

WPISUJE ZDAJĄCY

——— KOD ZDAJĄCEGO ———			
symbol klasy	symbol zdającego		

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

MATEMATYKA – POZIOM ROZSZERZONY

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera **20** stron (zadania **1–16**). Ewentualny brak stron zgłoś nauczycielowi nadzorującemu egzamin.
- 2. Rozwiązania zadań i odpowiedzi zapisz w miejscu na to przeznaczonym.
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadań otwartych może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Podczas egzaminu możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 8. Na tej stronie wpisz swój kod.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla osoby sprawdzającej.

Powodzenia!

dysleksja

STYCZEŃ 2019

Czas pracy: 180 minut

Liczba punktów do uzyskania: 50 W zadaniach 1.–4. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba $4^{\log_2\left(\frac{1}{\sqrt{2}-1}\right)}$ jest równa

A.
$$\sqrt{2} + 1$$
.

B.
$$2 + 2\sqrt{2}$$
.

C.
$$3-2\sqrt{2}$$
. D. $3+2\sqrt{2}$.

D.
$$3 + 2\sqrt{2}$$
.

Zadanie 2. (0-1)

Liczba $\frac{|x-|x||}{x}$ jest dla każdego $x \neq 0$

A. dodatnia.

B. nieujemna.

C. ujemna.

D. niedodatnia.

Zadanie 3. (0-1)

Ciąg liczb rzeczywistych $a_1, a_2, ...$ jest zdefiniowany warunkami $a_1 = 1$ oraz $(a_{n+1})^3 = 99(a_n)^3$ dla $n \ge 1$. Wówczas wyraz a_{100} jest równy

C.
$$99^{33}$$
.

Zadanie 4. (0-1)

Wskaż zbiór wszystkich rozwiązań równania $|\cos(\alpha) + \cos(3\alpha) + \cos(5\alpha)| = 3$.

A. $\{\alpha : \alpha = n \cdot 60^\circ, n \text{ jest dowolną liczbą całkowitą}\}$

B. $\{\alpha : \alpha = n \cdot 90^{\circ}, n \text{ jest dowolną liczbą całkowitą}\}$

C. $\{\alpha : \alpha = n \cdot 180^{\circ}, n \text{ jest dowolną liczbą całkowitą}\}$

D. $\{\alpha : \alpha = n \cdot 360^{\circ}, n \text{ jest dowolna liczba całkowita}\}$

Zadanie 5. (0-2)

Oblicz granicę ciągu o wyrazie $a_n = 2(\sqrt{n+100\sqrt{n}+5} - \sqrt{n-\sqrt{n}+200})$.

W poniższe kratki wpisz kolejno cyfry wyniku.

BRUDNOPIS (nie podlega ocenie)

	Nr zadania	1	2	3	4	5
Wypełnia sprawdzający	Maks. liczba pkt	1	1	1	1	2
1 / 1	Uzyskana liczba pkt					

Więcej arkuszy znajdziesz na stronie: arkusze.pl

Zadanie 6. (0-2)

Wyznacz parę liczb $p, q \in R$ tak, by wielomian $x^4 + px^2 + q$ był podzielny przez trójmian $x^2 + 6x + 5$.

Zadanie 7. (0-2)

Wyznacz liczbę takich permutacji zbioru $\{1, 2, 3, ..., 31\}$ kolejnych liczb całkowitych z przedziału $\langle 1, 31 \rangle$, w których iloczyn każdych dwóch sąsiednich liczb jest liczbą parzystą. Wynik przedstaw w postaci iloczynu $m! \cdot n!$, gdzie m, n są pewnymi liczbami całkowitymi.

	Nr zadania	6	7
Wypełnia sprawdzający	Maks. liczba pkt	2	2
1	Uzyskana liczba pkt		

Zadanie 8. (0-3)

Długości boków czworokąta wypukłego ABCD wynoszą: |AB| = a, |BC| = 2a, |CD| = b, |AD| = 2b. Wykaż, że jeśli pole czworokąta ABCD jest równe $a^2 + b^2$, to jest on prostokątem.

