- This is wrong:
- 2 soil-ph/2020-03-12-hatch-final-data-merged/output-rmd/rsq-permanova-plot-ph-wisc-spoon-1.png
- 3 The adonis function has ordered input (for some reason), even when adding factors to the model.

```
## Biom + Metadata

# Intall:
# BiocManager::install("phyloseq")
# Load libraries
library(phyloseq)
#library(dada2)
library(ggplot2)
library(RColorBrewer)
library(vegan)

# Here we'll load in the microbial data.

# Import sequence processing table and check it out
# How many sequences were retained at each step?
track = readRDS("../2020-03-12-hatch-final-data-merged/reads/track.rds")
track
```

```
##
                                  input filtered denoised tabled nonchim
                                                             95159
   ## 001-K1-0-17_S1_
                                 182876
                                           113727
                                                     95159
                                                                      89297
   ## 002-K1-17-45 S2
                                  81260
                                            51682
                                                     42307
                                                             42307
                                                                      41748
   ## 003-K1-45-60_S3_
                                  55300
                                            27171
                                                     20888
                                                             20888
                                                                      20171
   ## 004-K2-Muck_S4_
                                 108860
                                            71520
                                                     57380
                                                             57380
                                                                      53443
   ## 005-K3-0-15_S5_
                                            71730
                                                     54482
                                                             54482
                                 135686
                                                                      51936
   ## 006-K3-15-35 S6
                                            37348
                                                     23576
                                                             23576
                                 107464
                                                                      23486
10
11
   ## 007-K3-35-50_S7_
                                 115786
                                            78875
                                                     65044
                                                             65044
                                                                      62650
   ## 008-K4-0-15_S8_
                                 100152
                                            19285
                                                      8619
                                                              8619
                                                                       8556
12
   ## 009-K4-15-30_S9_
                                                     29993
                                                             29993
                                                                      29051
                                  57577
                                            35582
13
   ## 010-K4-30-50_S10_
                                  93763
                                            46765
                                                     38406
                                                             38406
                                                                      37402
14
   ## 011-R1-0-27_S11_
                                            40030
                                                     21838
                                                             21838
                                                                      21737
                                 128413
15
   ## 012-R1-27-50 S12
                                 108524
                                            67801
                                                     57776
                                                             57776
                                                                      56713
16
   ## 013-R1-50-70_S13_
                                 101327
                                            44743
                                                     37288
                                                             37288
                                                                      36691
   ## 014-R2-0-30_S14_
                                  98020
                                            50303
                                                     34370
                                                             34370
                                                                      33980
18
   ## 015-R2-30-45_S15_
                                 144651
                                            83427
                                                     67939
                                                             67939
                                                                      66910
19
   ## 016-R2-45-60_S16_
                                                     25167
                                                             25167
                                 130070
                                            34111
                                                                      25018
20
   ## 017-R2-60-100_S17_
                                 107756
                                            58066
                                                     49565
                                                             49565
                                                                      47991
21
   ## 018-R3-0-20_S18_
                                  79325
                                            34393
                                                     20386
                                                             20386
                                                                      20326
22
   ## 019-R3-20-30 S19
                                 101494
                                            43254
                                                     33039
                                                             33039
                                                                      32370
23
   ## 020-M1-0-31_S20_
                                  81090
                                            44031
                                                     28164
                                                             28164
                                                                      28059
24
   ## 021-M1-31-50_S21_
                                 123202
                                            32323
                                                     19729
                                                             19729
                                                                      19466
25
                                 115300
                                            58825
                                                     50270
                                                             50270
                                                                      48700
   ## 022-M1-50-70_S22_
   ## 023-M2-0-24_S23_
                                            37765
                                                     25211
                                                             25211
                                  69786
                                                                      25211
27
   ## 024-M2-24-38_S24_
                                  66500
                                             4392
                                                      1360
                                                              1360
                                                                       1360
   ## 025-M2-38-55_S25_
                                  72317
                                            11461
                                                      6401
                                                              6401
                                                                       6401
29
   ## 026-M3-0-15_S26_
                                                     44706
                                                             44706
                                                                      43995
                                  93907
                                            58097
   ## 027-M3-15-30_S27_
                                 113189
                                            69066
                                                     58961
                                                             58961
                                                                      55617
31
   ## 028-S-0-30_S28_
                                                     33139
                                                             33139
                                                                      32957
                                  84651
                                            45676
   ## 029-S-30-60 S29
                                  93210
                                            60904
                                                     51755
                                                             51755
                                                                      49984
33
                                                     27822
   ## 030-H1-0-30 S30
                                  90750
                                            46239
                                                             27822
                                                                      27668
   ## 031-H1-30-40_S31_
                                  86567
                                            30139
                                                     17938 17938
                                                                      17938
```

36	##	032-H1-40-60_S32_	105640	67558	59240	59240	57478
37	##	033-H2-0-30_S33_	87099	16339	6348	6348	6348
38	##	034-H2-30-60_S34_	83980	49334	41732	41732	40567
39	##	035-A249-0-35_S35_	171995	99802	78097	78097	76177
40	##	036-A249-35-60_S36_	150886	31831	20121	20121	19889
41	##	037-A341-0-33_S37_	85427	58108	43652	43652	42498
42	##	038-A341-33-55_S38_	152238	37509	22947	22947	22729
43	##	039-A341-55-75_S39_	136405	86536	70615	70615	66543
44	##	040-A341-75-85_S40_	136079	73684	61036	61036	57498
45	##	041-L2-0-23_S41_	159454	43258	23094	23094	23094
46	##	042-L2-23-45_S42_	122710	65865	49028	49028	47069
47	##	043-L3-0-12_S43_	86274	17177	8855	8855	8855
48	##	044-L3-12-20_S44_	132616	73576	55701	55701	55220
49	##	045-L3-20-40_S45_	80337	50489	40351	40351	39803
50	##	046-L4-0-10_S46_	99581	22005	9226	9226	9171
51	##	047-L4-10-20_S47_	91215	50684	32790	32790	31661
52	##	048-L4-20-40_S48_	119412	50107	33518	33518	32534
53	##	049-W3-Compost_S49_	180030	78201	58381	58381	52148
54	##	050-W4-0-28_S50_	104694	18856	9956	9956	9956
55	##	051-W4-28-45_S51_	247394	151323	128651	128651	119735
56	##	052-W4-45-55_S52_	115897	75634	62731	62731	61321
57	##	053-W5-0-35_S53_	103001	54100	37307	37307	36937
58	##	054-W5-35-65_S54_	105301	69483	54655	54655	51766
59	##	055-W7-0-15_S55_	89996	48631	33299	33299	32938
60	##	056-W7-15-30_S56_	66065	21643	13343	13343	13343
61	##	057-P1-0-30_S57_	89999	57426	41822	41822	41207
62	##	058-P1-30-45_S58_	109185	15843	8812	8812	8812
63	##	059-P1-45-55_S59_	92847	61590	51573	51573	50559
64	##	060-P2-0-20_S60_	107565	53905	36050	36050	35670
65	##	061-P2-20-45_S61_	176157	42505	23826	23826	23486
66	##	062-P2-45-55_S62_	136875	73794	57793	57793	55732
67	##	063-P4-0-25_S63_	146085	56463	34722	34722	34268
68	##	064-P4-25-35_S64_	153343	95555	73081	73081	68963
69	##	065-P4-35-50_S65_	120945	69145	50362	50362	48655
70	##	181-Sp11-Cr31-0-20_S66_	107462	27633	10675	10675	10675
71	##	182-Sp11-Cr32-0-16_S67_	88842	21116	7352	7352	7352
72	##	183-Sp11-Cr33-0-20_S68_	48207	17300	6739	6739	6739
73	##	184-Sp12-Cr34-0-16_S69_	91437	57258	37259	37259	37078
74	##	185-Sp12-Cr35-0-18_S70_	102991	61552	39530	39530	38480
75	##	186-Sp12-Cr36-0-20_S71_	74281	17619	6050	6050	6050
76	##	187-Sp13-Cr37-0-20_S72_	87916	35459	16580	16580	16570
77	##	188-Sp13-Cr38-0-20_S73_	92749	48058	30511	30511	30290
78	##	189-Sp13-Cr39-0-19_S74_	120274	64100	43911	43911	43536
79	##	190-Sp14-Cr40-0-17_S75_	147563	19324	7700	7700	7700
80	##	191-Sp14-Cr41-0-18_S76_	123615	76067	58444	58444	57514
81	##	192-Sp14-Cr42-0-20_S77_	95005	57765	40490	40490	40337
82	##	193-Sp15-Cr43-0-18_S78_	117756	55650	40950	40950	40238
83	##	194-Sp15-Cr44-0-17_S79_	144523	84487	71381	71381	68362
84	##	195-Sp15-Cr45-0-20_S80_	108008	49459	32985	32985	32567
85	##	196-Sp16-Cr46-0-20_S81_	82746	25675	8942	8942	8942
86	##	197-Sp16-Cr47-0-17_S82_	107765	64753	42508	42508	42356
87	##	198-Sp16-Cr48-0-20_S83_	115552	33125	14483	14483	14483
88	##	199-Sp17-Cr49-0-20_S84_	120659	64605	52183	52183	50940
89	##	200-Sp17-Cr50-0-18_S85_	161957	82546	62933	62933	59863

```
## 201-Sp17-Cr51-0-18 S86
                                   109479
                                              10752
                                                         4159
                                                                 4159
                                                                         4159
90
                                                        49565
                                                                49565
   ## 202-Sp18-Cr52-0-18_S87_
                                   113065
                                              72492
                                                                        49262
   ## 203-Sp18-Cr53-0-19_S88_
                                              33398
                                                        15743
                                                                15743
                                                                        15715
                                    92639
92
      204-Sp18-Cr54-0-20_S89_
                                    95422
                                              59781
                                                        38645
                                                                38645
                                                                        38431
93
                                                                73534
      205-Sp19-Cr55-0-20_S90_
                                   204505
                                             101955
                                                        73534
                                                                        71731
94
      206-Sp19-Cr56-0-18_S91_
                                    98520
                                               7220
                                                         2276
                                                                 2276
                                                                          2276
95
                                              36745
      207-Sp19-Cr57-0-18_S92_
                                    97994
                                                        19184
                                                                19184
                                                                        19184
      208-Sp20-Cr58-0-20_S93_
                                    81724
                                              36655
                                                        17796
                                                                17796
                                                                        17796
97
       209-Sp20-Cr59-0-19_S94_
                                                               54466
                                   148052
                                              84565
                                                        54466
                                                                        53727
      210-Sp20-Cr60-0-20_S95_
                                    66841
                                              40391
                                                        25375
                                                                25375
                                                                        25288
99
      211-Sp1-Cr1-0-20_S96_
                                   134100
                                              15037
                                                         6086
                                                                 6086
                                                                          6086
                                    66264
   ## 212-Sp1-Cr2-0-20 S97
                                              14952
                                                         7640
                                                                 7640
                                                                         7537
101
                                                        23553
                                                               23553
   ## 213-Sp1-Cr3-0-20_S98_
                                    71197
                                              33638
                                                                        19873
102
   ## 214-Sp2-Cr4-0-20_S99_
                                    64668
                                              32062
                                                        19681
                                                                19681
                                                                        19681
103
   ## 215-Sp2-Cr5-0-20_S100_
                                    59680
                                               9677
                                                         3727
                                                                 3727
                                                                         3727
   ## 216-Sp2-Cr6-0-20_S101_
                                    83270
                                              51845
                                                        41388
                                                               41388
                                                                        41287
105
   ## 217-Sp3-Cr7-0-20_S102_
                                                                29507
                                    73671
                                              46034
                                                        29507
                                                                        29332
106
   ## 218-Sp3-Cr8-0-20_S103_
                                    97858
                                              53712
                                                        31869
                                                               31869
                                                                        31707
107
108
   ## 219-Sp3-Cr9-0-20_S104_
                                    97545
                                              61866
                                                        40989
                                                                40989
                                                                        40599
   ## 220-Sp4-Cr10-0-20_S105_
                                    71516
                                              34617
                                                        18555
                                                                18555
                                                                        18555
109
      221-Sp4-Cr11-0-20_S106_
                                    63790
                                              17585
                                                         6625
                                                                 6625
                                                                          6625
110
   ## 222-Sp4-Cr12-0-20_S107_
                                   117411
                                              78366
                                                        57338
                                                                57338
                                                                        56779
111
   ## 223-Sp5-Cr13-0-20_S108_
                                   108733
                                              20176
                                                         6204
                                                                 6204
                                                                          6204
112
                                                        40371
   ## 224-Sp5-Cr14-0-20_S109_
                                    90829
                                              58242
                                                                40371
                                                                        40169
113
      225-Sp5-Cr15-0-20_S110_
                                    64613
                                              28212
                                                        13220
                                                                13220
                                                                        13143
114
      226-Sp6-Cr16-0-15_S111_
                                    82006
                                              19304
                                                         7464
                                                                 7464
                                                                         7464
115
   ## 227-Sp6-Cr17-0-20_S112_
                                    76389
                                              49052
                                                        30022
                                                                30022
                                                                        29835
116
   ## 228-Sp6-Cr18-0-20_S113_
                                    90349
                                              34880
                                                        16346
                                                                16346
                                                                        16247
117
   ## 229-Sp7-Cr19-0-20_S114_
                                                               51544
                                   115919
                                              64710
                                                        51544
                                                                        50690
118
   ## 230-Sp7-Cr20-0-20_S115_
119
                                    74230
                                              18776
                                                        11523
                                                                11523
                                                                        11499
   ## 231-Sp7-Cr21-0-13 S116
                                    75045
                                              12521
                                                         5294
                                                                 5294
                                                                         5294
120
   ## 232-Sp8-Cr22-0-20_S117_
                                                        45560
                                                               45560
                                   141073
                                              69721
                                                                        45482
121
      233-Sp8-Cr23-0-20_S118_
                                   110558
                                              45709
                                                        26455
                                                                26455
                                                                        26417
122
                                              37231
                                                                        24273
      234-Sp8-Cr24-0-20_S119_
                                    61465
                                                        24321
                                                               24321
123
   ## 235-Sp9-Cr25-0-15_S120_
                                    83784
                                              41544
                                                        22254
                                                               22254
                                                                        22165
124
   ## 236-Sp9-Cr26-0-20 S121
                                    80446
                                              48274
                                                        32007
                                                                32007
                                                                        31862
   ## 237-Sp9-Cr27-0-15_S122_
                                    80498
                                              21827
                                                         8729
                                                                 8729
                                                                          8729
126
   ## 238-Sp10-Cr28-0-20_S123_
                                    75603
                                              36729
                                                        24170
                                                                24170
                                                                        24160
127
   ## 239-Sp10-Cr29-0-15_S124_
                                              43982
                                                        30468
                                                                30468
                                                                        30468
                                    84146
128
      240-Sp10-Cr30-0-20_S125_
                                    85612
                                              12867
                                                         4856
                                                                 4856
                                                                          4856
129
   ## 241-S-0-30-Dry_S126_
                                              46857
                                                               39598
                                                                        39224
                                    81180
                                                        39598
130
    # Import final otu table
   OTUs = readRDS("../2020-03-12-hatch-final-data-merged/reads/otutab.nochim.rds")
   # Change rows and columns so taxa are rows
   OTUs = t(OTUs)
   # Import as phyloseq object table
   otutab = otu_table(OTUs, taxa_are_rows=TRUE)
   head(otutab)
   ## OTU Table:
                             [6 taxa and 126 samples]
131
   ##
                              taxa are rows
132
```

Dissertation (2020) 3 Braus, M. J.

133 ##

```
## GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCCGCTGGTTAGGTGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
    139
  ##
140
    141
    142
    \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
143
    144
    145
    ##
147
    148
    149
    GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
    151
    153
154
  ##
    155
    \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCA
156
    \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
157
    158
    159
    160
  ##
161
    162
    \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAACTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAATCTCGGAAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCAAGTCGAAGTCAAGTCAAGTCGAAGTCAAGTCGAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGT
    \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
164
    166
    167
  ##
168
    170
    \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
    172
    173
    ##
174
  ##
175
    176
    177
    \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
178
    179
    181
  ##
182
  ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
183
    GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
185
    187
  ## CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTTGAAATCTCGGGGCCTTAACTCCGAAACTGCA
  ##
189
```

Dissertation (2020) 4 Braus, M. J.

```
194
             \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAG
195
              197
             \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAACTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAATCTCGGAAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCAAGTCGAAGTCAAGTCAAGTCGAAGTCAAGTCGAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGT
198
              \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAATCTTCCGGCTCAACCGGAAAACTGCAT
199
             201
             ##
202
203
       ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
             205
             \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
             207
             ##
             209
       ##
210
       ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
211
             \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCA
212
             \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGCGTAAAGCGCGTGTAGGCGGCTGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
213
              214
             215
              216
       ##
217
             218
             219
             \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
220
             221
             222
             \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTGCAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGT
       ##
223
       ##
224
             {\tt CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG-
             226
             \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
227
              228
             229
             ##
230
231
             232
              233
             \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
             235
             237
       ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
239
             {\tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCACTGCACTGCACTCCACTGCACTGCACTGCACTCCACTGCACTCCACTGCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCACTCCACTCCACTCCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACT
             GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
241
             ## CGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGCGTAAAGAGCGCGCAGGCGGTCGTTCAAGTCGCGTGTGAAAGCCCCCGGCTCAACTGGGGAGGGTCA
       Dissertation (2020)
                                                                                                        5
                                                                                                                                                                                    Braus, M. J.
```

CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG

CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTTGAAATCTCGGAGCTTAACTCCGAAACTGCA

GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCCGCTGGTTAGGTGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT

190

191

192

```
## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
248
          249
          250
          \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTGCAAGTCGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGT
251
     ##
252
          \tt CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG-\\
253
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
255
          256
          257
          ##
259
     ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
          261
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
          263
          264
          \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAACTGCAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCAAGTCGAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCA
265
     ##
266
          267
          268
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
          270
          271
          \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTGCAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGT
272
273
     ##
     ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
274
          275
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
276
          278
          280
          281
          282
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAATCTTCCGGCTCAACCGGAAAACTGCAT
283
          285
          286
287
     ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
          289
          GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
290
          291
          ##
          293
     ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
          {\sf GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT}
297
```

CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCTAAGTCGGGTTGTAAATCTCGGGGCTTAACTCCGAAACTGCA

##

Dissertation (2020) 6 Braus, M. J.

```
## CGAAGGGGGCTAGCGTTGCTCGGAATCACTGGGCGTAAAGGGTGCGTAGGCGGGTCTTTAAGTCAGGGGGTGAAATCCTGGAGCTCAACTCCAGAACTGCC
298
     300
301
  ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
302
     \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCA
303
     \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
     305
     307
  ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
309
     310
     \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
311
     313
     315
  ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
316
     317
     \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
318
     319
     320
     321
  ##
322
    \tt CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG-\\
323
     324
     \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
     326
    CGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGCGTAAAGAGCGCGCAGGCGGTCGTTCAAGTCGCGTGTGAAAGCCCCCGGCTCAACTGGGGAGGGTCA
  ##
     328
  ##
329
    330
     {\tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCACTGCACTGCACTCCACTGCACTGCACTGCACTCCACTGCACTCCACTGCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCACTCCACTCCACTCCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACT
     GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
332
     334
     335
  ##
336
     337
     338
     {\tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT}
339
     340
     341
    342
  ##
343
  ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
344
     345
     \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
     347
     349
  ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
351
```

Dissertation (2020) 7 Braus, M. J.

```
## CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCTAAGTCGGGTTGTAAATCTCGGAGCTTAACTCCGAAACTGCA
352
     ## GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCCGCTGGTTAGGTGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
         356
     ##
357
         \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCA
359
         \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
360
          361
         363
     ##
364
         365
         \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
367
         369
         370
     ##
371
         372
         \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAACTTGAAATCTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAAGTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAAATCTCGGAAGTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAAGTTAACTCCGAAACTGCAAGTCAAGTCGAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAG
373
         \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
374
         375
          {\tt CGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGCGTAAAGAGCGCGCAGGCGGTCGTTCAAGTCGCGTGTGAAAGCCCCCGGCTCAACTGGGGAGGGTCATCAAGTCGCGAACTGGGGAGGGTCATCAAGTCGCGAACTGGGGAGGGTCATCAAGTCGCGAACTGGGGAGGGTCATCAAGTCGCGAACTGGAAAGCCCCCGGCTCAACTGGGGAGGGTCATCAAGTCGCGAACTGGAAAGCCCCCGGCTCAACTGGGGAGGGTCATCAAGTCGCGAACTGAAAGCCCCCGGCTCAACTGGGGAGGGTCAACTGAAGTCGCGTGTGAAAGCCCCCGGCTCAACTGGGGAGGGTCAACTGAGAAGCCCCCGGGTCAACTGGGGAGGGTCAACTGAAGTCAAGTCGCGAAAGTAAGAAGCCCCCGGGTCAACTGGGGAGGGTCAACTGAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCA
376
         377
378
         ##
         380
         GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
          382
         383
          384
     ##
     ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
386
         \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
388
         390
         \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAG
391
392
          393
          394
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAATCTTCCGGCTCAACCGGAAAACTGCAT
395
         397
         398
300
         401
         GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
         403
         ## CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCTAAGTCGGGTTGTAAATCTCGGGGCTTAACTCCGAAACTGCA
405
```

Dissertation (2020) 8 Braus, M. J.

```
##
406
     ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
          410
          411
          412
     ##
413
          414
          415
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
          417
          418
          419
     ##
     ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
421
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
423
          425
          426
     ##
427
          428
          429
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
430
          431
          CGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGCGTAAAGAGCGCGCAGGCGGTCGTTCAAGTCGCGTGTGAAAGCCCCCGGCTCAACTGGGGAGGGTCA
432
          \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCAAGTCGAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCA
433
     ##
434
     ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
          436
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
437
          438
          ##
440
     ##
          {\tt CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG-
442
          \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAACTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAATCTCGGAAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAAGTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAAGTTCAAGTCGAAAACTGCAAGTCGAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTC
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
444
          445
          446
          447
     ##
448
          449
          \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAACTTGAAATCTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAAGTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAAATCTCGGAAGTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAAGTTAACTCCGAAACTGCAAGTCAAGTCGAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAG
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAATCTTCCGGCTCAACCGGAAAACTGCAT
451
          452
          453
          ##
455
          457
          {	t GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT}
```

Dissertation (2020) 9 Braus, M. J.

459

CGAAGGGGGCTAGCGTTGCTCGGAATCACTGGGCGTAAAGGGTGCGTAGGCGGGTCTTTAAGTCAGGGGGTGAAATCCTGGAGCTCAACTCCAGAACTGCC

```
## CGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGCGTAAAGAGCGCGCAGGCGGTCGTTCAAGTCGCGTGTGAAAGCCCCCGGCTCAACTGGGGAGGGTCA
460
            461
      ##
462
            463
            \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAACTTGAAATCTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAAGTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAAATCTCGGAAGTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAAGTTAACTCCGAAACTGCAAGTCAAGTCGAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAG
464
            \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
465
            {\tt CGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGCGTAAAGAGCGCGCAGGCGGTCGTTCAAGTCGCGTGTGAAAGCCCCCGGCTCAACTGGGGAGGGTCATCAAGTCGCGAACTGGGGAGGGTCATCAAGTCGCGAACTGGGGAGGGTCATCAAGTCGCGAACTGGGGAGGGTCATCAAGTCGCGAACTGGAAAGCCCCCGGCTCAACTGGGGAGGGTCATCAAGTCGCGAACTGGAAAGCCCCCGGCTCAACTGGGGAGGGTCATCAAGTCGCGAACTGAAAGCCCCCGGCTCAACTGGGGAGGGTCAACTGAAGTCGCGTGTGAAAGCCCCCGGCTCAACTGGGGAGGGTCAACTGAGAAGCCCCCGGGTCAACTGGGGAGGGTCAACTGAAGTCAAGTCGCGAAAGTAAGAAGCCCCCGGGTCAACTGGGGAGGGTCAACTGAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCA
467
            468
      ##
469
            471
            \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
472
            473
            ##
475
      ##
476
            477
            \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
479
            480
            481
            \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAAACTGCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGT
482
      ##
483
            484
            \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAACTTGAAATCTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAAGTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAAATCTCGGAAGTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAAGTTAACTCCGAAACTGCAAGTCAAGTCGAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAG
485
            \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAATCTTCCGGCTCAACCGGAAAACTGCAT
486
            487
            ##
490
            491
            492
            \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
            494
            496
      ##
            498
            499
            \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGCGTAAAGCGCGTGTAGGCGGCTGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
500
            501
            502
            503
      ##
            505
            506
            \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
507
            509
            511
```

Dissertation (2020) 10 Braus, M. J.

```
## GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCCGCTGGTTAGGTGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
514
       ## CGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGCGTAAAGAGCGCGCAGGCGGTCGTTCAAGTCGCGTGTGAAAGCCCCCGGCTCAACTGGGGAGGGTCA
       517
    ##
518
       519
       520
       \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
521
       522
       523
       ##
525
    ##
       526
       527
       GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
       529
       531
532
    ##
       533
       \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCA
534
       \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
535
       537
       538
    ##
       540
       \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAACTTGAAATCTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAAGTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAAATCTCGGAAGTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAAGTTAACTCCGAAACTGCAAGTCAAGTCGAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAG
541
       \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
542
       545
    ##
546
       {\tt CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGGAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGGAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGGAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGAACTCCGGGGCTCAACTCCGGATCTGCG-CGTAGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGGATCTAACTCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGATCTGCGGATCTGATCTGCGGATCTGATCGGATCTGATCGGATCTGATCTGCGGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGA
       548
       \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
       550
       552
    ##
553
       554
       555
       556
       557
       559
    ##
560
    ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
561
       GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
563
       565
    ## CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTTGTAAATCTCGGGGCTTAACTCCGAAACTGCA
    ##
567
```

Dissertation (2020) 11 Braus, M. J.

```
572
                \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAAACTGCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGT
573
574
                575
                \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAAGTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAAGTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAAGTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAAACTGCAAGTCGAAAACTGCAAGTCGAAGTAAAATCTCGGAAGTCAAGTCAAGTAAAATCTCGGAAGTTAAACTCCGAAAACTGCAAGTCAAGTCAAGTAAAATCTCGGAAGTAAAATCTCGGAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCA
576
                \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAATCTTCCGGCTCAACCGGAAAACTGCAT
577
                579
                ##
580
581
         ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
                583
                \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
                585
                ##
                587
         ##
               589
                \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCA
590
                \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGCGTAAAGCGCGTGTAGGCGGCTGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
591
                592
                594
         ##
595
               {\tt CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGGAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGGAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGGAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGAACTCCGGGGCTCAACTCCGGATCTGCG-CGTAGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGGATCTAACTCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGATCTGCGGATCTGATCTGCGGATCTGATCGGATCTGATCGGATCTGATCTGCGGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGA
596
               \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
598
                600
                \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTGCAAGTCGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAAACTGCAAGTCGAAAACTGCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAA
602
603
               {\tt CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG-
                604
                \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
605
                606
                607
                608
609
                610
                611
                \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
                613
                614
                615
         ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
617
                {\tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCACTGCACTGCACTCCACTGCACTGCACTGCACTCCACTGCACTCCACTGCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCACTCCACTCCACTCCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACT
               GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
619
                ## CGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGCGTAAAGAGCGCGCAGGCGGTCGTTCAAGTCGCGTGTGAAAGCCCCCGGCTCAACTGGGGAGGGTCA
621
         Dissertation (2020)
                                                                                                                            12
                                                                                                                                                                                                                         Braus, M. J.
```

CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG

CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGGGTAAGTCGGGTTGAAATCTCCGGAGCTTAACTCCGAAACTGCA ## GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCCGCTGGTTAGGTGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT

```
627
             \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTGCAAGTCGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAAACTGCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCA
629
       ##
630
             \tt CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG-\\
631
             \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
633
             634
             635
             ##
637
             {\tt CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGGCGCTCAACTCCGGATCTGCG-CGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGGAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGGAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGGAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGAACTCCGGGGCTCAACTCCGGATCTGCG-CGTAGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGAAAGTCCGGGGCTCAACTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGTAGAAGTCCGGATCTGCG-CGGATCTAACTCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGCGGATCTGATCTGCGGATCTGATCTGCGGATCTGATCGGATCTGATCGGATCTGATCTGCGGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGATCTGA
             639
             \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
             641
             \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAAACTGCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGT
643
       ##
             645
              646
             \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
              648
             \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTGCAAGTCGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAAACTGCAAGTCGAAAACTGCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAA
650
       ##
             652
             653
             \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
654
             656
657
             658
             659
              660
              \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAATCTTCCGGCTCAACCGGAAAACTGCAT
661
             662
              663
             664
665
       ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
             667
             GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
668
             669
             ##
             671
       ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
673
             ## GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
675
```

CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCTAAGTCGGGTTGTAAATCTCGGGGCTTAACTCCGAAACTGCA

CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGGTGCGTAGGCGGCGCGGTAAGTCGGGTTGAAATCTCGGAGCTTAACTCCGAAACTGCA
GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT

##

Dissertation (2020) 13 Braus, M. J.

```
## CGAAGGGGGCTAGCGTTGCTCGGAATCACTGGGCGTAAAGGGTGCGTAGGCGGGTCTTTAAGTCAGGGGTGAAATCCTGGAGCTCAACTCCAGAACTGCC
676
       678
    ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
680
       \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAAGCTGCAAACTGCAAGTCGAAGTCGAAGTCGAAATCTCGGAAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCA
681
       \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGCGTAAAGCGCGTGTAGGCGGCTGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
682
       683
       684
       \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAAACTGCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGT
685
       687
       688
       \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
689
       691
       693
       695
       \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
696
       697
       698
       699
    ##
700
       \tt CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG-\\
701
       702
       \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
703
       704
       CGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGCGTAAAGAGCGCGCAGGCGGTCGTTCAAGTCGCGTGTGAAAGCCCCCGGCTCAACTGGGGAGGGTCA
       706
    ##
707
       708
       GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
710
       712
       713
    ##
714
       715
       716
       \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAATCTTCCGGCTCAACCGGAAAACTGCAT
717
       718
       719
       ##
721
    ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
722
       723
       \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
       725
       727
    ##
    ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
```

Dissertation (2020) 14 Braus, M. J.

```
## CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCTAAGTCGGGTTGTAAATCTCGGAGCTTAACTCCGAAACTGCA
730
        ## GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
              732
               733
               734
        ##
735
        ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
               \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCA
737
               \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
               739
               741
        ##
742
        ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
743
               {\tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCACTGCACTGCACTCCACTGCACTGCACTGCACTCCACTGCACTCCACTGCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCACTCCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTC
               \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
745
               747
               749
               750
               \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAACTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAATCTCGGAACTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAAGTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCA
751
               \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
752
               753
               {\tt CGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGCGTAAAGAGCGCGCAGGCGGTCGTTCAAGTCGCGTGTGAAAGCCCCCGGCTCAACTGGGGAGGGTCATCAAGTCGCGAACTGGGGAGGGTCATCAAGTCGCGAACTGGGGAGGGTCATCAAGTCGCGAACTGGGGAGGGTCATCAAGTCGCGAACTGGAAAGCCCCCGGCTCAACTGGGGAGGGTCATCAAGTCGCGAACTGGAAAGCCCCCGGCTCAACTGGGGAGGGTCATCAAGTCGCGAACTGAAAGCCCCCGGCTCAACTGGGGAGGGTCAACTGAAGTCGCGTGTGAAAGCCCCCGGCTCAACTGGGGAGGGTCAACTGAGAAGCCCCCGGGTCAACTGGGGAGGGTCAACTGAAGTCAAGTCGCGAAAGTAAGAAGCCCCCGGGTCAACTGGGGAGGGTCAACTGAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCA
754
               756
               ##
757
               758
               GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
               760
               761
               762
763
        ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
764
               {	t GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT}
766
               767
               768
               \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAAACTGCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGT
769
770
               771
               772
               \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAATCTTCCGGCTCAACCGGAAAACTGCAT
773
               775
              776
777
        ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
               {\tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCACTGCACTGCACTCCACTGCACTGCACTGCACTCCACTGCACTCCACTGCACTCCACTGCACTCCACTGCACTCCACTGCACTCCACTGCACTCCACTGCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCCACTCACTCCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTCACTC
779
               GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
               781
               ## CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCTAAGTCGGGTTGTAAATCTCGGGGCTTAACTCCGAAACTGCA
```

Dissertation (2020) 15 Braus, M. J.

```
##
784
     ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
         \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
          788
          790
     ##
791
         792
          793
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
          795
          797
     ##
         ##
799
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
801
802
          803
          804
     ##
805
          806
          807
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
808
          CGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGCGTAAAGAGCGCGCAGGCGGTCGTTCAAGTCGCGTGTGAAAGCCCCCGGCTCAACTGGGGAGGGTCA
810
          \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAAACTGCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGT
811
     ##
812
     ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
813
          814
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
815
          816
          ##
818
819
     ##
         820
          \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAAGCTGCAAACTGCAAGTCGAAGTCGAAGTCGAAATCTCGGAAGCTGCAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCAAGTCGAAGTCGAAGTCAAGTCGAAGTCGAAGTCGAAGTCAAGTCGAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCA
821
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
822
          823
          824
          825
     ##
826
          827
          \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAAGCTGCAAACTGCAAGTCGAAGTCGAAGTCGAAATCTCGGAAGCTGCAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCAAGTCGAAGTCGAAGTCAAGTCGAAGTCGAAGTCGAAGTCAAGTCGAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCA
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAATCTTCCGGCTCAACCGGAAAACTGCAT
829
          830
          831
          ##
833
          835
          \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
```

Dissertation (2020) 16 Braus, M. J.

CGAAGGGGGCTAGCGTTGCTCGGAATCACTGGGCGTAAAGGGTGCGTAGGCGGGTCTTTAAGTCAGGGGGTGAAATCCTGGAGCTCAACTCCAGAACTGCC

```
838
           ##
840
            \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAAGCTGCAAACTGCAAGTCGAAGTCGAAGTCGAAATCTCGGAAGCTGCAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCAAGTCGAAGTCGAAGTCAAGTCGAAGTCGAAGTCGAAGTCAAGTCGAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCA
842
            \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
843
            844
            {\tt CGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGCGTAAAGAGCGCGCAGGCGGTCGTTCAAGTCGCGTGTGAAAGCCCCCGGCTCAACTGGGGAGGGTCATCAAGTCGCGAACTGGGGAGGGTCATCAAGTCGCGAACTGGGGAGGGTCATCAAGTCGCGAACTGGGGAGGGTCATCAAGTCGCGAACTGGAAAGCCCCCGGCTCAACTGGGGAGGGTCATCAAGTCGCGAACTGGAAAGCCCCCGGCTCAACTGGGGAGGGTCATCAAGTCGCGAACTGAAAGCCCCCGGCTCAACTGGGGAGGGTCAACTGAAGTCGCGTGTGAAAGCCCCCGGCTCAACTGGGGAGGGTCAACTGAGAAGCCCCCGGGTCAACTGGGGAGGGTCAACTGAAGTCAAGTCGCGAAAGTAAGAAGCCCCCGGGTCAACTGGGGAGGGTCAACTGAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCA
845
            846
      ##
847
           \tt CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG-\\
            849
            \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
850
            851
            ##
853
      ##
           855
            \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
857
            858
            859
            \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAAACTGCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGT
860
      ##
861
            862
            \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTGCAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAACTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAATCTCGGAACTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAAGTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCA
            \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAATCTTCCGGCTCAACCGGAAAACTGCAT
864
            865
            866
            ##
868
            869
            870
            \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
            872
            874
      ##
            876
            877
            \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
878
            879
            220
            881
      ##
            883
            884
            \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAATCTTCCGGCTCAACCGGAAAACTGCAT
885
            887
```

Dissertation (2020) Braus, M. J.

```
## GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCCGCTGGTTAGGTGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
892
    ##
896
    897
    \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
899
    901
    ##
903
  ##
    904
    905
    GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
    907
    909
910
  ##
    911
    \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCA
912
    \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
913
    914
    915
    916
  ##
917
    918
    \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTGCAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAACTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAATCTCGGAACTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCAAGTCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCA
919
    \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
920
    922
    923
  ##
924
    926
    \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
    928
    930
  ##
931
    932
    933
    934
    935
    937
  ##
938
  ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
939
    GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
941
    943
  ## CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTTGAAATCTCGGGGCCTTAACTCCGAAACTGCA
  ##
945
```

