A Major Project Report

On

"Infobot- A robot that recognizes objects, faces and extracts information about them"

Submitted in partial fulfillment of the

Requirements for the award of the degree of

Bachelor of Technology

In

Computer Science & Engineering –
Artificial Intelligence & Machine Learning

By

Chigiri Varsha	- 20R21A6610
Vinjravath Arun Kumar	- 20R21A6656
Matam Jahnavi	- 20R21A6635
Surukunti SaiKrishna Reddy	-20R21A6648

Under the guidance of Vijay Gopal Jagadam Associate Professor

Department of Computer Science & Engineering – Artificial Intelligence & Machine Learning

CERTIFICATE

This is to certify that the project entitled "Infobot – A robot that recognizes objects, faces and extracts information about them" has been submitted by Chigiri Varsha (20R21A6610), Vinjravath Arun Kumar (20R21A6656), Matam Jahnavi (20R21A6635), Surukunti Sai Krishna Reddy (20R21A6648) in partial fulfilment of the requirements for the award of degree of Bachelor of Technology in ComputerScience & Engineering – Artificial Intelligence & Machine Learning from Jawaharlal NehruTechnological University, Hyderabad. The results embodied in this project have not been submitted to any other University or Institution for the award of any degree or diploma.

Internal Guide Head of the Department

Project coordinator External Examiner

DECLARATION

We hereby declare that the project entitled "Infobot- A robot that recognizes objects, faces and extracts information about them" is the work done during the period from January 2024 to May 2024 and is submitted in partial fulfilment of the requirements for the award of degree of Bachelor of Technology in Computer Science & Engineering – Artificial Intelligence & Machine Learning from Jawaharlal Nehru Technology University, Hyderabad. The results embodied in this project have not been submitted to any other university or Institution for the award of any degree or diploma.

Chigiri Varsha – 20R21A6610

Vinjravath Arun Kumar - 20R21A6656

Matam Jahnavi – 20R21A6635

Surukunti SaiKrishna Reddy - 20R21A6648

ACKNOWLEDGEMENT

The satisfaction and euphoria that accompany the successful completion of any task would be incomplete without the mention of people who made it possible, whose constant guidance and encouragement crowned our efforts with success. It is a pleasant aspect that we now have the opportunity to express our guidance for all of them.

First of all, we would like to express our deep gratitude towards our internal guide VIJAY GOPAL JAGADAM, Associate Professor, Dept. of CSE-AIML for his support in the completion of our dissertation. We wish to express our sincere thanks to Dr.K.SAI PRASAD, HOD, Dept. of CSE- AIML and principal Dr. K. SRINIVAS RAO for providing the facilities to complete the dissertation.

We would like to thank all our faculty and friends for their help and constructive criticism during the project period. Finally, we are very much indebted to our parents for their moral support and encouragement to achieve goals.

Chigiri Varsha – 20R21A6610

Vinjravath Arun Kumar – 20R21A6656

Matam Jahnavi – 20R21A6635

Surukunti SaiKrishna Reddy – 20R21A6648

ABSTRACT

The aim of this project is to develop "Infobot," a friendly chatbot robot with advanced capabilities in object and face recognition. The robot's primary functions include recognizing specific objects and faces of certain users, extracting relevant information to enable personalized interactions. Additionally, Infobot serves as an "infobot" for known faces, providing tailored information and assistance. Moreover, it can identify unknown faces of visitors, gathering information about their visit and the person they are intending to meet. Leveraging cutting-edge AI and computer vision technologies, our project seeks to create an intelligent, user-friendly robot for enhanced human-robot interactions. Enhancing human-robot interactions in diverse scenarios by developing an intelligent and adaptive chatbot with advanced object and face recognition capabilities. Implementing cutting-edge AI and computer vision technologies to enable friendly chat interactions, personalized assistance, and efficient face and object recognition.

APPENDIX-1 LIST OF FIGURES

LIST OF FIGURES

Fig No	Description of Figure	Page No
Fig 1	CNN Architecture	86
Fig 2	Proposed Architecture	91
Fig 3	Workflow of Face Recognition process	92
Fig 4	Workflow of Object Detection and Recognition	93
Fig 5	Workflow of Chatbot	93
Fig 6	Workflow of Visitor Tracking System	94
Fig 7	Use case Diagram	95
Fig 8	Class Diagram	96
Fig 9	Sequence Diagram	96
Fig 10	Activity Diagram	97
Fig 11	User Recognized as known	106
Fig 12	Visitor Detection main to User	107
Fig 13	Information Storing in Excel Sheet	107
Fig 14	Object Detection and recognition	107
Fig 15	Infobot feature activated	108

APPENDIX-2 LIST OF TABLES

LIST OF TABLES

Table No	Description of Figure	Page No
Table 2.2	Comparison table	95
Table 2.3	Work Evaluation table	100
Table. 3.1	Requirements for developing and deploying the application	128

APPENDIX-3 LIST OF ABBREVIATIONS

ABBREVIATIONS

YOLO You Only Look Once

CNN Convolutional Neural Network

APPENDIX-4 REFERENCES

References

- [1] A. Sarda, S. Dixit and A. Bhan, "Object Detection for Autonomous Driving using YOLO [You Only Look Once] algorithm," 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 2021, pp. 1370-1374, doi: 10.1109/ICICV50876.2021.9388577.
- [2] V. Senthilkumar, P. Saranya, B. K. Rani, S. P, R. Kuchipudi and M. A. A. Walid, "Deep Unified Model for Face Recognition based on Convolution Neural Network and Edge Computing," 2023 8th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 2023, pp. 10.1109/ICCES57224.2023.10192630.
- [3] M. M. Hasan, Lim Hooi Jiun, Ng Wei Cheun and M. S. Shahid, "Smart telephone design-caller identification and answering machine," ICSE'98. 1998 IEEE International Conference on Semiconductor Electronics. Proceedings (Cat. No.98EX187), Bangi, Malaysia, 1998, pp. 217-222, doi: 10.1109/SMELEC.1998.781183.
- [4] T. Feng, Y. Yu, L. Wu, Y. Bai, Z. Xiao and Z. Lu, "A Human-Tracking Robot Using Ultra Wideband Technology," in IEEE Access, vol. 6, pp. 42541-42550, 2018, doi: 10.1109/ACCESS.2018.2859754
- [5] R. Menaka, N. Archana, R. Dhanagopal and R. Ramesh, "Enhanced Missing Object Detection System using YOLO," 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2020, pp. 1407-1411, doi: 10.1109/ICACCS48705.2020.9074278.
- [6] S. Dwijayanti, M. Iqbal and B. Y. Suprapto, "Real-Time Implementation of Face Recognition and Emotion Recognition in a Humanoid Robot Using a Convolutional Neural Network," in IEEE Access, vol. 10, pp. 89876-89886, 2022, doi: 10.1109/ACCESS.2022.3200762.
- [7] R. L. Galvez, E. P. Dadios, A. A. Bandala and R. R. P. Vicerra, "YOLO-based Threat Object Detection in X-ray Images," 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Laoag, Philippines, 2019, pp. 1-5, doi: 10.1109/HNICEM48295.2019.9073599.
- [8] Y. Ye, H. You and J. Du, "Improved Trust in Human Robot Collaboration with ChatGPT," in IEEE Access, vol. 11, pp.5574855754, 10.1109/ACCESS.2023.3282111

- [9] M. Hnewa and H. Radha, "Multiscale Domain Adaptive Yolo for Cross-Domain Object Detection," 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 2021, pp. 3323-3327, doi: 10.1109/ICIP42928.2021.9506039
- [10] W. S. M. Sanjaya, D. Anggraeni, K. Zakaria, A. Juwardi and M. Munawwaroh, "The design of face recognition and tracking for human-robot interaction," 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, 2017, pp. 315-320, doi: 10.1109/ICITISEE.2017.8285519.
- [11] P. Anki, A. Bustamam, H. S. Al-Ash and D. Sarwinda, "High Accuracy Conversational AI Chatbot Using Deep Recurrent Neural Networks Based on BiLSTM Model," 2020 3rd International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 2020, pp. 382-387, 10.1109/ICOIACT50329.2020.9332074.
- [12] K. Deepika, V. Tilekya, J. Mamatha and T. Subetha, "Jollity Chatbot- A contextual AI Assistant," 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 2020, pp. 1196 1200, doi: 10.1109/ICSSIT48917.2020.9214076.
- [13] N. P. Patel, D. R. Parikh, D. A. Patel and R. R. Patel, "AI and Web-Based Human-Like Interactive University Chatbot (UNIBOT)," 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 2019, pp. 148-150, doi: 10.1109/ICECA.2019.8822176.
- [14] Shaik, Amjan, S. Lohitha, and J. Ramesh Babu. "HEALTHCARE ASSISTANCE USING AI." *Journal of Engineering Sciences* 14.06 (2023).
- [15] S. K. Singh, S. Kumar and P. S. Mehra, "Chat GPT & Google Bard AI: A Review," 2023 International Conference on IoT, Communication and Automation Technology (ICICAT), Gorakhpur, India, 2023, pp. 1-6, doi:10.1109/ICICAT57735.2023.10263706
- [16] Shafeeg, A., Shazhaev, I., Mihaylov, D., Tularov, A., & Shazhaev, I. (2023). Voice assistant integrated with chat gpt. Indonesian Journal of Computer Science, 12(1).
- [17] S. T. Blue and M. Brindha, "Edge detection-based boundary box construction algorithm for improving the precision of object detection in YOLOv3," 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 2019, pp. 1-5, doi: 10.1109/ICCCNT45670.2019.8944852.
- [18] S. Mane and S. Mangale, "Moving Object Detection and Tracking Using Convolutional Neural Networks," 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2018, pp. 1809-1813, doi:

10.1109/ICCONS.2018.8662921

- [19] Koubaa, A. (2023). ROSGPT: Next-Generation Human Robot Interaction with ChatGPT and ROS Preprints.https://doi.org/10.20944/preprints202304.0827.
- [20] Zhao, X. F., Chen, Z. H., Yin, H. F., & Wu, X. J. (2023). Design of intelligent visitor system based on cloud and edge collaborative computing. Journal of Algorithms & Computational Technology, 17, 17483026231169154.

INDEX

Certificate	i
Declaration	ii
Acknowledgment	iii
Abstract	iv
List of Figures	vi
List of Tables	viii
List of Abbreviations	X
References	xii
Chapter 1	
Introduction	1
1.1 Overview	1
1.2 Purpose of the Project	1
1.3 Motivation	2
Chapter 2	
Literature Survey	3
2.1 Existing System	58
2.2 Comparison Table	78
2.3 Work Evaluation Table	
Chapter 3	
Proposed System	80
3.1 Proposed System	80
3.2 Objectives of Proposed System	80
3.3 Advantages of Proposed System	80
3.4 System Requirements	
3.4.1 Software Requirements	82
3.4.2 Hardware Requirements	82
3.4.3 Functional Requirements	83
3.4.4 Non- Functional Requirements	83
3.5 Implementation Technologies	
3.5.1 Face recognition module in Python:	84

3.5.2 YOLO pre-trained model:	85
3.5.3 Convolutional Neural Networks (CNN):	86
Chapter 4	
System Design	
4.1 Proposed System Architecture	91
4.2 Application Modules	91
4.2.1 Face Recognition Module	91
4.2.2 Object Detection Module	92
4.2.3 Chatbot using ChatGPT API and Visitor Tracking System	93
4.3 UML Diagrams	
4.3.1 Use Case Diagram	94
4.3.2 Sequence Diagram	95
4.3.3 Activity Diagram	96
Chapter 5	
Implementation	
5.1 Source Code	97
	. –
5.1.1 Main Code	97
5.1.2 Face Recognition	98
5.1.3 Object Detection	100
5.1.4 Visitor Tracking System	101
Chapter 6	
Results	106
Chapter 7	
Conclusion	109
Future Enhancements and Discussions	109

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

The robot is designed to engage in friendly conversations with users, while also possessing the ability to recognize specific objects and faces. The system can extract relevant information about certain users, enabling personalized interactions for an enhanced user experience. Additionally, the robot functions as an "infobot" for known faces, providing tailored information and assistance. The innovative aspect lies in its capacity to identify unknown faces, gathering essential information about their visit and the person they are intending to meet. Leveraging modern AI and computer vision technologies, this project addresses the challenges of efficient object and face recognition and strives to transform human-robot interactions in various real-world applications. The system's adaptability, privacy safeguards, and seamless integration of conversational abilities make it an innovative solution for personalized, intelligent, and user-friendly robot interactions.

1.2 PURPOSE OF THE PROJECT

The purpose of this project is to develop a robot named as "Infobot". It is a conversational robot with advanced speech-based interaction capabilities. This robot will be equipped to engage users in friendly conversations through speech, recognize objects and faces, and provide tailored responses. Additionally, it will serve as an infobot for known faces and gather information about unknown visitors, enhancing human-robot interaction in diverse scenarios.

1.3 MOTIVATION

The inspiration for the project arose from the desire to create an advanced and interactive robotic system capable of engaging in natural and friendly conversations with users through speech. This innovative idea covers a range of aspects, including speech-based interaction and the ability to recognize objects and faces. The idea of creating a robot, that can not only communicate with users

but also understand and reply through speech gives a futuristic picture of human-robot interaction. The idea was to develop a complex system that not only offers enlightening responses but also forges a close bond with the user, much like speaking with a human counterpart. The first idea came from seeing the possibility of combining speech synthesis and recognition technologies with advanced object and face recognition capabilities, which would improve the entire user experience and make the robot a flexible assistance in a variety of circumstances.

CHAPTER 2

LITERATURE SURVEY

An extensive literature survey has been conducted by studying existing systems of Certificate verification and generation. A good number of research papers, journals, and publications have also been referred before formulating this survey.

2.1 EXISTING SYSTEM

The existing system of Chatbots, however, encounters hurdles when it comes to attaining human-like communications owing to the zero contextual comprehension and no emotional Intelligence. The fuzzy and difficult nature of the questions and data, thus, negatively affects the response rates. Prejudice and privacy invitations must be carefully considered before anonymization. Bridging multi-turn communication issues and filling in the language gaps are very significant. The misjudgment, concerns of privacy, and looming of ethics with facial recognition technology like biases are the issues that may be compromising its implementation. Real-time object identification in computer vision remains challenging, with problems of accuracy improvement, speed, and scalability. Visitor monitoring systems may deal with privacy and accuracy problems even with the complexity in the case of their (visitor monitoring systems) Integration. The prospect of universal adoption of biometric systems is, beyond doubt, fraught with the problem of safeguarding security as well as privacy.

1	Deep Unified Model for Face Recognition Based on Convolution Neural Network and Edge Computing		
Reference in APA format	V. Senthilkumar, P. Saranya, B. K. Rani, S. P, R. Kuchipudi and M. A. A. Walid, "Deep Unified Model for Face Recognition based on Convolution Neural Network and Edge Computing," 2023 8th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 2023, pp. 1816-1821, doi: 10.1109/ICCES57224.2023.10192630.		
URL of the Reference	Author's Names and Keywords in this Reference Emails		
https://ieeexplore.ieee.org/stamp/stam p.jsp?tp=&arnumber=8721062	Muhammad Zeeshan Khan(zeeshan.khan@kic s.edu.pk)	CNN, face, attendance, RCNN, anchors, RPN, edge computing	

	Shahid Mumtaz, Muhammad Imran.	
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution and what is the problem that needs to be solved	What are the components of it?
Face Recognition Based on Convolution Neural Network and Edge Computing	The objective is to improve the efficiency and accuracy of face recognition in devices and accurately recognize individuals in real-time	The author used a deep unified model based on CNN and edge computing for processing the data.

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantages & Disadvantages of Each Step in This Process

The process helps to identify known and unknown faces with high accuracy, allowing for easy classification of people. This enables robots to interact with recognized individuals.

Process Steps		Advantage	Disadvantage (Limitation)	
1	The input to the proposed system is in the form of an image, which can be uploaded either from the directory or by capturing through the device's camera.	The proposed solution is highly accurate and efficient in recognizing and authenticating individuals in real time.	The system requires a good training dataset to achieve efficient and acceptable results.	
2	The captured image is processed to detect the faces in the frame using a deep unified model based on a convolution neural network.	The use of edge computing reduces data latency and increases the real-time response, making the system more efficient.	The system may face challenges in recognizing faces in low-light or noisy environments.	
3	The detected faces are then compared with the known faces in the database to recognize and authenticate individuals.	The system is designed to work with a large number of simultaneous images from different smart classrooms, making it suitable for use in educational institutions.	The system may face privacy concerns related to the collection and storage of facial data.	
4	The processing of the data is done at the edges of the nodes to reduce the data latency and increase the real-time response.			
5	The recognized individuals are marked as present in the attendance system, and the necessary data is synchronized into the gateway device after the particular time stamp.			

6	The attendance data is passed to	
	the cloud for generating reports	
	of attendance on a specific day.	

Major Impact Factors in this Work

Find all main factors and variables that are related to each solution. Then find the relationship between factors. (Independent variable) causes a change in (Dependent Variable) and it isn't possible that (Dependent Variable) could cause a change in (Independent Variable).

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
The accuracy of face recognition is used as a dependent variable as it measures the performance to evaluate the proposed system.	The algorithm components like CNN and data processing techniques like edge computing are factors acting independently.	The size of the data set provided for training acts as a moderating variable.	The use of convolutional neural networks (CNN) for face detection and recognition acts as a mediating variable.

Relationship Among The Above 4 Variables in This article

CNN-based face detection and recognition algorithm, outperforming traditional methods. Utilizing a smart classroom for attendance, achieves 97.9% accuracy, while an IoT-based edge computing architecture enhances data latency and real-time response, acting as mediating and moderating variables.

Inpu	t and Output	Feature	of This Solution	Contribution & The Value of This Work
Input image of a face, which can be uploaded from a directory or captured through a device's camera.	Output output is the recognition and authentication of the individual in the image, which is marked as present in the attendance system.	in face deterecognition and 85.5% respectivel time performedge compressions. See efficient, in unified management of the settings with management concerns and see efficients are settings.	n, boasting 94.6%	Overall, the proposed solution has the potential to improve attendance management in educational institutions by providing an efficient and accurate system for face recognition-based attendance.
Positive Impact of this Solution in This Proje		ect Domain		of this Solution in This ect Domain
The solution simplifies attendance, saves time, so efficiently, cuts costs, and enhances security with recognition, offering major benefits to educational institutions.		th facial	Since this is a performance evaluation of various algorithms, not much to project or the negative side as all the things used are defined in advance.	
Analyse This Work By Critical Thinking			ls That Assessed his Work	What is the Structure of this Paper

The solution explains an innovative face recognition approach using convolutional neural networks and edge computing to handle IoT data challenges. It details the methodology, practical implementation, and evaluation. Suggested are practical testing and exploration of broader applications.	TensorFlow, pytorch, Flask frame work	I. III. IV. VI.	Abstract Introduction Literature Review Methodology Practical Implementatio ns of the Proposed System Experiments and Results Conclusion
Diag	ram/Flowchart	V 11.	Conclusion
Diag	ram/Fiowchart		
CONY_1 CONY_2 POOLING POOLING CONY_N	REGIONAL PROPOSED NETWORK FEATURE MAP ANCHOR BOXES SLIDING FEATURE MAP BOUNDI REGR FC LAYERS ROI POOLING LAYER		

2	Real-Time Implementation of Face Recognition and Emotion Recognition in a Humanoid Robot Using a Convolutional Neural Network			
Reference	in APA format	S. Dwijayanti, M. Iqbal and B. Y. Suprapto, "Real-Time Implementation of Face Recognition and Emotion Recognition in a Humanoid Robot Using a Convolutional Neural Network," in IEEE Access, vol. 10, pp. 89876-89886, 2022, doi: 10.1109/ACCESS.2022.3200762.		
URL of the Reference		Authors' Names and Emails	Keywords in this Reference	
https://ieeexp	olore.ieee.org/abst at/9864185	Muhammad Iqbal, Bhakti Yudho Suprapto, Yul Yunazwin Nazaruddin	Accuracy, convolutional neural network, emotion recognition, face recognition, humanoid robot.	
Solution Metho Algorithm	of the Current (Technique/ d/ Scheme/ n/ Model/ Tool/ work/ etc)	The Goal (Objective) of this Solution and what is the problem that needs to be solved	What are the components of it?	

A model for real-time implementation of face recognition and emotion recognition in a humanoid robot using a convolutional neural network.

The goal is real-time face and emotion recognition in humanoid robots using a custom CNN. Filling a research gap, it introduces a tailored CNN and distance-based human localization for high accuracy, with applications in robotics, healthcare, and security.

The components in this include a modified CNN architecture, a method for measuring the distance between the object's face and the position of the robot.

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

The process helps to identify known and unknown faces with high accuracy, allowing for easy classification of people. This enables robots to interact with recognized individuals.

	Process Steps	Advantage	Disadvantage (Limitat
1	The work involves hardware design, dataset preparation, CNN architecture selection, training, and performance evaluation.	The proposed system can recognize faces and emotions in real time, which can have various applications in fields such as robotics, healthcare, and security	The hardware design step requires careful selection positioning of component which can be time-consur- and require technical exp
2	In hardware design, the components are selected and arranged strategically. To ensure the robot can capture face images, move its head to follow the object's face and display a visual appearance of the eyes.	The modified CNN architecture has shown better performance in face recognition and emotion recognition than well-known CNN architectures, i.e., VGG16 and AlexNet.	Dataset preparation dema ample data, often challen to acquire. System accura may be influenced by light expressions, and occlusion Training and testing neces substantial computational resources and time, posin system challenges.
3	In the dataset preparation step, face images are captured using a webcam embedded in the robot's eyes. These images are used as a dataset for training the CNN.	One unit combines face recognition and emotion recognition. The recognition system is embedded in the robot, enabling real-time interaction with humans based on their faces and emotions	Although the study show that the distance between recognized object and the position of the robot can measured well, the averagerror rate of 2.52% may sconsidered high in some applications.
4	In the CNN architecture selection step, two well-known CNN architectures, i.e., VGG16 and AlexNet, are compared with the proposed modified architecture. The modified architecture is chosen because it has shown better performance in face recognition and emotion recognition.	Unlike other studies that utilized a previously collected dataset, this study used primary data obtained from male and female students, where some students wore glasses and some female students wore a hijab.	
5	In the training and testing step, the CNN is trained using the face images dataset and tested using a separate dataset. The accuracy of the test is calculated using a formula that considers true positives, true negatives, false	The study confirmed real-time recognition and precise distance measurement by humanoid robots. It underscored distance and illumination as critical recognition factors.	

	positives, and false negatives.		
6	In the performance evaluation step, the proposed system's accuracy is measured as the recognition rate of faces and emotions in real-time. The accuracy value shows the level of effectiveness per class of a classification.		

Major Impact Factors in this Work

Find all main factors and variables that are related to each solution. Then find the relationship between factors. (Independent variable) causes a change in (Dependent Variable) and it isn't possible that (Dependent Variable) could cause a change in (Independent Variable).

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) varia
Recognition accuracy of faces and emotions in real-time by the humanoid robot.		The real-time implementation of the systems moderates the relationships between the independent variables and the dependent variables. It implements the overall system performance.	position of the a affects the accurac

Relationship Among The Above 4 Variables in This article

Neural network architectures and data quality influence face and emotion recognition accuracy and dismeasurement error. Real-time implementation moderates these relationships, while distance measure mediates overall system performance.

Input and Output		Feature of This Solution	Contribution & The Value of This Work
Input	Output	The proposed system utilizes a customized CNN architecture for real-time face and emotion	The proposed system is successfully implementing face and emotion recognition in a
A camera module connected to a laptop captures the visual appearance of a person's face and emotions. The captured data is then processed by the modified	Output is the recognition accuracy of faces and emotions in real-time by the humanoid robot, which is displayed on a dot matrix that shows the visual appearance	recognition, employing a camera module linked to a laptop to capture visual data. It processes point coordinates of recognized faces, achieving impressive accuracy (87% for faces, 67% for emotions). Furthermore, the system adeptly calculates distances and performs well in different lighting conditions, while also facilitating precise servo and dot matrix control.	CNN-based humanoid robot using a modified CNN architecture. The proposed model attains high accuracy in face and emotion recognition, with 87% and 67% accuracy, respectively. Moreover, the system effectively calculates distances and exhibits robust performance in various lighting conditions. Its value extends to applications in healthcare, security, and entertainment, enhancing human-robot interactions.

CNN of the eyes architecture, of the which is humanoid trained to recognize faces and emotions.				
Positive Impact of this Solu Domain		Negative Improject Doma		this Solution in This
The solution's positive imparapplicable in healthcare, secure enhancing human-robot interaction recognition. It benefit security, and user engagement	ity, and entertainment, tions through face and ts patient monitoring,	impacts, such consequences.	as privacy It is impoddress the	nave potential negative concerns or unintended ortant to consider these em appropriately when ms.
Analyse This Work By Critical Thinking	The Tools That As Work	ssessed this	V this Pape	What is the Structure of er
This study outlines a well-structured implementation of face and emotion recognition in a humanoid robot, utilizing a modified CNN architecture for high accuracy. It offers strength in diverse data sources and architectural comparisons but overlooks ethical considerations, such as privacy and socio-economic impact. Overall, it holds promise for enhancing human-robot interactions across domains, provided	Hardware components 1. Webcam 2. JX Serv 3. Arduino 4. Raspber 5. Dot matrix	o 60KG	I. II. IV. V.	Abstract Introduction Methods Results and Discussions Conclusion

Diagram/Flowchart

addressed.

2	MIII TICCALE DOMAINI AD ADEINE V	OLO EOD CDOCC DOMAIN		
3	MULTISCALE DOMAIN ADAPTIVE YOLO FOR CROSS-DOMAIN OBJECT DETECTION			
Reference in APA	M. Hnewa and H. Radha, "Multiscale Don			
format	Domain Object Detection," 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 2021, pp. 3323-3327, doi: 10.1109/ICIP42928.2021.9506039.			
URL of the Reference	Authors' Names and Emails	Keywords in this Reference		
	Authors Names and Emails	,		
https://ieeexplore.ieee.org /document/9506039	Mazin Hnewa, Hayder Radha	Object detection, Domain adaptation, Adversarial training, Domain shift.		
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution and what is the problem that needs to be solved	What are the components of it?		
MultiScale Domain Adaptive YOLO (MS-DAYOLO) framework for domain adaptation in object detection using multiple adaptation paths in YOLOv4.	The goal of the proposed solution MS-DAYOLO proposes a solution to the domain shift problem faced by object detection applications. It generates domain-invariant features using multiple domain adaptation paths and classifiers at different scales of the YOLOv4 detector. This improves the detector's performance when trained with the proposed solution and tested on target data representing challenging weather conditions for autonomous driving.	The backbone, the neck, and the head. The backbone is responsible for extracting multiple layers of features at different scales. The neck collects these features and feeds them to the head. The head predicts bounding boxes		
The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process				
The proposed MS-DAYOLO framework improves the robustness and accuracy of object detection in				

cross-c	cross-domain scenarios, making it a promising solution for real-world applications.					
	Process Steps	Advantage	Disadvantage (Limitation)			
1	Extract features at multiple scales using YOLOv4's backbone network applied domain adaptation separately to each of the three scales of features, as well as to different combinations of two scales at a time, and finally applied domain adaptation to all three feature scales simultaneously using our proposed MS-DAYOLO.	The proposed framework achieves significant improvements in object detection performance on the target domain compared to the original YOLOv4 approach.	The proposed MS-DAYOLO framework is specifically designed for the YOLOv4 object detector and may not be directly applicable to other object detection architectures.			
2	Train the object detector using both labeled source and unlabeled target data and train domain classifiers for each scale.	The framework generates domain-invariant features that reduce the impact of domain shift, making it more robust to changes in the target domain.	The proposed framework addresses the domain shift problem encountered in cross-domain object detection scenarios. It may not be suitable for other types of domain adaptation problems.			
3	Evaluate the performance of the object detector in the target domain and compare results of domain adaptation to MS-DAYOLO at different scales.	The proposed method does not require any annotation of the target domain, making it more practical and cost-effective for real-world applications.	It is evaluated on a specific set of objects commonly found in autonomous driving scenarios. It may not be effective for other types of objects or scenes			
4	Analyze the results and conclude that applying domain adaptation to all three feature scales improves the detection performance on the target domain and achieves the best result.	The YOLOv4 architecture is already known for its fast and efficient object detection capabilities, and the proposed framework builds on this by adapting it to cross-domain scenarios.				
5	Show that the proposed MS-DAYOLO outperforms the original YOLOv4 approach by a significant margin and almost reaches the performance of the ideal (oracle) scenario, especially for some object classes in terms of average precision and overall mAP.	The proposed framework can be applied to a wide range of applications that involve cross- domain object detection, such as autonomous driving, surveillance, and robotics.				
6	Provide examples of detection results of the proposed method as compared to the original YOLOv4.					
	Major Impact Factors in this Work					

Major Impact Factors in this Work

<Find all main factors and variables that are related to each solution. Then find the relationship between factors. (Independent variable) causes a change in (Dependent Variable) and it isn't possible that

(Dependent Variable) could cause a change in (Independent Variable).

