Criterii - Serii cu termeni pozitivi

I. Criteriul I de comparație - CCI:

Fie seriile $\sum^{\infty} x_n$ și $\sum^{\infty} y_n,$ așa încât $x_n \leq y_n, \, \forall \, n \in \mathbb{N}^*.$

a) Dacă
$$\sum_{n=1}^{\infty} y_n(C)$$
, atunci $\sum_{n=1}^{\infty} x_n(C)$;

b) Dacă
$$\sum_{n=1}^{\infty} x_n(D)$$
, atunci $\sum_{n=1}^{\infty} y_n(D)$.

II. Criteriul II de comparație - CCII: Fie seriile $\sum_{n=1}^{\infty} x_n$ și $\sum_{n=1}^{\infty} y_n$, cu $x_n > 0, y_n > 0, \forall n \in \mathbb{N}^*$, astfel încât $\frac{x_{n+1}}{x_n} \le \frac{y_{n+1}}{y_n}, \ \forall n \in \mathbb{N}^*$.

a) Dacă
$$\sum_{n=1}^{\infty} y_n(C)$$
, atunci $\sum_{n=1}^{\infty} x_n(C)$;

b) Dacă
$$\sum_{n=1}^{\infty} x_n(D)$$
, atunci $\sum_{n=1}^{\infty} y_n(D)$.

III. Criteriul III de comparație - CCIII: Fie seriile $\sum_{n=1}^{\infty} x_n$ și $\sum_{n=1}^{\infty} y_n$,

cu $x_n>0, y_n>0, \forall n\in\mathbb{N}^*,$ aşa încât $\exists~\ell=\lim_{n\to\infty}\frac{x_n}{y_n}.$ Dacă

a)
$$\ell \in (0, +\infty)$$
, atunci seriile $\sum_{n=1}^{\infty} x_n$ și $\sum_{n=1}^{\infty} y_n$ au aceeași natură;

b)
$$\ell = 0$$
, atunci $\sum_{n=1}^{\infty} y_n(C) \Rightarrow \sum_{n=1}^{\infty} x_n(C)$ şi $\sum_{n=1}^{\infty} x_n(D) \Rightarrow \sum_{n=1}^{\infty} y_n(D)$;

c)
$$\ell = +\infty$$
, atunci $\sum_{n=1}^{\infty} x_n(C) \Rightarrow \sum_{n=1}^{\infty} y_n(C)$ şi $\sum_{n=1}^{\infty} y_n(D) \Rightarrow \sum_{n=1}^{\infty} x_n(D)$.

IV. Criteriul de condensare al lui Cauchy:

Fie $\sum x_n$, cu $x_n>0,\, \forall n\in\mathbb{N}^*.$ Dacă $(x_n)_{n\in\mathbb{N}^*}$ este descrescător, atunci

$$\sum_{n=1}^{\infty} x_n \sim \sum_{n=1}^{\infty} 2^n x_{2^n}.$$

V. Criteriul rădăcinii al lui Cauchy:

Fie seria $\sum_{n=1}^{\infty} x_n, x_n \geq 0, \ \forall n \in \mathbb{N}^*$. Dacă există $\ell = \lim_{n \to \infty} \sqrt[n]{x_n}$, atunci:

i) dacă
$$\ell < 1$$
, seria $\sum_{n=1}^{\infty} x_n$ (C);

ii) dacă
$$\ell > 1$$
, seria $\sum_{n=1}^{\infty} x_n$ (D);

iii) dacă $\ell=1$ nu putem stabili natura seriei pe această cale.

