

Formation Interuniversitaire de Physique

(L3) (Année 2012/2013)

Examen de "Mathématiques pour physiciens"

(29 janvier 2013 -durée : 3h00)

Barème approximatif:

Exercice I : 17% Exercice II : 17%30% Exercice III: Exercice IV: 36%

Les calculatrices, téléphones et autres appareils électroniques ne sont pas autorisés 3 pages imprimées Par défaut, les notations sont celles du cours Les exercices sont totalement indépendants

Exercice I Intégrales et résidus

A. On considère l'intégrale

$$I = \int_{-\infty}^{\infty} \mathrm{d}x \frac{x e^{i\alpha x}}{1 + x^2}$$

avec α un réel strictement négatif. La calculer par la formule des résidus en précisant bien le contour choisi et en justifiant la raison de ce choix.

B. On considère la fonction

$$f(z) = \frac{e^{-z}}{\cos z}$$

- 1. Déterminer les singularités de f(z) le long de l'axe réel positif.
- 2. Déterminer les résidus des pôles sur l'axe réel positif.
- 3. Calculer l'intégrale $I = \oint f(z) dz$ le long d'un cercle de centre $(\pi/4, 0)$ et de rayon $\pi/3$.
- 4. Calculer l'intégrale $J=\int_{-i\infty}^{i\infty}f(z)\mathrm{d}z$ le long de l'axe imaginaire en justifiant bien les opérations effectuées.

Exercice II Transformation de Fourier

Soit f(x,y) une fonction de \mathbb{R}^2 dans \mathbb{R} satisfaisant

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0 \tag{1}$$

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

$$\forall x \lim_{y \to +\infty} f(x, y) = 0$$

$$f(x, 0) = g(x)$$

$$(1)$$

où g est une fonction de $L^1(\mathbb{R})$ donnée. On cherche les solutions intégrables et deux fois différentiables en x et y.

- 1. Soit $\tilde{f}(k,y)$ la transformée de Fourier de f(x,y) par rapport à x. Que vaut en termes de \tilde{f} la transformée de Fourier de $\partial^2 f/\partial x^2$ par rapport à x?
- 2. Montrer que $\tilde{f}(k,y)$ satisfait une équation différentielle en y et que, compte tenu des conditions aux bords (2), sa solution est de la forme $A(k)e^{\alpha(k)y}$ où on précisera les expressions de A(k) et $\alpha(k)$.
- 3. Calculer la transformée de Fourier $\tilde{h}(k,y)$ de $h(x,y) = \frac{2y}{x^2 + y^2}$ par rapport à x et exprimer $\tilde{f}(k,y)$ en termes de $\tilde{g}(k)$ et $\tilde{h}(k,y)$.
- 4. En déduire l'expression de f(x,y) comme une intégrale

$$f(x,y) = \int_{-\infty}^{\infty} K(x,x';y)g(x')dx'$$
(3)

où on précisera l'expression de K.

Exercice III Probabilités : distribution de Gumbel

On considère une variable aléatoire réelle Y uniformément distribuée entre 0 et 1.

- 1. Que vaut sa fonction de répartition $F_Y(y) = \mathbf{P}(Y \leq y)$?
- 2. On construit alors la v.a. $X = \phi(Y)$ où ϕ est la fonction définie sur [0,1] par $\phi(y) = -\ln(-\ln y)$. Montrer que la fonction ϕ est une fonction monotone croissante $[0,1] \to \mathbb{R}$ et écrire explicitement sa fonction inverse ϕ^{-1} .
- 3. En déduire la fonction de répartition $F_X(x)$ de la v.a. X. On dit que la v.a. X est distribuée selon la loi de Gumbel standard.
- 4. Calculer la densité de probabilité f(x) de la v.a. X.
- 5. Comparer la décroissance vers 0 de f(x) quand $x \to +\infty$ ou $x \to -\infty$.
- 6. Déterminer le "mode" (maximum de la fonction f(x)) de la distribution de Gumbel standard.
- 7. Tracer l'allure du graphe de f en prenant en compte les deux informations précédentes.
- 8. Au vu de ce graphe, s'attend-on à une valeur moyenne $\langle X \rangle$ positive, nulle ou négative ?
- 9. Montrer que les moments de cette distribution peuvent s'écrire comme $\langle X^n \rangle = (-1)^n \frac{\partial^n}{\partial t^n} \int_{-\infty}^{\infty} e^{-tx} F_X(x) dx \Big|_{t=1}$. Se rappelant la définition de la fonction Γ d'Euler

$$\Gamma(t) = \int_0^\infty u^{t-1} e^{-u} du$$

ramener par un changement de variable le calcul des moments à celui des dérivées successives en t=1 de $\Gamma(t)$.

