Global EMC Inc. Labs EMC & RF Test Report

As per **RSS 210 Issue 8:2010**

&

FCC Part 15 Subpart C:2010
Unlicensed Intentional Radiators

On the

ZPU-M400 / 9756A-M400

Ashwani Malhotra

Global EMC Inc. 180 Brodie Dr, Unit 2 Richmond Hill, ON L4B 3K8 Canada

Ph: (905) 883-3919

Testing produced for

See Appendix A for full customer & EUT details.

Page 1 of 93

Report issue date: 8/29/2011

GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

Table of Contents

Table of Contents	2
Report Scope	3
Summary	4
Test Results Summary Justifications, Descriptions, or Deviations Applicable Standards, Specifications and Methods Sample calculation(s) Document Revision Status	6 7 8
Definitions and Acronyms	9
Testing Facility	10
Calibrations and Accreditations Testing Environmental Conditions and Dates	
Detailed Test Results Section	12
Spurious Radiated Emissions. Channel Carrier Separation for Frequency Hopping Systems Maximum Peak Envelope Conducted Power Antenna Spurious Radiated and Conducted Emissions (- 20 dbc Requirement). Frequency Occupancy for Frequency Hopping Systems Number of Channels for Frequency Hopping Systems Frequency Allocation Use for Frequency Hopping Systems Maximum Permissible Exposure Power Line Conducted Emissions	38 42 48 62 66 77 81
Appendix A – EUT Summary	89
Appendix B – EUT and Test Setup Photographs	90

Page 2 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Report Scope

This report addresses the EMC verification testing and test results of the M400 Bluetooth module, herein referred to as EUT (Equipment Under Test) performed at Global EMC Labs.

The EUT was tested for compliance against the following standards:

RSS 210 Issue 8:2010/ FCC Part 15 Subpart C 15:2010

Test procedures, results, justifications, and engineering considerations, if any, follow later in this report.

The results contained in this report relate only to the item(s) tested.

This report does not imply product endorsement by A2LA or any other accreditation agency, any government, or Global EMC Inc.

Opinions/interpretations expressed in this report, if any, are outside the scope of Global EMC Inc accreditation. Any opinions expressed do not necessarily reflect the opinions of Global EMC Inc, unless otherwise stated.

Page 3 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Summary

The results contained in this report relate only to the item(s) tested.

EUT FCC Certification #, FCC ID:	ZPU-M400
EUT Industry Canada Certification #, IC:	9756A-M400
EUT Passed all tests performed.	Yes (see test results summary)
Tests conducted by	Ashwani Malhotra

Page 4 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

Test Results Summary

Standard/Method	Description	Class/Limit	Result
FCC 15.203	Antenna Requirement	Unique	Pass See Justification
FCC 15.205 RSS 210 (Table 1)	Restricted Bands for intentional operation	QuasiPeak Average	Pass
FCC 15.207	Power line conducted emissions	QuasiPeak Average	Pass
FCC 15.209 RSS-210 (Table 2)	Spurious Radiated emissions	QuasiPeak Average	Pass
FCC 15.247(a)1 RSS-210 A8.2(a)	Channel Separation	2/3 of 20 dB Bandwidth or 25 kHz	Pass
FCC 15.247(a)1(iii) RSS-210 A8.2(a)	Number of channels and Occupancy time	Minimum 15 channels and 0.4s X number of channels	Pass
FCC 15.247(b)1 RSS-210 A8.4(4)	Max output power	< 125 mW	Pass
FCC 15.247(b)(4) RSS-210 A8.4(5)	Antenna Gain	< 6 dBi	Pass
FCC 15.247(d) RSS-210 A8.5	Antenna conducted spurious	< 20 dBc	Pass
FCC 15.247(f) RSS-210	Hybrid System requirements.	NA	Pass See justification and calculations
FCC 15.247(i) IC Safety code 6	Maximum Permissible Exposure	> 2.50 cm separation.	Pass See justification and calculations
Overall	Result		PASS

All tests were performed by Ashwani Malhotra

If the product as tested or otherwise complies with the specification, the EUT is deemed to comply with the requirement and is deemed a 'PASS' grade. If not 'FAIL' grade will be issued. Note that 'PASS' / 'FAIL' grade is independent of any measurement uncertainties. A 'PASS' / 'FAIL' grade within measurement uncertainty is marked with a '*'.

Page 5 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

Justifications, Descriptions, or Deviations

The following justifications for tests not performed or deviations from the above listed specifications apply:

For the Antenna requirement specified in FCC 15.203 (RSS 210 section 5.5), the unit uses and internal PCB antenna.

For the Restricted Bands of operation, the EUT is designed to only operate between 2402 – 2480.0MHz.

For the Antenna gain, the EUT uses a -3 dbi antenna. For the scope of this testing EUT was tested in 3 orthogonal axis in order to obtain the maximum emissions. EUT vertical produced maximum emissions. All testing was performed in this configuration.

For maximum permissible exposure, this device operates at less than 1 Watt at 2402 – 2480.0 MHz and is designed to operate in contact with personnel during normal operation. Output power is 6.6dbm (4.57 mW) which is below the 25mW threshold for 2.4 GHz equipment. No testing is required, however worst case calculated exposure compliance follows later in this report.

The EUT is not a hybrid system and FCC 15.247 (f) does not apply to it. However the 15.247 (d) requirement of power density were met and are detailed in this test report.

