Liniowe metody wielokrokowe

starsze niż RK o 50 lat

użyteczne, gdy rachunek nie wymaga zmiany kroku całkowania a wykonanie każdego kroku jest kosztowne (wysoka dokładność, przy małej liczbie wezwań prawej strony równania różniczkowego)

ze względów analizy metod, ważne: bo schematy do rozwiązywania równań cząstkowych mają często właśnie wielokrokowy charakter

$$u'=f(t,u)$$

metody jednokrokowe

$$u_n = u_{n-1} + \Delta t \Phi(t_{n-1}, u_{n-1}, \Delta t)$$

do wyliczenia u_n używamy tylko u_{n-1} , przeszłość ulega zapomnieniu

- \bigcirc Metody RK, są jednokrokowe i <u>nieliniowe</u> (nieliniowa zależność u_n od f)
- Dla wykonania jednego kroku wyliczamy f wielokrotnie między t_n a t_{n+1} .
- metody RK dużej dokładności: wiele wywołań f

metody liniowe - wielokrokowe: tylko jedno wyliczenie f w każdym kroku wyższa dokładność uzyskiwana dzięki wykorzystaniu informacji z przeszłości

$$u'=f(t,u)$$

metody jednokrokowe (np. RK)

$$u_n = u_{n-1} + \Delta t \Phi(t_{n-1}, u_{n-1}, \Delta t)$$

do wyliczenia następnego kroku używamy tylko wartości z jednego poprzedniego kroku.

Wywołujemy wielokrotnie f między t_{n-1} a t_n , co może być kosztowne.

prawo powszechnej grawitacji

$$\mathbf{F}_{ij} = G \frac{m_i m_j (\mathbf{r}_j - \mathbf{r}_i)}{|\mathbf{r}_i - \mathbf{r}_j|^3}$$

siła działająca na i-te ciało pochodzące od j-tego

aby zasymulować słońce + 8 planet: w każdym kroku: 9 (ciał) *3 (wymiary) *2 (prędkość i położenie) =54 równania 1-szego rzędu Do wyliczenia jednego kroku +9*8/2*3=96 składowych sił do policzenia

Symulacja układu słonecznego: John Adamsa, wiek XIX

Przydałaby się metoda:

- 1) wysokiej dokładności (dt*liczba kroków < czas życia pana Adamsa)
- 2) jeden rachunek sił na jeden krok czasowy
- 3) jawna (wynika z 2)

Przed Adamsem: dostępna tylko jawna metoda Eulera 😊

Mimo rozwoju komputerów złożoność wielu ważnych problemów stawia badaczy w sytuacji Adamsa (często – zazwyczaj praca na granicy możliwości komputera)

pan Adams sprawdza prawo powszechnej grawitacji

$$\mathbf{F}_{ij} = G \frac{m_i m_j (\mathbf{r}_j - \mathbf{r}_i)}{|\mathbf{r}_i - \mathbf{r}_j|^3}$$

siła działająca na i-te ciało pochodzące od j-tego

aby zasymulować słońce + 8 planet: w każdym kroku: 9*3*2=54 równania 1-szego rzędu +9*8/2*3=96 sił do policzenia liniowe metody wielokrokowe: do podniesienia dokładności wykorzystamy znajomość historii układu (którą zapamiętujemy)

dla metod jawnych: f liczona tylko raz w jednym kroku czasowym

ogólna postać k-krokowej metody wielokrokowej (u_n wyliczane z tego wzoru):

$$\sum_{i=0}^k \alpha_i u_{n-i} = \Delta t \sum_{i=0}^k \beta_i f_{n-i} \quad \text{m. jawna: } \beta_0 = 0 \\ \alpha_0 = 1, [\alpha_k \neq 0 \text{ lub } \beta_k \neq 0]$$

<u>liniowy</u> jest_związek między u_l a f_l , f wcale nie musi być liniowa

pan Adams sprawdza prawo powszechnej grawitacji

... Uran zachowuje się w sposób podejrzany

prawo grawitacji na większych odległościach odbiega od 1/r ?

Adams, John. Couch., "

Explanation of the observed irregularities in the motion of Uranus, on the hypothesis of disturbance by a more distant planet

", Monthly Notices of the Royal Astronomical Society, Vol. 7, p. 149, 1843

Neptun – odkrycie numeryczne fotka z Wikipedii

$$\sum_{i=0}^{k} \alpha_i u_{n-i} = \Delta t \sum_{i=0}^{k} \beta_i f_{n-i}$$

Poznane schematy, które należą do klasy liniowych wielokrokowych

$$u_{n} = u_{n-1} + f_{n-1} \Delta t$$

 $u_{n} - u_{n-1} = \Delta t f_{n-1}$

$$\alpha_0 = 1$$
, $\alpha_1 = -1$
 $\beta_0 = 0$, $\beta_1 = 1$

$$u_n = u_{n-1} + f_n \Delta t$$

$$\alpha_0 = 1, \ \alpha_1 = -1$$

$$\beta_0 = 1, \ \beta_1 = 0$$

$$u_n = u_{n-1} + (f_n + f_{n-1}) \Delta t/2$$

$$\alpha_0 = 1, \ \alpha_1 = -1$$

 $\beta_0 = 1/2, \ \beta_1 = 1/2$

RK2 punktu środkowego <u>nie</u> podlega tej formule:

$$u_{n+1} = u_n + \Delta t f(t_n + \frac{\Delta t}{2}, u_n + \frac{\Delta t}{2} f(t_n, u_n))$$

f wzywane w sposób nieliniowy

$$\sum_{i=0}^{k} \alpha_i u_{n-i} = \Delta t \sum_{i=0}^{k} \beta_i f_{n-i}$$
 jak wyznaczyć α , β :
Np. metoda nieoznaczonych współczynników

- 1) zakładamy szczególną formę ogólnego wzoru (*k*) (wybieramy kilka niezerowych współczynników)
- 2) wartości niezerowych współczynników wyznaczamy z rozwinięcia Taylora lub w sposób równoważny tak aby formuła była dokładna dla wielomianu jak najwyższego stopnia

np.
$$u_n + \alpha_1 u_{n-1} + \alpha_2 u_{n-2} = \Delta t \beta_1 f_{n-1}$$

3 swobodne współczynniki: możemy obsłużyć 3 rozwiązania = będzie dokładna dla parabol (tj. rzędu 2)

$$u=1 \text{ gdy } du/dt=f=0 \to 1+\alpha_1+\alpha_2=0$$

$$u=t \text{ gdy } f=1 \to \Delta t \text{ (n+}\alpha_1(\text{n-1})+\alpha_2(\text{n-2}))=\Delta t \text{ } \beta_1$$

$$u=t^2 \text{ gdy } f=2t \to \Delta t^2 \text{ (n^2+}\alpha_1(\text{n-1})^2+\alpha_2(\text{n-2})^2)=2 \text{ } \Delta t \text{ } \beta_1 \Delta t \text{ (n-1)}$$

