## CS3230 MID-TERM QUIZ Semester 1, AY2014/2015 SOLUTION SKETCH

# Fun Bonus Question: (1 point)

Give the full name of the *time consuming* operation  $CTR_k$  introduced in CS3230.

\_\_ CLEAN AND TIDY ROOM on day *k* \_\_\_\_\_ (Free mark, ALWAYS TRY)

### Noted that many students did not read the instructions on top of page 2:

• *Unless otherwise specified, you are expected to prove (justify) your results.* 

# Q1. (15 points)

(a) (8 Points) SOLUTION: 
$$g_2(n) << g_1(n) \equiv g_3(n) << g_4(n)$$
  
 $g_1(n) = 2n \sum_{k=1}^{n} (\lg k) = 2n\Theta(n \lg n) = \Theta(n^2 \lg n)$   $g_2(n) = \Theta(n^2 (\lg \lg n))$   
 $g_3(n) = 4(\lg n) \sum_{k=1}^{n} k = \Theta(n^2 \lg n)$   $g_4(n) = 2^{(3 \lg n)} = 2^{\lg(n^3)} = n^3$ 

(b) (4 points) Asymptotic Notations (by definition)

Let 
$$f(n) = 8n^3 + 4n^2 - 2n + 1$$

By using the definitions of  $\Theta$ , prove that  $f(n) = \Theta(n^3)$ 

**Upper Bound:** (showing all steps here)

$$f(n) = 8n^3 + 4n^2 - 2n + 1 \le 8n^3 + 4n^2 + 1$$
 for all  $n \ge 1$  (throw away  $-2n$ )  
 $\le 8n^3 + 4n^3 + n^3$  for all  $n \ge 1$  (upper everything to  $n^3$ )  
 $= 13n^3$  for all  $n \ge 1$  (simplify)

**Lower Bound:** (showing all steps here)

$$f(n) = 8n^3 + 4n^2 - 2n + 1 \ge 8n^3 - 2n$$
 for all  $n \ge 1$  (throw away  $4n^2 + 1$ )  
=  $7n^3 + (n^3 - 2n)$  for all  $n \ge 1$  (simplify)  
=  $7n^3 + (n^3 - 2n)$  for all  $n \ge 1$  (simplify)  
 $\ge 7n^3$  for all  $n \ge 2$  (since  $(n^3 - 2n) > 0$  for  $n \ge 2$ )

So, choose  $c_1 = 7$ ,  $c_2 = 13$ , and choose  $n_0 = 2 = \max\{1,2\} = 2$ 

Then 
$$7n^3 \le f(n) \le 13n^3$$
 for  $n \ge 2$ 

By definition of  $\Theta$ ,  $f(n) = \Theta(n^3)$ .

(c) (3 points) (Limit theorem & L'Hopital's rule)

$$\lim_{n\to\infty} \frac{n^2}{2^n} = \lim_{n\to\infty} \frac{2n}{D^* 2^n} = \lim_{n\to\infty} \frac{2}{D^2 * 2^n} = 0$$
 Hence, by limit theorem  $h(n) = o(2^n)$ 

# Q2. (15 points)

### (a) (10 points)

(i) (3 points) 
$$R(n) = 4R(n/16) + 25n^{0.5}$$

Use Master's Theorem

$$f(n) = 25n^{0.5} = \Theta(n^{0.5}), \ a=4, \ b=16.$$
 So  $n^{\log_b a} = n^{\log_{16} 4} = n^{\log_{16} (16)^{0.5}} = n^{0.5}.$  Since  $f(n) = \Theta(n^{0.5}) = \Theta(n^{\log_b a}),$ 

This is **Case 2**, (with k=0). Hence, R(n)=  $n^{0.5}(\lg n)$ 

(ii) (3 points) 
$$S(n) = 9S(n/3) + 5n^{1.5}$$

Use Master's Theorem

$$f(n) = 5n^{1.5} = \Theta(n^{1.5}), \ a=9, b=3.$$
 So  $n^{\log_b a} = n^{\log_3 9} = n^2$ .  
Since  $f(n) = \Theta(n^{1.5}) = O(n^{2-e})$ , for  $e=0.2$  (for example).

This is **Case 1**. Hence,  $S(n) = \Theta(n^2)$ 

(iii)\* (4 points) 
$$U(n) = \left[ \frac{2}{(n-1)} \sum_{k=1}^{n-1} U(k) \right] + 3n$$

(*Hint*: Reuse the average case analysis of Quicksort [Lecture Notes].)

