

CP8319/CPS824 Lecture 7

Instructor: Nariman Farsad

* Some of the slides in this deck are adopted from courses offered David Silver, Emma Brunskill, and Sergey Levine.

Today's Agenda

1. Last Lecture Review

2. Model Free Policy Evaluation (Monte Carlo)

3. Model Free Policy Evaluation (Temporal Difference)

Policy Iteration

Set i=0Initialize $\pi_0(s)$ randomly for all states sWhile i=0 or $\parallel \pi_i - \pi_{i-1} \parallel_1 > 0$ (L1-norm, measures if the policy changed for any state):

- $v^{\pi_i} \leftarrow \text{MDP}$ value function policy evaluation of π_i (see slide 6 for formula)
- $\pi_{i+1} \leftarrow \text{Policy improvement}$
- i = i + 1

Policy evaluation Estimate v_{π} Iterative policy evaluation Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

MDP Policy Evaluation: Iterative Algorithm

Initialize $v_0(s) = 0$ for all s

For k = 1 until convergence:

For all $s \in S$:

For all
$$S \in \mathcal{S}$$
:
$$v_{k+1}^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P_{s,s'}^{a} v_k^{\pi}(s') \right) \xrightarrow{\text{Action Chosen Randomly, e.g.:}} \bullet \text{ Flip a coin} \bullet \text{ Go right if head} \bullet \text{ Go left if tail}$$

$$v_{k+1}^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} P_{s,s'}^{\pi(s)} v_k^{\pi}(s') \longrightarrow \text{One action is performed deterministically:} \\ \bullet \text{ Always go left}$$

This is known as Bellman expectation backup

MDP Policy Evaluation: Assignment 1 Q2

Reward can be defined as:

$$R(s,s',a) = R(s,s',\pi(s))$$

```
policy_evaluation(P, mS, mA, policy, gamma=0.9, tol=1e-3):
"""Evaluate the value function from a given policy.
Parameters
    defined at beginning of file
policy: np.array[nS]
    The policy to evaluate. Maps states to actions.
        max |value_function(s) - prev_value_function(s)| < tol</pre>
Returns
    The value function of the given policy, where value_function[s] is
    the value of state s
value_function = np.zeros(nS)
print(P[1][policy[1]])
```

```
Initialize v_0(s) = 0 for all s
For k = 1 until convergence:
For all s \in S:
```

$$v_{k+1}^{\pi}(s) = \sum_{s' \in \mathcal{S}} P_{s,s'}^{\pi(s)} [R(s,s',\pi(s)) + \gamma v_k^{\pi}(s')]$$

Deterministic

[(1.0, 0, 0.0, False)]

Stochastic

Policy Improvement

Compute state-action value of a policy π_i For $s \in \mathcal{S}$ and $a \in \mathcal{A}$:

•
$$Q^{\pi_i}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P^a_{s,s'} v^{\pi_i}(s')$$

Compute new policy π_{i+1} , for all $s \in \mathcal{S}$

•
$$\pi_{i+1}(s) = \arg \max_{a \in \mathcal{A}} Q^{\pi_i}(s, a)$$

With probability 1 choose an action that maximizes Q (i.e., a deterministic policy)

Value Iteration

- Set k = 1
- Initialize $v_0(s) = 0$ for all states s
- Loop until [finite horizon, convergence]:
 - For each state s

$$v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{s,s'}^a v_k(s') \right)$$

View as Bellman backup on value function

$$v_{k+1} = \mathfrak{B}v_k$$

■ To extract optimal policy if can act for k + 1 more steps,

$$\pi(s) = \arg\max_{a \in \mathcal{A}} \left(R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{s, s'}^{a} v_{k+1}(s') \right)$$

Today's Agenda

1. Last Lecture Review

2. Model Free Policy Evaluation (Monte Carlo)

3. Model Free Policy Evaluation (Temporal Difference)

What we have learned up to now?

