3D Modelling

Trans Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Intended Learning Outcomes

- Understand the use of homogeneous coordinates
- Learn different types of 3D transforms and the concept of composites transform Project Exam Help
- Able to use co coordinate fra https://eduassistpro.github.io/
- Able to use Open la two-image edu_assisinate transform

Homogeneous coordinates

- Represent a n-dimensional entity as a (n+1)dimensional entity
- Allow all lin Project Exam Help expressed as matrix multi https://eduassistpro.gitlmatick addition/subtractionChat edu_assist_pro

Linear Transform

- $P_2 = M_1 P_1 + M_2$
 - P_1 n-dimensional points (n x 1 column vector)
 - P₂ Transformed n-dimensional points Assignment Project Exam Help (n x 1 col
 - **M**₁ n x n squhttps://eduassistpro.github.io/
 - **M**₂ n x 1 column transfor Add WeChat edu_assist_pro
- Homogeneous coordinates allow us to express the multiplicative term M₁ and the addition term M₂ in a common 4 x 4 matrix. This is achieved by adding one dimension w.

3D Point

A 3D point (n = 3) can be expressed as

- (X, Y, Z) Assignment Preject Examples
- (X_W, Y_W, Z_W, https://eduassistpro.gaardinates

$$X = \frac{X_W}{W} \quad Y = \frac{Y_W}{W} \quad Z = \frac{W}{W}$$

W can be any non-zero value.

3D Translation

Euclidean

$$\mathbf{P}_{2} = \mathbf{P}_{1} + \mathbf{T}(t_{X}, t_{Y}, t_{Z})$$

$$\mathbf{Assignment Project} \begin{vmatrix} X_{2} \\ Y_{2} \\ \mathbf{Exam Help} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ Z_{1} \end{vmatrix} + \begin{pmatrix} t_{X} \\ t_{Y} \\ t_{Z} \end{vmatrix}$$

Homogeneou https://eduassistpro.github.io/

$$\mathbf{P}_{2} = \mathbf{T}(t_{X}, t_{Y}, t_{Z})\mathbf{P}_{1}$$

$$\begin{vmatrix} Y_{2} \\ Z_{2} \\ W_{2} \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 & t_{Y} \\ 0 & 0 & 1 & t_{Z} \\ 0 & 0 & 0 & 1 \end{vmatrix} \begin{pmatrix} X_{1} \\ Y_{1} \\ Z_{1} \\ W_{1} \end{pmatrix}$$

Note : $W_2 = W_1 = 1$

3D Rotations

Rotation about an axis

Assignment Project Exam Help IVE rotation

https://eduassistpro.github.io/
d Rule

Add WeChat edu_assist_pro

2D Rotations about the origin

About a common coordinate system X-Y

Rotation about Z

Euclidean

Homogeneous

$$P_2 = R_Z(\theta)P_1$$

Add WeChat edu_assist_pro

$$X_2$$
 X_2 X_2 X_2 X_3 X_4 X_5 X

Rotation about X

Euclidean

Homogeneous

$$P_2 = R_X(\theta)P_1$$

Add WeChat edu_assist_pro

$$X_2$$
 Y_2 = $\begin{bmatrix} 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} X_1 \\ Y_1 \\ Z_1 \\ W_1 \end{pmatrix}$

Rotation about Y

Euclidean

Homogeneous

$$P_2 = R_Y(\theta)P_1$$

Add WeChat edu_assist_pro
IS
$$\begin{pmatrix}
X_2 \\
Y_2 \\
Z_2 \\
W_2
\end{pmatrix} =
\begin{pmatrix}
0 & 1 & 0 & 0 \\
-\sin\theta & 0 & \cos\theta & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
X_1 \\
Y_1 \\
Z_1 \\
W_1
\end{pmatrix}$$

Scaling about the origin

Euclidean

$$\mathbf{P}_2 = \mathbf{S}(\mathbf{s}_X, \mathbf{s}_Y, \mathbf{s}_Z) \mathbf{P}_1$$

Homogeneous
$$\mathbf{P}_2 = \mathbf{S}(\mathbf{s}_X, \mathbf{s}_Y, \mathbf{s}_Z) \mathbf{P}_1$$
 $\begin{pmatrix} X_2 \\ Y_2 \\ Z_2 \\ W_2 \end{pmatrix} = \begin{pmatrix} x & 0 & 0 \\ 0 & s_Y & 0 & 0 \\ 0 & 0 & s_Z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X_1 \\ Y_1 \\ Z_1 \\ W_1 \end{pmatrix}$

Reflection about the X-Y plane

Euclidean

Homogeneous $P_2 = RF_7P_1$

Add WeChat edu_assist_pro

$$\begin{vmatrix} X_2 \\ Y_2 \\ Z_2 \\ W_2 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} X_1 \\ Y_1 \\ Z_1 \\ W_1 \end{vmatrix}$$

Shearing about the Z axis

Euclidean

Homogeneous $P_2=Sh_7(a,b)P_1$

Affine Transform

$$\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & \textbf{Assignment Project Exam Help} \end{pmatrix}$$

- a_{ii} and b_i are c https://eduassistpro.github.io/
- a linear transformation
 Add WeChat edu_assist_pro
 // lines are transformed to // li
- Translation, rotation, scaling, reflection, shearing are special cases
- Any affine transform can be expressed as composition of the above 5 transforms

Composite Transformation

- A number of (relative) transformations applied in sequence
- Models the Acomplexemorement Examples in the world coordinate sys
- The transform https://eduassistpro.githubpiossible.
- In practice, ONLY the final At edu_assisite protein transformation needs to be st

E.g. 1 Rotation about an axis // to X axis.

