IN THE SPECIFICATION

Rewrite the paragraph that begins at page 15, line 15 as follows:

FIG. 2 is a graph showing X - Y coordinates with X-axis representing R value (calculated down to the second decimal place) of ISO Color Contribution Index (ISO/CCI) specified in JIS7097 (expression of color contribution by ISO/CCI for taking a photograph) calculated on the basis of transmittance of a glass bulk within a range from 3250nm to 689nm specified in $JOGIS02^{-1975}$ and Y-axis representing refractive index (nd).

Rewrite the paragraph that begins at page 17, line 24 as follows:

For achieving particularly good G and R values of ISO/CCI, the ratio of (BaO + Nb_2O_5)/{(TiO₂ + WO₃) x 3 + Bi₂O₃ + Nb₂O₅} calculated in mass % of BaO, Nb₂O₅, TiO₂, WO₃ and Bi₂O₃ should preferably be a greater value than 1.0.

1. (original)An optical glass comprising, in the mass percent:

P₂O₅ 15 - 35% Nb₂O₅ 40 - 60%

Na₂O 0.5% to less that 15% and

BaO 3% to less than 25%;

having a ratio in mass % of $(BaO + Nb_2O_5/\{(TiO_2 + WO_3)x \ 3 + Bi_2O_3 + Nb_2O_5\} > 1.0$; being free of Pb and As; and having a refractive index (nd) within a range from 1.78 to 1.90 and an Abbe number (vd) within a range from 18 to 27.

2.(original) An optical glass as defined in claims 1 further comprising, in mass %

0 - 5% and/or Gd₂O₃ 0 - 10% and/or K_2O 0 - 10% and/or Li₂O 0-5% and/or Bi₂O₃ MgO 0 - 10% and/or 0 - 10% and/or CaO 0 - 10% and/or SrO 0 - 3% and/or ZnO 0 - 5% and/or SiO₂ B_2O_3 0 - 5% and/or 0 - 4% and/or Al_2O_3 0 - 5% and/or Ta₂O₅ 0 - 3% and/or ZrO_2 0 - 5% and/or TiO₂ WO_3 0 - 8% and/or 0 - 0.02%. Sb_2O_3

3. (original) An optical glass as defined in claim 1 which, in X - Y rectangular co-ordinates with X-axis representing ISO Color Contribution Index G calculated by using spectral transmittance of a glass material measured by the Japan Optical Glass Industry Standard JOGIS02-¹⁹⁷⁵ (Measuring Method for Degree of Coloring of Optical Glass) and Y-axis

representing refractive index (nd), is within an area having a smaller value of ISO Color Contribution Index G and a higher refractive index (nd) than a straight line (SL3 – G): Y = 0.0277X + 1.725 and which, in X - Y rectangular co-ordinates with X-axis representing ISO Color Contribution Index R calculated by using spectral transmittance of a glass bulk material measured by the Japan Optical Glass Industry Standard JOGIS02-¹⁹⁷⁵ and Y-axis representing refractive index (nd), is within and area having a smaller value of ISO Color Contribution Index R and a higher refractive index (nd) than a straight line (SL3 – G): Y = 0.0277X + 1.725.

- 4. (original) An optical glass as defined in claim 1 wherein the sum of sectional areas of bubbles contained in glass of 100ml shown in Table 1 of the Japan Optical Glass Industry Standard JOGIS02-¹⁹⁹⁴ (Measuring Method for Bubble in Optical Glass) is Class 1 Class 4 and the sum of sectional areas of inclusion contained in glass of 100ml shown in Table 1 of the Japan Optical Glass Industry Standard JOGIS02-¹⁹⁹⁴ (Measuring Method for Inclusion in Optical Glass) is Class 1 Class 4
- 5. (original) An optical glass as defined in claim 1 which, in X Y rectangular co-ordinates with X-axis representing ISO Color Contribution Index G calculated by using spectral transmittance of a glass material measured by the Japan Optical Glass Industry Standard JOGIS02- 1975 (Measuring Method for Degree of Coloring of Optical Glass) and Y-axis representing refractive index (nd), is within an area having a smaller value of ISO Color Contribution Index G and a higher refractive index (nd) than a straight line (SL5 G): Y = 0.0329X + 1.7174 and which, in X Y rectangular co-ordinates with X-axis representing ISO Color Contribution Index R calculated by using spectral transmittance of a glass bulk measured by the Japan Optical Glass Industry Standard JOGIS02- 1975 and Y-axis representing refractive index (nd), is within an area having a smaller value of ISO Color Contribution Index R and a higher refractive index (nd) than a straight line (SL5 R): Y = 0.0288X + 1.713.

