05

Lớp Ứng dụng Thuật Toán 2018

1. SODUKU

Đại Minh thiếu tôn trọng đối với giáo viên trong lớp dự tuyển. Đó là lý do tại sao cậu chơi Sudoku và rú từng hồi trong lớp. Hãy giúp Minh Đại lập trình để chơi trò này cho nhanh.

Sau đây là quy tắc tóm tắt của Sudoku: Bạn có ma trận 9x9, có một số ô chưa điền, những ô còn lại đã được điền các chữ số từ 1 đến 9. Bạn cần điền vào những ô rỗng sao cho mỗi hàng, mỗi cột chứa tất cả các số từ 1 đến 9. Ngoài ra nếu chúng ta chia ma trận thành 9 hình vuông nhỏ kích thước 3x3, mỗi hình vuông nhỏ cũng chứa tất cả các số từ 1 đến 9.

INPUT

Bảng vuông Sudoku kích thước 9x9, các ô được điền các số từ 1 đến 9, ô rỗng là ô ghi số 0.

OUTPUT

In ra bảng Soduki được điền đầy đủ

Input	Output
534678912	534678912
602095348	672195348
198342567	198342567
859761423	859761423
426853791	426853791
713924856	713924856
961537284	961537284
207019635	287419635
3 4 5 2 8 6 1 7 9	345286179

2. WORDS

Chúng ta gọi "chữ cái" là mỗi dãy hữu hạn các ký hiệu, mỗi ký hiệu là một trong 4 chữ cái {A, B, C, D}. Như là, ví dụ, DBBAC, AAA, BADADD, v.v. Chúng ta sẽ sử dụng chữ cái Latin nhỏ để biểu thị "chữ cái": a, b, c, . "Độ dài của một chữ cái" là số lượng các ký hiệu trong chữ cái. Với hai chữ a và b có độ dài bằng nhau, chúng ta định nghĩa kết quả "phép nhân" (⊗) là một từ có cùng chiều dài, mỗi ký hiệu thu được bằng cách áp dụng "phép nhân" trên các ký hiệu ở a và b tương ứng, ở cùng một vị trí, theo bảng sau:

\otimes	A	В	U	D
A	А	В	С	D
В	В	А	D	С
С	С	D	А	В
D	D	С	В	А

Ví dụ: nếu a = ABCA và b = BBCC, thì $a \otimes b = BAAC$. Vì theo bảng $A \otimes B = B$, $B \otimes B = A$, $C \otimes C = A$ và $A \otimes C = C$. Nếu a = BDDCAC và b = CCACDB, chúng ta có $a \otimes b = DBDADD$.

Khái quát: "phép nhân" của hữu hạn các chữ cái $a_1 \otimes a_2 \otimes ... \otimes a_n = b$ được thực hiện lần lượt từ trái sang phải - $a_1 \otimes a_2$, được kết quả \otimes với a_3 , kết quả nhân \otimes tiếp với a_4 Xét số nguyên dương n và chữ cái a. Viết chương trình chữ cái để tìm ra n chữ cái a_1 , a_2 , ..., a_n khác nhau và khác a, sao cho $a_1 \otimes a_2 \otimes ... \otimes a_n = a$

INPUT

Dòng 1: từ a, có độ dài từ 3 đến 16. Dòng 2: số nguyên dương n. Số n bé hơn ½ tổng số các chữ cái khác nhau có độ dài bằng độ dài chữ cái a.

OUTPUT

In ra n dòng, mỗi dòng ghi một chữ cái khác nhau và khác a, tích n chữ cái này bằng a.

Sample Input	Sample Output
ADC	AAC
8	ACA
	CAA
	CAB
	BAD
	BBD
	CAC
	CAD

Giải thích:

 $AAC \otimes ACA = ACC \otimes CAA = CCC \otimes CAB = ACD \otimes BAD = BCA \otimes BBD = ADD \otimes CAC = CDB \otimes CAD = ADC$

3. ADDMUL

Loại máy tính mà bạn đang sử dụng rất đặc biệt - nó chỉ biết hằng số 1 và chỉ có thể thực hiện hai phép toán: cộng và nhân. Kết quả trung gian của phép toán trước được lưu trữ trong bộ nhớ và có thể được sử dụng làm một toán hạng trong các phép toán tiếp theo, ở cả hai phía của toán tử cộng và nhân. Hơn nữa, cả 2 phép toán với các cặp toán hạng hiện có trong bộ nhớ được thực hiện đồng thời trong cùng một bước. Sau bao nhiêu bước số nguyên N sẽ xuất hiện trong tập hợp các số nằm trong bộ nhớ

Ví dụ số 7 sẽ xuất hiện khi nào? Bắt đầu chỉ có số 1, số 2 xuất hiện trong bước đầu tiên: 1 + 1 = 2 (có thể sử dụng phép nhân: 1 * 1 = 1, nhưng điều này không dẫn đến một giá trị mới, chúng ta đã có 1). Điều gì tiếp theo? Thêm 2 giá trị được đưa vào bộ nhớ ở bước thứ hai: 3 = 2 + 1 và 4 = 2 + 2 (= 2 * 2). Rõ ràng rằng trong bước thứ ba số 7 sẽ xuất hiện 7 = 4 + 3. N = 11 xuất hiện trong bước thứ tư 11 = 5 + 6 (= 7 + 4 = 8 + 3 = 9 + 2)

INPUT

Số nguyên dương $1 \le N \le 10000$

OUTPUT

Số lượng các bước khi N xuất hiện.

Sample Input	Sample Output
26	5