Lie 代数

箱

2025年5月24日

概要

Lie 代数やそれに関連する基本的な概念を定義する.その後,冪零 Lie 代数,可解 Lie 代数,半単純 Lie 代数に対する基本的な定理を証明する.

目次

1	Lie 代数	2
1.1	Lie 代数	2
1.2	随伴表現	4
1.3	イデアルと特性イデアル	5
1.4	中心化子と正規化子	6
2	包絡代数	7
2.1	包絡代数	7
2.2	Poincaré-Birkhoff-Witt の定理	7
3	表現	9
3.1	表現	9
3.2	表現に対する演算	10
3.3	既約表現	11
3.4	不変双線型形式	12
3.5	トレース形式,Killing 形式	13
3.6	Casimir 元	15
4	幂零 Lie 代数	16
4.1	幂零 Lie 代数	16
4.2	Engel の定理	17
5	可解 Lie 代数	19
5.1	可解 Lie 代数	19
5.2	根基	20
5.3	冪零根基	20
5.4	Lioの実理	22

5.5	可解性に関する Cartan の判定法	23
5.6	根基・冪零根基と係数体の変更・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	26
6	半単純 Lie 代数	26
6.1	単純 Lie 代数と半単純 Lie 代数	26
6.2	半単純性に関する Cartan の判定法	27
6.3	半単純 Lie 代数の分解	28
6.4	11 sh = 2 2 2 2 4 4 12 2 2 2 2 2 2 2 2 2 2 2 2	
6.5	簡約 Lie 代数	31
6.6	単純性・半単純性・簡約性と係数体の変更	33
6.7	半単純 Lie 代数の半単純元と冪零元	34
6.8	半単純 Lie 代数の例	36

記号と用語

- ・ 本稿を通して、特に断らない限り、 № を可換体とし、線型空間などの係数体は № であるとする.
- n 次単位行列を、 I_n と書く.添字の組 (i,j) に対応する行列単位を、 E_{ij} と書く.
- 線型空間 A が, $A \times A$ から A への双線型写像を備えているとき,A を結合的とは限らない代数という. 結合的とは限らない代数 A に定まっている双線型写像を,この結合的とは限らない代数の乗法といい, 特に断らなければ $(x,y)\mapsto xy$ と書く.
- 結合的とは限らない代数 A であって,その乗法が結合的である(すなわち,任意の $x, y, z \in A$ に対して (xy)z = x(yz) である)ものを,結合代数という.
- 結合的とは限らない代数 A 上の導分とは、線型写像 $D: A \to A$ であって、任意の $x, y \in A$ に対して D(xy) = D(x)y + xD(y) を満たすものをいう。A 上の導分全体のなす空間を、Der(A) と書く.
- 線型空間 V のテンソル代数を $\mathbf{T}(V)=\bigoplus_{n\in\mathbb{N}}\mathbf{T}^n(V)$ と書き、対称代数を $\mathbf{S}(V)=\bigoplus_{n\in\mathbb{N}}\mathbf{S}^n(V)$ と書く.

1 Lie 代数

1.1 Lie 代数

定義 1.1(Lie 代数) 結合的とは限らない \mathbb{K} -代数 \mathfrak{g} であって,その乗法($(x,y)\mapsto [x,y]$ と書く)が次のすべての条件を満たすものを, \mathbb{K} 上の Lie 代数(Lie algebra over \mathbb{K}), \mathbb{K} -Lie 代数,あるいは単に Lie 代数という.

- (LIE1) 任意の $x \in \mathfrak{g}$ に対して, [x,x] = 0 である.
- (LIE2) 任意の $x, y, z \in \mathfrak{g}$ に対して,[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 である(この等式を,**Jacobi の 恒等式**という).
- 注意 1.2 A を結合的とは限らない代数とする. 任意の $x \in A$ に対して xx = 0 ならば、任意の $x, y \in A$ に

対して,

$$0 = (x + y)(x + y) = xx + xy + yx + yy = xy + yx$$

だから, yx = -xy である. 逆に, 係数体 $\mathbb K$ の標数が 2 でなく, 任意の $x, y \in A$ に対して yx = -xy ならば, 任意の $x \in A$ に対して, xx = -xx より xx = 0 を得る.

前段に述べたことより、Lie 代数 $\mathfrak g$ は次の条件 (LIE1') を満たし、係数体 $\mathbb K$ の標数が 2 でなければ、Lie 代数の定義(定義 1.1)において (LIE1) を (LIE1') に置き換えてもよい.

(LIE1') 任意の $x, y \in \mathfrak{g}$ に対して, [y, x] = -[x, y] である.

Lie 代数 $\mathfrak g$ の部分代数 $\mathfrak h$ は、ふたたび Lie 代数である.このようにして得られる Lie 代数を、 $\mathfrak g$ の**部分 Lie** 代数 (Lie subalgebra) という.

(LIE1') より、Lie 代数において左イデアル、右イデアル、両側イデアルは同じものだから、これらを単にイデアルという。Lie 代数 \mathfrak{g} とそのイデアル \mathfrak{a} から定まる商代数 $\mathfrak{g}/\mathfrak{a}$ は、ふたたび Lie 代数である。このようにして得られる Lie 代数を、 \mathfrak{g} の**商 Lie 代数**(quotient Lie algebra)という.

Lie 代数の族 $(\mathfrak{g}_i)_{i\in I}$ に対して,その直和代数 $\bigoplus_{i\in I}\mathfrak{g}_i$ と積代数 $\prod_{i\in I}\mathfrak{g}_i$ は,ふたたび Lie 代数をなす.これらをそれぞれ, $(\mathfrak{g}_i)_{i\in I}$ の**直和 Lie 代数**(direct sum Lie algebra),**積 Lie 代数**(product Lie algebra)という.

Lie 代数の間の代数の準同型・同型を、それぞれ **Lie 代数の準同型・同型**という。Lie 代数の構造を考えていることが明らかである場合には、単に準同型・同型ともいう。 \mathfrak{g} , \mathfrak{h} を Lie 代数とし、 $f:\mathfrak{g}\to\mathfrak{h}$ を Lie 代数の準同型とする。Ker f は \mathfrak{g} のイデアル、Im f は \mathfrak{h} の部分 Lie 代数であり、f は $\mathfrak{g}/\mathrm{Ker}\,f$ から Im f への Lie 代数の同型を誘導する。 \mathfrak{g} が \mathfrak{g} の部分 Lie 代数・イデアルならば、それぞれの場合、 $f(\mathfrak{g})$ は \mathfrak{g} の部分 Lie 代数・イデアルである。 \mathfrak{h} が \mathfrak{h} の部分 Lie 代数・イデアルである。

 \mathfrak{g} を Lie 代数とし, $(\mathfrak{g}_i)_{i\in I}$ をその部分 Lie 代数の族とする.包含準同型の全体が誘導する直和 Lie 代数 $\bigoplus_{i\in I}\mathfrak{g}_i$ から \mathfrak{g} への線型写像が Lie 代数の同型であるとき, \mathfrak{g} は Lie 代数として $(\mathfrak{g}_i)_{i\in I}$ に直和分解されると いい,しばしば \mathfrak{g} と $\bigoplus_{i\in I}\mathfrak{g}_i$ を Lie 代数として同一視する.容易に確かめられるように, \mathfrak{g} が Lie 代数として $(\mathfrak{g}_i)_{i\in I}$ に直和分解されるための必要十分条件は, \mathfrak{g} が線型空間として $(\mathfrak{g}_i)_{i\in I}$ に直和分解され,すべての \mathfrak{g}_i が \mathfrak{g} のイデアルであることである.

 \mathbb{K}' を \mathbb{K} の拡大体とする. \mathbb{K} -Lie 代数 \mathfrak{g} の係数拡大 $\mathfrak{g}_{(\mathbb{K}')}$ は, \mathbb{K}' -Lie 代数である. \mathbb{K}' -Lie 代数の係数の制限 $\mathfrak{g}'_{\mathbb{K}}$ は, \mathbb{K} -Lie 代数である.

定義 1.3(可換 Lie 代数) \mathfrak{g} を Lie 代数とする. $x, y \in \mathfrak{g}$ が [x,y] = 0 を満たすとき,x と y は**可換**である (commute) という. \mathfrak{g} が**可換** (commutative) であるとは, \mathfrak{g} の任意の 2 元が可換であることをいう.

例 1.4 A を結合代数とする. $x, y \in A$ に対して,[x,y] = xy - yx を x と y の**交換子**(commutator)といい,容易に確かめられるように,A はこれを乗法として Lie 代数をなす.x と y が結合代数 A の乗法に関して可換であることと,A を交換子によって Lie 代数とみなすときに定義 1.3 の意味で可換であることとは同値である.

例 1.5 V を線型空間とする.

(1) V 上の線型変換全体のなす結合代数 $\operatorname{End}(V)$ を交換子によって Lie 代数とみなしたものを、 $\operatorname{\mathfrak{gl}}(V)$ と

書く. これを、一般線型 Lie 代数 (general linear Lie algebra) という. $n \in \mathbb{N}$ に対して、 $\mathfrak{gl}(\mathbb{K}^n)$ を $\mathfrak{gl}(n,\mathbb{K})$ とも書く.

(2) V が有限次元であるとする. このとき, 容易に確かめられるように,

$$\mathfrak{sl}(V) = \{x \in \mathfrak{gl}(V) \mid \operatorname{tr} x = 0\}$$

は $\mathfrak{gl}(V)$ の部分 Lie 代数である. これを、特殊線型 Lie 代数(special linear Lie algebra)という. $n \in \mathbb{N}$ に対して、 $\mathfrak{sl}(\mathbb{K}^n)$ を $\mathfrak{sl}(n,\mathbb{K})$ とも書く.

例 1.6 V を線型空間とし、 $\Phi: V \times V \to \mathbb{K}$ を双線型形式とする. このとき、容易に確かめられるように、

$$\mathfrak{g}_{\Phi} = \{x \in \mathfrak{gl}(V) \mid \text{任意の } v, w \in V \text{ に対して } \Phi(x(v), w) + \Phi(v, x(w)) = 0\}$$

は $\mathfrak{gl}(V)$ の部分 Lie 代数である.

(1) V が有限次元線型空間であり, Φ : $V \times V \to \mathbb{K}$ が非退化対称双線型形式であるとする.このとき,上記の \mathfrak{g}_{Φ} を,**直交 Lie 代数**(orthogonal Lie algebra)といい, $\mathfrak{o}(V,\Phi)$ と書く. Φ を \mathbb{K}^n ($n \in \mathbb{N}$)上の標準的な非退化対称双線型形式(すなわち, $v=(v_1,\ldots,v_n)$ と $w=(w_1,\ldots,w_n)$ に対して $\Phi(v,w)=\sum_{i=1}^n v_i w_i$ として定まるもの)とするときの直交 Lie 代数 $\mathfrak{o}(\mathbb{K}^n,\Phi)$ を, $\mathfrak{o}(n,\mathbb{K})$ とも書く.行列のなす Lie 代数として表示すれば,

$$\mathfrak{o}(n,\mathbb{K}) = \{ X \in \mathfrak{gl}(n,\mathbb{K}) \mid X + X^{\mathrm{T}} = 0 \}$$

となる.

(2) V が有限次元線型空間であり、 $\Phi: V \times V \to \mathbb{K}$ が非退化交代双線型形式であるとする.このとき、上記の \mathfrak{g}_{Φ} を、**シンプレクティック Lie 代数**(symplectic Lie algebra)といい、 $\mathfrak{sp}(V,\Phi)$ と書く. Φ を \mathbb{K}^{2n} $(n \in \mathbb{N})$ 上の標準的な非退化交代双線型形式(すなわち、 $v = (v_1, \ldots, v_{2n})$ と $w = (w_1, \ldots, w_{2n})$ に対して $\Phi(v, w) = \sum_{i=1}^n v_i w_{n+i} - \sum_{i=1}^n v_{n+i} w_i$ として定まるもの)とするときのシンプレクティック Lie 代数 $\mathfrak{sp}(\mathbb{K}^{2n}, \Phi)$ を、 $\mathfrak{sp}(n, \mathbb{K})$ とも書く.行列のなす Lie 代数として表示すれば、

$$\mathfrak{sp}(n, \mathbb{K}) = \{ X \in \mathfrak{gl}(2n, \mathbb{K}) \mid J_n X + X^{\mathrm{T}} J_n = 0 \}$$
$$= \left\{ \begin{pmatrix} A & B \\ C & -A^{\mathrm{T}} \end{pmatrix} \mid A \in \mathfrak{gl}(n, \mathbb{K}), B, C \in \mathrm{Sym}(n, \mathbb{K}) \right\}$$

 $(J_n=\left(egin{array}{cc}0&I_n\\-I_n&0\end{array}
ight)$ であり、 $\mathrm{Sym}(n,\mathbb{K})$ は \mathbb{K} 上の n 次対称行列全体のなす空間を表す)となる.

例 1.7 A を結合的とは限らない代数とするとき,容易に確かめられるように,A 上の導分全体のなす空間 $\mathrm{Der}(A)$ は, $\mathfrak{gl}(A)$ の部分 Lie 代数である.

1.2 随伴表現

定義 1.8(随伴表現) Lie 代数 $\mathfrak g$ の元 x に対して, $\mathfrak g$ から自身への線型写像 $y\mapsto [x,y]$ を, $\mathrm{ad}_{\mathfrak g}(x)$ あるいは単に $\mathrm{ad}(x)$ と書く.

命題 1.9 \mathfrak{g} を Lie 代数とする. \mathfrak{g} 上の導分全体のなす空間 $\mathrm{Der}(\mathfrak{g})$ を, $\mathfrak{gl}(\mathfrak{g})$ の部分 Lie 代数として Lie 代数 とみなす (例 1.7).

- (1) $ad(\mathfrak{g})$ は $Der(\mathfrak{g})$ のイデアルである. さらに、 $x \in \mathfrak{g}$ と $D \in Der(\mathfrak{g})$ に対して、ad(D(x)) = [D, ad(x)] である.
- (2) 写像 ad: $\mathfrak{g} \to \mathrm{Der}(\mathfrak{g})$ は準同型である.

証明 (1) $x \in \mathfrak{g}$ とすると、任意の $y, z \in \mathfrak{g}$ に対して

$$ad(x)[y, z] = [x, [y, z]] = [[x, y], z] + [y, [x, z]] = [ad(x)y, z] + [y, ad(x)z]$$

が成り立つから、 $\mathrm{ad}(x)$ は \mathfrak{g} 上の導分である。 さらに、 $x\in\mathfrak{g}$ とし、D を \mathfrak{g} 上の導分とすると、任意の $y\in\mathfrak{g}$ に対して

$$ad(D(x))y = [D(x), y] = D([x, y]) - [x, D(y)] = D(ad(x)y) - ad(x)D(y)$$

が成り立つから、 $\operatorname{ad}(D(x)) = [D,\operatorname{ad}(x)]$ である. よって、 $\operatorname{ad}(\mathfrak{g})$ は $\operatorname{Der}(\mathfrak{g})$ のイデアルである.

(2) $x, y \in \mathfrak{g}$ とすると、任意の $z \in \mathfrak{g}$ に対して

$$ad([x, y])z = [[x, y], z] = [x, [y, z]] - [y, [x, z]] = ad(x) ad(y)z - ad(y) ad(x)z$$

が成り立つから、 $\operatorname{ad}([x,y]) = [\operatorname{ad}(x),\operatorname{ad}(y)]$ である. よって、 ad は準同型である.

定義 1.10 (内部導分) Lie 代数 g に対して, ad(g) の元を, g 上の内部導分 (inner derivation) という.

命題 1.9 (1) より、Lie 代数上の内部導分は、導分である.

1.3 イデアルと特性イデアル

Lie 代数のイデアルとは,任意の内部導分で安定な部分線型空間のことにほかならない.これを踏まえて,次のように定義する.

定義 1.11 (特性イデアル) Lie 代数 g の部分線型空間であって, g 上の任意の導分で安定であるものを, g の特性イデアル (characteristic ideal) という.

命題 1.12 g を Lie 代数とし、a を g の部分線型空間, b を a の部分線型空間とする.

- (1) \mathfrak{a} が \mathfrak{g} のイデアルであり、 \mathfrak{b} が \mathfrak{a} の特性イデアルならば、 \mathfrak{a} は \mathfrak{g} のイデアルである.
- (2) \mathfrak{a} が \mathfrak{g} の特性イデアルであり、 \mathfrak{b} が \mathfrak{a} の特性イデアルならば、 \mathfrak{a} は \mathfrak{g} の特性イデアルである.

証明 (1) D を \mathfrak{g} 上の内部導分とすると、 \mathfrak{a} は D-安定であり、 $D|_{\mathfrak{a}}$ は \mathfrak{a} 上の導分だから、 \mathfrak{b} も D-安定である. よって、 \mathfrak{b} は \mathfrak{g} のイデアルである.

(2) (1) の証明において「内部導分」を「導分」に置き換えれば, (2) の証明となる. □ □

命題 1.13 g を Lie 代数とし、a, b をその部分線型空間とする.

- (2) \mathfrak{a} , \mathfrak{b} が \mathfrak{g} の特性イデアルならば、 $[\mathfrak{a},\mathfrak{b}]$ も \mathfrak{g} の特性イデアルである.

証明 \mathfrak{a} , \mathfrak{b} が \mathfrak{g} 上の導分 D で安定ならば,

$$D([\mathfrak{a},\mathfrak{b}]) \subseteq [D(\mathfrak{a}),\mathfrak{b}] + [\mathfrak{a},D(\mathfrak{b})] \subseteq [\mathfrak{a},\mathfrak{b}]$$

だから、 $[\mathfrak{a},\mathfrak{b}]$ も D-安定である. よって、主張が成り立つ.

1.4 中心化子と正規化子

定義 1.14(中心化子,中心) $\mathfrak g$ を Lie 代数とする. $\mathfrak h$ を $\mathfrak g$ の部分線型空間, $\mathfrak a$ を $\mathfrak g$ の部分集合とするとき, $\mathfrak a$ の $\mathfrak h$ における中心化子(centralizer)を,

$$\mathbf{Z}_{\mathfrak{h}}(\mathfrak{a}) = \{x \in \mathfrak{h} \mid \text{任意の } y \in \mathfrak{a} \text{ に対して } [x,y] = 0\}$$

と定める. \mathfrak{g} の \mathfrak{g} における中心化子を, \mathfrak{g} の中心 (center) といい, $\mathbf{Z}(\mathfrak{g})$ と書く.

定義 1.15(正規化子) \mathfrak{g} を Lie 代数とする. \mathfrak{h} , \mathfrak{a} を \mathfrak{g} の部分線型空間とするとき, \mathfrak{a} の \mathfrak{h} における**正規化子** (normalizer) を,

$$\mathbf{N}_{\mathfrak{h}}(\mathfrak{a}) = \{ x \in \mathfrak{h} \mid [x, \mathfrak{a}] \subseteq \mathfrak{a} \}$$

と定める.

命題 1.16 gを Lie 代数, \mathfrak{a} , \mathfrak{b} を g の部分線型空間とし, $\mathfrak{h} = \{x \in \mathfrak{g} \mid [x,\mathfrak{a}] \subseteq \mathfrak{b}\}$ と置く.

- (1) b ⊂ a ならば、h は g の部分 Lie 代数である.
- (3) \mathfrak{a} , \mathfrak{b} が \mathfrak{g} の特性イデアルならば、 \mathfrak{h} も \mathfrak{g} の特性イデアルである.

証明 (1) $x, y \in \mathfrak{h}$ とすると、命題 1.9 (2) より

$$\operatorname{ad}([x,y])\mathfrak{a} \subseteq \operatorname{ad}(x)\operatorname{ad}(y)\mathfrak{a} + \operatorname{ad}(y)\operatorname{ad}(x)\mathfrak{a}$$
$$\subseteq \operatorname{ad}(x)\mathfrak{b} + \operatorname{ad}(y)\mathfrak{b}$$
$$\subseteq \operatorname{ad}(x)\mathfrak{a} + \operatorname{ad}(y)\mathfrak{a}$$
$$\subseteq \mathfrak{b}$$

だから, $[x,y] \in \mathfrak{h}$ である. よって, \mathfrak{h} は \mathfrak{g} の部分 Lie 代数である.

(2) $x \in \mathfrak{h}$ とし、D を \mathfrak{g} 上の内部導分とすると、命題 1.9 (1) より

$$\operatorname{ad}(D(x))\mathfrak{a} \subseteq D(\operatorname{ad}(x)\mathfrak{a}) + \operatorname{ad}(x)D(\mathfrak{a})$$
$$\subseteq D(\mathfrak{b}) + \operatorname{ad}(x)\mathfrak{a}$$
$$\subseteq \mathfrak{b}$$

だから, $D(x) \in \mathfrak{h}$ である. よって, \mathfrak{h} は \mathfrak{g} のイデアルである.

(3) (2) の証明において「内部導分」を「導分」に置き換えれば、(3) の証明となる. □

系 1.17 g を Lie 代数とし、 \mathfrak{a} をその部分線型空間とする.

- (1) $\mathbf{Z}_{\mathfrak{g}}(\mathfrak{a}), \mathbf{N}_{\mathfrak{g}}(\mathfrak{a})$ は \mathfrak{g} の部分 Lie 代数である.
- (2) \mathfrak{a} m \mathfrak{g} \mathfrak{g}
- (3) \mathfrak{a} が \mathfrak{g} の特性イデアルならば、 $\mathbf{Z}_{\mathfrak{g}}(\mathfrak{a})$ 、 $\mathbf{N}_{\mathfrak{g}}(\mathfrak{a})$ も \mathfrak{g} の特性イデアルである.

証明 命題 1.16 の特別な場合である.

系 1.18 Lie 代数 $\mathfrak g$ の部分 Lie 代数 $\mathfrak a$ に対して,その正規化子 $\mathbf N_{\mathfrak g}(\mathfrak a)$ は, $\mathfrak a$ をイデアルとして含む $\mathfrak g$ の部分 Lie 代数の中で最大のものである.

証明 \mathfrak{a} が \mathfrak{g} の部分 Lie 代数であることより $\mathbf{N}_{\mathfrak{g}}(\mathfrak{a})$ は \mathfrak{a} を含み,系 1.17 (1) より $\mathbf{N}_{\mathfrak{g}}(\mathfrak{a})$ は \mathfrak{g} の部分 Lie 代数 である. $\mathbf{N}_{\mathfrak{g}}(\mathfrak{a})$ が \mathfrak{a} をイデアルとして含むこと,および同じ性質を満たす \mathfrak{g} の部分 Lie 代数が $\mathbf{N}_{\mathfrak{g}}(\mathfrak{a})$ に含まれることは,正規化子の定義から明らかである.

2 包絡代数

2.1 包絡代数

定義 2.1(包絡代数) \mathfrak{g} を Lie 代数とする. テンソル代数 $\mathbf{T}(\mathfrak{g})$ を $\lceil x, y \in \mathfrak{g} \rceil$ に対する $x \otimes y - y \otimes x - [x, y]$ の全体が生成するイデアル」で割って得られる単位的結合代数を, \mathfrak{g} の**包絡代数** (enveloping algebra) といい, $\mathbf{U}(\mathfrak{g})$ と書く.

