<u> Discriminant Analysis – Depression Data Set</u>

The objective of Discriminant analysis is to identify the variable which will classify the data into distinct classes. Discriminant analysis is used when we already have class defined and we want to build a model that will help us to classify any new observation into a class.

Step 1. Import the data

Step 2. Data Exploration

Data Summary:

> summary(data)					
SEX	AGE	MARITAL	EDUCAT	EMPLOY	INCOME
Min. :1.000	Min. :18.00	Min. :1.000	Min. :1.00 Mi	in. :1.000 Min	. : 2.00
1st Qu.:1.000	1st Qu.:28.00	1st Qu.:2.000	1st Qu.:3.00 1s	st Qu.:1.000	Qu.: 9.00
Median :2.000	Median :42.50	Median :2.000	Median:3.00 Me		lian :15.00
Mean :1.622	Mean :44.41	Mean :2.374	Mean :3.48 Me	ean :2.109 Mea	n :20.57
3rd Qu.:2.000	3rd Qu.:59.00	3rd Qu.:3.000	3rd Qu.:4.00 3r	d Qu.:3.000 3rd	Qu.:28.00
Max. :2.000	Max. :89.00	Max. :5.000	•	ax. :7.000 Max	•
RELIG	c1	C2	C3	C4	C5
Min. :1.000	Min. :0.0000	Min. :0.000	Min. :0.0000	Min. :0.0000	Min. :0.000
1st Qu.:1.000	1st Qu.:0.0000	1st Qu.:0.000	1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:0.000
Median :1.000	Median :0.0000	Median :0.000	Median :0.0000	Median :0.0000	Median :0.000
Mean :1.983	Mean :0.3639	Mean :0.568	Mean :0.5442	Mean :0.1939	Mean :0.551
3rd Qu.:3.000	3rd Qu.:0.0000	3rd Qu.:1.000	3rd Qu.:1.0000	3rd Qu.:0.0000	3rd Qu.:1.000
Max. :6.000	Max. :3.0000	Max. :3.000	Max. :3.0000	Max. :3.0000	Max. :3.000
C6	c 7	C8	C9	c 10	c11
Min. :0.0000	Min. :0.0000	Min. :0.0000		Min. :0.0000	Min. :0.0000
1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:0.000	1st Qu.:0.0000	1st Qu.:0.0000
Median :0.0000	Median :0.0000	Median :0.0000	Median :0.000	Median :0.0000	Median :0.0000
Mean :0.2483	Mean :0.2449	Mean :0.3503	Mean :0.568	Mean :0.4626	Mean :0.3605
3rd Qu.:0.0000	3rd Qu.:0.0000	3rd Qu.:0.0000		3rd Qu.:1.0000	3rd Qu.:1.0000
Max. :3.0000	Max. :3.0000	Max. :3.0000	Max. :3.000	Max. :3.0000	Max. :3.0000
C12	C13	C14	C15	C16	C17
Min. :0.0000	Min. :0.0000	Min. :0.0000			
1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:0.0000	•) 1st Qu.:0.0000	1st Qu.:0.000
Median :0.0000	Median :0.0000	Median :0.0000			
Mean :0.5136	Mean :0.3401	Mean :0.7211			
3rd Qu.:1.0000	3rd Qu.:0.0000	3rd Qu.:1.0000) 3rd Qu.:1.0000	3rd Qu.:1.000
Max. :3.0000	Max. :3.0000	Max. :3.0000) Max. :3.0000) Max. :3.0000	Max. :3.000
C18	C19	C20	CESD	CASES	DRINK
Min. :0.0000	Min. :0.0000	Min. :0.000	0 Min. : 0.00	0 Min. :0.000	0 Min. :1.000
1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:0.000	0 1st Qu.: 3.00	0 1st Qu.:0.000	0 1st Qu.:1.000
Median :0.0000	Median :0.0000	Median :0.000	0 Median : 7.00	0 Median :0.000	
Mean :0.3095	Mean :0.2551	Mean :0.248	3 Mean : 8.88	4 Mean :0.170	1 Mean :1.204
3rd Qu.:0.0000	3rd Qu.:0.0000	3rd Qu.:0.000	0 3rd Qu.:12.00	0 3rd Qu.:0.000	0 3rd Qu.:1.000
Max. :3.0000	Max. :3.0000	Max. :3.000	0 Max. :47.00	0 Max. :1.000	0 Max. :2.000
HEALTH	REGDOC	TREAT	BEDDAYS	ACUTEILL	CHRONILL
Min. :1.000	Min. :1.000	Min. :1.000	Min. :0.0000	Min. :0.0000	Min. :0.0000
1st Qu.:1.000	1st Qu.:1.000	1st Qu.:1.000	1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:0.0000
Median :2.000	Median :1.000	Median :1.000	Median :0.0000	Median :0.0000	Median :1.0000
Mean :1.772	Mean :1.187	Mean :1.497	Mean :0.2143	Mean :0.2959	Mean :0.5068
3rd Qu.:2.000	3rd Qu.:1.000	3rd Qu.:2.000	3rd Qu.:0.0000	3rd Qu.:1.0000	3rd Qu.:1.0000
Max. :4.000	Max. :2.000	Max. :2.000	Max. :1.0000	Max. :1.0000	Max. :1.0000

