Экзамен по алгебре и геометрии

Титилин Александр

Ананлитическая Геометрия

1 Геометрические векторы.

Определение 1. Вектор – направленный отрзок, который характеризуется длиной и направлением. \overline{AB} – вектор, A – начало (точка приложения), B – конец. |AB| – Длина вектра

Определение 2. Векторы коллинеарны $(\overline{a} \parallel \overline{b})$, если L – прямая, $\overline{a} \parallel L \wedge \overline{b} \parallel L$

Определение 3. a_0 орт вектора \overline{a} , если $\overline{a_0}$ сонаправлен $\overline{a} \wedge |\overline{a_0} = 1$

Определение 4. $\overline{a} = \overline{b} := |a| = |b| \wedge a \parallel b \wedge a$ сонаправлен b.

Определение 5. Суммой \overline{a} и \overline{b} называют вектор, идущий из начала \overline{a} в конец \overline{b} , если b приложен κ концу \overline{a}

Определение 6. Произведение вектора на число – вектор, коллинеарный исходногому и имеющий его длину умноженную на число

Теорема 1. 1. $\overline{a} + \overline{b} = \overline{b} + \overline{a}$

2.
$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c})$$

3.
$$\exists ! \overline{0} : \overline{a} + \overline{0} = \overline{a}$$

4.
$$\forall \overline{a} \exists - \overline{a} : \overline{a} + (-\overline{a}) = \overline{0}$$

5.
$$\alpha(\beta \overline{a}) = (\alpha \beta) \overline{a}$$

6.
$$(\alpha + \beta)\overline{a} = \alpha \overline{a} + \beta \overline{a}$$

2 Линейная зависимость векторов.

Определение 7. Набор векторов $a_1, a_2, a_3, \ldots, a_n$ называется линейно зависимым, если существует набор чисел, где хоть одно не равно 0 и $\alpha_1 a_1 + \alpha_2 a_2 + \ldots \alpha_n a_n = 0$

Теорема 2. 1. $\overline{0}$ -линейно зависимый

- $2. \ a_1, \ldots, 0, \ldots, a_n$ линейно зависимый
- $3. \ a_1, \ldots, a_i$ линейно зависимый, $a_1, \ldots a_i, \ldots a_n$ линейно зависимый.
- 4. $a_1,\ldots,a_i,\ldots,a_n$ линейно зависимый $\iff a_i=\sum_{j\neq i}a_i$

Доказательство. 1. $1 * \overline{0} = \overline{0}$

2.
$$0a_1 + \dots + 1 * \overline{0} + \dots + 0 * \overline{a_n} = 0$$

3.
$$\exists \alpha_1 \dots \alpha_i \sum \alpha_j a = 0 \ \alpha_1 a_1 + \dots \alpha_i a_i + \dots 0 * a_n = 0$$

3 Линейная зависимость трех и четырех векторов в плоскости и пространстве.

Теорема 3. $\overline{a}, \overline{b}$ линейно зависимые $\iff \overline{a} \parallel \overline{b}$

Доказательство.
$$\to \alpha \overline{a} + \beta \overline{b} = \overline{0}$$
. Пусть $\beta \neq 0 \implies \overline{b} = (-\frac{\alpha}{\beta})\overline{a} \implies a \parallel b$ $\leftarrow \overline{b} = \lambda \overline{a} \implies \overline{b} - \lambda \overline{a} = \overline{0}$

Теорема 4. $\bar{a}, \bar{b}, \bar{c}$ линейно зависимые $\iff \bar{a}, \bar{b}, \bar{c} \parallel \Pi$

 \mathcal{A} оказательство. \rightarrow . $\alpha \overline{a} + \beta \overline{b} + \gamma \overline{c} \gamma \neq 0 \implies \overline{c} = -\frac{\alpha}{\gamma} \overline{a} - \frac{\beta}{\gamma} \overline{b}$. Векторы лежат в одной плоскости.

 \to . Если одна из пар коллинеарна, то она линейно зависимая, и мы можем просто оставшийся вектор на 0 умножить. Иначе переносим все прямые на одну плоскоскость в одну точку. Через конец вектора с проводим прямые паралельные а и b. Эти прямые пересекают $\nu \overline{a}$ и $\mu \overline{b}$. $\overline{c} = \nu \overline{a} + \mu \overline{b}$

Теорема 5. Любые четыре вектора линейно зависимы.

Доказательство. Если 3 вектора компланарны, то все понятно. \Box

4 Проекция вектора на ось.

Определение 8. u – ось (направленная прямая), $\vec{a} = \vec{AB}$, A'B' основания перпендикуляров, опущенных на $A, B. \pm |A'B'|$ – проекция \vec{a} на u. Знак зависит от направления вектора. Если он сонаправлен с осью, то плюс иначе минус.

Теорема 6. Проекция вектора \vec{a} на ось и равна $|\vec{a}|*\cos\phi$, где ϕ угол наклона вектора κ ocu.

