#### TP2 – Echantillonnage, récolte et gestion des données

- 1. Stratégie d'échantillonnage
- 2. Récolte de données et encodage
  - A. Structurer la manière d'encoder des données
  - B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

- 3. Importation et manipulation de tableaux dans R
  - A. Mise en forme des fichiers
  - **B.** Importation dans R
  - C. Manipulations de fichier

Fichiers nécessaires : BD\_Exemple\_XLS.xlsx et BD\_Exemple\_CALC.ods

### **Question scientifique:**

Quel est l'effet du traitement forestier (régulier | jardiné ou irrégulier) sur la biodiversité (définie par la richesse en espèces végétales) ?

```
Variable dépendante = Variables explicatives

Variabilité de S = F(Traitement) + variabilité inexpliquée
```

Formulation sous la forme d'un test d'hypothèse :

```
H<sub>0</sub> = pas d'effet
H<sub>1</sub> = jardiné > régulier
```

## Objectif d'un protocole : réussir à rejeter H<sub>0</sub>

- organiser l'échantillonnage pour contrôler les effets
   indésirables et maximiser les nombres de répétitions là où les questions sont pertinentes
  - 1. Echantillonner des massifs forestiers en fonction du facteur contrôlé (Régulier/Jardiné-Irrégulier)



## Objectif d'un protocole : réussir à rejeter H<sub>0</sub>

2. Cibler des conditions environnementales et contrôler les facteurs « parasites » qui peuvent biaiser la réponse :

Exemples? • Résineux, feuillus, mixte?

- Age des peuplements ?
- Surface d'étude ?
- Type de sol?
- Régions biogéographiques (altitude ?)



Pour mesurer des interactions

## Objectif d'un protocole : réussir à rejeter H<sub>0</sub>

3. Définir le nombre d'unités d'échantillonnage et les répartir dans les différentes strates

Si j'ai des budgets pour faire au maximum 50 mesures



## Objectif d'un protocole : réussir à rejeter H<sub>0</sub>

- 3. Définir le nombre d'unités d'échantillonnage et les répartir dans les différentes strates
  - Régulier Jardiné => 2 catégories
  - Résineux feuillus => 2 catégories
  - Age des peuplements => 3 catégories (<20; 20-40; >40)
  - Type de sol => 3 catégories (improductif, peu et fort productif)
  - X Y (Z) => 5 régions biogéographiques

Nombres de combinaison :

unités d'échantillonnage potentielles (sans répétition)

Si on dispose d'un budget pour 50 unités (avec 5 répétitions) on ne peut étudier que 10 combinaisons parmi les 180 potentielles ... => Il faut repréciser la question de base ! (rien que les feuillus, un type de sol, ...)

## Objectif d'un protocole : réussir à rejeter H<sub>0</sub>

Contrôler les facteurs « parasites » :
 comme par exemple tenir compte de l'autocorrélation spatiale





Comment les répartir optimalement ?

## Objectif d'un protocole : réussir à rejeter H<sub>0</sub>

• Contrôler les facteurs « parasites » : comme par exemple tenir compte de l'autocorrélation spatiale





Au moins les 3 catégories dans chacune des régions <u>ET</u> les plus proches les unes des autres

Si ce n'est pas possible, il faudra contrôler à postériori le rôle de X, Y, X\*Y, X<sup>2</sup>, Y<sup>2</sup>, ...

#### A. Structurer la manière d'encoder des données

Qu'est ce qu'une donnée, une mesure?

C'est la description d'une observation! C'est un attribut d'un objet, une valeur que l'on mesure sur quelque chose et que l'on peut répéter sur autre chose ...



V

ti

0

S

### A. Structurer la manière d'encoder des données

## On va généralement stocker les données sous forme matricielle Descripteur ou variable

| Codesite | Х        | Υ        | Altitude | pHH20    | CsurN    | V        | Feuil600 | Feuil2000 | Conif600 | Conif2000 |
|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|-----------|
| BL       | 12,50614 | 11,90037 | 5,860786 | 1,667707 | 2,899772 | 1,931521 | 3,671225 | 5,321057  | 2,949688 |           |
| BN       | 12,21882 | 11,15698 | 6,042633 | 1,704748 | 2,701361 | 2,209373 |          | 5,545958  |          |           |
| BR       | 12,52373 | 11,85001 | 6,329721 | 1,642873 | 2,961658 | 2,045109 | 4,18662  |           |          | 6,769986  |
| CL       | 12,41697 | 10,57378 | 5,888878 | 1,728109 | 2,619583 | 2,273156 | 4,136765 | 5,749393  | 0,530628 | 5,60433   |
| FB       | 12,40967 | 10,75152 | 6,018593 | 1,89762  | 2,595255 | 3,845028 | 4,576771 | 6,053265  | 1,686399 | 5,931715  |
| FS       | 11,94299 | 11,98331 | 4,75359  | 1,609438 | 2,667228 | 2,636196 | 4,685208 | 6,950464  | 1,823129 | 3,034794  |
| HL       | 12,41403 | 10,56064 | 5,916202 | 1,691939 | 2,793004 | 2,180417 | 4,361824 | 5,721295  | 1,931521 | 5,551408  |
| LB       | 12,23167 | 11,12985 | 5,942799 | 1,710188 | 2,62684  | 2,00283  | 2,533697 | 5,072044  | 4,222445 | 6,005367  |
| MH       | 12,23206 | 11,29011 | 5,888878 | 1,680828 | 2,951258 | 2,19277  | 4,568506 | 6,743116  | 2,839078 | 5,460011  |
| MO       | 12,56232 | 11,79811 | 6,381816 | 1,60342  | 2,888704 | 2,236445 | 2,85647  | 4,099332  | 4,25703  | 6,870884  |
| MU       | 12,52693 | 11,94009 | 5,771441 | 1,667707 | 2,721295 | 2,230014 | 3,793239 | 5,263726  | 2,923162 | 5,249127  |
| PB       | 12,52424 | 11,83411 | 6,338594 | 1,66203  | 2,866193 | 1,888584 | 3,671225 | 4,954418  | 3,459466 | 6,446196  |
| РО       | 12,52016 | 11,86147 | 6,196444 | 1,623341 | 2,797281 | 1,832581 | 3,621671 | 5,297817  | 4,01998  | 6,798052  |
| PR       | 12,41715 | 10,41304 | 5,70711  | 1,752672 | 2,391511 | 3,09603  | 4,546481 | 6,130357  | 2,208274 | 5,516649  |
| R1       | 12,50703 | 11,85254 | 6,133398 | 1,609438 | 2,906901 | 1,969906 | 3,688879 | 4,635699  | 4,028917 | 6,933618  |
| R2       | 12,5047  | 11,86338 | 6,066108 | 1,648659 | 2,894253 | 1,701105 | 3,98713  | 5,042134  | 3,960813 | 6,776165  |
| RA       | 11,97162 | 12,01878 | 4,75359  | 1,61542  | 2,729812 | 2,227862 | 4,409897 | 6,675997  | 1,186776 | 3,918269  |
| RU       | 12,53279 | 11,80672 | 6,398595 | 1,623341 | 2,869602 | 1,83098  | 3,198673 | 4,694096  | 3,983413 | 6,624065  |
| ST       | 12,41425 | 10,72812 | 5,888878 | 1,780024 | 2,543961 | 3,579065 | 4,207673 | 5,885826  | 2,646175 | 4,481872  |
| TR       | 12,40689 | 10,44249 | 5,70711  | 1,704748 | 2,727853 | 2,136531 | 3,788725 | 5,536152  | 3,295837 | 5,833055  |
| VR       | 12,23038 | 11,26742 | 5,831882 | 1,704748 | 2,789323 | 2,396986 | 3,730501 | 6,42276   | 4,122284 | 5,499624  |
| VS       | 12,51518 | 11,8704  | 6,018593 | 1,623341 | 3,431727 | 1,65058  | 4,333361 | 5,120983  | 3,520461 | 6,822197  |

entité homogène = une table

#### A. Structurer la manière d'encoder des données

Pour tester l'impact du traitement forestier on va réaliser un certain nombre d'unités d'échantillonnage dans des forêts feuillues jardinées et équiennes (20 parcelles par type).



