

(B) BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

® Offenlegungsschrift

® DE 199 37 947 A 1

(1) Aktenzeichen:

199 37 947.5

② Anmeldetag:

11. 8. 1999

43 Offenlegungstag:

22. 3. 2001

(5) Int. Cl.⁷: H 01 H 27/00

> H 01 H 9/20 E 05 B 47/06 F 16 P 3/08

(1) Anmelder:

EUCHNER GmbH + Co., 70771 Leinfelden-Echterdingen, DE

(4) Vertreter:

Bartels & Partner, Patentanwälte, 70174 Stuttgart

② Erfinder:

Baur, Jan, 70771 Leinfelden-Echterdingen, DE; Graubner, Anke, 70771 Leinfelden-Echterdingen, DE

(56) Entgegenhaltungen:

DE 196 18 174 C1

DE 43 28 297 C1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (S) Vorrichtung zum Schalten einer elektrischen Verbindung in Abhängigkeit des Zustandes einer Schutzeinrichtung
- Die Erfindung betrifft eine Vorrichtung zum Schalten einer elektrischen Verbindung in Abhängigkeit des Zustandes einer Schutzeinrichtung, insbesondere Sicherheitsschalter für eine Schutzeinrichtung einer Maschine, wobei die Vorrichtung eine Feststelleinrichtung umfaßt, mittels der die Schutzeinrichtung in einem ersten, insbesondere geschlossenen, Zustand feststellbar ist, dadurch gekennzeichnet, daß die Vorrichtung weiterhin eine Meldeeinrichtung umfaßt, daß mittels der Meldeeinrichtung (28, 32, 38, 40) eine Betätigung der Schutzeinrichtung zum Zweck der Überführung von dem ersten Zustand in einen zweiten, insbesondere geöffneten, Zustand erfaßbar ist, und daß von der Meldeeinrichtung (28, 32, 38, 40) beim Erfassen der Betätigung die elektrische Verbindung schaltbar ist.

BEST AVAILABLE COPY

Beschreibung

Die Erfindung betrifft eine Vorrichtung zum Schalten einer elektrischen Verbindung in Abhängigkeit des Zustandes einer Schutzeinrichtung, insbesondere einen Sicherheitsschalter für eine Schutzeinrichtung eine Maschine.

Derartige Vorrichtungen sind beispielsweise aus der DE 43 28 297 C1 bekannt. Die dort gezeigte Vorrichtung umfaßt eine Feststelleinrichtung, mittels der die Schutzeinrichtung durch die Vorrichtung in ihrem sicheren, d. h. ge- 10 schlossenen Zustand feststellbar bzw. arretierbar, insbesondere zuhaltbar, ist. Die Schutzeinrichtung wird in der Regel manuell betätigt, wobei ein Betätigen der Schutzeinrichtung zum Zweck der Überführung vom geschlossenen in den geöffneten Zustand erst möglich ist, wenn die Feststelleinrich- 15 tung deaktiviert ist. Das Deaktivieren der Feststelleinrichtung wird dabei vom Betriebszustand der Maschine gesteuert, d. h., die Feststelleinrichtung wird in der Regel erst dann deaktiviert, wenn die Maschine stillsteht. Ausschließlich der Betriebszustand der Maschine steuert den Betriebszustand 20 der Feststelleinrichtung. Dies ist in bestimmten Situationen nachteilig, insbesondere auch unter Sicherheitsaspekten.

Der Erfindung liegt das Problem zugrunde, eine gattungsgemäße Vorrichtung bereitzustellen, welche die Nachteile des Standes der Technik überwindet. Insbesondere soll 25 durch die erfindungsgemäße Vorrichtung ein Erfassen bzw. Erkennen der Betätigung der Schutzeinrichtung möglich sein, während die Feststelleinrichtung aktiviert ist. Der Herstellungs- und Installationsaufwand soll dabei gering sein.

Das Problem ist durch die im Anspruch 1 bestimmte Vorrichtung gelöst. Besondere Ausführungsarten der Erfindung sind in den Unteransprüchen bestimmt.

Das Problem ist erfindungsgemäß dadurch gelöst, daß die Vorrichtung weiterhin eine Meldeeinrichtung umfaßt, daß mittels der Meldeeinrichtung eine Betätigung der Schutzein- 35 richtung zum Zweck der Überführung von dem ersten Zustand in einen zweiten, insbesondere geöffneten, Zustand erfaßbar ist, und daß von der Meldeeinrichtung beim Erfassen der Betätigung die elektrische Verbindung schaltbar ist. Dadurch ist eine Anforderung zum Öffnen der Schutzeinrichtung erfaßbar, während die Feststelleinrichtung aktiviert ist und bleibt. Durch das Schalten der elektrischen Verbindung kann auf diese Anforderung hin die Maschine in einen sicheren Zustand überführt werden, beispielsweise abgeschaltet und in den Stillstand überführt werden, und anschließend 45 in bekannter Weise die Feststelleinrichtung deaktiviert werden. Die Vorrichtung kann hierzu mehrere Schaltzustände aufweisen, in denen jeweils zwischen einem oder mehreren Kontaktpaaren eine elektrische Verbindung schaltbar ist.

