Recap

Types of Data Munging

Record(Row) Operations

filter()

rbind()

arrange()

sample_n()
sample_frac()

group_by() + distinct()
summarize()

Field(Column) Operations

mutate()

select()
rename()

select()

is_na() +
mutate()

inner_join()
left_join()

t()

melt()
cast()

cut()

Data Munging with R (2)

데이터마이닝을 위한 데이터 - Customer Signature

- ❖ 모든 데이터가 하나의 테이블에 존재해야 한다.
- ❖ 각 행은 기업과 관련 있는 한 개체 (Ex: 고객)에 대응해야 한다.
- 하나의 값을 갖는 필드는 무시되 어야 한다.
- ❖ 대부분이 한 값을 갖는 필드도 가 급적 무시되어야 한다.
- 각 행마다 다른 값들을 가지는 필 드는 무시되어야 한다.
- 예측 모델링을 위해서 목표 필드
 와 지나치게 높은 상관관계를 갖
 는 필드는 제거되어야 한다.

4

파생변수를 생성하는 일반적인 방법

- 한 값으로부터 특징들을 추출한다.
 - 날짜로부터 요일을 계산
 - 신용카드번호로부터 신용카드 발급자를 추출
- 한 레코드 내의 값들을 결합한다.
 - 멤버십 가입일과 첫 구매일로부터 경과를 계산
- 다른 테이블의 부가적인 정보를 참조한다.
 - 우편번호에 따른 인구와 평균가계수입
 - 상품코드에 대한 계층 구조
- 다수 필드 내에 시간 종속적인 데이터를 pivoting한다.
 - 월마다 한 행씩 저장되는 과금 데이터를 각각의 월에 대응하는 필드로 변환
- 거래 레코드들을 요약한다.
 - 년간 총 구매액
- Customer Signature 필드들을 요약한다.
 - 값의 표준화 및 서열화

H백화점 데이터 (1/2)

종류	화일명	형식	필드 수	레코드 수
고객정보	HDS_Customers.tab	TSV	36	49,995
구매정보	HDS_Transactions_MG.tab	TSV	18	1,726,430
카드정보	HDS_Cards.tab	TSV	2	290
직업정보	HDS_Jobs.tab	TSV	3	267
우편번호	mic_engzipcode_DB20050215.xlsx	엑셀	16	48,072

- ✓ 데이터 수집 기간: 2000.05.01 ~ 2001.04.29 (4개 지점)
- ✓ 취급 상품 수: 11,031개 (1,906개 브랜드, 309개 코너)
- 1인당 년간 구매액: 약 329만원 (최대 1억1479만원)

H백화점 데이터 (2/2)

custid	고객 아이디
goodcd	상품코드
brand	브랜드코드
team	팀코드
part	파트코드
 рс	상품군코드
 corner	코너코드
 tot_amt	구매액
dis_amt	할인액
 net_amt	실구매액
 inst_mon	할부기간
sales_time	판매시간
 · 저 세	

구매정보

strcd

지점코드

	I = = u = 1 = 1 = 1	part	<u> 파트3</u>
custid	고객 아이디	nc nc	상품
sex	성별코드	*U· 丁基紙 1 音筒 2 · M筒	
birth	생일	corner	<u>코너</u>
birth_flg	생일구분코드	+-1:기타 1:양력 2:음력 tot_amt	구매역
card_cd	카드 코드	Card 테이블 참조 dis_amt	할인의
mrg_date	결혼기념일	net_amt	실구대
mrg_flg	결혼여부코드	<u>*0:기타 1:기혼 2:미혼 7:기타</u> inst mon	할부기
h_type1	주거형태코드	- I*Δ:0FUFE B:일당 B:엉워 N:년폭수델	
		* V : 빌라 X : 기타 Z : 기타(분류안됨) sales_time	<u> 판매/</u>
h_type2	주거현황코드	*O:기타 1:본인소유 2:배우자소유 3:부모소유 4:전세	
		<u> *5:기타 6:기타 7:기타 8:기타</u>	
hobby	취미코드	* 0001 : 등산 0002 : 스포츠 0003 : 여행 0004 : 낚시 0005 : 관람	
		* 0006 : 컴퓨터 0007 : 요리 0008 : 서예 0009 : 미술 0010 : 공예	
		* 0011 : 음악 0012 : 꽃꽃이 0013 : 수집 0014 : 독서 0015 : 작문	
		* 0016 : 바둑 0017 : 기타	
job_stype	직업코드	Job 테이블 참조	
ent_date	신규가입(카드)일		
mail_flg	청구지구분	* 1 : 자택 2 : 직장	
card_str	카드 발급점		
mail_zip1	청구지 우편번호 1		
mail_zip2	청구지 우편번호 2		
home_zip1	자택 우편번호 1		
home_zip2	자택 우편번호 2		
work_zip1	직장 우편번호 1		
work_zip2	직장 우편번호 2		
cus_stype	고객소유형	* 1 : 초우량 1등급 2 : 초우량 2등급 3 : 초우량 3등급 4 : 초우량4등급	
	–	* 5 : 우량 1등급 6 : 우량 2등급 7 : 우량 3등급 8 : 우량 4등급	
		* 9 : 고정 1등급 10 : 고정 2등급 11 : 일반 1등급 12 : 일반 2등급	
m_srt1	주구매 지점코드		
m_time1	주구매 시간대	* -1 : 알수없음 1~48 : 0시부터 24시 까지 30분간격	
autopat	자동이체여부코드	* O: 일반청구 1: 자동이체 2: 급여이체 4: 기타	

