

УНИВЕРЗИТЕТ У НОВОМ САДУ ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА

УНИВЕРЗИТЕТ У НОВОМ САДУ
ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА
НОВИ САД
Департман за рачунарство и аутоматику
Одсек за рачунарску технику и рачунарске комуникације

ЗАВРШНИ (BACHELOR) РАД

Кандидат: Игор Илић Број индекса: PA152/2015

Тема рада: Распоређивање задатака у рачунарском облаку помођу

генетског алгоритма

Ментор рада: Доц. др Иван Каштелан

Нови Сад, Септембар, 2019

УНИВЕРЗИТЕТ У НОВОМ САДУ ● **ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА** 21000 НОВИ САД, Трг Доситеја Обрадовића 6

КЉУЧНА ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА

Редни број, РБР :			
Идентификациони број, И	5P:		
Тип документације, ТД :		Монографска документација	
Тип записа, Т3 :		Текстуални штампани материјал	
Врста рада, ВР :		Завршни (Bachelor) рад	
Аутор, АУ :		Игор Илић	
Ментор, МН :		доц. др Иван Каштелан	
Наслов рада, НР :		Распоређивање задатака у рачунарском обла генетског алгоритма	ку помоћу
Језик публикације, ЈП :		Српски / латиница	
Језик извода, ЈИ :		Српски	
Земља публиковања, 3П :		Република Србија	
Уже географско подручје,	 УГП:	Војводина	
Година, ГО :		2019	
Издавач, ИЗ :		Ауторски репринт	
Место и адреса, МА :		Нови Сад; трг Доситеја Обрадовића 6	
Физички опис рада, ФО : (поглавља/страна/ цитата/табела/слика	а/графика/прилога)	7/47/0/20/15/0/0	
Научна област, НО :		Електротехника и рачунарство	
Научна дисциплина, НД :		Рачунарска техника	
Предметна одредница/Кqучне речи, ПО :		Генетски алгоритам, Распоређивање задатака облаку, Усмерени ациклични графови	
удк			
Чува се, ЧУ :		У библиотеци Факултета техничких наука, Нови (Сад
Важна напомена, ВН :			
Извод, ИЗ :		У рачунарству у облаку један од главних проблема је распоређивање задатака, јер лоше распоређивање задатака утиче на смањење перформанси система и повећање трошкова. У овом раду је реализовано распоређивање задатака базирано на генетском алгоритму које је могуће конфигурисати зарад сопствених потреба за смањење трошкова или краћег времена извршавања. Апликација је реализована у програмском језику <i>Python</i> за тестирање и упоређивање алгоритма са другим сличним алгоритмима за распоређивање. Анализом добијених резултата утврђено је да распоређивање задатака генетским алгоритмом даје значајно боље резултате од распоређивања других алгоритама.	
Датум прихватања теме, ДП:			
Датум одбране, ДО :			
Чланови комисије, КО :	Председник:	проф. др Мирослав Поповић	
	Члан:	доц. др Момчило Крунић	Потпис ментора
	Члан, ментор:	доц. др Иван Каштелан	

UNIVERSITY OF NOVI SAD ● **FACULTY OF TECHNICAL SCIENCES**21000 NOVI SAD, Trg Dositeja Obradovića 6

KEY WORDS DOCUMENTATION

Accession number, ANO:			
Identification number, INO:			
Document type, DT :		Monographic publication	
Type of record, TR:		Textual printed material	
Contents code, CC:		Bachelor Thesis	
Author, AU :		lgor llić	
Mentor, MN:		Ivan Kaštelan, PhD	
Title, TI :		Task Scheduling in Cloud Computing based on	Genetic Algorithms
Language of text, LT :		Serbian	
Language of abstract, LA		Serbian	
Country of publication, CF):	Republic of Serbia	
Locality of publication, LP	:	Vojvodina	
Publication year, PY :		2019	
Publisher, PB :		Author's reprint	
Publication place, PP :		Novi Sad, Dositeja Obradovica sq. 6	
Physical description, PD: (chapters/pages/ref./tables/pictures/	graphs/appendixes)	7/47/0/20/15/0/0	
Scientific field, SF:		Electrical Engineering	
Scientific discipline, SD:		Computer Engineering, Engineering of Computer Ba	ased Systems
Subject/Key words, S/KW :		Genetic Algorithm, Task Scheduling, Cloud Com Acyclic Graph	
UC			
Holding data, HD :		The Library of Faculty of Technical Sciences, Novi S	Sad, Serbia
Note, N :			
Abstract, AB :		In cloud computing, one of the main problems is task scheduling because poor scheduling has the effect of reducing system performance and increasing costs. This paper deals with task scheduling based on the genetic algorithm which can be configured either for cost reduction or shorter execution time. An application was implemented in Python for testing and the algorithm was compared with other similar scheduling algorithms. The analysis of the obtained results shows that the scheduling of tasks by the genetic algorithm gives significantly better results than the scheduling of other algorithms.	
Accepted by the Scientific Bo	oard on, ASB :		
Defended on, DE :			
Defended Board, DB :	President:	Miroslav Popović, PhD	
	Member:	Momčilo Krunić, PhD	Menthor's sign
	Member, Mentor:	Ivan Kaštelan, PhD	

Zahvalnost

Srdačno se zahvaljujem svom mentoru doc. dr Ivanu Kaštelanu i asistentu Branislavu Kordiću na ukazanoj pomoći, stalnoj podršci, stručnim savetima i razumevanju tokom izrade rada. Pritom, zahvaljujem im se i na samoj pomoći oko nalaženja kvalitetne i interesantne teme.

SADRŽAJ

1. Uv	od	1
2. Tee	orijske osnove	2
2.1	Usmereni aciklični graf	2
2.2	Genetski algoritam	3
2.3	Dupliciranje zadataka	6
2.4	Računarski oblak	7
2.5	HEFT algoritam	9
3. An	aliza rešenja	10
3.1	Ulazni podaci	10
3.1	.1 Usmereni aciklični graf	11
3.1	.2 ETC tabela	12
3.1	.3 VMbase	12
3.1	.4 Podešavanje težina	13
3.2	Algoritam za računanje cene i ukupnog vremena izvršavanja DAG-a.	13
3.2	.1 Određivanje ukupnog vremena izvršavanja zadataka	14
3.2	.2 Određivanje cene računarskih usluga u oblaku zadataka	14
3.3	Algoritam za određivanje prioriteta	15
3.4	Algoritam za raspoređivanje zadataka na bazi mašinskog učenja	15
3.4	.1 Hromozom	15
3.4	.2 Inicijalizacija i fitnes funkcija	15
3.4	.3 Prilagođen genetski algoritam	16
3	.4.3.1 Odabiranje jedinki za sledeću generaciju	16
3	.4.3.2 Ukrštanje jedinki	16
3	.4.3.3 Mutacije na jedinkama	17
3	.4.3.4 Migracija elitnih jedinki	18
3.5	Unapređen algoritam za dupliciranje zadataka	18
4. Im	plementacija	20
4.1	Klase	21

	4.1.	1 Klasa graf	21
	4.1.	2 Klasa zadatka	22
	4.1.	3 Klasa ivice	23
	4.1.	4 Klasa procesor	23
	4.1.	5 Klasa slot	23
	4.1.	6 Klasa populacije	24
	4.1.	7 Klasa multipopulacije	24
4	2	Moduli	25
	4.2.	1 Modul GraphFunctions.py	25
	4.2.	2 Modul PriorityDefinition.py	26
	4.2.	3 Modul GraphPreprocessing.py	28
	4.2.	4 Modul DrawGraph.py	29
	4.2.	5 Modul ProcessorFunctions.py	29
	4.2.	6 Modul TaskDuplicationFunctions.py	32
	4.2.	7 Modul GeneticAlgorithmFunctions.py	34
	4.2.	8 Modul GeneticOperations.py	35
	4.2.	9 Modul PopulationInitialization.py	37
5.	Rez	ultati	38
5	5.1	Procena složenosti	38
5	5.2	Verifikacija	39
5	5.3	Poređenje GA sa drugim algoritama za raspoređivanje	40
6.	Zak	ljučak	45
7	Lite	ratura	46

SPISAK SLIKA

Slika 2.1: Primer usmerenog acikličnog grafa	. 2
Slika 2.2: Primer oblačenja predstavljen pomoću usmerenog acikličnog grafa	. 3
Slika 2.3: Rad genetskog algoritma	. 5
Slika 2.4: Primer duplikacije zadatka	. 6
Slika 2.5: Klijenti i računarski oblak	. 7
Slika 2.6: Razlike između prava pristupa između tri tipa računarstva u oblaku	. 8
Slika 3.1: Usmereni aciklični graf sa zadacima korišćen za testiranje implementacije . I	11
Slika 5.1.1: Fitovanje grafa pomoću dobijenih rezultata merenja	39
Slika 5.3.1: Ulazni graf	40
Slika 5.3.2: Ulazni graf sa slučajnom raspodelom procesora	40
Slika 5.3.3: Raspodela zadataka grafa po procesorima sa slučajnom raspodelom	41
Slika 5.3.4: Ulazni graf sa HEFT raspodelom sa dodatom duplikacijom zadataka	41
Slika 5.3.5: Raspodela zadataka po procesorima pomoću HEFT algoritma	42
Slika 5.3.6: Ulazni graf sa raspodelom procesora pomoću genetskog algoritma	43
Slika 5.3.7: Raspodela zadataka po procesorima pomoću genetskog algoritma	43

