

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (11) 1689768 A1

ГОСУДАРСТВЕННЫЙ КОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ
ПРИ ГКНТ СССР

(51)5 G 01 J 3/46

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

1

(21) 4629839/25
(22) 30.12.88
(46) 07.11.91. Бюл. № 41
(72) В.В. Привезенцев и А.Г. Щетинин
(53) 535.6(088.8)
(56) Джадд Д., Вышецки Г. Цвет в науке и
технике. М.: Мир, 1978, с. 236-244.
H. Cato et al. A new integrated transducer
for colour distinction. - Journal of physics E:
Scientific Instruments, 1976, v. E 9, № 12,
p. 1070-1072.
(54) КОЛОРИМЕТРИЧЕСКИЙ ДАТЧИК
(57) Изобретение относится к устройствам
для измерения цвета, в частности к фото-
электрическим трехцветным колориметрам.
Целью изобретения является упрощение
конструкции и технологии изготовления коло-
рометрического датчика. Датчик состоит
из трех р-п-переходов, сформированных на
одной полупроводниковой подложке: р⁺⁺ -
слой 1, n⁺ - слой 2, p - слой 3, n - слой 4 с
высоким удельным сопротивлением под-
ложки, низкоомная n⁺ - область 5, контакт-
ный р⁺⁺ - участок 6 с низким удельным

2

сопротивлением, пассивирующий слой 7
двуокиси кремния, металлизация 8 (подлож-
ки и слоев); р-п - переходы выполнены рез-
кими и расположены один над другим вниз
по толщине подложки, причем глубины за-
легания этих переходов h₁, h₂ и h₃ удовлет-
воряют условиям: h₁ < α_c; m_{1n} (3/α_c, 1/α₃) <
ch₂ < max (3/α_c, 1/α₃); m_{1n} (3/α₃, 1/α_{kp}) <
ch₃ < max (3/α₃, 1/α_{kp}), а толщина под-
ложки h₄ > 3/α_{kp}, где α - коэффициент по-
глощения света в полупроводнике, индексы
"c", "3" и "kp" соответствуют синему, зеле-
ному и красному цветам. Уровни легирова-
ния слоев 1-4 убывают от поверхности в
глубину. В высокоомных слоях 3 и 4, образу-
ющих нижний р-п переход, для получения
омических контактов и обеспечения механи-
ческой прочности пластины созданы низко-
омные участки того же типа проводимости
(изотипные переходы). Поверхность датчика
покрыта пассивирующим слоем 7 двуокиси
кремния. Металлизация 8 осуществляется
пленкой алюминия. 1 ил.

(19) SU (11) 1689768 A1

Изобретение относится к колориметрии и может быть использовано при создании фотоэлектрических трехцветных колориметров.

Цель изобретения – упрощение конструкции и технологии изготовления датчика.

На чертеже представлена схема колориметрического датчика.

На чертеже указаны полупроводниковые слои с разными типами проводимости: p^{++} – слой 1, n^{+} – слой 2, p – слой 3, подложка 4 n – типа проводимости (n – слой) с высоким удельным сопротивлением, низкоомный p^{+} – слой 5, p^{++} – участок 6 с низким удельным сопротивлением, а также пассивирующий слой 7 двуокиси кремния и металлизирующие покрытия 8 подложки и полупроводниковых слоев, выполняющие как защитную функцию, так и роль омических контактов.

Датчик работает следующим образом. $p-n$ -переходы 1-3 смещаются в обратном направлении путем приложения соответственно напряжений $V_3 = 30$ В, $V_2 = 10$ В и $V_1 = 2$ В. При этом области объемного заряда занимают соответствующие низкоомные области $p-n$ -переходов. На датчик подается анализируемое видимое излучение. Центральные длины волн синего, зеленого и красного цветов: $\lambda_c = 0,45$ мкм, $\lambda_z = 0,56$ мкм и $\lambda_{kr} = 0,72$ мкм, а их обратные коэффициенты поглощения (глубины поглощения) $1/\alpha_c = 0,40$ мкм, $1/\alpha_z = 1,61$ мкм и $1/\alpha_{kr} = 4,33$ мкм, а соответствующие величины: $3/\alpha_c = 1,20$ мкм, $3/\alpha_z = 4,83$ мкм и $3/\alpha_{kr} = 13,0$ мкм. В этих условиях глубины $p-n$ переходов составят $h_1 = 0,3$ мкм, $h_2 = 1,4$ мкм и $h_3 = 4,5$ мкм, а толщина n -области (глубина $n-p^{+}$ -перехода $h_4 = 15$ мкм).

В зависимости от спектрального состава видимого излучения будут изменяться фототоки трех $p-n$ -переходов. По соотношению между этими фототоками можно судить о цветовом составе анализируемого излучения.

Принцип действия датчика основан на дисперсии коэффициента поглощения света от длины волны излучения, т.е. его цвета. Верхние слои (слой) являются поглощающими фильтрами по отношению к нижним слоям (слою). $p-n$ -переходы смещаются каждый в своей цепи в обратном направлении так, что области пространственного заряда занимают для каждого из них (верхнего, среднего и нижнего) почти полностью соответственно слои 2-4. С этой целью уровни легирования соседних слоев $p-n$ -переходов отличаются более чем на порядок величины. Падающее видимое излучение поглощается

в датчике следующим образом: в основном синий цвет – в области 2, зеленый – в области 3, красный – в области 4. Образовавшиеся в них избыточные photoносители заряда преобразуются в фототоки трех $p-n$ -переходов. По соотношении между этими фототоками можно судить о цветовом составе падающего на колориметрический датчик видимого излучения.

