IONOSPHERIC DATA

ISSUED JULY 1947

Issued 25 July 1947

IONOSPHERIC DATA

CONTENTS

	Page
Terminelegy and Scaling Practices	2
Menthly Average and Median Values of World-Wide Ienespheric Data	-4
Ienespheric Data for Every Day and Hour at Washington, D. C	7
Ienesphere Disturbances	7
American and Zurich Previsional Relative Sumspet Numbers	8
Selar Ceremal Intensities Observed at Climax, Celerade	9
Erratum	9
Tables of Ienespheric Data	10
Graphs of Ionospheric Data	44
Index of Tables and Graphs of Ionospheric Data	70

The symbols and terminology used in this report are those adopted by the International Radio Propagation Conference, and given in detail on pages 24 to 26 of the report IRPL-C61, "Report of International Radio Propagation Conference," and in the section on "Terminology" in report IRPL-F5.

Beginning with IRPL-FL4 the symbol L, defined as follows, is used in detailed tabulations of hourly values of ionosphere characteristics observed at Washington:

L or 1 = critical frequency, muf, or muf factor for Fl layer omitted because no definite and abrupt change in slope of the h'f curve occurs either for the first reflection or for any of the multiples.

In the past, ionospheric conditions were summarized on a monthly basis by using average or mean values for each hour of the day for each month. However, following the recommendations of the International Radio Propagation Conference, held in Washington 17 April to 5 May 1944, beginning with data for 1 Jan. 1945, median values were used by IRPL wherever possible. Thus, median values are given for Washington, for all stations reporting directly to the CRPL, for the Canadian stations, and for all others sending to the CRPL detailed tabulations from which medians can be computed.

Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The monthly median values used here are the values equaled or exceeded on half the days of the month at the given hour. The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given in the report referred to above, IRPL-C61.

- a. For all ionospheric characteristics:

 Values missing because of A, B, C or F (see terminology referred to above) are omitted from the median count.
- b. For critical frequencies and virtual heights:

 Values of f^oF2 missing because of E are counted as equal to

 or less than the lower limit of the recorder. Ordinarily,

 values of virtual heights, f^oFl, and f^oE missing for this

 reason are omitted from the median count.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

1. For foF2, as equal to or less than foF1.

2. For h'F2, as equal to or greater than the median. Values missing for any other reason are omitted from the median count.

c. For muf factors (M-factors):

Values missing because of G are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. Fer sporadic E (Es):

Values of fEs missing because no Es reflections appeared, the equipment functioning normally otherwise, are counted as equal to or less than the median fE, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of hEs missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

It is expected that this practice will be of assistance in evaluating the monthly median Washington data.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

Beginning with CRPL-F33, an additional group of symbols is used in recording the Washington, D.C. data. The list of additional symbols and their meanings follows:

N -- unable to make logical interpretation.

P -- trace extrapolated to a critical frequency.

Q -- the Fl layer not present as a distinct layer.

R -- curve becomes incoherent near the F2 critical frequency.

S -- no observation obtainable because of interference.

U -- forked record.

Z -- triple split near critical frequency.

For a more detailed explanation of the meaning and use of these symbols, see the report CRPL-7-1, Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records.

The ienespheric data given here in tables 1 to 53 and figures 1 to 100 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL predictions of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data:

Australiam Council for Scientific and Industrial Research,
Radio Research Beard:
Brisbane, Australia
Canberra, Australia
Cape York, Australia
Hebart, Tasmania
Townsville, Australia

British Department of Scientific and Industrial Research, Radio Research Beard: Sleugh, England

Canadian Radio Wave Propagation Committee:
Churchill, Canada
Clyde, Baffin I.
Ottawa, Canada
Pertage la Prairie, Maniteba
Prince Rupert, Canada
St. Jehn's, Newfoundland

New Zealand Radio Research Committee:
 Campbell I.
 Christchurch, New Zealand (Canterbury University College Observatory)
 Fiji Is.
 Kermadec Is.
 Raretenga I.

South African Council for Scientific and Industrial Research: Capetown, Union of S. Africa Johannesburg, Union of S. Africa

Scientific Research Institute of Terrestrial Magnetism, Moscow, U.S.S.R.:
Alma Ata, U.S.S.R.
Bay Tiksey, U.S.S.R.
Bukhta Tikhaya, U.S.S.R.
Chita, U.S.S.R.
Leningrad, U.S.S.R.
Moscow, U.S.S.R.
Sverdlovsk, U.S.S.R.
Temsk, U.S.S.R.

Carnegie Institution of Washington (Department of Terrestrial Magnetism):
Huancayo, Peru
Watheree, W. Australia

United States Army Signal Corps:
Fukaura, Japan
Okinawa I.
Shibata, Japan
Tokyo, Japan
Wakkanai, Japan
Yamakawa, Japan

National Bureau of Standards (Central Radio Propagation Laboratory):
Adak, Alaska
Baton Rouge, Louisiana (Louisiana State University)
Boston, Massachusetts (Harvard University)
Fairbanks, Alaska (University of Alaska, College, Alaska)
Guam I.
Maui, Hawaii
Palmyra I.
San Francisce, California (Stanford University)
San Juan, Puerto Rico (University of Puerto Rice)
Trinidad, British West Indies
Washington, D. C.
White Sands, New Mexico
Wuchang, China (National Wuhan University)

All India Radio (Government of India), New Delhi, India:
Bombay, India
Delhi, India
Madras, India
Peshawar, India

Indian Council of Scientific and Industrial Research,
Radio Research Committee:
Calcutta, India

Radio Wave Research Laboratory, Central Breadcasting Administration: Chungking, China Lanchow, China Peiping, China

French Ministry of Naval Armaments (Section for Scientific Research): Fribourg, Germany

Philippine Republic, Department of National Defease: Leyte, Philippine Is.

Norwegian Defense Research Establishment, Florida, Bergen, Norway:
Oslo, Norway
Tromso, Norway

Beginning with CRPL-F26, publication of tables of se-called "pre-visional data" reported to the CRPL by telephone or telegraph was discontinued. The reason for this change in policy is that users of the data hitherto published in this form receive them through established channels sooner than they reach them in the F-series. Furthermore, having two sets of data, "provisional" and "final," for the same station for the same month leads to confusion.

It must be emphasized that there is no change in the methods used for rapid reporting and exchange of data. The change has to do only with the printing of provisional data in the F-series.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of these errors are due to:

- a Differences in scaling records where spread echoes are present.
- b. Omission of values where for is less than or equal to for, leading to erroneously high values of monthly averages or median values.
- c. Omission of values where critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. Predictions for individual stations used to construct the charts may be more accurate than the values read from the chart since some smoothing of the contours is necessary to allow for the longitude effect within a zone. The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts, beginning with August 1945:

Month	Predicted Sunspot Ne.	Month	Predicted Sunspot No.
June 1947 May 1947 April 1947 March 1947 February 1947 January 1947 December 1946 November 1946 October 1946 September 1946 August 1946 July 1946	112 109 107 105 90 88 85 83 81 79 77	June 1946 May 1946 April 1946 March 1946 February 1946 January 1946 December 1949 November 1949 October 1945 September 1945	67 67 62 51 6 46 42 5 38 5 36 23

The data given in tables 54 to 65 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Terminology and Scaling Practices."

Attention is called to the fact that the Washington data for the months of February 1947 through May 1947, owing to equipment limitations, are not to be considered as accurate as the data taken during the months prior to February 1947 and in June 1947. Because of the limited power of the manual recorder, the reported critical frequencies tend to be too small. Comparison of January and June automatically recorded data with the intervening manual data indicates that the virtual heights were systematically too large. The latter was the more serious error and, as a consequence, the reported values of MUF factors tend to be low. Erratic variations in F1-layer critical frequencies were caused by poor resolution by the manual apparatus of the ordinary and extraordinary components. This is especially evident in the data for February and March.

Since February 1947, the fEs and h'fEs readings reported have been the values of fEs and h'fEs observed on the hourly record instead of the highest value of fEs and the lowest value of h'fEs observed during the hourly interval centered on the hour, as had been the practice up to that time.

IONOSPHERE DISTURBANCES

Table 66 presents ionosphere character figures for Washington, D.C., during June 1947, as determined by the criteria presented in the report IRPL-R5, "Criteria for Ionosphenic Sterminess," together with Cheltenham, Maryland, magnetic K-figures, which are usually covariant with them.

Table 67 lists for the stations whose locations are given the sudden ionosphere disturbances observed on the continuous field intensity recordings made at the Sterling Radio Propagation Laboratory during June 1947.

Table 68 lists for the stations whose locations are given the sudden ionosphere disturbances observed at the Brentwood and Semerton, England, receiving stations of Cable and Wireless Ltd. from May 17 to June 5, 1947.

Table 69 gives provisional radio propagation quality figures for the North Atlantic and North Pacific areas, for 01 to 12 and 13 to 24 GCT, May 1947, compared with the CRPL daily radio disturbance warnings, which are primarily for the North Atlantic paths, the CRPL weekly radio prepagation forecasts of probable disturbed periods, and the half-day Cheltenham, Maryland, geomagnetic K-figures.

The radie propagation quality figures for the North Atlantic are prepared from radio traffic and ionospheric data reported to the CRPL, in the manner described in detail in report IRPL-R31, "North Atlantic Radio Prepagation Disturbances, October 1943 through October 1945," issued 1 February 1946.

The radio propagation quality figures for the North racific are prepared from radio traffic and ionespheric data reported to the CRPL, in a manner similar to that of IRPL-R31. The master scale of IRPL-R31 was used to formulate conversion scales for the North Pacific reports. Beginning with CRPL-F23, issued July 1946, the North Pacific radio propagation quality figures reported are prepared from these revised conversion scales.

These radio propagation quality figures give a consensus of opinion of actual radio propagation conditions as reported by the half day over the two general areas. It should be borne in mind, however, that though the quality may be disturbed according to the CRPL scale, the cause of the disturbance is not necessarily known. There are many variables that must be considered. In addition to ionospheric sterminess itself as the cause, conditions may be reported as disturbed because of seasonal characteristics. such as are particularly evident in the prenounced day and night contrast over North Pacific paths during the winter months, or because of impreper frequency usage for the path and time of day in question. Insefar as possible, frequency usage is included in rating the reports. Where the actual frequency is not shown in the report to the CRPL, it has been assumed that the report is made on the use of optimum working frequencies for the path and time of day in question. Since there is a possibility that all the disturbance shown by the quality figures is not due to ionospheric storminess alone, care should be taken in using the quality figures in research correlations with selar, auroral, geomagnetic, or other data. Nevertheless, these quality figures do reflect a censensus of epinion of actual radio propagation conditions as found on any one half day in either of the two general areas.

AMERICAN AND ZÜRICH PROVISIONAL RELATIVE

SUNSPOT NUMBERS

Table 70 presents the daily median values of relative sunspot numbers as reported by American observers for June 1947. The reports have been reduced, by appropriate constants, approximately to the Zürich scale of relative sunspot numbers. The menthly relative sunspot number is the mean of the daily median values listed in the table. This method was devised by Mr. A. H. Shapley, while a member of the staff of the Department of Terrestrial Magnetism, Carnegie Institution of Washington. Details will be found in his article, "American Observations of Relative Sunspot Numbers in 1945 for Application to Ionespheric Prediction," Popular Astronomy, vol. 54, No. 7, pp. 351-358. The criteria for A observers have been medified slightly, beginning with September 1946. In order for an observer's report to be included in the American sunspot numbers, the mean deviation of the reduction factors for his observations for the four preceding months must have been within 15% of the 4-month running mean of his reduction

factors, rather than within an interval of \$\pm\$ 0.16 of that running mean. This avoids favoring observers with small reduction factors and discriminating against observers with large reduction factors. In addition sunspot numbers must have been reported for at least one-half of the month during three-quarters of the preceding year. This will tend to restrict the observers to those whose observations are consistent from menth to menth without rejecting the work of observers for whom weather conditions are unsatisfactory for observations during some menths of the year.

In addition, table 70 lists the daily previsional Zurich sumspet numbers. The first issue in which these numbers appear is CRPL-F35.

SOLAR CORONAL INTENSITIES OBSERVED

AT CLIMAX, COLORADO

In table 71 the intensities of the green (λ 5303A), first red (λ 6374A), and second red (λ 6704A) lines of the selar cerona as observed during June 1947, by the High Altitude Observatory of Harvard University and the University of Celerade at Climax, Celerade, are given for every 5° from astronomical morth for each day on which observations were possible. An arbitrary intensity-scale of approximately 0 to 40 is used. To convert from astronomical morth and to determine the positions relative to the selar rotational equator, subtract the algebraic value of the position-angle of the selar axis. This quantity varies from -26 to \pm 26 degrees during the year, and is tabulated in the nautical almanacs. If observations are uncertain, the initials 1.w. (low weight) fellow the date. The time of observation in hours GCT is listed. Dashes indicate that the intensity for that position is below the observable thresheld. Absence of observation made at a given position is indicated by X.

ERRATUM

In CRPL-F31 through F34, the latitude of Yamakawa, Japan, was given as 32.2°N. The correct latitude is 31.2°N.

Table 1*

Table 2

Washington, D. C. (39.0°N, 77.5°7)

June 1947

Clyde, Baffin I. (70.5°N, 68.6°W)

May 1947

P.15	₹ºF2	h'F1				flie	
			Fofi	h'E	for		\$2-M3000
280	6.6						2.6
290	6.4						2.6
							2.6
						1.5	2.5
							2.6
							2.7
		235	4.1	100	2.5		2.6
							2.4
							2.4
					3.8		2.4
					3.9	7.8	2.4
							2.4
			75°55				2.4
			5.6				2.4
							2.4
							2.4
							2.6
							2.6
							2.6
			***				2.5
				_50			2.7
							(2.7)
							2.7
						-•>	2.6
	280 300 300 290 420 480 580 540 525 545 525 535 545 525 535 450 450 265 275 275	280 5.8 300 5.4 300 5.0 290 5.0 420 5.6 480 5.8 580 6.1 540 6.7 545 6.9 525 6.9 525 6.9 525 7.2 495 7.0 450 7.2 490 7.2	280 5.8 300 5.4 300 5.0 290 5.0 290 5.0 420 5.6 235 480 6.1 220 540 6.7 200 545 6.9 200 525 6.9 200 535 7.2 200 545 7.2 210 495 7.0 210 450 7.2 220 430 7.2 220 430 7.2 220 2350 7.0 220 2365 7.2 220 270 7.3 280 7.7	280 5.8 300 5.4 300 5.0 290 5.0 420 5.6 235 4.1 480 5.8 230 4.7 580 6.1 220 5.1 540 6.1 210 5.2 520 6.7 200 (5.5) 525 6.9 200 (5.5) 535 7.2 200 5.6 520 7.2 210 5.6 495 7.0 210 5.6 495 7.0 210 5.5 430 7.2 220 5.3 430 7.2 220 5.0 350 7.0 220 4.7 265 7.2 270 7.3 280 7.7	280 5.8 300 5.4 300 5.0 290 5.0 420 5.6 235 4.1 100 480 5.8 230 4.7 90 580 6.1 220 5.1 90 540 6.1 210 5.2 90 520 6.7 200 5.5 90 545 6.9 200 (5.5) 90 525 6.9 200 (5.5) 90 526 7.2 210 5.6 90 495 7.0 210 5.6 90 495 7.0 210 5.5 90 496 7.0 210 5.9 90 350 7.2 220 5.0 95 350 7.2 220 5.0 95 360 7.2 220 5.0 95 370 7.2 220 5.0 95 380 7.7 2275 7.6	280	280 5.8 300 5.4 300 5.0 290 5.0 290 5.0 200 5.6 235 4.1 100 2.5 3.8 480 5.8 230 4.7 90 3.1 4.4 580 6.1 220 5.1 90 3.6 5.1 540 6.1 210 5.2 90 3.8 4.6 520 6.7 200 5.5 90 3.9 4.8 545 6.9 200 (5.5) 90 (4.0) 4.4 525 6.9 200 (5.5) 90 (4.0) 4.4 525 6.9 200 (5.5) 90 (4.0) 4.4 520 7.2 210 5.6 90 (4.1) 4.3 520 7.2 220 5.6 90 4.0 5.1 495 7.0 210 5.5 90 3.9 4.7 450 7.2 220 5.3 90 3.7 4.0 430 7.2 220 5.3 90 3.7 4.0 430 7.2 220 5.0 95 3.4 4.4 250 7.2 220 5.0 95 3.4 4.4 250 7.2 220 5.0 95 3.4 4.4 270 7.3 280 7.7 270 7.3 280 7.7 280 7.7

Time.	F.LS	toks	h'Fl	f°F1	h'E	for	₹Eq.	F2-M3000
00	310 300 330	5.76.334.98800248 5.55.55.55.560.66.5			н 2			## # # # # # # # # # # # # # # # # # #
02 03 04 05 06 07 08 09	415 410 465 460	5.8 5.8 6.0						
10 11 12 13 14	300 305 3115 315 315 315 315 315 315 315 315 3	6.2 6.4 5.8 5.8						
10 11 12 13 14 15 16 17 18 19 20	310	5.8 6.1 6.2 6.0 6.0						
20 21 22 23	330 330 300 315	5.8 5.8 6.0 5.7						

Time: 75.0°W.

Sweep: 3.1 Mc te 17.0 Mc, June 1-11. Manual operation.

1.0 Mc te 25.0 Mc in 15 seconds, June 12-30. Automatic recorder.

*See 2nd par., p.7.

Time: 75.0° W. Sweep: 2.2 Mc to 16.0 Mc in 1 minute end 1.9 Mc to 13.0 Mc. Manual operation.

Table 3 Fairbanks, Alaska (64.9°N. 147.8°W)

May 1947

Table 4 Churchill, Canada (58.8°N, 94.2°W)

May 1947

Time	P, LS	tols:	h'Fl	forl	h E	for	fEe	F2-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 14 15 16 17 18 19 20 21 22 23	360 365 352 405 482 482 515 530 5479 5775 522 485 390 390 310 315	55555666666666666665555555555666666666	3200 0 535 0 0 2 35 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6156901253310750		1.99 2.22 2.67 3.02 3.07 3.07 3.07 3.07 3.07 3.07 3.07 3.07	4.2 4.3 4.6 4.6 4.6 4.9 4.1 3.1 3.0 3.0 3.6 5.6 5.7	2.4 2.4 2.4 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3

Time	h'IZ	f°12	h'Tl	for1	h'E	for	Æ.	F2-M3000
00 01 02 03 04 05 06 07 08 09 10 11 11 11 11 11 11 11 11 11 12 12 21 22 23	340 345 3350 3350 350 500 500 500 525 525 525 525 410 410 300 300 310	554.4 555556666666777766655566	290 285 270 250 250 250 250 250 250 250 250 250 25	362712344432882 354455555555444	110 100 100 100 100 100 100 100 100 100	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	3.8 3.7 3.5 3.2 3.2 3.2 3.2	22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2

Time: 150.0°W. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes.

Time: 90.0°W. Sweep: 2.2 Mc to 16.0 Mc in 1 minute.

fable 5

h'Tl

5444555555555555443

for him for

Prince Empert, Canada (54.3°W, 130.3°W)

1012

5.06.6.1 4.5.2 4.0.5 6.0.5 7.7.2 7.7.1 7.0.5 5.7 7.7.2 1.0.5 5.7

May 1947

3.2

23.29.001444.523.005.05.05.24.2.7

Adak, Alaska (51.9°N, 175.5°W)

May 1947

15-N3000	Zine	P.13	2012	בעים	f°F1	h'E	for	₹Es	P2-M3000				
2.5	00	300	8.2					2.1	2.6				
2.5	01	310	5.9						2.5				
2.5	03	320	5.7						(2.5)				
2.5	03	340	5.4					2.2	(2.5)				
2.5	04	335	5.8	330				1.8	2.5				
2.5	05	400	8.8	265	4.0	120	2,2	2.5	2.5				
2.4	06	415	7.4	250	4.5	110	2.8	3.8	2,5				
2.4	07	405	8.2	230	5.0	100	3.2	4.2	2.5				
2.4	08	440	7.8	220	5.3	100	3.5	4.7	2.4				
2.3	09	465	7.5	(220)	5.5	100	3.7	5.0	2.4				
2.3	10	455	7.4	(210)	5.5	100	3.8	5.0	2.5				
2.3	11	460	7.5	(220)	(5.7)	(100)	(3.9)	5.1	2.5				
2.3	13	460	7.8	220	5.7	100	(4.0)	4.1	2.5				
2.3	13	450	7.7	220	5.7	100	(3.8)	4.1	2.5				
2.3	14	435	7.5	220	5.5	100	(3.8)	4.1	2.5				
2.8	15	415	7.5	220	5.4	100	(3.5)	4.0	2.5				
2.4	18	370	7.5	230	5.3	100	3,4	3.8	2.7				
2.1	17	(340)	7.5	(240)	(5.0)	100	(3.1)	3.7	2.8				
2.5	18	280	7.5	260	(4.5)	110	(2.5)	4.1	2.8				
2.6	19	270	7.5		(0,	120	(2.1)	3.2	2.8				
0.6	20	270	7.5				(,	2.9	2.8				
555544455333335444566666666666666666666	21	260	7.4					2.0	2.7				
2.6	82	265	6.8					2.0	2.5				
2 6	23	280	8.5					1.7	2.5				
C.00		-30	0.0					1.7	2.5				

Time: 180.00W. Sweep: 1.2 Mc to 15.5 Mo. Manual operation.

Time: 120.0°W.

Tine

P, LS

Manual operation.