Dla metod wielokrokowych: warunek początkowy u_0 nie wystarcza do uruchomienia schematu : tutaj potrzebne u_0 oraz f_1 f_1 można policzyć (bardzo) dokładnie innymi metodami

metoda nieustalonych współczynników przykład 2: metoda jawna dwukrokowa rzędu trzeciego

$$u_n + \alpha_1 u_{n-1} + \alpha_2 u_{n-2} = \Delta t \beta_1 f_{n-1} + \Delta t \beta_2 f_{n-2}$$

w sposób jak wyżej uzyskamy:

$$u_n = -4u_{n-1} + 5u_{n-2} + \Delta t \left(2f_{n-1} + 4f_{n-2}\right)$$

metoda nieustalonych współczynników przykład 2: metoda jawna dwukrokowa rzędu trzeciego

$$u_n = -4u_{n-1} + 5u_{n-2} + \Delta t \left(2f_{n-1} + 4f_{n-2}\right) \quad (*)$$

Pierwsza bariera stabilności Dahlquista (ograniczenie na rząd 0-stabilnej dokładności metody wielokrokowej):

Maksymalny rząd dokładności p 0-stabilnej k-krokowej liniowej formuły wielokrokowej $dla\ metod\ jawnych$: $maksymalne\ p=k$ $dla\ niejawnych$: $maksymalne\ p=k+1$ (jeśli k nieparzyste) p=k+2 (jeśli k parzyste)

schemat (*) nie może być stabilny bo jego dokładność przekracza pierwszą barierę Dahqluista

$$\sum_{i=0}^{k} \alpha_i u_{n-i} = \Delta t \sum_{i=0}^{k} \beta_i f_{n-i}$$

2k+2 współczynników do wyznaczenia? Czy można znaleźć współczynniki tak, aby rząd 2k+1?

Tak, ale metoda nie będzie użyteczna (0-stabilna), jeśli p > k (dla metod jawnych) lub >k+2 (dla metod niejawnych) dostaniemy metodę niestabilną

Druga bariera Dahlquista:

maksymalny rząd dokładności wielokrokowej metody A-stabilnej: 2 (stąd motywacja dla niejawnych metod RK)

metody jawne Adamsa-Bashforta

powstają ze scałkowania równania różniczkowego po ostatnim kroku czasowym

$$u' = f(t, u)$$

$$\downarrow$$

$$u_n = u_{n-1} + \int_{t_{n-1}}^{t_n} f(t, u) dt$$

metody Adamsa-Bashforta:: interpolujemy wielomianem f w krokach n-1, ...n-k

 u_n wyliczamy całkując wielomian interpolacyjny od t_{n-1} do t_n jednokrokowa metoda AB

zastąpmy funkcje podcałkową przez wielomian P_{θ} interpolujący f w chwili t_{n-1}

$$u_n = u_{n-1} + \int_{t_{n-1}}^{t_n} f(t, u) dt$$

$$u_n = u_{n-1} + \Delta t f_{n-1} \qquad \text{jet}$$

jednokrokowa AB = jawny Euler : rzędu 1

Metoda Adamsa-Bashfortha k=2

$$u_n = u_{n-1} + \int_{t_{n-1}}^{t_n} w(t)dt$$

$$f_{n-2}$$

$$f_{n-2}$$

znamy wartości f_{n-2} , f_{n-1} – prowadzimy przez nie wielomian interpolacyjny, który następnie całkujemy

tu interpolujemy

tu całkujemy

 t_n

$$w(t) = f_{n-2} \frac{t - t_{n-1}}{t_{n-2} - t_{n-1}} + f_{n-1} \frac{t - t_{n-2}}{t_{n-1} - t_{n-2}} = \frac{1}{\Delta t} \left(f_{n-1}(t - t_{n-2}) - f_{n-2}(t - t_{n-1}) \right)$$

$$u_n = u_{n-1} + \frac{1}{2\Delta t} \left(f_{n-1}(t - t_{n-2})^2 - f_{n-2}(t - t_{n-1})^2 \right) \Big|_{t_{n-1}}^{t_n}$$

$$u_n = u_{n-1} + \Delta t \left(\frac{3}{2} f_{n-1} - \frac{1}{2} f_{n-2} \right)$$
 drugi rząd dokładności (jak wzór trapezów) ale jawny!

Metody AB

$$u(t_n) = u(t_{n-1}) + \Delta t \sum_{j=1}^k \beta_j f(t_{n-j}, u(t_{n-j}))$$

k		j = 1	2	3	4	5	6
1	eta_j	1					
2	$2eta_j$	3	-1				
3	$12\beta_j$	23	-16	5			
4	$24\beta_j$	55	-59	37	-9		
5	$720\beta_j$	1901	-2774	2616	-1274	251	
6	$1440\hat{eta_j}$	4277	-7923	9982	-7298	2877	-475

FINITE DIFFERENCE AND SPECTRAL METHODS FOR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

AB: współczynniki

k		j = 1	2	3	4	5	6
1	β_j	1					
2	$2\beta_j$	3	-1				
3	$12\beta_j$	23	-16	5			
4	$24\beta_j$	55	-59	37	-9		
5	$720\beta_j$	1901	-2774	2616	-1274	251	
6	$1440\beta_j$	4277	-7923	9982	-7298	2877	-475

błąd dyskretyzacji (df): wstawiamy rozwiązanie dokładne do przepisu definiującego schemat. Zamiast zera otrzymujemy błąd dyskretyzacji.

$$u(t_n) = u(t_{n-1}) + \Delta t \sum_{j=1}^k \beta_j f(t_{n-j}, u(t_{n-j})) + Cu^{(k+1)}(\xi) \Delta t^{k+1}$$

$$\frac{u(t_n) - u(t_{n-1})}{\Delta t} - \sum_{j=1}^k \beta_j f(t_{n-j}, u(t_{n-j})) = Cu^{(k+1)}(\xi) \Delta t^k$$

C -stała błędu dyskretyzacji

błąd dyskretyzacji AB1=jawnego Eulera: (Euler dokładnie scałkuje funkcje liniową, pomyli się dopiero przy paraboli)

$$u(t_n) = u(t_{n-1}) + \Delta t f(t_{n-1}, u(t_{n-1})) + Cu^{(2)}(\xi) \Delta t^2$$

Cały błąd dyskretyzacji: zależy od równania (f), ale: stała błędu C nie zależy od równania (f [równanie] wchodzi do pochodnej) = jest własnością metody błąd dyskretyzacji AB1=jawnego Eulera: (Euler dokładnie scałkuje funkcje liniową, pomyli się dopiero przy paraboli)

$$u(t_n) = u(t_{n-1}) + \Delta t f(t_{n-1}, u(t_{n-1})) + Cu^{(2)}(\xi) \Delta t^2$$

