NLP Mid Notes

Stages of Language Processing: (PMLSSDP)

- 1. **Phonology**: Study of sounds in a language.
 - o Example: "She sells seashells by the seashore" has alliteration with the "s"
- 2. **Morphology**: Study of word structure and formation.
 - Example: "Dogs" is the plural form of "dog."
- 3. Lexical: Study of vocabulary.
 - o Example: "Erudite" means learned or scholarly.
- 4. **Syntactic**: Study of sentence structure.
 - Example: "The boy saw the girl with the telescope" can mean the boy used the telescope.
- 5. **Semantic**: Study of meaning.
 - Example: "John gave Mary the red ball" means John gave a red ball to Mary.
- 6. **Discourse**: Study of larger language units like conversations.
 - Example: A paragraph describing a morning routine.
- 7. **Pragmatic**: Study of language in context.
 - Example: "Do you have plans this weekend?" can mean different things depending on who asks.

Types of Ambiguity in NLP: (PWPSR)

- 1. **Phonological Ambiguity**: Words sound the same but have different meanings.
 - Example: "Write" vs. "right."
- 2. Word Sense Ambiguity: Words with multiple meanings.
 - o Example: "Bank" can mean a financial institution or the side of a river.
- 3. Part of Speech Ambiguity: Words that can function as different parts of speech.
 - Example: "Fish" can be a verb or a noun.
- 4. **Syntactic Ambiguity**: Sentences that can be parsed in multiple ways.

- o Example: "I saw the man with the telescope" can mean two things.
- 5. **Referential Ambiguity**: Pronouns or nouns that can refer to multiple entities.
 - Example: "He" in "John told Tom that he needs to go to the store" could refer to John or Tom.

What are the factors driving the advancement of Natural Language Processing (NLP) technology?

- 1. Increases in computing power
- 2. Rise of the social media platforms, increasing text data
- 3. Advanced in ML and DL for better NLP model
- 4. Advanced in understanding sarcasm and cultural references
- 5. Growth of Multilingual NLP programs.

Compare Between Statistical and Deep Learning NLP: (ADICGL)

Feature	Statistical NLP	Deep Learning NLP
Approach	Mathematical and probability models	Uses neural networks and deep learning models
Data Requirements	Small to moderate datasets	Large scale datasets for training
Interpretability	More interpretable	Considered a black box
Computational Cost	Low to moderate	High (requires GPU/TPUs)
Generalization	Struggles with unseen words and context	Generalizes well with enough training data
Linguistic Rules	Predefined linguistic rules	Learns representations without rules

Regular Expression: functions that allows us to search a string for a match

Function	Description
findall	Return a list containing all matches
search	Returns match object if its in the string
split	List where string has been split at each match
sub	Replace one or many matches with a string

- Metacharacters: are characters with a special meaning.
- A special sequence: is a \ followed by one of the characters in the list
- A set is a set of characters inside a pair of square brackets []

Stemming VS Lemmatization:

Stemming	Lemmatization
Reduces words to root form to find	Reduces words to dictionary form to
stem of the word	find lemma of the word
Used in IR and Text Mining	Used in NLP with high level of text
	understanding
Use various rules to strip off affixes	Uses context and syntactic role of
and suffixes to get base form	word
Stemmers: Porter stemmer,	Lemmatizers: WordNet, Stanford,
Snowball, Lancaster	spaCy

Stemming:

Strengths:

- Fast and computationally efficient
- Reduces vocabulary size, improves text matching and retrieval

Weaknesses:

- Produces stems that are not actual words, have no meaning, or not related to original word
- Cannot handle irregular forms or words with multiple meanings

Lemmatization:

Strengths:

- Produces Lemmas that are accurate and meaningful bases
- Considers context and syntactic role of word.
- Can handle irregular forms and words that have multiple meanings.

Weaknesses:

- Slower and more computationally intensive than stemming.
- Requires a dictionary or knowledge base to get correct lemma, (not available in all languages)
- Different results for different forms of the same word depending on context.

Different kinds of Automatic POS Taggers in NLTK:

- 1. **Default** tagger: Assigns default POS tagging in all words in a corpus
- 2. Regular expression: uses RE to match patterns of words and assign POS tags to them
- N-Gram tagger: statistical tagger that assigns POS tags based on context of surrounding words. Uses frequency distribution to predict POS tag for current word.
- 4. Brill Tagger: uses rule-based approach to correct mistakes made by previous tagger. It learns a set of transformational rules from training data to improve accuracy of previous tagger.

Named Entity Recognition (NER): Identify and categorize specific named entities in a text. It can be Person (Bill Gates), Organizations (Google), Location(London) etc.

4 different text representation techniques:

- **1. One-Hot Encoding:** Convert **categorical** data into **numerical** data by creating a **binary vector** of size n. (n is the number of categories)
- 2. Bag of Words: Counting number of times each word appeared in a document, and representing the document as a vector of word frequencies.
- **3. TF-IDF: Evaluates importance of a word in a document.** Multiply term frequency with inverse document frequency, which is log of **total number of documents** divided by **number of documents containing the word**.
- 4. Occurrence, Co-occurrence: Relationships between words.
 - o Occurrence matrix: how many times each word occurs in the text
 - o Co-occurrence: how many times each pair of words occur together.

What is Negative Sampling?

- Word2Vec models train word embeddings by **reducing the number of words processed in each iteration.**
- Randomly selects a small number of "negative" words (words not in the context).
- **Updates embeddings** for both the "positive" word (word in the context) and the "negative" words.
- Helps the model differentiate between words that appear in the context and those that don't.
- Avoids computing probabilities for every word in the vocabulary, which is computationally efficient

Illustrate 5 different types of relations that Word2Vec can learn: (SACHP)

- 1. Synonyms and Antonyms
- 2. Analogies
- 3. Co-occurrence
- 4. Hierarchical
- 5. POS

5 hyperparameters that can be adjusted during the construction of Word2Vec (LVCMN)

- 1. Learning rate
- 2. Vector dimensionality
- 3. Context window size
- 4. Minimum word count
- 5. Number of negative samples

3 major Differences between RNN and LSTM

Feature	RNN	LSTM
Long sequences	Struggles because of	Can handle because of
	vanishing gradient	memory cell
Retain Information	Lacks memory	Has memory cell to
	mechanism	store and retrieve
		information
Gates	One gate, can't control	Three gates (input,
	information flow	forget, output)
Long-term memory	performs poorly on	Excels at tasks
tasks	tasks like long sentence	
Architecture	Simple with fewer	Complex with memory
	parameters	cells and gates
Uses	Short sequences	Machine translation and
		Time-series prediction