Chapter 6 — Electron Structure

Michael Brodskiy
Instructor: Mr. Morgan

November 12, 2020

- Atoms gain and lose energy in set amounts Quantized
- Lower energy level is ground state, higher is called excited
- An atom which gains energy moves electrons to a higher energy level
- An atom which loses energy has electrons move back down (Electron Jumping)
- Energy is seen as different wavelengths of light in a flame test
- E = hV and $C = \lambda V$, where h is Planck's constant, V is the frequency, λ is the wavelength, C is the speed of light, and E is energy
- Bohr's Model Electrons orbit the nucleus, and, when they gained energy, jump up to a new level
- Quantum Mechanical Model It is unknown how electrons move, but we know where they probably are, which is demonstrated in probability maps
- Probability Maps Orbitals (Four Types) s, p, d, and f (sometimes called sublevels)
- s forms a circular probability, p forms a 2 leaf clover, d forms 4 leaf clover, and f is technically 6, but is hard to map out
- 2 Electrons per orbital

	Type	Orbitals	Electrons
	S	1	2
•	p	3	6
	d	5	10
	f	7	14

• Electron configuration and Box diagrams (often called Orbital Diagrams)

- Quantum Numbers:
 - 1. Energy Level (n)
 - 2. Sublevel (l): Type (s=0; p=1; d=2; f=3)
 - 3. Box number (Number of orbitals, m_l): $-l \leq m_l \leq l$
 - 4. Spin (m_s) : $-\frac{1}{2} \le m_s \le \frac{1}{2}$
- Hund's Rule Electrons spread out
- Pauli Exclusion Principle No two electrons have the same 4 quantum numbers
- Noble Gas Short-hand:
 - 1. Start with the noble gas from the row above (for example, for As it would be Ar)
 - 2. Then, start counting from the s type, with energy level + 1 of the noble gas (4 s for As)
- Amount of valence electrons is determined by the column an element is in (5 for As)
- When an ion is given, electrons are first pulled from the s orbital
 - 1. Example: Fe to Fe^{3+}
 - 2. Fe: $[Ar] 4 s^2 3 d^6$
 - 3. Fe^{3+} : [Ar] $3 d^5$
- Periodic Trends:
 - 1. Radius (size)
 - (a) The closer to the bottom left, the bigger the size of the atom
 - (b) Greatest: Francium (Fr)
 - (c) Less size due to more protons, causing greater strong and weak nuclear forces
 - (d) Electron Shielding: Electrons in lower energy levels shield outer electrons from nuclear charge
 - (e) Negative ions are larger than a neutral atom, while positive are smaller
 - (f) Ex. Fe^{2+} vs Fe^{3+} : Fe^{2+} is large since more electron mean more electron repulsion making it larger
 - 2. Ionization
 - (a) The closer to the top right, the more ionized an atom (needs more energy to remove an electron)
 - (b) Greatest: Fluorine (F)
 - (c) Two Exceptions: Be and Mg need larger ionization energy than B and Al, respectively, because 2p is higher in energy than 2s, which means it takes less energy to remove from B

3. Electronegativity

- (a) The closer to the top right, the more electronegative an element (has more of a relative pull for shared electrons in a bond)
- (b) Greatest: Fluorine (F)

• Bonds:

- 1. Ionic $-e^-$ are transferred (atoms bonded this way will be far across the periodic table from each other). Atoms become polar (dipole).
- 2. Polar Covalent $-e^-$ are shared unevenly (atoms bonded this way will be relatively close to each other). Atoms also become polar (dipole)
- 3. Covalent $-e^-$ are shared evenly (no plus or minus end to it).