Diese Information ist lediglich eine technische Beschreibung des Produktes. Sie stellt keine Beschaffenheits- oder Haltbarkeitsgarantie im Sinne des Paragraphen 443 BGB dar.

This information is exclusively a technical description of the products. It is not meant or intends to be a special guarantee for a particular quality or durability with regard to section 443 BGB (German Civil Code).

Document name: Smart NOx Sensor "Uninox_12V"

Project: Smart NOx Sensor SNS22

5WK96622

Engineering change number: ECM 10090749

Customer: Diverse

Filename: RBG_6532124074_SPE_000_AB.doc

Revision: AB
Number of pages: 31

Revision date: 2007-04-04

	Name:	Dept.:	Phone:	Date:	Sign:
1 st . Checker:	Behrens Holger	SV P SN QE	61290	2007-04-10	eSign
2 nd . Checker:	Lemire Bertrand	SV P SN SM EG	3208	2007-04-10	eSign

Version history

Document version	Previous version	Change description (including number)
AB	AA	ECM 10090749

Department Sign Designed by hans-peter.goettler@siemens.com eSign 2007-04-04 SV P SN SM EG eSign Released by bertrand.lemire@siemens.com 2007-04-04 SV P SN SM EG Designation Smart NOx Sensor "Uninox 12V" 5WK96622 SIEMENS VDO Document key Pages 1 of 31 653212.40.74 SPE 000 AB Copyright (C) Siemens VDO Automotive AG 2006 - 2007 A4: 2005-04 Siemens VDO Automotive AG, Regensburg (RBG)

Transmittal, reproduction, dissemination and/or editing of this document as well as utilization of its contents and communication there of to others without express suthorization are prohibited. Offenders will be held liable for payment of damages. All rights created by patent grant or registration of a utility model or design patent are reserved.

Version list

Version Date Author Comment, Description, Changes HP Göttler Specification NOx-Sensor "Uninox" (12V, Truck) draft 20.04.06 DF AA31.08.06 **HP Göttler** AB HP Göttler 04.04.07 2. Bank-Adressen, J1939-CAN-Matrix

Designed by hans-peter.goettler@siemens.com Released by bertrand.lemire@siemens.com		2007-04-04 2007-04-04		eSign eSign eSign
SIEMENS VDO	Designation Smart NOx Sensor "Uninox 12			5WK96622
Automotive	Document key 653212.40.74 SPE 000 AB			Pages 2 of 31
Siemens VDO Automotive AG, Regens	burg (RBG)	С	opyright (C) Siemens VDO Aut	comotive AG 2006 - 2007 A4 : 2005-04

Index

1	Related documents	6
2	General	7
2.1	General description	7
2.2	Function description	7
3	Smart NOx Sensor assembly	8
3.1	Characteristic	
3.1.	1 Light-off time	9
3.1.2	-	
3.1.3		
3.1.4	4 Heat up strategy	10
4	Requirements	11
4.1	Operating temperature ranges	
4.2	Cable	
4.3	Acceleration	11
4.4	Electrical characteristics	12
4.4.	1 Supply voltage	12
4.4.2	2 Supply current	12
4.4.3	3 Supply power	12
4.4.4	4 CAN Lines	12
4.4.	5 Transfer Protocol	13
4.5	Mechanical characteristics	17
4.5.	1 Physical dimensions	17
4.5.2	2 Connector	17
4.5.3	3 Thread Torque	17
4.5.4	4 Pull strength at sensor and electronics	17
5	Testing	18
5.1	Sensor	
5.1.	1 Drop test	18

Designed by	0	Date 0.007	Department ON FO	Sign
Designed by hans-peter.goettle	r@siemens.com	2007-04-04	SV P SN SM EG	eSign
Released by bertrand.lemire@s	iemens.com	2007-04-04	SV P SN SM EG	eSign
	Designation			
SIEMENS VDO	Smart NOx Sensor "Uninox 12	2V"		5WK96622
Automotive	Document key			Pages
	653212.40.74 SPE 000 AB			3 of 31
Siemens VDO Automotive AG, Regens	burg (RBG)	Co	opyright (C) Siemens VDO A	utomotive AG 2006 - 2007 A4 : 2005-04

5.1	.2	Stone impact test	18
5.1	.3	Humidity	18
5.1	.4	Salt spray test	18
5.1	.5	Gasoline soak	18
5.1	.6	Temperature cycle	19
5.1	.7	Water submergence test	19
5.1	.8	Water ingress	19
5.1	.9	Chemical resistance	20
5.1	.10	Continuous high temperature	20
5.1	.11	Grommet high temperature	20
5.1	.12	High temperature vibration	20
5.1	.13	Fuel additives / Poisoning test	21
5.2	Elec	ctronic interface	21
5.3	Elec	ctromagnetic compatibility (EMC)	22
5.3	.1	Definition of operation and functional states	22
5.3	.2	Disturbance by transient conduction along supply lines	22
5.3	.3	Immunity against transient voltage on power and control lines	22
5.3	.4	Immunity against electromagnetic fields: Stripline Testing	22
5.4	lmm	nunity against Electrostatic Discharge (ESD)	23
6	Enc	losure	24
6.1	Sch	ematic diagram of NOx-Sensor	24
6.2	Defi	nition of control signals	24
6.3	Tes	t Procedures	25
6.3	.1	Drop Test	25
6.3	.2	Stone Impact Test	25
6.3	.3	NOx synthetic gas equipment	26
6.3	.4	Propane burner Stand Apparatus	26
7	Buil	It in instruction	27
7.1		dity	
7.2		hnical data	
7.2		Boss	

