Dynamic Pickup and Delivery with Transfers

P. Bouros¹, D. Sacharidis², T. Dalamagas², T. Sellis^{1,2}
¹NTUA, ²IMIS – RC "Athena"

Outline

- Introduction
- Related work
 - Pickup and delivery problems
 - Shortest path problems
- Solving dynamic Pickup and Delivery with Transfers
 - Actions
 - Dynamic plan graph
 - ▶ The SP algorithm
- Experimental evaluation
- Conclusions and Future work

Motivation example

- A courier company offering pickup and delivery services
- Static plan
 - Set of requests
 - Transfers between vehicles
 - Collection of vehicles routes
- Pickup and Delivery with Transfers
 - Create static plan
- Ad-hoc requests
 - Pickup package from n_s, deliver it at n_e
- dynamic Pickup and Delivery with Transfers (dPDPT)
 - Modify static plan to satisfy new request

Motivation example

- A courier company offering pickup and delivery services
- Static plan
 - Set of requests
 - Transfers between vehicles
 - Collection of vehicles routes
- Pickup and Delivery with Transfers
 - Create static plan
- Ad-hoc requests
 - Pickup package from n_s, deliver it at n_e
- dynamic Pickup and Delivery with Transfers (dPDPT)
 - Modify static plan to satisfy new request

Motivation example

- A courier company offering pickup and delivery services
- Static plan
 - Set of requests
 - Transfers between vehicles
 - Collection of vehicles routes
- Pickup and Delivery with Transfers
 - Create static plan
- Ad-hoc requests
 - Pickup package from n_s, deliver it at n_e
- dynamic Pickup and Delivery with Transfers (dPDPT)
 - Modify static plan to satisfy new request

Contributions

- First work targeting dPDPT
 - Works for dynamic Pickup and Delivery can be adapted to work with transfers
- dPDPT as a graph problem
 - Works for dynamic Pickup and Delivery involve two-phase local search method
- Cost metrics
 - Company's viewpoint, extra traveling or waiting time
 - Customer's viewpoint, delivery time
- Solution
 - Dynamic two-criterion shortest path

Related work

- Pickup and delivery problems
 - Precedence and pairing constraints
 - Variations
 - ▶ Time windows
 - Capacity constraint
 - ▶ Transfers
 - Static
 - Generalization of TSP
 - Exact solutions
 - □ Column generation, branch-and-cut
 - Approximation
 - □ Local search
 - Dynamic
 - ▶ Two phases, insertion heuristic and local search

Related work

- Pickup and delivery problems
 - Precedence and pairing constraints
 - Variations
 - ▶ Time windows
 - Capacity constraint
 - ▶ Transfers
 - Static
 - Generalization of TSP
 - Exact solutions
 - □ Column generation, branch-and-cut
 - Approximation
 - □ Local search
 - Dynamic
 - ▶ Two phases, insertion heuristic and local search

Related work (cont'd)

Shortest path problems

- Classic
 - Dijkstra, Bellman-Ford
 - ALT: bidirectional A*, graph embedding
 - Materialization and labeling techniques
- Multi-criteria SP
 - Reduction to single-criterion: user-defined preference function
 - Interaction with decision maker
 - Label-setting or correcting algorithms: a label for each path reaching a node
- Time-dependent SP
 - Cost from n_i to n_i depends on departure time from n_i
 - Dijkstra: consider earliest possible arrival time
 - ▶ FIFO, non-overtaking property

Related work (cont'd)

Shortest path problems

- Classic
 - Dijkstra, Bellman-Ford
 - ALT: bidirectional A*, graph embedding
 - Materialization and labeling techniques
- Multi-criteria SP
 - Reduction to single-criterion: user-defined preference function
 - Interaction with decision maker
 - Label-setting or correcting algorithms: a label for each path reaching a node
- Time-dependent SP
 - Cost from n_i to n_i depends on departure time from n_i
 - Dijkstra: consider earliest possible arrival time
 - ► FIFO, non-overtaking property

Solving dPDPT

- Modify static plan
 - 4 modifications, called actions, allowed with/without detours
 - Pickup, delivery
 - ▶ Transport
 - Transfer
- A sequence of actions, path p
 - Operational cost Op
 - Customer cost Cp
- Dynamic plan graph
 - All possible actions
- Solution to a dPDPT request
 - Path p with that primarily minimizes Op, secondarily Cp

