SUPPLEMENTAL AMENDMENT

Application No.: 10/563,594

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

(currently amended): A composite material having an appearance similar to that
of natural stone, said material comprising:

a natural aggregate,

a polymeric binder,

a curing agent, and

a migratoryan antimicrobial agent,

whereby the antimicrobial agent that exhibits controlled migration through said polymeric binder to the surface of the composite material;

wherein said migratory antimicrobial agent is present in the composite material at a level of at least 500-ppm based on the weight of said composite material;

and wherein said natural aggregate makes up between about 85% to about 96% by weight of said composite material.

- (previously presented): The composite material according to claim 1 wherein said natural aggregate is selected from the group consisting of calcium carbonate, granite, quartz, feldspar, marble and quartzite and mixtures thereof.
- (previously presented): The composite material according to claim 2 further comprising a filler selected from the group consisting of fumed silica, sand, clay, fly ash, cement,

SUPPLEMENTAL AMENDMENT

Application No.: 10/563,594

broken ceramics, mica, silicate flakes, broken glass, glass beads, glass spheres, minor fragments,

steel grit, aluminum grit, carbides, plastic beads, pelletized rubber, ground polymer composites,

wood chips, sawdust, paper laminates, pigments, colorants, and mixtures thereof.

4. (canceled).

5. (previously presented): The composite material according to claim 1 wherein

said natural aggregate makes up between about 89% to about 93% by weight of the composite

material.

6. (previously presented): The composite material according to claim 1 wherein

the polymeric binder makes up between about 4% to about 15% by weight of the composite

material.

7. (previously presented): The composite material according to claim 6 wherein

said polymeric binder makes up between about 6% to about 10% by weight of the composite

material.

8. (previously presented): The composite material according to claim 1 wherein

said polymeric binder is selected from the group consisting of monomers, a mixture of monomers,

polymers, a mixture of polymers, and a mixture of monomers and polymers.

(previously presented): The composite material according to claim 8 wherein

said polymeric binder is a polymer and is selected from the group consisting of thermoplastic

polymers and thermosetting polymers.

3

- 10. (previously presented): The composite material according to claim 9 wherein said polymeric binder is a polymer and is selected from the group consisting of polyester, vinyl ester, epoxy, phenolic resin, urethane, and mixtures thereof.
- 11. (previously presented): The composite material according to claim 8 wherein said polymeric binder is a monomer and is selected from the group consisting of acrylics, styrene, styrene derivatives, vinyl toluene, divinyl benzene, methyl acrylate, ethyl acrylate, isopropyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, butyl methacrylate, phenols, and furans.
- 12. (previously presented): The composite material according to claim 11 wherein said monomer is selected from the group consisting of styrene, methyl methacrylate and butyl acrylate.
 - 13. (canceled).
- 14. (previously presented): The composite material according to claim 1 wherein said antimicrobial agent is present in said composite material in a quantity between about 500 ppm and 10,000 ppm.
- 15. (previously presented): The composite material according to claim 14 wherein said antimicrobial agent is present in said composite material in a quantity between about 800 ppm and 7000 ppm.
- 16. (previously presented): The composite material according to claim 14 wherein said antimicrobial agent further comprises an antimicrobial agent selected from the group

consisting of quarternary ammonium compounds, quarternary ammonium compounds having an unsaturated reactive group, metals, and mixtures thereof.

- 17. (previously presented): The composite material according to claim 16 wherein said antimicrobial agent is selected from the group consisting of triclosan, tolyl diiodomethyl sulfone, zinc pyrithione, sodium pyrithione, ortho phenylphenol, sodium ortho phenylphenol, iodo2-propynyl butylcarbamate, poly [oxyethylene(dimethyliminio) ethylene(dimethyliminio)ethylene chloride], propiconazole, tebuconazole, bethoxazin, thiabendazole, polyhexamethylene biguanide, 1,3,5-triazine-1,3,5(2H,4H,6H)-triethanol, isothiazalinones, and mixtures thereof.
- 18. (previously presented): The composite material according to claim 17 wherein the polymeric binder is polyester and said antimicrobial agent is triclosan, wherein said triclosan is present in the composite material in a quantity between about 800 ppm and 5000 ppm.

