Description

The JM334S643A-75 is a 32M x 64bits Synchronous Dynamic RAM high-density for PC-133. The JM334S643A-75 consists of 8pcs CMOS 32Mx8 bits Synchronous DRAMs in TSOP-II 400mil packages and a 2048 bits serial EEPROM on a 168-pin printed circuit board. The JM334S643A-75 is a Dual In-Line Memory Module and is intended for mounting into 168-pin edge connector sockets.

Synchronous design allows precise cycle control with the use of system clock. I/O transactions are possible on every clock cycle. Range of operation frequencies, programmable latencies allow the same device to be useful for a variety of high bandwidth, high performance memory system applications.

Features

- Performance Range: PC-133
- Conformed to JEDEC Standard 4 clocks.
- · Burst Mode Operation.
- · Auto and Self Refresh.
- CKE Power Down Mode.
- DQM Byte Masking (Read/Write)
- Serial Presence Detect (SPD) with serial EEPROM
- LVTTL compatible inputs and outputs.
- Single 3.3V \pm 0.3V power supply.
- MRS cycle with address key programs.
 Latency (Access from column address)
 Burst Length (1,2,4,8 & Full Page)
 Data Sequence (Sequential & Interleave)
- All inputs are sampled at the positive going edge of the system clock.

Placement

PCB: 09-7303

Dimensions

Side	Millimeters	Inches
A	133.35±0.40	5.250±0.016
В	65.67	2.585
C	23.49	0.925
D	8.89	0.350
E	3.00	0.118
F	29.21±0.20	1.150±0.008
G	19.78	0.778
Н	15.78	0.621
<u> </u>	1.27±0.10	0.050±0.004

(Refer Placement)

Pin Identification

Symbol	Function
A0~A12, BA0,BA1	Address input
DQ0~DQ63	Data Input / Output.
CLK0, CLK2	Clock Input.
CKE0	Clock Enable Input.
/CS0, /CS2	Chip Select Input.
/RAS	Row Address Strobe
/CAS	Column Address Strobe
/WE	Write Enable
DQM0~DQM7	Data (DQ) Mask
SA0~SA2	Address in EEPROM
SCL	Serial PD Clock
SDA	Serial PD Add/Data input/output
Vcc	+3.3 Volt Power Supply
Vss	Ground
NC (Refer Block Bies	No Connection

Pinouts:

Pin Pin	Pin	Pin	Pin	Pin	Pin	Pin
No Name	No	Name	No	Name	No	Name
01 Vss	43	Vss	85	Vss	127	Vss
02 DQ0	44	NC	86	DQ32	128	CKE0
03 DQ1	45	/CS2	87	DQ33	129	NC
04 DQ2	46	DQM2	88	DQ34	130	DQM6
05 DQ3	47	DQM3	89	DQ35	131	DQM7
06 Vcc	48	NC	90	Vcc	132	NC
07 DQ4	49	Vcc	91	DQ36	133	Vcc
08 DQ5	50	NC	92	DQ37	134	NC
09 DQ6	51	NC	93	DQ38	135	NC
10 DQ7	52	NC	94	DQ39	136	NC
11 DQ8	53	N	95	DQ40	137	NC
12 Vss	54	Vss	96	Vss	138	Vss
13 DQ9	55	DQ16	97	DQ41	139	DQ48
14 DQ10	56	DQ17	98	DQ42	140	DQ49
15 DQ11	57	DQ18	99	DQ43	141	DQ50
16 DQ12	58	DQ19	100	DQ44	142	DQ51
17 DQ13	59	Vcc	101	DQ45	143	Vcc
18 Vcc	60	DQ20	102	Vcc	144	DQ52
19 DQ14	61	NC	103	DQ46	145	NC
20 DQ15	62	NC	104	DQ47	146	NC
21 NC	63	NC	105	NC	147	NC
22 NC	64	Vss	106	NC	148	Vss
23 Vss	65	DQ21	107	Vss	149	DQ53
24 NC	66	DQ22	108	NC	150	DQ54
25 NC	67	DQ23	109	NC	151	DQ55
26 Vcc	68	Vss	110	Vcc	152	Vss
27 /WE	69	DQ24	111	/CAS	153	DQ56
28 DQM0	70	DQ25	112	DQM4	154	DQ57
29 DQM1	71	DQ26	113	DQM5	155	DQ58
30 /CS0	72	DQ27	114	NC	156	DQ59
31 NC	73	Vcc	115	/RAS	157	Vcc
32 Vss	74	DQ28	116	Vss	158	DQ60
33 A0	75	DQ29	117	A1	159	DQ61
34 A2	76	DQ30	118	A3	160	DQ62
35 A4	77	DQ31	119	A5	161	DQ63
36 A6	78	Vss	120	A7	162	Vss
37 A8	79	CLK2	121	A9	163	NC
38 A10	80	NC	122	BA0	164	NC
39 BA1	81	NC	123	A11	165	SA0
40 Vcc	82	SDA	124	Vcc	166	SA1
41 Vcc	83	SCL	125	NC	167	SA2
42 CLK0	84	Vcc	126	A12	168	Vcc

