Bevezetés a lágy számítás módszereibe MATLAB - GA

MATLAB GA használata

- Pl. tesztmérnökök tesztelési eljárást dolgoztak ki rendszerek (pl. hardver komponensek) helyességének tesztelésére: evolúciós teszt
- A tesztet optimalizálási problémaként értelmezik
- Genetikus algoritmus használata
- A GA teljesítménye és kimeneti hatékonysága több futtatásban változhat
- MATLAB környezet képes biztosítani ezt a bonyolultságot
- Interaktív használat, kevesebb idő a kódoláshoz és a hibakereséshez

Parancssori lehetőségek

Fő függvénye a **ga** függvény, amely F(X) minimumát próbálja meg meghatározni, megadott feltételeket figyelembe véve.

F a fitnesz függvény, X egy tetszőleges egyed ekkor az optimális megoldás egy olyan X, ahol

- $A * X \leq b$ (lineáris egyenlőtlenségek)
- $C_{eq}(X) = 0$ (nemlineáris egyenletek)
- $C(X) \le 0$ (nemlineáris egyenlőtlenségek)

Ezen jelölések mellett a **ga** függvény általános alakja: >> [X, FVAL, REASON, OUTPUT, POPULATION, SCORES] = GA(F, NVARS, A, b, Aeq, beq, LB, UB, NONLCON, Options) A fent nem definiált jelölések jelentése:

- NVARS: F függvény függvényváltozóinak száma
- **NONCLON**: |C(X)| és $C_{eq}(X)$ függvényeket megvalósító Matlab függvény (ezeket ált. magunknak kell implementálnunk)
- **FVAL**: F(X), a kimenő megoldásegyedre
- REASON: a kilépés okának leírása
- OUTPUT: a futás körülményeiről ad néhány információt ez a struktúra
- POPULATION: a kilépéskor meglévő populáció
- SCORES: a kilépéskor meglévő populáció fitnesz értékei
- options: az algoritmus paramétereit tartalmazó struktúra

Egyszerű példa

A sikeres futtatáshoz elegendő F és NVARS megadása is:

$$>> ga(@(x)x*x,1)$$

Ez az $f(x) = x^2$ függvény abszolút minimumát keresi, ami x = 0 helyen található.

```
>> ga(@(x) x*x, 1)
Optimization terminated: maximum number of generations exceeded.
ans =
-4.7080e-005
```

A futás egészen közeli eredményt talált.

A leállás a generációszám maximális értékének túllépése miatt történt.

Bonyolultabb példa

Matlabék (és talán mások) kedvence a **Rastrigin-függvény**, ha a genetikus algoritmusokról van szó.

Ez egy *n*-változós valós függvény, amely *n* függvényében a következő formulával adható meg:

$$f(x) = 10n + \sum_{i=1}^{n} (x_i^2 - 10\cos(2\pi x_i))$$

Ez a függvény folytonos, differenciálható, és könnyen észrevehető, hogy minimuma x = 0 pontban van, értéke f(x) = 0.

Ezen kívül hála a *cos* függvény periodicitásának, a függvény tele van lokális minimumhelyekkel, ami igen rossz hatással lehet a kereső algoritmusokra.

A függvény megtalálható rastriginsfcn néven a Matlab tárházában.

```
function scores = rastriginsfcn(pop)
%RASTRIGINSFCN Compute the "Rastrigin" function.
% Copyright 2003-2004 The MathWorks, Inc.
% pop = max(-5.12,min(5.12,pop));
scores = 10.0 * size(pop,2) + sum(pop .^2 - 10.0 * cos(2 * pi .* pop),2);
```

GA futtatása a Rastrigin-függvényre:

fsurf(@(x,y)reshape(rastriginsfcn([x(:),y(:)]),size(x)))

A Rastrigin-függvény képe $(n=2, -5 \le x1, x2 \le 5)$:

Számos lokális optimum hely van a globális optimum hely mellett

Hasonlítsuk össze a genetikus algoritmus és egy kereső algoritmus működését!

