declare 23

Deminder of declare 21:

(05%)

· One-skep methods: A numerical methods to compute an approximative solution to the intial value golden

which is of the form:

with an increment function $\Phi: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

• One-step method is consistent of order p: $V_{i}(t,3) = O(3P+1)$; $3 \rightarrow O$.

· Global disableation error at ti for a are-step method is defined by e(ti, s):= y(ti)-yi

where
$$t_i = t_0 + i \left(\frac{T - t_0}{r} \right)$$
 $i = 0, \lambda - r$.

· OSI is convergent of order p:

Theorem 1: det the increment Sunctions of a OSE school the two dipolate conditions

$$|\Phi(t,u,\omega,z) - \Phi(t,\sigma,\omega,z)| \leq d |u-\sigma|,$$

$$|\Phi(t,\omega,u,z) - \Phi(t,\omega,\sigma,z)| \leq d |u-\sigma|,$$
with $d \in \mathbb{Q}^{t}$. Then under the timestep extriction $z \leq L$, we have

 $|e(t_{i+1}, s)| \leq (|e(t_{0}, s)| + \frac{(t_{i+1} - t_{0})}{1 - st} \cdot \frac{\eta(s)}{s}) \cdot \exp(\frac{3(t_{i+1} - t_{0})}{1 - st})$ where $\eta(s) := \max_{i \in S_{0}, -n^{2}} |\eta(t_{i}, s)|$.

Corollaty Discussion of Thin I:

33 a OSX

a) has a inciment function of which is dipschite continuous vità respect to the girn and y: slot

b) is consistent of order p

c) has an initial value in satisfying no = 20 + Q(26)

Then the OSE is converged of order p.

Since a) is satisfied, the OSX satisfies the error estimate given in Thim I.

· Now c) implies that

$$= \int_{0}^{\infty} (f_{0}, g_{0}, g_{1}, g_{2}) - g(f_{1}) + \frac{g_{0} - g_{0}}{g_{0}} + \frac{g_{0} - g_{0$$

+ O(3°). Finally, because of b) we have
$$\frac{V(z)}{z} = O(3°)$$
.

@ Proof of Thin 1:

Consider the error city for some i e 80,..., n-13. There by definitions

$$+ \left(2(t_1) + 2 \overline{\Phi}(f_1, 2(t_1), 2(t_1 + 1), 2) \right) - 2(f_1 + 1) = \lambda(f_1 + 1)$$

$$- \left(2(f_1) + 2 \overline{\Phi}(f_1, 2(f_1), 2(f_1 + 1), 2) \right) = 0$$

. Now we can use the two dipschitz comditions

This gives up:

If Id < 1 (=> 9 < 1 we can rearrange terms to get

So we managed to estimate the disachgation error at tith by the disactigation error e(till) at ti plus a consistency error of (2).

Gonwall inequality.

demana (Discele Gromwall inequality)

det leis, leis Emis, be non-negative

sequences and arabune that

Then
$$\begin{array}{lll}
\text{C}_{i+1} &= (1+8)^{2} \text{C}_{i} + m_{i} & \text{holds for } i = 0, 1, \dots, n-1 \\
\text{C}_{i+1} &= (0+2)^{2} \text{M} & \text{cos} & \sum_{k=0}^{i} \sum_{k=0}^{n} \sum_{k=0}$$

Finishing proof of Thmul:

Divide by 1-56>0 to get

$$|e(t_{H},z)| \leq \frac{|-2\gamma|}{|+2\gamma|} |e(t_{L},z)| + \frac{|-2\gamma|}{|+2\gamma|}$$

. Write
$$e_{1+1} := |e(t_{1+1/2})|$$
; $\tilde{M}_1 := \frac{1}{1-27}$
 $(1+8) := \frac{1+29}{1-27}$ with $8 := \frac{1+29}{1-27} - 1 = \frac{527}{1-27}$

Then Gronwall gives

$$|\mathcal{C}(f_{i+1},z)| = (\mathcal{C}(f_{i},z) + \sum_{i=1}^{n} \frac{1}{2^{n}}) \exp\left(\sum_{i=1}^{n} \frac{1-27}{2^{n}}\right)$$

$$|\mathcal{C}(f_{i+1},z)| = (\mathcal{C}(f_{i},z) + \sum_{i=1}^{n} \frac{1}{2^{n}}) \exp\left(\sum_{i=1}^{n} \frac{1-27}{2^{n}}\right)$$

