Présenté par : M. HAMMAD

Exercice 1:

Soit α, σ deux constantes réelles, $(B_t)_{t\geq 0}$ un \mathcal{F}_t -mouvement Brownien et

$$dX_t = -\frac{1}{2}\alpha X_t dt + \frac{1}{2}\sigma dB_t.$$

Soit $Y_t = X_t \cdot e^{\frac{\alpha t}{2}}$.

- Vérifier que X_t est un processus d'Itô.
- Écrire dY_t .
- Déduire la forme de la solution X_t .

Exercice 2:

Résoudre l'EDS:

$$dS_t = S_t \left(\mu dt + \sigma dB_t \right), \quad S_0 = x_0 > 0.$$

Exercice 3:

Soit $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ une base stochastique, B un mouvement brownien standard et λ une constante réelle. Soit :

$$\begin{cases} dX_t = -\lambda^2 X_t^2 (1 - X_t) dt + \lambda X_t (1 - X_t) dB_t, \\ X_0 = x \in]0, 1[. \end{cases}$$

On admet que X prend ses valeurs dans l'intervalle]0,1[. On pose $Y_t = \frac{X_t}{1-X_t}$.

- 1. Vérifier que X_t est un processus d'Itô.
- 2. Quelle est l'E.D.S (Équation Différentielle Stochastique) vérifiée par Y?.
- 3. Résoudre cette E.D.S et donner une formule explicite de Y.
- 4. Déduire que $X_t = \frac{x \exp[\lambda B_t \lambda^2 t/2]}{x \exp[\lambda B_t \lambda^2 t/2] + 1 x}$.

Exercice 4:

Soit l'EDS:

$$dX_t = bX_t dt + dB_t, \ X_0 = x.$$

- 1. On pose $Y_t = e^{-t} \cdot X_t$.
 - Quelle est l'EDS vérifier par Y_t ?.
 - Exprimer Y_t sous la forme : $Y_t = y + \int_0^t f(s)dB_s$, où l'on explicitera la fonction f.
- 2. Calculer $\mathbb{E}(Y_t)$ et $\mathbb{E}(Y_t^2)$.

Exercice 5:

On considère l'équation :

$$dX_t = a(t)X_tdt + b(t)dt + c(t)dB_t$$

a(t), b(t) et c(t) sont des processus adaptés.

- 1. Résoudre cette équation par la méthode de la variation de la constante.
- 2. Résoudre l'EDS $dX_t = -\frac{1}{1+t}X_tdt + \frac{1}{1+t}dB_t, \ X_0 = 0.$

Exercice 6:

Soit B un mouvement Brownien dont la filtration est notée (\mathcal{F}_t) . Soit σ un processus adapté continu de $L^2(\Omega \times \mathbb{R})$ et

$$X_t = \int_0^t \sigma_s dB_s - \frac{1}{2} \int_0^t \sigma_s^2 ds.$$

On pose $Y_t = \exp(X_t)$ et $Z_t = Y_t^{-1}$.

- 1. Expliciter la dynamique de Y, c'est-à-dire exprimer dY_t .
- 2. Donner une condition sur σ pour que Y soit une martingale
- 3. Calculer $\mathbb{E}(Y_t)$ dans ce cas. Expliciter les calculs quand $\sigma = 1$.
- 4. Calculer dZ_t .

Exercice 7:

Soit $Y_t = tB_t$.

Calculer dY_t , $\mathbb{E}(Y_t)$ et $\mathbb{E}(Y_tY_s)$.

Exercice 8:

- I Soit le processus $\{C_t = C_0 e^{\alpha B_t}; t \geq 0\}$, $C_0 \geq 0$ et C_t : est le processus du taux de change de dollars canadiens par un dollars américains au temps t (le nombre de dollar canadien que l'on peut obtenir par dollar américains), B_t est un mouvement Brownien standard.
 - a) Déterminer l'EDS sarisfaite par le processus $\{C_t, t \geq 0\}$.
- II Soit le processus $\{X_t, t \geq 0\}$ qui modélise l'évolution d'un actif risqué en dollars américains satisfaisant l'EDS

$$dX_t = \mu_t dt + \sigma X_t dB_t^*$$

où $\{B_t^*, t \ge 0\}$ est un mouvement Brownien standard indépendant de $\{B_t t \ge 0\}$.

2

b) Déterminer l'EDS satisfaite par l'évolution $\{Y_t, t \geq 0\}$ du titre risqué en dollars canadiens.

Exercice 9:

On considère l'équation différentielle stochastique

$$\begin{cases} dX_t = \frac{X_t}{t-1}dt + dB_t, \ t \in [0,1[\\ X_0 = 0. \end{cases}$$

- 1. Montrer que $X_t = (1-t) \int_0^t \frac{dB_s}{1-s}, \ t \in [0,t[...]]$
- 2. Montrer que $(X_t)_{t\geq 0}$ est un processus gaussien. Calculer son espérance et sa covariance.
- 3. Montrer que $\lim_{t\to 1} X_t = 0$.

Exercice 10:

Écrire les processus suivants comme des processus d'Itô en précisant leur dérive et le cœfficient de diffusion.

- 1. $X_t = B_t^2$.
- 2. $Y_t = t + e^{B_t}$.
- 3. $Z_t = B_t^3 3tB_t$.
- 4. $L_t = 1 + 2t + e^{B_t}$.
- 5. $M_t = (B_t + t)e^{(-B_t \frac{1}{2}t)}$.
- 6. $N_t = e^{\frac{t}{2}} \sin(B_t)$.