Quaternary Golay Sequence Pairs

Richard Gibson

Department of Mathematics Simon Fraser University

Masters Thesis Defence November 6, 2008

Background

- Background
- 2 Classifying Quaternary Golay Sequence Pairs

- Background
- 2 Classifying Quaternary Golay Sequence Pairs
- 3 Constructing a Binary Barker Sequence from a Quaternary Golay Sequence

- Background
- 2 Classifying Quaternary Golay Sequence Pairs
- 3 Constructing a Binary Barker Sequence from a Quaternary Golay Sequence
- 4 Summary and Open Problems

Background

Example

	0	1	2	0	3			
,	quatornary coquence							

quaternary sequence

$$A = (a_0, ..., a_{n-1})$$
 is a quaternary sequence if $a_i \in \mathbb{Z}_4$ for all $0 \le j < n$.

0 1 2 0 3 quaternary sequence

 $A = (a_0, ..., a_{n-1})$ is a quaternary sequence if $a_j \in \mathbb{Z}_4$ for all $0 \le j < n$.

Example

0 0 0 0 2 2 0 0 2 0

binary sequence

Example

2 quaternary sequence

 $A = (a_0, ..., a_{n-1})$ is a quaternary sequence if $a_i \in \mathbb{Z}_4$ for all $0 \le j < n$.

Example

2 0 2 0 0 binary sequence

 $A = (a_0, ..., a_{n-1})$ is a binary sequence if $a_i \in \{0, 2\}$ for all $0 \le j < n$.

$$A =$$

0	1	2	0	3
		•		

$$C_A(1) = i^{0-1} + i^{1-2} + i^{2-0} + i^{0-3} = -1 - i \text{ (where } i = \sqrt{-1})$$

$$C_A(2) = i^{0-2} + i^{1-0} + i^{2-3} = -1$$

$$C_A(2) = i^{0-2} + i^{1-0} + i^{2-3} = -1$$

$$C_A(u)$$
 :=
$$\sum_{j=0}^{n-u-1} i^{\mathbf{a}_j - \mathbf{a}_{j+u}} \text{ for all } 0 \leq u < n$$

What is a Barker sequence?

A quaternary (binary) sequence A of length n is a quaternary (binary) Barker sequence if

$$|C_A(u)| \in \{0,1\} \text{ for all } 1 \le u < n.$$

What is a Barker sequence?

A quaternary (binary) sequence A of length n is a quaternary (binary) Barker sequence if

$$|C_A(u)| \in \{0,1\} \text{ for all } 1 \le u < n.$$

What is a Barker sequence?

A quaternary (binary) sequence A of length n is a quaternary (binary) Barker sequence if

$$|C_A(u)| \in \{0,1\} \text{ for all } 1 \le u < n.$$

Applications include:

- radar
- pulse compression

History of Barker sequences

• Binary Barker sequences exist for lengths 2, 3, 4, 5, 7, 11, and 13.

History of Barker sequences

- Binary Barker sequences exist for lengths 2, 3, 4, 5, 7, 11, and 13.
- There are no binary Barker sequences of odd length > 13 (Turyn and Storer, 1961).

History of Barker sequences

- Binary Barker sequences exist for lengths 2, 3, 4, 5, 7, 11, and 13.
- There are no binary Barker sequences of odd length > 13 (Turyn and Storer, 1961).
- Barker Sequence Conjecture: There are no binary Barker sequences of length > 13.
 - smallest open case is for length $> 10^{22}$ (Leung and Schmidt, 2005).

Let A and B be quaternary (binary) sequences of length n.

Let A and B be quaternary (binary) sequences of length n.

A sequence pair (A, B) is a quaternary (binary) Golay sequence pair if

$$C_A(u) + C_B(u) = 0$$
 for all $1 \le u < n$

(we say A and B are quaternary (binary) Golay sequences).

Let A and B be quaternary (binary) sequences of length n.

