Chapter 13 TCP/IP Networking

Overview

- ☐ Introduction
- ☐ Network Interface and Hardware
- ☐ Layers of TCP/IP
 - Link Layer
 - Network Layer
 - Transport Layer
 - Application Layer
- ☐ ARP
- ☐ Setting up Network

- Basic Term

- ☐ IP
 - 32-bits, Unique Internet Address of a host
- □ Port
 - 16-bits, Uniquely identify application
- ☐ MAC Address
 - Media Access Control Address
 - 48-bits, Network Interface Card (NIC) Hardware address

```
sabsd [/home/chwong] -chwong- ifconfig
sk0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
options=b<RXCSUM,TXCSUM,VLAN_MTU>
inet 140.113.17.215 netmask 0xffffff00 broadcast 140.113.17.255
inet 140.113.17.221 netmask 0xffffffff broadcast 140.113.17.221
ether 00:11:d8:06:1e:81
media: Ethernet autoselect (100baseTX <full-duplex,flag0,flag1>)
status: active
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
inet 127.0.0.1 netmask 0xff000000
```

- Why TCP/IP?

- ☐ The gap between applications and Network
 - Network
 - ➤ 802.3 Ethernet
 - > 802.4 Token bus
 - ≥ 802.5 Token Ring
 - ≥ 802.11 Wireless
 - Application
 - > Reliable
 - **Performance**

We need something to do the translating work! TCP/IP it is!!

– Layers of TCP/IP (1)

- ☐ TCP/IP is a suite of networking protocols
 - 4 layers Layering architecture
 - ➤ Link layer (data-link layer)
 - Include device drivers to handle hardware details
 - > Network layer (IP)
 - Handle the movement of packets around the network
 - ➤ Transport layer (Port)
 - Handle flow of data between hosts
 - > Application

Application	Telnet, FTP, e-mail, etc.
Transport	TCP, UDP
Network	IP, ICMP, IGMP
Link	device driver and interface card

- Layers of TCP/IP (2)

☐ ISO/OSI Model and TCP/IP Model

OSIS chichten modell		TCP/IP-Schichten	
Application Layer (Anwendung)	7		
Presentation Layer (Darstellung)	6	Application (Anwendung)	
Session Layer (Kommunikation)	5		
Transport Layer (Transport)	A	Transport	
Network Layer (Vermittlung)	3	Internet	
Data Link Layer (Sicherung)	2	Network	
Physical Layer (Bitübertragung)	ij	(Netzwerk)	

- Layers of TCP/IP (3)

Layers of TCP/IP (4)

☐ Demultiplexing

Figure 1.8 The demultiplexing of a received Ethernet frame.

Introduction -TCP/IP Family

Network Interface and Hardware

- ☐ LAN (Local), WAN (Wide), MAN (Metropolitan)
 - Ethernet, Token-Ring, FDDI
 - PPP, xDSL, ISDN
- ☐ Physical Topologies (see next slide)
- ☐ Logical Topologies
 - Broadcast, Token-passing
- ☐ Common LAN Devices
 - NIC, Repeater, Hub, Bridge, Switch, Router
- ☐ Common LAN Media
 - UTP, STP, Coaxial Cable, Fiber Optic Cable

Network Interface and Hardware

Physical Topologies

Network Interface and Hardware

- Media

■ Media

- Coaxial Cable
 - > Thicknet v.s. thinnet
 - **▶** BNC connector
- Twisted Pair Standards

Pin#	1	2	3	4	5	6	7	8
T568-A	W/G	Green	W/O	Blue	W/Blue	Orange	W/Br	Brown
T568-B	W/O	Orange	W/G	Blue	W/Blue	Green	W/Br	Brown

- > Straight-through v.s. Crossover
- > RJ-45 connector
- Fiber Optic Cable
 - ➤ Multimode v.s. single mode
- Wireless
 - ➤ IrDA, Radio (2.4GHz, 5GHz)

The Link Layer

- ☐ Ethernet: the common LAN
 - $10 \text{ Mb/s} \rightarrow 100 \text{ Mb/s} \rightarrow 1 \text{Gb/s}$
 - $802.3 \rightarrow 802.3u \rightarrow 802.3z$
 - CSMA/CD (Carrier Sense Multiple Access/Collision Detect)
- ☐ Ethernet Address (48bits)
 - 00:80:c8:92:0e:e1
- ☐ Ethernet Frame
 - Ethernet MTU is 1500 bytes.

