ОБ АСИМПТОТИЧЕСКИХ ОЦЕНКАХ ДЛЯ БИГРАММНЫХ ЯЗЫКОВ

А. А. Петюшко (Москва)

Пусть $A(|A| < \infty)$ — конечный алфавит.

Определение 1. *Биграммой* в алфавите A называется двухбуквенное слово $ab \in A^*, a, b \in A \ (ab \neq ba \ \text{при} \ a \neq b).$

Определение 2. Назовем кратностью β в слове α и обозначим через $\theta_{\beta}(\alpha)$, где $\beta \in A^*, \alpha \in A^*$, причем β — непустое слово, отображение $A^* \to N \cup \{0\}$, которое определяется как количество различных разложений слова α в виде $\alpha = \alpha' \beta \alpha''$ (α' и α'' могут быть пустыми). При длине слова α , меньшем чем длина слова β , значение $\theta_{\beta}(\alpha)$ положим равным 0.

С учетом введенных определений, по каждому слову $\alpha \in A^*$ можно построить квадратную матрицу биграмм $(\Theta(\alpha))_{i,j=1}^{|A|}$ размера $|A| \times |A|$ такую, что на месте (i,j) матрицы будет стоять значение $\theta_{a_i a_j}(\alpha)$ (при условии, что все буквы алфавита $A = \{a_1, a_2, ..., a_{|A|}\}$ пронумерованы и нумерация зафиксирована).

Обозначим через Ξ множество квадратных матриц размера $|A| \times |A|$, каждый элемент которых является неотрицательным целым числом. Т.о., $\forall \alpha \in A^*$ имеем $\Theta(\alpha) \in \Xi$. Также, здесь и далее через $\Theta(\alpha)$ будем обозначать матрицу биграмм, построенную по конкретному слову α , а через Θ - просто некоторую матрицу из Ξ , при этом будем считать, что на месте (i,j) матрицы Θ будет стоять значение $\theta_{a_ia_i}$.

Определение 3. Назовем биграммным языком $L(\Theta)$, порожденным матрицей $\Theta \in \Xi$, множество всех слов, имеющих одну и ту же матрицу биграмм Θ , т.е. $L(\Theta) = \{\beta \in A^* | \Theta(\beta) = \Theta\}$.

Построим по матрице $\Theta(\alpha)$ (или по произвольной матрице $\Theta \in \Xi$) ориентированный граф $G_{\Theta(\alpha)}$ на плоскости. Вершинами у этого графа будут все буквы из алфавита A, при этом ребра будут соответствовать биграммам с учетом их кратностей, т.е. кратность $\theta_{ab}(\alpha)$ будет порождать $\theta_{ab}(\alpha)$ ориентированных ребер $a \to b$. Аналогично, кратность $\theta_{cc}(\alpha)$ будет порождать $\theta_{cc}(\alpha)$ петель $c \to c$.

Определение 4. Матрицей Кирхгофа $ML(\Theta)$, построенной по матрице биграмм $\Theta \in \Xi$, называется квадратная матрица размером $|A| \times |A|$, т. ч. на месте (i,j) стоит элемент

$$l_{ij} = \left\{ \begin{array}{ll} -\theta_{a_i a_j}, & i \neq j; \\ \sum_{a_j \neq a_i} \theta_{a_i a_j}, & i = j. \end{array} \right.$$

Лемма. Если матрица биграмм $\Theta \in \Xi$ такова, что соответствующий ориентированный граф G_{Θ} является эйлеровым [1], то все главные миноры $D^{(i,i)}$, полученные вычеркиванием из $ML(\Theta)$ ій строки и і-го столбца, равны между собой при различных і (и равны D).

На основе работы [2] можно доказать, что верна следующая

Теорема 1. Пусть задана матрица биграмм Θ , которой соответствует эйлеров или почти эйлеров граф G_{Θ} , причем для $\forall i\exists j\neq i,\ m.u.\ \theta_{a_ia_j}>0$ или $\theta_{a_ja_i}>0$. Тогда:

1. $Ecnu \; \exists i', \; m.u. \; \sum_{a_i \in A} \theta_{a_i a_{i'}} > \sum_{a_i \in A} \theta_{a_{i'} a_i}, \; mo$

$$N_{\Theta} = \frac{\prod_{a_i \in A} (\sum_{a_j \in A} \theta_{a_i a_j} - 1 + \delta_{i'i})!}{\prod_{a_i, a_i \in A} \theta_{a_i a_j}!} D^{(i'i')};$$

