

Radar Systems

Lecture 6. Radar Antennas

구 자 열

Radar Block Diagram

Antenna Definition

- "Means for radiating or receiving radio waves"*
 - A radiated electromagnetic wave consists of electric and magnetic fields which jointly satisfy Maxwell's Equations
- Transitional structure between guiding device and free space

Antenna Characteristics

- Accentuates radiation in some directions, suppresses in others
- Designed for both directionality and maximum energy transfer

차 례

- Fundamental antenna concepts
- Reflector antennas
- Phased array antennas

Radiation

Antenna Gain

Isotropic Antenna

Directional Antenna

- Same power is radiated
- Radiation intensity is power density over sphere (watt/steradian)
- Gain is radiation intensity over that of an isotropic source

Antenna Pattern

- Pattern is a plot of gain versus angle
- Dipole example

$$G(\theta) = 1.643 \left[\frac{\cos^2\left(\frac{\pi}{2}\cos\theta\right)}{\sin^2\theta} \right]$$

Antenna Pattern Characteristics

Parabolic Reflector Antenna

Figure by MIT OCW.

Aperture diameter D: 5 m

Frequency: 300 MHz Wavelength: 1 m

Gain: 24 dBi

Isotropic Sidelobe Level: 6 dBi

Sidelobe Level: 18 dB

Half-Power Beamwidth: 12 deg

Effect of Aperture Size on Gain

Parabolic Reflector Antenna

Gain
$$=\frac{4\pi A_e}{\lambda^2}$$
 Effective Area $=\frac{4\pi A}{\lambda^2}$ Rule of Thumb (Best Case) $=\left(\frac{\pi D}{\lambda}\right)^2$

Gain increases as aperture becomes electrically larger (diameter is a larger number of wavelengths)

Reflector Comparison Kwajalein Missile Range Example

ALTAIR 45.7 m diameter

MMW 13.7 m diameter

Operating frequency: 162 MHz (VHF)

Wavelength λ: 1.85 m

Diameter electrical size: 25 \(\lambda\)

Gain: 34 dB

Beamwidth: 2.8 deg

Operating frequency: 35 GHz (Ka)

Wavelength λ : 0.0086 m

Diameter electrical size: 1598 λ

Gain: 70 dB

Beamwidth: 0.00076 deg

Polarization

Defined by behavior of the electric field vector as it propagates

Polarization

Polarization

Circular Polarization (CP)

- "Handed-ness" is defined by observation of electric field along propagation direction
- Used for discrimination, polarization diversity, rain mitigation

F-35 와 F-22 외형

Length 62.1 ft Span 44.5 ft Wing Area 840 ft²

Field Regions

Reactive Near-Field Region

$$R < 0.62\sqrt{D^3/\lambda}$$

- **Energy** is stored in vicinity of antenna
- Near-field antenna quantities
 - Input impedance
 - Mutual coupling

Far-field (Fraunhofer) Region

$$R > 2D^2/\lambda$$

- All power is radiated out
- Radiated wave is a plane wave
- Far-field antenna quantities
 - Pattern
 - Gain and directivity
 - Radar cross section (RCS)

Regions of Radiation

Antenna Input Impedance

- Antenna can be modeled as an impedance
 - Ratio of voltage to current at feed port
- Design antenna to maximize power transfer from transmission line
 - Reflection of incident power sets up standing wave
- Input impedance usually defines antenna bandwidth

차 례

- Fundamental antenna concepts
- Reflector antennas
- Phased array antennas

Parabolic Reflector Antenna

- Design is a tradeoff between maximizing dish illumination and limiting spillover
- Feed antenna choice is critical

Parabolic Reflector Antenna

Parabolic Reflector Antenna

- Point source is evolves to plane wave (In the Far Field)
- Feed can be dipole or openended waveguide (horn)
- Feed structure reduces antenna efficiency

Examples of Parabolic Antenna Feed Structure

Cassegrain Reflector Antenna

Figure by MIT OCW.

