Summary of Week 16 Study

Since I couldn't find the circuit diagram for MyoWare 2.0 online, I temporarily found the circuit diagram for MyoWare 1.0 and planned to study the working principle of the EMG sensor based on that diagram.

Working Circuit Diagram of the EMG Sensor

As shown in the above diagram, we can draw the following conclusions.

• Power circuit: When the muscle sensor is attached to the muscle and detects current changes, electrode C will read a reference current (placed in a position insensitive to myoelectric signals).

- In order to prevent the power supply voltage (type C power supply) from affecting the voltage measured by the reference electrode, C3 is first added to filter out highfrequency noise on the power line.
- An amplifier (48) is used to reduce power supply noise so that it does not affect the reference voltage.
- 16: Electrodes A and B are the electric signals collected on the muscle surface, which are amplified (default 200 times) after differential amplification in the amplifier.

•

- Amplifiers generally require high input impedance (high resistance R1), high gain stability (can provide high gain), and good common mode rejection capabilities (only amplify signals between different input terminals).
- The reference voltage VREF mainly ensures that the signal can be amplified and biased correctly.
- 18: The amplified signal enters the high-pass filter to remove low-frequency signals and potential DC offsets, isolating muscle activity signals.

•

- The capacitor C1 and resistor R2 form the RC part of the filter, and R3 acts as a feedback resistor. The three devices together define the cutoff frequency of the filter.
- R2 and R3 resistors should be the same to ensure a gain of 1.
- After passing through the high-pass filter, the original output is obtained, and then it enters the full-wave rectifier (20).

•

- The three resistors R4, R5, and R6 are used to limit current, set the gain of the amplifier, or provide bias.
- The input amplifier (45) with VREF and the D1 diode form a lead-lag rectifier (precision rectifier), which is used to output the absolute value of the myoelectric signal.
- 22: Represents a differential amplifier that amplifies the difference between the two input signals, which are the reference voltage VREF and the myoelectric signal after full-wave rectification.

•

- R9 and R10 are feedback resistors, usually used to set the gain of the amplifier.
- R7 and R8 are input resistors used to match the input impedance and set the gain.
- 46 is the amplifier responsible for amplifying the difference between the two inputs.
- 24: Is an integrator used to form the envelope of the EMG signal.

- R11, R12, and capacitor C2 together define the time constant of the integrator, affecting the integration speed and filtering characteristics of the signal.
- C2 is responsible for accumulating charge in the integrator to integrate the input signal.
- 47 is an operational amplifier that performs integration while converting voltage changes into time integration to output a continuous signal.
- J1 and R13 are jumpers or adjustable resistors used to adjust the working state or gain of the circuit.
- 28 is a diode used to protect the circuit.

In summary, after measuring the myoelectric signal, this circuit amplifies and differentiates the signal between the reference signal and points A and B, rectifies it, removes offsets, and finally integrates it into an EMG envelope signal.