◆ NumPy Ndarray 对象

NumPy 数组属性 →

NumPy 数据类型

numpy 支持的数据类型比 Python 内置的类型要多很多,基本上可以和 C 语言的数据类型对应上,其中部分类型对应为 Pytho n 内置的类型。下表列举了常用 NumPy 基本类型。

名称	描述					
bool_	布尔型数据类型(True 或者 False)					
int_	默认的整数类型(类似于 C 语言中的 long, int32 或 int64)					
intc	与 C 的 int 类型一样 , 一般是 int32 或 int 64					
intp	用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32 或 int64)					
int8	字节(-128 to 127)					
int16	整数(-32768 to 32767)					
int32	整数(-2147483648 to 2147483647)					
int64	整数(-9223372036854775808 to 9223372036854775807)					
uint8	无符号整数(0 to 255)					
uint16	无符号整数(0 to 65535)					
uint32	无符号整数(0 to 4294967295)					
uint64	无符号整数(0 to 18446744073709551615)					
float_	float64 类型的简写					
float16	半精度浮点数,包括:1个符号位,5个指数位,10个尾数位					
float32	单精度浮点数,包括:1个符号位,8个指数位,23个尾数位					
float64	双精度浮点数,包括:1个符号位,11个指数位,52个尾数位					
complex_	complex128 类型的简写,即 128 位复数					
complex64	复数,表示双 32 位浮点数(实数部分和虚数部分)					
complex128	复数,表示双 64 位浮点数(实数部分和虚数部分)					

numpy 的数值类型实际上是 dtype 对象的实例,并对应唯一的字符,包括 np.bool_, np.int32, np.float32,等等。

数据类型对象 (dtype)

数据类型对象是用来描述与数组对应的内存区域如何使用,这依赖如下几个方面:

- 数据的类型(整数,浮点数或者 Python 对象)
- 数据的大小(例如,整数使用多少个字节存储)
- 数据的字节顺序(小端法或大端法)
- 在结构化类型的情况下,字段的名称、每个字段的数据类型和每个字段所取的内存块的部分
- 如果数据类型是子数组,它的形状和数据类型

字节顺序是通过对数据类型预先设定"<"或">"来决定的。"<"意味着小端法(最小值存储在最小的地址,即低位组放在最前面)。">"意味着大端法(最重要的字节存储在最小的地址,即高位组放在最前面)。

dtype 对象是使用以下语法构造的:

```
numpy.dtype(object, align, copy)
```

- object 要转换为的数据类型对象
- align 如果为 true,填充字段使其类似 C 的结构体。
- ocopy 复制 dtype 对象 ,如果为 false ,则是对内置数据类型对象的引用

实例

接下来我们可以通过实例来理解。

实例 1

```
import numpy as np
# 使用标量类型
dt = np.dtype(np.int32)
print(dt)
```

输出结果为:

int32

实例 2

```
import numpy as np
# int8, int16, int32, int64 四种数据类型可以使用字符串 'i1', 'i2','i4','i8' 代替
dt = np.dtype('i4')
print(dt)
```

输出结果为:

int32

```
实例 3
```

```
import numpy as np
# 字节顺序标注
dt = np.dtype('<i4')
print(dt)</pre>
```

输出结果为:

```
int32
```

下面实例展示结构化数据类型的使用,类型字段和对应的实际类型将被创建。

实例 4

```
# 首先创建结构化数据类型
import numpy as np
dt = np.dtype([('age',np.int8)])
print(dt)
```

输出结果为:

```
[('age', 'i1')]
```

实例 5

```
# 将数据类型应用于 ndarray 对象
import numpy as np
dt = np.dtype([('age',np.int8)])
a = np.array([(10,),(20,),(30,)], dtype = dt)
print(a)
```

输出结果为:

```
[(10,) (20,) (30,)]
```

实例 6

```
# 类型字段名可以用于存取实际的 age 列
import numpy as np
dt = np.dtype([('age',np.int8)])
a = np.array([(10,),(20,),(30,)], dtype = dt)
print(a['age'])
```

输出结果为:

```
[10 20 30]
```

下面的示例定义一个结构化数据类型 student,包含字符串字段 name,整数字段 age,及浮点字段 marks,并将这个 dtype 应用到 ndarray 对象。

```
实例 7
```

```
import numpy as np
student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')])
print(student)
```

输出结果为:

```
[('name', 'S20'), ('age', 'i1'), ('marks', '<f4')]
```

实例 8

```
import numpy as np
student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')])
a = np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student)
print(a)
```

输出结果为:

```
[('abc', 21, 50.0), ('xyz', 18, 75.0)]
```

每个内建类型都有一个唯一定义它的字符代码,如下:

字符	对应类型
b	布尔型
i	(有符号) 整型
u	无符号整型 integer
f	浮点型
С	复数浮点型
m	timedelta(时间间隔)
М	datetime(日期时间)
0	(Python) 对象
S, a	(byte-)字符串

2019/3/17		NumPy 数据类型 菜鸟	为教程	
字符	对应类型			
U	Unicode			
V	原始数据 (void)			
	'			
◆ NumPy Ndarray 对象				NumPy 数组属性→
		☞ 点我分享笔记		