A sequence pair (A, B) is a quaternary (binary) Golay sequence pair if

$$C_A(u) + C_B(u) = 0$$
 for all $1 \le u < n$

(we say A and B are quaternary (binary) Golay sequences).

Example

и	0	1	2	3	4
$C_A(u)$	5	-1-i	-1	0	i
$C_B(u)$	5	1+i	1	0	-i
$C_A(u) + C_B(u)$	10	0	0	0	0

Let A and B be quaternary (binary) sequences of length n.

A sequence pair (A, B) is a quaternary (binary) Golay sequence pair if

$$C_A(u) + C_B(u) = 0$$
 for all $1 \le u < n$

(we say A and B are quaternary (binary) Golay sequences).

Example

и	0	1	2	3	4
$C_A(u)$	5	-1-i	-1	0	i
$C_B(u)$	5	1+i	1	0	-i
$C_A(u) + C_B(u)$	10	0	0	0	0

Applications include:

medical ultrasound, etc.

• There exist binary Golay pairs of length $2^a 10^b 26^c$ for all integers $a, b, c \ge 0$ (Turyn, 1974).

- There exist binary Golay pairs of length $2^a 10^b 26^c$ for all integers $a, b, c \ge 0$ (Turyn, 1974).
- All binary pairs of length less than 100 have been classified (Borwein and Ferguson, 2003).
 - i.e. each pair either derivable from some general construction method or identified as one of five "seed" pair

- There exist binary Golay pairs of length $2^a 10^b 26^c$ for all integers $a, b, c \ge 0$ (Turyn, 1974).
- All binary pairs of length less than 100 have been classified (Borwein and Ferguson, 2003).
 - i.e. each pair either derivable from some general construction method or identified as one of five "seed" pair
- Multi-dimensional construction process: Can obtain Golay pairs from a series of shorter Golay pairs (Fiedler, Jedwab and Parker, 2008).
 - Explains all known binary and quaternary Golay sequences of length 2^m .

- There exist binary Golay pairs of length $2^a 10^b 26^c$ for all integers $a, b, c \ge 0$ (Turyn, 1974).
- All binary pairs of length less than 100 have been classified (Borwein and Ferguson, 2003).
 - i.e. each pair either derivable from some general construction method or identified as one of five "seed" pair
- Multi-dimensional construction process: Can obtain Golay pairs from a series of shorter Golay pairs (Fiedler, Jedwab and Parker, 2008).
 - Explains all known binary and quaternary Golay sequences of length 2^m .

There are only two nonexistence results for Golay sequences:

- There exist binary Golay pairs of length $2^a 10^b 26^c$ for all integers $a, b, c \ge 0$ (Turyn, 1974).
- All binary pairs of length less than 100 have been classified (Borwein and Ferguson, 2003).
 - i.e. each pair either derivable from some general construction method or identified as one of five "seed" pair
- Multi-dimensional construction process: Can obtain Golay pairs from a series of shorter Golay pairs (Fiedler, Jedwab and Parker, 2008).
 - Explains all known binary and quaternary Golay sequences of length 2^m .

There are only two nonexistence results for Golay sequences:

Binary Golay sequences must have even length (Marcel Golay, 1961).

- There exist binary Golay pairs of length $2^a 10^b 26^c$ for all integers $a, b, c \ge 0$ (Turyn, 1974).
- All binary pairs of length less than 100 have been classified (Borwein and Ferguson, 2003).
 - i.e. each pair either derivable from some general construction method or identified as one of five "seed" pair
- Multi-dimensional construction process: Can obtain Golay pairs from a series of shorter Golay pairs (Fiedler, Jedwab and Parker, 2008).
 - Explains all known binary and quaternary Golay sequences of length 2^m .

There are only two nonexistence results for Golay sequences:

- Binary Golay sequences must have even length (Marcel Golay, 1961).
- The length of a binary Golay pair has no prime factor congruent to 3 modulo 4 (Eliahou, Kervaire and Saffari, 1991).