God by inductions one;

$$\tilde{\ell}_{0+1} = \tilde{\ell}_{1} \leq (1+8_{0})\tilde{\ell}_{0} + \tilde{m}_{0}$$

$$\leq (1+8_{0})(\tilde{\epsilon}_{0} + \tilde{m}_{0})$$

$$\leq e^{s_{0}}(\tilde{\epsilon}_{0} + \tilde{m}_{0})$$
Since $(1+x) \leq e^{x}$ for $x \geq 0$.

2) Induction Ekp it it!

By assumption.

By induction aspumption we know that
$$e: \leq \left(e_0 + \sum_{k=0}^{i-1} m_k\right) \cdot \exp\left(\sum_{k=0}^{i-1} g_k\right)$$

Thus

$$\begin{array}{lll} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

$$= \left(c_0 + \sum_{\varepsilon=0}^{\infty} \widetilde{m}_{\varepsilon}\right) \exp\left(\sum_{\varepsilon=0}^{\infty} S_{\varepsilon}\right).$$

(1) Order conditions part I

Dohivations In decline 22, we instituted aughting about their convergence order, and imparticular, how the choice of the conficients in the Butcher table c impacts the convergence order

to reduce the question of the global convergence order to the questions of the global of the questions of the local consistency order:

consistent of order p => comprignt of order p

So this leads to the

Questions: What kind of conditions must (ul, b, c) satisfy to achieve a high consistency order? · Siber S Stages in the R-K method, what is the highest order we can achieve?

We will now answer a couple of intersting questions whated to consistency , order and the choice of coefficients.

demma 1

35 an s-stage explicit Runge-Kutta methods (RKM) has consistency order ρ for all $S \in C^{\infty}(\Omega, \Omega^n)$, thum $\rho \leq s$.

In other words: The consistency order of an explicit RKill can never be higher than its number of stages.

grad:

Consider the simple JVP (with $\xi(t,y) = y$):

with the exact solution
$$y(4) = e^{t}$$
.

Applying an explicit 5. Stag & Multiple defined by (5 as assis)

les = f(t; + c, s, s;) = s; which is a 0-order polynomial in 2.

which is a 2nd order polymormial in J.

So each stage le; will be a polymormial in 5 of order at most j-1. In particular Siti = Sit 5 Z bj & will be some polynomial p(3) with order at most s.

So chosing y=1, t=0, we see that for one step the consistency error satisfie's

$$\eta(t_{0,3}) = |y(t_{0+3}) - y_{1}|$$

$$= |e^{3} - \rho_{8}(3)|$$

So in order that a polynomial of order s approximates the exponential Sunctions up to torder O(3P+1);

$$\left| c_3 - b^2(2) \right| = Q\left(2_{b+1} \right)$$

we must have that p & s.

Definition: A OSD is called consistent if the consistency error y(t; 2) = o(2) (dittle o()), that is,

1. (4,2) -> 0 for 2 -> 0.

Note this is the minimal equirement to ensure that a OSOT y (+) converges to y(+) for a >0.

demma: A RKI is consistent if and only if \(\frac{1}{2} = 1 \).

det y(+) be the exact solutions to the v'= f(+,y), y(+)=yo ...

Do a Taylor-dwelopment of y(1) around to:

Also since &; = S(t, + c, 5, y, + 5 \in a; e &e)

we have that by = by(3) -> \$(+; 4;) for 3->0.

$$\int_{S(t_{1}, 2)} = 3(t_{1} + 2) - (3(t_{1}) + 2 + 2(t_{1}) + 2(t$$

$$\lim_{z\to 0} \frac{m(t_{i}, z)}{z} = \lim_{z\to 0} \left(S(t_{i}, y_{i}) - \sum_{j=1}^{2} b_{j} S_{j}(z) + \underline{\sigma(z)} \right)$$

$$= S(t_{i}, y_{i}) - \sum_{j=1}^{2} b_{j} S(t_{i}, y_{i}) = 0 \text{ if and only if }$$

$$\sum_{j=1}^{2} b_{j} S(t_{i}, y_{i}) = 0 \text{ if and only if }$$

Definitions (Aldonomisations)

An 3vp

(y'= f(t, y(t))

(h(4) = 00

dipend on t; that is, of depards only on yet).

y'= S(y(+)). Otherwise and SVP is called you-autonomous.

transformed into our autonomous system can be transformed into our autonomous system (autonomisation)

Roof: Idea is that time as an extra variable.

s'(+)= 1 s(to)= to, so s(+)=t.

Bet X:= (5) e then the JVP @ is equippent to

$$x' = \begin{pmatrix} g' \\ g' \end{pmatrix} = \begin{pmatrix} g(f, g(f)) \end{pmatrix} = \begin{pmatrix} g(g(f), g(f)) \end{pmatrix} = g(g(f), g(f))$$

So & does not explicitly depend one to any more.

Opriously, a lung Ketta method for our autonomous system need only b specify (ch,b) in the Butcher table, and not c.

· Now, are naturally property of a RKI to wish for is that it yields the same numerical would no matter whether we apply it to a mon-autonomous system or its autonomised conterpart. We then say that the RKI is imparable under autonomiseations.

autonomisation is and only is it is consistent and the Sutcher table satisfies

$$C_i = \sum_{i=1}^{s} Q_{ij}$$
 for $i = 1, \dots, s$.

Grad: Without proof.

As a woult of the previous two lemmas, one often, considers only autonomous system to case the motation and derivation of theoretical results.

5. dultivariale Taylor Formula

In this section we assume that all 248 are written as an automomous suptem

$$X' = \mathcal{G}(X(4))$$

 $X(4_0) = X_0$ with $X(4) \in \mathbb{Q}^n$

Subtreariale Taylor Formula

lecall the Taylor Formula for functions $\mathcal{L}:(a,b) \to \mathbb{Q}$. of one variable:

$$S(x+2) = \sum_{n=0}^{6} \frac{f(n)}{n!} + O(x^{6+n}).$$

· Now if $S \in C^{\ell}(D, \mathbb{R}^{m})$ with $D \in \mathbb{R}^{d}$ we can define a multiparak virsion of Taylor's Formula for Declor-valued Sunctions of Several variables:

tirst we define what I'm (x) means.

det Pun. . Pun E D' be in vectors. Then

So for Sixed
$$x \in \mathbb{Q}^d$$
, $f(x)$ dendes a symmetric, multihurar

(more exactly no-linear) mapping, and its application to its no enguments him is denoted by I have how. Note that have denotes component no of the vector has

Then we have the Sollowing

demma:

$$\mathcal{Z}(x+p) = \sum_{k=0}^{N=0} \frac{N!}{N!} \mathcal{Z}_{(k)} \left[\mathcal{E}^{(k)} \cdot \sum_{k=0}^{N-1} \frac{N!}{N!} \mathcal{Z}_{(k)} \right] + \mathcal{Q}(\|\mathbf{b}\|_{b+1})$$

holds for any x e I and sufficiently small well.

Proof. Mithout proof

on the coefficients in the butcher table Italian which will ensure that the corresponding RKIL has a certain consistency order.

· To duive these order conditions we will some on automomous Eyetems

$$\begin{cases} X(f^o) = X^o \\ X = \mathcal{Z}(X) \end{cases}$$

and we will only consider considered order & 3.

• Recall that to show that a general OSOR has consistency order ρ , we must show that $\eta(t;z) \in \chi(t) + \varpi \overline{\Phi}(\chi(t), \chi(t+z), z) - \chi(t+z)$ $= \sigma(\sigma^{\rho+1}).$

. So for a lek it the idea is to do a Touglor development of X around t

and then to do same for discrete functions $X(+) + \overline{\Phi}(X(+), X(++2), 2) \text{ as a function of } \Sigma.$ Then we will compare the terms in fact
barious powers of Σ .

Taylor expansion of X(t)

.
$$X(t+3) = X(t) + X(t) + X(t) + \frac{3!}{3!} + \frac{3!}{3!} + O(2^4)$$
.

