Robust Region Landmark Detection for Mouse Brainstem Section Images

Yuncong Chen and Yoav Freund

Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92122, USA

Abstract. Keywords: landmark detection, atlas generation, mouse brain, gabor filter

1 Introduction

Registering brainstem is hard due to the lack of sharp edges, compared to Cerebral Cortex and Cerebellum.

Allen Reference Atlas does not have enough details in brainstem.

Fig. 1.

2 Related Work

Point Landmark Detection SIFT Saliency and Objectness Detection global rarity scheme center-surround scheme Texture Representation gabor filter textons

3 Represent Texture using Histograms of Gabor Textons

Represent texture at each pixel using Gabor filters.
rotation-invariant k-means clustering to form textons.
Over-segment into superpixels.
Describe texture using histogram of textons

4 Detect Significant Region Using Center-Surround Contrast

Region Growing

- 5 Robust Boundary Detection by Region Concensus
- 6 Matching Boundaries from Different Sections
- 7 Experiments
- 7.1 comparison with human labelings

Shows the results of our algorithm is comparable to human labeling.

Fig. 2.

7.2 robustness of matching

Shows that matchings are robust to distortion and shape change. Also shows that our distance measure is a sensible one: each of the four terms is important. We show this by changing the term weightings, and then compare matching results.

References

1. Clarke, F., Ekeland, I.: Nonlinear oscillations and boundary-value problems for Hamiltonian systems. Arch. Rat. Mech. Anal. 78, 315–333 (1982)