

Advanced Algorithms for Geo-Information Systems

WiSe 2024/25

Approximation Algorithms

Alexander Naumann Institut für Geodäsie und Geoinformation Universität Bonn

Input (optimization variant of TSP):

- *n* cities
- distances between the cities

Find a round trip of minimum total length visiting all cities

 \mathcal{NP} -hard!

Input (optimization variant of TSP):

- *n* cities
- distances between the cities

Find a round trip of minimum total length visiting all cities

$$\mathcal{NP}$$
-hard!

even if distance is a **metric**, which implies $D(a, c) \leq D(a, b) + D(b, c)$ for all $a, b, c \in S$

Input (optimization variant of TSP):

- *n* cities
- distances between the cities

Find a round trip of minimum total length visiting all cities

Algorithm for metric TSP:

 Compute minimum spanning tree MST of cities.

Input (optimization variant of TSP):

- *n* cities
- distances between the cities
 Find a round trip of minimum total length visiting all cities

 \mathcal{NP} -hard!

- Compute minimum spanning tree MST of cities.
- Traverse each edge twice.

Input (optimization variant of TSP):

- *n* cities
- distances between the cities

Find a round trip of minimum total length visiting all cities

- Compute minimum spanning tree MST of cities.
- Traverse each edge twice.
- Length of round trip:

$$L = 2 \cdot w(MST)$$

Input (optimization variant of TSP):

- *n* cities
- distances between the cities

Find a round trip of minimum total length visiting all cities

 \mathcal{NP} -hard!

Algorithm for metric TSP:

- Compute minimum spanning tree MST of cities.
- Traverse each edge twice.
- Length of round trip: $L = 2 \cdot w(MST)$

Observation: $w(MST) \leq opt$ Since a round trip (minus one edge) is also a spanning tree, but not necessarily optimal.

Input (optimization variant of TSP):

- *n* cities
- distances between the cities

Find a round trip of minimum total length visiting all cities

 \mathcal{NP} -hard!

Algorithm for metric TSP:

- Compute minimum spanning tree MST of cities.
- Traverse each edge twice.
- Length of round trip: $L = 2 \cdot w(MST) \le 2 \cdot opt$

Observation: $w(MST) \leq opt$ Since a round trip (minus one edge) is also a spanning tree, but not necessarily optimal.

Input (optimization variant of TSP):

- *n* cities
- distances between the cities

Find a round trip of minimum total length visiting all cities

 \mathcal{NP} -hard!

Algorithm for metric TSP:

- Compute minimum spanning tree MST of cities.
- Traverse each edge twice.
- Length of round trip: $L = 2 \cdot w(MST) < 2 \cdot opt$

Length of solution is at most twice as long as optimal solution!

• An approximation algorithm yields a solution that is not worse than a certain factor α compared to an optimal solution.

- An approximation algorithm yields a solution that is not worse than a certain factor α compared to an optimal solution.
- Such a solution is termed an α -approximation.

- An approximation algorithm yields a solution that is not worse than a certain factor α compared to an optimal solution.
- Such a solution is termed an α -approximation.
- We do not need to compute an optimal solution to prove that the solution of our algorithm is an α -approximation!

- An approximation algorithm yields a solution that is not worse than a certain factor α compared to an optimal solution.
- Such a solution is termed an α -approximation.
- We do not need to compute an optimal solution to prove that the solution of our algorithm is an α -approximation!
- A "2-approximation" sounds rather bad, but:
 - a) $2 \cdot opt$ is an upper bound. Often the solution of an approximation algorithm is much better than the approximation guarantee.
 - b) In contrast to approximation algorithms, heuristics do not provide any guarantee of quality!

- Compute minimum spanning tree MST of cities.
- Traverse each edge twice.
- Length of round trip:

$$L = 2 \cdot w(MST) \leq 2 \cdot opt$$

Algorithm for metric TSP:

- Compute minimum spanning tree MST of cities.
- Traverse each edge twice.
- Length of round trip: $L = 2 \cdot w(MST) < 2 \cdot opt$

• Number the cities in the order they occur on the round trip.

