portfolio_optimizer

September 17, 2017

0.0.1 Import all required packages

```
In [1]: from pandas_datareader import data
        import pandas as pd
        import matplotlib.pyplot as plt
        import numpy as np
        import pickle
        import copy
        import json
        import os
        import glob
        import time
        import datetime
        from IPython.display import display
                                                             # Allows the use of display() for .
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.metrics import accuracy_score, fbeta_score, make_scorer, f1_score
        from sklearn.naive_bayes import GaussianNB
        from sklearn import cross_validation
        from sklearn.svm import SVC
        from sklearn.ensemble import AdaBoostClassifier
        from sklearn.grid_search import GridSearchCV
        from keras.models import Sequential
        from keras.layers import Dense
        from keras.models import model_from_json
        from keras.utils import np_utils
        from sklearn.preprocessing import LabelEncoder
        from keras import optimizers
        from keras import regularizers
        import multiprocessing as mp
        # Pretty display for notebooks
        %matplotlib inline
```

/Users/Gio/anaconda/lib/python3.5/site-packages/sklearn/cross_validation.py:44: DeprecationWarring "This module will be removed in 0.20.", DeprecationWarning)

/Users/Gio/anaconda/lib/python3.5/site-packages/sklearn/grid_search.py:43: DeprecationWarning: DeprecationWarning)
Using TensorFlow backend.

0.0.2 Updateable Parameters

```
In [2]: ## Start time. Used to measure execution time.
        START = time.clock()
        ## Yahoo's API has changed, so we'll use google as our source
        #DATA_SOURCE = 'google'
        DATA_SOURCE = 'yahoo'
        ## Date range used for training data
        #TRAINING_START_DATE = '2010-01-01'
        #TRAINING_END_DATE = '2017-7-31'
        TRAINING_START_DATE = datetime.datetime(2014, 4, 1)
        TRAINING_END_DATE = datetime.datetime(2016, 5, 31)
        ## Date range used for testing data
        #TEST_START_DATE = '2016-06-01'
        #TEST_END_DATE = '2017-7-31'
        TEST_START_DATE = datetime.datetime(2016, 6, 1)
        TEST_END_DATE = datetime.datetime(2017, 7, 31)
        # ## Stock tickers for training data
        TRAINING_TICKERS = ['AAPL','GOOG','T','IMAX','IBM','NFLX','SIRI','S','PLUG','C',\
                            'ZNGA','WMS','BAC','AMZN','FB','P','WM','NOK','DDD','XME','XONE','S
                            'TSLA', 'SSYS', 'TXN', 'F', 'GS', 'LQMT', 'HTZ', 'BAH', 'GLW', 'SPWR', \
                            'BIDU', 'SRPT', 'YGE', 'CNX', 'URRE', 'VJET', 'RAD', 'NQ', \
                            'KORS','TWTR','HLF','ORCL','WLL','BLDP','PEG','MJNA','CBIS',\
                            'TM', 'SBUX', 'MBLY', 'MRK', 'DBO', 'PFE', 'CAMP', 'TRXC', \
                            'BMY', 'FE', 'VTR', 'UHT', 'MVO', 'KF', 'RACE', 'STOR', 'MU', 'RTN']
        # TRAINING_TICKERS = ['AAPL', 'GOOG', 'YHOO', 'T', 'IMAX', 'IBM', 'NFLX', 'SIRI', 'S',
                      'C', 'BAC', 'P', 'NOK', 'XONE', 'SSYS', 'TSLA', 'AMZN', 'SDRL', 'DDD',
                      'DBO', 'SRPT', 'SPWR', 'SCTY', 'FB', 'URRE', 'NQ', 'TWTR', 'F', 'BAH', \
                      'MZDAY', 'FSYS', 'BIDU', 'KORS', 'HLF', 'ORCL', 'MBLY']
                   ## SOME NETWORK CAUSES MZDAY AND FSYS TO HAVE SOME Nan FOR SOME REASON
        ## Stock tickers for testing data
        ## unable to read SHOP, HEMP, LMT
        # TESTING_TICKERS = ['BA','OLED', 'HON','MA','TPLM', 'SD', 'FCEL', 'CHK', 'CMG','UHT',
                              'UHT', 'BMY', 'FE', 'VTR', 'UHT', 'MVO', 'KF', 'RACE', 'MU', 'RTN']
        #TESTING_TICKERS = ['BA','OLED', 'HON','MA','TPLM', 'SD', 'FCEL', 'CHK', 'CMG']
        TESTING_TICKERS = ['BA', 'HON', 'MA', 'TPLM', 'SD', 'FCEL', 'CHK', 'CMG']
        #TESTING_TICKERS = ['BA', 'OLED', 'HON', 'MA']
        #TESTING_TICKERS = ['SD', 'FCEL', 'CHK', 'CMG']
```

```
## Initial money to be invested
MONEY = 10000
## Commission rate when buying/selling stocks
COMM RATE = 4.95
 ## Long term capital gain tax rate (percentage)
GAIN LONG = 0.15
## Short term capital gain tax rate (percentage).
## Also used for losses, assuming its the individuals tax bracket
GAIN\_SHORT = 0.25
 ## Models predict the ratio base on these targets
#TARGET_RATIOS = ['vr15', 'vr25', 'vr40']
TARGET_RATIOS = ['vClose','vr2','vr3','vr5','vr10','vr15','vr25','vr40']
## New target ratio, will not just be relative to close
 \#TARGET\_RATIOS = ['Close\_pc', 'r2\_p2', 'r3\_p3', 'r5\_p5', 'r10\_p10', 'r15\_p15', 'r25\_p25', 'r4=100', 'r10_p10', 'r10_p10', 'r10_p10', 'r25\_p25', 'r4=100', 'r25\_p25', 'r4=100', 'r25\_p25', 'r4=100', 'r25\_p25', 'r4=100', 'r25\_p25', 'r4=100', 'r4=10
 ## Used to determine when predictions will be a buy/sell
 \#SELL \ BUY \ VALUES = [(1,1), (0.99, 1.01), (0.995, 1.005)]
SELL_BUY_VALUES = [(0.985, 0.985), (0.995, 0.995, 0.995), (1,1), (1.005, 1.005), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.995), (1.995, 0.9
                                                                        (1.01,1.01),(1.015,1.015), \
                                                                        (0.985, 1.015), (0.99, 1.01), (0.995, 1.005), 
                                                                        (0.995,1.00),(1.00,1.005),(1.005,1.01), 
                                                                        (1.00, 1.015), (1.00, 1.01)
 ## Set to True if we are reading existing models
 ## Set to False to generate new models
READ_EXISTING_MODELS = True
## Set True if using multiprocessing
MULTIPROCESSOR = True
 ## Number of processes for multiprocessing pool
NUM PROCESSES = 8
## Set True to read existing training stocks
## If training tickers have been updated, set this to False
READ_EXISTING_TRAINING_STOCKS = True
## Set True to read existing testing stocks
## If testing tickers have been updated, set this to False
READ_EXISTING_TESTING_STOCKS = True
```

0.0.3 Get all the stocks data. Save data as pickle files

```
In [3]: def gather_training_data():
            all_weekdays = pd.date_range(start=TRAINING_START_DATE,end=TRAINING_END_DATE,freq=
            ## panel type
            panel_data = data.DataReader(TRAINING_TICKERS,DATA_SOURCE,TRAINING_START_DATE,\
                                          TRAINING_END_DATE)
            if DATA_SOURCE == 'yahoo':
                ## Yahoo has extra column
                panel_data.drop('Adj Close', inplace=True)
            panel_data.drop('Volume', inplace=True)
            ## save to pickle
            panel_data.to_pickle('training_stocks.pkl')
        def gather_testing_data():
            all_weekdays = pd.date_range(start=TEST_START_DATE,end=TEST_END_DATE,freq='B')
            panel_data = data.DataReader(TESTING_TICKERS,DATA_SOURCE,TEST_START_DATE,TEST_END_I
            if DATA_SOURCE == 'yahoo':
                ## Yahoo has extra column
                panel_data.drop('Adj Close', inplace=True)
            panel_data.drop('Volume', inplace=True)
            panel_data.to_pickle('testing_stocks.pkl')
        ## Read existing data
        if READ_EXISTING_TRAINING_STOCKS == False:
            gather_training_data()
        if READ_EXISTING_TESTING_STOCKS == False:
            gather_testing_data()
0.0.4 Helper function to get the rolling averages. 2, 3, 5, 10, 15, 25 and 40-day moving averages.
In [4]: def get_rolling(df):
            stock = df['Close']
            r2 = stock.rolling(window=2).mean()
            r3 = stock.rolling(window=3).mean()
            r5 = stock.rolling(window=5).mean()
            r10 = stock.rolling(window=10).mean()
            r15 = stock.rolling(window=15).mean()
            r25 = stock.rolling(window=25).mean()
            r40 = stock.rolling(window=40).mean()
```

```
return r2, r3, r5, r10, r15, r25, r40
```

0.0.5 Helper function to plot stocks data, with rolling averages

```
In [5]: def plot_stock(tick, df):
            print("Plotting: ", tick)
            close = df['vClose']
            r2 = df['vr2']
            r3 = df['vr3']
            r5 = df['vr5']
            r10 = df['vr10']
            r15 = df['vr15']
            r25 = df['vr25']
            r40 = df['vr40']
            fig = plt.figure()
            ax = fig.add_subplot(1,1,1)
            ax.plot(close.index,close,label=tick)
            ax.plot(r2.index, r2, label='2 days rolling')
            ax.plot(r3.index, r3, label='3 days rolling')
            ax.plot(r5.index, r5, label='5 days rolling')
            ax.plot(r10.index, r10, label='10 days rolling')
            ax.plot(r15.index, r15, label='15 days rolling')
            ax.plot(r25.index, r25, label='25 days rolling')
            ax.plot(r40.index, r40, label='40 days rolling')
            ax.set_xlabel('Date')
            ax.set_ylabel('Closing prices ($)')
            ax.legend()
            #plt.show()
            #fig.savefig("figures/"+tick+'.png')
            fig.savefig("figures/"+tick+'.svg', format='svg', dpi=1200)
            plt.close(fig)
```

0.0.6 Helper function to statistics of the training data

0.0.7 Get each DataFrame of the entire list of stocks for training, from the pickle file

```
In [7]: def get_training_stocks_df(filename):
            processed_df = pd.DataFrame()
            raw_inputs_df = pd.DataFrame()
            raws = []
            processed = []
            panel_data = pd.read_pickle(filename)
                                                                         ## read saved stocks d
            for tick in TRAINING_TICKERS:
                ## Extract single stock from panel_data
                df = panel_data[:,:,tick]
                                                                         ## becomes df type, fr
                df.to_csv("training_data/"+tick+".csv")
                                                                         ## raw input
                raws.append(df)
                                                                         ## gather all the raw
                ## Get full df with 109 columns
                df = get_stock_df(df,tick)
                ## Save df
                df.to_csv("training_data/"+tick+"_processed.csv")
                ## Plot stock
                plot_stock(tick,df)
                #processed_df = processed_dfmain_df.append(df)
                processed.append(df)
                                                                 ## faster to append once, with
            ## append all raw input to one df, then save
            raw_inputs_df = raw_inputs_df.append(raws)
            raw_inputs_df.to_csv("training_data/all_raw_data.csv")
            ## append all processed input to on df, then save
            processed_df = processed_df.append(processed)
                                                                 ## faster to append once, with
            processed_df.to_csv("training_data/all_processed_data.csv")
            return processed_df
```

0.0.8 Helper function to get DataFrame of individual stocks. Generates 108 columns, 20 columns will be removed later

```
Open_p2, High_p2, Low_p2, Close_p2, r2_p2, r3_p2, r5_p2, r10_p2, r15_p2, r25_p2, r40_p.
Open_p3, High_p3, Low_p3, Close_p3, r2_p3, r3_p3, r5_p3, r10_p3, r15_p3, r25_p3, r40_p
Open_p5, High_p5, Low_p5, Close_p5, r2_p5, r3_p5, r5_p5, r10_p5, r15_p5, r25_p5, r40_p
Open_p10, High_p10, Low_p10, Close_p10, r2_p10, r3_p10, r5_p10, r10_p10, r15_p10, r25_
Open_p15, High_p15, Low_p15, Close_p15, r2_p15, r3_p15, r5_p15, r10_p15, r15_p15, r25_
Open_p25, High_p25, Low_p25, Close_p25, r2_p25, r3_p25, r5_p25, r10_p25, r15_p25, r25_p
Open_p40, High_p40, Low_p40, Close_p40, r2_p40, r3_p40, r5_p40, r10_p40, r15_p40, r25_
def get_stock_df(df,tick):
    ## Yahoo and Google data source returns different orders, ## make sure its this or
    #df = df.reindex axis(['Open', 'High', 'Low', 'Close', 'Volume'], axis=1)
    df = df.reindex_axis(['Open','High','Low','Close'], axis=1)
                                                             ## get moving averages
   r2, r3, r5, r10, r15, r25, r40 = get_rolling(df)
    ## Rename Volume column then remove it
     vol = df['Volume']
     vol = vol.to_frame()
#
     vol.columns = ['Vol']
      df = df.drop('Volume', 1)
                                                               ## 1 for axis 1, which i
    ## Rename columns
    df_r2= r2.to_frame()
                                                             ## from series to df
    df r2.columns = ['r2']
                                                             ## change column title
    df_r3= r3.to_frame()
    df_r3.columns = ['r3']
    df_r5= r5.to_frame()
    df_r5.columns = ['r5']
    df_r10= r10.to_frame()
    df_r10.columns = ['r10']
    df_r15= r15.to_frame()
    df r15.columns = ['r15']
   df_r25= r25.to_frame()
    df_r25.columns = ['r25']
    df_r40= r40.to_frame()
    df_r40.columns = ['r40']
    ## Shift rows to generate next/previous values
    #predict = df['Close'].copy()
    predict = df['Close'].shift(-1)
                                                                              ## a seri
   predict = predict.to_frame()
```

```
predict.columns = ['predict']
prev_close = df['Close'].shift(1)
prev_close = prev_close.to_frame()
prev_close.columns = ['prev_close']
prev r2 = df r2['r2'].shift(1)
prev_r2 = prev_r2.to_frame()
prev r2.columns = ['prev r2']
prev_r3 = df_r3['r3'].shift(1)
prev_r3 = prev_r3.to_frame()
prev_r3.columns = ['prev_r3']
prev_r5 = df_r5['r5'].shift(1)
prev_r5 = prev_r5.to_frame()
prev_r5.columns = ['prev_r5']
prev_r10 = df_r10['r10'].shift(1)
prev r10 = prev r10.to frame()
prev_r10.columns = ['prev_r10']
prev_r15 = df_r15['r15'].shift(1)
prev_r15 = prev_r15.to_frame()
prev_r15.columns = ['prev_r15']
prev_r25 = df_r25['r25'].shift(1)
prev_r25 = prev_r25.to_frame()
prev_r25.columns = ['prev_r25']
prev_r40 = df_r40['r40'].shift(1)
prev_r40 = prev_r40.to_frame()
prev_r40.columns = ['prev_r40']
## Generate entire dataframe
## encapsulate in a list for multiple df
  df1 = predict.join([prev_close,prev_r2,prev_r3,prev_r5,prev_r10,prev_r15,\)
                      prev_r25, prev_r40, vol])
df1 = predict.join([prev_close,prev_r2,prev_r3,prev_r5,prev_r10,prev_r15,\)
                    prev_r25,prev_r40])
df2 = df.join([df_r2,df_r3,df_r5,df_r10,df_r15, df_r25, df_r40])
df3 = df2.copy()
df4 = df2.copy()
df5 = df2.copy()
df6 = df2.copy()
df6 = df2.copy()
df7 = df2.copy()
df8 = df2.copy()
```

```
df9 = df2.copy()
df10 = df2.copy()
## will have original value (not percentage)
df10.columns = ['vOpen','vHigh','vLow','vClose','vr2','vr3',\
                'vr5','vr10','vr15','vr25','vr40']
## will be with respect to prev_close
df2.columns = ['Open_pc', 'High_pc', 'Low_pc', 'Close_pc', 'r2_pc', 'r3_pc', 'r5_pc', \
               'r10_pc','r15_pc','r25_pc','r40_pc']
## will be with respect to prev_r2
df3.columns = ['Open_p2', 'High_p2', 'Low_p2', 'Close_p2', 'r2_p2', 'r3_p2', 'r5_p2', \
               'r10_p2','r15_p2','r25_p2','r40_p2']
## will be with respect to prev_r3
df4.columns = ['Open_p3','High_p3','Low_p3','Close_p3','r2_p3','r3_p3','r5_p3',\
               'r10_p3','r15_p3','r25_p3','r40_p3']
## will be with respect to prev_r5
df5.columns = ['Open_p5', 'High_p5', 'Low_p5', 'Close_p5', 'r2_p5', 'r3_p5', 'r5_p5', \
               'r10_p5','r15_p5','r25_p5','r40_p5']
## will be with respect to prev_r10
df6.columns = ['Open_p10', 'High_p10', 'Low_p10', 'Close_p10', 'r2_p10', 'r3_p10', \
               'r5_p10','r10_p10','r15_p10','r25_p10','r40_p10']
## will be with respect to prev_r15
df7.columns = ['Open_p15', 'High_p15', 'Low_p15', 'Close_p15', 'r2_p15', 'r3_p15', \
               'r5_p15','r10_p15','r15_p15','r25_p15','r40_p15']
## will be with respect to prev_r25
df8.columns = ['Open_p25','High_p25','Low_p25','Close_p25','r2_p25','r3_p25',\
               'r5_p25','r10_p25','r15_p25','r25_p25','r40_p25']
## will be with respect to prev_r40
df9.columns = ['Open_p40','High_p40','Low_p40','Close_p40','r2_p40','r3_p40',\
               'r5_p40','r10_p40','r15_p40','r25_p40','r40_p40']
## Combine all to one dataframe
df = df1.join([df10,df2,df3,df4,df5,df6,df7,df8,df9])
## Drop N/A
df = df.dropna(axis=0,how='any')
                                                     ## drop rows containing at lea
## Normalize columns, base on previous values. Get ratios/percentage
#df[columns_to_divide] = df[columns_to_divide] / df['prev_close'] ## having size
cols_to_divide = ['Open_pc','High_pc','Low_pc','Close_pc','r2_pc','r3_pc','r5_pc','
                  'r10_pc','r15_pc','r25_pc','r40_pc']
df[cols_to_divide] = df[cols_to_divide].div(df['prev_close'].values,axis=0)
cols_to_divide = ['Open_p2','High_p2','Low_p2','Close_p2','r2_p2','r3_p2','r5_p2','
                  'r10_p2','r15_p2','r25_p2','r40_p2']
df[cols_to_divide] = df[cols_to_divide].div(df['prev_r2'].values,axis=0)
cols_to_divide = ['Open_p3','High_p3','Low_p3','Close_p3','r2_p3','r3_p3','r5_p3','
```

```
'r10_p3','r15_p3','r25_p3','r40_p3']
            df[cols_to_divide] = df[cols_to_divide].div(df['prev_r3'].values,axis=0)
            cols_to_divide = ['Open_p5','High_p5','Low_p5','Close_p5','r2_p5','r3_p5','r5_p5','
                              'r10_p5','r15_p5','r25_p5','r40_p5']
            df[cols_to_divide] = df[cols_to_divide].div(df['prev_r5'].values,axis=0)
            cols_to_divide = ['Open_p10','High_p10','Low_p10','Close_p10','r2_p10','r3_p10',\
                              'r5_p10','r10_p10','r15_p10','r25_p10','r40_p10']
            df[cols_to_divide] = df[cols_to_divide].div(df['prev_r10'].values,axis=0)
            cols_to_divide = ['Open_p15','High_p15','Low_p15','Close_p15','r2_p15','r3_p15',\
                              'r5_p15','r10_p15','r15_p15','r25_p15','r40_p15']
            df[cols_to_divide] = df[cols_to_divide].div(df['prev_r15'].values,axis=0)
            cols_to_divide = ['Open_p25','High_p25','Low_p25','Close_p25','r2_p25','r3_p25',\
                              'r5_p25','r10_p25','r15_p25','r25_p25','r40_p25']
            df[cols_to_divide] = df[cols_to_divide].div(df['prev_r25'].values,axis=0)
            cols_to_divide = ['Open_p40','High_p40','Low_p40','Close_p40','r2_p40','r3_p40',\
                              'r5_p40','r10_p40','r15_p40','r25_p40','r40_p40']
            df[cols_to_divide] = df[cols_to_divide].div(df['prev_r40'].values,axis=0)
            return df
0.0.9 Update target, base on target ratio
```

```
In [9]: def get_target(X,target_ratio):
            ## update predict base on target_ratio
            ## All these are base on predict (relative to close only)
            cols_to_divide = ['predict']
            X[cols_to_divide] = X[cols_to_divide].div(X[target_ratio].values,axis=0)
            ## New targets: prev target_ratio/current target ratio
            ## Shift rows to generate next values
            #target = X[target ratio].shift(-1)
            ##target = X[target_ratio].copy()
            \#X['predict'] = target
            ### Drop N/A
            #X = X.dropna(axis=0,how='any')
            ## Convert target base on sell/buy prices thats provided
            y = convert_target_value(X['predict'],sell_below,buy_above)
            ## Delete unneccesary columns
            del X['predict'],X['prev_close'],X['prev_r2'],X['prev_r3'],X['prev_r5']
            del X['prev_r10'],X['prev_r15'],X['prev_r25'],X['prev_r40']
            ## Delete columns with actual price
```

```
del X['vOpen'],X['vHigh'],X['vLow'],X['vClose'],X['vr2']
del X['vr3'],X['vr5'],X['vr10'],X['vr15'],X['vr25'],X['vr40']
return X, y
```

0.0.10 Helper function to convert target. Buy (1), Sell (-1), or Neutral (0). Base on sell/buy prices

0.0.11 Create Neural Network Model

```
In [11]: def neural_network_model():
             ## create model
            model = Sequential()
             model.add(Dense(300,input_dim=88,activation='tanh',kernel_regularizer=regularizer
             model.add(Dense(150,activation='tanh'))
             model.add(Dense(3,activation='softmax'))
             ## for binary classifier
             #model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
             #model.compile(loss='mean_squared_error',optimizer='adam',metrics=['accuracy'])
             #model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accurac
             #model.compile(loss='categorical_crossentropy',optimizer='adamax',metrics=['accur
             #model.compile(loss='categorical_crossentropy',optimizer='nadam',metrics=['accura
             #model.compile(loss='categorical_crossentropy',optimizer='rmsprop',metrics=['accu
             #model.compile(loss='categorical_crossentropy',optimizer='adagrad',metrics=['accu
             #model.compile(loss='categorical_crossentropy',optimizer='adadelta',metrics=['acc
             #model.compile(loss='categorical_crossentropy',optimizer='tfoptimizer',metrics=['
             opt = optimizers.SGD(lr=0.001,momentum=0.9,decay=1e-6,nesterov=True)
             model.compile(loss='categorical_crossentropy',optimizer=opt,metrics=['accuracy'])
             return model
```

0.0.12 Helper function to get encoding, for 'target' in Neural Network

```
In [12]: """
         Returns a (XXX,3) from (XXX,1), for the input of the neural network
         Didnt use np_utils.to_categorical() since output could be -1,1 or
         -1,0,1 depending on sell/buy values
         11 11 11
         def myEncoder(arr):
             s = (len(arr), 3)
             numpy_arr = np.zeros(s)
             for i,num in enumerate(arr):
                 if num == -1:
                     numpy_arr[i] = np.array([1,0,0])
                 elif num == 1:
                     numpy_arr[i] = np.array([0,0,1])
                 else:
                     numpy_arr[i] = np.array([0,1,0])
             return numpy_arr
```

0.0.13 Helper function to decode, as 1 dimensional target

0.0.14 Helpter function to scale input data for neural network

```
new_x = (((highest_scale-lowest_scale)*(x-min_input))/(max_input-min_input))+
   return new_x
## Tried -1 to 1 before
lowest scale = -1
highest_scale = 1
max_input = 1.15
min_input = 0.85
## arr is an ndarray. Use vectorize instead of applymap
scaler = lambda x: (((highest_scale-lowest_scale)*(x-min_input))/(max_input-min_input)
                 + lowest_scale
func = np.vectorize(scaler)
                                               ## vectorize scaler function
result = func(arr)
                                               ## pass arr to vectorized fun
return result
```

0.0.15 Get the metrics of the models

```
In [15]: def get_model_metrics(target_ratio,sell_below,buy_above,X):
             temp_result = {}
             temp_result['target_ratio'] = target_ratio
             temp_result['sell_below'] = sell_below
             temp_result['buy_above'] = buy_above
             X,y = get_target(X,target_ratio)
             #print("Input shape: {} Target shape: {}".format(X.shape,len(y)))
             #print("Target found are: {}".format(set(y)))
             ## Perform cross validation. 95% to have as much training data as possible.
             ## Also, performance will be base on totally different set of stocks
             try: X_train, X_test, y_train, y_test \
                 = cross_validation.train_test_split(X,y,train_size=0.90,stratify=y)
             ## error sometimes: The least populated class in y has only 1 member, which is to
             ## The minimum number of labels for any class cannot be less than 2.
             except: X_train, X_test, y_train, y_test \
                 = cross_validation.train_test_split(X,y,train_size=0.90)
             #print("Sample of training data:")
             #print("Number of rows: {}. Number of columns: {}.".format(len(X_train),len(X_tra
             \#print(X_train.head())
             beta = 0.5
```

entropy for exploratory analysis, gini (default) to minimize misclassification

Initialize Models

```
## max_features default None
\#clf1 = DecisionTreeClassifier(criterion="entropy", random\_state=0, max\_features=Noologian = Noologian = Noologi
clf1 = DecisionTreeClassifier()
clf2 = GaussianNB()
## kernel 'rbf' default, others are linear, poly, sigmoid, C is penalty parameter
\#clf3 = SVC()
                                                                           ## <-- makes execution time 20x longer
## defaults are 1 for learning rate and 50 for n_estimators
\#clf4 = AdaBoostClassifier(random_state=0, learning_rate=0.7, n_estimators=50)
clf4 = AdaBoostClassifier()
clf5 = neural_network_model()
if READ_EXISTING_MODELS == True:
         ## Read existing models
         ## For DecisionTree
        with open("models/DecisionTree_"+target_ratio+"_"+str(sell_below)\
                               +"_"+str(buy_above)+".pkl", 'rb') as f:
                 clf1 = pickle.load(f)
         ## For GaussianNB
         with open("models/GaussianNB_"+target_ratio+"_"+str(sell_below)\
                               +"_"+str(buy_above)+".pkl", 'rb') as f:
                  clf2 = pickle.load(f)
         ## For SVC model
         #with open("models/SVC_"+target_ratio+"_"+str(sell_below)\
                               +"_"+str(buy_above)+".pkl", 'rb') as f:
               clf3 = pickle.load(f)
         ## For Adaboost
         with open("models/Adaboost_"+target_ratio+"_"+str(sell_below)\
                               +"_"+str(buy_above)+".pkl", 'rb') as f:
                  clf4 = pickle.load(f)
         ## For Neural Network
         ## Load json and create model
         json_file = open("models/NN_"+target_ratio+"_"+str(sell_below)\
                                              +"_"+str(buy_above)+".json","r")
         loaded_model_json = json_file.read()
         json_file.close()
         clf5 = model_from_json(loaded_model_json)
         ## Load weights into new model
         clf5.load_weights("models/NN_"+target_ratio+"_"+str(sell_below)+"_"+str(buy_a
         ## Compile, make sure its the same as above
         opt = optimizers.SGD(lr=0.001,momentum=0.9,decay=1e-6,nesterov=True)
         clf5.compile(loss='categorical_crossentropy',optimizer=opt,metrics=['accuracy
```

else:

```
## Generate new models
## Fit Data to DecisionTree Model
clf1.fit(X_train,y_train)
## Save model to a file
with open("models/DecisionTree_"+target_ratio+"_"+str(sell_below)\
          +" "+str(buy above)+".pkl", 'wb') as f:
    pickle.dump(clf1, f)
# Fit Data to GaussianNB Model
clf2.fit(X_train,y_train)
## Save model to a file
with open("models/GaussianNB_"+target_ratio+"_"+str(sell_below)\
          +"_"+str(buy_above)+".pkl", 'wb') as f:
    pickle.dump(clf2, f)
# Fit Data to SVC Model
\#clf3.fit(X_train,y_train)
## Save model to a file
#with open("models/SVC "+target ratio+" "+str(sell below)\
          +"_"+str(buy_above)+".pkl", 'wb') as f:
   pickle.dump(clf3, f)
# Fit Data to Adaboost Model
clf4.fit(X_train,y_train)
## Save model to a file
with open("models/Adaboost_"+target_ratio+"_"+str(sell_below)\
          +"_"+str(buy_above)+".pkl", 'wb') as f:
    pickle.dump(clf4, f)
## Fit Data to Neural Model
                                                             ## convert df to
input_train = X_train.as_matrix(columns=None)
#np.savetxt("test1.csv",input_train,delimiter=",")
input_train = rescale_input(input_train)
#print("Input train:",input train[np.r [0:5]])
                                                            ## print first 5
### encode class values as integers
#encoder = LabelEncoder()
#encoder.fit(y_train)
\#encoded_y = encoder.transform(y_train)
### convert integers to dummy variables (i.e one hot encoded)
\#dummy\_y = np\_utils.to\_categorical(encoded\_y)
#print(dummy_y)
dummy_y = myEncoder(y_train)
clf5.fit(input_train,dummy_y,epochs=20,batch_size=100)
## Serialize model to JSON
model_json = clf5.to_json()
with open("models/NN_"+target_ratio+"_"+str(sell_below)\
```

```
+"_"+str(buy_above)+".json","w") as json_file:
        json_file.write(model_json)
    ## Serialize weights to HDF5
    clf5.save_weights("models/NN_"+target_ratio+"_"+str(sell_below)+"_"+str(buy_a
## Get accuracy and fscore of the models
temp_result['DecisionTree Accuracy'] = accuracy_score(y_test, clf1.predict(X_test)
temp_result['DecisionTree Fscore'] = fbeta_score(y_test, clf1.predict(X_test),\
                                                  beta,average='weighted')
temp_result['GaussianNB Accuracy'] = accuracy_score(y_test,clf2.predict(X_test))
temp_result['GaussianNB Fscore'] = fbeta_score(y_test, clf2.predict(X_test),\
                                                beta,average='weighted')
#temp_result['SVC Accuracy'] = accuracy_score(y_test,clf3.predict(X_test))
\#temp\_result['SVC\ Fscore'] = fbeta\_score(y\_test,\ clf3.predict(X\_test), \
                                          beta, average='weighted')
temp_result['Adaboost Accuracy'] = accuracy_score(y_test,clf4.predict(X_test))
temp_result['Adaboost Fscore'] = fbeta_score(y_test,clf4.predict(X_test),\
                                              beta,average='weighted')
input_test = X_test.as_matrix(columns=None)
input_test = rescale_input(input_test)
dummy_y = myEncoder(y_test)
#scores = clf5.evaluate(input_test, dummy_y)
#temp_result['NN Accuracy'] = scores[1]*100
temp_result['NN Accuracy'] = accuracy_score(y_test,myDecoder(clf5.predict(input_temp_result['NN Accuracy'])
temp_result['NN Fscore'] = fbeta_score(y_test, \
                              myDecoder(clf5.predict(input_test)),beta,average='w
## Determine performance of the portfolio on each model
\#models = [('DecisionTree', clf1), ('GaussianNB', clf2), ('Adaboost', clf4), \
              ('SVC', clf3), ('NN', clf5)]
## No SVC model
models = [('DecisionTree',clf1),('GaussianNB',clf2),('Adaboost',clf4),('NN',clf5)]
test_model_performance(models,temp_result,target_ratio,sell_below,buy_above)
## Check if multiprocessor is set
if MULTIPROCESSOR == False:
    ## Result will contain all the result from each combination of the models
    result.append(temp_result)
else:
    ## To support multiprocessing, will have to save for later
    ## temp_result is a dict, not df
    #temp_result.to_csv("temp_results/"+str(time.clock())+".csv")
    with open("temp_results/"+str(time.clock())+".json", 'w') as fp:
        json.dump(temp_result, fp)
```

