

> كلية العلوم الدقيقة والتطبيقية Faculté des Sciences Exactes et Appliquées قسم الإعلام الألي Département d'Informatique

Gestion de la consommation d'énergie dans les Clouds Computing

Présenté par : YAGOUBI DIAMEL EDINE

18 Juin 2014

Encadreur : Mr BELALEM Ghalem Co-Encadreur : Mlle DAD Djouhra

Sommaire

- Introduction
- Conception et Implémentation
- Résultats
- Conclusion et Perspectives

Contexte

Le Cloud Computing

Les Data Centers

Le poids des Data Centers dans la consommation électrique

- 1,5% de la consommation électrique mondiale d'environ 8000 MWh:
- 2% des émissions mondiales de CO²;
- Certains Data Centers consomment plus qu'une ville de 100.000 habitants;
- La puissance électrique des cloud data centers dans le monde correspond à la capacité de production de 30 centrales nucléaires;

Pourquoi les data centers consomment autant d'énergie?

- les serveurs de stockage ne peuvent pratiquement jamais être arrêtés.
- Le bon fonctionnement des serveurs est assuré par des systèmes de climatisation très énergivores.

Consommations d'énergie au niveau des serveur

Les serveurs consomment environ 40% de la consommation d'énergie totale des Data Centres.

Un serveur qui n'utilise que 20% de sa capacité de calcul utilise déjà 70% de sa puissance électrique maximale.

L'énergie utilisée pour faire fonctionner ces serveurs non utilisés pourraient compenser les émissions de CO^2 de 6,5 millions de véhicules [1].

Objectif

comment réduire la consommation d'énergie des serveurs?

Hôte source

Hôte destination

La minimisation des migrations des machines virtuelles

Les étapes de migration

Quelle VM doit-on choisir pour faire une migration?

Quel est le nouvel emplacement de la VM?

Sélection des VMs

Placement des VMs

L'implémentation d'algorithmes dans le simulateur cloudsim

Diagramme de Classes de CloudSim

Diagramme de Classes de CloudSim

Résultats

Paramètres	Valeurs
Nombre de Data Center	1
Nombre de hôtes	100
Nombre de processeurs de chaque hôte	1
Vitesse de processeur de chaque hôte (MIPS)	1000,2000 ou 3000
RAM du hôte	8GB
Stockage du hôte	1TB
Nombre de VMs	29 à 290
Nombre de processeur de chaque VM	1
Vitesse de processeur de chaque VM (MIPS)	250, 500, 750 ou 1000
RAM de chaque VM	128MB
Stockage du VM	1GB

Consommation d'énergie

Nombre de VMs	29	58	87	116	145	174	203	232	261	290
Approche sans migration	5.21	10.83	16.61	22.45	27.57	33.69	38.65	44.15	50.22	60.55
Single Threshold	4.69	9.30	13.78	18.39	22.80	27.78	33.21	38.14	43.97	49.98
Fixed Double Threshold	3.90	7.86	11.73	15.76	19.53	23.66	27.62	32.06	36.38	40.93
Dynamic Double Threshold	3.67	7.19	10.56	13.89	17.62	20.63	24.61	27.97	31.91	36.26

Nom de l'approche	Gain
Approche sans migration et Dynamic	36,21%
Double Threshold	
Single Threshold et Dynamic Double	24,81%
Threshold	
Fixed Double Threshold et Dynamic	10,61%
Double Threshold	

Consommation d'énergie

Nombre de migrations

Nombre de VMs	29	58	87	116	145	174	203	232	261	290
Single Threshold	4589	10885	16807	22970	29323	35502	41896	48240	54692	61072
Fixed Double Threshold	2060	5638	10049	15038	18630	25452	29861	34003	40886	44736
Dynamic Double Threshold	415	1446	1976	2674	3715	4363	5291	6714	7448	9346

Nom de l'approche	Gain
Single Threshold et Dynamic Double Threshold	87,38%
Fixed Double Threshold et Dynamic Double Threshold	80,31%

Nombre de migrations

Violation de SLA

Nombre de VMs	29	58	87	116	145	174	203	232	261	290
Single Threshold	4786	12420	20010	27810	36461	44241	52839	61543	70830	79590
Fixed Double Threshold	3023	8827	16125	23449	30604	40439	48878	55547	67278	75000
Dynamic Double Threshold	993	3840	6402	8112	12821	15182	17325	22882	26316	29488

Nom de l'approche	Gain
Single Threshold et Dynamic Double	67,35%
Threshold	
Fixed Double Threshold et Dynamic	61,48%
Double Threshold	

Violation de SLA

Conclusion

Nous avons proposé deux approches qui permettent :

- La minimisation de la consommation d'énergie par rapport aux approches classiques.
- La réduction du nombre de migrations des VMs
- La réduction du nombre de violations de SLA

Les résultats obtenus sont très encourageant qui dénotent la puissance de nos propositions.

Perspectives

- En plus de l'utilisation du processeur, prendre en considération plusieurs ressources au niveau de la phase de migration tels que : la capacité de la RAM, la capacité de stockage et la bande passante.
- Ajouter un seuil de température afin de limiter la chaleur dégagée des machines physiques et de minimiser l'énergie consommée des serveurs et des systèmes de refroidissement.
- Implémenter les deux approches proposées dans un environnement de Cloud réel.
- Étudier l'influence des systèmes de climatisation des data center sur leur efficacités et leur performances.

Merci de votre attention!

Powering the cloud, groupe ABB, http://www.abb.com/product/ap/db0003db004052/e950c90f13518ffbc125788f0030bda0.aspx consilté le 16/06/2014.

