Taller de Microcontroladores y Placas de Desarrollo

Profesor: Kalun José Lau Gan Semestre 2023-2 Sesión 1

1

Agenda:

- Lectura del sílabo
- Lista de materiales
- Requerimientos de software y documentación
- Repaso de conocimientos previos

Lectura del sílabo

Disponible en el Campus Virtual

- Objetivos
- Competencias
- Contenido
- Evaluaciones
- Fórmula de evaluación

3

Lista de materiales

- Disponible en el campus virtual.
- Mínimo de materiales para el desarrollo del curso.
- Se emplearán tanto para las sesiones de laboratorio como para las asignaciones y prácticas.

Requerimientos de software y documentación :

- Software:
 - Microchip MPLAB X v6.15 (solo soporte a PICKIT4 en adelante, no soporta MPASM)
 - Microchip MPLAB X v6.05 (última en dar soporte a PICKIT3, no soporta MPASM)
 - Microchip MPLAB X v5.35 (para los que usan PICKIT3, soporta MPASM)
 - Microchip MPLAB X v5.30 (para los que usan PICKIT2, soporta MPASM)

Archivo histórico de versiones antiguas de Microchip: https://www.microchip.com/development-tools/pic-and-dspic-downloads-archive

- Microchip XC8 v2.41 (la mas actual)
- Documentación inicial:
 - Hoja técnica del PIC18F57Q43
 - PIC18F57Q43 Curiosity Nano Hardware User Guide
 - MPLAB_XC8_C_Compiler_Legacy_User_Guide
 - MPLAB_XC8_C_Compiler_User_Guide_for_PIC
 - MPLAB_XC8_C_Compiler_Users_Guide_for_Embedded_Engineers_PIC

5

¿Qué es un microcontrolador?

- Es un dispositivo microelectrónico (basado en tecnología de semiconductores) programable que posee casi todos los componentes para un funcionamiento autónomo.
- Componentes: CPU, memorias de programa y de datos (RAM y ROM), periféricos (E/S, temporizadores, A/D, etc), gestión energética, fuentes de reloj
- Se requiere de un programa (hecho con un lenguaje de programación desde un entorno de desarrollo en una PC) y de un programador para que transporte el código compilado hacia la memoria de programa del microcontrolador antes de iniciar su operación
- Su funcionamiento es de manera secuencial (necesita de una fuente de reloj).
- Para dar soluciones "compactas" (embedded) a determinado problema.
 - Portátil (autonomía, tamaño, consumo, etc)

¿Esto es un microcontrolador?

• Es una plataforma de desarrollo electrónico basado en un microcontrolador (ATMEL ATMega 328P)

7

¿Esto es un microcontrolador?

• Es una plataforma de desarrollo electrónico basado en un microcontrolador (Renesas RA4M1 ARM Cortex-M4)

¿Por qué no enseña Arduino en lugar de PIC? ¿Arduino no es mas fácil?

- Arduino consume mas energía
- Arduino se programa a un nivel mas alto y por ende consume mas recursos de procesamiento.
- Arduino lo trabajas como si fuera una caja negra.
- Trabajar con PIC puedes alcanzar mayores niveles de eficiencia en términos de desempeño, costo, consumo energético, uso de memoria.
- Arduino es un entorno de desarrollo open-source el cuál el microcontrolador destino posee un firmware inicial para la interacción con el software IDE en la PC. Como consecuencia de esto el microcontrolador tendrá menor desempeño frente a usar lenguaje Assembler.
- Cuando se tiene que atender aplicaciones o procesos críticos, en Arduino no tenemos velocidad de respuesta a menos que se emplee microcontroladores de mayor desempeño. Esto no representaría problema alguno si se desarrolla en Assembler.

9

Entonces si usar Arduino presenta tantas desventajas. ¿Por qué se usa extensivamente?

