《线性代数》作业 10

截止时间: 12 月 3 日 18:00。注明姓名, 学号和组号。 纸质。请写出完整的计算等解题过程。提交于课堂或近春园西楼入口处我的信箱。

- 1. 求复矩阵 $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ 的全部特征值和特征向量。
- 2. 设矩阵 $A = \begin{bmatrix} 0 & 1 \\ a_{21} & a_{22} \end{bmatrix}$. 确定 a_{21}, a_{22} 的取值,使得 A 的特征值为 4,7.
- 3. 设 $A\begin{bmatrix} 2 & -2 & 0 \\ -2 & x & -2 \\ -2 & -2 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & y \end{bmatrix}$. 己知 A, B 的特征多项式相同,求 x, y.
- 4. 设方阵 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
 - (a) 利用一元二次方程求根公式,写出 A 的两个特征值 λ_1, λ_2 的表达式。
 - (b) 构造一个非对角矩阵的 A,满足 $\lambda_1 = \lambda_2$.
 - (c) 设 λ 为A的特征值。证明:

$$A\left[\begin{array}{c} b \\ \lambda-a \end{array}\right] = \lambda \left[\begin{array}{c} b \\ \lambda-a \end{array}\right], \qquad A\left[\begin{array}{c} \lambda-d \\ c \end{array}\right] = \lambda \left[\begin{array}{c} \lambda-d \\ c \end{array}\right].$$

提示: 若这两个向量不是零向量, 那么它们就是特征向量。

- (d) 若上述两个向量中有且仅有一个是零向量,求 A 的特征值和特征向量。
- (e) 若上述两个向量都是零向量, 求 A 的特征值和特征向量。
- 5. 已知 3 阶方阵 A 的特征值为 1,2,3. 求下列矩阵的特征值。
 - (a) $2A, A + I_3, A^2, \bar{A}, A^T, A^{-1}$. 需说明 A 为何可逆。

(b)
$$\begin{bmatrix} A & O \\ O & A \end{bmatrix}$$
, $\begin{bmatrix} A & A \\ O & A \end{bmatrix}$.

6. 设 λ_1, λ_2 是 A 的两个不同特征值, x_1, x_2 是分别属于 λ_1, λ_2 的特征向量。证明: $x_1 + x_2$ 不是 A 的特征向量。

7. 设
$$A = \begin{bmatrix} 3 & 2 & -2 \\ -k & -1 & k \\ 4 & 2 & -3 \end{bmatrix}$$
. 当 k 取何值时, A 可对角化?当 A 可对角化时,写出其谱分解。

8. 证明:

(a)
$$n$$
 阶方阵 $J_n(\lambda_0)=\begin{bmatrix} \lambda_0 & 1 & & & \\ & \lambda_0 & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda_0 \end{bmatrix}$ 只有一个特征值 λ_0 ,其代数重数是 n ,几何重数是 1 .

- (b) 设整数 $n_1>0, n_2>0$. 分块对角矩阵 $A=\begin{bmatrix} J_{n_1}(\lambda_0) & O \\ O & J_{n_2}(\lambda_0) \end{bmatrix}$ 只有一个特征值 λ_0 ,其代数 重数是 n_1+n_2 ,几何重数是 2.
- 9. 证明: $A = \begin{bmatrix} I_r & O \\ B & -I_{n-r} \end{bmatrix}$ 可对角化,其中整数 $r \in \{1, 2, \dots, n\}$.
- 10. 设方阵 A 的特征多项式为 $p_A(x)$.
 - (a) 设 A 为对角矩阵,证明: $p_A(A) = O$.
 - (b) 设 A 为可对角化的矩阵,证明: $p_A(A) = O$.

(c) 设
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$$
. 它是否可对角化? 是否满足 $p_A(A) = O$?

- 11. 对下列方阵 A, B, 求可逆矩阵 X, 使得 $A = XBX^{-1}$.
 - (a) A = MN, B = NM, 其中 M, N 为方阵,且 M 可逆。

(b)
$$A = \begin{bmatrix} MN & O \\ N & O \end{bmatrix}$$
, $B = \begin{bmatrix} O & O \\ N & NM \end{bmatrix}$, 其中 $M \in \mathbb{C}^{m \times n}$, $N \in \mathbb{C}^{n \times m}$ 不必是方阵。

(c)
$$A = \begin{bmatrix} M & -N \\ N & M \end{bmatrix}$$
, $B = \begin{bmatrix} M + \mathrm{i}N & O \\ O & M - \mathrm{i}N \end{bmatrix}$, 其中 M, N 是方阵。