Generating Functions ITT9131 Konkreetne Matemaatika

Chapter Seven

Domino Theory and Change

Basic Maneuvers

Solving Recurrences

Special Generating Functions

Convolutions

Exponential Generating Functions

Dirichlet Generating Functions

Contents

- 1 Basic Maneuvers
 - Intermezzo: Power series and infinite sums

- 2 Solving recurrences
 - Example: Fibonacci numbers revisited
- 3 Partial fraction expansion

Next section

- 1 Basic Maneuvers
 - Intermezzo: Power series and infinite sums

- 2 Solving recurrences
 - Example: Fibonacci numbers revisited
- 3 Partial fraction expansion

Generating functions and sequences

Let $\langle g_n \rangle = \langle g_0, g_1, g_2, \ldots \rangle$ be a sequence of complex numbers: for example, the solution of a recurrence equation.

We associate to $\langle g_n \rangle$ its generating function, which is the power series

$$G(z) = \sum_{n \geqslant 0} g_n z^n :$$

such series is defined in a suitable neighborhood of the origin.

Given a closed form for G(z), we will see how to:

- \blacksquare Determine a closed form for g_n .
- Compute infinite sums.
- Solve recurrence equations.

If convenient, we will sum over all integers, under the tacit assumption that:

$$g_n = 0$$
 whenever $n < 0$

Let F(z) and G(z) be the generating functions for the sequences $\langle f_n \rangle$ and $\langle g_n \rangle$.

$$z^m G(z) = \sum_n g_{n-m} [n \geqslant m] z^n, \quad \text{integer } m \geqslant 0$$

$$G(cz) = \sum_{n} c^{n} g_{n} z^{n}$$

$$G'(z) = \sum_{n} (n+1)g_{n+1}z^n$$

$$zG'(z) = \sum_{n} ng_n z^n$$

$$F(z)G(z) = \sum_{n} \left(\sum_{k} f_{k} g_{n-k}\right) z^{n},$$
 in particular, $\frac{1}{1-z}G(z) = \sum_{n} \left(\sum_{k \leq n} g_{k}\right) z^{n}$

Let F(z) and G(z) be the generating functions for the sequences $\langle f_n \rangle$ and $\langle g_n \rangle$.

$$z^m G(z) = \sum_{n} g_{n-m} [n \geqslant m] z^n,$$
 integer $m \geqslant 0$

$$= \frac{G(z) - \sum_{k=0}^{m-1} g_k z^k}{z^m} = \sum_n g_{n+m} [n \geqslant 0] z^n,$$
 integer $m \geqslant 0$

$$G(cz) = \sum_{n} c^{n} g_{n} z^{n}$$

$$G'(z) = \sum_{n} (n+1)g_{n+1}z^n$$

$$ZG'(z) = \sum_{n} ng_{n}z^{n}$$

$$F(z)G(z) = \sum_{n} \left(\sum_{k} f_{k} g_{n-k}\right) z^{n},$$
 in particular, $\frac{1}{1-z}G(z) = \sum_{n} \left(\sum_{k \leq n} g_{k}\right) z^{n}$

Let F(z) and G(z) be the generating functions for the sequences $\langle f_n \rangle$ and $\langle g_n \rangle$.

$$z^m G(z) = \sum_{n} g_{n-m} [n \geqslant m] z^n,$$
 integer $m \geqslant 0$

$$= \frac{G(z) - \sum_{k=0}^{m-1} g_k z^k}{z^m} = \sum_n g_{n+m} [n \geqslant 0] z^n,$$
 integer $m \geqslant 0$

$$G(cz) = \sum_{n} c^{n} g_{n} z^{n}$$

$$G'(z) = \sum_{n} (n+1)g_{n+1}z^n$$

$$ZG'(z) = \sum_{n} ng_{n}z^{n}$$

$$F(z)G(z) = \sum_{n} \left(\sum_{k} f_{k} g_{n-k}\right) z^{n},$$
 in particular, $\frac{1}{1-z}G(z) = \sum_{n} \left(\sum_{k \leq n} g_{k}\right) z^{n}$

Let F(z) and G(z) be the generating functions for the sequences $\langle f_n \rangle$ and $\langle g_n \rangle$.

$$z^m G(z) = \sum_{n} g_{n-m} [n \geqslant m] z^n, \quad \text{integer } m \geqslant 0$$

$$G(cz) = \sum_{n} c^{n} g_{n} z^{n}$$

$$G'(z) = \sum_{n} (n+1)g_{n+1}z^n$$

$$ZG'(z) = \sum_{n} ng_{n}z^{n}$$

$$F(z)G(z) = \sum_{n} \left(\sum_{k} f_{k} g_{n-k}\right) z^{n},$$
 in particular, $\frac{1}{1-z}G(z) = \sum_{n} \left(\sum_{k \leq n} g_{k}\right) z^{n}$

Let F(z) and G(z) be the generating functions for the sequences $\langle f_n \rangle$ and $\langle g_n \rangle$.

$$z^m G(z) = \sum_{n} g_{n-m} [n \geqslant m] z^n,$$
 integer $m \geqslant 0$

$$G(cz) = \sum_{n} c^{n} g_{n} z^{n}$$

$$G'(z) = \sum_{n} (n+1)g_{n+1}z^n$$

$$ZG'(z) = \sum_{n} ng_{n}z^{n}$$

$$F(z)G(z) = \sum_{n} \left(\sum_{k} f_{k} g_{n-k}\right) z^{n},$$
 in particular, $\frac{1}{1-z}G(z) = \sum_{n} \left(\sum_{k \leq n} g_{k}\right) z^{n}$

Let F(z) and G(z) be the generating functions for the sequences $\langle f_n \rangle$ and $\langle g_n \rangle$.

$$z^m G(z) = \sum_{n} g_{n-m} [n \geqslant m] z^n,$$
 integer $m \geqslant 0$

$$G(cz) = \sum_{n} c^{n} g_{n} z^{n}$$

$$G'(z) = \sum_{n} (n+1)g_{n+1}z^n$$

$$zG'(z) = \sum_{n} ng_n z^n$$

$$F(z)G(z) = \sum_{n} \left(\sum_{k} f_{k} g_{n-k}\right) z^{n},$$
 in particular, $\frac{1}{1-z}G(z) = \sum_{n} \left(\sum_{k \leq n} g_{k}\right) z^{n}$

