Dimensão Fractal e Rede Livre de Escala

Fagundes, R. L.*

Mestrando em Física Estatítica

Departamento de Física - DFI/UFLA, Lavras, MG.

Sumário

1	Objetivos
2	Teoria
2.1	Geometria fractal
2.2	$Box-counting \dots \dots$
2.3	Modelo de Soneira-Peebles
2.4	Rede livre de escala
2.5	Renormalização e fractalidade
3	Métodos
4	Orientações para o relatório

1 Objetivos

O presente projeto tem os seguintes objetivos:

- Compreender o que é um fractal e uma rede livre de escala;
- Gerar uma rede geométrica livre de escala a partir do modelo de Soneira-Peebles (usando a classe *Sonei-raPeebles*) e do mecanismo de ligação preferencial;
- Calcular a distribuição de grau de uma rede livre de escala e estimar o expoente da distribuição;
- Calcular a dimensão fractal (usando a classe FractalDimension) de uma rede livre de escala;
- Estimar a dimensão fractal de distribuição de grau a partir da dimensão fractal de contagem de caixas e do expoente de escala γ.
- Construir um relatório com uma breve discussão do assunto e dos resultados obtidos;

Acesse o seguinte link para baixar as classes SoneiraPeebles e FractalDimension: https://github.com/renabridged.

2 Teoria

2.1 Geometria fractal

Geometria fractal é uma ramo da matemática que estuda fractais, estruturas que exibem padrões similares quando observados em diferentes níveis de detalhe. A auto-similaridade é a propriedade de que uma parte de um objeto é similar ao objeto inteiro, Figura 2.1.

2.2 Box-counting

O método de contagem de caixas ou box-counting pode ser implementado realizando-se os seguintes procedimentos:

• Construa um reticulado sobre o fractal consistindo de $N(\epsilon_1)^2$ caixas e determine o número $N(\epsilon_1)$ de caixas que são necessárias para cobrir o fractal;

^{*}renan_lucas@id.uff.br; https://github.com/renabridged.

2 Teoria

Fig. 2.1: Conjunto Julia é uma estrutura fractal gerada a partir de interações e números complexos. Este conjunto pode ser derivado do conjunto de Mandelbrot, outra estutura fractal que exibe a propriedade de auto-similaridade. Fonte: Introduction to Fractal Geometry Martin Churchill, 2004.

- A cada contagem de caixas que sobrepõem o fractal, diminua a escala da caixa de modo a formar a sequência de caixas $N(\epsilon_1)^2 < N(\epsilon_2)^2 < \cdots < N(\epsilon_n)^2$;
- Calcule os números correspondentes de caixas $N(\epsilon_1), N(\epsilon_2), \dots, N(\epsilon_n)$ necessários para cobrir o fractal;
- Construa um gráfico na escala log-log de $N(\epsilon_n)$ versus $1/\epsilon_n$ e interprete o coef. angular da reta como a dimensão fractal do sistema.

Nesta construção temos que o número de caixas $N(\epsilon_n)$ necessário para cobrir o fractal na escala ϵ_n cresce muito rapidamente quando $\epsilon_n \longrightarrow 0$, isto implica que

$$N(\epsilon) \sim \epsilon^{-d_f}$$
 (2.1)

onde foi deixado implícito as n escalas [2]. Portanto, a dimensão fractal do sistema pode ser obtida calculando o logaritmo de ambos os lado e resolvendo para d_f , fornecendo

$$d_f \sim \lim_{\epsilon \to 0} \frac{\ln N(\epsilon)}{\ln(1/\epsilon)}.$$
 (2.2)

Esta é a definição mais comum na literatura de dimensão fractal.

