DISCLAIMER

NOTICE OF THIS PEPTON THE BESIDES TO BEST TO BEST TO BE THE TO BE THE PERTON THE PROBLES TO BE STORE TO BE THE SERVICE OF THE

ANL-83-24

ANL--83-24

DE84 011428

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439

THE OPTICAL PROPERTIES AND COMPLEX DIELECTRIC FUNCTION OF METALLIC ALUMINUM FROM 0.04 TO 10⁴ eV

by

D. Y. Smith and E. Shiles*
Materials Science and Technology

and

M. Inokuti Environmental Research Division

HASTER

March 1983

is report was prepared as an account of work spousaries? Thereof, nor any of their wernment. Neither the United States Government nor any agency thereof, nor any of their wernment. Neither the United States Government nor any agency thereof, nor responsitively for the accuracy, completeness, or usefulness of any information, apparatus, product, or come disclosed, or represents that its use would not infringe privately owned rights. References disclosed, or represents that its use would not infringe privately owned rights. References to any specific commercial product, process, or service by trade same, trademark, or herein to any specific commercial product, process, or service by trade same, trademark, or electrons of otherwise does not necessarily constitute or imply its candomsences, recommendation, or favoring by the United States Government or any agency thereof. The views endation, or favoring by the United States Government or any agency thereof.

*Present address: Gulf Research and Development Co. Houston, Texas 77236

TABLE OF CONTENTS

	<u>Page</u>
ABSTRACT	1
I. GENERAL FEATURES	1
A. Intraband Spectrum	2
B. Interband Spectrum	4
II. OPTICAL MEASUREMENTS AND SAMPLE CONDITIONS	9
A. Polished Polycrystalline Samples	9
B. Thin-Film Polycrystalline Samples	9
 Surface Oxide Layers	11
C. Noncrystalline and Liquid Samples	12
III. OPTICAL CONSTANTS AND DATA ANALYSIS	14
A. Room-Temperature Optical Constants	14
B. Room-Temperature Dielectric Function and Reflectance	17
C. Temperature Dependence	21
Appendix A, Optical Constants of Aluminum, 0.039-75 eV	23
Appendix B, Dielectric Function of Aluminum (Short Form).	31
Appendix C, Dielectric Function and Optical Properties of Aluminum 0.04-10 eV (Long Form)	35
ACKNOWLEDGMENTS	48
REFERENCES	48

LIST OF FIGURES

No.	<u>Title</u>	Page
1.	Extinction Coefficient for Metallic Aluminum at Room Temperature	.3
2.	Reflectance of Metallic Aluminum at Room Temperature	.6
3.	The Interband Conductivity of Metallic Aluminum	.7
4.	The Complex Refractive Index of Metallic Aluminum	16
5.	The Complex Dielectric Function of Metallic Aluminum	18
6.	The Reflectance of Metallic Aluminum	20
7.	The Phase of the Reflectivity of Metallic Aluminum	21
8.	The Optical Conductivity of Clean, Polycrystalline Aluminum Films	22

LIST OF TABLES

	<u>Title</u>	Page
I.	Drude Parameters for Metallic Aluminum	5
II.	Optical Constants of Aluminum, 0.039 - 75 eV	. 25
III.	Dielectric Function of Aluminum (Short Form)	. 32
IV.	Dielectric Function and Optical Properties of Aluminum 0.04 - 10 ⁴ eV (Long Form)	. 36

THE OPTICAL PROPERTIES AND COMPLEX DIELECTRIC FUNCTION OF METALLIC ALUMINUM FROM 0.04 to 10⁴ eV

bν

D. Y. Smith, E. Shiles, and M. Inokuti

ABSTRACT

Measurements of the optical properties of metallic aluminum are reviewed and available data are analyzed to obtain the bulk values of the optical constants and the complex dielectric function from 0.04 eV to 10 keV. intra- and interband contributions to the dielectric function are discussed briefly, and recently proposed values for the Drude parameters describing the intraband absorption are critically considered. Factors influencing experimental measurements are discussed with emphasis on sample properties such as surface oxide layers, bulk inclusion of gases, surface roughness, and degree of crystallinity. The results of recent optical measurements are tabulated, along with recommended values of the optical properties resulting from a self-consistent Kramers-Kronig analysis of reflectance, transmission, and electron-energy-loss studies. The tabular data include the complex dielectric function, the complex index of refraction, and the reflectance and phase shift for normal incidence on a smooth, oxide-free surface. Detailed tabulations are given for the infrared, visible, and ultraviolet regions of the spectrum.

I. GENERAL FEATURES

Metallic aluminum is one of the most widely measured and analyzed materials $^{1-7}$ with regard to optical properties. These properties are dominated by three practically nonoverlapping groups of electronic transitions corresponding to absorptions by conduction-band, L-shell, and K-shell electrons. Figure 1 shows the absorption spectrum for the crystalline solid.

The 3 electrons/atom (e/a) donated to the conduction band by the atomic $3s^23p$ valence levels give rise to a typical metallic absorption from zero to ~ 15 eV, the bulk plasmon energy, $\hbar \omega_p$. In crystalline samples, this portion of the spectrum is dominated by intraband transitions in the far infared and by two strong interband absorptions at ~ 0.5 eV ($\lambda \approx 2.5$ µm) and ~ 1.5 eV ($\lambda \approx 0.8$ µm). The higher-energy interband transition is evident as a small peak in the absorption spectrum of Fig. 1, but the lower-energy transition is obscured by the strong intraband absorption. In the noncrystalline or partially crystalline solid and in the liquid state, the interband spectrum is strongly modified or absent (see Sec. IIC).

A. Intraband Spectrum

The intraband contribution to the optical properties may be described phenomenologically to within experimental error with a Drude-model dielectric function 8 for the electron gas,

$$\varepsilon_{\text{Drude}} = \varepsilon_{\text{o}} - \frac{\Omega_{\text{p}}^{2}}{\omega(\omega + i/\tau)},$$
(1)

where the contribution to the dielectric function from core interband transitions has been included in ε_0 . Here Ω_p is the (phenomenological) plasma frequency for intraband transitions, and τ is the intraband relaxation time. The quantity ε_0 is effectively constant throughout the region of conduction-electron absorption (that is, to well above the plasma frequency) with a value 7 of 1.035.

In addition to using the quantity $\Omega_{\rm p}$, the strength of the intraband transitions is commonly expressed in terms of the effective number density of electrons participating in intraband transitions

$$n_{\text{eff,intraband}} = \frac{m_{\text{e}} s_{\text{p}}^2}{4\pi e^2} . \tag{2}$$

Here m_e and e are the free-electron mass and charge, respectively. A second alternative is the optical mass defined by 8

$$m_{opt} = m_e \frac{n_c}{n_{eff,intraband}}$$
, (3)

where $n_{\rm c}$ is the density of conduction elections.

Similarly, the intraband relaxation time is often given in terms of the damping coefficient

$$\gamma = \tau^{-1} .$$
(4)

A quantity frequently cited for comparison with electrical experiments is the dc conductivity in the Drude model

$$\sigma(0) = \frac{\Omega_{\rm p}^2}{4\pi\gamma} \ . \tag{5}$$

Fig. 1. The Extinction Coefficient (i.e., the imaginary part of the refractive index) for Metallic Aluminum at Room Temperature. After Shiles et al. (Ref. 7).

A variety of fits of Eq. 1 have been made to infrared data for polycrystalline samples of aluminum, $^{1,3,5,9-14}$ but early work was incomplete because the interband transitions at ~ 0.5 and ~ 1.5 eV were not always reckoned with. Table I gives some of the more recent determinations of the Drude parameters and the experimental bulk dc conductivity. The $^{10.5-eV}$ interband transition was not accounted for by Ehrenreich et al. 1 or by Powell, 3 so that

their Drude terms include some interband absorption strength, as well as damping. This leads to a conductivity significantly smaller than the measured bulk value. Bennett and Bennett 11 assumed the measured value of $\sigma(0)$, but also neglected the "0.5-eV" transition; this led to an overestimate of Ω_p . The Smith-Segall 14 values were derived by fitting the reflectance-based dielectric function of Shiles et al. 7 over the range of 0.04-3.0 eV, assuming it to be a linear superposition of a Drude term and the two interband transitions. The resulting parameters are in good agreement with the Mathewson-Myers 5 fit of the Ashcroft-Sturm 15 theory of the interband spectrum to ellipsometric measurements and are probably the best description of the room-temperature intraband absorption presently available.

B. <u>Interband Spectrum</u>

The two strong interband transitions of the conduction-electron spectrum in the crystalline material are a consequence of the "parallel-band" effect $^{1,15-17}$ that (cours in almost-free-electron polyvalent metals. In these materials the occupied and unoccupied conduction bands are effectively parallel over substantial regions of k space in the vicinity of high-symmetry planes parallel to the zone faces. Allowed transitions between these parallel bands lead to prominent interband absorptions at energies approximately twice the Fourier component of the effective crystal potential, V, for the reciprocal lattice vector, \vec{k} , corresponding to the zone face in question. aluminum, absorption between almost-parallel bands occurs in the neighborhood of surfaces parallel to the hexagonal (111) and to the square (200) zone faces. The corresponding energy gaps predicted by a two-band model 15 using parameters 18 derived from de Haas-van Alphen measurements are $2V_{111} = 0.487$ eV and $2V_{200} = 1.53 \text{ eV}$. The parallel-band absorption shows sharp rises near these energies followed by long tails toward higher energies, which join smoothly onto the band-to-band absorption arising from the remainder of the Brillouin zone. 15,17 In addition, theory predicts 19,20 an accidental degeneracy of the energy bands leading to a weak, but finite interband absorption down to zero energy. However, this has not been verified experimentally because the interband component is overwhelmed by the intraband absorption below a few tenths of an electron volt.

The 1.5-eV (0.8- μm) interband absorption is readily apparent as a pronounced drop in the reflectance for crystalline samples (Fig. 2) and as a

Table 1. Drude parameters for the intraband absorption of metallic aluminum (see Eqs. 1-5 in the text). The effective density of electrons, n_{eff}, is given in electrons per atom (e/a); in aluminum the actual density of conduction electrons is 3 e/a.

		<u> </u>	Strength		Damping		dc Conductivity ^a		
Source	Temp (K)	ħΩ _p (eV)	n _{eff}	^m opt (m _e)	(10 ⁻¹⁴ sec)	ħγ = ħτ ⁻¹ (meV)	o(0) (10 ¹¹ Optical	sec ⁻¹) Electrical	
renreich et al. (1963), Ref. 1	RT	12.7	1.94	1.55	0.512	129	1.52		
lennett et al. (1966) ^b , Ref. 11	RT	14.7	2.60	1.15	0.801	82.2	3.18 (fnput)	3.18 ^C - 3.28 ^d	
owell (1970), Ref. 3	RT	12.2	1.80	1.67	0.66	100	1.81	3.18" - 3.28"	
resselhaus et al. (1971), Ref. 13	RT	12.9 ± 0.7	2.0 ± 0.2	1.5 * 0.2	0.5 ± 0.2	160 = 60	1.60 ± 0.8		
athewson and Meyers (1972), Ref. 5	198	12.8	1.99	1.51	1.18	55.8	3.58	5.49 ^e	
•	298	13.0	2.03	1.48	1.02	64.5	3.14	3.21 ^e	
•	404	13.2	2.10	1.43	0.62	105	1.96	2.3 ^e	
•	552	13.3	2.13	1.41	0.52	128	1.65	1.63 ^e	
lenbow and Lynch (1975), Ref. 13	4.2	12.7	1.94	1.55	1.10	60	3.25	-	
mith and Segall (1981), Ref. 14	RT	12.5 ± 0.3	1.88 ± 0.09	1.60 7 0.08	1.13 ± 0.05	50.5 # 3.0	3.25 ± 0.3	3.18 ^c - 3.28 ^d	

^aThe optical conductivity at w = 0 has been calculated from Eq. 5; the electrical values of $\sigma(0)$ are for dc measurements on bulk samples.

 $b_{\sigma(0)}$ was used as an input.

^CRef. 124.

d_{Ref.} 125.

e_{Ref.} 5.

small peak in the extinction coefficient (Fig. 1). Strong 21 appears to have first reported the former and Schultz 22 the latter. Ehrenreich et al., and Shklyarevskii and Yarovaya 23 identified the absorption responsible for these features as an interband transition.

The Drude absorption almost completely hides the second major interband absorption at ~ 0.5 eV. There is a suggestion of this interband transition in the early infrared measurements of Beattie²⁴ and in a slight change of slope

Fig. 2. The Reflectance of Metallic Aluminum at Room Temperature. Curve a applies to opaque, optically smooth, evaporated aluminum films prepared in uhv. The effect of light scattering and surface plasmons (at $\hbar\omega_s = 10.6$ eV) is shown by curves b and c. Curve b was reported by Vehse et al. (Ref. 82) for a film on a clean microscope slide. Curve c was given by Endriz and Spicer (Ref. 48) for a uhv film with rms surface roughness of 18 Å. The "high-vacuum" curve is an average for films evaporated in vacua of the order of 10^{-5} Torr, for which surface and bulk oxidation occurs. The properties of such films vary widely, especially in the UV, presumably because of surface roughness. The lowest curve is representative of mechanically polished samples, but the reported range of measurements for these is extremely large. Data for sputtered films are available well into the UV; curiously they track the data for polished samples very closely at high energies.

in the ultrahigh-vacuum (uhv) reflectance data of Bennett et al. (see Figure 2 of Ref. 7). This transition was first definitively observed in low-temperature absorptivity experiments by Bos and Lynch. 26 Figure 3 shows the Bos-Lynch results for 4.2 K along with a separation of the room-temperature data by Smith and Segall 14 in terms of the real part of the interband conductivity

$$\sigma_{\text{interband}} (\omega) = \frac{-i\omega}{4\pi} \left[\varepsilon(\omega) - \varepsilon_{\text{Drude}}(\omega) \right]. \tag{6}$$

Below about 0.3 eV the uncertainty in the experimental data and in the Drude parameters is so large that the interband contribution cannot be determined reliably from the available measurements.

Note the shift of the interband absorption toward higher energies as the temperature is lowered. Mathewson and Myer⁵ studied this in detail for the "1.5-V" transition (see also Fig. 8).

Fig. 3. The Interband Conductivity of Metallic Aluminum (real part). These values were obtained by subtracting the intraband contribution in the Drude model from the measured optical conductivity. The solid curve is for room temperature and was calculated by Smith and Segall (Ref. 14) who used Shiles et al.'s analysis of uhv reflectance data (Ref. 7). The dashed curve is taken from Benbow and Lynch (Ref. 13) and applies to electropolished samples at 4.2 K.

At low terperatures (~20 K), a weak fine structure is superimposed on the tail of the "1.2-eV" absorption in the range 2-2.5 eV. 27 Part of this structure appears to arise 14 from transitions near the corners of the Brillouin zone in the vicinity of the intersections of the two groups of planes responsible for the two strong parallel-band absorptions. Along these lines of intersection three bands are almost parallel with band gap, determined by both V_{200} and V_{111} . However, the transitions arising from these triplets of parallel bands are not as prominent as those associated with the doublet of parallel bands in the planes because of the smaller volume of k-space involved in the neighborhood of the lines of intersection. The result is two weak absorptions, one near the strong "0.5-eV" interband transition and the second just above the strong "1.5-eV" transition. These have been predicted in detail by band-structure calculations. 20 ,27

II. OPTICAL MEASUREMENTS AND SAMPLE CONDITIONS

A. Polished Polycrystalline Samples

Quincke²⁸ began serious studies of the optical properties of aluminum in 1874. Early measurements were made on polished bulk or rolled samples. ²⁸⁻³⁵ Even though bulk aluminum takes a "high polish," it always retains a "hazy white surface" ³¹ and has a reflectance well below that of an uncontaminated evaporated film. As will become apparent, this is presumably the result of both scattering and absorption by the microscopically rough, oxide-coated surface. Figure 2 gives a composite of reflectance data for polished surfaces. The curve generally follows the data of Coblentz (IR), ³¹ Luckiesh (vis. + UV), ³³ Quincke (vis.), ²⁸ and Wulff (vis. + UV). ³⁵ The polished-bulk-metal data are strongly affected by surface contamination and light scattering, particularly at shorter wavelengths. In the visible, Nutting ³⁰ reports reflectance values ~10% higher than those shown, while values measured by Cohlentz and Stair ³⁴ are 10% lower. Taylor ³⁶ gives an even more dramatic range and quotes reflectances from 33% (mill finish) to 84% (electropolished) at 296.7 nm.

B. Thin-Film Polycrystalline Samples

The key factor in obtaining accurate values of the optical properties was the discovery that aluminum could be sputtered 37 or evaporated 38 to form highly reflecting metal films. Early sputtered films were "brilliant." 39,40 However, evaporation by the tungsten-coil method 41,42 has become the preferred technique for sample preparation because of the method's high speed and potential for low contamination. The major impetus for these developments was the production of interferometer 41 and telescope 21 mirrors. (The superior reflectance of evaporated aluminum films over silver at short wavelengths extended stellar spectroscopy some 250 Å into the violet.)

Evaporated films show reflectances much higher than polished surfaces, particularly in the ultraviolet. Generally, the higher the vacuum and the faster the evaporation, the higher the reflectance. $^{43-46}$ Two curves for evaporated surfaces are shown in Fig. 2. The upper is for unoxidized, smooth films produced in ultrahigh vacuum ($10^{-9}-10^{-10}$ Torr); the other is for films evaporated in conventional high vacuum ($\sim 10^{-5}$ Torr). The first is believed to

correspond to a smooth, uncontaminated aluminum surface. The second is for more-or-less contaminated surfaces having oxide coating with no special attempts made to eliminate surface roughness. The uhv curve generally follows the data of Bennett et al., 25 Hass and Waylonis 46 (although these were not uhv films, a high evaporation rate was used; this method has been shown to yield the same results as uhv preparation 47), and Endriz and Spicer. 48 Beyond 11.8 eV the curve follows the analysis of Shiles et al., 7 which relies heavily on electron energy-loss measurements 49 near $\omega_{\rm p}$, and on transmission and reflectance data of Ditchburn and Freeman 50 and x-ray absorption measurements 51 beyond $\omega_{\rm p}$.

The high-vacuum curve generally follows the data of Beattie, 10 Strong, 21 Hass, 43,52 Sabine, 53 Banning, 54 and Walker et al. 55 The curve shown is in close agreement from 250 to 2500 nm with the U.S. NBS reference standard first-surface aluminum mirror #2003a, 56 which has an aged oxide coating. The curve also generally has the same reflectance from 200 to 2000 nm as commercially available evaporated mirrors. 57 Films evaporated under higher vacuum or at high deposition rates generally have reflectances between the high-vacuum and uhv curves shown. 58 Values of the reflectance for oxide-free uhv and oxidized high-vacuum films shown in Figure 2 are given in Appendix A at the end of this report.

The differences between the various evaporated film data arise from surface oxide layers, $^{43,59-63}$ residual gas incorporated in the film, 44,45 surface roughness, 48,64,65 and film morphology. $^{47,66-68}$ These factors will be discussed briefly.

