Banco de Dados

Prof. Anthony Ferreira La Marca anthony@computacao.cua.ufmt.br

Projeto de BD

- Objetivo
 - Gerar um conjunto de esquemas de relações
 - Sem redundância desnecessária
 - Que permita recuperar informações de forma fácil
- Projetar esquemas na forma normal apropriada

Para atingir esses objetivos

Conceitos de normalização

Projeto de BD

- Para atingir um bom projeto de BD
 - Decompor uma relação em relações menores
- Decomposição
 - Realizada através de dependências funcionais

- Baseia-se no reconhecimento que os valores de alguns atributos podem ser determinados a partir de outros
- Esse conhecimento n\u00e3o pode ser inferido pelo SGBD
- Deve ser identificado durante a fase de Projeto do BD

✓ Exemplo:

RA→ nome, idade

Aluno (RA,nome, disciplina, idade)

{2,Rodolfo, CC-302, 20

2, Rodolfo, CC-304, 20

10, Eduardo, CC-304, 21

10, Eduardo, CC-308, 21

25, Vanessa, CC-304, 20

32, César, CC-304, 22

38, Mariana, CC-303, 21

54, Érica, CC-302,20 }

nome e idade SÃO FUNCIONALMENTE DEPENDENTES de RA

✓ Exemplo:

idade → disciplina

Aluno (RA,nome, disciplina, idade)

{2,Rodolfo, CC-302, 20

2, Rodolfo, CC-304, 20

10, Eduardo, CC-304, 21

10, Eduardo, CC-308, 21

25, Vanessa, CC-304, 20

32, César, CC-304, 22

38, Mariana, CC-303, 21

54, Erica, CC-302,20 }

disciplina NÃO É FUNCIONALMENTE DEPENDENTE de idade

- São informações semânticas fornecidas pelo projetista
- São usadas para minimizar redundância
- Minimizar anomalias em atualizações
- Contruir um BD mais eficiênte

Processo de Normalização

- Proposto por Codd e 1972
- Processo para simplificar as relações através de formais normais
 - Regras que devem ser obedecidas
- Inicialmente codd propôs 3 formas normais
 - -1FN
 - 2FN
 - 3FN
- Posteriormente Codd e Boyce proporam
 - FNBC

Processo de Normalização

- Todas essas formas normais são baseadas no conceito de dependência funcional entre atributos de uma relação
- Posteriormente surgiram a 4FN e a 5FN
 - Dependências Multivaloradas
 - Dependências de junção

Como deixar as relações na 1FN:

Se existirem atributos compostos:

Substituí-los por atributos atômicos

Exemplo:

Aluno (RA,nome, endereço)

Aluno (RA,nome, rua, número, bairro, cidade, estado)

> Como deixar as relações na 1FN:

Se existirem atributos multi-valorados:

Quantidade de valores é pequena e conhecida previamente

Quantidade de valores é desconhecida, grande ou variável.

- Como deixar as relações na 1FN:
 - Quantidade de valores é pequena e conhecida previamente
 - Substitui-se o atributo multi-valorado por um conjunto de atributos de mesmo dominio, cada um monovalorado representando uma ocorrência do valor.

Exemplo:

Aluno (RA, nome, {notas-bimestrais})

Aluno (RA, nome, nota1, nota2, nota3, nota4)

Como deixar as relações na 1FN:

- Quantidade de valores é desconhecida, grande ou variável.
 - retira-se da relação o atributo multi-valorado
 - cria-se uma nova relação que tem o mesmo conjunto de atributos chave, mais o atributo multivalorado. Verificar a formação da chave primária.

Exemplo:

Aluno (RA,nome, {disciplinas-matriculadas})

- Como deixar as relações na 1FN:
 - Quantidade de valores é desconhecida, grande ou variável.

