Design and Analysis of Algorithms Greedy Technique

Fractional Knapsack Problem;
Minimum Spanning Tree Prim's and Kruskal's Algorithms;
Single Source Shortest Path - Dijkstra's Algorithm

Dr. Soharab Hossain Shaikh BML Munjal University

1

Greedy Technique

Computer scientists consider *greedy* approach a general design technique despite the fact that it is applicable to optimization problems only. The greedy approach suggests constructing a solution through a sequence of steps, each expanding a partially constructed solution obtained so far, until a complete solution to the problem is reached. On each step—and this is the central point of this technique—the choice made must be:

- feasible, i.e., it has to satisfy the problem's constraints
- locally optimal, i.e., it has to be the best local choice among all feasible choices available on that step
- irrevocable, i.e., once made, it cannot be changed on subsequent steps of the algorithm

Fractional Knapsack Problem

- This is a variation of the 0-1 knapsack problem known as the Fractional Knapsack problem.
- **Problem Definition:** Given n items of sizes $s_1, s_2, ..., s_n$, values $v_1, v_2, ..., v_n$ and size C, representing the knapsack capacity, find nonnegative real numbers x_1, x_2, \dots, x_n such that

$$\sum_{i=1}^n x_i v_i ,$$

is maximized subject to the constraint

$$\sum_{i=1}^{n} x_i v_i ,$$

$$t$$

$$\sum_{i=1}^{n} x_i s_i \leq C .$$

3

Fractional Knapsack Problem: Strategies

Given a knapsack of size C = 20 and three items with the following sizes and values

	i	1	2	3
	S_i	18	15	10
l	v_i	25	24	15

- Greedy Strategy 1: Sort the items in non-increasing order of value Then, starting from the first item in the sorted list onwards, fill the knapsack with as much as it can hold.
 - \circ $s_1 = 18 < 20$ implies $x_1 = 1$.
 - \circ $s_2 = 15 > 2$ implies $x_2 = 2/15$ (As the remaining capacity of the knapsack is 2).
 - \circ $x_3 = 0$ (As the knapsack is now full).

Total Value =
$$\sum_{i=1}^{3} x_i v_i = (1)(25) + (2/15)(24) + (0)(15) = 28.2$$
.

Fractional Knapsack Problem: Strategies (cont...)

• Question: Given the knapsack of size C = 20 and the three items

i	1	2	3
\boldsymbol{s}_{i}	18	15	10
v_i	25	24	15

is the solution $x_1 = 1$, $x_2 = 2/15$, $x_3 = 0$ using Strategy 1 an optimal one?

• **Answer**: If $x_2 = 1$, $x_1 = 5/18$, $x_3 = 0$

Total Value=
$$\sum_{i=1}^{3} x_i v_i = (5/18)(25) + (1)(24) + (0)(15) = 30.9444444$$

$$\therefore$$
 The solution $x_1 = 1$, $x_2 = 2/15$, $x_3 = 0$ is not optimal

Greedy Strategy 2 : Sort the items in non-decreasing order of size and then starting
from the first item in the sorted list onwards, fill the knapsack with as much as it can
hold

5

Fractional Knapsack Problem: Optimal Strategy

- Greedy Strategy 3: Sort the items in non-increasing order of value per unit size,
 v_i/s_i and then starting from the first item in the sorted list onwards, fill the knapsack with as much as it can hold.
- Given the knapsack of size C = 20 and the three items as before

i	2	3	1
s_{i}	15	10	18
v_i	24	15	25
$\frac{v_i}{s_i}$	1.60	1.50	1.39

• The solution $x_2 = 1$, $x_3 = 0.5$, $x_1 = 0$ gives

Total Value =
$$\sum_{i=1}^{3} x_i v_i = (0)(25) + (1)(24) + (0.5)(15) = 31.5$$
.

• The total value is greater than that generated by the previous two greedy strategies.

