GEOMETRY

CHAPTER 6

4th

ÁNGULOS ASOCIADOS A LA CIRCUNFERENCIA

MOTIVATING | STRATEGY

Al observar el borde de la Luna o el Sol, el hombre tuvo las primeras nociones de circunferencia, al cortar una naranja o un limón el contorno de la sección plana tiene forma de circunferencia y que equidista del centro, esto llevó a conocer las primeras propiedades de ella.

CIRCUNFERENCIA

<u>Definición</u>: Es el conjunto de puntos de un plano que equidistan de otro punto fijo de dicho plano denominado centro.

- O: Centro
- OA: Radio
- PQ: Cuerda
- BC: Diámetro
- AQ : Arco
- EF: Flecha
 - $\overrightarrow{L_1}$: Recta secante
- $\overrightarrow{L_2}$: Recta tangente
- T : Punto de tangencia

NOTA:

Medida angular de la circunferencia:

$$m \odot = 360^{\circ}$$

Longitud de la circunferencia:

$$L \odot = 2\pi R$$

POSTULADO DEL ÁNGULO CENTRAL:

O: CENTRO

TEOREMA

Si AC es diámetro A

→ m∢B = 90°

ÁNGULO INSCRITO:

ÁNGULO SEMI INSCRITO:

ÁNGULO INTERIOR:

$$\alpha = \frac{m+n}{2}$$

ÁNGULO EXTERIOR

$$x = \frac{\alpha - \beta}{2}$$

 $x + \beta = 180^{\circ}$

1. En una circunferencia de centro O, se traza una cuerda \overline{AB} , tal que la m \widehat{AB} = 130°. Halle la m \angle OAB.

RESOLUCIÓN

- Trazamos OB
- AAOB: Isósceles

$$x + x + 130^{\circ} = 180^{\circ}$$

$$2x = 50^{\circ}$$

$$x = 25^{\circ}$$

2. En una circunferencia de centro O, se inscribe el triángulo ABC, tal que la m

BAC = 50°. Halle la m

OBC.

RESOLUCIÓN

- Trazamos OC
- ABOC: isósceles

$$x + x + 100^{\circ} = 180^{\circ}$$

$$2x = 80^{\circ}$$

$$x = 40^{\circ}$$

3. En el gráfico, B es punto de tangencia. Halle el valor de x.

4. En la figura, P y T son puntos de RESOLUCIÓN tangencia además AB es diámetro. Halle el valor de x.

- Piden: x
- Aplicando el teorema del ángulo exterior:

$$x = \frac{70^{\circ}}{2}$$

$$x = 35^{\circ}$$

01

punto P exterior Desde un una circunferencia, se trazan las tangentes \overline{PA} y PB. Luego en el menor arco AB se ubica el punto M. Halle la m&AMB si la m&APB = 80°.

m4AMB = 130°

6. Frecuentemente, en retransmisiones de fútbol, oímos expresiones como: "...el jugador remató al arco sin apenas ángulo de tiro...", expresión poco acertada como podemos ver en el siguiente esquema. Se pide calcular $\frac{x.y}{y-y}$.

RESOLUCIÓN

- PIDEN: $\frac{x.y}{x-y}$

$$\widehat{mAB} = 4x^{\circ} = 6y^{\circ} = 72^{\circ}$$

Luego:

$$4x^{\circ} = 72^{\circ}$$
 $6y^{\circ} = 72^{\circ}$
 $x^{\circ} = 18^{\circ}$ $y^{\circ} = 12^{\circ}$

Reemplazando:

$$\frac{x.y}{x-y} = \frac{18.12}{18-12} = \frac{216}{6}$$

$$\frac{x.y}{x-y} = 36$$

7. En la figura, halle la longitud de la faja que rodea a los dos rodillos mostrados

$$L(faja) = 10 + 10 + L$$

$$L(faja) = 20 + 2\pi(5)$$

$$L(faja) = 20 + 10(3,14)$$

$$L(faja) = 51,4 cm$$