Zadanie 9. (0-3)

Dany jest trapez ABCD, w którym kąty ABC i BCD są proste, $| \triangleleft DAB | = 60^{\circ}$, | AB | = 2 oraz $| BD | = \sqrt{3}$. Wyznacz długość odcinka AC.

	Nr zadania	8	9
Wypełnia sprawdzający	Maks. liczba pkt	3	3
1	Uzyskana liczba pkt		

Zadanie 10. (0-3)

W pudełku znajduje się sto kul ponumerowanych liczbami od 1 do 100. Wylosowanie każdej z kul jest tak samo prawdopodobne. Wylosowano jednocześnie pięć kul. Wyznacz prawdopodobieństwo, że numery wylosowanych kul ustawione w odpowiedniej kolejności tworzą ściśle rosnący ciąg geometryczny o całkowitym ilorazie.

Zadanie 11. (0-4)

Wykaż, że jeśli α , β , γ są kątami trójkąta i zachodzi równość $\frac{\sin^2 \alpha}{\sin^2 \beta} = \frac{\operatorname{tg} \alpha}{\operatorname{tg} \beta}$, to $\alpha = \beta$ lub $\gamma = 90^\circ$.

	Nr zadania	10	11
Wypełnia sprawdzający	Maks. liczba pkt	3	4
1 ,,,,	Uzyskana liczba pkt		

Zadanie 12. (0-4)

Jednokładność f o środku w punkcie X przekształca punkt A=(3,2) na punkt A'=(4,6) oraz przeprowadza punkt B=(-3,3) na punkt B'=(-8,8). Znajdź równanie okręgu, którego obrazem przy jednokładności f jest okrąg o równaniu $(x-8)^2+(y-2)^2=4$.

	Nr zadania	12
Wypełnia sprawdzający	Maks. liczba pkt	4
1 ,.,	Uzyskana liczba pkt	

Zadanie 13. (0-5)

Wyznacz wszystkie wartości parametru $m \in R$, dla których równanie $(1-m)9^x + 4 \cdot 3^x = m+2$ ma dwa różne rozwiązania rzeczywiste.

	Nr zadania	13
Wypełnia sprawdzający	Maks. liczba pkt	5
. ,,,,	Uzyskana liczba pkt	

Zadanie 14. (0-5)

Dany jest trójkąt ABC o polu równym 5, gdzie A=(5,3) oraz B=(1,0). Prosta zawierająca wysokość trójkąta ABC ma równanie y=2x-7. Wyznacz współrzędne punktu C.

	Nr zadania	14	
Wypełnia sprawdzający	Maks. liczba pkt	5	
1 ,,,,	Uzyskana liczba pkt		

Zadanie 15. (0-6)

Para liczb (m_0,n_0) jest rozwiązaniem układu równań $\begin{cases} m+n=2\\ m-n=\frac{-2}{p+1}, \text{ gdzie } p\neq -1. \end{cases}$ a) Wyznacz wzór funkcji $f(p)=\frac{m_0}{n_0}$, podaj jej dziedzinę i zbiór wartości.

- b) Napisz równanie stycznej do wykresu funkcji f w punkcie P(-3, f(-3)).

	Nr zadania	15	
Wypełnia sprawdzający	Maks. liczba pkt	6	
_ ,	Uzyskana liczba pkt		l

Zadanie 16. (0-7)

Niech *x* będzie liczbą dodatnią. Rozpatrujemy wszystkie prostopadłościany spełniające następujące warunki:

- (1) podstawą prostopadłościanu jest kwadrat o boku długości x,
- (2) pole (prostokątnego) przekroju prostopadłościanu płaszczyzną zawierającą krawędź podstawy i przekątne dwu ścian bocznych jest równe $\sqrt{3}$ (patrz rysunek).

Zapisz kwadrat objętości tego prostopadłościanu jako funkcję zmiennej x.

Wyznacz wszystkie wartości x>0, dla których istnieje prostopadłościan spełniający drugi warunek. Znajdź długości krawędzi tego spośród rozpatrywanych prostopadłościanów, którego objętość jest największa.

	Nr zadania	16
Wypełnia sprawdzający	Maks. liczba pkt	7
1	Uzyskana liczba pkt	

BRUDNOPIS (nie podlega ocenie)

