1049) a	जला	मोना	कंग	4	2
ルリマン	, 9	ગભા	HITI	arci i	5	/

- (A) अपरिष्कृत सोना
- (B) पेट्रोल
- (C) कोयला
- (D) कार्बन (Carbon)

Ans. (B) काला सोना पेटोल को कहा जाता है।

- काला हीरा-कोयला को कहा जाता है।
- उजला हीरा-पनिबजली को कहते हैं।
- झुठा सोना-आइरन पाइराइट को कहते हैं।
- सोना सबसे अधिक अक्रियाशील धातु है।
- सोना एकमात्र धातु है जो प्रकृति मुक्त अवस्था में पाया जाता है।
- 1050. जब दो तरल पदार्थ एक-दूसरे में घुलते नहीं और सोल्यूशन नहीं बनाते हैं, तो उसे क्या कहते हैं?
 - (A) सॉल्वेंट
- (B) सोल्यूट
- (C) अमिश्रणीय (इम्मिसबल) (D) डीकैंटेशन
- Ans. (C) जब दो तरल पदार्थ एक दूसरे में घुलते नहीं और सोल्युशन नहीं बनाते हैं तो उसे अभिश्रणीय कहते हैं।
 - दो या दो से अधिक यौगिक या तत्वों को किसी अनुपात में मिलाने को मिश्रण कहते हैं।
 - शुद्ध पदार्थ जो रासायनिक रूप से दो या दो से अधिक तत्व के एक निश्चित अनुपात में रासायनिक संयोग से बने हैं— यौगिक कहलाते हैं।
 - यौगिक के गुण उनके अवयवों के गुण से अलग होती है जैसे— जल
 - प्रत्येक भाग के गुण धर्म एक समान होते हैं उसे समाग मिश्रण कहते हैं।
 - प्रत्येक भाग के गुण एवं उनके संघटन भिन्न-भिन्न होते हैं उसे विषमांग मिश्रण कहते हैं।
- 1051. क्विक सिल्वर quicksilver किसे कहते हैं?
 - (A) टाईटेनियम
- (B) मर्करी
- (C) प्लेटिनम
- (D) रेडियम

Ans. (B) क्विक सिल्वर (Quick Silver) मर्करी को कहा जाता है।

- सफेद स्वर्ण प्लेटिनम को कहते हैं।
 - आयरन पाइराइठ को 'झूठा सोना' कहते हैं।
- रेडॉन गैसीय तत्वों में सबसे भारी है।
- सोना का घनत्व पारा के घनत्व से ज्यादा होता है इसलिए सोना पारा में डूब जाता है।
- सबसे प्रबल उपचायक (oxidising) क्लोरीन है।
- 1052. निम्नलिखित में से किस विकल्प को हास्य गैस (laughing gas) कहा जाता है ?
 - (A) N₂O
- (B) CO₂
- (C) H₂O
- (D) SO₂

Ans. (A) N2O को हास्य गैस कहा जाता है।

- N₂O नाइट्रोजन ऑक्साइड का रासायनिक सूत्र है।
- N₂O का प्रयोग शल्य चिकित्सा में होता है।
- 1053. दूध को दही में बदलने के लिए किस बैक्टेरियम का प्रयोग किया जाता है ?

- (A) स्ट्रेप्टोमैसस (Streptomyces)
- (B) विब्रियो (Vibrio)
- (C) लैक्टोबैसिलस (Lactobacillus)
- (D) स्पिरिल्ला (Spirilla)
- Ans. (C) दूध को दही में बदलने के लिए लैक्टोबैसिलस (Lactobacillus) बैक्टेरियम का प्रयोग किया जाता है।
 - कैरोटिन गाजर में पाया जाता है।
 - लाइकोपिन टमाटर में पाया जाता है।
 - विब्रिओ कॉलेरी जीवाणु से हैजा रोग होता है।
 - क्लॉस्ट्रीडियम टेनेसी जीवाणु के द्वारा टिटनेस रोग होता है।
 - कोरीनी बैक्टीरियम डिप्थीरी जीवाणु से डिप्थीरिया रोग होता है।
- 1054. न्यूक्लियस में परमाणु क्रमांक (अटॉमिक नंबर) को दर्शाता है।
 - (A) प्रोटॉन (Protons)
- (B) न्यृट्रॉन (Neutrons)
- (C) इलेक्ट्रॉन (Electrons)
- (D) हाइड्रॉन (Hydrons)
- Ans, (A) न्युक्लियस में प्रोटॉन (Protons) परमाणु क्रमांक (एटामिक नम्बर) को दर्शाता है।
- 1055, रासायनिक तत्वों, विशेष रूप से नाइट्रोजन, फॉस्फोरस मिश्रित यौगिक तत्वों से पारिस्थितिक तंत्र (ईकोसिस्टेम) की संपन्नता को कहते हैं :
 - (A) यूट्रोफिकेशन
- (B) सेडीमेंटेशन
- (C) हाइडोजिनीकरण
- (D) ऑक्सीकरण
- Ans. (A) रासायनिक तत्व विशेष रूप से नाइट्रोजन, फॉस्फोरस मिश्रित यौगिक तत्वों में पारिस्थितिक तंत्र (इकोसिस्टेम) की संपन्नता को यूट्रोफिकेशन (Eatsophication) कहते हैं।
 - सुपर फास्फेट ऑफ लाइम फास्फेटी धातुमल फास्फोरस के प्रमुख का मुख्य उर्वरक है।
 - सुपर फास्फेट को हिंड्डयों को पीस कर बनाया जाता है।
 - नाइट्रोजन के यौगिकों में अमोनिया एक प्रमुख यौगिक है।
 इसका निर्माण हैवर विधि द्वारा किया जाता है।
- 1056. पारपरिक धर्मोमीटर में किस तत्व, जो प्राकृतिक रूप से अत्यंत जहरीला होता है, का प्रयोग किया जाता था?
 - (A) कार्बन
- (B) मर्करी
- (C) आर्सेनिक
- (D) केडिमियम
- Ans. (B) पारंपरिक धर्मोमीटर मर्करी तत्व, जो प्राकृतिक रूप से अत्यन जहरीला होता है का प्रयोग किया जाता था।
 - आर्सेनिक अधिक मात्रा में जल को प्रदूषित करता है।
 - इटाई-इटाई रोग कैडिमियम के कारण होता है।
 - रेडियोसिक्रिय स्ट्रॉन्शियम–90 के कारण अस्थि कैंसर हो जाता है।
 - मिर्गी को अपस्मार रोग कहते हैं।
- 1057. उस प्रक्रिया का क्या नाम है, जिसमें गैस सीधे ही ठोस वस्तु (सॉलिड) में परिवर्तित हो जाती है?
 - (A) सब्लिमेशन
- (B) डिपोजिशन
- (C) कंडनसेशन
- (D) इवैपोरेशन
- Ans. (B) उस प्रक्रिया का नाम डिपोजिशन है जिसमें गैस सीधे ही ठोस वस्तु (सॉलिड) में परिवर्तित हो जाती है।

1058.चॉक का रासायनिक नाम क्या है?

(A) कैल्शियम सल्फेट

(B) कैल्शियम नाइटेट

(C) कैल्शियम कार्बोनेट

(D) कैल्शियम फॉस्फाइड

Ans. (C) चॉक का रासायनिक नाम कैल्शियम कार्बोनेट है।

कैल्शियम कार्बोनेट का रासायनिक नाम CaCO3 है।

इसका प्रयोग चूना बनाने में, दुथ पेस्ट, दंतमंजन बनाने में तथा सीमेंट उद्योग में होता है।

कैल्शियम सल्फोट या जिप्सम (CaSO₄.2H₂O) प्लास्टर ऑफ पेरिस बनाने में, अमोनियम सल्फेट बनाने में तथा सीमेन्ट उद्योग में होता है।

भारी जल D2O रासायनिक सूत्र है।

1059.निम्नलिखित में से कौन सा विकल्प ग्रीनहाउस गैस नहीं है?

(A) कार्बन डाईऑक्साइड

(B) मीथेन

(C) क्लोरोफ्लोरोकार्बन

(D) ऑक्सीजन

Ans. (D) विकल्प ग्रीनहाउस गैस ऑक्सीजन नहीं है।

ग्रीनहाउस गैस मुख्यतः CO2 से होता है।

CFC गैस से ओजोन परत को अधिक क्षति पहुँचती है।

धान के खेतों से मिथेन निकलता है।

क्योटो प्रोटोकॉल-1997 ई. में जलवायु परिवर्तन से संबंधित है।

1060.ओजोन का रासायनिक (केमिकल) फॉर्मला क्या है?