SPISAK TABELA

Tabela 3.1: Primer ETC tabele korišćen za testiranje implementacije	13
Tabela 4.1: Tabela svih datoteka	21
Tabela 4.1.1: Tabela polja klase graf	22
Tabela 4.1.2: Tabela polja klase zadatka	22
Tabela 4.1.3: Tabela polja klase ivice	23
Tabela 4.1.4: Tabela polja klase procesor	23
Tabela 4.1.5: Tabela polja klase slot	24
Tabela 4.1.6: Tabela polja klase populacije	24
Tabela 4.1.7: Tabela polja klase multipopulacije	25
Tabela 4.2.1: Tabela funkcija modula GraphFunction.py	26
Tabela 4.2.2: Tabela funkcija modula PriorityDefinition.py	28
Tabela 4.2.3: Tabela funkcija modula GraphPreprocessing.py	28
Tabela 4.2.4: Tabela funkcija modula DrawGraph.py	29
Tabela 4.2.5: Tabela funkcija modula ProcessorFunctions.py	32
Tabela 4.2.6: Tabela funkcija modula TaskDuplicationFunctions.py	34
Tabela 4.2.7: Tabela funkcija modula GeneticAlgorithmFunctions.py	35
Tabela 4.2.8: Tabela funkcija modula GeneticOperations.py	37
Tabela 4.2.9: Tabela funkcija modula PopulationInitialization.py	37
Tabela 5.1.1: Tabela sa prosečnim rezultatima merenja	38
Tablea 5 3 1: Tabela korišćenih parametara za poređenie algoritama	44

SKRAĆENICE

DAG - Directed Acyclic Graph

GA - Genetic Algorithm

ETC - Expected Time to Complete

 $\mathbf{MPGA}\text{-}\ \mathit{Multi-Population}\ \mathit{Genetic}\ \mathit{Algorithm}$

HEFT - Heterogeneous Earliest Finish Time

1. Uvod

U računarstvu u oblaku jedan od glavnih problema je raspoređivanje zadataka, jer loše raspoređivanje zadataka utiče na smanjenje performansi sistema i povećanje troškova. Kako bi se povećale performanse sistema i umanjio trošak, potreban nam je algoritam za efikasno raspoređivanje zadataka. [1]

U ovom radu predstavljeno je rešenje za raspoređivanje zadataka na bazi mašinskog učenja. Predstavljeni raspoređivač zadataka je konfigurabilan podešavanjem željenih vrednosti težina, težine određuju odnos prioriteta raspoređivača, to jest da li je bitnije smanjenje troškova ili vreme izvršavanja zadataka u oblaku i u kojoj meri. Rešenje je bazirano na radu "Cost-Effective Scheduling Precedence Constrained Tasks in Cloud Computing" napisano od strane profesora Bei Wang, Jun Li i Chao Wang sa Univerziteta nauke i tehnologije u Kini. [2]

Dva algoritma su sekvencijalno korišćena kako bi se zadaci efikasno rasporedili, raspoređivač zadataka sa prilagođenim genetskim algoritmom sa više populacija [3] i unapređen algoritam za dupliciranje zadataka [4]. Oba algoritma će biti detaljno objašnjena i testirana dalje u radu.

Rešenje je implementirano u programskom jeziku Python i predstavlja teorijsku analizu efikasnosti raspoređivača zadataka. Python aplikacija je projektovana u cilju da bude platforma za testiranje, kombinovanje i upoređivanje različitih algoritama za raspoređivanje zadataka.

2. Teorijske osnove

2.1 Usmereni aciklični graf

Usmereni aciklični grafovi (engl. *Directed Acyclic Graph, DAG*) se koriste da na vizuelno jednostavan način prikažu zavisnost među čvorovima (slika 2.1). DAG-ovi se sastoje od usmerenih veza (ivica), uvezanih čvorova (zadataka) i njihovih putanja. Putanja je sekvenca čvorova spojena ivicama i prati smer ivica između čvorova. Svaka ivica povezuje jedan čvor sa drugim, tako da ne postoji način da se počne u nekom čvoru v_x i prati redosled ivica koji se na kraju petlje opet vraća na čvor v_x . Matematički kažemo da G = (V,E) [5]. G je zapravo DAG, V skup svih čvorova grafa G, a E skup svih ivica.

Slika 2.1: Primer usmerenog acikličnog grafa

U sferi računarstva DAG-ovi se najviše koriste da pokažu i ispoštuju zavisnosti u softverskim modulima. Jedan čvor tu predstavlja jedan softverski modul, a usmerene ivice pokazuju zavisnost. Ulazne ivice govore od kojih modula zavisi, a izlazne ivice govore koji moduli zavise od njega.

Usmerenim acikličnim grafovima se mogu modelovati i zadaci iz svakodnevnice, intuitivniji primer grafa koji svi poznajemo je oblačenje (slika 2.2)[5]. Nije moguće obući patike pre nego što navučemo čarape, te čarape su u ovom slučaju prethodnik čvora (zadatka) patika i moramo ih prvo navući da bismo mogli obući patike.

Slika 2.2: Primer oblačenja predstavljen pomoću usmerenog acikličnog grafa

2.2 Genetski algoritam

Genetski algoritmi (engl. *Genetic Algorithm*, *GA*) su optimizacione metode bazirane na računaru koje koriste Darvinovu teoriju evolucije kao model. Rešenje problema je predstavljeno hromozomom koji se sastoji od genoma. Genetski algoritmi su pojednostavljeni modeli prirodne genetike. Genomi u ovom radu predstavljaju određene procesore iz cloud-a na koje su dodeljeni zadaci. Glavni fokus optimizacije genetskog algoritma u radu je da nađe optimalnu raspodelu zadataka po procesorima iz oblaka (engl. *cloud*) pomoću evolucionog principa prirodne selekcije na osnovu potreba podešenih težina.

Proces prirodne selekcije počinje selekcijom najsposobnijih (engl. *fit*) jedinki iz , populacije. Oni prave decu koja nasleđuju karakteristike roditelja i koja će biti deo sledeće generacije. Deca sposobnih roditelja često budu sposobnija od svojih roditelja i imaju veću šansu da prežive. Ovaj proces se iterira dok se na kraju ne nadje populacija sa najsposobnijim individuama.

Ovaj proces se može koristiti za optimizacione probleme. Jedno potencijalno rešenje problema možemo predstaviti kao individuu populacije i informacije koje nosi kodovati u genom, možemo napraviti fitnes funkciju koja bi služila da odredi kvantitativnu meru sposobnosti individualnog rešenja, a "parenje", tj. pravljenje dece bi bilo ukrštanje genoma poželjnih rešenja optimizacionog problema.

Rad genetskog algoritma se može opisati u sedam koraka (slika 2.3)[6]:

- 1. Definisanje svih potrebnih parametara problema i genetskog algoritma
- 2. Formiranje početne populacije
- 3. Određivanje cena hromozoma (fitnes funkcijom)
- 4. Odabir selekcije hromozoma koji će opstati za parenje
- 5. Parenje obično se iz boljeg dela populacije odabiru roditelji koji će na neki način ukrstiti svoj genetski materijal i dati jednog ili više potomaka koji obično zamene nekog od lošijih hromozoma
- 6. Mutacije, pri kojima se menja genetski sadržaj hromozoma potomaka
- 7. Ispitivanje konvergencije, kako bi se utvrdilo da li algoritam treba da se prekine. Ukoliko nije ispunjen uslov konvergencije, vratiti se na korak 3 odnosno 4

Slika 2.3: Rad genetskog algoritma

Genetski algoritam sa više populacija (engl. *Multi-Population Genetic Algorithm, MPGA*) proširuje osnovnu implementaciju genetskog algoritma dodajući mu više populacija i tako ubrzava obradu podataka i izbegava zaglavljivanje u nekim od lokalnih minimuma. Korišćenje genetskog algoritma sa više populacija je jednostavan metod za održavanje različitosti jedinki. Uglavnom genetski algoritmi sa više populacija omogućavaju određenim sposobnim jedinkama da prelaze iz jedne populacije u drugu [3] što je korišćeno i u ovom radu. To omogućava populacijama koje su se zaglavile u nekim od lokalnih minimuma priliku da izađu van njega i potencijalno nađu novo poželjnije rešenje problema raspodele.

2.3 Dupliciranje zadataka

Dupliciranjem zadataka posle dobijanja poželjne raspodele genetskog algoritma možemo dodatno smanjiti ukupno vreme izvršavanja. Da bi zadaci koji imaju prethodnike došli na red za obradu moraju prvo da sačekaju svoje prethodnike da budu obrađeni. Ako je neki od prethodnika na različitom procesoru posle njegove obrade postoji dodatno vreme trajanja slanja podataka preko ivice, dok prethodnici koji su na istom procesoru kao trenutni zadatak mogu komunicirati bez vremenske zadrške posle svojih obrada. Dupliciranje može rešiti problem komunikacije zadataka na različitim procesorima time što napravi kopiju zadatka koji se čeka na istom procesoru kao zadatak koji ga čeka i time eliminiše vreme čekanja (slika 2.4)[7]. Preduslov potencijalnog dupliciranja je dovoljno slobodnog vremena za duplikaciju zadatka na datom procesoru pre izvršavanja datog zadatka za koji želimo skratiti vreme čekanja.

Naravno, nije svako dupliciranje poželjno i ne utiče uvek na smanjenje ukupnog trajanja, zato posle duplikacije proverimo da li je pozitivno uticalo na smanjenje ukupnog trajanja i da li je cena duplikacije opravdana za dato ubrzanje. Ako kriterijum pozitivne duplikacije koji smo odredili nije ispunjen raspodela se vrati na stanje pre duplikacije i razmatraju se dalje potencijalne duplikacije. [4]

Slika 2.4: Primer duplikacije zadatka: a) Izgled grafa pre duplikacije b) Trajanje i raspodela zadataka grafa na procesore pre duplikacije c) Trajanje i raspodela zadataka grafa posle duplikacije taska n1 na procesor PE1

2.4 Računarski oblak

Postoji mnogo definicija i interpretacija računarstva u oblaku (engl. *Cloud Computing*), ali svima je zajednička osnovna ideja - iznajmljivanje računarskih resursa po potrebi. Kod računarstva u oblaku uvodi se novi model plaćanja usluge. Usluga se plaća onoliko koliko se koristi (engl. *Pay-Per-Use*). Korisnik sa svojim uređajem putem Interneta može sa bilo kojeg mesta pristupati podacima koji se nalaze u oblaku. Za ovakvu vrstu usluge koristi se pojam oblak zato što korisnici ne znaju gde se nalazi provajder i gde se izvršava aplikacija (slika 2.5)[8].