Теорема 7.
$$Pr_u(\vec{a} + \vec{b}) = Pr_u\vec{a} + Pr_u\vec{b}$$

 $Pr_u(\alpha \vec{a}) = \alpha Pr_u\vec{a}$

5 Базис аффиные координаты

Определение 9 (базис в пространстве). $\bar{a}, \bar{b}, \bar{c}$ линейно независимы. Они образует базис если $\forall \overline{d} \exists \lambda, \mu, \nu : \overline{d} = \lambda \overline{a} + \mu \overline{b} + \nu \overline{c}$

Определение 10 (базис на плоскости). \vec{a}, \vec{b} линейно независимы, они образуют базис если $\forall \vec{c} : \exists \lambda, \nu \ \vec{c} = \lambda \vec{a} + \nu \vec{b}$

Теорема 8. Любые три линейно-независимые вектора однозначно раскладываются по базису относительно четвертого.

Доказательство. $\vec{d} = \lambda \vec{a} + \nu \vec{b} + \mu \vec{c} \wedge \vec{d} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} (\lambda - \alpha) \vec{a} + (\nu - \beta) \vec{b} + (\mu - \gamma) \vec{c} = \vec{0}$. Векторы линейно независимые $\lambda = \alpha, \mu = \beta, \nu = \gamma$

Теорема 9. При сложение двух векторов их координаты относительно одного базиса складываются. При умножении на число умножаются на это число.

Доказательство.

$$\vec{d_1} = \alpha_1 \vec{a} + \beta_1 \vec{b} + \gamma_1 \vec{c}.$$

$$\vec{d_2} = \alpha_2 \vec{a} + \beta_2 \vec{b} + \gamma \vec{c}.$$

$$\vec{d_1} + \vec{d_2} = (\alpha_1 + \alpha_2) \vec{a} + (\beta_1 + \beta_2) \vec{b} + (\gamma_1 + \gamma_2) \vec{c}.$$

$$\lambda \vec{d_1} = (\lambda \alpha_1) \vec{a} + (\lambda \beta_1) \vec{b} + (\lambda \gamma_1) \vec{c}.$$

Определение 11. Аффиные координаты задаются базисом $\vec{a}, \vec{b}, \vec{c}$ и точкой O (началом координат)

Определение 12 (Декартовы координаты). $\vec{i}, \vec{j}, \vec{k}$ – взаимно ортогональные векторы длины 1. Разложение по такому базису – декартовы координаты

Теорема 10. Декартовы координаты вектора \vec{d} равны его проекциям на оси OxOyOz

Теорема 11. α, β, γ углы наклона вектора \vec{d} к осям Ox, Oy, Oz

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.$$

Доказательство.

$$\vec{d} = \{X, Y, Z\}.$$

$$X = |\vec{d}| \cos \alpha.$$

$$\cos \alpha = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}}.$$

$$\cos \beta = \frac{Y}{\sqrt{X^2 + Y^2 + Z^2}}.$$

$$\cos \gamma = \frac{Z}{\sqrt{X^2 + Y^2 + Z^2}}.$$

Каждую из этих хреней в квадрат возводим и складываем теорема доказана.

Определение 13. M делит отрезок M_1M_2 в отношении λ , если $\vec{M_1M} = \lambda \vec{MM_2}$

$$M = (x, y, z).$$

$$M_1 = (x_1, y_1, z_1).$$

$$M_2 = (x_2, y_2, z_2).$$

$$\{x_1 - x, y_1 - y, z_1 - z\} = \lambda \{x_2 - x, y_2 - z, z_2 - z\}.$$

6 Скалярное произведение

Определение 14. $(\vec{a}, \vec{b}) = |\vec{a}| * |\vec{b}| \cos{(\vec{a}, \vec{b})} - cкалярное произведение векторов <math>\vec{a}, \vec{b}$. Так же выражается через проекции.

$$|\vec{b}|\cos(\vec{a}, \vec{b}) = Pr_a \vec{b} \implies (\vec{a}, \vec{b}) = |\vec{a}|Pr_a \vec{b}.$$

$$|\vec{a}|\cos(\vec{a}, \vec{b}) = Pr_b \vec{a} \implies (\vec{a}, \vec{b}) = |\vec{b}|Pr_b \vec{a}.$$

Теорема 12. $\vec{a} \perp \vec{b} \iff (\vec{a}, \vec{b}) = 0$

Доказательство.
$$\rightarrow$$
. $\cos(\vec{a}, \vec{b}) = 0 \implies (\vec{a}, \vec{b}) = 0$
 \leftarrow . $(\vec{a}, \vec{b}) = 0 \implies |a| = 0 \lor |b| = 0 \lor \cos(\vec{a}, \vec{b}) = 0$.

Теорема 13. Если угол между векторами меньше $\frac{\pi}{2}$ скалярное произведение больше нуля. Иначе оно меньше нуля.

6.1 Алгебраические свойства.

