Equations différentielles

I. Equations différentielles du premier ordre

1. L'équation différentielle $y' = ay \quad (a \in \mathbb{R}^*)$

Activité

On considère la fonction numérique f définie sur \mathbb{R} par : $f(x) = 2e^{-4x}$. On pose y = f(x) et y' = f'(x) et y'' = f''(x). Montrer que : y'' + 3y' - 4y = 0. Toutes les équations où l'inconnue est une fonction, et qui se présente sous la forme d'une relation entre cette fonction et ses dérivées est appelée **équation différentielle**.

Propriété

Soit a un nombre réel non nul. Les solutions sur \mathbb{R} de l'équation différentielle y'=ay est l'ensemble des fonctions définies sur \mathbb{R} par : $f(x)=ke^{ax}$ où k est un nombre réel quelconque.

Exemple

L'ensemble des solutions de l'équation différentielle (E): y'+2y=0 est l'ensemble des fonctions définies sur \mathbb{R} par : $f(x)=ke^{-2x}$ avec $k\in\mathbb{R}$.

Application

1. Résoudre les équations différentielles suivantes :

•
$$y' = 3y$$

•
$$y' + 5y = 0$$

- 2. a. Résoudre l'équation différentielle : (E) 3y' 2y = 0.
 - b. Déterminer la solution de (E) qui vérifie : y(3) = -1.
- 2. L'équation différentielle $y' = ay + b \quad (a \in \mathbb{R}^*, b \in \mathbb{R})$

Propriété

Soient a et b deux nombres réels tels que $a \neq 0$. L'ensemble des solutions de l'équation différentielle y' = ay + b est l'ensemble des fonctions f définies sur \mathbb{R} par : $f(x) = ke^{ax} - \frac{b}{a}$.

Exemple

L'ensemble des solutions de l'équation différentielle (E): y'=3y+2 est l'ensemble des fonctions définies sur $\mathbb R$ par : $f(x)=ke^{3x}-\frac{2}{3}$ avec $k\in\mathbb R$. Déterminons la solution g de l'équation (E) qui vérifie la condition $g(-1)=\frac{1}{3}$. Pour tout $x\in\mathbb R, g(x)=ke^{3x}-\frac{2}{3}$. La condition $g(-1)=\frac{1}{3}$ donne $ke^{-3}-\frac{2}{3}=\frac{1}{3}$. Donc $k=e^3$ il s'ensuit donc : $(\forall x\in\mathbb R):g(x)=e^{3x+3}-\frac{2}{3}$.

Application

- 1. Résoudre l'équation différentielle : (E): y' + 2y 4 = 0.
- 2. Déterminer la solution de (E) dont la courbe passe par le point $A(-\ln(2), 6)$.

II. Equation différentielles du second ordre : y'' + ay' + by = 0

Définition

Soient a et b deux nombres réels. L'équation $r^2 + ar + b = 0$, où r est l'inconnue, s'appelle l'équation caractéristique de l'équation différentielle y'' + ay' + by = 0.

Propriété

On considère (E) l'équation différentielle (E): y'' + ay' + by = 0 et soit Δ le discriminant de son équation caractéristique (E'): $r^2 + ar + b = 0$.

- Si $\Delta > 0$, alors les solutions de (E) sont les fonctions $x \mapsto \alpha e^{r_1 x} + \beta e^{r_2 x}$ tel que $(\alpha, \beta) \in \mathbb{R}^2$ où r_1 et r_2 sont les solutions de (E').
- Si $\Delta = 0$, alors les solutions de (E) sont les fonctions $x \mapsto (\alpha + \beta x)e^{r_0x}$ tel que $(\alpha, \beta) \in \mathbb{R}^2$ où r_0 est la solution de (E').
- Si $\Delta < 0$, alors les solutions de (E) sont les fonctions $x \mapsto (a\cos(qx) + \beta\sin(qx))e^{px}$ tel que $(\alpha, \beta) \in \mathbb{R}^2$ où $r_1 = p + iq$ et $r_2 = \overline{r_1}$ sont les solutions de (E').

Application

- 1. Résoudre les équations différentielles suivantes :
 - (E_1) : y'' 3y' + 2y = 0.
 - (E₂): y'' + 4y' + 4y = 0.
 - (E₃): y'' 4y' + 13y = 0.
- 2. a. Résoudre l'équation différentielle : (E'): y'' 5y' + 6y = 0.
 - b. Déterminer la solution g de l'équation (E') vérifiant les conditions initiales : g(0) = 1 et g'(0) = 2.
- 3. a. Résoudre l'équation différentielle : (E"): y'' + 4y = 0.
 - b. Déterminer la solution g de l'équation (E") vérifiant les conditions initiales : $g(\frac{\pi}{2}) = 1$ et $g'(\frac{\pi}{2}) = 2$.