TS. Nguyễn Đình Hiển

BIỂU DIỄN TRI THỰC

HỆ THỐNG GIẢI BÀI TẬP KHÔNG GIAN VECTOR

NHÓM 07

Phan Thị Thùy An 20C29002

Đinh Thị Nữ 20C29013

Lý Phi Long 20C29028

Đặng Khánh Thi 20C29038

Slides: 20 24/07/2021

Bài toán: Hệ thống giải bài tập không gian vector

Miền tri thức: Đại số tuyến tính - Không gian Vector

HỆ THỐNG GIẢI BÀI TẬP VECTOR

- Miền tri thức: Đại số tuyến tính Không gian Vector
- Nguồn thu thập tri thức:
 - Đại số tuyến tính và Ứng dụng, Tập 1, Bùi Xuân Hải Trần Ngọc Hội Trịnh Thanh Đèo Lê
 Văn Luyện, Nhà xuất bản Đại học Quốc gia TP.HCM.
 - Đại số tuyến tính, Nguyễn Hữu Việt Hưng, Nhà xuất bản Đại học Quốc gia Hà Nội.
- Tri thức được thu thập từ hai chương:
 - Ma trận
 - Không gian vector

Phân mục	Yếu tố tri thức	Nội dung	Keyphrase gốc	Keyphrase liên quan	Phân loại
Ma trận	Khái niệm ma trận	Một ma $trận$ cấp $m \times n$ trên R là một bảng chữ nhật gồm m dòng, n cột với mn hệ số trong R có dạng: $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$ Viết tắt: $A = (a_{ij})_{m \times n}$ hay $A = (a_{ij})$, trong đó $a_{ij} \in R$. a_{ij} hay A_{ij} là phần tử ở vị trí dòng i , cột j của A $M_{m \times n}(R)$ là tập hợp tất cả những ma trận cấp $m \times n$ trên R	Ma trận	Các phép biến đổi sơ cấp trên ma trận Hệ phương trình tuyến tính Ma trận khả nghịch Phương trình ma trận	Khái niệm/ Định nghĩa
	Ma trận vuông	Nếu $A\in M_{n\times n}(R)$ (số dòng bằng số cột): $A=\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$ Khi đó, đường chứa các phần tử $a_{11},a_{22},\dots,a_{nn}$ được gọi là đường chéo chính , hay đường chéo của A .	Đường chéo chính Đường chéo Ma trận tam giác trên Ma trận tam giác dưới Ma trận đường chéo	Ma trận	Khái niệm/ Định nghĩa

Một số dạng bài toán trong miền tri thức Không gian vector

- Kiểm tra tổ hợp tuyến tính
- Xác định tính độc lập và phụ thuộc tuyến tính
- Kiểm tra cơ sở của không gian vector
- Tìm cơ sở cho không gian sinh bởi một tập hợp

Một số dạng bài toán trong miền tri thức Không gian vector

STT	Dạng bài toán	Bài toán	Các tri thức liên quan	Ví dụ
1	Kiểm tra tổ hợp tuyến tính	Kiểm tra vector u có là tổ hợp tuyến tính của các vector u ₁ , u ₂ , u ₃ ,, u _n	Tổ hợp tuyến tính	Xét xem vector $u=(1,4-3)$ có là tổ hợp tuyến tính của các vector $u_1=(2,1,1),\ u_2=(-1,1,-1),\ u_3=(1,1,-2)$ hay không? Bài giải Ta có $ \begin{pmatrix} u_1^T & u_2^T & u_3^T & u \end{pmatrix} = \begin{pmatrix} 2 & -1 & 1 & 1 \\ 1 & 1 & 1 & 4 \\ 1 & -1 & -2 & -3 \end{pmatrix} $ $ \xrightarrow{\text{chuẩn hó a}} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end{pmatrix} $ Do đó hệ có nghiệm duy nhất $(x_1, x_2, x_3) = (1, 2, 1)$ Vậy vector u là tổ hợp tuyến tính của các vector u_1, u_2, u_3

MÔ HÌNH TRI THỰC

Miền tri thức "Không gian vector" được biểu diễn theo dạng **mô hình tri thức quan hệ** như sau:

(C, R, Rules)

Trong đó:

	Ý nghĩa	Biểu diễn
С	Tập các khái niệm về không gian vector, ma trận	C = {VECTOR, KG_VECTOR, MATRAN}
R	Các quan hệ giữa các khái niệm trong C	R = {thuộc, không gian con, cơ sở, tập sinh, độc lập tuyến tính, phụ thuộc tuyến tính, bằng nhau, tương đương dòng}
Rules	Tập các luật của tri thức không gian vector	Rules = Rule _{deduce} U Rule _{equivalent}

MÔ HÌNH TRI THỨC

(C, R, Rules)

Cấu trúc các khái niệm trong C:

- ullet VECTOR là khái niệm cơ sở (cấp $C_{(0)}$), được thể hiện bằng $oldsymbol{I}_{\text{Vector}}$
- KG_VECTOR là khái niệm cấp C₍₁₎.

Cấu trúc khái niệm KG_VECTOR là (Attrs, Facts, RulesObj). Với:

```
Attrs := {dim, L}

dim: N // số chiều

L \subseteq I_{Vector}

Facts := \bigcirc

RulesObj :={ r1: \{ \forall u, v \in L, \ \forall \alpha \in R \} \rightarrow \{ \alpha u + v \in L \}

r2: \{ \forall u \in L \} \rightarrow \exists u' \in L: \ u + u' = 0 \}
```

Biểu diễn tập các luật Rules:

 $Rules = Rule_{deduce} \cup Rule_{equivalent}$

Các luật dạng luật dẫn - Rule_{deduce}:

[Rule 1]

 $\{B\colon \textbf{S}_{\text{VECTOR}}, \ V\colon \text{KG_VECTOR}, \ B \ \textbf{co} \ \textbf{so\'{o}} \ V\} \ \rightarrow \ V. \\ \\ \text{dim} = |B| \ (\texttt{s\'o} \ \text{lu\'qng} \ \text{vector} \ \text{trong} \ \texttt{t\^{a}p} \ \text{h\'qp} \ B)$

Các luật tương đương - Rule_{equivalent}:

[Rule 2] {M: S_{VECTOR} , M = { e_1 , e_2 , ..., e_k } }

M độc lập tuyến tính \Leftrightarrow ({ $a_1e_1 + a_2e_2 + ... + a_ke_k = 0$ } \leftrightarrow { $a_1 = a_2 = ... = a_k = 0$ })

[Rule 3] {V: KG_VECTOR, B: S_{VECTOR} , B = {e₁, e₂, ..., e_{V.dim}} }

B **cơ** sở V ⇔ (B độc lập tuyến tính) AND (B tập sinh V)

Biểu diễn các quan hệ R

- Không gian con \subseteq $I_{KGVT} \times I_{KGVT}$: Quan hệ không gian con giữa hai không gian vector.
- $C\sigma s\mathring{\sigma} \subseteq S_{VECTOR} \times I_{KGVT}$: Quan hệ một tập vector là cơ sở của một không gian vector.
- Độc lập tuyến tính $\in I^k_{VECTOR}$: Quan hệ độc lập tuyến tính giữa k vector.
- Phụ thuộc tuyến tính $\subseteq I_{\text{VECTOR}}^{k}$: Quan hệ phụ thuộc tuyến tính giữa k vector.

CÁC VẤN ĐỀ VÀ THUẬT GIẢI TƯƠNG ỨNG

- Dạng 1: Kiểm tra tổ hợp tuyến tính
- Dạng 2: Xác định tính độc lập và phụ thuộc tuyến tính
- Dạng 3: Kiểm tra cơ sở của không gian vector
- Dạng 4: Tìm cơ sở cho không gian sinh bởi một tập hợp

CÁC VẤN ĐỀ VÀ THUẬT GIẢI TƯƠNG ỨNG

Dạng 2: Xác định tính độc lập và phụ thuộc tuyến tính

BÀI TOÁN: Kiểm tra tính độc lập và phụ thuộc tuyến tính của tập hợp vector u_1 , u_2 , u_3 ,..., u_n

MÔ HÌNH BÀI TOÁN:

(O, Facts, Goal)

```
 \begin{aligned} & O = \{ \ u_1, \ u_2, \ u_3, \ ..., \ u_n \colon VECTOR \ \} \\ & Facts = \{ \ M = \{ u_1, \ u_2, \ u_3, ..., \ u_n \} \ , \ |M| = n \ \} \\ & Goal = \{ \ \text{``Kiểm tra''}, \ \ \text{``M độc lập tuyến tính''}, \ \text{``M phụ thuộc tuyến tính''} \ \} \end{aligned}
```

THUẬT GIẢI

```
<u>Bước 1</u>: Đặt A = (u_1, u_2, u_3, ..., u_m)^T
```

Bước 2: Đưa A về dạng bậc thanh hoặc dạng chính tắc theo dòng.

