ANÁLISIS SINTÁCTICO DESCENDENTE CON GRAMÁTICAS LL(1)

ANALIZADOR SINTÁCTICO DESCENDENTE PREDICTIVO CON TABLA

Aurora Pérez Pérez

Analizador Sintáctico Descendente Predictivo Tabular

- Pila → en la que construye implícitamente el árbol
- Tabla de análisis → contiene la regla a aplicar para cada par "N, siguiente_token"
- Funcionamiento: en cada instante, mira el símbolo de la cima de la pila y el sig_token
 - Si cima pila es un T
 - Si coincide con sig_token, se equiparan (sacarlo de la pila y llamar al ALex)
 - Si no coincide con sig_token, hay un error sintáctico
 - Si cima pila es un N, se aplica la regla que indica la tabla de análisis -se saca N de la pila y se mete en ella el consecuente (si no hay regla, hay un error sintáctico)
- Configuración inicial: la pila contiene un símbolo de fondo de pila (\$) y el axioma en la cima
- Configuración final: la pila contiene el símbolo de fondo de pila (\$) y la cadena de entrada ha sido procesada entera (sig_token=\$)

La tabla tiene por filas los No terminales, y por columnas los terminales y \$

Tabla M	t ₁	t ₂	t ₃	•••	t _q	\$
N_1	$N_1 \rightarrow N_p N_3$			•••	$N_1 \rightarrow N_p N_3$	
N ₂	$N_2 \rightarrow t_1 N_5$		$N_2 \rightarrow \lambda$	•••		•••
N_3		$N_3 \rightarrow t_2$		•••		$N_3 \rightarrow t_i$
•••	•••	•••	•••	•••		•••
N _p	$N_p \rightarrow t_1$				$N_p \rightarrow t_q$	***

Analizador Sintáctico Descendente Predictivo Tabular

Si cima pila es un T
= sig_token?
рор Т
sig_token:= Alex
≠ sig_token?
error sintáctico
Si cima pila es un N, buscar regla en la tabla
N → A B C
pop N, pusx C, push B, push A
Celda vacía
error sintáctico

cima

Χ

Pila

Tabla M	t ₁	t ₂	t ₃	•••	t _q	\$
N_1	$N_1 \rightarrow N_p N_3$			•••	$N_1 \rightarrow N_p N_3$	•••
N ₂	$N_2 \rightarrow t_1 N_5$		$N_2 \rightarrow \lambda$	•••		•••
N ₃		$N_3 \rightarrow t_2$		•••		$N_3 \rightarrow t_i$
•••	•••	•••	•••	•••		•••
N _p	$N_p \rightarrow t_1$				$N_p \rightarrow t_q$	•••

Analizador Sintáctico Descendente Predictivo Tabular

Configuración inicial

Configuración final

Algoritmo del Analizador Sintáctico descendente con tabla

else error ()

```
sig_tok := Alex() /* sig_tok contiene el primer token de la cadena de entrada w$
repeat
   /* sea X el símbolo de la cima de la pila y a el símbolo terminal almacenado en sig tok
   if X es un terminal then
   { if X = a then
        { pop X /* sacar X de la pila
            sig_tok := Alex() /*pedir el siguiente token al A. Léxico
        else error ()
   else
   { if M[X, a] = X \rightarrow Y_1 Y_2 \dots Y_k then
        { pop X /* sacar X de la pila
            push Y_k, push Y_{k-1},..., push Y_1 /* meter Y_k, Y_{k-1},... Y_1 en la pila, con Y_1 en la cima
        else error ()
until X = $
if sig_tok = $ then aceptar
```


¿Cómo se construye la tabla de análisis?

Dada la gramática LL(1) del lenguaje

- Para cada producción $A \rightarrow \alpha$ de la gramática, aplicar los pasos 1 y 2
 - 1. Para cada terminal a de $FIRST(\alpha)$, añadir $A \rightarrow \alpha$ a M[A,a]
 - 2. Si λ está en $FIRST(\alpha)$, añadir $A \to \alpha$ a M[A,b] para cada terminal b que pertenezca a FOLLOW(A). Si λ está en $FIRST(\alpha)$ y \$ está en FOLLOW(A), entonces añadir $A \to \alpha$ a M[A,\$]
- Las casillas de *M* que hayan quedado **en blanco** corresponden a **casos de error**.

