The algebra and geometry of categorical groups

Fosco Loregian

June 27, 2013

Algebra

Sketches of a Group

Categorical groups come in various (equivalent) flavours:

- Groups internal to **Gpd** (a category with a bifunctor $: \mathbf{G} \times \mathbf{G} \to \mathbf{G}$ which turns it into a group in a way –the Eckmann-Hilton relation– which is compatible with composition: $(f \circ g) \cdot (h \circ k) = (f \cdot h) \circ (g \cdot k)$;
- Crossed modules (=categories internal to **Grp**, i.e. pairs of groups G_{ob} , G_{ar} with source-target maps $G_{ar} \Rightarrow G_{ob}$, a composition $G_{ar} \times_{G_{ob}} G_{ar} \rightarrow G_{ar} \dots$);
- 2-groupoids with a single object: $f \bigvee_{i \in \mathcal{I}} g$;
- ...

A crossed module consists of a pair of groups G, E, an action of G on E and a morphism $\partial: E \to G$ such that (Peiffer conditions)

- $\partial(g.e) = g\partial eg^{-1}$;
- $\partial e.f = efe^{-1}$.

There is an obvious notion of morphism of crossed modules.

All these different approaches are equivalent: for example

Theorem (Verdier)

There is an equivalence of categories between groups internal to **Gpd** and crossed modules.

See [Fo] for a detailed and modern proof.

Sketch of one side of the proof: given a group in **Gpd** we can define the crossed module having $G = Ob(\mathbf{G})$, $E = \coprod_{X \in Ob(\mathbf{G})} \mathbf{G}(1,X)$, $\partial = t$ (the target map): $(e: 1 \to X) \mapsto X$.

Definition (Notation)

We will denote $\mathbf{G}_{E,G}$ the categorical group associated to the crossed module (E,G,a,∂) , and $E_{\mathbf{G}}$, $G_{\mathbf{G}}$ the (two groups of the) crossed module associated to a categorical group \mathbf{G} .

Examples

- The delooping of an abelian group G, i.e. the category $\mathbf{B}G$ having a single object * and such that $\mathbf{B}G(*,*) = G$. Notice that for an abelian group K, $E(\mathbf{B}K) = K$, $G(\mathbf{B}K) = 1$.
- The categorical group associated to a category \mathcal{C} , having as objects the invertible endofunctors and as arrows the invertible natural isomorphisms between such functors. If $\mathcal{C} = \mathbf{B}K$, then the corresponding c.m. is $K \to \operatorname{Aut}(K) : g \mapsto g(-)g^{-1}$. There is a functor $\mathbf{Cat} \to \mathbf{CatGrp}$ which sends a category to its associated c.g.

Definition (Notation)

A c.g. can be delooped too^a: given G its delooping is the 2-category BG with a single object * and such that BG(*,*) is the category G. Composition is defined as the group operation in (G,\cdot) at the level of 1-cells, and as the composition in the category G at the level of 2-cells.

^aIt is a common procedure in monoidal category theory working in full generality.

¹If the interchange law has to be true, we must consider only *abelian* groups.

A categorical group is said to be

- free if there is at most one arrow between any two distinct objects (so that $\partial: E(\mathbf{G}) \to G(\mathbf{G})$ is mono and E embeds in G as a normal subgroup);
- transitive if there is an arrow between any two objects (so that $\partial: E(\mathbf{G}) \to G(\mathbf{G})$ is epi).
- intransitive if there are no arrows between any two distinct objects (so that $\partial: E(\mathbf{G}) \to G(\mathbf{G})$ is the trivial map). Example: the wreath product $\mathbb{C}^{\times} \wr Sym(n)$.

Recall a couple of notions from 2- and 3-category theory: a 2, 3-category consists of objects (0-cells), arrows (1-cells) and

- 2-cells (Example: natural transformations in Cat);
- 3-cells (Example: modifications between natural transformations in the category of all 2-categories);
- composition of 2- and 3-cells.

