第八章

模拟信号的数字传输

4

主要内容

- ■抽样
- 量化
- ■脉冲编码调制 (PCM)
- 时分多路复用TDM

8.1 引言

■ 数字化3步骤一抽样、量化、编码

- 抽样——将时间连续的模拟信号变换成时间 离散的抽样信号,取值仍连续
- 量化——将取值连续的抽样信号变换成取值 离散的量化信号,即指定M个特定电平,将 抽样值用最接近的电平表示
- 编码——将时间和取值都离散的量化信号变换成二进制码组表示的数字信号 *M* = 2^L

■ 模拟信号的数字传输系统

■ 本章主要讨论话音信号的PCM编码

8.2 抽样定理

- ■抽样定理是模拟信号数字化和TDM的 理论基础
- 低通信号抽样定理
- 带通信号抽样定理

-. 低通信号抽样

■ 定理:

设一个频带限制在 $(0, f_H)$ 的时间连续的模拟信号 m(t), 如果以 $T_s \leq \frac{1}{2f_H}$ 的间隔对它进行等间隔抽样,则 m(t) 可以唯一地被所得到的抽样值序列完全确定

■ 此定理又称均匀抽样定理(理想抽样)

■ 含义

要传输模拟信号 m(t),只要传输已抽样信号 $m_s(t)$,接收端就能准确恢复 m(t),条件是:

抽样间隔 $T_s \leq \frac{1}{2f_H}$,即抽样频率 $f_s \geq 2f_H$

 2f_H为无失真重建信号的最低抽样频率,称 为奈奎斯特频率,相应的时间间隔1/2f_H称 为奈奎斯特间隔

■ 时域波形抽样过程

• 证明: $\frac{m(t)}{M(\omega)}$ $\stackrel{m_s(t)}{\underset{\delta_{T_s}(t)}{\bigvee}}$ $\stackrel{m_s(t)}{\underset{H(\omega)}{\bigvee}}$ $\stackrel{\hat{m}(t)}{\underset{H(\omega)}{\bigvee}}$

$$\begin{split} m_s(t) &= m(t) \cdot \delta_{T_s}(t) & M_s(\omega) = \frac{1}{2\pi} \left[M(\omega) * \delta_{\omega_s}(\omega) \right] \\ &= m(t) \cdot \sum_{n = -\infty}^{\infty} \delta(t - nT_s) & = \frac{1}{2\pi} M(\omega) * \omega_s \sum_{n = -\infty}^{\infty} \delta(\omega - n\omega_s) \\ &= \sum_{n = -\infty}^{\infty} m(nT_s) \delta(t - nT_s) & = \frac{1}{T_s} \sum_{n = -\infty}^{\infty} M(\omega - n\omega_s) \end{split}$$

・ 设理想低通特性: $H(\omega) = \begin{cases} T_s & |\omega| \leq \omega_H \\ 0 & else \end{cases}$ 为重建信号 $\hat{m}(t)$,取 $T_s = \frac{1}{2f_H}$

则: $h(t) = Sa(\omega_H t)$

• 由 $\hat{M}(\omega) = M_s(\omega) \cdot H(\omega)$,得:

$$\hat{m}(t) = m_s(t) * h(t) = \left[\sum_{n = -\infty}^{\infty} m(nT_s) \delta(t - nT_s) \right] * Sa(\omega_H t)$$
$$= \sum_{n = -\infty}^{\infty} m(nT_s) Sa[\omega_H (t - nT_s)]$$

to EP 72 FA: M(W) = Ms(W). H(W) ⇒ m(t) = Ms(t) + h(t)

$$H(w) = \begin{cases} T_{S} & |w| \leq w_{H} \\ 0 & e | se \end{cases}$$

$$\lim_{N \to \infty} \frac{1}{2\pi} \cdot 2w_{H} \cdot T_{S} \cdot S_{A}(w_{H}t) \qquad \lim_{N \to \infty} \frac{1}{2\pi} \cdot 2 \cdot 2x_{H} \cdot \frac{1}{2\pi} \cdot S_{A}(w_{H}t) \qquad \lim_{N \to \infty} \frac{1}{2\pi} \cdot \frac{1}{2\pi} = S_{A}(w_{H}t)$$

