Claims

[Claim 1]

A multinuclear rare earth complex characterized in that a plurality of rare earth ions are coordinated with one or more types of molecules having a photosensitizing function.

[Claim 2]

The multinuclear rare earth complex according to claim 1, wherein the molecules having a

photosensitizing function further have a vibrational energy quenching-suppressing function.

[Claim 3]

The multinuclear rare earth complex according to claim 1, which is represented by the general formula:

15 $L_pL'_q(Ln)_rX_s$,

wherein

L is a ligand having a photosensitizing function represented by the general formula:

[Chemical Formula 1]

20

$$R_3$$
 R_4
 R_5
 R_1
 Y_1
 R_5

wherein R_1 , R_2 , R_3 , R_4 and R_5 are independently hydrogen, a hydroxy group, a substituted or unsubstituted amino group, a substituted or unsubstituted aryl group, a nitro group, a cyano group, an alkyl group or a cycloalkyl

group represented by -R, an alkoxy group represented by -OR, or an acyl group represented by -C(C=O)R, where R is a substituted or unsubstituted alkyl group or cycloalkyl group having a carbon number of 1 to 20;

5 Y_1 is -OH; and

 Y_2 is =0;

p is an integer of 1 to 40;

L' is a ligand which is a hydroxide ion;

q is an integer of 0 to 8;

10 Ln is a rare earth ion;

r is an integer of 2 to 20, and a plurality of Ln may be the same or different from each other;

X is O, -OH, S, -SH, Se or Te;

s is an integer of 1 to 20, and a plurality of X may be
the same or different from each other when s is an integer
of 2 to 20; and further, the integers p, r and s have a
relationship indicated by the expression:

[Expression 1]

 $1 \le p/r \le 4, \quad 1 \le r/s \le 4$

wherein a manner how Ln is coordinated with L: Coordination Manner (A) where both Y_1 and Y_2 bind to the identical Ln; Coordination Manner (B) where Y_1 and Y_2 bind to different Ln, respectively; and a combination thereof, wherein when Ln is coordinated with Y_1 , a proton leaves from -OH represented by Y_1 to form -O-, thereby Ln is coordinated with L via -O-.

[Claim 4]

25

30

The multinuclear rare earth complex according

to claim 3, wherein at least one of substituents R1, R_2 , R_3 , R_4 and R_5 is an alkyl group or a cycloalkyl group represented by -R, an alkoxy group represented by -OR or an acyl group represented by -C(=O)R, where R is a substituted or unsubstituted alkyl group or cycloalkyl group having a carbon number of 1 to 20. [Claim 5]

The multinuclear rare earth complex according to claim 4, wherein R_5 is represented by the formula: [Chemical Formula 2]

wherein R_6 , R_7 , R_8 , R_9 and R_{10} are independently hydrogen, a hydroxy group, a substituted or unsubstituted amino group, a substituted or unsubstituted aryl group, a nitro group, a cyano group, an alkyl group or a cycloalkyl group represented by -R, an alkoxy group represented by -OR, or an acyl group represented by -C(C=0)R, where R is a substituted or unsubstituted alkyl group or cycloalkyl group having a carbon number of 1 to 20, where at least one of R_1 , R_2 , R_3 , R_4 , R_6 , R_7 , R_8 , R_9 and R_{10} is an alkyl group or a cycloalkyl group represented by -R, an alkoxy group represented by -OR, or an acyl group represented by -C(C=0)R, where R is a substituted or unsubstituted alkyl group or cycloalkyl group having a carbon number of 1 to 20.

[Claim 6]

The multinuclear rare earth complex according to claim 4, wherein R₅ is an alkyl group or a cycloalkyl group represented by -R, an alkoxy group represented by -OR, or an acyl group represented by -C(C=O)R, where R is a substituted or unsubstituted alkyl group or cycloalkyl group having a carbon number of 1 to 20.

[Claim 7]

The multinuclear rare earth complex according to claim 5 or 6, wherein R is a substituted or unsubstituted alkyl group having a carbon number of 6 to 12.

