Computational Statistics HW#1

222STG10

김희숙

Problem1. Bisection / Newton's / Secant Method 를 구현하시오.

Problem2. 실제 3개 정도의 target function에 대해서 계산하시오.

1.
$$\frac{\log x}{1+x}$$

2.
$$-(x-1)^2-4$$

1.
$$\frac{\log x}{1+x}$$
 2. $-(x-1)^2 - 4$ 3. $e^x * \sin x + \frac{\log x}{x^2}$

Result

대체로 주어진 target function에 대해 세가지 방법 모두 $argmax g(x) (= x^*)$ 와 max g(x)를 잘 찾았 으나, $e^x * sinx + \frac{\log x}{x^2}$ 함수의 경우 Bisection를 제외한 Method는 x^* 를 제대로 찾지 못하는 것을 확인 할 수 있다. Newton's 과 Secant method의 경우 초기값에 예민하며, number of iter가 Bisection보다 작다. 두 method는 초기값의 설정이 중요하다고 생각된다.

1)

g(x)		input	x*	max	# of iter	comp. time
$\frac{\log x}{1+x}$	Bisection	a=0.1, b=10	3.5911215	0.2784645	36	0.00535
	Newton's	x0=0.1	3.5911215	0.2784645	13	0.00206
	Secant	x0=2, x1=4	3.5911215	0.2784645	9	0.002
Graph		g1(xx) 4 -3 -2 -1 0	2 4	6 8 xx	10	

2)

g(x)		input	X*	max	# of iter	comp. time
$-(x-1)^2$ -4	Bisection	a=0.1, b=10	1	-4	36	0.00525
	Newton's	x0=0.1	1	-4	4	0.00058

3)

g(x)		input	x*	max	# of iter	comp. time
$e^{x} * sinx + \frac{\log x}{x^{2}}$	Bisection	a=6, b=10	8.639379	3995.058249	35	0.00534
	Newton's	x0=8	5.497829	-172.584485	8	0.00124
	Secant	x0=6,	5.497829	-172.584485	11	0.00253
, a		x1=10				
Graph		g3(xx) -40000 -30000 -20000 -10000 0	2 4	6 8 xx	3 10	

** Newton's 은 x0≥8.1, Secant은 x0≥7.8, x1=10으로 했을 때 제대로 찾는다.

Code appendix

```
#the simplest function
# 임의의 target function g(x)에 대해서,
#install.packages('numDeriv')
library("numDeriv")
# Bisection
bisect<-function(g,a,b){</pre>
 maxiter<-1000
 threshold<-10^(-10)
 err<-1
 niter<-0
 x0<-(a+b)/2
 while ( niter<=maxiter && err >= threshold){
   #update interval
   if (genD(g,a)$D[1]*genD(g,x0)$D[1] <=0) {b<-x0}
   else
           {a<-x0}
   #update x
   oldx0<-x0
   x0<-(a+b)/2 #새로 업데이트
   #update error and niter
   err<-abs(oldx0-x0)
   niter<-niter+1
 return(c(x0, g(x0), niter))
# Newton's
newton<-function(g,x0){</pre>
 maxiter<-1000
 threshold<-10^(-10)
 err<-1
 niter<-0
 while ( niter<=maxiter && err >= threshold){
   #update
   oldx0<-x0
   x0 \leftarrow x0 - genD(g,x0) D[1]/genD(g,x0) D[2]
   #update error and niter
   err<-abs(oldx0-x0)</pre>
   niter<-niter+1
 }
 return(c(x0, g(x0), niter))
# Secant
secant<-function(g,x0,x1){</pre>
maxiter<-1000
```

```
threshold<-10^(-10)
 err<-1
 niter<-0
 while ( niter<=maxiter && err >= threshold){
   #update x
   newx0<-x1
   x1<-x1 - genD(g,x1)$D[1]*((x1-x0)/(genD(g,x1)$D[1]-genD(g,x0)$D[1])) # new
   #update error and niter
   err<-abs(newx0-x0) #x1 - x0
   niter<-niter+1</pre>
   x0 <- newx0
 }
 return(c(x1, g(x1), niter))
g1 <- function(x){</pre>
 log(x)/(1+x) #함수
g2 <- function(x){</pre>
 -(x-1)^2-4 #함수
g3 <- function(x){</pre>
 \exp(x)*\sin(x) + \log(x)/(x^2)#
}
xx<-seq(0.01,10,0.01)
plot(xx,g1(xx),type="l")
plot(xx,g2(xx),type="1")
plot(xx,g3(xx),type="1")
bisect(g1,0.1,10)
## [1] 3.5911215 0.2784645 36.0000000
#system.time(for(i in 1:1000){bisect(g1,0.1,10)})
newton(g1,0.1)
## [1] 3.5911215 0.2784645 13.0000000
#system.time(for(i in 1:1000){newton(g1,0.1)})
secant(g1,2,4)
## [1] 3.5911215 0.2784645 9.0000000
```

```
#system.time(for(i in 1:1000){secant(g1,2,4)})
bisect(g2,0.1,10)
## [1] 1 -4 36
#system.time(for(i in 1:1000){bisect(g2,0.1,10)})
newton(g2,0.1)
## [1] 1 -4 4
#system.time(for(i in 1:1000){newton(g2,0.1)})
secant(g2,2,4)
## [1] 1 -4 3
#system.time(for(i in 1:1000){secant(g2,2,4)})
bisect(g3,6,10)
## [1] 8.639379 3995.058249 35.000000
#system.time(for(i in 1:1000){bisect(g3,6,10)})
newton(g3,8)
## [1] 5.497829 -172.584485 8.000000
#system.time(for(i in 1:1000){newton(g3,8)})
secant(g3,6,10)
## [1] 5.497829 -172.584485 11.000000
#system.time(for(i in 1:1000){secant(g3,6,8)})
```