Digital Twins for Salmon Wellbeing: A Tutorial Series

Based on Giske et al. (2025)

Arvid Lundervold w/ Claude 3.7 Sonnet - February 26, 2025

Annotated Reference Guide

This section provides an annotated guide to key references organized by topic area, highlighting their relevance to digital twin implementation for salmon wellbeing.

Core Frameworks and Concepts

- Giske et al. (2025) [31] The foundational paper on salmon digital twins that outlines the theoretical basis for monitoring and predicting salmon wellbeing through computational modeling.
- Budaev et al. (2020) [10] Introduces a computational architecture for modeling animal sentience, emotions, and wellbeing that serves as a basis for digital twin development.
- Budaev et al. (2019) [11] Bridges ecology and subjective cognition in animal decision-making, providing a framework for implementing cognition in digital twins.
- Budaev et al. (2018) [9] Introduces the AHA (Adapted Heuristics and Architecture) cognitive architecture for Darwinian agents that can be adapted for salmon digital twins.

Fish Cognition and Emotions

- Giske et al. (2013) [30] Examines how emotions affect adaptive behavior in fish, providing insight into implementing emotional systems in digital twins.
- Vindas et al. (2016) [70] Investigates serotonergic activation in farmed salmon, distinguishing between adaptation and pathology in stress responses.
- Vindas et al. (2014) [71] Explores dopaminergic and neurotrophic responses in salmon when expected rewards are omitted, relevant for implementing prediction errors in digital twins.
- Cabanac (1992) [13] Presents the concept of pleasure as a common currency for decision-making across species, informing the implementation of wellbeing assessment.
- Mendl & Paul (2020) [44] Reviews current understanding of animal affect and its role in decision-making, providing a foundation for modeling emotional states.
- Crump et al. (2020) [16] Examines the role of emotion in animal contests, offering insights into modeling social interactions and competitive behavior.

Consciousness and Sentience

- Ginsburg & Jablonka (2019) [29] Comprehensive exploration of the evolution of consciousness and learning, providing theoretical foundation for digital twin cognition.
- Low et al. (2012) [39] The Cambridge Declaration on Consciousness, affirming the presence of consciousness in non-human animals including fish.
- Andrews et al. (2024) [3] The New York Declaration on Animal Consciousness, updating scientific consensus on animal consciousness.
- Barron & Klein (2016) [6] Examines what insects can tell us about consciousness origins, providing insights for implementing minimal consciousness models.
- Feinberg & Mallatt (2016) [22] Explores the ancient origins of consciousness and how the brain created experience, informing digital twin cognitive models.
- Seth (2021) [61] Presents new scientific approaches to understanding consciousness, offering perspectives for modeling subjective experience.
- Zacks et al. (2022) [76] Investigates the evolution of imaginative animals and episodiclike memory, crucial for modeling prediction in digital twins.

Digital Twins and Computational Modeling

- Rasheed et al. (2020) [52] Reviews digital twin values, challenges, and enablers from a modeling perspective, providing practical implementation guidance.
- VanderHorn & Mahadevan (2021) [69] Offers a framework for digital twin characterization and implementation applicable to biological systems.
- Tao et al. (2022) [67] Presents comprehensive approaches to digital twin modeling that can be adapted for biological applications.
- Eliassen et al. (2016) [20] Demonstrates how to model proximate architecture for decision-making from sensing to emergent adaptations.
- Giske et al. (2014) [32] Shows how emotion systems promote diversity and evolvability in evolutionary models, informing genetic algorithm implementation.
- Andersen et al. (2016) [1] Details the proximate architecture for decision-making in fish that can be directly implemented in digital twins.
- Grimm & Railsback (2013) [34] Provides foundational methods for individual-based modeling in ecology applicable to digital twin populations.

Neuroscience and Decision-Making

- LeDoux (2012) [38] Rethinks the emotional brain, introducing concepts like survival circuits central to digital twin decision architecture.
- Anderson & Adolphs (2014) [2] Presents a framework for studying emotions across species that can be applied to salmon emotion modeling.
- Schultz (2024) [59] Examines dopamine mechanisms for reward maximization, crucial for implementing learning in digital twins.

