1. Costruite un automa a stati finiti che riconosca il linguaggio formato da tutte le stringhe sull'alfabeto $\{a,b\}$ nelle quali ogni a è seguita immediatamente da una b.

2. Costruite un automata a stati finini che riconosca il linguaggio formato da tutte le stringhe sull'alfabeto {4,5} che, interpretate come numeri in base 10, rappresentano numeri interi che non sono divisibili per 3.

3. Costruite un automa a stati finiti deterministico che riconosca il linguaggio formato da tutte le stringhe dell'alfabeto $\{0,1\}$, che, interpreate come numeri in notazione binaria, denotano multipli di 4. Utilizzando il nondeterminismo si riesce a costruire una automa con meno stati? Generalizzate l'esercizio a multipli di 2^k , dove k > 0 è un intero fissato

Questo, non deterministico, diventa

Questo può essere generalizzato ai multipli di 2^k come

4. Costruite un automa a stati finiti che riconosca il linguaggio formato da tutte le stringhe sull'alfabeto $\{0,1\}$ che, interpretate come numeri in notazione binaria, rappresentano multipli di 5.

Solution:

5. Considerate il seguente linguaggio:

 $L = \{w \in \{a,b\}^* \mid \text{il penultimo e il terzultimo simbolo di } w \text{ sono uguali}\}$

(a) Costruite un automa a stati finiti deterministico che accetta L

Solution:

(b) Costruite un automa a stati finiti nondeterministico che accetta L

- (c) Dimostrare che per il linguaggio $L\!\!:$
 - $\bullet\;$ tutte le stringhe di lunghezza 3 sono distingui
bili tra loro
 - $\bullet\,$ la parola vuota è distinguibile da tutte le stringhe di lunghezza $3\,$

Solution: Per tutte le stringhe di lunghezza 3 costruiamo la seguente tabella.

${f z}$	aaa	aab	aba	abb	baa	bab	bba	bbb
aaa		a	ϵ	ϵ	ϵ	ϵ	a	aa
aab			ϵ	ϵ	ϵ	ϵ	ba	ba
aba				a	a	bb	ϵ	ϵ
abb					bb	b	ϵ	ϵ
baa						a	ϵ	ϵ
bab							ϵ	ϵ
bba								aa
bbb								

Mentre per la parola vuota cosrtruiamo

\mathbf{Z}	aaa	aab	aba	abb	baa	bab	bba	bbb
ϵ	ϵ	ϵ	aa	b	a	bb	ϵ	ϵ

È facile invece notare che le stringhe di lunghezza uno e due non sono distinguibili

Z	aaa	aab	aba	abb	baa	bab	bba	bbb
a	ϵ	ϵ	?	b	a	ba	ϵ	ϵ
b	ϵ	ϵ	ab	b	a	?	ϵ	ϵ
aa	ϵ	ϵ	a	aa	?	a	ϵ	ϵ
ab	ϵ	ϵ	bb	a	a	?	ϵ	ϵ
ba	ϵ	ϵ	?	a	a	bb	ϵ	ϵ
bb	ϵ	ϵ	b	?	bb	a	ϵ	ϵ
b aa ab ba bb	ϵ ϵ ϵ ϵ ϵ	ϵ ϵ ϵ ϵ	ab a bb ? b	b aa a a ?	a ? a a bb	? a ? bb a	ϵ ϵ ϵ ϵ	6

(d) Utilizzando i risultati precedenti, ricavate un limite inferiore per il numero di stati di ogni automa deterministico che accetta L

Solution: Dai risultati precedenti si può capire che l'automa necessita di almeno 2^3+1 stati.

6. Costruite un insieme di stringhe distinguibili tra loro per ognuno dei seguenti linguaggi:

(a)
$$\{w \in \{a,b\}^* \mid \#_a(w) = \#_b(w)\}$$

Solution: È facile vedere che tutte le parole in $\{a^n \mid n \geq 0\}$ sono tra loro distinguibili, infatti

Quindi l'insieme delle stringhe distinguibili $X = \{a^n \mid n \geq 1\} \cup \{b^n \mid n \geq 1\} \cup \{\epsilon\}$. Infatti per ogni stringa $w \in L$,

$$\begin{cases} w \sim a^n & \text{se } \#_a(w) > \#_b(w) \land \#_a(w) - \#_b(w) = n \\ w \sim b^n & \text{se } \#_a(w) < \#_b(w) \land \#_b(w) - \#_a(w) = n \\ w \sim \epsilon & \text{altrimenti} \end{cases}$$

(b) $\{a^nb^n \mid n \ge 0\}$

Solution: Qui si può fare un ragionamento simile a prima, quindi ragionando ancora sulle parole $\{a^n \mid n \geq 0\}$

Queste sono ancora tutte distinguibili, quindi $X = \{a^n \mid n \geq 0\}$. Possiamo infatti vedere questo linguaggio come un caso speciale del superiore.

(c) $\{ww^R \mid w \in \{a,b\}^*\}$ dove, per ogni stringa w, w^R indica la stringa w scritta al contrario

Solution: L'insieme delle stringhe distinguibili per questo linguaggio è esattamente $X = \{a, b\}^*$. Infatti una stringa w determina univocamente il suo inverso w^R .

Per alcuni di questi linguaggi riuscite ad ottenere insiemi di stringhe distinguibili di cardinalità infinita? Cosa significa ciò?

Solution: Tutti gli insiemi per questi linguaggi sono infiniti, quindi non possono essere riconosciuti da automi a stati finiti.

7. Considerate l'automa di Meyer&Fischer A_n presentato nella Lezione 4 (caso peggiore della costruzione per sottoinsiemi) e mostrato nella seguente figura: Descrivete a parole la

proprietà che deve soddisfare una stringa per essere accettata da A_n . Riuscite a costruire un automa non deterministico, diverso da A_n , per lo stesso linguaggio, basandovi su tale proprietà?

Solution: Qualsiasi che finisce con multipli di n a, oppure con un numero qualsiasi di b.