

Epreuve d'optique géométrique Durée : 1h 30min

Exercice

Soit une lame à faces parallèles d'épaisseur e, taillée dans un verre d'indice n et baignée dans l'air d'indice1. On envoie d'une source lumineuse S sur la face (F_1) de cette lame en un point I, un rayon monochromatique SI sous un angle d'incidence i qui se réfracte ensuite sous un angle de réfraction r pour arriver en un point I de la face I de cette lame.

- 1)-Définir graphiquement les angles d'incidence et de réfraction au point J de la face (F_2) de cette lame.
- 2)- Montrer que le rayon après la traversée de la lame est déplacé latéralement par rapport à sa trajectoire initiale d'une distance h que l'on exprimera en fonction de i, r et e.
- 3)- Soit un point objet A placé à gauche de la face (F_I) à une distance d sur un axe optique traversant les deux faces (F_I) et (F_2) respectivement aux points H_I et H_2 . En désignant par A' l'image de cet objet A à travers cette lame et par A_I son image intermédiaire, établir dans le cas des conditions de l'approximation de Gauss l'expression de la distance $\overline{AA'}$ qui sépare l'objet A de son image A' en fonction de e et n. Conclusion
- 4)- En déduire la position de l'image A par rapport à la face (F_I) en fonction de d, e et n.

Problème

Soit une boule sphérique en verre plongée dans l'air (Figure 1) d'indice n, de rayon R et de centre C. Cette boule est ainsi formée par deux dioptres sphériques Σ_1 et Σ_2 respectivement de sommets S_1 et S_2 , de centres C_1 et C_2 confondus avec C, de foyers objet et image (F_1, F_1) et (F_2, F_2) et de distances focales objet et image (f_1, f_1) et (f_2, f_2) .

A-1)-Quelle est la concavité de chacun des ces deux dioptres sphériques Σ_1 et Σ_2 . Justifiez votre réponse **2**)- Les deux dioptres sphériques Σ_1 et Σ_2 sont-ils convergents et/ou convergents. Justifiez votre réponse sans aucun calcul.