Wow we compute

• X'(t) = S(X(t))

$$\cdot x''(4) = \frac{d}{dt} x'(4) = \frac{d}{dt} \mathcal{L}(x(4)) = \mathcal{L}(x(4))[x'(4)]$$

$$= \mathcal{L}\mathcal{L}\mathcal{L}$$

where in the last step, we omit the argument X(4) to simplify the molations.

$$\cdot x''(t) = \frac{d}{dt}x'' = \frac{d}{dt}S[S] = S'[S,S] + S[S[S]].$$

So this gives

. Of course we could continue this some, but we stop here.

Taylor expansions of the disact function Xx(++0)

Recall the definition of the RKI in teme of the Stage derivatives (see lecture 22):

$$\mathcal{E}_{i} = \mathcal{L}(\mathbf{x}(t) + 3 \sum_{\ell=1}^{s} q_{i\ell} \mathcal{E}_{\ell}) \qquad *)$$

$$X_{\bullet}(t+z) = X(t) + z \sum_{i=1}^{\infty} p_i k_i, \qquad + 1$$

Wow think of the ligas a sunctions in 3 and try to do a Taylor expansion. You might think that we will gust chasing our own tail since le: appears both on the less and the of *).

But note that be on the the are multiplied, we will "bootstap" a Taylor expansion of by.

· Note that Es(2) -> \$(x(4)) for 5-> 0.

· Now do a first order Taylor-expansion of f to obtain

$$E'(z) = \frac{2(x(t)) + 2\sum_{i=1}^{r} d^{i}e^{i}(z)}{2}$$

Now Eulestiale this into the this of *), and we get $e_{i}(s) = f(x + \sigma \sum_{i=1}^{n} q_{i}e^{i} + O(s^{2}))$.

Now do a second order Taylor expansion of $\xi(x+l_{\nu})$: $e_{i}(z) = \sum (x + c_{i}) = \sum (x) + \sum (x) \sum (x) \sum (x) + \sum (x) \sum (x) = \sum (x + c_{i}) = \sum (x +$ = \(\(\) + \(\) = 5 + 30; 5'[5] + 0(03) where we need that $\sum_{e=1}^{2} q_{ie} = c_{i}$ and $\sigma(c_{i}^{2}) = \sigma(z^{2})$ Buserting this again into the chs of * gives now Ei= (x+ | 2 = aic (5+ 2 ce 5'[5]) + O(23)) A 3rd order Taylor expansion of & gives E; = £(x+b) = £ + £'[b] + £'[b,b] + O(B) · login $O(R^3) = O(S^3)$ by the definition of R. and maxour (;
le: = f + 2 \(\frac{5}{2} \) a; \(\frac{5}{2} \) \ + 5 [2] 0; 5 , 3 [0; 5] + 0 (3) = f + acif[f] + 2; = accef[f][5]] $+\frac{3}{3}$ c; 3 [2,3] + 2(3₃).

Jusert this into +) and rewrite it slightly to make compansions with other Taylor expansion of x (+17) capier aws.

$$\begin{array}{lll}
x_{2}(t+z) &= x(t) + z \sum_{i=1}^{2} b_{i} b_{i} \\
&= x + z \sum_{i=1}^{2} b_{i} b_{i} + z^{2} \left(2 \sum_{i=1}^{2} b_{i} c_{i} \int_{z=1}^{z} b_{i} c_{i} c_{i} \int_{z=1}^{z} b_{$$

Now companing this with Taylor expansions of the exact solutions x(t+3), yields.

has consistency order

Then for a smooth enough &, the BK TE

P=3 is " 3) and 4) holds.

P=1 is condition() holds

9=2 i= "2) holds

Theorem 2 (Order conditions)

Consider the conditions

$$1) \qquad \sum_{j=1}^{s} b_{j} = 1$$

3)
$$\frac{s}{5}$$
 by $c_{ij} = \frac{1}{3}$

$$\frac{1}{1}$$
 $\frac{1}{1}$ $\frac{1}$

Remark:

Order conditions for p > 3 can be derived in the same was by considering higher order Taylor expansion of X(t+y) and X_{2} but this will quiddy become difficult to do the book-beeping of all the derivatives.

There is a more advanced theory involving labelled trees, see the ODE lecture motes by Anne Kramo.