$$(3)c) \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0$$

Vil ha: lim an er verken Oeller oo.

La
$$\{a_n\}=\{\frac{1}{n}\}$$
, $\{b_n\}=\{\frac{1}{n}\}$. Da vil
 $\lim_{n\to\infty} a_n=\lim_{n\to\infty} \frac{1}{n}=0$

$$\lim_{n\to\infty}b_n=0$$

Here med:
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{1}{h} = \lim_{n\to\infty} \left[\frac{1}{h} + \frac{1}{h} \right] = \lim_{n\to\infty} \frac{1}{h} = \lim_{n\to\infty} \frac{1}{h}$$

$$\{C_n\}=\left\{\begin{array}{c}2\\n\end{array}\right\}$$

5.1: Kontinuitet

1) e)
$$f(x) = \frac{\sqrt{x+2}}{\ln|x|}$$
; antar $f \rightarrow 1R$ (reell funksjon)

Vy er definer for
$$y \ge D$$
 (pga.)
 $y = x + 2 \ge 0$
 $x \ge -2$

$$ln|x|$$
 er definert for alle $x \neq 0$.
 $ln|x|$ er definert for alle $x \neq 0$ og s.a. $ln|x| \neq 0$,
 $ln|x|$ er $definert$ for alle $x \neq 0$ og s.a. $ln|x| \neq 0$,

$$\Rightarrow D = \{x \in \mathbb{R} \mid x > -2, x \notin \{-1, 0, 1\} \}$$
definisjons-
mengde f

$$\Rightarrow x = \ln(x^2 + 1), x \in \mathbb{R} :$$

$$x \in \mathbb{R} \Rightarrow x^2 \in \mathbb{R}_+ \Rightarrow x^2 + 1 \in [1, \infty)$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(y)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(x^2 + 1) \in [\ln(1), \lim_{y \to \infty} \ln(x^2 + 1)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{x \to \infty} \ln(x^2 + 1) \in [\ln(1), \lim_{x \to \infty} \ln(x^2 + 1)]$$

$$\Rightarrow \ln(x^2 + 1) \in [\ln(1), \lim_{x \to \infty} \ln(x^2 + 1) \in [\ln($$

Velg
$$\delta = \mathcal{E}$$
. this $|x-4| = |h| < \delta$, so ex $|f(x)-f(4)| < |h| < \delta = \mathcal{E}$ $\delta = \frac{\mathcal{E}}{2} < \mathcal{E}$ so dermed or $\delta = \frac{\mathcal{E}}{2} < \mathcal{E}$ for $\delta = \frac{\mathcal{E}}{2} < \mathcal{E}$ so dermed or $\delta = \frac{\mathcal{E}}{2} < \mathcal{E}$ for $\delta = \frac{\mathcal{E}}{2} < \mathcal{E}$ so dermed or $\delta = \frac{\mathcal{E}}{2} < \mathcal{E}$ for $\delta = \frac{\mathcal{E}}{2} < \mathcal{E}$ so dermed or $\delta = \frac{\mathcal{E}$

Men du er:

$$\frac{|f(x) - f(0)| = |\cos \frac{1}{x} - 0| = |\cos \frac{1}{x}|}{= |\cos (2k\pi)| = 1 > \frac{1}{2} = \frac{\varepsilon}{2}},$$

Så dermed er f ikke kontinuertig i

1) b)
$$f(x) = e^{x} - x - 2$$
 is $[0,2]$:

Jer en kontinuerlig funksjon.

$$J(0) = e^{\circ} - 0 - 2 = -1 < 0$$

$$f(2) = e^2 - 2 - 2 > 0$$

=2,71) Skjæningssetningen gir da at f har nullpunkt(er) i (0,2).

3) a)
$$f(x) = \ln(x)$$
, $g(x) = x^2 - 2$, $[1,2]$:

 $f(y) = 0$ = $f(y) > g(y)$
 $g(y) = -1$
 $f(y) = -1$
 $f(y) = 1$
 $g(y) = 1$
 $g(y) = 2$
 $g(y) = 2$