Preserving Properties via Fooling Analysis Algorithms

ullet We want to sample random variables ${f e}_1, \ldots, {f e}_n$ using a small amount of randomness while preserving

ullet Consider the simple algorithm parameterized by x

(

 \bullet $S \leftarrow$

• For i = 1, ..., n:

• $s \leftarrow \max(s, |x_i| \cdot g(r_i)^{-1/p})$

Preserve the distribution of the output of this small space algorithm

 $\max(\mathbf{e}_1^{-1/p} | x_1 |, ..., \mathbf{e}_n^{-1/p} | x_n |) \equiv \mathbf{e}^{-1/p} F_p^{1/p}$

Close in TV distance suffices

If r_i is a block of uniform random bits, $g(\mathbf{r}_i)$ has exponential distribution.

Preserving Properties via Fooling Analysis Algorithms

• We want to sample random variables ${\bf e}_1, ..., {\bf e}_n$ using a small amount of randomness while preserving

$$\max(\mathbf{e}_1^{-1/p} | x_1 |, ..., \mathbf{e}_n^{-1/p} | x_n |) \equiv \mathbf{e}^{-1/p} F_p^{1/p}$$

- Consider the simple algorithm parameterized by x
 - $s \leftarrow 0$
 - For i = 1, ..., n:

•
$$s \leftarrow \max(s, |x_i| \cdot g(r_i)^{-1/p})$$

If r_i is a block of uniform random bits, $g(r_i)$ has exponential distribution.

Preserve the distribution of the output of this small space algorithm

Derandomizing using Nisan's PRG