Table 7 Portage la Prairie, Manitoba (49.9%, 98.3%)

May 1947

			041
Ottawa,	Canada	(45.5°H,	75.8°W)

Table 8

Nay 1947

Tine	P.15	101 2	h'Pl	r°r.	P.A	for	Cha_	72-X3000	Pine	h'72	1015	h'Fl	f°F	h'E	for	178a	JS-M3000
00	300	5.6					2.0	2.4	00	320	5.4						2.5
01	300	5.2					5.0	2.5		330	5.0						
05	310						2.0	2.4	01 02	33D	5.4						2.5
	350	5.0 4.4					3.1.		03	340							2.6
03 04	320	4.5					2.0	2.3			5.0						2.5
	300	4.8			120	1.8	2.0		04	310	5.1						2.7
05 06	260	7.0	OFF	7.4	120	2.4	2.4	2.5	0.5	280	5.7						2.7
	200	5.6 6.4	250	3.8 4.6	110		2.4	2.6	08	250	6.3	240	3.8	110	2.5		2.7
07	325 450 455 470	6.6	230			3.0		2.6	07	250	6.6	230	4.1	110	3.0		2.8
08	450		230	4.8	100	3.4		5-#	08	255	7.0	220	4.5	110	3.4		2.6
.09	+22	7.0	225	5.1 5.4	100	3.6		2.4	09	260	7.2	220	4.8	100	3.5		2.5
10	470	7•3 7•4	220	2.4	100	3.8		5.4	10	260	7.4	210	4.8	100	3.8		2.5
11	470 460	7.4	550	5.4	100	3.8		2.4	11	360	7.8	210	4.9	100	3.7		2.5
12		7.4	550	5.4	100	jt*0	•	2.4	12	260	7.9	210	5.0	100	3.8		2.5
13 14	450	7.3 7.4	220	5.4	100	4.0		2.4	13	255	7.9	220	4.9	100	3.8		2.4
	500 470	7.4	550	5.2	100	3.8		2.4	14	250	8.2	220	4.8	100	3.9		2,5
15 16	470	7.2	550	5.2	105	3.8		2.3	15	250	8.3	230	4.5	110	3.7		2,5
16	450	7.2	230	5.2	100	3.6		2.4	18	260	8.4	230	4.4	110	3.5		2.5
17	430	7•3 7•6	230	4.9	100	3.2		2.4	17	280	8.3	240	4.3	110	3.2		2.5
18	370	7.6	250	4.4	110	2.9		2.5	18	280	8.2	260	3.8	115	2.5		2.5
19	295	7.3	250	4.0	110	2.4		2.6	19	290	8.4						2.5
zó i	270	7.2			120	2.0		2.6	20	265	8.2						2.5
21	270	7.2 6.8						2.6	21	290	7.6						2.5
22	270	6.6					2.0	5.6	22	300	7.0						2.5
23	295	6.0					2.6	2.4	23	310	8.5						2.6
							-40										

Time: 75.00W. Sweep: 1.7 Mc to 18.0 No. Manual operation.

Time: 90.00%. Sweep: 1.0 Mo to 16.0 Me in 2 minutes and 30 seconds.

Time

330

340 320

300

300 300

P. LS Load P. L. Load P. Los LES LS-H3000

2.4 2.7 2.8

2.7

1.9

1.6

Doston, Massachusetts (42.40N, 71.20W)

7.1 7.0 6.5 6.2 6.3 6.7

8.0

May 1947

2.4 2.4 2.4 2.5 2.6 2.7 2.7

2.6 2.7 2.7 2.6 2.5 2.4

San Francisco, Culifornia (37.40 M. 122.20 W)

May 1947

FOR ma	1 m	tok5	h'Yl	40 P1	N. 1	407		To 117000
Time	h'72	1.14	H-31	To I	h'K	TOE.	_17-1	13-N3000
00	300	6.4					3.0	2.6
01	280	6.4					2.8	2.7
02	280	6,0					2.7	
03	280	5.8						2.6
04	280	5.5					2.4	2.6
05	280	5.6	310	3.2			2.1	2.6
06	240	6.6	260	4.0	100	2.5		2.6
07	350	7.6	220	5.0			2.6	2.7
	360				100	3.2	3.9	2.5
08		8.8	200	5.6	100	3.5	4.1	2.5
09	360	9.6	200	6.0	100	3.8	4.7	2.5
10	380	10.2	200	6.0	100	3.9	4.7	2.6
11	365	10.8	500	6.1		4.0		2.6
12	360	11.0	200	6.2	100	3.9	5.0	2.6
13	340	10.5	210	6.0	100	4.0	4.2	2.6
14	360	10.4	210	5.9	100	4.0		2.6
15	350	10.0	220	5.7	100	3.6		2.6
16	320	9.6	550	5.4	100	3.6		2.7
17	255	9.2	220	5.0	100	3.3		2.8
18	225	8.7	240	4.3	100	2.6	3.5	2.8
19	240	7.9					2.5	2.8
20	230	7.6					2.6	2.7
21	240	7.0					2.8	2.7
22	260	6.6					2.7	2.7
23	300	6.5					2.6	2.6

Table 10

-

Time: 120.00%. Sweep: 1.5 Mc to 18.5 Mc in 4.5 minutes.

Time: 75.0°W. Sweep: 0.85 Mc to 13.75 Mc in 1 minute.

8.0 8.0 7.9 7.6 7.5 7.4

310

5.3

125 125

Table 11 White Sands, New Mexico (32.6°N, 108.5°W)

May	194

Wuchang, China (30.60%, 114.40E)

Mav	7	Q,	47

Time	h' F2	tols	him	for1	PiE	for	Ø.	72-M3000
00	330	5.7					3.0	2.4
01	320	6.8					2.6	2.5
02	300	6.6					2.6	2,5
03	300	6.4					2.7	2.5
04	320	6.2					2.9	2.4
05	320	6.4	300				3,1	2.6
06	300	7.0	240	3.8	110	2.6	4.8	2.5
07	300	8.2	230	4.8	110	3.2	4.9	2.6
08	340	8.9	230	5.1	110	3.5	5.2	2.6
09	400	10.0	220	6.0	110	3.8	5.4	2.5
10	400	10.2	215	6.2	110	4.0	5.4	2.5
11	400	10.9	220	6.2	110	4.0	4.7	2.5
12	400	11.0	220	6.4	110	4.1	4.8	2.4
13	400	11.1	225	6.2	110	4.1	4.4	2.5
14	400	10.8	230	5.9	110	4.0	4.4	2.5
15	390	10.4	230	5.8	110	3.9	4.6	2.5
16	380	9.8	230	5.6	110	3.6	4.7	2.6
17	325	9.3	240	5.3	110	3.2	4.5	2.6
18	300	9.0	240		115	2.4	3.6	2.7
19	280	8.6					3.3	2.7
20	255	7.8					2.9	2.6
21	300	7.0					2.8	2.5
22	310	7.0					3.3	2.5
23	320	6.5					3.4	2.4

Time: 105.0°W. Sweep: 0.79 Mc to 14.0 Mc in 2 minutes.

310	Lols	h'71					
22.0			for	h'I	COE.		72-N3000
	10.0					3.3	2.7
							2.7
							2.8
							2.7
							2.6
							2,6
				130	24	~	2.8
							2,9
		250	2.0			5.2	2.8
							3.7
							2,5
							2,6
							3.6
						0.0	2.6
							2.6
							2.7
							2.6
						4.4	2.6
							2,7
		200	0.2	200			2,8
							2,7
							2.6
							2.6
							2.7
	300 280 300 310 270 250 275 370 380 395 400 395 340 310 300 310 328 325 320	280 9.0 280 8.3 300 7.6 310 7.7 270 8.8 255 9.8 275 10.1 370 11.0 380 12.0 395 13.5 400 13.2 390 13.5 375 12.5 375 12.5 310 12.0 300 11.5 310 9.8 328 9.4 328 9.4	280 9.0 280 8.3 300 7.6 310 7.7 270 8.8 250 9.8 275 10.1 250 380 12.0 260 385 13.5 280 400 13.2 280 395 13.5 280 395 13.5 280 395 13.5 280 396 13.5 280 390 13.5 280 391 12.5 280 390 13.5 280	280 9.0 280 8.3 300 7.6 310 7.7 270 8.8 255 9.8 275 10.1 250 7.0 380 12.0 250 7.2 395 13.5 250 6.9 400 13.2 250 6.5 390 13.5 260 6.4 375 12.5 245 6.2 365 13.0 250 6.5 310 12.0 280 5.7 310 12.5 260 5.7 310 12.0 280 5.2 300 11.5 310 9.8 328 9.4 325 9.7	280 9.0 280 8.3 280 7.6 310 7.7 270 8.8 130 250 9.8 120 275 10.1 250 7.0 120 380 12.0 250 7.2 120 385 13.0 235 7.4 120 395 13.5 250 6.9 120 400 13.2 250 6.5 120 395 13.5 250 6.4 120 375 12.5 245 6.2 120 375 12.5 245 6.2 120 375 12.5 260 5.7 120 310 12.0 280 5.2 130 300 11.5 310 9.8 328 9.4 328 9.4	280 9.0 280 8.3 300 7.6 310 7.7 270 8.8 255 9.8 275 10.1 250 7.0 120 3.5 380 12.0 255 7.0 120 3.5 385 13.0 255 7.4 120 4.0 395 13.5 250 6.9 120 4.2 400 13.2 250 6.5 120 4.2 395 13.5 250 6.9 120 4.2 400 13.2 250 6.5 120 4.0 380 13.5 250 6.0 120 3.8 380 12.5 250 6.0 120 3.5 310 12.5 250 6.0 120 3.8 340 12.5 260 5.7 120 3.5 310 12.0 280 5.2 130 2.8 328 9.4 328 9.4	280 9.0 280 8.3 300 7.6 310 7.7 270 8.8 255 9.8 275 10.1 250 7.0 120 3.0 285 13.0 245 7.0 120 3.6 6.0 386 12.0 260 7.2 120 4.0 6.2 385 13.0 235 7.4 120 4.0 6.2 385 13.0 235 7.4 120 4.0 6.2 385 13.0 250 6.9 120 4.2 6.0 400 13.2 250 6.9 120 4.2 6.0 395 13.5 260 6.4 120 4.0 336 13.5 260 6.4 120 4.0 336 13.5 260 6.5 120 4.0 336 13.5 260 6.0 120 3.8 340 12.5 260 5.7 120 3.5 4.4 310 12.0 280 5.2 130 2 8 5.8 310 12.0 280 5.2 130 2 8 5.6 310 9.8 328 9.4 328 9.4

Table 12

Time: 120.0°E. Sweep: 1.2 Mc to 14.0 Mc in 2 minutes.

Table 13

4.0 4.8 5.5 6.0 6.1 6.1 6.2 5.8 6.6 6.0 4.7 (3.7)

tols Pill toll Pil toll the LS-H2000

2.6 3.1 3.4 3.6 3.7 (3.7) (3.6) (3.7) (3.8) 3.6 3.4 2.8 2.4

3.9

4.0

Baton Rouge, Louisiana (30.50W, 91.20W)

Time

P. 13

May 1947 .

Maui, Hawaii (20.8°H, 156.5°W)

May 1947

2120	P,13	2013	P.M	ron.	P,1	101	28s	P3-M3000
00 01 02 03	290	10.5						2.6
04								
06	265	7.2			110	2.2	2.4	2.5
07	230	8.6			110	3.0	3.4	2.7
08	230	10.1	230	6.2	110	3,6		2,7
09	280	10.9	220	6.6	110	4.0		2.4
10	360	12.2	220	7.0	110	4.0		2.4
11	380	13.1	230	7.0	110	4.2		2.5
12	370	13.7	220	6.7	110	4.3		2.5
13	370	14.3	220	7.0	110	4.4		2.6
14	370	14.4	220	6, 6	110	4.3		2.6
15	360	14.5	220	6.6	110	4.2		2.6
16	340	14.1	230	6.4	110	3,9	4.3	2.6
17	330	14.2	230	8.0	100	3.4	4.8	2.6
18	260	13.7	250	4.8	100	2.6	4.3	2.7
19	270	13.3					4.8	2. 1
50	290	12.1					4.5	2.6
21	280	12.0					3.9	2.5
22	285	10.8					3.8	2.6
23	280	10.5					3.7	2.6

Time: 150.00%. Sweep: 1.2 Mc to 18.0 Mc. Manual operation.

Time: 90.0°V. Sweep: 2.0 Mo to 15.0 Mo in 5 minutes.

7.0 7.0 8.7 6.1 6.4 7.1 7.6 6.3 10.0 10.7 10.1 11.0 8.8 8.8 7.5 7.5 7.5 7.1 7.1

Table 15

San Juan, Puerto Rico (13.40N, 66.10W)

Nay 1947

Guan I. (13.60%, 144.80E)

Nay 1947

Tipe	P, 15	Tol.5	P.M	€N.	h'E	for	(Xa	F2-H3000
oo l		9.6						3.7
01		8.7						3.7
02		8.2						2,8
03		6,4						2.8
04		7.9						2.7
05		7.4						2.7
06		8.1						2.7
07	300	8.7		2.9			3.9 4.3 4.3	2.8
08	290	10.3		4.1		3,3	4.3	2,7
09	310	11.0		6.5		3,7	4.3	2.6
10	330	11.0		6.8		4.0		3,8
11	350	11.3		8.1				2.6
12	396	11,7						2.6
13	355	12.2						2.8
14	360	12.0				4.2	4.6	2.8
15	350	11.6		5.8		4.0	4,4	2.6
16	320	11.4		4.8		3.6	4.7	2.8
17	310	11.0				3.3	4.4	2,6
18	300	10.4				0.0	4.6	3.6
19	310	9.5					4.0	8.7
20	410	9.0						2.7
21		9.4						2.7
33	1	9.4						2.7
23		9.9						
-0		3.9						2.6

Time: 60.0°W. Sweep: 2.8 No to 13.0 Nc in 8 minutes.

Tipe	P, LS	1013	h Pl	rn.	h'E	for	73a	F2-M3000
00	300	(13.0)					3.8	(2.6)
'01	260	12.2					4.5	(2.9)
02	240	10.9					3.4	2.8
03	240	10.6					3.8	2.9
04	230	9.0					3.4	5.0
05	230	7.7					4.2	3.0
06	255	8.0					4.8	(2.8)
07	242	9.4					6,6	2.9
08	230	10.7					8.4.	2.6
09	230	11.6					9.0	2.3
10	220	12.4					8.5	3.2
11	210	13.1					6.5	2.2
12	220	13.8	230	7.0			7.0	2.2
13	220	14.1	230	6.7			6.5	2.2
14	222	14,3	230	6,6			7.0	3.2
15	235	14.1	230	6.3			7,4	2.1
16	240	14.4	248	6.2			5,5	2.2
17	250	14.2			110	3.2	6.2	2.2
18	270	13.8					5.4	2,1
19	330	12.0					4.8	2.1
20	430	11.5					2.4	2.0
21	420	10.9					2.4	(2.1)
22	400	11.4					2.2	3.3
23	360	(11.7)					3.2	(2.4)

Table 16

fine: 150.0°L. Sweep: 1.25 No to 18.8 No. Manual operation.

P.E

for

1.7 2.5 3.5 4.6 5.2 4.6 5.2 4.6 5.2 2.2

3.1 3.0 2.9 2.8 2.8 2.6 3.1 4.0

3.6 2.8 2.0 3.2 3.1

for

Table 17

Trinidad, Brit. West Indies (10.6°N. 61.2°W)

May 1947

Palmyra I. (5.9°N, 162.1°W)

tols.

13.2 (12.5) 12.3 11.5 9.8 7.6 7.5 8.8 10.3 11.5 12.0 12.6

h172

Tine

May 1947

73-103000

Time	h'F2	Lo13	h'71	for1	h'#	for	134	12-M3000
00	280	10.8						2.7
01	250	9,9						2.6
02	280	9.3						2,7
03	265	9.0						2.7
04	270	8.0						2.7
05	280	7.6						2.6
06	290	7.7		•			2.4	2.6
07	250	9.5			120	2.8	3.4	2.8
08	250	10.8			120	3.4	4.0	2.7
09	265	11.6	240	(6,0)	120	3.8	4.2	2.6
10	330	12.3	235	5.9	120	4.2	4.6	2,5
11	345	12.8	230	6.0	120	4.2	4,6	2.5
12	380	13.5	240	6.1	120	4.4	5.0	2.5
13	380	13.6	240	6.4	120	4.4	5.0	2.4
14	380	13.3	240	6.1	120	4.2	5.1	2.4
15	400	13.0	240	6.4	120	4.0	5.0	2.4
16	380	12.0	250	(5.8)	120	3.6	5.0	2.4
17	280	11.5			120	3.0	4.5	2.4
18	290	11.1					3.0	2.4
19	320	10.6					3.0	2.4
20	350	11.4					2.6	2,4
21	340	11.6						2.4
22	320	11.8						2.5
23	300	11.4						2.6

12	275	13.1	200	5.6	100	
13	280	13.3	200	5.6	100	
14	280	13.3	200	5.4	100	
15	250	13.3	210	5.2	200	
13 14 15 16 17 18 19 20 21	250 250 245	13.2	230	5.6 5.4 5.2 6.3	200	
17	245	13.0		_	110	
18	270 370 410	12.6			150	
19	370	11.6				
20	pizo	11.0				
51	350	11.8				
22	310	12.0				
23	290	12.9				

210 210 205

Time: 60.0 W. Sweep: 1.2 Mc to 15.5 Mc. Manual operation.

Time

P, LS

Time: 157.50W. Sweep: 1.0 Me to 13.0 Me in 1.6 minutes.

Table 19

Churchill, Canada (58.80N. 94.201)

April 1947

Table 20

for

344.5.5.5.5.5.5.5.5.4.02.7

h'I

for

1.94 2.86 2.35.66 3.55 3.66 5.55 3.66 1.7

11a

2.8

2.662753535435970913533322.1

Prince Rupert, Osnada (54.3°F, 130.3°W)

2072

5444444566778888888876655

hir

April 1947

P2-X3000

Time	P, LS	to13	h'Fi	foli	P. F	for	São.	12-K3000
00	300	5.9					3.9	2.6
01	290	5.5 4.9					3.4 2.8	2.6
02 03 04 05 06 07 08	305	4.9					2.8	2.5 2.6 2.6
03	340 320	4.0			110	3.0	2.6	5.4
O ₇ t	340	4,2			130	2.9	2.6	2.6
05	335 340	5.0			120	2.7	2.6	2.7
- 06	340	5.2	305	3.5	120	3-0	2.5	2.7
07	320 345	5.2 5.4 6.3	305 260 260	4.6	110	3.0		2.7
08	345	6.3	260	4.6	110	3.4	2.5	2.7
09	380	7.0	260	5.0	110	3.4 3.4	3.2	2.6
10	415	7.0	250	5.0	100	3.4 3.4 3.4	3.2	2.6
	1430	7.0	270	5.2	110	3.1	3.2	2.6
11 12 13 14 15 16 17	410	7.8	250	5.3	110	3.1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.5
13	380	8.5	5/10 5/10	5.1	110	3.3	3.0	2.5
14	340	8.8	240	5.1	100	3.3	3.2	2.6
15	380 340 360 340 315	9.2	250	5.2 4.8 4.2	100	3.3 3.3 3.3	2.6	2.5 2.6 2.5
16	340	8.7	250 245	u g	100	3.2		2.5
17	315	8.0	250	4.2	100	3.0		2.5
18	300	7.7	290	4.0	110	2.9	2.5	2.7
19	310	7.9	-	-	110	2.5	,	2.7
19 20	310 300	6.3			125	2.9		2.6
21	305	7.9 6.3 6.0 5.4			110	2.7	3.4 6.5	2.7 2.6 2.6 2.6 2.6
22	300	5.4					6.5	2,6
. 23	280	5.8					3.9	2.5

Time:	90.0°%.							
Sugar 1	2.2 No	+0	16.0	Mo	4m 1	minnte.	Manus a 7	ATTANA PER AN

Time: 120.00W. Sweep: Manual operation.

Table 21

h'Fl for h's for fis F2-H3000

2.3 2.6 3.0 3.4 3.6 3.8 3.8 3.7 3.5 3.0 2.6 1.8

St. Johns, Newfoundland (47.6°M, 52.7°W)

210

220

3.6 4.0 4.3 5.0 5.4 5.6 5.6 5.6 5.6 5.3 5.0 4.8 4.2 90 100 90 90 90 90 90 90 90 100 100

tols.

6.4 F4.2 4.0 F4.1 F4.9 6.2 6.7 7.8 8.3 8.8 9.8 9.8 9.8 10.1 9.8 8.9 9.8 8.9 9.8

April 1947

1.3 1.9 2.6

3.5 3.6 3.7 3.8 3.7 3.6 3.3

2.7 2.6 2.8 2.6 2.7 3.2 3.2 3.0 2.9 3.0 3.0 3.0 3.0 3.1 3.1 3.0 2.7 2.7 2.7

Wakkansi, Japan (45.4°N, 141.7°E)

April 1947

Time	P, LS	2013	hill	tol1	h'E	for	fEs	F2-M3000
~	700							2.5
00	300	8.0						2.5
01	300	7.7						2.6
02	300	7.6						2.6
03	270	7.4						2.6
04	280	6.9						2.5
05	300	7.6						2.5
06	250	9.0			120	2.3	2.6	2.7
07	240	10.2			120	2.7	3.0	2.8
98	260	11.0	235		120	3.4	3.8	(2.8)
09	260	11.1	240		110	3.7	4.0	2.9
10	270	11.5	250		110	3.9	(4.7)	2.8
11	295	12.4	240		100	3.8	4.6	2.7
12	300	12.5	235				4.3	
13	290	12.8	250		120	3.9	4.4	(2.8)
14	270	12.2	225		120		4.1	(2.7)
15	270	11.9	240				(3.6)	(2.7)
16	270	11.3	240				(3.5)	2.8
17	250	10.7	220		130	2.7	(3.0)	(2.8)
18	245	10.5					• • • • •	(2.8)
19	250	10.2						(3.0)
20	240	8.4						(2.8)
21	250	8.3						2.9
22	275	8.2						2.6
23	275	8.0						2.6
20	2/0	0.0						2.0

Time: 52.5°W.

