

MAT1610 - Clase 2

Definición exacta de límite y de límites infinitos

Diego De la Vega

Facultad de Matemáticas Pontificia Universidad Católica de Chile

08 de marzo del 2023

Objetivos

- > Introducir la definición exacta de límite
- > Introducir la definición exacta de límite no acotado
- ➤ Introducir la asíntota vertical

Definición exacta de límites

Sea f la función definida sobre algún intervalo abierto que contiene el número a, excepto posiblemente en a misma. Entonces, decimos que el **límite de** f(x) cuando x tiende a a es L, y lo expresamos como

$$\lim_{x \to a} f(x) = L$$

Si para cada número $\varepsilon>0$ existe un número $\delta>0$ tal que

Si
$$0 < |x - a| < \delta$$
 entonces $|f(x) - L| < \varepsilon$

Definición exacta de límites

Ejercicio I: Pruebe que el $\lim_{x \to 3} (4x - 5) = 7$

Ejercicio I: Pruebe que el $\lim_{x \to 3} (4x - 5) = 7$

Análisis preliminar (intuir relación entre ε y δ):

Queremos encontrar un número de δ tal que:

Si
$$0 < |x-3| < \delta$$
 entonces $|(4x-5)-7| < \varepsilon$

Pero |(4x-5)-7|=|4x-12|=4|x-3|. Queremos encontrar un número de δ tal que:

Si
$$0 < |x - 3| < \delta$$
 entonces $4|x - 3| < \varepsilon$

Equivalente a

Si
$$0 < |x - 3| < \delta$$
 entonces $|x - 3| < \frac{\varepsilon}{4}$

Esto último indica que se debe elegir en $\delta = \varepsilon/4$

Ejercicio I: Pruebe que el $\lim_{x\to 3} (4x-5) = 7$

Demostración:

Dado $\varepsilon > 0$, se escoge $\delta = \varepsilon/4$.

Si $0 < |x - 3| < \delta$ entonces,

$$|(4x - 5) - 7| = |4x - 12| = 4|x - 3| < 4\delta = 4\frac{\varepsilon}{4} = \varepsilon$$

Así,

Si
$$0 < |x-3| < \delta$$
 entonces $|(4x-5)-7| < \varepsilon$

Por lo tanto, por la definición de límite,

$$\lim_{x \to 3} (4x - 5) = 7$$

Definición de límite por la izquierda

Escribiremos

$$\lim_{x \to a^{-}} f(x) = L$$

Si para todo $\varepsilon>0$ existe un número $\delta>0$ tal que:

Si
$$a - \delta < x < a$$
 entonces $|f(x) - L| < \varepsilon$

Ejercicio 2: Pruebe que el $\lim_{x\to 0^+} \sqrt{x} = 0$

Definición de límite por la derecha

Escribiremos

$$\lim_{x \to a^+} f(x) = L$$

Si para todo $\varepsilon>0$ existe un número $\delta>0$ tal que:

Si
$$a < x < a + \delta$$
 entonces $|f(x) - L| < \varepsilon$

Ejercicio 2: Pruebe que el $\lim_{x\to 0^+} \sqrt{x} = 0$

Análisis preliminar (intuir relación entre ε y δ):

Queremos encontrar un número de δ tal que:

Si
$$0 < x < \delta$$
 entonces $|\sqrt{x} - 0| < \varepsilon$

Es decir,

Si
$$0 < x < \delta$$
 entonces $\sqrt{x} < \varepsilon$

Elevando al cuadrado,

Si
$$0 < x < \delta$$
 entonces $x < \varepsilon^2$

Esto último indica que se debe elegir en $\delta = \varepsilon^2$

Ejercicio 2: Pruebe que el $\lim_{x\to 0^+} \sqrt{x} = 0$

Demostración:

Dado $\varepsilon > 0$, se escoge $\delta = \varepsilon^2$.

Si $0 < x < \delta$ entonces,

$$\sqrt{x} < \sqrt{\delta} = \sqrt{\varepsilon^2} = \varepsilon$$

Así,

$$\left|\sqrt{x}-0\right|<\varepsilon$$

Por lo tanto, por la definición de límite,

$$\lim_{x \to 0^+} \sqrt{x} = 0$$

Definición exacta de límites infinitos

Sea f una función definida sobre algún intervalo abierto que contiene al número a, excepto posiblemente en a misma. Entonces

$$\lim_{x \to a} f(x) = \infty$$

significa que para todo número positivo M existe un número positivo δ tal que

Si
$$0 < |x - a| < \delta$$
 entonces $f(x) > M$

Ejercicio 3: Demostrar que
$$\lim_{x\to 0} \frac{1}{x^2} = \infty$$

Ejercicio 3: Demostrar que
$$\lim_{x\to 0} \frac{1}{x^2} = \infty$$

Sea M un número positivo dado. Queremos encontrar un número δ tal que

Si
$$0 < |x| < \delta$$
 entonces $\frac{1}{x^2} > M$

Pero,

$$\frac{1}{x^2} > M \iff x^2 < \frac{1}{M} \iff |x| < \frac{1}{\sqrt{M}}$$

Si elegimos $\delta = \frac{1}{\sqrt{M}}$,

$$0 < |x| < \delta = \frac{1}{\sqrt{M}}$$
, entonces $\frac{1}{x^2} > M$

Esto muestra que $\frac{1}{x^2} \to \infty$ conforme $x \to 0$.

Definición exacta de límites infinitos

Sea f una función definida sobre algún intervalo abierto que contiene al número a, excepto posiblemente en a misma. Entonces

$$\lim_{x \to a} f(x) = -\infty$$

significa que para todo número negativo N existe un número positivo δ tal que

Si
$$0 < |x - a| < \delta$$
 entonces $f(x) < N$

Límites infinitos

Escribiremos

$$\lim_{x \to a} f(x) = \infty$$

Si x se acerca al número a entonces f(x) se hace arbitrariamente grande y positivo.

Escribiremos

$$\lim_{x \to a} f(x) = -\infty$$

Si x se acerca al número a entonces f(x) se hace arbitrariamente grande y negativo.

En cualquiera de estos dos casos diremos que el límite no existe.

Límites laterales infinitos

$$\lim_{x \to a^{-}} f(x) = \infty$$

$$\lim_{x \to a^{-}} f(x) = -\infty$$

$$\lim_{x \to a^+} f(x) = \infty$$

$$\lim_{x \to a^+} f(x) = -\infty$$

Asíntota vertical

La recta x = a se llama asíntota vertical de la curva y = f(x) si al menos una de las siguientes afirmaciones son verdaderas:

$$\lim_{x \to a} f(x) = \infty$$

$$\lim_{x \to a^{-}} f(x) = \infty \qquad \qquad \lim_{x \to a^{+}} f(x) = \infty$$

$$\lim_{x \to a^+} f(x) = \infty$$

$$\lim_{x \to a} f(x) = -\infty$$

$$\lim_{x \to a^{-}} f(x) = -\infty$$

$$\lim_{x \to a^+} f(x) = -\infty$$

Ejercicio 4: A partir de la gráfica de f, determine cada uno de los siguientes límites y las ecuaciones de las asíntotas verticales.

- a) $\lim_{x \to -3^{-}} f(x)$ d) $\lim_{x \to 6} f(x)$

- b) $\lim_{x \to -3^+} f(x)$ e) $\lim_{x \to 6^+} f(x)$
- c) $\lim_{x \to -3} f(x)$ f) $\lim_{x \to 6} f(x)$

Asíntota vertical

Ejercicio 4: Encuentre las asíntotas verticales de

$$f(x) = \frac{x^2 - 4}{x^2 - 3x + 2}$$

Ejercicio 5: Encuentre las asíntotas verticales de

$$f(x) = \tan(x)$$

Conclusión

> Abordamos la definición exacta de límites y asíntota vertical

Libro guía

> Págs. 109-116.