I- (2 points)

Dans l'espace rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$, on considère le point

E(-2; 0; 1) et la droite (d) définie par x = m - 1; y = 2m; z = m + 2 où $m \in \mathbb{R}$.

- 1) a- Vérifier que E n'appartient pas à (d).
 - b- Montrer que x z + 3 = 0 est une équation du plan (P) formé par E et (d).
- 2) On considère dans le plan (P) le cercle (C) de centre I(-3; -1; 0) et de rayon $\sqrt{3}$.
 - a- Montrer que la droite (d) est tangente au cercle (C) au point F(-2; -2; 1).
 - b- Vérifier que E appartient à (C) et déterminer les coordonnées du point A de (d) tel que (AE) soit tangente à (C).
- 3) Soit (Δ) la droite perpendiculaire en I à (P).
 - a- Ecrire un système d'équations paramétriques de (Δ) .
 - b- Trouver les coordonnées du point M de (Δ) d'abscisse non nulle, tel que le volume du tétraèdre MIEF soit égal à 2 unités de volume.

II- (3 points)

On dispose d'un dé cubique parfait dont les faces sont numérotées de 1 à 6 et de deux urnes U_1 et U_2 .

U₁ contient 4 boules bleues, 3 boules rouges et une boule verte.

U₂ contient 4 boules bleues, 2 boules rouges et 2 boules vertes.

Un jeu consiste à lancer tout d'abord le dé.

- Si la face obtenue porte l'un des chiffres 1 ou 2, on tire alors de U₁ simultanément et au hasard trois boules.
- Sinon, on tire alors de U₂ simultanément et au hasard trois boules.

On considère les évènements suivants :

- A : « La face obtenue porte l'un des chiffres 1 ou 2 »
- B : « Les trois boules tirées sont de même couleur »
- C: « Parmi les trois boules tirées, aucune n'est rouge »
 - 1) a- Calculer la probabilité $P(B_A)$ et montrer que $P(A \cap B) = \frac{5}{168}$.
 - b- Calculer P(B).
 - 2) a- Vérifier que $P(C) = \frac{25}{84}$.
 - b- Sachant que parmi les trois boules tirées aucune n'est rouge, calculer la probabilité que la face obtenue du dé porte un chiffre supérieur ou égal à 3.
 - 3) Soit X la variable aléatoire égale au nombre de boules vertes tirées parmi les trois boules tirées.
 - a- Déterminer la loi de probabilité de X.
 - b- Si ce jeu est répété 160 fois, estimer alors le nombre de boules vertes tirées.

III- (2 points)

On considère la suite (U_n) définie par : $U_n = \int_0^1 \frac{x^{2n}}{1+x^2} dx$ où $n \in \mathbb{N}$.

- 1) a- Calculer U₀.
 - b- Calculer $U_0 + U_1$ et en déduire U_1 .
- 2) a- Pour tout $n \in \mathbb{N}$, montrer que $U_n \ge 0$.
 - b- Montrer que, pour $0 \le x \le 1$, (U_n) est décroissante.
 - c- Déduire que (Un) est convergente.
- 3) a- Pour tout $n \in \mathbb{N}$, montrer que $U_{n+1} + U_n = \frac{1}{1+2n}$.
 - b- Déduire la limite de U_n quand n tend vers $+\infty$.

IV- (3 points)

Dans un plan (P), on donne une droite (d) et un point F.

O est le projeté orthogonal de F sur (d) et FO = 3.

A est le symétrique de O par rapport à F et A' le point du segment [OF] tel que OA' = 2.

Dans le plan (P), on considère l'ellipse (E) de foyer

F, de directrice associée (d) et d'excentricité $\frac{1}{2}$.

Partie A

- 1) a- Vérifier que A et A' sont deux sommets de (E).
 - b- Déterminer le centre I de (E) et son deuxième foyer G.
- 2) On désigne par B et B' les sommets de l'axe non focal de (E).
 - a- Calculer AA' et vérifier que BB' = $2\sqrt{3}$.
 - b- Tracer (E).

