Записки по ДИС2 - Лекция 12

11.05.2023

Частни производни. Градиент. Производна по направление.

Производната е локална линейна апроксимация на функцията. $f(x) = f(x_0) + f'(x_0)(x - x_0) + R(x; x_0)$ $\frac{R(x; x_0)}{|x - x_0|} \xrightarrow[x \to x_0]{} 0$

Геометрична представа

...

Диференцируемост

Def. 1 U - отворено множество в $\mathbb{R}^n, x_0 \in U$ $f: U \to \mathbb{R}$ Kазваме, че f е диференцируема в x_0 , ако съществува линеен оператор $\partial f(x_0)$ (нарича се диференциал на f в m. x_0) такъв, че $f(x) = f(x_0) + \partial f(x_0)(x - x_0) + o(\|x - x_0\|)$ или $\lim_{x \to x_0} \frac{f(x) - f(x_0) - \partial f(x_0)(x - x_0)}{\|x - x_0\|} = 0$

$$f(x_0+h)=f(x_0)+df(x_0)h+o(\|h\|)$$
 или $\lim_{h\to\mathcal{O}}rac{f(x_0+h)-f(x_0)-df(x_0)(h)}{\|h\|}=0$

$$df(x_0): \mathbb{R}^n \to \mathbb{R}$$
 $e_1 = (1, 0, ..., 0)$
 $e_2 = (0, 1, ..., 0)$
....
 $e_i = (0, ..., 0, \frac{1}{i-\text{та позиция}}, 0, ..., 0)$
 $h = (h_1, h_2, ..., h_n)$

$$df(x_0)(h) = df(x_0) \left(\sum_{i=1}^n h_i e_i \right) = \sum_{i=1}^n h_i df(x_i)(e_i) = \left\langle (df(x_0)(e_1), df(x_0)(e_2), \dots, df(x_0)(e_n)), h \right\rangle$$

Частни производни

Def. 2 Частна производна

Hека $\{x_0 + \lambda e_i : \lambda \in \mathbb{R}\}$ - права през x_0 , успоредна на e_i . $\frac{\partial f}{\partial x_i}(x_0) := \lim_{\lambda \to 0} \frac{f(x_0 + \lambda e_i)}{\lambda}$ ще наричаме частна производна на f в m. x_0 по x_i .

Пример: | : Частна производна на f в т. x_0 по x_1 :

$$\frac{\overline{\partial f}}{\partial x_1}(x_0) = \lim_{\lambda t \neq 0} \frac{f(x_1^0 + \lambda, x_2^0, ..., x_n^0) - f(x_1^0, ..., x_n^0)}{\lambda}, \text{ където точката } x_0 = (x_1^0, ..., x_n^0).$$

Твърдение 1 Ако f е диференцируема в x_0 , то $\frac{\partial f}{\partial x_i}(x_0)$ съществува за всяко $i \in \{1,...,n\}$. При това $df(x_0)(e_i) = \frac{\partial f}{\partial x_i}(x_0)$.

Доказателство:

$$\lim_{\lambda \to 0} \frac{f(x_0 + \lambda e_i) - f(x_0)}{\lambda} = \lim_{\lambda \to 0} \frac{f(x_0 + \lambda e_i) - f(x_0) - \partial f(x_0)(\lambda e_i) + \partial f(x_0)(\lambda e_i)}{\lambda} = \lim_{\lambda \to 0} \left[\frac{f(x_0 + \lambda e_i) - f(x_0 - df(x_0)(\lambda e_i))}{\|\lambda e_i\|} . sgn(\lambda) + df(x_0)(e_i) \right] = 0 + df(x_0)(e_i)$$

Градиент

...

Твърдение 2 Диференцируемите функции са непрекъснати

 $U\subset\mathbb{R}^n$ - отворено множество; нека $f:U\to\mathbb{R}$ и f е диференцируема в $x_0\in U$. Тогава f е непрекъсната в x_0 .

Доказателство:

...

Производна по направление

Твърдение 3 A ко f е диференцируема в x_0 , то f има производна в x_0 по всяко направление. При това

$$\frac{\partial f}{\partial l}(x_0) = df(x_0)(l) = \langle \nabla f(x_0), l \rangle$$

 $\underline{3aбележ \kappa a}$: $c \overline{c} c$ символа ∇ ще се отбелязва градиент на функция.

Следствие:

. . .

Th. 1 U - отворено множество в \mathbb{R}^n и $f:U\to\mathbb{R}, \quad x_0\in U, \quad i\in\{1,...,n\},$ $\frac{\partial f}{\partial x_i}$ съществуват в U и са непрекъснати в x_0 . Тогава f е диференцируема в x_0 .

Следствие: Гладките функции са диференцируеми

. . .