1. Surface oxide layers. A layer of Al_2O_3 forms rapidly on an aluminum surface, even in high vacuum. ^{69,70} The layer is both adherent and relatively impervious so that, once formed, it protects the underlying metal from further oxidation. ⁷¹ The thickness of the surface layer and its composition depends strongly on sample structure and history, particularly on chemical treatment. ^{21,47,66,68,71,72} Polarimetric studies of evaporated films simply exposed to the atmosphere indicate that the surface oxide layer is 20-55 Å thick, ^{45,59-63} but that thicker layers readily form in moist environments. ⁷¹ The surface layers are probably hydrated to varying degrees depending on the circumstances of formation. Preparation conditions, ^{43,47,73} purity, ⁷³

structure, 66,68 partial oxidation in vacuum before exposure to the atmosphere, 62 etc., all influence the reported thickness. In addition, exposure of aluminum surfaces in air to ultraviolet light has been found to decrease reflectance at short wavelengths; this is attributable to an increase in the oxidation rate of the surface. 43,66,73

The oxide of aluminum is highly transparent from about 6 µm (0.2 eV) 74 to 180 nm (6.8 eV) 6,75 so that a surface oxide film does not decrease the reflectance significantly over this range. Moreover, in the infrared a light wave does not "see" the film. 43 (The incident and reflected electric waves must be out of phase by about π to create the required node in the electric field at the metal surface. Thus, provided the oxide thickness is much less than the wavelength of light, the electric fields of the incident and reflected waves almost cancel in the oxide layer, and coupling to the layer is negligible.) However, at the shorter wavelengths of the vacuum ultraviolet, the oxide layer has a strong effect. For example, at 121.6 nm (\sim 10 eV) an oxide layer 17 Å thick decreases the reflectance by a factor of two. 60,73 Overcoatings of materials such as MgF $_2$ and LiF have been developed to preserve the reflectance of aluminum at short wavelengths by preventing the growth of oxide films. 43,76

2. Bulk inclusion of residual gas. Studies of films evaporated at different rates and pressures indicate that the optical constants are very sensitive to residual gas incorporated into the bulk of the films, 44 , 45 specifically to the film composition within the penetration depth. This is generally attributed $^{43-45}$, 77 to oxide formation arising from the gettering of molecular oxygen or to the reduction of water vapor to form 120 3 and hydrogen. The relevant parameter appears to be the ratio of the residual-gas pressure to the deposition rate, which is a measure of the arrival rate of residual-gas molecules to that of aluminum atoms. 44 , 45 5 Films deposited from high-purity starting material at terminal pressure/rate ratios of the order $^{10^{-8}}$ 5 Torr min $^{6^{-1}}$ 6 or less 45 6 have similar reflectances and appear to be uncontaminated for the purpose of optical property measurements, provided subsequent oxide formation is avoided.

The presence of surface effects has also been demonstrated in x-ray absorption measurements in the neighborhood of the L edge. 78,79 This has not

been investigated in detail, but it has been associated with an apparent systematic overestimate of the L-shell absorption.

3. <u>Surface roughness.</u> An extremely important factor in determining the bulk optical constants, particularly in the ultraviolet, is the roughness of the sample surfaces. 48 , 64 , 65 Surface roughness causes both scattering 80 and coupling to surface plasmons 81 (the latter lie at a frequency of 74 $_{\rm mp}/^{72}$ ~ 10.6 eV for an aluminum-vacuum intertace). Figure 2 shows reflectance curves for two low-contamination films 48 , 82 , 83 with a slight surface roughness for comparison with the smooth, uhv surface reflectance. The main reflectance drop lies near the surface-plasmon frequency, but the drop extends well into the visible, largely as a result of scattering. Even a slight surface roughness produces dramatic effects. For example, a film with an rms surface roughness of only 27 Å is reported 48 to exhibit a reflectance drop of 20% at 3 eV (400 nm). These effects account for the wide variation of reflectance previously found in the UV and often attributed to contamination.

C. Noncrystalline and Liquid Samples

Vapor-quenched solid and liquid aluminum exhibit typica? metallic properties, but with a wide range of modifications in the interband spectrum. In the liquid state, aluminum exhibits no interband structure. ⁸⁴ Rather, the conduction electron absorption appears to follow a free-electron Drude model to within experimental error. This is in agreement with the expectation that in the liquid state there is no long-range order and, hence, no well-defined band structure and Brillouin-zone boundaries. ⁸⁵

Similar properties might be anticipated for samples with a low degree of crystallinity. However, the optical spectrum of vapor-quenched aluminum films deposited at low temperature exhibits a complex behavior. 5,86 Films deposited at 25, 140 and 198 K show a progressive reduction in the intensity of the 1.5-eV interband absorption wi th decreasing substrate temperature. Essentially no 1.5-eV absorption remains in films deposited at 25 ${\rm K.}^{86}$ reduced 1.5-eV absorption does not show a shift in position or broadening. only a decrease in magnitude. Further, annealing of the films at room temperature restores the 1.5-eV absorption. These observations have been interpreted⁵ to indicate that deposition from the vapor on a cooled substrate

yields a two-phase system which is partly crystalline and partly amorphous, but which crystallizes on annealing.

This explanation cannot be complete since it is not consistent with analysis 86 of the 25 K films: these films show no 1.5-eV interband component and consequently would be considered to be noncrystalline in this interpretation. However, the optical properties are not described by the Drude model as those of the liquid can be. Rather, the conduction-electron absorption appears to consist of a Drude term plus a residual absorption near 0.5 eV, which is attributed to interband transitions characteristic of the $^{2V}_{111}$ energy gap. A possible explanation 86 is that the film consists of small-diameter, close-packed planar clusters with characteristic (111) translational symmetry, but lacking the (200) translational symmetry of bulk aluminum.

III. OPTICAL CONSTANTS AND DATA ANALYSIS

A. Room-Temperature Optical Constants

The most reliable optical data presently available are for uncontaminated polycrystalline aluminum films prepared in ultrahigh vacuum. Measurements generally are made of reflectance at room temperature (18-25°C) and are now available over the range 0.04-11.8 eV (32 µm-105 nm) 25,48 . In addition, a number of ellipsometric studies 5,62,68,87,88 of thin films in the near IR and visible have recently become available, particularly through the studies of Mathewson and Myers 5,87 and of Liljenvall et al. 88 (The former also includes high- and low-temperature measurements.) Studies 13,26 of bulk electropolished polycrystalline and single-crystal samples have also been reported, but absolute optical properties were not measured. The results are, however, consistent with absolute measurements on thin films.

Ellipsometric measurements yield the optical constants directly, but reflectance measurements at normal incidence must be analyzed using dispersion theory. This has recently been done over a wide spectral range for the room-temperature uhv reflectance measurements by Shiles et al. using a self-consistent Kramers-Kronig analysis. This involved combining the reflectance measurements below 11.8 eV with

- (1) Electron-energy-loss measurements in the vicinity of the plasma frequency, and
- (2) Transmission and angular-variation-of-reflectance measurements in the extreme UV and x-ray regions.

The energy-loss measurements were mainly those of Gibbons et al. 49 The higher-energy optical data were taken primarily from Ditchburn and Freeman, 50 Haensel et al., 89 Gähwiller and Brown, 90 Fomichiev et al., $^{91-93}$ Singer, 94 Ershov et al., 95,96 Cooke and Stewardson, 97 Bearden, 98 Henke et al., 99,100 Singman, 101 Lublin et al., 102 Hubbel et al., 103 and Davisson. 104 These high-energy data were for room temperature, but were not for uhv samples and may suffer from surface effects to some degree, particularly in the transmission measurements on thin films near the LII, III edge 78,79 and to a lesser degree between the plasmon energy and the LII, III edge (see below).

Since the Kramers-Kronig relations require knowledge of one optical function over the entire spectrum, the analysis proceeded by successive approximations. A trial reflectance function was constructed using estimates from transmission, electron-energy-loss, etc., data above 11.8 eV, and direct measurements of reflectance at lower energies. This was then analyzed and the resulting optical functions compared with the input. The trial function was successively modified--primarily by the substitution of experimental data where available--until the calculated and measured optical functions agreed.

Throughout, the results were checked against a number of optical sum rules to ensure agreement with independent theoretical and experimental constraints (see Ref. 7 and citations therein). This disclosed that the reported oscillator strength in the L-absorption region was consistently too high by $\sim 14^{-1}/_{2}$ %. The absorption coefficient in this region has generally been measured in transmission using thin films that exhibit a surface component of absorption. 78,79 To compensate for this, an <u>ad hoc</u> reduction was made in the data based on the thin-film measurements of Lukirskii et al., 105 Fomichev and Lukirskii, 91,92 Haensel et al., 89 and Gähwiller and Brown. 90 This reduction brought the calculated absorption coefficient into agreement with both the f sum rule and with later measurements by Balzarotti et al., 79 who separated surface and bulk absorption. While the latter data extend only 10 eV above the L edge, the bulk $k(\omega)$ values of Balzarotti et al. are consistently some 15% below the thin-film $k(\omega)$ values used by Shiles et al.⁷ in preparing their original input in this range. This is in agreement with the contention that previous thin-film measurements were systematically too large.

While this correction is very important in the soft x-ray region of the spectrum, it had negligible effect on the optical constants below the plasma frequency as determined by the Kramers-Kronig analysis.

The result: of the analysis for the refractive index and the reflectance between the infrared and the $L_{II,III}$ edge are given in Appendix A. Given for comparison are the <u>in situ</u> uhv ellipsometric measurements of Mathewson and Myers, ⁸⁷ the uhv reflectance data of Bennett et al., ²⁵ and the vacuum ultraviolet transmission and reflectance-angular-variation measurements of Ditchburn and Freeman. ⁵⁰ The index results are graphed in Figure 4. It will be seen that the Kramers-Kronig analysis is in good agreement with direct measurements made by Mathewson and Myers ⁸⁷ in the visible and the IR. The

Fig. 4. The Complex Refractive Index $[n(\omega) + ik(\omega)]$ of Metallic Aluminum. The solid curve is taken from Shiles et al.'s analysis of uhv reflectance data (Ref. 7). A portion of the uhv ellipsometric data of Matthewson and Myers (Ref. 87) is given for comparison. Quincke's (Ref. 28) and Drude's (Ref. 29) results for polished hulk samples are shown for historical interest; considering the materials and techniques available, these early measurements are remarkedly good, especially for $n(\omega)$. The remainder of the data points are given to show the range of values of $n(\omega)$ and $k(\omega)$ reported in the literature. Most refer to evaporated films prepared in conventional or high vacuum and measured using polarimetric, interferometric, etc., methods. The sources of these data are Refs. 9, 10, 22, 23, 24, 46, 50, 52, 62, 63, 70, 72, 83, and 108-116. Note that the $n(\omega)$ curve and the $k(\omega)$ curve cross each other at roughly 15 eV, the conduction electron plasmon energy. This corresponds to the condition $c_1(\omega_0) = n^2(\omega_0) - k^2(\omega_0) = 0$. The onset of the L absorption appears in the lower right corner. The corresponding dispersion is visible as a little "pimple" on the index curve near 72 eV.

difference between the Kramers-Kronig analysis and the measurements--less than 11% in $n(\omega)$ and 8% or less in $k(\omega)$ --gives an indication of the uncertainty of the data.

optical number of constant measurements have been reported^{9,10,22,23,24,46,50,52,62,63,70,72,83,106-116} for films prepared on normal substrates in high vacuum and subsequently exposed to air. resulting "effective" optical constants describe contaminated aluminum surfaces made with no special attempt to produce ultra-smooth films. A number of these measurements are compared with values derived from uhv films in Fig. 4. Over most of the spectrum the effective optical constants for the oxidized surface lie below those for the uhy films. This is most pronounced in the IR, where effective optical constants 25% or more smaller than the uhy values are common. In the visible the effective constants are generally 10 to 15% lower than the unv values, while in the UV the effective constants are surprisingly close to the uhv values. The exception is for the effective $n(\omega)$ near the surface plasmon frequency, ω_c . Here there is a "bump" in the effective index presumably arising from dispersion associated with the apparent "absorption" of the surface plasmon and light scattering by films with rough surfaces.

B. Room-Temperature Dielectric Function and Normal Reflectance

The dielectric function covering the complete energy range involved in the Kramers-Kronig analysis is given in Fig. 5 and in abridged form in Appendix B. This set of data includes the 14.5% reduction in the high-energy side of the $L_{II,III}$ edge needed to obtain agreement with the f sum rule and recent transmission measurements taking surface effects into account. The energy intervals used in the table have been chosen to give closely spaced points in regions of pronounced structure, such as interband absorption and x-ray edges. Intermediate points can be found by interpolation, noting that the dielectric function generally has a power-law dependence on energy in regions removed from interband edges. Near the edges the energy spacing is too coarse to show all the x-ray fine structure. For details of this spectral region, see Refs. 117 and 118.

The $\epsilon_2(\omega)$ curve in Fig. 5 discloses unexpected discontinuities in slope: a small discontinuity near 7 eV and a larger discontinuity near 15 eV. These are not readily apparent in the other optical functions,

specifically in $n(\omega)$ and $k(\omega)$. These features may be extraneous, arising from the joining of data from different sources. This is mostly probably the case for the discontinuity near 7 eV, where additional uncertainty was introduced from reading published graphical data.

Fig. 5. The Complex Dielectric Response Function of Metallic Aluminum, after Shiles et al. (Ref. 7). The real part, $\epsilon_1(\omega)$, is negative with large absolute values at low energies, vanishes at $\hbar\omega_p \approx 15.0$ eV (the plasma energy for conduction electrons), and is positive and approaches unity at higher energies. The imaginary part, $\epsilon_2(\omega)$, is also largest at low energies and decreases with energy, except at thresholds for newer modes of excitation (first at the beginning of the 1.5 eV interband excitation of valence electrons, next at the L-shell threshold, and finally at the K-shell threshold). The quantity $\text{Im}[-1/\epsilon(\omega)]$, which governs the energy transfer from fast charged particles, shows a prominent maximum near $\hbar\omega_p$ and is small at both lower and higher energies.

However, the situation is not so clear for the larger discontinuity near 15 eV (the plasma frequency). Here the ϵ_2 data fall off significantly faster below 15 eV than between 15 eV and the $L_{II,III}$ edge. This is contrary to the simple expectation, based on single-particle excitations, that at photon

energies high compared to the principal interband transition energies, the valence-electrons should behave as almost free electrons so that their contribution to ϵ_2 should be approximately Drude-like; i.e., $\epsilon_2(\omega)\sim\omega^{-3}$. A possible explanation is that the change in slope is an experimental artifact: below 15 eV, the $\epsilon_2(\omega)$ data are based primarily on samples prepared in uhv, whereas from 15 eV to the $L_{II,III}$ edge, the samples were prepared in conventional vacua and measurements were made in air. Over the latter range, surface contamination could lead to significant errors in the optical constants reported by Ditchburn and Freeman. Such an error cannot be detected as a violation of the f sum rule to within the accuracy of present data, since the contribution to the f sum rule over the region in question is of the order of a few tenths of an electron per atom.

A second and more intriguing possibility is that there is a deviation of the optical properties from their random-phase-approximation values above the plasma frequency. Just such an effect has been proposed by Hopfield 19 as a result of the dynamic screening of the phonon--or disorder--contribution to the optical absorption. A third possibility 120 is the excitation of bulk plasmons by oscillating changes induced at the metal surface by the exciting light; however, studies 121 of the surface photoelectric effect suggest the latter process is negligible. New measurements on well-characterized uhv samples in this energy range are needed to clarify this situation. Such experiments should be possible with the increasing availability of synchrotron radiation sources.

The dielectric function and optical properties for aluminum at room temperature recommended by Shiles et al. are given in Appendix C for the original 506-point mesh used in their self-consistent Kramers-Kronig analysis. This tabulation covers the energy range of 0.04 eV to 10 keV and is available in the form of punched cards from the authors or on magnetic tape from:

National Energy Software Center Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439. In addition, the tables include values of the reflectance (the square of the amplitude reflection coefficient)

$$R(\omega) = \left| \frac{n(\omega) - 1 + i k(\omega)}{n(\omega) + 1 + i k(\omega)} \right|^2, \qquad (7)$$

Fig. 6. The Reflectance of Metallic Aluminum. These values were calculated for normal incidence on a smooth, clean aluminum surface in vacuum from the n and k values of Shi'es et al. (Ref. 7) via Eq. 7.

and the phase shift of the magnetic field vector

$$\theta = \tan^{-1} \frac{2k}{n^2 + k^2 - 1}$$
 (8)

for reflectance at normal incidence from a smooth, clean aluminum surface in vacuum. Note that the phase shifts of the magnetic and electric fields differ by π , so that for a perfect conductor $\theta(0)=0$. $R(\omega)$ and $\theta(\omega)$ are given graphically in Figs. 6 and 7.

Fig. 7. The Phase of the Reflectivity of Metallic Aluminum. These values were calculated for normal incidence on a smooth, clean aluminum surface in vacuum from the n and k values of Shiles et al. (Ref. 7) via Eq. 8.

C. Temperature Dependence

The effect of temperature on the optica' properties of aluminum has been studied directly with ellipsometry by Liljenvall et al. 88 and by Mathewson and Myers, 5 who found $\sigma(\omega)$ as a function of energy and temperature as shown in Fig. 8. As the temperature rises, the 1.5-eV interband transition shows a pronounced broadening, shifts toward lower energies, and becomes weaker. The free-electron contribution also shows a broadening, but becomes stronger with rising temperature. This is in line with the fact that interband transitions are not observed in the liquid metal, 84 as all the conduction-electron oscillator strength has been transferred to the Drude-like intraband term. The ellipsometric results have been analyzed within the framework of the Ashcroft-Sturm two-band model for the temperature dependence of the Drude parameters, the Fourier components of the crystal field, and the interband relaxation time (see Table I and Ref. 5).

Fig. 8. The Optical Conductivity (real part) of Clean Polycrystalline Aluminum Films. The films were deposited at room temperature, after Mathewson and Myers (Ref. 5).

As a result of the high values of $n(\omega)$ and $k(\omega)$ in the visible and infrared, even a large variation of the optical constants with temperature produces only a small change in the reflectance, R. This effect has been recently investigated in thermomodulation studies of Rosei and Lynch. ¹²² The results are rather featureless, except near the "1.5-eV" interband absorption. They show that dR/dT is negative below about 1.3 eV (0.95 μ m) and positive at higher energy. This is consistent with a broadening and shift toward low energies of the interband transition with rising temperature. Although the temperature modulation involved was not determined, the thermomodulation results may be scaled approximately using Pudkov's measurements ¹²³ of reflectance as a function of temperature at 1.96 eV (0.633 μ m). Pudkov reports a value for dR/dT of about 4 x 10⁻⁵ (°C)⁻¹ at this wavelength.

APPENDIX A

Optical Constants of Aluminum 0.039-75 eV

In this appendix we tabulate the optical constants of evaporated metallic aluminum films at room temperature from 32 μm to the $L_{II,III}$ edge. Columns labeled "SSIS" are the composite values given by Shiles et al. 7 ; over the energies given here these data are based primarily on the Kramers-Kronig analysis of reflectance measurements of uhv films from 32 to 0.1 μm , as explained in the text. These results are shown graphically in Figs. 2 and 4. The uhv reflectance data of Bennett et al. 25 are given in columns labeled "BSA". The in situ uhv ellipsometric data of Mathewson and Myers 87 are given in columns labeled M & M, and the vacuum-uv transmission and angular-dependence-of-reflection measurements of Ditchburn and Freeman 50 are given in columns labeled D & F.

