Lecture 5

Polygenic Risk Scores: Concepts, Calculation, and Challenges

by Dr. Mustafa İsmail Özkaraca

Contents

1. Understanding Polygenic Risk Score (PRS)?

2. Calculating PRS

3. Population Bias

Understanding Polygenic Risk Score (PRS)?

PRS is a measure of **aggregated effects of genetic variants** on the **risk of developing a disease**.

Genetic effects are derived from GWAS.

Indicates relative genetic risk compared to a reference population.

"Absolute risk is different. Absolute risk shows the likelihood of a disease occurring. Women who carry a BRCA1 mutation have a 60-80% absolute risk of breast cancer. This would be true even without any comparison to any groups of people." [1]

Figures is from: https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores

Calculating PRS

Outline of the Concept

Example of 3 SNPs aggregated into PRS

Discovery data (GWAS summary stats)

	Weights*	Risk Allele
SNP1	0.2	А
SNP2	-0.3	С
SNP3	0.1	G

Target data (independent from Discovery data)

Individual	Alleles SNP1	Alleles SNP2	Alleles SNP3
1	AT	AA	CG
2	AA	CA	GG
3	π	AC	CG

PRS calculations (in Target data)

Individual	SNP1	SNP2	SNP3	PRS
1	0.2 + 0.0	0.0 + 0.0	0.0 + 0.1	0.3
2	0.2 + 0.2	-0.3 + 0.0	0.1 + 0.1	0.3
3	0.0 + 0.0	0.0 + (-0.3)	0.0 + 0.1	-0.2

Figures is from:

LD ALERT!!

Calculating PRS

C + T Approach

```
plink \
--bfile EUR.QC \
--clump-p1 1 \
--clump-r2 0.1 \
              --clump-kb 250 \
--clump Height.QC.Transformed \
--clump-snp-field SNP \
--clump-field P \
--out EUR
```

Each of the new parameters corresponds to the following

Parameter	Value	Description	
clump- p1	1	P-value threshold for a SNP to be included as an index SNP. 1 is selected such that all SNPs are include for clumping	
clump- r2	0.1	SNPs having r^2 higher than 0.1 with the index SNPs will be removed	
clump- kb	250	SNPs within 250k of the index SNP are considered for clumping	
clump	Height.QC.Transformed	Base data (summary statistic) file containing the P-value information	
clump- snp- field	SNP	Specifies that the column SNP contains the SNP IDs	
clump- field	Р	Specifies that the column P contains the P-value information	

A more detailed description of the clumping process can be found here

• Note	
The r^2 values computed by c haplotype frequency estimates	are based on maximum likelihood

Figures is from: https://choishingwan.github.io/PRS-Tutorial/plink/

PRS Tool	Methodology ¹	Data requirements	Implementation	Source	Website/GitHub repository
PLINK	C+T (manual thresholding)	GWAS summary statistics	PLINK framework	(Purcell et al., 2007)	https://www.cog-genomics.org/plink
(2007)					
PLINK2				(Chang et al., 2015)	https://www.cog-genomics.org/plink2
(2015)					
PRSice (2015)	C+T	GWAS summary statistics	R and C++	(Euesden et al., 2015)	https://github.com/choishingwan/PRSice
LDpred (2015)	Bayesian regression	GWAS summary statistics	Python based	(Vilhjálmsson et al., <u>2015</u>)	https://github.com/bvilhjal/ldpred
Lassosum (2017)	Lasso penalized regression	GWAS summary statistics or individual- level data	R package: lassosum	(Mak et al., 2017)	https://github.com/tshmak/lassosum
PRSice-2 (2019)	C+T	GWAS summary statistics	R and C++	(Choi and O'Reilly, <u>2019</u>)	https://choishingwan.github.io/PRS-Tutorial/prsice/
PRS-CS (2019)	Bayesian regression with continuous shinkage priors	GWAS summary statistics and LD reference panel	Python based	(Ge et al., <u>2019</u>)	https://github.com/getian107/PRScs
SBayesR (2019)	Bayesian multiple regression	GWAS summary statistics	GCTB software	(Lloyd-Jones et al., 2019)	http://cnsgenomics.com/software/gctb
LDpred- funct	Bayesian regression	GWAS summary statistics	Python package	(Márquez-Luna et al., <u>2021</u>)	https://github.com/carlaml/LDpred-funct
(2019)		61446		6. 7. 1. 1.	
LDpred2 (2020)	Bayesian regression	GWAS summary statistics and LD reference panel	R package: bigsnpR	(Privé, Arbel, and Vilhjálmsson, 2021)	https://privefl.github.io/bigsnpr/articles/LDpred2.html
Lassosum2 (2021)	Lasso penalized regression	GWAS summary statistics or individual- level data	R package: bigsnpR	(Privé, Arbel, Aschard, et al., 2021)	https://privefl.github.io/bigsnpr/reference/snp_lassosum2.h
PRS-CSx (2022)	Bayesian regression with shared continuous shrinkage priors	Multiple GWAS summary statistics	Python based	(Ruan et al., 2022)	https://github.com/getian107/PRScsx
BridgePRS (2023)	Bayesian regression	GWAS summary statistics	Shell script	(Hoggart et al., 2023)	https://github.com/clivehoggart/BridgePRS
PRSet	Pathway-	GWAS	R and C++	(Choi et al.,	Currently under active development but can be downloaded for
(2023)	based	summary statistics	N and CTT	2023)	free under the PRSice website
GAUDI (2024)	Fused lasso	GWAS summary statistics	R, Python, Shell script	(Sun et al., <u>2024</u>)	https://github.com/quansun98/GAUDI

Table is from:

Ndong Sima, C.A.A., Step, K., Swart, Y. et al. Methodologies underpinning polygenic risk scores estimation: a comprehensive overview. Hum. Genet. 143, 1265-1280 (2024).

Dr. Özkaraca 5

¹C+T: (LD-) Clumping and Thresholding; lasso: Least Absolute Shrinkage and Selection Operator

Population Bias

Figures is from:

Martin, A.R., Kanai, M., Kamatani, Y. *et al*. Clinical use of current polygenic risk scores may exacerbate health disparities. *Nat Genet* **51**, 584–591 (2019).

Population Bias

Figures are from:

Martin, A.R., Kanai, M., Kamatani, Y. *et al*. Clinical use of current polygenic risk scores may exacerbate health disparities. *Nat Genet* **51**, 584–591 (2019).

What's Next

1. Understanding Heritability

2. Early Methods: Twin Studies

3. Modern Approaches: SNP-Based Heritability

4. Challenges in Heritability Studies