



# **LONI Programming Environment**

## Alexander B. Pacheco

User Services Consultant LSU HPC & LONI sys-help@loni.org

LONI HPC Workshop University of Louisiana - Lafayette Lafayette Nov 9, 2011







### Outline





- Hardware Overview
- User Environment
  - Accessing LONI HPC clusters
  - File Systems
  - Software Management
- Job Management
  - Queues
     Ich Manager Command
  - Job Manager Commands
  - Job Types
  - Job Submission Scripts
  - Job Monitoring & Manipulation
- 4 HPC Help







## Outline





- Hardware Overview
- - Accessing LONI HPC clusters
  - File Systems
  - Software Management
- - Queues
  - Job Manager Commands
  - Job Types
  - Job Submission Scripts
  - Job Monitoring & Manipulation









Two major architectures.

## **Linux Clusters**

- Vendor: Dell
- OS: Red Hat
- CPU: Intel Xeon

# **AIX Clusters**

- Vendor: IBM
- OS: AIX
- CPU: Power 5

The LONI AIX clusters are on a path to decommissioning.











# Linux Clusters

|       | Name     | Peak TeraFLOPS/s | Location | Status     | Login |
|-------|----------|------------------|----------|------------|-------|
|       | QueenBee | 50.7             | ISB      | Production | LONI  |
|       | Eric     | 4.7              | LSU      | Production | LONI  |
| LONI  | Louie    | 4.7              | Tulane   | Production | LONI  |
| LOINI | Oliver   | 4.7              | ULL      | Production | LONI  |
|       | Painter  | 4.7              | LaTech   | Production | LONI  |
|       | Poseidon | 4.7              | UNO      | Production | LONI  |

# **AIX Clusters**

|      | Name     | Peak TF/s | Location | Status         | Login |
|------|----------|-----------|----------|----------------|-------|
|      | Bluedawg | 0.85      | LaTech   | Production     | LONI  |
|      | Ducky    | 0.85      | UNO      | Decommissioned | LONI  |
| LONI | Lacumba  | 0.85      | Southern | Decommissioned | LONI  |
|      | Neptune  | 0.85      | Tulane   | Decommissioned | LONI  |
|      | Zeke     | 0.85      | ULL      | Decommissioned | LONI  |









# Getting an Account

LONI account

https://allocations.loni.org

Request Allocations

https://allocations.loni.org

All LONI AIX clusters are being decommissioned.

# Login Shell

- The default Login shell is bash
- Supported Shells: bash, tcsh, ksh, csh & sh
- Change Login Shell at the profile page











- A cluster is a group of computers (nodes) that works together closely
- Type of nodes
  - Head node
  - Compute node









### Cluster Hardware





- Queen Bee
  - ♦ 668 nodes: 8 Intel Xeon cores @ 2.33 GHz
  - 8 GB RAM
  - ♦ 192 TB storage
- Other LONI Linux clusters
  - ◆ 128 nodes: 4 Intel Xeons cores @ 2.33 GHz
  - 4 GB RAM
  - 9 TB storage
- LONI AIX clusters (All except Bluedawg decommissioned)
  - ♦ 14 Power5 nodes, 8 IBM Power5 processors @ 1.9 GHz per node
  - 16 GB RAM
  - 280 GB storage





## Why is Cluster Hardware important?





- There are numerous different architectures in the HPC world.
- Choose the software to install or use depending on cluster architecture.
  - Linux: EM64T, AMD64, X86\_64
  - AIX: Power5, Power7

#### Software Downloads

#### Download NAMD:

NAMD is a parallel, object-oriented molecular dynamics code designed for high-performance: visualization package VMD. Visit the NAMD website for complete information and document

Selecting an archive below will lead to a user registration and login page. Your download will of

## Version Nightly Build (2011-09-07) Platforms:

- Linux-x86\_64 (64-bit Intel/AMD with ethernet)
- Linux-x86\_64-CUDA (NVIDIA CUDA acceleration)
- Source Code

