X - Python

Commentaire

Insertion de commentaire | # Cette ligne ne sera pas lue par Python

I - Structures élémentaires

I.1 - Types élémentaires

Nombres			
+	Addition	3.4 + 2 renvoie 5.4	
-	Soustraction	3.4 - 2 renvoie 1.4	
*	Multiplication	3.4 * 2 renvoie 6.8	
/	Division	3.4/2 renvoie 1.7	
**	Puissance	3.4**2 renvoie (presque) 11.56	
Booléens			
True, False	Valeurs booléennes vrai, faux		
==	Égal	4 == 2*2 renvoie True	
>	Strictement supérieur	4 > 2 renvoie True	
<	Strictement inférieur	4 < 2 renvoie False	
>=	Supérieur ou égal	4 >= 2 * 2 renvoie True	
<	Inférieur ou égal	4 <= 2 * 2 renvoie True	
	Connecteurs logiques		
and	Et logique	(3 == 0) and (4 == 2*2) renvoie False	
or	Ou logique	(3 == 0) or (4 == 2*2) renvoie True	
not	Non logique	not (3 == 0) renvoie False	

${\rm I.2}$ - Structures de contrôle

Affectation

-	A (C) + 1:		
=	Affectation		x = 3
			stocke la valeur 3 dans la variable nommée x.
	Appel du contenu		2 * x + 3 renvoie 9
	Écrasement du contenu	de	x = 25 + 3 * 12
		Instruction conditionnelle	
			x = 20
if c1:			$\mathbf{if} \ \mathbf{x} < 20$:
i1	c1, c2 sont des booléer		print("Riri")
elif c2:	i1, i2, i3 sont des inst		$\begin{array}{c} \mathbf{elif} \ \mathbf{x} < 50: \end{array}$
i2	Attention aux indentat		print ("Fifi")
else:	Attention aux deux-po		else:
i3	elif (sinon mais si) et else (sinon) sont optionnels		
13			print ("Loulou")
		D 1.1// /	Affiche Fifi
		Boucle itérative	
	Nombre prédéterminé	d'itérations	
	i1 est une suite	d'instructions	for i in [3, 12, 1, 4]:
	Attention aux	indentations	print(i)
for element in liste:	Attention aux	deux-points:	Affiche 3 12 1 4
i 1	Liste peut être	une liste [3, 12, 1, 4]	for i in range $(3, 7)$:
		un intervalle d'entiers range(a, b)	print(i)
		un intervalle de réels np.arange(a, b, pas)	Affiche 3 4 5 6
		<pre>np.linspace(a, b, nombre)</pre>	
		Boucle conditionnelle	
	c est un booléen		
while c:	i1 est une suite d'instructions		i = 3
	Attention aux indentations		while i < 48:
i 1	Attention aux deux-points:		i = 2 * i
	Attention à modifier la condition à chaque passage		print(i)
	pour qu'elle devienne f		Affiche 6, 12, 24, 48
pour qu'ene devienne nausse			

Fonctions

1-6 f()	x, y sont les paramètres formels	$\mathbf{def} \ \mathbf{f}(\mathbf{x})$:
$\mathbf{def} \ \mathbf{f}(\mathbf{x}, \mathbf{y})$:	i1 est une suite d'instructions	y = x**2 + 1
noturn a	z est la valeur renvoyée	return 3 * y
return z	Attention aux deux-points:	Affiche f(3) renvoie 30

I.3 - Modules

	<u> </u>
from numpy import *	Importe toutes les fonctions de numpy
log(2)	Appel sans préciser la provenance
import numpy as np	Charge le module numpy.
np.log(2)	Appel en précisant le module d'appartenance.

