Exo 6 cont

Fe₇ S_{δ} + O_z \rightarrow Fe₃ O_4 + S O_2 3 Fe₇ S_{δ} + 38 O_z = 7 Fe₃ O_4 + 245 O_2 Trouver le système lineante et verifier Exo 8

If an derivee est inequire count of the state of

Pow les polynômes on pent verifier

Soient
$$P = \sum a_1 x'$$

 $Q = \sum b_1 x'$
alors $P + Q = \sum (a_1 + b_1) x'$
 $(P + Q)' = \sum i (a_1 + b_1) x'^{-1}$
 $= \sum i a_1 x'^{-1} + \sum i b_1 x'^{-1}$
 $= P' + Q'$

21

pas line si
$$P = X$$
 alors $2P = 2X$

mais $f(P) = X^2$ et $f(2P) = 8 \times^2 \neq 2 f(P)$

3/ lineaire corr si h,g
$$R \rightarrow R$$
 fonctions

11/ $(h+g)(x_0) = h(x_0) + g(x_0)$

11/ $(xg)(x_0) = \lambda g(x_0)$

4/ SI
$$A(x) = X-x$$
, alors le rest = $P(x_0)$

(as of = 0

$$P(x) = \sum_{n=0}^{\infty} a_{n} x^{n} = \sum_{n=0}^{\infty} a_{n} x^{n} + \alpha_{n} = x (\sum_{n=0}^{\infty} a_{n} x^{n}) + \alpha_{n}$$
$$= x Q(x) + P(x)$$

Calcul classique

$$X^{n} - (x_{\bullet})^{n} = (X - x_{\bullet}) (X^{n-1} + X^{n-2} x_{\bullet} + X^{n-3} x_{\bullet}^{2} + X x_{\bullet}^{n-1} + x_{n})$$
$$= (X - x_{\bullet}) (X_{1}(X))$$

$$P(x) - P(x_0) = \sum_{i=0}^{n} a_i x_i' - \sum_{i=0}^{n} a_i x_0'$$

$$= \sum_{i=0}^{n} a_i (x_i' - x_0')$$

$$= (x - x_0) \sum_{i=0}^{n} a_i Q_i(x)$$

dn coup
$$P(X) = (X-c)Q(X) + P(c)$$

et le reste = $P(c)$

Exo 9

si
$$\begin{pmatrix} x \\ y \end{pmatrix}$$
 e kerf alors $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ et fest injectif

Image defest
$$\begin{cases} x f(e_1) + y f(e_2) & x, y \in \mathbb{R} \end{cases}$$

= $\begin{cases} x \begin{pmatrix} 1 \\ 2 \end{pmatrix} + y \begin{pmatrix} 3 \\ -1 \end{pmatrix}, x, y \in \mathbb{R} \end{cases}$

les 2 rectemes forment une famille libre l'image est un plon C'est libre con

$$x \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + y \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} \iff 2x - y = 0 \iff (x) \in \ker f_1 = \{\begin{pmatrix} 0 \\ 0 \end{pmatrix}\}$$

$$= 2x + 5y = 0$$

Imf est un plan avec equation anctby+cz=0

$$79 = -90$$
 $7b = 80$
 $30 = -9$
 $40 = -9$

les 2 vectors de la base de imf sont perp \bar{q} $\begin{pmatrix} -q \\ s \\ 7 \end{pmatrix}$ $\Rightarrow \text{Imf} = \begin{cases} -9x + 8y + 72 = 0 \end{cases}$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \ker f \iff \begin{cases} x + y + 2z = 0 \\ y(-y) = 0 \end{cases} \Rightarrow \begin{cases} z y(+2z = 0) \\ y(-y) = 0 \end{cases} \Rightarrow \begin{cases} y = x \\ z = -x \end{cases}$$

conclusion kerf est une droite ctR3

vecter directer (1)

l'application n'est pas injective

On a que
$$f\left(\frac{1}{2}\right) = \begin{pmatrix} 1\\0 \end{pmatrix}$$
 $f\left(\frac{1}{2}\right) = \begin{pmatrix} 0\\1 \end{pmatrix}$ clone $mf = TR^2$

Solt
$$\binom{a}{b} \in \mathbb{R}^2$$
 $\binom{a}{b} = a \cdot \binom{1}{0} + b \cdot \binom{0}{1}$

$$= a + \binom{1}{2} + b + \binom{1}{2} - \binom{1}{2} + \binom{$$

Enclair (a) est l'image de
$$a \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} + b \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} + c \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$$