석유화학공장의 전기설비 설치에 관한 기술지침

2022. 12.

한국산업안전보건공단

안전보건기술지침의 개요

o 작성자 : 한국산업안전보건공단 김규정 o 개정자 : 한국산업안전보건공단 강성광

한국산업안전보건공단 산업안전보건연구원 안전시스템연구실

한국산업안전보건공단 중대산업사고예방실

o 제·개정경과

- 1998년 9월 총괄 제정위원회 심의
- 2003년 9월 총괄 제정위원회 심의
- 2009년 4월 전기분야 제정위원회 심의
- 2009년 5월 총괄 제정위원회 심의
- 2011년 12월 전기안전분야 제정위원회 심의(개정)
- 2022년 11월 전기안전분야 표준제정위원회 심의(개정)

o 관련규격

- KOSHA GUIDE E-180-2020 (가스폭발위험장소의 설정에 관한 기술지침)
- KOSHA GUIDE E-101-2014 (가스폭발위험장소의 전기설비 검사 및 정비에 관한 기술지침)
- 미국석유협회(API: American petroleum institute): Recommended practice 540 Electrical installation in petroleum processing plants
- 미국 전기설비기준(NEC: National electrical code)
- o 관련법령·고시 등
 - 산업안전보건기준에 관한 규칙 제2편 제3장 (전기로 인한 위험방지)
- 0 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술 지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2022년 12월 31일

제 정 자 : 한국산업안전보건공단 이사장

E - 97 - 2022

석유화학공장의 전기설비 설치에 관한 기술지침

1. 목적

이 지침은 산업안전보건기준에 관한 규칙(이하 "안전보건규칙"이라 한다) 제2편 제3장 (전기로 인한 위험방지)의 규정에 따라 석유화학공장에서의 전기설비 설치에 관한 사항을 정하여 전기설비의 안전운전 및 근로자 안전을 확보함을 그 목적으로 한다.

2. 적용범위

이 지침은 석유화학공장에서의 전기설비 설치 시에 적용한다.

3. 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "외부전원"이라 함은 정상적인 상태에서 외부로부터 전력을 공급받아 사용하고 있는 전력공급원을 말한다.
 - (나) "단락전류"라 함은 전로의 선간이 임피던스가 적은 상태로 서로 접촉한 상태에 서 흐르는 큰 전류를 말한다.
 - (다) "단락용량"이라 함은 단락전류와 계통전압을 곱하여 나타낸 값을 말한다.
 - (라) "동기검출계전기(Synchronism check relay)"라 함은 서로 분리된 계통의 전압 크기 및 전압 상차각을 비교하여 이들의 값이 규정치 내에 있는가를 판단하는 계전기를 말한다.
 - (마) "연계차단기(Tie breaker)"라 함은 2개 이상의 수·배전 모선 선로를 서로 연결 또는 분리시키기 위하여 설치한 차단기를 말한다.
- (2) 기타 이 지침에서 사용하는 용어의 정의는 이 지침에서 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 안전보건규칙에서 정하는 바에 따른다.

E - 97 - 2022

4. 석유화학공장의 전력계통

4.1 전원

4.1.1 외부전원

석유화학공장에서 외부전원을 사용하고자 할 경우에는 최소한 다음의 내용이 검토되어야 한다.

(1) 전원공급선로의 수

전원공급선로의 수는 신뢰성 확보를 위하여 가능한 한 많을수록 좋으나, 화재, 기계적 충격 등으로부터의 동시 손상을 방지하기 위하여 선로의 분리가 이루어져야 한다.

(2) 전원의 신뢰성

- (가) 외부전원에 대한 경로, 전원공급방식, 고장시 정전범위 등에 대한 내용을 확인 하여야 한다.
- (나) 외부전원의 사고시 주파수특성, 자동재폐로 장치의 투입속도 및 정전시간 등을 확인할 수 있는 설비를 설치하여야 한다.

(3) 선로용량 및 전압

- (가) 인입전원의 선로는 한 선로가 고장이 나더라도 다른 선로가 이의 용량을 부담 하여 공정부하의 전원공급이 중단되지 않도록 충분한 용량을 가져야 한다.
- (나) 선로전압이 공정설비의 전압보다 높을 경우에는 변압기를 통해 적정전압으로 낮추어야 한다.

