

Fundamentals of Medical Imaging

郑锐 Zheng Rui (助理教授/研究员)

上海科技大学信息科学与技术学院

E-mail: zhengrui@shanghaitech.edu.cn

地址:信息学院大楼3号楼426

Information

Time: Monday & Wednesday, 3:00-4:40 pm, Week 1-16,

Location: 信息学院1B-110

Teacher: 郑锐

Email: zhengrui@shanghaitech.edu.cn

Office: 信息学院3号楼426

Tel: 20684452

TA:金哲宇

Email: jinzhy@shanghaitech.edu.cn

Platform: 互动教学平台

Textbook

Introduction to Medical Imaging: Physics, Engineering and Clinical Applications

AUTHOR: Nadine Barrie Smith & Andrew Webb

PUBLISHER: Cambridge University Press (2010)

Reference book

Fundamentals of Medical Imaging, 3rd Edition

AUTHOR: Paul Suetens

PUBLISHER: Cambridge University Press

(2017).

The Essential Physics of Medical Imaging, 3rd Edition

AUTHORS: Bushberg J. T., Seibert J. A.,

Leidholdt E. M. Jr., Boone J. M

PUBLISHER: Lippincott Williams & Wilkins

(2011)

Digital Image Processing, 4th edition

AUTHORS: Rafael C. Gonzalez &

Richard E. Woods

PUBLISHER: Pearson (2017)

医学影像成像理论 (第二版)

作者: 李月卿

出版社: 人民卫生出版社 (2010)

Week	Date	Topic	Reading Material	Homework	
1	9月5日	Introduciton to Medical imaging			
	9月7日	Image characteristics	CH1.1-1.9		
2	9月12日	Holiday		Due: 9/25	
	9月14日	Basics of Digital image processing	DIP CH2.4, CH2.6		
3	9月19日	X-ray physics, Radioactivity	CH2.1-2.5		
	9月21日	Instrumentation and Characteristics of Radiography	CH2.6-2.8		
4	9月26日	X-ray Imaging application	CH2.9-2.11		
	9月28日	Image Reconstruction Algorithm	CH2.14, DIP CH5.11		
5	10月3日	Holiday		Due: 10/16	
	10月5日				
	10月8日	CT Instrumentation	CH2.12-2.13, 2.15		
6	10月10日	Clinical application of CT	CH2.16-2.18		
	10月12日	Introduction to Nuclear Medicine	CH3.1-3.5		
7	10月17日	Test 1: Fundamentals, X-ray and CT			
	10月19日	Gamma Camera	CH3.6	Due: 10/30	
8	10月24日	SPECT, Image characteristics	CH3.7-3.9		
	10月26日	PET/CT	CH3.13-3.21		
9	10月31日	Radiation Biology and protection			
	11月2日	Ultrasound Physics	CH4.1-4.4		
10	11月7日	Ultrasound Instrumentation	CH4.5-4.7	Due: 11/20	
	11月9日	Ultrasound Image Characteristics	CH4.8-4.10		
11	11月14日	Apllication of Ultrasound	CH4.11		
	11月16日	Magnetic resonance	CH5.1-5.4		
12	11月21日	Test 2: Neclear medicine & Ultrasound			
	11月23日	Relaxation time	CH5.5-5.7		
13	11月28日	MRI Image Acquistion	CH5.8-5.10	Due: 12/11	
	11月30日	MRI sequence	CH5.11-5.13		
14	12月5日	MRI Instrumenation	CH5.14-5.16		
	12月7日	Image Characteristics and Apllication of MRI	CH5.17-5.23		
15	12月12日	Medical image computing & visualization	FMI CH7-8		
	12月14日	Test 3: MRI			
16	12月19日	Project presentation			
	12月21日				

Assessment

➤ Homework (30%)

- 5 assignments (1st-4th: 5%, 5th: 10%);
- Handwriting or Hard copy;
- Only half score is counted if not submitting before due date; No score if not submitting at all.
- ➤ Quiz (5%): missing twice -2%; missing more than twice : -5%
- **Test (30%) :** 3 times, 10% for each;
- Project (35%)
 - Content: Literature review on a specific subject related to medical imaging;
 - Group of maximum 3 persons
 - Group presentation: PPT in English, present in Chinese or English.
 - Group project report (English): in the format of IEEE transaction, minimum 5000 words and 50 references.
 - Score requirement (以100分计)
 - ✓ Presentation (30分): 思路清晰, 重点明确, 按时完成;
 - ✓ Q&A (10分): 正确回答问题,条理清楚;
 - ✓ Report (60分): 问题阐述明确,内容完整,逻辑通顺,格式正确;
 - ✓ Submission package: PPT and Report;
 - ✓ 截止时间: Abstract (Before Nov. 13th), Final package (Dec 25th, 2022)。无特殊情况逾期,24小时内扣20%分,24小时以外扣除50%分,未交则该project计0分。

