Análisis Funcional - 1° cuatrimestre 2017 Final

Índice

1.	Espacios Vectoriales	1
	1.1. Propiedades Elementales	1
	1.2. Normas y productos internos	2
2.	Espacios de Hilbert	4
	2.1. Preliminares	4
	2.2. Conjuntos ortogonales y ortonormales	5
	2.3. Conjuntos ortonormales completos	7

1. Espacios Vectoriales

1.1. Propiedades Elementales

Definición Si \mathcal{X} es un espacio vectorial sobre un cuerpo \mathbb{F} , un conjunto $\mathcal{B} = \{v_i\}_{i \in I}$ se dice:

- 1. Linealmente independiente si dados $v_{i_1}, \ldots, v_{i_k} \in \mathcal{B}$ y $\lambda_{i_1}, \ldots, \lambda_{i_k} \in \mathcal{F}$ tal que $\sum_i \lambda_{i_i} v_{i_i} = 0$ implica que $\lambda_{i_i} = 0$ para todo $1 \le i \le k$.
- 2. Sistema de generadores si dado $v \in \mathcal{X}$ entonces existen $v_{i_1}, \ldots, v_{i_k} \in \mathcal{B}$ y $\lambda_{i_1}, \ldots, \lambda_{i_k} \in \mathcal{F}$ tal que $\sum_i \lambda_{i_i} v_{i_i} = v$.
- 3. Base si es a la vez un sistema de generadores linealmente independiente.

Ejemplo $\mathbf{X} = \mathbb{R}[X]$ es un espacio vectorial, si consideramos $\mathcal{B} = \{1, X, X^2, \dots\} = \{X^j\}_{j \in \mathbb{N}}$ es base.

■ $X = \mathcal{C}[a, b]$ es un espacio vectorial, si consideramos $\mathcal{B} = \{e^{\alpha x}, \alpha \in [0, 1]\}$ veamos que es linealmente independiente.

Demostración Sean $\alpha_1, \ldots, \alpha_n \in [0,1]$ y $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ tal que $\sum_i \lambda_i e^{\alpha_i x} = 0$ para todo $x \in [a,b]$; luego si derivamos n-1 veces tenemos el sistema:

$$\left(\begin{array}{ccc} e^{\alpha_1 x} & e^{\alpha_2 x} & \dots & e^{\alpha_n x} \end{array} \right) \left(\begin{array}{ccc} 1 & \alpha_1 & \dots & \alpha_1^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha_n & \dots & \alpha_n^{n-1} \end{array} \right) \left(\begin{array}{c} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \\ \vdots \\ 0 \end{array} \right)$$

Y como los α_i son distintos entonces la matriz de Vandermonde es inversible y el sistema admite una única solución, $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$.

Recordemos:

Proposición 1.1 (Lema de Zorn) $Si(P, \leq)$ es un conjunto parcialmente ordenado, no vacío, tal que todo subconjunto no vacío $S \subseteq P$ totalmente ordenado admite una cota superior; entonces existe un elemento maximal en P.

Proposición 1.2 Si E es un espacio vectorial, entonces E admite una base.

Demostración Consideremos $P = \{S \subseteq E \mid S \text{ es li}\}$ y dotemoslo del orden dado por la inclusiíon, luego $P \neq \emptyset$ pues si $v \in E$ entonces $\{v\} \in P$.

Sea $\{S_i\}$ una colección de subconjuntos de P totalmente ordenada y sea $T = \bigcup_{i \in I} S_i$, luego es claro que $S_i \leq T$; faltaría ver que $T \in P$.

Para eso sean $v_{i_1}, \ldots, v_{i_k} \in T$ y $\lambda_{i_1}, \ldots, \lambda_{i_k}$ $in\mathcal{F}$ tales que $\sum_k \lambda_i v_i = 0$. Como son finitos existe $k_0 \in \mathbb{N}$ tal que $v_i \in S_{k_0}$ para todo i, que al ser un conjunto linealmente independiente resulta que $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$. Concluímos que $T \in P$, luego por 1.1 existe $M \in P$ elemento maximal.

Finalmente, sea $v \in E \setminus M > (\text{el conjunto generado por combinaciones lineales de } M)$, luego $M \cup \{v\}$ sería un conjunto li lo que contradice la maximalidad de M; por ende no existe tal $v \in M$ resulta base.