2.3 Modelo de Soneira-Peebles

O modelo de Soneira-Peebles permite construir fractais uma vez definido o número de objetos (pontos) η dentro de um círculo de raio R/λ na escala λ circunscrito em um circulo $R\gg R/\lambda$. Figura 2.2. Deste modo, para obtermos a dimensão fractal de uma estrutura usando a construção de Soneira-Peebles, devemos notar o seguinte:

- $p(R/\lambda, R)$ é a probabilidade de encontrar um ponto dentro de um circulo de raio R/λ circunscrito em um circulo de raio $R \gg R/\lambda$;
- $N(\lambda)$ é o número de pontos na escala λ ;
- η é o número de pontos que se encontra dentro de um circulo de raio R/λ circunscrito em um circulo de raio $R\gg R/\lambda$;

2.4 Rede livre de escala

Fig. 2.2: Representação esquemática para a dedução da dimensão fractal usando a construção de Soneira-Peebles.

De fato, multiplicando η por $p(R/\lambda)$, temos o número de pontos $N(\lambda)$ na escala λ , ou seja,

$$N(\lambda) = \eta p(R/\lambda). \tag{2.3}$$

Ademais, assumindo que os pontos $N(\lambda)$ satisfaçam a hipótese de estruturas fractais, devemos ter $N(\lambda) \sim \lambda^{-d_f}$, logo

$$d_f \sim \frac{\ln N(\lambda)}{\ln(1/\lambda)}. (2.4)$$

Da geometria do problema, temos que

$$p(R/\lambda) = \frac{\pi (R/\lambda)^2}{\pi R^2} = 1/\lambda^2 \tag{2.5}$$

então

$$d_f \sim \frac{\ln(\eta/\lambda^2)}{\ln(1/\lambda)} \tag{2.6}$$

e, portanto,

$$d_f \sim \frac{\ln \eta}{\ln \lambda}.\tag{2.7}$$

a qual define a dimensão fractal de uma estrutura a partir da sequência $\{\eta_n, \lambda_n\}_{n \in \mathbb{N}}$.

2.4 Rede livre de escala

Redes complexas são estruturas compostas por um conjunto de nós interconectados por meio de relações ou conexões. Essas redes são caracterizadas por propriedades não triviais, como a presença de clusters e a distribuição não uniforme de conexões entre os nós Figura 2.3.

Uma rede livre de escala é um tipo específico de rede complexa em que a distribuição de grau ou conectividade segue uma lei de potência, o que significa que existem alguns nós altamente conectados, conhecidos como hubs, e a maioria dos nós tem um baixo número de conexões [3]. O expoente de escala é uma medida utilizada para descrever o grau de heterogeneidade na distribuição de grau. Quanto maior o valor do expoente de escala, mais heterogênea é a rede.

Alguns dos ingredientes para se gerar uma rede livre de escala são:

- Crescimento: inicia-se com m_0 nós previamente ligados e a cada passo é adicionado um novo nó com $m \le m_0$ ligações [5];
- Ligação preferencial: Novos links tendem a se ligar com nós mais ligados, o que significa que a probabilidade \prod de um novo nó de se ligar com um nó i com grau k_i é proporcional k_i , ou seja,

4 2 Teoria

Fig. 2.3: Representação topológica da internet do século XXI. Note os pontos mais claros da imagem, eles são denominados de hubs por possuirem uma fração significativa dos links da rede. Este é um exemplo real de uma rede livre de escala. Veremos neste projeto como estimar o expoente de escala de uma rede semelhante. Em particular o expoente de escala da distribuição de grau da internet é $\gamma=3.42$, o que significa que ela é uma rede que se encontra no regime aleatório com a propriedade de mundo pequeno. A.L. Barabási, Network science http://networksciencebook.com/.

2.4 Rede livre de escala 5

$$\prod(k_i) = \frac{k_i}{\sum_j k_j}.$$
(2.8)

