

3. 결정 나무

1 모델 구조와 작동 과정

•

모델 구조와 작동 과정

모델 구조

결정 나무는 이름에서 알 수 있듯이 그 구조가 나무 구조(tree-structured)인 분류 및 회귀 모델입니다.

- 잎 노드를 제외한 모든 노드는 가지를 통해 두 개의 노드로 분지됨
- 각 가지에는 노드를 분리하는 조건이 있고 각 노드에는 해당 조건을 만족하는 학습 샘플이 포함됨
- 더 이상 분지되지 않는 최하위 노드인 잎 노드에 속한 학습 샘플을 바탕으로 라벨에 대한 예측을 수행함

작동 과정

•

모델 구조와 작동 과정

결정 나무는 이름에서 알 수 있듯이 그 구조가 나무 구조(tree-structured)인 분류 및 회귀 모델입니다.

- 각 노드에 있는 튜플은 (y=O인 샘플 수, y=1인 샘플 수)를 나타냄
 (예) 뿌리 노드의 (100, 50)은 y=O인 샘플이 100개, y=1인 샘플이 50개 있다는 의미
- 각 잎 노드에 도달하는 경로
- $(0,40): (x_1 > 10)$
- (60,0): $(x_1 \le 10) \& (x_2 \le 5)$
- \blacktriangleright (40, 2): $(x_1 \le 10) \& (x_2 > 5) \& (x_3 > 10)$
- (0,8): $(x_1 \le 10) & (x_2 > 5) & (x_3 \le 10)$
- x_1 이 10보다 작거나 같고 x_2 가 5보다 작거나 같은 샘플은 (60, 0)이라는 잎 노드에 도달하므로 y = 0이라 예측함

수직/수평 공간 분할

결정 나무는 데이터 공간을 수직이나 수평으로만 분할하는 특성이 있습니다.

수직이나 수평으로만 분리하는 이유는 각 가지에 부여된 조건의 구조가 특징 x랑 상수 c를 비교하는 x≤c의 구조이기 때문

결정 나무는 데이터 공간을 비선형적으로 분리할 수 없어, 기존 특징을 변환하거나 새로운 특징을 생성해야 함

높은 설명력

결정 나무는 모델의 작동 과정을 IF – THEN 규칙 집합 형태로 손쉽게 설명할 수 있으며, 규칙의 근거 샘플 수와 정확도도 알 수 있습니다.

이러한 설명력 덕분에 결정 나무는 대출 연체 여부 예측 등 설명력이 필요한 과제에 많이 사용함심지어는 지도 학습 과제가 아니라 특정한 이벤트의 발생 조건을 판단하는 데도 사용함

이진화

2 모델 특성

결정 나무는 모든 종류의 특징을 이진화합니다.

연속형 특징 x에 대해서도 c보다 작거나 같은 지만 판단하므로, x를 사용한 것과 $x \leq c$ 인지를 나타내는 이진형 특징을 사용한 것과 같은 효과를 냄

연속형 특징이 가진 정보가 거의 무시된다는 문제가 있음

특징이 모두 이진화되기 때문에 다른 모델에 비해 전처리가 가장 적게 필요함

- 스케일링 전에는 $x \le c$ 라는 조건이 스케일링 후에는 $\tilde{x} \le \tilde{c}$ 로 스케일만 바뀌므로 스케일링할 필요가 없음
- 더미화를 하지 않더라도 x == c라는 형태의 조건을 통해 더미화를 한 것처럼 모델이 작동함
- 결측을 따로 대체하지 않더라도 결측 자체를 값으로 간주하여 x == nan이라는 형태의 질문을 만들 수도 있습니다

깊이

깊이가 깊어질수록 가지가 많아 데이터 공간이 더 잘게 쪼개지므로, 깊이와 복잡도는 정비례한다고 할 수 있습니다.