Let (X_f, Y_f, Z_f) be a point on the axis. The composite rotation is oject Exam Help

$$P_2 = T^{-1}R_x(\theta)$$
 https://eduassistpro.github.io/
Add WeChat edu_assist_pro

$$\mathbf{T} = \mathbf{T}(-X_f, -Y_f, -Z_f)$$

For the composite transformation

$$\begin{pmatrix} 1 & 0 & 0 & X_f \\ 0 & 1 & 0 & Y_f \\ 0 & 0 & 1 & Z_f \\ 0 & 0 & 0 & \mathbf{Assign meant\ Project\ Exam\ Help 0} & 1 \end{pmatrix}$$

Only the produhttps://eduassistpro.github.io/

is stored

E.g. 2 Scaling about (X_f, Y_f, Z_f)

$$\mathbf{P}_2 = \mathbf{T}^{-1}\mathbf{S}(s_X, s_Y, s_Z)\mathbf{T} \mathbf{P}_1$$

$$T = T(-X_f^{Assignment Project Exam Help})$$

https://eduassistpro.github.io/

Similarly, only the final a Chatcedu_assistant formation is stored

Concept

- A composite transformation may have two physical meaning:
- Assignment Project Exam Help
 It was a bittor://educacietore github io
 - It represent https://eduassistpro.github.io/
- Or Add WeChat edu_assist_pro
 It represents a change of coordinate system

3 Kinds of Coordinate System in CG

- Each object defined in their own natural coordinate system – Modelling coordinate system (MC)
- All objects being placed in a common world coordinate https://eduassistpro.github.io/
- For correct Add WeChat edu_assist pro need to be expressed i on viewer or camera coordinate system (VC, CC)

 $MC \rightarrow WC \rightarrow VC/CC$

A point in two different coordinate sy.

 The SAME point has DIFFERENT coordinates in DIFFERENT coordinate systems

Assignment Project Exam Help

- P(i) A point in coordinate system i
- **M**_{j←i}

4 x 4 transformation that transforms Assignment Project Exam Help ystem i to

co https://eduassistpro.github.io/

Add WeChat edu_assist_pro

$$\mathbf{P}^{(j)} = \mathbf{M}_{j \leftarrow i} \, \mathbf{P}^{(i)}$$

Rule 1 for computing M_{j←i}:

M_{j←i} is the inverse of the transformation that takes the Projector dimate system frame https://eduassistpro.gifntb:ioth coordi Add WeChat edu_assist_pro time using the ith c system as the reference coordinate system

As $\mathbf{M}_{j\leftarrow i} = \mathbf{M}_{i\leftarrow j}^{-1}$, we have the alternative rule:

Alternative rule (rule 2) for computing $\mathbf{M}_{j\leftarrow i}$:

M_{j←i} is the transformation that takes the jth coordinate system frame as if it is an object to the ithreformate system frame positio https://eduassistpro.githbb.ibh coordinate system edu_assist_pro coordinate system

 which rule to use depends on which coordinate system is easier to get on hand $M_{i\leftarrow i}$ is the INVERSE of the transformation that takes the ith coordinate system frame as if it is an object to the jth coordinate system frame

Proof

Suppose we have two coordinate systems x_i - y_i - z_i and x_j - y_j - z_j . Treat x_i - y_i - z_i and x_j - y_j - z_j as two objects that consist of two sets of points, both defined in the $\underline{x_i}$ - $\underline{y_i}$ - $\underline{z_i}$ coordinate system. Let

$$\begin{aligned} x_i &= (1, 0, 0)^T \ \rightarrow \ x_j = (a_{11}, a_{21}, a_{31})^T + (t_x, t_y, t_z)^T \\ y_i &= (0, 1, 0)^T \ \rightarrow \ y_j = (a_{12}, a_{22}, a_{32})^T + (t_x, t_y, t_z)^T \\ z_i &= (0, 0, 1)^T \ \rightarrow \ z_j = (a_{13}, a_{23}, a_{33})^T + (t_x, t_y, t_z)^T \end{aligned}$$

where all the coordinates are defined in the $\underline{x_{i}-y_{i}-z_{i}}$ coordinate system. \rightarrow means "corresponds to".

