Dans ce sujet, par convention un vecteur x est un vecteur colonne. On notera x^T la transposée du vecteur (ou de la matrice) x.

Exercice 1. Soit $1 \le p \le n-2$ deux entiers naturels, et A une matrice de taille $n \times p$ de rang p, connue. Soit (Y_1, \ldots, Y_n) une observation du modèle statistique :

$$(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \{\mathbb{P}_{\boldsymbol{\theta}} = p_{\boldsymbol{\theta}} \cdot \operatorname{Leb}^{\otimes n} : \boldsymbol{\theta} = (\boldsymbol{\beta}, \sigma^2) \in \Theta := \mathbb{R}^p \times \mathbb{R}_+^*\})$$

où Leb $^{\otimes n}$ est la mesure de Lebesgue sur \mathbb{R}^n et p_{θ} est une densité par rapport à Leb $^{\otimes n}$ donnée par :

$$p_{\boldsymbol{\theta}}(\mathbf{y}) := \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{y} - A\boldsymbol{\beta}\|^2\right); \qquad \boldsymbol{\theta} = (\boldsymbol{\beta}, \sigma^2) \in \Theta, \quad \mathbf{y} := \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n$$

Nous notons

$$\mathbf{Y} := \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} \in \mathbb{R}^n, \quad C := A^T A \in \mathbb{R}^{p \times p}, \qquad \mathbf{H} := A C^{-1} A^T \in \mathbb{R}^{n \times n}, \qquad \hat{\boldsymbol{\beta}} := C^{-1} A^T \mathbf{Y} \in \mathbb{R}^p.$$

Nous rappelons que

- H est le projecteur orthogonal sur Im(A), le sous-espace vectoriel de \mathbb{R}^n engendré par les colonnes de la matrice A.
- $\hat{\beta}$ est l'estimateur des moindre carrés, i.e. l'unique minimum de

$$\boldsymbol{\beta} \mapsto J(\boldsymbol{\beta}) := \|\mathbf{Y} - A\boldsymbol{\beta}\|^2.$$

Nous considérons maintenant un modèle dans lequel nous ajoutons un régresseur (i.e. "une variable explicative") $\mathbf{z} \in \mathbb{R}^{n \times 1}$ vérifiant $(\mathbf{I} - \mathbf{H})\mathbf{z} \neq \mathbf{0}_{n \times 1}$. Nous supposons maintenant que (Y_1, \ldots, Y_n) est une observation du modèle statistique

$$\left(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \left\{ \mathbb{Q}_{\bar{\boldsymbol{\theta}}} = q_{\bar{\boldsymbol{\theta}}} \cdot \operatorname{Leb}^{\otimes n} : \; \overline{\boldsymbol{\theta}} = (\bar{\boldsymbol{\beta}}, \gamma, \bar{\sigma}^2) \in \bar{\Theta} := \mathbb{R}^p \times \mathbb{R} \times \mathbb{R}^*_+ \right\} \right)$$

où $q_{\bar{\theta}}$ est une densité par rapport à la mesure de Lebesgue sur \mathbb{R}^n donnée par :

$$q_{\bar{\boldsymbol{\theta}}}(\mathbf{y}) := \frac{1}{(2\pi\bar{\sigma}^2)^{n/2}} \exp\left(-\frac{1}{2\bar{\sigma}^2} \|\mathbf{y} - A\bar{\boldsymbol{\beta}} - \mathbf{z}\gamma\|^2\right); \qquad \bar{\boldsymbol{\theta}} = (\bar{\boldsymbol{\beta}}, \gamma, \bar{\sigma}^2) \in \bar{\Theta}.$$

Nous posons

$$\mathbf{z}_{\perp} := (\mathbf{I} - \mathbf{H})\mathbf{z}, \quad V := [A, \mathbf{z}_{\perp}], \quad \mathbf{k}_z := C^{-1}A^T\mathbf{z}.$$

Remarquons que

$$A^T \mathbf{z}_{\perp} = \mathbf{0}_{p \times 1}$$
 et $\mathbf{z} = A \mathbf{k}_z + \mathbf{z}_{\perp}$.

1. Montrer que, pour tout $\bar{\boldsymbol{\theta}} = (\bar{\boldsymbol{\beta}}, \gamma, \bar{\sigma}^2) \in \bar{\Theta}$,

$$\mathbb{E}_{\bar{\boldsymbol{\theta}}}[\mathbf{Y}] = V \begin{bmatrix} \bar{\boldsymbol{\beta}} + \mathbf{k}_z \gamma \\ \gamma \end{bmatrix} .$$

2. Montrer que l'estimateur $\hat{\lambda}$ des moindres carrés de λ défini par

$$\hat{\boldsymbol{\lambda}} = \operatorname*{arg\,min}_{\boldsymbol{\lambda} \in \mathbb{R}^{p+1}} \|\mathbf{Y} - V\boldsymbol{\lambda}\|^2$$

est donné par

$$\hat{\boldsymbol{\lambda}} := \left[egin{array}{c} C^{-1}A^T\mathbf{Y} \\ \|\mathbf{z}_{\perp}\|^{-2}\mathbf{z}_{\perp}^T\mathbf{Y} \end{array}
ight] \; .$$

3. Déterminer l'estimateur $(\widehat{\bar{\pmb{\beta}}},\hat{\gamma})$ des moindres carrés de $(\bar{\pmb{\beta}},\gamma),$ défini par

$$(\widehat{\bar{\boldsymbol{\beta}}}, \widehat{\gamma}) = \operatorname*{arg\,min}_{(\bar{\boldsymbol{\beta}}, \gamma) \in \mathbb{R}^p \times \mathbb{R}} \|\mathbf{Y} - A\bar{\boldsymbol{\beta}} - \mathbf{z}\gamma\|^2$$

en fonction de $\hat{\lambda}$.

