MAR - 4 2004

510(k) Summary for Mission Diagnostic Reagents on pH/Blood Gas &/or Electrolyte Analyzers

Submitter's Name & Address

Mission Diagnostics 331 Fiske St

Holliston MA 01746 FAX: 508-429-0452

Establishment Registration Number:

3003656721

Date of Preparation:

Dec. 29, 2003

Contact Person:

Linda Stundtner

QA/RA Manager

508-429-0450

2. Identification of the Device:

Proprietary/Trade name:

Calibrating Material, Calibrating standards

Common or usual name

Calibrators for ISE and/or pH/Blood Gas automated systems

Classification name:

Calibrator, secondary

Device Classification

ll.

Regulation Number:

21 CFR § 862.1150

Panel:

Chemistry (75)

Product Code:

JIT

 Mission manufactures calibrators intended to serve as direct replacements to like named products manufactured by Original Equipment Manufactures (OEM)

3. Predicate Device:

Mission claims substantial equivalence to the OEM Calibrating Materials listed below:

Substantial Equivalence Table of Product PN's & Trade Names - Mission vs OEM

	Missi	on Diagnostics		OEM* Equival	ent	
#				Predicate Device		Cleared Date
1	AV-BP1579D	BG Calibrator	BP1579	BG Calibrator	K943570	08-24-1994
2	CD-105670D	Hct Slope	105670	Hct Slope	K962021	06-24-1996
3	CD-471818D	634 Ca/pH Slope Standard	471818	634 Slope Standard 2.50 ^{Ca} /6.84 ^{pH}	K844188	11-23-1988
4	CD-473606D	654 Lithium Slope Sclution 2.50 mmol/L	473606	654 Lithium Slope Solution 2.50 mmol/L	K884769	01-17-1989
5	CD-473692D	pH Blood Gas Slope	473692	pH Blood Gas Slope	K904188	09-27-1990
6	RD-944015D	Calibrating Solution 1, Bt # 9	944015	Calibrating Solution 1, Btl# 9	K954612	11-09-1995
7	RD-944030D	Calibrating Solution 1, Bt # 3	944030	Calibrating Solution 1, Btl# 3	- K973367	10-06-1997
8	RD-944031D	Calibrating Solution 2, Bt # 4	944031	Calibrating Solution 2, Btl# 4	11070001	10 00 100.
9	BK-465908D	Calibrator 1	465908	Calibrator 1		
10	BK-465909D	Calibrator 2	465909	Calibrator 2	K942676	11-02-1994
11	BK-465910D	Calibrator 3	465910	Calibrator 3		
12	BK-443360D	Calibration Standard 1	443360	Calibration Standard 1	K864236	12-31-1986
13	BK-443365D	Calibration Standard 2	443365	Calibration Standard 2		
14	BM-620427D	ISE Standard High	620427	ISE Standard High	K811194	05-27-1981
15	BM-620428D	ISE Standard Low	624028	ISE Standard Low	1,0,	

^{*} OEM = Original Equipment Manufacturer

4. Device Description:

 The Calibrators for the OEM Instruments are aqueous reagents with salts (chemical constituents) added to obtain desired analyte levels to provide the desired calibration.

Intended Use:

 For each Calibrator included in this submission, the calibrator is intended for use on equivalent OEM Instruments, i.e. predicate device and are necessary for the continued operation and use of the instruments.

