Recovering large-scale incomplete traffic speed via tensor completion

Xinyu Chen, Master's student Zhaocheng He, professor Jiawei Wang, Master's student Yuhuan Lu, Master's student

Research Center of Intelligent Transportation System
Sun Yat-Sen University

Background

- Traffic data can be collected from a number of mobile and stationary sensors nowadays.
- However, the problem of missing data is inevitable due to communication malfunctions and transmission distortions.

• Example

• Traffic volume matrix with five sensors and four 15-minute time windows.

$$X = \begin{bmatrix} ? & 99 & 449 & 517 \\ ? & ? & 412 & ? \\ 192 & ? & 697 & 687 \\ 185 & ? & 699 & 657 \\ 164 & 68 & ? & ? \end{bmatrix} \in \mathbb{R}^{5 \times 4}$$

Question

• How to estimate unknown $x_{11}, x_{21}, x_{22}, \dots, x_{53}, x_{54}$ according to the observations $x_{12} = 99, x_{13} = 449, x_{14} = 517, \dots, x_{51} = 164, x_{52} = 68$?

Matrix Decomposition

Model

• For (i, j)-th entry of $X \in \mathbb{R}^{m \times n}$, if we assume

$$x_{ij} \approx \sum_{k=1}^{r} u_{ik} v_{jk}$$

k-th factor related to the *j-th time window*

then the *factor matrices* $U \in \mathbb{R}^{m \times r}$ and $V \in \mathbb{R}^{n \times r}$ can be learned by solving

$$J = \frac{1}{2} \| \mathbf{S} * (X - UV^T) \|_F^2$$

an indicator for observed entries

With regularization

$$J = \frac{1}{2} ||S * (X - UV^T)||_F^2 + \frac{\lambda}{2} (||U||_F^2 + ||V||_F^2)$$

- *: the Hadamard product of matrices (or tensors) with same size.
- $\|\cdot\|_F^2$: the sum of squared entries.
 - λ : the parameter of regularization term.

Matrix Decomposition

A simple example

$$\begin{bmatrix} 15 & 10 \\ 7 & 12 \\ 12 & 20 \\ 9 & 21 \\ 8 & 18 \end{bmatrix} \times \begin{bmatrix} 4 & 5 & 11 & 20 \\ 1 & 28 & 23 \end{bmatrix} = \begin{bmatrix} ? & 85 & 445 & 530 \\ ? & ? & 413 & ? \\ 188 & ? & 692 & 700 \\ 183 & ? & 687 & 663 \\ 158 & 58 & ? & ? \end{bmatrix}$$

$$\begin{bmatrix} 15 & 10 \\ 7 & 12 \\ 12 & 20 \\ 9 & 21 \\ 8 & 18 \end{bmatrix} \times \begin{bmatrix} 4 & 5 & 11 & 20 \\ 1 & 28 & 23 \end{bmatrix} = \begin{bmatrix} ? & 85 & 445 & 530 \\ ? & ? & 413 & ? \\ 188 & ? & 692 & 700 \\ 183 & ? & 687 & 663 \\ 158 & 58 & ? & ? \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 15 & 10 \\ 7 & 12 \\ 8 & 18 \end{bmatrix} \times \begin{bmatrix} 4 & 5 & 11 & 20 \\ 7 & 1 & 28 & 23 \end{bmatrix} = \begin{bmatrix} ? & 85 & 445 & 530 \\ ? & ? & 413 & ? \\ 188 & 80 & 692 & 700 \\ 183 & ? & 687 & 663 \\ 158 & 58 & ? & ? \end{bmatrix}$$

What is tensor?

• Intuition: $X \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$

What is tensor?

