控制器通讯协议与功能实现

Version 1.7.3

Copyright © 深圳辰视智能科技有限公司

All rights reserved.

目录

控制器通	通 讯协议与功能实现1
_,	PC 软件对接控制器条件4
二、	X 机器人4
1.	TCP/IP 通讯4
2.	坐标系5
三、	三维视觉引导系统通讯协议5
1.	TCP/IP 通讯5
2.	标定存图协议6
3.	识别和抓取协议6
4.	示教抓取协议
5.	设置模型协议9
6.	轨迹跟踪协议
7.	欧拉系统测试命令11
四、	功能实现
1.	基础功能17
2.	标定功能18
3.	示教抓取功能19
4.	抓取功能20
5.	分区域抓取功能(拓展功能)20
6	轨迹引导功能 22

修订历史记录

A - 增加 M - 修订 D - 删除

变更版本号	日期	变更类型	修改人	摘 要	备注
		(A*M*D)			
1.0	2018/12/10	Α	陈先开	通讯协议第一版	
1.5	2019/08/10	М	陈先开	通讯协议第二版	
1.6	2019/12/25		张焱	通讯协议第三版	
1.7	20200520		邓亮	添加 RecgMul 及 RecgGraspMul	
				命令	
1.7.1	20200605	М	邓亮	添 加 AddTrackPoint 及	
				RemoveTrackPoint 命令	
1.7.2	20200714	М	邓亮	添加机器人欧拉系统测试命令	
				EulerTest	
1.7.3	20220209	М	邓亮	添加标定存图命令 CalShootSave	

一、 PC 软件对接控制器条件

- (1) 配备机器人本体工程师与我司视觉开发人员对接。
- (2) 开放机器人本体功能: TCP/IP 通讯端口。
- (3) 提供机器人开发平台相关的开发文档。

对接步骤,如下图所示,首先对接三维视觉引导系统通讯协议,然后对接业务功能模块。

二、X机器人

机器人基本信息如下表所示。

	名称	控制柜/Cabinet
	型号	EC2-S6-P1-G4-G0-G2
控制器	额定电压	AC220V
	额定电流	18A
	额定功率	4KW
	名称	工业机器人
	型号	ER20-060
机器人本体	最大负载	20KG
机奋八平冲	设备重量	220KG
	额定功率	5KW
	额定电压	220V

1. TCP/IP 通讯

TCP/IP 通讯: 支持连接和断开

字符结束校验符号: \r\n(ascII 码为: 0D 0A)

视觉字符串收发

格式:

接收数据:

<Read>OpenVideo</Read>

发送数据:

<Sensor><String>YES OpenVideo</String></Sensor>

2. 坐标系

机器人采用动坐标系的欧拉角 ZYX(右乘)。发送欧拉角顺序 RZ,RY,RX,面板欧拉角 ABC 显示为 RX(A),RY(B),RZ(C)。

发送欧拉角顺序 RZ,RY,RX

注意:视觉系统采用的欧拉角转旋转矩阵的计算公式采用欧拉角坐标系XYZ (左乘)。

三、 三维视觉引导系统通讯协议

1. TCP/IP 通讯

建立 TCP/IP 客户端通讯,包含连接和断开功能。

执行顺序	协议格式	说明
机器人功能	CsvReconnect,建立机械臂和视觉系统的通	例子:
函数	讯连接	CsvReconnect。连接视觉系统,需要提供视
		觉系统 PC 的 IP 和端口号, 例如:
		192.168.0.22.6200.
机器人功能	CsvDisconnect,断开机械臂和视觉系统的通	例子:
函数	讯连接	CsvDisconnect。断开机械臂和视觉系统的连
		接,需要提供视觉系统 PC 的 IP 和端口号,
		例如: 192.168.0.22.6200.

B. 机器人从视觉系统设置相关参数或状态

执行顺序	协议格式	说明
------	------	----

机器人发送	字符格式	例子:
命令	SetParam,id, value1,value2	SetParam, 0,100,210
	设置特定值。index 表示索引号	
机器人接收	成功:	成功:
命令	YES_SetParam	YES_SetParam
	失败	失败
	NO_SetParam	NO_SetParam

2. 标定存图协议

执行顺序	 协议格式 	说明
机器人发送	字符格式:	例子:
命令	CalShootSave,X±坐标值,Y±坐标值,Z±坐标	CalShootSave,X+391.737,Y-468.884,Z-
	值,RX±坐标值,RY±坐标值,RZ±坐标值	133.991,RX-84.332,RY-61.617,RZ-146.785
视觉系统反	成功标识符:YES_CalShootSave	操作会返回相应的标识符
馈指令	失败标识符: NO_CalShootSave	成功标识符:YES_CalShootSave
		失败标识符: NO_CalShootSave

