Universidade Federal do Espírito Santo Departamento de Engenharia Elétrica

Sistemas Realimentados - Prova 3 - 21/06/2018

Nome: LUCAS SPARES PESSINI

1,2

- 1) Na Figura 1 é mostrado o lugar das raízes para $G(s) = \frac{12}{(s+p_1)(s+p_2)(s+p_3)} (K_p + \frac{K_I}{s})$.
- 0 3 41.1 Selecione os ganhos K_I e K_P tal que o sistema tenha sobreelevação menor que 5% e tempo de estabelecimento menor que 8s.

 c 1.2 Qual o erro em regime para uma entrada rampa unitária para estes ganhos?
- f = f 2) Seja a FT $G(s) = \frac{10}{s^2}$. Use o critério de Nyquist para verificar qual dos controladores PD, PI, avanço de fase, atraso de fase estabiliza este sistema em malha fechada.

2,3

3) (Peso 2) Seja o sistema em variáveis de estados dado por

$$x(k+1) = \begin{bmatrix} 1.5 & -0.5 \\ 1 & 0 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 0 \end{bmatrix}, y(k) = \begin{bmatrix} 1 & 0.2 \end{bmatrix}.$$

3.1) Obtenha a lei de controle da forma u(k) = pr(k) - Kx(k) tal que em malha fechada o sistema seja estável com erro nulo a entrada degrau unitário $r(k) = 1, k \ge 0$.

3.2 Verifique se observador de estados $z(k+1) = \begin{bmatrix} 0.7 & -0.66 \\ 0.5 & -0.1 \end{bmatrix} z(k) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(k) + \begin{bmatrix} 0.8 \\ 0.5 \end{bmatrix} y(k)$ permite estimar os estados x(k) tal que o erro entre x(k) e z(k) tenda a zero.

 \circ (7 \hookrightarrow 3.3) Obtenha a função de transferência de malha fechada Y(z)/R(z) resultante do item 3.1.

4) Na figura 2 é mostrado o gráfico de Bode de G(s). Projete um controlador avanço de fase para atender erro ao degrau ≤ 5%, Margem de Fase≥ 45°. Esboce sobre o mesmo gráfico, o gráfico de Bode compensado.

NOME: LUCAS SOARES PESSINI
DATA: 21/06/2018
1) 20) Tendo 60)= 12 (Kps+Ki) = 12 Kp (5+Ki/kp).
(5+p1) (3+p2) (5+p3) 5 (5+p1) (5+p2) (5+p3)5
Olhando ma Figura 1, vernes que o tere.
osté em =1,5. Assim temos (= 15)
osté em =1,5. Assim temos (KI = 15)
Pl une tempo de estabelermento iguil
2 As temps:
Ts= 4 + + + = 4 = 1
15= 4 + 0 = 4 = 4 = 1
E para impr tecimento iqual à Mp = 4%.
Mp = = TT + UN = - TT =
$Mp = -TT/wd + \ln(Mp) = -TT + Ud = -TT = Ud - \ln(Mp)$
-1T / +0, 975 In(0,04). Wd In(Mp) N=2 per tence =0 LB)
mond.
Assim 25 escalhz do polas sers ottjud ~1 + 1 j.) Olhendo 2 figure 1 temos p1=-1, pz=-2 e \$3=-3. A chendo K temos:
Others 2 figure 1 temos p1=-1, pz=-2
13=-3. A chendo K temos.
11d -16 NG N2 NG (11)
1K1 = 1 (-1, 13) (-1, 1, +2) (-1, +1) (-1+1) (1=1-2, 9-3,2:)=
(-1-1JM/s) = 4
Assim temos que:
17. $kp = 4 \Rightarrow kp = 1/3$ E como $kI_{k0} = 1/5$ temos $kI = 0.5$.

