

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.03 Прикладная информатика

ОТЧЕТ

по лабораторной работе № 3 Вариант 15

Название:							
Дисциплина:	Прикладной анализ данных						
Студент	ИУ6-55Б		В.К. Полубояров				
		(Подпись, дата)	(И.О. Фамилия)				
Преподаватель			М.А. Кулаев				
		(Подпись, дата)	(И.О. Фамилия)				

- 1. Не забудьте удалить таргеты из предыдущих лабораторных работ из вашей выборки.
- 2. Нормирование (масштабирование) исходных данных. Обратите внимание, что данные (коэффициенты, числа) для нормализации (масштабирования) рассчитываются только на основе обучающей выборки. И затем уже применяются к тестовым данным.
- 3. С помощью библиотеки sklearn сделать fit-predict модели иерархической кластеризации. Произвести кластеризацию 3 раза – с каждым из типов связей, которые мы проходили на занятии (параметр linkage). Построить дендрограмму для каждого типа связи и ней. определить оптимальное число кластеров ПО Выберите наилучший вариант (по вашему мнению) и обоснуйте ваш выбор. Получите итоговые метки кластера для каждого объекта на основе наилучшего варианта и определенного вами по дендрограмме наилучшего числа кластеров.
- 4. С помощью библиотеки sklearn сделать fit-predict модели k-средних. Перебрать по сетке различные варианты числа кластеров. Для каждого посчитать метрику Дэвиса-Болдина. Определить оптимальное число кластеров на основе значений этой метрики (выбрать наилучший вариант кластеризации).
- 5. Посчитайте индекс Рэнда между наилучшей кластеризацией из п.3 и наилучшей кластеризацией из п. 4. Сделать вывод о близости выбранных вами вариантов на основе этого индекса.
- 6. Для одного из наилучших вариантов для каждого кластера посчитать среднее значение признаков в каждом кластере. Проинтерпретировать кластеры на основе различий между средними значениями признаков в различных кластерах (постараться дать «логичные» названия).

Задание 1. Подготовка данных.

Исходя из варианта были подготовлены исходные данные - отобраны строки, соответствующие регионам: Центральный, Центрально-Черноземный, Северо-Кавказский, Западно-Сибирский, Восточно-Сибирский, Дальневосточный районы.

C помощью библиотеки Pandas были получены данные в виде массивов, где X - целевые признаки.

```
df = pd.read_excel('data3.xlsx')
df = df.drop(df.columns[[0, 1]], axis=1)
X = df
```

Рисунок 1 - разбиение данных на две выборки.

Задание 2. Нормирование данных

Для корректной работы с данными необходимо нормировать данные. Для нормирования была выбрана "Стандартизация", которую часто называют Z-оценкой. Она рассчитывается с помощью формулы, отдельно для каждого х.

```
mean_X = X_train.mean()
std_X = X_train.std()

#нормализация тренировочных и тестовых данных

for column in X_train.columns:
    X_train[column] = (X_train[column] - mean_X[column]) / std_X[column]
    X_test[column] = (X_test[column] - mean_X[column]) / std_X[column]
```

Рисунок 2 - нормирование данных.

Задание 3. Иерархическая кластеризация.

Построим дендрограмму для метода ближайших соседей.

```
# Построение матрицы связей
Z = linkage(X, method='single')

# Построение дендрограммы
plt.figure(figsize=(10, 5))
plt.title(f'Dendrogram single linkage')
dendrogram(Z)
plt.show()
```

Рисунок 3 - построение дендрограммы.

Рисунок 4 - дендрограмма для метода ближайших соседей. Получившееся число классов (по черной линии на рисунке 4) равно 5. Однако 4 класса из 5 состоят из одного объекта, что говорит о плохом результате кластеризации данным методом.

Рисунок 5 - дендрограмма для метода центра кластеров.

Результат очень похож на предыдущий, полученный для метода ближайших соседей.

Количество кластеров равно 5. 4 из 5 единичные, что является плохим результатом.

Рисунок 6 - дендрограмма для метода дальнего соседа.

Методом дальнего соседа получилось 4 класса. Два из них являются единичными (Объекты с индексами 5 и 41). Третий класс состоит из 7 объектов. Остальные объекты образуют 4 класс.