Designed by hans-peter.goettler Released by bertrand.lemire@s	iemens.com	Date 2007-04-04 2007-04-04	Department SV P SN SM EG SV P SN SM EG	^{Sign} eSign eSign
SIEMENS VDO	Smart NOx Sensor "Uninox 12	2V"		5WK96622
Automotive	Document key 653212.40.74 SPE 000 AB			Pages 4 of 31
Siemens VDO Automotive AG, Regensl	ourg (RBG)	С	opyright (C) Siemens VDO A	utomotive AG 2006 - 2007 A4 : 2005-04

7.2.2	Cable outgoing at sensor grommet	28
7.2.3	Built in position	28
7.2.4	Tilt angle in gas flow direction:	28
7.2.5	Electronic control unit	29
7.2.6	Connector "MLK"	29
7.2.7	Cables/Varnish tube	30
7.2.8	CE-marking	30
7.3 Cor	mments for installation	30

1 Related documents

653212.40.73	Siemens drawing NOx-Sensor
--------------	----------------------------

DIN EN 60068-2-2, Ba Storage at continuous high temperature

DIN EN 60068-2-32 Ed Drop to concrete floor

DIN EN 60068-2-64 Fh Random vibration

DIN 50 017 KFW Storage at ambient air and high humidity

DIN IEC 60068-2-11 Ka Salt spray

DIN IEC 68 2-14, Na & Nb Temperature cycle
DIN IEC 68245-2 Chemical resistance

DIN 40839 part 1 / ISO 7637-1 Electrical disturbance by conducting and coupling DIN 40839 part 4 / ISO 11452-5 Electrical disturbance by narrow-band radiated

electromagnetic energy

IEC CISPR 25, EN 55025 Electrical disturbance by electro magnetic interferences

ISO 10605, EN 61000-4-2 Electrical disturbance by electro static discharge

Designed by hans-peter.goettler@siemens.com		2007-04-04	SV P SN SM EG	eSign
Released by bertrand.lemire@s	iemens.com	2007-04-04	SV P SN SM EG	eSign
SIEMENS VDO	Designation Smart NOx Sensor "Uninox 1	2V"		5WK96622
Automotive	Document key 653212.40.74 SPE 000 AB			Pages 6 of 31
Siemens VDO Automotive AG, Regensl	ourg (RBG)	C	copyright (C) Siemens VDO Au	Itomotive AG 2006 - 2007 A4 : 2005-04

2 General

2.1 General description

This technical specification describes the smart NOx sensor (SNS) used for catalyst management in vehicles with gasoline or diesel engines. The smart NOx sensor consists of a ceramic sensor element and an electronic control unit.

The smart NOx sensor measures the NOx concentration, air/fuel ratio (A/F ratio) and equilibrum oxygen partial pressure in the exhaust gas of combustion engines (gasoline and diesel) and can be used for

- Lean burn engines (NOx trap)
- Diesel engines (SCR catalysts, NOx trap, closed-loop NOx control)
- On board diagnostics, OBD (gasoline and diesel engines)

Specified mounting position of the NOx Sensor is downstream of NOx trap or SCR catalyst. (See also built-in-instruction - Chapter 7)

2.2 Function description

A ceramic sensor made of zirconia electrolyte measures in amperometric operation (chapter 6.1) the oxygen concentration entering from exhaust gas through a diffusion barrier into a first cavity. The oxygen concentration inside the cavity is controlled to the constant concentration of a few ppm NOx. Other components of the exhaust gas also entering the cavity as HC, CO and H₂ are oxidized at the pumping electrode made of Pt.

From the first cavity the test gas with a few ppm O_2 and NOx enters a second cavity, where gaseous oxygen is totally removed by an auxiliary pump. At the measuring electrode the equilibrium of NO \leftrightarrow N₂ + O₂ is changed by removing oxygen generated by the reduction of NO. The amperometric measurement IP2 of this generated oxygen represents the NOx concentration of the exhaust gas.

An electronic control unit (ECU) provides the power control for heating the sensor element to operating temperature. In an ASIC the regulation for the amperometric operation of all pumping cells to determinate NOx concentration, air/fuel ratio and binary λ signal is realized. The ECU provides the measured gas concentrations digitally via CAN bus.

The assembly of the entire NOx sensor system, consisting of sensor and electronic control unit connected by a wiring harness is shown in drawing 653212.40.73

Designed by hans-peter.goettle Released by bertrand.lemire@s	_	2007-04-04 2007-04-04		eSign eSign eSign
SIEMENS VDO	Designation Smart NOx Sensor "Uninox 12	2V"		5WK96622
Automotive	Document key 653212.40.74 SPE 000 AB			Pages 7 of 31
Siemens VDO Automotive AG, Regens	burg (RBG)	С	opyright (C) Siemens VDO Aut	omotive AG 2006 - 2007 A4 : 2005-04

3 Smart NOx Sensor assembly

3.1 Characteristic

		Symbol	Min.	Max.	Dim.	Remarks
Nr	Name					
1	NO _x concentration	NOx	0	1500	ppm	NO & NO ₂ $1.0 \le \lambda \le \infty$ (without NH ₃)
2	Linear Air/Fuel-ratio	λ_lin	0	1250	1000/ λ	
3	Lambda binary	$λ$ _rich($λ$ ≤0.9) $λ$ _lean($λ$ ≥1.1)	750	200	mV mV	
4	Lambda binary (Static-λ)	λ_s	0.994	1.010	λ	
5	Response time NO _x	τ _{33<>66} % NOx		1300 1650	ms	fresh aged
6	Response time λ _lin	τ _{33<>66%} λ_lin		1000 1300	ms	fresh aged
7	R-to-L response (T _{600->300 mV})	TRL		500 600	ms	fresh aged
	L-to-R response (T _{300->600 mV})	TLR		500 600	ms	fresh aged

Allowed gas temperature range for validity of characteristic data: 200 – 800°C.

Measuring conditions: (chapter 6.3.3)

Items Nr. 1, Nr. 2 Synthetic gas equipment

Item Nr. 3, Nr. 4 Synthetic gas equipment; T_{gas} = 350±20°C

Items Nr. 5 Synthetic gas equipment, $\lambda = 1$ and 2, 0 < NOx < 250 ppm

Items Nr. 6, 7 Synthetic gas equipment, $0.97 < \lambda < 1.03$

Designed by hans-peter.goettler Released by bertrand.lemire@s	_	Date 2007-04-04 2007-04-04		^{Sign} eSign eSign
SIEMENS VDO Designation Smart NOx Sensor "Uninox 12V		V"		5WK96622
Automotive	Document key 653212.40.74 SPE 000 AB			Pages 8 of 31
Siemens VDO Automotive AG, Regensburg (RBG)			Copyright (C) Siemens VDO A	utomotive AG 2006 - 2007 A4 : 2005-04

Transmittal, reproduction, dissemination and/or editing of this document as well as utilization of its contents and communication there of to others without express authorisation are prohibited. Offenders will be held liable for payment of damages. All rights created by patent grant or registration of a utility model or design patent are reserved.

- NOx < 100 sec (fresh)

- linear A/F-ratio < 80 sec (fresh)

- binary λ < 80 sec (fresh)

Measuring condition: Air, $T_{Gas} = 25 + -5^{\circ}C$, $U_{bat} = 14,0V$

Criteria: Status bit of function = 1

3.1.2 Measurement accuracy

NOx output:

Depending on the temperature of the electronic sensor control unit, different accuracies for NOx are given:

Gas mixture: $H_2O=3\%$ $O_2=0\%$, 13%

N₂ balance

NOx fresh:

Limit values in "ppm" at 0 ppm and in "%" from 100 to 1500 ppm

NOx aged:

Limit values are 10 ppm / 10% higher than fresh limit values.

Designed by hans-peter.goettler Released by bertrand.lemire@s	_	Date 2007-04-04 2007-04-04		^{Sign} eSign eSign
SIEMENS VDO Designation Smart NOx Sensor "Uninox 12V"		2V"		5WK96622
Document key 653212.40.74 SPE 000 AB				Pages 9 of 31
Siemens VDO Automotive AG, Regenst	(copyright (C) Siemens VDO A	Automotive AG 2006 - 2007 A4 : 2005-04	

A/F output

- For $1000/\lambda$ at 1111 (≈ 0.9) ±15 (1000/ λ) (fresh)
- For 1000/λ at 1000 (≈ 1.0) ±6 (1000/λ) (fresh) ±12 (aged)
- For $1000/\lambda$ at 378 (≈ 2.65) ±48 (1000/ λ) (fresh)

Binary λ output

- Static λ : 1.002 \pm 0.008 (fresh)

3.1.3 Preheating function:

If power supply is on, the sensor is in preheating function till dew point bit is sent via CAN. If dew point bit is taken away from CAN, the sensor is again in preheating mode.

Heating up to preheating temperature uses strategy as described in chapter 3.1.4. Preheating time is about 60sec after power on.

Preheating temperature/

3.1.4 Heat up strategy

Schematic of heat up strategy

Department Sign Designed by hans-peter.goettler@siemens.com eSign 2007-04-04 SV P SN SM EG eSign Released by bertrand.lemire@siemens.com 2007-04-04 SV P SN SM EG Designation Smart NOx Sensor "Uninox 12V" 5WK96622 SIEMENS VDO Document key Pages 653212.40.74 SPE 000 AB 10 of 31 Siemens VDO Automotive AG, Regensburg (RBG) Copyright (C) Siemens VDO Automotive AG 2006 - 2007 A4: 2005-04

Transmittal, reproduction, dissemination and/or editing of this document as well as utilization of its contents and communication there of to others without express authorization are profibited. Offenders will be held liable for payment of damages. All rights created by patent grant or registration of a utility model or design patent are reserved.

4 Requirements

4.1 **Operating temperature ranges**

Range of temperatures:

-	Minimum ambient temperature electronics	T_{min}	=	- 40 °C
-	Maximum ambient temperature electronics	T_{max}	=	+105 °C
Op	erating temperature 105°C -115°C allowed for up to1	0 min		
-	Minimum storage temperature without powering	T_{min}	=	-40°C
-	Maximum storage temperature without powering	T_{max}	=	120°C
-	Maximum storage time in spare part packaging		2	years
-	Maximum exhaust gas temperature	T_{max}	=	800°C
Ex	haust gas temperature of 950°C allowed for up to 100) h		
-	Maximum sensor hexagon screw temperature	T_{max}	=	620°C
_				

Sensor hexagon screw temperature of 650°C allowed for up to 100 h = 200°C

Maximum sensor grommet temperature T_{max} Sensor grommet temperature of 230°C allowed for up to 100 h

Minimum preheating sensor temperature T_{min} $= 80^{\circ}C$ $\mathsf{T}_{\mathsf{max}}$ Maximum preheating sensor temperature = 120°C

Wire temperature of 230°C allowed for up to 100 h

Lifespan approved by life cycle pattern 2000h resp. 120 kmile

Within the operating temperature range, the functionality of the NOx Sensor is guaranteed within the specified tolerances.