3. 识别和抓取协议

A. 打开视频

执行顺序	协议格式	说明
机器人发送	字符格式:	例子:
命令	OpenVideo	OpenVideo
视觉系统反	成功标识符:YES_OpenVideo	操作会返回相应的标识符
馈指令	失败标识符: NO_OpenVideo	成功标识符:YES_OpenVideo
		失败标识符:NO_OpenVideo

B. 关闭视频

执行顺序	协议格式	说明
机器人发送 命令	字符格式: StopVideo	例子: StopVideo
视觉系统反馈指令	成功标识符: YES_StopVideo 失败标识符: NO_StopVideo	操作会返回相应的标识符 成功标识符: YES_StopVideo
	_ 1	失败标识符: NO_StopVideo

C. 识别目标

执行顺序	协议格式	说明
机器人发送	字符格式:	例子:
命令	Recg,X±坐标值,Y±坐标值,Z±坐标值,RX±坐	Recg,X+238.548,Y-554.296,Z+10.588,RX-
	标值,RY±坐标值,RZ±坐标值,模型号	159.791,RY-50.461,RZ-92.328,M0
视觉系统反	字符格式:	成功:
馈指令	成功:	X+375.757,Y-397.399,Z-
	X±坐标值,Y±坐标值,Z±坐标值,RX±坐标	95.883,RX+10.835,RY+20.367,RZ+126.380,
	值,RY±坐标值,RZ±坐标值,模型号	M0
	失败:	失败:
	NO_Recg,错误信息	NO_Recg,CsvMaster 识别不到模型

D. 识别输出多个目标

执行顺序	协议格式	说明
机器人发送	字符格式:	例子:
命令	RecgMul,X±坐标值,Y±坐标值,Z±坐标	RecgMul,X+238.548,Y-
	值,RX±坐标值,RY±坐标值,RZ±坐标值,模型	554.296,Z+10.588,RX-159.791,RY-
	号	50.461,RZ-92.328,M0
视觉系统反	字符格式:	成功:
馈指令	成功:	X+375.757,Y-397.399,Z-
	X±坐标值,Y±坐标值,Z±坐标值,RX±坐标	95.883,RX+10.835,RY+20.367,RZ+126.380;
	值,RY±坐标值,RZ±坐标值; X±坐标值,Y±坐	X+375.757,Y-397.399,Z-
	标值,Z±坐标值,RX±坐标值,RY±坐标值,RZ±	95.883,RX+10.835,RY+20.367,RZ+126.380;
	坐标值;模型号,识别结果总数	M0,N2
	失败:	失败:
	NO_RecgMul,错误信息	NO_RecgMul,CsvMaster 识别不到模型

E. 识别抓取目标

执行顺序	协议格式	说明
机器人发送	字符格式:	发送:
命令	RecgGrasp,X±坐标值,Y±坐标值,Z±坐标	RecgGrasp,X+238.548,Y-
	值,RX±坐标值,RY±坐标值,RZ±坐标值,模型	554.296,Z+10.588,RX-159.791,RY-
	号	50.461,RZ-92.328,M0

视觉系统反	字符格式:	返回:
馈指令	成功:	成功:
	X±坐标值,Y±坐标值,Z±坐标值,RX±坐标	X+371.758,Y-
	值,RY±坐标值,RZ±坐标值,解数目,模型索	338.203,Z+46.015,RX+160.280,RY-
	引号,工具号,抓取面,识别出工件的个数	10.317,RZ-18.695,5,M0,T0,PICK1,N2
	失败:	失败:
	NO_RecgGrasp,错误信息	NO_RecgGrasp, CsvMaster 识别模型失败
	如开启了 Box 点云冲突判定功能并且配置	
	相关的 Box,返回结果为:	
	NO_RecgGrasp,BoxPointsCol	

