组成原理课程第一次实报告 实验名称:加法器及减法器

学号: 2212266 姓名: 张恒硕 班次: 0416

一、实验目的

- 1. 熟悉 LS-CPU-EXB-002 实验箱和软件平台。
- 2. 掌握利用该实验箱各项功能开发组成原理和体系结构实验的方法。
- 3. 理解并掌握加法器、减法器的原理和设计。
- 4. 熟悉并运用 verilog 语言进行电路设计。
- 5. 为后续设计 cpu 的实验打下基础。

二、实验内容说明

- 1. 阅读 LS-CPU-EXB-002 实验箱相关文档,了解并熟悉硬件平台,掌握利用显示屏观察特定信号的方法并学习软件平台和设计流程。
 - 2. 熟悉计算机中加法器的原理。
 - 3. 在 verilog 中直接使用"+"搭建加法模块,编写相应代码。
 - 4. 仿真编写的代码,得到正确的波形图。
- 5. 将以上设计作为一个单独的模块,设计一个外围模块去调用之。外围模块中需调用 封装好的触摸屏模块,显示两个加数和加法结果,且需要利用触摸功能输入两个加数。
 - 6. 将编写的代码进行综合布局布线,并下载到实验箱中的 FPGA 板上进行演示。
 - 7. 重复上述步骤,通过修改代码,实现减法器,并仿真、演示。

三、实验原理图

图 2.1 定点加法设计实验的顶层模块大致框图

图 2.40 定点加法参考设计的顶层模块框图

Λ	R	C	C	C
$\Lambda_{ m i}$	Di	C _i	J _i	\cup_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 $S_i = A_i \oplus B_i \oplus C_i$

 $C_{i+1} = (A_i \bigoplus B_i) C_i + A_i B_i$

以上给出了有低位进位的一位加法器的真值表和函数表达式,这是加法器的基本原理。

A_i	B_i	C_i	S_i	C_{i+1}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

 $S_i = A_i \bigoplus B_i \bigoplus C_i$

 $C_{i+1} = (^{\sim}A_i) (B_i + C_i) + B_iC_i$

以上给出了有低位借位的一位减法器的真值表和函数表达式,这是减法器的基本原理。

四、实验步骤

以下给出了加法器的代码,其直接使用"+",自动调用库里的加法器。

```
module adder(
    input [31:0] operand1,
    input [31:0] operand2,
    Input cin,
    output [31:0] result,
    Output cout,
    );
    assign {cout, result} = operand1 + operand2 + cin;
Endmodule
```

代码先声明了两个加数 operand1、operand2,低位进位 cin,该位输出 result 和高位进位 cout,分别对应上述真值表中的 A_i 、 B_i 、 C_i 、 S_i 、 C_{i+1} 。其后,调用加法器,输入量为前三者,输出量为后两者。

在上述代码的基础上,经过简单修改,可实现减法器。

```
module subtractor(
    input [31:0] minuend,
    input [31:0] subtrahend,
    Input cin,
    output [31:0] result,
    Output cout,
    );
    assign {cout, result} = minuend - subtrahend - cin;
Endmodule
```

代码先声明了被减数 minuend,减数 subtrahend,低位借位 cin,该位输出 result 和高位借位 cout。其后,调用减法器,输入量为前三者,输出量为后两者。

五、实验结果分析

输入一	输入二	进 / 借 位	理论输出	实际输出	实验截图
(55556AAA) ₁₆	0000AAAA	0/0	5554C000	5554C000	LOONGSON ADD_1:55556AAA ADD_2:0000AAAA RESUL:5554C000
00000000	0000AAAA	0/1	FFFF5556	FFFF5556	LOONGSON ADD_1:00000000 ADD_2:0000AAAA RESUL:FFFF5556
72 <i>AFT</i> 7E5	BBD27277	0/1	2E826A5C	2E826A5C	Name Value > № operand1[31:0] 72aff7e5 > № operand2[31:0] bbd27277 1 cin 0 > № result[31:0] 2e826a5c 1 cout 1

注:加法器中若结果大于(2⁸-1)会导致上溢,此时结果相当于真实结果加上(2⁸-1);减法器中若被减数小于减数会导致下溢,此时结果相当于真实结果减去2⁸。

六、总结感想

本次实验是第一次使用 verilog 语言和 LS-CPU-EXB-002 实验箱和软件平台,虽然实验内容比较简单,但仍是学习到了很多新的知识。作为计算机组成原理实验课的第一个实验,本实验使我结合了课上学习的理论内容和操作实验的实际内容,对加法器、减法器有了更深入的了解,这为后续的学习和实验打下了基础。