Beispielsweise sind die Schaltzustände "Schutzeinrichtung geschlossen und festgestellt", "Anforderung zum Öffnen der Schutzeinrichtung", "Deaktivierung der Feststelleinrichtung" bzw. "Entriegelung der Schutzeinrichtung", "Schutzeinrichtung geöffnet" und "Feststelleinrichtung aktiviert, aber Schutzeinrichtung geöffnet" realisierbar. Das Schalten der elektrischen Verbindung erfolgt beispielsweise durch Öffnen oder Schließen eines mindestens ein Kontaktpaar umfassenden Schalterelements. Die Schutzeinrichtung kann beispielsweise eine schwenkbare Schutzhaube oder eine verschiebbare Tür einer Abdeckung für eine Werkzeugmaschine sein.

Bei einer besonderen Ausführungsart der Erfindung umfaßt die Meldeeinrichtung ein Schalterbetätigungselement, beispielsweise einen Stößel, der das Schalten der elektrischen Verbindung bewirkt, und der entsprechend einer Steuerkurve, die an ihm vorbeiführbar ist, bewegbar ist. Der Stößel ist dabei vorzugsweise im wesentlichen axial verschiebbar. Alternativ oder ergänzend kann der Stößel auch um

seine Längsachse oder um eine Achse, die mit seiner Längsachse einen rechten Winkel einschließt, drehbar sein. Der Stößel kann ein- oder mehrteilig ausgeführt sein. Er trägt beispielsweise an seinem einen Ende mindestens eine Kon-5 taktbrücke, mit der die elektrische Verbindung schaltbar ist, oder er steht in Wirkverbindung mit einem Element, daß die Kontaktbrücke trägt. Die Kontur der Steuerkurve bewirkt und bestimmt das Verschieben des Stößels. Die Steuerkurve kann grundsätzlich beispielsweise durch einen an der Schutzeinrichtung festgelegten Betätiger, der in die Vorrichtung einführbar ist, bereitgestellt werden, wobei beim Einführen die Steuerkurve an dem Stößel vorbeiführbar ist. Beispielsweise aus Gründen der Manipulationssicherheit sind jedoch Ausführungsarten bevorzugt, bei denen zwischen dem Betätiger und dem Stößel ein mechanisches Koppelelement angeordnet ist, und der Stößel von außerhalb der Vorrichtung nicht unmittelbar zugänglich ist.

Bei einer besonderen Ausführungsart der Erfindung ist der Stößel mittels eines Kraftspeichers in Anlage an der Steuerkurve gehalten. Der Kraftspeicher erfüllt vorzugsweise erhöhte Sicherheitsanforderungen hinsichtlich seiner Zuverlässigkeit, insbesondere Bruchsicherheit, und ist vorzugsweise als Spiral- oder Schraubenfeder ausführbar.

Bei einer besonderen Ausführungsart der Erfindung ist der Stößel auch Teil der Feststelleinrichtung. Beim Feststellen der Schutzeinrichtung greift der Stößel beispielsweise in einen an der Schutzeinrichtung festgelegten Betätiger oder in ein zwischen dem Betätiger und dem Stößel angeordnetes Koppelelement derart ein, daß bei aktivierter Feststelleinrichtung der Betätiger in der Vorrichtung und damit die Schutzeinrichtung mit einem vorgebbaren Bewegungsspiel festgestellt ist. Im Rahmen dieses Bewegungsspiels ist der Stößel derart bewegbar, daß er die der Meldeeinrichtung zugeordnete elektrische Verbindung schaltet.

Bei einer besonderen Ausführungsart der Erfindung ist die Steuerkurve von einer Kurvenscheibe gebildet, insbesondere von einer Umfangslinie der Kurvenscheibe, und die Kurvenscheibe ist von einem Betätiger beim Überführen der Schutzeinrichtung vom ersten in den zweiten Zustand und/ oder umgekehrt drehbar. Die Kurvenscheibe bildet dabei das mechanische Koppelelement zwischen dem Stößel und dem in die Vorrichtung einführbaren und an der Schutzeinrichtung festgelegten Betätiger. Durch die Kurvenscheibe ist die Vorrichtung aus verschiedenen Richtungen betätigbar und dadurch universell einsetzbar. Beispielsweise ist ein Betätiger durch mehrere Einführöffnungen, die vorzugsweise rechtwinklig zueinander angeordnet sind, in die Vorrichtung einführbar. Die Kurvenscheibe ist vorzugsweise derart ausgestaltet, daß sie in beiden Drehrichtungen die volle Funktionalität der Vorrichtung gewährleistet, insbesondere ein gleichartiges Schalten der einen oder mehreren elektrischen Verbindungen bewirkt.

