Relación De Ejercicios del Tema IV

(Espacios vectoriales, operaciones con subespacios, bases y dimensión.)

Ejercicio 1. Determine si los siguientes conjuntos de vectores son linealmente independientes

(11) En \mathbb{Q}^4 , \mathbb{Z}_2^4 , \mathbb{Z}_3^4 , \mathbb{Z}_5^4 , \mathbb{Z}_7^4 , se considera el subconjunto

$$\Big\{(3,-1,-4,0),(0,1,8,-1),(3,-1,5,4),(0,0,3,3)\Big\}.$$

- (12) El conjunto $\{1 x, x\}$ en $\mathbb{R}[x]_2$.
- (13) En $\mathbb{Q}[x]_3$ y $\mathbb{Z}_5[x]_4$, se considera el conjunto $\{-x, x^2 2x, 3x + 5x^2\}$.
- (14) En $\mathbb{Z}_3[x]_3$, se considera el conjunto $\{2x, x^3 3, 1 + x 4x^3, x^3 + 18x 9\}$.
- (15) En $\mathcal{M}_2(\mathbb{Z}_7)$, se considera el subconjunto:

$$\left\{ \begin{pmatrix} 1 & -1 \\ 0 & 6 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}.$$

La notación $\mathbb{K}[x]_n$ se refiere al \mathbb{K} -espacio vectorial de polinomios de grado menor que n.

Ejercicio 2. ¿Cuáles de los siguientes subconjuntos $H \subseteq V$ son además subespacios vectoriales?

(1)
$$V = \mathbb{R}^2$$
,
 $H = \{(x, y) | y \ge 0\}$;

(2)
$$V = \mathcal{M}_2(\mathbb{Z}_5),$$

 $H = \left\{ A \in V | A = \begin{pmatrix} a & b \\ 4b & c \end{pmatrix} \right\};$

(3)
$$V = \mathbb{Z}_5[x]_4$$
,
 $H = \{ p \in V | deg(p) = 4 \}$;

(4)
$$V = \mathbb{Z}_2[x]_n$$
,
 $H = \{ p \in V | p(0) = 1 \}$;

(4)
$$V = \mathbb{Z}_{2}[x]_{n}$$
,
 $H = \{p \in V | p(0) = 1\}$;
(5) $V = \mathbb{Z}_{3}^{3}$,
 $H = \{(x, y, z) \in V | ax - y = bz, a, b \in \mathbb{Z}_{3}\}$;
(6) $V = \mathbb{Q}^{3}$,
 $H = \{(x, y, z) \in V | ax - by = z, a, b \in \mathbb{Z}\}$

(6)
$$V = \mathbb{Q}^3$$
,
 $H = \{(x, y, z) \in V | ax - by = z, a, b \in \mathbb{Z} \}$

Ejercicio 3. Sea $V = \{(x, y, z) \in \mathbb{Z}_{19}^3 | 8x - 18y + 7z = 0\}$ y consideramos los vectores u = (1, 2, 4), v = (-3, 1, 6), p = (1, -8, 0) y q = (0, -7, 1) de \mathbb{Z}_{19}^3 .

- (31) Compruebe que V es un \mathbb{Z}_{19} -espacio vectorial.
- (32) Demuestre que $u, v, p, q \in V$.
- (33) ¿Cual de los conjuntos $\{u, v\}$, $\{p, q\}$ es un conjunto generador de V.

Ejercicio 4. Sea $A = \begin{pmatrix} -1 & 2 & -3 \\ 2 & 4 & -2 \\ 1 & 0 & 4 \end{pmatrix}$ una matriz in $M_{3\times 3}(\mathbb{Z}_5)$. Consideramos los siguientes subconjunto de \mathbb{Z}_5^3 :

$$V := \left\{ v \in \mathbb{Z}_5^3 | Av = 0 \right\}, \quad W = \left\{ v \in \mathbb{Z}_5^3 | Av = -3v \right\}.$$

Demuestre que ambos V y W son \mathbb{Z}_5 -subespacios vectoriales de \mathbb{Z}_5^3 . Calcule sus ecuaciones paramétricas y luego sus dimensiones.

Ejercicio 5. Sean $V = \{(x, y) \in \mathbb{Z}_{11}^2 | x = 0\}$ $y W = \{(x, y) \in \mathbb{Z}_{11}^2 | y = 0\}$ subconjuntos de \mathbb{Z}_{11}^2 .

