Aiguille et botte de foin :

scikit-learn et joblib pour explorer des données volumeuses

G. Varoquaux

 ${\sf Neurospin} + {\sf INRIA}$

Explosion de la quantité de données

Explosion de la quantité de données

Traitement statistique de donnée (apprentissage)

Résumer l'information

Prédire de nouvelles informations

Statistiquement optimal

Algorithmiquement rapide

Prédire — scikit-learn

2 Résumer — scikit-learn

3 Être fainéant (et efficace) — joblib

1 Prédire - scikit-learn

1 Reconnaissance de visage

1 Reconnaissance de visage

1 Méthode naïve

1 Estimer les visages *typiques* à partir d'images connues (bruitées).

2 A partir d'une photo (bruitée aussi), trouver le visages *typique* qui lui ressemble le plus.

1 Une botte de foin

La fraction d'information intéressante est faible :

- ■II y a du bruit
- L'image est grande

1 Les vrais données sont pourries

http://cswww.essex.ac.uk/mv/allfaces

100 individus, 10 photos par individu,

à peu près alignées

1 Validation croisée

- 1 Choisir une fraction des photos pour les visages connus (*jeu d'apprentissage*).
- **2** Apprendre les visages *typiques* et la fonction de prédiction dessus.
- 3 Tester la prédiction en essayant de nommer les photos non utilisées pour l'apprentissage (jeu de test) et en mesurant le taux d'erreur.

1 Du code : scikit-learn

■ Objets avec fit/predict prenant des tableaux numpy

```
e = Estimator()
e.fit(known_faces, known_names)
guessed_names = e.predict(unkown_faces)
```

■ Générateurs de validation croisée renvoyant des masques

```
from scikits.learn import cross_val
cv = cross_val.StratifiedKFold(names)
for train, test in cv:
    e.fit(faces[train], names[train])
    e.predict(faces[test])
```

Ingrédients de base d'un framework d'apprentissage

1 Au final: .5% d'erreur de prédiction

Utiliser les k plus proches voisin (kNN):

■ Choisir *k* pour optimiser le score.

Attention 2 boucles imbriquées de validation croisée

- 1 choisir *k*
- 2 évaluer l'erreur sur des données inconnues

2 Résumer — scikit-learn

2 Réduire la taille des données

- Botte de foin : la taille des données nuit à la performance
- Les images contiennent beaucoup d'information redondante

Comment la réduire de façon optimale?

2 Former des groupes

Pays associés à une devise majeure

La corrélation des taux de changes fournit

une mesure d'affinité

2 Former des groupes

Qui se ressemble s'assemble

2 Former des groupes sur une image

2 Former des groupes sur les 1000 visages

Choisir k pour maximiser la prédiction (encore une boucle de validation croisée)

Apprentissage statistique en Python Efficace

```
Bons algorithmes, numpy + scipy, C + Cython + Python
```

Pythonesque

License BSD, objets simples, pas de dépendences autres que numpy + scipy

Facile à utiliser

API uniforme, documentation, paramêtres par défault

3 Être fainéant (et efficace) –

joblib

3 Évaluation fainéante

On calcule toujours la même chose

Boucles de imbriquées avec transformations successives

Calculs en variant les paramêtres

Difficultés

Connaître les dépendances entre les étapes Suivre les paramêtres

Évaluation fainéante : ne pas recalculer ce qu'on a déjà calculé

3 pipeline/data flow programming

3	joblib

Philosophie

Simple

ne changez pas vos programmes n'apprenez pas de nouveau paradigmes

Minimal

pas de dépendances, embarquable peu de fonctionnalités

Performant

grosses données calcul parallèle

Robuste

tolérant aux erreurs debuggable

Évaluation fainéante

```
>>> from joblib import Memory
>>> mem = Memory(cachedir='/tmp/joblib')
>>> import numpy as np
>>> a = np.vander(np.arange(3))
>>> square = mem.cache(np.square)
>>> b = square(a)
[Memory] Calling square...
<u>square</u>(array([[0, 0, 1],
       [1, 1, 1],
       [4, 2, 1]))
                   ____square <u>- 0.0s</u>
>>> c = square(a)
>>> # Pas de re-evaluation
```

3 joblib

Évaluation fainéante

- Hash MD5 des paramêtres d'entrées (efficace)
- ⇒ pas de modèle de données et d'exécution
- Stockage sur disk dans des répertoires séparés (efficace memmap)
- Table globale sqlite (verrous :()
- Nettoyage de cache à la volée (beta)

```
3 joblib
```

Calcul parallèle

```
>>> from joblib import Parallel, delayed
>>> from math import sqrt
>>> Parallel(n_jobs=1)(delayed(sqrt)(i**2)
... for i in range(7))
[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]
```

- ■La syntaxe est importante
- ■Le débugage aussi
- ⇒ Fork agressif

3 joblib

Le futur

- Meilleur branchement parallèle/memoire
- Meilleurs bases de données/datastore
- 2 niveaux de cache (mémoire/disk)
- Suivit d'exécution

3 Traitement de données performant...

Scikit Learn:

- Algorithmes état de l'art
- ■Projet jeune

joblib

- Mieux calculer
- Pas que scientifique

```
http://scikits-learn.sf.net
http://packages.python.org/joblib
```

