

WiDS Datathon++ 2025 University Challenge

Unraveling the Mysteries of the Female Brain: Functional Networks Throughout Childhood Development

1. Context & Motivație

Predicția vârstei biologice a creierului utilizând fMRI-uri.

Motivație:

- Dezvăluirea diferențelor dintre dezvoltarea creierului feminin și masculin pentru o mai bună înțelegere a dezvoltării neurologice.
- Identificarea precoce a riscurilor de probleme mintale (Alzheimer, demenţă sau alte tulburări cognitive).

* Obiectivul proiectului:

Construirea unui model de regresie care să prezică vârsta indivizilor pe baza matricelor conectomilor.

2. Arhitectura preliminară a soluției

* Schema arhitecturii:

2. Arhitectura preliminară a soluției

*Descrierea componentelor:

Încărcarea setului de date pentru testare și antrenare

Încărcarea datelor

Se alege un model de regresie eficient

Selecția modelului

Compararea RMSE, MAE și a timpului de execuție

Vizualizarea rezultatelor

Trierea setului de date și încărcarea lui într-o structură

Eșantionarea setului de date

Împărțirea setului de date de antrenare în două părți: antrenare și testare

3. Evaluarea preliminară a soluției

Metodologia de evaluare:

Am testat diverse modele de regresie pentru alegerea celui mai eficient din punct de vedere a timpului de execuție și a erorii medii pătratice pentru datele noastre.

Setul de date:

Am folosit jumătate din datele de antrenare pentru antrenarea modelului și cealaltă pentru predicție.

* Exemple de cazuri de test:

Am evaluat modele precum: regresia liniară, regresia ridge și SVR cu kernel liniar, polinomial, gauss și sigmoid.

Rezultate obținute:

* Interpretarea rezultatelor:

- Erori medii pătratice similare s-au obținut pentru: regresie liniară (2.12), regresie ridge (2.119), **SVR cu kernel liniar (2.116)**.
- Ca și timp de execuție s-au obținut: regresie liniară (2.18s), regresie ridge (0.28), SVR cu kernel liniar (13.24).
- Diferențele de rezultate fiind mici, însă ca și timp de execuție regresia ridge fiind cea mai rapidă, am ales acest model considerându-l cel mai eficient pentru datele noastre.

5. Concluzii preliminare

Rezumatul progresului:

Am prelucrat datele astfel încât să putem antrena și testa modelul pe care l-am selectat ca fiind cel mai eficient pentru datele noastre, în urma unei comparații.

* Limitările soluției actuale:

- Eșantioanele de date de antrenare și testare nu sunt uniforme după categoriile de vârstă.
- Nu am luat în considerare valori nule sau lipsa unor date adiţionale.
- Nu am eliminat valorile redundante din setul de date.

6. Direcții Viitoare

Pași următori:

Vom gestiona setul de date pentru o acuratețe sporită a predicției.

Plan de implementare:

Împărțirea datelor de test pe sexe și categorii de vârstă (pre-pubertate, pubertate, post-pubertate), precum și eliminarea datelor redundante.

Obiectivele finale:

O acuratețe ridicată de predicție pentru toate categoriile de vârstă și pentru ambele sexe, precum și un algoritm eficient din punct de vedere a timpului de execuție.

Vă mulţumim pentru atenţie!

WiDS Datathon++ 2025 University Challenge