Logistic Regression

Data Science Dojo

Classification

Two-class (binary) classification problem

```
y: {0,1} 0: negative class
```

1: positive class

- Example: Yes/No; Benign/Malignant; Click/No click
- Multi-class classification problem y:{0,1,2,.....n}
 - Example: Grades (A, B, C); color (red, blue, green)

Two Class Classification

Classification: y = 0 or y = 1

Decision rules: $h_{\theta}(x) \ge 0.5$; y = 1 $h_{\theta}(x) < 0.5$; y = 0

If we use linear regression on classification problem, we may observe

- Shift the decision rule line
- $h_{\theta}(x)$ can be > 1 or < 0

Logistic Regression

More reasonable function use for two-class classification problem.

Sigmoid Function

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Hypothesis interpretation

Estimated probability that y=1 on x input

$$P(y=1|x;\theta_i)$$

Because probabilities should sum to 1

$$P(y=0|x; \theta_{j}) = 1- P(y=1|x; \theta_{j})$$

Sigmoid Function

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$y = 1 \text{ if } h_{\theta}(x) \geqslant 0.5$$

y= 0 if
$$h_{\theta}(x) < 0.5$$

0 asymptote for
$$x \rightarrow -\infty$$

1 asymptote for
$$x \rightarrow \infty$$

Average cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{if } y = 1 \\ -log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{if } y = 1 \\ -log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

If we predict $h_{\theta}(x) = 1$ and y = 1

Cost function → zero

If we predict $h_{\theta}(x) = 0$ and y = 1

Cost function \longrightarrow - ∞

$$cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{if } y = 1 \\ -log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

If we predict $h_{\theta}(x) = 0$ and y = 0

Cost function → zero

If we predict $h_{\theta}(x) = 1$ and y = 0

Cost function → ∞

Average cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$(I_{\theta}(x)) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$
if $y = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$

$$cost(h_{\theta}(x), y) = egin{cases} -log(h_{\theta}(x)) & ext{if } y = 1 \ -log(1 - h_{\theta}(x)) & ext{if } y = 0 \end{cases}$$

Simplified cost function, given we only have either y=0 or y=1

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Cost Function: Recap

Hypothesis:
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Cost Function:
$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Parameters: θ_i

Goal:
$$\underset{\theta}{argmin} J(\theta)$$

Gradient Descent Algorithm

- We want to learn the values of θ that minimize $J(\theta)$
- Use a search algorithm that starts with an initial guess for θ and then changes θ to make $J(\theta)$ smaller
- Gradient descent starts with some initial θ and then performs an update for each value θ_i

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta).$$

Minimizing The Cost Function $J(\theta)$

Repeat until converged

Decision Boundary: Linear

If
$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

And
$$\theta = \begin{bmatrix} -3\\1\\1 \end{bmatrix}$$

Prediction y = 1 whenever

$$\begin{array}{ccc} \theta^T x & \geq & 0 \\ \Leftrightarrow & -3 + x_1 + x_2 & \geq & 0 \\ \Leftrightarrow & x_1 + x_2 & \geq & 3 \end{array}$$

Decision Boundary: Non-Linear

If
$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

And
$$\theta = \begin{bmatrix} -2 & 0 & 0 & 1 & 1 \end{bmatrix}^T$$

Prediction y = 1 whenever

$$x_1^2 + x_2^2 \ge 2$$

Example: Handwritten Digit Recognition

QUESTIONS

