CLAIMS

- A method for removing water from surfaces of various materials, comprising the steps of covering said surface with a composition having a specific weight higher than that of the water and subsequently removing water from the composition by skimming, wherein a composition essentially consisting of the following components is used:
 - A) a non ionic additive having a fluoropolyether structure with a fluorinated T end group containing one chlorine atom, having the following formula:

$$T-OR_f(CFY)-L$$
 (I)

wherein

$$L = X - CH2CH2(OCH2CH2)nB$$
 (Ia)

wherein:

 $X = CH_2O$; CH_2NR "; CONR"; $CH_2OCH_2CH_2NR$ "; CH_2OCOCH_2O ;

B = OH; SH; NHR"; OCH₃; OCOCH₃,

with R"= H; $C_{1\cdot 3}$ alkyl,

T is a fluorinated radical selected from ClCF₂CF(CF₃)-, CF₃CFClCF₂-, ClCF₂CF₂-, ClCF₂-,

 $Y = CF_3 \text{ or } F$,

the radical R_f being of (per)fluoropolyether type; being in said additive of formula (I):

the number average molecular weight of the

fluoroether part T-OR $_{\rm f}$ - in the range 400-2,000,

- the ratio by weight (K) between the fluorinated part and the hydrogenated L part of the additive is in the range 1.50-4.00; the n parameter in formula (Ia) being such as to meet said ratio;
- B) a perfluoropolyether having number average molecular weight in the range 300-900, the ratio K^r between the number average molecular weight of the fluoropolyether part T-OR_f- of the additive and the number average molecular weight of component B) being higher than 1.60.
- 2. A method according to claim 1, wherein the number average molecular weight of the fluoroether part T-OR_{f^-} of the compounds of formula (I) component A) is preferably in the range 500-1,200, still more preferably in the range 600-1,000.
- A method according to claims 1-2, wherein the perfluoropolyether component B) has number average molecular weight preferably in the range 300-650.
- 4. A method according to claims 1-3, wherein the radical R_t of fluoropolyether type preferably comprises repeating units statistically distributed along the polymer chain

selected from: (CF_2CF_2O) , (CFYO) wherein Y is equal to F or CF_3 , (C_3F_6O) ; $(CF_2(CF_2)_2O)$ wherein Z is an integer equal to 2 or 3; $(CF_2CF(OR_2,O))$, $(CF(OR_2,O))$ wherein R_2 , is equal to CF_3 , C_2F_5 , C_3F_7 ; $CR_4R_5CF_2CF_2O$ wherein R_4 and R_5 are equal to or different from each other and selected between Cl or perfluoroalkyl, preferably having 1-4 carbon atoms.

- 5. A method according to claim 4, wherein the group $R_{\rm f}$ comprises the following repeating units:
 - (a) -(CF₂CF(CF₃)O)_a(CFYO)_bwherein Y is F or CF₃; a and b are integers such that the molecular weight is in the above range; a/b is in the range 10-100;
 - (b) -(CF₂CF₂O)_c(CF₂O)_d(CF₂(CF₂)_zO)_h. wherein c, d and h are integers such that the molecualr weight is within the above range; c/d is in the range 0.1-10; h/(c+d) is in the range 0-0.05, z has the above value, h can be equal to 0;
 - (c) -(CF₂CF(CF₃)O)_e(CF₂CF₂O)_f(CFYO)_gwherein Y is F or CF₃; e, f, g are integers such that the molecular weight is within the above range; e/(f+g) is in the range 0.1-10, f/g is in the range 2-10;
 - (d) -(CF₂O)_j(CF₂CF(OR_f.)O)_k(CF(OR_f.)O)₁-

wherein: R_t is -CF₃, -C₂F₅, -C₃F₇; j,k,l are integers such that the molecular weight is within the above range; k+l and j+k+l are at least equal to 2,

k/(j+1) is in the range 0.01-1,000, 1/j is in the range 0.01-100;

- (e) -(CF₂(CF₂)_zO)_s
 - wherein s is an integer such as to give the above molecular weight, z has the already defined meaning;
- (f) -(CR₄R₅CF₂CF₂O)_j,wherein R₄ and R₅ are equal to or different from each other and selected from H, Cl or perfluoroalkyl, having 1-4 carbon atoms, j' being an integer such that the molecular weight is the above one;
- (g) (CF(CF₃)CF₂O);
 - j" being an integer such to give the above molecular weight.
- 6. A method according to claims 1-5, wherein the value $K^{\rm I}$ is higher than 2.00 and preferably in the range 2.00-3.00.
- A method according to claims 1-6, wherein the perfluoropolyether component B) preferably has the following structure:

T'-O-R_f-T"

wherein:

 R_f has the above meaning;

T'and T", equal to or different, are selected from $\ ^{-}CF_3,$ $^{-}C_3F_5,$ $^{-}C_3F_5,$ $^{-}C_3F_7.$

- 8. A method according to claim 7, wherein the perfluoropolyether component B) has a structure selected from the following:
 - (III) T'O(C₃F₆O)_a.(CFYO)_b.T"

wherein Y = F or CF_3 , a" and b" are integers such that the molecular weight is within the range with a"/b" in the range 1-40; T' and T" are as above defined.

- (IV) $T'O\left(C_2F_4O\right)_p(CF_2O)_qT''$ wherein p and q are integers such that the molecular weight is within the indicated range with p/q in the range 0.6-1.2; T' and T' are as above.
- (V) $T'O(C_3F_6O)_s.T^*$ wherein s' is an integer such that the molecular weight is within the indicated range; T'and T* are as above.
- 9. A method according to claims 1-8, wherein the amount of additive A) in the compositions is lower than or equal to 0.1% by weight, preferably lower than 0.05% with respect to the total weight of the composition.
- 10. A composition according to claims 1-9.
- 11. Non ionic additive having a fluoropolyether structure
 (AF 2338/031,EST)

according to claims 1-9.