This technical information is based on industry standard data and tests believed to be reliable. However, Transcend makes no warranties, either expressed or implied, as to its accuracy and assume no liability in connection with the use of this product. Transcend reserves the right to make changes in specifications at any time without prior notice.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on any pin relative to Vss	VIN, VOUT	-1.0~4.6	V
Voltage on VDD supply to Vss	VDD, VDDQ	-1.0~4.6	V
Storage temperature	Tstg	-55~+150	°C
Power dissipation	PD	8	W
Short circuit current	los	50	mA
Mean time between failure	MTBF	50	Years

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

Functional operation should be restricted to recommended operating condition.

Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS

Recommended operating conditions (Voltage referenced to Vss = 0V, TA = 0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply voltage	Vdd	3.0	3.3	3.6	V	
Input high voltage	VIH	2.0	3.0	VDD+0.3	V	1
Input low voltage	VIL	-0.3	0	0.8	V	2
Output high voltage	Vон	2.4	-	-	V	IOH=-2mA
Output low voltage	Vol	1	-	0.4	V	IOL=2mA
Input leakage current	Iц	-10	-	10	uA	3

Note: 1. VIH (max) = 5.6V AC .The overshoot voltage duration is ≤ 3 ns.

- 2. VIL (min) = -2.0V AC .The undershoot voltage duration is \leq 3ns.
- 3. Any input $0V \le VIN \le VDDQ$.

Input leakage currents include Hi-Z output leakage for all bi-directional buffers with Tri-State outputs.

CAPACITANCE (VDD=3.3V.TA = 23°C, f = 1MHz, VRFF=1.4V+ 200mV)

Parameter	Symbol	Min	Max	Unit
Input capacitance (A0~A12, BA0~ BA1)	CIN1	30	40	pF
Input capacitance (/RAS, /CAS, /WE)	CIN2	30	40	pF
Input capacitance (CKE0)	CIN3	30	40	pF
Input capacitance (CLK0, CLK2)	CIN4	25	30	pF
Input capacitance (/CS0, /CS2)	CIN5	16	25	pF
Input capacitance (DQM0~DQM7)	CIN6	8	10	pF
Data input/output capacitance (DQ0~DQ63)	Cout1	6	8	pF

DC CHARACTERISTICS

(Recommended operating condition unless otherwise noted, TA = 0 to 70°C)

Parameter	Symbol	Test Condition CA	S Later	ісу	Value (Typ)	Unit	Note
Operating Current (One Bank Active)	ICC1	Burst Length =1 trc≥trc(min) loL=0mA			720	mA	1
Precharge Standby Current	ICC2 P	CKE≤Vı∟(max), tcc=10ns			16	mA	
in power-down mode	ICC2 PS	CKE & CLK≤VIL(max), tcc=∞			16	111/-1	
Precharge Standby Current	ICC2 N	CKE≥VIH(min), /CS≥VIH(min), tcc Input signals are changed one time of)ns	160	mA	
in non power-down mode	ICC2 NS	CKE≥VIH(min), CLK≤VIL(max), to Input signals are stable	CKE≥VIH(min), CLK≤VIL(max), tcc=∞				
Active Standby Current	Іссз Р	CKE≤Vı∟(max), tcc=10ns			48	mA	
in power-down mode	Icc3 PS	CKE & CLK≤VIL(max), tcc=∞			48	ША	
Active Standby Current in non power-down mode	ICC3 N	CKE≥VIH(min), /CS≥VIH(min), tcc Input signals are changed one time of)ns	240		
(One Bank Active)	ICC3 NS	CKE≥VIH(min), CLK≤VIL(max), to Input signals are stable	:C=∞		200	mA	
Operating Current (Bust Mode)	ICC4	IOL= 0 mA Page Burst tccd = 2CLKs		880	mA	1	
Refresh Current	ICC5	tRC≥tRC(min)		1600	mA	2	
0.150.6.1.0		01/5 0 01/		С	24		
Self Refresh Current	ICC6	CKE≤0.2V		L	12	mA	

Note: 1. Measured with outputs open.