First, multiple by (n-1) on both sides.

$$(n-1)U(n) = 2\sum_{k=1}^{n-1} U(k) + 3n(n-1)$$

Expand and get rid of full-history.

$$(n-1)U(n) = 2[U(1) + U(2) + ... + U(n-2) + U(n-1)] + 3n(n-1)$$

$$(n-2)U(n-1) = 2[U(1) + U(2) + ... + U(n-2)] + 3(n-1)(n-2)$$

$$(n-1)U(n) = nU(n-1) + 6(n-1)$$

Turn it into a form that *telescopes*. Divide both side by n(n-1).

$$(n-1)U(n) = nU(n-1) + 6(n-1)$$
  

$$\frac{U(n)}{n} = \frac{U(n-1)}{(n-1)} + \frac{6}{n}$$
 (Divide by  $n(n+1)$ .)

Now, do the *telescoping process*.

$$\begin{split} \frac{U(n)}{n} &= \frac{U(n-1)}{(n-1)} + \frac{6}{n} = \left[ \frac{U(n-2)}{(n-2)} + \frac{6}{(n-1)} \right] + \frac{6}{n} \\ &= \left[ \frac{U(n-3)}{(n-3)} + \frac{6}{(n-2)} \right] + \frac{6}{(n-1)} + \frac{6}{n} \\ &= \dots \\ &= \frac{U(1)}{1} + 6 \left[ \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{(n-2)} + \frac{1}{(n-1)} + \frac{1}{n} \right] \\ &= 6H(n) + \Theta(1) \end{split}$$

Hence, 
$$U(n) = 6nH(n) + \Theta(n) = \Theta(n \lg n)$$

# (b) (5 points) [Radix Sort]

Run RADIX-SORT on the following list of English words shown below. Starting with the input in the leftmost column, show the list after each successive sorting step.

| BIG | _TE <mark>A</mark> | _TAB                | _BIG          |
|-----|--------------------|---------------------|---------------|
| SPY | _SEA               | _TAR                | _HOT          |
| нот | _TAB               | _PAR                | _PAR          |
| TEA | _BIG               | _TEA                | _POT          |
| RUG | _RUG               | _SEA                | _RUG          |
| TAR | _TAR               | _B <b>I</b> G       | _SEA          |
| POT | _PAR               | _HOT                | _SPY          |
| TAB | _HOT               | _POT                | _ <b>T</b> AB |
| SEA | _POT               | _SPY                | _ <b>T</b> AR |
| PAR | _SP <mark>Y</mark> | _R <mark>U</mark> G | _TEA          |

# Q3. (10 points)

You are given a binary tree T with n nodes and height h. Each node v in the tree has a real-number key k(v). For simplicity, you can assume that these keys are all distinct. Then, we say that a node v is a local maximum if its key is greater than that of all its adjacent nodes, i.e. its parent (if it exists) and all its children (if they exist).

# (a) (2 point) Find a local maximum in the binary tree *T* given below.



**Answer:** Local Maximum = Node with key \_35\_\_\_\_

**(b) (8 point)** Describe an O(h) algorithm for finding a local maximum in the tree T.

**IDEA:** LOCAL-MAX (v), where v is a vertex in tree.

Start at the root node v. If both children are smaller, then report v as answer Else find any child w with larger key, recursively search with w.

**Note:** Special case when v is leaf (no children), then only need check against parent node.

**procedure** LOCAL-MAX (v); (\* recursive procedure, v is a vertex in tree \*) (\* *Maintain Pre-condition*:

{whenever we search at v, then v is larger than parent} \*)

- 1. begin
- 2. **if** (v is a leaf node)
- 3. **then** {report v as local maximum. Done; EXIT};
- 4. **if** (*all children* of *v* have smaller keys)
- 5. **then** {report v as local maximum. Done; EXIT}
- 6. **else** {Let w = a child of v with larger key;
- 7. LOCAL-MAX(w)
- 8. end;

Call it with LOCAL-MAX (root);

{Pre-condition: root is *trivially* larger than parent (since root has no parent).}

For the example given in 3(a), the path traced is 15, 20, 25, 35. Report 35.

# **Correctness proof:**

1. We first show pre-condition always true.

At initialization, when we call LOCAL-MAX(*root*), the *pre-condition* is trivially true since *root* is larger than parent (*since root has no parent*).

Recursive call is made only at line 7, and we confirm (in line 6) that w is larger than its parent (namely v). Hence, pre-condition holds for all recursive calls.