Az eredmény elfogadható első neki futásra. Érdemes megnézni egy konkurens kereső algoritmust. Vegyük a Matlab **fminsearch** függvényét, nézzük mit tud kezdeni vele:

```
>> fminsearch(@rastriginsfcn, rand(1,2))

ans =

0.9950 0.9950
```

A keresés beleesett egy lokális minimum körüli gödörbe.

Egy kétváltozós valós fg. - Shufcn fg.

```
function f = shufcn(y)
%SHU objective function.
%
% L.C.W. Dixon and G.P. Szegö (eds.), Towards Global Optimisation 2,
% North-Holland, Amsterdam 1978.
% Copyright 2004 The MathWorks, Inc.
% $Revision: 1.1 $ $Date: 2004/01/14 15:35:06 $
for j = 1: size(y,1)
 f(j) = 0.0;
 x = y(j,:);
 temp1 = 0;
 temp2 = 0;
 x1 = x(1);
 x2 = x(2);
  for i = 1:5
    temp1 = temp1 + i.*cos((i+1).*x1+i);
    temp2 = temp2 + i.*cos((i+1).*x2+i);
  end
  f(j) = temp1.*temp2;
end
```

Shufcn függvény vizsgálata (GA használata)

Shufcn függvény - futtatás

```
>> [x, Fval, exitFlag, Output] = ga (FitnessFunction, numberofvariables)
Optimization terminated: average change in the fitness value less than options. FunctionTolerance.
x =
 -13.9945 36.9044
                                                                             FitnessFunction=@shufcn
Fval =
                                                                          FitnessFunction =
 -186.6390
                                                                            function handle with value:
                                                                              @shufcn
exitFlag =
                                                                         >> numberofvariables=2
                                                                         numberofvariables =
Output =
                                                                                2
 struct with fields:
     problemtype: 'unconstrained'
        rngstate: [1×1 struct]
     generations: 59
       funccount: 3000
         message: 'Optimization terminated: average change in the fitness value less than options. FunctionTolerance.'
   maxconstraint: []
```

Paraméterek módosítási lehetőségei

>> opts=gaoptimset('PlotFcns',{@gaplotbestf,@gaplotstopping})

>> [x,Fval,exitFlag,Output]=ga(FitnessFunction,numberofvariables,opts)
Optimization terminated: average change in the fitness value less than options.FunctionTolerance.

Az algoritmus paramétereit tartalmazó struktúra ('opts' felépítése):

```
>> opts=gaoptimset('PlotFcns', {@gaplotbestf, @gaplotstopping})
opts =
 struct with fields:
        PopulationType: []
          PopInitRange: []
       PopulationSize: []
            EliteCount: []
    CrossoverFraction: []
        ParetoFraction: []
   MigrationDirection: []
    MigrationInterval: []
    MigrationFraction: []
           Generations: []
             TimeLimit: []
          FitnessLimit: []
         StallGenLimit: []
             StallTest: []
        StallTimeLimit: []
                TolFun: []
                TolCon: []
    InitialPopulation: []
         InitialScores: []
   NonlinConAlgorithm: []
        InitialPenalty: []
         PenaltyFactor: []
          PlotInterval: []
           CreationFcn: []
    FitnessScalingFcn: []
          SelectionFcn: []
          CrossoverFcn: []
           MutationFcn: []
   DistanceMeasureFcn: []
             HybridFcn: []
              PlotFcns: {@gaplotbestf @gaplotstopping}
            OutputFcns: []
            Vectorized: []
           UseParallel: []
```

GA futtatása és a közbülső változások figyelemmel kísérése

'Stall time limit': Az algoritmus leáll, ha a célfüggvény nem javul egy adott időkorláton belül

'Stall generations': Az algoritmus leáll, ha a fitnesz függvény értékének átlagos relatív változása a függvény tűrés határa alatt van

