A Simple Algorithm with a Clever Trick

Yordan Darakchiev
Technical Trainer

Software University

https://softuni.bg

Have a Question?

sli.do

#MachineLearning

Table of Contents

- 1. Support Vector Machines
 - Kernel Trick
- 2. k-nearest Neighbors
- 3. Anomaly Detection and Outlier Detection

Kernel Trick

- Extreme(ly easy) case
 - Two linearly separable classes
 - Decision boundary: simple line (plane in many dimensions)
- Goal
 - Choose the line that best separates the classes
 - Maximum margin
 - The math formula for the objective function is a little complex because it

involves matrix algebra

- Applications:
 - Mainly for classification
 - sklearn.svm.SVC, LinearSVC
 - Regression: sklearn.svm.SVR

- Difficult to separate classes ⇒ use regularization
 - C penalty for misclassification (L2, $C = 1/\lambda$)
 - Smaller value = stricter (more regularization)
- Many classes
 - scikit-learn uses the "one-vs-one" approach
 - Trains c(c-1)/2 classifiers (c-number of classes)
- Considerations
 - Few datasets are linearly separable
 - High complexity: between $O(m.n^2)$ and $O(m.n^3)$
 - m number of features, n number of samples
 - Feasible for max $\sim 10^5$ samples

"Kernel Trick"

- Used when data is not linearly separable
- Algorithm
 - Create non-linear combinations of the features using a mapping function (kernel)
 - This projects them to a higher-dimensional space
- Most widely used: Radial Basis Function (Gaussian) kernel
 - Hyperparameter γ needs to be optimized (e.g. via grid search)

Example: Kernel SVM

- Use a Gaussian SVM to predict Iris classes
 - Try to fine-tune the parameters (C, γ)
 - Using cross-validation
 - Print out-of-sample test scores for the model
 - Plot the decision regions
 - Plot a ROC curve
 - Perform model selection
 - Linear vs. RBF (Gaussian) kernel
- Some other explanations of the "kernel trick"
 - Quora
 - Reddit
 - Medium (a little more math)

k-Nearest Neighbors (kNN)

- "Lazy learner"
 - Doesn't learn a fitting function but memorizes the training data
- Algorithm
 - Choose a number k and a distance metric (e.g. Euclidean)
 - This choice provides bias / variance balance
 - Minkowski distance: generalized Euclidean distance
 - Find the k nearest neighbors of the current sample
 - Use majority vote to classify
- Advantage: easily adapts to new data
- Downside: computational complexity grows linearly with new samples
 - Efficient implementation: k-d trees

Example: k-Nearest Neighbors

- Perform kNN on Iris data
 - It can also be used for regression
 - We need to be extremely careful, especially in the case of extrapolation
- Display the decision regions

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n neighbors = 5)
knn.fit(iris.data, iris.target)
```

- Voronoi tiling (tessellation)
 - Very useful in image processing and working with graphs

```
knn = KNeighborsClassifier(n_neighbors = 1)
```

- Can also be used for regression
 - Docs (scikit-learn)

Anomaly Detection

Using SVMs to Find Unusual Data

One-Class SVM

- Anomaly / novelty detection
 - Given a dataset free of outliers, detect anomalies in new observations
- Outlier detection
 - Given a "polluted" dataset, filter out the outliers
 - We already know about RANSAC this is one of many methods
- We can use a one-class SVM as an anomaly detector
 - Docs and example
 - Kernel: usually RBF
 - Parameters:
 - γ kernel coefficient
 - ν probability of finding a regular observation far from the others
 - $0 \le \nu \le 1$, 0,5 by default
 - Works for outlier detection too, but not on all datasets

Example: Outlier Detection

- Use a one-class SVM to detect anomalies in the Boston housing dataset
 - Plot the anomalous observations
- * Optionally, compare different outlier detectors
 - E.g., RANSAC vs. one-class SVM
 - Follow the tutorial in the scikit-learn docs
 - Apply it to the Boston data
- Notes
 - Be extremely careful with the testing data
 - It must be properly stratified
 - You'll see that these algorithms don't accept a y parameter
 - Unsupervised learning

Summary

- Support Vector Machines
 - Kernel Trick
 - A mathematically rigorous tutorial (Microsoft)
- k-nearest Neighbors
- Anomaly Detection and Outlier Detection

Questions?

SoftUni Diamond Partners

THE CROWN IS YOURS

Решения за твоето утре

Trainings @ Software University (SoftUni)

- Software University High-Quality Education,
 Profession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity

License

- This course (slides, examples, demos, exercises, homework, documents, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni https://softuni.org
- © Software University https://softuni.bg

