# Работа Д.2.3

# Определение вязкости воздуха по скорости истечения через капилляр

Панферов Андрей

#### 1 Аннотация

В работе производится измерение вязкости воздуха  $\eta$  по измерению объема газа, протекающего через капилляр (иглу шприца) при переменном перепаде давления. Проверяется зависимость расхода газа Q от радиуса капилляра  $r: Q \sim r^4$  (формула Пуазейля).

## 2 Теоретические сведения

Вязкость (внутреннее трение) — свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой.

При небольших скоростях газа или жидкости течение среды является ламинарным. Движение среды при этом происходит слоями, обладающими разными скоростями. С увеличением скорости потока движение приобретает сложныи, запутанныи характер, слои перемешиваются, течение становится турбулентным. При этом скорость в каждои точке быстро меняет величину и направление, сохраняется только ее средняя величина.



Характер движения газа или жидкости зависит от соотношения между кинетическои энергиеи движущейся среды и работой сил вязкости. Если первая величина мала по сравнению со второй, то турбулентные пульсации не развиваются и течение остается ламинарным. Отношение плотности кинетической энергии к плотности энергетических потерь из-за работы сил вязкости определяет безразмерное число Рейнольдса:

$$Re = \frac{vr\rho}{\eta}$$

В гладких трубах круглого сечения переход от ламинарного течения к турбулентному происходит при значениях 1000.

Для вывода формулы Пуазейля рассмотрим стационарное течение вязкой жидкости или газа по трубе.

Мысленно выделим расположенный вдоль оси трубы цилиндр длиной и радиусом r. Скорость жидкости или газа в разных точках сечения, трубы из-за присутствия силы внутреннего трения различна: она будет наибольшей на оси цилиндра и убывать по мере приближения слоев к стенкам цилиндра, поэтому изменение скорости можно характеризовать градиентом d/dr. С внешней стороны на поверхность выделенного цилиндра действует сила вязкого трения, равная

$$F_{\rm \tiny Tp} = -\eta \frac{d}{dr} S = -\eta \frac{d}{dr} 2\pi r l$$

Так как движение жидкости или газа происходит в разных местах трубы с постоянной для этого места скоростью, то сила Fтр должна быть уравновешена силой F давления, вызывающей движение жидкости или газа и создающей перепад давлений  $\Delta P = P_1 - P_2$  на торцах выделенного цилиндра, причем эта сила из определения давления равна  $S\Delta P$ .

$$\frac{d}{dr} = -\frac{\Delta Pr}{2\eta l}$$

Постоянная интегрирования получается из граничного условия (скорость у края трубы нулевая), откуда

$$v = \frac{\Delta P}{4\eta l}(R^2 - r^2)$$
 
$$dQ = \frac{dV}{dt} = 2\pi r v dr = 2\pi r \frac{\Delta P}{4\eta l}(R^2 - r^2) dr$$
 
$$Q = \frac{\pi \Delta P r^4}{8\eta l}$$

## 3 Метод измерений

Если цилиндр шприца с капилляром погрузить в сосуд с водои, так, как показано на рисунке, то скорость заполнения цилиндра определяется, очевидно, пропускнои способностью капилляра, оказывающего наибольшее сопротивление потоку воздуха. По мере заполнения цилиндра перепад давления на длине капилляра изменяется и в момент времени t, показанныи на рисунке, равен, очевидно,  $P_1 - P_2 = \rho_{\rm B} g h$ , где  $\rho_{\rm B}$ — плотность волы.

Тогда, в соответствии с формулои Пуазеиля, для мгновенного расхода воздуха в момент времени t можно записать:

$$Q = -\frac{Sdh}{dt} = \frac{\pi \rho_{\text{\tiny B}} g h_0 r^4}{8\eta l}$$

$$ln \frac{h_0}{h} = ln \frac{V_0}{V} = \frac{\pi \rho_{\text{\tiny B}} g h_0 r^4}{8\eta l S} t$$

$$t = \frac{8\eta l S}{\pi \rho_{\text{\tiny B}} g h_0 r^4} ln \frac{V_0}{V} = \beta ln \frac{V_0}{V}]$$

$$\eta = \frac{\pi \rho_{\text{\tiny B}} g h_0 r^4 \beta}{8l S}$$



## 4 Оборудование и инструментальные погрешности

**В работе используются:** шприц на 20 мл без поршня (т.е. только цилиндр шприца), сменные капилляры (иглы) разных диаметров d и длин l, секундомер с возможностью фиксации промежуточных значении, прозрачныи цилиндрическии стакан с водои, лине-ика, небольшои кусочек ластика.