In above density plot, black line represents people with Depression and red colored line represents people with out depression. CESD value clearly separate out people with and with out depression. Removing this column from the data set to analyze how other variables contribute to classifying the Cases into depression and no depression class.

Step 3: Variable Selection and t- test:

Divide the data set into population of people having depression and population of people who do not have depression. Perform t-test to determine whether the mean of a population of people with depression significantly differs from the mean of population of people who do not have depression for a given variable.

					Difference in
Variable Name	t-Value	p-value	Population mean with depression	Population mean without depression	population mean
Sex	3.2764	0.001543	1.8	1.586066	0.213934
Age	-1.7866	0.07817	40.38	45.2418	-4.8618
Marital	-0.2007	0.8415	2.34	2.381148	-0.041148
Education	-2.0734	0.04146	3.16	3.545082	-0.385082
Employment	1.7628	0.0825	2.48	2.032787	0.447213
Income	-3.7507	0.000283	15.2	21.67623	-6.47623
Religion	1.9609	0.05417	2.32	1.913934	0.406066
C1	7.0751	3.66E-09	1.32	0.1680328	1.1519672
C2	9.7814	9.65E-14	1.68	0.3401639	1.3398361
С3	9.3065	6.52E-13	1.76	0.295082	1.464918

C4	4.9184	9.82E-06	0.84	0.06147541	0.77852459
C5	9.7205	1.28E-13	1.68	0.3196721	1.3603279
C6	5.3847	1.76E-06	0.9	0.1147541	0.7852459
C7	6.9727	6.7E-09	1.16	0.05737705	1.10262295
C8	3.0179	0.003697	0.7	0.2786885	0.4213115
С9	5.5573	6.7E-07	1.32	0.4139344	0.9060656
C10	10.353	1.69E-14	1.64	0.2213115	1.4186885
C11	6.9567	4.83E-09	1.16	0.1967213	0.9632787
C12	5.9189	1.87E-07	1.22	0.3688525	0.8511475
C13	3.869	0.00029	0.82	0.2418033	0.5781967
C14	6.2477	4.47E-08	1.58	0.545082	1.034918
C15	5.7742	3.15E-07	1.46	0.5122951	0.9477049
C16	6.6053	1.21E-08	1.6	0.5696721	1.0303279
C17	6.79	6.12E-09	1.5	0.4385246	1.0614754
C18	4.0799	0.000152	0.82	0.204918	0.615082
C19	2.9822	0.004285	0.58	0.1885246	0.3914754
C20	5.8536	3.37E-07	0.92	0.1106557	0.8093443
Drink	-0.4775	0.6344	1.18	1.209016	-0.029016
Health	2.3545	0.02168	2.06	1.713115	0.346885
RegDoc	1.308	0.1955	1.26	1.172131	0.087869
Treat	-1.512	0.135	1.4	1.516393	-0.116393
Bed Days	3.3248	0.0015	0.42	0.1721311	0.2478689
AcuteIII	1.3496	0.1817	0.38	0.2786885	0.1013115
Chronill	1.7854	0.07843	0.62	0.4836066	0.1363934

