	Long term Objectives	Sort term Objectives	Features and Data Collection	Sensors	Subjects
1 (2006)	Characterize dyskinesia	 Monitor patients while they performed a set of standardized motor tasks 	 Intensity was measures as the RMS value of the detrended accelerometer signal The modulation of the output of each sensor was calculated as the auto-covariance of each channel Rate of movement was represented by dominant frequency component <10HZ Periodicity was measured by computing the ratio of energy Coordination between body segments 	 accelerometer (8 sensors) 	12
2 (feb 2007)	Quantification of Tremor and Bradykinesia	 design an ambulatory system using miniature gyroscopes develop two algorithms, one to detect and quantify tremor and one to quantify bradykinesia 	 Remove the drift of signals using infinite impulse response (IIR) filter Burg method for the estimation of the frequency spectrum of the signal for each window 	• Gyroscope (2 sensors)	1 st study: 10 PD patients 10 control subjects 2 nd study: 11 PD patients
3 (aug 2007)	Characterize dyskinesia & bradykinesia	 Develop a software platform to efficiently process on-board data 	(1)	accelerometergyroscope(8 sensors)	12(in-lab)
4(jan 2009)	Monitor neuromotor activity	 overcome challenges of battery lifetime and high data fidelity for long term studies high level programming interface for clinicians 	 maximum peak-to-peak amplitude mean RMS Peak velocity RMS of the jerk time series 	accelerometergyroscope(8 sensors)	6(in earlier version of Mercury platform)
5 (jun 2009)	FOG detection	design an unobstructed systemmaximum battery life		accelerometergyroscope(1 sensor)	5 subjects*
6 (nov 2009)	Monitor motor fluctuations	 a support vector machine (SVM) classifier was implemented to estimate the severity of tremor, bradykinesia and dyskinesia 	 The range of amplitude of each channel (RMS) value of each accelerometer signal cross-correlation-on-based features Frequency-based features Signal entropy 	accelerometer (8 sensors)	12(in-lab)
7 (mar 2010)	FOG detection	 Automatically detect FOG Rhythmic auditory signal feedback Reduce the number and length of their motor blocks 		• accelerometer (3 sensors)	10(in-lab)
8 (sept 2010)	Monitor motor fluctuations	 Home monitoring for improving Making efficient and cost effective the process 	Signal entropyRMSData rangeCross-correlation	• accelerometer (8 sensors)	Not mentioned
9 (mar 2011)	Monitor motor fluctuations	 a resource-aware data collection engine web services for live-streaming and storage of sensor data web-based GUI 		• accelerometer (8 sensors)	Not mentioned
10 (may 2012)	Assessment of tremor	 propose an automated method for both resting and action/postural tremor assessment 	 angle between sensors /Low-Frequency (LF) energy Spectrum entropy/LF and HF energy/Ratio of high to total energy 	• accelerometer (6 sensors)	23 (18 was PD's patients)+

	Long term Objectives	Sort term Objectives	Features and Data Collection	Sensors	Subjects
11 (2012)	FOG detection	Automatically detect FOGRhythmic auditory signal feedback	meanvariancestandard deviationentropy	accelerometergyroscope(3 sensors)	
12 (jan 2013)	Characterize motor symptoms during TUG and FOG	 innovative technology based on wearable sensors processing algorithm which provides outcome measures 	 Midswing was first detected by the positive peak of pitch angular velocity 	accelerometergyroscope(1 sensor)	20 (10 was PD's patients)
13 (sep 2013)	FOG detection	 Support gait rehabilitation Automatically detect FOG Rhythmic auditory signal feedback comfortable 	Gait parameters: cadence step length trunk posture gait speed gait asymmetry	accelerometergyroscopemagnetometer(3 sensors)	Not mentioned
14 (mar 2015)	FOG detection	 Independent use Gait assistance at unsupervised envir. Automatically detect FOG Rhythmic auditory signal feedback 	 Power of locomotion band (PL) Power on freeze band (PF) Total Power (TP) Freeze Index (FI) 	accelerometergyroscopemagnetometer(2 sensors)	23(in-lab) 9(out-lab)
15 (2017)	FOG detection	 Automatically detect FOG Real time signal processing platform 	Freezing indexSpectral coherence	• accelerometer (3 sensors)	10 PD patients
16 (2017)	Monitor motor fluctuations	 explore the capability of machine learning algorithms to recognize activities of healthy people and people with Parkinson's 	 (RMS) value of each accelerometer signal Wrapper feature selection method based on random forest algorithm 	accelerometergyroscope(1 sensor)	2 PD patients 10 control Subjects
17 (2017)	Monitor motor fluctuations	 investigate the validity of an objective gait measure for assessment of different states of advanced PD patients 	 mean, standard deviation, skewness Irregularities in movements A three level discrete wavelet transform (DWT) 	accelerometergyroscope(2 sensors)	19 patients with advanced PD
18 (2017)	Estimating bradykinesia			 accelerometer 	10 PD patients
19 (2017)	Early stage diagnosis of Parkinson's disease			(2 sensors) *Accelerometer*	19 mild PD patients 24 severer PD patients 17 young control subjects 17 old control subjects