Partie B

Le plan (P) est rapporté à un repère orthonormé $(O; \vec{i}, \vec{j})$ tel que $\vec{i} = \frac{1}{3} \overrightarrow{OF}$.

- 1) Vérifier qu'une équation de (E) est : $3x^2 + 4y^2 24x + 36 = 0$.
- 2) Soit L le point de (E) d'abscisse 3 et d'ordonnée positive.
 - a- Ecrire une équation de la tangente (T) en L à (E).
 - b- K est le point d'intersection de (T) avec l'axe non focal.

 Calculer l'aire du domaine intérieur au triangle OIK et extérieur à l'ellipse (E).

2

V- (4 points)

Dans le plan orienté, on considère un triangle ABC rectangle en A tel que AB = 4 ; AC = 6 et $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{2} (2\pi)$.

E est le projeté orthogonal du point A sur la droite (BC).

S est la similitude plane directe qui transforme B en A et A en C.

- 1) Calculer le rapport k de S et trouver une mesure d'un angle α de S.
- 2) a- Déterminer l'image de la droite (AE) par S et l'image de la droite (BC) par S.
 - b- Déduire que E est le centre de S.
- 3) Soit F = S(C).
 - a- Prouver que A, E et F sont alignés.
 - b- Montrer que (CF) est parallèle à (AB).
 - c- Construire F et calculer CF.
- 4) On note par h l'homothétie de rapport $\frac{-1}{3}$ qui transforme A en B.
 - a- Déterminer $S \circ h(A)$.
 - b- Soh est une similitude plane directe.
 Déterminer son centre, son rapport et une mesure de son angle.
- 5) Le plan complexe est rapporté à un repère orthonormé direct $(A; \overrightarrow{u}, \overrightarrow{v})$ avec

$$\overrightarrow{u} = \frac{1}{4}\overrightarrow{AB}$$
 et $\overrightarrow{v} = \frac{1}{6}\overrightarrow{AC}$.

- a- Ecrire la forme complexe de $S \circ h$.
- b- Calculer l'affixe du point $B' = S \circ h(B)$.
- c- (P) est la parabole de sommet A et de foyer B et (P') est l'image de (P) par $S \circ h$. Ecrire une équation de (P').

3

VI- (6 points)

Partie A

- 1) Vérifier que $\int \ln x dx = x \ln x x + k$ où k est une constante réelle et x > 0.
- 2) On considère l'équation différentielle (E): $xy'+y=-1-2x-2\ln x$ satisfaite par y où y est une fonction de x (x>0).

On pose z = x y.

- a- Former une équation différentielle (E') satisfaite par z et résoudre (E').
- b- En déduire la solution particulière de (E) tel que y(1) = 0.

Partie B

On considère les deux fonctions g et f définies sur $]0;+\infty[$ par $g(x)=1-x-2\ln x$ et $f(x)=\frac{x+\ln x}{x^2}$ et on désigne par (C) la courbe représentative de f dans un repère orthonormé $(0;\vec{i},\vec{j})$.

- 1) a- Déterminer $\lim_{\substack{x\to 0\\x>0}} g(x)$ et $\lim_{\substack{x\to +\infty\\x>0}} g(x)$.
 - b- Calculer g'(x) et dresser le tableau de variations de g.
 - c- Calculer g(1) puis étudier, suivant les valeurs de x, le signe de g(x).
- 2) Déterminer $\lim_{\substack{x\to 0\\x>0}} f(x)$ et $\lim_{x\to +\infty} f(x)$. Déduire les asymptotes à (C).
- 3) Démontrer que f'(x) = $\frac{g(x)}{x^3}$ et dresser le tableau de variations de f.
- 4) Calculer la valeur exacte de f(e) et tracer la courbe (C).
- 5) A l'aide d'une intégration par parties, calculer $\int \frac{\ln x}{x^2} dx$.
- 6) a- Démontrer que sur $[1;+\infty[$, la fonction f admet une fonction réciproque f^{-1} dont on déterminera son domaine de définition.
 - b- Tracer, dans le même repère que (C), la courbe (Γ) représentative de f^{-1} .
 - c- Calculer l'aire du domaine limité par (Γ) et les trois droites d'équations y=1,

4

$$x = \frac{e+1}{e^2}$$
 et $x = 1$.