PN	Description	Intended Use
AV-BP1579D	BG Calibrator	Provide a second calibration point for AVL Compact 1 pH/Blood Gas Analyzer.
CD-105670D	Hct Slope	Provide a second calibration point for the Hct sensor on the 348 Analyzer.
CD-471818D	634 Ca/pH Slope Standard	To provide a second calibration point for the Ca & pH electrodes on the 634 Ca/pH Analyzer.
CD-473606D	654 Lithium Slope Solution 2.50 mmol/L	To provide a second calibration point for the Lithium electrode on the 654 Na/K/Li Analyzer.
CD-473692D	pH Blood Gas Slope	To provide a second calibration point for pH, pCO ₂ , and pO ₂ on 238 pH/Blood Gas Analyzer.
RD-944015D	Calibrating Solution 1, Btl# 9	To provide a calibration point for the Na ⁺ , K ⁺ , Ca ⁺⁺ , Cl ⁻ , pH and glucose, lactate electrodes on Radiometer 605, 615, 625, EML 100 & 105 Analyzers.
RD-944030D	Calibrating Solution 1, Btl# 3	To provide a calibration point for the Na ⁺ , K ⁺ , Ca ⁺⁺ , Cl ⁻ , pH and glucose, lactate electrodes on Radiometer 605, 615, 625, EML 100 & 105 Analyzers.
RD-944031D	Calibrating Solution 2, Btl# 4	To provide a second calibration point for the Na ⁺ , K ⁺ , Ca ⁺⁺ , Cl ⁻ , and pH electrodes on Radiometer 555 Analyzer.
BK-465908D	Calibrator 1	Used in conjunction with Calibrator 2 and 3 to calibrate Na, K, Cl, Ca, TCO ₂ , Glucose, BUN, & Creatinine on Beckman Synchron CX Delta, CX®CE, and CX9 ALX Systems.
BK-465909D	Calibrator 2	Used in conjunction with Calibrator 1 and 3 to calibrate Na, K, Cl, Ca, TCO ₂ , Glucose, BUN, & Creatinine on Beckman Synchron CX Delta, CX®CE, and CX9 ALX Systems.
BK-465910D	Calibrator 3	Used in conjunction with Calibrator 1 and 2 to calibrate Na, K, Cl, Ca, TCO ₂ , Glucose, BUN, & Creatinine on Beckman Synchron CX Delta, CX®CE, and CX9 ALX Systems.
BK-443360D	Calibration Standard 1	Used in conjunction with Calibration Standard 2 to calibrate Na, K, Cl, Ca, TCO ₂ , Glucose, BUN, & Creatinine on Beckman Synchron CX3 and CX5 Systems.
BK-443365D	Calibration Standard 2	Used in conjunction with Calibration Standard 1 to calibrate Na, K, Cl, Ca, TCO ₂ , Glucose, BUN, & Creatinine on Beckman Synchron CX3 and CX5 Systems.
BM-620427D	ISE Standard High	To provide a calibration point for Na+, K+ and Cl- electrodes on the ISE module of Hitachi 7xx, 911, 912 and 917 Analyzers.
BM-620428D	ISE Standard Low	To provide a calibration point for Na+, K+ and Cl- electrodes on the ISE module of Hitachi 7xx, 911, 912 and 917 Analyzers.

 For each Calibrator included in this submission, Mission uses a similar composition, description and packaging as that used by the OEM in its products, as shown in the packaging section of this submission.

5. Performance Characteristics:

See table below for Summary.