Com tais mecanismos, depois de t passos, existirão $t + m_0$ nós com mt ligações. De fato, é conveniente assumir que k_i e t sejam variáveis contínuas e que a taxa com que número de ligações k_i do nó i varia seja positiva e proporcional a probailidade $\prod(k_i)$, ou seja,

$$\frac{dk_i}{dt} = m \prod_i (k_i) \tag{2.9}$$

onde o fator m é o número de links adicionados a rede por unidade de tempo. Assim, temos

$$\frac{dk_i}{dt} = m \frac{k_i}{\sum_j k_j}. (2.10)$$

Lembrando que no instante t existem mt ligações, a soma $\sum_j k_j = 2mt$ onde o fator 2 significa uma contagem e duplicidade dos links (os que "entram" e os que "saem"). Além disso, correções de primeira ordem podem ser desconsideradas para $t \gg 1$, isto significa despresar a contagem dos links iniciais. Com isto, em mente, temos

$$\frac{dk_i}{dt} = \frac{k_i}{2t} \longrightarrow k_i = Ct^{1/2} \tag{2.11}$$

onde foram utilizados a separação de variáveis e integração. Se denotarmos o tempo da inserção de um nó por t_i e considerarmos a condição inicial $k_i(t_i) = m$, é possível mostar que

$$k_i(t) = m\left(\frac{t}{t_i}\right)^{1/2}. (2.12)$$

Este resultado nos diz que o número de links conectados ao nó i cresce com $t^{1/2}$.

Constudo, partindo da definição da função de probabilidade cumulativa, qual seja

 $P[k_i(t) < k]$ = probabilidade de que o nó i tenha um número de ligações < k,

podemos escrever a probabilidade de encontrar um nó i, no instante t, com um número de ligações $k_i(t) < k$ por meio de

$$P[k_i(t) < k] = P[m\left(\frac{t}{t_i}\right)^{1/2} < k]. \tag{2.13}$$

Manipulando $m\left(\frac{t}{t_i}\right)^{1/2} < k$ segue

$$\left[m \left(\frac{t}{t_i} \right)^{1/2} \right]^2 < k^2 \Longrightarrow m^2 t < t_i k^2 \Longrightarrow t_i > \frac{m^2 t}{k^2}$$
 (2.14)

que levando na expressão da probabilidade cumulativa, fornece

$$r.h.s = P\left(t_i > \frac{m^2 t}{k^2}\right) \tag{2.15}$$

Agora, lembrando que:

- existem $m_0 + t$ e um nó é adicionado a cada passo;
- o instante t_i no qual o nó i é adicionado é dado por uma distribuição uniforme entre 0 e $m_0 + t$;
- do último item, a função densidade de probabilidade $p(k_i)$ é constante no intervalo $[0, m_0 + t]$ e é dada por $p(k_i) = 1/(m_0 + t)$.

Destas condições, temos

6 2 Teoria

$$P\left(t_{i} > \frac{m^{2}t}{k^{2}}\right) = \int_{m^{2}t/k^{2}}^{m_{0}+t} p(k_{i})dt_{i}$$

$$= \int_{m^{2}t/k^{2}}^{0} \frac{dt_{i}}{m_{0}+t} + \int_{0}^{m_{0}+t} \frac{dt_{i}}{m_{0}+t}$$

$$= \frac{1}{m_{0}+t} \int_{0}^{m_{0}+t} dt_{i} - \frac{1}{m_{0}+t} \int_{0}^{m^{2}t/k^{2}} dt_{i}$$

$$= \frac{m_{0}+t}{m_{0}+t} - \frac{m^{2}t}{(m_{0}+t)k^{2}}$$

$$= 1 - \frac{m^{2}t}{(m_{0}+t)k^{2}}$$
(2.16)

logo

$$P[k_i(t) < k] = 1 - \frac{m^2 t}{(m_0 + t)k^2}. (2.17)$$

Para obtermos p(k), usamos que

$$p(k) = \frac{d}{dk}P[k_i(t) < k], \qquad (2.18)$$

então

$$p(k) = -\frac{d}{dk} \left(\frac{m^2 t}{(m_0 + t)k^2} \right)$$

$$= -\frac{m^2 t}{m_0 + t} \frac{d}{dk} (k^{-2})$$

$$= \frac{2m^2 t}{m_0 + t} k^{-3}$$
(2.19)

que para $t \gg 1$, temos

$$p(k) \sim k^{-3}$$
. (2.20)

