Laboratório 7- CCI-22

Integração

Alunos:

Andrei Albani

Vinicius Jose de Menezes Pereira

Q1.

a)

A figura 1 mostra a comparação entre os erros no cálculo das integrais para as duas funções com n variando entre 0 e 100.

Figura 1. Comparação do erro entre Simpson13Composta e TrapezioComposta

Nota-se que conforme aumenta n, o erro diminui, o que é esperado, dado que quanto maior o número de subintervalos, melhor a aproximação da função como sendo a união de diferentes curvas.

Pode-se notar que o erro da função Simpson13Composta converge bem mais rapidamente para um valor bem pequeno em comparação com a TrapezioComposta, o que já é esperado, visto que a primeira faz aproximações de grau 2 em cada subintervalo e a última faz aproximações de grau 1 - a união de pequenos segmentos de parábolas se aproxima mais da curva da função do que a união de pequenos segmentos de reta-.

Na figura 2 é possível observar com mais detalhamento a convergência de cada função para valores de n situados entre 20 e 100.

figura 2. Convergência das funções com n variando entre 20 e 100

Pode-se notar que o erro da função Simpson13Composta é muito menor para 0 < n < 70. Para 70 < n < 100 nota-se que os erros já assumem valores mais próximos entre si, mas o erro da função TrapezioComposta continua sempre maior. Para n = 100, o erro da função TrapezioComposta é da ordem de 10^{-2} e o da Simpson13Composta da ordem de 10^{-6} .

Portanto, conclui-se que para um mesmo número de subintervalos, a função Simpson13Composta leva vantagem em relação à TrapezioComposta.

 b)
 A figura 3 mostra a comparação entre os erros estimado e absoluto da função TrapezioComposta:

figura 3. Erros estimado e absoluto - TrapezioComposta

Pode-se notar que o erro estimado está próximo do erro absoluto para um número suficientemente grande de subintervalos (n > 60), o que pode ser melhor observado na figura 4. Porém para n pequeno (n < 60), a diferença entre os respectivos erros é significativa e pode-se dizer que a estimativa é bem grosseira, sendo inclusive menor do que o valor absoluto para n muito pequeno.

Figura 4. Comparação entre erros absoluto e estimado da função TrapezioComposta para n variando entre 50 e 100.

Ressalta-se, por fim, que como se observa na figura 4, o erro estimado é da mesma ordem de grandeza que o erro absoluto, mas pelo menos duas vezes maior que este em cada ponto do intervalo mostrado, embora se trate de um valor pequeno em comparação com o resultado da integral (25.9399).

Conclui-se, portanto, que o valor do erro estimado é razoavelmente exato, aceitável para várias aplicações. A fim de melhorar essa estimativa, convém utilizar um grande número de subintervalos.

Figura 5. Comparação entre os erros estimado e absoluto da função Simpson13Composta, n variando entre 0 e 100

Como se pode observar na figura 5, as curvas de convergência do erro estimado e do erro absoluto são muito semelhantes no intervalo de valores de n que vai de 0 a 100. Na figura 6 pode-se observar esses valores no intervalo de 0 a 50.

Figura 6. Comparação entre os erros estimado e absoluto da função Simpson13Composta, n variando entre 50 e 100.

Figura 7. Comparação entre os erros estimado e absoluto da função Simpson13Composta, n variando entre 83 e 89.

Por fim, na figura 7, observa-se que os erros possuem, de fato, mesma ordem de grandeza, embora o erro estimado seja pelo menos 3 vezes maior que o erro absoluto para cada valor de n no intervalo apresentado.

Assim sendo, valem as mesmas considerações feitas na letra (b). A diferença é que o erro da função Simpson é muito menor que o da função Trapézio, mas as proporções entre as estimativas e os erros absolutos são semelhantes.

Conclui-se, portanto, que o valor do erro estimado é razoavelmente exato, aceitável para várias aplicações, e muito pequeno em comparação com o valor da integral calculada. A fim de melhorar essa estimativa, convém utilizar um grande número de subintervalos.

Q2.

Tabela 1. Resultados da questão 02

labela 1. Resultados da questao 02							
Integral	quad do MatLab	quadAdaptativa (com Simpson Simples 1/3)	simpson13Composta				
$\int_{0}^{2} \frac{1}{x^3 - 2x - 5} dx$	I = -0.460502 Tempo =	I = -0.460502 qdteDiv = 72 Tempo = 0.00019 s	I = -0.460520 n = 72 Tempo = 0.00010 s				
	0.00034 s		I = -0.460502 nNecessario = 210 Tempo = 0.00104 s				
$\int_0^{\pi/4} e^{3x} \sin 2x dx$	I = 2.588626 Tempo = 0.00014 s	I = 2.588629 qdteDiv = 36 Tempo = 0.000050 s	I = 2.588629 n = 36 Tempo = 0.000036s 				
$\int_0^4 13(x-x^2)e^{-3x/2} dx$	I = -1.548789 $Tempo = 0.0010 s$	I = -1.548789 qdteDiv = 116 empo = 0.00067 s	I = -1.548790 n = 116 Tempo = 0.00064 s I = -1.548789 nNecessario = 196 Tempo = 0.00172 s				

Analisar-se-á os resultados obtidos para cada função.