 \mathfrak{g} を Lie 代数とするとき, \mathfrak{g} から $\mathbf{T}(\mathfrak{g})$ への自然な写像と $\mathbf{T}(\mathfrak{g})$ から $\mathbf{U}(\mathfrak{g})$ への等化準同型とを合成して得られる写像 $\iota\colon \mathfrak{g}\to \mathbf{U}(\mathfrak{g})$ を,包絡代数への**自然な写像**という.

命題 2.2(包絡代数の普遍性) \mathfrak{g} を Lie 代数とし,その包絡代数への自然な写像を ι : $\mathfrak{g} \to \mathbf{U}(\mathfrak{g})$ と書く.単位的結合代数 A と(A を交換子によって Lie 代数とみなすときの)Lie 代数の準同型 f: $\mathfrak{g} \to A$ に対して,単位的代数の準同型 \widetilde{f} : $\mathbf{U}(\mathfrak{g}) \to A$ であって, $\widetilde{f} \circ \iota = f$ を満たすものが一意に存在する.

証明 テンソル代数の普遍性より,単位的代数の準同型 \hat{f} : $\mathbf{T}(\mathfrak{g}) \to A$ であって,任意の $x \in \mathfrak{g}$ に対して $\hat{f}(x) = f(x)$ を満たすものが一意に存在する.f は Lie 代数の準同型だから,任意の $x, y \in \mathfrak{g}$ に対して $\hat{f}(x \otimes y - y \otimes x - [x,y]) = f(x)f(y) - f(y)f(x) - f([x,y]) = 0$ が成り立つ.したがって, \hat{f} は単位的代数 の準同型 \hat{f} : $\mathbf{U}(\mathfrak{g}) \to A$ を誘導する.これが,主張の条件を満たす一意な単位的代数の準同型である.

系 2.3 \mathfrak{g} , \mathfrak{h} を Lie 代数とし、それらの包絡代数への自然な写像を $\iota_{\mathfrak{g}} \colon \mathfrak{g} \to \mathbf{U}(\mathfrak{g})$, $\iota_{\mathfrak{h}} \colon \mathfrak{h} \to \mathbf{U}(\mathfrak{g})$ と書く. Lie 代数の準同型 $f \colon \mathfrak{g} \to \mathfrak{h}$ に対して、単位的代数の準同型 $\tilde{f} \colon \mathbf{U}(\mathfrak{g}) \to \mathbf{U}(\mathfrak{h})$ であって、 $\tilde{f} \circ \iota_{\mathfrak{g}} = \iota_{\mathfrak{h}} \circ f$ を満たすものが一意に存在する.

証明 包絡代数の普遍性(命題 2.2) から従う.

命題 2.2 または系 2.3 の状況で、 \widetilde{f} を、f が誘導する単位的代数の準同型という.

2.2 Poincaré-Birkhoff-Witt の定理

単位的結合代数 A 上の**フィルトレーション**(filtration)とは,A の部分線型空間の族 $(A^{\leq n})_{n\in\mathbb{N}}$ であって, $1\in A^{\leq 0}$ かつ任意の $m,n\in\mathbb{N}$ に対して $A^{\leq m}A^{\leq n}\subseteq A^{\leq m+n}$ を満たすものをいう.単位的結合代数とその上のフィルトレーションの組を,**フィルトレーション付き単位的結合代数**(filtered unital associative algebra)という. $(A,(A^{\leq n})_{n\in\mathbb{N}})$ をフィルトレーション付き結合代数とするとき,

$$\operatorname{gr} A = \bigoplus_{n \in \mathbb{N}} A^{\leq n} / A^{\leq n-1}$$

 $(A^{\leq -1}=0$ とみなす)と定めると,A の乗法は $\operatorname{gr} A \times \operatorname{gr} A$ から $\operatorname{gr} A$ への双線型写像を誘導し,これを乗法 として, $\operatorname{gr} A$ は次数付き単位的結合代数をなす.これを,**フィルトレーション付き結合代数** A **に伴う次数付き単位的結合代数**という.

 \mathfrak{g} を Lie 代数とする.テンソル代数から包絡代数への等化準同型を π : $\mathbf{T}(\mathfrak{g}) \to \mathbf{U}(\mathfrak{g})$ と書き,各 $n \in \mathbb{N}$ に対して $\mathbf{U}^{\leq n}(\mathfrak{g}) = \pi(\bigoplus_{i=0}^n \mathbf{T}^i(\mathfrak{g}))$ と置くと, $(\mathbf{U}^{\leq n}(\mathfrak{g}))_{n \in \mathbb{N}}$ は $\mathbf{U}(\mathfrak{g})$ 上のフィルトレーションである.次の定理では,これに対応するフィルトレーション付き単位的結合代数に伴う次数付き単位的結合代数

$$\operatorname{gr} \mathbf{U}(\mathfrak{g}) = \bigoplus_{n \in \mathbb{N}} \mathbf{U}^{\leq n}(\mathfrak{g}) / \mathbf{U}^{\leq n-1}(\mathfrak{g})$$

を考える.

定理 2.4(Poincaré–Birkhoff–Witt の定理) \mathfrak{g} を Lie 代数とし,テンソル代数から包絡代数への等化準同型を $\pi\colon \mathbf{T}(\mathfrak{g})\to \mathbf{U}(\mathfrak{g})$ と書く.線型写像 $\widetilde{\Phi}=\bigoplus_{n\in\mathbb{N}}\widetilde{\Phi}_n\colon \mathbf{T}(\mathfrak{g})\to \mathrm{gr}\,\mathbf{U}(\mathfrak{g})$ を

$$\widetilde{\varPhi}_n \colon \mathbf{T}^n(\mathfrak{g}) \to \mathbf{U}^{\leq n}(\mathfrak{g})/\mathbf{U}^{\leq n-1}(\mathfrak{g}), \quad \widetilde{\varPhi}_n(t) = \pi(t) + \mathbf{U}^{\leq n-1}(\mathfrak{g})$$

と定めると、 Φ は次数付き単位的代数の準同型であり、次数付き単位的代数の同型

$$\Phi \colon \mathbf{S}(\mathfrak{g}) \to \operatorname{gr} \mathbf{U}(\mathfrak{g})$$

を誘導する.

証明 Bourbaki [1, §I.2.7, Théorème 1] を参照のこと.

系 2.5 g を Lie 代数とし、その包絡代数への自然な写像を ι : g \to $\mathbf{U}(\mathfrak{g})$ と書く. $(x_i)_{i\in I}$ を全順序集合 I で添字付けられた g の基底とするとき、 $n\in\mathbb{N}$ と $i_1,\ldots,i_n\in I$ が $i_1\leq \cdots \leq i_n$ を満たす範囲を動くときの $\iota(x_{i_1})\cdots\iota(x_{i_n})$ の全体は、包絡代数 $\mathbf{U}(\mathfrak{g})$ の基底をなす.

証明 各 $n \in \mathbb{N}$ に対して、 $x_{i_1} \cdots x_{i_n}$ $(i_1, \ldots, i_n \in I, i_1 \leq \cdots \leq i_n)$ の全体は $\mathbf{S}^n(\mathfrak{g})$ の基底をなすから、Poincaré-Birkhoff-Witt の定理 (定理 2.4) より、 $\iota(x_{i_1}) \cdots \iota(x_{i_n}) + \mathbf{U}^{\leq n-1}(\mathfrak{g})$ $(i_1, \ldots, i_n \in I, i_1 \leq \cdots \leq i_n)$ の全体は $\mathbf{U}^{\leq n}(\mathfrak{g})/\mathbf{U}^{\leq n-1}(\mathfrak{g})$ の基底をなす。よって、 $\iota(x_{i_1}) \cdots \iota(x_{i_n})$ $(n \in \mathbb{N}, i_1, \ldots, i_n \in I, i_1 \leq \cdots \leq i_n)$ の全体は、包絡代数 $\mathbf{U}(\mathfrak{g})$ の基底をなす。

系 2.6 Lie 代数 \mathfrak{g} からその包絡代数 $\mathbf{U}(\mathfrak{g})$ への自然な写像 $\iota \colon \mathfrak{g} \to \mathbf{U}(\mathfrak{g})$ は、単射である.

証明 $(x_i)_{i\in I}$ を全順序集合 I で添字付けられた $\mathfrak g$ の基底とすると,系 2.5 より, $(\iota(x_i))_{i\in I}$ は $\mathbf U(\mathfrak g)$ において線型独立である.よって,自然な写像 $\iota\colon \mathfrak g\to \mathbf U(\mathfrak g)$ は,単射である.

系 2.6 を踏まえて、 \mathfrak{g} を Lie 代数とするとき、包絡代数への自然な写像による $x \in \mathfrak{g}$ の像を、しばしばそのまま x と書く.

系 2.7 Lie 代数 \mathfrak{g} , \mathfrak{h} の間の単射準同型 $f:\mathfrak{g}\to\mathfrak{h}$ が誘導する包絡代数の間の単位的代数の準同型 $\widetilde{f}:\mathbf{U}(\mathfrak{g})\to\mathbf{U}(\mathfrak{h})$ は、単射である.

証明 $(x_i)_{i\in I}$ を全順序集合 I で添字付けられた $\mathfrak g$ の基底とし、 $(y_j)_{j\in J}$ を全順序集合 J で添字付けられた $\mathfrak g$ の基底であって $(f(x_i))_{i\in I}$ を部分族として含むものとする.このとき、系 2.6 より、 $x_{i_1}\cdots x_{i_n}$ $(n\in\mathbb N,\ i_1,\ldots,i_n\in I,\ i_1\leq \cdots \leq i_n)$ の全体は $\mathbf U(\mathfrak g)$ の基底をなし、 $y_{j_1}\cdots y_{j_n}$ $(n\in\mathbb N,\ j_1,\ldots,j_n\in J,\ j_1\leq \cdots \leq j_n)$ の全体は $\mathbf U(\mathfrak h)$ の基底をなす.後者のことより、 $\widetilde f(x_{i_1}\cdots x_{i_n})=f(x_{i_1})\cdots f(x_{i_n})$ $(n\in\mathbb N,\ i_1,\ldots,i_n\in I,\ i_1\leq \cdots \leq i_n)$ の全体は、 $\mathbf U(\mathfrak h)$ において線型独立である.よって、 $\widetilde f$ は単射である.

3 表現

3.1 表現

定義 3.1(表現) \mathfrak{g} を Lie 代数とする. V が線型空間であり, $\rho:\mathfrak{g}\to\mathfrak{gl}(V)$ が準同型であるとき, ρ は \mathfrak{g} の V 上の表現(representation)である,あるいは (ρ,V) は \mathfrak{g} の表現であるという. \mathfrak{g} の V 上の表現が一つ固定されているとき,V を \mathfrak{g} 上の加群(module over \mathfrak{g})あるいは \mathfrak{g} -加群という.

 (ρ, V) を Lie 代数 $\mathfrak g$ の表現とする. V の線型空間としての次元を, ρ の次元という. ρ が忠実(faithful)であるとは, $\rho: \mathfrak g \to \mathfrak{gl}(V)$ が単射であることをいう.

Lie 代数 $\mathfrak g$ の表現と $\mathfrak g$ -加群は,実質的には同じものである.「V を $\mathfrak g$ -加群とする」というときは,表現を表す記号 $\rho\colon \mathfrak g\to \mathfrak g\mathfrak l(V)$ を明示せずに, $\rho(x)v$ を xv と書くことが多い.以下,いちいち明示しないが,Lie 代数の表現に関する用語は,Lie 代数上の加群に対しても用いる.

注意 3.2 包絡代数の普遍性(命題 2.2)より、Lie 代数 \mathfrak{g} の線型空間 V 上の表現を考えることは、その包絡代数 $\mathbf{U}(\mathfrak{g})$ の V 上の表現(すなわち、 $\mathbf{U}(\mathfrak{g})$ から V への代数の準同型)を考えることと等価である。本稿では、 ρ を Lie 代数の表現とするとき、これに対応する包絡代数の表現も、同じ記号 ρ で表す。

注意 3.3 g を \mathbb{K} -Lie 代数とする。 \mathbb{K}' を \mathbb{K} の拡大体とし,V' を \mathbb{K}' -線型空間とするとき, \mathbb{K} -Lie 代数の準同型 $\rho\colon \mathfrak{g}\to \mathfrak{gl}(V')$ を, \mathfrak{g} の V' 上の \mathbb{K}' -表現という。係数拡大の普遍性より, \mathbb{K} -Lie 代数 \mathfrak{g} の V' 上の \mathbb{K}' -表現を考えることは, \mathbb{K}' -Lie 代数 $\mathfrak{g}_{(\mathbb{K}')}$ の V' 上の表現を考えることと等価である.

例 3.4 gを Lie 代数とする.

- (1) V を線型空間とし、任意の $x \in \mathfrak{g}$ に対して $\rho(x) = 0 \in \mathfrak{gl}(V)$ と定めると、 ρ は \mathfrak{g} の V 上の表現である. これを、 \mathfrak{g} の V 上の**自明表現**(trivial representation)という.
- (2) \mathfrak{g} が $\mathfrak{gl}(V)$ (V は線型空間) の部分 Lie 代数であるとすると、 \mathfrak{g} から $\mathfrak{gl}(V)$ への包含準同型は、 \mathfrak{g} の V 上の忠実な表現である.これを、 \mathfrak{g} の**自然表現** (natural representation) という.
- (3) 命題 1.9 (2) より、ad: $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ は、 \mathfrak{g} の \mathfrak{g} 上の表現である. これを、 \mathfrak{g} の**随伴表現** (adjoint representation) という.

定義 3.5(不変元) \mathfrak{g} を Lie 代数とし、 (ρ, V) をその表現とする. $v \in V$ が ρ に関して**不変** (invariant) であるとは、 $\rho(\mathfrak{g})v = 0$ であることをいう.

定義 3.6(表現の間の準同型) \mathfrak{g} を Lie 代数とし、 (ρ,V) と (σ,W) をその表現とする.線型写像 $\phi\colon V\to W$ であって、任意の $x\in\mathfrak{g}$ に対して $\phi\circ\rho(x)=\sigma(x)\circ\phi$ を満たすものを、 ρ から σ への**準同型** (homomorphism)、あるいは V から W への \mathfrak{g} -準同型という.さらに、 ϕ が線型同型であるとき、これを、 ρ から σ への同型 (isomorphism)、あるいは V から W への \mathfrak{g} -同型という. ρ から σ への同型が存在するとき、これらの表現は同型 (isomorphic) であるという.

3.2 表現に対する演算

定義 3.7(部分表現,商表現) \mathfrak{g} を Lie 代数とする. (ρ,V) を \mathfrak{g} の表現とし,W を V の $\rho(\mathfrak{g})$ -安定な部分線型空間とするとき, ρ が誘導する \mathfrak{g} の W, V/W 上の表現を,それぞれ ρ の部分表現(subrepresentation)、商表現(quotient representation)と呼ぶ。 \mathfrak{g} -加群に対しては,対応して,部分加群(submodule),商加群(quotient module)という用語を用いる.

定義 3.8(反傾表現) g を Lie 代数とする. (ρ, V) を g の表現とするとき, $x \in \mathfrak{g}$ に対して

$$\rho^{\vee}(x) = -\rho(x)^* \in \mathfrak{gl}(V^*)$$

と定めると、容易に確かめられるように、 (ρ^{\vee}, V^*) は $\mathfrak g$ の表現である.この表現 ρ^{\vee} を、 ρ の**反傾表現** (contragradient representation) という. $\mathfrak g$ -加群に対しては、対応して、**反傾加群** (contragradient module) という用語を用いる.

定義 3.9(直和表現) $\mathfrak g$ を Lie 代数とする. $((\rho_i,V_i))_{i\in I}$ を $\mathfrak g$ の表現の族とするとき, $V=\bigoplus_{i\in I}V_i$ と置き, $x\in\mathfrak g$ に対して

$$\rho(x) = \bigoplus_{i \in I} \rho_i(x) \in \mathfrak{gl}(V)$$

と定めると、容易に確かめられるように、 (ρ, V) は $\mathfrak g$ の表現である.この表現 ρ を、 $(\rho_i)_{i\in I}$ の**直和表現** (direct sum representation) という. $\mathfrak g$ -加群に対しては、対応して、**直和加群** (direct sum module) という用語を用いる.

定義 3.10(テンソル積表現) $\mathfrak g$ を Lie 代数とする. $(\rho_1,V_1),\ldots,(\rho_n,V_n)$ を $\mathfrak g$ の表現とするとき, $V=\bigotimes_{i=1}^n V_i$ と置き, $x\in\mathfrak g$ に対して

$$\rho(x) = \sum_{i=1}^{n} \mathrm{id}_{V_{1}} \otimes \cdots \otimes \mathrm{id}_{V_{i-1}} \otimes \rho_{i}(x) \otimes \mathrm{id}_{V_{i+1}} \otimes \cdots \otimes \mathrm{id}_{V_{n}} \in \mathfrak{gl}(V)$$

と定めると、容易に確かめられるように、 (ρ, V) は $\mathfrak g$ の表現である.この表現 ρ を、 ρ_1, \ldots, ρ_n のテンソル積表現(tensor product representation)という. $\mathfrak g$ -加群に対しては、対応して、テンソル積加群(tensor product module)という用語を用いる.

次の定義では、線型空間 V_1, \ldots, V_n, W に対して、 $V_1 \times \cdots \times V_n$ から W への多重線型写像全体のなす線型空間を、 $\mathrm{Mult}(V_1, \ldots, V_n; W)$ と書く.

定義 3.11(多重線型写像の空間上に定まる表現) g を Lie 代数とする. $(\rho_1,V_1),\ldots,(\rho_n,V_n),(\sigma,W)$ を g の表現とするとき, $V_1\times\cdots\times V_n$ から W への多重線型写像全体のなす線型空間を M と置き, $x\in\mathfrak{g}$ と $\phi\in\mathrm{Mult}(V_1,\ldots,V_n;W)$ に対して $\tau(x)\phi\in\mathrm{Mult}(V_1,\ldots,V_n;W)$ を

$$\tau(x)\phi(v_1,...,v_n) = -\sigma(x)\left(\sum_{i=1}^n \phi(v_1,...,v_{i-1},\rho_i(x)v_i,v_{i+1},...,v_n)\right) \qquad (v_i \in V_i)$$

と定めると、容易に確かめられるように、 $(\tau, \operatorname{Mult}(V_1, \ldots, V_n; W))$ は $\mathfrak g$ の表現である.この表現 τ を、 ρ_1 , \ldots , ρ_n , σ が定める $\operatorname{Mult}(V_1, \ldots, V_n; W)$ 上の表現という.

 (ρ,V) を Lie 代数 $\mathfrak g$ の表現とするとき, ρ の反傾表現は, ρ と 1 次元自明表現が定める $V^*=\mathrm{Hom}(V,\mathbb K)$ 上の表現にほかならない.

3.3 既約表現

定義 3.12(既約表現) \mathfrak{g} を Lie 代数とし、 (ρ,V) をその表現とする. ρ が**既約**(irreducible)であるとは、 $V \neq 0$ であり、V が 0 と V 以外の $\rho(\mathfrak{g})$ -安定な部分線型空間をもたないことをいう. ρ が**可約**(reducible)であるとは、 $V \neq 0$ であり、 ρ が既約でないことをいう.

命題 3.13(Schur の補題) \mathfrak{g} を Lie 代数とし、 (ρ,V) と (σ,W) をその既約表現とする.

- (1) ρ と σ が同型でなければ、 ρ から σ への準同型は、0 のみである.
- (2) 係数体 $\mathbb K$ が代数閉であり、V が有限次元であるとする.このとき, ρ から自身への準同型は,恒等写像 id_V のスカラー倍のみである.
- 証明 (1) ρ から σ への準同型 $f \neq 0$ が存在したとする. すると, $\ker f$ は V の $\rho(\mathfrak{g})$ -安定な部分線型空間であり,V とは異なるから, ρ の既約性より, $\ker f = 0$ である. また, $\operatorname{Im} f$ は W の $\sigma(\mathfrak{g})$ -安定な部分線型空間であり,0 とは異なるから, σ の既約性より, $\operatorname{Im} f = W$ である. よって,f は ρ から σ への同型である. 対偶をとれば,主張が従う.
- (2) f を ρ から自身への準同型とする. 仮定より,f は固有値 $\lambda \in \mathbb{K}$ をもつ. $\operatorname{Ker}(f-\lambda \operatorname{id}_V)$ は V の $\rho(\mathfrak{g})$ -安定な部分線型空間であり,0 とは異なるから, ρ の既約性より, $\operatorname{Ker}(f-\lambda \operatorname{id}_V)=V$ である. すなわち, $f=\lambda \operatorname{id}_V$ である.
- 定義 3.14(組成列) \mathfrak{g} を Lie 代数とし, (ρ, V) をその表現とする. ρ の**組成列**(composition series)とは,V の $\rho(\mathfrak{g})$ -安定な部分線型空間の列 (V_0, \ldots, V_n) $(n \in \mathbb{N})$ であって, $V = V_0 \supseteq \cdots \supseteq V_n = V$ を満たし,任意の $i \in \{0, \ldots, n-1\}$ に対して ρ が誘導する \mathfrak{g} の V_i/V_{i+1} 上の表現が既約であるものをいう.

命題 3.15 Lie 代数 \mathfrak{g} の任意の有限次元表現 (ρ, V) は,組成列をもつ.*1

証明 V の次元に関する帰納法で示す.V=0 の場合は明らかである. $V\neq 0$ とし,次元がより小さい場合には主張は正しいとする.V は有限次元だから,V の 0 でない $\rho(\mathfrak{g})$ -安定な部分線型空間の中で極小なものW がとれる.極小性より, ρ の W 上の部分表現は既約である.等化線型写像を $\phi\colon V\to V/W$ と書き, ρ の V/W 上の商表現を $\overline{\rho}$ と書く.すると,帰納法の仮定より, $\overline{\rho}$ の組成列 $(\overline{V_0},\dots,\overline{V_n})$ がとれる.このとき, $(\phi^{-1}(\overline{V_0}),\dots,\phi^{-1}(\overline{V_n}),0)$ は ρ の組成列である.これで,帰納法が完成した.

定義 3.16 (完全可約表現) \mathfrak{g} を Lie 代数とし, (ρ, V) をその表現とする. ρ が**完全可約** (completely reducible) であるとは, V の任意の $\rho(\mathfrak{g})$ -安定な部分線型空間が $\rho(\mathfrak{g})$ -安定な補空間をもつことをいう.

命題 3.17 Lie 代数 \mathfrak{g} の表現 (ρ, V) が完全可約ならば,その任意の部分表現と商表現も完全可約である.

証明 ρ が完全可約であるとする.完全可約表現 ρ の任意の商表現は ρ のある部分表現に同型だから,部分表現に関する主張だけを示せば十分である. (ρ',V') を (ρ,V) の部分表現とし,V' の V における $\rho(\mathfrak{g})$ -安定な補空間 V'' をとる.W' を V' の $\rho'(\mathfrak{g})$ -安定な部分線型空間とすると, $W'\oplus V''$ は V の $\rho(\mathfrak{g})$ -安定な部分線型

^{*1} 命題 3.15 は、Jordan-Hölder の定理の一部である.