Dissertation (2020) 18 Braus, M. J.

```
\tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAG
951
952
           953
           \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTGCAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGAACTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAATCTCGGAACTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTTCAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAAACTGCAAGTCAAGTCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCA
954
           \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAATCTTCCGGCTCAACCGGAAAACTGCAT
955
           957
          ##
958
959
      ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
           961
          GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
           963
           ##
          965
      ##
966
          967
           \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTGTGAAATCTCGGAGCTTAACTCCGAAACTGCA
           \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
969
           970
           972
      ##
973
      ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
974
          975
           \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
976
          977
           978
           \tt CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTGCAAGTCGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGGGTGTGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAATCTCGGGGGCTTAACTCCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAACTGCAAGTCGAAGTCGAAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAGTCGAAGTCGAAACTGCAAGTCGAAAACTGCAAGTCGAAGTCGAAAACTGCAAGTCGAAAACTGCAAGTCGAAGTCGAAAACTGCAAGTCAAGTCGAAAACTGCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTCAAGTC
      ##
980
          {\tt CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG-
           982
           \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
           984
           ##
          989
           \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
           991
          992
           993
      ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
995
          GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
997
          ## CGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGCGTAAAGAGCGCGCAGGCGGTCGTTCAAGTCGCGTGTGAAAGCCCCCGGCTCAACTGGGGAGGGTCA
      Dissertation (2020)
                                                                                   19
                                                                                                                                                  Braus, M. J.
```

CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG

CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTTGAAATCTCCGAGCTTAACTCCGAAACTGCAT
GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGTTAGGTGTGATGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
CGAAGGGGGCTAGCGTTGCTCGGAATCACTGGGCGTAAAGGGTGCGTAGGCGGGTCTTTAAGTCAGGGGGTGAAATCCTGGAGCTCAACTCCAGAACTGCC
CGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGCGTAAAGAGCGCCGCAGGCGGTCGTTCAAGTCGCGTTGAAAGCCCCCGGCTCAACTGGGGAGGGTCA

946

```
## CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTTGTAAATCTCGGGGCTTAACTCCGAAACTGCA
1000
  ##
  ## CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGATCTGCG
1002
    1003
    \tt GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCGGCTGGTTAGGTGTGAATCTTCCGGCTCAACCGGAAAACTGCAT
1004
    1005
    1007
  ##
1008
    1009
    ## GTAGGGGGCAAGCGTTATCCAGATTTACTGGGCGTAAAGCGCGTGTAGGCCGCTGGTTAGGTGTGAAATCTTCCGGCTCAACCGGAAAACTGCAT
1011
  ## CGAAGGGGGCTAGCGTTGCTCGGAATCACTGGGCGTAAAGGGTGCGTAGGCGGGTCTTTAAGTCAGGGGTGAAATCCTGGAGCTCAACTCCAGAACTGCC
1012
  ## CGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGCGTAAAGAGCGCGCAGGCGGTCGTTCAAGTCGCGTGTGAAAGCCCCCGGCTCAACTGGGGAGGGTCA
1013
  ## CAGAGGTCTCAAGCGTTGTTCGGATTCATTGGGCGTAAAGGGTGCGTAGGCGGCGCGGTAAGTCGGGTTGTAAATCTCGGGGCCTTAACTCCGAAACTGCA
  # Look at lowest-abundance samples
  head(sort(sample_sums(otutab)))
  ##
          024-M2-24-38_S24__F_filt.fastq.gz
1015
  ##
1016
  ##
     206-Sp19-Cr56-0-18_S91__F_filt.fastq.gz
  ##
1018
  ##
      215-Sp2-Cr5-0-20_S100__F_filt.fastq.gz
1019
  ##
1020
  ##
     201-Sp17-Cr51-0-18_S86__F_filt.fastq.gz
1021
  ##
1022
  ##
    240-Sp10-Cr30-0-20_S125__F_filt.fastq.gz
1023
  ##
1024
  ##
     231-Sp7-Cr21-0-13_S116__F_filt.fastq.gz
1025
  ##
                              5294
1026
  name = row.names(otutab)[1]
  name
  ## [1] "CGTAGGGCGCAAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGCCGTGAAAGTCCGGGGCTCAACTCCGGAT
  hist(nchar(row.names(otutab)))
```

Dissertation (2020) 20 Braus, M. J.

Histogram of nchar(row.names(otutab))

colnames(otutab)

```
##
         [1] "001-K1-0-17_S1__F_filt.fastq.gz"
1029
         [2] "002-K1-17-45_S2_F_filt.fastq.gz"
    ##
1030
    ##
         [3] "003-K1-45-60_S3__F_filt.fastq.gz"
1031
    ##
          [4] "004-K2-Muck_S4__F_filt.fastq.gz"
1032
          [5] "005-K3-0-15_S5__F_filt.fastq.gz"
    ##
1033
             "006-K3-15-35_S6__F_filt.fastq.gz"
    ##
1034
    ##
          [7] "007-K3-35-50_S7__F_filt.fastq.gz"
          [8] "008-K4-0-15_S8_F_filt.fastq.gz"
1036
         [9] "009-K4-15-30_S9__F_filt.fastq.gz"
    ##
1037
        [10] "010-K4-30-50_S10__F_filt.fastq.gz"
    ##
1038
    ##
        [11] "011-R1-0-27_S11__F_filt.fastq.gz"
    ##
        [12] "012-R1-27-50_S12__F_filt.fastq.gz"
1040
        [13] "013-R1-50-70_S13__F_filt.fastq.gz"
    ##
1041
    ##
        [14] "014-R2-0-30_S14__F_filt.fastq.gz"
1042
        [15] "015-R2-30-45_S15__F_filt.fastq.gz"
1043
        [16] "016-R2-45-60_S16__F_filt.fastq.gz"
1044
        [17] "017-R2-60-100_S17__F_filt.fastq.gz"
    ##
1045
    ##
        [18] "018-R3-0-20_S18__F_filt.fastq.gz"
1046
    ##
        [19] "019-R3-20-30_S19__F_filt.fastq.gz"
1047
        [20] "020-M1-0-31_S20__F_filt.fastq.gz"
    ##
1048
    ##
        [21]
              "021-M1-31-50_S21__F_filt.fastq.gz"
1049
        [22] "022-M1-50-70_S22__F_filt.fastq.gz"
    ##
1050
        [23] "023-M2-0-24_S23__F_filt.fastq.gz"
1051
        [24] "024-M2-24-38_S24__F_filt.fastq.gz"
    ##
1052
```

Dissertation (2020) 21 Braus, M. J.

```
##
         [25] "025-M2-38-55_S25__F_filt.fastq.gz"
1053
              "026-M3-0-15_S26__F_filt.fastq.gz"
1054
    ##
    ##
              "027-M3-15-30_S27__F_filt.fastq.gz"
         [27]
1055
              "028-S-0-30_S28__F_filt.fastq.gz"
    ##
         [28]
1056
    ##
         [29]
              "029-S-30-60_S29__F_filt.fastq.gz"
1057
    ##
              "030-H1-0-30_S30__F_filt.fastq.gz"
1058
    ##
              "031-H1-30-40_S31__F_filt.fastq.gz"
         [31]
1059
              "032-H1-40-60_S32__F_filt.fastq.gz"
    ##
         [32]
1060
    ##
         [33]
              "033-H2-0-30_S33__F_filt.fastq.gz"
1061
    ##
              "034-H2-30-60_S34__F_filt.fastq.gz"
1062
    ##
              "035-A249-0-35_S35__F_filt.fastq.gz"
         [35]
    ##
              "036-A249-35-60 S36 F filt.fastq.gz
1064
    ##
              "037-A341-0-33_S37__F_filt.fastq.gz"
         [37]
1065
    ##
              "038-A341-33-55 S38 F filt.fastq.gz'
1066
              "039-A341-55-75_S39__F_filt.fastq.gz"
    ##
         [39]
1067
              "040-A341-75-85_S40__F_filt.fastq.gz"
    ##
         [40]
1068
              "041-L2-0-23_S41__F_filt.fastq.gz"
    ##
1069
    ##
              "042-L2-23-45 S42 F filt.fastq.gz"
1070
              "043-L3-0-12_S43__F_filt.fastq.gz"
1071
    ##
         [43]
    ##
         [44]
              "044-L3-12-20_S44__F_filt.fastq.gz"
1072
    ##
              "045-L3-20-40_S45__F_filt.fastq.gz"
1073
    ##
              "046-L4-0-10_S46__F_filt.fastq.gz"
1074
              "047-L4-10-20_S47__F_filt.fastq.gz"
    ##
         [47]
1075
    ##
              "048-L4-20-40_S48__F_filt.fastq.gz"
         [48]
1076
    ##
              "049-W3-Compost_S49__F_filt.fastq.gz"
1077
    ##
         [50]
              "050-W4-0-28_S50__F_filt.fastq.gz"
1078
    ##
              "051-W4-28-45_S51__F_filt.fastq.gz"
         [51]
1079
    ##
              "052-W4-45-55_S52__F_filt.fastq.gz"
         [52]
1080
    ##
              "053-W5-0-35_S53__F_filt.fastq.gz"
1081
    ##
              "054-W5-35-65_S54__F_filt.fastq.gz"
1082
         [54]
    ##
         [55]
              "055-W7-0-15_S55__F_filt.fastq.gz"
1083
    ##
         [56]
              "056-W7-15-30_S56__F_filt.fastq.gz"
1084
              "057-P1-0-30_S57__F_filt.fastq.gz"
    ##
1085
              "058-P1-30-45_S58__F_filt.fastq.gz"
    ##
         [58]
1086
    ##
         [59]
              "059-P1-45-55 S59 F filt.fastq.gz"
1087
              "060-P2-0-20_S60__F_filt.fastq.gz"
1088
    ##
    ##
              "061-P2-20-45_S61__F_filt.fastq.gz"
1089
              "062-P2-45-55_S62__F_filt.fastq.gz"
    ##
         [62]
1090
    ##
         [63]
              "063-P4-0-25_S63__F_filt.fastq.gz"
1091
              "064-P4-25-35_S64__F_filt.fastq.gz"
    ##
         [64]
1092
    ##
              "065-P4-35-50_S65__F_filt.fastq.gz"
         [65]
1093
    ##
              "181-Sp11-Cr31-0-20_S66__F_filt.fastq.gz"
1094
    ##
         [67]
              "182-Sp11-Cr32-0-16_S67__F_filt.fastq.gz"
1095
    ##
              "183-Sp11-Cr33-0-20_S68__F_filt.fastq.gz"
1096
    ##
              "184-Sp12-Cr34-0-16_S69__F_filt.fastq.gz"
    ##
              "185-Sp12-Cr35-0-18_S70__F_filt.fastq.gz"
1098
    ##
         [71]
              "186-Sp12-Cr36-0-20_S71__F_filt.fastq.gz"
1099
              "187-Sp13-Cr37-0-20 S72 F filt.fastq.gz"
    ##
1100
    ##
         [73] "188-Sp13-Cr38-0-20_S73__F_filt.fastq.gz"
1101
              "189-Sp13-Cr39-0-19_S74__F_filt.fastq.gz"
    ##
1102
    ##
         [75] "190-Sp14-Cr40-0-17_S75__F_filt.fastq.gz"
1103
    ##
         [76] "191-Sp14-Cr41-0-18 S76 F filt.fastq.gz"
1104
              "192-Sp14-Cr42-0-20_S77__F_filt.fastq.gz"
    ##
1105
    ##
         [78] "193-Sp15-Cr43-0-18_S78__F_filt.fastq.gz"
1106
```

```
##
        [79] "194-Sp15-Cr44-0-17_S79__F_filt.fastq.gz"
1107
1108
    ##
             "195-Sp15-Cr45-0-20_S80__F_filt.fastq.gz"
        [81] "196-Sp16-Cr46-0-20_S81__F_filt.fastq.gz"
1109
1110
    ##
              "197-Sp16-Cr47-0-17_S82__F_filt.fastq.gz"
             "198-Sp16-Cr48-0-20_S83__F_filt.fastq.gz"
    ##
        [83]
1111
    ##
             "199-Sp17-Cr49-0-20_S84__F_filt.fastq.gz"
1112
        [85] "200-Sp17-Cr50-0-18_S85__F_filt.fastq.gz"
    ##
1113
    ##
              "201-Sp17-Cr51-0-18_S86__F_filt.fastq.gz"
1114
    ##
        [87]
             "202-Sp18-Cr52-0-18_S87__F_filt.fastq.gz"
1115
    ##
             "203-Sp18-Cr53-0-19_S88__F_filt.fastq.gz"
1116
    ##
             "204-Sp18-Cr54-0-20_S89__F_filt.fastq.gz"
        [89]
1117
             "205-Sp19-Cr55-0-20_S90__F_filt.fastq.gz"
    ##
1118
        [91] "206-Sp19-Cr56-0-18_S91__F_filt.fastq.gz"
    ##
1119
    ##
        [92] "207-Sp19-Cr57-0-18_S92__F_filt.fastq.gz"
1120
    ##
             "208-Sp20-Cr58-0-20_S93__F_filt.fastq.gz"
1121
    ##
        [94]
             "209-Sp20-Cr59-0-19_S94__F_filt.fastq.gz"
1122
    ##
        [95] "210-Sp20-Cr60-0-20_S95__F_filt.fastq.gz"
1123
    ##
        [96] "211-Sp1-Cr1-0-20_S96__F_filt.fastq.gz"
1124
             "212-Sp1-Cr2-0-20_S97__F_filt.fastq.gz"
1125
    ##
        [97]
    ##
        [98]
             "213-Sp1-Cr3-0-20_S98__F_filt.fastq.gz"
1126
    ##
        [99] "214-Sp2-Cr4-0-20_S99__F_filt.fastq.gz"
1127
       [100] "215-Sp2-Cr5-0-20_S100__F_filt.fastq.gz"
1128
             "216-Sp2-Cr6-0-20_S101__F_filt.fastq.gz"
    ##
       [101]
1129
             "217-Sp3-Cr7-0-20_S102__F_filt.fastq.gz"
    ##
       [102]
1130
       [103] "218-Sp3-Cr8-0-20_S103__F_filt.fastq.gz"
1131
       [104] "219-Sp3-Cr9-0-20_S104__F_filt.fastq.gz"
1132
             "220-Sp4-Cr10-0-20_S105__F_filt.fastq.gz"
       Γ105]
1133
    ##
       [106] "221-Sp4-Cr11-0-20_S106__F_filt.fastq.gz"
1134
       [107] "222-Sp4-Cr12-0-20_S107__F_filt.fastq.gz"
1135
       [108] "223-Sp5-Cr13-0-20_S108__F_filt.fastq.gz"
1136
             "224-Sp5-Cr14-0-20_S109__F_filt.fastq.gz"
       [109]
1137
       [110] "225-Sp5-Cr15-0-20_S110__F_filt.fastq.gz"
1138
       [111] "226-Sp6-Cr16-0-15_S111__F_filt.fastq.gz"
1139
             "227-Sp6-Cr17-0-20_S112__F_filt.fastq.gz"
       [112]
       [113] "228-Sp6-Cr18-0-20_S113__F_filt.fastq.gz"
1141
       [114] "229-Sp7-Cr19-0-20_S114__F_filt.fastq.gz"
       [115] "230-Sp7-Cr20-0-20_S115__F_filt.fastq.gz"
1143
             "231-Sp7-Cr21-0-13_S116__F_filt.fastq.gz"
       [116]
1144
    ##
             "232-Sp8-Cr22-0-20_S117__F_filt.fastq.gz"
       [117]
1145
       [118]
             "233-Sp8-Cr23-0-20_S118__F_filt.fastq.gz"
1146
       [119] "234-Sp8-Cr24-0-20_S119__F_filt.fastq.gz"
1147
       [120]
             "235-Sp9-Cr25-0-15_S120__F_filt.fastq.gz"
1148
       [121]
             "236-Sp9-Cr26-0-20_S121__F_filt.fastq.gz"
1149
             "237-Sp9-Cr27-0-15_S122__F_filt.fastq.gz"
1150
             "238-Sp10-Cr28-0-20_S123__F_filt.fastq.gz"
       [123]
1151
             "239-Sp10-Cr29-0-15_S124__F_filt.fastq.gz"
1152
       [124]
       [125] "240-Sp10-Cr30-0-20_S125__F_filt.fastq.gz"
1153
       [126] "241-S-0-30-Dry_S126__F_filt.fastq.gz"
1154
    # The \ sample \ names \ have \ suffixes \ appended \ to \ them - we just want sample <math>IDs
    # Get names
    names = colnames(otutab)
    # Remove last 17 characters
    newnames = gsub('.\{17\}\$', '', names)
```

