PHOTOELECTRON CONTROLLING UNIT AND ITS AUTOMATIC SETTING METHOD FOR OPTIMUM GAIN

Patent Number:

JP7092266

Publication date:

1995-04-07

Inventor(s):

FOOKS ELIK I; DELANEY III PATRICK J; JOHNSON PHILIP E

Applicant(s):

ALLEN BRADLEY CO INC

Requested Patent:

□ JP7092266

Application Number: JP19930338584 19931228

Priority Number(s):

IPC Classification:

G01S17/02; G01B11/00; H03K17/78

EC Classification:

Equivalents:

JP2551732B2

Abstract

PURPOSE: To provide a photoelectron controlling unit which has a high degree of freedom for operation, and is resistant to noise, and in which the operating margin can be automatically decided.

CONSTITUTION: An electron system 60 is controlled by a microprocessor 62 having an input key pad 24, and transmits a pulse from an photo-transmitter 64. The reflected wave is detected by a phototransmitter 70, and is entered into a main variable gain part 74, and the output is divided into two, so that one of them is entered into a margin variable amplifier 84. This includes a multiple D/A convertor 86 and an amplifier 88, the output of the same is supplied to a margin comparing unit 94, to be compared with a reference signal from a reference voltage generator 92, and a margin signal SMAR is outputted. The other output is compared with the standard signal similarly, through an amplifier 80. and the main optical pulse detecting signal SDET is outputted. These signals are controlled by the microprocessor 62, and the operation margin value is specified, so that the main variable gain part 74 is automatically controlled to obtain the optimum gain.

Data supplied from the esp@cenet database - 12

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-92266

(43)公開日 平成7年(1995)4月7日

(51) Int.Cl. ⁶	識別記号 庁内整理番号	FI 技術表示箇所
G 0 1 S 17/02 G 0 1 B 11/00 H 0 3 K 17/78	Z Q B	
	4240 – 5 J	G 0 1 S 17/02 Z 審査請求 有 請求項の数23 OL (全 18 頁)
(21)出願番号	特顧平5-338584	(71)出願人 594003078 アレンープラッドレイ カンパニー, ア
(22)出願日	平成5年(1993)12月28日	イエヌシー. アメリカ合衆国, ウィスコンシン州 53204, ミルウォーキー, サウス セ
(32)優先日 (33)優先権主張国	1992年12月30日	カンド ストリート 1201 (72)発明者 エリック アイ. フックス アメリカ合衆国, マサチューセッツ州 02173, レキシントン, サンダーソン ロード 44 (74)代理人 弁理士 長谷川 芳樹 (外4名)
		最終頁に続く

(54)【発明の名称】 光電子制御ユニットおよびその最適利得自動設定方法

(修正有) (57)【要約】

【目的】 操作自由度が高く、動作余裕を自動決定で き、ノイズに強い光電子制御ユニットを提供する。

【構成】 電子システム60は、入力キーパッド24を 持つマイクロプロセッサ62により制御され、光送信器 64からパルスを送信する。反射波は光送信器70で検 出され、主可変利得部74に入り、その出力は二分さ れ、一方は余裕可変増巾部84に入る。これには多重D /A変換器86と増巾器88が含まれ、これの出力は余 裕比較器94に供給され、基準電圧発生器92からの基 準信号と比較され、余裕信号SMARを出力する。もう 一方の出力は増巾器80を経て同様に基準信号と比較さ れ、主光パルス検出信号SDETを出力する。マイクロ プロセッサ62はこれらを統制して、動作余裕値を特定 し、最適利得が得られるように主可変利得部74を自動 制御する。

【特許請求の範囲】

【請求項1】 光パルスを期間を区切って出力し、これに同期して戻り光パルスを検出することにより対象物の存在を検出するための光電子制御ユニットにおいて、

光パルスを期間を区切って出力し、これに同期して戻り 光パルスを検出するための電子システムと、

操作者に前記電子システムの制御を許可し、その制御機 能を発揮させる操作者インターフェースとを備え、

前記電子システムは、制御システムの動作特徴(operat ional features)が標準化されていることにより複数の 異なる制御機能を有するマイクロプロセッサ制御システムを含み、

前記操作者インターフェースは、

- a) 前記制御機能の選択および動作に関連して表示される前記電子システムの1または2以上の前記制御機能の各々に対応する複数の表示アイコンと、
- b) 制御パラメータの選択における前記制御機能の動作に従い、前記アイコンの表示との関連において数値を表示するための数値表示手段と、
- c) 前記機能の選択と前記機能に従った数値の選択の 20 ために前記アイコンの表示に関連して操作者に入力を許可するためのキーパッドとを備えている

光電子制御ユニット。

【請求項2】 請求項1に記載の光電子制御ユニットにおいて、前記数値表示手段は、前記光電子制御ユニットの機械的位置合せを行っている間の支援要素としての動作余裕値を表示するためにも動作する

光電子制御ユニット。

【請求項3】 請求項2に記載の光電子制御ユニットにおいて、

前記複数のアイコンとそれに関連する制御機能は、

- a) 動作余裕決定の特徴を表示する第1アイコンと動作 余裕決定機能、
- b) 時間遅延の特徴を表示する第2アイコンと出力時間 遅延を設定する機能、および、
- c) 明環境動作の特徴と暗環境動作の特徴をそれぞれ表示する第3、第4アイコンと、明環境モードか暗環境モードかを選択する機能

を含む光電子制御ユニット。

【請求項4】 請求項3に記載の光電子制御ユニットに 40 おいて、

前記複数のアイコンとそれに関連する制御機能は、

- d) パルス繰り返し速度の特徴を表示する第5アイコンと、パルス繰り返し速度選択機能、および、
- e) ヒステリシス選択の特徴を表示する第6アイコンと、ヒステリシス選択機能

を含む光電子制御ユニット。

【請求項5】 光パルスを期間を区切って出力し、これに同期して戻り光パルスを検出することにより対象物の存在を検出するための光電子制御ユニットであって、

- a) 前記光検出器からの出力の振幅値を、第1信号経路 上の固定基準信号の振幅値と比較する過程、
- b) 前記光検出器からの前記出力の振幅値と前記固定基準信号の前記振幅値とが一致するときの特定利得値を決定するために第2可変利得信号経路上の利得値を変化させる過程、および、
- c) 前記光電子制御ユニットの動作余裕の値を前記特定 利得値に基づいて調べる過程、

によって生成される動作余裕値を数値表示する手段を有 する光電子制御ユニット。

【請求項6】 請求項5に記載の光電子制御ユニットに おいて、

動作余裕の数値表示を行うための前記過程は、

d) 前記光検出器からの出力の振幅値が前記第2信号経路上の前記基準信号の振幅値に一致する範囲内に入るまで、前記光検出器からの出力に前記両方の信号経路上で影響を与える前記利得を抑制する過程、

をさらに含む光電子制御ユニット。

【請求項7】 請求項5に記載の光電子制御ユニットに

動作余裕の数値表示を行うための過程の中の利得値を変 化させる前記段階は、

信号減衰を調整するために前記第2信号経路上に配置された多重D/A変換器に対してデジタル信号入力を変化させ、これによって利得値を変化させる段階を含んでいる光電子制御ユニット。

【請求項8】 請求項5に記載の光電子制御ユニットに おいて、

動作余裕の数値表示を行うための過程は、マイクロプロ 30 セッサシステムによって統制されており、

このマイクロプロセッサは利得値を変化させるためのソ フトウエア制御のもとで動作し、

その利得値の変化は、多重A/D変換器を統制することと、前記信号経路上に配置されたコンパレータの出力を 追跡することによって行われ、

このコンパレータ出力の追跡は、前記経路上の信号振幅 値を前記基準信号の振幅値と比較し、前記特定利得値に 基づいてルックアップテーブルから前記動作余裕値を調 べることにより行われる光電子制御ユニット。

【請求項9】 対象物の存在を検出するための光電子制御ユニットにおいて、 前記ユニットは異なる光パルス繰り返し速度の選択を操作者に許すのに適しており、

光パルスを時間的に区切って発生する手段と、

複数の異なる光パルス繰り返し速度の設定の中の一つを 操作者が選択し得るための操作者インターフェース手段 と、

操作者によって選択される前記複数の繰り返し速度の設定に対応して前記光パルスの繰り返し速度を制御するための手段と、

50 操作者によって選択される前記繰り返し速度の設定機能

として、前記パルス発生手段に対する電流値制御手段 と、を備えている光電子制御ユニット。

【請求項10】 請求項9に記載の光電子制御ユニット において、

前記光発生手段は発光ダイオードを備えている光電子制御ユニット。

【請求項11】 請求項9に記載の光電子制御ユニット において、

前記操作者インターフェース手段は、繰り返し速度の選択が為されたときに表示されるアイコン表示部と、選択 10 された繰り返し速度の設定を示す数値表示部を含む光電子制御ユニット。

