Bayesci Yapay Öğrenme (I), Zaman Dizileri (II)

Yapay Öğrenme ve Bilgi İşlemede Yeni Teknikler, Orta Doğu Teknik Üniversitesi Instructor: A. Taylan Cemgil, Boğaziçi Universitesi

06.09.2016

Özet

- Giriş
 - Bayes Teoremi,
 - Basit bir Örnek
 - Olasılık Kuramı hatırlatma, olasılık tabloları
 - Bayesci Öğrenme
- Zaman Dizileri
 - Hesaplama Problemleri
 - Saklı Markov Modelleri
- Yaklaşık Çıkarım (Variational Bayes)

Bayes Kuralı

Thomas Bayes (1702-1761)

Bir λ parametresi hakkında, \mathcal{D} verisini gördükten **sonraki** bilgimiz veriyi görmeden **önceki** bilgimiz ve verinin bize söylediği bilgnin birleşimidir.

$$p(\lambda|\mathcal{D}) = \frac{p(\mathcal{D}|\lambda)p(\lambda)}{p(\mathcal{D})}$$

İki Zar: 'Kaynak Ayrıştırma'

1. zar λ , 2. zar y

$$\mathcal{D} = \lambda + y$$

$$\mathcal{D} = 9$$
 ise $\lambda = ?$

İki Zar

$$\mathcal{D} = \lambda + y = 9$$

$\mathcal{D} = \lambda + y$	y=1	y = 2	y=3	y=4	y = 5	y = 6
$\lambda = 1$	2	3	4	5	6	7
$\lambda = 2$	3	4	5	6	7	8
$\lambda = 3$	4	5	6	7	8	9
$\lambda = 4$	5	6	7	8	9	10
$\lambda = 5$	6	7	8	9	10	11
$\lambda = 6$	7	8	9	10	11	12

$$p(\lambda) \to p(\lambda|\mathcal{D}).$$

Gözlem modeli: $p(\mathcal{D}|\lambda)$

"Bürokratik" türetim

$$p(\lambda) = C(\lambda; [1/6 1/6 1/6 1/6 1/6 1/6 1/6])$$

$$p(y) = C(y; [1/6 1/6 1/6 1/6 1/6])$$

$$p(\mathcal{D}|\lambda, y) = \delta(\mathcal{D} - (\lambda + y))$$

$$p(\lambda, y | \mathcal{D}) = \frac{1}{p(\mathcal{D})} \times p(\mathcal{D} | \lambda, y) \times p(y) p(\lambda)$$

Sonsal $= \frac{1}{\mathsf{Kanit}} \times \mathsf{Olabilirlik} \times \mathsf{Önsel}$

Kronecker delta
$$\delta(x) = \left\{ \begin{array}{ll} 1 & x = 0 \\ 0 & x \neq 0 \end{array} \right.$$

Önsel Dağılım

$$p(y)p(\lambda)$$

$p(y) \times p(\lambda)$	y=1	y=2	y=3	y=4	y=5	y = 6
$\lambda = 1$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 2$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 3$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 4$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 5$	1/36	1/36	1/36	1/36	1/36	1/36
$\lambda = 6$	1/36	1/36	1/36	1/36	1/36	1/36

• Olasılık $p(\lambda, y)$

Olabilirlik Fonksyonu - Gözlem modeli

$$p(\mathcal{D} = 9|\lambda, y)$$

$p(\mathcal{D} = 9 \lambda, y)$	y=1	y=2	y = 3	y=4	y = 5	y = 6
$\lambda = 1$	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0
$\lambda = 3$	0	0	0	0	0	1
$\lambda = 4$	0	0	0	0	1	0
$\lambda = 5$	0	0	0	1	0	0
$\lambda = 6$	0	0	1	0	0	0

Olabilirlik ≠ Olasılık. Sedece negatif olmayan bir fonksyon.

Olabilirlik × Önsel

$$\phi_{\mathcal{D}}(\lambda, y) = p(\mathcal{D} = 9|\lambda, y)p(\lambda)p(y)$$

$p(\mathcal{D} = 9 \lambda, y)$	y=1	y=2	y=3	y=4	y=5	y=6
$\lambda = 1$	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0
$\lambda = 3$	0	0	0	0	0	1/36
$\lambda = 4$	0	0	0	0	1/36	0
$\lambda = 5$	0	0	0	1/36	0	0
$\lambda = 6$	0	0	1/36	0	0	0

Marjinal Olabilirlik

$$p(\mathcal{D} = 9) = \sum_{\lambda,y} p(\mathcal{D} = 9|\lambda,y)p(\lambda)p(y)$$

$$= 0 + 0 + \dots + 1/36 + 1/36 + 1/36 + 1/36 + 0 + \dots + 0$$

$$= 1/9$$

$p(\mathcal{D} = 9 \lambda, y)$	y=1	y = 2	y=3	y=4	y = 5	y = 6
$\lambda = 1$	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0
$\lambda = 3$	0	0	0	0	0	1/36
$\lambda = 4$	0	0	0	0	1/36	0
$\lambda = 5$	0	0	0	1/36	0	0
$\lambda = 6$	0	0	1/36	0	0	0

Sonsal Dağılım

$$p(\lambda, y|\mathcal{D} = 9) = \frac{1}{p(\mathcal{D})}p(\mathcal{D} = 9|\lambda, y)p(\lambda)p(y)$$

$p(\mathcal{D} = 9 \lambda, y)$	y=1	y=2	y=3	y=4	y=5	y = 6
$\lambda = 1$	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0
$\lambda = 3$	0	0	0	0	0	1/4
$\lambda = 4$	0	0	0	0	1/4	0
$\lambda = 5$	0	0	0	1/4	0	0
$\lambda = 6$	0	0	1/4	0	0	0

$$1/4 = (1/36)/(1/9)$$

Marjinal Sonsal Dağılım

$$p(\lambda|\mathcal{D}) = \sum_{y} \frac{1}{p(\mathcal{D})} p(\mathcal{D}|\lambda, y) p(\lambda) p(y)$$

	$p(\lambda \mathcal{D}=9)$	y=1	y=2	y=3	y=4	y = 5	y = 6
$\lambda = 1$	0	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0	0
$\lambda = 3$	1/4	0	0	0	0	0	1/4
$\lambda = 4$	1/4	0	0	0	0	1/4	0
$\lambda = 5$	1/4	0	0	0	1/4	0	0
$\lambda = 6$	1/4	0	0	1/4	0	0	0

Orantılıdır \propto **notasyonu**

$$p(\lambda|\mathcal{D}=9) \propto p(\lambda,\mathcal{D}=9) = \sum_{y} p(\mathcal{D}=9|\lambda,y)p(\lambda)p(y)$$

	$p(\lambda, \mathcal{D} = 9)$	y = 1	y = 2	y = 3	y=4	y = 5	y=6
$\lambda = 1$	0	0	0	0	0	0	0
$\lambda = 2$	0	0	0	0	0	0	0
$\lambda = 3$	1/36	0	0	0	0	0	1/36
$\lambda = 4$	1/36	0	0	0	0	1/36	0
$\lambda = 5$	1/36	0	0	0	1/36	0	0
$\lambda = 6$	1/36	0	0	1/36	0	0	0

Model Seçim Örneği

Bilinmeyen sayıda zar atılıyor: $\lambda_1, \lambda_2, \dots, \lambda_n$,

$$\mathcal{D} = \sum_{i=1}^{n} \lambda_i$$

 $\mathcal{D} = 9$ ise kaç zar atıldı?

