PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-338217

(43) Date of publication of application: 25.11.1992

(51)Int.CI.

B01D 53/36

B01D 53/30 B01D 53/34

(21)Application number: 03-109136

(71)Applicant: KYUSHU ELECTRIC POWER CO INC

(22)Date of filing:

14.05.1991

(72)Inventor: OGAWA KEIZO

KAMAKURA HIROKI **NAKAJIMA EISAKU SOEJIMA YUKIHIRO KOGA TAKENOBU**

FUJIWARA HIROKI

(54) METHOD FOR CONTROLLING CATALYST FOR DENITRATOR OF FLUE GAS IN THERMAL POWER PLANT

(57) Abstract:

PURPOSE: To recognize the declining state in the performance of plural catalystic layers in reference to a denitration equipment which decomposes NOx in the flue gas of a boiler at a thermal power plant.

CONSTITUTION: The boiler flue gas is passed through the plural catalystic layers arranged in plural steps, and by periodically measuring the denitration ratio (%) of each catalystic layer A, 1, 2, 3, 4, a burden ratio (%) and the concentration of a leakage NH3, the declining state in the performance of each catalystic layer is monitored and specified.

持个人不支孔(总证)

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

T

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-338217

(43)公開日 平成4年(1992)11月25日

(51) Int.Cl.5

識別記号 庁内整理番号

FI.

技術表示箇所

B 0 1 D 53/36

101 Z 9042-4D

8014-4D

53/30 53/34

129 B 6953-4D

審査請求 有 請求項の数1(全 4 頁)

(21)出願番号

特願平3-109136

(22)出願日

平成3年(1991)5月14日

特許法第30条第1項適用申請有り 平成2年11月20日~ 11月21日 九州電力株式会社開催の「平成2年度全社技 術研究発表会」において文書をもつて発表 (71)出願人 000164438

九州電力株式会社

福岡県福岡市中央区渡辺通2丁目1番82号

(72)発明者 小川 奎三

福岡市南区中尾1丁目44番6号

(72)発明者 鎌倉 宏樹

福岡市早良区室見5丁目11番27号

(72)発明者 中島 英作

福岡県粕屋郡篠栗町大字尾仲1167-3

(72)発明者 副島 幸弘

福岡県大牟田市小浜町79番地の1

(74)代理人 弁理士 藤井 信行

最終頁に続く

(54) 【発明の名称】 火力発電所排煙脱硝装置の触媒管理法

(57) 【要約】

【目的】 火力発電所のポイラの排ガスからNO. を分解する脱硝装置において、複数触媒層の性能の低下状態を把握する。

【構成】 ポイラ排ガスを複数段に設けた複数触媒層を通過させ、各触媒層 A、1、2、3、4層の脱硝率(%)、負担率(%)及びリークNH。 濃度を定期的に測定することにより各触媒層の性能の低下状況を監視及び特定するものである。

② 捞水、测定孔(新設)

(小) 排机测定孔(风级)

- 4

【特許請求の範囲】

【請求項1】 複数触媒層の上流側排ガスにアンモニアを添加する排煙脱硝装置において、複数の排ガス測定孔を同排ガスの流れの方向に間隔を介して複数触媒層間に配設し、同複数触媒層の各層について上記測定孔から挿入した測定器によってNO. 濃度及び未反応NH。濃度を定期的に測定する。NO. 濃度からは各触媒層の脱硝率及び負担率を算出することにより、

- (1) 触媒の性能低下状況の監視
- (2) 性能の低下した触媒の特定

を行なうことを特徴とする火力発電所排煙脱硝装置の触媒管理法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は火力発電に用いられる大形ポイラの排ガスからNO. を乾式アンモニア接触選択 選元法 (触媒作用) によって分解処理する排煙脱硝装置 の触媒管理法に関するものである。

[0002]

【従来の技術】九州電力株式会社港発電所の脱硝装置 20 は、石炭専焼化に伴い昭和58年4月に第1~第3層の触媒層が設置されたもので、その後空気予熱器閉塞対策 (未反応NH:低減対策)として昭和60年7月にA層(元ダミー層)及び第4層として触媒を追設し、昭和61年12月に第1層触媒を取替えて現在に至っている(図1参照)。

