

Research Questions

- Can open-source satellite data (SAR & Multispectral) alone be used for predicting the yield of *Pinus taeda* (L.) plantations?
- If machine learning and/or neural network models are used, which methods provide the best results?
- Which variables are important for predicting the yield?
- Do planting density/thinning conditions play any role in the accuracy of the prediction results?

Study Area

- 258 plots
- 3 states: Georgia, Florida and Texas
- Data collected within December 2017 – February 2018
- Contains typical field information (mean height, quadratic mean diameter, number of trees, total volume)

Satellite Data (From Google Earth Engine)

Sentinel 1 (SAR Data)

Sentinel 2 (Multispectral Data)

Time-series Data: January 2016 – December 2017

Target Variable: Plot-level total yield in January 2018

Satellite Data (From Google Earth Engine)

- Sentinel 1
 - C-band SAR data
 - 2 bands: VV and VH
 - January 2016 December 2017 (24 Months)

VV_VH_Ratio	VV/VH
VH_VV_Ratio	VH/VV
VV_VH_Difference	VV - VH
VH_VV_Difference	VH -VV
Normalized_VVVH	(VV - VH)/(VV + VH)
Sum_VVVH	VV + VH
Product_VVVH	VV * VH

DPDD (Dual-polarization difference descriptor)	$(VV + VH) / \sqrt{2}$
Gamma_nought_VH	VH/cos(angle * $(\pi)/180$)
Gamma_nought_VV	$VV/cos(angle * (\pi)/180)$
RVI (Radar Vegetation Index)	(4 * VH) / (VV + VH)
VDDPI (Volume density dual-polarization index)	(VV * VH) / VV

- Sentinel 2
 - Level-1C (Top of Atmosphere)
 - Multispectral bands
 - 13 bands: (B1 to B12)
 - January 2016 December 2017 (24 Months)

NDVI	Normalized Difference Vegetation Index	NIR - Red
		$\overline{NIR + Red}$
EVI	Enhanced Vegetation Index	NIR − Red
		$12.5 * \overline{NIR + 6 \times Red - 7.5 \times Blue + 1}$
SAVI	Soil-adjusted Vegetation Index	NIR-Red
		$\frac{NIR - Rea}{NIR + Red + 0.5} \times 1 + 0.5$
MSAVI2	Modified Soil-adjusted Vegetation Index 2	$0.5 \times (2 \times NIR + 1)$
		$-\sqrt{(2\times NIR+1)^2-8\times (NIR-Red)})$
OSAVI	Optimized Soil-Adjusted Vegetation Index	NIR – Red
		$\overline{NIR + Red + 0.16}$

NDWI_McFeeters	Normalized Difference Water Index (McFeeters version)	$\frac{Green-NIR}{Green+NIR}$		
MSI	Moisture Stress Index	$\frac{SWIR1}{NIR}$		
NDRE	Normalized Difference Red Edge Index	$rac{NIR - RedEdge1}{NIR + RedEdge1}$		
SIPI3	Structure Insensitive Pigment Index	NIR — Blue NIR — Red		
SR	Simple Ratio Index	NIR Red		
DVI	Difference Vegetation Index	NIR-Red		
REIP	Red Edge Inflection Point	$700 + 40$ $\frac{Red + RedEdge3}{2} - RedEdge1$ $\times (\frac{2}{RedEdge2 - RedEdge1})$		
LCI	Leaf Chlorophyll Index	$\frac{NIR - RedEdge1}{NIR + Red}$		

NDII	Normalized Difference Infrared Index	NIR - SWIR1		
		$\overline{NIR + SWIR1}$		
NDLI	Normalized Difference Lignin Index	$\log(SWIR1) - \log(SWIR2)$		
		$\overline{\log(SWIR1) + \log(SWIR2)}$		
NMDI	Normalized Multi-band Drought Index	NIR - (SWIR1 - SWIR2)		
		$\overline{NIR + (SWIR1 - SWIR2)}$		
GNDVI	Green Normalized Difference Vegetation Index	NIR — Green		
		NIR + Green		
CVI	Chlorophyll vegetation index	$9 \times \frac{RedEdge1}{Green^2}$		
		Green ²		
GLI	Green Leaf Index	2Green — Red — Blue		
		$\overline{2Green + Red + Blue}$		
TC_Brightness	Tasselled Cap – Brightness	$0.3037 \times Blue + 0.2793 \times Green$		
		$+0.4743 \times Red + 0.5585 \times NIR$		
		$+ 0.5082 \times Cirrus + 0.1863 \times SWIR2$		
TC_GVI	Tasselled Cap Green Vegetation Index	$-0.283 \times Green - 0.660 \times Red + 0.577 \times RedEdge2 + 0.388 \times Water Vapor$		

Approach 2: Satellite Remote Sensing

Results

		1 st		2 nd		3 rd	
Metrics	SVR	RF	GBM	XGBoost	LightGBM	LSTM	GRU
MAE (m³)	3.02	2.70	2.97	2.94	2.99	3.18	3.30
MSE (m ³)	27.13	23.20	28.23	25.92	26.67	26.35	26.79
RMSE (m ³)	5.21	4.82	5.31	5.09	5.16	5.13	5.17
nRMSE (%)	21.62	19.99	22.05	21.13	21.43	21.31	21.48
R^2	0.40	0.49	0.38	0.43	0.41	0.42	0.41

Gini importance (Mean decrease in impurity)

Conclusion

- RF model best predicts the plot-level yield of Loblolly Pine using the timeseries bands and indices, followed by XGBoost and LSTM
- The prediction errors are typically lower at lower planting densities
- In the RF model, the planting density significantly affects the accuracy ($F_{4,64}$ = 16.64, p < 0.001)
- Shortwave infrared band 1 (SWIR 1 band 11) and water vapor band (band 9)
 were deemed the most important bands in the RF model. Further
 investigation is required
- Further investigation required to assess the impact of thinning status on the yield prediction

Thank you! I am open to your questions and comments