- 4. Déterminer la distribution de l'estimateur $\hat{\gamma}$ sous $\mathbb{Q}_{\bar{\theta}}$ pour $\bar{\theta} = (\bar{\beta}, \gamma, \bar{\sigma}^2) \in \bar{\Theta}$.
- 5. Montrer que le projecteur orthogonal \bar{H} sur $\mathrm{Im}(V)$ est donné par

$$\bar{\mathbf{H}} := \mathbf{H} + \lVert \mathbf{z}_{\perp} \rVert^{-2} \mathbf{z}_{\perp} \mathbf{z}_{\perp}^T \,.$$

- 6. En déduire un estimateur $\hat{\sigma}^2$ sans biais de $\bar{\sigma}^2$ [exprimer $\hat{\bar{\sigma}}^2$ en fonction de $\hat{\sigma}^2$ et $z_{\perp}^T \mathbf{Y}$].
- 7. Déterminer la distribution de $(n-p-1)\widehat{\bar{\sigma}}^2/\bar{\sigma}^2$ sous $\mathbb{Q}_{\bar{\boldsymbol{\theta}}}$ pour $\bar{\boldsymbol{\theta}}=(\bar{\boldsymbol{\beta}},\gamma,\bar{\sigma}^2)\in\bar{\Theta}$.
- 8. Construire un test $H_0: \gamma = 0$, contre $H_1: \gamma \neq 0$ de niveau $a \in]0,1[$.

Exercice 2. Soit $n \geq 3$ et $Z = (X_1, \dots, X_n)$ un n-échantillon du modèle

$$(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+), \{p_{\theta} \cdot \text{Leb}, \theta \in \mathbb{R}_+^*\}),$$

où Leb est la mesure de Lebesgue sur \mathbb{R} et p_{θ} est définie par

$$x \mapsto p_{\theta}(x) := \theta x^{\theta - 1} \mathbb{1}_{[0,1[}(x) = \theta e^{(\theta - 1)\log(x)} \mathbb{1}_{[0,1[}(x)].$$

Nous admettrons que le modèle statistique est régulier.

- 1. Déterminer l'estimateur du maximum de vraisemblance $\hat{\theta}_n$ du paramètre θ .
- 2. Déterminer la distribution asymptotique de la suite d'estimateurs $\sqrt{n}(\hat{\theta}_n \theta)$.
- 3. Montrer que sous p_{θ} .Leb, la loi de la variable $Y_1 := -\log(X_1)$ est $\operatorname{Gamma}(1, \theta)$ (voir Définition IV-5.12 dans le polycopié). En déduire la loi, sous $p_{\theta} \cdot \mu$, de $\sum_{i=1}^{n} Y_i$ où $Y_i := -\log(X_i)$.
- 4. Calculer pour tout $\theta \in \mathbb{R}_+^*$, $\mathbb{E}_{\theta}[\hat{\theta}_n]$ et $\operatorname{Var}_{\theta}(\hat{\theta}_n)$.
- 5. Montrer qu'il existe une suite réelle (déterministe) $\{a_n, n \in \mathbb{N}\}$ telle que $\tilde{\theta}_n := a_n \hat{\theta}_n$ soit un estimateur sans biais de θ .
- 6. L'estimateur $\tilde{\theta}_n$ est-il efficace?
- 7. Montrer que $n\theta/\hat{\theta}_n$ est une fonction pivotale pour le paramètre θ dont on déterminera la distribution. En déduire un intervalle de confiance exact de niveau $1-\alpha$ pour $\alpha \in]0,1[$.

Exercice 3. Soit $Z = (X_1, \dots, X_n)$ un *n*-échantillon du modèle

$$(\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+), \{p_\theta \cdot \text{Leb}, \theta = (\mu, \rho) \in \Theta := \mathbb{R} \times \mathbb{R}_+^*\}),$$

où Leb est la mesure de Lebesgue sur \mathbb{R} et p_{θ} est définie par

$$x \mapsto p_{\theta}(x) := \frac{1}{\rho} \mathbb{1}_{[\mu - \rho/2, \mu + \rho/2]}(x) , \qquad \theta = (\mu, \rho) \in \Theta.$$

Dans la suite nous supposons que $n \geq 3$. Nous notons $X_{n:1} := \min(X_1, \dots, X_n)$, $X_{n:n} := \max(X_1, \dots, X_n)$ et $R_n := X_{n:n} - X_{n:1}$ et pour $\theta = (\mu, \rho) \in \Theta$,

$$A_{\theta} := \{(u, v) \in \mathbb{R}^2 : \mu - \rho/2 \le u \le v \le \mu + \rho/2\}$$
.

- 1. Déterminer un estimateur de maximum de vraisemblance de (μ, ρ) . Cet estimateur est-il unique?
- 2. Soit $\theta = (\mu, \rho) \in \Theta$. Montrer que sous $\mathbb{P}_{n,\theta}$, la loi jointe de $(X_{n:1}, X_{n:n})$ a une densité par rapport à la mesure de Lebesgue sur \mathbb{R}^2 donnée par

$$(u,v) \mapsto f_{n,\theta}(u,v) := \frac{n(n-1)}{\rho^n} (v-u)^{n-2} \mathbb{1}_{A_{\theta}}(u,v) .$$

3. Soit $\theta = (\mu, \rho) \in \Theta$. Montrer que sous $\mathbb{P}_{n,\theta}$, la loi de R_n a une densité par rapport à la mesure de Lebesgue sur \mathbb{R} donnée par

$$r \mapsto g_{n,\theta}(r) := \frac{n(n-1)}{\rho^n} r^{n-2} (\rho - r) \mathbb{1}_{]0,\rho]}(r) .$$

4. Soit $\theta = (\mu, \rho) \in \Theta$. Montrer que la suite $n(\rho - R_n)$ converge en loi sous $\mathbb{P}_{n,\theta}$ et identifier la loi limite.

