week08-01-markov

March 3, 2025

1 George McNinch Math 87 - Spring 2025

- 2 Week 8
- 3 Stochastic matrices & Markov Chains
- 3.1 Probability, power iteration, and stochastic matrices

A vector $\mathbf{v} = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}^T \in \mathbb{R}^n$ will be said to be a *probability vector* if all of its entries v_i satisfy $v_i \geq 0$ and if

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \cdot \mathbf{v} = \sum_{i=1}^{n} v_i = 1.$$

Let $A = [a_{ij}] \in \mathbb{R}^{n \times n}$. We say that A is a stochastic matrix if $a_{ij} \geq 0$ for all i, j and if

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \cdot A = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix};$$

in words, A is a stochastic matrix if each column of A is a probability vector.

Notice that if \mathbf{v} is a probability vector, and A is a stochastic matrix, then $A\mathbf{v}$ is again a probability vector.

Indeed, by the definitions we have

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \cdot A \cdot \mathbf{v} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \cdot \mathbf{v} = 1$$

As a consequence if A and B are stochastic $n \times n$ matrices, then also AB is stochastic. In particular, A^m is stochastic for all $m \ge 0$.

3.2 Eigenvalues of stochastic matrices

Proposition: Let A be a stochastic matrix.

- a) A has an eigenvector with eigenvalue 1.
- **b)** Let λ be any eigenvalue of a A. Then $|\lambda| \leq 1$.
- c) If w is an eigenvector of A with eigenvalue λ satisfying $\lambda \neq 1$ then $\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$ w = 0.

Sketch:

For a), note that taking transposes and applying the definition, we find that

$$A^T \cdot \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T;$$

thus $\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T$ is an eigenvector for A^T with eigenvalue 1. Since the matrices A and A^T have the same characteristic polynomial and hence the same eigenvalues, the assertion **a**) now follows.

Since all entries a_{ij} of A satisfy $0 \le a_{ij} \le 1$, assertion b) is a consequence of Gershgorin's Theorem.

3.3 Proof of c):

On one hand, we have

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \lambda \mathbf{w} = \lambda \begin{pmatrix} \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \mathbf{w} \end{pmatrix}$$

On the other hand, since A is stochastic we have

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} A \mathbf{w} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \mathbf{w};$$

since $A\mathbf{w} = \lambda \mathbf{w}$ and since $\mathbf{w} \neq \mathbf{0}$, we conclude that

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \mathbf{w} = \lambda \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \mathbf{w}.$$

Since $\lambda \neq 1$ by assumption, this is only possible if $\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \mathbf{w} = 0$, as asserted.

3.4 Power iteration for stochastic matrices

Let A be a stochastic matrix, and suppose that the eigenvalue $\lambda = 1$ has multiplicity one. This means that the 1-eigenspace has dimension 1.

More concretely, this means that $A - \mathbf{I_n}$ has rank n - 1.

Remark: If A has n distinct eigenvalues, then the each eigenspace has dimension 1.

We have the following:

3.5 Corollary

Suppose that the stochastic matrix A is diagonalizable, and that the 1-eigenspace of A has dimension 1. Let \mathbf{v} be an eigenvector for A with eigenvalue 1, and set $c = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \mathbf{v}$. Then $\mathbf{w} = \frac{\mathbf{v}}{c}$ is a probability vector, and

$$A^m \to B$$
 as $m \to \infty$

for a stochastic matrix B. Each column of B is equal to \mathbf{w} .

Sketch:

For $1 \le i \le n$, the *i*-th column of B may be computed as

$$\lim_{m\to\infty}A^m\mathbf{e}_i$$

where \mathbf{e}_i is the *i*-th standard basis vector.

Let $\mathbf{v} = \mathbf{v}_1, \dots, \mathbf{v}_n$ be linearly independent eigenvectors for A.

When j > 1, the eigenvalue for \mathbf{v}_j is < 1 by assumption, and it follows from the preceding results that $\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \cdot \mathbf{v}_j = 0$ for j > 1.

Fix $1 \le i \le n$ and consider the expression

$$\mathbf{e}_i = \sum_{j=1}^n c_j \mathbf{v}_j.$$

Since $\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \mathbf{e}_i \neq 0$, it follows that $c_1 \neq 0$. Thus a result proved in the previous notebook shows that $\lim_{m\to\infty} A^m \mathbf{e}_i$ is a non-zero multiple of \mathbf{w} .

Since B is stochastic, each column of B is a probability vector, and must coincide with \mathbf{w} .

3.6 Markov Chains

Let's pause to recap our *state-machine* point-of-view.

We consider a system with a list of *states*. The system undergoes transitions, which we take to be given by probabilities.

We represent the system by a directed graph. Each state determines a node. A directed edge between two nodes $a \to b$ labeled with $p = p_{a,b}$ indicates that if the system is currently in state a, it will transform to state b with probability p.

Thus for each node a, the sum of the probabilities on the edges $a \to b$ must be 1:

$$\sum_{(a \to b)} p_{a,b} = 1$$

The resulting matrix $P = (p_{a,b})_{a,b}$ has the property that its column-sums are all equal to 1. Thus P is a *stochastic matrix*.

