КЭШ-память

- 1 Многоуровневая организация памяти (виды и характеристики памяти).
- 2 КЭШ-память: основные определения и характеристика.
- 3 Основные виды КЭШ-памяти.
- 4 Эффективность применения.

Знать: место и роль кэш-памяти в иерархии памяти ЭВМ, способы отображения оперативной памяти на кэш-память и соответствующие им виды организации кэш-памяти (с ассоциативным, прямым, частично ассоциативным отображением, с отображением секторов), стратегии записи и замещения строк в кэш-памяти, преимущества и недостатки различных видов кэш-памяти.

Уметь: разработать структурную схему и микропрограмму работы кэш-памяти заданного вида.

Помнить:

Литература:

• Цилькер Б.Я., Орлов С.А. Организация ЭВМ и систем. Учебник для вузов. — СПб.: Питер, 2004. — 668 с. (с. 249-263).

1 Многоуровневая организация памяти

Связь КЭШ-памяти с процессором и ОЗУ

2 КЭШ-память: основные понятия и характеристика

- Основные понятия: принцип временной и пространственной локальности обращений к основной памяти (ОП); строка КЭШ-памяти; блок данных ОП; попадание; промах; тег; отображение блока ОП на кэш-память.
- Виды кэш-памяти в зависимости от способа отображения.
 - Ассоциативная.
 - С прямым отображением.
 - С частично-ассоциативным (множественноассоциативным) отображением.
 - С отображением секторов.

Стратегии записи (прямая запись)

- Прямая (сквозная) запись:
 - с распределением (отображением);
 - без распределения (отображения).
- Введем обозначения: s[a] слово с адресом a; ST[A] строка, содержащая слово s[a].

	ОП	КЭШ-память
s[a] есть в кэш-памяти	Запись	Запись
s[a] нет в кэш-памяти 1) Сквозная с распределением 2) Сквозная без распределения	Запись	Пересылка блока, содержащего s[a] из ОП в кэш-память

• Используется также сквозная буферизированная запись. Информация в начале записывается в кэш-память и специальный буфер, работающий по схеме FIFO.

Стратегии записи (обратная запись)

- При обратной записи слово заносится только в кэш-память. Обратная запись подразделяется на *простую* и флаговую (при изменении строки КЭШ-памяти устанавливается связанный с ней бит флажок).
- При флаговой обратной записи в процессе замещения строка из кэш-памяти переписывается только тогда, когда ее флажок установлен в «1».
- В среднем обратная запись на 10% эффективнее сквозной, но операции записи составляют от 5 до 34%, поэтому ее преимущество невелико.

Простая обратная запись

	ОП	КЭШ-память
s[a] есть в кэш- памяти	Нет записи	Запись
s[a] нет в кэш- памяти	Пересылка блока, содержащего s[a] из ОП в кэш-память	Запись
Чтение s[a] из ОП при обратной записи	Пересылка блока, содержащего s[a] из ОП в кэш-память	Чтение строки ST[A]

Алгоритмы замещения информации в заполненной кэш-памяти

- При прямом отображении выбор замещаемой строки не требуется, она определяется однозначно.
- Алгоритм замещения на основе наиболее давнего использования (Least Recently Used LRU).

– Исходные строки:	a	b	c	<u>d</u>
– Использована строка с:	c	a	b	d
Использована строка d:	d	C	a	b
– Записывается строка е:	e	d	c	a

- Алгоритм, работающий по принципу FIFO.
- Алгоритм замены наименее часто использованной строки (Least Frequently Used LFU).
- Простейший алгоритм случайного выбора замещаемой строки.

