Chemical and Electrical Synapses

Two Kinds of Synapses

- 1. Chemical
- 2. Electrical
- Both types of synapses relay information, but do so by very different mechanisms.
- Much more is known about chemical than about electrical synapses.
 - Information gleaned from NMJ in frog leg (sciatic n. gastrocnemius m.).
 - However, this is n-m, rather than n-n.
 - n-m relay is much faster than n-n.

Electrical Synapses

- Symmetrical morphology.
- Bidirectional transfer of information, but can be unidirectional.
- *Pre* and *post*synaptic cell membranes are in close apposition to each other (~ 3.5 vs. ~ 20 nm in other cells), separated only by regions of cytoplasmic continuity, called *gap junctions*.
 - Ions can flow through these gap junctions, providing low-resistance pathway for ion flow between cells without leakage to the extracellular space: signal transmission = electrotonic transmission.
 - Instantaneous, fast transfer from 1 cell to the next (< 0.3 msec), unlike the delay seen with chemical synapses.

Electrical synapses are built for speed

Electrical Synapses (cont') Putative Functions

- Synchronization of the electrical activity of large populations of neurons;
 - *e.g.*, the large populations of neurosecretory neurons that synthesize and release biologically active peptide neurotransmitters and hormones are extensively connected by electrical synapses.
 - *e.g.*, Synchronization may be required for neuronal development, including the development of chemical synapses.
 - *e.g.*, Synchronization may be important in functions that require instantaneous responses, such as reflexes and pacemakers.

Electrical coupling is a way to synchronize neurons with one another

Electrical synapses

Gap junctions are formed exclusively from hexameric pores, called connexons (Cx36), which connect cells with each other for robust electrical coupling.

Electrical Synapses: Anatomy

A. Have
bridged = gap
junctions
between

presynaptic and postsynaptic cells

B. Space between the pre- and post-synaptic cells is ~3.5 nm vs. 20 nm for "normal" cells

Electrical Synapses: Anatomy (cont'd)

C. Extracellular space is bridged by hemichannels that span the pre-synaptic and post-synaptic membranes and meet in the middle of the extracellular space

1. 1 channel = 1 \
presynaptic hemichannel (connexon) + 1
post-synaptic hemichannel (connexon)
(6 protein subunits of
connexin make up each

connexon)

Electrical Synapses: Anatomy (cont'd)

D. Channels allow metabolic and electrical continuity between cells-

1. diameter is ~1.5 nm

2. Na⁺, K⁺,

cAMP, sucrose, small peptides, etc. can cross

Chemical Synapses

- Asymmetric morphology with distinct features found in the *pre* and *post*synaptic parts.
- Enlarged extracellular space with no cytoplasmic continuity = Synaptic cleft is ~ 200-300 A wide.
- CHO moities intersperse the synapse.
- Most presynaptic endings are axon terminals.
- Most postsynaptic elements in the CNS are dendrites.

Chemical Synapses (cont'd)

- Convergence.
- Divergence.
- Presynaptic ending:
 - swelling of the axon terminal.
 - mitochondria.
 - a variety of vesicular structures, clustered at/near the very edge of the axon terminal.

Chemical Synapses (cont'd)

- Postsynaptic element
 - comprised largely of an electron-dense structure, called the *postsynaptic* density (PSD).

Function of PSD?

- Anchor receptors for neurotransmitters in the postsynaptic membrane.
 - Involved in the conversion of a chemical signal into an electrical one *transduction*.

Chemical Synapses (cont'd)

- Associated with the morphological asymmetry is that chemical synapses are, for the most part, *unidirectional*.
- There is a delay of $\sim 0.3 5$ msec between the arrival of information at the presynaptic terminal and its transfer to the postsynaptic cell.

This delay may reflect the several steps required for signal transmission = the release and action of a chemical neurotransmitter, which is usually Ca²⁺-dependent.

The response of the postsynaptic neuron may be sustained (long-lasting), much longer than the presynaptic signal the evoked it.

This may reflect long-lasting changes in the target (receiving) cell.

• The most common type of synapse in the vertebrate nervous system.

Chemical synapse

Chemical Synapses: Anatomy

e.g. **Neuromuscular junction** = highly specialized synapse

A. Pre- and postsynaptic cells lack cytoplasmic continuity

B. The extracellular space between the cells = synaptic cleft is enlarged (20-50 nm versus 20 nm for usual extracelluar space)

Chemical Synapses: Anatomy (cont'd)

- *e.g.* **Neuromuscular junction** = highly specialized synapse
- C. Axon of pre-synaptic cell is highly branched and terminates in terminal knobs = synaptic boutons
- D. Both **pre-** and **postsynaptic cells** have **membrane specializations**
 - 1. **presynaptic boutons** with
 - a. Synaptic vesicles = neurotransmitter vesicles
 - b. Lots of **mitochondria**
 - c. Active zones for docking/release of contents of vesicles
 - 2. post-synaptic membrane with membrane spanning neurotransmitter receptor protein that serves as both receptor and ion channel

Chemical Synapses: Anatomy (cont'd)

E. In the CNS, ion channels can be distinct from the neurotransmitter receptor molecule and can be either directly gated or gated via activation of a second messenger system

Summary Comparison of the 2 Principal kinds of Synapses: Electrical and Chemical

Contrast with chemical synapse:

Physiology of Electrical Synapses:

A. Experimental set-up:

B. Experiment #1: inject threshold current in presynaptic cell

C. Experiment #2: inject subthreshold current in presynaptic cell

D. Experiment #3: inject subthreshold current in postsynaptic cell

E. Experiment #4: inject subthreshold current in postsynaptic cell

Thus, unidirectional synaptic transmission also exists. Rectifying electrical synapses that conduct current in a single direction. May be due to heterotypic channels formed from different forms of the connexin protein.

Physiology of Chemical Synapses:

A. Experimental set-up:

B. Experiment #1: inject threshold current in presynaptic cell

C. Experiment #2: inject subthreshold current in presynaptic cell

Thus, requires a threshold change in V_m in the presynaptic cell for signal transmission.

D. Experiment #3: inject threshold current in postsynaptic cell

Physiology of Chemical Synapses: (cont'd) What Current is Required for Signal Transmission

E. Experiment #4: inject threshold current in presynaptic cell bathed in tetrodotoxin to block Na⁺ current

Physiology of Chemical Synapses: (cont'd) What Current is Required for Signal Transmission

F. Experiment #5: inject threshold current in presynaptic cell bathed in tetraethylammonium ion to block K⁺ current

Physiology of Chemical Synapses: (cont'd) What Current is Required for Signal Transmission

G. Experiment #6: inject threshold current in presynaptic cell bathed in Ca²⁺⁻free medium

Thus, the Ca⁺ current is required for chemical synaptic transmission.

The Calcium Dependent Model of Neurotransmitter Release:

- A. Where does synaptic delay come from?
 - 1. Slow opening of voltage-gated Ca²⁺ channels -

The Calcium Dependent Model of Neurotransmitter Release: (cont'd)

Where does synaptic delay come from? (continued)

- 2. Time for exocytosis of synaptic vesicles
- 3. Diffusion of neurotransmitter across the synapse
- 4. Molecular events at the postsynaptic membrane that lead to AP production following neurotransmitter binding

Calcium influx is necessary for neurotransmitter release

Voltage-gated calcium channels

Calcium influx is sufficient for neurotransmitter release

