Pictorial week 5 Non-Parametrics

How to import the dataset:

The examples from your lectures are used to demonstrate: Flexi_time.csv, Meds.xlsx, and the built-in faithful dataset

Work_times <- read.csv("Flexi_time.csv")</pre>

How to perform the Wilcoxon Signed Rank Sum Test:

result_WSRS = wilcox.test(Work_times\$Normal, Work_times\$Flexi, exact = FALSE, paired = TRUE, alternative = "greater")

Understanding what you are writing:

This gets all of the data from the column named Normal stored in the Work_times object.

Work_times\$Normal

Next the exact parameter is only set to TRUE if there are no ties in the data. Otherwise, if there are ties it will give you an approximate p-value.

exact = FALSE

The paired parameter is how you specify whether this is the Wilcoxon signed rank sum test or if it is the Mann-Whitney Wilcoxon test. If set to true it is the Wilcoxon, if set to false. It will perform the Mann-Whitney test.

paired = TRUE.

Alternative is the H1 (the alternative hypothesis). It can be set to either 'greater', 'less', or 'two.sided'

alternative = "less"

If there is still confusion run the ? command and it will display an explanation of the test on the screen.

?wilcox.test

How to use an excel file:

If the data you are dealing with is not from a .csv file and rather a .xlsx then you first need to import the readxl package by running

library(readxl)

Then instead of using the read.csv() function, you would instead use the read.xlsx() function.

read.xlsx("Meds.xlsx")

How to perform the Mann-Whitney Wilcoxon Test:

result_MWW = wilcox.test(Med_data\$New, Med_data\$Asprin, exact = FALSE, paired = FALSE, alternative = "less")

How to use a built-in data set on R:

datasets::faithful

How to perform the Kruskal Wallis test:

kruskal.test(faithful\$eruptions, faithful\$waiting)

For the above test the data needs to be structured in such a way that all observations are in a single column, and all the varying treatments are in a single column.