Heterogeneous Impact of the Global Financial Cycle

Aleksei Oskolkov University of Chicago, Department of Economics

October 19, 2023

motivation

In global downturns

- ► investors sell foreign assets (retrenchment)
- ► prices fall more in emerging markets
- ▶ outward flows fall more in <u>advanced economies</u>

evidence

This paper: a multiple-country model to study

- ▶ joint determination of gross capital flows and asset price responses
- ► heterogeneity in exposure to global shocks

model

Global intermediaries + multiple countries

Main experiment: shock to risk-bearing capacity of global intermediaries

- ► countries issue risky assets
- ▶ local agents and global intermediaries trade these assets
- ► intermediaries borrow from local agents

In equilibrium: heterogeneity in wealth, different exposure to foreign demand shocks

mechanism and key results

Intermediaries seek to sell risky assets in all countries

- ► rich countries: domestic investors absorb sales by foreigners
- ▶ poor countries: low wealth → unable to replace foreign demand

Equilibrium implications:

- ▶ assets issued in rich countries appreciate → good substitutes for safe assets
- ▶ rich countries insure poor ones
- wealth inequality between countries rises in downturns
- ▶ global intermediaries become relatively richer in downturns

explaining the data

Data: outward flows and risky assets prices procyclical in both AE and EM

Estimate that financial and real shocks positively correlated

- ► financial shocks induce countercyclical asset prices in AE
- ► real shocks (output) explain procyclicality

Correlation of wealth with global aggregates is 3 times lower in AE

▶ due to financial shocks

literature

Evidence of the global financial cycle and heterogeneous exposures:

Miranda-Agrippino Rey 2020,2022, Miranda-Agrippino et al 2020, Barrot Serven 2018, Habib Venditti 2019, Cerutti et al 2019, Chari et al 2020, Eguren-Martin et al 2021, Gelos et al 2022, Kalemli-Ozkan 2019

This paper: analyze heterogeneity as an equilibrium feature in a model

Models of the global financial cycle and retrenchment:

► Caballero Simsek 2020, Jeanne Sandri 2023, Morelli et al 2023, Bai et al 2019, Dahlquist et al 2023, Gourinchas et al 2022, Davis van Wincoop 2021 2023, Farboodi Kondor 2022, Kekre Lenel 2021, Sauzet 2023, Maggiori 2017

This paper: explain heterogeneity using retrenchment, study risk-sharing

outline

- model
- shock to risk-taking capacity of global intermediaries
- quantitative evaluation and empirical evidence

model map

model map

regular countries

Countries $i \in [0, 1]$

- ightharpoonup Lucas tree with price p_{it} , fixed supply of 1
- ightharpoonup cumulative yield up to t denoted by y_{it}
- ▶ flow yield $dy_{it} = v_t dt + \sigma dZ_{it}$

problem of local savers

$$\max_{\{c_{it},\theta_{it}\}_{t\geq 0}} \mathbb{E}\left[\rho \int_0^\infty e^{-\rho t} \ln(c_{it}) dt\right]$$
s.t. $dw_{it} = (r_t w_{it} - c_{it}) dt + \theta_{it} w_{it} dR_{it}$

- ▶ share $1 \theta_{it}$ to intermediary's debt, interest rate $r_t dt$
- \blacktriangleright allocate share θ_{it} to tree, excess returns dR_{it}

$$dR_{it} = rac{1}{p_{it}}(dy_{it} + dp_{it}) - r_t dt \equiv \mu_{it}^R dt + \sigma_{it}^R dZ_{it}$$

► solution:

$$\theta_{it} = \frac{\mu_{it}^R}{(\sigma_i^R)^2}$$

(4)

(3)

(1)

(2)