【0003】当初触媒の性能管理としては、脱硝装置の 出入口(2箇所)のみのガス測定(NO: 濃度及び未反 応NH。濃度)によって管理していたが、それだけでは 各触媒層の触媒性能の低下を把握することが出来ず触媒*30

*の適時、的確な補修又は改良が困難である等の問題があった。

[0004]

【発明が解決しようとする課題】本発明は脱硝率を低下させる主要因が①触媒表面への石炭灰の附着②触媒の破損、欠落③触媒そのものの経年劣化(Na、K等による触媒の被毒等)によるものであることに鑑み、複数触媒層の各層についてNO、濃度及び未反応NH、濃度を測定して、NO、濃度からは触媒各層毎の脱硝率を算出することにより触媒性能の管理を強化し、触媒性能の再生及び耐用命数の延伸を計ることを目的とする。

[0005]

【課題を解決するための手段】上記の目的を達成するため本発明は複数触媒層の上流側排ガスにアンモニアを添加する排煙脱硝装置において、複数の排ガス測定孔を同排ガスの流れの方向に間隔を介して複数触媒層間に配設し、同複数触媒層の各層について上記測定孔から挿入した測定器によってNO、濃度及び未反応NH。濃度を定期的に測定する。NO、濃度からは各触媒層の脱硝率及び負担率を算出することにより、

- (1) 触媒の性能低下状況の監視
- (2) 性能の低下した触媒の特定

を行なうことを特徴とする火力発電所排煙脱硝装置の触 媒管理法によって構成される。

[0006]

【作用】図1に示すようにボイラ排ガスにアンモニアを 添加し複数の触媒層を通過させると次の反応が行われて 排ガス中のNO。は窒素と水に分解される。

[0007]

 $4 \text{ NO} + 4 \text{ NH}_3 + \text{O}_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2 \text{ O}$ $2 \text{ NO}_2 + 4 \text{ NH}_3 + \text{O}_2 \rightarrow 3 \text{ N}_2 + 6 \text{ H}_2 \text{ O}$

この場合、ポイラ排ガスには石炭灰(微細粉体)が含まれており、同微細粉体が各触媒層A、1、2、3、4の表面に堆積したり、又前述のように触媒の破損欠落及び経年劣化等によって各触媒層A、1、2、3、4の触媒性能が低下する。そのため各触媒層間の間隔tにおいてNOr. 濃度及び未反応NHs. 濃度を定期的に測定しNOr. 濃度からは各層A、1、2、3、4の脱硝率(%)及び負担率(%)を算出することにより性能の低下状況を40監視し、又性能の低下した触媒層を特定することができる。

[0008]

【実施例】図4に示すようにポイラの燃焼炉7に接続した排ガスダクト6は煙突8に接続し、同ダクト6に脱硝触媒層収容室9を介設する。そして同収容室9の上流側にアンモニア供給管10をダクト6内に開口し、アンモニアを添加するものである。上記収容室9には図1に示すように複数の触媒層A、1、2、3、4及び複数(5個)のガス利定孔12を間隔 t を介して複数段に配設し

て複数触媒層が形成される。上記ガス測定孔12から挿入したガス測定器によってNOx 濃度及び未反応NH3 濃度を定期的に測定する。NOx 濃度からは各触媒層A、1、2、3、4の脱硝率(%)及び負担率(%)を定期的に算出することにより性能の低下状況を監視し性能の低下した触媒を特定できる。前述の石炭灰(微細粉体)の附着により性能の低下している触媒層については、それらをエヤー吹かし等の処理により触媒収容室9外に除去することによって脱硝率及び未反応NH3を改善することが出来る。

【0009】(測定結果)性能の低下状況の監視及び性能の低下した触媒の特定を実機で検証するため、あらかじめ清掃を行った脱硝装置(触媒)の各排ガス測定孔においてNO、濃度及び未反応NH、濃度を測定し、NO、濃度からは各触媒層の脱硝率及び負担率を算出した。

ニアを添加するものである。上記収容室 9 には図 1 に示 【0 0 1 0 】(1) 脱硝装置消掃直後の各触媒層脱硝率各すように複数の触媒層 A、1、2、3、4 及び複数(5 触媒層の脱硝率は、図 2 に示す様にガス上流側ほど高く個)のガス測定孔 1 2 を間隔 1 を介して複数段に配設し 50 なっており、ガス上流側ほど脱硝反応が進むことを示し