- 2. Refresh period is 64ms.
- 3. Unless otherwise noticed, input swing level is CMOS (VIH/VIL=VDDQ/VSSQ)

AC OPERATING TEST CONDITIONS (VDD = $3.3V\pm0.3V$, TA = 0 to 70° C)

Parameter	Value	Unit
AC Input levels (VIH/VIL)	2.4/0.4	V
Input timing measurement reference level	1.4	V
Input rise and fall time	tr/tf=1/1	ns
Output timing measurement reference level	1.4	V
Output load condition	See Fig. 2	

OPERATING AC PARAMETER (AC operating conditions unless otherwise noted)

Parameter		Symbol	Value	Unit	Note
Row active to row active delay	trrd	(min)	15	ns	1
/RAS to /CAS delay	trcd	(min)	20	ns	1
Row precharge time	trp(r	min)	20	ns	1
Row active time	tras	(min)	45	ns	1
Now delive lime	tras	(max)	100	us	
Row cycle time	trc(ı	min)	65	ns	1
Last data in to new col. Address delay	tcdl	(min)	1	CLK	2
Last data in to row precharge	trdL	(min)	2	CLK	2
Last data in to Active delay	tdal		2CLK+trp	-	
Last data in to burst stop	tBDL	(min)	1	CLK	2
Col. address to col. address delay	tccd	(min)	1	CLK	3
Number of valid output data	CAS latency=	3	2	ea	4

Note: 1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time, and then rounding off to the next higher integer.

- 2. Minimum delay is required to complete write.
- 3. All parts allow every cycle column address change.
- 4. In case of row precharge interrupt, auto precharge and read burst stop.

AC CHARACTERISTICS (AC operating conditions unless otherwise noted)

Refer to the individual component, not the whole module.

Parame	ter	Symbol	Min	Max	Unit	Note
CLK cycle time	CAS latency=3	tcc	7.5	1000	ns	1
CLK to valid output delay	CAS latency=3	tsac		5.4	ns	1, 2
Output data hold time	CAS latency=3	tон	2.7		ns	2
CLK high pulse width		tсн	2.5		ns	3
CLK low pulse width		tcL	2.5		ns	3
Input setup time		tss	1.5		ns	3
Input hold time		tsн	0.8		ns	3
CLK to output in Low-Z		tslz	1		ns	2
CLK to output in Hi-Z	CAS latency=3	tsHZ		5.4	ns	

Note: 1. Parameters depend on programmed CAS latency.

2. If clock rising time is longer than 1ns, (tr/2-0.5) ns should be added to the parameter.

3. Assumed input rise and fall time (tr & tf)= 1ns.

If tr & tf is longer than 1ns, transient time compensation should be considered,

i.e., [(tr + tf)/2-1]ns should be added to the parameter.

256MB 168PIN PC133 CL3 SDRAM DIMM With 32M X 8 3.3VOLT

SIMPLIFIED TRUTH TABLE

COMMAND				CKEn-1	CKEn	/CS	/RAS	/CAS	/WE	DQM	BA0,1	A10/AP	A11,A12, A0~A9	Note
Register	Mode I	Register Set		Н	Х	L	L	L	L	Х	OP CODE			1,2
Refresh	Auto R Self		Entry	Н	H L	L	L	L	Н	х		Х		3
	Refres	h	Exit	L	Н	L H	H X	H X	H X	X		Х		3
Bank Active 8	Row Ad	ldr.	•	Н	Х	L	L	Н	Н	Х	V	Row A	Address	
Read & Column Address		recharge Di recharge Er		Н	Х	L	Н	L	Н	Х	V	L H	Column Address (A ₀ ~A ₉)	4 4, 5
Write & Column Address		recharge Di recharge Er		Н	х	L	Н	L	L	х	V L		Column Address (A ₀ ~A ₉)	4 4, 5
Burst Stop				Н	Х	L	Н	Н	L	Х	X			6
Precharge		Bank Select Both Banks		Н	х	L	L	Н	L	Х	\/ I		Х	
Clock Susper Active Power		Entry		Н	L	Н	Х	Х	Х	Х		Х		
		Exit		L	Н	X	V X	V	V	Х	-	^		
Precharge Po Down Mode	wer	Entry		Н	L	Н	Х	Х	Х	Х				
				"	_	L	Н	Н	Н	^		Х		
		Exit		L	Н	Η	Х	Х	Х	X		^		
					11	L	V	V	V					
DQM				Н		1	Χ	1	1	V		Х		7
No Operation	Comma	nd		Н	×	Н	Х	Х	Х	X		X		
						L	Н	Н	Н			^		

