Image classification with SVM

key-patch

SVM: Support Vector Machine

feature

histogram

- Download the dataset:

 http://www.vision.caltech.edu/Image_Datasets/Caltech256/

 And select five classes at random (for each each class use the same number of images so that the training is balanced)
- 2. Extract three types of features that you will compare: SIFT, SURF and HoG.
- 3. Use 80% of images for training, 20% leave for testing. Images are randomly selected.
- 4. Training and test sets must be in a matrix where rows are the images and columns are the N feature histogram values. Each image must be associated with a label.

	Feat.	Feat. 2	Feat. 3	Feat. 4	Feat. 5	Feat. 6	Feat. 7	 F. N
Image 1								
Image 2								
Image 3								
Image 400								

- 5. Use SVM to classify:

 https://docs.opencv.org/3.4/d1/d73/tutorial_introduction_to_svm.html

 Each image will be considered a point in N-dimensional space
- 6. Write a report that includes: Introduction, the methods and experimental evaluation. Report on the confusion matrix and accuracy for each feature.

 Discussion: Compare results and comment on strengths and weaknesses of each feature.