A natural 2-transformation, between two 2-functors $F, G: \mathbb{C} \to \mathbb{D}$ consists of a map $h: Ob(\mathbb{C}) \to Mor(\mathbb{D})$ such that there is a commutative diagram

$$\mathbf{C}(X,Y) \longrightarrow \mathbf{D}(GX,GY)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

where $\tilde{h}(X,Y)$ is a natural iso $h(Y)\circ F(f)\Rightarrow G(f)\circ h(X)$ such that

• for any $f: X \to Y$, $g: Z \to X$, $(\tilde{h}(f) := \tilde{h}(X,Y), \tilde{h}(g) := \tilde{h}(Z,X)$ for short), the following commutes:

A modification Θ : $h\Rightarrow k$ between two natural 2-transformation $(h,\tilde{h}),(k,\tilde{k})$: $F\to G$, where both F,G are functors ${\bf C}\to {\bf D}$, consists of a function Θ assigning to any $X\in Ob({\bf C})$ a 2-cell $\Theta_X\colon h(X)\Rightarrow k(X)$, in such a way that

(hor) 2-cells can be composed: $\mathbf{A} \underbrace{\psi_k}_{G} \mathbf{B} \underbrace{\psi_k}_{V} \mathbf{C}$ goes to $k \boxminus h$: $A \underbrace{\psi_k}_{V \circ G} C$;

(ver) 2-cells can be composed:
$$\mathbf{A} \xrightarrow{G} \mathbf{B} \mathbf{B}$$
 goes to $k \square h$: $\mathbf{A} \xrightarrow{F} \mathbf{B}$;

• 3-cells Θ , Ψ : $h \Rightarrow k$ compose similarly horizontally and vertically.

The Kapranov-Voevodsky category 2-Vect

The category 2-Vect of KV 2-vector spaces has

- as objects the set N of (nonzero) natural numbers;
- as 1-cells $A: N \to M$, all $N \times M$ matrices with natural coefficients, $A = (a_{ij}) \in \mathbb{N}^{N \times M}$;
- as 2-cells $N \underbrace{\bigoplus_{B}^{A}}_{B} B$ all $N \times N$ matrices of matrices whose

(i,j)-entry is an $a_{ij} \times b_{ij}$ matrix.

Example: 2,3 are objects of 2-Vect; a 1-morphism $2 \rightarrow 3$ consists of an integer valued 2×3 matrix, e.g. $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix}$ or $B = \begin{pmatrix} 1 & 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix}$; a 2-morphism between A and B is, for example, a matrix like

$$\Theta = \begin{pmatrix} a & \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} & \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{pmatrix} \\ \begin{pmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{pmatrix} & \begin{pmatrix} e_1 & e_2 \end{pmatrix} & \begin{pmatrix} f_1 & f_2 & f_3 \end{pmatrix} \end{pmatrix}$$

The category of 2-vector spaces has

An horizontal composition between 2-cells,

$$N \xrightarrow{A} M \xrightarrow{C} P \Rightarrow N \xrightarrow{DB} P$$
 where CA, DB are obtained via

product of integer matrices, and $\Xi \boxminus \Theta$ is the complex matrix whose (i,j)-entry has size $\sum a_{ik}c_{kj} \times \sum b_{ih}d_{hj}$, hence it is obtained as $\bigoplus_{k=1}^{M} \Xi_{ij} \otimes \Theta_{kj}$.

• A vertical composition $N \xrightarrow{B} M \rightarrow N \xrightarrow{A} M$, where

 $(\Xi \square \Theta)_{ij} = \Xi_{ij}\Theta_{ij}$ (mult. of matrices). It makes sense, because Ξ_{ij} is a $a_{ij} \times b_{ij}$ -matrix, and Θ_{ij} is a $b_{ij} \times c_{ij}$ -matrix.

Verify the interchange law:

$$(\Omega \boxminus \Psi) \boxplus (\Xi \boxminus \Theta) = (\Xi \boxplus \Omega) \boxminus (\Psi \boxplus \Theta)$$

$$\begin{array}{c|cccc}
N \xrightarrow{A} M \xrightarrow{C} P & & & & & & & & \\
\parallel & \oplus & \parallel & \Xi & \parallel & & & & \parallel & \\
N \xrightarrow{B} M \xrightarrow{D} P & & & & & & \\
\parallel & \Psi & \parallel & \Omega & \parallel & & & \\
N \xrightarrow{B} M \xrightarrow{D} P & & & & & \\
\downarrow & \Psi & \parallel & \Omega & \parallel & & \\
\downarrow & & & \downarrow & & \\
N \xrightarrow{A} M \xrightarrow{C} P & & & & & \\
\parallel & \Xi \bowtie \Theta & \parallel & \\
\downarrow & & & \downarrow & & \\
\downarrow & & & \downarrow & & \\
N \xrightarrow{A} M \xrightarrow{C} P & & & & & \\
\parallel & & \downarrow & & \\
\downarrow & &$$

The category of 2-vector spaces has

- A monoidal product ⋈, such that
 - $N \boxtimes M$ is the product of natural numbers;
 - Given $A: N \to M$, $B: R \to S$, $A \boxtimes B: NR \to MS$, where $(A \boxtimes B)^{ij}_{kl} = a_{ik} b_{jl}$.
 - Given $\Theta, \Psi: A \to B$, $(\Theta \boxtimes \Psi)_{kl}^{ij} = \Theta_{ik} \otimes \Psi_{jl}$ (tensor product of matrices).
- A monoidal sum such that $N \boxplus M$ is the sum of natural numbers, $A \boxplus B$ is the direct sum of matrices, and $\Theta \boxplus \Psi$ is the componentwise direct sum of matrices.
- A direct sum in any 2-**Vect**(N, M), where $(A \oplus B)_{ij} = (a_{ij} + b_{ij})$, componentwise sum of integer matrices, and $(\Theta \oplus \Psi)_{ij} = \Theta_{ij} \oplus \Psi_{ij}$, direct sum of complex matrices.
- A sum, which defines the linear structure on each 2-**Vect**(N, M), since $(\Theta + \Psi)_{ij}$ is obtained summing the matrices Θ_{ij}, Ψ_{ij} (they have the same size $a_{ij} \times b_{ij}$).

Verify: maybe $(2\text{-}\mathbf{Vect}, \boxtimes, \boxplus)$ is a rig-category?

Categorical Representations

Definition

We define $GL(N) \subset 2\text{-Vect}(N, N)$ to be the categorical group associated to the category 2-Vect(N, N). It is called the general 2-linear categorical group of dimension N.

Remark

The crossed module associated to GL(N) is the wreath product $\mathbb{C}^{\times} \wr Sym(N)$, where

- The map $\partial: (\mathbb{C}^{\times})^{N} \to Sym(N)$ is the trivial one sending everything to id;
- the action of Sym(N) on $(C^{\times})^N$ permutes the coordinates of a vector.

A (linear) representation of a group G can be regarded as a functor from the delooping of G, i.e. $\rho: \mathbf{B}G \to \mathbf{Vect}$; hence we are led to define a linear 2-representation of a categorical group \mathbf{G} as a 2-functor $R: \mathbf{B}G \to \mathbf{2}\text{-}\mathbf{Vect}$.

The integer R(*) = N is called the *dimension* of the representation.

The category $\operatorname{Rep}_{2\operatorname{-Vect}}(\mathbf{G}) = \operatorname{Fun}(\mathbf{BG}, 2\operatorname{-Vect})$ is a 2-category where 1-cells are called intertwiners between representations, and 2-cells are called 2-intertwiners: these are, respectively, natural transformations between representation $R, T: \mathbf{BG} \to 2\operatorname{-Vect}$, and modification between natural transformations $h, k: R \Rightarrow T$.

 $Rep_{2-Vect}(G)$ becomes a monoidal category

- with respect to a monoidal product of representations, obtained componentwise as $(R, \tilde{R}), (T, \tilde{T}) \mapsto R \boxtimes T(X) = R(X) \boxtimes T(X)$, with a suitable coherer $R \boxtimes T$.
- With respect to a monoidal sum of representations obtained componentwise as $(R, \tilde{R}), (T, \tilde{T}) \mapsto R \boxplus T(X) = R(X) \boxplus T(X)$ (the coherer of this monoidal structure is trivial).

Both monoidal structure extend by (2-)functoriality to 1- and 2-intertwiners, following the rules of the former definition for \boxtimes and \boxplus .

