Project Development Phase Model Performance Test

Date	18 November 2022	
Team ID PNT2022TMID34754		
Project Name	Exploratory Analysis of Rainfall Data in India for Agriculture	
Maximum Marks	10 Marks	

Model Performance Testing:

S.N	Parameter	Values	Screenshot
0.		Classification Model: Random Forest Confusion Matrix – [[31372 1448] [4726 4691]] Accuracy Score- 0.8538248455145963 Classification Report –	Random forest Confusion matrix conf_matrix = metrics.confusion_matrix(y_test,t1) fig,ax = plt.subplots(figsize=(7.5,7.5)) ax.matshow(conf_matrix,alpha=0.3) for i in range(conf_matrix.shape[3]): for j in range(conf_matrix.shape[1]): ax.text(x=j, y=i, s=conf_matrix[i,j], va ='center', ha='center', size='xx-larg plt.xlabel('Predictions',fontsize=18) plt.ylabel('Actuals',fontsize=18) plt.title('Confusion Matrix',fontsize=18) plt.show() Confusion Matrix
		Accuracy: 0.8538248455145963 Precision: 0.7641309659553673 Recall: 0.49814165870234683 F1-score: 0.6031113396760092	Predictions t1 = Rand_forest.predict(X_test_scaled) print("Rand_forest:",metrics.accuracy_score(y_test,t1)) Rand_forest: 0.8538248455145963

```
print("*"*10, "Classification Report", "*"*10)
                                                print("-"*30)
                                                print(classification_report(y_test, t1))
                                                print("-"*30)
                                                ******* Classification Report *******
                                                           precision recall f1-score support
                                                               0.87 0.96 0.91
0.76 0.50 0.60
                                                         0
                                                                                          32820
                                                                                          9417
                                                                                 0.85
                                                                                        42237
                                                   accuracy
                                                  macro avg 0.82 0.73
ighted avg 0.85 0.85
                                                                                  0.76
                                                                                          42237
                                                weighted avg
                                                                                  0.84
                                                                                          42237
                                                -----
2. Tune the
                Hyperparameter Tuning &
                                                 Hyperparameter Tuning
   Model
                Validation Method -
                RandomizedSearchCV
                                               : from sklearn.ensemble import RandomForestRegressor
                                                 rf = RandomForestRegressor(random_state = 42)
                                                 from pprint import pprint
                                                 # Look at parameters used by our current forest
                                                 print('Parameters currently in use:\n')
                                                 pprint(rf.get_params())
                                                 Parameters currently in use:
                                                 {'bootstrap': True,
                                                  'ccp_alpha': 0.0,
                                                  'criterion': 'mse',
                                                  'max_depth': None,
                                                  'max features': 'auto',
                                                  'max leaf nodes': None,
                                                  'max_samples': None,
                                                  'min_impurity_decrease': 0.0,
                                                  'min_impurity_split': None,
                                                  'min_samples_leaf': 1,
                                                  'min_samples_split': 2,
                                                  'min_weight_fraction_leaf': 0.0,
                                                  'n estimators': 100,
                                                  'n_jobs': None,
                                                  'oob_score': False,
                                                  'random_state': 42,
                                                  'verbose': 0,
                                                  'warm_start': False}
```

```
n_estimators = [10,20,30,50]
max_features = ['autor', 'sqrt']
max_features = ['autor', 'autor', 'autor',
```