# Machine Learning Assignment 2 Part 1 Report

Name - Jatin Mahawar Roll. No. - 22CS30032

#### Non-Noisy Data (cardio\_noise.csv)

- Before Pruning
  - 0. Number of Nodes 1367
  - 1. Accuracy 0.64
  - 2. Macro Precision 0.6403552200321855
  - 3. Macro Recall Before Pruning 0.640697454078057

#### After Pruning

- 1. Accuracy 0.7025
- 2. Macro Precision 0.7022652265226523
- 3. Macro Recall After Pruning 0.702772411041118

### Noisy Data (cardio.csv)

- Before Pruning
  - 1. Number of Nodes 1865
  - 2. Accuracy 0.52375
  - 3. Macro Precision 0.5237458949453528
  - 4. Macro Recall Before Pruning 0.5237257603493343

#### After Pruning

- 1. Accuracy 0.62083333333333333
- 2. Macro Precision 0.620965409049945
- 3. Macro Recall After Pruning 0.6208031133419816

# Techniques used for minimize teh difference between noisy and non-noisy accuracies:

- Nodes are not begin splitted when having information gain less than 0.001.
- Number of Data point in a leaf node restricted to 20.
- Max Height of the Tree is set to be 100.

#### Comparison

• **Performace Comparison** - Value of Accuracy, precision and recall metrics shows that model perform better on non-noisy data than noisy data.

### **Impact of Noise**

- **Overfit Decision Tree** Noisy dataset increase the overfitting in model during training, that result in less accuracy of the model.
- **Complexity** Complexity of Decision tree increase for noisy data. As non-noisy data require 1367 nodes, and noisy data required 1865 nodes.

### **Key Finding**

- After applying pruning model improves on both datasets.
- Non-noisy dataset result in more complex decision tree.

### **Implications**

Applying a good noise removing strategy can result in better accuracy of model, but that could be difficult to apply.

### **Decision Tree Before Pruning (cardio.csv)**



#### **Decision Tree After Pruning (cardio.csv)**



# Decision Tree Before Pruning ( cardio\_noise.csv )



## Decision Tree After Pruning (cardio\_noise.csv)