I.4 - Numpy - Calculs numériques

Module pour effectuer des calculs numériques : import numpy as np

Constantes

np.e	Constante e	Vaut environ 2.718
np.pi	Constante π	Vaut environ 3.14
	Fonctions	
np.exp	Exponentielle	np.exp(1) renvoie environ 2.718
np.log	Logarithme népérien	np.log(1) renvoie 0
np.sqrt	Racine carré	np.sqrt(4) renvoie 2.0
np.abs	Valeur absolue	np.abs(-3) renvoie 3
np.floor	Partie entière	np.floor(3.14) renvoie 3.0
	Création de tableaux / ma	trices
np.array	Crée un tableau à partir de la liste des éléments	np.array([[1, 2, 3], [4, 5, 6]]) définit $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$
np.zeros((n, p))	Crée une matrice à n lignes et p colonnes ne contenant que des zéros	np.zeros((2, 3)) définit $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

np.ones((n, p))	Crée une matrice à n lignes et p colonnes ne contenant que des 1	np.ones((2, 3)) définit $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	
np.eye(n)	Crée la matrice identité d'ordre n	np.eye(3) définit $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	
np.arange(a, b, pas)	Crée un vecteur ligne d'éléments de a (inclus) à b (exclus) espacés de pas	np.arange(1.2, 2, 0.2) définit (1.2 1.4 1.6 1.8)	
np.linspace(a, b, nbre)	Crée un vecteur ligne d'éléments régulièrement espacés de a (inclus) à b (inclus) contenant nbre éléments	np.linspace(1.2, 2, 5) définit (1.2 1.4 1.6 1.8 2.)	
	Manipulation de matrices		
t[i][j]	Accède à la ligne i colonnes j de t Numérotation à partir de 0	t = np.array([[1, 2, 3], [4, 5, 6]]) t[1][2] renvoie 6	
np.shape	Renvoie le nombre de lignes et le nombre de colonnes	<pre>t = np.array([[1, 2, 3], [4, 5, 6]]) a, b = np.shape(t) a contient 2, b contient 3</pre>	
np.reshape	Aplatit puis redimensionne un tableau	a = np.array([[1, 2, 3], [4, 5, 6]]) np.reshape(a, (3, 2)) renvoie $\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$	
	Opérations sur les matrices		
		<pre>a = np.array([[1, 2], [3, 4]]) b = np.array([[-1, 1], [0, 1]])</pre>	
+	Addition élément par élément	a + b renvoie $\begin{pmatrix} 0 & 3 \\ 3 & 5 \end{pmatrix}$	
-	Soustraction élément par élément	a - b renvoie $\begin{pmatrix} 2 & 1 \\ 3 & 3 \end{pmatrix}$	
*	Multiplication d'une matrice par un réel	$2 * a renvoie \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix}$	
np.dot	Produit matriciel	np.dot(a, b) renvoie $\begin{pmatrix} -1 & 3 \\ -3 & 7 \end{pmatrix}$	
Les fonctions np.exp, np.sqrt, s'effectuent élément par élément			

