

Evaluationsmethoden

Ilhan Aslan, Chi Tai Dang, Björn Bittner, Katrin Janowski, Elisabeth André

Human Centered Multimedia

Institute of Computer Science Augsburg University Universitätsstr. 6a 86159 Augsburg, Germany

Wiederholung – Evaluationstechniken

- Zwei Arten von Evaluationstechniken:
 - Empirische Evaluation mit Nutzern
 - Analytische Evaluation mit (Usability-) Experten
- Sowohl summativ, als auch formativ durchführbar
- Können aufeinanderfolgend durchgeführt werden
- Beispiel:
 - 1. Analytische Evaluation: Erkennen und Beheben von offensichtlichen, großen Usability-Problemen
 - 2. Empirische Evaluation : Erkennen und Beheben weiterer nutzerspezifischer Usability-Probleme

Wiederholung – Empirische Evaluationen

- Empirische Evaluationen (= Nutzerstudien)
 - Arten von empirischen Evaluationen
 - Befragungstechniken: Befragung der Nutzer nach/vor/während der Benutzung des Systems (z.B. Interviews, Fragebogen)
 - Beobachtungstechniken: Aufzeichnung der Benutzung des Systems durch den Nutzer im Feld, Labor oder mittels Simulationen (z.B. Videoaufzeichnung, Protokolle)

Evaluationen – Befragungstechniken

Empirische Evaluationen

- Befragungstechniken:
 - Meinung der Nutzer wird abgeklärt
 - Subjektive Ergebnisse
 - ➤ in erster Linie qualitative Messwerte
 - Quantitative Messwerte durch:
 - geschlossene Fragen
 - Annotation anhand eines Analyseschemas für qualitative Messwerte (z.B. offene Fragen)

Empirische Evaluation: Beobachtungstechniken

Stephan Hammer, Ilhan Aslan, Andreas Seiderer, Simon Flutura Elisabeth André

Human Centered Multimedia

Institute of Computer Science Augsburg University Universitätsstr. 6a 86159 Augsburg, Germany

Beobachtungstechniken

- · Liefern objektive Daten über den Nutzer
 - Verhalten
 - Vorlieben
 - in unterschiedlichen Situationen
- Unterscheidungsmerkmale
 - Was wird beobachtet?
 - Wo wird beobachtet?
 - Wie wird beobachtet?
 - Wie wird ausgewertet?

Was wird beobachtet?

- Nutzer ohne das System (Anforderungsanalyse)
 - Wer ist der Nutzer (Nutzerspezifikation)?
 - Welche Aufgaben hat der Nutzer zu erledigen (Taskspezifikation)?
 - In welchem Umfeld agiert der Nutzer (Kontextspezifikation)?
- Nutzer mit dem System (Nutzerzentriertes Prototyping)
 - Wie kommt der Nutzer mit dem System klar?
 - Welche Probleme existieren und warum?
 - Wo gibt es Potential für Verbesserungen?
 - Welche Aufgaben fehlen / sind unnötig?
 - Sind alle Aktionen sichtbar / verfügbar?
 - Ist das Feedback angemessen? …

Was wird beobachtet? – Nutzer mit System

Freie Nutzung

- Nutzer kann System und dessen Funktionen frei nutzen.
- Oft am Ende des Entwicklungsstadiums
 - ➤ Hohe Funktionalität der Prototypen
 - ➤ High-Fidelity Prototyp
 - > Finales Produkt

– Fragen:

- Wie arbeitet der Nutzer mit dem System?
- Welche Funktionen bevorzugt der Nutzer?
- Wo gibt es Probleme?...

Was wird beobachtet? – Nutzer mit System

- Abarbeitung von vorgegebenen Aufgaben (Tasks)
 - Nutzern werden verschiedene Tasks vorgegeben und durchlaufen diese
 - Oft am Anfang und der Mitte des Entwicklungsstadiums
 - ➤ Low und High-Fidelity Prototyp
 - ➤ Horizontale und in erster Linie vertikale Prototypen
 - Fragen:
 - Ist eine Optimierung der untersuchten Tasks möglich?
 - Sind alle Aktionen vorhanden / sichtbar?
 - Passt das Feedback?

Was wird beobachtet? – Nutzer mit System

Methode des Lauten Denkens

- Sehr oft bei der Abarbeitung von vorgegebenen Aufgaben
- Manchmal bei der freien Nutzung
- Nutzer verbalisiert seine Gedanken während der Nutzung
 - Was denkt er über das UI?
 - Welche Erwartungen hat er und werden diese erfüllt?
 - Ist er zufrieden oder verwirrt?