$$p(n) \propto 1$$

Model Seçimi

$$p(n|\mathcal{D}=9) = \frac{p(\mathcal{D}=9|n)p(n)}{p(\mathcal{D})} \propto p(\mathcal{D}=9|n)$$

$$p(\mathcal{D}|n=1) = \sum_{\lambda_1} p(\mathcal{D}|\lambda_1) p(\lambda_1)$$
$$p(\mathcal{D}|n=2) = \sum_{\lambda_1} \sum_{\lambda_1} p(\mathcal{D}|\lambda_1, \lambda_2) p(\lambda_1) p(\lambda_2)$$

. . .

$$p(\mathcal{D}|n=n') = \sum_{\lambda_1,\dots,\lambda_{n'}} p(\mathcal{D}|\lambda_1,\dots,\lambda_{n'}) \prod_{i=1}^{n'} p(\lambda_i)$$

$$p(\mathcal{D}|n) = \sum_{\lambda} p(\mathcal{D}|\lambda, n) p(\lambda|n)$$

Model Seçimi

- Sezgi: Karmaşık modellerde olasılık daha büyük bir alana yayılır, gözlemlenen tek bir olayın olabilirliği düşer.
- Bayesci çıkarım "basit modelleri" tercih eder Occam's razor
- Bütün parametreler üzerinden toplam (tümlev) hesabı

Olasılıksal Yaklaşım

- Ne çözelim : Modelleme
 - Zanaat
- Nasıl çözelim : Çıkarım Algoritması
 - Mekanik-Otomatik (Teoride! Pratikte hep değil)
 - Genel

Olasılık Kuramı

- Pascal ve Fermat arasındaki mektuplaşma (Soylu ve kumarbaz bey de Meré)
- 1930'lar Aksyomatik gelişim (Reichenbach, Kolmogorov), Ölçüm (measure)
 Kuramı
- İstatistik: Ters olasılık Olasılığın anlamı:
 - "Frequentist": Tekrarlanabilir deneylerdeki frekanslar
 - * Bu ilaç etkili.
 - "Bayesian": Bilginin (inancın) derecesi
 - * Yarın yüzde doksan yağmurlu.
- Brad Efron, Modern science and the Bayesian-frequentist controversy, 2005

http://www-stat.stanford.edu/~ckirby/brad/papers/2005NEWModernScience.pdf

• Brad Efron, Bayesians, frequentists, and scientists, 2005

http://www-stat.stanford.edu/~ckirby/brad/papers/2005BayesFreqSci.pdf

Tümdengelim (Deduction) ve Tümevarım (Inductive)

• a, b, and c tam sayılar olmak üzere

$$a^n + b^n = c^n$$

denkleminin n > 2 için çözümü yoktur.

Aşağıda verilen ses dalgası içerisindeki kayıp örnekleri bulunuz

Tümevarım'ın tehlikeleri

Borovik

$$\operatorname{snc}(x) \equiv \sin(x)/x$$

$$\int_0^\infty \operatorname{snc}(x) dx = \pi/2$$

$$\int_0^\infty \operatorname{snc}(x) \operatorname{snc}(x/3) dx = \pi/2$$

$$\int_0^\infty \operatorname{snc}(x) \operatorname{snc}(x/3) \operatorname{snc}(x/5) dx = \pi/2$$

$$\int_0^\infty \operatorname{snc}(x) \operatorname{snc}(x/3) \operatorname{snc}(x/5) \operatorname{snc}(x/7) dx = \pi/2$$

$$\int_0^\infty \operatorname{snc}(x) \operatorname{snc}(x/3) \operatorname{snc}(x/7) \operatorname{snc}(x/7) dx = \pi/2$$

$$\int_0^\infty \operatorname{snc}(x)\operatorname{snc}(x/3)\operatorname{snc}(x/5)\operatorname{snc}(x/7)\operatorname{snc}(x/9)\operatorname{snc}(x/11)dx = \pi/2$$

$$\int_0^\infty \operatorname{snc}(x)\operatorname{snc}(x/3)\operatorname{snc}(x/5)\operatorname{snc}(x/7)\operatorname{snc}(x/9)\operatorname{snc}(x/11)\operatorname{snc}(x/13)dx = \pi/2$$

$$\int_0^\infty \operatorname{snc}(x)\operatorname{snc}(x/3)\operatorname{snc}(x/5)\operatorname{snc}(x/7)\operatorname{snc}(x/9)\operatorname{snc}(x/11)\operatorname{snc}(x/13)\operatorname{d}x = \frac{467807924713440738696537864469}{935615849440640907310521750000} \cdot \pi$$

Uygulamalar

- ullet Ön bilgi ve gözlemlenen verinin birleştirilmesi için doğal bir çerçeve \Rightarrow Öğrenme
 - Tıbbi tanı (Semptom/Hastalık)
 - Konuşma Tanıma (İşaret/Hece)
 - Bilgisayarla Görme (Görüntü/Nesne)
 - Robotik, Hedef Takibi (Algılayıcı/Pozisyon)
 - Finans (Geçmiş fiyatlar, Piyasa haberleri/Gelecek fiyat)

Olasılık Tabloları

$p(x_1, x_2)$	$x_2 = 1$	$x_2=2$
$x_1 = 1$	0.3	0.3
$x_1 = 2$	0.1	0.3

• Marjinal: $p(x_1)$, $p(x_2)$

• Şartlı: $p(x_1|x_2)$, $p(x_2|x_1)$

• Sonsal: $p(x_1, x_2 = 2)$, $p(x_1|x_2 = 2)$

• Marjinal olabilirlik: $p(x_2 = 2)$

• En büyük: $p(x_1^*) = \max_{x_1} p(x_1|x_2 = 1)$

• Mod: $x_1^* = \arg \max_{x_1} p(x_1|x_2 = 1)$

• Max-marginal: $\max_{x_1} p(x_1, x_2)$

Cevaplar

$p(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.3	0.3
$x_1 = 2$	0.1	0.3

• Marginals:

$$\begin{array}{c|cc}
p(x_1) & & \\
x_1 = 1 & 0.6 \\
x_1 = 2 & 0.4
\end{array}$$

$p(x_2)$	$x_2 = 1$	$x_2=2$
	0.4	0.6

• Conditionals:

$p(x_1 x_2)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.75	0.5
$x_1 = 2$	0.25	0.5

$p(x_2 x_1)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.5	0.5
$x_1 = 2$	0.25	0.75

Answers

$p(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.3	0.3
$x_1 = 2$	0.1	0.3

• Posterior:

$p(x_1, x_2 = 2)$	$x_2 = 2$	
$x_1 = 1$	0.3	
$x_1 = 2$	0.3	

• Evidence:

$$p(x_2 = 2) = \sum_{x_1} p(x_1, x_2 = 2) = 0.6$$

Answers

$p(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$
$x_1 = 1$	0.3	0.3
$x_1 = 2$	0.1	0.3