- Compute minimum spanning tree MST of cities.
- Traverse each edge twice.
- Length of round trip: $L = 2 \cdot w(MST) \le 2 \cdot opt$

- Number the cities in the order they occur on the round trip.
- Visit the cities in that order without visiting a city twice.

- Compute minimum spanning tree MST of cities.
- Traverse each edge twice.
- Length of round trip: $L = 2 \cdot w(MST) < 2 \cdot opt$

- Number the cities in the order they occur on the round trip.
- Visit the cities in that order without visiting a city twice.
- Result:
 - a simple round trip
 - usually much better than $2 \cdot opt$ (while guarantee $\leq 2 \cdot opt$ still holds)

Algorithm for metric TSP:

- Compute minimum spanning tree MST of cities.
- Traverse each edge twice.
- Length of round trip: $L = 2 \cdot w(MST) < 2 \cdot opt$

- Number the cities in the order they occur on the round trip.
- Visit the cities in that order without visiting a city twice.
- Result:
 - a simple round trip
 - usually much better than $2 \cdot opt$ (while guarantee $\leq 2 \cdot opt$ still holds)

Is there an algorithm with approximation factor < 2?

Algorithm for metric TSP:

 Compute minimum spanning tree MST of cities.

- Compute minimum spanning tree MST of cities.
- Let V be the set of cities with odd degree in MST.

- Compute minimum spanning tree MST of cities.
- Let V be the set of cities with odd degree in MST.
- Find in complete graph with node set V a shortest perfect matching.

Algorithm for metric TSP:

- Compute minimum spanning tree MST of cities.
- Let V be the set of cities with odd degree in MST.
- Find in complete graph with node set V a shortest perfect matching.

Terminology:

The **complete graph** for a given node set contains an edge connecting each two nodes.

Algorithm for metric TSP:

- Compute minimum spanning tree MST of cities.
- Let V be the set of cities with odd degree in MST.
- Find in complete graph with node set V a shortest perfect matching.

Terminology:

A **matching** of a graph G = (V, E) is a subset of E that contains for each node in V at **most** one incident edge.

Algorithm for metric TSP:

- Compute minimum spanning tree MST of cities.
- Let V be the set of cities with odd degree in MST.
- Find in complete graph with node set V a shortest perfect matching.

Terminology:

A **perfect matching** of a graph G = (V, E) is a subset of E that contains for each node in V **exactly** one incident edge.

Algorithm for metric TSP:

- Compute minimum spanning tree MST of cities.
- Let V be the set of cities with odd degree in MST.
- Find in complete graph with node set V a shortest perfect matching.

Terminology:

A **perfect matching** of a graph G = (V, E) is a subset of E that contains for each node in V **exactly** one incident edge.

A complete graph G = (V, E) has a perfect matching if and only if |V| is even.

Algorithm for metric TSP:

- Compute minimum spanning tree MST of cities.
- Let V be the set of cities with odd degree in MST.
- Find in complete graph with node set V a shortest perfect matching.

Terminology:

Given in our case, since $\sum_{v \in V} deg(v)$ is even.

A **perfect matching** of a graph G = (V, E) is a subset of E that contains for each node in V **exactly** one incident edge.

A complete graph G = (V, E) has a perfect matching if and only if |V| is even.

Algorithm for metric TSP:

- Compute minimum spanning tree MST of cities.
- Let V be the set of cities with odd degree in MST.
- Find in complete graph with node set V a shortest perfect matching.

can be computed in $O(|V|^3)$ time

- Compute minimum spanning tree MST of cities.
- Let V be the set of cities with odd degree in MST.
- Find in complete graph with node set V a shortest perfect matching.
- Find an Euler circuit in the multigraph that contains all MST edges and all edges of the matching.

- Compute minimum spanning tree MST of cities.
- Let V be the set of cities with odd degree in MST.
- Find in complete graph with node set V a shortest perfect matching.
- Find an Euler circuit in the multigraph that contains all *MST* edges and all edges of the matching.
- Number the nodes in the order of their first visits.

- Compute minimum spanning tree MST of cities.
- Let V be the set of cities with odd degree in MST.
- Find in complete graph with node set V a shortest perfect matching.
- Find an Euler circuit in the multigraph that contains all *MST* edges and all edges of the matching.
- Number the nodes in the order of their first visits.
- Visit the nodes in the given order.