Exemplo:

Aluno (RA,nome, {disciplinas-matriculadas})

Aluno (RA,nome)
Matricula (RA,disciplina-matriculada)

- Existe cassos ainda que temos atributos multivalorados compostos
- Chamados de relações aninhadas
- Pois cada tupla pode ter uma relação dentro dela
- Ex: Func:Proj
 - Cada tupla representa uma entidade funcionário
 - E a relação projeto (projnumero, Horas) detro de cada tupla

FUNC_PROJ(Cpf, Fnome, {PROJS(Projnumero, Horas)})

(a)	FUNC_PROJ		Projs	
	Cpf	Fnome	Projnumero	Horas

(b)

FUNC_PROJ

Cpf	Fnome	Projnumero	Horas	FUNC_
12345678966	Silva, João B.	1	32,5	Ср
		2	7,5	
66688444476	Lima, Ronaldo K.	3	40,0	FUNC
45345345376	Leite, Joice A.	1	20,0	
		2	20,0	<u>C</u> p
33344555587	Wong, Fernando T.	2	10,0	
		3	10,0	
		10	10,0	Normalizano
		20	10,0	da relação F aninhada PF
99988777767	Zelaya, Alice J.	30	30,0	FUNC_PRO
		10	10,0	cada tupla. (FUNC_PRO.
98798798733	Pereira, André V.	10	35,0	primária.
		30	5,0	
98765432168	Souza, Jennifer S.	30	20,0	
		20	15,0	
88866555576	Brito, Jorge E.	20	NULL	7.50

FUNC_PROJI		- (c)
<u>Cpf</u>	Fnome	(0)
FUNC_PROJ2		

Projnumero

Horas

Normalizando relações aninhadas para a 1FN. (a) Esquema da relação FUNC_PROJ com um atributo de relação aninhada PROJS. (b) Exemplo de extensão da relação FUNC_PROJ mostrando relações aninhadas dentro de cada tupla. (c) Decomposição de FUNC_PROJ nas relaçõe FUNC_PROJ1 e FUNC_PROJ2 pela propagação da chave primária.

- Deve estar na 1FN
- Se a chave primária foi única não aplica-se esta forma normal, caso contrário
- Há atributos que não participam da chave primária e são funcionamente dependentes de toda a chave primária?
- Caso haja atributos dependentes de somente parte da chave primária, a relação deve ser normalizada

- Outro Exemplo
- Matricula (<u>RA</u>, <u>cod-disc</u>, nome-aluno, nome-disc, quant-aula-disc, frequencia)
- Como ficaria?

- Deve estar na 2FN
- 1 Elimina-se atributos calculados
- Exemplo
 - Aluno (RA, nome-aluno, data-nasc, idade)
- 2 Há atributos que não participam da chave primária e são funcionamento dependentes de outros atributos que não são chaves?

Resumindo

 A seguinte relação não está na 3FN (a 3FN não pode ter dependência transitiva).

$$-A \rightarrow B \rightarrow C$$

 A solução seria dividir esse relacionamento em duas, o que resulta em:

$$-A \rightarrow B$$

$$-B \rightarrow C$$

- Outro Exemplo
- Aluno (RA, nome-aluno, cod-curso, nomecurso, titulo-curso)
- Como ficaria?

Exercícios

• 1- Lotes(<u>Propriedade-num</u>, <u>nome-cidade</u>, num-lote, area, preço, imposto)

- Problemas que a 3FN não resolve
 - Relação com duas ou mais chaves candidatas
 - Essas candidatas fossem compostas
 - Elas tivessem sobreposição (atributo em comum)
- Caso essas condições não ocorra em uma tabela, basta aplicar a 3FN

- Proposta para ser mais simples que a 3FN
- No entanto, se tornou mais rigorosa
- Deve estar na 3FN
- Mas o contrário não é obrigatoriamente verdadeiro.
- Uma relação R está na Forma Normal de Boyce-Codd
 - Se para toda dependência funcional, $X \rightarrow A$, X é uma chave candidata (primária ou secundária) de R
 - Ou seja, nenhum atributo não chave de R pode determinar outro atributo (principal ou não)
 - Trata apenas das dependências envolvendo atributos não principais

- Para normalizar a tabela devemos decompor a tabela da seguinte maneira
- Encontrar uma dependência funcional X -> Y que viole a FNBC. X não deve ser uma superchave
- Dividir a tabela em duas
 - Uma com os atributos X Y
 - Outra com os atributos X juntamente com os atributos restantes da tabela original

 Temos quantas possíveis chaves candidatas?

Quais?

 Temos sobreposição de atributo?

• Qual?

