System Properties (Laplace Transform)				
Causality	ROC is a right-half plane			
Causality	ROC is the right-half plane to the			
(Rational $H(s)$)	right of the rightmost pole			
Anticausality	ROC is a left-half plane (to the left of			
	the leftmost pole)			
Stability	ROC includes the entire $j\omega$ -axis			
0 1 1 1 1 1 1				

Causal LTI system with rational H(s): all poles lie in the lefthalf of the s-plane

System Properties (Z-Transform)

Causality	ROC is the exterior of a circle including infinity
Causality (Rational <i>H</i> (<i>s</i>))	ROC is the exterior of a circle outside the outermost pole + 分子 z 阶数不能比分母大
Stability	ROC includes the unit circle

Causal LTI system with rational H(s): all poles lies inside the

Z-Transform Z 变换

$$X(z)\triangleq\sum_{n=-\infty}^{\infty}x[n]z^{-n}$$

$$x[n] = \frac{1}{2\pi i} \oint X(z) z^{n-1} dz$$

Sinc Function $\operatorname{sinc} \theta = \frac{\sin \pi \theta}{\sin \pi \theta}$

Fourier Series 傅里叶级数

 $x(t) = e^{st} \xrightarrow{LTI} y(t) = H(s)e^{st}$ $\sum_{k} a_k e^{s_k t} \xrightarrow{LTI} \sum_{k} a_k H(s_k)e^{s_k t}$

 $H(s) = \int_{-\infty}^{\infty} h(t)e^{-st} dt$

 $a_k = \frac{1}{T} \int x(t) e^{-jk\omega_0 t} dt$

Euler's formula 欧拉公式

$$e^{j\theta} = \cos \theta + j \sin \theta$$

$$\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2i}$$

Nyquist Sampling Theorem

Let x(t) be a band-limited signal within $\pm \omega_{M}$, then x(t) is uniquely determined by its samples x(nT) if $\omega_s > 2\omega_M$, where $\omega_s = \frac{2\pi}{r}$. Nyquist rate: $2\omega_M$

Z变换特殊峰的判断

信号为正,零点有峰 信号为负,无穷有峰 诱导公式 $\sin(2k\pi + \alpha) = \sin\alpha$ $\cos(2k\pi + \alpha) = \cos\alpha$ $\sin(-\alpha) = -\sin\alpha$ $\cos(-\alpha) = \cos\alpha$ $\sin(\pi - \alpha) = \sin \alpha$ $\cos(\pi - \alpha) = -\cos\alpha$ $\sin(\pi + \alpha) = -\sin\alpha$ $\cos(\pi + \alpha) = -\cos\alpha$ $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$ $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$ $\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$ $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$ $tg(k\pi + \alpha) = tg \alpha$ $tg(-\alpha) = -tg \alpha$ $tg(\pi - \alpha) = -tg \alpha$ $tg(\pi - \alpha) = -tg \alpha$ $tg(\pi + \alpha) = tg \alpha$ $tg\left(\frac{\pi}{2} - \alpha\right) = ctg\,\alpha$ $tg\left(\frac{\pi}{2} + \alpha\right) = -ctg\,\alpha$

Fourier Transform 傅里叶变换

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$X(j\omega) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - k\omega_0)$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t}d\omega$$

等比数列

通项公式: $a_n = a_1 q^{n-1}$ 两项关系: $a_n = a_m q^{n-m}$ 求和公式: $S_n = a_1 \frac{a-q^n}{1-q} = \frac{a_1-a_nq}{1-q}$

Even and odd decomposition

$$\mathcal{E}v\{x[t]\} = \frac{1}{2}\{x(t) + x(-t)\}$$

$$\mathcal{O}d\{x[t]\} = \frac{1}{2}\{x(t) - x(-t)\}$$

$$\widehat{\sigma}\widehat{D}$$

$$\widehat{m}$$

$$\widehat{m}$$

时域频域卷积相乘关系

$$y(t) = h(t) * x(t) \stackrel{\mathcal{F}}{\leftrightarrow} Y(j\omega) = H(j\omega)X(j\omega)$$
$$r(t) = s(t)p(t) \stackrel{\mathcal{F}}{\leftrightarrow} R(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(j\theta)P(j(\omega - \theta))d\theta$$

Laplace Transform 拉普拉斯变换

$$X(s) \triangleq \int_{-\infty}^{\infty} x(t)e^{-st}dt$$
$$x(t) = \frac{1}{2\pi i} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s)e^{st}ds$$

Other Transform Pairs

$$\begin{split} u_n(t) &= \frac{d^n}{dt^n} \delta(t) \overset{L}{\leftrightarrow} s^n, u^{-n}(t) = \frac{1}{s^n} \\ e^{-at} \cos \omega_0 t \, u(t) \overset{L}{\leftrightarrow} \frac{s+a}{(s+a)^2 + \omega_0^2} \\ e^{-at} \sin \omega_0 t \, u(t) \overset{L}{\leftrightarrow} \frac{\omega_0}{(s+a)^2 + \omega_0^2} \\ \left(\frac{\sin t}{nt}\right)^2 \overset{\mathcal{F}}{\leftrightarrow} = 角形底 -2到2, \ \ \overrightarrow{\hat{n}}_{\pi}^{\frac{1}{n}} \end{split}$$

Convolution 卷积

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$
$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau \int_{-\infty}^{+\infty} x(t-\tau)h(\tau)d\tau$$

--个函数的t换成 τ ,另一个函数的t换成 $t-\tau$;如果结果以原 点为界,记得写成u[n]u(t)的形式; $x(\tau)$ 的图像正常, $h(t-\tau)$ 的图像关于y轴翻转后,原点为t

 $a_k = \frac{1}{N} \sum_{n=0}^{\infty} x[n] e^{-jk\omega_0 n}$

解围绕 y 轴变换除 2

和差化积公式与积化和差公式
$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$
$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$
$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$
$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$
$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin(\alpha + \beta) + \sin(\alpha - \beta) \right]$
$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$
$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$
$\sin \alpha \sin \beta = -\frac{1}{2}[\cos(\alpha + \beta) - \cos(\alpha - \beta)]$

Hilbert Transform

$$\frac{1}{\pi t} \overset{\mathcal{F}}{\longleftrightarrow} -j \cdot \operatorname{sign} \omega \,, \cos \omega_0 t \overset{h(t)}{\longrightarrow} \sin \omega_0 t$$

采样与恢复的过程

$$\begin{split} p(t) &= \sum_{n=-\infty}^{\infty} \delta(t-nT) \overset{\mathcal{F}}{\leftrightarrow} \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega - k \frac{2\pi}{T}\right) = \omega_s \sum_{k=-\infty}^{\infty} \delta(\omega - k \omega_s) \\ p(t) x(t) \overset{\mathcal{F}}{\leftrightarrow} \frac{1}{2\pi} X(j\omega) * P(j\omega) &= \frac{\omega_s}{2\pi} \sum_{k=-\infty}^{\infty} X \big(j(\omega - k \omega_s) \big) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X \big(j(\omega - k \omega_s) \big) \\ \text{采样后信号的频率响应幅值变为1/T倍}, 因此恢复信号时要通过一个增益为T的 BPF, BPF 的截止频率最好为\(\frac{\omega_s}{2} \) \(\text{BPF}, \text{BPF} \) \(\text{opt} \)$$

Quick Reference Checklist 快速检查单 ROC $Re\{s\} > -a$ $e^{-at}u(-t)$ $Re\{s\} < -a$ $e^{at}u(t)$ $Re\{s\} > a$ $e^{at}u(-t)$ $Re\{s\} < a$ $a^nu[n]$ |z| > |a|а $a^nu[-n-1]$ |z| < |a|а -а $(-a)^n u[-n-1]$ |z| < |a|<u>-а</u> $te^{-at}u(t)$ $Re\{s\} > -a$ $-a(\times 2)$ $(s+a)^2$ $na^nu[n]$ |z| > |a| $a(\times 2)$ $(1-az^{-1})^2$

Parseval's Relation (Aperiodic Sig.) $\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$

Initial/Final Value Theorem $x(0^+) = \lim_{s \to \infty} sX(s), \lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$

Initial Value Theorem	
If $x[n] = 0$ for $n < 0$, $x[0] = \lim X(n)$	z).