- There exist binary Golay pairs of length $2^a 10^b 26^c$ for all integers $a, b, c \ge 0$ (Turyn, 1974).
- All binary pairs of length less than 100 have been classified (Borwein and Ferguson, 2003).
 - i.e. each pair either derivable from some general construction method or identified as one of five "seed" pair
- Multi-dimensional construction process: Can obtain Golay pairs from a series of shorter Golay pairs (Fiedler, Jedwab and Parker, 2008).
 - Explains all known binary and quaternary Golay sequences of length 2^m .

There are only two nonexistence results for Golay sequences:

- Binary Golay sequences must have even length (Marcel Golay, 1961).
- The length of a binary Golay pair has no prime factor congruent to 3 modulo 4 (Eliahou, Kervaire and Saffari, 1991).

No nonexistence results for quaternary Golay sequences.

Classifying Quaternary Golay Sequence Pairs

Ordered quaternary Golay sequence pair counts

In 2002, Craigen, Holzmann, and Kharaghani exhaustively found all ordered quaternary Golay sequence pairs of small length *n*:

n	# pairs	n	# pairs	n	# pairs
1	16	8	6656	15	0
2	64	9	0	16	106496
3	128	10	12288	17	0
4	512	11	512	18	24576
5	512	12	36864	19	0
6	2048	13	512	20	215040*
7	0	14	0	21	0

^{*} Frank Fiedler, personal communication.

Ordered quaternary Golay sequence pair counts

In 2002, Craigen, Holzmann, and Kharaghani exhaustively found all ordered quaternary Golay sequence pairs of small length *n*:

n	# pairs	n	# pairs	n	# pairs
1	16	8	6656	15	0
2	64	9	0	16	106496
3	128	10	12288	17	0
4	512	11	512	18	24576
5	512	12	36864	19	0
6	2048	13	512	20	215040*
7	0	14	0	21	0

 Using small "seed" pairs, how many of the pairs in the table above can be explained using the multi-dimensional construction process and other constructions?

^{*} Frank Fiedler, personal communication.

Ordered quaternary Golay sequence pair counts

In 2002, Craigen, Holzmann, and Kharaghani exhaustively found all ordered quaternary Golay sequence pairs of small length *n*:

n	# pairs	n	# pairs	n	# pairs
1	16	8	6656	15	0
2	64	9	0	16	106496
3	128	10	12288	17	0
4	512	11	512	18	24576
5	512	12	36864	19	0
6	2048	13	512	20	215040*
7	0	14	0	21	0

- Using small "seed" pairs, how many of the pairs in the table above can be explained using the multi-dimensional construction process and other constructions?
- How can we explain the existence of the seed pairs?

^{*} Frank Fiedler, personal communication.

How do we use the multi-dimensional construction process?

How do we use the multi-dimensional construction process?

• Input: m + 1 Golay sequence pairs of length $n_0, n_1, ... n_m$, where m > 1, to create a multi-dimensional object.

How do we use the multi-dimensional construction process?

- Input: m+1 Golay sequence pairs of length $n_0, n_1, ...n_m$, where $m \ge 1$, to create a multi-dimensional object.
- Process multi-dimensional object...

How do we use the multi-dimensional construction process?

- Input: m+1 Golay sequence pairs of length $n_0, n_1, ...n_m$, where $m \ge 1$, to create a multi-dimensional object.
- Process multi-dimensional object...
- Output: A collection of Golay sequence pairs, all of length $n_0 \cdot n_1 \cdot ... \cdot n_m \cdot 2^m$.

$$\left(\begin{array}{c|c} \hline 0 & , & \hline 0 &) \\ \hline \left(\begin{array}{c|c} \hline 0 & , & \hline 0 &) \\ \end{array} \right) & \mapsto & \begin{array}{c} 64 \text{ ordered pairs of} \\ \text{length } 1 \cdot 1 \cdot 2 = 2 \end{array}$$