 $t = \frac{k\pi}{m} = \frac{k\pi}{2\pi f_H} = \frac{k}{2f_H} = kT_S$

■满足抽样定理条件

- m(t)必须是限带信号,最高频率 f_H
- 抽样频率至少是 2fH
- 上述两个条件如不满足,会出现混叠失真

■ 抽样定理的意义

- 连续信号的无限样值所包含的信息 可以由有限个样值确定,并能精确 恢复,以此作为实现数字化传输的 理论依据
- 利用抽样间隔传输多路样值,以实现时分复用

二. 带通信号抽样

■定理

一个频带限制在 (f_L, f_H) 内的带通型模拟信号m(t),

若等间隔抽样的最低抽样频率为 $f_s = 2B(1 + \frac{k}{n}) = \frac{2f_H}{n}$

则m(t)将被所得到的抽样值序列完全确定。

式中, $B = f_H - f_L 为 m(t)$ 的带宽;

 $f_H = nB + kB$, $n \ge 1$ 为不超过 f_H / B 的最大整数, $0 \le k < 1$

■证明

式中, $B = f_H - f_L 为 m(t)$ 的带宽;

 $f_H = nB + kB$, $n \ge 1$ 为不超过 f_H / B 的最大整数, $0 \le k < 1$

 $f_s = 2B(1 + \frac{k}{n}) = \frac{2f_H}{n}$

•
$$f_H = nB \Rightarrow f_S = 2B$$

•
$$f_H = nB + kB$$
 $(n \ge 1, 0 \le k < 1)$
= $(n + k)B = nB'$

$$\Rightarrow f_s = 2B'$$

$$B' = \frac{(n+k)B}{n} = \left(1 + \frac{k}{n}\right)B$$

$$\therefore f_s = 2B' = 2B\left(1 + \frac{k}{n}\right)$$

$$= 2 \cdot \frac{f_H}{n} = \frac{2f_H}{n}$$

- 小结

■ $f_H = nB + kB$, $n \ge 1$, $0 \le k < 1$ f_H

最低抽样频率: $f_s = 2B(1 + \frac{k}{n}) = \frac{2f_H}{n}$, 得:

 $\left\{ \begin{array}{l} \exists \ k=0, \ \ \mathbb{D} \ f_{H}=nB \ \mathbb{H} \ , \ f_{s}=2B \ \\ \exists \ 0 \leq \frac{k}{n} < 1 \ \mathbb{H} \ , \ 2B \leq f_{s} < 4B \ \\ \exists \ n >> 1 \ \mathbb{H} \ \ \mathcal{P}$ 符信号, $f_{H} \approx nB$,则 $f_{s} \approx 2B \$ 当 $f_{L} < B$ 视为低通信号, $f_{s} = 2f_{H}$

三. 有关抽样的各种失真

- 理想抽样的要求
 - 原始信号要求严格带限
 - 抽样用理想冲激序列
 - 用理想低通重建信号
- 失真
 - 混叠失真→保证足够高的抽样频率
 - 孔径效应→均衡电路补偿
 - ■重建失真→预留保护带
- 抽样过程产生的失真理论上可消除

8.4 模拟信号量化

■量化器模型

用M个有限电平值逼近 抽样值的过程

- ■均匀量化
- 非均匀量化

- 量化——利用预先规定的有限个电平来 表示模拟抽样值的过程
- ■量化电平 将抽样值的范围划分为M 个区间,每个区间规定一个电平表示, 即得到M个离散的电平,称为量化电平
- 量化误差——量化过程中的近似,量化 电平和抽样值之间存在误差,称量化误 差或量化噪声

一. 量化器模型

$\frac{\{m(kT_s)\}}{$ 量化器

- 抽样值序列 {m(kT_e)}
- 量化值序列 {*m_a*(*kT_s*)}
- 量化误差序列{e_a}
- 量化范围[a, b]或[-V,V]
- 量化电平数 (量化级,量化区间数) M
- 量化间隔 $\Delta i = m_i m_{i-1}$ i = 1, 2, ..., M
- ■量化电平 q;

■ 量化过程

- 设m(t)取值范围为[a,b],将取值区域划分为M 个相邻区间,每个区间用一个量化电平 q_i 表示,区间间隔为: $\Delta i = m_i m_{i-1}, i = 1, 2,, M$
- 若某个抽样值 $m(kT_s) \in \Delta i$, 则量化器输出: $m_a(kT_s) = q_i$, 并保持 T_s
- 量化电平 $q_i = m_{i-1}$ 或 m_i 或 $\frac{m_{i-1} + m_i}{2}$

■ 量化误差(量化噪声)

 $e_q =$ 抽样值一量化值 = $m(kT_s) - m_q(kT_s)$

■ 量噪比(量化器信噪比)