Mae

P.15

Sweep: 1.2 Mc to 20.0 Mc. Manual operation.

Table 23

Fukaura, Japan (40.5°N, 139.9°E)

Apr11 1947

Shibata, Japan (37.90N, 139.30E)

April 1947

Time	P, LS	tols.	h'D	f°F1	P.E	for	£50	P2-M3000
00 01 02 03	310 310 300 300	7.5 7.4 7.2 6.9 6.5 7.0						
010000000000000000000000000000000000000	300 320 275 240	6.5 7.0 8.4 8.8			120 120	2•3 2•6	1.6	
14 15 16 17 18 19 20 21 20 21	260 260 285 300 300	8.6 8.2 8.0 7.8 7.7					5•0 5•4 5•4	

Time: 135.0°E. Sweep: 1.0 Mc to 17.0 Mc.

Time	P,15	to15	h'Tl	for	h'E	for	1Es	F2-M3000
00	290	8.3						2.7
oi l	290	8.2					1.8	2.7
03	280	7.9					1.7	2.8
03	260	7.2					1.4	2.8
04	290	6.8					***	2.6
05	300	7.1						2.7
08	240	9.7			120	2.2		3.0
07	230	11.3			110	2.8	2.5	3.0
08	230	12.1	21.5		110	3.4	3.6	3.0
09	240	12.6	230		110	3.7	4.4	2.9
10	245	12.8	220		110	3.9	4.4	2.9
	250	13.1	230		110	3.9	4.3	2.8
11			230		110	4.0	4.4	2.7
13	250	13.3				4.0	4.5	2.7
13	270	13.2	230		110			
14	260	13.0	225		110	3.8	3.5	2.8
15	250	12.9	230		110	3.6	4.0	2.8
18	235	12.2	230		110	3.4	2.6	2.9
17	240	12.0	230		100	2.8	3.3	2.9
18	250	11.6			120	2.0	3.7	3.0
19	250	10.6					4.0	3.0
20	250	8.8					3.4	2.8
21	260	8.6					3.0	2.8
33	280	8.7					2.0	2.8
23	275	8.5					2.0	2.8

Table 24

Time: 135.0°E. Sweep: 1.0 Mc to 17.0 Mc. Manual operation.

Time: 135.0°E.
Sweep: 1.0 Mc to 17.0 Mc. Kanual operation.

Data for April 1 through 22.

Table 25

Tokyo, Japan (35.70%, 139.50E)

April 1947

Yamakawa, Japan (31.20%, 130.60%)

April 1947

Time	h 12	Lols.	h'Fl	tol.	h'#	for	178a	72-M3000
00	290	9.2					2.1	2.6
01	290 265	9.0						2.6
02	265	8.5					2.3	2.7
03 04 05 06	560 5/10	7.8						2.6
014	260	7.2					2.0	2.6
05	290	7.5					2.0	2.6
06	230	10.0			100	2.3	3.0	2.9
07	550	11.7			100	3.0	3.6	3.1
08	550	12.4	220		100	3.5	3.8	3.0
09	230	12.6	210		100 -	3.6	4.2	2.9
10	5/10	13.0	230		100	4.0	4.5 4.4	2.5
11 12	260	13.2	550		100	4.0	4.4	2.5
12	290	13.7	220		100	4.0	7.0	2.7
13 14 15 16 17	310	13.7	220		100	h*0	3.9 4.2	2.7
14	300	13.6	550		100	3.9	4,2	2.7
15	290	13.2	550		100	3.8 3.4	3.8	2.7
16	270	12.9	550		100	3.4	3.9 4.1	2.7
17	250 240	12.7	5/10		100	3.0	4.1	2.8
18		12.2			105	2.0	3.7	2.9
19	230	11.2					3.5	2.9
20	S ₇ 10	9.6					3.5 3.6	2.7
21	270	9.4					3.1	2.5
22	300	9.5					3.0	2.6
S2	280	9.4					2.3	2.7

Time: 135.0°E.
Sweep: 1.5 Mc to 15.0 Mc in 15 minutes. Menual operation.

Tine	h' 72	1012	h'Fl	f°F1	h'E	for	15a	72-H3000
00	290	10.9					2.4	2.8
01	260	10.3					. 1.9	2.8
02	280	9.6 8.6						2.8
02 03 04	260	8.6						2.5
04	265	7.8 7.5						2.6
05 06	290	7-5						2.6
06	280	9.4			120	2.0		2.5
07	240	9.4			110	2.8		2.6 2.6 2.6 2.8 3.1
08 1	240	12.0			110	3.3	4.2	3.0
09 10	240	12.5			110 105	3•6	5.0	2.9
10	250	13.1	230	4.9	100	3.9	5.0	2.7
11	280 2605 280 280 280 280 280 280 280 280 280 280	12.5 13.1 13.6 14.1 14.2 14.3 14.2	230	5.3	110 110 110 105 105	3.5 3.6 3.9 4.1 4.2 4.2	5.2	3.0 2.9 2.7 2.7
12 13 14 15 16 17 18	260	14.1	230 230 230 230 240 235	5.3 5.6 5.4 4.8 4.1	110	4.2	5.2	2.7
13	265	14.2	230	5.6	110	4.2	5.1	2.7
14	260	14.3	230	5.4	105	4.0	5.0	2.6
15	260	14.2	230	4.8	105	3.8 3.6 3.2	5.1 5.0 4.9 1.4 3.8	2.6 2.7 2.7 2.7
16	250	14.0	240	4.4	100	3.6	н •#	2.7
17	270	14.1	235	H*H	110	3.2	3.8	2.7
	270	13.5			110	2.5	4.0	2.7
19	260	12.6					3.9	2.5
20	265	11.4					3.7	2.6
21	270 260 265 290	14.1 13.6 12.6 11.4 10.4					3.2	2.7 2.8 2.6 2.6 2.6
22	300	11.2					2.8	2.6
23	290	11.1					2.2	2.7

Time: 135.0 %. Sweep: 0.6 Mc to 16.5 Mc in 15 minutes. Manual operation.

Table 27

Chungking, China (29.4°N, 105.8°E)

April 1947

Okinawa, I. (26.3°N, 127.8°E)

April 1947

Time	P, LS	Loks	h'71	fol)	P,R	(OE	(Ba	P2-M3000
00	290	12.4					3.8	2.7
01	280	11.4					3.3	8.8
08	280	10.0					3.2	8.8
03	280	8.6					3,2	2.7
04	285	7.8					3.2	2.5
05	300	7.5					3.6	2.7
05	240	9.8			120	2.4	4.1	2.9
07	550	11.3			100	3.0	4.5	3.0
08	240	12.3	210		100	3.3	5.9	2.8
09	240	13.0	210		100	3.7	7.0	2.7
10	280	14.1	210		95		5.5	2.6
11	300	15.0	210	7.2	95		5.6	2.5
12	340	15.7	330	7.4	95	4.3	6.8	2.5
13	340	15.2	220	7.0	100	4.3	4.8	2.5
14	340	15.0	550	7.0	100	4.2	4.9	2.5
15	330	15.8	240	6,6	110	3.8	4.8	2.5
16	310	15.5	240	6.8	110	3.5	4.7	2.5
17	280	15,4	240		100	3.0	4.8	2.5
18	280	15.5					5.4	2.7
19	280	15.0					4.7	2.6
20	285	14.0					4.2	2.5
21	290	13.2					4.0	2.5
55	295	12.9					3.7	2.5
23	300	12.5					3.5	2.6

Time: 105.0°E. Sweep: 1.7 Mo to 20.0 Mo in 15 minutes. Manual operation.

Time	P.15	tol3	P, L	5°71	h'I	for		LS-N3000
00		14.9					3.1	2.9
01		13.2					3.2	2.9
02		12.3					3.0	3.0
03		9.7					3.0	2.8
04		8.5					2.6	2.7
05		7.8					2.5	2.7
06		8.2					2.6	2.7
07		10.6				2.5	3.2	3.0
08		12.3				3.2	4.8	3.0
09		12.8				3,6	5.5	2.8
10		13.6				3.8	5,3	2.7
11		14.6				4.1	5.4	2.6
12		15.5				4.2	5.5	2.6
13		15.5				4.2	5.2	2.6
14		15.6				4.2	5.3	2.6
15		15.8				4.0	5.0	2.6
16		16.1				3.7	4.4	2.6
17		16.0				3.3	4.5	2.7
18		15.8				2,6	4.5	2.8
19		15.0					5.0	2.7
20		15.0					3.9	2.7
21		15.4					3.4	2.7
23		14.8					3.0	2.7
23		15.2					2.9	2.8

Teble 28

Time: 135.0°E. Sweep: 1.6 No to 20.0 No. Manual operation.

Table 29

fore him for his for the P2-H3000

2.4 3.0 3.5 (3.6) (3.8) (3.9) (4.0) (3.8) 3.6 3.4 (2.5)

Johannesburg, Union of South Africa (26.205, 28.00 E)

210 210 210

210

April 1947

2.2

3.6 3.0 2.8 2.1 2.2

Rerotonga I. (21.3°S, 159.8°W)

March 1947

Time	P, LS	to15	h'71	forl	h'E	for	fEs	F2-M3000
00		10.8						(2.6)
01		10.1						(2.6)
62		9.4						(2.6)
03		8.7						(2.5)
04		8.6						(2.7)
05		8.8						(2.7)
06		9.3						(8.8)
07		11.5						(2.7)
08		12.7						(2.7)
09		13.5						(2.7)
10		14.6						2.7
11		15.I						2.8
12		15.0						2.7
13		15.4						(2.8)
14		15.1						(2.7)
15		14.9						(2.8)
16	ł	14.3						(2.6)
17	i	14.4						(2.6
18		13.7						(2.7)
19	l	13.4						2.7
20		12.4						2.6
21		12.3						2.7
55		11.7						2.7
23		11.3						2.6

Time: 157.50%. Sweep: 2.0 Mc to 16.0 Mc. Menual operation.

Time

P, LS

260 260 250

260 260 250

Time: 30.0°E. Sweep: 2.0 Mc to 15.0 Mc in 8 seconds.

4.8 4.5 4.3 4.0 4.0 4.0 4.4 8.6

11.2

13.5 13.5 13.5

13.5

13.5 13.4 (13.1) (12.8) (12.4)

11.2 8.8

Table 31

Brisbane, Australia (27.5°S, 153.0°E)

March 1947

Canberra,	Australia	(35.3°s,	149.0°E)

March 1947

300 300 300 300 310 300 270 240 240	8.5 8.2 7.6 7.0 7.0 6.9 8.0 10.4 11.4						2.6 2.6 2.6 2.5 2.5 2.6
300 300 300 310 300 270 240	8.2 7.6 7.0 7.0 6.9 8.0 10.4						2.6 2.6 2.5 2.5
300 300 310 300 270 240	7.6 7.0 7.0 6.9 8.0 10.4						2.6 2.6 2.5 2.6
300 310 300 270 240	7.0 7.0 6.9 8.0 10.4						2.6 2.5 2.6
310 300 270 240	7.0 6.9 8.0 10.4						2.5 2.6
300 2 7 0 240	6.9 8.0 10.4						2.6
270 240	8.0 10.4						
240	10.4						
				120	2.7		
				115	3,2	3.9	3.0
240	12.2	550		110	3,6	3.7	3.0
270	12.5	220		110	3.8	4.0	3.0
295	12.5	220		110	4.1	4.1	2.9 2.9
			6.9				(2.8)
						3.0	2.8
							2.7
290							2.8
250		0.0	0.0				2.8
				100	.,		2.8
270							2.8
300							2.6
315							2.6
300							2.6
300							2.6 2.6
	300 300 330 290 250 260 250 270 300 315	300 (12.5) 300 12.3 330 12.0 290 11.9 250 11.6 260 11.5 250 11.0 270 9.5 300 9.3 31.5 9.0	300 (12.5) 220 3300 12.3 230 3330 12.0 230 290 11.9 240 250 11.6 260 11.5 250 11.0 270 9.5 300 9.3 315 9.0 300 9.3	300 (12.5) 220 6.9 330 12.3 220 6.9 330 12.0 230 6.3 330 12.0 230 6.3 290 11.9 240 6.5 250 11.6 250 11.5 250 11.0 2770 9.5 300 9.3 315 9.0 300 9.3	300 (12.5) 220 6.9 110 330 12.3 230 6.9 110 330 12.0 230 6.3 115 290 11.9 240 6.5 116 260 11.5 120 250 11.0 230 9.5 300 9.3 315 9.0 300 9.3	300 (12.5) 220 6.9 110 4.2 300 12.3 220 6.9 110 4.1 330 12.0 230 6.5 110 4.1 330 12.0 230 6.5 115 4.0 290 11.6 120 3.3 125 250 11.6 120 3.3 120 2.7 250 11.5 120 2.7 250 11.5 120 2.7 250 11.0 120 3.3 313 120 2.7 270 9.5 300 9.3 315 9.0 300 9.3	300 (12.5) 220 6.9 110 4.2 3.6 3300 12.3 220 6.9 110 4.1 3300 12.0 230 6.3 115 4.0 280 11.9 240 6.5 116 3.7 280 11.6 120 3.3 280 11.5 120 2.7 280 11.5 120 2.7 280 11.0 0 280 11.5 120 2.7 280 11.0 0

Time: 150.0°E. Sweep: 2.2 Mc to 12.5 Mo in 2 minutes 30 ecconds.

Time	P. LS	Tols.	h'Fl	1017	h'E	for fra	F2-M3000
00	300	7.4					2.5
01	300	7.0					2.6
02	300	6.5					2.5
03	280	6.5					2.5
04	290	6.2					2.5
05	290	6.0					2.6
06	270	6.5					2.8
07	250	8.0			120	2.6	3.2
08	250	9.0			110	3.0	3.0
09	300	10.0	250	5.2	100	3.5	3.0
10	300	10.8	250	5.2	100	3.5	2.9
11	300	11.3	250	5.2	100	3.5	2.8
12	300	11.2	250	5.4	100	3.5	2.8
13	350	12.0	250	6.0	100	3.5	2.7
14	300	11.1	250	5.8	100	3.5	2.7
15	300	11.0	250	6.0	100	3.5	2.7
16	255	11.0	250	5.5	100	3.4	2.8
17	250	10.9			105	2.8	2.9
18	260	10.1			110	2.2	2.8
19	250	9.0					2.7
20	255	8.1					2.6
21	300	8.0					2.6
22	290	7.5					2.6
23	300	7.5					2.6

Table 32

Time: 150.0°E.
Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

Time

00

01 02 03

04

21 22 23

P. LS LOLS WILL LOL WIR LOE LES LS-W3000

115 105 105 105 105 100 100 105 110 115 120 2.5 3.0 3.2 3.4 3.3 3.4 3.5 3.4 3.3 2.8 2.5

5.0 5.6 6.0 6.4 6.0 6.0

6.5

6.1 6.0 5.5

5.5 5.2 5.2 6.5 7.4 7.5

8.6

9.5 9.1 (9.2)

8.0 8.4 (9.0) (8.5) (7.5) (7.5) 7.0 6.6

315

310 315 330

305

300

250 258 260

290 310

305 310

300 300

298 250

250 252 260

288 308 March 1947

3.5 3.4 3.4 3.2

Christchurch, New Zealand (43,503, 172,70%)

Time	h'72	fo13	h'F1	for1	h'E	#OT		To lunes
****	4.05	144	B. II	10/	- a.F	for		72-M3000
00	300	6.5					2.2	2.5
01	305	6.5					2.5	2.5
02	290	6.5					2.5	2.7
03	285	5.8					2.5	2.5 2.6 2.6 2.6 2.6 2.9
01	290	5.4					2.6	2.0
05	275	4.5					2.6	2.6
06	275 280	5.2				1.6	2.0	2.0
07	250	7.0				2.5		2.9
02 03 04 05 06 07 08 09	250 240	6.5 5.8 5.4 5.2 7.0 7.6 9.2	225	5.0		3.0		2.9
09	250	9.2	230	5.0		3.4		2.8
10	250	9.8	230	5.0		3.5		2.8
11	305	10.5	230	5.2		3.5		2.8
12	285	10.7	230	5.5		3.5 3.6 3.6		2.7
13	285	10.3	225	6.0		3.6		2.7
14	285 240	10.9	225	6.2		7.5		2.7
15	250	10.2	540	6.0 6.2 5.4		3.4		2.7
16	250	10.2	230	5.2		3.0		2.7
17	250 250	10.7	•			2.6		2.7
18	250	10.1				1.9		2.7
11 12 13 14 15 16 17 18	250	9.6					2.7	2.7
20	250	8.6					2.6	2.5
21.	270	9.6 8.6 7.6					2.6	2.6 2.6
22	285	7.1					2.6	2.5
23	300	7.0 °					2.1	2.5
							-7-	,

Time: 172.5°H. Sweep: 1.0 Mg to 13.0 Mg.

Time: 150.00%.

Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

245 240

240

Teble 35

Peshew	ar, Indi	a (34.09	N. 71.5°E)			Feb	ruary 1947
						+4		***
Time !	•	#GP-9	5.1 W:	PC P1	h ! W	£03°	ev.	To Manno

Time	•	tols	h'Fl	f°F1	h'E	for	f#s	72-H3000
00								
01								
02								
04								
05								
02 03 04 05 06 07 08 09								
og	300	10.5				3.0		3.1
10	330	11.5 12.3				3.2		
11	360	12.5				3.4		
12	330 330 360 360 360	12.5 12.6				3.5		2.9
14	1 390	12.0				3.5		
15	390 360	12.2				3.5		2.5
17	390 360 360 360 360	12.0				3.5 3.4 3.5 3.5 3.2 3.1 3.0		2.00
18	360 360	11.5				3.0 2.7		
20	330	8.3				C-0 1		2•9
10 11 12 13 14 15 16 17 18 19 20 21 22 2230	345	7.0						
S230	330 345 360 360	7.0 6.2 5.5						
_								

Time: Local.

Sweep: 1.8 % to 16.0 Mc in 5 minutes. Manual operation. *Height at 0.83 forz. **Both normal and abnormal values of E.

***M3000, average values; other columns, median values.

Delhi, India (28.6°N, 77.1°E)

February	1947
----------	------

Narch 1947

								••
Time		2015	h'Yl	ron.	h'X	for	The .	72-M3000
00	300	7.4						2.8
01	390 390 390 390 390 390 360 360 360 390 420 420	7.0						
02	390	6.0						
03	lins	5.6						
04	390	6.0 5.6 4.4						2.9
05	390	4.2						,
06	390	4.0						
07	360	8.0						
08	360	11.3						3.0
09	360	12.6						
10	360	13.3 14.0 14.2 14.6						
11	390	14.0						
12	390	14.2						2.8
13	390	14.6						
14	420	14.8 14.2						
15	420	14.2						
16		14.2						2.7
17	390	13.9						
18								
19		_						
02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	390	11.6						2.9
21	390	11.0						
22	390	10.0						
23	390	9.5						

Table 36

Time: Local.
Sweep: 1.5 Mc to 16.0 Mc in 5 minutes. Manual operation.
*Height at 0.83 f²F2.
**M3000, average values; other columns, median values.

Bombay, India (19.0°N, 73.0°E)

February 1947

Madrae, India (13.0°E, 80.2°E)

February 1947

								••
Tine	•	tols	h'Fl	forl	h'E	for	1Es	F2-M3000
00 01 02								2.8
03 04 05 06 07	330 360 360 360	(5.0) (5.1)						2.9
07 08 09 10 11	360 360 390 420	7.7 11.8 13.4 14.5 (14.9) (15.0)						2.8
08 09 10 11 12 13 14 15 16 17 18 19 20 21		(15.3) (15.3) (15.5) (15.3) (15.1) (15.3) (15.1)						
21 22 23	390 360	(14.g) (14.4)						

00					
00					
01					
02					
0.3					
-K. 1					
04					
OF					
2					
06					
0.7	lien	0 5			
01	7,0	8.5			
08	1480	11.5			
00	600	17 7			
60	000	*202			
10	660	13.6			
11	660	17.4			
	500	±30°			
12	690	12.8			
17	720	12 0			
-36	120	,			
14	720	12.8			
15	705	12.7			
16	660	12.7			
10	450 480 660 660 660 720 705 660 660	13.3 13.6 13.4 12.8 12.9 12.7 12.7 13.2 13.0 12.4 12.0			
17	660	13.2			
10	660	17.0			
10	000	17.0			
19	720	12.4			
ań	720	12.0			
20	120	10.0			
21	660	12.5			
22	720 720 660 540	12.5 11.6			
02 05 05 05 06 07 08 09 11 12 11 15 16 17 18 19 21 22 23	7.70				
23	1				

Table 38

• fore him for his for fee F2-M3000

Time: Local.

Sweep: 1.5 Mc to 16.0 Mc in 5 minutes. Menual operation.

*Height at 0.53 f°F2.

**N3000, ewerage values; other columns, median values.

Time: Local. Sweep: 1.8 Mc to 16.0 Mc in 5 minutes. Manual operation. Height at 0.83 f $^{\rm O}$ F2.