Теорема 14. 1. $(\vec{a}, \vec{b}) = (\vec{b}, \vec{a})$

2.
$$(\vec{a} + \vec{b}, \vec{c}) = (\vec{a}, \vec{c}) + (\vec{b}, \vec{c})$$

3.
$$(\alpha \vec{a}, \vec{b}) = \alpha(\vec{a}, \vec{b})$$

4.
$$(\vec{a}, \vec{a}) > 0$$
 если $a \neq 0$, $(\vec{a}, \vec{a}) = 0$, если $\vec{a} = 0$

Доказательство. 1. очев

2.
$$(\vec{a} + \vec{b}, \vec{c}) = |c|Pr_c(\vec{a} + \vec{b}) = |c|Pr_c\vec{a} + |c|Pr_c\vec{b} = (\vec{a}, \vec{c}) + (\vec{b}, \vec{c})$$

3.
$$(\alpha \vec{a}, \vec{b}) = |b| Pr_b(\alpha a) = \alpha |b| Pr_{\vec{b}}(\vec{a}) = \alpha(\vec{a}, \vec{b})$$

4.
$$(\vec{a}, \vec{a}) = |a|^2$$

6.2 Скалярное произведение в координатах

Теорема 15.

$$\vec{a} = \{x_1, y_1, z_1\}.$$

$$\vec{b} = \{x_2, y_2, z_2\}.$$

$$(\vec{a}, \vec{b}) = x_1 x_2 + y_1 y_2 + z_1 z_2.$$

Доказательство.

$$\vec{a} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}.$$

$$\vec{b} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}.$$

У одинаковых ортов скалярное произведение равно 1, у разных 0.

6.3 Угол между векторами

$$\cos(\vec{a}, \vec{b}) = \frac{(\vec{a}, \vec{b})}{|\vec{a}||\vec{b}|} = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \sqrt{x_2^2 + y_2^2 + z_2^2}}.$$

7 Ортогональость векторов

$$\vec{a} \perp \vec{b} \iff (\vec{a}, \vec{b}) = 0 \implies x_1 x_2 + y_1 y_2 + z_1 z_2 = 0.$$

8 Векторное произведение

Назовем упорядоченную тройку векторов $\vec{a}, \vec{b}, \vec{c}$ правой, если с конца \vec{c} кратчайщий поворот от \vec{a} к \vec{b} виден наблюдателю против часовой стрелки

Определение 15 (Векторное произведение). $\vec{c} = [\vec{a}, \vec{b}]$ является векторным произведением $\vec{a}, \vec{b}, \ ecnu$

- 1. $|\vec{c}| = |\vec{a}||\vec{b}|\sin(\vec{a}, \vec{b})$
- 2. $c \perp a, c \perp b$
- 3. $\vec{a}, \vec{b}, \vec{c}$ правая тройка

8.1 Геометрические свойства

Теорема 16. 1. $\vec{a} \parallel \vec{b} \iff [\vec{a}, \vec{b}] = 0$

2. $[\vec{a}\vec{b}]$ равен площади паралеллограмма, со сторонами a,b

Доказательство. 1. $\rightarrow \sin{(\vec{a}, \vec{b})} = 0$ $\leftarrow |a| = 0 \lor |b| = 0 \lor \sin{(\vec{a}, \vec{b})} = 0$

2. Формула из школы

8.2 Алгебраические свойства

Теорема 17. 1. $[\vec{b}, \vec{a}] = -[\vec{a}, \vec{b}]$

- 2. $\left[\alpha \vec{a}, \vec{b}\right] = \alpha \left[\vec{a}, \vec{b}\right]$
- 3. $[\vec{a} + \vec{b}, \vec{c}] = [\vec{a}, \vec{c}] + [\vec{b}, \vec{c}]$
- 4. $\forall \vec{a}, [\vec{a}, \vec{a}] = 0$

Доказательство.

8.3 Векторное произведение в координатах

$$\vec{a} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}.$$

$$\vec{b} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}.$$

 $[\vec{a}, \vec{b}] = x_1 x_2 [\vec{i}, \vec{i}] + x_1 y_2 [\vec{i}, \vec{j}] + x_1 z_2 [\vec{i}, \vec{k}] + y_1 x_2 [\vec{j}, \vec{i}] + y_1 y_2 [\vec{j}, \vec{j}] + y_1 z_2 [\vec{j}, \vec{k}] + z_1 x_2 [\vec{k}, \vec{i}] + z_1 y_2 [\vec{k}, \vec{j}] + z_1 z_2 [\vec{k}, \vec{k}].$ $= (y_1 z_2 - z_1 y_2) \vec{i} - (x_1 z_2 - z_1 x_2) \vec{j} + (x_1 y_2 - y_1 x_2) \vec{k} = .$

$$\begin{vmatrix} i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}.$$

8.4 Условие коллинеарности векторов

$$a \parallel \vec{b} \iff [\vec{a}, \vec{b}] = 0 \implies$$

$$y_1 z_2 - z_1 y_2 = 0.$$

$$x_1 z_2 - z_1 x_2 = 0.$$

$$x_1y_2 - y_1x_2 = 0.$$

9 Смешанное произведение векторов