VI. Criteriul logaritmului: Fie seria $\sum_{n=1}^{\infty} x_n$, cu $x_n > 0, \forall n \in \mathbb{N}$.

Dacă există limita $\lambda = \lim_{n \to \infty} \frac{\ln \frac{1}{x_n}}{\ln n}$, atunci:

i) dacă
$$\lambda > 1$$
, seria $\sum_{n=1}^{\infty} x_n$ (C);

ii) dacă
$$\lambda < 1$$
, seria $\sum_{n=1}^{\infty} x_n$ (D);

iii) dacă $\lambda = 1$, nu putem stabili natura seriei pe această cale

VII. Criteriul raportului - Criteriul lui D'Alembert:

Fie seria $\sum_{n=1}^{\infty} x_n$, cu $x_n>0$, $\forall n\in\mathbb{N}^*$, astfel încât $\exists L=\lim_{n\to\infty} \frac{x_{n+1}}{x_n}$ i) Dacă L<1, atunci seria $\sum_{n=1}^{\infty} x_n$ este convergentă;

i) Dacă
$$L < 1$$
, atunci seria $\sum_{n=1}^{\infty} x_n$ este convergentă

ii) Dacă
$$L > 1$$
, atunci seria $\sum_{n=1}^{\infty} x_n$ este divergentă;

iii) Dacă L=1, nu putem stabili natura seriei pe această cale.

VIII. Criteriul lui Raabe-Duhamel: Fie $\sum_{n=1}^{\infty} x_n, x_n > 0, \forall n \in \mathbb{N}^*$.

Dacă există $\rho = \lim_{n \to \infty} \left[n \left(\frac{x_n}{x_{n+1}} - 1 \right) \right]$, atunci:

i) dacă
$$\rho > 1$$
, atunci $\sum_{n=1}^{\infty} x_n$ (C);

ii) dacă
$$\rho < 1$$
, atunci $\sum_{n=1}^{\infty} x_n$ (D);

 $\begin{aligned} &\textbf{ii)} \, \operatorname{dacă} \, \rho < 1, \, \operatorname{atunci} \, \sum_{n=1}^{\infty} x_n \, \, (\mathbf{D}); \\ &\textbf{iii)} \, \operatorname{dacă} \, \rho = 1 \, \operatorname{nu} \, \operatorname{putem} \, \operatorname{stabili} \, \operatorname{natura} \, \operatorname{seriei} \, \operatorname{pe} \, \operatorname{această} \, \operatorname{cale}. \\ &\textbf{IX. Criteriul lui Gauss:} \, \operatorname{Fie} \, \operatorname{seria} \, \sum_{n=1}^{\infty} x_n, \, \operatorname{cu} \, x_n > 0, \, \forall \, n \in \, \mathbb{N}^*. \, \operatorname{Dacă} \, \\ &\operatorname{raportul} \, \frac{x_n}{x_{n+1}} \, \operatorname{se} \, \operatorname{poate} \, \operatorname{exprima} \, \operatorname{sub} \, \operatorname{forma} \\ &\frac{x_n}{x_{n+1}} = \alpha + \frac{\beta}{n} + \frac{y_n}{n^{1+\gamma}}, \forall \, n \in \, \mathbb{N}^*, \end{aligned}$

$$\frac{x_n}{x_{n+1}} = \alpha + \frac{\beta}{n} + \frac{y_n}{n^{1+\gamma}}, \forall n \in \mathbb{N}^*,$$

unde $\alpha, \beta \in \mathbb{R}, \ \gamma \in \mathbb{R}_+^*$, iar şirul $(y_n)_{n \in \mathbb{N}^*}$ este mărginit, atunci:

a) când
$$\alpha > 1$$
, seria $\sum_{n=1}^{\infty} x_n(C)$;

b) când
$$\alpha < 1$$
, seria $\sum_{n=1}^{\infty} x_n(D)$;

c) când
$$\alpha = 1$$
 și $\beta > 1$, seria $\sum_{n=1}^{\infty} x_n(C)$;

d) când
$$\alpha = 1$$
 și $\beta \le 1$, seria $\sum_{n=0}^{\infty} x_n(D)$.