'Time limit': Az algoritmus leáll, ha a . futás elért egy megadott időkorlátot

'Generations': Az algoritmus leáll, ha a futás elért egy megadott generáció számot


```
>> FitnessFunction=@shufcn
>> numerOfVariables=2
>> [x,Fval,exitFlag,Output]=ga(FitnessFunction,numberofvariables)
>> fprintf('The number of generations was: %d\n',Output.generations)
The number of generations was: 59
>> fprintf('The number of evaluations was: %d\n',Output.funccount)
The number of evaluations was: 3000
>> fprintf('The best function value found was: %d\n',Fval)
The best function value found was: -1.866390e+02
```

Víztisztító berendezés irányítása

- Egy víztisztítónak tiszta vizet kellett nyerni egy folyó zavaros vizéből.
- A folyóvizet egymás után 3 tartályban kémiai anyagokkal kezelik, szűrik.
 - tartály: kémiai anyagokkal pl. klór
 - tartály: kémiai anyagokkal megkötik és ülepítik a szennyeződéseket
 - tartály: tovább szűrik a vizet

Tartályonként 3-5 órás kezelés.

A maradandó szennyezettség foka függ

- a folyóvíz korábbi szennyezettségi fokától
- \circ az első tartályba kerülő víz T_1 mennyiségétől

Víztisztító berendezés

Szabályozó működése: a víz SZ1 szennyezettségfokának függvényében meghatározza azt a T1 mennyiséget, amelynél a kezelt víz szennyezettségfoka SZ2 alatt marad

- A szabályozót mérési adatok elemzésével határozták meg: a víz szennyezettségfoka SZ1, SZ2 mellett figyelembe vették
 - 1. a víz lugosságát: AL
 - 2. ph-értékét: PH
 - hőmérsékletét: TE

Adatgyűjtésből származó adatok elemzése.

Függvényillesztéssel meghatározták a Sugano-modell keresett paramétereit.

Víztisztító tesztadatai

SZ1	PH	TE	AL	T1	SZ2
10	7.1	18.8	53	1300	1.0
17	7.0	18.6	50	1300	1.0
22	7.3	19.4	46	1400	2.0
50	7.1	19.5	4()	1400	1.0
9	7.3	23.3	48	900	40
11	7.1	20.7	50	900	1.0
12	7.2	21.3	50	900	3.0
14	7.2	23.6	53	900	40
35	7.0	17.8	35	1200	1.0
20	7.0	16.6	40	1100	1.0
20	6.9	17.8	42	1100	1.0
18	7.1	17.3	40	1100	0.1
12	7.2	18.8	55	900	3.0
8	7.2	18.0	50	1000	1.5
11	7.1	19.2	49	1000	2.0
50	7.0	18.0	37	1200	1.5
35	7.0	17.7	42	1200	1.5
30	7.0	17.3	41	1100	1.5
16	7.1	19.3	42	1100	3.0

$$6,9 \le x_1 \le 7,3$$

 $35 \le x_2 \le 55$
 $16,6 \le x_3 \le 23,6$
 $8 \le x_4 \le 50$
 $1 \le x_5 \le 4$

$$X_1 \rightarrow PH, x_2 \rightarrow AL, x_3 \rightarrow TE, x_4 \rightarrow SZ1, x_5 \rightarrow SZ2$$

$$T_1 = p_0 + p_1 x_4 + p_2 x_5 + p_3 x_1 + p_4 x_2 + p_5 x_3$$

Lehetséges paraméter változatok

p₀, p₁, p₂, p₃, p₄, p₅ paraméterek, amelyek változhatnak a PH, AL, TE értékeinek függvényében

(függvény illesztéssel meghatározzák a modell hiányzó paramétereit)

R _i .	PH	AL	TE	p0	p1	p2	p3	p4	p5
1	K	K	K	8858	2664	-8093	11230	-1147	-2218
2	K	K	N	-7484	124	-427	761	52	-17
3	K	N	K	7270	42	-54	-1368	10	158
4	K	N	N	2202	5	-34	-221	-8	40
5	N	K	K	-13918	3	-6	2110	-3	2
6	N	K	N	770	22	11	64	-8	- 9
7	N	N	K	-14819	159	-14	2337	-25	-68
8	N	N	N	-317	-13	-16	29	6	41