The transformation T that transforms the three points x_i , y_i , z_i to x_j , y_i , z_j in the $\underline{x_i-y_i-z_i}$ coordinate system is thus Help

 $\mathbf{T} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & t_x \\ a_{21} & a_{22} & a_{23} & t_y \\ a_{31} & a_{32} & a_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$

https://eduassistpro.github.io/

However, it can also be interpreted as changing f

$$\begin{array}{l} {{\textbf{P}}^{(j)}} = {{(1,0,0)}^T} \to {{\textbf{P}}^{(i)}} = {{(a_{11},a_{21},a_{31})}^T} + {{(t_x,t_y,t_z)}^T} \\ {{\textbf{P}}^{(j)}} = {{(0,1,0)}^T} \to {{\textbf{P}}^{(i)}} = {{(a_{12},a_{22},a_{32})}^T} + {{(t_x,t_y,t_z)}^T} \\ {{\textbf{P}}^{(j)}} = {{(0,0,1)}^T} \to {{\textbf{P}}^{(i)}} = {{(a_{13},a_{23},a_{33})}^T} + {{(t_x,t_y,t_z)}^T} \\ \end{array} \\ \begin{array}{l} {} \\ {} \\ {} \\ {} \end{array} \end{array} \begin{array}{l} {} \\ {} \\ {} \end{array}$$

Since any arbitrary $\mathbf{P}^{(j)}$ can be written as $\lambda_1(1,0,0)^{\mathrm{T}} + \lambda_2(0,1,0)^{\mathrm{T}} + \lambda_3(0,0,1)^{\mathrm{T}}$, where $\lambda_1,\lambda_2,\lambda_3$ are constants, it follows that

$$\mathbf{M}_{i \leftarrow j} = \mathbf{T}$$

Since $\mathbf{M}_{j \leftarrow i} = \mathbf{M}_{i \leftarrow j}^{-1}$,

$$\mathbf{M}_{i\leftarrow i} = \mathbf{T}^{-1}$$

This gives the rule

 $\mathbf{M}_{j\leftarrow i}$ is the INVERSE of the transformation that takes the ith coordinate system frame <u>as if it is an object</u> to the jth coordinate system frame

OpenGL Geometric Transformations

- 4 x 4 translation matrix glTranslatef (tx, ty, tz);
- 4 x 4 rotation matrix
 glRotatef Astrigtament/Project Exam Help
- 4 x 4 scaling m g/Scalef (s https://eduassistpro.github.io/
- 4 x 4 reflection matrix/eChat edu_assist_pro glScalef (1, 1, -1); // re ut Z axis
- 4 x 4 shearing matrix
 glMultMatrixf (matrix); // matrix is a 16 element
 // matrix in column-major order

OpenGL Matrix Operations

Calls the current matrix, responsible for geometrical transformation

```
Assignment Project Exam Help
glMatrixMode (GL_MODELVIEW);

https://eduassistpro.github.io/

(do not confuse with glMatrix edu_assist_pro
which is responsible for projecti edu_assist_pro
ation)
```

Assign identity matrix to current matrix

glLoadIdentity ();

- Current matrix is modified by (relative) transformations
 - □ E.g. glTranslatefniglenalerrogeotaekam Help
 - The meaning o s may either be physical action https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Current matrix are postmultip peration

specified is first operation performed, like a LIFO stack

Let **C** be the composite matrix

■ Example 1 Assignment Project Exam Help

glMatrixMode (
glLoadIdentity (

Add WeChat edu_assist_pro

glTranslatef (-25, 50, 25); // C = T(-25,50,25)

glRotatef (45, 0, 0, 1); // C = T (-25,50,25)R_z(45°)

glScalef (1, 2, 1); // C = T (-25,50,25)R_z(45°) \$(1,2,1)

Example 2
 glMatrixmode (GL_MODELVIEW)
 glLoadIdentity (S) ignment Project Exam Help

```
https://eduassistpro.github.io/glScalef(1, 2, 1); glRotatef(45, 0, 0, Apple WeChat edu_assist_proglTranslatef(-25, 50, 25); // <math>C = S(1,2,1)R_Z(45^\circ)T(-25,50,25)
```

Note: the order of the transformation is important

OpenGL Matrix Stacks

- OpenGL has a stack for storing the relative transformations
- Stack is a LIFO data structure Assignment Project Exam Help
- Stores interme

https://eduassistpro.github.io/

- Push the current matrix into t glPushMatrix ();
- Pop the current matrix from the stack glPopMatrix ();

Note: Very useful for modelling hierarchical structures

Example glMatrixMode (GL_MODELVIEW) glLoadIdentity (); // MV = identity matrix glTranslatef (-25,500)126pt Primited Ex25,56(25) glRotatef (45, 50,25)R_Z(45°) https://eduassistpro.githuhiostack glRotatef (45, glScalef (1, 2, 1) id Wethat edu_assist (45°) (45°) (1,2,1) glTranslatef (0, 0, 10); (7,2,1) (1,2,1) (1,2,1)glPopMatrix (); // $MV = T (-25,50,25)R_7(45^\circ)$

References

- Text: Sec 7.2 -7.3, 9.1 9.7 (except quaternion method),
 9.8. The text uses a different exposition of the coordinate transformation method
- Our discussion
 ation follows:
 Foley et. al., C https://eduassistpro.github2i2/226
- The two methods of coordina edu_assistation are conceptually the same.