Traffic speed dataset

- 214 road segments
- 61 days (from Aug. 1 to Sep. 30, 2016)
- 144 10-minute time windows
- Million scale & city-wide: $214 \times 61 \times 144 \approx 1.88 \times 10^6$

Tensor Decomposition

- Tucker Decomposition (Tukcer, 1966)
 - Decomposes a given tensor $X \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ into a core tensor $G \in \mathbb{R}^{r_1 \times r_2 \times r_3}$ and factor matrices $U \in \mathbb{R}^{n_1 \times r_1}$, $V \in \mathbb{R}^{n_2 \times r_2}$ and $W \in \mathbb{R}^{n_3 \times r_3}$ in a sequence.

$$\mathcal{X} \approx \mathcal{G} \times_1 U \times_2 V \times_3 W$$

• Non-constraint optimization Decomposition based approximation

an *indicator* for observed entries
$$J = \frac{1}{2} \| \mathcal{S} * (\mathcal{X} - \mathcal{G} \times_1 U \times_2 V \times_3 W) \|_F^2 + \frac{\lambda}{2} (\|\mathcal{G}\|_F^2 + \|U\|_F^2 + \|V\|_F^2 + \|W\|_F^2)$$

- \times_q : the *tensor-matrix multiplication* or *modal-q product* between tensor and matrix.
- λ : the parameter of regularization term.

Tensor Decomposition

• Non-constraint optimization

an *indicator* for observed entries
$$J = \frac{1}{2} \| \mathcal{S} * (\mathcal{X} - \mathcal{G} \times_1 U \times_2 V \times_3 W) \|_F^2 + \frac{\lambda}{2} (\|\mathcal{G}\|_F^2 + \|U\|_F^2 + \|V\|_F^2 + \|W\|_F^2)$$

Gradient Descent Method (GDM)

$$U \leftarrow (1 - \alpha \lambda)U + \alpha(S * \mathcal{E})_{(1)}(W \otimes V)\mathcal{G}_{(1)}^{T}$$

$$V \leftarrow (1 - \alpha \lambda)V + \alpha(S * \mathcal{E})_{(2)}(W \otimes U)\mathcal{G}_{(2)}^{T}$$

$$W \leftarrow (1 - \alpha \lambda)W + \alpha(S * \mathcal{E})_{(3)}(V \otimes U)\mathcal{G}_{(3)}^{T}$$

$$\mathcal{G} \leftarrow (1 - \alpha \lambda)\mathcal{G} + \alpha \cdot \mathcal{E} \times_{1} U^{T} \times_{2} V^{T} \times_{3} W^{T}$$

- Challenge: non-convex optimization!
 - For any (i, j, k)-th entry, the estimation is formulated by

$$x_{ijk} \approx \sum_{m=1}^{r_1} \sum_{n=1}^{r_2} \sum_{l=1}^{r_3} g_{mnl} u_{im} v_{jn} w_{kl}$$

- ⊗: Kronecker product.
- α : *learning rate* of gradient descent method.
- $\mathcal{X}_{(q)}$: mode-q unfolding of tensor \mathcal{X} .

Modeling framework

- $b_i^{(1)}$, $b_j^{(2)}$, $b_k^{(3)}$: biases of any x_{ijk} over μ (mean) along each mode.
- **SVD**: singular value decomposition.

HaLRTC

- High accuracy low rank tensor completion (HaLRTC, Liu et al., 2013)
 - Low rank matrix completion (the minimum rank solution can be recovered by solving a convex problem, i.e., the minimization of the trace norm)

$$\begin{array}{c} \textit{Non-convex} \\ \min_{\hat{X}} \operatorname{rank}(\hat{X}) \\ \text{s. t. } S * \hat{X} = S * X \end{array} \iff \begin{array}{c} \textit{Convex} \\ \min_{\hat{X}} \|\hat{X}\|_{*} & \textit{Trace norm: the sum of singular values} \\ \text{s. t. } S * \hat{X} = S * X \end{array}$$

Low rank tensor completion

$$\min_{\widehat{\mathcal{X}},\mathcal{B}_{1},\mathcal{B}_{2},\mathcal{B}_{3}} \frac{1}{3} \left(\left\| \mathcal{B}_{1(1)} \right\|_{*} + \left\| \mathcal{B}_{2(2)} \right\|_{*} + \left\| \mathcal{B}_{3(3)} \right\|_{*} \right)$$
s. t.
$$\begin{cases} \mathcal{S} * \widehat{\mathcal{X}} = \mathcal{S} * \mathcal{X} \\ \widehat{\mathcal{X}} = \mathcal{B}_{q}, q = 1,2,3 \end{cases}$$

The rank is a powerful tool to capture some types of global information.

