Machine Learning 2 - Homework week 2: t-SNE

Phuong Quynh Chi ID 11204713

Ngày 17 tháng 1 năm 2023

1 Problem 1. Biến đổi:

SNE - Stochastic Neighbor Embedding

Let go through the basic idea of SNE:

- Consider the neighborhood around an input data point $x_i \in \mathbb{R}^D$
- Imagine that we have a Gaussian distribution centered around x_i
- Then the probability that x_i chooses some other data point x_j as its neighbor is in proportion with the density under this Gaussian.
- A point closer to x_i will be more likely than one further away

Next, the probability that point x_i chooses x_i as it neighbor:

$$p_{j|i} = \frac{\exp\left\{-\|x^{(i)} - x^{(j)}\|^2 / 2\sigma_i^2\right\}}{\sum_{k \neq i} \exp\left\{-\|x^{(i)} - x^{(k)}\|^2 / 2\sigma_i^2\right\}}$$
(1)

with $p_{i|i} = 0$

Final distribution over pairs is symmetrized:

$$p_{ij} = \frac{1}{2N} (p_{i|j} + p_{j|i}) \tag{2}$$

The problem is that:

- $\bullet \ \mbox{Given } x^{(1)},...,x^{(N)} \in R^D$ we define the distribution P_{ij}
- For points $y^{(1)}, ..., y^{(N)} \in \mathbb{R}^d$ we can define distribution Q similarly the same (notice no σ_i and not symmetric)

$$Q_{ij} = \frac{\exp\left\{-\|y^{(i)} - y^{(j)}\|^2\right\}}{\sum_{k} \sum_{l \neq k} \exp\left\{-\|y^{(l)} - y^{(k)}\|^2\right\}}$$
(3)

• Optimize Q to be close to P: Minimize KL - divergence -> to find the embedding (parameter) $y^{(1)},...,y^{(N)} \in \mathbb{R}^d$

$$KL(P||Q) = \sum_{ij} P_{ij} \log \frac{P_{ij}}{Q_{ij}} = -\sum_{ij} P_{ij} \log Q_{ij} + const$$

$$\tag{4}$$

We can minimize KL-divergence with gradient descent, gradient is calculated as below:

Define

$$q_{j|i} = \frac{e^{-||y_i - y_j||^2}}{\sum_{k \neq i} e^{-||y_i - y_j||^2}} = \frac{E_{ij}}{\sum_{k \neq i} E_{ij}} = \frac{E_{ij}}{Z_i}$$
 (5)

Notice that $E_{ij} = E_{ji}$. The loss function is defined as

$$C = \sum_{k,l \neq k} p_{l|k} log \frac{p_{l|k}}{q_{l|k}} = \sum_{k,l \neq k} p_{l|k} log \ p_{l|k} - p_{l|k} log \ q_{l|k}$$

$$= \sum_{k,l \neq k} p_{l|k} log \ p_{l|k} - p_{l|k} log \ E_{kl} + p_{l|k} log \ Z_{k}$$
(6)

Deriving with respect to y_i . To make the derivation less cluttered, omitting the ∂y_i , term at the denominator.

$$\frac{\partial C}{\partial y_i} = \sum_{k,l \neq k} -p_{l|k} \partial \ log E_{kl} + \sum_{k,l \neq k} p_{l|k} \partial \ log Z_k$$

Start with the first term, noting that the derivative is non-zero when $\forall j \neq i, k = i \text{ or } l = 1$

$$\sum_{k,l\neq k} -p_{l|k}\partial \log E_{kl} = \sum_{j\neq i} -p_{j|i}\partial \log E_{ij} - p_{i|j}\partial \log E_{ji}$$
(7)

Since $\partial E_{ij} = E_{ij}(-2(y_i - y_j))$ we have

$$\sum_{j\neq i} -p_{j|i} \frac{E_{ij}}{E_{ij}} (-2(y_i - y_j)) - p_{i|j} \frac{E_{ji}}{E_{ji}} (2(y_j - y_i))$$

$$= 2 \sum_{i\neq i} (p_{j|i}) + p_{i|j} (y_i - y_j)$$
(8)

Concluding with the second term. Since $\sum_{l\neq j} p_{l|j} = 1$ and Z_j does not depend on k, we can write (changing variable from j to j to make it more similar to the already computed terms)

$$\sum_{i,k\neq j} p_{k|j} \partial \log Z_j = \sum_i \partial \log Z_j$$

The derivative is non-zero when k = i or j = i (also, in the latter case we can move Z_i inside the summation because constant)

$$= \sum_{j} \frac{1}{Z} \sum_{j} \partial E_{jk}$$

$$= \sum_{j \neq i} \frac{E_{ji}}{Z_{j}} (2(y_{j} - y_{i})) + \sum_{j \neq i} \frac{E_{ij}}{Z_{i}} (-2(y_{i} - y_{j}))$$

$$= 2 \sum_{j \neq i} (-q_{j|i} - q_{i|j}(y_{i} - y_{j}))$$
(9)