So far we have solved a *known* MDP, i.e., dynamics and the reward function are known

Moving forward:

- Estimate the value function of an unknown MDP
- Optimize the value function of an unknown MDP

Monte-Carlo Reinforcement Learning

- MC methods learn directly from episodes of experience
- MC is model-free: no knowledge of MDP transitions / rewards
 - The agent must still be able to act and experiment in environment
- MC learns from complete episodes
- MC idea: value = mean return ≈ average return across many episodes
- Caveat: can only apply MC to episodic MDPs
 - All episodes must terminate

Monte-Carlo (On) Policy Evaluation

- Aim: estimate $v^{\pi}(s)$ given episodes generated under policy π
 - e.g., s_1 , a_1 , r_1 , s_2 , a_2 , r_2 , ... where the actions are sampled from π
- $G_t = rt + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$ under policy π
- $v^{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$
- Simple: Estimates expectation by empirical average (given episodes sampled from policy of interest)
- Updates V estimate using sample of return to approximate the expectation
- Does not assume Markov process
- Converges to true value under some (generally mild) assumptions

First Visit MC (On) Policy Evaluation

Initialize N(s) = 0, $G(s) = 0 \ \forall s \in S$ Loop:

- Sample episode $i: s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t}=r_{i,t}+\gamma r_{i,t+1}+\gamma^2 r_{i,t+2}+\cdots+\gamma^{T-1} r_{i,T_i}$ as return from time step t onwards in i-th episode
- For each state *s* visited in episode *i*:
 - For first time t that state s is visited in episode i:
 - Increment counter of total visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $v^{\pi}(s) = G(s)/N(s)$

Every-Visit MC (On) Policy Evaluation

Initialize N(s) = 0, $G(s) = 0 \ \forall s \in S$

Loop:

- Sample episode $i: s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t}=r_{i,t}+\gamma r_{i,t+1}+\gamma^2 r_{i,t+2}+\cdots+\gamma^{T-1} r_{i,T_i}$ as return from time step t onwards in i-th episode
- For each state *s* visited in episode *i*:
 - For every time t that state s is visited in episode i:
 - Increment counter of total visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $v^{\pi}(s) = G(s)/N(s)$

Example: A Robot

s_1	S_2	S_3	S_4	<i>S</i> ₅	s ₆	S ₇

- R = [100000 + 10] for any action
- Sample episode = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{terminal})$
- Let $\gamma = 1$

First visit MC estimate of v of each state after this episode?

Every visit MC estimates of s_2 ?

Example: A Robot

s_1	S_2	S_3	S_4	<i>S</i> ₅	s ₆	S ₇

- R = [100000 + 10] for any action
- Sample episode = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{terminal})$
- Let $\gamma = 0.9$ practice on your own

First visit MC estimate of v of each state after this episode?

Every visit MC estimates of s_2 ?

Example: Blackjack

- States (200 of them): Current sum (12-21)
 - Dealer's showing card (ace-10)
 - Do I have a "useable" ace? (yes-no)
- Action stick: Stop receiving cards (and terminate)
- Action twist: Take another card (no replacement)
- Reward for stick:
 - +1 if sum of cards > sum of dealer cards
 - 0 if sum of cards = sum of dealer cards
 - -1 if sum of cards < sum of dealer cards
- Reward for twist:
 - -1 if sum of cards > 21 (and terminate)
 - 0 otherwise
- Transitions: automatically twist if sum of cards < 12

Example: Blackjack

Policy: stick if sum of cards \geq 20, otherwise twist

Incremental Mean Calculation

The mean $\mu_1, \mu_2, ...$ of a sequence $x_1, x_2, ...$ can be computed incrementally,

$$\mu_{k} = \frac{1}{k} \sum_{j=1}^{k} x_{j}$$

$$= \frac{1}{k} \left(x_{k} + \sum_{j=1}^{k-1} x_{j} \right)$$

$$= \frac{1}{k} \left(x_{k} + (k-1)\mu_{k-1} \right)$$

$$= \mu_{k-1} + \frac{1}{k} \left(x_{k} - \mu_{k-1} \right)$$

Incremental MC (On) Policy Evaluation

Initialize N(s) = 0, $G(s) = 0 \ \forall s \in S$

Loop:

- Sample episode $i: s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t}=r_{i,t}+\gamma r_{i,t+1}+\gamma^2 r_{i,t+2}+\cdots+\gamma^{T-1} r_{i,T_i}$ as return from time step t onwards in i-th episode
- For each state *s* visited in episode *i*:
 - For every time *t* that state *s* is visited in episode *i*:
 - Increment counter of total visits: N(s) = N(s) + 1
 - Update estimate $v^{\pi}(s) = v^{\pi}(s) + \frac{1}{N(s)}(G_{i,t} v^{\pi}(s))$

Incremental MC (On) Policy Evaluation

Initialize N(s) = 0, $G(s) = 0 \ \forall s \in S$

Loop:

- Sample episode $i: s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t}=r_{i,t}+\gamma r_{i,t+1}+\gamma^2 r_{i,t+2}+\cdots+\gamma^{T-1} r_{i,T_i}$ as return from time step t onwards in i-th episode
- For each state s visited in episode i:
 - For every time *t* that state *s* is visited in episode *i*:
 - Increment counter of total visits: N(s) = N(s) + 1
 - Update estimate $v^{\pi}(s) = v^{\pi}(s) + \alpha(G_{i,t} v^{\pi}(s))$
- $\alpha = \frac{1}{N(s)}$: Identical to every visit MC
- $\alpha > \frac{1}{N(s)}$: forget older data, helpful for non-stationary domains

MC Summary

- Generally high variance estimator
 - Reducing variance can require a lot of data
 - In cases where data is very hard or expensive to acquire, or the stakes are high, MC may be impractical
- Requires episodic settings
 - Episode must end before data from episode can be used to update v

Today's Agenda

1. Last Lecture Review

2. Model Free Policy Evaluation (Monte Carlo)

3. Model Free Policy Evaluation (Temporal Difference)

Temporal-Difference (TD) Learning

- TD methods learn directly from episodes of experience
- TD is *model-free*: no knowledge of MDP transitions / rewards
- TD learns from <u>incomplete</u> episodes, by <u>bootstrapping</u>
- TD updates a guess towards a guess

TD Policy Evaluation

- Aim: estimate $v^{\pi}(s)$ given episodes generated under policy π
- $G_t = rt + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$ under policy π
- $v^{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$
- Recall Bellman operator (if know MDP models):

$$\mathfrak{B}^{\pi}v(s) = R(s,\pi(s)) + \gamma \sum_{s' \in \mathcal{S}} P_{s,s'}^{\pi(s)}v(s')$$

In incremental every-visit MC, update estimate using:

$$v^{\pi}(s_t) = v^{\pi}(s_t) + \alpha(G_{i,t} - v^{\pi}(s_t))$$

• Insight: have an estimate of v, use to estimate expected return

$$v^{\pi}(s_t) = v^{\pi}(s_t) + \alpha([r_t + \gamma v^{\pi}(s_{t+1})] - v^{\pi}(s_t))$$

TD(0) Policy Evaluation

- Aim: estimate $v^{\pi}(s)$ given episodes generated under policy π
- $G_t = rt + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$ under policy π
- $v^{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$
- Simplest temporal-difference learning algorithm: TD(0)
 - Update value $v^{\pi}(s_t)$ toward estimated return $r_t + \gamma v^{\pi}(s_{t+1})$

$$v^{\pi}(s_t) = v^{\pi}(s_t) + \alpha([r_t + \gamma v^{\pi}(s_{t+1})] - v^{\pi}(s_t))$$

- $r_t + \gamma v^{\pi}(s_{t+1})$ is called the <u>TD target</u>
- $\delta_t = r_t + \gamma v^{\pi}(s_{t+1}) v^{\pi}(s_t)$ is called the <u>TD error</u>
- Can immediately update value estimate after (s, a, r, s') tuple
- Don't need episodic setting

TD(0) Policy Evaluation Algorithm

```
Input: \alpha
Initialize v^{\pi}(s) = 0, \forall s \in \mathcal{S}
Loop
```

- Sample tuple (s_t, a_t, r_t, s_{t+1})
- $v^{\pi}(s_t) = v^{\pi}(s_t) + \alpha([r_t + \gamma v^{\pi}(s_{t+1})] v^{\pi}(s_t))$

TD(0) Policy Evaluation Algorithm Example

```
Input: \alpha
Initialize v^{\pi}(s) = 0, \forall s \in \mathcal{S}
Loop
```

- Sample tuple (s_t, a_t, r_t, s_{t+1})
- $v^{\pi}(s_t) = v^{\pi}(s_t) + \alpha([r_t + \gamma v^{\pi}(s_{t+1})] v^{\pi}(s_t))$

s_1	s_2	s_3	S_4	s_5	s ₆	S ₇

- R = [100000 + 10] for any action
- $\pi(s) = a_1 \, \forall s, \gamma = 1$. Any action from s1 and s7 terminates episode
- Sample episode = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{terminal})$
- First/every visit MC estimate of v of each state? [1,1,1,0,0,0,0]
- TD estimate of all states (init at 0) with $\alpha = 1$?

Next time... Model free control