3956 Mary 1

15

20

25

We claim

5 1. A 3-heterocyclyl-substituted benzoyl derivative of the formula I

where the variables have the following meanings:

R¹, R² are hydrogen, nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkyl, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl or C₁-C₆-haloalkylsulfonyl;

 R^3 is hydrogen, halogen or C_1 - C_6 -alkyl;

 R^4 , R^5 are hydrogen, halogen, cyano, nitro, C1-C4-alky1, $C_1 - C_4 - alkoxy - C_1 - C_4 - alkyl$, $di(C_1 - C_4 - alkoxy) - C_1 - C_4 - alkoxy$ alkyl, $di(C_1-C_4-alkyl)-amino-C_1-C_4-alkyl$, 30 $[2,2-di(C_1-C_4-alkyl)-1-hydrazino]-C_1-C_4-alkyl,$ C_1-C_6 -alkyliminooxy- C_1-C_4 -alkyl, C_1-C_4 -alkoxycarbonyl- C_1-C_4 -alkyl, C_1-C_4 -alkylthio- C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -cyanoalkyl, C_3-C_8 -cycloalkyl, 35 C_1-C_4 -alkoxy, C_1-C_4 -alkoxy- C_2-C_4 -alkoxy, C_1-C_4 -haloalkoxy, hydroxyl, C_1-C_4 -alkylcarbonyloxy, C_1-C_4 -alkylthio, C_1-C_4 -haloalkylthio, di(C1-C4-alkyl)amino, COR6, phenyl or benzyl, it being possible for the two last-mentioned substituents to be fully or partially halogenated 40 and/or to have attached to them one to three of the following groups: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy; 45

or

		162					
	$ m R^4$ and $ m R^5$	together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a					
5		nitrogen which is unsubstituted or substituted by $C_1 - C_4 - alkyl;$					
	or						
10	\mathbb{R}^4 and \mathbb{R}^5	together with the corresponding carbon form a carbonyl or thiocarbonyl group;					
15	R ⁶	is hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxy- C_2 - C_4 -alkoxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy or NR^7R^8 ;					
	R ⁷	is hydrogen or C ₁ -C ₄ -alkyl;					
20	R ⁸	is C ₁ -C ₄ -alkyl;					
	Х	is O, S, NR ⁹ , CO or CR ¹⁰ R ¹¹ ;					
25	Y	is O, S, NR^{12} , CO or $CR^{13}R^{14}$;					
	R ⁹ , R ¹²	are hydrogen or C ₁ -C ₄ -alkyl;					
30	R ¹⁰ , R ¹¹ , R	${ m C}^{13}$, ${ m R}^{14}$ are hydrogen, ${ m C}_1$ - ${ m C}_4$ -alkyl, ${ m C}_1$ - ${ m C}_4$ -haloalkyl, ${ m C}_1$ - ${ m C}_4$ -alkoxycarbonyl or ${ m CONR}^7{ m R}^8$;					
35	or						
35 4 0	R ⁴ and R ⁹	or R^4 and R^{10} or R^5 and R^{12} or R^5 and R^{13} together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl;					
	R ¹⁵	is a pyrazole of the formula II which is linked in					

the 4-position

45

MARKETTE

20

35

40

II R16

where

10 R16 is C1-C6-alkyl;

is H or SO_2R^{17} ;

15 R¹⁷ is C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, phenyl or

phenyl which is partially or fully

halogenated and/or has attached to it one

to three of the following groups:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl,

 C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;

R18 is hydrogen or C₁-C₆-alkyl;

where X and Y are not simultaneously sulfur; 25

with the exception of

4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1-ethyl-5-hydroxy-1H-pyrazole,

4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonyl-30 benzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole,

4-[2-chloro-3-(5-cyano-4,5-dihydroisoxazol-3-y1)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole,

4-[2-chloro-3-(4,5-dihydrothiazol-2-yl)-4-methylsulfonyl-

benzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole and

4-[2-chloro-3-(thiazoline-4,5-dion-2-yl)-4-methylsulfonyl-

benzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole;

or an agriculturally useful salt thereof.