– Vorteile:

Sehr gute und wichtige Informationen

- Nachteile:

- Nicht natürlich
- Kann ungewohnt sein
- Nutzer vergisst seine Gedanken zu verbalisieren

Wo wird beobachtet?

Wo wird der Nutzer aufgezeichnet? (Analysephase und nutzerzentriertes Prototyping)

- Direkte Beobachtung:
 - im natürlichen Umfeld des Nutzers (Feldstudie oder In-situ)
 - Ethnographie
 - in einer kontrollierten Umgebung (Laborstudie)
 - Reale Simulationen
 - Virtuelle Simulationen
 - Hybride Simulationen
- Indirekte Beobachtung (Tracking von Nutzeraktivitäten)

- Nutzer interagiert in seiner natürlichen Umgebung während er beobachtet wird (z.B. im Büro, zu Hause oder im Kaufhaus) (Big Brother-Prinzip)
- Gerade in der Anforderungsanalyse sehr wichtige Methodik zur Nutzer-, Task- und Kontextanalyse

Vorteile:

- Evaluation findet unter realistischen Bedingungen statt
 - Unbewusstere Beobachtung
 - Nutzer passt Verhalten oft nicht an die Situation an
 - Sehr natürliche Aktivitäten des Nutzers
 - Sehr hochwertige Daten
- Kontext vorhanden, dadurch können situationsspezifische Usability-Probleme eher erkannt werden.
- Evaluation kann kontinuierlich über längeren Nutzungszeitraum durchgeführt werden

Probleme:

- zeitaufwändig und kostspielig
- Ergebnisse nicht ohne weiteres reproduzierbar wegen nicht kontrollierbarer Kontextbedingungen (Geräusche, Störungen...)
- Studie mit System
 - Oft schwer durchzuführen (z.B. bei mobilen Applikationen)
 - Meist nur spät im Entwicklungsprozess mit robusten Prototypen möglich

Mit System sinnvoll, wenn:

- 1. Kontext eine wichtige Rolle spielt
- robuster Prototyp vorhanden und/oder
- 3. Langzeitstudie erforderlich ist.

Ethnographie:

- Technik, die Beobachtungen im Feld aufzeichnet
- Untersuchung des Nutzers in seiner Umgebung, um seine Aufgaben und seine Vorlieben herauszufinden
 - Analyse der Nutzerbedürfnisse
 - Bezug zur Taskanalyse
 (Wie werden welche Aufgaben bisher ausgeführt?)
 - Kontextinformationen
 (Welcher Kontext fließt in die Nutzung des Systems ein?)

Ethnographie – Vorgehen:

- Kombination von Beobachtung und Interview!
- Vorbereitung eines Interviews
 - Was will man vom Nutzer wissen?
- Nutzer während seiner Arbeit aufzeichnen und später analysieren
- Beim Interview Fragen zu Beobachtungen um Missverständnisse zu vermeiden
- Achtung: Analyse von Videomaterial ist sehr aufwendig und manchmal nicht das beste Mittel
- Methode des lauten Denkens evtl. effizienter

Funktion

- Forschung im Bereich der angewandten Kognitionswissenschaft und der HCI
- Untersuchung und Entwicklung von Gestaltungskonzepten für interaktive Software und andere Formen der HCI
- Im Labor werden Nutzungsbedingungen simuliert, um mit Endnutzern Tests durchzuführen
- Nutzer erhalten oft konkrete Aufgaben und werden dann bei der Bearbeitung beobachtet und "gemessen" (Zeit, Fehler usw.)
- Durchführung von Benutzertests, Evaluationsuntersuchungen, Anforderungsanalysen etc.