Slika 2.5: Klijenti i računarski oblak

Vrste računarskih oblaka u pogledu sigurnosti i upravljanja [9]:

- Javni oblak Čitava infrastruktura se nalazi kod kompanije koja nudi servris računarstva u oblaku.
- Privatni oblak Sopstveno hostovanje čitave računarske infrastrukture bez deljenja.
 Bezbednost i kontrola je u najvećem nivou prilikom korišćenja privatne mreže.
- **Zajednički oblak** Zajednički oblak se deli između organizacija sa zajedničkim ciljem ili koje spadaju unutar specifične zajednice.
- **Hibridni oblak** Korišćenje i privatnih i javnih oblaka u zavisnosti od svrhe. Najbitnije aplikacije hostuješ sam da bi bile sigurnije dok manje bitne aplikacije se hostuju drugde.

Postoje tri osnovna tipa računarstva u oblaku (slika 2.6)[10]:

- 1. **Softver kao usluga**, SaaS (engl. *Software as a Service*)
- 2. **Platforma kao usluga**, PaaS (engl. *Platform as a Service*)
- 3. Infrastruktura kao u sluga, Iaas (engl. Infrastructure as a Service)

Slika 2.6: Razlike između prava pristupa između tri tipa računarstva u oblaku

Jedan od glavnih razloga sve veće popularnosti računarstva u oblaku su smanjeni troškovi ulaganja u računarsku infrastrukturu. [8]

2.5 HEFT algoritam

HEFT je opšte-prihvaćen algoritam za raspoređivanje zadataka predstavljenim kroz DAG na heterogene procesore. Algoritam se sastoji od dve faze. Prva faza rangira zadatke dok druga odabira procesore na koje će se zadaci izvršavati. Algoritam je relativno male kompleksnosti i veoma je efikasan u poređenju sa ostalim algoritmima. [12]

Rangiranje zadataka - u prvoj fazi svakom zadatku se određuje prioritet. Prioritet zadatka n_i se određuje rekurzivnom formulom [13]:

$$rank_u(n_i) = \overline{w_i} + \underbrace{\max_{n_j \in succ(n_{i)}} \left(\overline{c_{i,j}} + rank_u(n_j) \right)}_{}$$

 $rank_u(n_i)$ predstavlja kvantitativnu meru prioriteta zadatka i, n_i predstavlja i-ti zadatak, w_i predstavlja srednju cenu obrade zadatka i na svim procesorima, $succ(n_i)$ je set svih zadataka koji zavise od n_i , $\overline{c_{i,j}}$ je srednja cena komunikacije između zadatka i i j. Iz formule se može primetiti da $rank_u(n_i)$ zavisi od vrednosti rank-a svoje dece $(rank_u(n_j), n_j \in succ(n_i))$ te je poželjno zarad ubrzanja računati od kraja grafa vrednosti prioriteta.

Odabiranje procesora – u drugoj fazi se vrši raspodela zadataka na procesore. Sada kada je za sve zadatke određen prioritet razmatramo i raspoređujemo svaki, počev od zadataka sa najvećim prioritetom. Zadatak sa najvećim prioritetom, za koji su svi zadaci od kojih zavisi obrađeni se raspoređuje na procesor koji će za rezultat dati najkraće vreme izvršavanja trenutnog zadatka. Na takav način raspoređujemo sve zadatke dok graf nije potpuno raspoređen i svaki zadatak ima procesor na koji je raspoređen. Problem sa ovim pristupom raspoređivanja je to što je ovakav pristup pohlepan i nije moguće žrtvovati kratkotrajno ubrzanje zarad dugoročnih beneficija i celokupnog kraćeg izvršavanja.

HEFT algoritam ima $O(n^2 \cdot m)$ kompleksnost za n zadataka na m procesora [14], što je relativno mala kompleksnost naspram drugih algoritama.

3. Analiza rešenja

Raspoređivanje zadataka ima za cilj da smanji cenu i/ili vreme izvršavanja zadataka, te je potrebno proceniti vreme izvršavanja zadataka na različitim procesorima, koliko obrada košta kao i zavisnost zadataka. Potrebno je definisati algoritam koji će na osnovu ulaznih podataka i dobijenog rasporeda zadataka izračunati cenu i vreme za izvršavanje zadataka. Ta dva podatka su neophodna za primenu genetskog algoritma i algoritma za dupliciranje zadataka.

Navedena dva algoritma su deo raspoređivača koji treba da prema zadatim parametrima optimalno raspodele zadatke po procesorima.

3.1 Ulazni podaci

Minimalan skup ulaznih podataka koje je potrebno generisati ili definisati za simulaciju, odnosno prikupiti za realan sistem su:

- Usmereni aciklični graf koji sadrži skup zadataka i ivica i predstavlja zavisnost zadataka
- ETC tabela koja sadrži procenjeno vreme izvršavanja zadatka v_x na svim dostupnim procesorima
- VMbase vrednost na osnovu koje se računa cena izvršavanja zadatka v_x na zadatom procesoru
- Podešavanje težina da se odredi koji kriterijum (cena i vreme izvršavanja) je bitniji i u kojoj meri prilikom traženja optimalne raspodele

3.1.1 Usmereni aciklični graf

Raspoređivač zadataka opisan u radu koristi usmeren aciklični graf kao ulazni podatak. DAG (usmeren aciklični graf) predstavlja zavisnost između zadataka, a veze između čvorova cenu komunikacije između zadataka. Na slici 7 je prikazan usmereni aciklični graf koji je korišćen za testiranje implementacije [2].

Slika 3.1: Primer usmerenog acikličnog grafa sa zadacima korišćen za testiranje implementacije

Cena komunikacije se odnosi na vreme razmene podataka između dva zadatka koji se izvršavaju na različitim procesorima. U radu je usvojeno da je cena komunikacije između dva zadatka na istom procesoru 0.

3.1.2 ETC tabela

ETC tabela (engl. *Expected Time To Complete*) definiše pretpostavljeno vreme izvršavanja zadatka v_x na zadatom procesoru p_x .

v_x	P1	P2	Р3
V1	14	16	9
V2	13	19	18
V3	11	13	19
V4	13	8	7
V5	12	13	10
V6	13	16	9
V7	7	15	11
V8	5	11	14
V9	18	12	20
V10	21	7	16

Tabela 3.1: Primer ETC tabele korišćen za testiranje implementacije

Na osnovu navedenog primera (Tabela 1) primetno je da najbrži procesor ne izvršava sve zadatke za najkraće vreme, već vreme izvršavanja zavisi od zadatka. Neki zadaci su bolje optimizovani za određene procesore te se na njima izvršavaju za kraće vreme.

3.1.3 VMbase

Određivanje cene računarskih usluga u oblaku je bazirano na Google-ovom modelu naplate računarskih resursa [15].

$$VM_{cost}(p_x) = VM_{base} \times exp^{Rbase}$$

U prethodnoj jednačini, VM_{base} je cena za najjeftiniji procesor (P_{base}) , dok R_{base} predstavlja odnos između najjeftinijeg procesora P_{base} i procesora p_x . VM_{cost} predstavlja cenu korišćenja procesora p_x po sekundi korišćenja.

3.1.4 Podešavanje težina

Težine određuju odnos prioriteta, odn. da li je bitnije kraće vreme izvršavanja ili ušteda na troškovima i u kojoj meri. Koriste se u narednoj formuli fitnes funkcije o kojoj će biti više reči u poglavlju 3.3.2 [2]:

$$F = \omega \cdot \frac{T_{max} - T}{T_{max} - T_{min}} + (1 - \omega) \cdot \frac{C_{max} - C}{C_{max} - C_{min}}$$

Težina ω predstavlja kvantitativnu meru prioriteta raspoređivanja u korist kraćeg vremena izvršavanja, dok $(1-\omega)$ predstavlja prioritet raspoređivanja za što manje troškove. Težina ω je limitirana da bude između vrednosti 0 i 1.

3.2 Algoritam za računanje cene i ukupnog vremena izvršavanja DAG-a

Kao što je prethodno navedeno usmereni aciklični graf (DAG) se sastoji od zadataka i ivica koje predstavljaju usmerene veze. U nastavku rada DAG će biti predstavljen kao $G = \{V, E, W, C\}$ gde $V = \{v_x \mid x \in [1, n]\}$ predstavlja skup zadataka, $E = \{e_{ij} \mid e_{ij} = (v_i, v_j) \land v_i, v_j \in V\}$ $\subseteq V$ x V je skup ivica koje ukazuju na zavisnost zadataka, $W = \{w_i \mid w_i \in N\}$ takav da w_i određuje prosečno vreme izvršavanja zadatka v_i i $C = \{C(e_{ij}) \mid e_{ij} \in E\}$ određuje cenu komunikacije između zadataka. Kao što je prethodno napomenuto, ako se zadatak v_i izvršava na istom procesoru kao njegov prethodnik v_j onda je cena komunikacije između njih 0 ($C(e_{ij}) = 0$). Tabela koja sadrži pretpostavljeno vreme izvršavanja zadataka (ETC) je kreirana na osnovu formule [16]:

$$ETC(i,j) = \frac{MITask_j}{Capacity_i}$$

gde $MITask_j$ predstavlja dužinu zadatka v_j , a $Capacity_i$ računarski kapacitet procesora p_i .