6. (original) An optical glass as defined in claim 1 comprising, in the mass percent:

 P_2O_5

15 - 35%

 Nb_2O_5

40 - 60%

 Na_2O

0.5% to less that 15% and

BaO

3% to less than 25;

and further comprising, in mass %:

 Gd_2O_3

0-4% and/or

 K_2O

0-6% and/or

Li₂O

0% to less than 6% and/or

Bi₂O₃

0% to less than 5% and/or

MgO

0% to less than 10% and/or

CaO

0% to less than 10% and/or

SrO

0% to less than 10% and/or

ZnO

0 - 3% and/or

SiO₂

0-5% and/or

 B_2O_3

0-5% and/or

 Al_2O_3

0 - 4% and/or

Ta₂O₅

0 - 5% and/or

 ZrO_2

0 - 3% and/or

 Sb_2O_3

0 - 0.02% and/or

TiO₂

0 - 5% and/or

 WO_3

0 - 8% and/or

a fluoride or fluorides of a metal element or elements contained in the above metal oxides, a total amount of F contained in the fluoride or fluorides 0-5%; and having a ratio in mass % of $(BaO + Nb_2O_5/\{(TiO_2 + WO_3)x \ 3 + Bi_2O_3 + Nb_2O_5\} > 1.0$.

7. (original) An optical glass as defined in claim 1 comprising, in the mass percent:

 P_2O_5

15 - 35%

 Nb_2O_5

40 - 60%

 Na_2O

0.5% to less that 15% and

BaO

3% to less than 25;

and further comprising, in mass %:

 Gd_2O_3

0.1 - 4% and/or

 K_2O

0 - 6% and/or

Li ₂ O	0% to less than 6% and/or
LIZO	076 to less than 076 and/or
Bi_2O_3	0% to less than 4.5% and/or
MgO	0% to less than 10% and/or
CaO	0% to less than 10% and/or
SrO	0% to less than 10% and/or
ZnO	0-3% and/or
SiO ₂	0% to less than 5% and/or
B_2O_3	0% to less than 5% and/or
Al ₂ O ₃	0-4% and/or
Ta_2O_5	0 – 5% and/or
ZrO_2	0-3% and/or
Sb ₂ O ₃	0 - 0.01% and/or
TiO ₂	0-5% and/or
WO_3	0 – 8% and/or

a fluoride or fluorides of a metal element or elements contained in the above metal oxides, a total amount of F contained in the fluoride or fluorides 0-5%; and having a ratio in mass % of $(BaO + Nb_2O_5)/((TiO_2 + WO_3)x 3 + Bi_2O_3 + Nb_2O_5) > 1.0$.

8. (original) An optical glass as defined in claim 1 which, in X - Y rectangular co-ordinates with X-axis representing ISO Color Contribution Index G calculated by using spectral transmittance of a glass material measured by the Japan Optical Glass Industry Standard JOGIS02- 1975 (Measuring Method for Degree of Coloring of Optical Glass) and Y-axis representing refractive index (nd), is within an area having a smaller value of ISO Color Contribution Index G and a higher refractive index (nd) than a straight line (SL8 – G): Y = 0.0329X + 1.7245 and which, in X – Y rectangular co-ordinates with X-axis representing ISO Color Contribution Index R calculated by using spectral transmittance of a glass bulk measured by the Japan Optical Glass Industry Standard JOGIS02- 1975 and Y-axis representing refractive index (nd), is within an area having a smaller value of ISO Color Contribution Index R and a higher refractive index (nd) than a straight line (SL8 – R): Y = 0.0288X + 1.7208.

9. (original) An optical glass as defined in claim 1 comprising, in the mass percent:

 P_2O_5

15 - 35%

 Nb_2O_5

42 - 60%

Na₂O

0.5% to less that 10% and

BaO

5% to less than 25;

and further comprising, in mass %:

Gd₂O₃

0.1 - 4% and/or

K₂O

0-6% and/or

Li₂O

0% - 2% and/or

Bi₂O₃

0% to less than 4.5% and/or

MgO

0% to less than 10% and/or

CaO

0% to less than 10% and/or

SrO

0% to less than 10% and/or

ZnO

0-3% and/or

SiO₂

0.1% to less than 4% and/or

 B_2O_3

0.2% to less than 5%and/or

 Al_2O_3

0 - 4% and/or

Ta₂O₅

0 - 5% and/or

 ZrO_2

0 - 3% and/or

 Sb_2O_3

0 - 0.01% and/or

TiO₂

0 - 3% and/or

 WO_3

0 - 5% and/or

a fluoride or fluorides of a metal element or elements contained in the above metal oxides, a total amount of F contained in the fluoride or fluorides 0-5%; and having a ratio in mass % of (BaO + Nb₂O₅/{(TiO₂ +WO₃)x 3 + Bi₂O₃ + Nb₂O₅} > 1.1.