Ordered quaternary Golay sequence pair counts

In 2002, Craigen, Holzmann, and Kharaghani exhaustively found all ordered quaternary Golay sequence pairs of small length *n*:

n	# pairs	n	# pairs	n	# pairs
1	16	8	6656	15	0
2	64	9	0	16	106496
3	128	10	12288	17	0
4	512	11	512	18	24576
5	512	12	36864	19	0
6	2048	13	512	20	215040*
7	0	14	0	21	0

^{*} Frank Fiedler, personal communication.

$$\left(\begin{array}{c|c} \hline 0 & , & \hline 0 &) \\ \hline \left(\begin{array}{c|c} \hline 0 & , & \hline 0 &) \\ \end{array} \right) & \mapsto & \begin{array}{c} 64 \text{ ordered pairs of} \\ \text{length } 1 \cdot 1 \cdot 2 = 2 \end{array}$$

Ordered quaternary Golay sequence pair counts

In 2002, Craigen, Holzmann, and Kharaghani exhaustively found all ordered quaternary Golay sequence pairs of small length *n*:

n	# pairs	n	# pairs	n	# pairs
1	16	8	6656	15	0
2	64	9	0	16	106496
3	128	10	12288	17	0
4	512	11	512	18	24576
5	512	12	36864	19	0
6	2048	13	512	20	215040*
7	0	14	0	21	0

^{*} Frank Fiedler, personal communication.

Continue as follows:

Continue as follows:

Coninue as follows:

n	# pairs	# pairs left to explain	n	# pairs	# pairs left to explain	n	# pairs	# pairs left to explain
1	16	0	8	6656	512	15	0	0
2	64	0	9	0	0	16	106496	8192
3	128	128	10	12288	4096	17	0	0
4	512	0	11	512	512	18	24576	0
5	512	512	12	36864	0	19	0	0
6	2048	0	13	512	512	20	215040	67584
7	0	0	14	0	0	21	0	0

n	# pairs	# pairs left to explain	n	# pairs	# pairs left to explain	n	# pairs	# pairs left to explain
1	16	0	8	6656	512	15	0	0
2	64	0	9	0	0	16	106496	8192
3	128	128	10	12288	4096	17	0	0
4	512	0	11	512	512	18	24576	0
5	512	512	12	36864	0	19	0	0
6	2048	0	13	512	512	20	215040	67584
7	0	0	14	0	0	21	0	0

• "Shared autocorrelation property"

п	# pairs	# pairs left to explain	n	# pairs	# pairs left to explain	n	# pairs	# pairs left to explain
1	16	0	8	6656	512	15	0	0
2	64	0	9	0	0	16	106496	8192
3	128	128	10	12288	4096	17	0	0
4	512	0	11	512	512	18	24576	0
5	512	512	12	36864	0	19	0	0
6	2048	0	13	512	512	20	215040	67584
7	0	0	14	0	0	21	0	0

- "Shared autocorrelation property"
- Multi-dimensional construction process with special length 8 pairs and a trivial length 1 pair

		# pairs			# pairs			# pairs
n	# pairs	left to	n	# pairs	left to	n	# pairs	left to
		explain			explain			explain
1	16	0	8	6656	0	15	0	0
2	64	0	9	0	0	16	106496	0
3	128	128	10	12288	4096	17	0	0
4	512	0	11	512	512	18	24576	0
5	512	512	12	36864	0	19	0	0
6	2048	0	13	512	512	20	215040	67584
7	0	0	14	0	0	21	0	0

n	# pairs	# pairs	n	# pairs	# pairs	n	# pairs	# pairs left to
-	1.0	explain		CCEC	explain	1.5		explain
1	16	0	8	6656	0	15	Ü	0
2	64	0	9	0	0	16	106496	0
3	128	128	10	12288	4096	17	0	0
4	512	0	11	512	512	18	24576	0
5	512	512	12	36864	0	19	0	0
6	2048	0	13	512	512	20	215040	67584
7	0	0	14	0	0	21	0	0

• Symmetry Lemma: (A, B) are a Golay pair $\Leftrightarrow (A + B, A - B)$ are a Golay pair (where A and B are in "multiplicative" notation).

