Table 11.4-1 Site Coefficient, F_a

Mapped Risk-Targeted Maximum Considered Earthquake (MCE _R)	Spectral Response Acceleration
Parameter at Short Period	

Site Class							
	$S_S \le 0.25$	$S_S = 0.5$	$S_S = 0.75$	$S_S = 1.0$	$S_S \ge 1.25$		
A	0.8	0.8	0.8	0.8	0.8		
В	1.0	1.0	1.0	1.0	1.0		
C	1.2	1.2	1.1	1.0	1.0		
D	1.6	1.4	1.2	1.1	1.0		
E	2.5	1.7	1.2	0.9	0.9		
F	See Section 11.4.7						

Note: Use straight-line interpolation for intermediate values of S_s .

Table 11.4-2 Site Coefficient, F_{ν}

Mapped Risk-Targeted Maximum Considered Earthquake (MCE $_R$) Spectral Response Acceleration Parameter at 1-s Period

Site Class	$S_I \leq 0.1$	$S_I = 0.2$	$S_I = 0.3$	$S_I = 0.4$	$S_I \ge 0.5$		
A	0.8	0.8	0.8	0.8	0.8		
В	1.0	1.0	1.0	1.0	1.0		
C	1.7	1.6	1.5	1.4	1.3		
D	2.4	2.0	1.8	1.6	1.5		
E	3.5	3.2	2.8	2.4	2.4		
F	See Section 11.4.7	See Section 11.4.7					

Note: Use straight-line interpolation for intermediate values of S_1 .

FIGURE 11.4-1 Design Response Spectrum.

11.4.5 Design Response Spectrum

Where a design response spectrum is required by this standard and site-specific ground motion procedures are not used, the design response spectrum curve shall be developed as indicated in Fig. 11.4-1 and as follows: 1. For periods less than T_0 , the design spectral response acceleration, S_a , shall be taken as given by Eq. 11.4-5:

$$S_a = S_{DS} \left(0.4 + 0.6 \frac{T}{T_0} \right) \tag{11.4-5}$$

- 2. For periods greater than or equal to T_0 and less than or equal to T_S , the design spectral response acceleration, S_a , shall be taken equal to S_{DS} .
- 3. For periods greater than T_s , and less than or equal to T_L , the design spectral response acceleration, S_a , shall be taken as given by Eq. 11.4-6:

$$S_a = \frac{S_{D1}}{T} \tag{11.4-6}$$

4. For periods greater than T_L , S_a shall be taken as given by Eq. 11.4-7:

$$S_a = \frac{S_{D1}T_L}{T^2} \tag{11.4-7}$$

where

 S_{DS} = the design spectral response acceleration parameter at short periods