Group Delay
Group Delay $\tau(\omega) = -\frac{d}{d\omega} \{ \not \sim H(j\omega) \}$

Properties of Fourier Transform 傅里叶变块	4.664年

Property	Aperiodic signal	Fourier transform	
	x(t)	$X(j\omega)$	
	y(t)	$Y(j\omega)$	
Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$	
Time Shifting	$\frac{x(t-t_0)}{e^{j\omega_0t}x(t)}$	$e^{-j\omega t_0}X(j\omega)$	
Frequency	$e^{j\omega_0t}x(t)$	$X(j(\omega-\omega_0))$	
Shifting			
Conjugation	$x^*(t)$	$X^*(-j\omega)$	
Time Reversal	$\chi(-t)$	$X(-j\omega)$	
Time and	x(at)	$\frac{1}{v}(j\omega)$	
Frequency Scaling		$\frac{1}{ a }X\left(\frac{f\omega}{a}\right)$	
Convolution	$\begin{array}{c c} x(t) * y(t) \\ \hline x(t)y(t) \end{array}$	$X(j\omega)Y(j\omega)$	
Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\theta) Y(j(\omega - \theta)) d\theta$	
Differentiation in	d(t)	$j\omega X(j\omega)$	
Time	$\frac{d}{dt}x(t)$		
Integration	$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$	
Differentiation in	tx(t)	, d	
Frequency		$j\frac{d}{d\omega}X(j\omega)$ $(X(j\omega) = X^*(-j\omega)$	
Conjugate	x(t) real	$(X(j\omega) = X^*(-j\omega))$	
Symmetry for Real		$Re\{X(j\omega)\} = Re\{X(-j\omega)\}$	
Signals		$Im\{X(j\omega)\} = -Im\{X(-j\omega)\}$	
		$ X(j\omega) = X(-j\omega) $	
		$\sphericalangle X(j\omega) = - \sphericalangle X(-j\omega)$	
Symmetry for Real	x(t) real and	$X(j\omega)$ real and even	
and Even Signals	even		
Symmetry for Real	x(t) real and	$X(j\omega)$ purely imaginary	
and Odd Signals	odd	and odd	
Even-Odd	$x_e(t) = Ev\{x\}$		
Decomposition for	$x_o(t) = Od\{x(t)\}$ $jIm\{X(j\omega)\}$		
Real Signals	x(t) real		

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$ $e^{j\omega_0 t}$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$	a_k
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0, otherwise$
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_k = 0$, otherwise $a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0$, otherwise
x(t) = 1	$2\pi\delta(\omega)$	$a_k = 0$, otherwise $a_0 = 1$, $a_k = 0$, $k \neq 0$
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$	$\sum_{k=-\infty}^{\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right)}{\frac{\sin k\omega_0 T_1}{k\pi}} =$
And $x(t+T) = x(t)$ $\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$ $\frac{2\sin \omega T_1}{T}$	$a_k = \frac{1}{T}$ for all k
$x(t) = \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	
$\delta(t)$	1	
u(t)	$\frac{1}{i\omega} + \pi\delta(\omega)$	
$\delta(t-t_0)$	$e^{-j\omega t_0}$	
$\frac{\delta(t - t_0)}{e^{-at}u(t), Re\{a\} > 0}$	$\frac{1}{a+j\omega}$	
$te^{-at}u(t), Re\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t), Re\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	

Properties of Laplace Transform 拉普拉斯变换的性质

Property	Signal	Laplace Transform	ROC
	x(t)	X(s)	
	$x_1(t)$	$X_1(s)$	
	$x_2(t)$	$X_2(s)$	
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	At least $R_1 \cap R_2$
Time shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R
Shifting in the s-	$e^{s_0t}x(t)$	$X(s-s_0)$	Shifted version
domain			of R
Time scaling	x(at)	$\frac{1}{v}(s)$	Scaled ROC
		$\overline{ a }^{\Lambda} (\overline{a})$	
Conjugation	$x^*(t)$	$X^*(s^*)$	R
Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$
Differentiation in	$\frac{d}{dt}x(t)$	sX(s)	At least R
the Time Domain	$\frac{\overline{dt}}{dt}^{X(t)}$		
Differentiation in	-tx(t)	$d_{V(a)}$	R
the s-domain		$\frac{d}{ds}X(s)$	
Integration in the	f ^t (-).4-	$\frac{1}{s}X(s)$	At least $R \cap$
Time Domain	$\int_{-\infty} x(\tau) d\tau$	$\frac{-}{s}\Lambda(s)$	$Re\{s\} > 0$

#	Signal	Transform	ROC
1	$\delta(t)$	1	All s
2	u(t)	1/s	$\Re\{s\} > 0$
3	-u(-t)	1/s	$\Re e\{s\} < 0$
6	$e^{-at}u(t)$	1	$\Re e\{s\} > -a$
		$\overline{s+a}$	
7	$-e^{-at}u(-t)$	1	$\Re e\{s\} < -a$
		s + a	
8	$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$	1	$\Re e\{s\} > -a$
	$\overline{(n-1)!}^{e}$	$\overline{(s+a)^n}$	
9	<i>⊾</i> n−1	1	$\Re e\{s\} < -a$
	$-\frac{t^{n-1}}{(n-1)!}e^{-at}u(-t)$	$\overline{(s+a)^n}$	
10	$\delta(t-T)$	e^{-sT}	All s
11	$[\cos \omega_0 t] u(t)$	S	$\Re e\{s\} > 0$
		$s^2 + \omega_0^2$	
12	$[\sin \omega_0 t] u(t)$	ω_0	$\Re e\{s\} > 0$
		$s^2 + \omega_0^2$	

Property	Signal	z-Transform	ROC
	x[n]	X(z)	R
	$x_1[n]$	$X_1(z)$	R_1
	$x_2[n]$	$X_2(z)$	R_2
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	At least $R_1 \cap R_2$
Tiime shifting	$x[n-n_0]$	$z^{-n_0}X(z)$	R except for possible origin
Scaling in the <i>z</i> -domain	$e^{j\omega_0 n}x[n]$	$X(e^{-j\omega_0}z)$	R
	$z_0^n x[n]$	$X\left(\frac{z}{z_0}\right)$	z_0R
	$a^n x[n]$	$X(a^{-1}z)$	Scaled version of R
Time reversal	x[-n]	$X(z^{-1})$	Inverted R
Time expansion	$x_{(k)}[n] = \begin{cases} x[r], n \\ 0, n \neq n \end{cases}$	$= rk$ $X(z^k)$	$R^{\frac{1}{k}}$
Conjugation	$x^*[n]$	$X^*(z^*)$	R
Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least $R_1 \cap R_2$
First difference	x[n] - x[n-1]	$(1-z^{-1})X(z)$	At least $R \cap \{ z : 0\}$
Accumuation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$	At least $R \cap \{ z : 1\}$
Differentiation in the z-domain	nx[n]	$-z\frac{dX(z)}{dz}$	R

Signal	Transform	ROC
$\delta[n]$	1	All z
u[n]	1	z > -1
	$\frac{1-z^{-1}}{1}$	
-u[-n-1]	_	z < -1
$\delta[n-m]$	$\frac{\overline{1-z^{-1}}}{z^{-m}}$	All z, except
		0 or ∞
$a^nu[n]$	1	z > a
	$\frac{1-az^{-1}}{1}$	
$-a^nu[-n-1]$		z < a
	$\frac{1-az^{-1}}{az^{-1}}$	
$na^nu[n]$		z > a
	$(1 - az^{-1})^2$	
$-na^nu[-n-1]$	az^{-1}	z < a
	$(1 - az^{-1})^2$	
$[\cos \omega_0 n] u[n]$	$1 - [\cos \omega_0] z^{-1}$	z > 1
	$1-[2\cos\omega_0]z^{-1}+z^{-2}$	
$[\sin \omega_0 n]u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1-[2\cos \omega_0]z^{-1}+z^{-2}}$	z > 1
$[r^n \cos \omega_0 n] u[n]$	$1-[2\cos\omega_0]z^{-1}+z^{-2}$ $1-[r\cos\omega_0]z^{-1}$	z > r
$[i \cos \omega_0 n] u[n]$	$\frac{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	121 / 1
$[r^n \sin \omega_0 n] u[n]$	$[r \sin \omega_0]z^{-1}$	z > r
	$1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}$	