Ausgabe: 29.11.2019

Abgabe: 06.12.2019 bis 14^{00} Uhr in den Fächern im ARBI-Flur

7. Übung zu Grundlagen der Theoretischen Informatik

Aufgabe 27: Quiz (5 Punkte)

Für jede richtige Antwort gibt es einen Punkt, für jede falsche wird einer abgezogen. Minimal können 0 Punkte erreicht werden.

Wahr Falsch

- \square a) Für einen Kellerautomaten $K = (\Sigma, Q, \Gamma, \rightarrow, q_0, Z_0, \varnothing)$ gilt immer $L(K) = \varnothing$, aber nicht zwangsläufig $L_{\varepsilon}(K) = \varnothing$.
- \square b) Zu jeder kontexfreien Grammatik G kann ein Kellerautomat $K = (\Sigma, Q, \Gamma, \rightarrow, q_0, Z_0, F)$ mit $Q = \{q_0\}$ konstruiert werden, so dass L(K) = L(G) gilt.
- \Box c) Wenn $L_1 \cap L_2$ nicht kontextfrei ist, dann muss auch L_1 oder L_2 nicht kontextfrei sein.
- \square e) Für einen Kellerautomaten $K = (\Sigma, Q, \Gamma, \rightarrow, q_0, Z_0, F)$ mit F = Q, also insbesondere $q_0 \in F$, gilt immer $\varepsilon \in L_{\varepsilon}(K)$.

Aufgabe 28: Sprache \sim Kellerautomat (5+1 Punkte) Sei $L = \{a^{2 \cdot j} w | \exists u \in \{b, c\}^* : w = uu^R, j \in \mathbb{N} \setminus \{0\}\}$ eine Sprache.

- a) Konstruieren Sie zu der Sprache L einen Kellerautomaten K mit L(K) = L.
- b) Begründen Sie, ob ihr Kellerautomat K deterministisch ist oder nicht.

Wichtig: Erklären Sie die Vorgehensweise ihres Automaten!

Aufgabe 29: Kellerautomat \sim Sprache (5+1 Punkte) Gegeben sei der Kellerautomat $K = (\{a, b, c\}, \{s_1, \dots, s_6\}, \{A, B, C, Z\}, \rightarrow, s_1, Z, \{s_6\})$, mit \rightarrow wie in folgender graphischen Darstellung definiert:

- a) Bestimmen Sie die von K erzeugte Sprache L(K). Erklären Sie, welche Zustände für welche Teile der Sprache zuständig sind.
- b) Bestimmen Sie die von K erzeugte Sprache $L_{\varepsilon}(K)$.

Aufgabe 30: Grammatik \sim Kellerautomat (2+1 Punkte) Gegeben Sei die kontextfreie Grammatik G = (N, T, P, S) mit $N = \{S, A\}$, $T = \{a, b\}$ und $P = \{S \rightarrow SS | A, A \rightarrow aSb | ab\}$.

- a) Konstruieren Sie gemäß dem Verfahren aus der Vorlesung einen Kellerautomaten K mit $L(G) = L_{\varepsilon}(K)$.
- b) Geben Sie für das Wort abaababb mit Hilfe der α -Transitionsrelationen (wobei $\alpha \in T \cup \{\varepsilon\}$) die Folge der Konfigurationen an, die K bei der Eingabe dieses Wortes durchläuft.