VERSIÓN ADÉLICA

CARLOS EDUARDO MARTÍNEZ AGUILAR

Capítulo 1

Adeles

Definición 1.1 Una valuación en un campo K es una función $|\cdot|:K\to\mathbb{R}^+$ que safisface los siguientes axiomas

- i) |a| = 0 si y sólo si a = 0.
- |a|b| = |a||b| para todo $\{a,b\} \subset K$
- iii) Existe $C \in \mathbb{R}^+$ tal que $|1+a| \leq C$ para todo $a \in K$

Observamos que por la segunda propiedad |1| = |1||1|, por lo tanto |1| = 1 además si $w \in K$ es raiz de la unidad $w^n = 1$, entonces |w| = 1.

La valuación trivial se define por $\chi_{K\setminus\{0\}}: K \to \mathbb{R}^+$

$$\chi_{K\setminus\{0\}}(x) = \begin{cases} 0, & \text{if } x = 0\\ 1, & \text{en otro caso.} \end{cases}$$
 (1.1)

excluimos la valuación trivial de nuestro estudio. Así definimos dos tipos distintos de valuaciones: decimos que una valuacion es no arquimideana si

$$|a+b| \le \max\{|a|, |b|\}.$$
 (1.2)

y por lo tanto diremos que una valuación es arquimideana en otro caso (observamos que la condición de no arquimidenidad es equivalente a que C=1).

Las valuaciones definen una norma en el campo K y por lo tanto una distancia dada por |x-y|, así diremos que dos valuaciones son equivalentes si definen la misma topología en K, más precisamente, dos valuaciones ν_1, ν_2 son equivalentes si existen $\{c_1, c_2\} \subset \mathbb{R}^+$ tales que

$$c_1 \, \nu_1 \le \nu_2 \qquad \qquad c_2 \, \nu_2 \le \nu_1$$

a las clases de equivalecia bajo esta relación les llamaremos lugares.

Teorema 1.1 (Ostrowski) En \mathbb{Q} sólo existen dos tipos distintos de lugares, el lugar del valor absoluto usual en \mathbb{Q} , $|\cdot|$ y los lugares no arquimideamos correspondientes a las valuaciones p-ádicas $|\cdot|_p$ para p primo definidas por

$$|u p^n|_p := p^{-n}, \quad donde \quad u \in \mathbb{Q}, \ u = \frac{a}{b}, \ (a, p) = (b, p) = 1.$$
 (1.3)

A estas valuaciones también les llamamos finitas.

Definición 1.2 Un campo global es un campo K dentro de las siguientes dos categorias distintas

- K es una extensión finita de \mathbb{Q} (también llamdo campo numérico)
- K es una estensión finita y separable de $\mathbb{F}(\tau)$, con \mathbb{F} un campo finito y τ es tracendental sobre \mathbb{F} , es decir $\mathbb{F}(\tau) \cong Frac(\mathbb{F}[X])$.

Nota.- Dada una valuación ν en un campo K, denotamos por K_{ν} al campo correspondiente a la completación métrica de K.

Definición 1.3 (Anillo de valuación) Decimos que un dominio entero R es un anillo de valuación si para su campo de fracciones F = Frac(R) sucede que para todo $x \in F$ sucede que $x \in R$ o $x^{-1} \in R$.

Para K un campo y ν una valuación no arquimideana, el anillo de valuación de la completación K_{ν} es ta dado por

$$\mathcal{O}_{\nu} := \{ x \in K_{\nu} \mid |x| \le 1 \}. \tag{1.4}$$

En general para una valuación ν denotaremos por \mathcal{O}_{ν} a su anillo de valuación, en caso de las valuaciones p-ádicas escribimos \mathcal{O}_{p} .