【請求項12】 マイクロプロセッサ制御ユニットと、 光パルスを発生するために前記制御ユニットに接続され た光源と、

前記光源から発生した戻り光パルスを検出するために配 置され、光検出出力信号を出力する光検出器と、

主出力信号を発生するために、前記制御ユニットよって 与えられた利得設定値に応じて前記光検出器からの前記 出力信号を増幅するための第1可変利得増幅部と、

余裕出力信号を発生するために、前記制御ユニットよって与えられた利得設定値に応じて前記第1可変利得増幅部からの前記主出力信号を増幅するための第2可変利得増幅部と、

を備えた光電子制御ユニット。

【請求項13】 請求項12に記載の光電子制御ユニットにおいて、

前記第1可変利得増幅部と前記第2可変利得増幅部のそれぞれは、

固定増幅器と、

利得レベルを調整するために、前記マイクロプロセッサ 40 制御ユニットの制御の下で動作する減衰器としての多重 D/A変換器とを備えていることを特徴とする光電子制 御ユニット。

【請求項14】 請求項12に記載の光電子制御ユニットにおいて、

前記マイクロプロセッサ制御ユニットは、内部にソフト 的に区切られて前記標的のウエアプログラムを有する記憶部を備え、そのソフトウ 光検出器による同期検出な エアプログラムは前記可変利得増幅部の利得設定を操作 において、 すること、および、結果としての出力レベルを特定する 背景状況の下で前記光電・ための比較信号を用いることによって動作余裕を決定す 50 出信号を発生する過程と、

7

るためのものである光電子制御ユニット。 【請求項15】 請求項12に記載の光電子制御ユニットにおいて、

前記光源は発光ダイオードを有し、前記光検出器はフォトダイオードを有する光電子制御ユニット。

【請求項16】 標的物が存在するであろう標的範囲を 横切るように方向付けされた光パルスを発生する光源 と、

前記標的範囲からの戻り光パルスを検出し、前記標的範囲での標的物の有無を表す前記パルスの有無を示すものとしての光検出出力信号を出力する光検出器と、

前記光検出器からの前記出力信号を増幅し、この信号を 基準レベルと比較して

パルス検出信号を発生するための第1増幅経路と、

前記光検出器からの前記出力信号を増幅し、この信号を 基準レベルと比較して余裕レベル特定信号を発生するた めの第2可変利得増幅経路と、

前記第2可変利得増幅経路の利得を変化させ、前記前記 パルス検出信号および余裕レベル特定信号を追跡して動 作余裕を決定するための制御手段と、

を備えた光電子制御ユニット。

【請求項17】 請求項16に記載の光電子制御ユニットにおいて、

前記光検出器出力信号を前記第1および第2経路へ供給 する前に増幅するための主可変利得部をさらに備え、

前記制御手段は、前記主可変利得部の利得を変化させる のに適合し、これによって前記2つの経路の各利得レベ ルを抑制できることを特徴とする光電子制御ユニット。

【請求項18】 請求項16に記載の光電子制御ユニットにおいて

前記第2可変利得増幅経路は、

利得を変化させるために前記制御手段の制御下に置かれ た第1減衰器と、

第1固定利得増幅器と、

前記第1固定利得増幅器からの出力信号を基準レベルと 比較するための比較器とを備えていることを特徴とする 光電子制御ユニット。

【請求項19】 請求項18に記載の光電子制御ユニットにおいて、

前記減衰器は多重D/A変換器を有し、前記制御手段は ソフトウエア制御の下で動作するマイクロプロセッサシ ステムを有することを特徴とする光電子制御ユニット。

【請求項20】 可変利得増幅部により増幅されて標的 範囲の標的物の有無の表示を提供することに用いられる 検出信号を生成するために、光源からの光パルスが時間 的に区切られて前記標的範囲を横切るように出力され、 光検出器による同期検出が行われる光電子制御ユニット において、

背景状況の下で前記光電子制御ユニットを用いて第1検 の 出信号を発生する過程と、

前記光電子制御ユニットの動作余裕値が固定オフ余裕し きい値 (fixedOFF margin thres hold) に至るまで前記増幅部の利得を減少させる過 程と、

標的状況の下での前記システムの初期動作余裕値を固定 オン余裕しきい値 (fixed ON margin threshold)と比較する過程と、

初期動作余裕値が前記オン余裕しきい値を越えていれ ば、前記利得設定値を前記増幅部のそのときの利得値に 設定する過程と、

を有する前記増幅部の最適利得設定値を自動的に設定す る方法。

【請求項21】 請求項20に記載の光電子制御ユニッ トの最適利得自動設

定方法において、

前記システムの初期動作余裕値が前記オン余裕しきい値 を越えていなければ、前記システムの動作余裕が前記オ ン余裕しきい値に至るまで前記増幅部の利得を増大させ

前記オフ余裕しきい値に至ったとき、および、前記オン 20 余裕しきい値に至ったときの前記増幅システムの利得に 基づいた最適値に前記利得設定値を設定する過程と、を さらに有する最適利得自動設定方法。

【請求項22】 請求項21に記載の光電子制御ユニッ トの最適利得自動設定方法において、

前記最適値は、次式

最適利得設定值= (2×利得值1×利得值3) / ((2 ×利得値3) + (オフ余裕×利得値1))

となるのに必要な利得) オフ余裕=(背景状況下の間 に測定された最小のオフ動作余裕値)

利得値3=(背景状況の下で0.3のオフ動作余裕値が 生成されたときの利得)

に従って算出されることを特徴とする最適利得自動設定 方法。

【請求項23】 請求項20に記載の光電子制御ユニッ トの最適利得自動設定方法において、

利得を増加および減少させる前記過程は、1または2以 上の多重D/A変換器によって与えられる滅衰を統制す ることにより達成されることを特徴とする最適利得自動 設定方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、光電子検出器に関す るものであり、特に、時間的に区切って光パルスを出射 し、その戻りパルスを同期検出する光電子制御ユニット に関するものである。

[0002]

[従来の技術] 従来、光電子制御ユニットは、複数の型 50

6

の範囲内で製造されてきており、各型のそれぞれが特定 種類の適用環境に適したものであった。さらに、光電子 制御ユニットは、動作時の最新の設定や状態についての 有用な情報を十分に操作者に提供するようには設計され ていなかった。その結果、光電子制御ユニットは異なる 種類の適用環境で用いられるための柔軟性を有しておら ず、また、適用分類に応じた情報、例えば、操作者がそ のユニットを位置決めするために使う情報を十分に多く 提供することができなかった。

【0003】ある光電子制御ユニットが、マイクロプロ 10 セッサ制御の下で動作するにもかかわず、これらのユニ ットは、特にユーザーフレンドリイであるとか、異なる 適用分類に適した広範囲の動作設定を操作者に与えると いうような設計がされていなかった。

【0004】さらに、多くの光電子制御ユニットは、光 電子制御ユニット自身のパルス繰り返し速度と同じ周波 数で発生する電気的または光学的なノイズに起因する誤 った信号を提供しやすい。このようなノイズは、近くに ある他の光電子制御ユニットに起因することもあるし、 同等の動作周波数を有する他の機械に単に起因すること もある。にもかかわらず、ノイズがパルス繰り返し速度 の周波数であるときに、従来のパルス計数および同期検 出技術はこのノイズ問題を排除することができなかっ た。

【0005】さらに付け加えると、多くの従来光電子制 御ユニットは、動作余裕の正確な計測をすることができ ず、また、全体動作の安定性を示す信頼性表示をしてい なかった。一般に、ほとんどの光電子制御ユニットが動 作する狭い電圧範囲のために、また、そのような電圧範 利得値1=(標的状況の下でオン動作余裕が最大2.0 30 囲を越えたときに生ずる増幅飽和の問題のために、動作 余裕を決定することが困難であった。 つまり、光電子制 御ユニットが自己の動作余裕を広範囲に亘って正確に決 定できるような満足できるシステムは開発されていなか