0.0.16 Calculate model performance

```
In [16]: def test_model_performance(models,temp_result,target_ratio,sell_below,buy_above):
                           panel_data = pd.read_pickle('testing_stocks.pkl')
                                                                                                                                                      ## read saved stocks
                           ## Initialize total to be 0 across all models
                           total = {'benchmark':0}
                           for model_name,_ in models:
                                   total[model_name] = 0
                                                                                                                               ## will hold total money for that
                                   total[model_name+"_transactions"] = 0
                                                                                                                               ## will hold total transactions f
                           ## Go through each stock
                           for tick in TESTING_TICKERS:
                                    ## Extract single stock from panel_data
                                    #df = panel_data[:,:,tick]
                                    \#X = get\_stock\_df(df, tick)
                                    ## We will now just read the test stocks, generated before
                                   X = pd.DataFrame.from_csv("testing_data/"+tick+'_processed.csv')
                                    ## Delete unnecessary columns
                                   del X['predict'],X['prev_close'],X['prev_r2'],X['prev_r3'],X['prev_r5']
                                   del X['prev_r10'],X['prev_r15'],X['prev_r25'],X['prev_r40']
                                    ## Delete columns with actual price
                                   del X['vOpen'],X['vHigh'],X['vLow'],X['vClose'],X['vr2']
                                    del X['vr3'],X['vr5'],X['vr10'],X['vr15'],X['vr25'],X['vr40']
                                    ## Get predictions base on each models
                                   for model_name, model in models:
                                            ## predictions will be an ndarray
                                            if model_name == 'NN':
                                                    input_test = X.as_matrix(columns=None)
                                                    input_test = rescale_input(input_test)
                                                    predictions = model.predict(input_test)
                                                    predictions = myDecoder(predictions)
                                            else:
                                                    predictions = model.predict(X)
                                            ## Add predictions to the dataframe
                                            pred = pd.DataFrame(predictions.flatten(),index=X.index,columns=['Predict
                                            S = X.join(pred)
                                                                                                                                        ## will contain number of tra
                                            S['Transactions'] = 0
                                            S['Money'] = 0
                                                                                                                                        ## will contain total current
                                            ## Calculate transactions (NOT COMPLETE)
                                            \#temp\_df = pd.DataFrame(X['Close\_pc'].values,columns=['Close\_pc'])
                                            \#temp\_df = temp\_df.join(pd.DataFrame(predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),columns=['Predictions.flatten(),c
                                            \#temp\_df['playing'] = temp\_df['Predictions'].shift().eq(1)
                                            ### cumprod of 'Close_pc' where 'playing' is True. Then multiple with in
```

```
\#temp\_df['Money'] = \
                     temp\_df['Close\_pc']. where (temp\_df['playing'],1). cumprod(). mul(MONEY).
        ### get just last value from 'Money'
        \#temp\_result[tick+'\_'+model\_name] = float(format(temp\_df['Money'].iloc[-1]) = float(format(temp\_df['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc['Money'].iloc
        #total[model_name] += float(format(temp_df['Money'].iloc[-1], '.2f'))
        ## Calculate transactions. SLOWER? BUT COMPLETE
        playing = False
                                                                                  ## used to determine if currently in
        money = copy.copy(MONEY)
        transactions = 0
        i = 0
        for index, row in S.iterrows():
                ## Update money
                if i > 0 and playing == True:
                        money = float(format(money*row['Close_pc'],'.2f'))
                ## Buy/Sell
                if row['Predictions'] == 1:
                         if playing == False:
                                 playing = True
                                                                                  ## Buy, playing after this
                                 transactions += 1
                                                                                 ## increment transaction number for t
                elif row['Predictions'] == -1:
                         if playing == True:
                                                                                  ## Sell, not playing after this
                                playing = False
                                 transactions += 1  ## increment transaction number for t
                i += 1
                ## Change value in sample data S in index and column provided,
                ## with value/data provided
                S.set_value(index,'Money',money)
                S.set_value(index, 'Transactions', transactions)
        ## Save dataframe for testing purposes
        S.to_csv("model_predictions/"+tick+"_"+model_name+"_"\
                           +target_ratio+"_"+str(sell_below)+"_"+str(buy_above)+".csv")
        ## If still playing at the end, we'll sell, thus increment number of tran
        transactions = transactions + 1 if playing == True else transactions
        ## Will contain total money for this stock and model
        temp_result[tick+'_'+model_name] = money
        ## Will contain total number of transactions for this stock and model
        temp_result[tick+'_'+model_name+"_transactions"] = transactions
        ## Will contain total money for this model, including all stocks
        total[model_name] += money
        ## total transactions for the model, including all stocks
        total[model_name+"_transactions"] += transactions
## Calculate benchmark portfolio for current stock (NOT COMPLETE)
```

```
\#temp\_df = X['Close\_pc'].to\_frame()
   \#temp\_df['Close\_pc'].iloc[0] = 1   \#\#since\ first\ one\ is\ not\ played
   #temp_df['Money'] = temp_df['Close_pc'].cumprod().mul(MONEY)
   ### total money in benchmark, for that stock
   #temp_result[tick+'_benchmark'] = float(format(temp_df['Money'].iloc[-1], '.2
   \#total['benchmark'] += float(format(temp_df['Money'].iloc[-1], '.2f'))
   ## Calculate benchmark portfolio for current stock. SLOWER? BUT COMPLETE
   money = copy.copy(MONEY)
   for i,r in enumerate(X['Close_pc']):
       if i > 0:
           money = float(format(money*r,'.2f'))
   temp_result[tick+'_benchmark'] = money
                                          ## total money in benchmark, for
   total['benchmark_transcations'] = 2  ## Initial buy and the sell at th
## Determine Total values of each portfolio
temp_result['total_benchmark'] = total['benchmark'] ## total money in benchmark
## Get total money and transactions per each model. Each including all stocks
for model_name,_ in models:
   temp_result['total_'+model_name] = total[model_name]
   temp_result['total_'+model_name+"_transactions"] = total[model_name+"_transactions"]
```

read saved stocks data

0.0.17 Helper function to save each of the testing stocks as csv

```
In [17]: def save_testing_stocks(filename):
    panel_data = pd.read_pickle(filename)

## Go through each stock
for tick in TESTING_TICKERS:
    ## Extract single stock from panel_data
    df = panel_data[:,:,tick]

## save raw stock data
    df.to_csv("testing_data/"+tick+".csv")

## process data
    df = get_stock_df(df,tick)

## Plot stock
plot_stock(tick,df)

## Save to csv
    df.to_csv("testing_data/"+tick+"_processed.csv")
```

0.0.18 Helper function to delete all the old data from previous runs

```
In [18]: def cleanup_contents():
             filelist = glob.glob("temp_results/*.json")
             for f in filelist:
                 os.remove(f)
             filelist = glob.glob("model_predictions/*.csv")
             for f in filelist:
                 os.remove(f)
             filelist = glob.glob("figures/*")
             for f in filelist:
                 if "README.md" not in f:
                     os.remove(f)
             filelist = glob.glob("training_data/*.csv")
             for f in filelist:
                 os.remove(f)
             filelist = glob.glob("testing_data/*.csv")
             for f in filelist:
                 os.remove(f)
             if READ_EXISTING_MODELS == False:
                 filelist = glob.glob("models/*")
                 for f in filelist:
                     if "README.md" not in f:
                         os.remove(f)
0.0.19 Main()
In [19]: %%time
         result = []
         ## Remove all existing .json files in temp folder and remove old csv files in data for
         cleanup_contents()
         filename = 'training_stocks.pkl'
         ## Generate data to be inputted to the models
         X = get_training_stocks_df(filename)
         ## Describe training data
```

describe_data()

```
filename = 'testing_stocks.pkl'
         ## Generate data of test stocks and save to csv files
         save_testing_stocks(filename)
         ## Check if multiprocessor is set
         if MULTIPROCESSOR == False:
             ## For single processing
             # Get performance of different types of models
             for sell_below, buy_above in SELL_BUY_VALUES:
                 for target_ratio in TARGET_RATIOS:
                     ## copy to prevent updating
                     get_model_metrics(target_ratio,sell_below,buy_above,X.copy())
                     print("Completed target ratio: {} with sell: {} and buy: {}"\
                           .format(target_ratio,sell_below,buy_above))
         else:
             ## For multiprocessing
             ## Get the arguments for the pool
             args = []
             for sell_below, buy_above in SELL_BUY_VALUES:
                 for target ratio in TARGET RATIOS:
                     arg = (target_ratio,sell_below,buy_above,X.copy())
                     args.append(arg)
             ## With multiprocessing
             pool = mp.Pool(processes=NUM_PROCESSES)
             pool.starmap(get_model_metrics,args)
             pool.close()
             pool.join()
Plotting: AAPL
Plotting: GOOG
Plotting: T
Plotting: IMAX
Plotting: IBM
Plotting: NFLX
Plotting: SIRI
Plotting: S
Plotting: PLUG
Plotting: C
Plotting: ZNGA
Plotting: WMS
Plotting: BAC
Plotting: AMZN
Plotting: FB
Plotting: P
Plotting: WM
Plotting: NOK
Plotting: DDD
```

Plotting: XONE Plotting: SDRL Plotting: TSLA Plotting: SSYS Plotting: TXN Plotting: Plotting: GS Plotting: LQMT Plotting: HTZPlotting: BAHPlotting: GLW Plotting: SPWR Plotting: BIDU Plotting: SRPT Plotting: YGE Plotting: CNXPlotting: URRE Plotting: VJET Plotting: RAD Plotting: NQ Plotting: KORS Plotting: TWTR Plotting: HLF Plotting: ORCL Plotting: WLL Plotting: BLDP Plotting: PEG Plotting: MJNA Plotting: CBIS Plotting: TMPlotting: SBUX Plotting: MBLY Plotting: MRK Plotting: DB0 Plotting: PFE Plotting: CAMP Plotting: TRXC Plotting: BMY Plotting: FEPlotting: VTR Plotting: UHT Plotting: MVO Plotting: KFPlotting: RACE Plotting: STOR Plotting: MU Plotting: RTN

Plotting:

XME

	Close	High	Low	Open
count	35863.000000	35863.000000	35863.000000	35863.000000
mean	57.492626	58.181523	56.792067	57.509487
std	98.580690	99.558195	97.533216	98.600096
min	0.011000	0.011000	0.010000	0.011000
25%	11.600000	11.960000	11.300000	11.670000
50%	30.750000	31.250000	30.270000	30.790001
75%	54.279999	54.880001	53.740002	54.340000
max	776.599976	789.869995	766.900024	784.500000

Processed training data description:

Processed training data description:						
	predict	prev_close	prev_r2	prev_r3	prev_r5	\
count	33116.000000	33116.000000	33116.000000	33116.000000	33116.000000	
mean	57.650932	57.637520	57.634570	57.631384	57.625151	
std	100.020293	99.834763	99.784070	99.734307	99.636152	
min	0.011000	0.011000	0.011000	0.011000	0.011000	
25%	10.937500	11.007500	11.045000	11.040000	11.111000	
50%	30.270000	30.320000	30.320000	30.313334	30.319000	
75%	54.340000	54.340000	54.335000	54.336666	54.328000	
max	776.599976	776.599976	773.799988	770.036662	763.478003	
	prev_r10	prev_r15	prev_r25	prev_r40	v0pen	\
count	33116.000000	33116.000000	33116.000000	33116.000000	33116.000000	
mean	57.608467	57.590755	57.557355	57.505788	57.655950	
std	99.392219	99.143964	98.668996	97.983877	99.939926	
min	0.011200	0.011467	0.012200	0.012275	0.011000	
25%	11.131500	11.207667	11.433800	11.601563	11.000000	
50%	30.374500	30.423333	30.618000	30.815375	30.299999	
75%	54.333500	54.259167	54.133000	53.965500	54.369999	
max	756.831995	754.413330	754.352402	747.968002	784.500000	
	• • •	High_p40	Low_p40	Close_p40	r2_p40	\
count	• • •	33116.000000	33116.000000	33116.000000	33116.000000	
mean	• • •	1.003903	0.969174	0.986053	0.986247	
std	• • •	0.114326	0.110338	0.113037	0.109736	
min	• • •	0.375742	0.295510	0.343568	0.350964	
25%	• • •	0.954380	0.921143	0.936566	0.938189	
50%	• • •	1.006872	0.983364	0.994662	0.995022	
75%	• • •	1.051578	1.026764	1.039941	1.038682	
max	• • •	3.582875	2.254823	2.855776	2.779254	
	2 40	F 40	10 10	1F 10	05 40	,
	r3_p40 33116.000000	r5_p40 33116.000000	r10_p40 33116.000000	r15_p40 33116.000000	r25_p40 33116.000000	\
count	0.986453	0.986874	0.988081	0.989481	0.992811	
mean			0.988081	0.989481		
std	0.106759	0.101113			0.046771	
min	0.357857	0.371710	0.399461	0.440318	0.566140	

```
25%
           0.939784
                         0.942944
                                        0.950446
                                                      0.958205
                                                                    0.973870
50%
           0.995284
                         0.995688
                                        0.996419
                                                      0.996939
                                                                    0.998050
75%
                         1.035906
                                        1.030854
           1.037749
                                                      1.026081
                                                                     1.016421
                         2.095218
                                        1.732265
                                                      1.502319
           2.504456
                                                                     1.271795
max
            r40_p40
       33116.000000
count
mean
           0.999160
std
           0.004857
min
           0.965386
25%
           0.997213
50%
           0.999780
75%
           1.001645
max
           1.036849
[8 rows x 108 columns]
Plotting: BA
Plotting: HON
Plotting: MA
Plotting: TPLM
Plotting: SD
Plotting: FCEL
Plotting: CHK
Plotting: CMG
/Users/Gio/anaconda/lib/python3.5/site-packages/sklearn/metrics/classification.py:1113: Undefine
  'precision', 'predicted', average, warn_for)
```