#### Инструментальные погрешности измерений:

- $\bullet$  Обьем шприца 0,05 мл
- Диаметр капилляра 0,005 мм
- Длина капилляра 0,5 мм
- $\bullet$  Секундомер 0,2 с
- Линейка 0,1 см

## 5 Результаты измерений и обработка данных

#### 5.1 Подготовка к эксперименту

В аптеке имелось 3 вида шприцов с такими характеристиками иголок:

| No | ТИП | l, mm | $d_{\text{внеш}},$ мм | $d_{	ext{bhyt}}, 	ext{mm}$ |
|----|-----|-------|-----------------------|----------------------------|
| 1  | G26 | 12    | 0.45                  | 0.26                       |
| 2  | G23 | 30    | 0.60                  | 0.34                       |
| 3  | G21 | 38    | 0.80                  | 0.51                       |

## 5.2 Проведение измерений

"Длина" шприца  $-7.0 \pm 0.1$ см. Используем это для нахождения сечения шприца.

Соберем установку согласно схеме и проведем серии экспериментов для каждой иглы. Результаты занесем в соответсвующие таблицы в разделе Данные.

После взятия средних значений из каждой выборки получим

Измерения для 1 иглы

| V, мл | $\Delta t, c$ | $ln\frac{V_0}{V}$ |
|-------|---------------|-------------------|
| 19    | 4.80          | 0.05              |
| 18    | 9.53          | 0.11              |
| 17    | 14.71         | 0.16              |
| 16    | 19.92         | 0.22              |
| 15    | 25.62         | 0.29              |
| 14    | 31.98         | 0.36              |
| 13    | 38.09         | 0.43              |
| 12    | 45.00         | 0.51              |
| 11    | 52.78         | 0.60              |
| 10    | 61.52         | 0.69              |
| 9     | 69.91         | 0.80              |
| 8     | 80.11         | 0.92              |
| 7     | 91.60         | 1.05              |
| 6     | 104.50        | 1.20              |
| 5     | 120.97        | 1.39              |

Измерения для 2 иглы

| V, мл | $\Delta t, c$ | $ln\frac{V_0}{V}$ |
|-------|---------------|-------------------|
| 19    | 1.52          | 0.05              |
| 18    | 3.24          | 0.11              |
| 17    | 5.04          | 0.16              |
| 16    | 6.83          | 0.22              |
| 15    | 8.67          | 0.29              |
| 14    | 10.89         | 0.36              |
| 13    | 13.12         | 0.43              |
| 12    | 15.47         | 0.51              |
| 11    | 18.21         | 0.60              |
| 10    | 21.06         | 0.69              |
| 9     | 24.45         | 0.80              |
| 8     | 27.97         | 0.92              |
| 7     | 32.09         | 1.05              |
| 6     | 36.64         | 1.20              |
| 5     | 42.18         | 1.39              |
| 4     | 49.39         | 1.61              |
| 3     | 58.91         | 1.90              |
| ·     |               |                   |

Измерения для 3 иглы

| лэмерений дли э иглг |               |                   |  |  |  |  |  |
|----------------------|---------------|-------------------|--|--|--|--|--|
| V, мл                | $\Delta t, c$ | $ln\frac{V_0}{V}$ |  |  |  |  |  |
| 19                   | 0.54          | 0.05              |  |  |  |  |  |
| 18                   | 1.12          | 0.11              |  |  |  |  |  |
| 17                   | 1.77          | 0.16              |  |  |  |  |  |
| 16                   | 2.42          | 0.22              |  |  |  |  |  |
| 15                   | 3.01          | 0.29              |  |  |  |  |  |
| 14                   | 3.77          | 0.36              |  |  |  |  |  |
| 13                   | 4.55          | 0.43              |  |  |  |  |  |
| 12                   | 5.36          | 0.51              |  |  |  |  |  |
| 11                   | 6.21          | 0.60              |  |  |  |  |  |
| 10                   | 7.07          | 0.69              |  |  |  |  |  |
| 9                    | 8.16          | 0.80              |  |  |  |  |  |
| 8                    | 9.42          | 0.92              |  |  |  |  |  |
| 7                    | 10.77         | 1.05              |  |  |  |  |  |
| 6                    | 12.43         | 1.20              |  |  |  |  |  |
| 5                    | 14.11         | 1.39              |  |  |  |  |  |
| 4                    | 16.50         | 1.61              |  |  |  |  |  |
| 3                    | 19.30         | 1.90              |  |  |  |  |  |
| 2                    | 25.14         | 2.30              |  |  |  |  |  |
|                      |               |                   |  |  |  |  |  |

