

Année universitaire 2019-2020

SMI-S4

TD Electromagnétisme dans le vide, Série n°1 Prof L. EL MAIMOUNI

Exercice 1

I. On considère le circuit RC (Figure.1) alimenté par un générateur de f.e.m E=10V. A l'instant t=0, on ferme l'interrupteur K. Le condensateur possédant une charge primitive telle que $u_0 = 2V$.

Figure 1

Figure2

Sachant qu'à l'instant $t_1 = 10ms$, $u = u_1 = 6V$ et $i = i_1 = 1mA$.

Trouver les valeurs de R et C parmi :

- a) $R = 1000\Omega$, b) $C = 2.52 \mu F$, c) $R = 4000\Omega$, d) $C = 3.61 \mu F$
- II. On étudier la charge de deux condensateurs en série (initialement déchargés) de capacité C_1 et C_2 à la fermeture de l'interrupteur K (Figure.2).
- II.1. Montrer que $\frac{di}{dt} + \frac{i}{\tau} = 0$ avec $\tau = \frac{RC_1C_2}{C_1 + C_2}$. Déduire la solution de cette équation

différentielle.

- II.2. Déterminer l'expression de $q_1(t)$ et $q_2(t)$. Calculer ces grandeurs lorsque $t \to \infty$.
- II.3. Calculer l'énergie emmagasinée par chaque condensateur lors de la charge.
- II.4. Calculer l'énergie fournie par la source de tension. On donne : : $W_{source} = \int_{0}^{\infty} E i dt$.
- II.5. Calculer l'énergie perdue par effet Joule.
- III. Les deux condensateurs sont désormais montés en parallèle.
- III.1. Montrer que $\frac{di}{dt} + \frac{i}{\tau} = 0$ avec $\tau = R(C_1 + C_2)$. Déduire la solution de cette équation.
- III.2. Déterminer l'expression de $q_1(t)$ et $q_2(t)$. Calculer ces grandeurs lorsque $t \to \infty$.
- III.3. Calculer l'énergie emmagasinée par chaque condensateur lors de la charge.
- III.4. Calculer l'énergie fournie par la source de tension.
- III.5. Calculer l'énergie perdue par effet Joule.

Exercice 2

Figure 1

On considère un condensateur de capacité C et de résistance de fuite R' monté en série avec une résistance R (figure1).

A t=0, on ferme l'interrupteur K, le condensateur étant non chargé.

- a) Etablir les expressions de u(t) et i(t).
- b) Tracer les graphes correspondants.
- c) On compare la charge du condensateur en l'absence ou en présence de la résistance de Fuite R'.
- d) examiner les cas suivants : lorsque t tend vers zéro et vers l'infini.

Exercice 3

On considère le circuit de la figure.1 dont on respectera les conventions d'orientation.

- 1) Etablir une relation entre i_1 , i_2 et i_3 .
- **2**) Ecrire $V_A V_B$ en fonction de i_1 , puis en fonctions i_2 et enfin i_3 .

A l'instant t=0, le condensateur dans la branche 1 porte une charge q_0 ; l'autre condensateur est déchargé. En déduire les valeurs initiales des intensités.

3) En éliminant i_1 et i_2 des relations obtenues au question (2), montrer que l'équation différentielle régissant i_3 peut s'écrire sous la forme :

$$\frac{di_3}{dt} + \frac{i_3}{\tau} = 0 \text{ avec } \tau = 3RC$$

- 4) Donner la solution générale de cette équation. Précisez la solution correspondant aux conditions initiales du (2).
- 5) En déduire l'équation différentielle régissant i_1 et en donner sa solution générale.
- 6) Donner les expressions des intensités correspondant aux conditions initiales et en faire une représentation graphique.