TRƯỜNG ĐẠI HỌC GIAO THÔNG VẬN TẢI THÀNH PHỐ HỒ CHÍ MINH KHOA CƠ BẢN – BỘ MÔN TOÁN

BÀI GIẢNG ĐẠI SỐ TUYẾN TÍNH

CHƯƠNG III. GIÁ TRỊ RIÊNG, VECTƠ RIÊNG VÀ CHÉO HÓA MA TRẬN

§2. Chéo hóa ma trận

ThS. Đinh Tiến Dũng

NỘI DUNG

- 1. Bài toán chéo hóa ma trận.
- 2. Úng dụng chéo hóa tính lũy thừa ma trận.
- 3. Chéo hóa ma trận đối xứng bởi ma trận trực giao.

§2. Chéo hóa ma trận

I. CHÉO HÓA MA TRẬN VUÔNG

1) Định nghĩa

Ma trận vuông A gọi là chéo hóa được nếu tồn tại ma trận khả nghịch P sao cho $P^{-1}AP = D$ trong đó D là ma trận chéo. Khi đó P gọi là ma trận làm chéo hoá ma trận A.

* Chú ý: Ma trận chéo là ma trận có dạng

$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_k \end{pmatrix}$$

2) Định lý

Ma trận vuông A cấp n chéo hóa được khi và chỉ khi tồn tại n vectơ riêng độc lập tuyến tính.

Hệ quả

Nếu ma trận vuông A cấp n có đúng **n** trị riêng phân biệt thì A chéo hóa được.

II. THUẬT TOÁN CHÉO HÓA MA TRẬN VUÔNG A

(Tức là tìm ra ma trận P sao cho P^{-1} .A.P = D-ma trận chéo)

- B1. Giải phương trình đặc trưng $det(A \lambda I_n) = 0$ tìm trị riêng của A. Xác định bội đại số của từng trị riêng.
- **B2**. Tìm không gian riêng ứng với từng trị riêng. Suy ra cơ sở của mỗi không gian con riêng.
- B3. Nếu tìm được n vectơ riêng đltt: $u_1, u_2, ..., u_n$ là các vectơ lấy ra từ cơ sở của các không gian con riêng lần lượt ứng với các trị riêng $\lambda_1, \lambda_2, ..., \lambda_n$. Khi đó ma trận P làm chéo hoá ma trận A là:

$$P = (\begin{bmatrix} u_1 \end{bmatrix} \begin{bmatrix} u_2 \end{bmatrix} \dots \begin{bmatrix} u_n \end{bmatrix})$$
và suy ra ma trận chéo $D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$

Ngược lại, nếu tồn tại không gian con riêng nào đó có số chiều nhỏ hơn bội đại số của trị riêng tương ứng thì A không chéo hóa được.

***VD1:** Chéo hóa ma trận
$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
 (nếu được).

Giải:

B1. Tìm tất cả các trị riêng của A: Giải pt đặc trưng

$$\det(A - \lambda I_3) = 0 \Leftrightarrow -(\lambda - 1)(\lambda + 2)^2 = 0 \Leftrightarrow \begin{bmatrix} \lambda_1 = -2, BDS = 2 \\ \lambda_2 = 1, BDS = 1 \end{bmatrix}$$
B2. Tìm 3 vécto riêng đitt của A

- Với $\lambda_1 = -2$: Giải hệ phương trình tuyến tính thuần nhất

$$(\mathbf{A} - \lambda_1 \mathbf{I}_3) \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_3 \end{pmatrix} = \mathbf{0} \Leftrightarrow \begin{pmatrix} \mathbf{3} & \mathbf{3} & \mathbf{3} \\ -\mathbf{3} & -\mathbf{3} & -\mathbf{3} \\ \mathbf{3} & \mathbf{3} & \mathbf{3} \end{pmatrix} \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_3 \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} \frac{3x_1 + 3x_2 + 3x_3 = 0}{-3x_1 - 3x_2 - 3x_3 = 0} & \Leftrightarrow x_1 + x_2 + x_3 = 0 \Leftrightarrow \begin{cases} x_1 = -a - b \\ x_2 = a \end{cases} & (a, b \in \mathbb{R}) \\ x_3 = b \end{cases}$$

Không gian con riêng ứng với $\lambda_1 = -2 l a$:

$$E_{\lambda_1} = \{(-a - b; a; b)/a, b \in R\}$$

$$= \{a(-1; 1; 0) + b(-1; 0; 1)/a, b \in R\}$$

$$= span\{u_1 = (-1; 1; 0), u_2 = (-1; 0; 1)\}.$$

 $D\tilde{e}$ thấy: $\{u_1, u_2\}$ đltt nên nó là một cơ sở của E_{λ_1} .