空間だから、 ρ の完全可約性より、 $W' \oplus V''$ の V における $\rho(\mathfrak{g})$ -安定な補空間 M がとれる.ここで、直和分解 $V = V' \oplus V''$ に関する V' の上への射影を $p\colon V \to V'$ と書くと、容易に確かめられるように、p(M) は W' の V' における $\rho'(\mathfrak{g})$ -安定な補空間となる.よって、 ρ' は完全可約である.

命題 3.18 \mathfrak{g} を Lie 代数とし、 (ρ, V) をその表現とする.次の条件について、 $(\mathbf{a}) \Longrightarrow (\mathbf{b})$ が成り立つ.さらに、V が有限次元ならば、これらの条件は同値である.

- (a) ρ は既約表現の族に直和分解できる.
- (b) ρ は完全可約である.

証明 $(a)\Longrightarrow (b)$ (ρ,V) が既約表現の族 $((\rho_i,V_i))_{i\in I}$ に直和分解されるとする. W を V の $\rho(\mathfrak{g})$ -安定な部分線型空間とする. すると,Zorn の補題より, $I'\subseteq I$ であって $W\cap\bigoplus_{i\in I'}V_i=0$ を満たすものの中で極大なものがとれる.このような I' をとると, $W\oplus\bigoplus_{i\in I'}V_i=V$ となることを示す.そうでないと仮定すると,ある $j\in I\setminus I'$ が存在して, V_j は $W\oplus\bigoplus_{i\in I'}V_i$ に含まれない. ρ_j は既約だから, $V_j\cap (W\oplus\bigoplus_{i\in I'}V_i)=0$ となり,したがって, $W\cap\bigoplus_{i\in I'\cup\{j\}}V_i=0$ となる.ところが,これは,I' の極大性に反する.よって, $W\oplus\bigoplus_{i\in I'}V_i=V$ が成り立つ.これで, ρ が完全可約であることが示された.

 $(b)\Longrightarrow (a)$ (V) が有限次元である場合) V の次元に関する帰納法で示す. V=0 の場合は明らかである. $V\neq 0$ とし,次元がより小さい場合には主張は正しいとする. V は有限次元だから,V の $\rho(\mathfrak{g})$ -安定な部分線型空間 $W\neq 0$ の中で極小なものがとれる. 極小性より, ρ の W 上の部分表現は既約である. また, ρ は完全可約だから,W の V における $\rho(\mathfrak{g})$ -安定な補空間 V' がとれる. ρ の V' 上の部分表現はまた完全可約だから (命題 3.17),帰納法の仮定より,それは既約表現の族に直和分解できる. よって, ρ も既約表現の族に直和分解できる. これで,帰納法が完成した.

3.4 不変双線型形式

定義 3.19(不変双線型形式) \mathfrak{g} を Lie 代数とし, $B: \mathfrak{g} \times \mathfrak{g} \to \mathbb{K}$ を双線型形式とする.

(1) B が**不変** (invariant) であるとは、任意の $x, y, z \in \mathfrak{g}$ に対して

$$B([x,y],z) + B(x,[y,z]) = 0$$

が成り立つことをいう.

(2) B が**完全不変** (completely invariant) であるとは、 \mathfrak{g} 上の任意の導分 D と $x,y\in\mathfrak{g}$ に対して

$$B(D(x), y) + B(x, D(y)) = 0$$

が成り立つことをいう.

注意 3.20 Lie 代数 \mathfrak{g} 上の双線型形式 $B\colon \mathfrak{g}\times\mathfrak{g}\to\mathbb{K}$ が不変であるための必要十分条件は,任意の $x,y,z\in\mathfrak{g}$ に対して

$$B(\operatorname{ad}(z)x, y) + B(x, \operatorname{ad}(z)y) = 0$$

が成り立つことである.これは, $\mathfrak g$ の随伴表現と 1 次元自明表現が定める $\mathrm{Mult}(\mathfrak g,\mathfrak g;\mathbb K)$ 上の表現に関して B が(定義 3.5 の意味で)不変であるということにほかならない.また,この条件は, $\mathfrak g$ 上の任意の内部導分 D と $x,y\in\mathfrak g$ に対して

$$B(D(x), y) + B(x, D(y)) = 0$$

が成り立つことともいいかえられる. 特に, Lie 代数上の双線型形式は, 完全不変ならば不変である.

命題 3.21 g を Lie 代数とし、 $B: \mathfrak{g} \times \mathfrak{g} \to \mathbb{K}$ を双線型形式とする. \mathfrak{a} を \mathfrak{g} の部分線型空間とし、

$$\mathfrak{a}' = \{ y \in \mathfrak{g} \mid B(\mathfrak{a}, y) = 0 \},$$

$$\mathfrak{a}'' = \{ x \in \mathfrak{g} \mid B(x, \mathfrak{a}) = 0 \}$$

と置く.

- (1) B が不変であり、 \mathfrak{a} が \mathfrak{g} のイデアルならば、 \mathfrak{a}' 、 \mathfrak{a}'' は \mathfrak{g} のイデアルである.
- (2) B が完全不変であり、 \mathfrak{a} が \mathfrak{g} の特性イデアルならば、 \mathfrak{a}' 、 \mathfrak{a}'' は \mathfrak{g} の特性イデアルである.

証明 (1) D を \mathfrak{g} 上の内部導分とする. \mathfrak{a} が D-安定であることより $B(D(\mathfrak{a}),\mathfrak{a}')\subseteq B(\mathfrak{a},\mathfrak{a}')=0$ だから, $B(\mathfrak{a},D(\mathfrak{a}'))=B(\mathfrak{a},\mathfrak{a}')=0$ である. すなわち, \mathfrak{a}' は D-安定である. よって, \mathfrak{a}' は \mathfrak{g} のイデアルである. 同様に, \mathfrak{a}'' は \mathfrak{g} のイデアルである.

(2) (1) の証明において「内部導分」を「導分」に置き換えれば, (2) の証明となる. □ □

3.5 トレース形式, Killing 形式

定義 3.22 (トレース形式, Killing 形式) g を Lie 代数とする.

(1) \mathfrak{g} の有限次元表現 (ρ, V) に対して,

$$B_{\rho}(x,y) = \operatorname{tr}(\rho(x)\rho(y))$$
 $(x, y \in \mathfrak{g})$

によって定まる双線型形式 B_{ρ} : $\mathfrak{g} \times \mathfrak{g} \to \mathbb{K}$ を $, \rho$ が定める**トレース形式**(trace form)という.

(2) \mathfrak{g} が有限次元であるとする. このとき、 \mathfrak{g} の随伴表現のトレース形式を、 \mathfrak{g} の **Killing 形式** (Killing form) という.

命題 3.23 gを Lie 代数とする.

- (1) \mathfrak{g} の有限次元表現 (ρ, V) のトレース形式は、 \mathfrak{g} 上の不変な対称双線型形式である.
- (2) g が有限次元であるとする. このとき, g の Killing 形式は, g 上の完全不変な対称双線型形式である.

証明 (1) ρ のトレース形式を B_{ρ} と書く.トレースの性質より, B_{ρ} は対称である.また,任意の $x,y,z\in\mathfrak{g}$ に対して

$$B_{\rho}([x, y], z) = \operatorname{tr}(\rho([x, y])\rho(z))$$

$$= \operatorname{tr}(\rho(x)\rho(y)\rho(z) - \rho(y)\rho(x)\rho(z))$$

$$= \operatorname{tr}(\rho(x)\rho(y)\rho(z) - \rho(x)\rho(z)\rho(y))$$

$$= \operatorname{tr}(\rho(x)\rho([y, z]))$$

$$= B_{\rho}(x, [y, z])$$

だから、 B_{ρ} は不変である.

(2) \mathfrak{g} の Killing 形式を $B_{\mathfrak{g}}$ と書く. $B_{\mathfrak{g}}$ が対称であることは、(1) の主張に含まれる. また、 \mathfrak{g} 上の任意の

導分 D と任意の $x \in \mathfrak{g}$ に対して、命題 1.9 (1) より

$$\begin{split} B_{\mathfrak{g}}(D(x),y) &= \operatorname{tr}(\operatorname{ad}(D(x))\operatorname{ad}(y)) \\ &= \operatorname{tr}(D\operatorname{ad}(x)\operatorname{ad}(y) - \operatorname{ad}(x)D\operatorname{ad}(y)) \\ &= -\operatorname{tr}(\operatorname{ad}(x)D\operatorname{ad}(y) - \operatorname{ad}(y)\operatorname{ad}(x)D) \\ &= -\operatorname{tr}(\operatorname{ad}(x)\operatorname{ad}(D(y))) \\ &= -B_{\mathfrak{g}}(x,D(y)) \end{split}$$

だから, $B_{\mathfrak{g}}$ は完全不変である.

系 3.24 g を Lie 代数とする.

(1) (ρ, V) を $\mathfrak g$ の有限次元表現とする. $\mathfrak a$ を $\mathfrak g$ のイデアルとすると, ρ のトレース形式に関する $\mathfrak a$ の直交空間は, $\mathfrak g$ のイデアルである.

(2) $\mathfrak g$ が有限次元であるとする. このとき、 $\mathfrak a$ を $\mathfrak g$ の特性イデアルとすると、 $\mathfrak g$ の Killing 形式に関する $\mathfrak a$ の 直交空間は、 $\mathfrak g$ の特性イデアルである.

証明 命題 3.23 と命題 3.21 から従う.

命題 3.25 \mathfrak{g} を有限次元 Lie 代数とし、 \mathfrak{a} をそのイデアルとする.このとき、 \mathfrak{a} の Killing 形式は、 \mathfrak{g} の Killing 形式の $\mathfrak{a} \times \mathfrak{a}$ への制限に等しい.

証明 一般に、V を有限次元線型空間、W をその部分線型空間、u を V 上の線型変換であって W を安定にするものとし、u が誘導する W、V/W 上の線型変換をそれぞれ u'、u'' と書くと、 $\operatorname{tr}_V u = \operatorname{tr}_W u' + \operatorname{tr}_{V/W} u''$ が成り立つ。 さらに、 $u(V) \subseteq W$ ならば、u'' = 0 だから、 $\operatorname{tr}_V u = \operatorname{tr}_W u'$ が成り立つ。 そこで、 \mathfrak{g} 、 \mathfrak{a} の Killing 形式をそれぞれ $B_{\mathfrak{g}}$, $B_{\mathfrak{a}}$ と書くと、任意の $x,y \in \mathfrak{a}$ に対して、

$$B_{\mathfrak{a}}(x,y) = \operatorname{tr}_{\mathfrak{a}}(\operatorname{ad}_{\mathfrak{a}}(x)\operatorname{ad}_{\mathfrak{a}}(y)) = \operatorname{tr}_{\mathfrak{g}}(\operatorname{ad}_{\mathfrak{g}}(x)\operatorname{ad}_{\mathfrak{g}}(y)) = B_{\mathfrak{g}}(x,y)$$

である.

命題 3.26 \mathbb{K}' を \mathbb{K} の拡大体とし、 \mathfrak{g} を \mathbb{K} -Lie 代数とする.

- (1) (ρ, V) を $\mathfrak g$ の有限次元表現とする. ρ の係数拡大 $\rho_{(\mathbb K')}$ のトレース形式は, ρ のトレース形式の $\mathbb K'$ への 係数拡大に等しい.
- (2) $\mathfrak g$ が有限次元であるとする.このとき, $\mathfrak g$ の係数拡大 $\mathfrak g_{(\mathbb K')}$ の Killing 形式は, $\mathfrak g$ の Killing 形式の $\mathbb K'$ へ の係数拡大に等しい.

証明 (1) ρ , $\rho_{(\mathbb{K}')}$ のトレース形式を,それぞれ B_{ρ} , $B_{\rho(x')}$ と書く.任意の $x, y \in \mathfrak{g}$ に対して

$$\begin{split} B_{\rho_{(\mathbb{K}')}}(x \otimes 1, y \otimes 1) &= \operatorname{tr}_{V_{(\mathbb{K}')}}(\rho_{(\mathbb{K}')}(x \otimes 1)\rho_{(\mathbb{K}')}(x \otimes 1)) \\ &= \operatorname{tr}_{V_{(\mathbb{K}')}}(\rho(x)_{(\mathbb{K}')}\rho(y)_{(\mathbb{K}')}) \\ &= \operatorname{tr}_{V}(\rho(x)\rho(y)) \\ &= B_{\rho}(x, y) \end{split}$$

だから, $B_{\rho_{(\mathbb{K}')}}$ は B_{ρ} の \mathbb{K}' への係数拡大に等しい.

(2) (1) の特別な場合である.

3.6 Casimir 元

命題 3.27 g を Lie 代数, \mathfrak{a} をその有限次元イデアルとし, $B: \mathfrak{g} \times \mathfrak{g} \to \mathbb{K}$ を不変な双線型形式であって $B|_{\mathfrak{a} \times \mathfrak{a}}$ が非退化であるものとする. (e_1, \ldots, e_n) を \mathfrak{a} の基底, (e_1^*, \ldots, e_n^*) を \mathfrak{a} の基底であって $B(e_i, e_j^*) = \delta_{ij}$ (δ_{ij} は Kronecker のデルタ)を満たすものとし.

$$c = \sum_{i=1}^{n} e_i e_i^* \in \mathbf{U}(\mathfrak{g})$$

と置く. この c は、包絡代数の中心 $\mathbf{Z}(\mathbf{U}(\mathfrak{g}))$ の元であり、 \mathfrak{a} の基底 (e_1,\ldots,e_n) のとり方によらない.

証明 ϕ : $\operatorname{End}(\mathfrak{a}) \to \mathfrak{a} \otimes \mathfrak{a}^*$ を自然な線型同型, ψ : $\mathfrak{a} \to \mathfrak{a}^*$ を B が定める線型同型 $y \mapsto B(-,y)$, ι : $\mathfrak{a} \otimes \mathfrak{a} \to \mathbf{T}(\mathfrak{g})$ を包含線型写像, π : $\mathbf{T}(\mathfrak{g}) \to \mathbf{U}(\mathfrak{g})$ を等化準同型とする. すると, $c \in \mathbf{U}(\mathfrak{g})$ は, 線型写像

$$\operatorname{End}(\mathfrak{a}) \xrightarrow{\phi} \mathfrak{a} \otimes \mathfrak{a}^* \xrightarrow{\operatorname{id}_{\mathfrak{a}} \otimes \psi^{-1}} \mathfrak{a} \otimes \mathfrak{a} \xrightarrow{\iota} \mathbf{T}(\mathfrak{g}) \xrightarrow{\pi} \mathbf{U}(\mathfrak{g})$$

による $\mathrm{id}_{\mathfrak{a}}\in\mathrm{End}(\mathfrak{a})$ の像にほかならないから, \mathfrak{a} の基底 (e_1,\dots,e_n) のとり方によらない.さらに, \mathfrak{a} の随伴表現から定まる $\mathrm{End}(\mathfrak{a})$, $\mathfrak{a}\otimes\mathfrak{a}^*$, $\mathfrak{a}\otimes\mathfrak{a}$ 上の表現と, \mathfrak{g} の随伴表現の \mathfrak{a} への制限から定まる $\mathbf{T}(\mathfrak{g})$, $\mathbf{U}(\mathfrak{g})$ 上の表現を考えると,容易に確かめられるように,上記の線型写像はすべて \mathfrak{g} -準同型である.これらの表現に関して, $\mathrm{id}_{\mathfrak{a}}\in\mathrm{End}(\mathfrak{a})$ は不変だから, $c\in\mathbf{U}(\mathfrak{g})$ も不変である.これは,c が包絡代数の中心 $\mathbf{Z}(\mathbf{U}(\mathfrak{g}))$ に属することを意味する.

定義 3.28 (Casimir 元) 命題 3.27 の状況で, $c \in \mathbf{Z}(\mathbf{U}(\mathfrak{g}))$ を, B と \mathfrak{a} に伴う **Casimir 元** (Casimir element) という. B が \mathfrak{g} の有限次元表現 ρ のトレース形式である場合には, これを, ρ と \mathfrak{a} に伴う Casimir 元という. $\mathfrak{a} = \mathfrak{g}$ である(したがって, \mathfrak{g} は有限次元であり, B は非退化である)場合には, これを単に, B (あるいは ρ) に伴う Casimir 元という.

命題 3.29 \mathfrak{g} を Lie 代数, \mathfrak{a} をその有限次元イデアルとし, (ρ,V) を \mathfrak{g} の有限次元表現であってそのトレース形式 B_{ρ} が $\mathfrak{a} \times \mathfrak{a}$ 上で非退化であるものとする. ρ と \mathfrak{a} に伴う Casimir 元を, $c \in \mathbf{Z}(\mathbf{U}(\mathfrak{g}))$ と書く.

- (1) $\rho(c)$ は、V の \mathfrak{g} -自己準同型である.
- (2) $\operatorname{tr} \rho(c) = \dim \mathfrak{a} \ \mathfrak{r} \ \mathfrak{d} \ \mathfrak{d}.$
- (3) ρ は既約であり、 $\dim \mathfrak{a}$ は係数体 \mathbbm{K} の標数の倍数ではないとする.このとき、 $\rho(c)$ は、V の \mathfrak{g} -自己同型である.

証明 (1) $c \in \mathbf{Z}(\mathbf{U}(\mathfrak{g}))$ だから, $\rho(c)$ は任意の $x \in \mathfrak{g}$ に対する $\rho(x)$ と可換である.すなわち, $\rho(c)$ は V の \mathfrak{g} -自己準同型である.

(2) ρ のトレース形式を B_{ρ} と書く. \mathfrak{a} の基底 (e_1,\ldots,e_n) を一つとり、 (e_1^*,\ldots,e_n^*) を \mathfrak{a} の基底であって $B(e_i,e_i^*)=\delta_{ij}$ を満たすものとする. すると、 $c=\sum_{i=1}^n e_i e_i^*$ だから、

$$\operatorname{tr} \rho(c) = \sum_{i=1}^{n} \operatorname{tr}(\rho(e_i)\rho(e_i^*)) = \sum_{i=1}^{n} B_{\rho}(e_i, e_i^*) = \dim \mathfrak{a}$$

である.

(3) $\dim \mathfrak{a}$ が \mathbb{K} の標数の倍数ではないことと (2) より、 $\rho(c) \neq 0$ である. (1) より $\ker \rho(c)$ は V の $\rho(\mathfrak{g})$ -安定な部分線型空間だから、 ρ が既約であることと $\rho(c) \neq 0$ であることより、 $\ker \rho(c) = 0$ である. また、

(1) より $\operatorname{Im} \rho(c)$ は V の $\rho(\mathfrak{g})$ -安定な部分線型空間だから, ρ が既約であることと $\rho(c) \neq 0$ であることより, $\operatorname{Im} \rho(c) = V$ である.よって, $\rho(c)$ は V の \mathfrak{g} -自己同型である.

 $\mathfrak g$ を Lie 代数とするとき, $p\in\mathbb N$ に対する $\mathscr C^p(\mathfrak g)$ を,

$$\mathscr{C}^0(\mathfrak{g}) = \mathfrak{g}, \qquad \mathscr{C}^{p+1}(\mathfrak{g}) = [\mathfrak{g}, \mathscr{C}^p(\mathfrak{g})] \qquad (p \in \mathbb{N})$$

によって再帰的に定める. すなわち、 $\mathscr{C}^p(\mathfrak{g})=\mathrm{ad}(\mathfrak{g})^p\mathfrak{g}$ とする. 列 $(\mathscr{C}^p(\mathfrak{g}))_{p\in\mathbb{N}}$ を、 \mathfrak{g} の降中心列 (lower central sequence) という.

定義 4.1(冪零 Lie 代数 $\mathfrak g$ が冪零(nilpotent)であるとは、ある $p \in \mathbb N$ が存在して $\mathscr C^p(\mathfrak g) = 0$ となることをいう.

明らかに、可換 Lie 代数は冪零である.

命題 4.2 账'を 账 の拡大体とする.

- (1) \mathbb{K} -Lie 代数 \mathfrak{g} が冪零であることと、その係数拡大 $\mathfrak{g}_{(\mathbb{K}')}$ が冪零であることとは同値である.
- (2) \mathbb{K}' -Lie 代数 \mathfrak{g}' が冪零であることと,その係数の制限 $\mathfrak{g}'_{\mathbb{K}}$ が冪零であることとは同値である.

証明 (1) 帰納的に確かめられるように、任意の $p \in \mathbb{N}$ に対して $\mathscr{C}^p(\mathfrak{g}_{(\mathbb{K}')}) = \mathscr{C}^p(\mathfrak{g})_{(\mathbb{K}')}$ だから、主張が成り立つ.

命題 4.3

- (1) 冪零 Lie 代数の部分 Lie 代数は, 冪零である.
- (2) 冪零 Lie 代数の商 Lie 代数は, 冪零である.
- (3) \mathfrak{g} を Lie 代数とし、 \mathfrak{a} をそのイデアルとする. $\mathfrak{g}/\mathfrak{a}$ が冪零であり、 $\mathfrak{a}\subseteq \mathbf{Z}(\mathfrak{g})$ であるならば、 \mathfrak{g} は冪零である.
- (4) $(\mathfrak{g}_i)_{i\in I}$ を Lie 代数の族とし、 $\mathfrak{g}=\bigoplus_{i\in I}\mathfrak{g}_i$ と置く.このとき,すべての \mathfrak{g}_i が冪零であることと, \mathfrak{g} が冪零であることとは同値である.

証明 (1) \mathfrak{g} を Lie 代数とし、 \mathfrak{h} をその部分 Lie 代数とする.帰納的に確かめられるように、任意の $p \in \mathbb{N}$ に対して $\mathscr{C}^p(\mathfrak{h}) \subseteq \mathscr{C}^p(\mathfrak{g})$ だから、 \mathfrak{g} が冪零ならば \mathfrak{h} も冪零である.

- (4) 帰納的に確かめられるように,任意の $p\in\mathbb{N}$ に対して $\mathscr{C}^p(\mathfrak{g})=\bigoplus_{i\in I}\mathscr{C}^p(\mathfrak{g}_i)$ だから,すべての \mathfrak{g}_i が 冪零であることと \mathfrak{g} が冪零であることとは同値である.

命題 4.4 有限次元冪零 Lie 代数の Killing 形式は、0 である.

証明 \mathfrak{g} を有限次元冪零 Lie 代数とし、その Killing 形式を $B_{\mathfrak{g}}$ と書く.任意の $x,y\in\mathfrak{g}$ に対して、 $\mathrm{ad}(x)\,\mathrm{ad}(y)$ は冪零だから、 $B_{\mathfrak{g}}(x,y)=\mathrm{tr}(\mathrm{ad}(x)\,\mathrm{ad}(y))=0$ である.

