Geometría Básica. Septiembre 2016.

Duración 2 horas. No se permite ningún tipo de material.

Justificar concisa y razonadamente todas las respuestas.

Ejercicio 1. (4 puntos)

1. Definir traslación del plano.

Sea τ una traslación del plano:

- 2. A partir de la definición de traslación, demostrar que existen rectas a y b tales que $\tau = \sigma_b \circ \sigma_a$, donde σ_a y σ_b son las reflexiones de ejes las rectas a y b, y además a y b son ortogonales a una recta c, invariante por τ .
- 3. Si P, Q son dos puntos distintos, probar que las rectas $r_{P,\tau(P)}$ y $r_{Q,\tau(Q)}$ son paralelas.
- 4. Suponiendo sabido que $r||\tau(r)$, para toda recta r del plano, probar que si P y Q son dos puntos distintos, entonces $P, Q, \tau(Q), \tau(P)$ son los vértices de un paralelogramo, o bien están alineados, y $d(P, \tau(P)) = d(Q, \tau(Q))$.
- **Ejercicio 2.** (3 puntos). Enunciar y demostrar la fórmula de los senos de un triángulo del plano.

Ejercicio 3. (3 puntos).

- A. Describir las isometrías de espacio que poseen un único punto fijo. ¿Son isometrías pares o impares? (1 punto)
- B. Para el tetraedro regular y el dodecaedro regular dar ejemplos de simetrías que sean isometrías del espacio con un único punto fijo. (2 puntos)

Soluciones

Ejercicio 1. (4 puntos)

- 1. La isometría τ es una traslación si no tiene puntos fijos, deja una recta c invariante y los semiplanos determinados por c (ver página 53 del libro).
- 2. Es una versión más sencilla del apartado 1 del Ejercicio 3.1. Vamos a repetir su método con mucho detalle:

La isometría τ es una traslación: no tiene puntos fijos, deja una recta c invariante y los semiplanos determinados por c. Tomemos a una recta perpendicular a c y sea A el punto de corte de a y c. Ahora llamamos $B = \text{medio}[A, \tau(A)]$, como $A \in c, \tau(A) \in c$ y también $B \in c$. Sea b la recta perpendicular a c que pasa por B.

Ahora consideramos la reflexión σ_b y vamos a probar que $\sigma_b \circ \tau$ es σ_a . Para esto basta ver que no es la identidad y que deja fijos todos los puntos de a. En primer lugar A y $\tau(A)$ están en c que es perpendicular a a y $d(A,B)=d(B,\tau(A))$ ($B=\text{medio}[A,\tau(A)]$), por lo tanto $\sigma_b(\tau(A))=A$, es decir $\sigma_b \circ \tau(A)=A$. La isometría $\sigma_b \circ \tau$ deja invariante c, pues τ deja invariante c y σ_b también, al ser b y c ortogonales, entonces también deja invariante a, pues a es ortogonal a c, las isometrías conservan la ortogonalidad y deja $A \in a \cap b$ fijo.

Si $X \in a$, $X \neq A$ hemos probado que $\sigma_b \circ \tau(X) \in a$ y como $d(X, A) = d(\sigma_b \circ \tau(X), A)$, y hay solo un punto $X' \neq X$, en a, con d(X, A) = d(X', A), entonces $\sigma_b \circ \tau(X)$ es X o X'. El punto X' no está en el mismo semiplano que X de los determinados por c. Como τ y σ_b conservan los semiplanos determinados por c, tiene que ser $\sigma_b \circ \tau(X) = X$.

Entonces $\sigma_b \circ \tau$ deja fijos los puntos de a y por tanto $\sigma_b \circ \tau$ es σ_a o la identidad. Si fuera la identidad entonces $\sigma_b \circ \tau = \mathrm{id}$, componiendo por la izquierda por σ_b , tenemos: $\sigma_b \circ \sigma_b \circ \tau = \sigma_b$, de donde tendríamos que $\tau = \sigma_b$, que no es posible, pues σ_b tiene puntos fijos mientras que τ no.

Como $\sigma_b \circ \tau = \sigma_a$, componiendo con σ_b tenemos que $\tau = \sigma_b \circ \sigma_a$.

- 3. Por el apartado 1 sabemos que $\tau = \sigma_b \circ \sigma_a$, con a y b ortogonales a c. Los puntos P y $\sigma_a(P)$ están en una recta t ortogonal a a. Como a y b son paralelas (son las dos ortogonales a c, teorema 2.31) entonces t es también ortogonal a b (teorema 2.33). Como t pasa por $\sigma_a(P)$ y es ortogonal a b también contiene a $\sigma_b(\sigma_a(P))$, luego t es la recta que pasa por P y $\tau(P)$, que al ser ortogonal a a (y a b) es paralela a c (otra vez el teorema 2.31. Del mismo modo se prueba que $r_{Q,\tau(Q)}$ es paralela a c.
 - 4. Tenemos que $r_{P,Q} \| r_{\tau(P),\tau(Q)}$ y $r_{P,\tau(P)} \| r_{Q,\tau(Q)}$, con lo que

$$(P, Q, \tau(Q), \tau(P))$$

son los vértices de un paralelogramo. Entonces el lado $[P, \tau(P)]$ mide lo mismo que $[Q, \tau(Q)]$.

Ejercicio 2. Teorema 6.10 del libro.

Ejercicio 3.

A. Son la composición de una rotación respecto un eje r con una reflexión sobre un plano π , con r ortogonal a π .

Son isometrías impares pues se expresan como producto de tres reflexiones sobre planos.

B. Para el tetraedro regular la composición de una rotación de ángulo $\pi/2$ con una reflexión sobre un plano ortogonal.

Para el dodecaedro la reflexión central: composición de una rotación de ángulo π con un plano ortogonal. También hay otras reflexiones-rotaciones cuyo ángulo puede ser $\pi/3, \pi/5, 3\pi/5$.