PN	Description	Performance Data collected:	Results:							
CD-105670D Hct Slope Precision and correlation data are collected per: SOP23-01-02 Performance Study Protocol for 510(k) Submission with the following modifications: Testing was conducted over 7 days, 2 runs each, Mission and OEM, per day. The 348 Hct sensor was sloped with the OEM Hct slope and Hct QC samples were measured in duplicate. The Hct Sensor was calibrated and Hct QC samples were measured in		Summa Analyte %Hct OEM %Hct Recoveries of Slope vs OEM	# Hat Slope v	N 56 56 48 48 C obse	Mean 26 48 27 49 rvations w	of QC Da	ta Min 24 45 26 48 Hct sensor	27 49 27 50 sloped with	%CV 2.2 1.6 1.0 1.2 h Mission Hct	
		 Testing was conducted over 7 days, 2 runs each, Mission and OEM, per day. The 348 Hct sensor was sloped with the OEM Hct slope and Hct QC samples were measured in duplicate. The Hct Sensor was calibrated and Hct QC samples were measured in duplicate – this equaled 1 run, n= 4 per QC sample. 2 runs were completed each day, n=8 per QC sample. The 348 Hct sensor was sloped with 	OEM %Hct QC - A 48 27 0.3 26 27 1.0 QC - B 48 49 0.6 48 50 1.2 Recoveries of individual QC observations when 348 Hct sensor sloped with Mission Hct Slope vs OEM Hct Slope were compared by loast squares regression. The following statistics were obtained:							1.0 1.2 h Mission Hct le following
		the Mission Hot slope and Hot QC samples were measured in duplicate. The Hot Sensor was calibrated and Hot QC samples were measured in duplicate – this equaled 1 run, n= 4 per QC sample. 2 runs were completed each day, n=8 per QC sample. Hot slope is an ampuled product used to provide a slope point for the Hot sensor. Other required reagents to run the 348 instrument remained constant throughout testing.	Mission Hct SI	ope perform	ed equa	ally to the C	DEM Hot	Slope.		