- Friston et al. (2010) [26] Introduces free-energy formulations for action and behavior that inform prediction-based decision making.
- Peters et al. (2017) [49] Explores how uncertainty and stress are processed by the brain, informing stress modeling in digital twins.
- McNamara & Houston (1986) [42] Classic paper on common currency for behavioral decisions that informs wellbeing-based decision models.
- McNamara & Houston (2009) [41] Discusses integrating function and mechanism in behavioral models, relevant for digital twin architecture.

Stress, Allostasis, and Boredom

- Korte et al. (2007) [37] Presents a new animal welfare concept based on allostssis that informs wellbeing modeling in digital twins.
- Sterling (2012) [64] Details allostssis as a model of predictive regulation central to digital twin physiological modeling.
- McEwen et al. (2015) [40] Explores mechanisms of stress in the brain that can be implemented in digital twin stress response systems.
- Wingfield et al. (1998) [75] Introduces the "emergency life history stage" concept relevant for modeling extreme stress in digital twins.
- Meagher (2019) [43] Examines whether boredom is an animal welfare concern, providing foundation for modeling boredom in digital twins.
- Burn (2017) [12] Presents a biological perspective on animal boredom with suggestions for scientific investigation.
- Spruijt et al. (2001) [63] Offers a concept of welfare based on reward mechanisms applicable to digital twin wellbeing assessment.

Environmental Enrichment and Learning

- Salvanes et al. (2013) [57] Demonstrates how environmental enrichment promotes neural plasticity and cognitive ability in fish.
- **Zupanc** (2006) [77] Explores neurogenesis and neuronal regeneration in adult fish brains, relevant for modeling brain development.
- Näslund et al. (2019) [46] Investigates how rearing environment affects brain development in hatchery-reared Atlantic salmon.
- Arechavala-Lopez et al. (2022) [4] Reviews environmental enrichment in fish aquaculture, offering practical applications.
- Folkedal et al. (2010) [24] Studies habituation rates in Atlantic salmon, providing data for learning implementation.
- Bratland et al. (2010) [8] Examines the transition from fright to anticipation in salmon, informing predictive models.
- Dumitru & Opdal (2024) [18] Discusses how rearing environment defines brain plasticity, challenging the mosaic model of brain evolution.

Aquaculture Welfare and Management

- Stien et al. (2013) [65] Introduces the Salmon Welfare Index Model (SWIM 1.0) that catalogs key welfare indicators.
- Pettersen et al. (2014) [50] Presents SWIM 2.0, an extended model for overall welfare assessment of caged Atlantic salmon.
- Overton et al. (2019) [48] Reviews salmon lice treatments and mortality in Norwegian aquaculture, highlighting welfare challenges.
- Bracke et al. (1999) [7] Presents overall animal welfare assessment based on needs and expert opinion.
- van de Vis et al. (2020) [72] Compares welfare of fishes in different production systems, providing benchmarks for digital twin validation.
- Dawkins (2023) [17] Discusses farm animal welfare beyond "natural" behavior, offering perspectives for defining appropriate wellbeing metrics.
- Segner et al. (2019) [60] Presents FAO's approach to welfare of fishes in aquaculture, providing regulatory context.

Precision Aquaculture and Monitoring

- Føre et al. (2018) [25] Introduces precision fish farming as a framework for improving production in aquaculture.
- Mustapha et al. (2021) [45] Reviews roles of cloud computing, Internet of Things and AI in sustainable aquaculture.
- Royer & Pastres (2023) [54] Demonstrates data assimilation for efficient management of dissolved oxygen in aquaculture.
- Eguiraun et al. (2018) [19] Applies Shannon entropy to construct a biological warning system model for fish monitoring.
- Neethirajan (2021) [47] Reviews the use of AI in assessing affective states in livestock, with potential applications for fish.