 $\sigma V \approx 0.5 ml, \, \sigma \Delta t \approx 0.2 c$ 

Построим графики и найдем их угловые коэффициенты:



Из графиков можно получить значения наклонов прямых,  $\beta$ , а так же из табличных данных оценить среднюю скорость по расходу, откуда пересчитать число Рейнольдса и характерное расстояние  $(l_{\text{xap}} \approx 0.2 \cdot r \cdot Re)$ :

| No | $\beta, c^{-1}$ | $\eta, \Pi \mathbf{a} \cdot c \cdot 10^{-5}$ | $v, \frac{MM}{c}$ | Re    | $l_{xap}$ , mm |
|----|-----------------|----------------------------------------------|-------------------|-------|----------------|
| 1  | 86.7            | 1.95                                         | 0.4               | 2.66  | 0.14           |
| 2  | 30.8            | 1.81                                         | 1.2               | 10.27 | 0.70           |
| 3  | 10.5            | 1.11                                         | 3.6               | 82.70 | 8.4            |

$$\eta_{\rm cp} = (1.62 \pm 0.23) \cdot 10^{-5} \Pi a \cdot c$$

Сравнивая с табличным:

$$\eta_{\text{табл}} = 1.78 \cdot 10^{-5} \Pi \mathbf{a} \cdot c$$

## 6 Выводы и рассчёт погрешностей

#### 6.1 Погрешности

$$\frac{\Delta \eta}{\eta} = \sqrt{\frac{1}{N^2} \sum_{1}^{n} \left( (\frac{\Delta t}{t})^2 + (\frac{\Delta V}{V})^2 \right) + (\frac{\Delta L}{L})^2 + (\frac{\Delta h}{h})^2 + (\frac{\Delta S}{S})^2 + 16(\frac{\Delta r}{r})^2 + \sigma_{\text{\tiny SKCII}}^2} \approx 14\%$$

#### **6.2** Вывод

В результате эксперимента было получено значение коэффициента вязкости воздуха, проведена оценка чисел Рейнольдса для каждой серии опытов, а так же была проведена оценка характерных расстояний, при которых устанавливается ламинарное течение. Теоретическая зависимость совпадает с экспериментальной, совпадение значений друг с другом не только по порядку, но ещё и с табличным значением в пределах погрешности  $(1.78 \cdot 10^{-5} \Pi \text{a} \cdot c)$  говорит о том, что примененная модель течения газа хорошо описывает наблюдаемый процесс. Случайная погрешность данных оказалась относительн малой в сравнении с другими погрешностями(меньше 2 процентов), что значит, можно было бы обойтись 3 сериями измерений с каждой иглой. Проведения измерений с углекислым газом не были произведены так как не удалось приобрести необходимое оборудование резиновые шарики (в шарик засыпается сода и уксус в пропорции 1:2, далее происходит реакция, в шарике находится почти чистый углекислый газ, этим газом можно продувать и наполнять шприц так, чтобы потом опустить в воду и под действием разности давлений воды CO2 выходил наружу).

