Problemas Tema 1. Topología I Doble grado en ingeniería informática y matemáticas

Curso 2020–21

- 1.— Describir todas las topologías que existen en un conjunto de dos elementos.
- **2.** En los siguientes casos, estudiar si T es una topología en X.
 - (a) $X \neq \emptyset$, $T = \{\emptyset, A_1, \dots, A_k, X\}$, donde $A_1 \subset A_2 \subset \dots \subset A_k$ forman una familia creciente de subconjuntos de X.
 - (b) $X \neq \emptyset$ y $T = \mathcal{P}(A) \cup \{X\}$, donde $A \subset X$ y $\emptyset \neq A \neq X$ ($\mathcal{P}(A)$ es la familia de todos los subconjuntos de A).
 - (c) $X = \mathbb{N} \text{ y } T = \{U_n : n \in \mathbb{N}\} \cup \{\emptyset, \mathbb{N}\}, \text{ donde } U_n = [n, +\infty) \cap \mathbb{N}.$
- **3.** Sea X un conjunto no vacío y $A, B \subset X$ con $\emptyset \neq A, B \neq X$. ¿Qué propiedades deben cumplir A y B para que la familia $T = \{\emptyset, A, B, X\}$ sea una topología en X?
- **4.** Para cada $\alpha \in \mathbb{R}$ se define el semiplano $U_{\alpha} = \{(x, y) \in \mathbb{R}^2 : y > \alpha\}.$
 - (a) Demostrar que la familia $T = \{U_{\alpha} : \alpha \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}^2\}$ es una topología en \mathbb{R}^2 .
 - (b) Estudiar si $T \subset T_u$ o $T_u \subset T$ (T_u es la topología usual de \mathbb{R}^2).
 - (c) Describir la familia de cerrados C_T .
- 5.— Sea X un conjunto no vacío, y $A\subset X$ un subconjunto. Probar que la familia de subconjuntos de X:

$$T(A) = \{ U \subset X : A \subset U \} \cup \{\emptyset\}$$

en una topología en X.

6.— (Topología fuerte en un punto). Sea X un conjunto y $x_0 \in X$. Definimos:

$$\mathcal{C} = \{F \subset X : x_0 \in F\} \cup \{F \subset X : F \text{ es finito}\}.$$

Probar que existe una única topología T en X cuya familia de cerrados es \mathcal{C} . Describir los abiertos de T.

7.— (Topología inducida en un subconjunto). Sea (X,T) un espacio topológico, y $A \subset X$ un subconjunto no vacío. Probar que la familia de subconjuntos de A definida por:

$$T_A = \{U \cap A : U \in T\}$$

en una topología en A.

- **8.** Sea (X,T) un espacio topológico y $A \subset B$ dos subconjuntos no vacíos de X. Probar que $T_B = (T_A)_B$.
- 9.— Sea (X,T) un espacio topológico y $A\subset X$ un subconjunto no vacío. Si $\mathcal B$ es una base de T, probar que:

$$\mathcal{B}_A = \{B \cap A : B \in \mathcal{B}\}\$$

es una base de T_A .

10.— Sea (X,T) un espacio topológico y sea \mathcal{B} una base de T. Probar que, para cada punto $x \in X$, la familia:

$$\mathcal{B}(x) = \{ B \in \mathcal{B} : x \in B \}$$

es una base de entornos abiertos del punto x.

- **11.** Sea (X,T) un espacio topológico, $A \subset X$, $x \in X$ y \mathcal{B}_x una base de entornos de x. Probar que son equivalentes:
 - (a) $x \in \overline{A}$.
 - (b) Para todo $B \in \mathcal{B}_x$ se tiene que $B \cap A \neq \emptyset$.
- 12.— (Semiplano de Moore). En $\mathbb{R}^2_+=\{(x,y)\in\mathbb{R}^2:y\geqslant 0\}$ se considera la familia:

$$\mathcal{B}_{M} = \{B((x,y),\varepsilon) : y > 0, \ \varepsilon \in (0,y)\} \cup \{B((x,y),y) \cup \{(x,0)\} : y > 0\}.$$

Probar que existe una única topología T_M en \mathbb{R}^2 tal que \mathcal{B}_M es base para T_M .