Comment structure-t-on ce jeu de données ?

#### A. Structurer la manière d'encoder des données

## Concept d'entité homogène d'informations => tableau



On ne met dans une table qu'un seul ensemble homogène d'informations => les observations sont des répétitions décrites par les mêmes variables



3 entités => 3 tables

#### A. Structurer la manière d'encoder des données

#### Création de relations entre les tables



Etablir des relations entre les entités homogènes => création de clé relationnelle = tout simplement des codes qui permettent d'associer des lignes d'une table à des lignes d'une autre table.



| par | <b>x1</b> | <b>x2</b> | х3  | х4 |
|-----|-----------|-----------|-----|----|
|     | 10        | 234       | 1,1 | 11 |
| 002 | 23        | 123       | 1,2 | 12 |
| 003 | 12        | 456       | 1,1 | 9  |
| 004 | 14        | 678       | 1,0 | 14 |
|     |           |           |     |    |

|     | <b>\</b> |     |           |     |
|-----|----------|-----|-----------|-----|
| pla | sta      | y1  | <b>y2</b> | y3  |
| 001 | 001      | 1,0 | 14        | 1,1 |
| 002 | 001      | 2,3 | 33        | 1,2 |
| 003 | 001      | 1,2 | <b>26</b> | 1,1 |
| 004 | 002      | 1,4 | 58        | 1,0 |

### A. Structurer la manière d'encoder des données



primaire univoque

Clé

Permet de fusionner les tables

| pla | par | <b>y1</b> | <b>y2</b> | у3  | <b>x1</b> | <b>x2</b>  | х3  | <b>x4</b> |
|-----|-----|-----------|-----------|-----|-----------|------------|-----|-----------|
| 001 | 001 | 1,0       | 14        | 1,1 | 10        | <b>234</b> | 1,1 | 11        |
| 002 | 001 | 2,3       | 33        | 1,2 | 10        | 234        | 1,1 | 11        |
| 003 | 001 | 1,2       | 26        | 1,1 | 10        | 234        | 1,1 | 11        |
| 004 | 002 | 1,4       | 58        | 1,0 | 23        | 123        | 1,2 | 12        |

#### A. Structurer la manière d'encoder des données

Structure relationnelle simple entre deux fichiers



Chaque fois qu'une nouvelle station est échantillonnée, on ajoute une ligne dans le fichier "ECHANTILLON". On place le résultat de l'échantillonnage, soit la liste des taxons observés, dans le fichier "OBSERVATION". Ce faisant, on évite de répéter dans ce dernier fichier toute une série d'informations qui sont communes aux taxons récoltés dans un échantillon.

La variable "Code", commune aux deux fichiers, assure la relation entre le fichier ECHANTILLON et le fichier OBSERVATION. C'est elle qui permet de connaître – par exemple – la liste des espèces observées à Rixensart ou de connaître la liste des lieux d'observations de *Libellula depressa* 

### A. Structurer la manière d'encoder des données

**Data Fauna Flora** 



STATions => CONDitions => SPECimens



## A. Structurer la manière d'encoder des données Base de données descriptives des sites Natura 2000



Cartographie d'Unités d'habitat (UH)



Placettes
d'évaluation (PE)
de l'état de
conservation



Relevés phytosociologiques

## A. Structurer la manière d'encoder des données Base de données descriptives des sites Natura 2000

#### Fiche décrivant une unité d'habitat (sauf $C2 > 10 \text{ km}^2$ )

15.03.06

| Code UH labo      | Code UH ter | rain       |                     | Type d'un  | ité       | Surface (si≠       | Surface (si ≠ polyg) |            |  |
|-------------------|-------------|------------|---------------------|------------|-----------|--------------------|----------------------|------------|--|
| Fourni par ArcVie | w           |            | POLYG               | LIGNE      | POINT     |                    | m <sup>2</sup>       |            |  |
| Code site N2000   |             |            |                     | rs .       |           |                    | ·                    |            |  |
| EUNIS ACTUEL      | Si co       | mplexe, re | couvremen           | t des hab  | itats (%) |                    |                      |            |  |
| potentiel 1       | potentiel 2 | pote       | ntiel 3             | objectif 1 | ob        | jectif 2           | objectif             | f <b>3</b> |  |
| Si haies (FA):    |             |            | Hauteur<br>- de 4 m | Discontin  | nuité 🔲 0 | % 0 à 40% 40 à 75% |                      |            |  |
| Commentaires      |             |            |                     |            |           |                    |                      |            |  |

# A. Structurer la manière d'encoder des données Base de données descriptives des sites Natura 2000

| Code UH terrain                                   | Code pla | cette       |          |        | Type de placette |                            |         |        | For      | me      | S                          | urface |                |
|---------------------------------------------------|----------|-------------|----------|--------|------------------|----------------------------|---------|--------|----------|---------|----------------------------|--------|----------------|
|                                                   |          |             |          | UH     |                  | SYST                       | ALEA    | R      | EPR      | CIRC    | LIN                        | T      | m <sup>2</sup> |
| Code site N2000 I                                 | Date éva | luation     |          | EUN    | IS p             | lacette (                  | Si ≠ UI | 7)     |          | Opéra   | teurs                      |        |                |
| X Lambert (m)                                     | Y Lambe  | rt (m)      |          | Préci  | sion             | N° GF                      | S       | Pent   | ia.      | Expos   | sition                     |        |                |
| Si ≠ UH                                           | Si ≠UH   |             |          | 11001  |                  | ., 01                      |         |        | egrés*   |         | NE NE                      |        | SE S           |
| Topographie  1 = plateau ou p  7 = tête de source |          | ]<br>]<br>[ | _<br>5 = |        | u de             | ersant<br>versan<br>ersant | t       | 6      | = terra  | sse all | uviale<br>uviale<br>maréca | bass   | e<br>se        |
| sol nu muscinal                                   | e herb   | acée        | erico    | oïde   | arb.             | < 2 m                      | 2 à     | 8 m    | 8-1      | 6 m     | >16 n                      | n      | > 8 m          |
|                                                   | 96       | 96          |          | 96     |                  | 96                         |         | %      | i        | 96      |                            | 96     |                |
| Perturbations                                     | A/N      | %           | Pr       | écisez | !                |                            | _       |        |          | A/N     | %                          | Pr     | récisez!       |
| Colonisation herba                                |          |             |          |        | _                |                            |         |        | cessiv   |         |                            |        |                |
| Colonisation erico                                | ïde      |             |          |        |                  |                            | Pâtu    | rage   | excessi  | if      |                            |        |                |
| Colonisation arbust                               |          |             |          |        |                  | Ame                        | ndemer  | ıt im  | portan   | ıt      |                            |        |                |
| Colonisation arbo                                 | rée      |             |          |        |                  |                            | _       |        | rbicide  | _       |                            |        |                |
| Nitrophy                                          | tes      |             |          |        |                  | Eutro                      | phisati | on (a  | igricole | )       |                            |        |                |
| Xénophy                                           | tes      |             |          |        | _                | E                          | utroph  | isatio | on (eau  | )       |                            |        |                |
| Plantation résiner                                | ıse      |             |          |        |                  |                            | Pollut  | ions   | (routes  | )       |                            |        |                |
| Plantation feuil                                  | lue      |             |          |        | _                |                            | Pollut  | ions   | (autres  | )       |                            |        |                |
| Dégâts de débarda                                 | age      |             |          |        | _                | Dé                         | pôts d  | chet   | s diver  | s       |                            |        |                |
| Coupe trop importan                               | nte      |             |          |        | _                |                            |         | R      | emblai   | s       |                            |        |                |
| Pression animale (v                               | ég)      |             |          |        | _                |                            | Zone    | d'ex   | tractio  | n       |                            |        |                |
| Dégâts animaux (s                                 | o1)      |             |          |        | _                |                            | Passa   | ige v  | éhicule  | s       |                            |        |                |
| Draînage superfic                                 | ciel .   |             |          |        | _                | Fréqu                      | ntation | ı tou  | ristiqu  | е       |                            |        |                |
| Drainage profor                                   | nd       |             |          |        | —                |                            |         | E      | scalad   | е       |                            |        |                |
|                                                   |          |             |          |        |                  |                            |         |        |          |         |                            |        |                |