При м е р. В качестве исходной структуры взята пластина обращенного кремния n/p^{+} , где удельное сопротивление n -слоя составляет $2 \cdot 10^3$ Ом · см ($N_D = 1 \cdot 10^{12}$ см $^{-3}$), его толщина 15 мкм. Полная толщина пластины 350 – 400 мкм. Удельное сопротивление низкоомной подложки 0,001 Ом · см ($N_D = 1 \cdot 10^{19}$ см $^{-3}$). Далее на глубину $h_3 = 4,5$ мкм проводится диффузия бора для создания p -слоя с $P_s = 1,4 \cdot 10^4$ Ом/д ($N_A = 2,0 \cdot 10^{14}$ см $^{-3}$). Для создания p^{+} -слоя с $P_s = 2,1 \cdot 10^3$ Ом/д ($N_D = 2 \cdot 10^{16}$ см $^{-3}$) проводится диффузия фосфора на глубину $h_2 = 1,4$ мкм, p^{++} -область с $P_s = 170$ Ом/д ($N_A = 5 \cdot 10^{19}$ см $^{-3}$) получается путем легирования ионами бора на глубину $h_1 = 0,3$ мкм с последующим импульсным фотонным отжигом. Для создания омических контактов к высокоомному p -слою применяется соответствующее подлегирование контактного участка этого слоя, проводимое одновременно с созданием p^{++} -области. Маскирующей пленкой служит слой двуокиси кремния толщиной 0,28 мкм. Последней операцией является металлизация пластины с обеих сторон алюминиевой пленкой толщиной 1,0 мкм.

Синий цвет не только в основном поглощается в области 2, но и проходит через нее и частично поглощается в областях 3 и 4. То же самое можно сказать о зеленом и красном свете, т.е. спектральные характеристики трех $p-n$ -переходов (фотодиодов) перекрываются. Однако их геометрия подбрана так, что это перекрытие незначительно и существенного влияния на распознавание цветового образа исследуемого объекта не оказывает. О цветовом составе падающего на колориметрический датчик светового потока судят по соотношению выходных фототоков каждого из $p-n$ -переходов. Предварительно необходимо прокалибровать датчик с помощью эталонного объекта, например белой бумаги. Три выходных фототока могут быть усилены, причем коэффициенты усиления подбираются так, чтобы в случае белой бумаги выходные фототоки (напряжение) были одинаковы. При изменении цветового состава падающего излучения вне зависимо-

сти от его интенсивности соотношение между выходными фототоками колориметрического датчика изменится в соответствии с его назначением. Если анализируемый пучок имеет только один спектральный диапазон, лежащий, например, в синей области спектра, то датчик показывает наличие и других спектральных компонентов. Однако эти компоненты, т.е. фототоки среднего и нижнего р-п-переходов, незначительны, а соотношение между всеми тремя фототоками трех р-п-переходов строго адекватно спектральному составу (синему цвету).

Вещество, которым проводится легирование слоев, является существенным с той точки зрения, что это должен быть мелкий донор или акцептор, а выбор самой мелкой примеси не является существенным. Например, для создания p^{++} -(1) и p -(3) слоев применяется мелкая акцепторная примесь - бор, алюминий; для создания n^+ -(2) и n -(4) слоев - мелкая донорная примесь - фосфор, сурьма, мышьяк. С другой стороны, область p^- -типа (1) с высоким уровнем легирования может быть без ущерба заменена либо прозрачным металлическим барьером Шоттки (например, золотой электрод толщиной 50-200 Å), либо гетеропереходом (например, SnO_2-Si). При этом верхний р-п-переход сохраняется и сущность работы от этого не изменяется, а лишь изменяется способ создания фронтальной области (эмиттера) верхнего р-п-перехода.

Ф о р м у л а и з о б р е т е н и я

Колориметрический датчик, выполненный в виде полупроводниковой подложки, включающей три полупроводниковые области с р-п-переходами и металлических электродов, о т л и ч а ю щ и й с я тем, что, с целью упрощения конструкции и технологии изготовления, р-п-переходы расположены один под другим в полупроводниковой подложке, причем глубины h_1, h_2 и h_3 залегания первого, второго и третьего р-п-переходов относительно поверхности подложки удовлетворяют условиям

$$h_1 < \alpha_c^{-1}; \min(3\alpha_c^{-1}, \alpha_3^{-1}) < h_2 < \max(3\alpha_c^{-1}, \alpha_3^{-1});$$

$$\min(3\alpha_3^{-1}, \alpha_{kp}^{-1}) < h_3 < \max(3\alpha_3^{-1}, \alpha_{kp}^{-1}).$$

а толщина подложки $h_4 > 3\alpha_{kp}^{-1}$, где α_c, α_3 и α_{kp} - соответственно коэффициенты поглощения излучения синего, зеленого и красного цветов в подложке, при этом р-п-переходы выполнены с концентрациями легирующих примесей соседних областей, отличающимися друг от друга более чем на порядок величины и убывающими от поверхности подложки, металлические электроды расположены на областях, образующих первый р-п-переход, а в областях, образующих третий р-п-переход, созданы низкоомные участки тех же типов проводимости, на которых расположены металлические электроды.

Редактор А.Козориз

Составитель В.Варнавский

Техред М.Моргентал

Корректор Т.Малец

Заказ 3805

Тираж

Подписьное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101