Premier examen - 7 mai 2005

Durée: 4.5 heures

Chaque exercice vaut 7 points.

1. Les suites $a_1 > a_2 > \ldots > a_n$ et $b_1 < b_2 < \ldots < b_n$ contiennent à elles deux chacun des nombres $1, 2, \ldots, 2n$ exactement une fois. Déterminer la valeur de la somme

$$|a_1 - b_1| + |a_2 - b_2| + \ldots + |a_n - b_n|.$$

2. Trouver la valeur maximale possible de l'expression

$$\frac{xyz}{(1+x)(x+y)(y+z)(z+16)},$$

où x, y, z sont des nombres réels positifs.

- 3. Soit $n \ge 1$ un nombre naturel. On découpe un 4n-gone régulier de longueur de côté 1 de façon arbitraire en un nombre fini de parallélogrammes.
 - (a) Montrer qu'au moins un parallélogramme de la décomposition est un rectangle.
 - (b) Déterminer la sommes des aires de tous les rectangles qu'on trouve dans la décomposition.

Deuxième examen - 8 mai 2005

Durée: 4.5 heures

Chaque exercice vaut 7 points.

- 4. Soient k_1 et k_2 deux cercles qui se touchent extérieurement en un point P. Un troisième cercle k touche k_1 en B et k_2 en C, tel que k_1 et k_2 se trouvent à l'intérieur de k. Soit A une des intersections de k avec la tangente commune de k_1 et de k_2 passant par P. Les droites AB et AC coupent k_1 resp. k_2 une deuxième fois en R resp. S. Montrer que RS est une tangente commune de k_1 et de k_2 .
- **5.** Soit p > 3 un nombre premier. Montrer que p^2 divise

$$\sum_{k=1}^{p-1} k^{2p+1}.$$

6. Soit T l'ensemble de tous les triples (p,q,r) d'entiers non-négatifs. Trouver toutes les fonctions $f:T\to\mathbb{R}$ telles que

$$f(p,q,r) = \begin{cases} 0 & \text{si } pqr = 0, \\ 1 + \frac{1}{6} \left\{ f(p+1,q-1,r) + f(p-1,q+1,r) + f(p-1,q,r+1) + f(p+1,q,r-1) + f(p,q+1,r-1) + f(p,q-1,r+1) \right\} & \text{sinon.} \end{cases}$$

Troisième examen - 14 mai 2005

Durée: 4.5 heures

Chaque exercice vaut 7 points.

7. Soit $n \ge 2$ un nombre naturel. Montrer que le polynôme

$$(x^2 - 1^2)(x^2 - 2^2)(x^2 - 3^2) \cdots (x^2 - n^2) + 1$$

ne peut pas s'écrire comme produit de deux polynômes non constants à coefficients entiers.

- 8. Considérons un lac avec deux îles au milieu et sept villes sur le bord du lac. Dans ce qui suit, nous allons appeler les îles et les villes des *endroits*. Entre deux endroits, il y a une correspondance par bateau exactement quand
 - (i) il s'agit des deux îles,
 - (ii) il s'agit d'une ville et d'une île,
 - (iii) il s'agit de deux villes non voisines.

Chacune des correspondances est desservie par exactement une de deux compagnies de navigation concurrentes. Montrer qu'il existe toujours trois endroits tels que les correspondances qui les relient deux à deux sont assurées par la même compagnie.

- **9.** Soit $A_1A_2...A_n$ un n-gone régulier. Les points $B_1,...,B_{n-1}$ sont définis comme suit:
 - Pour i = 1 ou i = n 1, B_i est le milieu du côté $A_i A_{i+1}$;
 - Pour $i \neq 1, i \neq n-1$, soit S l'intersection de A_1A_{i+1} et A_nA_i . Le point B_i est alors l'intersection de la bissectrice de A_iSA_{i+1} avec A_iA_{i+1} . Montrer que

$$\not A_1B_1A_n + \not A_1B_2A_n + \ldots + \not A_1B_{n-1}A_n = 180^\circ.$$

Quatrième examen - 15 mai 2005

Durée: 4.5 heures

Chaque exercice vaut 7 points.

- 10. Soit ABC un triangle aigu avec l'orthocentre H et soient M et N deux points sur la droite BC tels que $\overrightarrow{MN} = \overrightarrow{BC}$. Soient P et Q les projections de M resp. de N sur AC resp. AB. Montrer que APHQ est un quadrilatère inscrit.
- **11.** Déterminer toutes les fonctions $f: \mathbb{N} \to \mathbb{N}$ telles que $f(m)^2 + f(n)$ soit un diviseur de $(m^2 + n)^2$ pour tout $m, n \in \mathbb{N}$.
- 12. Soit A une matrice $m \times m$. Soit X_i l'ensemble des coefficients de la $i^{\text{ième}}$ ligne et Y_j l'ensemble des coefficients de la $j^{\text{ième}}$ colonne, $1 \leq i, j \leq m$. On dit que A est cool si les ensembles $X_1, \ldots, X_m, Y_1, \ldots, Y_m$ sont tous distincts. Trouver la plus petite valeur possible de n telle qu'il existe une matrice 2005×2005 cool avec des coefficients dans l'ensemble $\{1, 2, \ldots, n\}$.