C najłatwiej wyznaczymy dla równania którego rozwiązaniem jest

pewna chwila czasowa z zakresu ostatniego kroku

 t^2 : du/dt=2t=f, a $u^{(2)}=2$ i nie zależy od położenia

$$t^2 = (t - \Delta t)^2 + \Delta t 2(t - \Delta t) + C2\Delta t^2$$

$$t^2 = t^2 - 2t\Delta t + \Delta t^2 + 2t\Delta t - 2\Delta t^2 + C2\Delta t^2 \longrightarrow C=1/2$$

$$\frac{u(t_n) - u(t_{n-1})}{\Delta t} - \sum_{j=1}^k \beta_j f(t_{n-j}, u(t_{n-j})) = Cu^{(k+1)}(\xi) \Delta t^k$$

$$\frac{1}{2}u''(\xi)\Delta t$$

błąd dyskretyzacji schematu AB2

$$u(t_{n}) = u(t_{n-1}) + \Delta t \left(\frac{3}{2}f(t_{n-1}, u(t_{n-1})) - \frac{1}{2}f(t_{n-2}, u(t_{n-2}))\right) + Cu'''(\xi)\Delta t^{3/2}$$

$$u = t^{3}, \frac{du}{dt} = 3t^{2}, u'''(\xi) = 6$$

$$t^{**3-((t-dt)^{**3+dt^{*}(3/2*3*(t-dt)^{2}-1/2*3*(t-2*dt)^{2})+6*C*dt^{**3});}$$

$$t^{3}-(t-dt)^{3}-dt\left(\frac{9}{2}(t-dt)^{2}-\frac{3}{2}(t-2dt)^{2}\right)-6Cdt^{3}$$

$$expand(");$$

$$\frac{5}{2}dt^{3}-6Cdt^{3}$$

$$solve(",C);$$

$$\frac{5}{12}$$

$$C=5/12 \longrightarrow blad dyskretyzacji AB2 5/12 u''' \Delta t^{2}$$

$$\epsilon(AB_k) = C_k u^{(k+1)}(\xi) \Delta t^k$$

$\int j$	0	1	2	3	4	5	(
C_j	1	$\frac{1}{2}$	$\frac{5}{12}$	$\frac{3}{8}$	$\frac{251}{720}$	$\frac{95}{288}$	$\frac{190}{604}$

metody niejawne Adamsa-Moultona

Dla zachowania tego samego Rzędu dokładności rezygnujemy Z korzystania z najbardziej zamierzchłej chwili Czasowej na rzecz tn

$$u_n = u_{n-1} + \int_{t_{n-1}}^{t_n} f(t, u) dt$$

formuły AM wprowadzane podobnie do AB, ale: do interpolacji włączany punkt t_n a wyłączamy t_{n-k} aby utrzymać rząd wielomianu

ABk (czytać rzędu k: k-krokowa)

$$u_n = u_{n-1} + \Delta t \sum_{j=1}^k \beta_j f_{n-j}$$

AMk (czytać rzędu k, (k-1) krokowa)

$$u_n = u_{n-1} + \Delta t \sum_{j=0}^{k-1} \beta_j f_{n-j}$$

Metoda Adamsa-Moultona k=2

interpolujemy f w (k-1) chwilach łącznie z t_n ,

tu interpolujemy i całkujemy

$$w(t) = f_{n-1} \frac{t - t_n}{t_{n-1} - t_n} + f_n \frac{t - t_{n-1}}{t_n - t_{n-1}} = \frac{1}{\Delta t} \left(f_n(t - t_{n-1}) - f_{n-1}(t - t_n) \right)$$

$$u_n = u_{n-1} + \frac{1}{2\Delta t} \left(f_n(t - t_{n-1})^2 - f_{n-1}(t - t_n)^2 \right) \Big|_{t_{n-1}}^{t_n}$$

$$u_n = u_{n-1} + \Delta t \left(\frac{1}{2} f_n + \frac{1}{2} f_{n-1} \right)$$

niejawne AM - współczynniki

$$u_n = u_{n-1} + \Delta t \sum_{j=0}^{k-1} \beta_j f_{n-j}$$

k		j = 0	1	2	3	4	5
1	eta_j	1					
2	$2\beta_j$	1	1				
3	$12\beta_j$	5	8	-1			
4	$24\beta_j$	9	19	-5	1		
5	$720\beta_j$	251	646	-264	106	-19	
6	$1440\beta_j$	475	1427	-798	482	-173	27

Błąd dyskretyzacji AM

$$\epsilon(AM_k) = \gamma_{k+1}^* u^{(k+1)}(\xi) \Delta t^k$$

\int	0	1	2	3	4	5	6	7	8
γ_j^*	1	$-\frac{1}{2}$	$-\frac{1}{12}$	$-\frac{1}{24}$	$-rac{19}{720}$	$-\frac{3}{160}$	$-rac{863}{60480}$	$-rac{275}{24192}$	$-rac{33953}{3628800}$

Błąd dyskretyzacji AM a AB

$$\epsilon(AM_k) = \gamma_{k+1}^* u^{(k+1)}(\xi) \Delta t^k$$

j	0	1	2	3	4	5	6	7	8
γ_j^*	1	$-\frac{1}{2}$	$-\frac{1}{12}$	$-\frac{1}{24}$	$-\frac{19}{720}$	$-rac{3}{160}$	$-rac{863}{60480}$	$-rac{275}{24192}$	$-rac{33953}{3628800}$

$$\epsilon(AB_k) = \gamma_{k+1} u^{(k+1)}(\xi) \Delta t^k$$

j	0	1	2	3	4	5	6	7	8
γ_j	1	$\frac{1}{2}$	$\frac{5}{12}$	3 8	$\frac{251}{720}$	$\frac{95}{288}$	$\frac{19087}{60480}$	$\frac{5257}{17280}$	$\frac{1070017}{3628800}$

niejawne: bardziej dokładne: AB wolno maleje, AM - szybko

tutaj: błąd dyskretyzacji AB4 około 18 razy większy niż AM4

wielokrokowe metody niejawne:

z reguły bardziej stabilne i dokładniejsze niż jawne tego samego rzędu dokładności

sposób rozwiązywania równań:

$$\sum_{i=0}^{k} \alpha_i u_{n-i} = \Delta t \sum_{i=0}^{k} \beta_i f_{n-i}$$

1) iteracja funkcjonalna

$$u_n^{\mu} = -\sum_{i=1}^k \alpha_i u_{n-i} + \Delta t \beta_0 f(t_n, u_n^{\mu-1}) + \Delta t \sum_{i=1}^k \beta_i f(t_{n-i}, u_{n-i})$$

tylko ta część podlega iteracji

pamiętamy, że dla wstecznego Eulera metoda mało przydatna (słaba zbieżność) dla metod wielokrokowych (trapezów np.) zakres zbieżności był nieco lepszy

2) metoda Newtona dla niejawnych metod wielokrokowych

$$\sum_{i=0}^{k} \alpha_i u_{n-i} = \Delta t \sum_{i=0}^{k} \beta_i f_{n-i}$$

szukamy zera:

$$F(u_n) = u_n - \Delta t \beta_0 f(t_n, u_n) + \sum_{i=1}^k (\alpha_i u_{n-i} - \beta_i f_{n-i})$$

$$u_n^{\mu} = u_n^{\mu - 1} - \frac{F(u_n^{\mu - 1})}{F'(u_n^{\mu - 1})}$$

nie zmienia się w iteracjach po μ

$$u_n^{\mu} = u_n^{\mu - 1} - \frac{u_n^{\mu - 1} - \Delta t \beta_0 f(t_n, u_n^{\mu - 1}) + \sum_{i=1}^k (\alpha_i u_{n-i} - \beta_i f_{n-i})}{1 - \Delta t \beta_0 f'_u(t_n, u_n^{\mu - 1})}$$

wielokrokowe metody niejawne: metody predyktor korektor

iterację (funkcjonalną czy Newtona) można zacząć od

$$u_n^1 = u_{n-1}$$

albo (lepiej) od wartości danej przez schemat jawny.

