Calculating Redox Potentials Using NWChem

Ab Initio Redox Potentials: the Born-Haber Cycle

[Ru(bpy)₃]²⁺(g)
$$\longrightarrow$$
 [Ru(bpy)₃]³⁺(g) + e⁻

$$\Delta G_{aq}(Ru(II))$$

$$[Ru(bpy)3]2+(aq) \longrightarrow [Ru(bpy)3]3+(aq) + e-$$

The redox potential $(E_m^{(2+/3+})$ is obtained from

$$\Delta G(\mathrm{aq}) = -\mathrm{n} \ \mathrm{F} \ \mathrm{E}_{m}^{(2+/3+)}$$

where n = 1, i.e. the number of electrons involved in the redox process, F = 96,500 C,

$$\Delta G_{\text{ox}}(\text{aq}) = \Delta G_{\text{ox}}(g) + \Delta G_{\text{aq}}(\text{Ru(III)}) - \Delta G_{\text{aq}}(\text{Ru(II)})$$

and

$$\Delta G_{\text{ox}}(g) = G[\text{Ru}(\text{bpy})_3^{3+}(g)] - G[\text{Ru}(\text{bpy})_3^{2+}(g)]$$

Example Calculation: Redox Potential for $[FeCp_2]^{0/+}$

As an example of how to do this part of the assignment, we will compute the redox potential

$$\Delta G(aq) = -n F E_m^{(0/+)}$$

from a calculation for the Gibbs free energy change, $\Delta G_{\rm ox}({\rm sol})$, for the reaction

$$[\operatorname{Fe}(\operatorname{II})\operatorname{Cp_2}]^0(\operatorname{solv}) \longrightarrow [\operatorname{Fe}(\operatorname{III})\operatorname{Cp_2}]^+(\operatorname{solv}) + e^-$$

$$\Delta G_{\operatorname{ox}}(g) \longrightarrow [\operatorname{Fe}\operatorname{Cp_2}]^+(g) + e^-$$

$$\Delta G_{\operatorname{solv}}(\operatorname{Fe}(\operatorname{II})) \longrightarrow [\operatorname{Fe}\operatorname{Cp_2}]^+(\operatorname{solv}) + e^-$$

$$[\operatorname{Fe}\operatorname{Cp_2}]^0(\operatorname{solv}) \longrightarrow [\operatorname{Fe}\operatorname{Cp_2}]^+(\operatorname{solv}) + e^-$$

Using the Born-Haber Cycle, we obtain:

$$\Delta G_{\rm ox}({\rm solv}) = \Delta G_{\rm ox}({\rm g}) + \Delta G_{\rm solv}({\rm III}) - \Delta G_{\rm solv}({\rm II})$$

where

$$\begin{split} &\Delta G_{\rm solv}({\rm II}) = {\rm E}_{\rm solv}^{\rm scf}({\rm II}) - {\rm E}_{\rm g}^{\rm scf}({\rm II}) \\ &\Delta G_{\rm solv}({\rm III}) = {\rm E}_{\rm solv}^{\rm scf}({\rm III}) - {\rm E}_{\rm g}^{\rm scf}({\rm III}) \\ &\Delta G_{\rm ox}({\rm g}) = \left({\rm E}_{\rm g}^{\rm scf}({\rm III}) + {\rm G}_{\rm Correction}({\rm g},\,{\rm III})\right) - \left({\rm E}_{\rm g}^{\rm scf}({\rm II}) + {\rm G}_{\rm Correction}({\rm g},\,{\rm II})\right) \end{split}$$

The correction for the free energy $G_{Correction}$ because of temperature is given by $G^0 = H^0 - TS^0$ where H^0 is the molecular enthalpy obtained from the minimum energy structure, and S^0 is the molecular entropy obtained from a frequency calculation.

Example Calculation: Redox Potential for $[FeCp_2]^{0/+}$

Tabulated Energies (au) from Calculations				
$[\mathrm{FeCp}_2]^0$		$[\mathrm{FeCp}_2]^+$		
$E_g^{scf}(Fe(II))$	-510.439067386	$E_g^{scf}(Fe(III))$	-510.170289413	
G _{Correction} (g, Fe(II))	0.134232	$G_{Correction}$ (g, $Fe(III)$)	0.132483	
$E_{solv}^{scf}(Fe(II))$	-510.444248948	$E_{solv}^{scf}(Fe(III))$	-510.239713457	

Calculated Free Energy Values (au)			
$\Delta G_{ m solv}({ m Fe}({ m II}))$	-0.005181562		
$\Delta G_{ m solv}({ m Fe}({ m III}))$	-0.069424027		
$\Delta G_{\rm ox}({ m g})$	+0.267028973		
$\Delta G_{\rm ox}({\rm solv})$	+0.202786508		

$$E_{m}^{0/+} = -\frac{(-0.202786508~au) \times 627.51~kcal/mol)}{(1) \times 96500~C/mol} \times \frac{4186~J}{kcal} \times \frac{1~V}{J/C} \approx 5.52~V$$

Experimental Determination of $\mathbf{E}_{\mathbf{m}}^{0/+}$ for $[\mathbf{FeCp}_2]^0$

Experimental Determination of ${f E}_{f m}^{0/+}$			
E ⁰ (Absolute Reduction Potential, NHE)	4.60 V		
E ⁰ (Saturated Calomel Electrode (SCE), Relative to NHE)	$0.26~\mathrm{V}$		
$E_{\rm m}^{0/+}$ (Relative to SCE)	$0.43~\mathrm{V}$		
$E_{\rm m}^{0/+}({ m Relative\ to\ NHE})$	5.29 V		

Notes on Comparing Calculated and Experimental Redox Potentials

- Experimental redox potentials are reported relative to a standard electrode.
- If the standard is the **Normal Hydrogen Electrode (NHE)**, then 4.60 V is either subtracted from the absolute reduction potential (i.e. the cost of free electron) or added to the absolute oxidation potential (return of remove electron) in order to determine the potential.
- Adjustment to other standard electrodes is straightforward, since their potentials relative to the NHE is known.

Exercises

Consider the redox pairs $[MCp_2]^{0/+}$, and $[MCp_2^*]^{0/+}$ where M=Fe, Co, and $Cp=\eta-C_5H_5$, $Cp^*=\eta-C_5Me_5$.

- 1. Obtain minimum energy structures for $[CoCp_2]^{0/+}$, $[FeCp_2]^{0/+}$, and $[FeCp_2^*]^{0/+}$, and compare them to the corresponding X-ray crystal structures.
- 2. Calculate the redox potential for the $[FeCp_2]^{0/+}$ pair in acetonitrile $(CH_3-C\equiv N)$ which will act as the standard electrode for Question #3.
- 3. Calculate the redox potentials for the $[CoCp_2]^{0/+}$ pair in acetonitrile $(CH_3-C\equiv N)$ relative to redox potential obtained for $[FeCp_2]^{0/+}$ in Question #2.
 - Compare your results to the experimental values given in Connelly, N.G.; Geiger, W.E., *Chemical Reviews.* 1996, 96, 877-910.
- 4. Construct an orbital interaction diagram for $FeCp_2$, and then use this to rationalize all the results obtained from Questions #1,#2, and #3.