Геометрия в компьютерных приложениях

Лекция 7: Внешние и дифференциальные формы.

Богачев Николай Владимирович

Московский физико-технический институт, Кафедра дискретной математики, Лаборатория продвинутой комбинаторики и сетевых приложений

9 ноября 2017 г.

8. Внешние формы.

8.1. Определение.

Пусть V – конечномерное вещественное пространство с базисом $\{e_1,\ldots,e_n\}.$

Определение

- Линейная функция на V: $f(\alpha u + \beta v) = \alpha f(u) + \beta f(v)$ для всех $u, v \in V$.
- Двойственное (или сопряженное) пространство V^* пространство линейных функций (функционалов) на V. (Какова его размерность?)
- Двойственный базис пространства V^* (или двойственный к $\{e_1,\ldots,e_n\}$) это набор функций $\{f_1,\ldots,f_n\}$, где $f_i(e_j)=\delta_{ij}$. (Почему это действительно базис?) Таким образом, dim $V^*=\dim V=n$.

Определение

• Внешняя k-форма – кососимметрическая полилинейная функция от k аргументов:

$$\omega^{k}(v_{1},\ldots,v_{k})=(-1)^{\sigma}\omega^{k}(v_{\sigma(1)},\ldots,v_{\sigma(k)});$$

$$\omega^{k}(v+u,v_{2}\ldots,v_{k})=\omega^{k}(v,v_{2},\ldots,v_{k})+\omega^{k}(u,v_{2},\ldots,v_{k}).$$

- Пространство k-форм обозначим через $\Lambda^k(V)$.
- Ясно, что $\Lambda^0(V) = \mathbb{R}$, $\Lambda^1(V) = V^*$.
- Можно заметить, что $\Lambda^2(V) \simeq T_E SO_n(\mathbb{R}) = \mathfrak{so}_n(\mathbb{R})$ пространство кососимметрических матриц $n \times n$.

Пример

Определитель $det(v_1, \ldots, v_k) = vol(v_1, \ldots, v_k)$.

8.2. Внешнее умножение.

Определение

Внешнее умножение 1-форм:

$$\omega_1^1 \wedge \ldots \wedge \omega_k^1 (v_1, \ldots, v_k) = \det \begin{pmatrix} \omega_1^1(v_1) & \ldots & \omega_1^1(v_k) \\ \vdots & \vdots & \vdots \\ \omega_k^1(v_1) & \ldots & \omega_k^1(v_k) \end{pmatrix}$$

- k-форма, называемая **мономом**.

8.3. Базис пространства $\Lambda^2(V)$.

Теорема

Множество всех элементарных мономов $f_i \wedge f_j$ при i < j образует базис пространства $\Lambda^2(V)$, то есть $\dim \Lambda^2(V) = C_n^2 = \frac{n(n-1)}{2}$.

Доказательство.

- В силу того, что пространство 2-форм отождествляется с кососимметрическими матрицами в пространстве V, вторая часть утверждения очевидна.
- Рассмотрим произвольную 2-форму $\omega^2(u,v)$. Пусть $u=\sum_i u_i e_i,$ $v=\sum_i v_j e_j,$ тогда

$$\omega^{2}(u,v) = \sum_{i < j} u_{i}v_{j}\omega^{2}(e_{i},e_{j}) = \sum_{i < j} u_{i}v_{j}\omega_{ij}(f_{i}\wedge f_{j})(e_{i},e_{j}) = \sum_{i < j} \omega_{ij}(f_{i}\wedge f_{j})\left(\sum_{k} u_{k}\right)$$

то есть всякая 2-форма $\omega^2 \in \langle f_i \wedge f_j : i < j \rangle$.

• Остается проверить линейную независимость. Для этого достаточно применить $\sum_{i < j} \lambda_{ij} f_i \wedge f_j$ к паре (e_i, e_j) .

Богачев Н.В. (МФТИ)

8.4. Существование симплектического базиса для 2-формы.

Теорема

Для всякой 2-формы ω^2 существует **симплектический базис** e_1',\ldots,e_n' , в котором $\omega^2=f_1'\wedge f_2'+f_3'\wedge f_4'+\ldots+f_{2k-1}'\wedge f_{2k}'$.

Доказательство.

- Всякая 2-форма задается кососимметрической матрицей.
- Существование симплектического базиса для кососимметрической матрицы доказывается по индукции по $n=\dim V$. При n=0,1 доказывать нечего.
- ullet При $n\geq 2$ существуют такие два вектора $e_1',e_2',$ что матрица w^2 при ограничении на $U=\langle e_1',e_2' \rangle$ имеет вид $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.
- ullet Тогда $V=U\oplus U^\perp$, и для U^\perp выполнено предположение индукции.

8.5. Базис пространства $\Lambda^k(V)$.

Теорема

Множество всех элементарных мономов вида f_i , $\wedge \ldots \wedge f_k$ (с различными индексами) составляет базис пространства k-форм $\Lambda^k(V)$, то есть $\dim \Lambda^k(V) = C_n^k$.

Доказательство.

Доказывается аналогично теореме про базис пространства $\Lambda^2(V)$.

Необходимо рассмотреть $\omega^k(v_1,\ldots,v_k)$, где $v_j=\sum_m \lambda_{mj}e_m$ и доказать таким образом, что всякая $\omega^k \in \langle f_{i_1} \wedge \ldots \wedge f_{i_k} : j_1 < \ldots < j_k \rangle$.

