Organizácia predmetu

Modelovanie a riadenie systémov (ZS, ak.r. 2024/2025)

Anotácia predmetu:

Kybernetika a jej význam. Statické a dynamické vlastnosti procesov. Kybernetický model procesu. Prenosová funkcia. Prechodové charakteristiky. Frekvenčné modely procesov. Stavové modely procesov. Stabilita systémov. Riadenie procesov - základný princíp kybernetiky. Základná štruktúra regulátorov PID štruktúra. Návrh optimálnych parametrov PID regulátorov. Problémy pri implementácii PID algoritmov. Korekčné členy s fázovým predstihom a zaostávaním. Návrh parametrov korekčných členov. Vlastnosti regulačných obvodov s korekčnými členmi.

Zodpovedný za predmet: Ing. Marián Tárník, PhD.

Výsledky vzdelávania (ECTS):

Študent po absolvovaní predmetu disponuje základnými vedomosťami o modelovaní a riadení dynamických systémov z hľadiska Kybernetiky ako vednej disciplíny. Pozná lineárne dynamické systémy a nástroje na ich modelovanie a analýzu. Je schopný analyzovať základné regulačné obvody a navrhovať parametre regulátorov. Získané vedomosti a zručnosti sú nevyhnutným základom pre ďalšiu prácu v oblastiach ako teória systémov a teória riadenia.

Predmet patrí medzi povinné predmety a študent po absolvovaní získa 6 kreditov. Týždenný rozsah predmetu: prednášky: 2 h, cvičenia: 2 h

Predmet zabezpečujú:

Ing. Marián Tárník, PhD. (prednášky, cvičenia) doc. Ing. Miroslav Halás, PhD. (cvičenia) Ing. Róbert Málik (cvičenia)

Ing. Alena Hupcejová (cvičenia)

Oficiálne odkazy:

AIS: https://is.stuba.sk/katalog/syllabus.pl?predmet=410421 Štud. program: https://www.fei.stuba.sk/sk/aktuality-a-informacie/

studijne-programy.html?page_id=2570

GitHub: https://github.com/PracovnyBod/MRS

Podmienky absolvovania predmetu:

- 1. Aktívna účasť na vyučovacom procese.
- 2. Počas semestra je možné získat max. 60 bodov, pričom pre splnenie podmienok pre vykonanie skúšky je potrebných 16 bodov.
- 3. Je potrebná účasť na záverečnej skúške, je možné získať max. 40 bodov.

Priebežné hodnotenie študentov počas semestra:

- Priebežná práca/účasť na cvičeniach: 12 bodov
- Vypracovanie semestrálneho referátu (zadania): 18 bodov
- Semestrálna písomka: 30 bodov, pričom:
 - Bude vopred stanovená možnosť dvoch termínov semestrálnej písomky (možnosť odmietnuť hodnotenie prvého termínu). Riadny termín semestrálnej písomky v 8. týždni, opravný termín semestrálnej písomky v 12. týždni.

Harmonogram semestra

<u>Týž</u>	deň	Obsah
1.	prednáška 18.09.2024	 Úvod, podmienky absolvovania predmetu. [MRSoo] Uzavretý regulačný obvod – motivácia. Pojmy: kybernetika, spätná väzba, dynamický systém, signál, parametre, diferenciálna rovnica (schéma, sústava rovníc) [MRSo2]
	cvičenie	• Cvičenie úvodné. [1b] [MRSo1]
2.	prednáška 25.09.2024	 Obyčajné diferenciálne rovnice. Analytické riešenie diferenciálnych rovníc – metóda charakteristickej rovnice. [KUToo6]
	cvičenie	 Úlohy v dokumente MRSo3 (cvičenie druhé): [1b] Schematické znázornenie dynamického systému. [KUToo7] Rozklad na sústavu dif. rovníc prvého rádu. [KUToo1] Numerické riešenie diferenciálnych rovníc – Simulink. Príklad s jednosmerným motorom. Numerické riešenie diferenciálnych rovníc – ODE solver (MATLAB).
3.	prednáška 02.10.2024	 Laplaceova transformácia. [KUToo8, KUToo9] Analytické riešenie diferenciálnych rovníc – využitie Laplaceovej transformácie. Špeciálne prípady vstup. signálu: impulzná charakteristika a prechodová charakteristika.
	cvičenie	 Úlohy v dokumente MRSo3 (cvičenie tretie): [2b] Analytické riešenie dif. rovníc – metóda charakteristickej rovnice (prípadne aj využitie Laplaceovej transformácie). [KUTo10] Numerické riešenie dif. rovníc (Simulink alebo ODE solver v skripte). Príklad s kyvadlom.
4.	prednáška 09.10.2024	 Prenosové funkcie. Vlastnosti systémov Prevodová charakteristika Rád systému, póly a nuly Stabilita Astatizmus Impulzná charakteristika Prechodová charakteristika