2. The rest of the proof.

In line 3, v is a leaf (no children) and v is larger than parent (pre-condition). So, v must be a local maximum.

In line 5, v is larger than parent (*pre-condition*), and also *all its children* (line 4), so v must be a local maximum.

**Complexity Analysis:** We start at the root. At each level,  $\Theta(1)$  time and terminate at (or before) a leaf node. So, worst-case time is  $h^*\Theta(1) = \Theta(h)$ .

# Q4. (10 points)

# [Finding *the* Missing Integer]

You are given an array A[1..n] of size n, where  $n = (2^k-1)$ . You are told that the unsorted array A[1..<math>n] contain all the integers from 0 to n (inclusive), except *one*.

For k=3, an example is A[1..7]=[3, 0, 2, 6, 1, 4, 7]. Here the *missing number* is 5.

## (a) (5 points) [Finding the Missing Integer]

Give a  $\Theta(n)$  algorithm to find the missing integer. [*Hint*: Use an additional array B[0..n] if necessary.]

**SOLUTION:** We use array B[0..n] to count the items in A[1..n] (use the first two loops of the Counting Sort). Then, from B, find the element with 0-count.

**procedure** FIND-MISSING; (\* recursive procedure, *v* is a vertex in tree \*)

```
1. begin
2. for i \leftarrow 0 to n
3. do B[i] \leftarrow 0
4. for j \leftarrow 1 to n
5. do B[A[j]] \leftarrow B[A[j]] + 1 \triangleleft B[i] = |\{\text{key} = i\}|
6. for i \leftarrow 0 to n
7. do if (B[i] = 0) then report i as missing number. EXIT 8. end
```

**Complexity analysis:** Trivial  $\Theta(n)$ .

# (b) (5 point)\*\*

However, you are *now* told that you cannot directly access the integers in *A* with a single query operation. (*So, your algorithm from (a) don't work now.*)

The elements in A are represented in binary and stored in k bits, namely,  $(b_{k-1} b_{k-2} \dots b_1 b_0)$  where each  $b_i$  is a binary bit. (*Note:* k=lg n)

You can make the following query operation:

```
BIT-QUERY(j, i): "fetch the jth bit of A[i]" (constant \Theta(1) time) which returns a 0 or a 1 in constant \Theta(1) time.
```

To illustrate this, we show an example using the array A[1..7] above and give some sample queries. Remember, the array A[1..n] is hidden from you.

| Hidden Array:                | Sample Queries     |
|------------------------------|--------------------|
| A[1] = 0 1 1<br>A[2] = 0 0 0 | BIT-QUERY(0,2) = 0 |
| A[3] = 010<br>A[4] = 110     | BIT-QUERY(1,3) = 1 |
| A[5] = 001<br>A[6] = 100     | BIT-QUERY(2,6) = 1 |
| A[7] = 111                   |                    |

Using this BIT-QUERY operation, and additional storage if needed, describe an algorithm for finding the *missing integer* with  $\Theta(n)$  worst-case running time. Also illustrate how your algorithm works on the above example.

## For this, I take a developmental approach (develop solution, bit-by-bit). Enjoy.

# Trivial Solution suggested in the Note:

To get the value of A[i], do k BIT-QUERY(j, i) (for j = k-1, k-2, ..., 1, 0), and use Horner's rule to compute value of A[i]. Do this for all A[i]. Total of nk queries, so total time for this step is  $\Theta(nk) = \Theta(n\lg n)$  time. [too slow] Then can call the algorithm from (a) above, which takes only  $\Theta(n)$  time. Algorithm is  $\Theta(n\lg n)$  time and is not fast enough. (get *very low marks*)

#### **NEXT KEY IDEAS:**

The idea behind this is *binary search*, but we need to figure out – *HOW exactly to do this binary search*. What question do we ask in order to "divide the problem into two"? And then, decide which half of the problem to recursively solve?

We know each integer A[i] is represented as a k-bit binary string. Suppose the missing integer M, has binary encoding  $M = (m_{k-1}m_{k-2} \dots m_1m_0)$ .

```
Step A: (Determine m_{k-1}) First, we do the following: for i=1 to n do {Count[0] \leftarrow 0; Count[1] \leftarrow 0 } (*from counting sort *) for i=1 to n do { b \leftarrow BIT-QUERY(k-1, i) (* "fetch the (k-1)* bit of A[i])" for all i *) Count[b] \leftarrow Count[b] + 1; (* Count them... *) } Analysis: Clearly n queries. And also total time \Theta(n).
```

Then at the end of this computation, if we look at Count[0] and Count[1], what are their values? **STOP READING** and think it one out *first*.

```
Yes, one of them is 2^{(k-1)}, while the other is 2^{(k-1)}-1. Now, why is that so? [Hint: If m_{k-1} = 0, which one (of Count[0] or Count[1]) is 2^{(k-1)}. And if Count[1] = 2^{(k-1)}, then what is the value of m_{k-1}?
```

In summary, using n queries, we determine value of  $m_{k-1}$ , (most significant bit)

```
Step B: (Determine all the rest.)
```

What do we do next?

