I Miroir

On note $\widetilde{u} = u_n...u_1$ le miroir d'un mot $u = u_1...u_n$ et $\widetilde{L} = \{\widetilde{u} \mid u \in L\}$ le miroir d'un langage L. Soit L un langage hors-contexte. Montrer que \widetilde{L} est un langage hors-contexte.

II CCP 2023

On considère la grammaire algébrique G sur l'alphabet $\Sigma = \{a, b\}$ et d'axiome S dont les règles sont : $S \to SaS \mid b$

- 1. Cette grammaire est-elle ambiguë? Justifier.
- 2. Déterminer (sans preuve pour cette question) le langage L engendré par G. Quelle est la plus petite classe de langages à laquelle L appartient ?
- 3. Prouver que L = L(G).
- 4. Décrire une grammaire qui engendre L de manière non ambiguë en justifiant de cette non ambiguité.
- 5. Montrer que tout langage dans la même classe de langages que L peut être engendré par une grammaire algébrique non ambiguë.

III Trouver une grammaire

Montrer que les langages suivants sont non-contextuels :

- 1. L_1 = représentations des multiples de 3 en base 2.
- 2. $L_2 = \{a^n b^p \mid n \ge p\}.$
- 3. $L_3 = \text{complémentaire de } \{a^n b^n \mid n \in \mathbb{N}\}.$
- 4. $L_4 = \{a^i b^j c^k \mid i = j + k\}.$

IV Trouver le langage engendré

Déterminer les langages engendrés par les grammaires suivantes avec S comme symbole initial, en le prouvant :

1.
$$S \rightarrow X \mid Y$$

$$X \rightarrow aX \mid aZ$$

$$Y \rightarrow Yb \mid Zb$$

$$Z \rightarrow \varepsilon \mid aZb$$

$$3.$$

$$S \rightarrow X \mid Y$$

$$X \rightarrow Z0X \mid Z0Z$$

$$Y \rightarrow Z1Y \mid Z1Z$$

$$Z \rightarrow \varepsilon \mid 1Z0Z \mid 0Z1Z$$

2.

$$\begin{split} S &\to 0A1 \mid \varepsilon \\ A &\to 1S0 \mid \varepsilon \end{split}$$

V Forme normale de Chomsky

Une grammaire est en forme normale de Chomsky si toutes ses règles sont de la forme $X \longrightarrow YZ$ (où Y et Z sont des variables), $A \longrightarrow a$ (où a est une lettre) ou $S \longrightarrow a$.

Soit G une grammaire qui n'engendre pas ε . Montrer qu'il existe une grammaire G' en forme normale de Chomsky telle que L(G') = L(G).

VI Mots de Dyck

Soit $\Sigma = \{(,)\}$. Un mot u sur Σ est un mot de Dyck (ou : mot bien parenthésé) si :

• u contient autant de (que de)

• chaque préfixe de u contient au moins autant de (que de)

On note D l'ensemble des mots de Dyck et $D_n = D \cap \Sigma^{2n}$ l'ensemble des mots de Dyck de taille 2n.

- 1. Montrer que D n'est pas un langage régulier.
- 2. Montrer que tout mot de Dyck non-vide se décompose de manière unique sous la forme aubv, où u et v sont des mots de Dyck.
- 3. Montrer que D est un langage non-contextuel.
- 4. Donner une bijection entre les mots de Dyck et les arbres binaires stricts (tels que tout nœud possède 0 ou 2 fils).
- 5. Soit C_n le nombre de mots de Dyck de longueur 2n. Trouver une équation de récurrence sur C_n .
- 6. Après avoir fait le cours de mathématiques sur les séries entières, montrer que $C_n = \frac{1}{n+1} \binom{2n}{n}$.
- 7. Dans cette question, on peut utiliser des parenthèses différentes (par exemple, {} et []). Décrire un algorithme en complexité linéaire pour savoir si un mot est bien parenthésé.
- 8. Décrire un algorithme en complexité linéaire pour trouver la longueur du plus long facteur bien parenthésé d'un mot sur Σ .

On pourra résoudre les deux dernières questions sur LeetCode : Valid Parentheses et Longest Valid Parentheses.