X. Criteriul lui Bertrand Fie seria $\sum_{n=1}^{\infty} x_n$, $x_n > 0, \forall n \in \mathbb{N}^*$, astfel

încât să existe $\mu = \lim_{n \to \infty} \left(\frac{x_n}{x_{n+1}} n \ln n - (n+1) \ln (n+1) \right).$

i) Dacă
$$\mu > 0$$
, seria $\sum_{n=1}^{\infty} x_n$ (C);

ii) Dacă
$$\mu < 0$$
, seria $\sum_{n=1}^{\infty} x_n$ (D);

iii) Dacă $\mu=0,$ nu ne putem pronunța asupra naturii seriei.

XI. Criteriul lui Kummer: Fie seria $\sum_{n=1}^{\infty} x_n$, cu $x_n > 0$, $\forall n \in \mathbb{N}^*$.

Dacă există şirul $(a_n)_{n\in\mathbb{N}^*}\subset\mathbb{R}_+^*$, astfel încât există

$$\ell = \lim_{n \to \infty} \left(a_n \frac{x_n}{x_{n+1}} - a_{n+1} \right)$$
, atunci

i) dacă
$$\ell > 0$$
, seria $\sum_{n=0}^{\infty} x_n(C)$;

ii) dacă
$$\ell<0,$$
iar seria $\sum_{n=1}^{\infty}\frac{1}{a_n}(D),$ rezultă că seria $\sum_{n=1}^{\infty}x_n(D);$

iii) când $\ell=0,$ nu putem stabili natura seriei date.

Criterii generale

I. Criteriul general - al lui Cauchy - de convergență:

Seria $\sum_{n=1}^{\infty} x_n$ este convergentă dacă și numai dacă $\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}^* : |x_{n+1} + x_{n+2} + \ldots + x_{n+p}| < \varepsilon, \forall \ n, p \in \mathbb{N}^*, n \geq n_{\varepsilon}.$

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}^* : |x_{n+1} + x_{n+2} + \ldots + x_{n+p}| < \varepsilon, \forall n, p \in \mathbb{N}^*, n \ge n_{\varepsilon}.$$

II. Criteriul general de divergență:

Seria $\sum x_n$ este divergentă dacă și numai dacă, $\exists \varepsilon_0 > 0$ cu proprietatea că, pentru orice $n \in \mathbb{N}^*$, $\exists k_n \geq n$ și $\exists p_n \in \mathbb{N}^*$ astfel încât:

$$|x_{k_n+1} + x_{k_n+2} + \ldots + x_{k_n+p_n}| \ge \varepsilon_0.$$

III. Criteriul necesar de convergență:

Dacă seria $\sum_{n=1}^{\infty} x_n$ converge, atunci $\lim_{n\to\infty} x_n = 0$ (Dacă $\lim_{n\to\infty} x_n \neq 0$, atunci $\sum_{n=1}^{\infty} x_n$ (D)).

IV. Criteriul lui Dirichlet:

Fie $(x_n)_{n\in\mathbb{N}}$ și $(y_n)_{n\in\mathbb{N}^*}$ două șiruri de numere reale și fie $S_n=x_1+x_2+\ldots+x_n, n\in\mathbb{N}^*$. Dacă

- şirul $(S_n)_{n\in\mathbb{N}^*}$ este mărginit;
- şirul $(y_n)_{n\in\mathbb{N}^*}$ este monoton descrescător cu $\lim_{n\to\infty} y_n=0$,

atunci seria $\sum x_n y_n$ este convergentă.

V. Criteriul lui Leibniz:

Dacă $(y_n)_{n\in\mathbb{N}^*}$ este un şir de numere reale pozitive, descrescător şi convergent la 0, atunci seria $\sum_{n=1}^{\infty} (-1)^n y_n$ este convergentă.

VI. Criteriul lui Abel:

Fie $(x_n)_{n\in\mathbb{N}^*}$ și $(y_n)_{n\in\mathbb{N}^*}$ două șiruri de numere reale. Dacă

- seria $\sum_{n=1}^{\infty} x_n$ este convergentă;
- şirul $(y_n)_{n\in\mathbb{N}^*}$ este monoton şi mărginit,

atunci seria $\sum_{n=1}^{\infty} x_n y_n$ este convergentă.