Let F(z) and G(z) be the generating functions for the sequences $\langle f_n \rangle$ and $\langle g_n \rangle$.

$$z^m G(z) = \sum_n g_{n-m} [n \geqslant m] z^n, \quad \text{integer } m \geqslant 0$$

$$G(cz) = \sum_{n} c^{n} g_{n} z^{n}$$

$$G'(z) = \sum_{n} (n+1)g_{n+1}z^n$$

$$zG'(z) = \sum_{n} ng_n z^n$$

$$F(z)G(z) = \sum_{n} \left(\sum_{k} f_{k} g_{n-k}\right) z^{n}, \qquad \text{in particular, } \frac{1}{1-z}G(z) = \sum_{n} \left(\sum_{k \leq n} g_{k}\right) z^{n}$$

$$\int_0^z G(w) dw = \sum_{n \ge 1} \frac{1}{n} g_{n-1} z^n, \quad \text{where } \int_0^z G(w) dw = z \int_0^1 G(zt) dx$$

Let F(z) and G(z) be the generating functions for the sequences $\langle f_n \rangle$ and $\langle g_n \rangle$.

$$z^m G(z) = \sum_{n} g_{n-m} [n \geqslant m] z^n,$$
 integer $m \geqslant 0$

$$= \frac{G(z) - \sum_{k=0}^{m-1} g_k z^k}{z^k} = \sum_{k=0}^{\infty} g_{n+m} [n \geqslant 0] z^n,$$
 integer $m \geqslant 0$

$$G(cz) = \sum c^n g_n z^n$$

$$G'(z) = \sum_{n} (n+1)g_{n+1}z^n$$

$$zG'(z) = \sum_{n} ng_n z^n$$

$$F(z)G(z) = \sum_{n} \left(\sum_{k} f_{k} g_{n-k}\right) z^{n}, \qquad \text{in particular, } \frac{1}{1-z} G(z) = \sum_{n} \left(\sum_{k \leq n} g_{k}\right) z^{n}$$

For $m \geqslant 0$ integer

• \langle 1,0,0,0,0,0,...\rangle

 $\leftrightarrow \sum_{n\geqslant 0} [n=0] z^n = 1$

 $\sum_{n\geqslant 0} [n=m] z^n = z^m$

 $\bullet \ \langle 0,\dots,0,1,0,0,\dots \rangle$

 \leftrightarrow

For $m \geqslant 0$ integer

$$\leftrightarrow$$

$$\sum_{n\geqslant 0} [n=0] z^n = 1$$

•
$$(0, ..., 0, 1, 0, 0, ...)$$

$$\leftrightarrow$$

$$\sum_{n\geqslant 0} [n=m] z^n = z^m$$

•
$$\langle 1, 1, 1, 1, 1, 1, \dots \rangle$$

$$\leftrightarrow$$

$$\sum_{n\geqslant 0} z^n = \frac{1}{1-z}$$

For $m \ge 0$ integer

•
$$\langle 1, 0, 0, 0, 0, 0, \ldots \rangle$$

$$\leftrightarrow \sum_{n\geqslant 0} [n=0] z^n = 1$$

•
$$\langle 0, \dots, 0, 1, 0, 0, \dots \rangle$$

$$\sum_{n\geq 0} [n=m] z^n = z^m$$

•
$$\langle 1, 1, 1, 1, 1, 1, \ldots \rangle$$

$$\leftrightarrow$$

 \leftrightarrow

 \leftrightarrow

$$\sum_{n\geqslant 0} z^n = \frac{1}{1-z}$$

•
$$\langle 1, -1, 1, -1, 1, -1, \ldots \rangle$$

$$\sum_{n \ge 0} (-1)^n z^n = \frac{1}{1+z}$$

For $m \geqslant 0$ integer

•
$$\langle 1, 0, 0, 0, 0, 0, \ldots \rangle$$

$$\leftrightarrow$$

$$\sum_{n>0} [n=0] z^n = 1$$

•
$$(0,...,0,1,0,0,...)$$

$$\leftrightarrow$$

$$\sum_{n\geqslant 0} [n=m] z^n = z^m$$

•
$$\langle 1, 1, 1, 1, 1, 1, \ldots \rangle$$

$$\leftrightarrow$$

$$\sum_{n\geqslant 0} z^n = \frac{1}{1-z}$$

$$\bullet \ \langle 1,-1,1,-1,1,-1,\ldots \rangle$$

$$\sum_{n\geqslant 0} (-1)^n z^n = \frac{1}{1+z}$$

•
$$\langle 1, 0, 1, 0, 1, 0, \ldots \rangle$$

$$\leftrightarrow$$

$$\sum_{n\geq 0} [2|n] z^n = \frac{1}{1-z^2}$$

For $m \ge 0$ integer

•
$$\langle 1, 0, 0, 0, 0, 0, \ldots \rangle$$

$$\leftrightarrow \sum_{n\geqslant 0} [n=0] z^n = 1$$

 \leftrightarrow

•
$$(0,...,0,1,0,0,...)$$

$$\leftrightarrow \sum_{n>0} [n=m] z^n = z^m$$

•
$$\langle 1, 1, 1, 1, 1, 1, \dots \rangle$$

$$\sum_{n\geqslant 0} z^n = \frac{1}{1-z}$$

$$\bullet \ \langle 1, -1, 1, -1, 1, -1, \ldots \rangle \\ \longleftrightarrow$$

$$\sum_{n\geqslant 0} (-1)^n z^n = \frac{1}{1+z}$$

$$\bullet \ \langle 1,0,1,0,1,0,\ldots \rangle \\ \longleftrightarrow$$

$$\sum_{n \geqslant 0} [2|n] z^n = \frac{1}{1 - z^2}$$

•
$$\langle 1, 0, \dots, 0, 1, 0, \dots, 0, 1, 0, \dots \rangle \longleftrightarrow$$

$$\sum_{n\geqslant 0} [m|n] z^n = \frac{1}{1-z^m}$$

For $m \ge 0$ integer

•
$$\langle 1,0,0,0,0,0,\ldots \rangle$$
 \longleftrightarrow $\sum_{n\geqslant 0} [n=0] z^n = 1$