The reflectance values given in the column labeled $\overline{\mathbb{R}}_{\mathrm{hv}}$ are an average for representative films which tave been prepared in conventional high vacuum $(\sim10^{-5} - 10^{-6} \text{ Torr})$ and subsequently exposed to the atmosphere. These data are given graphically as the "high-vacuum" curve in Fig. 2. The properties of such oxidized films are, of course, not unique; however, films prepared by rapid evaporation in high vacuum and exposed to clean dry air in a normal laboratory environment generally are reported to have approximately 1% lower than the values for unoxidized films prepared in UHV over the infrared and visible. At these wavelengths the reflectance tabulated is essentially the same as that for the NBS reference standard first-surface aluminum mirror⁵⁶ and high-quality commercial mirrors.⁵⁷ In the ultraviolet. such films generally show a sharp fall off of reflectance. This is a result of both absorption by surface oxides which become appreciable above 6.8 eV (see Sections II B1 and II B2), and scattering and surface-plasmon absorption resulting from surface roughness (see Section II B3). In general the reflectance shows great variability in the ultraviolet, unless care is exercised to control surface roughness. The data given here for oxidized films prepared in high vacuum are based on measurements of Beattie, 10 Strong, 21 Hass, 43,52 Sabine, 53 Banning. 54 Walker et al., 55 Weidner and Hsia, 56 and Major.⁵⁷ In preparing the tabulation of reflectance values for oxidized films, an extrapolation of the available data to energies below 0.1 eV has been made on the assumption that there is no dramatic increase in oxide absorption in this energy range. This is based on the fact that the oxide thickness is small relative to the wavelength so that the films lies at a node in the electric vector of the total radiation field. 43

Table II. Optical Constants of Aluminum

Ener	•	λ	Refractive Index, n			Extinction Coefficient, k			Reflectance				
eV	cm ⁻¹	ħW	SSIS	M&M	D&F	2122	M&M	D&F	SSIS	BSA	M&M	D&F	R _h
.038745	312.5	32	103			208			.992	.9933			.98
04	322.62 333.33 357.14	31	98.6			204			.992				.98
041328	333 33	30	94.2			199			.992	.9928			.98
04428	357 16	28	86.3			189			.992	.7720			- 70
	337.17	20 07 FF							.772	.9923			.58
. 045	362.95 384.62	27.55	84.7			186			.992				. 93
. 047687	384.62	26	79.1			178			.992	. 99 18			.98
.05	403.27	24.8	75			172			.992				.92
. 05166	415.66	24	72. 2			168			.991	. 99 12			.93
.055	443.6	22.54	68.3			160			.991				.98
056357	454.55 483.93	22	66.9			157			.991	.9907			93
06	497.03	20.66	62.9		1	151			.991	. , , , , ,			- 70
00	400.00	20.00							. 771	0000			- 98
06 1992	499.99	20	60.7			147			.99	.9702			.98
.065	524.26	19.07	57.6			143			.99				.98
068881	555.56	18	54.7			137			.99	.9896			.98
. 07	564.58	17.71	53.8		1	136			.99				.93
075	604.91	16.53	49.7		1	129			.99				.98
077491	625	16	47.7		- 1	127			.99	.9892			.98
	66E 36	15.5				124			.77	.7072			. 70
.08	645.24 685.56 714.29	12.2	46			124			.99				.98
.085	685.56	14.59	42.8		1	119			.989				.98
. 088561	714.29	14	40.5			116			.989	.9886			.98
.09	725.891	13.78	39.7			114			.989				.98
095	766.22	13.05	36.8			110			.989				.90
095373	769.23	13	36.6		1	109			.989	.9284			.98
.1	806.55	12.4	34.5			106			.989	.,			.93
	977 73		33						000	0000			.73
10332	833.32	12	1 22			103			.989	.9882			. 98
. 11	887.2 909.06	11.27	30.2			98.4			.989				.98
. 11271	909.06	11	29.2			96. 6			. 989	.9879			.98
. 12	967.86	10.33	26.6			92.2			.989				.93
12398	999.96	10	25.3		•	89.8		·	.988	.9876			. 98
13	1048.5	9.537	23.5			86.5			.988				.98
13776	1111.1	9	21.5			82.6		•	.933	.9374			.98
	1129.2	8.856	20.9		1	81.5			.700	. 73/7			. 70
. 14	1127.2	0.030	20.9						.988				.98
. 15	1209.8	8.266	18.6			17			.988				.98
15498	1250	8	17.5			74.9			.988	.9872			.98 .98
. 16	1290.5	7.749	16.5		1	72.7			.983				.93
. 17	1371.1	7.293	14.9			68.8			.988				.97
17712	1428.6	7	14			66.2			.988	.9866			.97
18	1451.8	6.888	13.7			65.2			.983	. 7000			.97
10	1570 4								.700				- 77
. 19	1532.4	6.526	12.7			62.2			.987				.97
.2	1613.1	6.199	11.7			59.4			.937				.97
. 20664	1666. 6	6	11.1			57.6			.987	.9856			. 97

Table II (continued). Optical Constants of Aluminum

Ene		λ	Refract	ive Ind	ex, n	Ext Coeft	tinction icient,	k	Reflectance				
e۷	cm ⁻¹	μm	SSIS	M&M	D&F	SSIS	M&M	D&F	SSIS	BSA	M&M	D&F	R
.225	1814.7	5.51	9.85		Î	53.2	· 		. 987			-	.977
.24797	2000	5	8.67			48.6			.936	. 9843			.977
.25	2016.4	4.959	8.59			48.2			.986				.977
.275	2218	4.509	7.61		1	44.3			.985				.976
.3	2419.6	4.133	6.76		- 1	41			.984				.976
. 30996	2500	4	6.43		- 1	39.8			.984	.9826			.975
.325	2621.3	3.815	6			38.1			.964				.975
. 35	2822.9	3.542	5.44			35.6			.933				. 975
.375	3024.5	3.306	4.88		1	33.4			.983				.974
.4	3226.2	3.1	4.45		- 1	31.5			.983				.974
.41328	3333.3	3	4.24			30.6			.982	.9805			.973
.45	3629.5	2.755	3.68			28.3			.982				.973
.5	4032.7	2.48	3.07		- 1	25.6			.982				.972
.55	4436	2.254	2.62			23.3			.981				.971
.6	4839.3	2.066	2.27			21.4			.981				.97
.61992	4999.9	2	2.15		- 1	20.7			.98	.9779			.97
.65	5242.6	1.907	1.99			19.8			.98				.97
.7	5645.8	1.771	1.77	1.7549		18.3	17.75		.979		.97825		.969
.75	6049.1	1.653	1.59	1.59	1	17.1	16.478		.979		97714		.968
.8	6452.4	1.55	1.44	1.5		16	15.5		.978		9756 6		.967
.82657	6666.7	1.5	1.35			15.4			.977	.9742	.,,,,,,,		.957
.85	6855.6	1.459	1.33	1.4284		14.9	14.527		.977		97366		.966
.9	7258.9	1.378	1.26	1.3463		14	13.704		.975		97214		.964
.95	7662.2	1.305	1.23	1.2974	l	13.2	12.911		.973		96982		.963
1 1	8065.5	1.24	1.21	1.2512		12.5	12.189		.97		96742		.96
1.0332	8333.2	1.2	1.21		- 1	12	12.107		968	.9637	. 707 12		.953
1.05	8468.7	1.181	1.21	1.2247	- 1	11.8	11.554		.967	. 7031	.96462		.957
1.1	8872	1. 127	1.2	1.2264		11.2	10.886		.963		96027		.953
1.15	9275.3	1.078	1.21	1.2497		10.6	10.323		.958		95522		.948
1.2	9678.6	1.033	1.26	1.3151	j	10	9.7329		.952		94744		.942
1.2398	10000	1 1	1.35	1.0151	i	9.58	711327		944	.9402	. / 1/ 71		.934
1.25	10082	.9919	1.37	1.4142	- 1	9.49	9.1924		.943	. , , , , ,	.93737		.932
1.3	10485	.9537	1.47	1.5768	1	8.95	8.6883		.932		.9232		.932 .918
1.3051	10526	.95	1.49	1.5705		8.88	0.000		.93	.9243	. 7232		
1.3404	10811	.925	1.77			8.49			.911	9075			.916 .902
1.35	10888	.9184	1.85	1.8176		8.44	8.1427		.906	. 7973	.90207		
1.3776	11111	.9	2.06	1.6170	}	8.3	0.1727		.895	.0908	. 70207		-897
1.4	11292	.8856	2.24	2.1355	}	8.21	7.7499		.825	.0700	.87778		.884
1.417	11429	.875	2.38	درد، ،ع	ļ	8.18	7./777		.878	.8744	.0///8		-874
1.45	11695	.8551	2.58	2.5298	ļ	8.21	7.6092		.872	.0/44	0E4 10		.368
1.4586	11765	.85	2.56	e.Je70	Į.	8.22	7.0072			0/77	.85618		.86
1.4200	11/02	ده. ا	1 2.01		- (0.22			.87	.8677			.859

Table !I (continued). Optical Constants of Aluminum

Ene	rgy	λ	Refract	ive Inde	ex, n	Extinction Coefficient, k			Reflectance				
eY	cm ⁻¹	μm	SSIS	M&M	D&F	SSIS	M&M	D&F	2212	BSA	M&M	D&F	R
1.5	12098	.8266	2.74	2.94		8.31	7.7552		.863		.84458		.858
1.5028	12121	.825	2.75			8.31		1	.863	.8657			.858
1.5498	12500	.8	2.8		ì	8.45		1	.869	.8676			.85
1.55	12501	.7999	2.8	3.0395		8.45	8.077		.87		.85093		.25
1.5998	12903	.775	2.63			8.6			.879	3773			.863
1.6	12905	.7749	2.62	2.8732		8.6	8.2313		.879		.86113		.858
1.65	13308	.7514	2.41	2.5745	j	8.62	8.254		.833		.87271		.875
1.6531	13333	.75	2.4			8.62			.888	.8862			.876
1.7	13711	.7293	2.14	2.3368		8.57	8.1523		.897		.87954		.882
1.75	14115	.7085	1.91	2.1306		8.39	8.0025		.903		.85458		.883
1.7712	14286	.7	1.83			8.31			.905	.8977			.89
1.8 1.85	14518	.6888	1.74	1.9419		8.21	7.8276		.907		.88892		.893
1.85	14921	.6702	1.6	1.7758		8.01	7.6586		.91		.89296		.896
1.9	15324	.6526	1.49	1.6281		7.82	7.4934		.912		.39672		.899
1.9075	15385	.65	1.47			7.79			.912	.9057			.899
1.95	15728	.6358	1.39	1.5068		7.65	7.3668		.913		.90047		.901
2	16131	.6199	1.3	1.4011		7.48	7.2085		.915		.90292		.903
2.05	16534	.6048	1.22	1.3055		7.31	7.0855		.916		.90594		.904
2.0664	16666	-6	1.2			7.26			.917	.9117			.904
2.1	16937	.5904	1.15	1.2198		7.15	6.9273		.918		.90779		.905
2.15	17341	.5767	1.08	1.145		7	6.7684		.919		.90915		.905
2.2	17744	.563 6	1.02	1.0685		6.85	6.6439		.92		.91172		.907
2.25	18147	.551	.963	1.0046		6.7	6.5199		.921		.91363		.908
2.2543	18182	.55	.958			6.69			.921	.9157			.938
2.3	18551	.5391	.912	.94408		6.55	6.3554		.922		.91451		909
2.35	18954	.5276	.867	.89107		6.42	6.2285		.922		.91538		.509
2.4	19357	.5166	.826	85227		6.28	6.1013		.923		.91615		.91
2.45	19760	.5061	.789	.81783		6.15	5.9303		.923		.91497		.911
2.4797	20000	.5	.769			6.03			.923	.9162			.911
2.5	20164	.4959	.755	.77909	1	6.03	5.8401		.923		.91639		.911
2.6	20970	.4769	.695			5.8			.924				.912
2.7	21777	.4592	.644		ĺ	5.58			.924				. 9 13
2.7552	22222	.45	.618		į.	5.47			.924	.9175			.913
2.8	22583	4428	.598			5.33			.924				.913
2.9	23390	.4275	.558			5.2			.924				.914
3	24196	.4133	.523		1	5.02			924				914
3.0996	25000	4	.49			4.85			924	.9194			.915
3.1	25003	4	.49			4.86			924	••••			. 9 15
3.2	25809	.3875	.45			4.71			.924				. 9 15
3.3	26616	.3757	.432			4.56			.924				.915
3.4	27423	.3647	.407			4.43			924				.914

Table II (continued). Optical Constants of Aluminum

Ene	rgy	λ	Refractive Index, n			Extinction Coefficient, k			Reflectance				
eY	cm ⁻¹	μM	SSIS	M&M	D&F	SSIS	M&M	D&F	SSIS	BSA	M&M	D&F	R _{hv}
3.5	28229	. 3542	.385			4.3			.925				.914
3.5424	28571	.35	.375		-	4.24			.925	.9205			.91 1
3.6	29036	.3444	.364			4.17			. 925				.913
3.7	29842	.3351	.344		Ē	4.05			925				.913
3.8	30649	.3263	.326			3.95			.925				.912
3.9	31455	.3179	.31		ł	3.84			. 925				.911
4	32262	.31 .3	.294			3.74			. 925				.51
4.1328	33333	.3	.276			3.61			.925	.9203			.909
4.25	34278	.2917	.261			3.51			. 925				.908
4.5	36295	.2755	.233			3.3			.925				.905
4.75	38311	. 26 1	.209			3.11			.925				.901
5	40327	.248	. 19			2.94			.924				.894
5.25	42344	.2362	. 19 . 172			2.79		1	.925				.884
5.5	44360	.2254	l . 155		ŀ	2.64			.926				.873
5.75	46376	.2156	. 141		1	2.51			. 926				.858
6	48393	.2066	. 13		t t	2.39			.926				.841
6.25	50409	. 1984	. 119		- Ł	2.28			. 926				.82
6.5	52426	. 1907	.11		1	2.17			.926				.82 .793
6.75	54442	. 1837	. 102			2.07			.926				.766
7	56458	. 177 1	.0946			1.98		1	.926				.735
7.25	53475	. 171	.088			1.9			.926				.735 .698
7.5	60491	. 1653	.082			1.81			.927				.656
7.75	62507	. 16	.0765			1.74			.927				.61 6
8	64524	. 155	.0716		ļ	1.66			.927				.579
8.25	66540	. 1503	.0671			1.59			.927				.543
8.5	68556	. 1459	.063			1.53			. 927				.51
8.75	68556 70573	. 1417	.063 .0592			1.46			.927				.478
9	72589	. 1378	.0557		l.	1.4		1	.928				.448
9.5	72589 76622	. 1305	.0495		l l	1.29		1	. 928				. 388
10	80655	. 124	.0442			1.18			.929				.328
10.5	84687	. 1181	. 0396		J	1.08		į	.929				.27
11	88720	. 1127	.0356		j	.978		j	.93				.215
11.5	92753	. 1078	.0356 .0331 .0323		l	.833		i	.928				. 165
12	96786	. 1033	.0323		.033	.791		.58	.922			.906	. 127
12.5	100818	. 09919	.0344			7			.912			-	. 102
13	104351	. 09537	.0376		1	.609			.856				.033
13.5	103384	. 09 184	.0409		. 104	517		. 39	.379			.697	.074
14	112917	.03356	.0481			416		•••	.849				.064
14.5	116949	.08551	.0616		J	.301			.798				.057
15	120982	. 08266	. 125		.225	153		.22	.612			.419	.05
15.5	125015	.07999	.258		- 663	. 153 . 0777		٠دد	.35			. 7 17	د ب

Table II (continued). Optical Constants of Aluminum

En	ergy	λ	Refracti	ve Ind	ex, n	Ext Coeff	Inction icient,	k		Re	flecta	nce	
eY	cm ⁻¹	μ in	SSIS	M&M	D&F	SSIS	M&M	D&F	SSIS	BSA	М&М	D&F	Rhv
16	129047	.07749	.351		. 345	.0595		.0632	.233			.239	
16.5	133080	.07514	.419			.0487		- 1	. 153				
17	137113	.07293			.445	. 0423		.0424	. 123			. 148	
17.5	141146	.07085	.52		1	.0331		ŀ	.1				
18	145178	.05838	.558		.52	. 0348		.0355	.0309			.1	
18.5	149211	.06702	.591			.0324		j	.0664				
19	153244	.06526	.62		.58	.0302		.0307	.0554			.071	
19.5	157277	.05358	.646			. 0284		ļ	.0467				
20	161309	. 06 199	.668		.635	.0268		.0267	. 0398			.0501	
21	169375	.05904				.0242		j	.0296				
22 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2	177440	. 05636	.74		.718	. 0222		.0213	.0225			. 0271	
23	185506	.05391	.766			.0205		i	.0177				
24	193571	.05166	.789		.785	.019		. 0 182	. 0 14			.0146	
25	201637	.04959	.809			.0177		į	.0113				
26	209702	.04769			.838	.0165		. 8159	.0092			.00784	
27	217768	.04592	.841			. 0155		ŀ	.00758				
28	225833	.04428	.854		.88	. 0145		0141	.0063			.00413	
29	233898	.04275	.865			.0135		į	.00528				
30	24 1964	.04133	.876		.912	. 0 125		.0125	.00444			.00216	
31	250029	.04	.885		1	.0116		l l	.00375				
32	258095	.03875	.894			.0111			.00317				
33	266 160	.03757			.943	.0107		.011	. 00271			8.93E-4	
34	274226	.03647	.909		l	.0102		ļ	.00233				
32 33 34 36 38	290357	.03444	.921		.96	.00932		.0695	.00173			4.4E-4	
38	306488	.03263	.931		l.	.00871		ŀ	. 0013				
40	3226 19	.031	.94		I	.00516		[9.87E-4				
45	362946	.02755	.957		į.	.00682		į.	5.01E-4				
50 55	403273	.0248	.969			.00537		l	2.57E-4				
55	443601	.02254	.979		l	.00508		I	1.21E-4				
60	483928	.02066	.987			.00441		l	4.64E-5				
65	483928 524255	.01907	.995			.00117		1	9.85E-6				
70	564583	.01771	1.01		1	.00352		- 1	1.27E-5				
71	572648	.01746	1.01		1	.00346		- 1	2.75£-5				
72	580713	.01722			1	.00346		I	6.858-5				
73	588779	.01698				.0191		I	2.33E-4				
74	596344	.01675				.0242		I	1.97E-4				
75	604910	.01653				.024		I	1.74E-4				

APPENDIX B

Dielectric Function of Aluminum (short tabulation)

In this appendix we tabulate the dielectric function for clean, smooth evaporated aluminum films at room temperature as interpolated on an energy mesh from the results of Shiles et al. (Ref. 7). As explained in detail in the text, these data are based primarily on the analysis of reflectance measurements below the $L_{II,II}$ edge and on transmission measurements above the edge. They are in close agreement with direct ellipsometric measurements on oxide-free films by Mathewson and Myers 87 in the range 0.7 to 2.5 eV.

Extrapolation of the tabular data may be made as follows:

- Low-energy extrapolations. The Drude Model, Eq. 1, with $\hbar\Omega_{\rm p}=11.5~{\rm eV}$ and $\hbar\gamma=50.6~{\rm meV}~[\sigma(0)=3.16~{\rm x}~10^{17}~{\rm sec}^{-1}]$ fits on continuously at 0.04 eV, but with a small discontinuity in slope. However, it should be recognized that, while the dc conductivity is in excellent agreement with the measured value $(3.18\text{-}3.28~{\rm x}~10^{17}~{\rm sec}^{-1})$, $^{124\text{-}125}~\Omega_{\rm p}$ and γ are somewhat outside the range recommended by Smith and Segall 4 (see Table I). This represents a negligible conflict since for the high reflectances (>99%) beyond 20 μ m the experimental error (± 0.1%) in the reflectance measurements used to obtain the dielectric function translates into an uncertainty of the order of ±25% in $\epsilon(\omega)$ even in favorable cases. The values of Smith and Segall arise from fits over the range 0.04-3 eV, not just at the lowest energy point, which is subject to considerable uncertainty.
- High-energy extrapolations. $\varepsilon_1(\omega)$: At frequencies well above the K edge the real part of the dielectric function approaches $\varepsilon_1 \sim 1 \omega_{p,t}^2/\omega^2$, where $\omega_{p,t}$ is the plasma frequency for the total electron density (13 electrons/atom). For aluminum at room temperature $\hbar\omega_{p,t} \sim 32.86$ eV and the asymptotic form holds for photon energies beyond $\hbar\omega = 3000$ eV. $\varepsilon_2(\omega)$: Beyond the K edge $\varepsilon_2(\omega)$ falls off very nearly as a power of energy, $\varepsilon_2(\omega) \sim \omega^{-\delta}$. The exponent varies slowly with energy; at 5000 eV, $\delta \sim 3.8$; at 10^4 eV, $\delta \sim 4.0$; and from 10^4 to 10^5 eV, it increases to $\delta = 4.2$. An extrapolation from 10^4 eV using $\delta = 4.1$ reproduces photoelectric data up to 10^5 eV reasonably well.