(A) O

(B) O₂

(C) O₃

(D) O₄

Ans. (C) ओजोन का रासायनिक (केमिकल) फॉर्मूला O3 है।

O3 में ऑक्सीजन के तीन अणु मिलकर ओजोन का एक अण् बनता है।

ओजोन को पृथ्वी का रक्षा कवच कहा जाता है।

ओजोन को सबसे अधिक क्षति CFC गैस से होता है।

1061.स्टेनलेस स्टील का आविष्कार किसने किया था?

(A) विलियम होवार्ड लिवेन्स (William Howard Livens)

(B) जोसेफ अस्प्दीन (Joseph Aspdin)

(C) हैरी ब्रियरली (Harry Brearley)

(D) जेम्स डाइसन् (James Dyson)

Ans. (C) स्टेनलेस स्टील, का आविष्कारक हैरी ब्रियरली (Harry निम्ह Brearley) ने किया।

स्टेनलेस स्टील में जंग नहीं लगता है।

स्टेनलेस स्टील मजबत होता है, इससे उपकरण बनाया जाता है।

जंग लगने से लोहा का वजन बढ़ जाता है।

अयस्क में मिले अशुद्ध पदार्थ को गैंग कहते हैं।

1062. शक्कर के घोल में शक्कर एक है।

(A) विलायक (Solvent)

(B) घुला हुआ पदार्थ (Solute)

(C) कोलॉइड (Colloid)

(D) सस्पेंशन (Suspension)

Ans. (B) शक्कर के घोल में शक्कर एक घुला हुआ पदार्थ (Solute) है।

विलयम स्थायी एवं पारदर्शक होता है।

किसी पदार्थ की विलायक में विलेयता विलायक तथा विलेय की प्रकृति पर ताप एवं दाब पर निर्भर करती है।

किसी द्रव में गैस की विलेयता ताप बढ़ने से घटती है।

दाव बढाने पर द्रव में गैस की विलेयता बढती है।

1063.सखी बर्फ (dry ice) क्या है ?

(A) सखा हुआ बर्फ

(B) रेगिस्तान (deserts) में जमी 🕊 🚾

(C) कार्बन डाईऑक्साइड का ठोस स्वय-

(D) हाईडोजन पेरॉक्साइड का ठोस केंप

Ans. (C) स्खा वर्फ (dry ice) कार्बन का अंत्रसाइड का ठोस रूप है।

CO2 ग्लोवल बार्मिंग का मुल कारण है।

CO2 का प्रयोग आस को बुकार में किया जाता है।

CO2 का प्रयोग शीतल पैय पदार्श में भी किया जाता है।

बर्फ की अवस्था में पानी का येंगर कम हो जाता है।

1064.रबड को ताकत प्रदान करने, अधिकतम लोच एवं स्थायित्व प्रदान करने हेतू, सल्फर और ताप से उपचारित करने की प्रक्रिया को क्या कहते हैं?

(A) हाइड्रेशन (Hydration)

(B) इन्सिनरेशन (Incineration)

(C) वल्कनाइजेशन (Vulcanization)

(D) दहन/कम्बरान (Combusion)

Ans. (C) रवड को ताकत प्रदान करने अधिकतम लोच एवं स्थायित्व प्रदान करने हेत सल्फर और लाज से उपचारित करने की प्रक्रिया को वल्कानाइजेशन (Vulcanization) कहते हैं।

रबड दो प्रकार के होते हैं—(i) प्राकृतिक एवं (ii) संश्लिष्ट

प्राकृतिक रबड आइसोप्रीन का बहुलक होता है।

यह थर्मोप्लास्टिक है।

वल्कनीकरण द्वारा दस्ताना, स्वाप्तेष्ठ (Rubber Band) बनाये जाते हैं।

रबड़ आसानी से कार्बन डाईसएफाइड में घुल जाता है।

प्राकृतिक रबंड मुलायम होता है। कार्बन मिलाया जाता है कठोर बनाने के लिए।

1065.निम्नलिखित किस गैस के रिसाव के कारण भोपाल गैस त्रासदी हुई?

(A) क्लोरोफ्लूरॉकॉर्बन

(B) विथाइल आईसोसांयनेट

(C) सल्फेट डाईऑक्साइड (D) सिटबाइन

Ans. (B) मिथाइल आईसोसयानेट गैस के रिसाब के कारण भोपाल गैस त्रासदी हुई थी।

युनियन कार्बाइड फैक्टरी (उक्रेंक-U.S.A) में 3 दिसम्बर, 1984 को MIC गैस के रिशान के कारण हुआ।

इससे भारी हानि हुई हजारों मारे गये लाखों प्रभावित हुए।

अभी तक भोपाल गैस त्रासदी के पीड़ितों को समुचित मुआवजा नहीं दिया गया है।

28 मार्च, 1979 ई॰ को थी माइल आइलैण्ड रिएक्टर में दुर्घटना USA हुआ। 26 अप्रैल, 1986 ई॰ को चेरनोबिल रिएक्टर दुर्घटना यूक्रेन में तथा 14 मार्च, 2011 ई॰ को फूकुशिमा जापान में रिएक्टर कुआ।

1066. का प्रशीतन (रेफ्रीजिसन) में प्रयोग किया जाता है।

(A) क्लोरोफ्लुओरो कार्बन

(B) कार्बन डाइऑक्साइड

(C) नाइट्रोजन पेरोक्साइड (D) अमीनियम ऑक्साइड Ans. (A) क्लोरोफ्लुओरो कार्बन का प्रचार प्रशीतन (रेफ्रीजरेशन) में

किया जाता है।

रसायन विज्ञान

रेफ्रीजरेटर का आविष्कार हैरीसन और टिनिंग द्वारा 1850
(U.S.A) में किया गया।
प्रशीतक में वाष्पीकरण द्वारा ठंडक उत्पन्न की जाती है।
तांबे की एक वाष्प कुण्डली में द्रव फ्रीऑन भरा रहता है, जो
वाष्पीकृत होकर ठंडक उत्पन्न करता है।
प्रशीतक के द्वारा वस्तुओं को अधिक समय तक सुरक्षित रख
सकते हैं।
CFC गैस-ओजोन परत का क्षति पहुंचाती है।
टूथपेस्ट का एक घटक नहीं है।
ऐब्रेसिव (B) फ्लोराइड
लूब्रिकेंट (D) सर्फेक्टेंट
लुब्रिकेंट टुथपेस्ट का एक घटक नहीं है।
पेट्रोल, डीजल, किरोसिन तेल, अल्कोहल, स्पिरिट द्रव ईंधन के
उदारहण हैं।
ठोस ईंधन के उदाहरण हैंलकड़ी, कोयला, चारकोल, कोक
आदि।
प्राकृतिक गैस, कोल गैस, प्रोड्यूसर गैस, गोबर गैस आदि
गैसीय ईंधन का उदाहरण है।
ı के रूप में जाना जाता है।
लाफिंग गैस (B) टियर गैस
मार्श गैस (D) नॉन-ग्रीनहाउस गैस
मीथेन-मार्शगैस है।
मीथेन-वायोगैस में 65% अंश रहता है।
CH4 मीथेन गैस का रासायनिक सूत्र है।
मीर्थन गैस धान के खेतों से भी उत्पन्न होती है।
नाइट्रडस ऑक्साइड लाफिंग गैस है।
शीतल पेय (soft drink) का प्रमुख घटक है
कार्बोनेटेड पानी (B) ह्राइड्क्लोरिक एसिड
फॉस्फोरिक एसिड (D) कैफीन
शीतल पेय (Soft drink) का मुख्य घटक कार्बोनेटेड पानी है।
CO2 गैस शीतल पेय में उपयोग होता है।
CO ₂ डोस बर्फ है।
CO2 गैस ग्लोवर्ल बामिंग का मुख्य कारण है।
कैफीन कॉफी में पाया जाता है।
बाइल एज्हॉस्ट (automobile exhaust) में समाविष्ट महत्वपूर्ण
है I
प्लोरीन (Fluorine)
सोडियम (Sodium)
साडियम (Socium) मैग्नीशियम (Magnesium)
लेड (Lead)
ऑटो मोबाइल एकन्हौस्ट (automobile exhaust) में
समाविष्ट महत्वपूर्ण तत्व लेड (Lead) है।
ऑटोमोबाइल से धुआं जो निकलती है उसमें कार्बन मोनोऑक्साइड
(CO) गैस होती है।

