$y(t) = (c_0 + c_1 x(t)) \cos(2\pi f_c t + \theta)$ is received, but θ is unknown to the receiver.

• Can the signal x(t) be recovered from $\gamma(y(t))$, $\gamma(w) = a_0 + a_1w + a_2w^2$, and LTI filtering? Solution

9

$$\gamma(y(t)) = a_0 + a_1 [(c_0 + c_1 x(t)) \cos(2\pi f_c t + \theta)]
+ a_2 [(c_0 + c_1 x(t)) \cos(2\pi f_c t + \theta)]^2
= \underbrace{a_0 + \frac{a_2}{2} (c_0^2 + 2c_1 x(t) + x(t)^2)}_{baseband}
+ \underbrace{a_1 [(c_0 + c_1 x(t)) \cos(2\pi f_c t + \theta)]}_{passband}
+ \underbrace{\frac{a_2}{2} (c_0 + c_1 x(t))^2 \cos(4\pi f_c t + \theta)}_{highpass}$$

The bandpass and highpass information can be knocked out by a low pass filter, and they cannot be brought down to baseband by a LTI. So only the baseband terms can be used. There the $x(t)^2$ covers the x(t), so there is no way in general to recover x(t) alone from this signal using only LTI filtering.