Well, we can do the same thing with the  $(k-2)^{th}$  bit. Can we not? In that case, we can also spend n queries to determine the value of  $m_{k-2}$ .

And then, we can do the same for all the other bits of M. This will take a total of  $nk = n(\lg n)$  queries. And algorithm takes  $\Theta(n\lg n)$  time.

**Summary:** With **Step A** and **Step B**, we solved the problem. *But, we used too many queries.* 

The question wants an algorithm that asks  $\Theta(n)$  queries.

How can we do better?

To do better, we cannot spend *n* queries in each round of **Step B**.

How about making a small change to **Step A**? Incorporate Divide-and-Conquer idea during **Step A**; Suppose we borrow the *Partitioning* idea (Quicksort), and call this **Step A**′.

**Step A':** We partition the array A[1..n] based on the bit #(k-1).

But, we cannot swap the items A[i] and A[j], so just use two lists:

List[0] to store those indices j with A[j]=0,

List[1] to store those indices j with A[j]=1.

During partitioning, we merely insert (or append) j into List[0] or List[1] depending on value of bit-#(k-1)-of-A[j] also increment the size of each list. This takes  $\Theta(1)$  per insert/append.

After partitioning, we know Count[0], Count[1] and we know  $m_{k-1}$ .  $\odot$ 

And we also know which "half" the missing number M belongs to. Then we can recursively find  $m_{k-2}$  in the correct half, and so on.

Just a *small change* in the idea. But, we have reduced the problem size to n/2.

Let T(n) = number of queries to solve this problem for size n. Then we have,  $T(n) = T(n/2) + \Theta(n)$ , which gives us  $T(n) = \Theta(n)$ .

| Hidden Array:                                | Simulation | Simulation of the Final algorithm              |                                |  |
|----------------------------------------------|------------|------------------------------------------------|--------------------------------|--|
| A[1] = 0 1 1<br>A[2] = 0 0 0<br>A[3] = 0 1 0 | Round 1:   | List $[0]$ = {1,2,3,5}<br>List $[1]$ = {4,6,7} | $m_2 = 1$<br>Recur on List[1]; |  |
| A[4] = 110<br>A[5] = 001<br>A[6] = 100       | Round 2:   | List $[0] = \{6\}$<br>List $[1] = \{4,7\}$     | $m_1 = 0$<br>Recur on List[0]  |  |
| A[7] = 111                                   | Round 3:   | $List[0] = \{6\}$<br>$List[1] = \{\}$          | $m_0 = 1$ $M = (101)_2 = 5$    |  |

*Now, don't you LOVE the problem?* 

-- End of Paper --

#### **ADDITIONAL STUFFS (not needed)**

An slightly different (*more efficient*) version of LOCAL-MAX (*v*), and the proof.

```
procedure LOCAL-MAX (v); (* recursive procedure, v is a vertex in tree *)
(* Maintain Pre-condition:
    {whenever we search at v, then v is larger than parent} *)
1. begin
2.
       If (all children of v have smaller keys)
3.
         then {report v as local maximum. Done}
4.
         else {Let w = a child of v with larger key;
5.
               if (w is a leaf)
6.
                 then {report w as local maximum. Done}
7.
                 else LOCAL-MAX (w).
      8. end;
```

Call it with LOCAL-MAX (root);

{Pre-condition: root is *trivially* larger than parent (since root has no parent).}

## **Correctness proof:**

1. We first show pre-condition always true.

At initialization, when we call LOCAL-MAX(*root*), the *pre-condition* is trivially true since *root* is larger than parent (*since root has no parent*).

Recursive call is made only at line 7, and we confirm (in line 4) that w is larger than its parent (namely v). Hence, pre-condition holds for all recursive calls.

2. The rest of the proof.

In line 3, v is larger than parent (*pre-condition*), and also all its children, so v must be a local maximum.

In line 6, when w is a leaf, then it is trivially larger than all its children (none). And it is also larger than its parent v (line 4). So, w must be a local maximum.

-- End of Paper --