From the above t test we see that almost all the variable mean values overlap each other. There is no significant mean difference. We do not have clearly defined separation in variable mean through which distinguish the classes clearly. Hence going ahead utilizing all the variable for Analysis. We do not want to drop the variable a variable or its combinations might have significant effect on class separation analysis.

Step 4: Summary Statistics:

Column mean of population with no depression.

> xbar1 SEX AGE MARITAL **EDUCAT EMPLOY** INCOME RELIG 1.58606557 45.24180328 2.38114754 3.54508197 2.03278689 21.67622951 1.91393443 C2 C3 C4 C6 C5 C9 C10 c11 C12 C13 C14 C8 0.27868852 0.41393443 0.22131148 0.19672131 0.36885246 0.24180328 0.54508197 C15 C16 C17 C18 C19 C20 DRINK BEDDAYS HEALTH REGDOC TREAT ACUTEILL CHRONILL

.

Column mean of population with Depression.

```
> xbar2
     SEX
              AGE MARITAL
                              EDUCAT
                                       EMPLOY
                                                 INCOME
                                                           RELIG
                                                                        C1
                                                                                  C2
    1.80
            40.38
                       2.34
                                3.16
                                          2.48
                                                  15.20
                                                             2.32
                                                                      1.32
                                                                               1.68
      C3
               C4
                         C5
                                            c7
                                                                       C10
                                                                                C11
                                  C6
                                                     C8
                                                               C9
    1.76
                                0.90
                                                   0.70
             0.84
                       1.68
                                          1.16
                                                             1.32
                                                                      1.64
                                                                               1.16
                                                                       C19
     C12
              C13
                                 C15
                                           C16
                                                    C17
                                                             C18
                                                                                C20
                        C14
    1.22
             0.82
                       1.58
                                1.46
                                          1.60
                                                   1.50
                                                             0.82
                                                                      0.58
                                                                               0.92
   DRINK
                               TREAT BEDDAYS ACUTEILL CHRONILL
           HEALTH
                    REGDOC
             2.06
                       1.26
                                1.40
                                         0.42
                                                   0.38
                                                            0.62
    1.18
```

Step 5: Model

Above, we separated the population mean of each class. For classification of data point on each class we wanted to project the data point to one dimensional vector such that the difference of population mean of both class is maximum and variance of projected data point should be minimum.

```
> S1=cov(data[dep_no,])
> S2=cov(data[dep_yes,])
> Sp=(2*S1+2*S2)/4
> y=(xbar1-xbar2)%*%solve(Sp)%*%t(as.matrix(data))
> y=as.vector(y)
> y
  [1]
       0.86428583 -5.45901762 -3.24492355
                                              0.23542687 -1.91231651 -5.08
441003
  [7]
      -1.90982880 -4.97628975 -14.29587955 -0.27004754 -13.35155820
                                                                      -4.35
862346
 [13] -3.54613849 -1.36246553 -8.32812581 -19.34499798 -24.47548626
                                                                      -5.08
336087
 [19] -0.70232771
                    1.81536247 -2.17691505 -2.36108660 -1.25480711
                                                                      -2.56
490040
 [25] -4.51844094
                   -4.83460621
                                 2.65751753 -10.21320414 -21.32829941
                                                                      -3.87
860060
 [31] -1.95414492 -4.73914646 -4.63458417 -5.32525958 -3.29979637
                                                                      -1.04
257534
 [37] -7.23540319 -13.97092648 -1.36785227 -0.42797447
                                                         -2.02946716
                                                                      -3.14
 [43] -12.27634031 -1.69133496 -0.68738592 -1.51559246 -13.97916415 -8.41
296468
```

