Process

Organized By: Vinay Arora

Assistant Professor

CSED, TU

Disclaimer

This is NOT A COPYRIGHT MATERIAL

Content has been taken mainly from the following books:

Operating Systems Concepts By Silberschatz & Galvin,
Operating Systems: Internals and Design Principles By William Stallings

www.os-book.com

www.cs.jhu.edu/~yairamir/cs418/os2/sld001.htm www.personal.kent.edu/~rmuhamma/OpSystems/os.html http://msdn.microsoft.com/en-us/library/ms685096(VS.85).aspx http://www.computer.howsttuffworks.com/operating-system6.htm http://williamstallings.com/OS/Animations.html

Etc...

Process

- A Program in Execution is called as a <u>PROCESS</u>.
- An operating system executes a variety of programs:
 - Batch System Jobs
 - Time-Shared Systems User Programs or Tasks
- A Process Includes:
 - Program Counter
 - Stack
 - Data Section

Process in Memory

Vinay Arora CSED,TU

Process

A Program is a Passive Entity and a Process is an Active Entity.

Process associates PC and a set of other resources with it.

• A Program becomes a Process when an executable file is loaded into memory.

Two Techniques are present for loading Executable Files.
 (Double Clicking EXE, Running EXE through Command Prompt)

Set of Values held by a PROCESS

Current value of <u>Program Counter</u> (PC)

Contents of the Processors Registers

Value of the <u>Variables</u>

The <u>Process Stack</u> (SP) which typically contains temporary data such as subroutine parameter, return address, and temporary variables.

A Data Section that contains Global Variables.

Process States

Process States

New State: The Process being created.

Ready State: The Process is waiting to be assigned to a Processor.

Running State: A Process is said to be running if it has the CPU.

Blocked (or Waiting) State: A Process is said to be blocked if it is waiting for some event to happen.

Terminated State: The Process has finished *Execution*.

State Diagram

State Diagram

Process Control Block

process state

process number

program counter

registers

memory limits

ity, Patiala

list of open files

• • •

Vinay Arora CSED,TU

Process Control Block

Information associated with each Process

- Process state
- Program counter
- CPU registers
- CPU scheduling information
- Memory-management information
- Accounting information
- I/O status information

Various Queues

• Job Queue – Set of all processes in the system

 Ready Queue – Set of all processes residing in main memory, ready and waiting to execute

Device Queues – Set of processes waiting for an I/O device

Processes migrate among the various queues

Multiple Blocked Queues

Ready Queue

Context Switch

• When CPU switches to another process, the system must save the state of the old process and load the saved state for the new process via a *Context Switch*.

• *Context* of a process represented in the PCB

CSED, Thapar University, Patiala

• Context-switch time is overhead.

• Time dependent on hardware support

Context Switching

Process Scheduling Diagram

LSM Term Scheduler

• Long-Term Scheduler (or Job scheduler) – Selects which Processes should be brought into the Ready queue

• Short-Term Scheduler (or CPU scheduler) – Selects which Process should be executed next and allocates CPU

CSED, Thapar University, Patiala

• Medium-Term Scheduler – Intermediate Level of Scheduling. Limit the Multiprogramming and executes Swapping.

Medium Term Scheduler

Parent & Child Process

- **Parent** Process create **Children** Processes, which, in turn create other Processes, forming a tree of Processes
- Generally, Process identified and managed via a **Process Identifier** (PId)
- Resource Sharing
 - Parent and Children share all Resources
 - Children share subset of parent's Resources
 - Parent and child share no Resources
- Execution
 - Parent and Children execute Concurrently
 - Parent waits until children Terminate

Process Creation (Unix)

• UNIX Examples

• Fork System Call creates new Process.

• *Exec* System Call used after a fork to replace the process' memory space with a new Program.

Process Creation (Unix)

Tree of Processes on Solaris

Process Termination

- Process executes last statement and asks the operating system to delete it (exit)
 - Output data from child to parent (via wait)
 - ☐ Process' resources are deallocated by operating system
- Parent may terminate execution of children processes (abort)
 - ☐ Child has exceeded allocated resources
 - ☐ Task assigned to child is no longer required
 - \Box If parent is exiting
 - ☐ Some operating system do not allow child to continue if its parent terminates
- All children terminated Cascading Termination

InterProcess Communication

- Processes within a system may be *Independent* or *Cooperating*
- Cooperating process can affect or be affected by other processes, including sharing data
- Reasons for cooperating processes:
 - Information sharing
 - Computation speedup Thapar University, Patiala
 - Modularity
 - Convenience
- Cooperating processes need Inter Process Communication (IPC)
- Two models of IPC Shared memory & Message passing

Direct Communication

- Processes must name each other explicitly:
 - □ send (P, message) —send a message to process P
 - □ receive (Q, message) –receive a message from process Q
- Properties of Communication link
 - ☐ Links are established automatically
 - ☐ A link is associated with exactly one pair of communicating processes
 - ☐ Between each pair there exists exactly one link
 - The link may be unidirectional, but is usually bi-directional

Interaction b/w Processes

- Data Sharing Common Variable/Data.
- Message Passing Communication b/w 2 processes.
- Synchronization Coordination in Activities.
- Signals To Convey a situation to a Process so that it can perform some special actions to handle the situation.
- Concurrency & Parallelism.
- Computational Speed Up.
- Scheduling & Dispatching.

Message Passing & Shared Memory

Vinay Arora CSED,TU

Thnx...

CSED, Thapar University, Patiala