```
In [1]: # Importing libraries
import pandas as pd
from IPython.display import Markdown, display
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns; sns.set(style="ticks", color_codes=True)

def printmd(string):
    display(Markdown(string))
In [2]: data = pd.read_csv('data.csv')
```

1. Preliminary Data Analysis

```
In [3]: # Setting all the categorical columns to type category
for col in set(data.columns) - set(data.describe().columns):
    data[col] = data[col].astype('category')

printmd('## 1.1. Columns and their types')
print(data.info())
```

1.1. Columns and their types

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 32 columns):
```

#	Column	Non-	-Null Count	Dtype
0	id		non-null	int64
1	diagnosis	569	non-null	category
2	radius_mean		non-null	float64
3	texture_mean	569	non-null	float64
4	perimeter_mean	569	non-null	float64
5	area mean	569	non-null	float64
6	_ smoothness_mean	569	non-null	float64
7	compactness_mean	569	non-null	float64
8	concavity_mean	569	non-null	float64
9	concave points_mean	569	non-null	float64
10	symmetry_mean	569	non-null	float64
11	fractal_dimension_mean	569	non-null	float64
12	radius_se	569	non-null	float64
13	texture_se	569	non-null	float64
14	perimeter_se	569	non-null	float64
15	area_se	569	non-null	float64
16	smoothness_se	569	non-null	float64
17	compactness_se	569	non-null	float64
18	concavity_se	569	non-null	float64
19	concave points_se	569	non-null	float64
20	symmetry_se	569	non-null	float64
21	<pre>fractal_dimension_se</pre>	569	non-null	float64
22	radius_worst	569	non-null	float64
23	texture_worst	569	non-null	float64
24	perimeter_worst	569	non-null	float64
25	area_worst	569	non-null	float64
26	smoothness_worst	569	non-null	float64
27	compactness_worst	569	non-null	float64
28	concavity_worst	569	non-null	float64
29	concave points_worst	569	non-null	float64
30	symmetry_worst	569	non-null	float64
31	<pre>fractal_dimension_worst</pre>	569	non-null	float64
dtype	es: category(1), float64(30),	int64(1)	
memoi	ry usage: 138.6 KB			

None

In [4]: # Top 5 records printmd('## 1.2. Data') data.head()

1.2. Data

\cap	
ou t	[+]

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
0	842302	М	17.99	10.38	122.80	1001.0	0.118
1	842517	М	20.57	17.77	132.90	1326.0	0.084
2	84300903	М	19.69	21.25	130.00	1203.0	0.109
3	84348301	М	11.42	20.38	77.58	386.1	0.142
4	84358402	М	20.29	14.34	135.10	1297.0	0.100

5 rows × 32 columns

Out[5]:

```
In [5]: printmd('## 1.3. Summary Statistics')
    data.describe()
```

1.3. Summary Statistics

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mear
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.000000
mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.096360
std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.014064
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.052630
25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	0.086370
50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.095870
75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.105300
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.163400

8 rows × 31 columns

```
In [6]: printmd('## 1.4. Missing values')
    data.isnull().sum()
```

1.4. Missing values

```
0
        id
Out[6]:
        diagnosis
                                    0
        radius_mean
        texture_mean
                                    0
                                    0
        perimeter mean
                                    0
        area_mean
        smoothness_mean
         compactness_mean
        concavity_mean
                                    0
                                    0
        concave points_mean
         symmetry_mean
        fractal_dimension_mean
                                    0
                                    0
        radius se
        texture se
        perimeter_se
                                    0
        area_se
         smoothness_se
        compactness_se
        concavity_se
        concave points_se
        symmetry_se
                                    0
                                    0
        fractal_dimension_se
        radius_worst
                                    0
        texture_worst
        perimeter_worst
        area_worst
        smoothness_worst
                                    0
         compactness_worst
         concavity_worst
        concave points_worst
                                    0
         symmetry worst
         fractal_dimension_worst
        dtype: int64
In [7]: printmd('## 1.5. Clean Data')
         # Cleaning and modifying the data - droping 'id' cloumn/attribitues
         data.drop('id',axis=1, inplace=True)
```

1.5. Clean Data

data.head()

Out[7]:		diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compa
	0	М	17.99	10.38	122.80	1001.0	0.11840	
	1	М	20.57	17.77	132.90	1326.0	0.08474	
	2	М	19.69	21.25	130.00	1203.0	0.10960	
	3	М	11.42	20.38	77.58	386.1	0.14250	
	4	М	20.29	14.34	135.10	1297.0	0.10030	

5 rows × 31 columns