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
The evaluation metrics such as Average Precision (AP), mean average precision (mAP), and class-specific metrics (P: Person, R: Rider, C: Car, M: Motorcycle, B: Bicycle, V: Vehicle, TS: Traffic Sign, TL: Traffic Light, SLS: Speed Limit Sign) represent the dependent variables	conditions like foggy, rainy sunny may act as the independent	The lambda parameter controls the impact of the Domain Adaptive Network (DAN) on the backbone. It balances the trade-off between the detection loss and domain classification loss.	Domain-invariant features extracted from different scales of the YOLOv4 mediate the impact of domain shifts on object detection.

Relationship Among The Above 4 Variables in This article

The relationship among these variables involves how weather conditions and domain adaptation methods influence the object detection performance, with Lambda moderating the adaptation process and domain-invariant features acting as a mediator to mitigate the effects of domain shifts. The goal is to enhance the system's robustness and accuracy across diverse environmental conditions.

Input and Output		Feature of This Solution	Contribution & The Value of This Work
Input	Output	The framework introduces multi- scale domain adaptation for YOLOv4 object detection,	In this work, we propose a novel multiscale domain
Input is a set of labeled data from a source domain and a set of unlabeled data from a target domain. The labeled data is used to train the YOLOv4 object detector, while the unlabeled data is used to adapt the detector to the target domain	The output is a framework that produces a feature representation that works across different domains. This helps to enhance the accuracy of object detection in the target domain by detecting objects and providing their class labels and bounding boxes.	enhancing domain-invariant feature extraction. It employs end-to-end training and operates in real-time, making it valuable for time-critical applications. A significant advantage is that it doesn't require target domain data annotation. Furthermore, it outperforms YOLOv4 in diverse autonomous driving scenarios, improving object detection performance.	adaptation framework for the widely-used real-time object detector YOLOv4. The main contribution of our framework is the improvement of detection performance in the target domain thanks to robust domain-invariant features that reduce the impact of domain shift. An important advantage of our framework is that it can successfully adapt YOLOv4 to target domains without the need for any annotation, which is particularly useful in scenarios where labeling is time-consuming or expensive.

			Additionally, our proposed MS-DAYOLO outperforms state-of-the-art YOLOv4 in various testing scenarios for autonomous driving applications. The value of our work lies in its potential to enhance the performance of object detection systems in real-world scenarios where domain shift is
Positive Impact of this Solution in Th	is Project	Negative Impact of	prevalent. f this Solution in This
Domain	us i roject	_	t Domain
The solution holds promise in enhand detection systems for autonomous driving domain shifts without data annotation. driving heavily relies on object detecting adaptation can boost system reliability crucial for this domain.	by mitigating Autonomous on, and this	the quality and divers domain. Substantial d biased data can still at performance due to do	-
Analyse This Work By Critical Thinking	The Tools	That Assessed this Work	What is the Structure of this Paper
The analysis reveals noteworthy aspects	TensorFlow,		l. abstract
of the work. The framework's novelty lies in its multi-path domain adaptation	Open CV,		II. Introduction
approach, distinct from prior methods.	Dataset,		III. Related Work IV. Experiments
The evaluation demonstrates its superiority over YOLOv4 but lacks comparison with other domain adaptation methods. Acknowledged limitations include increased resource requirements and data quality dependence. Future work	Matplotlib		V. Conclusion
should consider different threshold values, alternative detection architectures, and applications beyond the current scope, providing potential avenues for further research and improvement.			
Diagram/Flowchart			

4 Smart Telepho	4 Smart Telephone Design - Caller Identification and Answering Machine			
Reference in APA format	M. M. Hasan, Lim Hooi Jiun, Ng Wei Cheun, and M. S. Shahid, "Smart telephone design-caller identification and answering machine," ICSE'98. 1998 IEEE International Conference on Semiconductor Electronics. Proceedings (Cat. No.98EX187), Bangi, Malaysia, 1998, pp. 217-222, doi: 10.1109/SMELEC.1998.781183.			
URL of the Reference	Author's Names and Emails	Keywords in this Reference		
https://ieeexplore.ieee.org/abstract/document/781183	Md. Mahmud Hasan, mahmud@eng.upm.edu.my Lim Hooi Jiun, Ng Wei Chuen	Smart Telephone Design, Caller Identification, Answering Machine, microcontrollers, digital telephone networks, Frequency Shift Keying (FSK), modem tones, ring detector circuit, and outgoing message sender circuit.		
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution and what is the problem that needs to be solved	What are the components of it?		
Caller Identification and Answering Machine functions in telephones are based on the potential use of low-cost microcontrollers.	The solution aims to explore the potential use of low-cost microcontrollers to implement advanced facilities and services related to everyday telephone use, such as Caller Identification and Answering Machine functions. The problem that needs to be solved is making these features accessible to a wider audience by using affordable technology. The paper also highlights the power and connectivity of the telephone system, which can be leveraged for other business purposes beyond traditional communication.	PIC16C84 microcontroller, Caller Identification (Caller ID) circuit, Answering Machine circuit, Tele- security system circuit, Ring detector circuit, Ring detector circuit, Outgoing message sender circuit, LCD display unit, EEPROM memory		

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

The work presents a promising solution to the problem of making Caller Identification and Answering Machine functions accessible to a wider audience by using affordable technology.

	Process Steps	Advantage	Disadvantage (Limitation)
1	The problem that needs to be solved is how to make Caller Identification and Answering Machine functions accessible to a wider audience by using affordable technology.	The use of low-cost microcontrollers and digital telephone networks makes Caller Identification and Answering Machine functions accessible to a wider audience.	The design and implementation of the Smart Telephone Device require technical expertise and may be too complex for some users.
2	The researchers investigated the potential use of low-cost microcontrollers and digital telephone networks to incorporate advanced facilities and services associated with daily telephone use.	The Tele-security system circuit monitors the telephone line for any unauthorized access or tampering, providing enhanced security.	The Smart Telephone Device is designed to perform specific functions, including Caller Identification, Answering Machine, and Tele-security system, and may not meet the needs of all users.
3	The design of the Smart Telephone Device consists of several components, including the PIC16C84 microcontroller, Caller Identification circuit, Answering Machine circuit, Tele-security system circuit, Ring detector circuit, Outgoing message sender circuit, LCD display unit, and EEPROM memory.	The Answering Machine circuit records and plays back outgoing messages, and detects incoming messages, providing convenience to users.	It is evaluated on a specific set of objects commonly found in autonomous driving scenarios. It may not be effective for other types of objects or scenes
4	The implementation of the Smart Telephone Device by programming the PIC16C84 microcontroller in Intel 8052 8-bit microcontroller assembly language and assembling the hardware components.		
5	The testing of the Smart Telephone Device to ensure that it performs the intended functions, including Caller Identification, Answering Machine, and Tele-security system.		

Major Impact Factors in this Work

<Find all main factors and variables that are related to each solution. Then find the relationship between factors. (Independent variable) causes a change in (Dependent Variable) and it isn't possible that (Dependent Variable) could cause a change in (Independent Variable).</p>

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
The performance of the Caller Identification system and the Answering Machine functionality can be considered as the dependent variable. It includes the accuracy and efficiency of identifying callers and recording messages.	security components,	The microcontroller, acting as the brain of the system, can be considered a moderating variable. It controls various logical operations and influences the interaction between independent variables, affecting the overall system performance.	The software program, specifically the assembly language program stored in the EEPROM of the microcontroller, serves as a mediating variable. It mediates between the hardware components and the overall system functionality, influencing how the system processes and responds to different inputs.

Relationship Among The Above 4 Variables in This article

The relationships among the variables are interconnected and cooperative. Hardware components collectivel contribute to system functionality, signaling mechanisms influence Caller ID performance, answerin machine components affect the performance of the answering machine, tele-security system component impact security system operation, and the microcontroller, along with its program, controls and mediate these interactions to achieve the desired smart telephone system functionality.

	Input and Output		Feature of This Solution	Contribution & The Value of This Work
١.			The Smart Telephone Device offers a range of features, including Caller	The contribution is to create affordable and efficient
	Input	Output	Identification through a dedicated	telephone systems that can
	The input is the components consisting of the telephone line and the ring detector circuit. The telephone line serves as the source of incoming calls, while the ring detector circuit detects the ringing signal of an incoming call	The output is the LCD display unit displays the Caller ID information decoded by the Caller ID circuit. The outgoing message sender circuit sends an outgoing message to the caller when the answering machine is	circuit displaying information on an LCD unit. It incorporates an answering machine to record messages during user unavailability and functions as a tele-security system, activating alarms against unauthorized access or tampering. Utilizing low-cost microcontrollers ensures affordability. Designed for compatibility with prevalent digital telephone networks, the device explores the application of Signaling System No. 7 (SS 7) for enhanced Caller ID in the realm of digital telephony networks.	be used daily. The Smart Telephone Device is a comprehensive solution for household telephone use as it provides Caller ID, Answering Machine, and tele-security system functionalities. This has been made possible by the use of low-cost microcontrollers and digital telephone networks, making the device accessible to a wider audience. The paper also delves into the use of SS 7 for Caller ID, which is a signaling protocol used in digital telephone networks, providing insights into the
	and transmits	activated. The		technical aspects of the
	a signal to the PIC16C84	tele-security system circuit		system. Overall, this study offers practical solutions for
			16	everyday telephone use and

microcontroll er, which triggers the Caller ID and Answering Machine circuits.	activates an alarm if any unauthorized access or tampering is detected on the telephone line.			the de	es significantly to evelopment of technology.
Positive Imp	Positive Impact of this Solution in This Project Domain			ct of this So oject Doma	olution in This ain
answer for daily The Smart Tel answering mach practical for h microcontrollers enhances access	telephone needs i ephone Device, ine, and a tele-secousehold use. I and compatibility	e and comprehensive in the project domain. with Caller ID, an eurity system, proves is use of low-cost with digital networks added security layer ject.	The negative impact could be the reliance on digital telephone networks and SS 7 for Caller ID. If these systems experience technical difficulties or outages, the Smart Telephone Device may not function properly. Additionally, the tele-security system circuit may not be sufficient for high-security applications, as it is designed for household use.		
•	Work By Critical	The Tools That A	ssessed this Work		at is the Structure
Thi	nking			of this Pa	per
and easily acc solution that affordability. The Device comes we answering mack security system layer of security.	e Smart Telephon with a Caller ID, a hine, and a tele that adds an extra However, the telemay not be suitable	decode and decoder machine, Sensor, DTMF decoder ISD1420 Single-ch playback IC, Opto-isolator, CPC circuit, Motor Microcontro	System, Caller ID isplay, Answering IC (MC145436A), ip voice recording circuit, Protection oller	I. II. IV. V. VI.	abstract Introduction Related Work Hardware Design Software Design Conclusion

Diagram/Flowchart

5 Improved Trust	Improved Trust in Human-Robot Collaboration With ChatGPT			
Reference in APA format	Y. Ye, H. You and J. Du, "Improved Trust in Human-Robot Collaboration With ChatGPT," in IEEE Access, vol. 11, pp. 55748-55754, 2023, doi: 10.1109/ACCESS.2023.3282111.			
URL of the Reference	Author's Names and Emails	Keywords in this Reference		
https://ieeexplore.ieee.org/abstrac t/document/10141597	Yang ye, Hengxu you, Jing du, eric.du@essie.ufl.edu	ChatGPT, human factors, human-robot interaction, large language model, trust, LLMs (Language and Learning Models), HRC (Human-Robot Collaboration), Digital Object Identifier (DOI)		
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	` ,	What are the components of it?		
The current solution presented in this paper is "Robo GPT". A robot control system utilizes ChatGPT to enhance communication and understanding between humans and robots in a human-robot collaboration assembly task.	the Robo GPT solution, aiming to enhance human-robot collaboration (HRC) in assembly tasks by addressing	ChatGPT, Robotic control modules, AI assistant, Human operator.		

Al-based natural language processing tool, with robotic control modules to create an intelligent Al robot control assistant. The goal is to assess the impact of ChatGPT on human operators and evaluate the overall effectiveness of the Robo GPT system in improving HRC performance.	
---	--

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

RoboGPT integrates language models with robotic controls, employing GPT3.5 for decision-making. It enables bidirectional communication, increasing transparency, and triggers ROS-based robotic control functions for assembly tasks.

	Process Steps		Advantage	Disadvantage (Limitation)
-	1	The Robo GPT workflow integrates LLMs with robotic control modules to build an intelligent AI robot control assistant. The workflow first transforms human operators' spoken language into textual input for the AI assistant to process.	Improved communication and collaboration between humans and robots	The use of AI and natural language processing tools may require additional training and expertise
-	2	The decision-making core of the AI assistant utilizes GPT3.5 to understand the information and respond. By considering the contextual information and evaluating the ambiguity of information, GPT3.5 generates natural responses to either further clarify the information with the human operators via conversations or control the robot.	Increased transparency and reduced ambiguity in the decision-making process	The system may not be suitable for all types of assembly tasks or environments
	3	The Robo GPT Al assistant generates prompts, presents the prompts to human operators, and waits for further instructions. Such bidirectional communication clarifies the intention of both human operators and the robotic system, which could increase transparency and reduce ambiguity.	Enhanced trust in the robotic system	The cost of implementing the system may be high

4	Al assistant considers the	Better task performance and
	information adequate for	efficiency
	decision-making, the responses	
	will be sent to a decoder which	
	further processes the	
	commands into Robotic	
	Operating System (ROS) topics	
	and triggers robotic control	
	functions to perform tasks	
	correspondingly. In the context	
	of HRC in assembly, the major	
	robotic control functions are	
	grab, move, and drop.	

Major Impact Factors in this Work

<Find all main factors and variables that are related to each solution. Then find the relationship between factors. (Independent variable) causes a change in (Dependent Variable) and it isn't possible that (Dependent Variable) could cause a change in (Independent Variable).</p>

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Trust in Human-Robot	Use of ChatGPT in	Task performance might	Cognitive Load might
Collaboration the participants' level if trust in the collaboration between humans and robots.	,	influence the strength	help explain the process through which the independent variable (ChatGPT) influences the dependent variable (Trust).

Relationship Among The Above 4 Variables in This article

The use of ChatGPT in robotic control has direct effects on trust, potentially mediated by reduced cognitive load and moderated by task performance. Task performance itself might also have a direct influence or trust.

Input and Output		Feature of This Solution	Contribution & The Value of This Work
		The feature of this solution is the	The introduction of ChatGPT
Input	Output	integration of ChatGPT in Robo GPT facilitates bidirectional	within the Robo GPT system contributes significantly to
The input of	The output of	communication, enhancing	human-robot collaboration by
this solution is	this solution is	transparency and efficiency in	enhancing transparency and
the use of	improved trust	decision-making between	decision-making efficiency.
ChatGPT in the	in the robotic	humans and robots. ChatGPT's	This improvement builds trust
Robo GPT	system and	natural language processing	in the robotic system,
system, which	better task	capabilities simplify human-robot	particularly crucial in industrial
enables	performance.	interaction, enabling autonomous	and manufacturing
bidirectional	The use of	decision-making and memory	environments where
communicatio	ChatGPT in the	retention for improved	optimized task performance is
n between	Robo GPT	collaboration. Despite the text-	essential. The integration of
humans and	system enables	based I/O, the system shows	ChatGPT showcases
robots and	bidirectional	promise in fostering better	advancements in natural
improves the	communicatio	partner relationships and	language processing,

transparency				
and efficiency of the decision-making process. It also includes the implementation of robotic control modules and an AI assistant that continuously monitors and controls the robot's actions throughout the assembly task.	n between humans and robots, which improves the transparency and efficiency of the decision-making process.	elevating performance collaboration s	overall task in human-robot cenarios.	emphasizing its potential to elevate communication and collaboration between humans and robots. The human-subject experiment conducted in the study serves as critical validation for the efficacy of the HRC design, utilizing language models and deepening our understanding of human trust in the collaborative process.
Positive Impact Domain	Positive Impact of this Solution in This Proje Domain			of this Solution in This Project
productivity. Bi-directional communic ChatGPT enables natural human-rob essential in industrial and environments, where LLMs' use as in assistants improves decision-making		ecision-making, ormance and ication through bot interaction, manufacturing intelligent robot	reliance on high-cresources. Imple acceptance challe	technical limitations such as quality data and computational ementation costs and user enges, coupled with ethical arding privacy and security, need
transparency.	es decision making	erriciency and		
·	Vork By Critical		nat Assessed this	What is the Structure of this Paper

Diagram/Flowchart

6	YOLO-based Threat Object Detection i	n X-ray Images			
Reference in APA format	R. L. Galvez, E. P. Dadios, A. A. Bandala and R. R. P. Vicerra, "YOLO-based Threat Object Detection in X-ray Images," 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Laoag, Philippines, 2019, pp. 1-5, doi: 10.1109/HNICEM48295.2019.9073599.				
URL of the Reference	Authors Names and Emails	Keywords in this Reference			
https://ieeexplore.ieee.org/do cument/9073599	Reagan L. Galvez, reagan_galvez@dlsu.edu.ph Elmer P. Dadios, Argel A. Bandala, Ryan Rhay P. Vicerra	automated detection, convolutional neural networks, threat object, transfer learning, X-ray image, YOLO			
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that needs to be solved	What are the components of it?			
YOLO-based object detection algorithm to detect threat objects in X-ray images.	The goal of the solution is to automate the detection of threat objects in X-ray images, which is a tedious and time-consuming task for human inspectors. The problem that needs to be solved is the possibility of missed detections during peak hours due to the limited time available to scan and analyze the baggage. It can be solved by using a fast object detector as decision support for threat object detection.	YOLOv3 Architecture, Darknet-53 Feature Extractor			
The Process (Mechanism	The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process				

The algorithm uses CNN and a fast object detector to detect threat objects in X-ray images. It is trained on a dataset of threat and non-threat objects and can quickly detect multiple objects in one image

	Process Steps	Advantage	Disadvantage (Limitation)
1	A dataset of X-ray images containing threat objects and non-threat objects is collected.	The YOLO-based object detection algorithm is fast and can detect objects in real-time.	The algorithm may not be as accurate as other object detection algorithms that use more complex architectures.
2	The X-ray images are preprocessed to enhance the quality of the images and to normalize the pixel values.	The algorithm can detect multiple objects in a single image	The algorithm may not be able to detect small or occluded objects.
3	The YOLOv3 architecture is trained on the preprocessed dataset using both transfer learning and training from scratch. The performance of the two methods is compared, and it is found that training from scratch achieves better results.	The algorithm can be trained on a new dataset to detect different types of objects	The algorithm may require a large amount of training data to achieve good performance.
4	The trained model is evaluated on a test set of X-ray images to measure its performance in detecting threat objects.		
5	The trained model is deployed as a fast object detector to assist human inspectors in detecting threat objects in X-ray images.		

Major Impact Factors in this Work

<Find all main factors and variables that are related to each solution. Then find the relationship between factors. (Independent variable) causes a change in (Dependent Variable) and it isn't possible that (Dependent Variable) could cause a change in (Independent Variable).

Ī	Dependent Variable	Independent Variable	Moderating variable	Mediating
l				(Intervening) variable
-				

Mean Average Precision	transfer learning and	Task complexity,	Inference Speed, the
(mAP) represents the	training from scratch	particularly the	time taken for the
accuracy of threat	and input images acted	thickness of threat	model to make
object detection in X-ray	as the independent	objects, could moderate	predictions per image,
images. It is the	variables as we used the	the performance of the	Average Precision (AP)
measure used to	YOLO model for	YOLO-based detector.	for different threat
evaluate the	training.		object classes, and the
performance of the			performance on
YOLO-based object			individual classes can
detector.			mediate the overall
			mAP, providing insights
			into which types of
			threat objects the
			model is better at
			detecting.
			-

Relationship Among The Above 4 Variables in This article

The dependent variable is the mean average precision, while independent variables include the training approach and input image size. The moderating variable is task complexity, and mediating variables include time per inference and the performance on specific threat object classes.

Input and Output Feature		Feature of This	Solution	Contribution & The Value of This Work
Input The input is X-ray images of baggage or other items that need to be scanned for potential threat objects.	Output is the list of detected objects in the input X-ray image, along with their corresponding class labels and bounding boxes. The algorithm can detect multiple objects in a single image and is fast	The proposed solution based object detect used in this solution efficient, and it ach average precision (152.40% in a multiple multiple algorithm us extractor called Dark has 53 convolutionation on the ImageNet YOLOv3 architecture detect threat objection in the images, and it concludes the control of the	cion algorithm on is fast and nieves a mean mAP) of up to i-scale image. es a feature knet-53, which I layers trained dataset. The are is used to cts in X-ray an accurately er handcrafted other object	The contribution of this work is the development of a fast and efficient YOLO-based object detection algorithm for automated detection of threat objects in X-ray images. The algorithm achieves high accuracy in detecting threat objects, and it outperforms other object detection algorithms that use handcrafted features. The value of this work lies in its potential to improve security in public places such as airports, train stations, and commercial establishments by providing a fast and effective way to detect threat objects in X-ray images.
Positive Impact of this Solution in This Project Domain		Negative In	npact of this Solution in This Project Domain	
The positive impact is it provides a fast and efficient way to detect threat objects in X-ray images, which can improve security in public places such as airports, train stations, and commercial establishments. By automating the detection process, the workload of security personnel can be reduced, and the public's overall safety can be		algorithms ma	YOLO-based object detection y require additional hardware and arces, which could be expensive nizations.	

improved.									
Analyse This Work By C Thinking				ols That Assessed this Work			What is the Structure of this Paper		
image threat object detection, arc emphasizing public security enhancement. YOLO architecture exp			re, a d ages d	k Onc ataset of an evice yTorch	of sca impro (I	nned	I. II. III. IV V.		
		Diag	ram/F	lowch	art				
	Trained f Trained from s Trained from sc Transfe	odel rom scratch cratch (608×608) cratch (608×608) r learning ing (multi-scale) 1.0 - 0.8 - 0.6 - 0.4 - 0.2 - 0.0 -	-▼- traind -Φ- traind -♦- trans	APhattery 0.3733 0.3986 0.4627 0.0383 0.00216 and from scratch ed from scratc	(multi-scale)	APwires 0.1569 0.2058 0.1885 0.0363 0.0439	time(ms) 29.41 39.72 27.99 28.22 30.19		

7	Object Detection for Autonomous Driving using YOLO [You Only Look Once] algorithm			
Reference in APA format	A. Sarda, S. Dixit and A. Bhan, "Object Detection for Autonomous Driving using YOLO [You Only Look Once] algorithm," 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 2021, pp. 1370-1374, doi: 10.1109/ICICV50876.2021.9388577.			
URL of the Reference	Authors Names and Keywords in this Reference Emails			
https://ieeexplore.ieee.org/doc ument/9388577	Abhishek Sarda, Dr. Shubhra Dixit, Dr. Anupama Bhan	Deep learning, Object detection, Classification algorithms, Autonomous vehicles, computer vision, learning (artificial intelligence), state-of-the-art algorithm YOLO, and autonomous driving.		
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/	algorithm YOLO, and autonomous driving. The Goal (Objective) of this Solution & What is What are the components of it?			

etc)			
Object detection YOLOV4 algorithm	using	The goal of this solution is to enhance safety and efficiency by precisely identifying and categorizing objects on the road. This addresses the issue of accidents stemming from human error, reducing them through autonomous driving technology.	The solution uses YOLOv4's CSPDarknet53 for image feature extraction, a SPP (Spatial pyramid pooling) and PAN (Path Aggregation Network) layers for processing of images, a YOLOv4 detection model for drawing bounding box and class probability predictions, its data augmentation techniques include Mosaic augmentation and DropBlock regularization, it uses Mish and Leaky ReLU activation functions, the Darknet training framework, it was trained on google colab using GPU.

The YOLO algorithm for object detection in autonomous driving involves YOLOV4 model where the input image is processed through a model's neural network to detect and classify objects in real-time.

	Process Steps	Advantage	Disadvantage (Limitation)
1	The YOLO model trains on the custom image data we provide to identify objects on images in google colab environment using yolo's training algorithm.	Training the YOLO algorithm on custom classes allows for the detection of specific objects.	The accuracy of the algorithm depends on the quality and quantity of the training data.
2	The new unseen input image is processed through a neural network to detect and classify objects in real-time.	YOLO is a single-shot detector, which means it can detect and classify objects in real-time.	It may not perform as well as multi-stage detectors in detecting small objects.
3	The objects on the image are identified and classified into different objects by drawing the bounding boxes around them.	The Identified objects are separated by bounding boxes.	

Major Impact Factors in this Work

The major impact factors in this work include addressing utilizing the advanced YOLO algorithm, customizing training for relevant classes, rigorous performance evaluation, and the potential for real-world safety improvements in autonomous driving.

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Object detection accuracy	Deep learning algorithms (YOLO)		
Speed of object detection	Training dataset		
Ability to detect specific objects	Object detection algorithms		
	Pre-processing techniques		

Relationship Among the Above 4 Variables in This article

The model uses yolo model for object detection through which object detection speed and accuracy are improved. Through the custom training model can detect specific objects on the image.

Input or	nd Output	Feature of This Solution Contribution & The Value of This			
Input and Output					
Image or video feed image or from a video feed camera that shows the detected objects and their corresponding boxes		This algorithm is a single- shot detector that allows for real-time detection and classification of objects, making it suitable for use in autonomous driving.	This work offers a custom object detection model for autonomous driving achieving an impressive 74.6% mAP (mean average precision).		
Positive Impact of this Solution in This Project Domain		<u> </u>	this Solution in This Project Domain		
The solution of using YOLO algorithm can significantly reduce accidents and improve safety.		The YOLO algorithm may have false positives and false negatives, we can lead to incorrect object detection and potential accidents.			
	nis Work by Thinking	The Tools That Assessed this Work	What is the Structure of this Paper		
The authors provided a detailed explanation of the algorithm and its training process, and presented impressive results on a custom dataset. However, a more thorough discussion of limitations and comparisons with other algorithms would have enhanced the analysis.		The tools used to assess this work include the YOLO algorithm for object detection, the Darknet repository for training the YOLO model. Additionally, Google Colab for setting up the training environment and analyzing the results.	 Abstract Introduction Literature Review YOLO Architecture Methodology Data Initial Result Custom Training Result Conclusion References 		
		Diogram/Flawsha			
		Diagram/Flowcha	art —		

	8 Edge detection-based boundary box construction algorithm for improving the precision of object detection in YOLOv3				
Reference in APA format		S. T. Blue and M. Brindha, "Edge detection-based boundary box construction algorithm for improving the precision of object detection in YOLOv3," 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 2019, pp. 1-5, doi: 10.1109/ICCCNT45670.2019.8944852			
URL of the Reference	Aut	hors Names and Emails	Keywords in this Reference		
https://ieeexplore.ieee.org		horn Blue, M. Brindha	object detection, boundary boxes, precision, YOLOv3, COCO dataset, edge detection, pixel values, IOU comparison.		
Solution (Technique/ Soluti		Goal (Objective) of this on & What is the problem hat need to be solved	What are the components of it?		
Framework/ etc) Edge detection-based boundary box construction algorithm for improving the precision of object detection using YOLOv3 The air the proving the precision of object image accura		m of this work is improving ecision of boundary boxes will be been drawn after a has been detected on in order to improve the cy of object localization and ication within images.	The proposed work includes the YOLOv3 algorithm, which is used to obtain the coordinates of boundary boxes and the class of the object. After YOLOv3 outputs an image, preprocessing is applied to obtain an image with the edges of the detected object. The proposed work also includes an edge detection algorithm, image partitioning into four parts, and the construction of a new boundary box based on threshold values.		
The Process (Mechanis	sm) of th	is Work; Means How the Pr	oblem has Solved & Advantage &		

Disadvantage of Each Step in This Process

The algorithm evaluates the accuracy of object localization and identification within images using YOLOv3 algorithm through which edges can be detected so that boundary boxes can be drawn accurately.

	Process Steps	Advantage	Disadvantage (Limitation)
1	The model applies the algorithm only on the part of the image where YOLOv3 has already detected an object.	Reduces computation and improves algorithm speed.	May miss objects outside the detected area.
2	The image is blurred to make colour transitions smooth and remove noise and outlier pixels.	Smooths colour transitions and removes noise.	May blur important details.
3	The proposed work uses the Canny edge detection algorithm to detect edges in the blurred image.	Accurately detects edges.	May miss some edges or produce false positives.
4	The image is divided into four parts to focus on the areas where boundary box edges are more likely to be found.	Focuses on areas where boundary box edges are more likely to be found.	May miss boundary box edges in the middle of the image.
5	Each divided image is analysed, and a threshold value is calculated based on the density of white pixels. A new boundary box is drawn based on the calculated threshold value.	Draws more precise boundary boxes.	May struggle with sharp objects and noisy images.

Major Impact Factors in this Work

Key impact factors of the proposed work include precision enhancement in boundary boxes, building upon the YOLOv3 object detection system, leveraging a pretrained COCO dataset, edge detection algorithm.

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening variable
Edge detection	Pretrained dataset		
Precision of Boundary Boxes	Threshold value		
	Image preprocessing techniques		

Relationship Among the Above 4 Variables in This article

Through edge detection of the objects, we can find the coordinates of the detected objects and a threshol value is calculated by which we can draw new accurate boundary boxes.

Input and Output	Feature of This Solution	Contribution & The Value of This
		Work

Image or video feed from a camera sensor	more precise boundary box compared to YOLOv3.	This solution prioritizes precision by enhancing the accuracy of boundary boxes around detected objects, outperforming YOLOv3 through edge detection and pixel values. Leveraging YOLOv3 as a foundation, it utilizes pre-trained COCO data, determines threshold values for boundary sides, and excels in producing accurate boundary boxes.		YOLOv3 and the pre-trained COCO dataset. It utilizes edge detection and pixel analysis to create more accurate boundary boxes around objects, improving localization.	
•	act of this Solut roject Domain	tion in	Negative Impact of th	is Solutio	on in This Project Domain
The solution enhances detection precision with detection and pixel analysis.		object edge			educed real-time performance potential trade-off between
_	is Work by Thinking	The	Tools That Assessed this What is the Structure of this P Work		is the Structure of this Paper
integration of YOLOv3 for object detection, followed		graph, superio	tion relies on a comparison demonstrating the work's or accuracy in boundary box tions over YOLOv3.	2. 3. 4. 5. 6. 7.	Introduction Proposed Work YOLOv3 Object Detection Algorithm Image Pre-Processing Boundary-Box Construction Result and Analysis Conclusion References

Diagram/Flowchart

9 Moving Ob	ject Detection and Tracking Using	Convolutional Neural Networks
Reference in APA format	S. Mane and S. Mangale, "Moving Object Detection and Tracking Using Convolutional Neural Networks," 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2018, pp. 1809-1813, doi: 10.1109/ICCONS.2018.8662921	
URL of the Reference	Authors Names and Emails	Keywords in this Reference
https://ieeexplore.ieee.org/do cument/8662921	Shraddha Mane, Prof. Supriya Mangale	Object detection, Object tracking, Convolutional neural networks, Computational modelling, cellular neural nets, convolutional neural nets, image sequences, convolutional neural networks, computer vision algorithm, TensorFlow object detection API, object tracking algorithm, moving-object detection.
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?
Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc) Moving object detection and tracking using CNN and TensorFlow object detection API.	Solution & What is the problem	Moving object detection using TensorFlow object detection API, Location of detected object passed to object tracking algorithm, CNN-based object tracking algorithm for robust object detection, Offline training to learn spatial and temporal classes for human tracking, shift variant architecture to combine global features and local characteristics

Disadvantage of Each Step in This Process

Our approach uses TensorFlow object detection API for moving object detection and a CNN-based tracking algorithm for robust object detection. Offline training and shift-variant architecture are also used for improved accuracy.

	Process Steps	Advantage	Disadvantage (Limitation)
1	We use the TensorFlow object detection API to detect moving objects in real-time video streams.	This API provides a simple and efficient way to construct, train, and detect models for object detection.	This may require some knowledge of TensorFlow and deep learning methods.
2	Once the object is detected, we use a CNN-based tracking algorithm to track the object's location over time.	This algorithm is designed to be robust to variations in illumination and occlusion.	This may require a large number of computational resources.
3	We use offline training to learn spatial and temporal classes for human tracking.	This improves the accuracy of object detection and tracking.	Offline training may require a large amount of data and time to train the model.
4	We use a shift-variant architecture to combine global features and local characteristics.	This improves the accuracy of object detection and tracking.	This may require some knowledge of computer vision and image processing techniques.

Major Impact Factors in this Work

Key impact factors of this work include a remarkable 90.88% accuracy, robustness against illumination and occlusion, computational efficiency through TensorFlow, adaptability to diverse scenarios, and the novelty of fusing TensorFlow object detection API and CNN-based tracking.

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Sensitivity	True Positive (TP) values		
Specificity	True Negative (TN) values		
Accuracy	False Positive (FP) values		
	False Negative (FN) values		

Relationship Among the Above 4 Variables in This article

We can calculate the sensitivity, specificity and accuracy of the model's performance by using TP, TN, FP, FN values which are the probabilistic values of the object detection scenarios.

Input and Output		Feature of This Solution	Contribution & The Value of This Work
		The key features of this solution	
Input Output		include a novel Tensor flow-	development of an algorithm for
		based object detection and CNN	object detection and tracking using a
		object tracking system for robust	combination of object detection with
		object detection and tracking in	Tensor Flow and object tracking with
		complex scenes. Evaluation	CNN. The algorithm is tested on

Image or video feed and from a quantitative analysis of sensor the object detection and tracking results.	involves sensitivity, specificity, and accuracy metrics, derived from TP, TN, FP, and FN values, assessing the system's performance in identifying moving and stationary objects.	various video sequences and achieves good performance in terms of sensitivity, specificity, and accuracy.
Positive Impact of this Solution in This Project Domain	Negative Impact of this Solution in This Project Domain	
The solution offers a novel, robust approach to object detection and tracking in complex scenarios which enhances accuracy and exhibits efficient performance in Python-based testing.	clutter leading to tracking false	ay arise from dynamic backgrounds, alarms, potential misclassification of of an appropriate classifier influencing
Analyse This Work by Critical Thinking	The Tools That Assessed this Work	What is the Structure of this Paper
This solution focuses on object detection and tracking through a unique approach involving TensorFlow's object detection API and CNN algorithms. Evaluation across diverse video sequences reveals impressive sensitivity, specificity, and accuracy metrics. The use of a shift variant architecture enhances CNN performance. The approach seems promising in terms of accuracy and robustness.	The tools used to assess this work include sensitivity, specificity, and accuracy parameters. These parameters are calculated using True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN).	 Introduction Literature Survey Methodology Results Conclusion References
	Diagram/Flowchart	

10	Enhanced Miss	Enhanced Missing Object Detection System using YOLO			
Reference in AP	A format	Missing Object Detection S International Conference o	n Advanced Computing and CS), Coimbatore, India, 2020, pp.		
URL of the Ref	erence	Authors Names and Emails	Keywords in this Reference		
https://ieeexplore.iee ent/90742	o .	Menaka, Archana, Dhana Gopal, Ramesh	YOLO, object identification, continuous object detection, class probabilities, CNN, regression algorithms, image segmentation, object recognition, intersection over union (IoU), non-max suppression, anchor box, object co-detection, anomaly detection, CNN architecture, frame analysis.		
The Name of the Cur (Technique/ Metho Algorithm/ Mod Framework/	od/ Scheme/ lel/ Tool/	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?		
Enhanced Missing Ob System using YOLO	ject Detection	The aim of this solution is to develop an Enhanced Missing Object Detection System using the YOLO approach. The problem that this system aims to solve is the identification of missing objects in real-time by	Object Identification Techniques (YOLO), Bounding Box Prediction, Anchor Box Technique, Comparison with Other Real-Time Systems, Frame Analysis.		

continuously analysing frames and alerting the user.	

The solution involves dividing the image into grids, predicting bounding boxes and class probabilities for objects in each grid cell, comparing objects in current and previous frames to identify missing objects, and generating alerts. It utilizes the YOLO algorithm for real-time object detection and classification.

	Process Steps	Advantage	Disadvantage (Limitation)
1	The YOLO algorithm is used to identify objects in each frame of the input image or video. This step involves predicting bounding boxes and class probabilities for objects using a single neural network.	The YOLO algorithm helps in detecting objects directly from full image in a single pass, making it faster compared to other detection algorithms.	The YOLO algorithm may make some localization errors but predicts fewer false positives in the background.
2	The current frame is compared with the previous frame to check if any objects that were present in the previous frame are missing in the current frame.	Comparing frames helps in continuous monitoring of the scene without the need for manual observation.	This step assumes that the objects of interest remain consistent in appearance and position between frames, which may not always be the case in realworld scenarios with complex scenes.
3	If any objects are detected as missing, an alert is generated to notify the user about the absence of those objects.	The alert system ensures that the user is immediately informed about any missing objects, allowing for timely action.	The effectiveness of the alert system depends on the reliability of the communication channels and the responsiveness of the user to the alerts.

Major Impact Factors in this Work

The major impact factors of this work include real-time object detection, efficiency, and speed, because of YOLO's single-network architecture. The potential for object co-detection further enhances the system's performance and applicability in surveillance and monitoring applications.

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Mean Average Precision (mAP)	Training and validation datasets		
Detection accuracy	Learning rate		
Object localization accuracy	Batch size		
Speed and efficiency	Loss function		

False positive and false	Data augmentation	
negative rates		

Relationship Among the Above 4 Variables in This article

Because of the variables like learning rate, batch size, loss function the mAP, object detection and localization, speed and efficiency of the model changes. And through these variables model's performance is measured.

localization, speed and efficiency of the model changes. And through these variables model's performance is measured.				
Input an	d Output	Feature of This Solution	Contribution & The Value of This Work	
Input	Output	This solution features the use of convolutional layers trained on the ImageNet dataset for object detection. It leverages	This work's contribution lies in developing a YOLO-based detection system for accurate object recognition and locating	
Picture that is divided into 3x3 grids	Class labels and bounding boxes for the objects	the efficient YOLO algorithm for direct prediction of bounding boxes and class probabilities. A frame analysis algorithm stores objects across frames, enabling missing object detection. Training involves YOLO's pretrained model and fine-tuning.	missing objects.	
	of this Solution in ect Domain	Negative Impact of this Solution in This Project Domain		
The YOLO algorithm's efficiency, real-time capabilities, and adaptability across domains, including surveillance and face recognition, provide a valuable solution for accurate object detection and missing object alerts.			n include potential data limitations utational demands during training, ng prevention strategies.	
-	Vork by Critical nking	The Tools That Assessed this Work	What is the Structure of this Paper	
This work outlines a system that employs the YOLO algorithm for real-time object detection, primarily for surveillance. The methodology includes convolutional layers, frame analysis, and data augmentation techniques. The system's potential applications span surveillance, object detection, with prospects for further enhancements like object-co detection and GSM integration for user alerts.		The tools/metrics that are used to assess this work are mean average precision, object localization accuracy, false positive and false negative rates of the model.	 Abstract Introduction Comparison with other systems Design and Architecture Future scope Conclusion References 	
		Diagram/Flowchart		

11 A Human-T	11 A Human-Tracking Robot Using Ultra Wideband Technology			
Reference in APA format	T. Feng, Y. Yu, L. Wu, Y. Bai, Z. Xiao and Z. Lu, "A Human-Tracking Robot Using Ultra Wideband Technology," in IEEE Access, vol. 6, pp. 42541-42550, 2018, doi: 10.1109/ACCESS.2018.2859754.			
URL of the Reference	Authors Names and Emails	Keywords in this Reference		
https://ieeexplore.ieee.org/d ocument/8419698	Tao Feng, Yao Yu, Lin Wu, Yanru Bai, Ziang Xiao, Zhen Lu.	Integrated navigation, neural networks-based control, wireless sensor networks, ultra-wideband technology, human-tracking, measurement errors, hyperbolic positioning algorithm, virtual spring model, autonomous movement controlling algorithms, vision-based techniques, deep network-based models, and object detection.		
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?		
Human-tracking in a robot using ultra-wideband technology.	The goal of the proposed solution is to implement a human-tracking robot using ultra-wideband (UWB) technology. The problem that needs to be solved is the detection and calculation of the position of the target person, which is essential for the implementation of the human-tracking function.	The proposed solution encompasses a range of hardware components to support its functionalities, including Ultrawideband (UWB) technology for human tracking, ultrasound modules to estimate distances and enable obstacle avoidance, a Bluetooth module for data communication, an A33 SOC responsible for UWB data reception, calibration, filtering, and executing the human tracking algorithm.		
The Process (Mechanism	n) of this Work; Means How the Disadvantage of Each Step in	e Problem has Solved & Advantage & This Process		

The proposed solution uses UWB technology. The UWB data is calibrated and filtered in the A33 SOC, while the STM32F103 MCU controls the robot's movement, data communication, and distance estimation. The human-tracking algorithm uses a modified virtual spring model to track the target person smoothly.

	Process Steps	Advantage	Disadvantage (Limitation)
1	The solution is based on UWB technology, which provides accurate tracking of the target person.	Robustness against environmental conditions.	
2	A modified hyperbolic positioning algorithm is used to overcome measurement errors in determining the position and orientation of the target person.		
3	A modified virtual spring model is implemented in the robot to track the target person, allowing for effective following and tracking.	Enables effective tracking and following of the target person.	
4	The target person's position and orientation are obtained with minimum errors using a moving-average filter algorithm.	Provides target person position and orientation data accurately.	
5	The obtained data from the filter algorithm are used for path planning and control of the robot.	Enables efficient movement and tracking of the target person.	

Major Impact Factors in this Work

The solution utilizes Ultra-wideband (UWB) technology for precise target person tracking, even in challenging environments. It employs a modified hyperbolic positioning algorithm to mitigate measurement errors and integrates a virtual spring model for effective tracking. A moving-average filter enhances accuracy, enabling efficient path planning and control for tracking the target person.

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Position and orientation	Ultra-wideband (UWB)		
of the target person	technology		
Tracking performance	Modified hyperbolic		
	positioning algorithm		
Path planning and	Modified virtual spring		
control	model		

Relationship Among the Above 4 Variables in This article

The current model uses a UWB technology, a hyperbolic positioning algorithm, and a virtual spring model in order to find a target person's position and orientation, track the target person and control the robot's movements respectively.

Input and Output		Feature of This Solution	Contribution & The Value of This Work
			This work presents a human-
Input	Output	UWB technology, it excels in precision and anti-interference	tracking robot using UWB technology, featuring a modified

UWB Data	Target's Tracking Position	abilities providing a reliable human tracking model. The human-tracking algorithm, employing a modified virtual spring model, ensures robust performance in various environments. Experimental results validate its effectiveness in distance detection and overcoming measurement errors.		hyperbolic positioning algorithm and a virtual spring model for precise tracking.
_	oact of this Soluti Project Domain	ion in This	Negative Impa	act of this Solution in This Project Domain
tracking robot by robustness in div	y positively impa by offering precise verse environmen location precision tion.	se positioning, ts, low system	higher hardware tracking capabili	e limitations in outdoor environments, costs, potential measurement errors, ity restrictions, and nonholonomic acting the human-tracking robot's
Analyse This W Thin			nat Assessed this Vork	What is the Structure of this Paper
It is evident the paper focuse development of tracking robot technology. The details about hardware archite model, hum algorithm, and results.	of a human- using UWB authors provide the robot's ecture, dynamic an tracking	work were the hyperbolic positioning algorithm, ultrasound sensors, UWB anchors, and the A33 SOC and STM32F103 MCU controllers. Additionally, the moving-average filter and human		 Introduction System Architecture Robot Hardware Architecture UWB Data Calibration and Tag Position Calculation Moving-Average Filter Dynamic Model of the Robot Human Tracking Algorithm Experimental Results and Discussion Conclusion
		Diagra	m/Flowchart	
UWB Anchor 1	ALL WINNER A33 SOC d STM32 MCU Bluetooth Module	UWB Anchor 2	Keep rotating N	Calibrate the UWB data Calculate the postion and orientation of the target person In plement the control algorithm to track the target person

12 ROSGPT: Next-Generation Human-Robot Interaction with ChatGPT and ROS				
Reference in APA format	Koubaa, A. (2023). ROSGPT: Next-Generation Human Roll Interaction with ChatGPT and ROS Preprint https://doi.org/10.20944/preprints202304.0827.			
URL of the Reference	Authors Names and Emails	Keywords in this Reference		
https://www.preprints.org/man uscript/202304.0827/v3	Anis Koubaa	large language models (LLMs), ChatGPT, human-robot interaction, robotics automation, suggestion mode, natural language processing, deep learning techniques, transformer models, fine-tuning, BERT, ontology, prompt engineering, ROS Parser, ROS nodes, structured data, ROSGPT framework, ROS integration, elicitation ability, adaptability capabilities, zero-shot learning, few-shot learning.		
The Name of the Current	The Goal (Objective) of	What are the components of it?		
Solution (Technique/ Method/ Scheme/ Algorithm/	this Solution & What is the problem that need to			
Model/ Tool/ Framework/	be solved			
etc)				
ROSGPT	The goal of the ROSGPT solution is to enhance human-robot interaction by leveraging large language models (LLMs) like ChatGPT and integrating them with the Robot Operating System (ROS). The specific problem that ROSGPT aims to solve is the challenge of seamless communication between humans and robots.	Large language models (LLMs) such as ChatGPT, GPT-3, and GPT-4, the Robot Operating System (ROS), the ROS Parser module, prompt engineering techniques, ontology-based approaches, the integration of ChatGPT with ROS.		
The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process				

The paper introduces ROSGPT, which combines large language models with robotic systems for human-robot interaction. ROSGPT integrates ChatGPT with ROS2 to convert natural language instructions into structured robotic commands using zero-shot and few-shot learning.

	Process Steps	Advantage	Disadvantage (Limitation)
1	ROSGPT without ontology: In this step, the ChatGPT model is evaluated for generating accurate and relevant responses in human-robot interaction without the guidance of a predefined ontology. Various test scenarios and prompts are used to assess the accuracy, relevance, and comprehensibility of the generated JSON commands.	The model demonstrates the ability to make appropriate calculations and generate accurate JSON structures based on given information and can adapt to new tasks with only a few training examples, making human-robot interaction more flexible and adaptable.	Without the guidance of an ontology, the model may struggle to understand complex relationships between entities and concepts, leading to potential inaccuracies or misunderstandings in the generated commands.
2	ROSGPT using ontology: In this step, the ROSGPT system is integrated with an ontology-based approach to enhance comprehension and precision in generating structured commands for robotic systems. The ontology serves as a formal representation of knowledge in a specific domain, providing a consistent and unambiguous understanding of relationships between entities and concepts.	Improved comprehension: By leveraging structured knowledge from the ontology, the model can more effectively process natural language commands and translate them into accurate and executable actions reducing the chances of errors or misunderstandings for robots.	The effectiveness of the system heavily relies on the quality and completeness of the ontology. Inaccuracies or limitations in the ontology can impact the performance of the model.

Major Impact Factors in this Work

This paper underscores the impact of Large Language Models (LLMs) like ChatGPT. It explores the revolutionary role of self-attention and transformer models, highlighting LLMs' adaptability through zero-shot and few-shot learning.

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Large Language Models	Training Data		
(LLMs)			
Robot Operating	Ontology Design		
System (ROS)			
Ontology	Prompting Strategies		
Prompt Engineering			

Relationship Among the Above 4 Variables in This article

Because of the variables like learning rate, batch size, loss function the mAP, object detection and localization, speed and efficiency of the model changes. And through these variables model's performance is measured.

Input and Output	Feature of This Solution	Contribution & The Value of
		This Work

Unstructured textual command (natural human speech)	JSON command that represents the structured action to be performed by the robot	ROSGPT innovatively integrates Large Language Models (LLMs) with the Robot Operating System (ROS), fostering intuitive human- robot interaction. Guided by ontology, it translates unstructured commands into task-specific instructions.		This paper evaluates ROSGPT in human-robot interaction, omitting a predefined ontology. Assessing ChatGPT's performance, it examines JSON command accuracy, relevance, and comprehensibility. This exploration informs the development of more efficient communication systems between humans and robots.
-	pact of this Solut Project Domain	ion in This	Negative Impac	t of this Solution in This Project Domain
boosts efficienc time command of ChatGPT for sea	nces human-roby y through LLMs execution, and bri amless communica	, enables real- idges ROS and attion.	scalability, contex domain knowle considerations. O responsible humar	ingoing refinement is crucial for a-robot interactions.
	ork by Critical king		nat Assessed this Vork	What is the Structure of this Paper
ROSGPT, ChatGPT's per human-robot into ontology-based commends Chelicitation and noting accurate generation by	atGPT's strong d adaptability, JSON command ut highlights uding deviation	Evaluation of the ROSGPT solution can employ empirical tests, measuring JSON command accuracy, relevance, and response comprehensibility. User studies, surveys, and comparative analyses against existing systems offer insights into real-world usability and performance. An additional focus on ontologybased evaluation compares the impact of ontologies on ChatGPT's precision and comprehension.		 Abstract Introduction Conceptual Architecture od ROSGPT Proof of Concept Conclusion References Appendices
		•		
TEXT-TO-SPEECH MODULE ROBOTIC SYSTEM ARCHITECTURE ROSGPT ROSGPT ROSGPT ROSGPT ROSGPT ROSGPT ROSGPT ROSGPT ROSGPT ROSD IN ROS 2 RO				

Fig. 1: ROSGPT Architecture for Human-Robot Interaction

13	High Accuracy Conversational AI Chatbot Using Deep Recurrent Neural Networks Based on BiLSTM Model		
Reference in APA format	P. Anki, A. Bustamam, H. S. Al-Ash and D. Sarwinda, "High Accuracy Conversational AI Chatbot Using Deep Recurrent Neural Networks Based on BiLSTM Model," 2020 3rd International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 2020, pp. 382-387, 10.1109/ICOIACT50329.2020.9332074		
URL of the Reference	Authors Names and Emails	Keywords in this Reference	
https://ieeexplore.ieee.org/d ocument/9332074	 Mahardika Darmawan (darmawan.tif418@gmail.com) Bustamamis (mcmutable@yahoo.co.id) Heri Ahmadi (heri.ahmadi@tif.uad.ac.id) 	 Chatbots Python program User input Output data Model design Text and voice Continuous responses 	
The Name of the Current Solution(Technique/Meth od/ Scheme/ Algorithm/ Model/Tool/Framework/ etc)	The Goal (Objective) of this What are the components of it?		
BiLSTM Model The Process (Mechanism	Aim is to create an accurate chatbot that can respond to user questions quickly based on a predefined dataset.	 Data collection Identify data characteristics Choose the parameters to be processed Processing data 	
The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage &			

Disadvantage of Each Step in This Process

Selecting a model that matches the characteristics of the data is crucial for program performance. The BILSTM model is chosen as the model to be applied to the program.

		Process Steps	Advantage	Disadvantage (Limitation)
	1	Data Identity:	1.Integration of Multiple Models:	1.Lack of Multilingual
		•The data source is the Cornell	The approach combines various	Support: If the model is not
		Movie Dialog Corpus, which	elements such as BILSTM,	trained on multilingual data, it
		contains fictional	Greedy decoding, and Seq2seq,	may struggle with handling
		conversations extracted from	allowing for a versatile and robust	queries in languages other than
		film scripts.	chatbot system.	the one it was trained on.
		•The dataset has a large number		
		of conversation exchanges.		
	2	2.Data Input:	2.Large Dataset: The dataset	2.Limited Context
		•Dialog sentences from the film	mentioned contains a substantial	Understanding: Despite the
		are used as input for the	number of conversation	use of BILSTM, the chatbot
		program.	exchanges, which can contribute	may still struggle with long
			to the chatbot's ability to generate	and complex conversations or
			diverse and contextually relevant	nuanced language.
		2.01.1	responses.	
		3.Chatbot Program	3. Efficient Data Processing:	3.Data Quantity and Quality:
		Development:	The Greedy method chosen for	The approach doesn't discuss
		•Consideration of various	data processing is known for its	data preprocessing or data
		translation choices, such as	speed and simplicity. It is a	cleaning. Poor data quality can
		sequence-to-sequence.	practical choice for real-time or	lead to incorrect training, and a
		•Selection of the BILSTM	near-real-time applications,	limited dataset might not
L		model to improve chatbot	where rapid responses are	capture the full diversity of

response accuracy.	essential.	language and user queries.	
4.Output Evaluation:			
•The final step involves			
evaluating whether the model			
provides accurate results in			
comparison to the user's input			
dialog.			

Major Impact Factors in this Work

Major impact factors in the research on implementing chatbots using the BiLSTM model include Performance comparision, accuracy improvements and model interpretability.

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Model architecture	Discrete levels	Quantitative	Knowledge gained from training program
Hyperparameter value	Continuum	Complexity of the user input	Overfitting

Relationship Among The Above 4 Variables in This artic

Optimizing this relationship is the primary objective based on the information provided. No clear moderate mediators are incorporated into this optimization experiment.

mediators are incorporated into this optimization experiment.				
Input and Output		Feature of T	his Solution	Contribution & The Value of
				This Work
		Utilizes a Bidirec	ctional Long Short	The use of the BILSTM model
Input	Output	Memory model t	o capture context	allows the chatbot to better
•	-	effectively and	enhance response	understand and respond to user
Commands in	Generated	accuracy.Natural	-	queries with enhanced context
the form of	by the	Understanding:	The chatbot can	awareness. This contributes to
dialog sentences	chatbot	understand and	respond to user	more accurate and contextually
	program	*	atural language,	relevant responses, improving the
			ser-friendly and	user experience. The commitment
		accessible.		to output evaluation ensures that
				the chatbot provides accurate and relevant responses, enhancing the
				overall quality of user
				interactions.
				interactions.
Positive Impact of	f this Solution	in This Project	Negative Impac	t of this Solution in This Project
1 ositive impact of	Positive Impact of this Solution in This Project Domain		1.0guille impac	Domain
Information retrieval, and user engagement, while		The solution includes biases in responses,		
	offering adaptability. I enhance productivity, fosters		•	
user satisfaction, an	_	, 440, 111, 100, 100, 100, 100, 100, 100	limitations in handling specialized queries.	
ethical considerations.		minutions in num	anng specialized queries.	

Analyse This Work By Critical	The Tools That Assessed this	What is the Structure of this		
Thinking	Work	Paper		
This work presents a methodical approach to developing a chatbot program using the BILSTM model drawing from a dataset. While the model selection and user feedback mechanisms show promise for enhancing user engagement and performance in conversational contexts. However, careful consideration of resource requirements, ethical implications, and adaptability to the project domain is essential for the work's successful integration and long term value.	The assessment of this work likely employed a combination of essential tools, including Python for model development, deep learning frameworks like TensorFlow or PyTorch for neural network implementation, data analysis tools like Pandas, and version control systems like Git may have been used to measure and refine the chatbot's performance. The integration of these tools facilitated a comprehensive assessment of the chatbot's development and effectiveness in	I. Abstract II. Introduction III. Materials and Methods IV. Data Implementation in the Python Program V. Applying Data Implementation in the Python Program VI. Program Making and Discussion of Test Results VII. Conclusion and Future Work VIII. Acknowledgements IV. Profesoroges		
and long-term value.	the project.	IX. References		
Data collection Identify data characteristics Choose the parameters to be processed Processing data				

Reference in APA format			
	Jollity Chatbot- A contextual AI Assistant K. Deepika, V. Tilekya, J. Mamatha and T. Subetha, "Jollity Chatbot- A contextual AI Assistant," 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 2020, pp. 1196 1200, doi: 10.1109/ICSSIT48917.2020.9214076		
URL of the Reference	Authors Names and Emails	Keywords in this Reference	
https://ieeexplore.ieee.org/d ocument/9214076	 Kanakamedala Deepika 17wh1a1209@bvrithyd erabad.edu.in Subetha T subetha.t@bvrithyderabad.edu. in Veeranki Tilekya 17wh1a1215@bvrithyde rabad.edu.in 	 Chatbot Conversational agent Contextual AI assistant Intent recognition Dialog management Generative model Rasa Rasa NLU Rasa Core 	

	• Jatroth M amatha 17wh1a1208@bvrithyder abad.edu.in	
The Name of the Current Solution (Technique/Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?
Convolutional Neural Network (CNN), Hierarchical Attention Network (HAN), Recurrent Neural Network (RNN):	The problem being addressed by this solution is likely to improve the performance and robustness of chatbots in understanding user intents, responding appropriately, and maintaining coherent conversations.	 Intents Responses Training Data Session Management Session Configuration

The first step in developing these chatbots is understanding the specific user needs. This includes defining its purpose, interaction flow, and features.

		purpose, interaction flow, and rea	
	Process Steps	Advantage	Disadvantage (Limitation)
	Define the Purpose and Goals:	Quick Response Times:	Lack of Emotional Understanding:
	Clearly define the purpose and	Chatbots can provide instant	Chatbots, especially rule-based
	objectives of the chatbot.	responses, reducing user wait	ones, often struggle to understand
		times and improving customer	and respond to complex human
		satisfaction.	emotions. They may provide
			scripted, impersonal responses in
			emotionally sensitive situations.
			-
-	Collect and Prepare Data:	Reduced Human Error:	Limited Problem-Solving:
	If using machine learning,	Chatbots operate with a high	Chatbots are typically designed for
	gather and prepare training	degree of accuracy, reducing	specific tasks and may not have the
	data, which may include intent	the risk of human errors in	ability to solve complex or unique
	examples, entity recognition	tasks like data entry and	problems that require human
	data, and dialogue samples.	information retrieval.	creativity, critical thinking, or
			empathy.
	Natural Language	Privacy and Security:	Dependency on Training Data:
	Understanding (NLU):	Implement security measures	Machine learning-based chatbots
	Implement natural language	to protect user data and ensure	depend on high-quality training
	understanding (NLU)	that the chatbot complies with	data. If the training data is limited
	components to analyze and	privacy regulations.	or biased, the chatbot's
	interpret user messages,	-	performance may be suboptimal.
	identifying intents and entities		

Major Impact Factors in this Work

The chatbot is specifically designed to be uplifting, motivating, and encouraging for users. This user-centric approach could lead to greater benefits. Using Rasa to create a generative chatbot that understands context should allow more natural, engaging conversations.

