SAE: Sequential Anchored Ensembles

Arnaud Delaunoy December 9, 2021 University of Liège, Belgium Advisor: Gilles Louppe

Bayesian deep learning

Notations:

- D: Dataset
- ullet heta: Neural network parameters
- x: Inputs
- y: Outputs

We want to compute
$$p(\mathbf{y} \mid \mathbf{x}, \mathbf{D}) = \int p(\mathbf{y} \mid \mathbf{x}, \theta) p(\theta \mid \mathbf{D}) d\theta$$
, where $p(\theta \mid \mathbf{D}) = \frac{p(\mathbf{D} \mid \theta)p(\theta)}{p(\mathbf{D})}$.

1

Anchored ensembles [Pearce et al., 2020]

Training: Ensemble of N neural networks such that $\theta_{1,..,N}^* \sim p(\theta \mid D)$.

Prediction: $p(\mathbf{y} \mid \mathbf{x}, \mathbf{D}) \simeq \frac{1}{N} \sum_{i=1}^{N} p(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta}_{i}^{*}).$

Anchored ensembles

Idea: Inject noise in the training procedure for the optima to be sampled from the Bayesian posterior

Anchored Ensembling

```
\begin{aligned} & \textbf{for } i \text{ in } 1,.., \mathcal{N} \textbf{ do} \\ & \theta_{\mathsf{anc},i} \sim p(\boldsymbol{\theta}) \text{ (Sample anchor)} \\ & \theta_{\mathsf{init},i} \leftarrow \mathsf{init()} \text{ (Initialize NN)} \\ & \theta_i^* \leftarrow \mathsf{arg max}_{\boldsymbol{\theta}} \ p(\boldsymbol{D} \,|\, \boldsymbol{\theta}) p_{\mathsf{anc},i}(\boldsymbol{\theta}) \\ & \mathbf{end for} \\ \end{aligned} \\ & \text{where } p_{\mathsf{anc},i} = \mathcal{N}(\theta_{\mathsf{anc},i}, \boldsymbol{\Sigma}_{\mathsf{prior}}). \end{aligned}
```

3

Anchored ensembles

Hypotheses:

- ullet Normal prior: $p(heta) = \mathcal{N}(\mu_{ extstyle prior}, oldsymbol{\Sigma}_{ extstyle prior})$
- Normal likelihood $p(D | \theta)$ (also works for classification in practice)

If
$$heta_{\mathsf{anc}} \sim p(heta)$$
 then $heta^* = \arg\max_{ heta} p(heta \, | \, heta) p_{\mathsf{anc}}(heta) \sim p(heta \, | \, heta)$ (approximately).

4

Anchored ensembles

Training an ensemble is computationally expensive.

Sequential Anchored ensembles

If
$$heta_{\mathsf{anc},i}$$
 is close to $heta_{\mathsf{anc},i-1}$, then $heta_i^*$ is close to $heta_{i-1}^*$

Sequential Anchored Ensembling (SAE)

$$\begin{split} &\theta_{\mathsf{anc},1} \sim p(\theta) \text{ (Sample first anchor)} \\ &\theta_{\mathsf{init},1} \leftarrow \mathsf{init}() \text{ (Initialize NN)} \\ &\theta_1^* \leftarrow \mathsf{train}(\theta_{\mathsf{anc},1};\theta_{\mathsf{init},1}) \text{ (Long)} \\ &\mathbf{for} \ i \ \mathsf{in} \ 2,..,M \ \mathbf{do} \\ &\theta_{\mathsf{anc},i} \leftarrow \mathsf{mcmc_step}(\theta_{\mathsf{anc},i-1}) \\ &\theta_{\mathsf{init},i} \leftarrow \theta_{i-1}^* \\ &\theta_i^* \leftarrow \mathsf{train}(\theta_{\mathsf{anc},i};\theta_{\mathsf{init},i}) \text{ (Short)} \\ &\mathbf{end} \ \mathbf{for} \end{split}$$

- Allow to build larger ensembles that AE
- SAE ensemble's members are correlated
- Can run SAE multiple times to benefit from different initializations

Sequential Anchored ensembles

Guided-walk Metropolis-Hastings

For SAE to work well, we need:

- $\theta_{\mathsf{anc},i+1}$ close to $\theta_{\mathsf{anc},i}$ (short training)
- $\theta_{\mathsf{anc},(1,..,M)}$ covers $p(\theta)$ well

Guided walk Metropolis-Hastings [Gustafson, 1998]

Guided-walk Metropolis-Hastings

Guided walk Metropolis-Hastings

$$\begin{split} & y \leftarrow \theta_{\mathsf{anc},i-1} + d_{i-1}|z|, \quad z \sim \mathcal{N}(0,\sigma_{\mathsf{step}}) \\ & \alpha \leftarrow \min\left(\frac{p(y)}{p(\theta_{\mathsf{anc},i-1})},1\right) \\ & u \sim \mathcal{U}(0,1) \\ & \text{if } u < \alpha \text{ then} \\ & \theta_{\mathsf{anc},i} \leftarrow y \\ & d_i \leftarrow d_{i-1} \\ & \text{else} \\ & \theta_{\mathsf{anc},i} \leftarrow \theta_{\mathsf{anc},i-1} \\ & d_i \leftarrow -d_{i-1} \\ & \text{end if} \end{split}$$

Guided-walk Metropolis-Hastings

How to choose σ_{step} ?

- Should be as small as possible
- Should span the prior \rightarrow we can verify this!

(a) $\sigma_{\text{step}} = 0.01$

(b) $\sigma_{\text{step}} = 0.02$

Order of magnitude

Number of members in the ensemble

Results

		Cifar10 Resnet		Cifar10-C Alexnet		IMDB		DermaMNIST		UCI-Gap
		Ag.	TV	Ag.	TV	Ag.	TV	Ag.	TV	W_2
1000	AE	0.849	0.201	0.726	0.262	0.892	0.109	0.877	0.104	-0.148
epochs	SAE	0.856	0.176	0.772	0.212	0.887	0.110	0.880	0.098	-0.178
10,000	AE	0.862	0.199	0.746	0.236	0.926	0.086	0.897	0.089	-0.137
epochs	SAE	0.903	0.133	0.787	0.200	0.916	0.099	0.893	0.086	-0.185

Summary

Mail: a.delaunoy@uliege.be

Twitter: @ArnaudDelaunoy

References

- Tim Pearce, Felix Leibfried, and Alexandra Brintrup. Uncertainty in neural networks: Approximatelybayesian ensembling. InInternational conference on artificial intelligence and statistics, pages234–244.
 PMLR, 2020.
- Paul Gustafson. A guided walk metropolis algorithm. Statistics and computing, 8(4):357–364, 1998.