- 결정 나무의 모델 복잡도는 깊이로 결정된다고 하더라도 과언이 아님
- 사이킷런에는 max_depth, min_samples_leaf, min_impurity_decrease 등 복잡도와 관련된 다양한 하이퍼 파라미터가 있으나 모두 깊이를 결정하기 위한 것임

클래스 가중치

주요 하이퍼 파라미터

클래스 가중치를 설정함으로써 비용 민감 모델로 변환할 수 있음

$$\hat{y} = egin{cases} 1, & \text{if } w_1 n_1 > w_0 n_0 \\ 0, & otherwise \end{cases}$$
• $w_1: n_1$ 에 대한 가중치 (보통 클래스 불균형 비율로 설정)
• $w_0: n_0$ 에 대한 가중치 (보통 1로 설정)

분지 기준

3 주요 하이퍼 파라미터

분지 기준에 따른 모델의 성능은 큰 차이가 없다고 알려져 있습니다.

결정 나무의 학습은 각 노드의 불순도(impurity)를 최소화하는 조건을 찾아 노드를 분지하는 것이라 할 수 있음

불순도란 각 노드에 속한 라벨의 편차라고 할 수 있음

- (분류) 라벨이 한 클래스의 값을 주로 가질 때 불순도가 낮음
- (회귀) 라벨의 표준편차가 작을 때 불순도가 낮음

불순도를 측정하는 척도로 엔트로피와 지니 지수 등이 있으나, 측정 방법에 따른 모델의 성능은 큰 차이가 없다고 알려져 있음

• 대표적인 하이퍼 파라미터지만 측정 방법에 따른 성능 차이가 크지 않아 하이퍼 파라미터 튜닝 대상에 포함할 필요가 없음

예제 데이터 불러오기

4. 사이킷런 실습

결정 나무를 학습할 예제 데이터를 불러옵니다.

예제 데이터 불러오기

- 1 import pandas as pd
- 2 **from** sklearn.model_selection **import** train_test_split
- 3 df = pd.read_csv("../../data/classification/glass6.csv")
- 4 X = df.drop('y', axis = 1)
- 5 y = df['y']
- 6 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 2022)

모델 학습

결정 나무는 tree 모듈의 DecisionTreeClassifier와 DecisionTreeRegressor 클래스를 이용해 구현할 수 있습니다.

주요 인자

인자	설명 - 설명	기본 값
max_depth	최대 깊이	None 1)
min_samples_split	노드를 분지할 수 있는 노드 내 최소 샘플 수	2
class_weight	클래스 가중치로 키가 클래스 값이 가중치인 사전	None ²⁾

결정 나무 모델 학습 예제

- 1 **from** sklearn.tree **import** DecisionTreeClassifier **as** DTC
- 2 **from** sklearn.metrics **import** *
- 3 model = DTC(random_state = 2022).fit(X_train, y_train)
- 4 y_pred = model.predict(X_test)
- 5 acc = accuracy_score(y_test, y_pred)
- 6 rec = recall_score(y_test, y_pred)
- 7 print(acc, rec)

• **라인 3:** 결정 나무를 분지할 때 모든 조건을 탐색하지 않고 임의로 일부만 탐색하므로 실행시마다 결과가 달라질 수 있습니다. 이를 방지하기 위해서 씨드를 고정했습니다.

¹⁾ 기본 값으로 설정되면 잎 노드에 min_samples_split보다 작은 샘플 수가 포함될 때까지 분지하여 최대 깊이까지 학습합니다.

²⁾ 기본 값으로 설정되면 각 클래스에 대한 가중치를 모두 1로 설정합니다.

전처리의 불필요 확인

앞서 설명한대로 스케일링할 필요가 없는지를 확인해보겠습니다.

전처리의 불필요성 확인 예제

- 1 from sklearn.preprocessing import MinMaxScaler
- 2 scaler = MinMaxScaler().fit(X_train)
- 3 Z_train = scaler.transform(X_train)
- 4 Z_test = scaler.transform(X_test)
- 5 model2 = DTC(random_state = 2022).fit(Z_train, y_train)
- 6 y_pred = model2.predict(X_test)
- 7 acc = accuracy_score(y_test, y_pred)
- 8 rec = recall_score(y_test, y_pred)
- 9 print(acc, rec)

0.8888888888888888 0.5454545454545454 • 예상한 바와 같이 완벽히 같은 결과가 나옴

클래스 가중치 설정

4 사이킷런 실습

클래스 가중치를 설정해서 비용 민감 모델을 학습하겠습니다.

클래스 불균형 비율 계산 예제

- 1 num_majority_sample = y_train.value_counts().iloc[0]
- 2 num_minority_sample = y_train.value_counts().iloc[-1]
- 3 class_imbalance_ratio = num_majority_sample / num_minority_sample
- 4 print(class_imbalance_ratio)

- **라인 1:** value_counts 메서드를 이용해 다수 클래스 샘플 수를 계산합니다. value_counts 메서드는 시 리즈 요소의 출현 빈도를 내림차순으로 정렬하므로 0번째에 나오는 값이 다수 클래스의 샘플 수가 됩니다.
- 라인 2: 라인 1과 비슷한 방법으로 소수 클래스 샘플 수를 계산했습니다.
- 라인 3: 다수 클래스 샘플 수를 소수 클래스 샘플 수로 나눠 클래스 불균형 비율을 계산했습니다.

8.352941176470589

클래스 가중치 적용 예제

- 1 model3 = DTC(random_state = 2022, class_weight = {0:1, 1:class_imbalance_ratio}).fit(X_train, y_train)
- 2 y_pred = model3.predict(X_test)
- 3 acc = accuracy_score(y_test, y_pred)
- 4 rec = recall_score(y_test, y_pred)
- 5 print(acc, rec)

• **라인 1:** 클래스 0의 가중치를 1로, 클래스 1의 가중치를 class_imbalance_ratio로 설정했습니다.

- 성능에 전혀 변화가 없음
- 가중치를 더 크게 부여해야 함

클래스 가중치 설정 (계속)

4. 사이킷런 실습

클래스 가중치를 설정해서 비용 민감 모델을 학습하겠습니다.

클래스 가중치 적용 예제

- 1 model4 = DTC(class_weight = {0:1, 1:class_imbalance_ratio * 100}).fit(X_train, y_train)
- 2 y_pred = model4.predict(X_test)
- 3 acc = accuracy_score(y_test, y_pred)
- 4 rec = recall_score(y_test, y_pred)
- 5 print(acc, rec)

• 재현율과 정확도가 모두 올랐음

0.9259259259259 0.6363636363636364

- 이는 소수 클래스의 결정 공간이 확장할 때 주로 발생하는 다수 클래스의 오 분류가 발생하지 않았기 때문
- 그러나 일반적으로는 소수 클래스에 대한 가중치를 크게 설정할수록 정확도는 떨어지고 재현율은 올라감

모델 해석: export_text 함수

export_text 함수는 학습한 결정 나무의 구조를 문자열로 시각화합니다.

주요 인자

인자	설명
decision_tree	학습된 결정 나무
feature_names	결정 나무 학습 당시 사용했던 특징 이름 리스트

export_text 함수 사용 예시

- 1 **from** sklearn.tree **import** export_text
- 2 r = export_text(model, feature_names=list(X_train.columns))
- 3 print(r)

• x8 <= 0.40이고 x5 <= 74.86이면 클래스를 0으로 분류하고, x8 <= 0.40이고 x5 > 74.86이고 x6 > 1.35라면 클래스를 1로 분류

모델 해석:

plot_tree 함수

4. 사이킷런 실습

plot_tree 함수는 학습한 결정 나무의 구조를 그래프로 시각화합니다.

주요 인자

인자	설명
decision_tree	학습된 결정 나무
feature_names	결정 나무 학습 당시 사용했던 특징 이름 리스트
class_names	결정 나무 학습 당시 사용했던 클래스 이름 리스트

모델 해석: plot_tree 함수 (계속)

plot_tree 함수는 학습한 결정 나무의 구조를 그래프로 시각화합니다.

plot_tree 함수 사용 예시

- 1 **from** sklearn.tree **import** plot_tree
- 2 **from** matplotlib **import** pyplot **as** plt
- 3 plt.figure(figsize = (10, 8))
- 4 plot_tree(model, feature_names=list(X_train.columns), class_names = ["0", "1"])
- 5 plt.show()

• 라인 2 – 3: matplotlib의 pyplot을 이용해 그래프의 크기를 (10, 8)로 설정했습니다. 그래프 크기를 설정하지 않으면 시각화한 결정 나무의 노드가 서로 겹치는 현상이 발생할 수 있습니다.

• 사각형은 노드를 나타내며, 노드 안에 있는 값은 순서대로 규칙, 지니 계수, 해당 노드에 속하는 샘플수, 각 클래스에 속하는 샘플수, 예측값

(예시) 가장 왼쪽에 있는 노드는 샘플이 138개가 있으며, 이 가운데 클래스 0에 속하는 샘플은 138개, 1에 속하는 샘플은 0개이므로 클래스 0으로 예측하는 노드

모델 해석 심화: 규칙 추출

깊이가 깊을수록 그래프를 이용한 시각화 결과를 해석하기 어려워, 결정 나무를 규칙 집합 형태로 변환하는 것이 필요합니다.

text_to_rule_list 함수: code/03. 주요 지도 학습 모델 / 3. 결정 나무.ipynb 참고

- 라인 2 3: r을 구성하는 노드 목록 node_list를 초기화합니다. 잎 노드를 기준으로 규칙을 추출하기 위해 잎 노드 목록 leaf_node_list도 따로 정의합니다.
- 라인 5: r을 줄 바꿈 기호로 나눈 뒤 i는 인덱스를 node로 값을 순회합니다. 예를 들어, 처음으로 순회하는 값은 i = 0, node = '|--- x8 <= 0.40'입니다.
- 라인 6 7: node를 –로 나눈 리스트(예: ["|", x8 <= 0.40]) 에서 뒤에 있는 값을 rule에 저장하고, 들여쓰기 수준을 indent에 저장합니다. 참고로 export_text 함수의 들여쓰기 수준은 3입니다.
- 라인 8 9: rule에 "class"라는 문자가 포함되면 leaf_node_list에 [i, rule, indent]로 구성된 리스트를 추가합니다.
- **라인 11**: node_list에도 [i, rule, indent]로 구성된 리스트를 추가합니다.
- 라인 13: 출력할 규칙 집합을 초기화합니다.
- 라인 14 23: 잎 노드 목록에 속한 모든 잎 노드에 대해, 해당 잎 노드보다 위에 있는 잎 노드가 아닌 노드 가운데 들여쓰기 수준이 적은 가장 가까운 노드를 순서대로 추가합니다.
- 라인 15 16: 규칙을 초기화하고 leaf_node의 요소를 튜플로 받습니다. 이때, 1번째 위치에 있는 값은 "class: 0"과 같이 결정과 관련된 부분이므로 decision이라는 변수에 저장합니다.
- 라인 17 18: indent_level은 [indent-1, indent-2, ···, 0]을 node_idx는 [idx, idx-1, idx-2, ···, 0]을 순회하도록 합니다. 이는 노드의 부모 노드를 찾기 위한 것으로, export_text 함수의 출력 특성상 한 노드의 부모 노드는 해당 노드보다 위에 있고 들여쓰기가 한 칸 적은 모든 노드 가운데 가장 가까운 노드이기 때문입니다.
- **라인 19 20**: node_idx를 바탕으로 node를 찾고, 또 rule을 찾습니다.
- 라인 21 23: 들여쓰기 수준이 우리가 찾고자 하는 값과 같고 잎 노드가 아니라면 이 노드의 규칙을 prediction_rule에 추가합니다. 이때, 현재 노드보다 더 위로 탐색하는 것을 방지하기 위해 break를 사용합니다.
- 라인 24: 이렇게 만들어진 prediction_rule과 decision을 요소로 하는 리스트를 prediction_rule_list에 추가합니다.

모델 해석 심화: 규칙 추출 (계속)

깊이가 깊을수록 그래프를 이용한 시각화 결과를 해석하기 어려워, 결정 나무를 규칙 집합 형태로 변환하는 것이 필요합니다.

text_to_rule_list 함수 사용 예제

- 1 prediction_rule_list = text_to_rule_list(r)
- 2 **for** prediction_rule, decision in prediction_rule_list:
- 3 print(" & ".join(prediction_rule), decision)

x5 <= 74.86 & x8 <= 0.40 class: 0

x6 <= 1.35 & x5 > 74.86 & x8 <= 0.40 class: 0

x6 > 1.35 & x5 > 74.86 & x8 <= 0.40 class: 1

x3 <= 2.26 & x8 > 0.40 class: 1

x3 > 2.26 & x8 > 0.40 class: 0

• 각 규칙을 리스트의 요소로 담았기 때문에 규칙을 원하는 형태로 수정하거나 표 형태의 데이터로 저장하는 것이 수월함