Da bi se izračunalo ukupno vreme izvršavanja svih zadataka i ukupna cena potrebno je da odrediti početak (*st*) i kraj (*ft*) izvršavanja svih zadataka.

$$\begin{split} st(v_i, p_k) &= \max \left\{ ava(p_k), \underbrace{\max_{v_j \in pred(v_i)}} \left(ft \left(v_j, p_k \right) + C(e_{ji}) \right) \right\} \\ & ft(v_i, p_k) = st(v_i, p_k) + ETC(k, i) \end{split}$$

Na osnovu dve navedene formule [2] moguće je odrediti početno i krajnje vreme izvršavanja zadataka, $ava(p_k)$ se odnosi na završno vreme poslednjeg zadatka dodeljenog procesoru p_k , $pred(v_i)$ na listu prethodnika zadatka v_i , a $succ(v_i)$ označava listu sledbenika zadatka v_i .

Da bi se primenile navedene formule potrebno je proći kroz celi DAG krenuvši od korena, odnosno prvog zadatka. Prolazak kroz graf mora se obavljati po nivoima, tako da bi jedan od mogućih redosleda prolaska kroz graf sa slike 3.1 izgledao ovako:

3.2.1 Određivanje ukupnog vremena izvršavanja zadataka

Ukupno vreme izvršavanja zadataka se dobija određivanjem vremena završetka poslednjeg zadatka V_{exit} .

$$totalTime = ft(V_{exit}, p_{exit})$$

Procesor na kom se V_{exit} izvršava se određuje genetskim algoritmom.

3.2.2 Određivanje cene računarskih usluga u oblaku zadataka

Kao što je već napomenuto određivanje cene računarskih usluga u oblaku je bazirano na Google-ovom modelu naplate računarskih resursa [15].

Da bi se izračunala ukupna cena prvo je potrebno da izračunati cenu računarskih usluga u oblaku za svaki zadatak prema formuli:

$$cost(v_i, p_j) = VM_{cost}(p_j) \times ETC(v_i, p_j)$$

 VM_{cost} predstavlja cenu korišćenja procesora p_j po sekundi korišćenja, dok $ETC(v_i, p_j)$ određuje dužinu izvršavanja zadatka v_i na procesoru p_j . Kada se saberu sve cene dobijamo ukupnu cenu računarskih usluga u oblaku:

$$totalCost = \sum_{i} cost(v_i, p_j)$$

3.3 Algoritam za određivanje prioriteta

Za dati graf lista zadataka može da se napravi na osnovu prioriteta zadataka u opadajućem redosledu sa poštovanjem dubine. Brojna vrednost prioriteta zadatka se dobija na osnovu formule:

$$SL(v_i) = \propto \cdot OD(v_i) \times SL'(v_i) + \beta \cdot B(v_i)$$

gde je $OD(v_i)$ broj prethodnika zadatka v_i , a $B(v_i)$ je suma cene komunikacije između zadatka v_i i njegovih naslednika. \propto i β predstavljaju težine, dok se vrednost $SL'(v_i)$ dobija iz formule rangiranja zadataka HEFT algoritma iz poglavlja 2.5.

Algoritam za raspoređivanje zadataka na bazi mašinskog učenja

Modifikovan genetski algoritam je primenjen za optimizaciju rasporeda zadataka. U daljem tekstu opisani su detalji ovog algoritma.

3.4.1 Hromozom

Hromozom je predstavljen nizom brojeva veličine N, gde je N broj zadataka koje je potrebno rasporediti. Svaki broj u nizu može imati vrednost od 1 do M, gde je M broj procesora. Brojevi u nizu su povezani sa zadacima redosledom od v_1 do v_n , tako da recimo treći element u nizu se uvek odnosi na zadatak v_3 , a sam broj elementa nam daje informaciju na kom procesoru se izvršava konkretni zadatak.

Primer hromozoma za DAG sa slike 3.1 (pod uslovom da postoje 3 procesora) je:

$$\{1, 2, 3, 2, 1, 3, 2, 1\}$$

3.4.2 Inicijalizacija i fitnes funkcija

Za inicijalne hromozome u prvoj generaciji koristi se nasumičan raspored gena (procesora). To znači da je svaki hromozom popunjen nizom slučajnih brojeva od 1 do M.

Kako bi algoritam bio konfigurabilan potrebno je normalizovati fitnes funkciju tako da zavisi od cena usluge u oblaku i/ili vremena izvršavanja zadatka:

$$F = \omega \cdot \frac{T_{max} - T}{T_{max} - T_{min}} + (1 - \omega) \cdot \frac{C_{max} - C}{C_{max} - C_{min}}$$

Parametar T označava vreme izvršavanja zadataka za zadatu jedinku, a T_{max} i T_{min} maksimalno i minimalno vreme izvršavanje zadataka u populaciji. Analogno, C označava cenu usluga oblaka, a C_{max} i C_{min} maksimalnu i minimalnu cenu usluga računarskog oblaka u populaciji [2].

Kao što je već napomenuto konstanta ω definiše odnos između vremena izvršavanja i cene usluga i tako čini raspoređivač konfigurabilnim za različite primene.

3.4.3 Prilagođen genetski algoritam

Standardni genetski algoritmi koriste operacije odabiranja, ukrštanja i mutacije. Pored navedenih operacija genetski algoritam sa više populacija koristi i operaciju migracije elitnih jedinki.

3.4.3.1 Odabiranje jedinki za sledeću generaciju

Svaka generacija se sastoji od NIND jedinki. Iz svake generacije bira se određeni broj jedinki koji će biti kopiran u narednu generaciju. Očekivan broj da će *i*-ta individua postojati u sledećoj generaciji se dobija iz sledeće formule:

$$N_i = NIND \cdot \frac{F_i}{\sum F_i}$$

 N_i predstavlja jedinku sa indeksom i, F_i predstavlja fitnes i-te jedinke, a $\sum F_i$ sumu svih fintesa jedinki unutar populacije. Dalje je potrebno odrediti vrednost N_i za sve jedinke unutar populacije, pa potom sortirati individue na osnovu ostatka vrednosti njihovih N_i . Kada se to uradi dodaje se prvih $NIND - \sum_{i=1}^{NIND} [N_i]$ individua iz sortiranog niza u sledeću generaciju. Ostatak populacije sledeće generacije dobija se ukrštanjem.

3.4.3.2 Ukrštanje jedinki

Kako bi se unapredila efikasnost pretrage primenjeno je ukrštanje jedinki. Verovatnoća da se ukrštanje obavi na jedinkama je [2]:

$$P_{c} = \begin{cases} k1 * \frac{f_{max} - f'}{f_{max} - f_{avg}}, & f' \ge f_{avg} \\ k2 & , & f' < f_{avg} \end{cases}$$

gde je f' veća vrednost fitnes funkcije od dva hromozoma koji se ukrštaju, f_{max} maksimalna vrednost fitnes funkcije u populaciji, f_{avg} prosečna vrednost u populaciji. Vrednosti k1 i k2 su empirijski utvrđene, a prilikom testiranja korišćene vrednosti su 0,6 i 0,8 [2].

Ukoliko je uslov ispunjen nova jedinka se kreira tako što se od prve jedinke uzme nasumična početna tačka ukrštanja i nasumična dužina gena za ukrštanje i taj nasumično određen deo se prekopira preko raspodele koju je druga jedinka imala za te zadatke. Na primer, ako jedinka 1 izgleda ovako:

$$\{1, 2, 3, 2, 1, 3, 2, 1\}$$

Nasumičnim određivanjem se može dobiti da deo za ukrštanje počne od drugog elementa i da je dužina dela za ukrštanje prve jedinke 3, time se dobija ovakav isečak.

$${X, 2, 3, 2, X, X, X, X}$$

X predstavlja neodređen element isečka koji treba da se dobije od druge jedinke.Ako jedinka 2 izgleda ovako:

$${3, 3, 3, 3, 3, 3, 3, 3}$$

Spajanjem dela za ukrštanje prve jedinke i druge jedinke dobija se njihovo dete i ono bi izgledalo ovako:

$${3, 2, 3, 2, 3, 3, 3, 3}$$

3.4.3.3 Mutacije na jedinkama

Mutacija na jedinkama je još jedna od tehnika kako bi se poboljšala pretraga minimuma. Mutacija se dešava samo na novo-ukrštenim jedinkama kako se poželjna rešenja ne bi "zagadila". Verovatnoća da se izvrši mutacija nad jednim genom u hromozomu je:

$$P_{m} = \begin{cases} k3 * \frac{f_{max} - f}{f_{max} - f_{avg}}, & f \ge f_{avg} \\ k4, & f < f_{avg} \end{cases}$$

Gde je *f* vrednost fitnes funkcije mutirane jedinke. Vrednosti *k3* i *k4* su empirijski utvrđene, a prilikom testiranja korišćene vrednosti su 0,1 i 0,05 [2].

3.4.3.4 Migracija elitnih jedinki

Na svakih 7 generacija dešava se migracija najbolje jedinke iz svih populacija u populacije u kojima se ne nalazi kako bi se donela raznovrsnost u populacije i sprečilo prerano zaglavljivanje unutar lokalnih minimuma. Preciznije, prave se kopije najbolje jedinke svih populacija i dodaju se kao član populacije koje je ne sadrže umesto najnepoželjnije jedinke unutar populacije.

3.5 Unapređen algoritam za dupliciranje zadataka

Nakon što su zadaci raspoređeni pomoću genetskog algoritma može se primeniti algoritam za dupliciranje zadataka. Ovaj algoritam popunjava praznine nastale raspoređivanjem zadataka, vremenske praznine (engl. *Slot*) kada procesor ne obrađuje zadatake, kopiranjem zadataka. Kopiranje zadataka u prazne slotove dovodi do smanjenja ukupnog izvršavanja zadataka, jer se izbegava komunikacija između različitih procesora.