Definición 1.4 (Anillo de adeles) Sea K un campo global, definimos el anillo de adeles de K como el subanillo de $\prod_{\nu} K_{\nu}$ definido por el producto topológico restringido

$$\mathbb{A}_K := \prod_{\nu \ valuaci\'on} (K_{\nu}, \mathcal{O}_{\nu}) \subset \prod_{\nu} K_{\nu} \tag{1.5}$$

definido como el conjunto de (a_{ν}) tales que $a_{\nu} \in \mathcal{O}_{\nu}$ salvo un número finito de lugares. La estructura de anillo se define entrada a entrada

$$(xy)_{\nu} := x_{\nu} y_{\nu} \quad (x+y)_{\nu} := x_{\nu} + y_{\nu}$$

a un elemento invertible de \mathbb{A}_K le llamaremos idele.

Observamos que existe un encaje de K en \mathbb{A}_K por medio de $\varphi:K\to\mathbb{A}_K$ $\varphi(x)=(x,x,x,\cdots)$

1.0.1. Espacios adélicos y variedades algebraicas

Sea V una variedad algebraica definida sobre un campo K y sea L una extensión de K, denotamos por V_L a los puntos de L que son racionales sobre K, es decir los ceros de polinomios con coeficientes en K con coordenadas en L. Sabemos que V admite una cubierta finita de abiertos de Zariski, es decir que V se puede cubrir con un número finito de variedades afines definidas sobre K, así

$$V = \bigcup_{i} \varphi_i(V_i),$$

donde V_i es una variedad afín $V_i=Spec\,K[x_1,\cdots,x_n]/I$ y φ_i es un isomorfimo entre V_i y un abierto de V. Así tenemos que

$$V_L = \bigcup_i \varphi_i(V_{i,L}),$$

en particular para ν una valuacion en K y K_{ν} con la ν topología, tenemos que

$$V_{K_{\nu}} = \bigcup_{i} \varphi_{i}(V_{i,K_{\nu}})$$

es localmente compacto. Por lo tanto definimos

$$[V, \varphi_i, V_i]_{\mathcal{O}_{\nu}} = \bigcup_i \varphi_i(V_{i, \mathcal{O}_{\nu}}), \tag{1.6}$$

donde $V_{i,\mathcal{O}_{\nu}}$ es el subconjunto compacto de $V_{K_{\nu}}$ con coordenadas en \mathcal{O}_{ν} y así $[V,\varphi_i,V_i]_{\mathcal{O}_{\nu}}$ es un subconjunto compacto de $V_{K_{\nu}}$, con esto definimos el espacio adélico asociado a V como el producto topológico restringido

$$V_{\mathbb{A}_K} := \prod_{\nu \text{ valuación}} (V_{K_{\nu}}, [V, \varphi_i, V_i]_{\mathcal{O}_{\nu}}) \subset \prod_{\nu} V_{K_{\nu}}. \tag{1.7}$$

Cuando V es **completo**, se puede demostrar que $V_{\mathbb{A}_K}$ y $V_{K_{\nu}}$ son compactos y por lo tanto $[V,\varphi_i,V_i]_{\mathcal{O}_{\nu}}=V_{\mathcal{O}_{\nu}}$

Teorema 1.2 Sean $V = \bigcup_i \varphi_i(V_i)$ y $W = \bigcup_j \psi_j(W_j)$ variedades algebraicas definidas sobre K y sea $F: V \to W$ un morfismo de variedades algebraicas definido sobre K, entonces existe un conjunto finito de valuaciones tal que F mapea $[V, \varphi_i, V_i]_{\mathcal{O}_{\nu}}$ en $[W, \psi_j, W_j]_{\mathcal{O}_{\nu}}$.

