1 Задание 1

- 1. Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер зависимости наблюдаемой переменной Y от ковариаты X.
 - а) Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_1 и масштаба β_2 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.

ИДЗ4 Стат. Вариант 30

- b) Сформулировать полиномиальную модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость. Оценить визуально соответствие полученных данных и построенной оценки.
- с) На базе ошибок полиномиальной модели построить гистограмму. Проверить значимость отклонения от нормального распределения по χ^2 . Визуально оценить данный факт.
- d) В предположении нормальности построить частные и совместные доверительные интервалы для параметров β_2 и β_3 уровня доверия $1-\alpha$.
- е) Сформулировать гипотезы линейности зависимости и независимости наблюдаемой переменной Y от ковариаты X. Провести проверку значимости.
- f) С использованием AIC и BIC выбрать наилучшую модель.
- у) Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha = 0.20$; h = 0.94.

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	7.70	8.65	8.87	8.90	7.74	8.01	9.86	8.60	9.87	7.08	8.31	10.28	9.54	9.48	10.08	8.95	8.38
X	3	2	5	3	3	4	5	4	2	4	5	2	1	2	4	2	4
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	7.59	9.42	8.77	8.36	9.80	9.69	8.99	7.52	8.73	9.58	8.95	6.74	8.18	7.53	7.36	7.26	6.66
X	4	3	3	2	4	3	3	4	3	2	5	3	2	3	3	4	5
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	8.04	8.03	7.42	8.48	8.33	8.71	10.73	6.65	7.27	8.78	10.33	8.68	7.94	8.83	9.61	7.09	
X	3	3	3	5	6	6	4	3	3	4	4	4	4	1	3	5	

1.1 Задание А

На рис. 1.1 изображен график результатов линейной модели с исходными данными.

Полученная оценка:

$$\hat{\beta}_1 = 9.0116707, \quad \hat{\beta}_2 = -0.1408926.$$

1.2 Задание В

На рис. 1.2 изображен полиномиальная модель в сравнении с линейной моделью.

Полученные оценки полиномиальной модели:

$$\hat{\beta}_1 = 10.1505353, \quad \hat{\beta}_2 = -0.8704798, \quad \hat{\beta}_3 = 0.1041729.$$

1.3 Задание С

Упорядоченные остатки полиномиальной модели:

1	2	3	4	5	6
-0.77665193	-0.17626731	0.46754157	0.42334807	-0.73665193	-0.32538230
7	8	9	10	11	12
1.45754157	0.26461770	1.04373269	-1.25538230	-0.09245843	1.45373269
13	14	15	16	17	18
0.15577156	0.65373269	1.74461770	0.12373269	0.04461770	-0.74538230
19	20	21	22	23	24
0.94334807	0.29334807	-0.46626731	1.46461770	1.21334807	0.51334807
25	26	27	28	29	30
-0.81538230	0.25334807	0.75373269	0.54754157	-1.73665193	-0.64626731

32 33 34 35 -0.94665193 -1.11665193 -1.07538230 -1.74245843 -0.43665193 -0.4466519337 38 39 40 41 42 -1.05665193 0.07754157 -0.34788032 0.03211968 2.39461770 -1.82665193 43 45 -1.20665193 0.44461770 49 50 1.13334807 -1.31245843

Для остатков полиномиальной модели была построена гистограмма с шагом h=1.5, она изображена на рис. 1.3. Красной линией обозначен график плотности нормального распределения $N(0,s^2)$.

Ниже приведен фрагмент, показывающий информацию о приведенной выше гистограмме.

- > h\$breaks
 [1] -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
 > h\$counts
- [1] 3 6 7 8 12 5 6 2 1

С помощью программной нелинейной оптимизации был вычислен минимум статистики X^2 . Полученное значение $X^2_{min}=0.3941346$.

В данном случае количество интервалов равно 6, гипотеза является сложной и имеет размерность параметра 1. При выполнении гипотезы нормальности статистика X^2 должно иметь распределение χ^2_{6-1-1} .

Статистика хи-квадрат: -84.49288. Критическое значение (alpha=0.2): 5.988617. Не отвергаем H0: остатки нормальны (на уровне значимости 0.2).

