Trochę o logikach modalnych

Kamil Matuszewski

Uniwersytet Wrocławski kamil.k.mat@gmail.com

20 marca 2018

Trochę historii

- Logika modalna rozszerza klasyczny rachunek zdań o modalności **możliwości** oraz **konieczności**
- Pierwsze próby nadania znaczenia tym modalnościom podejmował już Arystoteles
- Twórcą pierwszych systemów modalnego rachunku zdań jest C. I. Lewis - systemy nazwano S1 i S2
- Później powstało także wiele innych systemów: Kripkego, Feyesa, Wrighta

- Rozszerzamy klasyczną logikę o nowe operatory □ i ◊
- $\varphi ::= \top |\bot| p |\neg \varphi| \varphi \wedge \varphi |\varphi \vee \varphi| \varphi \Rightarrow \varphi |\Box \varphi| \Diamond \varphi$
- $\Box \varphi$ oznacza, że φ jest konieczne
- $\Diamond \varphi$ oznacza, że φ jest możliwe

Struktura Kripkego

- Ustalmy zbiór AP zmiennych atomowych
- Strukturą Kripkego nazywamy trójkę $\mathfrak{K} = (S, R, L)$ taką, że:
 - S to zbiór światów
 - $R \subseteq S \times S$ to **zbiór krawędzi**
 - $L: S \rightarrow 2^{AP}$ to funkcja etykietująca

Struktura Kripkego

Semantyka

Spełnialności lokalne i globalne oraz model checking

- Ustalmy strukture $\Re = (S, R, L)$
- Poniżej definiujemy pojęcie lokalnego spełnienia w strukturze \mathfrak{K} i świecie $s \in S$ (zapisujemy $\mathfrak{K}, s \models \varphi$)

```
\mathfrak{K}, s \models \top
\Re.s \not\models \bot
\Re. s \models p
                         wtw p \in L(s)
\mathfrak{K}, s \models \neg \varphi wtw \mathfrak{K}, s \not\models \varphi
\mathfrak{K}, s \models \varphi \land \psi wtw \mathfrak{K}, s \models \varphi i \mathfrak{K}, s \models \psi
\mathfrak{K}, s \models \varphi \lor \psi wtw \mathfrak{K}, s \models \varphi \mathsf{lub} \, \mathfrak{K}, s \models \psi
\mathfrak{K}, s \models \varphi \Rightarrow \psi wtw \mathfrak{K}, s \not\models \varphi \text{ lub } \mathfrak{K}, s \models \psi
\Re, s \models \Diamond \varphi wtw \exists_{s'} R(s, s') \land \Re, s' \models \varphi
\Re, s \models \Box \varphi wtw \forall_{s'} R(s, s') \Rightarrow \Re, s' \models \varphi
```

 Zauważmy, że z poniższych definicji wynika, że operatory \(\rightarrow i \) \square sa dualne $(\neg \Diamond \varphi \equiv \square \neg \varphi)$

- Prócz lokalnego spełnienia formuły, będziemy używać następujących pojęć:
 - Powiemy, że formuła φ jest **globalnie spełniona** w strukturze $\mathfrak{K} = (S, R, L)$, jeśli dla każdego $s \in S$ zachodzi $\mathfrak{K}, s \models \varphi$
 - Będziemy zapisywać $\mathfrak{K} \models \varphi$
 - Struktura \Re nazywana jest **modelem** formuły φ
 - Powiemy, że formuła jest **poprawna**, jeśli dla każdej struktury \Re zachodzi $\Re \models \varphi$
 - Będziemy zapisywać $\models \varphi$

Spełnialności lokalne i globalne oraz model checking

- Jakie pytania możemy zadać?
 - Czy istnieje struktura \mathfrak{K} , że φ jest lokalnie spełniona (problem lokalnej spełnialności)?
 - Czy istnieje struktura \mathfrak{K} , że φ jest globalnie spełniona (problem globalnej spełnialności)?
 - Czy w danej strukturze \mathfrak{K} formuła φ jest (lokalnie lub globalnie) spełniona? (Model Checking)
 - Czy formuła φ jest poprawna (problem poprawności)?

- Czy formuła $\Box p$ jest globalnie spełniona? NIE A lokalnie spełniona? TAK
- Czy formuła ◊p jest globalnie spełniona? TAK A lokalnie spełniona? TAK
- Czy formula $\Box p \Rightarrow \Diamond p$ jest globalnie spełniona? TAK Czy formuła jest poprawna? NIE

Bardziej skomplikowane przykłady

- Czy formuła $\Diamond(\Diamond(p\vee q)\Rightarrow(\Box p\vee\Box q))$ jest lokalnie spełniona? TAK
 - A globalnie spełniona? NIE
- Czy formuła $\Box(p \land q) \Rightarrow (\Box p \land \Box q)$ jest lokalnie spełniona? TAK A globalnie spełniona? **TAK**

Czy jest poprawna? ???