Proposición 1.3 Sea E un espacio vectorial y sean $\mathcal{B}_1, \mathcal{B}_2$ dos bases de Hamel de E. Luego $\#B_1 = \#B_2$.

Demostración Sea $x \in \mathcal{B}_1$ y llamemos S(x) al conjunto de los elementos $v \in \mathcal{B}_2$ tal que al escribir a x como combinación lineal de elementos de \mathcal{B}_2 aparece v, por lo que si $x = \sum_k \lambda_{i_k} v_{i_k}$ entonces $S(x) = \{v_{i_1}, \dots, v_{i_n}\}$.

Lema 1.4
$$\bigcup_{x \in \mathcal{B}_1} S(x) = \mathcal{B}_2$$

Demostración Del lema Si $v \in \bigcup_{x \in \mathcal{B}_1} S(x)$ luego existe $x_0 \in \mathcal{B}_1$ tal que $v \in S(x_0)$ por lo que $v \in \mathcal{B}_2$ por definición de S(x). Recíprocamente, si $v \in \mathcal{B}_2$ pero no existe $x \in \mathcal{B}_1$ tal que $v \in S(x)$, entonces $v \notin \mathcal{B}_1 >= E = \mathcal{B}_2 >$.

Por 1.4 tenemos que $\#\mathcal{B}_2 \leq \sum_{x \in \mathcal{B}_1} \#S(x) \leq \#\mathbb{N} \#\mathcal{B}_1 \leq \#B_1$.

Razonando al revés obtenemos la otra desigualdad.

1.2. Normas y productos internos

Definición Si E es un espacio vectorial, una norma definida en E es una aplicación $\|.\|: E \mapsto \mathbb{R}$ tal que:

- 1. $||x|| \ge 0$
- 2. $||x|| = 0 \iff x = 0$
- 3. $\|\lambda x\| = |\lambda| \|x\|$
- 4. $||x + y|| \le ||x|| + ||y||$

Observación Todo espacio normado es un espacio métrico pero no viceversa.

Definición Si E es un espacio vectorial, un producto interno definido en E es una aplicación $\langle .,. \rangle : E \times E \mapsto F$ tal que:

- 1. $\langle ., z \rangle$ es lineal
- 2. $\langle x, x \rangle = 0 \iff x = 0$
- 3. $\langle x, y \rangle = \overline{\langle y, x \rangle}$

Observación Todo espacio con producto interno es un espacio normado pero no viceversa.

Teorema 1.5 (Cauchy-Schwartz) Sea E un espacio vectorial $y \langle . \rangle$ un producto interno definido en E; luego si $x, y \in E$ se tiene que $|\langle x, y \rangle| \le ||x|| ||y||$.

Demostración Sean $x, y \in E$, $\lambda \in \mathbb{C}$ y sea $z = x - \lambda y$, luego $\langle z, z \rangle = \langle x, x \rangle + \left| \lambda^2 \right| \langle y, y \rangle - 2\Re(\lambda \langle y, x \rangle) \ge 0$. Si $\langle y, x \rangle = re^{i\theta}$ sea $\lambda = e^{-i\theta}t$ con $t \in \mathbb{R}$; luego:

$$0 \ge \langle x, x \rangle + t^2 \langle y, y \rangle - 2bt \equiv c - 2bt + at^2 := q(t)$$

Luego como la cuadrática dada es positiva, eso implica que $0 \le 4b^2 - 4ac$ por lo que:

$$0 \le b^2 - ac = |\langle x, y \rangle|^2 - \langle x, x \rangle \langle y, y \rangle$$

Si $|\langle x,y\rangle|=\|x\|\,\|y\|$, entonces $b^2=\langle x,x\rangle\,\langle y,y\rangle$ por lo que $b^2-ac=0$. Esto implica que existe t_0 tal que $q(t_0)=0$, por lo tanto eso implica que $\langle x-e^{-i\theta}t_0y,x-e^{-i\theta}t_0y\rangle\equiv 0$ y por lo tanto $x=e^{-i\theta}t_0y$.

Definición Un espacio normado que es completo respecto a la distancia inducida por la norma se llama *Espacio de Banach*

Definición Un *Espacio de Hilbert* es un espacio de Banach donde la norma proviene de un producto interno mediante $||x|| = \sqrt{\langle x, x \rangle}$.

Proposición 1.6 Sea E un espacio con producto interno, entonces:

- $\mathcal{R}(\langle x, y \rangle) = \frac{1}{4} \left(\|x + y\|^2 \|x y\|^2 \right)$
- $\mathcal{I}(\langle x, y \rangle) = \frac{1}{4} (\|x + iy\|^2 \|x iy\|^2)$

Demostración Por un lado $||x+y||^2 = ||x||^2 + ||y||^2 + 2\mathcal{R}(\langle x,y\rangle)$ y $||x-y||^2 = ||x||^2 + ||y||^2 - 2\mathcal{R}(\langle x,y\rangle)$; por lo que restando se obtiene:

$$4\mathcal{R}(\langle x, y \rangle) = \|x + y\|^2 - \|x - y\|^2$$

Por el otro:

$$\begin{aligned} \|x+iy\|^2 &= \langle x+iy, x+iy \rangle \\ &= \|x\|^2 + |i| \|y\|^2 - i \langle x, y \rangle + i \overline{\langle x, y \rangle} \\ &= \|x\|^2 + \|y\|^2 - i2\mathcal{I}(\langle x, y \rangle) \\ \|x-iy\|^2 &= \langle x-iy, x-iy \rangle \\ &= \|x\|^2 + |i| \|y\|^2 + i \langle x, y \rangle - i \overline{\langle x, y \rangle} \\ &= \|x\|^2 + \|y\|^2 + i2\mathcal{I}(\langle x, y \rangle) \end{aligned}$$

Por lo tanto restando ambas obtenemos:

$$4\mathcal{I}(\langle x, y \rangle) = ||x + iy||^2 - ||x - iy||^2$$

Proposición 1.7 (Ley del paralelogramo) Sea E un espacio normado real, entonces existe $\langle ., . \rangle : E \times E \to \mathbb{C}$ tal que $||x|| = \sqrt{\langle x, x \rangle}$ si y sólo si para todos $x, y \in E$ vale:

$$||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2$$

Demostración Si $||x|| = \sqrt{\langle x, x \rangle}$ entonces de la demostración de 1.6 se da el resultado. Recíprocamente definamos:

$$\langle x, y \rangle := \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right)$$

Luego verifiquemos que es un producto interno.

- 1. $\sqrt{\langle x, x \rangle} = ||x||$
- 2. Como $||x + y|| = ||y + x|| \ y \ ||x y|| = ||-(y x)|| = ||y x||$ concluímos que $\langle x, y \rangle = \langle y, x \rangle$.
- 3. Dado que $\|.\|$, +, -, * son $\|.\|$ -continuas entonces $\langle ., x \rangle$, $\langle x, . \rangle$ es $\|.\|$ -continua.
- 4. Sean $x, y, z \in E$ entonces:

$$||x + y + z||^2 = 2||x + z||^2 + 2||y||^2 - ||x - y + z||^2 = 2||y + z||^2 + 2||x||^2 - ||y - x + z||^2$$

Luego como A=B y A=C implica $A=\frac{B+C}{2}$ se obtiene:

$$\begin{split} \|x+y+z\|^2 &= \|x+z\|^2 + \|y\|^2 - \frac{1}{2} \|x-y+z\|^2 + \|y+z\|^2 + \|x\|^2 - \frac{1}{2} \|y-x+z\|^2 \\ \|x+y-z\|^2 &= \|x-z\|^2 + \|y\|^2 - \frac{1}{2} \|x-y-z\|^2 + \|y-z\|^2 + \|x\|^2 - \frac{1}{2} \|y-x-z\|^2 \\ &= \|x-z\|^2 + \|y\|^2 - \frac{1}{2} \|-x+y+z\|^2 + \|y-z\|^2 + \|x\|^2 - \frac{1}{2} \|-y+x+z\|^2 \end{split}$$

Por lo tanto:

$$\begin{aligned} \langle x + y, z \rangle &= \frac{1}{4} \left(\|x + y + z\|^2 - \|x + y - z\|^2 \right) \\ &= \frac{1}{4} \left(\|x + z\|^2 - \|x - z\|^2 \right) + \frac{1}{4} \left(\|y + z\|^2 - \|y - z\|^2 \right) \\ &= \langle x, z \rangle + \langle y, z \rangle \end{aligned}$$

