Efficient Regular Pattern Matching avoiding Denial of Service

Daniel Afonso de Resende

Mestrado em Segurança Informática Departamento de Ciência de Computadores 2025

Orientador

Nelma Resende Araújo Moreira, Categoria Faculdade de Ciências da Universidade do Porto

Coorientador

Nome do Orientador, Categoria Faculdade de Ciências da Universidade do Porto

U.	PORTO
FC	FACULDADE DE CIÊNCIAS UNIVERSIDADE DO PORTO

Todas as correções determinadas pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ____/___/____

Abstract

Hey, this is the abstract of my thesis. It should be a brief summary of the work, highlighting the main objectives, methods, results, and conclusions. The abstract should be concise and informative, allowing readers to quickly understand the essence of the research. **Keywords:** key, word.

Resumo

O teu resumo COOL, its me

Palavras-chave: palavra, chave..

Acknowledgements

First of all, I would like to thank my family, etc, etc

Dedico à minha mãe ...

Contents

At	ostract	V
Re	esumo	vii
Ac	cknowledgements	ix
Co	ontents	xii
Lis	st of Figures	xiii
Lis	stings	xv
Ac	eronyms	xvii
1	Introduction	1
	1.1 Background	1
2	Preliminaries	3
	2.1 Alphabets, Strings and Languages	3
3	State of the Art	5
	3.1 Overview of XYZ	5
4	Implementation	7
	4.1 Client-Server Architecture	7
5	Results and Discussion	Q

	5.1	Evaluation	9	
6	Con	clusion	11	
	6.1	Findings Summary	11	
	6.2	Contributions	11	
Bi	ibliography			

List of Figures

Listings

Acronyms

Introduction

In this chapter, the problem is overviewed, the study's importance is explained along with goals for the proposed solution.

1.1 Background

Despite recent advances in [1],

Preliminaries

Theory builds upon theory, therefore it is essential to establish a solid foundation by understanding the basic concepts and terminology that compose the core topics of formal languages and automata theory. In this chapter we begin by formally defining what a language is and then move on to describe the class of languages known as regular languages. Along the way, we will also introduce various concepts such as finite/non-finite automata and regular expressions.

2.1 Alphabets, Strings and Languages

Alphabets

An *alphabet* is a finite, non-empty set of symbols. It is usually denoted by the Greek letter Σ .

$$\Sigma = \{a_1, a_2, \dots, a_n\}$$

where each a_i is a symbol.

For example, one can represent the binary alphabet as $\Sigma = \{0, 1\}$, or the English alphabet as $\Sigma = \{a, b, c, \dots, z\}$.

Strings

A *string* over an alphabet Σ is a finite sequence of symbols from Σ .

- The empty string (the string of length 0) is denoted by ε . - If w is a string, then |w| denotes the *length* of w. - The set of all strings (including the empty string) that can be formed from Σ is denoted by Σ^* .

$$\Sigma^* = \{ w \mid w \text{ is a finite sequence of symbols from } \Sigma \}$$

For example, if $\Sigma = \{0, 1\}$, then we have that:

$$\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, \ldots\}$$

Where the empty string is, as mentioned above, denoted by ε and also belongs to Σ^* .

Languages

A *language* over an alphabet Σ is a set of strings over Σ .

$$L\subseteq \Sigma^*$$

That is, a language is any subset of Σ^* , possibly infinite, finite, or even empty. Since a language is a set of strings, the following standard set operations can be applied:

- Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Difference: $A B = \{x \mid x \in A \text{ and } x \notin B\}$

Furthermore, we can also operate

The *complement* of a language L over an alphabet Σ is denoted by \overline{L} and is defined as:

State of the Art

3.1 Overview of XYZ

Computers are devices that

Implementation

The implementation chapter gives insights into

4.1 Client-Server Architecture

This section describes the client-server architecture, which is important in the development of the application. It focuses on coordination of the mobile/web clients developed using Flutter and the Firebase server to support instant data flow, secure sign-in, and retrieval/storing of the data.

Results and Discussion

This is a test

5.1 Evaluation

The methods of evaluating

Conclusion

6.1 Findings Summary

This research and development project served the objective of

6.2 Contributions

Bibliography

[1] Chen-Lin Lee. 'Exploring the Introduction of Cloud Computing into Medical Information Systems'. In: *Journal of Computers* (2018) (cit. on p. 1).