Course Code:	24BSMA101
Course Name:	MATRICES AND CALCULUS

$Module \hbox{-} 5 - \underline{Multiple\ Integrals}$

	Part - A / 1 Mark/ MCQ				
Sl. No.	Questions	Marks Split-up	K – Level	СО	
1.	$\int_0^1 \int_0^{x^2} e^{\frac{y}{x}} dy dx =$ a) 3/2 b) 1/2 c) -1/2 d) -3/2	1	K2	CO5	
2.	The value of $\iint xye^{x+y} dxdy$. a) $ye^y (xe^x - e^x)$ b) $(ye^y - e^y)(xe^x - e^x)$ c) $(ye^y - e^y)xe^x$ d) $(ye^y - e^y)(xe^x + e^x)$	1	K2	CO5	
3	The value of integral $\int_0^2 \int_0^x e^{x+y} dx dy$ is a) $\frac{1}{2}(e-1)$ b) $\frac{1}{2}(e^2-1)^2$ c) $\frac{1}{2}(e^2-e)$ d) $\frac{1}{2}(e-\frac{1}{e})^2$	1	K2	CO5	
4.	What is the region of $\int_0^1 \int_x^1 dy dx$ represents a) Rectangle b) Square c) Circle d) Triangle	1	K2	CO5	
5	The area of an ellipse is a) πr^2 b) π c) r^2 d) πr	1	K2	CO5	
6	The area enclosed between the straight line $y = x$ and the parabola $y = x^2$ in the xy plane is a) $\frac{1}{6}$ b) $\frac{1}{4}$ c) $\frac{1}{3}$ d) $\frac{1}{2}$	1	K2	CO5	
7.	The limits of the integral $\iint_R f(x,y) dy dx$ where R is bounded by $y = x^2$, $x = 1$ and x-axis. a) Y:0 to x^2 , X:0 to 1 a) X:0 to y, Y:0 to 1 c) Y:0 to x^2 , X:1 to 2 d) X:0 to y, Y:1 to 2	1	K2	CO5	
8	If R is the region bounded $x = 0$, $y = 0$, $x + y = 1$ then $\iint_R dy dx$ is equal to a)1/3 b)1/2 c)1 d)1/4	1	K2	CO5	
9	The value of $\int_0^3 \int_1^2 xy(x+y)dxdy$ a) 21 b) 22 c) 23 d) 24	1	K2	CO5	
10	The value of $\int_0^{\frac{\pi}{2}} \int_0^{\pi} \cos(x+y) dx dy$ is	1	K2	CO5	

