Eigenvalue problems, comparison of Jacobi's and Lanczos' algorithms applied to Schroedinger's equation for an electron in a threedimensional harmonic oscillator well

Johannes Sørby Heines

September 29, 2020

Abstract

Introduction

In physics, we often encounter systems whose behaviour depends on their current state. In many cases these can be described or approximated by equations of the form

$$\frac{\mathrm{d}^2 u(x)}{\mathrm{d}x^2} = \lambda u(x).$$

When such equations are discretized they give rise to an eigenvalue problem

$$\mathbf{A}u = \lambda u.$$

There are many different algorithms for solving eigenvalue problems numerically. We explored two methods for cases in which A is a real symmetrical matrix: Jacobi's and Lanczos' algorithms.

We outline the mathematical workings of each algorithm, describe their numerical implementation in C++ and apply them to the simple case of a single electron in a harmonic oscillator potential.

Theory

Numerical solutions to eigenvalue problems make use of similarity transformations:

$$\mathbf{B} = \mathbf{S}^T \mathbf{A} \mathbf{S}$$
, where $\mathbf{S}^T \mathbf{S} = \mathbb{1}$.

These are useful because they preserve the eigenvalues [?] and the orthogonality of the eigenvectors.

Proof. Consider an orthogonal basis of vectors

$$\mathbf{v}_i = \begin{bmatrix} v_{i1} \\ \vdots \\ v_{in} \end{bmatrix}, \quad \mathbf{v}_j^T \mathbf{v}_i = \delta_{ij}.$$

Let $\mathbf{w}_i = \mathbf{S}^T \mathbf{v}_i \mathbf{S}$. Then

$$\begin{aligned} \mathbf{w}_{j}^{T} \mathbf{w}_{i} &= (\mathbf{S}^{T} \mathbf{v}_{j} \mathbf{S})^{T} (\mathbf{S}^{T} \mathbf{v}_{i} \mathbf{S}) \\ &= \mathbf{S}^{T} \mathbf{v}_{j}^{T} \mathbf{S} \mathbf{S}^{T} \mathbf{v}_{i} \mathbf{S} \\ &= \mathbf{S}^{T} \mathbf{v}_{j}^{T} \mathbf{v}_{i} \mathbf{S} \\ &= \mathbf{S}^{T} \delta_{ij} \mathbf{S} = \delta_{ij}. \end{aligned}$$

Jacobi's algorithm

Direct methods determine the eigenvalues of a matrix A by performing a series of similarity transformations

$$\mathbf{S}_{N}^{T}\cdots\mathbf{S}_{1}^{T}\mathbf{A}\mathbf{S}_{1}\cdots\mathbf{S}_{N}=\mathbf{D},$$

such that \mathbf{D} is a diagonal matrix. Because similarity transformations preserve the eigenvalues, the diagonal elements of \mathbf{D} are the eigenvalues of \mathbf{A} . There is no uniquely defined series of similarity transformations which lead to

the matrix **B**. Jacobi's algorithm is one way of determining and performing these similarity transformations. Each iteration finds the maximum off-diagonal element of A, and performs a rotation along an axis to set that element to zero. This systematically reduces the Frobenius norm of the off-diagonal elements

$$\mathrm{off}(A) = \sqrt{\sum_{i=1}^n \sum_{j=1, j \neq i}^n a_{ij}^2}.$$

When this value close enough to zero, the algorithm ends giving approximate eigenvalues of

Lanczos' algorithm

Single electron in a harmonic oscillator potential

An electron in a harmonic oscillator potential can occupy energy levels given by the time independent radial Schrödinger equation [?]

$$-\frac{\hbar^2}{2m} \left(\frac{1}{r^2} \frac{\mathrm{d}}{\mathrm{d}r} r^2 \frac{\mathrm{d}}{\mathrm{d}r} - \frac{l(l+1)}{r^2} \right) R(r)$$

$$+ V(r)R(r) = ER(r).$$

$$(1)$$

Here R(r) is the radial wave function, V(r) is the harmonic oscillator potential, the quantum number l is the electron's orbital angular momentum, This is an eigenvalue problem where the eigenvalues E represent the energy levels. [\!/: scaling in methods]

Methods

Jacobi's algorithm

The Jacobi algorithm is implemented in three steps. First the program loops through the offdiagonal elements to find the maximum absolute value $|a_{kl}|$. Since the matrix is symmetric it only checks the lower elements. Second, it $[\cdot]$: add calcalculates the rotation angle. culation to theory Here, equation ?? can lead $h = (\rho_N - \rho_0)/N$ is the step length [?].

to loss of numerical precision when $\tau^2 >> 1$, so it's implemented as

$$t = \frac{(-\tau \pm \sqrt{1+\tau^2})(\pm \tau + \sqrt{1+\tau^2})}{\pm \tau + \sqrt{1+\tau^2}}$$
$$= \frac{\pm 1}{\pm \tau + \sqrt{1+\tau^2}}.$$

Third, the program performs the rotation. It temporarily stores the current values of **A** when needed, and overwrites the matrix with the new values.

Lanczo's algorithm

Scaling of the Schrödinger equation

In order to apply the algorithms above to equation 1, we introduce new variables to obtain a dimensionless equation. We only look at the case where l = 0.

By making the substitution R(r) = u(r)/r,

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}r^2}u(r) + V(r)u(r) = Eu(r)$$

We then define $\rho = t/\alpha$ where α is a constant with dimension length, giving $V(\rho) = k\alpha^2 \rho^2/2$, and thus

$$-\frac{\hbar^2}{2m\alpha^2}\frac{\mathrm{d}^2}{\mathrm{d}\rho^2}u(\rho) + \frac{k}{2}\alpha^2\rho^2u(\rho) = Eu(\rho).$$

Now we can choose α so that $mk\alpha^4/\hbar^2 = 1$ and define $\lambda = 2m\alpha^2 E/\hbar^2$, and rewrite the Schrödinger equation as

$$-\frac{\mathrm{d}^2}{\mathrm{d}\rho^2}u(\rho) + \rho^2 u(\rho) = \lambda u(\rho).$$

This equation can then be discretized, giving the eigenvalue equation $\mathbf{A}u = \lambda u$, where \mathbf{A} is a tridiagonal matrix

$$\mathbf{A} = \begin{bmatrix} d_1 & e_1 \\ e_1 & d_2 & \ddots \\ & \ddots & \ddots & e_{N-2} \\ & e_{N-2} & d_{N-1} \end{bmatrix},$$

with $e_i = -1/h^2$ and $d_i = 2/h^2 + \rho_i^2$, where

Results

Discussion

Conclusion

References