Sekwencja: jedno wywołanie jawnego / schemat niejawny (stosowany raz, lub więcej)

= metoda predyktor korektor np. AB3/ AM4

możliwe różne strategie: niejawny korektor można używać

aż do samouzgodnienia (wtedy własności np. stabilności = wyłącznie korektora)

lub

skończoną liczbę razy (własności hybrydowe)

przykład z iteracją funkcjonalną dla podkreślenia przydatności PK:

poznane wcześniej równanie nieliniowe u'=u(1-u), u(0)=0.8, 3 pierwsze wartości u i f = analitycznie

AM4, $\Delta t=1$, liczymy u(3 Δt)

na starcie $u(3\Delta t)$:= $u(2\Delta t)$

0.351214
0.128895
0.172238
0.160879
0.163720
0.163000
0.163182
0.163136
0.163147

0 251214

0.169011
0.161676
0.163517
0.163051
0.163169
0.163139
0.163147

uwaga:
predyktor/korektor
pojawił się dla niejawnych
RK, tyle że tam akurat
predyktor był niejawny,
dla liniowych wielokrokowych
- odwrotnie

AB4, AM4, RK4 – porównanie dokładności (kroki startowe podajemy analityczne)

$$u' = u - t^2 + 1, u(0) = 1/2$$

$$u(t) = (t+1)^2 - \exp(t)/2$$

 $\Delta t = 0.2$

AB4 znaczy AB rzędu 4, 4-krokowa

$$u_n = u_{n-1} + \Delta t \sum_{j=1}^{4} \beta_j f_{n-j}$$

t

b. glob.

zadajemy f_0, f_1, f_2, f_3 oraz u_3 aby wyliczyć u_4 (problem ze startem)

AM4 = AM rzędu 4, 3-krokowa

$$u_n = u_{n-1} + \Delta t \sum_{j=0}^{3} \beta_j f_{n-j}$$

Przepis na jeden krok można rozwiązać analitycznie, bo w naszym przykładzie f to liniowa fcja u

$$u_n = \frac{u_{n-1} + \Delta t \sum_{j=1}^{3} \beta_j f_{n-j} + \Delta t \beta_0 (1 - t_n^2)}{1 - \Delta t \beta_0}$$

dla t=2, błędy: 2.13e-4, -2.11e-3

dla t=2, błędy: 2.13e-4, -2.11e-3, 1.087e-4

RK4 = nie ma problemu z niejawnością AM4

= nie ma problemu ze startem jak dla AM4 i AB4

= kosztuje : 4 wywołania f (dla AM4 może być różnie)

Thersten Finite Differences and spectral methods for ordinary and partial differential equations:

$$\sum_{i=0}^{k} \alpha_i u_{n-i} = \Delta t \sum_{i=0}^{k} \beta_i f_{n-i}$$

	Adams- Adam Bashforth Moul				röm	General Milne-S	lized Simpson	Backwards Differentiation		
α_{j}	eta_j	$lpha_j$	eta_j	$lpha_j$	eta_j	$lpha_j$	eta_j	$lpha_j$	eta_j	
	○ : ·	ĵ		Î	♀ :	Ô	♀ :	:	0	
				podobn interpol		damsa: , liczymy				

całkę z f od t(n-2) do t(n)

metody różnic wstecznych: najlepsze własności stabilności bezwzględnej

	Adams- Bashforth Moulton			$Nystr\"{o}m$		General Milne-S	$\begin{array}{c} {\rm Backwards} \\ {\rm Differentiation} \end{array}$			
α_j	eta_j	$lpha_j$	eta_j	$lpha_j$	eta_j	$lpha_j$	eta_j	$lpha_j$	eta_j	
Ì	ĵ	Ĵ		Ĉ	ĵ	Ĉ			0	
	:		÷		÷		:	:		
	0		0		0		0	0		

Metoda różnic wstecznych:
$$\sum_{i=0}^k \alpha_i u_{n-i} = \Delta t \sum_{i=0}^k \beta_i f_{n-i} \longrightarrow \sum_{i=0}^k \alpha_i u_{n-i} = \Delta t \beta_0 f_n$$

interpolujemy *u* wielomianem od chwili *n-k* aż do *n-1* następnie żądamy, aby jego pochodna w chwili *n* spełniała równania różniczkowe (kolokacja) z tego warunku wyliczamy z niego u(t_n) (ekstrapolacja)

Metoda różnic wstecznych: $\sum_{i=0}^k \alpha_i u_{n-i} = \Delta t \sum_{i=0}^k \beta_i f_{n-i} \longrightarrow \sum_{i=0}^k \alpha_i u_{n-i} = \Delta t \beta_0 f_n$

interpolujemy u wielomianem od chwili n-k aż do n-1 następnie żądamy, aby jego pochodna w chwili n spełniała równania różniczkowe (kolokacja) z tego warunku wyliczamy z niego $u(t_n)$ (ekstrapolacja)

$$w(t) = u_{n-1} \frac{t - t_{n-2}}{\Delta t} + u_{n-2} \frac{t - t_{n-1}}{-\Delta t} + c(t - t_{n-1})(t - t_{n-2})$$

interpoluje wartości

ten nie psuje interpolacji ma ustawić pochodną

$$w'(t_n) = u_{n-1} \frac{1}{\Delta t} - u_{n-2} \frac{1}{\Delta t} + c(t_n - t_{n-1}) + c(t_n - t_{n-2}) = f_n$$

C=(fn-u(n-1)/dt+u(n-2)/dt) / 3dt: wstawić do w(t), policzyć w t=tn: $w(tn)=un:=4/3 u_{n-1}-1/3 u_{n-2}+2/3 dt fn$

un:= $4/3 u_{n-1}-1/3 u_{n-2}+2/3 dt fn$

k	δ	δeta_0	$\delta \alpha_0$	$\delta \alpha_1$	$\delta \alpha_2$	$\delta \alpha_3$	$\delta \alpha_4$	$\delta lpha_5$	$\delta \alpha_6$
1	1	1	1	-1					
2	3	2	3	-4	1				
3	11	6	11	-18	9	-2			
4	25	12	25	-48	36	-16	3		
5	137	60	137	-300	300	-200	75	-12	
6	147	60	147	-360	450	-400	225	-72	10

$$\sum_{i=1}^{k} \alpha_i u_{n-i} = \Delta t \beta_0 f_n$$

błąd dyskretyzacji

$$\epsilon(AM_k) = \gamma_{k+1}^* u^{(k+1)}(\xi) \Delta t^k$$

j	0	1	2	3	4	5	6	7	8
γ_j^*	1	$-\frac{1}{2}$	$-\frac{1}{12}$	$-\frac{1}{24}$	$-\frac{19}{720}$	$-\frac{3}{160}$	$-\frac{863}{60480}$	$-rac{275}{24192}$	$-\frac{33953}{3628800}$

$$\epsilon(AB_k) = \gamma_{k+1} u^{(k+1)}(\xi) \Delta t^k$$

j	0	1	2	3	4	5	6	7	8
γ_j	1	$\frac{1}{2}$	$\frac{5}{12}$	$\frac{3}{8}$	$\frac{251}{720}$	$\frac{95}{288}$	$\frac{19087}{60480}$	$\frac{5257}{17280}$	$\frac{1070017}{3628800}$