)/37

intermediaries

Invest in trees in all countries, borrow from all savers

- ► assign portfolio weight $\hat{\theta}_{it}$ to country i
- ightharpoonup issue debt m_t , pay interest $r_t dt$
- ightharpoonup consume \hat{c}_t

$$d\hat{w}_t = \int_0^1 \hat{\theta}_{it} \hat{w}_t (dR_{it} + r_t dt) di - m_t r_t dt - \hat{c}_t dt$$
 (5)

Limited risk-taking capacity: cannot fully diversify their portfolio:

- non-trivial portfolio in equilibrium
- ► time-varying capacity to take risk

intermediary's problem

VAR-type constraint bounds total amount of risk:

foundation

$$\int_{0}^{1} \mathbb{V}_{t}[\hat{\theta}_{it}dR_{it}]di \leq \gamma_{t} \int_{0}^{1} \mathbb{E}_{t}[\hat{\theta}_{it}dR_{it}]di$$

Portfolio and consumption choice

$$\max_{\{\hat{c}_{t}, m_{t}, f_{t}\}_{t>0}} \mathbb{E}\left[\hat{\rho} \int_{0}^{\infty} e^{-\hat{\rho}t} \ln(\hat{c}_{t}) dt\right]$$

Cost parameter γ_t governs risk-taking capacity:

$$\hat{ heta}_{it} = \gamma_t rac{\mu_{it}^R}{(\sigma_t^R)^2}$$

equilibrium

Prices $\{p_{it}\}$, interest rate r_t , wealth distribution, and $\{c_{it}, \hat{c}_t, \theta_{it}, \hat{\theta}_{it}, m_t\}$ such that markets clear:

$$1 = \frac{\hat{\theta}_{it}\hat{w}_t}{p_{it}} + \frac{\theta_{it}w_{it}}{p_{it}} \quad \text{all } i \in [0, 1]$$
 (9)

$$m_{t} = \int_{0}^{1} w_{it} (1 - \theta_{it}) di \tag{10}$$

$$\nu_t = \hat{c}_t + \int_0^1 c_{it} di \tag{11}$$

equilibrium characterization

Solve for country-specific variables as functions of w and aggregate states

Prices only depend on r(t) and a global factor $\varphi(t) = \gamma(t)\hat{w}(t)$

Time-varying risk premium:

$$\mu_R(w,t) = \sigma_R(w,t)^2 \cdot \frac{p(w,t)}{\varphi(t)+w}$$

(12)

shock to risk-taking capacity $\gamma(t)$

Impulse response to an unanticipated jump in $\gamma(t)$ for illustration:

$$\gamma(t) = \gamma - e^{-\mu_{\gamma}t} \Delta_{\gamma} \tag{13}$$

Immediate effect: hit global factor $\varphi(t) = \gamma(t)\hat{w}(t)$

- demand for risky assets falls
- interest rate falls

shock to $\gamma(t)$: prices

Changes in asset prices on impact can be decomposed into

- ightharpoonup response to interest rate r(t)
- ightharpoonup response to global factor $\varphi(t)$

Figure: percentage changes in p(w,t) on impact.

shock to $\gamma(t)$: holdings

Tree holdings of domestic agents $\theta(w,t)w$

 $Figure: change \ in \ tree \ holdings \ on \ impact.$

adding a portfolio constaint

Now suppose there is a constraint on portfolio allocation:

$$\theta_{it} \leq \overline{\theta}$$

(14)

Risky holdings cannot exceed $\overline{ heta}w_{it}$

Binds for poor countries with high returns and low wealth

time-varying risk premium

Excess returns depend on whether the constraint is binding

stochastic dynamics

unconstrained countries:

$$\mu_R(w,t) = \sigma_R(w,t)^2 \cdot \frac{p(w,t)}{\varphi(t) + w}$$

(15)

constrained countries:

$$\mu_R(w,t) = \sigma_R(w,t)^2 \cdot \frac{p(w,t) - \overline{\theta}w}{\varphi(t)}$$

(16)

inelastic markets

Figure: Supply is vertical. Demand $\hat{\theta}$ from global banks in blue, from local savers θ in red.