Table III. Dielectric Function of Aluminum

Energy, eV	ϵ_1	ε ₂	Energy, eV	ϵ_1	€2	Energy,eV	ε ₁	€2
.04	-31773	40168	.45	-785.73	203.33	2.1	-49.855	16.425
.045	-27581	31591	.5	-644.95	157 . 16	2.2	-45.829	13.944
.05	-24028	25829	.55	-536.6	122.17	2.3	-42.126	11.956
.055	-20840	21811	.6	-452.92	97.295	2.4	-33.792	10.331
.06	-18790	18956	.65	-386.35	78.532	2.5	-35.812	9.1113
.065	- 16994	16416	.7	-332.7 8	64.879	2.6	-33.154	8.0564
.07	- 15467	14577	.75	-289.02	54.332	2.7	-31.777	7.1883
.075	-14290	12858	8.	-252.48	46.07	2.8	-28.64	6.4398
.08	-13214	11330	.85	-221.46	39.819	2.9	-26.709	5.7995 5.2581
.085	-12265	10 160	.9_	-194.99	35.454	3	-24.967	5.2581
.09	-11447	9048.6	.95	-172.78	32.454	3.2	-21.951	4.3266
.095	- 107 16	2.0808	i ! i	-153.88	30.208	3.4	-19.424	3.6058
.1	-9963.6	7278.7	1.05	-137.69	28.45	3.6	- 17 . 283	3.0346 2.5754
.11	-8769.4	5939.9	1.1_	-123.57	26.86	3.8 4	-15.463 -13.901	2.5/34
. 12	-7787.2	4898.6	1.15	-110.51	25.665	4.5	-13.901 -10.833	2.2027 1.5379
. 13	-6930 . 1	4065.1	1.2	-98.612	25.231		- 10 . 6 3 3 -8 . 6 16 8	1.1199
. 14	-6204.7	3409.8	1.22	-93.974	25.474	5 5.5	-6.9646	.81915
. 15	-5577.9	2853.6	1.24	-89.971	25.923	6	-5.7	.62035
. 16	-5015.8	2407.2	1.26	-86.2 -82.271	26.1 26.11	6.5	-4.7106	.47906
. 17	-4512.1	2053.8	1.28 1.3	-02.271 -77. 922	26.11 26.27 8	9.5	-3.9229	.37529
. 18	-4065.1	1791 1577.7	1.32	-77.922 -72.927	27.485	7.5	-3.2853	.2974
. 19	-3702.8	1393.2	1.34	-69.012	30.031	8	-2.7618	.23806
.2 .21	-3387.1 -3096	1230.9	1.34	-66.705	32.535	8.5	-2.3268	. 19224
1 .21	-3076 -2845.3	1103.6	1.38	-64.446	34.505	9.5	-1.9617	. 15304
.22 .23		994.94	1.4	-62.425	74 776	9.5	-1.6513	. 12726
.23	-2622.2 -2424.3	905.18	1.42	-61.074	36.736 39.283	10	-1.386	. 10421
.25	-2424.3 -2252.9	828.26	1.44	-60.939	41.511	10.5	-1.1566	.03517
1 .23	-2232.9 -2098.3	760.63	1.46	-60.703	43.079	111	-1.1566 9561 9	.069713
.26 .27	-1963.5	701.32	1.48	-60.965	44.554	11.5	77942	.053537
.28	-1340.9	667 N3	1.5	-61.503	45.609	12 1	6241	.051904
.29	-1730.9	647.03 598.74	1.52	-62.052	46.386	12.5	48873	.043139
'ξ'	- 1632	553.71	1.54	-62.953	47.064	13	37007 26564	.045333
.3 .31	- 1540	511.51	1.56	-64.303	47.378	13.5	26564	.042292
32	-1453.9	473.79	1.58	-66.272	46.672	14	17 1 15	.010106
.32	-1373.8	441.56	1.6	-67.029	45. 129	14.2	17115 13652	.03928
1 34	-1302.3	413.6	1.65	-68.525	41,606	14.4	10332	.038018
.34 .35	- 1237.7	387.14	1.7	-68.91	35.742	14.6	070376	.036441
.35	-1177.6	361.78	1.75	-68.91 -66. 6 76	36.742 31.998	14.8	037265	. 036 129
.37	-1121.6	l 337.73 l	1.85	-61.654	25.715	15	0078247	.038338
.38	-1057.8	315.76	1.9	-58.961	23.279	15.2	. 020 186	.038548
.39	-1017.6	296.83	1.95	-56.522	21.251	15.4	.04769	. 0 3 9 4 1 4
ا نوز ا	-971.47	280.45	2	-54.236	19.502	15.6	.073266	.040811

Table III (continued). Dielectric Function of Aluminum

Energy, eV	ε ₁	ε ₂	Energy,eV	ε ₁	ε2	Energy,eV	ε1	ε ₂
15.8	.096931	. 04 16 12	75.5	1.0205	.04841	1400	.99957	1.7796E-5
16	. 11946	. 04 17 35	76	1.0197	. 048 178	1450	.99961	1.5597E-5 1.3558E-5
17	.22322	.04013 .032346	77	1.0175	.050823	1500	.99966	1.3558E-5
18	.3103	.032346	78	1.0139	.049371	1510	.99968 .99969	1.3238E-5 1.2878E-5
19	.38348 .44595	.037448 .035822 .023627 .02197	79	1.0133	.049331	1520	.99969	1.2878E-5
20	.44595	.035822	80	1.0134	.04928	1530	.99971	1.2598E-5
20 25 30	.65365	. 023627	82	1.0137 1.0131	. 05 12 9 3	1540	.99974	1.2298E-5 1.1999E-5
1 30	.76651	.02197	84	1.0131	. 054019	1550	.99978	1.1999E-5
35	.83681	.017966 .015332 .013043	85	1.011	.056799	1555	.99983 .99982	5.9093E-5
40	.83269	.015332	88	1.01	.05823	1556	.99982	6.2094E-5
45	. 9 1527	.013043	90	1.0098	.062184	1557	.99783	5.8603E-5
50	.9389_	.011383 .0099416	92	1.0068	. 067059	1558	.99984	6.5831E-5 8.2294E-5
55 60	.95813	. 0099416	94	.99778	.070656	1559	.99985	8.2259E-5
60	.97456	.0087087 .008456 8	96	. 99 149 . 983 15	.071495 .06559	1560	.59705	1.0003E-4 1.2198E-4
62	.98101	.0084568	98	.98315	.05007	1561	. 27775	1.21956-4
64	.98756	.0082042	100	.98036 .98603	. 05927 . 0485	1562	, YYYYC	1.4371E-4 1.6362E-4
66	.99398	.0077765	105	.92503	.0433	1563	. 99925 . 99935 . 99985 . 99985 . 99983 . 99981	1.0302E-4
68	1.0021	.0073387	110	. 987 12	.050591	1564	18776	1.7089E-4
70	1.0125	. 0070858 . 0069815	115	. 984 . 98 136	.049469	1565	.999/9	1.686E-4 1.6222E-4
71	1.02	. 00698 15	120	.98136	.047692	1570	.99976	1.6222679
72	1.0329	.0070415	125	.978 .97458	. 046345 . 040695	1580	.777/3	1.5697E-4 1.5197E-4
72.1	1.035	.0069485	130	.97458	.640595	1590	. 777/1 0007	1.319/6-4
72.2	1.0374	.0069398	135	.97559	.035113 .032247	1600	.99973 .99971 .9997 .99968	1.4762E-4 1.3093E-4
72.3	1.0404	.0068713	140	.97719	.032247	1650	.77700	1.3073574
72.4	1.0444	.006789	145	.97819 .97907	.030553	1700	.99968 .9997 .99972 .99974 .99983	1.1586E-4 9.4264E-5
72.5	1.0498	.0072644	150	.9/90/	. 029245 . 027176	1800 1900	.777/	7.6913E-5
72.6	1.0609	.0081393	160	.97848 .97763 .97973	.021736	2000	.7777 <i>C</i>	7.0713E-3 4.6054E-5
72.7	1.0628 1.0609	.025492 .041175	170 180	.7//03	.021736	2500	•7777 T	6.4056E-5 2.7182E-5
72.8	1.0509	.0411/3		.7/7/3	.016795		99998	1.4199E-5
72.9	1.0511 1.0489	.040588 .039105	190 200	.98095 .982	.014704	3000 3500	90001	8.0064E-6
73	1.0516	CUI YCU.	250	. 70 <i>0</i> 094 10	.0083246	4000	.99988 .99991 .99993	4.8998E-6
73.1	1.0504	.039983 .049549 .053085 .051766 .050481 .C49756	300	.92619 .98978 .99378	.0046841	5000	.99996	2.08E-6
73.2 73.3 73.4	1.0504	.047247	400	.707/6	.0019393	6000	.99997	1 0445-4
/3.3	1.0431	. 053065 051764	500	9950	8.6947E-4	7000	.99998	1.046E-6 5.7999E-7 3.4E-7 2.16E-7
73.5	1.0349	051/00	600	.9959 .99717	4.403E-4	8000	.99998	3.4F-7
73.6	1.0333	02075K	700	.99796	2 3635-4	9000	.99999	2.165-7
73.7	1.032	.049488	800	.99815	2.363E-4 1.4621E-4	10000 -	.99999	1.42E-7
73.8	1.0308	.049276	900	.99879	9.3552E-5	'''''	******	
73.9	1.0298	049153	1000	.99904	6.222E-5			
74	1.0289	. 049153 . 049041	1100	.99922	4.31156-5			
74.5	1.0249	.049278	1200	.99936	3.119E-5			
75	1.0221	.048554	1300	.99947	2.3194E-5	1		
l ' ³	1.0221	FCCOFU.	1300	.,,,,,,	L		<u>.</u>	

APPENDIX C

Dielectric Function and Optical Properties of Aluminum 0.04-10⁴ eV (Long Tabulation)

In this appendix we tabulate the dielectric function and optical properties for aluminum at room temperature given by Shiles et al. (Ref. 7) on the original 506-point mesh used in their self-consistent Kramers-Kronig analysis. Values of the reflectance and phase shift (of the magnetic field vector) are given for normal incidence. All digits in the computer output have been retained, even though only the first two are believed to be significant over most of the range.

Table IV. Dielectric Function and Optical Properties of Aluminum

ner gy	Dielecti	ric Function	Refract	tive Index		Reflectivity			
						θ	θ		
eΥ	ε ₁	$^{f \epsilon}$ 2	n	k	R	(degrees)	(radians		
.04	-31773	40168	98.596	203.7	.99233	.45577	.007954		
.042	-30076	36207	92.177	196.4	.9922	.47814	.008345		
.044	-28334	32981	86.975	189.6	.99204	.49931	. 008714		
. 046	-26813	30297	82.598	183.4	.99187	.51945	.009066		
.048	-25374	27897	78.538	177.6	.9917	.53968	. 009419		
. 05	-24028	25829	74.997	172.2	.99153	.5593 6	.009762		
.052	-22750	23943	71.686	167	.99136	.57941	.01011		
.054	-21370	22441	69.348	161.8	. 59 109	.59832	.01044		
. 056	-20379	21223	67.246	157.8	.9909	.61457	.010726		
.058	-19502	20079	65.15	154.1	.99073	.63086	.01101		
.06	-18790	18956	62.852	150.8	.99063	.64742	.0113		
.062	-17989	17856	60.652	147.2	.99047	.66549	.01161		
.064	-17360	16900	58.599	144.2	.99037	.68203	.01190		
. 066	-16612	15962	56.683	140.8	.99021	.70035	.01222		
.068	-15929	15245	55.316	137.8	.99002	.71617	.0125		
.07	- 15467	14577	53.79	135.5	.98993	.73056	.01275		
.072	-14982	13839	52.027	133.	.98985	.74724	.01304		
.074	-14511	13178	50.452	130.6	.98976	.76348	.01332		
		12542	48.877	128.3	.98963	.77995	.01361		
.076	-14072	11934	47.358	120.3	.9896	.79688	.01390		
.078	-13633 -13214	11380	45.961	126 123.8	.98951	.81349	.01419		
.08			44.651	121.7	.98943	.82987	.01448		
.082	-12817	10868	43.383	119.7	.98935	.84616	.01476		
.084	-12446	10386	42.187	117.8	.98928				
.086	-12097	9939.3	40.886	116.1	.98926	.86218 .87809	.01504 .01532		
.088	-11808	9493.8	39.651	114.1					
. 09	-11447	9048.6	38.6		.98919	.89607	. 0 1563		
.092	-11144	8677.3		112.4	.98913	.91193	.01591		
.094	-10880	8280.2	37.366	110.8	.98913	.92861	.01620		
. 096	-10546	7891.4	36.233 35.312	108.9	.98906	.94739	.01653		
.098	-10245	7571	33.312	107.2	.98897	.9643	. 0 1683		
. 1	-9963.6	7278.7	34.464	105.6	.98889	.98068	.01711		
. 105	-9365.3	6574.7	32.229	102	.9888	1.0214	.01782		
.11_	-8769.4	5939.9	30.186	98.39	.98867	1.0645	.01857		
. 115	-8263	5399.4	28.352	95.22	.98858	1.1054	. 01929		
. 12_	-7787.2	4898.6	26.577	92.16	.98851	1.1479	.02003		
. 125	-7342.3	4456.2	24.965	89.25	.98844	1.1907	.02078		
. 13_	-6930.1	4065.1	23.498	86.5	.98837	1.2337	.02153		
. 135	-6549.7	3719.3	22.162	83.91	.9883	1.2766	. 02228		
. 14	-6204.7	3409.8	20.919	81.5	.98825	1.3191	.02302		
. 145	-5889.3	3121.5	19.699	79.23	.98825	1.3621	.02377		
. 15	-5577.9	2858. 6	18.572	76.96	.98322	1.407	. 02455		
. 155	-5297.1	2622. 8	17.518	74.86	.98322	1.4512	. 025328		
. 16	-5015.8	2407.2	16.549	72.73	.988 17	1.4979	. 026 14		

Table IV (continued). Dielectric Function and Optical Properties of Aluminum

Energy	Dielectr	ic Function	Refract	ive Index	1	Reflectivit	у
eV	ε1	€2	n	k	R	θ (degrees)	θ (radians
. 165	-4757.6	2221.7	15.703	70.74	.98811	1.5437	. 026943
. 17	-4512.1	2053.8	14.924	68.81	. 98303	1.5904	.027758
. 175	-427 5.9	1910.7	14.274	66.92	.98789	1.6375	.02858
. 18	-4065.1	1791	13.73	65.22	.98771	1.6823	.029362
. 185	-3875.4	1681.9	13.214	63.64	.98757	1.7261	.030126
. 19	-3702.8	1577.7	12.691	52.16	-98747	1.7696	.030885
. 195	-3535.5	1481.9	12.207	50.7	.98735	1.8143	.031666
.2	-3387.1	1393.2	11.733	59.37	.98727	1.8574	. 032418
.21	-3096	1230.9	10.856	56.691	.98705	1.9497	. 034028
.22	-2845.3	1103.6	10.162	54.301	.98677	2.0387	.035582
.23	-2622.2	994.94	9.5501	52.09	.98648	2.1281	. 037 142
.24	-2424.3	905.18	9.0409	50.06	.98613	2.2165	.038686
.25	-2252.9	828.26	8.5857	48.235	.9858	2.3025 2.3887	.040185
.26	-2098.3	760.63	8.1734	46.531	. 98546 . 98517	2.3087 2.4724	. 04169 . 043152
.27	-1963.5	701.32	7.7939	44.992	.98489	2.5568	.044524
.28	-1840.9	647.03	7.4296	43.544	.98464	2.6401	.046079
.29	~1730.9	598.74	7.0933 6.7592	42.204 4 0.9 6	.98444	2.723	.047526
.3	-1632	553.71		39.766	.98428	2.8076	.04702
.31	-1540 -1453.9	511.51 473.79	6.4314 6.134	39.700 38.62	.98409	2.8936	.050502
.32	- 1373.8	473.79 441.56	5.883	37.529	.98384	2.9796	.052003
.33 .34	-1302.3	413.6	5.6613	36.529	.98358	3.0628	. 05345
.34	-1237.7	387.14	5.4376	35.599	.98338	3.1449	.054888
.35 .36	-1177.6	361.78	5.2115	34.71	.98323	3.2278	.056337
.30	-1121.6	337.73	4.9872	33.86	.98313	3.3116	.057798
.3/	-1067.8	315.76	4.7806	33.025	.98299	3.3977	05930
.38 .39	-1017.6	296.83	4.6048	32.23	.98279	3.4832	.060794
.4	-971.47	280.45	4.4537	31.485	.98255	3.5671	.062257
.42	-890.76	249.35	4.1378	30.131	.98228	3.7315	. 065 126
.44	-818.88	221.07	3.8236	28.871	.98213	3.8991	.068051
.46	-754.37	196.5	3.5477	27.694	.98198	4.0693	. 07 1023
.48	-696.69	175.42	3.2974	26. 6	.98183	4.2409	. 074018
.5	-644.95	157.16	3.0718	81. 25	.98169	4.4138	.077035
.52	-598.2	141.4	2.8709	24.626	.98152	4.5885	.080085
.54	-555.93	128.09	2.6987	23.732	.98129	4.7643	. 083152
.56 .58	-518.3	116.58	2.5445	22.908	.98106	4.9383	. 085 19
.58	-484.21	106.16	2.398	22.135	.98087	5.1136	. 089249
.6	-452.92	9 7.29 5	2.2729	21.403	.98061	5.2907	. 09234
.65	-386.35	78.532	1.9875	19.756	.98009	5.7376	. 10014
.7	-332.78	64.879	1.7699	18.328	.97939	6.1887	. 10801
.75	-289.02	54.332	1.591	17.075	.97866	6.6461	. 116
.8	-252.48	46.07	1.4437	15.955	.97783	7.1149	. 12418
.85	-221.46	39.819	1.3325	14.941	.97669	7.5982	. 13261

Table IV (continued). Dielectric Function and Optical Properties of Aluminum

Energy	Dielectri	c Function	Refracti	ve Index	Ŀ	Reflectivit	у
еV	ε1	€ ₂	n	k	R	θ (degrees)	(radians)
.9	-194.99	35.454	1.2643	14.021	.97493	8.0938	. 14 126
.95	-172.78	32.454	1.2291	13.202	.97257	3.5896	. 14992
1''	-153.88	30.208	1.2118	12.464	.96975	9.0892	. 15864
1.05	-137.69	28.45	1.2059	11.796	.9665	ŷ.5922	. 16742
1.1	-123.57	26.86	1.2012	11.181	.963	10.107	. 17639
1.15	-110.51	25.665	1.2127	10.582	.9585	10.659	. 18603
1.2	-98.612	25.231	1.2603	10.01	.95213	11.235	. 19608
1.2 1.22	-93.974	25.474	1.3022	9.7811	.94841	11.475	.20028
1.24	-89.971	25.923	1.3528	9.5813	.94441	11.688	.20399
1.26	-86.2	26.1	1.3901	9.3879	.94075	11.904	.20777
1.28	-82.271	26.11	1.4219	9.1811	.93691	12.146	.212
1.3	-77.922	26.278	1.4683	8.9486	.93184	12.425	.21685
1.32	-72.927	27.485	1.5823	8.6851	.92291	12.723	.22206
1.34	-69.012	30.031	1.7679	8.4934	.91138	12.884	.22487
1.37	-66.705	32.555	1.938	8.3941	.90199	12.914	.2254
1.36 1.38	-64.446	34.505	2.0804	8.293	.89367	12.955	.2261
1.4	-62.425	36.736	2.2369	8.2115	.88515	12.948	.22598
1.42	-61.074	39.283	2.4024	8.1759	.87746	12.862	.22448
1.44	-60.939	41.511	2.5293	8.2059	.8732	12.715	.22192
1.46	-60.708	43.079	2.6203	8.2203	.87009	12.619	.22024
1.48	-60.965	44.564	2.6973	8.2608	.86828	12.501	.21819
1.5	-61.503	45.609	2.7446	8.3088	.86782	12.402	.21645
1.52	-62.052	46.386	2.7768	8.3524	.86781	12.322	.21506
1.54	-62.953	47.064	2.7971	8.4129	.86867	12.234	.21352
1.54 4 EZ	-64.308	47.378	2.79	8.4907	.87092	12.15	.21206
1.56 1.58	-66.272	46.672	2.7189	8.5828	.8757	12.102	.21122
1.6	-67.029	45. 129	2.6245	8.5975	.87941	12.159	.21222
1.65	-68.525	41.606	2.4127	8.6224	.88777	12.289	· .21448
1.05	-68.91	36.742	2.1428	8.5733	.8972	12.539	.21885
1.75	-66.676	31.998	1.9079	8.3855	.90312	12.946	.22595
1.8	-64.292	28.572	1.7411	8.2051	.90694	13.312	.23234
1.9	-58.961	23.279	1.4881	7.8215	.91164	14.075	.24566
2.7	-54.236	19.502	1.3038	7.479	.91485	14.795	.25821
2.1	-49.855	16.425	1.148	7. 1535	.91768	15.528	.27102
5.1	-45.829	13.944	1.0184	6.8459	.92003	16.273	.28402
2.2	-42.126	11.956	.91208	6.5542	.92173	17.032	.29727
2.4	-38.792	10.381	.82613	6.2829	.92281	17.792	.31053
2.5	-35.812	9.1113	.75527	6.0318	.92345	18.549	.32373
2.6	-33.154	8.0664	.6954	5.7998	.92382	19.301	.33687
2.7	-30.777	7.1883	.64355	5.5849	92405	20.05	.34994
2.8	-28.64	6.4398	.59795	5.3849	.72419	20.798	. 36299
2.9	-26.709	5.7995	.55785	5.1981	.92422	21.545	.37603
3	-24.967	5.2581	.5233	5.024	.92405	22.288	. 38899