Pretpostavimo da se zadatak v_i izvršava na procesoru p_k i da je prethodnik zadatka v_i zadatak v_j koji se ne izvršavana na procesoru p_k . Pod uslovom da se poštuje redosled izvršavanja zadataka dupliciranje zadataka će se uzeti u obzir ako su ispunjeni sledeći uslovi:

$$slot(v_i, p_k) \ge ETC(v_j, p_k) \&\& ft(v_j, p_k) < st(v_i, p_k)$$

Odnosno, dupliciranje prethodnika v_j za procesor p_k će se uzeti u obzir kada je slot na procesoru p_k pre zadatka v_i veći od potrebnog vremena izvršavanja zadatka v_j na procesoru p_k i kada je kraj izvršavanja zadatka v_j na procesoru p_k pre početka izvršavanja zadatka v_i na procesoru p_k .

Prevelik broj dupliciranja zadataka može dovesti do velikog povećanja cene računarskih usluga u oblaku. Iz tog razloga bitno je ograničiti dupliciranje zadataka ako značajno uvećava troškove. Uslov isplativosti dupliciranja zadataka je dat formulom:

$$-\frac{\Delta cost}{\Delta time} < k \cdot Maxprice$$

gde $\Delta cost$ i $\Delta time$ predstavljaju razliku u koštanju i vremenu izvršavanja zadataka nastalu prilikom dupliciranja konkretnog zadatka. *Maxprice* označava maksimalnu cenu naplaćenu za procesore, a k je koeficijent koji se može izračunati formulom:

$$k = \left(\frac{\omega}{1 - \omega}\right)^2$$

Algoritam za dupliciranje zadataka je konfigurabilan promenom vrednosti ω , a prilikom testiranja korišćena je vrednost 0,25 [2].

4. Implementacija

Algoritmi i aplikacija za testiranje algoritama su implementirani u programskom jeziku Python. Pored ugrađenih Python biblioteka korišćena je i "Graphviz" biblioteka za vizualizaciju grafova.

Sledi tabela sa spiskom svih datoteka korišćenih pri implementaciji programskog rešenja. Uz svaku datoteku dat je kratak opis sadržaja u njoj.

Ime datoteke	Sadržaj
GraphClass.py	Definicija klase grafa, klase zadatka i klase
	ivica
GraphFunctions.py	Funkcije vezane za rad grafa
MakeGraphVariations.py	Spisak različitih ručno iskucanih grafova
	korišćeni za merenja
MakeGraphVariationsTest.py	Spisak različitih ručno iskucanih grafova za
	korišćenje prilikom jediničnog testiranja
PriorityDefinition.py	Funkcije vezane za određivanje prioriteta
	zadataka i raspodelu zadataka po
	prioritetima unutar grafa
GraphPreprocessing.py	Funkcije vezane za pretprocesiranje grafa
DrawGraph.py	Funkcije vezane za vizualizaciju grafa
ProcessorClass.py	Definicija klase procesora

ProcessorFunctions.py	Funkcije vezane za rad klase procesora
TaskDuplicationFunctions.py	Funkcije vezane za duplikaciju zadataka
GeneticAlgorithmClasses.py	Definicija klasa vezanih za genetski
	algoritam (Population, MultiPopulation)
GeneticAlgorithmFunctions.py	Funkcije vezane za genetski algoritam
GeneticOperations.py	Funkcije vezane za genetske operacije
PopulationInitialization.py	Funkcije vezane za inicijalizaciju populacije
	genetskog algoritma
Test_GraphPreprocessing.py	Jedinično testiranje za funkcije unutar
	GraphPreprocessing modula
Test_PriorityDefinition.py	Jedinično testiranje za funkcije unutar
	PriorityDefinition modula
Test_ProcessorFunctions.py	Jedinično testiranje za funkcije unutar
	ProcessorFunctions modula
Test_TaskDuplication.py	Jedinično testiranje za funkcije unutar
	TaskDuplication modula

Tabela 4.1: Tabela svih datoteka

4.1 Klase

U daljem tekstu slede tabele sa spiskom svih naziva i tipova polja korišćenih unutar određenih klasa.

4.1.1 Klasa graf

Klasa graf(*engl. Graph*) je zamišljena tako da obuhvati sve parametre i informacije vezane za jednu individuu unutar populacije. Ova klasa jasno definiše šta je individua i sve informacije bitne zarad procenjivanja njenog fitnesa.

Naziv polja	Tip polja
V	Lista referenci zadataka tipa klase Vertex

Е	Lista referenci ivica tipa klase Edge
P	Lista referenci procesora tipa klase
	Processor
fitness	double
totalTime	int
cost	double
selectionNumber	double

Tabela 4.1.1: Tabela polja klase graf

4.1.2 Klasa zadatka

Klasa zadatka(engl. *Vertex*) je zamišljena tako da obuhvati sve parametre i informacije vezane za zadatak unutar grafa. Ova klasa jasno definiše sve informacije bitne grafu vezane za zadatak, informacije kao kada je početak i kraj izvršavanja, koji su mu prethodnici i naslednici, na kojoj je dubini i slično.

Naziv polja	Tip polja
val	String
weight	int
processor	Referenca na procesor tipa klase Processor
startTime	int
finishTime	int
priority	int
cost	double
successors	Lista referenci zadataka tipa klase Vertex
predecessors	Lista referenci zadataka tipa klase Vertex
depth	int
preprocessed	int
appendedVertexList	Lista referenci zadataka tipa klase Vertex

Tabela 4.1.2: Tabela polja klase zadatka

4.1.3 Klasa ivice

Klasa ivice(engl. *Edge*) je zamišljena da beleži informacije vezane za usmerenost zadataka unutar grafa. Ova klasa definiše u kakvom su odnosu zadaci. First parametar unutar klase označava koji graf je prethodnik, a second parametar govori ko je naslednik prethodnika first. Pomoću liste svih ivica se vodi evidencija o usmerenosti čitavog grafa.

Definicija klase:

Naziv polja	Tip polja	
first	Referenca na zadatak tipa klase Vertex	
second	Referenca na zadatak tipa klase Vertex	

Tabela 4.1.3: Tabela polja klase ivice

4.1.4 Klasa procesor

Klasa procesor(engl. *Processor*) služi da beleži procesorsku moć određenog procesora, da mu da ime i da beleži njegovu zauzetost odnosno koji zadaci su raspoređeni na njega.

Definicija klase:

Naziv Polja	Tip Polja
taskList	Lista referenci na zadatke tipa klase Vertex i
	slotove tipa klase Slot
capacity	double
val	String

Tabela 4.1.4: Tabela polja klase procesor

4.1.5 Klasa slot

Klasa slot služi da beleži slobodno vreme na procesoru, parametri su mu početak slobodnog vremena na procesoru, kraj slobodnog vremena na procesoru i da li treba da se naplati vreme trajanja slota.

Naziv polja	Tip polja
startTime	int
finishTime	int

noCost	int
val	String

Tabela 4.1.5: Tabela polja klase slot

4.1.6 Klasa populacije

Klasa populacije(engl. *Population*) služi da sadrži listu svih grafova unutar jedne populacije i da beleži relevantne informacije vezane za fitnes, trajanje i cenu svih grafova unutar populacije, informacije tipa maxTime, minTime, fitnessAverage i slično.

Definicija klase:

Naziv polja	Tip polja
individualList	Lista referenci na grafove tipa klase Graph
maxTime	int
minTime	int
maxCost	double
minCost	double
fitnessSum	double
fintessAverage	double
fittestIndividual	Referenca na graf tipa klase Graph

Tabela 4.1.6: Tabela polja klase populacije

4.1.7 Klasa multipopulacije

Klasa multipopulacije(engl. Multipopulation) služi da sadrži listu svih populacija unutar sebe i da beleži relevantne informacije za fitnes, trajanje i cenu svih grafova unutar populacija.

Naziv polja	Tip polja	
populationList	Lista referenci na populacije tipa klase	
	Population	
fittestIndividual	Referenca na graf tipa klase Graph	
numberOfGenerations	int	

maxTime	int
minTime	int
maxCost	double
minCost	double

Tabela 4.1.7: Tabela polja klase multipopulacije

4.2 Moduli

U daljem tekstu slede tabele sa spiskom svih funkcija korišćenih unutar određenih modula. Uz svaku funkciju dat je kratak opis, ulazni i izlazni tipovi podataka.

4.2.1 Modul GraphFunctions.py

Modul GraphFunctions.py služi da združi sve bitne funkcije vezane za operisanje grafa u jednu celinu, kao što su funkcije za nalaženje prethodnika i naslednika zadataka, rad sa ivicama i funkcije za ažuriranje svih relevantnih informacija u grafu.

Definicija modula:

Naziv funkcije	Opis funkcije	Ulazni tipovi	Izlazni tipovi
getInDegrees	Vraća listu svih ulaznih ivica	Graph, Vertex	Lista ulaznih ivica
	zadatka		zadatka tipa klase
			Vertex
getOutDegrees	Vraća listu svih izlaznih ivica	Graph, Vertex	Lista izlaznih
	zadatka		ivica zadatka tipa
			klase Vertex
getEdgeWeight	Vraća težinu ivice između	Graph, Vertex,	int
	prvog i drugog prosleđenog	Vertex	
	zadatka, ako nemaju ivicu		
	zajedničku prvi i drugi		
	zadatak aplikacija se završava		
	sa exit(1)		

getAllSuccessors	Vraća listu svih naslednika zadatka (prazna lista mora biti prosleđena kao treći parametar)	Vertex, Graph, List	Lista naslednika zadatka tipa klase Vertex
getAllPredecessors	Vraća listu svih prethodnika zadatka (prazna lista mora biti prosleđena)	Vertex, Graph, List	Lista prethodnika zadatka tipa klase Vertex
updateSuccessors	Ažurira sve naslednike zadataka unutar grafa	Graph	Nema izlaza
updatePredecessors	Ažurira sve prethodnike zadataka unutar grafa	Graph	Nema izlaza
printGraph	Ištampa graf na standardni izlaz, to jest imena zadataka, težina zadataka i kako su spojeni ivicama	Graph	Nema izlaza
updateGraph	Ažurira sve relevantne informacije vezane za graf i zadatke u njemu	Graph	Nema izlaza
totalTime	Vraća ukupnu dužinu trajanja grafa	Graph	int
removeEdge	Briše ivicu između prvog i drugog zadatka koji su prosleđeni iz liste ivica grafa	Graph, Vertex, Vertex	Nema izlaza

Tabela 4.2.1: Tabela funkcija modula GraphFunction.py

4.2.2 Modul PriorityDefinition.py

Modul PriorityDefinition.py služi da združi sve bitne funkcije vezane za određivanje i sortiranje zadataka po prioritetima unutar grafa.

Definicija modula:

Naziv funkcije	Opis funkcije	Ulazni	Izlazni
		tipovi	tipovi
priorityDefinition	Definiše prioritet za svaki zadatak na	Graph	Nema izlaza
	osnovu formule iz poglavlja 3.3 i sortira		
	zadatke u opadajućem redosledu u		
	odnosu na prioritet		
priorityDefinitionHeft	Vraća vrednost prioriteta HEFT	Graph,	int
	algoritma za rangiranje zadataka na	Vertex	
	osnovu formule iz poglavlja 2.5		
heftHelperFunction	Pomoćna funkcija za	Graph,	int
	priorityDefinitionHeft, ne treba se	Vertex	
	koristiti van poziva unutar te funkcije		
communicationCostOf	Vraća sumu cena komunikacije između	Graph,	int
Succesors	prosleđenog zadatka i njegovih	Vertex	
	naslednika		
getWeight	Proverava da li su dva zadatka na istom	Graph,	int
	procesoru, ako nisu vraća vrednost	Vertex,	
	težine njihove ivice, ako jesu vraća 0	Vertex	
defineGraphDepth	Definiše dubinu za svaki zadatak unutar	Graph,	Nema izlaza
	grafa, zadaci sa 0 prethodnika su na	Vertex	
	dubini 0, za ostale zadatke se poziva		
	graphDepthHelperFunction da se odredi		
	njihova dubina		
graphDepthHelperFunc	Pomoćna funkcija za defineGraphDepth.	Int,	Nema izlaza
tion	Inkrementira brojač dubine, pa dodeljuje	Graph,	
	dubinu naslednicima ulaznog zadatka pa	Vertex	
	potom se rekurzivno poziva za		
	naslednike ulaznog zadatka		

sortGraphByPriority	Sortira zadatke grafa na osnovu	Graph	Nema izlaza
	prioriteta zadataka		

Tabela 4.2.2: Tabela funkcija modula PriorityDefinition.py

4.2.3 Modul GraphPreprocessing.py

Modul GraphPreprocessing.py je početak zalaženja u potencijalnu optimizaciju genetskog algoritma, ali se u trenutnom stanju ne koristi za krajni rezultat rada. Zadaci koji imaju samo jedan izlaz i čiji izlaz pokazuje na zadatak koji ima samo jedan ulaz mogu da se spoje u jedan zadatak, ideja je bila spojiti ovako sve zadatke koji se mogu spojiti i smanjiti ukupan broj zadataka grafa i time umanjiti trajanje rada genetskog algoritma.

Naziv funkcije	Opis funkcije	Ulazni tipovi	Izlazni tipovi
simplifyGraph	Za svaki zadatak u grafu proveri da li ima	Graph	Nema izlaza
	samo jednu izlaznu ivicu i ako ima da		
	proveri da li zadatak u koji ulazi ta izlazna		
	ivica ima samo jednu ulaznu ivicu, ako je		
	i taj uslov ispunjen spoj zadatke u jedan		
	zadatak i ažuriraj graf		
combineVertex	Pomoćna funkcija za simplilfyGraph, ne	Vertex,	Nema izlaza
	treba da se koristi van poziva unutar te	Vertex,	
	funkcije. Prespoji ulazne ivice prvog	Graph	
	zadatka da ulaze u drugi zadatak, dodaj		
	vreme procesiranja prvog zadatka na		
	vreme procesiranja drugog zadatka i		
	izbriši sve ivice sa prvim zadatkom iz		
	grafa i izbriši prvi zadatak iz grafa		

Tabela 4.2.3: Tabela funkcija modula GraphPreprocessing.py

4.2.4 Modul DrawGraph.py

Modul DrawGraph.py služi za vizualizaciju grafova, na ulaz poziva funkcija unutar modula stavi se graf i adresa direktorijuma u kom želi da se sačuva slika u pdf formatu pa posle rada aplikacije se mogu videti rezultati na zadatoj lokaciji.

Definicija modula:

Naziv funkcije	Opis funkcije	Ulazni tipovi	Izlazni
			tipovi
drawGraph	Nacrta graf i kako su spojeni zadaci	Graph, String	Nema izlaza
	ivicama, ispiše imena zadataka i bitne		
	informacije vezane za zadatke i težinu		
	ivica		
drawAllGraphs	Prolazi kroz sve grafove unutar	int	Nema izlaza
	MakeGraphVariations.py modula i		
	nacrta ih		
drawMpGraphs	Prolazi kroz sve populacije i sve	MultiPopulation	Nema izlaza
	individue unutar populacija unutar		
	jedne multipopulacije i nacrta ih		

Tabela 4.2.4: Tabela funkcija modula DrawGraph.py

4.2.5 Modul ProcessorFunctions.py

Modul ProcessorFunctions.py služi da združi sve bitne funkcije vezane za procesor u jednu celinu, kao što su funkcije za popunjavanje liste zadataka procesora, pravljenje slotova i ažuriranje svih relevantnih informacija za procesor.

Naziv funkcije	Opis funkcije	Ulazni tipovi	Izlazni tipovi
startTime	Računa početno vreme	Graph,	int
	izvršavanja zadatka na	Vertex	
	osnovu formule iz poglavlja		
	3.2		

predecessorTime	Izračunava trenutak dospeća	Graph,	Lista int-a
	prethodnih zadataka	Vertex	
	trenutnom zadatku i vraća		
	listu vremena dospeća		
finishTime	Računa kranje vreme	Graph,	int
	izvršavanja zadatka na	Vertex	
	osnovu formule iz poglavlja		
	3.2		
calculateETC	Računa pretpostavljeno	int, int	double
	vreme trajanja zadatka na		
	određenom procesoru u		
	slučaju da ne postoji ETC		
	tabela, ne koristi se za rad već		
	je bila funkcija za testiranje		
	koda. Za rad se koristi		
	calculateRealETC funkcija i		
	ETC tabele		
calculateRealETC	Računa pretpostavljeno	int, int	int
	vreme trajanja zadatka na		
	osnovu imena zadatka i		
	procesora na kom se izvršava		
	kao lookup za ETC tabelu		
communicationCost	Izračunava cenu	Graph,	int
	komunikacije između dva	Vertex,	
	zadatka, ako su na istom	Vertex	
	procesoru zadaci ta vrednost		
	je 0, ako nisu nalazi se		
	njihova ivica i iščita se		
	vrednost težine ivice		

availableProcessorForTask	Vraća vreme kraja izvršavanja	Graph,	int
	poslednjeg zadatka u listi	Vertex	
	zadataka za izvršavanje na		
	procesoru		
updateStartTime	Ažurira početno vreme	Graph	Nema
	izvršavanja zadataka za sve		izlaza
	zadatke unutar Grafa		
updateFinishTime	Ažurira kranje vreme izvršavanja	Graph	Nema
	zadataka za sve zadatke unutar		izlaza
	Grafa		
vmCost	Računa cenu virtuelne mašine po	Processor	Nema
	jedinici vremena		izlaza
addSlot	Dodaje element tipa klase Slot u	Processor	Nema
	listu zadataka pre poslednjeg		izlaza
	zadatka za vreme kada procesor		
	nema zadatke da izvršava		
addNoCostSlot	Procesorima koji nemaju zadatak	Processor	Nema
	u listi zadataka na samom		izlaza
	početku izvršavanja dobijaju		
	element Slot sa NoCost		
	parametrom otkačenim kao		
	istinitim (kao znak da se ne		
	naplaćuje to vreme) za svoj prvi		
	element koji traje od početka		
	programa do prvog zadatka u		
	listi zadataka tog procesora.		
	Potrebno je zbog duplikacije		
	zadataka		

cost	Izračunava cenu izvršavanja svih	Processor,	Nema
	zadataka i slotova na određenom	Vertex	izlaza
	procesoru		
totalCost	Izračunava ukupnu cenu	Processor	double
	izvršavanja svih zadataka grafa		
	sa uračunatom cenom slotova		
updateProcessorTaskList	Ažurira liste zadataka svih	Graph	Nema
	procesora posle sortiranja		izlaza
	zadataka po prioritetu		
updateProcessorInfo	Ažurira sve informacije vezane	Graph	Nema
	za procesore		izlaza
addLastWeightCost	Dodaje trajanje komunikacije	Graph	Nema
	između procesora posle		izlaza
	izvršavanja poslednjeg zadatka		
	procesora kao Slot koji se		
	naplaćuje na listu zadataka		
	procesora (U slučaju da ima		
	komunikacije)		
getHighestEdgeWeight	Vraća najveću težinu ivice	Graph,	int
	između prosleđenog zadatka i	Vertex	
	njegovih naslednika		
setTimeToNone	Postavlja startTime i finishTime	Graph	Nema
	polja svih zadataka unutar grafa		izlaza
	na None		

Tabela 4.2.5: Tabela funkcija modula ProcessorFunctions.py

4.2.6 Modul TaskDuplicationFunctions.py

Modul TaskDuplicationFunctions.py služi da združi sve bitne funkcije vezane za duplikaciju zadataka u jednu celinu, glavna funkcija modula je taskDuplication dok su ostale funkcije samo pomoćne funkcije funkciji taskDuplication.

Naziv funkcije	Opis funkcije	Ulazni	Izlazni
		tipovi	tipovi
taskDuplication	Prolazi kroz sve zadatke Grafa i	Graph	Nema
	razmatra potencijalno dupliciranje		izlaza
	zadatka u slučaju da je to moguće.		
	Dupliciran zadatak mora da zadovolji		
	određeni kriterijum poželjnosti da bi se		
	prihvatio i trajno ubacio u raspored		
	zadataka grafa		
sortPredecessorsBy	Sortira prethodnike ulaznog zadatka na	Graph,	Lista
ArrivalTime	osnovu vremena dolaska od najkasnijeg	Vertex	prethodnika
	dolaska do najranijeg u novu listu koja		tipa klase
	se vraća kao izlaz funkcije		Vertex
duplicateTask	Pravi duboku kopiju prethodnika i	Graph,	int
	dodeljuje sve relevantne informacije	Vertex,	
	kopiji od prethodnika pa potom vrši	Vertex	
	prepovezivanje ivica na osnovu potreba		
	duplikacije. Kad se završi		
	prepovezivanje vrši se provera da li je		
	nova raspodela zadataka grafa		
	povoljnija nego prethodna raspodela,		
	ako nije graf se vraća na prethodno		
	stanje, ako jeste sačuva se trenutna		
	raspodela grafa za dalji rad. Izlaz		
	funkcije je najraniji startTime		
	duplikovanog zadatka u slučaju da je		
	duplikacija bila povoljna, u slučaju da		
	duplikacija nije bila povoljan vraća		
	startTime od zadatka za koji se		
	razmatrala duplikacija		

duplicateEdges	Pravi kopije ivica svih prethodnika	Graph,	Nema
	zadatka koji se duplicira za	Vertex,	izlaza
	dupliciran zadatak i ako dupliciran	Vertex,	
	zadatak ima naslednike na istom	Vertex	
	procesoru onda briše te ivice sa		
	zadatka koji se duplicira i stavlja ih		
	na dupliciran zadatak		
startTimeOnNewProcessor	Računa najraniji startTime zadatka	Graph,	int
	u slučaju da je procesor promenjen	Vertex,	
		Processor	
predecessorCheck	Proverava da li postoji prethodnik	Graph,	Nema
	koji je već dupliciran za isti	Vetex	izlaza
	procesor i ako postoji prespaja se		
	prethodnik zadatka na kopiju		
	prethodnika zadatka na istom		
	procesoru		
checkIfAllCriteriaIsSatisfied	Proverava da li je kriterijum	Graph,	Boolean
	poželjnosti duplikacije iz poglavlja	Vertex,	
	3.5 zadovoljen	List,	
		List,	
		double,	
		double	
duplicatedTaskAssignment	Dodeljuje neophodnu informaciju	Graph,	Nema
	dupliciranom zadatku od originala	Vertex,	izlaza
	i prethodnika originala	Vertex,	
		Vertex	

Tabela 4.2.6: Tabela funkcija modula TaskDuplicationFunctions.py

4.2.7 Modul GeneticAlgorithmFunctions.py

Modul GeneticAlgorithmFunctions.py služi da združi sve opšte funkcije vezane za genetski algoritam i za ažuriranje populacija i multi-populacija.

Naziv funkcije	Opis funkcije	Ulazni	Izlazni
		tipovi	tipovi
updatePopulationInfo	Ažurira minTime, maxTime, minCost	Population	Nema
	i maxCost za populaciju		izlaza
updateMultiPopulationInfo	Ažurira minTime, maxTime, minCost	MultiPopu	Nema
	i maxCost za multi-populaciju	lation	izlaza
returnFittestIndividual	Vraća najpoželjniju individuu iz svih	MultiPopu	Vertex
	populacija	lation	
fitnessFunction	Određuje fitnes jedinke naspram	Population	double
	populacije na osnovu formule iz	, Graph	
	poglavlja 3.4.2		
updateFitness	Ažurira fitnes svih jedinki multi-	MultiPopu	Nema
	populacije	lation	izlaza
updateSelectionNumber	Ažurira selekcioni broj za sve jedinke	MultiPopu	Nema
	multi-populacije na osnovu formule	lation	izlaza
	iz poglavlja 3.4.3.1		
numberOfSelectionIndivid	Vraća broj jedinki koje će se preneti	Population	int
ualsForPopulation	u sledeću genraciju		
matingPool	Vraća listu jedinki koja se prenosi u	MultiPopu	Lista
	sledeću generaciju, takođe na svakih	lation,	zadataka
	7 generacija dodaje najpoželjniju	Population	tipa
	jedinku iz svih populacija u listu		klase
	jedinki koja se prenosi.		Vertex

Tabela 4.2.7: Tabela funkcija modula GeneticAlgorithmFunctions.py

4.2.8 Modul GeneticOperations.py

Modul GeneticOperations.py služi da združi sve bitne funkcije vezane za operacije genetskog algoritma poput mutiranja jedinke, parenja, kreiranja nove generacije i slično Definicija modula:

Naziv funkcije	Opis funkcije	Ulazni tipovi	Izlazni tipovi
crossover Operation	Vrši ukrštanje jedinki kao što je objašnjeno u poglavlju 3.4.3.2	Population, Graph, Graph	Graph
findProcessorBy Val	Pomoćna funkcija za crossoverOperation funkciju, pronalazi referencu na procesor deteta pomoću imena procesora roditelja	Graph, Graph	Processor
probabilityOf Mutation	Određuje verovatnoću da se desi mutacija jedinke na osnovu formule iz poglavlja 3.4.3.3	Population, Graph	double
probabilityOf Crossover	Određuje verovatnoću da se desi ukrštanje jedinki na osnovu formule iz poglavlja 3.4.3.2	Population, Graph, Graph	double
mutateIndividual	Prolazi kroz gene jedinke i za svaki gen računa verovatnoću mutacije pomoću funkcije probabilityOfMutation i pravi slučajni broj od (0,1), ako je slučajni broj manji od šanse mutacije tada mutiramo gen što znači da promenimo procesor na kom se izvršava odabiranjem procesora na slučajan način iz liste procesora	Population, Graph	Nema izlaza
mate	Nalazi listu jedinki koje se prenose u sledeću generaciju pomoću matingPool funkcije, potom izračuna koliko je preostalo jedinki potrebno da se popuni populacija i njih dobija parenjem jedinki dobijenih matingPool funkcijom. Izlaz funkcije je lista NIND jedinki koje će činiti sledeću genraciju, ako je lista prazna to znači da je populacija konvergirala.	MultiPopulation, Population	Lista zadataka tipa klase Vertex

newGeneration	Pravi novu genreaciju multi-populacije.	MultiPopulation	Nema
	Koristi funkcije matingPool i mate da		izlaza
	izgradi jedinke sledeće generacije pa potom		
	jedinke koje su nastale ukrštanjem podleže		
	mutaciji. Na kraju ažurira informacije		
	vezane za sve jedinke unutar multi-		
	populacije.		

Tabela 4.2.8: Tabela funkcija modula GeneticOperations.py

4.2.9 Modul PopulationInitialization.py

Modul PopulationInitialization.py služi da združi sve funkcije vezane za inicijalizaciju multi-populacije, populacije i individua.

Naziv funkcije	Opis funkcije	Ulazni tipovi	Izlazni tipovi
createIndividual	Pravi graf pomoću makeGraph	function(make Graph	
	funkcije i slučajnim odabirom	Graph)	
	mu odredi raspodelu zadataka		
	na procesorima potom ažurira		
	infromacije vezane za graf		
initialPopulation	Pravi inicijalnu populaciju sa	int, function	Population
	slučajnom raspodelom		
	procesora za individue		
initialMultiPopulation	Pravi inicijalnu multi-	int, int,	MultiPopulation
	populaciju sa slučajnom	function	
	raspodelom procesora za		
	individue unutar populacija		

Tabela 4.2.9: Tabela funkcija modula PopulationInitialization.py

5. Rezultati

5.1 Procena složenosti

Kako bi se približno odredila složenost algoritma izvršeno je 25 merenja, sledi tabela sa prosečnim rezultatima tih merenja:

	Čitavo trajanje [sec]	Trajanje GA [sec]	Trajanje Duplikacije [sec]
10 zadataka	282.42	281.95	0.47
15 zadataka	602.132	600.48	1.652
20 zadataka	1266.856	1262.136	4.72
25 zadataka	2879.48	2870.15	9.33
30 zadataka	6812.05	6793.97	18.08

Tabela 5.1.1: Tabela sa prosečnim rezultatima merenja

Sa merenja se da videti da je za skoro sva trajanja odgovoran genetski algoritam. Na osnovu rezultata merenja funkcija koja najblže određuje čitavo trajanje algoritma u zavisnosti od broja zadataka je:

$$y = 0.003090694 * x^{4.291512}$$

gde *y* predstavlja potrebno vreme, a *x* broj zadataka unutar grafa. Ova funkcija je dobijena pomoću fitovanja grafa za rezultate merenja i predstavlja samo približnu procenu složenosti. Sam graf izgleda kao na slici 5.1.1:

Slika 5.1.1: Fitovanje grafa pomoću dobijenih rezultata merenja

Da bi se funkcija preciznije odredila potrebno je dosta više merenja, sa slike 5.1.1 i sa tabele merenja se vidi da je složenost agloritma izuzetno velika i u narednim verzijama raspoređivača trebalo bi razmatrati potencijalne optimizacije za rad genetskog algoritma.