| .03.06         | ve bi  | ologique | Code site Nati | ura200 | 0 C   | ode UH terrain | Code placette     | Page |
|----------------|--------|----------|----------------|--------|-------|----------------|-------------------|------|
| Type<br>relevé | Strate | Taxon    |                | вв     | Fréq. | Microhabitat   | t ou commentaires |      |
|                |        |          |                |        |       |                |                   |      |
|                |        |          |                |        |       |                |                   |      |
|                |        |          |                |        |       |                |                   |      |
|                |        |          |                |        |       |                |                   |      |
|                |        |          |                |        |       |                |                   |      |
|                |        |          |                |        |       |                |                   |      |
|                |        |          |                |        |       |                |                   |      |
|                |        |          |                |        |       |                |                   |      |
|                |        |          |                |        |       |                |                   |      |
|                |        |          |                |        |       |                |                   |      |
|                |        |          |                |        |       |                |                   |      |
|                |        |          |                |        |       |                |                   |      |
|                |        |          |                |        |       |                |                   |      |
|                |        |          |                |        |       |                |                   |      |
|                |        |          |                |        |       |                |                   |      |
|                |        |          |                |        |       |                |                   |      |
|                |        |          |                |        |       |                |                   |      |
|                |        |          |                |        |       |                |                   |      |
|                |        |          |                |        |       |                |                   |      |

## A. Structurer la manière d'encoder des données Base de données descriptives des sites Natura 2000



### A. Structurer la manière d'encoder des données

Base de données descriptives des sites Natura 2000



## B. La préparation d'un tableau de donnéesEncodage des données => Tableur => une feuille par tableau

- Très facile à structurer
- Très facile à modifier (insérer et supprimer des colonnes ou des lignes)
- Pré-encodage de certaines valeurs
- Permet de vérifier rapidement la cohérence des encodages (filtre pour une liste univoque des valeurs d'une colonne)
- Permet d'utiliser des formules pour standardiser des formats ou recréer de nouvelles variables

## B. La préparation d'un tableau de données Utilisation d'un tableur : XLS ou CALC (kit de survie)

#### Savoir:

- distinguer les différents types d'informations que l'on peut déposer dans les cellules d'un tableur; les références relatives et les références absolues;
- comprendre ce qu'on peut faire dans un tableur

#### Savoir faire:

- se déplacer, copier/coller, importer/exporter, trier des jeux de données
- réaliser des calculs sur les cellules à l'aide du tableur ;
- utiliser les fonctions de base dans un tableau;
- tracer des graphiques et jouer avec les séries;
- produire des fichiers de synthèse

B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 



Avant de commencer : attention à la gestion des décimales !

Séparateur : NE PAS UTILISER la virgule (,) MAIS BIEN le point (.)

- Seul le . est utilisable par les logiciels d'analyses de données
- La , est utilisée parfois comme séparateur dans certains formats d'export en CSV (il y a bien différents CSV !)

Sources d'erreurs lors de la lecture ou de l'importation de données.



## B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 



Gestion des décimales (Windows- XLS)

#### Panneau de configuration

- > Région et langues
- > Paramètres supplémentaires

Mettre un.



Ne pas oublier de mettre un blanc pour le séparateur de milliers ...



Bien vérifier que la gestion des décimales soit bien réalisée effectivement et pas simplement sur l'affichage

=> copier-coller dans un fichier txt ou exporter en format txt.



## B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 



Gestion des décimales (OpenOffice - CALC)

Menu de CALC : Outils > Options > Paramètres Linguistiques > Langues >



## B. La préparation d'un tableau de données Utilisation d'un tableur : XLS ou CALC (kit de survie)

#### Permet:

de construire des tableaux de données;

cellule active

- de réaliser des calculs;
- de réaliser des graphiques

#### Se compose:

- colonnes (lettre = B);
- lignes (numéro = 2);
- cellule (croisement = B2)

#### Un tableau = 1 feuille

Déplacement rapide sur les limites du tableau : CTRL+flèche Sélection : Majuscule +CTRL+flèche



## B. La préparation d'un tableau de données Utilisation d'un tableur : XLS ou CALC (kit de survie)

Tous les types de données peuvent être encodés :

- quantitatif (discret ou continu) aligné par défaut à droite
  - formaté (nombre de décimales, espacement milliers, %, ...)
- qualitatif (sous format texte) aligné par défaut à gauche
- spéciaux : date, heure, monétaire, ... (voir menu Format)

Un format modifie la donnée brute, pas seulement son affichage



**export : 0.10%** 

## B. La préparation d'un tableau de données Utilisation d'un tableur : XLS ou CALC (kit de survie)

#### Possibilité de recopier facilement des informations :

- par déplacement de la cellule active
- par les commandes copier-coller ou recopier vers le bas / la droite
- l'utilité de collage spécial
  - ⇒ pour éliminer les formules : uniquement les textes ou les nombres (CALC) ou les valeurs (XLS) uniquement les formats
  - ⇒ pour additionner, multiplier, ... des cellules avec ce qui est copié
  - ⇒ Transposition pour inverser les lignes et les colonnes



## B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

#### **Utilisation de formules:**

- = opérations réalisées sur des cellules :
  - opérateurs arithmétiques : +, -, /, \*, ^, ()
    - dans A1 écrire « 1 »;
    - dans B1 écrire « = A1+1 »
    - changer la valeur de A1

| B1 | • | <i>f</i> x ∑ = | =A1+1    |
|----|---|----------------|----------|
|    | Α | В              | С        |
| 1  | 1 | 2              |          |
| 2  | 2 | 3              | $\wedge$ |
| 3  | 3 | 4              |          |
| 4  | 4 | 5              |          |
| 5  | 5 | 6              |          |
| 6  |   |                |          |

Possible de recopier vers le bas en tirant simplement la sélection vers le bas

 opérateurs de type texte :
 & pour la concaténation de deux chaînes de caractères