Max: (get the value)

$$\max_{x_1} p(x_1|x_2=1) = 0.75$$

Mode: (get the index)

$$\operatorname*{argmax}_{x_1} p(x_1 | x_2 = 1) = 1$$

• Max-marginal: (get the "skyline") $\max_{x_1} p(x_1, x_2)$

$\max_{x_1} p(x_1, x_2)$	$x_2 = 1$	$x_2 = 2$
	0.3	0.3

Learning

- Maximum Likelihood,
- Penalised Likelihood,
- Bayesian Learning

Inference and Learning

Data set

$$\mathcal{D} = \{x_1, \dots x_N\}$$

• Model with parameter λ

$$p(\mathcal{D}|\lambda)$$

Maximum Likelihood (ML)

$$\lambda^{\mathsf{ML}} = \arg\max_{\lambda} \log p(\mathcal{D}|\lambda)$$

Predictive distribution

$$p(x_{N+1}|\mathcal{D}) \approx p(x_{N+1}|\lambda^{\mathsf{ML}})$$

Regularisation

Prior

$$p(\lambda)$$

• Maximum a-posteriori (MAP): Regularised Maximum Likelihood

$$\lambda^{\mathsf{MAP}} = \arg\max_{\lambda} \log p(\mathcal{D}|\lambda) p(\lambda)$$

Predictive distribution

$$p(x_{N+1}|\mathcal{D}) \approx p(x_{N+1}|\lambda^{\mathsf{MAP}})$$

Bayesian Learning

- We treat parameters on the same footing as all other variables
- We integrate over unknown parameters rather than using point estimates (remember the many-dice example)
 - Self-regularisation, avoids overfitting
 - Natural setup for online adaptation
 - Model selection

Bayesian Learning

Predictive distribution

$$p(x_{N+1}|\mathcal{D}) = \int d\lambda \ p(x_{N+1}|\lambda)p(\lambda|\mathcal{D})$$

• Bayesian learning is just inference ...

Probabilistic Modelling

Probability Distributions

- Following distributions are used often as elementary building blocks:
 - Discrete
 - * Categorical, Bernoulli, Binomial, Multinomial, Poisson
 - Continuous
 - * Gaussian,
 - * Beta, Dirichlet
 - * Gamma, Inverse Gamma, Exponential, Chi-square, Wishart
 - * Student-t, von-Mises

Exponential Family

Many of those distributions can be written as

$$p(x|\theta) = h(x) \exp\{\theta^{\top} \psi(x) - A(\theta)\}$$

$$A(\theta) = \log \int_{\mathcal{X}^n} dx \ h(x) \exp(\theta^{\top} \psi(x))$$

- $A(\theta)$ log-partition function
 - canonical parameters
- $\psi(x)$ sufficient statistics
- h(x) weighting function

Bernoulli Distribution. $\mathcal{BE}(c; w)$

Binary (Bernoulli) random variable $c=\{0,1\}$ with probability of success w

$$p(c = 1|w) = w$$
 $p(c = 0|w) = 1 - w$

We write

$$p(c|w) = w^{c}(1-w)^{1-c}$$

$$= \exp(c\log w + (1-c)\log(1-w))$$

$$= \exp\left(\log(\frac{w}{1-w})c + \log(1-w)\right)$$

$$\equiv \mathcal{B}\mathcal{E}(c;w)$$

Is Bernoulli an Exponential Family?

$$\mathcal{BE}(c; w) = \exp\left(\log(\frac{w}{1-w})c + \log(1-w)\right)$$

$$p(c|\theta) = h(c) \exp\{\theta^{\top} \psi(c) - A(\theta)\}$$

$$heta = \log(rac{w}{1-w})$$
 canonical parameters $A(heta) = -\log(1+e^{ heta})$ log-partition function $\psi(c) = c$ sufficient statistics $h(c) = 1$ weighting function

Beta Distribution. $\mathcal{B}(w; a, b)$

$$\mathcal{B}(w; a, b) \equiv \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} w^{a-1} (1-w)^{b-1}$$

$$= \exp\left((a-1)\log w + (b-1)\log(1-w) - A(a,b)\right)$$

$$= \exp\left(\left(a-1 \ b-1\right) \left(\frac{\log w}{\log(1-w)}\right) - A(a,b)\right)$$

$$A(a,b) = \log\Gamma(a) + \log\Gamma(b) - \log\Gamma(a+b)$$

Mean:

$$\langle w \rangle_{\mathcal{B}} = a/(a+b)$$

Beta Distribution. $\mathcal{B}(w; a, b)$

Univariate Gaussian. $\mathcal{N}(x; m, S)$

The Gaussian distribution with mean m and covariance S has the form

$$\mathcal{N}(x; m, S) = (2\pi S)^{-1/2} \exp\{-\frac{1}{2}(x - m)^2/S\}$$

$$= \exp\{-\frac{1}{2}(x^2 + m^2 - 2xm)/S - \frac{1}{2}\log(2\pi S)\}$$

$$= \exp\{\frac{m}{S}x - \frac{1}{2S}x^2 - \left(\frac{1}{2}\log(2\pi S) + \frac{1}{2S}m^2\right)\}$$

$$= \exp\{\underbrace{\begin{pmatrix} m/S \\ -\frac{1}{2}/S \end{pmatrix}}^{\top}\underbrace{\begin{pmatrix} x \\ x^2 \end{pmatrix}}_{\psi(x)} - A(\theta)\}$$

Hence by matching coefficients we have

$$\exp\left\{-\frac{1}{2}Kx^2 + hx + g\right\} \Leftrightarrow S = K^{-1} \quad m = K^{-1}h$$

Gaussian.

Inverse Gamma Distribution. $\mathcal{IG}(r; a, b)$

The inverse Gamma distribution with shape a and scale b

$$\mathcal{IG}(r; a, b) = \frac{1}{\Gamma(a)} \frac{r^{-(a+1)}}{b^{-a}} \exp(-\frac{b}{r})$$

$$= \exp\left(-(a+1)\log r - \frac{b}{r} - \log\Gamma(a) + a\log b\right)$$

$$= \exp\left(\left(\begin{array}{c} -(a+1) \\ -b \end{array}\right)^{\top} \left(\begin{array}{c} \log r \\ 1/r \end{array}\right) - \log\Gamma(a) + a\log b\right)$$

Hence by matching coefficients, we have

$$\exp\left\{\alpha\log r + \beta\frac{1}{r} + c\right\} \Leftrightarrow a = -\alpha - 1 \qquad b = -\beta$$

Inverse Gamma

Gamma Distribution. $G(\lambda; a, b)$

The Gamma distribution with shape a and **inverse scale** b

$$\mathcal{G}(\lambda; a, b) = \frac{1}{\Gamma(a)} b^a \lambda^{(a-1)} \exp(-b\lambda)$$

$$= \exp((a-1)\log \lambda - b\lambda - \log \Gamma(a) + a\log b)$$

$$= \exp\left(\left(\frac{(a-1)}{-b}\right)^{\top} \left(\frac{\log \lambda}{\lambda}\right) - \log \Gamma(a) + a\log b\right)$$

Hence by matching coefficients, we have

$$\exp\left\{\alpha\log r + \beta\frac{1}{r} + c\right\} \Leftrightarrow a = \alpha + 1 \qquad b = -\beta$$

Random number generation

```
• Bernoulli: \mathcal{BE}(x;p)
  x = double(rand < p);
• Binomial: \mathcal{BI}(x; p, N)
  x = sum(double(rand(N, 1) < p));
  Not efficient for large N
• Poisson: \mathcal{PO}(x;\lambda)
  x = poissrnd(lambda);
• Beta: \mathcal{B}(x;a,b)
  x = betarnd(a, b);
```

• Gaussian: $\mathcal{N}(x; \mu, S)$

```
x = sqrt(S).*randn(size(S)) + mu;
```

• Gamma: $x \sim \mathcal{G}(x; a, b)$

```
x = gamrnd(a, 1./b);
```

or more securely

$$x = gamrnd(a, 1)./b;$$

which is also

$$x = gamrnd(a)./b;$$

• Inverse Gamma $x \sim \mathcal{IG}(x; a, b)$

$$x = b./gamrnd(a);$$

Conjugate priors: Posterior is in the same family as the prior.

