ДЗ 11 (кардинальное)

Владимир Латыпов

donrumata03@gmail.com

Содержание

1 Существенность для ординальности	3
2 Никто не принадлежит себе	3
3 Равенство элементов множеств из одного элемента	3
7	3
8	3
9	3
10 (Кадинальная)	4
10.1 Неперерывные функции	4
10.2 Произвольные вещественнозначные функции	4
11 Тёмный кардинал	. 5
11.1 Приложение: континуальность ${\Bbb R}$. 5

1 Существенность для ординальности

Пример (Вполне упорядоченное отношением \in , но не транзитивное): $A = \{\{\varnothing\}\}$. С одной стороны, у любого непустого подмножества (то есть самого A) есть минимальный элемент $\{\varnothing\}$.

Однако $\{\varnothing\}\in A$, $\varnothing\in\{\varnothing\}$, но $\{\varnothing\}\notin A$, что портиворечит определению транзитивности.

Пример (Транзитивное, но не вполне упорядоченное): $B=\{\{\{\varnothing\}\},\varnothing\}$, $C=\{\{\{\varnothing\}\},\{\varnothing\}\}$

2 Никто не принадлежит себе

Аксиома фундирования: непустое множество A содежит элемент, не пересекается с A.

Но если $x \in x$, то для $\{x\}$ должно быть $x \cap \{x\} = \emptyset$, однако $x \cap \{x\} = x \neq \emptyset$.

3 Равенство элементов множеств из одного элемента

7

Определение биективности

8 ...

$$\exists b_0 \in b$$

$$\forall x. \, x \in A \rightarrow \exists ! y. \, \langle x, y \rangle \in b$$

Возьмём отношение, где второй элемент константен (который существует, так как b непусто), а первый любой. Существует, так как фильтруем декартово произведение (существует по задаче) по предикату $\langle x,y \rangle \to y = b_0$.

Оно функционально.

Первая часть (существование)

9 ...

10 (Кадинальная)

10.1 Неперерывные функции

Лемма 10.1.1: $|\mathbb{R}| \leq |C(\mathbb{R})|$

Доказательство: Инъектируем $x\mapsto \lambda y.\,x$, все функции такого виде для разных x — разные.

Теорема 10.1.2: $|C(\mathbb{R})| \leq |\mathbb{R}|$

Доказательство:

- $|C(\mathbb{R})| = |C(\mathbb{Q} \to \mathbb{R})|$, отображение:
 - 1. в сторону $C(\mathbb{Q} \to \mathbb{R}) \to C(\mathbb{R})$: доопределяем по непрерывности
 - 2. в сторону $C(\mathbb{R}) \to C(\mathbb{Q} \to \mathbb{R})$: сужаем
- $m{\cdot} \ |C(\mathbb{Q} o \mathbb{R})| \leq |\mathbb{Q} o \mathbb{R}| = |\mathbb{N} o \mathcal{P}(\mathbb{N})| = |\mathcal{P}(\mathbb{N})|$, так как возьмём $(\mathbb{P} o \mathcal{P}(\mathbb{N})) o \mathcal{P}(\mathbb{N}) : \langle p,s
 angle o \max \ (\lambda y. \, p^y) \ s$

Теорема 10.1.3: $|\mathbb{R}| = |C(\mathbb{R})|$

Доказательство: Теорема об антисимметричности.

10.2 Произвольные вещественнозначные функции

Лемма 10.2.1: $|\mathcal{P}(\mathbb{R})| \leq |\mathbb{R} \to \mathbb{R}|$

Доказательство: $\mathcal{P}(\mathbb{R}) \to (\mathbb{R} \to \mathbb{R}) : s \to \chi_s$

Обратно:

Лемма 10.2.2: $|\mathcal{P}(\mathbb{R})| \geq |\mathbb{R} \to \mathbb{R}|$

Доказательство: $\mathbb{R} \times \mathbb{R} = \mathbb{R}$, так как кривая Гильберта.

$$|\mathbb{R} \to \mathbb{R}| \le \mathcal{P}(\mathbb{R} \times \mathbb{R}) = \mathcal{P}(\mathbb{R})$$

Теорема 10.2.3: $|\mathcal{P}(\mathbb{R})| = |\mathbb{R} \to \mathbb{R}|$

Доказательство: Теорема об антисимметричности.

11 Тёмный кардинал

 $\cdot \ |\mathbb{R}| \leq |\mathcal{P}(\mathbb{N})|$, так как множество натуральных чисел — суть битовый вектор записи вещественного в двоичной системе счисления.

- $\cdot \ |\mathbb{R}| \geq |\mathcal{P}(\mathbb{N})|$, так как возьмём десятичную запись и множества, где из каждого десятка есть все, кроме 1 и 9.
- Второе: частный случай пункта 1 номера 10
- . Третье: Непрерывные $|Q \to Q|$ хотя бы континуально, так как $\mathcal{P}(\mathbb{N}) \to (\mathbb{N} \to \mathbb{N}): s \to \chi_s$

Итого: все континуальны.

11.1 Приложение: континуальность $\mathbb R$

Теорема 11.1.1: $|\mathbb{R}| \leq |\mathcal{P}(\mathbb{N})|$

Доказательство: Числу x на отрезке [0,1] сопоставим какое-то, например, минимальное как битовый вектор его (бесконечное) представление в двоичной системе счисления (легко делается итеративным алгоритмом и индукцией), а ему — множество $\{n\in\mathbb{N}\mid x_2[n]=1\}$. Это инъекция, так как разные числа отличаются хотя бы

Теорема 11.1.2: $|\mathbb{R}| \geq |\mathcal{P}(\mathbb{N})|$

Доказательство:

Построим инъекцию $B \to \mathbb{R}$, где

$$B = \Bigg\{S \subset \mathbb{N} \mid \forall i \in \mathbb{N}_0 : \Bigg|S \bigg|_{[10i,10i+10)}\Bigg| = 1 \wedge 10i + 0 \not\in S \wedge 10i + 9 \not\in S \Bigg\}.$$

 $|B|=|\mathcal{P}(\mathbb{N})|$ (\geq , так как $f:|\mathcal{P}(\mathbb{N})|\to |B|$, $s\mapsto \mathrm{map}\ (\lambda x.\ x\cdot 10+5)\ s$ — инъекция).

Итак, финальная, давно анонсированная инъекция: $S\mapsto \left\{S\right\}_{10}$ — представление в десятичной системе счисления, где i-й разряд — тот единственный $d\in S\Big|_{[10i,10i+10)}$.

Покажем, что это инъекция. Пусть у числа $\in [0,1]$ два представления в таким виде. Тогда посмотрим на первый разряд k, в котором они отличаются. Тогда $0 = \left| \left\{ S \right\}_{10} - \left\{ S \right\}_{10} \right| \geq 10^{-k-1}$, что неверно.

Лемма 11.1.3: Разные бинарные представления допускают только рациональные числа.

Доказательство: Пусть есть два разных вектора a_i,b_i , сходящихся к одному и тому же числу, то есть $\lim \left(a_{[1,n]}\right)_{\mathbb{R}}=a=b=\lim \left(b_{[1,n]}\right)_{\mathbb{R}}$. Покажем, что одно из них с какого-то момента $\equiv 1$, а другое $-\equiv 0$.

Рассмотрим минимальный индекс i, в котором они отличаются (имеем право в силу вполне упорядоченности $\mathbb N$). НУО, $a_i=0, b_i=1$. Покажем, что $\forall j>i: a_j=1, b_j=0$. Действительно, если найдётся $j^*: a_{j^*}=0 \lor b_{j^*}=1$, то $b-a \geq 2^{-j^*-1}$, что портиворечит определнию предела.

Таким образом, если число допускает несколько представлений, оно рационально как конечная двоичная дробь. $\hfill \Box$

Доказательство: (альтернативное, теоремы 2). Иррациональные числа биективно соответствую представлениям себя в двоичной системе счисления. А рациональные — счётны. Тогда их объединение равномощно битовым векторам. □