Perturbation-Stable Maximum Cut

Yuchong Pan

UBC Beyond Worst-Case Analysis Reading Group (Based on Tim Roughgarden's Notes for Stanford CS264)

June 30, 2020

MAXIMUM CUT

Problem (MAXIMUM CUT)

Input: An undirected graph G = (V, E) with edge weights $w_e > 0$ for each $e \in E$.

Goal: A cut (A, B) that maximizes the weight of the **crossing** edges.

MAXIMUM CUT

Problem (MAXIMUM CUT)

Input: An undirected graph G = (V, E) with edge weights $w_e > 0$ for each $e \in E$.

Goal: A cut (A, B) that maximizes the weight of the **crossing** edges.

► MAXIMUM CUT is a type of 2-clustering problem (e.g. weights measure dissimilarities).

Problem (MAXIMUM CUT, Decision Version)

Input: An undirected graph G = (V, E) with edge weights

 $w_e > 0$ for each $e \in E$, and a positive integer W.

Output: Yes iff. there is a set $S \subseteq V$ such that the weight of the

crossing edges is at least W.

Problem (MAXIMUM CUT, Decision Version)

Input: An undirected graph G = (V, E) with edge weights

 $w_e > 0$ for each $e \in E$, and a positive integer W.

Output: Yes iff. there is a set $S \subseteq V$ such that the weight of the **crossing** edges is at least W.

Problem (PARTITION, Decision Version)

Input: $(c_1,\ldots,c_n)\in\mathbb{Z}^n$.

Output: Yes iff. there is $I \subseteq [n]$ such that $\sum_{i \in I} c_i = \sum_{i \notin I} c_i$.

Problem (MAXIMUM CUT, Decision Version)

Input: An undirected graph G = (V, E) with edge weights $w_e > 0$ for each $e \in E$, and a positive integer W.

Output: Yes iff. there is a set $S \subseteq V$ such that the weight of the **crossing** edges is at least W.

Problem (PARTITION, Decision Version)

Input: $(c_1,\ldots,c_n)\in\mathbb{Z}^n$.

Output: Yes iff. there is $I \subseteq [n]$ such that $\sum_{i \in I} c_i = \sum_{i \notin I} c_i$.

Proof Sketch (PARTITION \leq_P MAXIMUM CUT)

- $ightharpoonup G = K_n$.
- $ightharpoonup w_{ij} = c_i c_j$ for all $i, j \in V, i \neq j$.
- $W = \lceil \frac{1}{4} \sum c_i^2 \rceil.$

► MINIMUM CUT is **not** *NP*-hard and can be solved by the Maximum-Flow Minimum-Cut Theorem.

- ► MINIMUM CUT is **not** *NP*-hard and can be solved by the Maximum-Flow Minimum-Cut Theorem.
- ► **Question:** Can't we negate the edge weights, yielding a MINIMUM CUT instance?

- ► MINIMUM CUT is **not** *NP*-hard and can be solved by the Maximum-Flow Minimum-Cut Theorem.
- ► **Question:** Can't we negate the edge weights, yielding a MINIMUM CUT instance?
- ▶ No! Polynomial-time algorithms solving MINIMUM CUT require nonnegative edge weights.

Exact Recovery

▶ Theme: To recover the optimal solution in polynomial time in γ -perturbation-stable instances, where γ is as small as possible.

Exact Recovery

▶ Theme: To recover the optimal solution in polynomial time in γ -perturbation-stable instances, where γ is as small as possible.

Definition (γ -Perturbation-Stability)

For $\gamma \geq 1$, an instance of MAXIMUM CUT is γ -perturbation-stable if a cut (A,B) is the unique optimal solution to all γ -perturbations, where each original edge weight w_e is replaced with an edge weight $w_e' \in [\frac{1}{\gamma}w_e, w_e]$.

▶ Question: Can we use an LP relaxation similar to the one for MINIMUM CUT, i.e.

$$\begin{array}{ll} \max & \sum_{e \in E} w_e x_e \\ \\ \text{s.t.} & x_e \geq |d_u - d_v| \,, \qquad \forall e = uv \in E, \\ & x_e \in [0,1], & \forall e \in E, \\ & d_v \in [0,1], & \forall v \in V. \end{array}$$

▶ Question: Can we use an LP relaxation similar to the one for MINIMUM CUT, i.e.

$$\begin{array}{ll} \max & \sum_{e \in E} w_e x_e \\ \\ \text{s.t.} & x_e \geq \left| d_u - d_v \right|, \qquad \forall e = uv \in E, \\ & x_e \in [0,1], \qquad \qquad \forall e \in E, \\ & d_v \in [0,1], \qquad \qquad \forall v \in V. \end{array}$$

No! $x_e = 1$ for each $e \in E$ is a feasible solution and maximizes the objective value.

▶ Question: Can we use an LP relaxation similar to the one for MINIMUM CUT, i.e.

$$\begin{array}{ll} \max & \sum_{e \in E} w_e x_e \\ \\ \text{s.t.} & x_e \geq \left| d_u - d_v \right|, \qquad \forall e = uv \in E, \\ & x_e \in [0,1], \qquad \qquad \forall e \in E, \\ & d_v \in [0,1], \qquad \qquad \forall v \in V. \end{array}$$

- No! $x_e = 1$ for each $e \in E$ is a feasible solution and maximizes the objective value.
- ▶ Question: What about $x_e \le d_u d_v$ and $x_e \le d_v d_u$?

▶ Question: Can we use an LP relaxation similar to the one for MINIMUM CUT, i.e.

$$\begin{array}{ll} \max & \sum_{e \in E} w_e x_e \\ \text{s.t.} & x_e \geq |d_u - d_v| \,, \qquad \forall e = uv \in E, \\ & x_e \in [0,1], & \forall e \in E, \\ & d_v \in [0,1], & \forall v \in V. \end{array}$$

- No! $x_e = 1$ for each $e \in E$ is a feasible solution and maximizes the objective value.
- ▶ **Question:** What about $x_e \le d_u d_v$ and $x_e \le d_v d_u$?
- ▶ This forces $x_e = 0$, instead of $x_e \le |d_u d_v|$.

Let $x_{ij} \in \{0,1\}$ denote whether or not i,j are on different sides of the cut, for all distinct $i,j \in V$. We denote by x_{ij} and x_{ij} the same variable.

- Let $x_{ij} \in \{0,1\}$ denote whether or not i,j are on different sides of the cut, for all distinct $i,j \in V$. We denote by x_{ij} and x_{ji} the same variable.
- ▶ **Intuition:** If *i*, *j* are on different sides, and *i*, *k* are also on different sides, then *j*, *k* must be on the same side.

- Let $x_{ij} \in \{0,1\}$ denote whether or not i,j are on different sides of the cut, for all distinct $i,j \in V$. We denote by x_{ij} and x_{ji} the same variable.
- ▶ **Intuition:** If *i*, *j* are on different sides, and *i*, *k* are also on different sides, then *j*, *k* must be on the same side.
- ▶ For any distinct $i, j, k \in V$, at most two of x_{ij}, x_{ik}, x_{jk} are 1.

- Let $x_{ij} \in \{0,1\}$ denote whether or not i,j are on different sides of the cut, for all distinct $i,j \in V$. We denote by x_{ij} and x_{ji} the same variable.
- ▶ **Intuition:** If *i*, *j* are on different sides, and *i*, *k* are also on different sides, then *j*, *k* must be on the same side.
- ▶ For any distinct $i, j, k \in V$, at most two of x_{ij}, x_{ik}, x_{jk} are 1.

$$x_{ij} + x_{ik} + x_{jk} \le 2$$
, $\forall i, j, k \in V$ distinct.

- Let $x_{ij} \in \{0,1\}$ denote whether or not i,j are on different sides of the cut, for all distinct $i,j \in V$. We denote by x_{ij} and x_{ji} the same variable.
- ▶ **Intuition:** If *i*, *j* are on different sides, and *i*, *k* are also on different sides, then *j*, *k* must be on the same side.
- ▶ For any distinct $i, j, k \in V$, at most two of x_{ij}, x_{ik}, x_{jk} are 1.

$$x_{ij} + x_{ik} + x_{jk} \le 2,$$
 $\forall i, j, k \in V$ distinct.

▶ **Intuition:** If i, j are on the same side, and i, k are on the same side, then j, k are on the same side.