CPU times: user 46.4 s, sys: 5.75 s, total: 52.1 s

Wall time: 2min 42s

0.0.20 Read all json in temp folder and append to result (used for multiprocessing)

0.0.21 Print Results of the models

	Adaboost	Accuracy	Adaboost Fscore	BA_Adaboost	\
0		0.687802	0.647832	14010.03	
1		0.853563	0.805866	16438.43	
2		0.687198	0.650150	13386.15	
3		0.889191	0.847062	16960.51	
4		0.891002	0.856818	16657.76	
5		0.687198	0.650150	13386.15	
6		0.890700	0.860514	16466.70	
7		0.808575	0.761511	15652.32	
8		0.564614	0.533326	10819.24	
9		0.621075	0.597002	13027.33	
10		0.808575	0.761511	15652.32	
11		0.808575	0.761511	15652.32	
12		0.564614	0.533326	10819.24	
13		0.853865	0.804029	16455.14	
14		0.621075	0.597002	13027.33	
15		0.853865	0.804029	16455.14	
16		0.621075	0.597002	13027.33	
17		0.687198	0.658004	13928.51	
18		0.853865	0.804029	16455.14	
19		0.853865	0.804029	16455.14	
20		0.621075	0.597002	13027.33	
21		0.887077	0.850144	17090.62	
22		0.687198	0.658004	13928.51	
23		0.687198	0.658004	13928.51	
24		0.887077	0.850144	17090.62	
25		0.887077	0.850144	17090.62	
26		0.887077	0.850144	17090.62	
27		0.687198	0.658004	13928.51	
28		0.525060	0.347277	10000.00	
29		0.766304	0.715252	14708.86	

90	0.846316	0.797931 1	6455.14
91	0.615942	0.589623 1	2839.41
92	0.884662	0.844267 1	7090.62
93	0.678744	0.641656 1	3550.79
94	0.678744	0.641656 1	3550.79
95	0.564614	0.533326 1	0819.24
96	0.523551	0.340272 1	0000.00
97	0.884964	0.843269 1	6721.16
98	0.884360	0.842980 1	6656.12
99	0.884964	0.843269 1	6721.16
100	0.677536	0.637333 1	3429.85
101	0.528684	0.343793 1	0000.00
102	0.763285	0.724312 1	4582.51
103	0.527174	0.356807 1	0000.00
104	0.528684	0.343793 1	0000.00
105	0.575785	0.548450 1	0966.00
106	0.808575	0.761511 1	5652.32
107	0.564614	0.533326 1	0819.24
108	0.767210	0.727584 1	4458.21
109	0.762983	0.709144 1	4834.16
110	0.807669	0.765459 1	5726.71
111	0.567331	0.536495 1	0970.40
112	0.807971	0.767944 1	5728.18
113	0.575785	0.548450 1	0966.00
114	0.628019	0.600945 1	3396.57
115	0.811594	0.773247 1	5990.51
116	0.631341	0.605814 1	2993.82
117	0.854167	0.808356 1	6438.43
118	0.851449		6544.40
119	0.628019	0.600945 1	3396.57
	BA_Adaboost_transactions	BA_DecisionTre	e BA_DecisionTree_transactions \
0	58	12436.2	
1	22	16191.3	5 32
2	52	12909.3	2 66
3	18	16417.4	3 28
4	16	16902.4	0 18
5	52	12909.3	2 66
6	18	16860.4	0 14
7	34	15130.0	6 50
8	28	11790.7	1 60
9	46	12133.3	4 58
10	34	15130.0	6 50
11	34	15130.0	6 50
12	28	11790.7	1 60
13	20	16124.3	1 30
14	46	12133.3	4 58

15	20	16124.31	30
16	46	12133.34	58
17	52	14435.33	64
18	20	16124.31	30
19	20	16124.31	30
20	46	12133.34	58
21	16	16830.42	20
22	52	14435.33	64
23	52	14435.33	64
24	16	16830.42	20
25	16	16830.42	20
26	16	16830.42	20
27	52	14435.33	64
28	0	12788.26	64
29	40	15974.41	48
		•••	
90	20	15291.05	34
91	48	11512.71	70
92	16	16442.51	30
93	60	11749.76	68
94	60	11749.76	68
95	28	11790.71	60
96	0	10802.09	50
97	20	17435.12	20
98	20	16511.07	24
99	20	17435.12	20
100	56	14880.55	54
101	0	10714.08	74
102	34	13752.63	52
103	0	10373.58	66
104	0	10714.08	74
105	30	11769.59	72
106	34	15130.06	50
107	28	11790.71	60
108	38	13298.70	52
109	40	13417.17	56
110	28	15760.05	44
111	30	11807.68	80
112	28	14731.20	42
113		11769.59	
114	30 58	12951.93	72 72
115	32	14669.48	42
116	58	11891.82	68
117	22	15971.00	32
118	18	16684.27	30
119	58	12951.93	72

		_		
0	16577.61	2	14193.64	58
1	16577.61	2	16793.74	20
2	16577.61	2	12316.68	62
3	16577.61	2	17037.26	14
4	16577.61	2	17123.13	14
5	16577.61	2	12316.68	62
6	16577.61	2	17123.13	14
7	16577.61	2	15691.99	34
8	10334.98	2	10326.56	10
9	16577.61	2	11038.13	56
10	16577.61	2	15691.99	34
11	16577.61	2	15691.99	34
12	10334.98	2	10326.56	10
13	16577.61	2	16444.62	20
14	16577.61	2	11038.13	56
15	16577.61	2	16444.62	20
16	16577.61	2	11038.13	56
17	16577.61	2	12829.09	62
18	16577.61	2	16444.62	20
19	16577.61	2	16444.62	20
20	16577.61	2	11038.13	56
21	16577.61	2	17020.63	14
22	16577.61	2	12829.09	62
23	16577.61	2	12829.09	62
24	16577.61	2	17020.63	14
25	16577.61	2	17020.63	14
26	16577.61	2	17020.63	14
27	16577.61	2	12829.09	62
28	10334.98	2	10000.00	0
29	16577.61	2	14355.48	42
• •	•••		• • •	
90	16577.61	2	16624.50	16
91	16577.61	2	11019.15	60
92	16577.61	2	17020.63	14
93	16577.61	2	14101.76	58
94	16577.61	2	14101.76	58
95	10334.98	2	10326.56	10
96	10334.98	2	10000.00	0
97	16577.61	2	17037.26	14
98	16577.61	2	17123.13	14
99	16577.61	2	17037.26	14
100	16577.61	2	12310.20	60
101	10334.98	2	10000.00	0
102	16577.61	2	14648.65	42
103	10334.98	2	10000.00	0
104	10334.98	2	10000.00	0
105	10334.98	2	10517.79	14
106	16577.61	2	15691.99	34

107	10334.98		2 10326.56	10
108	16577.61		2 14833.46	40
109	16577.61		2 14648.65	42
110	16577.61		2 15617.80	36
111	10334.98		2 10517.79	14
112	16577.61		2 15707.85	38
113	10334.98		2 10517.79	14
114	16577.61		2 11172.91	60
115	16577.61		2 16077.98	28
116	16577.61		2 11244.13	58
117	16577.61		2 16793.74	20
117	16577.61		2 16884.75	18
119	16577.61		2 11172.91	60
119	105//.01		2 11172.91	60
		target_ratio	total_Adaboost \	
0	•••	vr5	72031.89	
1	•••	vr25	75496.54	
2	•••	vr5	70617.86	
3	•••	vr40	76612.10	
	• • •			
4	• • •	vr40	77254.12	
5	• • •	vr5	70617.86	
6	• • •	vr40	76761.01	
7	• • •	vr15	81043.92	
8	• • •	vr2	59765.96	
9		vr3	66142.60	
10		vr15	81043.92	
11	• • •	vr15	81043.92	
12	• • •	vr2	59765.96	
13	• • •	vr25	75812.47	
14	• • •	vr3	66142.60	
15		vr25	75812.47	
16		vr3	66142.60	
17		vr5	71664.07	
18		vr25	75812.47	
19		vr25	75812.47	
20		vr3	66142.60	
21		vr40	77857.79	
22		vr5	71664.07	
23		vr5	71664.07	
24		vr40	77857.79	
25		vr40	77857.79	
26		vr40	77857.79	
27		vr5	71664.07	
28		vClose	83363.26	
29		vr10	72114.89	
90		vr25	75490.07	
91		vr3	66550.10	
J 1	• • •	VIO	33300.10	

92		vr40	77293.08	
93	• • •	vr	69477.77	
94	• • •	vr	69477.77	
95		vr	2 59765.96	
96		vClose	e 83892.83	
97		vr40	76747.22	
98		vr40	77169.35	
99		vr40	76747.22	
100		vr	5 71971.39	
101		vClose	e 86962.55	
102		vr10	71362.06	
103		vClose	e 80525.35	
104		vClose	e 86962.55	
105		vr2	2 60653.77	
106		vr1	5 81043.92	
107		vr	2 59765.96	
108		vr10	71935.62	
109	• • •	vr10	73162.54	
110	• • •	vr1	76210.15	
111	• • •	vr	2 60577.61	
112	• • •	vr1	79766.38	
113	• • •	vr	2 60653.77	
114	• • •	vr3	3 65545.02	
115	• • •	vr1	5 79227.53	
116	•••	vr3	3 66566.11	
117	• • •	vr2	5 75468.25	
118	•••	vr2	76107.41	
119		vr3	3 65545.02	
	total_Adaboost_t	ransactions	total_DecisionTree	\
0		436	73496.24	
1		218	77506.96	
2		408	74806.42	
3		166	76424.04	
4		158	74208.49	
5		408	74806.42	
6		160	79157.69	
7		264	78234.12	
8		550	68061.95	
9		524	79271.89	
10		264	78234.12	
11		264	78234.12	
12		550	68061.95	
13		214	75745.18	
14		524	79271.89	
15		214	75745.18	
16		524	79271.89	
17		406	72209.33	

```
18
                                214
                                                 75745.18
19
                                214
                                                 75745.18
20
                                524
                                                 79271.89
21
                                168
                                                 79960.76
22
                                406
                                                 72209.33
23
                                406
                                                 72209.33
24
                                168
                                                 79960.76
25
                                168
                                                 79960.76
26
                                168
                                                 79960.76
27
                                406
                                                 72209.33
28
                                128
                                                 77643.18
29
                                                 72970.45
                                326
                                . . .
. .
                                                 75482.47
90
                                208
91
                                526
                                                 72318.04
92
                                168
                                                 76291.39
93
                                440
                                                 69016.94
94
                                440
                                                 69016.94
95
                                550
                                                 68061.95
96
                                 80
                                                 74426.96
97
                                168
                                                 82063.68
98
                                168
                                                 74038.06
99
                                168
                                                 82063.68
100
                                424
                                                 77211.57
101
                                 78
                                                 88674.42
                                304
                                                 66784.54
102
103
                                106
                                                 76610.97
                                 78
104
                                                 88674.42
                                582
                                                 78112.62
105
106
                                264
                                                 78234.12
107
                                550
                                                 68061.95
108
                                322
                                                 77931.76
109
                                316
                                                 73779.01
110
                                258
                                                 73905.73
                                                 87892.70
111
                                580
112
                                258
                                                 76554.09
                                                 78112.62
113
                                582
114
                                536
                                                 67972.31
115
                                266
                                                 70404.53
116
                                512
                                                 78424.13
117
                                214
                                                 72801.83
                                                 78454.71
118
                                212
119
                                536
                                                 67972.31
     {\tt total\_DecisionTree\_transactions}
                                          total_GaussianNB
0
                                     540
                                                   69375.30
1
                                     272
                                                   73744.83
2
                                     538
                                                   69942.73
```

3	270	76606.62
4	230	76606.62
5	538	69942.73
6	230	76606.62
7	378	71651.71
8	642	62234.79
9	574	67110.88
		71651.71
10	378	
11	378	71651.71
12	642	62234.79
13	302	73744.83
14	574	67110.88
15	302	73744.83
16	574	67110.88
17	560	69893.21
18	302	73744.83
19	302	73744.83
20	574	67110.88
21	232	76386.58
22	560	69893.21
23	560	69893.21
24	232	76386.58
25	232	76386.58
26	232	76386.58
27	560	69893.21
28	618	71583.00
29	454	71372.60
• •		
90	314	74506.69
91	616	67954.58
92	260	73259.61
93	572	69301.98
94	572	69301.98
95	642	62234.79
96	592	71687.30
97	220	73645.78
98	218	76323.88
99	220	73645.78
100	560	69228.59
101	636	71762.17
102	482	71024.09
103	628	71422.87
104	636	71762.17
105	638	62438.38
106	378	71651.71
107	642	62234.79
108	428	71502.80
109	446	72286.02

110	37		71761.09	
111	63	4	61737.31	
112	34	6	72141.38	
113	63	8	62438.38	
114	62	6	66564.88	
115	38	4	72030.06	
116	61	2	67219.68	
117	28	6	73744.83	
118	28	8	73848.41	
119	62		66564.88	
	total_GaussianNB_transactions	total_NN	total_NN_transactions	\
0	124	70913.04	428	•
1	68	78494.64	208	
2	124	70437.85	436	
3	60	76987.90	162	
4	62	75660.41	162	
5	124	70437.85	436	
6	62	75532.20	168	
7		74075.27	276	
	88			
8	138	67412.39	426	
9	146	66547.47	482	
10	88	74075.27	276	
11	88	74075.27	276	
12	138	67412.39	426	
13	68	77505.77	208	
14	146	66547.47	482	
15	68	77505.77	208	
16	146	66547.47	482	
17	124	70046.18	438	
18	68	77505.77	208	
19	68	77505.77	208	
20	146	66547.47	482	
21	60	76505.30	160	
22	124	70046.18	438	
23	124	70046.18	438	
24	60	76505.30	160	
25	60	76505.30	160	
26	60	76505.30	160	
27	124	70046.18	438	
28	90	76350.15	52	
29	94	73366.95	324	
	•••			
90	68	78255.87	196	
91	136	67871.86	482	
92	62	76505.30	162	
93	122	71519.51	446	
94	122	71519.51	446	

9	5	138	67412.39	426
9	6	86	93475.52	40
9	7	64	76498.13	162
9	8	62	75732.33	166
9	9	64	76498.13	162
1	00	122	69339.79	438
1	01	90	91098.91	38
1	02	96	73231.91	334
1	03	86	90704.68	44
1	04	90	91098.91	38
1	05	138	67131.81	450
1	06	88	74075.27	276
1	07	138	67412.39	426
1	08	96	73232.51	318
1	09	96	72871.88	330
1	10	88	74208.37	278
1	11	142	69437.54	436
1	12	86	74127.82	284
1	13	138	67131.81	450
1	14	136	67803.96	488
1	15	88	78448.76	258
1	16	144	68393.86	488
1	17	68	77681.49	210
1	18	70	78530.02	204
1	19	136	67803.96	488

total_benchmark 0 74037.88 74037.88 1 2 74037.88 3 74037.88 4 74037.88 5 74037.88 6 74037.88 7 74037.88 8 74037.88 9 74037.88 74037.88 10 11 74037.88 12 74037.88 13 74037.88 14 74037.88 15 74037.88 74037.88 16 17 74037.88 74037.88 18 74037.88 19 20 74037.88

```
21
             74037.88
22
             74037.88
23
             74037.88
24
             74037.88
25
             74037.88
26
             74037.88
27
             74037.88
28
             74037.88
29
             74037.88
. .
                  . . .
90
             74037.88
             74037.88
91
92
             74037.88
93
             74037.88
94
             74037.88
95
             74037.88
96
             74037.88
97
             74037.88
98
             74037.88
99
             74037.88
100
             74037.88
             74037.88
101
102
             74037.88
103
             74037.88
104
             74037.88
             74037.88
105
106
             74037.88
107
             74037.88
             74037.88
108
109
             74037.88
110
             74037.88
111
             74037.88
112
             74037.88
113
             74037.88
             74037.88
114
115
             74037.88
             74037.88
116
117
             74037.88
118
             74037.88
             74037.88
119
```

[120 rows x 92 columns]

0.0.22 Add a column FinalValue per model. Which takes taxes and commissions into account

```
## Initialize params
benchmark = {'value':0, 'loss':0, 'gain':0, 'transactions':len(TESTING_TICKERS)*2.0}
decisiontree = {'value':0,'loss':0,'gain':0,'transactions':0}
gaussiannb = {'value':0,'loss':0,'gain':0,'transactions':0}
adaboost = {'value':0,'loss':0,'gain':0,'transactions':0}
svc = {'value':0,'loss':0,'gain':0,'transactions':0}
nn = {'value':0,'loss':0,'gain':0,'transactions':0}
#models_dict = {'benchmark':benchmark,'DecisionTree':decisiontree,\
                'GaussianNB':gaussiannb, 'Adaboost':adaboost, 'SVC':svc, 'NN':nn}
## No SVC model
models_dict = {'benchmark':benchmark,'DecisionTree':decisiontree,\
               'GaussianNB':gaussiannb,'Adaboost':adaboost, 'NN':nn}
## Gather each stock information
for tick in TESTING_TICKERS:
    ## update each models
    for key, model in models_dict.items():
        stock_value = row[tick+"_"+key]
        if stock_value > MONEY:
                                                         ## capital gain
            model['gain'] += stock_value-MONEY
        else:
                                                         ## loss
            model['loss'] += MONEY-stock_value
        if key != 'benchmark':
            model['transactions'] += row[tick+"_"+key+"_transactions"]
## Get Final Values
for key, model in models_dict.items():
    ## more gains than loss
    if model['gain'] > model['loss']:
        if key == 'benchmark':
            model['value'] = float(format(row['total_'+key] \
                                  - COMM_RATE*model['transactions'] \
                                  - GAIN_LONG*(model['gain']-model['loss']),'.2f'
        else:
            model['value'] = float(format(row['total_'+key] \
                                  - COMM_RATE*model['transactions'] \
                                  - GAIN_SHORT*(model['gain']-model['loss']),'.2f
    ## more loss than gain
    else:
        ## All model gains GAIN_LONG (assuming its on 25% tax bracket)
        model['value'] = float(format(row['total_'+key] - COMM_RATE*model['transa
                        + GAIN_LONG*(model['loss']-model['gain']),'.2f')) ## add
    result_df.set_value(index,key+"_FinalValue",model['value'])
```

In [23]: print(result_df) result_df.to_csv('Results.csv') ## can use parameters: mode='a', header=False, if me. Adaboost Accuracy Adaboost Fscore BA_Adaboost 0 0.687802 0.647832 14010.03 0.805866 1 0.853563 16438.43 2 0.687198 0.650150 13386.15 3 0.889191 16960.51 0.847062 4 0.856818 16657.76 0.891002 5 0.687198 0.650150 13386.15 6 0.860514 16466.70 0.890700 7 0.808575 0.761511 15652.32 8 0.564614 10819.24 0.533326 9 0.621075 0.597002 13027.33 10 0.808575 0.761511 15652.32 11 0.808575 0.761511 15652.32 12 0.564614 0.533326 10819.24 13 0.853865 0.804029 16455.14 14 0.621075 0.597002 13027.33 15 0.853865 0.804029 16455.14 16 0.621075 0.597002 13027.33 17 0.687198 0.658004 13928.51 18 0.853865 0.804029 16455.14 19 0.804029 16455.14 0.853865 20 0.621075 0.597002 13027.33 21 0.850144 17090.62 0.887077 22 0.687198 0.658004 13928.51 23 0.687198 0.658004 13928.51 24 0.887077 0.850144 17090.62 25 0.887077 0.850144 17090.62 26 0.887077 0.850144 17090.62 27 0.687198 0.658004 13928.51 28 0.525060 0.347277 10000.00 29 0.715252 14708.86 0.766304 . . 0.846316 90 0.797931 16455.14 91 0.615942 0.589623 12839.41 92 17090.62 0.884662 0.844267 93 0.678744 0.641656 13550.79 94 0.678744 0.641656 13550.79 95 0.564614 0.533326 10819.24 96 0.523551 0.340272 10000.00 97 0.884964 0.843269 16721.16

98

99

0.884360

0.884964

16656.12

16721.16

0.842980

0.843269

100	0.677536	0.637333	13429.85		
101	0.528684	0.343793	10000.00		
102	0.763285	0.724312	14582.51		
103	0.527174	0.356807	10000.00		
104	0.528684	0.343793	10000.00		
105	0.575785	0.548450	10966.00		
106	0.808575	0.761511	15652.32		
107	0.564614	0.533326	10819.24		
108	0.767210	0.727584	14458.21		
109	0.762983	0.709144	14834.16		
110	0.807669	0.765459	15726.71		
111	0.567331	0.536495	10970.40		
112	0.807971	0.767944	15728.18		
113	0.575785	0.548450	10966.00		
114	0.628019	0.600945	13396.57		
115	0.811594	0.773247	15990.51		
116	0.631341	0.605814	12993.82		
117	0.854167	0.808356	16438.43		
118	0.851449	0.803986	16544.40		
119	0.628019	0.600945	13396.57		
	${\tt BA_Adaboost_transactions}$	BA_DecisionT	ree BA_Decis	ionTree_transactions	\
0	58	12436	5.22	72	
1	22	16191		32	
2	52	12909		66	
3	18	16417		28	
4	16	16902		18	
5	52	12909		66	
6	18	16860		14	
7	34	15130		50	
8	28	11790		60	
9	46	12133		58	
10	34	15130		50	
11	34	15130		50	
12	28	11790		60	
13	20	16124		30	
14	46	12133		58	
15	20	16124		30	
16	46	12133		58	
17	52	14435		64	
18	20	16124		30	
19	20	16124		30	
20	46	12133		58	
21	16	16830		20	
22	52	14435		64	
23	52	14435		64	
24	16	16830		20	
25	16	16830	1.42	20	

26		16	16830.42		20	
27		52	14435.33		64	
28		0	12788.26		64	
29		40	15974.41		48	
90		20	15291.05		34	
91		48	11512.71		70	
92		16	16442.51		30	
93		60	11749.76		68	
94		60	11749.76		68	
95		28	11790.71		60	
96		0	10802.09		50	
97		20	17435.12		20	
98		20	16511.07		24	
99		20	17435.12		20	
100		56	14880.55		54	
101		0	10714.08		74	
		34	13752.63		52	
102						
103		0	10373.58		66	
104		0	10714.08		74	
105		30	11769.59		72	
106		34	15130.06		50	
107		28	11790.71		60	
108		38	13298.70		52	
109		40	13417.17		56	
110		28	15760.05		44	
111		30	11807.68		80	
112		28	14731.20		42	
113		30	11769.59		72	
114		58	12951.93		72	
115		32	14669.48		42	
116		58	11891.82		68	
117		22	15971.00		32	
118		18	16684.27		30	
119		58	12951.93		72	
•	-	BA_GaussianNB_		BA_NN	BA_NN_transactions	
0	16577.61		2	14193.64	58	
1	16577.61		2	16793.74	20	
2	16577.61		2	12316.68	62	
3	16577.61		2	17037.26	14	
4	16577.61		2	17123.13	14	
5	16577.61		2	12316.68	62	
6	16577.61		2	17123.13	14	
7	16577.61		2	15691.99	34	
8	10334.98		2	10326.56	10	
9	16577.61		2	11038.13	56	
10	16577.61		2	15691.99	34	