Dependent Variable	Independent	Moderating variable	Mediating
	Variable		(Intervening)
			variable
User mood/mental state	Use of the chatbot	Technology affinity	Increased social
Frequency of	Chatbot interaction	Duration of use	Interaction
positive/negative	time		
Emotions	Chatbot response types	Chatbot personality	Change in thoughts

	Chatbot mood support	Increased activity
	feature	

Relationship Among The Above 4 Variables in This article

Testing these variables and their interrelationships will provide greater understanding of how, for whom, and under what conditions the Jollity Chatbot achieves benefits as an accessible, low-cost mental health intervention.

and under what conditions the Jollity Chatbot achieves benefits as an accessible, low-cost mental health intervention.				
Input and	Output	Feature of This	Solution	Contribution & The Value of This Work
		AI and NLP Technolog	v: The chatbots	The work outlined in the provided
Input	Output	utilize AI and NLP tech	•	information makes significan
•	•	understanding and res	•	contributions in improving
User	Response	input.		accessibility and support through
queries and	s and	Machine Learning and		chatbots in major anticipating a
statements.	informati	Machine learning class		future where these AI-driver
	on.	assess and support user	s' mental	systems play a central role in humar
		well-being. Continuous Improveme	ent: The colution	interactions.
		is committed to ongoin		
		and enhancement of ch	•	
		capabilities.		
_			Negative Impa	act of this Solution in This Project
	Doma	in		Domain
-	-	agement and context		onversations inherently lack the
		responses to each user's		npassion, and emotional suppor
		*		man interactions, the chatbot provided ms of accessibility, it cannot fully
provides anony	ymity.		replace human c	
Analyse This	s Work By	The Tools That Asses	ssed this Work	What is the Structure of this
Critical T				Paper
U	he system	Risk analysis - System	•	I. Abstract
through intent	-	risks like improper ad	vice or privacy	II. Introduction
story accur	-	breaches.	01	III. Related Works
confusion provides	matrices quantifiable	Expert-bot dialogs conversational session	- Observe	IV. Proposed Jollity ChatbotV. Experimental Results
performance d	•	chatbot and domain exp		VI. Conclusion
testing and e	_	Confusion matrices - Q		VII. References
_	nversational	classification errors to identify		1201010100
capabilities the		weaknesses.		
comprehensive	_	Turing Tests - Measure how well		
training and Tu	uring tests.	3 0	ural language	
		conversations with the		
	Diagram/Flowchart			

15	AI and Web-Based Human-Like Interactive	e University Chatbot (UNIBOT)		
Reference in APA format	N. P. Patel, D. R. Parikh, D. A. Patel and R. R. Patel, "AI and Web-Based Human-Like Interactive University Chatbot (UNIBOT)," 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 2019, pp. 148-150, doi: 10.1109/ICECA.2019.8822176.			
URL of the Reference	Authors Names and Emails	Keywords in this Reference		
https://ieeexplore.ieee.org/do cument/8822176	 Neel kumar P. Patel neelpatel710@gmail.com Devangi R. Parikh dparikh74@gmail.com 	 Artificial Intelligence Chatbot Human-like interactive Machine Learning University Chatbot 		
The Name of the Current	The Goal (Objective) of this Solution	What are the components of		
Solution	&	it?		
(Technique/Method/Schem e/Algorithm/Model/Tool/Fr amework/ etc)	What is the problem that need to be solved			
An AI and web-based human-	The goal is to chatbot processes user	• User Interface		
like interactive university	queries and retrieves the most relevant	• Natural Language		
chatbot system called	information from a database, eliminating	Processing		
UNIBOT.	the need for users to navigate through	• Database		

websites to find information.	•	Security Features	
	•	Response	Generation
		Module	

The steps in this process include preprocessing, keyword matching, spell checking, option display, learning new questions, etc.

	Process Steps	Advantage	Disadvantage (Limitation)
1	User Input: Users input questions related to university information through the graphical user interface (GUI), similar to a messaging application.	Efficiency: The algorithm is designed to be efficient, requiring less memory and minimizing database hits.	Limited to Keywords: The system relies on keywords rather than natural language questions, potentially limiting the range of user inputs.
	Message Processing: The algorithm checks and corrects spelling. Messages are split into words. SQL queries, using Regular Expression, check if words are present in the database.	User-Friendly: The GUI, provides a familiar and user-friendly experience.	Sensitivity to Spelling: The algorithm may be sensitive to spelling errors, requiring user correction.
3	Database Interaction: Relevant words are stored in an array called "important words". Another SQL query uses the array to retrieve information from the database.	Adaptability: The algorithm's adaptability allows it to handle various queries and contexts.	Dependency on Database: The system's effectiveness is contingent on the completeness and accuracy of the database
4	Response Generation: If a single result is obtained, display the answer. If multiple results, provide options based on the "title" column. If no result, check keywords in "Answer" columns: If a match, store for future reference. Otherwise, display a sorry message.		
5	User Interaction Loop: Users can choose options or enter another message, restarting the process.		

Major Impact Factors in this Work

The algorithm incorporating NLP techniques like preprocessing, spell check, keyword matching. Regularly enhancing the chatbot with new features, technologies like AI/ML, and user feedback will make it more capable over time.

Dependent Variable	Independent Variable	Moderating variable	Mediati (Interven variabl	ing)
User satisfaction	Preprocessing	User demographics	Chatbot r time	esponse

Response accuracy	Chatbot system	Question complexity	User perceptions
Perceived intelligence	Architecture and	Natural language	Response relevancy
	implementation	processing Capabilities	

	Relationship Among The Above 4 Variables in This art				
· ·		ly influenced the	relevancy of response	es (DV) based on its algorithm, interfa	
	personalization capabilities. Input and Output		f This Solution	Contribution & The Value of	
_	_			This Work	
		Voice Input Su	* *	The inclusion of voice input	
Input	Output	1	Users can submit	support, optimized resource usage,	
User submits	The	•	ice format, enhancing	and interactive response	
a message in	message is	-	nd user convenience.	presentation further enhance the	
the text field.	instantly	Real-Time Dis	play: ging: Messages are	system's value.	
	displayed		played in the chat		
	in the chat	window.	nayed in the char		
	window.				
Positive Imp	act of this Solu	tion in This	Negative Impact	of this Solution in This Project	
	Project Domain			Domain	
Positively impa				impacts include nuanced query	
domain by provi	• •	•		itivity to spelling errors, privacy	
solution for acce		etails. concerns regarding use The Tools That Assessed this			
Analyse Thi Critical T			Work	What is the Structure of this Paper	
This appears	effective in		nt involves testing	1. Abstract	
streamlining	university	frameworks, analytics tools, and		2. Introduction	
information reta	•		ine learning libraries.	3. Proposed System	
user-friendly	interface and	(e.g., TensorFl	ow, PyTorch), natural	4. Design	
dynamic algorit		language processing libraries, and		a. Database Design	
potential draw			ssessing the model's	b. Algorithm	
• •			performance. Specific	Implemented	
			nd on the algorithms	5. Sample Results	
•			ogies implemented in	6. Conclusion	
on its ability to aspects, provide		UNIBOT.		7. Future Scope8. References	
responses whi	•			o. References	
user needs and c					
2 2002 22 700	<u> </u>	D'	/IDI 1 4	1	

Diagram/Flowchart

16	16 AI- BASED CHATBOT WITH GPT-3			
Reference in APA format	Shaik, Amjan, S. Lohitha, and J. Ra	mesh Babu. "HEALTHCARE		
	ASSISTANCE USING AI." Journal of Eng	ineering Sciences 14.06 (2023).		
URL of the Reference	Authors Names and Emails	Keywords in this Reference		
https://jespublication.com/u	M. Swathi	Chatbot		
ploads/2023-14I8081.pdf	K. Gopal reddy	• OPENAI		
		Artificial Intelligence		
		 Neural Networks 		
		Machine Learning		
		• GPT-3		
The Name of the Current	The Goal (Objective) of this Solution &	What are the components of		
Solution	What is the problem that need to be	it?		
(Technique/Method/Sche	solved			
me/Algorithm/Model/Tool				
/Framework/ etc)				
GPT-3 (Generative Pre-	The goal of this project is to develop an AI-	• GPT-3 API		
trained Transformer 3): This	powered conversational agent that can	Training data		
is an autoregressive	effectively communicate with users. The	Bot framework		
language model developed	problem it aims to solve is the difficulty of	User Interface		
by OpenAI that uses deep	creating chatbots that understand natural	Logging/tracking		
learning to generate human-	language, engage in coherent dialogues,			
like text.	and provide satisfying responses. By			
	leveraging the advanced natural language			
	capabilities of GPT-3, this chatbot seeks to			
	overcome limitations of previous chatbots			
	and deliver more human-like, contextual			
	conversations that meet users' needs.			
The Process (Mechanisi	n) of this Work; Means How the Problem	_		
	Disadvantage of Each Step in This Process			

The chatbot is created by accessing the GPT-3 API, training the model on large datasets, fine-tuning on domain-specific data, integrating into a bot framework, creating a user interface, logging conversations for

fur	further training, evaluating performance metrics, hosting the bot, and maintaining/updating it over time.				
	Process Steps	Advantage	Disadvantage		
			(Limitation)		
1	GPT-3 API - This provides	Access GPT-3 API: Advanced AI	Access GPT-3 API: Can		
	access to the GPT-3 language	capabilities	be costly		
	model to generate responses.				
2	Training data - A large dataset of	Train on large dataset: Improves	Train on large dataset:		
	text conversations is used to	language understanding	Potential for data biases		
	pretrain GPT-3 to understand				
	natural language.				
3	Fine-tuning data - Domain-	Fine-tune on domain data:	Fine-tune on domain data:		
	specific data to adapt the model to	Increases response accuracy	Limits general knowledge		
	your chatbot's purpose.				
4	Bot framework - The underlying	Integrate into bot framework:	Integrate into bot		
	framework and code that	Enables natural conversations	framework: Complex		
	integrates GPT-3 into the chatbot		implementation		
	system.				
5	User interface - The front-end	Create user interface: Makes	Create user interface:		
	interface where users interact	chatbot usable	Design impacts		
	with the chatbot.		experience		
6	Logging/tracking - Tools to	Log conversations: Allows further	Log conversations:		
	record conversations for further	training	Requires data processing		
	training and analysis.				
7	Evaluation metrics - Ways to test	Evaluate metrics: Measures	Evaluate metrics: Hard to		
	the chatbot's performance in areas	improvements	evaluate qualitatively		
	like response quality, accuracy,				
	and user satisfaction.				
8	Maintenance/updating - Ongoing	Maintain/update: Improves	Maintain/update: Labor		
	work to improve the chatbot with	chatbot over time	intensive		
	new data.				

Impact Factors in this Work

The use of machine learning chatbots, particularly the ChatGPT model, which has revolutionized natural language processing and human-AI interaction.

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening) variable
Response quality	GPT-3 model architecture	User expectations	Conversational context modelling.
Accuracy	Evaluation metrics	Individual differences	Conversational strategy
	User profiles		

Relationship Among the Above 4 Variables in This article

The chatbot's performance on metrics like coherence, accuracy, and user satisfaction, also change the nature of the Relationship.

Feature of This Solution	Contribution & The Value of
	This Work
	Feature of This Solution

Input User queries	Relevant chatbot replies	Uses advanced AI (GPT-3) to understand language and generate human-like responses. Trained on massive amounts of conversation data to chat naturally on diverse topics.		- Creates a conversational agent that can engage users and answer questions more effectivelyAdvances chatbot technology by leveraging the latest AI language model (GPT-3).
Positive Imp	pact of this Sol Domai	ution in This Project n	Negative Impac	t of this Solution in This Project Domain
Personalization - GPT-3's ability to learn and adapt over time could allow for more personalized and tailored conversations catered to individual users. Faster service - Chatbots can provide instantaneous responses at all hours, improving resolution time compared to waiting for human agents.		chatbots could opportunities for h	numan agents	
Analyse Th Critical Thir	is Work by aking	The Tools That Assess	sed this Work	What is the Structure of this Paper
improve conversations -Training on enables more conversations -However,	large datasets ore natural s. potential for biases from	Combining automated testing tools to gather metrics with human-in-the-loop techniques like user studies and transcript reviews is important for a comprehensive evaluation.		 Abstract Introduction Related works Proposed System Architecture Discussion Output Future Scope and Conclusion References

17	Chat GPT & Google Bard AI: A Review	
Reference in APA format	S. K. Singh, S. Kumar and P. S. Mehra, "Chat GPT & Google Bard AI: Review," 2023 International Conference on IoT, Communication a Automation Technology (ICICAT), Gorakhpur, India, 2023, pp. 1 doi:10.1109/ICICAT57735.2023.10263706	
URL of the Reference	Authors Names and Emails	Keywords in this Reference
https://ieeexplore.ieee.org /abstract/document/10263 706	 Shashi Kant Singh shashikantsingh_2k19co356@dtu.ac.i n Shubham Kumar shubhamkumar_2k19co371@dtu.ac.i n Pawan Singh Mehra pawansinghmehra_2k19co357@dtu.a c.in 	 Chat GPT Google Bard AI Artificial Intelligence Chatbots NLP Neural Network
The Name of the Current	The Goal (Objective) of this Solution & What is the problem that need to be	What are the components of it?

Diagram/Flowchart

Solution(Technique/Met hod/Scheme/Algorithm/ Model/Tool/ Framework/etc)	solved	
Chat GPT and Google Bard AI	The goal of the solutions, Chat GPT and Google Bard AI, is to provide advanced chatbot capabilities using Artificial Intelligence and Machine Learning.	Natural Language Processing (NLP) Sentiment Analysis Data storage for information retrieval Integration with other technologies

The process involves defining the aim, creating, testing, publishing, and evaluating the chatbot, aiming to provide tailored, accurate responses while requiring technical expertise and ongoing refinement.

Process Steps	Advantage	Disadvantage (Limitation)
1 Defining the Aim: Identifying the purpose and domain of the chatbot, as well as the user requirements.	Enhanced cybersecurity: Chat GPT can assist in identifying and mitigating cybersecurity threats.	Security concerns: Chat GPT handles a large amount of data, which raises privacy and security concerns.
2 Creation: Developing the chatbot using advanced AI and NLP techniques.	Automated incident response: Chat GPT can assist in automating incident response processes.	Potential for misuse: Due to its vast knowledge in various fields, Chat GPT can be misused by terrorist organizations, criminal groups, and hostile countries.
3 Testing: Evaluating the chatbot's performance and identifying errors.	Improved user awareness: By answering user queries and providing explanations in a user-friendly manner.	Effect on human creativity: Chat GPT's ability to Enhance artificial creativity may have a negative impact on human creativity.
4 Publishing and Integration: Making the chatbot available online and integrating it into applications.	Continuous learning and adaptation: Chat GPT can continuously learn from new cybersecurity trends, emerging threats, and evolving attack techniques.	Impact on students: While Chat GPT can be helpful for students in many ways, it can also hinder their academic growth.
5 Evaluation: Continuously assessing the chatbot's performance and identifying areas for improvement.	ojor Impact Factors in this Work	

Major impact factors include the analysis of Chat GPT and Google Bard AI, the exploration of applications in various fields, acknowledgment of limitations and biases.

Dependent Variable	Independent Variable	Moderating variable	Mediating (Intervening)
			variable
Response quality	GPT-3 model architecture	User expectations	Conversational context modelling.
Accuracy	Evaluation metrics	Individual differences	Conversational strategy
	User profiles		

Relationship Among the Above 4 Variables in This article

The chatbot's performance on metrics like coherence, accuracy, and user satisfaction, also change the nature of the Relationship.

Input and Output		Feature of This Solution	Contribution & The Value of This Work
Ability to show a combination of creativity, power, and intelligence. It also has a feedback system where it can take		It explores the contribution of Chat GPT in different fields such as questioning-answering, coding	
User queries	Relevant chatbot replies	feedback from users and improve accordingly.	and debugging, writing, math tutoring, language translation, text classification, and even in geophysics problem-solving.

Positive Impact of this Solution in This Project	Negative Impact of this Solution in This Project	
Domain	Domain	
Chat GPT can assist with various types of questions	Chat GPT may not always provide accurate solutions.	
asked by users. Chat GPT can also be used to		
create new Chatbots that can do conversations with		
us.		

us.		<u>-</u>
Analyse This Work by	The Tools That Assessed this Work	What is the Structure of this
Critical Thinking		Paper
Evaluates the information	The tools used to assess this work include	1. Abstract
presented, questioning	survey analysis, specific works such as	2. Introduction
assumptions, examining	"Google Bard and Open ai's chat gpt	3. Literature Review
evidence, considering	Head-to-Head and "Chat GPT vs Google	4. Introduction of Chatbots
alternative perspectives.	Bard: Generative AI comparison" for	5. ChatGPT
Evaluate the methodology	comparison and analysis.	6. Google Bard AI
and examine the		7. A Brief Comparison
credibility of the sources.		between ChatGPT and
		Google Bard AI
		8. Conclusion and Future
		Scope
		9. References
	Diagram/Flowchart	

18	Voice Assistant Integrated with Chat GPT			
Reference in APA format	Shafeeg, A., Shazhaev, I., Mihaylov, D., Tularov, A., & Shazhaev, I. (2023). Voice assistant integrated with chat gpt. Indonesian Journal of Computer Science, 12(1).			
URL of the Reference	Authors Names and Emails Keywords in this Reference			
http://3.8.6.95/ijcs/index.php/ijcs/article/view/3146 The Name of the Current Solution(Technique/Metho	 Ilman Shazhaev - ilman@farcana.com Arbi Tularov - arbi@farcana.com Dmitry Mikhaylov - dr.d.mikhaylov@nus.edu.sg Islam Shazhaev - islam@farcana.com Abdulla Shafeeg - abdulla.shafeeg@farcana.com The Goal (Objective) of this Solution & What is the problem that need to be 	 Artificial Intelligence Chat GPT Digital community Voice assistant What are the components of it?		
d/Scheme/Algorithm/Model /Tool/ Framework/ etc)	solved			
ChatGPT, which is a combination of the GPT language model and a voice assistant.	The goal of the ChatGPT solution is to provide advanced AI-powered virtual assistance for various tasks.	 Neural Networks OpenAI's GPT Language Model Memory Filters 		

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

The process or mechanism used in this work is the implementation of an AI chatbot called ChatGPT. It is trained on a large dataset of text from various sources to generate human-like responses.

		Process Steps	cess Steps Advantage	
				(Limitation)
	1	Machine Learning: ChatGPT utilizes machine learning algorithms to learn from large amounts of data.	High-quality responses: ChatGPT provides responses that are often considered to be of higher quality than those obtained from traditional search engines like Google.	Code quality: ChatGPT has been found to generate poor quality code.
•	2	NLP Annotations: Natural Language Processing (NLP) annotations and data tagging are used to make conversations easier for the chatbot to understand.	Code assistance: ChatGPT can help with coding tasks by providing guidance.	Lack of contextual understanding: While ChatGPT can remember details of the conversation, it may still struggle with understanding the context accurately.
	3	Voice Assistant Integration: ChatGPT can be integrated with voice assistants to provide a unique gaming experience.	can generate various types of	Wordiness: ChatGPT tends to use excessive phrases and repetitions, resulting in wordy responses that may not be concise or efficient. Struggle with understanding the context accurately.

4	Client Authentication: The chatbot	Context understanding: ChatGPT,	
	can handle the process of client	particularly the GPT-3.5 version, is	
	authentication by asking a series of	designed to handle context better.	
	questions to verify the customer's		
	identity.		
5	Request Classification: The	Time-saving and efficiency:	
	chatbot uses natural language	ChatGPT can save time for	
	processing techniques to	employees by providing	
	categorize and understand the	comprehensive and up-to-date	
	requests made by customers.	information.	
6	Continuous Improvement: The	Sentiment analysis: ChatGPT can	
	chatbot can continuously learn and	analyse the sentiment of the user	
	improve its responses by analysing	based on response length and word	
	past interactions and incorporating	usage.	
	user feedback.		

Major Impact Factors in this Work

Major impact factors in this work include AI which helps in the development and integration of AI technologies, Automation and Efficiency and Productivity.

Dependent Variable	Independent	Moderating variable	Mediating
	Variable		(Intervening)
			variable
User engagement	ChatGPT integration	Trust in AI	User trust
Player performance	Knowledge gain	Competitiveness	Knowledge gain
User experience	Training data		Time savings
Cost savings	Game attributes		

Relationship Among the Above 4 Variables in This article

This relationship may be moderated by factors like the player's trust in AI and need for cognition. This relationship could be moderated by game genre complexity. The impact of ChatGPT integration on user engagement may be mediated through knowledge gain from the assistant's explanations.

Input and Ou	ıtput	Feature of This Solution	Contribution & The Value of This Work
Training data, Conversational per context, User attributes, Game attributes, Restrictiveness of filters.	Output gagement, ayer rformance, nery solution rate, ecount curity, Cost vings, astomer pport load,	The Chat GPT model used in the voice assistant is capable of providing high-quality responses. The digital voice assistant uses natural language processing techniques to categorize and understand the requests of users.	The integration of a voice assistant with Chat GPT in this work contributes to the development of AI in the digital society, by combining the functionality of a chatbot and a voice assistant. The value of this work lies in providing users with a more immersive and interactive experience.

				-
experience.				
Positive Impact of this Solution in T	his Project	Negative Impac	t of this	Solution in This Project
Domain			Do	main
Quick verbal account security and au	thentication	Substantial devel	opment,	testing, maintenance and
could reduce account theft and fraud	, enhancing	continuous trainin	g costs i	may be required to make the
trust and safety for users.		AI assistant perfor	rm well	across contexts.
Analyse This Work by Critical	The Tools	That Assessed	Who	at is the Structure of this
		s That Assessed	V V 112	it is the structure or this
Thinking		is Work	VV 112	Paper
<u> </u>		is Work	X.	
Thinking	Tools like	is Work		Paper
Thinking The authors provide a good overview	thi Tools like PlagScan c	is Work e Turnitin or	X.	Paper Abstract
Thinking The authors provide a good overview of ChatGPT's capabilities and	Tools like PlagScan c improper r	is Work e Turnitin or could check for	X. XI.	Paper Abstract Introduction
Thinking The authors provide a good overview of ChatGPT's capabilities and limitations, citing recent research on	Tools like PlagScan c improper r	is Work e Turnitin or could check for euse of content	X. XI. XII.	Paper Abstract Introduction Research Method
Thinking The authors provide a good overview of ChatGPT's capabilities and limitations, citing recent research on its language generation abilities. This	Tools like PlagScan c improper r from other	is Work e Turnitin or could check for euse of content	X. XI. XII. XIII.	Paper Abstract Introduction Research Method Literature Review
Thinking The authors provide a good overview of ChatGPT's capabilities and limitations, citing recent research on its language generation abilities. This	Tools like PlagScan c improper r from other	is Work e Turnitin or could check for euse of content	X. XI. XII. XIII. XIV.	Paper Abstract Introduction Research Method Literature Review Case Development
Thinking The authors provide a good overview of ChatGPT's capabilities and limitations, citing recent research on its language generation abilities. This	Tools like PlagScan comproper r from other attribution.	is Work e Turnitin or could check for euse of content	X. XI. XII. XIII. XIV. XV.	Paper Abstract Introduction Research Method Literature Review Case Development Conclusion

2.2 COMPARISION TABLE:

Author	Year	Approach	Description
Abhishek	2021	Training, Data	Training the YOLO algorithm on custom
Sarda,		Collection, Non-Max	classes using the open images dataset,
Dr. Shubhra		Suppression,	implementing non-max suppression, and
Dixit,		Calculation,	applying specific techniques for object
Dr. Anupama		Augmentation,	detection in the context of autonomous
Bhan		Techniques	driving
M. Z. Khan,	2019	Using Machine	The suggested solution uses CNN, a cutting-
Shahid		learning, edge detection	deep learning technique in computer vision.
Mumtaz,		techniques, and CNN,	Even with several faces in the shot, the
Muhammad		the faces are recognized	system can still identify persons. Due to the
Khurram Khan			system's lack of sensitivity to light, it can also
			recognize individuals in a variety of
			situations and lighting scenarios.
Md. Mahmud	1998	tele-security system,	The development and deployment of a smart
Hasan, Lim		hardware design,	telephone device equipped with Caller ID, an