inelastic markets

Figure: Supply is vertical. Demand $\hat{\theta}$ from global banks in blue, from local savers θ in red.

elastic markets

Figure: Supply is vertical. Demand $\hat{\theta}$ from global banks in blue, from local savers θ in red.

elastic markets

Figure: Supply is vertical. Demand $\hat{\theta}$ from global banks in blue, from local savers θ in red.

adding US assets

Lucas tree in the dominant country, fixed supply q, held by intermediaries

Price of tree \hat{p}_t , pays $v_t dt$:

$$d\hat{R}_t = rac{1}{\hat{p}_t}(d\hat{p}_t + \nu_t dt) - r_t dt$$

No risk in dividends, no associated ambiguity

(17)

adding US assets

solving for prices

Expressions for risk premium turn into non-linear PDE for prices p(w,t)

- ▶ use definition of returns to turn equilibrium conditions into PDE for prices
- ▶ PDE has unknown coefficients (μ^p, σ^p)
- use Itô's lemma to characterize (μ^p, σ^p) in terms of (μ^w, σ^w)
- use budget constraints to get (μ^w, σ^w)

At the end: asset prices p(w,t) and wealth density g(w,t) that solved a coupled system

shock to risk-taking capacity

shock to $\gamma(t)$: prices

- safe asset price $\hat{p}(t)$ increases on impact
- ightharpoonup risky asset prices p(w,t) move in different directions

shock to $\gamma(t)$: holdings

Tree holdings h(w, t) defined as

$$h(w,t) = \frac{\theta(w,t)w}{p(w,t)} \tag{18}$$

Figure: change in tree holdings on impact.

shock to $\gamma(t)$: loss-sharing

Figure: gains and losses on impact in percent of global GDP, weighted by density

- ▶ insurance: $AE \rightarrow intermediary \rightarrow EM$
- ► AE and intermediary become **richer**, EM become **poorer**

calibration and estimation

calibration

Calibrate steady state to reproduce aggregates, moments of assets/liabilities ratio:

	model	target	source	
aggregates:				
US wealth share	31.5%	32.3%	Credit Suisse 2022	
US output share	23.7%	22.8%	World Bank	
average risk premium	2.62pp	2.5pp	Gourinchas Rey 2022	
emerging market premium	2.22pp	2.3pp	Adler Garcia-Macia 2018	
external assets to external liabilities:				
mean	1.071	1.075	IFS (IMF)	
standard deviation	0.686	0.685	IFS (IMF)	
q25	0.614	0.621	IFS (IMF)	
q50	0.849	0.877	IFS (IMF)	
q75	1.285	1.249	IFS (IMF)	

estimation

Estimate parameters of aggregate shocks: $(\mu_{\gamma}, \mu_{\nu}, \sigma_{\gamma}, \sigma_{\nu})$

Simulate the model, compute moments of first-order deviations $\tilde{m}(t)$ and $\tilde{p}(t)$

total external assets

$$m(t) = \int w(1 - \theta(w, t))dG(w, t)$$
(19)

average risky asset price

$$p(t) = \int p(w, t) dG(w, t)$$
 (20)

moments

Data: quarterly returns on MSCI ex-US index for \tilde{p}_t , total outflows from IMF data for \tilde{m}_t

Table: targets

	$\operatorname{std}(ilde{p}_t)$	$\operatorname{std}(ilde{m}_t)$	$\operatorname{corr}(\tilde{p}_t, \tilde{m}_t)$	$\operatorname{corr}(\tilde{p}_t, \tilde{p}_{t-1})$	$\operatorname{corr}(\tilde{m}_t, \tilde{m}_{t-1})$
data	0.048	0.049	0.738	0.785	0.828
model	0.048	0.049	0.740	0.779	0.839

estimated parameters

untargeted moments

Associate AE to unconstrained countries

inpulse responses

Gross outflows relative to assets are more volatile in AE:

	$\operatorname{std}(\tilde{m}_t^{AE})$	$\operatorname{std}(\tilde{m}_t^{EM})$
data	0.045	0.035
model	0.074	0.027

Asset prices are less volatile in AE:

	$\operatorname{std}(\tilde{p}_t^{AE})$	$\operatorname{std}(\tilde{p}_t^{EM})$
data	0.042	0.059
model	0.030	0.048

untargeted moments: cyclicality

- ► cyclicality of outflows stronger in AE
- cyclicality of prices is stronger in EM
- ► relative performance negatively correlated with relative outflows

	$\operatorname{corr}(\tilde{m}_t^{AE} - \tilde{m}_t^{EM}, \tilde{m}_t)$	$\operatorname{corr}(\tilde{p}_t^{AE} - \tilde{p}_t^{EM}, \tilde{m}_t)$	$\operatorname{corr}(\tilde{p}_t^{AE} - \tilde{p}_t^{EM}, \tilde{m}_t^{AE} - \tilde{m}_t^{EM})$
data	0.67	-0.16	-0.17
model	0.13	-0.55	-0.59

shock to output in ROW and US

EIS = 1: shocks to $\gamma(t)$ do not destroy wealth, no swings in aggregate consumption:

$$\rho \int_0^1 w dG(w, t) + \hat{\rho}\hat{w}(t) = \nu(t)(1+q)$$
 (21)

Isolated shock to $\gamma(t)$ necessarily redistributive

Data: prices go up and down together

shocks to v(t)

Interest rate rises, all prices fall

Poor countries more exposed to foregin demand $\hat{w}(t)$ \longrightarrow prices fall more

Loss distribution very similar for shocks to $\nu(t)$ in ROW and US

prices

losses

variance decomposition

	full model	only γ	only ν
m_t	0.049	0.024	0.044
p_t	0.048	0.007	0.044
${p}_t^{AE}$	0.030	0.009	0.033
p_t^{EM}	0.048	0.010	0.042
realative performance			
p_t^{AE} - p_t^{EM}	0.026	0.019	0.010

Table: standard deviations of first-order responses

cyclicality of prices

Shocks to γ generate countercyclical returns in AE, procyclical in EM

Shocks to ν make returns procyclical everywhere

	full model	only γ	only ν
\hat{p}_t	0.43	-0.96	0.66
${p}_t^{AE}$	0.52	-0.97	0.58
p_t^{EM}	0.69	0.93	0.48
r_t	-0.62	0.97	-0.57
relative performance			
$p_t^{AE}-p_t^{EM}$	-0.55	-0.95	-0.18

Table: correlations of first-order responses with total outflows \tilde{m}_t

cyclicality of wealth

Shocks to γ generate countercyclical wealth dynamics in AE, procyclical in EM

	full model	only γ	only ν
wealth			
\hat{w}_t	0.30	-0.95	0.11
w_t^{AE}	0.32	-0.89	0.97
w_t^{EM}	0.94	0.97	0.99

Table: Correlations of wealth with total outflows \tilde{m}_t

conclusion

Domestic demand in richer countries is more elastic due to size and portfolio constraints

- ▶ sudden stops lead to retrenchment that stabilizes prices
- assets issued by richer countries are endogenously safer
- ightharpoonup wealth transfers: rich ightharpoonup dominant ightharpoonup poor
- ► wealth redistribution: regressive

outflows in AE and EM

- ▶ net acquisition of foreign assets (flows): f_{it}
- ightharpoonup principal component F_t
- ightharpoonup total foreign assets (stock) A_{it}
- ▶ position-adjusted flows: $m_{it} = f_{it}/A_{i,t-1}$

Table: dependent variables expressed as percentage

	m_t^{AE}	m_t^{EM}	$m_t^{AE} - m_t^{EM}$
F_t	3.87	1.44	2.43
	(0.25)	(0.42)	(0.61)

global financial crisis taper tantrum trade wars

example: 2008

example: 2013

example: 2018

3 facts about gross capital flows

data

Gross outflows f_{it} : acquisition of external assets by country i in quarter t (net of sales)