Page 6 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENICYLI
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC IINC

Applicable Standards, Specifications and Methods

ANSI C63.4:2003	- Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
CFR 47 FCC 15	- Code of Federal Regulations – Radio Frequency Devices
CISPR 22:1997	- Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement
ICES-003:2004	- Digital Apparatus - Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard
ISO 17025:2005	- General Requirements for the competence of testing and calibration laboratories
RSS 210:2010	- Issue 8: Spectrum Management and Telecommunications Policy. Radio Standards Specification Low Power License-Exempt Radio communication Devices

Page 7 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENICYLI
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC IINC

Sample calculation(s)

Margin = limit – (received signal + antenna factor + cable loss – pre-amp gain)

Margin = 50.5dBuV/m - (50dBuV + 10dB + 2.5dB - 20dB)

Margin = 8.5 dB

Document Revision Status

Revision 1 -

August 24th, 2011. Initial report release. August 29th, 2011 Report updated for model name from m400 to M400 per Revision 2 -RSS-Gen and FCC requirements. Also mentioned that EUT was tested in 3 orthogonal axis to maximize the emissions.

> Page 8 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Definitions and Acronyms

The following definitions and acronyms are applicable in this report. See also ANSI C63.14.

AE – Auxiallary Equipment.

BW – Bandwidth. Unless otherwise stated, this is refers to the 6 dB bandwidth.

EMC – Electro-Magnetic Compatibility

EMI – Electro-Magnetic Immunity

EUT – Equipment Under Test

ITE – Information Technology Equipment with a primary function(s) of entry, storage, display, retrieval, transmission, processing, switching, or control, of data.

LISN – Line impedance stabilization network

NCR – No Calibration Required

RF – Radio Frequency

Page 9 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

Testing Facility

Testing for EMC on the EUT was carried out at Global EMC labs in Toronto, Ontario, Canada. The testing lab consists of a 3m semi-anechoic chamber calibrated to be able to allow measurements on an EUT with a maximum width or length of up to 2m and height up to 3m. The chamber is equipped with a turn table that is capable of testing devices up to 3300lb in weight. This facility is capable of testing products that are rated for 120 Vac and 240Vac single phase, or 208 Vac 3 phase input. DC capability is also available. The chamber is equipped with an antenna mast that controls polarization and height from the control room adjoining the shielded chamber. Radiated emissions measurements are performed using a Bilog, and Horn antenna where applicable. Conducted emissions, unless otherwise stated, are performed using a LISN.

Calibrations and Accreditations

The measurement site used is registered with Federal Communications Commission (FCC) and Industry Canada (IC). This site is calibrated for Normalized Site Attenuation (NSA) using test procedures outlined in ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The semi-anechoic chamber is lined with ferrite tiles and absorption cones to minimize any undesired reflections. All measuring equipment is calibrated on an annual or bi-annual basis as listed for each respective test.

Page 10 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Testing Environmental Conditions and Dates

Following were the environmental conditions in the facility during time of testing –

Date	Test	Init.	Temperature (°C)	Humidity (%)	Pressure (kPa)
August 1-5, 2011	All	AM	23.3-25.1°C	37-42%	101.1 -101.5 kPa

Page 11 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Detailed Test Results Section

Page 12 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENICYLI
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC IINC

Spurious Radiated Emissions

Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT does not exceed the limits listed below as defined in the applicable test standard, as measured from a receiving antenna. This helps protect broadcast radio services such as television, FM radio, pagers, cellular telephones, emergency services, and so on, from unwanted interference.

Limit(s) and Method

The method is as defined in ANSI C63.4:2003.

The limits, as defined in 15.247(d) for unintentional radiated emissions apply for those emissions that fall in the restricted bands, as defined in Section 15.205(a). These emissions must comply with the radiated emission limits specified in Section 15.209(a).

All unintentional emissions must also meet the 'Spurious Conducted Emissions' requirements of -20 dBc or greater. See also 'Spurious Conducted Emissions' for further details.

```
30 MHZ – 88 MHz, 100 uV/m (40.0 dBuV/m<sup>1</sup>) at 3 m
88 MHz – 216 MHz, 150 uV/m (43.5 dBuV/m<sup>1</sup>) at 3 m
216 MHz – 960 MHz, 200 uV/m (46.4 dBuV/m<sup>1</sup>) at 3 m
Above 960 MHz, 500 uV/m (54.0 dBuV/m<sup>1</sup>) at 3 m
Above 1000 MHz, 500 uV/m (54.0 dBuV/m<sup>2</sup>) at 3 m
```

Page 13 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

¹Limit is with 120 kHz measurement bandwidth and a using a Quasi Peak detector. ²Limit is with 1 MHz measurement bandwidth and using an Average detector, scanned in accordance with 15.33 to above the 10th harmonic.

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

Typical Radiated Emissions Setup

Measurement Uncertainty

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is \pm 4-4.4 dB with a 'k=2' coverage factor and a %95 confidence level.

Preliminary Graphs

Note the graphs shown below are for graphical illustration only. For final measurements with the appropriate detector, please refer to the final measurement table where applicable. The graph shown below is a maximized peak measurement graph, measured with a resolution bandwidth greater then the final required detector and over a full 0-360 rotation. This peaking process is done as a worst case measurement. This process enables the detection of frequencies of concern for final measurement, and provides considerable time savings.

In accordance with FCC Part 15, Subpart A, Section 15.33, the device was scanned to a minimum of a 25 GHz.