```
In [8]: printmd('## 1.6. Correlation Matrix')
    display(data.corr())
    printmd('We see that none of the columns are highly correlated.')
```

1.6. Correlation Matrix

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_me
radius_mean	1.000000	0.323782	0.997855	0.987357	0.1705
texture_mean	0.323782	1.000000	0.329533	0.321086	-0.0233
perimeter_mean	0.997855	0.329533	1.000000	0.986507	0.2072
area_mean	0.987357	0.321086	0.986507	1.000000	0.1770
smoothness_mean	0.170581	-0.023389	0.207278	0.177028	1.0000
compactness_mean	0.506124	0.236702	0.556936	0.498502	0.6591
concavity_mean	0.676764	0.302418	0.716136	0.685983	0.5219
concave points_mean	0.822529	0.293464	0.850977	0.823269	0.5536
symmetry_mean	0.147741	0.071401	0.183027	0.151293	0.5577
fractal_dimension_mean	-0.311631	-0.076437	-0.261477	-0.283110	0.5847
radius_se	0.679090	0.275869	0.691765	0.732562	0.3014
texture_se	-0.097317	0.386358	-0.086761	-0.066280	0.0684
perimeter_se	0.674172	0.281673	0.693135	0.726628	0.2960
area_se	0.735864	0.259845	0.744983	0.800086	0.2465
smoothness_se	-0.222600	0.006614	-0.202694	-0.166777	0.3323
compactness_se	0.206000	0.191975	0.250744	0.212583	0.3189
concavity_se	0.194204	0.143293	0.228082	0.207660	0.2483
concave points_se	0.376169	0.163851	0.407217	0.372320	0.3806
symmetry_se	-0.104321	0.009127	-0.081629	-0.072497	0.2007
fractal_dimension_se	-0.042641	0.054458	-0.005523	-0.019887	0.2836
radius_worst	0.969539	0.352573	0.969476	0.962746	0.2131
texture_worst	0.297008	0.912045	0.303038	0.287489	0.0360
perimeter_worst	0.965137	0.358040	0.970387	0.959120	0.2388
area_worst	0.941082	0.343546	0.941550	0.959213	0.2067
smoothness_worst	0.119616	0.077503	0.150549	0.123523	0.8053
compactness_worst	0.413463	0.277830	0.455774	0.390410	0.4724
concavity_worst	0.526911	0.301025	0.563879	0.512606	0.4349
concave points_worst	0.744214	0.295316	0.771241	0.722017	0.5030
symmetry_worst	0.163953	0.105008	0.189115	0.143570	0.3943
fractal_dimension_worst	0.007066	0.119205	0.051019	0.003738	0.4993

30 rows × 30 columns

We see that none of the columns are highly correlated.

```
In [9]: printmd('## 1.7. Mapping the Categorical Attr.')