Editor - C:\Users\agnes.werner\Documents\MATLAB\Examples\R2019a\globaloptim\gaoptionsdemo\simple_fitness.m


```
>> [x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB,UB)
Optimization terminated: average change in the fitness value less than options. FunctionTolerance.
x =
    7.3000 55.0000 16.6000 8.0009 4.0000
fval =
  716.7048
>> [x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB,UB)
Optimization terminated: average change in the fitness value less than options. FunctionTolerance.
x =
   7.3000 55.0000 16.6000 8.0007 4.0000
fval =
  716.7042
>> [x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB,UB)
Optimization terminated: average change in the fitness value less than options. FunctionTolerance.
x =
   7.3000 55.0000 16.6000 8.0011 4.0000
fval =
  716.7060
```

Készítsünk el egy tetszőleges szöveg kitenyésztésére szolgáló genetikus algoritmust!

- Megpróbáljuk genetikusan "kitenyészteni" sztringek egy sorozatából a kívánt mondatot.
- A populáció egyedei azonos hosszúságú sztringek, amiket genotípusosan ábrázolunk. Minden sztringhez hozzárendelünk egy sorvektort, amelynek elemei (azaz a gének) a sztring egyes karaktereinek ASCII kódjai.
- A fitnesz érték az egyed és a keresett sztring távolsága, azaz az egyes betűk közötti távolságok összege.
- Minél kisebb a fitnesz érték, annál rátermettebb az adott egyed.
 Nyilvánvaló, hogy ha ez az érték nulla, akkor elértük a keresett sztringet.

Az algoritmushoz

- Az algoritmus fő ciklusában sorba rendezzük a populáció egyedeit növekvő fitnesz érték alapján.
- A legjobbakat automatikusan beválogatjuk a következő populációba (elitizmus).
- A maradék helyek feltöltéséhez szelekció során kiválogatjuk a szülőket. A szelekció ebben az esetben egyszerű véletlen kiválasztás, ami nem foglalkozik az önreprodukcióval (mindkét szülő ugyanaz az egyed).
- A kiválasztott szülőket egypontos keresztezéssel rekombináljuk, a keletkező egyedet behelyezzük az új populációba.
- Legvégül egy előre beállított mutációs ráta szerint módosítjuk a sztringeket. A mutáció megvalósítása véletlen génmutáció, egyetlen génre.

Az algoritmushoz

- A kapott új populációra kiértékeljük a rátermettségi függvényt, az egyedeket behelyettesítjük a régi populáció helyére, növeljük a generációszámot és ezzel le is zárul a fő ciklus.
- Kérdés még, hogy milyen kilépési feltételt lehet alkalmazni? Két dolgot veszünk figyelembe: egy előre megadott generációszám ill. az optimális megoldás elérését (fitnesz érték nulla).
- Az alapbeállítás 1000 példányos populációkkal dolgozik.
- A populáció legjobb 10%-át válogatjuk az elitek közé minden lépésben.
- A mutáció esélye 0,25 egyedenként.
- Ha elérjük a 100 generációt optimális eredmény nélkül, a függvény leáll, és az adott pillanatban legjobb egyedet adja vissza közelítő megoldásként.