•
$$\langle 0, \dots, 0, 1, 0, 0, \dots \rangle$$
 $\longleftrightarrow \sum_{n \geqslant 0} [n = m] z^n = z^m$

•
$$\langle 1, 1, 1, 1, 1, 1, \ldots \rangle$$
 \leftrightarrow
$$\sum_{n \geqslant 0} z^n = \frac{1}{1 - z}$$

•
$$\langle 1, -1, 1, -1, 1, -1, \ldots \rangle$$
 \leftrightarrow
$$\sum_{n \geqslant 0} (-1)^n z^n = \frac{1}{1+z}$$

•
$$\langle 1,0,1,0,1,0,\ldots \rangle$$
 \longleftrightarrow
$$\sum_{n\geq 0} [2|n] z^n = \frac{1}{1-z^2}$$

$$\bullet \ \langle 1,0,\ldots,0,1,0,\ldots,0,1,0,\ldots\rangle \\ \hspace*{1.5cm} \longleftrightarrow \hspace*{1.5cm} \sum_{n\geqslant 0} \left[m|n\right]z^n = \frac{1}{1-z^m}$$

$$\bullet \ \langle 1,2,3,4,5,6,\ldots \rangle \qquad \leftrightarrow \qquad \sum_{n\geq 0} (n+1)z^n = \frac{1}{(1-z)^2}$$

For $m \ge 0$ integer

•
$$\langle 1,0,0,0,0,0,\ldots \rangle$$
 \longleftrightarrow $\sum_{n\geqslant 0} [n=0] z^n = 1$

•
$$\langle 0, \dots, 0, 1, 0, 0, \dots \rangle$$
 $\longleftrightarrow \sum_{n \geq 0} [n = m] z^n = z^m$

•
$$\langle 1, 1, 1, 1, 1, 1, \ldots \rangle$$
 \leftrightarrow
$$\sum_{n \geq 0} z^n = \frac{1}{1 - z}$$

•
$$\langle 1, -1, 1, -1, 1, -1, \ldots \rangle$$
 \leftrightarrow
$$\sum_{n \ge 0} (-1)^n z^n = \frac{1}{1+z}$$

•
$$\langle 1, 0, 1, 0, 1, 0, \dots \rangle$$
 $\longleftrightarrow \sum_{n \ge 0} [2|n] z^n = \frac{1}{1 - z^2}$

•
$$\langle 1,0,\ldots,0,1,0,\ldots,0,1,0,\ldots\rangle$$
 \longleftrightarrow $\sum_{n\geqslant 0} [m|n] z^n = \frac{1}{1-z^m}$

$$\bullet \ \langle 1,2,3,4,5,6,\ldots \rangle \qquad \leftrightarrow \qquad \sum_{n\geq 0} (n+1)z^n = \frac{1}{(1-z)^2}$$

•
$$\langle 1, 2, 4, 8, 16, 32, \ldots \rangle$$
 \leftrightarrow
$$\sum_{n \geqslant 0} 2^n z^n = \frac{1}{1 - 2z}$$

For $m\geqslant 0$ integer and for $c\in\mathbb{C}$

•
$$\langle 1, 4, 6, 4, 1, 0, 0, \ldots \rangle$$

$$\leftrightarrow$$

$$\sum_{n\geqslant 0} \binom{4}{n} z^n = (1+z)^4$$

For $m\geqslant 0$ integer and for $c\in\mathbb{C}$

• $\langle 1, 4, 6, 4, 1, 0, 0, \ldots \rangle$

 $\leftrightarrow \sum_{n\geqslant 0} {4 \choose n} z^n = (1+z)^4$

• $\langle 1, c, {c \choose 2}, {c \choose 3}, \ldots \rangle$

 \leftrightarrow

For $m\geqslant 0$ integer and for $c\in\mathbb{C}$

•
$$\langle 1,4,6,4,1,0,0,\ldots \rangle$$
 \leftrightarrow
$$\sum_{n\geq 0} {4 \choose n} z^n = (1+z)^4$$

•
$$\langle 1, c, \binom{c}{2}, \binom{c}{3}, \ldots \rangle$$
 \leftrightarrow $\sum_{n \geq 0} \binom{c}{n} z^n = (1+z)^c$

•
$$\left\langle 1, c, \binom{c+1}{2}, \binom{c+2}{3}, \ldots \right\rangle$$
 \leftrightarrow $\sum_{n \geq 0} \binom{c+n-1}{n} z^n = \frac{1}{(1-z)^c}$

For $m\geqslant 0$ integer and for $c\in\mathbb{C}$

•
$$\langle 1, 4, 6, 4, 1, 0, 0, \ldots \rangle$$

$$\leftrightarrow \sum_{n>0} {4 \choose n} z^n = (1+z)^4$$

•
$$\left\langle 1, c, \binom{c}{2}, \binom{c}{3}, \ldots \right\rangle \longleftrightarrow$$

 \leftrightarrow

$$\sum_{n\geqslant 0} \binom{c}{n} z^n = (1+z)^c$$

•
$$\left\langle 1, c, \binom{c+1}{2}, \binom{c+2}{3}, \ldots \right\rangle \longleftrightarrow$$

$$\sum_{n\geqslant 0} {c+n-1\choose n} z^n = \frac{1}{(1-z)^c}$$

•
$$\langle 1, c, c^2, c^3, \ldots \rangle$$

$$\sum_{n\geqslant 0} c^n z^n = \frac{1}{1-cz}$$

For $m \geqslant 0$ integer and for $c \in \mathbb{C}$

•
$$\langle 1, 4, 6, 4, 1, 0, 0, \ldots \rangle$$
 \leftrightarrow
$$\sum_{n \geq 0} {4 \choose n} z^n = (1+z)^4$$

•
$$\left\langle 1, c, \binom{c}{2}, \binom{c}{3}, \ldots \right\rangle$$
 \leftrightarrow $\sum_{n \geqslant 0} \binom{c}{n} z^n = (1+z)^c$