Table 39

Townsville, australia (19.40S, 146.50E)

February 1947

Table 40

Rarotonga I. (21.3°S, 159.8°W)

February 1947

Time	P. LS	Tols.	h'Fl	for	h'E	for	120	T2-H3000
00	260	10.5					2.1	2.9
01	250	9.9					2.1	2.9
02	250	8.7					2.1	2.8
03	250	8.0					2.7	2.8
04	250	7.5					2.4	2.8
05	250	7.0					2.5	2.7
06	275	7.2				1.7	2.4	2.8
07	240	9.0			100	2.7	2.8	3.1
08	245	10.0	240			3.3	3.6	3.0
09	282	10.8	225			3.6	5.2	2.9
10	300	11.0	205	6.0		3.9	(5.0)	2.8
11	330	11.5	200	6.4			(5.4)	
12	330	12.0	205	6.3			(5.3)	(2.8)
13	335	12.0	205	6.5			(4.6)	
14	332	12.0	210	6.6			(5.3)	(2.8)
15	325	12.0	200	6.0	100	3.9	3.0	(2.8)
16	325	11.5	222	6.0	100	3.6	3.0	2.8
17	300	10.5	228		100	3.2	3.2	(8.8)
18	250	10.1				2.5	4.4	2.8
19	260	9.8					3.4	2.7
20	285	9.6					2,5	2.6
21	300	10.2					2.9	2.6
22	300	10.5					2.6	2.7
23	275	(10.5)					2.7	(a.8)
	2.0	,,,					~	(0.07

Time:	150.0	OOE.								
Sweep:	1.0	Mc	to	13.0	Mc	in	1	minute,	55	seconds.

Tins	P, LS	tol5	h'Fl	forl	h'E	foe	fEs	F2-M3000
00		11.4						2.7
01		10.7						2.7
02		10.1						2.7
03		9.4						2.7
04		9.2						2.7
05		9.0						2.7
06		10.0						2.8
07		11.2						2.9
08		11.4						2.9
09		11.6						2.8
10		12.6						2.6
11		13.6						2.6
12		14.4						2.6
13		14.6						2.7
14		14.2						2.7
15	ł	13.9						2.6
16	1	13.4						2.6
17	}	13.0						2.6
18	1	12.5						2.7
19		12.0						2.6
20		11.4						2.6
21		12.0						2.6
22		11.9						2.7
23		11.9						2.7

Time: 157.50%. Sweep: 2.0 Mc to 16.0 Mc. Manual operation.

Time

P. LS Load P. W. Load P.E. Load

January 1947

Hobart, Tasmania (42.8°S, 147.4°E)

6.56 \$554.6.72 906 57.7.78 \$6.00 200.52 90.05 90.05 90.

February 1947

72-H3000

1Ba

2.0

2.4 2.4 2.7 2.4

3.4 3.5 3.9 4.0 3.5 5.5

2.9

2.7 3.0 3.2 2.6

Townsville, Australia (19.403, 146.50E)

Time	p, 15	1015	h'71	tou.	h'E	for	176	13-M3000
i								
00	250	10.0					. 3.0	2.9
01	250	9.1					2.6	2.8
02	270	8.5					2.9	2.7
03	260	8.5					2.9	2.8
04	250	8.0					2.6	2.8
05	260	7.2					2.0	2.7
06	250	7.4				2.0	2.8	2.8
07	240	8.4				2.8	3.4	2.9
08	250	9.4	230	5.5		3.4	4.0	2.9
09	312	9.8	550	5.6		3.7	5.5	2.8
10	340	10.1	200	5.8			6.2	2.7
11	380	10.5	222	6.1			5.7	2.6
12	370	11.0	205	6.0			6.2	2.7
13	350	11.0	200	6.0			5.5	2.7
14	350	11.0	225	6.0			5.8	2.7
15	350	10.6	200	5.7			5.2	2.6
16	350	10.5	225	5.8	100	3.7	3.8	2.7
17	330	9.6	225	5.5	100	3,3	3.8	2.6
18	250	9.1	255			2.6	3.5	2.7
19	300	9.1				1.8	3.6	2,6
50	320	9.3				-	3.1	2.6
21	300	10.0					3.1	2.6
25	300	10.3					2.8	2.7
23	278	10.5					2.8	2.8
								~.0

Table 42

Time: 150.0 E. Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Time: 150.0°E.

Sweep: 1.0 Mc to 13.0 Mc in 1 minute and 55 seconds.

Rarotonga I. (21.3°S, 159.8°W)

.7.	-	10117

Hobert, Tasmania (42.8°S, 147.4°E)

January 1947

Time	P, LS	tols	hirl	f°71	P.E	for	£72.	NS-M3000
00		10.8						
01		10.0						
02		9.4						
03		9.0						
04		8.5						
05		g.3						
06		8.8						
02 03 04 05 06 07		8.8 9.7						
08		10.5 11.4 12.1						
09		11.4						
10		12.1						
11		13.2 14.5 14.6						
12		14.5						
13		14.6						
14		14.5						
15		13.4						
16		12.3						
17		13.4 12.3 11.9 11.2 10.6						
18		11.2						
19		10.6						
08 09 10 11 12 13 14 15 16 17 18 19 20 21		10.3						
21		10.5						
22		11.0						
23	Ì	11.1						

Table 43

Time: 157.50%. Sweep: 2.0 Mc to 16.0 Mc. Manual operation.

MA TO	h'F2	2013	hirl	40.91	h'E	for	12.	F2-M3000
Time	A. J.G.	- Ale	A. I.A.	ron_				LC PAYY
00	258	7.0					2.8	2.7
01	260	6.5					2.8	2.71
03	260	6.0					2.1	2.6
03	252	5.4					2,5	2.6
04	275	4.8					2.2	2.7
05	260	5.0			100	1.8	2.4	2.9
06	240	5.7	250		100	2.6	2.8	2.9
07	250	6.3	230	4.5	100	3.1	3.5	2.9
08	340	6.6	222	4.9	100	3,4	3.8	2.9
09	375	6.9	212	5.2	100	3.6	3.6	2.7
10	362	7.0		5.6	100	3.8	4.2	2.6
11	395	7.2	205	5,6	100	3.9	4.5	2.6
12	405	7.4	202	5.7	160	3,9	4.5	2.5
13	400	7.6	200	5.5		3.9	4.4	2.7
14	400	7.5	200	5,5	95	3.9	4.5	2.6
15	385	7.6	500	5,4	95	3.8	4.1	2.7
16	375	7.8	210	5.4	100	3.5	3.6	2.7
17	340	7.5	220	5.0	100	3.3	3.5	2,7
18	275	7.8	240	4.6	100	2.9	2,9	2.7
19	250	7.5			100	2,2	3,4	2.8
20	270	7.8					3.5	2.7
21	260	8.1					3.4	2.7
22	262	7.6					3,5	2.6
23	265	7.3					1.6	2.7

Table 44

Time: 150.00 E. Sweep: 1.0 Mc to 13.0 Mc in 1 minute and 55 seconds.

U.S.S. Canisteo. Fyrd Expedition (66°S, 105°W) January 1947 Calcutta, India (22.60N, 88.40E)

December 1946

Time	P, LS	tols	h Fl	fori	h'E	for	1Es	F2-M3000
00	310	7.0						2.9
01	300	7.0						2.9
02	310	7.5						2.8
03	320	7.0			110	2.6		2.8
04	310	7.5	260	4.2	100	2.7		2.7
05	300	7.4	255	4.6	110	8.8		2.8
06	330	7.5	260	4.7	105	3.1		2.8
07	300	7.5	260	5.1	105	3.2		2.7
08	350	7.5	250	5.3	100	3.2		2.8
09	335	8.3	255	6.0	100	3.3		2.7
10	350	8.0	260	6.0	100	3.4		2.8
11	320	7.0	260	5.6	105	3.5		2.8
12	350	7.8	250	5.8	100	3.5		2.8
13	390	7.0	260	5.8	110	3.6		2.8
14	370	7.0	250	5.8	110	3.5		2.9
15	375	8.2	260	5.7	100	3.2		2.7
16	400	8.0	260	5.5	105	3.3		2.7
17	350	8.0	260	5.2	120	3.1		2.8
18	350	7.5	260	5.0	120	3.1		2.7
19	340	7.2	260	4.7	110	2.9		2.8
20	310	7.2		-3	120	2.7		2.7
21	300	7.0			100	2.5		2.6
22	320	7.0						2.8
23	320	6.8						2.9

Time	P. LS	TOLS	h'Fl	for	h E	for	£Es.	F2-M3000
00	(330)	(11.0)				1.0		(3.0)
01		(9.4)						
02		(8.0)				1.1		
03	(300)	(5.8)				1.1		(3.1)
04		(4.6)				1.2		
05		(4.2)				1.0		
06	(330)	(4.6)				2.0		(3.0)
07		(7.7)				3.0		
08		(11.c)				3.5		
09	(360)	(13.2)				3.9		(2.9)
10		(14.2)				4.2		
11		(14.5)				4.2		
12	(360)	14.2				4.4		2.8
13		14.6				4.3		
14	ł	14.6				4.0		
15	360	15.0				3.8		8.5
16		14.6				3.4		
17		14.9				3.0		
18	375	14.8				2.3		2.8
19		14.4				1.9		
20		14.7				1.5		
21	345	14.0				1.1		2.9
55		13.5				1.0		
23		13.0				1.0		

Table 48

4.1 4.8 5.1 4.9 5.1 5.1 5.2 4.9 4.6 4.6

(3.4)

Table 46

Time: Local.

Calcutta, India (22.6°N, 88.4°E)

November 1946

Fribourg, Germany (48.1°E, 7.8°E)

Time h'72 fore h'ft fort h'E

6.4 6.1 6.0 5.7 5.5 5.6 6.6 7.2 7.9 8.0 7.9 8.1 8.1 8.3 8.3 8.3 7.2

August 1946

fes F2-M3000

3.4 3.9 3.8 5.8 4.8 5.8 6.2 6.2 6.2 6.5 5.5 2.4 4.4 4.2 4.4 4.5

Time	P,15	tols.	\$1 m					
	11.12	1012	h'F1	for	h'E	for	fEs	F2-M3000
00	330	9.2						
01	0.50	8.8				1.2		3.0
os		7.4				1.1		
03	330	6.8				1.0		
04	0.00	6.1				1.0		3.0
05		5.6				1.0		
06	330	5.2				1.1		
07	500	8.0				(1.2)		3.0
08		10.2				2.1		
09	330	12.2				3.8		2.9
10	000	(13.6)				4.2		
11		14.2				4.4		
12	360	14.4				5.0		2.8
13		14.2				5.0		
14		14.4				4.8		
15	360	14.0				4.6		(8.8)
16		13.5				4.5		
17		13.6				3.2		
18	(360)	(13.2)				2.6		(2.8)
19	(000)	14.5				2.0		
20		14.9				0.5		
21	330	14.5				1.8		
SS		13.8				1.8		3.0
23		13.2				1.8		
		10.2				1.7		

Table 47

ime: 7.50 E.

Sweep: 2.0 Mc to 11.5 Mc. Manual operation.

Time: Local
Parabolic-layer method.

Time: Local.

Sweep: 1.0 Mc to 20 Mc in 27 seconds.

• Data taken from 11 January through 31 January 1947, only.

^{*} Farabolic-layer method.

Fribourg, Germany (48.0°N, 7.8°E)

July 1946

April 1943

						•		
Tine	P.15	1015	h'Fl	f0)7]	h'E	for	fEs	12-N3000
00		6.4					2.8	
01		6.3					2.7	
02		6.0					2.4	
03		5,5					2.2	
04		5.4					3.1	
06		5.6					3.6	
06		6.5					4.0	
07		6.9						
08		6.9					4.4	
09		7.1					5.4	
10		6.8				3.5	5.1	
ii							5.5	
		6.8			•	3.5	4.5	
12		7.0				3.5	4.3	
13		7.0				3.5	4.4	
		6.9				3.5	4.4	
15		7.1				3.5	4.3	
16		7.2					4.1	
17		7.1					4.4	
18		7.7					4.9	
19		7.7					4.0	
50		7.6					3.7	
21		7.2					5.7	
22		6.9					3.3	
23		6.6					3.2	

Ottawa, Canada (45.5°N, 75.8°W)

Time	P.15	Lo15	P,M	rop1	h'E	for	734	¥2-N3000
00	335	3.0					4.1	
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20	3 ⁴³ (33 ⁴) (325) (393) 28 ⁴ 281	3.0 2.6 (2.7) (2.8) (2.7) 2.9 3.8 4.4					7.40 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.5	
02	(334)	(2.7)					4.0	
03	\325\	(2.8)					3.4	
04	(393)	(2.7)					3.9	
2	264	7.8	248	2.7	177	2.2	3.9	
07	205	n'h	246		133	2.2	7.0	
08	295 334 355 365 376 376 379 347 321	5.1	5#5 5#6	3.4 3.9 4.1 4.5 4.4 4.3 4.2	127 125 122 123 118 118 122 122	2.7	3.6	
09	355	5.3	231	4.1	122	2.8	14.0	
10	365	5.5	231 221	4.2	123	3.0	3.9	
11	376	5.7	209	4.5	118	3.0 3.1 3.2 3.1 3.0 2.9 2.7 2.5 2.2 (2.1)	3.7	
12	384	5.6	210	4.4	118	3.2	3.9	
13	372	5.8	209 210 216 229 242 243 259 276	4.4	122	3.1	3.9	
14	350	6.1	229	4.3	122	3.0	4.0	
15	349	5.9	242	4.2	122	2.9	4.0	
17	797	5.7	245	3.9 3.6	121	2.7	3.6	
18	208	5.6	276	3.0	120	2.7	4.0	
19	282	5.6	-10	J.0	(123)	(2.1)	3 11	
20	296	5.1			122 121 125 130 (123) (120)	(2.3)	3.7	
21	298 282 296 294	5.1 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5			(130)	(2.3)	3.9	
22	310	3.7					3.7	
23	324	3.2					3.8	

Tiem: 7.5°E.
Sweep: 2.0 Mc to 11.5 Mo. Manual operation.
At least 3.5 Mc and less than 4.0 Mc.

Time: 75.0°W. Sweep: 1.93 Mc to 13.5 Mc. Manual operation. *Average values.

Table 51*

Ottawa, Camada (45.5°N, 75.8°W)

March 1943

Tine	P.15	1015	P.M	f°71	A'E	for	176	F2-M3000
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	298 3251 3559 3650 2877 256 295 329 338 324 292 285 266 267 284 285 284 285 284 285 284 285 284 285 284 285 285 285 285 285 285 285 285 285 285	16 524 3 9 0 6 16 9 0 9 3 0 9 8 7 3 5 9 6 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	180 237 222 215 214 208 212 228 231 258 240	3.7.3.9.1.4.3.3.2.2.4.0.0.3.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	140 129 125 121 120 123 121 122 124 123 127 131 150	2.6 2.2 2.5 2.7 3.1 3.1 2.9 2.6 2.6 2.0	4.00 3.00	

Time: 75.0°W. Sweep: 1.93 Mo to 13.5 Mo. Manual operation. *Averege values.

Table 52*

3.4 3.8 4.1 4.2 4.1 4.1 3.9

2.2 2.5 2.8 2.9 2.8 2.7 2.6 2.3

tols pin toll pin ton the

Ottawa, Canada (45.5°H, 75.5°W)

h'IZ

2222222245555666555443322

Time

February 1943

3.2 3.4 3.4 3.2 3.3 3.5

J2-M3000

Ottawa, Camada (45.5°N, 75.8°V)

January 1943

Time	P,15	₹0 1 2	h'Fl	f°F1	p,E	for	1Es	TS-M3000
00 01 02 04 05 07 05 07 07 08 09 10 11 12 13 14 15 15 19 21 22 23	330 330 350 350 300 300 250 300 260 260 260 260 270 270 270 270 270 270 270 270 270 27	747490682940243072358877	180 186 215 215 211 229 242	2.0 3.9 3.4 4.0 3.7 3.7 2.6	123 128 122 121 115 128 123 131	2.54 2.7 2.8 3.08 2.5 2.1	3.6 3.7 3.6 3.9 3.7 3.5 3.3 3.3	

Time: 75.0°M.
Sweep: 1.93 Mc to 13.5 Mc. Manual operation.
*Average values except fle, which are median values.

Time: 75.0°W.
Sweep: 1.93 Mo to 13.5 Mc. Manual operation.
*Average values except fie, which are median values.

Farm adopted June 1946

National Bureau Of Standards

TABLE 54
Central Radia Propagation Labaratary, National Bureau of Standards, Washington 25, D.C.

ONOSPHERIC DATA

1947 —

Kr.

(Characteristic)

A. H. S. R.E.P. 290 290 [289 [279 290 250 230 280 280 260 250 240 290 270 240 270 270 300 290 300 290 280 270 270 270 280 270 240 280 290x (300)x (280)x 2801 052 270 ₹ 23 J 330 260 280 280 042 (300) 275 230 U 22 ص: ص: M. S. L 320 270K 250 240 240 280 082 012 270 300 250 260 290 310 U 2 Calculated by:_ (299" 280 280 250 280 240 20 U Scaled by: ___ 430 × 480 × 340 × 250 × 300 220 300 280 400 420 320 260 290 450 430 350 265 24 23 21 16 550K 490K 400K A K 410 400 (300) (240) [460] 420 [370] 280 270 340 280 250 760 240 320 250 <u>6</u> J [3#9] 360 380 350 280 300 01# 08# 390 350 290 360 320 044 (OZ#). 400 370 310 (440) 430 (350) 2440 (450) U ₹ > J J Ŋ ν ٧ 440 K 420 K (550) [489] Joh#] 450 370 (350) (450) (380) 430 500K 1410gc 390 460K 450 450 23 (500) 470 014 (014) > U U U Ŋ 380 570K ₩ 80 K 540K 064 450 450 064 J J υ J U ω 1480JM 390 C K 430K 520K 420 (094) 550 064 380 700K C K 520K 480K 450 044 (054) 520 [470] (540) (530) (500) (470) (580) [560]N (490) 440 440 420 G K 610K [530] 480 500 (530) 570 [560] 560 530 ν γ 460 540 630 (540) 495 530 510 520 A K 520K 470K 510 K (580) 590 υ U U U S U 240 A K G K 620K M(0/L) (085) 380 390 024 (06#) 09# 525 535 520 410 450 (200) (210) 4 U 23 4 U U U T (560) (550) C Mean Time φ. G. K 014 520 [570] 470 2 y Ú Z U 9 10 J U J ∢ ر. ح 360 430 ν υ (52ge 500 × ن 500 450 (540)^A × (450) G K 610 (540) [540] Ġ U νí 75°W O ں Z U U 12 z A O A O 470 (590) (540) C 520 500 [550]º × ٠ د (500) 650K GK GK 580 540 520 545 370 380 280 390 380 430 009 570 C (600) A K 490 K (570)K A K 430 450 (210) (400) (400) (410) ر ال لا = U > J × > b ৬ U U U U × v × N P 370 (520) (590) (600) 550 b (025) 370 370 9 U Ú U Ų ₹ U ₹ J 17 ر لا (600) (600) 530K 089 590 K 500 015 (06#) 480 (575) 550 360 (600)x (540) 550 540 O 60 2 K U J y J < J ⋖ 12 620K ٠ ٧ 330 410 K [270]c × y U 420 310 580 240 620 J 90 Z J U U J 5 > Ġ N (470) G K (550)K 370 (560) (011) 250 210 260 (290) × الا 270 470 320K 450K 480K 600K 250 K 250 K (520)K 520 420 500K 580K 630 ν 290 420 480 (450) 500 300 380 420 430 230 340K Ų K U U Ŷ 0 Z z U [300] [310] [410] F 380 390 (410) 430 08 h (350) 520 A A J J < φ U U 90 ⋖ U J U 260K 320K 270 330 380K 300 280 220 330 320 260 290 420 310K 290K 320 260 270 0.5 U 320K 290 280 240 230 300 310 310 300 Wo 277.5°W No 39.0°W 250 250 4 J . Washington, D. C. 320 × 350 × 360K 290 × 300 K 320 K (330)K 1280 F [280] 260 (330) 290 260 340 280 (330) 300 260 (300) 3/0 K 270 250 280 280 300 03 280 230 250 330 300 310 380 300 290 280 310 300 280 5 270 360 300 280 02 . (390)K 290 270 320 280 290 290 270 230 270 240 300 310 260 240 260 300 270 270 280 290 ō 61 270 330 280 230 330K 280 (310)K 280 260 300 240 260 230 250 290 310 Observed at 8 61 Day 2 ю 9 Median 2 5 2 4 2 2 23 24 26 4 2 ۲-8 თ 9 9 _ 8 6 22 25 27 28 8 3 29 =