## B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

#### **Utilisation de formules :**

- statistiques descriptives (somme, moyenne, ecartype, ...)
- mathématique (arrondi, trigonométrie, exposant, log, ...)
- texte (tronquer, extraire des chaînes de caractères, ...)
- calcul sur les dates (0=1/1/1900) et les heures
- logique : SI (A1>1;ce qu'on fait si c'est vrai; ce qu'on fait si c'est faux)

#### Formules s'écrivent de deux manières :

- soit directement : on écrit = somme(B1:B2)
- soit via l'appel « Insertion/Fonction » où on a un menu pour sélectionner les cellules concernées par la fonction et une aide contextuelle

## B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

#### **Utilisation de formules:**

 utilisation de fonctions préprogrammées : choix très diversifié !



|   | B5 | •               | <i>f</i> x ∑ = [= | somme(B1:B4) |
|---|----|-----------------|-------------------|--------------|
|   |    | Α               | В                 | С            |
|   | 1  | Abax ater       | 10                |              |
|   | 2  | Abax ovalis     | 12                |              |
|   | 3  | Abax parallelus | 2                 |              |
|   | 4  | Amara anea      | 15                |              |
| I | 5  |                 | 39                |              |
|   | 6  |                 |                   |              |

| B6 | ▼ 🕏 ∑                 | = NB.SI(B1:B | 4;">10") |
|----|-----------------------|--------------|----------|
|    | A                     | В            | С        |
| 1  | Abax ater             | 10           |          |
| 2  | Abax ovalis           | 12           |          |
| 3  | Abax parallelus       | 2            |          |
| 4  | Amara anea            | 15           |          |
| 5  |                       |              |          |
| 6  | Nombre de taxons > 10 | 2            |          |
| 7  |                       |              |          |

| C2 |                 |        |        |   |  |  |  |
|----|-----------------|--------|--------|---|--|--|--|
|    | А               | В      | С      | D |  |  |  |
| 1  | Taxons          | NbrInd | Ln     |   |  |  |  |
| 2  | Abax ater       | 10     | 2.3026 |   |  |  |  |
| 3  | Abax ovalis     | 12     | 2.4849 |   |  |  |  |
| 4  | Abax parallelus | 2      | 0.6931 |   |  |  |  |
| 5  | Amara anea      | 15     | 2.7081 |   |  |  |  |
| 6  | Somme           | 39     | 8.1887 |   |  |  |  |
| 7  |                 |        |        |   |  |  |  |

## B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

#### **Utilisation de formules:**

 référence relative – absolue : Utilisation du \$ pour bloquer une référence (par exemple le calcul d'un pourcentage de chaque ligne dans un total)

simple recopiage de la formule en C2



|   | Α        | В             | C       |
|---|----------|---------------|---------|
| 1 | Taxon    | Nbr individus | %       |
| 2 | Espece 1 | 40            | 0.5     |
|   | Espece 2 | 30            | #DIV/0! |
| 4 | Espece 3 | 10            | #DIV/0! |
| 5 | Total    | 80            | #DIV/0! |

|   | A        | В             | C      | U             |
|---|----------|---------------|--------|---------------|
| 1 | Taxon    | Nbr individus | %      | formule       |
| 2 | Espece 1 | 40            | 50.0%  | =B2/B\$5      |
| 3 | Espece 2 | 30            | 37.5%  | =B3/B\$5      |
| 4 | Espece 3 | 10            | 12.5%  | =B4/B\$5      |
| 5 | Total    | 80            | 100.0% | =somme(C2:C4) |

## B. La préparation d'un tableau de données Utilisation d'un tableur : XLS ou CALC (kit de survie)

#### Trier les tableaux :

- les lignes : simple et logique
- ne pas prendre en compte les lignes de titres
- nécessité de le faire pour l'ensemble des lignes d'un fichier sinon on perd les relations entre les données!



- possible de le faire aussi sur des colonnes.
- attention si il y a des formules utilisant des références relatives (d'abord copier collage spécial rien que les valeurs)

## B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

#### Trier les tableaux :

- les lignes : simple et logique
- ne pas prendre en compte les lignes de titres
- nécessité de le faire pour l'ensemble des lignes d'un fichier sinon on perd les relations entre les données!



## B. La préparation d'un tableau de données Utilisation d'un tableur : XLS ou CALC (kit de survie)

#### Trier les tableaux :

- les lignes : simple et logique
- ne pas prendre en compte les lignes de titres
- nécessité de le faire pour l'ensemble des lignes d'un fichier sinon on perd les relations entre les données!



- possible de le faire aussi sur des colonnes.
- attention si il y a des formules utilisant des références relatives (d'abord copier collage spécial rien que les valeurs)

# B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

#### Filtrer les tableaux :

- Permet de sélectionner les lignes d'un tableau
- Chercher la liste des placettes où Junus effusus a été observé
- Vérifier si la liste des codes BB (Braun-Blanquet) est correcte ...



# B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

#### Filtrer les tableaux :

- Permet de sélectionner les lignes d'un tableau
- Chercher la liste des placettes où Achillea millefolium a été observé



# B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

#### Filtrer les tableaux :

5

- Permet de sélectionner les lignes d'un tableau
- Voir si la liste des codes BB (Braun-Blanquet) est correcte

|                            |                      | •                                     |
|----------------------------|----------------------|---------------------------------------|
| Classes de<br>recouvrement | Signification        |                                       |
| r                          | un individu          |                                       |
| +                          | recouv. insignifiant |                                       |
| 1                          | moins de 5 %         | 2a (5 à 15%)                          |
| 2                          | de 5 à 25 %          | · · · · · · · · · · · · · · · · · · · |
| 3                          | de 25 à 50 %         | 2b (15 à 25%)                         |
| 4                          | de 50 à 75 %         |                                       |
|                            |                      |                                       |

plus de 75 %



# B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

#### **Exercices:**

- calculer la somme des abondances de la table "Releves"
- générer une abréviation de noms d'espèces (3 caractères pour le genre et 3 pour l'espèce)

Si 2 colonnes Si 1 colonne

| Genre | Espece     |        | Taxons          |
|-------|------------|--------|-----------------|
| Abax  | ater       | Abaate | Abax ater       |
| Abax  | ovalis     | Abaova | Abax ovalis     |
| Abax  | parallelus | Abapar | Abax parallelus |

- calculer le nombre de jours depuis que vous êtes nés
- quand sera votre 10000ème jouriversaire?

# B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

#### **Exercices:**

générer une abréviation de noms d'espèces
 (3 caractères pour le genre et 3 pour l'espèce)

|   | A    | D          | C      |                            |
|---|------|------------|--------|----------------------------|
| 1 | Abax | ater       | Abaate | =STXT(A1;1;3)&STXT(B1;1;3) |
| 2 | Abax | parallelus | Abapar | =STXT(A2;1;3)&STXT(B2;1;3) |
| 3 | Abax | ovatus     | Abaova | =STXT(A3;1;3)&STXT(B3;1;3) |

En majuscule ? =MAJUSCULE( STXT(A11;1;3)&STXT(B11;1;3))

Si le nom de taxon est en une seule colonne?

|   | A               | В                 | С          | D       |                          |
|---|-----------------|-------------------|------------|---------|--------------------------|
| 1 | Taxon           | position du '' '' | Genre      | Espece  |                          |
| 2 | Abax ater       | 5                 | Abax       | ater    |                          |
| 3 | Carabus auratus | 8                 | Carabus    | auratus |                          |
| 4 | Agonum gracile  | 7                 | Agonum     | gracile | =STXT(A2;B2+1;NBCAR(A2)) |
|   |                 | =CHERCH           | E(" ";A2;1 |         | =STXT(A2;1;B2-1)         |

# B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

#### **Exercices:**

- calculer le nombre de jours depuis que vous êtes nés

Les dates sont en fait exprimées en nombre de jours depuis le 1/1/1900 et cela est formaté en différents formats de date.