Preamble	D addr	S addr	Туре	Data	CRC	
64 bits	48 bits	48 bits	16 bits	(max 1500 bytes)	32 bits	

- ☐ Path Determination
 - The Internet Protocol (IP)
 - ➤ IP address (32 bits)
- ☐ Topics
 - IP Address
 - Subnetting and netmask
 - Address types
 - Routing

- IP Address

□ 32-bit long

 \Box Ex:

- Network part
 - ➤ Identify a logical network
- Host part
 - ➤ Identify a machine on certain network

- NCTU
 - > Class B address: 140.113.0.0
 - > Network ID: 140.113
 - \triangleright Number of hosts: 255*255 = 65535

☐ IP address category

Class	1 st byte ^a	Format	Comments
Α	1-126	N.H.H.H	Very early networks, or reserved for DOD
В	128-191	N.N.H.H	Large sites, usually subnetted, were hard to get
C	192-223	N.N.N.H	Easy to get, often obtained in sets
D	224-239	1-1	Multicast addresses, not permanently assigned
E	240-254	-	Experimental addresses

a. The values 0 and 255 are special and are not used as the first byte of regular IP addresses. 127 is reserved for the loopback address.

- Subnetting and Netmask (1)

- □ Subnetting
 - Borrow some bits from network ID to extends hosts ID
 - Ex:
 - > ClassB address: 140.113.0.0
 - = 256 ClassC-like IP addresses

in N.N.N.H subnetting method

- > 140.113.209.0 subnet
- Netmask
 - Specify how many bits of network-ID are used for network-ID
 - Continuous 1 bits form the network part
 - Ex:
 - > 255.255.255.0 in NCTU-CS example
 - 256 hosts available
 - > 255.255.255.248 in ADSL example
 - Only 8 hosts available

- Subnetting and Netmask (2)
- ☐ How to determine your network ID?
 - Bitwise-AND IP and netmask
 - Ex:
 - > 140.113.214.37 & 255.255.255.0 → 140.113.214.0
 - **>** 140.113.209.37 & 255.255.255.0 → 140.113.209.0
 - > 140.113.214.37 & 255.255.0.0 → 140.113.0.0
 - > 140.113.209.37 & 255.255.0.0 → 140.113.0.0
 - ≥ 211.23.188.78 & 255.255.255.248 → 211.23.188.72
 - -78 = 01001110
 - **78 & 248= 01001110 & 11111000 =72**

- Subnetting and Netmask (3)
- ☐ In a subnet, not all IP are available
 - The first one IP → network ID
 - The last one IP → broadcast address
 - Ex:

Netmask 255.255.255.0	Netmask 255.255.255.252
140.113.209.32/24	211.23.188.78/29
140.113.209.0 → network ID	211.23.188.72 → network ID
140.113.209.255 → broadcast address	211.23.188.79 → broadcast address
1 ~ 254, total 254 IPs are usable	73 ~ 78, total 6 IPs are usable

- Subnetting and Netmask (4)

- ☐ The smallest subnetting
 - Network portion : 30 bits
 - Host portion : 2 bits
 - → 4 hosts, but only 2 IPs are available
- ☐ ipcalc
 - /usr/ports/net-mgmt/ipcalc

- Subnetting and Netmask (5)

☐ Network configuration for various lengths of netmask

Length	Host bits	Hosts/net ^b	Dec. netmask	Hex netmask
/20	12	4094	255.255.240.0	0xFFFFF000
/21	11	2046	255.255.248.0	0xFFFFF800
/22	10	1022	255.255.252.0	0xFFFFFC00
/23	9	510	255.255.254.0	0xFFFFFE00
/24	8	254	255.255.255.0	0xFFFFFF00
/25	7	126	255.255.255.128	0xFFFFFF80
/26	6	62	255.255.255.192	0xFFFFFFC0
/27	5	30	255.255.255.224	0xFFFFFE0
/28	4	14	255.255.255.240	0xFFFFFF0
/29	3	6	255.255.255.248	0xFFFFFF8
/30	2	2	255.255.255.252	0xFFFFFFC

- Address Types (1)

- ☐ Unicast
 - Address refer to a single hosts, only the host with that IP will receive the data
 - Ex:
 - > ssh 140.113.209.65
- ☐ Broadcast
 - Addresses that include all hosts on the local network
 - All hosts on the same network will receive the data
 - Ex:
 - > arp packet
- ☐ Multicast
 - Addresses that identify a group of hosts
 - Only hosts on the same group will receive the data
 - Ex:
 - Video conference

– Address Types (2)

- ☐ Private Address
 - Packets that bearing private address will not go out to the Internet
 - 3 private addresses range
 - > Depend on the size of your organization

IP class	From	То	CIDR range
Class A	10.0.0.0	10.255.255.255	10.0.0.0/8
Class B	172.16.0.0	172.31.255.255	172.16.0.0/12
Class C	192.168.0.0	192.168.255.255	192.168.0.0/16

- Address Types (3)

- NAT
 - ➤ Network Address Translation
 - > Allow hosts using private address to talk with outside

NAT mapping table

- Routing (1)

- ☐ Goal: Direct a packet closer to the destination
- ☐ Flat v.s. Hierarchical
- ☐ Routing table
 - Routing information (which kind of packets to which way)
 - Rule-based information
 - Kernel will pick the most suitable way to route the packets

```
chbsd [/home/chwong] -chwong- netstat -rn
Routing tables
Internet:
Destination
                                                                Netif Expire
                   Gateway
                                       Flags
                                                 Refs
                                                           Use
                                                       4439610
                                       UGS
                                                                   dc0
127.0.0.1
                    127.0.0.1
                                       UH
                                                          3887
                                                                   100
140.113.17/24
                    link#1
                                       UC
                                                                   dc0
                   00:0d:61:21:02:54
140.113.17.209
                                       UHLW
                                                             38
                                                                   dc0
                                                                          477
140.113.17.212
                   00:90:96:23:8f:7d
                                       UHLW
                                                                   100
                                                         22558
                   00:11:d8:06:1e:81
                                       UHLW
                                                                   dc0
                                                                         1188
140.113.17.215
                                                             17
                   00:0b:ac:d7:93:40
                                                                         1170
140.113.17.248
                                       UHLW
                                                                   dc0
140.113.17.254
                   00:90:69:64:ec:00
                                       UHLW
                                                                   dc0
                                                                         1200
```

- Routing (2)

- ☐ Static route
 - Statically configured by "route" command
 - Ex:
 - > % route add default 140.113.235.254
 - > % route add 192.168.1.0/24 192.168.1.254
- ☐ Dynamic route
 - gated

- Routing (3)

☐ "ping -R" and "traceroute"

```
chbsd [/home/chwong] -chwong- ping -c 1 -R www.nctu.edu.tw
PING www.nctu.edu.tw (140.113.250.5): 56 data bytes
64 bytes from 140.113.250.5: icmp_seq=0 ttl=61 time=2.249 ms
      ProjE27-253.NCTU.edu.tw (140.113.27.253)
    140.113.0.57
    CC250-gw.NCTU.edu.tw (140.113.250.253)
    www.NCTU.edu.tw (140.113.250.5)
    www.NCTU.edu.tw (140.113.250.5)
    140.113.0.58
    ProjE27-254.NCTU.edu.tw (140.113.27.254)
    e3rtn.csie.nctu.edu.tw (140.113.17.254)
    chbsd.csie.nctu.edu.tw (140.113.17.212)
--- www.nctu.edu.tw ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max/stddev = 2.249/2.249/2.249/0.000 ms
chbsd [/home/chwong] -chwong- traceroute www.nctu.edu.tw
traceroute to www.nctu.edu.tw (140.113.250.5), 64 hops max, 40 byte packets
1 e3rtn (140.113.17.254) 0.524 ms 0.406 ms 0.512 ms
2 ProjE27-254.NCTU.edu.tw (140.113.27.254) 0.574 ms 0.501 ms 0.422 ms
3 140.113.0.58 (140.113.0.58) 0.487 ms 0.583 ms 0.541 ms
4 www.NCTU.edu.tw (140.113.250.5) 0.673 ms 0.611 ms 0.621 ms
```

The Transport Layer

☐ UDP v.s. TCP

Function	UDP	TCP
Connection-oriented	No	Yes
Message boundaries	Yes	No
Data checksum	Optional	Yes
Positive acknowledgement	No	Yes
Time-out and retransmit	No	Yes
Duplicate detection	No	Yes
Sequencing	No	Yes
Flow control	No	Yes

The Transport Layer

- ports

- ☐ 16-bits number
- ☐ Preserve ports
 - 1 ~ 1024 (root access only)
- ☐ Well-known port

> /etc/services

```
19/tcp
                           ttytst source
                                                 #Character Generator
chargen
                 19/udp
                                                 #Character Generator
chargen
                           ttytst source
                           #File Transfer [Default Data]
                 20/tcp
ftp-data
ftp-data
                 20/udp
                           #File Transfer [Default Data]
                           #File Transfer [Control]
                 21/tcp
ftp
ftp
                 21/udp
                           #File Transfer [Control]
                 22/tcp
                           #Secure Shell Login
ssh
ssh
                 22/udp
                           #Secure Shell Login
                 23/tcp
telnet
telnet
                 23/udp
```

The Transport Layer

useful commands

☐ tcpdump, sniffit, trafshow, netstat -s

chbsd [/home/chwong] -chwong- sudo tcpdump -n host 140.113.235.131 tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on dc0, link-type EN10MB (Ethernet), capture size 96 bytes 11:25:50.996542 IP 140.113.17.212.61233 > 140.113.235.131.22: P 266166194:266166226(32) ack 938637316 win 33304 <nop,nop,timestamp 3368918203 130908112> 11:25:50.998247 IP 140.113.235.131.22 > 140.113.17.212.61233: P 1:33(32) ack 32 win 33304 <nop,nop,timestamp 134993614 3368918203> 11:25:50.998396 IP 140.113.235.131.22 > 140.113.17.212.61233: P 33:65(32) ack 32 win 33304 <nop,nop,timestamp 134993614 3368918203> 11:25:50.998438 IP 140.113.17.212.61233 > 140.113.235.131.22: . ack 65 win 33288 <nop,nop,timestamp 3368918205 134993614> 11:26:36.935422 IP 140.113.17.212 > 140.113.235.131: ICMP echo request, id 28124, seq 0, length 64 11:26:36.935761 IP 140.113.235.131 > 140.113.17.212: ICMP echo reply, id 28124, seq 0, length 64 VC

6 packets captured 697 packets received by filter 0 packets dropped by kernel

The Application Layer

- ☐ The Client-Server Model
 - Port Numbers:
 - > /etc/services
 - ➤ The first 1024 ports are reserved ports
 - Internet Services
 - > inetd and /etc/inetd.conf
 - RPC Services
 - > portmap, /etc/rpc

The Application Layer

- inetd

- ☐ inetd internet ``super-server'
 - add inetd_enable="YES" into /etc/rc.conf
 - /etc/inetd.conf

```
daytime stream tcp nowait root internal
ftp stream tcp nowait root /usr/libexec/ftpd ftpd -l
ssh stream tcp nowait root /usr/sbin/sshd sshd -i -4
telnet stream tcp nowait root /usr/libexec/telnetd telnetd
pop3 stream tcp nowait root /usr/local/libexec/popper popper
```

/etc/services

```
daytime
            13/tcp
                   #File Transfer [Default Data]
ftp-data
           20/tcp
           21/tcp
                   #File Transfer [Control]
ftp
                   #Secure Shell Login
ssh
           22/tcp
           23/tcp
telnet
pop3
            110/tcp
                   #Post Office Protocol - Version 3
```

The Application Layer - DNS

- ☐ Domain Name System
 - Record IP-hostname mapping
 - DNS query
 - ➤ "what is the IP of vangogh.cs.berkeley.edu" from lair.cs.colorado.edu
 - Hierarchical architecture

ARP(1)

- ☐ Address Resolution Protocol
 - Ask MAC address of certain IP
 - Broadcast
 - Any one receiving ARP packet and having this IP will reply to the sender
 - When the host owing this IP is not on the same network, sender will use the MAC address of next-hop router to send the packet

ARP (2)

ARP (3)

- ☐ Maintain recent ARP results
 - come from both ARP request and reply
 - expiration time
 - \triangleright Complete entry = 20 minutes
 - \triangleright Incomplete entry = 3 minutes
 - Use arp command to see the cache
 - Ex:
 - > % arp −a
 - > % arp -da

[chwong@mg-215]~> arp -a

```
crypto23.csie.nctu.edu.tw (140.113.208.143) at 00:16:e6:5b:fa:e9 on fxp1 [ethernet] e3rtn-208.csie.nctu.edu.tw (140.113.208.254) at 00:0e:38:a4:c2:00 on fxp1 [ethernet] e3rtn-210.csie.nctu.edu.tw (140.113.210.254) at 00:0e:38:a4:c2:00 on fxp2 [ethernet] winpc7.csie.nctu.edu.tw (140.113.215.187) at 00:17:31:84:6c:0f on fxp3 [ethernet] e3rtn-215.csie.nctu.edu.tw (140.113.215.254) at 00:0e:38:a4:c2:00 on fxp3 [ethernet] e3rtn-216.csie.nctu.edu.tw (140.113.215.254) at 00:0e:38:a4:c2:00 on fxp0 [ethernet]
```

- ☐ Steps
 - Assign an IP address and hostname
 - Default route
 - DNS
 - Utility to test whether you connect to the Internet

- assign IP, hostname and default route (1)

- ☐ FreeBSD
 - In /etc/rc.conf

defaultrouter="140.113.17.254"
hostname="chbsd.csie.nctu.edu.tw"
ifconfig_fxp0="inet 140.113.17.212 netmask 255.255.255.0 media autoselect"
ifconfig_fxp1="inet 192.168.1.254 netmask 255.255.255.0 media autoselect"

- ☐ Linux
 - /etc/sysconfig/network
 - /etc/sysconfig/network-scripts/ifcfg-eth0

NETWORKING=yes HOSTNAME=linux3 GATEWAY=140.113.209.254 DEVICE=eth0
BOOTPROTO=static
BROADCAST=140.113.209.255
IPADDR=140.113.209.143
NETMASK=255.255.255.0
NETWORK=140.113.209.0
ONBOOT=yes

- assign IP, hostname and default route (2)

- ☐ /etc/hosts
 - Host name database
 - Each line is a host
 - ➤ Internet address
 - ➤ Official host name
 - > aliases

```
chwong@qkmj:~> less /etc/hosts
127.0.0.1 localhost
140.113.209.72 ccbsd12 ccbsd12.csie.nctu.edu.tw
140.113.209.2 ccserv
140.113.209.6 ccduty
140.113.209.7 mailgate
140.113.209.32 qkmj
```

- assign IP, hostname and default route (3)

☐ Solaris

/etc/inet/netmasks (network and netmask)

• /etc/inet/hosts (hosts)

/etc/defaultrouter (default router)

• /etc/nodename (host name)

• /etc/resolv.conf (domain, nameserver, search)

• /etc/hostname.interface (IP, either hostname in hosts or IP)

chwong@ccsun3:/etc> cat hostname.hme0 nodename defaultrouter resolv.conf
140.113.209.3
ccsun3
140.113.209.254
domain csie.nctu.edu.tw
nameserver 140.113.209.1
nameserver 140.113.1.1
search csie.nctu.edu.tw nctu.edu.tw edu.tw tw
tytsai@ccsun3:/etc> cat /etc/inet/netmasks /etc/inet/hosts
140.113.209.0 255.255.255.0
140.113.209.103 ccsun3
140.113.209.110 ccsun10

- assign IP, hostname and default route (4)

- ☐ Change IP manually
 - Ex:
 - > % ifconfig fxp0 inet 140.113.235.4 netmask 255.255.255.0
 - > % ifconfig fxp0 up
 - > % ifconfig fxp0 down
- ☐ Specify default route manually
 - Ex:
 - > % route add default 140.113.235.254

configuring DNS

- ☐ FreeBSD, Linux
 - /etc/resolv.conf

chbsd [/etc] -chwong- cat resolv.conf domain csie.nctu.edu.tw nameserver 140.113.17.5 nameserver 140.113.6.2

- ☐ Host lookup order
 - FreeBSD
 - /etc/host.conf

chbsd [/etc] -chwong- cat host.conf
Auto-generated from nsswitch.conf, do not edit
hosts
bind

- Linux
 - /etc/nsswitch.conf

hosts: files nisplus nis dns

Utilities for network connection

- □ ping
 - Send ICMP ECHO_REQUEST o a host

chbsd [/etc] -chwong- ping -c 1 www.nctu.edu.tw
PING www.nctu.edu.tw (140.113.250.5): 56 data bytes
64 bytes from 140.113.250.5: icmp_seq=0 ttl=60 time=3.022 ms
--- www.nctu.edu.tw ping statistics --1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max/stddev = 3.022/3.022/3.022/0.000 ms

- ☐ traceroute
 - Print the route packets take to network host

chbsd [/etc] -chwong- traceroute www.nctu.edu.tw traceroute to www.nctu.edu.tw (140.113.250.5), 64 hops max, 40 byte packets 1 e3rtn-235 (140.113.235.254) 0.640 ms 0.449 ms 0.474 ms 2 140.113.0.210 (140.113.0.210) 0.465 ms 0.310 ms 0.361 ms 3 140.113.0.166 (140.113.0.166) 0.415 ms 0.379 ms 0.403 ms 4 140.113.0.149 (140.113.0.149) 0.678 ms 0.536 ms 0.574 ms 5 www.NCTU.edu.tw (140.113.250.5) 0.533 ms 0.415 ms 0.438 ms

Other issues

- ☐ The following issues will be given in NA (Network Administration)
 - DHCP
 - PPP
 - NAT
 - DNS
 - Mail
 - •