

School of Electrical Engineering & Telecommunications

ELEC1111 Online Tutorial

Topic 5: Inductors and RL Circuits

1. The voltage $v_L(t)$ across a 25 mH inductor is given in the following figure. Draw the current waveform across it for $0 \le t \le 2$ assuming i(0) = 0.

2. Find the energy stored in the inductor *L* and the capacitor *C* of the following circuit under steady state conditions.

3. Calculate the equivalent inductance L_{eq} of the following circuits.

4. The switch in the following circuit has been in position A for a long time.

At t = 0, the switch moves from position A to B. Calculate:

- (a) the current across the inductor $i_L(t)$ for t > 0,
- (b) the voltage of the inductor after the switch has been moved to position B, and
- (c) the voltage across the inductor $v_L(t)$ for t > 0.

5. Obtain the inductor current for both t < 0 and t > 0 in the following circuit.