注意 4.5 命題 4.4 の逆は成り立たない. すなわち,有限次元 Lie 代数 $\mathfrak g$ の Killing 形式が 0 であっても, $\mathfrak g$ が 冪零であるとは限らない. たとえば, $\mathfrak g=\mathbb C e_1\oplus\mathbb C e_2\oplus\mathbb C e_3$ 上の交代的な乗法 $(x,y)\mapsto[x,y]$ を

$$[e_1, e_2] = e_2,$$
 $[e_1, e_3] = ie_3,$ $[e_2, e_3] = 0$

によって定めると、容易に確かめられるように、 $\mathfrak g$ は Lie 代数をなす。基底 (e_1,e_2,e_3) に関する $\mathrm{ad}(e_1)$ 、 $\mathrm{ad}(e_2)$ 、 $\mathrm{ad}(e_3)$ の行列表示はそれぞれ

$$ad(e_1) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & i \end{pmatrix}, \quad ad(e_2) = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad ad(e_3) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix}$$

であり、これらから確かめられるように、 $\mathfrak g$ の Killing 形式は 0 である.一方で、任意の $p\in\mathbb N_{>0}$ に対して $\mathscr C^p(\mathfrak g)=\mathbb Ce_2\oplus\mathbb Ce_3$ だから、 $\mathfrak g$ は冪零ではない.

4.2 Engel の定理

補題 4.6 A を結合代数とし、 \mathfrak{g} を A (を交換子によって Lie 代数とみなしたもの) の部分 Lie 代数とする. $x \in \mathfrak{g}$ が(A の乗法に関して)冪零ならば、 \mathfrak{g} 上の線型変換 $\mathrm{ad}_{\mathfrak{g}}(x)$ は冪零である.

証明 $\operatorname{ad}_{\mathfrak{g}}(x)$ は $\operatorname{ad}_A(x)$ の制限だから, $\mathfrak{g}=A$ である場合に主張を示せば十分である. $x\in A$ として,A 上の線型変換 $y\mapsto xy,\,y\mapsto yx$ をそれぞれ L_x , R_x と書く.すると, L_x と R_x は可換だから, $n\in\mathbb{N}$ に対して

$$\operatorname{ad}_{A}(x)^{n} = (L_{x} - R_{x})^{n} = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} L_{x}^{n-k} R_{x}^{k}$$

が成り立つ.ここで, $x^p=0$ $(p\in\mathbb{N})$ であるとすると, $L^p_x=R^p_x=0$ だから,上式より $\mathrm{ad}_A(x)^{\max\{2p-1,0\}}=0$ を得る.よって,x が冪零ならば, $\mathrm{ad}_A(x)$ は冪零である.

定理 4.7 g を有限次元 Lie 代数とし、 (ρ, V) をその表現とする. 次の条件は同値である.

- (a) $\rho(\mathfrak{g})$ の任意の元は冪零である.
- (b) ある $p \in \mathbb{N}$ が存在して、 $\rho(\mathfrak{g})^p = 0$ (すなわち、任意の $x_1, \ldots, x_p \in \mathfrak{g}$ に対して $\rho(x_1) \cdots \rho(x_p) = 0$) となる.

証明 $(b) \Longrightarrow (a)$ 明らかである.

(a) \Longrightarrow (b) 必要ならば $\mathfrak{g}/\operatorname{Ker}\rho$ を改めて \mathfrak{g} と置き直すことで, ρ が忠実であると仮定しても一般性を失わない.このとき, ρ が条件 (a) を満たすならば,補題 4.6 より, $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{g})$ の任意の元は冪零である.そこで,以下では, \mathfrak{g} は有限次元 Lie 代数であって $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{g})$ の任意の元が冪零であるものとし,この \mathfrak{g} に対して主張を示す.

有限次元 Lie 代数 $\mathfrak h$ の任意の表現 (ρ, V) に対して $(a) \Longrightarrow (b)$ が成り立つとき, $\mathfrak h$ は条件 (E) を満たすということにする. $\mathfrak g$ は有限次元だから, $\mathfrak g$ の条件 (E) を満たす部分 Lie 代数の中で極大なもの $\mathfrak h$ がとれる.以下, $\mathfrak h=\mathfrak g$ であることを示す.

 \mathfrak{h} は $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{h})$ -安定だから,随伴表現 $\mathrm{ad}_{\mathfrak{g}}$ から, \mathfrak{h} の $\mathfrak{g}/\mathfrak{h}$ 上の表現 σ が誘導される.仮定より, $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{g})$ の任意 の元は冪零だから, $\sigma(\mathfrak{h})$ の任意の元も冪零である.したがって, \mathfrak{h} が条件 (E) を満たすことより, $\sigma(\mathfrak{h})$ の十分大きい冪は 0 となる.ここで, $\mathfrak{h}\neq\mathfrak{g}$ であるとすると, $\mathfrak{g}/\mathfrak{h}\neq 0$ だから, $\sigma(\mathfrak{h})^p\neq 0$ を満たす $p\in\mathbb{N}$ の中で 最小のものがとれる.これに対して, $x\in\sigma(\mathfrak{h})^p\setminus\{0\}$ がとれ,この x は $\sigma(\mathfrak{h})x=0$ を満たす. $x=x+\mathfrak{h}$ と表すと, $x\in\mathfrak{g}\setminus\mathfrak{h}$ かつ $[x,\mathfrak{h}]\subseteq\mathfrak{h}$ である.そこで, $\widetilde{\mathfrak{h}}=\mathfrak{h}\oplus\mathbb{K}x$ と置くと, $\widetilde{\mathfrak{h}}$ は \mathfrak{g} の部分 Lie 代数であり, \mathfrak{h} は $\widetilde{\mathfrak{h}}$ のイデアルである.

(au,W) を $\widetilde{\mathfrak{h}}$ の表現とし, $au(\widetilde{\mathfrak{h}})$ の任意の元が冪零であるとする.このとき, \mathfrak{h} が条件 (E) を満たすことより,ある $p\in\mathbb{N}$ が存在して $au(\mathfrak{h})^p=0$ となる.また,au(x) は冪零だから,ある $q\in\mathbb{N}$ が存在して $au(x)^q=0$ となる.この状況の下で,ある $N\in\mathbb{N}$ が存在して,任意の $y_1,\ldots,y_N\in\widetilde{\mathfrak{h}}$ に対して

$$\tau(y_1)\cdots\tau(y_N)=0\tag{*}$$

が成り立つことを示したい。 $\widetilde{\mathfrak{h}}=\mathfrak{h}\oplus\mathbb{K}x$ だから,各 y_i は \mathfrak{h} の元または x であると仮定してよい。 y_1,\ldots,y_N の中に, \mathfrak{h} に属するものが n 個,x であるものが N-n 個あるとする。 $[x,\mathfrak{h}]\subseteq\mathfrak{h}$ だから,任意の $k\in\mathbb{N}$ に対して,包絡代数 $\mathbf{U}(\mathfrak{g})$ において

$$x\mathfrak{h}^{k} \subseteq \mathfrak{h}^{k}x + [x, \mathfrak{h}^{k}]$$

$$\subseteq \mathfrak{h}^{k}x + \sum_{i=0}^{k-1} \mathfrak{h}^{i}[x, \mathfrak{h}]\mathfrak{h}^{k-1-i}$$

$$\subseteq \mathfrak{h}^{k}x + \mathfrak{h}^{k}$$

が成り立つ. これを繰り返し用いることで、

$$\tau(y_1)\cdots\tau(y_N)\in\tau(\mathfrak{h})^n\tau(x)^{N-n}+\tau(\mathfrak{h})^n$$

を得る. $n \ge p$ ならば、上式より、 $\tau(y_1)\cdots\tau(y_N)=0$ である. 一方で、N>p(q-1)+p-1=pq-1 ならば、n< p であるとき、 y_1,\ldots,y_N の中に x が q 個以上連続する部分が必ず存在するので、やはり $\tau(y_1)\cdots\tau(y_N)=0$ となる. よって、 $N\ge pq$ とすれば、(*) が常に成り立つ. これで、主張が示された. \square

系 4.8 $\mathfrak g$ を有限次元 Lie 代数, (ρ,V) をその表現であって $V \neq 0$ であるものとし, $\rho(\mathfrak g)$ の任意の元は冪零であるとする.このとき, $v \in V \setminus \{0\}$ であって $\rho(\mathfrak g)v = 0$ を満たすものが存在する.

証明 仮定と定理 4.7 より、 $\sigma(\mathfrak{g})$ の十分大きい冪は 0 となる. $V \neq 0$ だから、 $\sigma(\mathfrak{g})^p \neq 0$ を満たす $p \in \mathbb{N}$ の中で最小のものがとれる. これに対して、 $v \in \sigma(\mathfrak{g})^p \setminus \{0\}$ をとると、この v は $\rho(\mathfrak{g})v = 0$ を満たす.

系 4.9 (Engel の定理) $\mathfrak g$ を Lie 代数, (ρ,V) をその有限次元表現とし, $\rho(\mathfrak g)$ の任意の元は冪零であるとする.このとき,V の基底を適当にとれば, $\rho(\mathfrak g)$ の任意の元の対応する行列表示が狭義上三角行列となる.

証明 ρ の組成列 (V_0,\ldots,V_n) をとり(命題 3.15),各 $i\in\{0,\ldots,n-1\}$ に対して, ρ が誘導する \mathfrak{g} の V_i/V_{i+1} 上の既約表現を ρ_i と書く.すると,仮定より $\rho_i(\mathfrak{g})$ の任意の元は冪零だから,系 4.8 より $\overline{v_i}\in V_i/V_{i+1}\setminus\{0\}$ であって $\rho_i(\mathfrak{g})\overline{v_i}=0$ を満たすものが存在する. ρ_i は既約だから, $V_i/V_{i+1}=\mathbb{K}\overline{v_i}$ が成り立つ.そこで,各 $\overline{v_i}$ を v_i+V_{i+1} と表すと, (v_{n-1},\ldots,v_0) は V の基底である.さらに,各 i に対して, $\rho(\mathfrak{g})v_i\in V_{i+1}=\mathrm{span}_{\mathbb{K}}\{v_{i+1},\ldots,v_{n-1}\}$ が成り立つ.すなわち, $\rho(\mathfrak{g})$ の任意の元の基底 (v_{n-1},\ldots,v_0) に関する行列表示は,狭義上三角行列である.

系 4.10 有限次元 Lie 代数 g に対して、次の条件は同値である.

- (a) g は冪零である.
- (b) ad(g) の任意の元は冪零である.

証明 \mathfrak{g} が冪零であるとは、ある $p \in \mathbb{N}$ が存在して $\mathrm{ad}(\mathfrak{g})^p = 0$ となるということだから、主張は定理 4.7 の 特別な場合である.

系 4.11 $\mathfrak g$ は有限次元 Lie 代数であり、その忠実な表現 (ρ,V) であって、 $\rho(\mathfrak g)$ の任意の元が冪零であるものが存在するとする。このとき、 $\mathfrak g$ は冪零である.

証明 仮定と補題 4.6 より, $\mathrm{ad}(\mathfrak{g})$ の任意の元は冪零である.よって,系 4.10 より, \mathfrak{g} は冪零である.

5 可解 Lie 代数

5.1 可解 Lie 代数

 \mathfrak{g} を Lie 代数とするとき、 $p \in \mathbb{N}$ に対する $\mathcal{D}^p(\mathfrak{g})$ を、

$$\mathscr{D}^0(\mathfrak{g}) = \mathfrak{g}, \qquad \mathscr{D}^{p+1}(\mathfrak{g}) = [\mathscr{D}^p(\mathfrak{g}), \mathscr{D}^p(\mathfrak{g})] \qquad (p \in \mathbb{N})$$

によって再帰的に定める. 列 $(\mathcal{D}^p(\mathfrak{g}))_{p\in\mathbb{N}}$ を, \mathfrak{g} の**導来列** (derived sequence) という.

定義 5.1(可解 Lie 代数 g が**可解**(solvable)であるとは,ある $p \in \mathbb{N}$ が存在して $\mathcal{D}^p(\mathfrak{g}) = 0$ となることをいう.

帰納的に確かめられるように、任意の $p \in \mathbb{N}$ に対して $\mathcal{D}^p(\mathfrak{g}) \subseteq \mathscr{C}^p(\mathfrak{g})$ だから、冪零 Lie 代数は可解である.

命題 5.2 账'を № の拡大体とする.

- (1) \mathbb{K} -Lie 代数 \mathfrak{g} が可解であることと、その係数拡大 $\mathfrak{g}_{(\mathbb{K}')}$ が可解であることとは同値である.
- (2) \mathbb{K}' -Lie 代数 \mathfrak{g}' が可解であることと,その係数の制限 $\mathfrak{g}'_{\mathbb{K}}$ が可解であることとは同値である.

証明 (1) 帰納的に確かめられるように,任意の $p \in \mathbb{N}$ に対して $\mathcal{D}^p(\mathfrak{g}_{(\mathbb{K}')}) = \mathcal{D}^p(\mathfrak{g})_{(\mathbb{K}')}$ だから,主張が成り立つ.

(2) 明らかである.

命題 5.3

- (1) 可解 Lie 代数の部分 Lie 代数は,可解である.
- (2) 可解 Lie 代数の商 Lie 代数は、可解である.
- (3) \mathfrak{g} を Lie 代数とし、 \mathfrak{a} をそのイデアルとする. $\mathfrak{g}/\mathfrak{a}$ と \mathfrak{a} が可解ならば、 \mathfrak{g} は可解である.
- (4) $(\mathfrak{g}_i)_{i\in I}$ を Lie 代数の族とし, $\mathfrak{g}=\bigoplus_{i\in I}\mathfrak{g}_i$ と置く.このとき,すべての \mathfrak{g}_i が可解であることと, \mathfrak{g} が可解であることとは同値である.
- (5) \mathfrak{g} を Lie 代数, $(\mathfrak{a}_i)_{i\in I}$ をそのイデアルの有限族とし, $\mathfrak{a}=\sum_{i\in I}\mathfrak{a}_i$ と置く.すべての \mathfrak{a}_i が可解であることとは同値である.

証明 (1) \mathfrak{g} を Lie 代数とし、 \mathfrak{h} をその部分 Lie 代数とする.帰納的に確かめられるように、任意の $p \in \mathbb{N}$ に対して $\mathcal{D}^p(\mathfrak{h}) \subseteq \mathcal{D}^p(\mathfrak{g})$ だから、 \mathfrak{g} が可解ならば \mathfrak{h} も可解である.

- (4) 帰納的に確かめられるように、任意の $p \in \mathbb{N}$ に対して $\mathcal{D}^p(\mathfrak{g}) = \bigoplus_{i \in I} \mathcal{D}^p(\mathfrak{g}_i)$ だから、すべての \mathfrak{g}_i が可解であることとは同値である.
- (5) \mathfrak{a} が可解ならば、(1) より、すべての \mathfrak{a}_i は可解である.その逆を示すためには、 \mathfrak{g} のイデアル \mathfrak{a} と \mathfrak{b} が可解であるとして、 $\mathfrak{a}+\mathfrak{b}$ も可解であることを示せばよい. \mathfrak{a} から $(\mathfrak{a}+\mathfrak{b})/\mathfrak{b}$ への自然な準同型は全射だから、(2) より $(\mathfrak{a}+\mathfrak{b})/\mathfrak{b}$ は可解である.このことと (3) より、 $\mathfrak{a}+\mathfrak{b}$ は可解である.これで、主張が示された. \square
- 系 5.4 有限次元 Lie 代数 g に対して、その可解イデアルの中で最大のものが存在する.

証明 \mathfrak{g} のすべての可解イデアルを和を \mathfrak{r} と置く. \mathfrak{g} は有限次元だから, \mathfrak{g} の有限個の可解イデアル $\mathfrak{a}_1,\ldots,\mathfrak{a}_n$ が存在して, $\mathfrak{r}=\mathfrak{a}_1+\cdots+\mathfrak{a}_n$ が成り立つ. よって,命題 5.3 より \mathfrak{r} は可解であり,これが \mathfrak{g} の可解イデアルの中で最大のものとなる.

5.2 根基

定義 5.5(根基) 有限次元 Lie 代数 $\mathfrak g$ の可解イデアルの中で最大のもの(系 5.4 より存在する)を、 $\mathfrak g$ の**根基** (radical) といい、rad $\mathfrak g$ と書く.

命題 5.6 $\mathfrak{g},\mathfrak{h}$ を有限次元 Lie 代数とし、 $f:\mathfrak{g}\to\mathfrak{h}$ を全射準同型とする.このとき、 $f(\mathrm{rad}\,\mathfrak{g})\subseteq\mathrm{rad}\,\mathfrak{h}$ である.

証明 $f(\operatorname{rad}\mathfrak{g})$ は \mathfrak{h} の可解イデアルだから(命題 5.3 (2)), $\operatorname{rad}\mathfrak{h}$ に含まれる.

注意 5.7 後に系 6.17 で示すように、標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数の間の全射準同型 $f:\mathfrak{g}\to\mathfrak{h}$ について、 $f(\mathrm{rad}\,\mathfrak{g})=\mathrm{rad}\,\mathfrak{h}$ が成り立つ.

命題 5.8 $(\mathfrak{g}_i)_{i\in I}$ を有限次元 Lie 代数の有限族とし, $\mathfrak{g}=\bigoplus_{i\in I}\mathfrak{g}_i$ と置く.このとき, $\mathrm{rad}\,\mathfrak{g}=\bigoplus_{i\in I}\mathrm{rad}\,\mathfrak{g}_i$ である

証明 $\bigoplus_{i \in I} \operatorname{rad} \mathfrak{g}_i$ は \mathfrak{g} の可解イデアルだから(命題 5.3 (4)), $\operatorname{rad} \mathfrak{g}$ に含まれる.一方で, \mathfrak{g} から \mathfrak{g}_i への射影による $\operatorname{rad} \mathfrak{g}$ の像は \mathfrak{g}_i の可解イデアルだから(命題 5.3 (2)), $\operatorname{rad} \mathfrak{g}_i$ に含まれる.任意の $i \in I$ に対してこれが成り立つから, $\operatorname{rad} \mathfrak{g} \subseteq \bigoplus_{i \in I} \operatorname{rad} \mathfrak{g}_i$ である.よって, $\operatorname{rad} \mathfrak{g} = \bigoplus_{i \in I} \operatorname{rad} \mathfrak{g}_i$ である.

5.3 冪零根基

定義 5.9 (冪零根基) 有限次元 Lie 代数 g の冪零根基 (nilpotent radical) を,

 $\operatorname{nil} \mathfrak{g} = \{x \in \mathfrak{g} \mid \mathfrak{g} \text{ の任意の有限次元既約表現 } \rho \text{ に対して } \rho(x) = 0\}$

と定める.

有限次元 Lie 代数 $\mathfrak g$ の有限次元既約表現 ho の核 Ker ho は $\mathfrak g$ のイデアルであり,冪零根基 $\mathrm{nil}\, \mathfrak g$ はその全体の

交叉だから、nilgはgのイデアルである.

命題 5.10 g を有限次元 Lie 代数, (ρ, V) をその有限次元表現とし, nil g が生成する $\mathbf{U}(\mathfrak{g})$ の両側イデアルを $\langle \operatorname{nil} \mathfrak{g} \rangle$ と書く.このとき,ある $p \in \mathbb{N}$ が存在して, $\rho(\langle \operatorname{nil} \mathfrak{g} \rangle)^p = 0$ が成り立つ.

証明 ρ の組成列 (V_0, \ldots, V_n) をとり (命題 3.15),各 $i \in \{0, \ldots, n-1\}$ に対して, ρ が誘導する \mathfrak{g} の V_i/V_{i+1} 上の既約表現を ρ_i と書く.すると,冪零根基の定義より,各 i に対して $\rho_i(\operatorname{nil}\mathfrak{g})=0$ である.すなわち,

$$\rho(\operatorname{nil}\mathfrak{g})V_i\subseteq V_{i+1}$$

である. 各 V_i は $\rho(\mathbf{U}(\mathfrak{g}))$ -安定だから、上式は、 $\operatorname{nil} \mathfrak{g}$ を $\langle \operatorname{nil} \mathfrak{g} \rangle$ に置き換えても正しい. よって、 $\rho(\langle \operatorname{nil} \mathfrak{g} \rangle)^n = 0$ が成り立つ.

系 5.11 g を有限次元 Lie 代数とする.

- (1) 冪零根基 nil g は、g の冪零イデアルである.
- (2) \mathfrak{g} の任意の有限次元表現 (ρ,V) のトレース形式の退化空間は,冪零根基 $\mathrm{nil}\,\mathfrak{g}$ を含む.

証明 (1) 冪零根基 $\operatorname{nil}\mathfrak{g}$ が \mathfrak{g} のイデアルであることは、すでに述べた.命題 5.10 より、ある $p \in \mathbb{N}$ が存在して $\operatorname{ad}_{\mathfrak{g}}(\operatorname{nil}\mathfrak{g})^p = 0$ となるり、特に $\operatorname{ad}_{\operatorname{nil}\mathfrak{g}}(\operatorname{nil}\mathfrak{g})^p = 0$ となるから、 $\operatorname{nil}\mathfrak{g}$ は冪零である.

(2) 命題 5.10 より、 $\rho(\mathfrak{g})\rho(\mathrm{nil}\,\mathfrak{g})$ の任意の元は冪零である。よって、 ρ のレース形式を B_{ρ} と書くと、 $B_{\rho}(\mathfrak{g},\mathrm{nil}\,\mathfrak{g})=\mathrm{tr}(\rho(\mathfrak{g})\rho(\mathrm{nil}\,\mathfrak{g}))=0$ である。

命題 5.12 g, \mathfrak{h} を有限次元 Lie 代数とし, $f\colon \mathfrak{g}\to \mathfrak{h}$ を全射準同型とする.このとき, $f(\mathrm{nil}\,\mathfrak{g})\subseteq \mathrm{nil}\,\mathfrak{h}$ である.

証明 ρ を $\mathfrak h$ の有限次元既約表現とすると, $\rho \circ f$ は $\mathfrak g$ の有限次元既約表現だから, $\mathrm{nil}\, \mathfrak g \subseteq \mathrm{Ker}(\rho \circ f)$ である. すなわち, $f(\mathrm{nil}\, \mathfrak g) \subseteq \mathrm{Ker}\, \rho$ である. 任意の ρ に対してこれが成り立つから, $f(\mathrm{nil}\, \mathfrak g) \subseteq \mathrm{nil}\, \mathfrak h$ である.

注意 5.13 後に系 6.25 で示すように、標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数の間の全射準同型 $f:\mathfrak{g}\to\mathfrak{h}$ について、 $f(\operatorname{nil}\mathfrak{g})=\operatorname{nil}\mathfrak{h}$ が成り立つ.

補題 5.14 \mathfrak{g} は標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数であり、忠実な有限次元既約表現をもつとする.このとき、 \mathfrak{g} の任意の可換イデアル \mathfrak{g} について、 $\mathfrak{g} \cap [\mathfrak{g},\mathfrak{g}] = 0$ である.

証明 一般性を失わず、 \mathfrak{g} は $\mathfrak{gl}(V)$ (V は線型空間)の部分 Lie 代数であり、その自然表現は既約であるとする。 \mathfrak{g} の可換イデアル \mathfrak{a} を任意にとり、 \mathfrak{a} が生成する $\operatorname{End}(V)$ の部分単位的代数を A と書く。 \mathfrak{a} は可換だから、A も可換である。

準備として、 $\mathfrak g$ のイデアル $\mathfrak b$ であって $\mathfrak a$ に含まれるものについて、 $\operatorname{tr}(\mathfrak b A)=0$ ならば $\mathfrak b=0$ であることを示す。 $\operatorname{tr}(\mathfrak b A)=0$ であるとすると、任意の $x\in\mathfrak b$ と $n\in\mathbb N_{>0}$ に対して $\operatorname{tr} x^n=\operatorname{tr}(xx^{n-1})=0$ となるから、 $\mathfrak b$ の任意の元は冪零である(ここで、 $\mathbb K$ の標数が 0 であることを用いた)。そこで、

$$W = \{ v \in V \mid \mathfrak{b}v = 0 \}$$

と置くと,系 4.8 より $W\neq 0$ である. さらに, $\mathfrak b$ が $\mathfrak g$ のイデアルであることから容易に確かめられるように,W は $\mathfrak g$ -安定である. したがって, $\mathfrak g$ の自然表現が既約であることより,W=V である. すなわち, $\mathfrak b=0$ である.

