ESTRUCTURAS ALGEBRAICAS

Hoja 3. Acciones de grupos.

- 1. Decimos que G actúa transitivamente sobre Ω si para todo par de elementos $\alpha, \beta \in \Omega$ existe un $g \in G$ tal que $g \cdot \alpha = \beta$.
 - a) Demuestra que si G actúa sobre Ω entonces G actúa transitivamente sobre la órbita de cada $\alpha \in \Omega$.
 - b) Prueba que S_n actúa transitivamente sobre $\Omega = \{1, \dots, n\}$ por evaluación.
- 2. Demuestra que S_4 tiene un subgrupo H isomorfo a D_8 .
- **3.** Sean $H, K \leq G$ subgrupos finitos y $g \in G$. Probad que

$$|HgK| = \frac{|H||K|}{|(g^{-1}Hg) \cap K|}.$$

Deducid que

$$|HK| = \frac{|H||K|}{|H \cap K|} \,.$$

- **4.** Sea G un grupo y sea $N \triangleleft G$ abeliano. Consideramos $\Omega = \operatorname{Hom}(N, N)$ el conjunto de homomorfismos de N en sí mismo. Dado $\phi \in \Omega$ y $g \in G$ escribimos ϕ_g para denotar a la aplicación $\phi_g(n) = \phi(g^{-1}ng)$ de N en sí mismo.
 - a) Probad que $g \cdot \phi = \phi_g$ define una acción de G sobre Ω .
 - b) Decidid si la acción es fiel o transitiva.
- c) En el caso en que $G = \mathsf{D}_{2n}$ y $N = \langle \rho \rangle$ donde $\rho \in G$ tiene orden n, demostrad que $|\Omega| = n$ y que la acción de G sobre Ω tiene un único punto fijo si, y solo si, n es impar.
- **5.** Sea G un grupo y S un subconjunto no vacío de G. Se definen $\mathbf{C}_G(S) = \{g \in G \mid gs = sg \text{ para todo } s \in S\}$ y $\mathbf{N}_G(S) = \{g \in G \mid gSg^{-1} = S\}$.
 - a) Demostrad que $\mathbf{C}_G(S) \triangleleft \mathbf{N}_G(S) \leq G$.
 - b) Demostrad que si $S \leq G$ entonces, S es abeliano si, y solo si, $S \subseteq \mathbf{C}_G(S)$.
 - c) Demostrad que si $S \leq G$ entonces $\mathbf{N}_G(S)/\mathbf{C}_G(S)$ es isomorfo a un subgrupo de $\mathrm{Aut}(S)$.
- 6. Si un grupo G actúa sobre un conjunto Ω , probad que para cada $\alpha \in \Omega$ y $g \in G$ se cumple que

$$G_{g \cdot \alpha} = g \ G_{\alpha} \ g^{-1} \,.$$

Concluid que si G actúa transitivamente sobre Ω entonces los estabilizadores de elementos de Ω son subgrupos conjugados de G.

- 7. Sea G un grupo y sea H un subgrupo finito de G. Sean además T y S sistemas de generadores de G y H, respectivamente.
 - a) Demostrad que un elemento g de G normaliza H si, y sólo si, $gHg^{-1} \subseteq H$.
 - b) Demostrad que un elemento g de G normaliza H si, y sólo si, $gSg^{-1} \subseteq H$.
 - c) Demostrad que H es normal en G si, y solo si, $tSt^{-1} \subseteq H$ para todo $t \in T$. Muestra que la finitud de H es una condición necesaria.

- **8.** Sea G un p-grupo finito y sea $1 < N \triangleleft G$. Probad que $N \cap \mathbf{Z}(G) > 1$.
- 9. Sea p un primo. Demostrad que:
 - a) Si $|G| = p^2$ entonces G es abeliano.
 - **b)** Si $|G| = p^3$ no es abeliano, entonces $|\mathbf{Z}(G)| = p$.
- **10.** Sean G un grupo finito simple y $H \leq G$ con índice primo p. Probad que p es el mayor primo que divide |G| y que p^2 no divide a |G|.
- 11. Determinad la clase de isomorfía de los subgrupos de Sylow de S_4 .
- 12. Sea $|G| = p^a q^b$ con $p \neq q$ número primos. Demostrad que G = PQ donde $P \in \mathrm{Syl}_p(G) \neq Q \in \mathrm{Syl}_q(G)$.
- 13. Sea G un grupo finito, p un número primo y $P \in \operatorname{Syl}_p(G)$. Demostrad que si P es el único p-subgrupo de Sylow de G y $f: G \to G$ es un homomorfismo, entonces $f(P) \leq P$. Concluid que si $P \triangleleft G$ entonces P es característico en G.
- **14.** Sea G un grupo finito, p un número primo y $H \triangleleft G$ con $|H| = p^k$. Demostrad que $H \subseteq P$ para todo P, p-subgrupo de Sylow de G.
- **15.** Si $H \leq G$ son grupos finitos y $Q \in \operatorname{Syl}_p(H)$, probad que existe $P \in \operatorname{Syl}_p(G)$ tal que $P \cap H = Q$. Concluid que $\nu_p(H) \leq \nu_p(G)$.
- **16.** Sea G un grupo finito. Si $H \leq G$ tiene índice 2 en G, probad que $\nu_p(G) = \nu_p(H)$ para cada primo p impar. ¿Se satisface la misma igualdad si p = 2?
- 17. (Argumento de Frattini) Sea G un grupo finito y $N \triangleleft G$. Si $P \in \text{Syl}_n(N)$, probad que $G = N\mathbf{N}_G(P)$.
- 18. Si |G| = pq donde p > q son números primos, demostrad que G tiene un único p-subgrupo de Sylow. ¿Cuántos elementos de orden p tiene G? ¿Y de orden q?
- **19.** Si $|G| = p^2q$ donde $p \neq q$ son primos, demostrad que G no es simple.
- 20. Demostrad que todo grupo de orden 175 es abeliano.
- 21. ¿Cuántos grupos no abelianos de orden 28 tienen al menos un elemento de orden 4?
- **22.** Demostrar que todo grupo de orden $5^3 \cdot 7^3$ tiene un subgrupo normal de orden 125.
- **23.** Demostrar que todo grupo de orden 312 tiene un p-subgrupo de Sylow normal para algún primo p que divide al orden del grupo.
- **24.** Sea G un grupo de orden 220.
 - a) Probad que G tiene un subgrupo H de índice 4 y un subgrupo K de índice 5.
 - **b)** Probad que $H \triangleleft G$.
- **25.** Probar que no existen grupos simples de orden pqr donde p, q y r son primos distintos.
- 26. Hallad todos los grupos abelianos (salvo isomorfimo) de órdenes 36, 64, 96 y 100.
- 27. Hallad grupos isomorfos a los grupos $C_2 \times C_9 \times C_{35}$ y $C_{26} \times C_{42} \times C_{49}$ que sean producto directo de grupos cíclicos de órdenes potencias de primos.
- 28. Hallad todos los grupos abelianos de orden 175.
- 29. ¿Cuántos elementos de orden 3 puede tener un grupo abeliano de orden 36?