Série d'exercices #1

IFT-2035

4 mai 2021

1.1 Préfixe, postfixe et ASA

Pour chaque expression infixe ci-dessous, réécriver l'expression en notation préfixe et postfixe. Dessiner également l'arbre de syntaxe abstraite (ASA).

- 1. a + b + c
- 2. a + (b + c)
- 3. $a \cdot b + c \cdot d$
- $4. \ a+b < a \cdot (c+d)$
- 5. $(-b + \operatorname{sqrt}(b \cdot b 4 \cdot a \cdot c))/(2 \cdot a)$

1.2 Postfixe et machine à pile

La notation postfixe s'évalue facilement à l'aide d'une pile. L'algorithme général est :

- 1. Lire l'expression de gauche à droite.
 - (a) S'il s'agit d'un nombre, l'empiler.
 - (b) S'il s'agit d'un opérateur :
 - i. dépiler le nombre correspondant de valeurs du sommet de la pile;
 - ii. calculer le résultat;
 - iii. et l'empiler.
- 2. Lorsque la lecture est terminée, le résultat est au sommet de la pile.

Illustrer cet algorithme avec les expressions de la section $\ref{eq:condition}$.

1.3 Si et seulement si

Voici une grammaire pour if...then...else. Les éléments E et X représentent des expressions et parties de la grammaire qu'il n'est pas important de spécifier ici

Cette grammaire est ambiguë.

- 1. Donner un exemple d'ambiguïté.
- 2. Donner une grammaire non ambiguë qui associe les else avec le if le plus proche, comme le font les langages de programmation habituels.

1.4 Ambiguïté et récursion

Soit la grammaire suivante pour des expressions arithméthiques

$$\begin{array}{rcl} expr & ::= & expr + expr \\ & | & expr * expr \\ & | & number \end{array}$$

- 1. Montrer que cette grammaire est ambiguë.
- 2. Réécrire cette grammaire de manière à éliminer les ambiguïtés.
- 3. Cette grammaire est récursive à gauche, ce qui pose problème pour certaines techniques d'analyse syntaxique : En effet, dans un parseur avec analyse descendante (top down), la portion du programme devant lire la catégorie expr va devoir d'abord faire appel à la portion du programme qui doit lire la catégorie expr ...

Réécrire la grammaire de manière à éviter cette récursion à gauche.