١.

Figura 8. Gráfico de $f(x) = 1/(x^3-2x-5)$;

Pode-se notar que f possui uma descontinuidade em x = 2. Por conta disso, a função tem decrescimento abrupto quando x se aproxima de 2 e a função quad_adaptativa apresenta um resultado melhor que a Simpson13Composta para o mesmo número de divisões, pois estas não são igualmente espaçadas na primeira e o são na última. Assim, para que a Simpson13Composta apresente um resultado com mesmo erro é preciso que faça mais divisões (210). Como consequência, quad_adaptativa acaba tendo custo computacional bem menor (inclusive, ela leva menos tempo que a quad do MatLab, mesmo apresentando resultado igual para 6 digitos de precisão).

II.

Figura 9. Gráfico de $f(x) = \exp(3x)*\sin(2x)$;

Dessa vez a função quad_adaptativa teve precisão menor (difere da quad do MatLab por 3 no último dígito) e também levou mais tempo que quad do MatLab. Além disso, a função Simpson13Composta obteve mesmo resultado para o mesmo número de divisões de intervalo e teve um custo de tempo menor. Nesse caso então, não é vantajoso utilizar a

quad_adaptativa. Isso poderia ter sido previsto analizando-se o gráfico de f(x), presente na figura 9: como ele não possui crescimento ou decrescimento abrupto, não se espera a necessidade da divisão recursiva em subintervalos e então a quad_adaptativa faz as mesmas operações que a Simpson13Composta.

Além disso, ao se procurar o n necessário para que a Simpson13Composa apresente mesmo resultado que a quad do MatLab, não foi possível encontrar valor de n (testou-se até 5000) cujo resultado fosse mais próximo do resultado da função quad. Isso ocorre pois, para um determinado valor de n, o erro das aproximações numéricas da máquina acabam compensando a aproximação obtida do resultado, e então não se consegue mais diminuir o valor do erro, apenas aumentá-lo.

Figura 10. Gráfico de f(x) = 13x(1-x)exp(-3x/2)

Nesse caso, a quad_adpatativa obtém resultado idêntico ao da quad do MatLab, porém com um custo de tempo superior. Nota-se que para o mesmo número de divisões do intervalo, a função Simpson13Composta obtém resultado com menor exatidão. Para obter a mesma exatidão, é necessário um número significativo de divisões a mais (196 em comparação com 116) e então acaba levando mais tempo para realizar o cálculo. Isso ocorre porque o gráfico de f(x) possui um crescimento e um decrescimento ligeiramente abrupto no intervalo [0, 2].

Das análises I, II e III, depreende-se portanto que a função quad_adaptativa é vantajosa quando o gráfico da função a se integrar possui um crecimento/decrescimento abrupto. Em casos de gráficos mais "suaves", é vantajoso o uso da Simpson13Composta.

Q3.

Tabela 1: Integrações da questão 3

Função	Regra simples do Trapézio	Regra simples Simpson 1/3	Regra simples Simpson 3/8	Newton-Cotes de ordem 4
F1	I = 86.7	I = 86.7	I = 86.7	I = 86.7
	qtdeRec = 13452	qtdeRec = 0	qtdeRec = 0	qtdeRec = 0
	qtdeDiv = 13454	qtdeDiv = 4	qtdeDiv = 6	qtdeDiv = 8
F2	I = 1.0968e+06	I = 1.0968e+06	I = 1.0968e+06	I = 1.0968e+06
	qtdeRec = 3285034	qtdeRec = 1588	qtdeRec = 1372	qtdeRec = 126
	qtdeDiv = 3285036	qtdeDiv = 3180	qtdeDiv = 4122	qtdeDiv = 512
F3	I = 4.7116e-32	I = 3.1416	I = 3.5343	I = 3.1416
	qtdeRec = 0	qtdeRec = 6	qtdeRec = 0	qtdeRec = 6
	qtdeDiv = 2	qtdeDiv = 16	qtdeDiv = 6	qtdeDiv = 32
F4	I = 53.59	I = 53.59	I = 53.59	I = 53.59
	qtdeRec = 10356	qtdeRec = 56	qtdeRec = 46	qtdeRec = 8
	qtdeDiv = 10358	qtdeDiv = 116	qtdeDiv = 144	qtdeDiv = 40
F5	I = 1.57	I = 1.57	I = 1.57	I = 1.57
	qtdeRec = 151042	qtdeRec = 1464	qtdeRec = 1160	qtdeRec = 260
	qtdeDiv = 151044	qtdeDiv = 2932	qtdeDiv = 3486	qtdeDiv = 1048
F6	I = -0.0178	I = -0.0178	I = -0.0178	I = -0.0178
	qtdeRec = 1922	qtdeRec = 60	qtdeRec = 52	qtdeRec = 16
	qtdeDiv = 1924	qtdeDiv = 124	qtdeDiv = 162	qtdeDiv = 72
F7	I = -1.5488	I = -1.5488	I = -1.5488	I = -1.5488
	qtdeRec = 5368	qtdeRec = 56	qtdeRec = 48	qtdeRec = 10
	qtdeDiv = 5370	qtdeDiv = 116	qtdeDiv = 150	qtdeDiv = 48