Este último resultado é característico de uma rede livre de escala que segue o modelo de Barabási-Albert em que $\gamma=3$. Além disso, podem haver vários mecanismos que geram redes livre de escala $\prod (d_{ij}) \sim e^{-\lambda d_{ij}}$ ou ainda $\prod (d_{ij}) = 1/d_{ij}^{\alpha}$, onde d_{ij} é distância (euclidiana, química, manhattan, etc.) e λ e α sçao parâmetros do modelo. De modo geral, podemos escrever

$$p(k) \sim k^{-\gamma}. (2.21)$$

2.5 Renormalização e fractalidade

Renormalização

Técnica que consiste em gerar pequenas réplicas de um dado objeto, preservando as principais características estruturais do objeto original, a fim de obter cópias com estruturas mais simples para facilitar a análise.

Renormalização \leftrightarrow Auto-similaridade

Auto-Similaridade

Propriedade de um sistema o qual possui auto-semelhança em todas as escalas (comprimento, tempo, etc.). Exemplos: sistema sanguíneo, rede de ruas, etc.

Procedimento de renormalização em uma rede complexa:

- 1. Cobrir a rede inteira com caixas de tamanho (comprimento lateral) ϵ ;
- 2. Cada caixa é trocada por um único nó e dois nós são conectados se e somente se ao menos um link existe entre duas caixas na rede original;
- 3. Aplica-se os passos 1 e 2 na rede renormalizada até se obter um único nó, fornecendo uma rede conectada (todos os nós possuem links).

Fig. 2.4: Regimes do expoente de escala γ . $\langle k \rangle$ é o número médio de ligações ou tendência central de k, $\langle k^2 \rangle$ é o segundo momento associado ou variância de k em relação a média, $\langle d \rangle$ é o diâmetro médio da rede e k_{max} é o número de ligações do maior hub da rede. Note que a maioria das redes reais livres de escala possuem expoentes de escala no intervalo $2 < \gamma < 3$ caracterizado pela propriedade de mundo ultra pequeno. Uma rede tem a propriedade de mundo pequeno se tiver relativamente poucas conexões de longa distância, mas tiver um comprimento de caminho médio pequeno em relação ao número total de nós. 1) $\gamma < 2$ significa que o número de links que se conectam ao maior hub da rede cresce mais rapidamente que o temanho da rede. 2) $2 < \gamma < 3$ o número de links que se conectam ao maior hub da rede cresce com o tamanho da rede. 3) $\gamma > 3$ indica que a distância média entre os nós converge para a fórmula de mundo pequeno. Fonte: A.L. Barabási, Network science http://networksciencebook.com.

8 2 Teoria

Considerando G uma rede livre de escala, então sua distribuição de probabilidade de grau é dada por

$$p(k) \sim k^{-\gamma},\tag{2.22}$$

onde p(k) é a probabilidade de encontrar um nó na rede G com grau k. Logo, a distribuição de probabilidade de grau da rede renormalizada G' é dada por

$$p'(k) \sim k^{-\gamma}. (2.23)$$

Isto significa que uma rede livre de escala, possui uma distribuição de probabilidade de grau invariante por renormalizações, em que o processo de renormalização pode ser entendido com sinônimo de transformação [1]. De fato, a sequência de redes k-vezes renormalizadas $\{G'_n\}_{n\in\mathbb{N}}, \{G''_n\}_{n\in\mathbb{N}}, \dots, \{G^{(k)}_n\}_{n\in\mathbb{N}}, \dots$ possui o mesmo expoente de escala γ .

Dados empíricos sugerem que plotando o grau $k(\epsilon)$ de cada nó da rede renormalizada versus o grau k_{max} do nó mais conectado da caixa correspondente de tamanho ϵ , é possível obter uma lei de escala linear

$$k(\epsilon) \sim s(\epsilon) \cdot k_{max}$$
 (2.24)

onde $s(\epsilon)$ é um fator de escala. Além disso, este fator s s (s < 1) escala com ϵ definindo um expoente d_k (dimensão fractal de distribuição de grau)

$$s(\epsilon) \sim \epsilon^{-d_k}$$
 (2.25)

de modo que o expoente de grau para uma sequência de rede $\{G_n\}_{n\in\mathbb{N}}$ é definido por

$$d_k = \lim_{\epsilon \to 0} \lim_{n \to 0} \frac{\ln s^n(\epsilon)}{\ln(1/\epsilon)}$$
 (2.26)

em que $s^n(\epsilon)$ é o fator de escala da rede G_n e caixa de lado ϵ .