13.— En \mathbb{R} se consideran las familias:

$$T_1 = \{(a, +\infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}, \quad T_2 = \{[a, +\infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}.$$

- (a) Probar que T_1 es una topología en \mathbb{R} y que T_2 no lo es.
- (b) Demostrar que T_2 es base de una única topología T en \mathbb{R} .
- (c) Estudiar si $T_u \subset T_1$, $T_1 \subset T_u$, $T_u \subset T$ o $T \subset T_u$.
- (d) En (\mathbb{R}, T) , ¿es la intersección arbitraria de abiertos un conjunto abierto?
- **14.** Sea (X,T) un espacio topológico, $x \in X$, \mathcal{B}_x una base de entornos de x. Probar que la familia:

$$\mathring{\mathcal{B}}_x = \{\mathring{B} : B \in \mathcal{B}_x\}$$

es una base de entornos abiertos de x.

15.— En \mathbb{R} se considera la familia de subconjuntos:

$$T = \{ U \subset \mathbb{R} : 0 \notin U \} \cup \{ U \subset \mathbb{R} : (-1, 1) \subset U \}.$$

- (a) Probar que T es una topología en \mathbb{R} . Describir los cerrados de T.
- (b) Encontrar una base \mathcal{B} para T con la menor cantidad posible de abiertos.
- (c) Dado $x \in \mathbb{R}$, encontrar una base de entornos de x en (\mathbb{R}, T) .
- (d) Calcular la clausura, el interior y la frontera de [0,1] en (\mathbb{R},T) .
- **16.** Sea (X,T) un espacio topológico y $A,B\subset X$. Probar que:
 - (a) $A = \mathring{A}$ si y solo si A es abierto.
 - (b) $\mathring{A} = A$.
 - (c) Si $A \subset B$, entonces $\mathring{A} \subset \mathring{B}$.
 - (d) $int(A \cap B) = int(A) \cap int(B)$.
 - (e) $int(A \cup B) \supset int(A) \cup int(B)$. Probar con un ejemplo que no se da la igualdad en general.
- 17.— Sea (X,T) un espacio topológico y $A,B\subset X$. Probar que:
 - (a) $A = \overline{A}$ si y solo si A es cerrado.
 - (b) $\overline{\overline{A}} = A$.
 - (c) Si $A \subset B$, entonces $\overline{A} \subset \overline{B}$.

- (d) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- (e) $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$. Probar con un ejemplo que no se da la igualdad en general.
- **18.** Sea (X,T) un espacio topológico y $A,B\subset X$. Probar
 - (a) A es abierto si y solo si $A \cap \partial A = \emptyset$.
 - (b) A es cerrado si v solo si $\partial A \subset A$.
 - (c) A es abierto y cerrado si y solo si $\partial A = \emptyset$.
 - (d) $\partial(A \cup B) \subset \partial A \cup \partial B$. Probar con un ejemplo que no se da la igualdad en general.
- **19.** Sea (X,T) un espacio topológico y $A \subset X$. Demostrar que $\partial A \subset \partial A$. Describir una situación en la que $\partial A = \partial A$ y otra en la que $\partial A \neq \partial A$.
- **20.** Sea X un conjunto y $A \subset X$ con $\emptyset \neq A \neq X$. Probar que la familia:

$$\mathcal{B} = \{A \cup \{x\} : x \in X\}$$

es base de una topología T en X. Calcular el interior y la clausura de A en (X,T).