334 Ca/pH Slope Standard	Precision and correlation data are collected per: SOP23-01-02 Performance Study Protocol for 510(k) Submission with the following modifications: Serum_samples were spiked or diluted to yield Ca samples ranging from 0.37-4.57 mmol/L. 5 replicates of a serum sample and 1 replicate of each of 3 levels of QC were tested in a calibrated run. Samples were tested over a three-day period. All samples and QC's were tested in calibrated runs where Mission 634 Ca/pH Slope was used for the slope point and in calibrated runs where the OEM 634 Slope Standard was used for the slope point.	Analyte pH Ca	Level 1 2 3 1 2 3 ummary QC Level 1 2 3 Level 1 2 3 Level 1 2 3	N 12 12 12 12 12 12 12 12	Mean 7.11 7.41 7.60 2.13 1.07 0.56	Sd 0.04 0.02 0.01 0.03 0.01 0.01	Min 7.05 7.37 7.58 2.08 1.06 0.55 th Cornir Min 7.08	Max 7.18 7.45 7.62 2.15 1.08 0.56 ng 634 Slo Max 7.22	%CV 0.62 0.33 0.18 1.32 0.62 1.50 ope
otanoaro	Protocol for 510(k) Submission with the following modifications: Serum_samples were spiked or diluted to yield Ca samples ranging from 0.37-4.57 mmol/L. 5 replicates of a serum sample and 1 replicate of each of 3 levels of QC were tested in a calibrated run. Samples were tested over a three-day period. All samples and QC's were tested in calibrated runs where Mission 634 Ca/pH Slope was used for the slope point.	pH Ca Su Analyte pH	1 2 3 1 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2	12 12 12 12 12 12 12 12 N 12 12	7.11 7.41 7.60 2.13 1.07 0.56 for Ca an	0.04 0.02 0.01 0.03 0.01 0.01 0.01 0.01	7.05 7.37 7.58 2.08 1.06 0.55 th Cornir Min 7.08	7.18 7.45 7.62 2.15 1.08 0.56 ng 634 Slo Max 7.22	0.62 0.33 0.18 1.32 0.62 1.50 ope
	following modifications: Serum_samples were spiked or diluted to yield Ca samples ranging from 0.37-4.57 mmol/L. 5 replicates of a serum sample and 1 replicate of each of 3 levels of QC were tested in a calibrated run. Samples were tested over a three-day period. All samples and QC's were tested in calibrated runs where Mission 634 Ca/pH Slope was used for the slope point.	pH Ca Su Analyte pH	2 3 1 2 3 Jummary QC Level 1 2	12 12 12 12 12 12 12 Data N 12 12	7.41 7.60 2.13 1.07 0.56 for Ca an	0.02 0.01 0.03 0.01 0.01 0.01 d pH – wi	7.37 7.58 2.08 1.06 0.55 th Cornir Min 7.08	7.45 7.62 2.15 1.08 0.56 ng 634 Slo Max 7.22	0.33 0.18 1.32 0.62 1.50 ope
	 Serum samples were spiked or diluted to yield Ca samples ranging from 0.37-4.57 mmol/L. 5 replicates of a serum sample and 1 replicate of each of 3 levels of QC were tested in a calibrated run. Samples were tested over a three-day period. All samples and QC's were tested in calibrated runs where Mission 634 Ca/pH Slope was used for the slope point and in calibrated runs where the OEM 634 Slope Standard was used for the slope point. 	Su Analyte pH	3 1 2 3 3 Jammary QC Level 1 2	12 12 12 12 12 Data N 12 12	7.60 2.13 1.07 0.56 for Ca ar Mean 7.18	0.01 0.03 0.01 0.01 0.01 ad pH – wi	7.58 2.08 1.06 0.55 th Cornir Min 7.08	7.62 2.15 1.08 0.56 ng 634 Slo Max 7.22	0.18 1.32 0.62 1.50 ope
	from 0.37-4.57 mmol/L. 5 replicates of a serum sample and 1 replicate of each of 3 levels of QC were tested in a calibrated run. Samples were tested over a three-day period. • All samples and QC's were tested in calibrated runs where Mission 634 Ca/pH Slope was used for the slope point and in calibrated runs where the OEM 634 Slope Standard was used for the slope point.	Su Analyte pH	1 2 3 mmary QC Level 1 2	12 12 12 12 Data	2.13 1.07 0.56 for Ca an	0.03 0.01 0.01 ad pH – wi	2.08 1.06 0.55 th Cornir Min 7.08	2.15 1.08 0.56 ng 634 Slo Max 7.22	1.32 0.62 1.50 ope
	of a serum sample and 1 replicate of each of 3 levels of QC were tested in a calibrated run. Samples were tested over a three-day period. • All samples and QC's were tested in calibrated runs where Mission 634 Ca/pH Slope was used for the slope point and in calibrated runs where the OEM 634 Slope Standard was used for the slope point.	Su Analyte pH	2 3 ummary Q0 Level 1 2	12 12 Data N 12 i2	1.07 0.56 for Ca an Mean 7.18	0.01 0.01 ad pH – wi Sd 0.05	1.06 0.55 th Cornir Min 7.08	1.08 0.56 ng 634 Slo Max 7.22	0.62 1.50 ope %CV 0.67
	each of 3 levels of QC were tested in a calibrated run. Samples were tested over a three-day period. • All samples and QC's were tested in calibrated runs where Mission 634 Ca/pH Slope was used for the slope point and in calibrated runs where the OEM 634 Slope Standard was used for the slope point.	Analyte pH	Jammary QC Level 1 2	12 Data N 12 i2	0.56 for Ca an Mean 7.18	0.01 nd pH – wi Sd 0.05	0.55 th Cornir Min 7.08	0.56 ng 634 Slo Max 7.22	1.50 ope %CV 0.67
	a calibrated run. Samples were tested over a three-day period. • All samples and QC's were tested in calibrated runs where Mission 634 Ca/pH Slope was used for the slope point and in calibrated runs where the OEM 634 Slope Standard was used for the slope point.	Analyte pH	Level	Data N 12 12	for Ca ar	nd pH – wi Sd 0.05	th Cornir	ng 634 Slo Max 7.22	ope %CV 0.67
	tested over a three-day period. • All samples and QC's were tested in calibrated runs where Mission 634 Ca/pH Slope was used for the slope point and in calibrated runs where the OEM 634 Slope Standard was used for the slope point.	Analyte pH	Level	N 12 i2	Mean 7.18	Sd 0.05	Min 7.08	Max 7.22	% CV 0.67
	Ca/pH Slope was used for the slope point and in calibrated runs where the OEM 634 Slope Standard was used for the slope point.	рН	1 2	12 i2	7.18	0.05	7.08	7.22	0.67
	point and in calibrated runs where the OEM 634 Slope Standard was used for the slope point.		2	i2					
	the OEM 634 Slope Standard was used for the slope point.	Ca	· · · · · · · · · · · · · · · · · · ·		7.41	1.0.04			
	used for the slope point.	Ca	3	1 40			7.38	7.50	0.54
		Ca		-	7.58	0.02	7.57	7.63	0.21
The 634 Ca/pH Slope Standard is an ampuled product used to provide a slope point for Ca & pH on the 634. Other required reagents to run the 634 instrument remained constant throughout testing.		- Ou	1	12_	2.10	0.03	2.08	2.15	1.24
			3	12	0.57	0.01	1.06 0.55	1.09 0.59	1.90
	For Ca Mission = 1.02 Range = 0.55 For pH Mission = 1.04	c Corning – 4.57 mmol/ lividual QC rs OEM 63- tistics were 28 x Cornin – 2.18; r ²	obtain - 0.018 /L; $r^2 =$ observed Slope - 4 Slope - 0 obtain - 9 obta	ned:) = 0.998; c vations w e Standar ned: 031 98; df = 3 36 7; df = 32	df = 68; n then 634 c d were co 32 n = 33 2; n = 33;	= 69; S ₀ alibrated impared $S_{(y,x)} = S_{(y,x)} = 0$	$_{(y.x)} = 0.05$ I with Missby least s $= 0.02 \text{ mm}$ $= 0.05$	s mmol/L sion 634 Ca/pH iquares regress nol/L Ca	
			For Ca Mission = 1.02 Range = 0.55 For pH Mission = 1.04	For Ca Mission = 1.028 x Cornin Range = 0.55 - 2.18; r² For pH Mission = 1.045 x Cornin Range = 7.05 - 7.62; r²	For Ca Mission = 1.028 x Corning - 0.0 Range = 0.55 - 2.18; r² = 0.99 For pH Mission = 1.045 x Corning - 0.0 Range = 7.05 - 7.62; r² = 0.93	Mission = $1.028 \times \text{Corning} - 0.031$ Range = $0.55 - 2.18$; $r^2 = 0.998$; $df = 3$ For pH Mission = $1.045 \times \text{Corning} - 0.36$ Range = $7.05 - 7.62$; $r^2 = 0.937$; $df = 32$	For Ca Mission = 1.028 x Corning - 0.031 Range = 0.55 - 2.18; $r^2 = 0.998$; df = 32 n = 33 For pH Mission = 1.045 x Corning - 0.36 Range = 7.05 - 7.62; $r^2 = 0.937$; df = 32; n = 33;	For Ca Mission = 1.028 x Corning - 0.031 Range = 0.55 - 2.18; $r^2 = 0.998$; df = 32 n = 33; $S_{(y,x)} = \frac{1}{2}$ For pH Mission = 1.045 x Corning - 0.36 Range = 7.05 - 7.62; $r^2 = 0.937$; df = 32; n = 33; $S_{(y,x)} = \frac{1}{2}$	For Ca Mission = 1.028 x Corning – 0.031 Range = 0.55 – 2.18; r^2 = 0.998; df = 32 n = 33; $S_{(y,x)}$ = 0.02 mm For pH