Spanning Tree

DEFINITION A *spanning tree* of an undirected connected graph is its connected acyclic subgraph (i.e., a tree) that contains all the vertices of the graph. If such a graph has weights assigned to its edges, a *minimum spanning tree* is its spanning tree of the smallest weight, where the *weight* of a tree is defined as the sum of the weights on all its edges. The *minimum spanning tree problem* is the problem of finding a minimum spanning tree for a given weighted connected graph.

7

Minimum Spanning Tree

- **▶ Definition** Let G = (V, E) be a connected undirected graph with weights on its edges. A subgraph $T = (V, E_T)$ of G, where $E_T \subseteq E$, is called a minimum spanning tree if T is a tree that spans G and the sum of the weights of the edges in T is minimum.
 - For all spanning trees T, |E_T| = |V| −1.
- > Two algorithms to find the minimum spanning tree:
 - Kruskal's Algorithm
 - Prim's Algorithm
- > Both algorithms follow the "greedy" approach.

Application MST

- ➤ Minimum Spanning Tree: Since *T* is acycle and connects all of the vertices, it must form a tree. We call this tree a spanning tree since it "spans" all the vertices of *G*. It is also called a minimum spanning tree as it minimizes the total cost.
- Application Model: The electronic circuit design problem can be modeled as a minimum spanning tree problem as follows:
 - Construct a connected undirected graph G = (V, E), where V represents the set of pins and E represents each possible interconnection between pairs of pins.
 - $\forall (u, v) \in E, c(u, v)$ specifies the cost of connecting u and v.
 - Find a subgraph $T = (V, E_T)$ of G such that
 - \circ T connects all the vertices of V
 - Total cost $C(T) = \sum_{(u,v) \in E_T} c(u,v)$ is minimized.

9

Prim's Algorithm

- Main Idea: Prim's algorithm is similar to Dijkstra's algorithm. It starts finding the
 minimum spanning tree from a given initial starting vertex and then grows the tree by
 adding edges such that the minimum cost spanning tree is constructed.
- Let G = (V, E) be an undirected graph, where for simplicity $V = \{1, 2, ..., n\}$. The set of edges T of a minimum cost spanning tree is found using Prim's algorithm as follows:

Robert Prim rediscovered this algorithm in 1957.

The algorithm was first published by Czech mathematician **V. Jarnik** 27 years earlier. Sometimes this algorithm is referred to as Prim-Jarnik algorithm.

Prim's Algorithm: Example

• Example Consider the graph G below:

 $X = \{1, 2, 3, 4, 6, 5\}$

 $Y = \{\}$

E_T			
#	Edge	Weight	
1	(1, 2)	1	
2	(1, 3)	2	
3	(3, 4)	9	
4	(4, 6)	3	
5	(5, 6)	4	

11

Prim's Algorithm (Pseudo code) Ref Book: Anany Levitin

```
ALGORITHM Prim(G)
```

//Prim's algorithm for constructing a minimum spanning tree //Input: A weighted connected graph $G=\langle V,E\rangle$ //Output: E_T , the set of edges composing a minimum spanning tree of G

//Output: E_T , the set of edges composing a minimum spanning tree of G $V_T \leftarrow \{v_0\}$ //the set of tree vertices can be initialized with any vertex $E_T \leftarrow \varnothing$

for $i \leftarrow 1$ to |V| - 1 do

find a minimum-weight edge $e^* = (v^*, u^*)$ among all the edges (v, u) such that v is in V_T and u is in $V - V_T$

 $V_T \leftarrow V_T \cup \{u^*\}$ $E_T \leftarrow E_T \cup \{e^*\}$

LI C LI C (C)

return E_T

Graph represented as weighted matrix. Priority queue implemented as unordered list.

Time complexity: O(n²) for a graph containing n nodes.

