Valentin Haddad Zhiguo He Paul Huebner Peter Kondor Erik Loualiche

UCLA, Stanford, SSE, LSE, Minnesota

June 2025

Causal inference methods

- e.g. use IV/diff-in-diff to learn about investors' portfolio choice or equilibrium asset prices
 - If the stock price of Tesla drops by 1%, how do you change your position?
 - If a group of investors starts buying GameStop, how does its price change?
- natural experiments + inference without taking a strong stand on mechanism

Causal inference methods

- e.g. use IV/diff-in-diff to learn about investors' portfolio choice or equilibrium asset prices
 - If the stock price of Tesla drops by 1%, how do you change your position?
 - If a group of investors starts buying GameStop, how does its price change?
- natural experiments + inference without taking a strong stand on mechanism

"This is not how we do asset pricing"

Causal inference methods

- e.g. use IV/diff-in-diff to learn about investors' portfolio choice or equilibrium asset prices
 - If the stock price of Tesla drops by 1%, how do you change your position?
 - If a group of investors starts buying GameStop, how does its price change?
- natural experiments + inference without taking a strong stand on mechanism

Traditional asset pricing empirical methods

- Euler equations, factor models, Epstein-Zin preferences, ...
- equilibrium relations + fully specified models

Causal inference methods

- e.g. use IV/diff-in-diff to learn about investors' portfolio choice or equilibrium asset prices
 - If the stock price of Tesla drops by 1%, how do you change your position?
 - If a group of investors starts buying GameStop, how does its price change?
- natural experiments + inference without taking a strong stand on mechanism

Traditional asset pricing empirical methods

- Euler equations, factor models, Epstein-Zin preferences, ...
- equilibrium relations + fully specified models

→ This paper: a causal inference framework that is compatible with finance ideas

AN EXAMPLE

- Hengjie has detailed data on corporate bond holdings of CalPERS and bond prices
- How would portfolio positions change if, all else equal, bond prices move?
 - demand curve of CalPERS

AN EXAMPLE

- Hengjie has detailed data on corporate bond holdings of CalPERS and bond prices
- How would portfolio positions change if, all else equal, bond prices move?
 - demand curve of CalPERS
- OLS is a bad idea:
 - prices affect CalPERS demand
 - CalPERS (and many others) demand affect prices

AN EXAMPLE

- Hengjie has detailed data on corporate bond holdings of CalPERS and bond prices
- How would portfolio positions change if, all else equal, bond prices move?
 - demand curve of CalPERS
- OLS is a bad idea:
 - prices affect CalPERS demand
 - CalPERS (and many others) demand affect prices
- Natural experiment: the Fed decides to do a one-off intervention buying random corporate bonds

HENGJIE'S DILEMMA

Canonical causal inference: IV with $Z_i = \text{Fed purchases of bond } i$

$$\Delta D_i = \hat{\mathcal{E}} \Delta P_i + \theta' X_i + e_i$$
$$\Delta P_i = \lambda Z_i + \eta' X_i + u_i$$

HENGJIE'S DILEMMA

Canonical causal inference: IV with $Z_i = \text{Fed purchases of bond } i$

$$\Delta D_i = \widehat{\mathcal{E}} \Delta P_i + \theta' X_i + e_i$$
$$\Delta P_i = \lambda Z_i + \eta' X_i + u_i$$

Finance: holdings decided as a portfolio

- When price of a green bond increases, CalPERS sells some of it ... and replace by investing disproportionately more in other green bonds than brown bonds

$$\Delta D = \underset{\text{matrix}}{\mathcal{E}} \Delta P + \epsilon$$

HENGJIE'S DILEMMA

Canonical causal inference: IV with $Z_i = \text{Fed purchases of bond } i$

$$\Delta D_i = \widehat{\mathcal{E}} \Delta P_i + \theta' X_i + e_i$$
$$\Delta P_i = \lambda Z_i + \eta' X_i + u_i$$

Finance: holdings decided as a portfolio

- When price of a green bond increases, CalPERS sells some of it ... and replace by investing disproportionately more in other green bonds than brown bonds

$$\Delta D = \underset{\text{matrix}}{\mathcal{E}} \Delta P + \epsilon$$

- ightarrow Challenge of demand estimation with many goods
 - SUTVA is violated
 - All other prices are omitted variables ... too many to instrument them all

This Paper: Assumption

1. An elementary assumption about demand: homogeneous substitution conditional on observables

- When CaIPERS substitutes, does so differentially for bonds with different observables (e.g. greenness, duration), but does not distinguish between bonds with the same observables
- Markowitz finance: factor structure of covariance matrix
- Many others: targeting of portfolio level targets (e.g. regulatory scores), logit, ...
- Empirical design, supporting evidence, ...