# Mapping Benign to 0 and Malignant to 1
data['diagnosis'] = data['diagnosis'].map({'M':1,'B':0})
#Check the data stats
data.describe()
```

1.7. Mapping the Categorical Attr.

O.	- 4	$\Gamma \cap$	п.
()	IT.	19	т.
\sim	4	_	11.5

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.
mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.
std	3.524049	4.301036	24.298981	351.914129	0.014064	0.0
min	6.981000	9.710000	43.790000	143.500000	0.052630	0.0
25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.0
50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.0
75%	15.780000	21.800000	104.100000	782.700000	0.105300	0.
max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.

8 rows × 30 columns

2. Exploratory Analysis

```
In [10]: radius = data[['radius_mean', 'radius_se', 'radius_worst', 'diagnosis']]

# M : 1, B: 0
sns.pairplot(radius, hue='diagnosis',palette="husl", markers=["o", "s"],size=4)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\axisgrid.py:2076: UserWarning:
The `size` parameter has been renamed to `height`; please update your code.
    warnings.warn(msg, UserWarning)

<seaborn.axisgrid.PairGrid at 0x17d678dc5e0>
```


In [11]: sns.pairplot(radius,kind="reg",size=4)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\axisgrid.py:2076: UserWarning:
The `size` parameter has been renamed to `height`; please update your code.
 warnings.warn(msg, UserWarning)

Out[11]: <seaborn.axisgrid.PairGrid at 0x17d67918610>


```
In [12]: g = sns.PairGrid(radius,hue='diagnosis', palette="Set1",size=4)
    g = g.map_diag(plt.hist)
    g = g.map_offdiag(plt.scatter, s = 3)
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\axisgrid.py:1209: UserWarning:
The `size` parameter has been renamed to `height`; please update your code.
 warnings.warn(UserWarning(msg))


```
In [13]: g = sns.PairGrid(radius, hue="diagnosis", palette="Set2",size=4,hue_kws={"marker":
    g = g.map(plt.scatter, linewidths=1, edgecolor="w", s=40)
    g = g.add_legend()
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\axisgrid.py:1209: UserWarning:
The `size` parameter has been renamed to `height`; please update your code.
 warnings.warn(UserWarning(msg))


```
printmd('## 2.1. Scaling the Dataset')
In [14]:
         from sklearn import preprocessing
         # Scaling the dataset
         datas = pd.DataFrame(preprocessing.scale(data.iloc[:,1:32]))
         datas.columns = list(data.iloc[:,1:32].columns)
         datas['diagnosis'] = data['diagnosis']
         datas.head()
```

2.1. Scaling the Dataset

Out[14]:		radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_meai
	0	1.097064	-2.073335	1.269934	0.984375	1.568466	3.28351!
	1	1.829821	-0.353632	1.685955	1.908708	-0.826962	-0.487072
	2	1.579888	0.456187	1.566503	1.558884	0.942210	1.052920
	3	-0.768909	0.253732	-0.592687	-0.764464	3.283553	3.402909
	4	1.750297	-1.151816	1.776573	1.826229	0.280372	0.539340

5 rows × 31 columns

```
#draw a heatmap between mean features and diagnosis
features_mean = ['radius_mean','texture_mean','perimeter_mean','area_mean','smooth
```

```
plt.figure(figsize=(15,15))
heat = sns.heatmap(datas[features_mean].corr(), vmax=1, square=True, annot=True)
```



```
In [16]:
         import numpy as np
         # Splitting the dataset into malignant and benign.
         dataMalignant=datas[datas['diagnosis'] ==1]
         dataBenign=datas[datas['diagnosis'] ==0]
         #Plotting these features as a histogram
         fig, axes = plt.subplots(nrows=10, ncols=1, figsize=(15,60))
         for idx,ax in enumerate(axes):
             ax.figure
             binwidth= (max(datas[features_mean[idx]]) - min(datas[features_mean[idx]]))/25@
             ax.hist([dataMalignant[features_mean[idx]],dataBenign[features_mean[idx]]], bit
             ax.legend(loc='upper right')
             ax.set_title(features_mean[idx])
         plt.show()
```



