#### Section 11

# Attempt all questions.

 $[3 \times 2 = 6 \text{ Marks}]$ 

- Q1. Construct a Moore machine that takes binary numbers as input and produces residue modulo '3' as output.
- Q2. Construct and verify a FA that accepts all the decimal strings divisible by 4.
- Q3. Write the statement of Pumping Lemma for Regular sets with at least one application.

# Section - B

# Attempt all questions

 $[3 \times 3 = 9 \text{ Marks}]$ 

Q1. Construct a FA in such that accepts the strings having no. of 'a' divisible by 3 and no. of 'b' divisible by 2 i.e.

 $n_a(w) \cong 0 \mod 3$ , &  $n_b(w) \cong 0 \mod 2$ , where  $w \in (a,b)^*$ 

Q1. Construct a FA in such that accepts the strings having no. of 'a' divisible by 3 and no. of 'b' divisible by 2 i.e.

$$n_a(w) \cong 0 \mod 3$$
, &  $n_b(w) \cong 0 \mod 2$ , where  $w \in (a,b)^*$ 

Q2. Construct a DFA equivalent to the given regular expression as:

Q3. Minimize the given FA in step by step manner:



- Draw a deterministic finite automaton (DFA) that recognizes the language over the alphabet {0, 1} consisting of all those strings that contain an odd number of 1's.
- 2. Find all strings in L ((a + b)\*b(a + ab)\*) of length less than four.
- 3. Draw a NFA for the language  $L = \{ w \in \Sigma^{\bullet} \mid w \text{ contains the substring 0101, i.e., } w = x0101y \text{ for some } x, y \in \Sigma^{\bullet} \}$

#### Section-B

#### Attempt All Three Questions.

 $[3 \times 3 = 9]$ 

- 4. Construct a DFA for the set of strings over {a, b} containing both ab and ba as substrings.
- 5. Construct a Moore machine that takes binary numbers as input and produces residue modulo '3' as output.
- Let ∑ = {a, b}. For each of the following languages over ∑, find a RE representing it.
  - a. All string that contain exactly one b
  - b. L = {w | w contains at least three consecutive 1s}
  - c. All strings that contain either sub-string aaa or bbb.

#### Section - C

7. Apply Arden's theorem to find the Regular Expression corresponding to the following FA



Convert the following Non Deterministic Finite Automaton into an
equivalent deterministic automaton M. Clearly mention all the 5 tuples of M
and draw the complete transition graph.



 Convert the following Non Deterministic Finite Automaton into an equivalent deterministic automaton M. Clearly mention all the 5 tuples of M and draw the complete transition graph.

Open with Google Docs



Minimize the DFA whose transition table is given below. Draw the transition graph for the minimized DFA.

| Present State    | Next State     |            |
|------------------|----------------|------------|
| I resem State    | а              | b          |
| →q0              | q1             | q5         |
| q1               | q <b>6</b>     | q2         |
| q2 (Final state) | <b>q0</b>      | <b>q2</b>  |
| <b>q3</b>        | <b>q2</b>      | <b>q6</b>  |
| <b>q4</b>        | <b>q7</b>      | q <b>5</b> |
| <b>q</b> 5       | <b>q2</b>      | q <b>6</b> |
| <b>q6</b>        | q <b>6</b>     | q4         |
| Page 34 /        | 49 <b>46</b> Q | + 2        |

Minimize the DFA whose transition table is given below. Draw the transition graph for the minimized DFA.

| Present State    | Next State |             |
|------------------|------------|-------------|
| r resent State   | а          | b           |
| →q0              | q1         | q5          |
| q1               | q <b>6</b> | <b>q2</b> · |
| q2 (Final state) | <b>q0</b>  | <b>q2</b>   |
| <b>q8</b>        | <b>q2</b>  | <b>q6</b>   |
| <b>q4</b>        | q <b>7</b> | q <b>5</b>  |
| q5               | q2         | q <b>6</b>  |
| <b>q6</b>        | q <b>6</b> | q <b>4</b>  |
| . q7             | q <b>6</b> | q <b>2</b>  |

### Attempt both of the following.

$$[2.5 + 2.5 = 5]$$

- a. Consider a language over the alphabet {0, 1} consisting of the strings that meet the following conditions:
  - The length of the strings is 6.
  - The last two characters must both be zero. For example, 110000, 001100, and 111100 are all in the language; 000011, 001010, and 111001 are not.

Write a regular expression that defines this language.

b. Construct a DFA equivalent to the regular expression a\* (ba\*)\*.
Note: Directly draw the DFA.

## Section A

### Note: Attempt All Questions

(1x5=5)

- I. Write the regular expression for L= {a<sup>i</sup>b<sup>j</sup>, i is multiple of 3 and j is multiple of 2}.
- II. How many final states will be there in a DFA which accept strings containing exactly two 0's or exactly two 1's?
- III. State Pumping Lemma for regular languages.
- IV. Design a NFA which accept L = {ab, ba}.
  - V. Write two strings which are not the member of L = {a, ab, abb, bab}\*.

## Section B

### Note: Attempt any Three Questions

(2x3=6)

I. Construct an equivalent DFA for the given NFA:

| State/Input | а      | b      |
|-------------|--------|--------|
| <b>→</b> q1 | q2, q3 | ql     |
| q2          | q1, q2 | q1, q2 |
| q3*         | q2     | q1, q2 |

| q2  | 41, 42 | q1, q2 |
|-----|--------|--------|
| q3* | q2     | q1, q2 |

II. Convert the given Mealy machine to equivalent Moore machine:



- III. Design a DFA which accept all strings ending with 'aab' over ∑ = {a, b}.
- IV. Construct finite automata for the regular expression abb+a(abb)\*\*

  | Page 8 / 41 Q +

- III. Design a DFA which accept all strings ending with 'aab' over ∑ = {a, b}.
- IV. Construct finite automata for the regular expression abb+a(a+b)\*ba

### Section C

#### Note: Attempt any Three Questions

(3x3=9)

- Construct a DFA which accepts all binary integers divisible by 2 and 3.
- II. Construct a minimum-state automata for given DFA:

| State/Input | 0 | 1 |
|-------------|---|---|
| →A          | В | A |
| В           | Α | С |
| C           | D | В |
| D*          | D | A |
| Е           | D | F |
| F           | G | E |
| G           | F | G |
| Н           | G | D |

- III. State and prove Arden's theorem for regular expressions.
- IV. Obtain regular expression for given finite automata using algebraic page 9 / 41 0 +

- III. State and prove Arden's theorem for regular expressions.
- IV. Obtain regular expression for given finite automata using algebraic method:



- A.I Consider the following statements. Write the false statement(s) in your answer book.
  - The number of outgoing arcs from a state of a DFA is always equal to |Σ|.
  - Not all finite languages are regular.
  - The family of regular languages is closed under intersection.
  - The number of outgoing arcs from a state of a NFA is always equal to |Σ|.

- A.II Which of the following strings are matched by the regular expression aa\*bb\*b + (bb+aa)\*
  - aaa aaaa
  - aabbbbaab
- A.III Consider the following finite automaton over the alphabet {0, 1}. Which states should be made accepting in order for

this automaton to accept the language of strings with odd length?



- A.IV What are the applications of Finite Automata?
  - A.V What type of machine does the following represent? Why?





# Section B

Note: Attempt any Three Questions

[2x3=6]

- B.I Give a DFA for the following language, specified by a transition diagram, where  $\Sigma = \{0, 1, 2\}$ .
  - $L = (w \in \Sigma^* \mid w \text{ begins with } 0 \text{ or ends with } 0 \text{ but not both})$
- B.II Show that the family of regular languages is closed under difference  $(L_1 L_2)$ .

B.III What language is represented by the regular expression (((a\*a)b)Ub)?

B.IV Design an NFA with three states that accepts the language {ab, abc}\*.

## Section C

### Note: Attempt any Three Questions

[3x3=9]

C.I Prove that the following language is not regular using Pumping Lemma.

$$L = \{a^n b^l c^k \mid k \ge n + l\}$$

C.II Convert the following NFA to an equivalent DFA.



Pumping Lemma.

$$L = \{a^n b^l c^k \mid k \ge n + l\}$$

C.II Convert the following NFA to an equivalent DFA.



C.III Use Arden's Theorem to construct a regular expression corresponding to the automata given below.



Open with deeple bods

# C.IV Minimize the following DFA.

