BaRcelona Summer School for Demography

Module 2: Demography in R

7 July, 2025

Instructor: Tim Riffe

Objectives

Fundamental demographic concepts and measures

$${}_{n}q_{x} = \frac{n \cdot {}_{n}M_{x}}{1 + (n - {}_{n}A_{x}) \cdot {}_{n}M_{x}} \qquad r =$$

(2) Basic R coding skills for demographic data

analysis and visualization

Workshop plan, 7-11 July, 2025

1: Monday Intro concepts, and R setup

2: Tuesday Mortality and fertility

3: Wednesday Standardization & decomposition

4: Thursday Growth

5: Friday Projection

Materials

Open course repository:

https://github.com/timriffe/KOSTAT Workshop1

- xx_presentation.pdf
- xx handout.pdf
- xx_session.Rmd (R markdown file)

Google Doc for code snippets, questions, etc:

https://tinyurl.com/6ec2zfyy

Ba**R**celona Summer School for Demography Module 2: Demography in R

Basic data and concepts

7 July, 2025

Instructor: Tim Riffe

Population:

the collection of persons alive at a specific point in time who meet certain criteria

Preston et al (2001)

Demography:

"Demography is the science of populations. Demographers seek to understand population dynamics by investigating three main demographic processes: birth, migration, and aging (including death)"- MPIDR

"The study of statistics such as births, deaths, income, or the incidence of disease, which illustrate the changing structure of human populations"- Oxford dictionary

"Demography is the study of the size, territorial distribution, and composition of population, changes therein, and the components of such changes" - Hauser 1959

Demographic flows

Demographic flows

Demographic flows - scale matters

Demographic flows - scale matters

Demographic flows - structure matters

Time as structure

The Lexis diagram relates the dimensions of age, period, and cohort on a single plane.

Smoking-related excess mortality among male cohorts born prior to World War II. In later cohorts women's smoking habits caught up with those of men, counterbalancing the male deaths.

Time as structure

"Lexis surface" with features in the age, period, and cohort perspectives. From Schoeley & Willekens (2017)

Probabilities vs rates

$$Probability = \frac{Number\ of\ Occurences}{Number\ of\ preceeding\ Events\ or\ trials}$$

$$Rate = \frac{Number\ of\ Occurences}{Number\ of\ person-years\ lived}$$

Probabilities vs rates

Crude rates

Korea 2014 data

E (Exposure, population): 50,765,887 (HMD estimate)

B (Births): 435,435

D (Deaths): 267,692

CDR(2014) = D / E = 0.00527 or 5.3 per 1000

CBR(2014) = B / E = 0.00857 or 8.6 per 1000

Time for us to move to R!