10. Gauss a montré que

$$\Psi(t) \stackrel{\text{def}}{=} \frac{\Gamma'(t)}{\Gamma(t)} = \int_0^\infty \left(\frac{e^{-u}}{u} - \frac{e^{-tu}}{1 - e^{-u}}\right) du. \tag{4}$$

Sans chercher à calculer la valeur numérique de $\langle X \rangle$, montrer que la variance de X s'exprime en termes de $\Psi'(1) = \int_0^\infty u \frac{e^{-u}}{1-e^{-u}} \mathrm{d}u$.

Développant l'intégrand en série de e^{-u} , calculer var X en termes de $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

La distribution de Gumbel décrit l'occurrence d'événements extrêmes, tels des tremblements de terre, inondations etc de très grande magnitude.

Exercice IV Théorème de Rouché

A. Soit f une fonction holomorphe dans un domaine ouvert Ω en dehors d'un nombre fini de pôles. Soit γ un chemin fermé simple contenu dans Ω , orienté dans le sens positif, et sur lequel f n'a ni pôle ni zéro.

On se propose de calculer l'intégrale

$$I(\gamma) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz.$$
 (5)

- 1. Soit z_0 un **zéro** d'ordre m_0 de f. Écrivant $f(z) = (z z_0)^{m_0} g(z)$ où g est holomorphe et non nulle dans un voisinage de z_0 , calculer $I(z_0) = \frac{1}{2\pi i} \int_{\gamma_0} \frac{f'(z)}{f(z)} dz$ pour un contour γ_0 n'entourant aucun autre pôle ou zéro de f que z_0 .
- 2. Soit z_p un **pôle** d'ordre p_0 de f. Montrer par un raisonnement similaire que l'on peut calculer $I(z_p) = \frac{1}{2\pi i} \int_{\gamma_p} \frac{f'(z)}{f(z)} dz$ pour un contour γ_p n'entourant aucun autre pôle ou zéro de f que z_p .
- 3. En déduire la valeur de l'intégrale $I(\gamma)$ de (5).
- 4. Supposons que f(z) est un polynôme de degré N. Quelle est la limite quand $R \to \infty$ de $I(\gamma_R)$ où γ_R est le cercle de rayon R centré à l'origine ? Quel théorème fondamental déduit-on de la comparaison de ce résultat avec celui du A.3 ?
- 5. Supposons maintenant que f est holomorphe à l'intérieur et sur le contour γ . Pourquoi la fonction $\log f(z)$ est-elle multivaluée ? Soit $\Delta_{\gamma}[\arg f(z)]$ la variation de $\arg f(z)$ le long de γ . Utiliser les résultats de 1.–3. pour calculer

$$\frac{1}{2\pi}\Delta_{\gamma}[\arg f(z)]$$
.

B. Avec les mêmes notations que précédemment, soient f et g deux fonctions holomorphes à l'intérieur et sur le contour γ . On suppose que sur γ , |g(z)| < |f(z)| et on veut démontrer alors le théorème de Rouché

Théorème. f(z) et f(z) + g(z) ont le même nombre de zéros (comptés avec leur multiplicité) à l'intérieur de γ .

- 1. Montrer qu'avec les hypothèses, ni f ni f+g n'ont de zéro sur γ .
- 2. Exprimer $\Delta_{\gamma} \left[\arg \left(1 + \frac{g(z)}{f(z)} \right) \right]$ en termes des nombres de zéros à l'intérieur de γ de f et f + g.
- 3. Montrer en utilisant l'inégalité |g(z)| < |f(z)| que, pour $z \in \gamma$, le point $\zeta = 1 + \frac{g(z)}{f(z)}$ est à l'intérieur du disque unité centré en 1. Quelle conséquence en tire-t-on sur les valeurs possibles de $\arg \zeta$ et sur $\Delta_{\gamma} \Big[\arg \Big(1 + \frac{g(z)}{f(z)} \Big) \Big]$?
- 4. En déduire le théorème de Rouché.
- 5. Application. Soit g une fonction holomorphe dans un ouvert Ω contenant le disque unité fermé $|z| \leq 1$ et satisfaisant |g(z)| < 1 sur le cercle |z| = 1.

Montrer que pour tout entier $n \ge 0$, $g(z) - z^n$ admet exactement n zéros à l'intérieur du disque.