	-9.56347761	-7.09461050	-0.52185303	-11.39499013	-7.11828083	0.74
811444						
[55]	-7.20912842	-3.64920933	-1.79455934	-25.54876643	-12.89831693	-16.98
794113						
[61]	-8.87193461	-2.71624231	-5.48598025	-4.55855184	-3.50647875	-0.60
745186						
[67]	-1.33992005	-12.42957746	-17.19182723	-5.75708926	-1.80870211	-1.98
239859						
[73]	-23.73235918	-14.90080087	-5.18902000	-18.03335805	-4.22998149	-4.52
050082						
[79]	-0.74900061	-16.89708547	-6.47359900	-6.35096202	-12.84931600	-4.06
403966						
[85]	1.43687720	0.01938207	-9.49613100	-4.62045754	-7.35539764	0.92
709708						
[91]	-7.74462873	-3.30708833	-4.15989894	-3.80782992	-3.13444736	-2.34
803771						
[97]	-6.62497589	-1.08542677	-15.77188649	0.75618276	-3.93307814	-6.36
027905						
[103]	-4.72363412	-15.14861887	-9.12661188	-11.11592107	-11.44468367	-9.17
558789						
[109]	-3.76527695	-5.22785660	-19.04535995	-15.43045121	-15.59159178	-19.56
048146						
Γ115] ·	-11.67573830	-6.00090817	-14.15749087	-3.81101075	-2.37696711	-0.75
873049						
	-3.71169218	-8.26886181	-2.79530036	-22.60500988	-23.41496365	-15.39
205346						
Γ1271	-15.71567101	-0.13812702	-8.20091156	-3.56335384	-15.15086605	-21.13
450777						
	1.22308869	-9.31079035	0.77259487	0.31075689	-1.76641753	-1.34
977767						
	1.92750541	-14.29635548	-7.51166817	-17.63086747	1.60818003	-22.87
809987						
		0 14331824	-15 73332148	-3 45430761	-6.02305786	-2 11
693116		011.33101.	13173332110	31.13.1307.01	0102303700	
		-9 83991874	-7 72039072	-5 67319693	-1.93422467	-2.13
957072	JJJJZ-720	3.3333±07 T	2033012	5.07515055	1.33122707	2.13
	-3 09601426	_3	-4 39631026	_0 98005021	-2.55513616	1 20
673443	3.03001420	3.03340002	1.55051020	0.50005021	2.33313010	1.20
0, 2442						

[163] -1.67761050 693131	-1.83257218	-1.16070514	-0.15624812	-2.10382254	0.78
[169] -0.58341473 523893	-5.20754781	-0.09681513	-0.34201335	-7.60303600	-15.86
[175] -1.56631577 659790	-7.54813841	-13.54531740	-6.50812603	-5.08059883	-10.87
[181] -3.04003597 192247	-20.87594653	-1.75904540	-0.28114540	-1.95446688	-13.48
[187] -3.41861518 934389	-13.11480124	-21.08457498	-6.16807477	-5.22958848	-6.73
[193] 1.19076078 928195	0.39590052	-4.34840858	0.75803154	-6.23578822	0.70
[199] -2.63308918 613250	-4.21009999	-20.08983054	-2.70155521	-3.67582261	-0.40
[205] -6.33655275 128302	0.84833331	1.61737895	-1.93814394	-3.67972909	-13.18
[211] -16.91452725 000271	2.27714607	1.03652431	-0.59355215	1.24612734	-7.64
[217] -0.88776368 319455	-4.29815743	-4.60174668	-1.45896679	-2.60192687	-0.93
[223] -4.02510083 934075	-9.94678623	-21.26758582	-0.39258374	-6.23255996	-7.84
[229] -1.86375712 584176	-10.87777710	-2.53299990	0.31211051	-2.52496882	-3.43
[235] -20.54358701 921230	-0.52312744	-10.62605173	-4.07538409	-6.68482252	-2.98
[241] -7.64088236 417033	-4.77035916	-5.43343380	-0.81651692	1.00187178	-6.66
[247] -7.46884452 243757	-5.17159437	-4.11839832	-7.11200641	-18.02676074	-2.08
[253] -1.93887460 154558	2.18839590	-5.71324813	-16.17618521	-11.52500476	-13.81
[259] -9.39962874 257288	1.20672288	-4.57121851	-1.51677842	-7.16515628	-3.19
[265] -2.47901411 931594	-3.98821585	-12.41486220	-2.45031683	-4.04765986	0.32
[271] -5.86191357 616813	-2.14334582	-7.18567820	-6.84617589	-9.28359144	-6.14

```
[277] -0.20320612 -7.96986211 -10.46755912 0.13158803 0.19052051 -5.14 675500 [283] -8.79207848 1.14092844 -7.87991497 0.49594801 -4.11318009 -19.78 257858 [289] -24.98116074 2.44415978 -1.64784827 -5.33082130 1.45586730 -7.61 941214
```