2. A 3-heterocyclyl-substituted benzoyl derivative of the formula I where the variables have the following meanings:

 R^1 , R^2 are hydrogen, nitro, halogen, cyano, C1-C6-alkyl, 45 C_1-C_6 -haloalkyl, C_1-C_6 -alkoxy, C_1-C_6 -haloalkoxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio,

164

 C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl or C_1 - C_6 -haloalkylsulfonyl;

5	R ³	is hydrogen, halogen or C_1 - C_6 -alkyl;
10		are hydrogen, halogen, cyano, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, di(C_1 - C_4 -alkoxy)- C_1 - C_4 -alkyl, di(C_1 - C_4 -alkyl)-amino- C_1 - C_4 -alkyl, [2,2-di(C_1 - C_4 -alkyl)-1-hydrazino]- C_1 - C_4 -alkyl, C_1 - C_6 -alkyliminooxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxycarbonyl- C_1 - C_4 -alkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -cyanoalkyl, C_3 - C_8 -cycloalkyl,
15		C_1-C_4 -alkoxy, C_1-C_4 -alkoxy- C_2-C_4 -alkoxy, C_1-C_4 -haloalkoxy, C_1-C_4 -alkylthio, C_1-C_4 -haloalkylthio, di(C_1-C_4 -alkyl)amino, COR^6 , phenyl or benzyl, it being possible for the two last-mentioned substituents to be fully or partially
20		halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;
	or	
25 30	$ m R^4$ and $ m R^5$	together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl;
	or	
35	$ m R^4$ and $ m R^5$	together with the corresponding carbon form a carbonyl or thiocarbonyl group;
40	R ⁶	is C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxy- C_2 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy or NR^7R^8 ;
	R ⁷	is hydrogen or C ₁ -C ₄ -alkyl;
	R ⁸	is C ₁ -C ₄ -alkyl;

165 Х is O, S, NR9, CO or CR10R11; is O, S, NR^{12} , CO or $CR^{13}R^{14}$; 5 R^9 , R^{12} are hydrogen or C1-C4-alkyl; \mathbb{R}^{10} , \mathbb{R}^{11} , \mathbb{R}^{13} , \mathbb{R}^{14} are hydrogen, \mathbb{C}_1 - \mathbb{C}_4 -alkyl, \mathbb{C}_1 - \mathbb{C}_4 -haloalkyl, $C_1\text{-}C_4\text{-}alkoxycarbonyl, } C_1\text{-}C_4\text{-}haloalkoxycarbonyl or$ CONR⁷R⁸; 10 or R^4 and R^9 or \mathbf{R}^4 and \mathbf{R}^{10} or \mathbf{R}^5 and \mathbf{R}^{12} or \mathbf{R}^5 and \mathbf{R}^{13} together 15 form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1-C_4 -alkyl; 20 R15 is a pyrazole of the formula II which is linked in the 4-position 25 II R16 30 where R16 is C_1-C_6 -alkyl; 35 \mathbf{z} is H or SO_2R^{17} ; R^{17}

40

is $C_1 - C_4$ -alkyl, $C_1 - C_4$ -haloalkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: nitro, cyano, C1-C4-alkyl, C1-C4-haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;

R18 45 is hydrogen or C₁-C₆-alkyl;

166

where X and Y are not simultaneously oxygen or sulfur;

with the exception of

4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1-ethyl-5-hydroxy-1H-pyrazole,

4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole,

4-[2-chloro-3-(5-cyano-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole,

4-[2-chloro-3-(4,5-dihydrothiazol-2-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole and

4-[2-chloro-3-(thiazoline-4,5-dion-2-yl)-4-methylsulfonyl-

benzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole;

or an agriculturally useful salt thereof.