4.2 Cable

Min. cable bending radius (each single wire) $= 3.5 \, \text{mm}$ r

4.3 Acceleration

maximum acceleration of NOx sensor γS $= 490 \text{ m/sec}^2$

maximum acceleration of electronic interface γs = 3.81 gRMS(38 m/sec²) at 10Hz to 1000Hz (random)

Designed by hans-peter.goettler Released by bertrand.lemire@s	_	Date 2007-04-04 2007-04-04		^{Sign} eSign eSign
SIEMENS VDO Designation Smart NOx Sensor "Uninox 12V"		!V"		5WK96622
Automotive	Document key 653212.40.74 SPE 000 AB			Pages 11 of 31
Siemens VDO Automotive AG, Regenst	C	copyright (C) Siemens VDO A	Automotive AG 2006 - 2007 A4 : 2005-04	

4.4 **Electrical characteristics**

4.4.1 Supply voltage

minimum supply voltage (ECU) $U_{\text{bat min}} = 9 \text{ V}$ $U_{\text{bat min}} = 12 \text{ V}$ minimum supply voltage (Sensor Heater) U_{bat} standard supply voltage = 13.5 Vmaximum supply voltage (Sensor Heater) $U_{\text{bat max}} = 16 \text{ V}$

The NOx sensor is protected against reverse battery voltage on the supply pins 1 and 4 (see 4.5.2)

4.4.2 Supply current

typical supply current Т < 1,5A = 16Apeak supply current at switch on I_{max}

4.4.3 Supply power

maximum supply power: = 20W P_{max}

4.4.4 **CAN Lines**

minimum line voltage $U_{min} = -3 V$ $U_{max} = 16 V$ maximum line voltage

No line termination for CAN

Designed by hans-peter.goettler	_	Date 2007-04-04		^{Sign} eSign eSign
Released by bertrand.lemire@s	iemens.com	2007-04-04	SV P SN SM EG	eSigii
SIEMENS VDO Designation Smart NOx Sensor "Uninox 12V		?V"		5WK96622
Automotive	Document key 653212.40.74 SPE 000 AB			Pages 12 of 31
Siemens VDO Automotive AG Regensburg (RBG)			onvright (C) Siemens VDO A	utomotive AG 2006 - 2007 A4 : 2005-04

4.4.5 Transfer Protocol

Aftertreatment Sensor Communication Protocol

Data format:

Transfer rate 250 kBaud

- Repetition 50 msec

- Data format Intel

- Identifier extended

Transmit signals:

Standard transmit address (Pin5 open):

18F00F52h (PGN = 61455, in HEX: F00F; After Treatment outlet - position, bank 1)

Alternative transmit address (Pin5 to GND):

18F00E51h (PGN = 61454, in HEX: F00E; After Treatment intake - position, bank 1)

* "Source address" not yet defined for sensors at exhaust bank 2 in "After treatment Sensors communications protocol"

Overview Transmit signals:

	7	6	5	4	3	2	1	0
0	NOx	NOx	NOx	NOx	NOx	NOx	NOx	NOx
(L-Byte)								←
1	NOx	NOx	NOx	NOx	NOx	NOx	NOx	NOx
(H-Byte)	←							
2	O_2	O_2	O ₂	O ₂	O ₂	O ₂	O_2	O_2
(L-Byte)								←
3	O_2	O_2	O_2	O_2	O_2	O_2	O_2	O_2
(H-Byte)	←							
4	Status	Status	Status	Status	Status	Status	Status	Status
	Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte
5	not	Status	Status	Error*	Error*	Error*	Error*	Error*
	used**	Heater	Heater	Heater	Heater	Heater	Heater	Heater
	uccu	Mode	Mode					
6	not	not	not	Error*	Error*	Error*	Error*	Error*
	used**	used**	used**	NOx	NOx	NOx	NOx	NOx
7	not	not	not	Error*	Error*	Error*	Error*	Error*
	used**	used**	used**	O_2	O_2	O_2	O_2	O_2

^{*} Error as FMI = **F**ailure **M**ode **I**ndicator

(see after treatment sensors communication protocol REV 0.1, Appendix A)

^{**} not used bits = 0

Designed by hans-peter.goettler Released by bertrand.lemire@s	Date 2007-04-04 2007-04-04	Department SV P SN SM EG SV P SN SM EG	^{sign} eSign eSign	
SIEMENS VDO Designation Smart NOx Sensor "Uninox 12V"		2V"		5WK96622
Automotive	Document key 653212.40.74 SPE 000 AB			Pages 13 of 31
Siemens VDO Automotive AG, Regensburg (RBG)			Copyright (C) Siemens VDO Au	tomotive AG 2006 - 2007 A4 : 2005-04

	Range Coding	Definition
NOx	-200 3012	Transmitted is the NOx-concentration which is detected
	[ppm]	by the NOx-Sensor. The transmission is in 0.05 ppm
		NOx/bit +200 ppm.
	signal: unsigned integer	(f.e.: 7500 corresponds to 175ppm NOx
		→ 7500 * 0,05 -200 = 175 ppm)
O ₂	-12 21 [%]	Signal of the actual oxidation factor (%O ₂):
		The transmission is in 0.000514%/bit +12%.
	signal: unsigned integer	(f.e.: 64202 corresponds to 21% O ₂)

Status-Byte:

D7	D6	D5	D4	D3	D2	D1	D0
S3	S3	S2	S2	S1	S1	S0	S0

S0: Status Supply in Range

	.9~	
D1	D0	
0	0	Supply not in range
0	1	Supply in range
1	0	Not used => Error
1	1	Not available (=Initial value)

S1: Status NOx-Sensor temperature heater element

D3	D2		
0	0	Sensor not at temperature	
0	1	Sensor at operating temperature	
1	0	Not used => Error	
1	1	Not available (=Initial value)	

S2: Status NOx-Signal

- 21	x 9.9				
D5	D4				
0	0	NOx-signal not valid			
0	1	NOx-signal valid			
1	0	Not used => Error			
1	1	Not available (=Initial value)			

S3: Status Oxygen-Signal

		
D7	D6	
0	0	O ₂ -signal not valid
0	1	O ₂ -signal valid
1	0	Not used => Error
1	1	Not available (=Initial value)

The status information will switch from "not available" to "signal not valid" after the dew point has been received.