Theorem: The round trip R returned by the algorithm of Chr. is a 1.5-approximation.

Theorem: The round trip R returned by the algorithm of Chr. is a 1.5-approximation.

Proof:

It holds $w(R) \leq w(MST) + w(M)$.

Theorem: The round trip R returned by the algorithm of Chr. is a 1.5-approximation.

Proof:

It holds $w(R) \leq w(MST) + w(M)$.

Furthermore, it holds $w(MST) \leq opt$.

Theorem: The round trip R returned by the algorithm of Chr. is a 1.5-approximation.

Proof:

It holds $w(R) \leq w(MST) + w(M)$.

Furthermore, it holds $w(MST) \le opt$. To show: $w(M) \le \frac{1}{2}opt$

Theorem: The round trip R returned by the algorithm of Chr. is a 1.5-approximation.

Proof:

It holds $w(R) \leq w(MST) + w(M)$.

Furthermore, it holds $w(MST) \le opt$. To show: $w(M) \le \frac{1}{2}opt$

• Let R^* be an optimal round trip and V the set of nodes with odd degree in MST.

Theorem: The round trip R returned by the algorithm of Chr. is a 1.5-approximation.

Proof:

It holds $w(R) \leq w(MST) + w(M)$.

- Let R^* be an optimal round trip and V the set of nodes with odd degree in MST.
- R^* defines two perfect matchings M_1 and M_2 in the complete graph G for V.

MS7

Theorem: The round trip R returned by the algorithm of Chr. is a 1.5-approximation.

Proof:

It holds $w(R) \leq w(MST) + w(M)$.

- Let R^* be an optimal round trip and V the set of nodes with odd degree in MST.
- R^* defines two perfect matchings M_1 and M_2 in the complete graph G for V.
- It holds $w(M_1) + w(M_2) \leq opt$.

MS7

Theorem: The round trip R returned by the algorithm of Chr. is a 1.5-approximation.

Proof:

It holds $w(R) \leq w(MST) + w(M)$.

Furthermore, it holds $w(MST) \le opt$. To show: $w(M) \le \frac{1}{2}opt$

- Let R^* be an optimal round trip and V the set of nodes with odd degree in MST.
- R^* defines two perfect matchings M_1 and M_2 in the complete graph G for V.
- It holds $w(M_1) + w(M_2) \leq opt$.
- It holds $w(M) \le w(M_1)$ and $w(M) \le w(M_2)$, since M is a **shortest** perfect matching in G.

Theorem: The round trip R returned by the algorithm of Chr. is a 1.5-approximation.

Proof:

It holds $w(R) \leq w(MST) + w(M)$.

Furthermore, it holds $w(MST) \le opt$. To show: $w(M) \le \frac{1}{2}opt$

 $2w(M) \leq opt$

- Let R^* be an optimal round trip and V the set of nodes with odd degree in MST.
- R^* defines two perfect matchings M_1 and M_2 in the complete graph G for V.
- It holds $w(M_1) + w(M_2) \leq opt$.
- It holds $w(M) \le w(M_1)$ and $w(M) \le w(M_2)$ since M is a **shortest** perfect matching in G.

Theorem: The round trip R returned by the algorithm of Chr. is a 1.5-approximation.

Proof:

It holds $w(R) \leq w(MST) + w(M)$.

Furthermore, it holds $w(MST) \le opt$. To show: $w(M) \le \frac{1}{2}opt$

 $2w(M) \leq opt$

- Let R^* be an optimal round trip and V the set of nodes with odd degree in MST.
- R^* defines two perfect matchings M_1 and M_2 in the complete graph G for V.
- It holds $w(M_1) + w(M_2) \leq opt$.
- It holds $w(M) \le w(M_1)$ and $w(M) \le w(M_2)$ since M is a **shortest** perfect matching in G.

Summary

- Approximation algorithms are often used for \mathcal{NP} -hard optimization problems.
- Other than ILP-based methods, they are inexact but efficient.
- Other than heuristics, they provide a guarantee of quality.
- Designing approximation algorithms and proving their guarantees is a common algorithmic challenge.