Problem statement

Data collection

Importing libraries

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Importing dataset

```
In [2]:
```

data=pd.read_csv(r"C:\Users\user\Downloads\PLACEMENT.csv")
data

Out[2]:

	cgpa	placement_exam_marks	placed
0	7.19	26	1
1	7.46	38	1
2	7.54	40	1
3	6.42	8	1
4	7.23	17	0
•••	•••		•••
995	8.87	44	1
996	9.12	65	1
997	4.89	34	0
998	8.62	46	1
999	4.90	10	1
	1 2 3 4 995 996 997	 7.19 7.46 7.54 6.42 7.23 995 8.87 996 9.12 997 4.89 998 8.62 	1 7.46 38 2 7.54 40 3 6.42 8 4 7.23 17 995 8.87 44 996 9.12 65 997 4.89 34 998 8.62 46

1000 rows × 3 columns

head

```
In [3]:
```

```
# to display first 8 dataset values
da=data.head(8)
da
```

ut[3]:		cgpa	placement_exam_marks	placed
	0	7.19	26	1
	1	7.46	38	1
	2	7.54	40	1
	3	6.42	8	1
	4	7.23	17	0
	5	7.30	23	1
	6	6.69	11	0
	7	7.12	39	1

info

0 cgpa 1000 non-null float64
1 placement_exam_marks 1000 non-null int64
2 placed 1000 non-null int64

dtypes: float64(1), int64(2)
memory usage: 23.6 KB

describe

```
In [5]: # to display summary of the dataset
    data.describe()
```

Out[5]:		cgpa	placement_exam_marks	placed
	count	1000.000000	1000.000000	1000.000000
	mean	6.961240	32.225000	0.489000
	std	0.615898	19.130822	0.500129
	min	4.890000	0.000000	0.000000
	25%	6.550000	17.000000	0.000000
	50%	6.960000	28.000000	0.000000
	75%	7.370000	44.000000	1.000000
	max	9.120000	100.000000	1.000000

columns

```
In [6]:
         # to display headings of the dataset
         data.columns
Out[6]: Index(['cgpa', 'placement_exam_marks', 'placed'], dtype='object')
In [7]:
         a=data.dropna(axis=1)
         b=a.head(8)
Out[7]:
           cgpa placement_exam_marks placed
         0
            7.19
                                   26
                                           1
                                   38
            7.46
                                           1
            7.54
                                   40
                                           1
            6.42
                                    8
            7.23
                                   17
            7.30
                                   23
            6.69
                                   11
           7.12
                                   39
                                           1
In [8]:
         a.columns
Out[8]: Index(['cgpa', 'placement_exam_marks', 'placed'], dtype='object')
```

EDA and Visualization

```
In [9]: sns.pairplot(data)
```

Out[9]: <seaborn.axisgrid.PairGrid at 0x13c55f41550>

distribution plot

```
In [10]: sns.displot(a["placed"])
```

Out[10]: <seaborn.axisgrid.FacetGrid at 0x13c57bcdb20>

correlation

To train the model-Model Building

```
In [14]:
           from sklearn.linear_model import LinearRegression
           lr= LinearRegression()
           lr.fit(x_train,y_train)
Out[14]: LinearRegression()
In [15]:
           print(lr.intercept_)
          33.328611898017
In [16]:
           coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[16]:
                 Co-efficient
          placed
                   -1.602387
In [17]:
           prediction=lr.predict(x test)
           plt.scatter(y_test,prediction)
Out[17]: <matplotlib.collections.PathCollection at 0x13c58676370>
          33.4
          33.2
          33.0
          32.8
          32.6
          32.4
          32.2
          32.0
          31.8
                         20
                                   40
In [18]:
           print(lr.score(x_test,y_test))
          -0.0059288704050051155
In [19]:
           lr.score(x_train,y_train)
Out[19]: 0.0017389154837557097
```

Ridge regression

```
In [20]: from sklearn.linear_model import Ridge,Lasso
```

Lasso regression

```
In [23]:
          la=Lasso(alpha=10)
          la.fit(x_train,y_train)
          la.score(x_train,y_train)
Out[23]: 0.0
In [24]:
          la.score(x_test,y_test)
         -0.0029795159037266927
Out[24]:
In [25]:
          from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[25]: ElasticNet()
In [26]:
          print(en.coef_)
         [-0.]
In [27]:
          print(en.intercept_)
         32.534285714285716
In [34]:
          predict=en.predict(x_test)
In [31]:
          print(en.score(x_test,y_test))
          -0.0029795159037266927
In [32]:
          from sklearn import metrics
In [35]:
          print("Mean Absolute error:",metrics.mean_absolute_error(y_test,predict))
```

```
Mean Absolute error: 15.382609523809524
In [36]:
          print("Mean Squared error:",metrics.mean_squared_error(y_test,predict))
         Mean Squared error: 357.78618503401356
In [38]:
          print("Root squared error:",np.sqrt(metrics.mean_squared_error(y_test,predict)))
```

Root squared error: 18.915236848477832