- Let $x_{ij} \in \{0,1\}$ denote whether or not i,j are on different sides of the cut, for all distinct $i,j \in V$. We denote by x_{ij} and x_{ji} the same variable.
- ▶ **Intuition:** If *i*, *j* are on different sides, and *i*, *k* are also on different sides, then *j*, *k* must be on the same side.
- ▶ For any distinct $i, j, k \in V$, at most two of x_{ij}, x_{ik}, x_{jk} are 1.

$$x_{ij} + x_{ik} + x_{jk} \le 2,$$
 $\forall i, j, k \in V$ distinct.

- ▶ **Intuition:** If i, j are on the same side, and i, k are on the same side, then j, k are on the same side.
- For any distinct $i, j, k \in V$, $x_{ij} = x_{ik} = 0$ implies $x_{jk} = 0$.

- Let $x_{ij} \in \{0,1\}$ denote whether or not i,j are on different sides of the cut, for all distinct $i,j \in V$. We denote by x_{ij} and x_{ji} the same variable.
- ▶ **Intuition:** If *i*, *j* are on different sides, and *i*, *k* are also on different sides, then *j*, *k* must be on the same side.
- ▶ For any distinct $i, j, k \in V$, at most two of x_{ij}, x_{ik}, x_{jk} are 1.

$$x_{ij} + x_{ik} + x_{jk} \le 2,$$
 $\forall i, j, k \in V$ distinct.

- ▶ **Intuition:** If i, j are on the same side, and i, k are on the same side, then j, k are on the same side.
- ▶ For any distinct $i, j, k \in V$, $x_{ij} = x_{ik} = 0$ implies $x_{jk} = 0$.

$$x_{jk} \le x_{ij} + x_{ik}$$
, $\forall i, j, k \in V$ distinct.

► Hence we obtain the LP relaxation (LP-MAXCUT):

$$\max \qquad \sum_{(i,j) \in E} w_{ij} x_{ij}$$
 s.t.
$$x_{ij} + x_{ik} + x_{jk} \le 2, \qquad \forall i,j,k \in V \text{ distinct},$$

$$x_{jk} \le x_{ij} + x_{ik}, \quad \forall i,j,k \in V \text{ distinct},$$

$$x_{ij} \in [0,1], \qquad \forall i,j \in V \text{ distinct}.$$

Theorem

There is a constant c>0 such that in every $(c \log n)$ -perturbation-stable instance of MAXIMUM CUT with n vertices, (LP-MAXCUT) solves to integers.

Theorem

There is a constant c > 0 such that in every $(c \log n)$ -perturbation-stable instance of MAXIMUM CUT with n vertices, (LP-MAXCUT) solves to integers.

► Recall the proofs of exact recovery by LP in 1-perturbation-stable MINIMUM s-t CUT instances and in 4-perturbation-stable MINIMUM MULTIWAY CUT instances.

Theorem

There is a constant c > 0 such that in every $(c \log n)$ -perturbation-stable instance of MAXIMUM CUT with n vertices, (LP-MAXCUT) solves to integers.

- ► Recall the proofs of exact recovery by LP in 1-perturbation-stable MINIMUM *s-t* CUT instances and in 4-perturbation-stable MINIMUM MULTIWAY CUT instances.
- ▶ In each of the two proofs we design a randomized rounding algorithm that outputs a (random) cut such that the probability of an edge being cut is approximately the same as the value of the corresponding decision variable.

Theorem

There is a constant c > 0 such that in every $(c \log n)$ -perturbation-stable instance of MAXIMUM CUT with n vertices, (LP-MAXCUT) solves to integers.

- ► Recall the proofs of exact recovery by LP in 1-perturbation-stable MINIMUM s-t CUT instances and in 4-perturbation-stable MINIMUM MULTIWAY CUT instances.
- ▶ In each of the two proofs we design a randomized rounding algorithm that outputs a (random) cut such that the probability of an edge being cut is approximately the same as the value of the corresponding decision variable.
- ▶ MINIMUM *s*-*t* CUT: $A = \{v \in V : \hat{d}_v \leq r\}$ and $B = V \setminus A$, where $r \sim \mathsf{Uniform}(0,1)$.

Theorem

There is a constant c > 0 such that in every $(c \log n)$ -perturbation-stable instance of MAXIMUM CUT with n vertices, (LP-MAXCUT) solves to integers.

- ► Recall the proofs of exact recovery by LP in 1-perturbation-stable MINIMUM *s-t* CUT instances and in 4-perturbation-stable MINIMUM MULTIWAY CUT instances.
- ▶ In each of the two proofs we design a randomized rounding algorithm that outputs a (random) cut such that the probability of an edge being cut is approximately the same as the value of the corresponding decision variable.
- ▶ MINIMUM s-t CUT: $A = \{v \in V : \hat{d}_v \leq r\}$ and $B = V \setminus A$, where $r \sim \mathsf{Uniform}(0,1)$.
- ► MINIMUM MULTIWAY CUT: For each iteration, a group and a threshold are chosen uniformly randomly.

► A randomized rounding algorithm implies the exact recovery theorem since:

- ► A randomized rounding algorithm implies the exact recovery theorem since:
 - 1. The optimal fractional solution \hat{x} can only be better than the optimal integral solution C^* ;

- ► A randomized rounding algorithm implies the exact recovery theorem since:
 - 1. The optimal fractional solution \hat{x} can only be better than the optimal integral solution C^* ;
 - 2. The randomized rounding algorithm gives a distribution over *s-t* cuts that is as good, on average, as *C**;

- ► A randomized rounding algorithm implies the exact recovery theorem since:
 - 1. The optimal fractional solution \hat{x} can only be better than the optimal integral solution C^* ;
 - 2. The randomized rounding algorithm gives a distribution over *s-t* cuts that is as good, on average, as *C**;
 - 3. Hence the distribution must be a point mass on C^* .

- ► A randomized rounding algorithm implies the exact recovery theorem since:
 - 1. The optimal fractional solution \hat{x} can only be better than the optimal integral solution C^* ;
 - The randomized rounding algorithm gives a distribution over s-t cuts that is as good, on average, as C*;
 - 3. Hence the distribution must be a point mass on C^* .
- ▶ Formally, we define $\Delta(C)$ to be the total cost of C that exceeds that of C^* and $\Delta(\hat{x})$ to be total cost of C^* that exceeds the objective function value of \hat{x} .

- ► A randomized rounding algorithm implies the exact recovery theorem since:
 - 1. The optimal fractional solution \hat{x} can only be better than the optimal integral solution C^* ;
 - The randomized rounding algorithm gives a distribution over s-t cuts that is as good, on average, as C*;
 - 3. Hence the distribution must be a point mass on C^* .
- ▶ Formally, we define $\Delta(C)$ to be the total cost of C that exceeds that of C^* and $\Delta(\hat{x})$ to be total cost of C^* that exceeds the objective function value of \hat{x} .
- ▶ We show that $\mathbb{E}[\Delta(C)] \leq 0$ by the probability properties of the cut generated by the randomized rounding algorithm.

- ► A randomized rounding algorithm implies the exact recovery theorem since:
 - 1. The optimal fractional solution \hat{x} can only be better than the optimal integral solution C^* ;
 - The randomized rounding algorithm gives a distribution over s-t cuts that is as good, on average, as C*;
 - 3. Hence the distribution must be a point mass on C^* .
- ▶ Formally, we define $\Delta(C)$ to be the total cost of C that exceeds that of C^* and $\Delta(\hat{x})$ to be total cost of C^* that exceeds the objective function value of \hat{x} .
- ▶ We show that $\mathbb{E}[\Delta(C)] \leq 0$ by the probability properties of the cut generated by the randomized rounding algorithm.
- Since $\Delta(C) \geq 0$ and since the equality holds iff. C is an optimal cut, it follows that the randomized rounding algorithm outputs an optimal cut w.p.1.

Randomized Rounding Algorithm

Lemma

Fix an instance of the MAXIMUM CUT problem, with F^* the edges in the optimal cut, and \hat{x} the optimal solution to (LP-MAXCUT). Then there exists a randomized algorithm that generates a random cut (A,B) and a scaling parameter $\sigma>0$ such that:

1. For every edge $e = ij \notin F^*$,

$$\mathbb{P}[e \ cut \ by \ (A,B)] \geq \sigma \cdot \frac{\hat{x}_{ij}}{\alpha},$$

where
$$\alpha = \Theta(\log n)$$
;

2. For every edge $e = ij \in F^*$,

$$\mathbb{P}[e \text{ not cut by } (A,B)] \leq \sigma \cdot (1-\hat{x}_{ij});$$

3. The rounding algorithm is deterministic iff. \hat{x} is integral.

► Exercise: Show that this lemma implies the main theorem (outlined above, Homework #4).

► Exercise: Show that this lemma implies the main theorem (outlined above, Homework #4).