Fiber-like missing

• $S \in \mathbb{R}^{214 \times 61}$ is a binary matrix where $s_{ij} = round(a_{ij} + 0.5 - \theta)$ and $a_{ij} \sim Uniform(0,1)$.

 $\mathcal{X} \leftarrow \mathcal{X} * \mathcal{S}$ is a sparse tensor where $\mathcal{S}(i,j,:) = \mathcal{S}(i,j)$.

Black: observed White: missing

• θ is **a variable to condition the missing**, for example, if $\theta = 0.7$, then $s_{ij} = round(a_{ij} - 0.2)$ and approximate 70% entries of S are 0.

<u>Determination of core tensor size</u>

- In the framework, p is the ratio threshold of singular values for each unfolding.
- The number of leading singular vectors for unfolding $\widetilde{\mathcal{X}}_{(q)}$ is r_q , q=1,2,3.
- The core tensor size is $r_1 \times r_2 \times r_3$.

31.03

• While missing rate ranging from 20% to 60%, the best threshold is p = 0.65.

50.30

Missing Rate (%)

60.46

70.71

80.56

• For heavier missing, the best threshold is p = 0.70.

40.97

21.00

4.25 4.00

RMSE: root mean square error.

• Overall performance (missing rate is 20%, 40% and 60%)

RMSE: root mean square error, km/h.

• MRE: mean relative error, %.

• <u>Time-series analysis</u> (traffic speed of a road segment under the 30% missing)

• <u>Time-series analysis</u> (traffic speed of a road segment under the 70% missing)

• <u>Interpretability</u> (Tucker decomposition)

 $\mathcal{X} \approx \mathcal{G} \times_1 U \times_2 V \times_3 W$

• Interpretation (factor matrix $V \in \mathbb{R}^{n_2 \times r_2}$)

• Interpretation (factor matrix $V \in \mathbb{R}^{n_2 \times r_2}$)

• Interpretation (factor matrix $W \in \mathbb{R}^{n_3 \times r_3}$)

• Interpretation (factor matrix $W \in \mathbb{R}^{n_3 \times r_3}$)

The result also indicate that **7:00~9:00** is **morning peak hours**, and **17:30~19:30** is **afternoon peak hours**.

- <u>Deal with heavy missing</u> (missing rates are 80%, 85% and 90%)
 - Two requirements: during 61 days, observations of each road segment cannot be completely lost; for each day, at least one speed of road segment is observed.
 - $S \in \mathbb{R}^{214 \times 61}$: the columns and rows must have at least one non-zero entry.

The STD outperforms HaLRTC!

missing rate	Measures	STD	HaLRTC
80%	RMSE	5.25	5.56
	MRE	9.04	11.71
85%	RMSE	5.45	6.25
	MRE	9.46	13.95
90%	RMSE	5.58	10.00
	MRE	9.70	26.37

- RMSE: root mean square error, km/h.
- MRE: mean relative error, %.

Appendix

• <u>STD Algorithm</u> Decomposition based approximation

Algorithm: SVD-combined Tensor Decomposition (**STD**)

- 1. **Input**: incomplete tensor \mathcal{X} , binary tensor \mathcal{S}
- 2. Set the learning rate α , the regularization parameter λ , and ε

3.
$$G = G^{(SVD)}, U = U^{(SVD)}, V = V^{(SVD)}, W = W^{(SVD)}$$

$$4. \mathcal{X}^{(0)} = \mathcal{G} \times_1 U \times_2 V \times_3 W$$

5.
$$\mathcal{E} = \mathcal{S} * (\mathcal{X} - \mathcal{G} \times_1 U \times_2 V \times_3 W)$$

6.
$$U^+ = (1 - \alpha \lambda)U + \alpha(\mathcal{S} * \mathcal{E})_{(1)}(W \otimes V)\mathcal{G}_{(1)}^T$$

7.
$$V^+ = (1 - \alpha \lambda)V + \alpha(\mathcal{S} * \mathcal{E})_{(2)}(W \otimes U)\mathcal{G}_{(2)}^T$$

8.
$$W^+ = (1 - \alpha \lambda)W + \alpha(\mathcal{S} * \mathcal{E})_{(3)}(V \otimes U)\mathcal{G}_{(3)}^T$$

