SAKURA Science Workshop

Kazuaki Tanaka Kyushu Institute of Technology

Check your environment, again

To CHECK your environment

Execute a quite simple program

[File] → [Open]
 select "SampleProgram" and
 open "SampleProgram.mrcp"

SampleProgram.mrcp

Sample program

```
mruby/c IDE
                                               X
File Edit Execute
main.rb
   SamplePro...
                  1 while true
                     digitalWrite LED1, HIGH
                     sleep 1
                     digitalWrite LED1, LOW
                     sleep 0.5
                  6 end
```


Execute

```
mruby/c IDE
                                                                   X
                            Write
File Edit Execute
Х
                 main.rb
    sample
                        pinMode(0,0)
                       2 while true
                         digitalWrite(0,1)
                         sleep 0.5
                         digitalWrite(0,0)
                         sleep 0.5
                      7 end
```


Executing procedure

- Click "Write"
 - IDE will wait for preparation
- Press "RS" button on Rboard
 - Reset button, then accept external program
 - After writing, starts your program

About this sample program

```
pinMode(0,0)
while true
  digitalWrite(0,1)
  sleep(0.5)
  digitalWrite(0,0)
  sleep(0.5)
end
Repeat forever
```

- digitalWrite <pin>, <0or1>
 - Output voltage to PIN(or LED)
- sleep <time>
 - Wait for specified seconds

Embedded System

= Software + Hardware

Previous exercises

Today, external circuit

How LED works?

LED: Convert current to light emitting

"digitalWrite" controls this voltage

LED driving circuit

HIGH or LOW voltage

External LED driving circuit

Pins

Practice – Hardware implementation

Firstly, pick items

About LED

Current flowing direction and pin length

Bread board

These five holes on a line are connected.

Implement LED circuit

Add jumper wires

Connect to Rboard

Connect to Rboard

Practice – Software implementation

Almost same as SampleProgram

(sample)

```
pinMode(13,0)
while true
  digitalWrite(13, 1)
  sleep(0.5)
  digitalWrite(13,0)
  sleep(0.5)
end
```


Run your program

Exercises

Exercises

• Blink MORE LEDs

- pinMode
- digitalWrite