- 3)- Soit AB un objet et A'B' son image à travers la boule dans les conditions de l'approximation de Gauss. En notant par A_IB_I l'image intermédiaire de l'objet entre les deux dioptres, et en prenant l'origine au sommet, écrire les formules de conjugaison de position de chacun des ces deux dioptres sphériques Σ_1 et Σ_2 .
- **4)-**En déduire en fonction de n et R les distances focales objet et image (f_1, f'_1) et (f_2, f'_2) respectivement pour les deux dioptres sphériques Σ_1 et Σ_2 .
- **B-** Dans les conditions de l'approximation de Gauss, les deux dioptres sphériques Σ_1 et Σ_2 peuvent être assimilés à deux systèmes centrés Σ_1 et Σ_2 (Figure 2) respectivement de points principaux objet et image (H_1, H'_1) et (H_2, H'_2) et qui sont confondus avec leurs sommets S_1 et S_2 . Ainsi, on peut donc assimiler cette boule à l'association de ces deux systèmes centrés Σ_1 et Σ_2 qui sera équivalent à un système centré Σ de foyers principaux objet et image F et F', de points principaux objet et image F et F' de points nodaux objet et image F et F' et de distances focales principales objet et image F et F' on supposera par la suite que F et on notera par F la distance qui sépare les deux systèmes centrés Γ_1 et Γ_2 telle que Γ_1 et Γ_2 et Γ_3 et on notera par Γ_4 la distance qui sépare les deux systèmes centrés Γ_4 et Γ_5 et le que Γ_4 et Γ_4 et Γ_5 et on notera par Γ_4 la distance qui sépare les deux systèmes centrés Γ_4 et Γ_5 et le que Γ_4 et Γ_5 et on notera par Γ_5 et on note
- 1)- Exprimer l'intervalle optique $\Delta = \overline{F'_1 F_2}$ en fonction de f'_1 , f_2 et e puis en fonction de R.
- 2)- En appliquant la relation de Newton, exprimer $\overline{F_1F}$ en fonction de f_1 , f'_1 et Δ puis en fonction de R.
- 3)- En appliquant la relation de Newton, exprimer $\overline{F'_2 F'}$ en fonction de f_2 , f'_2 et Δ puis en fonction de R.
- **4)-** On note respectivement par V_1 , V_2 et V_2 , les vergences des deux dioptres Σ_1 et Σ_2 et du système centré Σ_2 équivalent à la boule.
 - a- Ecrire la formule de Gullstrand dans ce cas.
 - **b-** Exprimer V_1 , V_2 et V en fonction des distances focales objets correspondantes. En déduire la distance focale objet f du système centré \sum équivalent à la boule en fonction de f_1 , f_2
 - et Δ puis en fonction de R.
 - **c-** Exprimer V_I , V_2 et V en fonction des distances focales images correspondantes. En déduire la distance focale image f'du système centré Σ équivalent à la boule en fonction de f'_1 ,
 - f'_2 et Δ puis en fonction de R.
 - **d-**Le système centré Σ équivalent à la boule est-il alors convergent ou divergent ?
- 5- On cherche la position du point principal objet H du système centré Σ équivalent à la boule par rapport au sommet S_I du dioptre sphérique Σ_1 , exprimer d'abord $\overline{F_1H}$ en fonction de f_1 , f'_1 et Δ puis en fonction de R. En déduire ensuite l'expression de $\overline{S_1H}$ et donner sa valeur en fonction de R.
- 6- On cherche la position du point principal image H' du système centré Σ équivalent à la boule par rapport au sommet S_2 du dioptre sphérique Σ_2 , exprimer d'abord $\overline{F'_2H'}$ en fonction de f_2 , f'_2 et Δ puis en fonction de R. En déduire ensuite l'expression de $\overline{S_2H'}$ et donner sa valeur en fonction de R.
- 7- On cherche les positions des points nodaux objet et image N et N' du système centré Σ équivalent à la boule.
 - **a-** Exprimer \overline{HN} en fonction de f et f' et conclure. En déduire les expressions et les valeurs en fonction de R de $\overline{F_1N}$, $\overline{S_1N}$ et \overline{CN} . Conclusion.
 - **b-** Exprimer $\overline{H'N'}$ en fonction de f et f' et conclure. En déduire les expressions et les valeurs en fonction de R $\overline{F'_2N'}$, $\overline{S_2N'}$ et $\overline{CN'}$. Conclusion.
 - c- En déduire la position du centre optique O du système centré \sum équivalent à la boule.

•••••

Corrigé de l'épreuve de l'optique géométrique

Exercice I (4 Points)

1-0,5

Les angles d'incidence et de réfraction au point J sont r et i

2-

$$h = JK = IJ \sin(i - r)$$
 or $IJ = \frac{e}{\cos r}$ $\Rightarrow h = JK = \frac{e}{\cos r} \sin(i - r)$

3--

Pour le premier dioptre on a :

$$\frac{1}{\overline{H_1 A}} - \frac{n}{\overline{H_1 A_1}} = 0 \implies \overline{H_1 A} = \frac{\overline{H_1 A_1}}{n}$$

Pour le second dioptre on a :

$$\frac{n}{\overline{H_2 A_1}} - \frac{1}{\overline{H_2 A'}} = 0 \implies \overline{H_2 A'} = \frac{\overline{H_2 A_1}}{n}$$

La distance ente l'objet est l'image finale est donc donnée

$$\overline{AA'} = \overline{AH_1} + \overline{H_1H_2} + \overline{H_2A'} = \frac{\overline{A_1H_1}}{n} + \overline{H_1H_2} + \frac{\overline{H_2A_1}}{n} = \overline{H_1H_2} \left(1 - \frac{1}{n}\right)$$

$$\overline{AA'} = e\left(1 - \frac{1}{n}\right)$$

Conclusion : La position de l'image se déduit de celle de l'objet par une translation normale aux faces, de grandeur constante, indépendante de la position de l'objet