Combining equation (8) and (9) we arrive at the final result

$$\frac{\partial C}{\partial y_i} = 2\sum_{j \neq i} (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$$
(10)

t-SNE - t-Distributed Stochastic Neighbor Embedding

In high dimension we have more room, points can have a lot of different neighbors. In 2D, a point can have a few neighbors at distance one all far from each other. This is the "crowding problem" - we don't have enough room to accommodate all neighbors. Solution is that is t-SNE. Change the Gaussian in Q to a heavy tailed distribution -> if Q changes slower, we have more "wiggle room" to place points at. In t-SNE, probability goes to zero much slower then a Gaussian. We redefine Q_{ij} as:

$$Q_{ij} = \frac{(1 + \|y^{(i)} - y^{(j)}\|^2)^{-1}}{\sum_{k} \sum_{l \neq k} (1 + \|y^{(l)} - y^{(k)}\|^2)^{-1}}$$
(11)

And use the same P_{ij}

We can minimize KL-divergence with gradient descent, gradient of t-SNE is calculated as below:

Define

$$q_{ji} = q_{ij} = \frac{(1 + ||y_i - y_j||^2)^{-1}}{\sum_{k,l \neq k} (1 + ||y_k - y_l||^2)^{-1}} = \frac{E_{ij}^{-1}}{\sum_{k,l \neq k} E_{kl}^{-1}} = \frac{E_{ij}^{-1}}{Z}$$
(12)

Notice that $E_{ij} = E_{ji}$. The loss function is defined as:

$$C = \sum_{k,l \neq k} p_{lk} \log \frac{p_{lk}}{q_{lk}} \tag{13}$$

$$= \sum_{k,l\neq k} p_{lk} \log p_{lk} - p_{lk} \log q_{lk} \tag{14}$$

$$= \sum_{k,l \neq k} p_{lk} \log p_{lk} - p_{lk} \log E_{kl}^{-1} + p_{lk} \log Z$$
 (15)

We derive with respect to y_i :

$$\frac{\partial L}{\partial y_i} = \sum_{k,l \neq k} -p_{lk} \frac{\partial \log E_{kl}^{-1}}{\partial y_i} + \sum_{k,l \neq k} p_{lk} \frac{\partial \log Z}{\partial y_i}$$
(16)

We start with the first term, noting that the derivative is non-zero when $\forall j, k = i$ or l = i, that $p_{ij} = p_{ji}$ and $E_{ji} = E_{ij}$

$$\sum_{k,l\neq k} -p_{lk} \frac{\partial \log E_{kl}^{-1}}{\partial y_i} = -2 \sum_{j\neq i} p_{ij} \frac{\partial \log E_{ij}^{-1}}{\partial y_i}$$

$$\tag{17}$$

Since $\frac{\partial E_{ij}^{-1}}{\partial y_i} = E_{ij}^{-2}(-2(y_i - y_j))$, we have:

$$-2\sum_{j\neq i} p_{ij} \frac{E_{ij}^{-2}}{E_{ij}^{-1}} (-2(y_i - y_j)) = 4\sum_{j\neq i} p_{ij} E_{ij}^{-1} (y_i - y_j)$$
(18)

We conclude with the second term. Using the fact that $\sum_{k,l\neq k} p_{kl} = 1$ and Z does not depend on k or

$$\sum_{k,l\neq k} p_{lk} \frac{\partial \log Z}{\partial y_i} = \frac{1}{Z} \sum_{k',l'\neq k'} \frac{\partial E_{kl}^{-1}}{\partial y_i}$$
(19)

$$= 2\sum_{j\neq i} \frac{E_{ji}^{-2}}{Z} (-2(y_j - y_i))$$
 (20)

$$= -4\sum_{j\neq i} q_{ij} E_{ji}^{-1} (y_i - y_j)$$
 (21)

Then, we arrive at the result:

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j \neq i} (p_{ji} - q_{ji}) E_{ji}^{-1} (y_i - y_j)$$
(22)

$$= 4\sum_{j\neq i} (p_{ji} - q_{ji})(1 + ||y_i - y_j||^2)^{-1}(y_i - y_j)$$
(23)

2 Problem 4. Compare PCA and t-SNE:

No.	PCA	t-SNE
1	linear	non-linear
2	find global	preserve the
	structure	local cluster
3	not as good	better than
	as t-SNE	PCA
4	not involve	involves
	Hyperparam-	Hyperparam-
	eters	eters
		(perplexity,
		learning rate
		and number
		of steps)
5	highly	can handle
	affected by	outlier)
	outliers	
6	deterministic	randomised
	algorithm	algorithm.
7	try to	try to find
	preserve high	similar
	variance	distribution
8	local inconsis-	low
	tencies (far	dimensional
	away point	neighborhood
	can become	should be the
	nearest	same as
	neighbors)	original
		neighborhood