Deep Learning Fundus Image Analysis for Early Detection of Diabetic Retinopathy

Introduction

A diabetes condition that impacts the eyes is diabetic retinopathy. Damage to the blood vessels in the light-sensitive tissue at the back of the eye is what causes it (retina). Initially, diabetic retinopathy may not manifest any symptoms or may only result in minor vision issues. Deep learning is a key component in ophthalmology to diagnose critical disorders like diabetic retinopathy (DR). Diabetic retinopathy is a common disease that diabetic patients are diagnosed with.The analyst is responsible for manually detecting exudates, which takes time.

Litrature Survey

S.No	Author	Title	Objective
1.	<u>Xiaogang Li</u> et al.	Convolutional neural	To implement transfer
	(2017)	networks based	learning based on CNNs
		transfer learning for	for diabetic retinopathy
		diabetic retinopathy	fundus picture
		fundus image	classification. On 1014 and
		classification [1]	1200 fundus pictures from
			the two publicly accessible
			DR1 and MESSIDOR
			databases, experiments are
			conducted.

Saboora	Comparative Study	In this study, pre-trained
Mohammadian et al.	of Fine-Tuning of	convolutional neural
(2017)	Pre-Trained	networks are used to
` '	Convolutional	automatically diagnose
	Neural Networks for	diabetic retinopathy. To
		circumvent the resource-
	1 5	and time-intensive training
		procedures required to
		create a convolutional
		neural network from
		scratch, pre-trained
		networks are used.
<u>ParhamKhojasteh</u> et	Exudate detection in	This study looked into
al. (2019)	fundus images using	various deep learning
	deeply-learnable	techniques in order to
	features [3]	increase sensitivity and
		specificity, . In this
		research, several deep
		learning techniques,
		including CNNs, pre-
		trained Residual Networks
		(ResNet-50), and
		Discriminative Restricted
		Boltzmann Machines, were
		evaluated with both
		supervised and
		unsupervised classifiers to
		improve the performance of
		autonomous exudate
		identification.
	(2017) ParhamKhojasteh et	Pre-Trained Convolutional Neural Networks for Diabetic Retinopathy Screening [2] ParhamKhojasteh et al. (2019) Exudate detection in fundus images using deeply-learnable

4.	Md Robiulislam et al.	Applying supervised	In this research a SCL
	(2019)	contrastive learning	approach, a two-stage
		for the detection of	training method with
		diabetic retinopathy	supervised contrastive loss
		and its severity levels	function, to identify the DR
		from fundus images	and its severity stages from
		[4]	fundus images (FIs) using
			the "APTOS 2019
			Blindness Detection"
			dataset was proposed.
			Experiments were carried
			out to further validate the
			performance of the model
			using the "Messidor-2"
			dataset.
5.	Muhammad Mateen	Exudate Detection	To detect exudate using
	et al. (2019)	for Diabetic	a pretrained convolutional
		Retinopathy Using	neural network (CNN)-
		Pretrained	based framework. In the
		Convolutional	suggested method, data
		Neural Networks [5]	pre-processing is done
			initially to standardise
			exudate patches.
6.	<u>Laxmi Math</u> et al.	Adaptive machine	To develop a segment-
	(2020)	learning	based learning method for
		classification for	detecting diabetic
		diabetic retinopathy	retinopathy that
		[6]	simultaneously learns
			classifiers and features
			from the data and makes
			considerable progress in
			identifying the visual
			manifestations of the
			disease and its internal
			lesions.

7.	V. Deepa et al. (2022)	Automated grading	To develop a feature
	, ,	of diabetic	extraction technique for DR
		retinopathy using	grading based on deep
		CNN with	learning convolutional
		hierarchical	neural network (CNN)
		clustering of image	using discriminative multi-
		patches by siamese	sized patches.
		network [7]	
8.	Mohamed Abdou	Diabetic Retinopathy	To provide a novel
	<u>BERBAR</u> et al.	Detection and	enhancing method to
	(2022)	Grading using Deep	improve the quality of
		learning [8]	fundus images.
			Additionally, it suggests
			two convolutional neural
			network (CNN) model
			topologies. The first one
			divides DR images into two
			categories: normal and
			pathological. the second
			CNN architecture to
			categorise DR severity
			levels.

