Chapter 16 - Laurent Series. Residue Integration

Selected Problem set 16.1

19–25 TAYLOR AND LAURENT SERIES

Find all Taylor and Laurent series with center z_0 . Determine the precise regions of convergence. Show details.

19.
$$\frac{1}{1-z^2}$$
, $z_0=0$ **20.** $\frac{1}{z}$, $z_0=1$

$$|Q| \frac{1}{1-2} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \dots \qquad |Z| < 1$$

$$\frac{1}{1-z^2} = \sum_{N=0}^{\infty} Z^N = |+Z^2 + Z^4 + \dots + |Z| < |\Rightarrow |Z| <$$

$$\frac{1}{1-z^{2}} = \frac{-1}{Z^{2}(1-z^{-2})} = -Z^{-2}\sum_{n=0}^{\infty} Z^{-2n-2} \qquad (Z/z)$$

Selected Problem set 16.2

Determine the location and order of the zeros.

1.
$$\sin^4 \frac{1}{2}z$$

2.
$$(z^4 - 81)^3$$

3.
$$(z + 81i)^4$$

4.
$$\tan^2 2z$$

5.
$$z^{-2} \sin^2 \pi z$$

6.
$$\cosh^4 z$$

Let
$$X = 0 + 2 \wedge T$$
, $\Lambda = 0, \pm 1, \pm 2$.

$$f(X) = 0$$

$$f'(Z) = 2 \cos(\frac{Z}{2}) \sin^{3}(\frac{Z}{2}) - f'(X) = 0$$

$$f''(Z) = 3 \cos^{3}(\frac{Z}{2}) \sin(\frac{Z}{2}) - 5 \cos(\frac{Z}{2}) \sin(\frac{Z}{2}) + f''(X) = 0$$

$$f''(Z) = 3 \cos^{3}(\frac{Z}{2}) \sin(\frac{Z}{2}) - 5 \cos(\frac{Z}{2}) \sin(\frac{Z}{2}) + \frac{3}{2} \cos^{3}(\frac{Z}{2}) + \frac{3}{2} \cos^{4}(\frac{Z}{2}) +$$

$$f(x) = 0$$

$$f(x) = -\frac{2\sin(\pi z)[\sin(\pi z) - \pi z\cos(\pi z)]}{z^{2}}, \quad f(x) = 0$$

$$f'(z) = \frac{2[(\pi^{2}x^{2} - 3)\sin^{2}(\pi z) + 4\pi z\cos(\pi z)\sin(\pi z) - \pi^{2}z^{2}\cos(\pi z)]}{z^{4}}$$

$$4/(1) = 27/2 \neq 0$$

13–22 SINGULARITIES

Determine the location of the singularities, including those at infinity. For poles also state the order. Give reasons.

13.
$$\frac{1}{(z+2i)^2} - \frac{z}{z-i} + \frac{z+1}{(z-i)^2}$$

14.
$$e^{z-i} + \frac{2}{z-i} - \frac{8}{(z-i)^3}$$

15.
$$z \exp(1/(z-1-i)^2)$$
 16. $\tan \pi z$

Sample plok at a essential

(5 fa)=z.e(z-1-1)2

what is essential singularity

Z-1-1=0, Z=(+i is singularity point P724, 163

$$+(Z)=Z\cdot\left[1+\frac{1}{(Z-1-i)^2}+\frac{1}{2\cdot(Z-1-i)^4}+\frac{1}{3!(Z-1-i)^6}+\cdots\right]$$

$$= \left[\left(2^{n} - (-i)^{n} \right)^{n} + \left((+i)^{n} \right)^{n} \right] \left[2^{n} \right]$$

$$= (Z - (-i)) + (\overline{Z - (-i)}) + (\overline{Z - (-i)})^{3} + (\overline{Z - (-i)})^{3}$$