•
$$\left\langle 1, c, \binom{c+1}{2}, \binom{c+2}{3}, \ldots \right\rangle$$
 $\leftrightarrow \sum_{n \geqslant 0} \binom{c+n-1}{n} z^n = \frac{1}{(1-z)^c}$

•
$$\langle 1, c, c^2, c^3, \ldots \rangle$$
 \leftrightarrow $\sum_{n \geq 0} c^n z^n = \frac{1}{1 - cz}$

$$\bullet \ \left\langle 1, \binom{m+1}{m}, \binom{m+2}{m}, \binom{m+3}{m}, \ldots \right\rangle \quad \leftrightarrow \qquad \sum_{n \geqslant 0} \binom{m+n}{m} z^n = \frac{1}{(1-z)^{m+1}}$$

For $m\geqslant 0$ integer and for $c\in \mathbb{C}$

•
$$\langle 1, 4, 6, 4, 1, 0, 0, \ldots \rangle$$
 \longleftrightarrow
$$\sum_{n \geqslant 0} {4 \choose n} z^n = (1+z)^4$$

•
$$\left\langle 1, c, \binom{c}{2}, \binom{c}{3}, \ldots \right\rangle$$
 \leftrightarrow $\sum_{n \geqslant 0} \binom{c}{n} z^n = (1+z)^c$

•
$$\left\langle 1, c, \binom{c+1}{2}, \binom{c+2}{3}, \ldots \right\rangle$$
 $\leftrightarrow \sum_{n \geqslant 0} \binom{c+n-1}{n} z^n = \frac{1}{(1-z)^c}$

•
$$\langle 1, c, c^2, c^3, \ldots \rangle$$
 \leftrightarrow $\sum_{n \geq 0} c^n z^n = \frac{1}{1 - cz}$

$$\bullet \ \left\langle 1, \binom{m+1}{m}, \binom{m+2}{m}, \binom{m+3}{m}, \ldots \right\rangle \quad \leftrightarrow \qquad \sum_{n \geqslant 0} \binom{m+n}{m} z^n = \frac{1}{(1-z)^{m+1}}$$

$$\bullet \ \left\langle 0,1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\ldots \right\rangle \\ \hspace{2cm} \longleftrightarrow \hspace{2cm} \sum_{n\geqslant 1}\frac{1}{n}z^n=\ln\frac{1}{1-z}$$

For $m\geqslant 0$ integer and for $c\in \mathbb{C}$

•
$$\langle 1, 4, 6, 4, 1, 0, 0, \ldots \rangle$$
 \longleftrightarrow
$$\sum_{n \geqslant 0} {4 \choose n} z^n = (1+z)^4$$

•
$$\left\langle 1, c, \binom{c}{2}, \binom{c}{3}, \ldots \right\rangle$$
 \leftrightarrow $\sum_{n \geqslant 0} \binom{c}{n} z^n = (1+z)^c$

$$\bullet \ \left\langle 1, c, \binom{c+1}{2}, \binom{c+2}{3}, \ldots \right\rangle \\ \qquad \leftrightarrow \quad \sum_{n \geq 0} \binom{c+n-1}{n} z^n = \frac{1}{(1-z)^c}$$

•
$$\langle 1, c, c^2, c^3, \ldots \rangle$$
 \leftrightarrow $\sum_{n \geq 0} c^n z^n = \frac{1}{1 - cz}$

•
$$\left\langle 1, \binom{m+1}{m}, \binom{m+2}{m}, \binom{m+3}{m}, \ldots \right\rangle \quad \leftrightarrow \quad \sum_{n \geqslant 0} \binom{m+n}{m} z^n = \frac{1}{(1-z)^{m+1}}$$

•
$$\left\langle 0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \right\rangle$$
 \leftrightarrow $\sum_{n \geqslant 1} \frac{1}{n} z^n = \ln \frac{1}{1-z}$

$$\bullet \left\langle 0, 1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \ldots \right\rangle \qquad \leftrightarrow \qquad \sum_{n \geq 1} \frac{(-1)^{n+1}}{n} z^n = \ln(1+z)$$

For $m\geqslant 0$ integer and for $c\in \mathbb{C}$

•
$$\langle 1, 4, 6, 4, 1, 0, 0, \ldots \rangle$$
 \longleftrightarrow
$$\sum_{n \geqslant 0} {4 \choose n} z^n = (1+z)^4$$

•
$$\left\langle 1, c, \binom{c}{2}, \binom{c}{3}, \ldots \right\rangle$$
 \leftrightarrow $\sum_{n \geqslant 0} \binom{c}{n} z^n = (1+z)^c$

•
$$\left\langle 1, c, \binom{c+1}{2}, \binom{c+2}{3}, \ldots \right\rangle$$
 $\leftrightarrow \sum_{n \geqslant 0} \binom{c+n-1}{n} z^n = \frac{1}{(1-z)^c}$

$$\bullet \left\langle 0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \right\rangle \qquad \leftrightarrow \qquad \sum_{n \geqslant 1} \frac{1}{n} z^n = \ln \frac{1}{1 - z}$$

$$\bullet \left\langle 0, 1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \ldots \right\rangle \qquad \leftrightarrow \qquad \sum_{n \geqslant 1} \frac{(-1)^{n+1}}{n} z^n = \ln(1+z)$$

•
$$\left\langle 1, 1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \dots \right\rangle$$
 \leftrightarrow $\sum_{n \ge 0} \frac{1}{n!} z^n = e^z$

Warmup: A simple generating function

Problem

Determine the generating function G(z) of the sequence

$$g_n=2^n+3^n, n\geqslant 0$$

Warmup: A simple generating function

Problem

Determine the generating function G(z) of the sequence

$$g_n = 2^n + 3^n, n \geqslant 0$$

Solution

- For $\alpha \in \mathbb{C}$, the generationg function of $\langle \alpha^n \rangle_{n \geqslant 0}$ is $G_{\alpha}(z) = \frac{1}{1 \alpha z}$.
- By linearity, we get

$$G(z) = G_2(z) + G_3(z) = \frac{1}{1-2z} + \frac{1}{1-3z}$$
.

Extracting the even- or odd-numbered terms of a sequence

Let $\langle g_0, g_1, g_2, \ldots \rangle \leftrightarrow G(z)$.