Table IV (continued). Dielectric Function and Optical Properties of Aluminum

Energy	Dielectric	Function	Refracti	ve Index	1	?eflectivi	ty
eγ	ε ₁	€2	n	k	R	θ (degrees	θ (radians)
3.2	-21.951	4.3266	. 45953	4.7077	.92433	23.774	. 4 1494
3.4	-19.424	3.6058	.40734	4.4261	.92446	25.266	.44097
3.6	-17.288	3.0346	. 36353	4.1737	.92458	26.762	.46709
3.8	-15.468	2.5754	. 32629	3.9464	.9247	28.264	.4933
4	-13.901	2.2027	.29448	3.74	.9248	28.264 29.774	.51966
4.2	-12.545	1.8986	. 26726	3.552	.92483	31.291	.54614
4.4	-11.366	1.6474	.24369	3.3801	.92486	32.813	.57269
4.6	-10.333	1.4374	.22304	3.2222	.92489	34.342	.59937
4.8	-9.4229	1.2603	.20483	3.0765	.92495	35.878	.6262
5	-8.6168	1.1199	. 19036	2.9416	.92439	37.42 41.327	.65311
5.5	-6.9646	.81915	. 15493	2.6436	.92554	41.327	.72129
6	-5.7	.62085	. 12983	2.391	.92574	45.291	.79047
6.5	-4.7106	.47906	. 11022	2.391 2.1732	.92597	49.327	.86092
7.7	-3.9229	.37529	.094632	1.9829	.92621	53.441	.93273
7.5	-3.2853	.2974	.081956	1.8144	.92654	57.647	1.0061
.	-2.7618	.23806	.071558	1.6634	.92689	61.958	1.0814
8.5	-2.3268	. 19224	.06296	1.5267	.92723	66.388	1. 1587
ا د.و	-1.9617	. 15604	.05566	1.4017	.9277	70.953	1.2384
9.5	-1.6513	12004	.04948	1.286	.92816	75.687	1.321
	-1.386	. 12726	.044227	1.1781	.92862	80.604	1.4068
10 10.5	1.300	. 10421	13957	1.0762	.9293	85.756	1.4967
	-1.1566 05640	.08517	.035622	.9785	.92981	91.208	1.5919
11 _	95619	.069713	.033129	.88347	.92829	97.046	1.6938
11.5	77942	.058537	.032822	.79068	.9224	103.3	1.8029
12 _	6241	.051904	.034388	.69994	.91182	109.98	1.9195
12.5	48873	.048139	.034363		.89604	117.22	2.0459
13	37007	.045883	.03764	.6095 .5643	107504	11/.22	2.0439
13.25	31689	.044294	.039247	.2043	.88774	121.07 125.26	2.1131
13.5 13.75	26564	.042292	.0409	.51702	.87889	129.79	2.1862
13.75	21697	.04096	.043774	.46785	.86617	129.79	2.2652
14	17 1 15	.040106	.048147	.4165	.8486	134.7	2.3509
14.1	15357	.03969	.05023	.39509	.84042	136.8	2.3876
14.2	13652	.03928	.052624	.37321	.83124	138.98	2.4256
14.3	11975	. 0387 19	.055245	.35043	.82126	141.28	2.4658
14.4	10332	.038018	.058192	.32666	.81021	143.72	2.5033
14.5 14.55	086963	.037115	.0616	.30126	.79766	146.36	2.5544
14.55	078578	.036667	.063773	.28748	.78992	147.81	2.5797
14.6 14.65	070376	.036441	. 066615	.27352	.78024	149.28	2.6055
14.65	062276	.036115	. 069693	.2591	.76987	150.82	2.6323
14.7	053903	.035823	. 073546	. 24354	.75724	152.49	2.6615
14.75	045564	.035835	.078751	.22752	.74084	154.22	2.6916
14.8	037265	. 036 129	. 085553	.21115	.72019	155.99	2.7226
14.85	029246	.036772	. 094 176	. 19523	.69506	157.72	2.7527
14.9	021842	.037508	. 10383	. 18062	.66802	159.31	2.7805

Table IV (continued). Dielectric Function and Optical Properties of Aluminum

Energy	Dielectric H	unction	Refractiv	e Index	R	eflectivit	У
eΥ	ε ₁	€ ₂	n	k	R	θ (degrees)	. θ (radians
14.95	01463	.03801	. 11423	. 16637	.63998	160.87	2.8077
15	0078247	.038338	. 12511	. 15322	.61187	162.31	2.8329
15.05	-6.4147E-4	.038274	. 137 18	. 1395	. 58 197	163.82	2.8592
15.1	.0063188	.038521	. 15059	. 1279	.55055	165.09	2.8814
15.15	. 0 13235	.038545	. 1643	.1173	.52007	166.26	2.9017 2.9195
15.2	. 020 186	.038548	. 17846	. 108	.49026	167.27	2.9195
15.25	.027228	.038589	. 19295	.1	.46147	168.14	2.9347
15.3	.034102	.038356	.20712	.093799	.43484	168.81	2.9463
15.35	.040978	.039002	.22085	.0883	41039	169.4	2.9565
15.4	. 04769	. 039414	.23405	.0842	.38809	169.82	2.964
15.45	.054251	.039731	. 24647	.0806	.3681	170.19	2.9705 2.9756
15.5	.060605	.040117	.25815	.0777	.35015	170.49	2.9756
15.55	.067038	.04026	.2694 8 .2803	. 0747	.33345	170.79	2.9809
15.6	. 073266	.040811	.2803	.0728	.3182	170.97	2.984
15.65	.079223	.041097	.29023 .29984	.0708	. 30471	171.16	2.9874
15.7	. 085171	. 04 1258	. 29984	. 0688	.29213	171.36	2.9908
15.75	.091097	. 04 1429	.30917	.067	.28034	171.53	2.9938
15.8	.096931	.041612	.30917 .31813	.0654	.2694	171.68	2.9964
15.85	. 10267	.041756	. 32673	.0639	.25924	171.82	2.9988
15.9	. 1082 8	.041868	33494	.0625	. 24984	171.95	3.0011
15.95	. 11384	. 04 183	.34287 .35071	.061 .0595	.24103	172.1	3.0036
16	. 11946	.041735	.35071	.0595	.23256	172.24	3.0062
16.1	. 13054	.041698	.36577	.€57	.21701	172.47	3.0102
16.2	. 14 142	.041496	.38	.0546	.20309	172.7	3.0142
16.3	. 15219	.041252	. 39362	.052401	. 19047	172.91	3.0178
16.4	. 16288	.040997	.40672	.0504	. 17893	173.09	3.021
16.5	. 17342	.040837	.41928	.0487	. 1684	173.24	3.0236
16.75	. 19886	.040429	.44821	.0451	. 146	173.54	3.0289
17	.22322	.04013	.47435	.0423	. 12783	173.76	3.0326
17.25	.24648	.039846	.49808	.04	. 11289	173.91	3.0354
17.5	.26864	.039601	.5197	.0381	. 10045	174.03	3.0374
17.75	.28987	.039176	.53962	.0363	.089921	174.14	3.0393
18	.3103	.038846	.55813	.0348	.080881	174.22	3.0407
18.5	.34841	.038307	.59115	.0324	.066411	174.3	3.0422
19	. 38348	.037448	.61999	.0302	.055353	174.39	3.0436
19.5	.41593	.036667	.64555	.0284	.04668	174.43	3.0444
20	.44595	.035822	.66833	.0268	.03977	174.46	3.0449
20.5	.47383	.034992	.68882	.0254	. 034 169	174.47	3.0451
21	.49974	.034235	.70734	.0242	.029578	174.46	3.0449
21.5	.52388	.033456	.72416	.0231	.025769	174.45	3.0446
22	.54638	.032834	.73951	.0222	.022534	174.4	3.0438
22.5	.56719	.032275	.75342	.021419	.019922	174.34	3.0427
23	.58665	.031402	.7662	.020492	017654	174.33	3.8426

Table IV (continued). Dielectric Function and Optical Properties of Aluminum

Energy	Dielectric	Function	Refractiv	e Index	Reflectivity			
eV	ε ₁	€2	n	k	R	θ (degrees)	θ (radians	
23.5	.60502	.030656	.77808	.0197	.015698	174.29	3.042	
24	.62225	.02991	.78905	.018953	.014013	174.26	3.0414	
24.5	.63846	.029252	.79925	.0183	.012551	174.21	3.0405	
25	.65365	.028627	.80868	.0177	.011284	174.15	3.0396	
25.5	.66792	.027957	.81744	.0171	.010177	174.11	3.0388	
26	.68145	.027247	.82566	.0165	.0091995	174.08	3.0382	
26.5	.69422	.026667	.83335	.016	.0033379	174.02	3.0371	
27	.70622	.026056	.84051	.0155	.0075793	173.97	3.0363	
27.5	.71758	.025417	.84723	.015	.0069048	173.93	3.0356	
28	.72834	.024753	.85355	.0145	.0063033	173.9	3.0351	
28.5	.73856	.024066	.85951	.014	.0057646	173.88	3.0347	
29	.7483	.023359	.86515	.0135	.0052795	173.87	3.0346	
29.5	.75762	.022633	.87051	.013	.0048404	173.87	3.0346	
30	.76651	.02197	.8756	.012546	.004444	173.86	3.0344	
31	.78344	.020453	.8852	.011553	.0037459	173.9	3.0352	
	.79896	.019902	.89391	.011132	.003172	173.67	3.0312	
32 77	./7070 9427		.90156	.010709	.0027114	173.47	3.0276	
33	.8127 .82528	.01931	.90851	.010206	.0023268	173.33	3.0252	
32 33 34 35		.018544	.91483	.0098194	.0020048	173.13	3.0217	
35	.83681	.017966	.92062	.0093241	.0017316	173.13	3.0198	
36 37 38 39	.84746	.017168	.92602	.0089755	.001/310	173.02 172.82	3.0162	
3/	.85743	-016623	.9309	.0087147	.0013012	172.55	3.0116	
36	.86649	.016225	.93541	.008345	.0013312	172.39	3.0088	
39	.87492	.015612	.93955	.0081592	9.8902E-4	172.07	3.0032	
40	.88269	.015332	.94331	.0077981	8.6714E-4	171.94	3.0009	
41	.88977	.014712	.94699	.0073411	7.5544E-4	171.9	3.0002	
42	.89674	.013904	.95047	.0071701	6.5824E-4	171.55	2.9941	
43	.90335	.01363	.93047		5.7454E-4	171.29	2.9895	
44	.90947	.01322	.95369	.006931	5.7434E-4	171.29	2.7073	
45	.91527	.013043	.95572	.0068165	5.0132E-4	170.85	2.9819 2.9716	
46	.92029	.013109	.95934	.0068323	4.4276E-4	170.26	2.97 (0	
47	.92502	.012314	.9618	.0064015	3.8978E-4	170.3	2.9723	
48	.93006	.011719	.96442	.0060757	3.377E-4	170.13	2.9694	
49	.93472	.011698	.96683	.0060497	2.9391E-4	169.49	2.9581	
50	.9389	.011383	.96899	.0058737	2.5699E-4	169.1	2.9514	
51	.9429	.011028	.97105	.0056784	2.2407E-4	168.74	2.945	
52	.94695	.010423	.97313	.0053554	1.9284E-4	168.57	2.9422	
53	.95101	.010237	.97521	.0052486	1.6456E-4	167.89	2.9303	
54	. 9547	.010157	.9771	.0051975	1.4105E-4	167.06	2.9158	
55	. 958 13	.0099416	.97885	.0050782	1.2077E-4	166.35	2.9033	
56 57	.96162	.0095412	.98063	.0048648	1.0163E-4	165.76	2.893	
57	.96512	.0094322	.98242	.0048005	8.4532E-5	164.59	2.8726	
58 l	.96828	.0094486	.98402	.004801	7.0696E-5	163.14	2.8472	
59	.97131	.0091151	.98556	.0046243	5.8302E-5	162.11	2.8293	

Table IV (continued). Dielectric Function and Optical Properties of Aluminum

Energy	Dielectric	Function	Refractive	e Index	Reflectivity		
еV	٤1	^E 2	n	k	R	θ (degrees)	θ (radians)
60	.97456	.0087087	.98721	.0044108	4.6364E-5	160.85	2.8073
61	.97784	.0085879	.98887	.0043423	3.6098E-5	158.57	2.7675
62	.9810 1	.0084568	.99047	.0042691	2.7529E-5	155.75	2.7183
63	.98424	.0082604	.9921	.0041631	2.0104E-5	152.1	2.6546
64	.98756	.0082042	.99377	.0041278	1.4053E-5	146.36	2.5544
65	. 99067	.0083101	.99533	.0041745	9.8482E-6	138.07	2.4098
66	.99398	.0077765	.99699	.0039	6.0811E-6	127.52	2.2257
67	.99789	.007441	.99895	.0037244	3.7466E-6	105.62	1.8434
68	1.0021	.0073387	1.0011	.0036655	3.634E-6	73.821	1.2884
69	1.0068	.0072317	1.0034	.0036036	6.1168E-6	46.556	.81256
70	1.0125	.0070858	1.0062	.0035209	1.^744E-5	29.346	.5121 9
70.5	1.0159	.0070423	1.0079	.0034935	1.8604E-5	23.69	.41346
71	1.02	. 0069815	1.01	.0034563	2 495E-5	19.046	.33241
71.5	1.0254	.0068786	1.0126	.0033964	4.2204E-5	14.959	.26109
72	1.0329	.0070415	1.0163	.0034642	6.8486E-5	11.884	.20741
72.1	1.035	.0069488	1.0174	.0034151	7.6877E-5	11.035	. 1926
72.2	1.0374	.0069398	1.0185	.0034068	8.7156E- 5	10.319	. 18009
72.3	1.0404	. 0068713	1.02	.0033683	1.0086E-4	9.4615	. 16513
72.4	1.0444	.006789	1.022	.0033215	1.207E-4	8.5053	. 14844
72.5	1.0498	.0072644	1.0246	.003545	1.5074E-4	8.0926	. 14 135
72.6	1.0609	.0081393	1.03	.0039511	2.223E-4	7.3894	. 12897
72.7	1.0688	.025492	1.0339	.012328	3.1455E-4	19.636	.34272
72.8	1.0609	.041175	1.0302	.019984	3.1805E-4	32.935	.57482
72.9	1.0511	. 040888	1.0254	.019937	2.5445E-4	37.537	.65515
73	1.0489	.039105	1.0243	.019088	2.3341E-4	37.569	.6557
73.1	1.0516	. 039983	1.0257	.019491	2.5304E-4	36.668	.63998
73.2	1.0504	. 049549	1.0252	.024166	2.9688E-4	43.145	.75302
73.3	1.0431	.053085	1.0217	.02598	2.7981E-4	49.454	.86314
73.4	1.0376	. 05 1766	1.0189	.025402	2.463E-4	52.566	.91744
73.5	1.0349	.050481	1.0176	.024804	2.2722E-4	53.933	.94131
73.6	1.0333	.049756	1.0168	.024467	2.166E-4	54.817	.95673
73.7	1.032	. 049488	1.0162	.02435	2.1013E-4	55.729	.97265
73.8	1.0308	.049276	1.0156	.02426	2.0454E-4	56.613	.98809
73.9	1.0298	.049153	1.0151	.024211	2.0033E-4	57.396	1.0018
74	1.0289	.049041	1.0146	.024167	1.9664E-4	58.115	1.0143
74.5	1.0249	.049278	1.0127	.024331	1.8572E-4	61.807	1.0787
75	1.0221	.048564	1.0113	.024011	1.7392E-4	64.163	1.1199
75.5	1.0205	.04841	1.0105	.023954	1.6911E-4	65.684	1.1464
76	1.0197	.048178	1.0101	.023849	1.6591E-4	66.401	1.1589
76.5	1.0192	.049422	1.0099	.02447	1.7223E-4	67.374	1.1759
77	1.0175	.050823	1.009	.025184	1.773E-4	69.563	1.2141
77.5	1.0151	.051097	1.0078	-02535	1.7462E-4	72.09	1.2582
78	1.0139	.049871	1.0072	.024757	1.6507E-4	73.013	1.2743

Table IV (continued). Dielectric Function and Optical Properties of Aluminum

Energy	Dielectric	Function	Refractiv	e Index	Reflectivity			
eΥ	ε ₁	€ 2	n	k	R	θ (degrees)	0 (radians)	
79	1.0133	.049331	1.0069	.024496	1.6086E-4	73.513	1.283	
80	1.0134	.04928	1.007	.024469	1.607E-4	73.391	1.2809	
81	1.0137	.050077	1.0071	.024861	1.6603E-4	73.28	1.279	
82	1.0137	.051293	1.0071	.025464	1.7361E-4	73.592	1.2844	
83	1.0134	. 052819	1.007	.026225	1.8294E-4	74.267	1.2962	
84	1.0131	. 0540 19	1.0069	.026825	1.904E-4	74.837	1.3062	
85	1.0122	.055896	1.0065	.027768	2.0187E-4	76.102	1.3282	
86	1.011	.056799	1.0059	.028233	2.0667E-4	77.427	1.3514	
87	1.0103	.057308	1.0055	.028496	2.0948E-4	78.183	1.3645	
88	1.01	. 05823	1.0054	.028958	2.1574E-4	78.601	1.3718	
89	1.0103	.059145	1.0056	.029409	2.2268E-4	78.441 79.277	1.3691	
9ó	1.0098	.062184	1.0054	.030926	2.4492E-4	79.277	1.3836	
91	1.0086	.063973	1.0048	.031834	2.5779E-4	80.524	1.4054	
92	1.0068	.067059	1.0039	.033398	2.8156E-4	82.3	1.4364	
93	1.0036	.069307	1.0024	.034571	2.9941E-4	85.048	1.4844	
94	.99978	.070656	1.0005	.03531	3.1151E-4	88.156	1.5386	
95	.99602	.071015	.99864	.03531 .035556	3.1685E-4	91.169	1.5912	
96	.99149	.071495	.99638	.035877	3.2614E-4	94.729	1.6533	
97	.98645	.069496	.99382	.034964	3.1704E-4	99.024	1.7283	
98	.98315	.06559	.99209	.033056	2.9104E-4	102.51	1.7891	
99	.98158	.062159	.99124	.033056 .031354	2.6721E-4	104.7	1.8274	
100	.98036	.05927	.99058	.029917	2.482E-4	106.61	1.8607	
101	.97965	.055683	.99017	.028118	2.2395E-4	108.46	1.8929	
102	.98031	.052022	.99045	.026262	1.9704E-4	109.22	1.9062	
103	.9824	. 049291	. 99147	.024857	1.7411E-4	108.22	1.8838	
104	.9846	.048608	.99257	.024486	1.6488E-4	106.17	1.853	
105	.98603	.0485	.99329	. 024414	1.6132E-4	104.67	1.8268	
106	.98695	.048709	.99376	.024508	1.6088E-4	103.59	1.808	
107	.98773	. 048285	. 99415	.024536	1.6059E-4	102.68	1.7921	
108	.98797	.049865	.99428	.025076	1.6629E-4	102.12	1.7824	
109	.9876	.050249	.9941	.025274	1.6935E-4	102.41	1.7874	
110	.98712	.050591	.9941 .99387	.025452	1.7238E-4	102.82	1.7946	
l iii l	.9865	.050668	.99355	.025498	1.7402E-4	103.45	1.8956	
112	.98577	.0507	.99319	.025524	1.7564E-4	104.21	1.8188	
113	.98502	.050375	.99281	.02537	1.7508E-4	105.1	1.8344	
114	.98443	.049958	.9925	.025168	1.7367E-4	105.86	1.8477	
115	.984	.049469	.99228	.024927	1.7153E-4	106.49	1.8586	
116	.98369	.049125	.99212	.024758	1.7007E-4	106.94	1.8665	
i i i	.98343	.048924	. 99 199	.02466	1.6941E-4	107.29	1.8726	
118	.98271	.049133	.99163	.024774	1.723SE-4	107.96	1.8343	
119	.98173	.048542	.99113	.024488	1.711E-4	109.22	1.9062	
120	.98136	.047692	.99093	.024064	1.6683E-4	109.96	1.9192	
122	.98064	.047368	99056	.02391	1.6674E-4	110.85	1.9348	