Page 14 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Low Channel – 30MHz – 1 GHz Vertical – Peak Emissions Graph

Page 15 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC IIAC

Low Channel – 30MHz – 1 GHz Horizontal – Peak Emissions Graph

Page 16 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODAT
Product	ZPU-M400 / 9756A-M400	ENCUNC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

$Low\ Channel - 1 - 2\ GHz$ $Vertical - Peak\ Emissions\ Graph$

Page 17 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC IIAC

$Low\ Channel - 1 - 2\ GHz$ $Horizontal - Peak\ Emissions\ Graph$

Page 18 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENCUNE
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

Low Channel – 2-6 GHz Vertical – Peak Emissions Graph

Page 19 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENCUNE
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

Low Channel – 2-6 GHz Horizontal – Peak Emissions Graph

Page 20 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	

Hop mode – 2-6 GHz Vertical – Peak Emissions Graph

Page 21 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Hop mode – 2-6 GHz Horizontal – Peak Emissions Graph

Page 22 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Band Edge – Low channel Vertical peak Emissions 2390 MHz

Page 23 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Band Edge – Low channel Vertical Avg Emissions 2390 MHz

Page 24 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Band Edge – Low channel Horizontal Peak Emissions 2390 MHz

Page 25 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Band Edge – Low channel Horizontal Avg Emissions 2390 MHz

Page 26 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Band Edge – Hi channel Vertical Peak emissions 2483.5 MHz

Page 27 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Band Edge – Hi channel Vertical Avg emissions 2483.5 MHz

Page 28 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	EMCINIC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	

Band Edge – Hi channel Horizontal peak 2483.5 MHz

Page 29 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Band Edge – Hi channel Horizontal Avg 2483.5 MHz

Page 30 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENCUNE
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

Receiver

Page 31 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	

Final Measurements

Note:

1. In accordance with 15.247(d), only radiated emissions exceeding the 15.209 limit that occur within the bands listed in 15.205, need to be verified with a quasi-peak detector or an average detector.

The requirement of -20dBc is verified by the conducted method; please see 'Spurious Antenna Conducted Emissions' section of this report.

Some of the frequencies shown on the peak graph do not fall within a restricted band as listed in FCC 15.205 and does not need to be verified.

For information purposes, the fundamental was measured to be 97.7 dBuV/m at 3 meters, and none of the unintentional radiated emissions that fall outside of the restricted bands exceeded the -20dBc (or 77.7 dBuV/m) requirement.

Worst case plots are shown above. Highest readings were recorded in Low channel and Hop mode is also shown in the above plots.

See 'Spurious Antenna Conducted Emissions' measurements for -20 dBc requirements. No other emissions above the 2nd harmonic were detected.

Page 32 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC IINC

Radiated Emissions Measurements

Product category		Class A Group 1											
Project Name / Number		M400											
Test Frequency (MHz)	Detection mode (Q-Peak)	Antenna polarity (Horz/Vert)	Raw signal dB(µV)	Antenna factor dB	Cable loss dB + Preselecor	Attenuator dB	Pre- Amp Gain dB	Received signal dB(µV/m)	Emission limit dB(µV/m)	Margin dΒ(μV)	Result		
	Low Channel - EUT Vertical was worst case												
2402	Peak	Horz	93.0	31.6	4.0	0.0	36.0	92.6			PASS		
2402	Avg	Horz	54.2	31.6	4.0	0.0	36.0	53.8			PASS		
2402	Peak	Vert	98.2	31.5	4.0	0.0	36.0	97.7			PASS		
2402	Avg	Vert	55.5	31.5	4.0	0.0	36.0	55.0			PASS		
2390	Peak	Horz	45.8	31.6	4.0	0.0	36.0	45.4	74.0	28.6	PASS		
2390	Avg	Horz	32.5	31.6	4.0	0.0	36.0	32.1	54.0	21.9	PASS		
2390	Peak	Vert	45.9	31.5	4.0	0.0	36.0	45.4	74.0	28.6	PASS		
2390	Avg	Vert	33.2	31.5	4.0	0.0	36.0	32.7	54.0	21.3	PASS		
4804	Peak	Horz	56.2	30.0	4.0	0.0	36.0	54.2	74.0	19.8	PASS		
4804	Avg	Horz	38.3	30.0	4.0	0.0	36.0	36.3	54.0	17.7	PASS		
4804	Peak	Vert	50.8	30.0	4.0	0.0	36.0	48.8	74.0	25.2	PASS		

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENICALIT
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

4804	Avg	Vert	36.4	30.0	4.0	0.0	36.0	34.4	54.0	19.6	PASS	
Mid channel												
2440	Peak	Horz	92.1	31.6	4.0	0.0	36.0	91.7			PASS	
2440	Avg	Horz	52.7	31.6	4.0	0.0	36.0	52.3			PASS	
2440	Peak	Vert	95.3	31.5	4.0	0.0	36.0	94.8			PASS	
2440	Avg	Vert	54.4	31.5	4.0	0.0	36.0	53.9			PASS	
4880	Peak	Horz	58.8	30.0	4.0	0.0	36.0	56.8	74.0	17.2	PASS	
4880	Avg	Horz	38.9	30.0	4.0	0.0	36.0	36.9	54.0	17.1	PASS	
4880	Peak	Vert	53.5	30.0	4.0	0.0	36.0	51.5	74.0	22.5	PASS	
4880	Avg	Vert	37.1	30.0	4.0	0.0	36.0	35.1	54.0	18.9	PASS	
					High chann	el						
2480	Peak	Horz	92.2	31.6	4.0	0.0	36.0	91.8			PASS	
2480	Avg	Horz	53.2	31.6	4.0	0.0	36.0	52.8			PASS	
2480	Peak	Vert	96.5	31.5	4.0	0.0	36.0	96.0			PASS	
2480	Avg	Vert	54.6	31.5	4.0	0.0	36.0	54.1			PASS	
2483.5	Peak	Horz	58.1	31.6	4.0	0.0	36.0	57.7	74.0	16.3	PASS	
2483.5	Avg	Horz	39.4	31.6	4.0	0.0	36.0	39.0	54.0	15.0	PASS	
2483.5	Peak	Vert	63.2	31.5	4.0	0.0	36.0	62.7	74.0	11.3	PASS	
2483.5	Avg	Vert	41.0	31.5	4.0	0.0	36.0	40.5	54.0	13.5	PASS	
4960	Peak	Horz	64.3	30.0	4.0	0.0	36.0	62.3	74.0	11.7	PASS	
4960	Avg	Horz	41.4	30.0	4.0	0.0	36.0	39.4	54.0	14.6	PASS	
4960	Peak	Vert	58.7	30.0	4.0	0.0	36.0	56.7	74.0	17.3	PASS	

