In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split,cross_val_score
```

In [2]:

```
train = pd.read_csv('SalaryData_Train.csv')
test = pd.read_csv('SalaryData_Test.csv')
```

In [3]:

train

Out[3]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White
1	50	Self-emp- not-inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White
3	53	Private	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black
4	28	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black
30156	27	Private	Assoc- acdm	12	Married-civ- spouse	Tech- support	Wife	White
30157	40	Private	HS-grad	9	Married-civ- spouse	Machine- op-inspct	Husband	White
30158	58	Private	HS-grad	9	Widowed	Adm- clerical	Unmarried	White
30159	22	Private	HS-grad	9	Never- married	Adm- clerical	Own-child	White
30160	52	Self-emp- inc	HS-grad	9	Married-civ- spouse	Exec- managerial	Wife	White
30161 rows × 14 columns								

In [4]:

```
train.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30161 entries, 0 to 30160
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	30161 non-null	int64
1	workclass	30161 non-null	object
2	education	30161 non-null	object
3	educationno	30161 non-null	int64
4	maritalstatus	30161 non-null	object
5	occupation	30161 non-null	object
6	relationship	30161 non-null	object
7	race	30161 non-null	object
8	sex	30161 non-null	object
9	capitalgain	30161 non-null	int64
10	capitalloss	30161 non-null	int64
11	hoursperweek	30161 non-null	int64
12	native	30161 non-null	object
13	Salary	30161 non-null	object

dtypes: int64(5), object(9)
memory usage: 3.2+ MB

In [5]:

train.isna().sum()

Out[5]:

age 0 workclass 0 education 0 educationno 0 maritalstatus 0 occupation 0 relationship 0 race 0 0 sex capitalgain 0 capitalloss 0 hoursperweek 0 native 0 Salary 0 dtype: int64

In [6]:

train.describe()

Out[6]:

	age	educationno	capitalgain	capitalloss	hoursperweek
count	30161.000000	30161.000000	30161.000000	30161.000000	30161.000000
mean	38.438115	10.121316	1092.044064	88.302311	40.931269
std	13.134830	2.550037	7406.466611	404.121321	11.980182
min	17.000000	1.000000	0.000000	0.000000	1.000000
25%	28.000000	9.000000	0.000000	0.000000	40.000000
50%	37.000000	10.000000	0.000000	0.000000	40.000000
75%	47.000000	13.000000	0.000000	0.000000	45.000000
max	90.000000	16.000000	99999.000000	4356.000000	99.000000

In [7]:

test

Out[7]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	
0	25	Private	11th	7	Never- married	Machine- op-inspct	Own-child	Black	
1	38	Private	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	White	
2	28	Local-gov	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	White	
3	44	Private	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	Black	
4	34	Private	10th	6	Never- married	Other- service	Not-in-family	White	
15055	33	Private	Bachelors	13	Never- married	Prof- specialty	Own-child	White	
15056	39	Private	Bachelors	13	Divorced	Prof- specialty	Not-in-family	White	
15057	38	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Husband	White	
15058	44	Private	Bachelors	13	Divorced	Adm- clerical	Own-child	Asian- Pac- Islander	
15059	35	Self-emp- inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	
15060 rows × 14 columns									

In [8]:

```
test.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15060 entries, 0 to 15059
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	15060 non-null	int64
1	workclass	15060 non-null	object
2	education	15060 non-null	object
3	educationno	15060 non-null	int64
4	maritalstatus	15060 non-null	object
5	occupation	15060 non-null	object
6	relationship	15060 non-null	object
7	race	15060 non-null	object
8	sex	15060 non-null	object
9	capitalgain	15060 non-null	int64
10	capitalloss	15060 non-null	int64
11	hoursperweek	15060 non-null	int64
12	native	15060 non-null	object
13	Salary	15060 non-null	object

dtypes: int64(5), object(9)
memory usage: 1.6+ MB

In [9]:

test.isna().sum()

Out[9]:

age 0 workclass 0 education 0 educationno 0 maritalstatus 0 occupation 0 relationship 0 race 0 0 sex capitalgain 0 capitalloss 0 hoursperweek 0 native 0 Salary 0 dtype: int64

In [10]:

```
test.describe()
```

Out[10]:

	age	educationno	capitalgain	capitalloss	hoursperweek
count	15060.000000	15060.000000	15060.000000	15060.000000	15060.000000
mean	38.768327	10.112749	1120.301594	89.041899	40.951594
std	13.380676	2.558727	7703.181842	406.283245	12.062831
min	17.000000	1.000000	0.000000	0.000000	1.000000
25%	28.000000	9.000000	0.000000	0.000000	40.000000
50%	37.000000	10.000000	0.000000	0.000000	40.000000
75%	48.000000	13.000000	0.000000	0.000000	45.000000
max	90.000000	16.000000	99999.000000	3770.000000	99.000000

In [11]:

```
# frequency for categorical fields
```

In [13]:

```
category_col =['workclass', 'education','maritalstatus', 'occupation', 'relationship', 'rac
for c in category_col:
    print (c)
    print (train[c].value_counts())
    print('\n')
```