10. (original) An optical glass comprising, in the mass percent:

 P_2O_5

15 - 35%

Nb₂O₅

40 - 60%

Gd₂O₃

0.1 - 4%

Na₂O

0.5% to less that 10% and

K_2O	0 - 6%

where the total amount of Na₂O and K₂O is 0.5% to less than 10%

Bi ₂ O ₃	0% to less than 5%
MgO	0% to less than 10%
CaO	0% to less than 10%
SrO	0 to less than 10%
BaO	0.5% to less than 25%
ZnO	0 – 3%
SiO ₂	0% to less than 5%.
B ₂ O ₃	0.2% to less than 5%
Al_2O_3	0 – 3%
Ta_2O_5	0 – 5%
ZrO ₂	0 – 3%
Sb_2O_3	0 - 0.03%

and a fluoride or fluorides of a metal element or elements contained in the above metal oxides, a total amount of F contained in the fluoride or fluorides 0-5%; being free of Pb, WO₃ and TiO₂ and having a refractive index (nd) within a range from 1.78 to 1.90 and an Abbe number (vd) within a range from 18 to 27.

11. (original) An optical glass comprising, in mass percent:

P_2O_5	15 - 30%
Nb_2O_5	42 – 60%
$G\dot{d}_2O_3$	0.1 – 4%
Na2O	0.5 - 9.6%
K ₂ O	0 – 6%
1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 177 0 1 0 50/ / 0

where the total amount of Na ₂ O and K ₂ O is 0.5% to 9.6%		
Bi_2O_3	0 – 4.5%	
MgO	0% to less than 10%	
CaO	0% to less than 10%	
SrO	0% to less than 10%	
BaO	0.5% to less than 25%	

ZnO	0 - 3%
SiO ₂	0.1% to less than 4%
B_2O_3	0.2% to less than 5%
Al_2O_3	0 - 3%
Ta_2O_5	0 – 5%
ZrO_2	0 - 3%
Sb_2O_3	0 - 0.03%.

and a fluoride or fluorides of a metal element or elements contained in the above metal oxides, a total amount of F contained in the fluoride or fluorides 0-5%; being free of Pb, WO₃ and TiO₂ and having a refractive index (nd) within a range from 1.78 to 1.90 and an Abbe number (vd) within a range from 18 to 27.

- 12. (original) An optical glass as defined in claim 1 which, the sum of sectional areas of bubbles contained in glass of 100ml shown in Table 1 of the Japan Optical Glass Industry Standard JOGIS12-¹⁹⁹⁴ (Measuring Method for Bubbles in Optical Glass) is Class 1 Class 3, the sum of sectional areas of inclusion contained in glass of 100ml shown in Table 1 of Japan Optical Glass Industry Standard JOGIS13-¹⁹⁹⁴ (Measuring Method for Inclusion in Optical Glass) is Class 1 Class 3, and the degree of striae shown in Table 2 of the Japan Optical Glass Industry Standard JOGIS11-¹⁹⁷⁵ (Measuring Method for Striae in Optical Glass) is Class 1-Class 3.
- 13. (original) An optical glass as defined in claim 1 which, the degree of striae shown in Table 1 of the Japan Optical Glass Industry Standard JOGIS11-¹⁹⁷⁵ (Measuring Method for Striae in Optical Glass) is Class 1 or Class 2, the sum of sectional areas of bubbles contained in glass of 100ml shown in Table 1 of Japan Optical Glass Industry Standard JOGIS12-¹⁹⁹⁴ (Measuring Method for Bubble in Optical Glass) is Class 1 or Class 2, and the sum of sectional areas of inclusion contained in glass of 100ml shown in Table 1 of Japan Optical Glass Industry Standard JOGIS13-¹⁹⁹⁴ (Measuring Method for Inclusion in Optical Glass) is Class 1 or Class 2.
- 14. (original) An optical glass as defined in claim 1 having a refractive index (nd) within a

range from 1.80 to 1.85 and an Abbe number (vd) within a range from 23.8 to 25.7.