9.	AliKarsaz et al. (2022)	A modified	This study suggests
		convolutional neural	automated approaches for
		network architecture	diagnosing diabetic
		for diabetic	retinopathy to speed up
		retinopathy screening	examinations and assist
		using SVDD [9]	doctors. Due to the retinal
			pictures' similar feature
			maps and slight variations
			in spatial domain, this
			method may not be the best
			for detecting diabetic
			retinopathy. Therefore, the
			classifier in this research
			proposes a new high level
			picture understanding
			employing a modified CNN
			architecture combined with
			a modified SVDD.
10.	Mohamed A. Berbar	Features extraction	This study is to identify
	et al. (2022)	using encoded local	diabetic retinopathy in
		binary pattern for	fundus pictures and assess
		detection and	the disease's severity with
		grading diabetic	no lesion segmentation.
		retinopathy [10]	

REFERENCES:

- [1]X. Li, T. Pang, B. Xiong, W. Liu, P. Liang, and T. Wang, "Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification," *Proceedings 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2017*, vol. 2018-January, pp. 1–11, Feb. 2018, doi: 10.1109/CISP-BMEI.2017.8301998.
- [2]S. Mohammadian, A. Karsaz, and Y. M. Roshan, "Comparative Study of Fine-Tuning of Pre-Trained Convolutional Neural Networks for Diabetic Retinopathy Screening," 2017 24th Iranian Conference on Biomedical Engineering and 2017 2nd International Iranian Conference on Biomedical Engineering, ICBME 2017, Aug. 2018, doi: 10.1109/ICBME.2017.8430269.
- [3]P. Khojasteh *et al.*, "Exudate detection in fundus images using deeply-learnable features,"

- *Computers in Biology and Medicine*, vol. 104, pp. 62–69, Jan. 2019, doi: 10.1016/J.COMPBIOMED.2018.10.031.
- [4]M. R. Islam *et al.*, "Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images," *Computers in Biology and Medicine*, vol. 146, p. 105602, Jul. 2022, doi: 10.1016/J.COMPBIOMED.2022.105602.
- [5]M. Mateen, J. Wen, N. Nasrullah, S. Sun, and S. Hayat, "Exudate Detection for Diabetic Retinopathy Using Pretrained Convolutional Neural Networks," *Complexity*, vol. 2020, 2020, doi: 10.1155/2020/5801870.
- [6]L. Math and R. Fatima, "Adaptive machine learning classification for diabetic retinopathy," *Multimedia Tools and Applications 2020 80:4*, vol. 80, no. 4, pp. 5173–5186, Oct. 2020, doi: 10.1007/S11042-020-09793-7.
- [7]V. Deepa, C. Sathish Kumar, and T. Cherian, "Automated grading of diabetic retinopathy using CNN with hierarchical clustering of image patches by siamese network," *Physical and Engineering Sciences in Medicine 2022 45:2*, vol. 45, no. 2, pp. 623–635, May 2022, doi: 10.1007/S13246-022-01129-Z.
- [8]M. A. BERBAR, "Diabetic Retinopathy Detection and Grading using Deep learning," *Menoufia Journal of Electronic Engineering Research*, vol. 0, no. 0, pp. 11–20, Jun. 2022, doi: 10.21608/MJEER.2022.138003.1057.
- [9]A. Karsaz, "A modified convolutional neural network architecture for diabetic retinopathy screening using SVDD," *Applied Soft Computing*, vol. 125, p. 109102, Aug. 2022, doi: 10.1016/J.ASOC.2022.109102.
- [10]M. A. Berbar, "Features extraction using encoded local binary pattern for detection and grading diabetic retinopathy," *Health Information Science and Systems 2022 10:1*, vol. 10, no. 1, pp. 1–13, Jun. 2022, doi: 10.1007/S13755-022-00181-Z.