CS473-Algorithms I

Lecture 5

Quicksort

Quicksort

- Proposed by C.A.R. Hoare in 1962.
- Divide-and-conquer algorithm.
- Sorts "in place" (like insertion sort, but not like merge sort).
- Very practical (with tuning).

Quicksort

1. Divide: Partition the array into 2 subarrays such that elements in the lower part ≤ elements in the higher part

- 2. Conquer: Recursively sort 2 subarrays
- 3. Combine: Trivial (because in-place)

• Key: Linear-time ($\Theta(n)$) partitioning algorithm

Two partitioning algorithms

1. Hoare's algorithm: Partitions around the first element of subarray (pivot = x = A[p])

2. Lomuto's algorithm: Partitions around the last element of subarray (pivot = x = A[r])


```
H-PARTITION (A, p, r)
                                         Running time
   pivot \leftarrow A[p]
   i \leftarrow p - 1
                                        is O(n)
   j \leftarrow r + 1
    while true do
        repeat j \leftarrow j - 1 until A[j] \le pivot
        repeat i \leftarrow i + 1 until A[i] \ge pivot
       if i < j then
           exchange A[i] \leftrightarrow A[j]
        else
           return j
                                         ?
            \leq x
                                                                \geq x
```

QUICKSORT
$$(A, p, r)$$

if $p < r$ then
 $q \leftarrow \text{H-PARTITION}(A, p, r)$
QUICKSORT (A, p, q)
QUICKSORT $(A, q + 1, r)$

Initial invocation: QUICKSORT(A, 1, n)

$$\begin{array}{c|cccc}
 & \leq x \\
 & p \\
\end{array}$$

- Select a pivot element: pivot=A[p] from A[p...r]
- Grows two regions

```
A[p...i] from left to right
```

A[j...r] from right to left

such that

```
every element in A[p...i] is \leq pivot
```

every element in A[j...r] is $\geq pivot$

• The two regions A[p...i] and A[j...r] grow until $A[i] \ge pivot \ge A[j]$

- Assuming these inequalities are strict
 - A[i] is too large to belong to the left region
 - A[j] is too small to belong to the right region
 - exchange $A[i] \leftrightarrow A[j]$ for future growing in the next iteration

- It is important that
 - A[p] is chosen as the pivot element
 - If A[r] is used as pivot then
 - may yield a trivial split (termination i = j = r)
 - occurs when A[p...r-1] < pivot = A[r]
 - then quicksort may <u>loop forever</u> since q = r

Hoare's Algorithm: Example 1 (pivot = 5)

Hoare's Algorithm: Example 1 (pivot = 5)

Termination: i = 6; j = 5, i.e., i = j + 1

Hoare's Algorithm: Example 2 (pivot = 5)

Hoare's Algorithm: Example 2 (pivot = 5)

Termination: i = j = 5

- (a) Indices i & j never reference A outside the interval A[p...r]
- (b) Split is always non-trivial; i.e., $j \neq r$ at termination
- (c) Every element in $A[p...j] \le \text{every element in } A[j+1...r]$ at termination

Notation used for proof:

- k = # of times while-loop iterates until termination
- $i_l \& j_l$ = values of i & j indices at the end of iteration $1 \le l \le k$
- Note: we always have $i_1 = p \& p \le j_1 \le r$

Lemma: Either $i_k = j_k$ or $i_k = j_k + 1$ at termination

k = 1: occurs when A[p+1...r] > $pivot \implies i_1 = j_1 = p$

> k > 1: we have $i_{k-1} < j_{k-1}$ $(A[i_{k-1}] \le pivot \& A[j_{k-1}] \ge pivot \text{ due to exchange})$

• case a: $i_{k-1} < j_k < j_{k-1}$

$$x = pivot$$

- case a-1: $A[j_k] = pivot \Rightarrow i_k = j_k$

• case b:
$$i_{k-1} = j_k < j_{k-1} \Rightarrow i_k = j_k + 1$$

$$x = pivot$$

- (a) Indices i & j never reference A outside the interval A[p...r]
- (b) Split is always non-trivial; i.e., $j \neq r$ at termination

