

TOPOLOGICAL DATA ANALYSIS

What I have learned so far

Res Proj Rim Faroudy 28/03/2025

PLAN

Motivation

Simplices and simplical complexes

Nerves \triangle

Homology

Persistent homology

I will skip

Basic definitions of

- _ distance
- metric space
- _ open / closed set
- _ cover
- _ convex set
- connected set

not new (saw them in propa)

higher order structure

the data

thew sw tehw

robustness to noise

multi – scale analysis

a loop?

actually a hole

SIMPLICES AND SIMPLICAL COMPLEXES

SIMPLICES AND SIMPLICAL COMPLEXES

definitions

geometric

- $X = \{x_0, \dots, x_k\} \subset \mathbb{R}^d$ affinely independent vertices
- $\sigma = [x_1, ..., x_k] : k dimensional$ simplex spanned by X
- · faces of o : simplices spanned by subsets of X'
- . K is a geometric simplical complex if:
 - i) every face of a simplex of K is a simplex of K
 - ii) the non-empty intersection of any two simplices is a face of both

abstract

- . K is an abstract simplicial complex with vertex set V if it is a collection of finite subsets of V such that :

 - i) VVEV, VEK ii) VOEK, VTCO, TEK

SIMPLICES AND SIMPLICAL COMPLEXES

properties

geometric

abstract

. K can be seen as a topological space through its underlying space $|K| = U \sigma$

and inherits from the topology of IRd

. if the vertices are known, K is defined combinatorially by a collection of simplices

. We can associate a geometric realization

topological intuitive ble

well surpring combinatorial

SIMPLICES AND SIMPLICAL COMPLEXES

examples

Given a metric space (M,p), JER, XCM

VIETORIS - RIPS

CECH

$$Rips_{\alpha}(X) = \left\{ \left[x_{0}, ..., x_{k} \right] \middle/ d_{X}(x_{i}, x_{j}) \leq \alpha, \forall i, j \right\} \qquad Cech_{\alpha}(X) = \left\{ \left[x_{0}, ..., x_{k} \right] \middle/ \bigcap_{i=0}^{k} B(x_{i}, x_{i}) \neq \phi \right\}$$
used with noisy data
$$used \quad For \quad precision$$

Rips (X) C Cech (X) C Rips (X)

SIMPLICES AND SIMPLICAL COMPLEXES to look into

- DELAUNEY complex and VORONOI diagram
- _ Alpha complex
- _ more ?

NERVES

NERVES definitions

- . The maps $f_0, f_1 \in \mathcal{C}(X,Y)$ are homotopic $(f_0 \sim_N f_1)$ if $\exists \ H \in \mathcal{C}\left(X \times [0,1],Y\right) \ / \ \forall x \in X \ , \ H(x,0) = f_0(x) \ \text{ and } \ H(x,1) = f_1(x)$
- . The topological spaces X and Y are :

homeomorphic if
$$\exists f \in \mathcal{C}(x,Y)$$
, $g \in \mathcal{C}(Y,X)$ bijective and $\begin{cases} f \circ g = id_Y \\ g \circ f = id_X \end{cases}$
homotopy equivalent if $\exists f \in \mathcal{C}(x,Y)$, $g \in \mathcal{C}(Y,X)$ and $\begin{cases} f \circ g \wedge_h id_Y \\ g \circ f \wedge_h id_X \end{cases}$

. A space is contractible if it is homotopy equivalent to a point

NERVES definition and nerve theorem

Let X be a topological space and $\mathcal{U}=\left(U_i\right)_{i\in\mathbb{I}}$ a cover of X. The nerve of U is the abstract simplicial complex with vertex set U and such that $\nabla=\left[U_{i_0}\,,...,U_{i_k}\right]\in C(\mathcal{U})\iff\bigcap_{i=0}^k U_{i,j}\neq\emptyset$

Nerve theorem

Let X be a topological space and $U=(U_i)_{i\in I}$ a cover of X such that any subcollection $(U_i)_{i\in J\subset I}$ is either empty or contractible.

Then, X and $C(\mathcal{U})$ are homotopy equivalent.

Why is it useful? It allows us to translate a complex topological problem into a combinatorial one that is simpler to compute.

NERVES

the mapper algorithm

dataset X

metric or dissimilarity measure

 $f: X \to \mathbb{R}^d$

cover N of X

input

for each U: decompose f (U) into clusters Cu,1,..., Cu,ku

compute the nerve of X defined by $C_{u,1},...,C_{u,k_u}$

algorithm

C(u)

vertices vu,i

edges $(v_{u,i}, v_{u,j})$ iff $C_{u,i} \cap C_{u,j} \neq \phi$

output

HOMOLOGY

HOMOLOGY

introduction and definition

- . Homology is a way to associate algebraic structures (groups) to topological spaces to study their features.
- . The space of k-chains on K $C_k(K)$ is the set of formal sums of k-simplices of K. i.e. if $\sigma_2,...,\sigma_p$ are the k-simplices of K then:

$$C(K) = \left\{ \sum_{i=1}^{p} \epsilon_{i} \sigma_{i} / \epsilon_{i} \in \mathbb{Z}_{2} \right\} \text{ or any field}$$

. The boundary of a k-simplex $\sigma = [v_0, ..., v_k]$ is the (k-1)-chain

$$\partial_{k}(\sigma) = \sum_{i=0}^{k} (-1)^{i} [v_{0}, ..., \hat{v}_{i}, ..., v_{k}]$$

Property:
$$\partial_{k-1} \circ \partial_k \equiv 0$$
, $\forall k \geq 1$

HOMOLOGY introduction and definition [cont.]

. The kth homology group of K is the quotient vector space

$$H_{k}(K) = Z_{k}(K) / B_{k}(K)$$

$$\text{Ker}(\partial_{k}) / B_{k}(K)$$

$$\text{Im}(\partial_{k+1}) \subset \text{Ker}(\partial_{k})$$

. The k^{th} BETTI number of K is $\oint_{k} (K) = \dim (H_{k}(K))$

HOMOLOGY to look into

- statistical aspects of homology inference
- reconstruction
- more?

PERSISTENT HOMOLOGY

PERSISTENT HOMOLOGY

introduction and definitions

- . The power of persistent homology lies in its ability to distinguish the real structure of data from noise (it allows to track homology groups)
- . A filtration of a simplical complex K (resp. a topological space M) is is a nested family of subcomplexes $(K_r)_{r \in T}$ (subspaces $(M_r)_{r \in T}$) where $T \subset IR$ such that : $(\forall r, r' \in T, r \in r') \Rightarrow K_r \subset K_{r'}$) and $K = \bigcup_{r \in T} K_r$ ($M_r \subset M_{r'} \cap M_r \subset M_r \cap M_r \cap$
 - e.g. the families (Rips (X)) and (Cechr (X)) resolution/granularity 1

PERSISTENT HOMOLOGY persistent modules and persistence diagrams

- . With $(F_r)_{r\in T\subseteq \mathbb{R}}$ a filtration, the sequence of the vector spaces F_r and the linear maps connecting them is a persistence module (obtained by unsidering Hk(Fr) and Fr CFr1, rsr')
- . Persistence diagrams provide a geometric representation of the information contained in persistence modules.
 - stable wrt to perturbation in the data

PERSISTENT HOMOLOGY

persistent modules and persistence diagrams

PERSISTENT HOMOLOGY to look into

- statistical aspects of persistent homology
- a lot more

MAIN SOURCE

An introduction to Topological Data Analysis: fundamental and practical aspects for data scientists

Frédéric CHAZAL and Bertrand MICHEL

THANK YOU