MICROCONTROLADORES

PROJETO FINAL - SISTEMA DE RESFRIAMENTO

Aluno: Joselho da Silva Amaral

SUMÁRIO

NTRODUÇÃO	3
O QUE É?	
COMO FUNCIONA?	
QUAIS SÃO SEUS COMPONENTES?	
SQUEMA ELÉTRICO	4
//AGEM 01: ESQUEMÁTICO TESTE SERIAL	5
LUXOGRAMA DO PROGRAMA	6
ΛAGEM 02: PLACA PICGENIUS	7
ONCLUSÃO	8

INTRODUÇÃO

O QUE É?

É um sistema de resfriamento ativo que ao *sentir* a temperatura de um determinado ambiente, pode ativar um ou mais ventiladores (coolers) para manter a temperatura em um determinado patamar.

Existe dois tipos de sistema de resfriamento mais usados, sendo eles o resfriamento passivo (onde não tem partes móveis que retiram o calor do sistema) e ativo (onde tem partes móveis que retiram o calor do sistema).

COMO FUNCIONA?

Assim que o sistema é ligado, o display apresenta algumas informações como: "Sistema de resfriamento automático" e "Iniciando o sistema...". Após isso, o sistema vai para o modo automático.

Modo automático: É feito a leitura da temperatura ambiente e caso a temperatura seja menor que 50°C, o cooler continua desligado. Caso a temperatura for maior ou igual a 50°C, o cooler liga e sua velocidade aumenta em 2% para cada 1°C de aumento. A velocidade do cooler chega em 100% quando a temperatura chega a 100°C.

Caso ache necessário deixar a velocidade do cooler fixa, isso é possível apertando o botão B0. Isso ocasionará na ativação do modo manual da velocidade do cooler. Toda vez que apertar o botão B1, a velocidade do cooler aumenta em 10% e quando a velocidade for máxima (100%) ao apertar o botão B1 novamente resultará em zerar (0%) a velocidade do cooler.

Para desligar o modo manual da velocidade do cooler basta apertar o botão B0.

Uma observação é que no modo automático é apresentado no display do sistema a temperatura e a velocidade do cooler, porém, no modo manual somente a velocidade do cooler é apresentado no display do sistema.

Outro adendo é que tanto o valor da temperatura como a velocidade do cooler são apresentados na comunicação serial.

QUAIS SÃO SEUS COMPONENTES?

- 1. Uma placa controladora (com alimentação de 5V)
 - 1.1 Com um PIC 18F4550 (Chip programável)
- 2. Um sensor de temperatura (LM 35)
- 3. Um ou mais Coolers
- 4. Uma fonte externa (De 9V ou 12V para alimentar o(s) Cooler(s))

ESQUEMA ELÉTRICO

Esquemático do simulIDE somente para verificar comunicação serial.

Figura 1: Esquemático teste serial

O esquemático da próxima página é do PicsimLab da placa pigenius onde é executada a simulação do sistema de resfriamento automático.

Figura 2: placa picgenius

FLUXOGRAMA DO PROGRAMA

CONCLUSÃO

Em suma, esse projeto pode ser instalado em vários equipamentos que se deseje resfriar, pois pode ser adaptado. Além de ser um sistema relativamente simples e também barato.

Caso o instalador do sistema tenha relativo conhecimento em programação do PIC18F4550, ele(a) pode ampliar o projeto para suportar mais de um cooler ou também programar as partidas e paradas do(s) cooler(s) como assim desejar.