		# pairs			# pairs			# pairs
n	# pairs	left to	n	# pairs	left to	n	# pairs	left to
		explain			explain			explain
1	16	0	8	6656	0	15	0	0
2	64	0	9	0	0	16	106496	0
3	128	128	10	12288	4096	17	0	0
4	512	0	11	512	512	18	24576	0
5	512	512	12	36864	0	19	0	0
6	2048	0	13	512	512	20	215040	67584
7	0	0	14	0	0	21	0	0

- Symmetry Lemma: (A, B) are a Golay pair $\Leftrightarrow (A + B, A B)$ are a Golay pair (where A and B are in "multiplicative" notation).
- Explains all remaining length 10 pairs and 2048 of the remaining length 20 pairs from binary Golay seed pairs.

		# pairs			# pairs			# pairs
n	# pairs	left to	n	# pairs	left to	n	# pairs	left to
		explain			explain			explain
1	16	0	8	6656	0	15	0	0
2	64	0	9	0	0	16	106496	0
3	128	128	10	12288	0	17	0	0
4	512	0	11	512	512	18	24576	0
5	512	512	12	36864	0	19	0	0
6	2048	0	13	512	512	20	215040	65536
7	0	0	14	0	0	21	0	0

		# pairs			# pairs			# pairs
n	# pairs	left to	n	# pairs	left to	n	# pairs	left to
		explain			explain			explain
1	16	0	8	6656	0	15	0	0
2	64	0	9	0	0	16	106496	0
3	128	128	10	12288	0	17	0	0
4	512	0	11	512	512	18	24576	0
5	512	512	12	36864	0	19	0	0
6	2048	0	13	512	512	20	215040	65536
7	0	0	14	0	0	21	0	0

 Multi-dimensional construction process with special length 10 pairs and a trivial length 1 pair

		# pairs			# pairs			# pairs
n	# pairs	left to	n	# pairs	left to	n	# pairs	left to
		explain			explain			explain
1	16	0	8	6656	0	15	0	0
2	64	0	9	0	0	16	106496	0
3	128	128	10	12288	0	17	0	0
4	512	0	11	512	512	18	24576	0
5	512	512	12	36864	0	19	0	0
6	2048	0	13	512	512	20	215040	0
7	0	0	14	0	0	21	0	0

n	# pairs	# pairs left to explain	n	# pairs	# pairs left to explain	n	# pairs	# pairs left to explain
1	16	0	8	6656	0	15	0	0
2	64	0	9	0	0	16	106496	0
3	128	128	10	12288	0	17	0	0
4	512	0	11	512	512	18	24576	0
5	512	512	12	36864	0	19	0	0
6	2048	0	13	512	512	20	215040	0
7	0	0	14	0	0	21	0	0

Let's look at lengths 5 and 13...

Lengths 5 and 13

Lengths 5 and 13

$$B_5 = \begin{bmatrix} 0 & 0 & 0 & 2 & 0 \end{bmatrix}$$
 binary Barker sequence of length 5

$$B_{13} + G_{13,1} = egin{bmatrix} 0 & 0 & 0 & 1 & 2 & 2 & 2 & 3 & 0 & 0 & 1 & 1 \\ B_{13} + G_{13,2} & \hline{0} & 1 & 2 & 2 & 2 & 3 & 0 & 0 & 0 & 1 & 2 & 2 & 3 \\ \end{bmatrix}$$

$$B_{13} + G_{13,1} = egin{bmatrix} 0 & 0 & 0 & 1 & 2 & 2 & 2 & 3 & 0 & 0 & 1 & 1 \\ B_{13} + G_{13,2} = egin{bmatrix} 0 & 1 & 2 & 2 & 2 & 3 & 0 & 0 & 0 & 1 & 2 & 2 & 3 \\ \end{bmatrix}$$