고객정보

4

H백화점 데이터로부터 파생 가능한 변수

- ❖ 환불행태
- 구매상품 다양성
- ❖ 내점일수 & 내점 당 구매건수
- ❖ 구매주기
- 요일별 구매패턴
- ❖ 연령대
- ❖ 기간별 구매 금액 & 횟수
- ❖ 구매추세 패턴
- ❖ 가격 선호도
- ❖ 시즌 선호도
- ❖ 상품별 구매 금액/횟수/여부
- 상품별 구매순서
- ❖ 주 구매상품
- ❖ 휴면/이탈 여부

파생변수 - 환불행태

H백화점 고객의 환불행태(금액, 건수)에 대한 변수 생성

- library(dplyr)
- library(lubridate)
- > library(ggplot2)
- cs <- read.delim("HDS_Customers.tab", stringsAsFactors=F)</pre>
- tr <- read.delim("HDS_Transactions_MG.tab", stringsAsFactors=F)</pre>
- cs.v1 <- tr %>%
 filter(net_amt < 0) %>%
 group_by(custid) %>%
 summarize(rf_amt=sum(net_amt), rf_cnt=n())

1

파생변수 - 구매상품 다양성

H백화점 고객의 구매상품 다양성에 대한 변수 생성


```
cs.v2 <- tr %>%
    distinct(custid, brd_nm) %>%
    group_by(custid) %>%
    summarize(buy_brd=n())
```

파생변수 - 내점일수 & 구매주기

 H백화점 고객의 내점일수와 평균구매주기(Average Purchasing Interval)를 계산

- ▶ # lubridate 패키지 사용법 => <u>http://blog.naver.com/dfdf4912/220623488198</u>
- > start_date <- ymd(ymd_hms(min(tr\$sales_date)))</pre>
- end_date <- ymd(ymd_hms(max(tr\$sales_date)))</pre>
- cs.v3 <- tr %>%
 distinct(custid, sales_date) %>%
 group_by(custid) %>%
 summarise(visits=n()) %>%
 mutate(API = as.integer(end_date start_date) / visits)

파생변수 - 내점 당 구매건수

내점 당 구매건수(Number of Purchases Per Visit) 도출

- tmp <- tr %>%
 group_by(custid) %>%
 summarise(n=n())
- cs.v4 <- inner_join(cs.v3, tmp) %>%
 mutate(NPPV = n / visits) %>%
 select(custid, NPPV)

파생변수 - 요일별 구매패턴

▪ H백화점 고객의 주중 • 주말 구매패턴에 대한 변수 생성

```
.Transaction 주중구매액 주말구매액 Aggregate 요일별구매패턴 요일별구매패턴
```

ggplot(cs.v5, aes(wk_pat)) + geom_bar(aes(fill=wk_pat))

파생변수 - 나이와 연령대

■ 고객의 생일로부터 특정시점의 나이와 연령대를 계산

10대(이하),20대,30대,40대,50대, 60대,70대(이상)으로 구간을 나눔 주의) 이상치 처리가 필요함.

```
cs.v6 <- cs %>%
    mutate(age=year('2001-05-01') - year(ymd_hms(birth))) %>%
    mutate(age=ifelse(age < 10 | age > 100, NA, age)) %>%
    mutate(age=ifelse(is.na(age),round(mean(age,na.rm=T)),age)) %>%
    mutate(agegrp=cut(age, c(0,19,29,39,49,59,69,100), labels=F)*10) %>%
    select(custid, age, agegrp)
```


파생변수 - 기간별 구매 금액 & 횟수 (1/2)

■ H백화점 고객의 최근 12개월 구매금액 및 구매횟수에 대한 변수 생성

- end_date <- ymd(ymd_hms(max(tr\$sales_date)))</pre>
- > start_date <- ymd('20010501') months(12)</pre>
- cs.v7.12 <- tr %>%
 filter(start_date<=sales_date & sales_date<=end_date) %>%
 group_by(custid) %>%
 summarize(amt12=sum(net_amt), nop12=n())

파생변수 - 기간별 구매 금액 & 횟수 (2/2)

최근 3개월, 6개월, 12개월 구매 금액 및 횟수 계산 및 병합

- > start_date <- ymd('20010501') months(6)</pre>
- cs.v7.06 <- tr %>%
 filter(start_date<=sales_date & sales_date<=end_date) %>%
 group_by(custid) %>%
 summarize(amt6=sum(net_amt), nop6=n())
- > start_date <- ymd('20010501') months(3)</pre>
- cs.v7.03 <- tr %>%
 filter(start_date<=sales_date & sales_date<=end_date) %>%
 group_by(custid) %>%
 summarize(amt3=sum(net_amt), nop3=n())
- cs.v7 <- left_join(cs.v7.12, cs.v7.06) %>% left_join(cs.v7.03)
- # amt6, nop6, amt3, nop3가 NA이면 0으로 대체하는 코드 삽입

Customer Signature 만들기

```
custsig <- cs %>%
left_join(cs.v1) %>%
left_join(cs.v2) %>%
left_join(cs.v3) %>%
left_join(cs.v4) %>%
left_join(cs.v4) %>%
left_join(cs.v5) %>%
left_join(cs.v6) %>%
```

파생변수가 NA이면 적절한 값으로 대체하는 코드를 작성해야 함.

팀프로젝트 #1 - 10월8일 제출 및 발표

H백화점 데이터를 이용하여 아래와 같은 파생변수를 생성하고, 수업시간에 다룬 파생변수와 함께 고객데이터와 병합하여 최종 Customer Signature를 만드시오.

- 가격 선호도 변수
- 시즌 선호도 변수
- 구매추세 패턴
- 상품별 구매 금액/횟수/여부 변수
- 상품별 구매순서 변수
- 주 구매상품 변수
- 휴면/이탈 가망 변수
 - Ex) If 평균구매주기 < 최종구매경과(현재 마지막 구매시점) Then "이탈"