Proof of (a) & (b)

- k = 1: trivial since $i_1 = j_1 = p$
- k > 1: $p \le j_k < r \implies p < i_k \le r$ due to the lemma

(c) Every element in $A[p...j] \le \text{every element in } A[j+1...r]$ at termination

Proof of (c): by induction on *l* (while-loop iteration sequence)

Basis: true for l = 1

- Hypothesis: $L_{l-1} = A[p... i_{l-1}] \le pivot \le A[j_{l-1}...r] = R_{l-1}$
- Show that

$$- L_l = A[p \dots i_l] \le pivot \le A[j_l \dots r] = R_l \text{ if } l < k$$

- $L_l = A[p \dots j_l] \le pivot \le A[j_l + 1 \dots r] = R_l \text{ if } l = k$
- Case: l < k (partition does not terminate at iteration l)

Lomuto's Partitioning Algorithm

```
L-PARTITION (A, p, r)

pivot \leftarrow A[r]

i \leftarrow p - 1

for j \leftarrow p to r - 1 do

if A[j] \leq pivot then

i \leftarrow i + 1

exchange A[i] \leftrightarrow A[j]

exchange A[i + 1] \leftrightarrow A[r]

return i + 1
```

Running time is O(n)

QUICKSORT
$$(A, p, r)$$

if $p < r$ then
 $q \leftarrow \text{L-PARTITION}(A, p, r)$
QUICKSORT $(A, p, q - 1)$
QUICKSORT $(A, q + 1, r)$

Initial invocation: QUICKSORT(A, 1, n)

Lomuto's Algorithm: Example (pivot = 4)

Lomuto's Algorithm: Example (pivot = 4)

Example: pivot = 4

Comparison of Hoare's & Lomuto's Algorithms

Notation:
$$n = r - p + 1$$
 & $pivot = A[p]$ (Hoare)
& $pivot = A[r]$ (Lomuto)

- \triangleright # of element exchanges: e(n)
 - Hoare: $0 \le e(n) \le \left| \frac{n}{2} \right|$
 - Best: k = 1 with $\bar{i}_1 = \bar{j}_1 = p$ (i.e., A[p+1...r] > pivot)
 - Worst: A[$p+1...p+\left\lfloor \frac{n}{2}\right\rfloor -1$] $\geq pivot \geq$ A[$p+\left\lceil \frac{n}{2}\right\rceil ...r$]
 - Lomuto: $1 \le e(n) \le n$
 - Best: A[p...r-1] > pivot
 - Worst: A[p...r-1] $\leq pivot$

Comparison of Hoare's & Lomuto's Algorithms

- \succ # of element comparisons: $c_e(n)$
 - Hoare: $n + 1 \le c_e(n) \le n + 2$
 - Best: $i_k = j_k$
 - Worst: $i_k = j_k + 1$
 - Lomuto: $c_{\rho}(n) = n 1$
- \succ # of index comparisons: $c_i(n)$
 - Hoare: $1 \le c_i(n) \le \left\lfloor \frac{n}{2} \right\rfloor + 1$ $(c_i(n) = e(n) + 1)$
 - Lomuto: $c_i(n) = n 1$

Comparison of Hoare's & Lomuto's Algorithms

- \triangleright # of index increment/decrement operations: a(n)
 - Hoare: $n + 1 \le a(n) \le n + 2$ $(a(n) = c_e(n))$
 - Lomuto: $n \le a(n) \le 2n 1$ (a(n) = e(n) + (n 1))
- Hoare's algorithm is in general faster
- Hoare behaves better when pivot is repeated in A[p...r]
 - Hoare: Evenly distributes them between left & right regions
 - Lomuto: Puts all of them to the left region