$$X_m := ((0 1 2 3)^m 0 1)$$

$$Z_m := ((1 \ 2 \ 3 \ 0)^m \ 1 \ 2)$$

$$X_m := ((0 \ 1 \ 2 \ 3)^m \ 0 \ 1)$$
 $Z_m := ((1 \ 2 \ 3 \ 0)^m \ 1 \ 2)$
 $W_m := ((0 \ 0 \ 2 \ 2)^m \ 0 \ 0 \ 1)$
 $Y_m := ((0 \ 2 \ 2 \ 0)^m \ 0 \ 2 \ 3)$

$$X_m := ((0 \ 1 \ 2 \ 3)^m \ 0 \ 1)$$
 $Z_m := ((1 \ 2 \ 3 \ 0)^m \ 1 \ 2)$
 $W_m := ((0 \ 0 \ 2 \ 2)^m \ 0 \ 0 \ 1)$
 $Y_m := ((0 \ 2 \ 2 \ 0)^m \ 0 \ 2 \ 3)$

Binary Barker to quaternary Golay

Theorem

Let $m \in \mathbf{N}$. Suppose $\operatorname{int}(A, B)$ is a binary Barker sequence of length 8m + 5 where $A = ((0\ 0\ 2)^m\ 0\ 0)$. Then the sequences

$$E := \inf(A + W_m, B + X_m),$$

$$F := \inf(A + Y_m, B + Z_m)$$

form a quaternary Golay pair of length 8m + 5.

Binary Barker to quaternary Golay

Theorem

Let $m \in \mathbf{N}$. Suppose $\operatorname{int}(A, B)$ is a binary Barker sequence of length 8m + 5 where $A = ((0\ 0\ 2)^m\ 0\ 0)$. Then the sequences

$$E := \inf(A + W_m, B + X_m),$$

$$F := \inf(A + Y_m, B + Z_m)$$

form a quaternary Golay pair of length 8m + 5.

• Explains all length 5 and 13 quaternary Golay pairs!

Binary Barker to quaternary Golay

Theorem

Let $m \in \mathbf{N}$. Suppose $\operatorname{int}(A, B)$ is a binary Barker sequence of length 8m + 5 where $A = ((0\ 0\ 0\ 2)^m\ 0\ 0)$. Then the sequences

$$E := \inf(A + W_m, B + X_m),$$

$$F := \inf(A + Y_m, B + Z_m)$$

form a quaternary Golay pair of length 8m + 5.

- Explains all length 5 and 13 quaternary Golay pairs!
- Unfortunately, this result does not give rise to any new quaternary Golay pairs.

Ordered quaternary Golay pairs left to explain

п	# pairs	# pairs left to explain	n	# pairs	# pairs left to explain	n	# pairs	# pairs left to explain
1	16	0	8	6656	0	15	0	0
2	64	0	9	0	0	16	106496	0
3	128	128	10	12288	0	17	0	0
4	512	0	11	512	512	18	24576	0
5	512	512	12	36864	0	19	0	0
6	2048	0	13	512	512	20	215040	0
7	0	0	14	0	0	21	0	0

• binary Barker to quaternary Golay theorem

Ordered quaternary Golay pairs left to explain

		# pairs			# pairs			# pairs
n	# pairs	left to	n	# pairs	left to	n	# pairs	left to
		explain			explain			explain
1	16	0	8	6656	0	15	0	0
2	64	0	9	0	0	16	106496	0
3	128	128	10	12288	0	17	0	0
4	512	0	11	512	512	18	24576	0
5	512	0	12	36864	0	19	0	0
6	2048	0	13	512	0	20	215040	0
7	0	0	14	0	0	21	0	0

Ordered quaternary Golay pairs left to explain

п	# pairs	# pairs left to explain	n	# pairs	# pairs left to explain	n	# pairs	# pairs left to explain
1	16	0	8	6656	0	15	0	0
2	64	0	9	0	0	16	106496	0
3	128	128	10	12288	0	17	0	0
4	512	0	11	512	512	18	24576	0
5	512	0	12	36864	0	19	0	0
6	2048	0	13	512	0	20	215040	0
7	0	0	14	0	0	21	0	0

• ??