19-23. (canceled).

- 24. (previously presented): The composite material according to claim 1 wherein said antimicrobial agent is present in an amount sufficient to demonstrate commercially acceptable efficacy against a microbe of concern.
- (previously presented): A finished product comprising the composite material according to claim 1.
- 26. (previously presented): The finished product according to claim 25 selected from the group consisting of a tabletop, a countertop, architectural facings, walkways, home

SUPPLEMENTAL AMENDMENT

Application No.: 10/563,594

furnishings, patio furniture, decorative stone, indoor and outdoor tile, flooring, mantles, wall

facings, bathroom fixtures, and imitation stone structures.

27. (previously presented): The composite material according to claim 1 further

comprising a colorant.

28. (withdrawn-previously presented): A process for manufacturing the composite

material of claim 1, said process comprising the steps of:

obtaining a natural aggregate of appropriate dimension;

combining said natural aggregate with a polymeric binder to form an aggregate and

binder mixture;

adding an antimicrobial agent to said aggregate and binder mixture;

distributing said aggregate and binder mixture comprising antimicrobial agent in a mold;

and

curing said aggregate and binder mixture comprising antimicrobial agent by application

of heat and pressure and vibration.

29. (withdrawn): The process according to claim 28 wherein said natural aggregate

is combined with said polymeric binder in a quantity such that it makes up between about 85% to

about 96% by weight of said aggregate and binder mixture.

30. (withdrawn): The process according to claim 29 wherein said natural aggregate

makes up between about 89% to about 93% by weight of the composite material.

6

- 31. (withdrawn): The process according to claim 28 wherein the step of obtaining the natural aggregate comprises obtaining a natural aggregate selected from the group consisting of calcium carbonate, quartz, granite, feldspar, marble, quartzite, and mixtures thereof.
- 32. (withdrawn): The process according to claim 31 further comprising the step of combining the aggregate with a filler selected from the group consisting of fumed silica, sand, clay, fly ash, cement, broken ceramics, mica, silicate flakes, broken glass, glass beads, glass spheres, mirror fragments, steel grit, aluminum grit, carbides, plastic beads, pelletized rubber, ground polymer composites, wood chips, sawdust, paper laminates, pigments, colorants, and mixtures thereof.
- 33. (withdrawn): The process according to claim 31 wherein said natural aggregate is selected from the group consisting of granite, marble, quartz and mixtures thereof.
- 34. (withdrawn): The process according to claim 28 wherein said polymeric binder is combined with said natural aggregate in a quantity such that said polymeric binder makes up between about 4% to about 15% by weight of said aggregate and binder mixture.
- 35. (withdrawn): The process according to claim 34 wherein said polymeric binder makes up between about 6% to about 10% by weight of said aggregate and binder mixture.
- 36. (withdrawn): The process according to claim 28 wherein said polymeric binder is selected from the group consisting of monomers, a mixture of monomers, polymers, a mixture of polymers. and a mixture of monomers and polymers.

- 37. (withdrawn): The process according to claim 28 wherein said polymeric binder is a polymer and is selected from the group consisting of thermoplastic polymers and thermosetting polymers.
- 38. (withdrawn): The process according to claim 37 wherein said polymeric binder is a polymer and is selected from the group consisting of polyester, vinyl ester, epoxy, phenolic resin, urethane, and mixtures thereof.
- 39. (withdrawn): The process according to claim 36 wherein said polymeric binder is a monomer and is selected from the group consisting of styrene, styrene derivatives, vinyl toluene, divinyl benzene, methyl acrylate, ethyl acrylate, isopropyl acrylate, butyl acrylate, 2ethyl hexyl acrylate, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, butyl methacrylate, phenols, and furans.
- 40. (withdrawn): The process according to claim 39 wherein said monomer is selected from the group consisting of styrene, methyl methacrylate and butyl acrylate.
- (withdrawn): The process according to claim 34 wherein said polymeric binder is polyester.
- 42. (withdrawn): The process according to claim 28 further comprising the step of placing the aggregate and binder mixture under a vacuum.
- 43. (withdrawn): The process according to claim 42 wherein the vacuum is maintained as said aggregate and binder mixture is distributed into the mold.
- 44. (withdrawn): The process according to claim 28 wherein the step of curing the mixture under pressure comprises application of a vacuum.

