Outline:

- motivational examples
- dynamic programming: the big picture
- basic optimization techniques

1 Motivational examples

- System identification: when we try to know someone, we ask him/her a series of questions and analyze the responses. Well designed questions give us rich information about the person we interview. Consider a similar idea in a mechanical system. System identification in ME233 teaches how to design these questions, order them, and analyze the responses, to reveal the properties of the system.
- Optimal path for you to come from your house to campus: this can conceptually be solved by the topic we are going to discuss today.

2 Big picture of dynamic programming

- history: developed in the 1950's by Richard Bellman
- "programming": has nothing to do with computers at the time of its introduction (computers were not popular at all at that time); it actually means "planning"
- it is a very useful idea/concept rather than a set of equations
- lots of applications: control, computer science, economics
- key idea: solve a (usually large and difficult) problem via solving a collection of sub problems

Example: (path planning) Consider the following graph. We are interested to go from node S to node E. The numerical values are the costs (e.g., fuel consumption, time, etc) of the paths.

- example application: air traffic design for optimal fuel consumption
- solution: $S \to C \to D \to E$. (For this simple case, we can solve the problem by observation. But the complexity increases greatly as the number of nodes grow.)
- key points to analyze the problem:
 - if node C is on the optimal path, the then path from node C to node E must be optimal as well $(C \to D \to E)$
 - the optimal cost to go is only a function of the node index (recall that in LQ, $J_{k-1}^o = f(x(k-1))$, which is a function of the state at time k-1)
- the idea of dynamic programming: let dist(E) denote the minimum distance from node S to node E.

- Backward analysis:

$$\begin{aligned} dist\left(E\right) &= \min\left\{dist\left(B\right) + 2, dist\left(D\right) + 1\right\} \\ dist\left(B\right) &= dist\left(A\right) + 6 \\ dist\left(D\right) &= \min\left\{dist\left(B\right) + 1, dist\left(C\right) + 3\right\} \\ dist\left(C\right) &= 2 \\ dist\left(A\right) &= \min\left\{1, dist\left(C\right) + 4\right\} \end{aligned}$$

- Understanding the above procedure: demonstrated during discussion
- Forward computation

$$dist(C) = 2$$

 $dist(A) = 1$
 $dist(B) = 1 + 6 = 7$
 $dist(D) = 5$
 $dist(E) = 6$

– Hence the optimal cost is 6 and the path is $S \to C \to D \to E$.

3 Basic optimization techniques

- brief history:
 - 100BC: birth of linear algebra in China–"Nine Chapters of Mathematical Methods"; 300BC in China–linear equations
 - 18th century: least squares for linear systems by Gauss in Europe
- basic concept: for a certain class of problems, $f(x) = x^2 2x + 1$, $f(x) = ||Ax + b||_2$, min f(x) is achieved by x^* that satisfies $\nabla f(x^*) = 0$, i.e., the gradient at x^* must be zero
- gradient computation:

$f\left(x\right)$	$\nabla f(x)$
$ x _{2}$	$\frac{x}{\ x\ _2}$
$ x _2^2$	2x
y^T x	y
x^Ty	y
$\frac{1}{2} Ax - b _2^2$	$A^{T}(Ax-b)$

 $\bullet \text{ example computation: } ||x||_2^2 = x^Tx = x_1^2 + x_2^2 + \ldots, \ \forall f\left(x\right) = 2x; \ ||Ax||_2^2 = x^TA^TAx, \ \forall f\left(x\right) = 2A^TAx$

¹unconstrained convex problems