अब लेड रहित पेट्रोल की बिक्री की जा रही है।

411		
1071.	ग्रह र	प्रयोग प्लास्टिक की पानी की बोतलेंकी बनी होती हैं।
	(A)	येकेलाइट (Bakelite)
	(B)	पॉलीस्टीरीन (Polystyrene)
	(C)	पॉलीधीन (Polyethylene)
0.5	(D)	सिलिकॉन (Silicon)
Ans. ((C)	बहु प्रयोग प्लास्टिक की पन्नी की बोतलें पॉलीथीन
		(Polyethyne) की बनी होती है।
٩	9	पॉलीथीन एथिलीन उच्च ताप एवं उच्च दाब पर बहुलकीकरण
		के फलस्वरूप प्राप्त होता है। प्राकृतिक बहुलक के उदाहरण स्टार्च एवं सेल्युलोग हैं।
		प्राकृतिक बहुलक के उदाहरण स्टाय एवं राजुरा प्लास्टिक दो प्रकार के होते हैं (i) धर्मोप्लास्टिक एवं (ii)
`		थर्मोसेटिंग प्लास्टिक।
		प्राकृतिक रबंड आइसोप्रीन का बहुलक है।
		यह धर्मोप्लास्टिक है।
1072.		माइक्रोचिप्स बचाने के लिए प्रयोग किया जाता है।
(A)	ग्रेफाइट (Graphite) (B) पॉलीविनाइल (Polyvinyl)
(C)	सिलिकॉन (Sílicon) (D) बेकेलाइट (Bakelite)
Ans. (C)	सिलिकॉन (Silicon) माइक्रोचिप्स बनाने के लिए प्रयोग किया
		जाता है।
	1	
9		इन्टिग्रेटेड सर्किट चिप का विकास जे.एस. किल्बी ने किया।
	5	I.C. में सिलिकॉन का प्रयोग होता है।
(C	•	भारत की सिलिकॉन घाटी बंगलुरू को कहते हैं।
) e)	सिलिकॉन घाटी शिकागों को कहते हैं।
)	चुम्बकीय डिस्क का आयरन ऑक्साइड की परत होती है।
1073. a	नांच	का सबसे महत्वपूर्ण घटक है।
(.	A)	माईका (B) क्वार्ट्ज
- (C)	सिलिका (D) सोडियम बोरेट
	_	काँच का सबसे महत्वपूर्ण घटक सिलिका है।
	,	काँच यौगिक नहीं 'है - मिश्रण है।
		रेशेदार काँच का प्रयोग बुलेट प्रूफ जैकेट बनाने में किया जाता है।
		फोटोक्रोमैटिक काँच सिल्वर ब्रोमाइड की उपस्थिति के कारण
		धूप में स्वतः काला हो जाता है।
		साधारण काँच का औसत संघटन Na ₂ Sio ₂ casio ₃
1		4SiO ₂ होता है।
		मनित्र सर्वाप
1074.	मालि	एबल' (Malleable) के गुण को दर्शाता है
(4	A)	गैर धातु (B) धातु
	C)	गैस (D) गैर धातु के यौगिक
		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
AIRS. (0)	मालिएबल (Malleable) धातु के गुण को दर्शाता है।
0	'	मालिएबल सबसे अधिक सोना होता है।
0	•	चाँदी, ताँबा जैसे धातु भी मालिएबल अधिक होते हैं।
0	,	आघावर्ध्य वह गुण है जिसके कारण दाब, गर्म या बाहरी
		शक्ति के कारण धातु का अधिकतम विस्तार होता है।
075.	arus.	गेरस को पानी में रखा जाता है ताकि।
	A)	
((C)_	स्थायित्व सुनिश्चित हो। (D) बच्चों की पहुँच से दूर रहे
Ans. (I	B)	फास्फोरस को पानी में रखा जाता है ताकि स्थायित्व सुनिश्चित हो।
	13	कासकीय ज्वलनभीन पटार्थ है।

फास्फोरस ज्वलनशील पदार्थ है।

- फास्फोरस हिंड्डियों तथा डी०एन०ए० में उपस्थित है।
- फास्फोरस श्वेत. लाल और काला होता है।
- श्वेत फास्फोरस अधिक ज्वलनशील होते हैं।
- लाल फास्फोरस का प्रयोग दियासलाई में होता है।
- श्वेत फास्फोरस का प्रयोग चुहे मारने की दवा आदि में होता है।

1076..... दूथपेस्ट की सामग्रियों में से एक नहीं है।

- (A) फ्लोराइड
- (B) सोडियम कार्बोनेट
- (C) कैल्शियम कार्बोनेट
- (D) मैग्नीशियम कार्बोनेट

Ans. (B) सोडियम कार्बोनेट दुथपेस्ट की सामग्रियों में नहीं रहता है।

- टथपेस्ट में झाग ग्लीसरीन के कारण बनता है।
- झाग बनने के कारण दाँत साफ होता है।

1077 निम्नलिखित में समानता का पता लगाएँ। चाँदी, ताम्बा, सोना, एल्युमिनियम

- (A) ये सभी अच्छे विद्युत-रोधी हैं।
- (B) ये सभी कीमती धातएँ हैं।
- (C) ये सभी अच्छे स्वालक हैं। (D) कोई समानता नहीं है।

Ans. (C) चाँदी, ताम्बा, सोना, एल्युमिनियम में समानता है कि ये सभी अच्छे सचालक हैं।

- चाँदी सबसे उत्तम स्वालक है।
- स्चालक जो विद्युत-धारा प्रवाह को प्रवाहित करने का गुण
- कुचालक जो विद्युत-धारा प्रवाह को प्रवाहित करने का गुण नहीं रखते हैं।
- हीरा विद्युत का कचालक है।

1078..... can dissolve gold.

- (A) Glycerin
- (B) Petroleum ether
- (C) Methanol
- (D) Aqua regia

Ans. (D) Aqua regia can dissolve gold.

- काल्वेराइट और सिल्वेनाइट सोना का अयस्क है।
- आतिशबाजी के दौरान हरा रंग बेरियम की उपस्थिति के कारण होता है।
- आतिशबाज़ी के दौरान लाल चटक रंग स्ट्रॉशियम की उपस्थिति के कारण होता है।
- गोल्ड, प्लेटिनम, सिल्वर तथा मरकरी उत्कृष्ट धातुएं हैं।

1079..... कार्बन का एक रूप नहीं है।

- (A) हीरा (Diamond)
- (B) सिलिकॉन (Silicon)
- (C) फुलरीन (Fullerene) (D) ग्राफीन (Graphene)

Ans. (B) सिलिकॉन कार्बन का एक रूप नहीं है।

- कार्बन का दो अपरूप हीरा एवं ग्रेफाइट है।
- कार्बन एक अधात है।
- आधुनिक आवर्त सारणी के वर्ग IVA में रखा गया है।
- पथ्वी पर सबसे अधिक कार्बन पाया जाता है।
- हीरा के गुण-ताप एवं विद्युत का कुचालक होता है।
- यह दुनिया का सबसे कठोर पदार्थ है।

1080. आलू के चिप्स के तलने पर ऑक्सीडेशन के कारण तेल के बासी होने से रोकने के लिए, चिप्स के लिफाफों को किस गैस से भरा जाता है ?

- (A) ऑक्सीजन (C) नाइट्रोजन
- (B) हाइड्रोजन (D) क्लोरिन

- Ans. (C) आलू के चिप्स के तलने पर ऑक्सीडेशन के कारण तेल के वासी होने से रोकने के लिए चिप्स के लिफाफों को नाइटोजन गैस से भरा जाता है।
 - नाइटोजन गैस वायमण्डल में सबसे अधिक है।
 - हाइडोजन और हीलियम गैस गुब्बारों को भरने में किया
 - रोगी को ऑक्सीजन देने के लिए सिलिण्डरों में ऑक्सीजन के साथ हीलियम गैस भग जाता है।
 - गौताखोर भी ऑक्सीजन के ले जाने वाले सिलिण्डरों में इसी गैस का प्रयोग करते हैं।

1081 खाने वाले सामान्य नमक का रासायनिक नाम क्या है?

- (A) सोडियम बाइकाबोंनेट
- (B) सोडियम क्लोराइड
- (C) सोडियम सैलिसिलेट
- (D) सोडियम हाइडॉक्साइड

Ans. (B) खाने वाले सामान्य नमक का रासायनिक नाम-सोडियम क्लोराइड है।

1082 गैल्वनाइण्ड (galvanized) लोहा क्या होता है ?