Exercice 4. Dans la suite, toutes les variables sont définies sur le même espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$.

On considère un problème de classification binaire. Nous étudions la situation où les données d'apprentissage sont affectées d'erreurs sur les labels. Pour formaliser cette situation, nous supposons disposer d'un ensemble d'apprentissage $\{(X_i, Z_i)\}_{i=1}^n$, où n est le nombre d'exemples, $\{(X_i, Z_i)\}_{i=1}^n$ est une suite de variables aléatoires i.i.d. de même loi que (X, Z). Nous notons (X, Y) le couple "attribut" "label", avec $Y \in \{0, 1\}$ et notons Z, le label bruité

$$Z := \begin{cases} Y & \text{si } B = 0 ,\\ 1 - Y & \text{si } B = 1 , \end{cases}$$

où B est une variable de Bernoulli de paramètre $p \in [0, 1/2]$ indépendante de (X, Y).

Nous notons \mathcal{C} un ensemble de règles de classification que nous supposons de cardinal $|\mathcal{C}|$ fini. Pour tout $g \in \mathcal{C}$, nous définissons

- le risque de classification sur les observations sans bruit : $R(g) := \mathbb{P}(g(X) \neq Y)$,
- le risque de classification sur les observations bruitées : $R^b(g) := \mathbb{P}(g(X) \neq Z)$,
- le risque empirique sur les observations bruitées : $R_n^b(g) := \frac{1}{n} \sum_{i=1}^n \mathbbm{1}_{\{g(X_i) \neq Z_i\}}$.
- g^* une règle de classification minimisant le risque de classification sans bruit : $g^* \in \arg\min_{g \in \mathcal{C}} R(g)$

- \hat{g}_n^* une règle de classification minimisant le risque empirique sur les observations bruitées : $\hat{g}_n^* \in \arg\min_{g \in \mathcal{C}} R_n^b(g)$
- R^* le minimum du risque de classification : $R^* := \inf_{g \in \mathcal{C}} R(g) = R(g^*)$.

Soit $\varepsilon > 0$ et $\delta \in]0,1[$, fixés dans toute la suite. Nous allons démontrer que la suite de règles de classification \hat{g}_n^* est (ε,δ) -PAC, i.e. il existe un entier $n(\varepsilon,\delta)$ (que nous déterminerons) tel que

$$\forall n \ge n(\varepsilon, \delta), \qquad \mathbb{P}(R(\hat{g}_n^*) - R^* > \varepsilon) \le \delta.$$
 (1)

Posons $\bar{\varepsilon} := \varepsilon(1 - 2p)$.

1. Montrer que pour tout $g \in \mathcal{C}$,

$$R^{b}(g) = p + R(g)(1 - 2p)$$
.

En déduire une relation entre $R^b(g) - R^b(g^*)$ et $R(g) - R(g^*)$ pour tout classifieur $g \in \mathcal{C}$.

2. Montrer qu'il existe $n_0(\varepsilon, \delta)$ (que l'on déterminera) tel que pour tout $n \ge n_0(\varepsilon, \delta)$,

$$\mathbb{P}\left(R_n^b(g^*) - R^b(g^*) \le \bar{\varepsilon}/2\right) \ge 1 - \delta/2 \ .$$

3. Montrer qu'il existe $n_1(\varepsilon, \delta)$ (que l'on déterminera) tel que pour tout $n \geq n_1(\varepsilon, \delta)$,

$$\mathbb{P}\left(\sup_{g\in\mathcal{C}}\left\{R^b(g)-R^b_n(g)\right\}\leq \bar{\varepsilon}/2\right)\geq 1-\delta/2.$$

- 4. Etablir (1) [déterminer $n(\varepsilon, \delta)$].
- 5. De combien doit augmenter le nombre de données pour avoir la même garantie entre p = 0 et p = 0,05?

1 Solutions

Solution 1. 1. Nous avons

$$\mathbb{E}_{\bar{\boldsymbol{\beta}},\gamma,\bar{\sigma}^2}[\mathbf{Y}] = A\bar{\boldsymbol{\beta}} + \mathbf{z}\gamma = A(\bar{\boldsymbol{\beta}} + \mathbf{k}_z\gamma) + \mathbf{z}_{\perp}\gamma.$$

2. L'estimateur des moindres carrés de λ est donné par

$$\hat{\boldsymbol{\lambda}} = (V^T V)^{-1} V^T \mathbf{Y} = \begin{bmatrix} A^T A & 0 \\ 0 & \|\mathbf{z}_\perp\|^2 \end{bmatrix}^{-1} \begin{bmatrix} A^T \mathbf{Y} \\ \mathbf{z}_\perp^T \mathbf{Y} \end{bmatrix} = \begin{bmatrix} C^{-1} A^T \mathbf{Y} \\ \|\mathbf{z}^T \|^{-2} z_\perp^T \mathbf{Y} \end{bmatrix}$$

3. Nous posons $\hat{\boldsymbol{\alpha}} = C^{-1}A^T\mathbf{Y}$, $\hat{\gamma} = \|\mathbf{z}^T\|^{-2}z_{\perp}^T\mathbf{Y}$ et $\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\alpha}} - \mathbf{k}_z\hat{\gamma}$. Nous allons montrer que $(\hat{\boldsymbol{\beta}}, \hat{\gamma})$ est l'estimateur des moindres carrés de $(\bar{\boldsymbol{\beta}}, \gamma)$. En effet : pour tout $\boldsymbol{\lambda} \in \mathbb{R}^{p+1}$, nous avons

$$\|\mathbf{Y} - A\hat{\bar{\boldsymbol{\beta}}} - \mathbf{z}\hat{\boldsymbol{\gamma}}\|^2 = \|\mathbf{Y} - A\hat{\boldsymbol{\alpha}} + A\mathbf{k}_z\hat{\boldsymbol{\gamma}} - \mathbf{z}\hat{\boldsymbol{\gamma}}\|^2 = \|\mathbf{Y} - A\hat{\boldsymbol{\alpha}} - \mathbf{z}_{\perp}\hat{\boldsymbol{\gamma}}\|^2 \le \|\mathbf{Y} - V\boldsymbol{\lambda}\|^2$$

Et donc, pour tout $(\bar{\beta}, \gamma) \in \mathbb{R}^p \times \mathbb{R}$, en posant

$$\boldsymbol{\lambda} = \left[\begin{array}{c} \bar{\boldsymbol{\beta}} + A\mathbf{k}_z \gamma \\ \gamma \end{array} \right]$$

nous avons

$$\|\mathbf{Y} - A\widehat{\bar{\boldsymbol{\beta}}} - \mathbf{z}\widehat{\boldsymbol{\gamma}}\|^2 \le \|\mathbf{Y} - A\bar{\boldsymbol{\beta}} - \mathbf{z}\boldsymbol{\gamma}\|^2$$

- 4. \mathbf{Y} est un vecteur gaussien $n \times 1$ de moyenne $A\bar{\boldsymbol{\beta}} + \mathbf{z}\gamma$ et de covariance $\sigma^2 \mathbf{I}$. Donc, $\mathbf{z}_{\perp}^T \mathbf{Y} / \|\mathbf{z}_{\perp}\|^2$ est une variable gaussienne de moyenne γ (car $\mathbf{z}_{\perp}^T A = 0$ et $\mathbf{z}_{\perp}^T \mathbf{z} = \|\mathbf{z}_{\perp}\|^2$) et de variance $\sigma^2 \|\mathbf{z}_{\perp}\|^{-2}$.
- 5. $\operatorname{Im}(V) = \operatorname{Im}(A) \perp \operatorname{Vect}(\mathbf{z}_{\perp})$ où \perp est la somme directe orthogonale et $\operatorname{Vect}(\mathbf{z}_{\perp})$ est l'espace vectoriel engendré par \mathbf{z}_{\perp} . Par conséquent, $\bar{\mathbf{H}}$ est la somme du projecteur orthogonal sur $\operatorname{Im}(A)$ et du projecteur orthogonal sur \mathbf{z}_{\perp} .
- 6. $\hat{\overline{\sigma}}^2 = (n-p-1)^{-1}\{\|\mathbf{Y}\|^2 \|\bar{\mathbf{H}}\mathbf{Y}\|^2\}$ est un estimateur sans biais de σ^2 . Comme

$$\|\bar{\mathbf{H}}\mathbf{Y}\|^2 = \|\mathbf{H}\mathbf{Y}\|^2 + \frac{(\mathbf{z}_{\perp}^T\mathbf{Y})^2}{\|\mathbf{z}_{\perp}\|^2}$$

nous en déduisons que

$$\widehat{\widehat{\sigma}}^2 = \frac{n-p}{n-p-1} \widehat{\sigma}^2 - \frac{1}{n-p-1} \frac{(\mathbf{z}_{\perp}^T \mathbf{Y})^2}{\|\mathbf{z}_{\perp}\|^2} .$$

7. Comme $\sigma^{-1}\{\mathbf{Y} - (A\boldsymbol{\beta} - \mathbf{z}\gamma)\}$ est sous $\mathbb{Q}_{\bar{\boldsymbol{\beta}},\gamma,\bar{\sigma}^2}$ un vecteur gaussien centré de covariance identité,

$$(n-p-1)\hat{\sigma}^2/\sigma^2$$

est distribué suivant une loi du chi^2 à (n-p-1) degrés de liberté. Par le théorème de Cochran, les vecteurs $\bar{\mathbf{H}}\mathbf{Y}$ et $(\mathbf{I}-\bar{\mathbf{H}})\mathbf{Y}$ sont indépendants sous $\mathbb{Q}_{\bar{\boldsymbol{\beta}},\gamma,\bar{\sigma}^2}$. L'indépendance de $\widehat{\boldsymbol{\sigma}}^2$ et $\widehat{\boldsymbol{\gamma}}$ en découle car $\widehat{\boldsymbol{\sigma}}^2$ est une fonction de $(\mathbf{I}-\bar{\mathbf{H}})\mathbf{Y}$ et $\widehat{\boldsymbol{\gamma}}$ de $\bar{\mathbf{H}}\mathbf{Y}$.

8. Il découle de la question précédente que $\mathbb{Q}_{\bar{\mathcal{B}},\gamma,\bar{\sigma}^2}$,

$$T_n(\mathbf{Y}) = \frac{\sqrt{n} \|\mathbf{z}_{\perp}\| (\hat{\gamma} - \gamma)}{\widehat{\widehat{\sigma}}}$$

est une loi de Student à n-p-1-degrés de liberté. En notant pour $b\in[0,1[,\,t_b^{n-p-1}$ le quantile d'ordre b de la loi de Student, le test de

$$\delta_n(\mathbf{Y}) = \mathbb{1}_{\left[t_{1-a/2}^{n-p-1},\infty\right[}(|T_n(\mathbf{Y})|)$$

est un test de niveau a.