- 45. (withdrawn): The process according to claim 42 wherein the curing step comprises application of heat between ambient and about 200°C.
- 46. (withdrawn): The process according to claim 28 wherein the applied pressure is between about 70 tons and about 140 tons.
- 47. (withdrawn): The process according to claim 28 wherein the step of adding an antimicrobial agent to said aggregate and binder mixture comprises adding said antimicrobial agent directly to said aggregate and binder mixture.
- 48. (withdrawn): The process according to claim 28 wherein the step of adding the antimicrobial agent to said aggregate and binder mixture comprises adding said antimicrobial agent to said polymeric binder prior to combining the natural aggregate with the polymeric binder.
- 49. (withdrawn): The process according to claim 28 wherein the step of adding the antimicrobial agent to said aggregate and binder mixture comprises combining said antimicrobial agent with a colorant and then adding said antimicrobial agent and colorant to said aggregate and binder mixture.
- 50. (withdrawn): The process according to claim 28 wherein the step of adding the antimicrobial agent comprises adding said antimicrobial agent to a polymeric layer adjacent an outer surface of the cured mixture.
 - 51. (canceled).

- 52. (withdrawn- previously presented): The process according to claim 28 wherein the antimicrobial agent is added in an amount sufficient to constitute between about 500 ppm and 10,000 ppm of said aggregate and binder mixture.
- 53. (withdrawn- previously presented): The process according to claim 52 wherein the antimicrobial agent is added in an amount of between about 800 ppm and 7000 ppm of said aggregate and binder mixture.
- 54. (withdrawn- previously presented): The process according to claim 52 wherein the antimicrobial agent is selected from the group consisting of quarternary ammonium compounds, quarternary ammonium compounds having an unsaturated reactive group, metals, and mixtures thereof.
- 55. (withdrawn-previously presented): The process according to claim 54 wherein the antimicrobial agent is selected from the group consisting of triclosan, tolyl diiodomethyl sulfone, zinc pyrithione, sodium pyrithione, ortho phenylphenol, sodium ortho phenylphenol, iodo-2-propynyl butylcarbamate, poly[oxyethylene(dimethyliminio) ethylene(dimethyliminio)ethylene chloride], propiconazole, tebuconazole, bethoxazin, thiabendazole, polyhexamethylene biguanide, 1,3,5-triazine-1,3,5-(2H,4H,6H)-triethanol, isothiazalinones and mixtures thereof.
- 56. (withdrawn-previously presented): The process according to claim 55 wherein the polymeric binder is polyester and the antimicrobial agent is triclosan, wherein the triclosan is present in the composite material in a quantity between about 800 ppm and 5000 ppm.
 - 57-61. (canceled).

- 62. (withdrawn- previously presented): The process according to claim 28 wherein said antimicrobial agent is present in an amount sufficient to demonstrate commercially acceptable efficacy against a microbe of concern.
- 63. (withdrawn- previously presented): The process according to claim 28 wherein said polymeric binder comprises a polyester and said antimicrobial agent is triclosan and the triclosan present in the cured mixture is between about 800 ppm and about 5000 ppm based upon the weight of the cured mixture.
- 64. (withdrawn): The process according to claim 28 further comprising forming a finished product from the cured mixture.
- 65. (withdrawn): The process according to claim 64 wherein the step of forming a finished product comprises forming a tabletop, a countertop, architectural facings, walkways, home furnishings, patio furniture, decorative stone, indoor and outdoor tile, flooring, mantles, wall facings, bathroom fixtures, cutting boards, sinks, showers, tubs, and imitation stone structures.