DEMOSTRACIÓN. Para demostrar esto es suficiente considerar el caso cuando V es afín ya que podemos continuar el argumento a una cubierta de variedades afines. Para cada j sea $F_j = \psi_j^{-1} \circ F : V \to W_j$, ahora F es representable por funciones racionales R_{jk} en coordenadas de V, donde $1 \le k \le dim(W_j)$. Sea $\mathfrak{a}_j \subset K[X]$ el ideal consistente de todos los polinomios A(x) tales que

$$A(x) R_{jk}(x) = Q_k(x) \in K[x],$$

para todo k con x punto genérico de V sobre K, entonces es claro que F_j está definido en $x_1 \in V$ si y sólo si no es un cero de \mathfrak{a}_j . Como F está bien definido en todo V, entonces por lo menos un F_j está definido en un x_1 cualquiera, lo que significa que que no existe un cero común de $\sum_j \mathfrak{a}_j$, es decir

$$(1) = \sum_{j} \mathfrak{a}_{j}.$$

Por lo tanto podemos escribir $1 = \sum_{i} A_{i}$ con

$$A_j(x)R_{jk}(x) = Q_{jk}(x) \in K[x].$$

Sea S el conjunto de todas las ν tal que algún coeficiente de $\{A_j, Q_{j\,k}\}$ no sea ν entero. Para cualquier $x_1 \in V_{\mathcal{O}_{\nu}}$, fuera de S, entonces $A_j(x_1)$ es una ν -unidad para algún $j = j_1$ y asi $R_{j_1\,k}(x_1) = Q_{j_1\,k}(x_1)/A_{j_1}(x_1)$ está en \mathcal{O}_{ν} para toda k.

Corolario 1.3 $Si F: V \to W$ es un isomorfismo, entonces

$$F([V, \varphi_i, V_i]_{\mathcal{O}_{\nu}}) = [W, \psi, W_j]_{\mathcal{O}_{\nu}}$$

para casi toda ν .

Con esto notamos que la definición de $[V, \varphi_i, V_i]_{\mathcal{O}_{\nu}}$ es casi intrínseca y que si aplicamos el resultado con la identidad en V obtenemos que la definición de $V_{\mathbb{A}_K}$ es independiente de la la cubierta afín (coordenadas). Además de lo anterior, obtenemos que para cada morfismo $F:V\to W$ determina una función continua $F_{\mathbb{A}_K}:V_{\mathbb{A}_K}\to W_{\mathbb{A}_K}$.

De lo anterior es posible definir un functor

$$\mathcal{A}: \mathcal{V}ar_K \to \mathbb{A}_K Spc \tag{1.8}$$

Entre la categoría de variedades algebraicas sobre K y la categoría de espacios adélicos. Es claro que si $F:V\to W$ y $G:W\to X$, entonces $\mathcal{A}(F):=F_{\mathbb{A}_K}$ es functorial, es decir $(G\circ F)_{\mathbb{A}_K}=G_{\mathbb{A}_K}\circ F_{\mathbb{A}_K}$. Si V es una subvariedad de W, entonces el mapeo inclusión $\iota:V\to W$, entonces se puede demostrar que al aplicarle el fuctor $\mathcal{A}(\iota)=\iota_{\mathbb{A}_K}$ es un encaje cerrado. Además sucede que $(V\times W)_{\mathbb{A}_K}\cong V_{\mathbb{A}_K}\times W_{\mathbb{A}_K}$, por lo tanto el functor \mathcal{A} tiene varias propiedades interesante para su estudio, por ejemplo existe la siguiente condición que asegura la suprayectividad de $F_{\mathbb{A}_K}:V_{\mathbb{A}_K}\to W_{\mathbb{A}_K}$

Teorema 1.4 Sea $F: V \to W$ un morfismo de variedades algebraicas definidas sobre K. Si sucede que para cada $p \in W$ existe $\phi_p: W \to V$ morfismo racional sobre K tal que $F \circ \phi_p = id_W$ (i.e ϕ_p es una sección local de F), entonces $F_{\mathbb{A}_K}: V_{\mathbb{A}_K} \to W_{\mathbb{A}_K}$ es suprayectiva.

