PLSC 504

Introduction to Item Response
Theory Models - II

November 30, 2017

IRT Models in R

- Library 1tm (marginal estimation)
 - rasch (1PLM)
 - 1tm (2PLM)
 - tpl (3PLM)
- Library MCMCpack (Bayesian estimation)
 - 1 and 2PLM
 - Standard, hierarchical, dyamic, multidimensional
- ideal (in library pscl) (Bayesian estimation)
 - 1 and 2PLM
 - k-dimensional
 - takes a rollcall object
- Other packages: eRm, irtoys, irtProb, MiscPsycho, etc.

Example: SCOTUS Voting, 1994-2004

> summary(SCOTUS)

id	Rehnquis	t Stevens	OConnor	Scalia
Min. : 1	Min. :0	Min. :0	Min. :0	Min. :0
1st Qu.: 377	1st Qu.:0	1st Qu.:0	1st Qu.:0	1st Qu.:0
Median: 753	Median :0	Median :1	Median :0	Median :0
Mean : 753	Mean :0	Mean :1	Mean :0	Mean :0
3rd Qu.:1129	3rd Qu.:1	3rd Qu.:1	3rd Qu.:1	3rd Qu.:1
Max. :1505	Max. :1	Max. :1	Max. :1	Max. :1
	NA's :49	NA's :51	NA's :55	NA's :41
Kennedy	Souter	Thomas	Ginsburg	Breyer
Min. :0	Min. :0	Min. :0	Min. :0	Min. :0
1st Qu.:0	1st Qu.:0	1st Qu.:0	1st Qu.:0	1st Qu.:0
Median :0	Median :1	Median :0	Median :1	Median :1
Mean :0	Mean :1	Mean :0	Mean :1	Mean :1
3rd Qu.:1	3rd Qu.:1	3rd Qu.:0	3rd Qu.:1	3rd Qu.:1
Max. :1	Max. :1	Max. :1	Max. :1	Max. :1
NA's :32	NA's :37	NA's :44	NA's :39	NA's :61

1PLM Using rasch

```
> # 1PLM / Rasch Model:
> require(ltm)
> OnePLM<-rasch(SCOTUS[c(2:10)])
> summary(OnePLM)
Model Summary:
log.Lik
          AIC
               BTC
  -5529 11079 11132
Coefficients:
               value std err z vals
Dffclt.Rehnquist 0.46 0.040 11.5
Dffclt.Stevens -0.59 0.030 -19.8
Dffclt.OConnor 0.14 0.030
                             4.6
Dffclt.Scalia 0.52 0.041 12.5
Dffclt.Kennedy 0.21 0.032 6.5
Dffclt.Souter
             -0.36
                      0.027 -13.1
Dffclt Thomas
              0.60
                      0.043 13.8
Dffclt.Ginsburg -0.37
                      0.027 -13.4
Dffclt.Breyer
               -0.26
                      0.027 -9.9
Dscrmn
                3.74
                      0.130 28.9
Integration:
method: Gauss-Hermite
quadrature points: 21
Optimization:
```

Convergence: 0 max(|grad|): 0.0027 quasi-Newton: BFGS

Converted to $Pr(Y_i = 1 | \hat{\theta}_i = 0)$

```
> # Convert to probabilities given theta=0
> coef(OnePLM, prob=TRUE, order=TRUE)
         Dffclt Dscrmn P(x=1|z=0)
Stevens
         -0.59
                  3.7
                           0.900
Ginsburg
         -0.37
                  3.7
                          0.797
Souter
         -0.36 3.7
                          0.791
Brever
          -0.26 3.7
                          0.729
OConnor
          0.14 3.7
                          0.373
Kennedy
           0.21
                  3.7
                           0.311
Rehnquist
           0.46
                  3.7
                          0.151
Scalia
           0.52
                  3.7
                           0.126
Thomas
           0.60
                  3.7
                           0.096
```

Alternative Model Constraining $\alpha = 1.0$

```
> AltOnePLM<-rasch(IRTData, constraint=cbind(length(IRTData)+1,1))
> summary(AltOnePLM)
Model Summary:
log.Lik
          AIC
                BIC
  -6452 12923 12971
Coefficients:
                value std err z vals
Dffclt.Rehnquist 1.26
                       0.073
                              17.3
Dffclt.Stevens
              -1.07
                       0.071 -15.1
                       0.069
                                8.1
Dffclt.OConnor
              0.56
Dffclt.Scalia
               1.37
                       0.074
                              18.6
Dffclt.Kennedy 0.72
                       0.069
                               10.4
Dffclt Souter
              -0.58
                       0.068
                               -8.6
Dffclt.Thomas
               1.53
                       0.075
                               20.3
Dffclt.Ginsburg -0.61
                       0.068
                               -8.9
Dffclt.Brever
                -0.40
                        0.068
                               -5.9
Dscrmn
                 1.00
                          NA
                                 NA
```

2PLM

```
> TwoPLM<-ltm(IRTData ~ z1)
> summary(TwoPLM)
```

Coefficients:

	value	std.err	z.vals
Dffclt.Rehnquist	0.44	0.035	12.3
Dffclt.Stevens	-0.63	0.038	-16.7
Dffclt.OConnor	0.14	0.026	5.6
Dffclt.Scalia	0.59	0.042	14.1
Dffclt.Kennedy	0.20	0.028	7.2
Dffclt.Souter	-0.27	0.025	-10.7
Dffclt.Thomas	0.68	0.044	15.2
Dffclt.Ginsburg	-0.29	0.025	-11.8
Dffclt.Breyer	-0.24	0.025	-9.6
Dscrmn.Rehnquist	4.77	0.377	12.7
Dscrmn.Stevens	2.46	0.165	14.9
Dscrmn.OConnor	4.14	0.341	12.1
Dscrmn.Scalia	2.82	0.188	15.0
Dscrmn.Kennedy	4.74	0.448	10.6
Dscrmn.Souter	6.69	0.535	12.5
Dscrmn.Thomas	2.84	0.190	14.9
Dscrmn.Ginsburg	5.83	0.439	13.3
Dscrmn.Breyer	3.76	0.253	14.9

2PLM: Probabilities and Testing

> coef(TwoPLM, prob=TRUE, order=TRUE)

	Dffclt	Dscrmn	P(x=1 z=0)
Stevens	-0.63	2.5	0.82
Ginsburg	-0.29	5.8	0.85
Souter	-0.27	6.7	0.86
Breyer	-0.24	3.8	0.71
OConnor	0.14	4.1	0.35
Kennedy	0.20	4.7	0.28
Rehnquist	0.44	4.8	0.11
Scalia	0.59	2.8	0.16
Thomas	0.68	2.8	0.13

> anova(OnePLM, TwoPLM)

```
Likelihood Ratio Table
```

```
AIC BIC log.Lik LRT df p.value
OnePLM 11079 11132 -5529
TwoPLM 10882 10978 -5423 212.7 8 <0.001
```

3PLM

- > ThreePLM<-tpm(IRTData)
- > summary(ThreePLM)

Coefficients:

	value	std.err	z.vals
Gussng.Rehnquist	0.049	0.008	6.260
Gussng.Stevens	0.000	0.001	0.018
Gussng.OConnor	0.043	0.013	3.415
Gussng.Scalia	0.097	0.011	9.119
Gussng.Kennedy	0.071	0.014	5.162
Gussng.Souter	0.011	0.029	0.386
Gussng.Thomas	0.087	0.010	8.900
Gussng.Ginsburg	0.000	0.000	0.009
Gussng.Breyer	0.000	0.000	0.004
Dffclt.Rehnquist	0.716	0.030	23.511
Dffclt.Stevens	-0.630	0.038	-16.434
Dffclt.OConnor	0.340	0.040	8.537
Dffclt.Scalia	0.759	1.766	0.430
Dffclt.Kennedy	0.500	0.041	12.170
Dffclt.Souter	-0.294	0.063	-4.642
Dffclt.Thomas	0.808	10.610	0.076
Dffclt.Ginsburg	-0.329	0.030	-10.970
Dffclt.Breyer	-0.232	0.031	-7.439
Dscrmn.Rehnquist	8.735	4.259	2.051
Dscrmn.Stevens	2.577	0.181	14.214
Dscrmn.OConnor	3.979	0.439	9.068
Dscrmn.Scalia	26.537	578.889	0.046
Dscrmn.Kennedy	4.408	0.588	7.498
Dscrmn.Souter	6.698	1.416	4.731
Dscrmn.Thomas	34.074	2779.161	0.012
Dscrmn.Ginsburg	5.800	0.509	11.394
Dscrmn.Breyer	3.538	0.231	15.335

3PLM: Testing

> anova(TwoPLM, ThreePLM)

Likelihood Ratio Table

AIC BIC log.Lik LRT df p.value
TwoPLM 10882 10978 -5423
ThreePLM 10737 10881 -5342 162.94 9 <0.001

Cool Plots, I

Cool Plots, II

Cool Plots, III

Miscellaneous Things, I: Dimensionality

- Usually, unidimensional
- Sometimes, two-dimensional
- Tests:
 - · Tetrachoric correlations among items
 - · DIMTEST (Stout & Zhang, etc.)
 - · Yen's Q₃
 - · 1-D vs. 2-D comparisons (LR tests, etc.)

Miscellaneous Things, II: "DIF"

- Differential item functioning
- Formally,

$$\Pr(Y_{ij}=1) = \Lambda[\alpha_j(\theta_i - \mathbf{X}_i\beta_j)].$$

→ violates local item independence

Extensions

- Nominal/Multinomial Y
- Ordinal Y:
 - · Graded response model ("GRM") (Samejima 1969)
 - · Partial credit model (Masters 1982)
 - · Generalized partial credit model (Muraki 1992)
- Models for mixed response types (Thissen and Wainer 2001, 2003)
- Hierarchical IRT models (e.g. Bolt and Kim 2005)
- Models with covariates (e.g., DeBoeck and Wilson 2004)

Further Reading / Useful References

Hambleton, Ronald K., H. Swaminathan, and H. Jane Rogers. 1991. Fundamentals of Item Response Theory. Newbury Park CA: Sage Publications.

de Ayala, R. J. 2008. The Theory and Practice of Item Response Theory. New York: The Guilford Press.

Fahrmeier, L., and G. Tutz. 2000. Multivariate Statistical Modelling Based on Generalized Linear Models. Berlin: Springer-Verlag.

De Boeck, Paul, and Mark Wilson, Eds. 2004. Explanatory Item Response Models: A Generalized Linear and Nonlinear Approach. New York: Springer.