NP-time variable elimination method.

Souymodip Chakraborty November 5, 2015

Abstract

1

Consider the ring of polynomials D[X] in the integral domain D, where X is the set of indeterminates (or variables). A polynomial $p(x_1, \dots, x_n)$, with variables $x_1, \dots, x_n \in X$, is seen as a sum of products with nonzero coefficients in D, where each $x_1^{d_1} \cdots x_n^{d_n}$ is called a term; together with its coefficient it is called a monomial; the degree of the term $x_1^{d_1} \cdots x_n^{d_n}$ is $d_1 + \cdots + d_n$; degree of a polynomial is the maximum degree of its terms. A polynomial is multivariate if |X| > 1. The ring of multivariate polynomials D[X] can be viewed as a ring of univariate polynomials $D[X \setminus \{x\}][x]$ with coefficients in the integral domain $D[X \setminus \{x\}]$ ([?] page 63, Theorem 2.). Particularly, the degree of a term of a polynomial in $D[X \setminus \{x\}][x]$ is the power of x in that term.

E(D[X]) is the set of (in)equations (e.g $x_1^2 - x_2 \ge 0.4$) where the left hand side (lhs) is a polynomial (e.g. $x_1^2 - x_2$) in D[X] and the right hand side (e.g. 0.4) is in D. A variable x is independent of $H \subseteq E(D[X])$ iff $H = H \cap E(D[X \setminus \{x\}])$ else it is dependent. The quotient domain Q(D) is the rational form of the type $\frac{f}{g}$ where $f, g \in D$.

A weighted tree T is a triple (V, E, w), where V is the set of vertices, $E \subseteq V \times V$ is the set of edges and w is an injective weight function from $E \to V$, where V is a set of variables. Let $X = \operatorname{img}(w)$. Define relations next and parent as follows; for $x, y \in X$, $v, v', v_1, v_2 \in V$, with $w^{-1}(x) = (v_1, v)$ and $w^{-1}(y) = (v', v_2)$, $(x, y) \in \operatorname{next}$ iff v = v', and $(x, y) \in \operatorname{parent}$ iff $v_1 = v'$. next is the transitive closure of next. Consider a term $\sigma = x_1 \cdots x_k$ such that for every $1 \le i < k$, $(x_i, x_{i+1}) \in \operatorname{next}$. Define $\operatorname{head}(\sigma) = x_1$, $\operatorname{tail}(\sigma) = x_k$ and $x_i \cdots x_k$ as a suffix of σ , for $1 \le i \le k$. Let $H \subseteq E(\mathbb{Q}[X])$ be a set of (in)equations with the following properties. For each $\xi \in H$:

```
P1. For all x \in X, \mathsf{lhs}(\xi) \in \mathbb{Q}[X \setminus \{x\}][x] \to \mathsf{degree}(\xi) \le 1
P2. For each term \sigma = x_1 \cdots x_k in \xi, (x_i, x_{i+1}) \in \mathsf{next}.
P3. If \mathsf{lhs}(\xi) = a_1 \sigma_1 + \cdots + a_k \sigma_k, where a_i \in \mathbb{Q} and \sigma_i are terms, then for all 1 \le i, j \le k, (\mathsf{head}(\sigma_i), \mathsf{head}(\sigma_j)) \in \mathsf{parent}.
```

Suppose $H \subseteq E(\mathbb{Q}[X])$ satisfies properties P1, P2 and P3 and let n be the number of variables and m be the number of (in)equations in H. We only

consider positive variable valuations. Thus for every variable x we have the in-equation x>0 in H. We present a non-deterministic algorithm to decide whether H is satisfiable. We begin by setting $H_0=H$ and at each iteration i, we eliminate a (particular) variable, say x and transform the set of equations from $H_i \subseteq E(\mathbb{Q}[X])$ to $H_{i+1} \subseteq E(\mathbb{Q}[X \setminus \{x\}])$. We consider comparisons \bowtie to be of the type $\{\geq,=,\leq\}$. (Strict inequalities can be removed by adding very small positive quantity ϵ . For example f < g can be transformed to $f + \epsilon \leq g$.) The algorithm proceeds in the following steps:

- 1. If H_i is independent of all variables, then each (in)equation, involves only rational numbers (and $\epsilon \to^+ 0$)¹. Return true iff each (in)equality in H_i is true.
- 2. Choose a variable x such that every variable y with $(x,y) \in \mathsf{next}^+$, is independent of H_i .
- 3. H_x is the largest subset of H_i such that every formula in H_x is dependent on x. If H_x is empty then $H_{i+1} = H_i$. Suppose H_x is not empty, every inequation $\xi \in H_x$ can be transformed to a form $(\sigma x \bowtie a_0 + a_1\sigma_1 + \dots + a_k\sigma_k)$, where $\sigma, \sigma_1, \dots, \sigma_k$ are terms in $\mathbb{Q}[X \setminus \{x\}]$ and $a_0, \dots, a_k \in \mathbb{Q}$. We will denote this form by $f \cdot x \bowtie g$. Set $H_{i+1} = H_i \setminus H_x$.
- 4. Define $\Lambda_{\bowtie} \subseteq \mathcal{Q}(\mathbb{Q}[X \setminus \{x\}])$, for $\bowtie \in \{\leq, =, \geq\}$ as follows:

$$\begin{split} &\Lambda_{\leq} \coloneqq \{ \frac{g}{f} \ | \ (f \cdot x \leq g) \in H_x \} \cup \{1\}, & \text{quotients that are at least as large as } x \\ &\Lambda_{=} \coloneqq \{ \frac{g}{f} \ | \ (f \cdot x = g) \in H_x \}, & \text{quotients that are equal } x \\ &\Lambda_{\geq} \coloneqq \{ \frac{g}{f} \ | \ (f \cdot x \geq g) \in H_x \} \cup \{\epsilon\} & \text{quotients that are at least as small as } x, \end{split}$$

where $g = a_0 + a_1\sigma_1 + \dots + a_k\sigma_k$ and $f = \sigma$.

