

本科生实验报告

课程	名称	电子工程训练(甲)	
姓	名	李丰克	
学	院	求是学院	
专	<u> </u>	自动化(控制)	
学	号	3230105182	
组	号	420-G07	

2024年3月11日

一. 第一部分

1,实验目的和要求

实验目的:初步了解万用电表、电源、信号源、示波器四类常用电子仪器的使用方法。

实验要求:能够按照实验步骤准确获取实验数据,熟练掌握四类电子仪器的使用方法。

2. 主要仪器设备

万用电表、电源、信号源、示波器、电阻若干、电容若干,一个二极管,一个三极管,导线若干,探头两个

3. 实验过程以及结果记录

(1) 万用表的使用练习

①取三个不同色环的电阻,读取电阻标称值、允许偏差,用万用表测量其阻值并记录,计算电阻偏差(设计合适的表格用于记录读取值、测量值及计算值。偏差指相对偏差,用%表示,下同)。

序号	标定阻值	允许偏差	测量值	偏差
1	10kΩ	±1%	9.965 kΩ	-0.35%
2	68 kΩ	±1%	68.73 kΩ	1.07%
3	100 kΩ	±1%	100.63 kΩ	0.63%

②取三个不同电容值的电容, 读取电容的标称值, 用万用表测量其电容并记录, 计算电容偏差。

序号	标称值	测量值	偏差
1	22μF	21.09μF	-4.14%

2	1μF	1.0872µF	8.72%
3	1μF	1.0534µF	5.34%

③取一个二极管,用万用表判断其极性,测量它的正向导通压降,并记录。(将万用表打到"二极管测量/蜂鸣"档位,按下万用表面板上的"SELECT"按钮,选择"二极管测量")。

判断出长管脚为正极, 短管脚为负极。

测量出正向导通压降为 1.8209V

④取一个三极管,用万用表确定它的集电极、基极和发射极, 画出三极管外观图并标注管脚。(将万用表打到 hFE 档测试,如 果测量正确,屏幕上会有相应的 hFE 数值显示)。

(2) 电源与万用表使用练习

①设定电源 CH1、CH2 电压分别为 5V、12V, 电流均为 1A。用 万用表直流电压档测量实际输出电压并记录, 计算电压偏差。

规定电压	测量电压	偏差
5.0V	5.090V	1.8%
12.0V	12.145V	1.2%

②设定电源电压分别为正负 5V, 正负 12V, 用万用表直流电压

档测量并记录

规定电压 (串接)	测量电压	误差
±5.0V	10.182V	1.82%
±12.0V	24.290V	1.21%

③设定电源 CH1 电压为 1V, 限定电流为 0.5A, 用万用表的"2A 直流电流"档测量短路限制电流并记录, 计算设置偏差(电流测量时, 将红表笔插到左边的 2/20A 输入孔, 测量结束恢复到电压/电阻测试位置)。

测量电流为 0.4635A

设置偏差为-7.3%

(3) 信号源与示波器使用练习:

- ①示波器探头接校准信号源,按傻瓜键"Autoset",观察记录波形;使用光标法(按示波器面板上的"Cursor"功能键)读取信号的幅度和周期(或频率)信息,并作相应记录。
- ②调节信号源,使信号源输出幅度为 0.2Vp-p, 频率分别为 10KHz, 100KHz, 1MHz, 10MHz 的正弦波信号。用示波器 CH1 测量信号源的输出,选择触发通道为"CH1",触发模式为 "自动",调节触发电平"LEVEL"使得波形能稳定显示。调节相应 的量程旋钮"VOLTS/DIV",和扫描周期旋钮"TIME/DIV"使得波形显示大小合适,记录设定的电压量程和扫描时间;按测量键 "Measure",记录测量得到的波形的幅度和时间(或频率)参数。

信号源频率	电压量程	扫描时间	幅度	频率
10KHZ	100mV/div	25µs/div	224mV	9.989KHZ
100KHZ	100mV/div	2.5µs/div	216mV	99.31KHZ
1MHZ	100mV/div	250ns/div	212mV	999.4KHZ
10MHZ	100mV/div	25ns/div	196mV	9.901MHZ

③在实验步骤(2)的基础上,改变信号波形:分别为方波、三角波,测量波形的幅度和时间参数并记录。

在实验途中得出方波的频率上限为 5MHZ, 三角波的频率上限 为 500KHZ

示波器频	方形波幅	方形波频	三角波幅	三角波频
率	度	率	度	率
10KHZ	232mV	9.996KHZ	216mV	9.995KHZ
100KHZ	232mV	100.0KHZ	200mV	99.25KHZ
1MHZ	232mV	999.5KHZ	已达上限	已达上限
10MHZ	已达上限	已达上限	已达上限	已达上限

④信号源输出信号频率保持 200KHz 不变, 在实验步骤(2)的基础上改变信号的幅度, 在 0.5Vp-p 与 2Vp-p 之间变化, 步进 0.5Vp-p 用示波器观察信号的变化, 采用光标法分别测量幅度值并做相应的记录, 分别计算测量偏差。

示波器 Vp-p	0.5V	1.0V	1.5V	2.0V
测量幅度	496mV	1.035mV	1.515mV	2.015mV
偏差	-0.8%	3.5%	1.0%	0.75%

