Computer Networks

Signal Encoding Techniques (Digital to Analog)

Amitangshu Pal
Computer Science and Engineering
IIT Kanpur

Digital Data Analog Signals

Modulation Techniques

Amplitude Shift Keying

- Encode 0/1 by different carrier amplitudes
 - Usually have one amplitude zero

$$s(t) = \begin{cases} A_1 \cos(2\pi f_c t) & \text{binary 1} \\ A_2 \cos(2\pi f_c t) & \text{binary 0} \end{cases}$$

$$= \begin{cases} A \cos(2\pi f_c t) & \text{binary 1} \\ 0 & \text{binary 0} \end{cases}$$

Amplitude Shift Keying

- Used for:
 - Up to 1200bps on voice grade lines
 - Optical fiber

Frequency Shift Keying

- Most common is binary FSK (BFSK)
- Two binary values represented by two different frequencies

$$s(t) = \begin{cases} A\cos(2\pi f_1 t) & \text{binary 1} \\ A\cos(2\pi f_2 t) & \text{binary 0} \end{cases}$$

MFSK:

$$f_i = f_c + (2i - 1 - M)f_d$$

Frequency Shift Keying

- Most common is binary FSK (BFSK)
- Two binary values represented by two different frequencies
- Used in:
 - Upto 1200 bps on voice-graded lines
 - High frequency radio
 - LANs that use coaxial cable

Phase Shift Keying

Phase of carrier signal is shifted to represent data

$$s(t) = \begin{cases} A\cos(2\pi f_c t + \pi) & \text{binary 1} \\ A\cos(2\pi f_c t) & \text{binary 0} \end{cases}$$

Two phases represent two binary digits

Differential PSK

Phase shifted relative to previous transmission rather than some

Binary Phase Shift Keying

$$s(t) = \begin{cases} A\cos(2\pi f_c t + \pi) & \text{binary 1} \\ A\cos(2\pi f_c t) & \text{binary 0} \end{cases}$$

Quadrature Phase Shift Keying

$$s(t) = \frac{1}{\sqrt{2}}I(t)\cos 2\pi f_c t - \frac{1}{\sqrt{2}}Q(t)\sin 2\pi f_c t$$

Quadrature Phase Shift Keying

Constellation Diagram

Constellation Diagram

Tribit	Phase		
000	0		
001	45		
010	90		
011	135		
100	180		
101	225		
110	270		
111	315		

Tribits (3 bits)

Constellation diagram

Quadrature Amplitude Modulation

 QAM used on asymmetric digital subscriber line (ADSL) and some wireless

Quadrature amplitude modulation is a combination of ASK and PSK.

Quadrature Amplitude Modulation

Quadrature amplitude modulation is a combination of ASK and PSK.

Quadrature Amplitude Modulation

Quadrature amplitude modulation is a combination of ASK and PSK.

Bit and Baud Rate Comparison

Modulation	Units	Bits/Ba ud	Baud rate	Bit Rate
ASK, FSK, 2-PSK	Bit	1	N	N
4-PSK, 4-QAM	Dibit	2	N	2N
8-PSK, 8-QAM	Tribit	3	N	3N
16-QAM	Quadbit	4	N	4N
32-QAM	Pentabit	5	N	5N
64-QAM	Hexabit	6	N	6N
128-QAM	Septabit	7	N	7N
256-QAM	Octabit	8	N	8N

THANK YOU

QUESTIONS???