Dada la gramática LL(1) del lenguaje

Para cada producción $A \rightarrow \alpha$

añadir $A \rightarrow \alpha$ a M[A,a] para todos los terminales $a \in FIRST(\alpha)$

Si λ está en *FIRST*(α),

añadir $A \rightarrow \alpha$ a M[A,b] para todos los terminales $b \in FOLLOW(A)$

Si λ está en $FIRST(\alpha)$ y \$ está en FOLLOW(A),

añadir $A \rightarrow \alpha$ a M[A,\$]

NOTA: Se recuerda explícitamente que λ no es un terminal (ni \$ tampoco)

$$E \rightarrow T E'$$

$$E' \rightarrow + T E'$$

$$E' \rightarrow \lambda$$

 $T \rightarrow F T'$

$$T' \rightarrow * F T'$$

$$T' \rightarrow \lambda$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$

- 1. Para cada terminal a de $FIRST(\alpha)$, añadir $A \to \alpha$ a M[A,a]
- 2. Si λ está en $FIRST(\alpha)$, añadir $A \rightarrow \alpha$ a M[A,b] para cada terminal b que pertenezca a FOLLOW(A). Si λ está en $FIRST(\alpha)$ y \$ está en FOLLOW(A), entonces añadir $A \rightarrow \alpha$ a M[A,\$]

1.	Ε	\rightarrow	Τ	E'

2. E'
$$\rightarrow$$
 + T E'

3. E'
$$\rightarrow \lambda$$

4. T
$$\rightarrow$$
 F T'

5. T'
$$\rightarrow$$
 * F T'

6. T'
$$\rightarrow \lambda$$

$$7. F \rightarrow (E)$$

8.
$$F \rightarrow id$$

Tabla M	id	+	*	()	\$
Е	E → T E'			E → T E'		
E'						
Т						
T'						
F						

$$E \rightarrow T E'$$

$$E' \rightarrow + T E'$$

$$First(+TE') = \{ + \}$$

$$E' \rightarrow \lambda$$

Para cada terminal a de
$$FIRST(\alpha)$$
, añadir $A \to \alpha$ a $M[A,a]$

2. Si λ está en $FIRST(\alpha)$, añadir $A \to \alpha$ a M[A,b] para cada terminal b que pertenezca a FOLLOW(A). Si λ está en $FIRST(\alpha)$ y \$ está en FOLLOW(A), entonces añadir $A \to \alpha$ a M[A,\$]

1.	E	\rightarrow	T E	•	
2.	E'	\rightarrow	+	Т	E'

3. E'
$$\rightarrow \lambda$$

4. T
$$\rightarrow$$
 F T'

5. T'
$$\rightarrow$$
 * F T'

6. T'
$$\rightarrow \lambda$$

$$7. F \rightarrow (E)$$

8.
$$F \rightarrow id$$

$$T \rightarrow F T'$$

$$T' \rightarrow * F T'$$

$$T' \rightarrow \lambda$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$

Tabla M	id	+	*	()	\$
Е						
E'		$E' \rightarrow + T E'$				
Т						
T'						
F						

$$E \rightarrow T E'$$

$$E' \rightarrow + T E'$$

$$E' \rightarrow \lambda$$
First(λ) = { λ }
Follow(E') = {\$,)}

 $T \rightarrow F T'$

$$T' \rightarrow * F T'$$

$$T' \rightarrow \lambda$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$

- Para cada terminal a de $FIRST(\alpha)$, añadir $A \to \alpha$ a M[A,a]
- 2. Si λ está en $FIRST(\alpha)$, añadir $A \rightarrow \alpha$ a M[A,b] para cada terminal b que pertenezca a FOLLOW(A). Si λ está en $FIRST(\alpha)$ y \$ está en FOLLOW(A), entonces añadir $A \rightarrow \alpha$ a M[A,\$]