【0006】さらに、動作余裕の計測ができたとして も、光電子制御ユニットの動作安定性を決定することは 困難であった。光電子制御ユニットは、動作余裕を満足 する水準であるにも関わらず動作安定性を下げ得る動作 環境における高いノイズレベルによって影響されること 40 がある。

[0007]

【および発明が解決しようとする課題】そこで、本発明 の目的は、ユーザーフレンドリな操作者インターフェー スを有する光電子制御ユニットを提供することにある。 ここに、ユーザーフレンドリな操作者インターフェース とは、光電子制御ユニットが多数の異なる利用形態に適 用できるように、使いやすく、かつ、理解しやすい方法 で動作設定を広い範囲に亘って操作者が制御できること をいう。

【0008】本発明の他の目的は、光電子制御ユニット

自身の繰り返し速度と同じ周波数で発生する電気的ノイ ズおよび光学的ノイズに強い標的捕捉システムを備えた 光電子制御ユニットを提供することである。

[0009] 本発明のさらに別の目的は、動作余裕とノ イズに関する機能として、信号レベルの広い範囲に亘っ て自己の動作余裕を正確に計測でき、その動作安定性に ついて信頼できる表示ができる光電子制御ユニットを提 供することにある。

【0010】本発明のさらに他の目的は、パルス繰り返 し速度および動作範囲がユーザーフレンドリな操作者イ 10 ンターフェースの利用を介して操作者によって選択でき る光電子制御ユニットを提供することにある。

【0011】本発明のさらに他の目的は、操作に柔軟性 があり、操作者に有用な情報をフィードパックし、動作 に関するその他の信頼性を有し、そして、合理的な費用 で製造できる光電子制御ユニットを提供することにあ

[0012]

【課題を解決するための手段および作用】本発明は、時 間的に区切って光パルスを出力し、戻りパルスを同期検 出するのに適した光電子制御ユニットで構成される。こ の光電子制御ユニットは、動作余裕を決定するための可 変利得部と、ユニットの電子システム全体を操作者が制 御できようにするための多重機能を持つ操作者インター フェースと、周波数をもつ背景障害があるにもかかわら ず標的物を高い信頼性で捕らえるための特別なパルスタ イミングの特徴を有する標的捕捉システムと、動作余裕 およびノイズの働きについての動作安定性を表示するシ ステムとを含む特別なシステム構成を備えている。

【0013】このシステム構成は、システムの光検出器 からの出力をそれぞれが取り込んで増幅する2つの信号 経路を含み、両方の信号経路上の信号レベルを共通基準 レベルと別々に比較するための比較器を含む。しかし、 第2信号経路は、この信号経路上の利得を調整できる可 変利得部を含み、この調整によって、異なる値の中のい くつかの値をとることができる。動作余裕は、第2信号 経路上の利得をこの経路上に搭載された比較器が状態を 切り替えるまで調整すること、および、この調整時の利 得値を動作中の第1信号経路の利得値と比較することに より決定される。好適な実施例においては、可変利得部 が光検出器から2つの信号経路に導かれた単一の経路上 に搭載されている。これは、主利得値を低下または抑制 して、決定される動作余裕の範囲を増大させるためであ る。さらに、この好適な実施例は、背景状況および標的 状況の下での動作余裕の計測を利用して最適な動作を行 わせるためのシステム感度を自動的に設定するためのシ ステムを含んでいる。

[0014] 操作者インターフェースは、複数の表示ア イコンを含んでおり、それぞれは、1または2以上の制 御機能に関連している。これらのアイコンは、制御機能 50 は、レンズ 14 から出力され鏡 18 に至る光パルスの光

の選択と動作に関連して表示される。このインターフェ ースは、アイコンに関連する数値を表示するため、およ び、制御パラメータの選択を支援するための数値表示手 段も含んでいる。さらに、好適な実施例においては、こ の数値表示手段は、動作余裕の表示のためにも動作す る。この動作余裕は、この光電子制御ユニットの機械的 な位置決めを助けるものとして表示される。さらに、操 作者インターフェースは、光パルス繰り返し速度の一つ を利用者が選択できるようになっており、これによっ て、動作環境の要求に応じたユニットの速度、逆にいえ ば検出範囲を自動的に調整できる。

【0015】背景雑音問題の克服を助けるために、標的 捕捉過程中で出力される光パルスは、疑似ランダムジッ 夕要素に従わなければならない。 このようなジッタ要素 は、選択された光パルス間での光パルス間時間を変化さ せる。パルス間の時間を変化させることにより、正規の パルス繰り返し速度の周波数上の電気的および光学的ノ イズに対して免疫が与えられる。ジッタ技術は、連続パ ルスの受信の異なるパターンが標的検出の判断基準を確 立する場合において、様々なアルゴリズムに対して適用 される。例えば、標的の存在を表示するために、4つの 連続する戻りパルスを受信すべきであるとすると、最初 の戻りパルスが検出された後、送信される次の(すなわ ち、第2、第3および第4の)光パルスは、疑似ランダ ム型要素によって遅延される。これは、同期検出過程に 従って正規のパルス繰り返し速度周波数で発生するノイ ズを避けるためである。

【0016】この光電子制御ユニットの動作安定性は、 光電動作余裕の測定と背景雑音の測定によって決定さ 30 れ、これらの量の関数として動作安定指数を発生する。 好適な実施例においては、動作余裕は2重経路システム 構造を用いて生成されるものであり、ノイズは、パルス 間期間で発生したノイズバルスを計数することにより測 定される。安定指数は、動作余裕と背景雑音のファジィ 論理要素関数に従って決定され、光電動作余裕と背景雑 音に対する安定性に関連するファジィ論理規則に従って 決定される。このファジィ論理技術は、動作安定指数を 経験上の事実を反映させ得るものであり、これにより、 現実の世界での経験に対応した安定状態の望ましい表示 を提供することができる。

[0017]

【実施例】図1を参照する。 同図において、光電子制御 ユニット10は、電気要素および光学要素と、光出力を 導くと共に、光入力を集光するための1組のレンズ1 4, 16とを搭載する筐体12を有するものとして示さ れている。光電子制御ユニット10は、情報表示手段2 2と入力キーパッド24を有する操作者インターフェー スパネル20も含んでいる。

【0018】図2を参照する。光電子制御ユニット10

ビーム30を送信するための構造を有している。鏡18 は、ユニット10の電子要素によって反射光パルスの同期検出を行うために、反射光パルスの光ビーム32をレンズ16に向ける。光ビーム30および32は、光電子制御ユニット10と鏡18との間の光経路を明確に定義する。検出されるべき標的物34は、光電子制御ユニット10と鏡18の間を通過したとき、この光経路は遮断され、光電子制御ユニット10は、標的物24の存在を検知して、標的物の存在を示す出力信号を生成する。しかし、光電子制御ユニット10はさまざまな形式で動作し得ることを理解すべきである。ここに、様々な形式とは、上述したような後方への反射を検出する場合の他に、たとえば、検出すべき標的物で反射された光の「透過光」検知や「近接散乱」検知などがある。

 $[0\ 0\ 1\ 9]$ 図3には、操作者インターフェースパネル $2\ 0$ が示されている。操作者インターフェースパネル $2\ 0$ は、3桁の数値表示手段 $4\ 0$ と $1\ 2$ 種類の表示アイコン $4\ 1\sim5\ 2$ で特徴付けられる透過反射型TNFT液晶表示手段 $2\ 2$ を含んでいる。表示アイコン $4\ 1\sim5\ 2$

は、制御情報を表示するための視覚的なインターフェー*20

*スを提供するものである。表示手段22は、背後からの 照明をするための発光ダイオード (LED) を含む。キ 一パッド24は、それぞれ、アップ、ダウンおよび入力 に対応する3つの別々の入力キー24a, 24b, 24 c を含む。表示手段26は、別々の3つのLED26 a, 26b, 26cを含む。LED26aは、電源が光 電子制御ユニット10に与えられたときに表示され、L ED26 bは、光電子制御ユニット10が出力信号を発 生しているときに表示され、26 c は、光電子制御ユニ ット10の光電子安定指数(詳しくは、図14と共に後 に説明する) が固定しきい値よりも大きいときに表示さ れる。アイコン41~52は、キー24a~24cに関 連して動作し、これにより操作者は、光電子制御ユニッ ト10に付随する多くの異なる制御オプションを予め選 択することができる。アイコン $41\sim52$ とそれらに関 連する動作機能およびメニュー分類は、表1のアイコン 表示一覧表に示されている。

