AMENDMENTS TO THE CLAIMS

Claim 1 (currently amended): A method for the treatment of a cell proliferative disease inhibiting the growth of tumor cells in an individual comprising administering to an the individual a pharmacologically effective dose of a compound having a structural formula

$$R^3$$
 R^4
 Y
 CH_3
 R^5

wherein X is oxygen or nitrogen;

Y is oxygen or NR6

R¹ is $-C_{1-10}$ alkylene-COOH, $-C_{1-4}$ alkylene-CONH₂, $-C_{1-4}$ alkylene-COO-C₁₋₄alkyl, $-C_{1-4}$ alkylene-CON(C₁₋₄alkylene-COOH)₂, $-C_{1-4}$ alkylene-OH, $-C_{1-4}$ alkylene-NH₃-halo or $-C_{1-4}$ alkylene-OSO₂NH(C₁₋₄alkyl), $-C_{1-4}$ alkylene-COO-C₁₋₄alkyl, $-C_{1-10}$ alkylene-CO-SH, $-C_{1-4}$ alkylene-CO-S(C₁₋₄alkyl), $-C_{1-4}$ alkylene-CS-NH₂, $-C_{1-4}$ alkylene-CO-NH_(2-n)(C₁₋₄alkyl)_n wherein n is 2 or 1, $-C_{1-4}$ alkylene-SO₂-O(C₁₋₄alkyl), $-C_{1-4}$ alkylene-OP(O-C₁₋₄alkyl)₃, or $-C_{1-10}$ alkylene-OSO₂-O(C₁₋₄alkyl), $-C_{1-4}$ alkylene-OP(O-C₁₋₄alkyl)₃, or $-C_{1-10}$ alkylene-CN;

 R^2 and R^3 are independently hydrogen or R^4 when R^7 is - XR^1 ; or

 R^2 and R^3 are hydrogen or R^2 and R^3 are R^4 or R^2 is hydrogen and R^3 is R^4 when R^7 is hydroxyl;

R⁴ is methyl;

 R^5 is a C_{7-16} olefinic group containing 3 to 5 ethylenic bonds;

R6 is hydrogen or methyl; and

R⁷ is hydroxyl or -XR¹; or a pharmaceutical composition thereof.

Claim 2 (original): The method of claim 1, wherein said compound is α -tocotrienol, γ -tocotrienol or δ -tocotrienol.

Claim 3 (original): The method of claim 1, wherein said compound is 2,5,7,8-tetramethyl-2R-(4,8,12-trimethyl-3,7,11 E:Z tridecatrien) chroman-6-yloxy) acetic acid.

Claim 4 (currently amended): The method of claim 1, wherein said compound exhibits an anti-proliferative effect

comprising induces apoptosis, DNA synthesis arrest, cell cycle arrest, or cellular differentiation in cells comprising said tumor.

Claim 5 (currently amended): The method of claim 1, wherein said compound is administered in a dose of from about 1 mg/kg to about 60 mg/kg.

Claim 6 (currently amended): The method of claim 5, wherein administration of said composition is selected from the group consisting of oral, topical, liposomal/aerosol, intraocular, intranasal, parenteral, intravenous, intramuscular, or subcutaneous.

Claim 7 (canceled).

Claim 8 (currently amended): The method of claim 1 [[7]], wherein said neoplastic disease is selected from the group consisting of tumor cells comprise an ovarian cancer, a cervical cancer, an endometrial cancer, a bladder cancer, a lung cancer, a breast cancer, a testicular cancer, a prostate cancer, a glioma[[s]], a fibrosarcoma[[s]], a retinoblastoma[[s]], a melanoma[[s]], a soft tissue sarcoma[[s]], an ostersarcoma[[s]], a leukemia[[s]], a colon

cancer, a carcinoma of the kidney, a pancreatic cancer, a basal cell carcinoma, and or a squamous cell carcinoma.

Claims 9-13 (canceled).

Claim 14 (original): A method of inducing apoptosis of a cell, comprising the step of contacting said cell with a pharmacologically effective dose of the compound having a structural formula

wherein X is oxygen or nitrogen;

Y is oxygen or NR6

R¹ is $-C_{1-10}$ alkylene-COOH, $-C_{1-4}$ alkylene-CONH₂, $-C_{1-4}$ alkylene-COO-C₁₋₄alkyl, $-C_{1-4}$ alkylene-CON(C₁₋₄alkylene-COOH)₂, $-C_{1-4}$ alkylene-OH, $-C_{1-4}$ alkylene-NH₃-halo or $-C_{1-4}$ alkylene-OSO₂NH(C₁₋₄alkyl), $-C_{1-4}$ alkylene-COO-C₁₋₄alkyl, $-C_{1-10}$ alkylene-CO-SH, $-C_{1-4}$ alkylene-CO-S(C₁₋₄alkyl), $-C_{1-4}$ alkylene-CS-NH₂, $-C_{1-4}$ alkylene-CO-NH_(2-n)(C₁₋₄alkyl)_n wherein n is 2 or 1, $-C_{1-4}$ alkylene-SO₂-O(C₁₋₄alkyl), $-C_{1-4}$ alkylene-SO₂-O(C₁₋₄alkyl)

 C_{1-4} alkylene-OSO₂-O(C_{1-4} alkyl), - C_{1-4} alkylene-OP(O- C_{1-4} alkyl)₃, or - C_{1-4} alkylene-CN;

 $$\rm R^2$$ and $\rm R^3$ are independently hydrogen or $\rm R^4$ when $\rm R^7$ is - $\rm XR^1;$ or

 R^2 and R^3 are hydrogen or R^2 and R^3 are R^4 or R^2 is hydrogen and R^3 is R^4 when R^7 is hydroxyl;

R⁴ is methyl;

 R^5 is a C_{7-16} olefinic group containing 3 to 5 ethylenic bonds;

R⁶ is hydrogen or methyl; and

R⁷ is hydroxyl or -XR¹; or a pharmaceutical composition thereof.

Claim 15 (original): The method of claim 14, wherein said compound is α - tocotrienol, γ -tocotrienol or δ -tocotrienol.

Claim 16 (original): The method of claim 14, wherein said compound is 2,5,7,8-tetramethyl-2R-(4,8,12-trimethyl-3,7,11 E:Z tridecatrien) chroman-6-yloxy) acetic acid.

Claim 17 (canceled).