أسس تصحيح مادة الرياضيات

عدد المسائل: ست

QI	Eléments de réponses	Note
1a	m-1=-2; $m=-1y=2(m)=2(-1)=-2 \neq y_E=0 alors E \notin (d)$	0,25
1b	$E \in (P)$ et $(d) \subset (P)$.	
2a	 F ∈ (d) ⊂ (P) pour m = -1 IF = √3 = Rayon IF · V	1
2b	• IE = $\sqrt{3}$ = Rayon et E \in (P) alors E \in (C) • A(m-1; 2m; m+2) et $\overrightarrow{AE} \cdot \overrightarrow{IE} = 0$ par suite m = $-\frac{1}{2}$ d'où A $\left(-\frac{3}{2}; -1; \frac{3}{2}\right)$	1
3a	$(\Delta) \perp (P) \text{ alors } \overrightarrow{V}_{(\Lambda)} = \overrightarrow{n}_{(P)} \text{ et } I \in (\Delta) \text{ alors } (\Delta) : \begin{cases} x = t - 3 \\ y = -1 \\ z = -t \end{cases}; t \in \mathbb{R}$	0,5
3b	$M(t-3;-1;-t)$ $det(\overrightarrow{IM},\overrightarrow{IE},\overrightarrow{IF}) = 4t $ $V = \frac{1}{6} \left det(\overrightarrow{IM},\overrightarrow{IE},\overrightarrow{IF}) \right = \frac{1}{6} 4t = 2 \text{ alors } t = -3 \text{ ou } t = 3$ $Pour \ t = -3, \ M(-6;-1,3)$	0,75

QII	Eléments de réponses	Note
1a	$P(B/A) = \frac{C_3^3 + C_4^3}{C_8^3} = \frac{5}{56} ; P(A \cap B) = P(A) \times P(B/A) = \frac{1}{3} \times \frac{5}{56} = \frac{5}{168}$	1
1b	$P(B) = P(A \cap B) + P(\overline{A} \cap B) = \frac{5}{168} + P(\overline{A}) \times P(\overline{A}) = \frac{5}{168} + \frac{2}{3} \times \frac{C_4^3}{C_8^3} = \frac{13}{168}$	1
2a	$P(C) = P(A \cap C) + P(\overline{A} \cap C) = \frac{1}{3} \times \frac{C_5^3}{C_8^3} + \frac{2}{3} \times \frac{C_6^3}{C_8^3} = \frac{25}{84}$	1
2b	$P(\overline{A}/C) = \frac{P(\overline{A} \cap C)}{P(C)} = \frac{\frac{40}{168}}{\frac{25}{84}} = \frac{4}{5}$	1
3a	Les valeurs de X sont 0, 1 et 2. $P(X = 0) = \frac{1}{3} \times \frac{C_7^3}{C_8^3} + \frac{2}{3} \times \frac{C_6^3}{C_8^3} = \frac{75}{168} \; ; \; P(X = 1) = \frac{1}{3} \times \frac{C_7^2 \times C_1^1}{C_8^3} + \frac{2}{3} \times \frac{C_6^2 \times C_2^1}{C_8^3} = \frac{81}{168}$ $P(X = 2) = \frac{2}{3} \times \frac{C_6^1 \times C_2^2}{C_8^3} = \frac{12}{168}$	1
1a	$E(X) = \frac{5}{8}$ alors le nombre de boules vertes estimé est $\frac{5}{8} \times 160 = 100$.	1