Check out names

newnames

```
##
          [1]
              "001-K1-0-17_S1"
                                            "002-K1-17-45 S2"
1155
    ##
          [3] "003-K1-45-60_S3"
                                            "004-K2-Muck_S4"
1156
    ##
          [5] "005-K3-0-15 S5"
                                            "006-K3-15-35 S6"
1157
    ##
              "007-K3-35-50_S7"
                                            "008-K4-0-15_S8"
          [7]
1158
    ##
          [9]
              "009-K4-15-30 S9"
                                            "010-K4-30-50 S10"
1159
         [11] "011-R1-0-27_S11"
    ##
                                            "012-R1-27-50_S12"
1160
         [13] "013-R1-50-70_S13"
                                            "014-R2-0-30_S14"
1161
         [15] "015-R2-30-45_S15"
    ##
                                            "016-R2-45-60_S16"
1162
    ##
         [17] "017-R2-60-100 S17'
                                            "018-R3-0-20 S18"
1163
    ##
         [19] "019-R3-20-30_S19"
                                            "020-M1-0-31_S20"
1164
    ##
         [21] "021-M1-31-50_S21"
                                            "022-M1-50-70_S22"
1165
    ##
         [23]
              "023-M2-0-24_S23"
                                            "024-M2-24-38_S24"
1166
    ##
         [25]
              "025-M2-38-55_S25"
                                            "026-M3-0-15_S26"
1167
    ##
         [27] "027-M3-15-30_S27"
                                            "028-S-0-30_S28"
1168
                                            "030-H1-0-30_S30"
         [29] "029-S-30-60_S29"
    ##
1169
1170
    ##
         [31] "031-H1-30-40_S31"
                                            "032-H1-40-60_S32'
    ##
         [33] "033-H2-0-30_S33"
                                            "034-H2-30-60 S34"
1171
    ##
         [35] "035-A249-0-35_S35"
                                            "036-A249-35-60_S36"
1172
    ##
              "037-A341-0-33_S37"
                                            "038-A341-33-55_S38"
         [37]
1173
    ##
              "039-A341-55-75 S39"
                                            "040-A341-75-85 S40"
         [39]
1174
    ##
             "041-L2-0-23_S41"
                                            "042-L2-23-45_S42"
1175
         [41]
         [43] "043-L3-0-12 S43"
                                            "044-L3-12-20 S44"
1176
    ##
         [45] "045-L3-20-40_S45"
                                            "046-L4-0-10_S46"
1177
              "047-L4-10-20_S47"
                                            "048-L4-20-40_S48
    ##
         [47]
1178
    ##
         [49] "049-W3-Compost_S49"
                                            "050-W4-0-28_S50"
1179
    ##
         [51] "051-W4-28-45_S51"
                                            "052-W4-45-55_S52"
1180
1181
    ##
         [53]
              "053-W5-0-35_S53"
                                            "054-W5-35-65_S54"
    ##
         [55]
              "055-W7-0-15_S55"
                                            "056-W7-15-30_S56"
1182
              "057-P1-0-30_S57"
                                            "058-P1-30-45_S58"
    ##
         [57]
1183
    ##
         [59] "059-P1-45-55_S59"
                                            "060-P2-0-20_S60"
1184
    ##
         [61] "061-P2-20-45_S61"
                                            "062-P2-45-55_S62"
1185
                                            "064-P4-25-35_S64"
    ##
         [63] "063-P4-0-25 S63"
1186
1187
    ##
         [65] "065-P4-35-50 S65"
                                            "181-Sp11-Cr31-0-20_S66"
    ##
              "182-Sp11-Cr32-0-16_S67"
                                            "183-Sp11-Cr33-0-20_S68"
1188
    ##
              "184-Sp12-Cr34-0-16_S69"
                                            "185-Sp12-Cr35-0-18_S70"
1189
    ##
              "186-Sp12-Cr36-0-20_S71"
                                            "187-Sp13-Cr37-0-20_S72"
         [71]
1190
    ##
         [73] "188-Sp13-Cr38-0-20_S73"
                                            "189-Sp13-Cr39-0-19_S74"
1191
    ##
         [75] "190-Sp14-Cr40-0-17_S75'
                                            "191-Sp14-Cr41-0-18_S76"
1192
         [77] "192-Sp14-Cr42-0-20 S77"
    ##
                                            "193-Sp15-Cr43-0-18 S78"
1193
    ##
         [79] "194-Sp15-Cr44-0-17_S79"
                                            "195-Sp15-Cr45-0-20_S80"
1194
    ##
         [81] "196-Sp16-Cr46-0-20_S81"
                                            "197-Sp16-Cr47-0-17_S82"
1195
         [83] "198-Sp16-Cr48-0-20_S83"
    ##
                                            "199-Sp17-Cr49-0-20_S84"
1196
    ##
         [85]
              "200-Sp17-Cr50-0-18_S85"
                                            "201-Sp17-Cr51-0-18_S86"
1197
    ##
              "202-Sp18-Cr52-0-18_S87"
                                            "203-Sp18-Cr53-0-19_S88"
1198
         [87]
    ##
         [89] "204-Sp18-Cr54-0-20_S89"
                                            "205-Sp19-Cr55-0-20_S90"
1199
                                            "207-Sp19-Cr57-0-18_S92"
    ##
         [91]
              "206-Sp19-Cr56-0-18_S91"
1200
    ##
              "208-Sp20-Cr58-0-20_S93"
                                            "209-Sp20-Cr59-0-19_S94"
         [93]
1201
    ##
              "210-Sp20-Cr60-0-20_S95"
                                            "211-Sp1-Cr1-0-20_S96"
1202
    ##
         [97] "212-Sp1-Cr2-0-20_S97"
                                            "213-Sp1-Cr3-0-20_S98"
1203
         [99] "214-Sp2-Cr4-0-20_S99"
    ##
                                            "215-Sp2-Cr5-0-20_S100"
1204
    ##
       [101] "216-Sp2-Cr6-0-20_S101"
                                            "217-Sp3-Cr7-0-20_S102"
1205
```

```
## [103] "218-Sp3-Cr8-0-20_S103"
    ## [105] "220-Sp4-Cr10-0-20_S105"
                                          "221-Sp4-Cr11-0-20 S106"
1207
    ## [107] "222-Sp4-Cr12-0-20_S107"
                                          "223-Sp5-Cr13-0-20_S108"
1208
    ## [109] "224-Sp5-Cr14-0-20_S109"
                                          "225-Sp5-Cr15-0-20_S110"
1209
    ## [111] "226-Sp6-Cr16-0-15_S111"
                                          "227-Sp6-Cr17-0-20_S112"
1210
    ## [113] "228-Sp6-Cr18-0-20_S113"
                                          "229-Sp7-Cr19-0-20_S114"
1211
    ## [115] "230-Sp7-Cr20-0-20_S115"
                                          "231-Sp7-Cr21-0-13_S116"
1212
    ## [117] "232-Sp8-Cr22-0-20_S117"
                                          "233-Sp8-Cr23-0-20_S118"
1213
    ## [119] "234-Sp8-Cr24-0-20_S119"
                                          "235-Sp9-Cr25-0-15_S120"
1214
    ## [121] "236-Sp9-Cr26-0-20_S121"
                                          "237-Sp9-Cr27-0-15_S122"
1215
    ## [123] "238-Sp10-Cr28-0-20_S123" "239-Sp10-Cr29-0-15_S124"
1216
    ## [125] "240-Sp10-Cr30-0-20 S125" "241-S-0-30-Dry S126"
1217
    # Assign new names to samples
    colnames(otutab) = newnames
    # Same thing if we wanted to simplify OTU names to IDs
    # Instead of sequences (although that's useful)
    otunames=row.names(otutab)
    length(otunames)
    ## [1] 19313
    newotunames = paste("OTU",rep(1:length(otunames)),sep="")
    head (newotunames)
    ## [1] "OTU1" "OTU2" "OTU3" "OTU4" "OTU5" "OTU6"
    row.names(otutab) = newotunames
    head(otutab)
    ## OTU Table:
                             [6 taxa and 126 samples]
1220
                              taxa are rows
             001-K1-0-17_S1 002-K1-17-45_S2 003-K1-45-60_S3 004-K2-Muck_S4
1222
    ## OTU1
                          0
                                            0
                                                            49
                                                                              0
1223
    ## OTU2
                         461
                                          369
                                                              0
                                                                              0
1224
    ## OTU3
                        157
                                          522
                                                            429
                                                                              0
1225
                         482
                                          159
                                                                              0
    ## OTU4
                                                              0
1226
                                                                              0
    ## OTU5
                           0
                                            0
                                                              0
1227
                        181
                                          247
                                                            271
                                                                              0
1228
             005-K3-0-15_S5 006-K3-15-35_S6 007-K3-35-50_S7 008-K4-0-15_S8
1229
    ## OTU1
                        115
                                            Ω
                                                            25
                                                                              0
    ## OTU2
                                          509
                                                            983
                                                                              0
1231
                                                                              0
    ## OTU3
                         64
                                          343
                                                            452
1232
                                          227
                                                                              0
    ## OTU4
                         452
                                                            313
1233
    ## OTU5
                           0
                                            0
                                                            24
                                                                              0
1234
                                          429
                        269
                                                          1184
1235
             009-K4-15-30_S9 010-K4-30-50_S10 011-R1-0-27_S11 012-R1-27-50_S12
1236
    ## OTU1
                            0
                                              0
                                                            1096
                                                                                635
1237
                            0
    ## OTU2
                                                              205
                                            156
                                                                                 84
    ## OTU3
                          635
                                           1162
                                                              184
                                                                               1659
1239
1240
    ## OTU4
                            0
                                             75
                                                              262
                                                                                  0
    ## OTU5
                            0
                                              0
                                                                0
                                                                                  0
1241
                            0
                                              0
                                                                0
1242
            013-R1-50-70_S13 014-R2-0-30_S14 015-R2-30-45_S15 016-R2-45-60_S16
1243
    ## OTU1
                           225
                                           1303
                                                               730
                                                                                 349
```

"219-Sp3-Cr9-0-20 S104"

Dissertation (2020) Braus, M. J.

1245	## 07	TU2	0	0	233	0
1246	## 07		1094	0	984	332
1247	## 07	TU4	0	167	71	0
1248	## 07	TU5	0	333	193	0
1249	## 07	TU6	0	0	1665	456
1250	##		017-R2-60-100_S17	018-R3-0-20_S18	019-R3-20-30_S19	020-M1-0-31_S20
1251	## 07	TU1	1483	426	0	216
1252	## 07	TU2	0	211	64	246
1253	## 07	TU3	838	45	1711	6
1254	## 07	TU4	0	87	0	112
1255	## 07	TU5	0	72	0	536
1256	## 07		555	0	57	0
1257	##		021-M1-31-50_S21 ()24-M2-24-38_S24
1258	## 07		89	128	149	0
1259	## 07		298	258	105	0
1260	## 07		1691	5550	5	72
1261	## 07		108	183	81	0
1262	## 07		279	53	329	98
1263	## 07		0	248	0 207 M2 4E 20 G07 6	0
1264	##		025-M2-38-55_S25 (
1265	## 07 ## 07		39 0	115 424	656 644	51 436
1266	## 07		904	15	1119	80
1267	## 07		0	201	1119	240
1268	## 07		52	547	457	0
1269 1270	## 07		0	0	671	144
1271	##		029-S-30-60_S29 03			
1272	## 07		71	354	158	129
1273	## 07		1128	0	140	902
1274	## 07		1042	0	0	0
1275	## 07	TU4	181	87	17	105
1276	## 07	TU5	0	999	163	31
1277	## 07	TU6	574	0	106	704
1278	##		033-H2-0-30_S33 03	34-H2-30-60_S34 ()35-A249-0-35_S35	036-A249-35-60_S36
1279	## 07	TU1	96	287	462	95
1280	## 07	TU2	119	497	322	315
1281	## 07	TU3	0	15	0	311
1282	## 07	TU4	60	82	195	149
1283	## 07		138	71	1203	173
1284	## 07		0	296	405	479
1285	##					5_S39 040-A341-75-85_S40
1286	## 07		305		119	232 64
1287	## 07		157		395	389 220
1288	## 07		0	1	126	1302 2972
1289	## 07		88	,	0	133 43
1290	## 07		682		312	443 129
1291	## 07		0/11/200-22 5/11 0/		573 Na-12-0-12 842 04	681 256
1292	## ## ∩		041-L2-0-23_S41 04 77	42-L2-23-45_542(174		130
1293	## 07		788	2370	0 317	830
1294	## 07 ## 07		0	240	0	14
1295	## 0:		133	269	121	216
1296	## 07		272	166	180	561
1297 1298	## 07		263	788	0	483
1290	5		200	100	Ŭ	100

1299	##		045-L3-20-40_S45	046-L4	L-0-10 S46	047-L4-10-	-20 S47	048-L4-20-40 S48
1300	##	OTU1	71		27		0	56
1301	##	OTU2	674		1202		2267	864
1302	##	OTU3	614		0		16	343
1303	##	OTU4	265		235		314	367
1304	##	OTU5	397		186		303	196
1305	##	OTU6	606		32		720	522
1306	##		${\tt 049-W3-Compost_S4}$	9 050-	-W4-0-28_S	50 051-W4-2	28-45_S5	51 052-W4-45-55_S52
1307	##	OTU1		0		0	97	70 257
1308	##	OTU2		0	32	24	129	91 1013
1309	##	OTU3		0		0	217	
1310		OTU4		0		0	38	
1311		OTU5		0		0	32	
1312		OTU6		0		0	153	
1313	##		053-W5-0-35_S53 0	54-W5-	_	055-W7-0-:	_	
1314		OTU1	367		31		180	0
1315		OTU2	547		1871		978	459
1316		OTU3	32		117		94	917
1317		OTU4	212		210		152	66
1318		OTU5	430 293		49 1051		198 795	0 542
1319	##	OTU6	057-P1-0-30_S57 0	59_D1_		050-D1-45-		
1320		OTU1	665	30 FI	135	009 F1 40	875	486
1321 1322		OTU2	548		0		71	77
1323		OTU3	0		28		130	0
1324		OTU4	91		105		60	157
1325		OTU5	588		0		80	447
1326		OTU6	0		0		390	0
1327	##		061-P2-20-45_S61	062-P2	2-45-55_S62	2 063-P4-0	-25_S63	064-P4-25-35_S64
1328	##	OTU1	192		462	2	160	335
1329	##	OTU2	136		()	395	273
1330	##	OTU3	0		()	0	0
1331	##	OTU4	124		129	9	154	244
1332	##	OTU5	0		159	9	497	319
1333	##	OTU6	0		(0	0
1334	##		065-P4-35-50_S65	181-Sp	11-Cr31-0-	_	2-Sp11-0	-
1335		OTU1	211			307		195
1336		OTU2	79			231		242
1337		OTU3	0			0		0
1338		OTU4	158			124		157 170
1339		OTU5 OTU6	256 0			204 0		0
1340	##	0100		n 968	19/1-9519-0		360 195 ₋	-Sp12-Cr35-0-18_S70
1341		OTU1	103 Sp11 C133 U Z	785	104 Sp12 (975	685
1342 1343		OTU2		151			267	240
1344		OTU3		0		•	0	0
1345		OTU4		204		2	275	2352
1346		OTU5		81			461	380
1347		OTU6		0			0	0
1348	##		186-Sp12-Cr36-0-2		187-Sp13-0	Cr37-0-20 S		-Sp13-Cr38-0-20_S73
1349	##	OTU1	-	- 744	•		423	1472
1350		OTU2		171			279	395
1351	##	OTU3		0			0	62
1352	##	OTU4		318		;	324	363

1353	##	OTU5	126	263	92
1354	##	OTU6	0	0	144
1355	##	000114	-	190-Sp14-Cr40-0-17_S75	_
1356		OTU1	1393	121	730
1357		OTU2	467	0	120
1358		OTU3	72 361	43	115 228
1359		OTU4 OTU5	173	181	0
1360		OTU6	129	0	0
1361 1362	##	0100		193-Sp15-Cr43-0-18_S78	·
1363		OTU1	635	1568	1439
1364		OTU2	179	0	0
1365	##	OTU3	140	0	479
1366	##	OTU4	359	376	235
1367	##	OTU5	47	0	0
1368	##	OTU6	0	0	0
1369	##		195-Sp15-Cr45-0-20_S80	196-Sp16-Cr46-0-20_S81	197-Sp16-Cr47-0-17_S82
1370	##	OTU1	1037	321	1055
1371	##	OTU2	0	0	348
1372	##	OTU3	0	0	0
1373	##	OTU4	688	175	348
1374	##	OTU5	50	138	323
1375		OTU6	0	0	141
1376	##		<u>-</u>	199-Sp17-Cr49-0-20_S84	<u>-</u>
1377		OTU1	397	492	1223
1378		OTU2	192	0	0
1379		OTU3	0	281	101
1380		OTU4 OTU5	516 130	166	1959 90
1381		OTU6	0	0	0
1382 1383	##	0100	•	202-Sp18-Cr52-0-18_S87	•
1384		OTU1	482	1306	857
1385		OTU2	0	236	271
1386		OTU3	83	0	0
1387	##	OTU4	164	278	279
1388	##	OTU5	0	553	300
1389	##	OTU6	0	107	0
1390	##		204-Sp18-Cr54-0-20_S89	205-Sp19-Cr55-0-20_S90	206-Sp19-Cr56-0-18_S91
1391		OTU1	1367	1716	113
1392		OTU2	227	162	0
1393		OTU3	0	242	51
1394		OTU4	347	446	0
1395		OTU5	384	0	0
1396		OTU6	83 207-9-10-9-10-0-19 902	000-0-00-0-0-0-0	0
1397	##	OTU1	1179	208-Sp20-Cr58-0-20_S93 997	1546
1398		OTU2	0	314	323
1399 1400		0TU3	41	0	70
1400		0TU4	0	341	711
1401		OTU5	0	315	408
1403		OTU6	0	0	256
1404	##			211-Sp1-Cr1-0-20_S96 21	
1405		OTU1	878	99	96
1406		OTU2	225	0	0

1407		OTU3	0	0	0				
1408		OTU4	181	127	2578				
1409		OTU5	204	0 0					
1410		OTU6	194	0	0				
1411	##	OTTIA		14-Sp2-Cr4-0-20_S99 215-	_				
1412		OTU1	253	1054	0				
1413		OTU2	0	228	0				
1414		OTU3	50	0	0				
1415		OTU4	0	153	0				
1416		OTU5	0	0	0				
1417		OTU6	0	0 0	0				
1418	##	OTU1	356	217-Sp3-Cr7-0-20_S102	1200				
1419		OTU2	344	240	257				
1420		0102 0TU3	150	0	0				
1421		0TU4	154	465	164				
1422		OTU5	0	405	375				
1423		OTU6	131	99	111				
1424 1425	##	0100		220-Sp4-Cr10-0-20_S105					
1426		OTU1	1786	962	676				
1427		OTU2	286	176	102				
1428		OTU3	0	0	0				
1429		OTU4	245	303	107				
1430		OTU5	425	191	84				
1431	##	OTU6	130	176	0				
1432	##		222-Sp4-Cr12-0-20_S107	223-Sp5-Cr13-0-20_S108	224-Sp5-Cr14-0-20_S109				
1433	##	OTU1	1114	204	1062				
1434	##	OTU2	363	132	313				
1435	##	OTU3	33	0	0				
1436	##	OTU4	336	202	417				
1437	##	OTU5	547	224	505				
1438	##	OTU6	388	0	228				
1439	##		225-Sp5-Cr15-0-20_S110	226-Sp6-Cr16-0-15_S111	227-Sp6-Cr17-0-20_S112				
1440	##	OTU1	908	160	754				
1441		OTU2	136	0	131				
1442		OTU3	0	0	0				
1443		OTU4	227	196	316				
1444		OTU5	204	143	329				
1445		OTU6	0	0	70				
1446	##	OTI14	-	229-Sp7-Cr19-0-20_S114	-				
1447		OTU1	377 233	296	300				
1448		OTU2 OTU3	233	0 250	0				
1449		0TU4	172	235	250				
1450		0TU5	330	0	0				
1451		OTU6	0	0	0				
1452 1453	##	0100	231-Sp7-Cr21-0-13_S116						
1454		OTU1	525	1144	831				
1454		OTU2	0	469	484				
1456		OTU3	44	93	97				
1457		OTU4	0	415	280				
1458		OTU5	0	183	84				
1459		OTU6	0	129	0				
1460	##			235-Sp9-Cr25-0-15_S120					
			- -	- -	- -				

```
## OTU1
                       312
                                         753
                                                          405
1461
                                                          204
1462
  ## OTU2
                       776
                                         160
  ## OTU3
                        71
                                          0
                                                            0
1463
                                         190
1464
  ## OTU4
                       287
                                                          196
  ## OTU5
                       169
                                         412
                                                          484
1465
  ## OTU6
                         0
                                          0
                                                            0
1466
         237-Sp9-Cr27-0-15_S122
                          238-Sp10-Cr28-0-20_S123 239-Sp10-Cr29-0-15_S124
1467
  ## OTU1
                       611
                                         353
                                                            271
1468
  ## OTU2
                       126
                                           0
                                                             0
1469
  ## OTU3
                         0
                                         144
                                                            43
1470
  ## OTU4
                        61
                                         169
                                                            319
1471
  ## OTU5
                       224
                                          35
                                                            55
1472
                        0
  ## OTU6
                                                             0
1473
  ##
         240-Sp10-Cr30-0-20 S125 241-S-0-30-Dry S126
1474
                        130
  ## OTU1
1475
  ## OTU2
                         0
                                       204
1476
  ## OTU3
                        58
                                       312
  ## OTU4
                        114
                                       160
1478
  ## OTU5
                         0
                                         0
  ## OTU6
                         0
                                         0
1480
  # Cut off the sampling ID to match metadata
  for (i in 1:length(colnames(otutab))){
    newname = strsplit(colnames(otutab[i]),"_")[[i]][1]
    colnames(otutab)[i]=newname
  }
   # Import sample data
  samdat = read.csv("../2020-03-12-hatch-final-data-merged/source/metrology-compiled/2020-03-12-hatch-dat
   # samdat$Sample.ID = as.character(samdat$Sample.ID)
   \# samdat\$Sample.ID[1:9] = paste("00", samdat\$Sample.ID[1:9], sep="")
   \# samdat\$Sample.ID[10:length(samdat\$Sample.ID)] = paste("0",samdat\$Sample.ID[10:length(samdat\$Sample.ID
   # Check we have all the same sample names now
   samdat$Sample.ID[1:65] == colnames(otutab)[1:65]
      1481
    1482
     1484
     [61] TRUE TRUE TRUE TRUE TRUE
1485
   samdat$Sample.ID[66:125] == colnames(otutab)[66:125]
      1486
    1487
  1489
  samdat = sample_data(samdat)
   # Exponentiate all pH values
  samdat$DNA.Extr.Hplus.After.C1 <- 10^-samdat$DNA.Extr.pH.After.C1
  samdat$DNA.Extr.Hplus.After.C2 <- 10^-samdat$DNA.Extr.pH.After.C2
  samdat$Lab.CO2.Hplus.one2one <- 10^-samdat$Lab.CO2.pH.one2one</pre>
  samdat$Lab.CO2.Hplus.one2two <- 10^-samdat$Lab.CO2.pH.one2two</pre>
```

```
samdat$Lab.CO2.Hplus.one2three <- 10^-samdat$Lab.CO2.pH.one2three</pre>
    samdat$Lab.CO2.Hplus.one2four <- 10^-samdat$Lab.CO2.pH.one2four</pre>
    samdat$High.CO2.Hplus.one2one <- 10^-samdat$High.CO2.pH.one2one
    samdat$High.CO2.Hplus.one2two <- 10^-samdat$High.CO2.pH.one2two
    samdat$High.CO2.Hplus.one2three <- 10^-samdat$High.CO2.pH.one2three
    samdat$High.CO2.Hplus.one2four <- 10^-samdat$High.CO2.pH.one2four</pre>
    row.names(samdat) = samdat$Sample.ID
    # Create phyloseq object
    ps = phyloseq(otu_table=otutab,sample_data=samdat)
    library(dplyr)
    # Checking total read depth
    Depth = data.frame(sample_sums(ps))
    Depth$Sample.ID = row.names(Depth)
    colnames(Depth)[1] = "SampleSums"
    Depth = Depth %>%
      arrange(SampleSums)
    head(Depth)
         SampleSums
    ##
                              Sample.ID
1490
    ## 1
               1360
                           024-M2-24-38
1491
    ## 2
               2276 206-Sp19-Cr56-0-18
1492
    ## 3
               3727
                       215-Sp2-Cr5-0-20
               4159 201-Sp17-Cr51-0-18
1494
    ## 5
               4856 240-Sp10-Cr30-0-20
   ## 6
               5294 231-Sp7-Cr21-0-13
    # It looked to me like this has already been done (no Compost or Muck)
    # We don't want the Spooner samples removed anyway, I think
    ps = subset_samples(ps, Sample.ID != "049-W3-Compost" & Sample.ID!="004-K2-Muck" & Sample.ID!="028-S-0-
    # Melt
    ps.melt = psmelt(ps)
    head(ps.melt)
                                   OTU Abundance Water.Soil.Ratio
                          Sample
                                                                            Sample.ID
1497
    ## 1796119 213-Sp1-Cr3-0-20 OTU10
                                             6555
                                                           1-to-1 213-Sp1-Cr3-0-20
    ## 1139493
                   064-P4-25-35 OTU26
                                             5830
                                                             1-to-1
                                                                        064-P4-25-35
1499
    ## 386263
                   022-M1-50-70 OTU3
                                             5550
                                                                         022-M1-50-70
                                                             1-to-1
    ## 212482
                   013-R1-50-70 OTU39
                                             5320
                                                             1-to-1
                                                                         013-R1-50-70
1501
1502
    ## 1139487
                   064-P4-25-35 OTU20
                                             4707
                                                             1-to-1
                                                                         064-P4-25-35
                   035-A249-0-35 OTU12
                                             3998
                                                             1-to-1
                                                                        035-A249-0-35
1503
               Sample.Num Random.Num.1.to.65
                                                   Study Sample.Number
1504
    ## 1796119
                       213
                                    29.065274
                                                                     213
                                                 Spooner
1505
    ## 1139493
                        64
                                     9.498628 Wisconsin
                                                                      64
1506
    ## 386263
                        22
                                     55.041233 Wisconsin
                                                                      22
1507
    ## 212482
                        13
                                     32.647708 Wisconsin
                                                                      13
1508
    ## 1139487
                        64
                                     9.498628 Wisconsin
                                                                      64
                        35
                                     36.643249 Wisconsin
1510
               DNA.Extr.pH.After.C1 DNA.Extr.pH.After.C2 Lab.C02.pH.one2one
1511
   ## 1796119
                               9.174
                                                      8.090
                                                                           5.39
1512
```

								_								
1513		1139493					7.880				6.83					
1514		386263	8.737					7.635				5.36				
1515		212482	9.530					7.973					5.69			
1516		1139487	9.071 8.925					7.880 6.83								
1517		598715			7.795 6.75											
1518	##		Lab.CU2	pH.one		Lab.C	02.pH.o	one2three Lab.CO2.pH.one2four								
1519		1796119			5.45			7.08 5.24								
1520		1139493			7.65			7.24 7								
1521		386263	5.21 5.61				5.15					5.10				
1522		212482			5.38					5.48						
1523		1139487			7.65	7.24					7.22					
1524		598715		_	7.07		6.86 7.38									
1525	##		High.CC	12.pH.o		_	.CO2.pH	pH.one2two High.CO2.pH.one2three								
1526		1796119			5.44				57				. 93			
1527		1139493			6.79			7.					.50			
1528		386263			5.18			5.					. 33			
1529		212482			5.52			5.					.70			
1530		1139487			6.79			7.					.50			
1531	##	598715	6.70						28				. 17			
1532	##		High.CC	c.Sand 1	Perc.S		Perc.Cla	ay To	exture.	.Name	OM.perc					
1533		1796119			5.4		NA		ΝA		NΑ			NA		
1534		1139493			7.3		50.8		8.8	20			Loam	1.9		
1535		386263			5.3		29.6		7.6	32	.8	Clay	Loam	1.0		
1536		212482			5.6		97.6		0.4		.8		Sand	0.2		
1537	##	1139487			7.3		50.8		8.8	20			Loam	1.9		
1538	##	598715			7.3		11.2		5.2	23			Loam	3.6		
1539	##		Scoop.I	ensity	.g.4.2	24.cc	Soil.pH	Sikor	a.pH	Total.	N.pe	rc Tota	ıl.Org	g.C.perc		
1540		1796119				NA	NA		NA]	NA		NA		
1541		1139493				4.63	7.5		7.4		0.	12		1.56		
1542		386263				4.60	4.8		6.1		0.			0.12		
1543		212482				6.48	5.9		7.4		0.0			0.01		
1544	##	1139487				4.63	7.5		7.4		0.	12		1.56		
1545	##	598715				4.07	7.2		7.3		0.3			2.23		
1546	##		Bray.1.	P.ppm I	K.ppm	K.per	c.CEC Ca	a.ppm	Ca.pe	erc.CEC	Mg.	ppm Mg.	.perc.	CEC		
1547		1796119		NA	NA		NA	NA		NA		NA		NA		
1548		1139493		12	45		2	1378		98		360		42		
1549		386263		8	67		1	1281		37	(633		30		
1550		212482		25	35		28	47		72		3		8		
1551		1139487		12	45		2	1378		98		360		42		
1552	##	598715		28	78		2	1785		98		505		45		
1553	##			Na.per		Est.A	c.Hplus	Hplus	.perd							
1554		1796119	NA		NA		NA			NA]	NA				
1555		1139493	NA		0		0.0			0		6				
1556		386263	NA		0		10.7			62		16				
1557		212482	NA		0		0.0			0		0				
1558		1139487	NA		0		0.0			0		6				
1559		598715	NA .		0	_	0.0	_		0		10	_	_		
1560	##		Date.of	.Colle	ction		on.Name	St.pH		Site.N			:.Dept			
1561	##	1796119		- •			Spooner		NA		N.			NA		
1562	##				/2018		insular		7.20			4		25		
1563	##				/2018		shfield		5.65			1		50		
1564		212482			/2018		elander		5.50			1		50		
1565		1139487			/2018		insular		7.20			4		25		
1566	##	598715		8/31,	/2018	Ar	lington		6.50		249	9		0		

```
Lower.Depth.cm DNA.Extr.Hplus.After.C1 DNA.Extr.Hplus.After.C2
    ##
1567
                             NA
                                             6.698846e-10
                                                                        8.128305e-09
1568
    ## 1796119
    ## 1139493
                             35
                                             8.491805e-10
                                                                        1.318257e-08
1569
                             70
    ## 386263
                                                                        2.317395e-08
1570
                                             1.832314e-09
                             70
    ## 212482
                                             2.951209e-10
                                                                        1.064143e-08
1571
                             35
    ## 1139487
                                             8.491805e-10
                                                                        1.318257e-08
1572
    ## 598715
                             35
                                             1.188502e-09
                                                                        1.603245e-08
1573
    ##
                Lab.CO2.Hplus.one2one Lab.CO2.Hplus.one2two Lab.CO2.Hplus.one2three
1574
    ## 1796119
                                                  3.548134e-06
                          4.073803e-06
                                                                             8.317638e-08
1575
    ## 1139493
                          1.479108e-07
                                                  2.238721e-08
                                                                             5.754399e-08
1576
    ## 386263
                          4.365158e-06
                                                  6.165950e-06
                                                                             7.079458e-06
1577
    ## 212482
                          2.041738e-06
                                                  2.454709e-06
                                                                             4.168694e-06
1578
    ## 1139487
                                                  2.238721e-08
                          1.479108e-07
                                                                             5.754399e-08
1579
    ## 598715
                          1.778279e-07
                                                  8.511380e-08
                                                                             1.380384e-07
1580
    ##
                Lab.CO2.Hplus.one2four High.CO2.Hplus.one2one High.CO2.Hplus.one2two
1581
    ## 1796119
                           5.754399e-06
                                                     3.630781e-06
                                                                              2.691535e-06
1582
    ## 1139493
                           6.025596e-08
                                                     1.621810e-07
                                                                              2.754229e-08
1583
                           7.943282e-06
    ## 386263
                                                     6.606934e-06
                                                                              4.365158e-06
1584
    ## 212482
                           3.311311e-06
                                                                              2.454709e-06
1585
                                                     3.019952e-06
    ## 1139487
                           6.025596e-08
                                                     1.621810e-07
                                                                              2.754229e-08
1586
    ## 598715
                           4.168694e-08
                                                     1.995262e-07
                                                                              5.248075e-08
1587
    ##
                High.CO2.Hplus.one2three High.CO2.Hplus.one2four
1588
    ## 1796119
                             1.174898e-07
                                                        3.630781e-06
1589
    ## 1139493
                             3.162278e-08
                                                        4.168694e-08
1590
1591
    ## 386263
                             4.677351e-06
                                                        4.365158e-06
    ## 212482
                             1.995262e-06
                                                        2.238721e-06
1592
    ## 1139487
                             3.162278e-08
                                                        4.168694e-08
1593
    ## 598715
                             6.760830e-08
                                                        7.585776e-08
1594
    hist(sample_sums(ps))
```

Histogram of sample sums(ps)


```
# Relative abundances
ps.norm = transform_sample_counts(ps,function(x) x/sum(x))
head(otu_table(ps.norm))
```

```
## OTU Table:
                             [6 taxa and 121 samples]
    ##
                             taxa are rows
1597
            001-K1-0-17 002-K1-17-45 003-K1-45-60 005-K3-0-15 006-K3-15-35
1598
       OTU1 0.000000000
                          0.00000000
                                         0.00242923 0.002214264
                                                                   0.00000000
1599
                                                                   0.021672486
       OTU2 0.005162547
                          0.008838747
                                         0.00000000 0.010512939
       OTU3 0.001758178
                          0.012503593
                                         0.02126816 0.001232286
                                                                   0.014604445
1601
       OTU4 0.005397718
                          0.003808566
                                         0.00000000 0.008703019
                                                                   0.009665333
1602
       OTU5 0.000000000
                          0.00000000
                                         0.00000000 0.000000000
                                                                   0.00000000
1603
       OTU6 0.002026944
                          0.005916451
                                         0.01343513 0.005179452
1604
    ##
            007-K3-35-50 008-K4-0-15 009-K4-15-30 010-K4-30-50 011-R1-0-27
1605
    ## OTU1 0.0003990423
                                     0
                                         0.0000000
                                                       0.00000000 0.050420941
1606
       OTU2 0.0156903432
                                     0
                                         0.0000000
                                                       0.00417090 0.009430924
1607
       OTU3 0.0072146848
                                         0.02185811
                                                       0.03106786 0.008464830
1608
                                     0
       OTU4 0.0049960096
                                         0.0000000
                                                       0.00200524 0.012053181
       OTU5 0.0003830806
                                     0
                                         0.0000000
                                                       0.00000000 0.000000000
1610
       OTU6 0.0188986433
                                     0
                                         0.0000000
                                                       0.0000000 0.00000000
                          013-R1-50-70 014-R2-0-30
                                                     015-R2-30-45 016-R2-45-60
            012-R1-27-50
1612
             0.011196727
                           0.006132294
                                        0.038346086
                                                      0.010910178
                                                                     0.01394996
1613
    ## OTU1
       OTU2
             0.001481142
                           0.00000000 0.00000000
                                                      0.003482290
                                                                     0.0000000
1614
                           0.029816576 0.000000000
                                                      0.014706322
       OTU3
             0.029252552
                                                                     0.01327045
1615
       OTU4
             0.00000000
                           0.00000000 0.004914656
                                                      0.001061127
                                                                     0.0000000
1616
                           0.000000000 0.009799882
             0.00000000
       OTU5
                                                      0.002884472
                                                                     0.00000000
```