Example: posterior inference for the probability of success w of a binary (Bernoulli) random variable c

$$p(c|w) = \mathcal{B}\mathcal{E}(c;w) = \exp(c\log w + (1-c)\log(1-w))$$
$$p(w) = \mathcal{B}(w;a,b)$$

$$p(w|c) \propto p(c|w)p(w)$$

$$\propto \exp(c\log w + (1-c)\log(1-w))$$

$$\times \exp((a-1)\log w + (b-1)\log(1-w))$$

$$\propto \mathcal{B}(w; a+c, b+(1-c))$$

$$p(w|c) = \begin{cases} \mathcal{B}(w; a+1, b) & c=1\\ \mathcal{B}(w; a, b+1) & c=0 \end{cases}$$

Conjugate priors: Posterior is in the same family as the prior.

Example: posterior inference for the variance R of a zero mean Gaussian.

$$p(x|R) = \mathcal{N}(x; 0, R)$$
$$p(R) = \mathcal{IG}(R; a, b)$$

$$p(R|x) \propto p(R)p(x|R)$$

$$\propto \exp\left(-(a+1)\log R - b\frac{1}{R}\right) \exp\left(-(x^2/2)\frac{1}{R} - \frac{1}{2}\log R\right)$$

$$= \exp\left(\left(\begin{array}{c} -(a+1+\frac{1}{2})\\ -(b+x^2/2) \end{array}\right)^{\top} \left(\begin{array}{c} \log R\\ 1/R \end{array}\right)\right)$$

$$\propto \mathcal{IG}(R; a+\frac{1}{2}, b+x^2/2)$$

Like the prior, this is an inverse-Gamma distribution.

Conjugate priors: Posterior is in the same family as the prior.

Example: posterior inference of variance R from x_1, \ldots, x_N .

$$p(R|x) \propto p(R) \prod_{i=1}^{N} p(x_i|R)$$

$$\propto \exp\left(-(a+1)\log R - b\frac{1}{R}\right) \exp\left(-\left(\frac{1}{2}\sum_{i}x_i^2\right)\frac{1}{R} - \frac{N}{2}\log R\right)$$

$$= \exp\left(\left(\frac{-(a+1+\frac{N}{2})}{-(b+\frac{1}{2}\sum_{i}x_i^2)}\right)^{\top} \left(\frac{\log R}{1/R}\right)\right) \propto \mathcal{IG}(R; a + \frac{N}{2}, b + \frac{1}{2}\sum_{i}x_i^2)$$

Sufficient statistics are additive

Inverse Gamma, $\sum_i x_i^2 = 10$ N = 10

Inverse Gamma, $\sum_i x_i^2 = 100$ N = 100

Inverse Gamma, $\sum_i x_i^2 = 1000$ N = 1000

Example: AR(1) model

$$x_k = Ax_{k-1} + \epsilon_k$$

$$k = 1 \dots K$$

 ϵ_k is i.i.d., zero mean and normal with variance R.

Estimation problem:

Given x_0, \ldots, x_K , determine coefficient A and variance R (both scalars).

AR(1) model, Generative Model notation

$$A \sim \mathcal{N}(A; 0, P)$$

$$R \sim \mathcal{IG}(R; \nu, \beta/\nu)$$

$$x_k | x_{k-1}, A, R \sim \mathcal{N}(x_k; Ax_{k-1}, R) \qquad x_0 = \hat{x}_0$$

Observed variables are shown with double circles

AR(1) Model. Bayesian Posterior Inference

$$p(A, R|x_0, x_1, \dots, x_K) \propto p(x_1, \dots, x_K|x_0, A, R)p(A, R)$$

Posterior \propto Likelihood \times Prior

Using the Markovian (conditional independence) structure we have

$$p(A, R|x_0, x_1, \dots, x_K) \propto \left(\prod_{k=1}^K p(x_k|x_{k-1}, A, R)\right) p(A)p(R)$$

Numerical Example

Suppose K = 1,

By Bayes' Theorem and the structure of AR(1) model

$$p(A, R|x_0, x_1) \propto p(x_1|x_0, A, R)p(A)p(R)$$

$$= \mathcal{N}(x_1; Ax_0, R)\mathcal{N}(A; 0, P)\mathcal{IG}(R; \nu, \beta/\nu)$$

Numerical Example

$$p(A, R|x_0, x_1) \propto p(x_1|x_0, A, R)p(A)p(R)$$

$$= \mathcal{N}(x_1; Ax_0, R)\mathcal{N}(A; 0, P)\mathcal{I}\mathcal{G}(R; \nu, \beta/\nu)$$

$$\propto \exp\left(-\frac{1}{2}\frac{x_1^2}{R} + x_0x_1\frac{A}{R} - \frac{1}{2}\frac{x_0^2A^2}{R} - \frac{1}{2}\log 2\pi R\right)$$

$$\exp\left(-\frac{1}{2}\frac{A^2}{P}\right)\exp\left(-(\nu+1)\log R - \frac{\nu}{\beta}\frac{1}{R}\right)$$

This posterior has a nonstandard form

$$\exp\left(\alpha_1 \frac{1}{R} + \alpha_2 \frac{A}{R} + \alpha_3 \frac{A^2}{R} + \alpha_4 \log R + \alpha_5 A^2\right)$$

Numerical Example, the prior p(A, R)

Equiprobability contour of p(A)p(R)

$$A \sim \mathcal{N}(A; 0, 1.2)$$

$$A \sim \mathcal{N}(A; 0, 1.2)$$
 $R \sim \mathcal{IG}(R; 0.4, 250)$

Suppose:
$$x_0 = 1$$

$$x_1 = -6$$

Suppose:
$$x_0 = 1$$
 $x_1 = -6$ $x_1 \sim \mathcal{N}(x_1; Ax_0, R)$

Numerical Example, the posterior p(A, R|x)

Note the bimodal posterior with $x_0 = 1, x_1 = -6$

- $A \approx -6 \Leftrightarrow$ low noise variance R.
- $A \approx 0 \Leftrightarrow \text{high noise variance } R$.