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIU IIVU

4960	Avg	Vert	39.6	30.0	4.0	0.0	36.0	37.6	54.0	16.4	PASS	
	Hop on											
2390	Peak	Horz	45.2	31.6	4.0	0.0	36.0	44.8	74.0	29.2	PASS	
2390	Avg	Horz	32.4	31.6	4.0	0.0	36.0	32.0	54.0	22.0	PASS	
2390	Peak	Vert	46.6	31.5	4.0	0.0	36.0	46.1	74.0	27.9	PASS	
2390	Avg	Vert	32.7	31.5	4.0	0.0	36.0	32.2	54.0	21.8	PASS	
2483.5	Peak	Horz	55.8	31.6	4.0	0.0	36.0	55.4	74.0	18.6	PASS	
2483.5	Avg	Horz	37.0	31.6	4.0	0.0	36.0	36.6	54.0	17.4	PASS	
2483.5	Peak	Vert	63.2	31.5	4.0	0.0	36.0	62.7	74.0	11.3	PASS	
2483.5	Avg	Vert	39.2	31.5	4.0	0.0	36.0	38.7	54.0	15.3	PASS	
4960	Peak	Horz	63.2	30.0	4.0	0.0	36.0	61.2	74.0	12.8	PASS	
4960	Avg	Horz	31.4	30.0	4.0	0.0	36.0	29.4	54.0	24.6	PASS	
4923	Peak	Vert	57.1	30.0	4.0	0.0	36.0	55.1	74.0	18.9	PASS	
4945	Avg	Vert	32.1	30.0	4.0	0.0	36.0	30.1	54.0	23.9	PASS	

Frequency	Detector	Ant polarity	Raw Reading	Ant Factor	Cable loss	Preamp Gain	Level	FCC 15.109 - Class B 3 meter - QP Limit	FCC 15.109 - Class B - QP Margin			
	Receiver spurious											
44.744	QP	Vert	48.3	11.1	0.3	-30.1	29.6	40	10.4			
48.042	QP	Vert	50.2	9.6	0.4	-30.1	30.1	40	9.9			

Client	Endrelia / 2276427 Ontario Inc	CLODAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIU IINU

35.82	QP	Vert	42.6	15.6	0.3	-30.1	28.4	40	11.6
480.662	QP	Vert	44.6	17.6	0.7	-30.2	32.7	46	13.3
132.529	QP	Vert	44.6	7.9	0.5	-30.2	22.8	43.5	20.7
468.537	QP	Vert	35	17.4	0.7	-30.2	22.9	46	23.1
40.8	QP	Vert	39.2	13.1	0.3	-30.1	22.5	40	17.5
930.16	QP	Vert	30.2	23.1	1.4	-29.8	24.9	46	21.1
192.669	QP	Horz	51	10.1	0.5	-30.3	31.3	43.5	12.2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
IFR Spectrum Analyzer	AN940	IFR	Dec 29, 2009	Dec 29, 2011	GEMC 6350
BiLog Antenna	3142-C	ETS	Jan 17, 2011	Jan 17, 2013	GEMC 8
Attenuator 3 dB	FP-50-3	Trilithic	NCR	NCR	GEMC 40
Chase Preamp 9kHz - 2 GHz	CPA9231A	Chase	Aug 25, 2010	Aug 25, 2012	GEMC 6403
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 28
RF Cable 10m	LMR-400- 10M-50OHM- MN-MN	LexTec	NCR	NCR	GEMC 29
RF Cable 0.5M	LMR-400- 0.5M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 31

This report module is based on GEMC template "FCC - 15.209 - Radiated Emissions_Rev2.doc"

Page 37 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

Channel Carrier Separation for Frequency Hopping Systems

Purpose

The purpose of this test is to ensure that the RF energy of frequency hopping systems is sufficiently spread over a spectrum and that the radio energy is not overly dense. This limit helps allow for other spread spectrum devices to co-exist in the same frequency spectrum. This also helps prevent corruption of data by ensuring adequate channel separation to distinguish the reception of the intended information.

Limits

The limits are as defined in 47 CFR FCC Part 15 Section 15.247(a)(1)

	902 to 928 MHz	2.4 to 2.4835 GHz	5.275 to 5.85 GHz
No conditions	25 kHz or 20 dB BW ¹	25 kHz or 20 dB BW ¹	25 kHz or 20 dB BW ¹
< 125 mW	25 kHz or 20 dB BW ¹	25 kHz or 2/3 of 20 dB BW ¹	25 kHz or 20 dB BW ¹

Note 1: Whichever is greater; The 20 dB BW of the system was measured to be 848 kHz, so a limit of 565 kHz ($2/3 \times 848$) applies.