Donc, la différence entre deux dates est vite calculée ...

| Date naissance | Date du jour | Différence | formule utilisée |  |  |
|----------------|--------------|------------|------------------|--|--|
| 17/10/1988     | 17/10/2008   | 7305       | = B1-A1          |  |  |

- quand sera votre 10000 ème jouriversaire?

| Date naissance | durée | 10000 ème jouriversaire | formule utilisée |
|----------------|-------|-------------------------|------------------|
| 17/10/1988     | 10000 | 04/03/16                | =A1+B1           |
| 32433          | 10000 | 42433                   |                  |

=> 04/03/2016

# B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

Conseils pour remplir son tableau de données :

- Une feuille différente pour chaque table
- Codage « intelligent » de sa structure d'échantillonnage
  - A, B, C, ... ou station 1, 2, 3a, 5b, ... ne sont pas « signifiants ».
  - Utiliser la structure d'échantillonnage pour les stations comme :
    - ESmArd1 pour la première répétition (1) d'une station équienne (E), sur sols marginaux (Sm) en Ardenne (Ard). Ce code est signifiant dans les tableaux de synthèse, les résultats des analyses, les graphiques, ...

Règle = réserver toujours le même nbre de caractères pour une strate. Cela permet de décomposer facilement le code si nécessaire (fct STXT).

| ľ |   | D2       | <b>-</b> (e) | f <sub>x</sub> | =S | TXT(B2;1;2) |             |      |
|---|---|----------|--------------|----------------|----|-------------|-------------|------|
|   |   |          |              |                |    | l           |             |      |
|   | 4 | Α        | В            | С              |    | D           | Е           | F    |
|   | 1 | OTU      | Sample       | NBRIND         |    | Tillage     | Crop_residu | Prof |
|   | 2 | Otu00017 | RTO107A      |                | 1  | RT          | О           | A    |
|   | 3 | Otu00019 | RTI094B      |                | 1  | RT          | L           | В    |
|   | 4 | Otu00022 | CTI097A      |                | 1  | CT          | L           | A    |
|   | 5 | Otu00022 | RTO091B      |                | 1  | RT          | 0           | В    |
|   | 6 | Otu00025 | RTO100A      |                | 1  | RT          | 0           | Α    |

#### B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

#### **Exercices:**

- Calculer la date de première observation d'une espèce ?

Feuille "Releves\_libellules" => BD\_Exemple\_CALC.ods ou BD\_Exemple\_XLS.xlsx



#### B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

#### **Exercices:**

- Calculer la date de première observation d'une espèce ?

| A1:E11 ▼ 🕉 ∑ = 40 |                           |          |                       |             |    |  |  |  |  |  |  |
|-------------------|---------------------------|----------|-----------------------|-------------|----|--|--|--|--|--|--|
|                   | A                         | В        | С                     | D           | E  |  |  |  |  |  |  |
| 1                 | Station                   | Date     | Taxon                 | Auteur      | N  |  |  |  |  |  |  |
| 2                 | SGIB 1073 - Fagne de la I | 20080730 | Aeshna cyanea         | Serruys M   | 3  |  |  |  |  |  |  |
| 3                 | SGIB 1868 - La Flache     | 20070607 | Calopteryx virgo      | Moës-Cimino | 10 |  |  |  |  |  |  |
| 4                 | SGIB 1060 - Beyoli - Mon  | 20080815 | Sympetrum danae       | Smits Q     | 1  |  |  |  |  |  |  |
| 5                 | SGIB 1500 - Basseilles at | 20080723 | Calopteryx virgo      | Fichefet V  | 1  |  |  |  |  |  |  |
| 6                 | SGIB 1500 - Basseilles al | 20080908 | Sympetrum danae       | Serruys M   | 1  |  |  |  |  |  |  |
| 7                 | SGIB 0605a - Favi de Lud  | 20000813 | Enallagma cyathigerum | DE KNLIE G  | 25 |  |  |  |  |  |  |

- trier le fichier par *Taxon* et *Date*
- créer une variable qui identifie la première mention d'une espèce en comparant le nom de taxon d'une ligne et de la précédente [ =SI(C1=C2;1;0) ]
- copier collage spécial de cette variable pour ne garder que les « valeurs »
- trier ou filtrer le fichier par cette variable ... Les lignes avec « 0 » = première observation.

## B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

Conseils pour remplir son tableau de données :

- Format d'encodage doit être au plus proche de celui récolté sur le terrain ou au labo
- Nom des variables (colonnes) :
  - Commencer par une lettre, puis lettres et chiffres et éventuellement "\_"; Pas de + ou – ou / ou () ou [] ou ... qui sont mal interprétés dans des formules et inacceptés lors de l'importation.
  - Majuscules tolérées mais il faudra les utiliser en fonction des logiciels d'analyses (R est "case sensitive" mais SAS ne l'est pas), ...
  - Etre intelligible, relativement court (pour les graphiques), UNIVOQUE (donc pour R : "PH" est différent de "Ph" ou de "pH" mais d'autres logiciels ne verront pas de différences !)

## B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

Importer / exporter des données :

- copier-coller de word, de tableaux dans des pages web, ...
- sous la forme de fichiers en différents formats :
  - texte tabulé (txt ou tab)
  - dbf (access), csv, ...
- la logique => une feuille xls = un tableau de données

En cas d'exportation en format txt ou tab, on perd le formatage de ses données ...

#### B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

Données encodées en format "vectoriel" => "matriciel"

- type observation d'espèces :
  - Placettes, taxons, nombre d'individus

|   | A         | В                    | С  | D    |
|---|-----------|----------------------|----|------|
| 1 | Placettes | Taxons               | BB | BVAL |
| 2 | A1        | Juncus effusus       | +  | 0.2  |
| 3 | A1        | Leucanthemum vulgare | +  | 0.2  |
| 4 | A1        | Lolium perenne       | 1  | 2.5  |
| 5 | A1        | Luzula campestris    | +  | 0.2  |
| 6 | A1        | Lychnis flos-cuculi  | 1  | 2.5  |
| 7 | A1        | Medicago lupulina    | 1  | 2.5  |

- Construction d'une matrice
  - Placettes x taxons avec le nombre d'individus total



#### B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

Données encodées en format "vectoriel" => "matriciel" (CALC)

- type observation d'espèces :
  - Placettes, taxons, nombre d'individus

| A |           | В                    | С  | D    |
|---|-----------|----------------------|----|------|
| 1 | Placettes | Taxons               | BB | BVAL |
| 2 | A1        | Juncus effusus       | +  | 0.2  |
| 3 | A1        | Leucanthemum vulgare | +  | 0.2  |
| 4 | A1        | Lolium perenne       | 1  | 2.5  |
| 5 | A1        | Luzula campestris    | +  | 0.2  |
| 6 | A1        | Lychnis flos-cuculi  | 1  | 2.5  |
| 7 | A1        | Medicago lupulina    | 1  | 2.5  |

Sélection du tableau puis

CALC: Données > Tableau croisé

XLS: Insertion > TablCroiséDynamique



#### B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

Données encodées en format "vectoriel" => "matriciel" (CALC)