3. A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in claim 1 or 2, where R³ is hydrogen.

4. A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in any of claims 1 to 3, where

5. A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in any of claims 1 to 4, where Z is SO_2R^{17} .

- 6. A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in any of claims 1 to 4, where Z is hydrogen.
- 7. A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in any of claims 1 to 4 or 6, where X is oxygen and Y is $CR^{13}R^{14}$.
- 8. A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in any of claims 1 to 4 or 6 or 7, where 45

			167
		R ⁴	is halogen, nitro, C_1-C_4 -alkyl, C_1-C_4 -alkoxy- C_1-C_4 -alkyl, C_1-C_4 -alkoxycarbonyl- C_1-C_4 -alkyl, C_1-C_4 -alkylthio- C_1-C_4 -alkyl, C_1-C_4 -haloalkyl,
5			C_1 - C_4 -cyanoalkyl, C_3 - C_8 -cycloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxy- C_2 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -haloalkylthio, di(C_1 - C_4 -alkyl)amino, COR^6 , phenyl or benzyl, it being possible for the two last-mentioned
10			substituents to be partially or fully halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C ₁ -C ₄ -alkyl, C ₁ -C ₄ -haloalkyl, C ₁ -C ₄ -alkoxy or C ₁ -C ₄ -haloalkoxy;
15			
		R ⁵	is hydrogen or C ₁ -C ₄ -alkyl;
2.0		or	
25		R ⁴ and R ⁵	together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl;
		or	
30		R^5 and R^{13}	together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl.
35	9.		cyclyl-substituted benzoyl derivative of the as claimed in any of claims 1 to 4 or 6 to 8, where
40		\mathbb{R}^4	is C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxycarbonyl or $CONR^7R^8$;
		R ⁵	is hydrogen or C ₁ -C ₄ -alkyl;
45		or	

 ${\bf R}^4$ and ${\bf R}^5$ together form a $C_2\text{-}C_6\text{-alkanediyl}$ chain which can be mono- to tetrasubstituted by $C_1\text{-}C_4\text{-alkyl}$ and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by $C_1\text{-}C_4\text{-alkyl};$

or

R⁵ and R¹³ together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl.

15

5

- 10. A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in any of claims 1 to 4 or 6 or 7, where $\rm R^4$ and $\rm R^5$ are hydrogen.
- 20 11. A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in any of claims 1 to 4 or 6 or 7 or 10, where R¹⁸ is hydrogen.
- 12.4-[2-Chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonyl-benzoyl]-1-methyl-5-hydroxy-1H-pyrazole.
 - 13. An agriculturally useful salt of 4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1-methyl-5-hydroxy-1H-pyrazole.

30

- 14. A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in any of claims 1 to 4 or 6, where
- 35 X is S, NR^9 , CO or $CR^{10}R^{11}$;

or

Y is O, S, NR^{12} or CO.

40

15. A 3-heterocyclyl-substituted benzoyl derivative of the formula I as claimed in any of claims 1 to 4 or 6 or 14, where \mathbb{R}^{18} is hydrogen.

45

16. A 3-heterocyclyl-substituted benzoyl derivative of the															
	formula	I	as	claimed	in	any	of	claims	1	to	4	or	6	or	14,
	where														

5	\mathbb{R}^4	is halogen, cyano, nitro, C1-C4-alkyl,
		C_1-C_4 -alkoxy- C_1-C_4 -alkyl,
		$C_1 - C_4 - alkoxycarbonyl - C_1 - C_4 - alkyl,$
		C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl,
10		C_1 - C_4 -cyanoalkyl, C_3 - C_8 -cycloalkyl, C_1 - C_4 -alkoxy,
		C_1 - C_4 -alkoxy- C_2 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy,
		C_1 - C_4 -alkylthio, C_1 - C_4 -haloalkylthio,
		$di(C_1-C_4-alkyl)$ amino, COR^6 , phenyl or benzyl, it
		being possible for the two last-mentioned
15		substituents to be partially or fully halogenated
		and/or to have attached to them one to three of
		the following groups:
		nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl,
		C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;