Gráfico 1: F1

Comentários: os valores da integral no intervalo pedido foram iguais para todos os métodos, o que era esperado, já que essa curva polinomial não é complicada, não possuindo particularidades. Pode-se notar que o número de divisões da Regra simples do Trapézio é muito maior que o dos outros métodos, já que ele começa com menos partes já prontas em sua fórmula da integral e divide pouco o intervalo em comparação aos outros métodos. Além disso, vemos que os métodos da opção 2,3 e 4 já são baseados em polinômios, adequando-se perfeitamente para a função polinomial.

Gráfico 2: F2

Comentários: como a função em análise cresce muito no lado esquerdo, vemos que a integral deve depender quase que completamente desse lado esquerdo, possuindo um valor bem alto. De modo particular, foram necessárias muitas divisões e recursões porque, quando divide-se pouco o intervalo, há uma variação muito grande do valor da função no intervalo, de tal forma que a aproximação com poucas divisões acaba não ajustando bem a curva e gerando muitos erros.

Gráfico 3: F3

Comentários: esta função acaba por confundir a quad_adaptativa para algumas opções, pois ela é uma função par, possuindo simetria em torno de x = 0, e o intervalo pedido também é simétrico em torno de x = 0. Dessa forma, as opções em que há uma divisão par nos intervalos tendem a apresentar um alto erro, pois P = Q logo na primeira iteração, o que, neste caso particularíssimo, não quer dizer que o valor da integral está perfeito. Com isso, as opções 1 e 3 ficam comprometidas, como é possível observar. Como, porém, as opção 3 possui mais divisões, só essa primeira iteração mostra um resultado mais preciso que o obtido pela opção 1.

Gráfico 4: F4

Comentários: para esta função, vemos que o valor da integral achado por cada opção é igual. Como não há nenhuma simetria, ao contrário, as opções 1 e 3 que dividem os intervalos num número par tendem a apresentar maior dificuldade em diminuir o erro. A opção 1 novamente demonstrou um número de recursões muito maior que as outras opções, pois é mais fácil aproximar-se de uma curva exponencial com mais divisões e com polinômios de graus maior do que com uma reta.

Gráfico 5: F5

Comentários: a função f5 obteve um valor igual para as integrais com todas as opções. Sua grande particularidade, porém, é seu comportamento no lado direito do gráfico, pois ela oscila muito num pequeno intervalo de tempo e essas oscilações só aumentam quando x aumenta. Desse modo, para o cálculo das integrais foi necessário um número elevado de iterações, mesmo não havendo grandes variações em módulo de y, como era o caso de f2.

Comentários: todos os valores da integral calculados pelas opções neste caso forneceram valores iguais. O intervalo escolhido foi bem pensado, não possuindo particularidades que dificultam a integração. A curva é suave, não variando muito nem muito rápido, sendo propícia para os métodos empregados.

Gráfico 7: F7

Comentários: todos os resultados da integral calculados pelas opções tiveram valores iguais, o que era esperado, já que a função em questão é suave no intervalo dados, não variando muito nem muito rápido nem possuindo particularidades que dificultam a integração.

Respostas

- Em geral, sim, pois menores intervalos tendem a ajustar melhor a integral e diminuir o erro mais rapidamente. Isso é observado de forma geral em todas as opções nos exemplos da Tabela 1. No entanto, em alguns casos particulares isso pode não valer como quando a função se adequa melhor a partições de intervalores pares ou ímpares, como pode ser visto em f3, que as divisões pares atrapalham.
- Sim. Em funções mal comportadas, ou seja, que variam muito ou muito rapidamente, há necessidade de mais divisões no intervalo para se adequar melhor à função, pois em grandes variações de y pode 'acontecer tudo' no modo como a função cresce e em mudanças em alta velocidade, é possível que um intervalo grande ignore mudanças significativas na função. Tais comportamentos são vistos em f5(alto crescimento) e em f2(alta frequência).

Avaliação da dupla

Aluno	Atividades	Percentual
Andrei Albani	Q1 e Q2, revisando Q3	100%
Vinícius Pereira	Q3, revisando Q1 e Q2	100%