genomesizeR: An R package for genome size prediction

14 June 2024

Summary

The purpose of this R package is to implement tools that allow the inference of genome size based on taxonomic information and available genome data from the National Center for Biotechnology Information (NCBI).

This R package offers three different methods for genome size prediction: a bayesian linar hierarchical model, a hierarchical linear mixed-effects model, and a weighted mean method.

The methods use:

- A list of queries; a query being a taxon or a list of several taxa.
- A reference database containing all the known genome sizes, built from the NCBI databases, with associated taxa.
- A taxonomic tree structure as built by the NCBI

 ${\tt genomesizeR}$ estimates the genome size of each query, with a confidence interval on the estimation.

Statement of need

Ask Steve?

From the journal to write equations:

Single dollars (\$) are required for inline mathematics e.g. $f(x) = e^{\pi/x}$

Double dollars make self-standing equations:

$$\Theta(x) = \left\{ \begin{array}{l} 0 \text{ if } x < 0 \\ 1 \text{ else} \end{array} \right.$$

You can also use plain LATEX for equations

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(x)e^{i\omega x} dx \tag{1}$$

and refer to Equation 1 from text.

Methods

Bayesian method

A Bayesian linar hierarchical model using the brm function from the brms package is used for each superkingdom (Bacteria, Archeae, Eukaryotes), following the model below:

$$log(G) \sim \mathcal{N}(\mu, \sigma^2) \mu = \mu_0 + \alpha_{genus} \alpha_{genus} \sim \mathcal{N}(\alpha_{family}, \sigma_{genus}^2) \alpha_{family} \sim \mathcal{N}(\alpha_{order}, \sigma_{family}^2) \alpha_{order} \sim \mathcal{N}(\alpha_{class}, \sigma_{genus}^2) \alpha_{genus} \alpha_{genus} \alpha$$

where G is the genome size in the units of 10 Mbp and \mathcal{N}^+ is the normal distribution truncated to positive values.

The estimation process uses Stan's Hamiltonian Monte Carlo algorithm with the U-turn sampler. Credible intervals are obtained using quantiles from the posterior distribution.

Hierarchical method

A hierarchical linear mixed-effects model using the lmer function from the lme4 package, based on the known genome sizes at the genus and family levels as follows:

 $lmer(log(genome_size) \sim (1|family/genus), data)$

A prediction interval is computed using the predictInterval function from the merTools package.

Weighted mean method

The weighted mean method computes the genome size of a query by averaging the known genome sizes of surrounding taxa in the taxonomic tree, with a weighted system where further neighbours have less weight in the computed mean.

The confidence interval is calculated as:

```
standard_error = sqrt(computed_weighted_mean)
Z = 1.96
confidence interval = Z * standard error
```

Implementation

The main steps of all methods are multithreaded on POSIX systems (not Windows) using the ### package(s) (ref(s)).

The R package accepts the common 'taxonomy table' format used by popular packages such as phyloseq (ref) and mothur (ref), and any file or dataframe with a colum containing either NCBI taxids or taxon names as input formats. The output format is a data frame with the same columns as the input, with some added columns providing information about the estimation and the quality of the estimation. The user can also choose a simple output format only containing the estimation information.

Several plotting functions using the ggplot2 package (ref) are also provided to visualise the results.

Very short comparison of the methods?

Example

This example data is a subset of the dataset from (ref).

First, the genome sizes are predicted from the taxa:

```
results = estimate_genome_size(example_input_file, format='csv', sep='\t', match_column='TAX
```

```
# Genome size estimation summary:
#
  8.88889 % estimations achieving required precision
   Min.
         1st Qu.
                 Median
                           Mean
                                3rd Qu.
                                           Max.
 2893119
         5344026 17768591 24126621 42194240 128877284
# Estimation status:
Confidence interval to estimated size ratio > ci_threshold
                                           164
```

Then, the results can be visualized using the plotting functions provided:

```
plotted_df = plot_genome_size_histogram(results)
```

Citations

Citations to entries in paper.bib should be in rMarkdown format.

Figure 1: Histogram of estimated genome sizes for each sample

If you want to cite a software repository URL (e.g. something on GitHub without a preferred citation) then you can do it with the example BibTeX entry below for @fidgit.

For a quick reference, the following citation commands can be used: - Qauthor:2001 -> "Author et al. (2001)" - [Qauthor:2001] -> "(Author et al., 2001)" - [Qauthor1:2001; Qauthor2:2001] -> "(Author1 et al., 2001; Author2 et al., 2002)"

Figures

Figures can be included like this: Caption for example figure. and referenced from text using section .

Figure sizes can be customized by adding an optional second parameter: Caption for example figure.

Acknowledgements

We acknowledge contributions from Sean Husher.

References