#### Version 2.8 (2011-05-31) Platforms:

- AIX-POWER-lapi (IBM POWER clusters)
- AIX-POWER-multicore (IBM POWER SINGLE node)
   Linux-x86 (32-bit Intel/AMD with ethernet)
- Linux-x86-TCP (TCP may be better on gigabit)
- Linux-x86 64-multicore (64-bit Intel/AMD single node)
- Linux-x86 64 (64-bit Intel/AMD with ethernet)
- . Linux-x86 64-TCP (TCP may be better on gigabit)
- Linux-x86\_64-ibverbs (InfiniBand via OpenFabrics OFED, no MPI needed)
   Linux-x86\_64-ibverbs-smp (InfiniBand plus shared memory, no MPI needed)
- Linux-v86\_64-CUDA (NIVIDIA CUDA acceleration)
- Linux-x86 64-ibverbs-CUDA (NVIDIA CUDA with InfiniBand)
- MacOSX-x86 (Mac OS X for Intel processors, fails on 10.7 "Lion")
- MacOSX-x86\_64 (Mac OS X for 64-bit Intel processors)
- MacOSX-PPC (Mac OS X for PowerPC)
- Solaris-x86\_64
- Win32 (Windows XP, etc.)
- Win64-MPI (Windows HPC Server)













- The amount of installed memory less the amount that is used by the operating system and other utilities
- Max amount per node
  - ♦ Linux clusters: ~6 GB for Queen Bee, ~3 GB for others
  - ◆ AIX clusters: ~13 GB





### Outline





- User Environment
  - Accessing LONI HPC clusters
  - File Systems
  - Software Management
- - Queues
  - Job Manager Commands
  - Job Types
  - Job Submission Scripts
  - Job Monitoring & Manipulation







# Accessing LONI clusters



- LONI Host name: <cluster name>.loni.org
  - ★ Eric: eric.loni.org
- Use ssh to connect
  - ★ \*nix and Mac: ssh <host name>
  - ★ Windows: use Putty, Secure Shell Client or Bitvise Tunnelier
- The default Login shell is bash
- Supported shells: bash, tcsh, ksh, csh & sh
- Change the login shell at the profile page
  - ◆ LONI: https://allocations.loni.org
- Reset your password
  - ◆ LONI: https://allocations.loni.org/user\_reset.php







## Connecting to Eric from a Linux box











## Connecting to Eric from a Mac box





LONI Programming Environment









## Download and Install

- X-Server: X-ming
  - http://www.straightrunning.com/XmingNotes/
- SSH Client: Putty
  http://www.chiark.greenend.org.uk/~sgtatham/putty/
- SSH+SFTP/SCP Client: Bitvise Tunnelier http://www.bitvise.com/tunnelier





## Start X-ming



















































```
_ - X
eric2.loni.org - PuTTY
login as: etrain00
Access denied
etrain00@eric.loni.org's password:
```











```
₽ etrain00@eric2:~

login as: etrain00
Access denied
etrain00@eric.loni.org's password:
Last login: Fri Jul 22 16:43:18 2011 from apacheco.cct.lsu.edu
   Eric @ LSU
          Send questions and support issues to: sys-help@loni.org
  Eric is a 5 TF, 128 node (512 processor) Linux cluster using LONI LDAP
  accounts. Eric has its own /home disk. Quotas are set at 5 GB. Please
  use your /work directory for batch job I/O. It has a 100 GB limit. Please
  limit the number of files per directory to 10,000.
  Finally, DO NOT run compute jobs on the headnodes. Any such jobs will be
  terminated.
[etrain00@eric2 ~]$
```

LONI Programming Environment



















# Configure Tunnelier/SSH Client to Tunnel X11 Connections











# Configure Tunnelier/SSH Client to Tunnel X11 Connections











|               | Distributed<br>File System | Throughput | File life time | Best used for                                      |
|---------------|----------------------------|------------|----------------|----------------------------------------------------|
| Home          | Yes                        | Low        | Unlimited      | Code in develop-<br>ment, compiled exe-<br>cutable |
| Work          | Yes                        | High       | 30 days        | Job input/output                                   |
| Local Scratch | No                         |            | Job Duration   | Temporary files                                    |

# Tips

- Never write job output to your home directory
- Do not write temporary files to /tmp, use local scratch or work space
- Work space is not for long term storage. Files are purged peridocally
- Use rmpurge to delete large amount of files.









| Cluster    | Home         |       | Work                 |       | Scratch      |
|------------|--------------|-------|----------------------|-------|--------------|
|            | Access Point | Quota | Access Point         | Quota | Access Point |
| LONI Linux | /home/\$USER | 5GB   | /scratch/\$USER      | 100GB | /var/scratch |
| LONI AIX   | /home/\$USER | 500MB | /work/default/\$USER | 20GB  | /var/scratch |

- No quota is enforced on the work space of QueenBee
- Work directory is created within an hour of first login
- Check current disk usage

Linux: showquota

AIX: quota





#### Exercise 1





- Log in to any cluster
- Check your disk quota
  - Linux: showquota
  - 2 AIX: quota
- Copy the traininglab directory

cp -r /home/apacheco/traininglab .