- (51) Representa gráficamente V y W en el plano \mathbb{Z}_{11}^2
- (52) Verifique que V y W son dos \mathbb{Z}_{11} -subespacios vectoriales de \mathbb{Z}_{11}^2 .
- (53) Representa gráficamente el subconjunto $V \cup W$ en el plano \mathbb{Z}_{11}^2 deduce que este conjunto no es un subespacio vectorial.

Ejercicio 6. Consideramos el siguiente sistema de ecuaciones lineales con coeficientes en \mathbb{Z}_7 :

$$\begin{cases} x_1 - 2x_3 - 6x_5 = 0 \\ x_2 - 5x_3 + 3x_5 = 0 \\ x_4 - x_5 = 0 \end{cases}$$

denotaremos por $V \subseteq \mathbb{Z}_7^5$ el conjunto de sus soluciones.

- (61) Demuestre que V es un \mathbb{Z}_7 -subespacio vectorial de \mathbb{Z}_7^5 .
- (62) Compruebe que si $u \in V$, entonces todas las coordenadas canónicas de u puedan expresarse solamente en función de las coordenadas x_3 y x_5 .
- (63) Deduce la forma generale de un vector de V y construye una familia de generadores de V.
- (64) ¿Es posible encontrar un vector $v \in V$ tal es que $\mathcal{L}(\{v\}) = V$?

Ejercicio 7. Sea $V = \mathbb{Z}_3 \times \mathbb{Z}_3$ el \mathbb{Z}_3 -espacio vectorial con base canónica $\{e_1 := (1,0), e_2 := (0,1)\}$. Consideramos un conjunto X de dos elementos, por ejemplo $X = \{0,1\}$. Dotaremos el conjunto $W := \operatorname{Maps}(X,V)$ de todas las aplicaciones de X hacia a V con las siguientes operaciones:

$$+: W \times W \longrightarrow W \qquad \qquad \cdot: \mathbb{Z}_3 \times W \longrightarrow W$$

$$(f,g) \longmapsto \left(f + g := \left[x \mapsto f(x) + g(x)\right]\right) \qquad (\lambda,f) \longmapsto \left(\lambda \cdot f := \left[x \mapsto \lambda f(x)\right]\right).$$

- (71) Demuestre que W es un \mathbb{Z}_3 -espacio vectorial.
- (72) Compruebe que los vectores $\{F_1, F_2, F_3, F_4\} \subseteq W$ definidos como sigue:

son linealmente independiente y a su vez un conjunto generador.

(73) Calcule la dimensión de W.

Ejercicio 8. Consideramos $V = \mathbb{Z}_7 \times \mathbb{Z}_7$, de manera canónica, como \mathbb{Z}_7 -espacio vectorial.

- (81) Demuestre que el subconjunto $\{(x,y) \in V | 2x 4y = 5\}$ no es un subespacio vectorial de V.
- (82) Representa gráficamente el subconjunto $X = \{(x,y) \in V | 3x 5y = -1\}$ y encuentre el subespacio $\mathcal{L}(X)$ de V generado por X.

Ejercicio 9. Consideramos $V = \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_5$, de manera canónica, como \mathbb{Z}_5 -espacio vectorial.

- (91) Demuestra que cualquier subespacio de V con dimensión 1 tiene exactamente 5 vectores.
- (92) Comprueba que el subconjunto $\{(x,y,z) \in V | 2x 4y = 0, z = 0\}$ es un subespacio vectorial de V y encuentra una base.
- (93) Sea W el conjunto de soluciones del siguiente sistema de ecuaciones lineales en \mathbb{Z}_5

$$\begin{cases} x - 2y + 3z = 0 \\ 2x - 4y + z = 0 \\ 3x - y + 2z = 0 \end{cases}$$

Compruebe que W es un \mathbb{Z}_5 -subespacio vectorial de V y calcule su dimensión. Representa gráficamente W en el espacio usual de tres dimensiones.

(94) * Calcule cuantos subespacios vectoriales de V hay con dimensión 2.

Ejercicio 10. Consideramos el conjunto $\mathbb{Z}_{11}[x]_3$ de todos los polinomios de grado ≤ 3 con coeficientes en \mathbb{Z}_{11} .

- (101) Demuestre que $\mathbb{Z}_{11}[x]_3$ es un \mathbb{Z}_{11} -espacio vectorial y encuentre una base. ¿Cuales su dimensión?
- (102) Compruebe que el subconjunto $V = \{p(\mathsf{x}) \in \mathbb{Z}_{11}[\mathsf{x}]_3 | \mathsf{x}p'(\mathsf{x}) = p(\mathsf{x})\}\ (p'(\mathsf{x}) \text{ es la derivada de } p(\mathsf{x})) \text{ es un } \mathbb{Z}_{11}\text{-subespacio vectorial de } \mathbb{Z}_{11}[\mathsf{x}]_3.$
- (103) ¿Cuales la forma general de los elementos de los vectores de V?
- (104) ¿Es V igual a $\mathbb{Z}_{11}[x]_3$? (Justifica tu respuesta).
- (105) Calcule una base y la dimensión de V.

Ejercicio 11. En un \mathbb{R} -espacio vectorial de dimensión 3, los vectores $S = \{(1,0,1), (1,2,2), (0,1,1)\}$ vienen dados por sus coordenadas en una cierta base. Comprueba que S es un base y halla las coordenadas del vector (1,0,2) en dicha base.

Ejercicio 12. Para las bases de $V := \mathbb{R}^3$

$$B = \{v_1 = (4, 0, 7), v_2 = (2, 1, 1), v_3 = (3, 1, 3)\}$$

$$B' = \{v'_1 = (1, 0, 2), v'_2 = (4, 1, 5), v'_3 = (1, 0, 3)\}$$

calcula las matrices de cambio de base. Responde a la misma pregunta cuando

$$V = \mathbb{Z}_7^3, \quad V = \mathbb{Z}_{11}^3, \quad y \quad V = \mathbb{Z}_{13}^3.$$

Ejercicio 13. Sea $V = \operatorname{Map}(\mathbb{R}, \mathbb{R})$ el conjunto de todas las aplicaciones de \mathbb{R} en \mathbb{R} .

(131) Se definen las siguientes operaciones:

Comprobar que con estas operaciones V es un \mathbb{R} -espacio vectorial.

(132) Consideramos los siguientes subconjunto de V:

$$V_1 = \{ \varphi \in V | \varphi(0) = \varphi(1) = -\varphi(-1) \}; \ V_2 = \{ l \in V | \forall r \in \mathbb{R}, l(r) = ar + b, \ para \ alg\'un \ a, b \in \mathbb{R} \}.$$

Comprobar que V_1 y V_2 son dos subespacios complementarios de V. $V_1 \oplus V_2 = V$.

Ejercicio 14. Consideramos $V := \operatorname{Maps}(\mathbb{R}, \mathbb{R})$ el conjunto de todas las aplicaciones de \mathbb{R} en \mathbb{R} , de manera canónica, como \mathbb{R} -espacio vectorial. Sean $u, v, w \in V$ definidas por

$$(u: \mathbb{R} \to \mathbb{R}, [x \mapsto 1]); \quad (v: \mathbb{R} \to \mathbb{R}, [x \mapsto Sen(4x)]); \quad (w: \mathbb{R} \to \mathbb{R}, [x \mapsto Cos(4x)]).$$

- (141) Compruebe que el conjunto de vectores $\{u, v, w\}$ es linealmente independiente.
- (142) Demuestre que las aplicaciones

$$(f: \mathbb{R} \to \mathbb{R}, [x \mapsto Sen^2(2x)]); \quad (g: \mathbb{R} \to \mathbb{R}, [x \mapsto Sen(2x)Cos(2x)])$$

son vectores del subespacio vectorial $\mathcal{L}(\{u,v,w\})$ generado por el conjunto $\{u,v,w\}$.

Ejercicio 15. Para cada uno de los casos que a continuación se detallan, halla las ecuaciones implícitas y paramétricas del subespacio $\mathscr{L}(X)$ del \mathbb{K} -espacio vectorial V, generado por el conjunto X y calcule su dimensión. Completa la base de $\mathcal{L}(X)$ a una base de V.

(1)
$$\mathbb{K} = \mathbb{Z}_5$$
, $V = (\mathbb{Z}_5)^3$,
 $X = \{(1, 2, 4), (0, 4, 2)\};$

(2)
$$\mathbb{K} = \mathbb{Q}, V = \mathbb{R}^3, X = \left\{ (2, \frac{1}{3}, \sqrt{3}), (1, -\frac{1}{5}, 3) \right\};$$

(3)
$$\mathbb{K} = \mathbb{Q}, V = \mathbb{Q} \times \mathbb{R},$$

 $X = \left\{ (\frac{3}{4}, \pi), (1, \sqrt{2}), (-\frac{1}{2}, \frac{1}{\sqrt{2}}) \right\};$

(4)
$$\mathbb{K} = \mathbb{Z}_7, V = \mathbb{Z}_7 \times \mathbb{Z}_7, X = \left\{ \left(\frac{3}{4}, \frac{1}{2} \right), \left(1, \frac{2}{5} \right), \left(-\frac{1}{2}, \frac{1}{5} \right) \right\};$$

(5)
$$\mathbb{K} = \mathbb{Q}, V = \mathbb{Q}^3,$$

 $X = \left\{ (2, \frac{3}{2}, \frac{4}{3}), (-\frac{2}{5}, \frac{3}{2}, \frac{1}{2}) \right\};$

(4)
$$\mathbb{K} = \mathbb{Z}_7, V = \mathbb{Z}_7 \times \mathbb{Z}_7,$$

 $X = \left\{ \left(\frac{3}{4}, \frac{1}{2} \right), \left(1, \frac{2}{5} \right), \left(-\frac{1}{2}, \frac{1}{5} \right) \right\};$
(5) $\mathbb{K} = \mathbb{Q}, V = \mathbb{Q}^3,$
 $X = \left\{ \left(2, \frac{3}{2}, \frac{4}{3} \right), \left(-\frac{2}{5}, \frac{3}{2}, \frac{1}{2} \right) \right\};$
(6) $\mathbb{K} = \mathbb{Z}_{11}, V = \mathbb{Z}_{11}^3,$
 $X = \left\{ \left(2, -\frac{3}{6}, -\frac{7}{8} \right), \left(-\frac{4}{5}, \frac{3}{9}, \frac{7}{8} \right) \right\}.$

Ejercicio 16. Para cada una de la siguiente pajera U, W de subespacios del K-espacio vectorial V, calcule $U \cap W$ y U + W, proporcionando en cada caso una base.

$$\mathbb{K} = \mathbb{R}, \ V = \mathbb{R}^2, \ U = \{(x,y) \in V | \sqrt{2}x - y = 0\}, \ W = \{(x,y) \in V | \ x = 2y\};$$

$$\mathbb{K} = \mathbb{R}, \ V = \mathbb{R}^3, \ U = \{(x,y,z) \in V | \ 2x - y + z = 0\}, \ W = \{(x,y,z) \in V | \ x + y + z = 0\};$$

$$\mathbb{K} = \mathbb{Q}, \ V = \mathbb{Q}^3, \ U = \{(x,y,z) \in V | \ x - \frac{1}{2}y + z = 0\}, \ W = \{(x,y,z) \in V | \ x + z = 0\}.$$

Comprobar que en todos eso casos se satisface la siguiente ecuación:

$$dim_{\mathbb{K}}(U+W) = dim_{\mathbb{K}}(U) + dim_{\mathbb{K}}(W) - dim_{\mathbb{K}}(U \cap W).$$

Ejercicio 17. Consideramos el \mathbb{R} -espacio vectorial \mathbb{R}^3 .

- (171) Probar que $\{(x,y,z) \in \mathbb{R}^3 | ax + by + cz = 0, donde \ a,b,c \in \mathbb{R}\}\$ es un subespacio vectorial de \mathbb{R}^3 .
- (172) Calcule la dimensión de los subespacios $\{(x,y,z) \in \mathbb{R}^3 | x-y=0\}$ y $\{(x,y,z) \in \mathbb{R}^3 | 2x+y-1\}$ z = 0.