$$\epsilon(BD_k) = -\frac{1}{k+1}u^{(k+1)}(\xi)\Delta t^k$$
 — mniejszy niż AB, większy niż AM

$$\epsilon(AM_k) = \gamma_{k+1}^* u^{(k+1)}(\xi) \Delta t^k \qquad \epsilon(AB_k) = \gamma_{k+1} u^{(k+1)}(\xi) \Delta t^k$$

$$\epsilon(BD_k) = -\frac{1}{k+1} u^{(k+1)}(\xi) \Delta t^k$$

metoda jest rzędu p jeśli i)błąd dyskretyzacji znika do zera jak Δt^p ii)metoda działa dokładnie dla wielomianu p-tego stopnia

definicja: metoda jest spójna, jeśli rząd metody p=1 lub więcej

$$\sum_{i=0}^{k} \alpha_i u_{n-i} = \Delta t \sum_{i=0}^{k} \beta_i f_{n-i}$$

warunki konieczne spójności liniowej metody wk

weźmy u(t)=1, f=0
$$\longrightarrow$$
 suma alf =0 \Longrightarrow suma alf =0 \Longrightarrow $\sum_{i=0}^k \alpha_i(n-i) = \sum_{i=0}^k \beta_i \longrightarrow \sum_{i=0}^k i\alpha_i + \sum_{i=0}^k \beta_i = 0$

k	δ	$\delta \beta_0$	$\delta \alpha_0$	$\delta \alpha_1$	$\delta \alpha_2$	$\delta \alpha_3$	$\delta \alpha_4$	$\delta \alpha_5$	$\delta \alpha_6$
1	1	1	1	-1					
2	3	2	3	-4	1				
3	11	6	11	-18	9	-2			
4	25	12	25	-48	36	-16	3		
5	137	60	137	-300	300	-200	75	-12	
6	147	60	147	-360	450	-400	225	-72	10

sprawdzić

$u'=\lambda u$ rozwiążemy metodą leapfrog

$$u_n = u_{n-2} + 2\Delta t \lambda u_{n-1}$$

Dla metod wielokrokowych: warunek początkowy u_0 nie wystarcza do uruchomienia schematu : tutaj potrzebne u_0 oraz f_1 f_2 można policzyć (bardzo) dokładnie innymi metodami

błąd dyskretyzacji LF = $O(\Delta t^2)$ -więcej niż potrzeba dla spójności a schemat okazuje się niestabilny bezwzględnie.

spróbujmy znaleźć rozwiązanie równania różnicowego LF postaci $u_n = \xi^n$:

$$\xi^{n} = \xi^{n-2} + 2\Delta t \lambda \xi^{n-1} \qquad \qquad \xi^{2} - 2\lambda \Delta t \xi^{-1} = 0$$

$$\xi_{1,2} = \lambda \Delta t \pm \sqrt{\lambda^2 \Delta t^2 + 1} \qquad \longrightarrow \xi_n = c_1 \xi_1^n + c_2 \xi_2^n$$

również spełnia relację rekurencyjną

$$\xi_{1,2} = \lambda \Delta t \pm \sqrt{\lambda^2 \Delta t^2 + 1}$$

 $\xi_n = c_1 \xi_1^n + c_2 \xi_2^n$

 $u' = \lambda u$ $u(t) = u(0) exp(\lambda t)$

załóżmy, że stawiamy drobne kroki λΔt<<1

$$\xi_{1,2} = \lambda \Delta t \pm \sqrt{\lambda^2 \Delta t^2 + 1}$$

$$\xi_n = c_1 \left(1 + \lambda \Delta t + O(\lambda \Delta t)^2 \right)^n + c_2 (-1)^n \left(1 - \lambda \Delta t + O(\lambda \Delta t)^2 \right)^n$$

$$\xi_n = c_1 \exp(\lambda n \Delta t) + c_2(-1)^n \exp(-\lambda n \Delta t) + O(\lambda^2 \Delta t^2)$$

rozwiązanie właściwe

rozwiązanie pasożytnicze, eksplodujące z oscylacją

niezerowe c_2 zostało wygenerowane przez błędy np.arytmetyki i eksplodowało (gdy $\lambda>0$ –właściwe eksploduje a pasożytnicze zanika)

rozwiązania pasożytnicze są w metodach wielokrokowych zawsze obecne metody należy konstruować tak, aby pasożytnicze nie eksplodowały

$$\frac{du}{dt} = u \qquad \qquad \begin{array}{c} t \in [0,1] \\ u(0)=1 \\ u(t)=\exp(t) \end{array}$$

drugi przykład niech λ>0

1) AB drugiego rzędu:

$$u_{n+2} = u_{n+1} + \Delta t \left(\frac{3}{2} f_{n+1} - \frac{1}{2} f_n \right)$$

2) "optymalna" jawna metoda dwukrokowa [rzędu trzeciego, ta z dokładnością przekraczającą piewszą barierę Dahlquista]

$$u_{n+2} = -4u_{n+1} + 5u_n + \Delta t \left(2f_n + 4f_{n+1}\right)$$

$$\frac{du}{dt} = u \qquad \qquad \begin{array}{c} t \in [0,1] \\ u(0)=1 \\ u(t)=\exp(t) \end{array}$$

drugi przykład niech λ>0

1) AB drugiego rzędu:

$$u_{n+2} = u_{n+1} + \Delta t \left(\frac{3}{2} f_{n+1} - \frac{1}{2} f_n \right)$$

2) "optymalna" jawna metoda dwukrokowa [rzędu trzeciego, ta z dokładnością przekraczającą piewszą barierę Dahquista]

$$u_{n+2} = -4u_{n+1} + 5u_n + \Delta t \left(2f_n + 4f_{n+1}\right)$$

2 pierwiastki z=1, z=-5

2 rozwiązania relacji rekurencyjnej: $u_n=1$, oraz $u_n=(-5)^n$ dowolne rozwiązanie czarnego równania: zależy od dwóch wartości początkowych u_0 oraz u_1

$$u_n = a (1)^n + b (-5)^n$$

rozwiązanie pasożytnicze: maskuje rozwiązanie rr.

rozwiązanie właściwe (po zapiedbaniu fi u=const)

rozwiązanie właściwe (po zaniedbaniu f: u=const)

niezerowe b może pojawić się na skutek nakładania się i wzmacniania błędów w kolejnych krokach. Więcej kroków dla danego $t=n\Delta t$ - eksplozja

źródło niestabilności: relacja rekurencyjna o eksplodującym rozwiązaniu

Na poprzednich wykładach mówiliśmy o **stabilności bezwzględnej,** która dotyczy symulacji <u>nieograniczonej w czasie</u> $(t\to\infty)$ i długich kroków czasowych

stabilność (**0-stabilność**) dotyczy działania metody w <u>skończonym czasie</u> (t<T) oraz małych kroków, gdy wykonuje się ich bardzo wiele

Uwaga 1 : wszystkie metody 1-krokowe są **0**-stabilne, choć bywają niestabilne bezwzględnie,dlatego spotykamy się z **0**-stabilnością tak późno

Uwaga 2: 0-stabilność jest ważniejsza = dotyczy metody stabilność bzwz = definiowana dla danego równania, jeśli rozwiązanie dokładne nie eksploduje z eksplozją numeryczną można sobie z nią zazwyczaj poradzić zmniejszając dt