Strict representations

We can now turn on the study of *strict* 2-representations of categorical groups: these are **strict** functors ρ : **BG** \rightarrow 2-**Vect**, which can be regarded as morphisms of c.g.

$$\bar{\rho}$$
: $\mathbf{G} \to \mathbf{GL}(\rho(*)) = \mathbf{GL}(N)$

hence equivalently as morphisms of crossed modules $E_{\mathbf{G}} \longrightarrow G_{\mathbf{G}}$. $\downarrow^{\rho_{\mathbf{b}}} \downarrow^{\rho_{\mathbf{b}}} (\mathbb{C}^{\times})^{N} \xrightarrow{}_{\mathbf{1}} Sym(N)$

1-intertwiners between strict representations ρ^N , σ^M can be described as arrows $h_* \in 2\text{-}\mathbf{Vect}(N,M)$ with $\tilde{h}: X \mapsto \tilde{h}(X) \in 2\text{-}\mathbf{Vect}(h_* \circ \rho(X), \sigma(X) \circ h_*)$, subject t certain coherence conditions:

$$h_*\rho(XY) \xrightarrow{\tilde{h}(XY)} \sigma(XY)h_* \qquad h_*\rho(1) = h_*$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel 1_{h_*}$$

$$h_*\rho(X)\rho(Y) \xrightarrow{\tilde{h}(X)\rho(Y)} \sigma(X)h_*\rho(Y) \xrightarrow{\sigma(X)\tilde{h}(Y)} \sigma(X)\sigma(Y)h_* \qquad \sigma(1)h_* = h_*$$

Strict representations

We can now turn on the study of *strict* 2-representations of categorical groups: these are strict functors $\rho: \mathbf{BG} \to 2\text{-}\mathbf{Vect}$, which can be regarded as morphisms of c.g.

$$\bar{\rho}$$
: $\mathbf{G} \to \mathbf{GL}(\rho(*)) = \mathbf{GL}(N)$

hence equivalently as morphisms of crossed modules $E_{\mathbf{G}} \longrightarrow G_{\mathbf{G}}$. $\downarrow^{\rho_{\mathbf{t}}} \downarrow^{\rho_{\mathbf{b}}} (\mathbb{C}^{\times})^{N} \longrightarrow Sym(N)$

1-intertwiners between strict representations ρ^N , σ^M can be described as arrows $h_* \in 2\text{-}\mathbf{Vect}(N, M)$ with $h: X \mapsto h(X) \in 2\text{-}\mathbf{Vect}(h_* \circ \rho(X), \sigma(X) \circ h_*)$, subject t certain coherence conditions:

$$\begin{array}{ccc}
X & \rho(X)h_* & \xrightarrow{\tilde{h}(X)} & h_*\sigma(X) \\
\downarrow^f & \rho(f)*h_* & & \downarrow^{h_**\sigma(f)} \\
Y & \rho(Y)h_* & \xrightarrow{\tilde{h}(Y)} & h_*\sigma(Y)
\end{array}$$

Example: $\mathbf{G}(3,2)$

Let (C_3, C_2, ∂, a) the crossed module where $C_2 = \{\pm 1\}$, $C_3 = \{1, x, x^{-1}\}$, $\partial: C_3 \to C_2$ is the trivial map and the action $a: C_2 \curvearrowright C_3$ coincides with the inversion $x \mapsto x^{-1}$. Let $\mathbf{G}(3,2)$ be the associated categorical group.

We can classify all the 1- and 2-dimensional 2-representations of $\mathbf{G}(3,2)$:

$$\mathcal{V}(1)$$
 Trivial 1-dimensional representation: $C_3 \xrightarrow{\rho_{\mathbf{t}} \downarrow} C_2$
 $\mathbb{C}^{\times} \xrightarrow{1} 1$

There are no other 1-dimensional representations, since ρ_t is determined by a character of C_3 , which is forced to be the trivial one by the commutativity condition.

$$\mathcal{V}(2)$$
 Trivial 2-dimensional representation: $C_3 \xrightarrow{\partial} C_2 : \mathcal{V}(2) \cong \mathcal{V}(1) \boxplus \mathcal{V}(1).$

$$\begin{array}{ccc} \rho_{\mathbf{t}} & & & \\ \rho_{\mathbf{t}} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

All the other 2-dimensional representations of G(3,2) are classified by the ring of characters of C_3 :

$$\begin{cases} \rho_b(\pm 1) = \pm 1 \in C_2 \\ \rho_t(x) = (\xi(x), \psi(x)) \end{cases}$$

where ξ, ψ are complex characters of C_3 : but now $\xi = \psi^{-1}$, by the commutativity relation for (ρ_t, ρ_b) to be a morphism of crossed modules. So ρ is completely determined by ξ .

One can also classify all the 1- and 2-intertwiners between these representations: it is done in [Mac] pp. 21-25.

Hao about the structure of monoidal bicategory of $Rep(\mathbf{G}(2,3))$? As an example: the trivial 1-dimensional character/representation acts as a neutral element for \boxtimes .

Characters

A character of a categorical grup **G** is a 1-dimensional 2-representation $\bar{\rho}$: **G** \rightarrow **GL**(1).

These representations are completely classified by a complex character ξ_{ρ} of the group $E_{\mathbf{G}}$ of the associated crossed module, $E_{\mathbf{G}} \curvearrowright \mathbb{C}^{\times}$. An intertwiner (h, \tilde{h}) between two such characters is either zero or it is completely determined by a representation \tilde{h} of the group $G_{\mathbf{G}}$, acting as

$$\tilde{h}(X) = \xi \rho(e)^{-1} \xi_{\sigma}(e)$$

where e is such that $\partial e = X \in G_G$.

A 2-intertwiner $\Theta:(h,\tilde{h})\to(k,\tilde{k})$ consists simply of a classical intertwiner between the two representation \tilde{h} and \tilde{k} .

Geometry

Classical Čech theory

Suppose M is a manifold, and G a topological group;

- For any covering $\{U_i\}_{i\in I} = \mathcal{U}$ of M we can organize isomorphism classes of principal G-bundles in a set $\check{H}^1(\mathcal{U}, G)$,
- which is in bijection with

$$\left\{ \begin{array}{l} \text{1-cocycles} \\ g_{ij} : U_i \cap U_j \to G \end{array} \right\} / \begin{array}{l} \text{being} \\ \text{cohomologus} \end{array}$$

where "being cohomologous" for two cocycles g_{ij} , g'_{ij} (i.e. functions satisfying the cocycle condition for any $i,j,k \in I$) means that there is a family of functions $\{f_i\}$ such that $g_{ii}f_i = f_ig'_{ii}$.

- If M can be "nicely" covered, then $\check{H}^1(\mathcal{U},G)=\check{H}^1(M,G)$ does not depend on the choice of a good cover \mathcal{U} ; otherwise one obtains $\check{H}^1(M,G)$ as a limit $\varinjlim_{\mathcal{U}} \check{H}^1(\mathcal{U},G)$ over all covers $\mathcal{U} \in \text{cov}(M)$ (notice that good covers are cofinal in this family).
- (Brown) The functor $\check{H}^1(-,G)$ is representable in the homotopy category of spaces, and its representing objects is the classifying space of $G: \check{H}^1(M,G) \cong [M,BG]$.

Can one obtain a similar theory for (whatever they are) principale G-2-bundles for a (topological) categorical group G?

First of all the basic theory extends *verbatim* adding everywhere the word "topological":

- A topological categorical group is an internal group in TopGpd, the category
 of toplogical groupoids;
- A topological crossed module consists of an internal category in TopGrp, the category of topological groups;
- Verdier's theorem applies as well: (topological) crossed modules are equivalent to (topological) categorical groups.
- However a new equivalent characterization of a c.g. can be used to better understand the topological behaviour of such things...

(Topological) categorical groups are (topological) 2-groupoids with a single object.

Let **G** be a c.g., $(E_{\mathsf{G}}, G_{\mathsf{G}})$ be its associated crossed module. As we have seen before, **G** can be delooped to a 2-category with a single object *, where

- 1-cells are objects of **G** and an arrow $g \to g'$ is $h \in E$ such that $\partial(h)g = g'$.
- Composition of 1-cells amounts to the monoidal product, and inversion equals dualization,
- horizontal and vertical composition are obtained thanks to Peiffer relations between $\partial: E \to G$ and $a: G \curvearrowright E$, and the interchange law holds because ∂ and a are suitably compatible.

This category is easily seen to be a groupoid!

Segal fundamental Lemma

Čech cocycles are functors!