PN	Description	Performance Data collected:	Results:		<u></u>						
	654 Lithium Slope Solution	Precision and correlation data are collected per:		Table of Summar	QC Dat y of QC	a for 654 L Data with N	i Slope Cl lission 654	D-473606D 1 Li Slope S	& OEM Standard		
	2.50 mmol/L	SOP23-01-02 Performance Study Protocol for 510(k) Submission with the	Analyte	Level	N	Mean	Sd	Min	Max	%CV	
		followingmodifications:	Na	1	20	119	0.6	118	120	0.5	
		 Serum samples were spiked or diluted 		2	20	141	0.6	140	142	0.4	
		to yield Li samples ranging from 0.28 -		3	20	165	0.7	164	167	0.4	
	2.95 mmol/L. 5 replicates of a serum sample and 1 replicate of each of 3 levels of QC were tested in a calibrater run. Samples were tested over a four-day period.	2.95 mmol/L. 5 replicates of a serum sample and 1 replicate of each of 3 levels of QC were tested in a calibrated	К	1	20	2.09	0.03	2.00	2.14	1.59	
				2	20	4.26	0.05	4.10	4.34	1.09	
				3	20	6.71	0.09	6.40	6.83	1.36	
		Li	1	20	0.33	0.02	0.29	0.38	6.8		
		All samples and QC's were tested in		2	20	1.14	0.05	1.06	1.22	4.3	
	calibrated runs where Mission 654 Li		3	20	2.17	0.09	2.01	2.28	4.0		
		Slope was used for the slope point and in calibrated runs where the OEM 654 Li Slope Standard was used for the	Summary of QC Data with OEM 654 LI Slope Standard								
	slope point.	Analyte	Level	N	Mean	Sd	Min	Max	%CV		
		The 654 Li Slope Standard is an ampuled	Na	1	20	119	0.6	118	120	0.5	
		product used to provide a slope point for Li on		2	20	141	0.6	140	142	0.4	
		the 654. Other required reagents to run the		3	20	166	0.5	165	166	0.3	
		654 instrument remained constant throughout	<u>K</u>	1	20	2.10	0.02	2.05	2.13	1.04	
		testing.		2	20	4.26	0.03	4.20	4.32 6.90	0.76 1.17	
				3	20	6.72		6.59	0.42	5.2	
			Li _	1	20	0.38	0.02	0.34 1.09	1.19	3.1	
			 	2	20 20	2.10	0.04	2.02	2.18	2.7	
				. პ	20	2.10	0.00	2.02	2.10	2.7	
			Recoveries o Scatter plot o Mission = 1.0 Range = 0.28 Mission 654	f individual 50 x Cornir I to 2.95 mi	observa ng – 0.01 mol/L; r	tions are b 75 $^2 = 0.998; $	elow. The af = 27; n	following s $= 28; S_{(y.x)}$	tatistics we = 0.04 mm	ol/L Li	