Bei einer besonderen Ausführungsart der Erfindung wirken der Stößel und die Steuerkurve in einem ersten Bereich der Steuerkurve derart zusammen, daß die Schutzeinrichtung in dem ersten Zustand festgestellt bzw. zugehalten ist, insbesondere greift der Stößel in eine Rastvertiefung der Steuerkurve ein. Entsprechend der Erstreckung des ersten Bereichs ist die Kurvenscheibe und damit die Schutzeinrichtung in dem ersten Zustand begrenzt beweglich. Entsprechend der begrenzten Beweglichkeit sind in dem ersten Bereich für den Stößel zwei Stellungen einnehmbar. In der einen Stellung ist die der Meldeeinrichtung zugeordnete elektrische Verbindung geschaltet. In dieser einen Stellung liegt der Stößel an einer Rastflanke der Steuerkurve an, die derart ausgestaltet ist, beispielsweise in dieser einen Stellung im wesentlichen parallel mit der Achse des Stößels ausgerichtet ist, daß auch bei einer geringen oder sogar verschwindenden

der Anker in einer von der Steuerkurve wegweisenden Richtung bewegt und nimmt nach einem durch die vorangegangene Bewegung des Stößels relativ zum Anker bestimmten und vorgehbaren Leerhub durch Mitnehmermittel den Stößel mit und führt diesen außer Eingriff mit der Steuerkurve. Dadurch ist die Steuerkurve frei gegenüber dem Stößel bewegbar und die Schutzeinrichtung kann vollständig geöffnet werden.

Den jeweiligen Anforderungen entsprechend ist in dieser weiteren Verbindung, die den vollständig geschlossenen ersten Zustand der Schutzeinrichtung signalisiert, eine zweite weitere elektrische Verbindung schaltbar, um anzuzeigen, daß die Feststelleinrichtung deaktiviert ist. Bei entsprechender Ausgestaltung der Steuerkurve, beispielsweise durch eine Nase oder einen Nocken, ist darüber hinaus der Stößel beim Öffnen der Schutzeinrichtung und insbesondere bei einem Herausführen eines an der Schutzeinrichtung festgelegten Betätigers aus der Vorrichtung weiter bewegbar, so daß eine dritte weitere elektrische Verbindung schaltbar ist, die anzeigt, daß die Schutzeinrichtung geöffnet ist, jedenfalls daß der Betätiger aus der Vorrichtung herausgeführt ist. Die Mitnehmermittel können entsprechend dem Stand der Technik ausgeführt sein, beispielsweise kann an dem durch eine Bohrung des Ankers hindurchtretenden Stößel ein Wellensicherungsring angebracht sein, der eine Kopplung der axialen Bewegung zwischen Stößel und Anker zumindest in einer Richtung gewährleistet. Alternativ hierzu kann beispielsweise der Stößel zapfenartig ausgebildet sein und einen mit dem Anker zusammenwirkenden Absatz aufweisen.

Bei einer besonderen Ausführungsart der Erfindung ist die Schutzeinrichtung mittels einer elektromagnetisch hervorgerufenen Kraft feststellbar. Die Schutzeinrichtung ist dann magnetkraftfestgestellt bzw. magnetkraftverriegelt. In diesem Fall wirkt beispielsweise ein zweiter Kraftspeicher, insbesondere eine Schraubenfeder, auf den Anker und versucht den Anker und damit unmittelbar oder mittelbar auch den Stößel außer Eingriff mit dem Betätiger oder der Kurvenscheibe zu bringen. Dies führt im stromlosen Fall dazu, daß die Feststelleinrichtung aufgrund des zweiten Kraftspeichers deaktiviert ist und die Schutzeinrichtung geöffnet werden kann.

Bei einer besonderen Ausführungsart der Erfindung ist die Feststellung der Schutzeinrichtung mittels einer elektromagnetisch hervorgerufenen Kraft aufhebbar. In diesem Fall erfolgt die Verriegelung beispielsweise mittels eines weiteren Kraftspeichers, insbesondere mittels einer Schraubenfeder, und im stromlosen Fall ist die Feststelleinrichtung aktiviert. Zum Deaktivieren wird der Elektromagnet bestromt und der Anker und damit unmittelbar oder mittelbar auch der Stößel wird in den Elektromagneten hinein bewegt und dadurch außer Eingriff mit dem Betätiger oder der Kurvenscheibe gebracht.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus den Unteransprüchen sowie der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung mehrere Ausführungsbeispiele im einzelnen beschrieben sind. Dabei können die in den Ansprüchen und in der Beschreibung erwähnten Merkmale jedes einzeln für sich oder in beliebiger Kombination erfindungswesentlich sein.

Fig. 1 zeigt einen Querschnitt durch eine erfindungsgemäße Vorrichtung,

Fig. 2 zeigt einen Ausschnitt der Vorrichtung der Fig. 1 in einer Stellung, in der die Schutzeinrichtung betätigt ist,