- (173) Comprobar que cualquier subespacio de \mathbb{R}^3 de dimensión 2 es, salvo isomorfismos, de forma $\{(x,y,z)\in\mathbb{R}^3|\ ax+by+cz=0,\ para\ ciertos\ números\ no\ nulos\ a,b,c\in\mathbb{R}\}$. Encuentra una descripción geométrica de estos subespacios.
- (174) Demostrar que cualquier subespacio de \mathbb{R}^3 de dimensión 1 es, salvo isomorfismos, de forma $\{(x,y,z)\in\mathbb{R}^3|\ ax+by+cz=0,\ donde\ exactamente\ dos\ de\ los\ números\ a,b,c\in\mathbb{R},\ no\ son\ nulos\}.$ Encuentra una descripción geométrica de estos subespacios.
- (175) Compruebe que los únicos subespacio no propios de \mathbb{R}^3 son los del tipo descrito en los apartados (173) o (174). Un subespacio propio es aquel que es distinto del espacio total y del subespacio cero.

Ejercicio 18. Encuentra la dimensión del subespacio generado por los siguientes conjuntos de vectores

- (181) El subconjunto $\{(1,2,3),(3,4,5)\}\ de\ \mathbb{Z}_7^3$.
- (182) El subconjunto $\{(1,2,3,-1),(0,-2,1,3),(0,3,4,-1)\}\ de\ \mathbb{Z}_5^4$.
- (183) El subconjunto $\{1 + x + x^2, 2 x^2 + x^3, 1 x 2x^2 + x^3, 1 + 3x + 4x^2 x^3\}\ de\ \mathbb{Z}_5[x]_3$.
- (184) El subconjunto $\{1-\mathsf{x},\mathsf{x}+\mathsf{x}^2,\mathsf{x}+\mathsf{x}^3\}\ de\ \mathbb{Z}_3[\mathsf{x}]_3.$

Ejercicio 19. Sea V un \mathbb{Z}_7 -espacio vectorial de dimensión 4 y $\mathcal{B} = \{e_1, e_2, e_3, e_4\}$ una base de V. Denotaremos por W el subespacio de V generado por el conjunto $\{e_1, e_3\}$. Consideramos el subespacio $U := \mathcal{L}(\{u, v\})$ generado por los siguientes vectores de V:

$$u = e_1 + 5e_2 + e_3 + e_4$$
, $v = e_1 + 2e_2 + e_3 + e_4$.

- (191) Compruebe que los $\{u, v\}$ son linealmente independiente.
- (192) De un sistema de ecuaciones de U relativo a la base \mathcal{B} de V.
- (193) De un base de W y compruebe que $U \cap W = \{0\}$.
- (194) Estudia si V se descompone como suma directa $V = U \oplus W$.

Ejercicio 20. Sea H el \mathbb{Z}_7 -subespacio de \mathbb{Z}_7^4 definido mediante el sistema de ecuaciones:

$$H: \begin{cases} x_1 + x_2 + x_3 + x_4 = 0\\ x_1 - x_2 + x_3 - x_4 = 0 \end{cases}$$

Consideramos u=(1,1,1,1), v=(1,0,0,0) dos vectores de \mathbb{Z}_7^4 y $L:=\mathcal{L}(\{u,v\})$ el subespacio generado por $\{u,v\}$.

- (201) Determine el subespacio $H \cap L$ y calcule una base de H.
- (202) Compruebe que H y L son dos subespacio complementarios.
- (203) Dado un vector w=(x,y,z,t) de \mathbb{Z}_7^4 determine la descomposición de w como suma de dos vectores uno en H y otro en L.

Ejercicio 21. Sea P el subespacio de \mathbb{Z}_{11}^4 definido mediante el siguiente sistema de ecuaciones lineales:

$$P: \begin{cases} t+x+y+z=0\\ t+y+2z=0 \end{cases}$$

- (211) Justifica, sin cálculos, que la dimensión de P es 2. Luego determine una base $\{u_1, u_2\}$ de P.
- (212) Sean $v_1 = (1, 1, 1, 1), v_2 = (1, 0, 1, 0)$ dos vectores $y V = \mathcal{L}(\{v_1, v_2\})$ el subespacio generado por $\{v_1, v_2\}$. Demuestre que $P+V = \mathcal{L}(\{u_1, u_2, v_1, v_2\})$ y deduce una base escalonada respecto a la base canónica de \mathbb{Z}_{11}^4 .
- (213) Deduce que P y V no son complementarios dando una base del subespacio $P \cap V$.
- (214) Consideramos $W = \mathcal{L}(\{v_1, v_3\})$ donde $v_3 = (1, 1, 0, 0)$. Compruebe si P y W son dos subespacios complementarios y en su caso describe la proyección sobre W paralela a P.