Data Center Architecture

Data Center Requirements

Requirements

- Provide a physical secure location for servers, storage, and network equipment.
- Provide 24x7 network connectivity for equipment within the datacenter to devices outside the data center
- Provide necessary power to operate all equipment
- Provide an environment where the temperature and humidity are controlled within a narrow range and air exchanged at an adequate rate.

Required Physical Area for Equipment and Unoccupied Space

- servers
- storage
- network devices
- HAVAC (heating ventilation and air conditioning)
- power panels
- breakers
- floor to support the height of the equipment

Required Physical Area for Equipment and Unoccupied Space

- Components stored in racks.
- Height of equipment measured in U's; 1U=1,75".
- 50% of space occupied by racks and stand alone hardware.
- 50% of space for aisles, ramp, space next to walls, breaks between rows of racks and open space to let exhaust air from racks to the HVAC.
- Plan for the growth

Required Power to Run All the Devices

- UPS must be present to protect against power failures.
- Generators may be required if outages are frequent and take long.
- Start by collecting the power requirements of the equipment.
- This will define the number of
 - breakers
 - outlet types, single-phased or three-phased,
 - layout of data wiring
- Plan for the growth

Required Cooling and HVAC

- Keep devices cool
- Maintain low humidity within the data center
- Measured in British Thermal Units (BTUs) per hour
- Collect the BTUs requirements of all equipment to establish the HVAC necessities
- Plan for the growth

Required Weight

- Determine the weight of all empty racks
- Determine the weight of all equipment
- Determine if the existing data center floor is strong enough for the weight

Required Weight

- Types of load that the floor must support
 - Maximum weight that the entire datacenter floor can support
 - Maximum weight that a single tile can support
 - Maximum point load that a tile can support

Required Network Bandwidth

- The bandwidth offered by the ISP should at least be equal to the data center's inbound and outbound bandwidth specifications
- If business-critical servers must be connected to the internet, reliable and redundant ISP links are mandatory
- Most of the wiring requirements can be fulfilled with
 - Cat6 copper
 - multi-mode fiber
 - single mode fibers may be needed for WAN connections, NAS, network-IO bound servers

Selecting a Geographic Location

- Safe from natural hazards
 - floods, fire, tornados, strong winds, earthquakes
- Safe from man-made disasters
 - Should not be close to an airport, electrical railways or telecommunications signal center because of RFI and EMI
 - Should not be close to a mine, quarry, highway or heavy industrial plant
 - Should be away of sources of pollution
- Availability of local technical talent
- Abundant and inexpensive utilities such as power and water

Selecting an Existing Building (Retrofitting)

- There must be enough space for a raised floor
- If network and electrical cables will be run in the subfloor plenum, they must not obstruct the flow of cold air
- It must be easy to setup T1, DS3, fiber-optic, and other high bandwidth network links
- The building must have adequate power and redundant electrical grids to guarantee 24x7 operations
- The room or floor must be large enough for present and future equipment
- The data center must be isolated from contaminantproducing areas within the building

Selecting an Existing Building (Retrofitting)

- The exhaust from generators and other sources should not be allowed to enter the data center air intakes
- The gas and water pipes must be safe and leak-free.

Remarks

- The functional requirement of a data center is to provide a safe and secure place for servers, storage, and networking equipment.
- The data center must also provide the required power, a well-controlled environment (with regard to temperature and relative humidity), and network connectivity to other devices within and outside the data center.

Guides for Planning a Data Center

- Plan in advance
- Plan for the worst
- Plan for growth
- Simplify your design
- Plan for changes
- Label all equipment, especially cables and ports

Characteristics of an Outstanding Design

- Design must be simple
 - all cables, circuit breakers, servers, storage devices, networks ports and power outlets must be labeled
- Design must be scalable
- Design must be modular
- Design must be flexible

Data Center Structures

- No-Raised or raised floor
- Aisles
- Ramp
- Compulsory local building codes

Raised Floor Design and Deployment

- place for the equipment to sit
- grounding for the equipment
- a means to channel cold air from the HVAC
- place to route network cables, power outlets and cables for the equipment on the tiles

Raised Floor Design and Deployment

Plenum

space between the datacenter subfloor and the floor tiles. The HVAC must be capable of pressurizing it

Floor tiles

floor panels that provide a supporting base for the racks and equipment.

Can be solid or perforated

Equipment Weight and Tile Strength

Point load

Static Load

- Electrical wireways
- Cable trays

Design and Plan Against Vandalism

- For most organizations, online data is one of their most expensive assets
- Data center must be selected in a building or neighborhood where it is easy to control access
- The data center must not be accessible from the outside
- Should have various monitoring devices, motion sensors and alarms
- Unauthorized accesses to the data center should be prevented

Best Practices

- The design must be modular
- Label everything
- Document everything
- Isolate cables
- Use cast aluminium tiles

Remarks

- It is important to get the design right because retrofitting a data center is too expensive and unwieldy.
- A data center design must be simple to modify and manage, scalable to accommodate future needs without any changes, and modular an flexible so upgrades can be made if necessary.
- Common structures within a data center are raised floor, aisles, floor tiles, subfloor plenum and ceiling plenum, electrical wireways, and cable trays.
- All equipment, cable ends, and grid locations must be labeled in an orderly manner.

Modular Cabling Design

- Keep it simple
- Patch panels

Points of Distribution (PODs)

- Rack with devices
- network switches
- terminal servers
- patch panels

Best Practices

- Label your equipment
- Color code cables
- Avoid a tangle of cables
- Patch panel ports and connections must be verified by the installer
- Remote console access
- cable bending radius

Remarks

- The network and cabling infrastructure within a data center must be modular, which is possible using patch panels and points of distribution containing cross-patch ports, network subswitches, and terminal servers.
- All cable connections must be well labeled.
- Internet access from ISPs must be redundant and reliable.

Data Center Maintenance

Network Operations Center (NOC)

- Dedicated facility staffed with people who monitor the availability of all devices and services within the data center and respond to any data center problems.
- Central logging point for all alarms and for evaluating the present status of the data center

Network Monitoring

- Gathering real-time data and its classification into performance and outages
- Used to predict the need for future scaling
- Outage info is used to alert staff and early problem resolution
- SNMP
- In-band and out-of-band monitoring

Data Center Physical Security

- All entry points and doors must be controlled by card readers or persons who monitor and restrict access to those entering the data center.
- Co-location DC
- Managed hosting DC
- CCTV

Data Center Cleaning

- Do not require regular cleaning or vacuum.
- Approved cleaning supplies.
 - HEPA vacuums, three pin ground configured outlets, antistatic materials.
- Floor surface cleaning.
 avoid disturbing cables
- Subfloor and above-ceiling plenum cleaning
 the space above the tiles must be cleaned. Care must be taken when removing the tiles
- Equipment cleaning
 Chemicals must not be used directly on equipment

Best Practices

- A high level of physical, network, and host level security must be enforced at all times.
- Regular cleaning of the data center is important to remove all dust and dirty, which can damage devices.
- Quarterly, preventive maintenance must include
 - UPS and batteries
 - Generator and automatic transfer switch (ATS)
 - Power cables, outlets, subpanels and circuit breakers
 - static switching equipment

Best Practices

- Free-standing and rack based power distribution equipment.
- Fire suppression and detection equipment.
- Overhead sprinkler systems.
- Air conditioning and HVAC units, air ducts, and filters
- Inlet-air blockages near perforated tiles
- Physical site inspection every month.
- A copy of all documents and standard operating procedures must be maintained at a central web site.

© António Sousa 2007-2011

Engenharia de Aplicações

Power Distribution

Estimating Your Power Needs

- Power for racks and stand-alone equipment
- Power for the HVAC System
 - A majority of the equipment power should be allocated for the HVAC
- Power for lighting, monitoring systems,
 NOC servers, fire control devices,...

- Uninterruptible Power Supply (UPS)
- Generators
- Power Conditioning
- Single phased and three phase power
- Power distribution units (PDUs)
- Electrostatic Discharge (ESD)

Data Center HVAC

HVAC

- Must be redundant to cope with failures and maintenance
- Must be efficient. Account for 40 to 60% of the power used in the DataCenter

Environmental factor	Temperature	Relative Humidity	
Optimal range	21°C to 23°C	45-50%	
Acceptable Range	10°C to 32°C	25-75%	

Narrow Range in temperature and RH

- Servers and storage generate substantial amounts of heat
- Certain areas require more cooling
- The weather is unpredictable
- Equipment changes within the data center
- Numerous air exchanges
- High RH causes corrosion and short circuits
- Low RH causes ESD problems
- Data center activities that can disrupt the temperature profile

Air conditioning Systems

- Cold-Liquid Air-Conditioning
 - for hot, desert regions
- Dry Air-Conditioning
 - for humid regions
- Air Circulation
 - Airflow pattern with subfloor supply and overhead return vents
 - Airflow pattern with overhead supply and return vents

Air Placement of Hardware Racks

- Bottom-to-Top Cooled Racks
- Top-to Bottom Cooled Racks
- Front-to-Front Cooled Racks
- Front-to-Back Cooled Racks

Best Practices

- Should exist cold and hot aisles. Racks should be set backto-back pointing to the hot aisle and front-to-front facing the cold aisle
- Devices are designed to expel their own heat in an optimal manner. The air-flow pattern must pick-up hot air and transport it to the HVAC
- Different perforation levels for tiles in the cold aisle balance air-flow patterns. Hot aisles should not contain perforated tiles
- Devices with lower temperature requirements must be placed on the lower half of the racks, and high heat-generating devices in the upper half

Best Practices

- Incoming air-flow rates must be balanced to maintain a uniform temperature along the rack height
- Since cables impede air flow, they must be bundled properly and correct sized cables must be used to keep air-flow passages as open as possible

Key points

- The heat loads within each data center continue to rise at a fast rate
- The objective of the HVAC is to provide enough cold air flow to maintain a temperature that meets the equipment requirements
- Cold-liquid and dry air conditioning systems are commonly used for DC cooling
- Data centers are arranged into cold and hot aisles

Data Center Classification

	Tier I	Tier II	Tier III	Tier IV
Number of power delivery paths	Only 1	Only 1	1Active 1Passive	2 Active
Redundancy	N	N+1	N+1	S+S or 2(N+1)
Compartmentalization	No	No	No	Yes
Concurrently Maintainable	No	No	Yes	Yes
Fault tolerance to Worst Event	None	None	None	Yes