5.2 Verifikacija

Zarad verifikacije pravilnog rada projekta postoje četiri modula jediničnog testiranja koji testiraju ispravnost rezultata kritičnih sekcija programa, a to su:

- Test_GraphPreprocessing.py koji testira ispravnost funkcija unutar GraphPreprocessing.py modula
- Test_PriorityDefinition.py koji testira ispravnost funkcija unutar PriorityDefinition.py modula
- 3. **Test_ProcessorFunctions.py** koji testira ispravnost funkcija unutar ProcessorFunctions.py modula
- 4. **Test_TaskDuplication.py** koji testira ispravnost funckija unutar TaskDuplication.py modula

Rezultati svih funkcija se poklapaju sa ručno izračunatim rezultatima koje funkcije trebaju da daju i time se potrvđuje ispravnost programa.

5.3 Poređenje GA sa drugim algoritmima za raspoređivanje

Ulazni graf za koji želimo da nađemo optimalnu raspodelu izgleda kao na slici 5.3.1:

Slika 5.3.1: Ulazni graf

Ulazni graf (Slika 5.3.1) sa slučajnom raspodelom procesora ima ukupno trajanje od 99 sekundi sa cenom od 51.1. Graf sa slučajnom raspodelom procesora izgleda kao na slici 5.3.2:

Slika 5.3.2: Ulazni graf sa slučajnom raspodelom procesora

Raspodela zadataka po procesorima izgleda kao na slici 5.3.3:

Slika 5.3.3: Raspodela zadataka ulaznog grafa po procesorima sa slučajnom raspodelom

Sa slike 5.3.3 vidimo da slučajnim raspoređivanjem procesora na zadatke postoji dosta slobodnog vremena na procesorima koje se naplaćuje, što nije poželjno. U nastavku poglavlja će biti prikazano kako raspodela izgleda za konkretne algoritme.

Ulazni graf sa raspodelom procesora pomoću HEFT algoritma sa dodatom duplikacijom zadataka ima ukupno trajanje od 76 sekundi sa cenom od 40.8 i on izgleda kao na slici 5.3.4:

Slika 5.3.4: Ulazni graf sa HEFT raspodelom procesora sa dodatom duplikacijom zadataka

Iz grafa sa slike 5.3.4 se može primetiti da je zadatak V6 dupliciran kako bi bio na procesoru P1(Zadatak V6.1 sa slike 5.3.4) i da to dovodi do ukupnog smanjenja vremena trajanja od 4 sekunde. Takođe se da primetiti da zadatak V6 na procesoru P2 nije od koristi za graf posle duplikacije, ovo pokazuje na pohlepnu karakteristiku HEFT algoritma čiji je jedini cilj da se trenutni zadatak kom se traži procesor što pre završi. Originalan zadatak V6 se završava u 42. sekundi, dok se dupliciran zadatak V6 na procesor P1 završava tek u 53. sekundi, ali time omogućava da se kasniji zadaci pre završe i celokupni graf brže izvrši.

Raspodela zadataka po procesorima izgleda kao na slici 5.3.5:

Slika 5.3.5: Raspodela zadataka po procesorima pomoću HEFT algoritma

Sa slike 5.3.5 se može primetiti znatno bolja iskorišćenost procesora nego što se dobija slučajnom raspodelom procesora po zadacima, primetno kraće vreme izvršavanja i manja cena korišćenja. Sledi razmotriti kako se algoritam za raspoređivanje na osnovu genetskog algoritma poredi sa HEFT algoritmom.

Ulazni graf sa raspodelom procesora pomoću genetskog algoritma sa dodatom duplikacijom zadataka traje 69 sekundi sa cenom od 37.9 i izgleda kao na slici 5.3.6:

Slika 5.3.6: Ulazni graf sa raspodelom procesora pomoću genetskog algoritma

Raspodela zadataka po procesorima izgleda kao na slici 5.3.7:

Slika 5.3.7: Raspodela zadataka po procesorima pomoću genetskog algoritma

Iz rezultata se vidi da je dodeljivanje procesora zadacima pomoću genetskog algoritma superiornije raspodeli na osnovu HEFT algoritma naročito u pogledu mogućnosti definisanja težnji raspodele ili ka manjoj ceni ili ka kraćem vremenu izvršavanja. Glavni cilj je bio smanjiti cenu korišćenja oblaka, ali zadržati vremensku efikasnost što je i postignuto. Cena raspodele genetskog algoritma je jeftinija od HEFT algoritma, ali je i trajanje izvršavanja grafa dosta kraće, čak za 7 sekundi kraće. Takođe se može videti i bolja iskorišćenost procesora (Slika 5.3.7), gde u raspoređivanju pomoću genetskog algoritma skoro da nema slobodnog vremena na procesorima koje bi se naplaćivalo.

Parametri koji su korišćeni za ova merenja su kao što sledi:

Parametar	Vrednost
MP	10
NIND	40
k1	0.6
k2	0.8
k3	0.1
k4	0.05
ω	0.25
α	1
β	1
VM_{base}	0.1

Tablea 5.3.1: Tabela korišćenih parametara za poređenje algoritama

6. Zaključak

Na osnovu simuliranog okruženja računarskog oblaka algoritam baziran na genetskom algoritmu je postigao značajno bolje rezultate od HEFT algoritma. Algoritam za dupliciranje zadataka dodatno je smanjio vreme izvršavanja zadataka genetskog algoritma.

Jednostavna konfiguracija algoritma omogućava da se algoritam prilagođava različitim potrebama aplikacija i na taj način smanji vreme izvršavanja zadataka ili smanji troškove računarskog oblaka.

Algoritam se odlikuje većom kompleksnošću o kojoj je bilo više reči u poglavlju 5.1, te ga nije praktično primeniti u raspodelama u približno realnom vremenu bez dodatne optimizacije ili ubrzanja. Algoritam je moguće ubrzati smanjenjem broja jedinki u generaciji ili smanjenjem maksimalnog broja generacija. Postoji prostor i za bolju implementaciju koja bi značajno smanjila kompleksnost algoritma.

GraphPreprocessing.py modul je bio jedan takav pokušaj zalaženja u optimizaciju smanjivanjem broja zadataka unutar grafa, ali nije završen niti testiran. Formula za verovatnoću ukrštanja jedinki iz poglavlja 3.4.3.2 je još jedan prostor gde bi se moglo postići značajno ubrzanje rada algoritma, problem je što u kasnijim generacijama verovatnoća da dva grafa imaju dete često bude izuzetno mala vrednost pa se program hiljadama puta vrti kroz petlju dok slučajni broj između 0 i 1 ne bude manji od te verovatnoće. Fiksiranjem minimalne vrednosti verovatnoće na 0.05 je primećeno značajno ubrzanje, ali je takođe i kvalitet optimizacije raspodele algoritma smanjen. Potrebno je dalje testiranje da se odredi zadovoljavajuća granica za tu minimalnu vrednost.

U narednim verzijama raspoređivača zadataka u računarskom oblaku baziranom na genetskom algoritmu trebalo bi da se zalazi u optimizaciju dužine izvršavanja genetskog algoritma kako bi se raspoređivač mogao koristiti u problemima koji zahtevaju brzu reakciju.

7. Literatura

- [1] Abdul Razaque, Nikhileshwara Reddy Vennapusa, Nisargkumar Soni, "Task scheduling in Cloud computing", Farmingdale, NY, USA, 2016
- [2] Bei Wang, Jun Li, Chao Wang, "Cost-Effective Scheduling Precedence Constrained Tasks in Cloud Computing", Hefei, China, 2017
- [3] Mohammad Aref Alshraideh, "Multiple-Population Genetic Algorithm for Solving Min-Max Optimization Problems", University of Jordan, 2015
- [4] C.I. Park and T.Y. Choe, "An Optimal Scheduling Algorithm Based on Task Duplication" Dept. of Computer Science and Eng., Postech, Aug. 2000
- [5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein "Introduction to Algorithms" MIT Press, 1990
- [6] Randy L. Haupt and Sue Ellen Haupt "Pratical Genetic Algorithms" (1998)
- [7] Yu-Kwong Kwok and Ishfaq Ahmad "On Exploiting Task Duplication in Parallel Program Scheduling" (1998)
- [8] Rajkumar Buyya, Chee Shin Yeoa, Srikumar Venugopal, James Broberg, Ivona Brandic, "Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility", Manjrasoft Pty Ltd, Melbourne, Australia, 2008
- [9] ESDS, "Cloud Computing Types of Cloud" https://www.esds.co.in/blog/cloud-computing-types-cloud/#sthash.aHK6MVTW.dpbs (pristupano 18.08.2019)
- [10] Stephen Watts and Muhammad Raza "SaaS vs PaaS vs IaaS: What's the Difference and How To Choose" BMC blogs (2019)
- [12] Karan R. Shetti, Suhaib A. Fahmy, "Optimization of the HEFT algorithm for a CPUGPU environment", Nanyang Technological University Singapore

- [13] X. Chen, Y. C. Mao, Q. Jie and L. L. Zhu. "Related task scheduling algorithm based on task hierarchy and time constraint in cloud computing," Journal of Computer Applications, 2014, 34(11), pp. 3069-3072.
- [14] Topcuoglu, Haluk & Hariri, Salim & Wu, Min-You. (2002). Performance-effective and low-complexity task scheduling forheterogeneous computing. Parallel and Distributed Systems, IEEE Transactions on. 13. pp. 260-274. DOI: 10.1109/71.993206.
- [15] J. Li, S. Su, X. Cheng, Q. J. Huang and Z. B. Zhang. "Cost-conscious scheduling for large graph processing in the cloud", 2011 IEEE 13th International Conference on. IEEE, 2011,pp. 808-813.
- [16] Z. Zhu and Z. Du, "Improved GA-based task scheduling algorithm in cloud computing" Wuhan, China, 2013.
- [17] Brian Sauer, Tyler J. VanderWeele, "Use of Directed Acyclic Graphs", Harvard School of Public Health, Boston, MA
- [18] Ania Monaco "A View Inside the Cloud" The Institute IEEE (2012)