Sweep 10 Mc to 17.0 Mc - Monuel Ex June 12.0 Mc In June 12.1 June 12.0

Form adopted June 1846

TABLE 55
Centrol Rodio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

		1	1 1	1	-	ı	1	i	1	ı	ı	1	1	1	1	l	i	1	ı	ı	1	I	ı		.	•	ļ	ı		1	l	ı	ı	Į	1	1	1	25 .
	S.	ш							L	_		_												_											_			ооминитят вертаю ортсв. 1846 о - 101518
dords	A. H.	Z.																						L														r reprise ov
National Bureau Of Standards	(Institution)		23												67	1 (4.7)	3	7.5	(2.0)	7(5.3)	7.4	7	[4.1]	7.3	7.3	7.5	(2.0)	6.9	1.4	7.2	7.7	2.8	J			7.3	17	J. B. GOVERNMEN
reau	L. (Inst	Щ С.	22										L		7.2	7.2	9.9	2.8	8.0	× (#9)	7.7		[1,5]	(2.0)	7.8	1.7	(4:4)	2.0	8.2	(7.3)	8.0	7.8	J			7.6	Li	
nol Bu	M. S.	œ.	21								_		Ŀ		٤.۶	8.0	77	7.8	7.8	-	(8.6)	(7:6)	(2.2)	7.4	(7.7)	E(17)	(7.7)	(6.9)	(2.2)	(6.6)	(6.6)	8.0	J			7.7	81	
Natio	Scoled by:	Calcutoted by:	20												8.3	9.0	4 8.7 ×	7.8	7.9	6.2 4	8.0	[6.7]	(7.0)5	(87)	7.1	(2.6)	2.8	Н	7.2	2.0	2.9	7.5	ل			7.3	11	
	Scole	Calc	61												(8.5)	7:00	× 9.9	8.7	-	4.5.N	(8.6)	(2.7)	6.9	7.7	6.9	7.03	2.6	(6.3)3	7.2	2.0	4.7	7.3	J			7.2	3/	
			18	(8:3)	N	2	J	7.9		S	S	7.3	J	8.9	8.8	67	K 6.7 K	8.2		K 6.3 K		-	607	6.7	7.0	ĵ	4.6	K 6.2	-	-	7.7	6.3	J	-		7.0	22	
25, D.C.			11	N	61.0	2	ں	7.5	[89]	S	ა	76	J	J	-	2.6	* 6.0 K	∞ 0.0	7.8	K 6.0 K	7.7	(4.7)	6.9	6.7	7.2	ı	1.1	(6.2)K	1.1		_	K 6.7 K	ŋ			7.7	7.1	
oshington			91	ა	[8.5]5	(7.0)	7.7	1.1	200	>	S	7.6	>	J	-	1.4	y #2 >	7.7	8.0	K 5.9 K		1.4	(7.1)4	7.0			7.3	× 0.0 K		x (9.5)	(4.4)	x 7.7	J			7.2	24	
indords, ¥	4		92	ა —	192	14	8.1	3 (7.6)	2 79	7.5	S	7.7	7.0	บ		7.6	K 62K	7.6	7.8	K (5:9)*		7.5	(2.0)	8.7		K (5.6 C	(4.0)	<(5.4) (5.8)* (5.7)*	6.9		_	K 6.5 K	(7.3)			7.0	27	Cu
au of Sto	DALA	Mean Time	4	J	_	7.3	7.9	(7.2) (7.3)3	(2.8)3	2	A	Ľ	1.0	J	\vdash	7.3		7.3	1.6	£ <5.3 €			1 7.3	2.9	(0.L) H	(5.6 (6.3)"	(8.7) (1.5)	(8.8)	И	< (c.4)*	7.0	K 65.K	J				44	n 1/4 m
onel Bur	2	Mean	13	ე		J	7.6	¥	7.8	(5.206	I	1	7.7	30 6.5		1.74	いって	7.2			1 7.2 F		19 (72)	2(8.2)	_		_	(5)> 2)X C K		x(F7) k	J			7.2	43	Automotic B
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.	OLY SELECTION OF	75°W	12	ઇ	`	~	>	رن د	>	J	S) <[56]\$	(7.3)	<u> [(.3]</u>		69 9	K (6.2)	7.0	7.6			[7.0]	[7.0]4	9.9	(6.9) F	A D A	5:7	W <(5.3)		K (5.6)K		A H X	J		-	6.9	21	
on Labore		1	=	J	1 10.0	2	>	ტ	0	J	J	Jr (7.3)	2	1.9	-		KCK	-	8.6	\$ <(5.5)*	(6.9)		8.9	1.9 1/	6.9	κ Α	(6.1	(6.01 < 6.5/2 < (5.4/2)	[7.2]		(7.0)	C * ((5.5)	J		_	6.9	61	Sweep 3.1 Mc to 120 Mc - Manual St JUNE 1-11
Propagate	2		2	J	-	၁ 	(6.9)	35.55	(6.3)	J	J	Jr 15.7	H	J .	-	0.7	K CK	1.8	8.0	(5.4)x (5.1 8	16 6.7	(4.7)	J	JA [6.4]A	. 1		6 5.4	1 <6.5		\sim	_) C			6.7	61	c to 17.0
Radio			60		(9.9)	_	11 [6.8]"	(c:3) 6(c	-	ပ	3	8 (6.2)	J	J	. (6.3	5 ×	7.7			~	-		1 [6.4]"	(6.0)) K (5.6) K		, * (6.0				UK 6.3 K	(5.1)	_			23	3.1 M
Centro			80 .	>	(4:6)	Ν	14 (6.7))* <(53)	1	J	(8:5)	5.8	J J		. [7/2]	6.2	E 448 E	5.9	8.2		K 5.8 K	J	J	7.9 1			5.5	5.0 ×)	T.	6.6 5	1× (6.4)	5.5	_		6.1	14	Sweep
			5 07	× હ	J	~	1) [6.6]	<40 % (5.6) K	(6.3)	5.9	1.9 (5.8	1 65	5.8	-	٥٠	c * <47	5.2. 5.7		x 66 x	4 5.6	ગ	Je C		ن	٨ (ج.		1 5.0 F	J	X T			3.6	_			22	
			90 9	(4.0 G	C	6.3	(6.4)	5+X	J	A	(6.0)	5.6	1.9	ა		4 5.6		-	Н	4.68 49K	45 % 5.1 4		f [5.8]c	[5.8] 5.9		×		DE 47 E	-	1	DE H	6.2	4.5		_		7.	
1947		M _o	4 05			_		_	L		_	-				(5.1)3 5.4	33 \$ 34 4	7.4 (0	8:5 (5:3)		42 6 4.	5.4 (6.5)		[5:1]6 [5:		12		42 " (4.1) "	- 1		0 (5:0)	8 5.8	2 52		_	-	8/ 8	
June	(Month)	, Long 77.5°W	3 04					_	-	_		-		_				2)2 (4.0)			_	_	(8.0)	3	_	-	-		5		9 5.0	9.5.8	4 5.2	-			8/	
	aton.		2 03					_	-							6.4 5.5	4.3 K 3.0 %	(42) 7 (42)	(0.0)			٦)	υ υ	2] [[[.]			(2.1)	_	-		9 5.9	3 5.9	9 5.4		-	-	8/ 8	
Mc	Washington.	Lat 39.0°N	01 02				-		-		-	_					(4.5)× 4.	5.1%	2.0 6.5	6.0 (6.	5.6 " 4.0		J	6.9 [6.2]		-		(6.5) (5.3)		_	(7.7)	7 6.3	4 5.9	-		+	8/ 8	
	Ç.		00						-		_				6.6 5.9	9.9 8.9	(5.6) (4.	(S.8) S.	-			┪	_	(7.0) 6	,		(7.0) 6.	5	6.3 6.0	[(r,4]c (5.8)	5	7.2 6.7	6.3 6.4			-	8/ 8	
f°F2	(Characteristic)	OBSERVED DE	Day	-	2	. 60	4	5	9	2	80	o	01	=		13	14 (5.	15 (5	46 7	17 6	9 8	7	20	21 (7	7 22		24 (7	25 (6	26 6	27 [6	28 (7.	29 7	30	31			Count / 8	
	,								l	ļ					Į					[-	"		."			"		4	2	2	"	"		₹	8	

Form adopted June 1946

Notional Bureau Of Stondards Scoled by: M. S. L. (Institution) A. P. L. TABLE 56
Central Radia Propagation Labaratory, National Bureau of Standards, Washington 25, D.C.
IONOSPHERIC DATA

٠,			1	- 1	1	1	-			ı	1	1			!		1	1	r I	-	1							1	1					1	1		
	S	a.																																			
ards	Ŧ	R. E. F																												,							
Notional Bureau Of Stondards	(Institution)		2330											•	6.7	5.78	(6.0)	7.7	7.3	(6.4F"	7.3	C	(7.0)	(4.4.2)	(70)	(7.1)	9.9	9.9	6.9	325	17.77	8.9	b			7.0	11
au Of	(Instit	M. C. E.	2230												17	7.40	(6.3)	7.8	7.9	6.9" (6.2)" (6.45"	7.6	c	(7.1)	7.4	(8%)	7.7	7.2	7.07 (6.8)	7.5		(8.6)	7.9	ં			7.4	11
al Bure	M. S. L.		2130			-									7.9	2.8	7.2	7.9	7.8	6.9"	7.8	(8.6)	(7.1) (7.6) (7.1) (7.0)	2(8:1) 2 (1.1) 2 (8.9) 8.9	(8.6)	7.8	7.8	17.074	7.7	(4.6)	(7.9)	2.8	J			7.8	"
Notion	þ,	Calculated by:_	2030												8.3	8.3	7.2 4	8.6	7.8	AK	8.0	(4.6)	(7.1)5	(7.1) 5	7.5	7.7	(2.6)	67	7.5	_	(6.6)	7.8	c			2.6	17
	Scaled by:	Calcul	1930												8.3	9.0	6.8x (6.63"	7.9	7.6	6.2"	8.0	17.47	6.9	(8.9)	7.7	20	(2.2)	(6.4)	7.2	-		7.1	C			9.2	18
			1830												(6.8)	8.0	8.9×	8.2	2.9		78F	(7.0)"	6.9	8.9	1.1	૭	9.6	1.9	20	6.9	2.6		ગ			9.0	11
5, D.C.			1730												9.8	7.9	6.5%	8.3		6.2 4 6.14	7.6	12	7.0	6.7	6.9	6 *	7.2	4.0×	6.9	48.9	7.4	19.9	J			0%	11
Gentral Radia Prapagatian Labaratary, National Bureau of Standards, Washington 25, D.C.			1630												8.1	2.0	6.24	2.9	0.8	6.2 4	7.5 7.6	14.67	7.1	6.3	7.0	CK	7.0	29.8	17.07	6.6×	7.1	6.5%	e)			7.0	11
ords, Wash	4		1530												8.2			7.6	9.6	(5.6)"			(70)3	2 (6.9)	7.7	x 7.9	11.13	x8.5		6.6)	7.5	(77)	c			2.0	8/
of Stando	DAIA	me	1430												7.9	7.3	(2.9)	7.6	7.7	G " (5.8)" (5.6)"	16.97	7.4 (7.6)	7.3 (8.9	7.2	Cx 6.48	21 [7.1]	G * (5.7)*	8.8	C x (6.6)"	6.9	(22) 157	(7.3)			1.7	11
Bureau		Mean Time	1330												8.1	1.4	AK	7.1	7.5	G * (7.1	2.6	7.2 10	6.6.9) 8.9 29.71 8.9	6.9	0 "	(9.9)		A.	C × (6.4)"	7.2		ગ			-	91
, Nationa	TL	75°W	1230										-		8.3	8.9	(6.3) ³⁸	(7.2)	24	G *	(1.1)	7.4	(6.9)	8.9	7.0	(6.3)	4.9	6 "		Cr	7.2	A K	2			69	15
abaratar	IONOSPHERIC	7.	1130											,	8.0	5.9	C×	(7.1)*	7.4	G K	[7.0]e	6.9	[7.1]e	(6.5)		A *	G	154)*	7.7	N W	(0%)	48.9	6 4		-		9/
agatian L	2		1030												0	6.5	<i>G &</i>	7.4	7.8	Ğ,	G * (68) * (7.0) [7.0] (7.1) 7.1 [6.9] 7.2	(99) (99) [99]c 6.9	e (63) [7.1]e (6.9) [7.2]e 7.3 (7.0) 5	6.4 (64) [64] (6.5)	(6.9) (8.9) (9.9)	AKAK	G	GK	8(17)	X(89)	6.9	6.2 4	C			-	1/6
adia Prap			0930												(8.1)	9	· 5	1.8	7.9	Š	x3 (8.9)	(9.9)	e	(4.9)	(9.9)	, S	G	G ×	[72]	160) (63)	7.2	634	6			4.9	11
entral R			0830									,			(8.2)	0.9	C ×	6.9	7.7	, <i>5</i>	G ×	(9.9)	ย	4.9	6.0	(5:7)	155)	15.9)	A	AK	(6.2)	4.4K	5:7			6.0	21
o			0520												7.9	(5.6)	G ×	(9.9)	7.7	4.9×	5.6 FK		િ	[6.2]	1.9	(5.5)	5.7	5.5×	G	y V	(6.0)	634	2.5			5.7	15
			0630												U	2.4	6 .	5.3	7.4	4.9K	5.4×	c	2.9	6.0	6.3	5.4×	6.5%	4.8Fx	2	K K	5.9	(4.9)	5.5			5.5	15
1947	ı		0530												(6.6)3	450	17.1EK	5.0	4.9	4.8K	x18th	5.7	3.6	8.6	5.3	5.0FK	5.2	4.68x	c	(6.4)		8:3	5.5		-	7	?
	Ì	7.5°W	0430												مجزيم	1:5	3.0FK	0.4	5.5	477	4.7 FE	5.5	(2:4)		8.4	4.7	8.4	(40)	. 2	4.0	(4.8)	5.8r	0.50			8.4	*
June		, Lang 77.5°W	0330												8.8	4.50	315	4.1	2:7	S.grx	42.FX	8.50	(5.3)	(65)	5.3	5.2		46th	G	4.8	-	6.5	2:4			4:5	~
٦c		N-0.65	0230												2.6	6.0	3.9x	(43)	6.2	×38.50	4.8K		C	8:3	5.7	2.7	5.3		5.28	5.0	6.0	1.9	8.8				18
Mc	Wash	Lat 35	0130												5.7	6.6	4.6×	46 (43)	6.9	6.0	5.2 CK	6.2 (6.1)3	O	8.9	(65)		2.9	6.0	8.8	5.8	(4.4)	9.9	6.3			0.0	2/
f°F2	(Characteristic)	5 00	0030												6.3	8.9	4.9"	5.45	7.5		5.7K	65F	U	(6.9)3	(23)	8.9	6.6	(65)	6.0	5.6	(8.9)		6.5			6.5	,,
	(Cho	n navasan	Day	-	2	33	4	5	9	7	8	6	0_	=	12	13	14	15	91	17	18	61	50	12	22	23	24	25	26	27	28	29	30	31		Median	Count
				•						•		,		•				`		,			·			,				,		,	1				

Sweep_31_Mc to 170_Mc To 120_Mc To 1

Form adapted June 1946

TABLE 57
Central Radio Propagation Laboralary, National Bureau of Standards, Washington 25, D.C.
IONOSPHERIC DATA

ď																																					2	U. S COVERNMENT PRINTING OFFICE; 1844 O - TOSSIS
Jords	α																																					T PRINTING OF
Notional Bureau Of Standards	 		23																																			3 COVERNMEN
O DOG	1 L	ان	22																																			2
ol Bur		Н	21																																			
Votion	 - -	Calculated by:_	20																																			
7	Scaled by:	Colcul	61																									٧				260						
			8		z	Z	٧	C	- ∢	S	<	J	U	U	230	(230)	X K	8	220	210K	330	220	V	220	220	J	<	∢	220	4022	042	230	J			220	7/	
i i		I	1.	z	J	2	(250)	C	<	۲	S	U	U	U	200	2008	220K	220	220	210 %	220	210	4012	220	230	C, A	K	260K	,	< <	220	250K	O			0	1/6	
á B			9	U	J	(582)	250	280	∢	z	J	270	C	U	210	220	200x	210	220	₹	200	220	1530g	4002	220	220K	220	220K	(230)c	χ <	١,	2104	C			220	70	
Í		l	5	U	U	280	C	C	300	<	₹	Ų	U	J	200	210	×	200	230	200K	200	210	7	230	220	220K	(200)	220 R	061	×	<	300x	(022)			210	1.7	_
IONOSPHERIC DATA		ime	4	U	U	U	C	Ν	>	J	∢	J	U	J	061	210	A	C	210	220K	4002	061	K	210	×104	230K	200	220k 220k	4	× ×	T	(200)K	(022) 4002		$\overline{}$	$\overline{}$	13	Sweep 1.0 Mc to 25.0 Mc in 1/4 min
2	i	Mean Time	13	U	ij	×	250	ν	U	<	<	U	U	J	200	180 11	ر ×	061	180	200K	4042	[210]	230	200	200"	A K	200	230 K	J	υ ×	∢	220 K (200)K	J			0	1/4	Mc in 1/4
HER	7501//	ш	2	U	U	>	J	(270)K	U	U	2	z	U	J	6	190	220K	220	₹	190K	061	500	[500]	190# [200] 200	210	AK	200	220 K		×	061	A	180 #			0	7/	Mc to 25.
IONOSPHERIC	7		=	U	U	z	C	A A	₹	z	2	U	U	U	200	U	υ ×	190	<	230K	220"	200	230	1901	210	A K	210	210 K	٨	A K	200	180 K	061			200	(3	-07-de
Q			2	U	J	2	230	A	270	₹	z	2	<	U	081	170	υ ×	061	<	200K	230	190	J	₹	200	AK	210	200 H	٧	A K (210)K	4007	180K	U			0	† /	Swe
			60	U	U	U	240	(082)×	(280JV	U	₹	v	U	U	200	081	200x	061	200	180 H	180 K	210	C	V	220	220K	200	220K			210	220 K 180K	<			210	11	Sweep 1.0 Mc to 25.0
5			80	(390)	₹	υ	240	(2792 (280)	300	U	₹	z	(250)	U	[200]	081	230K		300	230K	200 K	C	2	200	230	AK	200	210K	١,	A A	220	×	012			220	14	
,			20	2	U	Z	(310)	(250)K	C	<	U	290	J	C	220	061	240 K	190 (230)	230	230 K	210 K	J	230	220	240	340K	230	220K	C	220K	∢	×	230		The Part of the Pa	0	8/	ľ
			90	E	U	U	C	CR	U	<	U	(300)	8	U	220	220	C	230	J	250 A	8	C	[5#g]	∢	340	230K	<	250K	C	K X	<	8	220			235	01	
19 <mark>47</mark>			90																	290x				-	310					290								
Ì	FOIA!	·	0.4																																			
June (Month)	ر اد	, Lang (1.5 W	03																																			
E (true	Woshington, D. C.	- 11	02																																			
	Wosh	Lat 3:	ō																																			
h'FI (Characteristic)	15 pa		00																				·															
(Cha	Observed at		Day	-	2	3	4	2	ø	7	80	6	0_	=	12	<u>-</u>	4	15	91	17	18	61	20	12	22	23	24	25	56	27	28	29	30	31.		Median	Count	

Sweep 31 Mc to 720 Mc - Monual B Automatic B - Monual B

Farm adopted June 1946

M. C. E. A. H. S.

> R. E. P. 22

M. S. L

23

2

03

05

5

00

Day

2

4 S 8

6 2 = 2 4 2

9

(=)

9 61 202

22 23

9

5

(Characteristic) f°FI Observed at ___

TABLE 58

Central Radia Propagatian Labaratory, Natlanai Bureau af Standards, Washington 25, D.C.

National Bureau Of Standards Calculated by:_ 50 Scaled by: ___ 6 カス 7 (4.7) 4.3 (52) [5.1] (4.1) 5.0 43 子 7 8 Œ 4.8 X 47 H (5.3) (5.3) 5.0 # (5.2) 5.0 6.0 (5.3) (4.8) 5.0 5.0 4.9 4.9 (5.8) 8 (5.5) 7 5.4 Z z 7 15.470 4.9 % 5.6 49 K 5.3 5.3 # 67 (2.6) (5,7) (5.3] 5.2 55 9 5.5 5.1 J 4.8 5.5 J S Z 5.2 K 5.7 5.6k 24 43 (5.8)3 (2:5) 5. A 5,5 [5.6]" (5.5) 5.5 5.8 (5.5) 5.8 (5.5) (5.5) 5.5 5.4 [5.8] 4 (5.9) H (5.8) 7 5.6 5.7 (5.7) 5.4 5.6 5 J Œ IONOSPHERIC DATA 5.5 (5.6) (5.6)" 5.5 5.7 5.8 H 5.8 H C K (5.2) K (5,5)x 5,5 K 5,3 K (59) [59] (58) (5.1] [5.1] J 5.5 4 J ~ > ٥ 2 Œ П 4.5 4.5 [6.8] (5.6) 12 ري [5.7] (5.9) 6.9 (5:5) (5:5) (5.4) 5.5 (5.8) 5.6 J J J > 2 [5.6]* (5.3) × 5.5 J (II) 2 2 J J > S (5:1) (9.5) (5.3) (5.5) 5.4 J [5.5]" 5.6" (5.1) (5.4) (5.5) [5.1] (3.5) (5.5) (5.4) (5.5) J 13:5 3.6 ¢ J > Z 2 z (5.3] S.5 K (5.5) 15 6.3 (5.7) 6.1 4.5 5.6 5.5 2 (>, 5.3 K (5.6) 5,5 J J ⋖ ل ڻ 2 6.4 (5.4) A K 5.2 K 4.9 5.0 (5.2) [5.4]4 ر ن 47× 49 K (6:4) (5.9) (5.3) (5.2) 5.0 5.0 5.6 5.4 J (5.4) (5.4) 7 J J 6.7 J J 5.1 60 5.18 (5.0) 5.0 4.8 K (4.5) 4.8 J 80 J J J J ٢ [4.3]" 4.7 K 4.3 × (6.0) (4.6) A (4.8) 4.5 K (44) (2.1) 5.0 4.9 0 7 20 4.4 Z ړ 7 7 J 4.0 K S K 3.8 x (4.9) (4.4) 90 7 J 4.0 J > 00 'n I _1 1 J 7 7 4.1 Œ (3.1) 7 0.5 Mc June 1947
(Unt) (Month) (Moshington, D. C. ۷ 04 Lot, 39.0°N , Lang 77.5°W

Sweep 3.1 Mc to 17.0 Mc - Manual 88 Automotic 87 - June 12.30

1

(3.4) × 0.5

5.3 K

A " 5.4 " 5.2 " (5.3) "

J

J

(5.4)4 (5.5)

ال

5.5

J

15

43

47

5.0

5.3

6.5

(5.5) 5.6 5.6

(5.2) 5.5 (5.5)

6

7.7

1.1

77

01

32

σ

22

止

Œ.