THIS PAPER: IDENTIFICATION

2. Cross-sectional causal inference identifies the relative elasticity $(\widehat{\mathcal{E}})$:

- How does the relative demand for two bonds with the same greenness and duration respond to a change in their relative price?
- Difference between own-price and cross-price elasticity

THIS PAPER: IDENTIFICATION

2. Cross-sectional causal inference identifies the relative elasticity $(\widehat{\mathcal{E}})$:

- How does the relative demand for two bonds with the same greenness and duration respond to a change in their relative price?
- Difference between own-price and cross-price elasticity
- Partial identification: no information about substitution patterns

THIS PAPER: IDENTIFICATION

2. Cross-sectional causal inference identifies the relative elasticity $(\widehat{\mathcal{E}})$:

- How does the relative demand for two bonds with the same greenness and duration respond to a change in their relative price?
- Difference between own-price and cross-price elasticity
- Partial identification: no information about substitution patterns

3. A small set of time series regressions identifies substitution

- Substitution = meso and macro elasticity
 - Meso: How does the demand for green bonds relative to brown bonds respond to the price of the green-minus-brown portfolio and the market portfolio?
 - Macro: How does the demand for bonds responds to the price of the market portfolio and the green-minus-brown portfolio?
- Needs simultaneous instruments over time for the price of all portfolios

Related Literature

Asset pricing using causal inference methods

Shleifer (1986); Harris, Gurel (1986); Chang, Hong, Liskovich (2014); Pavlova, Sikorskaya (2023);
Greenwood, Sammon (2024); Gompers, Metrick (2001); Coval, Stafford (2007); Lou (2012);
Ben-David, Li, Rossi, Song (2022); Hartzmark, Solomon (2022); Krishnamurthy, Vissing-Jorgensen (2011); Haddad, Moreira, Muir (2021, 2025); Selgrad (2024); Du, Tepper, Verdelhan (2018);
Greenwood, Vissing-Jorgensen (2018); Haddad, Muir (2021); Chen, Chen, He, Liu, Xie (2023); ...

Structural approach and demand systems

- Koijen, Yogo (2019, 2024); Koijen, Richmond, Yogo (2024); Haddad, Huebner, Loualiche (2024);
 van der Beck (2024); Lu, Wu (2023); Gabaix, Koijen (2024); Bretscher, Schmid, Sen, Sharma (2024);
 Jansen, Li, Schmid (2024); Fang (2023); Fang, Xiao (2024); ...
- Li, Lin (2024); Chaudhary, Fu, Li (2023); Aghaee (2024); An, Huber (2025); Peng, Wang (2023);
 Fuchs, Fukuda, Neuhann (2024); ...

■ What we don't do:

- Strategic responses (Haddad, Huebner, Loualiche, 2024)
- Dynamics (Greenwood, Hanson, Liao, 2018; Huebner, 2024; Gabaix, Koijen, 2024; He, Kondor, Li)
- State-contingent shocks (Haddad, Moreira, Muir, 2025)

■ Spillovers/substitution outside asset pricing:

Berry, Levinsohn, Pakes (1995), Berg, Reisinger, Streitz (2021); Chodorow-Reich, Nenov, Simsek (2021); Guren, McKay, Nakamura, Steinsson (2021), Huber (2023); Wolf (2023); ...

OUTLINE

- 1 Homogeneous substitution conditional on observables
- 2 Cross-Sectional Causal Inference
- 3 Estimating substitution
- 4 ESTIMATING MULTIPLIERS

AN ASSUMPTION

FOR DEMAND IN ASSET PRICING

- Investor chooses portfolio ... taking prices are given: D(P,...)
 - Similar structure with market power or learning from prices: post a demand curve

- Investor chooses portfolio ... taking prices are given: D(P,...)
 - Similar structure with market power or learning from prices: post a demand curve
- In changes, linearize:

$$\Delta D = \underset{\text{elasticity}}{\mathcal{E}} \Delta P + \underset{\text{shifts}}{\epsilon}$$

– could be logs, levels, portfolio weights, yields: choose to give regularity to ${\mathcal E}$

- Investor chooses portfolio ... taking prices are given: D(P,...)
 - Similar structure with market power or learning from prices: post a demand curve
- In changes, linearize:

$$\Delta D = \underset{\text{elasticity}}{\mathcal{E}} \Delta P + \underset{\text{shifts}}{\epsilon}$$

- could be logs, levels, portfolio weights, yields: choose to give regularity to ${\mathcal E}$

$$\blacksquare$$
 Markowitz: $D=\frac{1}{\gamma}\Sigma^{-1}(\mu-P)\Rightarrow \mathcal{E}=\frac{1}{\gamma}\Sigma^{-1}$