Remarks

- The point estimates such as ML or MAP are not always representative about the solution
- (Unfortunately), exact posterior inference is only possible for few special cases
- Even very simple models can lead easily to complicated posterior distributions
- Ambiguous data usually leads to a multimodal posterior, each mode corresponding to one possible explanation

Remarks

- A-priori independent variables often become dependent aposteriori ("Explaining away")
- The difficulty of an inference problem depends, among others, upon the particular "parameter regime" and observed data sequence

Lecture Outline

- Sequential data, Terminology
- Hidden Markov Models
- Implementation of the Forward-Backward algorithm
- Finding the MAP trajectory: the Viterbi algorithm

Sequential Data: Models, Inference, Terminology

In signal processing, machine learning, robotics, statistics many phenomena are modelled by dynamical models

- x is the latent state (tempo, pitch, velocity, attitude, class label, ...)
- y are observations (samples, onsets, sensor reading, pixels, features, ...)
- In a full Bayesian setting, x includes unknown model parameters

Online Inference, Terminology

- Filtering: $p(x_k|y_{1:k})$
 - Distribution of current state given all past information
 - Realtime/Online/Sequential Processing

- Potentially confusing misnomer:
 - More general than "digital filtering" (convolution) in DSP but algoritmically related for some models (KFM)

Online Inference, Terminology

- Prediction $p(y_{k:K}, x_{k:K}|y_{1:k-1})$
 - evaluation of possible future outcomes; like filtering without observations

Accompaniment, Tracking, Restoration

Offline Inference, Terminology

• Smoothing $p(x_{0:K}|y_{1:K})$, Most likely trajectory – Viterbi path $\arg\max_{x_{0:K}} p(x_{0:K}|y_{1:K})$ better estimate of past states, essential for learning

• Interpolation $p(y_k, x_k | y_{1:k-1}, y_{k+1:K})$ fill in lost observations given past and future

Hidden Markov Model [?]

Mixture model evolving in time

- Observations y_k are continuous or discrete
- Latent variables x_k are discrete
 - Represents the fading memory of the process
- Exact inference possible if x_k has a "small" number of states

Example: Hidden Markov Model

State transition model (a N by N matrix)

• Observation model $p(y_k|x_k)$

$$y_k \sim w\delta(y_k - x_k) + (1 - w)u(1, N)$$

Example: Hidden Markov Model

Example: Hidden Markov Model

Exact Inference in HMM, Forward/Backward Algorithm

Forward Pass

$$p(y_{1:K}) = \sum_{x_{1:K}} p(y_{1:K}|x_{1:K})p(x_{1:K})$$

$$= \underbrace{\sum_{x_{K}} p(y_{K}|x_{K}) \sum_{x_{K-1}} p(x_{K}|x_{K-1}) \cdots \sum_{x_{2}} p(x_{3}|x_{2}) \underbrace{p(y_{2}|x_{2})}_{\alpha_{2}} \underbrace{\sum_{x_{1}} p(x_{2}|x_{1})}_{\alpha_{2}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{2}}}_{\alpha_{2}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}} \underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1}) p(x_{1})}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1}) p(x_{1})}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1}) p(x_{1})}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1}) p(x_{1})}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1}) p(x_{1})}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1}) p(x_{1}) p(x_{1})}_{\alpha_{1}}}\underbrace{\underbrace{p(y_{1}|x_{1})$$

Backward Pass

$$p(y_{1:K}) = \sum_{x_1} p(x_1)p(y_1|x_1) \dots \underbrace{\sum_{x_{K-1}} p(x_{K-1}|x_{K-2})p(y_{K-1}|x_{K-1})}_{\beta_{K-2}} \underbrace{\sum_{x_K} p(x_K|x_{K-1})p(y_K|x_K)}_{\beta_{K-1}} \underbrace{1}_{\beta_K}$$

Exact Inference in HMM, Viterbi Algorithm

- Merely replace sum by max, equivalent to dynamic programming
- Forward Pass

$$p(y_{1:K}|x_{1:K}^*) = \max_{x_{1:K}} p(y_{1:K}|x_{1:K}) p(x_{1:K})$$

$$= \max_{x_{1:K}} p(y_{T}|x_{K}) \max_{x_{K-1}} p(x_{K}|x_{K-1}) \dots \max_{x_{2}} p(x_{3}|x_{2}) \underbrace{p(y_{2}|x_{2}) \max_{x_{1}} p(x_{2}|x_{1})}_{\alpha_{1}} \underbrace{p(y_{1}|x_{1}) p(x_{1})}_{\alpha_{1}} \underbrace{p(y_{1}|x_{1}) p(x_$$

Backward Pass

$$p(y_{1:K}|x_{1:K}^*) = \max_{x_1} p(x_1)p(y_1|x_1) \dots \underbrace{\max_{x_{K-1}} p(x_{K-1}|x_{K-2})p(y_{K-1}|x_{K-1})}_{\beta_{K-2}} \underbrace{\max_{x_K} p(x_K|x_{K-1})p(y_K|x_K)}_{\alpha_K} \underbrace{\underbrace{1}_{\beta_K}}_{\beta_{K-1}}$$

Implementation of Forward-Backward

- 1. Setup a parameter structure
- 2. Generate data from the true model
- 3. Inference given true model parameters
- 4. Test and Visualisation

Example: Hidden Markov Model

State transition model (a N by N matrix)

• Observation model $p(y_k|x_k)$

$$y_k \sim w\delta(y_k - x_k) + (1 - w)u(1, N)$$

1. Setup a parameter structure

```
N = 50; % Number of states
% Transition model;
ep = 0.5; % Probability of not-moving
E = eve(N);
A = ep*E + (1-ep)*E(:, [2:N 1]); % Transition Matrix
% Observation model
w = 0.3; % Probability of observing true state
C = w*E + (1-w)*ones(N)/N; % Observation matrix
% Prior p(x_1)
pri = ones(N, 1)/N;
% Create a parameter structure
hm = struct('A', A, 'C', C, 'p_x1', pri);
```

2. Generate data from the true model

$$x_k | x_{k-1} \sim p(x_k | x_{k-1})$$

$$y_k | x_k \sim p(y_k | x_k)$$

2. Generate data from the true model

```
function [obs, state] = hmm generate data(hm, K)
 Inputs:
          hm: A HMM parameter structure
응
          K: Number of time slices to simulate
% Outputs:
%
           obs, state: Observations and the state trajectory
state = zeros(1, K);
obs = zeros(1, K);
for k=1:K.
    if k==1,
        state(k) = randgen(hm.p_x1);
   else
        state(k) = randgen(hm.A(:, state(k-1)));
    end;
    obs(k) = randgen(hm.C(:, state(k)));
end;
```

2. Generate data from the true model

3. Inference. Forward pass

Predict

$$\alpha_{k|k-1}(x_k) = p(y_{1:k-1}, x_k) = \sum_{x_{k-1}} p(x_k|x_{k-1})p(y_{1:k-1}, x_{k-1})$$

$$= \sum_{x_{k-1}} p(x_k|x_{k-1})\alpha_{k-1|k-1}(x_{k-1})$$

Update

$$\alpha_{k|k}(x_k) = p(y_{1:k}, x_k) = p(y_k|x_k)p(y_{1:k-1}, x_k)
= p(y_k|x_k)\alpha_{k|k-1}(x_k)$$

$$\begin{split} p(y_{1:K}) &= \sum_{x_{1:K}} p(y_{1:K}|x_{1:K}) p(x_{1:K}) \\ &= \sum_{x_K} p(y_K|x_K) \sum_{x_{K-1}} p(x_K|x_{K-1}) \cdots \sum_{x_2} p(x_3|x_2) p(y_2|x_2) \sum_{x_1} p(x_2|x_1) \underbrace{p(y_1|x_1)}_{\alpha_1|1} \underbrace{p(y_1|x_1)}_{\alpha_1|x_1} \underbrace{p(y_1|x_1)}_{\alpha_1|1} \underbrace{p(y_1|x_1)}_{\alpha_1|1} \underbrace{p(y_1|x_1)$$