Designed by hans-peter.goettle	Date 2007-04-04	SV P SN SM EG	^{sign} eSign eSign	
Released by bertrand.lemire@s		2007-04-04	SV P SN SM EG	
	Designation			
SIEMENS VDO	Smart NOx Sensor "Uninox 12	2V"		5WK96622
Automotive	Document key			Pages
	653212.40.74 SPE 000 AB			14 of 31
Siemens VDO Automotive AG, Regensburg (RBG)			opyright (C) Siemens VDO Au	utomotive AG 2006 - 2007

Status Heater Mode:

D6	D5	
0	0	Automatic mode
0	1	Heatup slope 3 or 4
1	0	Heatup slope 1 or 2
1	1	Heater off / Preheating mode

Error Heater: D4 D3 D2 D1 D0

Error as FMI = Failure Mode Indicator

D4 ... D0: SMI not available / no error exists

05 open wire

03 short circuit

Error NOx: D4 D3 D2 D1 D0

Error as FMI = Failure Mode Indicator

D4 ... D0: 31 (1Fh) FMI not available / no error exists

05 open wire03 short circuit

Error O₂: D4 D3 D2 D1 D0

Error as FMI = Failure Mode Indicator

D4 ... D0: 31 (1Fh) FMI not available / no error exists

05 open wire03 short circuit

The error information will change from not available to a diagnosis result after the first diagnosis cycle was completely finished with an error result

Transmittal, reproduction, dissemination and/or editing of this docur as well as utilization of its contents and communication there of to c without express authorization are prohibited. Offenders will be held for payment of damages. All rights created by patent grant or regists of a utility model or design patent are reserved.

Designed by hans-peter.goettler Released by bertrand.lemire@s	Date 2007-04-04 2007-04-04		^{sign} eSign eSign	
SIEMENS VDO	Smart NOx Sensor "Uninox 12	2V"		5WK96622
Automotive	Document key 653212.40.74 SPE 000 AB			Pages 15 of 31
Siemens VDO Automotive AG, Regenst		Copyright (C) Siemens VDO A	Automotive AG 2006 - 2007 A4 : 2005-04	

Receive signals:

Receive ID: 18FEDF00h (PGN = 65247, in HEX: FEDF, Dewpoint-SPN = 3238)

Overview receive signals:

	7	6	5	4	3	2	1	0
0	tbd.							
								←
1	tbd.							
								←
2	tbd.							
								←
3	tbd.							
								←
4	tbd.							
								←
5	tbd.							
								←
6	tbd.							
								←
7	Start-							
	Code							
								←

Start Code for sensor position "After Treatment Outlet Gas 1 (exh. Bank 1)"

	Range Coding		Definition
Start-	0000 0D00	D=0:	Dewpoint not reached Dewpoint reached, sensor heating up started
code	(04h)	D=1:	

The dew point byte (start code) must only be sent, if the exhaust gas contains no liquid water or other fluids.

Recommended repetition rate is >100msec

Transmittal, reproduction, dissemination and/or editing of this document as well as utilization of its contents and communication there of to others without express authorization are prohibited. Offenders will be held liable for payment of damages. All rights created by patent grant or registration of a utility model or design patent are reserved.

Designed by hans-peter goettle	2007-04-04		eSign eSign eSign	
Released by bertrand.lemire@s		2007-04-04	3 V P 3 N 3 N E G	
	Designation			
SIEMENS VDO	Smart NOx Sensor "Uninox 1	2V"		5WK96622
Automotive	Document key			Pages
	653212.40.74 SPE 000 AB			16 of 31
Siemens VDO Automotive AG, Regensburg (RBG)			Copyright (C) Siemens VDO Au	utomotive AG 2006 - 2007 A4 : 2005-04

4.5 Mechanical characteristics

4.5.1 Physical dimensions

- Physical dimensions of sensing element and electronic control unit: see drawing No. 653212.40.73
- Straight cable length between sensor and electronic control unit: see drawing No. 653212.40.73
- Weight of whole NOx sensor: ~ 215 g.
- Weight of electronic control unit: ~ 100 g. (without sensor)

4.5.2 Connector

See built in instruction (chapter 7)

4.5.3 Thread Torque

See built in instruction (chapter 7)

4.5.4 Pull strength at sensor and electronics

The contacts inside the sensor assembly and wires, resp. inside the connector of the interface to the sensor shall maintain electrical continuity, when a pull force of 50 N is applied to each sensor wire.

5 Testing

After each environmental test the Smart NOx-Sensor must meet its specification

5.1 Sensor

5.1.1 Drop test

The sensor is dropped to a concrete floor once in perpendicular and twice in horizontal direction as indicated in 6.3.1.

EN 60068-2-32 Ed

Drop surface: Concrete
Drop height: 1.0 m

Orientation in which the samples have to be dropped: see enclosure

5.1.2 Stone impact test

- NOx-sensor assembly:

The NOx-sensor assembly is fixed horizontally and a stainless steel ball (approx. 100 g) drops from 1,5 m high on the sensor to produce approx. 1,5 Nm per impact.

One impact at each point as in described at enclosure

5.1.3 Humidity

The sensor is placed in a humidity chamber at air and uncontrolled humidity. Then the sensor is exposed to 4 cycles of the following temperature/humidity profile:

Temperature: ambient air 71°C 28+/-10°C Humidity: ambient air 95% RH 85% RH Time: 2hrs 20hrs 2hrs

The protection cover of the sensor is sealed not to expose the sensing element to the test profile. The connector is plugged with the mating counter connector during this test.

5.1.4 Salt spray test

Test according to DIN 50021-SS. Test time 72hours

5.1.5 Gasoline soak

A sensor is fixed on a test chamber and gasoline injected in it. The distance between surface of fuel and the *top* of the sensor protection cover is about 10.

