# BSP 12 URLAUB

Perner, Dickbauer, Moser

### Simulation/Markov Prozess/ Kette

• Mit Hilfe einer konstanten Übergangsmatrix wird eine neue Verteilung der Urlauber erzeugt.

|          | Karibik | Kenia | Thailand | Nepal |
|----------|---------|-------|----------|-------|
| Karibik  | 0.4     | 0.3   | 0.2      | 0.1   |
| Kenia    | 0.2     | 0.5   | 0.2      | 0.1   |
| Thailand | 0.1     | 0.3   | 0.3      | 0.3   |
| Nepal    | 0.2     | 0.3   | 0.1      | 0.4   |

Karibik: 100 UrlauberKenia: 250 UrlauberThailand: 50 UrlauberNepal: 75 Urlauber

#### 2 Arten:

- 1) Loaded Probability Function → Übergangsmatrix wird für die ZZ-Generation verwendet
- 2) Matrizenmultiplikation mit exakten Werten → ergibt die theoretische Verteilung

### Aufgabe a - Simulation von 10 Jahren

### Simulation eines Jahres mit Hilfe von

- nulation eines Jahres mit Hilfe von gegebenen actual vector (Urlaubserverteilung)

  New Vector: [123, 175, 103, 74]

  New Vector: [105, 182, 92, 96]

  Difference: [-18, +7, -11, +22]
- leeren next vector (der befüllt wird)
- 2 For-Schleifen durchlaufen den actual vector und identifizieren die Reisenden an der Stelle der Länder und verknüpfen sie mit der Wahrscheinlichkeit für ihren Aufenthalt in einem Land im Folgejahr (Ümatrix + LPF). Diese WK wird durch eine loaded\_probability function bestimmt: LPF: gibt Index zurück, der mit einer probability list bestimmt wird (hier row Ümatrix)

Ka, Ke, Th, Ne

dieser Index weißt den Traveller das Country des nächsten Jahres zu (new\_vector)

### Simulation 10 Jahre

- New Vector wird gespeichert und als old vector wiederverwendet (10 Wiederholungen)
- Die Veränderung bzw. der Netto-Fluss der Reisenden zwischen den einzelnen Ländern wird mittels Subtraktion new vector old vector ermittelt und wieder als difference vector ausgegeben

## Aufgabe b - Theoretische Verteilung (WK)

- Theoretische Verteilung würde eintreffen, wenn man jedes Jahr genau die WK der Verteilungsmatrix trifft.
- 1. Hierzu muss man die Verteilungsmatrix mit dem Urlaubervektor multiplizieren und es ergibt sich der neue Urlaubervektor für t+1
- 2. Man wiederholt diese Matrixmultiplikation (4x1)\*(4x4) 10 Mal
- 3. nach n = 10 Durchläufen → Stopp = Theoretische Verteilung nach 10 Jahren

Theoretical distribution after 10 years: [106.87, 178.13, 95.0, 95.0]

### Matrixmultiplikation 1. Jahr

Karibik: 100 Urlauber Kenia: 250 Urlauber Thailand: 50 Urlauber Nepal: 75 Urlauber



|          | Karibik | Kenia | Thailand | Nepal |
|----------|---------|-------|----------|-------|
| Karibik  | 0.4     | 0.3   | 0.2      | 0.1   |
| Kenia    | 0.2     | 0.5   | 0.2      | 0.1   |
| Thailand | 0.1     | 0.3   | 0.3      | 0.3   |
| Nepal    | 0.2     | 0.3   | 0.1      | 0.4   |

