CENTRALNA KOMISJA **EGZAMINACYJNA**

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

	MPEŁNIA ZDAJĄCY	Miejsce na naklejkę.
KOD	PESEL	Sprawdź, czy kod na naklejce to E-100 .
		Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielow

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY CZĘŚĆ I **TEST DIAGNOSTYCZNY**

TERMIN: marzec 2021 r. CZAS PRACY: 60 minut

LICZBA PUNKTÓW DO UZYSKANIA: 15

WYPEŁNIA ZDAJĄCY

WYBRANE: (system operacyjny)

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron (zadania 1-3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Odpowiedzi zapisz w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 6. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin system operacyjny, program użytkowy oraz środowisko programistyczne.
- 7. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

EINP-R1-100-2103

Zadanie 1. Turniej

W turnieju siatkówki bierze udział n drużyn ponumerowanych kolejnymi liczbami całkowitymi od 0 do n-1, gdzie $n=2^k$ dla pewnej liczby całkowitej k>0. Turniej odbywa się w rundach systemem pucharowym – przegrywający odpada z turnieju. W każdej rundzie drużyny grają w parach i do dalszej rundy przechodzi tylko zwycięzca meczu. W każdej rundzie mecze są ponumerowane kolejnymi liczbami całkowitymi, poczynając od 1. W pierwszej rundzie w meczu nr 1 grają drużyny 0 i 1, w meczu nr 2 – drużyny 2 i 3, w meczu nr 3 – drużyny 4 i 5, w meczu nr i – drużyny $2^*(i-1)$ oraz $2^*(i-1)$ +1, itd. W każdej z kolejnych rund w meczu nr 1 grają zwycięzcy meczów o numerach 1 i 2 z poprzedniej rundy, w meczu nr 2 – zwycięzcy meczów o numerach 3 i 4 z poprzedniej rundy, w meczu nr i – zwycięzcy meczów o numerach 2^*i – 1 oraz 2^*i z poprzedniej rundy itd. Turniej trwa dokładnie k rund.

Przykład

Przykładową rozgrywkę w turnieju 8-drużynowym przedstawiono w postaci drzewa na rysunku poniżej. Na najniższym poziomie rysunku drzewa zapisano numery drużyn, natomiast w węzłach wewnętrznych – numery zwycięskich drużyn w poszczególnych meczach. Zwycięzcą turnieju została drużyna nr 6, która w meczu finałowym pokonała drużynę o numerze 2.

U	, –	10	_)
3)	0	- 7	
	O.	-3	_
) (i	()-	1	

O-1 0 1 1 Numer rundy, v

runda 3 runda 2 runda 1

Numer rundy, w której mogą zmierzyć się dwie drużyny o numerach x i y, można wyżnaczyć z zapisów binarnych liczb x i y o długości k (liczba rund). Twoim zadaniem jest odkrycie tej zależności.

Zadanie 1.1. (0-2) ~ 10 minut

Dla podanej liczby k (liczba rund w turnieju) oraz numerów drużyn x i y wyznacz numer rundy w turnieju, w której te dwie drużyny mogą się zmierzyć ze sobą.

k	х	<i>y</i>	<i>x</i> dwójkowo	y dwójkowo	nr rundy, w której mogą się zmierzyć drużyny x i <i>y</i>
3	(2	6	010	110	3
4	0	3)	0000	0011	2
4	30	74	0011	0111	3
5	16 0	3014	10000	11110	y

Miejsce na obliczenia:

Napisz algorytm (w pseudokodzie lub w wybranym języku programowania), który dla danych liczb całkowitych k, x i y obliczy numer rundy w turnieju dla 2^k drużyn, w której mogą się spotkać drużyny x i y.

