USN					

R. V. COLLEGE OF ENGINEERING

Autonomous Institution affiliated to VTU

V Semester B. E. Examinations Nov/Dec-18

Computer Science and Engineering

ADVANCED ALGORITHMS (ELECTIVE)

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B.In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	For any two functions $g(n)$ and $f(n)$, if $f(n) = 3n + 2$ then prove that	
		$f(n) = \Theta(g(n)).$	02
	1.2	Apply extended Euclid's algorithm to compute the values of (d, x, y) for	
		(850, 360) numbers.	02
	1.3	Mention the different algorithm applied in Johnson's algorithm. What is	
		the complexity of Johnson's algorithm?	02
	1.4	Apply Master theorem to solve the following equations	
		a) $T(n) = \sqrt{2} T(n/2) + \log n$	
		b) $T(n) = 2T(n/4) + n^{0.51}$	02
	1.5	List the properties that must be satisfied by a finite group (S, \oplus) where S	
		is a set with binary operation \oplus defined on S .	02
	1.6	Write the Euclid's Algorithm.	02
	1.7	Working with modulo $q = 11$, how many spurious hits does Rabin karp	
		matcher encounter in the <i>T</i> : 3141592653526 and <i>P</i> : 26.	02
	1.8	Perform operation find (4) in the given splay tree	
		6	
		3	
		(1) (8) (17)	
	1.0		02
	1.9	Find <i>DFT</i> for vector (2,3).	02
	1.10	The composite numbers which fails Fermat's test are called	01
	1.11	The iterative <i>FFT</i> implementation runs in time.	01

PART-B

2	a	Verify using substitution method the tiem complexity of recurrence	
		relation $T(n) = T(n/3) + T(2n/3) + n$ is $O(n \log n)$.	06
	b	Solve the following recurrence relation using recursion tree method.	
		$T(n) = 3T(n/4) + cn^2$	06
	c	Apply potential method of amortized cost analysis to compute total	
		amortized cost for incrementing binary counter algorithm.	04
3	a	Construct a finite automation to match pattern ababcab over alphabet	
		$\Sigma = \{a, b, c\}$. Match the given pattern in test	
		T: c a a b a a b c a b a b c a b a b c a b.	08

	b	Apply Bellman Ford algorithm to compute the shortest paths for graph given below.				
		8 0 4				
		3 9				
		-2 -2 -2 -2 -2 -2 -2 -2				
		OR				
4	a	Define reweighting technique in Johnson's Algorithm. Prove how the shortest path property is preserved during reweighting.	06			
	b	Trace the Knuth Morris Pratt string matching algorithm for the given text and pattern. T: "ABABABCDABABCDABCACABABABC" P: ABCDABCA.	06			
	С	Discuss pseudo code for the Rabin-karp string matching algorithm.	04			
5	а	Apply Ford Fulkerson algorithm, to compute the maximum network flow for the given graph with vertex <i>S</i> as source.				
		57(1) 6 2 6				
		(3) 3/t				
		5 3 6	06			
	b	Consider a Binomial queue H given below and perform delete Min operation on it.				
		(13) (23) (12)				
		(a) (14) (14) (16) (16)				
		(65)	06			
	С	Insert 10, 20, 30 and 15 in empty red-black tree.	04			
		OR				
6	a b	Insert 5, 3, 10, 6, 18, 14, 2 and 100 in the empty binomial queue. Illustrate with an example the maximum matching in bi-partite graph	06			
	С	using Ford-Fulkerson algorithm. Discuss the different splay operations during node insertion in splay	06			
		tree.	04			
7	а	Find some integer n that leaves reminder 1, 2 and 3 when divided by 9, 8 and 7 respectively.	08			
	b	Consider a <i>RSA</i> key set up with two prime numbers 13 and 19. The small odd integer e is chosen as 7. What is the encryption of the message				
	С	M = 100. Solve the given modular equation $35x \equiv 10 \pmod{50}$.	04 04			
8	a	Illustrate the two ways of representing polynomials.	08			
	b	Discuss the butterfly operation in <i>FFT</i> . Show how to perform the operation on two input values.	08			
		operation on two input values.	UO			