- Investor chooses portfolio ... taking prices are given: D(P,...)
 - Similar structure with market power or learning from prices: post a demand curve
- In changes, linearize:

$$\Delta D = \underset{\text{elasticity}}{\mathcal{E}} \Delta P + \underset{\text{shifts}}{\epsilon}$$

- could be logs, levels, portfolio weights, yields: choose to give regularity to ${\mathcal E}$
- \blacksquare Markowitz: $D=\frac{1}{\gamma}\Sigma^{-1}(\mu-P)\Rightarrow \mathcal{E}=\frac{1}{\gamma}\Sigma^{-1}$
- lacktriangle Multipliers or price impact: effect of demand shifts on equilibrium prices ${\cal M}={\cal E}_{agg}^{-1}$

- Investor chooses portfolio ... taking prices are given: D(P,...)
 - Similar structure with market power or learning from prices: post a demand curve
- In changes, linearize:

$$\Delta D = \underset{\text{elasticity}}{\mathcal{E}} \Delta P + \underset{\text{shifts}}{\epsilon}$$

- could be logs, levels, portfolio weights, yields: choose to give regularity to ${\mathcal E}$
- \blacksquare Markowitz: $D=\frac{1}{\gamma}\Sigma^{-1}(\mu-P)\Rightarrow \mathcal{E}=\frac{1}{\gamma}\Sigma^{-1}$
- lacksquare Multipliers or price impact: effect of demand shifts on equilibrium prices ${\cal M}={\cal E}_{agg}^{-1}$

This talk: what if you want to figure \mathcal{E} out from data without assuming much?

AN ELEMENTARY ASSUMPTION

A1. Homogeneous substitution conditional on observables

ightarrow Any pair of assets in the estimation sample $\mathcal S$ with the same observables shares the same cross-price elasticity with respect to any third asset, within or outside the estimation sample:

$${m {\cal E}}_{il} = {m {\cal E}}_{jl} \ \ {
m if} \ X_i = X_j \ \ \ \ {
m for all} \ i,j \in {\cal S}, \ {
m and} \ l
eq i,j,$$

- When substituting, the investor differentiates with respect to \boldsymbol{X} only

AN ELEMENTARY ASSUMPTION

A1. Homogeneous substitution conditional on observables

ightarrow Any pair of assets in the estimation sample $\mathcal S$ with the same observables shares the same cross-price elasticity with respect to any third asset, within or outside the estimation sample:

$${m {\cal E}}_{il} = {m {\cal E}}_{jl} \ \ {
m if} \ X_i = X_j \ \ \ \ {
m for all} \ i,j \in {\cal S}, \ {
m and} \ l
eq i,j,$$

- When substituting, the investor differentiates with respect to \boldsymbol{X} only
- X_i : $K \times 1$ vector of observables for asset i.
- Add linearity $\mathcal{E}_{il} = \mathcal{E}_{\mathsf{cross}}(X_i, X_l) = X_i' \underbrace{\mathcal{E}_X}_{K \times K} X_l$

AN ELEMENTARY ASSUMPTION

A1. Homogeneous substitution conditional on observables

 \rightarrow Any pair of assets in the estimation sample $\mathcal S$ with the same observables shares the same cross-price elasticity with respect to any third asset, within or outside the estimation sample:

$$m{\mathcal{E}}_{il} = m{\mathcal{E}}_{jl} ext{ if } X_i = X_j$$
 for all $i,j \in \mathcal{S}, ext{ and } l
eq i,j,$

- When substituting, the investor differentiates with respect to \boldsymbol{X} only
- X_i : $K \times 1$ vector of observables for asset i.
- Add linearity $\mathcal{E}_{il} = \mathcal{E}_{\mathsf{cross}}(X_i, X_l) = X_i' \underbrace{\mathcal{E}_X}_{K imes K} X_l$
- Can apply everywhere, or just to a sample of assets ${\cal S}$

REGULARIZING A BIT MORE

A2. Constant relative elasticity

 \rightarrow Assets in the estimation sample have the same value of relative elasticity $\mathcal{E}_{relative}$ with respect to other assets with the same characteristics:

$$oxed{\mathcal{E}_{ii}-\mathcal{E}_{ji}=\mathcal{E}_{relative}}$$
 if $X_i=X_j$ for all $i,j\in\mathcal{S}$

— How does the relative demand for two assets with the same observables respond to a change in their relative price?