7.

S.1 ×

5.2 4

(5.3) (5.4) (5.3) FT 5.6K 5.7K

(5.4) X

5.3 4 (5.5) (49)x C K

7 (5.7)

4.3 K 1 (CH)

4.3 K ×(17)

5.2

(5.5)

(7:5)

5.7

(4:5) (6:3) 1(8.8) (5:3)

らら

6.

4.9

47

4.3

24

25

92 27 28 59 S

31

(5.1)K

3.8 16

A K (5:6)

× ک

5.2 K

477 × 1.5

[8.1] (5.2)

(5.4)

T

J

8.3 48

Œ

J (++)

J

7

5.5 F

S.S. K

5.3 K C K

A ×

5.6° (5.6)" 5.8 F

5.6 H

524 5.28 5.2 1 S.S.

(4.6) X

t O

45

1

#

5.7 0

5.7

Farm adopted June 1946

TABLE 59 Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

						,							1																								2	29
ards	A. H. S.	M. C. E.												. ,																								U. S. GOVERNMENT PROFIDE OFFICE; 1946 Q - 70819
Stand	ution)		23											Γ					-																			L GOVERNMENT
ogn Of	(Instit	R. E. P.	22																						_													pi I
al Bur	by: M. S. L. (Institution) A. H.		21	į					_																													
Nation	j.	Colculated by:	20																																			
	Scoled by:	Colcul	61												100	100	X001		100		100	100			110	100	011	100	110	110	110	100	U			001	14	
			18	٦ ١	1	0	٦	υ	ر ♦	J	J	ن ا	J	J	100	100	80K	80	90	90 K	90	100	[100]	100	100	C	100	100	100	90	90	90	C			001	17	
.5 D.C.			17					U							90	100	90 K		90	40K	08	C	001	100	100	CK		100K		90K	100	80 K	J			95	16	
Central Radia Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.			91					O,							100	100	70 K	90	16	90K	90	90	[90]C	80	90	1004		40 K	190JC	100 K		80K	U			90	18	
Jards, Was	4		15					ป							90	100	90K	90	90	90 K	90	90	90	80	06	80 K	100	40x	90	40K		Por	(100)			80	19	<u> </u>
of Stone	DAIA	Time	4					J							90	90	80K	06	90		90	90	06	80	40	40K	100	90K	_ `	90 K	90	×08.	90			40	19	Sweep 1.0 Mc to 25.0 Mc In 1/4 min Mc-Monuol M Automotic M
ol Bureau		Mean Time	13					J							90	100	C.K		90	80 K	90	90	06	80	100	40K		90x			80	80 K	J			90	15	Automotic E
ry, Notion		75°W	12					J							90	100	40 K		90	80 K	80	90	[90]C	80	90	90 K		90K		90K	1	90K	90			90	19	Mc to 25
Loboroto	IONOSPHERIO		=					J							90	J	C.K		96		06	06	90	100	001	100 K		90 K		90 K		80 K	80			90	17	Sweep 3.1 Mc to 17.0 Mc - Monuol Ki
pogotion	2		2					ال ×							90	06	CK		90		90	06	J	100	001	100K		90 K		90 K		804	J			06	7/	S S
Rodio Pre			60					. J							100	90	90K		80		90 K	90	J	80	90	100K		90 K		80K		90 K	80			0 6	81	3.1 Mc
Centrol			80					J							J	06	- 90K	06	80	90K		c	J	90	100	2001		90 K	1	_	100	90K	80			90	16	Sweep
			04					, J							11	100	90K	90	90	90	-	บ		100	001		01	K 100 K	C	100 K	90	90K	90	_		90	17	
			90	C. 4	CA	7	40	٠ ۲	CA	٥	4	0	7	ر ا	¥	100	C *	06	ป	90 K	A K	J.	[90]	A	100	11 OK	110	1001	บ	100 K	В	А	80			100	10	
947			05						_			L						100							100					100								
	£	, Long 77.5°W	04				_		L	L																												
7		Long L		_			_		_	_	_	_		_		_																			_	·		
5	Washington D.C.	Lot 390°N	02	_																																		
	1	19	ō				-		L	_				·					-			_								_								
ju L	(Characteristic)	Observed of	00	_					_					L					L										L							C.		
	1	ő	Poy	-	2		4	20	9	_	00	6	2	=	2	-	4	15	9	17	8	6	02	12	22	23	24	25	56	27	28	52	30	3.		Medion	Count	

Sweep 3.1 Mc to 17.0 Mc - Monuol IS Automotic IS June 12-30

Form adopted June 1946	National Bureau Of Standards	(Institution)	Scaled by: M. S. L. A. H. S.	Colculated by: M. C. E. R. E. P.
TABLE 60 Central Radio Propogation Laboratory, National Bureau of Stondards, Washington 25, D.C.	A + A Q CICLI 10 C 14 C 1	CONCORPERIO DALA		75°W Mean Time
	1947) ì		W
	June	(Month)	ton, D. C.	N , 277.5°
	Mc	ic) (Unit)	Woshing	, 390°
	'n	cherisi	1	

	(Char	ristic)	Woshing	Woshington, D. C.	June (Month)	⊕ ≘	947					O	OSP	IONOSPHERIC DATA	CD	ATA				1 0	Nati	onol Bur M. S. L	National Bureau Of Standards by: M. S. L. (Institution) A. H.	Of Sta		S	
1	200	5 00	Lat 3	N.06	Long 7	7.5°W	_1		I				75	- 1	Weon Time	-				o	olculated		O		Α. FI		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	00	ō	02:	03	04	05	H	H	90	60	01	=	12	-	_	_	Н	Н	Н			-	23			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-							J											1						-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								J											1	,							1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								ა	,										7	_ \							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								J	1										1	_ \							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								J		บ			Cr		J	()				ر							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								J								H			1		L				_	L	ı
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								7											1	_ \			_				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-							9											7	- 1					_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1							J											1	,		-	-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	-						9	1										1							L	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-							J	Į,										1					_		L	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								T	┢	J	Я	a	H	-	↓	┢	Ь	_	-	-	3					_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								2.4		L.	(3.6)	(3.8)		•	-	├	\vdash		\vdash	H	2)				_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								J					J		1_		١.	×	1	щ¥			_				ĺ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							2.0	T.	1 - 1		В	(3.9)			-		_	-		-	سد.						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-							J	3.3		3.8	3.9	Ħ	┢		┝	L	-	-	┝	_		_				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								(2.4)× 29		3.6 K				3.9) × (3		l	6 K (3.)	UK (2.6	1	¥						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								H			3.7 K	4.0	Э		-		_	-		-	9(0:						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								J		บ	3.9	3.9		_		\vdash					_						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								[2.4	J	ບ	J		_			-	_		-								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								4	3.0	H	3.8	[3979	H	H		<u> </u>	-		-	Н						_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							1.6		\vdash			4.2							Н	Н)						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								(2.2	W X			414	4.1 K							-	2 F						
C C A								2.0		3.5		Н			_)				-	1						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					•			A	3.1			39 K								L.,	2						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								J				В		_		-	H		-	_	7		_			_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							(1.9)					(4.0)K	A H			-			SK (2.		_						
(2.5) 3.5 k (3.7)k A K								4			3.9	(4.0)	_	_	-						 -						
25 31 36 37 C 39 40 C (3.9) R C C C C C C C C C C C C C C C C C C								H	\subseteq		(3.7)*	1	Œ		¥	1				-	0 5						
2.5 3.1 3.4 (4.0) (4.1) (4.1) (4.0 3.9 3.7 3.4 2.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1								(2.5		3.6	3.7	J	3.9	40		_	_	-	_		. 1						
2.5 3.1 3.6 3.9 (4.0) (4.1) (4.1) 4.0 3.9 3.7 3.4 2.9 1.0 1.1 1.0 1.0 1.1 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.1																_											
2.5 3.1 3.6 3.9 (4.0) (4.1) (4.1) 4.0 3.9 3.7 3.4 2.9	+								Н			Н	-	\vdash	⊢	Н	Н	Н		\Box							
1 16 14 15 12 10 13 12 17 14 14 16 17	-							2.5	-	3.6	3.8	-	_	_	_	-	-	_	_		,						
								6	91	J r/	15	12	0/						-		3						

Sweep 3.1 Mc to 17.0 Mc-Monuel Ed Automatic Ed Automatic

Form adopted June 1946

A. H. S.

National Bureau Of Standards (Institution)

M. S. L.

Scaled by:

TABLE 61 Central Radio Propogation Laboratory, National Bureou of Standards, Washington 25, D.C.

IONOSPHERIC DATA

June 1947

(Characteristic) (Unit)

Washington, D. C.

Observed of

F. H. L. 3.8 100 (3.0),10 6.2 90 9 00 23 3.8 90 3.2 100 (6.0),00 (3.4),10 (2.5)20 (7.3),10 3.7,00 4.4,120 4.1 100 35 90 2.3 17 22 J. T. D. 8.2 100 4.0 90 4.4 90 3.3 100 (3.6) (4.8) 00 4.3 90 4.0 18 2 J Calculated by: __ 3.8 120 101106 3.8 90 5.8 90 5.8 40 3.6,00 10.6 2.7 06 44 9.2 100 4.7,00 50 .4.3 8 4.7 100 6.9 3.8,00 2.4 100 4.7 90 3.5,00 5.9 100 4.7 120 6.1 110 4.7,00 5.5 100 4.1 110 3.7,00 <u>(a)</u> 4.5 120 3.5,00 4.7,00 4.4 110 (3.3) 20 5.1 110 4.7 18 5.0 100 4 (3.8) 90 (3.7/10 8.9 110 6.2 /10 43 100 4.5 ,20 3.8 110 (150) 5.4 110 4.2 80 4.9 120 3.5/10 J 5.4 110 9.0 110 4.2 61 J J J J J J <u>@</u> 4.1 120 8.0 ,20 5.9 120 45,10 5.5 130 4.5 90 54 80 4.4 11 J S J J J J J b J J _ 4.00/00 4.9 130 4.0120 5.4 120 4.3 (160) (4.0)120 3.6 90 5.8 100 4.1 011 4.4 61 J ગ J 4.0 J J J Ð J 9 4.9,20 6.1/30 42 120 5.4 110 (4.3),00 7.2 90 46 150 50 (100) 5.4 90 4.4 130 6.0/0.0 4.8 80 4.9 110 59,00 56,10 4.5,10 001 8:5 (65) 4.7 22 υ J O 9 J 5 4.7 1.20 5.5,00 5.8 100 4.6 140 9.5 120 41 100 (4.2),00 57 110 5.2,120 13.0 110 6.4 100 60 100 4.3 140 4.3 120 5.2 90 51 90 5.1 J ગ J 4 J J 50 120 4.3 100 (43) 12.5 120 011 (2.4) 5.9,20 4.5 100 v 80 100 43 J J O J J J 10 J ی J 0 58,00 4.2 /30 5.7 100 4.4 4.4 5.9 40 4.6,00 4.2,10 4.3,00 8.0 90 9.0 90 (42) go 8.0 100 5.2,00 4.4 (2) J 0 J 0 ŋ 75°W J Ð g J ગ o) (4.0) 40 4.2,00 5.7 110 4.1 90 4.7 100 4.5 110 5.6 110 8.0 110 011 64 4.9 100 42,00 7.4 90 4.4 4.4 001 4.4 100 (64) 90 5:590 (4.2),00 4.4 (5:5) 4.5 120 58 (140) 9 J S J J Ð ð 5.0110 4.4 120 6.1 150 6.4 120 6.0 90 7.5,00 65/00 9.0 90 2 4.4 100 4.2,00 4.50 (6.2),10 (5.9),10 J ગ 0 J J ગ ગ S Ú 42,20 (4.4) 6.2 /20 4.4 ,00 5.9 (6.4) 4.3 120 3.8 90 (+3) 40 4.0100 5.6 100 4.5 100 8.2 90 5.6 90 5.8 80 6.5 90 4.6 8.0 100 (4.7),10 J J ડ J J ઇ 9 60 J (52) 100 62/00 10110 5.0 100 49 130 4.4 3.4 110 5.0110 1.7/ 8.0 110 86,00 (9.0) 90 5.7 80 6.0 /30 4.5 90 5. 1,20 4.3 ,20 J 6 O J 90 J U J ò Ð 3.2 3.5/10 (6.5) 5.5 4.5 7.5,00 4.9,00 4.4 5.5,00 5.9,00 45,00 5.7100 3.8,00 3.7,10 4.9,00 6.0,00 Ð 39 90 6.0 00 3.7 80 3.9 80 8 9 J 9 J b S J 5 07 ગ J 4.7 1.8 5.7 130 3.7 90 3.8 90 (0) J 0 91 J ა ა ઇ J b 9 ઇ 9 S J 3.3 1.8 2.3,00 2.0 ,20 3.5/10 3.5 4.1,00 3.8 ,00 2.0 ,20 3.9 100 3.3 90 # 2 100 2.3 17 05 S J 3.7 100 3.4,00 3.3 100 1.9 3.3,00 (2.9) (3.2) 2.3 110 3.4 90 03 04 17 6.1 Lot 39.0°N , Long 77.5°W J J 2.9 40110 3.4 3.4 100 11.7 100 2.7 90 3.7 40 4.6,00 1.6 90 ازم 00 IJ. (2.4) 3.2 90 3.3 /20 4.0 4,5 40 02 2.6 00/ (47) 81 J 100/100 2.5 ō 4.6 90 37 ,20 3.4 90 3.7 110 47 90 4.0 100 61 4.9 43 90 4.3 3.4 40 3.4,00 (34) 100 61 8 ò 18 6 8 29 Median 9 8 22 o 5 12 5 5 23 24 25 7 13 21 윥 31 = 4 11 27

| 21 | 32 | 30 | 31 | 19 | 17 | 31 | Sweep 10 Mc 10.250 Mc 10.174 min | Sweep 31 Mc 10.170 Mc 40.000 Mc 10.11 JUNE 12-30

31

Form adopted June 1946

National Bureau Of Standards

TABLE 62 Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

B. C. V. A. H. S. (1.1) (4.7) [1.8) [1.7] a[1.7] (1,1) (1,1) (1,1) & (/,7 1.7 (Institution) 6.7 23 1.0 (37) 81 1.8 1.8 1.7 J (xc) (0.0) 1.7 1.8 (8.1 1.0 6.1 6.1 100 22 1 J Z. U M. S. L. (1.8) (1.7) (1.8) (8.1) (8.7) (1.1) (20) (46) (67) () 8.7 (1.8) 0. 2 8. J Let's 18 X 1.8 x 6.1 (8.7) Colculoted by: 7.7 1.9 1.8 1.8 1.9 ٥٠, 20 67 0.0 7.00 7.7 ป Scoled by: 2.0 4.7 K (8) (0.0) 1.8 4.7 (1.8) (1.9) (8.1) 4.8 (8.1) 6.7 4. 6.0 8. با ب <u>6</u> 67 6.1 U ×27 , 80 A 11.77 1.8 (9.0 1.8 1.7 2.0 1.8 ٧. b 17 1.7 8. 6.1 6. ป 1.8 · 00 1.6 U 0 b U 0 1.6 K C * 184 1.8 * (1.2) 6 40 4.6 (1.8) (1.8) 1.8 1.9 1.7 1.7 1.6 1.8 67 1.8 J 20 _ 1.2 S J J ₹ 1.8 4 1.8 × 1.24 1.7 K 1.87° 6.77 1127 (48) (1.7) (5%) (8%) 1.7 1.7 70 1.7 1.7 1.8 44 9 1.7 1.7 J S ₹ 1.6 K 4 (1.5) 1.6 * G x (1.5)x (1.6) (1.6) (1.6) (1.5)* (1.5)* C x (1.0)x (1.0)x 1.8 (3.7) 1.6 (4%) 1.7 (V) 1.6 6.6) 1.5 1.5 1.8 'n 36 ਨ 1.7 v Ø 1.2K (4.5) G * (1.5)* 1.5 1,5 7.7 17 4.6) (1.4) 1.6 (10) (1.6) (1.5) U 4 [1.5] (1.6) 1.6 1.8 1,7 C U > Meon Time Y ۶ د 1.7 6 (5) 1 (x.) (3.5) 1.7 (1.7) 10 (1.6) 8. 1.8 (7.7) J ķ 7. 1.7 U d O 4 U A A 2 11.77 A A ٠ ا D. c.7º 11.67 ٠ ا k V (1.8) (20) 12 J 1.5 6.1 6. 1.7 6.7 7. . U J 75°W J Ø Ø J ٠ ا (4.2) G A 1.6° AK (s.s) J (7.6) [1.7]8 [1.7] 1.6 (3.5) 1.5 1.6 > 7, 1.8 1.8 ķ > J 1.6 હ 5 A (1.5) ¥ U S x به ر 15 (/.6) A K (20 M (C.C) X **v** 67 0 6:1 1.6 2.0 2.2 6.7 4 v U d U U U > ∢ y O (1.4)× (4.6) (16)* (1.6)* (1,2) 7 (1,6) 5 30 ४ (1.6 (1.5) (99) 61 (1.6) 7.6 60 1.5 6. U J U Ø O ر 4 ۶ ع ν̈́υ <u>ب</u> (1.5)E [3.17c] 1.6 1.5 (1.4) 1.7 1.51 (7.5) 67 1.5 80 J 6.1 U U ₹ J 1.5 K 1.94 1.5 K (,s)^k 0 0 1.6 5 (1.6) Y Y 1.9 % 1.6 (97) 6 (3.2) ائع 2.0 20 1.6 7.5 1.5 (8./) 07 ป J 1.09 1.8 ì > 11.27 1.6 4 ک ن V 20 K 1.7 4 1.9 1.8 (1.6) 5 (1.1) 2.2 1.8 1.7 (4.1) 53 1.5 [18] [18] 18 3 90 77 1.6 J 4.6 ì ৩ U U U U J ∢ 1.7 K 1.6 8 (1.9) 1.7 1 (4.2) 4.7 2. . 6. 1.7 1.8 1.8 30 1.8 05 * 5 18 3 1947 1.8 K (1.6) 3 (4.6) 0.4 (8.7) 1.0 K (1.2) 1.7 Nº03577 , Long 77.5°W 2:5 6% 1. 4. June (Month) (1.4)x 1.7 (1.5)x 1.6 K 1.6 K 1.7 E 17 [5.27 [5.97° 1.7 Washington, D. C. 03 1. 75 (1.2)3 (81) 87 (1.8) (1.1) (10) 1.7 4 16 (1.1) (1.6) 81 (187) 1.8 8% 1.6 U (1.6) 17 (2.6) 1.6 1.7 (16) (1.1) (1.1) 1.7 02 1.3 : 1.7 œ ' * U (Chirt) 1.2 * (8.7) (1.2) 5 19 (1.6) \$ (1.8) 1.9 8.7 (67) 4. 1.7 12 4 1.2 F2-M1500 (Characteristic) [1.97^C (1.2) (8) (1.7) 1.8 K Observed of (1.2) 1.7 1.7 0.0 7.6 81 9.1 8 8./ 18 1.7 υ 00 20 23 29 S 4 17 4 5 6 22 24 25 26 82 ~ 2 9 ~ ø 12 <u>10</u> . 9 18 27 6 2 =

33

TABLE 63 Centrol Rodio Propogotion Loborolory, Nollonal Bureou of Standards, Washington 25, D.C.

Form adopted June 1946

A. H. S.

National Bureau Of Standards

Scoled by: M. S. L.

IONOSPHERIC DATA

F2-M3000 June 1947 (Granocherstic) (Unit) (Worth) Observed or Washington, D. C.