1.4 Задание D

Доверительные интервалы:

$$-1.65844087 < \beta_2 < -0.08251865$$
$$-0.00589722 < \beta_3 < 0.21424297$$

1.5 Задание Е

```
Model 1: Y ~ X
Model 2: Y ~ I(X) + I(X^2)
```

	Res.Df	RSS	Df	Sum of So	Į F	Pr(>F)
2	47	49.098	1	1.5809	1.5134	0.2248
21	47	49.098	2	2.8974	1.3868	0.2599

1. Проверка линейности зависимости

Гипотезы:

- H_0 : Модель $Y \sim X$ (линейная) адекватна
- H_1 : Модель $Y \sim X + X^2$ (квадратичная) лучше

Результаты:

- F = 1.5134
- Критическое значение $F_{1,47,0.8} \approx 1.6658$
- p-значение = 0.2248

Вывод: Поскольку $F = 1.5134 < F_{1,47,0.8} \approx 1.689545$ (и p > 0.2), не отвергаем H_0 . \Rightarrow Нет статистически значимых оснований включать квадратичный член.

2. Проверка значимости ковариаты X

Гипотезы:

- H_0 : Модель без предиктора $(Y \sim 1)$ адекватна
- H_1 : Модель с X лучше (линейная или квадратичная)

Результаты:

- F = 1.3868
- Критическое значение $F_{2,47,0.8} \approx 1.6658$
- p-значение = 0.2599

Вывод: Поскольку $F=1.3868 < F_{2,47,0.8} \approx 1.66583$ (и p>0.2), **не отвергаем** H_0 . \Rightarrow Ковариата X не оказывает значимого влияния.

Общий вывод

- 1. Линейная модель $Y \sim X$ адекватна (квадратичный член не требуется)
- 2. Ковариата X не является статистически значимой
- 3. При $\alpha = 0.2$ ни одна из альтернативных гипотез не подтвердилась

1.6 Задание F

АІС для не зависящей от х модели: 147.8505

АІС для линейной модели: 148.5682

АІС для квадратичной модели: 148.9837

ВІС для не зависящей от х модели: 151.6746

ВІС для линейной модели: 154.3043

ВІС для квадратичной модели: 156.6318

Лучшей моделью по критерию Акайке оказалась модель (3), в которой y не зависит от ковариаты. Аналогично по Байесовскому критерию.

2 Задание 2

Рис. 1: Исходные данные задания 2

2.1 Задание А

В исходных данных есть два фактора A и B с количеством уровней $d_1 = 5$ и $d_2 = 2$ соответственно. В качестве взвешивания по обоим факторам возьмем первый базовый уровень (то есть веса нулевые для всех значений факторов, кроме первого). Модель двухфакторного анализа выглядит следующим образом:

$$E(Y|A=a_i,B=b_j)=\eta_{ij}=\mu+\alpha_i^{(1)}+\alpha_j^{(2)}+\alpha_{ij}^{(12)},$$
 где $i=1,2,3,4,5,\ j=1,2,$ ограничения: $\alpha_1^{(1)}=0,\ \alpha_1^{(2)}=0,\ \alpha_{i1}^{(12)}=a_{1j}^{(12)}=0$ для любых

допустимых i и j и $\mu = \eta_{11}$.

Таким образом у модели 10 свободных параметров: μ , $\alpha_2^{(1)}$, $\alpha_3^{(1)}$, $\alpha_4^{(1)}$, $\alpha_5^{(1)}$, $\alpha_2^{(2)}$, $\alpha_{32}^{(12)}$, $\alpha_{42}^{(12)}$, $\alpha_{52}^{(12)}$.

Найдем оценки параметров с помощью метода наименьших квадратов:

μ	$\alpha_2^{(1)}$	$\alpha_3^{(1)}$	$\alpha_4^{(1)}$	$\alpha_5^{(1)}$	$\alpha_2^{(2)}$	$\alpha_{22}^{(12)}$	$\alpha_{32}^{(12)}$	$\alpha_{42}^{(12)}$	$\alpha_{52}^{(12)}$
19.136	0.534	-2.838	-2.436	-2.032	-0.332	1.866	1.002	-0.058	0.482

В данной модели ранг регрессора r=10, размер выборки n=50, тогда оценка дисперсии вычисляется следующим образом: $s^2=SSe/(n-r)=SSe/40$.