Solution . 1. Sous \mathbb{P}_{θ} , les v.a. $(X_i)_i$ sont indépendantes et de densité p_{θ} donc la vraisemblance est donnée par

$$\theta \mapsto \theta^n \exp\left((\theta - 1) \sum_{i=1}^n \log X_i\right) \prod_{i=1}^n \mathbb{1}_{X_i \in]0,1[}.$$

Pour $Z \in [0,1]^n$, la log-vraisemblance normalisée est

$$\theta \mapsto \log \theta + (\theta - 1) \frac{1}{n} \sum_{i=1}^{n} \log X_i.$$

Il s'agit d'une fonction de classe C^1 sur \mathbb{R}_+^* dont la dérivée vaut $\theta^{-1} + \frac{1}{n} \sum_{i=1}^n \log X_i$ et s'annule en

$$\theta_{n,\star} := -\frac{1}{\frac{1}{n} \sum_{i=1}^{n} \log X_i}.$$

De plus, on peut vérifier que la dérivée est positive sur $]0, \theta_{n,\star}]$ et négative sur $[\theta_{n,\star}, +\infty[$. Ce point est donc bien un maximum de la fonction vraisemblance. Ainsi $\hat{\theta}_n = \theta_{n,\star}$.

2. **Réponse 1.** Utiliser le cours pour donner la loi asymptotique du maximum de vraisemblance dans un modèle régulier.

Réponse 2. L'estimateur est de la forme $\left(\frac{1}{n}\sum_{i=1}^n U_i\right)^{-1}$ où $U_i := -\log X_i$. Le TCL pour des v.a. i.i.d. possédant un moment d'ordre 2 donne

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}U_{i}-\mathbb{E}_{n,\theta}\left[U_{i}\right]\right)\stackrel{\mathbb{P}_{n,\theta}}{\Longrightarrow}\mathrm{N}(0,\mathrm{Var}_{n,\theta}(U_{1})).$$

Puis nous appliquons la méthode δ avec la fonction $g: u \mapsto 1/u$, qui est de classe C^1 sur \mathbb{R}^+ et inversible. Il vient

$$\sqrt{n}\left(g\left(\frac{1}{n}\sum_{i=1}^{n}U_{i}\right)-g\left(\mathbb{E}_{n,\theta}\left[U_{i}\right]\right)\right)\overset{\mathbb{P}_{n,\theta}}{\Longrightarrow}g'\left(\mathbb{E}_{n,\theta}\left[U_{i}\right]\right)N(0,\operatorname{Var}_{n,\theta}(U_{1}))\equiv N(0,\left(\mathbb{E}_{n,\theta}\left[U_{i}\right]\right)^{-4}\operatorname{Var}_{n,\theta}(U_{1})).$$

Ici, sous $\mathbb{P}_{n,\theta}$, U_i suit une Gamma de paramètres $(1,\theta)$ (voir question suivante). Son espérance est $1/\theta$ et sa variance est $1/\theta^2$. On en déduit que

$$\sqrt{n} \left(\hat{\theta}_n - \theta \right) \stackrel{\mathbb{P}_{n,\theta}}{\Longrightarrow} \mathrm{N}(0,\theta^2) .$$

3. Soit h une fonction mesurable positive. Nous avons, en utilisant que le changement de variable $y = -\log x$ est bijectif de]0,1[dans \mathbb{R}_+^* ,

$$\mathbb{E}_{\theta} [h(Y_1)] = \mathbb{E}_{\theta} [h(-\log X_1)] = \theta \int_0^1 h(-\log x) x^{\theta - 1} dx$$
$$= \theta \int_0^{+\infty} h(y) \exp(-(\theta - 1)y) \exp(-y) dy = \theta \int_0^{+\infty} h(y) \exp(-\theta y) dy.$$

On reconnaît la densité d'une loi Gamma de paramètres $(1,\theta)$. Sous \mathbb{P}_{θ} , les v.a. $(X_i)_i$ sont i.i.d. donc il en est de même pour les v.a. $(Y_i)_i$. En utilisant un résultat sur la somme de lois Gamma indépendantes de premier paramètre identique (voir Lemme IV-5.13), il vient $\sum_{i=1}^{n} Y_i$ suit une loi Gamma de paramètres (n,θ) .

4. Soit $\theta > 0$. Nous avons, en utilisant le résultat de la question précédente,

$$\mathbb{E}_{\theta} \left[\hat{\theta}_{n} \right] = \mathbb{E}_{\theta} \left[\frac{1}{\frac{1}{n} \sum_{i=1}^{n} (-\log X_{i})} \right] = \frac{\theta^{n}}{\Gamma(n)} \int_{0}^{\infty} \frac{n}{s} s^{n-1} \exp(-\theta s) ds$$

$$= \frac{n\theta^{n}}{\Gamma(n)} \int_{0}^{\infty} s^{n-2} \exp(-\theta s) ds = \frac{n\theta^{n} \Gamma(n-1)}{\Gamma(n)\theta^{n-1}} \frac{\theta^{n-1}}{\Gamma(n-1)} \int_{0}^{\infty} s^{n-2} \exp(-\theta s) ds$$

$$= \frac{n\Gamma(n-1)}{\Gamma(n)} \theta = \frac{n}{n-1} \theta.$$

Dans la dernière ligne, on a observé que l'on intégrait la densité d'une loi Gamma de paramètres $(n-1,\theta)$; et utilisé que pour un entier n>0, $\Gamma(n)=(n-1)!$. Calculons le moment d'ordre 2. Il vient

$$\mathbb{E}_{\theta} \left[\hat{\theta}_{n}^{2} \right] = \mathbb{E}_{\theta} \left[\frac{1}{\frac{1}{n^{2}} \left(\sum_{i=1}^{n} (-\log X_{i}) \right)^{2}} \right] = \frac{\theta^{n}}{\Gamma(n)} \int_{0}^{\infty} \frac{n^{2}}{s^{2}} s^{n-1} \exp(-\theta s) ds$$

$$= \frac{n^{2} \theta^{n}}{\Gamma(n)} \int_{0}^{\infty} s^{n-3} \exp(-\theta s) ds = \frac{n^{2} \theta^{n} \Gamma(n-2)}{\Gamma(n) \theta^{n-2}} \frac{\theta^{n-2}}{\Gamma(n-2)} \int_{0}^{\infty} s^{n-3} \exp(-\theta s) ds$$

$$= \frac{n^{2} \Gamma(n-2)}{\Gamma(n)} \theta^{2} = \frac{n^{2}}{(n-1)(n-2)} \theta^{2}.$$

On en déduit que la variance vaut

$$\operatorname{Var}_{\theta}(\hat{\theta}_n) = \frac{n^2}{(n-1)(n-2)}\theta^2 - \frac{n^2}{(n-1)^2}\theta^2 = \frac{n^2}{(n-1)}\theta^2 \left(\frac{1}{n-2} - \frac{1}{n-1}\right) = \frac{n^2}{(n-1)^2(n-2)}\theta^2.$$

5. Nous cherchons a_n tel que pour tout $\theta > 0$, $\mathbb{E}_{\theta} \left[\tilde{\theta}_n \right] = \theta$. D'après la question précédente, il faut prendre

$$a_n := \frac{n-1}{n}$$
.

6. Il faut comparer l'erreur quadratique de l'estimateur à la borne de Cramer-Rao. Comme l'estimateur est sans biais, sa variance et son erreur quadratique coïncident. Nous avons donc

$$\mathbb{E}_{\theta}\left[(\tilde{\theta}_n - \theta)^2\right] = a_n^2 \operatorname{Var}_{\theta}(\hat{\theta}_n) = \frac{\theta^2}{n - 2}.$$

Par ailleurs, la borne de Cramer-Rao est donnée par $(nI(\theta))^{-1}$ où $I(\theta)$ désigne l'information de Fisher associée à une seule observation :

$$I(\theta) := \mathbb{E}_{\theta} \left[(\partial_{\theta} \log p_{\theta}(X_1))^2 \right];$$

cette quantité est indépendante de n. Nous avons donc une dépendance en la taille n de l'échantillon qui ne coïncide pas ; l'estimateur sans biais n'est pas efficace.

7. Montrons que pour tout $\theta > 0$, la loi de $n\theta/\hat{\theta}_n$ sous \mathbb{P}_{θ} ne dépend pas de θ , et identifions cette loi. Soit h une fonction mesurable positive; il vient, en utilisant l'expression de $\hat{\theta}_n$ et la question 3,

$$\mathbb{E}_{\theta} \left[h \left(\frac{n\theta}{\hat{\theta}_n} \right) \right] = \mathbb{E}_{\theta} \left[h \left(\theta \sum_{i=1}^n (-\log X_i) \right) \right]$$
$$= \frac{\theta^n}{\Gamma(n)} \int_0^\infty h(\theta \, s) s^{n-1} \exp(-\theta s) ds = \frac{1}{\Gamma(n)} \int_0^\infty h(w) w^{n-1} \exp(-w) dw.$$

On reconnaît la loi Gamma de paramètres (n, 1).

Notons $q_{n,\tau}$ les quantiles d'une loi Gamma de paramètres (n,1). Nous avons donc pour tout $\theta > 0$,

$$\mathbb{P}_{\theta}\left(q_{n,\alpha/2} \le \frac{n\theta}{\hat{\theta}_n} \le q_{n,1-\alpha/2}\right) = 1 - \alpha.$$

Ce qui permet de proposer un intervalle de confiance exact de la forme

$$\left[\hat{\theta}_n \ \frac{q_{n,\alpha/2}}{n}, \hat{\theta}_n \ \frac{q_{n,1-\alpha/2}}{n}\right].$$

Solution . 1. La vraisemblance du n-échantillon Z est

$$\theta \mapsto \frac{1}{\rho^n} \prod_{i=1}^n \mathbb{1}_{[\mu-\rho/2,\mu+\rho/2]}(X_i) = \frac{1}{\rho^n} \mathbb{1}_{A_\theta}(X_{n:1}, X_{n:n}).$$

En particulier, $\mathbbm{1}_{A_{\theta}}(X_{n:1}, X_{n:n}) = 1$ pour tout $\theta = (\mu, \rho) \in \mathbb{R} \times \mathbb{R}_{+}^{*}$ vérifiant

$$\rho = \mu + \rho/2 - (\mu - \rho/2) \ge X_{n:n} - X_{n:1}$$

et la vraisemblance est donc maximisé par la plus petite valeur de ρ satisfaisant cette contrainte. Nous avons donc $\hat{\rho}_n = X_{n:n} - X_{n:1}$. Cette valeur de $\hat{\rho}_n$ étant choisie, $\mathbb{1}_{A_{\mu,\hat{\rho}_n}(X_{n:1},X_{n:n})} = 1$ pour tout $\mu \in \mathbb{R}$ vérifiant

$$\mu - \hat{\rho}_n/2 \le X_{n:1} \le X_{n:n} \le \mu + \hat{\rho}_n/2 \implies \mu \le (1/2)(X_{n:1} + X_{n:n}) \le \mu.$$

L'estimateur du maximum de vraisemblance est unique et donné par

$$\hat{\mu}_n = \frac{X_{n:1} + X_{n:n}}{2}, \qquad \hat{\rho}_n = X_{n:n} - X_{n:1}.$$

2. Soient $s \leq t$. Nous avons, par indépendance des v.a. puis leur loi identique,

$$\mathbb{P}_{n,\theta}\left(s \leq \min_{i} X_{i} \leq \max_{i} X_{i} \leq t\right) = \prod_{i=1}^{n} \mathbb{P}_{n,\theta}\left(s \leq X_{i} \leq t\right) = \left(\mathbb{P}_{n,\theta}\left(s \leq X_{1} \leq t\right)\right)^{n}.$$

