TECHNISCHE UNIVERSITÄT BERLIN

Fakultät II, Institut für Mathematik

Lutz

WS 2001 18.02.2002

Februar-Klausur (Verständnisteil) Analysis II für Ingenieure

	Vorname:
gelassen. Die Lösungen sind in Reinsch stift geschriebene Klausuren können ni	att mit Notizen sind keine Hilfsmittel zu irift auf A4 Blättern abzugeben. Mit Blei- icht gewertet werden. Die Gesamtklausur enn in jedem der beiden Teile der Klausur werden.
Diagon Toil don Vlaugum um faget die Ver	est in designation has a singellt on above graffer

Dieser Teil der Klausur umfasst die Verständnisaufgaben, sie sollten ohne großen Rechenaufwand mit den Kenntnissen aus der Vorlesung lösbar sein. Geben Sie immer eine **kurze Begründung** an. Die Bearbeitungszeit beträgt **eine Stunde**.

1	2	3	4	$\sum(V)$

1. Aufgabe (ohne Begründung!) Sei $f: \mathbb{R}^3 \to \mathbb{R}^2$ eine Funktion.

(10 Punkte)

a) Welche der folgenden Bedingungen ist ein **notwendiges** Kriterium für die totale Differenzierbarkeit von f?

Bedingung	ja	nein
f ist integrierbar.		
Alle $\frac{\partial f_i}{\partial x_j}$ existieren und sind stetig.		
Alle $\frac{\partial f_i}{\partial x_j}$ existieren.		
Es existiert eine Matrix $A \in \mathbb{R}^{2\times 3}$ mit $\lim_{\vec{\Delta x} \to 0} \frac{f(\vec{w} + \vec{\Delta x}) - f(\vec{w}) - A\vec{\Delta x}}{ \vec{\Delta x} } = 0$ für $\vec{w} = (4, -1, 3)$.		
Alle f_i sind stetig.		

b) Welche der folgenden Bedingungen ist ein hinreichendes Kriterium für die totale Differenzierbarkeit von f?

Bedingung	ja	nein
f ist integrierbar.		
Alle $\frac{\partial f_i}{\partial x_j}$ existieren und sind stetig.		
Alle $\frac{\partial f_i}{\partial x_j}$ existieren.		
Es existiert eine Matrix $A \in \mathbb{R}^{2\times 3}$ mit $\lim_{\vec{\Delta x} \to 0} \frac{f(\vec{w} + \vec{\Delta x}) - f(\vec{w}) - A\vec{\Delta x}}{ \vec{\Delta x} } = 0$ für $\vec{w} = (4, -1, 3)$.		
Alle f_i sind stetig.		

Achtung: Bitte jeweils die zutreffende Antwort ankreuzen!

Begründungen nicht vergessen!

2. Aufgabe

(10 Punkte)

Sei $f: \mathbb{R} \to \mathbb{R}$ definiert durch $f(t) := (\sin 2t) \cos t$. Begründen Sie, warum

$$\int_{\pi}^{3\pi} f(t) \ dt = 0$$

gilt.

3. Aufgabe

(10 Punkte)

Sei $f: \mathbb{R}^3 \to \mathbb{R}$ definiert durch f(x, y, z) := 2x - y + 3z. Sei weiter $\vec{\gamma}: [0, 2\pi] \to \mathbb{R}^3$ eine Kurve mit

$$\vec{\gamma}(t) := \begin{pmatrix} \sin t \\ t^2 \\ \cos t \end{pmatrix}.$$

Bestimmen Sie für $\vec{v} := -\text{grad} f$ den Wert des Integrals

$$\int_{\vec{\gamma}} \vec{v} \cdot \vec{ds}.$$

4. Aufgabe

(10 Punkte)

Sei $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ ein Vektorfeld mit

$$\vec{v}(x,y,z) := \begin{pmatrix} 3x^2y \\ x^3 + z \\ y + 1 \end{pmatrix}.$$

- a) Überprüfen Sie, ob \vec{v} ein Potential besitzt.
- b) Überprüfen Sie, ob \vec{v} ein Vektorpotential besitzt.