Sequence-to-Sequence Chatbot

Danu Caus, John Mrziglod, Sebastian Lembcke

http://www.informatik.uni-hamburg.de/WTM/

Outline

- Motivation
- Background
- Implementation & Dataset
- Experiments & Results
- Conclusion & Improvements

Motivation

- Project aims to create a conversational agent that ideally would tackle unstructured conversations, i.e. chats
- 2. The agent should be ideally fit for **extended** conversations with **unforeseen** topics
- Bottom Line: Have in the end a Chatbot and not simply a Dialog Agent

"The rules of conversation are, in general, not to dwell on any one subject, but to pass lightly from one to another without effort and without affectation; to know how to speak about trivial topics as well as serious ones"

Encyclopedia of Diderot

Background

- Conversational Chatbots
 - Not task oriented, i.e. not domain specific
 - Designed to simulate a human conversation partner
 - Based on turns e.g. single word, phrase or paragraph
 - Limitation on number of turns prevents memorizing context
- Corpus-based Chatbots
 - Does not rely on handcrafted rules
 - Is trained on a dialog dataset
 - Uses machine learning or other statistical methods

Background

- Sequence-to-Sequence Model
 - Two networks encoder and decoder
 - Mostly recurrent neural networks (e.g. LSTM)
 - Encoder chunks sequence into words or syllables

Background

- Sequence-to-Sequence Model
 - Chunks are stored in a vocabulary
 - Encoder outputs fixed size vector
 - Vector is input for decoder, which generates new sequence

Implementation & Dataset

- Implementation
 - Tensorflow language model used for translations
 - Translation is mapping from English to English
- Dataset
 - Cornell Movie Dialogs Corpus
 - Movie lines taken from 617 Movies (304713 utterances)
 - Pre-processing to remove meaningless tags
 - Split into train and test sets

Experiments & Results

- Experiments
 - 7 experiments with vocabulary size of 40000
 - Hyperparameters:
 - Number of hidden layers 2 and 3
 - Number of hidden units 512, 800 and 1024
 - Batch size 16 and 32
 - 1 experiment with vocabulary size of 20000
 - Hyperparameters:
 - Number of hidden layers 3
 - Number of hidden units 256
 - Batch size 64

Experiments & Results

Results

Vocabulary size 40000

Hello

fisk fisk fisk fisk traded traded traded traded traded

I don't understand

particles particles particles ahmar ahmar ahmar ahmar ahmar ahmar traded traded traded traded

Hmmm what?

grabbing fisk fisk ahmar ahmar ahmar ahmar ahmar ahmar

Vocabulary size 20000

and give yourself a dime

dime?

or less.

why less?

to get out of sight.

you are aggressive

not yet...

Conclusion & Improvements

Conclusion

- Large vocabulary may have caused underfitting
- Result was: repeating of words and output was unrelated to input
- Usable when trained with smaller vocabulary, yet very dramatic and unrealistic conversation

Improvements

- Other datasets (real conversations, not screenplays)
- Hard coded personal information (name, age, etc.)
- Consider previous input (remember context of conversation)
- Ability to be trained on-the-fly by users

The End

Thank you for your attention. Any question?

References:

- [1] Fariz Rahman. Seq2Seq model.URL: https://github.com/farizrahman4u/seq2seq. Accessed Jan 29, 2018
- [2] James H. Martin Daniel Jurafsky. Speech and language processing. Third Edition Draft, https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf, Accessed Jan 29 2017
- [3] Cristian Danescu-Niculescu-Mizil and Lillian Lee. Chameleons in imagined conversations: A new approach to understanding coordination of linguistic style in dialogs. In Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, ACL 2011, 2011.