En remarquant que sous \mathbb{P}_{θ} , X_1 suit une loi uniforme sur $[\mu - \rho/2, \mu + \rho/2]$, il vient que cette probabilité est nulle lorsque $s \ge \mu + \rho/2$ ou $t \le \mu - \rho/2$; et sinon :

$$\mathbb{P}_{n,\theta} \left(s \le \min_{i} X_{i} \le \max_{i} X_{i} \le t \right) = \rho^{-n} \left\{ (t \land (\mu + \rho/2)) - (s \lor (\mu - \rho/2)) \right\}^{n}$$
 (2)

D'autre part, calculons pour tout $s \leq t$

$$\pi(s,t) := \int_{\{(x,y): s \le x \le y \le t\}} f(x,y) \, dx \, dy = \int_s^t \left(\int_x^t f(x,y) \, dy \right) \, dx$$
$$= \frac{n(n-1)}{\rho^n} \int_s^t \left(\int_x^t (y-x)^{n-2} \mathbb{1}_{\mu-\rho/2 \le x \le y \le \mu+\rho/2}(x,y) \, dy \right) \, dx.$$

Nous avons, du fait de l'indicatrice, que $\pi(s,t)=0$ lorsque $s\geq \mu+\rho/2$ ou $t\leq \mu-\rho/2$; sinon,

$$\pi(s,t) = \frac{n(n-1)}{\rho^n} \int_s^t \mathbb{1}_{[\mu-\rho/2,\mu+\rho/2]}(x) \left(\int_x^{t \wedge (\mu+\rho/2)} (y-x)^{n-2} \, \mathrm{d}y \right) \, \mathrm{d}x$$

$$= \frac{n}{\rho^n} \int_{s \vee (\mu-\rho/2)}^{t \wedge (\mu+\rho/2)} \left(\{ t \wedge (\mu+\rho/2) \} - x \right)^{n-1} \, \mathrm{d}x$$

$$= \rho^{-n} \left\{ (t \wedge (\mu+\rho/2)) - (s \vee (\mu-\rho/2)) \right\}^n.$$

La comparaison de cette valeur de $\pi(s,t)$ et de la quantité (2) permet de démontrer l'expression de la densité proposée.

3. Soit $\theta \in \Theta$. Pour toute function mesurable positive h, nous avons

$$\mathbb{E}_{\theta}\left[h\left(R_{n}\right)\right] = \frac{n(n-1)}{\rho^{n}} \int_{A_{\theta}} h(y-x) \left(y-x\right)^{n-2} dx dy.$$

Nous faisons un changement de variable $(x,z) \leftarrow (x,y-x)$ qui donne, combiné au théorème de Fubini,

$$\mathbb{E}_{\theta} [h (R_n)] = \frac{n(n-1)}{\rho^n} \int_{\{(x,z): \mu - \rho/2 \le x \le x + z \le \mu + \rho/2\}} h(z) (z)^{n-2} dx dz$$

$$= \frac{n(n-1)}{\rho^n} \int_0^\rho h(z) z^{n-2} \left(\int_{\mu - \rho/2}^{\mu + \rho/2 - z} dx \right) dz$$

$$= \frac{n(n-1)}{\rho^n} \int_0^\rho h(z) z^{n-2} (\rho - z) dz.$$

On reconnaît l'expression de la densité donnée.

4. Remarquons que nous avons $\mathbb{P}_{n,\theta}(\rho - R_n \ge 0) = 1$ pour tout $\theta \in \Theta$; donc la limite en loi sera une v.a. positive ou nulle. Etablissons la convergence en loi par un argument de convergence des fonctions de répartition. Soit t > 0. Nous écrivons, en utilisant la question 3,

$$\mathbb{P}_{n,\theta}\left(n(\rho-R_n)\leq t\right) = \mathbb{P}_{n,\theta}\left(\rho-R_n\leq t/n\right) = \mathbb{P}_{n,\theta}\left(\rho-t/n\leq R_n\right).$$

A t fixé, nous allons considérer la limite $n\to +\infty$; nous pouvons donc considérer que n est assez grand pour que $\rho-t/n\geq 0$. Il vient, pour une toute valeur de n assez grande (t>0 fixé)

$$\mathbb{P}_{n,\theta} (n(\rho - R_n) \le t) = \frac{n(n-1)}{\rho^n} \int_{\rho - t/n}^{\rho} r^{n-2} (\rho - r) dr
= \frac{n(n-1)}{\rho^n} \left\{ \frac{\rho}{n-1} \left(\rho^{n-1} - (\rho - t/n)^{n-1} \right) - \frac{1}{n} \left(\rho^n - (\rho - t/n)^n \right) \right\}
= n \left\{ 1 - \left(1 - \frac{t}{\rho n} \right)^{n-1} \right\} - (n-1) \left\{ 1 - \left(1 - \frac{t}{\rho n} \right)^n \right\}
= 1 - \left(1 - \frac{t}{\rho n} \right)^n \left\{ n \left(1 - \frac{t}{\rho n} \right)^{-1} - (n-1) \right\}$$

Par conséquent, nous avons

$$\lim_{n \to \infty} \mathbb{P}_{n,\theta} \left(n(\rho - R_n) \le t \right) = 1 - \left(1 + \frac{t}{\rho} \right) e^{-t/\rho}.$$

En dérivant par rapport à t, nous obtenons que la densité de la loi limite est donnée par

$$g(t) = \frac{t}{\rho^2} e^{-t/\rho} \mathbb{1}_{\mathbb{R}^+}(t)$$

Nous reconnaissons la densité d'une loi Gamma $(2, 1/\rho)$.

Solution 4. 1. Notons que

$$R^{b}(g) = \mathbb{P}(g(X) \neq Z) = \mathbb{P}(g(X) \neq Z, Y = Z) + \mathbb{P}(g(X) \neq Z, Y \neq Z)$$

= $\mathbb{P}(g(X) \neq Y, B = 0) + \mathbb{P}(g(X) = Y, B = 1).$

Par indépendance du couple (X,Y) et de B, nous avons

$$R^b(g) = (1 - p)R(g) + \{1 - R(g)\}p = p + (1 - 2p)R(g)$$
.

On en déduit que

$$R^b(g) - R^b(g^*) = (1 - 2p) (R(g) - R(g^*)).$$

2. Soit $g \in \mathcal{C}$. Nous allons démontrer que

$$\mathbb{P}\left(R_n^b(g) - R^b(g) \ge \bar{\varepsilon}/2\right) \le \delta/2 \;, \qquad \mathbb{P}\left(R_n^b(g) - R^b(g) \le -\bar{\varepsilon}/2\right) \le \delta/2 \;. \tag{3}$$

Nous écrivons

$$R_n^b(g) - R^b(g) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{g(X_i) \neq Z_i} - \mathbb{P}(g(X) \neq Z) = \frac{1}{n} \sum_{i=1}^n U_i$$

avec

$$U_i := \mathbb{1}_{g(X_i) \neq Z_i} - \mathbb{P}(g(X) \neq Z) .$$

Par hypothèses, les v.a. $(U_i)_i$ sont indépendantes; de plus, elles sont centrées, et on a

$$\mathbb{P}(-m \le U_i \le 1 - m) = 1$$
 $m := \mathbb{P}(g(X) \ne Z)$.

En utilisant l'inégalité de Hoeffding, nous avons puisque $b_i - a_i = 1$,

$$\mathbb{P}\left(R_n^b(g) - R^b(g) \ge \bar{\varepsilon}/2\right) \le e^{-n\bar{\varepsilon}^2/2} ,$$

Il suffit de choisir n tel que

$$e^{-n\bar{\varepsilon}^2/2} \le \delta/2$$

soit

$$n \ge n_0(\mathbf{p}, \varepsilon, \delta) := \frac{2}{\overline{\varepsilon}^2} \log \left(\frac{2}{\delta}\right) .$$

On raisonne de même pour établir la seconde inéqualité (en utilisant encore Hoeffding); et on obtient la même valeur de n_0 , qui est donc celle que l'on retient comme garantissant les deux contrôles (3).

3. Nous allons démontrer que

$$\mathbb{P}\left(\sup_{g\in\mathcal{C}}\left\{R^b(g)-R_n^b(g)\right\}\geq \bar{\varepsilon}/2\right)\leq \delta/2.$$

Puisque \mathcal{C} est de cardinal fini, et en utilisant la question 2, nous avons

$$\begin{split} \mathbb{P}\left(\sup_{g\in\mathcal{C}}\{R^b(g)-R^b_n(g)\} \geq \bar{\varepsilon}/2\right) \leq \sum_{g\in\mathcal{C}} \mathbb{P}\left(R^b(g)-R^b_n(g) \geq \bar{\varepsilon}/2\right) \\ \leq \sum_{g\in\mathcal{C}} \mathbb{P}\left(R^b_n(g)-R^b(g) \leq -\bar{\varepsilon}/2\right) \\ \leq |\mathcal{C}| \operatorname{e}^{-n\bar{\varepsilon}^2/2} \end{split}$$

(voir aussi le Théorème III-2.7). Il vient

$$n \ge n_1(\mathbf{p}, \varepsilon, \delta) := \frac{2}{\varepsilon^2} \left\{ \log(|\mathcal{C}|) + \log(2/\delta) \right\}.$$

4. En utilisant la question 1, nous avons

$$R(\hat{g}_n^*) - R(g^*) = \frac{1}{1 - 2p} \left(R^b(\hat{g}_n^*) - R^b(g^*) \right) .$$

Nous écrivons

$$R^{b}(\hat{g}_{n}^{*}) - R^{b}(g^{*}) \leq R^{b}(\hat{g}_{n}^{*}) - R^{b}_{n}(\hat{g}_{n}^{*}) + R^{b}_{n}(\hat{g}_{n}^{*}) - R^{b}_{n}(g^{*}) + R^{b}_{n}(g^{*}) - R^{b}(g^{*})$$

Par définition de \hat{g}_n^* , le terme $R_n^b(\hat{g}_n^*) - R_n^b(g^*)$ est négatif; il vient

$$R(\hat{g}_n^*) - R(g^*) \le \frac{1}{1 - 2p} \left(\sup_{g \in \mathcal{C}} \{ R^b(g) - R_n^b(g) \} + R_n^b(g^*) - R^b(g^*) \right).$$

Par suite

$$\mathbb{P}\left(R(\hat{g}_n^*) - R(g^*) > \varepsilon\right) \le \mathbb{P}\left(\sup_{g \in \mathcal{C}} \{R^b(g) - R_n^b(g)\} + R_n^b(g^*) - R^b(g^*) > \bar{\varepsilon}\right)$$

$$\le \mathbb{P}\left(\sup_{g \in \mathcal{C}} \{R^b(g) - R_n^b(g)\} > \bar{\varepsilon}/2\right) + \mathbb{P}\left(R_n^b(g^*) - R^b(g^*) > \bar{\varepsilon}/2\right)$$

En utilisant les questions 2 (voir Eq. (3)) et 3, chacun des deux termes de droite est inférieur à $\delta/2$ dès lors que $n \ge n_0 \lor n_1$ i.e.

$$n \ge n(\mathbf{p}, \varepsilon, \delta) := \frac{2}{\varepsilon^2 (1 - 2\mathbf{p})^2} \{ \log(|\mathcal{C}|) + \log(2/\delta) \}$$

5. Observons que

$$n(p, \varepsilon, \delta) = \frac{1}{(1 - 2p)^2} n(0, \varepsilon, \delta)$$
.

Par suite, pour obtenir la précision (ε, δ) , nous avons

$$n(0.05, \varepsilon, \delta) = \frac{100}{81} n(0, \varepsilon, \delta) \approx 1.23 n(0, \varepsilon, \delta)$$
.