Tree vertices	Remaining vertices	Illustration
a(-, -)	$\mathbf{b}(\mathbf{a}, 3) \ \mathbf{c}(-, \infty) \ \mathbf{d}(-, \infty)$ e(a, 6) f(a, 5)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Tree vertices	Remaining vertices	Illustration
b(a, 3)	$c(b, 1) d(-, \infty) e(a, 6)$ f(b, 4)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
c(b, 1)	d(c, 6) e(a, 6) f(b, 4)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Tree vertices	Remaining vertices	Illustration
f(b, 4)	d(f, 5) e(f, 2)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
e(f, 2)	d (f , 5)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(f, 5)		

Prim-Jarnik's MST Algorithm

```
Algorithm PrimJarnikMST(G):
   Input: A weighted connected graph G with n vertices and m edges
   Output: A minimum spanning tree T for G
   Pick any vertex v of G
    D[v] \leftarrow 0
   for each vertex u \neq v do
        D[u] \leftarrow +\infty
    Initialize T \leftarrow \emptyset.
    Initialize a priority queue Q with an item ((u, null), D[u]) for each vertex u,
    where (u, \text{null}) is the element and D[u] is the key.
    while Q is not empty do
        (u, e) \leftarrow Q.\mathsf{removeMin}()
        Add vertex u and edge e to T.
        for each vertex z adjacent to u such that z is in Q do
             // perform the relaxation procedure on edge (u, z)
             if w((u,z)) < D[z] then
                  D[z] \leftarrow w((u,z))
                  Change to (z, (u, z)) the element of vertex z in Q.
                  Change to D[z] the key of vertex z in Q.
    return the tree T
```

Graph represented as adjacency list.

Priority queue is implemented as minheap.

Time complexity:
O((n+m)logn) =
O(mlogn) for a graph
containing **n** vertices
and **m** edges.

Check the Book: Algorithm Design by **Goodrich and Tamassia**, Pub: Wiley

Time Complexity of Prim-Jarnik's MST Algorithm

- > Graph Operations
- We cycle through the incident edges once for each vertex
- > Label Operations
- We set/get the distance, parent and locator labels of vertex $z O(\deg(z))$ times
- Setting/getting a label takes O(1) time
- > Priority Queue Operations
- Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes O(log n) time
- The key of a vertex w in the priority queue is modified at most deg(w) times, where each key change takes O(log n) time
- > **Prim-Jarnik's** algorithm runs in **O((n + m) log n)** time provided the graph is represented by the adjacency list structure
- Recall that $\Sigma_v \deg(v) = 2m$
- The running time is O(m log n) since the graph is connected

17

Kruskal's Algorithm

- > Informal description of Kruskal's algorithm
 - 1. Initialize T to have the set of vertices V and an empty set of edges E_T .
 - 2. Sort the set of edges *E* of *G* by weight in a nondecreasing order.
 - 3. After that, the following is repeated until *T* is transformed into a tree:
 - Let $e \in E$ be the current edge under consideration. If adding e to T does not create a cycle, then do so; otherwise discard e.
 - Remark: This process terminates after adding exactly n-1 edges.

Proposed by Joseph Kruskal, 1956

Kruskal's Algorithm: Example

> Example: Consider the graph G below:

#	Edge	Weight
1	(1,2)	1 🗸
2	(1,3)	2 🗸
3	(4,6)	3 🗸
4	(5,6)	4 🗸
5	(2,3)	6 X
6	(4,5)	7 X
7	(3,4)	9 🗸
8	(2,4)	11 X
9	(3,5)	13 X

19

Data Structures for Kruskal's Algorithm

- The algorithm maintains a forest of trees
- A priority queue extracts the edges by increasing weight
- An edge is accepted it if connects distinct trees
- We need a data structure that maintains a partition, i.e., a collection of disjoint sets, with operations:
- Makeset(u): create a set consisting of u. Every set has a unique set id.
- Find(u): return the set storing u (return the set id of the set containing u)
- Union(A, B): replace sets A and B with their union (after union A and B belongs to the same set identified by its unique set id)

Kruskal's Algorithm - MST

Algorithm KRUSKAL

Input A weighted connected undirected graph G = (V, E) with n vertices and m edges.

Output The set of edges E_T of a minimum cost spanning tree for G.