F. 识别抓取多个目标

执行顺序	协议格式	说明
机器人发送	字符格式:	发送:
命令	RecgGraspMul,X±坐标值,Y±坐标值,Z±坐标	RecgGraspMul,X+238.548,Y-
	值,RX±坐标值,RY±坐标值,RZ±坐标值,模型	554.296,Z+10.588,RX-159.791,RY-
	号	50.461,RZ-92.328,M0
视觉系统反	字符格式:	返回:
馈指令	成功:	成功:
	X±坐标值,Y±坐标值,Z±坐标值,RX±坐标	X+371.758,Y-
	值,RY±坐标值,RZ±坐标值;模型索引号,工具	338.203,Z+46.015,RX+160.280,RY-
	号,示教抓取索引,识别结果总数	10.317,RZ-18.695; X+371.758,Y-
	失败:	338.203,Z+46.015,RX+160.280,RY-
	NO_RecgGraspMul,错误信息	10.317,RZ-18.695;M0,T0,PICK0,N2
		失败:
		NO_RecgGraspMul, CsvMaster 识别模型失
		败

4. 示教抓取协议

A. 添加示教抓取点

执行顺序	协议格式	说明
机器人发送	字符格式:	例子:
命令	AddGrasp, X±坐标值,Y±坐标值,Z±坐标	AddGrasp,X+218.610,Y-
	值,RX±坐标值,RY±坐标值,RZ±坐标值,工具	435.315,Z+76.377,RX+101.968,RY+42.451,R
	坐标号, 工件 X±坐标值,工件 Y±坐标值,工	Z+103.450,T0,X+218.610,Y-

	件 Z±坐标值,工件 RX±坐标值,工件 RY±坐	435.315,Z+76.377,RX+101.968,RY+42.451,R
	标值,工件 RZ±坐标值,模型号	Z+103.450,M0
	(尽量使用法兰坐标进行示教与抓取)	
视觉系统反	成功标识符: YES_AddGrasp	添加抓取点操作会返回相应的标识符
馈指令	失败标识符:NO_AddGrasp	成功: YES_AddGrasp
		失败: NO_AddGrasp

B. 删除示教抓取点

执行顺序	协议格式	说明
机器人发送	字符格式:	例子:
命令	RemoveGrasp,-1	RemoveGrasp,-1
	Index 表示删除示教的标定点索引	
视觉系统反	成功标识符: YES_RemoveGrasp	删除抓取点操作会返回相应的标识符
馈指令	失败标识符: NO_RemoveGrasp	成功标识符: YES_RemoveGrasp
		失败标识符: NO_RemoveGrasp

5. 设置模型协议

A. 切换模型协议

执行顺序	协议格式	说明
机器人发送	字符格式:	例子:
命令	M 模型 ID,序号,识别文件索引 ID	SetModelParam,M0,1,1
视觉系统反	字符格式:	成功:
馈指令	成功:	YES_SetModelParam
	YES_SetModelParam	失败:
	失败:	NO_SetModelParam,模型错误/路径不正确
	NO_SetModelParam,错误信息	

B. 切换模型协议

执行顺序	协议格式	说明
机器人发送命令	字符格式: 模型名	例子: SwitchModel,modelName
视觉系统反馈指令	字符格式: 成功:	成功: YES_SwitchModel

YES_SwitchMo	del	失败:
失败:		NO_SwitchModel,模型错误/路径不正确
NO_SwitchMod	el,错误信息	

6. 轨迹跟踪协议

A. 非插值模式

执行顺序	协议格式	说明
机器人发送	字符格式:	例子:
命令	Track,ICP0	Track,ICP0
	 说明: 此模式生成的引导轨迹点位数 	
	量等于配置表的点数	
视觉系统反	字符格式:	成功:
馈指令	成功:	X+371.758,Y-
	X±坐标值,Y±坐标值,Z±坐标值,RX±坐标	338.203,Z+46.015,RX+160.280,RY-
	值,RY+坐标值,RZ+坐标值,,X+坐标值,Y+	10.317,RZ-18.695,,X+371.758,Y-
	坐标值,Z±坐标值,RX±坐标值,RY±坐标	338.203,Z+46.015,RX+160.280,RY-
	值,RZ±坐标值	10.317,RZ-18.695
	失败:	失败:
	NO_Track,错误信息	NO_Track,模型错误/路径不正确

B. 插值模式

执行顺序	协议格式	说明
机器人发送	字符格式:	例子:
命令	Track,ICP1	Track,ICP1
	说明: 此模式生成的引导轨迹点位数	
	量等于(配置表的点数-2)x2	
视觉系统反	字符格式:	成功:
馈指令	成功:	X+371.758,Y-
	X±坐标值,Y±坐标值,Z±坐标值,RX±坐标	338.203,Z+46.015,RX+160.280,RY-
	值,RY±坐标值,RZ±坐标值,,X±坐标值,Y±	10.317,RZ-18.695,,X+371.758,Y-
	坐标值,Z±坐标值,RX±坐标值,RY±坐标	338.203,Z+46.015,RX+160.280,RY-
	值,RZ±坐标值	10.317,RZ-18.695

