Teoria da Computação Linguagens Regulares (Parte 1) Conjuntos e Expressões Regulares

Prof. Jefferson Magalhães de Morais

22 de março de 2021

Conjuntos regulares

- São notações alternativas que representam linguagens regulares
- Conjuntos regulares sobre um alfabeto Σ são linguagens definidas recursivamente da forma
 - $\ \ \, \textbf{0} \ \, \textbf{\emptyset} \ \, \textbf{é} \ \, \textbf{um} \ \, \textbf{conjunto} \ \, \textbf{regular sobre} \, \, \boldsymbol{\Sigma}$
 - 2 $\{\varepsilon\}$ é um conjunto regular sobre Σ

Se X e Y são conjuntos regulares sobre Σ , então também são conjuntos regulares sobre Σ :

- **4** (X)
- \bullet $X \cup Y$
- \bullet $X \cdot Y$, também denotado por XY
- X*

Um subconjunto de Σ^* é um conjunto regular se ele puder ser formulado pela combinação das regras acima

Exemplo 1

• Seja $L=\{0^m1^n\mid m\geq 0, n\geq 0\}$ sobre $\Sigma=\{0,1\}.$ Portanto $L=\{\varepsilon,0,1,00,01,11,\ldots\}$

ullet Considere as linguagens sobre Σ

```
\begin{array}{lll} L_1=\{0\} & \text{onde } L_1 \text{ \'e um conjunto regular} \\ L_2=\{1\} & \text{onde } L_2 \text{ \'e um conjunto regular} \\ L_3=\{0^i \mid i \geq 0\} & \text{onde } L_3=L_1^* \text{ \'e um conjunto regular} \\ L_4=\{1^i \mid i \geq 0\} & \text{onde } L_4=L_2^* \text{ \'e um conjunto regular} \\ L_5=\{0^p1^q \mid p \geq 0, q \geq 0\} & \text{onde } L_5=L_3L_4=L \text{ \'e um conjunto regular} \end{array}
```

Na notação de conjuntos regulares L é da forma $\{0\}^*\{1\}^*$

Exemplo 2

 \bullet A linguagem N formada pelos números naturais decimais é um **conjunto regular** sobre o alfabeto dos algarismos arábicos representada por

$$\{0,1,2,3,4,5,6,7,8,9\}\{0,1,2,3,4,5,6,7,8,9\}^*$$
 Se $D=\{0,1,2,3,4,5,6,7,8,9\}$, então $\mathbb{N}=DD^*$

• O conjunto R dos números reais decimais sem sinal é um conjunto regular sobre $D \cup \{.\}$ representado por

$$DD^*\{.\}D^* \cup D^*\{.\}DD^*$$

Obs.: o conjunto acima exclui a cadeia "." e inclui números iniciando ou terminando com o caractere "." (e.g., 47. ou .315)

Exemplo 3

 O conjunto P dos números em ponto flutuante com exponente (denotado por "E") e sinal opcional ("+" ou "-")

$$\{+,-,\varepsilon\}(DD^*\{.\}D^*\cup D^*\{.\}DD^*)\{E\}\{+,-,\varepsilon\}DD^*$$

Exemplos

- $27 \in N$
- $915.4 \in R$
- $-211.56E+10 \in P$
- Nota-se que $N \subset R \subset P, P \neq R$ e $R \neq N$

Expressões regulares

- A expressão regular é uma alternativa aos conjuntos regulares
- Foi desenvolvida por Stephen Cole Kleene na década de 50
- Também são definidas recursivamente da forma
 - $oldsymbol{0}$ \emptyset é uma expressão regular e denota o conjunto regular \emptyset
 - 2 ε é uma expressão regular e denota o conjunto regular $\{\varepsilon\}$
 - $\textbf{3} \quad \sigma, \forall \sigma \in \Sigma \text{, \'e uma express\~ao regular e denota o conjunto } \\ \{\sigma\}, \forall \sigma \in \Sigma$

Se x e y são expressões regulares sobre Σ que denotam, respectivamente, os conjuntos regulares X e Y, então também são expressões regulares:

- \bullet (x)
- $\mathbf{0}$ $x \cdot y$ ou xy
- $\mathbf{0} x^*$

Expressões regulares

- As expressões regulares eliminam o uso dos símbolos "{" e "}", e substituiu o símbolo "∪" por "|" ou "+"
- Deve-se obedecer as precedências

