Санкт-Петербургский государственный университет Saint-Petersburg State University

Кафедра теоретической и прикладной механики

ОТЧЕТ

По лабораторной работе 6

«Критические угловые скорости гибкого вала»

По дисциплине «Лабораторный практикум по теоретической механике»

Выполнили:

Баталов С. А.

Антонова М. Н.

Клюшин М. А.

Хайретдинова Д. Д.

Санкт-Петербург 2021

1. Описание установки

В данной работе рассматривается явление потери устойчивости прямолинейной формы вращающегося вала. Целью работы является экспериментальное определение первых двух критических угловых скоростей, наблюдение соответствующих форм потери устойчивости и сравнение полученных результатов с теоретическими.

Рис. 1. Схема лабораторной установки.

На рис. 1 изображена схема лабораторной установки. Основной частью установки является гибкий деревянный вал 3, установленный на станине в двух сферических подшипниках 2 и 4. Вал может скользить вдоль оси подшипника 4. Описанный способ крепления дает валу возможность вращаться не только в прямолинейном, но и в изогнутом состоянии. Вал 3 связан с валом электродвигателя 1, находящегося на станине.

2. Параметры установки

В следующей таблице представлены параметры установки и замерочного вала: длина образца – l^* , масса образца – m^* , модуль упругости материала вала – E, диаметр вала – d, длина вала – l.

 Таблица 1: Результаты измерений параметров установки.

Номер	Величина	Значение	Погрешность	Размерность
1	d	0,018	0,0005	M
2	l	1,970	$0,\!001$	M
3	l^*	0,126	0,0005	M
4	m^*	0,022	$0,\!0005$	КГ
5	E	$1,38 \cdot 10^{10}$	_	Па

3. Теоретические исследования

В данном разделе приведем теоретическое описание процесса вращения упругого вала с различными угловыми скоростями. Для начала требуется найти линейную плотность материала вала – p. Для этого воспользуемся формулой (1).

$$p = \frac{m}{l} = \frac{m^*}{l^*}. (1)$$

Так же нужно расчитать момент инерции I площади поперечного сечения вала относительно его диаметра по формуле (2).

$$I = \frac{\pi r^4}{4} = \frac{\pi d^4}{64}. (2)$$

Для нахождения критической угловой скорости составим дифференциальное уравнение изогнутой осри вала для однородной балки постоянного сечения. Запишем это уравнение (3) и продифференцируем два раза по x, где x – ось стержня. После этого упростим до вида (4).

$$EI\frac{d^2y}{dx^2} = M, (3)$$

$$EI\frac{d^4y}{dx^4} = p\omega^2y\tag{4}$$

Здесь M – изгибающий момент. Так как уравнение (4) не содержит членов, явно зависящих от времени, то его можно рассматривать как ОДУ. Общий интеграл этого уравнения имеет вид (5).

$$y = C_1 e^{\alpha x} + C_2 e^{-\alpha x} + C_3 \cos(\alpha x) + C_4 \sin(\alpha x), \quad \alpha = \sqrt[4]{\frac{p\omega^2}{EI}}.$$
 (5)

Вал может может вращаться в изогнутом состоянии при следующих значениях коэффициента α :

$$\alpha = \frac{\pi n}{I}, \quad n = 1, 2, 3 \dots \tag{6}$$

Критические угловые скорости совпадают с частотами собственных поперечных колебаний вала. Далее приведены соответствующие значения критических угловых скоростей.

$$\omega_n = \frac{\pi^2 n^2}{l^2} \sqrt{\frac{EI}{p}} \quad n = 1, 2, 3 \dots$$
(7)

Расчет погрешности косвенных измерений производим по стандартной формуле (8), где $f(x_1, \ldots, x_k)$ – формула вычисления параметра L.

$$\Delta L = \sqrt{\left(\frac{\partial f}{\partial x_1} \Delta x_1\right)^2 + \ldots + \left(\frac{\partial f}{\partial x_k} \Delta x_k\right)^2}$$
 (8)

4. Результаты расчетов

Все вычисления производились в системе CU с использованием пакета вычислительных инструментов Mathlab. Программа для проведения рассчетов находится в файле $(script_6.m)$, входные данные располагаются в файле $(input_data.csv)$. Далее представлены таблицы с результатами вычислений.

Таблица 2: Вспомогательные величины.

Величина	Значение	Погрешность	Размерность	
p	0,182	0,004	кг/м	
I	$0,515 \cdot 10^{-8}$	$0,057 \cdot 10^{-8}$	$^{\mathrm{M}^4}$	

Таблица 3: Критические угловые скорости.

Величина	Значение	Погрешность	Размерность	
ω_1	50,19	2,84	1/c	
ω_2	200,77	11,37	1/c	
ω_3	451,75	25,59	1/c	

В таблице 3 представлены окончательные результаты теоретических рассчетов. Формы искривлений вала для соответствующих критических угловых скоростей представлены на рис. 2.

Рис. 2. Схема форм искривлений вала.

5. Результаты экспериментов

Далее представлены значения величин полученных в ходе эксперимента. Все замеры производились три раза. Теоретические рассчеты и экспериментальные результаты представлены в таблице 4.

Таблица 4: Экспериментальные значения критических угловых скоростей.

Величина	Теория	Эксперимент				Разморности	
		Nº 1	Nº 2	№3	Среднее	- Размерность -	
ω_1		$50, 19 \pm 2, 84$	52,77	56,55	54,66	54,66	1/c
ω_2		$200,77 \pm 11,37$	189,12	189,75	188,50	189,12	1/c
ω_3		$451,75 \pm 25,59$	_	_	_	_	1/c

Данные таблицы 4 позволяют заключить, что теоретический рассчет оказался достаточно точным и относительно хорошо приблизил действительные характеристики установки. Также важно отметить, что неточности в рассчетах могут быть связаны с некорректным указанием модуля упругости материала вала (оригинальный вал был заменен на другой, со схожим модулем упругости).

В результате проделанной работы были получены критические угловые частоты вращения вала, соответствующие различным формам его искривления. Все теоретические и практические результаты представлены выше.