

SRM Institute of Science and Technology College of Engineering and Technology

DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-2022

Mode of Exam
OFFLINE
SLOT-D1&D2

Test: CLA-3 Date: 28/06/2022
Course Code & Title: 18MAB203T / Probability and Stochastic Processes Duration: 1.00 pm -2.40 pm

Year & Sem: II & IV Max. Marks: 50

Course Articulation Matrix:

At th	e end of this course, learners will be able to:					Pi	ogra	am (Outo	om	es (P	0)		
Course Outcomes (CO)		Learning Bloom's Level	1	2	3	4	5	6	7	8	9	10	11	12
CO1	Compare the fundamentals between discrete and continuous random variables.	4	3	3										
CO2	Choose the model and analyze systems using two dimensional random variables.	4	3	3										
CO3	Describe limit theorems using various inequalities.	4	3	3										
CO4	Interpret the characteristics of random processes.	4	3	3										
CO5	Evaluate problems on spectral density functions and linear time invariant systems.	4	3	3										
C06	Explain how random variables and stochastic processes can be described and analyzed.	4	3	3										

	Part - A (10 x 1 = 10 Marks) Answer all the questions								
Q. No.	Que	Marks	BL	СО	PO	PI Code			
1	If $\{X(t)\}$ is a stationary pro $Var\{X(t)\}$ are	1	2	4	1,2	1.2.2			
	A. Markov process C. stationary process	B. time process D. constants							

2	If $\lim_{\tau \to \infty} R(\tau)$ exists, then the limit is equal to	1	2	4	1,2	1.2.2
	A. $E(X(t))$ B. $Var(X(t))$					
	C. $E(X^{2}(t))$ D. $[E(X(t))]^{2}$					
3	If the process $\{X(t)\}$ and $\{Y(t)\}$ are independent, then				1.0	100
	$R_{XY}(\tau) =$	1	2	4	1,2	1.2.2
	A. $E(X^2(t))$. $E(Y^2(t))$ B. $E(X(t))$. $E(Y(t))$. $\delta(t)$					
	C. 0 D. 1					
4	If $\{X(t)\}$ and $\{Y(t)\}$ are independent WSS processes	1	2	4	1,2	1.2.2
	with zero mean, then the autocorrelation function of	•	_	_	1,2	1.2.2
	$\{Z(t)\}\$, where $Z(t)=aX(t)Y(t)$ is					
	A. $aR_{XX}(\tau).R_{YY}(\tau)$ B. $a^2R_{XX}(\tau).R_{YY}(\tau)$ C.					
	$\sqrt{a}R_{XX}(\tau).R_{YY}(\tau)$ D. $\sqrt{a}R_{XX}(\tau).R_{YY}(\tau)$					
5	If $\{X(t)\}$ is a random process with constant mean μ	1	1	4	1,2	1.2.2
	and if $\bar{X}_T = \frac{1}{2T} \int_{-T}^T X(t) dt$, then $\{X(t)\}$ is Mean-ergodic,					
	provided					
	$A. \lim_{T \to \infty} \{ Var \overline{X}_T \} = 1 B. \lim_{T \to -\infty} \{ Var \overline{X}_T \} = 1$					
	C. $\lim_{T \to \infty} \{ Var \overline{X}_T \} = 0$ D. $\lim_{T \to -\infty} \{ Var \overline{X}_T \} = 0$					
	1					
6	The average power of Random process $\{X(t)\}$ is	1	1	5	1,2	1.2.2
	defined by					
	A. $R_{XX}(\tau)$ B. $R_{XX}(0)$ C. $R_{XX}(-\tau)$ D. $S_{XX}(0)$					
7	The power spectral density of random signal with	1	2	5	1,2	1.2.2
	auto correlation function $e^{-\lambda au }$ is					
	A. $\frac{\lambda}{\lambda^2 + \omega^2}$ B. $\frac{\omega}{\lambda^2 + \omega^2}$ C. $\frac{2\lambda}{\lambda^2 + \omega^2}$ D. $\frac{2\omega}{\lambda^2 + \omega^2}$					
	$\lambda^2 + \omega^2$ $\lambda^2 + \omega^2$ $\lambda^2 + \omega^2$					
8	Let $\{X(t)\}$ be a WSS process which is the input to a	1	1	5	1,2	1.2.2
	linear invariant system with unit impulse $h(t)$ and					
	output $\{Y(t)\}$, then $S_{YY}(\omega) =$					
	A. $H(\omega)S_{XX}(\omega)$ B. $ H(\omega) S_{XX}(\omega)$					
	C. $ H(\omega) ^2 S_{XX}(\omega)$ D. $ H(\omega) ^2 R_{XX}(\omega)$					
9	The convolution form of the output of linear time	1	1	5	1,2	1.2.2
	invariant system is					
	A. $Y(t) = \int_{-\infty}^{+\infty} h(u)X(t-u)du$					
	B. $Y(t) = \int_{-\infty}^{+\infty} h(t)X(t-u)du$					
	C. $Y(t) = \int_0^{+\infty} h(u)X(t-u)du$					
	$D. Y(t) = \int_{-\infty}^{+\infty} h(t)X(u)du$					