8.6. Общее внешнее умножение.

Определение

Определим внешнее умножение двух произвольных форм ω_1^k и ω_2^m :

$$\omega_1^k \bar{\wedge} \omega_2^m(v_1, \dots, v_k, v_{k+1}, \dots, v_{k+m}) =$$

$$= \sum_{\substack{\sigma \in S_{k+m} \\ \sigma(1) < \dots < \sigma(k) \\ \sigma(k+1) < \dots < \sigma(k+m)}} (-1)^{\sigma} \cdot \omega_1^k(v_{\sigma(1)}, \dots, v_{\sigma(k)}) \cdot \omega_2^m(v_{\sigma(k+1)}, \dots, v_{\sigma(k+m)}) \quad (1)$$

Теорема

Определенное выше внешнее умножение обладает следующими свойствами:

- Косокоммутативность: $\omega_1^k \bar{\wedge} \omega_2^m = (-1)^{km} \omega_2^m \bar{\wedge} \omega_1^k$
- ullet Дистрибутивность: $(a_1\omega_1^k+a_2\omega_2^k)ar{\wedge}\omega_3^m=a_1\omega_1^kar{\wedge}\omega_3^m+a_2\omega_2^kar{\wedge}\omega_3^m$
- Ассоциативность: $(\omega_1^k \bar{\wedge} \omega_2^l) \bar{\wedge} \omega_3^m = \omega_1^k \bar{\wedge} (\omega_2^l \bar{\wedge} \omega_3^m)$.
- Ha мономах $\omega_1^1 \wedge \ldots \wedge \omega_k^1 = \omega_1^1 \bar{\wedge} \ldots \bar{\wedge} \omega_k^1$.

ДОКАЗАТЕЛЬСТВО. Самая сложная часть – совпадение разных умножений на мономах.

Для этого достаточно доказать, что новое внешнее произведение двух элементарных мономов (полученных старым умножением) тоже является мономом, то есть

$$(\omega_1^1 \wedge \ldots \wedge \omega_k^1) \bar{\wedge} (\omega_{k+1}^1 \wedge \ldots \wedge \omega_{k+m}^1) = \omega_1^1 \wedge \ldots \wedge \omega_k^1 \wedge \omega_{k+1}^1 \wedge \ldots \wedge \omega_{k+m}^1.$$
 (2)

Правая часть равна $\det(\omega_i^1(v_j))_{k+l}$, а левая часть равна сумме произведений миноров $\sum_{\sigma} (-1)^{\sigma} \det(\omega_i^1(v_j))_k \det(\omega_i^1(v_j))_l$, ясно, что они совпадают.

8.7. Поведение при отображениях.

Пусть $A: \mathbb{R}^m \to \mathbb{R}^n$ – линейное отображение, $\omega^k \in \Lambda^k(\mathbb{R}^n)$.

Тогда на \mathbb{R}^m можно построить k-форму $A^*\omega^k$, определив ее следующим образом:

$$(A^*\omega^k)(v_1,\ldots,v_k)=\omega^k(A(v_1),\ldots,A(v_k)).$$

Предложение

Операция $A \mapsto A^*$ удовлетворяет следующим условиям:

- $A^*\omega^k \in \Lambda^k(\mathbb{R}^n)$ действительно k-форма.
- $A^*: \Lambda^k(\mathbb{R}^m) \to \Lambda^k(\mathbb{R}^n)$ линейный оператор.
- $(A \circ B)^* = B^* \circ A^*$.
- $\bullet A^*(\omega_1^k \wedge \omega_2^m) = (A^*\omega_1^k) \wedge (A^*\omega_2^m).$

9. Дифференциальные формы на многообразиях

9.1. Определение.

Простейший пример

Дифференциал функции (например, $f(x) = x^2$).

Имеем $d_x f = 2x dx$, где dx - дифференциал координатной функции, который действует так: dx(v) = v.

Видно, что $d_x f$ — функция, линейная по векторам и гладко зависящая от точки x.

Пусть $f:M o\mathbb{R}$ – гладкая функция на многообразии M.

Тогда $d_P f$ есть 1-форма на $T_P M$.

Тогда $df\colon T(M) o \mathbb{R}$ – есть гладкое отображение, линейное на каждом T_PM .

Определение

Дифференциальной 1-формой на многообразии M называется гладкое отображение $\omega^1 \colon T(M) \to \mathbb{R}$, линейное на каждом T_PM .

Предложение

Пусть $x_1, ..., x_n$ – локальные координаты в точке P на многообразии M. Тогда

- dx_1, \ldots, dx_n двойственный базис в пространстве $\Lambda^1(T_P M)$,
- \bullet $\omega^1 = a_1(x)dx_1 + \ldots + a_n(x)dx_n$.

Определение

Дифференциальной k-формой на многообразии M называется гладкое отображение $\omega^k \colon T(M) \to \mathbb{R}$, являющееся внешней k-формой на каждом T_PM .

Предложение

Пусть $x_1, ..., x_n$ – локальные координаты в точке P на многообразии M. Тогда

- ullet мономы вида $dx_{i_1} \wedge \ldots \wedge dx_{i_n}$ образуют базис в пространстве $\Lambda^k(T_PM)$,
- $\bullet \ \omega^k = \sum_{i_1 < \ldots < j_k} a_{j_1, \ldots, j_k}(x) dx_{j_1} \wedge \ldots \wedge dx_{j_k}.$