F(n)=F(n-1)+F(n-2);执行两次; F(n-1)=F(n-2)+F(n-3);执行两次

...

F(3)=F(2)+F(1)

总结: 斐波那契数列的递归解法会调用递归函数来计算每一项的值,而且在每一次调用中,都会再次调用两次递归函数来计算前两项的值。因此,斐波那契数列有 n 项时需要调用递归的次数可以表示为斐波那契数列的第 n 项。斐波那契数列的第 n 项与第 n 项相关联,因此计算斐波那契数列第 n 项时需要调用递归的次数为斐波那契数列的第 n 项的值。

1	1
2	1
3	3
4	5
5	9
6	15
7	25
8	41
9	67
10	109
11	177
12	287
13	465
14	753
15	1219
16	1973
17	3193
18	5167
19	8361
20	13529
21	21891
22	35421
23	58313
24	92735
25	150049
26	242785
27	392835
28	635621
29	1028457
30	1664079
31	2692537
32	4356617
33	7049155
34	11405773
35	18454929
36	29860703

- 37 48315633
- 38 78176337
- 39 1.26E+08
- 40 2.05E+08
- 41 3.31E+08
- 42 5.36E+08
- 43 8.67E+08
- 44 1.4E+09
- 45 2.27E+09
- 46 3.67E+09

$$A_n = A_{n-1} + A_{n-2} + 1$$