Γ	I	I	
Hooi Jiun, Ng Wei Chuen		Signaling System, Caller ID system	answering machine, and a tele-security system. It details the hardware design, including using a photo coupler for ring signal detection and a multifunctional IC for FSK signal reception and decoding. It elucidates the transmission formats, operational aspects of the smart telephone device and indoor sensors, and the Caller ID system within digital telephone networks, supported by Signaling System No. 7 (SS 7).
T. Feng, Y. Yao, L. Wu, Y. Bai, Z. Xiao, Z. Lu	2018	Ultrawideband (UWB) Technology, hyperbolic algorithm, virtual spring model in the robot to track target person.	The process for tracking the target person is based on Ultrawideband (UWB) technology, a modified hyperbolic positioning algorithm, and a virtual spring model implemented in the robot to track the person. The use of a moving-average filter to reduce the noise in the UWB data. The potential use of saliency methods for object identity agnostic models.
Menaka R Archana N Dhana gopal Ramesh R	2020	YOLO algorithm, Intersection over Union (IoU), Non-max suppression, anchor boxes	It uses the convolutional layers to reduce the feature space and uses frame analysis and anchor boxes for object detection. The data augmentation and dropout are used to avoid overfitting. The YOLO algorithm is pretrained using the related layer and then finetuned for object detection.
Muhammad Iqbal, Bhakti YudhoSuprapt o, Suci Dwijayanti	2022	Convolutional neural network (CNN), architectures like Alex Net VGG16, accuracy measurements	Real-time face emotion recognition in a humanoid robot is achieved by the use of convolutional neural network designs such as VGG16 and Alex Net, in this technique. The performance is assessed based on accuracy in real-time interactions, and the system is built to detect faces and emotions simultaneously.
Reagan L. Galvez, Elmer P. Dadios, Argel A. Bandala, Ryan Rhay P. Vicerra	2019	Transfer learning involves using pretrained models and finetuning them on a specific dataset, training from scratch with preexisting weights, mean average precision(mAP) used for specifications, IED X-ray dataset for X-rays images	The authors show that training YOLO from scratch works better than transfer learning in the rapid identification of threat objects by comparing the performance of the two methods using an IED X-ray dataset. The work also covers training and evaluation using the IED X-ray dataset and the Darknet-53 architecture.
Y. Ye, Y. Zhang, Y. Li, Y. Liu	2023	ChatGPT to enhance communication, designing RoboGPT, NLP, accuracy or performance scores and cognitive load measures	The method used in this involves designing the RoboGPT system, which utilized ChatGPT to enable natural language communication between humans and robots. A human-subject experiment was conducted to validate the effectiveness of solution. The performing a simple assembly task with the robot arm under conditions and was assessed using performance scores, self-evaluated

			performance, and cognitive load measures.
Mazin Hnewa, Hayder Radha	2021	development of a Multi Scale Domain Adaptive YOLO, Domain Adaptive Network (DAN) with multiscale feature inputs, performance of YOLOv4 for cross-domain object detection by producing robust domain-invariant features that reduce the impact of domain shift.	The method outlined in this study entails creating a Multi-scale Domain adaptive YOLO framework, which combines the YOLOv4 object detector within a domain adaptive network (DAN). When learning domain invariant features from the multiscale feature inputs, the DAN is connected to YOLOv4 architecture. To predict the domain class, the DAN combines many domain classifiers with neural layers. This method seeks to achieve domain invariance during domain adaption-based training and resealing features against domain shifts at various sizes.
W.S. Mada Sanjaya, Dyah Anggraeni, Kiki Zakaria, Atip Juwardi, MadinatulMun awwaroh V. Amala Rani and S. Lalitha Kumari	2017	Development of a Social Robot named SyPEHUL, Cascade Classification and LBPH (Local Binary Pattern Histogram), Real-time face detection and recognition, with the system being capable of mentioning the person's name upon identification	The creation of a social robot called SyPEHUL, combines cutting-edge image processing techniques to follow and identify human faces. For precise face tracking and recognition, the system makes use of LBPH and cascade classification techniques which are based on the OpenCV library and python2.7. The hardware configuration comprises 12 Degree of Freedom(DoF) motor servos to move the robot's head and face. It is based on an Arduino microcontroller. A database of photos of faces is used to train the system, and its ability to accurately track and recognize faces is evaluated. It is possible to do real-time face detection and recognition, and the system can mention an individual's name after successful identification.
Prasnurzaki Anki, Alhadi Bustamam, Herley Shaori Al-Ash, DevviSarwind a	2020	Chatbot, program, accuracy, input, output	The research provides a practical demonstration of how chatbots can be implemented in Python using deep learning models like BiLSTM. This can help developers and researchers build real-world chatbot applications. The BiLSTM model architecture provides more interpretability compared to "black box" models like neural networks. The use of the Cornell Movie Dialog corpus provides a diverse, real-world dataset for training the models. This enhances applicability.
Kanakamedala Deepika, VeerankiTileky a, Jatroth Mamatha,	2020	Chatbot, Contextual AI Assistant, Rasa, Rasa NLU, Rasa Core	The chatbot is designed to converse with users, suggest uplifting content like positive quotes, motivational videos, etc. based on the user's mood, and act as a virtual friend. It uses Rasa, an open-source conversational AI

Subetha T			framework, with custom intents, sample conversations, and responses defined to
			understand user needs and maintain context.
Neelkumar P. Patel, Devangi R. Parikh, Darshan A. Patel, Ronak R. Patel	2019	Artificial Intelligence, Chatbot, Human-like interactive, Machine Learning, University Chatbot	The overall chatbot system architecture and interface for interacting with users. The custom algorithm was developed for processing user queries and retrieving responses from the database. This algorithm involves steps like preprocessing, keyword matching, spell checking, option display, learning new Q&A pairs, etc. Expanding the chatbot's knowledge base, deploying it on servers to handle multiple users, and maintaining performance is key for broader implementation.
M. Swathi, K.Gopal Reddy	2023	Chatbot, OPENAI, Artificial Intelligence, Agents, GPT-3	The chatbot, known as ChatGPT, is based on a language model that excels in natural language processing tasks is capable of generating human-like text responses. The model underwent extensive training on a large corpus of text data, enabling it to understand language nuances, generate accurate responses, and handle multiple inputs and languages. The destiny scope of chatbots includes interacting with multiple users and expanding inside the numerous applications inclusive of studies, schooling, and creative writing.
Shashi Kant Singh, Shubham Kumar, Pawan Singh Mehra	2023	Artificial Intelligence, Chatbots, Chat GPT, Google Bard AI	It especially specializes in the evaluation of Chat GPT, it is a first-rate innovation within the location of Artificial Intelligence. It recognizes the restrictions of language fashions like GPT-2 and GPT-3, collectively with biases and restrained accuracy. It highlights the want for interactive language fashions like Chat GPT to cope with those limitations and decorate easy normal performance. Enables the chatbot to recognize and reply to complicated queries. It permits making the chatbot available online and integrating it into programs.
IlmanShazhaev , Arbi Tularov, Dmitry Mikhaylov, Islam Shazhaev, Abdulla Shafeeg	2023	Artificial Intelligence, ChatGPT, digital community, voice assistant	Neural Networks allow the chatbot and voice assistant to perform tasks that include answering questions, writing code, and composing essays. OpenAI's GPT language the model has been trained to generate meaningful responses to questions and can perform various tasks, including finding bugs in code and composing poetry. The system has filters to keep away from debatable subjects and save you from growing texts

			about illegal or immoral sports. Farcana has
			integrated the functionality of the GPT
			chatbot and voice assistant to enhance player
			experience, familiarize players with game
			mechanics, and manage gaming accounts.
Shaji Thorn	2019	Boundary Box	The proposed algorithm demonstrates
Blue, M.		prediction, Edge	improved precision in drawing boundary
Brindha		Detection, Object YOLO,	boxes compared to YOLOv3. Results show the proposed method outperforms YOLOv3
		YOLO9000, YOLOv3	in terms of accuracy, as indicated by the
		10207000, 102073	Intersection over Union (IOU) comparison.
			The proposed work exhibits potential for
			object detection with precise boundary
			boxes, although limitations exist, particularly
			in scenarios involving sharp objects and high
			image noise.
Shraddha	2018	CNN, Object detection,	The model uses Tensorflow object detection
Mane, Supriya		Tensorflow, Tracking	API which is robust in detecting objects in
Mangale			complex scenes and background conditions.
			Detects object location (x,y,w,h) which is then passed to the tracking algorithm. Uses a
			CNN-based tracking algorithm instead of
			traditional computer vision techniques.
			Loads weights of a pre-trained model capable
			of incorporating temporal information. Able
			to track objects at 150 FPS and handle
			occlusion scenarios. The main innovation is
			in using deep learning models to improve
			generalization across challenging uncontrolled video settings.
Anis Koubaa	2023	Human-Robot	The system utilizes prompt engineering to
Timo Troucuu	2023	Interactions, ROS,	convert unstructured human language
		ROS2, ChatGPT, Large	commands into structured robotic
		Language Model, Robot	instructions, enabling seamless
		Operating System	communication between humans and robots.
			The implementation includes a proof-of-
			concept for robot navigation and
			demonstrates the use of an ontology to guide
			ChatGPT in generating context-specific robotic commands. It also emphasizes the
			importance of prompt engineering and
			ontology development, as well as the
			limitations and potential biases of using
			LLMs for human-robot interaction.
Xiao-Feng	2023	Artificial Intelligence	The system addresses the management
Zhao, Zi-Heng		cloud, edge computing,	requirements for visitors in enterprises and
Chen, He-Feng		face recognition, speech	government departments, aiming to improve
Yin, Xiao-Jun		recognition	efficiency and accuracy while reducing labor
Wu			costs. By utilizing AI cloud and edge computing, the system incorporates face
			recognition and speech recognition
			technologies to enable functions such as
<u> </u>	1	1	

visitor verification, and voice self-
registration. The system is composed of a
cloud service layer and an edge computing
layer, with hardware components including
RK3399 motherboards, microphone array,
camera, and IR temperature sensor. The
system's cloud-edge collaboration enhances
computing capacity, improves real-time
performance, and ensures high accuracy. The
testing results showed high recognition
accuracy and short recognition delays.

2.3 WORK EVALUATION TABLE:

Shaori Al- Ash, Devvi ional Al model isprovides are sponse in chatbot chosen as large that can the core number of quickly to the user chatbot predefine a approach predefine specific BiLSTM, objective Greedy is to decoding, develop a and chatbot sequence program to model signature. In the specific BiLSTM, objective Greedy is to decoding, develop a and chatbot sequence using the Bidirectio nal Long models. Short Al- Ash, conversation Memory) Corpus) that responses in conversatios the form of freesponse in accuracy by Greedy decoding, and capturing text. The context from a capturing text. The context from the conversation the one it was context and capturing text. The context from the conversation of multiple and product the specific based on he specific BiLSTM, objective Greedy is stated to sequence using the Bidirectio nal Long models. Short Al- Memory) Corpus) that responses in accuracy by Greedy decoding, and crapturing text. The context from the form and response accuracy by Greedy context the form and capturing text. The context from the context from the context from the context from and intended on context and intended on the conversation of multiple models. Implementing the BiLSTM, objective Greedy character and chatbot sequence using the Bilstm to sequence using the Bilstm to the bild of the context from and chatbot serve are program. Implementing the bild of the form and capturing text. The context from and context from and capturing text. The context from allowing to the data. The and robust still strugglenumerical chatbot with long and results of system. The context from and robust still strugglenumerical chatbot with long and results of the context from and robust still strugglenumerical chatbot with long and results of the context from and robust still strugglenumerical chatbot with long and results of the context from and context from and robust sti			_	-	Features/C haracteristi cs		Advantag es	Limitations/D isadvantages	Results
Term decoding and seq2seq improved real-time	Anki, goa Alhadi this Bustamam is , Herleycre Shaori Al-acc Ash, con Devvi ion Sarwinda cha 2020 res qui use que bas a pre d o The special control of the production of the pr	al of B s work (I too) eate an S curate T nversat M nal AIm atbot cl at canth spond m ickly toth er cl estions p sed on he edefine co dataset.el e li ecific B jective G tod velop aan atbot se ogram to sing the directio l Longm ort-	BiLSTM Bidirecti nal Long chort- Ferm Memory) nodel is hosen as ne core nodel for ne hatbot rogram.T e pproach ombines lements ike BiLSTM, Greedy ecoding, nd equence- pequence seq2seq) nodels.	suitable dataset (Cornell Movie Dialog Corpus) that provides a large number of conversatio nal exchanges. Using the dialog sentences from the dataset as input for the chatbot program. Implementi ng the BiLSTM model, along with other techniques like Greedy decoding	in the form of natural language text. The chatbot generates responses in the form of natural language text. The responses are intended to be contextually relevant and accurate based on the user's input dialog.	the BiLSTM model is expected to improve the chatbot's response accuracy by effectively capturing context from the conversation al data. The integration of multiple models (BiLSTM, Greedy decoding, seq2seq) is stated to contribute to a "versatile and robust chatbot system," suggesting	approach combines various elements such as BiLSTM, Greedy decoding, and seq2seq, allowing for a versatile and robust chatbot system. The Greedy method chosen for data processing is known for its speed and simplicity, making it suitable for real-time or near-	not trained on multilingual data, it may struggle with handling queries in languages other than the one it was trained on.Despite the use of BiLSTM, the chatbot may still struggle with long and complex conversations or nuanced language.	proposed approach should lead to improved response accuracy and context understand ing, but it does not present numerical results or compariso ns with other models or

	Т					Т		
	Memory		models, to			application		
	(BiLSTM		develop the		performance.	s where		
) model,		chatbot		The choice of	rapid		
	which		program.Ev		the Greedy	responses		
	aims to		aluating the		method for	are		
			output		data			
	improve		responses		processing is	essential.		
	the		generated		mentioned as			
	accuracy		by the		an advantage			
	of the		chatbot		due to its			
	chatbot's		against the		speed and			
	responses		user's input		simplicity,			
	by		dialog to		making it			
	effectivel		•		suitable for			
	y 		accuracy		real-time or			
	capturing		and		near-real-			
	the		performanc		time			
	context of		e of the		applications			
	conversat		system.		where rapid			
	ions.				responses are			
					essential.			
Kanakame					The accuracy			Reports an
		chatbot is		can handle	of the system		primary focus	
Deepika,		implemen		spening	in correctly	open-	is on providing	of 90% in
Veeranki	is to	ted using	input to	mistakes	• •	source	motivation and	recognizin
Tilekya,	design a		identify the	and		conversati	suggestions,	g the user's
Jatroth	jollity	0.00	intent and		intents. The		which may	intents
Mamatha,	chatbot	COURCA			accinacy or	framework	limit its	_
Subetha T	that can	conversati		through its	me system m	, allows for	applicability in	The
Subetha 1	converse	onal Al		natural	correctly	customizat	other domains	system is
2020	with			1	, ,		OF SCHIMITOS	-
	human				the flow of	integration		reported to
	users,	uunzes		derstanding	interactions.	of different		perform
	entertain	maturar		capabilities.		component		well in
	them,	50000		The chatbot		s. The		identifying
	provide	understan	the	is built		incorporati		the correct
	suggestio	ding	conversatio	using the		on of NLU		flow of
	ns, and	(NLU) for	nal context	Rasa		capabilities		interaction
	offer	intent	(defined in	framework,		enables the		s (stories),
	motivatio		stories.md),			chatbot to		although
	n during		Rasa Core			understand		specific
	tough	entity	determines	components		user intents		metrics are
	times.	extraction.	the	for natural		and extract		not
		The				relevant		provided.
		system	onnronrioto	language		entities,		provided.
		•	response or	understandi		improving		
		_	action.	ng (NLU)		the		
		dialogue		and		accuracy of		
		managem		dialogue		responses.		
		ent		managemen		•		
		capabilitie		t (Core).				
		s using		Rasa Core				
		Rasa		handles				
		Core.		dialogue				
				C				
				managemen				
				t and				

		1	Т	1		1	T	
				determines				
				the				
				appropriate				
				responses				
				based on the				
				identified				
				intents and				
				conversatio				
				nal context.				
N.Y. 11	TD1 1			TD1 1 1	D :1	EL CLIL	.	TD1
Neelkumar				The chatbot		The GUI is		The
- · - acc,					efficient and			chatbot
	work is to		message is			be similar		provides
T T 11 1	•		preprocesse		responses to	to	quantitative	efficient
R. Parikh,			d, including	provides	the user.	messaging	metrics or	and
Prof.				suggestions		ammli aati am	comparisons to	relevant
D1	"UNIBO	(GUI)	checking,	to the user.	Has minimal	s which	lovio livoto tho	responses
A Doda1		similar to		If multiple	response	users are	Chaiboi s	to the user
A. Patel,	(Universi	a	splitting,	relevant	time		pertormance	
		messaging	and	answers are		already	objectively.	in most
Ronak R.	Chatbot)	applicatio	keyword	found, the	Requires less	rammar		cases.
Ronak K. Patel	that can	n,	extraction	chatbot	memory and	with,		The
Pater	interact	developed	using	presents	fewer	providing a		response
	with users	using	regular	options to	database hits.	providing a friendly		time is
	and	HTML,	expressions.	the		onvironmo		minimal.
2019	provide	CSS,	An SQL	user.Respon	Most of the	nt for		The
	various	iQuery,	query is	ses are	unie, une	interaction.		memory
	informati	and	executed to	generated	provided	Users can		requireme
	on. The	Ajax.The	search for	dynamically	replies			nts and
	chatbot	chatbot	relevant	based on the	sausty me	enter questions		database
	aims to	uses PHP	information	user's innut	user's	_		hits are
	overcome	as the	in the	and the	requirements	or queries		less
	the	back-end	database	database	•	in natural		compared
	tedious	language	based on the	content.		language, making the		to other
	and time-		extracted			•		approache
	consumin	processin	keywords.			interaction		s. The
	g process	•	•			more		majority of
	of visiting					intuitive and		the
	universiti							provided
		generating				human- like.		replies
		responses.				iike.		satisfy the
	to gather	•						user's
	informati							requireme
	on.							•
	The goal	CDT 3	Create an	Natural	GPT-3 can	Improved		nts. GPT-3
SWATHI,	_							
*			account on	\mathcal{C}		communic		was trained on
K.GOPAL REDDY	_		OpenAI and		and respond			trained on
		from	obtain API		to complex	user		a massive
2023	using	OpenAI,	keys.	Context-	usor innuta	experience		corpus of
	GPT-3	Programm		Context-	user inputs,	Enhanced	of contaxt and	text data,
		ing		aware	anowing for	support for	real-world	winch can
	(Generati	ranguage	ng language		more natural and effective	customer	knowledge	potentially
		(e.g.,	ng language and set up	generation.	and effective		Difficulty with	improve
		-	the	Ability to	communicati	agents.	sarcasm, irony,	its ability
	Transfor		developmen		on compared	5	and non-	to generate high-
	mer 3)	anu APIS	t	complex	to simpler	Increased		
	model,	for		and nuanced	CHAIDOU	customer		quality
				65				

	rribiah aan	intoquotin		i	modala	4: - f 4: - m	atou doud	********
			environmen	_	models.	satisfaction		responses
		g with		Multi-		•	66	across a
			_	lingual		Ability to	Inability to	wide range
	like text		libraries and	support.		handle		of topics
	responses		dependenci				r . • 1	
	•		es.	Fine-tuning		complex		domains.
				on specific		queries and	ausuaci	
			2 0.110	domains for		Scherate	responses.Limi	
				specialized		coherent	ted reasoning	
				responses.		responses.	and logical	
			GPT-3 API				capabilities.	
			and			Multilingu		
			generate			al support.		
			responses					
			based on					
			user input.					
			Integrate					
			the GPT-3					
			response					
			generation					
			into a					
			chatbot					
			interface.					
Shashi	Analyze	Chat GPT	Chat GPT	Chat GPT	Chat GPT	Aid in	Potential	Both
Kant	and	is based	uses natural	has 175	can solve	education,	biases,	systems
Singh,	review	on the	language	billion	math	creative	inaccuracies,	have wide
Shubham	Chat GPT	GPT-3	processing	parameters	problems.		·	application
	l1	language	to generate	and a vast	write code		common sense,	* *
Pawan	A 1	model		vocabulary,		coding, and	1	require
Singh	Dond AI	architectu	toxt	•	~	_	security/privac	•
Mehra	two		rachoncac	•	s, and assist	_	• •	ents in
Wieina	nrominan	re davidanad	hased on its	^		_	۲	
	t	developed	training		in various		('bot (-1)' 1''o	accuracy,
	language		data.		tasks across			bias
2023	models/c	OpenAI.	Google	Google	domains.	Google	until 2021.	reduction,
		Google	Bard AI is	Bard AI has	domains. Google Bard	Bard AI	Google Bard	ana
	develope						AI has limited	cxpanucu
	d by	powered	conversatio	parameters	provide more	some	access	knowledge
	OpenAi	hv	nai	1 5 trillion-	detailed and	biases and		bases.
	and	LaMDA	interactions,			inaccuracie		O
	Google	(Languag	reacting		understandab			Ongoing
	waanaatii.	e Model	quickly to	and refrains	le responses	Chat GPT		competitio
		for	IUS	from	powered by			n to
		Dialogue	environmen	making	the latest			develop
		Applicatio	t.	presumptuo				more
		ns).		us	aata.			advanced
		113).		judgments.				conversati
				Jaagments.				onal AI
								assistants.

Ilman	Combine	Chat GPT	Chat GPT	Remembers	Assists new	Provides	Can generate	Innovative
				context and			nonsensical or	
	functiona				understandin			combining
		based on				assistance		voice AI
I will or,				conversatio	_		•	and Chat
Dilliuy			based on its		· ·	immersive		GPT
wiikiiayiov	and a						base focused	
, islalli				l topics and		for players.		s.Aims to
Shazhaev,	assistant						information.Po	
Abdulla	to provide				Authenticate			gaming
	a unique			inappropriat				experience
			text, which				spreading	, security,
				content.Can			misinformation	
	e and help	_	Chat GPT to		•		if not carefully	
					_		controlled.	v
		recognitio	~		· ·	complex		engageme
	G T		responses.R			issues.		nt.Ongoin
			_		needed.Cond			σ
	mechanic		•	O.	ucts outgoing	_		developme
						advanceme		nt to
	Farcana's	1	converted			nts in AI,		improve
	new play-	8.	back to			NLP, and		accuracy,
	to-hash		speech via		_	machine		reduce
	shooter		text-to-		•	learning.		biases, and
	game.		speech		services.	8		expand
			synthesis.					capabilitie
								s.
Md.	Design an	Caller ID	Caller ID	Displays	Provides	Integrates	Limited by	Successful
	advanced		information				capabilities of	
	telephone			information		•	the 8-bit	implement
Lim Hooi	system		from FSK	on	services like	features	microcontrolle	ation of a
Jiun, Ng	that	Motorola	modem	I CD Outgo	caller ID	into a	r.Tape-based	multi-
Wei	integrates	IC	tones	ing message	display,	single	answering	functional
		MC14LC	received	nig message playback	automatic	device.	machine may	"smart"
Md.	identifica	5447	between the	prayback	call	device.	be less reliable	telephone
	tion,	Answerin	first and	and incoming	answering,	Low-cost	than digital	system.Co
Shahjahan	answerin	g machine	second ring		and remote		recorders.Secu	
Shahid	g	circuits		message	security	using an 8-	rity system has	caller ID,
	machine,	(ring	inaciniic		monitoring.	bit	limited range	answering
	and tele-		answers	on		microcontr	based on	machine,
1998	security			tape.Remot		oller.Progr		and tele-
			set number			ammable	•	security
	functiona		of rings,			functionali		capabilitie
			plays OGM,	_		ty for		s in a
		DTMF		retrieval via		customizat		single low-
			incoming	DTMF		ion.		cost
		CPC	messages	tones.				device.Lev
		circuit)	on tape.	G				erages
		Tele-	Tele-	Sensor-				existing
				based				telephone
		•	J	security				network
				monitoring				for .
				and auto-				communic
			,	dialing				ation and
				capability.				remote
	1	PIC16C84	line, and auto-dials a					monitoring
		8-bit						

		ı		1		ı	T	
		microcont	•					
		roller as	programme					
		the central	d number.					
		controller.	Microcontr					
		LCD	oller					
		display,	coordinates					
		isolation	all					
		transform						
		er, relays,						
			programme					
		supportin						
		g circuits.	u 10 5 10.					
Muhamma	The		The input to	The	The solution	The	The system	The
d Zeeshan			•				requires a good	
							training dataset	
ixiiaii,	improve		system is in		saves time,		to achieve	•
~			the form of		·			innovative
winnaz,								
iviumamma	efficiency		an image, which can		• .		1	face
a imran					· ·			recognitio
					and enhances			n approach
_ ~ _ /			either from	boasting 94.6% and	security with		face challenges	
	-	computin					in recognizing	
	on in	_	directory or		recognition,		faces in low-	
		processin					light or noisy	
				respectively			environments.	
	accuratel			. It ensures		time.The	•	computing
	У					use of edge		to handle
	recognize			performanc		computing		IoT data
	individua			e through				challenges
	ls in real-		_	edge			related to the	
	time.		processed to			_	collection and	
				making it			0	methodolo
				efficient for		the real-	facial data.	gy,
			frame using	educational		time		practical
			a deep	settings.		response,		implement
			unified	Scalable		making the		ation, and
			model	and		system		evaluation.
			based on a	efficient, it		more		Suggested
			convolution	employs a		efficient.T		are
				deep unified		he system		practical
			network.Th	•		is designed		testing and
			e detected			to work		exploratio
				processing.		with a large		n of
			then	Attendance		number of		broader
				data syncs		simultaneo		application
				with the		us images		s.
				cloud for		from		
			faces in the			different		
				managemen		smart		
			recognize	t and		classrooms		
			_	privacy		, making it		
				concerns are		suitable for		
				addressed in		use in		
				compliance		educationa		
				with		1		
			of the data			institutions		
			is done at	_		montanons		
			is uone at	1		•		

		<u> </u>		Г	Г		Г	
			the edges of					
			the nodes to					
			reduce the					
			data.					
Muhamma	The goal	The	In the CNN	The	The	The	Dataset	Overall, it
d Iqbal,	_		architecture					holds
_		ts in this		r •			demands ample	
		include a		~	r -	architectur	_	for
		1: 6: . 1	1 '		*	e has	·	enhancing
Yul		CNN	well-known	CNN	and	shown	often	1 1.
Yunazwin	recogniti	architectu	CNN		applicable in healthcare	0110 //11	challenging to	of
	on in	re,	architecture		healthcare,	better	acquire.	interaction
n	humanoid	10,	s, i.e.,	for real-time	incurricure,	performan	System	s across
-1	robots	a method	VGG16 and	face and	security, and	ce in face	0.0011112.000	domains,
	using a	for	A 1 NT - 4	emotion	entertainmen	recognition	accuracy may be influenced	nrovided
2022	custom	measuring	Alexinet,		t anhancing	and	be illituenced	provided
2022		the	ai c	recognition,	human-robot		by lighting,	ethical
		distance	compared	employing a	interactions	emotion	expressions,	concerns
	Filling a	between	with the	Callicia		recognition	and occlusions.	are duly
	research	the	proposed		through face	man wen-	Training and	addressed.
	gap, it	object's	modified		and emotion	CNDI		
	introduce	c		a laptop to	recognition.		testing	
			The	cantura			necessitate	
	tailored	the position of		vicual data	patient	es, i.e.,	substantial	
	CNN and	the robot.		It processes	monitoring	170016		
	distance-	ille 1000i.		_	security, and	1	computational	
	based		is chosen			A1 NT	resources and	
	human			acandinatas	engagement		time, posing	
	110111011		has shown		across	The study	system	
	localizati		l44	recognized	domains.	confirmed	challenges.	
	on for		better	faces,		real-time		
	high		performanc	achieving		recognition		
	accuracy,		e in face			and		
	with		recognition	_				
	applicatio		and	accuracy		precise		
	ns		emotion	(87% for		distance		
	:		recognition.	faces, 67%		measureme		
	ın robotics			for		nt by		
	robotics,			emotions).		humanoid		
	healthcar		periorinane	Furthermore		robots. It		
	e, and security.			, the system		underscore		
	security.		step, the	adeptly		d distance		
			proposed	calculates		and		
			proposed	distances				
			system's accuracy is			illuminatio		
			measured as	nerforms		n as critical		
			measured as the	well in		recognition		
			uic	different		factors.		