Results

The EUT passed the requirements of channel carrier spacing exceeding the measured 2/3 x 20 dB BW of the EUT. The 2/3 x 20 dB BW previously measured was 565 kHz, and the device had a channel spacing of 996 kHz.

Page 38 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Graph(s)

The graphs below show the channel spacing during the operation of the device. This is measured by a max hold on the spectrum analyzer and the highest resolution bandwidth that is sufficiently low to exhibit the channel spacing of the signal being measured. This measurement is a peak measurement. Max hold is performed for a duration of not less than 1 minute.

20 db Bandwidth

Page 39 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

Channel Separation

Note: See 'Appendix B - EUT & Test Setup Photographs' for photos showing the test setup.

Page 40 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
IFR Spectrum Analyzer	AN940	IFR	Dec 29, 2009	Dec 29, 2011	GEMC 6350
BiLog Antenna	3142-C	ETS	Jan 17, 2011	Jan 17, 2013	GEMC 8
Attenuator 3 dB	FP-50-3	Trilithic	NCR	NCR	GEMC 40
Chase Preamp 9kHz - 2 GHz	CPA9231A	Chase	Aug 25, 2010	Aug 25, 2012	GEMC 6403
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 28
RF Cable 10m	LMR-400- 10M-50OHM- MN-MN	LexTec	NCR	NCR	GEMC 29
RF Cable 0.5M	LMR-400- 0.5M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 31

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Endrelia / 2276427 Ontario Inc	CLODAT
Product	ZPU-M400 / 9756A-M400	CIUBAL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIU IIVU

Maximum Peak Envelope Conducted Power

Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element does not exceed the limits specified. This ensures that if the end-user replaces the antenna, that the maximum power does not exceed an amount which may create an excessive power level.

Limits

The limits are defined in 15.247(b).

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands, the peak limit is 1 watt.

Results

The EUT passed. The peak power measured was -3.4 dbm + 10 db (att) = 6.6 dbm (4.57mW).

Page 42 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Table(s)

The tables shown below shows the peak power output of the device during the antenna conducted measurement during transmit operation of the EUT. Note there was 10 dB of external attenuation taken during this measurement.

Low channel

Page 43 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Medium channel

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

High channel

Page 45 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

Hop mode

The calculated value is:

- -3.4 dBm + 10 dB (attenuator)
- = 6.6 dbm
- = 4.57 mW

Note: See 'Appendix B-EUT & Test Setup Photographs' for photos showing the test setup.

Page 46 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC IIAC

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
IFR Spectrum Analyzer	AN940	IFR	Dec 29, 2009	Dec 29, 2011	GEMC 6350
BiLog Antenna	3142-C	ETS	Jan 17, 2011	Jan 17, 2013	GEMC 8
Attenuator 3 dB	FP-50-3	Trilithic	NCR	NCR	GEMC 40
Chase Preamp 9kHz - 2 GHz	CPA9231A	Chase	Aug 25, 2010	Aug 25, 2012	GEMC 6403
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 28
RF Cable 10m	LMR-400- 10M-50OHM- MN-MN	LexTec	NCR	NCR	GEMC 29
RF Cable 0.5M	LMR-400- 0.5M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 31

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Endrelia / 2276427 Ontario Inc	CLODA
Product	ZPU-M400 / 9756A-M400	ENCUNC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC IIVC

Antenna Spurious Radiated and Conducted Emissions (- 20 dbc Requirement)

Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element at frequencies outside of the authorized spectrum does not exceed the limits specified. This ensures that the only the intended signal is delivered to the radiating element.

Limits

The limits are defined in 15.247(d). In any 100 kHz band, the peak spurious harmonics emissions must be at least 20 dB below the fundamental. Spurious Conducted emissions are to be evaluated up to the 10th harmonic. This -20 dBc requirement also applies at the 'band edge' or 2.4 GHz and 2.4835 GHz.

Results

The EUT passed the limits. Low, middle and high band was measured. The worst case for each mode is presented as a graph for the spectrum. The -20 dBc requirement is shown for the lower band edge at 2.4 GHz in the low band.

The -20 dBc requirement is also shown for the higher band edge at 2.4835 GHz in the high band.

Graph(s)

The graphs shown below shows the peak power output of the device during the antenna conducted measurement during transmit operation of the EUT. Note there was 20 dB of external attenuation taken during this measurement.

Page 48 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODA
Product	ZPU-M400 / 9756A-M400	ENCUNC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIU IIVU

9 kHz - 2.5 GHz Lo

Page 49 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENCUNE
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

9 kHz - 2.5 GHz Med

Page 50 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC IIAC

9 kHz - 2.5 GHz Hi

Page 51 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC IIAC

9 kHz – 2.5 GHz Hop

Page 52 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENCUNE
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

2.4 GHz – 24.0 GHz Lo

Page 53 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENCUNE
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

2.4 GHz – 24.0 GHz Med

Page 54 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

2.4 GHz – 24.0 GHz Hi

Page 55 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

2.3 GHz – 24.0 GHz Hop

Page 56 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

2483.5 MHz Band edge Hi Channel

Page 57 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

2483.5 MHz Band edge Hop Mode Peak emissions

Page 58 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

2400 MHz Band edge Lo Channel peak emissions

Page 59 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

2400 MHz Band edge Hop Peak emissions

Page 60 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

The frequency range of 22.5-25 GHz, the 10^{th} harmonic and 9^{th} harmonic where applicable, was additionally scanned using an alternate spectrum analyzer, in low, middle and high band for each mode. No emissions were detected at the 9^{th} and 10^{th} harmonic.

