Julia Sets Theory and Algorithms

Josh Lipschultz & Ricky LeVan MATH/CAAM 435

April 15, 2014

A quick recap of last week:

A quick recap of last week:

Definition

Preliminaries

The stable set of a a complex polynomial $P: \mathbb{C} \to \mathbb{C}$, denoted S(P), is the complement of J(C).

Preliminaries

The stable set of a a complex polynomial $P: \mathbb{C} \to \mathbb{C}$, denoted S(P), is the complement of J(C).

Definition

An orbit is bounded if there exists a K such that $|Q_c^{\circ n}(z)| < K$ for all n. Otherwise the orbit is unbounded.

Preliminaries

The stable set of a a complex polynomial $P : \mathbb{C} \to \mathbb{C}$, denoted S(P), is the complement of J(C).

Definition

An orbit is bounded if there exists a K such that $|Q_c^{\circ n}(z)| < K$ for all n. Otherwise the orbit is unbounded.

Remark

The points of S^1 are supersensitive under Q_0 . That is, any open ball around $z \in S^1$ has the property that $\bigcup_{n=0}^{\infty} Q_0^{\circ n}(z) = \mathbb{C} \setminus \{p\}$ for at most one point p.

The Julia Set J_c is the boundary of the filled Julia set K_c . (The filled Julia set is the set of bounded points of Q_c .) We could alternatively define J_c as the closure of the set of repelling points of Q_c ..

Preliminaries

The Julia Set J_c is the boundary of the filled Julia set K_c . (The filled Julia set is the set of bounded points of Q_c .) We could alternatively define J_c as the closure of the set of repelling points of Q_c .

Remark

For the quadratic map $Q_0(z) = z^2$ we saw chaotic behavior only on S^1 by angle doubling (heta o 2 heta). We also saw that $|Q_0(z)| o \infty$ for all |z| > 1 and $|Q_0(z)| \rightarrow 0$ for all |z| < 1.

Preliminaries

The Julia Set J_c is the boundary of the filled Julia set K_c . (The filled Julia set is the set of bounded points of Q_c .) We could alternatively define J_c as the closure of the set of repelling points of Q_c ..

Remark

For the quadratic map $Q_0(z)=z^2$ we saw chaotic behavior only on S^1 by angle doubling $(\theta \to 2\theta)$. We also saw that $|Q_0(z)| \to \infty$ for all |z|>1 and $|Q_0(z)|\to 0$ for all |z|<1.

Remark

Finally, we learned that for $Q_{-2}(z)=z^2-2$, we have $J_2=K_2=[-2,2]$, so any $z\in\mathbb{C}\setminus[-2,2]\to\infty$ as we compose $Q_{-2}(z)$ infinitely many times.

► Goal: discuss and prove parts of:

Theorem

If |c| is sufficiently large, Λ , the set of points whose entire forward orbits lie within the circle |z| = |c|, is a Cantor set on which Q_c is topologically conjugate to the shift map on two symbols. All points in $\mathbb{C} - \Lambda$ tend to ∞ under iteration of Q_c . Hence, $J_c = K_c$.

 $K_{\mathcal{C}}$ Algorithm

Cantor Construction

Preliminaries

J_c Algorithm ○○

 $K_{\mathcal{C}}$ Algorithm

Cantor Construction

00

Preliminaries

 J_c Algorithm $\bullet \circ$

Cantor Construction

Preliminaries