ER to Relational Mapping (Part I)

So Far We have

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@eecs	18	3.2
53650	Smith	smith@math	19	3.8

ER diagram

Relational table

Question:

■How can we go from the ER-diagrams to relational tables?

From ER Model to Relational Model

So... how do we convert an ER diagram into a table?? Simple!!

Basic Ideas:

- Build a table for each entity set
- ➤ Build a table for each <u>relationship set</u> if necessary (more on this later)
- > Decide the attributes of these tables
- > Decide primary key and foreign keys of these tables

Today's lecture

- We will learn how to translated ER diagrams into relational tables
 - Entity sets
 - Strong entity sets
 - Weak entity sets
 - Relationship sets
 - M:n cardinality constraint
 - 1:n cardinality constraint

Translating Strong Entity Sets

Rule

Schema: Employees (ssn, name, lot)

CREATE TABLE Employees (ssn CHAR(11), name CHAR(20), lot INTEGER, PRIMARY KEY (ssn));

Exercise

Translate this ER diagram to relational tables.

Schema: course (<u>cno</u>, name, credit_hours, description)

```
CREATE TABLE course
(cno INTEGER,
name CHAR(20),
credit_hours INTEGER,
description CHAR(50),
PRIMARY KEY (cno)
);
```

Translating Weak Entity Sets

 Weak entity set and identifying relationship set together are translated into a single table.

Strong entity: E1 = $(\underline{a_1}, ..., a_n)$

Weak entity: E2 = $(\underline{a_1}, \underline{b_1}, ..., \underline{b_m}, c_1, ..., c_k)$

Foreign key of E2:

 \underline{a}_1 (reference table E1)

Translating Weak Entity Sets: Example 1

Translate this ER diagram to relational tables.

```
Schema:
Strong entity: Employees (ssn, name, lot),
Weak entity: Dep_Policy(pname, ssn_employee, age, cost)

CREATE TABLE Dep_Policy (
   pname CHAR(20),
   age INTEGER,
   cost REAL,
   ssn_employee CHAR(11) NOT NULL,
   PRIMARY KEY (pname, ssn_employee),
   FOREIGN KEY (ssn_employee) REFERENCES Employees(ssn));
```

Translating Weak Entity Sets: Example 2

Translate this ER diagram to relational tables.

Schema:

- •Strong entity: Parent(SID, name)
- •Weak entity: Child(name, SID, Age)

Today's lecture

- We will learn how to translated ER diagrams into relational tables
 - Entity sets
 - Strong entity sets
 - Weak entity sets
 - Relationship sets
 - M:n cardinality constraint
 - 1:n cardinality constraint
 - IsA hierarchy

Translating Relationship Sets to Tables

 The translation scheme varies for different cardinality constraints.

Many-to-many Relationship Sets (Binary relationships)

- In translating a M:N relationship set to a relation R1,
 R1 includes the following attributes:
 - 1. All attributes of the relationship set in ER diagram; and
 - 2. The primary key of each participating entity set.
 - This set of attributes forms the primary key for the relation.
 - These attributes are defined as the foreign keys of R1.

R1=
$$(\underline{a}_1, \underline{b}_1, c_1, ..., c_k)$$

Foreign keys of R1: \underline{a}_1 (reference table E1), \underline{b}_1 (reference table E2)

Example

Construct the *Works_In* table:

```
Works_In(ssn, did, since)
CREATE TABLE Works_In(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn)
REFERENCES Employees,
FOREIGN KEY (did)
REFERENCES Departments);
```

Relationship Sets with Different Roles


```
CREATE TABLE Reports_To(
supervisor_ssn CHAR(11),
subordinate_ssn CHAR(11),
PRIMARY KEY (supervisor_ssn,
subordinate_ssn),
FOREIGN KEY (supervisor_ssn)
REFERENCES Employees(ssn),
FOREIGN KEY (subordinate_ssn)
REFERENCES Employees(ssn));
```

Many-to-many Relationship Sets (N-ary Relationships)

Translating a M:N relationship set that involves more than 2 entity sets

R1=
$$(\underline{a_1}, \underline{b_1}, \underline{c_1}, d1, ..., d_k)$$

Foreign keys of R1: $\underline{a_1}$ (reference table E1), $\underline{b_1}$ (reference table E2), $\underline{c_1}$ (reference table E3), ...

One-to-many Relationship Set

- In translating a 1:M relationship set to a relation R, R includes the following attributes:
- All attributes of the relationship set; and
 The primary key of each participating entity set (as foreign keys)
 - Key of the relation:
- The primary keys of all participating entity sets forms a superkey for the relation.
- Pick the key of the entity set at the "many" side as the primary key of the relation

So We have:

Could have:

R1=
$$(a_1, \underline{b}_1, c_1, ..., c_k)$$

Only b1 is used as the key!

Example


```
CREATE TABLE Manages(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)
```

Note that did is the key now!

Revisit the Example of many-many Relationship

How to create the <u>Works_In</u> table:

CREATE TABLE Works_In(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn)
REFERENCES Employees,
FOREIGN KEY (did)
REFERENCES Departments)

<u>SSN</u>	<u>did</u>	Since
123-22-3666	1	01/01/2010
123-22-3666	2	02/03/2010
231-31-5368	1	01/01/2010

Why SSN can be removed from the Key in the 1-many relationship?

SSN	<u>did</u>	Since
123-22-3666	1	01/01/2010
123-22-3666	2	02/03/2010
231-31-5368	3	01/01/2010

<u>SSN</u>	<u>did</u>	Since
123-22-3666	1	01/01/2010
123-22-3666	2	02/03/2010
231-31-5368	1	01/01/2010

Manages Relationship (1-to-many relationship) key: (did) Works-in Relationship (Many-to-many relationship) Key: (SSN, did)

An Alternative to Translation of 1-many Relationship

- Do not construct a table for R1
- Instead, add a1, c1,, ck to E2
 - E2=(\underline{b}_1 ,, \underline{b}_m , \underline{a}_1 , \underline{c}_1 , ..., \underline{c}_k)
 - Foreign key of E2: a1(reference E1).

Example of the Alternative Translation Scheme

Option 1: Dept_Mgr (ssn, did, since)

Departments (did, dname, budget)

Option 2: Departments (did, dname, budget, ssn, since)

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn)
REFERENCES Employees)

did	dname	budget	SSN	Since
1	HR	20000	12345678	01/01/2010
2	Marketing	400000	12345678	02/03/2010
3	IT	300000	13452121	01/01/2010

Review: ISA Hierarchies

- ❖As in C++, or other PLs, attributes are inherited.
- ❖If we declare A ISA B, every A entity is also considered to be a B entity.

Translating ISA Hierarchies to Relations

Method 1:
$$E = (\underline{a}_1, ..., a_n)$$

 $S1 = (\underline{a}_1, b_1, ..., b_m)$
 $S2 = (\underline{a}_1, c_1 ..., c_k)$

Method 2:

S1 =
$$(\underline{a}_1,..., a_n, b_1, ..., b_m)$$

S2 = $(\underline{a}_1, ..., a_n, c_1 ..., c_k)$

Q: When method 2 is wrong? (tip: think about the *covering constraint*)

Example: Translating ISA Hierarchies to Relations

- Approach 1:
 - 3 relations: Employees, Hourly_Emps and Contract_Emps.
- Approach 2: Just Hourly_Emps and Contract_Emps.