	cvičenie	 Analytické riešenie dif. rovníc – využitie Laplaceovej transformácie (prípadne aj metóda charakteristickej rovnice). [2k [KUT010] MATLAB Control System Toolbox – tf, impulse, step (ako riešeni špecifických nehomogénnych dif. rovníc s využitím LT), pole, zero pzmap. Simulink – generovanie signálov (subknižnica sources) 	o] e
5.	cvičenie prednáška 16.10.2024	• Prenosové funkcie a vlastnosti systémov (pokračovanie).	_
	cvičenie	 Semestrálny referát – konkrétne znenie zadania. Odovzdanie do: (bude upresnené, cca koniec 11. týždňa) [18k] Práca na zadaní (na semestrálnom referáte): Meranie prevodovej charakteristiky. [1k] 	1
6.	cvičenie prednáška 23.10.2024	 Modelovanie systémov. Pripravuje sa 	_
	cvičenie	• Práca na zadaní: Meranie prevodovej charakteristiky, voľba pracovného bodu. [1k	- o]
7.	cvičenie prednáška ut., str. 30.10.2024	 PID regulátor (úvod). Opakovanie pred semestrálnou písomkou (časová rezerva pre dokončenie tém) 	_
	cvičenie ut., str.	Práca na zadaní: Meranie prechodovej charakteristiky. [1]	_ o]
	cvičenie pia.	sviatok	_
8.	prednáška 06.11.2024	 Semestrálna písomka DD.MM.2024 Plánuje sa: Rozdelenie na 2 skupiny, trvanie písomky cca 1h (jedna skupina prv hodinu prednášky, druhá druhú). 	– ú
	cvičenie ut., str.	Práca na zadaní: Meranie prechodovej charakteristiky. Určenie hodnôt parametrov systému prvého rádu. [18]	- o]
	cvičenie pia.	Práca na zadaní: Meranie prechodovej charakteristiky. [1]	_ o]
9.	prednáška 13.11.2024	• PID regulátor. • Pripravuje sa	_

	cvičenie ut., str.	 PID regulátor – súhrn teoretických vedomostí. PID regulátor – praktická časť: intuícia, nastavenie skusmo. Simulovaný riadený systém (prenosová funkcia prípadne kyvad 	[1 b]
	cvičenie pia.	• Práca na zadaní: Meranie prechodovej charakteristiky. Určenie hodnôt parametrov systému prvého rádu.	[1b]
10.	cvičenie prednáška ut., str. 20.11.2024	 Návrh parametrov PID regulátora. Pripravuje sa 	
	cvičenie ut., str.	 PID regulátor – riadenie reálneho systému (zo semestrálneho referátu). Pripravuje sa 	[1b]
	cvičenie pia.	 PID regulátor – súhrn teoretických vedomostí. PID regulátor – praktická časť: intuícia, nastavenie skusmo. Simulovaný riadený systém (prenosová funkcia prípadne kyvad 	[1b]
11.	cvičenie prednáška ut., str. 27.11.2024	• Pripravuje sa	
	cvičenie ut., str.	• Pripravuje sa	
	cvičenie pia.	 PID regulátor – riadenie reálneho systému (zo semestrálneho referátu). Pripravuje sa 	[1b]
12.	cvičenie prednáška ut., str. 04.12.2024	 Priestor pre opravný termín semestrálnej písomky Pripravuje sa 	
	cvičenie ut., str.	 Časová rezerva, priestor pre konzultácie Pripravuje sa 	
	cvičenie pia.	• Pripravuje sa	
13.	cvičenie prednáška ut., str.	• Prednáška nie je v rozvrhu.	
	cvičenie ut., str.	• Cvičenie nie je v rozvrhu	

- Časová rezerva, priestor pre konzultácie...
- Pripravuje sa...

Odhad termínu skúšky: prvý týždeň skúškového obdobia (začína 16.12.2024)

Odporúčaná literatúra

- [1] Karl Johan Åström a Richard M. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, jan. 2020. ISBN: 978-0-691-13576-2. URL: https://fbswiki.org/wiki/index.php/Main_Page.
- [2] Mikuláš Huba, Katarína Žáková a Peter Hubinský. Teória systémov. Dec. 2002. ISBN: SK- 80-227-1820-3. URL: https://www.researchgate.net/profile/ Mikulas - Huba - 3 / publication / 336119804 _ Teoria _ systemov _ Systems ' _Theory / links / 5d8f64c092851c33e9437d34 / Teoria - systemov - Systems -Theory.pdf.
- [3] Božena Mihalíková a Ivan Mojsej. *Diferenciálne rovnice*. 2012. URL: https://umv.science.upjs.sk/analyza/texty/predmety/MAN2c/dif_rovnice.pdf.
- [4] Farid Golnaraghi a Benjamin C. Kuo. *Automatic Control Systems*. 9th. Wiley, 2009. ISBN: 0470048964,9780470048962.

Krátke učebné texty

Repozitár KUT na GitHub: https://github.com/PracovnyBod/KUT

Ďalšia literatúra

- [5] Shlomo Engelberg. A mathematical introduction to control theory. Series in electrical and computer engineering 2. Imperial College Press; Distrubited by World Scientific, 2005. ISBN: 9781860945700,1-86094-570-8.
- [6] Robert H. Bishop; Richard C. Dorf. Modern control systems. 14. vyd. Pearson, 2022. ISBN: 9780137307258.
- [7] Abbas Emami-Naeini Gene Franklin J. Powell. Feedback Control of Dynamic Systems (What's New in Engineering). 8. vyd. Pearson, 2018. ISBN: 9780134685717.
- [8] Ján Mikleš a Miroslav Fikar. Process modelling, identification, and control. 1. vyd. Springer, 2007. ISBN: 3540719695,9783540719694.
- [9] Stephen Boyd a Lieven Vandenberghe. Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares. Cambridge University Press, 2018. ISBN: 1316518965,9781316518960. URL: https://web.stanford.edu/~boyd/vmls/.
- [10] Jaromír Kuben. Obyčejné diferenciální rovnice. 1995.
- [11] Josef Diblík et al. Diferenciální rovnice a jejich použití v elektrotechnice. 2010. URL: https://www.umat.fekt.vut.cz/~svobodaz/MKC-DRE/.
- [12] David E Edwards Charles Henry; Penney. Elementary differential equations with boundary value problems. 6. vyd. Pearson new international edition. Pearson Education, 2013. ISBN: 1292025336,9781292025339.

Ďalšie zdroje

• Matematika:

- https://math.libretexts.org/Bookshelves
- https://www.youtube.com/playlist?list=PLZHQObOWTQDNPOjrT6KVlfJuKtYTftqH6
- https://web.stanford.edu/~boyd/books.html
- https://bvanderlei.github.io/jupyter-guide-to-linear-algebra/intro.html
- https://cs.wikipedia.org/wiki/Charakteristick%C3%A1_rovnice
- https://www.math.sk/skripta2/node88.html
- http://thales.doa.fmph.uniba.sk/sleziak/texty/gyurki/diferaky/dif.pdf
- https://math.libretexts.org/Courses/Monroe_Community_College/MTH_225_Differential_Equations/ 9%3A_Linear_Higher_Order_Differential_Equations/9.2%3A_Higher_Order_Constant_Coefficient_ Homogeneous_Equations
- https://www.youtube.com/watch?v=0850WBJ2ayo&ab_channel=3Blue1Brown
- https://www.youtube.com/watch?v=7UvtU75NXTg&ab_channel=SteveBrunton
- https://www.youtube.com/watch?v=5hPD7CF0_54&ab_channel=SteveBrunton
- https://www.youtube.com/watch?v=iBde8g0W0h0&ab channel=SteveBrunton
- https://ocw.mit.edu/resources/res-18-008-calculus-revisited-complex-variables-differentialequations-and-linear-algebra-fall-2011/
- https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/index.htm

• Softvér:

- https://stuba.sk/matlab
- http://www.cds.caltech.edu/~murray/amwiki/index.php?title=Software
- https://scipy.org/
- https://jupyter.org/
- https://www.anaconda.com/products/distribution
- https://python-programming.quantecon.org/intro.html
- MATLAB (onramp kurz):
- https://matlabacademy.mathworks.com/details/matlab-onramp/gettingstarted
- Control Engineering:
- https://www.youtube.com/user/ControlLectures/playlists
- https://engineeringmedia.com/
- https://www.analog.com/en/education/education-library/scientist_engineers_guide.html
- http://matlab.fei.tuke.sk/zar/subory/literatura/Dorcak_TAR.pdf
- https://github.com/dodekm/TeamProjektKybernetika/tree/master/Nove%20prednasky