5. Non-deterministically choose an ordering of elements in Λ_{\leq} and Λ_{\geq} . Then we have the following set of (in)equations:

$$\frac{g_1}{f_1} \leq \cdots \leq \frac{g_{n_1}}{f_{n_1}} \leq \frac{g_{n_1+1}}{f_{n_1+1}} = \cdots = \frac{g_{n_2}}{h_{n_2}} \leq \frac{g_{n_2+1}}{f_{n_2+1}} \leq \cdots \leq \frac{g_{n_3}}{f_{n_3}} \tag{1}$$

where, $\frac{g_i}{f_i}$ is in Λ_{\leq} for $1 \leq i \leq n_1$, in $\Lambda_{=}$ for $n_1 + 1 \leq i \leq n_2$ and in Λ_{\geq} for $n_2 + 1 \leq i \leq n_3$.

6. For each $1 \le j \le n_3$, we have $\xi_j := (g_j f_{j+1} \bowtie g_{j+1} f_j)$. ξ'_j is obtained from ξ_j by canceling variables that are common divisors of the polynomials in the left hand side and in the right hand side of ξ_j . Add ξ'_j to H_{i+1} for each ξ_j $(1 \le j \le n_3)$. Go to step 1.

First we will show that H_{i+1} created in step 6, satisfies P1, P2 and P3. Consider,

$$\frac{a_0 + a_1 \sigma_1 + \dots + a_k \sigma_k}{\sigma} \bowtie \frac{b_0 + b_1 \sigma_1' + \dots + b_l \sigma_l'}{\sigma'}$$
 (2)

Let $\xi := (\sigma \cdot x \bowtie a_0 + a_1\sigma_1 + \dots + a_k\sigma_k)$, $\xi' := (\sigma' \cdot x \bowtie b_0 + b_1\sigma'_1 + \dots + b_l\sigma'_l)$ and $\xi, \xi' \in H_i$ satisfy P1, P2 and P3. From the choice of the variable x (step 2), it is evident that either $\sigma | \sigma'$ or $\sigma' | \sigma$ (a | b means a divides b). W.l.o.g let us assumed $\sigma'' \sigma' = \sigma$.

 $^{^{1}\}epsilon$ tends to 0 from the positive side.

The crucial observation is that if $\sigma'|\sigma$ then σ' is a suffix of σ , lest there should exist a variable y, such that $(x, y) \in \text{next}$ and y is not independent of H_i .

Therefore, equation (2) can be rewritten as:

$$a_0 + a_1 \sigma_1 + \dots + a_k \sigma_k \bowtie b_0 \sigma'' + b_1 \sigma'' \sigma_1' + \dots + b_l \sigma'' \sigma_l'. \tag{3}$$

P3 holds for equation (3), this follows trivially, as $head(\sigma) = head(\sigma_i) = head(\sigma'')$ for $1 \le i \le k$. (tail(σ''), $head(\sigma')$) \in next, since $\sigma = \sigma''\sigma'$ and $(head(\sigma_i'), head(\sigma_j')) \in$ parent for all $1 \le i, j \le l$. Thus, the new equations added to H_{i+1} (after canceling common variables) also satisfy P1 and P2 (cancellation is valid since variables can only take positive value).

Correctness of the algorithm is due to the following arguments:

- 1. Suppose H_i is feasible and let ν be a satisfying valuation of the variables. Then there exists some order among the rational numbers obtained by substituting the values of the variables in the quotients $\{\frac{g(x_1, \dots, x_n)}{f(x_1, \dots, x_n)}\}$ present in Λ_{\leq} and Λ_{\geq} . If we choose this order as the ordering in the equation (1) and obtain H_{i+1} subsequently, then ν is also a satisfying valuation for (in)equations H_{i+1} .
- 2. If H_{i+1} is satisfiable then the (in)equations (1) are true for some value of $X \setminus \{x\}$. If $\Lambda_{=}$ is not empty then set $x = \frac{g_{n_2}}{f_{n_2}}$, else choose a value for x such that $\frac{g_{n_1}}{f_{n_1}} \le x \le \frac{g_{n_2+1}}{f_{n_2+1}}$. The value thus chosen is strictly greater than 0, since $\epsilon \in \Lambda_{\geq}$. (Hence, rational form and cancellation of variables defined in step 5 and step 6, respectively is valid.) This gives us a satisfying valuation of H_i .

Observe that at each iteration i, the size of H_i is O(|H|) and in every iteration we remove one variable and spend O(mn) in obtaining H_{i+1} (modulo division of rational numbers). The maximum number of iteration is n and total time complexity of the non-deterministic algorithm is $O(mn^2)$. Thus satisfiability of a set of polynomial equation with properties P1, P2 and P3 is in NP.