Precedência	Operador	Representação
Mais alta	Fechamento	χ^*
Intermediária	Concatenação	$x \cdot y$ ou xy
Mais baixa	União	$x \mid y \text{ ou } x + y$

Usa-se parênteses para modificar a precedência localmente

 \bullet É possível abreviar a expressão xx^* por $x^+,$ denotando o conjunto regular correspondente ao fechamento transitivo de X

Exemplos

- A expressão regular $(ab \mid c^*) = ((ab) \mid c^*) = ((ab) \mid (c^*))$ representam o conjunto $\{\varepsilon, ab, c, cc, ccc \ldots\}$
- $\bullet \ a(b \mid c)^* \ \text{representa o conjunto} \ \{a, ab, ac, abc, abb, acc, \ldots\}$
- $(ab \mid c)^*$ representa o conjunto $\{\varepsilon, ab, c, abc, cab, abab, cc, \ldots\}$

• $L=\{0^m1^n\mid m\geq 0, n\geq 0\}$ pode ser reescrita como $((0)^*(1)^*)$ ou 0^*1^* . Para $m\geq 0$ e $n\geq 1$, a expressão correspondente seria $0^*11^*=0^*1^+$

Exemplos: Conjuntos e Expressões Regulares

- $\Sigma = \{a, b, c, d\}$ e os dois subconjuntos $A = \{a\}, B = \{b, c\}$
 - Sentenças que possuem no mínimo um símbolo a

$$\Sigma^* A \Sigma^*$$
 ou $(a \mid b \mid c \mid d)^* a (a \mid b \mid c \mid d)^*$

ullet Sentenças que possuem exatamente dois símbolos a

$$(\Sigma - A)^*A(\Sigma - A)^*A(\Sigma - A)^* \text{ ou } (b \mid c \mid d)^*a(b \mid c \mid d)^*a(b \mid c \mid d)^*$$

 $((\Sigma-A)^*A(\Sigma-A)^*A(\Sigma-A)^*)^* \text{ ou } ((b\mid c\mid d)^*a(b\mid c\mid d)^*a(b\mid c\mid d)^*$

• Sentenças que iniciam com o símbolo a e terminam com o símbolo b ou c

$$A\Sigma^*B$$
 ou $a(a \mid b \mid c \mid d)^*(b \mid c)$

 Sentenças contendo apenas os símbolos a, b, c, com no mínimo um símbolo

• Sentenças que possuem um número par de símbolos a

$$(A \cup B)^+$$
 ou $(a \mid b \mid c)^+$

Leis algébricas das expressões regulares

- Associatividade:
 - União: $(\alpha \mid \beta) \mid \gamma = \alpha \mid (\beta \mid \gamma)$
 - Concatenação: $(\alpha\beta)\gamma = \alpha(\beta\gamma)$
- Comutatividade:
 - União: $\alpha \mid \beta = \beta \mid \alpha$
 - Concatenação: não se aplica
- Elemento neutro:
 - União: $\alpha \mid \emptyset = \emptyset \mid \alpha = \alpha$
 - Concatenação: $\alpha \varepsilon = \varepsilon \alpha = \alpha$
- Distributividade da concatenação sobre a união:
 - União: $\alpha(\beta \mid \gamma) = \alpha\beta \mid \alpha\gamma$
 - Concatenação: $(\beta \mid \gamma)\alpha = \beta\alpha \mid \gamma\alpha$

Relações de identidade para x, y, z

- $\bullet x \mid y = y \mid x$
- $\bullet \ x \mid (y \mid z) = (x \mid y) \mid z$
- $\bullet \ x(yz) = (xy)z$
- $\bullet \ x(y \mid z) = xy \mid xz$
- \bullet $(x \mid y)z = xz \mid yz$
- $x\varepsilon = \varepsilon x = x$
- $x\emptyset = \emptyset x = \emptyset$
- $\varepsilon \emptyset = \emptyset \varepsilon = \emptyset$
- $x^* = x | x^*$
- $(x^*)^* = x^*$
- \bullet $x \mid x = x$
- $\bullet x \mid \emptyset = x$
- $(xy)^*x = x(yx)^*$

Exercícios

- Obter expressões regulares que representam as linguagens sobre o alfabeto $\Sigma=\{a,b\}$ cujas sentenças estão descritas a seguir
 - ullet Começam com aa
 - Não começam com aa
 - Contém a subcadeia aabbb
 - Possuem comprimento maior ou igual a 3
 - Possuem comprimento par
 - Possuem comprimento ímpar
 - Possuem comprimento múltiplo de 4