Constructing a Binary Barker Sequence from a Quaternary Golay Sequence

Goal

• We have seen that particular binary Barker of length $\equiv 5 \pmod{8}$ \Rightarrow quaternary Golay of length $\equiv 5 \pmod{8}$

Goal

- We have seen that
 - particular binary Barker of length $\equiv 5 \pmod{8}$
- \Rightarrow quaternary Golay o length $\equiv 5 \pmod{8}$

- Our (optimistic) objective:
 - particular binary Barker of length $\equiv 5 \pmod{8}$
- \leftarrow quaternary Golay of length $\equiv 5 \pmod{8}$

Goal

• We have seen that particular binary Barker of length $\equiv 5 \pmod{8}$ \Rightarrow quaternary Golay of length $\equiv 5 \pmod{8}$

- Our (optimistic) objective:
 particular binary Barker
 - particular binary Barker of length $\equiv 5 \pmod{8}$ \leftarrow quaternary Golay of length $\equiv 5 \pmod{8}$
- Since there are no binary Barker sequences of odd length greater than 13, this would prove that there are no more quaternary Golay sequences for these lengths.

Lemma

If A and B are sequences of length n and $A + B = (0 \ 1 \ 2 \ 3 \dots)$, then

$$C_B(u) = i^{-u} \cdot \overline{C_A(u)}$$

for all integers 0 < u < n.

Lemma

If A and B are sequences of length n and $A + B = (0 \ 1 \ 2 \ 3 \dots)$, then

$$C_B(u) = i^{-u} \cdot \overline{C_A(u)}$$

for all integers 0 < u < n.

Call a sequence A of length n good if

$$C_A(u) = -i^{-u}\overline{C_A(u)}$$
 for all integers $0 < u < n$.

Lemma

If A and B are sequences of length n and $A + B = (0 \ 1 \ 2 \ 3 \dots)$, then

$$C_B(u) = i^{-u} \cdot \overline{C_A(u)}$$

for all integers 0 < u < n.

Call a sequence A of length n good if

$$C_A(u) = -i^{-u}\overline{C_A(u)}$$
 for all integers $0 < u < n$.

• A good sequence is necessarily a Golay sequence.

Lemma

If A and B are sequences of length n and $A + B = (0 \ 1 \ 2 \ 3 \dots)$, then

$$C_B(u) = i^{-u} \cdot \overline{C_A(u)}$$

for all integers 0 < u < n.

Call a sequence A of length n good if

$$C_A(u) = -i^{-u}\overline{C_A(u)}$$
 for all integers $0 < u < n$.

- A good sequence is necessarily a Golay sequence.
- $G_{5,1}$, $G_{5,2}$, $G_{13,1}$, and $G_{13,2}$ are all good.

Lemma

If A and B are sequences of length n and $A + B = (0 \ 1 \ 2 \ 3 \dots)$, then

$$C_B(u) = i^{-u} \cdot \overline{C_A(u)}$$

for all integers 0 < u < n.

Call a sequence A of length n good if

$$C_A(u) = -i^{-u}\overline{C_A(u)}$$
 for all integers $0 < u < n$.

- A good sequence is necessarily a Golay sequence.
- $G_{5,1}$, $G_{5,2}$, $G_{13,1}$, and $G_{13,2}$ are all good.
- Output sequences of Barker-to-Golay theorem are good.