Fig. 3 zeigt die Vorrichtung der Fig. 2 in einer weiter fortgeführten Stellung,

Fig. 4 zeigt eine Stellung der Vorrichtung, in der die Sta-

Feststellkraft des Stößels in axialer Richtung, und gleichzeitig großer Kraft bei der Betätigung der Schutzeinrichtung zum Zweck des Offnens, die Kurvenscheibe gegen eine weitere Drehung gesperrt ist, und die Schutzeinrichtung dadurch zuverlässig in dem geschlossenen Zustand festgestellt ist. Die Rastflanke kann darüber hinaus in Zusammenwirkung mit dem Stößel durch eine entsprechende Ausgestaltung eine Selbsthemmung bewirken, d. h. eine Betätigung der Schutzeinrichtung zum Zweck des Öffnens bewirkt eine Erhöhung der Feststellkraft des Stößels. Alternativ dazu 10 Stellung des Stößels alternativ oder ergänzend zu der ersten kann die Rastflanke so ausgestaltet sein, daß beim Überschreiten eines vorgebbaren Wertes der Kraft zur Betätigung der Schutzeinrichtung der Stößel aus der Rastvertiefung ausrastet und dadurch die Schutzeinrichtung freigibt, um eine Beschädigung des Sicherheitsschalters zu verhindern. 15

In der anderen Stellung, die beispielsweise aufgrund einer weiteren Vertiefung der Steuerkurve einnehmbar ist, kann eine erste weitere elektrische Verbindung schaltbar sein, die den vollständig geschlossenen ersten Zustand der Schutzeinrichtung signalisiert. Der Übergang von der anderen in 20 die eine Stellung kann auf der Steuerkurve durch eine weitere Rastflanke gebildet sein, die zum Überführen von der anderen in die eine Stellung einen Kraftaufwand erfordert, insbesondere die beim Betätigen der Schutzeinrichtung zum Zweck des Öffnens ein deutlich spürbares Ausrasten aus der 25 anderen Stellung bewirkt, wodurch ein unbeabsichtigtes oder ungewolltes Überführen von der anderen in die eine Stellung, beispielsweise durch Vibrationen, verhindert ist.

Bei einer besonderen Ausführungsart der Erfindung ist der Stößel als Anker eines Elektromagneten ausgebildet 30 oder mit einem Anker eines Elektromagneten derart verbunden, daß der Stößel gegenüber dem Anker in axialer Richtung im wesentlichen unbeweglich ist. Stößel und Anker sind in axialer Richtung im wesentlichen nur gemeinsam bewegbar. Stößel und Anker können einstückig oder mehrtei- 35 lig ausgebildet sein. Der Elektromagnet ist vorzugsweise zwischen Betätiger bzw. Kurvenscheibe und dem elektrischen Schalterelement angeordnet. Für den Fall, daß die Schutzeinrichtung mittels einer elektromagnetisch hervorgerufenen Kraft feststellbar ist, ist bei der Betätigung der 40 Schutzeinrichtung zum Zweck des Öffnens und der damit einhergehenden Verschiebung des Stößels bzw. Ankers die Magnetkraft reduziert, beispielsweise weil der Polspalt vergrößert ist, und muß entsprechend dimensioniert sein, um auch in diesem Zustand eine sichere Feststellung der 45 Schutzeinrichtung zu gewährleisten. Bei einer solchen sog. Magnetkraftverriegelung führt der stromlose Zustand zu einer Deaktivierung der Feststelleinrichtung aufgrund der Wirkung eines zweiten Kraftspeichers, der auf den Anker bzw. Stößel wirkt und diesen außer Eingriff mit der Kurven- 50 scheibe bzw. dem Betätiger bringt.

Bei einer besonderen Ausführungsart der Erfindung ist der beispielsweise durch den Anker eines Elektromagneten hindurchtretende Stößel gegenüber dem Anker beweglich, wobei nach einem Leerhub des Ankers der Stößel durch 55 Mitnehmermittel an den Anker gekoppelt ist. Während des Leerhubs besteht keine Kopplung der Bewegung des Ankers auf den Stößel. Der Stößel ist gegenüber dem Anker vorzugsweise gegen die Wirkung des Kraftspeichers beweglich, der den Stößel in Anlage an der Steuerkurve hält und 60 damit auch die Feststellung der Schutzeinrichtung bewirkt. Dadurch ist der Stößel bei einer Betätigung der Schutzeinrichtung zum Zweck der Überführung in den geöffneten Zustand entgegen der Wirkung des Kraftspeichers bewegbar, wobci die feststellende Kraft des Kraftspeichers aufgrund 65 dieser Bewegung noch erhöht ist. Insbesondere bleibt die Position des Ankers während dieser Bewegung unverändert. Erst bei einer Deaktivierung der Feststelleinrichtung wird

5

torwicklung im entriegelten Zustand erneut bestromt ist, Fig. 5 zeigt eine der Fig. 2 entsprechende Stellung eines alternativen Ausführungsbeispiels der Vorrichtung,

Fig. 6 zeigt die Stellung der Vorrichtung bei entstromtem Elektromagneten, und

Fig. 7 zeigt eine Stellung der Vorrichtung, in der die Schutzeinrichtung geöffnet worden ist.

