Kalman Filter for Solving Parameterized Partial Differential Equations (PDEs)

Abdoul Aziz Sarr

August 2025

Kalman Filter for Solving Parameterized Partial Differential Equations (PDEs)

Abdoul Aziz Sarr

August 2025

Presentation Outline

- Introduction
 - Numerical Tools: the Feel++ Library
- Malman Filter for PDE Resolution
 - Mathematical Formulation of the Kalman Filter
 - Kalman Filter Algorithm
 - Robustness Analysis and Importance of the Filter
- Resolution and Visualization
 - Results for mesh size h = 0.1
 - Results for mesh size h = 0.05
 - Results for mesh size h = 0.025
 - General Commentary on Smoothing and Robustness of the Kalman Filter
- 4 Conclusion

Table of Contents

- Introduction
 - Numerical Tools: the Feel++ Library
- 2 Kalman Filter for PDE Resolution
- Resolution and Visualization
- 4 Conclusion

Introduction

- Parameterized PDEs model many physical phenomena in mechanics, thermics, engineering.
- Parameters include physical constants, domain shapes, boundary conditions.
- The Kalman filter estimates system state optimally in noisy linear settings.
- It fuses numerical model predictions and noisy observational data.
- Application: Assimilation of measurements into PDE simulations to improve solution accuracy and robustness.

Problem Description: Heat Equation

$$\frac{\partial u}{\partial t} - \nabla \cdot (k \nabla u) = f \quad \text{in } \Omega$$

- *u*: temperature,
- k: thermal diffusivity,
- f: source term,
- Ω: spatial domain.

Numerical solution uses Fee1++, a finite element method library.

Numerical Tool: Feel++ Library

- C++/Python library for PDE resolution (Galerkin method).
- Mesh generation (structured/unstructured).
- Optimized linear/non-linear solvers for parallel architectures

Table of Contents

- Introduction
- Malman Filter for PDE Resolution
 - Mathematical Formulation of the Kalman Filter
 - Kalman Filter Algorithm
 - Robustness Analysis and Importance of the Filter
- Resolution and Visualization
- 4 Conclusion

Kalman Filter Overview

- Recursive algorithm for optimal state estimation under uncertainty.
- Combines model prediction and noisy measurements.
- Provides correction to predictions to improve accuracy.
- Especially powerful for dynamic systems and noisy data.

Kalman Filter: Prediction Step

$$X_{k|k-1} = A_k X_{k-1|k-1} + B_k u_k$$

 $P_{k|k-1} = A_k P_{k-1|k-1} A_k^{\top} + Q_k$

- $X_{k|k-1}$: predicted state vector,
- $P_{k|k-1}$: predicted covariance,
- A_k: model matrix,
- Q_k : process noise covariance.

Kalman Filter: Observation Step

$$Z_k = H_k X_{k|k-1} + v_k$$

- Z_k : measurement vector,
- H_k : observation matrix (selects measured nodes),
- v_k : measurement noise with covariance R_k .

Kalman Filter: Update Step

$$K_{k} = P_{k|k-1}H_{k}^{\top}(H_{k}P_{k|k-1}H_{k}^{\top} + R_{k})^{-1}$$

$$X_{k|k} = X_{k|k-1} + K_{k}(Z_{k} - H_{k}X_{k|k-1})$$

$$P_{k|k} = (I - K_{k}H_{k})P_{k|k-1}$$

- K_k : Kalman gain matrix,
- $X_{k|k}$: updated state,
- $P_{k|k}$: updated covariance.

Summary of Kalman Filter Variables

- X_k : state vector (temperature values at nodes).
- P_k : error covariance matrix.
- Q_k : process noise covariance.
- H_k : observation matrix.
- R_k : measurement noise covariance.
- K_k : Kalman gain matrix.

Algorithm Workflow

- Initialize X_0 and P_0 .
- 2 For each time step *k*:
 - Predict: $X_{k|k-1}, P_{k|k-1}$.
 - Observe noisy measurements Z_k .
 - Compute gain K_k and update $X_{k|k}$.
 - Update error covariance $P_{k|k}$.

Naturally integrated with time-stepping PDE solutions.

Importance and Robustness of Kalman Filter

- Adapts correction of predictions under model and measurement uncertainties.
- Provides consistent solutions even with approximate models and noisy or partial data.
- Reduces overall error and enhances numerical stability.
- Produces solutions less sensitive to noise and closer to reality.

Table of Contents

- Introduction
- 2 Kalman Filter for PDE Resolution
- Resolution and Visualization
 - Results for mesh size h = 0.1
 - Results for mesh size h = 0.05
 - Results for mesh size h = 0.025
 - General Commentary on Smoothing and Robustness of the Kalman Filter
- 4 Conclusion

Setting up the PDE Problem with Feel++

- Define exact solution and gradient for comparison.
- Specify source term and thermal diffusivity.
- Set initial conditions and boundary conditions.
- Choose temporal discretization parameters (time step, final time).
- Configure noise levels for measurements and process.

Integration of Kalman Filter parameters for assimilation.

Mesh Sizes and Numerical Runs

- Simulations are ran for different mesh sizes: coarse to fine.
- For each mesh:
 - Run numerical PDE resolution.
 - Apply Kalman filter assimilation with measurements.
 - Store and analyze estimation results.

Allows study of convergence and filter effect.

Results Visualization Overview

- Comparison among:
 - Kalman filter estimation,
 - Feel++ model prediction,
 - Exact analytical solution.
- Time snapshot: t = 0.50.
- Mesh sizes analyzed: h = 0.1, h = 0.05, h = 0.025.

Estimation Kalman (t=0.50) diction Modèle Feel++ (t=0.5

Solution Exacte (t=0.50)

5.00e-01 8.49e-01 1.20e+00 1.55e+00

- Kalman estimate close to exact solution despite coarse mesh.
- Measurement points visibly improve prediction locally.
- Model prediction already good; Kalman filter refines around observations.
- Improves solution robustness against model and mesh uncertainties.

Estimation Kalman (t=0.50) diction Modèle Feel++ (t=0.5 Solution Exacte (t=0.50) 1.55e+00

- Model prediction nearly identical to the exact solution.
- Kalman filter fine-tunes residual noise and errors.
- Influence of measurements less visually obvious due to model accuracy.
- Demonstrates rapid convergence with mesh refinement and filter.

Estimation Kalman (t=0.50) adiction Modèle Feel++ (t=0.5 Solution Exacte (t=0.50)

5.00e-01 8.50e-01 1.20e+00 1.55e+00

- Kalman estimate, model prediction, and exact solution visually indistinguishable.
- Excellent convergence of numerical scheme.
- Filter ensures robustness in presence of measurement and process noise.
- Provides subtle but essential corrections to maintain solution optimality.

Smoothing Effect of the Kalman Filter

- Produces smooth, coherent field estimates without measurement artifacts.
- Fusion of model and observations attenuates noise impact.
- Visual result: smooth color transitions, well-defined contours.
- Key to interpreting noisy measurement data reliably.

Robustness Across Mesh Refinement

- Effective estimate maintained even on coarse mesh (h = 0.1).
- With mesh refinement, prediction improves, but filter assimilates residual uncertainties.
- Guarantees solution reliability close to physical reality.
- Acts as continuous regularization and correction tool.

Practical Applications and Impact

- Real-time assimilation of experimental data into simulations.
- Improved solution quality in engineering and physics problems.
- Risk assessment and control relying on accurate state estimates.
- Robustness against sensor noise and incomplete data.

Table of Contents

- Introduction
- 2 Kalman Filter for PDE Resolution
- Resolution and Visualization
- 4 Conclusion

Conclusion

- The Kalman filter successfully blends numerical models with noisy observations.
- Enhances solution accuracy, stability, and robustness for parameterized PDEs.
- Effective even with coarse discretizations; essential for realistic simulations.
- Future work may include extension to nonlinear models and adaptive filtering.