- Arten von Laborstudien (Simulationsart):
 - Reale Simulationen
 - Virtuelle Simulationen
 - Hybride Simulationen

Reale Simulation:

- Im Labor wird die reale Umgebung des Nutzers nachgebildet und mit Aufzeichnungstechniken instrumentiert (z.B. mit Kameras)
- Nutzer interagiert mit der realen bzw. eigentlichen Umgebung
- z.B. iDorm2 (intelligente Wohnung)

Reale Simulation – Beispiel:

- Philips HomeLab
 - ganzes Haus (Wohn-, Kinder-, und Schlafzimmer, Küche, Bad und Diele) zum Usability Lab umgebaut. (ähnlich zum "Big Brother"-Container)
 - erlaubt die Beobachtung der Nutzung neuer Technologien unter realistischen Bedingungen

http://www.noldus.com/default/philips-homelab

Virtuelle Simulation:

- Reale Simulation sehr teuer und zeitaufwendig
- Virtuelle Simulation simuliert die reale Umgebung in einer virtuellen Welt (z.B. virtuelles Augsburg).
- Nutzer interagiert mit den Objekten der virtuellen Simulation
- Beispiel: Ubiwise Simulator for Ubiquitous Computing

Hybride Simulation:

- Kombination der realen mit der virtuellen Simulation
 - Reale Interaktionsgeräte (z.B. Mobiltelefone oder Cockpit)
 - Virtuelle Simulation der Umgebung
- Einsparung von Kosten und Zeit
- Realistischere Studien als reine virtuelle Simulationen

Vorteile:

- Durchführung von Experimenten unter kontrollierbaren Bedingungen
 - rmöglicht Reproduzierbarkeit und Vergleichbarkeit von Ergebnissen
- Leichter, schneller und billiger durchführbar als Feldtests

Probleme:

- kein realer Kontext
- Usability Lab mit Spezialausstattung und Experten notwendig um realtische Studien und wertvolle Daten zu erhalten

Lokale Studie

- Keine r\u00e4umliche und zeitliche Trennung des Evaluators und der Versuchsperson (=> Sitzen in einem Raum)
- Keine Nutzung von Technologie zur Übertragung für einen räumlich getrennten Evaluator

Entfernte Studie

- Räumliche und/oder zeitliche Trennung des Evaluators und der Versuchsperson
- Nutzung von Technologie zur Übertragung für einen räumlich getrennten Evaluator
 - Visuelle Technologien (Kamera)
 - Logging der Nutzeraktivitäten

Räumlich entfernte Laborstudien

Usability-Labor (Schema)

Räumlich entfernte Laborstudien

Räumlich entfernte Laborstudien

Trackingstudie:

- Einsatz von Aufzeichnungstechnik zum automatischen Loggen der Nutzeraktivitäten (z.B. Mausklicks, Verweildauer)
- Nutzer interagieren in einem komplett natürlichen Umfeld (Webseite von zu Hause)
- Viele Nutzer wissen nichts von der Aufzeichnung
- Sehr natürliches Verhalten der Nutzer
- Primär quantitative Daten
 - Statistische Analyse
 - Beispiel: Google Analytics

http://www.google.com/analytics/

Räumlich entfernte Laborstudien Trackingstudie:

Vorteile:

- Sehr schnell und sehr einfach
- viele Daten von vielen Nutzern
- sehr realistische Daten

Nachteile:

- Schwer zu interpretierende Daten
 - Warum klicken die Nutzer häufig einen Link auf einer Webseite?
 - Warum haben die Nutzer einen Vorgang abgebrochen?
- Was sind mögliche Lösungen / Änderungswünsche?

Wo wird beobachtet? – Fazit

- Feldstudien am Besten um sehr realistische Daten zu erhalten.
 Diese sind aber sehr aufwendig und teuer durchzuführen.
 - Oft in der Anforderungsanalyse und am Ende des nutzerzentrierten Prototypings
- Laborstudien sind sehr kontrolliert, weniger teuer und leichter durchzuführen als Feldstudien, aber auch weniger realistisch.
 - Während des kompletten nutzerzentrierten Prototypings
- Trackingstudien bieten am schnellsten und leichtesten eine Vielzahl an Log-Daten. Diese sind aber am schwierigsten interpretierbar.
 - In erster Linie in der Anforderungsanalyse von alten Systemen
 - Zum Test von neuen Webinterfaces
- Jede Studienart ist sinnvoll in unterschiedlichen Phasen mit unterschiedlichen Zielen der Evaluatoren.

Wie wird beobachtet?

Verschiedene Aufzeichnungstechniken:

Text / Notizen

- einfach, billig, spontan praktikabel
- Aber: Details können verloren gehen (Kontexte)

Bilder

- Schlüsselbilder von interessanten Momenten
- Aber: Details können verloren gehen (Kontexte)

Audio

- Gut für Methode des lauten Denkens
- Aber: Details können verloren gehen (Kontexte)

Wie wird beobachtet?

