Arithmetic combinatorics i integer partitions and sequences

1. Graph Theory

Thm III (Schur). Given any $r \in \mathbb{N}$, $\exists N(r) \in \mathbb{N}$ s.t. if we partition $\{1, \dots, N\}$ with $N \ge N(r)$ into r disjoint subsets, then one of the subsets within t, j, Z

 $sit. \lambda + \beta = z.$

Ramsey theory: Kn: complete graph on h vertices

h(r): Smallest posstive integer h sit. any coloring of the edges

of k_n contains a monochromatic $k_3 = \triangle$

Lem 1.2 (Rumsey) $\forall r$, $h(r) < \infty$.

$$1^{2}f. h(1) = 3.$$

Suppose $h(r-1) < \infty$ for some $r \ge 2$. Let $\{v_1, \dots, v_N\}$ be the set

of vertices. Then $\exists k = \lceil \frac{N-1}{r} \rceil$ edges connecting $\forall n$ with the same color,

Say Vi VN (15 25 K). The optimal case is that I Vi Vj (15 i < j < k) with

that same whor. But in general, we want $\lceil \frac{N-1}{\gamma} \rceil \geq N(r-1)$.

Rmk, Can take $N = \lambda(N(r-1)-1) + \lambda$. So

 $N(r) \leq r(N(r-1)-1)+2, r \geq 2.$

Hence $N(r) \leq \frac{1}{k!} \left(\frac{r}{k} \right) + 1$, $r \geq 1$. So $N(2) \leq 6$. In fact,

 $N(z) = 6. \qquad \Longrightarrow N(z) > 5.$

$$Pf of Thm 1.1. Let V = \{1, \dots, N\} = \begin{pmatrix} t \\ s = 1 \end{pmatrix} A_s . Color k_N with V as follows:$$

Take
$$x=j-i$$
, $y=k-j$, and $z=k-i$.

Rmk. Can prove !

Given any rEM, IN(r) EN s.t. if we partition {1. -. N} with

 $N \ge N(r)$ into r disjoint subsets, then one of the subsets workin t, y, Z

> / s. t. 27 = Z.

Hunt: Let V = {1,..., Lb2N]}. Color kn with V as follows!

ij has orbor Cs if 2 10-j1 E As.

Thm 1,3 (Erdős) Let a, <... < am < n be positive integers s.t. no ai dovides

 $a_{j}a_{k}$ for distinct $1 \le i < j < k \le m$. Then $\pi(n) \le max \ m \le \pi(n) + n^{2/3}$

Lem 1.4 $\forall h \in \mathbb{N}$, h = uv, where $v < h^{2/3}$, and u is either a prime

 $rin \left(h^{1/3}, h \right)$ or $u < h^{2/3}$.

If of Thm 1.4. Write $a_i = u_i v_i$ ($1 \le i \le k$). Let $V = \{1 \le i \le k : 1 \le k : 1 \le i \le$

ui, vi }. Let G be the graph on V with edges uivi. Then

G cannot contain ax/aj, since aitajak. So G contains no cycles.

Thus G is a forest (disjoint union of trees). Hence $k = |E| \le |V| - 1$

 $\leq \pi(h) + n^{2/3}$. The lower bound by taking $a_i = P_i$, the 7th prime.

2. Probability Theory

Thm 2.1 (Erdős) Let $A \subseteq \mathbb{Z} \setminus \{0\}$ be a sequence of length |A| = n. Then

 $\exists \text{ subsequence } B \subseteq A \text{ with } |B| > \frac{h}{3} \text{ s.t. no a.b.} c \in B \text{ satisfies } a+b=c \text{ (sum-free)}.$

Lem 2,2. There are rifinitely many primes of the form 3k+2.

If of Thm 2.1. Let $p=3k+2>2\max A$, Note that the set $C=\{k+1\}$,

..., 2k+1) is sum-free in $(2/pZ)^{\times}$ Choose $x \in (2/pZ)^{\times}$ randomly and uniformly.

