

Pertemuan ke-13: SISTEM KOORDINAT DIMENSI TIGA, SILINDER DAN PERMUKAAN-PERMUKAAN KUADRIK

Departemen Matematika FMIPA IPB

Bogor, 2017

Koordinat Cartesius dalam Ruang Dimensi Tiga

- Kita telah mempelajari fungsi peubah tunggal, yaitu fungsi-fungsi yang grafiknya dapat digambarkan pada bidang (ruang dimensi dua).
- Selanjutnya, kita akan melangkah ke pembahasan kalkulus peubah ganda, yaitu kalkulus yang diterapkan pada fungsi dua peubah atau lebih.
- Semua pemikiran yang dikenal, seperti *limit*, *turunan*, *integral*, harus dijelajahi lagi dari perspektif yang lebih luas.
- Sebagai persiapan untuk membahas hal di atas, kita perlu membahas ruang dimensi tiga atau lebih. Namun kita mulai dulu dengan ruang dimensi tiga.

- Untuk memulai, kita buat tiga garis koordinat yang saling tegak lurus (sumbu-sumbu x, y, dan z) dengan titik-titik nolnya berada di titik O yang sama, yang kita sebut titik asal.
- Kita ikuti kesepakatan baku, yaitu sumbu-y positif ke arah kanan, sumbu-z positif ke arah atas dan sumbu-x positif ke arah kita.

• Ketiga sumbu tersebut menentukan tiga bidang, yaitu bidang-bidang yz, xz dan xy, yang membagi ruang menjadi delapan oktan.

■ Terhadap setiap titik P dalam ruang, bilangan berurut ganda tiga (a,b,c) yang mengukur jarak berarah dari P ke ketiga bidang di atas, kita sebut *koordinat Cartesius* dari titik yang bersangkutan.

■ Jarak: Misalkan P_1 (x_1,y_1,z_1) dan P_2 (x_2,y_2,z_2) adalah dua titik dalam ruang berdimensi tiga, dengan $x_1 \neq x_2$, $y_1 \neq y_2$, $z_1 \neq z_2$, maka jarak P_1 dan P_2 dalam ruang dimensi tiga dapat ditentukan sebagai berikut

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

Contoh

Gambarlah dua titik $P_1(1,2,-2)$ dan $P_2(-1,6,2)$ dalam ruang dimensi tiga serta tentukan jaraknya.

Bola dan Persamaannya

Definisi

Dalam ruang dimensi tiga, bola didefinisikan sebagai himpunan titik-titik dengan jarak (jari-jari, radius) konstan dari suatu titik tetap P (pusat bola).

Berdasarkan definisi di atas, maka kita peroleh persamaan baku suatu bola dengan pusat P(h,k,l) dan jari-jari r adalah

$$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2.$$

Tentukan pusat dan jari-jari bola yang memiliki persamaan

$$x^2 + y^2 + z^2 - 8x - 10y - 12z + 68 = 0.$$

- Akibat sederhana lainnya dari rumus jarak adalah titik tengah.
- Jika $P_1\left(x_1,y_1,z_1\right)$ dan $P_2\left(x_2,y_2,z_2\right)$ adalah titik-titik ujung suatu ruas garis, maka koordinat dari titik tengahnya adalah $M\left(m_1,m_2,m_3\right)$ dengan

$$m_1 = \frac{x_1 + x_2}{2}$$
, $m_2 = \frac{y_1 + y_2}{2}$, $m_3 = \frac{z_1 + z_2}{2}$.

Tentukan persamaan bola yang garis tengahnya berupa ruas garis yang menghubungkan titik (1,4,-3) dan (5,2,1).

Grafik dalam Ruang Dimensi Tiga

- Grafik yang relatif sederhana dalam ruang dimensi tiga adalah grafik persamaan linear yang menyatakan suatu bidang.
- Secara umum, grafik ini berbentuk

$$Ax + By + Cz = D$$
.

Contoh

Gambarlah grafik dari persamaan berikut:

- 1 z = 2,
- 2 3x + 4y = 12,
- 3 2x + 3y + 4z = 12.

Silinder dan Permukaan Kuadrik

- Agar dapat menggambar grafik sebuah permukaan, adalah bermanfaat jika kita tentukan kurva perpotongan antara permukaan itu dengan bidang-bidang yang sejajar bidang-bidang koordinat.
- Kurva-kurva ini disebut jejak atau penampang melintang permukaan.

Silinder

Definisi

Silinder adalah permukaan yang terdiri atas semua garis (disebut kuasa) yang sejajar terhadap suatu garis yang diberikan dan menembus kurva bidang yang diberikan.

