

Parcialito	Lógica
Profesor: Alan Rodas Bonjour Tema: Lógica Instancia: Parcialito	Tiempo Límite: 2 hs Comisión: Nombre:
1. Considerando las siguientes proposiciones como bas	se:
\blacksquare El paquete pesa más de 10 Kg	
\blacksquare El paquete pesa menos de 10 Kg	
\blacksquare El paquete mide más de 1 metro	
■ El paquete mide menos de 1 metro	
Se le pide que exprese las expresiones a continuació	on en base a las anteriores:
(a) El paquete paga arancel especial (Los pad un arancel especial)	quetes que pesan mucho o que son muy largos pagan
Solución:	
El paquete pesa más de 10 Kg \vee El paquete	e mide más de 1 metro
(b) El paquete se entrega en domicilio (Si el metro)	paquete pesa menos de 10 Kg y mide menos de un
Solución:	
El paquete pesa menos de 10 Kg \wedge El paque	ete mide menos de 1 metro
(c) Se retira en aduana (Cualquier paquete quarancel especial)	ue no se pueda entregar a domicilio y que pague un
Solución:	
\neg El paquete se entrega en domicilio \land El p	aquete paga arancel especial

Solución:

 \neg El paquete paga arancel especial land El paquete pesa más de 10 Kg

(d) Se retira en sucursal (Cualquier paquete que no pague arancel especial y pese más de 10 Kg)

- 2. Dados los siguientes razonamientos, identifique las indicadores de conclusión o de premisa que encuentra, especifique cuales son las premisas, cual es la conclusión, y pase a lenguaje formal de la lógica proposicional indicando claramente el diccionario y las conectivas para cada proposición.
 - (a)
 Si hubiera tenido una computadora de pequeño y me hubieran enseñado a programar en ese momento, entonces este curso me sería trivial. Pero no me enseñaron a programar de pequeño. Es por eso que este curso no me es trivial.

Solución:

IC = Es por eso que

p = Hubiera tenido una computadora de pequeño

q = Me hubieran enseñado a programar de pequeño

r = El curso me es trivial

 $(p \land q) \rightarrow r, \neg q \vdash \neg r$

(b)

La mesa no es adecuada, ya que una mesa es adecuada si y solo si tiene lugar para ocho personas o bien puede soportar mucho peso. Pero esta mesa ni tiene lugar para ocho personas ni soporta mucho peso.

Solución:

p = La mesa tiene lugar para ocho personas

q = La mesa soporta mucho peso

 $\mathbf{r}=\mathbf{La}$ mesa es adecuada

 $(p \lor q) \leftrightarrow r, \neg p \land \neg q \vdash \neg r$

3. Dadas las formulas de los siguientes razonamientos, se pide que pruebe si son razonamientos válidos o inválidos.

(a)
$$\neg p \to q, \neg p \vdash q$$

Solución:											
		Concl.	Premisa 2	Premisa 1		Implic.					
	p	q	$\neg p$	$\neg p \rightarrow q$	$(\neg p \to q) \land (\neg p)$	$((\neg p \to q) \land (\neg p)) \to q$					
	\mathbf{V}	\mathbf{V}	\mathbf{F}	\mathbf{V}	F	$\overline{\mathbf{V}}$					
	${f V}$	${f F}$	\mathbf{F}	${f V}$	\mathbf{F}	\mathbf{V}					
	${f F}$	\mathbf{V}	\mathbf{V}	${f V}$	\mathbf{V}	\mathbf{V}					
	\mathbf{F}	${f F}$	\mathbf{V}	${f F}$	\mathbf{F}	\mathbf{V}					
					'	•					

Es un razonamiento VÁLIDO.

(b)
$$p \to q, \neg p \vdash \neg q$$

Solución:

		Premisa 1	Premisa 2		Concl.	Implic.
\overline{p}	q	$p \rightarrow q$	$\neg p$	$(p \to q) \land (\neg p)$	$\neg q$	$((p \to q) \land (\neg p)) \to (\neg q)$
$\overline{\mathbf{V}}$	\mathbf{V}	V	\mathbf{F}	\mathbf{F}	\mathbf{F}	V
\mathbf{V}	\mathbf{F}	\mathbf{F}	${f F}$	\mathbf{F}	\mathbf{V}	\mathbf{V}
\mathbf{F}	\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{V}	\mathbf{V}	\mathbf{v}	\mathbf{V}	\mathbf{V}

Es un razonamiento INVÁLIDO.

(c)
$$(p \land q) \lor r, \neg p \vdash r$$

		Concl.		Premisa 1	Premisa 2		Implic.
p	q	r	$p \wedge q$	$(p \wedge q) \vee r$	$\neg p$	$A = ((p \land q) \lor r) \land (\neg p)$	$A \rightarrow r$
\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}	V	\mathbf{F}	\mathbf{F}	V
\mathbf{V}	\mathbf{V}	\mathbf{F}	${f V}$	\mathbf{V}	${f F}$	${f F}$	\mathbf{V}
\mathbf{V}	\mathbf{F}	${f V}$	${f F}$	\mathbf{V}	${f F}$	${f F}$	\mathbf{V}
\mathbf{V}	\mathbf{F}	${f F}$	${f F}$	${f F}$	${f F}$	${f F}$	\mathbf{V}
\mathbf{F}	\mathbf{V}	${f V}$	${f F}$	\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}
\mathbf{F}	\mathbf{V}	${f F}$	${f F}$	${f F}$	\mathbf{V}	${f F}$	\mathbf{v}
\mathbf{F}	\mathbf{F}	${f V}$	${f F}$	\mathbf{v}	${f V}$	${f v}$	\mathbf{v}
\mathbf{F}	\mathbf{F}	${f F}$	\mathbf{F}	${f F}$	${f V}$	${f F}$	\mathbf{v}

