PRINTABLE VERSION

Quiz 11

You scored 100 out of 100

Ouestion 1

use the first definition of modular arithematic

Your answer is CORRECT.

integer x is "congruent mod n" to integer y means:

The congruence equation " $80 \equiv -105 \mod 37$ " means

- First Definition: x-y is a multiple of nin notation: $\exists m \in \mathbb{Z}, \ x-y=m*n$
- a) \bigcirc When 37 (-105) is divided by 80 the remainder is 0.
- **b)** \bigcirc When 37 is divided by 80 (-105) the remainder is 0.
- c) \bigcirc When 37 (-105) is divided by 80 the remainder is 0.
- d) \odot When 80 (-105) is divided by 37 the remainder is 0.

Question 2

Your answer is CORRECT.

The integers 92 and -28 are congruent mod n for which value of n?

a)
$$0 = 92$$

b)
$$\bigcirc$$
 n = -28

(c)
$$\bigcirc$$
 n = 16

remainder of
$$\frac{92}{h}$$
 = remainder of $\frac{-28}{n}$

- **d)** \bigcirc There are no values of n for which these two integers are congruent (except n=1).

Question 3

Your answer is CORRECT.

Consider the following proposition:

Proposition. If $a \equiv b \mod n$, then $a^4 \equiv b^4 \mod n$.

If you were writing a direct proof of this proposition, which of the following statements could be used as your first line?

use the first definition of modular arithematic

a) \bigcirc Suppose a is a multiple of b and n.

integer x is "congruent mod n" to integer y means:

- **First Definition**: x-y is a multiple of n
 - ullet in notation: $\exists\, m\in\mathbb{Z},\, x-y=m*n$

b) Suppose b is a multiple of a and r	1.
c) \odot Suppose $(a - b)$ is a multiple of n .	
d) \bigcirc Suppose n is a multiple of $(a - b)$	o) .
e) \bigcirc Suppose $a \cdot b = n$.	
Question 4	
Your answer is CORRECT.	
•	$\exists y \bmod n \ \land \ y \equiv z \bmod n) \ \land \ (x \not\equiv z \bmod n)$ positive natural numbers $N^* = N - \{0\} = \{1, 2, 3,\}$.)
a) O This statement is true.	if x is congruent to y, and y is congruent to z, then x should also be congruent to z
b) This statement is false.	
Question 5	
Your answer is CORRECT.	
A (direct) proof for a Proposition is present Proposition was proven.	ented below. Read through the proof and then determine which
1	efined control sequence \square
	you'd think by quiz 11 they'd know how to make a quiz Imao
$a) \odot \forall m \in \mathbb{Z}, (m \equiv 1 \mod 2) \Rightarrow (m^2 \equiv 1 \mod 8)$	
b) $\bigcirc \forall m \in \mathbb{Z}, (m \equiv 1 \mod 2) \Rightarrow (m^2 \equiv 0 \mod 8).$ c) $\bigcirc \forall m \in \mathbb{Z}, (m^2 \equiv 1 \mod 2) \Rightarrow (m \equiv 1 \mod 8).$	
Question 6	
Your answer is CORRECT.	
Use the Euclidean Algorithm to find the inverse of $-13 \mod 28$ (if it exists).	
a) \bigcirc 28 is an inverse.	

b) 15 is an inverse.

-13 mod 28 15 mod 28 ged (15,28)

c) -1/13 is an inverse. $28 = 1.15 + 13 \longrightarrow 13 = 28 - 1.15$ 15 = 1 · 13+ 2 -> 2 = 15 -1 (19) = 13 - 6(15) + 6(13) = 28 - 1.15 - 6(15) + 6(18 - 1.15) = 28 - 7(15) + 6(28) - 6(15)= 7(28)-13(15)=1 0 -13(15)=1 (mod 28)

1=13-6(15-1-13)

d) -28/13 is an inverse. $13 = 6.2 + 1 \rightarrow 1 = 13 - 6(2)$

e) -13 does not have an inverse mod 28 because $gcd(-13, 28) \neq 1$

Question 7

Your answer is CORRECT.