11	16577.61	2	15691.99	34
12	10334.98	2	10326.56	10
13	16577.61	2	16444.62	20
14	16577.61	2	11038.13	56
15	16577.61	2	16444.62	20
16	16577.61	2	11038.13	56
17	16577.61	2	12829.09	62
18	16577.61	2	16444.62	20
19	16577.61	2	16444.62	20
20	16577.61	2	11038.13	56
21	16577.61	2	17020.63	14
22	16577.61	2	12829.09	62
23	16577.61	2	12829.09	62
24	16577.61	2	17020.63	14
25	16577.61	2	17020.63	14
26	16577.61	2	17020.63	14
27	16577.61	2	12829.09	62
28	10334.98	2	10000.00	0
29	16577.61	2	14355.48	42
	• • • •			
90	16577.61	2	16624.50	16
91	16577.61	2	11019.15	60
92	16577.61	2	17020.63	14
93	16577.61	2	14101.76	58
94	16577.61	2	14101.76	58
95	10334.98	2	10326.56	10
96	10334.98	2	10000.00	0
97	16577.61	2	17037.26	14
98	16577.61	2	17123.13	14
99	16577.61	2	17037.26	14
100	16577.61	2	12310.20	60
101	10334.98	2	10000.00	0
102	16577.61	2	14648.65	42
103	10334.98	2	10000.00	0
104	10334.98	2	10000.00	0
105	10334.98	2	10517.79	14
106	16577.61	2	15691.99	34
107	10334.98	2	10326.56	10
108	16577.61	2	14833.46	40
109	16577.61	2	14648.65	42
110	16577.61	2	15617.80	36
111	10334.98	2	10517.79	14
112	16577.61	2	15707.85	38
113	10334.98	2	10517.79	14
114	16577.61	2	11172.91	60
115	16577.61	2	16077.98	28
116	16577.61	2	11244.13	58
117	16577.61	2	16793.74	20
T T (10011.01	2	10130.17	20

118	16577.61	2	16884.75	18
119	16577.61	2	11172.91	60
		total_GaussianNB	total_GaussianNB_tra	nsactions \
0		69375.30		124
1		73744.83		68
2		69942.73		124
3		76606.62		60
4		76606.62		62
5		69942.73		124
6		76606.62		62
7	•••	71651.71		88
8	•••	62234.79		138
9	•••	67110.88		146
10	•••	71651.71		88
11	•••	71651.71		88
12	• • •	62234.79		138
13	• • •	73744.83		68
	• • •			
14	• • •	67110.88		146
15	• • •	73744.83		68
16	• • •	67110.88		146
17	• • •	69893.21		124
18	• • •	73744.83		68
19		73744.83		68
20	• • •	67110.88		146
21		76386.58		60
22		69893.21		124
23		69893.21		124
24		76386.58		60
25		76386.58		60
26		76386.58		60
27		69893.21		124
28		71583.00		90
29		71372.60		94
90		74506.69		68
91		67954.58		136
92		73259.61		62
93		69301.98		122
94		69301.98		122
95		62234.79		138
96	• • •	71687.30		86
90 97	• • •	73645.78		64
98	• • •	76323.88		62
90 99	• • •	73645.78		64
	• • •			
100	• • •	69228.59		122
101	• • •	71762.17		90
102	• • •	71024.09		96

103			71422.87	86	
104		• • •	71762.17	90	
105		• • •	62438.38	138	
106		• • •	71651.71	88	
107		• • •	62234.79	138	
108			71502.80	96	
109			72286.02	96	
110			71761.09	88	
111			61737.31	142	
112			72141.38	86	
113		• • •	62438.38	138	
114			66564.88	136	
115			72030.06	88	
116			67219.68	144	
117			73744.83	68	
118			73848.41	70	
119		• • •	66564.88	136	
	total_NN	total_NN_transactions	total_benchmark	GaussianNB_FinalValue	\
0	70913.04	428	74037.88	70355.21	
1	78494.64	208	74037.88	74346.51	
2	70437.85	436	74037.88	70837.52	
3	76987.90	162	74037.88	76818.63	
4	75660.41	162	74037.88	76808.73	
5	70437.85	436	74037.88	70837.52	
6	75532.20	168	74037.88	76808.73	
7	74075.27	276	74037.88	72468.35	
8	67412.39	426	74037.88	64216.47	
9	66547.47	482	74037.88	68321.55	
10	74075.27	276	74037.88	72468.35	
11	74075.27	276	74037.88	72468.35	
12	67412.39	426	74037.88	64216.47	
13	77505.77	208	74037.88	74346.51	
14	66547.47	482	74037.88	68321.55	
15	77505.77	208	74037.88	74346.51	
16	66547.47	482	74037.88	68321.55	
17	70046.18	438	74037.88	70795.43	
18	77505.77	208	74037.88	74346.51	
19	77505.77	208	74037.88	74346.51	
20	66547.47	482	74037.88	68321.55	
21	76505.30	160	74037.88	76631.59	
22	70046.18	438	74037.88	70795.43	
23	70046.18	438	74037.88	70795.43	
24	76505.30	160	74037.88	76631.59	
25	76505.30	160	74037.88	76631.59	
26	76505.30	160	74037.88	76631.59	
27	70046.18	438	74037.88	70795.43	
28	76350.15	52	74037.88	72400.05	

20	72266 OF	204	74027 00		70001 41
29	73366.95	324	74037.88		72201.41
	70055 07	106	74027 00		74004 00
90	78255.87	196	74037.88		74994.09
91	67871.86	482	74037.88		69088.19
92	76505.30	162	74037.88		73963.77
93	71519.51	446	74037.88		70302.78
94	71519.51	446	74037.88		70302.78
95	67412.39	426	74037.88		64216.47
96	93475.52	40	74037.88		72508.51
97	76498.13	162	74037.88		74282.11
98	75732.33	166	74037.88		76568.40
99	76498.13	162	74037.88		74282.11
100	69339.79	438	74037.88		70240.40
101	91098.91	38	74037.88		72552.34
102	73231.91	334	74037.88		71895.28
103	90704.68	44	74037.88		72283.74
104	91098.91	38	74037.88		72552.34
105	67131.81	450	74037.88		64389.52
106	74075.27	276	74037.88		72468.35
107	67412.39	426	74037.88		64216.47
108	73232.51	318	74037.88		72302.18
109	72871.88	330	74037.88		72967.92
110	74208.37	278	74037.88		72561.33
111	69437.54	436	74037.88		63773.81
112	74127.82	284	74037.88		72894.47
113	67131.81	450	74037.88		64389.52
114	67803.96	488	74037.88		67906.95
115	78448.76	258	74037.88		72789.95
116	68393.86	488	74037.88		68423.93
117	77681.49	210	74037.88		74346.51
118	78530.02	204	74037.88		74424.65
119	67803.96	488	74037.88		67906.95
	benchmark_FinalValue	NN_FinalValue	Adaboost_FinalValue	\	
0	74853.0	70157.48	71068.91		
1	74853.0	77690.84	75092.96		
2	74853.0	69713.97	70005.58		
3	74853.0	76637.82	76298.59		
4	74853.0	75509.45	76883.90		
5	74853.0	69713.97	70005.58		
6	74853.0	75370.77	76454.86		
7	74853.0	73597.78	79476.14		
8	74853.0	67191.83	60078.57		
9	74853.0	66179.45	65627.41		
10	74853.0	73597.78	79476.14		
11	74853.0	73597.78	79476.14		
12	74853.0	67191.83	60078.57		
13	74853.0	76850.30	75381.30		
13	74003.0	10000.30	15561.30		

14	74853.0	66179.45	65627.41
15	74853.0	76850.30	75381.30
16	74853.0	66179.45	65627.41
17	74853.0	69371.15	70904.76
18	74853.0	76850.30	75381.30
19	74853.0	76850.30	75381.30
20	74853.0	66179.45	65627.41
21	74853.0	76237.51	77347.52
22	74853.0	69371.15	70904.76
23	74853.0	69371.15	70904.76
24	74853.0	76237.51	77347.52
25	74853.0	76237.51	77347.52
26	74853.0	76237.51	77347.52
27	74853.0	69371.15	70904.76
28	74853.0	76640.23	81888.85
29	74853.0	72758.11	71683.96
90	74853.0	77547.29	75136.96
91	74853.0	67305.18	65963.89
92	74853.0	76227.61	76867.52
93	74853.0	70583.88	68878.10
94	74853.0	70583.88	68878.10
95	74853.0	67191.83	60078.57
96	74853.0	89908.64	82523.62
97	74853.0	76221.51	76403.54
98	74853.0	75550.78	76762.35
99	74853.0	76221.51	76403.54
100	74853.0	68770.72	71076.88
101	74853.0	88136.08	84835.81
102	74853.0	72593.82	71152.95
103	74853.0	87810.71	79869.31
104	74853.0	88136.08	84835.81
105	74853.0	66834.54	60674.80
106	74853.0	73597.78	79476.14
107	74853.0	67191.83	60078.57
108	74853.0	72673.53	71551.38
109	74853.0	72307.60	72623.96
110	74853.0	73701.01	75501.53
111	74853.0	68863.71	60619.97
112	74853.0	73602.85	78524.32
113	74853.0	66834.54	60674.80
114	74853.0	67217.77	65060.07
115	74853.0	77404.35	78026.70
116	74853.0	67719.18	66046.79
117	74853.0	76989.77	75088.71
118	74853.0	77740.72	75641.90
119	74853.0	67217.77	65060.07

_	DecisionTree_FinalValue
0	71798.80
1	76534.52
2	72922.36
3	75623.93
4	73938.72
5	72922.36
6	78145.54
7	76627.90
8	66674.76
9	76539.81
10	76627.90
11	76627.90
12	66674.76
13	74888.50
14	76539.81
15	74888.50
16	76539.81
17	70605.93
18	74888.50
19	74888.50
20	76539.81
21	78818.25
22	70605.93
23	70605.93
24	78818.25
25	78818.25
26	78818.25
27	70605.93
28	74937.60
29	71777.58
90	74605.80
91	70421.13
92	75560.68
93	67833.00
94	67833.00
95	66674.76
96	72332.52
97	80458.76
98	73853.25
99	80458.76
100	74857.83
101	83357.62
102	66380.96
103	74010.72
104	83357.62
105	75237.63

```
106
                     76627.90
107
                     66674.76
108
                     76123.40
                     72504.46
109
110
                     72968.57
                     82781.22
111
112
                     75358.28
113
                     75237.63
                     66677.76
114
115
                     69943.05
116
                     75631.11
117
                     72465.86
                     77260.90
118
119
                     66677.76
```

[120 rows x 97 columns]