По результатам трех различных моделей самым оптимальным для данной выборки является метод дальнего соседа, так как обладает минимальным количеством единичных классов. Также он разделил данные немного "подробнее": в двух других методах все классы, кроме одного были единичными, а все остальные объекты попали в один большой класс. В случае с методом дальнего соседа разделение оказалось чуть более удачным. Два класса единичные (предположительно - выбросы в данных), и два не единичных класса. Теперь обучим модель по linkage = complete и n clusters = 4.

```
best_model = AgglomerativeClustering(linkage='complete', n_clusters=4)
best_model.fit(X)

# Предсказание кластеров
predicted_labels = best_model.fit_predict(X)
predicted_labels
```

Рисунок 7 - обучение модели по выбранному методу. Теперь определим метки кластеров для наших данных. (см. ниже)

	_		
*	0	_	1
0			0
25			0
26			0
27			0
28			0
29			0
30 31			0
32			0
47			0
35			0
37			0
39			0
40			0
42			0
43			0
44			0
45			0
46			0
36			0
23			0
24			0
10			0
1			0
2			0
3			0
4			0
6			0
7			0
8			0
9			0
11			0
48			0
13			0
14			0
15			0
16			0
17			0
18			0
12			0
33			1
34			1
21			1
38			1
19			1
20			1
22			1
41			2
5			3

Рисунок 8 - метки кластеров.

Результат аналогичен тому, что был получен при построении дендрограммы. Следовательно, полученный результат корректный.

Задание 4. Метод К-средних

Сделаем fit-predict модели k-средних. Необходимо подобрать параметр количества кластеров. Подбор будем осуществлять перебором по сетке с помощью метрики Дэвиса-Болдина. Это среднее значение максимального отношения между расстоянием точки от центра ее группы и расстоянием между двумя центрами групп. Ноль — это наименьший возможный результат. Значения, близкие к нулю, указывают на лучшее разделение.

```
def davies_bouldin_score(estimator, X):
    estimator.fit(X)
    labels = estimator.labels_
    score = metrics.davies_bouldin_score(X, labels)
    return score

kmeans = KMeans()
grid_space={'n_clusters': range(2,50)}
grid = GridSearchCV(kmeans, param_grid=grid_space, cv=5, scoring=davies_bouldin_score)
grid.fit(X)
print(grid.best_params_)
```

{'n_clusters': 4}

Рисунок 9 - подбор параметра количества кластеров по сетке. В результате наилучшее количество кластеров равно 4.

Задание 5. Индекс Рэнда.

Необходимо посчитать индекс Рэнда между двумя лучшими кластеризациями из пунктов 3 и 4.

Индекс Рэнда — это способ сравнить сходство результатов между двумя разными методами кластеризации. Он оценивает, насколько

много из тех пар элементов, которые находились в одном классе, и тех пар элементов, которые находились в разных классах, сохранили это состояние после кластеризации алгоритмом.

Часто обозначаемый R, индекс Рэнда рассчитывается как:

$$R = (a+b) / (n C 2)$$

где:

- а: количество раз, когда пара элементов принадлежит одному и тому же кластеру при использовании двух методов кластеризации.
- b: количество раз, когда пара элементов принадлежит разностным кластерам по двум методам кластеризации.
- n C 2 : количество неупорядоченных пар в наборе из n элементов.

Индекс Рэнда всегда принимает значение от 0 до 1, где:

- 0: Указывает, что два метода кластеризации не согласуются с кластеризацией любой пары элементов.
- 1: Указывает, что два метода кластеризации полностью согласуются в отношении кластеризации каждой пары элементов.

Рассчитаем индекс Рэнда в программе.

```
# Вычисление индекса Рэнда между предсказанными метками из пункта 3 и пункта 4 rand_index = rand_score(predicted_labels, knn.predict(X)) print("Индекс Рэнда между кластеризациями из пунктов 3 и 4:", rand_index)
```

Индекс Рэнда между кластеризациями из пунктов 3 и 4: 0.6003401360544217

Рисунок 10 - индекс Рэнда.