3. Inference: Forward pass

```
log_alpha = zeros(N, K);
log_alpha_predict = zeros(N, K);
for k=1:K
    if k==1.
        log_alpha_predict(:,k) = log(hm.p_x1);
    else
        log_alpha_predict(:,k) ...
            = state_predict(hm.A, log_alpha(:, k-1));
    end;
    log alpha(:, k) ...
          = state_update(hm.C(y(k), :), log_alpha_predict(:,k));
end;
```

3. Inference. Predict

```
function [lpp] = state\_predict(A, log\_p)
% STATE_PREDICT Computes A*p in log domain
양
응
   [lpp] = state\_predict(A, log\_p)
응
  Inputs:
 A : State transition matrix
응
   log_p : log p(x_{k-1}, y_{1:k-1}) Filtered potential
%
% Outputs:
    lpp: log p(x_{k}, y_{1:k-1}); Predicted potential
mx = max(log_p(:)); % Stable computation
p = \exp(\log_p - mx);
lpp = loq(A*p) + mx;
```

Numerically Stable computation of $\log(\sum_i \exp(l_i))$

Derivation

$$L = \log(\sum_{i} \exp(l_{i}))$$

$$= \log(\sum_{i} \exp(l_{i}) \frac{\exp(l^{*})}{\exp(l^{*})})$$

$$= \log(\exp(l^{*}) \sum_{i} \exp(l_{i} - l^{*}))$$

$$= l^{*} + \log(\sum_{i} \exp(l_{i} - l^{*}))$$

- We take l^* as the maximum $l^* = \max_i l_i$
- Assignment: Implement above as a function logsumexp(1)

3. Inference. Update

```
function [lup] = state_update(obs, log_p)
% STATE_UPDATE State update in log domain
양
응
   [lup] = state_update(obs, log_p)
양
 Inputs:
응
           obs : p(y_k \mid x_k)
응
           log_p : log p(x_k, y_{1, k-1})
응
% Outputs:
 lup : log p(x_k, y_{1, k-1}) p(y_k | x_k)
lup = log(obs(:)) + log_p;
```

3. Inference. Forward pass.

$$\alpha_{k|k} \equiv p(y_{1:k}, x_k)$$

3. Inference. Forward pass

$$\alpha_{k|k-1} \equiv p(y_{1:k-1}, x_k)$$

3. Inference. Backward pass

"Postdict"

$$\beta_{k|k+1}(x_k) = p(y_{k+1:K}|x_k) = \sum_{x_{k+1}} p(x_{k+1}|x_k) p(y_{k+1:K}|x_{k+1})$$

$$= \sum_{x_{k+1}} p(x_{k+1}|x_k) \beta_{k+1|k+1}(x_{k+1})$$

Update

$$\beta_{k|k}(x_k) = p(y_{k:K}|x_k) = p(y_k|x_k)p(y_{k+1:K}|x_k)
= p(y_k|x_k)\beta_{k|k+1}(x_k)$$

$$\begin{array}{lll} p(y_{1:K}) & = & \displaystyle \sum_{x_1} p(x_1) p(y_1|x_1) \dots \sum_{x_{K-1}} p(x_{K-1}|x_{K-2}) p(y_{K-1}|x_{K-1}) \sum_{x_K} p(x_K|x_{K-1}) p(y_K|x_K) \underbrace{1}_{\beta_K|K+1} \\ & = & \displaystyle \sum_{x_1} p(x_1) p(y_1|x_1) \dots \sum_{x_{K-1}} p(x_{K-1}|x_{K-2}) p(y_{K-1}|x_{K-1}) \sum_{x_K} p(x_K|x_{K-1}) \beta_{K|K} \\ & = & \displaystyle \sum_{x_1} p(x_1) p(y_1|x_1) \dots \sum_{x_{K-1}} p(x_{K-1}|x_{K-2}) p(y_{K-1}|x_{K-1}) \beta_{K-1|K} \\ & = & \displaystyle \sum_{x_1} p(x_1) p(y_1|x_1) \dots \sum_{x_{K-1}} p(x_{K-1}|x_{K-2}) \beta_{K-1|K-1} \\ & = & \displaystyle \sum_{x_1} p(x_1) p(y_1|x_1) \dots \beta_{K-2|K-1} \end{array}$$

3. Inference. Backward pass

3. Inference. Postdict.

```
function [lpp] = state_postdict(A, log_p)
% STATE_POSTDICT Computes A'*p in log domain
양
응
   [lpp] = state_postdict(A, log_p)
응
 Inputs:
 A: State transition matrix
응
           log_p : log p(y_{k+1:K}|x_{k+1}) Updated potential
양
% Outputs:
% lpp : log p(y_{k+1:K} | x_k) Postdicted potential
mx = max(log_p(:)); % Stable computation
p = \exp(\log_p - mx);
lpp = loq(A'*p) + mx;
```

3. Inference. Backward pass

$$\beta_{k|k+1}(x_k) = p(y_{k+1:K}|x_k)$$

We visualise $\hat{\beta} \propto \beta_{k|k+1}(x_k)u(x_k)$

3. Inference. Backward pass

$$\beta_{k|k}(x_k) = p(y_{k:K}|x_k)$$

3. Inference. Smoothing.

$$p(y_{1:K}, x_k) = p(y_{1:k}, x_k) p(y_{k+1:K} | x_k)$$

$$= \alpha_{k|k}(x_k) \beta_{k|k+1}(x_k)$$

$$\equiv \gamma_k(x_k)$$

Alternatives

$$\gamma_k(x_k) = \alpha_{k|k-1}(x_k)\beta_{k|k}(x_k)$$
$$= \alpha_{k|k-1}(x_k)p(y_k|x_k)\beta_{k|k+1}(x_k)$$

3. Inference. Smoothing.

$$p(x_k|y_{1:K}) \propto p(y_{1:K}, x_k) = \alpha_{k|k}(x_k)\beta_{k|k+1}(x_k) \equiv \gamma_k(x_k)$$

3. Inference. Smoothing.

log_gamma = log_alpha + log_beta_postdict

4. Test and Visualisation

```
imagesc(normalize_exp(log_gamma, 1));
set(gca, 'ydir', 'n');
colormap(flipud(gray));
xlabel('k (time)'); ylabel('x_k (state)');
caxis([0 1]);
colorbar

% This has to be constant !! (why)
plot(log_sum_exp(log_gamma, 1));
```

4. Test and Visualise. Filter.

4. Test and Visualise. Smoother.

Outline

- Bayesian Inference Review
- Mean Field, Variational Bayes

Variational Formulation

A simple but very powerful idea:

- Represent the solution of a problem as the minimum of some cost function
- Example: Solving a system of linear equations $p \in \mathcal{X}$

$$Ap = b$$

Variational formulation

$$p = \underset{q}{\operatorname{argmin}} \underbrace{\left\{ \frac{1}{2} (b - Aq)^{\top} (b - Aq) \right\}}_{q}$$

$$\mathcal{F}(q)$$

Variational Formulation

- We can also find approximate solutions
- Suppose we constrain q to a subset

$$q \in \mathcal{X}_q \subset \mathcal{X}$$

We trivially have

$$\mathcal{F}(p) = \min_{q \in \mathcal{X}} \{ \mathcal{F}(q) \} \le \min_{q \in \mathcal{X}_q} \{ \mathcal{F}(q) \}$$

Example: Computing Marginals

• Consider a joint distribution $i, j \in \{0, 1\}$

$$p(x_1 = i, x_2 = j) = \pi_{i,j}$$

$p(x_1, x_2)$	$x_2 = 0$	$x_2 = 1$
$x_1 = 0$	$\pi_{0,0}$	$\pi_{0,1}$
$x_1 = 1$	$\pi_{1,0}$	$\pi_{1,1}$

Marginals

$$\begin{array}{c|c} p(x_1) & \\ \hline x_1 = 0 & \pi_{0,0} + \pi_{0,1} \\ \hline x_1 = 1 & \pi_{1,0} + \pi_{1,1} \\ \hline \end{array}$$

$$\begin{array}{c|ccc} p(x_2) & x_2 = 0 & x_2 = 1 \\ \hline & \pi_{0,0} + \pi_{1,0} & \pi_{0,1} + \pi_{1,1} \end{array}$$

How can we express the marginals of a density variationally?