(zero) stabilność metody różnicowej

metoda jest 0-stabilna jeśli odchylenia pozostają skończone dla startowego odchylenia d_0 nie przekraczającego pewnej granicznej wielkości d dla wszystkich n: $\Delta t \, n \leq T \,$ ma być $| \, d_n | \leq k \, d$, jeśli $| \, d_0 \, | \leq | \, d |$

0-stabilność metody różnicowej (powtórzenie w mniej ścisłej wersji): metoda jest 0-stabilna jeśli dla każdego *f* skończone ograniczone odchylenie od warunku początkowego produkuje rozwiązania, które różnią się w sposób ograniczony od dokładnego w skończonym przedziale czasowym [0,T]

lub bardziej dosadnie:

schemat różnicowy jest 0-stabilny, jeśli dla danej chwili czasowej obliczone wartości pozostają ograniczone gdy $\Delta t \rightarrow 0$

problem stabilności bezwzględnej LMW równanie testowe: $u'=\lambda u$

$$\sum_{i=0}^{k} \alpha_i u_{n-i} = \Delta t \sum_{i=0}^{k} \beta_i f_{n-i}$$

$$\sum_{i=0}^{k} \alpha_i u_{n-i} - \lambda \Delta t \sum_{i=0}^{k} \beta_i u_{n-i} = 0$$

poszukajmy rozwiązania postaci: $\,u_n=c\xi^n\,$

$$\rho(\xi) = \sum_{i=0}^{k} \alpha_i \xi^{k-i}$$

$$\sum_{i=0}^{k} \alpha_i c \xi^{n-i} - \lambda \Delta t \beta_i c \xi^{n-i} = 0$$

$$\sigma(\xi) = \sum_{i=0}^{k} \beta_i \xi^{k-i}$$

wielomiany charakterystyczne metody wielokrokowej: pierwszy ρ i drugi σ

$$\rho(\xi) - \Delta t \lambda \sigma(\xi) = 0$$

wielomian ma k miejsc zerowych $\xi_k(\lambda \Delta t)$ jedno ξ_1 odpowiadające rozwiązaniu RR i k-l pasożytniczych

równanie różnicowe spełnia superpozycja k-rozwiązań

$$u_n = \sum_{i=1}^n c_i \xi_i^n$$

wielomiany charakterystyczne a warunki spójności

$$\rho(\xi) = \sum_{i=0}^{k} \alpha_i \xi^{k-i}$$

$$\sigma(\xi) = \sum_{i=0}^{k} \beta_i \xi^{k-i}$$

$$\sigma(\xi) = \sum_{i=0}^{k} \beta_i \xi^{k-i}$$

$$\sum_{i=0}^{k} \alpha_i(k-i) = \sum_{i=0}^{k} \beta_i$$

$$\rho(1) = 0$$

$$\rho'(1) - \sigma(1) = 0$$

$$u_n = \sum_{i=1}^{\kappa} c_i \xi_i^n$$

rozwiązanie dokładne: du/dt=λu

właściwe rozwiązanie różnicowe:

$$u(t_n) = [\exp(\lambda \Delta t)]^n$$

$$u_n = (\xi_1)^n$$

przepis na ξ_1 to rozwinięcie Taylora exponenty dokładne rzędu k

równanie ma k rozwiązań jedno ξ_1 odpowiadające rozwiązaniu RR i k-l pasożytniczych

W granicy
$$\Delta t \lambda \to 0$$
: $\xi_1 \to 1$

$$\rho(\xi) - \Delta t \lambda \sigma(\xi) = 0 \longrightarrow \rho(1) = 0$$

Właściwe rozwiązanie relacji rekurencyjne to to, które przechodzi w główne zero wielomianu ρ w granicy zerowego kroku czasowego

równanie ma k rozwiązań jedno ξ_1 odpowiadające rozwiązaniu RR i k-l pasożytniczych

$$u_n = \sum_{i=1}^k c_i \xi_i^n$$

jeśli jedno z rozwiązań pasożytniczych $|\xi_{\kappa}| > 1$ - metoda nie może być bezwzględnie stabilna

Zera wielomianu charakterystycznego a stabilności (zero i bzwz)

$$\rho(\xi) - \Delta t \lambda \sigma(\xi) = 0$$

- 1) bezwzględna stabilność: jak duży może być krok czasowy, aby wszystkie zera w kole jednostkowym?
- 2) gdy zmniejszać krok czasowy: $\Delta t \lambda$ stanie się zaniedbywalne : wtedy ξ dążą do zer wielomianu ρ

metoda wielokrokowa jest zero-stabilna jeśli zera wielomianu ρ są co do modułu ≤ 1 .

jeśli jedno z zer >1: metoda niestabilna.

Pytanie : co z zerem co do modułu = 1:

Odpowiedź: nie psuje zero-stabilności (jedno już mamy – główne), chyba że jest <u>wielokrotne</u>

relacja rekurencyjna dla
$$\rho(z)=0$$

$$\sum_{i=0}^{k} \alpha_i u_{k-i} = 0$$

$$\sum_{i=0}^k \alpha_i z_m^{k-i} = 0 \quad \rightarrow u_n = z_m^n$$
 spełnia relację rekurencyjną

jeśli jedno z miejsc zerowych $\rho(z)$: $z_m = 1$ o krotności m

$$\rho(z) = (z - z_m)^m w(z)$$

dla m>1 pochodna $\rho(z)$ po z ma również zero w z_m

$$\rho'(z_m) = \sum_{i=0}^k (k-i)\alpha_i z_m^{k-i-1} = 0 \quad *\mathbf{z}_m$$

$$\sum_{i=0}^k \alpha_i (k-i) z_m^{k-i} = 0$$

więc: wtedy
$$u_n=nz_m^n$$
 również spełnia relację rekurencyjną

Ze względu na czynnik *n* przy nowym rozwiązaniu pasożytniczym: metoda nie będzie 0-stabilna jeśli wielomian ρ ma dwukrotne zero o module 1.

Zera wielomianu charakterystycznego a zero stabilność

warunek pierwiastkowy 0-stabilności

WKW stabilności schematu:

Liniowy schemat wielokrokowy jest stabilny wtedy i tylko wtedy gdy miejsca zerowe wielomianu charakterystycznego

 $\rho(z)$ spełniają $|z| \le 1$, i każde miejsce zerowe |z| = 1 jest jednokrotne.

metoda wielokrokowa jest silnie stabilna jeśli jest stabilna i poza głównym zerem wielomianu ρ wszystkie pozostałe leżą wewnątrz jednostkowego okręgu

metoda wielokrokowa jest **słabo stabilna** jeśli jest stabilna i nie jest silnie stabilna

