Lecture 11: Serial Data Communication & 8251

Prof. Xiangzhong FANG xzfang@sjtu.edu.cn

The 80x86 IBM PC and Compatible Computers

Chapter 17 Serial Data Communication and the 8251 Chip

Data Communication

- **B** Data transmission is the transfer of data from point-to-point often represented as an electromagnetic signal over a physical communication channel
- **X** A **communication channel** refers to the medium used to convey information from a sender (or transmitter) to a receiver.
 - **X** Examples: copper wires, optical fibbers or wireless communication channels.

Two Ways: Parallel & Serial

Parallel data transfers:

- # Each bit uses a separate line (wire)
- # Often 8 or more lines are used
- **X** Control signals in addition
- # Fast & expensive & for short-distance communication

署 Serial data transfers:

- ₩ One single data line
- **X** Bits are sent over the line one by one
- **%** No dedicated lines for control signals
- # Cheap & slow & for long-distance communication

The Whole Picture of Serial Communication

The sender and receiver need a **<u>protocol</u>** to make sense of data:

❖e.g., how the data is packed, how many bits constitute a character, when the data begin and end

DTE- Data Terminal Equipment, usually a computer.

DCE- Data Communication Equipment, usually a *modem*.

Serial interface –ICs such as 8251A,16550, and 8250, connecting DTE and DCE.

Serial Communication

- #Data transfer rate
- **#**Synchronization methods
- **#**Communication modes
- # Error detection
- ****** Modulation and Demodulation

Data Transfer Rate

#Symbol rate, a misnomer is *baud rate*

- ☐ The number of distinct <u>symbol</u> or <u>pulse</u> changes (signaling events) made to the transmission medium per second in a digitally modulated signal or a line code, quantified using the <u>baud</u> unit
- □ Each symbol can represent one (binary encoded signal) or several bits of data

₩Bit rate

Synchronization Methods

*****Asynchronous serial communication:

- ☐ The starting of each byte is asynchronous, and therefore each byte needs synchronization between the sender and the receiver using start bit.

#Synchronous serial communication:

Asynchronous Serial Communication

#Framing method:

△Character: 5, 6, 7, or 8 bits

 \triangle End bit(s): 1 (high)

Synchronous Serial Communication

#Framing method, in case of the BISYNC protocol

△Synch characters

△A block of data

one frame

_							·
	SYN	SYN	STX	DATA FIELD	ETX	всс	PAD

one frame

01111110	8-bit address	8-bit control	Information Field	16-bit	01111110
(beg. flag).	field	field		frame check	(end flag)

Communication Modes

#Simplex:

Half-duplex:

- □ Data is transmitted one way at a time

#Full-duplex

- □ Data can go both ways at the same time

Error Detection

#Parity bit

#CRC Calculation

 \triangle k-bit data, n-bit CRC: $\frac{M(X) \times X^n}{G(X)}$ \triangle Example:

- ❖ Given $G(x) = x^3 + x^2 + 1$ ->1101, (take the coefficients of the polynomial, n=3)
- ❖ If data is 1010110, M(x) * Xⁿ → 1010110000
- CRC = 1010110000%1101 (the remainder of binary division, using XOR operation)

Modulation and Demodulation

- It is not suitable to transmit digital signals directly on a channel for a long distance

 - Need to modulate digital signals and get analog signals at the sender, and demodulate the analog signals and get the original digital signals
- **X** Three parameters (Amplitude, frequency, phase) of the carrier can be used for the modulation and demodulation purpose
 - △ Amplitude-Modulating (AM)
 - □ Frequency-Shift Keying (FSK)
 - □Phase-Shift Keying (PSK)

Modulation and Demodulation

1 and 0 are represented using different amplitude

1 and 0 are represented using different frequency

8251 USART Chip

- **#**Capable of doing both asynchronous and synchronous data communication
 - Synchronous: baud rate 0-64K, characters can be 5, 6, 7, or 8 bits, automatically detect or insert sync characters
 - △Asynchronous: baud rate 0-19.2K, characters can be 5, 6, 7, or 8 bits, automatically insert start, stop and parity bits, TxC and RxC clocks can be 1, 16, or 64 times of the baud rate
- #Full duplex, double-buffered
- # Error checking circuit

8251

Pin Configuration

Block Diagram

8251 Communication Interface

Interfacing to 8088

C/D	RD/	WR/	CS/	Function
0	0	1	0	8251A DATA → DATA BUS
0	1	0	0	DATA BUS → 8251A DATA
1	0	1	0	STATUS → DATA BUS
1	1	0	0	DATA BUS → Control
Х	1	1	0	DATA BUS → 3-STATE
Х	Х	Х	1	DATA BUS → 3-STATE

8251 Signals

The 8251A is **doubled-buffered**. This means that one character can be loaded into a **data-out buffer register** while another character is being shifted out of the actual **transmit shift register**.

The **TxRDY** output of the 8251A will go high when:

- The data-out buffer register is Empty for another character from the CPU.
- The CTS/ input has been asserted low.
- The transmit-enable (TxEN) bit of the 8251A's command word is set.

The **TxEMPTY** output of the 8251A will go high when both the **data-out buffer register** and the **transmit shift register** are empty.

The RxRDY output of the 8251A will go high when:

- □ The data-in buffer register is full and is ready to be read by the CPU.
- □ The receive-enable (RxE) bit of the 8251A's command word is set.

If the CPU does not read a character from the **data-in buffer register** before another character is shifted in, the first character will be overwritten and lost.

Using 8251

8251 Mode Word

8251 Command Word

8251 Command Word

Initializing the **TxEN** bit to 1 will enable the transmitter section of the 8251A and the **TxRDY** output.

Initializing **DTR**/ bit to 1 will cause the DTR/ output of the 8251A to be asserted low. This signal is used to tell a modem that a PC or terminal is operational.

Initializing RxE bit to 1 will enable the RxRDY output of the 8251A.

Initializing **SBRK** bit to 1 will cause the 8251A to output characters of 0's including start bits, data bits, and parity bits (**break character**). A break character is used to indicate the end of block of transmitted data.

Initializing **ER** bit to 1 will cause the 8251A to reset the **parity**, **overrun**, and **framing** error flags in the 8251A status register.

Initializing **RTS** bit to 1 will cause the 8251A to assert its **request-to-send** (**RTS**/) output low. This signal is sent to a modem to ask whether a modem and the receiving system are ready for a data character to be sent.

Initializing **IR** bit to 1 will cause 8251A to be internally reset. After the software- reset command, a new mode word must be sent.

Initializing **EH** bit to 1 will cause 8251A to enter hunt mode (search for **SYN** characters, and is used only in synchronous mode.

8251 Status Word

Initializing 8251

When power is first applied, the 8251A may come up in the mode, SYN character or command format.

It is safest to execute the worst-case initialization sequence (**SYNC** mode with two **SYN** characters). Loading three 00H consecutively into the device with C/#D = 1.

An **internal reset command** (40H) may then be issued to return the device to **mode word**.

The **mode word** must then be issued, and followed by the **command word**.

8251 Programming Example

Use 8251 to transfer 256 characters in asynchronous mode, assuming that the port addresses are 208H and 209H, the baud factor is 16, and 1 stop bit, 1 start bit, no parity bit, and 8-bit character are used.

Solution: Sender side: data is stored in Buf1

```
LEA DI, Buf1
                                                        : mode word
                                  MOV AL, 01001110B
MOV DX,209H
                                  MOV DX, AL
MOV AL, 00H
                                  MOV AL, 00110111B
                :worse-case init.
                                                        : command word
OUT DX , AL
                                  OUT DX , AL
                                  MOV CX, 256
                                                         ; to send 256 char.
CALL DFLAY
                                 NEXT: MOV DX, 209H
MOV AL,00H
                                  IN AL, DX
                                                         : status word
OUT DX , AL
                                  AND AL, 01H
                                                         ; TxRDY?
CALL DELAY
                                  JZ NEXT
MOV AL,00H
                                  MOV AL , [DI]
OUT DX, AL
                                  MOV DX, 208H
                                                        ; data register 208H
CALL DFLAY
                                  OUT DX , AL
                                                         : send the char.
MOV AL,40H
               :reset command
                                  INC DI
OUT DX , AL
                                  LOOP NEXT
```

8251 Programming Example

Receiver side: data will be stored in Buf2

```
Data segment
                                   MOV AL, 01001110B
                                                       : mode word
buf2 DB 256 dup(?)
                                   OUT DX , AL
Data ends
                                                       ; command word
                                   MOV AL, 00110111B
                                   OUT DX, AL
                                   MOV CX, 256
                                                   to receive 256 char.
    MOV DX,209H
                                   MOV SI, 0
    MOV AL,00H
                              NEXT: MOV DX, 209H
    OUT DX , AL
                                   IN AL, DX
                                                       : status word
    CALL DELAY
                                   AND AL, 02H
                                                       : RXRDY ?
    MOV AL,00H
                                   J7 NFXT
    OUT DX , AL
                                   MOV DX, 208H
    CALL DELAY
                                   IN AL , DX
                                                       : receive a char
    MOV AL,00H
                                   MOV buf2[SI], AL
    OUT DX , AL
                                   INC SI
    CALL DELAY
                                   LOOP NEXT
    MOV AL,40H
                    : reset
    OUT DX , AL
```