

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

По домашней работе №2

Название:	Оценка по	оведения	многока	скадного	усилителя,	охваченного
<u>обратным</u>	ии связями					

Дисциплина: Электроника

Студент	ИУ-42б		С.В. Астахов
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			
		(Подпись, дата)	(И.О. Фамилия)

Найти в схеме все обратные связи и дать им определение. Что произойдет с коэффициентами усилителя Киос и Кіос, если разомкнуть цепь общей ОС?

Задача №31

вариант 1, группа 42 => задача 31

Первый каскад — VT1 – эмиттерный повторитель (подключение с общим коллектором).

Так как каскад подключен по схеме эмиттерного повторителя — присутствует последовательная ООС по напряжению.

R2 – резистор в цепи обратной связи.

Второй каскад — VT2 – подключение с общим эмиттером

$$U_{BX} = U_{69} + U_{R4} = U_{69} + I_{9} R_{4}$$

$$U$$
бэ = U_{BX} - U_{R4} = U_{BX} - I э* $R4 \approx U_{BX}$ - I к* $R4$

Таким образом получаем последовательную ООС по току

R4 – Резистор обратной связи

Третий каскад -VT2— эмиттерный повторитель (подключение с общим коллектором).

Так как каскад подключен по схеме эмиттерного повторителя — присутствует последовательная ООС по напряжению.

Rn – резистор в цепи обратной связи.

Общая ОС

Связь является параллельной. Ток в цепи обратной связи:

$$I_{R1} = (U_{\text{3 VT3}} - U_{\text{BX VT1}}) / R1$$

При увеличении входного напряжения, увеличивается напряжение на базе VT3 (см. полную схему), следовательно, падает напряжение на эмиттере, значит уменьшается и сигнал обратной связи. Значит связь является отрицательной ОС по напряжению. В итоге имеем параллельную ООС по напряжению.

В таком случае имеем следущую связь коэффициентов усиления

$$Ku \ oc = Ku / (1+Ku*\beta) = Ku / F => Ku = F * Ku \ oc$$

где β – коэффициент ОС, F – глубина ОС

Аналогично

$$Ki \text{ oc} = Ki / (1+Ki*\beta) = Ki / F \Longrightarrow Ki = F * Ki \text{ oc}$$

Таким образом, коэффициенты усиления по напряжению Ku и по току Ki увеличатся в случае разрыва обратной связи в F (глубину ОС) раз.

Выводы:

В ходе выполнения домашней работы были получены навыки оценки поведения многокаскадного усилителя, охваченного обратными связями

• Первый каскад

- последовательная ООС по напряжению
- ∘ R2 резистор в цепи обратной связи

• Второй каскад

- последовательная ООС по току
- R4 Резистор обратной связи

• Третий каскад

- последовательная ООС по напряжению
- Rn резистор в цепи обратной связи

• Общая ОС

- параллельную ООС по напряжению
- коэффициенты усиления по напряжению Ku и по току Ki увеличатся в случае разрыва обратной связи в F (глубину ОС) раз

Список литературы

- **1.** Москатов Е. А. Электронная техника. Таганрог, 2004. 121 стр.
- 2. Электроника О. В. Миловзоров, И. Г. Панков
- 3. Электроника Белодедов М.В., Абулкасимов М.М.