自然语言处理实践任 务

简 表

硬件环境(CPU/GP	PU):		
CPU			
操作系统:			
Windows11			
采用的深度学习框势	现 丁目 海主.		
	A、工具、语言: [具: PyCharm, 语言: F	ython	
任务描述/问题定义	:		
	实现 Transformer 模型,能		
型训练时间过长,月	所以设置较小的 batch_size	和 epoch,并且选用了-	一部分的源数据。
数据集及来源(相差	 关链接) :		
	s.com/web-language-model	s/paracrawl/release5.1/en-	cs.txt.gz
采用的深度学习模型:		模型提出的年份及发表的会议/期刊:	
Transformer		2017年 google 的机器翻译团队在 NIPS 上发	
		表了 attention is all you need 的文章	
最终设置的超参数	(如 Learning rate, Batch si	 ze 等):	
	1, Batch size: 16, Epochs: 1		
S	, , ,		
模型的效果(如准码	确率等与任务相关的评价	旨标):	
cross entropy 损失值	Ĺ		
	成员 1	成员 2	成员 3
姓名	姚明阔		
学号	2201902		
专业			

工作量占比

100%

1. 采用的深度学习模型的详细描述

Transformer 模型由 N 个 Encoder 模块(下图左边黑框),N 个 Decoder 模块(下图右边黑框)和一个 Linear 层组成。

Encoder 模块: 一个 Encoder 有两个子层,一个是 Multi-Head Attention 层,是利用 self-attention 学习源句子内部的关系。另一个是 Feed Forward 层,他就是一个简单的全连接网络,目的是增加非线性,之后产生的输出传给 Decoder。每一个子层后都使用了残差连接和 Layer Normalization 来保证模型不会随着深度的增加而效果变差。其输入是位置编码和源句编码。

Decoder 模块: Decoder 中有三个子层,其中两个 Multi-Head Attention 层。下面的 Attention 层是利用 self-attention 学习目标句内部的关系,之后该层的输出与 encoder 传过来的结果一起输入到上面的 Attention 层,这个 Attention 层并不是 self-attention,而是 Encoder-Decoder attention,用来学习源句与目标句之间的关系。对于第二层 Attention,query 代表 Decoder 中第一层的输出,key 和 value 是来自 Encoder 的输出。第一层 Attention 的 mask 指的是 sequence mask,是为了实现无法从当前了解到以后信息的目的,因为不论是 RNN 还是 LSTM,他们都需要等待上一阶段的输出,而 self-attention 不同,他是并行计算的。

此模型实现不仅需要对 sequence 进行 mask, 还需要对 padding 进行 mask。

图 1 Transformer 模型框架图

2. 训练曲线 (Loss-Epoch)

图 2 训练损失值下降曲线

3. 运行或运行结果截图