Abstract:

This project will be based on classification problem to predict customer online shopping intention. we aim to help companies to be successful in a highly competitive eCommerce environment by predict whether the customer, visiting web pages of an online shop, will end up with a purchase or not. The dataset contains 12330 observation and 18 features divided into 80% training and 20% testing.

I have used three classification models which are logistic regression, Random Forest and decision tree .The results show The random forest outperform the other model in accuracy , precision, recall and F1 Score with 88%,90%, 97%,93% respectively for not purchase . While for purchasing precision is 77%, recall is 53% ,F1 score is 62% .

Design:

The dataset consists of 10 numerical and 8 categorical attributes. I used five attributes (Month , operating system, Browser , Visitor type , Weekend, Revenue) in Eda part and in model training. The 'Revenue' attribute is used as class label. The dataset is clean, there are no missing values, but the dataset is unbalanced. There is a risk of bias, so the analysis must take the unbalanced dataset into consideration.

Algorithms:

I have used Random Forest, Logistic Regression and decision, the results showing in the figure below:

[102 110]]	precision	recall	f1-score	support
False	0.90	0.97	0.93	985
True	0.77	0.53	0.62	215
accuracy			0.89	1200
macro avg	0.84	0.75	0.78	1200
weighted avg	0.88	0.89	0.88	1200

Figure 1: Random forest performance

precision, recall and F1 Score with 90%, 97%,93% respectively for not purchase. While for purchasing the precision is 51%, recall is 62%,F1 score is 62%.

	precision	recall	f1-score	support
False	0.91	0.92	0.91	985
True	0.61	0.56	0.58	215
accuracy			0.86	1200
macro avg	0.76	0.74	0.75	1200
weighted avg	0.85	0.86	0.85	1200

Figure 2 : Decision Tree performance

precision, recall and F1 Score with 86%,91%, 92%,91% respectively for not purchase . While for purchasing precision is 61%, recall is 65%, F1 score is 58%.

	precision	recall	f1-score	support
False	0.85	0.99	0.92	985
True	0.80	0.22	0.35	215
accuracy			0.85	1200
macro avg	0.83	0.61	0.63	1200
weighted avg	0.84	0.85	0.81	1200

Figure 3: Logistic Regression performance

Tool:

- Numpy and Pandas for data manipulation
- Scikit-learn for modeling, confusion matrix and feature extraction
- Matplotlib and Seaborn for plotting