1. E \rightarrow T	E'
----------------------	----

2. E'
$$\rightarrow$$
 + T E'

3. E'
$$\rightarrow \lambda$$

4. T
$$\rightarrow$$
 F T'

6. T'
$$\rightarrow \lambda$$

$$7. F \rightarrow (E)$$

8.
$$F \rightarrow id$$

Tabla M	id	+	*	()	\$
Е						
E'					$E' \to \lambda$	$E' \rightarrow \lambda$
T						
T'						
F						

$$E \rightarrow T E'$$

$$E' \rightarrow + T E'$$

$$E' \rightarrow \lambda$$

Para cada terminal a de
$$FIRST(\alpha)$$
, añadir $A \rightarrow \alpha$ a $M[A,a]$

2. Si λ está en $FIRST(\alpha)$, añadir $A \to \alpha$ a M[A,b] para cada terminal b que pertenezca a FOLLOW(A). Si λ está en $FIRST(\alpha)$ y \$ está en FOLLOW(A), entonces añadir $A \to \alpha$ a M[A,\$]

1. E
$$\rightarrow$$
 T E'

2. E'
$$\rightarrow$$
 + T E'

3. E'
$$\rightarrow \lambda$$

4. T
$$\rightarrow$$
 F T'

5. T'
$$\rightarrow$$
 * F T'

6. T'
$$\rightarrow \lambda$$

$$7. F \rightarrow (E)$$

8.
$$F \rightarrow id$$

$$T \rightarrow F T'$$

$$First(FT') = \{ (, id \} \}$$

$$T' \rightarrow * F T'$$

$$T' \rightarrow \lambda$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$

Tabla M	id	+	*	()	\$
Е						
E'						
Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
T'						
F						

$$E \rightarrow T E'$$

$$E' \rightarrow + T E'$$

$$E' \rightarrow \lambda$$

$$T \rightarrow F T'$$

$$T' \rightarrow * F T'$$

First(*FT') =
$$\{ * \}$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$

- Para cada terminal a de $FIRST(\alpha)$, añadir $A \to \alpha$ a M[A,a]
- 2. Si λ está en $FIRST(\alpha)$, añadir $A \to \alpha$ a M[A,b] para cada terminal b que pertenezca a FOLLOW(A). Si λ está en $FIRST(\alpha)$ y \$ está en FOLLOW(A), entonces añadir $A \to \alpha$ a M[A,\$]

1	١.	F	\rightarrow	Т	F'
	•	_			_

2. E'
$$\rightarrow$$
 + T E'

3. E'
$$\rightarrow \lambda$$

4. T
$$\rightarrow$$
 F T'

5. T'
$$\rightarrow$$
 * F T'

6. T'
$$\rightarrow \lambda$$

$$7. F \rightarrow (E)$$

8.
$$F \rightarrow id$$

Tabla M	id	+	*	()	\$
Е						
E'						
T						
T'			$T' \rightarrow * F T'$			
F						

$$E \rightarrow T E'$$

$$E' \rightarrow + T E'$$

$$E' \rightarrow \lambda$$

Para cada terminal a de
$$FIRST(\alpha)$$
, añadir $A \rightarrow \alpha$ a $M[A,a]$

2. Si λ está en $FIRST(\alpha)$, añadir $A \to \alpha$ a M[A,b] para cada terminal b que pertenezca a FOLLOW(A). Si λ está en $FIRST(\alpha)$ y \$ está en FOLLOW(A), entonces añadir $A \to \alpha$ a M[A,\$]

1.
$$E \rightarrow T E'$$

2. E'
$$\rightarrow$$
 + T E'

3. E'
$$\rightarrow \lambda$$

4. T
$$\rightarrow$$
 F T'

5. T'
$$\rightarrow$$
 * F T'

6. T'
$$\rightarrow \lambda$$

$$7. F \rightarrow (E)$$

8.
$$F \rightarrow id$$

$$T \rightarrow F T'$$

$$T' \rightarrow * F T'$$

$$T' \rightarrow \lambda$$

$$First(\lambda) = \{\lambda \}$$

$$Follow(T') = \{+, \$, \}$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$