Uwaga: W zapisie algorytmu możesz korzystać wyłącznie z instrukcji sterujących, operatorów arytmetycznych (w tym dzielenia całkowitego i dzielenia z resztą), operatorów logicznych, porównań i instrukcji przypisywania lub samodzielnie napisanych funkcji i procedur. Zabronione jest używanie funkcji wbudowanych, dostępnych w językach programowania, a zwłaszcza funkcji podnoszącej do potęgi.

Specyfikacja algorytmu

Dane

k – dodatnia liczba całkowita, liczba rund w turnieju

x, y – dwie różne liczby całkowite z przedziału [0, 2^k – 1], numery drużyn

Wynik

runda – nr rundy, w której mogą się spotkać drużyny x i y

Algorym:

jeśli X C y:

max = y - X

w innym wypadku:

num = 2

wykonuj k may:

jeśli num - 1 > max:

wypi sz wartość counter i sakońoz program

wypi sz wartość counter i nakońoz program

wymi sz wartość counter i nakońoz program

wymi sz wartość counter i counter i counter i nakońoz program

wymi sz wartość counter i counter i nakońoz program

wymi sz wartość counter i counter i nakońoz program

wymi sz wartość counter i counter i nakońoz program

wymi sz wartość counter i counter i nakońoz program

wymi się wartość counter i counter i nakońoz program

wymi się wartość counter i nakońoz

	Nr zadania	2,1.	2.2.
Wypełnia	Maks. liczba pkt.	2	4
egzaminator	Uzyskana liczba pkt.		

Zadanie 2: Analiza algorytmu Wykonaj analizę funkcji Algo(n), której argumentem jest dodatnia liczba całkowita n. lf n ≤ 2: veturn 1 else: Algo(n)jeżeli n ≤ 2 to wynikiem jest 1 p = 1 k = nwhile k - p > 1: S = (p + k) / 2if: S * S < n: P = 3w przeciwnym przypadku $p \leftarrow 1$ $k \leftarrow n$ \rightarrow dopóki k - p > 1 wykonuj $s \leftarrow (p + k) \operatorname{div} 2$ jeżeli $s * s \le n$ to $(p \leftarrow s)$ w przeciwnym przypadku wynikiem jest p Uwaga: div oznacza dzielenie całkowite.

Zadanie 2.1. (0-2) ~ + minut Uzupełnij tabelę – podaj wynik funkcji Algo dla podanych w tabel waności

n	Wynik otrzymany po wywołaniu Algo(n)
5	(2)
35	5
1025	32,

, !	Viejsce	na oblic	zenia:			an December was a second	a			1
	þ	k	k-p.	ptk	32	3				1026
h=5	1	5	' y	6	9	3 (1k-p=	- = 1 <		<u>513+1</u> 25+ +1
	1	3	2	4	4	2 (128
n=35	1	35	34	36	18 ²	18				64
	1	18	#	19	g ²	9	p =	5		32
	1	9	8	10	5 ²	5		l ·		1 2
h=1025	1	1025	1024	1026	5132	513		p	k	K-pptk/32
	1	513	512	514	2572	257				+
	11	257	256	258	1292	129				
	11	129	128	130	n * -7	1	6			
	>11	75	(74)	176	395tr	138	0			EINP-R1_100
	32	3 75	1.37	1113	562	156	J			

Zadanie 2.2. (0-3) Sminuty

Uzupełnij tabelę – podaj liczbę wykonań instrukcji " $s \leftarrow (p + k)$ div 2" podczas obliczania wartości funkcji Algo(n) dla podanych wartości n.

n	Liczba wykonań instrukcji "s ← (p + k) div 2" podczas obliczania wartości funkcji <i>Algo(n</i>)
5	2
2	O
63	3
1024	.5

Miejsce na obliczenia

160	Nr zadania	2.1.	2.2.
Wypełnia	Maks. liczba pkt.	2	3
egzaminator	Uzyskana liczba pkt.	5.1	

LA-MICHARDS	POSTURA AURODO	2-19-04-10T-45T-12	do (575) 10.4	110/2012/06/08
12 TO 100	et healthan:	S PRINCIPAL .	Malakan n	
66-8	5 60 1 5	A 250	250	
725 C	екова.	100	KIND OF	est

Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.