Assumindo que [1]

$$\frac{N}{N(\epsilon)} \sim \epsilon^{d_f} \tag{2.27}$$

onde N é o número de nós da rede, $N(\epsilon)$ o número de caixa necessárias para cobrir perfeitamente toda a rede, ϵ o tamanho da caixa, d_f a dimensão fractal da rede e denotando as distribuições de probabilidade de grau da rede G não-renormalizada e da rede G' renormalizada, repectivamente, por

$$p(k) \sim k^{-\gamma}, \qquad P'(k') \sim k'^{-\gamma}, \tag{2.28}$$

podemos escrever

$$NP(k)dk \sim N(\epsilon)p'(k')dk'.$$
 (2.29)

Esta expressão significa que a probalidade de encontrar um certo número de nós com grau entre k+dk em uma rede G não renormalizada de tamanho N é numericamente igual a probalidade de encontrar um certo número de nós com grau entre k'+dk' dentro de caixas $N(\epsilon)$ de tamanho ϵ as quais sobrepõem perfeitamente um rede G renormalizada.

Neste sentido, podemos escrever

$$Np(k) \sim N(\epsilon)p'(k')\frac{dk'}{dk}$$
 (2.30)

e impondo que $k = k_{max}$ virá

$$Np(k_{max}) \sim N(\epsilon)p'(s(\epsilon)k_{max})s(\epsilon).$$
 (2.31)

Usando as eqs. (2.28) resulta em

$$Nk_{max}^{-\gamma} \sim N(\epsilon)k_{max}^{-\gamma}s(\epsilon)^{-\gamma}s(\epsilon) \Longrightarrow \frac{N}{N(\epsilon)} \sim s(\epsilon)^{-\gamma+1} \Longrightarrow \epsilon^{d_f} \sim (\epsilon^{-d_k})^{-\gamma+1}$$
 (2.32)

o que implica em $d_f = -d_k(-\gamma + 1) = d_k(\gamma - 1)$ e, portanto,

$$\gamma = 1 + \frac{d_f}{d_k}.\tag{2.33}$$

Este resultados nos mostra que o expoente de escala γ pode ser explicado a partir da complexidade dos padrões espaciais e geométricos da rede d_f e da complexidade dos padrões das conexões entre seus links d_k . Quando

NETWORK	N	L	$\langle k \rangle$	$\langle k_{in}^2 \rangle$	$\langle k_{out}^2 \rangle$	$\langle k^2 \rangle$	$\gamma_{\scriptscriptstyle in}$	γ_{out}	γ
Internet	192,244	609,066	6.34	-	_	240.1	-	-	3.42*
www	325,729	1,497,134	4.60	1546.0	482.4	-	2.00	2.31	-
Power Grid	4,941	6,594	2.67	-	-	10.3	-	-	Exp.
Mobile Phone Calls	36,595	91,826	2.51	12.0	11.7	-	4.69*	5.01*	-
Email	57,194	103,731	1.81	94.7	1163.9	-	3.43*	2.03*	-
Science Collaboration	23,133	93,439	8.08	-	_	178.2	_	-	3.35*
Actor Network	702,388	29,397,908	83.71	-	_	47,353.7	-	-	2.12*
Citation Network	449,673	4,689,479	10.43	971.5	198.8	-	3.03**	4.00*	-
E. Coli Metabolism	1,039	5,802	5.58	535.7	396.7	-	2.43*	2.90*	-
Protein Interactions	2,018	2,930	2.90	-	-	32.3	-	-	2.89*

Fig. 2.5: Principais statísticas de algumas redes livres de escala. N é o número de nós e L o número de links da rede. Fonte: A.L. Barabási, Network science http://networksciencebook.com.