#### B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

Données encodées en format "vectoriel" => "matriciel" (CALC)



#### B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

Données encodées en format "vectoriel" => "matriciel" (CALC)

Possibilité de filtrer des données

Localisation de la matrice

**Afficher totaux** 



Cellule vide = 0 => dans XLS

#### B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

Données encodées en format "vectoriel" => "matriciel" (CALC)

| •        | Taxon  |               |                |        |         |        |               |                  |            |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |
|----------|--------|---------------|----------------|--------|---------|--------|---------------|------------------|------------|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| <u> </u> | ₹      | ıs            |                |        |         |        |               |                  |            |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |
| Placette | Achill | s<br>Rehilled | diul.<br>Aethu | Agropi | ron rep | erts e | thab<br>Agost | nerosi<br>Nerosi | ifer ulgar | is alope | Alope | deui de de la companya de la company | ters<br>its arver | sis phoe<br>Anther |
| A1       | •      | •             | `              | `      | •       | •      | `             | •                | `          | •        | •     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                 | •                  |
| A2       | 0.2    |               | 0.2            | 2.5    |         | 0.2    |               |                  |            |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5               |                    |
| А3       | 2.5    |               | 2.5            | 2.5    | 2.5     |        |               | 0.2              | 15         |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                | 2.5                |
| B1       |        |               |                |        |         |        |               |                  |            |          | 10    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |
| B2       |        |               |                |        |         |        | 0.2           |                  | 15         | 0.2      |       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | 0.2                |
| B3       |        |               |                |        |         |        |               |                  |            |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 2.5                |
| C1       |        |               |                |        |         |        |               |                  |            |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                    |
| C2       | 2.5    | 15            |                |        |         |        | 0.2           |                  |            | 0.2      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 0.2                |
| C3       | 15     |               | 15             | 0.2    |         |        |               |                  | 15         |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                | 2.5                |
| Total 🕨  | 20.2   | 15            | 17.7           | 5.2    | 2.5     | 0.2    | 0.4           | 0.2              | 45         | 0.4      | 10    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47.5              | 7.9                |

On vérifie si le total global est correct : 1758.4

# B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

Données encodées en format "vectoriel" => "matriciel" (XLS)



#### B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

#### **Exercices:**

Feuille "Releves\_libellules" => BD\_Exemple\_CALC.ods ou BD\_Exemple\_XLS.xlsx



- quelle est la somme des abondances pour chaque espèce ?
- quelle est la somme des abondances pour chaque observateur et chaque date ?
- quelle est la matrice de la somme des abondances par station et taxon ?

Cette fonction permet de gérer les données telles qu'elles sont récoltées (observation après observation) et de reconstruire les différents tableaux de synthèse pour les analyses très facilement

=> UNE SEULE SOURCE DE DONNEES!

#### B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

**Gérer des relations entre les tables (XLS)** 

Feuille « Parcelles » triée par Parcelle



| Α         | В    | C   | D         | E   |
|-----------|------|-----|-----------|-----|
| pla       | parc | y1  | <b>y2</b> | у3  |
| <b>A1</b> | E01  | 1,0 | 14        | 1,1 |
| <b>A2</b> | E01  | 2,3 | 33        | 1,2 |
| <b>A3</b> | E01  | 1,2 | 26        | 1,1 |
| <b>A4</b> | E02  | 1,4 | 58        | 1,0 |
|           |      |     |           |     |

Feuille « Placettes »

Feuille « Placettes »

| Α         | В    | C   | D  | E   | F         | G         |     |    |
|-----------|------|-----|----|-----|-----------|-----------|-----|----|
| pla       | parc | y1  | y2 | у3  | <b>x1</b> | <b>x2</b> | х3  | х4 |
| <b>A1</b> | E01  | 1,0 | 14 | 1,1 | 10        | 234       | 1,1 | 11 |
| <b>A2</b> | E01  | 2,3 | 33 | 1,2 | 10        | 234       | 1,1 | 11 |
| <b>A3</b> | E01  | 1,2 | 26 | 1,1 | 10        | 234       | 1,1 | 11 |
| <b>A4</b> | E02  | 1,4 | 58 | 1,0 | 23        | 123       | 1,2 | 12 |

XLS: RECHERCHE(valeur; vectcherche; vectreponse)

#### B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

**Gérer des relations entre les tables (XLS)** 

Feuille « Placettes »

Pour recopier vers le bas en gardant les références absolues

| Α         | В    | C   | D  | Ε   | F         | G         |     |    |
|-----------|------|-----|----|-----|-----------|-----------|-----|----|
| pla       | parc | y1  | y2 | y3  | <b>x1</b> | <b>x2</b> | х3  | х4 |
| <b>A1</b> | E01  | 1,0 | 14 | 1,1 | 10        | 234       | 1,1 | 11 |
| <b>A2</b> | E01  | 2,3 | 33 | 1,2 | 10        | 234       | 1,1 | 11 |
| <b>A3</b> | E01  | 1,2 | 26 | 1,1 | 10        | 234       | 1,1 | 11 |
| <b>A4</b> | E02  | 1,4 | 58 | 1,0 | 23        | 123       | 1,2 | 12 |

=RECHERCHE(B2;Parcelles!A\$2:A\$5;Parcelles!B\$2:B\$5)

Attention : si le code Par recherché n'existe pas dans la feuille « Parcelles » (ex: A22), XLS prend la valeur associée à ligne suivante (ici A3)

La solution = d'abord tester si on retrouve la valeur recherchée et si oui, on affiche la réponse de la colonne voulue

```
=SI(B2=RECHERCHE(B2;Parcelles!$A$2:$A$5;Parcelles!$A$2:$A$5);RECHERCHE (B2;Parcelles!$A$2:$A$5;Parcelles!B$2:B$5);"XXX")
```

B. La préparation d'un tableau de données Utilisation d'un tableur : XLS ou CALC (kit de survie) Gérer des relations entre les tables (CALC)

Comme en XLS

| F2 = RECHERCHE(B2;Parcelles.A\$2:A\$6;Parcelles.B\$2:B\$6) |           |           |      |      |            |            |   |  |  |
|------------------------------------------------------------|-----------|-----------|------|------|------------|------------|---|--|--|
|                                                            | A B       |           | С    | D    | E          | F          | G |  |  |
| 1                                                          | Placettes | Parcelles | X    | Y    | Strate_arb | Traitement |   |  |  |
| 2                                                          | A1        | Α         | 0.27 | 0.40 | 45.72      | E          | _ |  |  |
| 3                                                          | A2        | Α         | 0.89 | 0.49 | 14.33      | E          |   |  |  |
| 4                                                          | A3        | Α         | 0.26 | 0.51 | 0.17       | E          |   |  |  |
| 5                                                          | B1        | В         | 0.65 | 0.97 | 70.83      | E          |   |  |  |
| 6                                                          | B2        | В         | 0.38 | 0.20 | 75.56      | E          |   |  |  |
| 7                                                          | B3        | В         | 0.47 | 0.27 | 97.47      | E          |   |  |  |
| 8                                                          | C1        | С         | 0.34 | 0.65 | 43.70      | E          |   |  |  |
| 9                                                          | C2        | С         | 0.13 | 0.73 | 75.91      | E          |   |  |  |
| 10                                                         | C3        | С         | 0.89 | 0.25 | 76.65      | E          |   |  |  |
| 11                                                         | D1        | D         | 0.10 | 0.53 | 56.52      | E          |   |  |  |
| 12                                                         | D2        | D         | 0.76 | 0.35 | 78.83      | E          |   |  |  |
| 13                                                         | D3        | D         | 0.36 | 0.36 | 28.95      | E          |   |  |  |
| 14                                                         | E1        | Е         | 0.90 | 0.21 | 2.59       | J          |   |  |  |
| 15                                                         | E2        | E         | 0.35 | 0.77 | 97.06      | J          |   |  |  |

VERIFIER

VOS

RESULTATS!

avec le même problème si une valeur n'existe pas ou n'est pas dans le bon ordre

#### B. La préparation d'un tableau de données

**Utilisation d'un tableur : XLS ou CALC (kit de survie)** 

Pour gérer une base relationnelle => ACCESS (Win) ou BASE (OO)



**Création ou importation de tables** 

Création de requêtes sur les tables (filtre, tri, croisement, tableau croisé, ...)

