Suites numériques

Enseignement de Spécialité. 1^{re}G

Définition

Une suite (u_n) peut-être définie :

de manière explicite : $u_n = f(n)$

de manière récurrente : $\begin{cases} u_0 \\ u_{n+1} = f(u_n) \end{cases}$

Suites arithmétiques

Récurrence : $u_{n+1} = u_n + r$ (de raison r)

Explicite: $u_n = u_0 + nr$ ou $|u_n = u_p + (n - p)r|$

Somme : nbre termes \times premier terme + dernier terme

 $S_n = u_0 + \dots + u_n = (n+1) \times \frac{u_0 + u_n}{2}$

Variations

Si pour tout $n, u_{n+1} - u_n > 0$ alors la suite (u_n) est strictement croissante

Si pour tout $n, u_{n+1} - u_n < 0$ alors la suite (u_n) est strictement décroissante

Si les suites sont positives, on peut utiliser les variantes:

Si pour tout $\frac{u_{n+1}}{a} > 1$, alors la suite (u_n) est strictement croissante

Si pour tout $\frac{u_{n+1}}{a}$ < 1, alors la suite (u_n) est strictement décroissante

Suites géométriques

Récurrence : $u_{n+1} = q \times u_n$ (de raison q)

Explicite: $u_n = u_0 \times q^n$ ou $\left| u_n = u_p \times q^{(n-p)} \right|$

Somme : premier terme $\times \frac{1 - q^{\text{nbre termes}}}{1 - q}$

 $S_n = 1 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$

Limites d'une suite géométrique

Si q>1, alors $\lim_{n\to +\infty}q^n=+\infty$ Si q=1, alors $\lim_{n\to +\infty}q^n=1$

Si -1 < q < 1, alors $\lim_{n \to +\infty} q^n = 0$

 $rac{1}{2}$ Si $q \leq -1$, alors et q^n est divergente

-1 < q < 0: q^n n'est pas monotone et $\lim_{n \to \infty} q^n = 0$

q < -1: q^n n'est pas monotone et divergente

Limite finie (convergence)

Ex: $\lim_{n\to+\infty}\frac{1}{n}=\lim_{n\to+\infty}\frac{1}{\sqrt{n}}=0$, $\lim_{n\to+\infty}(-1)^n$ n'existe pas

Limite infinie (divergence)

Ex: $\lim_{n \to +\infty} \sqrt{n} = \lim_{n \to +\infty} n^2 = \lim_{n \to +\infty} n^3 = +\infty$