 $\frac{S_i}{N_a} = \frac{$ 量化器输入信号平均功率 量化噪声功率

■ 量化器的性能指标

设m(t)是均值为0, 概率密度为f(m)的平稳随 机过程,抽样值 $m(kT_s)$ 记作m,量化值 $m_a(kT_s)$ 记 作ma, 则量噪比:

$$\frac{S_{i}}{N_{q}} = \frac{E[m^{2}]}{E[(m-m_{q})^{2}]} = \frac{E[m^{2}]}{E[e_{q}^{2}]}$$

$$S_{i} = \int_{a}^{b} m^{2} f(m) dm$$

$$N_{q} = \int_{a}^{b} e_{q}^{2} f(e_{q}) de_{q}$$
[m]

- 量化间隔为常数 $\Delta v = \frac{b-a}{M}$ 量化电平取量化区间的中点

$$q_i = \frac{m_i + m_{i-1}}{2}$$

■ 量化误差 e_q 在 $(-\Delta v/2, \Delta v/2)$ 之间视为均匀分布 $f(e_q) = \begin{cases} 1/\Delta v & |e_q| \le \Delta v/2 \\ 0 & else \end{cases}$

■量化噪声平均功率

$$N_{q} = E\left[e_{q}^{2}\right] = \int_{a}^{b} e_{q}^{2} f(e_{q}) de_{q}$$
$$= \int_{-\Delta \nu/2}^{\Delta \nu/2} e_{q}^{2} \cdot \frac{1}{\Delta \nu} de_{q}$$

$$N_q = \frac{\Delta v^2}{12}$$

■均匀量化器的量化噪声只与量化间隔 有关,与信号的分布无关

例1: 设一个均匀量化器的量化电平数为M, 输入信号m(t)在[-V,V]内均匀分布,采用L 位二进制编码, 求该量化器的量噪比。

$$\frac{S_i}{N_q} = M^2 = 2^{2L}$$

$$(\frac{S_i}{N_q})_{dB} = 10\lg M^2 = 20\lg 2^L \approx 6L(dB)$$

均匀量化器,增大量化级可提高量化性能,每增加一位编码,量噪比提高6dB

解:均匀量化器,量化电平数M,m(t)在[-V,V] 内均匀分布, L位二进制编码

$$\begin{split} S_i &= E[m^2] = \int_a^b m^2 \cdot f(m) dm = \int_{-V}^V m^2 \cdot \frac{1}{2V} dm = \frac{V^2}{3} \\ & \because \Delta v = \frac{2V}{M} \Longrightarrow V = \frac{\Delta v \cdot M}{2} \qquad \text{R.l.s.}, \quad \text{Fig.:} \\ & S_i = \frac{\Delta v^2}{12} \cdot M^2 \\ & \because N_q = \frac{\Delta v^2}{12} \quad \because \frac{S_i}{N_q} = M^2 \\ & \left(\frac{S_i}{N_q}\right)_{dB} = 10 lg \frac{S_i}{N_q} = 10 lg M^2 = 20 lg M = 20 lg 2^L = 6L \end{split}$$

• **例**2:输入信号 $m(t) = A_m \cos \omega_m t$,均匀量 化器范围 [-V, +V] ($A_m < V$),采用L位 二进制编码,求量噪比

$$\left(\frac{S_i}{N_q}\right)_{dB} \approx 6L + 2 + 20\log\frac{A_m}{V}$$

- 结论
 - ■每增加一位编码,量噪比提高6dB
 - 小信号的量噪比低

解: $m(t) = A_m \cos \omega_m t$, 均匀量化器范围 [-V,+V] $(A_m < V)$, 采用L位二进制编码

$$S_{i} = \overline{m^{2}(t)} = \frac{1}{2}A_{m}^{2} \qquad N_{q} = \frac{\Delta v^{2}}{12} = \frac{(2V/M)^{2}}{12} = \frac{V^{2}}{3M^{2}}$$

$$10lg \frac{S_{i}}{N_{q}} = 10lg \frac{A_{m}^{2}}{2} \cdot \frac{3M^{2}}{V^{2}} = 10lg \left(\frac{A_{m}}{V}\right)^{2} + 10lgM^{2} + 10lg \frac{3}{2}$$

$$10lg \frac{S_{i}}{N_{q}} \approx 20lg \frac{A_{m}}{V} + 6L + 2$$

若话音信号动态范围
$$0\sim -40dB$$
,即: $-40<20lg\frac{A_m}{V}<0$ $A_m< V$ 不过载,设 $V=1v$,则: $-2< lgA_m<0$ $\div 0.01v< A_m<1v$

