(b) In accordance with 620.13(D), for six elevators, the total conductor ampacity is the sum of all the currents.

$6 \text{ elevators} \times 133 \text{ A} = 798 \text{ A}$

- (c) In accordance with 620.14 and Table 620.14, the conductor (feeder) ampacity would be permitted to be reduced by the use of a demand factor. Constant loads are not included (*see 620.13*, *Informational Note No. 2*). For six elevators, the demand factor is 0.79. The feeder diverse ampacity is, therefore, $0.79 \times 798 \text{ A} = 630 \text{ A}$.
- (d) In accordance with 430.24 and 215.3, the controller continuous current is $125\% \times 10$ A = 13 A.
- (e) The total feeder ampacity is the sum of the diverse current and all the controller constant current.

$$I_{\text{total}} = 630 \text{ A} + (6 \text{ elevators} \times 12.5 \text{ A}) = 705 \text{ A}$$

(f) This ampacity would be permitted to be used to select the wire size.

See Figure D10.

Example D11 Mobile Home (see 550.18)

A mobile home floor is 70 ft by 10 ft and has two small appliance circuits; a 1000-VA, 240-V heater; a 200-VA, 120-V exhaust fan; a 400-VA, 120-V dishwasher; and a 7000-VA electric range.

FIGURE D10 Adjustable Speed Drive Control.

Lighting and Small-Appliance Load

Lighting (70 ft \times 10 ft \times 3 VA per ft ²)	2,100 VA
Small-appliance (1500 VA × 2 circuits)	3,000 VA
Laundry (1500 VA × 1 circuit)	1,500 VA
Subtotal	6,600 VA
First 3000 VA at 100%	3,000 VA
Remainder (6600 VA – 3000 VA = 3600 VA) \times 35%	1,260 VA
Total	4,260 VA

 $4260 \text{ VA} \div 240 \text{ V} = 17.75 \text{ A per leg}$

Amperes per Leg	Leg A	Leg B
Lighting and appliances	18	18
Heater (1000 VA ÷ 240 V)	4	4
Fan $(200 \text{ VA} \times 125\% \div 120 \text{ V})$	2	
Dishwasher (400 VA ÷ 120 V)		3
Range (7000 VA \times 0.8 \div 240 V)	23	23
Total amperes per leg	47	48

Based on the higher current calculated for either leg, a minimum 50-A supply cord would be required.

For SI units, $0.093 \text{ m}^2 = 1 \text{ ft}^2 \text{ and } 0.3048 \text{ m} = 1 \text{ ft}.$

Example D12 Park Trailer (see 552.47)

A park trailer floor is 40 ft by 10 ft and has two small appliance circuits, a 1000-VA, 240-V heater, a 200-VA, 120-V exhaust fan, a 400-VA, 120-V dishwasher, and a 7000-VA electric range.

Lighting and Small-Appliance Load

I	Lighting (40 ft \times 10 ft \times 3 VA per ft ²)		1,200 VA
5	Small-appliance (1500 VA \times 2 circuits)		3,000 VA
I	Laundry (1500 VA × 1 circuit)		1,500 VA
	Sul	btotal	5,700 VA
I	First 3000 VA at 100%		3,000 VA
I	Remainder (5700 VA – 3000 VA = 2700 VA) \times 35	5%	945 VA
		Total	3,945 VA

 $3945 \text{ VA} \div 240 \text{ V} = 16.44 \text{ A per leg}$

Amperes per Leg	Leg A	Leg B
Lighting and appliances	16	16
Heater (1000 VA ÷ 240 V)	4	4
Fan $(200 \text{ VA} \times 125\% \div 120 \text{ V})$	2	
Dishwasher (400 VA ÷ 120 V)		3
Range (7000 VA \times 0.8 \div 240 V)	23	23
Tota	ls 45	46

Based on the higher current calculated for either leg, a minimum 50-A supply cord would be required.

For SI units, $0.093 \text{ m}^2 = 1 \text{ ft}^2 \text{ and } 0.3048 \text{ m} = 1 \text{ ft}.$

Example D13 Cable Tray Calculations

(see Article 392)

D.13(a) Multiconductor Cables 4/0 AWG and Larger

Use: *NEC*392.22(A)(1)(a)