																																				33
B C C														Ų				K			2															U B GOVERHMENT PROTONG OPPICE-1948 0 - 102518
Z Z	23												2.7	(2.5)	(2.5)	2.9	(2.6)	3(2.5)	2.6	J	2 E2.17C	32.5	(2.5)	2.7	(2.6)	2.6	2.7	2.7	2.6	2.8	J			2.6	11	U B GOVIDIK
	22	L											2.8	34	2.8	3.9	2.8	(13.7K	2.6	υ	[2.7]c	(2.4)	2.6		(3.7)	\vdash	2.6	(4.7)	9.6	2.6	೦			2.7	11	
0	2	L			·								3.0	2.5	2.8	2.8	2.8	X(2.C)	C(8.E)	(3.8)	(2.7)	(2.6)	(5.5)	(2.2)	(2:1)	(2.7)	(2.7)	(2.6)	(8.6)	3.8	c			(2.7)	18	
n, D. C. Scoled by:	8	L											3.0	2.6	4.7K	2.8	2.8	2.7K	2.8	12.770	(2.4)	(2.6)	2.6	2.7	2.8	A	2.8	2.7	2.8	2.8	o			2.7	17	
	€												(9.0)	2.9	2.8 K	2.9	2.9		(3.8)	(3.8)	2.7	2.7	2.6	(2.7)	2.9	12.610	28	2.7	2.6	2.6	2			8.6	18	
	_	(6.2)	V	γ	c	2.2	2.4	8	8	2.6	c	7.4	2.8	2.8	2.8K	4.9	2.9	2.5K	(2.T)F	v	17670	2.6	26	J	2.5	2.5	2.7	2.7	2.9	2.8	o			2.6	21	
	-	>	(2.6) P	N	S	2.3	S	S	ა	2.5	v	c	3.0	2.7	2.5 K	2.8	2.8	2.5-K	2.7	(3.8)	2.6	2.5	9.5	CA	2.6	V(5.5)	2.8	2.8 K	(2.7)	2.5K	ગ			2.6	20	
	9	ა	S	o	(3.5)	(2.2)	3.5	^	S	2.3	>	ง	2.7	(2.4)	2.7K	2.7	2.7	2.3K	2.6	2.5	[2.E]C	2.5	2.5	2.6 K	2.6	2.3K	12.87°	(26) Y	(2.2)	2.6 K	e			36	22	
	91	S	Pr.C)	(2.2)	(2.3)	(1.1)	2.5	2.3	S	(2.2)	(2.5)	С	2.8	2.8	2.5K	2.8	2.7	(2.3)K	2.4	2.5	(2.3)	2.4	2.4	34	(4.4)	(22)		(2.6)¢	2.8	x. 6.				4.6	26	
	4	o	(3.6)	(1.0)	4.6	υ	(2.3) d	×	A	/	2.3)	2	9.6	2.5	3.7K	2.6	2.6		2.4	2.5	2.4	4.4	(A.C)	(2.3)K	(2.3)	(2. 1)K	A	٦,	(3.5)	2.6K	J			2.4	22	
	13	J	4.4	c	(2.3)	(2.1)%	(4.4)	G	Q	N	(2.4)	(5.6)	2.7		CK	2.6	2.6	G.K	2.4E	2.5	(2.5)	v			(2.8)		-	CK	2.5	(2.5)	υ			2.4	12	Automotic El
	2	o	2.5	>) //	0 K	$^{\prime\prime}$	S	S	G	(4.6)	C	2.8	(2.1)	CK	J	2.6	Н	[2.470	13.470	[2.6]c	2.4		AK	_	GK		GK	2.5	AK				2.4	81	c to 250
	=	0	2.5	C	~ ~	g K	c	v	_	(2.3)) 	(J.4)	2.9	G	CK	2.8	-		(2.5) 4		=	2.8	[2.3]d (AK						N D	J	_		2.4	, 91,0 M 0.1 0	Sweep 1.0 Mc to 25.0 Mc In 1/4 min Mc - Monuol & Automotic & Company of the 12-30
	9	v	(2.4)	0	2.3)	G K	c	c	3) N	A	0 6	2.9	3.1	C K	3.3	00	G X	2.4 6	(4.4)	c	A	4	У.		G.K	12.072	(2.3)	2.8	CK	S			2.4	77	Swee
	60	J	12.3) 8	~	N (OK.	A	c	2.2	(2.2)	c	c	3.0	2.9	GK	6	-	<u>~</u>	G K	Ь	c	A	1)	(2.4)K		(4.4) K	2.5	2			(5.5)			4.6	21	Mc to
	8	>	10	~	~	G *	N	v	(1.1)	2.3 (c	0	3.37c	2.8	GK	2.8	Н		(23)E		G	4.6	\dashv	(2.3) (2.3	Y	(2.3)			<u></u>	7.4	\vdash		Н	19	Sweep 3.1 Mc to 17.0 Mc - Monuol 🖾 UNE - II
	10	H		ν.	1	(2.2)K		3.2		-	2.4	(2.6)	c E	3.0	GK	70	-			c	9	2.5	-	X			2	×	1	_				2.4 2	7.7	Swe
	90	7		(2.2)	-	G * 6	0 1	A	(5	2.6 2	2.5	5	3.2		CK	3.1	2	2.4K		c	12.67	2.7 4	2.4 0	¥		د یا		2.8K	4	6		_	\vdash	2.6 2	+	
	95			"	(4		,)				3.0 3		2.7K		-	ŲΨ	- 1	(9.6)	2.8 E	[2.8]c		×		(2.8)		2.5	(2.9)	2.7	-	-		2.7 2	8 2,	
	<u>_</u>	-				_								(27)0 3.		(4.7)	-		2.5 K 2	2.5 6	(2.6)	13.0 P [2.4	(d.4)	2.4	2.6K (,	C	(2.6) 2	2.5 (4.7	2.5	-		2.6 2	81 81	
	03 (_					2.7 2.8	2.8 (2	(2.3) EZ 2			ii.		(2.5) 2		[2.87 F3	2.4 2	2.4 (d	- 1	25K à	(24) J	2.9 (1	2.7 2	2.6					181	
ogton,	02 0														2.4 K (2.	u	2.8 (2	(2.2) X 4.	d.4 K d.	(2.7) 0 (2.	J	2.7 JC [2	2.3 0	(2.5)	6 (4	(2.5) 2	(2.C) d (a	(2.6)	2.3 7	3.0 2	2.5			6 25	٦	
Washington, D. C.	0	-											7 2.7	7 2.8	¥	¥	Н		2.4 K d.	(2.5) 0 (2.	- 1		(2.5) 2	2.5 (2	2.6 2.	(2.8)0 (2	2.4 (2.	(2.8) (2	(2.8)	2.7 3.	2.6 3			6 2.6	81 81	
	H	-											8 2.7	6 2.7	57K (4.5)	12.5)F 2.6	8 2.8		¥	2.5 (2.		6) 2.6		\dashv	(3.7) 2.	12.21 (2.		12.879 (2	(2.6) (2.	_	-			-	Ⅎ	
Observed at	y 00	_	2	ю	4	5	9		8	6			2.8	3 2.6			5 9.8				0	(2.0)	2.6	\exists		-	5 2.7			3.8				10n 2.6	18 18	
8	à		"						"	, ,,	2	=	12	13	14	15	9	-	8	19	20	21	22	23	24	25	26	27	28	29	ક્ષ	ю.		Medion	Count	

Farm adopted June 1946

Notional Bureau Of Standards

(Institution)

M. S. L.

TABLE 64
Central Radia Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

1947

June (Month)

(Unit)

FI-M3000

A. H. S. J. L. K. 23 22 N. M. ~ Calculated by: 50 Scaled by: 6 Œ A K (3.4) 3.2 (3.5) 3.7 Œ J > Ø ¢ <u>®</u> 3,4 3.7 K 3.6K (3.2) 3.5 3.5 H ک ک 3.3 K (3.8) 3.5 3.6K 23 20 (3.1) (2.8) (29) 3,6 3.5 3.7 3.0 3.0 J (3.1) 3.7 K 3.0.8 3.5 K (3.7c) (3.1) 4.8 3.5 3.8 K (3.6)* 3.7. 3.7 K 3.7 (30) (3.1) ر رم 3.0 J 3.7 3.7 3.8 2 9 Ŋ J (3.3) 3.7K (3.3) 4.0 K (4.0 K (3.5) (3.3) 3.6 3.6 (3.3) 3.6 (3.6) 3.00 3.6 (3.4) Œ 36 Œ 3.6 (4.0) ō 3.7 J U Œ 3.74 4.0K 3.4# 3.8K (3.8)" (3.8) H (4.0) H H(12) (3.8)K 4.0 3.6 3.5 K 36 4 (3.5) 3.0 (3.6) æ ال z 4.2 ≥ Z Z J J Œ - Mean Time [3.8]c (3.3)" [5.4]c (3.4) [3.6]c (3.6) 3.7 K 3.7 × ن 4.1K 3.6 8 (3.7)" 3.6 3.6 3.7 10 J z Z J 3.8 U 4.1 ပ z Æ Œ J J × (3.9)K (3.8)K (4.0) # (3.9)F (9.6) 4.1 K × (3.9) 3.9 4.0 3.7 (3.9) (3.6) ¢ 75°W J U 2 2 Z ¥ (3.7) K (3.8) 3.6 F 4.2 K (3.4) (3.8) 3.8 # 3.8 (3.9) # (3.9) H 3.6 3,8 (3.1) (3.8) ¥ Z (3.2) 4.1 3.9 3.9 > Z J J ¢ U Œ Z J Z 3.8 4.0 K C K 3.8 A A (4.2)3 3.7 4 (3.9) 4 (3.7) 30 S. AK (3.7) 4.0 (3.5) 3.00 4:1 J æ A 2 Z ¢ J 2 Œ U #17 3.9 K 3.7 K × (3.4) 3.6K 4.1 K CK 3.9 3.8 (4.0) 4.0 3.3 (3.9) (3.1) 3.8 3.9 æ (3.8) ა J 60 Œ U J 3.9 K 3.9 K 3.3 F 12 (3.4) 3.8K AK A K 3.4 K × 6.9 J 3.9 (3.1) 3.2 J 3.7 (3:5) (3.7) J 90 J 3.8 Œ J (3.C)K (3.5)K 3.9 K (4.0) F 19 (2.8) ď 4.0K (3,5) (3.1) 3.3 (3.9) (2.9) 3.7 3.6 <u>6</u> Œ 6 z z J × 3.4K 3.4 K (3.5)× 3.2 3.6K 3.4 9 J ∢ Z Q J J J 3.3 J 90 J J Æ J æ G (3.0) 1/2 0 40 Lot 39.0°N , Long 77.5°W 03 Woshington, D. C. 05 5 Observed at 8 10 Doy 9 0 0 12 4 8 5 -2 2 2 2 22 23 25 26 28 62 ы 4 24 = S 3

35

TABLE 65
Central Radio Propagation Laboralory, National Bureau of Standords, Washington 25, D.C.

Form adapted June 1946

IONOSPHERIC DATA

ou of Standards, Washington 25, D.C. National Bureau	Model A Scaled S	Long 77.5°W Meon Time	03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23			°C →		C* C* C* C* C* C* C* C C C C C C			24				4 A A C A A A (4.9) (4.9) (4.4) (5.0) C C	45 (46) (46) C (48) 46 46 46 46 47 44	(50) K 49 K	49 A (46) (50) (51) C (45) 46 43 47	47 49 47 51 A A (49) 45 45 47 47 52	(41) x (44) x 49 x (50) x 53 x (41) x (46) x 51 x	4.5 (4.4) (4.7) 46 A C 4.5 45 46	C 46 49 46 46 (51) (47) (49) (49) C	[4.8]C 4.7 C C C (4.8) [46.2]C (4.8) 4.2 4.5 [4.3]C 4.0 [7.3]C A	A 43 41 46 A 43 45	47 47 46 48 (48) (41) (46) F (49) 49 45 44 45 45	K 48 K 47 K 46 K 45 K 45 K A K 47 K 47 K 45 K C K C	48 46 47 A (51) (46) (48) 49 (46) 46	45 x (42) x (42) x A x .	C C A A A A XX C X5 47 C	(47) 45 42 42 43 43 446 4 6 6 6 48 46 46 46 46 46 46 46 46 46 46 46 46 46	A 4.8 47 46 (4.2) A (4.0) 49 46 A A	4.8 × (4.9)*	4.9			48 48 47 47 46 48 47 48 46 46 46 46 47 46 48	9 16 14 15 11 10 13 14 14 14 14 16 100
		2°W																(4.5				-			5.0					(#)				-	+	+	
June		, Long 77.	03																															+			
	Washinaton.	Nº0.65 101	02																													-					
		Lat	ō																																		
E-MI500	(Charocteristic)	Opserved or	Day 00	-	2	3	4	2	9	7	8	6	0.	=	12	13	14	15	91	17	8	61	20	21	22	23	24	25	26	27	28	59	83	31		Median	Count
			1					}	l		ļ		1						. !	. (. !	!	Į	. !	!	- (Į	- 1		Į	l	- 1		2	7

Sweep 10 Mc to 170 Mc - Monuol & Automotic & - Monuol & - Monu

Table 66

Ienespheric Sterminess, June 1947

Day	Ienespher 00-12 GC1	ic character* 12-24 GCT	Principal Beginning GCT		Geemagnet 00-12 GCT	ic character** 12-24 GCT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	*** *** *** *** *** *** 104302422221323211	*** 2 *** 3 5 1 *** 3 2 2 4 2 1 5 2 1 2 3 3 4 3 5 2 4 4 ***	0400 	2300 2300 2300 2300 2300	4132423342223642433322333432323	2 1 2 2 4 1 4 3 3 2 2 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2

^{*}Ionospheric character figure (I-figure) for ionospheric storminess at Washington, D.C., during 12-hour period on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

^{**}Average for 12 hours of Cheltenham, Maryland, magnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

^{***}No readable record. Refer to table 55 for detailed explanation. Dashes indicate continuing storm.

fTime of beginning unknown because of less of record,

Table 67

Sudden Ionosphere Disturbances Observed at Washington, D. C.

	GCT		Lecation of	Relative	Other
1947	Beginning	End	transmitters	intensity	phenomena
Day				at minimum*	
June					
2	1622	1925	Ohie, D.C., England, Ontarie	0.0	
3	1240	1400	Ohie, .D.C., Ontarie	0.1	
3	1657	1710	Ohio, D.C., England, Ontario	0.1	
3	2157	2240	Ohie, D.C., England, Mexice, Ontarie	0.0	
5	1008	***	Ohie, Ontarie	0.3	
5	1043	1110	Ohie, D.C., England, Ontario	0.2	
6	1928	1940	Ohie, D.C., Mexice, Ontarie	0.05	
8	1239	1300	Ohie, D.C., England	0.2	
8	1445	1520	Ohie, D.C., England, Mexico	0.03	Terr.mag.pulse** 1445-1500
9	2143	2210	Ohie, D.C., Mexice, Ontarie	0.2	
10	1700	***	Ohie, D.C., England, Ontarie	0.0	
11	0909	0930	England	0.1	
13	1524	1630	Ohie, D.C., England, Ontarie	0.2	
14	1033	1110	Ohie, D.C., England, Ontario	0.0	
16	1559	1700	D.C., England, Ontari	0.03	
20	1225	1300	Ohie, D.C., Ontarie	0.1	`
20	1920	1945	Ohio, D.C., Ontario	0.0	
24	1415	1435	England, Ontarie	0.1	
26	1846	1900	Ohie, D.C., Catarie	0.1	
26	2117	2145	Ohio, D.C., Ontario	0.1	

^{*}Ratio of received field intensity during SID to average field intensity before and after, for station WSXAL, 6080 kilocycles, 600 kilometers distant, for all SID except the following: Station GLH, 13525 kilocycles, received in New York, 5340 kilometers distant, was used for the SID on June 11, 16, and June 24.

*** Incomplete recovery of SID.

^{**}As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

Table 68

Sudden Ionosphere Disturbances Reported by Engineer-in-Chief.

Cable and Wireless, Ltd., as Observed in England

10/0	0.00			
1947 Day	GCT Beginning	End	Receiving station	Location of transmitters
May 17	1118	1315	Somerton	Argentina, Ascension I., Australia, Berbados, Brazil, Canada, Coylon, China, Egypt, Gold Coast, India, New York, Union of S. Africa
18	0755	0815	Brentwood	Austria, Behreim I., Bulgaria, India, Iran, Madagascar, Southern Rhedesia, U.S.S.R.
19	1135	1225	Brentwoed	Austria, Belgian Conge, Camary Is., Greece, India, Iran, Kenya, Madagascar, Palestine, Pertugal, Southern Rhedesia, Spain, Switzerland, Syria, Turkey, U.S.S.R., Yugoslavia, Zanzibar
19	1140	1210	Somerton	Ascension I., Argentina, Barbades, Brazil, Ceylon, China, Geld Ceast, India, Malay States, New York, Union of S. Africa
20	0825	0900	Brentwoed	Austria, Belgian Conge, Greece, India, Kenya, Palestine, Southern Rhedesia, Spain, Switzerland, Turkey, U.S.S.R., Yugoslavia, Zanzibar
20	1200	1220	Brentwood	Austria, Belgian Congo, Greece, India, Syria, Turkey
20	1255	1350	Brentwood	Chile, Colombia, Iran, Kenya, Southern Rhodesia
21	1830	2005	Brentwood	Colombia, Venezuela
21	1835	1930	Somerten	Barbades, Canada, New York
22	0715	0730	Brentwood	Belgiam Conge, India, Iran, Kenya, Pertugal, Seuthern Rhodesia, Syria
22	1850	2010	Brentwood	Chile, Colombia, Venezuela
22	1855	1905	Somerton	Argentina, Barbados, Brazil, Canada, New Yerk
23	0800	0815	Brentwood	Austria, Belgian Conge, Greece, Iran, Madagascar, Palestine, Pertugal, Southern Rhedesia, Zanzibar
23	0755	0825	Somertom	Ceylon, China, Gold Coast, India, New York, Nigeria
23	1220	1310	Brentwood	Austria, Belgian Congo, Canary Is., Chile, Colombia, Greece, India, Iran, Kenya, Palestine, Portugal, Southern Rhedesia, Spain, Switzerland, Thailand, Turkey, Zanzibar
23	1231	1256	Somerton	Argentina, Brazil, Gold Coast, Nigeria, Union of S. Africa
26	1155	1300	Brentweed	Austria, Greece, India, Iran, Kenya, Madagascar, Palestine, Spain, Syria, Turkey, U.S.S.R., Yugoslavia, Zanzibar
26	1205	1235	Somerton	Australia, Ceylen, India, New Yerk, Union of S. Africa
26	1330	1500	Brentweed	Canary Is., Greece, India, Spain, Syria, Thailand, Turkey, U.S.S.R., Yugeslavia
27	0900	0925	Brentwoed .	Austria, Bahrein I., Belgian Cenge, Bulgaria, Canary Is., Greece, India, Iran, Kenya, Madagascar, Palestine, Southern Rhedesia, Spain, Switzerland, Syria, Turkey, U.S.S.R., Yugoslavia, Zanzibar

			 	
1947 Day	GCT Beginning	End	Receiving station	Location of transmitters
May	- EVELINITEE	- MAN	AVCOLIZED FORVAGE	A RILEGA VOTA
27	0907	0920	Somerton	Argentina, China, Geld Coast, India, Nigeria, Union of S. Africa
28	0830	0920	Brentwoed	Austria, Greece, Iran, Madagascar, Palestine, Seuthern Rhedesia, Spain, Turkey, U.S.S.R.
29 ;	0645	0710	Brentwood	Austria, Belgian Conge, Bulgaria, France, French Equatorial Africa, Greece, Indis, Iran, Kenya, Southern Rhedesia, Syria, U.S.S.R.
29	0645	0735	Semerten	Ceylon, China, India
29	0815	0900	Brentweed	Bahreim I., Belgiam Conge, Bulgaria, Greece, Seuthern Rhodesia, U.S.S.R.
29	1430	1505	Brentweed	Austria, Belgian Conge, Bulgaria, Camary Is., Chile, Celembia, Greece, India, Iran, Kenya, Pertugal, Seuthern Rhedesia, Spain, Switzerland, Syria, Theiland, Turkey, U.S.S.R., Zamzibar
29	1430	1500	Semerten	Argentina, Australia, Barbades, Brazil, Camada, Ceylem, India, New York, Nigoria
30	0950	1200	Brentweed	Austria, Belgian Congo, India, Kenya, Southern Rhedesia, Spain, Switzerland, U.S.S.R., Yugoslavia
30	1410	1430	Brentwood	Canary Is., Chile, France, Greece, Iran, Palestine, Spain, Switzerland, Thailand, U.S.S.R., Zanzibar
June 3	0915	0945	Brentweed	Bahrein I., Belgian Conge, Canary Is., Greece, India, Iran, Kenya, Madagascar, Palestine, Pertugal, Southern Rhodesia, Switzerland, Syria. Turkey, U.S.S.R.
3	1205	***	Brentweed	Austria, Belgian Cenge, Bulgaria, Camary Is., Iran, Kenya, Palestine, Seuthern Rhedesia, Spain, Switzerland, Syria, Turkey, U.S.S.R., Zamsibar
3	1210	1225	Semerten	Canada, Geld Coast, Nigeria
3	1245	1415	Brentweed	Canary Is., Chile, Celembia, France, Switserland, U.S.S.R., Zamsibar
3	1212	1400	Semerten	Brasil, New York
5	1035	1140	Brentweed	Austria, Belgian Conge, Canary Is., France, Greece, India, Iran, Kenya, Palestine, Portugal, Southern Rhedesia, Spain, Switzerland, Syria, Turkey, Uruguay, U.S.S.R., Yugeslavia, Zanzibar
5	1040	1110	Somerten	Argentina, Australia, Barbados, Brazil, Canada, Ceylen, China, Egypt, Geld Coast, India, New York, Migeria, Union of S. Africa

***Incomplete recevery of SID.

Note-Observers are invited to send to the CRPL infermation on times of beginning and end of sudden ionosphere disturbances, for publication as above. Address letters to the Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

2able 69

Provisional Radio Propagation Quality Figures (Including Comparisons with CMPL Warnings and CMPL Probable Disturbed Period Forecasts) May 1947

		Worth Atlantic		Borth Pacific		•
Day	Quality figure	Varning probable disturbed period forecast	Occ mg- netic K _{Ch}	Quality CRFL® CI figure Warning pr	RPL Geo-	Quality Figure Scale: 1 - Uselese 2 - Very poor 3 - Poor
	01-12 605 13-24 605	01-12 6GF 13-24 6GF	01-12 00% 13-24 00%	01-12 007 13-24 005 01-12 007 13-24 007	01-12 607 13-24 607	4 - Poor to fair 5 - Fair 6 - Fair to good 7 - Good 5 - Very good 9 - Excellent
1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 6 17 18 9 20 2 2 2 3 4 2 5 6 2 7 2 8 9 30 31	57777777777666 56 55 55 55 55 55 55 56 7	x x x x x x x x x x x x x x x x x x x	3111122110011223334453333222145333322312	77	3 2 1 1 1 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2	Symbols X Warning given or probable disturbed date. H Quality 4 or worse on day or half day of warning. Quality 4 or worse on day or half day of no warning. Quality 5 or better on day of no warning. (S) Quality 5 on day of warning. S Quality 6 or better on day of warning. (Quality 6 or better on day of warning. (Duality 6 or better on day of warning. (Duality 4 or worse (disturbed). Geomagnetic K on the standard eache of 0 to 9, 9 representing the greatest disturbance.
Score: H M G (3) S		5 3 0 2 20 19 4 6 2 1		5 0 20 3 3	2 3 17 3	

*Broadcast on WWY, Washington, D.C. Times of warnings recorded to nearest half day as broadcast.