Then

$$G(z) + G(-z) = \sum_{n} g_n (1 + (-1)^n) z^n = 2 \sum_{n} g_n [n \text{ is even}] z^n$$

Therefore

$$\langle g_0, 0, g_2, 0, g_4, \ldots \rangle \leftrightarrow \frac{G(z) + G(-z)}{2} = \sum_n g_{2n} z^{2n}$$

Similarly

$$\langle 0, g_1, 0, g_3, 0, g_5, \ldots \rangle \leftrightarrow \frac{G(z) - G(-z)}{2} = \sum_n g_{2n+1} z^{2n+1}$$

$$\langle g_0, g_2, g_4, \ldots \rangle \leftrightarrow \sum_n g_{2n} z^n$$

$$\langle g_1, g_3, g_5, \ldots \rangle \leftrightarrow \sum_n g_{2n+1} z^n$$

Extracting the even- or odd-numbered terms of a sequence

Let $\langle g_0, g_1, g_2, \ldots \rangle \leftrightarrow G(z)$.

Then

$$G(z) + G(-z) = \sum_{n} g_n (1 + (-1)^n) z^n = 2 \sum_{n} g_n [n \text{ is even}] z^n$$

Therefore

$$\langle g_0, 0, g_2, 0, g_4, \ldots \rangle \leftrightarrow \frac{G(z) + G(-z)}{2} = \sum_n g_{2n} z^{2n}$$

Similarly

$$\langle 0, g_1, 0, g_3, 0, g_5, \ldots \rangle \leftrightarrow \frac{G(z) - G(-z)}{2} = \sum_n g_{2n+1} z^{2n+1}$$

$$\langle g_0, g_2, g_4, \ldots \rangle \leftrightarrow \sum_n g_{2n} z^n$$

$$\langle g_1, g_3, g_5, \ldots \rangle \leftrightarrow \sum_n g_{2n+1} z'$$

Extracting the even- or odd-numbered terms of a sequence

Let $\langle g_0, g_1, g_2, \ldots \rangle \leftrightarrow G(z)$.

Then

$$G(z) + G(-z) = \sum_{n} g_n (1 + (-1)^n) z^n = 2 \sum_{n} g_n [n \text{ is even}] z^n$$

Therefore

$$\langle g_0,0,g_2,0,g_4,\ldots\rangle \leftrightarrow \frac{G(z)+G(-z)}{2} = \sum_n g_{2n} z^{2n}$$

Similarly

$$\langle 0, g_1, 0, g_3, 0, g_5, \ldots \rangle \leftrightarrow \frac{G(z) - G(-z)}{2} = \sum_{n} g_{2n+1} z^{2n+1}$$

$$\langle g_0, g_2, g_4, \ldots \rangle \leftrightarrow \sum_n g_{2n} z^n$$

 $\langle g_1, g_3, g_5, \ldots \rangle \leftrightarrow \sum_n g_{2n+1} z^n$

Extracting the even- or odd-numbered terms of a sequence (2)

Example:
$$\langle 1,0,1,0,1,0,\ldots \rangle \leftrightarrow F(z) = \frac{1}{1-z^2}$$

We have

$$\langle 1,1,1,1,1,\ldots\rangle \leftrightarrow G(z)=\frac{1}{1-z}.$$

Then the generating function for $\langle 1,0,1,0,1,0,\ldots \rangle$ is

$$\frac{1}{2}(G(z)+G(-z))=\frac{1}{2}\left(\frac{1}{1-z}+\frac{1}{1+z}\right)=\frac{1}{2}\cdot\frac{1+z+1-z}{(1-z)(1+z)}=\frac{1}{1-z^2}$$

Extracting the even- or odd-numbered terms of a sequence (3)

Example: $(0,1,3,8,21,...) = (f_0,f_2,f_4,f_6,f_8,...)$

We know that

$$\langle 0,1,1,2,3,5,8,13,21... \rangle \leftrightarrow F(z) = \frac{z}{1-z-z^2}.$$

Then the generating function for $\langle f_0,0,f_2,0,f_4,0,\ldots \rangle$ is

$$\sum_{n} f_{2n} z^{2n} = \frac{1}{2} \left(\frac{z}{1 - z - z^2} + \frac{-z}{1 + z - z^2} \right)$$
$$= \frac{1}{2} \cdot \frac{z + z^2 - z^3 - z + z^2 + z^3}{(1 - z^2)^2 - z^2}$$
$$= \frac{z^2}{1 - 3z^2 + z^4}$$

This gives

$$\langle 0, 1, 3, 8, 21, ... \rangle \leftrightarrow \sum_{n} f_{2n} z^{n} = \frac{z}{1 - 3z + z^{2}}$$

Next subsection

- 1 Basic Maneuvers
 - Intermezzo: Power series and infinite sums

- 2 Solving recurrences
 - Example: Fibonacci numbers revisited
- 3 Partial fraction expansion

Reviewing the convergence radius

Definition

The convergence radius of the power series $\sum_{n\geq 0} a_n (z-z_0)^n$ is the value R defined by:

$$\frac{1}{R} = \limsup_{n \geqslant 0} \sqrt[n]{|a_n|},$$

with the conventions $1/0 = \infty$, $1/\infty = 0$.

The Abel-Hadamard theorem

Let $\sum_{n\geqslant 0} a_n (z-z_0)^n$ be a power series of convergence radius R.

- 1 If R > 0, then the series converges uniformly in every closed and bounded subset of the disk of center z_0 and radius R.
- 2 If $R < \infty$, then the series does not converge at any point z such that $|z z_0| > R$.

Power series and infinite sums

The problem

- Consider an infinite sum of the form $\sum_{n\geqslant 0} a_n \beta^n$.
- Suppose that we are given a closed form for the generating function G(z) of the sequence (a_0, a_1, a_2, \ldots) .
- Can we deduce that $\sum_{n\geqslant 0} a_n \beta^n = G(\beta)$?

Power series and infinite sums

The problem

- Consider an infinite sum of the form $\sum_{n\geq 0} a_n \beta^n$.
- Suppose that we are given a closed form for the generating function G(z) of the sequence $\langle a_0, a_1, a_2, \ldots \rangle$.
- Can we deduce that $\sum_{n\geqslant 0} a_n \beta^n = G(\beta)$?