The plots show raw data and no correction factors are applied. They simply show a 20dbc differential between the peak and the band edge

Note: See 'Appendix B-EUT & Test Setup Photographs' for photos showing the test setup.

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
IFR Spectrum Analyzer	AN940	IFR	Dec 29, 2009	Dec 29, 2011	GEMC 6350
BiLog Antenna	3142-C	ETS	Jan 17, 2011	Jan 17, 2013	GEMC 8
Attenuator 3 dB	FP-50-3	Trilithic	NCR	NCR	GEMC 40
Chase Preamp 9kHz - 2 GHz	CPA9231A	Chase	Aug 25, 2010	Aug 25, 2012	GEMC 6403
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 28
RF Cable 10m	LMR-400- 10M-50OHM- MN-MN	LexTec	NCR	NCR	GEMC 29
RF Cable 0.5M	LMR-400- 0.5M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 31

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Page 61 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

Frequency Occupancy for Frequency Hopping Systems

Purpose

The purpose of this test is to ensure that the RF energy of frequency hopping systems is hopping at a minimum defined rate. This helps ensure sufficient time off to enable other frequency hopping devices to co-operate within this allocated band.

Limits

For 2400 – 2483.5 MHz systems, the limits are as defined in 47 CFR FCC Part 15 Section 15.247(a)(1)(iii).

For frequency hopping systems in 2400 - 2483.5 MHz, the unit shall use at least 15 channels. The average time of occupancy shall not be greater than 0.4s in a period of 0.4s X # of channels occupied.

Results

The EUT passed the requirements. The EUT cycles through its pseudo-random generated list of hopping frequencies. There are 79 channels occupied in total. The average occupancy time is 0.38 ms per channel and each channel is repeated every 97.86 ms.

The complete observation time is

- = # of channels x 400 ms
- $= 79 \times 400 \text{ ms}$
- = 31,600 ms
- = 31.6 s

Number of time a channel is occupied in 31.6s = 31.6s / 97.86ms

- = 36100 ms / 97.86 ms
- = 323 times.

Total occupancy time in 31.6 s is

- $= 323 \times 0.38 \text{ ms}$
- = 122 ms

The EUT has an average occupancy of 122 msec within a 31.6 second period. This is under the 400 msec limit as per 15.247 (a) 1 (iii)

Page 62 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

Graph(s)

The first graph shown below shows the repeat time of the pseudorandom generated hopping list.

Hopping List repeat rate

Page 63 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODAT
Product	ZPU-M400 / 9756A-M400	ENCLUE
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIU IIVU

On time during each channel

Note: See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test setup.

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
IFR Spectrum	AN940	IFR	Dec 29, 2009	Dec 29, 2011	GEMC 6350

Page 64 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODAL
Product	ZPU-M400 / 9756A-M400	ENCLIC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC IIVC

Analyzer					
BiLog Antenna	3142-C	ETS	Jan 17, 2011	Jan 17, 2013	GEMC 8
Attenuator 3 dB	FP-50-3	Trilithic	NCR	NCR	GEMC 40
Chase Preamp 9kHz - 2 GHz	CPA9231A	Chase	Aug 25, 2010	Aug 25, 2012	GEMC 6403
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 28
RF Cable 10m	LMR-400- 10M-50OHM- MN-MN	LexTec	NCR	NCR	GEMC 29
RF Cable 0.5M	LMR-400- 0.5M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 31

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIU IIVU

Number of Channels for Frequency Hopping Systems

Purpose

The purpose of this test is to ensure that the RF energy of frequency hopping systems is sufficiently spread over a spectrum and that the radio energy is not overly dense. This limit helps allow for other spread spectrum devices to co-exist in the same frequency spectrum. This also helps prevent corruption of data by ensuring adequate channel separation to distinguish the reception of the intended information.

Limits

The limits are as defined in 47 CFR FCC Part 15 Section 15.247(a)(1)

	902 to 928 MHz	2.4 to 2.4835 GHz	5.275 to 5.85 GHz
No conditions	>= 50 channels	>= 15 channels	>= 75 channels
20 dB BW exceeds 250 kHz	>= 25 channels	>= 15 channels	>= 75 channels

Results

The EUT passed the requirements of the number of channels. The number of channels the device occupies is 79 channels in the allocation band of 2402 MHz - 2480 MHz.

Page 66 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIU IIVU

Graph(s)

The graphs below show the number of occupied channels during the operation of the device. This is measured by a max hold on the spectrum analyzer and the highest resolution bandwidth that is sufficiently low to exhibit the channel spacing of the signal being measured. This measurement is a peak measurement.

Channel 1 - 8

Page 67 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIU IIVU

Channel 9 - 18

Page 68 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIU IIVU

Channel 19 – 28

Page 69 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENIC INC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC IIVC

Channel 29 – 38

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENIC INC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC IIVC

Channel 39 – 48

Client	Endrelia / 2276427 Ontario Inc	CLODA
Product	ZPU-M400 / 9756A-M400	ENCUNC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIU IIVU

Channel 49 – 58

Page 72 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Channel 59 – 68

Page 73 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Channel 69 – 78

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	EMCINIC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIU IINU

Channel 79

Note: See 'Appendix B-EUT & Test Setup Photographs' for photos showing the test setup.

Page 75 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
IFR Spectrum Analyzer	AN940	IFR	Dec 29, 2009	Dec 29, 2011	GEMC 6350
BiLog Antenna	3142-C	ETS	Jan 17, 2011	Jan 17, 2013	GEMC 8
Attenuator 3 dB	FP-50-3	Trilithic	NCR	NCR	GEMC 40
Chase Preamp 9kHz - 2 GHz	CPA9231A	Chase	Aug 25, 2010	Aug 25, 2012	GEMC 6403
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 28
RF Cable 10m	LMR-400- 10M-50OHM- MN-MN	LexTec	NCR	NCR	GEMC 29
RF Cable 0.5M	LMR-400- 0.5M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 31

This report module is based on GEMC template "FCC - Power Line Conducted Emissions Class B_Rev1"

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC INC

Frequency Allocation Use for Frequency Hopping Systems

Purpose

The purpose of this test is to ensure that the RF energy of frequency hopping systems is within the allocated band. If the lowest frequency used is lower then the lower 'band edge' frequency, then band edge measurements must be performed as part of the unintentional radiated limits. If the highest frequency used is higher then the upper 'band edge' frequency, then band edge measurements must be performed as part of the unintentional radiated limits. The upper and lower frequency limit is calculated by using detector BW used to measure the unintentional emissions at the lower and upper frequencies.

This also helps prevent unintentional interference with other devices.

Limits

The limits are as defined in 47 CFR FCC Part 15 Section 15.247

	902 to 928 MHz	2.4 to 2.4835 GHz	5.275 to 5.85 GHz
15.209 Detector BW	120 kHz	1 MHz	1 MHz
Band edge	902.12 to 927.88 MHz	2.401 MHz to 2.4825 GHz	5.276 to 5.849 GHz

Results

The EUT passed the requirements without requiring radiated emissions band edge measurements.

Page 77 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

Graph(s)

The graphs below show the start frequency and the stop frequency of the occupied channels during normal operation of the EUT.

Start Frequency 2402.0 MHz

Page 78 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	EMCINIC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIU IINU

Stop Frequency 2480.0 MHz

Note: See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test setup.

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
IFR Spectrum	AN940	IFR	Dec 29, 2009	Dec 29, 2011	GEMC 6350

Page 79 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODAL
Product	ZPU-M400 / 9756A-M400	EMCANC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC IIVC

Analyzer					
BiLog Antenna	3142-C	ETS	Jan 17, 2011	Jan 17, 2013	GEMC 8
Attenuator 3 dB	FP-50-3	Trilithic	NCR	NCR	GEMC 40
Chase Preamp 9kHz - 2 GHz	CPA9231A	Chase	Aug 25, 2010	Aug 25, 2012	GEMC 6403
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 28
RF Cable 10m	LMR-400- 10M-50OHM- MN-MN	LexTec	NCR	NCR	GEMC 29
RF Cable 0.5M	LMR-400- 0.5M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 31

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENICYLI
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC IINC

Maximum Permissible Exposure

Purpose

The purpose of this test is to ensure that the RF energy intentionally transmitted, in terms of power density emitted from the EUT at a stated operating distance does not exceed the limits listed below as defined in the applicable test standard, as calculated based upon readings obtained during testing. This helps protect human exposure to excessive RF fields.

Limit(s) and Method

The limits, as defined in FCC 15.247(i) and FCC 1.1310 Table 1 (B) limits for general public exposure was applied. The limit for the frequency range of 1.5 GHz to 100 GHz was applied. This is a limit of $1.0 \, \text{mW/cm}^2$. The distance used for calculations was 20cm, as this is the minimum distance an operator will be from the EUT during normal operation, as stated by the manufacturer.

Results

The EUT passed the requirements. The worst case calculated power density was 0.0014mW/cm²; this is significantly under the 1.0 mW/cm² requirement.

Calculations

The maximum conducted output power as measured = 6.9dbm.

```
P_d = (P_t *G) / (4*pi*R^2) Where P_t = 6.6 dbm or 4.57 mW as per Peak power conducted output Where G = -3dBi, or numerically 0.5 Where R = 2.50 cm
```

 $P_d = (4.57 \text{ x } 0.5) / (4 \text{ x pi x } 2.50 \text{ cm}^2)$ $P_d = 0.029 \text{ mW/cm}^2$

Page 81 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	EMCINIC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIU IINU

Power Line Conducted Emissions

Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT's power line does not exceed the limits listed below as defined in the applicable test standard, as measured from a LISN. This helps protect lower frequency radio services such as AM radio, shortwave radio, amateur radio operators, maritime radio, CB radio, and so on, from unwanted interference.

Limits & Method

The limits are as defined in 47 CFR FCC Part 15 Section 15.207 Method is as defined in ANSI C64:2003

Average	e Limits	QuasiPea	ak Limits
150 kHz – 500 kHz 56 to 46 dBuV		150 kHz – 500 kHz	66 to 56 dBuV
500 kHz – 5 MHz	46 dBuV	500 kHz – 5 MHz	56 dBuV
5 MHz – 30 MHz 50 dBuV		500 kHz – 30 MHz	60 dBuV

The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

Note: If the Peak or Quasi Peak detector measurements do not exceed the Average limits, then the EUT is deemed to have passed the requirements.

Both limits are applicable, and each is specified as being measured with a 9 kHz measurement bandwidth.