Полученное значение - 0.6.

Значение индекса Рэнда равное 0.6 свидетельствует о том, что есть некоторое сходство между кластеризациями, но они также имеют значительные различия.

Задание 6. Интерпретация полученных результатов.

Для интерпретации результатов воспользуемся моделью, полученной с помощью k-средних. Посчитаем среднее значение каждого признака в кластерах.

```
labels = knn.labels_

# Добавление меток кластеров к исходным данным
X_labeled = X.copy()
X_labeled['Cluster'] = labels

# Расчет средних значений для каждого кластера
cluster_means = X_labeled.groupby('Cluster').mean()
cluster_means
```

< 4 rows ∨ > > 4 rows × 9 columns									v <u>∓</u> × ⊚
Cluster [‡]	x1 ‡	x2	x3 ‡	x4 ‡	x5 ‡	x6 ‡	x7 ‡	x8 ‡	x9 ‡
0	0.060393	-0.541650	-0.214980	0.500239	0.553504	-0.227262	0.072397	-0.103088	0.821573
1	-0.529136	0.774356	0.301442	0.009262	-0.306430	-0.011414	-0.113674	-0.314172	-0.428128
2	1.714902	-1.102478	-0.931954	-1.510305	-0.101507	-0.937973	-1.238630	1.842982	-0.408651
3	-0.253844	-0.238748	0.623329	0.572957	-0.170111	2.045171	2.017056	-0.888555	-0.008847

Рисунок 11 - расчет средних значений признаков по кластерам Рассмотрим кластеры:

- Кластер 0 "Средние" регионы с высокой преступностью
 - Средняя рождаемость (x1)
 - Низкая смертность (x2)
 - Немного ниже среднего число браков (x3)
 - Выше среднего число разводов (х4)
 - Выше среднего коэффициент младенческой смертности (x5)
 - Умеренное соотношение денежного дохода и прожиточного минимума (x6)

- Умеренное соотношение средней оплаты труда и прожиточного минимума трудоспособного населения (х7)
- Ниже среднего количество населения с денежными доходами ниже прожиточного минимума (x8)
- Высокое число зарегистрированных преступлений (х9)
- Кластер 1 Регионы с плохой демографией
 - Низкая рождаемость (x1)
 - Высокая смертность (x2)
 - Немного выше среднего число браков (х3)
 - Среднее число разводов (х4)
 - Низкий коэффициент младенческой смертности (x5)
 - Умеренное соотношение денежного дохода и прожиточного минимума (x6)
 - Умеренное соотношение средней оплаты труда и прожиточного минимума трудоспособного населения (х7)
 - Низкая численность населения с денежными доходами ниже прожиточного минимума (x8)
 - Ниже среднего число зарегистрированных преступлений (x9)
- Кластер 2 "Бедные" регионы
 - Высокая рождаемость (x1)
 - Низкая смертность (х2)
 - Низкое число браков (х3)
 - Среднее число разводов (х4)
 - Ниже среднего младенческой смертности (х5)
 - Низкое соотношение денежного дохода и прожиточного минимума (x6)
 - Низкое соотношение средней оплаты труда и прожиточного минимума трудоспособного населения (х7)

- Высокая численность населения с денежными доходами ниже прожиточного минимума (x8)
- Ниже среднего число зарегистрированных преступлений (x9)
- Кластер 3 Экономически развитые регионы
 - Ниже среднего рождаемость (x1)
 - Ниже среднего смертность (x2)
 - Выше среднего число браков (x3)
 - Выше среднего число разводов (x4)
 - Немного ниже среднего коэффициент младенческой смертности (x5)
 - Высокое соотношение денежного дохода и прожиточного минимума (x6)
 - Высокое соотношение средней оплаты труда и прожиточного минимума трудоспособного населения (x7)
 - Низкая численность населения с денежными доходами ниже прожиточного минимума (x8)
 - Среднего число зарегистрированных преступлений (x9)

Вывод: в ходе выполнения лабораторной работы были изучены методы обучения без учителя: агломеративная кластеризация с различными типами связями и метод k-средних. Также были изучены метрика Дэвиса-Болдина и индекс Рэнда.