ADMAS ADMAS TOPPESSIT
ADAMAS
UNIVERSITY
PURSUE EXCELLENCE

ADAMAS UNIVERSITY

END SEMESTER EXAMINATION

ADAMAS UNIVERSITY PURSUE EXCELLENCE	END SEMESTER EXAMINATION (Academic Session: 2020 – 21)			
Name of the Program:	BCA	Semester:	II	
Paper Title:	Mathematics II	Paper Code:	MTH11507	
Maximum Marks:	50	Time Duration:	3 Hrs	
Total No. of Questions:	17	Total No of Pages:	2	
(Any other information for the student may be mentioned here)	ny other information for the 1. At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Par			
	2. All parts of a Question should be answered consecutively. Each Answer should start from a fresh page.			
	3. Assumptions made if any, should be stated clearly at the beginning of your answer.			

	Group A			
	Answer All the Questions $(5 \times 1 = 5)$		T 00.4	
1	Find the $ z $ and $amp(z)$ for the complex number $z = 2 + 2\sqrt{3}i$.	R	CO1	
2	Find the order and degree of the differential equation	\mathbf{U}	CO4	
	$\left(\frac{d^3y}{dx^3}\right)^2 + 2x^2 \left(\frac{dy}{dx}\right)^4 + 7xy = e^x.$			
3	Explain whether the differential equation $\frac{d^3y}{dx^3} + 5x^2y\frac{dy}{dx} + 3y = x^3$ is linear.	U	CO4	
4	Find the distance between the points $A(3,0)$ and $B(0,4)$.	U	CO5	
5	Find the slope of the straight line $5x + 3y = 2$.	U	CO5	
	Group B			
	Answer All the Questions $(5 \times 2 = 10)$			
6 a)	Find $\frac{(1+2i)}{1+i}$ in the form $A+iB$.	R	CO1	
	(OR)			
6 b)	Find $z_1 z_2$ and $\frac{z_1}{z_2}$ where $z_1 = 1 + 2i$ and $z_2 = -1 + i$.	R	CO1	
7 a)	Explain whether the differential equation $(xe^y + y + 1)dx + (ye^x + x)dy$ is exact.	R	CO2	
	(OR)			
7 b)	Find solution of the differential equation $e^x(1+y^2)dx - 2y(1+e^x)dy = 0$ by	R	CO2	
	separation of variable method.			
8 a)	Find solution of the differential equation $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$.	AP	CO3	
(OR)				
8 b)	Find the integrating factor of the linear differential equation $\frac{dy}{dx} + \frac{1-2x}{x^2}y = 1$.	AP	CO3	
9 a)	Find the intercept form of the straight line $2x + 3y = 4$.	U	CO4	
(OR)				
9 b)	Explain whether the straight lines $5x + 4y = 1$ and $4x - 5y = 2$ are perpendicular.	U	CO4	
10 a)	Find the slope-intercept form of the straight line $2x + 3y = 9$.	U	CO5	
	(OR)		1	
10 b)	Find the equation of the straight line passing through the points (2,1) and (3,3).	U	CO5	
Group C Answer All the Questions $(7 \times 5 = 35)$				
11 a)	(i) Find the square root of the complex number $5 + 12i$.	R	CO1	
11 α)	(ii) Find the square root of the complex number $3 + 12t$. (ii) Find the differential equation for the function $y = Ae^{3x} + Be^{-3x}$. (3+2)	R		
	(1) This the differential equation for the function $y - \pi e^{-\frac{1}{2}} De^{-\frac{1}{2}}$. (3+2)			

	(OR)		
11 b)	(i) Find z^2 and $ z^2 $ for the complex number $3 + 5i$.	R	CO1
	(ii) Find the differential equation for the function $y = A \cos Ax + B \sin Ax$ (3+2)		
12 a)	Show that -2 is an Eigen value of the matrix $A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 5 & -6 & 4 \end{pmatrix}$. Then find the Eigenvectors of A corresponding to the eigen value -2	R	CO2
	(OR)		•
12 b)	Find the inverse of the matrix $A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 0 & 3 \\ 0 & 1 & -1 \end{pmatrix}$ using the elementary row operation method.	R	CO2
13 a)	Find the solution of the following system of linear equations using Cramer's Rule $x - 2y + 2z = 9$ $3x + 2y = 3$ $y - 3z = -12$	AP	CO3
			•
13 b)	Find the inverse of the matrix $A = \begin{pmatrix} 3 & 3 & -1 \\ -2 & -1 & 1 \\ -2 & -2 & 1 \end{pmatrix}$ without using row operations.	AP	CO3
14 a)	Explain whether the differential equation $(x^3 - 3xy^2)dx + (y^3 - 3x^2y)dy = 0$ is exact. Then solve it.	U	CO4
441	(OR)		701
14 b)	Find solution of the differential equation $\frac{dy}{dx} + \frac{1-4x}{x^2}y = 1$.	U	CO4
15 a)	Find the solution of the differential equation $(x^2 + y^2)dx = 2x^2ydy$.	U	CO4
	(OR)		
15 b)	Find the solution of the differential equation $(3x^2 + 4y + 7)dx + (4x - 3y^2 + 5)dy = 0$.	U	CO4
16 a)	Find the solution of the differential equation $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = e^{5x}$.	U	CO5
1.61.	(OR)		
16 b)	Find the solution of the differential equation $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + y = \sin 2x$	\mathbf{U}	CO5
17 a)	(i) Show that the points $A(1,7)$, $B(4,2)$, $C(-1,-1)$ and $D(-4,4)$ are the vertices of a square.	U	CO5
	(ii) Find whether the differential equation $(x^2 - y^2)dx + (x^3 - y^3)dy = 0$ is homogeneous. (4+1)	U	CO1
	(OR)		
17 b)	(i) Find whether the straight lines $2x + 3y = 7$ and $4x + 6y = 10$ are parallel. 2	U	CO5
	(ii) Find whether the straight lines $x + 5y = 3$ and $5x + y = 3$ are perpendicular. 2	\mathbf{U}	CO5
	(iii) Find the degree of homogeneity of the differential equation $y^3 dx + x^2 y dy = 0$. 1	R	CO1