Copyright 2012 Christopher A. Jones

UNCONSTRAINED OPTIMIZATION: THEORY AND APPLICATIONS: PART ONE

National Institute of Aerospace Teaching and Learning Lab (NIATLL)

National Institute of Aerospace Teaching and Learning Lab

- Objectives
 - Prepare NIA students for teaching-oriented career paths
 - Facilitate interdisciplinary collaboration via sharing of research skills and knowledge
 - Provide a platform for testing experimental teaching methods
 - Strengthen the graduate experience at the NIA

Optimization—Background

- Optimization encompasses the desire to find the best system, approach, or solution to a problem
- In mathematics, it represents finding the minimum or maximum of a function
- In engineering, it is the search for the design which best meets some figure(s) of merit within the constraints of a challenge

Optimization--Concepts

- For most deterministic methods, optimization consists of a looping algorithm repeated until some stopping criteria is reached
- Each iteration of the loop moves closer to the optimum
- Many methods use information from previous iterations to inform the actions in the next iteration
- □ The loop is generally stopped when some convergence criteria is met, such as the change in result between iterations being sufficiently small 2012 Christopher A. Jones

1D Optimization—Derivative Method

- For continuous, differentiable functions of one variable
 - y = f(x)
 - \Box dy/dx = f'(x)
 - Set dy/dx = 0 and solve for x; call this x*
 - $y_{\text{optimum}} = f(x^*)$

Example: Polynomial

$$y = ax^2 + bx + c$$

$$dy/dx = 2ax + b = 0$$

$$x^* = -b/2a$$

- □ Golden ratio $\varphi = \frac{1 + \sqrt{5}}{2} \approx 1.618$
- Golden section
 - Searches a bounded part of a function
 - Reduces range by a fixed fraction
 - Can deal with noncontinuous functions
 - Has a known rate of convergence

$$\frac{a+b}{a} = \frac{a}{b} = \varphi$$

- Select initial bounds x_1 and x_2 , and compute $F(x_1)$ and $F(x_2)$
- Initialize x_3 and x_4 using previous formulae, and compute $F(x_3)$ and $F(x_4)$
- Based on required tolerance ε, determine total number of iterations N; initialize counter K = 3

4. Loop while K < N:

- 1. If $F(x_3) > F(x_4)$
 - 1. $X_1 \leftarrow X_3$
 - 2. $F(x_1) \leftarrow F(x_3)$
 - 3. $X_3 \leftarrow X_4$
 - 4. $F(x_3) \leftarrow F(x_4)$
 - 5. $x_4 \leftarrow tx_1 + (1-t)x_2$
 - 6. Compute $F(x_4)$
 - 7. $K \leftarrow K+1$

2. Else

- 1. $X_2 \leftarrow X_4$
- 2. $F(x_2) \leftarrow F(x_4)$
- 3. $X_4 \leftarrow X_3$
- 4. $F(x_4) \leftarrow F(x_3)$
- 5. $x_3 \leftarrow (1-t)x_1 + tx_2$
- 6. Compute $F(x_3)$
- 7. K ← K+1

Multi-dimensional Optimization

- y = f(x); x is a vector of inputs
- More complex, with no direct analogue to derivative method
- Three classes of approaches
 - Zero-order: No derivative/gradient information available
 - First-order: Gradient information (analytic or numerical)
 - Second-order: Hessian (second derivative) information

Random Approaches

- Most inefficient, but easiest to implement
- Monte Carlo methods
 - Sample from distributions for each input variable and evaluate f(x)
 - Select optimal result from list
- Simple random search
 - Randomly select values for each of xi between lower and upper bounds
 - Evaluate f(x), keep if better than current best f(x), repeat
 - Continue until maximum number of iterations reached Copyright 2012 Christopher A. Jones

Deterministic Optimization

- □ General equation: $\mathbf{X}^{q} = \mathbf{X}^{q-1} + \alpha^{*}\mathbf{S}^{q}$
 - Xq = New point to evaluate
 - **X**^{q-1} = Previous point to evaluate
 - α^* = Scalar governing step size
 - S^q = Search direction
 - q = count of current iteration
- Optimization strategies consist of choosing the methods to pick α* (what line search to use) and Sq (how to determine what direction to search)

Powell's Method

Powell's Method

- Select an initial point \mathbf{x}^0 (vector of length n)
- Perform a line search sequentially in each of n unit directions (i.e. [1,0] followed by [0,1]); store each direction as a column in n-by-n matrix H
- Determine the conjugate direction S^{n+1} by computing $\mathbf{x}^n \mathbf{x}^0$ and performing a line search to find \mathbf{x}^{n+1}
- Set \mathbf{x}^0 equal to \mathbf{x}^{n+1} and append \mathbf{S}^{n+1} to the right side of \mathbf{H} , then delete the leftmost column of \mathbf{H}
- 5. Repeat steps 2 4 until convergence is met

Powell Pseudo-code from MATLAB

- Initialize x₀, y, and n-by-n identity matrix H
- Outer Loop (while outer counter < max iterations)
 - 1. Set q = 1
 - 2. Inner Loop (for q = 1 to n)
 - 1. Line search with Golden Section in direction **H**(:,q)
 - 2. $x = x + \alpha^* H(:,q)$
 - 3. $S_{\text{new}} = x y$
 - 4. Line search with Golden Section in direction **S**_{new}
 - Check convergence, break if abs(norm(S_{new})) < tolerance
 - 6. Append S_{new} to H and delete H(:,1)