Bước 3: Xác định hạng của A là số dòng khác 0 của ma trận bậc thang của A.

Bước 4: Kiểm tra điều kiện:

- Nếu rank(A) = |M| thì M độc lập tuyến tính.
- Nếu rank(A) < |M| thì M phụ thuộc tuyến tính.

CÁC VẤN ĐỀ VÀ THUẬT GIẢI TƯƠNG ỨNG

Dạng 2: Xác định tính độc lập và phụ thuộc tuyến tính

BƯỚC GIẢI:

```
S1: \{u_1, u_2, u_3, ..., u_m\} \Rightarrow \{\text{ma trận A, dim(A)}\}\
S2: \{u_1, u_2, u_3, ..., u_m; \text{ ma trận A, dim(A)}\} \Rightarrow \{\text{ma trận bậc thang của A, rank(A)}\}\
S3: \{u_1, u_2, u_3, ..., u_m; \text{ ma trận A, dim(A)}; \text{ ma trận bậc thang của A, rank(A)}\} \Rightarrow \{\text{Độc lập tuyến tính}\}\
```

DEMO THỬ NGHIỆM & KẾT QUẢ

THỬ NGHIỆM

Dạng 2: Xác định tính độc lập và phụ thuộc tuyến tính

```
Đề bài: Trong không gian R^3 cho các vectơ u1 = (1, 2, -3); u2 = (2, 5, -1); u3 = (1, 1, -9). Hỏi u1, u2, u3 độc lập hay phụ thuộc tuyến tính?
Phân tích bài toán:
                                                                           Bước 2: Biến đổi về ma trận bậc thang
- Dang bài toán: Xác định tính độc lập và phụ thuộc tuyến tính
 Dữ liêu:
                                                                             Lần lượt thực hiện phép biến đổi sơ cấp trên các dòng sau:
       Các vectors: (1, 2, -3), (2, 5, -1), (1, 1, -9)
                                                                               - dong_2 = dong_2 - (2)*dong_1
                                                                               - dong_3 = dong_3 - (1)*dong_1
     Lời giải:
     Bước 1: Ma trân hóa
                                                                             Lần lượt thực hiện phép biến đổi sơ cấp trên các dòng sau:
                                                                               - dong_1 = dong_1 - (2)*dong_2
                                                                               - dong_3 = dong_3 - (-1)*dong_2
```

KẾT QUẢ THỬ NGHIỆM

- Tập thử nghiệm

Độ khó	Dạng 1	Dạng 2	Dạng 3	Dạng 4
Đơn giản (số vector, số chiều ≤ 3)	4	4	2	3
Phức tạp (số vector, số chiều > 3)	1	2	3	1
Tổng cộng	5	6	5	4

- Kết quả

Kiến thức	Số bài giải được
Tổ hợp tuyến tính	5/5
Độc lập, phụ thuộc tuyến tính	6/6
Cơ sở của không gian vector	5/5
Cơ sở cho không gian sinh bởi tập hợp	4/4

KẾT LUẬN

Hệ thống giải bài tập không gian vector

- Không giới hạn chiều mà ma trận có thể nhập vào.
- Trình bày từng bước giải chi tiết.
- Có thể trích xuất được thông tin dữ liệu cần thiết từ đề bài, nhưng chưa thông minh.
- Cho thấy sự liên kết giữa các mô hình tri thức.

Hướng phát triển

- Cải thiện hệ thống, giải quyết một số bài tập dạng khác.
- Thêm chức năng tra cứu tri thức theo chương/bài.
- Tạo giao diện thân thiện với người dùng.

Cám ơn thấy và các bạn đã chú ý lắng nghe!