CHAPTER 6 DISCUSSIONS 2

 Discuss why the following property holds for any two relations r(R) and s(S).

$$r \bowtie s = s \bowtie r$$

 Discuss why the following property holds for any two relations r(R) and s(S).

If
$$R=S$$
 then $r \bowtie s = r \cap s$.

 Use parenthesis to indicate the proper orders of operations in the following relational algebra expression.

$$\sigma_p E_1 \cup E_2 \times E_3 \bowtie \rho_N E_3 \cap E_4 - E_5$$

• Fill the following precedence table for relational algebra operators: σ , \cup , x, \bowtie , ρ , \cap , -, Π

Prec.	Operators	Notes
0	()	highest
1		
2		
3		-
4		

```
person (person_name, street, city)
company (company_name, city)
works (person_name, company_name, salary)
```

- Using the above database schema, represent the following queries in relational algebra.
 - 6-12. Find the name of person who works in every company.

Division Operation – Example

Relations *r*, *s*:

r	÷	S:

Α	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 1 1 1 3 4 6 1
β	2

В	
1	
2	
S	

Division Operation – Example

Relations *r*, *s*:

Α	В	С	D	E
α	а	α	а	1
α	а	γ	а	1
α	а	γ	b	1
β	а	$\gamma \\ \gamma$	а	1
β	а		b	3
$eta \ eta \ \gamma \ \gamma$	a	$\gamma \\ \gamma \\ \gamma$	a	1
γ	а	γ	b	1
γ	а	β	b	1

 D
 E

 a
 1

 b
 1

 s

 $\begin{array}{c|cccc} A & B & C \\ \hline \alpha & a & \gamma \\ \gamma & a & \gamma \end{array}$

 $r \div s$:

r

Division Operation

• Let r(R) and s(S) be relations, and let $S \subseteq R$

$$r \div s = \prod_{R-S} (r) - \prod_{R-S} ((\prod_{R-S} (r) \times s) - \prod_{R-S,S} (r))$$

- $\prod_{R-S,S}(r)$ simply reorders attributes of r
- □ $\prod_{R-S}(\prod_{R-S}(r) \times s) \prod_{R-S,S}(r)$) gives those tuples t in $\prod_{R-S}(r)$ such that for some tuple $u \in s$, $tu \notin r$.