二. 第二部分

- 1,实验目的:呼吸灯,幸运转盘,贴片流水灯三个实验电路的调试。
- 2, 主要实验器材:呼吸灯, 幸运转盘, 贴片流水灯, 电源, 示波器。
- 3. 实验过程以及结果记录:
 - (1) 呼吸灯调试:
- ①电源调整到 12V, 电流 0.5A, 连接电源线, 打开电源的输出 使能。
- ②呼吸灯应该能正常工作, 调整呼吸节奏到最快。
- ③示波器测量集成电路 1 脚的波形,示波器采用直流耦合,采用 STOP 使波形停止(频率太低时触发功能失效),光标法测量波形的幅度(Vp-p),周期。
- ④示波器测量集成电路 7 脚的波形的幅度和周期。
- ⑤1 脚和7 脚分别为何种波形?
- ⑥调整电位器 R3, 观察波形周期的变化。

	幅度	周期	波形
1 脚	2.30V	1.3s	三角波
7 脚	4.90V	1.3s	方波

R3 顺时针旋转时, 周期变小, 幅度变小; 逆时针旋转时, 周期变大, 幅度变大, 且有极限值。

(2) 幸运转盘调试:

- ①电源调整到电压:5V, 电流 0.5A, 连接电源线, 打开电源的输出使能。
- ②按一下启动键,幸运转盘应该能正常工作。
- ③按住启动键,示波器测量集成电路 U1 的 3 脚波形,示波器 采用直流耦合,光标法测量波形的幅度 (Vp-p)、周期和负脉 冲宽度。
- ④波器测量集成电路 U2 的任何一个计数输出脚的波形,记录幅度、周期和正脉冲宽度,计算占空比。
- ⑤示波器测量三极管 Q1 发射极电压波形(采用直流耦合),按启动键,发射极电压升高,灯开始闪烁;松开启动键,电压开始下降,当灯刚好停止闪烁时,记录此时的发射极电压。

		波形	幅度	周期	正(负脉冲	占空比	占空比
					宽度)	(理论	(实际
						值)	值)
U1	3	方波	4.56V	9.6ms	52µs(负)	无	无
脚							
U2	任	方波	2.28V	96ms	9.5ms	9.90%	9.92%
意胠					(正)		

发射极电压在此过程中下降了 1.2V

- (3) 贴片流水灯调试:
- ①连接电源+3V;
- ②测试 NE555 的输出的信号 (3 脚) 的幅度和频率;
- ③测量上述信号的上升时间和下降时间;
- ④测试 4017 环形计数器输出波形的周期和脉冲宽度, 计算信号

的占空比, 理论值应该是多少?

⑤测量 Q1 集电极信号周期。

NE5553脚:

幅度	1.35V
频率	28HZ
上升时间	31.50µs
下降时间	31.01µs

4017 计数器

周期	710ms
脉冲宽度	70ms
占空比 (理论)	9.86%
占空比(实际)	9.89%

Q1 周期 710ms

三. 实验心得与收获。

- (1) 万用电表测量二极管时,应将旋钮旋到"二极管测量/蜂鸣" 档位在点击"select"按钮,切换到测量二极管的状态,极性正确 时读数是正向导通压降。
 - (2) 三极管 PNP, NPN 型区别如下图, 两侧管脚相当于图中

有二极管的线, 先将万用电表切换到 电阻档。先固定黑表笔于其中任意一 极, 用另一表笔分别接触未固定两极,

看是否能得出两个较小电阻, 若能,

则此极为基极,且为 PNP 类型;若不能,则更换固定极,再测; 若均不能则换红表笔固定,重复上述步骤直至得出两个较小电 阻,此时此极为基极,且为 NPN 类型。

将基极与任意另一管脚短接,测出基极的表笔接此短接管脚,另一表笔接另一管脚,读出阻值;短接另一管脚,重复步骤,读出阻值;阻值大对应的短接极是 e 发射极,阻值小的是 c 极集电极。

- (3) 电源有两个通道, 右上角按钮可控制右侧屏幕指 CH1 还是 CH3, CH3 固定 5V 输出。调节限定电流时, 应在按 output 之前调节好。
- (4) 电源中间两个按钮可以调节到串接状态, 串接时, 两通道电压相等, 受 CH1 旋钮调节, 但是两通道的限流是独立的。也可以调节到并联状态, 此时可以提供更大的电流,
- (5) 示波器的探头接入时有卡扣。探头上有一按钮可调 x1 或 x10 档,如果选用 x10 档,需在示波器中对应设置(按通道键 加软键盘),如果输入的是高频信号(>5MHZ)必须用 X10 档。
- (6) 示波器读数时要调节 VOLTS/DIV(竖直一格为多少电压)和 TIME/DIV (水平一格为多少时间) 来使波形占屏幕三分之一以上。读数时可用数格子, 光标法, MEASURE 键测量 (使用 measure 时必须关闭光标法)
- (7) 信号源正弦波频率上限 25MHZ, 方波的频率上限为 5MHZ, 三角波的频率上限为 500KHZ。
- (8) 学习了焊接的基本操作并且对具体的实验电路进行调试,对焊接的器件原理有了一定了解。

课程内容设计合理,循序渐进,理论实践结合。