正态性检验方法

1、通过 SPSS 数据统计分析工具

在 SPSS 中,可以通过使用 Kolmogorov-Smirnov 检验来验证数据是否符合正态分布。

单样本 Kolmogorov-Smirnov 检验

N		2040
正态参数a,b	均值	27.22201254
	标准差	4.986570293
最极端差别	绝对值	.055
	正	.026
	负	055
Kolmogorov-	2.488	
渐近显著性(双	(例)	.000

比如以上结果显示,在 0.001 的显著性水平下, p 值为 0.000,原假设(H0:假设数据符合正 态分布)被拒绝,说明不能接收数据服从正态分布的假设。

单样本 Kolmogorov-Smirnov 检验

		-
N		484
正态参数 a,b	均值	23.40427795
	标准差	4.923757137
最极端差别	绝对值	.045
	正	.045
	负	023
Kolmogorov-	.992	
渐近显著性(双	(则)	.279

- a. 检验分布为正态分布。 b. 根据数据计算得到。

以上结果显示,在 0.001 的显著性水平下, p 值为 0.279,原假设(H0:假设数据符合正态分 布)不能被拒绝,说明可以接收数据服从正态分布的假设。

2、通过 Python 进行 KS 检验

Python 的 scipy.stats 模块提供了一系列的检验函数,包括:

- (1) kstest: 可用于检验样本是否服从正态分布、指数分布、伽马分布等;
- (2) normaltest: 专门用于检验样本是否服从正态分布;
- (3) shapiro: 也是专门用于做正态检验。

具体方法可以参考:

https://blog.csdn.net/tszupup/article/details/108432814

(一) 先通过统计直方图和密度图, 查看数据是否近似服从正态分布, 如下:

(二) 然后,可以通过上述 kstest 等函数,来进行数据是否符合正态分布的统计检验。

如果 p-value 大于特定的显著性水平 α ,则说明需要接收原假设,即数据服从正态分布; 否则,需要拒绝原假设,即数据不服从正态分布。

3、通过 Excel 进行正态性检验

(一)通过 Excel, 画出统计直方图,根据统计直方图来初步判断是否是正态的

(0) 数据准备

a、假设数据为: (请将下面的数据放到 Excel 表格的第 A 列,并在 A1 中输入"数据")

19.20	37.60	47.30	51.40	56.10
20.80	40.00	47.40	51.80	57.50
26.30	38.20	47.50	51.90	58.00
28.90	40.70	48.10	52.50	58.90
30.70	41.80	48.80	52.70	60.10
31.00	42.40	49.00	53.10	60.40
33.40	43.90	49.20	53.20	61.80
33.80	44.80	49.30	53.20	61.90
34.10	45.80	50.00	54.60	69.00
34.20	47.10	50.40	55.20	71.30

- b、假设数据"分组"为: 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 并将该分组放到 Excel 表格的第 B 列,并在 B1 中输入"分组"。
- (1) 在 Excel 中,选择"数据"→"数据分析"→"直方图"
- a、在弹出的对话框中,"输入区域"选择"\$A\$1:\$A\$51";"接收区域"选择"\$B\$1:\$B\$15"; 选中"标志";"输出区域"选择"\$D\$1";确定。
- b、以生成出来的直方图表格,绘制"柱形图"得到直方图。

- (2)在 Excel 中,通过正态分布的概率密度正态分布函数 NORMDIST 来计算,并绘制出同样分组的正态分布,并绘制到同一个直方图中,比较两者的分布是否一致
 - =NORM.DIST(X, Mean, StdDev, Cummulative),即:
 - =NORM.DIST(D2, AVERAGE(A:A), STDEV(A:A), FALSE)

(3) 向下填充

=NORM. DIST (D2, AVERAGE (A:A), STDEV (A:A), FALSE)

1	D	Е	F	G
	分组	频率	正态分布曲线	
	10	0	0.000199417	
	15	0	0.000733615	
	20	1	0.002233632	
	25	1	0.005628497	
	30	2	0.011738445	
	35	6	0.020261245	
	40	3	0.028944034	
	45	5	0.034220739	
	50	11	0.033485526	
	55	10	0.027118287	
	60	5	0.018176271	
	65	4	0.010082883	
	70	1	0.004629159	
	75	1	0.001758963	
	其他	0		

- (4) 在直方图中增加正态分布曲线图
- a、在直方图内右键→选择数据→添加→
- b、系列名称: 选中 F1 单元格
- c、系列值: 选中 F2:F15
- d、确定、确定
- (5) 修整图形

- a、在直方图内右键→选择"更改图表类型"
- b、在"组合"中,在"正态分布曲线"部分,选择图表类型为"折线图",选中"次坐标轴"

d、确定

(6) 平滑正态分布图

选中正态分布曲线→右键→设置数据列格式→线型→勾选"平滑线"→关闭

(7) 可从上述直方图和平滑正态分布图大致判断原数据(蓝色)基本符合正态分布特点。

(二)通过 Excel 进行卡方检验(Chi Squared Goodness Fit),并根据卡方检验的 p-value 来进行正态性检验

参考连接: https://www.inprolink.com/2019/02/20/normality-test-using-microsoft-excel/

卡方检验 (chi-square test), 主要用于检验统计样本的实际观测值与理论推断值之间的偏离程度,或者是检验一批数据是否与某种理论分布相符合。

- (A)卡方值是卡方检验时用到的检验统计量,卡方值越大,说明观测值与理论值之间的偏离就越大;反之,二者偏差越小。实际应用时,可以根据卡方值计算 P-value,从而选择拒绝或者接受原假设。
- (B) 卡方值χ²的计算方法:

$$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e},$$

其中 o 代表 observation,即实际频数; e 代表 expectation,即期望频数。

- (1) 假设上述(一)中的操作中 D 列为"分组"列(上述参考连接中为"Bin")
- (2) 计算正态分布从最左到当前分组边界值(由 D 列决定)的累计分布 将第 H 列命名为 "CD to Left",使用如下公式计算 H 列的每个值: H2=NORM.DIST(D2, AVERAGE(A:A), STDEV(A:A), TRUE)(注意为 TRUE,表示计算累计分布) H3=NORM.DIST(D3, AVERAGE(A:A), STDEV(A:A), TRUE)

.....

(向下填充)

H2	· :	$\times \checkmark f_x$	=NORM	.DIST(D2, A	AVERAGE (A	:A), STDEV (A:A)	, TRUE)		
1	A	В	С	D	Е	F	G	Н	I
1	数据	分组		分组	频率	正态分布曲线		CD to Left	
2	19.2	10		10	0	0.000199417		0.000658535	
3	20.8	15		15	0	0.000733615		0.002740809	
4	26.3	20		20	1	0.002233632		0.009582063	
5	28.9	25		25	1	0.005628497		0.028236519	
6	30.7	30		30	2	0.011738445		0.070454866	
7	31	35		35	6	0.020261245		0. 14976167	
8	33.4	40		40	3	0.028944034		0. 273420514	
9	33.8	45		45	5	0.034220739		0. 433470661	
10	34. 1	50		50	11	0. 033485526		0.605423521	
11	34. 2	55		55	10	0.027118287		0.758774625	
12	37.6	60		60	5	0.018176271		0.872298132	
13	40	65		65	4	0.010082883		0. 942056898	
14	38. 2	70		70	1	0.004629159		0. 977637577	
15	40.7	75		75	1	0.001758963		0.992700744	
16	41.8			其他	0				\$
17	42.4								
10	42 O								

(3) 计算每个组(Bin)的概率值

将第 I 列命名为 "Bin Only", 使用如下公式计算 I 列的每个值:

I2=H2(注意第一个为 H2)

I3=H3-H2(注意其他为两两相减,如 H3-H2、H4-H3.....)

14=H4-H3

.....

I15=H15-H14

	A	В	C	D	Е	F	G	Н	I	J
1	数据	分组		分组	频率	正态分布曲线		CD to Left	Bin Only	
2	19. 2	10		10	0	0.000199417		0.000658535	0.000659	
3	20.8	15		15	0	0.000733615		0.002740809	0.002082	
4	26.3	20		20	1	0.002233632		0.009582063	0.006841	
5	28.9	25		25	1	0.005628497		0.028236519	0.018654	
6	30.7	30		30	2	0.011738445		0.070454866	0.042218	
7	31	35		35	6	0.020261245		0.14976167	0.079307	
8	33.4	40		40	3	0.028944034		0. 273420514	0. 123659	
9	33.8	45		45	5	0.034220739		0. 433470661	0. 16005	
10	34. 1	50		50	11	0.033485526		0.605423521	0. 171953	
11	34.2	55		55	10	0.027118287		0.758774625	0. 153351	
12	37.6	60		60	5	0.018176271		0.872298132	0.113524	
13	40	65		65	4	0.010082883		0. 942056898	0.069759	
14	38.2	70		70	1	0.004629159		0. 977637577	0. 035581	
15	40.7	75		75	1	0.001758963		0.992700744	0. 015063	
16	41.8			其他	0					
17	42.4									

(4) 计算每个组的期望值(Expected Number)

将第 J 列命名为 "Expected Number",使用如下公式计算 J 列的每个值:

J2=I2*COUNT(A:A)

.....

J15=I15*COUNT(A:A)

(5) 有了上述期望值,即可与实际数据每组频率值(E 列)来进行比较,进行卡方检验 (expected-observed)²/expected

将第 K 列命名为 "Diff",使用如下公式计算 K 列的每个值: $K2=(J2-E2)^2/J2$

.....

K15=(J15-E15)^2/J15

K2	· :	× ✓ fx	=(J2-l	E2)^2/J2							
4	A	В	С	D	Е	F	G	Н	I	J	K
1	数据	分组		分组	频率	正态分布曲线		CD to Left	Bin Only	Expected Number	Diff
2	19. 2	10		10	0	0.000199417		0.000658535	0.000659	0.032926747	0.032926747
3	20.8	15		15	0	0.000733615		0.002740809	0.002082	0. 104113709	0. 104113709
4	26. 3	20		20	1	0.002233632		0.009582063	0.006841	0. 34206268	1. 265503497
5	28.9	25		25	1	0.005628497		0. 028236519	0.018654	0. 932722819	0.004852695
6	30.7	30		30	2	0. 011738445		0.070454866	0.042218	2. 110917336	0.005828109
7	31	35		35	6	0.020261245		0. 14976167	0.079307	3. 965340221	1.044006361
8	33.4	40		40	3	0.028944034		0. 273420514	0. 123659	6. 182942178	1.638559866
9	33.8	45		45	5	0. 034220739		0. 433470661	0. 16005	8. 002507369	1. 126528235
10	34. 1	50		50	11	0.033485526		0.605423521	0. 171953	8. 597643008	0.671267592
11	34. 2	55		55	10	0.027118287		0. 758774625	0. 153351	7. 667555204	0.709521951
12	37.6	60		60	5	0.018176271		0.872298132	0.113524	5. 676175326	0.080549498
13	40	65		65	4	0.010082883		0. 942056898	0.069759	3. 487938307	0.075175406
14	38. 2	70		70	1	0.004629159		0. 977637577	0.035581	1. 779033948	0.341136768
15	40.7	75		75	1	0.001758963		0. 992700744	0.015063	0. 753158334	0.080900397
16	41.8			其他	0						

(6) 通过以下公式计算卡方分布的 P 值

=chidist(x,df)

Chi-Squared Statistic

Degrees of freedom

其中: Chi-Squared Statistic,卡方统计量,卡方值 χ^2 ,就是第 K 列的 Diff 的求和; Degrees of freedom = #bins -1 - #calculated_parameters,自由度。

在本任务中,我们有 14 个分组,因此#bins=14;为了进行卡方统计检验需要计算样本的均值和标准差,所以#calculated_parameters=2,因此最终的自由度为: 14-1-2=11

K17=SUM(K2:K15) K18=COUNT(D2:D15)-1-2 K19=CHISQ.DIST.RT(K17,K18)

K19	· :	\times \checkmark f_x	=CHIS	Q. DIST. RT ((K17, K18)						
4	A	В	С	D	Е	F	G	Н	I	J	K
1	数据	分组		分组	频率	正态分布曲线		CD to Left	Bin Only	Expected Number	Diff
2	19. 2	10		10	0	0.000199417		0.000658535	0.000659	0. 032926747	0.032926747
3	20.8	15		15	0	0.000733615		0.002740809	0.002082	0. 104113709	0.104113709
4	26. 3	20		20	1	0.002233632		0.009582063	0.006841	0. 34206268	1. 265503497
5	28.9	25		25	1	0.005628497		0.028236519	0.018654	0. 932722819	0.004852695
6	30. 7	30		30	2	0.011738445		0.070454866	0.042218	2. 110917336	0.005828109
7	31	35		35	6	0.020261245		0. 14976167	0.079307	3. 965340221	1.044006361
8	33. 4	40		40	3	0.028944034		0. 273420514	0.123659	6. 182942178	1.638559866
9	33.8	45		45	5	0.034220739		0. 433470661	0.16005	8. 002507369	1. 126528235
10	34. 1	50		50	11	0.033485526		0.605423521	0. 171953	8. 597643008	0.671267592
11	34. 2	55		55	10	0.027118287		0.758774625	0. 153351	7. 667555204	0.709521951
12	37.6	60		60	5	0.018176271		0.872298132	0.113524	5. 676175326	0.080549498
13	40	65		65	4	0.010082883		0. 942056898	0.069759	3. 487938307	0.075175406
14	38. 2	70		70	1	0.004629159		0. 977637577	0.035581	1. 779033948	0. 341136768
15	40.7	75		75	1	0.001758963		0.992700744	0.015063	0.753158334	0.080900397
16	41.8			其他	0						
17	42.4									Chi Sq Statistics	7. 18087083
18	43.9									Degree of Freedom	11
19	44.8									Chi Sq Distribution	0.784252717

(7) 根据卡方检验的 p-value 来进行正态性检验

在本任务中,卡方检验的 p-value 是 0.784252717。因为 p-value 大于 0.05 的显著性水平,原假设 (H0: 假设数据符合正态分布) 不能被拒绝,说明可以接收数据服从正态分布的假设。

(完)