$$+(1+i)+\frac{1+i}{(2-1-i)^{2}}+\frac{1+i}{2(2-1-i)^{2}}+\frac{1+i}{2(2-1-i)^{2}}+\frac{1+i}{2(2-1-i)^{2}}$$

$$= Z + \frac{1}{Z - (-i)^2} + \frac{1 + i}{(Z - (-i)^2)^2} + \frac{1}{2(Z - (-i)^3)^3}$$

$$+\frac{1+i}{2(z-1-i)^4}+\cdots$$

part (1) has finity many term => Isolated essential singularity

Pole, Z-Iti

Part (2) infinity

Selected Problem set 16.3

16.3 5, 9, 21, 23

3–12 RESIDUES

Find all the singularities in the finite plane and the corresponding residues. Show the details.

3.
$$\frac{\sin 2z}{z^6}$$

4.
$$\frac{\cos z}{z^4}$$

5.
$$\frac{8}{1+z^2}$$

6. tan 2

Res
$$\frac{8}{(2+i)(2-i)} = \frac{9}{2+i}\Big|_{z=i} = \frac{4}{i} = -4i$$

Res
$$\frac{8}{(z+i)(z+i)} = \frac{8}{z-i}\Big|_{z=-i} = \frac{4}{z-i}$$

9.
$$\frac{1}{1 - e^z}$$

$$e^{2} = \left(\rho S\left(\frac{Z}{i}\right) + i Sm\left(\frac{Z}{i}\right) \right)$$

not only 0

$$ReS = \frac{1}{1 - e^z} = \frac{1}{1 - e^z} = \frac{1}{1 - e^z}$$

21.
$$\oint_C \frac{\cos \pi z}{z^5} dz$$
, $C: |z| = \frac{1}{2}$

$$\overline{Z} = 0$$

$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - + \cdots$$

$$\frac{(0) \pi 2}{2^{5}} = \frac{1}{2^{5}} - \frac{\pi^{2}}{2! 2^{3}} + \frac{\pi^{4}}{4! 2} - \frac{\pi^{2}}{6!}$$

$$b_1 = \frac{\pi^4}{4!} = \frac{\pi^4}{24}$$

$$\oint_{C} \frac{as\pi^{2}}{2s} dz = 2\pi i b = 2\pi i \frac{\pi^{4}}{24} = \frac{\pi^{5}}{12} i$$

23.
$$\oint_C \frac{30z^2 - 23z + 5}{(2z - 1)^2(3z - 1)} dz$$
, C the unit circle

$$Z = \frac{1}{2}, \quad Z_{2} = \frac{1}{3}$$

$$\begin{cases} \frac{302^{2} \cdot 232 + 5}{(22-1)^{2} (32-1)} & dZ = \left(\frac{1}{12} \int \frac{302^{2} - 232 + 5}{(2-\frac{1}{2})^{2} (2-\frac{1}{3})}\right) \\ = 2\pi i \quad \frac{1}{12} \left[\frac{2es}{2^{-\frac{1}{2}}} \frac{\frac{202^{2} - 232 + 5}{(2-\frac{1}{2})^{2} (2-\frac{1}{3})}}{(2-\frac{1}{2})^{2} (2-\frac{1}{3})} + \frac{302^{2} - 232 + 5}{(2-\frac{1}{2})^{2} (2-\frac{1}{3})} \right] \\ = \frac{\pi i}{6} \left[\frac{1}{6} \frac{1}{(2-\frac{1}{2})^{2}} \frac{(302^{2} - 232 + 5)}{(2-\frac{1}{3})^{2}} + \frac{302^{2} - 232 + 5}{(2-\frac{1}{2})^{2}} \right] \\ = \frac{\pi i}{6} \left[\frac{6(452^{2} - 302 + 4)}{(32-1)^{2}} + \frac{302^{2} - 232 + 5}{(2-\frac{1}{2})^{2}} \right] \\ = \frac{\pi i}{6} \left[\frac{6 + 24}{(2-\frac{1}{2})^{2}} + \frac{302^{2} - 232 + 5}{(2-\frac{1}{2})^{2}} \right] \\ = \frac{\pi i}{6} \left[\frac{6 + 24}{(2-\frac{1}{2})^{2}} + \frac{302^{2} - 232 + 5}{(2-\frac{1}{2})^{2}} \right]$$

Selected Problem set 16.4

16.4 1, 5, 11, 13

1–9 INTEGRALS INVOLVING COSINE AND SINE

Evaluate the following integrals and show the details of your work.