[Claim 8]

The multinuclear rare earth complex according to claim 7, wherein R is a substituted or unsubstituted alkyl group having a carbon number of 8 to 12.

[Claim 9]

The multinuclear rare earth complex according to claim 1, wherein the rare earth ion is an ion of lanthanide selected from a group consisting of europium (Eu), terbium (Tb), neodymium (Nd), samarium (Sm), erbium (Er) and ytterbium (Yb) or a combination thereof.

[Claim 10]

The multinuclear rare earth complex according to claim 5, which is represented by the general formula: $L_{10}\,(Ln)\,_4X,$

wherein

L is a ligand represented by the formula: [Chemical Formula 3]

O(CH₂)₇CH₃

Ln is a europium (Eu) ion; and X is O, and which has the following properties: Elementary Analysis: as $C_{210}H_{250}O_{31}Eu_4$,

Theoretical values C, 65.04%; H, 6.50%; Eu, 15.67%
Observed values C, 64.90%; H, 6.39%; Eu, 15.41%
IR (KBr, cm⁻¹): (ν_{CH}) 2922, $(\nu_{C=C})$ 1596, (ν_{Ph-O}) 1243 1 H-NMR(CDCl₃): δ 12.7(1H,s), δ 7.6-7.2(3H,m), δ 6.5-6.4(5H,d), δ 4.0(2H,t), δ 1.8(2H,m), δ 0.9(3H,t)

10 FAB-MS: m/z 3552.1 [Eu₄(L⁻)₉O²⁻]⁺. [Claim 11]

The multinuclear rare earth complex according to claim 5, which is represented by the general formula: $L_{10}\left(Ln\right){}_{4}X,$

15 wherein

L is a ligand represented by the formula: [Chemical Formula 4]

Ln is a europium (Eu) ion; and

20 X is O, and which has the following properties: Elementary Analysis: as $C_{250}H_{330}O_{31}Eu_4$,

Theoretical values C, 67.64%; H, 7.49%; Eu, 13.69%

Observed values C, 67.50%; H, 7.45%; Eu, 13.49% IR (KBr, cm $^{-1}$): (ν_{CH})2924, ($\nu_{\text{C=C}}$)1608, ($\nu_{\text{Ph-O}}$)1247 1 H-NMR(CDCl $_{3}$): δ 12.7(1H,s), δ 7.6-7.3(3H,m), δ 6.5-6.4(5H,d), δ 4.0(2H,t), δ 1.8(2H,m), δ 0.9(3H,t)

5 FAB-MS: m/z 4055.9 [Eu₄(L⁻)₉O²⁻]⁺. [Claim 12]

The multinuclear rare earth complex according to claim 6, which is represented by the general formula: L_{16} L'_{8} $(Ln)_{9}X_{2}$,

10 wherein

L is a ligand represented by the formula: [Chemical Formula 5]

L' is OH;

15 Ln is a terbium (Tb) ion; and X is O, and which has the following properties: Elementary Analysis: as $C_{214}H_{324}O_{72}NTb_9$,

> Theoretical values C, 46.79%; H, 5.93%; Tb, 26.46% Observed values C, 46.72%; H, 5.18%; Tb, 26.04%

20 IR (KBr, cm⁻¹): (v_{CH}) 2957, 2931, $(v_{C=0})$ 1674, 1637, $(v_{C=C})$ 1598, (v_{Ph-0}) 1243

 1 H-NMR (CDCl₃): δ 10.9(1H), δ 7.9-6.9(4H), δ 4.3(2H), δ 1.8(2H), δ 1.4(6H), δ 0.9 (3H)

FAB-MS: m/z 5140.2 [Tb₉(L⁻)₁₆(O²⁻)₂(OH⁻)₈+2H⁺]⁺.

25 [Claim 13]

A fluorescent substance containing the multinuclear rare earth complex according to any one of

claims 1 to 12.
[Claim 14]

A formed resin materials characterized in that the fluorescent substance according to claim 13 is compounded in a plastic polymer.