20 R5 is hydrogen or C_1 - C_4 -alkyl;

or

25 R^4 and R^5 together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl;

30

or

 $R^4 \text{ and } R^9 \quad \text{or } R^4 \text{ and } R^{10} \text{ or } R^5 \text{ and } R^{12} \text{ or } R^5 \text{ and } R^{13} \text{ together}$ $\text{form a } C_2\text{-}C_6\text{-alkanediyl chain which can be mono- to}$ $\text{tetrasubstituted by } C_1\text{-}C_4\text{-alkyl and/or which can be}$ interrupted by oxygen or by a nitrogen which is $\text{unsubstituted or substituted by } C_1\text{-}C_4\text{-alkyl};$

40 R^{18} is $C_1 - C_6$ -alkyl.

17. A process for the preparation of 3-heterocyclyl-substituted benzoyl derivatives of the formula I as claimed in claim 1, which comprises acylating the pyrazole of the formula II where Z = H, where the variables R¹⁶ and R¹⁸ have the meanings given under claim 1,

describer for

$$R^{18}$$

N\N
OH

 R^{16}

II (where Z = H)

with an activated carboxylic acid III α or with a carboxylic acid III β ,

where the variables R^1 to R^5 , X and Y have the meanings given under claim 1 and L^1 is a nucleophilically displaceable leaving group, subjecting the acylation product to a rearrangement reaction in the presence or absence of a catalyst to give the compounds I (where Z = H) and, if desired, to prepare 3-heterocyclyl-substituted benzoyl derivatives of the formula I where Z = SO_2R^{17} , reacting the product with a compound of the formula V,

$$L^2$$
 SO₂R¹⁷ V

where R^{17} has the meaning given under claim 1 and L^2 is a nucleophilically displaceable leaving group.

18. A 3-heterocyclyl-substituted benzoic acid derivative of the formula III,

$$\begin{array}{c|c}
\mathbf{171} \\
0 & \mathbb{R}^1 & \mathbb{N} & \mathbb{R}^4 \\
\mathbb{R}^5 & \mathbb{R}^5 \\
\mathbb{R}^3 & \mathbb{III}
\end{array}$$

15

40

5

where R¹⁹ is hydroxyl or a radical which can be removed by hydrolysis and variables R¹ to R⁵, X and Y have the meanings given under the claims 1 to 16, with the exception of methyl 2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonyl-benzoate, methyl 2-chloro-3-(4,5-dihydrooxazol-2-yl)-4-methylsulfonylbenzoate and methyl 2,4-dichloro-3-(5-methylcarbonyloxy-4,5-dihydroisoxazol-3-yl)benzoate.

- 19. A 3-heterocyclyl-substituted benzoic acid derivative of the formula III as claimed in claim 18 where the variables \mathbb{R}^1 to \mathbb{R}^5 , X and Y have the meanings given under claims 2 to 16.
- 20. A 3-heterocyclyl-substituted benzoic acid derivative of the formula III as claimed in either of claims 18 or 19, where

 R^{19} is halogen, hydroxyl or C_1 - C_6 -alkoxy.

- 30 21. A composition comprising a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl derivative of the formula I or of an agriculturally useful salt of I as claimed in any of claims 1 to 16, and auxiliaries conventionally used for the formulation of crop protection products.
 - 22. A process for the preparation of a composition as claimed in claim 21, which comprises mixing a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl derivative of the formula I or of an agriculturally useful salt of I as claimed in any of claims 1 to 16 and auxiliaries conventionally used for the formulation of crop protection products.
- 23. A method of controlling undesirable vegetation, which comprises allowing a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl derivative of the

formula I or of an agriculturally useful salt of I as claimed in any of claims 1 to 16 to act on plants, their environment and/or on seeds.

5 24. The use of a 3-heterocyclyl-substituted benzoyl derivative of the formula I or an agriculturally useful salt thereof as claimed in any of claims 1 to 16 as herbicide.