Contoh

 $z = x^2$ adalah silinder parabolik.

1 $x^2 + y^2 = 1$ adalah silinder lingkaran.

- $\frac{y^2}{4} + z^2 = 1$ adalah silinder elips, sedangkan $\frac{x^2}{4} y^2 = 4$ adalah silinder hiperbola.
- $z = \sin y$ juga suatu silinder.

Permukaan Kuadrik

- Permukaan kuadrik adalah grafik dari persamaan derajat dua dalam tiga variabel x, y, dan z.
- Bentuk paling umum dari persamaan ini adalah

$$Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$$

dengan A, B, C, ..., J adalah konstanta.

 Namun, melalui penggeseran (translasi) dan pemutaran (rotasi) persamaan di atas dapat diubah ke salah satu dari bentuk baku

$$Ax^2 + By^2 + Cz^2 + J = 0$$
, atau $Ax^2 + By^2 + Iz = 0$.

Beberapa contoh permukaan kuadrik adalah:
$$\frac{x^2}{9}+\frac{y^2}{4}+z^2=1$$
, yang disebut elipsoid.

Beberapa contoh permukaan kuadrik adalah:

 $z = 4x^2 + y^2$, disebut paraboloid eliptik.

 $z = y^2 - x^2$, disebut paraboloid hiperbolik.

Beberapa contoh permukaan kuadrik adalah:

$$\frac{x^2}{4}+y^2-\frac{z^2}{4}=1$$
, hiperboloid lembar satu, sedangkan $-\frac{x^2}{4}+y^2-\frac{z^2}{4}=1$, hiperboloid lembar dua.

Bahan Responsi

Soal

Tentukan jarak antara tiap pasang titik berikut:

- (6,-2,1) dan (2,3,6).
- (-1,3,2) dan (4,0,-5).

Soal

Tentukan persamaan bola yang pusat dan jari-jarinya sebagai berikut:

- **1** Pusat (1, -2, 3), jari-jari 3.
- 2 Pusat (4,0,-2), jari-jari $\sqrt{8}$.

Tentukan pusat dan jari-jari bola yang persamaannya diberikan oleh:

$$2 4x^2 + 4y^2 + 4z^2 - 4x + 8y + 16z - 13 = 0.$$

Soal

Buatlah sketsa grafik persamaan berikut:

- 1 y = 3
- 2y + 3z = 6
- 3x 4y + 2z = 24
- $x^2 + y^2 + z^2 = 9.$

Perlihatkan bahwa (4,5,2), (1,7,3), dan (2,4,5) merupakan titik-titik sudut suatu segitiga sama sisi.

Soal

Perlihatkan bahwa (1,0,5), (3,6,8), dan (7,4,-7) merupakan titik-titik sudut suatu segitiga siku-siku.

Tentukan persamaan bola yang garis tengahnya berupa ruas garis yang menghubungkan titik (-2,3,6) dan (4,-1,5).

Soal

Tentukan persamaan bola dengan pusat (2,2,4) dan menyinggung bidang x+y=8.

Soal

Bola $(x+2)^2 + (y-3)^2 + (z+1)^2 = 10$ memotong bidang z=2 dalam sebuah lingkaran. Tentukan pusat dan jari-jari lingkaran tersebut.

Deskripsikan dan buat sketsa permukaan berikut:

- $4x^2 + z^2 = 4$
- $z = 4 y^2$
- $z = \cos x$
- $x^2 y^2 = 1$.

Tentukan jejak dari permukaan yang diberikan di bidang x = k, y = k, z = k. Kemudian identifikasi permukaan tersebut dan buatlah sketsanya.

- $1 4x^2 + 9y^2 + 36z^2 = 36$
- $x = z^2 + y^2$
- $x^2 y^2 + z^2 = 1$
- 4 $y = z^2 x^2$
- $5 \ 4z^2 x^2 y^2 = 4$
- 6 $16x^2 = y^2 + 4z^2$.

Ubah persamaan berikut ke salah satu bentuk baku, tentukan jenis permukaannya, dan buatlah sketsanya.

- $z^2 = 4x^2 + 3y^2 12.$
- $z = x^2 + y^2 1$.
- $x^2 + y^2 4z^2 + 4x 6y 8z = 13.$
- $9x^2 + y^2 z^2 2y + 2z = 0.$

Tentang Slide

■ Penyusun: Dosen Departemen Matematika FMIPA IPB

■ Versi: 2017

■ Media Presentasi: LATEX - BEAMER (PDFLATEX)