1.
$$\int_0^{\pi} \frac{2 d\theta}{k - \cos \theta}$$
 2.
$$\int_0^{\pi} \frac{d\theta}{\pi + 3 \cos \theta}$$

$$\int_{0}^{T} \frac{2d0}{k - 600} = \int_{0}^{2\pi} \frac{2 \cdot d^{\frac{2}{3}}}{k - 605} = \int_{0}^{2\pi} \frac{dd}{k - 605} = J$$

$$C^{\frac{3}{2}} = (3S_{\frac{3}{2}} + iSm_{\frac{3}{2}})$$

$$C^{\frac{1}{2}} \leq Cos(-\frac{1}{2}) + i Sin(-\frac{1}{2})$$

$$\cos(\frac{1}{2}) = \frac{1}{2} \left(e^{i\frac{\pi}{2}} + e^{-i\frac{\pi}{2}} \right) = \frac{1}{2} \left(z + \frac{1}{2} \right)$$

$$e^{\frac{1}{2}} = z \implies \frac{1}{2} e^{\frac{\Delta}{2}} dz = dz \implies \frac{dz}{dz} = \frac{2}{2}z$$

$$J = \oint_{C} \frac{2dZ/(iZ)}{k - \frac{1}{2}(2 + \frac{1}{2})} = \frac{2}{i} \oint_{C} \frac{dZ}{kZ - \frac{1}{2}(Z^{2} + 1)}$$

$$= \frac{-4}{2} \oint_{C} \frac{d2}{Z^2 - 2|z| + 1}$$

$$\begin{array}{lll} & \{ 2 - 1 \} = 1 \\ & \{ 2 - 1 \} = 1 \\ & \{ 2 - 1 \} = 2 \\ & \{ 2 - 2 \} \\ & \{ 2 - 2$$

$$|c| \leq |c| \qquad |c| \leq |c| \qquad |c| \leq |c| \qquad |c| \leq |c| \qquad |c|$$

$$5. \int_0^{2\pi} \frac{\cos^2 \theta}{5 - 4\cos \theta} \, d\theta$$

$$\int_{0}^{2\pi} \frac{\cos^{2}\theta}{5-4\cos\theta} d\theta = \oint_{c} \frac{\frac{1}{4}(2+\frac{1}{2})^{2}}{5-2(2+\frac{1}{2})} \frac{dz}{1z}$$

$$= \frac{1}{4i} \oint_{c} \frac{(z^{2}+1)^{2}}{5z^{3}-2(z^{2}+1)\cdot z^{2}} dz$$

$$= -\frac{1}{4} \oint_{c} \frac{(z^{2}+1)^{2}}{2z^{4}-5z^{2}+2z^{2}} dz$$

$$= \frac{1}{4} \oint_{c} \frac{(z^{2}+1)^{2}}{z^{2}(2z^{2}-5z+2)} dz$$

$$= \frac{1}{4} \oint_{c} \frac{(z^{2}+1)^{2}}{z^{2}(2z^{2}-5z+2)} dz$$

for a second-order pole (m = 2),

 $\operatorname{Res}_{z=z_0} f(z) = \lim_{z \to z_0} \{ [(z-z_0)^2 f(z)]' \}.$

$$PeS + (7) = \lim_{z \to 0} \left[\frac{(z^2 + 1)^2}{(z - \frac{1}{2})(z - 2)} \right] = \lim_{z \to 0} \frac{2(z^2 + 1)(4z^2 - 15z^2 + 4z + 5)}{(z - 2)^2(2z - 1)^2}$$