 $d_f = d_k$, temos o primeiro regime crítico A quando $\gamma = 2$, veja Figura 2.4 enquando $d_f = 2d_k$ temos o segundo regime crítico B quando $\gamma = 3$. Note que a maioria das redes reais livres de escala possuem expoentes de escala no intervalo $2 < \gamma < 3$ caracterizado pela propriedade de mundo ultra pequeno.

Além disso, uma vez que

$$\epsilon \sim \left(\frac{N}{N(\epsilon)}\right)^{\frac{1}{d_f}}, \qquad s(\epsilon) \sim \epsilon^{-d_k}$$
 (2.34)

é possível escrever

$$s(\epsilon) \sim \left(\frac{N}{N(\epsilon)}\right)^{-\frac{d_k}{d_f}}$$
 (2.35)

Usando a expressão de γ resulta que $-\frac{d_k}{d_f} = \frac{1}{1-\gamma}$, logo

$$s(\epsilon) \sim \left(\frac{N}{N(\epsilon)}\right)^{\frac{1}{1-\gamma}} \Longrightarrow \frac{k(\epsilon)}{k_{max}} \sim \left(\frac{N}{N(\epsilon)}\right)^{\frac{1}{1-\gamma}} \Longrightarrow k_{max}^{-1} \sim N^{\frac{1}{1-\gamma}}$$
 (2.36)

e, portanto,

$$k_{max} \sim N^{\frac{1}{\gamma - 1}} \tag{2.37}$$

que nos diz que o hub com maior número de ligações escala com o tamanho da rede com expoente $\frac{1}{\gamma-1}$. A Figura 2.5 apresenta algumas redes livres de escala e algumas de suas principais estatísticas.

3 Métodos

- Classe SoneiraPeebles
- ullet Classe FractalDimension

Usando as classes acima, execute os seguintes passos:

- 1. Utilize a classe Soneira Peebles para gerar os pontos de um fractal com determinada dimensão fractal. A dimensão fractal é dada pela razão dos logarítimos dos últimos valores de η (número de pontos na última camada) e de λ (fator de redução da última camada). Por exemplo, para gerar um fractal com dimensão 1.5, $\eta=8$ e $\lambda=5$. Sugestão: começe com com o mesmo número de pontos em cada camada e varie estes valores para ver o que acontece.
- 2. Gerado os pontos do fractal, utilize a classe Fractal Dimension para estimar a dimensão fractal desses pontos. A dimensão fractal estimada é a mesma que escolheu usando os valores de η e λ na última camada? Qual o erro relativo cometido? A dimensão fractal é maior o menor que o espaço onde os pontos estão embebidos? Interprete este último resultado.

$$\frac{\gamma}{(\gamma \pm \sigma_{\gamma})} \quad \frac{R^2}{-} \quad \frac{d_f}{(d_f \pm \sigma_{d_f})} \quad \frac{R^2}{-} \quad \frac{d_k}{(d_k \pm \sigma_{d_k})}$$

Tab. 1: Tabela a ser constuída com os valores obtidos a partir da simulação.

- 3. Depois de comparar a dimensão fractal escolhida e a estimada, agora é hora de gerar uma rede posicionada com as mesmas coordenadas dos pontos obtidos do fractal.
- 4. Siga os procedimentos apresentados no notebook disponibilizado e obtenha os valores do expoente de escala γ estimado e das dimensões d_f e d_k com as incertezas e os respectivos coeficiente de determinação (R^2) ;
- 5. Finalize o projeto elaborando um breve relatório com os pontos da seção 4 deste projeto. (Não esqueça de incluir uma imagem da rede no relatório! Use a criatividade!)