Table 70 American and Zurich Provisional Relative Sunspot Numbers June 1947

Date	American*	Zurich** No.	Date	American* No.	Zürich** No.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	191 166 135 135 133 153 163 116 81 114 95 89 87 95	225 206 179 143 143 150 158 132 114 120 104 93 90 99	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	141 196 210 275 263 265 230 213 186 164 140 143 138 162 170	164 197 228 274 251 246 232 232 195 204 151 150 148 163 143
N	lo. Days 30 1	Monthly Means:		159.6	168.9

^{*}Median of data from 15 observers.

**Dependent on observations at Zurich Observatory and its stations at Locarno and Arosa.

First row - green line 5303A Second row - red line 637¹⁴A Third row - red line 670¹⁴A

COROHAL OBSERVATIONS AT CLIMAK, COLCRADO

June 1947

Pate	Time of observation GCT	160 165 190 195 200 205 210 215 220 225 230 235	240 245 250 255 260 265 270 275 280	265 290 295 300 305 310 315 320 325 330 335 34	340 345 350 355
1	Ko observation				
CV	No observation				
9	2233-2351	8.3	26 28 20 13 6 5 8 16 17 11 5 1	2 2 1 1 5	!
~	1335-1415	13.25	34 35 25 15 5 7 15 20 18 5 4 1 1 1 9 5	2 1 1 5 5 5 1 1 1 1 1 5	5 1 5
ю	1752-1774	5 8 5 5 7 10 10 15 18 20 27 30 1 1 1 2 3 4 1 1 1 1 1 2 3 3 3 1 1 1 1 1 2 3 3 3 3 1 1 1 1	1 8 2 2 2 2 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3	6 5 5	: :
6	1602-1623	15 12 15 26 26	3 5 1 1 1 2 1 17 25 7 4 1 1 1 25 7 4 1 1 1 25 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1	5 2 1	5 6 5 5
01	1533-1556	1 1 2 4 5 15 15 20 27 30 1 1 1	53 34 32 17 10 11 15 20 15 2 8 12 1 1 1 5 5 8	6 3 3 5	9 9 8 9
13	1351-1419	1 5 8 15	21 21 20 11 11 12 13 14 25 15 15 15 15 15 15 15 15 15 15 15 15 15	# °	4 5 5 6
ηį	1346-1417	12 11 9 7 7 6 5 4 6 10 13 16	16 19 17 12 11 12 25 25 25 11 11 1 1 1 1 1 1 1 1	1 7 4 7 5 1-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L 9 n n
15	1351-1422	6 10 10 7 5 6 9 11 12	2 2 1 1 1 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1	11 7 6	- 6 6 7
19	1359-1422	6 5 6 3 3 3 3 5 8 17 17	2; 26 21 1; 10 6 15 19 22 2 6 5 2 1	24 17 12 6 5 5 3 3	- 3 3 k
8	1552-1625	6 6 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	нин
24	1400-1435	1 2 3 6	17 20 20 11 7 7 23 25 20 4 10 15 20 10 4 10 16 6		: : :
16	1416-1452		1 2 2 1 1 1 1 3 1 1 5 15 15 15 15 15 15 15 15 15 15 15	12 3	1 1
×	\$251-9 11 11	1 10 10	11 11 11 9 15	20 20 20 13	\$: :
12	1527-1553	~-	14 15 15 15 15 12 13 5 9 9 1 12 2	28 13 9	: : : : : : : : : : : : : : : : : : : :
82	1989-1986	2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 2 2 2 1 1 2 9 12 13 12 14 12 9 9 15 1 12 11 10 1 2 2 2 1	3 3 3 2 2 1 15 13 22 18 12	1 1
&	179-1729	5 6 7 7 5 6 11	15 16 16 14 15 14 11 16 21 4 15 2 4 1 1 3	19 22	: : : : : : : : : : : : : : : : : : : :
8	1421-1446		2 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 1 2 2 1	16 20 18 11 7	: : :
and the second s					

fourtment Traffer

Index of Tables and Graphs of Ionespheric Data

Adak, Alaska May 1947 Baton Reuge, Louisiana May 1947 Besbay, India February 1947 Beston, Massachusetts May 1947 Beston, Massachusetts May 1947 Brisbame, Australia March 1947 Calcutta, India December 1946 Revember 1947 Revembe		Table page	Figure page
Baton Rouge, Louisiama May 1947 19 62	Adak, Alaska		
May 1917 . 13 50 Bombay, India February 1947 . 19 62 Beston, Massachusetts May 1947 . 12 48 Bay 1947 . 12 48 Brisbame, Australia March 1947 . 17 59 Calcutta, India December 1946 . 21 67 Calcutta, India December 1946 . 21 67 Canberra, Australia March 1947 . 17 59 Christchurch, New Zealand March 1947 . 17 59 Christchurch, New Zealand March 1947 . 16 57 Chunghing, China April 1947 . 16 57 Churchill, Canada May 1947 . 16 45 April 1947 . 16 45 Clyde, Baffin I. May 1947 . 10 44 Delhi, India Pebruary 1947 . 18 61 Fairbanks, Alaska May 1947 . 10 45 Fribourg, Germany August 1946 . 22 Fukaura, Japan April 1947 . 15 55 Cuan I. May 1947 . 13 51 Hobart, Tassania May 1947 . 18 60 February 1947 . 18 60 January 1947 . 18 60 January 1947 . 18 60 February 1947 . 19 62 January 1947 . 19 62 Jehanesburg, Union of S. Africa April 1947 . 19 62 Maui, Hawaii May 1947 . 10 68 May 1947 . 11 67 Chinay I. 47 April 1943 through January 1943 22 and 23 68 Mad 69 Falhyyra I. May 1947 . 14 52		11	46
Bombay, India Pebruary 1947 19 62	May 10/7	13	50
Beston, Massachusetts May 1947 12	Bombay, India	-	,
Hey 1947 . 12 48 Brisbane, Australia March 1947 . 17 59 Calcutta, India	February 1947	19	62
Risch 1947 17 59	Beston, Massachusetts	12	12
March 1947 . 17 59 Calcutta, India December 1946 . 21 66 Nevember 1946 . 21 67 Canberra, Australia March 1947 . 17 59 Christchurch, New Zealand March 1947 . 18 60 Chungking, China April 1947 . 16 57 Churchill, Canade May 1947 . 14 53 Clyde, Beffin I. May 1947 . 10 44 Delhi, India February 1947 . 18 61 Fairbanks, Alaska May 1947 . 10 45 Fairbanks, Alaska May 1947 . 10 45 Fribourg, Germany August 1946 . 21 67 July 1946 . 22 Fukaura, Japan April 1947 . 15 55 Cuam I. May 1947 . 18 60 Fukaura, Japan April 1947 . 15 55 Cuam I. May 1947 . 18 60 Fukaura, 1947 . 19 65 January 1947 . 18 60 Fukaura, 1947 . 19 65 January 1947 . 19 65 January 1947 . 19 62 May 1947 . 19 62 May 1947 . 19 62 Maui, Hawaii February 1947 . 19 62 Maui, Hawaii Fay 1947 . 16 57 Ckinawa I. April 1943 through January 1943 . 22 and 23 68 and 69 Falayra I. May 1947 . 14 52	Brishame, Australia	•	40 .
December 1946 21 66 Nevember 1946 21 67 67 67 67 67 67 67 67	March 1947	17	59
Nevember 1946 21 67	Calcutta, India		44
Canberra, Australia March 1947. Christchurch, New Zealand March 1947. Chungking, China April 1947. Churchill, Canada May 1947. April 1947. Clyde, Baffin I. May 1947. Pairbanks, Alaska May 1947. Pribourg, Germany August 1946. Fukaura, Japan April 1947. Cuan I. May 1947. Hobart, Tasmania March 1947. May 1947. May 1947. May 1947. March 1947. May 1947. May 1947. May 1947. May 1947. May 1947. Madaras, India February 1947. February 1947. Jehannesburg, Union of S. Africa April 1947. Madras, India February 1947. Jehannesburg, Union of S. Africa April 1947. Madras, India February 1947. Jehannesburg, Union of S. Africa April 1947. Madras, India February 1947. Jehannesburg, Union of S. Africa April 1948. May 1947. May 1947. April 1943 through January 1943. April 1947. April 1943 through January 1943. April 1943 through January 1943. April 1943 through January 1943. April 1947. April 1943 through January 1943. May 1947. Landary 1948. Landary	Nevember 1946		~ ~ ~
Christchurch, New Zealand March 1947. 18 60 Chungking, China April 1947. 16 57 Churchill, Canada May 1947. 10 45 April 1947. 10 45 April 1947. 10 44 Delhi, India February 1947. 10 45 Fribourg, Germany August 1946. 21 67 July 1946. 22 Fukaura, Japaa April 1947. 15 55 Guan I. May 1947. 13 51 Hebart, Tasmania March 1947. 18 60 February 1947. 18 60 February 1947. 19 65 Jehannesburg, Union of S. Africa April 1947. 17 58 Madras, India February 1947. 19 62 May 1947. 10 65 Ottawa, Canada May 1947. 11 67 April 1943 through January 1943 22 and 23 68 and 69 Palthyra I. May 1947. 14 52	Canberra, Australia		
March 1947 Chungking, China April 1947 Churchill, Canada May 1947 April 1947 Clyde, Baffin I. May 1947 Delhi, India February 1947 Fairbanks, Alaska May 1947 Fribourg, Germany August 1946 July 1946 Fukaura, Japan April 1947 Cuan I. May 1947 Hebart, Tasmania March 1947 January 1947 Jehannesburg, Union of S. Africa April 1947 April 1947 Madras, India February 1947 February 1947 Jehannesburg, Union of S. Africa April 1947 May 1947 May 1947 May 1947 Delhi, India February 1947 Foundary February 1947 Foundary February 1947 February		17	59
Chungking, China April 1947. Churchill, Canada May 1947. April 1947. Clyde, Baffin I. May 1947. Delhi, India February 1947 Fairbanks, Alaska May 1947. Fribourg, Germany August 1946 July 1946 Fukaura, Japan April 1947 Guan I. May 1947. Hebart, Tasmanta March 1947. January 1947 January 1947 January 1947 January 1947 January 1947 Madras, India February 1947 Madras, India February 1947 Madras, India February 1947 Madras, India February 1947 May 1948 May 1947 May 1948 May 1948 May 1948 May 1948 May	Christchurch, New Zealand	18	60
April 1947 . 16 57 Churchill, Canada May 1947 . 14 53 Clyde, Baffin I. May 1947 . 10 44 Delhi, India February 1947 . 18 61 Fairbanks, Alaska May 1947 . 10 45 Fribourg, Germany August 1946 . 21 67 July 1946 . 22 Fukaura, Japan April 1947 . 15 55 Cuan I. May 1947 . 13 51 Hebart, Tasmania March 1947 . 18 60 February 1947 . 20 64 January 1947 . 20 65 Johannesburg, Union of S. Africa April 1947 . 19 62 Maui, Hawaii May 1947 . 16 57 Okinawa I. April 1947 . 16 57 Okinawa Canada May 1947 . 11 April 1943 through January 1943 22 and 23 68 and 69 Palmyra I. May 1947 . 14 52	Chungking, China		Ģ
May 1947 . 10	April 1947	16	57
April 1947. Clyde, Baffin I. May 1947. Delhi, India February 1947. Fairbanks, Alaska May 1947. Fribourg, Germany August 1946. Fukaura, Japan April 1947. May 1947. Hebart, Tasmania March 1947. January 1948. January 1948. January 1949. January 1949. January 1949. January 1949. January 1947. January 1948. January 1948. January 1949. Jan	Churchill, Canada	10	18
Clyde, Baffin I. May 1947 Delhi, India February 1947 Fairbanks, Alaska May 1947 Fribourg, Germany August 1946 July 1946 Fukaura, Japam April 1947 Guam I. May 1947 Hebart, Tasmania March 1947 January 1947 Jehannesburg, Union of S. Africa April 1947 Madras, India February 1947 Madras, India February 1947 May 1947	April 1947		
Delhi, India February 1947 Fairbanks, Alaska May 1947 Fribourg, Germany August 1946 July 1946 Fukaura, Japan April 1947 Hebart, Tasmania March 1947 January 1947 March 1947 Madras, Union of S. Africa April 1947 Madras, India February 1947 March 1943 March 1943 March 1947 March 1943 March 1943 March 1947 March 1943 March 1945 March 1947 March 1945 March 1947 March 1947 March 1947 March 1947 March 1947 March 1948 March 1947	Clyde, Baffin I.		
February 1947 Fairbanks, Alaska May 1947 Fribourg, Germany August 1946 April 1947 Guam I. May 1947 Hebart, Tasmania March 1947 January 1947 Jehannesburg, Union of S. Africa April 1947 Madras, India February 1947 May 1947 May 1947 May 1947 May 1947 Madras, India February 1947 May 1947		10	44
Fairbanks, Alaska May 1947 Fribourg, Germany August 1946 April 1946 April 1947 Guam I. May 1947 Hebart, Tasmania March 1947 February 1947 January 1947 January 1947 January 1947 Madras, India February 1947 May 1947 Ckinawa I. April 1947 Ottawa, Canada May 1947 Palmyra I. May 1947	Pebruary 1947	18	61
Fribourg, Germany August 1946 July 1946 22 Fukaura, Japan April 1947 Guam I. May 1947 Hebart, Tasmania March 1947 January 1947 January 1947 January 1947 Jeannesburg, Union of S. Africa April 1947 Madras, India February 1947 May 1947 May 1947 Ottawa, Canada May 1947 May 1947 Palmyra I. May 1947	Fairbanks, Alaska		
August 1946 July 1946 Z2 Fukaura, Japam April 1947 Guam I. May 1947 Hebert, Tasmania March 1947 March 1947 May 1947 Manuary 1947 Manuary 1947 Madras, Union of S. Africa April 1947 May 1947		10	45
July 1946 Fukaura, Japam	Aribourg, Germany	21	67
Fukaura, Japan	July 1946		
Guam I. May 1947 Hebart, Tasmania March 1947 February 1947 January 1947 January 1947 Jehannesburg, Union of S. Africa April 1947 Madras, India February 1947 May 1947 Okinawa I. April 1947 April 1947 April 1947 April 1943 through January 1943 Palmyra I. May 1947	Fukaura, Japan		
May 1947 13 51 Hebart, Tasmania March 1947 20 64 February 1947 20 65 Jehannesburg, Union of S. Africa April 1947 17 58 Madras, India February 1947 19 62 Maui, Hawaii May 1947 19 62 Maui, Hawaii May 1947 16 57 Ottawa, Canada May 1947 11 47 April 1943 through January 1943 22 and 23 68 and 69 Palmyra I. May 1947 14 52	April 1947	15	55
Hebart, Tasmania March 1947 February 1947 January 1947 Jehannesburg, Union of S. Africa April 1947 Madras, India February 1947 May 1947 April 1947 April 1947 April 1943 through January 1943 Palmyra I. May 1947	May 1947	13	51
February 1947 20 64 January 1947 20 65 Jehannesburg, Union of S. Africa April 1947 17 58 Madras, India February 1947 19 62 Maui, Hawaii May 1947 1947 13 50 Okinawa I. April 1947 16 57 Ottawa, Canada May 1947 1943 through January 1943 22 and 23 68 and 69 Palmyra I. May 1947 14 52	Hobart, Tasmania		·,
January 1947 20 65 Jehannesburg, Union of S. Africa April 1947 17 58 Madras, India February 1947 19 62 Maui, Hawaii May 1947 13 50 Okinawa I. April 1947 16 57 Ottawa, Canada May 1947 11 47 April 1943 through January 1943 22 and 23 68 and 69 Palmyra I. May 1947 14 52			
Jehannesburg, Union of S. Africa April 1947	January 1947		
Madras, India February 1947 . 19 62 Maui, Hawaii May 1947 . 13 50 Okinawa I. April 1947 16 57 Ottawa, Canada May 1947 11 47 April 1943 through January 1943 . 22 and 23 68 and 69 Palmyra I. May 1947 14 52	Jehannesburg, Union of S. Africa	•	
February 1947 19 62 Maui, Hawaii May 1947 13 50 Okinawa I. April 1947 16 57 Ottawa, Canada May 1947 11 47 April 1943 through January 1943 22 and 23 68 and 69 Palmyra I. May 1947 14 52		17	58
Maui, Hawaii		10	62
Okinawa I. April 1947		47	
April 1947		13	50
Ottawa, Canada May 1947		14	E77
May 1947		70	,,
Palmyra I. May 1947	May 1947		
May 1947 14 52		22 and 23	68 and 69
		14	52
		,	

Index (Continued)

	Table page	Figure page
Peshawar, India		
February 1947	18	61
Portage la Prairie, Manitoba		
May 1947	11	47
Prince Rupert, Canada		
May 1947	11	46
April 1947	14.	53
Rarotonga I.		
March 1947	17	58
February 1947	19	63 65
January 1947	20	65
April.1947	15	54
San Francisce, California		54
May 1947	12	48
San Juan, Puerto Rice	• • •	40
May 1947	13	51
Shibata, Japan		,-
April 1947	15	55
Tokye. Japan		
April 1947	16	56
Townsville, Australia	•	
February 1947	19	63
January 1947	20	64
Trinidad, Brit. West Indies		
May 1947	14	52
U.S.S. Canisteo, Byrd Expedition	03	66
January 1947	21	00
Wakkanai, Japan April 1947	15	54
Washington, D. C.	1.49	94
June 1947	10	44
White Sands, New Mexico		
White Sands, New Mexico	12	49
Wuchang, China		
May 1947	12	49
Yamakawa, Japan	91	-/
Apríl 1947	16	56

CRPL and IRPL REPORTS

Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Weekly:
CRPL-J. Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly: CRPL-Ja. Semimonthly Frequency Revision Factors for CRPL Basic Radio Propagation Prediction Reports.

Monthly:

CRPL-D. Basic Radio Propagation Predictions—Three months in advance. (War Dept. TB 11-499-, monthly supplements to TM 11-499; Navy Dept. DNC-13-1 (), monthly supplements to DNC-13-1.)

Quarterly:

*IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific.

*IRPL-H. Frequency Guide for Operating Personnel.

Reports on high-frequency standards.

Reports on microwave standards.

Nonscheduled reports:
CRPL-1-1. Prediction of Annual Sunspot Numbers.
CRPL-7-1. Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records.

Reports issued in past:

IRPL Radio Propagation Handbook, Part 1. (War Dept. TM 11-499; Navy Dept. DNC-13-1.)

IRPL-C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944.

IRPL-G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.

IRPL-R. Unscheduled reports:

R4. Methods Used by IRPL for the Prediction of Ionospheric Characteristics and Maximum Usable Frequencies.

R5. Criteria for Ionospheric Storminess.

R6. Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

R5. Criteria for Ionospheric Storminess.
R6. Experimental Studies of Ionospheric Propagation as Applied to the Loran System.
R7. Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System.
R9. An Automatic Instantaneous Indicator of Skip Distance and MUF.
R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.
R11. A Nomographic Method for Both Prediction and Observation Correlation of Ionosphere Characteristics.
R12. Short Time Variations in Ionospheric Characteristics.
R13. A Graphical Method for Calculating Ground Reflection Coefficients.
R14. A Graphical Method for Calculating Ground Reflection Coefficients.
R15. Predicted Limits for F2-layer Radio Transmission Throughout the Solar Cycle.
R16. Predicted F2-layer Frequencies Throughout the Solar Cycle, for Summer, Winter, and Equinox Season.
R17. Japanese Ionospheric Data—1943.
R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October 1943 Through May 1945.
R19. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for June.
R20. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for September.
R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km.)
R22. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for December.

distances out to 4000 km.)

R22. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for December.

R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.

R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.

R25. The Prediction of Solar Activity as a Basis for Predictions of Radio Propagation Phenomena.

R26. The Ionosphere as a Measure of Solar Activity.

R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped by Distance From Center of Disc.

R28. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for January.

R29 and 29-A. Revised Classification of Radio Subjects Used in National Bureau of Standards and First Supplement (N. B. S. Letter Circular LC-814 and Supplement, superseding Circular C385).

R30. Disturbance Rating in Values of IRPL Quality-Figure Scale From A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.

R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.

R32. Nomographic Predictions of F2-layer Frequencies Throughout the Solar Cycle, for February.

R33. Ionospheric Data on File at IRPL.

R34. The Interpretation of Recorded Values of fEs.

R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc.

of 3 Mc.

IRPL-T. Reports on Tropospheric Propagation.

T1. Radar operation and weather. (Superseded by JANP 101.)

T2. Radar coverage and weather. (Superseded by JANP 102.)

CRPL-T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG-5.)

^{*}Items bearing this symbol are distributed only by U. S. Navy in NONREGISTERED PUBLICATIONS MEMORANDA (NRPM). IRPL-A and -H issued under one cover with NRPM identifying numbers.

