11763 - Medical Image Processing

Final Project:

DICOM Loading, Visualization and 3D Coregistration

Guillem Bibiloni Femenias

Contents

- 1. DICOM Loading and Visualization
 - 1.1 3D Slicer
 - 1.2 Image Rearrangement
 - 1.3 Artifact Removal
 - 1.4 Segmentation
 - 1.5 GIF Animation

- 2. 3D Rigid Coregistration
 - 2.1 DICOM Files
 - 2.2 Match Dimensions Physically
 - 2.3 Main Idea
 - 2.4 Transformations with Quaternions
 - 2.5 Optimization Method
 - 2.6 Thalamus Region
 - 2.7 Conclusions

1.

DICOM
Loading and
Visualization

1.1 3D Slicer

Headers: Slice Location, Slice Thickness, Acquisition Number

1.2 Image Rearrangement

Pixel Array

Slice Location

, 21

, 5

Sort By Slice Location

And stack them all!

3D CT Image

1-31.dcm

1-05.dcm

, 37

1.3 Artifact Removal

if $p < 0 \rightarrow p := 0$

1.4 Segmentation

Arrange slices according to ImagePositionPatient and SliceLocation

1-1.dcm

1.5 GIF animation

Rotate on axial plane both the segmentation and CT image. Adjust CT image and segmentation Alpha Fusion Adjust aspect ratio with Slice Thickness 5:1 New Frame CT img: Bone

Segmentation: **Set1**

Maximum Intensity Projection (Sagittal or Coronal)

1.5 GIF animation

Final Result

2.

3D Rigid Coregistration

2.1 DICOM Files

We rearrange the brain slices

We Inspect Phantom and Atlas brains

2.2 Match Dimensions Physically

Pixel Spacing [row,col]

Patient's Brain [0.5078,0.5078]

Phantom Brain [1,1]

Pt's Brain

Ph Brain

Atlas

Original Sizes

(181, 217, 181) (181, 217, 181) (181, 217, 181) (181, 217, 181)

Crop Phantom

 $(193, 229, 193) \longrightarrow (181, 217, 181)$ (181, 217, 181) (181, 217, 181)

Downsize Pt's Brain

(212, 512, 512) $(212, 512, 512) \longrightarrow (212, 259, 259) \longrightarrow (181, 217, 181)$

Crop Pt's Brain

2.3 Main Idea

Optimize a function that:

1. Transforms the Input Patient's Brain

2. Compute the difference/similarity with the phantom

$$MSE = \frac{1}{w \cdot h \cdot d} \sum (-)^2$$

Translation and then axial rotation

[O,O,O] [O,O,1]

[180,216,180]

Translation and then axial rotation: t(x)

[52,56,78] [85,85,46]

••• [-55,350,67]

Input Patient's Brain

Canvas

Problem: Unrepresented Pixels

Solution: Inverse transformation approach

Input Patient's Brain

Canvas

Problem: For loop solution too slow

Solution: Use numpy-quaternions

─

7 109 137 pixels

NumPy ndarray with dtype=quaternion

```
array([quaternion(0, 180, 216, 81),
       quaternion(0, 180, 216, 83),
       quaternion(0, 180, 216, 85),
       quaternion(0, 180, 216, 87),
       quaternion(0, 180, 216, 89),
       quaternion(0, 180, 216, 91),
       quaternion(0, 180, 216, 93),
       quaternion(0, 180, 216, 95),
       quaternion(0, 180, 216, 97),
       quaternion(0, 180, 216, 99),
       quaternion(0, 180, 216, 101),
       quaternion(0, 180, 216, 103),
       quaternion(0, 180, 216, 105),
       quaternion(0, 180, 216, 107),
       quaternion(0, 180, 216, 109),
```

Apply the transformation as in the lectures

```
lpha \in [0,2\pi), \; ec{v} \in \mathbb{R}^3 \; 	ext{unitary}, \ ec{p} \in \mathbb{R}^3, \; ec{p}' = 	ext{AxialRot}_{ec{v},lpha}(p), \ q = \cos(lpha/2) + \sin(lpha/2) \cdot v, \ \Longrightarrow p' = q \cdot p \cdot q^*
```

```
q_star = np.quaternion.conjugate(q_ax_rot)
q_tmp = q_indices * q_star
q_prime = q_ax_rot * q_tmp
```

2.4 Optimization method

We use scipy.optimize.minimize Nelder-Mead method

Method	L-BFGS-B	BFGS	Nelder-Mead	Powell	CG	SLSQP	COBYLA	TNC
MSE	0.064	0.064	0.058	0.11	0.064	0.114	0.061	0.063
Time (s)	147	798	332	302	575	28	141	97

2.4 Optimization method

Initialization parameters

Problem: Input and reference brain are not in the same orientation

Input brain

Reference brain

2.4 Optimization method

Initialization parameters

Solution: Initialize parameters to make them start in the same orientation

 $[-181, -217, 0, \pi, 0, 0, -1]$

2.5 Coregistration Results

Optimal parameters: [-181.22,-203.38,0,2.97,0,0,-1.06]

2.6 Thalamus Region

Mask extraction

 We extract all the Thalamus IDs from AAL3_1mm.txt

 We create a unified mask with all the pixels whose value belongs to any Thalamus ID

2.7 Thalamus Region

Transform to patient's input space

 We simply apply the inverse transformation to the thalamus mask. Axial rotation and then translation [181.22,203.38,0,2.97,0,0,1.06]

We apply alpha fusion to the mask and input brain.

Input: **Bone**Thalamus mask: **tab10**

2.7 Thalamus Region

Final Result

2.7 Thalamus Region

Final Result

Conclusions

- Inverse transformation + quaternions approach
- Best method for our problem: Nelder-Mead
- Hardcoded and specific data tailored aspects.
- Non suitable for real-time applications.
- Better visualization.

Thank you

Guillem Bibiloni Femenias