(4) 인입선로의 병렬운전

(가) 인입선로의 운전은 <그림 1> 또는 <그림 2>와 같이 변전소 모선에 연결된 선로들을 병렬화하는 것이 우선되어야 한다.

(나) 선로가 병렬로 운전되기 전에 선로의 전압이 같고, 동기화되었는지를 동기검출 계전기 등을 사용하여 확인하여야 한다.

<그림 1> 외부전원 : 선로 분리운전

<그림 2> 외부전원 : 선로 병렬운전

E - 97 - 2022

(5) 단락용량

- (가) 석유화학공장의 전력계통은 외부전원과 공장내 전력설비에 의한 단락전류 기 여분을 모두 고려한 최대단락용량에 적합하도록 설계하여야 한다.
- (나) 차단기, 변압기, 모선 등의 전력설비는 해당선로의 단락전류에 견딜 수 있고, 이를 적절히 차단할 수 있는 단락용량을 가져야 한다.

(6) 재폐로 절차

- (가) 외부전원이 가공선로를 통해 공급되는 경우에는 순간정전을 방지하기 위하여 자동 재폐로 방식을 채택하고, 지중 공급선로인 경우에는 이를 적용하지 아니한다.
- (나) 자동재폐로의 회수 및 지연시간은 석유화학공장의 선로전압 및 부하의 규모에 따라 변하며, 이에 관한 정보는 계통보호협조시 필요하다.

4.1.2 자가발전 및 외부전원의 병렬운전

자가발전 및 외부전원을 동시에 이용하는 석유화학공장에서는 다음의 사항이 검토되어야 한다.

- (1) 유효전력 및 무효전력의 조정
 - (가) 자가발전설비와 외부전원과의 전력배분은 자가발전설비의 출력, 인입전력의 공 급량, 부하조정 등에 의해 결정한다.
 - (나) 외부전원의 전압변동률이 큰 경우에는 전압조정 또는 무효전력조정을 위한 방법이 검토되어야 한다. 이러한 방법에는 부하시 탭절환방식 변압기 사용, 역률 개선용 콘덴서, 여자기에 의한 역률조정 등이 있다.

(2) 보호계전방식

- (가) 외부전원의 정전이나 사고시의 영향이 자가발전설비에 미치지 않도록 하는 보 호계전방식을 채택하여야 한다.
- (나) 외부 인입계통으로의 역송전이 되지 않도록 보호협조가 이루어져야 하며, 계통

E - 97 - 2022

안정도의 확보가 필요한 경우에는 외부전원계통과 분리시켜야 한다. 이를 위하여 임피던스. 역방향전력, 방향성 과전류, 저주파수 등의 계전기를 사용한다.

(다) 공장내의 부하가 자가발전용량보다 큰 경우에는 발전기의 과부하를 방지하고, 공장내의 전원안정도를 확보하기 위하여 공정특성을 고려한 부하차단 절차를 수립하여야 한다.

(3) 전력의 재급전 절차

- (가) 전동기는 정전사고시 선로에서 분리하여야 한다. 그러나, 공정상 중요한 가동설비의 전동기는 전원회복시 자동적으로 기동되도록 제어설비를 부착할 수 있다.
- (나) 자가발전설비와 외부전원 계통과의 연계는 동기개폐기가 있는 차단기를 통해 이루어져야 한다.
- (다) 위상이 서로 다른 전원이 존재할 수 있는 곳에서의 차단기는 전압과 주파수가 일정범위 내에 있을 경우에만 차단기를 작동시키는 동기검출 계전기를 설치하 여야 한다.

4.1.3 자가발전전원

석유화학공장의 자가발전전원은 공정상 주요한 부하에 전력을 공급하기에 충분하여 야 하며, 각 발전기는 냉각기동 능력을 갖추어야 하고, 발전기 한 대의 고장시에도 충분한 전력공급이 이루어지도록 구성하여야 한다.

4.1.3.1 모선의 배치

(1) 단일모선 방식

- (가) 전력공급의 중요성에 따라 모선의 배치방식을 결정하되, 10 MW보다 작은 발전 기의 경우에는 <그림 3>과 같은 단일모선 방식을 채택한다.
- (나) 단일모선 방식에서는 모선의 사고 발생확률이 적기 때문에 계통의 신뢰성은 확보될 수 있으나, 설비를 추가할 경우 전원공급을 지속할 수 있도록 인출형 차단기를 설치하여야 한다.

<그림 3> 단일모선 배치

(2) 연계모선 방식

- (가) 발전기가 지리적으로 떨어진 경우에는 <그림 4>와 같은 연계모선 방식을 선택한다.
- (나) 연계모선의 경우에는 발전기 각각에 대한 구내부하를 각각의 모선에서 공급하 게 되며, 주 모선간에는 연계 차단기가 상시투입된 상태로 운전되다가 어느 한 모선에서의 사고시 자동적으로 개방되도록 한다.
- (다) 연계모선의 정격용량은 모든 발전기의 단락전류를 모두 고려하여 선정되어야 한다.

<그림 4> 연계모선 배치

E - 97 - 2022

4.1.3.2 발전기 여자계통

- (1) 신뢰성 있는 무효전력의 공급은 발전기 여자기에 의해 공급하여야 한다.
- (2) 여자기의 형식은 브러시리스 여자기(Brushless exciter)와 정지형 여자기(Static exciter)로 나누어진다.
- (3) 모선단락사고시 발전기 모선의 급격한 전압강하를 방지하기 위하여 정지형 여자 기에 대하여는 전력용 변류기, 브러시리스 여자기에 대하여는 정전압원 설비를 설치하여야 한다.

4.2 계통보호

4.2.1 고장전류

석유화학공장에서의 전력계통을 적절하게 설계하고, 적정한 전력설비를 선정하기 위하여는 고장전류에 관한 다음의 내용이 검토되어야 한다.

(1) 사고의 위치

- (가) 차단기반, 변압기, 모선 등은 단락사고의 우려는 거의 없다.
- (나) 회전기기가 적절히 정비되고, 전압에 대한 보호장치가 있을 경우에는 사고가 발생되기 어렵다.
- (다) 가공선로의 사고 가능성은 매우 높게 나타난다.

(2) 고장전류의 크기

- (가) 고장전류 차단실패시에는 기기의 손상 및 인명피해를 가져올 수 있기 때문에, 고장전류를 차단하기 위한 설비는 단락전류의 순시값에 견딜 수 있어야 하며 단락전류를 안전하게 차단할 수 있어야 한다.
- (나) 차단기의 용량은 사용지점에서의 최대 단락전류를 기준으로 선정하여야 하며, 이에는 자가발전설비, 전동설비, 외부전력계통 등의 전류원을 모두 포함하여 검토하여야 한다.
- (다) 설비의 단락용량 산정시에는 향후의 설비 증설에 따른 단락전류 증가분도 고 려하여야 한다.

E - 97 - 2022

(3) 사고의 영향

- (가) 전력계통에서의 고장전류가 즉시 제거되지 않을 경우에는 전력설비 및 전기사용설비의 손상은 물론, 화재를 일으킬 수 있으며, 인명피해를 줄 수가 있다.
- (나) 전기사고의 피해는 고장전류가 제거되지 않고 계속 지속될수록 피해범위가 더욱 커지게 된다.

4.2.2 고장제거

석유화학공장의 전력계통에는 고장전류를 즉시 제거하기 위한 감지설비와 감지신호에 의해 자동으로 고장전류 차단설비가 동작되어야 한다.

(1) 복합기능의 차단장치

- (가) 고장전류를 감지하여 차단하는 설비가 동일 외함속에 일체화된 설비는 전력 퓨즈 및 몰드 차단기 등이 있다.
- (나) 내장된 감지기능에 의해 고장전류가 확인되면, 회로가 용융되어 고장전류를 제 거하거나 기계적 작동에 의해 고장회로를 분리하여야 한다.

(2) 단일기능의 차단장치

- (가) 단일기능 차단장치는 보호계전기의 신호에 의해 차단장치 구동부를 동작시켜 고장부위를 분리시킨다.
- (나) 단일기능 차단장치에는 가스차단기, 유입차단기, 기중차단기, 진공차단기 등이 있으며, 차단장치의 적절한 동작유무는 계전기의 보호협조에 의존한다.

4.3 변압기

석유화학공장에서 사용되는 변압기는 최소한 다음의 내용이 검토되어야 한다.

4.3.1 전압 및 주파수

(1) 변압기의 정격전압은 계통의 사용전압에 의해 1차측 전압이 결정되고, 사용할 기기의 이용전압에 따라 2차측 전압이 결정된다. 일반적으로, 60 Hz의 전력계통에 있어서는 표준전압을 사용하는 것이 좋다.

E - 97 - 2022

(2) 주파수는 국제적으로 표준화 되어 있지 않으므로, 변압기의 주파수를 반드시 지 정하여 구매·설치하여야 한다.

4.3.2 정격용량

변압기의 정격용량은 kVA 정격으로 표시하며, 연속운전시 변압기의 온도상승이 한계값 내로 유지될 수 있는 용량이어야 한다.

4.3.3 온도 상승값

- (1) 변압기의 정상적인 수명은 온도상승 한계값을 벗어나지 않을 경우에 적용되며, 온도상승은 변압기의 수명을 단축시키게 된다.
- (2) 유입변압기는 내부권선의 온도 상승을 65 °C 또는 55 °C/65 °C, 국부적 온도상승 은 105 °C로 제한하여야 한다.
- (3) 건식변압기는 권선의 절연등급에 따라 온도상승 제한값을 결정하여야 한다.
- (가) B종 절연은 평균 온도상승 80°C, 국부 온도상승 130°C 이하여야 한다.
- (나) F종 절연은 평균 온도상승 115℃, 국부 온도상승 155 ℃이하여야 한다.
- (다) H종 절연은 평균 온도상승 150°C. 국부 온도상승 180 °C 이하여야 한다.
- (4) 온도상승이 제한값을 10℃이상 벗어나서 운전하게 되는 경우, 변압기의 수명은 반으로 감소되므로 주의하여야 한다.

4.3.4 임피던스

- (1) 변압기 임피던스는 변압기용량 기준의 임피던스 백분율로써 표시하며, 이는 변압 기 철심의 구조, 저항, 권선의 형태 등에 의해 변하게 된다.
- (2) 일반적으로 변압기 용량별로 표준화된 임피던스 값이 사용된다.
- (3) 2차측 차단기반의 단락용량을 줄이기 위해서는 표준화된 임피던스 값을 증가시킬 수 있으며, 전동기 기동시 전압강하의 영향을 줄이기 위하여 임피던스 값을 감소시켜 제조·설치할 수 있다.

E - 97 - 2022

4.4 가공선로

4.4.1 가공선로의 경로

- (1) 가능한 한 가공선로의 경로는 공장내의 도로를 따라 설치하여야 한다.
- (2) 가공선로는 화재위험을 없애기 위하여 경로상의 설비나 구조물에 의하여 손상되지 않도록 경로가 정해져야 한다.
- (3) 가공선로는 크레인의 붐 또는 유사설비의 정상운전 및 보수기간 동안 상호 간섭되지 않도록 경로를 정해야 한다.

4.4.2 살수설비와의 이격

- (1) 가공선로는 냉각탑, 살수설비의 수원 등에 의하여 절연체의 기능저하 및 금속도 체의 부식 등이 일어나지 않도록 충분히 이격되어야 한다.
- (2) 이격이 불가능한 부분에 대하여는 노출선로의 절연강화 및 금속재질의 부식방지 대책이 필요하다.

4.4.3 폭발위험장소에의 접근

폭발위험장소 부근 또는 폭발위험장소를 횡단하는 가공선로에는 가스 등이 체류될 수 있는 공간을 벗어나도록 경로를 정해야 한다. 이는 가공선로를 폭발위험장소 높이보다 더 높게 설치함으로써 가능하다.

5. 폭발위험장소의 구분

5.1 폭발위험장소 구분도

(1) 석유화학공장의 폭발위험장소를 구분하기 위하여는 인화성 액체의 증기 또는 가

E - 97 - 2022

연성 가스(이하 "가스 등"이라 한다)의 존재 유무 및 해당 지역에서의 가스 등의 누출정도와 확산범위를 결정하여야 한다.

(2) 폭발위험장소구분도는 KOSHA GUIDE E-180-2020 "가스폭발위험장소의 설정에 관한 기술지침"을 참고하여 작성한다.

5.2 방폭전기기기의 선정

- (1) 석유화학공장에서 폭발위험장소로 구분된 공정지역에서는 방폭등급에 적합한 전기설비가 선정될 수 있도록 특별한 주의를 하여야 한다.
- (2) 폭발위험장소에 설치되는 전기설비가 적합한 것인지를 확인하기 위하여 산업안전 보건법에 의한 안전인증을 받은 제품을 사용하여야 한다.
- (3) 방폭전기기기의 선정기준은 KOSHA GUIDE E-101-2014 "가스폭발위험장소의 전기설비 검사 및 정비에 관한 기술지침"을 따른다.

5.3 폭발위험장소에서의 설계변경

폭발위험장소에 적합한 전기설비가 제조되지 않거나, 제조시 많은 비용이 소요되는 경우에는 다음과 같은 설계변경이 필요하다.

(1) 물리적 격리

- (가) 폭발위험장소 내에 설치되는 펌프의 경우에는 전동기의 제어장치를 폭발위험 장소밖에 설치하여 일반적인 외함을 갖는 전기설비의 적용이 가능토록 한다.
- (나) 물리적 격리시 폭발위험장소내의 배선계통은 당해 폭발위험장소 종별에 적합 하여야 한다.
- (다) 폭발위험장소와 비폭발위험장소 경계지점의 배선용 덕트·전선관은 밀봉하고, 트렌치는 모래충진 등의 방법으로 가스 등이 비폭발위험장소로 이동하지 못하도록 한다.

E - 97 - 2022

(2) 양압설비의 채택

석유화학공장에서 가스 등의 누출위험이 없는 실내의 경우 산업안전보건기준에 관한 규칙 제312조의 양압설비 및 동조 각항에서 요구하는 모든 설비를 설치하여 실내를 양압으로 유지하는 경우에 그 실내는 비폭발위험장소로 구분할 수 있다.

6. 전기설비의 유지관리

6.1 전기설비의 등급관리

- (1) 석유화학공장과 같이 전기설비가 대규모일 경우 전기설비의 중요도나 부식·습 기·분진·진동과 같은 사용환경을 고려하여 점검주기와 정비내용을 구분하여 등급관리를 한다.
- (2) 중요도에 따른 등급구분의 예시는 다음과 같다.
 - (가) A급: 해당 전기설비의 고장이 공장 운전의 정지 또는 대형 인명사고를 일으킬 수 있는 경우
 - (나) B급: 해당 전기설비의 고장이 공장 운전의 부분정지 또는 작업자 안전에 영향을 줄 수 있는 경우
 - (다) C급: 해당 전기설비의 고장이 공장 운전의 부분정지를 가져오지만 안전상 문제가 없는 경우
 - (라) D급: 기기의 고장이 공장 운전의 및 안전상 문제가 없는 경우

6.2 전기설비의 점검주기 및 교체시기

- (1) 석유화학공장에서 전기설비의 점검 및 교체시기는 다음의 내용을 검토하여 산정하되, 산정이 어려운 경우 <표 1>을 참고한다.
 - (가) 기기제작자가 제공한 고장 평균시간
 - (나) 사용자의 경험 또는 과거의 고장빈도를 기록한 이력카드
 - (다) 부식 또는 마모 속도의 정도

(2) <표 1>은 정밀점검을 주기적으로 수행했을 경우의 예시이며, 주기적 점검관리가 미흡한 경우 기기의 잔존수명은 급격히 떨어진다.

<표 1> 전기설비의 점검주기 및 교체시기 예시

주요기기	정기점검 주기년수										정기 점검			그레호리시키
	1	2	3	4	5	6	7	8	9	10	특별	보통	정밀	교체추천시기
가스절연개폐기						0					이상차단	6년	12년	20~25년
고,저압배전반	0		0		0		0		0		-	2년	_	15~20년
감시반,계전기반	0		0		0		0		0		-	2년	_	15~20년
OCB		0		0		0		0		0	이상차단	2년	6년	15~20년
TCB	0	0	0	0	0	0	0	0	0	0	이상차단	1년	5년	15~20년
VCB			0			0			0		이상차단	3년	6년	15~20년
GCB			0			0			0		이상차단	3년	6년	15~20년
ACB			0			0					이상차단	_	3년	15~20년
VCS		0		0		0		0		0	잦은개폐	2년	4년	10~15년
누전차단기	0	0	0	0	0	0	0	0	0	0	_	1년	_	10~15년
특고단로기			0			0			0		_	3년	6년	15~20년
기중부하개폐기			0						0		_	3년	6년	10~15년
전자접촉기			0			0			0		잦은개폐	-	3년	10~15년
배선용차단기	0	0	0	0	0	0	0	0	0	0	_	1년	_	10~15년
피뢰기	0		0		0		0		0		-	2년	_	10~15년
유입형변성기	0		0		0		0		0		-	2년	_	10~15년
콘덴서	0		0		0		0		0		-	2년	_	15~20년
몰드형변성기	0	0	0	0	0	0	0	0	0	0	_	1년	_	15~20년
전력용Fuse	0	0	0	0	0	0	0	0	0	0	차단발생	1년	5년	7~10년
전력용콘덴서	0		0		0		0		0		-	2년	7년	10~15년
유입변압기	0	0	0	0	0	0	0	0	0	0	-	1년	6년	15~20년
몰드변압기	0	0	0	0	0	0	0	0	0	0	_	1년	6년	15~20년
보호계전기		0		0		0		0		0	_	2년	6년	10~15년
특고압모선	0		0		0		0		0		-	2년	_	15~20년

※ 점검구분 : 보통점검(○), 정밀점검(◎)

(3) 전력기기의 고장율 패턴

전력기기의 고장율 패턴을 나타내는 <그림 5>의 베스터브(Bathtub) 곡선은 전력기기의 일반적 고장시기를 나타내므로, 이를 통해 점검·진단·보수·교체시기 등을 예측할 수 있다.

<그림 5> 베스터브 곡선

(가) 초기 고장시기

전력기기의 운전을 개시하여 얼마동안 외부환경에 적응하지 못해 발생하는 문제 또는 설계·제작의 잘못이 나타난다. 이 기간에는 시간이 경과함에 따라 고장율이 저하하는 경향을 나타낸다.

(나) 우발 고장시기

초기 고장시기가 지나면 고장율이 시간의 경과에 관계없이 거의 일정한 기간이계속된다. 이 기간에는 고장율이 낮아 안정된 운전을 기대할 수 있고, 이 시기의 고장은 조작 잘못 등 우발적 사고에 의해 발생한다. 고장율을 줄이기 위하여 진단 및 주기적인 점검이 필요하다.

(다) 마모/열화 고장시기

우발 고장시기를 지나면 구성부품의 열화나 마모 등에 의하여 시간이 경과함에 따라 고장율이 증가하는 시기가 온다. 이 시기에는 설비의 기능을 유지하기 위하여 기기정밀진단 및 보수가 필요하다.

일반적으로 전기기기의 수명은 우발 고장시기의 길이로 좌우되므로 이 시기를 연 장하기 위한 적절한 조치가 필요하게 된다. 설비의 교체시기는 고장시 피해, 경제 성 등을 종합적으로 평가하여 결정한다.

6.3 전기설비 점검 및 유지·보수 등 작업 시 안전장구

- (1) 석유화학공장에서 전기설비 점검 및 유지·보수 등 작업시 아래 위험에 대해 근로 자를 보호하기 위해 안전장구를 착용하여야 한다.
 - (가) 고압 이상의 전기설비의 점검 또는 유지·보수 중 전기적 불꽃 또는 아크에 의한 위험이 있는 경우 방염처리된 작업복 또는 난연 성능을 가진 작업복
 - (나) 근로자의 신체 일부가 전기설비의 충전부 접촉에 의한 감전위험이 있는 경우 감전예방(E) 기능이 있는 안전모, 절연화 또는 절연장화, 내전압용 절연장갑 등. 다만, 산업안전보건법상 안전인증을 받은 제품에 한한다.
- (2) 안전장구는 사용전 점검을 통해 손상·파손여부를 확인하고, 이상이 있는 경우 교체 하여야 하며, 지속적으로 성능을 유지할 수 있도록 관리하여야 한다.

지침 개정 이력

- □ 개정일 : 2022. 12.
 - 개정자 : 한국산업안전보건공단 중대산업사고예방실
 - 개정사유 : 행정안전부의 "국가산업단지 정부합동 안전점검 결과 제도개선 과제(폭발위험

장소에서의 방염처리된 작업복 등 안전장구 기준수립"에 따른 전기설비 작업시

안전장구 관련사항 추가

- 주요 개정내용
 - 전기설비 작업시 안전장구 관련사항(6.3 항) 신설