Verschiedene Aufzeichnungstechniken:

Video

- Am besten mit mehreren Kameras
 - Sicht auf den Probanden
 - 2. Sicht auf die Umgebung (Kontext)
 - Sicht des Probanden

Physiologische Datenaufzeichnung

 Nutzeraktivität, -emotionen und -zustand in Form von Puls, Hautleitwert, Atmung etc.

Eyetracker

Erfasst die Blickbewegung des Nutzers

- (Software-)Logging

Details der Nutzerinteraktion mit Software (z.B. Mausklicks)

Wie wird beobachtet?

Wer zeichnet auf?

Evaluator

- Klassische Beobachtungsstudie
- Typischerweise lokale Studien im Feld oder Labor (primär)
- Evaluator und Versuchsperson sind zeitlich nicht getrennt.
- Es findet eine r\u00e4umliche Trennung statt, falls der Versuchsleiter im Nebenzimmer sitzt!

Probanden

- Diary Studies (z.B. Cultural Probes und ESM)
- Typischerweise entfernte Studien im Feld (primär) oder Labor
- > Evaluator und Versuchsperson sind räumlich getrennt.
- Synchron, wenn sie zeitlich nicht getrennt sind und asynchron, wenn sie auch zeitlich getrennt sind.

Wie wird beobachtet? – Aufzeichnung durch den Evaluator

- Handschriftliche Textaufzeichnung:
- Problem:
 - unterschiedliche Daten (Kommentare, Systemeingaben, Gesten, Mimik etc.) müssen zeitlich korrekt angeordnet werden.
- Ansatz:
 - "Musical Scores" (vgl. Notation der zeitlichen Notenreihenfolge eines mehrstimmigen Musikstücks)

	General actions			Graph editing			Errors	
Time	text editing	scrolling	image editing	new node	delete node	modify node	correct error	miss error
09:00	X							
09:02				X				
09:05							X	
09:10					X			
09:13								

Wie wird beobachtet? – Aufzeichnung durch den Evaluator

- Video und Audioaufzeichnung:
 - Aufzeichnung vieler verschiedener Sichten Beispiele:
 - Aufzeichnung des Bildschirms des Nutzers
 - Zwei Kameras (Blickrichtung des Nutzers + komplette Szene)
 - Anschließende Diskussion mit der Testperson
 - Warum hast du dies und jenes gemacht?
 - Was hast du da versucht?

Wie wird beobachtet? – Aufzeichnung durch den Evaluator

- (1) Testperson, (2) Versuchsleiter (Evaluator), (3) Sensoren (Puls, Hautleitwert, Atmung), (4) Eyetracker, (5) Kamera
- Verwendung von SSI zum synchronen Aufzeichnen von Nutzerstudien (http://openssi.net/)

Wie wird beobachtet? – Aufzeichnung durch den Evaluator

Eye Tracking

Pupil (Pupil Labs)

The Eye Tribe (Oculus)

- Experience Sampling Method (ESM)
 - Beantwortung von kurzen Fragebögen:
 - auf Anfrage (Alarm, SMS, Zeitplan)
 - immer sofort in der entsprechenden Situation
 - Dokumentation von Verhalten, Gefühlen und/oder Gedanken
 - Aufzeichnung und Beantwortung mit z.B. Stift + Papier und/oder Kamera

– Vorteil:

 Einblick in Situationen, die von Designern schlecht beobachtbar sind (z.B. Essverhalten)

- Experience Sampling Method (ESM)
- Klassischerweise entfernte Studien:
 - Ferngesteuertes synchrones Testen:
 - Durchführung in Echtzeit, aber Testmonitor räumlich getrennt von den Versuchsteilnehmern
 - Ferngesteuertes asynchrones Testen:
 - Testmonitor räumlich und zeitlich getrennt
- Typischerweise 30 bis 80 Teilnehmer, die über einen Zeitraum von ein bis drei Wochen ca. 10 Erinnerungen pro Tag erhalten
- Teilnahme der Forscher beschränkt sich auf Interviews am Anfang und am Ende einer Studie.

