

Universidad de Granada

UNIVERSIDAD DE GRANADA E.T.S.I. INFORMÁTICA Y TELECOMUNICACIÓN - Course $2019/\ 2019$

Minería de Medios Sociales

Análisis y Visualización Básica de una Red Social con Gephi:

Osama Bin Laden

Jaime cloquell Capp

 $\label{eq:mail:email:jaumecloquell@correo.ugr.es} Email: \\ jaumecloquell@correo.ugr.es$

Contents

1	Análisis de la red	2
2	Visualizaciones 2.1 Red Completa	
	2.5 gráficos de las distribuciones de grado	7
3	Análisis de la red	12
4	Análisis de la centralidad	13
5	Estudio de las comunidades	14
6	Centralidad de los actores	14

1 Análisis de la red

Utilizamos datos obtenidos a través de snap. Nos centramos en los tweets relacionados con la muerte de Osama Bin Laden. Consideramos las menciones de usuario y hashtags como entidades y su co-ocurrencia en el mismo tweet como interacciones entre ellas.

2 Visualizaciones

Esta sección que incluye:

- Una imagen de la red completa y otra de la componente gigante con una visualización lo más estética posible.
- La tabla Excel con los valores de las medidas estudiadas incrustada.
- Los gráficos de las distribuciones de grado, etc.

2.1 Red Completa

La imagen de la red con la componente gigante es la siguiente:

2.2 Componente gigante

La imagen de la red con la componente gigante es la siguiente:

2.3 Tabla Excel con los valores de las medidas estudiadas incrustada

Medida	Valor
Número de nodos N	1709
Número de enlaces L	56383
Número máximo de enlaces Lmax	XXX
Densidad del grafo L/Lmax	19
Grado medio ¡k¿	32992
Diámetro dmax	12
Distancia media	3274
oeficiente medio de clustering ¡C	į. 289
Número de componentes conexas	20
N° de nodos componente gigante	1662 (97.25)
Nº de aristas componente gigantē	2335 (99.91

Table 1: Resultados de las medidas

	Centralidad de Grado	Intermediació	Cercanía	Vector propio
ſ	guardian.co.uk - 656	bbc.co.uk - 0.09	assistnews.net-1.0	guardian.co.uk – 1.0
į	nuffingtonpost.com - 566	dw-world. $de - 0.052$	an axmuda.blog spot.com-1.0	huffingtonpost.com - 0.91
Ì	cbsnews.com - 537	guardian.co.uk – 0.034	nz.answers.yahoo.com - 1.0	cbsnews.com - 0.86
V	ashingtonpost.com – 49	$6 ext{ spiegel.de} - 0.033$	sharingcentre.net - 1.0	narine corpstimes.com - 0.83
Ī	denverpost.com - 468 s	un-sentinel.com - 0.02	${\bf \hat{n}}$ tonioribeironoticias.blogspot.com – 1.	0 kdwn.com - 0.80

Table 2: Análisis de los actores más importantes de la red desde una perspectiva global

2.4 gráficos de las distribuciones de grado

Los gráficos de las medidas son:

2.5 gráficos de las distribuciones de grado

Los gráficos de las medidas son:

Diámetro de la red no normalizado

Betweenness Centrality Distribution

Closeness Centrality Distribution

Diámetro de la red normalizado:

Betweenness Centrality Distribution

3 Análisis de la red

En cuanto a grados totales, hay cuatro nodos que destacan, con un grado de mayor a 50. El nodo con mayor grado es de 130, que destaca con diferencia del resto de ndoso. Estos nodos se corresponden con hubs. La distribución de grados indica que se cumple la propiedad libre de escala. Muy pocos con muchas conexiones, y muchos con pocas conexiones.

Los nodos con mayor grado de entrada (Con mayor número de seguidores) tienen 50 y 130 seguidores, respectivamente.

Pasa absolutamente lo mismo para los grados de entrada y salida.

4 Análisis de la centralidad

El diámetro de la red es de 12. Este valor representa la máxima distancia existente entre dos nodos en toda la red. La distancia media es de 3.274.

El diagrama de cercanía nos indica que hay bastantes nodos muy alejados del centro (entorno a unos 90). Otros, por contra, están muy situados en el centro de la red (unos 85). El resto de nodos se situan a los alrededores del centro de la red.

5 Estudio de las comunidades

Para la detección de comunidades se ha usado un factor de resolución de 2.5 para obtener un total de 30 comunidades. Se ha elegido este valor de resolución debido a que valores inferiores resultaban en un mayor número de comunidades, pero muchas de ellas formadas por dos nodos. El valor para la modularidad es de un 0.216, lo cual es un buen valor.

La proporción de nodos en cada comunidad es la siguiente:

6 Centralidad de los actores

En cuanto a la centralidad de grado, no se tiene muy en cuenta, aunque refleja el número de conexiones de un actor, no tiene en cuenta la estructura global de la red.

Una medida bastante importante es la intermediación, estos actores hacen de puente entre otras regiones de la red. Por lo cual pueden conectar distintas comunidades entre sí.

Estos actores puede hacer de puente hacia a otro tipo de usuarios.

La cercanía mide cómo de cerca está un actor del centro de la red. En este caso no nos sirve de mucho, ya que todos los nodos tienen la misma medida.

Por último, la centralidad de vector propio es una medida recursiva que asigna importancia a un nodo en función de la importancia de sus vecinos. Es decir, tiene en cuenta la calidad de las conexiones, en lugar de la cantidad. El primer actor tiene un valor de esta medida de 1, lo cual indica que es el nodo más importante y con el mayor número de conexiones importantes. Luego es un actor a tener en cuenta en la red.

Centralidae	d de Grado	Intermediació	Cercanía	Vector propio
guardian.c	o.uk - 656	bbc.co.uk – 0.09	assistnews.net-1.0	guardian.co.uk – 1.0
huffingtonpo	st.com - 566	dw-world. $de - 0.052$	an axmuda.blog spot.com-1.0	huffingtonpost.com - 0.91
cbsnews.c	com - 537	guardian.co.uk – 0.034	nz.answers.yahoo.com - 1.0	cbsnews.com - 0.86
1 -		$6 ext{ spiegel.de} - 0.033$	9	narine corpstimes.com - 0.83
denverpost	.com - 468 s	un-sentinel. $com - 0.02$	${\bf \hat{n}} toniori beiro noticias. blog spot.com-1.$	$0 ext{ kdwn.com} - 0.80$

Table 3: Análisis de los actores más importantes de la red desde una perspectiva global

Medida	Valor
Número de nodos N	1709
Número de enlaces L	56383
Número máximo de enlaces Lmax	XXX
Densidad del grafo L/Lmax	19
Grado medio ¡k¿	32992
Diámetro dmax	12
Distancia media	3274
Coeficiente medio de clustering ¡C¿	289
Número de componentes conexas	20
Número de nodos componente gigante	1662 (97.25)
Número de aristas componente gigant	2 335 (99.91

Table 4: Análisis de los actores más importantes de la red desde una perspectiva global