Examen Parcial I. Optimización

Fecha: 17 de Marzo del 2020 Nombre:

Nota Importante:

- Escriba su nombre y numere cada hoja usada para responder el examen.
- Por favor, no mezclar las respuestas de **diferentes preguntas** en la misma hoja.
- El examen esta formado por las preguntas 1, 2 y 3 a), b)
- El inciso c) de la pregunta 3 es opcional y podrá alcanzar hasta un punto adicional si resuelve esta pregunta.
- En caso de alcanzar más de 10 puntos, la puntuación adicional se considerará para el próximo examen.

Preguntas:

- 1. **[3 puntos]**
 - a) [1.5 puntos] Determine los valores de a y b si $\sqrt{x^2 + 1} = ax + b + o(x)$, cuando $x \to 0$ y compruebe el resultado.
 - **b)** [**1.5 puntos**] Muestra que si $f: \mathbb{R} \to \mathbb{R} \in \mathcal{C}^3$ entonces $\frac{f(x+h)-f(x-h)}{2h} = f'(x) + O(h^2)$ cuando $h \to 0$.
- 2. [**3 puntos**] Definamos la función $f: \mathbb{R}^n \to \mathbb{R}$ para n > 1

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{z}^T\mathbf{Q}\mathbf{z} \tag{1}$$

donde $\mathbf{x} = [x_1, \dots, x_n]^T \in \mathbb{R}^n, \mathbf{z} = [\mathbf{x}^T, y]^T \in \mathbb{R}^{n+1} \mathbf{y}$

$$y \stackrel{def}{=} \frac{1}{\prod_{i=1}^{n} x_i} \in \mathbb{R}$$
 (2)

$$\mathbf{Q} \stackrel{def}{=} \mathbf{1}\mathbf{1}^T - \mathbf{I} \in \mathbb{R}^{(n+1)\times(n+1)}$$
 (3)

con 1 denotamos un vector de unos, y con I la matriz identidad.

- a) [1 punto] Halla el punto crítico \mathbf{x}^* de $f(\mathbf{x})$ tal que $x_i > 0$, $i = 1, 2, \dots, n$.
- b) [1 punto] Verifica que el punto crítico anterior es un mínimo
- c) [1 punto] Calcula el valor $f(\mathbf{x}^*)$
- 3. [**4 puntos**] Sea la función $f: \mathbb{R}^n \to \mathbb{R}$ definida como sigue

$$f(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} - \boldsymbol{b}\|_2^2 \tag{4}$$

con $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{A} \in \mathbb{R}^{m \times n}$ es una matriz de rango completo y m > n. Sea además la actualización o método de búsqueda en línea

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)$$

donde \mathbf{x}_0 es un punto inicial conocido y el tamaño de paso $\alpha_k \in \mathbb{R}$ se calcula mediante

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}} \frac{1}{2} \|\nabla f(\mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k))\|_2^2$$

- a) [2 puntos] Calcula α_k en función de la matriz \mathbf{A} y $\mathbf{g}_k \stackrel{def}{=} \nabla f(\mathbf{x}_k)$.
- **b)** [**2 puntos**] Si al usar el método de busqueda en línea anterior el mínimo x^* de (4) se obtiene en la primera iteración, es decir, si

$$\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}),$$

y $\mathbf{x}_1 = \mathbf{x}^*$, muestre que α_0 es un eigenvalor de $(\mathbf{A}^T \mathbf{A})^{-1}$.

c)** [1 punto adicional] Muestra que

$$\frac{1}{\lambda_M} \le \alpha_k \le \frac{1}{\lambda_m}$$

donde λ_m, λ_M son el eigenvalor menor y mayor respectivamente de la matriz $\mathbf{A}^T \mathbf{A}$.