Actions

Actions

Dynamic plan graph

The SP algorithm

- Shortest path on dynamic plan graph
- **BUT:**
 - Dynamic plan graph violates subpath optimality
 - Answer path $(V_s,...,V_i,...,V_e)$ to dPDPT (n_s,n_e) does not contain answer path $(V_s,...,V_i)$ to dPDPT (n_s,n_i)
 - Cannot adopt Dijkstra or Bellman-Ford
- The SP algorithm
 - Label-setting for two-criteria, Op and Cp
 - ightharpoonup A label $m < V_i^a, p, Op, Cp > for each path to <math>\rm V_i^a$
 - At each iteration select label with lowest combined cost
 - ▶ Compute candidate answer upper bound
 - When a delivery edge is found
 - Prune search space
 - ▶ Terminate search

- INITIALIZATION
- ► CONSIDER pickup E_{s1}^a and E_{s3}^b
- $Q = \{ \langle V_1^a, (V_s, V_1^a), 6, 16 \rangle, \\ \langle V_3^b, (V_s, V_3^b), 6, 36 \rangle \}$
- $P_{cand} = null$

- \blacktriangleright POP $<V_1^a, (V_s, V_1^a), 6, 16>$
- $Q = \{ \langle V_2^a, (V_s, V_1^a, V_2^a), \}$ $6,26>, <V_3^b, (V_s, V_3^b), 6,36>$
- $\triangleright p_{cand} = null$

- \triangleright POP <V₂^a, (V_s,V₁^a,V₂^a),
- ► CONSIDER transfer E₂₅ac
- \rightarrow Arr₅^c = 10 < 26 < Dep₅^c = 40
- Arr Q = {< V_3^b ,(V_5,V_3^b),6,36>, $\langle V_5^c, (V_5, V_1^a, V_2^a, V_5^c),$ 18,36>}
- $\triangleright p_{cand} = null$

- $V_{6}^{c} \longrightarrow V_{7}^{c} \longrightarrow V_{e}$ $V_{7}^{c} \longrightarrow V_{7}^{c} \longrightarrow V_{7$
 - ► CONSIDER transport E_{34}^{b} and transfer E_{46}^{bc}
 - \rightarrow 46 > $Dep_6^c = 40$
 - $Q = \{ \langle V_5^c, (V_s, V_1^a, V_2^a, V_5^c), \\ 18,36 \rangle, \langle V_6^c, \\ (V_s, V_3^b, V_4^b, V_6^c), 24,52 \rangle \}$
 - $P_{cand} = null$

- \blacktriangleright POP $<V_5^c, (V_s, V_1^a, V_2^a, V_5^c),$
- ► CONSIDER transport E₅₆^c
- $Q = \{ < V_6^c,$ $(V_c, V_1^a, V_2^a, V_5^c, V_6^c), 18, 46>,$ $<V_6^c, (V_5, V_3^b, V_4^b, V_6^c),$ 24,52>}
- $\triangleright p_{cand} = null$

- ► CONSIDER transport E₆₇^c
- $Q = \{ < V_7^c,$ $(V_{s},V_{1}^{a},V_{2}^{a},V_{5}^{c},V_{6}^{c},V_{7}^{c}), 18,$ 56>, $<V_6^c$, $(V_5, V_3^b, V_4^b, V_6^c)$, 24,52>}
- $\triangleright p_{cand} = null$

- 18,56>
- ► CONSIDER delivery E_{7e}c
- ▶ FOUND P_{cand}
- $Q = \{ \langle V_6^c, (V_5, V_3^b, V_4^b, V_6^c), \}$ 24,52>}
- $P_{cand} =$ $(V_{s}, V_{1}^{a}, V_{2}^{a}, V_{5}^{c}, V_{6}^{c}, V_{7}^{c}, V_{e})$
- \triangleright Op_{cand} = 24
- \triangleright Cp_{cand} = 59

Experimental analysis

Rival: two-phase method, HT

- ▶ Cheapest insertion for pickup and delivery location, for every new request
- After k requests perform tabu search

Datasets

- ▶ Road networks, OL with 6105 locations, ATH with 22601 locations
- Static plan with HT method
 - Vary |Reqs| = 200, 500, 1000, 2000
 - Vary |R| = 100, 250, 500, 750, 1000
- Stored on disk

Experiments

- ▶ 500 dPDPT requests
- ▶ HT1, HT3, HT5

Measure

- Total operational cost increase
- Total execution time
- ▶ 10% cache

Varying | Reqs |

Operational cost increase **Execution time** SP HT3 HT5 (min) (sec) **IReqs**I **IReqs**I

OL road network

Varying | R |

Operational cost increase

Execution time

OL road network

To sum up

Conclusions

- First work on dPDPT
- Formulation as graph problem
- Solution as dynamic two-criterion shortest path
- Faster than a two-phase local search-based method, solutions of marginally lower quality

Future work

- Subpath optimality
- Exploit reachability information within routes
- Additional constraints, e.g., vehicle capacity

Questions?

operational cost two-criterions detour