10	$Y(t) = f[X(t)]$ and $Y(t + \tau) = f[X(t + \tau)]$ for any	1	1	5	1,2	1.2.2				
	$\tau \in (-\infty, +\infty)$, we say $X(t)$ and $Y(t)$ form a									
	A. real system B. causal system									
	C. time invariant system D. time dependent system									
Test:		Date:	28/	/06/202	 2					
Cours	e Code & Title: 18MAB203T / Probability and Stochastic Processes	Dura	ition:		m -11.40) am				
Year 8	Year & Sem: II & IV Max. Marks: 50 Part-B (4 x 10= 40 Marks)									
	Answer Any TWO Questions									
11	Show that the random process	10			1.0	0.01				
	$X(t) = A\cos\lambda t + B\sin\lambda t$, where A and B are	10	3	4	1,2	2.8.1				
	random variables is WSS if (i) E(A)=E(B)=0, (ii)									
	$E(A^2) = E(B^2)$ and (iii) $E(AB) = 0$.									
12	```									
'-	Consider the random process	10	4	4	1,2	2.8.1				
	$X(t) = Y \cos \omega t, t \ge 0$, where ω is a constant and Y									
	is a uniform random variable over (0,1). Find									
	(i) average of X(t) (ii) autocorrelation function									
	$R_{\chi\chi}(\tau)$.									
13	A WSS random process X(t) with									
	autocorrelation function $R_{xx}(r) = e^{-a r }$, where a	10	4	4	1,2	2.8.1				
	**									
	is a real positive constant is applied to the input of a linear time invariant system with									
	•									
	impulse response $h(t) = e^{-bt}$, $t \ge 0$, where b is a									
	real positive constant. Find the power spectral									
	density $s_{yy}(\omega)$ and also the autocorrelation									
	function of the output Y(t) of the system.									
	Answer Any TWO Question	าร								
14	Determine the mean square value of the	10	3	5	1,2	2.8.1				
	process for the given power spectral density				-,-					
	of a continuous process $s_{xx}(\omega) = \frac{157 + 12 \omega^2}{(16 + \omega^2)(9 + \omega^2)}$.									
	$(16 + \omega^2)(9 + \omega^2)$									
15	If X(t) is a WSS process with autocorrelation	10	3	5	1,2	2.8.1				
	function $R_{xx}(\tau)$ and if $Y(t) = X(t+a) - X(t-a)$, and									
	$R_{w}(T) = 2R_{xx}(T) - R_{xx}(T+2a) - R_{xx}(T-2a)$. Show									
	that $S_{yy}(\omega) = 4\sin^2(a\omega) S_{xx}(\omega)$.									
	that $S_{\gamma\gamma}(\omega) = 4\sin(a\omega)S_{\chi\chi}(\omega)$.									

16	The cross power spectrum of a real random process X(t) and Y(t) is given by	10	4	5	1,2	2.8.1
	$S_{xy}(\omega) = \begin{cases} a + ib\omega, \omega \le 1, \\ 0, \text{ otherwise.} \end{cases}$ Find cross correlation					
	function $R_{XY}(T)$.					

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Evaluation Sheet

Name of the Student:

Register No.	R	Α							

Part - A (10x1=10 Marks)								
Q. No	со	Marks Obtained	Total					
1	4							
2	4							
3	4							
4	4							
5	4							
6	5							
7	5							
8	5		1					
9	5		1					
10	5		1					
Part- B (4x10= 40 Marks)								
	A	nswer any two quest	ions					
11	4							

12	4		
13	4		
	Α	nswer any two questi	ions
14	5		
15	5		
16	5		

Consolidated Marks:

CO	Marks Scored
CO4	
CO5	
Total	

Signature of the Course Teacher