Answer: It depends!

Let R be the convergence radius of the power series $\sum_{n\geqslant 0} a_n z^n$.

- If $|\beta| < R$: YES by the Abel-Hadamard theorem and uniqueness of analytic continuation.
- If $|\beta| > R$: NO by the Abel-Hadamard theorem.
- If $|\beta| = R$. Sometimes yes, sometimes not!

Warmup: A sum with powers and harmonic numbers

The problem

Compute $\sum_{n\geqslant 0} H_n/10^n$

Warmup: A sum with powers and harmonic numbers

The problem

Compute $\sum_{n\geq 0} H_n/10^n$

Solution

This looks like the sum of the power series $\sum_{n\geq 0} H_n z^n$ at z=1/10 — if it exists ...

- For $n \ge 1$ it is $1 \le H_n \le n$: therefore, the convergence radius is 1.
- We know that the generating function of $g_n = H_n$ is $G(z) = \frac{1}{1-z} \ln \frac{1}{1-z}$.
- As we are within the convergence radius of the series, we can replace the sum of the series with the value of the function.

In conclusion,

$$\sum_{n\geqslant 0}\frac{H_n}{10^n}=\frac{1}{1-\frac{1}{10}}\ln\frac{1}{1-\frac{1}{10}}=\frac{10}{9}\ln\frac{10}{9}\,.$$

Abel's summation formula

Statement

- Let $S(z) = \sum_{n \ge 0} a_n z^n$ be a power series with center 0 and convergence radius 1.
- If

$$S=\sum_{n\geqslant 0}a_n=S(1)$$

exists, then S(z) converges uniformly in [0,1].

■ In particular,

$$L = \lim_{x \to 1^{-}} S(x) , x \in [0,1]$$

also exists, and coincides with S.

Abel's summation formula

Statement

- Let $S(z) = \sum_{n \ge 0} a_n z^n$ be a power series with center 0 and convergence radius 1.
- If

$$S = \sum_{n \geq 0} a_n = S(1)$$

exists, then S(z) converges uniformly in [0,1].

In particular,

$$L = \lim_{x \to 1^{-}} S(x) , x \in [0,1]$$

also exists, and coincides with S.

The converse does not hold!

For |z| < 1 we have:

$$\sum_{n \ge 0} (-1)^n z^n = \frac{1}{1+z}$$

Then $L = \frac{1}{2}$ but S does not exist.

Tauber's theorem

Statement

- Let $S(z) = \sum_{n \ge 0} a_n z^n$ be a power series with center 0 and convergence radius 1.
- If

$$L = \lim_{x \to 1^{-}} S(x) , x \in [0,1]$$

exists and in addition

$$\lim_{n\to\infty} na_n = 0$$

then S = S(1) also exists, and coincides with L.

Next section

- 1 Basic Maneuvers
 - Intermezzo: Power series and infinite sums
- 2 Solving recurrences
 - Example: Fibonacci numbers revisited
- 3 Partial fraction expansion

Solving recurrences

Given a sequence $\langle g_n \rangle$ that satisfies a given recurrence, we seek a closed form for g_n in terms of n.

"Algorithm"

- 1 Write down a single equation that expresses g_n in terms of other elements of the sequence. This equation should be valid for all integers n, assuming that $g_{-1} = g_{-2} = \cdots = 0$.
- 2 Multiply both sides of the equation by z^n and sum over all n. This gives, on the left, the sum $\sum_n g_n z^n$, which is the generating function G(z). The right-hand side should be manipulated so that it becomes some other expression involving G(z).
- 3 Solve the resulting equation, getting a closed form for G(z).
- **4** Expand G(z) into a power series and read off the coefficient of z^n ; this is a closed form for g_n .

Next subsection

- 1 Basic Maneuvers
 - Intermezzo: Power series and infinite sums

- 2 Solving recurrences
 - Example: Fibonacci numbers revisited
- 3 Partial fraction expansion

Example: Fibonacci numbers revisited

Step 1 The recurrence

$$g_n = \begin{cases} 0, & \text{if } n \leq 0; \\ 1, & \text{if } n = 1; \\ g_{n-1} + g_{n-2} & \text{if } n > 1; \end{cases}$$

can be represented by the single equation

$$g_n = g_{n-1} + g_{n-2} + [n = 1],$$

where $n \in (-\infty, +\infty)$

This is because the "simple" Fibonacci recurrence $g_n=g_{n-1}+g_{n-2}$ holds for every $n\geqslant 2$ by construction, and for every $n\leqslant 0$ as by hypothesis $g_n=0$ if n<0; but for n=1 the left-hand side is 1 and the right-hand side is 0, so we need the correction summand [n=1].

Example: Fibonacci numbers revisited (2)

Step 2 For any n, multiply both sides of the equation by z^n ...

$$g_{-2}z^{-2} = g_{-3}z^{-2} + g_{-4}z^{-2} + [-2 = 1]z^{-2}$$

$$g_{-1}z^{-1} = g_{-2}z^{-1} + g_{-3}z^{-1} + [-1 = 1]z^{-1}$$

$$g_0 = g_{-1} + g_{-2} + [0 = 1]$$

$$g_1z = g_0z + g_{-1}z + [1 = 1]z$$

$$g_2z^2 = g_1z^2 + g_0z^2 + [2 = 1]z^2$$

$$g_3z^3 = g_2z^3 + g_1z^3 + [3 = 1]z^3$$

$$\dots \dots \dots \dots \dots$$

... and sum over all n.

$$\sum_{n} g_{n} z^{n} = \sum_{n} g_{n-1} z^{n} + \sum_{n} g_{n-2} z^{n} + \sum_{n} [n = 1] z^{n}$$

Example: Fibonacci numbers revisited (3)