3Rs and Ethical Considerations

- Russell & Burch (1959) [56] The original work introducing the 3Rs (replacement, reduction, refinement) principles.
- Grimm et al. (2023) [33] Discusses advancing the 3Rs through innovation, implementation, ethics, and society.
- Hawkins et al. (2011) [35] Provides guidance on severity classification of scientific procedures involving fish.
- Sloman et al. (2019) [62] Examines ethical considerations in fish research, offering guidelines for digital twin development.
- Collins & Part (2013) [15] Reviews approaches to modeling farm animal welfare, including methodological considerations.

- Pielke (2007) [51] Introduces the concept of the "honest broker" in science and policy that digital twins could fulfill.
- Gaffney & Lavery (2022) [27] Identifies research gaps in salmonid welfare that digital twins could address.

Machine Learning and Data Science

- Reichstein et al. (2024) [53] Demonstrates early warning of complex risk with integrated AI, applicable to wellbeing monitoring.
- Schölkopf et al. (2021) [58] Discusses approaches to causal representation learning applicable to digital twin modeling.
- Elkan (2001) [21] Explores foundations of cost-sensitive learning for handling imbalanced wellbeing states.
- Garcia & Fernández (2015) [28] Provides a comprehensive survey on safe reinforcement learning applicable to digital twin development.

Robustness and Systems Approaches

- **Kitano** (2004) [36] Explores biological robustness concepts applicable to digital twin design.
- Fernandez-Leon (2011) [23] Examines evolving cognitive-behavioral dependencies for robustness in situated agents.
- Ruiz-Mirazo et al. (2004) [55] Discusses autonomy and open-ended evolution as universal life properties relevant to digital twin design.
- Thompson (2007) [68] Presents a biology and phenomenology approach to mind that can inform digital twin consciousness models.
- Colditz (2023) [14] Proposes a biological integrity framework for describing animal welfare and wellbeing.

Methodological Resources

- Way (2017) [73] Discusses Feynman's famous quote "What I cannot create, I do not understand" in the context of biological modeling.
- Taborsky et al. (2021) [66] Presents an evolutionary theory of stress responses that can inform digital twin stress models.
- Wingfield (2013) [74] Explores comparative biology of environmental stress and ability to cope with changing environments.
- Barrett (2020) [5] Provides seven and a half lessons about the brain with implications for cognitive modeling.