Die Fig. 1 zeigt einen Querschnitt durch eine erfindungsgemäße Vorrichtung 1 zum Schalten einer elektrischen Verbindung in Abhängigkeit des Zustandes einer (nicht dargestellten) Schutzeinrichtung. Die Vorrichtung 1 umfaßt ein Kopf oder Betätigungsteil 2, das an einem Schalt- oder Feststellungsteil 4 festgelegt ist. Das Kopf- oder Betätigungsteil 2 weist zwei einen rechten Winkel miteinander einschließende Einführöffnungen 6a, 6b für einen an der Schutzein- 15 richtung festlegbaren Betätiger auf. Im dargestellten Zustand ist der Betätiger, von dem nur der Mitnehmerstift 8 dargestellt ist, vollständig in Richtung des Pfeils 10 durch die Einführöffnung 6a in das Kopfteil 2 eingeführt. Der Mitnehmerstift 8 greift dabei in eine Ausnehmung 12 einer um 20 eine Achse 14 drehbaren Kurvenscheibe 16 ein und dreht diese bis zu ihrer dargestellten Endstellung. Die Kurvenscheibe 16 ist in ihrer Grundstellung und in den im dargestellten Ausführungsbeispiel zwei möglichen Endstellungen durch nicht näher dargestellte Arretierungsmittel arretierbar, 25 die in diesen Stellungen in Ausnehmungen 18 einer neben der Kurvenscheibe 16 angeordneten und vorzugsweise einstückig mit dieser ausgebildeten Arretierungsscheibe 20 eingreifen und beim Einführen des Betätigers entgegen der Wirkung einer Feder automatisch außer Eingriff gebracht 30 werden, wodurch die Arretierung der Kurvenscheibe 16 aufgehoben ist. Die Arretierung der Kurvenscheibe 16 dient der Manipulationssicherheit und der Sicherung gegen unbeabsichtigtes Drehen, beispielsweise aufgrund von Vibrationen.

Die Kurvenscheibe 16 weist symmetrisch zur Spiegelebene 22 umfänglich zwei jeweils einen ersten Bereich einer Steuerkurve 24 bildende Ausnehmungen 26 auf. In diese Ausnehmungen 26 greift ein Stößelkopf 28 des im dargestellten Ausführungsbeispiel mehrteiligen Stößels ein und ist in Anlage mit der Steuerkurve 24. Der Stößelkopf 28 ist über ein Dicht- und/oder Führungsteil 30 mit einer Stößelstange 32 verbunden, die durch eine Bohrung eines Statorwicklungen 34 umfassenden Elektromagneten 36 hindurchgeführt ist. An ihrem entgegengesetzten Ende ist die Stößelstange 32 mit einem Schalterbetätigungselement 38 verbunden, der ein vorzugsweise mehrstufiges Schalterelement 40 betätigt, das eine Vielzahl von, den einzelnen zu schaltenden elektrischen Verbindungen zugeordneten, Kontaktpaaren aufweist.

An ihrem der Kurvenscheibe 16 zugewandten Ende weist 50 die Stößelstange 32 eine flanschartige Auskragung 42 auf, auf die ein sich am Elektromagneten 36 abstützender Kraftspeicher in Form einer Spiralfeder 44 in Richtung auf die Kurvenscheibe 16 wirkt und den Stößelkopf 28 in Anlage an der Steuerkurve 24 hält. Im dargestellten Zustand ist der 55 Elektromagnet 36 und insbesondere die Statorwicklung 34 bestromt, so daß der Anker 48 des Elektromagneten 36 gegen die Wirkung eines zweiten Kraftspeichers in Form einer Schraubenfeder 50 seine in den Elektromagneten eingefahrene Endposition einnimmt und das Spaltmaß 46 den Maximalwert annimmt. An seinem der Kurvenscheibe 16 abgewandten Ende trägt die Stößelstange 32 in einer Ringnut 52 ein Mitnehmermittel in Form eines Wellensicherungsrings 54, der in der dargestellten Stellung in Anlage an dem Anker 48 ist, insbesondere an einem Hülsenelement 48a des An- 65 kers 48. Im Bereich der Statorwicklung 34 weist das Gehäuse des Schalt- oder Feststellungsteils 4 auf der Außenseite Rippen 56 auf, um eine größere Oberfläche bereitzu6

stellen und die Wärmeableitung an die Umgebung zu verbessern sowie um die Oberflächentemperatur und die von einer Person zu berührende Fläche zu reduzieren, um dadurch die Gefahr von Verbrennungen für die Person herabzusetzen. Der Anker 48 weist an seinem der Kurvenscheibe 16 zugewandten Ende eine kegelstumpfförmige Ausgestaltung auf, an deren Stirnfläche die Schraubenfeder 50 in Anlage ist und mit der er in einen entsprechenden Innenkonus eines Kerns 58 des Elektromagneten 36 eingreift, welcher ebenso wie der Anker 48 eine Führung für die Stößelstange 32 bildet.

