

Universidad Carlos III de Madrid Departamento de Informática Curso de Sistemas Operativos

Autor: José Daniel García Sánchez

Ejercicio

En un determinado sistema operativo los procesos se ejecutan con planificación apropiativa y política de planificación cíclica (round-robin).

En la siguiente tabla se especifica para cada proceso, su tiempo de llegada y el tiempo que necesitan para ejecutarse. Todos los procesos realizan exclusivamente tareas de cálculo.

Proceso	Tiempo de llegada	Tiempo de ejecución
P1	0	500
P2	100	300
Р3	300	400
P4	600	1000
P5	700	600

Se desea evaluar las diferencias que se producirán al variar la longitud de la rodaja de tiempo, considerándose valores de 200 y 500 milisegundos.

Para las dos posibilidades, se pide:

- 1. Determine el tiempo de finalización de cada proceso.
- 2. Determine el tiempo que cada proceso ha estado en el sistema (tiempo de retorno).
- 3. Determine el tiempo de servicio y el tiempo de espera de cada proceso.
- 4. Determine el tiempo de retorno normalizado
- 5. Determine el tiempo medio de espera.
- 6. Determine el tiempo medio de retorno normalizado.

Rodaja 200 ms

• •	Ts	: . Te : :	Tretorno	Tret. norm.
P	500	700	1200	1200 500
P _z	300	500	800	800 = 2'67
P ₃	400	900	1300	1300 = 325
P4	1000	1200	2200	2200 - 22
Ps	600	1100	1700	1700 = 283 600
• •	He	gi² : 800		2'67

Universidad Carlos III de Madrid Departamento de Informática Curso de Sistemas Operativos

Autor: José Daniel García Sánchez

Solución

T (rodaja 200)	CPU	COLA	
0	P1<500>		
100	P1<400>	P2<300>	
200	P2<300>	P1<300>	
300	P2<200>	P1<300>, P3<400>	
400	P1<300>	P3<400>, P2<100>	
600	P3<400>	P2<100>, P4<1000>, P1<100>	
800	P2<100>	P4<1000>, P1<100>, P5<600>, P3<200>	
900 - Fin P2	P4<1000>	P1<100>, P5<600>, P3<200>	
1100	P1<100>	P5<600>, P3<200>, P4<800>	
1200 - Fin P1	P5<600>	P3<200>, P4<800>	
1400	P3<200>	P4<800>, P5<400>	
1600 - Fin P3	P4<800>	P5<400>	
1800	P5<400>	P4<600>	
2000	P4<600>	P5<200>	
2200	P5<200>	P4<400>	
2400 - Fin P5	P4<400>	5.416965	
2800 - Fin P4			

Proceso	Ti	TF	Tq	Ts	Te	Tq norm
P1	0	1200	1200	500	700	1200/500 = 2,4
P2	100	900	800	300	500	800/300 = 2,67
P3	300	1600	1300	400	900	1300/400 = 3,25
P4	600	2800	2200	1000	1200	2200/ 1000 = 2,2
PS .	700	2400	1700	600	1100	1700/600 = 2,83
Promedio	130.00		77-001	10,012,00	880	2,67

T (rodaja 500)	CPU	COLA	
0	P1<500>	to accurate a	
100	P1<400>	P2<300>	
300	P1<300>	P2<300>, P3<400>	
500 - Fin P1	P2<300>	P3<400>	
500	P2<200>	P3<400>, P4<1000>	
700	P2<100>	P3<400>, P4<1000>, P5<600>	
800 - Fin P2	P3<400>	P4<1000>, P5<600>	
1200 - Fin P3	P4<1000>	P5<600>	
1700	P5<600>	P4<500>	
2200	P4<500>	P5<100>	
2700 - Fin P4	P5<100>	T-10000	
2800 - Fin P5			

Proceso	Ti	Tf	Tq	Ts	Te	Tg norm
P1	0	500	500	500	0	500/500 = 1
P2	100	800	700	300	400	700/300 = 2,33
P3	300	1200	900	400	500	900/400 = 2,25
P4	600	2700	2100	1000	1100	2100/1000 = 2,1
P5	700	2800	2100	600	1500	2100/600 = 3,5
Promedio	1			1000000	700	2,23