实验2:TinySeg图像分割模型对比与优化研究

谢翰然 M202473150 覃佐睿 M202473146 日期:2025/3/24

该实验围绕图像分割模型的核心架构展开对比研究,基于小型数据集TinySeg(128×128像素),可以使用PyTorch、MindSpore等成熟深度学习框架,要求学生实现并优化三种主流模型PSPNet、DeepLabv3(含ASPP模块)和CCNet(交叉注意力机制),通过数据增强、长周期训练(≥50 epoch)及多维度评估(mIoU、Dice系数、边缘F1分数、混淆矩阵),探究不同解码器结构对分割精度、计算效率和长程依赖建模能力的影响,最终通过可视化错误样本和参数对比,深化对语义分割模型设计原理的理解,同时培养工业级深度学习任务的工程实践能力,为真实场景中的实时分割任务提供选型参考。

1.模型实现

1.1 PSPNet

- · 架构: ResNet18 (骨干) +PSPNet (解码器)
- PSP模块需包含4级金字塔池化(1×1,2×2,3×3,6×6)
- 。 最终特征图通过双线性上采样恢复至128×128

1.2 DeepLabv3

- · 架构: ASPP模块
- branches = [Conv2d(in_channels, out_channels, 1), # 1×1 卷积
- o Conv2d(in channels, out channels, 3, padding=6, dilation=6), # 空洞率 6
- o Conv2d(in channels, out channels, 3, padding=12, dilation=12), # 空洞率 12
- Sequential(GlobalAvgPool2d(), Conv2d(...), Upsample(...))
- 。 最使用1×1卷积将4分支特征相加后输出

1.3 CCNet

- 。 特征映射: 输入特征图\(X\in\mathbb{R}^{C×H×W}\)
- 。 生成Query/Key
- 。 注意力计算:

对每个位置 $\backslash((i,j)\backslash)$,计算水平和垂直方向的关联权重两次交叉注意力(Criss-Cross)迭代

输出融合: \(Y=\text{Conv}(X+\text{Attention}(X))\)

2.训练与评估配置

2.1 训练参数

- 。 训练周期: 至少50个epoch(早停条件: 验证集mIoU连续10个epoch无提升)
- o 优化器: AdamW (lr=0.001,weight decay=1e-4)
- 。 学习率调度: CosineAnnealingLR (T_max=20,eta_min=1e-5)
- 。 损失函数: CrossEntropyLoss+DiceLoss(权重比1:1)

2.2 评估指标

- $mIoU:\(\frac{1}{C} \sum_{c=1}^C \frac{TP_c}{TP_c} TP_c + FP_c + FN_c \)$
- Dice系数:\(\frac{2\times TP} {2\times TP + FP + FN}\)

3.模型结构图

3.1 PSPNet

3.2 Deeplabv3

图2 DeepLabv3模型结构图

3.3 CCNet

4.数据增强消融实验

4.1 消融实验设定

对于三种主流模型—PSP Net、 DeepLabv3(含ASPP模块)和CC Net(交叉注意力机制),按照下表配置,构 建不同的实验组,每个实验组分别使用不同的数据增强方法,其他所有实验条件都保持相同。在每个组上使用相同 的训练数据和验证数据来训练模型,并使用相同的评估指标来评估模型的性能:

配置	增强组合	
无增强	仅归一化	
基础增强	base_aug	
完整增强	base_aug + advanced_aug	

4.2 训练过程可视化结果

4.2.1 PSPNet

PSPNet基础增强LOSS和mIoU随epoch的变化曲线和混淆矩阵

PSPNet完整增强LOSS和mIoU随epoch的变化曲线和混淆矩阵

4.2.2 Deeplabv3

Deeplabv3无增强LOSS和mIoU随epoch的变化曲线和混淆矩阵

Deeplabv3基础增强LOSS和mIoU随epoch的变化曲线和混淆矩阵

Deeplabv3完整增强LOSS和mIoU随epoch的变化曲线和混淆矩阵

4.2.3 CCnet:

CCnet无增强LOSS和mIoU随epoch的变化曲线和混淆矩阵

CCnet基础增强LOSS和mIoU随epoch的变化曲线和混淆矩阵

CCnet完整增强LOSS和mIoU随epoch的变化曲线和混淆矩阵

5.模型对比表格

5.1 PSPnet

	Pixel Accuracy	mIoU	Dice系数
无增强	0.8929	0.6102	0.6779
基础增强	0.8983	0.66	0.7152
完整增强	0.9128	0.6914	0.7475

5.2 Deeplabv3

	Pixel Accuracy	mIoU	Dice系数
无增强	0.8767	0.6445	0.7038
基础增强	0.9059	0.6896	0.7363
完整增强	0.9195	0.7081	0.7491

5.3 CCNet

	Pixel Accuracy	mIoU	Dice系数
无增强	0.8915	0.6474	0.6900
基础增强	0.9076	0.6763	0.7072
完整增强	0.9047	0.6951	0.7440

6.实验结果分析

6.1 实验结论

- 。 Pixel Accuracy与mIoU差距较大,可能因部分类别(如小目标)分类不稳定。
- 。 完整增强显著提升边缘分割能力
- 。 完整增强导致CCNet性能下降(mIoU从 $0.6463 \rightarrow 0.6051$),可能因交叉注意力机制对复杂增强敏感,或训练时未充分收敛。
- 。 DeepLabv3可能是因为ASPP模块擅长边缘建模,效果最好

6.2 优化建议

- 。CCNet训练策略:减少高级增强强度(如降低弹性变换的alpha参数)增加注意力头数(从 $2\rightarrow 4$),增强局部特征捕捉能力。
- 。DeepLabv3小目标改进:添加辅助损失函数(如边缘感知损失);调整ASPP空洞率(增加小目标对应的空洞卷积分支)。
- 。 PSPNet效率优化:替换骨干网络为轻量级结构(如MobileNetV3);减少金字塔池化层级(从 $4\rightarrow$ 2),降低计算量。

7.预测结果可视化

7.1 PSPnet

7.1.1 样本1

PSPnet无增强预测结果

PSPnet基础增强预测结果

PSPnet完整增强预测结果

7.1.2 样本2

PSPnet无增强预测结果

PSPnet基础增强预测结果

PSPnet完整增强预测结果

7.1.3 样本3

PSPnet无增强预测结果

PSPnet基础增强预测结果

PSPnet完整增强预测结果

7.2 Deeplabv3

7.2.1 样本4

Deeplabv无增强预测结果

Deeplabv基本增强预测结果

Deeplabv完整增强预测结果

7.2.2 样本5

Deeplabv无增强预测结果

Deeplabv基本增强预测结果

Deeplabv完整增强预测结果

7.2.3 样本6

Deeplabv无增强预测结果

Deeplabv基本增强预测结果

Deeplabv完整增强预测结果

7.3 CCNet

7.3.1 样本7

CCNet无增强预测结果

CCNet基本增强预测结果

CCNet完整增强预测结果

7.3.2 样本8

CCNet无增强预测结果

CCNet基本增强预测结果

CCNet完整增强预测结果

7.3.3 样本9

CCNet无增强预测结果

CCNet基本增强预测结果

CCNet完整增强预测结果