- If you are not familiar with working on a Linux/Unix system
  - Loni Moodle course @

https://docs.loni.org/moodle: HPC104 or HPC105







# Managing User Environment





- Environment variables
  - PATH: where to look for executables
  - LD\_LIBRARY\_PATH: where to look for shared libraries
  - Other custom environment variables needed by various software
- SOFTENV is a software that is used to set up these environment variables on all the clusters
  - More convenient than setting numerous environment variables in .bashrc or .cshrc









 Command softenv lists all packages that are managed by SOFTENV

```
[apacheco@eric2 ~]$ softenv
SoftEnv version 1.6.2
These are the macros available:
    @default
These are the keywords explicitly available:
    +ImageMagick-6.4.6.9-intel-11.1
                                   @types: Applications Visualization @name:
    +NAMD-2.6-intel-11.1-mvapich-1.1
                                   @types: Applications @name: NAMD @version:
    +NAMD-2.7b2-intel-11.1-mvapich-1.1
                                   @types: Applications @name: NAMD @version:
```











# Use -k option with softenv

```
[apacheco@eric2 ~]$ softenv -k gaussian
SoftEnv version 1 6 2
Search Regexp: gaussian
These are the macros available:
These are the keywords explicitly available:
    +gaussian-03
                                   @types: Applications Chemistry @name:
                                     Gaussian @version: 03 @build: @internal:
    +gaussian-09
                                   @types: Applications Chemistry @name:
                                     Gaussian @version: 09 @build: @internal:
    +gaussview-4.1.2
                                   @types: Applications Chemistry @name:
                                     GaussView @version: 4.1.2 @build: - @about:
These are the keywords that are part of the software tree,
however, it is not suggested that you use these:
```











- Setting up environment variables to use a certain package in the current session only.
  - ♦ Remove a package: soft add <key>
  - ◆ Add a package: soft add <key>

```
[apacheco@eric2 ~]$ which g09
/usr/local/packages/gaussian09/g09/g09
[apacheco@eric2 ~]$ soft delete +gaussian-09
[apacheco@eric2 ~]$ which g09
/usr/bin/which: no g09 in (/home/apacheco/bin:...
[apacheco@eric2 ~]$ soft add +gaussian-03
[apacheco@eric2 ~]$ which g03
/usr/local/packages/gaussian03/g03/g03
```









- Setting up the environment variables to use a certain software package(s).
  - ◆ First add the key to \$HOME/.soft.
  - ◆ Execute resoft at the command line.

```
[apacheco@eric2 ~1$ cat .soft
# This is the .soft file.
+mvapich-1.1-intel-11.1
+intel-fc-11.1
+intel-cc-11 1
+espresso-4.3.1-intel-11.1-mvapich-1.1
+gaussian-09
+lmto-intel-11.1
+nciplot-intel-11.1
+gaussview-4.1.2
+jmol-12
+vmd-1.8.6
+xcrvsden-1.5.24-qcc-4.3.2
+tcl-8.5.8-intel-11.1
+gamess-12Jan2009R1-intel-11.1
+nwchem-5.1.1-intel-11.1-mvapich-1.1
+cpmd-3.11.1-intel-11.1-mvapich-1.1
@default
[apacheco@eric2 ~]$ resoft
```











soft-dbq shows which variables are set by a SOFTENV key

```
[apacheco@eric2 ~] $ soft-dbg +amber-11-intel-11.1-mvapich-1.1
This is all the information associated with
the key or macro +amber-11-intel-11.1-mvapich-1.1.
Name: +amber-11-intel-11.1-mvapich-1.1
Description: @types: Applications @name: Amber @build: amber-11-intel-11.1-mvapich-1.1
Exists on: Linux
On the Linux architecture,
the following will be done to the environment:
 The following environment changes will be made:
    AMBERHOME = /usr/local/packages/amber/11/intel-11.1-mvapich-1.1
    LD_LIBRARY_PATH = ${LD_LIBRARY_PATH}:/usr/local/compilers/Intel/mkl-10.2/lib/em64t
    PATH = ${PATH}:/usr/local/packages/amber/11/intel-11.1-mvapich-1.1/exe
```









- Find the key for VISIT (a visualization package).
- Check what variables are set through the key.
- Set up your environment to use VISIT.
- Check if the variables are correctly set by using which visit.