$$= \frac{2 \cdot 1 \cdot 5}{4 \cdot 1} = \frac{5}{2}$$

$$Re z = \frac{P(z_0)}{P(z_0)} = \frac{\left[(z_0')^2 + 1 \right]^2}{4(z_0')^2 - \frac{z_0'}{2}(z_0')^2 + 2z_0'} = \frac{z_0'}{6}$$

$$\int_{C}^{C} (2) d2 = 2 \pi i \left(\frac{5}{2} + \frac{1}{6} \right) = -\frac{10}{3} \pi i$$

$$\int_{0}^{2T} \frac{\cos \theta}{5-4\cos \theta} d\theta = \frac{1}{8} \oint_{C} f(2) d2 = \frac{1}{8} \cdot \frac{-6}{3} \pi_{i} = \frac{5}{12} \pi_{i}$$

10–22 IMPROPER INTEGRALS: INFINITE INTERVAL OF INTEGRATION

Evaluate the following integrals and show details of your work.

10.
$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^3}$$
11.
$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^2}$$
12.
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2-2x+5)^2}$$
13.
$$\int_{-\infty}^{\infty} \frac{x}{(x^2+1)(x^2+4)} dx$$

$$\int_{-\infty}^{P} \frac{dx}{(1+x^{2})^{2}} = 0 \implies X = i \qquad X_{2} = -i \quad (ignore. Not in upper half-plane)$$

$$\int_{-\infty}^{P} \frac{dx}{(1+x^{2})^{2}} = \int_{-\infty}^{+\infty} \frac{dx}{(X+i)^{2}(X-i)^{2}}$$

$$P(X) = 1 \qquad Q(X) = (X+i)^{2}(X-i)^{2}$$

$$\frac{1}{(1+X^{2})^{2}} = -\frac{1}{4(X-i)^{2}} - \frac{2}{4(X-i)} + \frac{3}{16} + \frac{1}{7}(X-i) + \cdots$$

$$Order = 2$$

Res f(x) =
$$\lim_{x \to i} \int \frac{1}{(x+i)^2} \int = \lim_{x \to i} \left[-2(x+i)^{-3} \right] = -\frac{2}{4}$$

$$\int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum \operatorname{Res} f(z)$$

IMPROPER INTEGRALS:

INFINITE INTERVAL OF INTEGRATION

Evaluate the following integrals and show details of your work.

10.
$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^3}$$

11.
$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^2}$$

12.
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2 - 2x + 5)^2}$$

13.
$$\int_{-\pi}^{\infty} \frac{x}{(x^2+1)(x^2+4)} dx$$

$$X_1 = 1$$

$$\left(1-\frac{1}{2}\right)$$

$$\frac{x}{(x^2+1)(x^2+4)}$$

$$\frac{1}{6(x-1)}$$

$$\frac{1}{36}$$
 +

$$=$$
 $\frac{1}{6(X-Z)}$

$$\frac{151}{72} + -$$

$$\frac{15-1}{86+(\chi-2i)}$$
+

Res_{z=z₀}
$$f(z) = \text{Res}_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}$$

$$p(x) = X$$

$$9(x) = (x^2+1)(x^2+4)$$

 $9(x) = 4x^2+10x$

$$lesf(x) = \frac{x}{4x^3 + lox} =$$

$$\frac{1}{4\chi^2 + 10} = \frac{1}{6}$$

$$(2esf(x)) = \frac{1}{4x^2+10} = -\frac{1}{6}$$

$$\int_{-\infty}^{\infty} f(x) \, dx = 2\pi i \sum \operatorname{Res} f(z)$$

$$=2\pi i(\frac{1}{6}-\frac{1}{6})=0$$