

赵慧

为什么会有这么一门课

❖关于仿真和模拟

■ 得益于计算机技术的仿真,大多数学科的研究都可以 借助仿真和模拟

❖制药领域

■ 化学家进行化合物结构的模拟、合成原理的分析,为 发现新药物提供强大途径

EcfA

EcfA'

❖动脉系统血液动力学

❖ 经济学

- "理性人 (homo economicus)"假设:最大化自己利益的决策&每个人都知道其他人是理性的
- 基于这个假设,传统经济学家构筑了经济学均衡分析的框架,并以此分析人们在市场中的活动,解释了**为什么市场能提供配置资 源的最优方案**。

设想 -》 建模 -》推演 -》模拟 -》分析 -》试制

关于通信系统

智能手机

PM2.5监测仪

未来的服装

电源管理器、 闪存、内存、 摄像头、陀螺仪、方向感应器、显示屏、USB 处理器、GPU、HDMI高清输出、LTE链接、Wifi+蓝牙芯片、 射频放大器

→PM2.5监测仪

通信系统仿真及实现

英特尔® Edison Module具备一个低功耗的 22 纳米 500MHz 双核 双线程英特尔 ® Atom 处理器,同时集成了 Wi-Fi 和蓝牙等等

通信设备模型

BEFORE

❖ 做研究的几个阶段

- 基于公式的计算方法: 提供系统性能与设计参数之间的解析关系
- 基于仿真的方法: 进行尽量精确地建模。
- 基于原型机的方法: 根据硬件系统性能的测量结果来评价设计性能

最终进行专用芯片设计

Analog Baseband Communication Protocols Algorithms

仿真 ≈ 原型

SDR eNB

Software is eating the world!

芯片设计 企业

专用+集成SOC

研究生

Linux+C

Windows+Labview/Matlab

基于 MATLAB 和 Lab VIEW 的虚拟信号接收器+

本科

Windows+Matlab

通信系统仿真及实现

BUPT

课程目的、内容和评估方式

课程目的

- ❖ 本课程在《通信原理Ⅰ》和《通信原理实验》的课程基础上,通过软件仿真以及实验来帮助理解通信技术中的抽象概念,进一步扩展系统知识,加深对实际系统的认识
- ❖ 培养掌握利用平台仿真的方法和技巧,提高通信系统设计方面的实践动手能力、分析和解决问题的能力以及工程实践素养

❖研究-Research

- 可以通过仿真评估复杂系统的性能
- 验证理论分析结果

❖工作-Job

- 软件及开发
- 编程能力

课程内容

❖ 第一部分通信链路各模块的仿真方法

■ 链路仿真基础知识

包括仿真软件的基本使用、链路仿真的系统模型、仿真结果的记录与处理、仿真误差分析方法等

■ 链路模块仿真方法

包括信道建模、调制与解调、编码与译码、扩频与解扩、 正交频分复用、多天线方案、信道估计与同步、信源编码等内容

- ❖ 第二部分 通信链路的仿真与开发实践
 - 1、软件仿真

内容: 选取1个典型系统,了解其完整链路的模块组成,利用仿真软件搭建完整的收发链路平台,进行仿真验证,完成实验报告。这里,典型系统包括: GSM、WCDMA、TD-SCDMA、CDMA2000、LTE、802.11a/b/n/ac、Bluetooth、Zigbee、GPS等。

■ 2、软件无线电仿真(先修过Labview的同学)

内容:按实验需要编写功能模块,进行验证后,嵌入到软件无线电平台中,调试平台链路,完成实验报告。具体模块包括:调制与解调、信道编码与译码、脉冲成型与匹配滤波、同步与频偏纠正、信道估计、多载波调制与频域均衡等。

课程内容

	通原┃┃	通信系统仿真与实现	关注算法
第8章 信道	恒参、随参的数学模型,对信号的影响	模型如何通过仿真方式实现	
第9章 信 道编码	线性分组码、循环码、 卷积码等	卷积码、Turbo、LDPC如何 仿真实现	维特比译码vs. 智能输入法
第10章 扩 频通信	伪随机序列、直接扩频、 CDMA、rake接收	相同	干扰消除vs.搜 索引擎反作弊
第11章 OFDM	数字实现、CP、峰均 比、频偏	相同	
	无	各种MIMO技术	MIMO检测vs. 进化生物算法
		实际系统中用的调制与解调	互信息vs.机器 翻译
		系统的phy协议解读(帧结构)、同步、信道估计	
第7章 信源和信源编码	预测编码、变换编码	(option)讲一个实用的信源编码	

参考书目

❖ 平台:

■ 课堂派, 网页版/公众号 (学生加课码 T2A2SU)

❖ 攻略:

- 以教师讲义为主,资源在"课堂派"
- 《通信原理》周炯槃等,北京邮电大学出版设(7-11章)

❖ 参考:

- 《电子信息类专业MATLAB实验教程》, 李明明,李白萍 北京大学出版社
- 《MATLAB电子仿真与应用(第2版)》,韩利竹,王华 国防工业出版社
- 《MATLAB基础及其应用教程》,管爱红,张红梅,杨铁军 电子工业出版社
- MATLAB与通信仿真相关的书籍都可以(注意: 不是simulink的)

关于成绩评估

❖ 通关方式

- 讲完每章后 完成编程及报告,提交课堂派
- 注意: 可根据评语反馈再次提交

❖ 终极挑战

- 完成一个通信系统的完整链路仿真
- 答辩展示: 用ppt or各种方式进行展示, 然后n分钟答辩。

❖ 成绩组成

■ 平时60%+期末展示答辩40%

重在平时、不在突击 重在编程、不在推导 重在思考、不在盲听

BUPT The state of the state of

Thank You!

Add your company slogan