Devoir à la maison n° 4

À rendre le 2 décembre

Ce problème est long, vous pouvez ne traiter qu'une, ou deux, ou trois parties, à votre convenance.

AUTOUR DE LA FONCTION ZETA ALTERNÉE DE RIEMANN

Objectifs : On note F la fonction zeta alternée de Riemann, définie par

$$F(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^x},$$

et ζ la fonction zeta de Riemann, définie sur $]1, +\infty[$ par

$$\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}.$$

Ce problème propose une étude croisée de quelques propriétés de F et ζ . Mise à part la partie **III.** qui utilise des résultats de la partie **I.**, les parties sont, dans une très large mesure, indépendantes.

I. Généralités

- 1) Déterminer l'ensemble de définition de F.
- 2) On considère la suite de fonctions $(g_n)_{n\geqslant 1}$ définies sur [0,1[par

$$g_n(t) = \sum_{k=0}^{n} (-t)^k$$
.

Déterminer la limite simple g de (g_n) puis, en utilisant le théorème de convergence dominée, montrer que $F(1) = \int_0^1 g(t) dt$. En déduire la valeur de F(1).

- 3) Démontrer que la série de fonctions $\sum_{n\geqslant 1} \frac{(-1)^{n-1}}{n^x}$ converge normalement sur $[2,+\infty[$. En déduire la limite de F en $+\infty$.
- 4) Dérivabilité de F
 - a) Soit x > 0. Étudier les variations sur $]0, +\infty[$ de la fonction $t \mapsto \frac{\ln t}{t^x}$ et en déduire que la suite $\left(\frac{\ln n}{n^x}\right)_{n\geqslant 1}$ est monotone à partir d'un certain rang (dépendant de x) que l'on précisera.

- **b)** Pour $n \ge 1$, on pose $f_n : x \mapsto \frac{(-1)^{n-1}}{n^x}$. Si a est un réel strictement positif, démontrer que la série des dérivées $\sum_{n \ge 1} f'_n$ converge uniformément sur $[a, +\infty[$.
- En déduire que F est une fonction de classe \mathscr{C}^1 sur $]0, +\infty[$.
- 5) Lien avec ζ

Calculer, pour x>1, $F(x)-\zeta(x)$ en fonction de x et de $\zeta(x)$. En déduire que :

$$F(x) = (1 - 2^{1-x})\zeta(x).$$

Puis en déduire la limite de ζ en $+\infty$.

II. Produit de Cauchy de la série alternée par elle-même

On rappelle que le produit de Cauchy de deux séries $\sum_{n\geqslant 1}a_n$ et $\sum_{n\geqslant 1}b_n$ est la série $\sum_{n\geqslant 2}c_n$, où

 $c_n = \sum_{k=1}^{n-1} a_k b_{n-k}$. Dans cette partie, on veut déterminer la nature, selon la valeur de x, de la série

$$\sum_{n\geqslant 2} c_n(x), \text{ produit de Cauchy de } \sum_{n\geqslant 1} \frac{(-1)^{n-1}}{n^x} \text{ par elle-même.}$$

Cette étude va illustrer le fait que le produit de Cauchy de deux séries convergentes n'est pas nécessairement une série convergente.

Dans toute cette partie, n désigne un entier supérieur ou égal à 2 et x un réel strictement positif.

- 6) Étude de la convergence
 - a) Indiquer sans aucun calcul la nature et la somme, en fonction de F, de la série produit $\sum_{n\geqslant 2}c_n(x) \text{ lorsque } x>1.$
 - **b)** Démontrer que, pour x > 0, $|c_n(x)| \ge \frac{4^x(n-1)}{n^{2x}}$. En déduire, pour $0 < x \le \frac{1}{2}$, la nature de la série $\sum_{n \ge 2} c_n(x)$.
- 7) $Cas\ où\ x=1$

On suppose, dans cette question 7., que x = 1.

a) Déterminer deux réels a et b tels que pour tout $n \in \mathbb{N}$ et $X \in \mathbb{R}$, $\frac{1}{X(n-X)} = \frac{a}{X} + \frac{b}{n-X}$.

En déduire une expression de $c_n(x)$ en fonction de $\frac{H_{n-1}}{n}$, où $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$ (somme partielle de la série harmonique).

- **b)** Déterminer la monotonie de la suite $\left(\frac{H_{n-1}}{n}\right)_{n\geqslant 2}$.
- c) En déduire la nature de la série $\sum_{n\geqslant 2} c_n(x)$.

III. Calcul de la somme d'une série à l'aide d'une étude de ζ au voisinage de 1

- 8) Développement asymptotique en 1
 - a) Écrire en fonction de $\ln 2$ et de F'(1) le développement limité à l'ordre 1 et au voisinage de 1 de la fonction F, puis déterminer le développement limité à l'ordre 2 et au voisinage de 1 de la fonction $x \mapsto 1 2^{1-x}$.
 - b) En déduire deux réels a et b, qui s'écrivent éventuellement à l'aide de $\ln 2$ et F'(1), tels que l'on ait, pour x au voisinage de 1^+ :

$$\zeta(x) = \frac{a}{x-1} + b + o(1).$$

9) Développement asymptotique en 1 (bis) On considère la série de fonctions $\sum_{n\geq 1} v_n$, où v_n est définie sur [1,2] par

$$v_n(x) = \frac{1}{n^x} - \int_n^{n+1} \frac{\mathrm{d}t}{t^x}.$$

a) Justifier que, pour $n \ge 1$ et $x \in [1, 2]$, on a :

$$0 \leqslant v_n(x) \leqslant \frac{1}{n^x} - \frac{1}{(n+1)^x}.$$

- **b)** Justifier que, pour $x \in [1, 2]$, la série $\sum_{n \ge 1} v_n(x)$ converge. On note alors $\gamma = \sum_{n=1}^{+\infty} v_n(1)$ (c'est la constante d'Euler).
- c) Exprimer, pour $x \in]1,2]$, la somme $\sum_{n=1}^{+\infty} v_n(x)$ à l'aide de $\zeta(x)$ et 1-x.
- d) Démontrer que la série $\sum_{n\geqslant 1}v_n$ converge uniformément sur [1,2] (on pourra utiliser le reste de la série).
- e) En déduire que l'on a, pour x au voisinage de 1^+ :

$$\zeta(x) = \frac{1}{x-1} + \gamma + o(1).$$

10) Application

Déduire des résultats précédents une expression, à l'aide de ln 2 et γ , de la somme

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1} \ln n}{n}.$$