(d) $(p \land q) \rightarrow r, \neg r \vdash (\neg p) \lor (\neg q)$

						Premisa 1	Premisa 2		Concl.	Implic.
p	q	r	$\neg p$	$\neg q$	$p \wedge q$	$A = (p \land q) \rightarrow r$	$\neg r$	$B = A \wedge (\neg r)$	$C = (\neg p) \lor (\neg q)$	$B \rightarrow C$
V	v	v	F	F	V	V	F	F	F	V
V	v	\mathbf{F}	F	F	v	F	V	F	F	v
V	F	v	F	V	F	v	F	F	v	v
v	F	F	F	V	F	\mathbf{v}	v	\mathbf{v}	\mathbf{v}	ll v
F	v	v	V	F	F	\mathbf{v}	F	F	\mathbf{v}	ll v
F	v	F	V	F	F	\mathbf{v}	v	\mathbf{v}	\mathbf{v}	ll v
F	F	v	V	V	F	\mathbf{v}	F	F	\mathbf{v}	ll v
F	F	F	v	v	F	l v	v	l v	\mathbf{v}	ll v

- 4. Sabiendo que las siguientes expresiones evalúan todas a **VERDADERO** , se pide que complete las tablas a continuación:
 - Todos son o bien atléticos o bien inteligentes.
 - Nadie que sea atlético es inteligente.
 - Nadie que sea inteligente es atlético.
 - Todos los que son atléticos son buenos en los deportes.
 - Algunas personas inteligentes son buenos en los deportes.
 - Mario no es bueno en los deportes.
 - Todos los inteligentes aman a los demás inteligentes.

- Todos los atléticos aman a los demás atléticos.
- Toad ama a Luigi.
- Aquellos que son buenos en los deportes, aman a Luigi.
- Mario se ama a si mismo.
- Nadie más ama a nadie.

	x es atlético	x es inteligente	x es bueno en los deportes
Mario	F		
Luigi		F	
Peach	F		
Toad			F
Yoshi	V		
Daisy	V		

x ama a y	Mario	Luigi	Peach	Toad	Yoshi	Daisy
Mario						
Luigi						
Peach						
Toad						
Yoshi						
Daisy						

Solución:

	x es atlético	x es inteligente	x es bueno en los deportes
Mario	\mathbf{F}	\mathbf{V}	\mathbf{F}
Luigi	\mathbf{V}	\mathbf{F}	\mathbf{V}
Peach	F	V	V
Toad	F	V	F
Yoshi	V	F	V
Daisy	V	F	V

x ama a y	Mario	Luigi	Peach	Toad	Yoshi	Daisy
Mario	V	\mathbf{F}	V	\mathbf{V}	\mathbf{F}	F
Luigi	\mathbf{F}	V	\mathbf{F}	\mathbf{F}	V	V
Peach	V	V	\mathbf{F}	V	\mathbf{F}	\mathbf{F}
Toad	V	V	V	\mathbf{F}	\mathbf{F}	\mathbf{F}
Yoshi	\mathbf{F}	V	\mathbf{F}	\mathbf{F}	\mathbf{F}	V
Daisy	\mathbf{F}	V	\mathbf{F}	\mathbf{F}	V	\mathbf{F}

- 5. Considere a, b números naturales. Se pide exprese en términos lógicos las siguientes expresiones, definiendo los elementos del diccionario que crea convenientes para hacerlo.
 - (a) Ningún número es menor que a

Solución:

Constantes: a, b

(b) Existe un número tal que es más grande que a y más chico que b

```
Solución:

Constantes: a
Predicados:

Menor(x, y) = x es menor a y (o en términos matemáticos x < y)
Mayor(x, y) = x es mayor a y (o en términos matemáticos x > y)

\exists z.Mayor(z, a) \land Menor(z, b)

También se puede usar solo Menor

\exists z.Menor(a, z) \land Menor(z, b)

También se puede expresar de forma lógico matemática como:

\exists z. a < z \land z < b
```

(c) Todo número más grande que b es más grande que a

```
Solución:

Constantes: a, b
Predicados:

Menor(x, y) = x es menor a y (o en términos matemáticos x < y)
Mayor(x, y) = x es mayor a y (o en términos matemáticos x > y)

\forall z.Mayor(z, b) \rightarrow Mayor(z, a)

También se puede expresar de forma lógico matemática como:

\forall z.z > b \rightarrow z > a
```

(d) Todo número al que se le reste a es igual a si mismo.

```
Solución:

Constantes: a

Funciones:
\operatorname{resta}(x,\,y) = x \operatorname{restado} \text{ en } y \text{ (o en términos matemáticos } x-y) \operatorname{Predicados:}
\operatorname{Iguales}(x,\,y) = x \operatorname{es igual a} y \text{ (o en términos matemáticos } x=y)
\forall z. Iguales(resta(z,a),z)
```

También se puede expresar de forma lógico matemática como:

 $\forall z.z - a = z$