```
workclass
Private
                     22285
Self-emp-not-inc
                       2499
Local-gov
                       2067
State-gov
                      1279
Self-emp-inc
                      1074
                       943
 Federal-gov
                        14
Without-pay
Name: workclass, dtype: int64
```

```
education
HS-grad 9840
Some-college 6677
Bachelors 5044
Masters 1627
Assoc-voc 1307
11th 1048
Assoc-acdm 1008
```

In [14]:

10+

```
#Countplot for all categorical columns
```

In [16]:

```
sns.set(rc={'figure.figsize':(16,10)})
cat_col = ['workclass', 'education', 'maritalstatus', 'occupation', 'relationship', 'race',
for col in cat_col:
    plt.figure() # this create a new figure on which our plot will appear
    sns.countplot(x=col, data=train,palette='Set3');
    plt.show()
```


In [17]:

train[['Salary','age']].groupby(['Salary'],as_index=False).mean().sort_values(by='age', asc

Out[17]:

	Salary	age
1	>50K	43.959110

0 <=50K 36.608264

In [18]:

##Feature Encoding

In [19]:

from sklearn.preprocessing import LabelEncoder

In [20]:

```
train = train.apply(LabelEncoder().fit_transform)
train.head()
```

Out[20]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	22	5	9	12	4	0	1	4	1
1	33	4	9	12	2	3	0	4	1
2	21	2	11	8	0	5	1	4	1
3	36	2	1	6	2	5	0	2	1
4	11	2	9	12	2	9	5	2	0
4									•

In [21]:

```
test = test.apply(LabelEncoder().fit_transform)
test.head()
```

Out[21]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	8	2	1	6	4	6	3	2	1
1	21	2	11	8	2	4	0	4	1
2	11	1	7	11	2	10	0	4	1
3	27	2	15	9	2	6	0	2	1
4	17	2	0	5	4	7	1	4	1
4									•

Multinomial naive bays model on SalaryDataTrain

In [22]:

```
#Train test split
```

In [24]:

```
drop_elements = ['education','native','Salary']
x = train.drop(drop_elements,axis=1)
y = train['Salary']
```

```
In [26]:
```

Х

Out[26]:

	age	workclass	educationno	maritalstatus	occupation	relationship	race	sex	capitalç
0	22	5	12	4	0	1	4	1	
1	33	4	12	2	3	0	4	1	
2	21	2	8	0	5	1	4	1	
3	36	2	6	2	5	0	2	1	
4	11	2	12	2	9	5	2	0	
30156	10	2	11	2	12	5	4	0	
30157	23	2	8	2	6	0	4	1	
30158	41	2	8	6	0	4	4	0	
30159	5	2	8	4	0	3	4	1	
30160	35	3	8	2	3	5	4	0	

30161 rows × 11 columns

0

```
In [27]:
```

у

```
Out[27]:
```

```
1 0
2 0
3 0
4 0
...
30156 0
30157 1
30158 0
30159 0
30160 1
```

Name: Salary, Length: 30161, dtype: int32

In [28]:

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.33, random_state=42)

Building Modl

In [29]:

#Preparing a naive bays model on training dataset

```
In [30]:
```

```
from sklearn.naive_bayes import MultinomialNB as MB
from sklearn.naive_bayes import GaussianNB as GB

#Muktinomial naive bayes
classifier_mb = MB()
classifier_mb.fit(x_train,y_train)

Out[30]:
MultinomialNB()

In [31]:
score_multinomial = classifier_mb.score(x_test,y_test)
```

The accuracy of Multinomial Naive Bayes is 0.7796865581675708

print('The accuracy of Multinomial Naive Bayes is', score_multinomial)

Building Gauessian model

```
In [32]:

classifier_gb = GB()
classifier_gb.fit(x_train,y_train)

Out[32]:

GaussianNB()

In [33]:

score_gaussian = classifier_gb.score(x_test,y_test)
print('The accuracy of Gaussian Naive Bayes is', score_gaussian)

The accuracy of Gaussian Naive Bayes is 0.812035362668274

In [37]:

## Testing Multinomial Naive Bays model on SalaryDataTest

In [35]:
```

```
drop_elements = ['education', 'native', 'Salary']
X = test.drop(drop_elements, axis=1)
Y = test['Salary']
```

```
In [38]:
```

##Testing Gaussian Naive Bays model on SalaryDataTest

In [36]:

```
from sklearn import metrics

# make predictions
new_prediction = classifier_gb.predict(X)
# summarize the fit of the model
print(metrics.classification_report(Y, new_prediction))
print(metrics.confusion_matrix(Y, new_prediction))

print("Accuracy:",metrics.accuracy_score(Y, new_prediction))
print("Precision:",metrics.precision_score(Y, new_prediction))
print("Recall:",metrics.recall_score(Y, new_prediction))
```

	precision	recall	f1-score	support
0	0.84	0.93	0.88	11360
1	0.69	0.45	0.54	3700
accuracy			0.81	15060
macro avg	0.76	0.69	0.71	15060
weighted avg	0.80	0.81	0.80	15060

[[10604 756] [2038 1662]]

Accuracy: 0.8144754316069057 Precision: 0.6873449131513648 Recall: 0.4491891891891892

In []: