Übungen zu Analysis 3, 10. Übung 16. 12. 2019

81. Berechnen Sie $\int_A \text{rot}(\mathbf{f}) \cdot \mathbf{n} \, d\mathcal{H}^2$ für das Vektorfeld $\mathbf{f}(x, y, z) = \begin{pmatrix} x^2y \\ z^2 \\ x + y + z^3 \end{pmatrix}$ und die Fläche

$$A = \{(x, y, z) : z = (\sqrt{x^2 + y^2} + 1)(\sqrt{x^2 + y^2} - 1)(x^2 + y^2), \quad x^2 + y^2 < 1\}.$$

n sei das Normalvektorfeld auf A mit positiver z-Koordinate.

82. Es sei A die Oberfläche des durch

$$y = 1 + x^2$$
, $y = 2$, $z = 0$, $z = 1$

begrenzten Körpers. Berechnen Sie $\int_A \mathbf{f}' \mathbf{n} d\mathcal{H}^{n-1}$ für das Vektorfeld

$$\mathbf{f}(x, y, z) = \begin{pmatrix} 4x^2 - 2yz \\ x - 2y\cos^{-2}z \\ 3y + 2\tan(z) - 3xz \end{pmatrix}$$

83. Eine C^2 -Funktion f auf $\Omega \subseteq \mathbb{R}$, Ω offen heißt harmonisch, wenn sie $\Delta f := \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2} = 0$ erfüllt. Zeigen Sie, dass f der Mittelwerteigenschaft genügt, d.h, es gilt

$$\int_{\partial B(\mathbf{x},r)} f(\mathbf{y}) d\mathcal{H}^{n-1}(\mathbf{y}) := \int_{\partial B(\mathbf{x},r)} f(\mathbf{y}) d\mathcal{H}^{n-1}(\mathbf{y}) / \mathcal{H}^{n-1}(\partial B(\mathbf{x},r)) = f(\mathbf{x}). \tag{1}$$

Hinw.: Zeigen sie, dass für $n \ge 3$ die Funktion $\phi : \mathbf{x} \mapsto ||\mathbf{x}||^{2-n}$ und für n = 2 die Funktion $\log(x_1^2 + x_2^2)$ in $\mathbb{R}^n \setminus \{0\}$ harmonisch ist und verwenden Sie Integralsätze.

84. Zeigen Sie, dass eine Funktion $f \in C^2(\Omega)$ die auf einer offenen Teilmenge Ω des \mathbb{R}^n in allen Punkten $\mathbf{x} \in \Omega$ mit $\bar{B}_r(\mathbf{x}) \subseteq \Omega$ die Mittelwerteigenschaft (1) besitzt harmonisch ist.

Hinw.: Zeigen Sie, dass für eine nicht harmonische Funktion

$$m(r) = \int_{\partial B_r(\mathbf{x})} f(\mathbf{y}) d\mathcal{H}^{n-1}(\mathbf{y})$$

als Funktion von r nicht konstant ist.

85. Zeigen Sie, dass eine stetige Funktion f auf einer offenen Teilmenge Ω des \mathbb{R}^n , die in allen Punkten $\mathbf{x} \in \Omega$ mit $\bar{B}_r(\mathbf{x}) \subseteq \Omega$ die Mittelwerteigenschaft (1) besitzt aus $C^{\infty}(\Omega)$ ist.

Hinw.: Zeigen Sie $f(x) = f * \eta_{\varepsilon}(\mathbf{x})$ für zentralsymmetrische Mollifier $(\eta_{\varepsilon})_{\varepsilon}$, $\eta_{\delta}(\mathbf{x}) = \tilde{\eta}_{\delta}(|\mathbf{x}|)$ und hinr. kleine ε und verwenden Sie die Koflächenformel für Kugeln wie in Bsp 4.4.3.

86. Zeigen Sie: Sei $u \in C^3(\Omega)$, Ω offen, u harmonisch und positiv, $\bar{B}_R(\mathbf{x}_0) \subset \Omega \subseteq \mathbb{R}^n$. Dann gilt:

$$\left| \frac{\partial u}{\partial x_i}(\mathbf{x}_0) \right| \le \frac{n}{R} |u(\mathbf{x}_0)|, \quad 1 \le i \le n.$$

Hinw.: Schreiben Sie die Mittelwerteigenschaft zu einer Mittelwerteigenschaft über B_R um (etwa mit Bsp. 4.4.3) und verwenden Sie Gauß.

- 87. Zeigen Sie, dass eine auf \mathbb{R}^n harmonische beschränkte Funktion konstant ist (Satz von Liouville).
- 88. Sei u harmonisch in $B_R(\mathbf{x}_0)$ und $u(\mathbf{y}) \ge c > 0$ für $\mathbf{y} \in \bar{B}_R(\mathbf{x}_0)$. Dann gilt für $\mathbf{x}, \mathbf{y} \in B_{R/2}(\mathbf{x}_0)$

$$u(\mathbf{x}) \le e^{2n} u(\mathbf{y}).$$

Hinw.: Verwenden Sie Bsp. 86 um eine Abschätzung für die logarithmischen Ableitungen von *u* zu erhalten.