Измерения для 1 шприца

| V (мл) | $\Delta t_1(c)$ | $\Delta t_2(c)$ | $\Delta t_3(c)$ | $\Delta t_4(c)$ | $\Delta t_5({ m c})$ | $\Delta t_6(c)$ | $\Delta t_7({ m c})$ | $\Delta t_8({ m c})$ | $\Delta t_9(c)$ | $\Delta t_{10}(c)$ |
|--------|-----------------|-----------------|-----------------|-----------------|----------------------|-----------------|----------------------|----------------------|-----------------|--------------------|
| 19.0   | 6.00            | 4.14            | 5.06            | 4.65            | 4.12                 | 4.6             | 5.1                  | 4.91                 | 4.40            | 5.02               |
| 18.0   | 12.70           | 8.42            | 9.29            | 8.82            | 8.09                 | 10.25           | 9.33                 | 10.03                | 8.58            | 9.78               |
| 17.0   | 18.82           | 13.58           | 13.71           | 13.48           | 13.29                | 14.86           | 15.25                | 15.02                | 13.98           | 15.09              |
| 16.0   | 24.65           | 18.74           | 18.35           | 18.41           | 18.08                | 19.94           | 20.72                | 19.31                | 19.99           | 20.97              |
| 15.0   | 31.56           | 24.34           | 24.51           | 23.46           | 22.91                | 26.10           | 27.02                | 25.12                | 24.79           | 26.43              |
| 14.0   | 39.02           | 30.13           | 30.83           | 28.83           | 28.20                | 32.21           | 33.37                | 31.12                | 31.97           | 34.14              |
| 13.0   | 46.48           | 36.17           | 37.46           | 34.26           | 34.23                | 38.44           | 40.48                | 36.3                 | 36.65           | 40.44              |
| 12.0   | 55.48           | 42.65           | 43.26           | 40.09           | 39.90                | 45.56           | 47.53                | 43.77                | 43.45           | 48.29              |
| 11.0   | 64.64           | 49.69           | 51.42           | 46.81           | 46.79                | 54.59           | 56.56                | 51.33                | 50.66           | 55.30              |
| 10.0   | 74.66           | 57.29           | 60.83           | 54.20           | 53.51                | 62.20           | 66.13                | 60.36                | 60.74           | 65.23              |
| 9.0    | 85.57           | 65.01           | 68.39           | 61.83           | 60.58                | 70.95           | 76.74                | 68.21                | 67.46           | 74.38              |
| 8.0    | 97.79           | 73.94           | 79.64           | 70.34           | 67.30                | 81.28           | 87.92                | 79.03                | 78.15           | 85.72              |
| 7.0    | 110.86          | 84.85           | 93.73           | 79.86           | 76.37                | 91.78           | 100.81               | 90.81                | 87.29           | 99.6               |
| 6.0    | 126.90          | 97.10           | 107.14          | 90.52           | 85.66                | 103.77          | 115.21               | 105.57               | 99.15           | 114.01             |
| 5.0    | 147.00          | 107.44          | 124.24          | 102.39          | 98.21                | 121.38          | 130.47               | 130.39               | 114.65          | 133.56             |

Измерения для 2 шприца

| измерения для 2 шприца |                 |                 |                 |                      |                      |                 |                      |                      |                 |                    |
|------------------------|-----------------|-----------------|-----------------|----------------------|----------------------|-----------------|----------------------|----------------------|-----------------|--------------------|
| V (мл)                 | $\Delta t_1(c)$ | $\Delta t_2(c)$ | $\Delta t_3(c)$ | $\Delta t_4({ m c})$ | $\Delta t_5({ m c})$ | $\Delta t_6(c)$ | $\Delta t_7({ m c})$ | $\Delta t_8({ m c})$ | $\Delta t_9(c)$ | $\Delta t_{10}(c)$ |
| 19.0                   | 1.86            | 1.36            | 1.64            | 1.50                 | 1.38                 | 1.44            | 1.21                 | 1.70                 | 1.43            | 1.65               |
| 18.0                   | 3.64            | 3.05            | 3.20            | 3.25                 | 2.69                 | 3.27            | 3.47                 | 3.37                 | 3.30            | 3.19               |
| 17.0                   | 5.78            | 4.88            | 5.23            | 4.92                 | 4.81                 | 4.83            | 5.13                 | 5.10                 | 5.02            | 4.65               |
| 16.0                   | 7.50            | 6.76            | 7.08            | 6.82                 | 6.62                 | 6.75            | 6.76                 | 6.65                 | 6.88            | 6.48               |
| 15.0                   | 9.01            | 8.52            | 8.98            | 8.48                 | 8.52                 | 8.51            | 8.61                 | 8.66                 | 8.69            | 8.70               |
| 14.0                   | 11.43           | 10.82           | 11.22           | 10.58                | 10.27                | 10.97           | 10.85                | 11.12                | 11.02           | 10.66              |
| 13.0                   | 13.77           | 13.15           | 13.34           | 12.83                | 12.60                | 13.41           | 13.18                | 12.87                | 13.14           | 12.86              |
| 12.0                   | 16.05           | 15.14           | 15.75           | 15.34                | 14.87                | 15.73           | 15.86                | 15.31                | 15.65           | 14.99              |
| 11.0                   | 19.28           | 17.84           | 18.57           | 17.90                | 17.25                | 18.37           | 18.46                | 18.01                | 18.83           | 17.62              |
| 10.0                   | 22.55           | 20.58           | 21.57           | 21.05                | 20.51                | 21.50           | 20.22                | 20.99                | 21.14           | 20.46              |
| 9.0                    | 26.01           | 24.28           | 24.78           | 24.02                | 23.38                | 24.76           | 24.76                | 24.26                | 24.82           | 23.39              |
| 8.0                    | 30.01           | 27.78           | 28.19           | 27.45                | 26.43                | 27.98           | 28.22                | 28.05                | 28.56           | 26.98              |
| 7.0                    | 34.34           | 31.14           | 32.32           | 31.34                | 30.97                | 32.45           | 32.27                | 32.72                | 32.46           | 30.94              |
| 6.0                    | 39.17           | 36.05           | 37.76           | 36.77                | 35.39                | 37.05           | 37.18                | 36.08                | 36.24           | 34.76              |
| 5.0                    | 46.20           | 41.19           | 42.11           | 41.63                | 40.35                | 42.78           | 41.84                | 42.24                | 42.57           | 40.87              |
| 4.0                    | 55.48           | 48.02           | 49.47           | 49.16                | 47.72                | 49.61           | 48.34                | 49.39                | 49.34           | 47.39              |
| 3.0                    | 65.70           | 56.84           | 57.78           | 60.21                | 57.18                | 59.44           | 56.94                | 59.35                | 59.19           | 56.50              |