F#	F_Nome	P#	Qtde
F1	Acme	P1	600
F1	Acme	P2	300
F1	Acme	Р3	250
F1	Acme	P4	280
F2	Umbrella	P1	350

F	orn_Prod	t	
F#	P#	Qtde	
F1	P1	600	
F1	P2	300	
F1	P3	250	ou
F1	P4	280	
F2	P1	350	

	Forn_Nome_Prod				
	F_Nome	P#	Qtde		
	Acme	P1	600		
J	Acme	P2	300		
	Acme	P3	250		
	Acme	P4	280		
	Umbrella	P1	350		

- Outro Exemplo
 - Ensina (<u>aluno</u>, <u>disciplina</u>, professor)
- Restrições
- Cada estudante aprende uma disciplina lecionado por um professor
- Cada professor leciona apenas 1 disciplina
- Uma disciplinada pode ser lecionada por vários professores

	tbl_ADP	
Aluno	Disciplina	Professor
500	Matemática	Fábio
501	Física	Jorge :
501	História	Ana Maria
503	Matemática	Sandra
503	História	Nunes

Problemas

- Se um aluno for excluído, as informações do orientador somem também
- Se um novo aluno ou orientador for adicionado, obrigatoriamente devemos adicionar as informações relacionadas, as quais podem não existir

	tbl_ADP				
	Aluno	Disciplina	Professor		
	500	Matemática	Fábio		
:	501	Física	Jorge :		
	501	História	Ana Maria		
	503	Matemática	Sandra		
	503	História	Nunes		

 Temos quantas possíveis chaves candidatas?

• Quais?

 Temos sobreposição de atributo?

		tbl_ADP	
	Aluno	Disciplina	Professor
	500	Matemática	Fábio
:	501	Física	Jorge
	501	História	Ana Maria
	503	Matemática	Sandra
	503	História	Nunes

Qual?

- Temos duas DFs na relação
 - DF1: {aluno, disciplina} -> professor
 - DF2: professor -> disciplina
- {aluno, disciplina} é uma chave candidata para a relação
- Ao decompor uma relação para atender FNBC, deve-se tentar preservar as DFs nas relações decompostas

FNBC - Decomposição

- Três possíveis decomposição para a relação
 - D1: {aluno, professor} e {aluno, disciplina}
 - D2: {disciplina, professor} e {disciplina, aluno}
 - D3: {professor, disciplina} e {professor, aluno}
- Todas as 3 decomposições vão perder a DF1
 - Temos que nos conformar em sacrificar as DFs
 - Porém não podemos sacrificar a propriedade de junção aditiva

FNBC - Decomposição

- Das três possíveis, apenas a D3 não irá gerar tuplas espúrias após a junção
 - Espúrias: resultados inválidos após junções

 Teste para checar decomposições binárias não aditivas ->>

Propriedade JBN (Junção Binária Não-aditiva)

 Uma decomposição D={R1, R2} de R tem a JBN, no que diz respeito um conjunto de dependências funcionais F de R, se e somente se, alguma das DFs a seguir for válida

$$-DF((R1 \cap R2) \to (R1 - R2))$$

$$-DF((R1 \cap R2) \rightarrow (R2 - R1))$$

Propriedade JBN (Junção Binária Não-aditiva)

- D1: {aluno, professor} e {aluno, disciplina}
- D2: {disciplina, professor} e {disciplina, aluno}
- D3: {professor, disciplina} e {professor, aluno}
- Ao aplicar o teste da propriedade JBN às 3 decomposições da relação Ensina, temos:
- D1 (ambas inválidas)
 - Aluno -> professor ou aluno -> disciplina
- D2 (ambas inválidas)
 - Disciplina -> professor ou disciplina -> aluno
- D3 (boa decomposição)
 - Professor -> disciplina ou professor -> aluno

Decomposição ideal

- Seja R uma relação que não está na FNBC
- Seja X um subconjunto de R
- E seja X -> A a DF que causa violação da FNBC
- Então R pode ser decomposta em 2 relações:
 - -R-A
 - -XUA
- Se R A ou X U A não estiver na FNBC, repita o processo

Decomposição ideal

- Note que a DF que violou a FNBC, em nosso exemplo Ensina, foi professor -> disciplina
- Portanto, sua decomposição seria:
 - Ensina Disciplina
 - Professor U Disciplina
- Resultando em:
 - R1 (professor, aluno)
 - R2 (professor, disciplina)

FNBC

- Solução
 - Tabela1 (<u>aluno</u>, <u>professor</u>)
 - Tabela2 (professor, disciplina)

FNBC

- E no nosso exemplo do lote?
 - Suponhamos lotes de duas cidades, Barra e aragarças
 - Em Barra os lotes têm tamanhos de 300 ou 360 m^2
 - Em Aragarças tamanhos de 420 a 450 m^2
 - Sendo assim, dizemos que há dependência funcional
 - Area -> Nome-cidade
 - No entanto, nome-cidade é chave primaria e área não!