Step 3 Write down $G(z) = \sum_{n} g_n z^n$ and transform

$$G(z) = \sum_{n} g_{n} z^{n} = \sum_{n} g_{n-1} z^{n} + \sum_{n} g_{n-2} z^{n} + \sum_{n} [n = 1] z^{n} =$$

$$= \sum_{n} g_{n} z^{n+1} + \sum_{n} g_{n} z^{n+2} + z =$$

$$= zG(z) + z^{2} G(z) + z$$

Solving the equation yields

$$G(z) = \frac{z}{1 - z - z^2}$$

Step 4 Expansion the equation into power series $G(z) = \sum g_n z^n$ gives us the solution (see next slides):

$$g_n = \frac{\Phi^n - \widehat{\Phi}^n}{\sqrt{5}}$$

Example: Fibonacci numbers revisited (3)

Step 3 Write down $G(z) = \sum_{n} g_n z^n$ and transform

$$G(z) = \sum_{n} g_{n} z^{n} = \sum_{n} g_{n-1} z^{n} + \sum_{n} g_{n-2} z^{n} + \sum_{n} [n = 1] z^{n} =$$

$$= \sum_{n} g_{n} z^{n+1} + \sum_{n} g_{n} z^{n+2} + z =$$

$$= zG(z) + z^{2} G(z) + z$$

Solving the equation yields

$$G(z) = \frac{z}{1 - z - z^2}$$

Step 4 Expansion the equation into power series $G(z) = \sum g_n z^n$ gives us the solution (see next slides):

$$g_n = \frac{\Phi^n - \widehat{\Phi}^n}{\sqrt{5}}$$

Next section

- 1 Basic Maneuvers
 - Intermezzo: Power series and infinite sums

- 2 Solving recurrences
 - Example: Fibonacci numbers revisited
- 3 Partial fraction expansion

Motivation

A generating function is often in the form of a rational function

$$R(z) = \frac{P(z)}{Q(z)},$$

where P and Q are polynomials.

Our goal is to find "partial fraction expansion" of R(z), i.e. represent R(z) in the form

$$R(z) = S(z) + T(z),$$

where S(z) has known expansion into the power series, and T(z) is a polynomial.

 \blacksquare A good candidate for S(z) is a finite sum of functions like

$$S(z) = \frac{a_1}{(1-\rho_1 z)^{m_1+1}} + \frac{a_2}{(1-\rho_2 z)^{m_2+1}} + \dots + \frac{a_\ell}{(1-\rho_\ell z)^{m_\ell+1}}$$

■ We have proven the relation

$$\frac{a}{(1-\rho z)^{m+1}} = \sum_{n\geqslant 0} {m+n \choose m} a \rho^n z^n$$

 \blacksquare Hence, the coefficient of z^n in expansion of S(z) is

$$s_n = a_1 \binom{m_1 + n}{m_1} \rho_1^n + a_2 \binom{m_2 + n}{m_2} \rho_2^n + \cdots + a_\ell \binom{m_\ell + n}{m_\ell} \rho_\ell^n$$

Motivation

A generating function is often in the form of a rational function

$$R(z) = \frac{P(z)}{Q(z)},$$

where P and Q are polynomials.

Our goal is to find "partial fraction expansion" of R(z), i.e. represent R(z) in the form

$$R(z) = S(z) + T(z),$$

where S(z) has known expansion into the power series, and T(z) is a polynomial.

A good candidate for S(z) is a finite sum of functions like

$$S(z) = \frac{a_1}{(1-\rho_1 z)^{m_1+1}} + \frac{a_2}{(1-\rho_2 z)^{m_2+1}} + \dots + \frac{a_\ell}{(1-\rho_\ell z)^{m_\ell+1}}$$

We have proven the relation

$$\frac{a}{(1-\rho z)^{m+1}} = \sum_{n\geqslant 0} {m+n \choose m} a \rho^n z^n$$

 \blacksquare Hence, the coefficient of z^n in expansion of S(z) i

$$s_n = a_1 \binom{m_1 + n}{m_1} \rho_1^n + a_2 \binom{m_2 + n}{m_2} \rho_2^n + \cdots + a_\ell \binom{m_\ell + n}{m_\ell} \rho_\ell^n$$

Motivation

A generating function is often in the form of a rational function

$$R(z) = \frac{P(z)}{Q(z)},$$

where P and Q are polynomials.

lacksquare Our goal is to find "partial fraction expansion" of R(z), i.e. represent R(z) in the form

$$R(z) = S(z) + T(z),$$

where S(z) has known expansion into the power series, and T(z) is a polynomial.

 \blacksquare A good candidate for S(z) is a finite sum of functions like

$$S(z) = \frac{a_1}{(1-\rho_1 z)^{m_1+1}} + \frac{a_2}{(1-\rho_2 z)^{m_2+1}} + \dots + \frac{a_\ell}{(1-\rho_\ell z)^{m_\ell+1}}$$

We have proven the relation

$$\frac{a}{(1-\rho z)^{m+1}} = \sum_{n\geqslant 0} {m+n \choose m} a \rho^n z^n$$

• Hence, the coefficient of z^n in expansion of S(z) is

$$s_n = a_1 \binom{m_1+n}{m_1} \rho_1^n + a_2 \binom{m_2+n}{m_2} \rho_2^n + \cdots + a_\ell \binom{m_\ell+n}{m_\ell} \rho_\ell^n.$$

Step 1: Finding ho_1, ho_2,\ldots, ho_m

 \blacksquare Suppose Q(z) has the form

$$Q(z) = 1 + q_1 z + q_2 z^2 + \dots + q_m z^m$$
, where $q_m \neq 0$.

lacktriangle The "reflected" polynomial Q^R has a relation to Q

$$Q^{R}(z) = z^{m} + q_{1}z^{m-1} + q_{2}z^{m-2} + \dots + q_{m-1}z + q_{m}$$

$$= z^{m} \left(1 + q_{1}\frac{1}{z} + q_{2}\frac{1}{z^{2}} + \dots + q_{m-1}\frac{1}{z^{m-1}} + q_{m}\frac{1}{z^{m}} \right)$$

$$= z^{m} Q\left(\frac{1}{z}\right)$$

If $\rho_1, \rho_2, \ldots, \rho_m$ are roots of Q^R , then $(z-\rho_i)|Q^R(z)$

$$Q^{R}(z) = (z - \rho_1)(z - \rho_2) \cdots (z - \rho_m)$$

■ Then $(1-\rho_i z)|Q(z)$

$$Q(z) = z^{m} (\frac{1}{z} - \rho_{1}) (\frac{1}{z} - \rho_{2}) \cdots (\frac{1}{z} - \rho_{m}) = (1 - \rho_{1}z) (1 - \rho_{2}z) \cdots (1 - \rho_{m}z)$$

Step 1: Finding ho_1, ho_2,\ldots, ho_m

 \blacksquare Suppose Q(z) has the form

$$Q(z) = 1 + q_1 z + q_2 z^2 + \dots + q_m z^m$$
, where $q_m \neq 0$.