Proposition

Fix an instance of MAXIMUM CUT, a cut C, and a feasible solution \hat{x} to (LP-MAXCUT). For distinct $i, j \in V$, define

$$\hat{y}_{ij} = \left\{ \begin{array}{ll} \hat{x}_{ij}, & \text{if } i, j \text{ are on the same side of } C, \\ 1 - \hat{x}_{ij}, & \text{if } i, j \text{ are on different sides of } C. \end{array} \right.$$

Then \hat{y} satisfies the triangle inequality:

$$\hat{y}_{jk} \leq \hat{y}_{ij} + \hat{y}_{ik}$$

for every $i, j, k \in V$.

► Exercise: Show that this lemma implies the main theorem (outlined above, Homework #4).

Proposition

Fix an instance of MAXIMUM CUT, a cut C, and a feasible solution \hat{x} to (LP-MAXCUT). For distinct $i, j \in V$, define

$$\hat{y}_{ij} = \left\{ \begin{array}{ll} \hat{x}_{ij}, & \text{if } i, j \text{ are on the same side of } C, \\ 1 - \hat{x}_{ij}, & \text{if } i, j \text{ are on different sides of } C. \end{array} \right.$$

Then \hat{y} satisfies the triangle inequality:

$$\hat{y}_{jk} \leq \hat{y}_{ij} + \hat{y}_{ik}$$

for every $i, j, k \in V$.

► That is, \hat{x} , \hat{y} are both **pseudometrics** (i.e. metrics except that distinct points may have zero distances).

Theorem (Bourgain's Theorem)

For every n-point **pseudometric** space (X,d), there exists a randomized algorithm that generates a random partition (A,B) of X and a scaling parameter $\sigma>0$ such that, for all distinct $i,j\in X$,

$$\mathbb{P}[i,j \text{ on different sides of } (A,B)] \in \sigma \cdot \left[\frac{d(i,j)}{\alpha},d(i,j)\right],$$

where $\alpha = \Theta(\log n)$.

Theorem (Bourgain's Theorem)

For every n-point **pseudometric** space (X,d), there exists a randomized algorithm that generates a random partition (A,B) of X and a scaling parameter $\sigma>0$ such that, for all distinct $i,j\in X$,

$$\mathbb{P}[i,j \text{ on different sides of } (A,B)] \in \sigma \cdot \left[\frac{d(i,j)}{\alpha},d(i,j)\right],$$

where $\alpha = \Theta(\log n)$.

That is, every n-point metric space admits a randomized partitioning algorithm so that the sepration probabilities between pairs of points are **proportional** to the distances, up to a $\Theta(\log n)$ factor.

Theorem (Bourgain's Theorem)

For every n-point **pseudometric** space (X,d), there exists a randomized algorithm that generates a random partition (A,B) of X and a scaling parameter $\sigma>0$ such that, for all distinct $i,j\in X$,

$$\mathbb{P}[i, j \text{ on different sides of } (A, B)] \in \sigma \cdot \left[\frac{d(i, j)}{\alpha}, d(i, j)\right],$$

where $\alpha = \Theta(\log n)$.

- That is, every n-point metric space admits a randomized partitioning algorithm so that the sepration probabilities between pairs of points are **proportional** to the distances, up to a $\Theta(\log n)$ factor.
- ► The $\Theta(\log n)$ approximation factor is the best possible for **arbitrary** pseudometric spaces.

Proof (Proposition & Bourgain's Theorem ⇒ Lemma).

Fix an instance of MAXIMUM CUT. Let C^* denote an optimal cut, cutting the edges F^* .

Proof (Proposition & Bourgain's Theorem ⇒ Lemma).

- Fix an instance of MAXIMUM CUT. Let C^* denote an optimal cut, cutting the edges F^* .
- Let \hat{x} be an optimal solution to (LP-MAXCUT). Define \hat{y} as in Proposition (with C^* being the cut).

Proof (Proposition & Bourgain's Theorem ⇒ Lemma).

- Fix an instance of MAXIMUM CUT. Let C^* denote an optimal cut, cutting the edges F^* .
- Let \hat{x} be an optimal solution to (LP-MAXCUT). Define \hat{y} as in Proposition (with C^* being the cut).
- ▶ By Proposition, ŷ is a pseudometric.

Proof (Proposition & Bourgain's Theorem ⇒ Lemma).

- Fix an instance of MAXIMUM CUT. Let C^* denote an optimal cut, cutting the edges F^* .
- ▶ Let \hat{x} be an optimal solution to (LP-MAXCUT). Define \hat{y} as in Proposition (with C^* being the cut).
- ▶ By Proposition, ŷ is a pseudometric.
- ▶ By Bourgain's Theorem, there is a randomized algorithm that outputs a partition (A, B) and $\sigma > 0$ such that

$$\mathbb{P}[i,j \text{ on different sides of } (A,B)] = \sigma \cdot \left[\frac{\hat{y}_{ij}}{\alpha},\hat{y}_{ij}\right],$$

where $\alpha = \Theta(\log n)$.

Proof (Proposition & Bourgain's Theorem ⇒ Lemma).

- ► By the definition of ŷ,
 - 1. If i, j are on the same side of C^* , then

$$\mathbb{P}[i,j \text{ on different sides of } (A,B)] \in \sigma \cdot \left[rac{\hat{x}_{ij}}{lpha},\hat{x}_{ij}
ight].$$

2. If i, j are on different sides of C^* , then

$$\mathbb{P}[i,j \text{ on different sides of } (A,B)] \in \sigma \cdot \left| \frac{1-\hat{x}_{ij}}{\alpha}, 1-\hat{x}_{ij} \right|.$$

Proof (Proposition & Bourgain's Theorem ⇒ Lemma).

- ► By the definition of ŷ,
 - 1. If i, j are on the same side of C^* , then

$$\mathbb{P}[i,j \text{ on different sides of } (A,B)] \in \sigma \cdot \left[rac{\hat{x}_{ij}}{lpha},\hat{x}_{ij}
ight].$$

2. If i, j are on different sides of C^* , then

$$\mathbb{P}[i,j \text{ on different sides of } (A,B)] \in \sigma \cdot \left[\frac{1-\hat{x}_{ij}}{\alpha},1-\hat{x}_{ij}\right].$$

▶ (3) follows from the description of the randomized algorithm in Bourgain's Theorem.

Proof (Proposition & Bourgain's Theorem ⇒ Lemma).

- ▶ By the definition of ŷ,
 - 1. If i, j are on the same side of C^* , then

$$\mathbb{P}[i,j \text{ on different sides of } (A,B)] \in \sigma \cdot \left[rac{\hat{x}_{ij}}{lpha},\hat{x}_{ij}
ight].$$

2. If i, j are on different sides of C^* , then

$$\mathbb{P}[i,j \text{ on different sides of } (A,B)] \in \sigma \cdot \left\lfloor \frac{1-\hat{x}_{ij}}{\alpha}, 1-\hat{x}_{ij} \right\rfloor.$$

(3) follows from the description of the randomized algorithm in Bourgain's Theorem.

► **Exercise:** Prove Proposition and Bourgain's Theorem (Homework #4).

Definition (α -Embeddings)

Let $(X, d_X), (Y, d_Y)$ be metric spaces. We say that $\phi: X \to Y$ is an α -embedding if there exists r > 0 such that

$$r \cdot d_X(u, v) \le d_Y(\phi(u), \phi(v)) \le r \cdot \alpha \cdot d_X(u, v).$$

for all $u, v \in X$.

Definition (α -Embeddings)

Let $(X, d_X), (Y, d_Y)$ be metric spaces. We say that $\phi: X \to Y$ is an α -embedding if there exists r > 0 such that

$$r \cdot d_X(u, v) \le d_Y(\phi(u), \phi(v)) \le r \cdot \alpha \cdot d_X(u, v).$$

for all $u, v \in X$.

▶ **Dimensionality reduction** is the process of mapping a high dimensional dataset to a lower dimensional space, while preserving much of the important structure.

Definition (α -Embeddings)

Let $(X, d_X), (Y, d_Y)$ be metric spaces. We say that $\phi: X \to Y$ is an α -embedding if there exists r > 0 such that

$$r \cdot d_X(u, v) \le d_Y(\phi(u), \phi(v)) \le r \cdot \alpha \cdot d_X(u, v).$$

for all $u, v \in X$.

- ▶ **Dimensionality reduction** is the process of mapping a high dimensional dataset to a lower dimensional space, while preserving much of the important structure.
- ▶ For instance, let $X \subseteq \mathbb{R}^d$ and $Y = \mathbb{R}^t$ with t < d and d_X, d_Y being the Euclidean distance.