10

【0020】 【表1】

アイコン表示一覧表

アイコン	関連機能	メニュー分類
LO	明動作モード	モード設定…光検出器が 光を認識したときに 出力がオン
DO	暗動作モード	モード設定…光検出器が 光を認識したときに 出力がオフ
LRN	学智…自動利得設定	自動変数…利得值
нч	ヒステリシス設定	変数設定…リステリシス量
SEN	感度設定	変数設定…利得值(手動)
ON	オン遅延モード (DLYと共に用いられる)	変数とモードの設定…オン 出力タイミングの遅延
OFF	オフ遅延モード (DLYと共に用いられる)	変数とモードの設定…オフ 出力タイミングの遅延
ONS	ワンショットタイミングモー	ド 変数とモードの設定…ワン ショット出力のタイミング
орт	オプションモードと設定	変数設定…バルス 操り返し速度
MAR	余裕表示	動作表示確認をするもの
SCP	短絡保護	診断表示をするもの、過剰 出力電流を表示するために SCPが明滅する。
DLY	(オンまたはオフ) 遅延モー	ド モードと変数の設定… 出力タイミング機能

【0021】実行モードおよびプログラムモード中に視 覚表示を行う際のアイコン41~52とそれらに関連す る動作は表2のアイコン動作一覧表に表示されている。 【0022】 【表2】

アイコン表示一覧表

アイコン	実行モード	プログラムモード
LO	明動作モードが選択されて いるとき、常に活性状態	暗動作モードが選択 されているときに、 主メニューサイクル においてSENの後に 活性
DO	暗電流モードが選択されて いるとき、常に活性状態	明動作モードが選択 されているときに、 上メニューサイクル においてSENの後に 活性
LRN	感度機能が働くまで、 LRNの後に活性状態	主メニューサイクル の学習機能の間、活性
нч	小さなヒステリシスが 選択されたときに 活性状態	主メニューサイクルの 設定機能の間、活性
SEN	動作しない	主メニューサイクルの 設定機能の間、活性
ON	零以外のオン遅延が選択 されれば活性状態	主メニューサイクルの 「DLY」機能の間、活性
OFF	案以外のオフ遅延が送択 されれば活性状態	同上
ONS	客以外のONS (ワンショット) 遅延が選択されれば 活性状態	同上
OPT	動作せず	主メニューサイクル 「OPT」機能の間、活性
MAR	常に活性状態	信号メニュー出口まで (実行モードまで) 活性
SCP	短絡保護が保証 されているときは常に点灯	同た。
DLY	オン、オフ乂は ワンショット遅延が 零であれば、活性状態	オン、オフ又はワンショット 遅延機能の間、活性

【0023】光電子制御ユニット10が「プログラムモ ード」であるときは、常に、入力キー24cが最初に押 された後に、アイコン $41\sim52$ がメニュー項目の2つ にまとめられた水準に対応する。上位水準は、矢線キー 24aと24bとが押されたときに、SEN, LO/D O, LRN, HY, ON/DLY, OFF/DLY, O PT, OPT, MARの各アイコン45, 41/42, 43,44,46/52,47/52,48/52,4 40 することにも用いることができる。表示手段40に表示 9,50の間で循環する。入力キー24cが押されたと き、表示されたアイコンに対応する機能が、異なる形式 のモードの選択またはパラメータ設定のために入力され る。矢線キー24aおよび24bの押圧は、設定値やモ ードを変更せずに残したまま、あるいは、値のない状態 で、そのメニューシステムを次のあるいは前のメニュー 項目へ進める。一方、特定の機能が達成されたときは、 メニューシステムは、他の設定をすることなく自動的に 次に表示されたメニュー項目に進む。

45に対応する感度設定機能が入力されているときは、 数値表示手段40が増幅システムのための主利得レベル 設定値を表示するために動作する。この表示は、ユニッ ト10のパルス検出電子回路に関連する増幅システムの ために、任意に定められた1~250のスケール上で行 われる。矢線キー24 a および24 b は、パルス検出信 号増幅システムのための新しい利得レベルを手動で設定 された利得値は、入力キー24cが再び押されたとき に、新しい利得レベルとして用いるために選択される。 【0025】LO/DOアイコン41または42に対応

する明動作選択機能または暗動作選択機能が入力されて いるとき、ユニット10は、入力キー24cが押される たびに、相反するモードの間で切り替えが行われる。も し、光電子制御ユニット10が明動作モードであれば、 入力キー24cが押されると、暗動作モードに切り替わ る。反対に、光電子制御ユニット10が暗動作モードで 【0~0~2~4】 さらに詳しく説明すると、SENアイコン~50 入力キー2~4~c が押されると、明動作モードに切り替わ

1 7

る。明動作モードが選択されるたびに、LOアイコン4 1が表示される。

[0026] LRNアイコン43に対応する学習機能が 入力されているとき、光電子制御ユニット10は「無 光」状態と「光」状態の両方を「学習」し、その後、最 適システム感度となるパルス検出増幅システムに関する 利得設定値を設定する。この学習については、図11と 共にさらに詳しく説明する。学習機能は、明動作か暗動 作かについての利用者の選択とは独立であることに留意 すべきである。光電子制御ユニット10は最初は「無 光」状態に設定されていなければならない。このとき、 明動作モードにおいてはオフ状態にしようとするもの全 てが検出器に最初に与えられており、暗動作モードにお いてはオン状態にしようとするもの全てが、検出器に最 初に与えられる。学習機能の最後においては、光電子制 御ユニット10は動作余裕の数値表示とMARアイコン 50の表示を伴う実行モードに戻る。LRNアイコン4 3は、学習機能が感度設定機能にしたがって手動で変化 している間は、利得設定値が学習により得られるまで表 示される。

【0027】HYアイコン44に対応するヒステリシス機能が入力されているときには、入力キー24cが押されたときに、システムは大きなヒステリシス量(例えば、20%)と小さなヒステリシス量(例えば、5%)の間で切り替わる。設定値選択過程の間に、数値表示手段40は、狙った選択を表示するシンボルである「hi」または「10」のいずれかを表示する。ヒステリシス量の小さいほうが選択されたときは、HYアイコン44はシステムが小さいヒステリシスで動作していることを表示する点灯がなされる。

【0028】DLYアイコン52に対応する出力時間遅延設定機能が入力されているときには、表示手段20は、ONアイコン46、OFFアイコン47またはONSアイコン48の点灯によって、そのとき選択された、あるいは実行されない(default)遅延の形式、(オン遅延かオフ遅延か、あるいはワンショットか)を表示する。一方、数値表示手段40は遅延時間の設定を表示する。矢線キー24aおよび24bは、入力キー24cによって選択される遅延機能を変更するために用いられる。矢線キー24aおよび24bは、次に、遅延時6れる。矢線キー24aおよび24bは、次に、遅延時6れる。矢線キー24aおよび24bは、次に、遅延時6の異なる量を順に繰り返すために数値表示手段40を制御する。所望の遅延時間値は入力キー24cを押すことにより選択される。この遅延機能に従った遅延時間選択過程は、すべての遅延に関する項目が実行され、あるいは、通過するまで続けられる。

【0029】OPTアイコン49に対応する選択機能 (option function) が入力されているときには、数値 14

表示手段40は、そのときに選択された光パルス繰り返し速度またはこれを選択しないことを表示する。矢線キー24aおよび24bは、光電子制御ユニット10が動作する際の異なる繰り返し速度を与える異なる数値(1,2または3)が順に表示されるように数値表示手段40を制御するために用いられる。所望の繰り返し速度は入力キー24cを押圧することにより選択することができる。

[0030] 光電子制御ユニット10は、光パルスを送 信し検出することおよび出力信号を与えることについて は、学習機能および選択機能が実行されているとき以外 において、有効に動作することに留意すべきである。さ らに、光電子制御ユニット10は、「実行モード」に自 動的に戻り、6秒間のキーパッド非活性状態の後にMA Rアイコン50が表示される。ただし、この6秒間の非 活性状態は、学習機能中での非活性状態以外に求められ る。学習機能は、45秒間という長い非活性状態が実行 モードに戻るために要求される。光電子制御ユニット1 0が、図10のルーチン200に対応する余裕決定機能 20 が有効であることを表示するMARアイコン50と共に 実行モードにあるときは、数値表示手段40は、そのと きの動作余裕を0.2から96までのスケールで表示す る。この動作余裕は、光電子制御ユニット10を、最適 検出結果を得るために機械的に位置決めできるようにす るものである。