,	Pelo diegreme de Nyquist Anchesor tolos controledorer vi. Naquist
	W=0 W=0 W=0 Lestabilizer miss, termos que adianter fase asomiente em (-1). Assim isso so
·	e possible com o controlado y evanço file face, pois o Assim
	3) Temos o se quinte pero esse sistemo:
	$A = \begin{bmatrix} 1/5 & -0.5 \\ 2 & 0 \end{bmatrix}$ $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $C = \begin{bmatrix} 1/5 & 0.7 \\ 0 \end{bmatrix}$ $K = \begin{bmatrix} 1/5 & 0.5 \\ 2 & 0 \end{bmatrix}$ $E = \begin{bmatrix} 1/5 & 0.7 \\ 0 \end{bmatrix}$ $E = \begin{bmatrix} 1/5 & 0.7 \\ 0 \end{bmatrix}$
. T	Assim teme 5 que: $X(K+1) = A \times (K) + B \cup (K, 7) = D = Z^{-1} \times (Z) = A \times (Z) + B \cup (Z) = K \times (Z) = D$ $\Rightarrow Z \times (Z) = [A - BK] \times (Z) + B \cup (Z) = D = (Z^{-1}T - (A - BK)) \times (Z) = B \cup (Z) = D = D = D = D = D = D = D = D = D = $
	$V(z) = (X(z)) = ((z^{-1}I - (A - BK))^{-1}B_0R(z))$ $Assign temos a equeção (zveterísticz:)$ $det [z 0] - 1/5 - 0/5] + 1][K_1 K_2] =$ $0 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
	$= \sqrt{4} \left(\frac{z-1.5+K_1}{z-1.5+K_2} + \frac{z+0.5+K_2}{z-1.5+K_2} \right) = \frac{z}{z-1.5+K_2} + \frac{z+0.5+K_2}{z-1.5+K_2} + \frac{z+0.5+K_2}{z-1.5+K_2} = \frac{z^2-1.5+K_2+7}{z-1.5+K_2+7} + \frac{z+0.5+K_2}{z-1.5+K_2+7} = \frac{z^2-1.5+K_2+7}{z-1.5+K_2+7} + \frac{z+0.5+K_2+7}{z-1.5+K_2+7} = \frac{z^2-1.5+K_2+7}{z-1.5+K_2+7} + \frac{z+0.5+K_2+7}{z-1.5+K_2+7} = \frac{z^2-1.5+K_2+7}{z-1.5+K_2+7} + \frac{z+0.5+K_2+7}{z-1.5+K_2+7} = \frac{z^2-1.5+K_2+7}{z-1.5+K_2+7} + \frac{z+0.5+K_2+7}{z-1.5+K_2+7} = \frac{z+0.5+K_2+7}{z-1.5+K_2+7} + \frac{z+0.5+K_2+7}{z-1.5+K_2+7} + \frac{z+0.5+K_2+7}{z-1.5+K_2+7} = \frac{z+0.5+K_2+7}{z-1.5+K_2+7} + z+0.5+K_2$