References

- [1] Bjørn S Andersen et al. "The proximate architecture for decision-making in fish". In: Fish and Fisheries 17.3 (2016), pp. 680–695. DOI: 10.1111/faf.12139.
- [2] David J Anderson and Ralph Adolphs. "A framework for studying emotions across species". In: Cell 157.1 (2014), pp. 187–200. DOI: 10.1016/j.cell.2014.03.003.
- [3] Kristin Andrews et al. "The New York Declaration on Animal Consciousness". In: (2024). URL: https://www.nydeclaration.com/.
- [4] Pablo Arechavala-Lopez et al. "Environmental enrichment in fish aquaculture: A review of fundamental and practical aspects". In: *Reviews in Aquaculture* 14.2 (2022), pp. 704–728. DOI: 10.1111/raq.12620.
- [5] Lisa Feldman Barrett. "Seven and a half lessons about the brain". In: *Houghton Mifflin Harcourt* (2020).
- [6] Andrew B Barron and Colin Klein. "What insects can tell us about the origins of consciousness". In: *Proceedings of the National Academy of Sciences* 113.18 (2016), pp. 4900–4908. DOI: 10.1073/pnas.1520084113.
- [7] MBM Bracke, BM Spruijt, and JHM Metz. "Overall animal welfare reviewed. Part 3: welfare assessment based on needs and supported by expert opinion". In: NJAS wageningen journal of life sciences 47.3 (1999), pp. 307–322. DOI: 10.18174/njas.v47i3.468.
- [8] Stine Bratland et al. "From fright to anticipation: using aversive light stimuli to investigate reward conditioning in large groups of Atlantic salmon (Salmo salar)". In: Aquaculture International 18.6 (2010), pp. 991–1001. DOI: 10.1007/s10499-009-9317-8.
- [9] Sergey Budaev, Jarl Giske, and Sigrunn Eliassen. "AHA: A general cognitive architecture for Darwinian agents". In: *Biologically Inspired Cognitive Architectures* 25 (2018), pp. 51–57. DOI: 10.1016/j.bica.2018.07.009.
- [10] Sergey Budaev et al. "Computational animal welfare: towards cognitive architecture models of animal sentience, emotion and wellbeing". In: Royal Society Open Science 7.7 (2020), p. 201886. DOI: 10.1098/rsos.201886.
- [11] Sergey Budaev et al. "Decision-making from the animal perspective: bridging ecology and subjective cognition". In: Frontiers in Ecology and Evolution 7 (2019), p. 164. DOI: 10. 3389/fevo.2019.00164.
- [12] Charlotte C Burn. "Bestial boredom: A biological perspective on animal boredom and suggestions for its scientific investigation". In: *Animal Behaviour* 130 (2017), pp. 141–151. DOI: 10.1016/j.anbehav.2017.06.006.
- [13] Michel Cabanac. "Pleasure: the common currency". In: Journal of theoretical Biology 155.2 (1992), pp. 173–200. DOI: 10.1016/S0022-5193(05)80594-6.
- [14] Ian G Colditz. "A biological integrity framework for describing animal welfare and wellbeing". In: *Animal Production Science* 63.5 (2023), pp. 423–440. DOI: 10.1071/AN22285.
- [15] Lisa M Collins and Chérie E Part. "Modelling farm animal welfare". In: *Animals* 3.2 (2013), pp. 416–441. DOI: 10.3390/ani3020416.
- [16] Andrew Crump et al. "Emotion in animal contests". In: *Proceedings of the Royal Society B* 287.1939 (2020), p. 20201715. DOI: 10.1098/rspb.2020.1715.
- [17] Marian Stamp Dawkins. "Farm animal welfare: Beyond "natural" behavior". In: Science 379.6630 (2023), pp. 326–328. DOI: 10.1126/science.ade5437.
- [18] Magda L Dumitru and Anders M F Opdal. "Beyond the mosaic model of brain evolution: Rearing environment defines local and global plasticity". In: Annals of the New York Academy of Sciences 1542.1 (2024), pp. 58–66. DOI: 10.1111/nyas.15267.