ている。

[0011](2) 脱硝装置清掃直後の各触媒層負担率各層の脱硝率について、総合脱硝率を100%とした場合の各層脱硝負担率を図2に示す。これから触媒層Aで50%、触媒層1で30%負担しており、ガス上流側の2つの触媒層A、1で約80%の脱硝効果を示している。

3

[0012](3) 脱硝装置清掃直後の未反応NH₁触媒層2、3及び4の出口のNH₃ (未反応NH₃) は図2に示すようにそれぞれ4、4ppm、1、8ppm、0.6ppmと順次低下している。最終触媒層4の未反応NH₃ は、脱硝装置の後に設置されている空気予熱器の閉塞を防止するための制限値(3ppm)をクリヤしている。

【0013】(4) 脱硝装置清掃後1箇月後の各触媒層脱硝率a. 触媒層A及び触媒層1の脱硝率清掃直後と比較すると触媒層A及び触媒層1の脱硝率は図3に示すようにそれぞれ(22%14%18%10%1 低下している。これにより、触媒の性能の低下を監視でき、且つ性能の低下した触媒を特定することが出来る。

b. 触媒層2の脱硝率触媒層A及び触媒層1の脱硝率が 20 低下したため、触媒層2に濃度の高いNO。が流入して、触媒層2の脱硝率が高くなっている。

c. 触媒層 3 及び触媒層 4 の脱硝率特に変化はない。

[0014](5) 脱硝装置清掃後1箇月の各触媒層負担率各触媒層負担率を図3に示す。これから触媒層A及び触媒層1の脱硝率が低下したため、濃度の高いNOIが触媒層2に流入し触媒層2の脱硝反応が増加し触媒層2の負担率は、清掃直後と比較すると11%から44%と大幅に増加している。

[0015](6) 脱硝装置清掃後1箇月後の未反応NH 30 n触媒層2、3、及び4の出口の未反応NH。は、図3 に示すようにそれぞれ5.4ppm、2.9ppm、 1.3ppmと順次低下している。最終触媒層4の未反

応NII。は、空気予熱器の閉塞を防止するための制限値 (3 p p m) をクリヤしているものの脱硝装置清掃直後 に比べてやや増加している。これは触媒層 1、2の性能 が低下したことに起因するものである。

【0016】性能の低下が特定された触媒層の内、石炭 灰附着によるものについては、エヤー吹かし、触媒の破損 欠落によるものについては定期修理での触媒取替え、 及び触媒そのものの経年劣化 (Na、K等による触媒の 被毒等) については被毒物質の除去技術の確立 (触媒の再生) 等の対策が考えられる。尚図1の11は石炭灰捕集ホッパ、12はガス測定孔である。

-[0017]

【発明の効果】本発明により

- (1) 触媒の性能低下状況の監視
- (2) 性能の低下した触媒の特定

が出来ることから、当該触媒層のエヤー吹かし等の処理 により触媒性能の再生及び耐用命数の延伸が可能となっ た。

【図面の簡単な説明】

【図1】(イ) 図は本発明の複数触媒層の配置状態の側面 図、(□) 図は(イ) 図中の本発明の排ガス測定孔、(ハ) 図 は(イ) 図中の従来の排ガス測定孔である。

【図2】清掃直後の各触媒層の脱硝率、負担率及び未反 応NH2 濃度図である。

【図3】清掃後1箇月後の各触媒層の脱硝率、負担率及び未反応NH』 濃度図である。

【図4】排煙脱硝装置の説明斜視図である。

【符号の説明】

- 6 排ガスダクト
- 7 ポイラ燃焼炉
- 8 煙突
- 9 脱硝触媒層収容室
- 10 アンモニア供給管

[図2]

[図3]

【図1】

7-

[図4]

〗 排水测定孔(新設)

(n)

] 排价剩皮孔(既设)

フロントページの続き

(72)発明者 古賀 武信福岡県大牟田市小浜町79番地の1

(72)発明者 藤原 洋記 福岡市南区平和4丁目1-20-216