PN	Description	Performance Data collected:	Results:								
CD-473692D	pH Blood Gas	Precision and correlation data are collected	Table of QC Data for 238 Slope CD-473692D vs OEM								
	Slope	per:		Sum	mary of	QC Data -	with Miss	ion 238 S	lope		
		SOP23-01-02 Performance Study	4 1-4-	1 augi	N	Mean	Sd	Min	Max	%CV	
		Protocol for 510(k) Submission with the	Analyte pH	Level	36	7.05	0.01	7.02	7.08	0.02	
		following modifications: Testing was conducted over 5 days, 2	pn	2	38	7.33	0.02	7.30	7.38	0.25	
		runs each, Mission and OEM, per day.		3	40	7.55	0.02	7.50	7.60	0.30	
		The 238 was calibrated then sloped	pCO ₂	1	36	95	2.1	92	99	2.2	
		with Mission pH/Blood Gas Slope. 3	pco2	2	38	47	1.5	44	50	2.1	
		levels of QC were tested: QC 1, QC2,		3	40	22	0.6	21	23	2.6	
		QC3, QC3, QC2, QC1 – a new ampule	pO ₂	1 1	36	73	1.2	71	76	1.6	
		tested for each sample. The 238 was	1 102	2	38	113	4.1	106	121	3.7	
		calibrated and 3 levels of QC tested as		3	40	133	3.6	128	142	2.7	
	before. This equaled 1 run, n= 4 for each QC level. 2 runs were completed each day, n=8 per QC sample.										
		The 238 was calibrated and then	Analyte	Level	N	Mean	Sd	Min	Max	%CV	
		sloped with the OEM pH/Blood Gas	рН	1	37	7.06	0.02	7.02	7.11	0.24	
		Slope. 3 levels of QC were tested: QC 1, QC2, QC3, QC3, QC2, QC1 – a new		2	40	7.33	0.02	7.29	7.36	0.23	
	ampule tested for each sample. The		3	39	7.54	0.02	7.49	7.57	0.26		
	238 was calibrated and 3 levels of QC	pCO ₂	1	37	90	2.1	87	94	2.4		
	tested as before. This equaled 1 run,		2	40	46	1.3	44	49	2.8		
	n= 4 for each QC level. 2 runs were		3	39	22	0.7	21	23	3.0		
		completed each day, n=8 per QC	pO_2	1	37	73	1.3	70	75	1.8	
		sample.		2	40	113	4.3	103	122	3.8	
		The pH/Blood Gas Slope is an ampuled	3 39 132 3.6 132 143 2.8								
	product used to provide a slope point for pH, pCO_2 , pO_2 on the 238. Other required reagents to run the 238 instrument remained constant throughout testing.	Recoveries for pH of individual QC observations were compared by least squares									
			Mission 238 pl								