Вычисленные значения:

$$SSe = 14.43896, \quad s^2 = 0.360974.$$

2.2 Задание В

Предположение аддитивности $H_{(12)}$ формулируется следующим образом:

$$H_{12}: a_{ij}^{(12)} = 0$$
 для всех $i, j.$ (1)

Проверим визуально, согласуются ли данные с этой гипотезой. Для этого построим η_{ij} от i для каждого фиксированного уровня j. Если выполнена $H_{(12)}$, то все графики для различных уровней j должны получаться вертикальным сдвигом одного графика.

На рисунке видно, что графики схожи, однако не являются вертикальными сдвигами одного графика. Можно сделать вывод об отсутствии аддитивности факторов.

2.3 Задание С

Рис. 2: Значение ошибок модели

Для этих значений было проведена аналогичная проверка согласованности с нормальным распределением с помощью критерия χ^2 . Для этого остатки были разбиты на 10 групп по 5 штук, была выполнения минимизация статистики X^2 , оптимальное полученное значение $X_{min}^2=5.525553$.

При выполнении гипотезы статистика распределена по распределению χ^2 с 10-2-1=7 степенями свободы, P-значение у гипотезы согласования PV=0.355152. Таким образом отвергнуть гипотезу о нормальности можно только при уровне значимости больше 0.355152.

На рис. 3 изображена гистограмма с шагом h=0.61. Красной линией изображена плотности нормального распределения $N(0,s^2)$.

Рис. 3: Гистограмма ошибок

Можно наблюдать некоторое сходство гистограммы с нормальным распределением, однако нельзя говорить о полном сходстве с графиком.

2.4 Задание D

В рамках проведения двухфакторного дисперсионного анализа проверим выполнение следующих гипотез:

- Отсутствие взаимодействия факторов $H_{(12)}: \alpha_{ij}^{(12)} = 0$, где $i=1,\cdots,d_1, j=1,\cdots,d_2;$
- Отсутствие влияния фактора A на результат (при выполнении H_{12}) $H_{(1)}:\alpha_i^{(1)}=\alpha_{ij}^{(12)}=0,$ где $i=1,\cdots,d_1;$
- Отсутствие влияния фактора B на результат (при выполнении H_{12}) $H_{(2)}:\alpha_j^{(2)}=\alpha_{ij}^{(12)}=0 \ ,$ где $j=1,\cdots,d_2;$
- ullet Отсутствие влияния факторов (при выполнении H_{12},H_1,H_2) $H_{(0)}: lpha_i^{(1)}=lpha_j^{(2)}=lpha_{ij}^{(12)}=0,$ где $i=1,\cdots,d_1,j=1,\cdots,d_2.$

Для проверки гипотез будем использовать F-статистику:

$$F = \frac{SS_H/q}{SS_e/(n-r)},$$

где SS_H — сумма квадратов ошибок для модели, полученной при выполнении гипотезы, q — размерности оценивания в гипотезе, SS_e — сумма квадратов ошибок в исходной модели, n — размер выборки, r — ранг матрицы регрессора.

Эта статистика при выполненной гипотезе имеет распределение Фишера-Снедекора со степенями свободы $q,\,n-r.$

Для гипотезы $H_{(12)}$ значение $q=(d_1-1)(d_2-1)=4$, для $H_{(1)}$ $q=d_2(d_1-1)=8$, для $H_{(2)}$ $q=d_1(d_2-1)=5$, для $H_{(0)}$ $q=d_1d_2-1=9$. Значение r для всех гипотез будет равно $d_1d_2=10$, таким образом n-r=40. В задании A было вычислено значение $SS_e=14.43896$.

Рис. 4: Данные дисперсионного анализа

2.5 Задание Е

Рис. 5: Сравнение моделей $H_{(12)}, H_{(1)}, H_{(2)}, H_{(0)}$

По критерию Акайке лучшей является аддитивная модель, что можно быыло угадать из значений F-статистики. Однако по Байессовскому критерию лучшей является $H_{(2)}$, но аддитивная тоже близка по значению критерия.

Тем не менее исходная модель имеет значение AIC=101.7892 и BIC=122.8215, так что, несмотря на то, что она сложнее остальных моделей, она является предпочтительной и по информационным критериям.

aicbic12.png

Рис. 6: Информационные критерии для исходной модели