Pas très compliqué et bon pour le CV ...

+ Création de formulaires, ...

#### A. Mise en forme des fichiers

#### Exportation des données de XLS ou de CALC (ou autres BD relationnelles)

- Préférez le format "text" ou "txt" (sans format)
- Avec les colonnes séparées par des tabulations (pas des blancs si vous en avez dans vos colonnes. Ex : "Abax ater")
- Eviter le CSV (séparateur, ambigu ou; avec des "" autour des chaînes de caractères – différents CSV; pas tjrs reconnus)
- Exportation de tables avec les titres des colonnes et indices de lignes clairs, UNIVOQUES, respectant les contraintes de la plupart des logiciels (début = lettre, chiffre ou lettre ou "\_" mais pas d'opérateurs (+, -, /, ...) ou de caractères bizarres
- Abandonner les caractères accentués qui génèrent TOUJOURS des problèmes ...
- => Exporter les tables Parcelles, Placettes et Releves

#### A. Mise en forme des fichiers

#### Exportation des données de XLS ou de CALC (ou autres BD relationnelles)

CALC: Fichier > Enregistrer sous > Texte CSV



- Format CSV ou autre format txt
- Conserver le format actuel



#### A. Mise en forme des fichiers

#### Exportation des données de XLS ou de CALC (ou autres BD relationnelles)

CALC: Fichier > Enregistrer sous > Texte CSV



- Séparateur => tabulation
- Pas de séparateur de texte
- Conserver le format actuel
- Vérifier dans un éditeur de texte ou dans R Studio

#### **B.** Importation dans R

L'importation de tables externes se fait simplement en utilisant Import Dataset de RStudio ou la fonction read.table.



- Définit les formats du fichier txt
- Attention : pas de caractères accentués dans le chemin d'accès (WIN)

Cannot open file
'D:/Dufrene/GXABT

Enseignements/ULB BING-F4002

Acquisition et analyse de
données/TP2 - Manip fichier xls
ou openoffice/Parcelles.txt': No
such file or directory

#### **B.** Importation dans R

L'importation de tables externes se fait simplement en utilisant Import Dataset de RStudio ou la fonction read.table.



#### **B.** Importation dans R

L'importation de tables externes se fait simplement en utilisant Import Dataset de RStudio ou la fonction read.table.

- Code R
  - > file.show(file.choose()) pour voir le contenu d'un fichier

Définir le dossier de travail : Menu Session > Set Working Directory ou

- > setwd("D:/Dufrene/GXABT Enseignements/ULB BING-F4002 Acquisition et analyse de donnees/TP2 Manip fichier xls ou openoffice")
- > read.table("Parcelles.txt")[1:3, ] pour voir les 3 premières lignes du fichier



L'importation de tables externes se fait simplement en utilisant Import Dataset de RStudio ou la fonction read.table.

Code R





La colonne avec les noms des Parcelles n'est pas comprise comme un identifiant unique des lignes mais bien comme une variable

Il faut préciser le séparateur => Option "row.names="



L'importation de tables externes se fait simplement en utilisant Import Dataset de RStudio ou la fonction read.table.

Code R





Si vous avez des blancs dans le contenu de vos variables, ils seront aussi interprétés comme des séparateurs par défaut

```
> read.table("Releves.txt ", h=T) [1:10, ]
Erreur dans scan(file, what, nmax, sep, dec, quote, skip,
  la ligne 61 n'avait pas 5 éléments
```

Il faut préciser le séparateur => Option "sep ="

#### B. Importation dans R

L'importation de tables externes se fait simplement en utilisant Import Dataset de RStudio ou la fonction read.table.

Code R

```
> read.table("Releves.txt",h=T, sep="\t") [1:10, ]
   Placettes
                          Taxons BB BVAL
         A1
                  Juncus effusus + 0.2
2 3 4 5 6 7
         Al Leucanthemum vulgare +
                  Lolium perenne 1
         A1
               Luzula campestris +
                                     0.2
         A1
                                              Option "sep"
             Lychnis flos-cuculi 1 2.5
         A1
               Medicago lupulina 1 2.5
         A1
         Al Myosotis scorpioides + 0.2
             Plantago lanceolata 1 2.5
         A1
         A1
                   Poa trivialis 1 2.5
10
                Ranunculus acris 2a 10.0
         A1
```

Equivalent de l'interface d'importation :

```
Parcelles = read.table("Parcelles.txt",h=T, row.names="Parcelles", sep="\t")
```

#### B. Importation dans R

L'importation de tables externes se fait simplement en utilisant Import Dataset de RStudio ou la fonction read.table.

Code R



=> Importer les 4 fichiers qui étaient dans CALC ou XLS



#### **B.** Importation dans R

L'importation de tables externes se fait simplement en utilisant Import Dataset de RStudio ou la fonction read.table.



#### **Rappel important:**

Quand les jeux de données sont longs, il est toujours difficile de vérifier si l'importation du contenu est correcte à l'œil. Utiliser de simples fonctions statistiques, comme la somme des nombres pour une ou plusieurs colonnes ou des calculs de fréquence de valeurs qualitatives dans le fichier de départ et après l'importation pour TOUJOURS vérifier si votre jeu de données est correct.

La somme totale par exemple des valeurs BBVAL du fichier « Releves.txt » est par exemple égale à 1758.4.

#### B. Importation dans R

L'importation de tables externes se fait simplement en utilisant Import Dataset de RStudio ou la fonction read.table.



```
> releves<-read.table("Releves.txt", header=TRUE, sep="\t")
> dim(releves)
[1] 356    4
> names(releves)
[1] "Placettes" "Taxons" "BB" "BVAL"
> sum(releves$BVAL)
[1] 1758.4

dim() = taille de la table
names() = nom des colonnes
sum() = somme d'une colonne
```

On notera qu'on peut aussi copier-coller des données (dans le clipborard ou le presse-papier) et les lire directement avec R.

```
monfichier<-read.table("clipboard",sep="\t",dec=",",header=T)
```