補題の主張を示す. まず, Aが可換であることより

$$\operatorname{tr}([\mathfrak{g},\mathfrak{a}]A) = \operatorname{tr}(\mathfrak{g}[\mathfrak{a},A]) = 0$$

だから、前段の結果より、 $[\mathfrak{g},\mathfrak{a}]=0$ である. したがって、 $[\mathfrak{g},A]=0$ である. 次に、この結果より

$$\operatorname{tr}((\mathfrak{a} \cap [\mathfrak{g}, \mathfrak{g}])A) \subseteq \operatorname{tr}([\mathfrak{g}, \mathfrak{g}]A) = \operatorname{tr}(\mathfrak{g}[\mathfrak{g}, A]) = 0$$

だから、前段の結果より、 $\mathfrak{a} \cap [\mathfrak{g},\mathfrak{g}] = 0$ である. これで、主張が示された.

定理 5.15 標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数 \mathfrak{g} について, $\operatorname{nil}\mathfrak{g} = \operatorname{rad}\mathfrak{g} \cap [\mathfrak{g},\mathfrak{g}]$ が成り立つ.

証明 $\underline{\mathrm{nil}\,\mathfrak{g}}\subseteq\mathrm{rad\,\mathfrak{g}}\cap[\mathfrak{g},\mathfrak{g}]$ $\mathrm{nil}\,\mathfrak{g}$ は \mathfrak{g} の冪零イデアルだから(系 5.11 (1)), $\mathrm{rad}\,\mathfrak{g}$ に含まれる。また, λ を \mathfrak{g} 上の線型形式であって $[\mathfrak{g},\mathfrak{g}]$ 上で消えるものとすると, λ : $\mathfrak{g}\to\mathbb{K}\cong\mathfrak{gl}(1,\mathbb{K})$ は \mathfrak{g} の 1 次元(したがって,既 約)表現である。したがって, $\mathrm{nil}\,\mathfrak{g}\subseteq\bigcap_{\lambda\in\mathfrak{g}^*,\;\lambda|_{[\mathfrak{g},\mathfrak{g}]}=0}\mathrm{Ker}\,\lambda=[\mathfrak{g},\mathfrak{g}]$ である。よって, $\mathrm{nil}\,\mathfrak{g}\subseteq\mathrm{rad}\,\mathfrak{g}\cap[\mathfrak{g},\mathfrak{g}]$ が 成り立つ。

 $\underline{\operatorname{rad}\mathfrak{g}\cap[\mathfrak{g},\mathfrak{g}]\subseteq\operatorname{nil}\mathfrak{g}}$ \mathfrak{g} の任意の有限次元既約表現 (ρ,V) に対して、 $\rho(\operatorname{rad}\mathfrak{g}\cap[\mathfrak{g},\mathfrak{g}])=0$ であることを示せばよい、 $\operatorname{rad}\mathfrak{g}$ は可解だから、 $\rho(\mathcal{D}^{p+1}(\operatorname{rad}\mathfrak{g}))=0$ を満たす最小の $p\in\mathbb{N}$ がとれる。 $\mathfrak{g}'=\rho(\mathfrak{g})$ 、 $\mathfrak{g}'=\rho(\mathcal{D}^p(\operatorname{rad}\mathfrak{g}))$ と置くと、 \mathfrak{g}' の自然表現は既約であり、 \mathfrak{a}' は \mathfrak{g}' のイデアルである。また、 $[\mathfrak{a}',\mathfrak{a}']=\rho([\mathcal{D}^p(\operatorname{rad}\mathfrak{g}),\mathcal{D}^p(\operatorname{rad}\mathfrak{g})])=\rho(\mathcal{D}^{p+1}(\operatorname{rad}\mathfrak{g}))=0$ だから、 \mathfrak{a}' は可換である。したがって、補題 5.14 より

$$\rho(\mathscr{D}^p(\operatorname{rad}\mathfrak{g})\cap[\mathfrak{g},\mathfrak{g}])\subseteq\mathfrak{a}'\cap[\mathfrak{g}',\mathfrak{g}']=0$$

が成り立つ.ここで, $p \ge 1$ であるとすると, $\mathscr{D}^p(\operatorname{rad}\mathfrak{g}) \subseteq [\mathfrak{g},\mathfrak{g}]$ だから,上式より $\rho(\mathscr{D}^p(\operatorname{rad}\mathfrak{g})) = 0$ となるが,これは p の最小性に反する.よって,p = 0 であり,これを上式に代入すると

$$\rho(\operatorname{rad}\mathfrak{g}\cap[\mathfrak{g},\mathfrak{g}])=0$$

を得る. これで、主張が示された.

系 5.16 $(\mathfrak{g}_i)_{i\in I}$ を標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数の有限族とし, $\mathfrak{g}=\bigoplus_{i\in I}\mathfrak{g}_i$ と置く.このとき, $\mathrm{nil}\,\mathfrak{g}=\bigoplus_{i\in I}\mathrm{nil}\,\mathfrak{g}_i$ である.

証明 $\operatorname{rad}\mathfrak{g} = \bigoplus_{i \in I} \operatorname{rad}\mathfrak{g}_i$ (命題 5.8) かつ $[\mathfrak{g},\mathfrak{g}] = \bigoplus_{i \in I} [\mathfrak{g}_i,\mathfrak{g}_i]$ だから,定理 5.15 より $\operatorname{nil}\mathfrak{g} = \bigoplus_{i \in I} \operatorname{nil}\mathfrak{g}_i$ である.

系 5.17 標数 0 の可換体 K 上の有限次元 Lie 代数 g に対して,次の条件は同値である.

- (a) g は可解である.
- (b) [g, g] は冪零である.
- (c) [g, g] は可解である.

証明 (a) ⇒ (b) g が可解ならば,nil g = [g, g] だから(定理 5.15),[g, g] は冪零である(系 5.11 (1)).

- $(b) \Longrightarrow (c)$ 明らかである.
- $(a) \Longrightarrow (b)$ $\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]$ は可換だから, $[\mathfrak{g},\mathfrak{g}]$ が可解ならば, \mathfrak{g} も可解である(命題 5.3 (3)).

5.4 Lie の定理

定理 5.18 g を標数 0 の可換体 \mathbb{K} 上の有限次元可解 Lie 代数とし,(
ho,V) をその有限次元既約表現とする.

- (1) $\rho(\mathfrak{g})$ は可換である.
- (2) $\rho(\mathfrak{g})$ の任意の元が三角化可能ならば *2 , V は 1 次元である.

証明 (1) \mathfrak{g} が可解であることより $\operatorname{nil}\mathfrak{g}=[\mathfrak{g},\mathfrak{g}]$ だから(定理 5.15), $[\rho(\mathfrak{g}),\rho(\mathfrak{g})]=\rho([\mathfrak{g},\mathfrak{g}])=\rho(\operatorname{nil}\mathfrak{g})=0$ である.

(2) $\rho(\mathfrak{g})$ の任意の元が三角化可能であるとすると,(1) と合わせて, $\rho(\mathfrak{g})$ は同時三角化可能である.特に, $\rho(\mathfrak{g})$ の同時固有ベクトル $v \in V \setminus \{0\}$ がとれる.ところが, ρ は既約だから, $V = \mathbb{K}v$ が成り立つ.

系 5.19 (Lie の定理) $\mathfrak g$ を標数 0 の可換体 $\mathbb K$ 上の可解 Lie 代数, (ρ,V) をその有限次元表現とし, $\rho(\mathfrak g)$ の任意の元は三角化可能であるとする.このとき,V の基底を適当にとれば, $\rho(\mathfrak g)$ の任意の元の対応する行列表示が上三角行列となる.

証明 ρ の組成列 (V_0,\ldots,V_n) をとり(命題 3.15),各 $i\in\{0,\ldots,n-1\}$ に対して, ρ が誘導する $\mathfrak g$ の V_i/V_{i+1} 上の既約表現を ρ_i と書く. すると,仮定より $\rho_i(\mathfrak g)$ の任意の元は三角化可能だから,定理 5.18 より V_i/V_{i+1} は 1 次元である.そこで,各 i に対して $v_i\in V_i\setminus V_{i+1}$ をとると, (v_{n-1},\ldots,v_0) は V の基底である.さらに,各 i に対して, $\rho(\mathfrak g)v_i\in V_i=\operatorname{span}_{\mathbb K}\{v_i,\ldots,v_{n-1}\}$ が成り立つ.すなわち, $\rho(\mathfrak g)$ の任意の元の基底 (v_{n-1},\ldots,v_0) に関する行列表示は,上三角行列である.

5.5 可解性に関する Cartan の判定法

命題 5.20 \mathfrak{g} を標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数とし、 (ρ, V) をその有限次元表現とする。 ρ のトレース形式を B_{ρ} と書くと、 $B_{\rho}([\mathfrak{g},\mathfrak{g}],\mathrm{rad}\,\mathfrak{g})=0$ が成り立つ。

証明 B_{ρ} は不変であり(命題 3.23 (1)), $[\mathfrak{g}, \operatorname{rad}\mathfrak{g}] \subseteq \operatorname{rad}\mathfrak{g} \cap [\mathfrak{g}, \mathfrak{g}] = \operatorname{nil}\mathfrak{g}$ であり(定理 5.15), $\operatorname{nil}\mathfrak{g}$ は B_{ρ} の退化空間に含まれる(系 5.11 (2)).よって,

$$B_{\rho}([\mathfrak{g},\mathfrak{g}],\mathrm{rad}\,\mathfrak{g})=B_{\rho}(\mathfrak{g},[\mathfrak{g},\mathrm{rad}\,\mathfrak{g}])\subseteq B_{\rho}(\mathfrak{g},\mathrm{nil}\,\mathfrak{g})=0$$

である.

補題 5.21 V を完全体 \mathbb{K} 上の有限次元線型空間とする. x を V 上の線型変換とし、その Jordan 分解を (x_s,x_n) と書く. このとき、 $\mathfrak{gl}(V)$ 上の線型変換 $\mathrm{ad}(x)$ の Jordan 分解は、 $(\mathrm{ad}(x_s),\mathrm{ad}(x_n))$ である. 特に、 $\mathrm{ad}(x_s)$ と $\mathrm{ad}(x_n)$ は、ともに $\mathrm{ad}(x)$ の定数項をもたない \mathbb{K} 係数多項式として表せる.

証明 $x=x_{\rm s}+x_{\rm n}$ だから ${\rm ad}(x)={\rm ad}(x_{\rm s})+{\rm ad}(x_{\rm n})$ であり, $[x_{\rm s},x_{\rm n}]=0$ だから $[{\rm ad}(x_{\rm s}),{\rm ad}(x_{\rm n})]=0$ である. $x_{\rm n}$ は冪零だから,補題 4.6 より, ${\rm ad}(x_{\rm s})$ も冪零である. $x_{\rm s}$ は半単純だから, ${\mathbb K}$ の代数閉包 ${\mathbb K}$ を考えると,係数拡大 $(x_{\rm s})_{({\mathbb K})}$ は対角化可能である.そこで, $(x_{\rm s})_{({\mathbb K})}$ を対角化する $V_{({\mathbb K})}$ の基底 (e_1,\ldots,e_n) をとり,各i に対して $(x_{\rm s})_{({\mathbb K})}(e_i)=\lambda_i e_i$ ($\lambda_i\in{\mathbb K}$) と書く.この基底に対応する ${\mathfrak g}{\mathfrak l}(V_{({\mathbb K})})$ の基底を $(E_{ij})_{i,j\in\{1,\ldots,n\}}$ と書くと,各i,j に対して $({\rm ad}(x_{\rm s}))_{({\mathbb K})}E_{ij}={\rm ad}((x_{\rm s})_{({\mathbb K})})E_{ij}=(\lambda_i-\lambda_j)E_{ij}$ だから, ${\rm ad}((x_{\rm s})_{({\mathbb K})})$ も対角化可能である.よって, ${\rm ad}(x_{\rm s})$ は半単純である.

後半の主張は、Jordan 分解に関する一般論である.

^{*2 ≤} が代数閉ならば、この仮定は常に満たされる.

補題 5.22 V を標数 0 の可換体 $\mathbb K$ 上の有限次元線型空間,M,M' を V の部分線型空間であって $M'\subseteq M$ を満たすものとし,

$$T = \{ x \in \mathfrak{gl}(V) \mid [x, M] \subseteq M' \}$$

と置く. このとき, $x \in T$ が tr(Tx) = 0 を満たすならば, x は冪零である.

証明 必要ならば代数閉包への係数拡大を考えることで,一般性を失わず, \mathbb{K} は代数閉であると仮定する. $x \in T$ が $\operatorname{tr}(Tx) = 0$ を満たすとする. x の Jordan 分解を $(x_{\operatorname{s}}, x_{\operatorname{n}})$ と書き, x_{s} を対角化する V の基底 (e_1, \ldots, e_n) をとり,各 i に対して $x_{\operatorname{s}}(e_i) = \lambda_i e_i$ $(\lambda_i \in \mathbb{K})$ と書く. x が冪零であることを示すためには,すべての λ_i が 0 であることをいえばよい.そのために,

$$E = \operatorname{span}_{\mathbb{O}}\{\lambda_1, \dots, \lambda_n\} \subseteq \mathbb{K}$$

と置き、 \mathbb{Q} -線型空間 E の双対空間 E^* が 0 であることを示す.

 $f \in E^*$ を任意にとり、これに対して $y \in \mathfrak{gl}(V)$ を、

$$y(e_i) = f(\lambda_i)e_i \qquad (i \in \{1, \dots, n\})$$

によって定める. V の基底 (e_1, \ldots, e_n) に対応する $\mathfrak{gl}(V)$ の基底を E_{ij} と書くと、各 i, j に対して、

$$ad(x_s)E_{ij} = (\lambda_i - \lambda_j)E_{ij},$$

$$ad(y)E_{ij} = f(\lambda_i - \lambda_j)E_{ij}$$

が成り立つ.ここで、定数項をもたない \mathbb{K} 係数多項式 P であって、任意の i,j に対して $P(\lambda_i - \lambda_j) = f(\lambda_i - \lambda_j)$ を満たすもの $(\lambda_i - \lambda_j = \lambda_{i'} - \lambda_{j'}$ ならば $f(\lambda_i - \lambda_j) = f(\lambda_{i'} - \lambda_{j'})$ であり、 $\lambda_i - \lambda_j = 0$ ならば $f(\lambda_i - \lambda_j) = 0$ だから、このような P が存在する)をとると、上式より、

$$ad(y) = P(ad(x_s))$$

が成り立つ.一方で,補題 5.21 より, $\mathrm{ad}(x_\mathrm{s})$ は, $\mathrm{ad}(x)$ の定数項をもたない \mathbb{K} 係数多項式として表せる.これら二つより, $\mathrm{ad}(y)$ は, $\mathrm{ad}(x)$ の定数項をもたない \mathbb{K} 係数多項式として表せる.

さて、 $x \in T$ より $\operatorname{ad}(x)M \subseteq M'$ であり、前段で示したように $\operatorname{ad}(y)$ は $\operatorname{ad}(x)$ の定数項をもたない \mathbb{K} 係数 多項式として表せるから、 $\operatorname{ad}(y)M \subseteq M'$ も成り立つ。 すなわち、 $y \in T$ である。 したがって、仮定より、

$$\sum_{i=1}^{n} f(\lambda_i) \lambda_i = \operatorname{tr}(yx) = 0$$

である. この等式の両辺に f を施せば,

$$\sum_{i=1}^{n} f(\lambda_i)^2 = 0$$

を得る.各 $f(\lambda_i)$ は有理数だから,上式より, $f(\lambda_i)$ はすべて 0 である. すなわち, f=0 である. これで, 主張が示された.

定理 5.23(可解性に関する Cartan の判定法 I) $\mathfrak g$ を標数 0 の可換体 $\mathbb K$ 上の有限次元 Lie 代数とし, (ρ,V) をその忠実な有限次元表現とする.このとき,次の条件は同値である.

(a) g は可解である.

(b) ρ のトレース形式を B_{ρ} と書くと, $B_{\rho}([\mathfrak{g},\mathfrak{g}],\mathfrak{g})=0$ が成り立つ.

証明 (a) \Longrightarrow (b) \mathfrak{g} が可解ならば、 $\mathrm{rad}\,\mathfrak{g}=\mathfrak{g}$ だから、命題 5.20 より $B_{\rho}([\mathfrak{g},\mathfrak{g}],\mathfrak{g})=B_{\rho}([\mathfrak{g},\mathfrak{g}],\mathrm{rad}\,\mathfrak{g})=0$ である.

(b) \Longrightarrow (a) 一般性を失わず、 \mathfrak{g} は $\mathfrak{gl}(V)$ の部分 Lie 代数であり、 ρ は \mathfrak{g} の自然表現であると仮定する. $B_{\varrho}([\mathfrak{g},\mathfrak{g}],\mathfrak{g})=0$ であるとする. このとき、

$$T = \{x \in \mathfrak{gl}(V) \mid [x,\mathfrak{g}] \subseteq [\mathfrak{g},\mathfrak{g}]\}$$

と置くと, $[\mathfrak{g},\mathfrak{g}] \subseteq T$ であり,

$$\operatorname{tr}(T[\mathfrak{g},\mathfrak{g}]) = \operatorname{tr}([T,\mathfrak{g}]\mathfrak{g}) \subseteq \operatorname{tr}([\mathfrak{g},\mathfrak{g}]\mathfrak{g}) = B_{\rho}([\mathfrak{g},\mathfrak{g}],\mathfrak{g}) = 0$$

が成り立つ. したがって、補題 5.22 より $[\mathfrak{g},\mathfrak{g}]$ の元はすべて(V 上の線型変換として)冪零だから、 $[\mathfrak{g},\mathfrak{g}]$ は(Lie 代数として)冪零である(系 4.11). よって、 \mathfrak{g} は可解である(系 5.17).

定理 5.24 標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数 \mathfrak{g} について,根基 $\mathrm{rad}\,\mathfrak{g}$ は, \mathfrak{g} の Killing 形式に関する $[\mathfrak{g},\mathfrak{g}]$ の直交空間に等しい.

証明 \mathfrak{g} の Killing 形式を $B_{\mathfrak{g}}$ と書き,これに関する $[\mathfrak{g},\mathfrak{g}]$ の直交空間を \mathfrak{r} と置く.系 3.24 (2) より \mathfrak{r} は \mathfrak{g} のイデアルであり,命題 5.20 より \mathfrak{r} rad $\mathfrak{g}\subseteq\mathfrak{r}$ である.あとは, \mathfrak{r} が可解であることを示せばよい. \mathfrak{r} の \mathfrak{g} 上の表現 $\mathfrak{ad}_{\mathfrak{g}}|_{\mathfrak{r}}$ のトレース形式は $B_{\mathfrak{g}}|_{\mathfrak{r}\times\mathfrak{r}}$ であり, \mathfrak{r} の定義よりこのトレース形式に関して $[\mathfrak{r},\mathfrak{r}]$ と \mathfrak{r} は直交する.したがって,可解性に関する Cartan の判定法(定理 5.23)より, $\mathfrak{ad}_{\mathfrak{g}}(\mathfrak{r})$ は可解である.さらに,Ker $\mathfrak{ad}_{\mathfrak{g}}|_{\mathfrak{r}}=\mathrm{Ker}\,\mathfrak{ad}_{\mathfrak{g}}\cap\mathfrak{r}=\mathbf{Z}(\mathfrak{g})\cap\mathfrak{r}$ は可換である.よって, \mathfrak{r} は可解である(命題 5.3 (3)).

系 5.25(可解性に関する Cartan の判定法 II) 標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数 \mathfrak{g} に対して,次の条件は同値である.

- (a) g は可解である.
- (b) \mathfrak{g} の Killing 形式を $B_{\mathfrak{g}}$ と書くと, $B_{\mathfrak{g}}([\mathfrak{g},\mathfrak{g}],\mathfrak{g})=0$ が成り立つ.

証明 定理 5.24 より,

$$\mathfrak{g}$$
 が可解 \iff rad $\mathfrak{g} = \mathfrak{g} \iff B_{\mathfrak{g}}([\mathfrak{g},\mathfrak{g}],\mathfrak{g}) = 0$

である.

系 5.26 標数 0 の可換体 K 上の有限次元 Lie 代数 g の根基 rad g は, g の特性イデアルである.

証明 $[\mathfrak{g},\mathfrak{g}]$ は \mathfrak{g} の特性イデアルだから(命題 1.13 (2)),その Killing 形式に関する直交空間である $\mathrm{rad}\,\mathfrak{g}$ も \mathfrak{g} の特性イデアルである(定理 5.24,系 3.24 (2)).

系 5.27 g を標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数とし、 \mathfrak{a} をそのイデアルとする.このとき、 $\mathrm{rad}\,\mathfrak{a}=\mathrm{rad}\,\mathfrak{g}\cap\mathfrak{a}$ が成り立つ.

証明 $\operatorname{rad}\mathfrak{g}\cap\mathfrak{a}$ は \mathfrak{a} の可解イデアルだから(命題 5.3 (1)), $\operatorname{rad}\mathfrak{a}$ に含まれる.一方で, \mathfrak{a} は \mathfrak{g} のイデアルであり, $\operatorname{rad}\mathfrak{a}$ は \mathfrak{a} の特性イデアルだから(系 5.26), $\operatorname{rad}\mathfrak{a}$ は \mathfrak{g} のイデアルである(命題 1.12 (1)). したがって, $\operatorname{rad}\mathfrak{a}$ は \mathfrak{g} の可解イデアルだから, $\operatorname{rad}\mathfrak{a}\subseteq\operatorname{rad}\mathfrak{g}\cap\mathfrak{a}$ である.以上より, $\operatorname{rad}\mathfrak{a}=\operatorname{rad}\mathfrak{g}\cap\mathfrak{a}$ が成り立つ. \square

5.6 根基・冪零根基と係数体の変更

命題 **5.28 №** を可換体とし、**№** をその拡大体とする.

- (1) \mathbb{K} の標数が 0 であるとする. このとき,有限次元 \mathbb{K} -Lie 代数 \mathfrak{g} について, $\mathrm{rad}\,\mathfrak{g}_{(\mathbb{K}')}=(\mathrm{rad}\,\mathfrak{g})_{(\mathbb{K}')}$ である.
- (2) \mathbb{K}' は \mathbb{K} の有限次拡大体であるとする.このとき,有限次元 \mathbb{K}' -Lie 代数 \mathfrak{g}' について, $\mathrm{rad}\,\mathfrak{g}'_{[\mathbb{K}]}=(\mathrm{rad}\,\mathfrak{g}')_{[\mathbb{K}]}$ である.