Geometry of Cassegrain Antenna Ray Trace of Cassegrain Antenna

Advantages of Cassegrain Feed

- Lower waveguide loss because feed is not at the focus of the paraboloid, but near the dish.
- Antenna noise temperature is lower than with conventional feed at focus of the paraboloid
 - Length of waveguide from antenna feed to receiver is shorter
 - Sidelobe spillover from feed see colder sky rather than warmer earth
- Good choice for monopulse tracking
 - Complex monopulse microwave plumbing may be placed behind reflector to avoid the effects of aperture blocking

ALTAIR

Dual frequency

VHF Parabolic

UHF Cassegrain

FSS (Frequency Selective Surface) used for reflector

Different Types of Radar Beams

차 례

- Fundamental antenna concepts
- Reflector antennas
- Phased array antennas

Arrays

Multiple antennas combined to enhance radiation and shape pattern

Two Antennas Radiating

Array Beamforming (Beam Collimation)

 Want fields to interfere constructively (add) in desired directions, and interfere destructively (cancel) in the remaining space

Element Number N ... 4 3 2 d 1 Courtesy of MIT Lincoln Laboratory

Broadside Beam

Used with Permission

Array Controls

- Geometrical configuration
 - Linear, rectangular, triangular, circular grids
- Element separation
- Phase shifts
- Excitation amplitudes
 - For sidelobe control
- Pattern of individual elements
 - Isotropic, dipoles, etc.

Increasing Array Size by Adding Elements

Gain ~ 2N(d / λ) for long broadside array

Increasing Array Size by Separating Elements

- Linear Broadside Array
- N = 10 Isotropic Elements
- No Phase Shifting

Limit element separation to $d < \lambda$ to prevent grating lobes for broadside array

Increasing Array Size of Scanned Array by Separating Elements

- No grating lobes for element separation d < λ / 2
- Gain ~ $4N(d/\lambda)$ ~ $4L/\lambda$ for long endfire array without grating lobes

Linear Phased Array Scanned every 30 deg, N = 15, d = $\lambda/4$

Beamwidth increases as scan off broadside

Figure by MIT OCW.

To scan over all space without grating lobes, keep element separation $d < \lambda / 2$

Planar Arrays

Figure by MIT OCW.

Figure by MIT OCW.

- As scan to θ_o off broadside:
 - Beamwidth broadens by 1/cosθ_o
 - Directivity decreases by cosθ_o

To scan over all space without grating lobes, keep element separation in both directions $< \lambda / 2$

Mutual Coupling

Drive Both Antennas

- Effect of one element on another
 - Near-field quantity
 - Makes input impedance dependent on scan angle
- Can greatly complicate array design
 - Hard to deliver power to antennas for all scan angles
 - Can cause scan blindness where no power is radiated
- Can limit scan volume and array bandwidth

But... mutual coupling can sometimes be exploited to achieve certain performance requirements

Phased Array

Phased Array Architectures

- How is the microwave power generated and distributed to the antenna elements?
- Passive vs. Active Array
 - Passive Array A single (or a few) transmitter (s) from which high power is distributed to the individual array elements
 - Active Array Each array element has its own transmitter / receiver (T/R) module

Phased Array Antenna Configurations (Active and Passive)

Examples – Active Array Radars

More Examples – Active Array Radars

Counter Battery Radar (COBRA)

APG-81 Radar for F-35 Fighter

Examples – Passive Array Radars

S- Band AEGIS Radar

Courtesy of U S Navy

L- Band COBRA DANE Radar

Phased Arrays vs Reflectors

- Phased arrays provide beam agility and flexibility
 - Effective radar resource management (multi-function capability)
 - Near simultaneous tracks over wide field of view
- Phased arrays are significantly more expensive than reflectors for same power-aperture
 - Need for 360 deg coverage may require 3 or 4 filled array faces
 - Larger component costs
 - Longer design time

Antenna Stabilization Issues

- Servomechanisms are used to control the angular position of radar antennas so as to compensate automatically for changes in angular position of the vehicle carrying the antenna
- Stabilization requires the use of gyroscopes, GPS, or a combination, to measure the position of the antenna relative to its "earth" level position
- Radars which scan electronically can compensate for platform motion by appropriately altering the beam steering commands in the radar's computer system

Radomes

- Sheltering structure used to protect radar antennas from adverse weather conditions
 - Wind, rain, salt spray
- Metal space frame techniques often used for large antennas
 - Typical loss 0.5 dB
- Inflatable radomes also used
 - Less loss, more maintenance, flexing in wind

ALCOR

Q & A