Theorem (Johnson-Lindenstrauss, 1984)

Let $x_1, \ldots, x_n \in \mathbb{R}^d$. Let $\epsilon \in (0,1)$. Then for some $t = O(\frac{\log(n)}{\epsilon^2})$, there exist $y_1, \ldots, y_n \in \mathbb{R}^t$ such that

$$\begin{array}{cccc} (1 - \epsilon) \|x_j\| & \leq & \|y_j\| & \leq & (1 + \epsilon) \|x_j\|, & \forall j \in [n], \\ (1 - \epsilon) \|x_j - x_{j'}\| & \leq & \|y_j - y_{j'}\| & \leq & (1 + \epsilon) \|x_j - x_{j'}\|, & \forall j, j' \in [n]. \end{array}$$

Notation:
$$||v|| = \sqrt{\sum_{i=1}^n v_i^2}$$
.

Theorem (Johnson-Lindenstrauss, 1984)

Let $x_1, \ldots, x_n \in \mathbb{R}^d$. Let $\epsilon \in (0,1)$. Then for some $t = O(\frac{\log(n)}{\epsilon^2})$, there exist $y_1, \ldots, y_n \in \mathbb{R}^t$ such that

$$\begin{array}{cccc} (1 - \epsilon) \|x_j\| & \leq & \|y_j\| & \leq & (1 + \epsilon) \|x_j\|, & \forall j \in [n], \\ (1 - \epsilon) \|x_j - x_{j'}\| & \leq & \|y_j - y_{j'}\| & \leq & (1 + \epsilon) \|x_j - x_{j'}\|, & \forall j, j' \in [n]. \end{array}$$

Notation: $||v|| = \sqrt{\sum_{i=1}^n v_i^2}$.

Remark: There is a **random linear map** such that for any x_1, \ldots, x_n the above condition holds with probability at least $\frac{1}{2n}$. This linear map is **oblivious**: it does not depend on x_1, \ldots, x_n at all! In fact, the linear map is just a matrix whose entries are independent Gaussians.

Theorem (Bourgain's Metric Embedding Theorem)

For any metric space (V,d), there exists an $O(\log n)$ -embedding into $\mathbb{R}^{O(\log^2 n)}$ with the ℓ_1 -norm that is computable with high probability by a randomized polynomial-time algorithm.

Theorem (Bourgain's Metric Embedding Theorem)

For any metric space (V, d), there exists an $O(\log n)$ -embedding into $\mathbb{R}^{O(\log^2 n)}$ with the ℓ_1 -norm that is computable with high probability by a randomized polynomial-time algorithm.

► This result is the best possible; i.e., there exists a metric that cannot be embedded into ℓ_1 with distortion less than $\Omega(\log n)$.

Definition (Cut Metrics)

A metric (X, d) is a **cut metric** if there exists $S \subseteq X$ such that d(x, y) = 0 whenever $x, y \in S$ or $x, y \notin S$, and d(x, y) = 1 otherwise.

Definition (Cut Metrics)

A metric (X, d) is a **cut metric** if there exists $S \subseteq X$ such that d(x, y) = 0 whenever $x, y \in S$ or $x, y \notin S$, and d(x, y) = 1 otherwise.

Lemma

A metric (X, d) is an ℓ_1 metric if and only if it is a nonnegative linear combination of cut metrics.

Definition (Cut Metrics)

A metric (X, d) is a **cut metric** if there exists $S \subseteq X$ such that d(x, y) = 0 whenever $x, y \in S$ or $x, y \notin S$, and d(x, y) = 1 otherwise.

Lemma

A metric (X, d) is an ℓ_1 metric if and only if it is a nonnegative linear combination of cut metrics.

► Lemma and Bourgain's Metric Embedding Theorem imply Bourgain's Theorem in the proof of the main theorem.

Proof.

▶ (⇐⇒) Let (X, d) be a nonnegative linear combination of cut metrics, i.e. $d = \sum_{k=1}^{m} \lambda_k \delta_{S_k}$ where $\lambda_k \geq 0$ and $S_k \subseteq X$.

- ▶ (⇐⇒) Let (X, d) be a nonnegative linear combination of cut metrics, i.e. $d = \sum_{k=1}^{m} \lambda_k \delta_{S_k}$ where $\lambda_k \geq 0$ and $S_k \subseteq X$.
- Let $v_i \in \mathbb{R}^m$ be such that $(v_i)_k = \lambda_k$ if $x_i \in S_k$ and $(v_i)_k = 0$ otherwise, for $i \in [n], k \in [m]$.

- ▶ (⇐⇒) Let (X, d) be a nonnegative linear combination of cut metrics, i.e. $d = \sum_{k=1}^{m} \lambda_k \delta_{S_k}$ where $\lambda_k \geq 0$ and $S_k \subseteq X$.
- Let $v_i \in \mathbb{R}^m$ be such that $(v_i)_k = \lambda_k$ if $x_i \in S_k$ and $(v_i)_k = 0$ otherwise, for $i \in [n], k \in [m]$.
- ▶ Then $d(x_i, x_j) = ||v_i v_j||_1$. Hence d is an ℓ_1 metric.

- ▶ (⇐⇒) Let (X, d) be a nonnegative linear combination of cut metrics, i.e. $d = \sum_{k=1}^{m} \lambda_k \delta_{S_k}$ where $\lambda_k \geq 0$ and $S_k \subseteq X$.
- Let $v_i \in \mathbb{R}^m$ be such that $(v_i)_k = \lambda_k$ if $x_i \in S_k$ and $(v_i)_k = 0$ otherwise, for $i \in [n], k \in [m]$.
- ▶ Then $d(x_i, x_j) = ||v_i v_j||_1$. Hence d is an ℓ_1 metric.
- ▶ (\Longrightarrow) Let (X,d) be an ℓ_1 metric, i.e. $\exists v_1,\ldots,v_n\in\mathbb{R}^m$ such that $d(x_i,x_j)=\|v_i-v_j\|_1$ for $i,j\in[n]$.

- ▶ (⇐⇒) Let (X, d) be a nonnegative linear combination of cut metrics, i.e. $d = \sum_{k=1}^{m} \lambda_k \delta_{S_k}$ where $\lambda_k \geq 0$ and $S_k \subseteq X$.
- Let $v_i \in \mathbb{R}^m$ be such that $(v_i)_k = \lambda_k$ if $x_i \in S_k$ and $(v_i)_k = 0$ otherwise, for $i \in [n], k \in [m]$.
- ▶ Then $d(x_i, x_j) = ||v_i v_j||_1$. Hence d is an ℓ_1 metric.
- ▶ (\Longrightarrow) Let (X, d) be an ℓ_1 metric, i.e. $\exists v_1, \dots, v_n \in \mathbb{R}^m$ such that $d(x_i, x_j) = \|v_i v_j\|_1$ for $i, j \in [n]$.
- Since ℓ_1 norms are **additive**, then it suffices to show for m=1 that $d=\sum_{S\subset X}\lambda_S\delta_S$ where $\lambda_S\geq 0$.

- ▶ (⇐⇒) Let (X, d) be a nonnegative linear combination of cut metrics, i.e. $d = \sum_{k=1}^{m} \lambda_k \delta_{S_k}$ where $\lambda_k \geq 0$ and $S_k \subseteq X$.
- Let $v_i \in \mathbb{R}^m$ be such that $(v_i)_k = \lambda_k$ if $x_i \in S_k$ and $(v_i)_k = 0$ otherwise, for $i \in [n], k \in [m]$.
- ▶ Then $d(x_i, x_j) = ||v_i v_j||_1$. Hence d is an ℓ_1 metric.
- ▶ (\Longrightarrow) Let (X, d) be an ℓ_1 metric, i.e. $\exists v_1, \dots, v_n \in \mathbb{R}^m$ such that $d(x_i, x_j) = \|v_i v_j\|_1$ for $i, j \in [n]$.
- Since ℓ_1 norms are **additive**, then it suffices to show for m=1 that $d=\sum_{S\subset X}\lambda_S\delta_S$ where $\lambda_S\geq 0$.
- For m = 1, we have $d(x_i, x_j) = |v_i v_j|$ where $v_1, \dots, v_n \in \mathbb{R}$.