Comment:Disjoint-sets data structure is used in the algorithm.

```
1. Sort the edges in E by non-decreasing weight.
2. for each vertex v \in V
        MAKESET(\{v\})
4. end for
5. E_T = \{ \}
6. while |E_T| < n-1
         Let (x, y) be the next edge in E.
7.
8.
         if FIND(x) \neq FIND(y) then
9.
               Add (x, y) to E_T
10.
               UNION(x, y)
11.
12. end while
```

Graph containing n nodes and m edges.

Time complexity is dominated by the sorting step which may be done in O(m logm) time.

Total time needed for the union-find operations: O(n+m*log n).

Time complexity of Kruskal is: **O(mlogm)**

21

Disjoint-Set Data Structures / Union-Find Algorithm

Check the book by Anany Levitin for a discussion on the Union-Find algorithms.

- Disjoint set data structures is required to detect cycles in a graph.
- Find(x) and Find(y) detects whether the two vertices X and Y belong to the same tree or not. If it is so, then adding the edge forms a cycle. So, that is not done.
- Basically Find(X) returns the root of the tree containing the element X. (e.g. unique set id)
- So, if **Find(X)!=Find(Y)** then they belong to two different trees. So, the edge (X,Y) can be added to the present Spanning tree without forming a cycle.
- Add(x,y) adds the edge to E_T
- Union(X,Y) adds the end vertices to the spanning tree. Combines the tree containing node X and the tree containing node Y into a single tree.
- Total cost of Find and Union operations is O(n+m*log n), for n-1 unions and m finds for a graph containing n vertices and m edges.

Single Source Shortest Path Problem

- \triangleright Let G=(V, E) be a directed weighted graph with V as the set of vertices and E as the set of edges with non-negative weights.
- The single source shortest path problem is to determine the distance from a given source vertex s to every other vertex in V, where the distance from vertex s to vertex $x \in V$ is defined as the length of the shortest path from s to x

23

Dijkstra's Algorithm (Book: Anany Levitin)

```
ALGORITHM Dijkstra(G, s)
    //Dijkstra's algorithm for single-source shortest paths
    //Input: A weighted connected graph G = \langle V, E \rangle with nonnegative weights
              and its vertex s
    //Output: The length d_v of a shortest path from s to v
                and its penultimate vertex p_v for every vertex v in V
    Initialize(Q) //initialize priority queue to empty
    for every vertex v in V
         d_v \leftarrow \infty; p_v \leftarrow \text{null}
         Insert(Q, v, d_v) //initialize vertex priority in the priority queue
    d_s \leftarrow 0; Decrease(Q, s, d_s) //update priority of s with d_s
    for i \leftarrow 0 to |V| - 1 do
         u^* \leftarrow DeleteMin(Q) //delete the minimum priority element
          V_T \leftarrow V_T \cup \{u^*\}
         for every vertex u in V - V_T that is adjacent to u^* do
              if d_{u^*} + w(u^*, u) < d_u
                   d_u \leftarrow d_{u^*} + w(u^*, u); \quad p_u \leftarrow u^*
                   Decrease(Q, u, d_u)
```

Tree vertices	Remaining vertices	Illustration	
a(-, 0)	b (a , 3) $c(-, \infty)$ $d(a, 7)$ $e(-, \infty)$	3 2 5 6 a 7 d 4 e	
b(a, 3)	$c(b, 3+4)$ d (b , 3+2) $e(-, \infty)$	3 2 d 5 6 e	
d(b, 5)	c (b , 7) e(d , 5 + 4)	3 2 5 6 a) 7 d) 4 e)	from a to b : $a-b$ of length
c(b, 7)	e(d, 9)	3 b 4 c 6	from a to d : $a-b-d$ of length from a to e : $a-b-c$ of length from a to e : $a-b-d-e$ of length from a to e : $a-b-d-e$

Dijkstra's Algorithm Time Complexity

Analysis like Prim's Algorithm

- # Graph represented as weighted matrix.
- # Priority queue implemented as unordered list.
- ## Time complexity: O(n²) for a graph containing n nodes.
- # Graph represented as adjacency list.
- # Priority queue is implemented as min-heap.
- ## Time complexity: O(m log n) for a graph containing n nodes and m edges.

