AITL戦略提言書 v5.0

AITL戦略提言書 v5.0

AITL Strategy Proposal v5.0

0. エグゼクティブサマリ / Executive Summary

AITL (AI-Integrated Transition & Loop) は

- PID制御(安定性 / Stability)
- •FSM制御(モード遷移 / State Transition)
- •LLM設計(再設計/Redesign)

を統合し、SystemDK により **熱・応力・電源・EMI** などの物理制約を設計初期から反映する。

AITL integrates PID, FSM, and LLM, with SystemDK embedding physical constraints (thermal, stress, power, EMI) from the earliest design stage.

本提案は、**2025年に発表されたコア論文のPoC実測値** を根拠とし、**産業・教育・政策** への橋渡しを提示する。

This proposal is grounded in PoC evidence from 2025 core papers, bridging industry, education, and policy.

1. 論文別PoC解説 / Core PoC Papers (2025)

1.1 Humanoid TCST 論文

Humanoid TCST Paper (2025)

• 実測 / Results: 姿勢回復 ≤200ms、歩容安定度 +30%、エネルギー効率 +15%、自己発電寄与 ~12%

Posture recovery ≤200ms, gait stability +30%, energy efficiency +15%, self-powering ~12%

• AITL位置づけ / AITL Role: PID+FSM+LLMによる三層制御。Flagship PoC。

Three-layer control with PID, FSM, and LLM. Flagship PoC.

• **産業貢献 / Industrial Impact:** 災害救助、介護支援、工場自動化で信頼性を担保。

Ensures reliability in disaster relief, elderly care, and factory automation.

1.2 AITL on Space 論文

AITL on Space Paper (2025)

- 実測 / Results: Tri-NVM階層、H∞+FSM+LLM、22nm FDSOI FPGA実装 Tri-NVM hierarchy, H∞+FSM+LLM, 22nm FDSOI FPGA implementation
- **産業貢献 / Industrial Impact:** 宇宙機器メーカー・防衛産業における長期 自律運用の基盤。

Foundation for long-term autonomous operation in space and defense industries.

1.3 CFET Control 論文

CFET Control Paper (2025)

- •実測 / Results: サブ2nm配線遅延・熱結合を補償 Compensation for sub-2nm interconnect delay and thermal coupling
- **産業貢献 / Industrial Impact:** 半導体EDA・ファウンドリの歩留まり改善。

Improves yield for semiconductor EDA and foundries.

1.4 SystemDK+AITL 論文

SystemDK+AITL Paper (2025)

- •実測 / Results: RC遅延・熱結合・EMIを補償 Compensation for RC delay, thermal coupling, and EMI
- **産業貢献 / Industrial Impact:** 自動車・IoT・通信SoCに必須の設計基盤。

Essential design foundation for automotive, IoT, and communication SoCs.

1.5 CFET Tutorial 論文

CFET Tutorial Paper (2025)

- 内容 / Content: Planar→FinFET→GAA→CFET進化を教育的整理 Educational overview of device evolution: Planar → FinFET → GAA → CFET
- 産業貢献 / Industrial Impact: 次世代エンジニア教育の標準教材。 Standard teaching material for next-generation engineer education.

2. KPI一覧 / KPI Table

KPI	Target	実測値 / Result	出典 / Source
姿勢回復 / Posture Recovery	≤150ms	≤200ms	Humanoid
歩容安定度 / Gait Stability	+20%	+30%	Humanoid
エネルギー効率 / Energy Efficiency	+15%	+15%	Humanoid
自己発電寄与 / Self- Powering	20%	12%	Humanoid
FeFET保持 / Retention	≥10y@85°C	実証済	FeFET CMOS
FeFET耐久性 / Endurance	≥1e5	実証済	FeFET CMOS
電源効率 / Power Efficiency	>80%	実証済	CMOS018 Inductor
超音波感度 / Ultrasonic Sensitivity	高感度	実証済	ScAlN
滴下精度 / Droplet Precision	pL級	実証済	Bio-Inkjet

3. AITLの具体的解説 / AITL Explained

```
flowchart TB

PID["PID制御<br/>br/>Stability"] --> CORE["AITL Core"]

FSM["FSM制御<br/>br/>Transition"] --> CORE

LLM["LLM設計<br/>Redesign"] --> CORE

CORE --> OPT["統合最適化<br/>br/>Holistic Optimization"]

SYS["SystemDK<br/>br/>Physical Constraints"] --> CORE
```

AITLはPID・FSM・LLMを統合し、SystemDKで物理制約を初期段階から反映する。

AITL integrates PID, FSM, and LLM, embedding SystemDK constraints from the start.

4. AITLによる産業界への影響 / Industrial Impact

産業分野 / Sector	貢献内容 / Contribution
半導体 / Semiconductor	サブ2nm設計の信頼性・歩留まり改善
自動車 / Automotive	車載SoCの安全性・省エネ化
ロボット / Robotics	災害救助・介護・工場自動化
医療 / Medical	PbフリーMEMS・Bio-Inkjetによる新市場
宇宙 / Space	探査機の長期自律運用

5. 教育・人材育成 / Education & HRD

- AITL学(仮称) / "AITL Studies"
 Interdisciplinary program integrating control, AI, and physical design constraints.
- 教材 / Teaching Materials: CFET Tutorial, SystemDK論文, Humanoid PoC
- **成果 / Outcome:** 修士・博士課程での人材育成、産業PoC連携、国際標準 化リーダー輩出

6. ロードマップ / Roadmap

timeline

title AITL導入ロードマップ / AITL Roadmap

2025-2026 : 基盤R&D (AITL学, SystemDK α版) / Foundational R&D 2026-2028 : 国内WG設立, PoC拡大 / Domestic WG, PoC Expansion 2028-2030 : コンソーシアム, 認証制度 / Consortium, Certification

2030-2032 : 国際標準化主導 / Intl. Standardization

7. 経済効果試算 / Economic Impact Estimation

2026-2030年にAITLを国内導入した場合のBaseシナリオ(2030年時点)

産業分野 / Sector	収益 / Revenue (¥Bn)	削減効果 / Savings (¥Bn)	輸出 / Exports (¥Bn)	雇用
半導体 / Semiconductor	~30	~12	~10.5	~900
ロボット / Robotics	~24	~9	~6	~960
医療 / Medical	~12	~3.8	~2.4	~420
宇宙 / Space	~4.8	~1.6	~2.9	~120
合計 / Total	~70.8	~26.4	~21.8	~2,4

試算はPoC実績値+産業係数に基づく政策説明用モデル。Upsideケースではこの1.4倍規模。

Appendix: 2025年関連研究 / Related Works (2025)

AITL本体には含めないが、2025年に発表した関連研究成果:

- LPDDR+FeRAM Integration
- FeFET CMOS Reliability (0.18μm)
- CMOS018 Inductor+LDO
- ScAlN Ultrasonic
- Bio-Inkjet KNN

7. 結論 / Conclusion

AITL v5.0は、コア論文の実測値に基づく戦略であり、

- •産業界: 設計効率化・低コスト化・新市場創出
- •教育界: AITL学による人材供給
- •政策: KPIベースの標準化・国家競争力強化

を同時に実現する。

AITLは「研究成果」から「国家基盤」への昇華を可能にする。

AITL enables the transition from research results to national infrastructure.