Find the key for VISIT (a visualization package).

softenv -k visit

• Check what variables are set through the key.

soft-dbq +visit

Set up your environment to use VISIT.

soft add +visit

 Check if the variables are correctly set by using which visit.

/usr/local/packages/visit/bin/visit







| Languago |       | Linux Cluste | AIX Clusters |           |
|----------|-------|--------------|--------------|-----------|
| Language | Intel | PGI          | GNU          | XL        |
| Fortran  | ifort | pgf77,pgf90  | gfortran     | xlf,xlf90 |
| С        | icc   | pgcc         | gcc          | xlc       |
| C++      | icpc  | pgCC         | g++          | xIC       |

- Usage: <compiler> <options> <your\_code>
  - Example: icc -O3 -o myexec mycode.c
- Some compilers options are architecture specific
  - Linux: EM64T, AMD64 or X86\_64
  - AIX: power5,power7 or powerpc







| Language | Linux Cluster | AIX Clusters  |  |
|----------|---------------|---------------|--|
| Fortran  | mpif77,mpif90 | mpxlf,mpxlf90 |  |
| С        | mpicc         | mpcc          |  |
| C++      | mpiCC         | mpCC          |  |

- Usage: <compiler> <options> <your\_code>
  - Example: mpif90 -O2 -o myexec mycode.f90
- On Linux clusters
  - Only one compiler for each language
  - There is no intel\_mpicc or pg\_mpicc
- There are many different versions of MPI compilers on Linux clusters
  - Each of them is built around a specific compiler
  - Intel, PGI or GNU





#### Compiling and Running MPI programs



- It is extremely important to compile and run you code with the same version!!!
- Use the default version if possible
- These MPI compilers are actually wrappers
  - They still use the compilers we've seen on the previous slide
    - ★ Intel. PGI or GNU
  - They take care of everything we need to build MPI codes ★ Head files, libraries etc.
  - ♦ What they actually do can be reveal by the -show option

```
[apacheco@eric2 ~]$ mpif90 -show
ln -s /usr/local/packages/mvapich/1.1/intel-11.1/include/mpif.h mpif.h
ifort -fPIC -L/usr/local/ofed/lib64 -Wl, -rpath-link -Wl, \
   /usr/local/packages/mvapich/1.1/intel-11.1/lib/shared \
  -L/usr/local/packages/mvapich/1.1/intel-11.1/lib/shared \
  -L/usr/local/packages/mvapich/1.1/intel-11.1/lib \
  -lmpichf90nc -lmpichfarg -lmpich -L/usr/local/ofed/lib64 \
  -Wl.-rpath=/usr/local/ofed/lib64 -libverbs -libumad -lpthread -lpthread -lrt -limf
rm -f mpif.h
```



#### **Application Packages**





- Installed under /usr/local/packages
- Most of them managed by SOFTENV
  - Numerical and utility libraries
    - FFTW, HDF5, NetCDF, PetSc, Intel MKL
  - Computational Chemistry
    - Amber, CPMD, Gaussian, GAMESS, Gromacs, LAMMPS, NAMD, NWCHEM
  - Visualization
    - GaussView, VisIt, VMD
  - Profiling/debugging tools
    - DDT, Tau, TotalView
  - MPI Implementation
    - mvapich, mvapich2, mpich, openmpi
  - **•** ...









# Serial Code

- On Linux cluster, add the soft keys for either Intel (+intel-fc-11.1) or GCC (+gcc-4.3.2)
- Compile hello.f90 with a compiler of your choice
- Run the executable from the command line
- Parallel Code
  - On Linux cluster, find the appropriate key for mpi implementation of the above compiler
  - Compile hello\_mpi.f90
  - Do Not run the parallel code, we'll use a script to submit to a job manager









# Serial Code

- On Linux cluster, add the soft keys for either Intel (+intel-fc-11.1) or GCC (+gcc-4.3.2)
- Compile hello.f90 with a compiler of your choice ifort -o hello hello f90 xlf90 -o hello hello.f90
- Run the executable from the command line ./hello

#### Parallel Code

- On Linux cluster, find the appropriate key for mpi implementation of the above compiler
- Compile hello mpi.f90 mpif90 -o hellompi hello\_mpi.f90 mpxlf90 -o hellompi hello mpi.f90
- Do Not run the parallel code, we'll use a script to submit to a job manager



#### **Outline**





- - Accessing LONI HPC clusters
  - File Systems
  - Software Management
- Job Management
  - Queues
  - Job Manager Commands
  - Job Types
  - Job Submission Scripts
  - Job Monitoring & Manipulation







#### The Cluster Environment





- A cluster is a group of computers (nodes) that works together closely
- Type of nodes
  - Head node
  - Multiple Compute nodes
- Multi User
   Environment
- Each user may have multiple jobs running simultaneously.