Table IV (continued). Dielectric Function and Optical Properties of Aluminum

Energy Dielectric Function		Function	Refractiv	e Index	Reflectivity			
eγ	ε ₁	€ ₂	, n	k	R	θ (degrees)	θ (radians)	
124	.97901	.046899	.98973	.023693	1.6839E-4	112.75	1.9678	
126	.9 77	.045553	.9887	.023037	1.6644E-4	115.46	2.0152	
128	.97541	.04327	.98787	.021901	1.5858E-4	118.35	2.0655	
130	.97458	.040695	.98742	.020607	1.4754E-4	120.8	2.1084	
132	. 9 7449	.038093	.98735	.019291	1.3472E-4	122.7	2.1415	
134	.97519	.035799	.98768	.018123	1.2152E-4	123.68	2.1586	
136	.97595	. 034553	.98806	.017485	1.1344E-4	123.83	2.1613	
138	.97653	.033239	.98834	.016816	1.0591E-4	124.26	2.1687	
140	.97719	.032247	.98866	.016308	9.9739E-5	124.33	2.17	
142	.97775	.031516	.98894	.015934	9.5094E-5	124.3	2.1695	
144	.97806	.030932	.98909	.015637	9.1861E-5	124.45	2.172	
146	.97834	.030153	.98923	.015241	8.8018E-5	124.81	2.1784	
146	.97879	.029505	.98945	.01491	8.4281E-5	124.85	2.1791	
150	. 9 7907	.029245	.98959	.014776	8.2529E-5	124.74	2.1771	
152	.97912	.02886	.98961	.014581	8.0965E-5	125.05	2.1825	
154	.97914	.028458	.98962 ⁻	.014378	7.9441E-5	125.41	2.1889	
156	.97904	.028143	.98957	.01422	7.8578E-5	125.86	2.1966	
158	.97878	.027716	.98943	.014006	7.7777E-5	126.63	2.2101	
160	.97848	.027176	.98928	.013735	7.6728E-5	127.58	2.2268	
162	.97807	.026625	.98907	.01346	7.6005E-5	128.7	2.2463	
164	.97758	.025778	.98881	.013035	7.4597E-5	130.26	2.2735	
166	.97712	.024699	.98857	.012492	7.2483E-5	132.09	2.3054	
168	.97704	.023151	.98852	.01171	6.7988E-5	134.09	2.3403	
178	.97763	.021736	.98831	.010991	6.218E-5	135.19	2.3595	
172	.9783	.021063	.98915	.010647	5.8413E-5	135.24	2.3604	
174	.97882	.020357	.98941	.010287	5.5093E-5	135.54	2.3657	
176	.97941	.019873	.9897	.01004	5.2245E-5	135.44	2.3638	
	.97963	.019745	.93981	.0099741	5.1335E-5	135.32	2.3617	
178	.97973	.019128	.98986	.009662	4.9542E-5	135.1	2.3755	
180	.98034	.017906	. 550 16	.009042	4.5075E-5	137.15	2.3938	
185	.98095	.016795	.99047	.0084783	4.1087E-5	138.11	2.4105	
190			.99074	0070235	3.7764E-5	138.97	2.4255	
195	.9815	.015339	.99099	.0079935 .0075198	3.4754E-5	139.94	2.4425	
200	.982	.014904	.99099	.006676	2.9602E-5	141.77	2.4744	
210	.98296	.013238	.99191		2.5412E-5	143.5	2.5046	
220	.98385	.0118	.99232	.0059481	2.3412E-3 2.1887E-5	145.28	2.5357	
230	.98468 00574	.010495	.99232	.0052881	1.8974E-5	146.93	2.5357 2.5345	
240	.98546	.0093691	.99271	.0047 189		148.68	2.5545 2.5949	
250	.98619	.0083246		.0041913	1.6478E-5	150.4		
260	.9859	.0073762	.99344	.0037125	1.4313E-5	150.4	2.625	
270	.9876	.0065162	.99379	.0032785	1.2417E-5	152.09	2.6545	
280	.92834	.0057075	.99416	.0028705	1.0557E-5		2.6835	
290 300	.98912 .98978	.0051024 .0046841	.99455 .99488	.0025652 .0023541	9.1246E-6 7.9807E-6	154.73 155.24	2.7005 2.7095	

Table IV (continued). Dielectric Function and Optical Properties of Aluminum

eV ε1 ε2 n k R 310 .99036 .0042426 .99517 .0021316 7.0004E-6 320 .99093 .0039202 .99546 .001969 6.1578E-6 330 .99138 .0038804 .99586 .0014842 5.5383E-6 340 .99174 .0034197 .99586 .001717 5.0367E-6 350 .99206 .0031297 .99602 .0015711 4.5888E-6 360 .99239 .0028304 .99619 .0014206 4.1518E-6 370 .99273 .0025299 .99636 .0012696 3.7304E-6 380 .9931 .0022719 .99654 .0011399 3.5211E-6 400 .99378 .0019393 .99689 9.7268E-4 2.6697E-6 420 .9943 .0016764 .99715 8.406E-4 2.2189E-6 440 .99476 .0014294 .99738 7.1658E-4 1.8535E-6 450 .99577 .00121	θ (degrees 156.12 156.51 156.77 157.41 158.4 159.52	0) (radians 2.7249 2.7317 2.7362 2.7473
320 .99093 .0039202 .99546 .001969 6.1578E-6 330 .99138 .0036804 .99568 .0018482 5.5383E-6 340 .99174 .0034197 .99568 .001717 5.0367E-6 350 .99206 .0031297 .99602 .0015711 4.5888E-6 360 .99239 .0028304 .99619 .0014206 4.1518E-6 370 .99273 .0022719 .99636 .0011399 3.3211E-6 380 .9931 .0022719 .99636 .0011399 3.3211E-6 390 .99346 .0020768 .99673 .0010418 2.9621E-6 420 .9943 .0016764 .99715 8.406E-4 2.2189E-6 440 .99476 .0014294 .99738 7.1658E-4 1.8535E-6 440 .99517 .0012151 .99758 6.0902E-4 1.5579E-6 480 .99557 .0010221 .99775 5.1219E-4 1.3088E-6 500 <td< th=""><th>156.51 156.77 157.41 158.4</th><th>2.7317 2.7362 2.7473</th></td<>	156.51 156.77 157.41 158.4	2.7317 2.7362 2.7473
320 .99093 .0039202 .99566 .001969 6.1578E-6 330 .99138 .0036804 .99568 .0018482 5.5383E-6 340 .99174 .0034197 .99586 .001717 5.0367E-6 350 .99206 .0031297 .99602 .0015711 4.588E-6 360 .99239 .0028304 .99619 .0014206 4.1518E-6 370 .99273 .0022719 .99654 .0011399 3.7304E-6 380 .99311 .0022719 .99654 .0011399 3.3211E-6 390 .99346 .0020768 .99673 .0010418 2.9621E-6 420 .9943 .0016764 .99715 8.406E-4 2.2189E-6 440 .99476 .0014294 .99738 7.1658E-4 1.8535E-6 440 .99517 .001215 .99778 6.0902E-4 1.5579E-6 460 .99517 .001221 .99775 6.194E-4 .99876 1.1024E-6 <td< td=""><td>156.77 157.41 158.4</td><td>2.7362 2.7473</td></td<>	156.77 157.41 158.4	2.7362 2.7473
199174 1034197 199586 1001717 15.0367E-6 350	157.41 158.4	2.7473
350 .99206 .0031297 .99602 .0015711 4.5888E-6 360 .99239 .0028304 .99619 .0014206 4.1518E-6 370 .99273 .0025299 .99636 .0012696 3.7304E-6 380 .9931 .0022719 .99654 .0011399 3.3211E-6 390 .99346 .0020768 .99673 .0010418 2.9621E-6 400 .99378 .0019393 .99689 9.7268E-4 2.6697E-6 420 .9943 .0016764 .99715 8.406E-4 2.2189E-6 440 .99476 .0014294 .99738 7.1658E-4 1.8535E-6 460 .99517 .0012151 .99758 6.0902E-4 1.5579E-6 480 .99555 .0010221 .99777 5.1219E-4 1.3088E-6 500 .9959 8.6947E-4 .9981 3.7662E-4 9.3663E-7 540 .99649 6.5099E-4 .99837 2.8143E-4 6.8211E-7 580	158.4	2.7473
360 .99239 .0028304 .99619 .0014206 4.1518E-6 370 .99273 .0025299 .99636 .0012696 3.7304E-6 380 .9931 .0022719 .99654 .0011399 3.3211E-6 390 .99346 .0020768 .99673 .0010418 2.9621E-6 400 .99378 .0019393 .99689 9.7268E-4 2.6697E-6 420 .9943 .0016764 .99715 8.406E-4 2.2189E-6 440 .99476 .0014294 .99738 7.1658E-4 1.8535E-6 460 .99517 .0012151 .99758 6.0902E-4 1.5579E-6 480 .99555 .0010221 .99777 5.1219E-4 1.3088E-6 500 .9959 8.6947E-4 .9975 4.3563E-4 1.1024E-6 520 .99621 7.5181E-4 .9981 3.7662E-4 1.3088E-6 500 .99675 5.6194E-4 .99837 2.8143E-4 5.9108E-7 560	158.4 159.52	
370 .99273 .0025299 .99636 .0012696 3.7304E-6 380 .9931 .0022719 .99654 .0011399 3.3211E-6 390 .99346 .0020768 .99673 .0010418 2.9621E-6 400 .99378 .0019393 .99689 9.7268E-4 2.6697E-6 420 .9943 .0016764 .99715 8.406E-4 2.2189E-6 440 .99476 .0014294 .99738 7.1658E-4 1.8535E-6 460 .99577 .0012151 .99758 6.0902E-4 1.5579E-6 480 .99555 .0010221 .99777 5.1219E-4 1.5579E-6 500 .9959 8.6947E-4 .99775 4.3563E-4 1.1024E-6 520 .99621 7.5181E-4 .9981 3.7662E-4 7.993E-7 540 .99649 6.5099E-4 .99837 2.8143E-4 6.8211E-7 580 .99675 5.6194E-4 .99837 2.8143E-4 6.8211E-7 580	159.52	2.7645
380 .9931 .0022719 .99654 .0011399 3.3211E-6 390 .99346 .0020768 .99673 .0010418 2.9621E-6 400 .99378 .0019393 .99689 9.7268E-4 2.6697E-6 420 .9943 .0016764 .99715 8.406E-4 2.2189E-6 440 .99476 .0014294 .99738 7.1658E-4 1.8535E-6 460 .99517 .0012151 .99758 6.0902E-4 1.5579E-6 480 .99555 .0010221 .99777 5.1219E-4 1.3088E-6 500 .9959 8.6947E-4 .99795 4.3563E-4 1.1024E-6 520 .99621 7.5181E-4 .9981 3.7662E-4 1.3088E-6 520 .99649 6.5099E-4 .99824 3.2607E-4 7.993E-7 560 .99675 5.6194E-4 .99837 2.8143E-4 6.8211E-7 580 .99697 4.9781E-4 .99858 2.2071E-4 5.1415E-7 600	444 94	2.7841
390 .99346 .0020768 .99673 .0010418 2.9621E-6 400 .99378 .0019393 .99689 9.7268E-4 2.6697E-6 420 .9943 .0016764 .99715 8.406E-4 2.2189E-6 440 .99476 .0014294 .99738 7.1658E-4 1.8535E-6 460 .99517 .0012151 .99758 6.0902E-4 1.5579E-6 480 .99555 .0010221 .99777 5.1219E-4 1.3088E-6 500 .9959 8.6947E-4 .99775 4.3563E-4 1.1024E-6 520 .99621 7.5181E-4 .9981 3.7662E-4 9.3663E-7 540 .99649 6.5099E-4 .99824 3.2607E-4 9.3663E-7 540 .99649 6.5099E-4 .99837 2.8143E-4 6.8211E-7 580 .99675 5.6194E-4 .99837 2.8143E-4 6.8211E-7 580 .99717 4.408E-4 .99858 2.2071E-4 5.1415E-7 620 <td>160.74</td> <td>2.8054</td>	160.74	2.8054
400 .99378 .0019393 .99689 9.7268E-4 2.6697E-6 420 .9943 .0016764 .99715 8.406E-4 2.2189E-6 440 .99476 .0014294 .99738 7.1658E-4 1.8535E-6 460 .99517 .0012151 .99758 6.0902E-4 1.5579E-6 480 .99555 .0010221 .99777 5.1219E-4 1.3088E-6 500 .9959 8.6947E-4 .99795 4.3563E-4 1.1024E-6 520 .99621 7.5181E-4 .9981 3.7662E-4 9.3663E-7 540 .99649 6.5099E-4 .99837 2.8143E-4 6.8211E-7 580 .99697 4.9781E-4 .99848 2.4928E-4 5.9108E-7 600 .99717 4.408E-4 .99858 2.2071E-4 5.1415E-7 620 .99736 3.8461E-4 .99868 1.9256E-4 4.4602E-7 640 .99753 3.4088E-4 .99876 1.7065E-4 3.8953E-7 660 </td <td>161.71</td> <td>2.8224</td>	161.71	2.8224
420 .9943 .0016764 .99715 8.406E-4 2.2189E-6 440 .99476 .0014294 .99738 7.1658E-4 1.8535E-6 460 .99517 .0012151 .99758 6.0902E-4 1.5579E-6 480 .99555 .0010221 .99777 5.1219E-4 1.3088E-6 500 .9959 8.6947E-4 .99795 4.3563E-4 1.1024E-6 520 .9962; 7.5181E-4 .9981 3.7662E-4 9.3663E-7 540 .99649 6.5099E-4 .99824 3.2607E-4 7.993E-7 560 .99675 5.6194E-4 .99837 2.8143E-4 6.8211E-7 580 .99697 4.9781E-4 .99848 2.4928E-4 5.9108E-7 600 .99717 4.408E-4 .99858 2.2071E-4 5.1415E-7 620 .99736 3.8461E-4 .99868 1.9256E-4 4.4602E-7 640 .99753 3.4088E-4 .99876 1.7065E-4 3.8953E-7 660 </td <td>162.32 162.63</td> <td>2.8331 2.8384</td>	162.32 162.63	2.8331 2.8384
440 .99476 .0014294 .99738 7.1658E-4 1.8535E-6 460 .99517 .0012151 .99758 6.0902E-4 1.5579E-6 480 .99555 .0010221 .99777 5.1219E-4 1.3088E-6 500 .9959 8.6947E-4 .99775 4.3563E-4 1.1024E-6 520 .99621 7.5181E-4 .9981 3.7662E-4 9.3663E-7 540 .99649 6.5099E-4 .99824 3.2607E-4 7.993E-7 560 .99675 5.6194E-4 .99837 2.8143E-4 6.8211E-7 580 .99697 4.9781E-4 .99848 2.4928E-4 5.9108E-7 600 .99717 4.408E-4 .99858 2.2071E-4 5.1415E-7 620 .99736 3.8461E-4 .99868 1.925E-4 5.1415E-7 640 .99753 3.4088E-4 .99876 1.7065E-4 3.8953E-7 680 .99782 2.5978E-4 .99891 1.3003E-4 3.019E-7 700<	163.56	
460 .99517 .0012151 .99758 6.0902E-4 1.5579E-6 480 .99555 .0010221 .99777 5.1219E-4 1.3088E-6 500 .9959 8.6947E-4 .99795 4.3563E-4 1.1024E-6 520 .9962; 7.5181E-4 .9981 3.7662E-4 9.3663E-7 540 .99649 6.5099E-4 .99824 3.2607E-4 7.993E-7 560 .99675 5.6194E-4 .99837 2.8143E-4 6.8211E-7 580 .99697 4.9781E-4 .99848 2.4928E-4 5.9108E-7 600 .99717 4.408E-4 .99858 2.2071E-4 5.1415E-7 620 .99736 3.8461E-4 .99868 1.9256E-4 4.4602E-7 640 .99753 3.4088E-4 .99876 1.7065E-4 3.8953E-7 660 .99782 2.5978E-4 .99891 1.3003E-4 3.019E-7 700 .99796 2.363E-4 .99898 1.1827E-4 2.6413E-7 700	164.7	2.8547 2.8746
480 .99555 .0010221 .99777 5.1219E-4 1.3088E-6 500 .9959 8.6947E-4 .99795 4.3563E-4 1.1024E-6 520 .99621 7.5181E-4 .9981 3.7662E-4 9.3663E-7 540 .99649 6.5099E-4 .99824 3.2607E-4 7.993E-7 560 .99675 5.6194E-4 .99837 2.8143E-4 6.8211E-7 580 .99697 4.9781E-4 .99848 2.4928E-4 5.9108E-7 600 .99717 4.408E-4 .99858 2.2071E-4 5.1415E-7 620 .99736 3.8461E-4 .99868 1.9256E-4 4.4602E-7 640 .99753 3.4088E-4 .99876 1.7065E-4 3.8953E-7 660 .99768 2.9947E-4 .99884 1.4991E-4 3.428E-7 700 .99782 2.363E-4 .99891 1.3003E-4 2.6413E-7 720 .99808 2.1825E-4 .99904 1.0923E-4 2.3383E-7 70	165.84	2.8945
500 .9959 8.6947E-4 .99795 4.3563E-4 1.1024E-6 520 .99621 7.5181E-4 .9981 3.7662E-4 9.3663E-7 540 .99649 6.5099E-4 .99824 3.2607E-4 7.993E-7 560 .99675 5.6194E-4 .99837 2.8143E-4 6.8211E-7 580 .99697 4.9781E-4 .99848 2.4928E-4 5.9108E-7 600 .99717 4.408E-4 .99858 2.2071E-4 5.1415E-7 620 .99736 3.8461E-4 .99868 1.9256E-4 4.4602E-7 640 .99753 3.4088E-4 .99876 1.7065E-4 3.8953E-7 660 .99768 2.9947E-4 .99884 1.4991E-4 3.428E-7 680 .99782 2.5978E-4 .99891 1.3003E-4 3.019E-7 700 .99808 2.1825E-4 .99904 1.0923E-4 2.3383E-7 740 .99818 1.9743E-4 .99909 9.8805E-5 2.0984E-7 7	167.03	2.9153
520 .9962; 7.5181E-4 .9981 3.7662E-4 9.3663E-7 540 .99649 6.5099E-4 .99824 3.2607E-4 7.993E-7 560 .99675 5.6194E-4 .99837 2.8143E-4 6.8211E-7 580 .99697 4.9781E-4 .99848 2.4928E-4 5.9108E-7 600 .99717 4.408E-4 .99858 2.2071E-4 5.1415E-7 620 .99736 3.8461E-4 .99868 1.9256E-4 4.4602E-7 640 .99753 3.408E-4 .99876 1.7065E-4 3.8953E-7 660 .99768 2.9947E-4 .99884 1.4991E-4 3.428E-7 680 .99782 2.5978E-4 .99891 1.3003E-4 3.019E-7 700 .99786 2.1825E-4 .99898 1.1827E-4 2.6413E-7 740 .99818 1.9743E-4 .99909 9.8805E-5 2.0984E-7 780 .99828 1.7978E-4 .99918 8.1301E-5 1.6798E-7 8	168	2.9322
540 .99649 6.5099E-4 .99824 3.2607E-4 7.993E-7 560 .99675 5.6194E-4 .99837 2.8143E-4 6.8211E-7 580 .99697 4.9781E-4 .99848 2.4928E-4 5.9108E-7 600 .99717 4.408E-4 .99858 2.2071E-4 5.1415E-7 620 .99736 3.8461E-4 .99868 1.9256E-4 4.4602E-7 640 .99753 3.4088E-4 .99876 1.7065E-4 3.8953E-7 660 .99768 2.9947E-4 .99884 1.4991E-4 3.428E-7 680 .99782 2.5978E-4 .99891 1.3003E-4 3.019E-7 700 .99796 2.363E-4 .99898 1.1827E-4 2.6413E-7 720 .99808 2.1825E-4 .99904 1.0923E-4 2.3383E-7 740 .99828 1.7978E-4 .99914 8.9967E-5 1.8724E-7 780 .99837 1.6247E-4 .99918 8.1301E-5 1.5173E-7	168.76	2.9454
560 .99675 5.6194E-4 .99837 2.8143E-4 6.8211E-7 580 .99697 4.9781E-4 .99848 2.4928E-4 5.9108E-7 600 .99717 4.408E-4 .99858 2.2071E-4 5.1415E-7 620 .99736 3.8461E-4 .99868 1.9256E-4 4.4602E-7 640 .99753 3.4088E-4 .99876 1.7065E-4 3.8953E-7 660 .99768 2.9947E-4 .99884 1.4991E-4 3.428E-7 680 .99782 2.5978E-4 .99891 1.3003E-4 3.019E-7 700 .99796 2.363E-4 .99898 1.1827E-4 2.6413E-7 720 .99808 2.1825E-4 .99904 1.0923E-4 2.3383E-7 740 .99818 1.9743E-4 .99909 9.8805E-5 2.0984E-7 780 .99837 1.6247E-4 .99918 8.1301E-5 1.6798E-7 800 .99853 1.3122E-4 .99926 6.5658E-5 1.5173E-7 <td< td=""><td>169.47</td><td>2 9579</td></td<>	169.47	2 9579
580 .99697 4.9781E-4 .99848 2.4928E-4 5.9108E-7 600 .99717 4.408E-4 .99858 2.2071E-4 5.1415E-7 620 .99736 3.8461E-4 .99868 1.9256E-4 4.4602E-7 640 .99753 3.4088E-4 .99876 1.7065E-4 3.8953E-7 660 .99768 2.9947E-4 .99884 1.4991E-4 3.428E-7 680 .99782 2.5978E-4 .99891 1.3003E-4 3.019E-7 700 .99796 2.363E-4 .99898 1.1827E-4 2.6413E-7 720 .99808 2.1825E-4 .99904 1.0923E-4 2.3383E-7 740 .99818 1.9743E-4 .99909 9.8805E-5 2.0984E-7 760 .99828 1.7978E-4 .99914 8.9967E-5 1.8724E-7 780 .99837 1.6247E-4 .99918 8.1301E-5 1.6798E-7 800 .99853 1.3122E-4 .99922 7.3162E-5 1.5173E-7 <td< td=""><td>170.17</td><td>2.9579 2.9701</td></td<>	170.17	2.9579 2.9701
600 .99717 4.408E-4 .99858 2.2071E-4 5.1415E-7 620 .99736 3.8461E-4 .99868 1.9256E-4 4.4602E-7 640 .99753 3.4088E-4 .99876 1.7065E-4 3.8953E-7 660 .99768 2.9947E-4 .99884 1.4991E-4 3.428E-7 680 .99782 2.5978E-4 .99891 1.3003E-4 3.019E-7 700 .99796 2.363E-4 .99898 1.1827E-4 2.6413E-7 720 .99808 2.1825E-4 .99904 1.0923E-4 2.3383E-7 740 .99818 1.9743E-4 .99909 9.8805E-5 2.0984E-7 760 .99828 1.7978E-4 .99914 8.9967E-5 1.8724E-7 780 .99837 1.6247E-4 .99918 8.1301E-5 1.6798E-7 80 .99853 1.3122E-4 .99922 7.3162E-5 1.5173E-7 820 .99851 1.194E-4 .9993 5.9742E-5 1.2182E-7	170.66	2.9785
620	171.13	2.9869
640 .99753 3.4088E-4 .99876 1.7065E-4 3.8953E-7 660 .99768 2.9947E-4 .99884 1.4991E-4 3.428E-7 680 .99782 2.5978E-4 .99891 1.3003E-4 3.019E-7 700 .99796 2.363E-4 .99898 1.1827E-4 2.6413E-7 720 .99808 2.1825E-4 .99904 1.0923E-4 2.3383E-7 740 .99818 1.9743E-4 .99909 9.8805E-5 2.0984E-7 760 .99828 1.7978E-4 .99914 8.9967E-5 1.8724E-7 780 .99837 1.6247E-4 .99918 8.1301E-5 1.6798E-7 800 .99845 1.4621E-4 .99922 7.3162E-5 1.5173E-7 820 .99853 1.3122E-4 .99926 6.5658E-5 1.3633E-7 840 .99861 1.194E-4 .9993 5.9742E-5 1.2182E-7	171.7	2.9967
660 .99768 2.9947E-4 .99884 1.4991E-4 3.428E-7 680 .99782 2.5978E-4 .99891 1.3003E-4 3.019E-7 700 .99796 2.363E-4 .99898 1.1827E-4 2.6413E-7 720 .99808 2.1825E-4 .99904 1.0923E-4 2.3383E-7 740 .99818 1.9743E-4 .99909 9.8805E-5 2.0984E-7 760 .99828 1.7978E-4 .99914 8.9967E-5 1.8724E-7 780 .99837 1.6247E-4 .99918 8.1301E-5 1.6798E-7 800 .99845 1.4621E-4 .99922 7.3162E-5 1.5173E-7 820 .99853 1.3122E-4 .99926 6.5658E-5 1.3633E-7 840 .99861 1.194E-4 .9993 5.9742E-5 1.2182E-7	172.13	3.0043
680 .99782 2.5978E-4 .99891 1.3003E-4 3.019E-7 700 .99796 2.363E-4 .99898 1.1827E-4 2.6413E-7 720 .99808 2.1825E-4 .99904 1.0923E-4 2.3383E-7 740 .99818 1.9743E-4 .99909 9.8805E-5 2.0984E-7 760 .99828 1.7978E-4 .99914 8.9967E-5 1.8724E-7 780 .99837 1.6247E-4 .99918 8.1301E-5 1.6798E-7 800 .99845 1.362E-4 .99922 7.3162E-5 1.5173E-7 820 .99853 1.3122E-4 .99926 6.5658E-5 1.3633E-7 840 .99861 1.194E-4 .9993 5.9742E-5 1.2182E-7	172.64	3.0131
700 .99796 2.363E-4 .99898 1.1827E-4 2.6413E-7 720 .99808 2.1825E-4 .99904 1.0923E-4 2.3383E-7 740 .99818 1.9743E-4 .99909 9.8805E-5 2.0984E-7 760 .99828 1.7978E-4 .99914 8.9967E-5 1.8724E-7 780 .99837 1.6247E-4 .99918 8.1301E-5 1.6798E-7 800 .99845 1.4621E-4 .99922 7.3162E-5 1.5173E-7 820 .99853 1.3122E-4 .99926 6.5658E-5 1.3633E-7 840 .99861 1.194E-4 .9993 5.9742E-5 1.2182E-7	173.2	3.0229
720 .99808 2.1825E-4 .99904 1.0923E-4 2.3383E-7 740 .99818 1.9743E-4 .99909 9.8805E-5 2.0984E-7 760 .99828 1.7978E-4 .99914 8.9967E-5 1.8724E-7 780 .99837 1.6247E-4 .99918 8.1301E-5 1.6798E-7 800 .99845 1.4621E-4 .99922 7.3162E-5 1.5173E-7 820 .99853 1.3122E-4 .99926 6.5658E-5 1.3633E-7 840 .99861 1.194E-4 .9993 5.9742E-5 1.2182E-7	173.39	3.0262
740 .99818 1.9743E-4 .99909 9.8805E-5 2.0984E-7 760 .99828 1.7978E-4 .99914 8.9967E-5 1.8724E-7 780 .99837 1.6247E-4 .99918 8.1301E-5 1.6798E-7 800 .99845 1.4621E-4 .99922 7.3162E-5 1.5173E-7 820 .99853 1.3122E-4 .99926 6.5658E-5 1.3633E-7 840 .99861 1.194E-4 .9993 5.9742E-5 1.2182E-7	173.51	3.0283
760 .99828 1.7978E-4 .99914 8.9967E-5 1.8724E-7 780 .99837 1.6247E-4 .99918 8.1301E-5 1.6798E-7 800 .99845 1.4621E-4 .99922 7.3162E-5 1.5173E-7 820 .99853 1.3122E-4 .99926 6.5658E-5 1.3633E-7 840 .99861 1.194E-4 .9993 5.9742E-5 1.2182E-7	173.8	3.0334
780	174.03	3.0374
800 .99845 1.4621E-4 .99922 7.3162E-5 1.5173E-7 820 .99853 1.3122E-4 .99926 6.5658E-5 1.3633E-7 840 .99861 1.194E-4 .9993 5.9742E-5 1.2182E-7	174.3	3.0422
820 .99853 1.3122E-4 .99926 6.5658E-5 1.3633E-7 840 .99861 1.194E-4 .9993 5.9742E-5 1.2182E-7	174.61	3.0475
840 .99861 1.194E-4 .9993 5.9742E-5 1.2182E-7	174.9	3.0525
860 .99868 1.1243E-4 .99934 5.6252E-5 1.0983E-7	175.09	3.0558
	175.13	3.0566
880 .99874 1.0364E-4 .99937 5.1853E-5 1.0002E-7	175.29	3.0595
900 .99879 9.3552E-5 .99939 4.6804E-5 9.2165E-8	175.58	3.0644
920 .99885 8.3934E-5 .99942 4.1991E-5 8.3192E-8	175.82	3.0687
940 .9989 7.6636E-5 .99945 3.8339E-5 7.6076E-8	176.01	3.072
960 .99895 7.2676E-5 .99947 3.6357E-5 6.9309E-8	176.04	3.0725
980 .999 6.7984E-5 .9995 3.4009E-5 6.2852E-8	176.11	3.0737
1000 .99904 6.222E-5 .99952 3.1125E-5 5.7898E-8	176.29	3.0768
1050 .99914 5.1058E-5 .99957 2.554E-5 4.6428E-8	176.6	3.0823
1100 .99922 4.3115E-5 .99961 2.1566E-5 3.8171E-8 1150 .9993 3.6069E-5 .99965 1.8041E-5 3.0728E-8	176.83 177.05	3.0864 3.0901