Designed by hans-peter.goettler	2007-04-04	Department SV P SN SM EG SV P SN SM EG	^{sign} eSign eSign	
Released by bertrand.lemire@s		2007-04-04	SV P SIN SIN EG	
	Designation			
SIEMENS VDO	Smart NOx Sensor "Uninox 12	2V"		5WK96622
Automotive	Document key			Pages
	653212.40.74 SPE 000 AB			18 of 31
Siemens VDO Automotive AG, Regensburg (RBG)			opyright (C) Siemens VDO Au	utomotive AG 2006 - 2007

Gasoline soak condition is as follows:

Pressure inside the test chamber: 1.3 bar

Duration of soaking: tbd. hours

After the gasoline soak, the gasoline is removed and the test chamber filled with air. The pressure inside the test chamber is retained at the same as during gasoline soak phase. The air soak time is 20 h.

After air soak, heater voltage is applied to the sensor in nitrogen gas at room temperature and the sensor outputs are monitored for a period of 2 h.

5.1.6 Temperature cycle

Expose the operating NOx-sensor to the temperature profile on propane burner stand with air injector for fast coolin down as follows:

Temperature 300°C < --- > 950°C

Gas λ condition: air 1.05 \pm 0.05 (Burner OFF & Air injection)

Time 5 min < --- > 5 min.

Test time 600 cycles

The sensor is in operation if the burner is on, and is shut off when burner is off.

5.1.7 Water submergence test

The sensor is installed on the test device consisting of a propane burner and a water shower. Sensor is heated up to a temperature of 570°C at hexagon.

Then the sensor is submerged for 10 min in water with a room temperature.

The aforementioned heat-up and submergence is repeated 10 times.

The sensor is in operation during this test.

5.1.8 Water ingress

Position the sensor on a fixture with its protection tube pointing upwards. Insert a hypodermic needle through the protection tube to apply 5 ccm³ of water towards the exhaust seal area of the sensor. Put a cap with a 3 mm diameter hole over the protection tube. Soak sensor for 1 h at room temperature (25°C+/-2°C). After soak, remove the cap and drain excess water. Apply heater voltage to the sensor in nitrogen gas and monitor sensor outputs for a period of 2 hours.

5.1.9 Chemical resistance

NOx-sensor:

The following liquids are put on the sensor grommet and lead wire, with grommet pointing upwards:

Gasoline, LLc, Engine oil, Brake oil

then exposure of the sensor at 100°C for 200 hours.

5.1.10 Continuous high temperature

NOx-Sensor assembly:

Expose the operating NOx-sensor to the temperature profile on propane burner stand as follows

Gas temperature: 850°C 950°C

Gas λ condition: 1.05 \pm 0.05 1.05 \pm 0.05

Test time: 400 h 100 h

5.1.11 Grommet high temperature

The grommet of the operating NOx-sensor is exposed to the temperature profile on propane burner stand as follows:

Temperature: 200°C 230°C Test time: 400 h 100 h

5.1.12 High temperature vibration

Place the sensor on a high temperature vibration device consisting of a vibrator connecting with a propane gas burner. Expose the sensor to the temperature and vibration profile as follows:

Frequency: 50..100...150...250Hz

Acceleration: 30...40...50G

Vibration sweep cycle: 30 min/sweep cycle

Gas temperature: 850° C, λ at 1.05

Test time: 150 h

Designed by hans-peter.goettler Released by bertrand.lemire@s		Date 2007-04-04 2007-04-04		^{Sign} eSign eSign
SIEMENS VDO	Designation Smart NOx Sensor "Uninox 12	2V"		5WK96622
Automotive	Document key 653212.40.74 SPE 000 AB			Pages 20 of 31
Siemens VDO Automotive AG, Regensburg (RBG)			Copyright (C) Siemens VDO A	utomotive AG 2006 - 2007 A4 : 2005-04

The sensor is in operation through the test.

5.1.13 Fuel additives / Poisoning test

The sensor is installed in the exhaust pipe of a gasoline engine and in operation through the following tests. The engine system operates during the test with the following conditions:

1) P poisoning:

ZnDTP content: 0.25cm³/Liter

Gas temperature: 400°C < -- > 700°C Lambda: 1.0(2hrs) < -- > 1.0(0.5hr)

Test time:: 70 hours

2) S poisoning:

S content: 0.1 wt%/Liter

Gas temperature: 400°C < -- > 850°C Lambda: 1.0(2hrs) < -- > 1.0(1hr)

Test time: 102 hours

3) Si poisoning:

Si content: Siloxane compounds 0.12cm³/Liter

Gas temperature: 400°C Lambda: 1.0 Test time: 6 hours

Siloxane compounds consist of an equivalent volume amount of: Hexamethyldisiloxane, tetramethyldisiloxane and tetramethyldivinyldisiloxane.

5.2 Electronic interface

The sensor ECU is validated according to the SV standard qualification program for the Smart NOx sensor.

Additional customer requirements regarding environmental or mechanical testing have to be tested application dependent.

Transmittal, reproduction, dissemination and/or editing of this docurr as well as utilization of its contents and communication there of to of without express authorization are prohibited. Offenders will be held I for payment of damages. All rights created by patent grant or registri of a utility model or design patent are reserved.