▶ includes portfolio debt, equity, and bank flows

data construction

Measure of aggregate flows: principal component F_t

Asset prices: global asset price index p_t from MSCI, quarterly returns $Q_t = p_t/p_{t-1}$

fact 1: gross flows are correlated with asset prices

Correlation of gross outflows and asset prices:

$$\operatorname{corr}(Q_t, F_t) = 0.76 \ (0.07)$$
 $N = 84$

fact 2: correlation with aggregates is higher in AE

- ▶ run $f_{it} = \alpha_i + \beta_i F_t + \epsilon_{it}$, compute *R*-squared for every country *i*
- ► measure difference between AE and EM:

$$R_i^2 = r + \beta \mathbb{1}\{i \in AE\} + \epsilon_i \tag{22}$$

Table: dependent variable r_i expressed as percentage

	8.90
	(1.70)
$\mathbb{1}\{i\in AE\}$	25.36
	(4.33)
$R^2 = 0.37$,	N = 67
alternative average	correlations

fact 3: portfolio shifts have larger magnitudes in AE

- ▶ take **position-adjusted** outflows $\overline{f}_{it} = f_{it} / A_{i,t-1}$
- ▶ measure difference in loadings for **position-adjusted** flows:

$$\overline{f}_{it} = \alpha_i + \gamma F_t + \beta \mathbb{1}\{i \in AE\}F_t + \epsilon_{it}$$
(23)

Table: dependent variable \overline{f}_{it} expressed as percentage

F_t	1.50
	(0.43)
$\mathbb{1}\{i\in AE\}F_t$	2.15
	(0.60)
$R^2 = 0.02, N$	= 6223
alternative average overal	ll synchronization

data construciton

Gross outflows f_{it} : acquisition of external assets by country i in quarter t (net of sales)

- ▶ includes portfolio debt, equity, and bank flows
- raw data f_{it}^{raw} smoothed using the procedure from Forbes and Warnock 2012, 2021:

$$f_{it} = \sum_{t=3}^{t} f_{is}^{\text{raw}} - \sum_{t=7}^{t-4} f_{is}^{\text{raw}}$$
 (24)

Asset prices: global asset price index p_t from MSCI, smoothed quarterly returns Q_t :

$$Q_t = \sum_{t=3}^t \frac{p_s}{p_{s-1}} \tag{25}$$

time path of outflows and prices

measures of global risk-taking capacity

Table: correlations (95% confidence bands) back

	\overline{f}_t^{AE}	\overline{f}_t^{EM}	$\overline{f}_t^{AE} - \overline{f}_t^{EM}$
principal component F_t	0.86	0.34	0.53
	(0.08)	(0.23)	(0.15)
VIX (negative)	0.42	0.16	0.13
	(0.19)	(0.17)	(0.15)
asset price factor, Miranda-Agrippino Rey 2020	0.27	0.03	0.15
	(0.20)	(0.11)	(0.10)
intermediary factor, <u>He et al 2017</u>	0.19	-0.17	0.26
	(0.24)	(0.21)	(0.14)
treasury basis, <u>Jiang et al 2021</u>	0.27	0.00	0.17
	(0.13)	(0.10)	(0.09)

synchronization

Figure: average outflows \bar{a}_t^{AE} and \bar{a}_t^{EM} and outflow factor F_t

Volatility of in-group averages:
$$std(\bar{a}_t^{AE}) = 4.5\% \text{ vs } std(\bar{a}_t^{EM}) = 3.5\%$$

data (averages)

Gross outflows f_{it} : acquisition of external assets by country i in quarter t (net of sales)