(V=Valid, X=Don't Care, H=Logic High, L=Logic Low)

Note: 1. OP Code: Operand Code

A0~A12, BA0~BA1: Program keys. (@MRS)

- 2. MRS can be issued only at both banks precharge state.
 - A new command can be issued after 2 CLK cycles of MRS.
- 3. Auto refresh functions are as same as CBR refresh of DRAM.
 - The automatically precharge without row precharge command is meant by "Auto".
 - Auto/self refresh can be issued only at both banks precharge state.
- 4. BA0~BA1: Bank select address.
 - If both BAo and BA1 are "Low" at read, write, row active and precharge, bank A is selected.
 - If both BAo is "Low" and BA1 is "High" at read, write, row active and precharge, bank B is selected.
 - If both BAo is "High" and BA1 is "Low" at read, write, row active and precharge, bank C is selected.
 - If both BA0 and BA1 are "High" at read, write, row active and precharge, bank D is selected.
- If A10/AP is "High" at row precharge, BA0 and BA1 are ignored and both banks are selected.
- 5. During burst read or write with auto precharge, new read/write command cannot be issued.
 - Another bank read/write command can be issued after the end of burst. New row active of the associated bank can be issued at tRP after the end of burst.
- 6. Burst stop command is valid at every burst length.
- 7. DQM sampled at positive going edged of a CLK masks the data-in at the very CLK (Write DQM latency is 0), but makes Hi-Z state the data-out of 2 CLK cycles after. (Read DQM latency is 2)

	Serial Presence	Detect		
Byte No.	Function Described	Standard Specification	Vendor Part	
0	# of Bytes Written into Serial Memory	128bytes	80	
1	Total # of Bytes of S.P.D Memory	256bytes	08	
2	Fundamental Memory Type	SDRAM	04	
3	# of Row Addresses on this Assembly	13	0D	
4	# of Column Addresses on this Assembly	10	0A	
5	# of Module Banks on this Assembly	1 bank	01	
6	Data Width of this Assembly	64bits	40	
7	Data Width Continuation	0	00	
8	Voltage Interface Standard of this Assembly	LVTTL3.3V	01	
9	SDRAM Cycle Time (highest CAS latency)	7.5ns	75	
10	SDRAM Access from Clock (highest CL)	5.4ns	54	
11	DIMM configuration type (non-parity, ECC)	None	00	
12	Refresh Rate Type	7.8us/Self Refresh	82	
13	Primary SDRAM Width	X8	08	
14	Error Checking SDRAM Width	64bit	00	
15	Min Clock Delay Back to Back Random Address	1 clock	00	
16	Burst Lengths Supported	1,2,4,8 & Full page	8F	
17	Number of banks on each SDRAM device	4 bank	04	
18		3	04	
19	CAS # Latency CS # Latency	0 clock	01	
		0 clock	01	
20	Write Latency			
21	SDRAM Module Attributes	Non Buffer	00	
22	SDRAM Device Attributes: General	Prec All, Auto Prec, R/W Burst	0E	
23	SDRAM Cycle Time (2 nd highest CL)	7.5	75	
24	SDRAM Access from Clock (2 nd highest CL)	5.4	54	
25	SDRAM Cycle Time (3 rd highest CL)	-	00	
26	SDRAM Access from Clock (3 rd highest CL)	-	00	
27	Minimum Row Precharge Time	20ns	14	
28	Minimum Row Active to Row Activate	16ns	0F	
29	Minimum RAS to CAS Delay	20ns	14	
30	Minimum RAS Pulse Width	45ns	2D	
31	Density of Each Bank on Module	256MB	40	
32	Command/Address Setup Time	1.5ns	15	
33	Command/Address Hold Time	0.8ns	08	
34	Data Signal Setup Time	1.5ns	15	
35	Data Signal Hold Time	0.8ns	08	
36-61	Superset Information	-	00	
62	SPD Data Revision Code	JEDEC2	02	
63	Checksum for Bytes 0-62	39	C0	
64-71	Manufacturers JEDEC ID Code per JEP-108E	Transcend	7F, 4F	
72	Manufacturing Location	-	00	
73-90	Manufacturers Part Number	-	00	
91-92	Revision Code	-	00	

256MB 168PIN PC133 CL3 SDRAM DIMM With 32M X 8 3.3VOLT

93-94	Manufacturing Date	-	00
95-98	Assembly Serial Number	-	00
99-125	Manufacturer Specific Data	•	0
126	Intel Specification Frequency	•	64
127	Intel Specification CAS# Latency/Clock Signal Support	CL=3 Clock 0~3	F4
128~	Unused Storage Locations	Open	FF