Stastitiques

*, /, **	ATTENTION! Opérations élément par élément	$b**a renvoie \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$
		t = np.array([[1, 2, 3], [4, 5, 6]])
		np.sum(t) renvoie 21
nn gum	Somme des éléments d'un tableau	np.sum(t, 0) renvoie (5 7 9)
np.sum	Somme des éléments d'un tableau	np.sum(t, 1) renvoie $\binom{6}{15}$
		np.min(t) renvoie 1
np.min	Minimum des éléments d'un tableau	$np.min(t, 0)$ renvoie $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$
пр.штп	Minimum des ciements d'un tableau	np.min(t, 1) renvoie $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$
		np.max(t) renvoie 6
np.max	Maximum des éléments d'un tableau	$np.max(t, 0) renvoie \begin{pmatrix} 4 & 5 & 6 \end{pmatrix}$
пр.шах	waaman des ciements d'un tapicau	$np.max(t, 1) renvoie \binom{3}{6}$
		np.mean(t) renvoie 3.5
np.mean	Moyenne des éléments d'un tableau	np.mean(t, 0) renvoie $\begin{pmatrix} 2.5 & 3.5 & 4.5 \end{pmatrix}$
np.moun		np.mean(t, 1) renvoie $\binom{2}{5}$
		np.median(t) renvoie 3.5
np.median	Médiane des éléments d'un tableau	np.median(t, 0) renvoie $\begin{pmatrix} 2.5 & 3.5 & 4.5 \end{pmatrix}$
	Nicolano des cientonos d'un vasicad	np.median(t, 1) renvoie $\binom{2}{5}$
		np.var(t) renvoie 2.916
np.var	Variance des éléments d'un tableau	np.var(t, 0) renvoie $(2.25 \ 2.25 \ 2.25)$
•		np.var(t, 1) renvoie $\begin{pmatrix} 0.6 \dots \\ 0.6 \dots \end{pmatrix}$
		np.std(t) renvoie 1.707
np.std	Écart-type des éléments d'un tableau	np.std(t, 0) renvoie $\begin{pmatrix} 1.5 & 1.5 \\ \end{pmatrix}$
r ·		np.std(t, 1) renvoie $\begin{pmatrix} 0.816\\0.816 \end{pmatrix}$
		np.cumsum(t) renvoie (1 3 6 10 15 21)
	Somme cumulée des éléments	np.cumsum(t. 0) renvoie $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$
np.cumsum	Aplatit le tableau si nécessaire	$\begin{array}{c c} 1 & \text{in problem (0, 0) follows (0, 0)} \\ \hline & 5 & 7 & 9 \end{array}$
	r	np.cumsum(t, 0) renvoie $\begin{pmatrix} 1 & 2 & 3 \\ 5 & 7 & 9 \end{pmatrix}$ np.cumsum(t, 1) renvoie $\begin{pmatrix} 1 & 3 & 6 \\ 4 & 9 & 15 \end{pmatrix}$
		$\begin{pmatrix} 4 & 9 & 10 \end{pmatrix}$

${\bf I.5}$ - Pyplot - ${\bf Graphiques}$

Module pour effectuer des rendus graphiques : import matplotlib.pyplot as plt

Tracé		
	X: liste des abscisses	
<pre>plt.plot(X, Y)</pre>	Y : liste des ordonnées	
	Crée le graphique contenant le tracé de la suite de points	
plt.show()	Montre le graphique	
	Compléments	
<pre>plt.xlim(xmin, xmax)</pre>	xmin: abscisse minimale	
pro.xrim(xmin, xmax)	xmax : abscisse maximale	
<pre>plt.ylim(ymin, ymax)</pre>	ymin : ordonnée minimale	
pit.yiim(ymin, ymax)	ymax : ordonnée maximale	
<pre>plt.axis([xmin, xmax, ymin, ymax])</pre>	Fixe les abscisses / ordonnées minimales / maximales	
plt.grid(True)	Affiche le quadrillage	
<pre>plt.grid(False)</pre>	Masque le quadrillage	
plt.legend()	Affiche la légende.	
Graphiques particuliers		
plt.hist(x)	Crée un histogramme avec les valeurs de x	
	Choix des critères automatique ou à préciser avec une option	
plt.bar(x, hauteur)	x liste des abscisses des barres	
height liste des hauteurs des barres		
plt.boxplot	Boîtes à moustaches	

I.6 - Random - Pseudo-alea

Module pour utiliser des nombres pseudo-aléatoires : import numpy.random as rd

Loi uniforme	
rd.rand(n, p)	Renvoie un tableau à n lignes et p colonnes
	Chaque élément est la réalisation d'une variable aléatoire
	de loi uniforme sur [0, 1]

I.7 - Pandas - Panel data - Gestion des données

Module pour manipuler des données : import pandas as pd

	Statistiques
pd.mean	Moyenne des éléments du tableau par catégorie
pd.std	Écart-type des éléments du tableau par catégorie