Tembo Vet	-		
Im N(K) - 1		Tendo - YCEL O etto seté:	
Im N(K) = 11 (1-51) R/21 N(a) = Im N(a) = N(a) tem que			•
Tendo p1 e pz difetente do -1 e N(a) difetente de 0, de re isso possible dos messolitando es deis polos em (0,5); 2 equelo cercebristice seró: 22+ 24025 = 22 + E(K1-0,5) + (K2+0,5) A soim tencos que K1+1,5 e K2 e -0,25 A TF em nulha elenta e encentreda despo (XJK1) I = 12/1/1 - 0,5 X2[K] + U[K] X2[K+1] - X1[K] Y[K] = X1[K] + 0,2 X2[K] Y[K] = X1[K] + 0,2 X2[K] Y[K] = X2[K+1] + 0,2 X2[K] Y[K] = 2X[+1] + 0,2 X2[K] Y[X] = 2X[+1] + 0,2 X2[K] Y[X] = 2X[+1] + 0,2 X2[K] Y[X] = 2X[+1] + 0,2 X2[K] V(2) = 2X[+1] + 0,2 X2[K] Tencos è função themberênvia (le Mà lha eletta: Y(2) = 2+02 U(2) = 2-1,5+0,5 (enno aprecente o mesmo letos p/ (x2) e f(2) pentên: Y(2) = 2+2+0,25 (entinualên ne eutre	9	in N(x) = lin (1- /2-1) R(z) N(z) = lin N(z) = N(2)	tors ale
Tendo p1 e pz difetente d0 -1 e N(a) difetente de 0, to re isso possible from confliction os leis polos em (0,5); 2 equero concentrat ce seró: 224 24025 = 22 + E(K1.0.5) + (K2+0.5) A soim tennos que K1=11,5 e K2 e -025 A TF em nulla elente e encentrado despo (XJK1) = 12/1/K1 - 0.5 X2[K] + U[K] X2[K+1] - X1[K] + 0.2 X2[K] [X2[K+2] = 1.5 X2[K] + 0.2 X2[K] [Y[K] = X2[K] + 0.2 X2[K] [Y[K] = X2[K] + 0.2 X2[K] [X(2) = 2X(2) + 0.2 X2[K] [X(2) =		K-700 Z-71 (2+01) (2+02) (2+01) (1+02)	som for
Tendo pi e pz difetente do 1 e Mai diferente de glat ne isso possibil dom essolhendo as deis polos em fois), 2 equiño conclerio de soró: Z2+2 tozs= z=+ E/Ki -0.5) + (Kz+0.5) A soim temas que K1=+1,5 e k 2 e -0.25 A TF em melha elerta e enventreda deixo (XIK+1] = 12/AIK - e.5 X2[K] + U[K] X2[K+1] - (X.1[K]) V[K] = X1[K] + 0.2 X2[K] V[K] = X2[K+1] + 0.2 X2[K] V[X] = 2X[=) + 0.2 X2[X] [X(2) = 2X[=) + 0.2 X2[X] [X(1
Mai differente de 0 de me isso possible tosam con hondo as deis polos em (0,5), 2 equello corcelerístice sec: 224 24025 = 22 + t(kn -0,5) + (k2+0,5) A soim temos que k1=+1,5 e k2 é -025 A TF em melho elerte é encontrede abexpo (X.IKII = 121/K) - 0.5 X2K/ + U(K) X2K+11 - (X.IKI) VIKI = X1K 7 02 X2K/ X2K+21 = 1/5 X/K+11 - 0.5 X2/K/ YIKI = 1/5 X/K+1 - 0.5 X2/K/ YIKI = 1/5 X1/K+1 - 0.5		900	
Mai differente de 0 de me isso possible tosam con hondo as deis polos em (0,5), 2 equello corcelerístice sec: 224 24025 = 22 + t(kn -0,5) + (k2+0,5) A soim temos que k1=+1,5 e k2 é -025 A TF em melho elerte é encontrede abexpo (X.IKII = 121/K) - 0.5 X2K/ + U(K) X2K+11 - (X.IKI) VIKI = X1K 7 02 X2K/ X2K+21 = 1/5 X/K+11 - 0.5 X2/K/ YIKI = 1/5 X/K+1 - 0.5 X2/K/ YIKI = 1/5 X1/K+1 - 0.5		Tondo DI e 02 difetente de -1 e	1 21
Jeis polos em (FOIS), 2 equilia (atrictation to socio 224 2+025 = z² + E(K1-0.5) + (K2+0.5) A soint temas que K1=+11.5 e k2 é +0.25 A TF em malha elerta e encentrala abayo (XJK11] = 12X4[K) - e.5 X2[K] + U[K] X2[K+1] - (X1[K]) Y[K] = X1[K] + 0.2 X2[K] Y[K] = X1[K] + 0.2 X2[K] Y[K] = X2[K+1] - 0.5 X2[K] Y[K] = X2[K+1] + 0.2 X2[K] Y[K] = 2X(2) + 0.2 X2[K] [X2] [z² - 1.5 + 0.5] - U(z) = X2(2) - U[z] [X2] [z² - 1.5 + 0.5] Y(z) = X2(z) [z + 0.2] = U(z) = U[z + 0.2] [X2] - z + 0.2 U(z) = z + 0.2 (emo aproxima o mosmo letos pl viz e Y(z) portio (22 x15 + 0.25) (emo aproxima o mosmo letos pl viz e Y(z) portio (22 x15 + 0.25) (emo aproxima o mosmo letos pl viz e Y(z) portio (22 x15 + 0.25) (emo aproxima o mosmo letos pl viz e Y(z) portio (22 x15 + 0.25) (emo aproxima o mosmo letos pl viz e Y(z) portio (22 x15 + 0.25) (emo aproxima o mosmo letos pl viz e Y(z) portio (22 x15 + 0.25) (emo aproxima o mosmo letos pl viz e Y(z) portio (22 x15 + 0.25) (emo aproxima o mosmo letos pl viz e Y(z) portio (22 x15 + 0.25) (emo aproxima o mosmo letos pl viz e Y(z) portio (22 x15 + 0.25)			