REGULARIZING A BIT MORE

A2. Constant relative elasticity

 \rightarrow Assets in the estimation sample have the same value of relative elasticity $\mathcal{E}_{relative}$ with respect to other assets with the same characteristics:

$$oxedsymbol{\mathcal{E}}_{ii} - oldsymbol{\mathcal{E}}_{ji} = \mathcal{E}_{relative} ext{ if } X_i = X_j \end{substrate} ext{ for all } i,j \in \mathcal{S}$$

- How does the relative demand for two assets with the same observables respond to a change in their relative price?
- Similar local behavior across assets o homogeneous treatment effect
- Can relax a lot for cross-sectional results (function of characteristics, LATE)

Using the Assumptions: Local Experiments

- With few close assets, could ignore observables and assume full homogeneity
 - Demand for 10-yr bonds of Ford and GM responds in same way to price of 5-year First Solar bond

Using the Assumptions: Local Experiments

- With few close assets, could ignore observables and assume full homogeneity
 - Demand for 10-yr bonds of Ford and GM responds in same way to price of 5-year First Solar bond
- Risk-based models: assets have common variance and covariance + identical covariance with outside assets

Using the Assumptions: Local Experiments

- With few close assets, could ignore observables and assume full homogeneity
 - Demand for 10-yr bonds of Ford and GM responds in same way to price of 5-year First Solar bond
- Risk-based models: assets have common variance and covariance + identical covariance with outside assets
- Diagnostic: balance between treated (high Z_i) and control (low Z_i) on covariance with broad factors

Key question: What does the investor consider when substituting between assets?

Investor manages < aggregate statistic> hence substitution depends on < individual asset contribution>

Key question: What does the investor consider when substituting between assets?

- Investor manages < aggregate statistic> hence substitution depends on < individual asset contribution>
- Broad categories: X_i are group dummies

Key question: What does the investor consider when substituting between assets?

- Investor manages < aggregate statistic> hence substitution depends on < individual asset contribution>
- Broad categories: X_i are group dummies
- Risk based motives: care about portfolio-level factor exposure, so X_i are factor loadings or characteristics that proxy for them

Key question: What does the investor consider when substituting between assets?

- Investor manages < aggregate statistic> hence substitution depends on < individual asset contribution>
- Broad categories: X_i are group dummies
- Risk based motives: care about portfolio-level factor exposure, so X_i are factor loadings or characteristics that proxy for them
- Non-risk motives: X_i is asset weight in this objective
 - Binding constraints (e.g. leverage)
 - Manages a regulatory score (e.g. capital ratio,...)
 - Stakeholders pressure (greenness, ...)

$$\max_{D} \quad D'(M-P) - \frac{\gamma}{2}D'\Sigma D - \frac{\kappa}{2}\left(D'X^{(1)}\right)^2$$
 such that
$$D'X^{(2)} \leq \Theta$$

Cross-Sectional

Causal Inference

Back to Hengjie ...

Back to Hengjie ...

 \blacksquare He knows true model is matrix with CalPERS caring about greenness and duration (X)

$$\Delta D = \mathcal{E}\Delta P + \epsilon$$

■ He runs the regression:

$$\Delta D_i = \widehat{\mathcal{E}} \Delta P_i + \theta' X_i + e_i$$
$$\Delta P_i = \lambda Z_i + \eta' X_i + u_i$$

Back to Hengjie ...

 \blacksquare He knows true model is matrix with CalPERS caring about greenness and duration (X)

$$\Delta D = \mathcal{E}\Delta P + \epsilon$$

■ He runs the regression:

$$\Delta D_i = \widehat{\mathcal{E}} \Delta P_i + \theta' X_i + e_i$$
$$\Delta P_i = \lambda Z_i + \eta' X_i + u_i$$

Proposition 1. Under A1, A2, and the usual exclusion and relevance restrictions, the IV estimator identifies the **relative elasticity** $\widehat{\mathcal{E}} = \mathcal{E}_{relative} = \mathcal{E}_{ii} - \mathcal{E}_{ji}$.

Back to Hengjie ...

 \blacksquare He knows true model is matrix with CalPERS caring about greenness and duration (X)

$$\Delta D = \mathcal{E}\Delta P + \epsilon$$

■ He runs the regression:

$$\Delta D_i = \widehat{\mathcal{E}} \Delta P_i + \theta' X_i + e_i$$
$$\Delta P_i = \lambda Z_i + \eta' X_i + u_i$$

Proposition 1. Under A1, A2, and the usual exclusion and relevance restrictions, the IV estimator identifies the relative elasticity $\widehat{\mathcal{E}} = \mathcal{E}_{relative} = \mathcal{E}_{ii} - \mathcal{E}_{ji}$.

lacktriangle Take 2 assets with same characteristics, $X_1=X_2$

First difference

$$\Delta D_1 = \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{12} \Delta P_2 + \sum_{k \ge 3} \mathcal{E}_{1k} \Delta P_k$$

$$\Delta D_2 = \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{21} \Delta P_1 + \sum_{k \ge 3} \mathcal{E}_{2k} \Delta P_k$$

lacktriangle Take 2 assets with same characteristics, $X_1=X_2$

First difference

$$\Delta D_1 = \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{12} \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{1k} \Delta P_k$$

$$= \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{\mathsf{cross}}(X_1, X_2) \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{\mathsf{cross}}(X_1, X_k) \Delta P_k$$

$$\Delta D_2 = \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{21} \Delta P_1 + \sum_{k \geq 3} \mathcal{E}_{2k} \Delta P_k$$

lacktriangle Take 2 assets with same characteristics, $X_1=X_2$

First difference

$$\Delta D_1 = \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{12} \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{1k} \Delta P_k$$

$$= \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{\mathsf{cross}}(X_2, X_2) \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{\mathsf{cross}}(X_1, X_k) \Delta P_k$$

$$\Delta D_2 = \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{21} \Delta P_1 + \sum_{k \geq 3} \mathcal{E}_{2k} \Delta P_k$$

lacksquare Take 2 assets with same characteristics, $X_1=X_2$

First difference

$$\begin{split} \Delta D_1 &= \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{12} \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{1k} \Delta P_k \\ &= \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{\mathsf{cross}}(X_2, X_2) \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{\mathsf{cross}}(X_1, X_k) \Delta P_k \\ \Delta D_2 &= \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{21} \Delta P_1 + \sum_{k \geq 3} \mathcal{E}_{2k} \Delta P_k \\ &= \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{\mathsf{cross}}(X_1, X_1) \Delta P_1 + \sum_{k \geq 3} \mathcal{E}_{\mathsf{cross}}(X_1, X_k) \Delta P_k \end{split}$$

lacksquare Take 2 assets with same characteristics, $X_1=X_2$

First difference

$$\begin{split} \Delta D_1 &= \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{12} \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{1k} \Delta P_k \\ &= \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{\mathsf{cross}}(X_2, X_2) \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{\mathsf{cross}}(X_1, X_k) \Delta P_k \\ \Delta D_2 &= \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{21} \Delta P_1 + \sum_{k \geq 3} \mathcal{E}_{2k} \Delta P_k \\ &= \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{\mathsf{cross}}(X_1, X_1) \Delta P_1 + \sum_{k \geq 3} \mathcal{E}_{\mathsf{cross}}(X_1, X_k) \Delta P_k \end{split}$$

$$\Delta D_1 - \Delta D_2 = \underbrace{\left(\mathcal{E}_{11} - \mathcal{E}_{\mathsf{cross}}(X_1, X_1)\right)}_{} \Delta P_1 - \underbrace{\left(\mathcal{E}_{22} - \mathcal{E}_{\mathsf{cross}}(X_2, X_2)\right)}_{} \Delta P_2$$

lacksquare Take 2 assets with same characteristics, $X_1=X_2$

First difference

$$\Delta D_1 = \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{12} \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{1k} \Delta P_k$$

$$= \mathcal{E}_{11} \Delta P_1 + \mathcal{E}_{\mathsf{cross}}(X_2, X_2) \Delta P_2 + \sum_{k \geq 3} \mathcal{E}_{\mathsf{cross}}(X_1, X_k) \Delta P_k$$

$$\Delta D_2 = \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{21} \Delta P_1 + \sum_{k \geq 3} \mathcal{E}_{2k} \Delta P_k$$

$$= \mathcal{E}_{22} \Delta P_2 + \mathcal{E}_{\mathsf{cross}}(X_1, X_1) \Delta P_1 + \sum_{k \geq 3} \mathcal{E}_{\mathsf{cross}}(X_1, X_k) \Delta P_k$$

$$\Delta D_1 - \Delta D_2 = \underbrace{\left(\mathcal{E}_{11} - \mathcal{E}_{\mathsf{cross}}(X_1, X_1)\right)}_{\widehat{\mathcal{E}}} \Delta P_1 - \underbrace{\left(\mathcal{E}_{22} - \mathcal{E}_{\mathsf{cross}}(X_2, X_2)\right)}_{\widehat{\mathcal{E}}} \Delta P_2$$
$$= \widehat{\mathcal{E}} \left(\Delta P_1 - \Delta P_2\right)$$

WHAT ABOUT EQUILIBRIUM?

- In the data, changes in price are always in equilibrium, so no notion of "separately moving each price"
 - If the Fed doesn't buy a bond, its price might move anyways because it bought its substitutes

WHAT ABOUT EQUILIBRIUM?

- In the data, changes in price are always in equilibrium, so no notion of "separately moving each price"
 - If the Fed doesn't buy a bond, its price might move anyways because it bought its substitutes

■ Never an issue for exogeneity

- Exogeneity is "Fed buying a bond or not" uncorrelated to demand shifts of CalPERS
- $Z_i \perp \epsilon_i | X_i$

WHAT ABOUT EQUILIBRIUM?

- In the data, changes in price are always in equilibrium, so no notion of "separately moving each price"
 - If the Fed doesn't buy a bond, its price might move anyways because it bought its substitutes

■ Never an issue for exogeneity

- Exogeneity is "Fed buying a bond or not" uncorrelated to demand shifts of CalPERS
- $Z_i \perp \epsilon_i | X_i$
- If equilibrium is such that the two prices cannot deviate *at all* from each other, relevance might fail
 - You can assess this empirically!

THE MISSING PIECE: SUBSTITUTION

- Key step: control for characteristics θ absorbs substitution from other assets

$$\sum_{k\geq 3} \mathcal{E}_{\text{cross}}(X_1,X_k) \Delta P_k = X_1' \underbrace{\mathcal{E}_X X \Delta P}_{\text{constant in data}}$$

THE MISSING PIECE: SUBSTITUTION

- Key step: control for characteristics θ absorbs substitution from other assets

$$\sum_{k\geq 3} \mathcal{E}_{\mathrm{cross}}(X_1,X_k) \Delta P_k = X_1' \underbrace{\mathcal{E}_X X \Delta P}_{\mathrm{constant in data}}$$

Absorbing substitution \neq Estimating substitution

- "Missing intercept and coefficients" problem: doesn't know how θ would change with different prices

- Koijen Yogo (1999), Koijen Richmond Yogo (2024):

"log utility + factor model = logit"

- Logit accounts for substitution, so nothing missing

- Koijen Yogo (1999), Koijen Richmond Yogo (2024):

"log utility + factor model = logit"

- Logit accounts for substitution, so nothing missing

- An arbitrary factor model is not equivalent to logit

- Logit: when the price of any bond increases, CalPERS replaces it proportionally to its existing portfolio
- Factor model: when the price of a bond increases, CalPERS replaces it dispoportionately with bonds with similar factor loadings

- Koijen Yogo (1999), Koijen Richmond Yogo (2024):
 - "log utility + a specific factor model with only 1 factor equal to the current portfolio = logit"
 - Logit accounts for substitution, so nothing missing
- An arbitrary factor model is not equivalent to logit
 - Logit: when the price of any bond increases, CalPERS replaces it proportionally to its existing portfolio
 - Factor model: when the price of a bond increases, CalPERS replaces it dispoportionately with bonds with similar factor loadings

- Koijen Yogo (1999), Koijen Richmond Yogo (2024):
 - "log utility + a specific factor model with only 1 factor equal to the current portfolio = logit"
 - Logit accounts for substitution, so nothing missing
- An arbitrary factor model is not equivalent to logit
 - Logit: when the price of any bond increases, CalPERS replaces it proportionally to its existing portfolio
 - Factor model: when the price of a bond increases, CalPERS replaces it dispoportionately with bonds with similar factor loadings
- Both models satisfy our assumptions and hence can have relative elasticity estimated from the cross-section
 - Assuming logit-specific structure makes it enough to back out substitution
 - Analogy: if you assume no substitution at all, you would also get all ${\mathcal E}$ from the cross-section

ESTIMATING SUBSTITUTION

WITH THE TIME SERIES

WHY SUBSTITUTION MATTERS

Hengjie wants to know:

■ Will CalPers maintain its green tilt if the price of green bonds become very expensive relative red bonds?

WHY SUBSTITUTION MATTERS

Hengjie wants to know:

- Will CalPers maintain its green tilt if the price of green bonds become very expensive relative red bonds?
- How much will CalPers size down its bond positions if all bond prices increase?

WHY SUBSTITUTION MATTERS

Hengjie wants to know:

- Will CalPers maintain its green tilt if the price of green bonds become very expensive relative red bonds?
- How much will CalPers size down its bond positions if all bond prices increase?
- Answer to these questions relies on knowing substitution!

SIMPLIFYING SUBSTITUTION

Under assumptions A1 and A2, can replace the asset-level problem of substitution with a portfolio-level problem:

- Re-package prices and demand:

$$\Delta P_{agg} = \frac{1}{N} \sum_{i} \Delta P_{i}, \qquad \Delta D_{agg} = \frac{1}{N} \sum_{i} \Delta D_{i}$$

$$\Delta P_{X} = \frac{1}{N} \sum_{i} X_{i} \Delta P_{i} \qquad \Delta D_{X} = \frac{1}{N} \sum_{i} X_{i} \Delta D_{i}$$

$$\Delta P_{idio,i} = \Delta P_{i} - \Delta P_{agg} - X_{i} \Delta P_{X} \qquad \Delta D_{idio,i} = \Delta D_{i} - \Delta D_{agg} - X_{i} \Delta D_{X}$$