Table IV (continued). Dielectric Function and Optical Properties of Aluminum

Energy	Dielectric Function		Refractive Index		Reflectivity			
eY	ε ₁	ε ₂	n	k	R	θ (degrees)	θ (radians)	
1200	.99936	3.119E-5	.99968	1.56E-5	2.5677E-8	177.21	3.0929	
1250	.99942	2.6992E-5	.99971	1.35E-5	2.1083E-8	177.33	3.0951	
1300	.99947	2.3194E-5	.99973	1.16E-5	1.7599E-8	177.49	3.0978	
1350	.99952	1.9995E-5	.99976	9.9999E-6	1.4432E- 8	177.61	3.1	
1400	.99957	1.7796E-5	.99978	8.8999E-6	1.1581E-8	177.63	3.1002	
1450	.99961	1.5597E-5	.9998	7.8E-6	9.5252E-9	177.71	3.1016	
1500	.99966	1.3558E-5	.99983	6.7802E-6	7.23S9E-9	177.72	3.1017	
1510	.99968	1.3238E-5	.99984	6.6201E-6	6.413E-9	177.63	3.1002	
1520	.99959	1.2898E-5	.99984	6.45E-6	6.0185E-9	177.62	3.1	
1530	.99971	1.2598E-5	.99985	6.2999E-6	5.2677E-9	177.51 177.29	3.0982	
1540	.99974	1.2298E-5	.99987	6.1498E-6	4.2356E-9	177.29	3.0943	
1542	.99974	1.2238E-5	.99987	6.1198E-6	4.2355E-9	177.3	3.0946	
1544	.99975	1.2178E-5	.99987	6.0898E-6	3.9165E-9	177.21	3.0929	
1546	.99976	1.2119E-5	.99988	6.0602E-6	3.61E-9	177.11	3.0911	
1548	.99977	1.2059E-5	.99988	6.0302E-6	3.3161E-9	177	3.0892	
1549	.99977	1.20198-5	.99988	6.0102E-6	3.316E-9	177.01	3.0894	
1550	.99978	1.1999E-5	.99989	6.0002E-6	3.0347E-9	176.88	3.0871	
1551	.99979	1.1979E-5	.99989	5.9901E-6	2.7658E-9	176.73	3.0846	
1552	.9998	1. 19398-5	.9999	5.9701E-6	2.5094E-9	176.58	3.082	
1553	.99982	1.65728-5	.99991	8.2867E-6	2.0425E-9	174.74	3.0498	
1554	.99983	3.9355E-5	.99991	1.9679E-5	1.9034E-9	166.96	2.9141	
1555	.99983	5.9093E-5	.99991	2.95498-5	2.0248E-9	160.83	2.807	
1556	.99982	6.2094E-5	.99991	3. 105E-5	2.2664E-9	160.97	2.8094	
1557	.99983	5.8503E-5	.99991	2.9304E-5	2.02126-9	160.77	2 8096	
1558	.99984	6.5831E-5	.99992	3.2918E-5	1.87128-9	160.98 157.63	2.8096 2.7512	
1559	.99985	8.2294E-5	.99992	4.115E-5	1.8298E-9	151.25	2.6398	
1560	.99985	1.0003E-4	.99992	5.0019E-5	2.0319E-9	146.3	2.5534	
			00002	6.0995E-5	2.3365E-9	140.3	2.4538	
1561	.99985	1.2198E-4	.99992 .99992	7.185E-5	2.6974E-9	140.88 136.22	2.3775	
1562	.99985	1.4371E-4	.99792 .99791 .9999	8.1817E-5	3.4801E-9	136.09	2.3752	
1563	.95983	1.6362E-4	.77771	8.54538-5	4.0822E-9	138.03	2.409	
1564	.99981	1.7089E-4	.99989	8.4307E-5	4.5338E-9	141.24	2.465	
1565	.99979	1.686E-4	.99989	8.2949E-5	4.7458E-9	142.98	2.4955	
1566	.99978	1.6528E-4	.77767		4.741E-9	142.70	2.4961	
1567	.99978	1.6565E-4	.99989 .99988	8.2834E-5 8.2079E-5	4.9913E-9	143.02 144.48	2.5217	
1568	.99977	1.6414E-4	.77750 00000	9 1975_5	5.27498-9	145.71	2.5431	
1569	.99976	1.63648-4	.99988 .99928	8.183E-5 8.112E-5	5.246E-9	145.71	2.5471	
1570	.99976	1.6222E-4	.777 <i>0</i> 5	0.112t-0	J.240177 6 82036 0	143.74 160.66	2.34/1	
1575	.99974	1.5969E-4	.99987 .99986	7.9855E-5	5.8203E-9 6.0979E-9	148.44	2.5907	
1580	.99973	1.5597E-4	. 77785	7.8496E-5		149.82	2.6149	
1585	.99972	1.5438E-4	.99786	7.7201E-5	6.3914E-9	151.13	2.6376	
1590	-99971	1.5197E-4	.99985	7.5996E-5	6.7016E-9	152.34	2.6588	
1595	.99971	1.4955E-4	.99985	7.4786E-5	6.656E-9	152.72	2.6654	
1600	.9997	1.4762E-4	.99985	7.3321E-5	6.9891E-9	153.8	2.6842	

Table IV (continued). Dielectric Function and Optical Properties of Alumiaum

Energy	Dielectric	Function	Refractive Index		Reflectivity		
eV	ϵ_1	€2	n	k	R	6 (degrees	θ)(radians)
1610	.9997	1.4434E-4	.99985	7.2131E-5	6.9292E-9	154.3	2.6931
1620	.99969	1.4884E-4	.99984	7.0431E-5	7.2482E-9	155.56	2.7151
1630	.99969	1.3757E-4	.99984	6.8796E-5	7 . 19 13E-9	156.07	2.7239
1640	.99968	1.342E-4	.99984	6.7111E-5	7.528E-9	157.24	2.7444
1650	.99968	1.3093E-4	.99984	6.5475E-5	7.4738E- 9	157.74	2.7532
1660	.99968	1.2769E-4	.99984	6.3855E-5	7.4214E-9	158.24	2.7619
1670	.99968	1.2448E-4	.99984	6.225E-5	7.370SE-9	158.74	2.7705
1680	.99968	1.2135E-4	.99984	6.0685E-5	7.3227E-9	159.23	2.7791
1690	.99968	1.186E-4	.99984	5.9309E-5	7.2815E-9	159.66	2.7856
1700	.99968	1.1586E-4	.99984	5.79395-5	7.2413E-9	160.09	2.7942
1750	.99969	1.0421E-4	.99984	5.2113E-5	6.6871E-9	161.42	2.8172
1800	.9997	9.4264E-5	.99985	4.7139E-5	6.1822E-9	162.55	2.8371
1850	.99971	8.5018E-5	.99985	4.2515E-5	5.7097E-9	163.66	2.8564
1900	.99972	7.6913E-5	.99986	3.84626-5	5.2712E-9	164.64	2.8735
1950	.99973	7.014E-5	.99986	3.5075E-5	4.865E-9	165.44	2.8874
2000	.99974	6.4056E-5	.99987	3.2032E-5	4.4826E-9	166.16	2.9
2200	.99978	4.2995E-5	99989	2.15E-5	3.1412E-9	168.94	2.9486
2400	99981	3. 1597E-5	.9999	1.58E-5	2.3191E-9	170.56	2.9768
2600	.99984	2.3398E-5	.99992	1.17E-5	1.6345E-9	171.68	2.9964
2800	.99986	1.7999E-5	.99993	9.0001E-6	1.2454E-9	172.67	3.0137
3000	.99988	1.4199E-5	.99994	7.09998-6	9.1271E-10	173.25	3.0238
3200	.99989	1.0999E-5	.99994	5.4998E-6	7.639E-10	174.29	3.0419
3400	.9999	8.8996E-6	.99995	4.45E-6	6.3001E-10	174.91	3.0528
3600	.99991	7.1997E-6	.99995	3.6E-6	5.0954E-10	175.43	3.0618
3800	99992	5.8998E-6	.99996	2.95E-6	4.0221E-10	175.78	3.068
4000	99993	4.8998E-6	.99996	2.45E-6	3.0777E-10	176	3.0717
4200	99994	4.0999E-6	.99997	2.05E-6	2.2606E-10	176.09	3.0734
5000	.99996	2.08E-6	.99998	1.04E-6	1.0027E-10	177.02	3.0376
6000	99997	1.046E-6	.99998	5.2301E-7	5.632E-11	178	3.1067
7000	.99998	5.7999E-7	99999	2.9E-7	2.5022E-11	178.34	3.1126
8000	.99998	3.4E-7	.99999	1.7E-7	2.5008E-11	179.03	3, 1246
9000	.99999	2.16E-7	99999	1.08E-7	6.253E-12	178.76	3.12
10000	99999	1.425-7	.99999	7.1E-8	6.2513E-12	179.19	3. 1274

ACKNOWLEDGMENTS

We are indebted to Professor Wayne Major of the University of Richmond for providing us with his reflectance measurement for a commercially supplied aluminum reflector and to Professor S. E. Schnatterly of the University of Virginia for helpful discussions.

REFERENCES

- 1. H. Ehrenreich, H. R. Philipp, and B. Segall, Phys. Rev. <u>132</u>, 1918 (1963).
- 2. H. R. Philipp and H. Ehrenreich, J. Appl. Phys. 35, 1416 (1964).
- C. J. Powell, J. Opt. Soc. Am. <u>60</u>, 78 (1970).
- 4. T. Sasaki and M. Inokuti, <u>Conference Digest of the Third International</u>
 <u>Conference on Vacuum Ultraviolet Radiation Physics</u>, edited by Y. Nakai,
 Phys. Soc. of Japan, Tokyo (1971), p. 2aC2-2.
- A. G. Mathewson and H. P. Myers, J. Phys. F <u>2</u>, 403 (1972).
- 6. H.-J. Hagemann, W. Gudat, and C. Kunz, J. Opt. Soc. Am. <u>65</u>, 742 (1975); and DESY Report SR 74/7, Hamburg (1974).
- 7. E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, Phys. Rev. B <u>22</u>, 1612 (1980).
- 8. See, for example, F. Wooten, <u>Optical Properties of Solids</u>, Academic Press, New York (1972) sec. 3.2.
- 9. J. N. Hodgson, Proc. Phys. Soc. London, Sec. B 68, 593 (1955).
- J. R. Beattie, Physica (Utrecht) 23, 898 (1957).
- 11. H. E. Bennett and J. M. Bennett, in <u>Optical Properties and Electronic Structure of Metals and Alloys</u>, edited by F. Abelès North-Holland, Amsterdam (1966), p. 175.
- 12. G. Dresselhaus, M. S. Dresselhaus, and D. Beaglehole, in <u>Electronic Density of States</u>, edited by L. H. Bennett, NBS Special Publication 323, National Bureau of Standards, Washington, D.C. (1971).
- 13. R. L. Benbow and D. W. Lynch, Phys. Rev. B 12, 5615 (1975).
- D. Y. Smith and B. Segall, Bull. Am. Phys. Soc. <u>26</u>, 209 (1981); D. Y. Smith, D. D. Koelling, and B. Segall, Bull. Am. Phys. Soc. <u>28</u>, 387 (1983).
- N. W. Ashcroft and K. Sturm, Phys. Rev. B <u>3</u>, 1898 (1971).

