

Generation of Bimolecular 3D Complex

Structures with RDKit

Christoph Bauer, RDKit UGM Hamburg, Thursday September 26, 2019

Atomic Descriptors in Practice

Site of metabolism

Site of reaction

Bupropion

Site of reaction? (P450 mediated)

NH₂

Quantum Chemistry Applications

SmartCYP

Pattern matching – precomputed ΔE^{\ddagger}

Ames mutagenicity

$$\Delta \Delta E = E_{ArNH^+} + E_{PhNH_2} - E_{ArNH_2} - E_{PhNH^+}$$

nitrenium hypothesis Bentzien J. et al J. Chem. Inf. Model. **2010**, *50*, 274-297.

Linking Quantum Chemistry and ML

-2.3 kJ mol-1

$$f_* \sim N \left(0 \begin{bmatrix} K(X,X) & K(X,X_*) \\ K(X_*,X) & K(X_*X_*) \end{bmatrix} \right)$$
 For example: H-bonding strength

$$\frac{K(X,X_*)}{K(X_*X_*)}$$

(Gaussian Process Regression)

Bauer, C. A.; Schneider, G.; Göller, A. H. *J. Cheminform.* **2019**, *11*, 59.

But How Do We Get the QC Data?

1st example: Hydrogen bonds

Challenges:

- Intermolecular interaction modeling
- Conformations
- → We need a robust and consistent generation of 3D coordinates.

Prerequisites (Hydrogen Bond Example)

How are my 3D generation scripts constructed?

- 1. 3D coordinates: ETKDG method
- 2. Explicit hydrogens (usually kékulized structures!)
- 3. Charge = 0 in this case, but this is extendable at will

Riniker, S.; Landrum G. A. *J. Chem. Inf. Model.* **2015**, *55*, 2562–2574.

Atom Selection by Substructure Matching 1

```
Acceptorfunctions = {
'carbonyl': Chem.MolFromSmiles('C=O'),
'pyridine': Chem.MolFromSmiles('c1ccncc1'),
(\ldots)
Donorfunctions = {
'alcohol': Chem.MolFromSmiles('C[OH]'),
'pyrrole': Chem.MolFromSmiles('C1=CNC=C1'),
(\ldots)
→ Sets up a functional group search in HB donor/acceptor space
```


Atom Selection by Substructure Matching 2

```
# iterate over functional groups:
For function in donorfunctions:
  # get substructure matches
  (\ldots)
  for match in matches:
      # get atoms and assign the atom index
        (\ldots)
      for atom in atoms:
          # assign the right atom of the group
           (\ldots)
          donoratomindex = atom.GetIdx() + 1
```

→ Helps keep order but catches only within the functional group space you set up.

Atom Selection by «Brute Force» linear fragment

linear fragment

- All nitrogens, oxygens
- All OH, NH, SH, C#H
- → In the end, a mixture was applied.

Bimolecular Complex Generation 1

```
# query molecule is loaded
Hbd indices = find donors(mol) # as sketched previously
nat = len(mol.GetAtoms())
For i in range(nhbd of mol):
  # set up N complexes:
  m2 = Chem.RWMol(mol)
  # find donated H as the neighbor of the donor atom
  h = (...)
```


Bimolecular Complex Generation 2

```
# add reference molecule
# add the atoms
for j in range(0,n_atom_ref):
    refatom = refmol.GetAtomWithIdx(j)
    posref = refmol.GetConformer().GetAtomPosition(j)
    m2.AddAtom(refatom)
    m2.GetConformer().SetAtomPosition(j + nat, posref)
# same for the bonds
```


MMFF94s Force Field Initialization

```
# Initialize MMFF94s
```

```
fprs = Chem.MMFFGetMoleculeProperties(m2,
mmffVariant='MMFF94s')
```

```
ff= Chem.MMFFGetMoleculeForceField(m2,fprs,
```

 ${\tt ignoreInterfragInteractions=} \textbf{False})$

Tosco, P.; Stiefl, G.; Landrum, G.A. J. Cheminform. 2014, 6, 4.

MMFF94s Force Field Optimization

```
# Constraints
ff.MMFFAddDistanceConstraint(h actindex,
hbaindex, False, 1.98, 2.00, 9999999.)
ff.MMFFAddAngleConstraint(hbaindex,h actindex,
hbdindex, False, 178., 179.9, 999.)
# Minimize
ff.Minimize(maxIts=100)
→ Here are the parameters to play with!
```


Hydrogen Bond Donor Results

Bauer, C. A.; Schneider, G.; Göller, A. H. J. Cheminform. 2019, 11, 59.

But How Do We Get the QC Data?

Patrik Rydberg, Lars Olsen (SMARTCYP papers)

Foscato M.; Venkatraman V.; Jensen, V. R. J. Chem. Inf. Model (just accepted), DOI:10.1021/acs.jcim.9b00516 2nd example: Ames mutagenicity P450 model

Challenges:

- Activation barrier
- Metal involved
- Conformations

→ There is hardly any way to generate robust 3D coordinates.

26.09.2019

PAGE 15

P450 Cpd1 Complex Generation

exactly the same method as for the H-bonds except fix the cpd1 atoms due to force field collapse for $[Fe^V=0]$ moiety:

```
for fixat_idx in range (nat,nat+cpd1nat):
    ff.UFFAddPositionConstraint(fixat_idx, 0.01,
99.)
```

→ Do not move the cpd1 part during optimization (it would go wrong), just optimize the primary aromatic amine.

P450 Cpd1 Primary Aromatic Amines DFT Results

- 77 data points: 60 mutagens, 17 nonmutagens
- High-level DFT (hybrid functional/QZVP basis set)
- Optimized using dispersion corrected DFT
- Mutagenic compounds with lower barriers on average.
- → Barrier height with potential as a QC descriptor.

Conclusions

- Link of QC and Machine Learning world requires consistent 3D coordinate generation.
- RDKit is the software of choice.
- Successful contribution to H-bonding.
- RDKit can even «handle» metals (coordinate generation is meant as preliminary work for DFT input anyway).

Thanks

UNINETT | ∫igma2

Prof. Johannes Kirchmair

- Kirchmair Group
- Andreas Göller (Bayer) and Gisbert Schneider (ETH Zurich)