```
In [17]: printmd('## Box plot')
  data.select_dtypes(exclude = 'category').plot(kind = 'box', figsize = (10,8))
```

Box plot

Out[17]: <AxesSubplot:>

4. Model Development & Classification

4.1. Data Preparation

In [18]: data

\cap	.4.1	Γ 1	0.7	
Uι	JΤ	1	ŏΙ	

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	com
	0 1	17.99	10.38	122.80	1001.0	0.11840	
	1 1	20.57	17.77	132.90	1326.0	0.08474	
- 2	2 1	19.69	21.25	130.00	1203.0	0.10960	
3	3 1	11.42	20.38	77.58	386.1	0.14250	
•	4 1	20.29	14.34	135.10	1297.0	0.10030	
••	•						
564	4 1	21.56	22.39	142.00	1479.0	0.11100	
56	5 1	20.13	28.25	131.20	1261.0	0.09780	
560	6 1	16.60	28.08	108.30	858.1	0.08455	
56	7 1	20.60	29.33	140.10	1265.0	0.11780	
568	0	7.76	24.54	47.92	181.0	0.05263	

569 rows × 31 columns

```
In [19]: X = data.iloc[:, 1:].values
          y = data.iloc[:, 0].values
          from sklearn.preprocessing import LabelEncoder
          le = LabelEncoder()
          y = le.fit_transform(y)
In [20]: X
         array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,
Out[20]:
                 1.189e-01],
                 [2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01,
                 8.902e-02],
                 [1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01,
                 8.758e-02],
                 . . . ,
                 [1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01,
                 7.820e-02],
                 [2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01,
                 1.240e-01],
                 [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,
                 7.039e-02]])
In [21]: y
```

```
0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1,
              0, 0, 0, 0, 1,
                           0,
                             1,
                                1,
                                  0,
                                     1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1,
                           0,
                             1,
                                1,
                                  0,
                                     0,
                                       0,
                                          1,
                                            1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                                1,
                                       0,
                0, 0, 0, 0, 0,
                             0,
                                  1,
                                     1,
                                          1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1,
              1, 0, 1, 1, 0, 0, 1,
                                  0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
                                0,
              0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0,
                                     0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1,
              0, 1, 0,
                     0, 1, 1, 1,
                                0, 1,
                     1, 1,
                           1,
                             0,
                                1,
                                  0,
                                     1,
                                       0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1,
              0, 0, 0, 1, 0, 0, 0, 0,
                                  0,
                                     1,
                                       1,
                                          0,
                                            0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
              0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
              1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 0,
                             0,
                                0,
                                  0,
                                     1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1,
                        0,
                           1,
                             0,
                                1,
                                  0,
                                     1,
                                       0,
                                          0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
                                     0,
                     0, 0, 0, 0, 0, 0,
                                       0,
                                          0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1,
                0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0,
              0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0,
              0, 1, 0, 0, 1, 0, 1, 0,
                                  0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
              0, 0, 0, 0, 0, 0, 1,
                                0,
                                  0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
              0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0,
              0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0],
             dtype=int64)
```

In [22]: print(data.info())

```
<class 'pandas.core.frame.DataFrame'>
                        RangeIndex: 569 entries, 0 to 568
                        Data columns (total 31 columns):
                          # Column
                                                                                                   Non-Null Count Dtype
                        --- -----
                                                                                                   -----
                                                                                                  569 non-null category
                          0
                                  diagnosis
                         0diagnosis569 non-nullcategory1radius_mean569 non-nullfloat642texture_mean569 non-nullfloat643perimeter_mean569 non-nullfloat644area_mean569 non-nullfloat645smoothness_mean569 non-nullfloat646compactness_mean569 non-nullfloat647concavity_mean569 non-nullfloat648concave points_mean569 non-nullfloat649symmetry_mean569 non-nullfloat6410fractal_dimension_mean569 non-nullfloat6411radius_se569 non-nullfloat6412texture se569 non-nullfloat64
                        10 fractal_dimension_mean 569 non-null float64
11 radius_se 569 non-null float64
12 texture_se 569 non-null float64
13 perimeter_se 569 non-null float64
14 area_se 569 non-null float64
15 smoothness_se 569 non-null float64
16 compactness_se 569 non-null float64
17 concavity_se 569 non-null float64
18 concave points_se 569 non-null float64
19 symmetry_se 569 non-null float64
20 fractal_dimension_se 569 non-null float64
21 radius_worst 569 non-null float64
22 texture_worst 569 non-null float64
23 perimeter_worst 569 non-null float64
24 area_worst 569 non-null float64
25 smoothness_worst 569 non-null float64
26 compactness_worst 569 non-null float64
27 concavity_worst 569 non-null float64
28 concave points_worst 569 non-null float64
29 symmetry_worst 569 non-null float64
30 fractal_dimension_worst 569 non-null float64
30 fractal_dimension_worst 569 non-null float64
                          30 fractal_dimension_worst 569 non-null float64
                        dtypes: category(1), float64(30)
                        memory usage: 134.2 KB
                       None
                        # Splitting the dataset into the Training set and Test set
In [23]:
                        from sklearn.model_selection import train_test_split
                        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_
In [24]: #Feature Scaling
                        from sklearn.preprocessing import StandardScaler
                        sc = StandardScaler()
                        X_train = sc.fit_transform(X_train)
```

4.2. Model Development

X_test = sc.transform(X_test)