Z ² L ₂ +0,25 = z ² + E (K ₁ · 0,5) + (K ₂ +0,5) A soim temps que K ₁ =+1,5 e K ₂ e +0,25 A TF em malhe elerte e enventrede days (X ₂ [K ₁ :1] = 12 A ₂ [K ₁ - e ₁ S X ₂ [K] + U[K] X ₂ [K ₁ :1] = X ₁ [K ₁] - e ₂ S X ₂ [K] + U[K] Y[K] = X ₁ [K ₁] - e ₂ S X ₂ [K] + U[K] Y[K] = X ₂ [K ₁] + e ₂ S X ₂ [K] + U[K] Y[K] = X ₂ [K ₁] + e ₂ S X ₂ [K] + U[K] Y[K] = X ₂ [K ₁] + e ₂ S X ₂ [K] + U[K] Y[K] = X ₂ [K ₁] + e ₂ S X ₂ [K] + U[K ₁] Y(K ₁] = X ₂ (K ₁) + e ₂ S X ₂ (K ₁) + U(K ₂) Y(K ₂) = X ₂ (K ₁) + e ₂ S X ₂ (K ₁) + U(K ₂) Y(K ₂) = X ₂ (K ₁) + e ₂ S X ₂ (K ₁) + e ₃ S X ₂ (K ₁) Y(K ₂) = X ₂ (K ₁) + e ₄ S X ₂ (K ₁) + e ₄ S X ₂ (K ₁) Y(K ₂) = X ₂ (K ₁) + e ₄ S X ₂ (K ₁) + e ₄ S X ₂ (K ₁) Y(K ₂) = Y(K ₁) + e ₄ S X ₂ (K ₁) + e ₄ S X ₂ (K ₁) + e ₄ S X ₂ (K ₁) + e ₄ S X ₂ (K ₁) Y(K ₂) = P(X ₁ , O ₂ S) Y(K ₂) = P(X ₂ , O ₂ S) Y(K ₂) = P(X ₂ , O ₂ S) Y(K ₂) = P(X ₂ , O ₂ S) Y(K ₂) = P(X ₂ , O ₂ S) Y(K ₂) = P(X ₂ , O ₂ S) Y(K ₂) = P(X ₂ ,			
A TF em melhe elerte é encontrole aberto (XIKI) = 18 / [K] - 0.5 X2 [K] + U[K] X2 [K+2] - X1 [K] Y[K] = X2 [K+1] - 0.5 X2 [K] + U[K] Y[K] = X2 [K+1] - 0.5 X2 [K] + U[K] Y[K] = X2 [K+1] - 0.5 X2 [K] + U[K] Y[K] = 2 X2 [K+1] - 0.5 X2 [K] + U[K] [22 X (2) = 1,5 & X2 (2) - 0,5 X2 (2) + U(2) [X2] = 2 X(2) + 0.2 X2 (2) [X2] = 2 X2 (2) + 0.2 X2 (2) [X2] = X2 (2) [2 + 0.2] + V[E] = U[E] [E + 0.2] [X2] = X2 (2) [2 + 0.2] + V[E] = U[E] [E + 0.2] [X2] = 2 + 0.2 U[Z] = 0 (2 + 0.2) [X2] = 0 (2 + 0.2)			A Viget Laboratory
A TF em melhe elette e encontrede pheixo (X.1K.1) = 18/1/K) - 0.5 X2[K] + U[K] X2[K+1] = X.1[K] Y[K] = X1[K] Y[K] = 1.5 X1[K+1] - 0.5 X2[K] + U[K] Y[K] = 1.5 X1[K+1] - 0.5 X2[K] Y[K] = 2X[2] + 0.2 X2[X] [X2(2)] [22 - 1.52 + 0.5] - U(2) - 12 X2[2] [X2(2)] [22 - 1.52 + 0.5] - U(2) - 12 X2[2] [X2(2)] [22 - 1.52 + 0.5] Y(2) = X2(2) [2 + 0.2] - 12 Y(2) - 12 Y(2) [22 - 1.5 + 0.5] Temos & função tempetência (le Màlha eletta: Y(2] - 2+0.2 U(2] - 2+0.2 U(2) - 2-1.5 + 0.5 (emo aprecente o mosmo letos pl (12) e R(2) P(2) = 2 + 2 + 0.25 (entimosión ne outre			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$V[K] = X_{1}[K] + O_{2}X_{2}[K]$ $V[K] = X_{2}[K+2] = 1_{1}SX_{1}[K+1] - O_{1}SX_{2}[K] + U[K]$ $V[K] = X_{2}[K+2] + O_{2}X_{2}[K]$ $V[K] = X_{2}[K+1] + O_{2}X_{2}[K]$ $V[K] = X_{2}[K+1] + O_{2}X_{2}[K]$ $V[K] = X_{2}[K+1] + O_{2}X_{2}[K] + U[K]$ $V[K] = X_{2}[K+1] + U[K]$ $V[K] = X_{2}$			
$\begin{cases} X_{2}[k+2] = 1.5 X_{1}[k+1] - 0.5 X_{2}[k] + U[k] \\ Y[k] = X_{2}[k+1] + 0.7 Y_{2}[k] \end{cases}$ $\begin{cases} Z_{2}[k+2] = 1.5 Z_{1}[k+1] + 0.7 Y_{2}[k] + U[2] \\ Y(2) = 2X[2] + 0.7 X_{2}(2) + 0.7 X_{2}(2) \end{cases}$ $\begin{cases} X_{2}[2] \left[z^{2} - 1.5z + 0.5 \right] - U(2) & \Rightarrow X_{2}[2z - 1.5 + 0.5] \\ Y(2) = X_{2}[2] \left[2 + 0.7 \right] & \Rightarrow Y_{2}[2z - 1.5 + 0.5] \end{cases}$ $\begin{cases} Y(2) = X_{2}[2] \left[2 + 0.7 \right] & \Rightarrow Y_{2}[2z - 1.5 + 0.5] \end{cases}$ $\begin{cases} Y(2) = X_{2}[2z - 1.5 + 0.5] \\ Y(2) = 2z - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2z - 1.5 + 0.5 \\ Y(2) = 2z - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.5 + 0.5 \end{cases}$ $\begin{cases} Y(2) = 2x - 1.5 + 0.5 \\ Y(2) = 2x - 1.$		t YEK] = XIEK 7 / OZZ XZEK]	