- [19] Harkaitz Eguiraun et al. "Reducing the number of individuals to monitor shoaling fish systems- Application of the Shannon entropy to construct a biological warning system model". In: Frontiers in physiology 9 (2018), p. 493. DOI: 10.3389/fphys.2018.00493.
- [20] Sigrunn Eliassen et al. "From sensing to emergent adaptations: Modelling the proximate architecture for decision-making". In: *Ecological modelling* 326 (2016), pp. 90–100. DOI: 10.1016/j.ecolmodel.2015.09.001.
- [21] Charles Elkan. "The foundations of cost-sensitive learning". In: *International joint conference on artificial intelligence* 17.1 (2001), pp. 973–978.
- [22] Todd E Feinberg and Jon M Mallatt. "The ancient origins of consciousness: How the brain created experience". In: *MIT Press* (2016).
- [23] Jose A Fernandez-Leon. "Evolving cognitive-behavioural dependencies in situated agents for behavioural robustness". In: *Biosystems* 106.2-3 (2011), pp. 94–110. DOI: 10.1016/j.biosystems.2011.07.003.
- [24] Ole Folkedal et al. "Habituation rate and capacity of Atlantic salmon (Salmo salar) parr to sudden transitions from darkness to light". In: *Aquaculture* 307.1-2 (2010), pp. 170–172. DOI: 10.1016/j.aquaculture.2010.06.001.
- [25] Martin Føre et al. "Precision fish farming: A new framework to improve production in aquaculture". In: *Biosystems engineering* 173 (2018), pp. 176–193. DOI: 10.1016/j.biosystemseng.2017.10.014.
- [26] Karl Friston et al. "Action and behavior: a free-energy formulation". In: *Biological cybernetics* 102.3 (2010), pp. 227–260. DOI: 10.1007/s00422-010-0364-z.
- [27] Lauren P Gaffney and James M Lavery. "Research before policy: identifying gaps in salmonid welfare research that require further study to inform evidence-based aquaculture guidelines in Canada". In: Frontiers in Veterinary Science 8 (2022), p. 768558. DOI: 10.3389/fvets.2021.768558.
- [28] Javier García and Fernando Fernández. "A comprehensive survey on safe reinforcement learning". In: *Journal of Machine Learning Research* 16 (2015), pp. 1437–1480.
- [29] Simona Ginsburg and Eva Jablonka. "The evolution of the sensitive soul: Learning and the origins of consciousness". In: MIT Press (2019).
- [30] Jarl Giske et al. "Effects of the emotion system on adaptive behavior". In: *The American Naturalist* 182.6 (2013), pp. 689–703. DOI: 10.1086/673533.
- [31] Jarl Giske et al. "Premises for digital twins reporting on Atlantic salmon wellbeing". In: Behavioural Processes 226 (2025), p. 105163. DOI: 10.1016/j.beproc.2025.105163.
- [32] Jarl Giske et al. "The emotion system promotes diversity and evolvability". In: *Proceedings of the Royal Society B: Biological Sciences* 281.1791 (2014), p. 20141096. DOI: 10.1098/rspb.2014.1096.
- [33] Herwig Grimm et al. "Advancing the 3Rs: innovation, implementation, ethics and society". In: Frontiers in Veterinary Science 10 (2023), p. 1185706. DOI: 10.3389/fvets.2023.1185706.
- [34] Volker Grimm and Steven F Railsback. "Individual-based modeling and ecology". In: *Princeton University Press* (2013).
- [35] Penny Hawkins et al. "Guidance on the severity classification of scientific procedures involving fish: report of a Working Group appointed by the Norwegian Consensus-Platform for the Replacement, Reduction and Refinement of animal experiments (Norecopa)". In: Laboratory Animals 45.4 (2011), pp. 219–224. DOI: 10.1258/la.2011.010181.

- [36] Hiroaki Kitano. "Biological robustness". In: Nature Reviews Genetics 5.11 (2004), pp. 826–837. DOI: 10.1038/nrg1471.
- [37] S Mechiel Korte, Berend Olivier, and Jaap M Koolhaas. "A new animal welfare concept based on allostasis". In: *Physiology & behavior* 92.3 (2007), pp. 422–428. DOI: 10.1016/j. physbeh.2006.10.018.
- [38] Joseph LeDoux. "Rethinking the emotional brain". In: *Neuron* 73.4 (2012), pp. 653-676. DOI: 10.1016/j.neuron.2012.02.004.
- [39] Philip Low et al. "The Cambridge declaration on consciousness". In: Francis Crick Memorial Conference, Cambridge, England (2012).
- [40] Bruce S McEwen et al. "Mechanisms of stress in the brain". In: *Nature neuroscience* 18.10 (2015), pp. 1353–1363. DOI: 10.1038/nn.4086.
- [41] John M McNamara and Alasdair I Houston. "Integrating function and mechanism". In: Trends in ecology & evolution 24.12 (2009), pp. 670-675. DOI: 10.1016/j.tree.2009.05.011.
- [42] John M McNamara and Alasdair I Houston. "The common currency for behavioral decisions". In: *The American Naturalist* 127.3 (1986), pp. 358–378. DOI: 10.1086/284489.
- [43] Rebecca K Meagher. "Is boredom an animal welfare concern?" In: *Animal Welfare* 28.1 (2019), pp. 21–32. DOI: 10.7120/09627286.28.1.021.
- [44] Michael Mendl and Elizabeth S Paul. "Animal affect and decision-making". In: Neuroscience & Biobehavioral Reviews 112 (2020), pp. 144–163. DOI: 10.1016/j.neubiorev. 2020.01.025.
- [45] Umar Faruk Mustapha et al. "Sustainable aquaculture development: A review on the roles of cloud computing, Internet of things and artificial intelligence (CIA)". In: Reviews in Aquaculture 13.1 (2021), pp. 2076–2091. DOI: 10.1111/raq.12559.
- [46] Joacim Näslund, Mårten Rosengren, and Jörgen I Johnsson. "Fish density, but not environmental enrichment, affects the size of cerebellum in the brain of juvenile hatchery-reared Atlantic salmon". In: *Environmental Biology of Fishes* 102.5 (2019), pp. 705–712. DOI: 10.1007/s10641-019-00864-9.
- [47] Suresh Neethirajan. "The use of artificial intelligence in assessing affective states in live-stock". In: Frontiers in Veterinary Science 8 (2021), p. 282. DOI: 10.3389/fvets.2021. 715261.
- [48] Kathy Overton et al. "Salmon lice treatments and salmon mortality in Norwegian aquaculture: a review". In: *Reviews in Aquaculture* 11.4 (2019), pp. 1398–1417. DOI: 10.1111/raq.12299.
- [49] Achim Peters, Bruce S McEwen, and Karl Friston. "Uncertainty and stress: Why it causes diseases and how it is mastered by the brain". In: *Progress in neurobiology* 156 (2017), pp. 164–188. DOI: 10.1016/j.pneurobio.2017.05.004.
- [50] Jeremie M Pettersen et al. "Salmon welfare index model 2.0: an extended model for overall welfare assessment of caged Atlantic salmon, based on a review of selected welfare indicators and intended for fish health professionals". In: *Reviews in Aquaculture* 6.3 (2014), pp. 162–179. DOI: 10.1111/raq.12039.
- [51] Roger A Pielke Jr. "The honest broker: making sense of science in policy and politics". In: Cambridge University Press (2007).
- [52] Adil Rasheed, Omer San, and Trond Kvamsdal. "Digital twin: Values, challenges and enablers from a modeling perspective". In: *IEEE Access* 8 (2020), pp. 21980–22012. DOI: 10.1109/ACCESS.2020.2970143.