Designed by hans-peter.goettler	Date 2007-04-04	Department SV P SN SM EG	sign eSign	
Released by bertrand.lemire@siemens.com		2007-04-04	SV P SN SM EG	eSign
SIEMENS VDO	Designation Smart NOx Sensor "Uninox 12	2V"		5WK96622
Automotive	Document key 653212.40.74 SPE 000 AB			Pages 21 of 31
Siemens VDO Automotive AG, Regenst	ourg (RBG)	С	opyright (C) Siemens VDO Au	tomotive AG 2006 - 2007 A4 : 2005-04

5.3 Electromagnetic compatibility (EMC)

5.3.1 Definition of operation and functional states

U_{bat}: 13.5 V, dew point message 80h cyclic sent all 20 ms Functional states:

Α	in specification, NOx signal tolerance <= +/- 20 ppm resp. %
В	not in specification, NOx signal tolerance > +/- 20 ppm resp. %
С	Dew point necessary (reset of device)

5.3.2 Disturbance by transient conduction along supply lines According to DIN ISO 40839 part 1: |Vs| < 75 V

5.3.3 Immunity against transient voltage on power and control lines According to DIN 40839 part 1 / ISO 7637-1

Test pulse	Level		Requirement	Duration
1	IV	-100 V	С	5000 Pulses
2	IV	+100 V	С	5000 Pulses
3a	IV	-150 V	Α	1 hour
3b	IV	+100 V	Α	1 hour
4	IV	-6,5 V	С	5 Pulses
Jump start	IV	27 V	В	60 sec

5.3.4 Immunity against electromagnetic fields: Stripline Testing U_{bat} =13,5V±0,5V, GND = 0V, 20°C<Ta<30°C, unless otherwise specified

According to DIN 40839 part 4 / ISO 11452-5 (Stripline)

Frequency range: 1 MHz ... 1000 MHz

Amplitude modulation: 80 % (1 kHz sine wave)

Designed by hans-peter.goet		Department SV P SN SM EG SV P SN SM EG	^{Sign} eSign eSign
	Designation		

SIEMENS V DO

Pages

Duration:

≥ 2sec.

Frequency steps:

10 - 200 MHz

2 MHz

200 - 1000 MHz

10 MHz

Test condition

100 V/m

Remark:

As deviation from ISO test conditions the device under test, which consists of sensor and interface, is according to the real environmental conditions exposed to the electrical field.

In all cases the interface must retain its functionality. The average deviation of outputs of the interface should not exceed $\pm 10\%$. No distortions (error frames) on CAN-Bus may occur! Measurements are done in air condition.

5.4 Immunity against Electrostatic Discharge (ESD)

According to ISO 10605, EN 61000-4-2 (Human Body Model)

 U_{ESD} < 6kV to all Pins U_{batt} , GND, CAN-high and Can-low (without external components). After the test no damage is allowed.

Transmittal, reproduction, dissemination and/or editing of this document as well as utilization of its contents and communication there of to others without express authorization are prohibited. Offenders will be held liable for payment of damages. All rights created by patent grant or registration of a utility model or design patent are reserved.

Designed by hans-peter.goettle	=	2007-04-04		eSign eSign
Released by bertrand.lemire@s	iemens.com	2007-04-04	SV P SN SM EG	esign
SIEMENS VDO	Designation Smart NOx Sensor "Uninox 12	2V"		5WK96622
Automotive	Document key 653212.40.74 SPE 000 AB			Pages 23 of 31
Siemens VDO Automotive AG, Regens	ourg (RBG)	C	Copyright (C) Siemens VDO A	utomotive AG 2006 - 2007 A4 : 2005-04

6 Enclosure

6.1 Schematic diagram of NOx-Sensor

Siemens VDO Automotive AG, Regensburg (RBG)

Definition of control signals

3. Measure the generated oxygen, which represents the NOx concentration.

Sign

5WK96622

Copyright (C) Siemens VDO Automotive AG 2006 - 2007 A4: 2005-04

eSign

eSign

Pages

24 of 31

Designed by hans-peter.goettler@siemens.com

Released by bertrand.lemire@siemens.com

SIEMENS VDO

A w t o m o t J v e

Department
2007-04-04 SV P SN SM EG
2007-04-04 SV P SN SM EG

Designation
Smart NOx Sensor "Uninox 12V"

Document key
653212.40.74 SPE 000 AB

6.2

6.3 Test Procedures

6.3.1 Drop Test

6.3.2 Stone Impact Test

Stainless steel ball 100g

		Date	Department	Sign
Designed by hans-peter.goettle	r@siemens.com	2007-04-04	SV P SN SM EG	eSign
Released by bertrand.lemire@s	iemens.com	2007-04-04	SV P SN SM EG	eSign
	Designation			
	Smart NOx Sensor "Uninox 1.	2V"		5WK96622
SIEMENS VDO				
Automotive	Document key			Pages
	653212.40.74 SPE 000 AB			25 of 31
Siemens VDO Automotive AG, Regensburg (RBG)		C	copyright (C) Siemens VDO Aut	omotive AG 2006 - 2007 A4 : 2005-04

Transmittal, reproduction, dissemination androir editing of this document as well as utilization of its contents and communication there of to others without express authorization are prohibited. Offenders will be held liable for payment of damages. All rights created by patent grant or registration for payment of damages. All rights created by patent grant or registration.

6.3.3 NOx synthetic gas equipment

6.3.4 Propane burner Stand Apparatus

7 Built in instruction

7.1 Validity

This instruction is valid for the Smart NOx sensor (Uninox 12V)

7.2 Technical data

7.2.1 Boss

(*) After welding, the dimensions before welding have to be defined by the supplier of the boss.

The above shown boss drawing is a recommendation; other designs have to be released by SiemensVDO.

