# Checkpoint 3

Warsztaty z technik uczenia maszynowego

Jakub Rymuza

Karol Nowiński

26 maja 2022

## 1 Przygotowanie danych

Po "wyczyszczeniu" danych w poprzedniej checkpoint'cie, kolejnym krokiem mającym przygotować dane do efektywnego wykorzystania przez modele były: tokenizacja, stemizacja, lematyzacja oraz wektoryzacja.

#### 1.1 Tokenizacja

Krok ten polega na podziale tekstu (ciągu słów) na tablicę pojedynczych słów. Wykorzystano dwie metody tokenizacji:

- Regexp Tokenization ten typ tokenizacji przy podziale na słowa, wyrzuca wszelkie znaki interpunkcyjne.
- Treebank Tokenization ten typ tokenizacji zachowuje wszystkie znaki interpunkcyjne.

## 1.2 Stemizacja

Stemizacja (ang. steeming) usuwa ze słów końcówki, zachowujący jedynie tzw. temat wyrazu (ang. stem). Temat wyrazu to część wspólna wszystkich wyrazów z danej rodziny. Na przykład tematem słowa "residents" jest "resid", a słowa "asked" jest "ask".

#### 1.3 Lematyzacja

Lematyzacja (ang. lemmatization) przekształca słowa do podstawowej, "słownikowej" formy. Na przykład "is" oraz "are" są przekszłacane do "be", zaś "cars" do "car".

#### 1.4 Wektoryzacja

Wektoryzacja to technika przekształcająca ciąg słów (tokenów) na tablicę liczb, którą wykorzystują modele. Wybrany typ wektoryzacji to wektoryzacja typu CountVectorizer - zlicza on po prostu ilość tokenów danego typu i zapisuje w rzadkiej macierzy. Innym typem wektoryzacji jest wektoryzacja TF-IDF, która bierze pod uwagę to jak rzadki jest dany token w tekście. Ta metoda jednak nie przyniosła lepszych wyników, a nawet je pogorszyło. Mogło to wynikać z wcześniejszych faz przygotowania danych (przede wszystkim usunięcie tzw. stop words).

#### 1.5 Wyniki

Poniższy wykres przedstawia porównanie różnych metod tokenizacji, stemizacji oraz lematyzacji po użyciu ich na modelu klasyfikatora drzewa decyzyjnego. Jak widać zyski z zastosowania tych metod są dla naszych danych znikome, a wręcz mogą nieco pogarszać wyniki. Z tego względu w dalszej części będziemy rozważać wyniki dla których nie zastowano lematyzacji ani stemizacji.



Rysunek 1: Porównanie metod tokenizacji, stemizacji oraz lematyzacji

### 2 Modele

Po przygotowaniu danych, użyto różnych modeli w celu sprawdzeniu, który z nich jest najlepszy. Użyte modele wraz z dokładnością (accuracy) oraz tablicami pomyłek (confusion matrices):



Rysunek 2: Tablica pomyłek dla klasyfikator drzewa decyzyjnego

- Naiwny klasyfikator bayesowski (Naive Bayes classifier) dokładność 80.43%
- $\bullet$  Wielomianowy na<br/>iwny klasyfikator bayesowski (multinomial naive Bayes classifier) dokładność <br/>-79.71%
- Klasyfikator regresji logistycznej (logistic regression classifier) dokładność 79.94%
- Klasyfikator regresji grzbietowej (ridge regression classifier) dokładność 77.61%
- $\bullet$  Klasyfikator lasu losowego (random forest classifier) dokładność 78.92%



Rysunek 3: Tablica pomyłek dla naiwnego klasyfikatora bayesowskiego



Rysunek 4: Tablica pomyłek dla wielomianowego na<br/>iwnego klasyfikatora bayesowskiego  $\,$ 



Rysunek 5: Tablica pomyłek dla klasyfikatora regresji logistycznej



Rysunek 6: Tablica pomyłek dla klasyfikatora regresji grzbietowej



Rysunek 7: Tablica pomyłek dla klasyfikatora lasu losowego

Jak widać, najlepsze wyniki uzyskał naiwny klasyfikator bayesowski - powyżej 80%. Bardzo zbliżone wyniki uzyskał też klasyfikator regresjii logistycznej oraz wielomianowy naiwny klasyfikator bayesowski. Dokładność powyżej 80% można w uczeniu maszynowym można już traktować jako dość wysoki, zatem cel projektu można uznać za zrealizowany.