#### **Batch Queuing System**





- A software that manages resources (CPU time, memory, etc) and schedules job execution
  - Linux Clusters: Portable Batch System (PBS)
  - AIX Clusters: Loadleveler
- A job can be considered as a user's request to use a certain amount of resources for a certain amount of time
- The batch queuing system determines
  - The order jobs are executed
  - On which node(s) jobs are executed





# A Simplified View of Job Scheduling





- Map jobs onto the node-time space
  - Assuming CPU time is the only resource
- Need to find a balance between
  - Honoring the order in which jobs are received
  - Maximizing resource utilization







#### **Backfilling**







- A strategy to improve utilization
  - Allow a job to jump ahead of others when there are enough idle nodes
  - Must not affect the estimated start time of the job with the highest priority
- Enabled on all LONI clusters





# How much time Should I request?







- Ask for an amount of time that is
  - Long enough for your job to complete
  - As short as possible to increase the chance of backfilling











- There are more than one job queue
- Each job queue differs in
  - Number of available nodes
  - Maximum run time
  - Maximum running jobs per user
- The main purpose is to maximize utilization







# QueenBee

LSU

| Queue    | Max Run-<br>time | Total<br>number<br>of nodes | Max run-<br>ning jobs<br>per user | Max<br>nodes<br>per job | Use                 |
|----------|------------------|-----------------------------|-----------------------------------|-------------------------|---------------------|
| workq    |                  | 530                         | 8                                 | 128                     | Unpreemptable       |
| checkpt  | 2 days           | 668                         |                                   | 256                     | preemptable         |
| preempt  | 2 days           | 668                         | NÁ                                |                         | Requires permission |
| priority |                  | 668                         | NA                                |                         | Requires permission |

#### **Other Clusters**

| Queue    | Max Run-<br>time | Total<br>number<br>of nodes | Max run-<br>ning jobs<br>per user | Max<br>nodes<br>per job | Use                   |
|----------|------------------|-----------------------------|-----------------------------------|-------------------------|-----------------------|
| single   | 14 days          | 16                          | 64                                | 1                       | Single processor jobs |
| workq    |                  | 96                          | 8                                 | 40                      | Unpreemptable         |
| checkpt  | 3 days 128 64    | 128                         |                                   | 64                      | preemptable           |
| preempt  |                  | 64                          | NÁ                                |                         | Requires permission   |
| priority |                  | 64                          |                                   | ١                       | Requires permission   |







#### Basic Job Manager Commands





- Queue querying
  - Check how busy the cluster is
- Job submission
- Job monitoring
  - Check job status (estimated start time, remaining run time, etc)
- Job manipulation
  - Cancel/Hold jobs





#### Queue Querying: Linux Clusters



- qfree: show number of free,busy and queued nodes
- qfreeloni: run qfree on all LONI Linux clusters

```
[apacheco@eric2 ~]$ qfree
PBS total nodes: 128, free: 49, busy: 79, down: 0, use: 61%
PBS workg nodes: 96, free: 40, busy: 28, queued: 0
PBS checkpt nodes: 104, free: 40, busy: 35, queued: 0
PBS single nodes: 32, free: 9 *36, busy: 16, queued: 366
[apacheco@eric2 ~]$ gfreeloni
PBS total nodes: 668, free: 3, busy: 647, down: 18, use: 96%
PBS workg nodes: 530, free: 0, busy: 278, gueued: 367
PBS checkpt nodes: 668, free: 1, busy: 369, queued: 770
----- eric -
PBS total nodes: 128, free: 49, busy: 79, down: 0, use: 61%
PBS workg nodes: 96, free: 40, busy: 28, queued: 0
PBS checkpt nodes: 104, free: 40, busy: 35, queued: 0
PBS single nodes: 32, free: 9 *36, busy: 16, queued: 366
----- louie
PBS total nodes: 128, free: 44, busy: 83 *2, down: 1, use: 64%
PBS workg nodes: 104, free: 40, busy: 0, queued: 0
PBS checkpt nodes: 128, free: 44, busy: 82, queued: 50
PBS single nodes: 32, free: 7 *26, busy: 2, queued: 0
---- oliver -
PBS total nodes: 128, free: 74, busy: 52, down: 2, use: 40%
PBS workg nodes: 62, free: 8, busy: 11, queued: 0
```