4 Orientações para o relatório

O relatório deve conter os seguintes pontos:

- Backgroud geral (Redes complexas e Factais);
- Background específico (Redes livre de escala);
- O que encontraram:
 - Quais os valores obtidos das dimensões fractais e do expoente de escala e seus respectivos erros e \mathbb{R}^2 ?
 - Qual o regime de escala da rede? Anômalo, mundo pequeno ou aleatório?
 - A eq. (2.37) consegue predizer o valor de k_{max} ? Jutifique sua resposta;
- Imagens da rede e dos gráficos gerados;
- Tabela 1 com o expoente de escala γ estimado e as dimensões d_f e d_k com as incertezas e os respectivos coeficientes de determinação (R^2) para γ de d_f .
- Breve discussão dos resultados encontrados;
- Conclusões,
- O que acharam do projeto (em poucas palavras).

Uma vez que

$$d_k = \frac{d_f}{\gamma - 1} \to d_k = d_k(d_f, \gamma) \tag{4.1}$$

temos

$$\sigma_{d_k} = \sqrt{\left(\frac{\partial d_k}{\partial d_f}\right)^2 \sigma_f^2 + \left(\frac{\partial d_k}{\partial \gamma}\right)^2 \sigma_\gamma^2}.$$
 (4.2)

Assim, como

$$\frac{\partial d_k}{\partial d_f} = \frac{1}{\gamma - 1}, \qquad \frac{\partial d_k}{\partial \gamma} = -\frac{d_f}{(\gamma - 1)^2}$$
 (4.3)

temos

$$\sigma_{d_{k}} = \sqrt{\frac{\sigma_{f}^{2}}{(\gamma - 1)^{2}} + \frac{d_{f}^{2}\sigma_{\gamma}^{2}}{(\gamma - 1)^{4}}}$$

$$= \sqrt{\frac{\sigma_{f}^{2}(\gamma - 1)^{2}}{(\gamma - 1)^{4}} + \frac{d_{f}^{2}\sigma_{\gamma}^{2}}{(\gamma - 1)^{4}}}$$

$$= \sqrt{\frac{\sigma_{f}^{2}(\gamma - 1)^{2} + d_{f}^{2}\sigma_{\gamma}^{2}}{(\gamma - 1)^{4}}}$$

$$= \frac{1}{(\gamma - 1)^{2}} \sqrt{\sigma_{f}^{2}(\gamma - 1)^{2} + d_{f}^{2}\sigma_{\gamma}^{2}}$$
(4.4)

Referências 11

Fig. 4.1: Rede livre de escala gerada por mim. Dados obtidos a partir da simulação.

η	λ	$d_f^{teo} = \ln \eta / \ln \lambda$	# interações	γ	R^2	d_f^{sim}	R^2	d_k	N	$\langle s^{teo}(\epsilon) \rangle$	k_{max}^{teo}	k_{max}^{sim}
9	4	1.58	500	(1.75 ± 0.39)	0.98	(1.59 ± 0.01)	1	(2.18 ± 1.10)	960	$(2 \pm 2) \times 10^{-2}$	45	306

que a incerteza padrão da dimensão fractal da distribuição de grau d_k (Verifiquem!).

Referências

- [1] Molontay, R. Fractal Characterization of Complex Networks. MSc Thesis. Budapest University of Technology and Economics Institute of Mathematics Department of Stochastics. 2015. https://math.bme.hu/~molontay/Msc MolontayR.pdf.
- [2] Bunde, A. Havlin, S. Fractal in Science. Springer-Verlag. 1994.
- [3] Barabási, A. L. Network Science. Cambridge University Press, 2016. http://networksciencebook.com/.
- [4] P.J.E. Peebles, The fractal galaxy distribution, Physica D: Nonlinear Phenomena, Volume 38, Issues 1–3, 1989, Pages 273-278, ISSN 0167-2789, https://doi.org/10.1016/0167-2789(89)90205-4.
- [5] D. H. Rothman. Modeling Environmental Complexity. Lecture notes for 12.086/12.58, MIT. 2014.

12 Referências

Fig. 4.2: (Esquerda) Pontos gerados pelo modelo de Soneira-Peebles $\ln \eta / \ln \lambda = 1.58$. (Centro) Distribuição de grau da rede livre de escala. (Direita) Dimensão fractal estimada.