DEMOSTRACIÓN. Para cada $p \in W$ sea ϕ_p la función mencionada en la declaración del teorema y $D(\phi_p)$ el abierto de W donde esta definida. Así tenemos una cubierta abierta de W dada por $\{D(\phi_p)\}_{p\in W}$, los cuales por la racionalidad de ϕ_p son isomorfos a variedades afines. Así podemos escribir W como una

unión finita (Noeterianidad) $W = \bigcup_j \psi_j(W_j)$ con W_j variedad afin tal que en cada $\psi_j(W_j)$ hay una sección global ψ_j . Así definimos $G_j = \phi_j \circ \psi_j : W_j \to V$ el cual es un morfismo que cumple $F \circ G_j = \psi_j$, así por el teorema 1.2 existe un subconjunto finito S de valuaciones tal que

$$G_j(W_{j,\mathcal{O}_{\nu}}) \subset [V,\varphi_i,V_i]_{\mathcal{O}_{\nu}} \ \forall j$$

siempre y cuando ν esté fuera de S. Sea $p=(p_{\nu})\in W_{\mathbb{A}_K}$ con $p_{\nu}\in \psi_{j(\nu)}(W_{j(\nu)})$, por definición de $W_{\mathbb{A}_K}$ exite un conjunto finito $S\subset T$ tal que $p_{\nu}\in \psi_{j(\nu)}(W_{j(\nu)})$ para ν fuera de T, así definimos $q=q_{\nu}=\psi_{j(\nu)}(p_{\nu})$, así si ν no está en T, entonces

$$q_{\nu} \in \psi_{j(\nu)}(W_{\nu \mathcal{O}_{\nu}}) \subset [V, \varphi_i, V_i]_{\mathcal{O}_{\nu}},$$

así q_{ν} está bien definido y $F(q_{\nu}) = p_{\nu}$, es decir $F_{\mathbb{A}_{K}}(q) = p$

Observación 1 Este teorema es inmediatamente aplicable al caso de acciones de grupos algebraicos. Sea X=H/G donde G es un grupo algebraico y H es una variedad algebraica (ambas sobre K), entonces el teorema 1.4 implica que en muchos casos al aplicar el functor A a $\pi:H\to X$, obtendemos una función suprayectiva $\pi_{\mathbb{A}_K}:H_{\mathbb{A}_K}\to H_{\mathbb{A}_K}/G_{\mathbb{A}_K}$.

Capítulo 2

Restricciones de Weil

Sea L/K una extensión separable de grado d sobre K y sean \mathbb{A}_K , \mathbb{A}_L sus respectivos anillos de adeles. Toda valuación ω en L determina una valuación ν en K por medio de restricción, esto lo denotamos por ω/ν . Como la extensión de K es de grado d, hay a lo más d valuaciones ω tal que ω/ν . Además podemos identificar K_{ν} como la cerradura de K en L_{ω} , para valuaciones discretas sucede que $\mathcal{O}_{\nu} = K_{\nu} \cap \mathcal{O}_{\omega}$, también es claro que el mapeo $(a_{\nu}) \mapsto (a_{\omega})$ con ω/ν es una inyección $\mathbb{A}_K \hookrightarrow \mathbb{A}_L$.

Supongmos ahora que L/K es normal con grupo de Galois $Gal(L/K) = \Gamma$, entonces la acción de Γ en L es continua en la ν -topología, como L es denso en

$$\prod_{i=1}^{m} L_{\omega_i} \text{ donde } \omega_i/\nu,$$

podemos extender continuamente la acción a este producto y por lo tanto podemos extender la acción continuamente a todo \mathbb{A}_L . Notamos que \mathbb{A}_K son los puntos invariantes de \mathbb{A}_L bajo la acción de Γ. Además si una variedad algebraica V está definida sobre K, también está definida sobre L y por lo tanto $V_{\mathbb{A}_K}$ se encaja canonicamente en $V_{\mathbb{A}_L}$. Si L es normal sobre K, el grupo de Galois Γ actúa de forma natural en $V_{\mathbb{A}_L}$ y claramente $V_{\mathbb{A}_K}$ es el conjunto de puntos invarintes bajo la acción de Γ.

Ahora nuestro propósito para definir la reducción de escalares, es encontrar una variedad W sobre K tal que para dada una variedad V sobre L tengamos que $V_{\mathbb{A}_L} \cong W_{\mathbb{A}_K}$ de forma canónica, para hacer esto usaremos una contrucción de tipo algebraico-geométrica.