Recommended boss-material: SUS304 or austenitic-ferritic stainless

steel 1.4301

Boss characteristics: HEX 22; M20x1,5-6e

Lubrication: Anti Seize AS Thread torque: $50 \pm 10 \text{ Nm}$

Counter force: tbd
Allowed twisting angle of the cable 180°
Allowed number of sensor montings 2

Designed by hans-peter.goettler Released by bertrand.lemire@s		Date 2007-04-04 2007-04-04		^{Sign} eSign eSign
SIEMENS VDO	Designation Smart NOx Sensor "Uninox 12	2V"		5WK96622
Automotive	Document key 653212.40.74 SPE 000 AB			Pages 27 of 31
Siemens VDO Automotive AG, Regensl	burg (RBG)	(Copyright (C) Siemens VDO Au	tomotive AG 2006 - 2007 A4 : 2005-04

Angle between outgoing cable and longitudinal axes of the sensor: 0 +/-15° Cable bent radius at grommet: > 20mm

7.2.3 Built in position

The NOx sensor has to be mounted in a way, that no condensed water is collected inside the protection tube of the sensing element.

7.2.4 Tilt angle in gas flow direction:

The recommended tilt angle is $90^{\circ}\pm10^{\circ}$. Other angles are possible (as long as other specifications are fulfilled; e.g. maximum temperature hexagon, grommet) but may be linked with

a decrease in response time.

Designed by hans-peter.goettler Released by bertrand.lemire@s	_	Date 2007-04-04 2007-04-04		^{Sign} eSign eSign
SIEMENS VDO	Designation Smart NOx Sensor "Uninox 12	2V"		5WK96622
Automotive	Document key			Pages 28 of 31
Siemens VDO Automotive AG, Regenst	653212.40.74 SPE 000 AB ourg (RBG)	(Copyright (C) Siemens VDO Auto	omotive AG 2006 - 2007 A4 : 2005-04

- a need of delayed dew point sending due to an increased amount of condensed humidity and less heating up of the sensor assembly by the exhaust gas in sloped bosses.
- a different gas sensitivity due to the changing gas concentration profiles versus the exhaust pipe diameter.

The evaluation of these items especially in terms of system needs has to be done by the customer.

7.2.5 Electronic control unit

The mounting positions of the sensor interface are restricted according to the air permeable membrane in the '8-wire' sensor connector. Allowed orientations of the ECU see drawing (view w/o 8pin ADR-protection):

7.2.6 Connector "MLK"

5 Amount of pins

Type of counter connector Hirschmann

MLK 872-860-501

Connector assignment: Pin1: Ubatt

> Pin2: Gnd **CAN low** Pin3: CAN high Pin4:

Pin5: Address switch

Designed by hans-peter.goettler Released by bertrand.lemire@s			Department SV P SN SM EG SV P SN SM EG	^{Sign} eSign eSign
SIEMENS VDO	Designation Smart NOx Sensor "Uninox	12V"		5WK96622

Siemens VDO Automotive AG, Regensburg (RBG)

Pages

7.2.7 Cables/Varnish tube

Fixing positions: at least 2

10 cm from the ECU (other tbd. by customer)

Kind of fixing: tbd. by customer

Isolation material cable: PTFE

Wires: Cu with Ni surface

Cross section: 0,6 mm²

Outer diameter: 1,68 \pm 0,05 mm Temperature range: -40 $^{\circ}$ to 200 $^{\circ}$ C Resistance: 0,9 Ohm/km

Colours: white, black, orange, blue, yellow, grey, red, green

Varnish tube: flexible glasfiber silicon tube

7.2.8 CE-marking

The Smart NOx sensor is marked with "CE". This "CE" marking is related to the declaration of conformity with 94/9EG.

The Smart NOx sensor complies with the requirements of directive 94/9EG. It is classified according Annex1 as 'equipment group2, category 3' and fulfills the requirements according Annex2, 2.3

7.3 Comments for installation

The ECU of the smart NOx sensor should be mounted near the exhaust pipe so that the cable length of 608+/-8 mm can be installed with a security loop. The cable has to be fixed in a distance of 100 mm from the ECU or needs some other channeling. The security loop between the last fixing point and the sensor has to be kept. This guarantees that movement of the exhaust pipe during vehicle operation could not tighten and damage the cable.

Hint:

The length of the security loop has to be adapted by the customer to the amplitude of exhaust pipe movements.

Designed by hans-peter.goettle	@siemens.com	2007-04-04	SV P SN SM EG	eSign
Released by bertrand.lemire@s	iemens.com	2007-04-04	SV P SN SM EG	eSign
SIEMENS VDO	Designation Smart NOx Sensor "Uninox 1	2V"		5WK96622
Automotive	Document key 653212.40.74 SPE 000 AB			Pages 30 of 31
Siemens VDO Automotive AG, Regensl	burg (RBG)	С	copyright (C) Siemens VDO Au	utomotive AG 2006 - 2007 A4 : 2005-04

Two lashes at the NOx sensor ECU are used for ECU fixing at the vehicle. The kind of mounting has to be defined by the customer. The used thread torque has to be agreed by the supplier.

If a complete mounting of sensor and ECU is not possible, the not mounted part of the smart NOx sensor has to be protected against mechanical damage. The installation positions of sensor and ECU have to be respected.

For mounting the sensor in the exhaust pipe turn the hex nut by hand. Last fixing has to be done with a thread torque tool. Respect the specified thread torque of 50 Nm. A slight counter torque by hand at the sensor is sufficient to avoid turning of the cables.

Any kind of painting of the Sensor or the sensor ECU has to be avoided.

The electrical connection of the smart NOx sensor with the vehicle ECU is done with the named connector system.

Designed by hans-peter.goettler Released by bertrand.lemire@s	_	Date 2007-04-04 2007-04-04	Department SV P SN SM EG SV P SN SM EG	^{sign} eSign eSign
SIEMENS VDO	Smart NOx Sensor "Uninox 12	V"		5WK96622
Automotive	Document key 653212.40.74 SPE 000 AB			Pages 31 of 31
Siemens VDO Automotive AG, Regensburg (RBG)		С	opyright (C) Siemens VDO A	automotive AG 2006 - 2007 A4 : 2005-04