$\begin{array}{l} \left\{\begin{array}{lll} Y[K] & = & \frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{j=1}$			
$ \begin{cases} \frac{7^{2} \times (2)}{1} = \frac{1}{5} \frac{7}{4} \frac{7}{4}(2) - 0.5 \frac{7}{2}(2) + U(2) \\ \frac{1}{2} = \frac{2}{2} \frac{7}{4} + 0.2 \frac{7}{2}(2) \\ \frac{1}{2} = \frac{1}{2} \frac{7}{4} + 0.5 \frac{7}{2} = U(2) \xrightarrow{p} \frac{1}{2} \frac{1}{2} \frac{1}{2} + 0.5 \frac{7}{2} $ $ \begin{cases} \frac{1}{2} \times (2)}{1} = \frac{1}{2} \times (2) = \frac{1}{2} \times (2) & \frac{1}{2} \times (2) = \frac{1}{2} \times (2) =$		Y[K] = X2[K+2] + Q, Z Y Z[K]	
$ \begin{cases} X_{2}(2) = 2X_{2}(2) + 0.2 X_{2}(2) \\ X_{2}(2) = 2 - 1.5 + 0.5 = 0.5 \end{cases} = U(2) \xrightarrow{p} X_{2}(2) = 2 - 1.5 + 0.5 $ $ Y(2) = X_{2}(2) = 2 + 0.2 = 0.5 \end{cases} $ $ \begin{cases} Y(2) = X_{2}(2) = 2 + 0.2 \end{cases} $ $ \begin{cases} Y(2) = X_{2}(2) = 2 + 0.2 \end{cases} $ $ \begin{cases} Y(2) = X_{2}(2) = 2 + 0.2 \end{cases} $ $ \begin{cases} Y(2) = 2 + 0.2 \end{cases}$			
$ \begin{cases} X_{2}(2) = 2X_{2}(2) + 0.2 X_{2}(2) \\ X_{2}(2) = 2 - 1.5 + 0.5 = 0.5 \end{cases} = U(2) \xrightarrow{p} X_{2}(2) = 2 - 1.5 + 0.5 $ $ Y(2) = X_{2}(2) = 2 + 0.2 = 0.5 \end{cases} $ $ \begin{cases} Y(2) = X_{2}(2) = 2 + 0.2 \end{cases} $ $ \begin{cases} Y(2) = X_{2}(2) = 2 + 0.2 \end{cases} $ $ \begin{cases} Y(2) = X_{2}(2) = 2 + 0.2 \end{cases} $ $ \begin{cases} Y(2) = 2 + 0.2 \end{cases}$		52 X6(2) = 15 3/2(2) - 0,5 ×2(2) + U(2)	
Temps à função transetência de Màlha abetta: $ \begin{array}{cccccccccccccccccccccccccccccccccc$		(x) = 2X(2) + 0,2 × 2(2)	
Temps à função transetência de Màlha abetta: $ \begin{array}{cccccccccccccccccccccccccccccccccc$		[X2(2) [22-1,52 +0,5] = U(2) \$ 12(2) - [22-1,	5-10/5]
Temos à função thanfetência de Malha abetha: $ \frac{1}{2} = \frac{7 + 0.7}{7 + 0.7} $ Como apterente o mesmo levos pl $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ entro: $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ continuação ma outra			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Temos à Eunção Hanfetência de Malha abetto:	
(emo expresente o mosmo letos pl $\frac{\sqrt{(2)}}{\sqrt{(2)}} = \frac{\sqrt{(2)}}{\sqrt{(2)}}$) entro: $\frac{\sqrt{(2)}}{\sqrt{(2)}} = \frac{\sqrt{(2)}}{\sqrt{(2)}}$		4(7) - 7+0,2	
Como exterente o mosmo letos pl $\overline{U(z)}$ $R(z)$ entro: $\frac{Y(z)}{R(z)} = \left(\frac{1}{2} + 0.25\right)$ $\frac{Z^2}{2} + \frac{1}{2} + 0.25$ $\frac{Z^2}{2} + \frac{1}{2} + 0.25$ $\frac{Z^2}{2} + \frac{1}{2} + 0.25$	with the same	UCZI ZZ-1,5+0,5	
Como exterente o mosmo letos pl $\overline{U(z)}$ $R(z)$ entro: $\frac{Y(z)}{R(z)} = \left(\frac{1}{2} + 0.25\right)$ $\frac{Z^2}{2} + \frac{1}{2} + 0.25$ $\frac{Z^2}{2} + \frac{1}{2} + 0.25$ $\frac{Z^2}{2} + \frac{1}{2} + 0.25$		16-1 (6-1	
$\frac{Y(z)}{R(z)} = \left(\frac{1}{2} + 0.25\right)$ $\frac{Z^{2} + Z + 0.25}{2}$ $\frac{Z^{2} + Z + 0.25}{2}$ $\frac{Z^{2} + Z + 0.25}{2}$		Como espresente o mosmo levos pl vizi e Rizi	
$R(z)$ $Z^2+Z+0.25$ continuação ma outra	eghingun simine	entro:	
continuação ma outra		Y(z) = (p(2+0,2))	
continuação na outra			
	À	continuzion ne outre	

