~

Data Visualisation

ď

Chapter 1: Design and Integrity

Dr James Baglin

How to use these slides

Viewing slides...

- Press 'f' enable fullscreen mode
- Press 'o' or 'Esc' to enable overview mode
- Pressing 'Esc' exits all of these modes.
- Hold down 'alt' and click on any element to zoom in. 'Alt' + click anywhere to zoom back out.
- Use the Search box (top right) to search keywords in presentation

Printing slides...

- Click here to open a printable version of these slides.
- Right click and print from browser or save as PDF (e.g. Chrome)

Learning Objectives

The learning objectives of this chapter are as follows:

- Define data visualisation
- List and explain the different types of data and why data types are important to data visualisation
- Identify the various components of a basic data visualisation plot
- Explain the data visualisation design process including the following three stages:
- Identifying a targeted audience and a data visualisation design objective
- Focusing, justifying and choosing methods
- Construction and evaluation

Learning Objectives Cont.

- Apply the Trifecta Check-up to guide the critique of a data visualisation
- Apply the Data Visualisation Check-list to produce publication quality data visualisations
- Discuss ethical principles and data integrity as it relates to the practice of data visualisation
- Locate and identify reliable and reputable sources of data for visualisation

What is data visualisation?

Andy Kirk (2012) defined data visualisation as follows:

visual perception abilities in order to amplify cognition" (p.17) "the representation and presentation of data that exploits our

Representation

Presentation

Data

Visual perception

Amplify cognition

G

Why do we visualise data?

The greatest value of a picture is when it forces us to notice what we never expected to see - John W Tukey, Exploratory Data Analysis, (1977)

By Source, Fair use, Link

Anscombe's quartet

All scatter plots have approximately the same correlation...

∞

Why do we visualise data? Cont.

- Why do we visualise?
- Exploration identifying interesting and important features (Buja et al. 2009)
- Assist in communicating key data insights to our targetted audience

σ

Turning Tables

The following table was taken from the Department of the **Environment and Energy website - Australian Energy** Update Report 2018

Energy use by State 2018: Sheet1

		consumption (PJ), by state, by ruei, energy units			
Department of the Environme	nt and Energy,	Australian	Energy Statist	Environment and Energy, Australian Energy Statistics, Table C, August 2018	81
2016-2017					
State Coal	Oil	Gas	Renewables	Renewables Statistical Discrepancy Total	Total
NSW 624.70	70 656.00	139.30	94.90		15.80 1,530.60
Vic 577	577.7 503.8	286.8	55.3	-19.3	1404.3

How do the states compare in terms of renewable energy use?

Turning Tables

A Visual Design Process - Andy Kirk (2012)

Guiding Principles

- Strive for form and function
- Justify everything you do
- Keep it accessible and intuitive
- Avoid deceiving the viewer
- Identifying a targeted audience and a data visualisation design objective
- Audience: Who are you communicating with?
- **Objective**: the "so what?" question.
- Focusing, justifying and choosing methods
 - Construction and evaluation

Audience and Objective

Identify the audience and objective of the following visualisation:

http://www.bom.gov.au/climate/history/temperature/ 110 years of Australian temperatures -(Bureau of Meterology 2020)

Trifecta Check-up

and powerful framework, called the Trifecta Check-up, to use Kaiser Fung, author of Junk Charts, provides a very simple when evaluating a data visualisation.

Junk Charts Trifecta Checkup

Critique

Critique the following data visualisation by Andy Lee Robinson according to the Trifecta check-up

Artic Death Spiral

You can read Kaiser's review here.

Data Vis Check-list

- Evergreen and Emery (2016)'s check-list is a useful tool for avoiding common data visualisation pitfalls.
- A data visualisation is scored according to five criteria:
- Text
- Arrangement
- Colour
- Lines
- Overall

Data Vis Check-list Cont.

- Let's apply the check-list to the following data visualisation by Norbury (2018)
- We will use the online check-list tool

Ethical Principles of Data Visualisation

- Ethics can be defined as "a set of beliefs about what is morally right and wrong"
- Data visualisation ethical principles include the following:
- Beneficence
- Transparency
- Accuracy
- Objectivity
- Respect
- Accountability

Ethical Example - Paprocki (2015)

- Abortions increased from 289,750 in 2006 to 327,000 in 2013 = 13% increase
- Screening and preventative services decreased 2,007,371 to 935,573 = 53%.

Data Integrity

- Integrity can be defined as "the quality of being honest and having strong moral principles that you refuse to change"
- Data integrity issues include the following:
- Permission
- Security
- Consent
- Privacy and sensitive information
- Data quality
- Citation

Strava Case Study

- Read the article Strava's fitness heatmaps are a 'potential catastrophe'
- Current Strava Heatmap -
- https://www.strava.com/heatmap
- Think about the ethical and integrity issues raised

References

Philosophical Transactions of the Royal Society A: Mathematical, Buja, A., D. Cook, H. Hofmann, M. Lawrence, E.-K. Lee, D. F. Swayne, and H. Wickham. 2009. "Statistical inference for Physical and Engineering Sciences 367 (1906): 4361–83. exploratory data analysis and model diagnostics." https://doi.org/10.1098/rsta.2009.0120.

Bureau of Meterology. 2020. "110 years of Australian temperatures." http://www.bom.gov.au/climate/history/temperature/.

Evergreen, S., and A. K. Emery. 2016. "Updated data visualization checklist."

https://stephanieevergreen.com/updated-data-