4-
$$\overline{AA'} = \overline{AH_1} + H_1 A' \Longrightarrow \overline{H_1 A'} = \overline{AA'} - \overline{AH_1} = e \left(1 - \frac{1}{n}\right) - d$$

Problème (16 Points)

A - 1-

- Dioptre sphérique Σ_1 est **convexe** car son rayon de courbure $\overline{S_1C_1} > 0$
- Dioptre sphérique Σ_2 est **concave** car son rayon de courbure $\overline{S_2C}_2 < 0$

2

- Dioptre sphérique Σ_1 est **convergent** car son centre C_1 est dans un milieu plus réfringent
- Dioptre sphérique Σ_2 est **convergent** car son centre C_2 est dans un milieu plus réfringent **3**-

$$\frac{A}{(1)} = \frac{1}{S_1 A} - \frac{n}{S_1 A_1} = \frac{1-n}{S_1 C_1} = \frac{1-n}{R} = \frac{1-n}{0.50}$$

$$\frac{n}{\overline{S_2 A_1}} - \frac{1}{\overline{S_2 A'}} = \frac{n-1}{\overline{S_2 C_2}} = \frac{1-n}{R} \ \boxed{0.50}$$

$$4 - \frac{1}{\overline{S_1 F_1}} - \frac{n}{\infty} = \frac{1 - n}{R} \Rightarrow f_1 = \overline{S_1 F_1} = \frac{R}{1 - n}$$

$$\frac{1}{\infty} - \frac{n}{\overline{S_1 F_1'}} = \frac{1 - n}{R} \Rightarrow f'_1 = \overline{S_1 F_1'} = \frac{nR}{n - 1}$$

$$\frac{n}{\overline{S_2 F_2}} - \frac{1}{\infty} = \frac{1 - n}{R} \Rightarrow f_2 = \overline{S_2 F_2} = \frac{nR}{1 - n}$$

$$\frac{n}{\infty} - \frac{1}{\overline{S_2 F_2'}} = \frac{1 - n}{R} \Rightarrow f'_2 = \overline{S_2 F_2'} = \frac{R}{n - 1}$$

B-

1)-
$$\Delta = \overline{F'_1 F_2} = \overline{F'_1 S_1} + \overline{S_1 S_2} + \overline{S_2 F_2} = -f'_1 + e + f_2 = \frac{-nR}{n-1} + 2R + \frac{nR}{n-1} = -3R + 2R - 3R = -4R$$

2)- D'après le schéma synoptique suivant

$$_{\mathbf{F}}$$
 $\underline{\qquad}_{\mathbf{F_2}}$ $\underline{\qquad}_{\mathbf{\infty}}$

En appliquant la relation de Newton on a $\overline{F_1F} \times \overline{F'_1F_2} = f_1.f'_1$

$$\Rightarrow \overline{F_1F} = \frac{f_1 \cdot f'_1}{\Delta} \qquad f_1 = \frac{R}{1-n} = -2R \text{ et } f'_1 = \frac{nR}{n-1} = 3R \Rightarrow \overline{F_1F} = 1,5R \quad \boxed{0,25}$$

$$\overline{F_1F} = \overline{F_1S_1} + \overline{S_1F} \qquad \Rightarrow \overline{S_1F} = \overline{F_1F} - \overline{FS_1} = \frac{f_1 \cdot f'_1}{\Delta} + f_1 \qquad \boxed{0,25} \qquad \boxed{\overline{S_1F} = -0,5R} \quad \boxed{0,25}$$

3)- D'après le schéma synoptique suivant

$$\infty$$
 $\sum 1$ F' $\sum 2$

En appliquant la formule de Newton on a $\overline{F_2F_1} \times \overline{F_2F_1} = f_2 \cdot f_2$