1 Assiomi dei numeri reali

- Assiomi relativi alle operazioni
- Assiomi relativi all'ordinamento
- Assioma di completezza

1.1 Assiomi relativi alle operazioni

Sono definite le operazioni di addizione e moltiplicazione tra coppie di numeri reali e valgono le proprietà:

- Proprietà associativa
- Proprietà commutativa
- Proprietà distributiva
- Esistenza degli elementi neutri
- Esisstenza degli opposti
- Esistenza degli inversi

1.2 Assiomi relativi all'ordinamento

E' definita la relazione di Minore o Uguale \leq .

- Dicotomia
- Proprietà Assimetrica
- Assioma di completezza

1.2.1 Assioma di completezza

$$\forall a \in A, \forall b \in A, a < b \implies \exists c \in A : a < c < b$$

Esempi:

Figure 1: Esempio 1

Esistono infiniti c.

Figure 2: Esempio 2

$$A = \{x \in \mathbb{R} : x \ge 1\} \quad B = \{x \in \mathbb{R} : x \ge 1\} \implies c = 1$$

Osservazione: Non tutti gli insiemi hanno il più grande o il più piccolo elemento. Ad esempio:

$$A = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots\} = \{\frac{1}{n} : n \in \mathbb{N}\}$$

Non ha un elemento più piccolo. (Invece c'è il più grande che è 1).

Figure 3: Esempio 3

1.3 Denso

Si dimostra che \mathbb{Q} è denso sulla retta reale (nel senso che fra due numeri razionali è sempre possibile trovare un terzo, anzi infiniti).

$$a = \frac{m_1}{n_1} \quad b = \frac{m_2}{n_2}$$

faccio la media
$$\frac{a+b}{2}=\frac{\frac{m_1}{n_1}+\frac{m_2}{n_2}}{2}=\frac{m_1n_2+m_2n_1}{2n_1n_2}\implies \in \mathbb{Q}$$

1.3.1 $\sqrt{2}$

 $\sqrt{2}$ non si può rappresentare come numero razionale.

Dimostrazione: Ragioniamo per assurdo, supponiamo che $\sqrt{2}$ sia un numero razionale, cioè $\sqrt{2} = \frac{m}{n}$ con $m, n \in \mathbb{Z}$ posso supporre che m.n siano primi tra loro e che al più uno tra loro sia pari. Allora $2 = \frac{m^2}{n^2} \implies 2n^2 = m^2(\star) \implies m^2$ deve essere pari e quindi m è pari.

Posso esprimere m nella forma: m = 2k con k intero.

Ricavo che $\implies 2n^2 = m^2 = 4k^2$ semplifico per 2 e ottengo $n^2 = 2k^2$

Ripeto il ragionamento precedente $\implies n^2$ pari e quindi anche n pari. Ma allora sia m che n risultano pari, ASSURDO! Avevo supposto che fossero primi ed (al più) uno dei due pari. \clubsuit

Per capire meglio guarda esempi della Francy nella prima lezione.