• Với $\lambda_2 = 1$: Giải hệ phương trình tuyến tính thuần nhất

$$(A - \lambda_{2}I_{3}) \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = 0 \Leftrightarrow \begin{pmatrix} 0 & 3 & 3 \\ -3 & -6 & -3 \\ 3 & 3 & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} 0x_{1} + 3x_{2} + 3x_{3} = 0 \\ -3x_{1} - 6x_{2} - 3x_{3} = 0 \Leftrightarrow \end{cases} \begin{cases} x_{1} = \alpha \\ x_{2} = -\alpha & (\alpha \in R). \\ x_{3} = \alpha \end{cases}$$

$$\Rightarrow E_{\lambda_{2}} = \{\alpha(1; -1; 1) / \alpha \in R\} = span \begin{cases} u_{3} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \}.$$

$$D\tilde{e} \ th \hat{a}y \{u_{3}\} \ \tilde{d} \ tt \ n \hat{e}n \ n \hat{o} \ l \hat{a} \ m \hat{o}t \ co \ s \hat{o} \ c \hat{u} \vec{a} \ E_{\lambda_{2}}.$$

B3. Thiết lập ma trận P và D

$$P = (\begin{bmatrix} u_1 \end{bmatrix} \begin{bmatrix} u_2 \end{bmatrix} \begin{bmatrix} u_3 \end{bmatrix}) = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix};$$

$$D = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Chú ý: các cột của ma trận P có thể đổi chổ cho nhau, miễn sao TR và VTR tương ứng nằm trên cùng một cột.

***VD2:** Chéo hóa ma trận
$$A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
 (nếu được).

Giải:

B1. Tìm tất cả các trị riêng của A: Giải pt đặc trưng

$$det(A - \lambda I_3) = \mathbf{0} \Leftrightarrow -(\lambda + 2)^2(\lambda - 1) = \mathbf{0} \Leftrightarrow \begin{bmatrix} \lambda_1 = -2, BDS = 2 \\ \lambda_2 = 1, BDS = 1 \end{bmatrix}$$

B2. Tim các vécto riêng đltt của A:

Không gian con riêng ứng với giá trị riêng $\lambda_1 = -2 \ l$ à:

$$E(\lambda_1) = span \left\{ u_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\} \quad \Rightarrow dim E(\lambda_1) = 1.$$
B3. Kết luân

Bội đại số của λ_1 bằng 2 nhưng $\dim E(\lambda_1)=1<2$ nên A không chéo hóa được.

BÀI TẬP NHÓM

Chéo hoá ma trận
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & 1 & 3 \end{pmatrix}$$
 nếu được!

III. ỨNG DỤNG THUẬT TOÁN CHÉO HÓA MA TRẬN

Giải sử A là ma trận vuông cấp n chéo hóa được. Khi đó

tồn tại ma trận P và ma trận chéo D =
$$\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix} \text{ thỏa:}$$

$$P^{-1}AP = D \Rightarrow A = PDP^{-1}$$

$$\Rightarrow A^{m} = (PDP^{-1}) \cdot (PDP^{-1}) \cdots (PDP^{-1}) \cdot (PDP^{-1})$$

$$\Rightarrow A^{m} = PD(P^{-1}P)DP^{-1} \cdots PD(P^{-1}P)DP^{-1}$$

$$\Rightarrow \ A^m = PD^mP^{-1} = P. \begin{pmatrix} \lambda_1^m & 0 & \cdots & 0 \\ 0 & \lambda_2^m & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n^m \end{pmatrix} . P^{-1}$$

VD. Chéo hóa ma trận

$$A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3 \end{bmatrix}$$
 và vận dụng tính A3.

Giải:

• Giải phương trình đặc trưng: $det(A - \lambda I) = 0$

$$\Leftrightarrow (\lambda - 5)^2 (\lambda + 3)^2 = 0 \Leftrightarrow \begin{bmatrix} \lambda_1 = 5 \ (B \oplus S = 2) \\ \lambda_2 = -3 \ (B \oplus S = 2) \end{bmatrix}$$

• Úng với $\lambda_1 = 5$: Tìm được không gian riêng $E(\lambda_1)$ và suy ra một cơ sở của nó là:

$$\left\{ u_1 = \begin{pmatrix} -8 \\ 4 \\ 1 \\ 0 \end{pmatrix}; u_2 = \begin{pmatrix} -16 \\ 4 \\ 0 \\ 1 \end{pmatrix} \right\}$$

• Ung với $\lambda_2 = -3$: Tìm được không gian riêng $E(\lambda_2)$ và suy ra một cơ sở của nó là:

$$\left\{u_3=\begin{pmatrix}0\\0\\1\\0\end{pmatrix};u_4=\begin{pmatrix}0\\0\\0\\1\end{pmatrix}\right\}$$

• Thiết lập ma trận P và D

ết lập ma trận P và D
$$P = (\begin{bmatrix} u_1 \end{bmatrix} \begin{bmatrix} u_2 \end{bmatrix} \begin{bmatrix} u_3 \end{bmatrix} \begin{bmatrix} u_4 \end{bmatrix}); \quad D = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 \\ \vdots & \ddots & \lambda_2 & 0 \\ \vdots & \ddots & \lambda_2 & 0 \\ \vdots & \ddots & \lambda_2 & 0 \end{bmatrix}$$

$$P = \begin{bmatrix} -8 & -16 & 0 & 0 \\ 4 & 4 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \quad D = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$

$$\Rightarrow A^3 = P.D^3.P^{-1}$$

$$= \begin{bmatrix} -8 & -16 & 0 & 0 \\ 4 & 4 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 5^3 & 0 & 0 & 0 \\ 0 & 5^3 & 0 & 0 \\ 0 & 0 & (-3)^3 & 0 \\ 0 & 0 & 0 & (-3)^3 \end{bmatrix} \cdot \begin{bmatrix} -8 & -16 & 0 & 0 \\ 4 & 4 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} 1250 & 0 & 0 & 0 \\ 0 & 125 & 0 & 0 \\ 19 & 76 & -27 & 0 \\ -19 & -38 & 0 & -27 \end{bmatrix}.$$

BÀI TẬP NHÓM 1

Cho ma trận $A = \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$. Tìm ma trận P sao cho $P^{-1}AP$ là ma trận đường chéo. Vận dụng kết quả ấy tính A^{2021} .

BÀI TẬP NHÓM 2

Cho ma trận
$$A = \begin{pmatrix} -4 & 3 & 3 \\ -6 & 5 & 3 \\ 0 & 0 & 2 \end{pmatrix}$$
. Hãy chéo hoá ma trận A. Vận dụng kết quả ấy tính A^{10} .

IV. CHÉO HÓA MA TRẬN ĐỐI XỨNG BỞI MA TRẬN TRỰC GIAO

1. Định nghĩa ma trận đối xứng thực

Ma trận vuông thực A thỏa $a_{ij} = a_{ji}$ với mọi $i = \overline{1,n}$ và $j = \overline{1,n}$ được gọi là ma trận đối xứng (tức là, nếu A = AT).

2. Định nghĩa ma trận trực giao

Ma trận vuông A được gọi là ma trận trực giao nếu $A^{-1} = A^t$.

❖ VD: Ma trận sau là ma trận trực giao:

$$P = egin{pmatrix} 1/\sqrt{2} & -1/\sqrt{18} & 2/3 \ 0 & 4/\sqrt{18} & 1/3 \ 1/\sqrt{2} & 1/\sqrt{18} & -2/3 \end{pmatrix}.$$

3. Định lý

Ma trận vuông A là ma trận trực giao nếu các cột của A tạo nên họ trực chuẩn.

VD:
$$P = \begin{pmatrix} \sin x & -\cos x \\ \cos x & \sin x \end{pmatrix}; \forall x \in \mathbb{R}$$

4. Định nghĩa ma trận trực giao

Ma trận vuông A được gọi là chéo hóa trực giao nếu tồn tại ma trận trực giao P và ma trận chéo D sao cho:

$$P^{-1}AP = P^tAP = D.$$

5) Các bước chéo hóa ma trận đối xứng bởi ma trận trực giao

- B1. Lập phương trình đặc trưng. Giải tìm trị riêng.
- **B2.** Giải các hệ phương trình tương ứng với từng trị riêng. Tìm cơ sở TRỰC CHUẨN của các kgian con riêng.
- **B3.** Ma trận P có các cột là các cơ sở TRỰC CHUẨN của những kgian con riêng. Các phần tử trên đường chéo chính của D là các trị riêng.

* Chú ý:

- Ma trận đối xứng thực luôn chéo hóa được nên không cần xác định bội đại số.
- Để tìm cơ sở trực chuẩn của một không gian con riêng nào đó ta chọn một cơ sở tùy ý rồi dùng quá trình Gram Schmidt (nếu cần).