0.0.23 Get the top performing model of each model

```
In [24]: max benchmark FinalValue = result df['benchmark FinalValue'].iloc[0]
         max_NN_FinalValue = 0
         max_GaussianNB_FinalValue = 0
         max_Adaboost_FinalValue = 0
         max_DecisionTree_FinalValue = 0
         max_SVC_FinalValue = 0
         row_benchmark = result_df.iloc[0]
         row_NN = None
         row GaussianNB = None
         row_Adaboost = None
         row_DecisionTree = None
         row_SVC = None
         for index, row in result_df.iterrows():
             if row['NN FinalValue'] > max NN FinalValue:
                 row_NN = copy.deepcopy(row)
                 max_NN_FinalValue = row['NN_FinalValue']
             if row['GaussianNB_FinalValue'] > max_GaussianNB_FinalValue:
                 row_GaussianNB = copy.deepcopy(row)
                 max_GaussianNB_FinalValue = row['GaussianNB_FinalValue']
             if row['Adaboost_FinalValue'] > max_Adaboost_FinalValue:
                 row_Adaboost = copy.deepcopy(row)
                 max_Adaboost_FinalValue = row['Adaboost_FinalValue']
             if row['DecisionTree_FinalValue'] > max_DecisionTree_FinalValue:
```

```
row_DecisionTree = copy.deepcopy(row)
                 max_DecisionTree_FinalValue = row['DecisionTree_FinalValue']
             #if row['SVC_FinalValue'] > max_SVC_FinalValue:
                  row SVC = copy.deepcopy(row)
                  max SVC FinalValue = row['SVC FinalValue']
         print("benchmark FinalValue: {}".format(max_benchmark_FinalValue))
         print("Max NN FinalValue: {}".format(max_NN_FinalValue))
         print("Max GaussianNB FinalValue: {}".format(max_GaussianNB_FinalValue))
         print("Max Adaboost FinalValue: {}".format(max Adaboost FinalValue))
         print("Max DecisionTree FinalValue: {}".format(max DecisionTree FinalValue))
         #print("Max SVC FinalValue: {}".format(max_SVC_FinalValue))
benchmark FinalValue: 74853.0
Max NN FinalValue: 90873.81
Max GaussianNB FinalValue: 76818.63
Max Adaboost FinalValue: 84835.81
Max DecisionTree FinalValue: 83357.62
```

0.0.24 Get summary of the top models

```
In [25]: #model_list = [('benchmark', row_benchmark), ('NN', row_NN), ('GaussianNB', row_GaussianNB
                                                                                      ('SVC', row SVC), ('Adaboost', row Adaboost), ('DecisionTree', row Decisio
                               ## No SVC
                               model_list = [('benchmark',row_benchmark),('NN',row_NN),('GaussianNB',row_GaussianNB)
                                                                                   ('Adaboost',row_Adaboost),('DecisionTree',row_DecisionTree)]
                              best_model = None
                              best_model_val = 0
                              for name, model in model list:
                                             ## Get all data relevant to each model
                                            for index name in model.index:
                                                          if name not in index_name and index_name not in ["sell_below", "buy_above", "tagetter in the content of the con
                                                          #if name not in index_name:
                                                                       del model[index_name]
                                            print("\n{} Data: \n{}".format(name,model))
                                            if model[name+"_FinalValue"] > best_model_val:
                                                          best_model_val = model[name+"_FinalValue"]
                                                         best_model = name + "_" + model["target_ratio"] + "_" + str(model["sell_below
                                                                                                                        + " " + str(model["buy_above"])
```

benchmark Data:

18139.2	
9749.5	
8140.79	
2896.68	
11879.7	
1	
vr5	
, 1000	
10000	
0	
10000	
_	
_	
•	
50015.0	
	9749.5 8140.79 2896.68 11879.7 13322.6 8545.85 1363.63 1.01 1 vr5 74037.9 74853

GaussianNB Data:

BA_GaussianNB	16577.6
BA_GaussianNB_transactions	2
CHK_GaussianNB	10001.8
CHK_GaussianNB_transactions	14
CMG_GaussianNB	8169.4

CMG_GaussianNB_transactions	6
FCEL_GaussianNB	9371.85
FCEL_GaussianNB_transactions	8
GaussianNB Accuracy	0.521135
GaussianNB Fscore	0.754801
HON_GaussianNB	10430.8
HON_GaussianNB_transactions	2
MA_GaussianNB	10216.5
_	
$ t MA_Gaussian t NB_transactions$	2
SD_GaussianNB	8904.41
SD_GaussianNB_transactions	6
TPLM_GaussianNB	2934.24
-	
TPLM_GaussianNB_transactions	20
buy_above	1.01
sell_below	1
target_ratio	vr40
total_GaussianNB	76606.6
-	
total_GaussianNB_transactions	60
${\tt GaussianNB_FinalValue}$	76818.6
Name: 3, dtype: object	
Adaboost Data:	
	0 500004
Adaboost Accuracy	0.528684
Adaboost Fscore	0.343793
BA_Adaboost	10000
BA_Adaboost_transactions	0
CHK_Adaboost	9833.75
_	
CHK_Adaboost_transactions	14
CMG_Adaboost	10000
CMG_Adaboost_transactions	0
FCEL_Adaboost	14118.2
FCEL_Adaboost_transactions	36
HON_Adaboost	10000
<pre>HON_Adaboost_transactions</pre>	0
MA_Adaboost	10000
MA_Adaboost_transactions	0
SD Adaboost	9588.21
-	
SD_Adaboost_transactions	2
TPLM_Adaboost	13422.4
TPLM_Adaboost_transactions	26
buy_above	1.01
sell_below	1.005
_	
target_ratio	vClose
total_Adaboost	86962.6
total_Adaboost_transactions	78
Adaboost_FinalValue	84835.8
Name: 101, dtype: object	
name. 101, attype. object	

```
DecisionTree Data:
BA_DecisionTree
                                     10714.1
BA_DecisionTree_transactions
                                          74
CHK_DecisionTree
                                     10049.8
CHK DecisionTree transactions
                                         114
CMG DecisionTree
                                     9551.77
CMG DecisionTree transactions
                                          86
DecisionTree Accuracy
                                   0.944746
DecisionTree Fscore
                                   0.944735
FCEL DecisionTree
                                     5306.21
FCEL_DecisionTree_transactions
                                         102
HON_DecisionTree
                                     10574.8
HON_DecisionTree_transactions
                                          54
MA_DecisionTree
                                       11038
MA_DecisionTree_transactions
                                          44
SD_DecisionTree
                                     9046.95
SD_DecisionTree_transactions
                                          58
TPLM_DecisionTree
                                     22392.7
TPLM_DecisionTree_transactions
                                         104
buy above
                                        1.01
sell_below
                                       1.005
target ratio
                                      vClose
total_DecisionTree
                                     88674.4
total DecisionTree transactions
                                         636
DecisionTree_FinalValue
                                     83357.6
Name: 101, dtype: object
```

0.0.25 Graph model's score

```
In [26]: accuracies = []
    fscores = []
    names = []

for name, model in model_list:
    if name != "benchmark":
        accuracies.append(model[name+" Accuracy"])
        fscores.append(model[name+" Fscore"])
        names.append(name)

n_groups = len(model_list) - 1 ## subtract benchmark

## create plot
fig, ax = plt.subplots()
index = np.arange(n_groups)
bar_width = 0.35
```

```
opacity = 0.8

# Bar features

rects1 = plt.bar(index, accuracies, bar_width,alpha=opacity,label="Accuracy")

rects2 = plt.bar(index+bar_width, fscores, bar_width,alpha=opacity,label="Fscore")

## Labels

plt.xlabel('Models')

plt.ylabel('Score')

plt.title('Models Accuracy and Fscore')

plt.xticks(index + bar_width, names)

plt.legend()

plt.tight_layout()

plt.show()

fig.savefig("figures/Scores.svg", format='svg', dpi=1200)
```

Models Accuracy and Fscore

0.0.26 Graph each stocks performance of the best optimal model

```
In [27]: print(best_model)
NN_vClose_1.01_1.01
```

```
In [28]: graph_data = []
         ## Get test data that used best model
         filelist = glob.glob("model_predictions/*")
         for f in filelist:
             if best_model+".csv" in f:
                 graph_data.append(f)
         print(graph_data)
['model_predictions/BA_NN_vClose_1.01_1.01.csv', 'model_predictions/CHK_NN_vClose_1.01_1.01.cs
In [29]: def plot_data(f,df):
             remove = len("model_predictions/")
             file = f[remove:]
             tick = file.split('_')[0]
             fig = plt.figure()
             ## Top plot
             df0 = pd.DataFrame.from_csv("testing_data/"+tick+"_processed.csv")
             price = df0['vClose']
             ax1 = fig.add_subplot(2,1,1)
             ax1.plot(price.index,price,label='Stock Price',color='b')
             ax1.legend()
             ## Bottom plot
             money = df['Money']
             ax2 = fig.add_subplot(2,1,2)
             ax2.plot(money.index,money,label='Invested 10k',color='g')
             ax2.set_xlabel('Date')
             ax2.legend()
             fig.text(0.00, 0.5, 'Dollar Value ($)', va='center', rotation='vertical')
             plt.suptitle(file)
             plt.show()
             #fig.savefig("figures/"+file+'.png')
             fig.savefig("figures/"+file+'.svg', format='svg', dpi=1200)
             plt.close(fig)
         for f in graph_data:
             df = pd.DataFrame.from_csv(f)
             plot_data(f,df)
```

BA_NN_vClose_1.01_1.01.csv

FCEL_NN_vClose_1.01_1.01.csv

MA_NN_vClose_1.01_1.01.csv

SD_NN_vClose_1.01_1.01.csv

0.0.27 Helper function for create bar graph

```
In [30]: def bar_graph(graph_data,number_of_groups, filename, xlabel, title, xticks):
             n_groups = number_of_groups
             ## create plot
             fig, ax = plt.subplots()
             index = np.arange(n_groups)
             bar_width = 0.167 ## each bar need 100%. There are 5 models plus the space, so
             opacity = 0.8
             # Bar features
             rects = {}
             pos = 0
             for k, v in graph_data.items():
                 ## pos moves the bar through x-axis
                 rects[k] = plt.bar(index+pos, v, bar_width,alpha=opacity,label=k)
                 pos += bar_width
             ## Labels
             plt.xlabel(xlabel)
             plt.ylabel('Value')
             plt.title(title)
             plt.xticks(index + bar_width, xticks)
             plt.legend()
             plt.tight_layout()
             plt.show()
             fig.savefig("figures/"+filename+".svg", format='svg', dpi=1200)
0.0.28 Gather data of each stock for each optimal models
In [31]: graph_data = {}
         for name, model in model_list:
```

```
graph_data[name] = []
for tick in TESTING_TICKERS:
    for name, model in model_list:
        for index_name in model.index:
            ## Get data about that ticker
            if tick in index_name and 'transactions' not in index_name:
                graph_data[name].append(model[index_name])
```

```
print(graph_data)
```

 $\{'NN': [10000.0, 10000.0, 10000.0, 25402.84, 10000.0, 9465.17, 10000.0, 10000.0], 'benchmark': [10000.0, 10000.0, 10000.0, 10000.0], 'benchmark': [10000.0, 10000.0, 10000.0], 'benchmark': [10000.0, 10000.0, 10000.0], 'benchmark': [10000.0, 10000.0, 10000.0], 'benchmark': [10000.0, 10000.0], 'benchmark': [10000.0], 'bench$

0.0.29 Graph Models

0.0.30 Gather data of each optimal models

```
In [33]: graph_data = {}

    for name, model in model_list:
        graph_data[name] = []

    tick = 'FinalValue'
    for name, model in model_list:
        for index_name in model.index:
```

0.0.31 Graph Total Final Value of the optimal models

Get data about that ticker

Portfolios Peformance