A partial Barker-to-Golay converse

Theorem

Let $A = (a_0, ..., a_{n-1})$ be a good sequence of length n = 8m + 5. Assume that

- (1) $a_{2u-1} + a_{2u+1} \equiv 1 \pmod{2}$, for all $1 \leq 2u 1 \leq \frac{n-7}{2}$, and
- (2) $a_{4u} \equiv 0 \pmod{2}$, for all $4 \le 4u \le \frac{n-5}{2}$.

Then there exists a binary Barker sequence of length n, and so $m \in \{0,1\}$.

A partial Barker-to-Golay converse

Theorem

Let $A = (a_0, ..., a_{n-1})$ be a good sequence of length n = 8m + 5. Assume that

- (1) $a_{2u-1} + a_{2u+1} \equiv 1 \pmod{2}$, for all $1 \le 2u 1 \le \frac{n-7}{2}$, and
- (2) $a_{4u} \equiv 0 \pmod{2}$, for all $4 \le 4u \le \frac{n-5}{2}$.

Then there exists a binary Barker sequence of length n, and so $m \in \{0,1\}$.

Proof: About 20 pages of lemmas.

Summary of results:

Summary of results:

• Classified and explained (almost) all ordered quaternary Golay pairs of length less than 22.

Summary of results:

- Classified and explained (almost) all ordered quaternary Golay pairs of length less than 22.
- Found a general construction of a quaternary Golay pair from a particular type of binary Barker sequence.

Summary of results:

- Classified and explained (almost) all ordered quaternary Golay pairs of length less than 22.
- Found a general construction of a quaternary Golay pair from a particular type of binary Barker sequence.
- Established a partial converse to the Barker-to-Golay construction.

Summary of results:

- Classified and explained (almost) all ordered quaternary Golay pairs of length less than 22.
- Found a general construction of a quaternary Golay pair from a particular type of binary Barker sequence.
- Established a partial converse to the Barker-to-Golay construction.

Summary of results:

- Classified and explained (almost) all ordered quaternary Golay pairs of length less than 22.
- Found a general construction of a quaternary Golay pair from a particular type of binary Barker sequence.
- Established a partial converse to the Barker-to-Golay construction.

Open problems:

Explain the existence of the length 3 and 11 quaternary Golay pairs.

Summary of results:

- Classified and explained (almost) all ordered quaternary Golay pairs of length less than 22.
- Found a general construction of a quaternary Golay pair from a particular type of binary Barker sequence.
- Established a partial converse to the Barker-to-Golay construction.

- Explain the existence of the length 3 and 11 quaternary Golay pairs.
- Are there any quaternary Golay sequences of odd length greater than 13?

Summary of results:

- Classified and explained (almost) all ordered quaternary Golay pairs of length less than 22.
- Found a general construction of a quaternary Golay pair from a particular type of binary Barker sequence.
- Established a partial converse to the Barker-to-Golay construction.

- Explain the existence of the length 3 and 11 quaternary Golay pairs.
- Are there any quaternary Golay sequences of odd length greater than 13?
 - Odd length ⇒ good?

Summary of results:

- Classified and explained (almost) all ordered quaternary Golay pairs of length less than 22.
- Found a general construction of a quaternary Golay pair from a particular type of binary Barker sequence.
- Established a partial converse to the Barker-to-Golay construction.

- Explain the existence of the length 3 and 11 quaternary Golay pairs.
- Are there any quaternary Golay sequences of odd length greater than 13?
 - Odd length ⇒ good?
 - Can we overcome conditions (1) and (2) of Barker-to-Golay converse?

Summary of results:

- Classified and explained (almost) all ordered quaternary Golay pairs of length less than 22.
- Found a general construction of a quaternary Golay pair from a particular type of binary Barker sequence.
- Established a partial converse to the Barker-to-Golay construction.

- Explain the existence of the length 3 and 11 quaternary Golay pairs.
- Are there any quaternary Golay sequences of odd length greater than 13?
 - Odd length \Rightarrow good?
 - Can we overcome conditions (1) and (2) of Barker-to-Golay converse?
 - Alternative approach?

Thanks for listening!