#### Interactive Jobs

- Set up an interactive environment on compute nodes for users
  - Advantage: can run programs interactively
  - Disadvantage: must be present when job starts
- Purpose: testing and debugging code. Do not run jobs on head node!!!

```
qsub -I -V -l walltime=<hh:mm:ss>,nodes=<#
of nodes>:ppn=cpu -A <your allocation> -q
<queue name>
```

- On QueenBee, cpu=8
- Other LONI Clusters: cpu=4 (parallel jobs) or cpu=1 (single queue)
- To enable X-forwarding: add -X







#### **Batch Jobs**

- Executed using a batch script without user intervention
  - Advantage: system takes care of running the job
  - Disadvantage: can change sequence of commands after submission
- Useful for Production runs

```
qsub <job script>
```

llsubmit <job script>



#### PBS Job Script: Parallel Jobs



```
#!/bin/bash
                                         Shell being used
#PBS -1 nodes=4:ppn=4
                                         # of nodes & processors
#PBS -1 walltime=24:00:00
                                         Maximum walltime
#PBS -N myjob
                                         Job name
#PBS -o <file name>
                                         standard output
                                         standard error
#PBS -e <file name>
#PBS -q checkpt
                                         Oueue name
#PBS -A <loni allocation>
                                         Allocation name
#PBS -m e
                                         Send mail when job ends
#PBS -M <email address>
                                         to this address
<shell commands>
                                         shell commands
                                         run parallel job
mpirun -machinefile $PBS_NODEFILE \
 -np 16 <path_to_executable> <options>
<shell commands>
                                         shell commands
```





LSU



# PBS Job Script: Serial Jobs





```
#!/bin/bash
#PBS -1 nodes=1:ppn=1
#PBS -1 walltime=24:00:00
#PBS -N myjob
#PBS -o <file name>
#PBS -e <file name>
#PBS -q single
#PBS -A <loni allocation>
#PBS -m e
#PBS -M <email address>
<shell commands>
<path_to_executable> <options>
<shell commands>
```

```
Shell being used
# of nodes & processors
Maximum walltime
Job name
standard output
standard error
Use single queue
Allocation name
Send mail when job ends
to this address
```

shell commands run parallel job shell commands











- Write a job submission script to execute the hellompi program.
- Submit the script to the job manager.









#### **Linux Clusters**

- showstart <job id>
  - Check estimated time when job can start
- When can the estimated time change
  - Higher priority job gets submitted
  - Running jobs terminate earlier than time requested
  - System has trouble starting your job
- qstat <options> <job id>
  - Show information on job status
  - All jobs displayed if < job id> is omitted
  - qstat -u <username>: Show jobs belonging to <username>
  - ◆ qstat -a <job id>: Displat in an alternative format
- qshow <job id>
  - ◆ Show information of running job <job id>: node running on and CPU load







#### **Linux Clusters**

- qdel <job id>
  - Cancel a running or queued job
- qhold <job id>
  - Put a queued job on hold
- qrls <job id>
  - Resume a held job

#### **AIX Clusters**

- llcancel <job id>
  - Cancel a running or queued job
- llhold <job id>
  - Put a queued job on hold
- llhold -r <job id>
  - Resume a held job





#### Outline





- Hardware Overview
- User Environment
  - Accessing LONI HPC clusters
  - File Systems
  - Software Management
- Job Management
  - QueuesJob Manager Commands
  - Job Types
  - Job Submission Scripts
  - Job Monitoring & Manipulation
- 4 HPC Help





#### Additional Help





- User's Guide
  - ♦ HPC: http://www.hpc.lsu.edu/help
  - ◆ LONI: https://docs.loni.org/wiki/Main\_Page
- Contact us
  - Email ticket system: sys-help@loni.org
  - ◆ Telephone Help Desk: 225-578-0900
  - Walk-in consulting session at Middleton Library
    - ★ Tuesdays and Thursdays only
  - Instant Messenger (AIM, Yahoo Messenger, Google Talk)
    - \* Add "Isuhpchelp"









# THE END

Questions, Comments ???



