

- 1NN model would classify the new sample as

 \triangleright 3NN model would classify the new sample as x.

KNN Algorithm

- Prediction Rule: Look at the K most similar training examples and solving training
- For classification: assign the majority class label (majority voting)
- For **regression**: assign the *average* response

```
continual
```

KNN Algorithm

- **Step 1**: Standardize the variables
- ▶ **Step 2**: Compute the test point's <u>distance</u> from each training point
- ▶ Step 3: Sort the distances in ascending (or descending) order
- ▶ **Step 4**: Use the <u>sorted</u> distances to select the K nearest neighbors
- ➤ **Step 5**: Use majority rule (for classification) or averaging (for regression)

Algorithm Requirements

- ► The algorithm requires:
 - ► Tuning Parameter K: number of nearest neighbors to look for
 - **Distance function**: To compute the similarities between examples

Distances

- ► The K-NN algorithm requires computing distances of the test example from each of the training examples
- Several ways to compute distances
- The choice depends on the type of the variables in the data

Distances

Euclidean distance is commonly used when there are continious variables

$$d(u,v) = \sqrt{(u_1-v_1)^2 + (u_1-v_1)^2 + \ldots + (u_n-v_n)^2},$$

where

$$u = [u_1, u_2, ..., u_n]$$

and

$$v = [v_1, v_2, ..., v_n]$$

▶ Hamming distance is commonly used when there are categorical variables: d(u,v) = Number of times u and v are different.

Distance Example

pertur V		Sex	Age	Class
J	u	Male	27	A
1, 1	V	Eamale	30	A
percur	Difference	(1)	(3)	(0)
				$\overline{}$

$$d(u,v) = \sqrt{1^2 + 3^2 + 0^2} = \sqrt{10}$$

Notice: Usually the **Age** variable needs to be standardized to have the range from 0 to 1 before calculating the distance.

Why standardizing the variables?

Considering the following data:

		Age	Salary (\$1000)
\forall	A	15	90,006
Λ	В	30	80,666
<i>></i> /	C	80	87,000

We have

$$AB = d(A, B) = \sqrt{(30 - 15)^2 + (80 - 90)^2} = 18.03$$

$$AC = d(A, C) = \sqrt{(80 - 15)^2 + (87 - 90)^2} = 65.07$$

Thus,

However, with the same data

Acycla 2		Age	Salary (\$)
A-	Α	15	90,000
	В	30	89,000
	C	80	87,000
			-

P C

We have

$$AB = d(A, B) = \sqrt{(30 - 15)^2 + (80,000 - 90,000)^2} = \underline{10,000.01}$$

$$AC = d(A, C) = \sqrt{(80 - 15)^2 + (87,000 - 90,000)^2} = \underline{3000.70}$$

Thus,

Not good!

Why standardizing the variables?

- Distances are affected by scaler-multiplication. Hence, the units of the variables will affect the distances.
- Standardizing variables will cancel this effect.

Why standardizing the variables?

➤ Common practice: Standardize variables to have the range from 0 to 1:

$$\mathsf{Standardized}X = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Standardize the previous data (in either unit for salary):

Age	Salary (\$1000	- Spate
A 0 B 0.23 C 1	1 0.7 0	
		_

We have

$$AB = d(A, B) = \sqrt{(0 - .23)^2 + (1 - .7)^2} = 0.38$$
$$AC = d(A, C) = \sqrt{(0 - 1)^2 + (1 - 0)^2} = 1.41$$

Choice of K - Neighborhood Size

■ Question: Does larger or smaller K tend to overfit the model?

Choice of K - Neighborhood Size

- **Question**: Does larger or smaller *K* tend to overfit the model?
- ▶ **Hint**: Which one performs better on the training data?

Choice of K - Neighborhood Size

- ► Small K
 - ► Creates many small regions for each class
 - May lead to non-smooth decision boundaries and **overfit**
- Large K
 - Creates fewer larger regions
 - Usually leads to smoother decision boundaries (caution: too smooth decision boundary can **underfit**)

▶ If A, B, C are three nearest neighbors of D, then the predicted probability of the D by **3NN** is given by

Predicted Probability of D =
$$\frac{w_A \cdot y_A + w_B \cdot y_B + w_C \cdot y_C}{w_A + w_B + w_c}$$

- Uniform Weights: All points in each neighborhood are weighted equally when predicting.
- ▶ If *A*, *B*, *C* are three nearest neighbors of *D*, then the predicted probability of the *D* by **3NN** with uniform **weights** becomes:

Predicted Probability of D =
$$\frac{y_A + y_B + y_C}{3}$$

Uniform weights are the default weights when using KNN

- ▶ Distance Weights weight points by the *inverse* of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away.
- If A, B, C are three nearest neighbors of D, then the predicted probability of the D by 3NN with distance weights is:

Predicted Probability of D =
$$\frac{\frac{1}{DA} \cdot y_A + \frac{1}{DB} \cdot y_B + \frac{1}{DC} \cdot y_C}{\frac{1}{DA} + \frac{1}{DB} + \frac{1}{DC}}$$

- ▶ Uniform Weights: All the three neighbors are weighted the same, so the majority vote predicts *x*.
- For all neighbors:

$$Weight = 1$$

Distance Weights: The closest neighbor (best friend!) is weighted more than the two-further-away neighbors, so the weighted vote predicts *o*.

$$Weight = \frac{1}{Distance}$$

An Example of Unifom Weights

Use the uniform weights to calculate the predicted probability and the prediction of **3NN** for D. Consider x as 1 and o as 0.

Solution

$$= \frac{0+1+1}{3} = \frac{2}{3} > \frac{1}{2}$$

white D x

An Example of Distance Weights

Use the distance weights to calculate the predicted probability and the prediction of **3NN** for D. Consider x as 1 and o as 0.

Solution

K-Nearest Neighbor: Properties

- What's nice: Simple and intuitive; easily implementable
- What's NOT nice:
 - Computationally expensive.
 - Perform not well in higher dimention data, i.e. data with many columns.