9.
$$G^+ = (1 - \alpha \lambda)G + \alpha \cdot \mathcal{E} \times_1 U^T \times_2 V^T \times_3 W^T$$

10.Update
$$U \leftarrow U^+, V \leftarrow V^+, W \leftarrow W^+, \mathcal{G} \leftarrow \mathcal{G}^+$$

$$11.\mathcal{X}^{(1)} = \mathcal{G} \times_1 U \times_2 V \times_3 W$$

- 12. Check the convergence condition, $\|\mathcal{X}^{(1)} \mathcal{X}^{(0)}\|_F^2 < \varepsilon$
- 13.while not (convergence) do
- 14. $\mathcal{X}^{(0)} = \mathcal{X}^{(1)}$, execute step 5-12
- 15.**Return** \mathcal{G} , U, V, W, $\widehat{\mathcal{X}} = \mathcal{X}^{(1)}$

Appendix

• HaLRTC Algorithm Low-rank approximation

Algorithm: High Accuracy Low Rank Tensor Completion (**HaLRTC**)

- 1. **Input**: $\widehat{\mathcal{X}}$ with $\mathcal{S} * \widehat{\mathcal{X}} = \mathcal{S} * \mathcal{X}$ and $(1 \mathcal{S}) * \widehat{\mathcal{X}} = 0, \rho, K$
- 2. Set $\mathcal{Y}_1, \mathcal{Y}_2, \mathcal{Y}_3 \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ as additive tensors with all entries are 0
- 3. **for** k = 0 to K **do**

4.
$$\mathcal{B}_q = \text{fold}_q \left\{ D_{\frac{1}{3\rho}} \left(\widehat{\mathcal{X}}_{(q)} + \frac{1}{\rho} \mathcal{Y}_{q(q)} \right) \right\}, q = 1,2,3$$

5.
$$\widehat{\mathcal{X}} = (1 - \mathcal{S}) * \left[\frac{1}{3} \sum_{q=1}^{3} \left(\mathcal{B}_q - \frac{1}{\rho} \mathcal{Y}_q \right) \right] + \mathcal{S} * \mathcal{X}$$

- 6. $\mathcal{Y}_q = \mathcal{Y}_q \rho(\mathcal{B}_q \widehat{\mathcal{X}}), q = 1,2,3$
- 7. Output: $\widehat{\mathcal{X}}$

Reference

Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M., 2011. Scalable tensor factorizations for incomplete data. *Chenomentr. Intell. Lab. Syst.* 106(1), 41-56.

Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M., 2014. Tensor decompositions for learning latent variable models. *J. Mach. Learn. Res.* 15(1): 2773-2832.

Asif, M.T., Kannan, S., Dauwels, J., Jaillet, P., 2013. Data compression techniques for urban traffic data. In: Computational Intelligence in Vehicles and Transportation Systems (CIVTS). 2013 IEEE Symposium. IEEE, pp. 44-49.

Asif, M.T., Srinivasan, K., Mitrovic, N., Dauwels, J., Jaillet, P., 2015. Near-lossless compression for large traffic networks. *IEEE Trans. Intell. Transp. Syst.* 16 (4), 1817-1826.

Asif, M.T., Mitrovic, N., Dauwels, J., Jaillet, P., 2016. Matrix and tensor based methods for missing data estimation in large traffic networks. *IEEE Trans. Intell. Transp. Syst.* 17 (7), 1816-1825.

Chen, B., Li, Z., Zhang, S., 2015. On optimal low rank Tucker approximation for tensors: the case for an adjustable core size. *J. Glob. Optim.* 62, 811-832.

Carroll, J.D., Chang, J.J., 1970. Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition. *Psychometrika* 35, 283-319.

Duan, Y., Lv, Y., Liu, Y.-L., Wang, F.-Y., 2016. An efficient realization of deep learning for traffic data imputation. *Transp. Res. Part C: Emerg. Technol.* 72, 168-181.

Farhan, J., 2015. Overview of missing physical commodity trade data and its imputation using data augmentation. *Transp. Res. Part C: Emerg. Technol.* 54, 1-14.

Golub, G.H., Van Loan, C.F., 2013. Matrix computations. Johns Hopkins Univ. Press, Baltimore, MD.