Sean V y W variedades definidas sobre L y K respectivamente (L/K no necesariamente normal). Sea $\varphi:W\to V$ un mapeo sobre L y sea $\Sigma:=\{\sigma_1,\cdots,\sigma_d\}$, el conjunto de encajes de L en \overline{K} (cerradura algebraica), con esto podemos definir $\varphi^{\sigma_i}:W\to V^{\sigma_i}$ para toda $i\in\{1,\cdots,d\}$, donde V^{σ_i} es la imagen de V bajo σ_i , vista como subconjunto de V_L , así podemos definir

$$(\varphi^{\sigma_1}, \cdots, \varphi^{\sigma_d}): W \to V^{\sigma_1} \times \cdots \times V^{\sigma_d} \quad w \mapsto (\varphi^{\sigma_i}(w))_{i \in \{1, \cdots, d\}}.$$

Si este mapeo es un encaje llamamos al par (W, φ) como la variedad obtenida de V por restricción de L a K y lo denoratemos por $(W, \varphi) = Res_{L/K}(V)$ o $W = Res_{L/K}(V)$.

Demostramos que este espacio es **único** debido a que la restricción tiene la siguiente propiedad universal:

Sea X una variedad algebraica sobre K y sea $f: X \to V$ un morfimos definido sobre L, entonces existe un único $\psi: X \to Res_{L/K}(V)$ definido sobre K tal que $f = \varphi \circ \phi$, de hecho

$$X \xrightarrow{f} V$$

$$\downarrow^{\psi} \qquad \phi = (\varphi^{\sigma_1}, \cdots, \varphi^{\sigma_{d-1}})^{-1} \circ (f^{\sigma_1}, \cdots, f^{\sigma_d}), \qquad (2.1)$$

$$Res_{L/K}(V)$$

por lo tanto ϕ esta definida sobre Ky es única. La **existencia** se sigue del siguiente teorema

Teorema 2.1 Sean V y $Res_{L/K}(V) = (W, \varphi)$ como antes, sea también V' definido sobre L. Si V' es una subvaridad algebraica o un abierto de Zariski de V, entonces existe $Res_{L/K}(V') = (W', \varphi')$. Además si V_1 y V_2 tienen restricciones (W_1, φ_1) y (W_2, φ) respectivamente, entonces

$$(W_1 \times W_2, \varphi_1 \times \varphi_2) = Res_{L/K}(V_1 \times V_2)$$

Si V tiene estructuras adicionales como la de grupo, entonces el morfimo φ y $Res(V)_{L/K}$ preservan dicha estructura. Por ejemplo sea $V=G_m:=L^*$ el grupo multiplicativo de unidades de L uno dimensional, entonces $W=Res(V)_{L/K}$ es un grupo de dimensión d=[L:K] definido sobre K. La multiplicación esta definida sobre K como la multiplicación en L^* vista como una tranformación K-lineal.

Capítulo 3

Superficies modulares de Hilbert y espacios adélicos

Sea K, una extensión finita de \mathbb{Q} , denotamos por S_f al conjunto de lugares finitos de K, respectivamente S_{∞} será el cunjunto de lugares infinitos de K, denotamos \mathbb{A}_K al anillo de adeles de K y por \mathbb{A}_K^* al grupo de ideles de K. El grupo de ideles contiene al grupo de unidades K^* , definimos el *idele class group* de K como

$$Cl(\mathbb{A}_K) := \mathbb{A}_K^* / K^*. \tag{3.1}$$

Resulta que podemos recuperar el $class\ group$ clásico de elemento absolutamente positivos

$$\mathcal{C}l(\mathbb{A}_K) \left(\prod_{p \in S_f} \mathcal{O}_p\right) \left(\prod_{\nu \in S_{\inf}} \mathbb{R}^+\right) \cong \mathcal{C}l^+(K).$$