Let G be the directed graph attached to our probabilistic state-machine as before. We will refer to G as a transition diagram, and we call the system described by G a Markov chain.

3.7 Diagram properties

Let G be the transition diagram of a Markov chain.

Definition: G is strongly connected if for each pair of nodes a, b, there is sequence of directed edges e_1, \ldots, e_m connecting a to b.

Remark: If P is the corresponding stochastic matrix, one often says that P is *irreducible* when the transition diagram G is *strongly connected*.

3.8 Example:

The following graph is not strongly connected.

[1]: from graphviz import Digraph from itertools import product

```
g = Digraph()

for i in ["A","B"]:
    for j in [1,2]:
        g.node(f"{i}{j}")
    for (j,k) in product([1,2],[1,2]):
        g.edge(f"{i}{j}",f"{i}{k}")
g
```

[1]:

3.9 Example:

The following graph appears to be "connected" at least in some sense, but is not *strongly connected*. Note that there is no path from the node 5 to the node 1, for example.

[2]:

3.10 Cycles

A cycle of length n in a transition diagram is a sequence e_1, \dots, e_n of edges for which that initial node of e_1 is equal to the terminal node of e_n .

Here is an example of a cycle of length 5:

```
import numpy as np

def cycle(n=5,labels=None):
    if labels==None:
        labels= n*[1]
        cyc = Digraph()
        cyc.attr(rankdir='LR')
        I = list(range(n))

    for i in I:
        cyc.node(f"{i}")

    for i in I:
        cyc.edge(f"{i}",f"{np.mod(i+1,n)}",f"{labels[i]}")

    return cyc

cycle()
```

[3]:

3.11 Aperiodic

Given a transition diagram G, consider all possible cycles in G.

A transition diagram is said to be aperiodic if no integer n > 1 divides the length of each cycle.

In other language, the diagram G is aperiodic if the greatest common divisor of the lengths of the cycles in G is equal to 1.

Example: The preceding graph G with 5 nodes is not aperiodic since every cycle has length a multiple of 5.

Example: The following graph is aperiodic, since it contains a cycle of length 1.

```
[4]: acycle = cycle(labels=[1,1,1,1,.5])
acycle.edge("4","4",".5")
acycle
```

[4]:

3.12 Theorem: (Perron-Frobenius)

Let G be a transition diagram for a Markov chain, and suppose that G is strongly connected and aperiodic. Let P be the corresponding stochastic matrix. The multiplicity of the eigenvalue $\lambda = 1$ for P is 1 – i.e.

$$\dim \text{Null}(P - I_n) = 1.$$

All other eigenvalues λ satisfy $|\lambda| < 1$.

There is a 1-eigenvector \mathbf{v} which is a probability vector.

3.13 Corollary

- a) $\lim_{m\to\infty} P^m$ is a matrix for which each column is equal to ${\bf v}.$
- **b)** If **w** is a vector for which $\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$ **v** > 0, then $\lim_{m \to \infty} P^m$ **w** is a positive multiple of **v**.

4 Financial market example

Consider the state of a financial market from week to week.

- by a bull market we mean a week of generally rising prices.
- by a bear market we mean a week of genreally declining prices.
- by a recession we mean a general slowdown of the economy.

Let's consider the following situation: suppose that empirical observation has demonstrated for some market that for the market state of a given week, the probability of the state for the subsequent week is as follows:

	bull	bear	recession
followed by bull	0.90	0.15	0.25
followed by bear	0.075	0.80	0.25
followed by recession	0.025	0.05	0.50

In words, the first col indicates that if one has a bull market, then 90% of the time the next week is a bull market, 7.5% of the time the next week is a bear market, and 2.5% of the time the next week is in recession.

4.1 matrix

The matrix A describing the state transformations is a stochastic matrix.

[8]: array([1.00, 1.00, 1.00])

A has 3 distinct eigenvalues:

```
[10]: ##
e_vals,e_vecs = npl.eig(A)
e_vals
```

[10]: array([1.00, 0.74, 0.46])

In particular, it follows that the 1-eigenspace of A has dimension 1.

A 1-eigenvector is given by

```
[12]: v = e_vecs[:,0]
v
```

[12]: array([0.89, 0.45, 0.09])

Rescaling v to make a probability vector, we indeed see that $A^m \to [\mathbf{w} \ \mathbf{w} \ \mathbf{w}]$.

```
[29]: float_formatter = "{:.4f}".format np.set_printoptions(formatter={'float_kind':float_formatter})
```

```
w = (1/sum(v,0))*v

B=npl.matrix_power(A,200)

print(f"w = \n\n{w}\n\nA^200 = \n\n{B}")

w =

[0.6250 0.3125 0.0625]

A^200 =

[[0.6250 0.6250 0.6250]
[0.3125 0.3125 0.3125]
[0.0625 0.0625 0.0625]]
```

4.2 Interpretation:

Recall that A describes the state transitions for a financial market.

The interpretation here means that in the long run, there is a 62.5 % chance of a bull market, a 31.25 % chance of a bear market, and a 6.25% chance of a recession.