	a) -2 b) 2 c) 0 d) None of these			
11	Transform into polar coordinates the integral $ \int_0^a \int_y^a y dx dy $ is $ a) I = \int_0^{\frac{\pi}{4}} \int_0^{asec\theta} f(r,\theta) r dr d\theta $ b) $ I = \int_0^{\frac{\pi}{2}} \int_0^{\infty} r^2 dr d\theta $ c) $ I = \int_0^{\frac{\pi}{4}} \int_0^{\infty} sin\theta r dr d\theta $ d) $ I = \int_0^{\frac{\pi}{2}} \int_0^1 r^2 sin\theta dr d\theta $	1	K2	CO5
12	Transform $\int_0^1 \int_0^\infty y dx dy$ into polar coordinates a) $I = \int_0^{\frac{\pi}{2}} \int_0^\infty r^2 \sin\theta dr d\theta$ b) $I = \int_0^{\frac{\pi}{2}} \int_0^\infty r^2 dr d\theta$ c) $I = \int_0^{\frac{\pi}{2}} \int_0^\infty \sin\theta dr d\theta$ d) $I = \int_0^{\frac{\pi}{2}} \int_0^1 r^2 \sin\theta dr d\theta$	1	K2	CO5
13	Change the order of integration in $\int_0^1 \int_x^1 dy dx$ is a) $\int_0^1 \int_x^1 dy dx$ b) $\int_0^1 \int_0^1 dy dx$ c) $\int_0^1 \int_x^1 dy dx$ d) $\int_0^1 \int_x^1 dx dy$	1	K2	CO5
14	Change the order of integration in $\int_{0}^{a} \int_{y}^{a} f(x, y) dx dy =$ a) $\int_{0}^{a} \int_{x}^{a} f(x, y) dy dx$ b) $\int_{0}^{a} \int_{0}^{x} f(x, y) dy dx$ c) $\int_{0}^{a} \int_{a}^{x} f(x, y) dy dx$ d) $\int_{0}^{a} \int_{x}^{0} f(x, y) dy dx$	1	K2	CO5
15	The area bounded between $r = 2\cos\theta$ and $r = 2\sin\theta$ is a) π b) 2π c) 3π d) 0	1	K2	CO5
16	Area between the parabolas $y^2 = 4x$ and $x^2 = 4y$ is a) $\int_{0}^{2} \int_{x^2/2}^{\sqrt{x}} dy dx$ b) $\int_{0}^{4} \int_{x^2/2}^{\sqrt{x}} dy dx$ c) $\int_{0}^{4} \int_{x^2/4}^{2\sqrt{x}} dy dx$ d) $\int_{0}^{4} \int_{x^2/4}^{4\sqrt{x}} dy dx$	1	K2	CO5
17	Change of variables from x, y into u, v is $\iint_R f(x, y) dy dx = \iint_R F(u, v) J du dv$. Here J represents a) $J = \frac{\partial(x, y)}{\partial(u, v)}$ b) $J = \frac{\partial(u, y)}{\partial(x, v)}$ c) $J = \frac{\partial(x, v)}{\partial(u, y)}$ d) $J = 0$	1	K2	CO5
18.	If $u = x + y$ and $v = x - 2y$, then the area element $dxdy$ is replaced by $dudv$. a) 3 b) -3 c) 2 d) -2	1	K2	CO5

19.	The value of $\iint dxdy$ over the rectangle $0 \le x \le 1$ and $0 \le y \le 3$ s. a) 1 b) 2 c) 3 d) 4	1	K2	CO5
20.	On changing to polar coordinates $\iint dxdy$ over the circle $x^2 + y^2 = 4$ becomes a) $\int_{0}^{2\pi} \int_{0}^{2} r dr d\theta$ b) $\int_{0}^{2\pi} \int_{0}^{4} r dr d\theta$ c) $\int_{0}^{\pi} \int_{0}^{2} r dr d\theta$ d) $\int_{0}^{\pi} \int_{0}^{4} r dr d\theta$	1	K2	CO5
21.	The value of $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} dx dy dz$ is a) 3 b) 6 c) 9 d) 12	1	K2	CO5
22.	The value of the integral $\int_0^a \int_0^a \int_0^a (xy + yz + zx) dx dy dz$ is $a) \frac{3a^3}{4} \qquad b) \frac{2a^5}{3} \qquad c) \frac{3a^3}{4} \qquad d) \frac{5a^3}{3}$	1	K2	CO5
23.	The value of the integral $\int_0^1 \int_0^2 \int_1^2 x^2 yz dx dy dz$ is a)7/3 b)5/3 c)2/3 d)1/3	1	K2	CO5
24.	The value of the integral $\int_0^1 \int_0^2 \int_1^2 xy dx dy dz$ is a) 0 b) 1 c) 2 d) 3	1	K2	CO5
25.	The value of the integral $\int_{0}^{2} \int_{1}^{3} \int_{1}^{2} xy^{2}z dz dy dx$ is a) 0 b) 16 c) 26 d) 36	1	K2	CO5
26.	The value of the integral $\int_0^1 \int_0^2 \int_0^3 xyz dz dy dx$ is a) 0 b) 1 c) 7/2 d) 9/2	1	K2	CO5
27.	$\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz \text{ is equal to}$ a) 4 b) -4 c) 0 d) None of these	1	K2	CO5
28.	$\int_{0}^{1} \int_{y^{2}}^{2} \int_{0}^{1-x} x dz dx dy =$ a) $\frac{2}{35}$ b) $\frac{4}{35}$ c) $\frac{4}{17}$ d) $\frac{2}{17}$	1	K2	CO5
29	Let $I = \int_{x=0}^{1} \int_{y=0}^{x^2} x \ y^2 \ dy \ dx$, then after change of integration, I may be expressed as a) $\int_{y=0}^{1} \int_{x=0}^{\sqrt{y}} x \ y^2 \ dx \ dy$ b) $\int_{y=0}^{1} \int_{x=\sqrt{y}}^{1} y \ x^2 \ dx \ dy$ c) $\int_{y=0}^{1} \int_{x=\sqrt{y}}^{1} x \ y^2 \ dx \ dy$ d) $\int_{y=0}^{1} \int_{x=0}^{\sqrt{y}} y \ x^2 \ dx \ dy$	1	K2	CO5