Dissertation (2020) 34 Braus, M. J.

```
0.000000000 0.000000000
    ## OTU6
             0.003491263
                                                     0.024884173
                                                                    0.01822688
1618
            017-R2-60-100 018-R3-0-20 019-R3-20-30
                                                      020-M1-0-31 021-M1-31-50
1619
    ##
      OTU1
               0.03090163 0.020958378
                                         0.00000000 0.0076980648
                                                                    0.004572074
1620
      OTU2
    ##
               0.00000000 0.010380793
                                         0.001977139 0.0087672405
                                                                    0.015308743
1621
    ##
       OTU3
               0.01746161 0.002213913
                                         0.052857584 0.0002138351
                                                                    0.086869413
1622
    ##
       OTU4
               0.00000000 0.004280232
                                         0.00000000 0.0039915892
                                                                    0.005548135
1623
    ##
       OTU5
               0.00000000 0.003542261
                                         0.00000000 0.0191026052
                                                                    0.014332683
1624
    ##
       OTU6
               0.01156467 0.000000000
                                         0.001760890 0.0000000000
                                                                    0.00000000
1625
    ##
            022-M1-50-70
                           023-M2-0-24 024-M2-24-38 025-M2-38-55
                                                                    026-M3-0-15
1626
    ##
       OTU1
             0.002628337 0.0059101186
                                          0.0000000
                                                      0.006092798 0.0026139334
1627
       OTU2
             0.005297741 0.0041648487
                                          0.0000000
                                                      0.00000000 0.0096374588
    ##
       OTU3
             0.113963039 0.0001983261
                                          0.05294118
                                                      0.141227933 0.0003409478
    ##
1629
    ##
       OTU4
             0.003757700 0.0032128833
                                          0.0000000
                                                      0.000000000 0.0045687010
1630
    ##
       OTU5
             0.001088296 0.0130498592
                                          0.07205882
                                                      0.008123731 0.0124332310
1631
             0.005092402 0.0000000000
    ##
       OTU6
                                          0.0000000
                                                      0.00000000 0.000000000
1632
    ##
            027-M3-15-30 030-H1-0-30 031-H1-30-40 032-H1-40-60 033-H2-0-30
1633
             0.011794955 0.012794564 0.0088081168 0.0022443370 0.015122873
    ##
      OTU1
1634
             0.011579193 0.000000000 0.0078046605 0.0156929608 0.018746062
1635
             1636
       OTU3
       OTU4
             0.002139634 0.003144427 0.0009477088 0.0018267859 0.009451796
1637
    ##
       OTU5
             0.008216912 0.036106694 0.0090868547 0.0005393368 0.021739130
1638
    ##
       OTU6
             0.012064656 0.000000000 0.0059092429 0.0122481645 0.000000000
1639
    ##
            034-H2-30-60 035-A249-0-35 036-A249-35-60 037-A341-0-33 038-A341-33-55
1640
    ## OTU1 0.0070747159
                            0.006064823
                                            0.004776510
                                                           0.007176808
                                                                           0.005235602
1641
       OTU2 0.0122513373
                            0.004226998
                                            0.015837900
                                                           0.003694291
                                                                           0.030577676
1642
       OTU3 0.0003697587
                            0.00000000
                                            0.015636784
                                                           0.00000000
                                                                           0.005543579
1643
       OTU4 0.0020213474
                            0.002559828
                                            0.007491578
                                                           0.002070686
                                                                           0.000000000
1644
       OTU5 0.0017501910
                            0.015792168
                                            0.008698275
    ##
                                                           0.016047814
                                                                           0.013726957
1645
    ##
       OTU6 0.0072965711
                            0.005316565
                                            0.024083664
                                                           0.00000000
                                                                           0.025210084
1646
    ##
            039-A341-55-75 040-A341-75-85 041-L2-0-23
                                                        042-L2-23-45 043-L3-0-12
1647
    ## OTU1
               0.003486467
                              0.0011130822 0.003334199
                                                          0.003696701
                                                                       0.0000000
1648
    ##
      CITTO
               0.005845844
                              0.0038262200 0.034121417
                                                          0.050351611
                                                                       0.03579898
1649
       OTU3
               0.019566295
                              0.0516887544 0.000000000
                                                          0.005098897
                                                                       0.00000000
1650
       OTU4
                              0.0007478521 0.005759072
                                                          0.005715014
    ##
               0.001998708
                                                                       0.01366460
1651
    ##
       OTU5
               0.006657349
                              0.0022435563 0.011777951
                                                          0.003526737
                                                                       0.02032750
1652
1653
    ##
       OTU6
               0.010233984
                              0.0044523288 0.011388239
                                                          0.016741380
                                                                       0.00000000
    ##
            044-L3-12-20 045-L3-20-40 046-L4-0-10 047-L4-10-20 048-L4-20-40
1654
      OTU1 0.0023542195
                           0.001783785 0.002944063 0.0000000000
                                                                   0.001721276
1655
    ##
       OTU2 0.0150307859
                           0.016933397 0.131065315 0.0716022867
                                                                   0.026556833
1656
    ##
       OTU3 0.0002535313
                           0.015425973 0.000000000 0.0005053536
                                                                   0.010542817
1657
       OTU4 0.0039116262
                           0.006657790 0.025624250 0.0099175642
                                                                   0.011280507
1658
    ##
       OTU5 0.0101593625
                           0.009974123 0.020281322 0.0095701336
                                                                   0.006024467
1659
    ##
       OTU6
            0.0087468309
                           0.015224983 0.003489260 0.0227409115
                                                                   0.016044753
1660
    ##
            050-W4-0-28 051-W4-28-45 052-W4-45-55 053-W5-0-35 054-W5-35-65 055-W7-0-15
1661
                                        0.004191060 0.009935837 0.0005988487 0.005464813
             0.0000000
                          0.008101224
    ##
      OTU1
    ##
       OTU2
             0.03254319
                          0.010782144
                                        0.016519626 0.014808999 0.0361434146 0.029692149
1663
                                        0.016584857 0.000866340 0.0022601708 0.002853847
    ##
      OTU3
             0.00000000
                          0.018181818
1664
       OTU4
             0.0000000
                          0.003240489
                                        0.003620293 0.005739502 0.0040567168 0.004614731
    ##
1665
    ##
       OTU5
             0.00000000
                          0.002705976
                                        0.007778738 0.011641444 0.0009465672 0.006011294
    ##
       OTU6
             0.0000000
                          0.012845033
                                        0.009784576 0.007932425 0.0203029015
                                                                               0.024136256
1667
    ##
            056-W7-15-30 057-P1-0-30 058-P1-30-45 059-P1-45-55 060-P2-0-20
1668
      OTU1
             0.00000000 0.016138035
                                        0.015320018
                                                     0.017306513 0.013624895
1669
                                                     0.001404300 0.002158677
    ##
       OTU2
             0.034400060 0.013298711
                                        0.00000000
      OTU3
             0.068725174 0.000000000
                                       0.003177485
                                                     0.002571253 0.000000000
1671
```

```
## OTU4
              0.004946414 0.002208363
                                          0.011915570
                                                        0.001186732 0.004401458
1672
              0.00000000 0.014269420
                                          0.000000000
                                                        0.001582310 0.012531539
1673
       OTU5
              0.040620550 0.000000000
                                          0.00000000
                                                        0.007713760 0.000000000
1674
             061-P2-20-45
                           062-P2-45-55 063-P4-0-25
                                                       064-P4-25-35
    ##
                                                                     065-P4-35-50
1675
    ##
       OTU1
              0.008175083
                            0.008289672 0.004669079
                                                        0.004857677
                                                                       0.004336656
1676
    ##
       OTU2
              0.005790684
                            0.00000000 0.011526789
                                                        0.003958644
                                                                       0.001623677
1677
              0.00000000
                            0.00000000 0.00000000
       OTU3
                                                        0.00000000
                                                                       0.00000000
1678
    ##
       OTU4
              0.005279741
                            0.002314649 0.004493989
                                                        0.003538129
                                                                       0.003247354
1679
    ##
       OTU5
              0.00000000
                            0.002852939 0.014503327
                                                        0.004625669
                                                                       0.005261535
1680
    ##
       OTU6
              0.00000000
                            0.00000000 0.00000000
                                                        0.00000000
                                                                       0.000000000
1681
    ##
             181-Sp11-Cr31-0-20 182-Sp11-Cr32-0-16
                                                       183-Sp11-Cr33-0-20
    ##
       OTU1
                      0.02875878
                                           0.02652339
                                                                0.11648613
1683
    ##
       OTU2
                      0.02163934
                                           0.03291621
                                                                0.02240689
1684
    ##
       OTU3
                      0.0000000
                                           0.0000000
                                                                0.00000000
1685
    ##
       OTU4
                      0.01161593
                                           0.02135473
                                                                0.03027155
1686
    ##
       OTU5
                      0.01911007
                                           0.02312296
                                                                0.01201959
1687
    ##
       OTU6
                      0.00000000
                                           0.00000000
                                                                0.00000000
1688
                                                       186-Sp12-Cr36-0-20
    ##
             184-Sp12-Cr34-0-16 185-Sp12-Cr35-0-18
1689
1690
    ##
       OTU1
                     0.026295917
                                          0.017801455
                                                                0.12297521
    ##
       OTU2
                     0.007201036
                                          0.006237006
                                                                0.02826446
1691
    ##
       OTU3
                     0.00000000
                                          0.00000000
                                                                0.00000000
1692
    ##
       OTU4
                     0.007416797
                                          0.061122661
                                                                0.05256198
1693
    ##
       OTU5
                     0.012433249
                                          0.009875260
                                                                0.02082645
1694
    ##
       OTU6
                     0.00000000
                                          0.00000000
                                                                0.0000000
1695
    ##
             187-Sp13-Cr37-0-20 188-Sp13-Cr38-0-20
                                                       189-Sp13-Cr39-0-19
1696
    ##
       OTU1
                      0.02552806
                                          0.048596897
                                                               0.031996509
1697
    ##
       OTU2
                      0.01683766
                                          0.013040607
                                                               0.010726755
1698
    ##
       OTU3
                      0.0000000
                                          0.002046880
                                                               0.001653804
1699
                      0.01955341
    ##
       OTU4
                                          0.011984153
                                                               0.008291988
1700
    ##
       OTU5
1701
                      0.01587206
                                          0.003037306
                                                               0.003973723
    ##
       OTU6
                      0.00000000
                                          0.004754044
                                                               0.002963065
1702
    ##
             190-Sp14-Cr40-0-17 191-Sp14-Cr41-0-18 192-Sp14-Cr42-0-20
1703
    ##
       OTU1
                     0.015714286
                                          0.012692562
                                                               0.015742371
1704
    ##
       OTU2
                     0.00000000
                                          0.002086449
                                                               0.004437613
1705
    ##
       OTU3
                     0.005584416
                                          0.001999513
                                                               0.003470759
1706
1707
    ##
       OTU4
                     0.023506494
                                          0.003964252
                                                               0.008900017
    ##
       OTU5
                     0.00000000
                                          0.00000000
                                                               0.001165183
1708
    ##
       OTU6
                     0.00000000
                                          0.00000000
                                                               0.000000000
1709
    ##
             193-Sp15-Cr43-0-18 194-Sp15-Cr44-0-17 195-Sp15-Cr45-0-20
1710
    ##
       OTU1
                     0.038968140
                                          0.021049706
                                                               0.031842049
1711
    ##
       OTU2
                     0.000000000
                                          0.000000000
                                                               0.000000000
1712
    ##
       OTU3
                     0.00000000
                                          0.007006817
                                                               0.00000000
1713
    ##
       ΩΤΊΙ4
                     0.009344401
                                          0.003437582
                                                               0.021125679
1714
    ##
       OTU5
                     0.00000000
                                          0.00000000
                                                               0.001535296
1715
    ##
       OTU6
                     0.00000000
                                          0.00000000
                                                               0.000000000
    ##
             196-Sp16-Cr46-0-20 197-Sp16-Cr47-0-17 198-Sp16-Cr48-0-20
1717
    ## OTU1
                      0.03589801
                                          0.024907923
                                                               0.027411448
1718
       OTU2
    ##
                      0.00000000
                                          0.008216073
                                                               0.013256922
1719
    ##
       OTU3
                      0.0000000
                                          0.00000000
                                                               0.00000000
1720
    ##
       OTU4
                      0.01957057
                                          0.008216073
                                                               0.035627978
1721
    ##
       OTU5
1722
                      0.01543279
                                          0.007625838
                                                               0.008976041
    ##
       OTU6
                      0.0000000
                                          0.003328926
                                                               0.000000000
1723
             199-Sp17-Cr49-0-20 200-Sp17-Cr50-0-18 201-Sp17-Cr51-0-18
    ##
1724
    ## OTU1
                     0.009658422
                                          0.020429982
                                                                0.11589324
1725
```

1726	##	OTU2	0.00000000	0.00000000	0.00000000	
1727	##	OTU3	0.005516294	0.001687186	0.01995672	
1728	##	OTU4	0.003258736	0.032724721	0.03943256	
1729	##	OTU5	0.00000000	0.001503433	0.00000000	
1730	##	OTU6	0.00000000	0.00000000		
1731	##		202-Sp18-Cr52-0-18	203-Sp18-Cr53-0-19	204-Sp18-Cr54-0-20	
1732	##	OTU1	0.026511307	0.05453388	0.035570243	
1733	##	OTU2	0.004790711	0.01724467	0.005906690	
1734	##	OTU3	0.00000000	0.00000000	0.00000000	
1735	##	OTU4	0.005643295	0.01775374	0.009029169	
1736	##	OTU5	0.011225691	0.01909004	0.009991934	
1737	##	OTU6	0.002172060	0.00000000		
1738	##				207-Sp19-Cr57-0-18	
1739		OTU1	0.023922711	0.04964851	0.061457465	
1740		OTU2	0.002258438	0.00000000		
1741		OTU3	0.003373716			
1742		OTU4	0.006217674	0.00000000		
1743		OTU5	0.00000000	0.0000000		
1744	##	OTU6	0.00000000	0.0000000		
1745	##				210-Sp20-Cr60-0-20	
1746		OTU1	0.05602383	0.028775104		
1747		OTU2	0.01764441	0.006011875		
1748		OTU3	0.00000000	0.001302883		
1749		OTU4	0.01916161	0.013233570		
1750		OTU5	0.01770061	0.007593947		
1751		OTU6	0.00000000	0.004764830		
1752	##	OMITA	=	=	-Sp2-Cr4-0-20 215-S	=
1753		OTU1	0.01273716	0.012730841	0.053554189	0
1754		OTU2	0.00000000	0.00000000	0.011584777	0
1755		OTU3 OTU4	0.0000000 0.34204591	0.002515976 0.00000000	0.00000000 0.007773995	0 0
1756		0TU5	0.00000000	0.00000000	0.000000000	0
1757		OTU6	0.0000000	0.00000000	0.000000000	0
1758	##	0100			-Sp3-Cr8-0-20 219-S	
1759 1760		OTU1	0.008622569	0.045752080	= '	0.043991231
1761		OTU2	0.008331920	0.0043732000		0.007044508
1762		OTU3	0.003633105	0.000102130		0.00000000
1763		OTU4	0.003729988	0.015852993		0.006034631
1764		OTU5	0.00000000	0.013807446		0.010468238
1765		OTU6	0.003172912	0.003375153		0.003202049
1766	##				22-Sp4-Cr12-0-20 22	
1767	##	OTU1	0.051845864	0.10203774	0.0196199299	0.03288201
1768		OTU2	0.009485314	0.01539623	0.0063932088	0.02127660
1769		OTU3	0.00000000	0.0000000	0.0005812008	0.00000000
1770		OTU4	0.016329830	0.01615094	0.0059176808	0.03255964
1771	##	OTU5	0.010293721	0.01267925	0.0096338435	0.03610574
1772	##	OTU6	0.009485314	0.00000000	0.0068335124	0.00000000
1773	##		224-Sp5-Cr14-0-20 2	225-Sp5-Cr15-0-20 2	26-Sp6-Cr16-0-15 22	7-Sp6-Cr17-0-20
1774	##	OTU1	0.026438298	0.06908621	0.02143623	0.025272331
1775	##	OTU2	0.007792078	0.01034771	0.00000000	0.004390816
1776	##	OTU3	0.00000000	0.00000000	0.00000000	0.000000000
1777	##	OTU4	0.010381140	0.01727155	0.02625938	0.010591587
1778	##	OTU5	0.012571884	0.01552157	0.01915863	0.011027317
1779	##	OTU6	0.005676019	0.00000000	0.0000000	0.002346238

```
228-Sp6-Cr18-0-20 229-Sp7-Cr19-0-20 230-Sp7-Cr20-0-20 231-Sp7-Cr21-0-13
    ##
1780
    ## OTU1
                    0.02320428
                                      0.005839416
                                                                              0.099168870
1781
                                                           0.02608923
    ## OTU2
                    0.01434111
                                       0.00000000
                                                           0.0000000
                                                                              0.00000000
1782
       OTU3
                    0.0000000
1783
    ##
                                      0.004931939
                                                           0.0000000
                                                                              0.008311296
    ##
       OTU4
                    0.01058657
                                       0.004636023
                                                           0.02174102
                                                                              0.00000000
1784
       OTU5
    ##
                    0.02031144
                                       0.00000000
                                                           0.0000000
                                                                              0.00000000
1785
    ##
       OTU6
                    0.00000000
                                       0.00000000
                                                           0.0000000
                                                                              0.00000000
1786
    ##
             232-Sp8-Cr22-0-20 233-Sp8-Cr23-0-20 234-Sp8-Cr24-0-20
                                                                       235-Sp9-Cr25-0-15
1787
                                                          0.012853788
    ## OTU1
                   0.025152808
                                      0.031457016
                                                                              0.033972479
1788
    ##
       OTU2
                   0.010311772
                                       0.018321535
                                                          0.031969678
                                                                              0.007218588
1789
       OTU3
    ##
                   0.002044765
                                      0.003671878
                                                          0.002925061
                                                                              0.00000000
    ##
       OTU4
                   0.009124489
                                       0.010599235
                                                          0.011823837
                                                                              0.008572073
1791
    ## OTU5
                   0.004023570
                                       0.003179771
                                                          0.006962469
                                                                              0.018587864
1792
    ##
       OTU6
                   0.002836287
                                       0.00000000
                                                          0.00000000
                                                                              0.00000000
1793
    ##
            236-Sp9-Cr26-0-20 237-Sp9-Cr27-0-15 238-Sp10-Cr28-0-20 239-Sp10-Cr29-0-15
1794
    ## OTU1
                   0.012711066
                                        0.06999656
                                                           0.014610927
                                                                                0.008894578
1795
    ## OTU2
                   0.006402611
                                                           0.00000000
                                                                                0.00000000
                                        0.01443464
    ## OTU3
                   0.00000000
                                        0.0000000
                                                           0.005960265
                                                                                0.001411317
1797
1798
    ## OTU4
                   0.006151528
                                        0.00698820
                                                           0.006995033
                                                                                0.010470001
    ##
       OTU5
                   0.015190509
                                        0.02566159
                                                           0.001448675
                                                                                0.001805173
1799
    ##
       OTU6
                   0.00000000
                                        0.0000000
                                                           0.00000000
                                                                                0.00000000
1800
    ##
            240-Sp10-Cr30-0-20
1801
    ## OTU1
                     0.02677100
1802
    ##
       OTU2
                     0.0000000
1803
    ## OTU3
                     0.01194399
1804
    ## OTU4
                     0.02347611
1805
    ##
       OTU5
                     0.0000000
1806
                     0.0000000
    ## OTU6
1807
```

sample_sums(ps.norm)

1808	##	001-K1-0-17	002-K1-17-45	003-K1-45-60	005-K3-0-15
1809	##	1	1	1	1
1810	##	006-K3-15-35	007-K3-35-50	008-K4-0-15	009-K4-15-30
1811	##	1	1	1	1
1812	##	010-K4-30-50	011-R1-0-27	012-R1-27-50	013-R1-50-70
1813	##	1	1	1	1
1814	##	014-R2-0-30	015-R2-30-45	016-R2-45-60	017-R2-60-100
1815	##	1	1	1	1
1816	##	018-R3-0-20	019-R3-20-30	020-M1-0-31	021-M1-31-50
1817	##	1	1	1	1
1818	##	022-M1-50-70	023-M2-0-24	024-M2-24-38	025-M2-38-55
1819	##	1	1	1	1
1820	##	026-M3-0-15	027-M3-15-30	030-H1-0-30	031-H1-30-40
1821	##	1	1	1	1
1822	##	032-H1-40-60	033-H2-0-30	034-H2-30-60	035-A249-0-35
1823	##	1	1	1	1
1824	##	036-A249-35-60	037-A341-0-33	038-A341-33-55	039-A341-55-75
1825	##	1	1	1	1
1826	##	040-A341-75-85	041-L2-0-23	042-L2-23-45	043-L3-0-12
1827	##	1	1	1	1
1828	##	044-L3-12-20	045-L3-20-40	046-L4-0-10	047-L4-10-20
1829	##	1	1	1	1
1830	##	048-L4-20-40	050-W4-0-28	051-W4-28-45	052-W4-45-55
1831	##	1	1	1	1

```
055-W7-0-15
    ##
               053-W5-0-35
                                   054-W5-35-65
                                                                             056-W7-15-30
1832
    ##
1833
                                               1
               057-P1-0-30
                                   058-P1-30-45
                                                        059-P1-45-55
                                                                              060-P2-0-20
1834
    ##
                                               1
                                                                    1
1835
                                                         063-P4-0-25
    ##
              061-P2-20-45
                                   062-P2-45-55
                                                                             064-P4-25-35
1836
    ##
                                                                                          1
1837
    ##
              065-P4-35-50 181-Sp11-Cr31-0-20
                                                 182-Sp11-Cr32-0-16 183-Sp11-Cr33-0-20
1838
    ##
1839
    ##
       184-Sp12-Cr34-0-16 185-Sp12-Cr35-0-18 186-Sp12-Cr36-0-20 187-Sp13-Cr37-0-20
1840
    ##
1841
       188-Sp13-Cr38-0-20 189-Sp13-Cr39-0-19 190-Sp14-Cr40-0-17 191-Sp14-Cr41-0-18
    ##
    ##
1843
       192-Sp14-Cr42-0-20 193-Sp15-Cr43-0-18 194-Sp15-Cr44-0-17 195-Sp15-Cr45-0-20
    ##
1844
    ##
1845
       196-Sp16-Cr46-0-20 197-Sp16-Cr47-0-17 198-Sp16-Cr48-0-20 199-Sp17-Cr49-0-20
    ##
    ##
1847
    ##
       200-Sp17-Cr50-0-18 201-Sp17-Cr51-0-18 202-Sp18-Cr52-0-18 203-Sp18-Cr53-0-19
1848
    ##
1849
       204-Sp18-Cr54-0-20 205-Sp19-Cr55-0-20 206-Sp19-Cr56-0-18 207-Sp19-Cr57-0-18
1850
    ##
    ##
                                                                                         1
1851
    ##
       208-Sp20-Cr58-0-20
                            209-Sp20-Cr59-0-19
                                                 210-Sp20-Cr60-0-20
                                                                         211-Sp1-Cr1-0-20
1852
    ##
                                                                                          1
1853
    ##
         212-Sp1-Cr2-0-20
                               213-Sp1-Cr3-0-20
                                                    214-Sp2-Cr4-0-20
                                                                         215-Sp2-Cr5-0-20
1854
    ##
1855
    ##
         216-Sp2-Cr6-0-20
                               217-Sp3-Cr7-0-20
                                                    218-Sp3-Cr8-0-20
                                                                         219-Sp3-Cr9-0-20
1856
    ##
1857
    ##
        220-Sp4-Cr10-0-20
                             221-Sp4-Cr11-0-20
                                                   222-Sp4-Cr12-0-20
                                                                        223-Sp5-Cr13-0-20
1858
    ##
1859
    ##
        224-Sp5-Cr14-0-20
                             225-Sp5-Cr15-0-20
                                                   226-Sp6-Cr16-0-15
                                                                        227-Sp6-Cr17-0-20
1860
    ##
1861
                                                                                          1
    ##
        228-Sp6-Cr18-0-20
                             229-Sp7-Cr19-0-20
                                                   230-Sp7-Cr20-0-20
                                                                        231-Sp7-Cr21-0-13
1862
    ##
1863
                             233-Sp8-Cr23-0-20
    ##
        232-Sp8-Cr22-0-20
                                                  234-Sp8-Cr24-0-20
                                                                        235-Sp9-Cr25-0-15
1864
    ##
    ##
        236-Sp9-Cr26-0-20
                             237-Sp9-Cr27-0-15 238-Sp10-Cr28-0-20 239-Sp10-Cr29-0-15
1866
1867
    ##
                                               1
                                                                    1
                                                                                          1
    ##
       240-Sp10-Cr30-0-20
1868
    ##
1869
    # Looks good
    # Spooner Vs. Wisconsin
    ps.wisc <- subset_samples(ps, Study=="Wisconsin")
    ps.spoon <- subset_samples(ps, Study=="Spooner")</pre>
    ps.norm.wisc <- subset_samples(ps.norm, Study=="Wisconsin")</pre>
    ps.norm.spoon <- subset_samples(ps.norm, Study=="Spooner")
    MJB: Let's try this again, correctly this time.
    df.wisc = as(sample_data(ps.norm.wisc), "data.frame")
    d.wisc = distance(ps.norm.wisc, method = "bray")
    Lab.CO2.pH.one2one.wisc <- adonis(d.wisc ~ Lab.CO2.pH.one2one, data=df.wisc)
```

Lab.CO2.pH.one2one.wisc

```
1871
    ## Call:
   ## adonis(formula = d.wisc ~ Lab.CO2.pH.one2one, data = df.wisc)
1873
    ## Permutation: free
1875
       Number of permutations: 999
1876
1877
    ## Terms added sequentially (first to last)
1878
    ##
1879
    ##
                           Df SumsOfSqs MeanSqs F.Model
1880
    ## Lab.CO2.pH.one2one
                                  2.0581 2.05808 5.5794 0.0864
                                                                  0.001 ***
                           1
1881
   ## Residuals
                           59
                                 21.7633 0.36887
                                                          0.9136
1882
   ## Total
                           60
                                 23.8213
                                                          1.0000
1883
    ## ---
1884
   ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
1885
    Lab.CO2.pH.one2two.wisc <- adonis(d.wisc ~ Lab.CO2.pH.one2two, data=df.wisc)
    Lab.CO2.pH.one2two.wisc
    ##
1886
    ## Call:
1887
    ## adonis(formula = d.wisc ~ Lab.CO2.pH.one2two, data = df.wisc)
1888
    ##
1889
    ## Permutation: free
1890
      Number of permutations: 999
1891
1892
      Terms added sequentially (first to last)
    ##
1893
    ##
1894
    ##
                           Df SumsOfSqs MeanSqs F.Model
                                                                R2 Pr(>F)
    ## Lab.CO2.pH.one2two
                            1
                                   2.145 2.14505 5.8385 0.09005
                                                                    0.001 ***
1896
                           59
                                  21.676 0.36739
                                                          0.90995
    ## Residuals
                                  23.821
   ## Total
                           60
                                                          1.00000
1898
    ## ---
   ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
1900
    Lab.CO2.pH.one2three.wisc <- adonis(d.wisc ~ Lab.CO2.pH.one2three, data=df.wisc)
    Lab.CO2.pH.one2three.wisc
    ##
1901
    ## Call:
1902
    ## adonis(formula = d.wisc ~ Lab.CO2.pH.one2three, data = df.wisc)
1904
    ## Permutation: free
    ##
      Number of permutations: 999
1906
1907
    ##
    ##
      Terms added sequentially (first to last)
1908
    ##
1909
                             Df SumsOfSqs MeanSqs F.Model
    ##
                                                                  R2 Pr(>F)
1910
    ## Lab.CO2.pH.one2three
                                    2.1335 2.13351 5.8041 0.08956
                                                                     0.001 ***
1911
    ## Residuals
                             59
                                   21.6878 0.36759
                                                            0.91044
1912
    ## Total
                             60
                                   23.8213
                                                            1.00000
1913
    ## ---
1914
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
1915
    Lab.CO2.pH.one2four.wisc <- adonis(d.wisc ~ Lab.CO2.pH.one2four, data=df.wisc)
    Lab.CO2.pH.one2four.wisc
```

```
1916
    ## Call:
    ## adonis(formula = d.wisc ~ Lab.CO2.pH.one2four, data = df.wisc)
1918
1919
    ## Permutation: free
1920
    ##
       Number of permutations: 999
1921
1922
    ## Terms added sequentially (first to last)
1923
    ##
1924
    ##
                             Df SumsOfSqs MeanSqs F.Model
                                                                  R2 Pr(>F)
1925
    ## Lab.CO2.pH.one2four
                                   2.0417 2.04169 5.5308 0.08571
                                                                      0.001 ***
                              1
    ## Residuals
                             59
                                  21.7797 0.36915
                                                            0.91429
1927
    ## Total
                             60
                                  23.8213
                                                            1.00000
1928
    ## ---
1929
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
1930
    # Just running the sample numbers to see what the R2 is for an arbitrary factor.
    sample.num.wisc <- adonis(d.wisc ~ Sample.Num, data=df.wisc)</pre>
    sample.num.wisc
    ##
1931
    ## Call:
1932
    ## adonis(formula = d.wisc ~ Sample.Num, data = df.wisc)
1933
    ## Permutation: free
1935
    ##
       Number of permutations: 999
1936
    ##
1937
    ##
       Terms added sequentially (first to last)
1938
1939
    ##
    ##
                   Df SumsOfSqs MeanSqs F.Model
                                                        R2 Pr(>F)
1940
                         1.7926 1.79260 4.8012 0.07525
                                                           0.001 ***
    ## Sample.Num
                   1
1941
    ## Residuals
                   59
                         22.0287 0.37337
                                                  0.92475
1942
                        23.8213
    ## Total
                   60
                                                   1.00000
    ## ---
1944
    ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    sample.random.wisc <- adonis(d.wisc ~ Random.Num.1.to.65, data=df.wisc)</pre>
    sample.random.wisc
    ##
    ## Call:
1947
    ## adonis(formula = d.wisc ~ Random.Num.1.to.65, data = df.wisc)
1948
    ##
1949
    ## Permutation: free
1950
    ## Number of permutations: 999
1951
1952
    ##
       Terms added sequentially (first to last)
1953
    ##
1954
                                                                 R2 Pr(>F)
    ##
                            Df SumsOfSqs MeanSqs F.Model
1955
    ## Random.Num.1.to.65
                                  0.2756 0.27555 0.69046 0.01157
                            1
1956
    ## Residuals
                            59
                                 23.5458 0.39908
                                                           0.98843
                            60
                                 23.8213
    ## Total
                                                           1.00000
    Lab.CO2.Hplus.one2one.wisc <- adonis(d.wisc ~ Lab.CO2.Hplus.one2one, data=df.wisc)
    Lab.CO2.Hplus.one2one.wisc
```

##

Dissertation (2020) 41 Braus, M. J.

```
1959
    ## Call:
    ## adonis(formula = d.wisc ~ Lab.CO2.Hplus.one2one, data = df.wisc)
1961
1962
    ## Permutation: free
1963
       Number of permutations: 999
1964
1965
    ## Terms added sequentially (first to last)
1966
    ##
1967
    ##
                              Df SumsOfSqs MeanSqs F.Model
1968
    ## Lab.CO2.Hplus.one2one
                                     1.6946 1.69458 4.5185 0.07114
                                                                       0.001 ***
                               1
    ## Residuals
                              59
                                    22.1268 0.37503
                                                             0.92886
1970
    ## Total
                              60
                                    23.8213
                                                             1.00000
1971
    ## ---
1972
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
1973
    Lab.CO2.Hplus.one2two.wisc <- adonis(d.wisc ~ Lab.CO2.Hplus.one2two, data=df.wisc)
    Lab.CO2.Hplus.one2two.wisc
    ##
1974
    ## Call:
1975
1976
    ## adonis(formula = d.wisc ~ Lab.CO2.Hplus.one2two, data = df.wisc)
1977
    ## Permutation: free
1978
       Number of permutations: 999
1979
1980
       Terms added sequentially (first to last)
    ##
1981
    ##
1982
                              Df SumsOfSqs MeanSqs F.Model
                                                                   R2 Pr(>F)
    ## Lab.CO2.Hplus.one2two
                               1
                                     1.6752 1.67524
                                                       4.463 0.07033 0.001 ***
1984
                                    22.1461 0.37536
                                                             0.92967
    ## Residuals
                              59
    ## Total
                              60
                                    23.8213
                                                             1.00000
1986
    ## ---
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
1988
    Lab.CO2.Hplus.one2three.wisc <- adonis(d.wisc ~ Lab.CO2.Hplus.one2three, data=df.wisc)
    Lab.CO2.Hplus.one2three.wisc
    ##
1989
    ## Call:
1990
    ## adonis(formula = d.wisc ~ Lab.CO2.Hplus.one2three, data = df.wisc)
1992
    ## Permutation: free
       Number of permutations: 999
1994
    ##
1995
       Terms added sequentially (first to last)
1996
    ##
1997
    ##
                                 Df SumsOfSqs MeanSqs F.Model
                                                                     R2 Pr(>F)
1998
    ## Lab.CO2.Hplus.one2three
                                       1.6909 1.69091
                                                         4.508 0.07098 0.001 ***
1999
    ## Residuals
                                 59
                                      22.1304 0.37509
                                                               0.92902
    ## Total
                                 60
                                      23.8213
                                                                1.00000
2001
    ## ---
2002
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
2003
    Lab.CO2.Hplus.one2four.wisc <- adonis(d.wisc ~ Lab.CO2.Hplus.one2four, data=df.wisc)
    Lab.CO2.Hplus.one2four.wisc
```

Dissertation (2020) 42 Braus, M. J.

```
2004
    ## Call:
    ## adonis(formula = d.wisc ~ Lab.CO2.Hplus.one2four, data = df.wisc)
2006
2007
    ## Permutation: free
2008
       Number of permutations: 999
2009
2010
    ## Terms added sequentially (first to last)
2011
    ##
2012
    ##
                                Df SumsOfSqs MeanSqs F.Model
                                                                     R2 Pr(>F)
2013
    ## Lab.CO2.Hplus.one2four
                                      1.4641 1.46413 3.8638 0.06146
                                                                        0.001 ***
                                1
2014
    ## Residuals
                                59
                                     22.3572 0.37894
                                                               0.93854
2015
    ## Total
                                60
                                     23.8213
                                                               1.00000
2016
    ## ---
2017
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
2018
    High.CO2.pH.one2one.wisc <- adonis(d.wisc ~ High.CO2.pH.one2one, data=df.wisc)</pre>
    High.CO2.pH.one2one.wisc
    ##
2019
    ## Call:
2020
    ## adonis(formula = d.wisc ~ High.CO2.pH.one2one, data = df.wisc)
2021
    ##
2022
    ## Permutation: free
2023
    ## Number of permutations: 999
2025
    ## Terms added sequentially (first to last)
    ##
2027
                             Df SumsOfSqs MeanSqs F.Model
    ##
                                                                 R2 Pr(>F)
    ## High.CO2.pH.one2one
                             1
                                   2.0519 2.05186
                                                     5.561 0.08614
                                                                     0.001 ***
2029
                                  21.7695 0.36897
    ## Residuals
                             59
                                                            0.91386
                                  23.8213
    ## Total
                             60
                                                            1.00000
2031
    ## ---
2032
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
2033
    High.CO2.pH.one2two.wisc <- adonis(d.wisc ~ High.CO2.pH.one2two, data=df.wisc)</pre>
    High.CO2.pH.one2two.wisc
2034
    ##
    ## Call:
2035
    ## adonis(formula = d.wisc ~ High.CO2.pH.one2two, data = df.wisc)
2037
    ## Permutation: free
       Number of permutations: 999
2039
    ##
2040
    ## Terms added sequentially (first to last)
2041
    ##
2042
    ##
                             Df SumsOfSqs MeanSqs F.Model
                                                                 R2 Pr(>F)
2043
    ## High.CO2.pH.one2two
                                   2.0674 2.06744 5.6072 0.08679
2044
                                                            0.91321
    ## Residuals
                             59
                                  21.7539 0.36871
2045
    ## Total
                             60
                                  23.8213
                                                            1.00000
2046
    ## ---
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
2048
    High.CO2.pH.one2three.wisc <- adonis(d.wisc ~ High.CO2.pH.one2three, data=df.wisc)</pre>
    High.CO2.pH.one2three.wisc
```

```
##
2049
    ## Call:
    ## adonis(formula = d.wisc ~ High.CO2.pH.one2three, data = df.wisc)
2051
2052
    ## Permutation: free
2053
       Number of permutations: 999
2054
2055
    ## Terms added sequentially (first to last)
2056
    ##
2057
    ##
                              Df SumsOfSqs MeanSqs F.Model
2058
                                     2.1523 2.15225 5.8601 0.09035
                                                                       0.001 ***
    ## High.CO2.pH.one2three
                               1
    ## Residuals
                              59
                                    21.6691 0.36727
                                                             0.90965
2060
    ## Total
                              60
                                    23.8213
                                                             1.00000
2061
    ## ---
2062
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
    High.CO2.pH.one2four.wisc <- adonis(d.wisc ~ High.CO2.pH.one2four, data=df.wisc)</pre>
    High.CO2.pH.one2four.wisc
    ##
2064
    ## Call:
2065
    ## adonis(formula = d.wisc ~ High.CO2.pH.one2four, data = df.wisc)
2066
2067
    ## Permutation: free
2068
    ## Number of permutations: 999
2070
    ## Terms added sequentially (first to last)
2071
    ##
2072
                             Df SumsOfSqs MeanSqs F.Model
                                                                  R2 Pr(>F)
    ## High.CO2.pH.one2four
                              1
                                    2.1467 2.14669 5.8434 0.09012
                                                                     0.001 ***
2074
                             59
                                   21.6747 0.36737
                                                            0.90988
    ## Residuals
                                   23.8213
    ## Total
                             60
                                                            1.00000
2076
    ## ---
2077
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
2078
    High.CO2.Hplus.one2one.wisc <- adonis(d.wisc ~ High.CO2.Hplus.one2one, data=df.wisc)
    High.CO2.Hplus.one2one.wisc
    ##
    ## Call:
2080
       adonis(formula = d.wisc ~ High.CO2.Hplus.one2one, data = df.wisc)
2082
    ## Permutation: free
       Number of permutations: 999
2084
2085
    ##
       Terms added sequentially (first to last)
2086
    ##
2087
    ##
                               Df SumsOfSqs MeanSqs F.Model
                                                                    R2 Pr(>F)
2088
    ## High.CO2.Hplus.one2one
                                      1.5384 1.53839 4.0733 0.06458
                                                                       0.001 ***
2089
    ## Residuals
                                                              0.93542
                                59
                                     22.2830 0.37768
    ## Total
                                60
                                     23.8213
                                                              1.00000
2091
    ## ---
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
2093
    High.CO2.Hplus.one2two.wisc <- adonis(d.wisc ~ High.CO2.Hplus.one2two, data=df.wisc)
    High.CO2.Hplus.one2two.wisc
```

Dissertation (2020) 44 Braus, M. J.

```
2094
    ## Call:
    ## adonis(formula = d.wisc ~ High.CO2.Hplus.one2two, data = df.wisc)
2096
    ## Permutation: free
2098
       Number of permutations: 999
2099
2100
    ## Terms added sequentially (first to last)
2101
    ##
2102
    ##
                                Df SumsOfSqs MeanSqs F.Model
                                                                    R2 Pr(>F)
2103
                                      1.5833 1.58330 4.2007 0.06647
                                                                        0.001 ***
    ## High.CO2.Hplus.one2two
                                1
2104
    ## Residuals
                                59
                                     22.2380 0.37692
                                                              0.93353
2105
    ## Total
                                60
                                     23.8213
                                                              1.00000
2106
    ## ---
2107
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
2108
    High.CO2.Hplus.one2three.wisc <- adonis(d.wisc ~ High.CO2.Hplus.one2three, data=df.wisc)
    High.CO2.Hplus.one2three.wisc
    ##
2109
    ## Call:
2110
    ## adonis(formula = d.wisc ~ High.CO2.Hplus.one2three, data = df.wisc)
2111
2112
    ## Permutation: free
2113
    ## Number of permutations: 999
2115
       Terms added sequentially (first to last)
    ##
2116
    ##
2117
                                  Df SumsOfSqs MeanSqs F.Model
                                                                      R2 Pr(>F)
    ## High.CO2.Hplus.one2three
                                  1
                                        1.6325 1.63254 4.3409 0.06853 0.001 ***
2119
                                  59
                                       22.1888 0.37608
    ## Residuals
                                                                0.93147
                                  60
    ## Total
                                       23.8213
                                                                1.00000
2121
    ## ---
2122
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
    High.CO2.Hplus.one2four.wisc <- adonis(d.wisc ~ High.CO2.Hplus.one2four, data=df.wisc)
    High.CO2.Hplus.one2four.wisc
    ##
2124
    ## Call:
2125
    ## adonis(formula = d.wisc ~ High.CO2.Hplus.one2four, data = df.wisc)
2127
    ## Permutation: free
    ##
       Number of permutations: 999
2129
    ##
2130
    ##
       Terms added sequentially (first to last)
2131
    ##
2132
    ##
                                Df SumsOfSqs MeanSqs F.Model
                                                                     R2 Pr(>F)
2133
    ## High.CO2.Hplus.one2four
                                       1.6225 1.62250 4.3123 0.06811
                                                                        0.001 ***
2134
    ## Residuals
                                59
                                      22.1988 0.37625
                                                               0.93189
2135
    ## Total
                                60
                                      23.8213
                                                               1.00000
2136
    ## ---
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
2138
    df.spoon = as(sample_data(ps.norm.spoon), "data.frame")
    d.spoon = distance(ps.norm.spoon, method = "bray")
```

##

```
Lab.CO2.pH.one2one.spoon <- adonis(d.spoon ~ Lab.CO2.pH.one2one, data=df.spoon)
    Lab.CO2.pH.one2one.spoon
    ##
2139
    ## Call:
2140
    ## adonis(formula = d.spoon ~ Lab.CO2.pH.one2one, data = df.spoon)
2141
    ## Permutation: free
2143
    ##
       Number of permutations: 999
2144
2145
    ##
       Terms added sequentially (first to last)
    ##
2147
    ##
                           Df SumsOfSqs MeanSqs F.Model
                                                                R2 Pr(>F)
2148
    ## Lab.CO2.pH.one2one 1
                                  2.4938 2.49377 8.9838 0.13412
                                                                   0.001 ***
2149
2150
    ## Residuals
                           58
                                 16.0999 0.27758
                                                          0.86588
    ## Total
                           59
                                18.5936
                                                          1.00000
2151
    ## ---
2152
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
2153
    Lab.CO2.pH.one2two.spoon <- adonis(d.spoon ~ Lab.CO2.pH.one2two, data=df.spoon)
    Lab.CO2.pH.one2two.spoon
    ##
2154
    ## Call:
2155
    ## adonis(formula = d.spoon ~ Lab.CO2.pH.one2two, data = df.spoon)
2157
    ## Permutation: free
2158
    ## Number of permutations: 999
2159
2160
       Terms added sequentially (first to last)
    ##
2161
    ##
2162
    ##
                           Df SumsOfSqs MeanSqs F.Model
                                                                R2 Pr(>F)
2163
    ## Lab.CO2.pH.one2two
                                  2.6055 2.60546 9.4518 0.14013
                                                                    0.001 ***
2164
    ## Residuals
                           58
                                15.9882 0.27566
                                                          0.85987
2165
    ## Total
                           59
                                18.5936
                                                          1.00000
2166
    ##
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
2168
    Lab.CO2.pH.one2three.spoon <- adonis(d.spoon ~ Lab.CO2.pH.one2three, data=df.spoon)
    Lab.CO2.pH.one2three.spoon
    ##
2169
    ## Call:
2170
       adonis(formula = d.spoon ~ Lab.CO2.pH.one2three, data = df.spoon)
    ##
2171
2172
2173
    ## Permutation: free
       Number of permutations: 999
2174
    ##
2175
       Terms added sequentially (first to last)
    ##
2176
    ##
2177
                             Df SumsOfSqs MeanSqs F.Model
                                                                  R2 Pr(>F)
2178
    ## Lab.CO2.pH.one2three 1
                                    2.9809 2.98088 11.074 0.16032
                                                                      0.001 ***
    ## Residuals
                             58
                                   15.6128 0.26919
                                                            0.83968
2180
                             59
                                   18.5936
                                                             1.00000
    ## Total
    ## ---
2182
```

```
Lab.CO2.pH.one2four.spoon <- adonis(d.spoon ~ Lab.CO2.pH.one2four, data=df.spoon)
    Lab.CO2.pH.one2four.spoon
    ##
2184
    ## Call:
2185
    ## adonis(formula = d.spoon ~ Lab.CO2.pH.one2four, data = df.spoon)
2186
2187
    ## Permutation: free
2188
      Number of permutations: 999
    ##
2189
    ##
2190
       Terms added sequentially (first to last)
2191
    ##
2192
    ##
                            Df SumsOfSqs MeanSqs F.Model
                                                                 R2 Pr(>F)
2193
2194
    ## Lab.CO2.pH.one2four 1
                                   2.8842 2.88418 10.649 0.15512 0.001 ***
    ## Residuals
                            58
                                  15.7095 0.27085
                                                           0.84488
2195
    ## Total
                            59
                                  18.5936
                                                           1.00000
2196
    ## ---
2197
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
2198
    Lab.CO2.Hplus.one2one.spoon <- adonis(d.spoon ~ Lab.CO2.Hplus.one2one, data=df.spoon)
    Lab.CO2.Hplus.one2one.spoon
    ##
2199
    ## Call:
2200
    ## adonis(formula = d.spoon ~ Lab.CO2.Hplus.one2one, data = df.spoon)
2201
2202
    ## Permutation: free
2203
       Number of permutations: 999
2204
2205
    ##
       Terms added sequentially (first to last)
2206
    ##
2207
    ##
                              Df SumsOfSqs MeanSqs F.Model
2208
    ## Lab.CO2.Hplus.one2one 1
                                     1.8268 1.82683 6.3194 0.09825
                                                                       0.001 ***
    ## Residuals
                              58
                                    16.7668 0.28908
                                                              0.90175
2210
                              59
                                    18.5936
                                                              1.00000
    ## Total
2211
    ## ---
2212
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
2213
    Lab.CO2.Hplus.one2two.spoon <- adonis(d.spoon ~ Lab.CO2.Hplus.one2two, data=df.spoon)
    Lab.CO2.Hplus.one2two.spoon
    ##
2214
2215
    ## adonis(formula = d.spoon ~ Lab.CO2.Hplus.one2two, data = df.spoon)
2216
2217
    ##
    ## Permutation: free
2218
    ## Number of permutations: 999
2219
2220
    ## Terms added sequentially (first to last)
2221
    ##
2222
    ##
                              Df SumsOfSqs MeanSqs F.Model
                                                                   R2 Pr(>F)
2223
    ## Lab.CO2.Hplus.one2two
                               1
                                    1.9567 1.95670 6.8215 0.10523 0.001 ***
2224
                              58
                                    16.6369 0.28684
    ## Residuals
                                                             0.89477
    ## Total
                              59
                                    18.5936
                                                             1.00000
2226
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

2183

Dissertation (2020) 47 Braus, M. J.

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
    Lab.CO2.Hplus.one2three.spoon <- adonis(d.spoon ~ Lab.CO2.Hplus.one2three, data=df.spoon)
    Lab.CO2.Hplus.one2three.spoon
2229
    ## Call:
2230
    ## adonis(formula = d.spoon ~ Lab.CO2.Hplus.one2three, data = df.spoon)
2231
2232
    ## Permutation: free
2233
    ##
       Number of permutations: 999
2235
    ## Terms added sequentially (first to last)
2236
    ##
2237
2238
    ##
                                Df SumsOfSqs MeanSqs F.Model
                                                                    R2 Pr(>F)
   ## Lab.CO2.Hplus.one2three
                                - 1
                                      2.2953 2.29530 8.1682 0.12345 0.001 ***
2239
   ## Residuals
                                58
                                     16.2983 0.28101
                                                               0.87655
   ## Total
                                59
                                     18.5936
                                                               1.00000
2241
   ## ---
2242
   ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
2243
    Lab.CO2.Hplus.one2four.spoon <- adonis(d.spoon ~ Lab.CO2.Hplus.one2four, data=df.spoon)
    Lab.CO2.Hplus.one2four.spoon
   ##
    ## Call:
2245
    ## adonis(formula = d.spoon ~ Lab.CO2.Hplus.one2four, data = df.spoon)
2246
2247
    ## Permutation: free
2248
    ## Number of permutations: 999
2249
2250
    ##
      Terms added sequentially (first to last)
2251
    ##
2252
    ##
                               Df SumsOfSqs MeanSqs F.Model
                                                                   R2 Pr(>F)
2253
                                     1.9794 1.97942 6.9101 0.10646
    ## Lab.CO2.Hplus.one2four
                               1
                                                                       0.001 ***
2254
                                     16.6142 0.28645
   ## Residuals
                               58
                                                              0.89354
   ## Total
                               59
                                    18.5936
                                                              1.00000
2256
   ## ---
2257
   ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
2258
    High.CO2.pH.one2one.spoon <- adonis(d.spoon ~ High.CO2.pH.one2one, data=df.spoon)
    High.CO2.pH.one2one.spoon
    ##
2259
    ## Call:
2260
2261
    ## adonis(formula = d.spoon ~ High.CO2.pH.one2one, data = df.spoon)
2262
    ## Permutation: free
    ##
       Number of permutations: 999
2264
    ##
       Terms added sequentially (first to last)
    ##
2266
    ##
                            Df SumsOfSqs MeanSqs F.Model
                                                                R2 Pr(>F)
2268
                                  2.3846 2.38458 8.5326 0.12825
    ## High.CO2.pH.one2one 1
                                                                   0.001 ***
                            58
   ## Residuals
                                 16.2091 0.27947
                                                           0.87175
2270
```

2227

Dissertation (2020) 48 Braus, M. J.

```
## ---
2272
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
2273
    High.CO2.pH.one2two.spoon <- adonis(d.spoon ~ High.CO2.pH.one2two, data=df.spoon)</pre>
    High.CO2.pH.one2two.spoon
    ##
2274
    ## Call:
2275
    ## adonis(formula = d.spoon ~ High.CO2.pH.one2two, data = df.spoon)
2276
2277
    ## Permutation: free
       Number of permutations: 999
2279
    ##
2280
       Terms added sequentially (first to last)
    ##
2281
2282
    ##
                            Df SumsOfSqs MeanSqs F.Model
                                                                 R2 Pr(>F)
2283
    ## High.CO2.pH.one2two 1
                                   2.6985 2.69849 9.8466 0.14513 0.001 ***
2284
    ## Residuals
                            58
                                  15.8951 0.27405
                                                           0.85487
2285
                                  18.5936
    ## Total
                            59
                                                           1.00000
    ## ---
2287
    ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
2288
    High.CO2.pH.one2three.spoon <- adonis(d.spoon ~ High.CO2.pH.one2three, data=df.spoon)</pre>
    High.CO2.pH.one2three.spoon
    ##
2289
    ## Call:
2290
    ## adonis(formula = d.spoon ~ High.CO2.pH.one2three, data = df.spoon)
2291
2292
    ## Permutation: free
2293
       Number of permutations: 999
2294
    ##
2295
      Terms added sequentially (first to last)
2296
    ##
2297
                              Df SumsOfSqs MeanSqs F.Model
                                                                   R2 Pr(>F)
2298
    ## High.CO2.pH.one2three
                                     3.1036 3.10359 11.621 0.16692 0.001 ***
                               1
                                    15.4900 0.26707
                                                              0.83308
    ## Residuals
                              58
2300
                                    18.5936
    ## Total
                              59
                                                              1.00000
2301
2302
    ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
    High.CO2.pH.one2four.spoon <- adonis(d.spoon ~ High.CO2.pH.one2four, data=df.spoon)
    High.CO2.pH.one2four.spoon
    ##
2304
    ## Call:
2305
    ## adonis(formula = d.spoon ~ High.CO2.pH.one2four, data = df.spoon)
2306
    ##
2307
    ## Permutation: free
2308
    ## Number of permutations: 999
2310
    ##
       Terms added sequentially (first to last)
2311
    ##
2312
                             Df SumsOfSqs MeanSqs F.Model
                                                                  R2 Pr(>F)
    ## High.CO2.pH.one2four
                                    2.7714 2.7714 10.159 0.14905 0.001 ***
                             1
2314
```

18.5936

59

Total

2271

1.00000

```
## Total
                             59
                                  18.5936
                                                            1.00000
2317
   ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
    High.CO2.Hplus.one2one.spoon <- adonis(d.spoon ~ High.CO2.Hplus.one2one, data=df.spoon)
    High.CO2.Hplus.one2one.spoon
    ##
2319
    ## Call:
2320
    ## adonis(formula = d.spoon ~ High.CO2.Hplus.one2one, data = df.spoon)
2321
    ##
    ## Permutation: free
2323
    ## Number of permutations: 999
2324
    ##
2325
      Terms added sequentially (first to last)
2326
    ##
2327
    ##
                               Df SumsOfSqs MeanSqs F.Model
                                                                   R2 Pr(>F)
2328
    ## High.CO2.Hplus.one2one 1
                                     1.8045 1.80445 6.2337 0.09705 0.001 ***
2329
                                    16.7892 0.28947
   ## Residuals
                               58
                                                              0.90295
2330
   ## Total
                               59
                                    18.5936
                                                              1.00000
2331
2332
   ## ---
   ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
    High.CO2.Hplus.one2two.spoon <- adonis(d.spoon ~ High.CO2.Hplus.one2two, data=df.spoon)
    High.CO2.Hplus.one2two.spoon
2334
    ## Call:
2335
    ## adonis(formula = d.spoon ~ High.CO2.Hplus.one2two, data = df.spoon)
2336
2337
    ## Permutation: free
2338
    ##
      Number of permutations: 999
2339
2340
    ## Terms added sequentially (first to last)
2341
    ##
2342
                               Df SumsOfSqs MeanSqs F.Model
                                                                   R2 Pr(>F)
                                     2.0702 2.07018 7.2667 0.11134
    ## High.CO2.Hplus.one2two
                               1
                                                                      0.001 ***
2344
   ## Residuals
                               58
                                    16.5235 0.28489
                                                              0.88866
    ## Total
                               59
                                    18.5936
                                                              1.00000
2346
    ## ---
   ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
2348
    High.CO2.Hplus.one2three.spoon <- adonis(d.spoon ~ High.CO2.Hplus.one2three, data=df.spoon)
    High.CO2.Hplus.one2three.spoon
2349
   ##
    ## Call:
2350
    ## adonis(formula = d.spoon ~ High.CO2.Hplus.one2three, data = df.spoon)
2352
    ## Permutation: free
      Number of permutations: 999
2354
2355
   ## Terms added sequentially (first to last)
2356
   ##
   ##
                                 Df SumsOfSqs MeanSqs F.Model
                                                                     R2 Pr(>F)
2358
```

58

Residuals

2315

15.8222 0.2728

0.85095

```
## High.CO2.Hplus.one2three 1
                                      1.8918 1.89179 6.5696 0.10174 0.001 ***
2359
   ## Residuals
                                      16.7018 0.28796
                                 58
                                                              0.89826
   ## Total
                                 59
                                     18.5936
                                                              1.00000
2361
   ## ---
   ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
2363
   High.CO2.Hplus.one2four.spoon <- adonis(d.spoon ~ High.CO2.Hplus.one2four, data=df.spoon)
   High.CO2.Hplus.one2four.spoon
   ##
   ## Call:
2365
   ##
      adonis(formula = d.spoon ~ High.CO2.Hplus.one2four, data = df.spoon)
2366
2367
   ## Permutation: free
2368
      Number of permutations: 999
   ##
2369
   ##
2370
      Terms added sequentially (first to last)
   ##
2371
   ##
2372
   ##
                               Df SumsOfSqs MeanSqs F.Model
                                                                  R2 Pr(>F)
2373
   ## High.CO2.Hplus.one2four 1
                                     1.8994 1.89935 6.5988 0.10215 0.001 ***
2374
                                    16.6943 0.28783
   ## Residuals
                               58
                                                             0.89785
2375
   ## Total
                               59
                                    18.5936
                                                             1.00000
2376
  ## ---
2377
   ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
2378
   R.squared <- c(Lab.CO2.pH.one2one.wisc$aov.tab[1,5],
                   Lab.CO2.Hplus.one2one.wisc$aov.tab[1,5],
                   Lab.CO2.pH.one2two.wisc$aov.tab[1,5],
                   Lab.CO2.Hplus.one2two.wisc$aov.tab[1,5],
                   Lab.CO2.pH.one2three.wisc$aov.tab[1,5],
                   Lab.CO2.Hplus.one2three.wisc$aov.tab[1,5],
                   Lab.CO2.pH.one2four.wisc$aov.tab[1,5],
                   Lab.CO2.Hplus.one2four.wisc$aov.tab[1,5],
                   High.CO2.pH.one2one.wisc$aov.tab[1,5],
                   High.CO2.Hplus.one2one.wisc$aov.tab[1,5],
                   High.CO2.pH.one2two.wisc$aov.tab[1,5],
                   High.CO2.Hplus.one2two.wisc$aov.tab[1,5],
                   High.CO2.pH.one2three.wisc$aov.tab[1,5],
                   High.CO2.Hplus.one2three.wisc$aov.tab[1,5],
                   High.CO2.pH.one2four.wisc$aov.tab[1,5],
                   High.CO2.Hplus.one2four.wisc$aov.tab[1,5],
                   Lab.CO2.pH.one2one.spoon$aov.tab[1,5],
                   Lab.CO2.Hplus.one2one.spoon$aov.tab[1,5],
                   Lab.CO2.pH.one2two.spoon$aov.tab[1,5],
                   Lab.CO2.Hplus.one2two.spoon$aov.tab[1,5],
                   Lab.CO2.pH.one2three.spoon$aov.tab[1,5],
                   Lab.CO2.Hplus.one2three.spoon$aov.tab[1,5],
                   Lab.CO2.pH.one2four.spoon$aov.tab[1,5],
                   Lab.CO2.Hplus.one2four.spoon$aov.tab[1,5],
                   High.CO2.pH.one2one.spoon$aov.tab[1,5],
                   High.CO2.Hplus.one2one.spoon$aov.tab[1,5],
                   High.CO2.pH.one2two.spoon$aov.tab[1,5],
                   High.CO2.Hplus.one2two.spoon$aov.tab[1,5],
                   High.CO2.pH.one2three.spoon$aov.tab[1,5],
                   High.CO2.Hplus.one2three.spoon$aov.tab[1,5],
```


2379