Tabla M	id	+	*	()	\$
Е						
E'						
Т						
T'		$T' \rightarrow \lambda$			$T' \rightarrow \lambda$	$T' \rightarrow \lambda$
F						

$$E \rightarrow T E'$$

$$E' \rightarrow + T E'$$

$$E' \rightarrow \lambda$$

$$T \rightarrow F T'$$

$$T' \rightarrow * F T'$$

$$T' \rightarrow \lambda$$

$$F \rightarrow (E)$$
First((E)) = { (}

- Para cada terminal a de $FIRST(\alpha)$, añadir $A \to \alpha$ a M[A,a]
- 2. Si λ está en $FIRST(\alpha)$, añadir $A \to \alpha$ a M[A,b] para cada terminal b que pertenezca a FOLLOW(A). Si λ está en $FIRST(\alpha)$ y \$ está en FOLLOW(A), entonces añadir $A \to \alpha$ a M[A,\$]

1	•	Ε	\rightarrow	Т	E'

2.
$$E' \rightarrow + T E'$$

3. E'
$$\rightarrow \lambda$$

4. T
$$\rightarrow$$
 F T'

5. T'
$$\rightarrow$$
 * F T'

6. T'
$$\rightarrow \lambda$$

$$7. F \rightarrow (E)$$

8.
$$F \rightarrow id$$

Tabla M	id	+	*	()	\$
Е						
E'						
Т						
T'						
F				$F \rightarrow (E)$		

$$E \rightarrow T E'$$

$$E' \rightarrow + T E'$$

$$E' \rightarrow \lambda$$

$$T \rightarrow F T'$$

$$T' \rightarrow * F T'$$

$$T' \rightarrow \lambda$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$

$$First(id) = \{ id \}$$

- 1. Para cada terminal a de $FIRST(\alpha)$, añadir $A \to \alpha$ a M[A,a]
- 2. Si λ está en $FIRST(\alpha)$, añadir $A \to \alpha$ a M[A,b] para cada terminal b que pertenezca a FOLLOW(A). Si λ está en $FIRST(\alpha)$ y \$ está en FOLLOW(A), entonces añadir $A \to \alpha$ a M[A,\$]

1		F	\rightarrow	Т	F'
	•	_			_

2. E'
$$\rightarrow$$
 + T E'

3. E'
$$\rightarrow \lambda$$

4. T
$$\rightarrow$$
 F T'

5. T'
$$\rightarrow$$
 * F T'

6. T'
$$\rightarrow \lambda$$

$$7. F \rightarrow (E)$$

8.
$$F \rightarrow id$$

Tabla M	id	+	*	()	\$
Е						
E'						
T						
T'						
F	$F \rightarrow id$					

$$E \rightarrow T E'$$
First(TE') = { (, id }

$$E' \rightarrow + T E'$$

$$First(+TE') = \{ + \}$$

$$E' \rightarrow \lambda$$

$$First(\lambda) = \{ \lambda \}$$

$$Follow(E') = \{ \$, \}$$

$$T' \rightarrow \lambda$$

First(λ) = { λ }

Follow(T') = { +, \$, }}

$$F \rightarrow (E)$$

First((E)) = { (}

First(id) = { id }

- 1. Para cada terminal a de $FIRST(\alpha)$, añadir $A \to \alpha$ a M[A,a]
- 2. Si λ está en $FIRST(\alpha)$, añadir $A \to \alpha$ a M[A,b] para cada terminal b que pertenezca a FOLLOW(A). Si λ está en $FIRST(\alpha)$ y \$ está en FOLLOW(A), entonces añadir $A \to \alpha$ a M[A,\$]