- (A) स्टील का एक रूप
- (B) जिंक लेपित लोहा
- (C) कड़चा लोहा
- (D) खनिज लोहा

Ans. (B) गैल्वनाइजेड (galvarized) लोहा जिंक लेपित लोहा है।

083 नीचे एक अभिकथन और एक टारण दिया गया है।

अभिकथन : परमाणु विखंडन की घटना अत्यधिक ऊर्जा उत्पन्न करती है।

. यह प्रक्रिया जिसमें एक नाभिक दो भागों में टूट जाता है, परमाणु विखंडन कहलाता है।

उत्तर चनें।

- (A) अभिकथन और कारण दोनों सही हैं और कारण, अभिकथ की उचित व्याख्या है।
- (B) अभिकथन और कारण दोनों सही हैं लेकिन कारण, अभिकथन की उचित व्याख्या नहीं है।
- (C) अभिकथन और कारण दोनों गलत हैं।
- (D) अभिकथन सही है लेकिन कारण गलत है।

Ans. (B) अभिकथन और कारण दोनों सही हैं लेकिन कारण अभिक अन की उचित व्याख्या नहीं है।

- विखण्डन से उत्पन्न ऊर्जा को नाभिकीय ऊर्जा कहते हैं।
- सबसे पहले स्ट्रासमैन एवं हॉन के द्वारा नाभिकीय विखणन
- जब यूरेनियम 235 पर न्यूट्रॉनों की बमबारी की जाती है तो यूरेनियम के नाभिक दो खण्डों में विभाजित हो जाते हैं।
- इस प्रक्रिया में एक यूरेनियम नाभिक के विखण्डन पर बहुत अधिक ऊर्जा एवं तीन नए न्यूट्रॉन उत्सर्जित होते हैं। ये उत्सर्जित न्यूट्रॉन यूरेनियम के अन्य नाभिकों को विखि त करते हैं। इस प्रकार शृंखला बनती है। जो नाभिकीय शृंखला बनती है उसे नाभिकीय शृंखला अभिक्रिया कहते हैं।
- यह शंखला अभिक्रिया नियंत्रित एवं अनियंत्रित दो प्रकार के होते हैं।

1084. दांत का एनेमल किससे बना है?

- (A) कैल्शियम क्लोराइड
- (B) कैल्शियम सल्फेट
- (C) कैल्शियम कार्बोनेट
- (D) कैल्शियम फॉस्फेट

Ans. (D) दाँत का एनेमल केंलिशयम फॉस्फेट का बना होता है।

- दाँत एवं हडडी का मुख्य अवयव कैल्शियम एवं फॉस्फोरस है।
- कैल्शियम कार्बोनेट (CaCO₃) का उपयोग चूना, दूथपेस्ट,
 दंतमंजन, सीमेंट आदि उद्योग में होता है।
- कैल्शियम का प्रयोग प्लास्टर ऑफ पेरिस, अमोनियम सल्फेट, सीमेन्ट में होता है।
- कैल्शियम का प्रयोग पेट्रोलियम से सल्फर हटाने में होता है।
- कैल्शियम का उपयोग अवकारक के रूप में होता है।

1085. फोटोसिथेसिस (photosynthesis) के किस स्तर पर ग्लूकोज (glucose) का निर्माण होता है?

- (A) रोशनी पर निर्भर प्रतिक्रियाएं
- (B) कैल्विन (Calvin) साईकिल
- (C) फर्मेंटेशन
- (D) ऑक्सिडेशन (Oxidation)

Ans. (B) फोटोसिथेसिस (Photosynthesis) कैल्विन (Calvir) साई-किल स्तर पर ग्लुकोज (Glucose) का निर्माण होता है।

 पौधों में जल, प्रकाश, पर्णहरित तथा CO₂ की उपस्थित में कर्बोहाइड्रेट के निर्माण को प्रकाश संश्लेषण कहते हैं—

$$6 \text{ CO}_2 + 12 \text{ H}_2\text{O} \frac{\text{प्रकाश}}{\text{क्लोरोफिल}}$$

 $C_6 H_{12} O_6 + 6H_2O + 6O_2$ ग्लकोज – जल – ऑक्सीजन

 पत्ती की कोशिकाओं में जल शिरा से परासरण (osmosis)
 द्वारा एवं 6 CO₂ वायुमण्डल विसरण (Diffusion) द्वारा जाता है।

1086. कार्बन के प्रकार एवं उसके प्रयोग के संबंध में निम्नलिखित में से गलत जोडी का चयन करें।

- (A) हाईड्रोकार्बन : प्लास्टिक का निर्माण
- (B) कार्बन ब्लैक : मुद्रण की स्याही
- (C) हीरा : गहने
- (D) ग्राफाइट : ईंधन

Ans. (D) कार्बन के प्रकार एवं उसके उपयोग के संबंध में गलत जोड़ी है- ग्रेफाइट ईंधन।

ग्रेफाइट पेंसिल होगा।

1087. नीचे एक अभिकथन और एक कारण दिया गया है। अभिकथन : बल्ब के अंदर का तंतु तांबे से बना होता है। कारण : आमतौर पर बल्ब में हवा होती है। उत्तर चुनें।

- (A) अभिकथन और कारण दोनों सही हैं कारण, अभिकथन की उचित व्याख्या है।
- (B) अभिकथन और कारण दोनों सही हैं लेकिन कारण, अभिकथन की उचित व्याख्या नहीं है।
- (C) अभिकथन सही है लेकिन कारण गलत है।
- (D) अभिकथन और कारण दोनों गलत हैं।

Ans. (D) अभिकथन और कारण दोनों गलत हैं।

- बल्व के अन्दर का तंतु टंगस्टन का बना होता है।
- बल्ब के अन्दर नियान आर्गन आदि गैस भरी होती है।
- टंगस्टन का गलनांक लगभग 3500°C होता है
- टंगस्टन का उत्पादन दोगाना (राजस्थान) में है।

- 1088. लोहे को जंग लगने से बचाने के लिए, उस पर जिंक (zinc) की एक सुरक्षात्मक परत लगाई जाती है। इस प्रक्रिया को क्या कहते हैं?
 - (A) कोर्राजन (Corrosion)
 - (B) एल्लोयिंग सुरक्षा (Alloying protection)
 - (C) गैल्वनाईजिंग (Galvanizing)
 - (D) एल्लोयिंग (Alloying)
- Ans. (C) लोहे का जंग लगने से बचाने के लिए उस पर जिंक (zine) की एक सुरक्षात्मक परत लगाई जाती है। इस प्रक्रिया को गैल्वनाईजिंग (Galvanizing) कहते हैं।

1089. कॉस्टिक सोडा का रासायनिक नाम है।

- (A) सोडियम थायोसल्फेट
- (B) सोडियम कार्बोनेट
- (C) सोडियम क्लोराइड
- (D) सोडियम हाइड्रॉक्साइड
- Ans. (D) कॉस्टिंक सोडा का रासायनिक नाम सोडियम हाइड्रॉक्साइड
 - NaOH का उपयोग साबुन बनाने में रेशम उद्योग में, CO₂ को अंवर्शीषित करने में पेट्रोलियम के शुद्धिकरण आदि में होता है।
 - सोडियम (Na) का प्रयोग सोडियम पेराक्साइड बनाने में होता है।
 सोडियम नाइट्राइड (NaHO3) का उपयोग N2 बनाने में तथा
 - प्रतिकारक के रूप में होता है। सोडियम सल्फेट या ग्लोबर लवण का उपयोग औषधि बनाने में तथा सस्ता काँच बनाने में होता है।
 - सोडियम नाइट्रेट का उपयोग खाद के रूप में KNO3HNO3 के निर्माण में होता है।
- 1090..... ने एटम बम का आविष्कार किया था।
 - (A) जे. रॉबर्ट ओप्पनहैमर (B)
- (B) जॉन बाऊनिंग
 - (C) सैम्अल कोहन
- (D) सैमुअल कोल्ट
- Ans. (A) जे॰ रॉबर्ट ओपन हैमर ने एटम बम का आविष्कार किया था।
 - एटम बम मात्र एक देश जापान पर गिराया गया।
 - एटम बम 6 और 9 अगस्त, 1945 को क्रमशः हिरोशिमा एवं नागासाकी पर गिराया गया।
 - जोन ब्राउनिंग स्वतः संचालित फाइटर बन्दूक के आविष्कारक हैं।
 - सैमुअल कोल्ट ने रिवाल्वर का आविष्कार किया था।
- 1091. पाचन तंत्र में मौजूद रस (Gastric juice) में शामिल होता है।
 - (A) HCI
- (B) NaCI
- (C) HNO₃
- (D) KCI
- Ans. (C) पाचन तंत्र में मौजूद अमाशय रस (Gastric Guice) में HNO₃ शामिल होता है।
 - पित्त रस क्षारीय होता है जो भोजन में पक्वाशय रस आकर भोजन में मिलता है।
 - पित्त रस में तीन प्रकार के रस ट्रिप्सिन, एमाइलेज और लाइपेज है।
 - ट्रिप्सिन प्रोटीन एवं पेप्टोन को पॉली-पेप्टाइड्स तथा अमीनो अम्ल में परिवर्तित करता है।
 - एमाइलेज मंड (starch) को घुलनशील शर्करा (sugar) में परिवर्तित करता है।
 - इमल्सीफाइड वसाओं को लाइपेज, ग्लिसरीन एवं फैटी एसिड में परिवर्तित करता है।
 - स्वांगीकरण (Assimilation) के द्वारा अवशोषित भोजन शरीर के उपयोग में लाया जाता है।