- ▶ (⇐⇒) Let (X, d) be a nonnegative linear combination of cut metrics, i.e. $d = \sum_{k=1}^{m} \lambda_k \delta_{S_k}$ where $\lambda_k \geq 0$ and $S_k \subseteq X$.
- Let $v_i \in \mathbb{R}^m$ be such that $(v_i)_k = \lambda_k$ if $x_i \in S_k$ and $(v_i)_k = 0$ otherwise, for $i \in [n], k \in [m]$.
- ▶ Then $d(x_i, x_j) = ||v_i v_j||_1$. Hence d is an ℓ_1 metric.
- ▶ (\Longrightarrow) Let (X,d) be an ℓ_1 metric, i.e. $\exists v_1,\ldots,v_n \in \mathbb{R}^m$ such that $d(x_i,x_j) = \|v_i v_j\|_1$ for $i,j \in [n]$.
- Since ℓ_1 norms are **additive**, then it suffices to show for m=1 that $d=\sum_{S\subset X}\lambda_S\delta_S$ where $\lambda_S\geq 0$.
- For m = 1, we have $d(x_i, x_j) = |v_i v_j|$ where $v_1, \ldots, v_n \in \mathbb{R}$.
- ▶ Without loss of generality, $v_1 \leq ... \leq v_n$.

- ▶ (⇐⇒) Let (X, d) be a nonnegative linear combination of cut metrics, i.e. $d = \sum_{k=1}^{m} \lambda_k \delta_{S_k}$ where $\lambda_k \geq 0$ and $S_k \subseteq X$.
- Let $v_i \in \mathbb{R}^m$ be such that $(v_i)_k = \lambda_k$ if $x_i \in S_k$ and $(v_i)_k = 0$ otherwise, for $i \in [n], k \in [m]$.
- ▶ Then $d(x_i, x_j) = ||v_i v_j||_1$. Hence d is an ℓ_1 metric.
- ▶ (\Longrightarrow) Let (X,d) be an ℓ_1 metric, i.e. $\exists v_1,\ldots,v_n \in \mathbb{R}^m$ such that $d(x_i,x_j) = \|v_i v_j\|_1$ for $i,j \in [n]$.
- Since ℓ_1 norms are **additive**, then it suffices to show for m=1 that $d=\sum_{S\subset X}\lambda_S\delta_S$ where $\lambda_S\geq 0$.
- For m = 1, we have $d(x_i, x_j) = |v_i v_j|$ where $v_1, \dots, v_n \in \mathbb{R}$.
- ▶ Without loss of generality, $v_1 \leq ... \leq v_n$.
- ► Then $d = \sum_{k=1}^{n-1} (v_{k+1} v_k) \delta_{[k]}$.

Problem (Sparsest Cut)

Input: An undirected graph G = (V, E) with edge weights $w_e > 0$ for each $e \in E$, and k pairs of vertices (s_i, t_i) each with demand d_i .

Goal: A set of vertices *S* that minimizes

$$\rho(S) \equiv \frac{\sum_{e \in \delta(S)} c_e}{\sum_{i:|S \cap \{s_i,t_i\}|=1} d_i}.$$

Problem (Sparsest Cut)

Input: An undirected graph G = (V, E) with edge weights $w_e > 0$ for each $e \in E$, and k pairs of vertices (s_i, t_i) each with demand d_i .

Goal: A set of vertices *S* that minimizes

$$\rho(S) \equiv \frac{\sum_{e \in \delta(S)} c_e}{\sum_{i:|S \cap \{s_i,t_i\}|=1} d_i}.$$

Corollary

There is a randomized $O(\log n)$ -approximation algorithm for Sparsest Cut.

Tree Metric Embedding

Definition (Tree Metrics)

A metric (X, d) is a **tree metric** if there exists a tree T = (V, E) with edge costs c_e for each $e \in E$ such that d(u, v) is the cost of the unique path from u to v in T.

Tree Metric Embedding

Definition (Tree Metrics)

A metric (X, d) is a **tree metric** if there exists a tree T = (V, E) with edge costs c_e for each $e \in E$ such that d(u, v) is the cost of the unique path from u to v in T.

Theorem (Fakcharoenphol-Rao-Talwar)

For any metric (V,d) such that $d(u,v) \ge 1$ for all $u,v \in V$ with $u \ne v$, there exists a randomized, polynomial-time algorithm that produces a tree metric $(V',T), V \subseteq V'$ such that for all $u,v \in V$, we have $d(u,v) \le T_{uv}$ and $\mathbb{E}[T_{uv}] \le O(\log n)d(u,v)$.

Tree Metric Embedding

Definition (Tree Metrics)

A metric (X, d) is a **tree metric** if there exists a tree T = (V, E) with edge costs c_e for each $e \in E$ such that d(u, v) is the cost of the unique path from u to v in T.

Theorem (Fakcharoenphol-Rao-Talwar)

For any metric (V,d) such that $d(u,v) \geq 1$ for all $u,v \in V$ with $u \neq v$, there exists a randomized, polynomial-time algorithm that produces a tree metric $(V',T), V \subseteq V'$ such that for all $u,v \in V$, we have $d(u,v) \leq T_{uv}$ and $\mathbb{E}[T_{uv}] \leq O(\log n)d(u,v)$.

► The above result is obtained via the method of **hierarchical tree decomposition**.

Definition (Positive Semidefinite Matrices)

A matrix $X \in \mathbb{R}^{n \times n}$ is **positive semidefinite** (or **psd**), denoted $X \succeq 0$, if $y^T X y \ge 0$ for all $y \in \mathbb{R}^n$.

Fact

If $X \in \mathbb{R}^{n \times n}$ is a symmetric matrix, then the following statements are equivalent:

- 1. X is psd;
- 2. X has nonnegative eigenvalues;
- 3. $X = V^T V$ for some $V \in \mathbb{R}^{m \times n}$ where $m \leq n$;
- 4. $X = \sum_{i=1}^{n} \lambda_i w_i w_i^T$ for some $\lambda_i \geq 0$ and $w_i \in \mathbb{R}^n$ such that $w_i^T w_i = 1$ and $w_i^T w_j = 0$ for all $i \neq j$.

Definition (Semidefinite Programming, SDP)

A semidefinite program, or SDP, is a mathematical program with real-valued variables, a linear objective function, linear constraints, and a square symmetric matrix of variables constrained to be psd.

Definition (Semidefinite Programming, SDP)

A semidefinite program, or SDP, is a mathematical program with real-valued variables, a linear objective function, linear constraints, and a square symmetric matrix of variables constrained to be psd.

▶ Below is an example of SDP with variables x_{ij} for $i, j \in [n]$:

max or min
$$\sum_{i,j\in[n]} c_{ij}x_{ij}$$
(1)
s.t.
$$\sum_{i,j\in[n]} a_{ijk}x_{ij} = b_k, \qquad \forall k\in[n],$$

$$x_{ij} = x_{ji}, \qquad \forall i,j\in[n],$$

$$X = (x_{ij}) \succeq 0.$$

Definition (Semidefinite Programming, SDP)

A **semidefinite program**, or **SDP**, is a mathematical program with real-valued variables, a linear objective function, linear constraints, and a square symmetric matrix of variables constrained to be psd.

▶ Below is an example of SDP with variables x_{ij} for $i, j \in [n]$:

max or min
$$\sum_{i,j\in[n]} c_{ij}x_{ij} \tag{1}$$
 s.t.
$$\sum_{i,j\in[n]} a_{ijk}x_{ij} = b_k, \qquad \forall k\in[n],$$

$$x_{ij} = x_{ji}, \qquad \forall i,j\in[n],$$

$$X = (x_{ij}) \succeq 0.$$

SDP can be solved to within an additive error of ϵ in polynomial time in the size of the input and $\log(\frac{1}{\epsilon})$.

Definition (Vector Programming)

A **vector program** is a mathematical program with variables $v_i \in \mathbb{R}^n$, where n is the number of vectors, and an objective function and constraints linear in the inner products of the vectors.

Definition (Vector Programming)

A **vector program** is a mathematical program with variables $v_i \in \mathbb{R}^n$, where n is the number of vectors, and an objective function and constraints linear in the inner products of the vectors.

▶ Below is an example of vector programming with variables $v_i \in \mathbb{R}^n$ for $i \in [n]$:

max or min
$$\sum_{i,j\in[n]} c_{ij} (v_i \cdot v_j)$$
(2)
s.t.
$$\sum_{i,j\in[n]} a_{ijk} (v_i \cdot v_j) = b_k, \qquad \forall k \in [n],$$

$$v_i \in \mathbb{R}^n, \qquad \forall i \in [n].$$

Theorem (Equivalence of SDP and Vector Programming)

The SDP (1) and the vector program (2) are equivalent.

Theorem (Equivalence of SDP and Vector Programming)

The SDP (1) and the vector program (2) are equivalent.

Proof.

 (\Longrightarrow) Given a solution X to (1), compute a matrix V such that $X = V^T V$ (within small error), and set v_i to be the i^{th} column of V.

Theorem (Equivalence of SDP and Vector Programming)

The SDP (1) and the vector program (2) are equivalent.

- \blacktriangleright (\Longrightarrow) Given a solution X to (1), compute a matrix V such that $X = V^T V$ (within small error), and set v_i to be the i^{th} column of V.
- $\blacktriangleright \text{ Then } x_{ij} = \mathsf{v}_i^\mathsf{T} \mathsf{v}_j = \mathsf{v}_i \cdot \mathsf{v}_j.$

Theorem (Equivalence of SDP and Vector Programming)

The SDP (1) and the vector program (2) are equivalent.

- \blacktriangleright (\Longrightarrow) Given a solution X to (1), compute a matrix V such that $X = V^T V$ (within small error), and set v_i to be the i^{th} column of V.
- ► Then $x_{ij} = \mathbf{v}_i^T \mathbf{v}_j = \mathbf{v}_i \cdot \mathbf{v}_j$.
- ▶ Hence v_i 's is a feasible solution to (2) with the same value.

Theorem (Equivalence of SDP and Vector Programming)

The SDP (1) and the vector program (2) are equivalent.

- \blacktriangleright (\Longrightarrow) Given a solution X to (1), compute a matrix V such that $X = V^T V$ (within small error), and set v_i to be the i^{th} column of V.
- ► Then $x_{ij} = \mathbf{v}_i^T \mathbf{v}_j = \mathbf{v}_i \cdot \mathbf{v}_j$.
- ▶ Hence v_i 's is a feasible solution to (2) with the same value.
- ▶ (\Leftarrow) Given a solution v_i 's to (2), construct a matrix V with i^{th} column v_i , and let $X = V^T V$.

Theorem (Equivalence of SDP and Vector Programming)

The SDP (1) and the vector program (2) are equivalent.

- \blacktriangleright (\Longrightarrow) Given a solution X to (1), compute a matrix V such that $X = V^T V$ (within small error), and set v_i to be the i^{th} column of V.
- ► Then $x_{ij} = \mathbf{v}_i^T \mathbf{v}_j = \mathbf{v}_i \cdot \mathbf{v}_j$.
- ▶ Hence v_i 's is a feasible solution to (2) with the same value.
- ▶ (\Leftarrow) Given a solution v_i 's to (2), construct a matrix V with i^{th} column v_i , and let $X = V^T V$.
- ▶ Then X is symmetric and psd by Fact, with $x_{ij} = v_i \cdot v_j$.

Theorem (Equivalence of SDP and Vector Programming)

The SDP (1) and the vector program (2) are equivalent.

- \blacktriangleright (\Longrightarrow) Given a solution X to (1), compute a matrix V such that $X = V^T V$ (within small error), and set v_i to be the i^{th} column of V.
- $\blacktriangleright \text{ Then } x_{ij} = \mathsf{v}_i^T \mathsf{v}_j = \mathsf{v}_i \cdot \mathsf{v}_j.$
- ▶ Hence v_i 's is a feasible solution to (2) with the same value.
- ▶ (\Leftarrow) Given a solution v_i 's to (2), construct a matrix V with ith column v_i , and let $X = V^T V$.
- ▶ Then X is symmetric and psd by Fact, with $x_{ij} = v_i \cdot v_j$.
- ▶ Hence X is a feasible solution to (1) with the same value.

► Recall: We obtained exact recovery in Θ(log n)-perturbation-stable instances of MAXIMUM CUT.

- ▶ **Recall:** We obtained exact recovery in $\Theta(\log n)$ -perturbation-stable instances of MAXIMUM CUT.
- ▶ **Goal:** To get exact recovery for smaller values of γ by SDP.

- ▶ **Recall:** We obtained exact recovery in $\Theta(\log n)$ -perturbation-stable instances of MAXIMUM CUT.
- ▶ **Goal:** To get exact recovery for smaller values of γ by SDP.
- We start with a quadratic programming formulation, which suggests a vector programming relaxation since a vector program contains inner products of the vectors.

- ▶ **Recall:** We obtained exact recovery in $\Theta(\log n)$ -perturbation-stable instances of MAXIMUM CUT.
- ▶ **Goal:** To get exact recovery for smaller values of γ by SDP.
- We start with a quadratic programming formulation, which suggests a vector programming relaxation since a vector program contains inner products of the vectors.
- ▶ Let $z_i \in \{-1, +1\}$ for each $i \in V$ indicate which side of the cut i belongs to.

- Recall: We obtained exact recovery in Θ(log n)-perturbation-stable instances of MAXIMUM CUT.
- ▶ **Goal:** To get exact recovery for smaller values of γ by SDP.
- We start with a quadratic programming formulation, which suggests a vector programming relaxation since a vector program contains inner products of the vectors.
- ▶ Let $z_i \in \{-1, +1\}$ for each $i \in V$ indicate which side of the cut i belongs to.
- ► Hence, $z_i z_j$ is 0 if i, j are on the same side of the cut, and ± 2 otherwise.

- Recall: We obtained exact recovery in Θ(log n)-perturbation-stable instances of MAXIMUM CUT.
- ▶ **Goal:** To get exact recovery for smaller values of γ by SDP.
- We start with a quadratic programming formulation, which suggests a vector programming relaxation since a vector program contains inner products of the vectors.
- Let $z_i \in \{-1, +1\}$ for each $i \in V$ indicate which side of the cut i belongs to.
- ► Hence, $z_i z_j$ is 0 if i, j are on the same side of the cut, and ± 2 otherwise.
- ▶ Equivalently, $(z_i z_j)^2$ is 0 if i, j are on the same side of the cut, and 4 otherwise.

► Hence we obtain the **exact** quadratic programming formulation of MAXIMUM CUT:

max
$$\frac{1}{4}\sum_{ij\in E}w_{ij}(z_i-z_j)^2$$
 s.t. $z_i\in\{-1,+1\}, \quad \forall i\in V.$

► Hence we obtain the **exact** quadratic programming formulation of MAXIMUM CUT:

max
$$\frac{1}{4}\sum_{ij\in E}w_{ij}(z_i-z_j)^2$$
 s.t. $z_i\in\{-1,+1\}, \quad \forall i\in V.$

► This quadratic program is **equivalent** to MAXIMUM CUT. Hence optimizing this program is *NP*-hard.

▶ **Recall:** Vector programming and SDP are equivalent and hence can be solved to within small error in polynomial time.

- Recall: Vector programming and SDP are equivalent and hence can be solved to within small error in polynomial time.
- ▶ Hence relaxing each $z_i \in \{-1,1\}$ to a **unit vector** $v_i \in \mathbb{R}^n$ and therefore replacing quadratic terms with inner products yield a vector program that is computationally tractable:

$$\begin{aligned} \max & \quad \frac{1}{4} \sum_{ij \in E} w_{ij} \left\| \mathsf{v}_i - \mathsf{v}_j \right\|^2 \\ & \quad \left\| \mathsf{v}_i \right\|^2 = 1, \qquad \forall i \in V, \\ \text{s.t.} & \quad \mathsf{v}_i \in \mathbb{R}^n, \qquad \forall i \in V. \end{aligned}$$

- ▶ Recall: Vector programming and SDP are equivalent and hence can be solved to within small error in polynomial time.
- ▶ Hence relaxing each $z_i \in \{-1,1\}$ to a **unit vector** $v_i \in \mathbb{R}^n$ and therefore replacing quadratic terms with inner products yield a vector program that is computationally tractable:

$$\max \quad \frac{1}{4} \sum_{ij \in E} w_{ij} \| \mathbf{v}_i - \mathbf{v}_j \|^2$$

$$\| \mathbf{v}_i \|^2 = 1, \qquad \forall i \in V,$$
s.t.
$$\mathbf{v}_i \in \mathbb{R}^n, \qquad \forall i \in V.$$

▶ The quadratic terms $\|\mathbf{v}_i - \mathbf{v}_j\|^2$ and $\|\mathbf{v}_i\|^2$ expands to sums of inner products $\mathbf{v}_i \cdot \mathbf{v}_i - 2 \cdot \mathbf{v}_i \cdot \mathbf{v}_j + \mathbf{v}_j \cdot \mathbf{v}_j$ and $\mathbf{v}_i \cdot \mathbf{v}_i$, respectively.