【0031】ここで、図4を参照する。本発明の光電子 制御ユニット10の電子システム60は、光電子制御ユ ニット10の全ての機能を統制するソフトウエアプログ ラムを実行させるためのマイクロプロセッサシステム 6 30 2を含む。システム60は、光電子制御ユニット10か ら出力されるためにレンズ14によってコリメート(平 行光線化) された時間的に区切られた光パルスを発生す るLED(発光ダイオード)64も備えている。この光 パルスは電流駆動部66からLED64に対して供給さ れる電流パルスに対応して生成される。電流駆動部66 は、マイクロプロセッサシステム62の制御の下で動作 する。発光ダイオード64によって出力され光電子制御 ユニット10に戻る光はレンズ16により集光され、こ れにより、その光をフォトダイオード70によって取り 込むべく受光する。マイクロプロセッサシステム 6 2 は、繰り返し速度と電流振幅の両方を統制し、その結 果、操作者が選択した繰り返し速度に応じた光パルスが 得られる。繰り返し速度の選択は、表3に示す繰り返し 速度に関し、OPTアイコン49に対応する選択機能に 従って行われる。

[0032]

【表3】

繰り返し速度

1

繰り返し速度一覧表

基本応答時間 ピーク電流 基本周波数 1. OA 1000ヘルツ 4 m s

1. 6ms 2 2500ヘルツ 0.8ms 5000ヘルツ 3

[0033] 繰り返し速度は、図9の制御ルーチン17 0 の中で用いられるリプレート (reprate) カウ ンタに対して基本の値を設定することにより制御され る。制御ルーチン170は、線路65上の駆動部66に 対して供給するパルス制御信号の信号間隔時間を統制す る。駆動部66の利得は、パルス電流値を制御するため に線路67上の信号を制御することにより統制される。 ピーク電流は、LED64に対する過負荷を避けるため にパルス繰り返し速度あるいはその他のことと調和を取 りながら制御されなければならない。LED64に対す る過負荷は、与えられた周期(duty cycle) においてピーク電流が増大した結果生じるものである。 システムの応答時間と検出範囲の間には、一般にトレー ドオフが存在することに留意しなければならない。つま り、繰り返し速度が増加すると、応答時間が改善される が、検出範囲は狭くなる。光電子制御ユニット10は、 利用者に対して、その利用者が求める応答時間と検出範 囲に最も適合した繰り返し速度を選択するための自由度 を与える。図5はグラフ71および73を示し、グラフ 71および73は、ぞれぞれ繰り返し速度1および2に おけるパルス列75および77を示す。パルス75a~ 75cおよび77a~77eは同一のパルス存続期間を 持つが、パルス77a~77eは、2分の1の振幅と、 2倍の発生頻度と、2分の1の周期を持つ。

[0034] フォトダイオード70は、固定利得のトラ ンスインピーダンス型増幅器72に接続されている。こ の増幅器72は入力インピーダンスが低く、フォトダイ オード70の電流信号を、主可変利得部74に供給され る電圧に変換するものである。主可変利得部74は、マ イクロプロセッサシステム62からの制御信号に応じて 利得の調整を行う多重D/A変換器76と、信号利得量 をさらに引き上げるための固定利得増幅器78とを備え ている。主可変利得部74の出力は、第1経路Aを経て *40* 固定利得増幅器80に与えられ、また、第2経路Bを経 て余裕可変利得部84にも与えられる。

【0035】固定利得増幅器80は、検出比較器90に その出力を供給する。検出比較器90は、マイクロプロ セッサシステム62の制御の下で、増幅器80の出力振 幅を基準電圧発生器92から供給される基準電圧の振幅 と比較する。検出比較器90は、LED64によって出 力された光パルスに同期してユニット10が受ける反射 光を表示するものとして、マイクロプロセッサシステム 62に供給される主光パルス検出信号 S_{0ET} を生成す 50 が表示され、これに関連する機能が入力可能状態とな

る。

[0036] 比較電圧発生器92は、4つの基準出力を 提供するためにマイクロプロセッサシステム62によっ て制御される。この4つの基準値は、ヒステリシス設定 機能に従って操作者により選択されるヒステリシスの大 小を定義するものである。余裕可変利得部84は、マイ クロプロセッサシステム62からの制御信号に応じて利 得の調整を行う多重D/A変換器86と、固定利得増幅 器88とを備えている。余裕可変利得部84は、余裕比 較器94にその出力を供給する。余裕比較器94は、余 裕可変利得部84からの信号の振幅を基準電圧発生器9 2から供給される基準信号の振幅と比較する。 余裕比較 器94は、マイクロプロセッサシステム62に動作余裕 レベルの決定に有用な余裕信号 Sune を与える。

16

500mA

250mA

【0037】経路A(増幅器80および検出比較器90 を含む)と、経路B(余裕可変利得部84および余裕比 較器94を含む)と、主可変利得部74は、ソフトウエ ア制御の下でマイクロプロセッサ62によって統制され る一つの構成を与える。この構成は、広い範囲に亘る動 作余裕値を特定し、ついで、最適検出結果を得るために システム(主可変利得部74)の利得を自動的に設定す るためのものである。動作余裕値を決定し、利得値を自 30 動的に設定する際のシステム60の動作は、図11、図 12および図13に関連させて後に詳しく説明する。シ ステム60は、LCD表示手段22、キーパッド24お よびLED表示手段26に関連する電子要素も含んでい る。LCD表示手段22は、先に説明した、アイコン、 数値およびこれらに関連する機能に従って、マイクロブ ロセッサシステム 6 2からの出力を表示するために、L CD駆動回路96により駆動される。キーパッド24 は、LED表示手段26により表示されたアイコンおよ びそれに関連する機能との調和を取りながらマイクロブ ロセッサシステム62に入力を与える。LED表示手段 26は先に述べたような基本動作の特徴を表示するもの であり、マイクロプロセッサシステム 6 2 からの視覚出 力を与えるものである。

[0038] つぎに図7を参照する。ルーチン100 は、LCD表示手段22とアイコン41-52とキーパ ッド24に関連する最上位のメニュー制御を示すもので あり、これにより、アイコン41~52に関連する機能 が動作モードとパラメータ設定の選択のために入力され る。第1ステップ102において、SENアイコン45

る。そして、プログラム100はステップ104、10 6、108、110、112、114および116を有 しているので、上方矢線キー24aを繰り返し押圧し、 あるいは、(逆の順がよければ) 下方矢線キー24bを 繰り返し押圧するのに応答して、SENアイコン45、 LO/DOアイコン41、42、LRNアイコン43、 HYアイコン44、DLYアイコン52およびOPTア イコン49が連続的に表示され、それらに関連する機能 が入力可能状態となる。各アイコンが表示されたときに そのプログラムは、ステップ118に従って入力キー2 10 4cが押されたかどうかを問い、入力キー24cが押さ れるとステップ120に従って関連する機能の入力が行 われる。

[0039] 図8を参照する。プログラム130は、ス テップ132、134、136および138を有するの で、数値表示手段40に示される値が、ステップ132 での上方矢線キー24aあるいはステップ136での下 方矢線キー24bに応じた固定された量だけを増加ある いは減少する。同時に、プログラム130のステップ1 40および142によって、いろいろな値をとる表示値 20 が、入力キー24cの押圧に関連して機能実行のために 指定される。

【0040】図9を参照する。ここには、パルス制御お よび検出制御ルーチン170が示されており、このルー チン170は、光電子制御ユニット10の動作を、光パ ルスの発信およびこれに同期した応答パルスの検出並び に標的を捕捉したときの表示に関して統制するものであ る。第1ステップ172に関して、リプレート(rep rate) カウンタに、たとえば500以上の基本の値 される。つぎに、プログラムはステップ174に進み、 ここで、リブレートカウンタの値が、新しいリプレート 値を提供するために、1だけ減算される。その後、ステ ップ176において、プログラムがリプレートカウンタ はいま零か否かを問う。もし、リプレートカウンタが零 でなければ、プログラムはステップ 1 7 4 に戻り、リブ レートカウンタを再び減算する。もし、反対にリプレー トカウンタがそのとき零であれば、プログラムはステッ プ178に進み、1つの光パルスを出力させる。ここ で、もし、ステップ174と176のリプレートカウン 40 タ機能がシステム62のマイクロプロセッサに関連する カウンタを用いてハードウエアで実行されれば、マイク ロプロセッサの演算時間は浪費されないことを留意すべ きである。

