Задача 10-3 Термистор

Все требуемые графики постройте на отдельном, выданном вам бланке!

Терморезистор – полупроводниковый прибор, сопротивление которого существенно изменяется при изменении его температуры.

В данной задаче, мы предлагаем Вам теоретически исследовать термистор — терморезистор, сопротивление которого уменьшается при увеличении температуры.

Зависимость сопротивления термистора от температуры достаточно сложная для учеников 10 класса. Поэтому в данной задаче мы аппроксимируем эту зависимость следующим образом:

$$R(T) = B/T - C \cdot T \tag{1},$$

где $B = 1.0 \cdot 10^6 \, OM \cdot K$, $C = 5.00 \, M/K$.

При протекании тока через термистор, он нагревается до определенной температуры, которая зависит от температуры окружающей среды и от размеров и формы самого прибора. Считайте, что мощность, рассеиваемая в окружающую среду, прямо пропорциональна разности температур терморезистора и окружающей среды:

$$P = A \cdot (T - T_0) \tag{2},$$

где A - коэффициент рассеяния.

Считайте, что во всех частях задачи температура окружающей среды $T_0 = 300 K$, коэффициент рассеяния $A = 5.0 \cdot 10^{-3} \, Bm/K$.

Часть 1. Термистор и источник тока.

- **1.1** По термистору протекает некоторый постоянный ток силой I. Получите выражение для установившейся температуры термистора и его сопротивления.
- **1.2** Постройте график зависимости сопротивления термистора от силы тока (R(I)) в диапазоне от 0 до 0,1 А
- **1.3** Используя значения, вычисленные в предыдущем пункте, постройте вольтамперную характеристику (зависимость напряжения от силы тока U(I)) термистора. При какой силе тока напряжение достигает максимального значения? Чему оно равно?

Аккуратно постройте этого график, используйте его при решении остальных частей задачи.

Часть 2. Термистор последовательно с резистором.

Термистор соединяют последовательно с сопротивлением $R=120\,O_M$ и подключают к источнику постоянного напряжения $U_0=19B$.

- **2.1** Используя построенную Вами вольтамперную характеристику, определите возможные значения силы установившегося тока в цепи. Какие значения силы тока могут реализовываться на практике. Ваш выбор обоснуйте.
- **2.2** Считая, что изначально термистор находился при температуре равной температуре окружающей среды, определите какая сила тока установится в цепи.
- **2.3** Предложите способ, позволяющий получить другое значение силы установившейся тока в этой цепи.

Часть 3. Термистор параллельно с резистором.

При параллельном соединении с нагрузкой, рассматриваемый Вами термистор может исполнять роль стабилизатора напряжения и тока. Т.е. при изменении внешнего напряжения или силы тока, напряжение на нагрузке не будет существенно изменяться.

Термистор включен параллельно с резистором и подключен к источнику постоянного тока (источнику питания, обеспечивающему определенную силу тока в цепи). Сила тока источника $I_0=50 {\it mA}$.

- **3.1** Какое сопротивление R нужно использовать в качестве нагрузки, чтобы при небольшом изменении силы тока источника, изменение напряжения на нагрузке было наименьшим?
- **3.2** В каких переделах будет изменяться напряжение и сила тока через нагрузку при изменении силы тока источника от $I_{01} = 40 \text{ MA}$ до $I_{02} = 60 \text{ MA}$?

Бланк задачи 10-3

