk mengukur seberapa signifikan pengaruh dari koefisien regresinya
- e. Uji Simultan dari hasil penaksiran regresi
- f. Prediksi IPK mahasiswa selama 1 tahun apabila lama belajar mahasiswa 1,25 jam sikapnya 90 dan kemandiriannya 77