- **21.** En (\mathbb{R}, T_{CF}) calcular la clausura, el interior y la frontera de $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ y $\{1, 2\}$.
- **22.** Sea (X,T) un espacio topológico y $A\subset X$ un subconjunto no vacío. Sea $a\in A$ y \mathcal{B}_a una base de entornos de a en (X,T). Probar que la familia

$$(\mathcal{B}_A)_a = \{B \cap A : B \in \mathcal{B}_a\}$$

es una base de entornos de a en (A, T_A)

- **23.** Calcular A' y ais $(A) = \{\text{puntos aislados de } A\}$ en los siguientes casos:
 - (a) (X, T_t) y $A \subset X$ con $\#A \geqslant 2$,
 - (b) (X, T_D) y $A \subset X$,
 - (c) (X, T_{CF}) y $A \subset X$ finito,
 - (d) (\mathbb{R}, T_S) y A = (0, 1].
- **24.** Sea (X,T) un espacio topológico y $A \subset X$ un subconjunto no vacío. Probar que $\overline{A} = A' \cup ais(A)$.
- **25.** Se considera la recta de Sorgenfrey (\mathbb{R}, T_S) .
 - (a) Calcular la clausura de los conjuntos \mathbb{N} , \mathbb{Q} , $\{\frac{1}{n}:n\in\mathbb{N}\}$ y $\{\frac{-1}{n}:n\in\mathbb{N}\}$. (b) ¿Cuál es la frontera de los conjuntos (a,b] y [a,b)?
- **26.** (Recta diseminada). En \mathbb{R} se considera la familia de subconjuntos:

$$T = \{A \cup B : A \in T_u, B \subset \mathbb{R} \setminus \mathbb{Q}\}.$$

- (a) Demostrar que T es una topología en \mathbb{R} con $T_u \subset T$.
- (b) Probar que los intervalos [a, b] y [c, d) con $d \in \mathbb{R} \setminus \mathbb{Q}$ son cerrados en (\mathbb{R}, T) .
- (c) Calcular la clausura, el interior y la frontera en (\mathbb{R}, T) de [0, 1] y $[0, \sqrt{2})$.
- (d) Calcular una base de entornos de $x \in \mathbb{R}$ en (\mathbb{R}, T) .
- (e) Obtener la clausura, el interior y la frontera de $\{x\}, x \in \mathbb{R}$.
- **27.** Consideramos el subconjunto $A = [0,1) \cup (1,3) \cup \{5\}$ de \mathbb{R} con la topología $(T_u)_A$ inducida en A por T_u .

- (a) Estudiar si los conjuntos $\{5\}$ y (1,3) son abiertos o cerrados en $(A,(T_u)_A)$.
- (b) Comprobar si [0, 1/2] es entorno de 0 en $(A, (T_u)_A)$.
- (c) Calcular la clausura de [0,1) en $(A,(T_u)_A)$.
- **28.** Probar que en el semiplano de Moore (\mathbb{R}^2, T_M) , el eje de abscisas y = 0 es un subconjunto discreto.
- **29.** Sea T_1 y T_2 dos topologías sobre un conjunto X con $T_1 \subset T_2$. Dado $A \subset X$, ¿existe alguna relación entre la clausura y el interior de A en (X, T_1) y en (X, T_2) ?
- **30.** Probar que un espacio topológico (X,T) admite un subconjunto denso no trivial si y sólo si la topología T no es la topología discreta.
- **31.** Sea X un conjunto no vacío y $\{A_i\}_{i\in I}$ una partición de X. Demostrar que existe una única topología T en X tal que $\{A_i\}_{i\in I}$ es base de T. Probar que los abiertos de T y los cerrados de T coinciden. ¿Es, en general, (X,T) un espacio de Hausdorff?
- **32.** Si (X,d) es un espacio métrico y $A \subset X$ es un subconjunto no vacío, se define $d_A: A \times A \to \mathbb{R}$ por la igualdad:

$$d_A(a,b) = d(a,b)$$
, para todo par de puntos $a, b \in X$.