Plotting the projected data set values of both the class population

density.default(x = y[dep_no])

In above plot Black lines represents projected population density of People who do not have depression. And red line represents the Population of people having depression. The intersection point/Cutoff between the two would be the decision point for classification of each class .

- > cutoff=.5*(xbar1-xbar2)%*%solve(Sp)%*%(xbar1+xbar2)
- > cutoff=as.vector(cutoff)
- > cutoff

[1] -10.54708

Vandana Agrawal

Plot the Cut off lines:

> a=t((xbar1-xbar2)%*%solve(Sp))

> a

[,1]-1.54934437 SEX -0.03131146 AGE 0.05463296 MARITAL **EDUCAT** 0.19417368 **EMPLOY** 0.74631447 0.01185779 INCOME 0.10545222 RELIG **C**1 -0.19682607 C2 1.05816343 **C**3 -2.68830997 -0.40064815 C4 C5 -0.08022393 -0.50950045 C6 С7 0.04198721 C8 0.36764626 C9 -0.20778627 C10 -2.95245375

Vandana Agrawal

C11	-0.35071696
C12	-1.55482886
C13	-0.62319204
C14	-0.41128870
C15	-0.21457688
C16	-1.14814460
C17	-0.86343710
C18	0.09805581
C19	-0.51095526
C20	-0.92966926
DRINK	1.08266229
HEALTH	-0.04747901
REGDOC	1.40477972
TREAT	-1.15104084
BEDDAYS	-2.07052252
ACUTEILL	0.45382855
CHRONILL	-0.03160519

From the above weight we can deduce that the separation for variable sex,C2,C3,C10,C12,C16, Drink, Treat, Bed, regdoc, days projected values gives more separation. Also weight multiplied by the data point value will give the score and assuming their posterior probability is .5 we will get the score which will tell us which class out case falls in.

Standardizing the data and weights the separation plots still looks the same.

density.default(x = ystar[dep_no])

Results:

```
> c_accuracy(depress,classify)
      recall
                precision
                                                               fpr
                                                                       fmeasure
                               accuracy
                                                 tpr
  1.00000000
               0.81967213
                            0.96258503
                                          1.00000000
                                                       0.04508197
                                                                     0.90090090
                                                  fn
                                     fp
          tp
                       tn
 50.0000000 233.00000000
                           11.00000000
                                          0.0000000
> upper=(xbar1-xbar2)%*%solve(Sp)%*%((xbar1-xbar2))
> upper
[1,] 13.60461
Upper gives us the difference of projected population mean separation.
```

Separation in this case is quite good 1.055414

In above case we got the accuracy of almost 96% which is quite high and the reason could be we have used C1 to C20 variable there sum is directly related to people having depression or not.

