

SONAL PRIYA-UCE2022647 SEJAL SONAWANE-UCE2022649

PROBLEM STATEMENT

Predicting Bank Customer Churn: Using machine learning techniques to identify and predict the likelihood of customers leaving a bank, based on historical data and customer attributes.

OBJECTIVE

The objective is to develop a predictive model that can accurately forecast customer churn, allowing the bank to proactively implement retention strategies and improve customer satisfaction and loyalty

INTRODUCTION

No business can thrive without it's customers. On the flip side, customers leaving the business is a nightmare that every business owner dreads. In fact, one of the key metrics to measure a business' success is by measuring its customer chum rate - the lower the churn, the more loved the company is.

Typically, every user of a product or a service is assigned a prediction value that estimates their state of chum at any given time. This value may be based on multiple factors such as the user's demographic, their browsing behavior and historical purchase data, among other details.

This value factors in unique and proprietary predictions of how long a user will remain a customer and is updated every day for all users who have purchased at least one of the products/services. The values assigned are between 1 and 5.

TASK

An up-and-coming startup is keen on reducing its customer churn and has hired you as a Machine Learning engineer for this task. As an expert, we are required to build a sophisticated Machine Learning model that predicts the churn score for a website based on multiple features.

DATA SET

The dataset consists of parameters such as the user's demographic and Pil details, membership account details, duration and frequency of their visits to the website, reported grievances and feedback, and the like.

D

DATA SET

<pre>df.head() Python</pre>										
	customer_id	Name	age	gender	security no	region_category	membership category	joining date	joined_through_referral	
0	fffe4300490044003600300030003800	Pattie Morrisey	18	F	XW0DQ7H	Village	Platinum Membership	2017-08-17	No No	xxx
1	fffe43004900440032003100300035003700	Traci Peery	32	F	5K0N3X1	D City	Premium Membership	2017-08-28	?	CID2
2	fffe4300490044003100390032003600	Merideth Mcmeen	44	F	1F2TCL3	Town	No Membership	2016-11-11	Yes	CID1
3	fffe43004900440036003000330031003600	Eufemia Cardwell	37	М	VJGJ33N	City	No Membership	2016-10-29	Yes	CID
4	fffe43004900440031003900350030003600	Meghan Kosak	31	F	SVZXCWB	City	No Membership	2017-09-12	No	xxx
5 rows × 25 columns										

FEATURE SELECTION

customer_id age security_no membership_category joined_through_referral preferred_offer_types internet_option days_since_last_login avg_transaction_value points_in_wallet offer_application_preference complaint_status, feedback

Name gender region_category joining_date referral_id medium_of_operation last_visit_time avg_time_spent avg_frequency_login_days used_special_discount past_complaint churn_risk_score

IMPORTANT FEATURE

USED MODELS

- Random Forest
- Decision Tree
- XG Boost(maximum accuracy is obtained in XG Boost)

Welcome to State Bank of India

Customer Churn Prediction Service

we understand the critical importance of retaining customers. Every lost customer represents not just a transactional loss, but a potential long-term relationship that could impact your bottom line. That's why we've developed a cutting-edge Customer Churn Prediction Service powered by machine learning algorithms.

Prediction

FLASK AND HTML

- app.py Flask API
- loads models
- receives customer details through GUI
- computes and returns predictions
- returns customer info table

HTML/CSS/Bootstrap

- HTML template and CSS styling to enter customer info.
- jinja loads data passed by Flask:
 - 1. predictions
 - 2.customer info table

DEPLOYMENT

- The API interfacing for the deplyment on <u>Localhost</u> is done using <u>Flask</u>.
- The server is run on Local system during the staging of the project.
- Older deployment was done on <u>Google Cloud Platform</u>

PREDICTIONS

- The final prediction of the model is the range of 1-5 churn for that customer.
- The prediction signifies the chances of the customer to leave the services of the bank which makes the bank to focus more on such such customers and try to retain them using <u>Sales</u> and <u>Marketing strategies</u> about which I have worked in this <u>GitHub</u> module.

CONCLUSION

The implementation of machine learning algorithms like XGBoost, Decision Trees, and Random Forest has significantly improved our ability to predict and manage customer churn. Among these algorithms, XGBoost stands out for its exceptional accuracy and robustness. Its advanced boosting technique enables precise predictions, empowering proactive retention strategies and driving business success.

REFERENCES

- https://scikitlearn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassif ier.html
- https://xgboost.readthedocs.io/en/stable/
- https://www.geeksforgeeks.org/random-forest-algorithm-inmachine-learning/

THANK YOU!