Wielomiany charakterystyczne prostych schematów: spójność i stabilność

$$\sum_{i=0}^{k} \alpha_i u_{n-i} = \Delta t \sum_{i=0}^{k} \beta_i f_{n-i} \quad \rho(\xi) = \sum_{i=0}^{k} \alpha_i \xi^{k-i}$$

$$\sigma(\xi) = \sum_{i=0}^{k} \beta_i \xi^{k-i}$$

jawny schemat Eulera

$$u_n$$
- $u_{n-1} = \Delta t f_{n-1}$

niejawny schemat Eulera

$$u_n - u_{n-1} = \Delta t f_n$$

wzór trapezów

$$u_{n}-u_{n-1} = \Delta t f_{n-1}$$
 $\sigma(\zeta) = 1$
$$u_{n}-u_{n-1} = \Delta t f_{n}$$
 $\sigma(\zeta) = \zeta$
$$u_{n}=u_{n-1} + (f_{n-1} + f_{n}) \Delta t/2$$
 $\sigma(\zeta) = \zeta/2 + 1/2$

warunek spójności ρ(1)=0 tylko jedno główne pojedyncze zero

$$\rho(\zeta) = \zeta - 1$$

wszystkie metody jednokrokowe są silnie stabilne

drugi warunek spójności

$$\rho'(1) - \sigma(1) = 0$$

$$\sum_{i=0}^{k} \alpha_i u_{n-i} = \Delta t \sum_{i=0}^{k} \beta_i f_{n-i}$$

$\begin{array}{c} { m Adams} - \\ { m Bashforth} \end{array}$		$\begin{array}{c} { m Adams} - \\ { m Moulton} \end{array}$		Nyst	$Nystr\"{o}m$		$_{ m ized}$ $_{ m impson}$		Backwards Differentiation		
α_{j}	eta_j	$lpha_j$	eta_j	$lpha_j$	eta_j	$lpha_j$	eta_j	α_j	eta_j		
Ĵ				Ĉ	Ĵ	Ĉ	Ì		0		
	÷		:		÷		:	:			
	0		0		0		0	0			

AB+AM: $\rho(z) = z^{k}-z^{k-1}=z^{k-1}(1-z)-k-1$: krotne zero w 0 i jednokrotne w +1 N+uMS: $\rho(z) = z^{k}-z^{k-2}=z^{(k-2)}(z^{2}-1)-s-2$: krotne zero w 0 i jednokrotne ± 1

AB+AM – silnie stabilne N i MS – słabo stabilne

BD są zero- stabilne do rzędu 6, wyżej już nie

liniowe metody wielokrokowe: spójność, stabilność, zbieżność

$$\sum_{i=0}^{k} \alpha_i u_{n-i} = \Delta t \sum_{i=0}^{k} \beta_i f_{n-i}$$

jego wielomiany charakterystyczne

$$\rho(\xi) = \sum_{i=0}^{k} \alpha_i \xi^{k-i}$$

$$\sigma(\xi) = \sum_{i=0}^{k} \beta_i \xi^{k-i}$$

schemat (zero) stabilny jeśli rozwiązania dla chwili T pozostają skończone gdy dt→0

WKW stabilności schematu:

Liniowy schemat wielokrokowy jest stabilny wtedy i tylko wtedy gdy miejsca zerowe wielomianu charakterystycznego $\rho(z)$ spełniają $|z| \le 1$, i każde miejsce zerowe |z|=1 jest jednokrotne.

liniowe metody wielokrokowe: spójność, stabilność, zbieżność

metoda spójna jeśli błąd dyskretyzacji jest rzędu O(dt^p) z p>=1.

schemat działa dokładnie dla równań których rozwiązaniami są funkcje liniowe:

ustaliliśmy, że WKW spójności LMW w języku wielomianów charakterystycznych:

$$\rho(1) = 0$$

$$\rho'(1) - \sigma(1) = 0$$

Metody wielokrokowe: spójność, stabilność, zbieżność

Definicja:

Metody różnicowa jest zbieżna jeśli błąd globalny

$$\lim_{n \to \infty, \Delta t \to 0, n \Delta t = T} |e_n| = 0$$

znika do zera w chwili T gdy z Δt do 0

Metody wielokrokowe: spójność, stabilność, zbieżność

Definicja:

Metody różnicowa jest zbieżna jeśli błąd globalny

$$\lim_{n \to \infty, \Delta t \to 0, n \Delta t = T} |e_n| = 0$$

znika do zera w chwili T gdy z Δt do 0

Tw. Dahlquista

Metoda wielokrokowa jest zbieżna wtedy i tylko wtedy gdy jest spójna <u>i zero-stabilna</u>

Metody wielokrokowe: spójność, stabilność, zbieżność

Definicja:

Metody różnicowa jest zbieżna jeśli błąd globalny

$$\lim_{n \to \infty, \Delta t \to 0, n\Delta t = T} |e_n| = 0$$

znika do zera w chwili T gdy z Δt do 0

Tw. Dahlquista

Metoda wielokrokowa jest zbieżna wtedy i tylko wtedy gdy jest spójna <u>i zero-stabilna</u>

dla metod jednokrokowych: WKW zbieżności jest spójność, bo O-stabilne są zawsze

Tw. Dahlquista

Metoda wielokrokowa jest zbieżna wtedy i tylko wtedy gdy jest spójna i stabilna

dla wielokrokowych spójność nie wystarcza do zbieżności: Przykład 1.

schemat "optymalny" dwukrokowy jawny

przypominamy: metoda przekraczająca pierwszą barierę Dahlquista (zbyt dokładna by być stabilna)

$$u_{n+2} = -4u_{n+1} + 5u_n + \Delta t (2f_n + 4f_{n+1})$$

$$4 \cdot 0$$

$$3 \cdot 0$$

$$2 \cdot 0$$

$$1 \cdot 0$$

$$0 \cdot 0$$

$$-1 \cdot 0$$

$$0 \cdot 0$$

$$0 \cdot 5$$

$$1 \cdot 0$$

$$0 \cdot 5$$

$$1 \cdot 0$$

(spójny jest, ale nie jest 0-stabilny więc nie jest zbieżny)

zbieżność:

$$\lim_{n \to \infty, \Delta t \to 0, n\Delta t = T} |e_n| = 0$$

Przykład 2 (że spójność nie gwarantuje zbieżności): schemat ekstrapolacyjny:

do równania:

$$u(t=0)=u_0$$
 zastosujemy schemat:
$$\frac{du(t)}{dt}=f(t,u)$$
 $u_{n+2}=2u_{n+1}-u_n$

$$u_{n+2} = 2u_{n+1} - u_n$$

schemat esktrapolacyjny: zakłada zachowanie pochodnej

zero informacji o prawej stronie równania – nie może być zbieżny do jego rozwiązania ale:

schemat spójny bo
$$\rho(z)=z^2-2z+1: \rho(1)=0, \rho'(z)-\sigma(z)=2z-2$$
 więc $\rho'(1)-\sigma(1)=0$

Tw. Dahlquista

Metoda wielokrokowa jest zbieżna wtedy i tylko wtedy gdy jest spójna i stabilna

mamy metodę spójną i niezbieżną. z mocy tw. musi być niestabilna.

czy spójny schemat niezbieżny musi być niestabilny?