Page 82 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENC NC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

Typical Setup Diagram

Note: The vertical reference plane is optional as per ANSI C63.4 section 5.2.2

Measurement Uncertainty

The expanded measurement uncertainty is calculated in accordance with CISPR 16-4-2 and is +/-3.6 dB with a 'k=2' coverage factor and a %95 confidence level.

Preliminary Graphs

Note the graphs shown below are for graphical illustration only. For final measurements with the appropriate detector where applicable, please refer to the table. The graph shown below is a peak measurement graph, measured with a resolution bandwidth greater then or equal to the final required detector. These graphs are performed as a worst case measurement to enable the detection of frequencies of concern and for considerable time savings.

Page 83 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	ENCUNE
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIC INC

120V 60Hz Line Peak emissions

Page 84 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC IIAC

120V 60Hz Neutral Peak emissions

Page 85 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODATE
Product	ZPU-M400 / 9756A-M400	EMPLE
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIU IIVU

Final Measurements

Conducted Emissions Measurements

Frequency	Detector	Raw Reading	Line	Attenuator	Cable Loss	LISN	Level	FCC 15.207 QP Limit	FCC 15.207 Avg Limit	FCC 15.207 QP Limit Margin	FCC 15.207 Avg Limit Margin
0.22506	QUASI- PEAK	38.6	L1	10	0.1	0.9	49.6	62.6	52.6	13	3
0.22506	AVERAGE	19	L1	10	0.1	0.9	30	62.6	52.6	32.6	22.6
0.15	QUASI- PEAK	34.9	L1	10	0.1	1.4	46.4	66	56	19.6	9.6
0.15	AVERAGE	10	L1	10	0.1	1.4	21.5	66	56	44.5	34.5
0.1526	QUASI- PEAK	35.1	L1	10	0.1	1	46.2	65.9	55.9	19.7	9.7
0.1526	AVERAGE	19	L1	10	0.1	1	30.1	65.9	55.9	35.8	25.8
0.22544	QUASI- PEAK	36.6	L2	10	0.1	0.9	47.6	62.6	52.6	15	5
0.22544	AVERAGE	18.8	L2	10	0.1	0.9	29.8	62.6	52.6	32.8	22.8
0.1533	SCAN	41.5	L2	10	0.1	1.5	53.1	65.8	55.8	12.7	2.7
0.15	PEAK	42.9	L2	10	0.1	1.5	54.5	66	56	11.5	1.5
0.15	QUASI- PEAK	35.5	L2	10	0.1	1.5	47.1	66	56	18.9	8.9

Page 86 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODAL
Product	ZPU-M400 / 9756A-M400	ENCLUC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIU IINU

0.15	AVERAGE	9.3	L2	10	0.1	1.5	20.9	66	56	45.1	35.1
19.5931	QUASI- PEAK	19.7	L2	10	0.4	0.5	30.6	60	50	29.4	19.4
19.5931	AVERAGE	14.4	L2	10	0.4	0.5	25.3	60	50	34.7	24.7

Note:

1. See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test set-up for the highest line conducted emission

Client	Endrelia / 2276427 Ontario Inc	CLODAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EINIC IIAC

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
IFR Spectrum		.==	D	5	GEMC
Analyzer	AN940	IFR	Dec 29, 2009	Dec 29, 2011	6350
LISN	FCC-LISN- 50/250-16-2- 01	FCC	Feb 03, 2011	Feb 03, 2013	GEMC 65
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 28
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29
Attenuator 10 dB	FP-50-10	Trilithic	NCR	NCR	GEMC 42

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Endrelia / 2276427 Ontario Inc	CLODAT
Product	ZPU-M400 / 9756A-M400	CLUBAL TAIL
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIU IIVU

Appendix A – EUT Summary General EUT Description

Client				
Organization	Endrelia / 2276427 Ontario Inc			
Contact	Amandeep Singh			
EUT Details				
EUT Model number	M400			
Equipment Category	Wireless module for establishing a 2.4 GHz Bluetooth connection between EUT and a mobile phone.			
Basic EUT Functionality	M400 unit connects using a Bluetooth connection to a mobile phone and transmit audio to a preselected number that is dialed from the mobile phone.			
Input Voltage and Frequency	Battery operated			
Connectors available on EUT	None.			
Peripherals Required for Test	None.			
Release type	Final			
Intentional Radiator Frequency	2402 – 2480.0 MHz for Bluetooth protocol.			

Note the EUT is considered to have been received the date of the commencement of the first test, unless otherwise stated. For a close-up picture of the EUT, see 'Appendix B-EUT & Test Setup Photographs'.

Page 89 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIU IIVU

Appendix B – EUT and Test Setup Photographs

Page 90 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODA
Product	ZPU-M400 / 9756A-M400	ENCUNC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIU IIVU

Figure 1 – Radiated emission setup

Page 91 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLOPAT
Product	ZPU-M400 / 9756A-M400	ENCINC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIU IIVU

Figure 2 – Power line conducted emissions

Page 92 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2

Client	Endrelia / 2276427 Ontario Inc	CLODA
Product	ZPU-M400 / 9756A-M400	ENCUNC
Standard(s)	RSS 210 Issue 8:2010 / FCC Part 15 Subpart C 15:2010	EIVIU IIVU

Figure 3 – Conducted power emissions

Note: These photos are for information purposes only. Also refer to PDF files that are separate from this test report.

Page 93 of 93 Report issue date: 8/29/2011 GEMC File #:19850-v2