❖VD: Chéo hóa trực giao ma trận đối xứng thực sau:

$$A = \begin{pmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{pmatrix}.$$

Giải:

• Giải phương trình đặc trưng: $det(A - \lambda I_3) = 0$

$$\Leftrightarrow -(\lambda - 7)^{2}(\lambda + 2) = 0 \Leftrightarrow \begin{bmatrix} \lambda_{1} = 7 \ (B \oplus S = 2) \\ \lambda_{2} = -2 \ (B \oplus S = 1) \end{bmatrix}$$

• Úng với $\lambda_1 = 7$: Tìm được không gian riêng $E(\lambda_1)$ và suy ra một cơ sở của nó là:

$$\left\{ u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}; u_2 = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} \right\}$$

Dùng quá trình Gram – Schmidt, tìm cơ sở trực giao $F = \{f_1, f_2\}$ của không gian con riêng $E(\lambda_1 = 7)$:

$$f_1 = u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix};$$

$$f_2 = u_2 - \frac{\langle u_2, f_1 \rangle}{\langle f_1, f_1 \rangle} f_1 \Rightarrow f_2 = \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix}$$

Trực chuẩn hóa, tìm cơ sở trực chuẩn của $E(\lambda_1 = 7)$:

$$E = \left\{ \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix}; \begin{pmatrix} -1/\sqrt{18} \\ 4/\sqrt{18} \\ 1/\sqrt{18} \end{pmatrix} \right\}$$

Cơ sở của không gian con riêng $E(\lambda_2 = -2)$ có một véctơ nên đó cũng là cơ sở trực giao: $u_3 = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$.

Cơ sở trực chuẩn của
$$E(\lambda_2=-2)$$
 là: $\left\{f_3=egin{pmatrix} 2/3 \\ 1/3 \\ -2/3 \end{pmatrix}\right\}$.

Vậy ma trận trực giao P và ma trận chéo D là:

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{18}} & \frac{2}{3} \\ 0 & \frac{4}{\sqrt{18}} & 1/3 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{-2}{3} \end{pmatrix}; D = \begin{pmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

BÀI TẬP NHÓM

Chéo hoá trực giao ma trận đối xứng sau

$$A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix}$$

BÀI TẬP VỀ NHÀ

Câu 1: Cho ma trận
$$A = \begin{pmatrix} -1 & -2 & -2 \\ 2 & 3 & 2 \\ -1 & -2 & -2 \end{pmatrix}$$

- a) Tìm các giá trị riêng của A.
- b) Tìm số chiều và 1 cơ sở của không gian riêng ứng với giá trị riêng lớn nhất của *A*.

<u>Câu 2</u>: Cho ma trận $A = \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$. Tìm ma trận P sao cho $P^{-1}AP$ có dạng chéo.

BÀI TẬP VỀ NHÀ

Câu 3: Cho ma trận
$$A = \begin{pmatrix} 7 & 1 & -2 \\ -26 & -2 & 14 \\ 8 & 1 & -3 \end{pmatrix}$$
.

Chứng minh rằng ma trận $P = \begin{pmatrix} 2 & 1 & 1 \\ -10 & -4 & -3 \\ 3 & 1 & 1 \end{pmatrix}$ làm chéo hóa ma trận A . Từ

kết quả này hãy chỉ ra các giá trị riêng của ma trận A

Câu 4: Cho ma trận
$$A = \begin{pmatrix} 4 & 0 & -1 \\ 7 & -3 & -1 \\ 0 & 0 & 5 \end{pmatrix}$$
.

Tìm tất cả các giá trị riêng thực của ma trận A.

Vector v = (7,7,-7) có là một vector riêng của ma trận A tương ứng với một giá trị riêng nào đó hay không? Tại sao?

BÀI TẬP VỀ NHÀ

Câu 5: Cho ma trận
$$A = \begin{bmatrix} 3 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
.

- a) Tìm các giá trị riêng của A.
- b) Tìm một vector riêng ứng với giá trị riêng nhỏ nhất của A.

Câu 6: Cho ma trận
$$A = \begin{pmatrix} 1 & 2 & 3 \\ m & 1 & m \\ 1 & 1 & 3 \end{pmatrix}$$
.

- a) Tìm đa thức đặc trưng $P_A(x) = det(A x. I_3)$ của A theo tham số thực m.
- b) Tìm m để x = 1 là một giá trị riêng của A và tìm tất cả các giá trị riêng còn lại của A.