The Learning Problem 8/25/23, 12:05 AM

Table of Contents:

- Problem Introduction
 - Formalization
 - Perceptron Learning Algorithm
 - References:

Problem Introduction

Consider the problem of predicting how a movie viewer would rate the various movies out there The Netflix Prize (https://www.thrillist.com/entertainment/nation/the-netflix-prize).

Given we know <u>what movies a viewer like (comedy, action, romance,...)</u> & <u>what does the movie features (same factors)</u>, we can estimate <u>How much did the viewer rate the movie?</u>

Formalization

The learning problem can be formalized as:

Given:

- Input \(x\) (viewer likings)
- Output \(y\) (rating)
- Data: \((x_1, y_1), (x_2, y_2), (x_3, y_3), ...\)

We want to find the

Hypothesis: \(g: X \mapsto Y\) where \(g \in H \)

Assuming

Target function \(f: X \mapsto Y\)

The <u>hypothesis set</u> and <u>learning algorithm</u> are informally referred to as the <u>learning model</u>.

So, how do we find the hypothesis? One way is, Say data is linearly separable.

Perceptron Learning Algorithm

Say we have two classes Class A & Class B. Then we say

$$x_i \in A ext{ if } \sum_{i=1}^d w_i x_i > threshold$$

$$x_i \in B ext{ if } \sum_{i=1}^d w_i x_i < threshold$$

Therefore the linear formular \(g \in H\) can be written as,

$$h(x) = sign\Biggl(\Biggl(\sum_{i=1}^d w_i x_i\Biggr) - threshold\Biggr)$$

Thus, if $(h(x_i) > 0)$ then $(x_i \in A)$ else $(x_i \in B)$.

So we have (x_i) , the training data, we need to find optimal (w_i) & (threshold) such that we can classify the data as best as we can.

Making some notation changes,

$$h(x) = sign\Biggl(\Biggl(\sum_{i=1}^d w_i x_i\Biggr) + x_0 w_0\Biggr)$$

In vector form, the perceptron implements,

$$h(x) = sign(w^T x)$$

So, how do we find w?

References: