Pumping Lemma

• Lemma: If A is regular language, there is a number p such that if s is in A and of length at least p, s may be divided into s=xyz, satisfying

- 1) $xy^i z \in A$ for each $i \ge 0$
- 2) |y| > 0
- 3) $|xy| \le p$

Application of Pumping Lemma

$$L = \{0^i 1^i \mid i \ge 0\}$$
 is not a regular language

• Proof: Assume it is a regular language.

There is a automata M to accept it.

Let p be the number from the pumping lemma

Consider the string $0^p 1^p$

Proof

- Let $s = 0^p 1^p$. It is in the language L. By the pumping lemma, s can be divided into s = xyz that satisfies 1), 2) and 3) in the pumping lemma.
- By 3), |xy| is at most p. So, y contains only 0s. By 1) of the pumping, xy^2z is also in the language L. The number of 0s in the string xy^2z is more than the number of 1s. This is a contradiction.

Application of Pumping Lemma

The language $L=\{w \mid w \text{ has an equal number of 0s and 1s}\}$ is not a regular language

• Proof: Assume it is a regular language.

There is a automata M to accept it.

Let p be the number from the pumping lemma

Consider the string $0^p 1^p$

Proof

- Let $s = 0^p 1^p$. It is in the language L. By the pumping lemma, s can be divided into s=xyz that satisfies 1), 2) and 3) in the pumping lemma.
- By 3), |xy| is at most p. y contains only 0s. By 1) of the pumping, the string xy^2z is also in the language L. The number of 0s in the string is more than the number of 1s. This is a contradiction.

Problem

Prove that

$$L = \{0^i 1^j \mid j > i \ge 1\}$$
 is not a regular language.