失败:	失败:
NO_Track,错误信息	NO_Track,模型错误/路径不正确

C. 添加跟踪点

执行顺序	协议格式	说明
机器人发送命令	字符格式: AddTrackPoint, X±坐标值,Y±坐标值,Z±坐标值,RX±坐标值,RY±坐标值,RZ±坐标值,工具坐标号,工件 X±坐标值,工件 Y±坐标值,工件 Z±坐标值,工件 RX±坐标值,工件 RY±坐标值,工件 RZ±坐标值,模型号	例子: AddTrackPoint,X+218.610,Y- 435.315,Z+76.377,RX+101.968,RY+42.451,R Z+103.450,T0,X+218.610,Y- 435.315,Z+76.377,RX+101.968,RY+42.451,R Z+103.450,M0
	说明:模型号很重要,一定要配置正确	
视觉系统反馈指令	字符格式: 成功: YES_AddTrackPoint 失败: NO_AddTrackPoint,错误信息	

D. 删除上一个跟踪点

执行顺序	协议格式	说明
机器人发送	字符格式:	例子:
命令	RemoveTrackPoint,模型号	RemoveTrackPoint,M0
	说明:一定要指定模型号,否则会失败	
视觉系统反	字符格式:	
馈指令	成功:	
	YES_RemoveTrackPoint	
	失败:	
	NO_ RemoveTrackPoint,错误信息	

7. 欧拉系统测试命令

该系列命令主要时为了测试新增加机器人的欧拉系统,切换到不同的机器人时,相同的测试命令可能输出不同的结果

A、输出 4 个指定方向的机器人坐标

姿态序号	姿态 Y 轴方向	姿态 Z 轴方向	
1	Y 轴方向[0,1,0]	Z 轴方向[0.707,0,-0.707]	

2	Y轴方向[-1,0,0]	Z 轴方向[0,0.707,-0.707]
3	Y 轴方向[0,-1,0]	Z 轴方向[-0.707,0,-0.707]
4	Y轴方向[1,0,0]	Z 轴方向[0,-0.707,-0.707]

协议格式:

执行顺序	协议格式	说明
机器人发送命令	EulerTest,X 坐标值,Y	例子: EulerTest, +400.000,+0.000,+500.000,
	坐标值,Z 坐标值	
视觉系统反馈指	4 个点的位置姿态值:	例子:
令	X±坐标值,工件 Y±坐	X+400.000, Y+0.000, Z+500.000, RX+180.000, RY+45.000, RZ+180
	标值,工件 Z±坐标值,	X+400.000, Y+0.000, Z+500.000, RX-180.000, RY+45.000, RZ-90.000
	工件 RX±坐标值,工件	X+400.000, Y+0.000, Z+500.000, RX+180.000, RY+45.000, RZ-0.000
	RY±坐标值,工件 RZ±	X+400.000, Y+0.000, Z+500.000, RX+180.000, RY+45.000, RZ+90.000
	坐标值	
	位置信息为视觉信息	
	从机器人或仿真端收	
	到的位置	

B、输出指定机器人坐标的旋转矩阵与位置值

执行顺序	协议格式	说明		
机器人发送命令	EulerTest, X 坐标值,Y 坐标	例子: EulerTest, +610.499, -		
	值,Z坐标值,RX坐标值,RY	312. 712, +68. 387, +180. 000, +45. 000, +180. 000		
	坐标值,RZ 坐标值			
视觉系统反馈指令	X 坐标值,Y 坐标值,Z 坐标	例子:		
	值,RX 坐标值,RY 坐标值,	+610. 499, -312. 712, +68. 387, -0. 707, +0. 000, -		
	RZ 坐标值,r00 值,r10 值,	0. 707, +0. 000, +1. 000, +0. 000, +0. 707, +0. 000, -		
	r20 值,r01 值,r11 值,r21	0. 707		
	值,r02 值,r12 值,r22 值			

C、输出指定位置与旋转矩阵的机器人坐标(与前一个命令刚好相反)

