44 (4) BCA-HC-4026

1132023

MATHEMATICS-II

Paper: BCA-HC-4026

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

1. (a) For the non-empty sets A, B, C prove that

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
 3

(b) If $f: R \to R$ and $g: R \to R$ define by $f(x) = x^2$ and $g(x) = \sin x$

Examine whether $g \circ f = f \circ g$ 3

(c) If $R = \{(x, y) | x - y \text{ is divisible by 3}$ $x, y \in I\}$ prove that R is an equivalence relation.

relation.

Contd.

(d) Prove that
$$1^{3} + 2^{3} + 3^{3} + ... + n^{3} = \left\{ \frac{n(n+1)}{2} \right\}^{2}.$$

- (e) For non-empty sets A and B that $n(A \oplus B) = n(A) + n(B) 2n(A \cap B)$ 3
- 2. (a) Define complete graph and draw K_5 . 1+2=3
 - (b) Define tree. Show that a tree with n number of vertices have (n-1) number of edges. 1+4=5
 - Define cut vertex and cut edge. 2

 (d) Draw a bipertite graph with 8 vertices.
 - Prove that in a graph the number of odd vertices is always even.
- 3. (a) Prove that in a square matrix can be expressed uniquely as a sum of symmetric and skew symmetric matrix.
 - (b) For the matrix $A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$ 4

 Find the eigenvalue and eigenvectors.
 - (c) For the matrix $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$; Express $2A^5 3A^4 + A^2 4I$ as linear expression.

If A be an arbitrary matrix with disting (d) eigenvalues then prove that there exist a smilar transformation such that

 $P^{-1}AP = D$

where P is the diagonal matrix whose diagonal elements are the eigenvalues

Answer any three parts from the following: 4×3=12

Define Tautology, Contradiction, Contingency.

Prove that in a Boolean algebra the complement of an element is unique.

(d) (i) Simplify:
$$z(y+z)(x+y+z)$$

Write the duals of the following: (a) $(p \wedge q) \vee r$ (b) $\sim (p \wedge q)$

Translate the following statement (quantifiers):

(iii) Some rational are real. An ration (a)-

(iv) Some rational are not real.

- Find the number of sides of a polygone with 27 diagonals.
- State pigeonhole principle and explain with an example. 2+2=4
- (d) Find the number of triangles that can be drawn from the set of 15 points. If p is the common point for all the triangles.
- 6. (a) Show that the set w of all elements of vector space $V_3(F)$ of the form (x, 2y, 3z) where $x, y, z \in F$ is a subspace of $V_3(F)$.
 - (b) Examine that the following vector is linearly dependent or independent { (1, 0, 0), (0, 1, 0) (0, 0, 1) }.
 - (c) Let V(F) be a vector space, prove that

(i)
$$a(-\alpha) = -(a.\alpha)$$

(ii)
$$a.(\alpha-\beta)=a\alpha-a\beta$$
, $\alpha,\beta\in V$, $\alpha\in F$

BCA-HC-4026/C 5 4 135

44 (4) BCA-HC-4026/G

2 12 135

900