

ITU-ML5G-PS-007: AUTOMATIC MODULATION CLASSIFICATION

December 2, 2021

RED GECKO TEAM

Members:

- Brad Stimpson
- Shahram Mollahasani (Postdoc at Dr. Melike Erol-Kantarci's lab. at University of Ottawa)
- Armand Kamary

Advisors:

- Alex Shatsky
- Felix Dujmenovic
- Ali Arad

LITERATURE REVIEW AND STUDY

LIST OF ARTICLES

- Real-time Automatic Modulation Classification using RFSoC, Stephen Tridgell et al.
- Automatic Modulation Classification Using CNN-LSTM Based Dual-Stream Structure, Zufan Zhang et al.
- AMC-IoT: Automatic Modulation Classification Using Efficient Convolutional Neural Networks for Low Powered IoT Devices, Muhammad Usman et al.
- Deep Learning Techniques for Automatic Modulation Classification: A Systematic Literature Review, Sara Ali Ghunaim et al.
- Automatic Modulation Classification Using Gated Recurrent Residual Network, Sai Huang et al.
- Acceleration of Deep Convolutional Neural Networks Using Adaptive Filter Pruning, Pravendra Singh et al.
- Hardware Implementation of Automatic Modulation Classification with Deep Learning, Satish Kumar et al.

ALTERNATIVE NEURAL NETWORKS

Thinking out of the box

ALTERNATIVE NETWORKS

Our team has implemented several alternative automatic modulation classification neural networks such as

VGG-16

Ternary Weight Network (TWN) based on Stephen Tridgell et al. research

RED GECKO TEAM APPROACH

SNR BASED OUTLIER REJECTION

Low SNR samples act as outliers and reduce the accuracy

We manually removed/pruned the low SNR samples

```
# you could train on a subset of the data, e.g. based on the SNR
# here we use all available training samples
if snr_idx >= 4:
    train_indices.extend(train_indices_subclass)
test indices.extend(test indices subclass)
```


CHANGE THE NETWORK HYPERPARAMETERS

We set number of input quantization, weights and activation bits to 5

- We downsized the kernel size of our convolutional layers to 28
- Following the above change, we downsized the dense layer input size to 28

PRUNING

We use *L1 unstructured pruning* technique with ratio 0.5 on all convolutional layers.

```
def prune_model_l1_unstructured(model, layer_type, proportion):
    for module in model.modules():
        if is instance(module, layer_type):
            prune.l1_unstructured(module, 'weight', proportion)
            prune.remove(module, 'weight')
    return model

model = prune_model_l1_unstructured(model, qnn.QuantConv1d, 0.5)
```

TRAINING IMPROVEMENTS

- We changed the starting learning rate of Adam optimization algorithm to 0.1
- We further changed the learning rate scheduler:
 - For epochs less than 100 we used Cosine Annealing learning rate scheduler
 - For epochs beyond 100 we used **Stochastic Weight Averaging (SWA)** learning rate scheduler

```
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
swa_model=torch.optim.swa_utils.AveragedModel(model)
swa_scheduler=torch.optim.swa_utils.SWALR(optimizer, swa_lr=0.001)
Ir_scheduler=torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs)
```

RESULTS

RESULTS

Accuracy @ highest SNR (+30 dB): 0.878963 Accuracy overall: 0.560381

Thank You for Your Time.

Any Questions?

Red Gecko

Redline Communications

302 Town Centre Blvd., Markham, ON L3R 0E8 Canada

Tel: +1.905.479.8344 Fax: +1.905.479.5331 Toll Free in North America: +1.866.633.6669