Dodatkowe aksiomaty

- Graf $\mathfrak{G} = \langle S, R \rangle$ złożony z dwóch pierwszych elementów modelu $\mathfrak{K} = (S, R, L)$ nazywać będziemy **ramą**
- Na ramy nakładać możemy różne ograniczenia, uzyskując w ten sposób różne logiki
- Ograniczenia na ramy możemy wyrazić za pomoca aksjomatów

Własność ramy	Dodatkowy aksjomat	Warunek logiki pierwszego rzędu
D - szeregowa	$\Box p \Rightarrow \Diamond p$	$\forall_x \exists_y R(x,y)$
T - zwrotna	$p\Rightarrow\Diamond p$	$\forall_x R(x,x)$
B - symetryczne	$ ho \Rightarrow \Box \Diamond ho$	$\forall_{x,y} R(x,y) \Rightarrow R(y,x)$
4 - przechodnia	$\Box p \Rightarrow \Box \Box p$	$\forall_{x,y,z} R(x,y) \land R(y,z) \Rightarrow R(x,z)$
5 - euklidesowa	$\Diamond p \Rightarrow \Box \Diamond p$	$\forall_{x,y,z} R(x,y) \land R(x,z) \Rightarrow R(y,z)$

- Logika bez żadnych własności ramy, to logika modalna K
- Część z reguł wymusza inne (np. zwrotność wymusza szeregowość)

Nazwa logiki	Ograniczenia na ramę
K	brak
KD	szeregowa (D)
KB	symetryczna (B)
K4	przechodnia (4)
K5	euklidesowa (5)
T	szeregowa (D), zwrotna (T)
DB	szeregowa (D), symetryczna (B)
KD4	szeregowa (D), przechodnia (4)
KD5	szeregowa (D), euklidesowa (5)
K45	przechodnia (4), euklidesowa (5)
TB	szeregowa (D), zwrotna (T), symetryczna(B)
S4	szeregowa (D), zwrotna (T), przechodnia (4)
KB45	symetryczna (B), przechodnia (4), euklidesowa (5)
KD45	szeregowa (D), przechodnia (4), euklidesowa (5)
S5	szeregowa (D), symetryczna (B), przechodnia (4), euklidesowa (5)

• Czy formuła $\Box(p \land q) \Rightarrow (\Box p \land \Box q)$ jest poprawna?

Rachunek sekwentów - przypomnienie

$$\frac{\Gamma \vdash \varphi, \Delta}{\Gamma, \neg \varphi \vdash \Delta} L_{\neg} \qquad \frac{\Gamma, \varphi \vdash \Delta}{\Gamma \vdash \Delta, \neg \varphi} R_{\neg}$$

$$\frac{\Gamma, \varphi \vdash \Delta}{\Gamma, \varphi \lor \psi \vdash \Delta} L_{\lor} \qquad \frac{\Gamma \vdash \Delta, \varphi, \psi}{\Gamma \vdash \Delta, \varphi \lor \psi} R_{\lor}$$

$$\frac{\Gamma, \varphi, \psi \vdash \Delta}{\Gamma, \varphi \land \psi \vdash \Delta} L_{\land} \qquad \frac{\Gamma \vdash \Delta, \varphi}{\Gamma \vdash \Delta, \varphi \land \psi} R_{\land}$$

$$\frac{\Gamma \vdash \Delta, \varphi}{\Gamma, \varphi \Rightarrow \psi \vdash \Delta} L_{\Rightarrow} \qquad \frac{\Gamma, \varphi \vdash \Delta, \psi}{\Gamma \vdash \Delta, \varphi \Rightarrow \psi} R_{\Rightarrow}$$

Rozszerzenie

Rozszerzamy nasz rachunek sekwentów o dwie operacje:

$$\frac{\Gamma^{\square}, \varphi \vdash \Delta^{\Diamond}}{\Gamma, \Diamond \varphi \vdash \Delta} L_{\Diamond} \qquad \frac{\Gamma^{\square} \vdash \Delta^{\Diamond}, \varphi}{\Gamma \vdash \Delta, \square \varphi} R_{\square}$$

- W zależności od logiki, symbole Γ^\square i Δ^\lozenge definiujemy w różny sposób
- Dla logik nie zawierających aksjomatu 4:

$$\Gamma^{\square} = \{ \varphi \, | \, \square \varphi \in \Gamma \}
\Delta^{\lozenge} = \{ \varphi \, | \, \lozenge \varphi \in \Delta \}$$

• Dla logik zawierających aksjomat 4:

$$\Gamma^{\square} = \{ \varphi, \square \varphi \, | \, \square \varphi \in \Gamma \}$$
$$\Delta^{\lozenge} = \{ \varphi, \lozenge \varphi \, | \, \lozenge \varphi \in \Delta \}$$

 Dodatkowo, dla logik zawierających aksjomat T, rozszerzamy rachunek o operacje:

$$\frac{\Gamma, \varphi \vdash \Delta}{\Gamma, \Box \varphi \vdash \Delta} L_{\Box} \qquad \frac{\Gamma \vdash \Delta, \varphi}{\Gamma \vdash \Delta, \Diamond \varphi} R_{\Diamond}$$

Przykłady

• Dowód, że $\models_{\mathcal{K}} \Box(p \land q) \Rightarrow (\Box p \land \Box q)$

$$\frac{\frac{\overline{p,q \vdash_{K} p}}{(p \land q) \vdash_{K} p} L_{\land}}{\frac{\Box(p \land q) \vdash_{K} \Box p}{R_{\Box}} R_{\Box}} \frac{\frac{\overline{p,q \vdash_{K} q}}{(p \land q) \vdash_{K} q} L_{\land}}{\frac{\Box(p \land q) \vdash_{K} \Box q}{R_{\Diamond}} R_{\Box}} R_{\Box}$$

$$\frac{\overline{\Box(p \land q) \vdash_{K} (\Box p \land \Box q)}}{\vdash_{K} \Box(p \land q) \Rightarrow (\Box p \land \Box q)} R_{\Rightarrow}$$

• Dowód, że $\models_T \Box p \Rightarrow \Diamond p$

$$\frac{\frac{\overline{p}\vdash_{T}p}{\Box p\vdash_{T}p}L_{\Box}}{\frac{\Box p\vdash_{T}\Diamond p}{\Box p\vdash_{T}\Diamond p}R_{\Diamond}}R_{\Diamond}$$

$$\frac{}{\vdash_{T}\Box p\Rightarrow\Diamond p}R_{\Rightarrow}$$

Przykłady

• Dowód, że
$$\models_{\mathcal{K}} \Diamond (\varphi \Rightarrow \psi) \Rightarrow (\Box \varphi \Rightarrow \Diamond \psi)$$

$$\frac{\varphi \vdash_{\kappa} \psi, \varphi}{\varphi \Rightarrow \psi, \varphi \vdash_{\kappa} \psi} L_{\Rightarrow}$$

$$\frac{\varphi \Rightarrow \psi, \varphi \vdash_{\kappa} \psi}{\Diamond(\varphi \Rightarrow \psi), \Box \varphi \vdash_{\kappa} \Diamond \psi} L_{\Diamond}$$

$$\frac{\Diamond(\varphi \Rightarrow \psi) \vdash_{\kappa} \Box \varphi \Rightarrow \Diamond \psi}{\Diamond(\varphi \Rightarrow \psi) \Rightarrow (\Box \varphi \Rightarrow \Diamond \psi)} R_{\Rightarrow}$$

$$\vdash_{\kappa} \Diamond(\varphi \Rightarrow \psi) \Rightarrow (\Box \varphi \Rightarrow \Diamond \psi)$$

• Dowód, że $\models_{S4} \Diamond (\varphi \Rightarrow \psi) \Rightarrow (\Box \varphi \Rightarrow \Diamond \psi)$

$$\frac{\varphi, \Box \varphi \vdash_{S4} \psi, \Diamond \psi, \varphi}{\varphi, \varphi, \Box \varphi \vdash_{S4} \psi, \Diamond \psi} \downarrow_{A} \downarrow_{A}$$

• Czy
$$\models_{\mathcal{K}} \Diamond(\Diamond\varphi \land \Diamond\psi) \Rightarrow (\Diamond\varphi \land \Diamond\psi)$$
?

• A może $\models_{\kappa_4} \Diamond (\Diamond \varphi \land \Diamond \psi) \Rightarrow (\Diamond \varphi \land \Diamond \psi)$?

- Logikę modalną można przetłumaczyć na logikę klasyczną
 - Niech P_p relacja taka, że $P_p(x) = T$ wtw gdy $\Re, x \models p$

•
$$ST_x(\bot) \equiv \bot$$

•
$$ST_x(p) \equiv P_p(x)$$

•
$$ST_x(\neg \varphi) \equiv \neg ST_x(\varphi)$$

•
$$ST_x(\Diamond \varphi) \equiv \exists_y (R(x,y) \land ST_y(\varphi))$$

•
$$ST_x(\Box \varphi) \equiv \forall_y (R(x,y) \Rightarrow ST_y(\varphi))$$

- Logika modalna na strukturach będących porządkami liniowymi jest równoważna logice LTL z operatorem X
- Logika modalna K jest równoważna logice CTL z operatorami EX oraz AX

- Powody historyczne
- Podstawa logik temporalnych
- Proste przypadki automatycznej weryfikacji
- Jest rozstrzygalna, łatwo dowodliwa
- Ciekawe własności teoretyczne (własność modelu drzewiastego, własność modelu skończonego)

Lista zadań

- 5 Zadań
- Zadania 1-4 do zapoznania się ze strukturą Kripkego
- Zadanie 5 dowody w obrębie różnych logik

Bez tytułu

Pytania? Uwagi? Komentarze?

Bibliografia

- http://www.cs.man.ac.uk/~ezolin/ml/
- Back and Forth Between Modal Logic and Classical Logic by Hajnal Andréka, Johan van Benthem, Istvan Németi
- Handbook of Modal Logic, Volume 3 by Patrick Blackburn,
 Johan F.A.K. van Benthem, Frank Wolter
- Modal Logic for Artificial Intelligence by Rosja Mastop
- http://www.comp.nus.edu.sg/~cs5209/slides/slides_ 11.bw.pdf
- Sequent Systems For Modal Logics by Heinrich Wansing