1. E -	→ T E'
--------	--------

3. E'
$$\rightarrow \lambda$$

$$4. T \rightarrow F T'$$

5. T'
$$\rightarrow$$
 * F T'

6. T'
$$\rightarrow \lambda$$

7.
$$F \rightarrow (E)$$

8. F
$$\rightarrow$$
 id

Tabla M	id	+	*	()	\$
Е	E → T E'			E → T E'		
E'		$E' \rightarrow + T E'$			$E' \to \lambda$	$E' \to \lambda$
Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
T'		$T' \rightarrow \lambda$	$T' \rightarrow * F T'$		$T' \rightarrow \lambda$	$T' \rightarrow \lambda$
F	$F \rightarrow id$			$F \rightarrow (E)$		

Aurora Pérez Pérez

La gramática es LL(1)
puesto que no hay más
de una regla en cada
celda

Las celdas en blanco corresponden a casos de error

ANALIZADOR SINTÁCTICO DESCENDENTE PREDICTIVO CON TABLA

• EJEMPLOS DE ANÁLISIS DE CADENAS CORRECTAS E INCORRECTAS

1. Ejemplo de análisis de una cadena correcta

_	- J - · ·				.	
Tabla M	id	+	*	()	\$
Е	$E \rightarrow T E'$			$E \rightarrow T E'$		
E'		$E' \rightarrow + T E'$			$E' \to \lambda$	$E' \rightarrow \lambda$
T	$T \rightarrow F T'$			$T \rightarrow F T'$		
T'		$T' \rightarrow \lambda$	$T' \rightarrow * F T'$		$T' \rightarrow \lambda$	$T' \rightarrow \lambda$
F	$F \rightarrow id$			$F \rightarrow (E)$		

id + id \$

2.
$$E' \rightarrow + T E'$$

3. E'
$$\rightarrow \lambda$$

4. T
$$\rightarrow$$
 F T'

5. T'
$$\rightarrow$$
 * F T'

6. T'
$$\rightarrow \lambda$$

$$7. F \rightarrow (E)$$

8.
$$F \rightarrow id$$

F

F

id

*>*i^o equip(id)

id

equip(+)

...d/_ F-7' e

T'id] T' NE' \$] E'

La cadena es sintácticamente CORRECTA

Parse: 148624863

$$\omega = [id + id)$$
\$

Tabla M	id	+	*	()	\$
Е	$E \rightarrow T E'$			$E \rightarrow T E'$		
E'		$E' \rightarrow + T E'$			$E' \to \lambda$	$E' \rightarrow \lambda$
Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
T'		$T' \rightarrow \lambda$	$T' \rightarrow * F T'$		$T' \to \lambda$	$T' \to \lambda$
F	$F \rightarrow id$			$F \rightarrow (E)$		

equip(id)

2.
$$E' \rightarrow + T E'$$

3. E'
$$\rightarrow \lambda$$

$$4. T \rightarrow F T'$$

6. T'
$$\rightarrow \lambda$$

$$7. F \rightarrow (E)$$

8. F
$$\rightarrow$$
 id

equip(+)

La cadena es ERRÓNEA; no se ha equiparado completa (sig_tok≠ '\$'). El analizador no llega a configuración final.

equip(id)

}.	Ejen	nplo d	le c	análisis	de u	ına	cade	na e	rrónea	$\omega =$	id +	*	id	\$
		_												

Tabla M	id	+	*	()	\$
Е	$E \rightarrow T E'$			$E \rightarrow T E'$		
E'		$E' \rightarrow + T E'$			$E' \to \lambda$	$E' \to \lambda$
Т	$T \rightarrow F T'$			$T \rightarrow F T'$		
T'		$T' \rightarrow \lambda$	$T' \rightarrow * F T'$		$T' \to \lambda$	$T' \rightarrow \lambda$
F	$F \rightarrow id$			$F \rightarrow (E)$		

id

\$

2.
$$E' \rightarrow + T E'$$

3. E'
$$\rightarrow \lambda$$

4. T
$$\rightarrow$$
 F T'

5. T'
$$\rightarrow$$
 * F T'

6. T'
$$\rightarrow \lambda$$

$$7. F \rightarrow (E)$$

8.
$$F \rightarrow id$$

La cadena es sintácticamente ERRÓNEA; no hay ninguna regla para T con sig_token='*'

Ε

F

\$

equip(id)

MIT, TET ANE TE

\$

equip(+)

\$

E'