証明 (1) $\mathfrak{g}_{(\mathbb{K}')}$ の Killing 形式は \mathfrak{g} の Killing 形式の係数拡大だから(命題 3.26 (2)),定理 5.24 より $\operatorname{rad}\mathfrak{g}_{(\mathbb{K}')}=(\operatorname{rad}\mathfrak{g})_{(\mathbb{K}')}$ である.

(2) \mathfrak{a} \mathfrak{e} $\mathfrak{g}'_{[\mathbb{K}]}$ のイデアルとする。すると, $\operatorname{span}_{\mathbb{K}}$ \mathfrak{a} は \mathfrak{g}' のイデアルである。また,帰納的に確かめられるように,任意の $p \in \mathbb{N}$ に対して $\mathcal{D}^p(\operatorname{span}_{\mathbb{K}'},\mathfrak{a}) = \operatorname{span}_{\mathbb{K}'} \mathcal{D}^p(\mathfrak{a})$ だから, \mathfrak{a} が可解ならば $\operatorname{span}_{\mathbb{K}'}$ \mathfrak{a} も可解である。このことと根基の最大性より, $\operatorname{span}_{\mathbb{K}'}$ $\operatorname{rad}\mathfrak{g}'_{[\mathbb{K}]} = \operatorname{rad}\mathfrak{g}'_{[\mathbb{K}]}$ となるから, \mathfrak{g}' のイデアル \mathfrak{r}' が存在して $\operatorname{rad}\mathfrak{g}'_{[\mathbb{K}]} = \mathfrak{r}'_{[\mathbb{K}]}$ が成り立つ。 \mathfrak{r}' が可解であることと $\mathfrak{r}'_{[\mathbb{K}]}$ が可解であることとは同値だから(命題 5.2), $\mathfrak{r}' = \operatorname{rad}\mathfrak{g}'$ であり, $\operatorname{rad}\mathfrak{g}'_{[\mathbb{K}]} = (\operatorname{rad}\mathfrak{g}')_{[\mathbb{K}]}$ が成り立つ。

命題 5.29 \mathbb{K} を標数 0 の可換体とし、 \mathbb{K}' をその拡大体とする.

- (1) 有限次元 \mathbb{K} -Lie 代数 \mathfrak{g} について, $\operatorname{nil}\mathfrak{g}_{(\mathbb{K}')}=(\operatorname{nil}\mathfrak{g})_{(\mathbb{K}')}$ である.
- (2) \mathbb{K}' は \mathbb{K} の有限次拡大体であるとする.このとき,有限次元 \mathbb{K}' -Lie 代数 \mathfrak{g}' について, $\mathrm{nil}\,\mathfrak{g}'_{[\mathbb{K}]}=(\mathrm{nil}\,\mathfrak{g}')_{[\mathbb{K}]}$ である.

証明 (1) 定理 5.15 と命題 5.28 (1) より,

$$\operatorname{nil}\mathfrak{g}_{(\mathbb{K}')}=\operatorname{rad}\mathfrak{g}_{(\mathbb{K}')}\cap[\mathfrak{g}_{(\mathbb{K}')},\mathfrak{g}_{(\mathbb{K}')}]=(\operatorname{rad}\mathfrak{g})_{(\mathbb{K}')}\cap[\mathfrak{g},\mathfrak{g}]_{(\mathbb{K}')}=(\operatorname{nil}\mathfrak{g})_{(\mathbb{K}')}$$

である.

(2) 定理 5.15 と命題 5.28 (2) より,

$$\operatorname{nil} \mathfrak{g}'_{[\mathbb{K}]} = \operatorname{rad} \mathfrak{g}'_{[\mathbb{K}]} \cap [\mathfrak{g}'_{[\mathbb{K}]}, \mathfrak{g}'_{[\mathbb{K}]}] = (\operatorname{rad} \mathfrak{g}')_{[\mathbb{K}]} \cap [\mathfrak{g}', \mathfrak{g}']_{[\mathbb{K}]} = (\operatorname{nil} \mathfrak{g}')_{[\mathbb{K}]}$$

である.

6 半単純 Lie 代数

6.1 単純 Lie 代数と半単純 Lie 代数

定義 6.1(単純 Lie 代数) 有限次元 Lie 代数 $\mathfrak g$ が**単純**(simple)であるとは、 $\mathfrak g$ が可換でなく、 $\mathfrak g$ が $\mathfrak 0$ と $\mathfrak g$ 以外のイデアルをもたないことをいう.

定義 6.2 (半単純 Lie 代数) 有限次元 Lie 代数 \mathfrak{g} が半単純 (semisimple) であるとは、 \mathfrak{g} が 0 以外の可解イデアルをもたない (あるいは同値だが、 $\operatorname{rad}\mathfrak{g}=0$ である) ことをいう.

命題 6.3 有限次元 Lie 代数 $\mathfrak g$ が半単純であるための必要十分条件は, $\mathfrak g$ が 0 以外の可換イデアルをもたないことである.

証明 \mathfrak{g} が可解イデアル $\mathfrak{r} \neq 0$ をもつとする. $\mathscr{D}^p(\mathfrak{r}) \neq 0$ を満たす最大の $p \in \mathbb{N}$ をとると, $\mathscr{D}^p(\mathfrak{r})$ は \mathfrak{g} の 0 でないイデアルであり, $[\mathscr{D}^p(\mathfrak{r}), \mathscr{D}^p(\mathfrak{r})] = \mathscr{D}^{p+1}(\mathfrak{r}) = 0$ だから $\mathscr{D}^p(\mathfrak{r})$ は可換である. よって, \mathfrak{g} が半単純である(すなわち,0 以外の可解イデアルをもたない)ことと,0 以外の可換イデアルをもたないこととは同値である.

系 6.4 単純 Lie 代数は、半単純である.

証明 命題 6.3 から明らかである. □

命題 6.5 半単純 Lie 代数 g について, $\mathbf{Z}(g) = 0$ であり,g の随伴表現は忠実である.

証明 $\mathbf{Z}(\mathfrak{g})$ は \mathfrak{g} の可換イデアルだから,0 である. \mathfrak{g} の随伴表現の核は $\mathbf{Z}(\mathfrak{g})$ に等しいから,これは, \mathfrak{g} の随伴表現が忠実であることを意味する.

命題 6.6 有限次元 Lie 代数 $\mathfrak g$ の根基 $\mathrm{rad}\, \mathfrak g$ は、 $\mathfrak g$ のイデアル $\mathfrak a$ であって $\mathfrak g/\mathfrak a$ が半単純となるものの中で最小のものである.

証明 \mathfrak{a} を \mathfrak{g} のイデアルとし,等化準同型を $f: \mathfrak{g} \to \mathfrak{g}/\mathfrak{a}$ と書く. $f(\operatorname{rad}\mathfrak{g}) \subseteq \operatorname{rad}(\mathfrak{g}/\mathfrak{a})$ だから(命題 5.6), $\mathfrak{g}/\mathfrak{a}$ が可解ならば $f(\operatorname{rad}\mathfrak{g}) = 0$ であり,これは $\operatorname{rad}\mathfrak{g} \subseteq \mathfrak{a}$ を意味する.一方で,準同型定理より $f^{-1}(\operatorname{rad}(\mathfrak{g}/\mathfrak{a})) \cong \operatorname{rad}(\mathfrak{g}/\mathfrak{a})$ だから, \mathfrak{a} が可解ならば $f^{-1}(\operatorname{rad}(\mathfrak{g}/\mathfrak{a}))$ も可解であり(命題 5.3 (3)), $f^{-1}(\operatorname{rad}(\mathfrak{g}/\mathfrak{a})) \subseteq \operatorname{rad}\mathfrak{g}$ となる.特に, $\mathfrak{a} = \operatorname{rad}\mathfrak{g}$ と置けば, $\operatorname{rad}(\mathfrak{g}/\operatorname{rad}\mathfrak{g}) = 0$ を得る.すなわち, $\mathfrak{g}/\operatorname{rad}\mathfrak{g}$ は半単純である.

注意 6.7 系 6.16 で示すように、標数 0 の可換体 \mathbb{K} 上の半単純 Lie 代数 \mathfrak{g} とそのイデアル \mathfrak{a} について、

 $\mathfrak{g}/\mathfrak{a}$ が半単純 \iff rad $\mathfrak{g} \subseteq \mathfrak{a}$

が成り立つ.

命題 6.8 $(\mathfrak{g}_i)_{i\in I}$ を有限次元 Lie 代数の有限族とし, $\mathfrak{g}=\bigoplus_{i\in I}\mathfrak{g}_i$ と置く.すべての \mathfrak{g}_i が半単純であること と、 \mathfrak{g} が半単純であることとは同値である.

証明 $\operatorname{rad} \mathfrak{g} = \bigoplus_{i \in I} \operatorname{rad} \mathfrak{g}_i$ であること(命題 5.8)から従う.

命題 6.9 \mathfrak{g} を標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数とし、 \mathfrak{a} をそのイデアルとする。 \mathfrak{g} が半単純ならば、 \mathfrak{a} も半単純である。

証明 $\operatorname{rad}\mathfrak{a}=\operatorname{rad}\mathfrak{g}\cap\mathfrak{a}$ であること(系 5.27)から従う.

6.2 半単純性に関する Cartan の判定法

定理 6.10 (半単純性に関する Cartan の判定法) 標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数 \mathfrak{g} に対して,次の条件は同値である.

- (a) g は半単純である.
- (b) $\mathbf{Z}(\mathfrak{g}) = 0$ であり、 \mathfrak{g} の任意の忠実な有限次元表現のトレース形式は非退化である.
- (c) gの Killing 形式は非退化である.

さらに、これらの条件の下で、[g,g] = g が成り立つ.

証明 $(a) \Longrightarrow (b)$, <u>最後の主張</u> \mathfrak{g} が半単純であるとする.まず, $\mathbf{Z}(\mathfrak{g}) = 0$ であることは,命題 6.5 ですでに示した.次に, ρ を \mathfrak{g} の忠実な有限次元表現とし,そのトレース形式 B_{ρ} に関する $[\mathfrak{g},\mathfrak{g}]$ の直交空間を \mathfrak{a} と置く.すると, \mathfrak{a} は \mathfrak{g} のイデアルである(系 3.24 (1)).さらに, $B_{\rho}([\mathfrak{a},\mathfrak{a}],\mathfrak{a}) \subseteq B_{\rho}([\mathfrak{g},\mathfrak{g}],\mathfrak{a}) = 0$ だから,可解性に関する Cartan の判定法(定理 5.23)より, \mathfrak{a} は可解である.したがって, \mathfrak{g} が半単純であることより, $\mathfrak{a} = 0$ を得る.よって, $[\mathfrak{g},\mathfrak{g}] = \mathfrak{g}$ が成り立ち, B_{ρ} は非退化である.

- (b) \Longrightarrow (c) $\mathbf{Z}(\mathfrak{g}) = 0$ ならば \mathfrak{g} の随伴表現は忠実だから、主張は明らかである.
- $(c) \Longrightarrow (a)$ \mathfrak{g} の Killing 形式を $B_{\mathfrak{g}}$ と書く. \mathfrak{a} を \mathfrak{g} の可換イデアルとすると, $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{a}) = 0$ だから, $B_{\mathfrak{g}}(\mathfrak{a},\mathfrak{g}) = \mathrm{tr}(\mathrm{ad}_{\mathfrak{g}}(\mathfrak{a})\,\mathrm{ad}_{\mathfrak{g}}(\mathfrak{g})) = 0$ である. よって, $B_{\mathfrak{g}}$ が非退化ならば, \mathfrak{g} は 0 以外の可換イデアルをもたず, これは \mathfrak{g} が半単純であることを意味する(命題 6.3).

注意 6.11 定理 6.10 の条件は,条件 (b) から「 $\mathbf{Z}(\mathfrak{g})=0$ 」を除いて得られる次の条件とも同値である.

(b') gの任意の忠実な有限次元表現のトレース形式は非退化である.

このことは、Ado の定理を用いて証明できる. 詳しくは、Mathematics Stack Exchange [4] を参照のこと.

6.3 半単純 Lie 代数の分解

命題 6.12 \mathfrak{g} を標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数, \mathfrak{a} をその半単純イデアルとし, \mathfrak{g} の Killing 形式に関する \mathfrak{a} の直交空間を \mathfrak{a}^\perp と書く.このとき, \mathfrak{a}^\perp も \mathfrak{g} のイデアルであり,Lie 代数として $\mathfrak{g}=\mathfrak{a}\oplus\mathfrak{a}^\perp$ が成り立つ.

証明 系 3.24 (2) より \mathfrak{a}^{\perp} は \mathfrak{g} のイデアルであり,双線型形式の一般論より $\dim \mathfrak{a} + \dim \mathfrak{a}^{\perp} \geq \dim \mathfrak{g}$ である. また, \mathfrak{g} , \mathfrak{a} の Killing 形式をそれぞれ $B_{\mathfrak{a}}$, $B_{\mathfrak{a}}$ と書くと, $B_{\mathfrak{a}}$ は $B_{\mathfrak{g}}$ の制限だから(命題 3.25),

$$B_{\mathfrak{a}}(\mathfrak{a} \cap \mathfrak{a}^{\perp}, \mathfrak{a}) = B_{\mathfrak{g}}(\mathfrak{a} \cap \mathfrak{a}^{\perp}, \mathfrak{a}) \subseteq B_{\mathfrak{g}}(\mathfrak{a}^{\perp}, \mathfrak{a}) = 0$$

が成り立つ。半単純性に関する Cartan の判定法(定理 6.10)より $B_{\mathfrak{a}}$ は非退化だから, $\mathfrak{a} \cap \mathfrak{a}^{\perp}$ である。以上 より, \mathfrak{g} は線型空間として \mathfrak{a} と \mathfrak{a}^{\perp} に直和分解され,これらは \mathfrak{g} のイデアルだから,これは Lie 代数としての 直和分解でもある.

定理 6.13 標数 0 の可換体 K 上の有限次元 Lie 代数 g に対して、次の条件は同値である.

- (a) g は半単純である.
- (b) gは,有限個の単純 Lie 代数の直和 Lie 代数として書ける.

さらに、 $\mathfrak g$ が単純 Lie 代数の有限族 $(\mathfrak g_i)_{i\in I}$ の直和 Lie 代数であるとき、 $\mathfrak g$ のイデアルは、 $(\mathfrak g_i)_{i\in I}$ の部分族の直和で尽くされる.

証明 (a) \Longrightarrow (b) 命題 6.12 より, \mathfrak{g} の随伴表現は完全可約だから,既約分解 $\mathfrak{g} = \bigoplus_{i \in I} \mathfrak{g}_i$ がとれる(命題 3.18).このとき,各 \mathfrak{g}_i は \mathfrak{g} の 0 でないイデアルの中で極小なものであり,Lie 代数として $\mathfrak{g} = \bigoplus_{i \in I} \mathfrak{g}_i$ が成り立つ.各 \mathfrak{g}_i が単純であることを示す. \mathfrak{g} は 0 以外の可換イデアルをもたないから, \mathfrak{g}_i は可換ではない.また, \mathfrak{g} を \mathfrak{g}_i のイデアルとすると, \mathfrak{g} は \mathfrak{g} のイデアルでもあるから, \mathfrak{g}_i の極小性より, \mathfrak{g} は 0 または \mathfrak{g}_i であ

- る. よって、 \mathfrak{g}_i は単純である.
- (b) \Longrightarrow (a) 単純 Lie 代数は半単純であり(系 6.4),有限個の半単純 Lie 代数の直和は半単純だから(命題 6.8),主張が成り立つ.

最後の主張 g が単純 Lie 代数の有限族 $(\mathfrak{g}_i)_{i\in I}$ の直和 Lie 代数であるとして,g のイデアル a を任意にとる。各 $i\in I$ に対して, $\mathfrak{a}\cap\mathfrak{g}_i$ は単純 Lie 代数 \mathfrak{g}_i のイデアルだから, $\mathfrak{a}\cap\mathfrak{g}_i$ は \mathfrak{g}_i または 0 でらう。前者の場合, $\mathfrak{g}_i\subseteq\mathfrak{a}$ である。後者の場合, $[\mathfrak{a},\mathfrak{g}_i]\subseteq\mathfrak{a}\cap\mathfrak{g}_i=0$ であり,これは,g から \mathfrak{g}_i への射影による a の像が $\mathbf{Z}(\mathfrak{g}_i)$ に含まれることを意味する。ところが, \mathfrak{g}_i は単純だから $\mathbf{Z}(\mathfrak{g}_i)=0$ であり,このとき, $\mathfrak{a}\subseteq\bigoplus_{j\in I\setminus\{i\}}\mathfrak{g}_j$ となる。以上より, $J=\{i\in I\mid\mathfrak{a}\cap\mathfrak{g}_i=\mathfrak{g}_i\}$ と置けば, $\mathfrak{a}=\bigoplus_{i\in J}\mathfrak{g}_i$ が成り立つ。

系 6.14 \mathfrak{g} を標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数とし、 \mathfrak{a} をそのイデアルとする. このとき、次の条件は同値である.

- (a) g は半単純である.
- (b) \mathfrak{a} と $\mathfrak{g}/\mathfrak{a}$ はともに半単純である.

証明 (a) \Longrightarrow (b) \mathfrak{g} が半単純であるとする.このとき,定理 6.13 より,単純 Lie 代数の有限族 $(\mathfrak{g}_i)_{i\in I}$ と $J\subseteq I$ を用いて,Lie 代数として $\mathfrak{g}=\bigoplus_{i\in I}\mathfrak{g}_i$, $\mathfrak{a}=\bigoplus_{i\in J}\mathfrak{g}_i$ と書けているとしてよい.このとき, $\mathfrak{a}=\bigoplus_{i\in J}\mathfrak{g}_i$ と $\mathfrak{g}/\mathfrak{a}\cong\bigoplus_{i\in I\setminus J}\mathfrak{g}_i$ は,有限個の単純 Lie 代数の直和として書けているから,半単純である(系 6.4,命 題 6.8).

 $(b) \Longrightarrow (a)$ \mathfrak{a} と $\mathfrak{g}/\mathfrak{a}$ がともに半単純であるとする.このとき, \mathfrak{g} の Killing 形式に関する \mathfrak{a} の直交空間を \mathfrak{a}^{\perp} と書くと,Lie 代数として $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{a}^{\perp}$ が成り立つ(命題 6.12).よって, $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{a}^{\perp} \cong \mathfrak{a} \oplus \mathfrak{g}/\mathfrak{a}$ は半単純 である(命題 6.8).

注意 6.15 半単純 Lie 代数の部分 Lie 代数は、半単純であるとは限らない。 たとえば、1 次元 Lie 代数は可換だから、半単純ではない。

系 6.16 \mathfrak{g} を標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数とし、 \mathfrak{a} をそのイデアルとする. このとき、次の条件は同値である.

- (a) g/a は半単純である.
- (b) $\operatorname{rad} \mathfrak{g} \subseteq \mathfrak{a} \subset \mathfrak{d} \subset \mathfrak{d}$.

証明 命題 6.6 で示したように,根基 $\operatorname{rad}\mathfrak{g}$ は, \mathfrak{g} のイデアル \mathfrak{a} であって $\mathfrak{g}/\mathfrak{a}$ が半単純となるものの中で最小のものである.また,系 6.14 より,標数 0 の可換体 \mathbb{K} 上の半単純 Lie 代数の商は,また半単純である.これらのことから,主張が従う.

系 6.17 \mathfrak{g} , \mathfrak{h} を標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数とし, $f:\mathfrak{g}\to\mathfrak{h}$ を全射準同型とする.このとき, $f(\mathrm{rad}\,\mathfrak{g})=\mathrm{rad}\,\mathfrak{h}$ である.

証明 まず、 $f(\operatorname{rad}\mathfrak{g})\subseteq\operatorname{rad}\mathfrak{h}$ であることは、命題 5.6 ですでに示した.次に、命題 5.6 より $\mathfrak{g}/rad\mathfrak{g}$ は半単純だから、その商 Lie 代数に同型な $\mathfrak{h}/f(\operatorname{rad}\mathfrak{g})$ も半単純であり(系 6.14)、したがって、ふたたび命題 5.6 より $\operatorname{rad}\mathfrak{h}\subseteq f(\operatorname{rad}\mathfrak{g})$ である.よって、 $f(\operatorname{rad}\mathfrak{g})=\operatorname{rad}\mathfrak{h}$ が成り立つ.

命題 6.18 標数 0 の可換体 \mathbb{K} 上の半単純 Lie 代数 \mathfrak{g} の随伴表現は, \mathfrak{g} から $\mathrm{Der}(\mathfrak{g})$ への同型を与える.特に, \mathfrak{g} 上の導分は,すべて内部導分である.

証明 \mathfrak{g} の随伴表現が忠実であることは、命題 6.5 ですでに示した。あとは、 $\mathrm{ad}(\mathfrak{g}) = \mathrm{Der}(\mathfrak{g})$ であることを示せばよい。 $\mathrm{ad}(\mathfrak{g})$ は $\mathrm{Der}(\mathfrak{g})$ の半単純イデアルだから(命題 1.9 (1)), $\mathrm{Der}(\mathfrak{g})$ の Killing 形式に関する $\mathrm{ad}(\mathfrak{g})$ の 直交空間を $\mathrm{ad}(\mathfrak{g})^{\perp}$ と書くと、Lie 代数として $\mathrm{Der}(\mathfrak{g}) = \mathrm{ad}(\mathfrak{g}) \oplus \mathrm{ad}(\mathfrak{g})^{\perp}$ が成立する(命題 6.12)。 $D \in \mathrm{ad}(\mathfrak{g})^{\perp}$ とすると、命題 1.9 (1) より

$$\operatorname{ad}(D(\mathfrak{g})) = [D, \operatorname{ad}(\mathfrak{g})] \subseteq [\operatorname{ad}(\mathfrak{g})^{\perp}, \operatorname{ad}(\mathfrak{g})] = 0$$

であり、すでに述べたように ad は忠実だから、D=0 である.よって、 $\mathrm{ad}(\mathfrak{g})^\perp=0$ であり、上記の直和分解 と合わせて、 $\mathrm{Der}(\mathfrak{g})=\mathrm{ad}(\mathfrak{g})$ を得る.

6.4 Weyl の完全可約性定理

補題 6.19 Lie 代数 g に対して,次の条件は同値である.

- (a) g の任意の有限次元表現は完全可約である.
- (b) (ρ,V) を $\mathfrak g$ の有限次元表現,W を V の余次元 1 の部分線型空間とし,これらが $\rho(\mathfrak g)V\subseteq W$ を満たすとすると,W は V において $\rho(\mathfrak g)$ -安定な補空間をもつ.

証明 $(a) \Longrightarrow (b)$ 明らかである.