- [53] Markus Reichstein et al. "Early warning of complex climate risk with integrated artificial intelligence". In: Research Square (2024). DOI: 10.21203/rs.3.rs-4248340/v1.
- [54] Eve Royer and Roberto Pastres. "Data assimilation as a key step towards the implementation of an efficient management of dissolved oxygen in land-based aquaculture". In: Aquaculture International 31.3 (2023), pp. 1287–1301. DOI: 10.1007/s10499-022-01028-w.
- [55] Kepa Ruiz-Mirazo, Juli Peretó, and Alvaro Moreno. "A universal definition of life: autonomy and open-ended evolution". In: *Origins of Life and Evolution of the Biosphere* 34.3 (2004), pp. 323–346. DOI: 10.1023/B:ORIG.0000016440.53346.dc.
- [56] William Moy Stratton Russell and Rex Leonard Burch. "The principles of humane experimental technique". In: *Methuen* (1959).
- [57] Anne Gro Vea Salvanes et al. "Environmental enrichment promotes neural plasticity and cognitive ability in fish". In: *Proceedings of the Royal Society B: Biological Sciences* 280.1767 (2013), p. 20131331. DOI: 10.1098/rspb.2013.1331.
- [58] Bernhard Schölkopf et al. "Toward causal representation learning". In: *Proceedings of the IEEE* 109.5 (2021), pp. 612–634. DOI: 10.1109/JPROC.2021.3058954.
- [59] Wolfram Schultz. "A dopamine mechanism for reward maximization". In: *Proceedings* of the National Academy of Sciences 121.4 (2024), e2316658121. DOI: 10.1073/pnas. 2316658121.
- [60] Helmut Segner et al. "Welfare of fishes in aquaculture". In: FAO Fisheries and Aquaculture Circular C1189 (2019), pp. 1–97.
- [61] Anil Seth. "Being you: A new science of consciousness". In: *Penguin* (2021).
- [62] Katherine A Sloman et al. "Ethical considerations in fish research". In: Journal of fish biology 94.4 (2019), pp. 556–577. DOI: 10.1111/jfb.13946.
- [63] Berry M Spruijt, Ruud Van den Bos, and Francisca TA Pijlman. "A concept of welfare based on reward evaluating mechanisms in the brain: anticipatory behaviour as an indicator for the state of reward systems". In: *Applied Animal Behaviour Science* 72.2 (2001), pp. 145–171. DOI: 10.1016/S0168-1591(00)00204-5.
- [64] Peter Sterling. "Allostasis: a model of predictive regulation". In: *Physiology & behavior* 106.1 (2012), pp. 5–15. DOI: 10.1016/j.physbeh.2011.06.004.
- [65] Lars H Stien et al. "Salmon Welfare Index Model (SWIM 1.0): a semantic model for overall welfare assessment of caged Atlantic salmon: review of the selected welfare indicators and model presentation". In: *Reviews in Aquaculture* 5.1 (2013), pp. 33–57. DOI: 10.1111/j. 1753-5131.2012.01083.x.
- [66] Barbara Taborsky et al. "Towards an evolutionary theory of stress responses". In: *Trends in ecology & evolution* 36.1 (2021), pp. 39-48. DOI: 10.1016/j.tree.2020.09.003.
- [67] Fei Tao et al. "Digital twin modeling". In: *Journal of Manufacturing Systems* 64 (2022), pp. 372–389. DOI: 10.1016/j.jmsy.2022.06.015.
- [68] Evan Thompson. "Mind in life: Biology, phenomenology, and the sciences of mind". In: *Harvard University Press* (2007).
- [69] Erik VanderHorn and Sankaran Mahadevan. "Digital Twin: Generalization, characterization and implementation". In: *Decision Support Systems* 145 (2021), p. 113524. DOI: 10.1016/j.dss.2021.113524.
- [70] Marco A Vindas et al. "Brain serotonergic activation in growth-stunted farmed salmon: adaption versus pathology". In: *Royal Society open science* 3.5 (2016), p. 160030. DOI: 10.1098/rsos.160030.

- [71] Marco A Vindas et al. "Coping with unpredictability: dopaminergic and neurotrophic responses to omission of expected reward in Atlantic salmon (Salmo salar L.)" In: *PLoS One* 9.1 (2014), e85543. DOI: 10.1371/journal.pone.0085543.
- [72] Hans van de Vis et al. "The welfare of fishes in different EU production systems". In: The Welfare of Fish (2020), pp. 199–215. DOI: 10.1007/978-3-030-41675-1_9.
- [73] Michael Way. ""What I cannot create, I do not understand"". In: *Journal of Cell Science* 130.18 (2017), pp. 2941–2942. DOI: 10.1242/jcs.209791.
- [74] John C Wingfield. "The comparative biology of environmental stress: behavioural endocrinology and variation in ability to cope with novel, changing environments". In: *Animal Behaviour* 85.5 (2013), pp. 1127–1133. DOI: 10.1016/j.anbehav.2013.02.018.
- [75] John C Wingfield et al. "Ecological bases of hormone-behavior interactions: the "emergency life history stage"". In: *American Zoologist* 38.1 (1998), pp. 191–206. DOI: 10.1093/icb/38.1.191.
- [76] Orr Zacks, Simona Ginsburg, and Eva Jablonka. "The futures of the past. The evolution of imaginative animals". In: *Journal of Consciousness Studies* 29.3-4 (2022), pp. 29–61. DOI: 10.53765/20512201.29.3.029.
- [77] Günther KH Zupanc. "Neurogenesis and neuronal regeneration in the adult fish brain". In: Journal of Comparative Physiology A 192.6 (2006), pp. 649–670. DOI: 10.1007/s00359-006-0104-y.