Sea $G = Res_{K/\mathbb{Q}}(GL(2,K))$ la restricción sobre \mathbb{Q} del grupo matrices invertibles 2×2 con coeficientes en K, así definimos

$$G(\mathbb{R}) = \prod_{\nu \in S_{\infty}} GL(2, \mathbb{R}),$$

además definimos el morfismo de grupos $h_0: \mathbb{C}^* \to G(\mathbb{R})$ definido por

$$x + iy \mapsto \left(\begin{pmatrix} x & -y \\ y & x \end{pmatrix}, \dots, \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \right).$$
 (3.2)

El centralizador de h_0 en $G(\mathbb{R})$ es

$$K_{\infty} = \left\{ \left(\begin{pmatrix} x_1 & -y_1 \\ y_1 & x_1 \end{pmatrix}, \cdots, \begin{pmatrix} x_n & -y_n \\ y_n & x_n \end{pmatrix} \right) \middle| \{x_i, y_i\} \subset \mathbb{R} \, \forall i \in \{1, \cdots, n\} \right\}.$$

Notamos que K_{∞} es un subgrupo conexo de $G(\mathbb{R})$ isomorfo al tangente del toro n-dimensional. Más aún el cociente $G(\mathbb{R})/K_{\infty}$ es una variedad real de dimensión

 $2n \text{ con } 2^n \text{ componentes conexas permutadas por }$

$$\pi_0(G(\mathbb{R})) = G(\mathbb{R})/G(\mathbb{R})^0 \cong (\mathbb{Z}/2\mathbb{Z})^n.$$

Podemos darle a $G(\mathbb{R})/K_{\infty}$ una estructura de variedad compleja por medio de la siguiente identificación

$$G(\mathbb{R})/K_{\infty} \to (\mathbb{C} \setminus \mathbb{R})^n \quad g \mapsto (g_1(i), \cdots, g_n(i)).$$

La acción de $\epsilon_j \in \pi_0(G(\mathbb{R}))$ es la conjugación compleja en la coordenada j-ésima, donde

$$\epsilon_j = \left(Id_2, \cdots, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \cdots, Id_2 \right).$$

Denotamos por \mathbb{A}^{fin}_K al subanillo de \mathbb{A}_K de adeles finitos, es decir que sólo se consideran las valuaciones no arquimideanas en el producto reducido. Así tenemos que

$$G(\mathbb{A}_K)/K_{\infty} = (G(\mathbb{R})/K_{\infty}) \times G(\mathbb{A}_K^{fin}).$$

Este cociente también tiene una estuctura compleja debido a la acción izquierda de $G_{fin}=G(\mathbb{A}_K^{fin})$ en $G(\mathbb{A})/K_{\infty}$.

El grupo $G(\mathbb{A}_K)$ es un grupo topológico con la topología que determina que el subbgrupo

$$\prod_{\nu \in S_f} GL(2, \mathcal{O}_{\nu}) \times G(\mathbb{R})^0,$$

sea abierto. Ahora consideramos un subgrupo compacto C_{fin} de G_{fin} y considermos el cociente

$$X_{C_{fin}} := G(\mathbb{Q}) \backslash G(\mathbb{A}_K) / K_{\infty} C_{fin}.$$

Para anallizar este cociente utilizamos el mapeo $G(\mathbb{A}_K) \to \mathbb{A}_K^*$ definido por el determinante en cada entrada, esto induce el mapeo

$$G(\mathbb{Q})\backslash G(\mathbb{A}_K)/K_{\infty}C_{fin} \to \mathbb{A}_K^*/K^* \det(G(\mathbb{R})^0C_{fin}).$$

Donde escogemos $\{g_1, \cdots, g_m\} \subset G_{fin}$ tal que $\{det(g_i)\}$ forma un conjunto completo de representantes de $\mathbb{A}_K^*/K^* det(G(\mathbb{R})^0 C_{fin})$, entonces