				70		e, and	4	
	detector.			it,	quarity	surveillanc		
	YOLOv4			Eurthormora	and data	driving,		uomam.
	VOI 04		l. ·		requirements	ا مانداند		domain.
	the		target			s		this
	scales of			domain data	rasauras	autonomou		crucial for
	different		Porrorina	target		such as		and safety,
	at		actection	reauire		detection,		reliability
	classifiers			doesn i	ed limitations	3	ţ	system
	paths and		the		Acknowledg			can boost
			improves	auvantage is		involve		adaptation
	n	boxes.	scales	advantage is	methods.	s that		
	adaptatio	bounding	feature	. A significant	auabtanon	application		this
	domain	predicts	to an unce	applications	domain	OI		and
	multiple	The head			with other	wide range		detection,
				time-critical		wide		object
	taaturaa			valuable for		applied to a	ų.	relies on
		them to	applying		lacks	can be		heavily
	invariant	and foods	that	realtime,	YOLOv4 but	framework		us driving
	domain-	teatures		operates in	over	proposed		Autonomo
	generates	these	10001100 00110	end-to-end training and	superiority	The		·
	ns. It	11 4	Allalyze ule	1, 1	its			annotation
	applicatio			employs	·	domain.		annotati
	detection	scales.	scales.		evaluation	target		data
	3		different			uie		without
	•	different			prior methods. The	_		shifts
	•	features at				changes in	or scenes.	domam
	problem	layers of		invariant	aisunct from	_	types of objects	mitigating
		mumple	•	domain	approach,	_		by
		extracting		an han ain a	adaptation	· ·	other	us driving
	to the		domain		domain		effective for	autonomo
		responsibl	results of	object		oi aomam		outonomo
	proposes	roeponeihl	compare			tne impact of domain	scenarios. It	for
					-	the impact	_	systems
2021	()		domain and	•	novelty lies			detection
	DAYOL		the target	adaptation	framework's		autonomous	object
		head.	detector in	domain	work. The	invariant	found in	enhancing
			3		aspects of the		commonly	promise in
-		the neck,			-	_	set of objects	holds
		-	performanc				on a specific	
	The goal		Evaluate the		The analysis		It is evaluated	
	TD1 1	7 231	n.		- I	TO!	T. 1 . 1	
			classificatio					
			of a	-				
			s per class					
			effectivenes					
			the level of	control.				
			value shows	dot matrix				
			accuracy	servo and				
			The					
				precise				
			emotions in	facilitating				
			and	while also				
			rate of faces					
			recognition	lighting				
				11 - 1-41				1

	Answerin	circuit,	testing of	v and	system may	telephone line for any unauthoriz		proves
	Answerin	circuit, LCD	testing of	y and	system may	-		-
	µon and	circuit.	testing of	y and	system may	-		-
	tion and	aimarrit		w and	itere-security			, ,
			ı, ind	_l ana vanaUIIII	l. a •.			system,
	Identifica	sender	5 TTL -	unavailabilit	However, the	the		security
		message	•	during user	security.	monitors		and a tele-
	as Caller	Outgoing	components	messages		circuit		· ·
	use, such	Outgoing		record	naver or	system		machine,
	II CICDIIONC		me hardware		adds an extra	_		answering
	everyday	detector		machine to	system that	security		an
		D: ~		answering	a telesecurity	The Tele-		Caller ID,
	related to	circuit,	and	an	machine, and		needs of all	
	services	UCICCIOI	language	nncornorales	_	to a wider	LIIC	with
	and	K III9	assembly	unit It	ID, an	accessible	may not meet	Device,
	facilities	circuit.	1101	on an ICD	with a Canci	nunctions	system, and	Telenhone
	advanced	J =	11101000111110 110r	information	with a Caller	functions	Tele security	The Smart
		•	microcontro	displaying	comes	Machine		domain.
	_	security				_	Machina and	the project
	implemen	Tele-	ller in Intel		Telephone		Answering	needs in
	trollers to	CHCUII.	microcontro				Identification,	telephone
	microcon	g Machine	miana a 4 :	m umougn a	_	Idontifi (
1770				Identificatio	affordability.	Caller	Caller	daily
1998			•				including	answer for
			programmi	•	solution that		functions,	sive
	r	ID)	Device by			•	specific	comprehen
Wei Chuen		ion (Caller	-			0	perform	and
Jiun, Ng	the	Identificat	Telephone	range of	00000011-1-	المنادء 1	maufa	effective
Lim Hooi				offers a	and easily	ollers and	C	cost-
,		· ·	tion of the		cost-effective			offers a
Mahmud			implementa	_	r -			solution
Md.		PIC16C84		The Smart		The use of		
		DVG:		~	•			
					improvement			
			(oracle).		research and			
			ideal		further			
			e of the					
			performanc		avenues for			
					potential			
	driving.		reaches the		providing			
	us		almost		scope,			
	autonomo		margin and		current			
	Jan 101		significant		ocyona me			
	data for				beyond the			
	on target		a		applications			
	and tested		approach by		and			
	solution				architectures,			
	proposed		the original	detection	detection			
			outperforms	3	detection			
	with the				alternative			
	trained			,	values,			
	nce when		MS-	C	threshold			
	performa		proposed	driving	different			
	detector s		the	autonomous	Consider			
	detector's		Show that	urverse	consider			
	the				should			
	improves			•	Future work			
	This		achieves the	outperforms	dependence.	robotics		

		EEDD OM	m 1 1	·.	, ,	,		1
	_		•	_	not be			practical
	Machine	memory		,	suitable for	or		for
	functions.		ensure that	activating	household	tomporing		household
	The			10,000	use, and there	providing		use. Its use
			it performs	ararris	may	providing		of low-
	problem		the intended	_		enhanced		cost
	that needs				be limitations	-		microcontr
	to be		including	d access or				ollers and
	solved		Caller	1 0		Answering		
	ia malaina			I Itilizina	functionality	Machine		compatibil
	is making		Identificatio	_	in areas	circuit		ity with
	these		· ·	low-cost	*.1	records and		digital
	features		_	microcontro	_			networks
	accessibl		Machine,	llers ensures		plays back		enhances
	e to a			affordahility	coverage.	outgoing		accessibilit
	wider		security	Dogianad	Coverage. Despite these	messages,		y, while
	oudianaa			. Designed		and detects		the
	audience		5,500111.		limitations,			
	by using			compatibilit		incoming		added
	affordabl			r	Γ	messages,		security
	e *********			prevalent	valuable and	_		layer
	technolog			μ.	practical	convenienc		contributes
	у.			•	practical solution for	e to		value to
				Ι.				the overall
					telephone	users.		project.
					use.			
				explores the				
				application				
				of Signaling				
				System No.				
				7 (SS 7).				
Yang ye,	Aims to	ChatGPT,	The Robo	The feature	The	Improved	The use of AI	Evaluates
-	introduce		GPT AI		integration of	•		the impact
	the Robo				ChatGPT in			of
							0 0	
du			_			collaborati	nrocessing	ChatGPT
	colution			0	enhances	OH	tools may	on
	aiming to	assistant,	presents the	4	transparency			trust in
2023	enhance	Human		ChatGPT in	ana			human-
			• •		afficiency of	and		robot
	robot	•			decision-	robotsIncre	training and	collaborati
	TODOL		•		molsing	1	CAPCILISC I IIC	
	collaborat		and	bidirectiona	_	aseu	system may not	on. The
	ion		waits for		_	transparen	be suitable for	use of
	(HRC) in				better task	cy and	all types	Large
	assembly		instructions.		performance	reduced		τ -
	tasks by		msu ucuons.		and	ambiguity.	of assembly	Modele
	iasks by			_	productivity	in the	tasks or	like
	addressin			_	productivity.			
	g		I	7	Bi-	uccision-		ChatGPT
	communi		communica	efficiency in	directional		implementing	improves
	cation				communicati	process.En	implementing the system may	
				molzina	on through	nanced		understand
	and trust		clarifies the	_	ChatGPT	trust in the		
	issues.		intention of		enables	robotic	high.	ing in
				humansand		system.		
				robots.				

	TI		<u></u>	CI (CDT)	, 1			
	The		human		natural			communic
	primary				human-robot			ation. The
	challenge			~ ~	interaction,			experimen
	is the lack		robotic	*****	essential in			t using
	of		system,	capabilities	industrial and			Robo GPT
	effective		which	•	manufacturin			shows
	communi		could	human-	manuracturm			increased
	cation				environment			increased
	between							trust.
	humans		transparenc	interaction,	s, wnere LLMs' use as			However,
	and		reduce		intelligent			potential
			reduce	autonomous	robot			miscommu
	robots,		ambiguity.	decision	robot			nication
	leading to			making and	assistants			calls
	errors and			•	improve			
	safety				decision-			for robust
	concerns.			Despite the	making			and
	The		adequate	text_based	efficiency			adaptable
			•	I/O, the	and			AI
	proposed		for	system	transparency.			systems.
	solution		decision-	1				The study
	involves		making, the	promise in				examines
	integratin			fostering				ChatGPT's
	g			better				influence
	ChatGPT		to a decoder					on trust,
			which	relationship				considerin
	, an AI-		further	s and				g
	based			elevating				opportuniti
	natural		the	overall task				es and
	language		commands					limitations
	processin		into Robotic	performanc				
	g tool,		Operating	e in human-				
	with		System	robot				
	robotic		(ROS)	collaboratio				
	control		topics and	n scenarios.				
	modules.		triggers					
			robotic					
			control					
			functions.					
Abhishek	_		The YOLO		The authors	_	The accuracy	
Sarda, Dr.			model trains	algorithm is		the YOLO		solution of
			on the	_		algorithm	_	using
Dixit, Dr.	is to				_	on custom	depends on the	YOLO
Anupama	enhance	S S	image data	detector that	of the	classes	quality and	algorithm
Bhan	safety and	CSPDark	we provide	allows for	algorithm	allows for	quantity of the	can
	efficiency	netss for	to identify		-			significant
	by	image	objects on	detection	training	detection	_	ly reduce
2021	precisely	reature	images in		process, and	of specific		accidents
_	identifyin		_	classificatio	_	objects.YO		and
	g and	a SPP (Spatial	colab	n of objects,		_	perform as well	
	categorizi	(Spanai					as multi-stage	safety.
	ng objects	pyrainu nooling)	t using	suitable for	custom	_	detectors in	
	<i>5</i> - 3 18	and PAN	_			which	detectors III	
		(Path				means it		
	<u> </u>	(z mm1	l	<u> </u>	,, u		<u> </u>	

	_						g	ı
		Aggregati	_	autonomous			detecting small	
			algorithm.	_			objects.	
		Network)			discussion of	classify		
	This	layers for			limitations	objects in		
	addresses	processin	The new			real-time.		
	the issue	g of			comparisons	rear time.		
	of	images a	unseen		_	The		
	accidents	YOLOv4	input image		with other	Identified		
	ctamming	detection	is processed	1	argorunms	objects ore		
	from	model for	through a		would have			
		drawing	neural		enhanced the			
	iiuiiiuii		network to		analysis.	by		
	CIIOI,	bounding	detect and			bounding		
	neducing -					boxes.		
			classify					
		probabilit						
	autonomo	у	real-					
	us driving	y prediction	time.The					
	us un ving	e ite data						
	recimolog	augmentat	the image					
	у.	10n	are					
		technique	identified					
		s include						
		N / 1 -	ana					
		Mosaic augmentat	classified					
		ion and	IIItO					
		DropBloc	different					
		k	objects.					
		regulariza	3					
		tion, it						
		uses Mish						
		and Leaky						
		ReLU						
		activation						
		functions,						
		the						
		Darknet						
		training						
		framewor						
		k, it was						
		trained on						
		google						
		colab						
		using						
		GPU.						
Shaji		The	The	This	The analysis	Reduces	May miss	The
3							objects outside	
			C			•	· ·	
Blue, M.					integration of	n and		enhances
	improvin	menuues tha	uic		YOLOv3 for			object
	g the	uic VOLO2	accuracy of	the	object	algorithm		detection
		YOLOV3	object	the accuracy	detection,	speed.		precision
2019	of	algorithm,	iocanzanon	or boundary	detection, followed by	a .	May blur	with edge
2017	boundary	willen is	and	boxes	image pre-	Smooths		detection
	hoxes that	used to	identificatio	arouna	processing	COIOIII	mportant	and pixel
	will be	used to obtain the	n within	detected	which	transitions	actairs.	
		coordinate	ımages	objects,	wnich	and		analysis.
	occii	s of	usino		includes			
	drawn	boundary	YOLOv3	ng YOLOv3	Gaussian			

			1 1.1	.1 1		I		
		boxes and		_			May miss some	
	5		_		•	noise.	edges or	
	has been		which edges		detection.	. 1	produce false	
	detected			and pixel	New	Accurately	positives.	
	on imaga	After	detected so	values.	boundary	detects	•	
	in order	YOLOv3	that	Leveraging	L	edges.	May miss	
	to	outputs an	boundary	YOLOv3 as			boundary box	
		image,	boxes can	a		Focuses on	edges in the	
	improve	pre-	be drawn	toundation	ouseu on	arcas	middle of the	
	the	processin		it utilizes	white pixel	where	image.	
	accuracy	a ic	•	nre-trained	density	boundary	mage.	
	of object	annlied to		COCO data,	analysis.	box edges	May struggle	
	localizati	obtain an		determines	Results	are more		
	on and	image				likely to be		
	identifica	with the		tili oblioid	improved	-	noisy images.	
		edges of			accuracy	Tourid.	noisy mages.	
		the		•		Draws		
		detected		-	YOLOv3,	more		
					*	precise		
		object.		producing	paraculary			
		The			in terms of	boundary		
		proposed			IOU	boxes.		
		work also		boxes.	(intersection			
		includes			over union)			
		an edge			values,			
		detection			though			
		algorithm,			challenges			
		image			exist in			
		partitionin						
		g into four			handling			
		parts, and			sharp objects			
		the			and noisy			
		constructi			images.			
		on of a						
		new						
		boundary						
		box based						
		on						
		threshold						
		values.						
Shraddha	The goal		Our	The key	The solution	This API	This may	This
	_	_	approach	_		provides a	~	solution
,		-	* *		novel, robust			focuses on
101.			TensorFlow				TensorFlow	object
Dupityu		TensorFlo		1	1.1		and deep	detection
viangaic	y detect		detection	Т				and
	-	3		flow board	detection and		learning	tracking
				object	_		IIICIIIOUS -	through a
$\alpha \alpha \alpha \alpha$	objects in		0		complex	detect		unique
	real-time			and CNN	scenarios	models for	require a large	approach
			and a CNN-		which	obiect	require a large	involving
				tracking	enhances	detection.		TensorFlo
				system for	accuracy and		computational	w's object
		^	•		exhibits	1 nis	ICSOULCES.	detection
	that needs		argorumi for robust	100050	efficient	algorithm	Offling training	API and
		algorithm,		oojeet	performance	is designed	Offline training	CNN
	solved is	_	v	and tracking		to be robust	may require a	C1 11 1
				•		to	large amount	algorithms
	шс	vaseu	OHIIIIC	in complex				•

tracking, sing the system's variant performanc architectu e in improves re to combine moving and a shirt tracking. a shirt tracking. a shirt tracking. This architectu e improves e enhance the CNN accuracy of performance the combine moving and accuracy of the combine tracking.		11.001 1.						0 1 1	.
detecting and for robustare alsosensitivity, tracking object objects detection, accurated Offline accuracy of in real-spatial and world temporal scenarios. classes for human racking, shift variant architectu re to dentifying and local combine moving and global stationary objects and local characteri stics. Menaka, Archana, Ophana Gopal, Ramesh Cologic Dhana Gopal, Ramesh System Box probabilitie of the thing in the problem Other problem Other problem Other Prediction boxes and Image into convolution NOLO, approach, Comparis perl, The on withcomparis perlorman that this Real-system is in search grade or the problem of the pr		•	· ·	_					
and for robustlar alsosensitivity, objects objects object of security objects object objects in lalgorithm of the object object object object object objects objects in lalgorithm of the object objec						based testing.			
bojects detection, improved accuracy y and training to robustly learn in real-spatial and world temporal scenarios classes for human racking, shift system's variant architectu e in dentifying combine global characteri stics. Menaka, The aim Object Archana, of this Identificat solution on involves and Dhana solution of Detection. Anchorclass System Box using the Technique dividing theuse of proposed and p							illuminatio		
bojects detection, improved accuracy y and training to robustly learn in real-spatial and world temporal scenarios classes for human racking, shift system's variant architectu e in dentifying combine global characteri stics. Menaka, The aim Object Archana, of this Identificat solution on involves and Dhana solution of Detection. Anchorclass System Box using the Technique dividing theuse of proposed and p							n and	This	
accurated Offline accuracy y andtraining to robustly learn in real-spatial and robustly learn in real-spatial and scenarios. classes for human values, asses sing the stracking, shift yariant architecture in receivable to the simproves in tracking, shift yariant architecture in receivable to the combine global stationary features and local characteri stics. Menaka, The aimObject The This objects. Menak							occlusion.	Tills illay	sequences
y andtraining to robustly learn derived in real-spatial and world temporal temporal scenarios classes for human values, asses tracking, sing the system's variant architectu e in ere to combine global features and local characteri stics. Menaka, Archana, of this identificat solution solution solution on involves is to Technique dividing the search of the control of the production is to Technique dividing the search of the composition of the problem of the on with comparing YOLO approach. Comparis cell, the efficient fundates when that this Real-system that this Real-system Time previous prediction and problem of the Analysis, nichentificat solve is Frame to of bounding data system Time aims to Systems of the Analysis, nichentificat of		-						•	
robustly learn in real-spatial and world temporal scenarios. classes for human values, asses tracking, shift system's variant architectu e in entroperous and robject simproves e enhance architectu e in improves e enhance global features and local characteri stics. Menaka, The aimObject The This objects and local characteri stics. Menaka, The aimObject stics. Me	ŀ			•					
in real-spatial and world temporal scenarios, classes for human tracking, sing the shift system's variant architectu e in re to identifying combine global features and local characteri stics. Menaka, Archana, Of his identificat solution solution on involves features the system and solution ion involves in mage in locardion boxes and logal, and solution solution ion involves in a provious and local characteri stics. Menaka, Archana, Of his identificat solution solution with solution ion involves features the system the solution solution ion involves in mage in locaronvolution NOLO approach. Comparis cell, The on with comparing YOLO approach. Comparis cell, The on with comparing YOLO convolution and solution solution boxes and lmageNet that this Real-system Time aims to Systems of the Analysis, identification of generating objects in utilizes the algorithm algorithms and polication and solution ion involves and lmageNet that this Real-system Time aims to Systems solve is Frame toof bounding data solve is Frame toof bounding data ion of missing objects in utilizes the algorithm is pain without the solution solution ion in algorithm in layers algorithms algorithm in algor		-	_				improves	l ^	•
world temporal scenarios classes for human tracking, sing the tracking, shift variant performanc architectu e in improves e enhance of this dentificat solution of this dentificat solution ion involves features the system that this Real-system Box probabilitie object wising the Techniques for objects and that this Real-system I'me on with comparing POLO. 2020 Approach. Comparis that this Real-system I'me amisting before the comparing objects in allowing the feet ficient and that this Real-system I'me amisting before a missing objects in tuilizes the algorithm lands and provided the comparing object in the feet ficient includes the feet ficient includes the feet ficient includes the comparing provided in allowers and problem of the feet ficient includes the feet fice the feet ficient includes the feet fice the feet fill from th	1	•					LIIC		
world temporal scenarios classes for human tracking, sing the tracking, shift variant performanc architectu e in improves e enhance of this dentificat solution of this dentificat solution ion involves features the system that this Real-system Box probabilitie object wising the Techniques for objects and that this Real-system I'me on with comparing POLO. 2020 Approach. Comparis that this Real-system I'me amisting before the comparing objects in allowing the feet ficient and that this Real-system I'me amisting before a missing objects in tuilizes the algorithm lands and provided the comparing object in the feet ficient includes the feet ficient includes the feet ficient includes the comparing provided in allowers and problem of the feet ficient includes the feet fice the feet ficient includes the feet fice the feet fill from th			•		from TP,		accuracy of	ımage	and
scenarios classes for human tracking, shift system's variant architectu e in improves to combine global stationary features and local characteri stics. Menaka, The aim Object The This This work The YOLO The Archana, object and involves features that consolution on involves features that consolution on involves features that the lagorithm algorithm object make that this Real current and for directframe problem Other objects in algorithm I layers, algorithm almost that this Real current and for directframe system Time previous prediction alms to Systems, frames toof bounding data solve is Frame identificat objects, and probabilities flee system objects in utilizes the algorithm span without the algorithm of the algorithm and problem of the algorithm a					TN, FP, and			processing	accuracy
human tracking, sing the system's variant architectu e in improves e enhance combine moving and accuracy of performan and local characteri stics. Menaka, The aim Object The of this Identificat solution involves features theystem that Copal in the object and solution for predicting mage intoconvolution on problem Object Prediction boxes and mage intoconvolution optoetettion. Anchorclass dataset for primarily for amproach. Comparis cell, the efficientiancludes that this Realsystem Time on withcomparing vOLO. Approach. Comparis cell, the efficientiancludes that this Realsystem Time on withcomparing vOLO. approach. Comparis cell, the efficientiancludes that this Realsystem Time on withcomparing voluming alms to Systems, frames toof bounding better that this Realsystem Time on withcomparing voluming alms to Systems, frames toof bounding alms in tool with a dentification of generating a lens in techniques, in the object in algorithm algorithm algorithm algorithm algorithm algorithm algorithm algorithm and robustness: Menaka, The aim Object The objects and local characteri stics. Menaka, The aim Object The This This work The YOLO The YOLO The Approach seems promising in terms of accuracy of object and accuracy of object and accuracy of object seems promising in terms of accuracy of object seems promising a seems promising a spromising the tection and tracking. Menaka, The aim Object The This This work The YOLO The YOLO The YOLO The Approach seems promising a spromising the tection and tracking. This improves the anchierture object on the fractive the entire that this sead and factures the system that this Real-system Time previous prediction analysis, and probabilities of the entire that this Real-system Time previous prediction analysis, and probabilities of the alert of the algorithm and the providence of the algorithm and the provide		scenarios.	classes for		FN			techniques.	metrics.
Menaka, Archana, Opania Missing Box Missing Box Detection, Anchorclass System Box Detection, Anchorclass System Box Detection, Anchorclass System Box Detection, Anchorclass Detection, Anchorclass Detection, Anchorclass Detection, Anchorclass Detection, Anchorclass System Box probabilities object meach gridleverages meach growth and this Real-system Time on with comparing Problem Other objects malgorithm objects malgorithm objects malgorithm objects methodology methodology missing objects malgorithm objects malgorithm objects methodology methodology missing objects malgorithm objects malgorithm objects methodology methodology methodology missing objects malgorithm objects methodology methodology missing objects malgorithm objects methodology methodology missing objects malgorithm objects methodology			human		values,asses				The use of
variant variant architectu e in dentifying the combine global stationary object and local characteri stics. Menaka, The aimObject The This objects and local characteri stics. Menaka, The aimObject The This objects and local characteri stics. Menaka, The aimObject The This objects and local characteri stics. Menaka, The aimObject The This objects and local characteri stics. Menaka, The aimObject The This objects and local characteri stics. Menaka, The aimObject The This objects and robustness: Menaka, The aimObject The This objects and probabilities object the efficient object and robustness: Menaka, The aimObject The This object the efficient objects and probabilities object the efficient object and robustness and deaction, and robustness and deaction, and robustness and the plant objects and probabilities object the efficient object and robustness and deaction, and robustness and deaction and robustness and robus			tracking,		sing the				a shift
menaka, Archana, Dhana Gopal, Ramesh 2020 Menaka, Ramesh The aimObject of this Identificat solution ion involves features the system Techniques for object benanced Bounding bounding the Object Detection, Anchorclass on Enhanced Bounding bounding the Object System Box probabilitie object surging the Techniques for objects in algorithm algorithm algorithm algorithm for the detection, and robustness of the algorithm for the detection, and robustness of the algorithm for the detection, and robustness of the algorithm for the detection, and the probabilitie object surging the object approach. Comparis cell, the efficientincludes of the algorithm for the detection, approach. Comparis cell, the efficientincludes of the algorithm for the problem Other objects in algorithm algorithm algorithm algorithm algorithm algorithm for the detection, adaptabilitie object surveillance. The in each gridleverages methodology approach. Comparis cell, the efficientincludes of the alert evisibility of the algorithm algor			shift		system's		nacking.		variant
menaka, Archana, Dhana Gopal, Ramesh 2020 Menaka, Bramesh Menaka, The aimObject of this Identificat solution ion involves features the system and make some algorithm object of the some algorithm of the al			variant		performanc		This		architectur
re to combine global stationary object detection and local characteristics. Menaka, Archana, Dhana Gopal, Ramesh Missing Object Detection Anchorclass dataset for Detection Detection Detection Anchorclass dataset for primarily for System System approach. Comparis that this Real-system that this Real-system Time problem Other on with comparing on the Analysis, and sims to Systems, solve is Frame aims to Systems identificat to of missing objects in utilizes the kall control of the factor of the factor of the sidentificat solution objects and probabilities objects in utilizes the kallgorithm span without the scenario object of the detection and tracking. The aim Object The This object of the detection and tracking. This work The YOLO The Alagorithm The algorithm The algorit			architectu		e in				e enhances
menaka, Archana, Dhana Gopal, Ramesh Missing Box Detection, System Box probabilitie of Detection, System Box probabilitie on with Comparing problem Other that this Real-system Time aims to Systems, solve is Frame the Analysis, and generating epipects in missing class in techniques the features the system that this Real-system that this the this Real-system that this this Real-system that this this Real-system that this the this this this this this this this this			re to		identifying				CNN
Menaka, Archana, Dhana Gopal, Ramesh Missing Box Object of the Lection, Anchorclass Object of the Lection, System Box using the Techniques for objects almays in each grobustine on with comparing YOLO approach. Comparis that this Real-system Time aims to Systems, frames to of boilect silved in the Analysis. In the Analysis in the Italians and Italizes the algorithm object of the detection and tracking. In the Approach and tracking. The aim Object The This work The YOLO The YOLO The YOLO The YOLO The YOLO algorithm algor			combine						performan
Menaka, Archana, Dhana Gopal, Ramesh Missing Box Object Enhanced Bounding Prediction Detection, Anchorclass Object Network of Detection, Anchorclass Object In each gridleverages and problem Other on withcomparing POLO approach. Comparis cell, The on withcomparing Poblem Other that this Realsystem Time aims to Systems Time aims to Systems objects, and probabilities objects in algorithm for directly predictoring that the detection, detection of the alert of the detection, and probabilities of the alert of the alert. The alert of th									•
menaka, Archana, Dhana Gopal, Ramesh Missing Object Detection, Anchorclass Using the Techniques of production System Box probabilities object using the Techniques of problem Other on with comparing YOLO approach. Comparis that this Realsystem Time on with comparing System aims to Systems, frames toof bounding data the missing objects, and probabilities The system aims to Systems, frames toof bounding data the missing objects in allerts. Itanalysis applications of the alerts and probabilities object on the allerts. Itanalysis applications of the alerts object object of the alerts of the alerts of the continuous objects of the alerts of the alerts of the continuous object of the alerts of the alert of the continuous object of the alert of the alert of the continuous object of the alert of the continuous object of the alert of the alert of the continuous object of the alert of the alert of the continuous object of the alert of the alert of the continuous object of the alert of the alert of the continuous object of the alert of the alert of the continuous object of the alert of the alert of the continuous object of the alert of the alert of the continuous object of the alert of the continuous object of the alert of the continuous object of the alert of the alert of the continuous object of the alert of the alert of the continuous object of the alert of the alert of the continuous object of the alert of the alert of the continuous object of the alert of the alert of the continuous object of the alert of the alert of the continuous object of the alert of the continuous object of the alert of the continuous object of the alert of the alert object of the alert of the continuous object of the alert object of the alert object of the alert of the continuous object of the alert of the object of the alert of the continuous object of the alert of the object of the alert of the object of the alert of the object of			_				3		
develop an (YOLO), grids, al layersalgorithm directly predicting using the Techniques for object object using the Techniques for objects of approach. The Techniques for objects and probabilities and problem that this Realsystem that this Realsystem that this Realsystem that this Realsolve is Frame tool betering objects, and probabilities The system's identification of missing objects in utilizes the algorithm may YOLO objects objects objects objects objects objects objects of friends. This work The YOLO The YOLO The YOLO outlines algorithm									
Menaka, The aimObject The This outlines algorithm algorithm may YOLO solution ion involves features thesystem that helps inmake some algorithm algorithm develop an (YOLO), grids, and layersalgorithm (YOLO) an (YOLO), grids, and layersalgorithm object Detection, Anchorclass Object Detection, Anchorclass Object Detection, Anchorclass Object System using the Techniques for objects detection. ItThe On with comparing YOLO approach. Comparis cell, the efficient includes on with comparing YOLO convolution algorithm. It has this Real current and for directframe system aims toSystems, frames toof boundingdata objects in utilizes the algorithm of the alerts. Itanalysis applications of the alerts. Itanalysis applications object sutilizes the algorithm span without the detection of the alerts. Itanalysis applications object sutilizes without the without the detection of the alerts. Itanalysis applications object sutilizes the algorithm span without the detects.									
Menaka, The aim Object The This outlines algorithm algorithm may YOLO The Archana, Of this Identificat solution in involves features thesystem that helps inmake some algorithm detection objects an (YOLO), grids, al layersalgorithm object prediction boxes and ImageNet detection, Object Prediction boxes and ImageNet Object using the Techniques for objects dataset for primarily for System Box probabilitie object surveillance. The on with comparing Problem Other objects in algorithm of object in algorithm of the object in algorithm of the object sims of the alert of the alert of the algorithm of the object sims of the alert of the algorithm of the object sims of the alert of the algorithm of the object sims of the alert of the alert of the alert of the algorithm of the object sims of the alert of the ale							tracking.		_
Menaka, Archana, Of this Identificat solution ion involves features the system that helps in make some algorithm alg			stics.						
Menaka, Archana, Dhana of this Identificat solution solution outlines algorithm make some algorithm algorithm algorithm algorithm algorithm algorithm algorithm make some algorithm objects objects and production algorithm for directly predicts fewer capabilities. Some algorithm for directly predicts fewer capabilities object surveillance. The comparing problem of the problem of the on with comparing problem of the on with comparing problem of the algorithm of the algorithm object in a cach gridleverages algorithm for directly predicts fewer capabilities object surveillance. It The surveillance of the algorithm algorithm algorithm object in algorithm object surveillance. The on with comparing problem of the on with comparing problem of the on with comparing objects in algorithm object in algorithm object surveillance. The on with comparing problem of the algorithm object surveillance object surveillance on the algorithm object in algorithm object surveillance. The convolutiona detection detection detection algorithm object in algorithm object of the algorithm object of the algorithm object object surveillance. The convolutiona detection of the algorithm object of the algorithm object of the algorithm object ob									•
Menaka, Archana, Dhana solution ion involves features the system that helps inmake some algorithm algorithm may YOLO The YOLO The YOLO The YOLO The YOLO The Solution outlines algorithm algorithm may YOLO is to Technique dividing the use of employs the detecting an (YOLO), grids, all alayers algorithm for gredicting bounding the Detection Detection, Anchor class dataset for primarily for surveillance. System Box probabilitie object surveillance. The on with comparing YOLO approach. Comparis cell, the efficient includes That this Real-system Time previous prediction and solve is Frame identify boxes and augmentatio the solve is Frame identify boxes and augmentatio objects in lating the solve is Frame identify boxes and augmentatio objects in lating probabilities object in the provious prediction analysis, and aims to Systems, solve is Frame identify boxes and augmentatio of generating alerts. Itanalysis applications without the solution of missing objects in utilizes the algorithm without the solution of the to solution of missing objects in utilizes the algorithm without the solution of the to other the alerts. The system's monitoring of the user to object continuous object and probabilities of the the alerts. The system's monitoring of the user to object alerts.									
Archana, Dhana solution ion involves features the system that helps in make some algorithm algorithm may algorithm may be some algorithm algorithm may algorithm may be some algorithm objects and layers algorithm for detecting an (YOLO), grids, all algorithm for detection, Detection, Anchor class object using the Techniques for objects detection. It he some on with comparing problem Other objects in algorithm lagorithm for detection, algorithm for detection, approach. Comparis cell, that this Realsystem Time aims to Systems, solve is Frame identify objects, and probabilities the Analysis. Itanalysis applications of missing objects in using alerts. Itanalysis applications without the lagorithm outlines of employs the detecting of employs the detecting of employs the detecting objects in that that helps in make some algorithm objects of employs the detecting objects of employs the detecting objects in that that helps in make some algorithm objects of employs the detecting objects in mage in algorithm for directly from full false positives in make some algorithm objects in algorithm object surveillance. It from full false positives from full false									Todustifess
Archana, Dhana solution ion involves features the system that helps in make some algorithm algorithm may algorithm may be some algorithm algorithm may algorithm may be some algorithm objects and layers algorithm for detecting an (YOLO), grids, all algorithm for detection, Detection, Anchor class object using the Techniques for objects detection. It he some on with comparing problem Other objects in algorithm lagorithm for detection, algorithm for detection, approach. Comparis cell, that this Realsystem Time aims to Systems, solve is Frame identify objects, and probabilities the Analysis. Itanalysis applications of missing objects in using alerts. Itanalysis applications without the lagorithm outlines of employs the detecting of employs the detecting of employs the detecting objects in that that helps in make some algorithm objects of employs the detecting objects of employs the detecting objects in that that helps in make some algorithm objects of employs the detecting objects in mage in algorithm for directly from full false positives in make some algorithm objects in algorithm object surveillance. It from full false positives from full false	Menaka	The aim	Object	The	This	This work	The VOLO	The YOLO	The
Dhana Gopal, Ramesh Solution Soluti	, , , , , , , , , , , , , , , , , , ,								
Gopal, Ramesh develop an (YOLO), grids, al layersalgorithm for Enhanced Bounding predicting trained onreal-time object Bounding object object object object object on System using the Techniques for objects detection. The on withcomparing problem Other objects in algorithm layers, system that this Real-system Time aims to Systems, frames toof bounding data solve is Frame identifica tion of missing objects in algorithm laters. Itanalysis applications objects in algorithm of the alerts. Itanalysis applications objects in making in the efficiency objects the algorithm object surveillance. It The surveillance of the alert of the alert of the alert objects in the object of the alert of the communication of the continuous objects and probabilities of the alert object of the alert ob	,								algorithm's
Ramesh develop s image into convolution YOLO spicts and (YOLO), Enhanced Bounding object in surveillance. System Box probabilitie object surveillance. System Box probabilitie object surveillance. System Time problem Other objects in algorithm layers, almaysis, and aims to Systems, solve is Frame tool objects, and probabilities objects and alugmentatio objects in utilizes the algorithm span without the									
an (YOLO), Enhanced Bounding Missing Box bounding the Detection Detection Detection Box probabilitie wising the Technique sproach. Comparis The on withcomparing YOLO convolutiona problem Other that this Realsystem Time aims to System, solve is Frame identify boxes and probabilities the Analysis. identifica tion of missing objects in all layers algorithm for directly from full false positives had adaptability from full false positives and adaptability from full false positives and adaptability of a detection, background. It The surveillance. The comparing the faster compared to other system on with comparing that this Realsystem of the alert of the comparing that the faster compared to other system of the alert of the communication for nechangla and accurate the communication of generating alerts. It analysis applications object in utilizes the algorithm span without the single pass, and adaptability of analysis, and factor the single pass, background. The single pass, background. The single pass, including surveillance. The surveillance of the alert of the communication for a valuable solution of the solution of the user to of the alerts.	copui,					VOLO	_	localization	raal tima
Missing Box bounding the object object Prediction boxes and ImageNet detection, Detection , Anchorclass dataset for primarily for single pass, background. System Box probabilitie object surveillance. using the Techniques for objectsdetection. It The in each gridleverages methodology approach. Comparis Cell, the efficient includes The on with comparing Problem Other objects inalgorithm I layers, algorithms that this Real-system Time previous prediction aims to Systems, solve is Frame identify boxes and augmentatio the Analysis. Identifica tion of missing objects in utilizes the algorithm span background. It the single pass, background. It the single pass, background. It the single pass background. It the surveillance of the effectiveness of the alert system detection and algorithms. It the single pass background. It the singl	Rainesii				ol lavare	algorithm for	objects	errors but	canabilitie
Missing Object Prediction boxes and ImageNet detection, Detection System Box probabilitie object surveillance. It The Syolo approach. Comparis cell, the efficient includes on with comparing Poblem Other objects inalgorithm layers, algorithms. The previous prediction analysis, and aims to Systems, solve is Frame identify boxes and augmentatio the Analysis. In a dataset for primarily for surveillance. It The methodology of the alert system detection analysis, and frames toof bounding data the communicatio for a channels and accurate object single pass, background. The one with comparing YOLO comvolutional layers, algorithms. The system solution frames to of the alert system detection analysis, and frames in channels and accurate object the solution frames in channels and accurate object the system's monitoring of the user to object and of the alerts. Solve is Frame identify boxes and augmentatio of the user to object and of the alerts. Solve is Frame identify boxes and augmentatio of the user to object and of the alerts. Solve is Frame identify boxes and probabilities object and potential of the alert and factorion analysis, and frames including the effectiveness of the alert system of the alert solution frames including and the single pass, background. The one withodology of the alert system of the alert system of the alert system of the alert system of the solution of the user to object and of the alert system of the user to object and of the alert system of the user to object and of the alerts.				_	ar rayers	aigoriiiii 101 rool timo	directly	predicts fewer	capaomitic
Detection , Anchor class dataset for primarily for System Box probabilitie object surveillance. using the Techniques for objects detection. It The yOLO , in each gridleverages methodology approach. Comparis cell, the efficient includes to other problem Other objects in algorithm layers, algorithms. The on with comparing yOLO convolutiona problem Other objects in algorithm layers, algorithms. Time previous prediction analysis, and solve is Frame identify boxes and augmentatio the Analysis. If analysis applications objects in dataset for primarily for making it faster compared to other detection detection detection detection detection detection detection analysis, and frames helps in channels and accurate object continuous objects, and probabilities The system's monitoring of the user to and the alerts. Itanalysis applications object without the without the dataset for primarily for making it faster compared to other source detection. The including making it faster compared to other detection depends on the reliability of a valuable recommunication for an channels and accurate object continuous object and probabilities. The system's monitoring of the user to and the alerts.							from full	false positives	s, and
Detection , Anchorclass dataset forprimarily for System Box probabilitie object surveillance. using the Techniques for objects detection. It The YOLO , in each gridleverages methodology approach. Comparis cell, the efficient includes to other problem Other objects inalgorithm layers, algorithms. Time previous prediction analysis, and aims to Systems, frames toof boundingdata solve is Frame identify boxes and augmentatio the Analysis. If analysis objects in laters in the probabilities of the alert system recognition detection analysis, and frames including to other detection detection algorithms. The comparing of the alert system recognition detection detection analysis, and frames including of the alert system depends on the reliability of a valuable to other detection analysis, and helps in the communication for n channels and accurate object the alerts. Itanalysis applications of the alerts of the communication of the alert system depends on the recognition of the system solution for n channels and accurate object the alerts. Itanalysis applications of the alerts.	2020						image in a	in the	auaptabilit
System Box probabilitie object surveillance. Using the Techniques for objects detection. It The approach. Comparis cell, the efficient includes that this Real-current and for directframe system Time previous prediction analysis, and aims to Systems, solve is Frame identifica tion of missing objects, and probabilities the algorithm of making it faster of the alert and factor other system of the alert and factor other detection depends on the recognition detection analysis, and frames helps in the communicatio of the object detection object and probabilities applications of the user to object alerts. Itanalysis applications object without the surveillance. The on with comparing YOLO convolutiona detection detection detection detection detection and system recognition detection detection analysis, and frames solution for analysis, and helps in the communicatio of the object detection object alerts. Itanalysis applications of the alerts of the object detection object alerts. Itanalysis applications object alerts.							single pass,	background.	-
using the Techniques for objects detection. It The YOLO , in each gridleverages methodology approach. Comparis cell, the efficient includes to other objects in algorithm layers, algorithms. The on with comparing YOLO convolutiona that this Real-current and for direct frame system Time previous prediction analysis, and aims to Systems, frames toof bounding data solve is Frame identify boxes and augmentatio the Analysis. The system's monitoring object in of missing objects in using objects in using object the alerts. It analysis applications object without the solve in the alerts.						primarny for			
YOLO , in each gridleverages methodology approach. Comparis cell, the efficient includes to other problem Other objects inalgorithm I layers, algorithms. Time previous prediction analysis, and solve is Frame identify boxes and augmentatio the Analysis. missing class necessing of the user to object the alerts of the system's monitoring of the user to object the alerts. Itanalysis applications object alerts. Itanalysis applications object approach. Comparing to other detection detection detection detection depends on the recognition detection detection depends on the recognition depends on the reliability of the communication frames helps in the continuous of the user to object detection of the user to object detection of the alerts. The system's monitoring of the user to object alerts.							faster	The	C
approach. Comparis cell, the efficient includes to other The on with comparing YOLO convolutional detection depends on the problem Other objects in algorithm I layers, algorithms. The previous prediction analysis, and aims to Systems, solve is Frame identify boxes and augmentatio the Analysis. It identification of missing objects, and probabilities alerts. It analysis applications objects in utilizes the algorithm span without the other to other system system and detection depends on the depends on the recognition detection and system and convolutional detection depends on the depends on the reliability of the communicatio for frames helps in the communicatio object missing object alerts.					detection. It	1110	compared		
problem Other objects inalgorithm l layers, algorithms. The current and for directframe system. Time previous prediction analysis, and aims to Systems, solve is Frame identify boxes and augmentatio the Analysis. It identification of missing objects in algorithm l layers, algorithms. The system's monitoring of the user to and object object in tanalysis applications object in the alerts. It analysis applications object in the alerts.							to other	of the alert	e and face
problem Other objects inalgorithm l layers, algorithms. The current and for directframe system. Time previous prediction analysis, and aims to Systems, solve is Frame identify boxes and augmentatio the Analysis. It identification of missing objects in algorithm l layers, algorithms. The system's monitoring of the user to and object object in tanalysis applications object in the alerts. It analysis applications object in the alerts.		• •	•				detection	system	
that this Real- system Time aims to Systems, solve is Frame the Analysis. identifica tion of missing objects, and probabilities The system's monitoring missing objects in objects in the laterts. Time previous prediction analysis, and comparing frames toof boundingdata frames the communicatio for n channels and accurate object responsiveness of the user toof the alerts. The system's monitoring of the user toof the alerts. The system's monitoring of the user toof the alerts. The system's monitoring of the user toof the alerts. The system's monitoring of the user toof the alerts. The system's monitoring of the user toof the alerts. The system's monitoring of the user toof the alerts. The system's monitoring of the user toof the alerts.						convolutiona	detection	denends on the	n, provide
system Time aims to Systems, solve is Frame the Analysis. identifica tion of missing objects in objects in the aims to Systems, solve is Frame the Analysis. Itanalysis applications objects in the aims to Systems, solve is Frame the Analysis. Itanalysis applications of the aims to Systems, frames to of bounding data frames to of bounding data frames to of the communicatio for accurate object the continuous object the aims to Systems, solve is Frame identify boxes and augmentatio in the communicatio for accurate object obje					<i>-</i>	l layers,	aigorimms.	reliability of	
solve is Frame identify boxes and augmentatio the Analysis. It identifica tion of missing objects, and probabilities The system's monitoring of the user to and missing objects in utilizes the algorithm span without the no channels and accurate helps in the object the continuous object missing object and probabilities The system's monitoring of the user to object object without the alerts.					for direct	frame	Comparing	the	
solve is Frame identify boxes and augmentatio the Analysis. It identifica tion of missing objects, and probabilities The system's monitoring of the user to and missing objects in utilizes the algorithm span without the no channels and accurate helps in the object the continuous object missing object and probabilities The system's monitoring of the user to object object without the alerts.		•		•	prediction	analysis, and	frames	communicatio	
the Analysis missing class in techniques. Continuous responsiveness detection objects, and probabilities. The system's monitoring of the user to and missing objects in large alerts. Itanalysis applications scene object alerts.			•		of bounding	aata	Tarres	n channels and	accurate
the Analysis missing class in techniques. Continuous responsiveness detection objects, and probabilities. The system's monitoring of the user to and missing objects in large alerts. Itanalysis applications scene object alerts.				•	boxes and		ncips III	the	object
identifica objects, and probabilities The system's monitoring of the user to and generating . A frame potential of the alerts. missing object alerts. Itanalysis applications scene object utilizes the algorithm span without the alerts.			Analysis.		class	n techniques.	commuous	responsiveness	detection
tion of generating . A framepotential of the the alerts. missing missing alerts. Itanalysis applications scene object objects in utilizes the algorithm span without the alerts.				objects, and	probabilities	The system's	monitoring	of the user to	and
missing alerts. Itanalysis applications scene object objects in utilizes the algorithm span without the alerts.				generating	. A frame	potential	of the	the alerts.	missing
		_				^ ^			-
real-time YOLO stores surveillance, need for		v							alerts.
		real-time				surveillance,	need for		
by algorithm objects object manual		-		0	objects	object			
continuou for real-across detection,		continuou				·			
sly time object frames, with		slv		time object	frames,	with			

				1	1	1 -	I	<u> </u>	
		analysing				prospects for	observatio		
		frames				further	n.		
		and		classificatio	object	enhancement	TD1 1 .		
		alerting		n.	detection.	s like object-	The alert		
		the user.			Training	co detection	system		
					involves		ensures		
					YOLO's	micgranon	that the		
					pretrained	for user	user is		
					model and	arcius.	immediatel		
					fine-tuning.		y informed		
							about any		
							missing		
							objects,		
							allowing		
							for timely		
							action.		
Tao 1	Feng.	The goal	The	The	The robot	The current	Robustness	-	UWB
Yao	Yu,	_		_		model uses a			technology
Lin		proposed		r .	leveraging a		environme		positively
	ı Rai	colution		uses UWB	IIWR	technology, a			impacts
		io 4~	ses a	technology	technology,	hyporbolic			the
Ziang	71	is to	range of	The UWB	technology,	hyperbolic	conditions.		human-
	Zhen	implemen	hardware	data is	it excels in	positioning	Enables		tracking
Lu.				aalibuatad		aigorunin,	effective		robot by
					and anti	and a virtual			offering
		tracking	cunnorf ife	in the Ass		and a virtual spring model in order to	and		precise
2018		robot	functional	SOC, while	abilities	in order to	allu c-11.		positionin
		using	ities,	the	providing a	find a target	ionowing		•
		-	including	STM32F10	reliable	nerson's	of the		g,
		wideband	Including	3 MCU	human	position and	target		robustness
				controls the	tracking	orientation,	person.		in diverse
					model. The	, , , , , , , , , , , , , , , , , , ,	D : 1		environme
		technolog					Provides		nts, low
		у.		movement,		target person	target		system
		The				and control	person		complexit
			human	communica	algorithm,	the robot's	position		y, high
		that read	tracking,	tion, and	employing a		and		location
			ultrasound		modified	respectively.	orientation		precision,
				estimation.	virtual		data		and
		solved is		The human-	spring		accurately.		potential
				tracking	model,		accuratery.		mainstrea
			distances	algorithm			Enables		m
			and enable		ensures		efficient		adoption.
		calculatio	obstacle	moamea	robust		movement		
		n of the	avoidance	viituai	performanc		and		
			l a	knring	e in various				
		of the	Bluetooth	model to	environmen		tracking of		
			module	track the	ts.		the target		
		target		target	Experiment		person.		
		person,			al results				
		which is	ation an	smoothly	validate its				
		essential	A33 SOC		effectivenes				
		for the	responsibl		s in distance				
		implemen	e for			1			
			UWB data		detection				
			reception,		and .				
			calibratio		overcoming				
			n,			<u> </u>			

	function.	filtering, and executing the human tracking algorithm.		measureme nt errors.				
Anis	The goal	Large	The paper	ROSCPT	The paper	The model	Without the	ROSGPT
	_			ROSGPT innovatively			without the guidance of an	
	ROSGPT				analyses		_	human-
	solution	(LLMs)	which	_	_		•	robot
	is to	such as	combines	_	focusing on	_	_	interaction
2023	enhance	ChatGPT,	large		_		understand	, boosts
		CDT 4	nanguage	(7.7.3.6.)	performance			efficiency
	robot	and CDT	models with	with the			_	through
	interactio		robotic				*	LLMs,
	n by	Robot	systems for	1		~	entities and	enables
	leveragin	Operating	numan- robot		without	JSON	concepts,	real-time
	g large	C4	interaction.		ontology-	structures	leading to	command
	language	~~~		fostering	based	based on	potential	execution,
	models		integrates	intuitive	prompting. It	given	inaccuracies or	and
	(LLMs)			human-	commends	informatio	misunderstandi	bridges
			with ROS2		ChatGPT's	n and can	U	ROS and
	ChatGPT			interaction.		_	~	ChatGPT
		engineerin		•				for
	integratin	D	• •	ontology, it		with only a	II'he	seamless
	_	teeminque	: 4		adaptability,	few	offactivaness	communic
	with the	S,	structured	unstructured	_	training	of the system	ation.
		ontology-	robotic			examples,	heavily relies	
	Operating	based	1		JSON	making	on the quality	
		approache	using zero-	specific		numan-	and	
		~,	enot and		generation	robot	completeness	
	The	integratio	few-shot		but	meraction	of the	
	specific	n of	learning.		highlights	more	ontology.	
	*	ChatGPT			,	пехине	Inaccuracies or	
		with ROS.			including	ana	limitations in	
	ROSGPT				deviation from	adaptable.	the ontology	
	aims to solve is				ontology	Ву	can impact the	
	the				offooting		performance of	
	challenge				responses.	structured	the model.	
	of				responses.	knowledge		
	seamless					from the		
	communi					ontology, the model		
	cation					can more		
	between					effectively		
	humans					process		
	and					natural		
	robots.					language		
						commands		
						and		
						translate		

						them into		
						accurate		
						actions.		
77. E	T	Г 1	T. 1	T T 1	TT' 1	T	ъ :	TP1
Xiao-Feng		_	•	Unmanned	•	•	Requires	The
Zhao, Zi-	_	Computin			•			system has
	an	g Layer:		registration	-	and	computing	been
Chen, He-	intelligen	RK3399	(face	using face	(over 80%	reduces	power and	trialed at
Feng Yin,		motherbo	images,	recognition	for registered	labor cost	internet	enterprise
	system	ard		and voice	faces)	compared	connectivity at	front
Wu 2023	that can	running	card) from	interaction.	~-	to manual	the edge for	desks.
	utilize the	Android	sensors/har		Short		interaction	
	advantag	8.0.	aware		recognition	manageme	with cloud.	Shows
	advantag es of both	camera,			deray	nt.		high
	K,1(7)11(1	l	Cloud AI	identity and	(average		Cloud service	stability
		micropho	services perform	temperature	382ms after	Ensures	used has	and is
	g and	ID and	perform	verification	ımuaı 1.18	data	limited	well-
	case		race		connection).	authenticit	throughput of 2	received
	computin	reager,	recognition.	Remote data		v and	queries per	for
	g to			storage,		prevents	second.	automatin
	efficientl	temperatu	recognition	managemen		human		g visitor
	y register	ro concor	recognition	t and access				reception
		etc.	on the data			errors.		during
	manage		from edge.	application.		Integrates		COVID
	visitors in		Edge			temperatur		times.
	an					e screening		
	unmanne	Layer: Al	devices get results from			for COVID		
	G.	cioud				prevention.		
	environm	~	cloud and					
	ent using	(face	provide					
	ΑI	recognitio	visitor self-					
	_	n, speech	registration					
		recognitio						
			face/voice.					
	recogniti	applicatio	Cloud					
	on and	1	Cloud					
	ppeeen	301 11005	stores and					
	recogniti	(manages all					
	on.		visitor data					
		managem	which can					
			be accessed					
			remotely.					

CHAPTER 3

PROPOSED SYSTEM

3.1 PROPOSED SYSTEM

The primary objective of the proposed system is developing a conversational robot with the advanced functionalities like speech, object detection, face recognition. This innovative system aims to engage users in friendly conversations while identifying objects and faces, enhancing user experiences across various domains. With advanced technology and user-centric design, it promises to redefine human-robot interactions.

3.2 OBJECTIVES OF PROPOSED SYSTEM

The objectives of the proposed system include the following:

- A face recognition module capable of recognizing specific users and extracting relevant information about them.
- An object recognition system to identify and categorize various objects based on visual input.
- A tailored visitor tracking system to keep track of people who are approaching the user in his absence.
- An "infobot" functionality to provide tailored information and assistance to recognized users based on their individual needs.
- A memory storage system to retain information about known users, them preferences, and relevant data.

3.3 ADVANTAGES OF PROPOSED SYSTEM

The proposed system has the following advantages:

- Enhanced security with personalized access control.
- Streamlined object categorization for efficient organization.
- Real-time visitor monitoring for improved security.
- Personalized assistance for recognized users' needs.

- Efficient data retention and retrieval for user preferences.
- Seamless integration with existing systems for scalability.
- Reduced manual intervention through automated processes.
- Improved user experience with tailored information delivery.
- Enhanced data analysis capabilities for insights.
- Flexibility to adapt to evolving user requirements.

3.4 SYSTEM REQUIREMENTS

The system requirements for the development and deployment of the project as an application are specified in this section. These requirements are not be confused with the end-user system requirements.

S.NO	Requirements	Requirement type	Explanation
1.	Python	Programming language	Used to write the code and
			run.
2.	Visual Studio Code	Development	Environment to write and
		Environment	execute the code.
3.	YOLO (You Only	Pretrained object	Used for object detection
	Look Once) model	detection model	and recognition
4.	ChatGPT API	API for	Used for response
		chatbot	generation.

Table 3.4.1 Requirements for developing and deploying the application

3.4.1 SOFTWARE REQUIREMENTS

Below are the software requirements for application development:

Operating System : Windows, Raspberry pi 64bit OS.

• Programming Language : Python for implementing face recognition, object detection,

speech analysis, tracking visitor information

• Development : Visual Studio Code.

Environment

• Libraries : OpenCV, NumPy, Face Recognition, OpenAI, Speech

Recognition, pyttsx3, smtplib, email

3.4.2 HARDWARE REQUIREMENTS

Below are the hardware requirements for the application development:

• Device : Raspberry pi 5

Operating System : Raspberry pi 64bit OS

• Processor : 64-bit 2.4 GHz quad-core ARM Cortex-A76

• Ram : 4 GB (minimum)

• Hard Disk : 256GB (minimum)

Output Devices : Speaker.

• Input Devices : Keyboard, mouse, Camera, Mic.

3.4.3 FUNCTIONAL REQUIREMENTS

- 1. Input: The robot should accept video frames and speech as input.
- 2. Face Recognition: The robot should detect and classify the users as known and unknown.
- 3. Object Recognition: The robot should detect and recognize objects.
- 4. Visitor tracking: The robot should detect visitors and gather information about the visitors.
- 5. Response Generation: The robot should give relevant responses to the user's queries.
- 6. Output: Speech output is given by the robot as the response.

3.4.4 NON-FUNCTIONAL REQUIREMENTS

1 Reliability:

- a) The system should be reliable, producing consistent results in face and object classification across multiple executions.
- b) It should handle errors gracefully and provide informative error messages to users.

2 Security:

- a) The system should ensure the confidentiality and integrity of user data throughout processing.
- b) It should implement appropriate access controls to prevent unauthorized access to sensitive information.

3 Accuracy:

- a) The face recognition and object recognition should be accurate to ensure reliable image classification.
- b) The YOLO model should achieve high accuracy in object classification, minimizing misclassification errors.

3.5 IMPLEMENTATION TECHNOLOGIES

3.5.1 FACE RECOGNITION MODULE IN PYTHON:

Face recognition is a crucial aspect of computer vision applications. It involves identifying and verifying individuals based on their facial features. A face recognition module in Python utilizes various algorithms and techniques to achieve accurate recognition.

Face Recognition Algorithms:

1. Preprocessing:

- a. Normalize images for consistent features.
- b. Detect facial landmarks for precise alignment.

2. Feature Extraction:

a. Extract discriminative features using methods like Eigenfaces or Convolutional Neural Networks (CNNs).

3. Classification:

a. Utilize machine learning models such as Support Vector Machines (SVMs) or deep learning models for classification.

4. Verification and Identification:

- a. Verify identities by comparing extracted features with stored templates.
- b. Identify individuals by matching against a database of known faces.

Python Libraries for Face Recognition:

- 1. **OpenCV**: Provides image processing tools and pre-trained models for face detection and recognition.
- 2. **Dlib**: Offers facial landmark detection and face recognition functionalities.
- 3. **Face Recognition Library**: A Python library specifically designed for face recognition tasks, built on top of dlib.

Algorithm for Face Recognition:

1.Data Collection:

a. Gather a dataset of face images with labeled identities.

2.Preprocessing:

a. Resize images and detect facial landmarks for alignment.

3. Feature Extraction:

a. Extract facial features using a chosen algorithm (e.g., CNN-based feature extraction).

4. Model Training:

a. Train a classification model on the extracted features using machine learning techniques.

5.Face Recognition Process:

- a. Detect faces in new images using the trained model.
- b. Extract features and compare against the stored templates.
- c. Determine the identity based on similarity scores or classification results.

3.5.2 YOLO PRETRAINED MODEL:

YOLO is a popular object detection algorithm known for its real-time performance and accuracy. The pretrained YOLO model in Python leverages deep learning techniques to detect objects in images or videos efficiently.

YOLO was proposed by Joseph Redmond et al. in 2015. It was proposed to deal with the problems faced by the object recognition models at that time, Fast R-CNN is one of the state-of-the-art models at that time but it has its own challenges such as this network cannot be used in real-time, because it takes 2-3 seconds to predicts an image and therefore cannot be used in real-time. Whereas, in YOLO we have to look only once in the network i.e. only one forward pass is required through the network to make the final predictions.

YOLO Algorithm Overview:

1. Single Shot Detection:

• YOLO follows a single shot detection approach, predicting bounding boxes and class probabilities in a single pass through the neural network.

2. Anchor Boxes:

• Utilizes anchor boxes to predict multiple bounding boxes for each grid cell, improving accuracy in detecting objects of different sizes.

3. Feature Extraction:

• Employs a deep convolutional neural network (CNN), such as Darknet or YOLOv3, to extract features from input images.

4. Bounding Box Prediction:

• Predicts bounding box coordinates (x, y, width, height) and objectness score for each grid cell.

5. Class Prediction:

• Assigns class probabilities to each bounding box, indicating the presence of specific objects (e.g., person, car, dog).

Python Libraries for YOLO:

- 1. **Darknet Framework:** Original framework for YOLO implementation, written in C and CUDA, with Python bindings available.
- 2. **YOLOv5:** A popular Python-based implementation of YOLO with pretrained models and easy-to-use APIs.
- 3. **OpenCV:** Used for image processing tasks and integration with YOLO models for object detection.

