	df	"	ha c	F	p-lblue		
回归					0.025~0.05		
供差					0.03,000		
总本			70.07				
•			н	ß. ‡0			
(8) $H_0: \beta_i = 0$, $H_1: \beta_i \neq 0$ $\Rightarrow \beta_i \sim N(0, \frac{0^2}{L_{XX}})$							
P(t < town(3))							
$= \beta \left(-t_{\text{out}(3)} \cdot \frac{\hat{\sigma}}{\sqrt{t_{\text{NX}}}} < \beta < t_{\text{out}(3)} \cdot \frac{\hat{\sigma}}{\sqrt{t_{\text{NX}}}} \right)$							
$= \beta (-6.07 < \beta < 6.07)$							
$= 1 - \alpha = 0.75$							
由 β= 7							
改矩铯H。, 不能证明β/在95%二墨行水平上为 ο							
⇒ β, 星幕不かつ							
$(9) \int = \frac{L_{NS}}{\sqrt{\log L_{yy}}} = 0.904$							
$t = \frac{\sqrt{\ln 2} \Gamma}{\sqrt{\Gamma_1^2}} = 3.156$							
to.025(5) = 3.182							
\Rightarrow $ t > toos(4)$							
=> 可以认为 85×20河中121归3数星条不为 0							
(10) 南起: 4=10-6=4 , ex=10-13=-3 , ex=2020=0 ,							
$e_4 = 20 - 27 = 7$, $e_5 = 40 - 34 = 6$							
残差阁如干:							
0, -							
		·	t.				
残差在e=o附近地瓜更e且无明显同明性步音							
但由于祥林量达小,她法得点短前判断							
(11) g=-1+7×4.2 = 28.4							
=>	销售以	(人恰达到	28.4 6	ぇ			
$\exists \hat{y} \sim N(\hat{p}_0 + \hat{p}_1 X_0, (\frac{1}{N} + \frac{(X_0 - \bar{X})^2}{LXX}) \sigma^2) \ \forall \hat{p} = 0$							
$\hat{g}_{1} - \hat{g}_{2} \sim N(a, (1+\frac{1}{h} + \frac{(X_{0} - \overline{X})^{4}}{L_{XX}}) \hat{g}_{2}^{2})$							
$\Rightarrow 2 t = \frac{1}{\sqrt{1 + \frac{1}{2} + (x - \frac{x}{2})^2 + c_x}} \sim t(3)$							
及P(t < tans (3)) = 0.95							
⇒出に置信機手などに置信区间か							
$(\hat{y}_{0} - t_{out(3)}) \sqrt{1 + \frac{1}{h} + \frac{1 \times x^{2}}{4 \times x}}, \hat{y}_{0} + t_{out(3)} \sqrt{1 + \frac{1}{h} + \frac{(K_{0} - E)^{2}}{4 \times x}})$							
7 = (24.71, 32.01)							
1							

Ch 3

⇒ E(Zei) = ZD(ei) = Z(+lii)o

$wf, truj = tr(xuxx^ix^i)$	
$= tr((x'x)^{-1}x'x)$	
(由X的ppn)(fr) = tr(1ppn)	
= p+1	
$\Rightarrow E(\Sigma e^{\epsilon}) = \Sigma(I-hii)\sigma^{\epsilon}$	
= 1003 - (10+11)03	
$=) E\left(\hat{\sigma}^{z}\right) = \frac{1}{n \cdot p^{-1}} \cdot \left(n \cdot (pn)\right) \sigma^{2}$	
= 4,	
无偏性论。	
7-14 · 6 · ·	