$$u_{n+2} = 2u_{n+1} - u_n$$

zera wielomianu $\rho(z)$: $\rho(z)=(z-1)^2$ zero w z=1 jest podwójne: rozwiązania relacji rekurencyjnej: $(1)^n$, $n(1)^n$

relacja posiada rozwiązanie eksplodujące – istotnie **jest** niestabilna

stabilność bezwzględna w terminach wielomianów charakterystycznych:

schemat:
$$\sum_{i=0}^k \alpha_i u_{n-i} = \Delta t \sum_{i=0}^k \beta_i f_{n-i}$$
 problem modelowy
$$\frac{du}{dt} = \lambda u$$
 relacja rekurencyjna:
$$\sum_{i=0}^k \alpha_i u_{n-i} - \lambda \Delta t \sum_{i=0}^k \beta_i u_{n-i} = 0$$

formuła jest stabilna dla danego $\lambda \Delta t$, jeśli wszystkie rozwiązania relacji rekurencyjnej ograniczone dla n $\to\infty$.

$$\sum_{i=0}^{k} \alpha_i u_{n-i} - \lambda \Delta t \sum_{i=0}^{k} \beta_i u_{n-i} = 0 \longleftarrow \mathbf{u_n} = \mathbf{z^n}$$

$$\pi(\lambda \Delta t, z) = \rho(z) - \lambda \Delta t \sigma(z)$$

(the root condition for absolute stability)

Formuła (wielokrokowa, liniowa) stabilna bezwzględnie dla $\lambda \Delta t$ jeśli wszystkie zera wielomianu stabilności $\pi(\lambda \Delta t, z)$: $|z| \le 1$ oraz każde zero |z| = 1 – pojedyncze.

region stabilności bzwz: te wszystkie $\lambda \Delta t$, dla których formuła stabilna bezwzględnie

Przykład 1: Euler: $u(n)=u(n-1)+\Delta t f(n-1)$ $\pi(z)=(z-1)-\lambda \Delta t \rightarrow \text{zero: } 1+\lambda \Delta t : \text{ region stabilności } |1+\lambda \Delta t| \leq 1$

Przykład 2: AB2

$$\pi(z)=z^2-z-\lambda\Delta t \ (3/2 \ z-1/2)$$

$$u_n = u_{n-1} + \Delta t \left(\frac{3}{2} f_{n-1} - \frac{1}{2} f_{n-2} \right)$$

zera:
$$\frac{1}{2} + \frac{3}{4}\lambda\Delta t \pm \frac{1}{4}\sqrt{4 + 4\lambda\Delta t + 9\Delta t^2\lambda^2}$$

na prawo od czerwonej jeden pierwiastek co do modułu mniejszy od 1 na lewo od niebieskiej drugi pierwiastek co do modułu większy od 1

region bezwzględnej stabilności
AB2 między niebieską a czerwoną krzywą

Trefethen 1994 · 63

FINITE DIFFERENCE AND SPECTRAL METHODS FOR

ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

Lloyd N. Trefethen Cornell University

Figure 1.7.2. Boundaries of stability regions for Adams formulas of orders 1–3.

dla AB/AM im wyższy rząd dokładności – tym węższy region bzwz stabilności (przeciwnie niż dla jawnych RK)

widzimy, że AM (niejawny) stabilny bzwz w większym zakresie niż AB (jawny)

Figure 1.7.3. Boundaries of stability regions for Adams-Moulton formulas of orders 3–6. (Orders 1 and 2 were displayed already in Figure 1.7.1(b,c).) Note that the scale is very different from that of the previous figure.

Przykład : Inna dwukrokowa: leapfrog

$$u_{n+2}=u_n+f_{n+1} 2\Delta t$$

```
> z**2-1-2*lambda*z;
```

 $\pi(z)=z^2-1-2\lambda\Delta t z$

> solve(",z);

>

>

1.704000000

$$z^2 - 1 - 2 \lambda z$$

$$\lambda + \sqrt{\lambda^2 + 1}$$
, $\lambda - \sqrt{\lambda^2 + 1}$

obydwa pierwiastki będą nie większe od 1 gdy λ czysto urojone między

$$-i$$
 a i [(0,-1) a (0,+1)]

Przykład : Inna dwukrokowa: leapfrog

$$u_{n+2}=u_n+f_{n+1} 2\Delta t$$

$$\pi(z)=z^2-1-2\lambda\Delta t z$$

> z****2-1-2*l**ambda*****z;

>

> solve(",z);

>

1.7. STABILITY REGIONS

TREFETHEN 1994 · 63

Figure 1.7.2. Boundaries of stability regions for Adams-Bashforth formulas of orders 1–3.

1.704000000

$$z^2 - 1 - 2 \lambda z$$

$$\lambda + \sqrt{\lambda^2 + 1}$$
, $\lambda - \sqrt{\lambda^2 + 1}$

obydwa pierwiastki będą nie większe od 1 gdy λ czysto urojone między

$$-i$$
 a i [(0,-1) a (0,+1)]

Przykład : Inna dwukrokowa: leapfrog

$$u_{n+2}=u_n+f_{n+1} 2\Delta t$$

$$\pi(z)=z^2-1-2\lambda\Delta t z$$

> z******2-1-2*****lambda*****z;

>

> solve(",z);

> |

1.7. Stability regions

Figure 1.7.2. Boundaries of stability regions for Adams-Bashforth formulas of orders 1–3.

1.704000000

$$z^2 - 1 - 2 \lambda z$$

$$\lambda + \sqrt{\lambda^2 + 1}$$
, $\lambda - \sqrt{\lambda^2 + 1}$

obydwa pierwiastki będą nie większe od 1 gdy λ czysto urojone między

$$-i$$
 a i [(0,-1) a (0,+1)]

czy to oznacza, że metody tej *nie wolno używać ??? nie* o ile interesuje nas skończony przedział t – zawsze dojdziemy do wyniku dokładnego z Δt do zera bo schemat jest zbieżny (jest stabilny, nie jest silnie stabilny) poza tym eksplozja pojawia się gdy równanie du/dt=u

TREFETHEN 1994 · 63

schematy różnic wstecznych: - rejony stabilności – otwarte (**prawie A-stabilne**)

rozpoznajemy wstecznego Eulera (p=1)

> FINITE DIFFERENCE AND SPECTRAL METHODS FOR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

> > Lloyd N. Trefethen Cornell University

Figure 1.7.4. Boundaries of stability regions for backwards differentiation formulas of orders 1–6 (exteriors of curves shown).

informacja: metody wstecznych różnic stabilne dla *p* od 1 do 6, dla 7 i więcej są niestabilne

liniowe metody wielokrokowe

W każdym kroku czasowym obliczana jest jedna wartość f (prawej strony równania). Wartość f oraz/lub u jest zapamiętywana i wykorzystywana w s-następnych krokach.

liniowa zależność *u* i *f* w schemacie. łatwo poddają się analizie

metoda s-krokowa: oprócz warunku początkowego musimy znać s-1 wartości by rachunek wystartować. może okazać się niestabilna

z konieczności stałe Δt

metody Rungego-Kutty

Metody są jednokrokowe. Krok wykonywany jest na raty (w kilku odsłonach -*stages*). W każdej odsłonie wywołuje się prawą stronę równania *f*. Wywołania mają charakter pośredni. Obliczone wartości *f* są używane tylko w kroku bieżącym, nie później.

prawa strona f wchodzi do kroku w sposób nieliniowy, co utrudnia analizę

metoda jednokrokowa: nie ma problemu z startem: zawsze stabilna (0-stabilna). do zbieżności wystarczy spójność.

zmiana Δt łatwa

tak samo zdefiniowane pojęcia stabilności, dokładności i zbieżności