References

- 1. Analysis of the Severity of Dyskinesia in Patients with Parkinson's Disease via Wearable Sensors
- 2. Quantification of Tremor and Bradykinesia in Parkinson's Disease Using a Novel Ambulatory Monitoring System
- 3. Analysis of Feature Space for Monitoring Persons with Parkinson's Disease With Application to a Wireless Wearable Sensor System
- 4. Mercury: A Wearable Sensor Network Platform for High-Fidelity Motion Analysis
- 5. deFOG a Real Time System for detection and unfreezing of Gait of Parkinson's Patients
- 6. Monitoring Motor Fluctuations in Patients With Parkinson's Disease Using Wearable Sensors
- 7. Wearable Assistant for Parkinson's Disease Patients With the Freezing of Gait Symptom
- 8. Home Monitoring of Patients with Parkinson's Disease via Wearable Technology and a Web-based Application
- 9. A Web-Based System for Home Monitoring of Patients With Parkinson's Disease Using Wearable Sensors
- 10. Assessment of Tremor Activity in the Parkinson's Disease Using a Set of Wearable Sensors
- 11. Online Detection of Freezing of Gait with Smartphones and Machine Learning Techniques
- 12. On-Shoe Wearable Sensors for Gait and Turning Assessment of Patients With Parkinson's Disease
- 13. Wearable Audio-Feedback System for Gait Rehabilitation in Subjects With Parkinson's Disease
- 14. A Wearable Assistant for Gait Training for Parkinson's Disease with Freezing of Gait in Out-of-the-Lab Environments
- 15. Wearable Healthcare Systems: A Single Channel Accelerometer Based Anomaly Detector for Studies of Gait Freezing in Parkinson's Disease
- 16. Physical Activity Recognition of Elderly People and People with Parkinson's (PwP) during Standard Mobility Tests using Wearable Sensors
- 17. Using measurements from wearable sensors for automatic scoring of Parkinson's disease motor states: results from 7 patients
- 18. Estimating Bradykinesia in Parkinson's Diseasewith a Minimum Number of Wearable Sensors
- 19. Development of High Sensitivity CMOS-MEMS Inertia Sensor and its Application to Early-Stage Diagnosis of Parkinson's Disease

Published in

- 1. Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks
- 2. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 2, FEBRUARY 2007
- 3. Proceedings of the 29th Annual International Conference of the IEEE EMBS, Cité Internationale, Lyon, France
- 5. 31st Annual International Conference of the IEEE EMBS, Minneapolis, Minnesota, USA, September 2-6, 2009
- 6. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 13, NO. 6, NOVEMBER 2009
- 7. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 14, NO. 2, MARCH 2010
- 8. 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, Argentina, August 31 September 4, 2010
- 9. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 58, NO. 3, MARCH 2011
- 10. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 16, NO. 3, MAY 2012
- 11. 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops
- 12. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 60, NO. 1, JANUARY 2013
- 13. UbiComp'13, September 8–12, 2013, Zurich, Switzerland
- 14. ACM Transactions on Interactive Intelligent Systems, Vol. 5, No. 1, Article 5, Publication date: March 2015
- 15. IEEE ICC 2017 SAC Symposium E-Health Track
- 16. 17.

4.

- 18. 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)
- 19.