(b) \Longrightarrow (a) (b) が成り立つとする. $\mathfrak g$ の有限次元表現 (σ,M) を任意にとり, $N \neq 0$ を M の $\sigma(\mathfrak g)$ -安定な部分線型空間として,N の M における $\sigma(\mathfrak g)$ -安定な補空間が存在することを示す. $\mathfrak g$ の $\operatorname{End}(M)$ 上の表現 $\rho = \operatorname{ad}_{\mathfrak g(M)} \circ \sigma$ を考え, $\operatorname{End}(M)$ の部分線型空間 V,W を

$$V = \{u \in \operatorname{End}(M) \mid u(M) \subseteq N \text{ かつ } u|_N \text{ はスカラー倍}\},$$

 $W = \{u \in \operatorname{End}(M) \mid u(M) \subseteq N \text{ かつ } u|_N = 0\}$

と定める. V は $\rho(\mathfrak{g})$ -安定であり,W は V の余次元 1 の部分線型空間であり, $\rho(\mathfrak{g})V\subseteq W$ が満たされるから,仮定より,W は V において $\rho(\mathfrak{g})$ -安定な補空間 $\mathbb{K}u$ をもつ. $u\in V\setminus W$ であることより $u|_N$ は 0 でないスカラー倍だから,必要ならば u を適当にスカラー倍することで, $u|_N=\mathrm{id}_N$ であるとしてよい.また, $N=u(N)\subseteq u(M)$ であり,一方で $u\in V$ より $u(M)\subseteq N$ だから,u(M)=N である.したがって,u は N の上への射影だから, $\mathrm{Ker}\,u$ は N の M における補空間である.さらに,任意の $x\in\mathfrak{g}$ に対して, $\rho(x)u\in\rho(x)V\subseteq W$ かつ $\rho(x)\mathbb{K}u\subseteq\mathbb{K}u$ であることより $\rho(x)u=0$ だから, $\sigma(x)\circ u=u\circ\sigma(x)$ が成り立つ.したがって, $\mathrm{Ker}\,u$ は $\sigma(\mathfrak{g})$ -安定である.これで,主張が示された.

定理 6.20(Weyl の完全可約性定理) 標数 0 の可換体 \mathbb{K} 上の半単純 Lie 代数 \mathfrak{g} について,その任意の有限次元表現は,完全可約である.

証明 補題 6.19 より, (ρ,V) を $\mathfrak g$ の有限次元表現,W を V の余次元 1 の部分線型空間とし,これらが $\rho(\mathfrak g)V\subseteq W$ を満たすとして,W が V において $\rho(\mathfrak g)$ -安定な補空間をもつことを示せばよい.以下, ρ の W 上の部分表現を, ρ' と書く.

ho'=0 である場合,任意の $x,y\in\mathfrak{g}$ に対して $ho(x)\rho(y)V\subseteq\rho'(x)W=0$ より $ho(x)\rho(y)=0$ だから, $ho(\mathfrak{g})=
ho([\mathfrak{g},\mathfrak{g}])=0$ である(定理 6.10).よって,ho は明らかに完全可約である.以下, $ho'\neq 0$ である場合を考える.

まず、 ρ' が既約である場合を考える。 ρ' のトレース形式を $B_{\rho'}$ と書く。Ker ρ' は $\mathfrak g$ の半単純イデアルだから(系 6.14)、 $\mathfrak g$ の Killing 形式に関する Ker ρ' の直交空間を $\mathfrak a$ と置くと、 $\mathfrak a$ は $\mathfrak g$ における Ker ρ' の補イデアルとなる(命題 6.12)。そこで、 $\mathfrak a$ の W 上の表現 $\rho'|_{\mathfrak a}$ を考えると、これは忠実だから、そのトレース形式 $B_{\rho'}|_{\mathfrak a \times \mathfrak a}$ は非退化である(定理 6.10)。したがって、Casimir 元 $c \in \mathbf Z(\mathbf U(\mathfrak g))$ が定まり、 $\rho'(c) = \rho(c)|_W$ は W の $\mathfrak g$ -自己同型となる(命題 3.29 (3)。 $\rho' \neq 0$ より $\mathfrak a \neq 0$ であり、係数体 $\mathbb K$ の標数が 0 であることに注意する)。さらに、仮定 $\rho(\mathfrak g)V \subseteq W$ より、 $\rho(c)V \subseteq W$ が成り立つ。以上より、 $\operatorname{Ker} \rho(c)$ は W の V における $\rho(\mathfrak g)$ -安定な補空間である.

次に,一般の場合を,V の次元に関する帰納法で示す. $\dim V=1$ ならば W=0 であり,主張は明らかである. $\dim V\geq 2$ であるとし,次元がより小さい場合には主張が正しいとする.このとき, $W\neq 0$ だから,W の 0 でない $\rho(\mathfrak{g})$ -安定な部分線型空間の中で極小なもの M がとれる. ρ の V/M 上の商表現を ρ と書くと,W/M は V/M の余次元 1 の部分線型空間であり,これらは $\overline{\rho}(\mathfrak{g})(W/M)\subseteq V/M$ を満たすから,帰納法の仮定より,W/M の V/M における $\overline{\rho}(\mathfrak{g})$ -安定な補空間 L/M がとれる.ここで,L は V の \mathfrak{g} -安定な部分線型空間であり,M を余次元 1 の部分線型空間として含み, $L\cap W=M$ を満たす. $\rho(\mathfrak{g})L\subseteq L\cap W=M$ であり,M の極小性より ρ の M 上の部分表現は既約だから,前段の結果より,M は L における $\rho(\mathfrak{g})$ -安定な補空間をもつ.この補空間は,W の V における補空間でもある.これで,帰納法が完成した.

注意 6.21 Weyl の完全可約性定理(定理 6.20)の逆として,有限次元 Lie 代数 $\mathfrak g$ の任意の有限次元表現が完全可約ならば, $\mathfrak g$ は半単純である.このことを示そう.

主張の仮定の下で, $\mathfrak g$ の任意の可換イデアル $\mathfrak a$ が $\mathfrak 0$ であることを示せばよい(命題 $\mathfrak 6.3$). $\mathfrak g$ の随伴表現が完全可約であることより, $\mathfrak a$ の $\mathfrak g$ における補イデアル $\mathfrak b$ がとれる.この $\mathfrak b$ について, $\mathfrak g/\mathfrak b \cong \mathfrak a$ が成り立つ.そこで, $\mathfrak a \neq \mathfrak 0$ であると仮定すると, $\mathfrak a$ は $\mathfrak 1$ 次元の商 Lie 代数をもつから, $\mathfrak g$ についても同様である. $\mathfrak 1$ 次元 Lie 代数は完全可約でない $\mathfrak 2$ 次元表現

$$\lambda \mapsto \begin{pmatrix} 0 & \lambda \\ 0 & 0 \end{pmatrix}$$

をもつから、 $\mathfrak g$ についても同様となるが、これは仮定に反する. よって、背理法より、 $\mathfrak a=0$ である. これで、主張が示された.

6.5 簡約 Lie 代数

定義 6.22(簡約 Lie 代数) 有限次元 Lie 代数 $\mathfrak g$ が**簡約**(reductive)であるとは,その随伴表現が完全可約であることをいう.

定理 6.23 標数 0 の可換体 I 上の有限次元 Lie 代数 g に対して,次の条件は同値である.

- (a) g は簡約である.
- (b) [g, g] は半単純である.
- (c) g は、半単純 Lie 代数と可換 Lie 代数の直和 Lie 代数として書ける.
- (d) gの有限次元表現であって、非退化なトレース形式をもつものが存在する.
- (e) g は忠実な有限次元完全可約表現をもつ.
- (f) $nil \mathfrak{g} = 0 \ \mathfrak{r} \mathfrak{d} \mathfrak{d}$.
- (g) $[\mathfrak{g}, \operatorname{rad}\mathfrak{g}] = 0$ である.

(h) $rad \mathfrak{g} = \mathbf{Z}(\mathfrak{g})$ である.

さらに、 $\mathfrak g$ が半単純 Lie 代数 $\mathfrak s$ と可換 Lie 代数 $\mathfrak z$ の直和 Lie 代数であるとき、 $\mathfrak s=[\mathfrak g,\mathfrak g]$ かつ $\mathfrak z=\mathbf Z(\mathfrak g)=\mathrm{rad}\,\mathfrak g$ である.

証明 (a) \Longrightarrow (b) \mathfrak{g} が簡約であるとすると, \mathfrak{g} の随伴表現の既約分解 $\mathfrak{g} = \bigoplus_{i \in I} \mathfrak{g}_i$ がとれる(命題 3.18). このとき,各 \mathfrak{g}_i は \mathfrak{g} の \mathfrak{g} でないイデアルの中で極小なものであり,Lie 代数として $\mathfrak{g} = \bigoplus_{i \in I} \mathfrak{g}_i$ が成り立つ. 各 $i \in I$ について, \mathfrak{g} を \mathfrak{g}_i のイデアルとすると, \mathfrak{g} は \mathfrak{g} のイデアルでもあるから, \mathfrak{g}_i の極小性より, \mathfrak{g} は \mathfrak{g} たは \mathfrak{g}_i である.したがって, \mathfrak{g}_i は可換または単純である. \mathfrak{g}_i が可換ならば $[\mathfrak{g}_i,\mathfrak{g}_i] = \mathfrak{g}_i$ だから, $[\mathfrak{g},\mathfrak{g}]$ は単純な \mathfrak{g}_i 全体の直和となる.よって, $[\mathfrak{g},\mathfrak{g}]$ は半単純である(系 6.4,命題 6.8).

- (b) \Longrightarrow (c) $[\mathfrak{g},\mathfrak{g}]$ が半単純であるとすると, $[\mathfrak{g},\mathfrak{g}]$ の \mathfrak{g} における補イデアル \mathfrak{z} がとれ,Lie 代数として $\mathfrak{g}=[\mathfrak{g},\mathfrak{g}]\oplus\mathfrak{z}$ が成り立つ(命題 6.12).このとき, $\mathfrak{z}\cong\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]$ だから, \mathfrak{z} は可換である.
- $(c) \Longrightarrow (d)$ \mathfrak{g} が半単純 Lie 代数 \mathfrak{s} と可換 Lie 代数 \mathfrak{g} の直和 Lie 代数であるとする. \mathfrak{g} の基底 (e_1,\ldots,e_n) を一つ固定し、 \mathfrak{g} の $\mathfrak{s} \oplus \mathbb{K}^n$ 上の表現 ρ を

$$\rho\left(x + \sum_{i=1}^{n} \lambda_i e_i\right) = \mathrm{ad}_{\mathfrak{s}}(x) \oplus \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \qquad (x \in \mathfrak{s}, \, \lambda_i \in \mathbb{K})$$

によって定めると、 ρ のトレース形式 B_{ρ} は

$$B_{\rho}\left(x + \sum_{i=1}^{n} \lambda_i e_i, y + \sum_{i=1}^{n} \mu_i e_i\right) = B_{\mathfrak{s}}(x, y) + \sum_{i=1}^{n} \lambda_i \mu_i \qquad (x, y \in \mathfrak{s}, \lambda_i, \mu_i \in \mathbb{K})$$

で与えられる(ここで, $B_{\mathfrak{s}}$ は \mathfrak{s} の Killing 形式を表す). 半単純性に関する Cartan の判定法(定理 6.10)より, $B_{\mathfrak{s}}$ は非退化だから, B_{ρ} も非退化である.

- (d) ⇒ (e) $\mathfrak g$ の有限次元表現 (ρ,V) が非退化なトレース形式 B_ρ をもつとする。 ρ の組成列 (V_0,\ldots,V_n) をとり(命題 3.15),各 $i\in\{0,\ldots,n-1\}$ に対して, ρ が誘導する $\mathfrak g$ の V_i/V_{i+1} 上の既約表現を ρ_i と書く。 $\rho'=\rho_0\oplus\cdots\oplus\rho_{n-1}$ と置くと, ρ' は $\mathfrak g$ の有限次元完全可約表現である。 ρ' が忠実であることを示す。 $x\in\operatorname{Ker}\rho'$ とすると,各 i に対して $\rho(x)V_i\subseteq V_{i+1}$ である。さらに,各 V_i は $\rho(\mathfrak g)$ -安定だから, $\rho(x)\rho(\mathfrak g)V_i\subseteq V_{i+1}$ である。したがって, $\rho(x)\rho(\mathfrak g)$ の任意の元は冪零だから, $B_\rho(x,\mathfrak g)=\operatorname{tr}(\rho(x)\rho(\mathfrak g))=0$ であり, B_ρ が非退化であることより x=0 を得る。よって, ρ' は忠実である。
- (e) \Longrightarrow (f) $\operatorname{nil}\mathfrak{g}=0$ であるとすると, \mathfrak{g} の有限個の有限次元既約表現 ρ_1,\ldots,ρ_n が存在して, $\bigcap_{i=1}^n \operatorname{Ker} \rho_i=0$ となる.このとき, $\rho=\rho_1\oplus\cdots\oplus\rho_n$ は \mathfrak{g} の忠実な有限次元完全可約表現である(命題 3.18).
- $(f) \Longrightarrow (g)$ 定理 5.15 より $[\mathfrak{g}, \operatorname{rad}\mathfrak{g}] \subseteq \operatorname{rad}\mathfrak{g} \cap [\mathfrak{g}, \mathfrak{g}] = \operatorname{nil}\mathfrak{g}$ だから、 $\operatorname{nil}\mathfrak{g} = 0$ ならば $[\mathfrak{g}, \operatorname{rad}\mathfrak{g}] = 0$ である.
 - $(g) \iff (h)$ $\mathbf{Z}(\mathfrak{g}) \subseteq \operatorname{rad} \mathfrak{g}$ は常に成り立つから,

$$\operatorname{rad} \mathfrak{g} = \mathbf{Z}(\mathfrak{g}) \iff \operatorname{rad} \mathfrak{g} \subseteq \mathbf{Z}(\mathfrak{g}) \iff [\mathfrak{g}, \operatorname{rad} \mathfrak{g}] = 0$$

である.

(h) \Longrightarrow (a) \mathfrak{g} の随伴表現は、 $\mathfrak{g}/\mathbf{Z}(\mathfrak{g})$ の \mathfrak{g} 上の表現 ρ を誘導する.ここで、 $\mathbf{Z}(\mathfrak{g}) = \operatorname{rad} \mathfrak{g}$ であるとすると、 $\mathfrak{g}/\mathbf{Z}(\mathfrak{g}) = \mathfrak{g}/\operatorname{rad} \mathfrak{g}$ は半単純だから(命題 6.6)、Weyl の完全可約性定理(定理 6.20)より、 ρ は完全可約となる.よって、このとき、 \mathfrak{g} の随伴表現も完全可約である.

最後の主張 \mathfrak{g} が半単純 Lie 代数 \mathfrak{s} と可換 Lie 代数 \mathfrak{z} の直和 Lie 代数であるとする.このとき, $[\mathfrak{g},\mathfrak{g}]=[\mathfrak{s},\mathfrak{s}]\oplus[\mathfrak{c},\mathfrak{c}]=\mathfrak{s}$ である(定理 6.10).また, $\mathbf{Z}(\mathfrak{g})=\mathbf{Z}(\mathfrak{s})\oplus\mathbf{Z}(\mathfrak{z})=\mathfrak{z}$ であり(命題 6.5),(h) よりこれは rad \mathfrak{g} にも等しい.

命題 6.24 標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数 \mathfrak{g} について, $\operatorname{nil}\mathfrak{g} = \operatorname{rad}\mathfrak{g} \cap [\mathfrak{g},\mathfrak{g}] = [\mathfrak{g},\operatorname{rad}\mathfrak{g}]$ が成り立つ.

証明 $\operatorname{nil}\mathfrak{g}=\operatorname{rad}\mathfrak{g}\cap[\mathfrak{g},\mathfrak{g}]$ であることは定理 5.15 ですでに示しており、 $[\mathfrak{g},\operatorname{rad}\mathfrak{g}]\subseteq\operatorname{rad}\mathfrak{g}\cap[\mathfrak{g},\mathfrak{g}]$ であることは明らかである。 $\operatorname{nil}\mathfrak{g}\subseteq[\mathfrak{g},\operatorname{rad}\mathfrak{g}]$ であることを示す。 $\mathfrak{g}'=\mathfrak{g}/[\mathfrak{g},\operatorname{rad}\mathfrak{g}]$ と置き,等化準同型を $f\colon\mathfrak{g}\to\mathfrak{g}'$ と書く.すると,命題 5.12 より, $f(\operatorname{nil}\mathfrak{g})\subseteq\operatorname{nil}\mathfrak{g}'$ である.一方で,系 6.17 より

$$[\mathfrak{g}', \operatorname{rad}\mathfrak{g}'] = [f(\mathfrak{g}), f(\operatorname{rad}\mathfrak{g})] = f([\mathfrak{g}, \operatorname{rad}\mathfrak{g}]) = 0$$

だから、定理 6.23 より $\mathrm{nil}\,\mathfrak{g}'=0$ である.以上より、 $f(\mathrm{nil}\,\mathfrak{g})=0$ であり、これは $\mathrm{nil}\,\mathfrak{g}\subseteq[\mathfrak{g},\mathrm{rad}\,\mathfrak{g}]$ を意味する.

系 6.25 \mathfrak{g} , \mathfrak{h} を標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数とし, $f:\mathfrak{g}\to\mathfrak{h}$ を全射準同型とする.このとき, $f(\mathrm{nil}\,\mathfrak{g})=\mathrm{nil}\,\mathfrak{h}$ である.

証明 命題 6.24 と系 6.17 より,

$$f(\operatorname{nil}\mathfrak{g}) = f([\mathfrak{g}, \operatorname{rad}\mathfrak{g}]) = [f(\mathfrak{g}), f(\operatorname{rad}\mathfrak{g})] = [\mathfrak{h}, \operatorname{rad}\mathfrak{h}] = \operatorname{nil}\mathfrak{h}$$

である.

6.6 単純性・半単純性・簡約性と係数体の変更

命題 6.26 ⋉ を可換体とし、 К' をその拡大体とする.

- (1) \mathbb{K} の標数が 0 であるとする.このとき,有限次元 \mathbb{K} -Lie 代数 \mathfrak{g} が半単純であることと,その係数拡大 $\mathfrak{g}_{(\mathbb{K}')}$ が半単純であることとは同値である.
- (2) \mathbb{K}' は \mathbb{K} の有限次拡大体であるとする.このとき,有限次元 \mathbb{K}' -Lie 代数 \mathfrak{g}' が半単純であることと,その係数の制限 $\mathfrak{g}'_{\mathbb{K}}$ が半単純であることとは同値である.

証明 (1) $\operatorname{rad} \mathfrak{g}_{(\mathbb{K}')} = (\operatorname{rad} \mathfrak{g})_{(\mathbb{K}')}$ であること(命題 5.28 (1))から従う.

(2) rad $\mathfrak{g}'_{[\mathbb{K}]}=(\operatorname{rad}\mathfrak{g}')_{[\mathbb{K}]}$ であること(命題 5.28 (2))から従う.

命題 6.27 \mathbb{K} を標数 0 の可換体とし、 \mathbb{K}' をその拡大体とする.

- (1) 有限次元 \mathbb{K} -Lie 代数 \mathfrak{g} について,その係数拡大 $\mathfrak{g}_{(\mathbb{K}')}$ が単純ならば, \mathfrak{g} は単純である.
- (2) \mathbb{K}' は \mathbb{K} の有限次拡大体であるとする.このとき,有限次元 \mathbb{K}' -Lie 代数 \mathfrak{g}' が単純であることと,その係数の制限 $\mathfrak{g}'_{\mathbb{K}}$ が単純であることとは同値である.

証明 (1) $\mathfrak{g}_{(\mathbb{K}')}$ が単純であるとすると、命題 6.26 (1) より \mathfrak{g} は半単純だから、 \mathfrak{g} は有限個の単純 Lie 代数の 直和として $\mathfrak{g} = \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_n$ と書ける(定理 6.13). このとき、 $\mathfrak{g}_{(\mathbb{K}')} = (\mathfrak{g}_1)_{(\mathbb{K}')} \oplus \cdots \oplus (\mathfrak{g}_n)_{(\mathbb{K}')}$ だが、 $\mathfrak{g}_{(\mathbb{K}')}$ は単純だから、n=1 である. よって、 \mathfrak{g} は単純である.

(2) \mathfrak{g}' のイデアルは $\mathfrak{g}'_{[\mathbb{K}]}$ のイデアルでもあるから, $\mathfrak{g}'_{[\mathbb{K}]}$ が単純ならば, \mathfrak{g}' も単純である.逆に, \mathfrak{g}' が単純であるとする.このとき, \mathfrak{g}' は可換でないから, $\mathfrak{g}'_{[\mathbb{K}]}$ も可換でない.また,命題 6.26 (2) より, $\mathfrak{g}'_{[\mathbb{K}]}$ は半単純である.そこで, \mathfrak{a} を $\mathfrak{g}'_{[\mathbb{K}]}$ のイデアルとすると, $\mathfrak{a}=[\mathfrak{a},\mathfrak{g}'_{[\mathbb{K}]}]$ が成り立つから(定理 6.13), $\mathrm{span}_{\mathbb{K}'}$ $\mathfrak{a}=\mathfrak{a}$ となり, \mathfrak{a} は \mathfrak{g}' のイデアルでもある.したがって, \mathfrak{a} は $\mathfrak{0}$ または \mathfrak{g}' である.よって, $\mathfrak{g}'_{[\mathbb{K}]}$ は単純である.

注意 6.28 命題 6.27 (1) の逆は成り立たない. すなわち, \mathbb{K}' を \mathbb{K} の拡大体とするとき, 単純 \mathbb{K} -Lie 代数 \mathfrak{g} の係数拡大 $\mathfrak{g}_{(\mathbb{K}')}$ が単純であるとは限らない.

- (1) 有限次元 \mathbb{K} -Lie 代数 \mathfrak{g} が簡約であることと,その係数拡大 $\mathfrak{g}_{(\mathbb{K}')}$ が簡約であることとは同値である.
- (2) \mathbb{K}' は \mathbb{K} の有限次拡大体であるとする.このとき,有限次元 \mathbb{K}' -Lie 代数 \mathfrak{g}' が簡約であることと,その係数の制限 $\mathfrak{g}'_{\mathbb{K}'}$ が簡約であることとは同値である.

証明 (1) 命題 5.29 の (a) \iff (f) と, $\operatorname{nil}\mathfrak{g}_{(\mathbb{K}')}=(\operatorname{nil}\mathfrak{g})_{(\mathbb{K}')}$ であること(命題 5.29 (1))から従う.

(2) 命題 5.29 の (a) \iff (f) と, $\operatorname{nil}\mathfrak{g}'_{[\mathbb{K}]}=(\operatorname{nil}\mathfrak{g}')_{[\mathbb{K}]}$ であること(命題 5.29 (2))から従う.

6.7 半単純 Lie 代数の半単純元と冪零元

定理 6.30 V を標数 0 の可換体 \mathbb{K} 上の有限次元線型空間とし, \mathfrak{g} を $\mathfrak{gl}(V)$ の半単純部分 Lie 代数とする.任意の $x \in \mathfrak{g}$ に対して,その Jordan 分解を (x_s,x_n) とすると, $x_s,x_n \in \mathfrak{g}$ である.

証明 命題 6.26~(1) より、必要ならば代数閉包への係数拡大を考えることで、一般性を失わず、係数体 $\mathbb K$ は代数閉であると仮定する.