电话系统规定:话音信号的动态范围为 0~-40dB,信号量噪比不小于26dB。因此,均匀量化所需的编码位数L为:

$$(\frac{S_i}{N_q})_{dB} \approx 6L + 2 + 20\log \frac{A_m}{V} \ge 26(dB)$$

$$-40dB < 20\log \frac{A_m}{V} < 0dB$$

$$6L + 2 - 40 \ge 26$$

$$L \ge 11$$

三. 非均匀量化

- 非均匀量化——量化间隔不相同
- 目的: 提高小信号的量噪比
- ■原理
 - 量化间隔Δν随信号抽样值大小而变化,小信号分布时,采用较多的小量化间隔;大信号分布时,采用较少的大量化间隔,以保证M恒定,使量噪比达到均衡
- 话音信号采用非均匀量化

- 压缩器压扩特性 y = y (x)
 - 小信号扩张
 - 大信号压缩
- ■扩张器特性 y = y⁻¹(x)

■ 压缩与扩张的示意图

■ 小信号经压缩器变大后再均匀量化,提高量噪比,接收时用扩张器还原信号

■ITU针对话音信号的对数压缩特性,制 订了两个标准

- A压缩律(13折线法):中国、欧洲、国际 间互连
- ■μ压缩律(15折线法): 北美、日本、韩国等

8.5 脉冲编码调制 (PCM)

■ PCM系统

PCM系统码元速率及带宽

■ PCM信号码元速率

- ■设低通模拟信号m(t),最高截止频率 f_H ,按抽样定理条件,最低抽样频率 $f_S = 2f_H$,抽样间隔 $T_S = 1/2f_H$,PCM系统若采用 N 位二进制编码,码元宽度为: $T_b = \frac{T_S}{N}$
- 码元速率(信息速率): $R_b = N \cdot f_s \quad (bit/s)$

■传输PCM信号所需的信道带宽

无码间干扰,采用理想低通传输特性,传输 带宽最小:

$$B_{\min} = \frac{1}{2T} \quad (T - 码元间隔)$$
 $PCM 系统: B_{\min} = \frac{1}{2T_b} = \frac{1}{2}R_b = \frac{1}{2}N \cdot f_S$

■实际采用升余弦传输特性,传输带宽:

$$B = 2B_{\min} = N \cdot f_S(Hz)$$

■ 话音信号PCM编码

m(t): $300 \sim 3400 Hz$ 抽样频率 $f_s = 8KHz$,抽样间隔 $T_s = 125 \mu s$ PCM编码 N = 8bit码元速率: $R_b = N \cdot f_s = 64 Kbps$ 升余弦传输特性: $B = N \cdot f_s = 64 KHz$

■传一路模拟话音信号带宽4KHz 传一路数字PCM话音信号,带宽64KHz

■时分复用原理图

■TDM基本原理

- 理论依据是抽样定理
- 从时域对信道分割,将一帧时间分为若干时隙, 利用互不重叠的时隙传输不同路信号
- 各路信号在每帧中占有各自固定的时隙(STDM)
- 帧结构中必须有帧同步码

■ STDM的ITU标准

- PDH(准同步数字体系): E体系和T体系
- SDH(同步数字体系): ≥155Mbps

		Links of Anna ()	Π Ե ₩
	层次	比特率(Mb/s)	路数(每路64kb/s)
E 体系	E1	2.048	30
	E2	8.448	120
	E3	34.368	480
	E4	139.264	1920
	E5	565.148	7680
T体系	T1	1.544	24
	T2	6.312	96
	Т3	32.064 (日本)	480
		44.736(北美)	672
	T4	97.728(日本)	1440
		274.176(北美)	4032
	Т5	397.200 (日本)	5760
		560.160(北美)	8064

■ E1-PCM 30/32路基群系统

传码率: $R_b = 2.048M \ bps$

一路话音信号: 抽样速率 $f_s = 8KHz$, 抽样间隔 $T_s = 125\mu s$

按A律13折线编码,N=8bit

32路复用,每个 T_s 内分32个时隙,每个时隙填充一个8bit码字

1bit码元占用时长 $T_b = \frac{T_s}{K \cdot N} \approx 0.49 \mu s$

32路PCM信号的传码率 $R_b = K \cdot N \cdot f_s = 2.048Mbps$

数字通信系统模型

本章小结

- ■抽样定理
- 低通型和带通型信号抽样的计算
- 均匀量化的概念和*非均匀量化的概念
- *A律13折线的量化编译码规则和计算
- PCM码速率和带宽的关系
- 时分复用的基本概念和计算

作业

- 参考PPT阅读教材第十章的内容
- 第十章习题
 - **1**, 2, 7, 8, 15
 - 补充题:60路载波电话信号,频带范围为: 312~552KHz,求:1)最低抽样频率;2) 画出抽样信号频谱示意图;3)接收端重建 信号时的滤波器特性。