Die Fig. 2 zeigt einen Ausschnitt der Vorrichtung 1 der Fig. 1 in einer Stellung der Kurvenscheibe 16, in der die Schutzeinrichtung zum Zweck der Überführung von dem ersten geschlossenen Zustand in den zweiten geöffneten Zustand betätigt ist, insbesondere der Betätiger und damit der Mitnehmerstift 8 ein Stück weit in Richtung 11 aus der Vorrichtung herausbewegt ist. Die Schutzeinrichtung ist dabei nach wie vor in dem ersten geschlossenen Zustand festgestellt, da der Stößelkopf 28 mit einem ersten von der Steuerkurve 24 gebildeten Bereich zusammenwirkt, insbesondere in der dargestellten Stellung an einer Sperrflanke 24a der Steuerkurve 24 in Anlage ist. Aufgrund des von der Kreislinie abweichenden Kurvenverlaufs der Steuerkurve 24 in dem ersten Bereich ist der Stößel und damit die Stößelstange 32 mit der flanschartigen Auskragung 42 gegen die Wirkung der Spiralfeder 44 ein Stück weit in Richtung weg von der Kurvenscheibe 16 bewegt. Das Spaltmaß 46a ist gegenüber dem Spaltmaß 46 der Fig. 1 um diesen Betrag reduziert. Da die Statorwicklung 34 des Elektromagneten 36 in dieser Stellung noch bestromt ist, ist die Position des Ankers 48 unverändert. Der Wellensicherungsring 54 ist dadurch um das der Differenz der Spaltmaße 46 und 46a entsprechende Spaltmaß 60 von dem Anker 48 beabstandet. Durch die Verschiebung des Stößels wird die elektrische Verbindung in dem (in der Fig. 2 nicht dargestellten) Schalterelement 40 geschaltet, die eine Betätigung der Schutzeinrichtung signalisiert. Gegebenenfalls wird eine erste weitere elektrische Verbindung bei Übergang aus der Stellung der Fig. 1 in die Stellung der Fig. 2 geschaltet, beispielsweise geöffnet, die den vollständig geschlossenen ersten Zustand der Schutzeinrichtung signalisiert hat. Der als Druckfeder wirkende zweite Kraftspeicher in Form einer Schraubenfeder 50 ist in dieser Stellung nach wie vor maximal zusammengedrückt.

Die Fig. 3 zeigt die Vorrichtung 1 der Fig. 2 in einer weiter fortgeführten Stellung, in der die Statorwicklung 34 nicht mehr bestromt ist und dadurch der Anker 48 aufgrund der Wirkung der Schraubenfeder 50 in Richtung auf das Schalterelement aus dem Elektromagneten heraus bewegt ist. Im Verlauf dieser Bewegung kommt der Anker 48 nach einem von dem in der Fig. 2 dargestellten Spaltmaß 60 bestimmten Leerhub in Anlage an den an der Stößelstange 32 festgelegten Wellensicherungsring 54 und nimmt diesen bei seiner weiteren Bewegung mit, so daß die Stößelstange 32 und damit auch der Stößelkopf 28 aus dem von der Steuerkurve 24 gebildeten ersten Bereich herausgeführt ist und damit die Feststelleinrichtung deaktiviert ist. Die Federkraft der Schraubenfeder 50 ist dabei in der jeweiligen Federstellung so gewählt, daß der Stößelkopf 28 auch dann von der Sperrflanke 24a weg bewegbar ist, wenn die Kraft zur Betätigung der Schutzeinrichtung ihren Maximalwert einnimmt. Der Betätiger mit seinem Mitnehmerstift 8 kann daraufhin unter Drehung der Kurvenscheibe 16 im Uhrzeigersinn aus der Vorrichtung herausbewegt werden. In der dargestellten Stellung ergibt sich ein Spaltmaß 62 zwischen dem Anker 48 und dem Kern 58, das dem Spaltmaß 46 entspricht, wogegen das Spaltmaß 46b zu Null wird und die flanschartige Auskragung 42 in Anlage an dem Elektromagneten 36 ist, und dadurch die Spiralfeder 44 maximal zusammengedrückt ist. Die Federkonstante der Schraubenfeder 50 ist daher in Abstimmung mit den Federwegen so gewählt, daß die Schraubenfeder 50 die Spiralfeder 44 in dem erforderlichen Maß zusammendrücken, d. h. spannen, kann. Der Stößelkopf 28 ist in dieser Stellung in Anlage an einem zweiten Bereich 24b der Steuerkurve 24 oder geringfügig von der Kurvenscheibe 16 beabstandet. Die Stellung der Kurvenscheibe 16 entspricht deren Grundstellung, in der der Betätiger über entsprechende Einführöffnungen des Gehäuses des Kopfoder Betätigerteils 2 entweder in Richtung des Pfeils 10 oder in Richtung des Pfeils 10 in die Vorrichtung 1 einführbar ist

Die Fig. 4 zeigt eine Stellung der Vorrichtung 1, in der die Statorwicklung 34 im entriegelten Zustand der Schutzein- 15 richtung erneut bestromt ist und dadurch der Anker 48 entgegen der Wirkung der Schraubenfeder 50 in den Elektromagneten hinein bewegt ist. Sobald die Kurvenscheibe 16 durch Einführen des Betätigers entsprechend gedreht ist, daß der Stößelkopf 28 aufgrund der Wirkung der unter 20 Druckspannung stehenden Spiralfeder 44 in den ersten Bereich der Steuerkurve 24 einrastet, nimmt die Vorrichtung 1 wieder die in der Fig. 1 dargestellte Stellung ein. Im Verlauf der einziehenden Bewegung nimmt die elektromagnetische Krastwirkung auf den Anker 48 zu. Das Spaltmaß 46c zwi- 25 schen der vorzugsweise ringförmigen Auskragung 42 und dem Elektromagneten 36 stellt sich ein, sofern der Stößelkopf 28 in der in der Fig. 3 dargestellten Stellung um diesen Betrag vom zweiten Bereich 24b der Steuerkurve 24 beabstandet war.

Die Fig. 5 zeigt eine der Fig. 2 entsprechende Stellung eines alternativen Ausführungsbeispiels der Vorrichtung 101. An einem sich in der dargestellten Position an einem (nicht dargestellten) Anschlag, der beispielsweise durch das Gehäuse gebildet sein kann, abstützenden Mitnehmerelement 35 164 ist ein erstes Ende eines dritten Kraftspeichers, beispielsweise einer zweiten Schraubenfeder 166, in Anlage, deren zweites Ende sich am stirnseitigen Ende des Elektromagneten 136 abstützt. Die zweite Schraubenfeder 166 ist durch den Anschlag, der eine weitere Bewegung des Mit- 40 nehmerelements 164 in Richtung auf die Kurvenscheibe 116 verhindert, derart vorgespannt, daß die von der zweiten Schraubenfeder 166 ausgeübte Kraft größer ist als die von der Schraubenfeder 150 ausgeübte Kraft, welche wiederum größer ist als die von der Spiralfeder 144 ausgeübte Kraft. 45 Das die Ausdehnung der zweiten Schraubenfeder 166 bestimmende Spaltmaß 168 zwischen dem Mitnehmerelement 164 und dem Elektromagneten 136 ist größer als das die Ausdehnung der Spiralfeder 144 bestimmende Spaltmaß 146a zwischen dem Dicht- und/oder Führungsteil 130 und 50 dem Elektromagneten 136. In der dargestellten Stellung der Fig. 5 ist der Betätiger mit seinem Mitnehmerstift 108 noch in der Vorrichtung 101 festgestellt und damit die Schutzeinrichtung in ihrem ersten Zustand zugehalten, aber zum Zweck des Öffnens betätigt. Die Spiralfeder 144 hält über 55 das Dicht- und/oder Führungsteil 130 den Stößelkopf 128 in Anlage an der Steuerkurve 124, wobei die Sperrflanke 124a ein weiteres Verdrehen der Kurvenscheibe 116 verhindert und dadurch die Schutzeinrichtung feststellt. Das Mitnehmerelement 164 weist eine zentrische Öffnung auf, durch 60 die das Dicht- und/oder Führungsteil 130 hindurchgeführt

Die Fig. 6 zeigt die Stellung der Vorrichtung 101 bei entstromtem Elektromagneten 136. Die Schraubenfeder 150 verschiebt den Anker 148 nach rechts, der nach einem vom 65 Spaltmaß 160 bestimmten Leerhub die Stößelstange 132 mitnimmt, aber nur soweit, bis ein beispielsweise ringförmiger Absatz des Dicht- und/oder Führungsteils 130 in Anlage

an das Mitnehmerelement 164 kommt. Während das Spaltmaß 146b gegenüber dem Spaltmaß 146a reduziert ist, bleibt das Spaltmaß 168 zwischen dem Mitnehmerelement 164 und dem Elektromagneten 136 unverändert, da die in dieser Stellung wirkende Kraft der vorzugsweise unter Vorspannung stehenden zweiten Schraubenfeder 166 größer ist als die den Anker 168 austreibende Kraft der Schraubenfeder 150. Der Stößelkopf 128 ist in dieser Stellung soweit von der Kurvenscheibe 116 zurückbewegt, daß diese bei einer weiteren Betätigung der Schutzeinrichtung im Uhrzeigersinn verdreht werden kann.

Die Fig. 7 zeigt eine Stellung der Vorrichtung 101, in der die Schutzeinrichtung geöffnet worden ist und die Kurvenscheibe 116 gegenüber der Stellung in der Fig. 6 um 45° im Uhrzeigersinn verdreht worden ist. Der Mitnehmerstift 108 des Betätigers tritt in dieser Stellung aus der Vorrichtung 101 aus und die Schutzeinrichtung kann beispielsweise vollständig geöffnet werden. Aufgrund der Ausbildung eines Nockens 170 im zweiten Bereich 124b der Steuerkurve wird durch die Betätigung der Schutzeinrichtung der Stößelkopf 128 bzw. das Dicht- und/oder Führungsteil 130 gegen die Wirkung der zweiten Schraubenfeder 166 in Richtung auf den Elektromagneten 136 bewegt, wodurch sich das Spaltmaß zwischen dem Mitnehmerelement 164 und dem Elektromagneten 136 auf den Wert 168a verkleinert. Der Anker 148 folgt der Bewegung der Stößelstange 132 aufgrund der Wirkung der Schraubenfeder 150. Dadurch stellt sich das Spaltmaß 162 zwischen dem Anker 148 und dem Kern 158 ein, wogegen das Spaltmaß 146c zwischen dem Dicht- und/ oder Führungsteil 130 und dem Elektromagneten 136 minimiert ist und die Spiralfeder 144 maximal zusammengedrückt bzw. gespannt ist.