- 1092. टॅकाई (soldering) के लिए का प्रयोग किया जाता है।
 - (A) एल्युमिनियम एवं निकेल की मिश्रित धातु
 - (B) सीसा एवं टिन की मिश्रित धात
 - (C) जस्ता एवं सीसा की मिश्रित धात
 - (D) जस्ता एवं तांबे की मिश्रित धात
- Ans. (B) टैंकाई (Soldening) के लिए सीसा एवं टिन की मिश्रित धातु का प्रयोग किया जाता है।
 - टाँका में Sn-67% एवं Pb-33% प्रयोग होता है।
 - पीतल में Cu + Zn का प्रयोग होता है।
 - काँसा में Cu + Sn का प्रयोग होता है।
 - जर्मन सिल्वर में Cu + Zn + NI का प्रयोग होता है।
 - रोल्ड-गोल्ड में Cu + Al का प्रयोग होता है।
- 1093. निम्नलिखित में से हीरे की चमक में किसका योगदान नहीं है ?
 - (A) कुल आंतरिक प्रतिबिंब (टोटल इंटरनल रिफ्लेक्शन)
 - (B) हीरे का उच्च अपवर्तक सूचकांक (हाई रिफ्नैक्टिव इंडेक्स)
 - (C) बिखराव (डिस्पर्शन)
 - (D) हीरे का निम्न अपवर्तक सूचकांक (लो रिफ्रैक्टिव इंडेक्स)
- Ans.(D) हीरे की चमक में हीरे के निम्न अपवर्तन सूचकांक (लो रिफ्रैक्टिव इंडेक्स) का प्रयोग नहीं है।
 - कार्बन के दो अपरूप हैं— हीरा और ग्रेफाइट।
 - हीरा- ताप एवं विद्युत का कुचालक होता है।
 - हीरा में रवे घनाकार होते हैं।
 - हीरा किसी द्रव में नही घुलता है।
 - हीरा पर अम्ल, क्षार आदि का भी प्रभाव नहीं पड़ता है।
- 1094. निम्नलिखित में से किसे ग्रीनहाउस गैसों में शामिल नहीं किया जा सकता है ?
 - (A) नाइट्रस ऑक्साइड
- (B) कार्बन डाईऑक्साइड
- (C) मीथेन
- (D) फॉस्फाइन
- Ans. (D) फॉस्फाइन गैस ग्रीन हाउस गैस नहीं है।
 - नाइट्रस ऑक्साइड का रासायितक नाम N2O है।
 - N₂O हँसाने वाली गैस है।
 - N₂O का उपयोग चिकित्सा में किया जाता है।
 - गोबर गैस, में मिथेन की मात्रा 65% तक होती है।
 - CO₂ जलवायु परिवर्तन के लिए मुख्यत: जिम्मेवार है।
- 1095. गैसे की ली का कौन-सा भाग सर्वाधिक गरम होता है?
 - (A) चमकदार (Luminous)
 - (B) बिना-चमकदार (Non-Iuminous)
 - (C) नीला (Blue)
 - (D) गहरा (Dark)
- Ans. (C) गैस की लौ का नीला भाग सबसे अधिक गरम होता है।
 - गैस का लाल भाग कम गर्म होता है।
 - तारा का रंग ताप पर निर्भर करता है।
 - तारा का ऊर्जा का स्रोत हाइड्रोजन एवं तिलयम था।
 - सूर्य भी तारा है।
 - सूर्य की आयु 5 बिलियन वर्ष है।

- 1096.आधुनिक आवर्त सारणी (modern periodic table) की तीसरी अवधि का सबसे विद्युत धन (electropositive) तत्व है और सबसे ऋणात्मक (electronegative) तत्वहै।
 - (A) सोडियम, पोटाशियम (C) सोडियम, क्लोरीन
- (B) मैग्नेशियम, एल्युमिनियम (D) अल्यमिनियम, क्लोरीन
- Ans. (C) आधुनिक आवर्त सारणी (modern periodic table) की तीसरी अवधि का सबसे विद्युत धन (electropositive) तत्व सोडियम है और सबसे ऋणात्मक (electronegative) तत्व क्लोरीन है।
 - आधुनिक आवर्त सारणी मोसले ने 1913 ई॰ में तैयार किया।
 - आधुनिक आवर्त सारणी के अनुसार तत्वों के गुण उनके परमाण संख्या के आवर्त फलन होते हैं।
 - मेंडलीव के अनुसार तत्वों का भौतिक एवं रासायनिक गुण उनके परमाणु भारों के आवर्त फलन होते हैं।
 - आधुनिक आवर्त सार्रणी की संख्या 7 होती है एवं वर्ग 9
 होती है।
 - मेंडलीव आवर्त सारणी में नौ वर्ग और सात आवर्त थे।
 - सबसे अधिक इलेक्ट्रॉन बन्धुता क्लोरीन की होती है।
 - 🦤 फ्लोरीन की विद्युत ऋणात्मकता सबसे अधिक होती ह.
- 1097...... इलेक्ट्रॉनों कं। समान संख्या वाले परमाणु/अ // अग्रथन होते हैं।
 - (A) आइसोटोनस (Isotones)
 - (B) आइसोटोप (Isotopes)
 - (C) आइसोइलेक्ट्रॉनिक (Isoelectronic)
 - (D) वैलेंस आइसोइलेक्ट्रॉनिक (Valence Isoelectronic;
- Ans. (C) आइसो इलेक्ट्रॉनिक (Isoelectronic) इलेक्ट्रॉनॉ को पमान संख्या वाले परमाण्/अण्/आयन होते हैं।
 - जिन परमाणुओं में न्यूट्रॉनों की संख्या समान होती है उन्हें समन्यूट्रॉनिक कहते हैं।
 - समान परमाणु द्रव्यमान परन्तु भिन्न परमाणु कमांक के परमाणुओं को समभारिक कहते हैं।
 - समान परमाणु क्रमांक परन्तु भिन्न परमाणु द्रव्यमानों को परमाणुओं को समस्थानिक कहते हैं।
- 1098.अम्ल वर्ष का pH मान कितना होता है?
 - (A) 5.5 या कम
- (B) 12.5 या ज्यादा
- (C) 10.5 या ज्यादा
- (D) 8.5 या ज्यादा
- Ans. (A) अम्ल वर्षा का pH मान 5.5 या कम होता है।
 - SO₂, SO₃, NO वातावरणीय जल के साथ क्रिया करके सल्फ्यूरिक अम्ल या सल्फ्यूरस वर्षा-जल के साथ ये अम्ल पृथ्वी पर आ जाते हैं। इसे अम्ल वर्षा कहते हैं।
 - हमारा शरीर 7.0 से 7.8 pH के परास के बीच कार्य करता है।
 - मुँह के pH का मान 5.5 से कम होने पर दाँतों का क्षय प्रारंभ हो जाता है।
- 1099, परमाणु रिएक्टर में विखंडन प्रतिक्रिया की दर को नियंत्रित करने के लिए का प्रयोग किया जाता है जो खुद में ही विखंडन के बिना न्यूट्रॉन अवशोषित करता है।
 - (A) भारी पानी
- (B) ग्रेफाइट
- (C) पानी
- (D) कैडिमियम