► includes portfolio debt, equity, and bank flows

data construction

Measure of aggregate flows: weighted average F_t

• weights $s_i = 1/\operatorname{std}(f_{it})$ for each i

$$F_t = \frac{1}{N} \sum_{i} s_i f_{it} \tag{26}$$

Asset prices: global asset price index p_t from MSCI, quarterly returns $Q_t = p_t/p_{t-1}$

fact 1: gross flows are correlated with asset prices (averages)

Correlation of gross outflows and asset prices:

$$\frac{\text{corr}(Q_t, F_t) \quad 0.73}{(0.08)}$$

$$N = 84$$
back

fact 2: correlation with aggregates is higher in AE (averages)

- ightharpoonup run $f_{it} = \alpha_i + \beta_i F_t + \epsilon_{it}$, compute *R*-squared for every country *i*
- ► measure difference between AE and EM:

$$R_i^2 = r + \beta \mathbb{1}\{i \in AE\} + \epsilon_i \tag{27}$$

Table: dependent variable r_i expressed as percentage

$$\begin{array}{c}
8.05 \\
(1.55) \\
1\{i \in AE\} \quad \textbf{24.56} \\
(3.82) \\
\hline
R^2 = 0.37, N = 67
\end{array}$$

fact 3: portfolio shifts have larger magnitudes in AE (averages)

- ▶ take **position-adjusted** outflows $\overline{f}_{it} = f_{it}/A_{i,t-1}$
- ► measure difference in loadings for **position-adjusted** flows:

$$\overline{f}_{it} = \alpha_i + \gamma F_t + \beta \mathbb{1}\{i \in AE\}F_t + \epsilon_{it}$$
(28)

Table: dependent variable \overline{f}_{it} expressed as percentage

$$F_t$$
 1.77 (0.42)
$$\mathbb{1}\{i \in AE\}F_t$$
 1.67 (0.69)
$$R^2 = 0.02, N = 6223$$

intermediary's problem (ambiguity)

Consider misspecified processes $d\hat{Z}_{it} = dZ_{it} + \xi_{it}dt$ for idiosyncratic shocks:

Minmax problem: first choose corrections ζ_t , then portfolio and consumption

$$dR_{it} = (\mu_{it}^R - \mathbf{\zeta}_{it}\sigma_{it}^R)dt + \sigma_{it}^R d\hat{Z}_{it}$$

rm /

Cost parameter γ_t governs risk-taking capacity:

$$\hat{ heta}_{it} = \gamma_t rac{\mu_{it}^R}{(\sigma_{it}^R)^2}$$

$$\max_{\{\hat{c}_t, m_t, f_t\}_{t \ge 0}} \quad \min_{\{\xi_t\}_{t \ge 0}} \mathbb{E} \int_0^\infty e^{-\hat{\rho}t} \left(\hat{\rho} \ln(\hat{c}_t) + \frac{\gamma_t}{2} \int_0^1 \xi_{it}^2 di \right) dt$$

(29)

premium for aggregate risk

Intermediaries take the following positions:

(32)

$$\hat{\theta}_{it} = \gamma_t \frac{\mu_{it}^R - \tilde{\sigma}_{it}^R x_t}{(\sigma_{it}^R)^2}$$

Here the aggregate risk premium x_t is

$$x_t = \frac{\gamma_t \int_0^1 \frac{\mu_{it}^R \tilde{\sigma}_{it}^R}{(\sigma_{it}^R)^2} di}{1 + \gamma_t \int_0^1 \frac{(\tilde{\sigma}_{it}^R)^2}{(\sigma_{it}^R)^2} di}$$

intermediaries with a VAR constraint

Issue short-term riskless liabilities m_t , invest $(\hat{\theta}_{it})_i$ in regular country trees:

$$d\hat{w}_t = \int_0^1 \hat{ heta}_{it} \hat{w}_t (dR_{it} + r_t dt) di - m_t r_t dt - \hat{c}_t dt$$

$$\int_0^1 \hat{ heta}_{it} \hat{w}_t di = \hat{w}_t + m_t$$

$$\int_0^1 \mathbb{V}_t [\hat{\theta}_{it} (dR_{it} - \tilde{\sigma}_{it}^R \cdot dW_t)] di \leq \gamma_t \int_0^1 \mathbb{E}_t [\hat{\theta}_{it} (dR_{it} - \tilde{\sigma}_{it}^R x_t)] di$$