SIMPLIFYING SUBSTITUTION

Under assumptions A1 and A2, can replace the asset-level problem of substitution with a portfolio-level problem:

- Re-package prices and demand:

$$\Delta P_{agg} = \frac{1}{N} \sum_{i} \Delta P_{i}, \qquad \Delta D_{agg} = \frac{1}{N} \sum_{i} \Delta D_{i}$$

$$\Delta P_{X} = \frac{1}{N} \sum_{i} X_{i} \Delta P_{i} \qquad \Delta D_{X} = \frac{1}{N} \sum_{i} X_{i} \Delta D_{i}$$

$$\Delta P_{idio,i} = \Delta P_{i} - \Delta P_{agg} - X_{i} \Delta P_{X} \qquad \Delta D_{idio,i} = \Delta D_{i} - \Delta D_{agg} - X_{i} \Delta D_{X}$$

- Decompose the response of demand to prices into three univariate components:

Relative:	$\Delta D_{idio,i} = \widehat{\mathcal{E}} \Delta P_{idio,i}$
Meso:	$\Delta D_X = \tilde{\mathcal{E}}_{agg} \Delta P_{agg} + \tilde{\mathcal{E}}_X \Delta P_X$
Macro:	$\Delta D_{agg} = \bar{\mathcal{E}}_{agg} \Delta P_{agg} + \bar{\mathcal{E}}_X \Delta P_X$

AGGREGATION INTUITION

■ Under assumptions A1 and A2:

$$\mathcal{E} = \widehat{\mathcal{E}}\mathbf{I} + X\mathcal{E}_X X'$$

- $-\widehat{\mathcal{E}}$ is a scalar
- $-\mathcal{E}_X$ is only $K \times K$ (factor model)
- \blacksquare Project the change in price along the factor X direction:

$$\Delta P_X = (X'X)^{-1}X'\Delta P$$

$$= \left(\widehat{\mathcal{E}}(X'X)^{-1}X'\mathbf{I}_N + (X'X)^{-1}X'X\mathcal{E}_XX'\right)\Delta D$$

$$= \left(\widehat{\mathcal{E}}\mathbf{I}_K + \mathcal{E}_X(X'X)\right)\Delta D_X$$

AGGREGATION INTUITION

- Two easy cases:
 - Only one characteristic (K = 1):

$$\check{\mathcal{E}} = \begin{pmatrix} \widehat{\mathcal{E}} + N(\mathcal{E}_X)_{11} & N(\mathcal{E}_X)_{12} \\ N(\mathcal{E}_X)_{21} & \widehat{\mathcal{E}} + N(\mathcal{E}_X)_{22} \end{pmatrix} = \begin{pmatrix} \bar{\mathcal{E}}_{agg} & \bar{\mathcal{E}}_X \\ \widetilde{\mathcal{E}}_{agg} & \widetilde{\mathcal{E}}_X \end{pmatrix}$$

 Observables are group dummies: consider the case when the observables are dummy variables for disjoint groups.

$$\Delta P_{X,k} = \frac{1}{N_k} \sum_{i \in k} \Delta P_i$$

ESTIMATING THE MESO AND MACRO ELASTICITIES

Meso: $\Delta D_X = \tilde{\mathcal{E}}_{agg} \Delta P_{agg} + \tilde{\mathcal{E}}_X \Delta P_X$ Macro: $\Delta D_{agg} = \bar{\mathcal{E}}_{agg} \Delta P_{agg} + \bar{\mathcal{E}}_X \Delta P_X$

- Substitution boils down to relation between aggregate and observable based portfolios
 - Response of overall demand and green portfolio tilt to aggregate bond price and price of green-minus-brown portfolio
 - Low dimensional
- Need joint instruments for prices in time series:
 - To estimate macro elasticity, need to account for simultaneous change in price of green-minus-brown
 - Only controlling for the price is generally a bad control (in particular if demand shocks are correlated)

AN EMPIRICAL EXAMPLE

ESTIMATING MULTIPLIERS:

EXAMPLE: CORPORATE BOND RELATIVE MULTIPLIER

- U.S. investment-grade corporate bonds (following Chaudhary, Fu, Li, 2024)
- Steps to go through when conducting causal inference in asset pricing:
 - choose a source of variation
 - 2 assess exogeneity
 - 3 assess assumptions A1 and A2 and select observables + units
 - implement the regression analysis
- Step 1: flow-induced demand shock Z_{it} : fund flow in mutual funds × portfolio composition (Coval Stafford 2007, Lou 2012)
- Step 2: assess exogeneity, i.e., $Z_{it} \perp \epsilon_{it} | X_{it}$
 - example threat to identification: another investor type (e.g., insurance companies) buying the same bonds held by mutual funds that receive a lot of inflows

STEP 3: DIAGNOSTIC FOR A1 – BALANCE ON COVARIANCES

Do treated bonds comove the same way with broad portfolios as the control bonds?