	रसार
Ans. (D) परमाणु रिएक्टर में विखण्डन प्रतिक्रिया की दर को नियंत्रित
	करने के लिए कैडिमियम का प्रयोग किया जाता है जो खुद में ही विखण्डन के बिना न्यूट्रॉन अवशोषित करता है।
	रिएक्टर में ईंधन के रूप में U-235 या PU-239 का प्रयोग
	किया जाता है।
•	कैडिमियम या बोरन छड़ का प्रयोग किया जाता है जिससे दो न्यूट्रॉन का अवशोषण कर लिया जाता है (नियंत्रक छड़ के
	रूप में) रिएक्टर में मंदक के रूप में भारी जल या ग्रेफाइट का प्रयोग
	किया जाता है।
	मंदक न्यटॉन की गति को धीमा करता है।
	परमाण बम अनियंत्रित शृंखला अभिक्रिया है।
	रिएक्टर नियंत्रित शृंखला अभिक्रिया है।
100. दही	में मुख्यत: कौन-सा एसिड होता है ?
(A)	बेन्जॉइक (Benzoic) (B) प्युमेरिक (Fumaric)
(C)	लैक्टिक (Lactic) (D) मैलिक (Malic)
	दही में मुख्यत: लैक्टिक (lactic) एसिड होता है।
nis. (C)	प्राकृतिक स्रोत अम्ल
	(i) टमाटर – ऑक्जैलिक
	(ii) इमली — टार्टरिक
	(iii) संतरा – सिट्रिक
	(iv) नेटल का डंक - मेथेनॉइक
	(v) चींटी का डंग — मेथैनॉइक
	(vi) सिरका – ऐसीटिक
	(vii) अचार – ऐसीटिक
	(viii) सोडावाटर एवं अन्य पेय - कार्बोनिक अम्ल
	(ix) सेब – मैलिक
	(x) अंगूर - टार्टरिक
	(xi) खाना पचाने में - HCI
	(xii) कपड़े से जंग के धब्बे हटाने में - ऑक्जैलिक अम्ल
01. गली	के पीले लाइट में किसका प्रयोग किया जाता है ?
(A)	नियॉन (B) नाइट्रीजन
(C)	फॉसफोरस (D) सोडियम
ns (D)	गली के पीले लाइट में सोडियम का प्रयोग किया जाता है।
0	वाल्व के फिलामेंट में टंगस्टन का प्रयोग किया जाता है।
	हीटर के तार नाइक्रोम का बना होता है।
	नन स्टिक बर्तन का ऊपरी परत टेफ्लॉन का होता है।
	नियाँन तथा आर्गन का प्रयोग बल्व में किया जाता है।
02.	पदार्थ की उन अवस्थाओं में से एक है जो बहुत ही
कम घ	वनत्व वाली गैस को अत्यंत कम तापमान के तहत इंडा करके
प्राप्त	होती है।
(A)	गैस
	प्लाज्मा
(C)	बोस आइंस्टीन घनीभूत (BEC)
100000000000000000000000000000000000000	प्लाज्मा घनीभृत
ns. (C)	बोस आइंस्टीन धनीभूत (BEC) पदार्थ की उन अवस्थाओं में
40.00	से एक है, जो बहुत ही कम घनत्व वाली गैस को अत्यंत कम
	तापमान के तहत ठंडा करने प्राप्त होती है।
•	अल्बर्ट आइंस्टीन मूलत: जर्मनी के रहने वाले थे।

न विज्ञान 1103. निम्नलिखित में से कौन सा रासायनिक प्रतीकों के बारे में सच नहीं है? (A) यह तत्वों के नामों के लिए एक आशुलिपि (शोर्ट हैंड) मंकेतन हैं। (B) यह प्रतीक एक या दो अक्षरों के होते हैं। (C) ये जेम्स चाडविक और जे.जे. थोमसन द्वारा प्रस्तावित किये गण थे। (D) क्लोरीन के लिए रासायनिक प्रतीक CI है। Ans. (C) रासायनिक प्रतीकों के बारे में सच नहीं है कि ये जेम्स चाडविक और जे॰जे॰ थामसन द्वारा प्रस्तावित किये गये थे। रासायनिक प्रतीकों से अनेक रासायनशास्त्री एवं वैज्ञानिक जुड़े इलेक्ट्रॉन की खोज जे०जे० थामसन ने किया। न्यूट्रॉन की खोज चैडविक ने किया। 1104. गैल्वनीकरण जंग से बचीने वाली एक प्रक्रिया है जिसमें स्टील और की कोटिंग का इस्तेमाल किया जाता है। लोहे पर (B) मैग्नीशियम (Magnesium) (A) निकल (Nickel) (C) कॉप्रर (तांबा) (Copper)(D) जिंक (Zinc) Ans. (D) मैल्वनीकरण जंग से बचाने वाली एक प्रक्रिया है, जिसमें स्टील और लोहे पर जिंक की कोटिंग का इस्तेमाल किया जाता है। जंग लगने से धातु का क्षरण होता है। जंग लगने पर धातु का वजन बढ़ जाता है। घरों में ग्रील खिड़की, आदि को पेंटिंग भी जंग से बचाता है। 1105. लासा (Mucilage) को पानी के साथ मिश्रित करने पर उसे किस रूप में इस्तेमाल किया जा सकता है ? (A) दथपेस्ट (Toothpaste) (B) कीट निरोधक (Insect repellants) (C) गोंद (Glue) (D) च्यइंग गम (gum) Ans. (C) लासा (Macilage) को पानी के साथ मिश्रित करने पर गाँद (Glue) के रूप में इस्तेमाल करते है। लाख से गोंद तैयार किया जाता है। केंद्रीय लाख अनुसंधान संस्थान-नामकम, रांची में है। 1106. स्टिलिंग सिल्वर (Sterling silver) के न्यूनतम हजारवें भाग की शुद्धता (खरापन) क्या है ? प्रक्रिया का प्रयोग (A) 916 (C) 935 (D) . 950; 5 1016 pt Ans. (B) स्टर्लिंग सिल्वर (Sterling silver) के न्युनतम हजारवें भाग की शुद्धता (खरापन) - 925 है। जर्मन सिल्वर में cu +2n + NI मिला होता है। जो वर्तन बनाने में काम आता है। टाइप मेटल में Pb +Sb + Sn प्रयोग होता है। टांका Sn + Pb का मिश्रण होता है। टांका जोडों में काम लाता है। 1107. मीथेन के जलने पर क्या होता है ? (A) कार्बन मोनोऑक्साइड निकलती है (B) कार्बन राख शेष रह जाती है (C) कार्बोनेट बनता है

(D) कार्बन डाइऑक्साइड एवं पानी निकलता है

आइंस्टीन यहूदी धर्म के मानने वाले थे।

Ans. (D) मीथेन के जलने पर कार्बन डाइऑक्साइड एवं पानी निकलता है।

- मिथेन के जलने पर CO_2 एवं पानी निकलता है। CO_2 जलवायु गर्म होने का मुख्य कारण है।
- CO परिवहन से निकलने वाले धुआँ में होता है।
- CO से सीसा निकलता है।
- सीसा स्थायी तत्व है।

1108. निम्नलिखित में से किस परमाणु का व्यास सबसे बड़ा है ?

- (A) आयोडीन (Iodine)
- (B) फ्लोरीन (Fluorine)
- (C) क्लोरीन (Chlorine)
- (D) ब्रोमिन (Bromine)

आयोडीन (lodine) परमाण का व्यास सबसे बडा है। Ans. (A)

- आयोडीन की कमी से घेंघा रोग होता है।
- घेंघा रोग में थाइरॉयड ग्रंथि का आकार बढ जाता है।
- आयोडीन रोगी पहाडी/पर्वत क्षेत्र में अधिक होता है।
- आयोडीन रोगी समुद्रतटीय क्षेत्र में प्राय: नहीं होता है।
- ब्रोमीन का उपयोग एथिलीन ब्रोमाइड के संश्लेषण में होता है, जिसका प्रयोग सीसाकृत पेट्रोल में मिलाया जाता है।

1109 किस तत्व का परमाणु क्रमांक 3 है ?

- (A) बोरोन (Boron)
- (B) लिथियम (Lithium)
- बेरीलियम (Beryllium) (D) सोडियम (Sodium)

लिथियम तत्व का परमाण क्रमांक-3 है। Ans. (B)

- लिथियम सबसे हल्का तत्व है।
- लिथियम सबसे प्रवल उपचायक होता है।
- ओसमियम (OS) सबसे भारी धात है।
 - प्लेटियम सबसे कठोर धात है।
- धातुओं में सबसे अधिक आघातवर्ध्य सोनो और चाँदी हैं
- वेडीले आइट जिरकोनियम का अयस्क है।

1110. जल शोधन में कौन-सी प्रक्रिया का प्रयोग किया जाता है?

- (A) परासरण (Osmosis)
- (B) विपरीत परासरण (Reverse Osmosis)
- (C) साइटोलिसिस (Cytolysis)
- (D) टर्गर दाब (Turgor pressure)

जल शोधन में विपरीत प्रांसरण (Reverse osmosis) Ans. (B) प्रक्रिया का प्रयोग किया जाता है।

- जब दो द्रवीं के क्वथनांकों में अन्तर अधिक होता है तो उसके मिश्रण को आसवन (Distillation) विधि से पृथक करते है।
- , यह द्रवों के मिश्रण को अलग करने की विधि है।
- इसका प्रथम भाग वाष्पीकरण एवं दूसरा भाग संघनन कहलाता है।
- आंशिका आसवन विधि से शुद्ध डीजल, पेट्रोल, मिट्टी तेल कोलतार आदि अलग किया जाता है।
- , भाप आसवन विधि से कार्बनिक मिश्रण को शुद्ध किया जाता है, जो जल में अघुलनशील होता है, परन्तु भाप के साथ वाष्पशील होता है।
- भाप आसवन विधि से एसीटोन मेथिल अल्कोहल आदि को अलग किया जाता है।

1111. एक ऑक्सीजन परमाणु में कितने संयोजी इलेक्ट्रॉन होते हैं?