Experience Sampling Method (ESM) - Alarmmechanismen

Kategorien	Beschreibung	Nachteile
Arten des Alarms	Zufällig	Flexibles Werkzeug benötigt
	Nach Zeitplan	Könnte zu höherer kognitiver Belastung führen
	Ereignisbasiert	Könnte zu höherer kognitiver Belastung führen, wenn der Alarm vom Teilnehmer selbst ausgelöst wird
Art der zeitlichen Planung	Alarmsignale nur zu bestimmten Tageszeiten	Flexibles Werkzeug benötigt, interessante Situationen könnten verpasst werden
	Anzahl der Alarmsignale pro Tag	Flexibles Werkzeug benötigt, Ergebnisse könnten verfälscht werden, wenn Teilnehmer weiß, wie viele Signale er pro Tag erhält
	Anzahl der Alarmsignale insgesamt	Flexibles Werkzeug benötigt
Mitteilungs- mechanismus	Auditiv	Könnte in bestimmten Situationen inadäquat sein (Theater, Kino)
	Taktil	Wird u.U. nicht wahrgenommen

Cultural Probes:

- Nutzer erhalten ein Paket, mit dessen Inhalt (z.B. Kamera) sie unterschiedliche Aufgaben erfüllen sollen
- Beispiele:
 - Mache Fotos von Deiner Umgebung
 - Markiere Fotos mit Stickern, um die Beziehungen zu Arbeitskollegen zu veranschaulichen
- Probleme:
 - Ergebnisse schwer zu interpretieren, daher eher zur Inspiration geeignet.
 - Recht hoher Aufwand für Nutzer

Framework "EDDY":

- Sammeln von Daten mittels einer einzigen Smartphoneanwendung
- Aktive "Sensoren": Texteingabe, Foto, Video-, Audioaufnahme, RFID
- Passive Sensoren: GPS, EKG, 3D-Beschleunigung
- Zusammengehörende Daten werden in Paketen gespeichert
- Zusammenhang zwischen einzelnen Daten kann später wieder erkannt werden
- Beispiel: Datenpaket

Titel:

"Mittwoch – Mittagessen"

Text:

"Schnitzel mit Kartoffelsalat und Beilagensalat"

- Framework "EDDY":
 - Bei digitaler ESM und Cultural Probes einsetzbar
 - Vorteile:
 - Smartphone ersetzt komplettes Paket mit Kamera, Stift + Papier usw.
 - weniger Aufwand für Probanden
 - Zusammengehörende Daten werden zusammen gespeichert
 - Erleichterung der Reflexion und Auswertung
 - ➤ Steigerung der Datenvielfalt
 - ➤ Motivation der Probanden

- Quantitative Daten kann man direkt analysieren (siehe Foliensätze zur Datenanalyse)
- Wie analysiert man qualitative Daten?
 - Befragungstechniken: offene Fragen
 - Beobachtungstechniken:
 Text, Audio-, Videoaufnahmen, Physiologische Daten, Blickdaten

Annotation

- Auswertung der objektiven Daten und Zuweisung einer messbaren Bedeutung
- Nutzung von sogenannten Analyseschemas
 (z.B. Zeitpunkte an denen der Nutzer den rechten Arm hebt)
- Nach der Annotation messen / zählen der Annotationen

Verwendung von Annotationswerkzeugen (Anvil)

Verwendung von Annotationswerkzeugen (ModelUI von SSI)

Analyse physiologischer Daten, Video / Audiodaten und Blickdaten

Probleme der Annotation

- Ist das Analyseschema angemessen?
- Sind alle interessanten Aspekte enthalten?
- Mögliche Fehler durch falsche Interpretation der Aktivitäten
 - ➤ Mehrere Personen für Annotationen nötig
 - Überprüfung der Ergebnisse mittels K (Kappa) Berechnung (Inter-rater reliability, Concordance)
- Sehr zeitaufwendig und teuer

Auswertung durch deskriptive Statistik

- Quantitative Analyse
 - Numerische Methoden zur Ermittlung von Summen, Größen etc.
- Beispiele:

- Mode: Zahl, die am häufigsten auftritt: 1
- Mean / Average: Durchschnitt bzw. arithmetisches Mittel: 48 / 6 = 8
- Median: Wert an mittlerer Stelle aus sortierter Liste
 - Robuster gegen Ausreißer als der Durchschnitt
- Prozentsätze
- Signifikanzen (siehe Foliensätze zur Datenanalyse)

Graphische Repräsentation:

- Gibt einen schnellen Überblick über die Daten
- Je nach Daten passende Darstellung / Graphen verwenden

Graphische Repräsentation:

Visualisierung von Logfiles

Heatmaps für mit einem Eyetracker gesammelte Blickdaten

