# EECS 16A Spring 2022

# Designing Information Devices and Systems I Discussion 9B

## 1. Charge Sharing

Consider the following circuit:



In the first phase, all of the switches labeled  $\phi_1$  will be closed and all switches labeled  $\phi_2$  will be open. In the second phase, all switches labeled  $\phi_1$  are opened and all switches labeled  $\phi_2$  are closed.

(a) Draw the polarity of the voltage (using + and - signs) across the two capacitors  $C_1$  and  $C_2$ . (It doesn't matter which terminal you label + or -; just remember to keep these consistent through phase 1 and 2!)

### **Answer:**

One way of marking the polarities is + on the top plate and - on the bottom plate of both  $C_1$  and  $C_2$ . Let's call the voltage drop across  $C_1$   $V_{C_1}$  and across  $C_2$   $V_{C_2}$ .

(b) Draw the circuit in the first phase and in the second phase. Keep your polarity from part (a) in mind.

Answer:





In phase 1, all the switches marked as  $\phi_1$  are closed and switches marked as  $\phi_2$  are open. In phase 2, all the switches marked as  $\phi_2$  are closed and switches marked as  $\phi_1$  are open. Draw both the circuits separately, side by side, with the switches in their respective positions.

(c) Find the voltages and charges on  $C_1$  and  $C_2$  in phase 1. Be sure to keep the polarities of the voltages the same!

#### **Answer:**

In phase 1,

$$V_{C_1,1} = V_{\text{source}} - 0 = V_{\text{source}}$$

and

$$V_{C_2,1} = 0 - 0 = 0$$

#### **Answer:**

Next, we find the charge on each capacitor:

$$Q_{C_1,1} = V_{C_1,1}C_1 = CV_{\text{source}}$$

Note that the positive plate has a charge of  $+CV_{\text{source}}$ , while the negative plate has a charge of  $-CV_{\text{source}}$ .

$$Q_{C_2,2} = V_{C_2,1}C_2 = 0$$

(d) Now, in the second phase, find the voltage  $V_x$ .

## **Answer:**

Where is charge conserved? To answer this, look at the top plates of  $C_1$  and  $C_2$ . In phase 2, they are both "floating" because they are not connected to  $V_{\text{source}}$  or ground. And in phase 1, they are not connected to each other, but in phase 2, they are connected by the switch. Therefore, in phase 2, the charges on the top plates of  $C_1$  and  $C_2$  will be *shared*, or distributed, because they simply cannot go anywhere else. The total charge will remain the same as in phase 1. Let's find the voltages across  $C_1$  and  $C_2$  in phase 2 (same polarities as in phase 1!):

$$V_{C_1,2} = V_x - V_{\text{source}}$$

and

$$V_{C_2,2} = V_x$$

Now, let's find the charge stored in top plates of  $C_1$  and  $C_2$ :

$$Q_{C_1,2} = C(V_x - V_{\text{source}})$$

and

$$Q_{C_{2},2} = 9CV_{x}$$

Next, let's write the equation for charge conservation:

$$Q_{C_1,1} + Q_{C_2,1} = Q_{C_1,2} + Q_{C_2,2},$$

giving

$$CV_{\text{source}} + 0 = C(V_x - V_{\text{source}}) + 9CV_x,$$

which results in

$$V_x = \frac{V_{\text{source}}}{5}$$
.

(e) **Practice Problem:** If the capacitor  $C_2$  did not exist (i.e. had a capacitance of 0F), what would the voltage  $V_x$  be?

### **Answer:**

We could always go back to the equations above, plug in  $C_2 = 0$ , and derive  $V_x = 2V_{\text{source}}$ . It might be worthwhile to go over what this means for the circuit, though. If  $C_2 = 0$  F, the capacitor is actually an open circuit. (*Why?*) So we can pretend, as the question says, that  $C_2$  does not exist. In phase 1, as before,  $C_1$  has a voltage drop of  $V_{\text{source}}$  across it (from top to bottom) and is charged up to  $CV_{\text{source}}$ . Now, in phase 2, the top plate of  $C_1$  is left dangling (floating). This means that the charge on the top plate of  $C_1$  is going to be the same just like the charge on the bottom plate. We will therefore get

$$V_x = V_{\text{source}} - (-V_{\text{source}}) = 2V_{\text{source}}$$

## 2. Comparators

For each of the circuits shown below, plot  $V_{\text{out}}$  for  $V_{\text{in}}$  ranging from -10V to 10V for part (a) and from 0V to 10V for part (b).

(a)



$$V_{+} = \frac{2k\Omega}{1k\Omega + 2k\Omega}V_{\text{in}} = \frac{2}{3}V_{\text{in}}$$

$$V_{-} = 2 \mathrm{V}$$

The comparator will output positive 5V when the voltage divider's output  $V_+ > 2V$  and thus when  $V_{\rm in} > 3V$ . Otherwise, it will output -5V.



## (b) Practice



When the positive terminal's voltage,  $V_+$ , is greater than the negative terminal's voltage,  $V_-$ , the output voltage would be at the positive supply rail,  $V_{\rm DD}$ . Likewise, if the negative terminal's voltage,  $V_-$ , has a higher voltage then the value at the negative supply rail, the output voltage would be  $V_{\rm SS}$ . Since  $V_-$  is just the output of a voltage divider with the source  $V_{\rm in} = V_+$ , it will always have lower absolute value and same polarity as the positive terminal. Thus, the comparator's output will depend only on the sign of the source  $V_{\rm in}$ .