QIII	Eléments de réponses	Note
1a	$U_0 = \int_0^1 \frac{1}{1+x^2} dx = \arctan x \Big]_0^1 = \frac{\pi}{4}$	0,5
1b	$U_0 + U_1 = \int_0^1 \frac{1}{1+x^2} dx + \int_0^1 \frac{x^2}{1+x^2} dx = \int_0^1 \frac{1+x^2}{1+x^2} dx = x \Big]_0^1 = 1 \ ; \ U_1 = 1 - U_0 = 1 - \frac{\pi}{4}$	0,75
2a	$\frac{x^{2n}}{1+x^2} \ge 0 \text{ pour } 0 \le x \le 1 \text{ ; alors } U_n \ge 0$	0,5
2b	$\begin{split} U_{n+1} - U_n &= \int_0^1 \frac{x^{2n+2} - x^{2n}}{1 + x^2} dx = \int_0^1 \frac{x^{2n} \left(x^2 - 1\right)}{1 + x^2} dx \\ \text{Si } 0 &\leq x \leq 1, \text{ alors } 0 \leq x^2 \leq 1 \text{ , et par suite } x^2 - 1 \leq 0 \\ \text{D'où } U_{n+1} - U_n &\leq 0 \text{ alors } (U_n) \text{ est décroissante} \end{split}$	0,75
2c	(U _n) est décroissante et minorée par 0, alors (U _n) est convergente.	0,5
3a	$U_{n+1} + U_n = \int\limits_0^1 \frac{x^{2n+2} + x^{2n}}{1 + x^2} dx = \int\limits_0^1 \frac{x^{2n} \left(x^2 + 1\right)}{1 + x^2} dx = \int\limits_0^1 x^{2n} dx = \frac{x^{2n+1}}{2n+1} \bigg]_0^1 = \frac{1}{2n+1}$	0,5
3b	Soit $L = \lim_{n \to +\infty} U_n = \lim_{n \to +\infty} U_{n+1}$, alors $L + L = \lim_{n \to +\infty} \frac{1}{2n+1} = 0$. Par suite $L = 0$	0,5

QIV	Elémen	ts de r	éponses	Note
A1a	$\frac{AF}{AO} = \frac{1}{2} = e \text{ et } A \in (OF) = \text{axe focal, alors A est un sommet de (E).}$ $\frac{A'F}{A'O} = \frac{OF - OA'}{OA'} = \frac{1}{2} = e \text{ et } A' \in (OF) = \text{axe focal, alors A' est un sommet de (E).}$		0,5	
A1b	I est le milieu de [AA'] ; G est le symétrique de F par rapport à I 0,5		2 L B	
A2a	AA' = A'F + FA = 1 + OF = 4 = 2a, alors a = 2 FG = 2FI = 2(A'I - A'F) = 2 = 2c, alors c = 1 $BB' = 2b = 2 \sqrt{a^2 - c^2} = 2\sqrt{3}$	A2b	0 1 2 3 4 5 6 7 -1 B'	1
B1	a = 2; b = $\sqrt{3}$; axe focal est l'axe des (E): $\frac{(x-4)^2}{4} + \frac{y^2}{3} = 1$, d'où $3x^2 + 4y$			1
B2a	$L\left(3; \frac{3}{2}\right)$; $y'_{L} = \frac{1}{2}$; $(T): y = \frac{x}{2}$			1
B2b	K(4; 2); Aire = Aire(Triangle OIK $4 - \frac{\pi\sqrt{3}}{2} \text{ unit\'es d'aires}$	$(1) - \frac{1}{4}$	Aire(E) = $\frac{1}{2} \times OI \times IK - \frac{1}{4} \times \pi ab =$	1