${\bf 24BSMA101\text{-}MATRICES\ AND\ CALCULUS\ _\ QB_Module\text{-}5}$

To change cartesian (x, y, z) φ), $dxdydz$ is replaced by _	to spherical polar coordinate (r, θ, \dots) .			
a) $r^2 \cos \theta dr d\theta d\varphi$	b) $r^2 \sin \theta dr d\theta d\varphi$	1	K2	CO5
c) $r\cos\theta dr d\theta d\varphi$	d) $r \sin \theta dr d\theta d\varphi$			

	Part - B / 2 Marks				
Sl.No.	Questions	Marks Split- up	K – Level	СО	
1.	Evaluate $\int_0^1 \int_1^2 x(x+y) dy dx$.	2 2	K2	CO5	
2.	Evaluate $\int_0^1 \int_0^{\sqrt{1+x^2}} \frac{dxdy}{1+x^2+y^2}$ Evaluate $\int_1^b \int_1^a \frac{dxdy}{xy}$	2	K2	CO5	
3.	Evaluate $\int_{1}^{b} \int_{1}^{a} \frac{dxdy}{xy}$	2	K2	CO5	
4.	Evaluate $\int_0^1 \int_0^{\sqrt{x}} xy(x+y) dx dy$	2	K2	CO5	
5.	Evaluate $\int_0^1 \int_0^1 \frac{dxdy}{\sqrt{1-x^2}\sqrt{1-y^2}}$	2	K2	CO5	
6	Evaluate $\int_0^{rac{\pi}{2}} \int_0^{sin heta} r d heta dr$	2	K2	CO5	
7	Sketch roughly the region of integration for $\int_0^1 \int_0^x f(x,y) dy dx$	2	K2	CO5	
8	Change the order of integration in $\int_0^a \int_0^x f(x,y) dy dx$	2	K2	CO5	
9	Evaluate $\int_0^a \int_0^{\sqrt{a^2-x^2}} dy dx$	2	K2	CO5	
10	Evaluate $\int_1^2 \int_0^y \frac{dxdy}{x^2 + y^2}.$	2	K2	CO5	
11	Transform into polar coordinates the integral $\int_0^a \int_y^a f(x,y) dx dy$	2	K2	CO5	
12	Evaluate $\int_0^{rac{\pi}{2}} \int_0^{acos heta} r^2 dr d heta$	2	K2	CO5	
13	Evaluate $\int_0^{\frac{\pi}{2}} \int_0^{a\cos\theta} r\sqrt{a^2 - r^2} dr d\theta$.	2	K2	CO5	
14	Evaluate $\int_0^1 \int_0^2 \int_1^2 x^2 yz dx dy dz$.	2	K2	CO5	
15	Evaluate $\int_{0}^{a} \int_{0}^{b} \int_{0}^{c} (x^{2} + y^{2} + z^{2}) dx dy dz$.	2	K2	CO5	

	Part - C / 10 Marks			
Sl. No.	Questions	Marks Split- up	K – Level	СО
1	Evaluate by changing the order of integration $\int_0^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$.	10	К3	CO5