Let $\{U_i\} = \mathcal{U}$ be a covering of the base space M; then we can define a groupoid $\widehat{\mathcal{U}}$ having objects $\coprod_{i \in I} U_i$, and a unique arrow $(x,i) \to (x,j)$ iff $x \in U_i \cap U_j$; define a functor $\widehat{g} \colon \widehat{\mathcal{U}} \to G \colon (x,i) \mapsto *$ (the unique object of G regarded as a category), and sending an arrow $x \in U_{ij}$ to an element g_{ii} of G;

$$\left\{ \begin{array}{c} \mathsf{cocycles} \\ \{g_{ij}\} \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \mathsf{functors} \\ \widehat{g} : \widehat{\mathcal{U}} \to \mathcal{G} \end{array} \right\}$$

- Functoriality conditions for \hat{g} are precisely cocycle conditions for $\{g_{ij}\}$;
- two cocycles are cohomologous iff their corresponding functors are naturally isomorphic.

We can categorify Segal's fundamental Lemma:

• A Čech cocycle for a categorical group consists in this setting of a pseudofunctor $\hat{g} \colon \widehat{\mathcal{U}} \to \mathbf{G}$, where $\widehat{\mathcal{U}}$ is the groupoid of the Segal's construction regarded as a 2-category having only identity 2-cells, and \mathbf{G} a 2-groupoid with a single object \bullet .

Pseudofunctoriality now translates into some coherence conditions having these shapes: a suitable tetrahedron for the cocycle cond.,

and the prism

which expresses the compatibility between cohomologus cocycles/isomorphic functors $\widehat{\mathcal{U}} \to \mathbf{G},$

and is equivalent to

with the additional coherence condition

$$\begin{array}{ccc}
znm & \xrightarrow{\gamma \cdot m} fxm & \xrightarrow{f \cdot \beta} fey \\
z \cdot \zeta & & & \downarrow \alpha \cdot \\
zp & & \xrightarrow{\delta} gy
\end{array}$$

These conditions are exactly the coherence conditions which in [Ba] define principal G-2-bundles over a manifold M:

- Let (E, G, ∂, a) be the crossed module associated to **G**, and $\{U_i\} = \mathcal{U}$ a cover of M.
- Then a cocycle subordinated to $\mathcal U$ consists of maps $g_{ij} \colon U_{ij} \to G$ such that
 - A weak cocycle condition is satisfied:

$$\partial(h_{ijk})g_{ij}g_{jk}=g_{ik}$$

for some h_{iik} : $U_i \cap U_i \cap U_k \to H$.

• Similarly, we say two weak cocycles (g_{ij}, h_{ijl}) and (g'_{ij}, h'_{ijl}) are cohomologous if there is a family of maps $f_i: U_i \to G$, $k_{ii}: U_i \cap U_i \to H$ such that

$$\partial(k_{ij})g_{ij}f_j = f_ig'_{ii}$$
.

"Being cohomologous" is now an equivalence relation on the set $\check{Z}(\mathcal{U},\mathbf{G})$ of cocycles subordinated to \mathcal{U} , for the categorical group \mathbf{G} ; we define $\check{H}^1(\mathcal{U},\mathbf{G})$ to be the quotient of $\check{Z}(\mathcal{U},\mathbf{G})$ by this relation, and

$$\check{H}^1(M,\mathbf{G})\coloneqq \varinjlim_{\mathfrak{U}\in \mathsf{cov}(M)} \check{H}^1(\mathfrak{U},\mathbf{G}).$$

Main Theorem: Let G a well pointed² topological c.g. and M a manifold. Then

$$\check{H}^1(M,\mathbf{G}) \cong [M,\mathsf{B}|\mathbf{G}|]$$

where B|G| is the classifying space of the topological group |G|, defined as the geometric realization of the nerve of the category G.

(sissa)

The algebra and geometry of categorical gro

June 27, 2013

²This is a technical condition for a topological c.g. in which the groups E_G , G_G have the homotopy type of a cw-complex. A topological group, or a pointed space, is *well-pointed* if $\{1_G\} \to G$ is a closed cofibration; a c.g. is well pointed, by definition, if E_G , G_G are well pointed.

The nerve-realization paradigm

Theorem (General nonsense adjunction)

Given a functor $F: \mathbb{C} \to \mathbb{D}$ to a cocomplete category, it is always possible to exhibit an extension of F to the category $\widehat{\mathbf{C}}$ of presheaves of sets on \mathbf{C} , $\overline{F} = \operatorname{Lan}_{\mathbf{v}} F : \widehat{\mathbf{C}} \to \mathbf{D}$ (this is sort of a universal property of $\widehat{\mathbf{C}}$). Moreover this functor has a right adjoint S.