【0041】 つぎに、ステップ180において、プログ ラムは反射光の応答パルスが送信時間内に同期受信され たか否かを問う。もし、戻り光パルスが受信されていれ ば、プログラムはステップ182へ進み、そこで、新し いパルス計数値を提供するために、パルスカウンタの値 が1つ加算される。ステップ184、185および1850 信を行うためである。ルーチン170は、繰り返しかつ

18

6は、異なるパルス計数値(pulse count events) をそれぞれ、ステップ194、195お よび196へ導くために、互いに関連して動作する。ス テップ194、195および196の選択は、計数され た連続するパルスの数による。もし、連続パルスの一つ 受信したら、プログラムはステップ194に移行する。 もし、2つの連続パルスを受信したら、プログラムはス テップ195に移行する。もし、3つの連続パルスを受 信したら、プログラムはステップ196に移行する。ス テップ194、195および196は、リブレートカウ ンタを3つの異なる値に設定し、これにより、近くの光 電子制御ユニットとの間の干渉や他の周波数を持つ装置 との間の干渉を避けるように、光パルス間の「住居(d wel1)」間隔が「ジッタ」に対して制御される。

【0042】ステップ194においては、リプレートカ ウンタが基本値に対し、それより小さい疑似ランダムコ ードAの値が加算されてセットされる。ステップ195 においては、リプレートカウンタが基本値に対してそれ より小さい、しかも異なる疑似ランダムコードBの値が 加算されてセットされる。ステップ196においては、 リブレートカウンタが名目値に疑似ランダムコードAお よびBの合計が加算されてセットされる。ステップ19 4、195および196に続いて、プログラムはステッ プ174に戻り、ステップ174と176で定義される ループを実行する。このループは、光パルス間の時間間 隔を決定するものである。リプレートカウンタはステッ プ194、195および196で異なる値にセットされ るので、ステップ174と176を含むこのループは、 異なる実行時間をとる。その結果、ステップ178にお がセットされ、一方、パルスカウンタに零の値がセット 30 いて、僅かに異なり、しかも、標準化されていない間隔 で光パルスを送信することになる。

【0043】第4番目に続く光パルスを受光した時に は、プログラムはステップ184、185および186 を通過してステップ188に進み、ヒステリシス設定値 に応じた出力が行われ、しきい値が低くなる。その後、 ステップ190において、リブレートカウンタに基本値 が再びセットされ、一方で、さらに連続するパルスを受 信するたびにステップ188に至ることを確実にするた めにパルスカウンタに3の値がセットされる。

【0044】ステップ180に戻ったとき、戻り光パル スが受信されなければ、プログラムはステップ160に 進み、リプレートカウンタが再び基本値にセットされ、 パルスカウンタが零にセットされる。その後、ステップ 162において、(もし、出力がオン状態であれば)出 力が切られ、(もし、検出しきい値が低くなっていた ら)ヒステリシス設定値に応じて検出しきい値をリセッ トする。ステップ162の後、プログラムはステップ1 74に戻る。これは、別の標準「住居」間隔を実行する ためであり、ステップ178に従った別の光パルスの送 連続的に出力される光パルスの戻りを受信した後だけ、 標的物を捕捉できるように、光電子制御ユニット10の 出力を制御する。さらに、ルーチン170は、複数のラ ンダムコードに従って光パルス間の間隔をシフトする。 ランダムコードは、一つ工場に設置されている異なる制 御ユニットに対して異なる値となるようにセットされて いる。それは、異なるジッタ要素を与えるために行うも のであり、このジッタ要素は、近くにある光電子制御ユ ニットが互いに干渉し合わないことの保証を助ける。

[0045] 図6は、4つの連続パルスに亘って、標的 10 比較器90の出力Sper により表示されている。 物をうまく捕捉している間でのパルス列163のグラフ を示すものである。 パルス165 b は、ランダムコード Aのジッタ要素167aによる遅延時間を持つ。パルス 165cは、ランダムコードBのジッタ要素167bに よる遅延時間を持つ。パルス165dは、ランダムコー ドA+Bのジッタ要素167cによる遅延時間を持つ。 時間遅延要素167a-cは、非周期的なタイミング形 式を提供するものであり、この非周期的なタイミング は、ユニット10に同期検出技術が用いられてるとき に、繰り返し速度の近いパルスを出力する近くに設置さ 20 れた他の光電子制御ユニットや他の周波数雑音源などか*

*らの干渉を避けるものである。

【0046】図10を参照する。動作余裕ルーチン20 0は、光電子制御ユニット10の動作余裕を検出するた めに動作する。動作余裕の検出は、 可変利得部74お よび84の利得を調整し、余裕比較器94の出力を用い ることにより行われる。このプログラムのステップ20 2において、光電子制御ユニット10が狙った標的物が 検出されたか否かが問われ、その結果により、ここでの 分岐が決定される。標的物が検出されたか否かは、検出

20

【0047】標的物が検出されなければ、余裕可変利得 部84の利得(「余裕利得」)が、ステップ204に従 って3に設定される。この利得の設定は、多重D/A変 換器86の減衰量を調整することにより行われる。つぎ に、プログラムはステップ206に進み、ここで、可変 利得部84の利得が、利得値に従って変化するある量だ け増加する。この量というのは、1以下の動作余裕値に 直線目盛りを与えるため、表4に示す利得・余裕一覧表 に示すように、利得値に従って変化する。

[0048]

【表4】

利得・余裕一覧表

オフ余裕	利得	オン余裕	利得
. 2 . 3 . 4 . 5 . 6 . 7 . 8	15x 10x 7.5x 6.0x 5.0x 4.286x 3.75x 3.0x	1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 8 1. 9 2. 0 2. 5 3. 0 3. 5 4. 0 5. 0 6. 0	3. 0 x 2. 727 x 2. 50 x 2. 308 x 2. 143 x 2. 0 x 1. 875 x 1. 765 x 1. 667 x 1. 579 x 1. 50 x 1. 0 x 0. 857 x 0. 75 x 0. 60 x 0. 50 x

【0049】 ステップ208では、プログラムは、余裕 比較器94がオン状態か否かを問う。オン状態か否か は、その出力信号Swar で示される。もし、余裕比較器 9 4 がオン状態 (出力信号 Suar がローレベル) であれ ば、プログラムはステップ210に進み、そこで、余裕 利得のその時の値を動作余裕の値を調べるための指標と して利用する。プログラムは、ブロック21に従って終

【0050】一方、もし余裕比較器94がオン状態でな ければ、プログラムはステップ214に従ってそこでの 50 に要求される余裕可変利得部84の利得値は、光電子制

分岐を決定するために、余裕利得が最大値であるか否か を問う。余裕可変利得部84の利得が最大値でなけれ ば、プログラムはステップ206に戻る。一方、余裕可 変利得部84の利得が最大値であれば、プログラムは、 ステップ216で動作余裕値を零に設定し、ブロック2 18に従って終端する。ステップ206,208および 214は、余裕比較器94がオン状態に切り替わるまで 繰り返し余裕利得を増加させる手段によるループを形成 している。余裕比較器94をオン状態に切り替えるよう

御ユニット10の動作余裕を決定するための基準を提供 する。

【0051】ここで、ステップ202に戻る。もし、標的物が検出されたら、プログラムはステップ220と22に進む。ここでは、「抑制要素」カウンタが零に設定され、余裕利得が多重D/A変換器86の減衰量の調整により3に設定される。抑制要素は、主可変利得部74の利得値(主利得)に関連するものであり、主可変利得部74は、ステップ238に従って5段階に調整可能となっており、その5段階は、表5の抑制余裕一覧表に10示されている。

[0052] 【表5】

抑制余裕一覧表

主利	得	
利用者	の設定	•
"	"	の1/2
,,	"	01/4
"	*	o1/8
"	"	o1/16
	利用者 " "	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,

【0053】その後、プログラムはステップ224に進み、ここで、余裕可変利得部84の利得が、利得値に応じて変化するある量だけ減少させる。この減少は、前記の利得・余裕一覧表(表4)に示すように、非線形の目盛りを提供するために行われる。ステップ226において、プログラムは余裕比較器94がオフ状態か否かを問う。オフ状態か否かは、その出力信号Swar により示されている。もし、余裕比較器94がオフ状態(出力信号Swar がハイレベル)であれば、プログラムはステップ228に進み、そこで、動作余裕値を調べるために、余裕利得のその時の値と抑制要素のその時の値が用いられる。プログラムはその後ブロック230に従って終端する。