3 Основные виды КЭШ-памяти

Ассоциативная КЭШ-память

		,				OH
P	<u>A</u>		Накопитель КЭШ-памяти		00000000	CT0
		,	иткшып-шел		0000001	CT1
	P_0	CC	00000001	CT1	00000010	CT2
	$P_1 \leftarrow$	CC	00000010	CT2	00000011	CT3
	P_2	CC	00000111	CT7	00000100	CT4
	P_3	CC	00000000	CT0	00000101	CT5
	P_4	CC	00000011	CT3	00000110	CT6
			00001111	CT15	00000111	CT7
	P_5	CC	00001110	CT14	00000111	
	P_6	CC /	00010000	CT16		
	P_7	CC	0001000		11111110	CT254
	<i>- </i>				11111111	CT255

КЭШ-память с прямым отображением

КЭШ-память с частично ассоциативным

отображением					ОП		
A_{CT}	A_{MJJ}	$\left PA \right $	КЭШ-па	имять (бі	ток памя	ти)	<i></i>
	3	Α	D_0	A_{CT1}	\mathbf{D}_1	0000000	CT0
5		00000	CT0	00001	CT8	00000001	CT1
		00000	CT1	00001	СТ9	00000010	CT2
		00000	CT2	00001	CT10	00000011	CT3
		00000	CT3	00001	CT11	00000100	CT4
		00000	CT4	00001	CT12	00000101	CT5
		00000	CT5	00001	CT13	00000110_	CT6
		00000	CT6	11111	CT254	00000111	CT7
	\	00000	CT7	11111	CT255		• • •
	<u> </u>			<u> </u>		11111110	CT254
	C	C P_0	БД	CC	Р ₁ БД	7 111111111	CT255
	,	<u> </u>	$^{\dagger}\mathrm{D}^{0}$		* I) 1	

КЭШ-память с отображением секторов

Обращение к секторной КЭШ-памяти

- Основная память делится на сектора. Данные внутри сектора отображаются с помощью прямого, а номер сектора с помощью ассоциативного отображения.
- При обращении можно выделить три случая.
 - Попадание номер запрашиваемого сектора есть в АЗУ КЭШ-памяти и бит присутствия строки в выбранном блоке строк равен единице. Обращение считается успешным.
 - Запрашиваемого номера сектора в АЗУ нет. В этом случае адрес запрашиваемого сектора записывается в АЗУ и в БПС пересылается запрашиваемая строка. У данной строки бит присутствия устанавливается в единицу, у остальных строк этого БПС биты присутствия устанавливаются в ноль.
 - Номер запрашиваемого сектора в АЗУ есть, но бит присутствия требуемой строки равен нулю. Строка вводится и бит ее присутствия устанавливается в единицу.

4 Эффективность применения Возможности по отображению оперативной памяти на КЭШ-память различного вида

- Введем следующие обозначения: N разрядность адреса ОП, а n КЭШ-памяти (N>>n).
- Число К различных способов отображения ОП на КЭШ-память, влияющее на вероятность промаха приведено в таблице (N=20, n=12)

Кэш-память	Формула	Пример оценки
Ассоциативная	$K = (2^N)^{2n}$	K=3,12x10 ¹⁴⁴
С прямым отображением	$K = (2^{N-n})^{2n}$	K=6,28x10 ⁵⁷
С множественно- ассоциативным отображением	$K=(2^{N-m})^{2n}$ (m=logM, где M – число строк в множестве)	K=1,77x10 ⁷² (m=10)
Секторная	$K=(2^{N-n+s})^{2s}$ (s — число секторов)	K=1,16x10 ⁷⁷ (s=8)

Время считывания данных

Считывание из ОП		Считывание из КЭШ-памяти (попадание)		Считывание из КЭШ- памяти (промах)	
Действие	Число тактов	Действие	Число тактов	Действие	Число тактов
Выдача адреса	1	Выдача адреса	1	Выдача адреса	1
Ожидание RAM	2	Проверка КЭШ		Проверка КЭШ (нет)	1
Прием данных	1	Прием данных	1	Выдача адреса (ОП)	1
ВСЕГО	4	ВСЕГО	2	Ожидание RAM	2
				Прием данных	1
				ВСЕГО	6

Пример оценки эффективности применения КЭШ-памяти с прямым отображением

Размер КЭШ-памяти	Попадание	Выигрыш
	(%)	(%)
Нет КЭШ-памяти,		
динамическая память (2 такта		
ожидания)		-
16 Кб	81	35
32 Кб	86	38
64 Кб	88	39
128 Кб	89	39
Нет КЭШ-памяти, статическая	100	47
память вместо динамической		

• Емкость КЭШ-памяти составляет порядка 1/100-1/500 емкости основной памяти, а быстродействие в 5-10 раз выше.