

Navigating the Difficulty of Achieving Global Optimality under Variance-Induced Time Inconsistency

Jingxiang Tang *, Nixie S. Lesmana*†, Chi Seng Pun*

Introduction -

Aim

To investigate how TIC permeates into the design and behaviour of mean-variance (MV) reinforcement learning (RL) agents.

Main Contribution

- Study two optimality classes and their corresponding TIC-aware RL methods;
- Study 2 optimality classes under variance-induced TIC (global optimality and SPE) and the corresponding TIC-aware RL methods (EPG and SPERL)
- Characterize the conditions in which equilibrium/SPERL policies attain global optimality.

Time Inconsistency -

Bellman's Principle of Optimality (BPO)

For all au>0, $x_{ au}\in \mathcal{X}_{ au}^{x_0}$,

$$\pi_t^{*\tau,x_{\tau}}(x) = \pi_t^{*0,x_0}(x), \forall t > \tau, x \in \mathcal{X}_t^{x_0}$$

Mean-Variance(MV) Objective

- $V_t^{\pi}(x) := \mathbb{E}[R_t^{\pi}(x)] \lambda Var[R_t^{\pi}(x)]$, with $\lambda > 0$.
- $R_t^{\pi}(x) := \sum_{j=t}^{T-1} r_j \left(X_j, \pi_j(X_j) \right) + r_T(X_T) \mid (t, X_t = x)$

MV objective is a source of TIC

$V_t^{\pi}(x)$		Policy, π	
		$\{\alpha, \alpha\}$	$\{\alpha,\beta\}$
State	(0, A)	11.89	10.81
(t,x)	(1, B)	3	9

Acknowledgments

Chi Seng Pun gratefully acknowledges Ministry of Education (MOE) Singapore, AcRF Tier 2 grant (Reference No.: MOE-T2EP20220-0013) for the funding of this research. Nixie S Lesmana acknowledges the financial support from MoE AcRF grant R-144-000-457-733 (A-0004550-00-00).

Link to paper: https://doi.org/10.1145/3677052.3698657

*Division of Mathematical Sciences, Nanyang Technological University, Singapore 637371
†Department of Physics, Faculty of Science, National University of Singapore, Singapore 117546

Episodic Policy Gradient -

Global Optimality/Precommitment

$$\boldsymbol{\pi}^* \coloneqq \arg\max_{\pi} V_0^{\pi}(x_0)$$

Policy Gradient

$$\Delta\theta \propto \nabla V_0^{\theta}(x_0)$$

- **TrueEPG**: MDP transitions are known to the agent, $\nabla V_0^{\theta}(x_0)$ can be explicitly computed.
- ApproxEPG: MDP transitions are unknown to the agent, $\nabla V_0^{\theta}(x_0)$ need to be approximated from trajectories.

Subgame Perfect Equilibrium —

Equilibrium

Find $\widehat{\pi}$ such that:

$$Q_t^{\widehat{\pi}}(x,\widehat{\pi}_t(x)) \ge Q_t^{\widehat{\pi}}(x,a) \ \forall t,x,a \in \mathcal{S} \times \mathcal{X} \times \mathcal{U}.$$

Backward Update

For $t \leftarrow T$ to 0:

- **TrueSPE**: MDP transitions are known to the agent, Q-values can be explicitly computed.
- **SPERL**: MDP transitions are unknown to the agent, Q-values need to be approximated according to TD algorithm from trajectories.

Hierarchy of TCness

Proposition 1:

If BPO holds, then

$$\pi_{\tau}^*(x_{\tau}) = \hat{\pi}_{\tau}(x_{\tau}), \qquad \forall \ \tau, x_{\tau} \in \mathcal{X}_{\tau}^{x_0}.$$

Experiment Results -

Portfolio Optimization (PM)

- Agent's objective: find how much (in % of liquid risk-free asset held) to invest into an illiquid risky asset.
- Rewards: increase in total wealth.

Expected Values and std of $V_0(x_0)$

- Convergence and performance of EPG algorithm are sensitive to environment and instance;
- **SPERL** performs better then both **EPG** agents in **OE** setup.

	TrueEPG	ApproxEPG	TrueSPE	SPERL
PM-1	3.193 _{3.8<i>e</i>-5}	$3.125_{4.4e-2}$	3.190	$3.188_{4.9e-3}$
PM-2	2.547 _{2.7e-5}	$2.469_{4.3e-2}$	2.547	$2.533_{1.5e-2}$
OE-1	$-1.85_{0.138}$	$-2.07_{0.179}$	-1.12	$-1.61_{0.117}$
OE-2	$-1.75_{0.121}$	$-2.02_{0.251}$	-1.27	$-1.74_{0.139}$

Policy Tree-diagrams

- **SPERL** policies are very similar to the corresponding **SPE** policies;
- No clear link is observed between the behaviour of TrueEPG policies and ApproxEPG policies.

Figure 1. Agents' Policy in PM (left); Agents' Policy in OE (right).

Optimal Control (OE)

- Agent's objective: decide how much (in % of remaining) to sell in to liquidate a huge amount of stock to minimise transaction cost.
- Rewards: negation of transaction cost.

ΔV across environment parameters

• $\Delta V := V_0^{SPE}(x_0) - V_0^{EPG}(x_0)$

Figure 2. TrueEPG and **TrueSPE** initial value differences in **PM** (above) and **OE** (below).

Conclusions

- **TrueEPG** dominates **SPE** only when *both* (i) the environment is **strong-TIC** and (ii) **TrueEPG** is inclined to attain the global optimum (more likely in simpler environments like PM than those like OE).
- Whether or not an environment is amenable for TrueEPG can be gleaned from TrueEPG's behaviour across multiple seeds.
- SPERL algorithm can learn SPE policy.