Functional programming, Seminar No. 3

Daniel Rogozin Institute for Information Transmission Problems, RAS Serokell OÜ Higher School of Economics The Faculty of Computer Science

Today

We will study

Motivation

Let us recall the example of a higher order function from the previous seminar:

```
changeTwiceBy :: (Int -> Int) -> Int -> Int
changeTwiceBy operation value = operation (operation value)
```

Here are the 'same' functions for Booleans and strings:

```
changeTwiceBy :: (Bool -> Bool) -> Bool -> Bool
changeTwiceByBool operation value =
  operation (operation value)

changeTwiceBy :: (String -> String) -> String -> String
changeTwiceBy operation value =
  operation (operation value)
```

Motivation

Let us recall the example of a higher order function from the previous seminar:

```
changeTwiceBy :: (Int -> Int) -> Int -> Int
changeTwiceBy operation value = operation (operation value)
```

Here are the 'same' functions for Booleans and strings:

```
changeTwiceBy :: (Bool -> Bool) -> Bool -> Bool
changeTwiceByBool operation value =
  operation (operation value)

changeTwiceBy :: (String -> String) -> String -> String
changeTwiceBy operation value =
  operation (operation value)
```

Too much boilerplate.

Parametric polymorphism

The key idea of parametric polymorphism that the same function can be called on distinct data types. Here are the first polymorphic examples:

```
id :: a -> a
id x = x
const :: a -> b -> a
const a b = a
fst :: (a, b) -> a
fst(a, b) = a
swap :: (a, b) -> (b, a)
swap (a, b) = (b, a)
```

Example

GHCi session

```
> id 6
6
> id 6.0
6.0
> const True 6
True
> const 6 True
6
> fst ('5', 5)
151
> fst (5, '5')
5
```

A brief clarification

- In such signatures as $a \to b \to a$, a, b are type variables that range over arbitrary data types. In fact, a, b are bounded by universal quantifier hidden under the carpet.
- In fact, the functions from the previous slide have the following signatures:

```
id :: forall a. a -> a
id x = x
const :: forall a b. a -> b -> a
const a b = a
fst :: forall a b. (a, b) -> a
fst(a, b) = a
swap :: forall a b. (a, b) \rightarrow (b, a)
swap(a, b) = (b, a)
```

Higher order functions and parametric polymorpism

```
infixr 9 .
(.) :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c
f \cdot g = \langle x - \rangle f (g x)
flip :: (a -> b -> c) -> b -> a -> c
flip f b a = f a b
fix :: (a -> a) -> a
fix f = f (fix f)
curry :: ((a, b) -> c) -> a -> b -> c
curry f x y = f (x, y)
uncurry :: (a \rightarrow b \rightarrow c) \rightarrow ((a, b) \rightarrow c)
uncurry f p = f (fst p) (snd p)
```

Examples with composition

```
incNegate :: Int -> Int
incNegate x = negate (x + 1)
incNegate x = negate $ x + 1
incNegate x = (negate . (+1)) x
incNegate x = negate . (+1) $ x
incNegate = negate . (+1)
```

curry **and** uncurry

```
> uncurry (*) (3,4)
12
> curry fst 3 4
3
> curry id 3 4
(3,4)
> uncurry const (3,4)
3
> uncurry (flip const) (3,4)
4
```

Examples with flip

More examples

```
show2 :: Int -> Int -> String
show2 x y = show x ++ " and " ++ show y

showSnd, showFst, showFst' :: Int -> String
showSnd = show2 1
showFst = flip show2 2
showFst' = (`show2` 2)
```

GHCi session

```
> showSnd 10
"1 and 10"
> showFst 10
"10 and 2"
> showFst' 42
"42 and 2"
```

We no longer have boilerplate

All those functions such as the following one

```
changeTwiceBy with Int
changeTwiceBy :: (Int -> Int) -> Int -> Int
changeTwiceBy operation value =
  operation (operation value)
```

can be generalised as follows:

```
applyTwice
applyTwice :: (a -> a) -> a -> a
applyTwice f a = f (f a)
applyTwice f a = f . f $ a
applyTwice f = f . f
```

HOF, polymorpism, and lists

```
map :: (a -> b) -> [a] -> [b]

filter :: (a -> Bool) -> [a] -> [a]

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

length :: [a] -> Int
```

We discuss their implementations closely on the next seminar. Here we just discuss them briefly.

The composition examples + list functions

```
foo, bar :: [Int] -> Int
foo patak =
  length $ filter odd $
  map (div 2) $ filter even $ map (div 7) patak
bar =
  length . filter odd .
  map (div 2) . filter even . map (div 7)
zip :: [a] -> [b] -> [(a, b)]
zip = zipWith (,)
```

The composition examples + list functions

```
stringsTransform :: [String] -> [String]
stringsTransform 1 =
 map (\s -> map toUpper s)
  (filter (\s -> length s == 5) 1)
stringsTransform 1 =
 map (\s -> map toUpper s) $
  filter (\s -> length s == 5) 1
stringsTransform 1 =
 map (map toUpper) $ filter ((== 5) . length) 1
stringsTransform =
 map (map toUpper) . filter ((== 5) . length)
```

Bounded polymorphism and type classes

Bounded polymorphism and type classes

The idea of bounded (ad hoc) polymorphism is that one has a general interface with instances for each concrete data type.

```
More examples
 > :t 9
 9 :: Num p \Rightarrow p
 > 9 :: Int
 9
 > 9 :: Double
 9.0
 > 9 :: Rational
 9 % 1
 > 9 :: Char
 <interactive>:6:1: error:
 * No instance for (Num Char) arising from the literal '9'
```

Type classes. Motivation

Let us take a look a the following function

```
elem' :: a -> [a] -> Bool
elem' _ [] = False
elem' x (y:ys) = x == y || elem' x ys
```

• a is an arbitrary type for which equality is defined as usual.