Han, Y., Moutarde, F., 2016. Analysis of large-scale traffic dynamics in an urban transportation network using non-negative tensor factorization. *Int. J. ITS Res.* 14, 36-49.

Hitchcock, F.L., 1927a. The expression of a tensor or a polyadic as a sum of products. *J. Math. Phys.*, 6, 164-189. Hichcock, F.L., 1927b. Multiple invariants and generalized rank of a p-way matrix or tensor, *J. Math. Phys.*, 7, 39-79.

Reference

Kolda, T.G., Bader, B.W., 2009. Tensor decompositions and applications. SIAM Rev. 51(3), 455-500.

Koren, Y., Bell, R.M., Volinsky, C., 2009. Matrix factorization techniques for recommender systems. *IEEE Compt.* 42 (8), 30-37.

Lathauwer, L.D., Moor, B.D., Vandewalle, J., 2000. A multilinear singular value decomposition. *SIAM J. Matrix Anal. Appl.* 20(4): 1253-1278.

Li, L., Li, Y., Li, Z., 2013. Efficient missing data imputing for traffic flow by considering temporal and spatial dependence. *Transp. Res. Part C: Emerg. Technol.* 34, 108-120.

Li, L., Su, X., Zhang, Y., Lin, Y., Li, Z., 2015. Trend modeling for traffic time series analysis: An integrated study. *IEEE Trans. Intell. Transp. Syst.* 16 (6), 3430-3439.

Li, X., Li, M., Gong, Y.-J., Zhang, X.-L., Yin, J., 2016. T-DesP: Destination prediction based on big trajectory data. *IEEE Trans. Intell. Transp. Syst.* 17 (8), 2344-2354.

Li, Y., Li, Z., Li, L., 2014. Missing traffic data: comparison of imputation methods. *IET Intel. Transp. Syst.* 8 (1), 51-57.

Manning, C.D., Raghavan, P., Schütze, H., 2008. Introduction to information retrieval. Cambridge University Press, Cambridge, UK.

Paterek, A., 2007. Improving regularized singular value decomposition for collaborative filtering. In: *Proceeding of KDD Cup and Workshop*, pp. 5-8.

Qu, L., Li, L., Zhang, Y., Hu, J., 2009. PPCA-based missing data imputation for traffic flow volume: A systematical approach. *IEEE Trans. Intell. Transp. Syst.* 10 (3), 512-522.

Ran, B., Tan, H., Wu, Y., Jin, P.J., 2016. Tensor based missing traffic data completion with spatial-temporal correlation. *Physica A* 446, 54-63.

Robinson, S., Narayanan, B., Toh, N., Pereira, F., 2014. Methods for pre-processing smartcard data to improve data quality. *Transp. Res. Part C: Emerg. Technol.* 49, 43-58.

Schifanella, C., Candan, K.S., Sapino, M.L., 2014. Multiresolution tensor decompositions with mode hierarchies. *ACM Trans. Knowl. Discovery from Data* 8(2), 10.

Reference

Soriguera, F., 2016. Highway travel time estimation with data fusion. Springer, Berlin.

Sun, L., Axhausen, K.W., 2016. Understanding urban mobility patterns with a probabilistic tensor factorization framework. *Transp. Res. Part B: Methodol.* 91, 511-524.

Tan, H., Feng, G., Feng, J., Wang, W., Zhang, Y.-J., Li, F., 2013. A tensor-based method for missing traffic data completion. *Transp. Res. Part C: Emerg. Technol.* 28, 15-27.

Tan, H., Feng, J., Chen, Z., Yang, F., Wang, W., 2014. Low multilinear rank approximation of tensors and application in missing traffic data. *Adv. Mech. Eng.* 2014.

Tan, H., Wu, Y., Shen, B., Jin, P.J., Ran, B., 2016. Short-term traffic prediction based on dynamic tensor completion. *IEEE Trans. Intell. Transp. Syst.* 17 (8), 2123-2133.

Tucker, L., 1966. Some mathematical notes on three-mode factor analysis. *Psychometrika* 31(3), 279-311.

Wang, Y., Zheng, Y., Xue, Y., 2014. Travel time estimation of a path using sparse trajectories. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. *KDD'14*. *ACM*, pp. 374-383.

Recovering large-scale incomplete traffic speed via tensor completion

Thanks for your listening!