Das in den Fig. 2 bis 7 nicht dargestellte Schalterelement 40 der Fig. 1 ist vorzugsweise so ausgestaltet, daß in den Stellungen der Fig. 1, 2, und 4 bis 7 entsprechende elektrische Verbindungen geschaltet sind, welche die Zustände "Schutzeinrichtung geschlossen und festgestellt" (Fig. 1), "Anforderung zum Öffnen der Schutzeinrichtung" (Fig. 2 und 5), "Deaktivierung der Feststelleinrichtung" (Fig. 6), "Schutzeinrichtung geöffnet" (Fig. 7) und "Feststelleinrichtung aktiviert, aber Schutzeinrichtung geöffnet" (Fig. 4) anzeigen.

Patentansprüche

- 1. Vorrichtung zum Schalten einer elektrischen Verbindung in Abhängigkeit des Zustandes einer Schutzeinrichtung, insbesondere Sicherheitsschalter für eine Schutzeinrichtung einer Maschine, wobei die Vorrichtung eine Feststelleinrichtung umfaßt, mittels der die Schutzeinrichtung in einem ersten, insbesondere geschlossenen, Zustand feststellbar ist, dadurch gekennzeichnet, daß die Vorrichtung weiterhin eine Meldeeinrichtung umfaßt, daß mittels der Meldeeinrichtung (28, 32, 38, 40) eine Betätigung der Schutzeinrichtung zum Zweck der Überführung von dem ersten Zustand in einen zweiten, insbesondere geöffneten, Zustand erfaßbar ist, und daß von der Meldeeinrichtung (28, 32, 38, 40) beim Erfassen der Betätigung die elektrische Verbindung schaltbar ist.
- 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Meldeeinrichtung ein Schalterbetätigungsmittel, insbesondere einen Stößel (28, 32) umfaßt, der das Schalten der elektrischen Verbindung bewirkt, und daß das Schalterbetätigungsmittel entsprechend einer Steuerkurve (24), die an ihm vorbeiführbar ist, bewegbar ist.
- 3. Vorrichtung nach Anspruch 2, dadurch gekenn-

10

9

zeichnet, daß das Schalterbetätigungsmittel mittels eines Kraftspeichers (44) in Anlage an der Steuerkurve (24) gehalten ist.

4. Vorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß das Schalterbetätigungsmittel auch Teil der Feststelleinrichtung ist.

- 5. Vorrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Steuerkurve (24) von einer Kurvenscheibe (16) gebildet ist, insbesondere von einer Umfangslinie der Kurvenscheibe (16), und daß 10 die Kurvenscheibe (16) von einem Betätiger beim Überführen der Schutzeinrichtung vom ersten in den zweiten Zustand und/oder umgekehrt drehbar ist.
- 6. Vorrichtung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß in einem ersten Bereich der 15 Steuerkurve (24) das Schalterbetätigungsmittel und die Steuerkurve (24) derart zusammenwirken, insbesondere daß das Schalterbetätigungsmittel in eine Rastvertiefung der Steuerkurve (24) eingreift, daß die Schutzeinrichtung in dem ersten Zustand festgestellt ist.
- 7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß in dem ersten Bereich die Kurvenscheibe (16) zwischen zwei Positionen hin- und herbewegbar ist, daß dadurch für das an der Steuerkurve (24) anliegende Schalterbetätigungsmittel zwei unterschiedliche 25 Stellungen einnehmbar sind, und daß in einer der Stellungen die elektrische Verbindung geschaltet ist.
- 8. Vorrichtung nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß das Schalterbetätigungsmittel als Anker eines Elektromagneten (36) ausgebildet 30 ist oder mit einem Anker eines Elektromagneten (36) derart verbunden ist, daß das Schalterbetätigungsmittel gegenüber dem Anker in axialer Richtung im wesentlichen unbeweglich ist.
- 9. Vorrichtung nach einem der Ansprüche 2 bis 7, da- 35 durch gekennzeichnet, daß das Schalterbetätigungsmittel gegenüber einem Anker (48) eines Elektromagneten (36) beweglich ist, insbesondere durch eine Öffnung des Ankers (48) hindurchtritt.
- 10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß nach einem Leerhub (60) des Ankers (48) das Schalterbetätigungsmittel durch Mitnehmermittel an den Anker (48) gekoppelt ist.
- 11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Schutzeinrichtung 45 mittels einer elektromagnetisch hervorgerufenen Kraft feststellbar ist.
- 12. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Feststellung der Schutzeinrichtung mittels einer elektromagnetisch her- 50 vorgerufenen Kraft aufhebbar ist.

Hierzu 3 Seite(n) Zeichnungen

55

- Leerseite -

Nummer: Int. Cl.⁷: Offenlegungstag: DE 199 37 947 A1 H 01 H 27/00 22. März 2001

32

50

Nummer: Int. CI.⁷: Offenlegungstag: DE 199 37 947 A1 H 01 H 27/00 22. März 2001

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.