SIOP Machine Learning Competition

SIOP ANNUAL CONFERENCE

BOSTON and ONLINE • April 19-22, 2023

Presenter: Mustafa Akben, Ph.D.

Stage 2

Overall Producer

Stage 5

- Stage 1 Data Cleaning
- Stage 2 Model Exploration
- Stage 3 Feature Engineering
- Stage 4 Model Building
- Stage 5 Final Submission

Stage 1 – Data Cleaning: Dirty Data

- Understanding Data
- A lot of NA's
- Use them for advantages Missingness based cluster analysis to identify the differences in data
- Two different assessment center simulations with three different player names: Jamie Pace, Cary Stevens, and Cory Manning

Jamie Pace

Cory Manning

Carry Stevens

Stage 1 – Data Cleaning: Dirty Data

- Correct the whitespace issues (Good or bad?)
- Extract and create six new columns from the final exercise (meta-reflective parts of the work sample)
- Regex based data extraction
- Missing ratings imputed with K-nn

Stage II: Model Architecture Exploration

- Deep learning with pre-trained (Transfer learning)
 - SBERT T5 Universal Encoder
 - Initial score: .38 .40
- Various Deep Learning Model Architectures
 - Self-variables selection network
 - Gated linear units
 - CONV1D Networks
 - LSTM
 - Transformers
- Drawbacks
 - Data Size
 - Very Complex for this small data
- Solutions
 - Add regularizations (Drop out layers, Alpha Drop-outs, or L1-L2)
 - Schedule learning rates
 - Generate Syntactic data with back-translation, added nose, swap noise, T5-based paraphrase model

Stage II: Model Architecture Exploration

- Bidirectional Encoder Representations from Transformers (BERT)
 - Train a BERT model with a large corpus including the corpus we have
 - HuffPost + CNBC Data + the competition data
- Masked-language model with TPU
- Use the fined-tuned model's embeddings for the down streamed task
- Results: ~.41
- Drawbacks
 - Computational Heavy
 - Complicated and Complex
- Solution
 - Increase the dataset size

Stage 3

Stage III: Feature Engineering

- INSTRUCTION embeddings for semantic meaning
- Bag-of-words with N-grams for each columns for key words
- Text complexity and text statistics such as perplexity, rare word counts, SMOG scores or other text readability scores for each columns

Dimension: (N Observations, 30, 25 000)

Curse of Dimensionality : N < p

Semantic
Embeddings
- Average of
Embeds over
Dimensions

Diffusion
Map
Embeddings

Dimension: (N Observations, 2000~)

Jta

Stage IV: Model Building

Multiple Ensembled model for each ratings

- K-fold cross validation (k = 15)
 - Validation variation is very large

Stage 4

• Select K-folds based on energy distance

$$D^2(F,G) = 2 \, \mathrm{E} \, \|X - Y\| - \mathrm{E} \, \|X - X'\| - \mathrm{E} \, \|Y - Y'\| \geq 0,$$

Stage IV: Model Building

- Trained with various model with H2O in Python
 - XGBoost, GBM, GLM, Random Forest, Deep Learning
 - 100 Different Model 4 to 5 Hr Training
 - Ensembled scores calculated with penalized linear models such as Elastic Net
 - Combined the top 3 ensembled model as a simple average voting schema based on the cross-validated r^2 value
 - Development Phase Score : .51

Stage 4

Stage V: Submission

- Test data processed in the same way
- Due to the birth of my first child, I can only submit 4 out of 10 test submissions

- Issues
 - Time management
- Solution
 - Find good collaborators to work with

Lesson Learned

- Small Data = Feature Enginnering
- Semantic, Structure, and Complexity of Text
- Dimensionality Reduction with Diffusion Map – Preserves the local manifold geometry
- Time Management and Collaboration

Thank you for your attention!

Mustafa Akben, Ph.D. makben@elon.edu