```
import keras
In [25]:
         from keras.models import Sequential
         from keras.layers import Dense, Dropout
In [26]:
         # Initialising the ANN
         classifier = Sequential()
         #first hidden layer
```

In [34]:

X train

```
Breast Cancer w Neural Network
         classifier.add(Dense(units=9,kernel_initializer='he_uniform',activation='relu',inpu
         classifier.add(Dropout(rate=0.1))
In [28]:
In [29]:
         #second hidden Layer
         classifier.add(Dense(units=9,kernel_initializer='he_uniform',activation='relu'))
         # last layer or output layer
In [30]:
         classifier.add(Dense(units=1,kernel_initializer='glorot_uniform',activation='sigmo')
In [31]:
         #taking summary of layers
         classifier.summary()
         Model: "sequential"
          Layer (type)
                                     Output Shape
                                                              Param #
         ______
          dense (Dense)
                                     (None, 9)
                                                              279
          dropout (Dropout)
                                                              0
                                     (None, 9)
          dense_1 (Dense)
                                     (None, 9)
                                                              90
          dense_2 (Dense)
                                     (None, 1)
                                                              10
         ______
         Total params: 379
         Trainable params: 379
         Non-trainable params: 0
         from sklearn.decomposition import PCA
In [32]: |
         pca = PCA(n_components=30)
         pca.fit(X_train)
         plt.plot(np.cumsum(pca.explained_variance_ratio_))
         plt.xlabel('Number of components')
         plt.ylabel('Cumulative explained variance')
         Text(0, 0.5, 'Cumulative explained variance')
Out[32]:
           1.0
         Cumulative explained variance
           0.9
           0.8
           0.7
           0.6
           0.5
                       5
                                                   25
                            Number of components
         classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics='accuracy
```

```
Out[34]: array([[-0.52787029, 2.49821982, -0.59939466, ..., -1.74713139,
                 -0.79044533, -0.91054389],
                [-0.55333608, 0.29431013, -0.60759343, ..., -0.62275667,
                 -0.33646358, -0.83551633],
                [ 2.15452653, 0.40392257, 2.26525805, ..., 1.03846122,
                 -0.11504791, 0.26488788],
                [-1.3297598, -0.21876938, -1.32088704, ..., -0.98271999,
                 -0.718764 , -0.13637062],
                [-1.24940108, -0.24209117, -1.2835826, ..., -1.74713139,
                 -1.58690456, -1.01280367],
                [-0.74291476, 1.08958336, -0.71827692, ..., -0.2865488]
                 -1.26354211, 0.19486216]])
In [35]: len(X_train)
         512
Out[35]:
In [36]: y_train
         array([0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0,
Out[36]:
                0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0,
                0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
                0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0,
                1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
                1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,
                0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0,
                0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0,
                1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1,
                0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
                0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0,
                0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0,
                0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1,
                1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1,
                0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0,
                0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
                0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1,
                1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0,
                1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
                1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0,
                0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0,
                0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
                1, 1, 1, 0, 0, 0], dtype=int64)
In [37]: len(y train)
         512
Out[37]:
In [39]:
         # Fitting the ANN to the Training set
         history = classifier.fit(X_train, y_train, batch_size=32, epochs=50, validation_spl
         # Long scroll ahead but worth
         # The batch size and number of epochs have been set using trial and error. Still le
```

```
Epoch 1/50
0.6381 - val loss: 0.6246 - val accuracy: 0.6019
Epoch 2/50
13/13 [=============] - 0s 3ms/step - loss: 0.6014 - accuracy: 0.
6699 - val_loss: 0.5362 - val_accuracy: 0.6408
Epoch 3/50
7066 - val_loss: 0.4654 - val_accuracy: 0.7184
Epoch 4/50
13/13 [================== ] - 0s 3ms/step - loss: 0.4715 - accuracy: 0.
7677 - val_loss: 0.4013 - val_accuracy: 0.7961
Epoch 5/50
8117 - val_loss: 0.3484 - val_accuracy: 0.8932
Epoch 6/50
8337 - val_loss: 0.3057 - val_accuracy: 0.9126
Epoch 7/50
13/13 [================== ] - 0s 3ms/step - loss: 0.3653 - accuracy: 0.
8460 - val_loss: 0.2712 - val_accuracy: 0.9223
Epoch 8/50
8729 - val_loss: 0.2433 - val_accuracy: 0.9709
Epoch 9/50
8924 - val_loss: 0.2178 - val_accuracy: 0.9806
Epoch 10/50
13/13 [============= ] - 0s 3ms/step - loss: 0.2650 - accuracy: 0.
9169 - val_loss: 0.1950 - val_accuracy: 0.9806
Epoch 11/50
9315 - val_loss: 0.1735 - val_accuracy: 0.9903
Epoch 12/50
13/13 [============= ] - 0s 3ms/step - loss: 0.2273 - accuracy: 0.
9413 - val_loss: 0.1553 - val_accuracy: 0.9903
Epoch 13/50
13/13 [============== ] - 0s 3ms/step - loss: 0.2134 - accuracy: 0.
9413 - val loss: 0.1401 - val accuracy: 0.9903
Epoch 14/50
9462 - val_loss: 0.1281 - val_accuracy: 0.9903
Epoch 15/50
13/13 [================== ] - 0s 3ms/step - loss: 0.1796 - accuracy: 0.
9560 - val_loss: 0.1181 - val_accuracy: 0.9903
Epoch 16/50
9511 - val loss: 0.1092 - val accuracy: 0.9903
Epoch 17/50
13/13 [============== ] - 0s 3ms/step - loss: 0.1534 - accuracy: 0.
9584 - val_loss: 0.1013 - val_accuracy: 0.9903
Epoch 18/50
9560 - val_loss: 0.0955 - val_accuracy: 0.9903
Epoch 19/50
9511 - val loss: 0.0909 - val accuracy: 0.9903
Epoch 20/50
13/13 [============= ] - 0s 3ms/step - loss: 0.1322 - accuracy: 0.
9584 - val loss: 0.0861 - val accuracy: 0.9903
Epoch 21/50
13/13 [================== ] - 0s 3ms/step - loss: 0.1269 - accuracy: 0.
9584 - val_loss: 0.0817 - val_accuracy: 0.9903
Epoch 22/50
```