- Recall: Vector programming and SDP are equivalent and hence can be solved to within small error in polynomial time.
- ▶ Hence relaxing each $z_i \in \{-1,1\}$ to a **unit vector** $v_i \in \mathbb{R}^n$ and therefore replacing quadratic terms with inner products yield a vector program that is computationally tractable:

$$\max \quad \frac{1}{4} \sum_{ij \in E} w_{ij} \| \mathbf{v}_i - \mathbf{v}_j \|^2$$

$$\| \mathbf{v}_i \|^2 = 1, \qquad \forall i \in V,$$
s.t.
$$\mathbf{v}_i \in \mathbb{R}^n, \qquad \forall i \in V.$$

- ► The quadratic terms $\|\mathbf{v}_i \mathbf{v}_j\|^2$ and $\|\mathbf{v}_i\|^2$ expands to sums of inner products $\mathbf{v}_i \cdot \mathbf{v}_i 2 \cdot \mathbf{v}_i \cdot \mathbf{v}_j + \mathbf{v}_i \cdot \mathbf{v}_j$ and $\mathbf{v}_i \cdot \mathbf{v}_i$, respectively.
- ▶ This vector program is a relaxation of the quadratic program by setting $v_i = (z_i, 0, ..., 0) \in \mathbb{R}^n$.

Goemans-Williamson Approximation Algorithm

► The above vector programming relaxation already leads to the best-known approximation algorithm for MAXIMUM CUT:

Goemans-Williamson Approximation Algorithm

► The above vector programming relaxation already leads to the best-known approximation algorithm for MAXIMUM CUT:

Theorem (Goemans-Williamson Approximation Algorithm)

There is a randomized .878-approximation algorithm for MAXIMUM CUT.

Goemans-Williamson Approximation Algorithm

► The above vector programming relaxation already leads to the best-known approximation algorithm for MAXIMUM CUT:

Theorem (Goemans-Williamson Approximation Algorithm)

There is a randomized .878-approximation algorithm for $MAXIMUM\ CUT$.

Theorem

Given the unique game conjecture there is no α -approximation for MAXIMUM CUT with constant $\alpha > .878$ unless P = NP.

For our purposes we want the vector programming relaxation to generalize the LP relaxation. Hence we want the analogs of the following two sets of constraints:

$$x_{ij} + x_{ik} + x_{jk} \le 2,$$
 $\forall i, j, k \in V \text{ distinct},$
 $x_{jk} \le x_{ij} + x_{ik},$ $\forall i, j, k \in V \text{ distinct}.$

For our purposes we want the vector programming relaxation to generalize the LP relaxation. Hence we want the analogs of the following two sets of constraints:

$$x_{ij} + x_{ik} + x_{jk} \le 2,$$
 $\forall i, j, k \in V \text{ distinct},$
 $x_{jk} \le x_{ij} + x_{ik},$ $\forall i, j, k \in V \text{ distinct}.$

► This implies the following two sets of constraints in the form of inner products:

$$\begin{split} \|\mathbf{v}_{i} - \mathbf{v}_{j}\|^{2} + \|\mathbf{v}_{i} - \mathbf{v}_{k}\|^{2} + \|\mathbf{v}_{j} - \mathbf{v}_{k}\|^{2} &\leq 8, \quad \forall i, j, k \in V \text{ distinct,} \\ \|\mathbf{v}_{j} - \mathbf{v}_{k}\|^{2} &\leq \|\mathbf{v}_{i} - \mathbf{v}_{j}\|^{2} + \|\mathbf{v}_{i} - \mathbf{v}_{k}\|^{2}, \qquad \forall i, j, k \in V \text{ distinct.} \end{split}$$

For our purposes we want the vector programming relaxation to generalize the LP relaxation. Hence we want the analogs of the following two sets of constraints:

$$x_{ij} + x_{ik} + x_{jk} \le 2,$$
 $\forall i, j, k \in V \text{ distinct},$
 $x_{jk} \le x_{ij} + x_{ik},$ $\forall i, j, k \in V \text{ distinct}.$

This implies the following two sets of constraints in the form of inner products:

$$\begin{aligned} \|\mathbf{v}_{i} - \mathbf{v}_{j}\|^{2} + \|\mathbf{v}_{i} - \mathbf{v}_{k}\|^{2} + \|\mathbf{v}_{j} - \mathbf{v}_{k}\|^{2} &\leq 8, \quad \forall i, j, k \in V \text{ distinct,} \\ \|\mathbf{v}_{j} - \mathbf{v}_{k}\|^{2} &\leq \|\mathbf{v}_{i} - \mathbf{v}_{j}\|^{2} + \|\mathbf{v}_{i} - \mathbf{v}_{k}\|^{2}, \qquad \forall i, j, k \in V \text{ distinct.} \end{aligned}$$

▶ The extended vector program, which we call (VP-MAXCUT), is still a relaxation for MAXIMUM CUT by setting v_i to $\pm e_1$ according to i's side.

Recall the roadmap for the proof of the exact recovery for MAXIMUM CUT with $\gamma = \Theta(\log n)$.

- Recall the roadmap for the proof of the exact recovery for MAXIMUM CUT with $\gamma = \Theta(\log n)$.
- We first proved a proposition saying that if \hat{x} is a pseudometric, then \hat{y} defined below is also a pseudometric:

$$\hat{y}_{ij} = \begin{cases} \hat{x}_{ij}, & \text{if } i, j \text{ are on the same side of } C, \\ 1 - \hat{x}_{ij}, & \text{if } i, j \text{ are on different sides of } C. \end{cases}$$

- Recall the roadmap for the proof of the exact recovery for MAXIMUM CUT with $\gamma = \Theta(\log n)$.
- We first proved a proposition saying that if \hat{x} is a pseudometric, then \hat{y} defined below is also a pseudometric:

$$\hat{y}_{ij} = \begin{cases} \hat{x}_{ij}, & \text{if } i, j \text{ are on the same side of } C, \\ 1 - \hat{x}_{ij}, & \text{if } i, j \text{ are on different sides of } C. \end{cases}$$

► This proposition and Bourgain's Theorem imply the lemma for the existence of randomized rounding algorithm that outputs a (random) cut such that the probability of an edge being cut is approximately the same as the value of the corresponding decision variable.

- Recall the roadmap for the proof of the exact recovery for MAXIMUM CUT with $\gamma = \Theta(\log n)$.
- We first proved a proposition saying that if \hat{x} is a pseudometric, then \hat{y} defined below is also a pseudometric:

$$\hat{y}_{ij} = \begin{cases} \hat{x}_{ij}, & \text{if } i, j \text{ are on the same side of } C, \\ 1 - \hat{x}_{ij}, & \text{if } i, j \text{ are on different sides of } C. \end{cases}$$

- ► This proposition and Bourgain's Theorem imply the lemma for the existence of randomized rounding algorithm that outputs a (random) cut such that the probability of an edge being cut is approximately the same as the value of the corresponding decision variable.
- ► The lemma then implies the exact recovery theorem by a common pattern used in perturbation-stable MINIMUM CUT and MINIMUM MULTIWAY CUT.

▶ Fix an instance of MAXIMUM CUT. Let $\hat{\mathbf{v}}_i$'s be an optimal solution to the vector program. Let $\hat{x}_{ij} = \frac{1}{4} \|\mathbf{v}_i - \mathbf{v}_j\|^2$ for any distinct $i, j \in V$.

- Fix an instance of MAXIMUM CUT. Let $\hat{\mathbf{v}}_i$'s be an optimal solution to the vector program. Let $\hat{\mathbf{x}}_{ij} = \frac{1}{4} \|\mathbf{v}_i \mathbf{v}_j\|^2$ for any distinct $i, j \in V$.

- ► Fix an instance of MAXIMUM CUT. Let $\hat{\mathbf{v}}_i$'s be an optimal solution to the vector program. Let $\hat{\mathbf{x}}_{ij} = \frac{1}{4} \|\mathbf{v}_i \mathbf{v}_j\|^2$ for any distinct $i, j \in V$.
- ▶ x̂ is a metric by the triangle inequality constraints of (VP-MAXCUT).
- ▶ Furthermore, \hat{x}_{ij} represents the squared Euclidean distances between points in \mathbb{R}^k for some k.

- Fix an instance of MAXIMUM CUT. Let $\hat{\mathbf{v}}_i$'s be an optimal solution to the vector program. Let $\hat{\mathbf{x}}_{ij} = \frac{1}{4} \|\mathbf{v}_i \mathbf{v}_j\|^2$ for any distinct $i, j \in V$.
- ▶ îx is a metric by the triangle inequality constraints of (VP-MAXCUT).
- ▶ Furthermore, \hat{x}_{ij} represents the squared Euclidean distances between points in \mathbb{R}^k for some k.