${\bf 24BSMA101\text{-}MATRICES\ AND\ CALCULUS\ _\ QB_Module\text{-}5}$

2	Evaluate $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$ changing the order of integration.	10	К3	CO5
3	Change the order of integration and evaluate $\int_0^b \int_0^{\frac{a}{b}(b-y)} dy dx$	10	К3	CO5
4	Change the order of integration and evaluate $\int_0^a \int_{\frac{x^2}{a}}^{2a-x} xy dy dx$	10	К3	CO5
5	Change the order of integration in $\int_0^1 \int_{x^2}^{2-x} xy dy dx$ and hence evaluate it.	10	К3	CO5
6	Change the order of integration in $\int_0^a \int_{a-\sqrt{a^2-y^2}}^{a+\sqrt{a^2-y^2}} xydxdy$ and then evaluate it	10	К3	CO5
7	Evaluate $\iint r^3 dr d\theta$, where A is the area bounded between the circles $r = 2sin\theta$ and $r = 4sin \theta$.	10	К3	CO5
8	Evaluate $\iint_A^{\blacksquare} r^3 dr d\theta$, where A is the area between the circles $r = 2\cos\theta$ and $r = 4\cos\theta$.	10	К3	CO5
9	Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$ by changing into polar coordinates and hence evaluate $\int_0^\infty e^{-x^2} dx$.	10	К3	CO5
10	By changing into polar coordinates, evaluate the integral $\int_0^2 \int_0^{\sqrt{2x-x^2}} \frac{x}{x^2+y^2} dy dx$.	10	К3	CO5
11	By changing into polar coordinates, evaluate the integral $\int_0^{2a} \int_0^{\sqrt{2ax-x^2}} (x^2 + y^2) dy dx.$	10	К3	CO5
12	Evaluate by changing into polar co-ordinates the integra $\int_0^a \int_y^a \frac{x^2}{\sqrt{x^2+y^2}} dx dy$	10	К3	CO5
13	Find the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, using double integration.	10	К3	CO5
14	Find the area bounded by the curves $y = x^2$ and $x + y = 2$	10	К3	CO5
15	Find using double integration the area of the cardioid $r = a(1 + cos\theta)$	10	К3	CO5
16	Find the area of a circle of radius a by double integration.	10	К3	CO5
17	Evaluate $\int_0^{log2} \int_0^x \int_0^{x+y} e^{x+y+z} dx dy dz$	10	К3	CO5
18		10	К3	CO5
19	Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} dx dy dz$. Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{dz dy dx}{\sqrt{a^{2}-x^{2}-y^{2}-z^{2}}}$.	10	К3	CO5
20	Find by triple integral the volume of tetrahedron bounded by the planes by $x = 0, y = 0, z = 0$ and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$	10	K3	CO5
21	Find the volume of that portion of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ which lies in the first octant.	10	К3	CO5
22	Find the volume of sphere $x^2 + y^2 + z^2 = a^2$ using triple integrals.	10	K3	CO5
23	Evaluate $\iiint_V \frac{dzdydx}{(x+y+z+1)^3}$ where V is the region bounded by	10	К3	CO5
<u></u>	x = 0, y = 0, z = 0 and x + y + z = 1.			

${\bf 24BSMA101\text{-}MATRICES\ AND\ CALCULUS\ _\ QB_Module\text{-}5}$

24	Evaluate $\iiint_V xyzdxdydz$ over the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$ by transforming into spherical coordinates.	10	К3	CO5
25	By transforming into cylindrical coordinates, evaluate the integral $\iiint (x^2 + y^2 + z^2) dx dy dz \text{ taken over the region of space defined by } $ $x^2 + y^2 \le 1 \text{ and } 0 \le z \le 1.$	10	К3	CO5
26	Change to spherical polar coordinates and hence evaluate $\iiint_V \frac{dxdydz}{x^2+y^2+z^2}$ where V is the volume of the sphere $x^2+y^2+z^2=a^2$.	10	К3	CO5
27	Evaluate $\iiint \sqrt{1-x^2-y^2-z^2} dx dy dz$, taken throughout the volume of the sphere $x^2+y^2+z^2=1$ by transforming to spherical polar coordinates.	10	К3	CO5