```
9584 - val loss: 0.0781 - val accuracy: 0.9903
Epoch 23/50
9658 - val loss: 0.0747 - val accuracy: 0.9903
Epoch 24/50
13/13 [=============] - 0s 3ms/step - loss: 0.1163 - accuracy: 0.
9658 - val_loss: 0.0720 - val_accuracy: 0.9903
Epoch 25/50
13/13 [=================== ] - 0s 3ms/step - loss: 0.1081 - accuracy: 0.
9707 - val_loss: 0.0692 - val_accuracy: 0.9903
Epoch 26/50
13/13 [============== - 0s 3ms/step - loss: 0.1137 - accuracy: 0.
9658 - val loss: 0.0672 - val accuracy: 0.9903
Epoch 27/50
13/13 [=============] - 0s 3ms/step - loss: 0.1096 - accuracy: 0.
9658 - val_loss: 0.0645 - val_accuracy: 0.9903
Epoch 28/50
9658 - val_loss: 0.0623 - val_accuracy: 0.9903
Epoch 29/50
9731 - val_loss: 0.0602 - val_accuracy: 0.9903
Epoch 30/50
9731 - val loss: 0.0586 - val accuracy: 0.9903
Epoch 31/50
13/13 [================== ] - 0s 3ms/step - loss: 0.0977 - accuracy: 0.
9731 - val_loss: 0.0567 - val_accuracy: 0.9903
Epoch 32/50
13/13 [============== ] - 0s 3ms/step - loss: 0.0922 - accuracy: 0.
9731 - val_loss: 0.0546 - val_accuracy: 0.9903
Epoch 33/50
9756 - val_loss: 0.0528 - val_accuracy: 0.9903
Epoch 34/50
13/13 [=============== ] - 0s 3ms/step - loss: 0.0901 - accuracy: 0.
9756 - val_loss: 0.0514 - val_accuracy: 0.9903
Epoch 35/50
9756 - val loss: 0.0502 - val accuracy: 0.9903
Epoch 36/50
13/13 [============= ] - 0s 3ms/step - loss: 0.0844 - accuracy: 0.
9780 - val_loss: 0.0487 - val_accuracy: 0.9903
Epoch 37/50
9756 - val_loss: 0.0465 - val_accuracy: 0.9903
Epoch 38/50
9731 - val loss: 0.0454 - val accuracy: 0.9903
13/13 [============= ] - 0s 3ms/step - loss: 0.0896 - accuracy: 0.
9780 - val_loss: 0.0443 - val_accuracy: 0.9903
Epoch 40/50
13/13 [================== ] - 0s 3ms/step - loss: 0.0856 - accuracy: 0.
9731 - val loss: 0.0431 - val accuracy: 0.9903
Epoch 41/50
13/13 [============= ] - 0s 3ms/step - loss: 0.0850 - accuracy: 0.
9780 - val loss: 0.0419 - val accuracy: 0.9903
Epoch 42/50
13/13 [============= ] - 0s 3ms/step - loss: 0.0827 - accuracy: 0.
9756 - val_loss: 0.0410 - val_accuracy: 0.9903
Epoch 43/50
```

```
9804 - val_loss: 0.0397 - val_accuracy: 0.9903
        Epoch 44/50
        13/13 [================== ] - 0s 3ms/step - loss: 0.0843 - accuracy: 0.
        9804 - val_loss: 0.0389 - val_accuracy: 0.9903
        13/13 [============= ] - 0s 3ms/step - loss: 0.0772 - accuracy: 0.
        9780 - val_loss: 0.0375 - val_accuracy: 0.9903
        Epoch 46/50
        13/13 [================== ] - 0s 3ms/step - loss: 0.0761 - accuracy: 0.
        9780 - val_loss: 0.0364 - val_accuracy: 1.0000
        Epoch 47/50
        9756 - val_loss: 0.0350 - val_accuracy: 1.0000
        Epoch 48/50
        13/13 [============== ] - 0s 5ms/step - loss: 0.0711 - accuracy: 0.
        9829 - val_loss: 0.0342 - val_accuracy: 1.0000
        Epoch 49/50
        13/13 [================= ] - 0s 3ms/step - loss: 0.0671 - accuracy: 0.
        9780 - val_loss: 0.0331 - val_accuracy: 1.0000
        Epoch 50/50
        13/13 [============== ] - 0s 3ms/step - loss: 0.0715 - accuracy: 0.
        9804 - val_loss: 0.0322 - val_accuracy: 1.0000
In [40]: # Predicting the Test set results
        y_pred = classifier.predict(X_test)
        y_pred = (y_pred > 0.5)
In [41]: # Making the Confusion Matrix
        from sklearn.metrics import confusion matrix
        cm = confusion_matrix(y_test, y_pred)
In [42]: print("Our accuracy is {}%".format(((cm[0][0] + cm[1][1])/57)*100))
        Our accuracy is 96.49122807017544%
In [43]: sns.heatmap(cm,annot=True)
        plt.savefig('h.png')
                                                 - 30
                   33
                                    2
                                                 - 25
        0 -
                                                 - 15
In [ ]:
        # summarize history for accuracy
In [44]:
        plt.plot(history.history['accuracy'])
        plt.plot(history.history['val_accuracy'])
        plt.title('model accuracy')
        plt.ylabel('accuracy')
        plt.xlabel('epoch')
```