5. Por el item anterior es claro por inducción que $\lambda \langle x, y \rangle = \langle \lambda x, y \rangle$ para todo $\lambda \in \mathbb{N}$ y como vale para $\lambda = -1$ tenemos que vale para todo $\lambda \in \mathbb{Z}$. Si $\lambda = \frac{p}{q} \in \mathbb{Q}$ entonces si llamamos $x' = \frac{x}{q}$ tenemos:

$$q\langle \lambda x, y \rangle = q\langle px', y \rangle = p\langle qx', y \rangle = p\langle x, y \rangle$$

Luego $\lambda \langle x, y \rangle = \langle \lambda x, y \rangle$ para todo $\lambda \in \mathbb{Q}$. Por lo tanto probamos que fijados $x, y \in E$ la función $g(t) = \frac{1}{t} \langle tx, y \rangle$ y la función constante $h(t) = \langle x, y \rangle$ cumplen que $h|_{\mathbb{Q}} = g|_{\mathbb{Q}}$ y por continuidad entonces $h \equiv g$ para todo $t \in \mathbb{R} \setminus \{0\}$; como el caso $\lambda = 0$ es trivial concluímos que $\lambda \langle x, y \rangle = \langle \lambda x, y \rangle$.

2. Espacios de Hilbert

2.1. Preliminares

Proposición 2.1 Sea E un espacio vectorial con producto interno, luego el producto interno es continuo.

Demostración Sea $x_n, (y_n)$ tales que $x_n \to x, y_n \to y$, luego:

$$\begin{split} |\langle x_n, y_n \rangle - \langle x, y \rangle| &= |\langle x_n - x, y_n \rangle + \langle x, y_n - y \rangle| \\ &\leq |\langle x_n - x, y_n \rangle| + |\langle x, y_n - y \rangle| \\ &\leq |\langle x_n - x, y_n - y \rangle| + |\langle x_n - x, y \rangle| + |\langle x, y_n - y \rangle| \\ &\leq \|x_n - x\| \, \|y\| + \|x\| \, \|y_n - y\| + \|x_n - x\| \, \|y_n - y\| \to 0 \end{split}$$

2.2. Conjuntos ortogonales y ortonormales

Definición Sea E un espacio vectorial con producto interno, luego dados dos vectores $x, y \in E$ decimos que son ortogonales si $\langle x, y \rangle = 0$.

A su vez decimos que son ortonormales si osn ortogonales y ||x|| = ||y|| = 1

Finalmente dado un conjunto $S \subseteq E$ entonces decimos que es ortogonal / ortonormal si dados cualesquiera $x, y \in S$ resulta que son ortogonales / ortonormales

Ejemplo El conjunto $\{e^{inx}, n \in \mathbb{N}, x \in [0, 2\pi]\}$ es ortonormal.

Teorema 2.2 Sea E un espacio vectorial con producto interno y sea $S \subseteq E$ un conjunto ortonormal, luego $si \ x \in \langle S \rangle$ entonces existe una única escritura de x dada por:

$$x = \sum_{i=1}^{n} \langle x, u_i \rangle u_i \qquad u_i \in S$$

Demostración Como $x \in \langle S \rangle$ entonces existen únicos $\lambda_1, \ldots, \lambda_n$ tal que $x = \sum_{i=1}^n \lambda_i u_i$. Luego:

$$\langle x, u_j \rangle = \sum_{i=1}^{n} \lambda_i \langle u_i, u_j \rangle = \lambda_j$$

Teorema 2.3 (Desigualdad de Bessel) Sea E un espacio vectorial con producto interno y sea $S \subseteq E$ un conjunto ortonormal, luego:

1.
$$SI \ x \in E \ y \ u_1, \dots, u_n \in S \ luego \sum_{i=1}^n |\langle x, u_i \rangle|^2 \le ||x||^2$$

2. Si $x \in E$ entonces $\{u \in S \ / \ \langle x, u \rangle \neq 0\}$ es a lo sumo numerable

3. Si
$$x, y \in E$$
 entonces $\left| \sum_{u \in S} \langle x, u \rangle \overline{\langle y, u \rangle} \right| \le ||x|| \, ||y||$