- (a) Demostrar que (A, d_A) es un espacio métrico.
- (b) Demostrar que $(T_d)_A = T_{d_A}$ (las topologías inducidas en A por T_d y por d_A coinciden).
- **33.** Probar que un espacio topológico AN-II es AN-I.
- **34.** Probar que la recta de Sorgenfrey es AN-I pero no es AN-II.
- **35.** Sea (X, T_D) un espacio con la topología discreta. Probar
 - (a) (X, T_D) es AN-I.
 - (b) (X, T_D) es AN-II si y solo si X es numerable.
- **36.** En un espacio topológico (X,T) una sucesión $\{x_i\}_{i\in\mathbb{N}}$ converge a un punto $x\in X$ si para todo entorno $U\in\mathcal{N}_x$, existe $i_0\in\mathbb{N}$ tal que $x_i\in U$ para todo $i\geqslant i_0$. Si la sucesión $\{x_i\}_{i\in\mathbb{N}}$ converge a x escribiremos $x=\lim_{i\to\infty}x_i$ y diremos que x es límite de la sucesión $\{x_i\}_{i\in\mathbb{N}}$. Probar las siguientes afirmaciones:
 - (a) En un espacio (X, T_t) con la topología trivial cualquier sucesión en X converge a todos los puntos de X (los límites de sucesiones en espacios topológicos no son únicos).
 - (b) En un espacio topológico Hausdorff, una sucesión convergente tiene un único límite.
 - (c) Sea (X,T) un espacio topológico cualquiera, $A \subset X$ un subconjunto no vacío. Supongamos que existe una sucesión $\{a_i\}_{i\in\mathbb{N}}$ de puntos de A que converge a un punto $x\in X$. Probar que $x\in \overline{A}$.
 - (d) Sea (X,T) un espacio topológico AN-I, $A \subset X$ un subconjunto no vacío y $x \in \overline{A}$. Probar que existe una sucesión de puntos de A que converge a x. Dar un contraejemplo cuando (X,T) no es AN-I (considerar los números irracionales \mathbb{I} en (\mathbb{R}, T_{CN}) y usar el ejercicio 40).

- **37.** Sea (X,T) un espacio topológico, $\{x_i\}_{i\in\mathbb{N}}$ una sucesión en $X, x\in X$, y \mathcal{B}_x una base de entornos de x. Probar que son equivalentes:
 - (a) $x = \lim_{i \to \infty} x_i$.
 - (b) Para todo $B \in \mathcal{B}_x$, existe $i_0 \in \mathbb{N}$ tal que $x_i \in B$ para todo $i \geqslant i_0$.
- **38.** Sea (X,d) un espacio métrico, $\{x_i\}_{i\in\mathbb{N}}$ una sucesión en X, y $x\in X$. Probar que son equivalentes:
 - (a) $x = \lim_{i \to \infty} x_i$ en (X, T_d) .
 - (b) Para todo $\varepsilon > 0$, existe $i_0 \in \mathbb{N}$ tal que $d(x, x_i) < \varepsilon$ para todo $i \ge i_0$.
- **39.** Sea (X, T_D) un espacio topológico con la topología discreta. Probar que una sucesión $\{x_i\}_{i\in\mathbb{N}}$ en X converge a $x\in X$ si y solo si existe $i_0\in\mathbb{N}$ tal que $x_i=x$ para todo $i\geqslant i_0$.
- **40.** Consideramos en \mathbb{R} la topología de los complementos numerables T_{CN} . Probar que una sucesión $\{x_i\}_{i\in\mathbb{N}}$ en \mathbb{R} converge a $x\in\mathbb{R}$ si y solo si existe $i_0\in\mathbb{N}$ tal que $x_i=x$ para todo $i\geqslant i_0$.
- **41.** Sea (X,T) un espacio topológico y $A\subset X$ un subconjunto no vacío. Probar que:
 - (a) Si (X,T) es Hausdorff, entonces (A,T_A) es Hausdorff.
 - (b) Si (X,T) es AN-I, entonces (A,T_A) es AN-I.
 - (c) Si (X,T) es AN-II, entonces (A,T_A) es AN-II.
 - (d) Si (X,T) es metrizable, entonces (A,T_A) es metrizable.
- 42.— Probar que un espacio topológico AN-II es separable.
- **43.** Probar que un espacio métrico es AN-II si y sólo si es separable.