Definition (ℓ_2^2 Metrics)

A metric (X, d) is an ℓ_2^2 **metric** if it represents squared Euclidean distances between points in \mathbb{R}^k for some k.

That is, there exists an embedding from X to \mathbb{R}^k for some k such that $d(\cdot, \cdot)$'s are squared Euclidean distances between points in \mathbb{R}^k .

Not every metric is an ℓ_2^2 metric, e.g. the discrete metric.

- Not every metric is an ℓ_2^2 metric, e.g. the discrete metric.
- ► The $\Theta(\log n)$ approximation in Bourgain's Theorem is the best possible for **arbitrary** pseudometric spaces.

- Not every metric is an ℓ_2^2 metric, e.g. the discrete metric.
- The $\Theta(\log n)$ approximation in Bourgain's Theorem is the best possible for **arbitrary** pseudometric spaces.
- ▶ **Question:** Can the approximation factor α be improved for the more restricted ℓ_2^2 metrics?

- Not every metric is an ℓ_2^2 metric, e.g. the discrete metric.
- ► The $\Theta(\log n)$ approximation in Bourgain's Theorem is the best possible for **arbitrary** pseudometric spaces.
- ▶ **Question:** Can the approximation factor α be improved for the more restricted ℓ_2^2 metrics?

Theorem (Arora, Lee, and Naor, 2005)

For every n-point ℓ_2^2 metric space (X,d), there exists a randomized algorithm that generates a random partition (A,B) of X and a scaling parameter $\sigma>0$ such that, for all distinct $i,j\in X$,

$$\mathbb{P}[i,j \text{ on different sides of } (A,B)] \in \sigma \cdot \left[\frac{d(i,j)}{\alpha},d(i,j)\right],$$

where $\alpha = O(\sqrt{\log n} \log \log n)$.

➤ Arora, Lee, and Naor's Theorem gives the lower bound for the probability of an edge being cut. Similarly, we need an upper bound for the probability of an edge not being cut.

- Arora, Lee, and Naor's Theorem gives the lower bound for the probability of an edge being cut. Similarly, we need an upper bound for the probability of an edge not being cut.
- ► Hence we prove an analog of the proposition used in the exact recovery with $\gamma = \Theta(\log n)$. That is, if \hat{x} is an ℓ_2^2 metric, then so is the similarly defined \hat{y} .

- Arora, Lee, and Naor's Theorem gives the lower bound for the probability of an edge being cut. Similarly, we need an upper bound for the probability of an edge not being cut.
- ▶ Hence we prove an analog of the proposition used in the exact recovery with $\gamma = \Theta(\log n)$. That is, if \hat{x} is an ℓ_2^2 metric, then so is the similarly defined \hat{y} .

Proposition

Fix an instance of MAXIMUM CUT, a cut C, and a feasible solution $\hat{\mathbf{v}}_i$'s to (VP-MAXCUT). Let $\hat{\mathbf{x}}$ be the induced ℓ_2^2 metric $\hat{\mathbf{x}}_{ij} = \frac{1}{4} \|\mathbf{v}_i - \mathbf{v}_j\|^2$. For distinct $i, j \in V$, define

$$\hat{y}_{ij} = \begin{cases} \hat{x}_{ij}, & \text{if } i, j \text{ are on the same side of } C, \\ 1 - \hat{x}_{ij}, & \text{if } i, j \text{ are on different sides of } C. \end{cases}$$

Then \hat{y} is also an ℓ_2^2 metric.

Proof.

• ŷ is a metric by the triangle inequality constraints of (VP-MAXCUT).

Proof.

- ŷ is a metric by the triangle inequality constraints of (VP-MAXCUT).
- ▶ To prove that \hat{y} is an ℓ_2^2 metric, we need to exhibit an embedding of V into \mathbb{R}^k for some k such that \hat{y}_{ij} 's are squared Euclidean distances between points in \mathbb{R}^k .

Proof.

- ŷ is a metric by the triangle inequality constraints of (VP-MAXCUT).
- ▶ To prove that \hat{y} is an ℓ_2^2 metric, we need to exhibit an embedding of V into \mathbb{R}^k for some k such that \hat{y}_{ij} 's are squared Euclidean distances between points in \mathbb{R}^k .
- Define

$$\hat{u}_i = \left\{ \begin{array}{ll} \hat{v}_i, & \text{if } i \in A, \\ -\hat{v}_i, & \text{if } i \in B. \end{array} \right.$$

Proof.

- ŷ is a metric by the triangle inequality constraints of (VP-MAXCUT).
- ▶ To prove that \hat{y} is an ℓ_2^2 metric, we need to exhibit an embedding of V into \mathbb{R}^k for some k such that \hat{y}_{ij} 's are squared Euclidean distances between points in \mathbb{R}^k .
- Define

$$\hat{u}_i = \left\{ \begin{array}{ll} \hat{v}_i, & \text{if } i \in A, \\ -\hat{v}_i, & \text{if } i \in B. \end{array} \right.$$

▶ Then $\hat{y}_{ij} = \frac{1}{4} ||\hat{u}_i - \hat{u}_j||^2$ for any distinct $i, j \in V$.

Lemma

Fix an instance of Maximum Cut, with F^* the edges in the optimal cut, and v_i 's the optimal solution to (VP-MaxCut). Then there exists a randomized algorithm that generates a random cut (A,B) and a scaling parameter $\sigma>0$ such that:

1. For every edge $e = ij \notin F^*$,

$$\mathbb{P}[e \ cut \ by \ (A,B)] \geq \sigma \cdot \frac{\frac{1}{4} \|v_i - v_j\|^2}{\alpha},$$

where $\alpha = \Theta(\sqrt{\log n} \log \log n)$;

2. For every edge $e = ij \in F^*$,

$$\mathbb{P}[e \text{ not cut by } (A, B)] \leq \sigma \cdot \left(1 - \frac{1}{4} \|\mathsf{v}_i - \mathsf{v}_j\|\right);$$

3. The rounding algorithm is deterministic iff. \hat{v}_i 's are integral.

▶ By $\hat{\mathbf{v}}_i$'s being **integral**, we mean that there exist antipodal unit vectors \mathbf{w} , $-\mathbf{w}$ such that $\hat{\mathbf{v}}_i \in \{\mathbf{w}, -\mathbf{w}\}$ for each $i \in V$.

- ▶ By $\hat{\mathbf{v}}_i$'s being **integral**, we mean that there exist antipodal unit vectors \mathbf{w} , $-\mathbf{w}$ such that $\hat{\mathbf{v}}_i \in \{\mathbf{w}, -\mathbf{w}\}$ for each $i \in V$.
- As the lemma implies the main theorem in the exact recovery with $\gamma = \Theta(\log n)$, the above lemma implies the following theorem by an analagous argument:

- ▶ By $\hat{\mathbf{v}}_i$'s being **integral**, we mean that there exist antipodal unit vectors \mathbf{w} , $-\mathbf{w}$ such that $\hat{\mathbf{v}}_i \in \{\mathbf{w}, -\mathbf{w}\}$ for each $i \in V$.
- As the lemma implies the main theorem in the exact recovery with $\gamma = \Theta(\log n)$, the above lemma implies the following theorem by an analagous argument:

Theorem

There is a constant c>0 such that in every $(c\sqrt{\log n}\log\log n)$ -perturbation-stable instance of Maximum Cut with n vertices, every optimal solution to $(\mathrm{VP}\text{-}\mathrm{MaxCut})$ is integral.

Can We Do Better?

Theorem

There exist $O(\sqrt{\log n})$ -perturbation-stable instances of Maximum Cut for which the optimal solution to (VP-MaxCut) is not integral.

Can We Do Better?

Theorem

There exist $O(\sqrt{\log n})$ -perturbation-stable instances of Maximum Cut for which the optimal solution to (VP-MaxCut) is not integral.

Theorem

Assuming the Unique Game Conjecture, for every constant $\gamma \geq 1$, there is no polynomial-time algorithm for certifiable exact recovery in γ -perturbation-stable instances of Maximum Cut.

Can We Do Better?

Theorem

There exist $O(\sqrt{\log n})$ -perturbation-stable instances of Maximum Cut for which the optimal solution to (VP-MaxCut) is not integral.

Theorem

Assuming the Unique Game Conjecture, for every constant $\gamma \geq 1$, there is no polynomial-time algorithm for certifiable exact recovery in γ -perturbation-stable instances of Maximum Cut.

▶ Both results are based upon a reduction from SPARSEST CUT to MAXIMUM CUT. See *Bilu–Linial Stable Instances of Max Cut and Minimum Multiway* by Makarychev, Makarychev, and Vijayaraghavan (2013) and Homework #4.