Example: Computing Marginals

Take a factorised Distribution

$$q(x_1 = i, x_2 = j) = q(x_1 = i)q(x_2, = j)$$
 $q(x_1 = 1) = q_1$
 $q(x_2 = 1) = q_2$

$q(x_1, x_2)$	$x_2 = 0$	$x_2 = 1$
$x_1 = 0$	$(1-q_1)(1-q_2)$	$(1-q_1)q_2$
$x_1 = 1$	$q_1(1-q_2)$	q_1q_2

ullet Compute the "distance" between p and q via Kullback-Leibler (KL) Divergence

Kullback-Leibler (KL) Divergence

• A "quasi-distance" between two distributions $\mathcal{P}=p(x)$ and $\mathcal{Q}=q(x)$.

$$KL(\mathcal{P}||\mathcal{Q}) \equiv \int_{\mathcal{X}} dx p(x) \log \frac{p(x)}{q(x)} = \langle \log \mathcal{P} \rangle_{\mathcal{P}} - \langle \log \mathcal{Q} \rangle_{\mathcal{P}}$$

Unlike a metric, (in general) it is not symmetric,

$$KL(\mathcal{P}||\mathcal{Q}) \neq KL(\mathcal{Q}||\mathcal{P})$$

But it is non-negative (by Jensen's Inequality)

$$KL(\mathcal{P}||\mathcal{Q}) = -\int_{\mathcal{X}} dx p(x) \log \frac{q(x)}{p(x)}$$

$$\geq -\log \int_{\mathcal{X}} dx p(x) \frac{q(x)}{p(x)} = -\log \int_{\mathcal{X}} dx q(x) = -\log 1 = 0$$

Kullback-Leibler (KL) Divergence

$p(x_1, x_2)$	$x_2 = 0$	$x_2 = 1$
$x_1 = 0$	$\pi_{0,0}$	$\pi_{0,1}$
$x_1 = 1$	$\pi_{1,0}$	$\pi_{1,1}$

$$KL(p||q) = \sum_{x_1} \sum_{x_2} p(x_1, x_2) \log \left(\frac{p(x_1, x_2)}{q(x_1, x_2)} \right)$$

$$= \sum_{i} \sum_{j} \pi_{i,j} \log \left(\frac{\pi_{i,j}}{q(x_1 = i, x_2 = j)} \right)$$

$$= \pi_{0,0} \log \left(\frac{\pi_{0,0}}{(1 - q_1)(1 - q_2)} \right) + \pi_{1,0} \log \left(\frac{\pi_{1,0}}{q_1(1 - q_2)} \right)$$

$$+ \pi_{0,1} \log \left(\frac{\pi_{0,1}}{(1 - q_1)q_2} \right) + \pi_{1,1} \log \left(\frac{\pi_{1,1}}{q_1q_2} \right)$$

Kullback-Leibler (KL) Divergence

• Let us minimise the KL divergence w.r.t. q_1

$$KL(p||q) = -\pi_{0,0}(\log(1-q_1) + \log(1-q_2)) - \pi_{1,0}(\log q_1 + \log(1-q_2))$$
$$-\pi_{0,1}(\log(1-q_1) + \log q_2) - \pi_{1,1}(\log q_1 + \log q_2)$$
$$+\sum_{i} \sum_{j} \pi_{i,j} \log \pi_{i,j}$$

We take the derivative and set to zero

$$\frac{\partial KL(p||q)}{\partial q_1} = \frac{\partial}{\partial q_1} \left(-\pi_{0,0} \log(1 - q_1) - \pi_{1,0} \log q_1 - \pi_{0,1} \log(1 - q_1) - \pi_{1,1} \log q_1 \right)$$

The marginal is the minimiser of KL(p||q)

$$0 = \pi_{0,0} \frac{1}{(1-q_1)} - \pi_{1,0} \frac{1}{q_1} + \pi_{0,1} \frac{1}{(1-q_1)} - \pi_{1,1} \frac{1}{q_1}$$
$$= (\pi_{0,0} + \pi_{0,1}) \frac{1}{(1-q_1)} - (\pi_{1,0} + \pi_{1,1}) \frac{1}{q_1}$$

$$q_1 = \frac{(\pi_{1,0} + \pi_{1,1})}{(\pi_{0,0} + \pi_{0,1} + \pi_{1,0} + \pi_{1,1})} = \pi_{1,0} + \pi_{1,1} = p(x_1 = 1)$$

$$1 - q_1 = 1 - (\pi_{1,0} + \pi_{1,1}) = \pi_{0,0} + \pi_{0,1} = 1 - q_1 = p(x_1 = 0)$$

The derivation for q_2 is identical.

The "other" one: KL(q||p)

$$KL(q||p) = \sum_{x_1} \sum_{x_2} q(x_1, x_2) \log \left(\frac{q(x_1, x_2)}{p(x_1, x_2)} \right)$$

$$= \sum_{i} \sum_{j} q(x_1 = i, x_2 = j) \log \left(\frac{q(x_1 = i, x_2 = j)}{\pi_{i,j}} \right)$$

$$= (1 - q_1)(1 - q_2) \log \left(\frac{(1 - q_1)(1 - q_2)}{\pi_{0,0}} \right) + q_1(1 - q_2) \log \left(\frac{q_1(1 - q_2)}{\pi_{1,0}} \right)$$

$$+ (1 - q_1)q_2 \log \left(\frac{(1 - q_1)q_2}{\pi_{0,1}} \right) + q_1q_2 \log \left(\frac{q_1q_2}{\pi_{1,1}} \right)$$

The "other" one: KL(q||p)

$$\frac{\partial KL(q||p)}{\partial q_1} = (-\log(1-q_1) + \log \pi_{0,0} + \log q_1 - \log \pi_{1,0})$$
$$q_2(-\log \pi_{0,0} + \log \pi_{1,0} + \log \pi_{0,1} - \log \pi_{1,1})$$

