Statistical Methodologyfor Software Engineering

Hadas Lapid, PhD

Contents

- 1-sided test recap
- 2-sided hypothesis testing
- Goodness of fit Chi-squared test
- theory
- example

1-sided Z test

1-sided t-test

In case the population s.d., σ , is unknown – use t(df) distribution

t-statistic = 2.3

 $P_v = 0.0188$

 $\mathbf{t_{0.95}} = 1.75$ 2.3 > 1.75

→ Decide H₁

t-statistic is the t value associated with the P v area derived from \overline{x}

2-Sided hypothesis testing

 Nonspecific directional hypothesis:

$$H_0$$
: $\mu = 3$
 H_1 : $\mu \neq 3$

Rejection region includes
 2-sided extremes

$$|\bar{x} - \mu| > Z_{1 - \frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

$$X_{c} = \mu \pm Z_{1 - \frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

• For a given \bar{x} , p-value is the sum of the 2-tailed errors.

One-sample z/t-test summary

- When population sd (σ) is unknown:
- use sample sd, S, and the **t distribution** with df=n-1.
- such hypothesis test for μ is called **One-sided t-test**
- $t(P = P_v)$ is called the **test statistic**
- **2-sided test (z or t)** for μ at significance level α is equivalent to confidence interval at 1- α confidence level

Goodness of fit-motivation

Q: Is the sample distribution the same as the population one?

Canadian population blood types distribution

	Expected (%)
0	46%
Α	42%
В	9%
AB	3%

Sample blood types distribution (n=465)

		Expected (%)		
0	177	38%		
Α	187	40%		
В	74	16%		
AB	27	6%		

Pearson's chi-squared test

Based on the central limit theorem,

Supposed n observations classified in k mutually exclusive groups: $x_i \in \{x_1, x_2 \dots x_k\}$

 H_0 : $m_i = n \cdot P_i \ \forall \ i$ (m_i observations for the *i*th class with probability P_i)

 H_1 : $m_i \neq n \cdot P_i \; \forall \; i$

$$\sum_{i=1}^{K} P_i = 1$$

$$n = \sum_{i=1}^{k} m_i = n \cdot \sum_{i=1}^{k} P_i = \sum_{i=1}^{k} x_i$$

Define X² (the sum of squared errors)

$$X^{2} = \sum_{i=1}^{k} \frac{(Observed - Expected)^{2}}{Expected} = \sum_{i=1}^{k} \frac{(x_{i} - m_{i})^{2}}{m_{i}} = \sum_{i=1}^{k} \frac{x_{i}^{2}}{m_{i}} - n$$

Under H_0 , as $n \to \infty$, x^2 distributes as χ^2 (chi-squared)

Calculating chi-square degrees of freedom

	Canadian distribution	Sample distribution
О	46%	38%
Α	42%	40%
В	9%	16%
AB	3%	6%

df = (number of groups-1) X (number of alternative distributions-1) = $(4-1) \times (2-1) = 3$

Chi-squared distributions

Chi-squared for df=1 critical values

Chi-squared test – numeric example

n=465	P Expected (%)	m _i (counts expected)	P Observed (%)	X _i (counts observed)	χ²= (Observed-Expected)² Expected
0	46%	0.46*465=213.9	38%	177	$(177 - 213.9)^2 / 213.9 = 6.366$
Α	42%	0.42*465=195.3	40%	187	$(187 - 195.3)^2 / 195.3 = 0.353$
В	9%	0.09*465=41.85	16%	74	$(74 - 41.85)^2 / 41.85 = 24.698$
AB	3%	0.03*465=13.95	6%	27	(27 - 13.95)2 / 13.95 = 12.208
SUM	100%	465	100%	465	43.625

$$\alpha$$
=0.05
 $\chi_c^2 = X^2(0.95,df=3)$
= qchisq(0.95,df=3) = 7.815

Alternatively, chisq.test(x,p=p_exp)

$$X^2$$
(observed) = 43.625 > χ_c^2

$$P_V = pchisq(43.625,df=3,lower.tail=FALSE)$$

$$\rightarrow$$
 Reject H₀