FNBC

- Termos que quebrar a relação Lotes1A do exercício anterior
- Lotes1AX (prop-num, area, num-lote)
- Lotes1AY (<u>area</u>, nome-cidade)

- Estar na 3FN
- Há relações que possuem restrições que não podem ser especificadas a partir da DF
- Utilizaremos dependência multivalorada
- São consequência da 1FN
- Se por acaso tivermos 2 atributos multivalorados em uma mesma relação
 - Obtemos o problema de ter que repetir cada valor de um dos atributos com cada valor do outro atributo
 - Afim de manter o estado da relação coerente e
 - Independência dos atributos envolvidos

- Para mater a relação coerente
- Devemos ter uma tupla separada para resepresentar cada combinação
 - Equipe
 - Projeto
 - Funcionário
- Essa restrição é especificada pela DM
- Informalmente, sempre que dois relacionamentos 1:N independentes são misturados na mesma relação uma MVD pode surgir

COD_PROJETO	COD_FUNCIONARIO	COD_EQUIPE
11	1001	A10
11	1002	A10
11	1001	A20
11	1002	A20
12	1001	A10
12	1001	A20

Colocado na 4FN

COD_PROJETO	COD_FUNCIONÁRIO
11	1001
11	1002
12	1001

COD_PROJETO	COD_EQUIPE
11	A10
11	A20
12	A10
12	A20

4FN – Outro Exemplo

Sname	Part_name	Proj_name	
Smith	Bolt	ProjX	
Smith	Nut	ProjY	
Adamsky	Bolt	ProjY	
Walton	Nut	ProjZ	
Adamsky	Nail	ProjX	
Adamsky Bolt		ProjX	
Smith	Bolt	ProjY	

- Está na 4ºFN, pois não há combinação de todos os valores dos atributos
- E Por que algumas situações eu repito e outras não? Quem decide isso?
 - A regra de negócio!!!!

Exercícios

• Passe para a 4^aFN

MUSICA	ARTISTA	ALBUM
MUSICA 1	ARTISTA 1	ALBUM 1
MUSICA 1	ARTISTA 2	ALBUM 2
MUSICA 1	ARTISTA 1	ALBUM 2
MUSICA 2	ARTISTA 3	ALBUM 1
MUSICA 2	ARTISTA 2	ALBUM 1
MUSICA 2	ARTISTA 3	ALBUM 2

Solução

MUSICA	ARTISTA
MUSICA 1	ARTISTA 1
MUSICA 1	ARTISTA 2
MUSICA 2	ARTISTA 3
MUSICA 2	ARTISTA 2

MUSICA	ALBUM
MUSICA 1	ALBUM 1
MUSICA 1	ALBUM 2
MUSICA 2	ALBUM 1
MUSICA 2	ALBUM 2

- Estar na 4FN
- Não pode ter dependência funcional de junção
 - Ou seja, uma dependência multivalorada incompleta
- Muito difícil de percebe-la em um BD com centenas de tabelas
- Quando aplicamos a 4FN em apenas 2 tabelas (em algumas vezes)
 - Acontece perda de semântica
 - Assim precisaremos que a decomposição seja feita em
 3 ou mais tabelas

Exemplo

Nome_fornece	Nome_peca	Nome_proj	
Silva	Peneira	ProjX	
Silva	Porca	ProjY	
Adam	Peneira	ProjY	
Walter	Porca	ProjZ	
Adam	Prego	ProjX	
Adam	Peneira	ProjX	
Silva	Peneira	ProjY	

Dependência de Junção

- Não iremos gerar todas as combinações
- Geraremos algumas dependendo da regra de negócio
- Resultando em decomposição não binária

