Detection and Segmentation

Core CV Tasks

Semantic Segmentation

Задача:

Дать лейбл каждому пикселю на картинке.

Важная деталь:

Нас волнуют только пиксели, а не конкретные объекты.

Semantic Segmentation: Sliding Window

Очень дорого считать.

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Semantic Segmentation: Fully Convolutional Net

Q: В чем проблема?

Все еще дорого считать + нужно много памяти.

Semantic Segmentation: Downsampling + Upsampling

Q: Как делать upsampling?

В основном двумя способами: unpooling и transpose convolution.

Unpooling

Nearest Neighbor 1 1 2 2 1 1 2 2 3 4 3 4 4 Input: 2 x 2 Output: 4 x 4

Q: Что плохо?

Это слишком просто, чтобы выучить сложные зависимости.

Unpooling

Max Pooling Max Unpooling Remember which element was max! Use positions from pooling layer Rest of the network Input: 2 x 2 Output: 4 x 4 Input: 4 x 4 Output: 2 x 2 layer i layer n-i

Обычная свертка filter = 3x3, stride = 1, pad = 1

Обычная свертка filter = 3x3, stride = 1, pad = 1

Обычная свертка filter = 3x3, stride = 2, pad = 1

Обычная свертка filter = 3x3, stride = 2, pad = 1

Input: 4 x 4 Output: 2 x 2

Transpose свертка filter = 3x3, stride = 2, pad = 1

Transpose свертка filter = 3x3, stride = 2, pad = 1Сумма, где пересечение Input gives weight for filter

Output: 4 x 4

Source: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

Input: 2 x 2

Dilated Convolution

Dilated свертка filter = 3x3

Pyramid Pooling

Semantic Segmentation: General Architecture

Semantic Segmentation: Outcome

Semantic Segmentation: Outcome

Source: https://arxiv.org/pdf/1802.02611.pdf

Semantic Segmentation: U-Net (skip-connections)

Source: https://arxiv.org/pdf/1505.04597.pdf

Semantic Segmentation: Basic Ideas

- Downsampling + Upsampling
- Transpose conv's вместо unpooling
- Dilated свертки вместо обычных
- Skip-connections
- Pyramid pooling

Classification + Localization

Задача:

Обвести объект рамкой и классифицировать его.

Важная деталь:

Мы всегда имеем дело только с одним объектом на картинке.

CAT

Classification + Localization

Human Pose Estimation

Object Detection

Задача:

Обвести все объекты рамкой и классифицировать их.

Важная деталь:

Мы имеем дело с неизвестным количеством объектов.

DOG, DOG, CAT

Object Detection

Разное количество выходов

Dog? NO Cat? NO Background? YES

Dog? YES
Cat? NO
Background? NO

Dog? YES
Cat? NO
Background? NO

Dog? NO Cat? YES Background? NO

Q: В чем проблема?

Очень дорого считать.

Region Proposals

- Можно использовать методы, не связанные с DL. Например, Selective Search.
- Работает с нормальной скоростью, примерно 2000 регионов за пару секунд.

Object Detection: R-CNN

Object Detection: Non-Maximum Suppression

От детектора получается много пересекающихся bbox, покрывающие одни и те же объекты:

- 1. Фильтруем по убыванию вероятностей
- 2. Идём по порядку и удаляем все прочие bbox, пересекающие с текущим на >50%

Object Detection: IoU

IoU = intersection / Union

Source: DL course at YDS 2018, lecture 5.

Object Detection: R-CNN Problems

- Очень много разных моделей в одном фреймворке.
 - CNN, которую мы доучиваем в процессе.
 - SVM, который мы тоже доучиваем.
 - BBox Regression, опять же учим.
- Долго учится и требует много памяти.
- Долго работает на inference стадии (47s на картинку).

Object Detection: Fast R-CNN

Object Detection: Rol Pooling

Divide projected proposal into 7x7 grid, max-pool within each cell

Hi-res input image: 3 x 640 x 480 with region proposal

Hi-res conv features: 512 x 20 x 15;

Projected region proposal is e.g. 512 x 18 x 8 (varies per proposal)

Rol conv features: 512 x 7 x 7 for region proposal

Fully-connected layers expect low-res conv features: 512 x 7 x 7

Girshick, "Fast R-CNN", ICCV 2015.

Object Detection: Runtimes

Object Detection: Faster R-CNN

Object Detection: Region Proposal Network

- 1. Небольшим скользящим окном двигаемся по признакам-активациям
- 2. Оцениваем шансы на объект + корректируем рамки
- 3. Окно разных размеров и соотношений
- Из 17000 оставим 300 proposal

Object Detection: Runtimes

R-CNN Test-Time Speed

Object Detection: YOLO

- Делим изображение на блоки
- Для каждого блока предсказывается распределение классов + координаты В штук bbox с уверенностями
- Фильтруем и находим основные

Главное преимущество в том, что это быстрее, чем Real-Time. Хотя и не так точно.

Object Detection: Architectures

Dense Captioning

Instance Segmentation

Задача:

Дать лейбл каждому пикселю на картинке. При этом отличая объекты одного класса друг от друга.

Важная деталь:

Мы имеем дело с неизвестным количеством объектов.

DOG, DOG, CAT

Instance Segmentation: Mask R-CNN

C x 14 x 14

Instance Segmentation: Mask R-CNN

Source: https://arxiv.org/pdf/1703.06870.pdf

Instance Segmentation: Mask R-CNN

Source: https://arxiv.org/pdf/1703.06870.pdf

Recap

Useful Materials

Лекции

- cs231n 2017 Lecture 11 video: https://www.youtube.com/watch?v=nDPWywWRIRo&list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv
- cs231n 2017 Lecture 11 Slides: http://cs231n.stanford.edu/slides/2017/cs231n 2017 lecture11.pdf

Статьи

- Mask-RCNN: https://arxiv.org/pdf/1703.06870.pdf
- U-Net: https://arxiv.org/pdf/1505.04597.pdf)和%5bTiramisu%5d(https://arxiv.org/abs/1611.09326.pdf
- Faster R-CNN: http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
- YOLO-9000:
 - http://openaccess.thecvf.com/content_cvpr_2017/papers/Redmon_YOLO9000_Better_Faster_CVPR_2017_paper.pdf