

Digital Experience

- O objetivo da disciplina Digital Experience é permitir a vivência da computação como um todo, usando como base as ODSs
 - Começamos pelo alto nível: tratando e interpretando dados e datasets
 - Agora a abordagem será mais de baixo nível: em hardware e sistemas digitais

Sistemas Digitais

- Os Sistemas Digitais são a base de funcionamento dos computadores
- Um sistema digital é qualquer dispositivo que processa informações representadas em formato digital
- Operam com informações discretas, ou seja, por valores bem definidos, geralmente binários (0 e 1)

- Os sistemas numéricos são fundamentais para a computação!
- É a maneira como os computadores processam dados
- Alguns exemplos da importância dos sistemas numéricos para a computação incluem:
 - Processadores / circuitos que operam com dois estados distintos: ligado (representado por 1) e desligado (representado por 0).
 Comportamento modelado pelo sistema binário: 0 e 1

- O armazenamento de dados em computadores também é feito usando os estados 0 e 1
- Sistemas como o hexadecimal (base 16) e o octal (base 8), são usados como formas mais compactas de representação de grandes números binários
- Em computadores, o armazenamento é organizado em endereços de memória. Sistemas como o hexadecimal facilitam a compreensão e manipulação desses endereços

Os sistemas numéricos são conjuntos de símbolos e regras utilizados para representar números e realizar operações matemáticas

- Existem diferentes sistemas numéricos, cada um com sua própria base
- As bases numéricas mais comuns são: Decimal, Binária, Octal e Hexadecimal

Decimal: 10759

Binário: 10101000000111₂

Octal: 25007₈

Hexadecimal: 2A07₁₆

O número subscrito representa a base em que o número está representado. Não é utilizado para base 10

Sistema Decimal (Base 10):

- É o sistema numérico mais usado
- Base: 10
- Dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Cada posição em um número decimal representa uma potência de 10
 - Por exemplo, o número 254 pode ser representado assim:

$$254 = 2 \times 10^2 + 5 \times 10^1 + 4 \times 10^0$$

Sistema Binário (Base 2):

- Usado em computadores e sistemas digitais
- Base: 2
- Dígitos: 0 e 1
- Cada posição em um número binário representa uma potência de 2
 - Por exemplo, o número 1011 (binário) equivale a:

$$1011_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 11_{10}$$

Sistema Octal (Base 8):

- Forma mais compacta de representar números binários (computação)
- Base: 8
- Dígitos: 0, 1, 2, 3, 4, 5, 6, 7
- Cada posição em um número octal representa uma potência de 8
 - Por exemplo, o número 17 (octal) equivale a:

$$17_8 = 1 \times 8^1 + 7 \times 8^0 = 15_{10}$$

Sistema Hexadecimal (Base 16):

- Usado em programação para representar endereços de memórias
- Base: 16
- Dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Cada posição em um hexadecimal representa uma potência de 16
 - Por exemplo, o número 1A (hexadecimal) equivale a:

$$1A_{16} = 1 \times 16^{1} + 10 \times 16^{0} = 26_{10}$$

Contagem em Diferentes Bases Numéricas

Decimal	Binário	Octal	Hexa
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Decimal	Binário	Octal	Hexa
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17
24	11000	30	18
25	11001	31	19
26	11010	32	1A
27	11011	33	1B
28	11100	34	1C
29	11101	35	1D
30	11110	36	1E
31	11111	37	1F

Sistemas Binários - Bit

- Na base binária, utilizamos o termo Bit:
 - simplificação de Dígito Binário (<u>Binary Digit</u>)
- É a menor unidade de informação que pode ser armazenada ou transmitida
- Um bit pode assumir somente 2 valores: 0 e 1
- Um conjunto de <u>8 bits</u> é chamado de byte
- Cada byte tem 256 valores possíveis (2⁸): de 0 a 255 de decimal

Sistemas Binários - Bit

Exemplo: com 3 bits podemos representar 8 números de 0 a 7:

Binário	Decimal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

 $2^3 = 8 \text{ números}$

Conversões de Bases

- Conversões numéricas entre bases são utilizadas em muitos casos
- Algumas razões:
 - Somos acostumados com a base numérica decimal
 - Sistemas Digitais, como computadores, trabalham com base binária
 - As bases octal e hexadecimal são muito utilizadas pela possibilidade de compactar a representação binária

Decimal para Binário

Conversão: Decimal para Binário

Converter o número 34 para binário

a-computacao/

Decimal para Octal

Conversão: Decimal para Octal

Converter o número 2834 para octal

Decimal para Hexadecimal

Conversão: Decimal para Hexadecimal

Converter o número 2834 para hexadecimal

Exercício

Converter 160 para binário, octal e hexadecimal

Binário para Decimal

Conversão: Binário para Decimal

Converter o número 100010₂ para decimal

Somamos cada número multiplicado por 2 elevado a um número sequencial / posicional que começa de 0

$$1x2^5 + 0x2^4 + 0x2^3 + 0x2^2 + 1x2^1 + 0x2^0$$

Resultado da somatória:

34

Octal para Decimal

Conversão: Octal para Decimal

Converter o número 5422₈ para decimal

Somamos cada número multiplicado por 8 elevado a um número sequencial / posicional que começa de 0

$$5x8^3 + 4x8^2 + 2x8^1 + 2x8^0$$

Resultado da somatória:

2834

Hexadecimal para Decimal

Conversão: Hexadecimal para Decimal

Converter o número B12₁₆ para decimal

Somamos cada número multiplicado por 16 elevado a um número sequencial / posicional que começa de 0

$$11x16^2 + 1x16^1 + 2x16^0$$

Resultado da somatória:

2834

Binário para Hexadecimal

Conversão: Binário para

Hexadecimal

Converter o número 10011011101₂ para hexadecimal

1. separamos os dígitos em grupos de 4:

0100 1101 1101

2. fazemos a conversão binário-decimal para cada grupo separadamente:

4 13 13

3. trocamos os números maiores que 9 por letras:

4DD₁₆

Hexadecimal para Binário

Conversão: Hexadecimal para Binário

Converter o número 4DD₁₆ para binário

1. separamos os dígitos do número:

4 D D

2. fazemos a conversão das letras para números:

4 13 13

3. fazemos a conversão de cada número separadamente para binário:

0100 1101 1101₂

Exercícios

Converter **FA1**₁₆ para **decimal**

Converter 111010₂ para decimal e hexadecimal

Números fracionários: valores posicionais com expoentes negativos

Números fracionários: valores posicionais com expoentes negativos

$$110.101_{2}$$
= $1x2^{2} + 1x2^{1} + 0x2^{0} + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$
= $4 + 2 + 0 + 0.5 + 0 + 0.125$
= 6.625

Números fracionários: valores posicionais com expoentes negativos

$$= 2x16^{2} + 12x16^{1} + 15x16^{0} + 1x16^{-1} + 0x16^{-2} + 10x16^{-3}$$

$$= 512 + 192 + 15 + 0,0625 + 0 + 0,00244$$

Números fracionários: Decimal para Binário

Conversão: Decimal Fracionário para Binário

Converter o número 132.564 para binário

- a. Para a parte inteira, aplicar o método das divisões sucessivas por 2
- b. Para a parte fracionária, aplicar o método das multiplicações sucessivas por 2, até obter zero
 - Definir quantos bits deseja obter na parte fracionária
 - b. Multiplicar o número fracionário por 2,
 a parte inteira é o binário equivalente

Números negativos

- A conversão de números negativos para binário, por exemplo, é um processo que requer o uso de representações específicas, já que o sistema binário padrão, por si só, não lida diretamente com números negativos
- O complemento de dois é a técnica mais utilizada em sistemas digitais para representar números negativos

Números negativos

- No complemento de dois, o bit mais significativo (o primeiro bit à esquerda) representa o bit de sinal, onde:
 - 0 indica um número positivo
 - 1 indica um número negativo

Números negativos

- Exemplo de conversão: -5 para binário de 8 bits
 - 1. Converter o valor absoluto do número para binário
 - Inverter todos os bits (complemento de um)
 - 3. Adicionar 1 ao resultado (complemento de dois)

Números negativos

1. Converter o valor absoluto do número para binário (8 bits):

5: 00000101₂

2. Inverter todos os bits (complemento de um):

11111010₂

3. Adicionar 1 ao resultado (complemento de dois):

11111011₂ = **-5**

Exercícios para entrega no Moodle

- 1 . Os computadores utilizam o sistema binário, ou de base 2, que é um sistema de numeração em que todas as quantidades se representam com base nos números 0 e 1.
- a) Como será a representação binária do número 2024 em um computador?
- b) Como será a representação desse mesmo número nas bases octal e hexadecimal?
- c) Se os computadores trabalham representando informações com números binários, por que estudar as bases octal e hexadecimal?

Exercícios para entrega no Moodle

- 2 . Realize as seguintes conversões:
- a) 325 para binário
- b) 10100₂ para decimal
- c) 4554 para hexadecimal
- d) ABAE₁₆ para decimal
- e) 10111000₂ para hexadecimal
- f) 23,1875 para binário

- g) 0,1 para binário
- h) 11101,01₂ para decimal
- i) 678,25 para binário
- j) 11100,011₂ para decimal
- k) A64₁₆ para binário
- l) D52₁₆ para decimal

Exercícios para entrega no Moodle

- 3 . A maioria das pessoas pode contar até 10 nos dedos das mãos. Porém, cientistas da computação podem fazer melhor:
- a) Se você considerar cada dedo como um bit binário, com o dedo estendido indicando 1 e o dedo recolhido indicando 0, até quanto você pode contar usando as mãos?
- b) Se você considerar o dedão da mão esquerda como sendo um bit de sinal para números de complemento de dois, qual é faixa de números que é possível ser expressa dessa forma?