【0054】もし、反対に余裕比較器94がオン状態で あれば、プログラムは余裕利得の値が1/2(すなわち 0. 5) か否かを問う。これは、飽和状態がシステム6 0の増幅回路に影響を与えてしまう水準まで、利得が低 下しないようにするために行われる。もし余裕利得の値 が1/2 (すなわち0.5) でなければ、プログラムは 40ステップ224に戻り、余裕利得が再び引き下げられ る。反対に、余裕利得が1/2になっていたら、プログ ラムはステップ234に進み、主利得の異なるレベルに 関連させて抑制要素を増加させる。その後、ステップ2 36において、分岐判断のために、プログラムは抑制要 素の値が5であるか否か問う。抑制要素が5でなけれ ば、プログラムはステップ238に進み、多重D/A変 換器 7 6 の減衰量の調整によって、主可変利得部 7 4 の 利得がその時の値の1/2に引き下げられる。プログラ ムはついで、ステップ222およびこれに続くステップ 50

に戻り、余裕可変利得部84の利得レベルが調整される。この調整は、余裕比較器94を再びオフにするための試みにおいて、利得・余裕一覧表の最後の3つのオン利得ステップに関連する3つステップで行われる。しかし、ステップ236において、抑制要素が5と等しいと判断されると、プログラムは動作余裕値をステップ240で最大値に設定し、ステップ242に従って終端す

22

【0055】ステップ234,236および238は、システム60の主利得を引き下げるための第1ループを提供し、その引き下げは、システムの増幅回路に影響を与える飽和の影響を避けるために、5段階で行われる。一方、ステップ222,224,226および232は、余裕比較器94がオフするまで繰り返し、余裕利得を引き下げるための第2ループを提供する。主利得のレベル(または抑制要素)と余裕利得は、光電子制御ユニット10の動作余裕の値を求めるための指標として用いられる。

【0056】図11を参照する。自動利得設定ルーチン 20 300は、LRNアイコンに対応する学習機能を提供 し、信頼性のある標的物検出を保証するために、光電子 制御ユニット10が背景状況を観測し、標的状況を観測 し、そして、システム60の最適主利得設定値を決定す る。ステップ302において、LO符号が表示される。 その後、ステップ304において、プログラムは、入力 キー24cが押されたか否かを質問する。これは、光電 子制御ユニット10が背景学習ルーチンを実行するため に正しく設定されたか否かを問うものである。ルーチン 306は図12に示されており、背景状況において0. 3より小さい動作余裕を達成するために、光電子制御ユ ニット10の主利得を調整するためのものである。この ことは後に詳しく説明する。プログラムは、次に、ステ ップ308に進み、IH符号が表示される。その後、ス テップ310において、プログラムは入力キー24cが 押されているか否かを質問する。これは、光電子制御ユ ニット10が標的学習ルーチン312の実行状態に正し く設定されたか否かを問うものである。ルーチン312 は図13に示されており、標的状況における最適設定を 提供するためにシステム60の主利得を調整するもので ある。プログラムはステップ314に進み、動作余裕が 数値表示手段40に表示され、余裕アイコン38が正規 の実行モード動作状況に従って点灯し、ルーチン300 がプロック316に従って終端する。

【0057】図12を参照する。背景学習ルーチン306は、ステップ320によって示される背景観測のために調整された光電子制御ユニットと共に始まる。つぎに、ステップ322に従って、(可変利得部74の)主利得が、D/A変換器76の減衰量調整により、最大レベルの2分の1に設定される。プログラムはさらにステップ324に進み、ルーチン200に従って動作余裕を

計数し、分岐判断のために、動作余裕が0.3より大か 否かを質問する。もし、動作余裕が0.3より大であれ ば、プログラムはステップ323に進み、主利得が1 (カウンタ) ステップだけ引き下げられる。 プログラム はさらにステップ325に進み、ルーチン200に従っ て新しい動作余裕を計数し、さらに分岐判断のために、 動作余裕が0、3より小であるか否かを質問する。も し、動作余裕が0.3より小でなければ、プログラムは ステップ328に進む。ステップ328では、プログラ ムは主利得が、光電子制御ユニット10の適正動作のた めに必要な不動作(default) 最小値よりも、ま だ大きいか否かを質問する。もし、主利得が不動作最小 値よりも大きければ、プログラムはステップ323に戻 り、そうでなければ、このルーチン306はプロック3 30で終端する。ステップ325に戻って、もし、動作 余裕が0.3より小であれば、プログラムはプロック3 32において、ルーチン306から抜け出し、ルーチン 300のステップ308に進む。

[0058] ステップ324に戻って、もし、動作余裕 が0.3より大でなければ、プログラムはステップ32 1に進み、D/A変換器76の減衰量調整によって、主 利得が最大レベルに設定される。 つぎに、プログラムは ステップ327に進み、ルーチン200に従って新しい 動作余裕を計数し、分岐判断のために、その値が0.3 より小であるか否かを質問する。もし、動作余裕が0. 3より小でなければ、プログラムはステップ326に進 み、主利得が1(カウンタ)ステップ分だけ引き下げら れ、その後、ステップ327に戻る。もし、反対に、動 作余裕が0.3より小であれば、プログラムはプロック 332においてルーチン306から抜け出てルーチン3 00のステップ308に移行する。背景学習ルーチン3 06は、動作余裕が背景状況下で0.3より小となるま で、主利得をその最大レベルから繰り返し引き下げるも のである。

[0059] 図13を参照する。標的学習ルーチン31* 理想感度(最適利得設定值)=

(2×利得値1×利得値2) / ((2×利得値3) + (オフ余裕×利得値1))

ここに、

のオン動作余裕を得るために必要な利得、

オフ余裕=「背景学習」ルーチンにおいて測定される最 小のオフ動作余裕値、

利得値3=「背景学習」ルーチンにおいて、0.3のオ フ動作余裕値が生成されたときの利得、である。

【0061】そして、D/A変換器76に対するデジタ ル制御入力を均整のとれた形で低減することにより主利 得を調整する。

[0062] ついで、プログラムはプロック362でル ーチン312を抜け出て、ステップ314でルーチン3 50 供するものである。ステップ402において、プログラ

24

*2は、ステップ340によって示される標的観測のため に調整された光電子制御ユニットと共に始まる。ステッ プ342において、プログラムは動作余裕を計算し、動 作余裕が2.0より大であるか否かを質問する。もし、 動作余裕が2.0より大であれば、検出動作を満足する 状態にあり、プログラムはプロック344においてこの ルーチン312を抜け出るように移行し、ステップ31 4 でルーチン300に再び入る。もし、動作余裕が2. 0より小であれば、プログラムはステップ346に進 み、動作余裕が0.6より小さいか否かを質問する。も し動作余裕が0.6より小さければ、制御動作を満足す る十分な動作余裕を得ることができないので、プログラ ムは、ルーチン300を終端させるためにプロック34 8に進む。もし、反対に、動作余裕が0.6より小でな ければ、プログラムはステップ350に進み、動作余裕 が2. 0より小さく、0. 6より大きいか否かを質問す る。もし、動作余裕が0.6と2.0の間の値でなけれ ば、ルーチン300、306および312に関する計数 においてエラーが発生しているので、プログラムは再び 出口プロック348に向かう。もし、反対に、動作余裕 が 0.6 と 2.0 の間の値であれば、プログラムはステ ップ352に進み、主利得を1段階増加させる。その 後、ステップ354において、プログラムは動作余裕が 2. 0に等しいか否かを質問する。もし、動作余裕が 2. 0でなければ、プログラムはステップ356に進 み、主利得が最大レベルにあるか否かを質問する。も し、主利得が最大レベルでなければ、プログラムはステ ップ352に戻り、利得をさらに1段階増加させる。も し、反対に、主利得が最大レベルに至っていれば、自動 利得設定ルーチン300を終了させるために、プログラ ムはプロック348に進む。ステップ354に戻って、 もし、動作余裕が2.0 に等しければ、プログラムはス テップ360に進み、以下に示す式1に従って、これら の状態にとって理想的な利得設定値を算出する。

[0060]

... (1)

00に戻る。ルーチン312は、標的状況の観点におい 利得値1=「標的学習」ルーチンにおいて、最大<math>2.040で主利得が最適化されるため、および、明暗の差が小さ いとき(例えば、動作余裕が0.6と2.0の間にある とき) に異なる動作状況での主利得の最適値を設定する ために、提供されている。