Teorema 3.1

$$G(\mathbb{A}_K) = \bigcup_{j=1}^m G(\mathbb{Q})g_jG(\mathbb{R})^0 K_{fin}$$
(3.3)

Teorema 3.2 Podemos identificar:

$$G(\mathbb{Q})\backslash G(\mathbb{A}_K)/K_{\infty}C_{fin} = \bigcup_{j=1}^{m} \Gamma_j \backslash \mathbb{H}^n$$
 (3.4)

donde $\Gamma_j = g_j (G(\mathbb{R})^0 K_{fin}) g_j^{-1} \cap G(\mathbb{Q})$

Demostración. Como sabemoss por el teorema anterior

$$X_{C_{fin}} := G(\mathbb{Q}) \backslash G(\mathbb{A}_K) / K_{\infty} C_{fin}$$
(3.5)

$$= G(\mathbb{Q}) \setminus \bigcup_{j=1}^{m} G(\mathbb{Q}) g_j G(\mathbb{R})^0 C_{fin} / K_{\infty} C_{fin}$$
(3.6)

$$= \bigcup_{j=1}^{m} g_j (G(\mathbb{R})^0 C_{fin}) g_j^{-1} \cap G(\mathbb{Q}) \setminus (G(\mathbb{R})^0 / K_{\infty})$$
 (3.7)

$$= \bigcup_{j=1}^{m} \Gamma_j \backslash \mathbb{H}^n. \tag{3.8}$$

Si hacemos esto en el caso de $C_0 = \prod_{\nu \in S_{fin}} GL(2, \mathcal{O}_{\nu})$

Corolario 3.3 $G(\mathbb{Q})\backslash G(\mathbb{A}_K)/K_{\infty}C_0$ se puede identificar con

$$\bigcup_{\mathfrak{a}}\Gamma(\mathfrak{a}\oplus\mathcal{O}_K)\backslash\mathbb{H}^n,$$

donde \mathfrak{a} corre sobre todos los representantes en $\mathcal{C}l^+(K)$.

DEMOSTRACIÓN. Sabemos que los componentes de $G(\mathbb{Q})\backslash G(\mathbb{A}_K)/K_{\infty}C_0$ están en correspondencia uno a uno con $\mathbb{A}_K^*/K^*det(G(\mathbb{R})^0C_o)\cong \mathcal{C}l^+(K)$ (igual que el caso real) y el resultado se sigue del teorema anterior.

Esto explica el por qué consideramos todas las superficies $\Gamma(\mathfrak{a} \oplus \mathcal{O})/\mathbb{H}^2$, en gran parte consideramos propiedades geométricas de $G(\mathbb{Q})\backslash G(\mathbb{A}_K)/K_{\infty}C_0$, sin embargo al considerar las propiedades aritméticas de este espacio es imperativo hablar de adeles.

Sean C_1 y C_2 subgrupos abiertos y compactos de $G(\mathbb{A}_K^{fin})$ y sea $g \in G(\mathbb{A}_K^{fin})$ tal que $g^{-1}C_1g \subset C_2$, entonces existe un morfismo **natural**

$$I_{C_1 C_2}: X_{C_1} \to X_{C_2},$$
 (3.9)

dado por la multiplicación a la derecha por g que cumple

- i) $I_{C_3 C_2}(h)I_{C_2 C_2}(g) = I_{C_3 C_1}(gh)$ para toda g, h
- ii) $I_{C_1 C_1} = Id_{X_{C_1}}$
- iii) Si $C_1 \subset C_2$ es un subgrupo normal entonces C_2/C_1 actúa en X_{C_1} y $I_{C_1\,C_2}(1)$ induce un isomorfismo

$$X_{C_1}/(C_2/C_1) \cong X_{C_2}.$$

Bibliografía

- [1] Stein, W., Algebraic Number Theory a Computational Approach
- $[2] \ \ Weil, \ A., \ \textit{Adeles and Algebraic Groups}, 1982 \ \textit{Birkhauser}$
- [3] VAN DER GEER, G., Hilbert Modular Surfaces, Springer-Verlag