Exemplo

R1		R2		R3	
Nome_fornece	Nome_peca	Nome_fornece	OR_proj	Nome_peca	OR_proj
Silva	Peneira	Silva	ProjX	Peneira	ProjX
Silva	Porca	Silva	ProjY	Porca	ProjY
Adam	Peneira	Adam	ProjY	Peneira	ProjY
Walter	Porca	Walter	ProjZ	Porca	ProjZ
Adam	Prego	Adam	ProjX	Prego	ProjX

- E se tivéssemos a seguinte regra de negócio:
 - Se um fornecedor fornece uma peça x ele é obrigado a fornecer a todos os projetos

FORNECE

Nome_fornece	Nome_peca	Nome_pro
Silva D	Peneira	ProjX
Siva	Porca	ProjY
Adam	Peneira	ProjY
Water	Poroa	Pro/Z
Adam	Prego	ProjX

Nome_fornece	Nome_peca	Nome_	proj
Silva	Peneira	ProjX	
Silva	Porca	ProjY	
Adam	Peneira	ProjY	
Waiter	Poroa	ProjZ	
Adam	Prego	ProjX	
Adam	Peneira	ProjX	tuplas falsas
Silva	Peneira	ProjY	- tupido idiodo

Junção Natural

-	_	-	
	_	•	
•			
		- 4	,

Nome_fornece	Nome_peca		
Silva	Peneira		
Silva	Poroa		
Adam	Peneira		
Walter	Poroa		
Adam	Prego		

Nome_fornece	OR_proj
Silva	ProjX
Silva	ProjY
Adam	ProjY
Waiter	ProjZ
Adam	ProjX

Nome_peca	OR_proj
Peneira	ProjX
Poroa	ProjY
Peneira	ProjY
Poroa	ProjZ
Prego	ProjX

Exercício 4FN e 5FN

Revendas

	Representante	Cliente	Produto
1	Martins	Sá e filhos	Louça
2	Martins	Sá e filhos	Talheres
3	Martins	DMI, Lda	Louça
4	Martins	DMI, Lda	Talheres
5	Castro	Sá e filhos	Cintos
6	Castro	Sá e filhos	Meias
7	Castro	Sá e filhos	Lenços
8	Castro	YSL	Cintos
9	Castro	YSL	Meias
10	Castro	YSL	Lenços

Revendas Representante Cliente Produto Martins Sá e filhos Louça DMI, Lda Martins Louça Martins DMI, Lda Talheres Sá e filhos Cintos Castro Sá e filhos Lenços Castro Meias Castro YSL Castro YSL Lenços

Exercícios

• 1) Considere o formulário abaixo:

RELATÓRIO DE AVALIAÇÃO DE CURSOS

Cód. Curso:	INF001	Nome Curso: Projeto BD Cód. Área: INF Descrição Área: Informática		formática		
Matrícula Funcionário	Data de Admissão	Nome do Funcionário	Ano Concl.	Cód. Cargo	Nome do Cargo	Avaliação
00129	01/03/1999	Alberto dos Santos	2000	001	Analista Junior	Regular
93821	05/03/1976	José da Silva	2002	002	Analista Sênior	Muito Bom
29841	09/09/2000	Maria José da Silva	2001	001	Analista Junior	Excelente
93820	08/07/1998	Rosa Maria	2000	003	Analista Pleno	Bom
00129	01/03/1999	Alberto dos Santos	2002	002	Analista Sênior	Muito Bom

Exerícios

- a) Encontre as dependências Funcionais:
- Ex: A -> B, C; C-> E;
- B) Aplique a 1, 2 e 3FN. Caso julgue necessário aplique a FNBC.
- 2) Considere a relação R (<u>A, B</u>, C, D, E, F) onde a chave primária é <u>A, B</u> e que apresenta as seguintes dependências funcionais:
- A->C; B->D; (A, B)->E; E->F;
- Normalize esta relação até a 3FN

Exercícios

- 3) Considere a seguinte relação para automóveis alugados
- Aluguel (cod-cliente, nome-cliente, telefone, cod-carro, marca, data-aluguel, datadevolução, valor-devido, cod-fornecedor, nome-fornecedor, valor-diaria-carro)
- A) mostre as dependências funcionais
- B) Deixe a relação na 3FN