Измерения для 3 шприца

| V (мл) | $\Delta t_1(c)$ | $\Delta t_2(c)$ | $\Delta t_3(c)$ | $\Delta t_4(c)$ | $\Delta t_5(c)$ | $\Delta t_6(c)$ | $\Delta t_7({ m c})$ | $\Delta t_8(c)$ | $\Delta t_9(c)$ | $\Delta t_{10}(c)$ |
|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------------|-----------------|-----------------|--------------------|
| 19.0   | 0.50            | 0.45            | 0.63            | 0.72            | 0.61            | 0.56            | 0.44                 | 0.43            | 0.53            | 0.50               |
| 18.0   | 1.00            | 0.91            | 1.36            | 1.56            | 1.16            | 1.09            | 0.87                 | 1.05            | 1.11            | 1.06               |
| 17.0   | 1.66            | 1.37            | 2.15            | 2.25            | 1.63            | 1.81            | 1.49                 | 1.65            | 1.95            | 1.75               |
| 16.0   | 2.14            | 2.03            | 2.84            | 2.85            | 2.49            | 2.38            | 2.25                 | 2.32            | 2.61            | 2.34               |
| 15.0   | 2.67            | 2.60            | 3.41            | 3.54            | 3.07            | 2.91            | 2.71                 | 3.00            | 3.29            | 2.86               |
| 14.0   | 3.74            | 3.49            | 4.17            | 4.15            | 3.83            | 3.66            | 3.42                 | 3.74            | 3.83            | 3.66               |
| 13.0   | 4.72            | 4.31            | 4.92            | 5.00            | 4.79            | 4.37            | 4.12                 | 4.46            | 4.42            | 4.42               |
| 12.0   | 5.36            | 5.04            | 5.62            | 5.91            | 5.40            | 5.03            | 5.30                 | 5.39            | 5.27            | 5.23               |
| 11.0   | 6.31            | 5.77            | 6.79            | 6.71            | 6.10            | 5.99            | 5.97                 | 6.15            | 6.28            | 6.02               |
| 10.0   | 7.20            | 6.68            | 7.45            | 8.14            | 7.06            | 6.84            | 6.52                 | 6.85            | 7.03            | 6.94               |
| 9.0    | 8.21            | 8.16            | 8.61            | 9.12            | 8.58            | 7.58            | 7.58                 | 7.79            | 8.10            | 7.85               |
| 8.0    | 9.41            | 9.33            | 10.09           | 10.61           | 9.39            | 9.10            | 8.91                 | 8.89            | 9.29            | 9.13               |
| 7.0    | 11.23           | 10.93           | 11.80           | 11.77           | 10.75           | 10.26           | 10.07                | 10.05           | 10.54           | 10.29              |
| 6.0    | 13.02           | 12.26           | 13.51           | 13.40           | 12.56           | 11.57           | 12.11                | 11.44           | 12.17           | 12.22              |
| 5.0    | 14.38           | 14.44           | 14.94           | 15.04           | 14.32           | 12.83           | 13.34                | 14.22           | 13.40           | 14.18              |
| 4.0    | 15.98           | 16.94           | 17.78           | 17.16           | 16.36           | 16.15           | 16.29                | 15.09           | 16.67           | 16.58              |
| 3.0    | 19.04           | 19.21           | 20.38           | 20.36           | 18.61           | 19.02           | 19.62                | 18.07           | 19.49           | 19.24              |
| 2.0    | 24.17           | 28.53           | 26.04           | 27.17           | 22.67           | 23.08           | 27.85                | 22.58           | 24.90           | 24.45              |