Homework 8

Due data: Jun.15 $^{th}\,$

Turn in your homework before $8{:}15~\mathrm{AM}$

Rules:

- Please work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism!
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.

[8 points] Calculate the Laplace transform of the following functions. You can use definitions or properties of Laplace transform. Hint: $cosh(t) = \frac{e^{t} + e^{-t}}{2}$ (a). $f(t) = ((1 - t)e^{-t} - te^{-t}sint)u(t)$ (b). $g(t) = 8e^{-3t}cosh(t)u(t - 2)$

(a).
$$f(t)=((1-t)e^{-t}-te^{-t}sint)u(t)$$

(b).
$$g(t)=8e^{-3t}cosh(t)u(t-2)$$

$\mathbf{2}$

[12 points] Calculate the inverse Laplace transform of the following functions. (a). $F(s) = \frac{s^2 - 2s + 1}{4(s - 2)(s^2 + 2s + 4)}$ (b). $G(s) = \frac{4(s - 1)}{s^4 - 1} + \frac{7}{s(s + 1)^3} + 1$ (c). $P(s) = \frac{se^{-\pi s}}{s^2 + 5}$

(a).
$$F(s) = \frac{s^2 - 2s + 1}{4(s - 2)(s^2 + 2s + 4)}$$

(b).
$$G(s) = \frac{4(s-1)}{s^4-1} + \frac{7}{s(s+1)^3} + 1$$

(c).
$$P(s) = \frac{se^{-\pi s}}{s^2+5}$$

[18 points] The function f(t) is shown in Fig.3. f(t)=0 for $t\leq 0$.

- (a). Calculate the Laplace transform of f(t).
- (b). Verify the initial value thereom for f(t).
- (c). Verify the final value theorem for f(t).

Figure 3:

[18 points] The circuit is shown in **Fig.4**. Assume the circuit has reached steady state before t=0s. Given that $C=\frac{1}{9}F$, $R=3\Omega$, L=0.6H, $i(t)=te^{-t}u(t)+5u(-t)$ A, determine U1(t) for t>0s using Laplace domain method.

Figure 4:

[18 points] The circuit is shown in **Fig.5**. The ideal operator amplifier is working at its linear region and $v_1(0-) = 3V$, $v_2(0-) = 2V$. And a voltage source is applied to the circuit with $v_s(t) = e^{-t}u(t)V$. Determine the $v_o(t)$ for t>0 s with Laplace transform.

Figure 5:

[26 points] The circuit is shown in **Fig.6**. Given that $U_c(0)=1V$, $i_c(0)=2A$.

- (a). Use the time domain method to determine $i_L(t)$ for t > 0s.
- (b). Use the Laplace transform to determine $i_L(t)$ for t > 0s.
- (c). Use the phasor domain method to determine i_L(t) if the circuit has reached the sinusoidal steady state.
- (d). Determine the value of $i_L(t)$ at t = 1s and t = 100s using the three expressions you obtained above respectively. Explain why the values are the same or different.

Figure 6: