Lab Assignment-6

MTH 308 AND & MTH 308B: NUMERICAL ANALYSIS AND SCIENTIFIC COMPUTING-I

January-April 2024, IIT Kanpur

1. Newton-Raphson method: Write a Matlab/C program to find a root of the equation f(x) = 0 for given initial approximation x_0 , where f is a given differentiable function.

Hint: (You may use the following algorithm)

INPUT: Initial approximation x_0 , tolerance TOL; maximum number of iterations N.

OUTPUT: Approximate root x or message failure.

Step-1: Set k = 1.

Step-2: While $k \leq N$ do Steps 3 to 6.

Step-3: $x = x_0 - f(x_0)/f'(x_0)$, y = f(x).

Step-4: If y = 0, OUTPUT(x). STOP.

If $|x - x_0| \le \text{TOL}$ or $|f(x)| \le \text{TOL}$, OUTPUT (x). STOP.

Step-5: Set $x_0 = x$.

Step-6: Set k = k + 1.

Step-7: OUTPUT ('Maximum number of iteration reached. The method fail after N iterations.') STOP.

2. **Secant method**: Write a Matlab/C program to find a root of the equation f(x) = 0 for given initial approximations x_0, x_1 , where f is a given continuous function.

Hint: (You may use the following algorithm)

INPUT: Initial approximations x_0 , x_1 , tolerance TOL; maximum number of iterations N. OUTPUT: Approximate root x or message failure.

Step-1: Set k = 2; $y_0 = f(x_0)$ and $y_1 = f(x_1)$.

Step-2: While k < N do Steps 3 to 6.

Step-3: $x = x_1 - (y_1 \cdot (x_1 - x_0))/(y_1 - y_0), y = f(x)$.

Step-4: If y = 0, OUTPUT(x). STOP.

If $|x - x_1| \le \text{TOL}$ or $|f(x)| \le \text{TOL}$, OUTPUT (x). STOP.

Step-5: Set $x_0 = x_1$, $y_0 = y_1$, $x_1 = x$. and $y_1 = y$.

Step-6: Set k = k + 1.

Step-7: OUTPUT ('Maximum number of iteration reached. The method fail after N iterations.') STOP.

STOP.

You could use other stopping criteria for Newton-Raphson or Secant method. Test your coding to find a root of the following equation f(x) = 0 where

$$f(x) = x - \cos(x), \quad x \in \mathbb{R}.$$

Take $x_0 = \pi/4$ (for Newton-Raphson) and $x_0 = 0.5$, $x_1 = \pi/4$ (for Secant). Compute at least 10 iterations. Print the values of k (number of iterations), x_k , $f(x_k)$ in two tables (one for Newton-Raphson and another for Secant).

3. **Fixed Point method**: Write a Matlab/C program to find a fixed point of g i.e, x = g(x) for given initial approximation x_0 , where g is a given continuous function.

Hint: (You may use the following algorithm)

INPUT: Initial approximation x_0 , tolerance TOL; maximum number of iterations N.

OUTPUT: Approximate root x or message failure.

Step-1: Set k = 1.

Step-2: While $k \leq N$ do Steps 3 to 6.

Step-3: $x = g(x_0)$.

Step-4: If $|x - x_0| \le \text{TOL}$, OUTPUT (x). STOP.

Step-5: Set $x_0 = x$.

Step-6: Set k = k + 1.

Step-7: OUTPUT ('Maximum number of iteration reached. The method fail after N iterations.') STOP.

Test your coding for the following equation:

$$x^3 + 4x^2 - 10 = 0.$$

There are many ways to write the equation in the fixed point form as x = g(x). Test you coding with following different $g_i's$, i = 1, 2, 3, 4, 5.

$$x = g_1(x) = x - x^3 - 4x^2 + 10,$$

$$x = g_2(x) = \left(\frac{10}{x} - 4x\right)^{\frac{1}{2}},$$

$$x = g_3(x) = \frac{1}{2} \left(10 - x^3\right)^{\frac{1}{2}},$$

$$x = g_4(x) = \left(\frac{10}{4+x}\right)^{\frac{1}{2}},$$

$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}.$$

Choose initial vector as $x^0 = 1.5$. Print your result in a table.

End.