[0063] 図14を参照する。本発明は、ファジィ論 理技術に基づく光電変換動作の安定性の表示機能をも提 供する。この表示は、ルーチン400の動作に従ったL ED表示手段26を介して行われるものであり、ルーチ ン400は、背景状況において実行され、光電子制御ユ ニット10にとって有効な動作環境についての情報を提

ムは動作余裕を決定するために余裕ルーチン200を実 * 行する。つぎに、プログラムはステップ404に進み、パルス間期間で検出比較器90を通過するノイズパルスの数を計数することにより、光学的あるいは電気的なノイズのレベルを検出する。パルス間期間とは、例えば、光パルス信号が出力されておらず、戻りパルスが受信されていないときの時間間隔をいう。パルス間期間に比較器90を活性にするノイズパルスの数は、その環境のノイズの測定を提供するもので、しかも、その測定は、他の動作と干渉せずに電子システム60によって予め得られるものである。プログラムは、ステップ406においてルックアップテーブルを用いて動作安定指数を引き出*

*すために、動作余裕とノイズレベル値を用いる。ステップ408において、プログラムはルックアップテーブルから得られた安定指数を、そのときのしきい値(例えば、2.0)と比較し、動作指数がしきい値よりも大きければ、LED26cを点灯する。

26

【0064】動作指数ルックアップテーブルは、よく知られてるファジィ論理技術に従って生成されており、後に示す所属機能と規則が与えられている。動作余裕、ノイズおよび安定性のための各所属機能は、以下に示すファジィ論理機能一覧表に従って定義されている。

[0065]

【表6】

ファジィ論理機能一覧表

ファジィ編 母条能 一角巻				
****	ロスタート	1. 07ップ	1. 0ダウン	0ストップ
機能	-1. 0	-1. 0	-0. 84	-0, 76
余裕(低オフ)	-0. 84	-0.76	-0.68	-0.68
* (中オフ)	-0. 68	-0. 68	-0.53	-0.52
" (無効)	-0. 53 -0. 52	-0. 52	-0.40	-0.12
〃 (低オン)		0. 0	0.0	0.50
~ (中オン)	-0.40	0.30	0.30	0. 68
〃 (中高オン)	-0. 20	0, 68	1. 0	1. 0
〃 (高オン)	0.52	-1. 0	-0.90	-0.30
維音(低)	-1. 0	0. 0	0. 0	0.70
"(中)	-1. 0	0.40	1. 0	1. 0
"(高)	-0.20	-1. 0	-0.50	0. 0
安定性(低)	-1.0	0. 0	0. 0	0.50
〃 (中)	-0.50	0. 40	0.40	0.70
" (中高)	0. 0		1. 0	1. 0
"(高)	0.30	0.70	•	

【0066】7つの所属機能(membership functions)は動作余裕のために定義されており、一方、3つの所属機能はノイズのために定義され、4つの所属機能が安定性のために定義されている。ファジィ論理一覧表の数値は、動作余裕の場合には0から5 30までの切り取られた動作範囲から正規化されており、ノイズの場合には0から15まで、そして、安定性の場合は15から109までの切り取られた動作範囲から正規化されている。4つの正規化された数は、各機能の所属の程度を定義する台形(または三角形)を示している。

(表の「0スタート」の下の)第1列の数は、所属機能が最初に0(0%の所属の確実性)から値を増加させ始める点を示す。(表の「1.0アップ」の下の)第2列の数は、所属機能が1.0という値を、0から直線的に上った後に最初に獲得する点に相当する。(表の「1.0ダウン」の下の)第3列の数は、所属機能が最初に1から値を減少させ始める点を示す。(表の「0ストップ」の下の)第4列の数は、所属機能の値が1から直線的に減少した後に0に至った点を示す。所属機能の値は、従来の加重平均技術に従って複合されており、表7に示すファジィ論理規則に従うものである。

【0067】 【表7】

ファジィ論理規則一覧表

余裕	雑音	安定性
無効	低 中, 高	低
低オフ	低	髙
低オフ	ф	中,高
低オフ	高	低
中オフ	低	髙
中オフ	ф	中
中オフ	高	低
低オン	低	中
低オン	中, 高	低
中オン	低	中高
中オン	ф	中
中オン	itai	低
中高オン	低	髙
中高オン	ф	中高
中高オン	· 高	ф
高オン	低,中	高
高オン	高	中高

【0068】所属機能とその規則は、図15の三次元グラフに示すように、ルックアップテーブルへの登録を決定する。ルックアップテーブルは、動作余裕および安定指数に対するノイズについてのある離散的な値に関連している。安定指数というのは、求められる正確性の程度に関連するものである。これらの安定指数は、視覚表示の提供に用いられ、あるいは、それに代えて、光電子制

御ユニット10の動作状況を遠隔地で表示できるよう に、光電子制御ユニット10からのアナログ信号として 出力される。

【0069】本発明の特別な実施例を示し説明してきたが、本発明の精神および本質を逸脱しない範囲で、本実施例を変更し修正することができることは言うまでもない。添付した請求の範囲は、そのような変更および修正をすべて含んでいるものと考えている。

[0070]

【発明の効果】以上説明したように、本発明の光電子制 10 御ユニットによれば、光電子制御ユニットが多数の異なる利用形態に適用できるように、使いやすく、かつ、理解しやすい方法で動作設定を広い範囲に亘って操作者が制御できる。また、本発明の光電子制御ユニットは、自分自身の繰り返し速度と同じ周波数で発生する電気的ノイズおよび光学的ノイズに強い。さらに、動作余裕とノイズに関する機能として、信号レベルの広い範囲に亘って自己の動作余裕を正確に計測でき、その動作安定性について信頼できる表示ができる。

【図面の簡単な説明】

【図1】ユニット上面の操作者インターフェースが示されている光電子制御ユニットの上方からの斜視図。

【図2】後方反射モードにおける光電子制御ユニットの 動作を示すプロック図。

【図3】図3は、光電子制御ユニットに用いられる本発 明の操作者インターフェースを示す平面図。

【図4】本発明の原理に従う光電子制御ユニットに用いるための電子システムのプロック図。

【図5】本発明の原理に従う光電子制御ユニットの動作のために選択された異なるパルス繰り返し速度を説明す 30 るための一対のグラフ。

【図6】本発明の原理に従って疑似ランダムジッタがい かにパルスタイミングに影響を与えるかを示すグラフ。

[図7] 本発明の操作者インターフェースに関連する機

能選択過程を示すフローチャート。

【図8】本発明の操作者インターフェースに関連する変 数設定過程を示すフローチャート。

28

【図9】本発明の原理による標的捕捉過程を示すフローチャートであり、ジッタがパルス間の間隔を変化させるために用いられている。

【図10】本発明の二重経路構造との関連において、動作余裕を決定するための過程を示すフローチャート

【図11】本発明の原理に従って、光電子制御ユニット のための利得散定値を自動的に決定する過程を示すフロ ーチャート。

【図12】本発明の自動利得設定ルーチンにおいて用いる過程であり、背景状況下で動作余裕を決定する過程を示すフローチャート。

【図13】本発明の自動利得設定ルーチンにおいて用いる過程であり、標的状況下で動作余裕を決定する過程を示すフローチャート。

【図14】本発明の原理に従って動作安定指数を決定す る過程を示すフローチャート。

0 【図15】ファジィ論理技術に従う動作余裕と背景雑音の関数としての光電変換動作の安定性を示す三次元網状グラフ。

【符号の説明】

10…光電子制御ユニット、14、16…レンズ、18 …鏡、20…操作者インターフェースパネル、22…情報表示手段、24…入力キーパッド、26…表示手段、40…3桁数値表示手段、41~52…アイコン、60…電子システム、62…マイクロプロセッサシステム、64…LED、66…電流駆動部、70…発光ダイオード、74…主可変利得増幅部、76、86…多重D/A変換器、78、80、88…増幅器、84…余裕可変利得増幅部、90…検出比較器、92…基準電圧発生器、94…余裕比較器。

フロントページの続き

- (72)発明者 パトリック ジェイ. デラネイ アメリカ合衆国, マサチューセッツ州 01776, サドバリー, ボストン ポスト ロード 206
- (72)発明者 フィリップ イー. ジョンソン アメリカ合衆国, マサチューセッツ州 01606, ワーセスター, ウェスト ボイ ルストン ストリート 1137