

de 0.55 c?

 \Box v = 0.96 c

Tópicos de Física Moderna Exame de Recurso – parte 1 Licenciatura em Engenharia Informática

4 de julho de 2012 - 14h00 Duração - 2h00

NOME:					n°:	
só são co	nsideradas con	-	aladas <u>todas</u> as op	ções	ores. As questões de escolha múltipla corretas que lhe correspondem. Nos pções assinaladas.	
velocidad	le da corrente	é de 1 m/s paralelar	nente à margem ($\vec{V} =$	n relação à água. Verifica-se que a 1î). Determine a velocidade (v) do o movimento do barco em relação à	
a) na dire	ção e sentido	da corrente	b) na	dire	ção perpendicular à corrente:	
	$\vec{v} = 4\hat{\imath} \text{ (m/s)}$	s)			$\vec{v} = 3\hat{\imath} + 1\hat{\jmath} \text{ (m/s)}$	
	$\vec{v} = 2\hat{\imath} (\text{m/s})$	s)			$\vec{v} = 1\hat{\imath} + 3\hat{\jmath} \text{ (m/s)}$	
	v = 4 m/s				v = 14.4 km/h	
	v = 2 m/s				v = 3.16 m/s	
	v = 14.4 km	ı/h			$v = \sqrt{10} \text{ m/s}$	
	v = 7.2 km/	h			v = 11.4 km/h	
					ituada a 5 anos-luz da terra e volta. ssa o filho tem 33 anos.	
a) O astronauta deve viajar à velocidade			b)	b) Quando regressa o astronauta tem		
	v = 0.55c				55 anos	
	v = 0.75c				menos de 55 anos	
	$V = \frac{2}{3}c$				$40 + 5\sqrt{5}$	
	$\frac{2}{3}c < v < c$				mais de 55 anos	
	v = c				51,18 anos	
Q3. Um	a nave espaci	al viaja à velocidade	e de 0.75 c em rel	ação	à Terra. Qual será a velocidade em	
relação à	terra (v) de un	ma segunda nave qu	e pretenda ultrapa	ssar	a primeira a uma velocidade relativa	

v = 0.92 c

positiva do eixo dos X, quando emite um fotão γ. No referencial próprio do núcleo o fotão é emitido									
perpendicularmente à direção do movimento do núcleo. A velocidade do fotão γ no referencial do laboratório, v , $\dot{\epsilon}$:									
\square $v = c$	$\vec{v} = c \hat{j}$								
$\vec{v} = (\sqrt{0.75} c) \hat{i} + (0.5c) \hat{j}$	$\vec{v} = (0.5c)\hat{i} + \sqrt{0.75}c\hat{j}$								
$\vec{v} = c \hat{i}$	$\vec{v} = (\sqrt{0.75} c) \hat{i} + c \hat{j}$								
Q5. Determine para que valor de velocidade o momento linear de uma partícula de massa \underline{m} é igua \underline{mc} .									
\Box v = 0.707 c									
\Box v = 0.85 c	\square $v = c$								
Q6. Determine a energia total (E) de uma partícula de massa \underline{m} a deslocar-se à velocidade de $\frac{1}{\sqrt{2}}c$									
$\Box E = mc^2 (\sqrt{2} + 1)$	$\Box \qquad E = \sqrt{2} \ m c^2$								
$\Box E = \frac{mc^2}{\sqrt{2}}$	$\Box \qquad E = \sqrt{2} mc^2$ $\Box \qquad E = \frac{\sqrt{2} mc^2}{2}$								
$\Box E = mc^2 \left(\sqrt{2} - 1 \right)$	$\Box \qquad E = 1.4142 m c^2$								
Q7. As seguintes quatro afirmações <u>são falsas</u> . Escreva-as de novo de forma correta.									
1) Os vários tipos de radiação eletromagnética propagam-se no vazio todos com a mesma velocidade e todos com a mesma frequência.									
2) Quando uma dada radiação incide, segundo a normal, numa interface vidro-água, não há feixe refletido porque toda a radiação é transmitida sem mudar de direção.									
3) Quando uma dada radiação atravessa uma interface passando dum meio de índice de refração menor para outro com índice de refração maior, os feixes refletido e refratado aproximam-se da normal.									

v = 0.2 c

v = 0.34 c

Q4. Um núcleo radioativo move-se, no referencial do laboratório, à velocidade de 0.5 c na direção

 \Box v = 1.3 c

 $\square \quad v = 0.82 \ c$

4) O ângulo crítico para que ocorra re	eflexão	o interna total numa interface		no-água é de 33.33° (n _{benzeno} =1.82 e n _{água} = 1.33)
Q8. A equação de onda $\vec{E}(x,t)$ eletromagnética	=100	$sen \left[-2\pi \left(4 \times 10^{14} t - 2 \times 10^6 x \right) \right]$	$]\hat{k}$ r	epresenta uma radiação
polarizada na direção do e que $A = 100$ nm; $\lambda = 500$ nm; $T = 2$.		1 1 0	o posi	tivo do eixo dos X, e em
polarizada na direção do e que $A = 100 \text{ V/m}; \lambda = 500 \text{ nm}; T = 200 \text{ m}$		s Z e a propagar-se no sentido $^{-15}$ s; $v = 2.0 \times 10^8$ m/s.	o posi	tivo do eixo dos X, e em
\square polarizada na direção do e que A = 100 nm; λ = 400 nm; f = 4×		s X e a propagar-se no sentido z ; $v = c$.	o posi	tivo do eixo dos X, e em
polarizada na direção do e que $A = 100 \text{ V/m}; \lambda = 500 \text{ nm}; f = 400 \text{ m}$		s X e a propagar-se no sentido s^{-1} ; $v = c/1.5$.	o posi	tivo do eixo dos Z, e em
polarizada na direção do e que $A = 100 \text{ V/m}; \lambda = 500 \text{ nm}; f = 4$		s Z e a propagar-se no sentido s^{-1} ; $n = 1.5$.	o posi	tivo do eixo dos X, e em
$(A-amplitude; \lambda-comprimento de n-indice de refração)$	onda;	f-frequência; $T-$ período; v	v – vel	locidade de propagação;
Q9. Um feixe de radiação monocromaterial transparente segundo um â refratado são perpendiculares entre s	ngulo	de incidência de 58°. Verific	a-se	que os feixes refletido e
$\square \qquad n = 0.625$		n = 1.60		n = 1.0
		$n = \frac{sen \ 32^{\circ}}{sen \ 58^{\circ}}$		$n = \frac{sen 58^{\circ}}{sen 32^{\circ}}$
Q10. Um feixe de radiação incide 1.82 e n _{água} = 1.33 determine a refleta	_	ndo a normal numa interface b fração de radiação que é reflet		•
\square R = 0.9758		R = 0.1555		R = 0.8445
\square R = 0.0242		R = 0.0155		R = 0.9845