

TD5 - LAAS avril 2023

Exercice 1:

 $\mathbf{Q} \ \mathbf{1}$. Construisez l'automate $\mathrm{LR}(0)$ de la grammaire G_1 :

$$A \rightarrow aAb \mid c$$

La grammaire est-elle LR(0)?

(construisez l'automate LR(0) puis la table « Action »).

\mathbf{Q} 2. Mêmes questions pour G_2 :

$$\underline{A} \rightarrow aAb \mid \varepsilon$$

Q 3.

- 1. Calculez Suiv(A) (grammaire G_2)
- 2. Pour construire la table action LR(0), quand un état i contient une règle $V \to w \bullet$ on ajoute une action Reduce pour **toutes** les lettres terminales et pour #.

Nous allons procéder autrement en ajoutant une action Reduce **uniquement** pour les lettres de Suiv(V).

En quoi cela change-t-il la table Action de la question précédente ? NB : cette façon de procéder s'appelle l'analyse SLR(1).

3. Avec cette nouvelle table Action, retracez le déroulement de l'algorithme d'analyse ascendante du mot *aabb*.

$Suiv(A) = \{b, \#\}.$								
En a	ppliquant	le	principe	SLR(1)	les	conflits	précédents	disparaissent.
SLR1	0	1	2	3		4		
a	[S] 2		[S] 2					
b	[R] $A \rightarrow$	ε	$ [R] A \rightarrow \epsilon$	$\varepsilon \mid [S] 4$		$\rightarrow a A b$		
#	$[R] A \rightarrow$	$\varepsilon \mid [A]$	$\mid [R] A \rightarrow \epsilon$	ε	[R] A	$\rightarrow a A b$		
A	1		3					
état init		~>	0		.ba#			
décalage		~→	0 2	a	.bb#			
décalage		~→	0 2 2		bb#			
réductio	n	~ →	0 2 2 3		bb#			
décalage		~→	0 2 2 3 4	4	b#			
réductio	n	~→	0 2 3		b#			
décalage		~→	0 2 3 4		#			
réduction		~ →	0 1		#			
Mot acc	epté							

 \mathbb{Q} 4 . Nettoyez la grammaire G_2 . On appellera G_3 la grammaire obtenue. Notez que le langage engendré par G_3 ne contient plus le mot vide. G_3 est-elle LR(0)?

Exercice 2:

On considère la grammaire G_1 suivante d'axiome E :

 $\mathbf{Q} \ \mathbf{1}$. Construire l'automate LR(0) correspondant.

Q 2.

- Pourquoi cette grammaire n'est-elle pas LR(0)?
- Est-elle SLR(1)?

Indication : ne pas construire la table Action complète!

Non LR(0) car confilts shift/reduce dans l'état $2 = \delta(0, T)$ et 12 pour la lettre * Les conflits disparaissent en SLR(1) car Suiv(E) ne contient pas * Suivants: {'E': {')', '+', '#'}, 'T': {'#', '+', ')', '*'}, 'F': {'#', '+', ')', '*'} La table complète est ... grande : SLR1 0 1 12[S] 5 [S] 5 [S] 5 [S] 5 $\begin{array}{c} [R] \ T \to F \\ [R] \ T \to F \\ [R] \ T \to F \end{array}$ $[R] \to T$ $[R] \to E + T$ [S] 13 $\begin{array}{c}
[S] \ 8 \\
[R] \ E \to T
\end{array}$ [S] 4 [S] 4 [S] 4 [S] 4 [S] 4 [S] 8 $[R] E \to E + T$ [S] 7 [S] 7 [S] 6 [S] 6 [S] 6 [S] 6 $[R] \to T$ $[R] T \rightarrow F$ $[R] \to E + T$ [A] $[R] F \rightarrow i$ 11 $\frac{10}{3}$ 3

\mathbf{Q} 3. Cette grammaire est-elle LL(1)?

Non car elle est récursive gauche.

Q 4. Cette grammaire est-elle non ambiguë?

Elle est SLR(1) donc n'est pas ambigüe.

On remplace la règle $F \longrightarrow *F$ de la grammaire G_1 par la règle $F \longrightarrow F*$, ce qui fournit une grammaire G_2 .

Q 5. Montrer que la grammaire G_2 n'est pas SLR(1).

Indication : Calculer les ensembles « Suivant ». Calculer l'état 0 de l'automate LR(0), puis l'état $\delta(0,F)$.