QV	Eléments de réponses	Note
1	$k = \frac{AC}{BA} = \frac{3}{2} \text{ et } \alpha = (\overrightarrow{BA}; \overrightarrow{AC}) = -\frac{\pi}{2} (2\pi)$	0,5
2a	S(A) = C, alors l'image de (AE) est une droite passant par C et perpendiculaire à (AE) qui est (BC). S(B) = A, alors l'image de (BC) est une droite passant par A et perpendiculaire à (BC) qui est (AE).	1
2b	$\{E\} = (AE) \cap (BC), \text{ alors } \{S(E)\} = S((AE)) \cap S((BC)) = (BC) \cap (AE) = \{E\}$	0,5
3a	S(B) = A; S(C) = F; S(E) = E B, C et E alignés, alors A, F et E sont alignés	0,5
3b	$S(A) = C$ et $S(C) = F$, alors $(CF) \perp (AC)$ et comme $(AB) \perp (AC)$. Donc $(CF) / (AB)$	1
3c	F est l'intersection de la parallèle menée de C à (AB) avec (AE). S(A) = C et $S(C) = F$, alors $CF = k$ $AC = 9$	1
4a	$S \circ h(A) = S(h(A)) = S(B) = A$	0,5
4b	$S \circ h\left(A; \frac{1}{2}; \frac{\pi}{2}\right)$	0,5
5a	$z' = \frac{1}{2}iz$	0,75
5b	$z_B = 4$, alors $z_{B'} = 2i$	0,75
5c	(P') est la parabole de sommet A(0; 0) et de foyer B'(0; 2) (P') : $x^2 = 8y$	1

QVI	Eléments de réponses	
A1	$(x\ln x - x + k)' = \ln x$	0,5
A2a	z = xy, z' = y + xy' (E'): $z' = -1 - 2x - 2\ln x$; $z = -x^2 + x - 2x\ln x + C$	1
A2b	$y = \frac{z}{x} = -x + 1 - 2\ln x + \frac{C}{x}$ y(1) = 0, alors C = 0; par suite y = 1 - x - 2\lnx	0,75
B1a	$\lim_{\substack{x \to 0 \\ x > 0}} g(x) = +\infty \text{ et } \lim_{x \to +\infty} g(x) = -\infty$	0,5
B1b	$g'(x) = -1 - \frac{2}{x} < 0$	0,75
B1c	g(1) = 0 g(x) > 0 pour $0 < x < 1g(x) = 0$ pour $x = 1g(x) < 0$ pour $x > 1$	1
B2	$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = -\infty, \text{ alors } x = 0 \text{ est une asymptote.}$	1

	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{1}{x} + \frac{1}{x} \times \frac{\ln x}{x} \right) = 0 \text{ (ou bien R.H.), alors } y = 0 \text{ est une asymptote.}$	
В3	$f'(x) = \frac{g(x)}{x^3}$ $x 0 1 +\infty$ $f'(x) + 0$ $f(x) -\infty$	1,25
B4	$f(e) = \frac{e+1}{e^2}$	1,25
B5	$\int \frac{\ln x}{x^2} dx = -\frac{1}{x} \ln x - \int -\frac{1}{x^2} dx = -\frac{1}{x} \ln x - \frac{1}{x} + C$	1
B6a	f est continue et strictement décroissante sur $[1; +\infty[$, alors f admet une fonction réciproque f^{-1} définie sur $]0;1]$	1
B6b	(Γ) est la courbe symétrique de la courbe (C) par rapport à la droite $y = x$.	0,5
В6с	$A = \int_{\frac{e+1}{e^2}}^{1} (f^{-1}(x) - 1) dx = \int_{1}^{e} \left(\frac{1}{x} + \frac{\ln x}{x^2} - \frac{e+1}{e^2} \right) dx = \ln x + \frac{-1 - \ln x}{x} \Big]_{1}^{e} - \frac{e+1}{e^2} \times (e-1) = 1 - \frac{2}{e} + \frac{1}{e^2} = \left(\frac{e-1}{e} \right)^2 \approx 0,4 \text{ unit\'es d'aire.}$	1,5