Type classes. Motivation

Type variables in polymorphic function are bounded with universal quantifier. In ad hoc polymorphism, type variables are also bounded with \forall but with the additional condition. This kind of quantification is called *bounded*.

```
elem :: forall a. Eq a \Rightarrow a \Rightarrow [a] \Rightarrow Bool elem _ [] = False elem x (y:ys) = x \Rightarrow y || elem x ys
```

Type classes

• A type class is a collection of functions with type signatures with a common type parameter. An example given:

```
class Eq a where
  (==) :: a -> a -> Bool
  (/=) :: a -> a -> Bool
  x /= y = neg (x == y)
```

• A type class name introduce a constraint called *context*:

```
elem :: Eq a \Rightarrow a \Rightarrow [a] \Rightarrow Bool
```

• The definition above without a context is not well-defined:

```
<interactive>:4:19: error:
* No instance for (Eq a) arising from a use of '=='
Possible fix: add (Eq a) to the context of
the type signature for: elem' :: forall a. a -> [a] -> Bool
```

Instance declarations

A given data type a has the *instance* of a type class if every function of that class is implemented for a. An example:

Polymorphism + instance declarations

 A type parameter in an instance declaration might be polymorphic as well:

• Without the context Eq a =>, this definition yields type error.

Some the Eq instances

The Eq type class has the following instances (some of them)

```
Eq instances

instance Eq a => Eq [a]
instance Eq Ordering
instance Eq Int
instance Eq Float
instance Eq Double
instance Eq Char
instance Eq Bool
```

 See the standard library source code to have a look at the implementation.

The Show type class

• The Show type class allows one to represent a value as a string:

Some Eq instances

```
class Show a where
show :: a -> String
```

 One needs to have a Show instance to show a value of a given type.

Some of the Show instances

Here are some of the Show instances:

```
Some Show instances
instance Show Integer
instance Show Int
instance Show Char
instance Show Bool
instance (Show a, Show b) => Show (a, b)
```

Ordering. Motivation

• Let us take a look at the quicksort function:

Some quicksort instances quicksort :: [a] -> [a] quicksort [] = [] quicksort (x:xs) = quicksort small ++ (x : quicksort large) where small = [y | y <- xs, y <= x] large = [y | y <- xs, y > x]

Ordering. Motivation

• Let us take a look at the quicksort function:

```
Some quicksort instances

quicksort :: [a] -> [a]
quicksort [] = []
quicksort (x:xs) =
  quicksort small ++ (x : quicksort large)
  where
  small = [y | y <- xs, y <= x]
  large = [y | y <- xs, y > x]
```

 Here we have the same situation. The definition of quicksort as above is wrong. There exist types elements of which are incomparable, complex numbers, e.g.

The Ord type class

The full definition of Ord is the following one:

```
Ord
 data Ordering = LT | EQ | GT
 class Eq a => Ord a where
   compare :: a -> a -> Ordering
   (<), (<=), (>), (>=) :: a -> a -> Bool
   max. min :: a -> a -> a
   compare x y = if x == y then EQ
             else if x <= y then LT
             else GT
   x <= v =
     case compare x y of
            GT -> False
            _ -> True
   {-# MINIMAL compare | (<=) #-}
```

Ord instances

Ord instances

```
instance Ord Int
instance Ord Float
instance Ord Double
instance Ord Char
instance Ord Bool
```

The Num type class

Num is a type class with the general interface of usual arithmetic operations.

```
Num

class Num a where

(+), (-), (*) :: a -> a -> a

negate, abs, signum :: a -> a

fromInteger :: Integer -> a

{-# MINIMAL (+), (*), abs, signum,

fromInteger, (negate | (-)) #-}
```

Num instances

Some Num instances

```
instance Num Integer instance Num Int instance Num Float instance Num Double
```

The Enum type class

Enum is a type class for sequentially ordered types.

```
Some Enum instances
 class Enum a where
   succ, pred :: a -> a
   toEnum :: Int -> a
   fromEnum :: a -> Int
   enumFrom :: a -> [a]
                                 -- [n..]
   enumFromThen :: a \rightarrow a \rightarrow [a] -- [n, m..]
   enumFromTo :: a \rightarrow a \rightarrow [a] -- [n..m]
   enumFromThenTo :: a \rightarrow a \rightarrow a \rightarrow [a] \rightarrow [n,m..p]
   {-# MINIMAL toEnum, fromEnum #-}
```

Enum instances

Some Num instances

```
instance Enum Integer
instance Enum Int
instance Enum Char
instance Enum Bool
instance Enum Float
instance Enum Double
```

The Fractional type class

The Fractional type class is a general interface for numeric division

```
Some Num instances

class Num a => Fractional a where
  (/) :: a -> a -> a
  recip :: a -> a
  fromRational :: Rational -> a
  {-# MINIMAL fromRational, (recip | (/)) #-}
```

- We require the Num a restriction.
- The Fractional instances are Float and Double.

Summary

On this seminar, we

- had a look at parametric polymorphism to see how to avoid boilerplate,
- · discussed type classes and ad hoc polymorphism,
- studied such basic type classes as Eq, Show, etc.

Summary

On this seminar, we

- had a look at parametric polymorphism to see how to avoid boilerplate,
- discussed type classes and ad hoc polymorphism,
- studied such basic type classes as Eq, Show, etc.

On the next seminar, we will study

- the variety of Haskell data types: algebraic data types, newtypes, type synonyms, etc,
- · the power of pattern matching,
- foldsm
- · evaluation enforcement.