Apply the previous theorem to the following two cases:

- $\triangleright i: \Delta \rightarrow \mathbf{Cat}$ regards the totally ordered set $\{0 < 1 < \cdots < n\}$ as a category;
- \triangleright y is the Yoneda embedding $\Delta \hookrightarrow \widehat{\Delta}: [n] \mapsto \Delta(-, [n]);$
- $\triangleright \rho: \Delta \to \mathsf{Top}$ "realizes" each $\{0 < 1 < \dots < n\}$ as the standard *n*-simplex embedded in

$$\mathbf{Cat} \longrightarrow \widehat{\Delta} \longrightarrow \mathbf{Top}$$

$$\mathbf{G} \longmapsto \mathcal{N}(\mathbf{G}) \longmapsto \mathcal{R}(\mathcal{N}(\mathbf{G})) = |\mathbf{G}|$$

The proof of the Main Theorem exploits the following three lemma:

- 1. Let **G** a topological well pointed c.g.; then
 - |G| is (a topological group and) again well pointed;
 - There exist a c.g. $\tilde{\mathbf{G}}$ and a short exact sequence of topological groups $1 \to H \to |\tilde{\mathbf{G}}| \to |\mathbf{G}| \to 1$ where H is the domain of ∂ in the crossed module associated to \mathbf{G} ;
 - $\tilde{\mathbf{G}} \cong G \ltimes EH$, where EH is the universal principal H-bundle over BH (corresponds to 1_{BH} in $[BH, BH] \cong \check{H}^1(BH, H)$).
- 2. Any short exact sequence $\sigma: 1 \to H \xrightarrow{\leq} G \to K \to 1$ gives a crossed module $\mathbf{G}_{\sigma} = (G, H)$ where the action of G is by conjugation and ∂ is the inclusion $H \hookrightarrow G$; then there is an isomorphism

$$\check{H}^1(M, \mathbf{G}(G, H)) \coloneqq \check{H}^1(M, \mathbf{G}_{\sigma}) \cong \check{H}^1(M, K)$$

3. Let $1 \to \mathbf{G} \to \mathbf{H} \to \mathbf{K} \to 1$ be a s.e.s. of categorical groups (it means that the underlying s.e.s. of topological groups obtained via associated crossed modules are exact): then there is a short exact sequence of pointed sets

$$\check{H}^1(M,\mathbf{G}) \to \check{H}^1(M,\mathbf{H}) \to \check{H}^1(M,\mathbf{K})$$

We know that there exists an isomorphims in classical Čech theory

$$\check{H}^1(M, |\mathbf{G}|) \cong [M, \mathsf{B}|\mathbf{G}|]$$

hence to prove the Theorem it suffices to show that $\check{H}^1(M,\mathbf{G}) \cong \check{H}^1(M,|\mathbf{G}|)$. Now **Lemma 1** entails that there exists a short exact sequence σ

$$1 \to H \to G \ltimes EH \to |\mathbf{G}| \to 1$$

and **Lemma 2** entails that $\check{H}^1(M,\mathbf{G}_\sigma)\cong \check{H}^1(M,|\mathbf{G}|)$. So to build the desired isomorphism it suffices to show that

$$\check{H}^1(M,\mathbf{G}_{\sigma})\cong \check{H}^1(M,\mathbf{G})$$

Now consider the short exact sequence of crossed modules

Lemma 3 entails that $\check{H}^1(M,EH) \to \check{H}^1(M,\mathbf{G}_{\sigma}) \to \check{H}^1(M,\mathbf{G})$ is exact. But

 $\check{H}^1(M,EH)$ is zero, because EH is contractible, and the sequence \circ is split exact.

- John C. Baez, Danny Stevenson, *The Classifying Space of a Topological 2-Group*, http://arxiv.org/abs/0801.3843.
- Toby Bartels, Higher gauge theory I: 2-Bundles, http://arxiv.org/abs/math/0410328.
- John W. Barrett, Marco Mackaay, Categorical representations of categorical groups, http://arxiv.org/abs/math/0407463.
 - . Forrester-Barker, *Group objects and internal categories*, http://arXiv.org/abs/math/0212065v1.