Demostración 1. Sean $u_1, \ldots, u_n \in S$ y sea $z = x - \sum_{i=1}^n \langle x, u_i \rangle$, luego:

$$0 \leq \langle z, z \rangle$$

$$= \left\langle x - \sum_{i=1}^{n} \langle x, u_i \rangle, x - \sum_{i=1}^{n} \langle x, u_i \rangle \right\rangle$$

$$= \|x\|^2 + \left\| \sum_{i=1}^{n} \langle x, u_i \rangle \right\|^2 - 2\mathcal{R} \left(\left\langle \sum_{i=1}^{n} \langle x, u_i \rangle, x \right\rangle \right)$$

$$= \|x\|^2 + \sum_{i=1}^{n} \|\langle x, u_i \rangle\|^2 - 2\mathcal{R} \left(\sum_{i=1}^{n} |\langle x, u_i \rangle|^2 \right)$$

$$= \|x\|^2 - \sum_{i=1}^{n} \|\langle x, u_i \rangle\|^2.$$

 $\text{2. Notemos que } S = \{u \in S \ / \ |\langle x,u \rangle| > 0\} = \bigcup_{n \in \mathbb{N}} \underbrace{\left\{u \in S \ / \ |\langle x,u \rangle| \geq \frac{1}{m}\right\}}_{T_{\text{Tra}}}.$

Ahora sean $u_1, \ldots, u_n \in T$ por el item anterior sabemos que:

$$\frac{n}{m^2} \le \sum_{1 \le k \le n} |\langle x, u_k \rangle|^2 \le ||x||^2$$

Por lo que $n \leq m^2 ||x||^2$ y entonces $\#T_m \leq m^2 ||x||^2 < \infty$ para todo m, por lo tanto $\#S \leq \#\mathbb{N} * \#T_m \leq \#\mathbb{N}$.

3. Sean $x, y \in E$ y $u_1, \ldots, u_n \in S$, luego:

$$\left| \sum_{i=1}^{n} \langle x, u_i \rangle \, \overline{\langle y, u_i \rangle} \right| \leq_{\text{C-S}} \sqrt{\sum_{i=1}^{n} |\langle x, u_i \rangle|^2} \sqrt{\sum_{i=1}^{n} |\langle y, u_i \rangle|^2}$$

$$\leq_{\text{a}} \|x\| \|y\|$$

Teorema 2.4 Si E es un espacio vectorial con producto interno tal que E es separable, entonces todo conjunto ortonormal es a lo sumo numerable

Demostración Sea $S \subseteq E$ un conjunto ortonormal y sean $u \neq v \in S$, luego $||u - v||^2 = ||u||^2 + ||v||^2 = 2$ y por lo tanto $B_{\frac{\sqrt{2}}{2}}(u) \cap B_{\frac{\sqrt{2}}{2}}(v) = \emptyset$.

Sea $D\subseteq E$ un subconjunto denso numerable, luego $B_{\frac{\sqrt{2}}{2}}(u)\cap D\neq\emptyset$ para todo $u\in S$. Consideremos $f:S\to D$ dado por $f(u)\in B_{\frac{\sqrt{2}}{2}}(u)\cap D$, luego si f(u)=f(v) entonces $f(v)\in B_{\frac{\sqrt{2}}{2}}(u)\cap B_{\frac{\sqrt{2}}{2}}(v)$ y por lo tanto u=v. Como f es inyectiva concluímos que S es a lo sumo numerable.

Teorema 2.5 Sean H un espacio de Hilbert, u_n una sucesión de vectores ortonormales y c_n una sucesión de numeros complejos. Luego:

$$\sum_{n \in \mathbb{N}} c_n u_n \in H \iff \sum_{n \in \mathbb{N}} |c_n|^2 < \infty \tag{1}$$

Más aún,
$$c_n = \left\langle \sum_{n \in \mathbb{N}} c_n u_n, u_n \right\rangle$$

Demostración Sea $S_k = \sum_{i=1}^k c_i u_i$, luego como (u_n) son ortonormales dos a dos y H es completo:

$$\left\| \sum_{i=k+1}^{k'} c_n u_n \right\|^2 = \sum_{i=k+1}^{k'} |c_n|^2$$

Por ende:

$$\sum_{n \in \mathbb{N}} c_n u_n \in H \iff \sum_{n \in \mathbb{N}} |c_n|^2 < \infty$$

Finalmente, notemos que $\langle S_k, u_j \rangle = c_j$ para todo $k \geq j$ y ,además si $(c_n)_i n l^2$, entonces $S_k \to \sum_{n \in \mathbb{N}} c_n u_n = x$; por lo tanto por 2.1 $c_n = \langle S_k, u_n \rangle \to \langle x, u_n \rangle$.

Definición Sea E un espacio vectorial con producto interno y $M \subseteq E$, definimos el ortogonal a M como $M^{\perp} = \{x \in E \ / \ \langle x, m \rangle = 0 \ \forall m \in M\}.$

Proposición 2.6 M^{\perp} es un subespacio cerrado de E

Demostración Si $(x_n) \subset M$ es tal que $x_n \to x$ entonces por 2.1 $0 = \langle m, x_n \rangle \to \langle m, x \rangle$, por lo que $x \in M$.

Teorema 2.7 Sea H un espacio de Hilbert y sea $S \subseteq H$ un conjunto ortonormal, luego:

- 1. Si $x \in H$ entonces $x_S = \sum_{u \in S} \langle x, u \rangle u$ esta bien definido
- 2. Si $M = \langle S \rangle$ entonces $x \in M$ si y solo si $x = x_S$. Es más si $x \in H$ entonces $x x_S \in M^{\perp}$.
- **Demostración** 1. Dado $x \in H$, de 2.3 sea (u_n) una numeración de $S = \{u \in S \ / \ \langle x, u \rangle = 0\}$ y sea (v_n) otra ordenación de los u_n ; notemos $x_1 = \sum_n \langle x, u_n \rangle u_n$ y $x_2 = \sum_n \langle x, u_n \rangle u_n$ que por 2.5 y 2.3 están bien definidos

Luego:

$$\langle x_1 - x_2, u_n \rangle = \langle x_1, u_n \rangle - \langle x_2, u_n \rangle$$

$$= \langle x, u_n \rangle - \langle x, v_{m_n} \rangle$$

$$= \langle x, u_n \rangle - \langle x, u_n \rangle = 0$$

Por ende, $\langle x_1 - x_2, u_n \rangle = \langle x_1 - x_2, v_n \rangle = 0$ para todo $n \in \mathbb{N}$ y se concluye que $\langle x_1 - x_2, x_1 - x_2 \rangle = 0$ por lo que $x_1 = x_2$ y entonces x_S esta bien definido y no depende del orden de la suma.

2. Sea $x_{S_k} = \sum_{i=1}^k \langle x, u_i \rangle u_i \in M$, luego como M es cerrado se tiene que $x_{S_k} \to x_S \in M$. Ahora sea $s \in S$, entonces:

$$\langle x - x_S, v \rangle = \langle x, v \rangle - \langle x_S, v \rangle = \langle x, v \rangle - \langle x, v \rangle = 0$$

Por lo que $x-x_S \in M^{\perp}$. Finalmente, si $x \in M$ entonces como $x_S \in M$ entonces $x-x_S \in M \cap M^{\perp} = \{0\}$, luego $x = x_S$.

2.3. Conjuntos ortonormales completos

Definición Sea E un espacio vectorial con producto interno y sea $S \subseteq E$ ortonormal, diremos que S es completo si $S \subseteq T$ y T es ortonormal, entonces S = T.

Proposición 2.8 Sea S un conjunto ortonormal tal que $S^{\perp} = \{0\}$, entonces S es completo

Demostración Sea T ortonormal y sea $v \in T \setminus S$, luego $v \in S^{\perp} = 0$ por lo que S es completo.

Teorema 2.9 Sea E un espacio vectorial con producto interno, $S \subseteq E$ ortonormal y sea $M = \langle S \rangle$, entonces:

- 1. $Si\ M = E\ entonces\ S\ es\ completo$
- 2. Si S es completo y E es de Hilbert entonces M = E

Demostración 1. Si $x \in S^{\perp}$ entonces $x \in M^{\perp} = E^{\perp} = \{0\}$, por lo tanto S es completo

2. Sea $x \in E$, luego por 2.7 x_S esta bien definido y $x - x_S \in M^{\perp}$, luego como S es completo $x - x_S = 0$ y por 2.7 se tiene que $x \in M$.