Food and Drug Administration 2098 Gaither Road Rockville MD 20850

MAR - 4 2004

Diamond Diagnostics, Inc. c/o Ms. Linda M. Stundtner QA/RA Manager Mission Diagnostics Division 331 Fiske Street Holliston, MA 01746

Re:

k033060

Trade/Device Name: Mission Diagnostic Reagents for pH/BG &/or Electrolyte

Analyzers

Regulation Number: 21 CFR 862.1150

Regulation Name: Calibrator Regulatory Class: Class II

Product Code: JIT

Dated: December 29, 2003 Received: January 20, 2004

Dear Ms. Stundtner:

We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration.

If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to such additional controls. Existing major regulations affecting your device can be found in Title 21, Code of Federal Regulations (CFR), Parts 800 to 895. In addition, FDA may publish further announcements concerning your device in the <u>Federal Register</u>.

Please be advised that FDA's issuance of a substantial equivalence determination does not mean that FDA has made a determination that your device complies with other requirements of the Act or any Federal statutes and regulations administered by other Federal agencies. You must comply with all the Act's requirements, including, but not limited to: registration and listing (21 CFR Part 807); labeling (21 CFR Parts 801 and 809); and good manufacturing practice requirements as set forth in the quality systems (QS) regulation (21 CFR Part 820).

Page 2

This letter will allow you to begin marketing your device as described in your Section 510(k) premarket notification. The FDA finding of substantial equivalence of your device to a legally marketed predicate device results in a classification for your device and thus, permits your device to proceed to the market.

If you desire specific information about the application of labeling requirements to your device, or questions on the promotion and advertising of your device, please contact the Office of *In Vitro* Diagnostic Device Evaluation and Safety at (301) 594-3084. Also, please note the regulation entitled, "Misbranding by reference to premarket notification" (21CFR Part 807.97). You may obtain other general information on your responsibilities under the Act from the Division of Small Manufacturers, International and Consumer Assistance at its toll-free number (800) 638-2041 or (301) 443-6597 or at its Internet address http://www.fda.gov/cdrh/dsma/dsmamain.html.

Sincerely yours,

Jean M. Cooper, MS, D.V.M.

Director

Division of Chemistry and Toxicology

Office of In Vitro Diagnostic Device

Evaluation and Safety

Center for Devices and

Radiological Health

Enclosure

510(k(Number	K033060		
---------------	---------	--	--

Device Name: Mission Diagnostic Reagents for pH/BG &/or Electrolyte Analyzers

Indication For Use:

 The products encompassed by this request are intended for in-vitro diagnostics use and are intended for use in calibrating equivalent OEM Analyzers.