YOLO Pretrained Model Usage:

Model Loading:

- 1. Load a pretrained YOLO model using available libraries or custom implementations.
- 2. **Input Preparation**: Prepare input images or video frames for detection, resizing them to the model's input size.
- **3. Inference:** Perform inference on the input data using the loaded YOLO model to detect objects and their bounding boxes.
- 4. **Post-processing**: Apply non-maximum suppression (NMS) to filter out overlapping bounding boxes and improve detection accuracy.
- **5. Output Visualization:** Visualize the detected objects and bounding boxes on the input images or video frames for analysis and decision-making.

3.5.3 CONVOLUTIONAL NEURAL NETWORKS (CNN):

A Convolutional Neural Network (CNN) is a type of Deep Learning neural network architecture commonly used in Computer Vision. Computer vision is a field of Artificial Intelligence that enables a computer to understand and interpret the image or visual data. When it comes to Machine Learning, Artificial Neural Networks perform really well. Neural Networks are used in various datasets like images, audio, and text. Different types of Neural Networks are used for different purposes, for example for predicting the sequence of words we use Recurrent Neural Networks more precisely an LSTM, similarly for image classification we use Convolution Neuralnetworks. In this blog, we are going to build a basic building block for CNN. Convolutional NeuralNetwork (CNN) is the extended version of artificial neural networks (ANN) which ispredominantly used to extract the feature from the grid-like matrix dataset. For example: visual datasets like images or videos where data patterns play an extensive role.

CNN architecture

Convolutional Neural Network consists of multiple layers like the input layer, Convolutional layer, Pooling layer, and fully connected layers.

Figure 1: CNN Architecture

The Convolutional layer applies filters to the input image to extract features, the Pooling layer down samples the image to reduce computation, and the fully connected layer makes the final prediction. The network learns the optimal filters through backpropagation and gradient descent.

How Convolutional Layers works

Convolution Neural Networks or covnets are neural networks that share their parameters. Imagine you have an image. It can be represented as a cuboid having its length, width (dimension of the image), and height (i.e. the channel as images generally has red, green, and blue channels).

Now imagine taking a small patch of this image and running a small neural network, called a filter or kernel on it, with say, K outputs and representing them vertically. Now slide that neural network across the whole image, as a result, we will get another image with different widths, heights, and depths. Instead of just R, G, and B channels now we have more channels but lesser width and height. This operation is called **Convolution**. If the patch size is the same as that of the image it will be a regular neural network. Because of this small patch, we have fewer weights.

Now let's talk about a bit of mathematics that is involved in the whole convolution process.

- Convolution layers consist of a set of learnable filters (or kernels) having small widths and heights and the same depth as that of input volume (3 if the input layer is image input).
- For example, if we have to run convolution on an image with dimensions 34x34x3. The possible size of filters can be axax3, where 'a' can be anything like 3, 5, or 7 but smaller as compared to the image dimension.
- During the forward pass, we slide each filter across the whole input volume step by step where each step is called stride (which can have a value of 2, 3, or even 4 for high-dimensional images) and compute the dot product between the kernel weights and patch from input volume.
- As we slide our filters, we'll get a 2-D output for each filter and we'll stack them together as a result, we'll get output volume having a depth equal to the number of filters. The network will learn all the filters.

Layers used to build ConvNets

A complete Convolution Neural Networks architecture is also known as covnets. A covnets is a sequence of layers, and every layer transforms one volume to another through a differentiable function.

Types of layers:

Let's take an example by running a covnets on of image of dimension 32 x 32 x 3.

- **Input Layers:** It's the layer in which we give input to our model. In CNN, Generally, the input will be an image or a sequence of images. This layer holds the raw input of the image with width 32, height 32, and depth 3.
- Convolutional Layers: This is the layer, which is used to extract the feature from the input dataset. It applies a set of learnable filters known as the kernels to the input images. The filters/kernels are smaller matrices usually 2×2, 3×3, or 5×5 shape. it slides over the input image data and computes the dot product between kernel weight and the corresponding input image patch. The output of this layer is referred as feature maps. Suppose we use a total of 12 filters for this layer we'll get an output volume of dimension 32 x 32 x 12.
- Activation Layer: By adding an activation function to the output of the preceding layer, activation layers add nonlinearity to the network. it will apply an element-wise activation function to the output of the convolution layer. Some common activation functions are RELU: max (0, x), Tanh, Leaky RELU, etc. The volume remains unchanged hence output volume will have dimensions 32 x 32 x 12.
- **Pooling Layer:** This layer is periodically inserted in the covnets and its main function is to reduce the size of volume which makes the computation fast reduces memory and also prevents overfitting. Two common types of pooling layers are **max pooling** and **average pooling**. If we use a max pool with 2 x 2 filters and stride 2, the resultant volume will be of dimension 16x16x12.
- **Flattening:** The resulting feature maps are flattened into a one-dimensional vector after the convolution and pooling layers so they can be passed into a completely linked layer for categorization or regression.x

- **Fully Connected Layers:** It takes the input from the previous layer and computes the final classification or regression task.
- Output Layer: The output from the fully connected layers is then fed into a logistic function for classification tasks like sigmoid or softmax which converts the output of each class into the probability score of each class.

3.5.4 CHATGPT AND ITS USAGE WITH API:

ChatGPT is an advanced language model developed by OpenAI based on the GPT (Generative Pretrained Transformer) architecture. It is trained on a diverse range of text data and can generate human-like text responses to various prompts.

ChatGPT Algorithm Overview:

Transformer Architecture:

ChatGPT is built upon the Transformer architecture, a deep learning model specifically designed for natural language processing tasks. This architecture enables ChatGPT to understand complex linguistic patterns, dependencies, and contexts, leading to coherent and contextually relevant responses.

Pretraining:

During pretraining, ChatGPT learns from a vast amount of text data across various domains. This process allows ChatGPT to capture diverse language nuances, common phrases, and contextual information, enhancing its ability to generate human-like responses across different topics.

Fine-tuning:

When prompted with input text or questions, ChatGPT leverages its pretrained knowledge and language modeling capabilities to generate text-based responses. It uses contextual understanding and pattern recognition to produce coherent and meaningful replies that match the input context.

Response Generation:

Given a prompt or input text, ChatGPT generates coherent and contextually relevant responses using its learned knowledge and language modeling capabilities.

ChatGPT API Usage:

API Integration:

Integrating the ChatGPT API into applications or platforms involves connecting to OpenAI's servers, enabling real-time communication with the ChatGPT model. This integration allows seamless access to ChatGPT's conversational abilities within your software environment.

Text Generation:

Users can send prompts or queries to the ChatGPT API, which processes the input and generates text-based responses. This functionality is beneficial for applications requiring interactive conversations, virtual assistants, chatbots, or content generation.

Customization:

The ChatGPT API supports model customization through fine-tuning. By providing domain-specific data or fine-tuning parameters, developers can enhance ChatGPT's performance for specific use cases, ensuring that generated responses are accurate and relevant to the application's context.

Multilingual Support:

ChatGPT and its API offer multilingual support, allowing developers to create applications that cater to users speaking different languages. This feature expands the reach of applications to global audiences and facilitates multilingual conversations seamlessly.

Contextual Understanding:

ChatGPT maintains context across interactions, understanding the flow of conversations and retaining information from previous messages. This contextual understanding enables ChatGPT to provide coherent and engaging conversations, mimicking human-like conversational dynamics.

Error Handling:

Integrating error handling mechanisms within the ChatGPT API ensures robustness and reliability. By handling errors gracefully, such as detecting ambiguous queries or out-of-context requests, developers can improve the overall user experience and maintain the conversational flow effectively.

CHAPTER 4

SYSTEM DESIGN

4.1 PROPOSED SYSTEM ARCHITECTURE

The proposed system encompasses the development of a robot that can recognize faces and objects and also extract information about them.

Figure 2: Proposed Architecture

4.2 APPLICATION MODULES

On The application on an overall involves Three main modules, which cater to the four main functions of this application, i.e. to recognize face, detect objects, interact with user through ChatGPT, visitor tracking system.

4.2.1 Face Recognition Module

The robot is equipped with an advanced facial recognition system leveraging deep learning models to differentiate between different users accurately. Using a Raspberry Pi-compatible camera, it captures facial features and processes them through neural networks for precise identification. Upon identifying a user, the robot accesses its internal database to retrieve relevant information, enabling

it to offer a tailored and personalized experience. This sophisticated system not only enhances security by verifying user identities but also allows the robot to adapt its interactions based on individual preferences and past interactions, creating a more engaging and customized interaction for users.

Figure 3: Workflow of Face Recognition process

4.2.2 Object Detection Module

Frames Acquisition and Preprocessing: The robot receives frames by means of continuously shooting the video feed this is furnished with the aid of the use of its camera. preprocessing including resizing, normalization, or color area conversion can be administered to the captured body to in addition prepare the enter to the item detection model and enhance its high quality. Object Detection: The robot uses an object detection version, known as YOLOV8, to grow to be privy to and localize gadgets at the frames capturing the scene. The item detection version is professional on a large-scale dataset of classified images and might apprehend items primarily based on their visible look. It additionally strategies each body and extracts capabilities of every item visible.

Figure 4: Workflow of Object Detection and Recognition

4.2.3 Chatbot Module

While calling ChatGPT via an API, you first ship an API request to OpenAI with a set of non-obligatory parameters like temperature, max tokens, and pinnacle p sampling to influence thereaction's creativity and period. OpenAI preprocesses your request, together with responsibilities like textual content cleansing and tokenization, earlier than selecting the best ChatGPT version variant primarily based on elements like set-off complexity and request parameters. the selected model, possibly based on transformers, then strategies the set-off, is aware of its context and generates a reaction following the prompt's cause. put up- processing steps inclusive of filtering and blunders correction may be carried out to the uncooked output, resulting in a very last reaction textual content this is sent again to you because of the API response, probably including confidence ratings. it is essential to be aware that the precise inner workings of ChatGPT are proprietary, and OpenAI may additionally replace and improve the gadget through the years.

Relevant Info
Figure 5: Workflow of Chatbot

4.2.4 Visitor Tracking System

The innovation tackles the challenge of interacting with unidentified guests by incorporating facial recognition capabilities. Upon detecting a new face, the robot initiates a conversation to gather essential details about the visitor and the purpose of their visit. This information is securely stored within the system, contributing to a comprehensive visitor tracking system. By proactively engaging with unfamiliar faces and capturing relevant data, the robot ensures efficient communication and a seamless experience for both guests and users. Our machine capabilities are a visitor monitoring machine that uses the face recognition version to pick out recognized and unknown individuals.

Video frames are processed to compare facial features with stored data. If recognized, the individual is identified otherwise, they're categorized as unknown. This complements personalization and safety, permitting the robotic to adapt interactions for that reason.

Figure 6: Workflow of Visitor Tracking System

4.3 UML Diagrams

UML stands for Unified Modelling Language. UML is a standardized fashionable-cause modelling language in the subject of object-oriented software engineering. In its modern shape, UML comprises of two essential components: a Meta-model and a notation. The Unified Modelling Language is a standard language for specifying, Visualization, Constructing and documenting the artifacts of software program machine, in addition to for commercial enterprise modelling and other non-software systems. The UML uses more often than not graphical notations to express the design of software program projects.

4.3.1 Use Case Diagram

In the Unified Modeling Language (UML), a use case diagram is a behavioral diagram that stems from use-case analysis. Its number one objective is to provide a visual summary of a gadget's capability, showcasing actors, their objectives (portrayed as use cases), and any relationships amongst those use cases. The fundamental aim of a use case diagram is to demonstrate which device capabilities are accomplished for each actor worried, while additionally illustrating the jobs played via these actors within the gadget.

Figure 7: Use case Diagram

4.3.2 Sequence Diagram

Figure 9: Sequence Diagram

4.3.3 Activity Diagram

Figure 10: Activity Diagram

CHAPTER 5

IMPLEMENTATION

5.1 SOURCE CODE

5.1.1 Main Code

```
import cv2
import pyttsx3
import speech_recognition as sr
import face recognition
import phrases as ph
import chatbot as cb
import face recognize as 1
import object as ob
import visitors as v
engine = pyttsx3.init("sapi5")
voices = engine.getProperty('voices')
engine.setProperty('voice', voices[1].id)
def speak(audio):
    engine.say(" "+audio)
    engine.runAndWait()
def listen():
    print("listening...")
    r = sr.Recognizer()
    with sr.Microphone() as source:
        r.adjust for ambient noise(source)
        audio = r.listen(source)
    try:
        query = r.recognize_google(audio, language='en-in')
        query = query.lower()
        return query
    except Exception as e:
        print(e)
        return listen()
object=""
def main():
    classNames,encodeListKnown=1.img_list()
    cap = cv2.VideoCapture(0)
    while True:
        success, img = cap.read()
        face_locations = face_recognition.face_locations(img)
        print(face_locations)
        if len(face_locations)>0:
            img,isuser=1.face_main(success, img ,classNames,encodeListKnown)
```

```
while isuser:
                question=listen()
                print(question)
                if question.lower() in ph.phrases:
                    i=5
                    while i>0:
                         success, img = cap.read()
                        object=ob.detect_and_find_middle_object(img)
                    response=" Object is "+object[:-6]
                elif question in ph.phrases about object:
                    response=cb.ask_chatbot(question+object[:-6])
                else:
                    response=cb.ask_chatbot(question)
                print(response)
                speak(response)
                success, img = cap.read()
                face_locations = face_recognition.face_locations(img)
                print(face_locations)
                img,isuser=1.face_main(success, img ,classNames,encodeListKnown)
                cv2.imshow('Video', img)
            else:
                # v.handle visitor(img,face locations)
                v.handle_visitor(img, face_locations)
main()
```

5.1.2 Face Recognition

```
import cv2
import numpy as np
import face_recognition
import os
import shutil
from datetime import datetime
import datetime
def get_time_of_day():
    current_hour = datetime.datetime.now().hour
    if current_hour < 12:</pre>
        time_of_day = "Morning"
    elif current_hour < 17:</pre>
        time_of_day = "Afternoon"
    else:
        time_of_day = "Evening"
    return time_of_day
def capture_new_face(img, success, counter, name):
    #take image of new unknown faces
    capture_and_save_image(f'{counter}.jpg',img,success)
```

```
move_file_to_folder(f'{counter}.jpg', 'images')
    rename file('images/'+f'{counter}.jpg',f'{name}.jpg')
    # encode the new face
    classNames,encodeListKnown=img_list()
    counter+=1
    return classNames,encodeListKnown
def findEncodings(images):
   try:
        encodeList = []
        for img in images:
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            encode = face_recognition.face_encodings(img)[0]
            encodeList.append(encode)
        return encodeList
   except Exception:
        pass
def img_list():
   path = 'images'
    images = []
    classNames = []
   myList = os.listdir(path)
   print(myList)
   for cl in myList:
        curImg = cv2.imread(f'{path}/{cl}')
        images.append(curImg)
        classNames.append(os.path.splitext(cl)[0])
    print(classNames)
    encodeListKnown = findEncodings(images)
   print('Encoding Complete')
    return classNames,encodeListKnown
def f_recognize(img,imgS,encodeList,classNames,recognized_faces=[]):
    recognized_faces=set(recognized_faces)
    facesCurFrame = face recognition.face locations(imgS)
    encodesCurFrame = face recognition.face encodings(imgS, facesCurFrame)
    for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
        matches = face_recognition.compare_faces(encodeList,encodeFace)
        faceDis = face recognition.face distance(encodeList,encodeFace)
        #print(faceDis)
        if len(faceDis)>0:
            matchIndex = np.argmin(faceDis)
            if matches[matchIndex]:
                name = classNames[matchIndex].upper()
                #print(name)
                recognized_faces.add(name) #add the recognized faces to the set
```

```
y1,x2,y2,x1 = faceLoc
                y1, x2, y2, x1 = y1*4, x2*4, y2*4, x1*4
                cv2.rectangle(img,(x1,y1),(x2,y2),(0,255,0),2)
                cv2.rectangle(img,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILLED)
                cv2.putText(img,name,(x1+6,y2-
6),cv2.FONT_HERSHEY_COMPLEX,1,(255,255,255),2)
                # markAttendance(name)
    return list(recognized_faces)
def face_main(success, img, classNames, encodeListKnown):
    imgS = cv2.resize(img,(0,0),None,0.25,0.25)
    imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
    face_locations = face_recognition.face_locations(imgS)
    result=[]
    if f recognize(img,imgS,encodeListKnown,classNames)!=None:
        result=f_recognize(img,imgS,encodeListKnown,classNames)
    return img, len(result)>0
```

5.1.3 Object Detection

```
import cv2
import numpy as np
import torch
from pathlib import Path
# Set the path to the yolov5 repository
yolov5_path = Path("yolov5")
# Load the YOLOv5 model
model = torch.hub.load(str(yolov5_path), 'custom', path='yolov5s.pt',
source='local')
class_names = model.names
label=None
# Function to perform object detection and find the object in the middle
def detect and find middle object(frame):
    # Perform object detection with YOLO
    results = model(frame)
    # Get detection results
    pred = results.pred[0]
    if len(pred) > 0:
        # Find the object with the highest confidence score
        max_confidence_idx = np.argmax(pred[:, 4])
        middle_object = pred[max_confidence_idx]
        # Extract object information
        x_center, y_center, width, height, confidence, class_id = middle_object
        # Calculate object coordinates
```

```
x1, y1, x2, y2 = int(x_center - width / 2), int(y_center - height / 2),
int(x_center + width / 2), int(y_center + height / 2)

# Draw a bounding box around the object
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)

# Display the class name and confidence score
label = f'{class_names[int(class_id)]}: {confidence:.2f}'
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(0, 255, 0), 2)
else:
label=""
return label
```

5.1.4 Visitor Tracking System

```
import cv2
import face_recognition
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.mime.image import MIMEImage
import pyttsx3
import speech_recognition as sr
import openpyxl
from datetime import datetime, timedelta
import pandas as pd
import os
import shutil
import datetime
import face_recognize as 1
engine = pyttsx3.init()
voices = engine.getProperty('voices')
engine.setProperty('voice', voices[1].id)
def speak(audio):
    engine.say(audio)
    engine.runAndWait()
def listen():
    print("listening...")
    r = sr.Recognizer()
    with sr.Microphone() as source:
        r.adjust_for_ambient_noise(source)
        audio = r.listen(source)
    try:
        query = r.recognize_google(audio, language='en-in')
        query = query.lower()
```

```
return query
    except Exception as e:
        print(e)
        return listen()
def rename_file(file_path, new_name):
    # Get the directory and current name of the file
    directory = os.path.dirname(file path)
    current_name = os.path.basename(file_path)
    # Construct the new file path with the new name
    new file path = os.path.join(directory, new name)
    try:
        # Rename the file
        os.rename(file_path, new_file_path)
        print("File renamed successfully!")
    except OSError as e:
        print(f"Error occurred while renaming the file: {e}")
def move_file_to_folder(file_path, destination_folder):
    # Specify the destination path for the file
    destination path = os.path.join(destination folder,
os.path.basename(file path))
    # Move the file to the destination folder
    shutil.move(file path, destination path)
    print("file moved to destination")
def capture_and_save_image(image_name,img,success):
    if success:
        cv2.imwrite(image name, img)
        print("new face saved successfully!")
    else:
        print("Failed to capture image from webcam")
def capture_new_face(img, success, counter, name):
    #take image of new unknown faces
    capture_and_save_image(f'{counter}.jpg',img,success)
    move_file_to_folder(f'{counter}.jpg', 'images')
    rename_file('un_images/'+f'{counter}.jpg',f'{name}.jpg')
    classNames,encodeListunKnown=l.img_list()
    counter+=1
    return classNames,encodeListunKnown
def img list():
    path = 'un images'
    images = []
    classNames = []
    myList = os.listdir(path)
```

```
print(myList)
    for cl in myList:
        curImg = cv2.imread(f'{path}/{cl}')
        images.append(curImg)
        classNames.append(os.path.splitext(cl)[0])
    print(classNames)
    encodeListunKnown = 1.findEncodings(images)
    print('Encoding Complete')
    return classNames,encodeListunKnown
def save to excel(visitor information):
    # Load existing workbook or create a new one
    try:
        workbook = openpyxl.load workbook('visitor information.xlsx')
        sheet = workbook.active
    except FileNotFoundError:
        workbook = openpyx1.Workbook()
        sheet = workbook.active
        sheet.append(["Name", "Branch", "Purpose", "Timestamp"])
    # Add visitor information to the sheet
    for visit in visitor information:
        sheet.append([visit['name'], visit['branch'], visit['purpose'],
visit['timestamp']])
    workbook.save('visitor_information.xlsx')
# Function to delete visitor information from the Excel sheet after 24 hours
def delete_old_records():
    try:
        workbook = openpyxl.load_workbook('visitor_information.xlsx')
        sheet = workbook.active
        # Iterate through rows and delete old records
        current_time = datetime.datetime.now()
        for row in sheet.iter rows(min row=2): # Start from the second row
(header is the first row)
            timestamp = row[3].value # Assuming timestamp is in the fourth column
            if isinstance(timestamp, datetime) and current time - timestamp >
timedelta(days=1):
                sheet.delete_rows(row[0].row, amount=1) # Delete the entire row
        # Save the workbook after deleting old records
        workbook.save('visitor information.xlsx')
    except FileNotFoundError:
        pass # No need to delete records if the file doesn't exist
# Email credentials
sender_email = '20R21A6656@mlrinstitutions.ac.in'
sender_password = '@Runpwr2712'
user email = '20R21A6610@mlrinstitutions.ac.in'
def send email(subject, body):
   msg = MIMEText(body)
```

```
msg['Subject'] = subject
    msg['From'] = sender_email
    msg['To'] = user_email
    # Connect to the SMTP server
    with smtplib.SMTP('smtp.gmail.com', 587) as server:
        server.starttls()
        server.login(sender email, sender password)
        server.sendmail(sender_email, [user_email], msg.as_string())
# Function to send an email with an image attachment
def send_email_with_attachment(subject, body, image):
    msg = MIMEMultipart()
    msg['Subject'] = subject
    msg['From'] = sender_email
    msg['To'] = user_email
    # Attach text body
    msg.attach(MIMEText(body, 'plain'))
    # Attach image
    image_attachment = MIMEImage(image)
    image_attachment.add_header('Content-Disposition', 'attachment',
filename='visitor_image.jpg')
    msg.attach(image_attachment)
    # Connect to the SMTP server
    with smtplib.SMTP('smtp.gmail.com', 587) as server:
        server.starttls()
        server.login(sender email, sender password)
        server.sendmail(sender_email, [user_email], msg.as_string())
user_image = face_recognition.load_image_file("images/arun.jpg") # Replace with
user_encoding = face_recognition.face_encodings(user_image)[0]
# Initialize variables
visitor information = []
counter = 0
# Function to handle visitor interaction
def handle_visitor(frame, face_locations):
    for (top, right, bottom, left) in face locations:
        face_encoding = face_recognition.face_encodings(frame)[0]
        # Compare with the user's face
        results = face_recognition.compare_faces([user_encoding], face_encoding)
        if not any(results):
            # Visitor detected
```

```
visitor_image = frame
            # visitor_image = frame[top:bottom, left:right]
            cap = cv2.VideoCapture(0)
            success, img = cap.read()
            imgg = cv2.cvtColor(img, cv2.COLOR BGR2RGB)
            face_encodings = face_recognition.face_encodings(imgg)[0]
            # Collect visitor information (photo, name, branch, purpose of visit)
            speak(" Visitor detected")
            speak(" Tell Your Name")
            visitor name = listen()
            # visitor_name = input("Enter visitor's name: ")
            speak(" Tell Your Branch")
            visitor_branch = listen()
            # visitor branch = input("Enter visitor's branch: ")
            speak(" Tell your purpose of visit")
            visitor purpose = listen()
            # visitor purpose = input("Enter purpose of visit: ")
            # Save visitor information
            visitor information.append({
                'name': visitor_name,
                'branch': visitor branch,
                'purpose': visitor_purpose,
                # 'face_encodings':face_encodings,
                'timestamp': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            })
attachment
            subject = "Visitor Detected!"
            body = f"Name: {visitor_name}\nBranch: {visitor_branch}\nPurpose:
{visitor purpose}"
            send email with attachment(subject, body, cv2.imencode('.jpg',
visitor_image)[1].tostring())
            save_to_excel(visitor_information)
            delete_old_records()
            return
```

CHAPTER 6

RESULTS

Infobot is an innovative chatbot robot equipped with state-of the-art objects and facial recognition features. It also acts as a personalized assistant with the known users. The accuracy of the face recognition system in identifying known and unknown users is up to 99.38%. The insight challenge faced during the recognition is the lighting conditions. So, the face should be visible to the camera of the robot. The unknown user details are collected through the robot by taking the speech or audio from the user such as name, branch, and purpose of their visit. Those details are mailed to the respective known users with their captured faces. When we consider it for use in the college or school then the robot collects information such as the name of the person, the Branch of a student, and the purpose of their visit.

Figure 11: User Recognized as known

A visitor is detected and the information is sent to the known user. Here the unknown user's name is varsha, from the branch csm. The purpose of her visit is the submission of the record. In the same way, it is repeated with the others, and the infobot sends the details to the registered email ID i.e., the known user.

Figure 12: Visitor Detection main to User

In the frame, we observe a person, as his face is already registered, the infobot identifies his face through face recognition

1	Α	В	С	D
1	Name	Branch	Purpose	Timestamp
2	varsha	csm	record submission	2024-03-11 11:39:34
3	sai	csm	leave permission	2024-03-13 12.15.45
4	krishna	csm	hackathon permission	2024-03-15 10.30.12
5				
6				
7				
8				
9				
10				

Figure 13: Information Storing in Excel Sheet

For known users, additionally, it helps in detecting the objects. The objects are identified if the user specifically asks related to the objects by showing the object to the camera. The output of these is audio/speech.

Figure 14: Object Detection and recognition

As Infobot already identifies the person as the known user it helps in object detection. Whenever the person asks for the robot a" detect the object in my hand" the object detection module helps in identifying the object and also provides the information regarding the object.

Figure 15: Infobot feature activated

CHAPTER 7

CONCLUSION

In conclusion, our project represents a significant advancement in robotics and artificial intelligence, focusing on enhancing user experience, security, and communication capabilities. The integration of a sophisticated facial recognition module allows the robot to identify specific users accurately, providing a personalized and tailored experience by retrieving relevant data from its database. This not only streamlines interactions but also strengthens security measures by verifying user identities. Moreover, the project addresses the challenge of engaging with unknown guests by leveraging facial recognition technology to initiate conversations and gather crucial information about visitors and their objectives. This data contributes to a robust visitor tracking system, enabling efficient monitoring and management of visitor interactions. The implementation of deep learning models, Raspberry Pi-compatible cameras, and neural networks underscores our commitment to leveraging cutting-edge technology for practical applications. The seamless integration of these components ensures smooth operation and accurate identification, enhancing the overall functionality and performance of the robot. Overall, our project represents a comprehensive solution for intelligent interaction, security enhancement, and data-driven decision-making. By combining innovative technologies with user-centric design principles, we aim to redefine the capabilities of robotic systems in providing personalized, secure, and efficient services in various domains, from home automation to hospitality and beyond.

FUTURE ENHANCEMENTS AND DISCUSSIONS

Moving forward, there are several avenues for enhancing our project to further elevate its capabilities and impact. One key area of focus is the refinement of the facial recognition module to improve accuracy and efficiency in identifying users, especially in diverse lighting conditions and with varying facial expressions. This could involve integrating advanced algorithms or exploring novel techniques in computer vision to enhance recognition performance. Additionally, enhancing the visitor tracking system by incorporating machine learning algorithms for predictive analytics could provide valuable insights into visitor behavior and preferences. This data-driven approach can inform decision-making processes and enable the robot to anticipate and cater to visitor needs more effectively. Furthermore, expanding the functionality of the robot to include natural language processing (NLP) capabilities would enable more sophisticated and context-aware conversations with users and guests. Integrating NLP technologies would allow the robot to understand and respond to complex queries, enhancing its utility in a wide range of scenarios. Moreover, exploring the integration of IoT (Internet of Things) devices and sensors could enhance

the robot's environmental awareness and enable it to perform tasks such as controlling smart home devices or monitoring environmental conditions. In terms of discussions, ongoing dialogue and collaboration with experts in robotics, AI, and human-computer interaction are crucial for refining the project's design, functionality, and user experience. Ethical considerations, such as data privacy and security, should also be prioritized to ensure responsible and transparent implementation of the technology.