In order to compare Discriminant analysis with logistic regression and to analyses the what all question from C1 to C20 are significant ,removed the variable which are highly correlated. Considered the same variables as we have used in Logistic regression .i.e

SEX,AGE,MARITAL,EDUCAT,EMPLOY,INCOME,RELIG,DRINK,HEALTH,REGDOC,TREAT,BEDDAYS,ACUTEILL, CHRONILL,C8,C9,C12,C13,C14,C16,C17,C18

> xbar1

```
AGE
                        MARITAL
                                    EDUCAT
                                               EMPLOY
                                                          INCOME
                                                                      RELIG
      SEX
1.5860656 45.2418033
                                 3.5450820
                                            2.0327869 21.6762295
                     2.3811475
                                                                  1.9139344
       C8
                  C9
                            C12
                                       C13
                                                  C14
                                                             C16
                                                                        C17
0.2786885
          0.4139344
                      0.3688525
                                            0.5450820
                                                       0.5696721
                                 0.2418033
                                                                  0.4385246
      C18
               DRINK
                         HEALTH
                                    REGDOC
                                                TREAT
                                                         BEDDAYS
                                                                   ACUTEILL
0.2049180
          1.2090164
                     1.7131148 1.1721311 1.5163934 0.1721311
                                                                  0.2786885
 CHRONILL
0.4836066
```

Vandana Agrawal > xbar2 SEX AGE MARITAL **EDUCAT EMPLOY** INCOME **RELIG** 1.80 40.38 2.34 15.20 2.32 3.16 2.48 C14 **C17** C12 C13 C16 C18 DRINK HEALTH 1.50 0.82 1.22 0.82 1.58 1.60 1.18 TREAT BEDDAYS ACUTEILL CHRONILL 1.40 0.42 0.38 0.62 Weights: > a [,1] -1.61931088 SEX -0.01160252 AGE 0.03748113 MARITAL -0.10983603 **EDUCAT EMPLOY** 0.13662683 0.04476452 INCOME RELIG -0.33251989 -0.47029878 C8 C9 -1.08041720 C12 -0.77922322 C13 -0.56989733 C14 -0.88312429

C9

1.32

1.26

REGDOC

C8 0.70

2.06

C16 -0.88374928 C17 -0.94553297 C18 -0.74376666 0.48679559 DRINK **HEALTH** 0.25771353 0.02705919 **REGDOC** TREAT -0.80488440 BEDDAYS -0.71139183

ACUTEILL -0.16931948 CHRONILL -0.04003868

> cutoff [1] -8.732985

>

density.default(x = y[dep_no])

In Above plot red line represents people who have depression and black represents people with no depression. In this case we find quite much more area where the two line overlap on each other. And that might be because we have removed some of the variable which are helping to separate out the two classes.

Results:

```
> upper

[,1]

[1,] 6.096174

> sy

[1] 5.680868

> upper/sy

[,1]

[1,] 1.073106
```

From the above result we can conclude that the accuracy of the model is reduced to 87%. But Important to note here is that there is false negative in this case. And our previous is good because in this model we are saying people no when they do have depression is not a good classification.

Logistic Regression vs Discriminant Analysis:

In given sample for discriminant analysis let say We want to develop a model to predict the outcome depression or no depression for a new patient. If a person have serious issue with alcohol consumption age is between 30-40 and Bed days score 3or more than in which category it will fall? it indicates which of the predictors are the most differentiating (highest discriminant weights), in other words, which predictor distinguish best among these patients and why they fall into one class versus another class. In summary, it is a technique for classification, differentiation, and profiling.

logistic regression is very similar to discriminant analysis, the primary question addressed by LR is "How likely is the case to belong to each class". (What is the probability of person having Depression) In contrast, the primary question addressed by discriminant analysis, is "Which class is the case most likely to belong to". So, logistic regression estimates the probability of each case to belong to two groups (on the dependent variable) or the probability of occurrence if the predictor changes. As the focus is on probability the goal of analyses is to create a linear combination of the log of the odds of a case being in one group or another. An odds ratio is estimated for each of the predictor variables in the model.

Also, in Discriminate Analysis we assume the sample population has same covariance and variables are normally distributed. But in logistics regression that is not required.