Of the options provided below, determine the one that best completes this sentence: "The modular equation $-10x \equiv 17 \mod 4$

only has solutions if gcd(a,n)|b

a) has exactly one solution.

gcd (-10, 4) = 2

b) has multiple solutions.

2 / 17 no solutions!

c) has no solutions.

Question 8

Your answer is CORRECT.

Which steps should one take when solving a congruence equation $ax \equiv b \mod n$? A helpful summary is presented below, only one step is missing:

Steps for solving $ax \equiv b \mod n$.

Step 1. Use the Euclidean Algorithm to compute gcd(a, n).

Step 2. If $gcd(a, n) \mid b$, then proceed to step 3, otherwise there are no solutions.

Step 3. Use work from Step 1 to calculate one solution $x_0 \in Z$.

Step 4.

Of the following options, which could be used for the missing Step 3?

- a) \bigcirc Step 4. Add $\frac{a}{\gcd(a, n)}$ to x_0 to create other solutions.
- **b)** \bigcirc Step 4. Add $\frac{b}{\gcd(a,n)}$ to x_0 to create other solutions.
- c) \bigcirc Step 4. Add b to x_0 to create other solutions.
- d) \bigcirc Step 4. Add $\frac{\gcd(a, n)}{b}$ to x_0 to create other solutions.

Look at lecture 33 notes, last example

also lecture 34, example with 3x congruent 24 mod 9 e) Step 4. Add $\frac{n}{\gcd(a, n)}$ to x_0 to create other solutions.

Question 9

Your answer is CORRECT.

Find a solution to the congruence equation $7x \equiv -3 \mod 3$.

a)
$$x = 3/7$$
 is a solution.

b)
$$\bigcirc$$
 x = 4 is a soltuion.

c)
$$\bigcirc$$
 x = 3/7 is a solution.

d)
$$x = 9$$
 is a solution.

e)
$$x = 10$$
 is a solution.

$$7x = -3 \pmod{3}$$

 $9cd(7,3) = 1$
 $7 = 2 \cdot 3 + 1 \rightarrow 1 = 7 - 2 \cdot 3$
 $3 = 3 \cdot 1 + 0 \rightarrow 1 = 1(7) - 1(3)$
 $1 = 1(7) - 1(3)$
 $1 = 1(7) - 1(3)$
 $1 = 1(7) - 1(3)$
 $1 = 1(7) - 1(3)$
 $1 = 1(7) - 1(3)$
 $1 = 1(7) - 1(3)$
 $1 = 1(7) - 1(3)$

Ouestion 10

Your answer is CORRECT.

Find a solution to the congruence equation $-18x \equiv 4 \mod 13$.

a)
$$x = 0$$
 is a solution.

b)
$$\bigcirc$$
 x = 21 is a solution.

$$(c)$$
 $x = 19$ is a solution.

e)
$$x = 20$$
 is a solution.

$$-18 \times = 4 \pmod{13}$$

$$-5 \times = 4 \pmod{13}$$

$$+13 \downarrow$$

$$8 \times = 4 \pmod{13}$$

$$= 20 \pmod{13}$$

$$= 20 \pmod{13}$$

$$gcd(8, 13) = 1$$

$$13 = 1 \cdot 8 + 5 \rightarrow 5 = 13 - 1(8)$$

$$8 = 1 \cdot 5 + 3 \rightarrow 3 = 8 - 1(5)$$

$$5 = 1 \cdot 3 + 2 \rightarrow 2 = 5 - 1(3)$$

$$3 = 1 \cdot 2 + 1 \rightarrow 1 = 3 - 1(2)$$

$$1 = 2 \cdot 1 + 0 \rightarrow 1 = 3 - 1(2)$$

$$= 1(8 - 1 \cdot 5) - 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$= 1(8 - 1 \cdot 5) - 1 \cdot 5 + 1(8 - 1 \cdot 5)$$

$$=$$