```
plt.legend(['train', 'test'], loc='lower right')
plt.show()
```



```
In [45]:
         # summarize history for loss
         plt.plot(history.history['loss'])
         plt.plot(history.history['val_loss'])
         plt.title('model loss')
         plt.ylabel('loss')
         plt.xlabel('epoch')
         plt.legend(['train', 'test'], loc='lower left')
         plt.show()
```



```
classifier.evaluate(X_test, y_test, verbose=2)
In [46]:
         2/2 - 0s - loss: 0.0750 - accuracy: 0.9649 - 14ms/epoch - 7ms/step
         [0.07502038776874542, 0.9649122953414917]
Out[46]:
In [47]:
         y_pred = classifier.predict(X_test, verbose=0)
         y_pred
```

```
Out[47]: array([[9.8528194e-01],
                 [4.2927146e-02],
                 [6.1172247e-04],
                 [6.7895651e-03],
                 [8.1724393e-05],
                 [2.8225183e-03],
                 [7.2002498e-05],
                 [5.4946542e-04],
                 [1.9304873e-05],
                 [7.8006798e-07],
                 [3.0570233e-01],
                 [1.0753912e-01],
                 [7.3306014e-06],
                 [6.5287519e-01],
                 [8.2655454e-01],
                 [9.9573505e-01],
                 [2.2798777e-04],
                 [9.9981570e-01],
                 [9.9914670e-01],
                 [9.9999940e-01],
                 [9.9596143e-01],
                 [9.9139106e-01],
                 [4.4696629e-03],
                 [7.5700879e-04],
                 [9.9949783e-01],
                 [1.9466877e-04],
                 [8.5376541e-06],
                 [9.9427080e-01],
                 [7.2956085e-04],
                 [9.9994797e-01],
                 [1.0338121e-05],
                 [9.9951959e-01],
                 [9.8506540e-02],
                 [9.7987396e-01],
                 [3.8287490e-07],
                 [9.6691626e-01],
                 [9.4931126e-03],
                 [9.9814558e-01],
                 [4.9524903e-03],
                 [9.8646605e-01],
                 [7.5975442e-01],
                 [1.3745483e-05],
                 [7.3339814e-01],
                 [2.0404559e-05],
                 [5.3348005e-02],
                 [9.9999940e-01],
                 [1.4404962e-07],
                 [3.0549169e-02],
                 [4.0635467e-04],
                 [9.9941981e-01],
                 [9.9986076e-01],
                 [9.7790194e-01],
                 [9.9879289e-01],
                 [6.6787004e-04],
                 [1.5106201e-03],
                 [1.1739471e-04],
                 [1.3407469e-03]], dtype=float32)
          from sklearn.metrics import classification_report
In [49]:
          print(classification_report(y_test, y_pred.round(), labels=[0,1]))
```

	precision	recall	f1-score	support
0 1	1.00 0.92	0.94 1.00	0.97 0.96	35 22
accuracy macro avg weighted avg	0.96 0.97	0.97 0.96	0.96 0.96 0.97	57 57 57