W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 3.1. (0-1) ~ 2 mun

W komórce C1 arkusza kalkulacyjnego zapisano formułę:

niepan i niepan =JEZELI(ORAZ(MOD(A1;2)=1;MOD(B1;2)=1);A1+B1;A1*B1)

	inne k	om vere	
1.	Jeśli w A1 wpisano liczbę <u>1</u> , a w B1 liczbę <u>3</u> , to w C1 w wyniku obliczenia formuły pojawi się liczba 4.	X	F
2.	Jeśli w A1 wpisano liczbę 4, a w B1 liczbę 3, to w C1 w wyniku obliczenia formuły pojawi się liczba 3.	Р	X
3.	Jeśli w A1 i B1 wpiszemy dowolną liczbę całkowitą dodatnią, to w wyniku obliczenia formuły w C1 zawsze pojawi się liczba parzysta.	X	F
4.	Jeśli w A1 i B1 wpiszemy dowolną liczbę całkowitą dodatnią, to w wyniku obliczenia formuły w C1 zawsze pojawi się liczba większa niż 1.	X	F

Mamy dane operacje (bramki) logiczne na bitach: not oraz and opisane poniżej:

а	not a
1	0
0	1

а	b	a and b
1	1	1
0	1	0
1	0	0
0	0	0

oraz wyrażenie W(a,b):

(not ((not a) and b)) and (not (a and (not b)))

1.	W(0,0)=0	(0 v 1) n (1 v 0) (=) 1	Р	×
2.	W(1,0)=0	(1 × 1) n (0 × 0) (=> 0	×	F
3.	W(0,1)=1	(0 v 0) n (0 v 1) () 0	Р	X
4.	W(1,1)=1	(1,0), (0,1) (=>1	×	F

Zadanie 3.3. (0-1) Różnica 1011101₂ – 10111₂ dwóch liczb zapisanych w systemie binarnym jest:

1,	mniejsza niż 1001112 76 cyfr	Р 🔀
2.	równa 1000110 ₂	F
3.	większa niż 101112 -> 5 cytr	F
4.	równa 1001000 ₂	P

Zadanie 3.4. (0-1) ~ 2 mcn

W bazie danych istnieje tabela oceny(id_oceny, id_ucznia, przedmiot, ocena), zawierająca następujące dane:

id_oceny	id_ucznia	przedmiot	ocena	
1	1 1	matematyka	3	
2	1	informatyka	4	
3	1) (fizyka	2	
4	2 1	matematyka	(6	
5	2	fizyka	3	
6	2	informatyka	(5	
7	3 1	matematyka	(4	
8	3 (fizyka	2	
9	3	informatyka	3	

7	3 n matematyka (4)			
8	3 (fîzyka) 2		. 1.	
9	3 J informatyka 3 Jyak gru	Dowan	ia 10	my se
	3 informatyka 3 brak grup			Kazdu
	VVynikiem zapytama			,,,,,
	SELECT COUNT(id_ucznia) FROM oceny;	Р	E	1
1.	jest		$ \wedge $	0
	3		' 1	9
	Wynikiem zapytania	.)		
}	SELECT COUNT (id_ucznia) FROM oceny		F	
2.	WHERE przedmiot="fizyka";		F	
	jest			
	3	,		
	Wynikiem zapytania			
3.	SELECT COUNT(przedmiot) FROM oceny;	P	F	
	jest 9 dk, livry sie, kardy	(
		 '		
	Wynikiem zapytania SELECT COUNT(przedmiot) FROM oceny	1	-	
4.	(WHERE ocena > 3)	R	F	
4.	jest			
	4	//		

Wypełnia egzaminator	Nr zadania	3.1.	3.2.	3.3.	3,4,
	Maks. liczba pkt.	1	1	1	1
	Uzyskana liczba pkt.				