■ The "reflected" polynomial Q^R has a relation to Q:

$$Q^{R}(z) = z^{m} + q_{1}z^{m-1} + q_{2}z^{m-2} + \dots + q_{m-1}z + q_{m}$$

$$= z^{m} \left(1 + q_{1}\frac{1}{z} + q_{2}\frac{1}{z^{2}} + \dots + q_{m-1}\frac{1}{z^{m-1}} + q_{m}\frac{1}{z^{m}} \right)$$

$$= z^{m} Q\left(\frac{1}{z}\right)$$

lacksquare If $ho_1,
ho_2,\ldots,
ho_m$ are roots of Q^R , then $(zho_i)|Q^R(z)$

$$Q^{R}(z) = (z - \rho_1)(z - \rho_2) \cdots (z - \rho_m)$$

■ Then $(1-\rho_i z)|Q(z)$

$$Q(z) = z^{m} (\frac{1}{z} - \rho_{1}) (\frac{1}{z} - \rho_{2}) \cdots (\frac{1}{z} - \rho_{m}) = (1 - \rho_{1}z) (1 - \rho_{2}z) \cdots (1 - \rho_{m}z)$$

Step 1: Finding $\rho_1, \rho_2, \dots, \rho_m$

 \blacksquare Suppose Q(z) has the form

$$Q(z) = 1 + q_1 z + q_2 z^2 + \dots + q_m z^m$$
, where $q_m \neq 0$.

■ The "reflected" polynomial Q^R has a relation to Q:

$$Q^{R}(z) = z^{m} + q_{1}z^{m-1} + q_{2}z^{m-2} + \dots + q_{m-1}z + q_{m}$$

$$= z^{m} \left(1 + q_{1}\frac{1}{z} + q_{2}\frac{1}{z^{2}} + \dots + q_{m-1}\frac{1}{z^{m-1}} + q_{m}\frac{1}{z^{m}} \right)$$

$$= z^{m} Q\left(\frac{1}{z}\right)$$

• If $\rho_1, \rho_2, \dots, \rho_m$ are roots of Q^R , then $(z - \rho_i)|Q^R(z)$:

$$Q^{R}(z) = (z - \rho_1)(z - \rho_2) \cdots (z - \rho_m)$$

■ Then $(1-\rho_i z)|Q(z)$

$$Q(z) = z^{m} (\frac{1}{z} - \rho_{1}) (\frac{1}{z} - \rho_{2}) \cdots (\frac{1}{z} - \rho_{m}) = (1 - \rho_{1}z) (1 - \rho_{2}z) \cdots (1 - \rho_{m}z)$$

Step 1: Finding ho_1, ho_2,\ldots, ho_m

Suppose Q(z) has the form

$$Q(z) = 1 + q_1 z + q_2 z^2 + \dots + q_m z^m$$
, where $q_m \neq 0$.

The "reflected" polynomial Q^R has a relation to Q:

$$Q^{R}(z) = z^{m} + q_{1}z^{m-1} + q_{2}z^{m-2} + \dots + q_{m-1}z + q_{m}$$

$$= z^{m} \left(1 + q_{1}\frac{1}{z} + q_{2}\frac{1}{z^{2}} + \dots + q_{m-1}\frac{1}{z^{m-1}} + q_{m}\frac{1}{z^{m}} \right)$$

$$= z^{m} Q\left(\frac{1}{z}\right)$$

• If $\rho_1, \rho_2, \dots, \rho_m$ are roots of Q^R , then $(z - \rho_i)|Q^R(z)$:

$$Q^{R}(z) = (z - \rho_1)(z - \rho_2) \cdots (z - \rho_m)$$

Then $(1-\rho_i z)|Q(z)|$

$$Q(z) = z^{m} (\frac{1}{z} - \rho_{1}) (\frac{1}{z} - \rho_{2}) \cdots (\frac{1}{z} - \rho_{m}) = (1 - \rho_{1}z)(1 - \rho_{2}z) \cdots (1 - \rho_{m}z)$$

Step 1: Finding ho_1, ho_2,\ldots, ho_m (2)

In all, we have proven

Lemma

$$Q^{R}(z) = (z - \rho_{1})(z - \rho_{2}) \cdots (z - \rho_{m}) \text{ iff } Q(z) = (1 - \rho_{1}z)(1 - \rho_{2}z) \cdots (1 - \rho_{m}z)$$

Example: $Q(z) = 1 - z - z^2$

$$Q^R(z) = z^2 - z - 1$$

This $Q^R(z)$ has roots

$$z_1 = \frac{1+\sqrt{5}}{2} = \Phi$$
 and $z_2 = \frac{1-\sqrt{5}}{2} = \Theta$

Therefore $Q^R(z)=(z-\Phi)(z-\widehat{\Phi})$ and $Q(z)=(1-\Phi z)(1-\widehat{\Phi} z)$

Step 1: Finding ho_1, ho_2,\ldots, ho_m (2)

In all, we have proven

Lemma

$$Q^R(z) = (z - \rho_1)(z - \rho_2) \cdots (z - \rho_m) \text{ iff } Q(z) = (1 - \rho_1 z)(1 - \rho_2 z) \cdots (1 - \rho_m z)$$

Example:
$$Q(z) = 1 - z - z^2$$

$$Q^R(z) = z^2 - z - 1$$

This $Q^R(z)$ has roots

$$z_1 = \frac{1 + \sqrt{5}}{2} = \Phi$$
 and $z_2 = \frac{1 - \sqrt{5}}{2} = \widehat{\Phi}$

Therefore
$$Q^R(z) = (z - \Phi)(z - \widehat{\Phi})$$
 and $Q(z) = (1 - \Phi z)(1 - \widehat{\Phi}z)$.