#### C. Manipulations de fichier

#### Fusion de tableaux => merge()

```
> Parcelles<-read.table("Parcelles.txt", header=TRUE, sep="\t")
> Placettes<-read.table("Placettes.txt", header=TRUE, sep="\t")
> Parcelles
  Parcelles Traitement Age VolBois Hauteur
                                          25
                                100
2
          В
                                 50
                                         20
                                 20
                                         10
                                 30
                                          30
                                 40
                                         25
> Placettes
   Placettes Parcelles
                                Х
                                          Y Strate_arb
                      A 0.2659336 0.4024086 45.7170007
1
          A1
          A2
                      A 0.8881164 0.4900394 14.3344909
3
          Α3
                      A 0.2613052 0.5059617 0.1679769
          В1
                      B 0.6502693 0.9684797 70.8333599
          В2
                      B 0.3836429 0.2010154 75.5601603
          В3
                      B 0.4746960 0.2677185 97.4669143
          C1
                      C 0.3351040 0.6458735 43.6976664
          C2
                      C 0.1288499 0.7276161 75.9144194
          C3
                      C 0.8883532 0.2469888 76.6454928
10
          D1
                      D 0.1024372 0.5346595 56.5174319
11
          D2
                      D 0.7642117 0.3491043 78.8318719
12
          D3
                      D 0.3554768 0.3615868 28.9462846
13
          F1
                      E 0.9018583 0.2057520
14
          E2
                      E 0.3464000 0.7744766 97.0605503
          E3
15
                      E 0.3116346 0.8119438 52.7975343
```



#### C. Manipulations de fichier

Fusion de tableaux => merge()

```
> Placettes_det = merge(Parcelles, Placettes, by.x = "Parcelles", by.y = "Parcelles")
> Placettes_det
   Parcelles Traitement Age VolBois Hauteur Placettes
                                                                           Y Strate_arb
                                                                 Х
                                           25
                                 100
                                                     A1 0.2659336 0.4024086 45.7170007
                       Ε
           А
2
                                           25
                                 100
           А
                       Ε
                           1
                                                     A2 0.8881164 0.4900394 14.3344909
3
                                           25
                                 100
                                                     A3 0.2613052 0.5059617
           А
                                                                               0.1679769
4
                                           20
                                  50
                                                     B1 0.6502693 0.9684797 70.8333599
                           2
                                           20
5
                                  50
                                                     B2 0.3836429 0.2010154 75.5601603
6
                                  50
                                           20
                                                     B3 0.4746960 0.2677185 97.4669143
                                  20
                                           10
                                                     C1 0.3351040 0.6458735 43.6976664
8
                       E
                                  20
                                           10
                                                     C2 0.1288499 0.7276161 75.9144194
                           3
9
                                  20
                                           10
           C
                       Ε
                                                     C3 0.8883532 0.2469888 76.6454928
10
                       E
                                           30
           D
                                  30
                                                     D1 0.1024372 0.5346595 56.5174319
11
           D
                       Ε
                                  30
                                           30
                                                     D2 0.7642117 0.3491043 78.8318719
12
                                           30
                                                     D3 0.3554768 0.3615868 28.9462846
                                  30
           D
13
                           0
                                           25
                                                     E1 0.9018583 0.2057520
           Ε
                                  40
                                                                              2.5940258
14
                                           25
                                                     E2 0.3464000 0.7744766 97.0605503
                                  40
15
                                           25
                                                     E3 0.3116346 0.8119438 52.7975343
                                  40
```

#### C. Manipulations de fichier

#### Tableau croisé => table()

```
Console D:/Dufrene/GXABT Enseignements/ULB BING-F4002 Acquisition et analyse de donnees/TP2 - Manip fichier
>
>
> # Lecture de la table décrivant les relevés phytosociologiques
> Releves = read.table("Releves.txt", header=TRUE, sep="\t")
> # Construction de la matrice « taxons x stations »
> tableau<-table(Releves$Taxons,Releves$Placettes)</pre>
> tableau
                                              A1 A2 A3 B1 B2 B3 C1 C2 C3
  Achillea millefolium
  Achillea ptarmica
                                                                     1
  Aethusa cynapium
  Agropyron repens
  Agrostemma githago
  Agrostis sp.
  Agrostis stolonifera
  Agrostis vulgaris
  Alchemilla arvensis
  Alopecurus myosuroides
  Alopecurus pratensis
  Anagallis arvensis
  Anagallis phoenicea
```

#### C. Manipulations de fichier

Tableau croisé => xtabs()

Calcule la somme des abondances des combinaisons Taxons-Placettes

```
Console D:/Dufrene/GXABT Enseignements/ULB BING-F4002 Acquisition et analyse de donnees/TP2 - Manip fichier xls ou openoffice/
> tableau<-xtabs(BVAL ~ Taxons + Placettes, releves)
> tableau
                                          Placettes
                                             A1
Taxons
  Achillea millefolium
                                                                     0.0
                                                      2.5
                                                            0.0
                                                                0.0
                                                                          0.0
  Achillea ptarmica
                                                                           0.0 15.0
                                                      0.0
                                                            0.0
                                                                0.0
                                                                     0.0
  Aethusa cynapium
                                                            0.0 0.0
                                                                     0.0
                                                                           0.0 0.0 15.0
  Agropyron repens
                                                            0.0
                                                                0.0
                                                                      0.0
                                                                           0.0
  Agrostemma githago
                                                            0.0 0.0
                                                                     0.0
                                                                           0.0
  Agrostis sp.
                                                      0.0
                                                            0.0 0.0
                                                                     0.0
                                                                           0.0
  Agrostis stolonifera
                                                      0.0
                                                           0.0 0.2 0.0
                                                                           0.0
  Agrostis vulgaris
                                                     0.2
                                                           0.0
                                                                0.0
                                                                     0.0
  Alchemilla arvensis
                                                0.0 15.0
                                                          0.0 15.0
                                                                     0.0
  Alopecurus myosuroides
                                            0.0 0.0 0.0 0.0 0.2
                                                                     0.0
                                                                           0.0
  Alopecurus pratensis
                                                0.0 0.0 10.0 0.0
                                                                     0.0
                                                                           0.0
  Anagallis arvensis
                                                 0.0 0.0 0.0 15.0
                                                                     0.0
                                                                           0.0
  Anagallis phoenicea
                                                2.5 30.0 0.0
                                                                0.0
                                                                     0.0
                                                                           0.0
  Anthemis arvensis
                                                0.0 2.5 0.0
                                                                0.2
                                                                      2.5
                                                                           0.0
  Anthemis cotula
                                                 0.0 15.0
                                                            0.0
                                                                0.0
                                                                     2.5
                                                                           0.0
  Anthoxanthum odoratum
                                                 0.0 0.0
                                                          0.2
                                                                0.0
                                                                     0.0
                                                                           0.0
  Antirrhinum orontium
                                                            0.0
                                                                     0.2
                                                                           0.0
  Apera spica-venti
                                                 0.0 2.5
                                                            0.0
                                                                0.0
                                                                     0.0
                                                                           0.0
  Arenaria serpyllifolia
                                            0.0
                                                      0.0
                                                            0.0
                                                                2.5
                                                                     0.0 0.0
  Arenaria serpyllifolia subsp.leptoclados
                                            0.0
                                                            0.0
                                                                0.0
                                                                     0.0
                                                                           0.0
  Atriplex patula
                                            0.0
                                                            0.0
                                                                0.0
                                                                     0.0
  Avena sativa
                                                      0.0
                                                            0.0
                                                                0.0
                                                                     0.0
                                                                           0.0
```

Format liste à transformer en dataframe ...

#### C. Manipulations de fichier

Tableau croisé => xtabs()

Calcule la somme des abondances des combinaisons Taxons-Placettes



Tableau prêt pout tout usage ...



#### C. Manipulations de fichier

#### **Exercices:**

Feuille "Releves\_libellules" => BD\_Exemple\_CALC.ods ou BD\_Exemple\_XLS.xlsx



- quelle est la somme des abondances pour chaque espèce ?
- quelle est la somme des abondances pour chaque observateur et chaque date?
- quelle est la matrice de la somme des abondances par station et taxon?