The "other" one: KL(q||p)

$$Q_{1} = \begin{pmatrix} 1 - q_{1} \\ q_{1} \end{pmatrix} = \frac{1}{Z_{1}} \begin{pmatrix} \pi_{0,0}^{(1-q_{2})} \pi_{0,1}^{q_{2}} \\ \pi_{1,0}^{(1-q_{2})} \pi_{1,1}^{q_{2}} \end{pmatrix}$$

$$\propto \begin{pmatrix} \exp((1 - q_{2}) \log \pi_{0,0} + q_{2} \log \pi_{0,1}) \\ \exp((1 - q_{2}) \log \pi_{1,0} + q_{2} \log \pi_{1,1}) \end{pmatrix}$$

$$= \begin{pmatrix} \exp((1 - q_{2}) \log \pi_{0,0} + q_{2} \log \pi_{0,1}) \\ \exp((1 - q_{2}) \log \pi_{0,0} + q_{2} \log \pi_{0,1}) \\ \exp((1 - q_{2}) \log \pi_{1,0} + q_{2} \log \pi_{1,1}) \end{pmatrix}$$

$$\equiv \exp(\langle \log \pi \rangle_{Q_{2}})$$

$$Q_2 \propto \exp(\langle \log \pi \rangle_{Q_1})$$

KL(q||p) versus KL(p||q)

Variational Bayes (VB), mean field

We will approximate the posterior \mathcal{P} with a simpler distribution \mathcal{Q} .

$$\mathcal{P} = \frac{1}{Z_x} p(x = \hat{x}|s_1, s_2) p(s_1) p(s_2)$$

$$\mathcal{Q} = q(s_1) q(s_2)$$

Here, we choose

$$q(s_1) = \mathcal{N}(s_1; m_1, S_1)$$
 $q(s_2) = \mathcal{N}(s_2; m_2, S_2)$

A "measure of fit" between distributions is the KL divergence

Kullback-Leibler (KL) Divergence

• A "quasi-distance" between two distributions $\mathcal{P}=p(x)$ and $\mathcal{Q}=q(x)$.

$$KL(\mathcal{P}||\mathcal{Q}) \equiv \int_{\mathcal{X}} dx p(x) \log \frac{p(x)}{q(x)} = \langle \log \mathcal{P} \rangle_{\mathcal{P}} - \langle \log \mathcal{Q} \rangle_{\mathcal{P}}$$

Unlike a metric, (in general) it is not symmetric,

$$KL(\mathcal{P}||\mathcal{Q}) \neq KL(\mathcal{Q}||\mathcal{P})$$

But it is non-negative (by Jensen's Inequality)

$$KL(\mathcal{P}||\mathcal{Q}) = -\int_{\mathcal{X}} dx p(x) \log \frac{q(x)}{p(x)}$$

$$\geq -\log \int_{\mathcal{X}} dx p(x) \frac{q(x)}{p(x)} = -\log \int_{\mathcal{X}} dx q(x) = -\log 1 = 0$$

The form of the mean field solution

$$0 \leq \langle \log q(s_1)q(s_2) \rangle_{q(s_1)q(s_2)} + \log Z_x - \langle \log \phi(s_1, s_2) \rangle_{q(s_1)q(s_2)}$$

$$\log Z_x \geq \langle \log \phi(s_1, s_2) \rangle_{q(s_1)q(s_2)} - \langle \log q(s_1)q(s_2) \rangle_{q(s_1)q(s_2)}$$

$$\equiv -F(p; q) + H(q)$$

$$(1)$$

Here, F is the *energy* and H is the *entropy*. We need to maximize the right hand side.

Evidence
$$\geq$$
 -Energy + Entropy

Note r.h.s. is a **lower bound** [?]. The mean field equations **monotonically** increase this bound. Good for assessing convergence and debugging computer code.

Details of derivation

Define the Lagrangian

$$\Lambda = \int ds_1 q(s_1) \log q(s_1) + \int ds_2 q(s_2) \log q(s_2) + \log Z_x - \int ds_1 ds_2 q(s_1) q(s_2) \log \phi(s_1, s_2)$$

$$+\lambda_1 (1 - \int ds_1 q(s_1)) + \lambda_2 (1 - \int ds_2 q(s_2))$$
(2)

• Calculate the functional derivatives w.r.t. $q(s_1)$ and set to zero

$$\frac{\delta}{\delta q(s_1)} \Lambda = \log q(s_1) + 1 - \langle \log \phi(s_1, s_2) \rangle_{q(s_2)} - \lambda_1$$

• Solve for $q(s_1)$,

$$\log q(s_1) = \lambda_1 - 1 + \langle \log \phi(s_1, s_2) \rangle_{q(s_2)}$$

$$q(s_1) = \exp(\lambda_1 - 1) \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_2)})$$
(3)

Use the fact that

$$1 = \int ds_1 q(s_1) = \exp(\lambda_1 - 1) \int ds_1 \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_2)})$$
$$\lambda_1 = 1 - \log \int ds_1 \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_2)})$$

The form of the solution

- No direct analytical solution
- We obtain fixed point equations in closed form

$$q(s_1) \propto \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_2)})$$

$$q(s_2) \propto \exp(\langle \log \phi(s_1, s_2) \rangle_{q(s_1)})$$

Note the nice symmetry

Direct Link to Expectation-Maximisation (EM)

Suppose we choose one of the distributions degenerate, i.e.

$$\tilde{q}(s_2) = \delta(s_2 - \tilde{m})$$

where \tilde{m} corresponds to the "location parameter" of $\tilde{q}(s_2)$. We need to find the closest degenerate distribution to the actual mean field solution $q(s_2)$, hence we take one more KL and minimize

$$\tilde{m} = \underset{\xi}{\operatorname{argmin}} KL(\delta(s_2 - \xi)||q(s_2))$$

It can be shown that this leads exactly to the EM fixed point iterations.

Iterated Conditional Modes (ICM)

If we choose both distributions degenerate, i.e.

$$\tilde{q}(s_1) = \delta(s_1 - \tilde{m}_1)$$

 $\tilde{q}(s_2) = \delta(s_2 - \tilde{m}_2)$

It can be shown that this leads exactly to the ICM fixed point iterations. This algorithm is equivalent to coordinate ascent in the original posterior surface $\phi(s_1, s_2)$.

$$\tilde{m}_1 = \operatorname*{argmax} \phi(s_1, s_2 = \tilde{m}_2)$$
 $\tilde{m}_2 = \operatorname*{argmax} \phi(s_1 = \tilde{m}_1, s_2)$
 s_2

ICM, EM, VB ...

For OSSS, all algorithms are identical. This is in general not true.

While algorithmic details are very similar, there can be big qualitative differences in terms of fixed points.

Figure 1: Left, ICM, Right VB. EM is similar to ICM in this AR(1) example.

Some References

Text Books:

- Bayesian Reasoning and Machine Learning, David Barber, 2012, CUP Online
- Pattern Recognition and Machine Learning, Christopher Bishop, 2006 Springer
- Machine Learning, A Probabilistic Perspective, Kevin P. Murphy, 2012 MIT Press

Some References

Bayesian Time Series, Monte Carlo

- A. T. Cemgil, A Tutorial Introduction to Monte Carlo methods, Markov Chain Monte Carlo and Particle Filtering, 2012. (https://dl.dropboxusercontent.com/u/9787379/cmpe58n/cmpe58n-lecture-notes.pdf)
- D. Barber, A. T. Cemgil and S. Chiappa, Bayesian Time Series Models.
 Cambridge University Press, 2011.
- D Barber and A. T. Cemgil, Graphical Models for Time Series, IEEE Signal Processing Magazine, Special issue on graphical models, vol. 27, no. 6, pp. 18-28, October 2010.

Some References

Recent Trends

- Z. Ghahramani, Probabilistic machine learning and artificial intelligence, Nature, 2015, doi:10.1038/nature14541
 - probabilistic programming,
 - Bayesian optimization,
 - data compression
 - automatic model discovery