PN	Description	Intended Use
AV-BP1579D	BG Calibrator	Provide a second calibration point for AVL Compact 1 pH/Blood Gas Analyzer.
CD-105670D	Hct Slope	Provide a second calibration point for the Hct sensor on the 348 Analyzer.
CD-471818D	634 Ca/pH Slope Standard	To provide a second calibration point for the Ca & pH electrodes on the 634 Ca/pH Analyzer.
CD-473606D	654 Lithium Slope Solution 2.50 mmol/L	To provide a second calibration point for the Lithium electrode on the 654 Na/K/Li Analyzer.
CD-473692D	pH Blood Gas Slope	To provide a second calibration point for pH, pCO ₂ , and pO ₂ on 238 pH/Blood Gas Analyzer.
RD-944015D	Calibrating Solution 1, Btl# 9	To provide a calibration point for the Na ⁺ , K ⁺ , Ca ⁺⁺ , Cl ⁻ , pH and glucose, lactate electrodes on Radiometer 605, 615, 625, EML 100 & 105 Analyzers.
RD-944030D	Calibrating Solution 1, Btl# 3	To provide a calibration point for the Na*, K*, Ca**, CI, pH and glucose, lactate electrodes on Badjometer 605, 615, 625, EML 100 & 105 Analyzers.
RD-944031D	Calibrating Solution 2, Btl# 4	To provide a second calibration point for the Na ⁺ , K ⁺ , Ca ⁺⁺ , Cl ⁻ , and pH electrodes on Radiometer 555 Analyzer.
BK-465908D	Calibrator 1	Used in conjunction with Calibrator 2 and 3 to calibrate Na, K, Cl, Ca, TCO ₂ , Glucose, BUN, & Creatinine on Beckman Synchron CX Delta, CX®CE, and CX9 ALX Systems.
BK-465909D	Calibrator 2	Used in conjunction with Calibrator 1 and 3 to calibrate Na, K, Cl, Ca, TCO ₂ , Glucose, BUN, & Creatinine on Beckman Synchron CX Delta, CX®CE, and CX9
BK-465910D	Calibrator 3	Used in conjunction with Calibrator 1 and 2 to calibrate Na, K, Cl, Ca, TCO ₂ , Glucose, BUN, & Creatinine on Beckman Synchron CX Delta, CX®CE, and CX9 ALX Systems.
BK-443360D	Calibration Standard 1	Used in conjunction with Calibration Standard 2 to calibrate Na, K, Cl, Ca, TCO ₂ , Glucose, BUN, & Creatinine on Beckman Synchron CX3 and CX5 Systems.
BK-443365D	Calibration Standard 2	Used in conjunction with Calibration Standard 1 to calibrate Na, K, Cl, Ca, TCO ₂ , Glucose, BUN, & Creatinine on Beckman Synchron CX3 and CX5 Systems.
BM-620427D	ISE Standard High	To provide a calibration point for Na+, K+ and CI- electrodes on the ISE module of Hitachi 7xx 911 912 and 917 Analyzers.
BM-620428D	ISE Standard Low	To provide a calibration point for Na+, K+ and Cl- electrodes on the ISE module of Hitachi 7xx, 911, 912 and 917 Analyzers.

- Mission reagents are intended to serve as direct replacements to the predicate device manufactured by the OEM.
- The products encompassed are to be handled using normal laboratory precautions.

(PLEASE DO NOT WRITE BELOW THIS LINE - CONTINUE ON ANOTHER PAGE IF NEEDED)

Concurrance of CDRH, Office of the Device Evaluation (ODE)

Division Sign-Off

Office of In Vitro Diagnostic (Optional format 3-10-98)
Device Evaluation and Safety

X Prescription Use

510(N K 0 33 0 60