Lecture 1 - Introduction

This lecture will cover:

- What is Medical Imaging?
- History of Medical Imaging
- Medical Imaging Modalities
- Contents of the course
- Fundamentals of medical diagnosis

What is Medical Imaging

Medical Imaging

- Medical visual representation of human in multi-modality and multi-dimension
 - Revealing internal structures of a body (anatomy)
 - Visual representation of the function of some organs or tissues (physiology).

Goals

- Clinical analysis (Diagnosis)
- Medical intervention (Treatment)
- Establishing a database of normal anatomy and physiology to make it possible to identify abnormalities.

History

CT+MRI, PET+MRI (Gen. Electric, 2010)

(A. Cormack, G. Hounsfield, 1972)

MRI tomography

(P. Lauterbur, P. Mansfield, 1973 since 80ties)

(I. Edler, C. Hertz, 1953)

radiography

(J. Hall-Edwards, 1896)

PET tomography
(M. Ter-Pogossian et.al., 1973)

Thermography endoscopy (since 60thies, XX c.) (B. Hirschow

Endoscopic capsule

(Given Imaging, 2001)

Categories

Imaging content

- **➤** Biomedical micro-imaging
 - ✓ Scanning Electron Microscope (SEM)
 - ✓ Optical microscope

➤ Medical imaging

- ✓ Radioactive: X ray, CT, Nuclear medicine, PET, SPECT
- ✓ Non-radioactive: MRI, Ultrasound, Thermography, Photoacoustic

Functional and Anatomical

Imaging modalities	2D	3D	Other technology
X-ray	Planar radiography	СТ	Angiography, fluoroscopy,
Nuclear medicine	Gamma camera	SPECT, PET/TOF PET	
MRI		MRI	fMRI
Ultrasound	B-mode, M-mode,	Multi-dimension arrays	Doppler ultrasound

Content

What we will learn?

- ✓ Imaging physics and theory
- ✓ Imaging instrumentation
- ✓ Imaging characteristics
- ✓ Application of different image modalities

What we won't learn

- x Electronic signal acquisition --- 电路基础,模拟数字电路
- × Signal processing --- 信号与系统,数字信号处理
- × Image analysis --- 数字图像处理、计算机图形学、计算机视觉、机器学习、深度学习
- X Medical diagnosis

Knowledge & Requirement

> Involved knowledge

- Physics
- Mathematics
- System and signals analysis
- Anatomy and Physiology

Learning outcome

- Understanding the principles of various medical imaging techniques.
- Computing parameters for each imaging modality such as resolution, signal to noise ratio.
- Evaluating data sets from different devices
- Evaluating and analyzing image properties
- Discussing how a specific imaging modality can relate to an imaging scenario in the body.
- Quality control and Health protection

Fundamentals

- ➤ Diagnostic Test (Reference: CH1.2)
 - Binary Classification
 - Sensitivity and Specificity
 - ROC Curve
- Anatomical Planes

		True Condition (真实值)		
		Positive (阳性)	Negative (阴性)	
Predicted	Positive	True Positive (TP)	False Positive (FP)	
Condition	(阳性)	真阳性	伪阳性	
(预测值)	Negative	False Negative (FN)	True Negative (TN)	
	(阴性)	伪阴性	真阴性	

Contingency Table (列联表)

		True cor				
	Total population	Condition positive	Condition negative	Prevalence = $\frac{\sum Condition positive}{\sum Total population}$	Accuracy (. Σ True positive + Σ Σ Total pop	True negative
Predicted condition	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\sum False\ positive}{\sum Condition\ negative}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds	F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$	= LR+ LR-	1 + 1 Recall + Precision 2

• Sensitivity (敏感性) or True Positive Rate

Sensitivity =
$$\frac{TP}{TP + FN}$$

• Specificity (特异性) or True Negative Rate

Specificity =
$$\frac{TN}{TN + FP}$$

ROC Curve

Receiver
Operating
Characteristic
(ROC) Curve

(受试者操作特性 曲线)

