National University of Singapore Department of Computer Science CS1231 Discrete Structures

2021/22 (Sem.1)

Tutorial 3

1.	Which of the following are true? (\varnothing denotes the empty set.)				
	(a) $\{1, 2, 4\} = \{4, 1, 2\}$	2}. (b)	$\{5,\varnothing\}=\{5\}.$	(c) $\{5\} \in \{2, 5\}.$	
	$(d) \varnothing \in \{1, 2\}.$	(e)	$\{1,2\} \in \{1,\{2,1\}\}.$	(f) $1 \in \{\{1,2\}\}.$	
2.	List the elements of the following sets:				
	(a) $\{x \in \mathbb{N} : x \text{ is odd and } x^2 < 30\};$		(b) $\{x \in \mathbb{Z} : \exists y \in \mathbb{N} \ x^2 + y^2 = 20\}.$		

- 3. Here \mathbb{R} is the universal set. Let $A = \{x \in \mathbb{R} : -2 \leqslant x \leqslant 1\}$ and $B = \{x \in \mathbb{R} : -1 < x < 3\}$. Determine

 (a) $A \cup B$,

 (b) $A \cap B$,

 (c) \overline{A} ,

 (d) $\overline{A} \cap \overline{B}$,

 (e) $A \setminus B$.
- 4. Let U denote the universal set. Prove the set identities that are **not** between double square brackets $\llbracket \dots \rrbracket$ below, for all sets A, B, and C.

 (a)* Commutativity $A \cup B = B \cup A$ $A \cap B = B \cap A$ (b) Associativity $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$ (c)* Distributivity $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - Idempotence $A \cup A = A$ $A \cap A = A$ (d) (e) Absorption $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$ $[\![\overline{A \cup B} = \overline{A} \cap \overline{B}]\!]$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$ (f) De Morgan's Laws $(g)^*$ Identities $\llbracket A \cup \varnothing = A \rrbracket$ $A \cap U = A$ (h)* $A \cup U = U$ $\llbracket A\cap\varnothing=\varnothing
 rbracket$ Annihilators $\llbracket A \cup \overline{A} = U
 rbracket$ $A \cap \overline{A} = \emptyset$ $(i)^*$ Complement

 - (l)* Set difference $A \setminus B = A \cap \overline{B}$
- 5. Let U denote the universal set. Prove the following for all sets A, B, C. You may use what you showed in Question 4 in your proofs. (a)* $A \cap \emptyset = \emptyset$ and $A \cup \emptyset = A$. (b) $\overline{\emptyset} = U$ and $A \cup \overline{A} = U$.
 - (a)* $A \cap \emptyset = \emptyset$ and $A \cup \emptyset = A$. (b) $\overline{\emptyset} = U$ and (c) If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$. (d)* $A \subseteq A \cup B$.
 - (e) If $A \subseteq B$, then $A \cap C \subseteq B \cap C$. (f) $B \subseteq A$ if and only if $A \cap B = B$.
 - (g)* $(A \cap B) \cup C = A \cap (B \cup C)$ if and only if $C \subseteq A$. (h)* If $\overline{B} = (A \cap \overline{B}) \cup (B \cap \overline{A})$, then $A = \emptyset$.
- 6. In lexical analysis (CS4212), regular expressions are used to describe how tokens are constructed from strings. The basic construction is **concatenation**: If x and y are strings, then xy is the string formed by the symbols of x followed by the symbols of y; e.g., if x = CS and y = 1231, then xy = CS1231, yx = 1231CS and yy = 12311231. If X and Y are sets of strings, define $XY = \{xy : x \in X \land y \in Y\}$.
 - (a) Let $X = \{1, 01, 11, 011\}$ and $Y = \{00, 100\}$. Determine XY, YX and XX.
 - (b) If S is a set of strings, what is $\varnothing S$?
- 7. Determine $\mathcal{P}(\mathcal{P}(\varnothing))$.
- 8. For each of the following, determine whether it is true for all sets A, B.
 - (a) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$. (b) $\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$.

9. Let $A_1, A_2, ...$ be sets. Then the finite unions and the finite intersections can be defined for each positive integer n as follows:

$$\bigcup_{k=1}^{n} A_k = A_1 \cup A_2 \cup \dots \cup A_n \quad \text{and} \quad \bigcap_{k=1}^{n} A_k = A_1 \cap A_2 \cap \dots \cap A_n.$$

(a) Let n be an integer and $n \ge 2$. Determine $\bigcup_{k=1}^n A_k$ and $\bigcap_{k=1}^n A_k$ in each of the following cases. (i) $A_k = \{k\}$. (ii) $A_k = \{x \in \mathbb{R} : 0 < x < k\}$. (iii) $A_k = \{x \in \mathbb{R} : 0 \le x \le \frac{1}{k}\}$.

Define X and Y by: for all x, y,

and
$$x \in X$$
 if and only if $x \in \bigcup_{k=1}^n A_k$ for some positive integer n , $y \in Y$ if and only if $y \in \bigcap_{k=1}^n A_k$ for all positive integer n .

- (b) State the definitions of X and Y symbolically (using \exists , \forall , etc.).
- (c) Determine X and Y for the three cases in (a).
- (d)* In program semantics (CS4214), the meaning of a program is sometimes defined with **fixed points**, which are either an infinite union or an infinite intersection. One way to define them is:

$$x \in \bigcup_{k=1}^{\infty} A_k \quad \text{if and only if} \quad x \in A_k \text{ for some positive integer } k,$$
 and
$$y \in \bigcap_{k=1}^{\infty} A_k \quad \text{if and only if} \quad y \in A_k \text{ for all positive integer } k.$$
 Prove that $X = \bigcup_{k=1}^{\infty} A_k$ and $Y = \bigcap_{k=1}^{\infty} A_k$, where X and Y are as in (b). [In other words, part (b) gives equivalent definitions for $\bigcup_{k=1}^{\infty} A_k$ and $\bigcap_{k=1}^{\infty} A_k$.]

- 10. Let B and E_1, E_2, \ldots be sets.
 - (a)* Suppose E_i and E_j are disjoint (i.e., have empty intersection) for all distinct positive integers i, j. Prove that $E_i \cap B$ and $E_j \cap B$ are disjoint for all distinct positive integers i, j.
 - (b) Prove that

$$\left(\bigcup_{k=1}^{\infty} E_k\right) \cap B = \bigcup_{k=1}^{\infty} (E_k \cap B).$$

11.* Consider the claim:

For all sets
$$A$$
, B and C , $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$.

The following is a "proof": For all z,

$$z \in (A \setminus B) \cup (B \setminus A)$$

$$\Rightarrow \qquad z \in A \setminus B \text{ or } z \in B \setminus A$$

$$\Rightarrow \qquad z \in A \text{ and } z \notin B \text{ or } z \in B \text{ and } z \notin A$$

$$\Rightarrow \qquad z \in A \text{ or } z \in B \text{ and } z \notin B \text{ and } z \notin A$$

$$\Rightarrow \qquad z \in A \cup B \text{ and } z \in \overline{B \cap A}$$

$$\Rightarrow \qquad z \in (A \cup B) \cap \overline{B \cap A}$$

$$\Rightarrow \qquad z \in (A \cup B) \setminus (B \cap A).$$

Therefore $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$.

- (a) Point out the errors in the "proof".
- (b) Prove or disprove the claim.