	NOME: LUCAS SOARES PESSINI
	DATA: 21/06/2018
	3.1) CONTINUAÇÃO
	Assim temos:
13	lim V[K7 = lim (1/21) R/21p(2+0,2) = p.1/2 = p.1/2
	$\lim_{K\to\infty} V_{1}^{2} = \lim_{Z\to 1} (1/z^{-1}) \frac{R/21p(z+0.7)}{2^{2}+2^{2}+0.25} = p.1/2 = p.1/2$
	Tem set iguel é 1. Assim p. 1,2 - 1 +0 p = 2,25 = 1,875
	P.1/2 -1 +0 p= 2/25 = 1.875
	2,25 1,2
	1
	Concluindo temos
	F.7 F.7
	A = 1.5 + 0.5 $B = 1 + 0.2$
	1 0 LO.
	K = [1/5 - 0/25] $p = 1/875$
	Assim sotemos um sistema estable e com etto nulo
	4) Pl o avanço de fase à seguido os
	p'ssos:
	1- Emontest o K onde stende o erto tegime:
	2- Encontrer a onde a= 1+ senfor, tido
	1-5enpm
	Im escolhido
	3- Encontret o wig onde 16(just 1/13=10 log (a)
	4- Encontrole o alg ; agote encontre o T
	onde $ug=1$.
	ET So filter forces on

	2,5= 20 lm/2 20 = m/2
	Ne figure 2 temes 2 sogainte funça trasteririe:
	$6(5) = 10^{145} 2$
	$(5+1)(4\pi)$
· · · · · · · · · · · · · · · · · · ·	
	235 P 201/24 5 T T