Net worth \hat{w}_t , consumption rate \hat{c}_t , log utility

Result: constant consumption rate
$$\hat{c}_t = \hat{\rho}\hat{w}_t$$
 and

$$\tilde{\sigma}^{R}_{X}$$

$$\hat{ heta}_{it} = \gamma_t rac{\mu_{it}^R - ilde{\sigma}_{it}^R x_t}{(\sigma^R)^2}$$

(34)

(35)

(36)

equilibrium with aggregate shocks

Given the process for excess returns

$$dR(w,S) = \mu_R(w,S)dt + \sigma_R(w,S)dZ + \tilde{\sigma}_R(w,S) \cdot dW$$
(38)

In equilibrium, excess returns satisfy

 $u_{\mathcal{R}}(w,\mathcal{S}) = x(\mathcal{S}) \cdot \tilde{\sigma}_{\mathcal{R}}(w,\mathcal{S}) +$

$$\sigma_{R}(w,\mathcal{S})^{2} \cdot \max \left\{ \frac{p(w,\mathcal{S})(\sigma_{R}(w,\mathcal{S})^{2} + |\tilde{\sigma}_{R}(w,\mathcal{S})|^{2}) - wx(\mathcal{S}) \cdot \tilde{\sigma}_{R}(w,\mathcal{S})}{\varphi(\mathcal{S})(\sigma_{R}(w,\mathcal{S})^{2} + |\tilde{\sigma}_{R}(w,\mathcal{S})|^{2}) + w\sigma_{R}(w,\mathcal{S})^{2}}, \frac{p(w,\mathcal{S}) - \overline{\theta}w}{\varphi(\mathcal{S})} \right\}$$

Here x(S) is the aggregate risk premium

$$x(\mathcal{S}) = \frac{\gamma \int \frac{\mu_R(w, \mathcal{S})\tilde{\sigma}_R(w, \mathcal{S})}{(\sigma_R(w, \mathcal{S}))^2} dG(w, \mathcal{S})}{1 + \gamma \int \frac{|\tilde{\sigma}_R(w, \mathcal{S})|^2}{(\sigma_R(w, \mathcal{S}))^2} dG(w, \mathcal{S})}$$
(40)

solving for prices and distributions

Shut down aggregate shocks,
$$\sigma_{\gamma} = \sigma_{\nu} = (0,0)$$

Given initial conditions, prices
$$p(w,t)$$
 and density $g(w,t)$ solve

$$r(t)p(w,t) - \partial_t p(w,t) = y(w,t) + \mu_w(w,t)\partial_w p(w,t) + \frac{1}{2}\sigma_w(w,t)^2\partial_{ww} p(w,t)$$

$$(t) - \partial_t p(w, t) = y(w, t) + \mu_w(w, t) \partial_w p(w, t)$$

$$\partial_t g(w,t) = -\partial_w [\mu_w(w,t)g(w,t)] + \frac{1}{2}\partial_{ww} [\sigma_w(w,t)^2 p(w,t)]$$

Risk-adjusted payoff y(w, t):

$$y(w,t) = v(t) - \left(\frac{\sigma}{1 - \epsilon(w,t)\theta(w,t)}\right)^2 \max\left\{\frac{1}{w + \varphi(t)}, \frac{1}{\varphi(t)}\left(1 - \frac{\overline{\theta}w}{p(w,t)}\right)\right\}$$

$$(w+q)$$

with wealth elasticity of price
$$\epsilon(w,t) = w/p(w,t) \cdot \partial_w p(w,t)$$

steady state

shock to risk-tolerance $\gamma(t)$: quantities

Figure: 5-th percentile of wealth distributions in green, 95-th percentile in purple.