执行顺序	协议格式	说明
机器人发送命令	EulerTest, X 坐标值,Y 坐	例子: EulerTest, +610.499, -312.712, +68.387, -
	标值,Z坐标值,RX坐标	0.707,+0.000,-
	值,RY 坐标值,RZ 坐标值,	0. 707, +0. 000, +1. 000, +0. 000, +0. 707, +0. 000, -0. 707
	r00 值,r10 值,r20 值,	
	r01 值,r11 值,r21 值,	
	r02 值,r12 值,r22 值	
视觉系统反馈指令	X±坐标值,Y±坐标值,Z±坐	例子:
	标值,RX±坐标值,RY±坐标	X+610. 499, Y-
	值,RZ±坐标值	312. 712, Z+68. 387, RX+180. 000, RY+45. 000, RZ+180. 000,

四、 功能实现

1. 基础功能

包括获取值、设定值、重新连接视觉系统和断开连接视觉系统等。

2. 标定功能

包括连续拍照,停止拍照,添加标定点,删除标定点,自动标定运行

标定流程:

- 添加标定点
 - 打开视频流
 - 机器人发:

OpenVideo

● 机器人收:

YES_OpenVideo

- 移动机器人到合理的位置
 - 记录机器人位置到机器人位置寄存器:
 - 记录合适位置点数 (三十个左右)
- 停止视频流
 - 机器人发:

StopVideo

● 机器人收:

YES_StopVideo

● 自动运行标定

- 机器人运动到指定的点位
- 拍照保存
 - 机器人发:

CalShootSave,X+391.737,Y-468.884,Z- 133.991,RX-84.332,RY-61.617,RZ-146.785

● 机器人收:

YES CalShootSave

3. 示教抓取功能

包含单次识别功能,添加抓取示教点,删除上一个抓取示教点。

添加示教抓取点流程:

- 添加示教抓取点
 - 启动识别工件。
 - 机器人发:

Recg,X+238.548,Y-554.296,Z+10.588,RX-159.791,RY-50.461,RZ-92.328,M0

● 机器人收:

X+375.757,Y-397.399,Z-95.883,RX+10.835,RY+20.367,RZ+126.380,M0

- 遥控机器人到适当的抓取位置。
- 添加抓取示教点。
 - 机器人发:

AddGrasp,X+238.548,Y-554.296,Z+10.588,RX-159.791,RY-50.461,RZ-92.328,T0,X+375.757,Y-397.399,Z-95.883,RX+10.835,RY+20.367,RZ+126.380,M0

● 机器人收:

YES_AddGrasp

- 删除示教抓取点 (该功能不计入流程中)
 - 删除上一个标定点。可连续删除最近添加的示教点。
 - 机器人发: RemoveGrasp,-1
 - 机器人收: YES RemoveGrasp

示教抓取方法:

首先,将一个工件放置视觉视野范围内,识别工件,获取视觉系统识别工件的坐标系:

将机械臂移动到指定抓取位置,发送添加示教点功能(AddGrasp,X+238.548,Y-554.296,Z+10.588,RX-159.791,RY-50.461,RZ-92.328,T0,X+375.757,Y-397.399,Z-95.883,RX+10.835,RY+20.367,RZ+126.380,M0),完成示教点定义。机器人返回原点,发送识别抓取目标功能(RecgGrasp,X+238.548,Y-554.296,Z+10.588,RX-159.791,RY-50.461,RZ-92.328,M0)。

4. 抓取功能

- 抓取识别
 - 机器人发:

RecgGrasp,X+238.548,Y-554.296,Z+10.588,RX-159.791,RY-50.461,RZ-92.328,M0

● 机器人收:

成功:

X+371.758,Y-338.203,Z+46.015,RX+160.280,RY-10.317,RZ-18.695,M0,T0,PICK1,N1

失败:

NO_RecgGrasp, CsvMaster 识别模型失败

5. 分区域抓取功能 (拓展功能)

通过分区域识别策略解决速度慢的问题。识别区域划分为9个子块,如下图所示:

识别区域

分区识别策略的步骤如下:

- 设置区域索引号 i=0,1,2,3,4,5,6,7,8。
- 设置识别第 i 区域的像素坐标 (请参考下表区域对应值)
 - 机器人发:SetParam,204,0,0 //设置区域的左上角顶点像素坐标,此处设置第一个区域的左上角顶点像素坐标

机器人发: SetParam, 205, 426, 341 //设置区域的右下角顶点像素坐标, 此处设置第一个区域的右下角顶点像素坐标

- 区域 i 识别抓取
 - 机器人发:

RecgGrasp,X+238.548,Y-554.296,Z+10.588,RX-159.791,RY-50.461,RZ-92.328,M0

● 机器人收:

成功:

X+371.758,Y-338.203,Z+46.015,RX+160.280,RY-10.317,RZ-18.695,M0,T0,PICK1,N2

失败:

NO RecgGrasp, CsvMaster 识别模型失败

● 如果识别只有一个工件 (N1) , 那么 i=i+1;

识别区域设置表

第1个区域:	SetParam,204,0,0;SetParam,205,426,341;
第2个区域:	SetParam,204,425,0;SetParam,205,853,341;
第3个区域:	SetParam,204,852,0;SetParam,205,1280,341;
第4个区域:	SetParam,204,0,340;SetParam,205,426,682;
第5个区域:	SetParam,204,425,340;SetParam,205,853,682;
第6个区域:	SetParam,204,852,340;SetParam,205,1280,682;
第7个区域:	SetParam,204,0,681;SetParam,205,426,1024;
第8个区域:	SetParam,204,425,681;SetParam,205,853,1024;
第9个区域:	SetParam,204,852,681;SetParam,205,1280,1024;

6. 轨迹引导功能

6.1 轨迹引导配置方法

轨迹引导前,需要在文件./cfg/trackingPoints.csv 配置跟踪点。配置参数的格式如下

表:

轨迹点参数

序号	参数名	含义
1	X	工件坐标系下的轨迹点坐标 X 值
2	Y	工件坐标系下的轨迹点坐标 Y 值
3	Z	工件坐标系下的轨迹点坐标 Z 值

		工具末端倾斜系数,取值范围[0-1],0 表示
4	coef	工具末端处于水平,1 表示工具末端处于垂
		直
5	vectorY0	Y 法向量 X 轴坐标值
6	vectorY1	Y 法向量 Y 轴坐标值
7	vectorY2	Y 法向量 Z 轴坐标值
8	Model ID	模型 ID

6.2 机器人执行轨迹轨迹

● 机器人发:

Track,ICP0 或者 Track,ICP1

● 机器人收:

成功:

X±坐标值,Y±坐标值,Z±坐标值,RX±坐标值,RY±坐标值,RZ±坐标值,...,X±坐标

值,Y±坐标值,Z±坐标值,RX±坐标值,RY±坐标值,RZ±坐标值

失败:

NO Track, CsvMaster 轨迹生成失败

6.3 例子: 三角凸块工件轨迹引导

A.三角凸台工件

B.轨迹示意

如上图所示, 轨迹引导点共包含 10 个, 引导顺序由 1,2, ..., 10 行进, 工具末端朝外。

C.配置表

10 个引导点位的配置表,如下所示:

ID	X	Y	Z	coef	vectorY0	vectorY1	vectorY2	Model ID
1	103	50	20	0.7	-1	1	0	M0
2	103	10	20	0.7	-1	1	0	M0
3	-113	10	20	0.7	0	0	0	M0
4	-113	-10	20	0.7	-1	-1	0	M0
5	103	-10	20	0.7	-1	-1	0	M0
6	103	-50	20	0.7	-1	-1	0	M0
7	103	-10	20	0.7	-1	-1	0	M0
8	103	-10	105	0.7	-1	-1	0	M0
9	103	10	105	0.7	-1	1	0	M0
10	103	10	20	0.7	-1	1	0	M0

对应于配置文件的设置如下图所示:

	ckingPoin						
1.0	//vers	ion ID					
X	Y	Z	coef	vectorY0	vectorY1	vectorY2	Model II
103	50	20	0.7	-1	1	0	MO
103	10	20	0.7	-1	1	0	MO
-113	10	20	0.7	0	0	0	MO
-113	-10	20	0.7	-1	-1	0	MO
103	-10	20	0.7	-1	-1	0	MO
103	-50	20	0.7	-1	-1	0	MO
103	-10	20	0.7	-1	-1	0	MO
103	-10	105	0.7	-1	-1	0	MO
103	10	105	0.7	-1	1	0	MO
103	10	20	0.7	-1	1	0	MO

D.机器人执行操作

● 机器人发:

Track,ICP0 或者 Track,ICP1

● 机器人收:

成功:

X+371.758,Y-338.203,Z+46.015,RX+160.280,RY-10.317,RZ-18.695,...,X+371.758,Y-338.203,Z+46.015,RX+160.280,RY-10.317,RZ-18.695

(说明: ICP0 模式返回 10 个轨迹点, ICP1 模式返回 18 个轨迹点位)

失败:

NO_Track, CsvMaster 轨迹生成失败