 $ho de \ \delta_{i'i} \ -- \ cuмвол \ Kponekepa.$

2. Если $\forall i,j \sum_{a_i \in A} \theta_{a_i a_j} = \sum_{a_i \in A} \theta_{a_j a_i}, mo$

$$N_{\Theta} = \left(\sum_{a_i, a_j \in A} \theta_{a_i a_j}\right) \frac{\prod_{a_i \in A} (\sum_{a_j \in A} \theta_{a_i a_j} - 1)!}{\prod_{a_i, a_j \in A} \theta_{a_i a_j}!} D.$$

Определение 5. Назовем *частотным языком* на биграммах с кратностями, заданным матрицей биграмм $\Theta \in \Xi$, следующий язык при $k \in N$:

$$F_{\Theta} = \bigcup_{k=1}^{\infty} L(k\Theta)$$

Определение 6. Назовем две ненулевые матрицы Θ_1 и Θ_2 из Ξ $\kappa pamными$, если существует действительный коэффициент $c \in R, c \neq 0$, такой что верно $\Theta_1 = c\Theta_2$. В противном случае ненулевые матрицы назовем некратными.

Теорема 2. Пусть матрица биграмм Θ задает эйлеров граф G_{Θ} . Тогда:

- 1. Если существует такое разложение Θ в сумму двух ненулевых некратных матриц $\Theta = \Theta_1 + \Theta_2$ такое, что обе матрицы Θ_1 и Θ_2 задают эйлеровы графы G_{Θ_1} и G_{Θ_2} , то язык F_{Θ} нерегулярен.
 - 2. В противном случае язык F_{Θ} регулярен.

Определение 7. Матрица биграмм Θ называется *положительной*, если все элементы этой матрицы — натуральные целые числа.

Теорема 3. Пусть задана положительная матрица биграмм Θ с эйлеровым графом G_{Θ} . Тогда при $k \to \infty$ мощность языка $L(k\Theta)$

$$|L(k\Theta)| \cong c_2 * \frac{c_1^k}{k^{n(n-1)/2}},$$

 $cde\ c_1=c_1(\Theta)>1, c_2=c_2(\Theta)$ — некоторые константы, зависящие только от изначальной матрицы биграмм Θ , а n=|A| — мощность алфавита.

Обозначим через Ξ_k множество матриц размера $|A| \times |A|$, каждый элемент которых представляет собой неотрицательное целое число, не превосходящее k > 0. Также будем считать, что |A| = n > 1.

Через N_f^k обозначим количество матриц биграмм $\Theta \in \Xi_k$, задающих конечные (непустые) языки $F_{\Theta}; N_i^k$ — количество матриц биграмм $\Theta \in \Xi_k$, задающих счетные языки F_Θ ; N^k_{reg} — количество матриц биграмм $\Theta \in \Xi_k$, задающих счетные регулярные языки F_{Θ} ; N^k_{nreg} — количество матриц биграмм $\Theta \in \Xi_k$, задающих счетные нерегулярные языки F_{Θ} ; N^k — общее количество матриц биграмм

Теорема 4. С учетом введенных выше обозначений верны следующие соотношения:

1)
$$\exists k_0, \ m.u. \ \forall k > k_0 \ \frac{1}{n(n-1)} < \frac{N_i^k}{N_f^k} < 1;$$

$$2) \lim_{k \to \infty} \frac{N_i^k}{N^k} = 0,$$

3)
$$\lim_{k\to\infty} \frac{N_{reg}^k}{N_{nreg}^k} = 0$$

 $1 + \frac{N_{k}^{k}}{N^{k}} = 0;$ $1 + \frac{N_{reg}^{k}}{N_{nreg}^{k}} = 0.$ Следствие. Если обозначить за N_{q}^{k} количество матриц биграмм $\Theta \in \Xi_k$, задающих непустые языки F_{Θ} , то $\lim_{k \to \infty} \frac{N_q^n}{N^k} = 0$.

Список литературы

- 1. Ope О. Теория графов. M.: Наука, 1980.
- 2. Hutchinson J. P., Wilf H. S. On Eulerian circuits and words with prescribed adjacency patterns // Journal of Combinatorial Theory. — 1975. — Ser. A, V. 18. — P. 80–87.