(A) 2

(B) 6

(C) 8

(D) 16

- एक ऑक्सीजन परमाण में 6 संयोजी इलेक्टॉन होते हैं। Ans. (B)
 - इलेक्ट्रॉनों के पुनर्वितरण के फलस्वरूप बने बन्धन को परमाण बन्धन कहते है।
 - किसी रवा के आयनों को एक-दसरे से अनन्त दरी तक अलग करने के लिए आवश्यक कर्जा को जालक कर्जा कहते है।
 - हाइडोजन बंधन एक कमजोर स्थिर विद्युत आकर्षण बल है।
 - हाइडोजन बंधन सिर्फ फ्लोरीन, ऑक्सीजन तथा नाइटोजन के यौगिकों में पाया जाता है।

1112 आवर्त सारणी के न्यूनतम प्रतिक्रियाशील तत्व हैं:

- (A) संक्रमण धात्
- (B) क्षारीय म् धात्
- (C) उत्कष्ट गैस
- (D) क्षारीय धात

आवर्त सारणी के न्यनतम प्रतिक्रियाशील तत्व है उत्कृष्ट गैस। Ans. (C)

- अक्रिय गैस या निष्क्रिय गैस आवर्त सारणी में 6 तत्व है-हीलियम निऑन, आर्गन, क्रिस्टॉन, जीनोन तथा रेडॉन है।
- रेडॉन छोड कर सभी अक्रिय गैस वायमण्डल में पाया जाता
- निऑन का उपयोग विसर्जन लैम्पों और टुयुबों (वाययान) तथा प्रतिदीपत बल्बों में भरी जाती है जिसे विज्ञापन के लिए प्रयोग करते है।
 - आवर्त सारणी डी॰ आई॰ मेण्डलीव ने बनाया।
- ्रआधिनिक आवर्त-सारणी मोसले के नियम पर आधारित है।

1113. परमाणु बम का आविष्कार करने वाली टीम का हिस्सा निम्नलिखित में से कौन थे?

- (A) अल्फ्रेड नोबेल (Alfred Nobel)
- (B) जुलियस ओपनहीमर (Julius Oppenheimer)
- (C) जॉन डाल्टन (John Dalton)
- (D) " रॉबर्ट बेकन (Robert Bacon)

परमाण बम का आविष्कार करने वाले टीम का हिस्सा Ans. (B) जुलियस ओपनहीमर (Julius Oppenheiner) थे।

- ओपनहीमर को परमाण बम का जनक माना जाता है।
- परमाण् कार्यक्रम का भारत में जनक डॉ॰ होमीजहाँगीर भाभा थे।
- परमाण ऊर्जा के जनक एरिकन फर्मी थे।
- परमाणु बम 6 अगस्त एवं 9 अगस्त 1945 को जापान पर गिराया गया।

1114 गर्म हवा के गुब्बारों में कौन सी गैस प्रयोग की जाती है?

- : '. (A) हीलियम
- (B) प्रोपेन
- (C) कार्बन डाईऑक्साइड
- (D) नाइट्रोजन

गर्म हवा के गुब्बारों में प्रोपेन (Propane) गैस प्रयोग Ans. (B) किया जाता है।

- साधारणत: गुब्बारों में हीलियम या हाइड्रोजन गैस भरी जाती
- क्योंकि हाइडोजन गैस हल्की होती है।
- रॉकेट में ऑक्सीजन और हाइड्रोजन ईंधन के रूप इस्तेमाल होता है।

1115. निम्नलिखित गैसों में से किसमें एक तीखी गंध (pungent odour) होती है?

- (A) अमोनिया (Ammonia)
- (B) कार्बन मोनोऑक्साइड (Carbon monoxide)
- (C) ऑक्सीजन (Oxygen)
- (D) हाइड्रोजन (Hydrogen)

रसायन विश्वान

- Ans. (A) अमोनिया (Amoria) में एक तीखी गंध (Pungent Odour)
 - अमोनिया सल्फेट का रासायनिक सूत्र (NH₄)₂ SO₄ होता है।
 - अमोनिया सल्केंट में नाइट्रोजन अमोनिया के रूप में उपस्थित रहती है।
 - अमोनिया की मात्रा लगभग 25% होती है।
 - अमोनिया सर्वेंद्र आलू आदि के लिए अच्छा उर्वरक है।
 - अमोनिया संस्केट का प्रयोग चूना रहित भूमि में नहीं किया जाता है।
- 1116. जल शोधन के लिए निम्नलिखित में से किसका प्रयोग किया जाता है?
 - (A) सिरका
- (B) बेकिंग सोडा
- (C) एलम
- (D) टारटरिक एसिड
- Ans. (C) जलशोधन के किए एलम (Alum) का प्रयोग किया जाता है।
 - जल की स्थापी कठोरता दूर करने की मुख्य विधि परम्युटिट विधि है।
 - परम्युटिट दिश्विको परम्युटिट सोडियम जीओलाईट भी कहते हैं।
 - स्थायी कडोरता का कारण कैल्शियम और मैग्नेशियम के सल्फेट, क्लोराइड, नाइट्रेड आदि लवणों के घुलने के कारण होता है।
 - अस्थायी अर्थाता कैल्शियम और मैग्नेशियम के बाई कार्बोनेट घुलने के किएम होता है।
- 1117. निम्न में से कौन **सी राज्य**निक प्रतिक्रिया की प्रकृति हमेशा ऊष्पाशोषी होती है ?
 - (A) दहन प्रतिक्रिया
- (B) अपघटन प्रतिक्रिया
- (C) विस्थापन प्रतिक्रियाः
- (D) संयोजन प्रतिक्रिया
- Ans. (B) दहन प्रतिक्रिया इंग्रेशा रासायनिक प्रतिक्रिया की प्रवृत्ति उष्माशोषी होती है।
 - ऐसे ईंधन किसका अपस्कोटन अधिक होता है वह अच्छा नहीं माना जाता है।
 - अपस्फोटन को कम करने के लिए TPL अपस्फोटन रोधी
 मिलाया जाल है।
 - अपस्फोटन को आक्टेन एंख्या के द्वारा व्यक्त किया जाता है।
 - र्डंधन के जुला की किया की दहन कहते हैं।
 - दहन क्रिया से कर्जा मुन्त होती है :
- 1118. वातावरण में का**र्वन हाइऑक्साइड** की वृद्धि निम्न में से किराके कारण होती है ?
 - 1. जीवाश्म इंड्रें के ज्यादा इस्तेमाल से
 - 2. वनों की कटाई
 - 3. वाहनों **की अंग्रे**शा में वृद्धि
 - 4. सौर हीटरों के ज्यादा इस्तेमाल से
 - (A) 1 और 2
- (B) 1, 2 और 4
- (C) 1, 2 और 3
- (D) 1, 2, 3 और 4
- Ans. (C) वातावरण के GO₂ की वृद्धि के कारणों में जीवाश्म ईंधन के ज्यादा इस्तेशका, बनों की कटाई, वाहनों की संख्या में वृद्धि आदि भी साथ जाता है।

- 1119. उपयुक्त विकल्प द्वारा रिक्त स्थानों की पूर्ती करें:
 , नीले लिटमस को लाल रंग में बदल देता है और,
 लिटमस को नीले रंग में बदल देता है।
 - (A) क्षार, अम्ल, लाल
- (B) अम्ल, क्षार, हरा
- (C) क्षार, अम्ल, गुलाबी
- (D) अम्ल, क्षार, लाल

Ans. (D)