parameters

parameter	value	meaning
regular countries		
ho	0.0793	discount rate
λ	0.0177	emigration rate
ν	0.0600	output rate
σ	0.0647	output volatility
$\overline{ heta}$	0.7059	upper limit on risky asset share
special country		
$\hat{ ho}$	0.0844	discount rate
$\hat{\lambda}$	0.0384	emigration rate
$\hat{\mathcal{V}}$	0.0600	output rate
ĝ	0.3096	asset stock
ζ	0.3824	country weight intercept
γ	0.6698	risk-taking capacity

estimation results

Estimate 5 parameters: persistence $(\mu_{\gamma}, \mu_{\nu})$ and loadings $(\sigma_{\gamma 1}, \sigma_{\gamma 2}, \sigma_{\nu 2})$

$$\begin{pmatrix} d\gamma_t \\ d\nu_t \end{pmatrix} = \begin{pmatrix} \mu_{\gamma} & 0 \\ 0 & \mu_{\nu} \end{pmatrix} \begin{pmatrix} \overline{\gamma} - \gamma_t \\ \overline{\nu} - \nu_t \end{pmatrix} dt + \begin{pmatrix} \sigma_{\gamma 1} & \sigma_{\gamma 2} \\ 0 & \sigma_{\nu 2} \end{pmatrix} \begin{pmatrix} dW_1 \\ dW_2 \end{pmatrix}$$
(44)

Results:

μ_{γ}	$\mu_{ u}$	$\sigma_{\gamma 1}$	$\sigma_{\gamma 2}$	$\sigma_{ u 2}$
0.2445	0.7757	-0.1258	-0.0843	-0.0039
(0.0450)	(0.0356)	(0.0098)	(0.0056)	(0.00006)

IRF: shock to $\gamma(t)$, aggregates

IRF: shock to $\gamma(t)$, AE and EM

IRF: shock to v(t), aggregates

IRF: shock to v(t), **AE** and **EM**

shock to $\gamma(t)$: adjustment

► rich countries sell trees back to finance consumption and accumulate savings US adjustment back

US adjustment

Figure: Responses of the special country's NFA and components of net income, percent of GDP.

evidence on prices and flows

Model: relative performance of AE vs EM

- negatively correlated with aggregate outflows
- ▶ negatively correlated with $\Delta = AE$ outflows EM outflows

Define R_t as returns on MSCI for AE and EM

Table: pairwise correlations

	$\overline{f}_t^{AE} - \overline{f}_t^{EM}$	$R_t^{AE} - R_t^{EM}$
F_t	0.53	-0.28
$\overline{f}_t^{AE} - \overline{f}_t^{EM}$		-0.13

AE and EM separately

relative performance over time

Figure: 5-year rolling-window correlation between $\bar{a}_t^{AE} - \bar{a}_t^{EM}$ and $R_t^{AE} - R_t^{EM}$

evidence: AE and EM separately

Figure: R_t^{AE} and \overline{a}_t^{AE} on the left, R_t^{EM} and \overline{a}_t^{EM} on the right

evidence: AE and EM separately

Figure: R_t^{AE} and \overline{a}_t^{AE} on the left, R_t^{EM} and \overline{a}_t^{EM} on the right

distribution of required returns

Figure: required excess returns. back

output shocks: price responses

Figure: cross-section of the changes in risky asset prices on impact.

- ightharpoonup interest rate rises, asset prices fall everywhere ightharpoonup wealth and consumption fall
- ▶ prices react to both r(t) and $\varphi(t)$ in EM, only react to r(t) in AE

output shocks: distribution of losses

Figure: gains and losses on impact in percent of global GDP, weighted by density.

▶ loss distributions very similar for shocks of US and ROW origin