A függvény definiálása, alapértékek beállítása, a szöveg helyére tetszőleges karaktersorozat írható


```
% t := 0, populációk számának inicializálása
19
20 -
      % P kezdetí populáció létrehozása
21
     P = floor (rand(GA POPSIZE, length(GA TARGET)) * 96 + 32);
22 -
      F = sum(abs(P-ones(GA POPSIZE,1)*GA TARGET), 2);
23 -
       % WHILE NOT Kilépési feltétel(P)
24
     while t < GA MAXITER & F(1) ~= 0 % kilépési feltétel: iterációk száma vagy megoldás
       % Aktuális populáció sorbarendezése
26
27 -
      [F, I] = sort(F);
     for i = 1 : length(I)
28 -
       TMP(i, :) = P(I(i), :);
29 -
30 -
      end
       P = TMP:
31 -
       v = char(P(1,:)); % legjobb egyed
32 -
       % Az algoritmus futásáról tájékoztatjuk a felhasználót
33
34 -
       if rem (t, PRINTOUT) == 0
       str = sprintf('%d. generáció legjobb egyede: %s fitness: %d', t, y, F(1));
35 -
36 -
       disp (str);
37 -
       end
       % Elitek beválogatása
38
       elitek = floor (GA ELITRATE * GA POPSIZE); Puj(1:elitek,:) = P(1:elitek,:);
39 -
```


New to MATLAB? See resources for Getting Started.

```
>> mondat
 0. generáció legjobb egyede: 5rxCj>;C*Zy;&2|S'Uv' gWla^ 3]eu-gs@w}<=W{Lw!<sxa^yl>\~.5 fitness: 1435
 10. generáció legjobb egyede: &\ QX5Zn d^pho']*Ca&ze[d^)\g(sr5vg%W{rPv(V[:ib{qWn:ntvt^ fitness: 1084
 20. generáció legjobb egyede: .iXjQD{`{ZYDkofm}azTn-~mz | *sr0j19kqaM\ji`;=i{qGhpcEjvW fitness: 917
 30. generáció legjobb egyede: &\ Q#-bHih^phofm)azKn8~m~ ^SJua/|y'tY9om`ip&PsxibrvoLcm- fitness: 725
 40. generáció legjobb egyede: AlQ}j-`Hih^phofm)az!h4[d| ^a@se5i^,tY|av\{`!a\jpDinoLcm- fitness: 554
 50. generáció legjobb egyede: 8t^kx'}\ih^phofm)az/n8lmz yi`ui2|y'tYcom`ip&Psxibrdofvt- fitness: 428
  60. generáció legjobb egyede: AmYkx'}\ih^phofm)az!e"pRu yi`ui2|y'tYcom`gx!a\xibrvohcm- fitness: 371
 70. generáció legjobb egyede: 8i^kx'}\ihlphofm)ax!e"pdz [i`xu(m\!kqhom`gp!g[wigrwZfvt- fitness: 300
 80. generáció legjobb egyede: Alkjr rbih^phofm)ax!e"pdz [i`xu!m\!kqhom`mU![]wiqnwofvt- fitness: 263
 90. generáció legjobb egyede: Alkjr rbih^pkof})ax!h"pdz [i`xu(mo!kghom`ji!g[wignpoflt- fitness: 219
 100. generáció legjobb egyede: Alkjr rbihlphofm)ax!e"pdz [i`je!mk!kqct{`il!^[wiqnwoflt- fitness: 186
 110. generáció legjobb egyede: Flkjr rbihlphoft)ax!h"pdz [i`je!mk!kqct{`ji!g[wiqnpoflt- fitness: 173
 120. generáció legjobb egyede: Aikjr rbihlpkof})ax!e"pdz di`je!mk!kgct{`il!gewignpoflt- fitness: 143
 130. generáció legjobb egyede: Agkjr rbihlpkofw ag!e"pdz [i`je!mo!kqht{`ji!gewiqnpoflt- fitness: 129
 140. generáció legjobb egyede: Aikjr rbihlpkofw aq!e"pdz dicje!mk!qqct{`ji!gewiqnpoflt- fitness: 116
 150. generáció legjobb egyede: Agkjr rbihlpkofw ag!e"pdz di`je!ik!kgct{`pi!gewignpmflt- fitness: 111
 160. generáció legjobb egyede: Agknr rb hlnhofw aq!e"pdz ficje!mk!qqct{`pi!gewiqnpofmt- fitness: 102
 170. generáció legjobb egyede: Agfjr rfihlpkofw aq!e"pdz ficje!it!qqct{`pi!gewiqnpmflt- fitness: 96
 180. generáció legjobb egyede: Agfnr rfihlpkofw as!e"pdz dicje!ik!qqct{`pi!gewdqnpoflt- fitness: 88
 190. generáció legjobb egyede: Agfnr rf hnpkofw pg!e"pdz dicje!ik!qqct{`pi!gewdqnpmflt- fitness: 83
 200. generáció legjobb egyede: Agfnr rf hlpkofw mq! "pdz ficje!ip!qqct{ pi!gewdqnpmflt- fitness: 76
 210. generáció legjobb egyede: Agfnt rf hnpkofw ks!e"pdz ficje!ik!qqctx`pi!gewdqnpoflt- fitness: 71
 220. generáció legjobb egyede: Agfnt rb hnpkofw hq!e pdz ficje!ik!qqctx`pi!gewdmnpmflt- fitness: 66
 230. generáció legjobb egyede: Agfnt rf gnpkofw hq!e"pdz ficke!in!qqctx`pi!gewdmnpmfmt- fitness: 62
 240. generáció legjobb egyede: Agfnt rf hnpkofw ks! "pdz ficje!ik!qqctx pi!dewdmnpmfmt- fitness: 58
 250. generáció legjobb egyede: Agfnt re hnpkofw ks! "pdz ficke!in!qqctx pi!dewdmnpmflt- fitness: 54
 260. generáció legjobb egyede: Agfnt rfchnpkofw ks! "pdz ficke!in!qqctx pi!dewdmnpmfmt- fitness: 50
 270. generáció legjobb egyede: Agfnt rfchnpkofw ks! "pdz ficke!in!ggctx pc!dewdknpmfmt- fitness: 48
 280. generáció legjobb egyede: Agfnt rfchnpkofw hs! "pdz ficke!in!qpctx pd!dewdmnpmfmt- fitness: 45
  290. generáció legjobb egyede: Agfnt rfchnpkofy hs! "pdz ficke!in qpctx pd!dewdmnpmfmt- fitness: 42
300. generáció legjobb egyede: Agfnt rfchnpkofy hs!`"pdw ficke!in!qodtx`pd!dewdmnpmfmt- fitness: 38
```


530. generáció legjobb egyede: Agent technology is `mew field in software!devdlopment. fitness: 4
540. generáció legjobb egyede: Agent technology is `mew field in software devdlopment. fitness: 3
550. generáció legjobb egyede: Agent technology is `mew field in software devdlopment. fitness: 3
560. generáció legjobb egyede: Agent technology is `mew field in software devdlopment. fitness: 3
570. generáció legjobb egyede: Agent technology is `mew field in software devdlopment. fitness: 3
580. generáció legjobb egyede: Agent technology is `mew field in software devdlopment. fitness: 3
590. generáció legjobb egyede: Agent technology is `mew field in software devdlopment. fitness: 3

600. generáció legjobb egyede: Agent technology is 'mew field in software devdlopment. fitness: 3 610. generáció legjobb egyede: Agent technology is 'mew field in software devdlopment. fitness: 3 620. generáció legjobb egyede: Agent technology is 'mew field in software devdlopment. fitness: 3 630. generáció legjobb egyede: Agent technology is a mew field in software devdlopment. fitness: 2 640. generáció legjobb egyede: Agent technology is a mew field in software devdlopment. fitness: 2 650. generáció legjobb egyede: Agent technology is a mew field in software devdlopment. fitness: 2 660. generáció legjobb egyede: Agent technology is a mew field in software devdlopment. fitness: 2 670. generáció legjobb egyede: Agent technology is a mew field in software devdlopment. fitness: 2

680. generáció legjobb egyede: Agent technology is a mew field in software devdlopment. fitness: 2 690. generáció legjobb egyede: Agent technology is a new field in software development. fitness: 0

ans =

Optimális érték elérve.

^{&#}x27;Agent technology is a new field in software development.'