- 1120. निम्नलिखित में से ऑक्सीकरण (Oxidation) प्रतिक्रिया के बारे में क्या सही नहीं है ?
 - (A) एक पदार्थ में ऑक्सीजन की अनुवृद्धि या उसमें से हाइड्रोजन हटाने को ऑक्सीकरण (Oxidation) कहा जाता है।
 - (B) वह पदार्थ जो ऑक्सीकरण (Oxidation) के लिए ऑक्सीजन देता है या हाइड्रोजन को हटाता है उसे ऑक्सीकारक कहा जाता है।
 - (C) वनस्पति तेल का हाइड्रोजनीकरण (Hydrogenation) एक ऑक्सीकरण (Oxidation) प्रतिक्रिया है।
 - (D) धातुओं को जग लगना ऑक्सीकरण (Oxidation) प्रतिक्रिया का एक प्रभाव है।
- Ans. (C) ऑस्सीकरण (Oxidation) प्रतिक्रिया के बारे में सही नहीं है। वनस्पति तेल का हाइड्रोजनीकरण (Hydrogenation) एक ऑक्सीकरण (Oxidation) प्रतिक्रिया है - गलत है।
- 1121. पौधौं के विकास के लिए मिट्टी की pH की कितनी अनुमानित मात्रा सबसे अनुकूल है ?
 - (A) 5.5 से 7.5 के बीच
- (B) 2.5 से 3.5 के बीच
- (C) 9 से 10 के बीच
- (D) 10 से ऊपर
- Ans. (A) पौधे के विकास के लिए मिट्टी की pH की अनुमानित मात्रा सबसे अनुकूल 5.5 से 7.5 के बीच है।
 - किसी विलयन में हाइड्रोजन आयनों के सान्द्रण के व्युक्तम के लघुगणक के उस विलयन का pH कहते हैं।
 - pH विलयन 7 से कम होने पर अम्लीय होता है।
 - pH विलयन 7 से अधिक होने पर क्षारीय होता है।
 - вमारा शरीर 7.0 से 7.8 pH परास की बीच कार्य करता है।
- 1122. इनमें से किसे फल पकाने के लिए प्रयोग किया जाता है?
 - (A) कैल्शियम कार्बाइट
 - (B) अमोनियम नाइट्रेट
 - (C) एसिटिलीन
 - (D) कैल्शियम काबाईड और एसिटिलीन दोनों
- Ans. (D) फल पकाने के लिए कैल्शियम कार्बाइट और एसीटिलीन दोनों गैस का प्रयोग किया जाता है।
 - एथिलीन (Ethylene) एकमात्र ऐसा हार्मोन है जो गैसीय रूप में पाया जाता है।
 - एथिलीन हार्मोन फलों को पकाने में सहायता करता है।
 - यह मादा पुष्पों की संख्या में वृद्धि करता है।
 - यह पत्तियों पुष्पों और फलों के क्लिगन को प्रेरित करता है।
 - फ्लोरिजेन्स ये पत्ती में बनते हैं लेकिन फूलों को खिलने में मदद करते हैं।

- फ्लोरिजेन्स को फूल खिलाने वाले हार्मोन (Flowering hormones) भी कहते हैं।
- साइटो काइनिन RNA एवं प्रोटीन बनाने में सहायक है।
- 1123. निम्नलिखित में से कौन सी ग्रीनहाउस गैस नहीं है ?
 - (A) कार्बन डाइआक्साइड
- (B) नाइट्रस ऑक्साइड
- (C) ऑक्सीजन
- (D) कार्बन मोनोऑक्साइड
- Ans. (C) ऑक्सीजन ग्रीन हाउस गैस नहीं है।
- 1124. निम्नलिखित में से कौन सा ग्लोबल वार्मिंग से निपटने का उपाय नहीं होता है ?
 - (A) जीवाश्म (fossil) ईंधन का कम उपयोग
 - (B) वनीकरण
 - (C) सौर और पवन (Wind) ऊर्जा का अधिक उपयोग
 - (D) खाना पकाने के लिए ईंधन के रूप में लकड़ी का उपयोग करना
- Ans. (D) खाना पकाने के लिए ईंधन के रूप में लकड़ी का उपयोग करना ग्लोबल वार्मिंग से निपटने का उपाय नहीं है।
 - लकड़ी जलने से ग्लोबल वार्मिंग में वृद्धि होती है।
 - खाना बनाने के लिए लकड़ी का प्रयोग कर भारी मात्रा में वन की क्षति होती है।
 - ग्लोबल वार्मिंग का मुख्य कारण जीवाश्म ईंधन है।
- 1125. टेफलोन (Teflon) खाना पकाने के उपकरणों में एक नॉनस्टिक कोटिंग में इस्तेमाल किया जाता है, तारों आदि में अपने इन्सुलेशन विशेषता के कारण इलेक्ट्रॉनिक उद्योग में इस्तेमाल किया जाता है एक बहुलक (पॉलीमर) होता है जिसमें कार्बन...... बॉन्डिंग शामिल होता है।
 - (A) क्लोराइड (Chloride)
- (B) फ्लोराइड (Fluoride)
- (C) ब्रोमाइड (Bromide)
- (D) आयोडाइड (Lodide)
- Ans. (B) टेफलोन (Teflon) खाना पकाने के उपकरणों में एक नॉन्स्टिक कोटिंग में इस्तेमाल किया जात है। तारों आदि में अपने इंसुलेशन विशेषता के कारण इलेक्ट्रॉनिक उद्योग में इस्तेमाल किया जाता है एक बहुलक (पॉलीमर) होता है जिसमें ब्रोमाइड (Bromide) वॉन्डिंग कुर्बन शामिल होता है।
 - वेरियम सल्फेट का उपयोग वेरियममील के रूप में उदर के एक्स-रे में होता है।
 - आतिशबाजी के दौरान हरा रंग बेरियम की उपस्थित के कारण होता है।
 - टेफलोन का प्रयोग चिकना या तेलीय पदार्थ पर लेपन के लिए किया जाता है।
- 1126. निम्नलिखित में से किस प्रक्रिया में जिंक ऑक्साइड बनता है, जो एक सुरक्षा परत के रूप में कार्य करता है और जंग की रोकथाम करता है ?
 - (A) टिन प्लेटिंग (Tin-plating)
 - (B) क्रोमितयम प्लेटिंग (Chromium plating)
 - (C) मिश्रधातु बनाना (Alloying)
 - (D) गैलवेनाईजेशन (Galvanisation)
- Ans. (D) गैल्वेनाईजेशन (Galvanisation) प्रक्रिया में जिंक आक्साइड बनता है जो एक सुरक्षा परत के रूप में कार्य करता है और जंग की रोकथाम करता है।

- 1127. सही विकल्प के साथ खाली स्थान भरें :
 - ''तत्वों के गुण उनके परमाणु द्रव्यमान के आवधिक प्रकार्य (periodic function) है'' यह का कथन है।
 - (A) डोबेरिनर का ट्रायड नियम (Dobereiner's Law of Triads)
 - (B) न्यूलैंड का ओक्टेव नियम (Newland's Law of octaves)
 - (C) मेंडलीफ का आवर्त नियम (Mendeleev's Periodic Law)
 - (D) आधुनिक आवर्त नियम (The Modern Periodic Law)
- Ans. (C) "तत्वों के गुण उनके परमाणु द्रव्यमान के आवधिक प्रकार्य (Periodic Function) हैं। " यह मेंडिलीफ का आवर्तनियम (Mendeleev's Periodic law) का कथन है।
 - आधुनिक आवर्त सारणी परमाणु संख्या पर आधारित है, जो मोसले की देन है।
- - (A) फ्लोराइड संदूषण (Floride contamination)
 - (B) फॉस्फोरस संदूषण (Phosphorous contamination)
 - (C) पानी के स्रोत का खारापन (Salination of water source)
 - पानव अपशिष्ट से संदूषण (Contamination by human waste)
- Ans. (D) पेय जल आपूर्ति में कोलिफार्म (Coliform) की उपस्थिति मानव अवशिष्ट से संदूषण (Contamination by human waste) का लक्षण है।
 - पेय जल में कुछ खनिज लवण घुला रहता है जो हमारे शरीर के लिए आवश्यक है।
 - भूमिजल में या मानव जिनत कारणों से आयरन, अर्सेनिक,
 फ्लोराइड आदि की मात्रा पेय जल को खराब करता है।
 - पृथ्वी पर जल 2-3% ही पीने योग्य है, जिसे मीठा जल कहा जाता है।
 - अंटार्टिका पेय जल का महत्वपूर्ण स्रोत है।
- 1129. न्यूलैंड्स (Newlands), मैंडलीव (Mendeleev) और मेयर (Meyer) नामक वैज्ञानिकों ने का विकास किया था?
 - (A) धातुविज्ञान (Metallurgy)
 - (B) आवर्त सारणी विषय-वस्तु (Periodic table contents)
 - (C) परमाणु संरचना (Atomic structure)
 - (D) तत्वों (elements) की खोज
- Ans. (B) न्यूलैंड्स (Newlands), मेंडलीफ (Mendeleef) और मेयर (Meyer) नामक वैज्ञानिकों ने आर्वत सारणी विषय वस्तु (periodic table contents) का विकास था।
 - मोसले आधुनिक आवर्तसारणी के जनक हैं।

000