- At each date t, form a long-short portfolio based on whether Z_{it} is above ("treated") or below ("control") the median
- f Z Compute the eta of the long-short return on broad indices in a window around t (here: 2y)
- eta different from zero \Rightarrow substitution likely not homogeneous

STEP 3: DIAGNOSTIC FOR A1 – BALANCE ON COVARIANCES

Do treated bonds comove the same way with broad portfolios as the control bonds?

- At each date t, form a long-short portfolio based on whether Z_{it} is above ("treated") or below ("control") the median
- f Z Compute the eta of the long-short return on broad indices in a window around t (here: 2y)
- β different from zero \Rightarrow substitution likely not homogeneous
- Treated and control bonds may differ systematically based on the observables, which may drive differences in β
 - ightarrow natural if investors choose their flows along dimensions like duration and credit risk
- Do the treated and control comove the same way conditional on observables?
- $Z_{idio,it}$: residual of instrument regressed on a date fixed effect, **duration** × date fixed effects and **credit rating** × date fixed effects

STEP 3: DIAGNOSTIC FOR A1 – BALANCE ON COVARIANCES

Do treated bonds comove the same way with broad portfolios as the control bonds?

- At each date t, form a long-short portfolio based on whether Z_{it} is above ("treated") or below ("control") the median
- f Z Compute the eta of the long-short return on broad indices in a window around t (here: 2y)
- eta different from zero \Rightarrow substitution likely not homogeneous
- Treated and control bonds may differ systematically based on the observables, which may drive differences in β
 - ightarrow natural if investors choose their flows along dimensions like duration and credit risk
- Do the treated and control comove the same way conditional on observables?
- $Z_{idio,it}$: residual of instrument regressed on a date fixed effect, **duration** × date fixed effects and **credit rating** × date fixed effects
- Alternative unit to bond returns: yield changes ► Al yield changes ► Multiplier yield changes
- Similar diagnostic for A2: balance on idiosyncratic volatility ► A2 diagnostic

A. Corporate Bond Index

C. Long-Short Term Bonds

B. High-Low Credit Rating

D. Stock Index

STEP 4: IMPLEMENT THE REGRESSION

Demand shock:

Date Fixed Effects

Duration × Date Fixed Effects

Credit Rating × Date Fixed Effects

 Z_{it}

N

 R^2

 $Z_{idio,it}$

Relative multiplier $\mathcal{M} pprox 0$
Return $\Delta P_{it}/P_{i,t-1}$

(1)

1.541*

(0.637)

646.335

0.010

(2)

-0.254

(0.229)

Yes

646.335

0.415

(3)

0.019

Yes

Yes

Yes

646,335

0.632

(0.065)

(4)

0.019

Yes

Yes

Yes

(0.065)

646,335

0.632

(5)

0.019

Yes

(0.065)

646,335

0.415

CONCLUSION

■ I hope Hengjie is happy now

CONCLUSION

■ Key challenge for causal inference in asset pricing: substitution across assets

CONCLUSION

- Key challenge for causal inference in asset pricing: substitution across assets
- An elementary condition for valid inference: homogenous substitution conditional on observables
 - difference in substitution driven by a known set of observables
- Standard cross-sectional causal inference identifies relative elasticity or its inverse, relative multiplier
 - Guidance on designing settings such that assumptions are plausible
 - Compatible with usual covariance matrix assumptions
- Time series identification with observable-based portfolios reveals substitution
 - Need to consider all dimensions of substitution jointly

Diagnostics for A2 – Balance on idiosyncratic volatility

Average idiosyncratic volatility among treated versus control bonds

A. Corporate Bond Index

C. Long-Short Term Bonds

B. High-Low Credit Rating

D. Stock Index

N

 R^2

Relative multiplier $\widehat{\mathcal{M}} = -0.072$

	Yield change ΔY_{it}					
	(1)	(2)	(3)	(4)	(5)	
Demand shock:						
Z_{it}	-0.384* (0.166)		-0.072** (0.027)			
$Z_{idio,it}$,	,	, ,	-0.072** (0.027)	-0.072** (0.027)	
Date Fixed Effects Duration \times Date Fixed Effects Credit Rating \times Date Fixed Effects		Yes	Yes Yes Yes	Yes Yes Yes	Yes	

630,255

0.004

630,255

0.071

630,255

0.089

630,255

0.089

630,255

0.070