Then $\forall a \in A$, $||P(ax \in C)|| = \frac{|C|}{|P-1|} > \frac{1}{3}$. So the expected size of $Ax \cap C$ is $> \frac{|A|}{3}$. Thus the exists $x_o \in (\mathbb{Z}/P\mathbb{Z})^{\times}$ s.t. $|Ax_o \cap C| > \frac{n}{3}$. Let $B = \{a \in A : ax_o \in C\}$. Then B is sum-free with $|B| > \frac{n}{3}$.

3. Ergodic Theory

Thm 3.1 (van der Waerden) Let k, $r \in \mathbb{N}$. Then for any partition of $W_{\geq 0}$ into r disjoint subsets, one of the subsets contains a k-term AP.

Thm 3.2 (Topological Multiple Recurrence, Special case) Let X be a compact metric space and $T \in C(X,X)$. Then $\forall k \in M$, $\exists \lambda \in X$ and $\{h_i\}_{i=1}^{\infty}$ with $h_i \to \infty$

 $T^{j'n_1} \chi \longrightarrow \chi \quad \text{for each} \quad |\leq j' \leq k$.

I'f of Thm 3.1. Let $\Lambda = \{1, \dots, r\}$ and

The metric d, defined by d(x, x) = 0 for all $x \in \Omega$ and $d(x, y) = 2^{-\ell}$

compact methic space. (Given $\{X_m\}_{m=1}^\infty \subseteq \Omega$, can construct a subsequence

 $\{\chi_{m_i}\}_{i=0}^{\infty}$ s.t. $\forall i \geq 1$, $\chi_{m_i}(t) = \chi_{m_{i-1}}(t)$ for all $0 \leq t < i$. Define

 x_o by $x_o(\ell) = x_{m_1}(\ell)$ for all $\ell \ge 0$. Then $d(x_{m_1}, x_o) \le 2^{-\ell-1}$. Hence

 $\chi_{m_{i'}} \longrightarrow \chi_{o'}$

Now let TEC(X,X) defined by

 $T((\chi(0), \chi(1), \chi(2), \dots)) \rightarrow (\chi(1), \chi(2), \dots)$

Let $y \in \Omega$ be a $r-\omega h_{ring}$ of $N_{\geq 0}$. Then $X := \{T^i y : i \geq 0\}$ is

a compact T-invariant subspace of so by Thm 3,2, IXEX

and $\{h_l\}_{l=1}^{\infty}$ with $h_l \to \infty$ c.t. $d(T^{jh_l} x, x) \xrightarrow{l \to \infty} 0$ for each $|\xi| \leq k$.

 $T^{d}\chi(o) \qquad T^{kd}\chi(o)$ If $d\in N$ is large, then $\chi(o)=\chi(d)=\cdots=\chi(kd)$. By definition of

 χ , $\exists a \in N_{\geq 0}$ s.t. $d(T^a y, \chi) < 2^{-kd}$, so that $T^a y(ld) = y(a+ld)$

 $= \chi(ld)$ for all $0 \le l \le k$. Hence $y(a) = y(a+d) = \cdots = y(a+kd)$.

Further Kemarks:

- 1. Then 2.1 continues to hold with $|B| \ge \frac{h}{3}$ if $A \subseteq |R| \{0\}$.
- If. Note that the vinterval $I = [\frac{1}{3}, \frac{2}{3}] \leq R/Z$ is sum-free, Since
- $2I = \left[\frac{2}{3}, \frac{4}{3}\right] = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$, which is disjoint with I. Now choose
- $\chi \in (0,T)$ randomly and uniformly. Then $\forall a \in A$, $|P(a\chi \in I \text{ mod } I) = \frac{1}{3} + O(T^{-1})$.
- 2. This 2.1 with us to hold with $|B| > \frac{2n}{7}$ if $A \subseteq G \setminus \{0\}$, where
- G is a finite abelian group.
- 3. The same proof with $P=(m^2-1)k+m>max A$ and $C=\{k+1,...,mk+1\}$
- shows that $\exists m \text{ sum-free } B \subseteq A \text{ with } |B| > \frac{n}{m+1}$.