 $x \in \mathfrak{gl}(V)$ とし、その Jordan 分解を $(x_{\mathbf{s},x_{\mathbf{n}}})$ とする。すると、 $\mathrm{ad}_{\mathfrak{gl}(V)}(x_{\mathbf{n}})$ は $\mathrm{ad}_{\mathfrak{gl}(V)}(x)$ の定数項をもたない \mathbb{K} 係数多項式として表せるから(補題 5.21), \mathfrak{g} が $\mathrm{ad}_{\mathfrak{gl}(V)}(x)$ -安定ならば、 $\mathrm{ad}_{\mathfrak{gl}(V)}(x_{\mathbf{n}})$ -安定でもある。すなわち, $x \in \mathbf{N}_{\mathfrak{gl}(V)}(\mathfrak{g})$ ならば $x_{\mathbf{n}} \in \mathbf{N}_{\mathfrak{gl}(V)}(\mathfrak{g})$ である。次に、部分線型空間 $W \subseteq V$ に対して、 $\mathfrak{gl}(V)$ の部分 Lie 代数 \mathfrak{h}_W を、

$$\mathfrak{h}_W = \{ x \in \mathfrak{gl}(V) \mid W \text{ id } x\text{-安定かつ } x|_W \in \mathfrak{sl}(W) \}$$

と定める。すると、 x_n は x の定数項をもたない $\mathbb K$ 係数多項式として表せるから、W が x-安定ならば、 x_n -安定ならば、 $x_n|_W$ も冪零であり、したがって特に、 $x_n|_W \in \mathfrak{sl}(W)$ である。よって、 $x \in \mathfrak{h}_W$ ならば $x_n \in \mathfrak{h}_W$ である。

前段の結果より, 主張を示すためには,

$$\mathfrak{g}=\mathbf{N}_{\mathfrak{gl}(V)}(\mathfrak{g})\cap\bigcap_{W\ \mathrm{it}\ V\ \mathrm{o}\ \mathfrak{g} ext{-安定部分線形空間}}\mathfrak{h}_W$$

を示せばよい.上式の右辺を \mathfrak{g}' と置くと,これは $\mathfrak{gl}(V)$ の部分 Lie 代数である.また, \mathfrak{g} が $\mathfrak{gl}(V)$ の部分 Lie 代数であることより $\mathfrak{g}\subseteq \mathbf{N}_{\mathfrak{gl}(V)}(\mathfrak{g})$ であり, $\mathfrak{g}=[\mathfrak{g},\mathfrak{g}]$ (定理 6.10) より \mathfrak{g} -安定な部分線型空間 $W\subseteq V$ に対して $\mathfrak{g}\subseteq \mathfrak{h}_W$ だから, $\mathfrak{g}\subseteq \mathfrak{g}'\subseteq \mathbf{N}_{\mathfrak{gl}(V)}(\mathfrak{g})$ である.したがって, \mathfrak{g} は \mathfrak{g}' の半単純イデアルだから, \mathfrak{g} の \mathfrak{g}' における補イデアル \mathfrak{a} がとれる(命題 6.12). $\mathfrak{a}=0$ を示す. $[\mathfrak{a},\mathfrak{g}]=0$ だから, \mathfrak{a} の各元は, \mathfrak{g} の V 上の自然表現に関して \mathfrak{g} -同変である.また,係数体 \mathbb{K} は代数閉だから,Schur の補題(命題 3.13 (2))より, \mathfrak{a} の各元は, \mathfrak{g} の自然表現の各既約部分表現上でスカラー倍である.一方で, \mathfrak{g} の自然表現の任意の既約部分表現に対応する \mathfrak{g} -安定な部分線型空間 $W\subseteq V$ に対して, $\mathfrak{a}\subseteq \mathfrak{g}'\subseteq \mathfrak{h}_W$ より \mathfrak{a} の各元の W への制限は $\mathfrak{sl}(W)$ に属す

る. したがって,このスカラー倍は 0 である.Weyl の完全可約性定理(定理 6.20)より, $\mathfrak g$ の自然表現は完全可約だから,上記のことと合わせて, $\mathfrak g=0$ を得る.これで,主張が示された.

系 6.31 V を標数 0 の可換体 \mathbb{K} 上の有限次元線型空間とし、 \mathfrak{g} を $\mathfrak{gl}(V)$ の半単純部分 Lie 代数とする.

- (1) V 上の線型写像 $x \in \mathfrak{g}$ が半単純であることと, \mathfrak{g} 上の線型写像 $\mathrm{ad}_{\mathfrak{g}}(x)$ が半単純であることとは同値である.
- (2) V 上の線型写像 $x \in \mathfrak{g}$ が冪零であることと, \mathfrak{g} 上の線型写像 $\mathrm{ad}_{\mathfrak{g}}(x)$ が冪零であることとは同値である.

証明 V 上の線型写像 $x \in \mathfrak{g}$ の Jordan 分解を (x_s, x_n) とすると,定理 6.30 より, $x_s, x_n \in \mathfrak{g}$ である.また,補題 5.21 より $\mathrm{ad}_{\mathfrak{gl}(V)}(x)$ の Jordan 分解は $(\mathrm{ad}_{\mathfrak{gl}(V)}(x_s), \mathrm{ad}_{\mathfrak{gl}(V)}(x_n))$ だから,その制限である $\mathrm{ad}_{\mathfrak{g}}(x)$ の Jordan 分解は $(\mathrm{ad}_{\mathfrak{g}}(x_s), \mathrm{ad}_{\mathfrak{g}}(x_n))$ である.半単純 Lie 代数 \mathfrak{g} の随伴表現が忠実であること(命題 6.5)と合わせて,

$$x$$
 が半単純 $\iff x_n = 0 \iff \mathrm{ad}_{\mathfrak{g}}(x_n) = 0 \iff \mathrm{ad}_{\mathfrak{g}}(x)$ が半単純

および

$$x$$
 が冪零 $\iff x_{\rm s} = 0 \iff {\rm ad}_{\mathfrak{g}}(x_{\rm s}) = 0 \iff {\rm ad}_{\mathfrak{g}}(x)$ が冪零

を得る.

命題 6.32 g を標数 0 の可換体 K 上の半単純 Lie 代数とする.

- (1) $x \in \mathfrak{g}$ に対して、次の条件は同値である.
 - (a) $\mathfrak g$ の任意の有限次元表現 (ρ,V) に対して,V 上の線型写像 $\rho(x)$ は半単純である.
 - (b) \mathfrak{g} 上の線型写像 ad(x) は半単純である.
 - (c) \mathfrak{g} の忠実な有限次元表現 (ρ,V) であって,V 上の線型写像 $\rho(x)$ が半単純であるものが存在する.
- (2) $x \in \mathfrak{g}$ に対して、次の条件は同値である.
 - (a) \mathfrak{g} の任意の有限次元表現 (ρ, V) に対して、V 上の線型写像 $\rho(x)$ は冪零である.
 - (b) \mathfrak{g} 上の線型写像 $\operatorname{ad}(x)$ は冪零である.
 - (c) \mathfrak{g} の忠実な有限次元表現 (ρ, V) であって,V 上の線型写像 $\rho(x)$ が冪零であるものが存在する.

証明 どちらも同様だから, (1) のみを示す.

- $(a) \Longrightarrow (b) \Longrightarrow (c)$ 明らかである.
- (c) ⇒ (a) W を有限次元線型空間, \mathfrak{g} $\mathfrak{gl}(W)$ の半単純部分 Lie 代数, $x\in\mathfrak{g}$ とし,x は(W 上の線型写像として)半単純であるとする。 \mathfrak{g} の任意の有限次元表現 (ρ,V) に対して, $\rho(x)$ が半単純であることを示せばよい。 \mathfrak{g} は半単純であり, $\mathrm{Ker}\,\rho$ はそのイデアルだから,その補イデアル \mathfrak{a} がとれ, Lie 代数として $\mathfrak{g}=\mathrm{Ker}\,\sigma\oplus\mathfrak{a}$ が成り立つ(定理 6.13)。 $p\colon\mathfrak{g}\to\mathfrak{a}$ をこの直和分解に関する射影とする。いま,x は半単純だから,系 6.31 より $\mathrm{ad}_{\mathfrak{g}}(x)$ も半単純であり,したがって,その制限である $\mathrm{ad}_{\mathfrak{a}}(p(x))$ も半単純である。 $\rho|_{\mathfrak{a}}$ は 半単純 Lie 代数 \mathfrak{a} の忠実な有限次元表現だから,ふたたび系 6.31 より, $\rho(x)=\rho(p(x))$ も半単純である。これで,主張が示された.

定義 6.33 (半単純 Lie 代数の半単純元・冪零元) g を標数 0 の可換体 K 上の半単純 Lie 代数とする.

- (1) $x \in \mathfrak{g}$ が半単純(semisimple)であるとは、命題 6.32 (1) の同値な条件を満たすことをいう.
- (2) $x \in \mathfrak{g}$ が冪零 (nilpotent) であるとは、命題 6.32 (2) の同値な条件を満たすことをいう.

定理 6.34 \mathfrak{g} を標数 0 の可換体 \mathbb{K} 上の半単純 Lie 代数とする. 任意の $x \in \mathfrak{g}$ に対して、半単純元 $x_s \in \mathfrak{g}$ と冪零元 $x_n \in \mathfrak{g}$ であって $x = x_s + x_n$ かつ $[x_s, x_n] = 0$ を満たすものが、一意に存在する.

証明 半単純 Lie 代数 $\mathfrak g$ の随伴表現は忠実だから(命題 6.5), $x_{\rm s},\,x_{\rm n}\in\mathfrak g$ が主張の条件を満たすことは, $\mathfrak g$ 上 の線型写像 ${\rm ad}(x_{\rm s})$ と ${\rm ad}(x_{\rm n})$ が ${\rm ad}(x)={\rm ad}(x_{\rm s})+{\rm ad}(x_{\rm n})$ かつ $[{\rm ad}(x_{\rm s}),{\rm ad}(x_{\rm n})]=0$ を満たすことと同値である. ${\rm ad}(x)$ の半単純成分と冪零成分は ${\rm ad}(\mathfrak g)$ に属するから(定理 6.30),このような $x_{\rm s}$ と $x_{\rm n}$ は,一意に存在する.

定義 6.35 (半単純 Lie 代数における Jordan 分解) \mathfrak{g} を標数 0 の可換体 \mathbb{K} 上の半単純 Lie 代数とする. $x \in \mathfrak{g}$ に対して、 $x_s, x_n \in \mathfrak{g}$ を定理 6.34 のようにとるとき、 (x_s, x_n) を x の Jordan 分解(Jordan decomposition) という。また、 x_s を x の半単純成分(semisimple component)といい、 x_n を x の冪零成分(nilpotent component)という。

命題 6.36 \mathfrak{g} と \mathfrak{h} を標数 \mathfrak{g} の可換体 \mathbb{K} 上の半単純 Lie 代数とし、 $f:\mathfrak{g}\to\mathfrak{h}$ を Lie 代数の準同型とする.

- (1) f は、g の半単純元をf の半単純元に移し、g の冪零元をf の冪零元に移す.
- (2) $x \in \mathfrak{g}$ の Jordan 分解を (x_s, x_n) とすると、 $f(x) \in \mathfrak{h}$ の Jordan 分解は $(f(x_s), f(x_n))$ である.
- (3) f が単射であるとする.このとき, $x \in \mathfrak{g}$ が半単純であることと $f(x) \in \mathfrak{h}$ が半単純であることとは同値であり,x が冪零であることと f(x) が冪零であることとは同値である.

証明 (1) (ρ, V) を $\mathfrak h$ の有限次元表現とすると, $(\rho \circ f, V)$ は $\mathfrak g$ の有限次元表現である.よって,主張は,命題 6.32 の条件 (c) による半単純元・冪零元の定義から従う.

- (2) $x=x_{\rm s}+x_{\rm n}$ より $f(x)=f(x_{\rm s})+f(x_{\rm n})$ であり, $[x_{\rm s},x_{\rm n}]=0$ より $[f(x_{\rm s}),f(x_{\rm n})]=0$ である.また, $x_{\rm s},x_{\rm n}\in\mathfrak{g}$ はそれぞれ半単純,冪零だから,(1) より, $f(x_{\rm s}),f(x_{\rm n})\in\mathfrak{h}$ はそれぞれ半単純,冪零である.よって, $(f(x_{\rm s}),f(x_{\rm n}))$ は f(x) の Jordan 分解である.
 - (3) f の単射性と(2)より、

$$x$$
 が半単純 $\iff x_n = 0 \iff f(x_n) = 0 \iff f(x)$ が半単純

および

$$x$$
 が冪零 $\iff x_s = 0 \iff f(x_s) = 0 \iff f(x)$ が冪零

を得る.

6.8 半単純 Lie 代数の例

命題 6.37 V を標数 0 の可換体 K 上の有限次元線型空間とする.

- (1) $\mathfrak{gl}(V)$ は簡約である.
- (2) $\mathfrak{sl}(V) = [\mathfrak{gl}(V), \mathfrak{gl}(V)]$ であり,これは半単純である.

証明 (1) $\mathfrak{gl}(V)$ の自然表現は,明らかに既約(したがって特に,完全可約)である.よって,定理 6.23 の $(a) \iff (e)$ より, $\mathfrak{gl}(V)$ は簡約である.

(2) (1) で示したように $\mathfrak{gl}(V)$ は簡約だから、定理 6.23 より、 $\mathfrak{gl}(V) = [\mathfrak{gl}(V),\mathfrak{gl}(V)] \oplus \mathbf{Z}(\mathfrak{gl}(V))$ であり、 $[\mathfrak{gl}(V),\mathfrak{gl}(V)]$ は半単純である.一方で、容易に確かめられるように $\mathbf{Z}(\mathfrak{gl}(V)) = \mathbb{K}\mathrm{id}_V$ であり、 $\mathfrak{sl}(V)$ はこれ

の $\mathfrak{gl}(V)$ における補空間である. さらに、トレースの性質より、 $[\mathfrak{gl}(V),\mathfrak{gl}(V)]\subseteq \mathfrak{sl}(V)$ である. 以上より、 $\mathfrak{sl}(V)=[\mathfrak{gl}(V),\mathfrak{gl}(V)]$ であり、これは半単純である.

命題 6.38 V を標数 0 の可換体 ≤ 上の有限次元線型空間とする.

- (1) Φ : $V \times V \to \mathbb{K}$ を非退化対称双線型形式とする.このとき, $\dim V \neq 2$ ならば $\mathfrak{o}(V,\Phi)$ は半単純であり, $\dim V = 2$ ならば $\mathfrak{o}(V,\Phi)$ は 1 次元(したがって,可換)である.
- (2) Φ : $V \times V \to \mathbb{K}$ を非退化交代双線型形式とする. このとき、 $\mathfrak{sp}(V,\Phi)$ は半単純である.

証明 $\Phi: V \times V \to \mathbb{K}$ を対称または交代な非退化双線型形式とし、 $\mathfrak{o}(V,\Phi)$ または $\mathfrak{sp}(V,\Phi)$ を \mathfrak{g}_{Φ} と書く、 $x \in \mathfrak{gl}(V)$ の Φ に関する随伴を $x^* \in \mathfrak{gl}(V)$ と書く(すなわち、 x^* を、任意の $v, w \in W$ に対して $\Phi(x(v),w) = \Phi(v,x^*(w))$ を満たすという性質によって特徴付けられる $\mathfrak{gl}(V)$ の元とする)と、

$$\mathfrak{g}_{\varPhi} = \{ x \in \mathfrak{gl}(V) \mid x + x^* = 0 \}$$

である.

まず、 \mathfrak{g}_{φ} が簡約であることを示す。そのためには、 \mathfrak{g}_{φ} の自然表現のトレース形式 $(x,y)\mapsto \operatorname{tr}(xy)$ が非退化であることをいえばよい(定理 6.23)。 $x\in\mathfrak{g}_{\varphi}$ がこのトレース形式の退化空間に含まれるとして, $y\in\mathfrak{gl}(V)$ を任意にとる。すると, $y-y^*\in\mathfrak{g}_{\varphi}$ だから, $\operatorname{tr}(x(y-y^*))=0$,すなわち $\operatorname{tr}(xy)=\operatorname{tr}(xy^*)$ である。したがって,

$$tr(xy) = tr(xy^*) = tr(yx^*)^* = tr(yx^*) = -tr(yx) = -tr(xy)$$

だから、 $\operatorname{tr}(xy)=0$ である.容易に確かめられるように、 $\operatorname{\mathfrak{gl}}(V)$ 上の双線型形式 $(x,y)\mapsto \operatorname{tr}(xy)$ は非退化だから、これが任意の $y\in\operatorname{\mathfrak{gl}}(V)$ に対して成り立つことより、x=0 を得る.よって、 $\operatorname{\mathfrak{g}}_{\varPhi}$ の自然表現のトレース形式は非退化である.

あとは, Φ が対称かつ $\dim V=2$ である場合に \mathfrak{g}_{Φ} が 1 次元であることと,それ以外の場合に \mathfrak{g}_{Φ} の中心が 0 であることを示せばよい(定理 6.23).

(1) Φ が対称であるとして, $\mathfrak{g}_{\Phi}=\mathfrak{o}(V,\Phi)$ に関する主張を示す.命題 6.26 (1) より,必要ならば代数閉包への係数拡大を考えることで,一般性を失わず,係数体 $\mathbb K$ は代数閉であると仮定する.このとき,対称双線型形式の一般論より,V の基底 (e_1,\ldots,e_n) であって $\Phi(e_i,e_j)=\delta_{ij}$ (δ_{ij} は Kronecker のデルタ)を満たすものが存在する.よって,

$$\mathfrak{o}(n,\mathbb{K}) = \{ X \in \mathfrak{gl}(n,\mathbb{K}) \mid X + X^{\mathrm{T}} = 0 \}$$

に対して主張を示せば十分である.

n=0,1 の場合、 $\mathfrak{o}(n,\mathbb{K})=0$ である。n=2 の場合、 $\mathfrak{o}(2,\mathbb{K})=\mathbb{K}\left(\begin{smallmatrix} 0&1\\-1&0\end{smallmatrix}\right)$ である。よって、これらの場合には、主張が成り立つ。

 $n \geq 3$ である場合を考える。 $X = (x_{ij})_{i,j \in \{1,\dots,n\}} \in \mathbf{Z}(\mathfrak{o}(n,\mathbb{K}))$ を任意にとる。まず、 $X \in \mathfrak{o}(n,\mathbb{K})$ だから、任意のi に対して $x_{ii} = 0$ である。次に、任意の異なる二つの添字k, l に対して、X は $E_{kl} - E_{lk} \in \mathfrak{o}(n,\mathbb{K})$ と可換だから、任意のi, $j \in \{1,\dots,n\} \setminus \{k,l\}$ に対して $x_{kj} = x_{lj} = x_{ik} = x_{il} = 0$ が成り立つ。 $n \geq 3$ であることより、任意の異なる二つの添字k, j に対して、i, l を適当にとればi, $j \in \{1,\dots,n\} \setminus \{k,l\}$ が満たされるから、 $x_{kj} = 0$ を得る。よって、X = 0 である。これで、 $\mathfrak{o}(n,\mathbb{K})$ の中心が0 であることが示された。

(2) Φ が交代であるとして, $\mathfrak{g}_{\Phi}=\mathfrak{sp}(V,\Phi)$ の中心が 0 であることを示す.命題 6.26 (1) より,必要ならば代数閉包への係数拡大を考えることで,一般性を失わず,係数体 \mathbb{K} は代数閉であると仮定する.このとき,

交代双線型形式の一般論より、V の基底 (e_1,\ldots,e_{2n}) であって

$$\Phi(e_i,e_j) = \begin{cases} 1 & (j=i+n) \\ -1 & (j=i-n) \\ 0 & (それ以外の場合) \end{cases}$$

を満たすものが存在する. よって,

$$\mathfrak{sp}(n, \mathbb{K}) = \{ X \in \mathfrak{gl}(2n, \mathbb{K}) \mid J_n X + X^{\mathrm{T}} J_n = 0 \}$$
$$= \left\{ \begin{pmatrix} A & B \\ C & -A^{\mathrm{T}} \end{pmatrix} \mid A \in \mathfrak{gl}(n, \mathbb{K}), B, C \in \mathrm{Sym}(n, \mathbb{K}) \right\}$$

 $(J_n=\left(egin{array}{cc}0&I_n\\-I_n&0\end{array}
ight)$ であり、 $\mathrm{Sym}(n,\mathbb{K})$ は \mathbb{K} 上の n 次対称行列全体のなす空間を表す)の中心が 0 であることを示せば十分である.

 $X = \begin{pmatrix} A & B \\ C & -A^{\mathrm{T}} \end{pmatrix} \in \mathbf{Z}(\mathfrak{sp}(n,\mathbb{K}))$ を任意にとる。まず、任意の $A' \in \mathfrak{gl}(n,\mathbb{K})$ に対して、X は $\begin{pmatrix} A' & 0 \\ 0 & -A'^{\mathrm{T}} \end{pmatrix} \in \mathfrak{sp}(n,\mathbb{K})$ と可換だから、特に A は A' と可換である。これより、 $A \in \mathbf{Z}(\mathfrak{gl}(n,\mathbb{K})) = \mathbb{K}I_n$ となるから、 $A = \lambda I_n$ ($\lambda \in \mathbb{K}$) と書ける。次に、X は $\begin{pmatrix} 0 & 0 \\ I_n & 0 \end{pmatrix} \in \mathfrak{sp}(n,\mathbb{K})$ と可換だから、 $\lambda = 0$ かつ B = 0 が成り立つ。同様に、X が $\begin{pmatrix} 0 & I_n \\ 0 & 0 \end{pmatrix} \in \mathfrak{sp}(n,\mathbb{K})$ と可換であることから、C = 0 であることもわかる。よって、X = 0 である。これで、 $\mathfrak{sp}(n,\mathbb{K})$ の中心が 0 であることが示された。

注意 6.39 命題 6.37 と命題 6.38 で半単純性を示した Lie 代数のうち,次のものは,単純であることが知られている(以下,V を標数 0 の可換体 \mathbb{K} 上の有限次元線型空間とする).

- $\mathfrak{sl}(V)$ $(V \neq 0)$
- $\mathfrak{o}(V,\Phi)$ (V は 3 次元または 5 次元以上, Φ : $V \times V \to \mathbb{K}$ は非退化対称双線型形式)
- $\mathfrak{sp}(V,\Phi)$ $(V \neq 0, \Phi: V \times V \to \mathbb{K}$ は非退化交代双線型形式)

参考文献

全体を通して、Bourbaki [1] を参考にした.本稿では、Engel の定理(系 4.9)を定理 4.7 から導く形で証明したが、筆者はこの定理を Nash [3] で知った. Killing 形式が 0 だが冪零でない Lie 代数の例(注意 4.5)については、Mathematics Stack Exchange [5] を参考にした.

Web ページについては、2025年1月20日に閲覧し、内容を確認した.

- [1] N. Bourbaki, Éléments de mathématique, Groupes et algèbres de Lie, Chapitre 1, Springer, 2007.
- [2] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, 1972.
- [3] O. Nash, "Engel's Theorem in Mathlib", Journal of Automated Reasoning 67.18 (2023).
- [4] Mathematics Stack Exchange, "Semisimplicity of Lie algebras and non-degeneracy of associated bilinear forms of representations".

https://math.stackexchange.com/q/3980952

[5] Mathematics Stack Exchange, "When is the Killing form null?".

https://math.stackexchange.com/q/310272