15/05

Chapter 3 - Exercises 1,3,76,c,9,14e,f,15,20,22

Let F(x)=x2. Compute the first five points on the orbit of 1/2.

$$x_0 = \frac{1}{2}$$
 $x_1 = \frac{1}{4}$ $x_2 = \frac{1}{16}$ $x_3 = \frac{1}{256}$ $x_4 = \frac{1}{65536}$ $x_5 = \frac{1}{65536^2}$

3. Let $F(x) = x^2 - 2$. Compute $F^2(x)$ and $F^3(x)$.

$$F^{2}(x) = F(F(x)) = (x^{2}-2)^{2}-2 \left[x^{4}-4x^{2}+4-2=x^{4}-4x^{2}+2\right]$$

$$F^{3}(x) = ((x^{2}-2)^{2}-2)^{2}-2[(x^{2}-2)^{4}-4(x^{2}-2)+4]$$

7. Find all real fixed points for the following functions

b) F(x) = 22-2

recall: a fixed point is a point to such that IF(To) = to.

$$\therefore x^{2}-7=x \qquad x = \frac{1 \pm \sqrt{1+8}}{2} = 2; -1$$

$$x^{2}-x-7=0$$

c)
$$F(x) = x^2 + 1$$

 $x^2 - x + 1 = 0$ $x = \frac{1 \pm \sqrt{1-4}}{2} = \frac{1 \pm \sqrt{3}i}{2}$: no real fixed points

9. let F(x)=1-x2. Show that O lies on a 2-cycle for this function.

$$x_0 = 0$$
 $x_1 = F(0) = 1$ $x_2 = F(1) = 0$ $x_3 = F(0) = 1$...

Lo sequence 0,1,0,1,...: 2-cycle

14. For there reds, discuss behavior of resulting orbit under D. recall: 9(x) = 2x mod 1, 05x = 1.

e) x0=1/7 x1=2/7 x2=4/7 x3=1/7 x4=2/7 x5=4/7 .. for 20=1/7, the orbit has has a 3-cycle.

(1)
$$x_0 = \frac{1}{14}$$
 $x_1 = \frac{1}{7}$ $x_2 = \frac{2}{7}$ $x_3 = \frac{4}{7}$ $x_4 = \frac{1}{7}$ $x_5 = \frac{2}{7}$...

... x_0 is eventually position, with the orbit having a cycle of position 3 .

Into that $1/14$ is $2 \cdot 1/7$. If a seed for x is position, does any seed now, for $n \in \mathbb{Z}$, also eventually position?

15. Give an explicit formula for $9^2(x)$ and $9^3(x)$. Can got which down a general formula for $9^n(x)$?

16. Give an explicit formula for $9^n(x)$?

17. $9^n(x) = 9(9(x)) = 9(2x \mod 1) = 2(2x \mod 1) \mod 1$

18. $9^n(x) = 9(9(x)) = 9(2x \mod 1) = 2(2x \mod 1) \mod 1$

18. $9^n(x) = 9(9(1,1)) = 9(0,2) = 0.4$

19. $9^n(x) = 9(1,2) = 9(1,2) = 9(0,4) = 0.8$

19. $9^n(x) = 2(2(2x \mod 1) \mod 1) \mod 1$

19. $9^n(x) = 2(2(2x \mod 1) \mod 1) \mod 1$

19. $9^n(x) = 2^n \mod 1$

19. $9^n(x) = 2^n \mod 1$

20. Consider $9^n(x) = 2^n \mod 1$

21. $9^n(x) = 2^n \mod 1$

22. $9^n(x) = 9(x) = 9(x) = 9(x) = 9(x)$

23. $9^n(x) = 9(x) = 9(x) = 9(x)$

24. $9^n(x) = 9(x) = 9(x)$

25. $9^n(x) = 9(x) = 9(x)$

26. $9^n(x) = 9(x) = 9(x)$

27. $9^n(x) = 9(x) = 9(x)$

28. $9^n(x) = 9(x)$

29. $9^n(x) = 9(x)$

20. $9^n(x) = 9(x)$

21. $9^n(x) = 9(x)$

22. $9^n(x) = 9(x)$

23. $9^n(x) = 9(x)$

24. $9^n(x) = 9(x)$

25. $9^n(x) = 9(x)$

26. $9^n(x) = 9(x)$

27. $9^n(x) = 9(x)$

28. $9^n(x) = 9(x)$

29. $9^n(x) = 9(x)$

20. $9^n(x) = 9(x)$

21. $9^n(x) = 9(x)$

22. $9^n(x) = 9(x)$

23. $9^n(x) = 9(x)$

24. $9^n(x) = 9(x)$

25. $9^n(x) = 9(x)$

26. $9^n(x) = 9(x)$

27. $9^n(x) = 9(x)$

28. $9^n(x) = 9(x)$

29. $9^n(x) = 9(x)$

20. $9^n(x) = 9(x)$

20. $9^n(x) = 9(x)$

20. $9^n(x) = 9(x)$

21. $9^n(x) = 9(x)$

22. $9^n(x) = 9(x)$

23. $9^n(x) = 9(x)$

24. $9^n(x) = 9(x)$

25. $9^n(x) = 9(x)$

26. $9^n(x) = 9(x)$

27. $9^n(x) = 9(x)$

28. $9^n(x) = 9(x)$

29. $9^n(x) = 9(x)$

20. $9^n(x) = 9(x)$

20. $9^n(x) = 9(x)$

20. $9^n(x) = 9(x)$

21. $9^n(x) = 9(x)$

22. $9^n(x) = 9(x)$

23. $9^n(x) = 9(x)$

24. $9^n(x) = 9(x)$

25. $9^n(x) = 9(x)$

26. $9^n(x) = 9(x)$

27. $9^n(x) = 9(x)$

28. $9^n(x) = 9(x)$

29. $9^n(x) = 9(x)$

20. $9^n(x) = 9(x)$

20. $9^n(x) = 9(x)$

20. $9^n($