- Tendencia open source, open hardware.
- Por el poco tiempo que requieres para hacer una solución electrónica, sin tener prioridad en la optimización de recursos.
- Mucha experiencia y muchos usuarios (técnicos y no técnicos) usando esta plataforma.
- Bastante documentación de ejemplos y notas de aplicación basado en esta plataforma.
- Fabricantes OEM desarrollan variedad de sensores y actuadores en forma de módulos plug-in para ser usados en esta plataforma.

Repaso de conocimientos previos

- Álgebra de Boole, circuitos digitales (Fund. Sist. Digit. Thomas Floyd)
- · Algoritmos, diagramación en diagrama de flujo
- Arquitectura de computadoras (Org. Y Arq de PCs de William Stallings)
- Circuitos eléctricos (interfaces de potencia, sensores)
 - Transistores en corte y saturación, diodos rectificadores, LEDs.
 - Optoacopladores
 - Relés
- Señales analógicas y digitales (señales y sistemas)
 - Op-Amp: Modos de trabajo (amplificador (noinv, inv), oscilador, comparador, sumador, integrador, diferencial, compresor, filtrado, etc)
 - Conversión A/D y D/A, Teorema de muestreo

11

Bases numéricas

Decimal	Binario	Octal	Hexa
0	0000	0	0
1	0001	1	1
2	0010	2	2
2 3 4	0011	3	2 3 4 5
4	0100	4	4
5	0101	5	
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	E

BIN = 11010100 HEX = D4H

HEX = A5H BIN = 10100101

HEX = FBH BIN = 11111011

12

Álgebra de Boole

Expresión	Compuerta Lógica	Tabla de Verdad	Circuito de Interruptores
X = AB	$ \begin{array}{c} A \\ B \end{array} $ AND	A B X 0 0 0 0 1 0 1 0 0 1 1 1	
X = A + B	A B OR	A B X 0 0 0 0 1 1 1 0 1 1 1 1	
X=A*	A — X NOT	A X 0 1 1 0	<i>_</i> ~
$X = A \oplus B$ \Rightarrow X = A'B + AB'	XOR (OR exclusivo)	A B X 0 0 0 0 1 1 1 0 1 1 1 0	

Axiomas del Ál	gebra de Boole
Leyes Conmutativas	
a+b=b+a	a * b = b * a
Leyes Distributivas	
a + (b * c) = (a + b) * (a + c)	a * (b + c) = (a * b) + (a * c)
Leyes de Identidad	
a + 0 = a	a * 1 = a
Leyes de Complemento	
a + a' = 1	a * a' = 0
Leyes de Idempotencia	
a + a = a	a * a = a
Leyes de Acotamiento	
a + 1 = 1	a * 0 = 0
Leyes de Absorción	
a + (a * b) = a	a*(a+b)=a
Leyes Asociativas	
(a+b)+c=a+(b+c)	(a * b) * c = a * (b * c)
Unicidad del Complemento	
Sia + x = 1 ya * x	= 0, entonces $x = a'$
Ley de Involución	
(a')	' = a
Teoremas	
0' = 1	1' = 0
Leyes de DeMorgan	
(a+b)'=a'*b'	(a * b)' = a' + b'

13

Importancia del algoritmo

- Los algoritmos son representaciones gráficas de una tarea que va a hacer el microcontrolador.
- Pueden ser representados en diagramas de flujo, NS, pseudocódigo.
- En el presente curso se hará uso de diagramas de flujo (flowchart)

Workflow para el desarrollo de aplicaciones con microcontroladores:

- 1. Análisis de los requerimientos de la aplicación (prestaciones, consumo energético, puertos de E/S, funcionalidades, expandibilidad, actualizaciones a futuro, etc).
- 2. Desarrollo del hardware
 - a) Prototipado en físico usando protoboard
 - b) Prototipado en simulador (Proteus)
- 3. Desarrollo del algoritmo en diagrama de flujo
- 4. Codificación del algoritmo en un lenguaje de programación (XC8)
- 5. Pruebas en físico como en simulación
- 6. Elaboración de PCB (Autodesk Eagle)
- 7. Elaboración de carcasa (Autodesk Fusion 360)

17

Fin de sesión