Equation assignment sequence for variable \dot{H}

no	var	equ	quations	token
39	2	-	t:: port variable	
38	15	_	r_x :: port variable	
37	40	_	Mm :: port variable	
36	21	_	V :: port variable	
35	17	_	r_z :: port variable	
34	16	_	$r_y :: \text{port variable}$	
33	19	_	U:: port variable	
32	18	_	n:: port variable	
31	9	_	$P_N S_A S$:: port variable	
30	3	_	value :: port variable	
29	1	_	F :: port variable	
28	61	44	$\lambda_S := \lambda_S$	
27	36	20	$v_{xN} := \frac{\partial r_{xN}}{\partial t}$	
26	81	64	$m_N := \lambda_S \overset{S \in NS}{\star} n_{NS}$	
25	49	32	$k_{xN}^c := \left(\lambda_S \overset{S \in NS}{\star} (\mu_{NS})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{xN}$	
24	53	36	$k_{xNS}^d := (\mu_{NS})^{-1} \cdot \left(v_{xN} \odot \left((V_N)^{-1} \odot \frac{\partial U_N}{\partial \mu_{NS}} \right) \right)$	
23	79	62	$c_{NS} := (V_N)^{-1} \odot n_{NS}$	
22	78	61	$d_A := \operatorname{sign}\left(F_{N,A} \stackrel{N}{\star} p_N\right)$	

Continued on next page

no	var	equ	quations	token
21	6	3	1/2 := Set(#, #)	
20	82	65	$\rho_N := (V_N)^{-1} \cdot m_N$	
19	66	49	$k_{xN}^c := k_{xN}^c$	
18	22	7	$p_N := \frac{\partial U_N}{\partial V_N}$	
17	29	13	$H_N := U_N + p_N \cdot V_N$	
16	80	63	$A_{y,z_N} := r_{y_N} \cdot r_{z_N}$	
15	70	53	$k_{xNS}^d := k_{xNS}^d$	
14	24	9	$\mu_{NS} := \frac{\partial U_N}{\partial n_{NS}}$	
13	84	67	$c_{AS} := (1/2 \cdot (F_{NS,AS} - d_A \odot F_{NS,AS})) *^{NS} c_{NS}$	
12	83	66	$\hat{V}_A := (\rho_N)^{-1} \cdot k_{xN}^c \cdot A_{y,z_N} \cdot F_{N,A} \stackrel{N}{\star} p_N$	
11	60	43	$h_{NS} := H_N \odot \left(n_{NS} \right)^{-1}$	
10	128	107	$\hat{n}_{AS}^d := A_{y,z_N} \odot \left(-k_{xNS}^d \right) \cdot F_{NS,AS} \overset{NS}{\star} \mu_{NS}$	
9	85	68	$\hat{n}_{AS}^c := \hat{V}_A \odot c_{AS}$	
8	119	98	$h_{NS} := h_{NS}$	
7	10	6	$F_{NS,AS} := F_{N,A} \odot P_{NS,AS}$	
6	135	114	$\hat{w}_A := Set(\hat{H}_A^c, \#)$	
5	130	109	$\hat{H}_A^d := \left(F_{NS,AS} \overset{NS}{\star} h_{NS} \right) \overset{S \in AS}{\star} \hat{n}_{AS}^d$	
4	125	104	$\hat{H}_A^c := \left(F_{NS,AS} \overset{NS}{\star} h_{NS}\right) \overset{S \in AS}{\star} \hat{n}_{AS}^c$	
3	136	115	$\hat{w}_N := F_{N,A} \overset{A}{\star} \hat{w}_A$	
2	131	110	$\hat{H}_N^d := F_{N,A} \stackrel{A}{\star} \hat{H}_A^d$	

Continued on next page

no	var	equ	quations	token
1	127	106	$\hat{H}_N^c := F_{N,A} \stackrel{A}{\star} \hat{H}_A^c$	
0	133		$\dot{H}_N := \hat{H}_N^c + \hat{H}_N^d + \hat{w}_N$	