- 16. W. A. Harrison, Phys. Rev. 147, 467 (1966).
- 17. A. I. Golováshkin, A. I. Kopeliovich, and G. P. Motulevich, Zh. Eksperim. i Teor. Fiz. <u>53</u>, 2053 (1967) [English translation in Soviet Phys. JETP <u>26</u>, 1161 (1968)].
- 18. N. W. Ashcroft, Phil. Mag. 8, 2055 (1963).
- 19. D. Brust, Phys. Rev. B 2, 818 (1970).
- 20. F. Szmulowicz and B. Segall, Phys. Rev. B 24, 892 (1981).
- 21. J. Strong, Astrophys. J. <u>83</u>, 401 (1936).
- 22. L. G. Schulz, J. Opt. Soc. Am. <u>44</u>, 357 (1954); L. G. Schulz and F. R. Tangherlini, ibid. 44, 362 (1954).
- 23. I. N. Shklyarevskii and R. G. Yarovaya, Opt. Spektrosk. <u>16</u>, 85 (1964) [English translation in Opt. Spectrosc. (USSR) 16, 45 (1964)].
- 24. J. R. Beattie, Phil. Mag. 46, 235 (1955).
- 25. H. E. Bennett, M. Silver, and E. J. Ashley, J. Opt. Soc. Am. <u>53</u>, 1089 (1963).
- 26. L. W. Bos and D. W. Lynch, Phys. Rev. Lett. 25, 156 (1970).
- 27. O. Hunderi and P. O. Nilsson, Solid State Commun. <u>19</u>, 921 (1976); Nuovo Cimento 39 B, 459 (1977).
- 28. G. Quincke, Pogg. Ann. Jublbd. 336 (1874), evaluated by W. Voigt, Ann. Physik 23, 142 (1884) and F. F. Martens, Landolt-Börnstein, 5th edition, J. Springer, Berlin (1923) vol. 2, section 165, pg. 906.
- 29. P. Drude, Wied. Ann. 39, 481 (1890).
- 30. P. G. Nutting, Phys. Rev. 13, 193 (1901).
- 31. W. W. Coblentz, Bull. U.S. Bur. Stand. 2, 457 (1906).
- 32. W. v. Uljain, Physikal. Zeit. 11, 784 (1910).
- 33. M. Luckiesh, J. Opt. Soc. Am. 19, 1 (1929).
- 34. W. W. Coblentz and R. Stair, U.S. Bureau of Standards J. of Research $\underline{4}$, 189 (1930).
- 35. J. Wulff, J. Opt. Soc. Am. <u>24</u>, 223 (1934).
- 36. A. H. Taylor, J. Opt. Soc. Am. <u>24</u>, 192 (1934).
- 37. W. R. Grove, Phil. Trans., 87 (1852); W. Crookes, Proc. Roy. Soc. London <u>50</u>, 88 (1891).
- 38. P. Pringsheim and R. Pohl, Verh. der Deut. Phys. Ges. 14, 506 (1912).
- 39. E. O. Hulburt, Astrophys. J. <u>42</u>, 203 (1915).
- 40. P. R. Gleason, Proc. Nat. Acad. Sci. (USA) <u>15</u>, 551 (1929).

- 41. R. Ritschl, Tätigkeitsbericht d. Phys. Techn. Reichsanstalt (1928); and Z. Phys. 69, 578 (1931).
- 42. J. Strong, Phys. Rev. 43, 498 (1933).
- 43. G. Hass, J. Opt. Soc. Am. 45, 945 (1955).
- 44. J. C. Burridge, H. Kuhn, and A. Pery, Proc. Phys. Soc. London, Sec. B <u>66</u>, 963 (1953).
- 45. J. Halford, F. K. Chin, and J. E. Norman, J. Opt. Soc. Am. 63, 786 (1973).
- 46. G. Hass and J. E. Waylonis, J. Opt. Soc. Am. 51, 719 (1961).
- 47. E. T. Hutcheson, G. Hass, and J. K. Coulter, Opt. Commun. 3, 213 (1971).
- 48. J. G. Endriz and W. E. Spicer, Phys. Rev. B 4, 4144 (1971).
- P. C. Gibbons, S. E. Schnatterly, J. J. Ritsko, and J. R. Fields, Phys. Rev. B 13, 2451 (1976).
- 50. R. W. Ditchburn and G. H. Freeman, Proc. Roy. Soc. London, Ser. A <u>294</u>, 20 (1966).
- 51. T. Sasaki (private communication) and sources cited in Ref. 7.
- 52. G. Hass, Optik 1, 8 (1946).
- 53. G. B. Sabine, Phys. Rev. 55, 1064 (1939).
- 54. M. Banning, Phys. Rev. 59, 914 (1941); J. Opt. Soc. Am. 32, 98 (1942).
- 55. W. C. Walker, J. A. R. Samson, and O. P. Rustig, J. Opt. Soc. Am. <u>48</u>, 71 (1958); W. C. Walker, O. P. Rustig, and G. L. Weissler, J. Opt. Soc. Am. 49, 471 (1959).
- 56. V. R. Weidner and J. J. Hsia, NBS Certificate for Standard Reference Material 2003a, National Bureau of Standards, Washington, D.C. (1981).
- 57. W. Major (Private communication). The commercial mirror consisted of a first-surface evaporated-aluminum-film (\sim 1000 Å) reflector on optical glass prepared by D. and E. Technology, Santa Clara, California. The evaporation was performed at \sim 10⁻⁶ Torr.
- 58. For references to additional measurements see Ref. 7 and H. Schopper in Landolt-Börnstein Zahlenwerte und Funktionen, 6th edition, edited by J. Bartels et al., Springer, Berlin (1962), Vol. II, part 8, Optische Konstanten, Sec. 281, pp. 1-1 to 1-41. See also, R. C. Williams and G. O. Sabine, Astrophys. J. 77, 316 (1933); H. S. Jones, Nature 133, 552 (1934); B. K. Johnson, Nature, 134, 216 (1934); M.Auwärter, Z. Tech. Phys. 18, 457 (1937); B. K. Johnson, Proc. Phys. Soc. London 53, 258 (1941); A. Boettcher, Z. Angew. Phys. 2, 340 (1950).
- 59. G. Hass, Z. Anorg. Allg. Chem. 254, 96 (1947).

- 60. P. H. Berning, G. Hass, and R. P. Madden, J. Opt. Soc. Am. 50, 586 (1960).
- 61. I. N. Shklyarevskii and R. G. Yarovaya, Opt. Spektrosk. <u>14</u>, 252 (1963) [English translation in Opt. Spectrosc. (USSR) 14, 130 (1963)].
- 62. R. W. Fane and W. E. J. Neal, J. Opt. Soc. Am. 60, 790 (1970).
- 63. J. Shewchun and E. C. Rowe, J. Appl. Phys. 41, 4128 (1970).
- 64. B. P. Feuerbacher and W. Steinmann, Opt. Commun. 1, 81 (1969).
- A. Daude, A. Savary, and S. Robin, Thin Solid Films <u>13</u>, 255 (1972); J. Opt. Soc. Am. 62, 1 (1972).
- 66. W. Walkenhorst, Z. Tech. Phys. 22, 14 (1941).
- R. S. Sennett and G. D. Scott, J. Opt. Soc. Am. <u>40</u>, 203 (1950); and M. F. Crawford, W. M. Gray, A. L. Schawlow, and F. M. Kelly, J. Opt. Soc. Am. 39, 888 (1949).
- 68. W. E. J. Neal, R. W. Fane, and N. W. Grimes, Phil. Mag. 21, 167 (1970).
- 69. R. P. Madden and L. R. Canfield, J. Opt. Soc. Am. 51, 838 (1961).
- 70. R. P. Madden, L. R. Canfield, and G. Hass, J. Opt. Soc. Am. <u>53</u>, 620 (1963).
- 71. R. K. Hart, Proc. Roy. Soc. London, Sec. A 236, 68 (1956).
- 72. G. Hass, Ann. Phys. (Leipzig) 31, 245 (1938).
- 73. G. Hass, W. R. Hunter, and R. Tousey, J. Opt. Soc. Am. <u>46</u>, 1009 (1956); <u>47</u>, 1070 (1957).
- 74. R. P. Chasmar, J. L. Craston, G. Isaacs, and A. S. Young, J. Sci. Inst. 28, 206 (1951).
- G. H. C. Freeman, Brit. J. Appl. Phys. <u>16</u>, 927 (1965); E. T. Arakawa and
 M. W. Williams, J. Phys. Chem. Sol. <u>29</u>, 735 (1968).
- 76. G. Hass and H. W. Scott, J. Opt. Soc. Am. <u>39</u>, 179 (1949); W. R. Hunter, Optica Acta <u>9</u>, 255 (1963); A. P. Bradford and G. Hass, J. Opt. Soc. Am. <u>53</u>, 1096 (1963).
- L. Holland, Vacuum Deposition of Thin Films, J. Wiley, New York (1958).
- 78. D. H. Tomboulian and E. M. Pell, Phys. Rev. <u>83</u>, 1196 (1951).
- 79. A. Balzarotti, A. Bianconi, and E. Burattini, Phys. Rev. B <u>9</u>, 5003 (1974).
- 80. J. M. Elson and R. H. Ritchie, Phys. Rev. B 4, 4129 (1971).
- R. H. Ritchie and R. E. Wilems, Phys. Rev. <u>178</u>, 372 (1969); J. Crowell and R. H. Ritchie, J. Opt. Soc. Am. <u>60</u>, 794 (1970); J. M. Elson and R. H. Ritchie, Phys. Lett. 33A, 255 (1970).
- 82. R. C. Vehse, E. T. Arakawa, and J. L. Stanford, J. Opt. Soc. Am. <u>57</u>, 551 (1967).

- 83. M. W. Williams, E. T. Arakawa, and L. C. Emerson, Surface Science 6, 127 (1967).
- 84. J. C. Miller, Phil. Mag. 20, 1115 (1969).
- 85. T. E. Faber, in <u>Optical Properties and Electronic Structure of Metals and Alloys</u>, edited by F. Abelès, North-Holland, Amsterdam (1966) p. 259.
- 86. L. G. Bernland, O. Hunderi, and H. P. Myers, Phys. Rev. Lett. <u>31</u>, 363 (1973).
- 87. A. G. Mathewson and H. P. Myers, Physica Scripta 4, 291 (1971).
- 88. H. G. Liljenvall, A. G. Mathewson, and H. P. Myers, Solid State Commun. 9, 169 (1971).
- 89. R. Haensel, B. Sonntag, C. Kunz, and T. Sasaki, J. Appl. Phys. <u>40</u>, 3046 (1969).
- 90. C. Gähwiller and F. C. Brown, Phys. Rev. B 2, 1918 (1970).
- 91. V. A. Fomichev and A. P. Lukirskii, Opt. Spektrosk. <u>22</u>, 796 (1967) [English translation in Opt. Spectrosc. (USSR) <u>22</u>, 432 (1967)].
- 92. V. A. Fomichev and A. P. Lukirskii, Fiz. Tverd. Tela <u>8</u>, 2104 (1966) [English translation in Sov. Phys. Solid State 8, 1674 (1967)].
- 93. V. A. Fomichev, Fiz. Tverd. Tela <u>8</u>, 2892 (1966) [English translation in Sov. Phys. Solid State <u>8</u>, 2312 (1967)].
- 94. S. Singer, J. Appl. Phys. <u>38</u>, 2897 (1967).
- 95. O. A. Ershov, I. A. Brytov, and A. P. Lukirskii, Opt. Spektrosk. 22, 127 (1967) [English translation in Opt. Spectrosc. (USSR) 22, 66 (1967)].
- 96. O. A. Ershov and I. A. Brytov, Opt. Spektrosk. <u>22</u>, 305 (1967) [English translation in Opt. Spectrosc. (USSR) 22, 165 (1967)].
- 97. B. A. Cooke and E. A. Stewardson, Br. J. Appl. Phys. 15, 1315 (1964).
- 98. A. J. Bearden, J. Appl. Phys. <u>37</u>, 1681 (1966).
- 99. B. L. Henke and R. L. Elgin, in <u>Advances in X-Ray Analysis</u>, edited by B. L. Henke, J. B. Newkirk, and G. R. Mallett, Plenum, New York (1970), Vol. 13, p. 639.
- 100. B. L. Henke and E. S. Ebisu, in Advances in X-Ray Analysis, edited by C. L. Grant, C. S. Barrett, J. B. Newkirk, and C. O. Ruud, Plenum, New York (1974), Vol. 17, p. 150.
- 101. L. Singman, J. Appl. Phys. <u>45</u>, 1885 (1974).

- 102. P. Lublin, P. Cukor, and R. J. Jaworowski, in Advances in X-Ray Analysis, edited by B. L. Henke, J. B. Newkirk, and G. R. Mallett, Plenum, New York (1970), Vol. 13, p. 632.
- 103. J. H. Hubbell, W. H. McMaster, N. K. Del Grande, and J. H. Mallett, in International Tables for X-Ray Crystallography, edited by J. A. Ibers and W. C. Hamilton, Kynoch, Birmingham, England (1974), Vol. IV, p. 47.
- 104. C. M. Davisson, "Interaction of γ-Radiation with Matter" in Alpha-,
 Beta-, and Gamma-Ray Spectroscopy, edited by K. Siegbahn, NorthHolland, Amsterdam (1965), Vol. I, p. 37.
- 105. A. P. Lukirskii, E. P. Savinov, O. A. Ershov, and Yu. F. Shepelev, Opt. Spektrosk. 16, 310 (1964) [English translation in Opt. Spectrosc. (USSR) 16, 168 (1964)].
- 106. A. Smakula, Z. Phys. 88, 114 (1934).
- 107. W. Woltersdorff, Z. Phys. 91, 230 (1934).
- 108. H. M. O'Bryan, J. Opt. Soc. Am. 26, 122 (1936).
- 109. K. B. Hunt, <u>Investigations of the Reflectivity and Transmissivity of Selected Materials in the Infrared Region</u>, MS Thesis, Purdue University (1945).
- 110. A. I. Golovashkin, G. P. Motulevich, and A. A. Shubin, Zh. Eksp. Teor. Fiz. 38, 51 (1960) [English translation in Sov. Phys. JETP 11, 38 (1960)].
- 111. T. T. Cole and F. Oppenheimer, Appl. Opt. 1, 709 (1962).
- 112. W. R. Hunter, J. Appl. Phys. <u>34</u>, 1565 (1963); J. Opt. Soc. Am. <u>54</u>, 208 (1964); J. Phys. (Paris) 25, 154 (1964).
- 113. G. P. Motulevich, A. A. Shubin, and O. F. Shustova, Zh. Eksp. Teor. Fiz. 49, 1431 (1965) [English translation in Sov. Phys. JETP 22, 984 (1966)].
- 114. A. P. Lenham and D. M. Terherne, J. Opt. Soc. Am. 56, 752 (1966).
- 115. A. Daude, M. Priol, and S. Robin, C. R. Acad. Sci. (Paris) B <u>263</u>, 1178 (1966).
- 116. A. Daude, A. Savary, G. Jezequel, and S. Robin, C. R. Acad. Sci. (Paris) B 269, 901 (1969).
- 117. R. Haensel, G. Keitel, B. Sonntag, C. Kunz, and P. Schreiber, Phys. Status Solidi A 2, 85 (1970).
- 118. S. Kiyono, S. Chiba, Y. Hayasi, S. Kato, and S. Mochimaru, Jpn. J. Appl. Phys. Suppl. 17, Supplement 17-2, 212 (1978).

- 119. J. J. Hopfield, Phys. Rev. 139, A419 (1965).
- 120. K. L. Kliewer and R. Fuchs, Phys. Rev. 172, 607 (1968).
- 121. H. J. Levinson and E. W. Plummer, Phys. Rev. B 24, 628 (1981).
- 122. R. Rosei and D. W. Lynch, Phys. Rev. B 5, 3883 (1972).
- 123. S. D. Pudkov, Zh. Tehh. Fiz. <u>47</u>, 649 (1977) [English translation in Sov. Phys. Tech. Phys., <u>22</u>, 389 (1977)].
- 124. <u>Handbook of Chemistry and Physics</u>, 58th ed., edited by R. C. Weast, CRC Press, Cleveland (1977).
- 125. G. T. Meaden, Electrical Resistance of Metals, Plenum, New York (1965).

Distribution for ANL-83-24

Internal:

J. Berkowitz J. L. Dehmer F. Y. Fradin B. R. T. Frost

P. F. Gustafson R. H. Huebner

M. Inokuti (40)

K. L. Kliewer

D. Y. Smith (40)

E. M. Stefanski

B. W. Veal H. Wiedersich ANL Patent Dept.

ANL Contract File

ANL Libraries TIS Files (6)

External:

DOE-TIC, for distribution per UC-34 (95) Manager, Chicago Operations Office, DOE

L. C. Ianniello, Office of Energy Research, DOE

M. C. Wittels, Office of Energy Research, DOE

Environmental Research Division Review Committee:

A. K. Blackadar, Pennsylvania State U.

A. W. Castleman, Jr., Pennsylvania State U.

R. E. Gordon, U. Notre Dame

R. A. Hites, Indiana U.

D. Kleppner, Massachusetts Inst. Technology

G. M. Matanoski, Johns Hopkins U.

R. A. Reck, General Motors Research Lab.

L. A. Sagan, Electric Power Research Inst.

R. E. Wildung, Battelle Pacific Northwest Lab.

Materials Science and Technology Division Review Committee:

C. B. Alcock, University of Toronto, Canda

A. Arrott, Simon Fraser University, Burnaby, B. C., Canada

R. C. Dynes, Bell Laboratories, Murray Hill, NJ

A. G. Evans, University of California, Berkeley, CA

L. M. Falicov, University of California, Berkeley, CA

H. K. Forsen, Bechtel Group, Inc., San Francisco, CA

E. Kay, IBM Research Laboratory, San Jose, CA

M. B. Maple, University of California, LaJolla, CA

C. L. McCabe, Cabot Corp., Kokomo, IN

P. G. Shewmon, Ohio State University, Columbus, OH

J. K. Tien, Columbia University, New York, NY

J. C. Ashley, Oak Ridge National Laboratory

M. J. Berger, National Bureau of Standards, Washington, DC

H. E. Bennett, Naval Weapons Center, China Lake, CA

H. Bichsel, Seattle, WA

J. W. Cooper, National Bureau of Standards, Washington, DC

B. Crasemann, University of Oregon, Eugene, OR

S. Datz, Oak Ridge National Laboratory

U. Fano, University of Chicago, Chicago, IL

F. P. Hudson, Office of Health and Environmental Research, USDOE

M. N. Kabler, U. S. Naval Research Laboratory, Washington, DC

M. O. Krause, Oak Ridge National Laboratory

C. E. Kuyatt, National Bureau of Standards, Washington, DC

D. W. Lynch, Iowa State University, Ames, IA

R. P. Madden, National Bureau of Standards, Washington, DC

- F. A. Modine, Oak Ridge National Laboratory
- L. R. Painter, University of Tennessee, Knoxville, TN
- C. J. Powell, National Bureau of Standards, Washington, DC
- R. H. Ritchie, Oak Ridge National Laboratory
- S. E. Schnatterly, University of Virginia, Charlottesville, VA
- E. Shiles, Gulf Research and Development Co., Houston, TX (10)
- D. A. Shirley, University of California, Berkeley, CA
- L. H. Toburen, Battelle Northwest Laboratory
- J. E. Turner, Oak Ridge National Laboratory
- R. W. Wood, Office of Health and Environmental Research, USDOE
- D. Charlton, Concordia University, Montreal, Canada
- J. Lindhard, Aarhus University, Denmark
- P. Sigmund, Odense University, Denmark
- J-P. Briand, Lab. de Physique Atomique et Nucleaire, Paris, France
- F. Wuilleumier, Université Paris-Sud, Orsay, France
- J. Booz, Institut für Medizin, Jülich, Germany
- J. Geiger, Universität Kaiserslautern, Germany
- R. Haensel, Universität Kiel, Germany
- W. Mehlhorn, Universität Freiburg, Germany
- H. Paus, Universität Stuttgart, Germany
- H. Schmoranzer, Universität Kaiserslautern, Germany
- B. Sonntag, Deutsches Elektronen-Synchrotron, Hamburg, Germany
- Y. Hatano, Tokyo Inst. Tech., Tokyo, Japan T. Sasaki, National Lab. for High Energy Physics, Ibaraki, Japan
- H. Suzuki, Sophia University, Tokyo, Japan
- H. P. Myers, Chalmers University of Technology, Gothenburg, Sweden