(b)

The vertical line is the ϕ_{ML} find by problem(a), which is really close to the maximum of the likelihood function. The phase range I choose is from $-\pi$ to π with stepsize $\pi/10000$.

(d)

We have the phase error $(\phi_{ML} - \phi)$ converge to zero with ONLY "3" iteration times by Method of iterative procedure, which is much faster than grid-search.

I plot two histogram to show the 2 different experiment shows similar result. The curve line is the asymptotical PDF(right side y-axis), and the histogram is the histogram of ϕ_{ML} obtained in (b) (left side y-axis). The two figure shows that the simulation result is close to the theoretical result.

0.65

The asymptotical PDF is normal distribution with mean = ϕ (π /4) , variance = $(2*\sigma^2)/(NA^2)$ = 0.001

0.95

0.85

The left figure is about the relation between SNR and variance of noise(σ^2), and the right figure is between SNR and mean. First, we can see that the Monte Carlo simulation has same tendency as asymptotic line. Second, the larger SNR is , the lower variance with same N is. This is because

 $\phi_{\text{ML}} \sim \text{N}(\phi, 1/((N)*\text{SNR}))$. Lastly, we can see from the right figure. The larger SNR is, the lower error between true mean and estimate mean is.

We can see as **N** increases the **error decrease** in different variance, which verify the assumption of MLE(with "large N" we can asymptotically have unbiased estimator)