Chapter 1 Proofs

Item	Summary
Definition 1.1	Complex numbers
Theorem 1.1	Properties of complex arithmetic
Definition 1.2	$-\alpha$, subtraction, $1/\alpha$, division
Notation 1.1	F
Corollary 1.1	Power operations
Definition 1.3	List, length
Definition 1.4	\mathbf{F}^n
Definition 1.5	Addition in \mathbf{F}^n
Theorem 1.2	Commutativity of addition in ${f F}^n$
Definition 1.6	0
Definition 1.7	Additive inverse in \mathbf{F}^n
Definition 1.8	Scalar multiplication in \mathbf{F}^n
Definition 1.9	Addition, scalar multiplication
Definition 1.10	Vector space
Definition 1.11	Vector, point
Definition 1.12	Real vector space, complex vector space
Notation 1.2	\mathbf{F}^{S}
Theorem 1.3	Unique additive identity
Theorem 1.4	Unique additive inverse
Notation 1.3	-v, w-v
Notation 1.4	V
Theorem 1.5	The number 0 times a vector
Theorem 1.6	A number times the vector 0
Theorem 1.7	The number -1 times a vector
Definition 1.13	Subspace
Theorem 1.8	Conditions for a subspace

Theorem 1.1 (Properties of complex arithmetic)

Commutativity

$$\alpha + \beta = \beta + \alpha$$
 and $\alpha\beta = \beta\alpha$ for all $\alpha, \beta \in \mathbf{C}$.

Associativity

$$(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$$
 and $(\alpha\beta)\lambda = \alpha(\beta\lambda)$ for all $\alpha, \beta, \lambda \in \mathbb{C}$.

Identities

$$\lambda + 0 = \lambda$$
 and $\lambda \cdot 1 = \lambda$ for all $\lambda \in \mathbf{C}$.

· Additive inverse

For every $\alpha \in \mathbf{C}$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha + \beta = 0$.

• Multiplicative inverse

For every $\alpha \in \mathbf{C}$ with $\alpha \neq 0$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha\beta = 1$.

• Distributive property

$$\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$$
 for all $\lambda, \alpha, \beta \in \mathbf{C}$.

Proof. For all $\alpha, \beta, \lambda \in \mathbb{C}$, let $\alpha = a + bi, \beta = c + di, \lambda = e + fi$, where $a, b, c, d, e, f \in \mathbb{R}$.

Commutativity

$$\alpha + \beta = (a + bi) + (c + di)$$

$$= (a + c) + (b + d)i$$

$$= (c + a) + (d + b)i$$

$$= (c + di) + (a + bi)$$

$$= \beta + \alpha.$$

$$\alpha\beta = (a + bi)(c + di)$$

$$= (ac - bd) + (ad + bc)i$$

$$= (ac - bd) + (da + cb)i$$

$$= (ca - db) + (cb + da)i$$

$$= (c + di)(a + bi)$$

$$= \beta\alpha.$$

Associativity

$$(\alpha + \beta) + \lambda = [(a + bi) + (c + di)] + (e + fi)$$

$$= [(a + c) + (b + d)i] + (e + fi)$$

$$= (a + c + e) + (b + d + f)i$$

$$= (a + bi) + [(c + e) + (d + f)i]$$

$$= (a + bi) + [(c + di) + (e + fi)]$$

$$= \alpha + (\beta + \lambda).$$

$$(\alpha\beta)\lambda = [(a + bi)(c + di)](e + fi)$$

$$= [(ac - bd) + (ad + bc)i](e + fi)$$

$$= (ace - bde - adf - bcf) + (acf - bdf + ade + bce)i$$

$$= (a + bi)[(ce - df) + (cf + de)i]$$

$$= (a + bi)[(c + di)(e + fi)]$$

$$= \alpha(\beta\lambda).$$

Identities

$$\lambda + 0 = (e + fi) + (0 + 0i) = (e + 0) + (f + 0)i = e + fi = \lambda.$$
$$\lambda \cdot 1 = (e + fi)(1 + 0i) = (e \cdot 1 - f \cdot 0) + (e \cdot 0 + f \cdot 1)i = e + fi = \lambda.$$

• Additive inverse

Let c = -a and d = -b, then

$$\alpha + \beta = (a+bi) + (c+di) = (a+c) + (b+d)i = (a-a) + (b-b)i = 0 + 0i = 0.$$

• Multiplicative inverse

Because $\alpha \neq 0$, $a^2 + b^2 \neq 0$. Let $c = a/(a^2 + b^2)$ and $d = -b/(a^2 + b^2)$, then

$$\alpha\beta = (a+bi)\left(\frac{a}{a^2+b^2} + \frac{-b}{a^2+b^2}i\right) = \left(\frac{a^2+b^2}{a^2+b^2} + \frac{-ab+ab}{a^2+b^2}i\right) = (1+0i) = 1.$$

• Distributive property

$$\lambda(\alpha + \beta) = (e + fi)[(a + bi) + (c + di)]$$

= $(e + fi)[(a + c) + (b + d)i]$

$$= (ea + ec - fb - fd) + (eb + ed + fa + fc)i$$

$$= [(ea - fb) + (eb + fa)i] + [(ec - fd) + (ed + fc)i]$$

$$= (e + fi)(a + bi) + (e + fi)(c + di)$$

$$= \lambda \alpha + \lambda \beta.$$

Corollary 1.1 For all $\alpha, \beta \in \mathbf{F}$ and all positive integers m, n, there is $(\alpha^m)^n = \alpha^{mn}$ and $(\alpha\beta)^m = \alpha^m\beta^m$.

Proof. For all $\alpha, \beta \in \mathbf{F}$ and all positive integers m, n, there is

$$(\alpha^m)^n = \underbrace{\alpha^m \alpha^m \cdots \alpha^m}_{n} = \alpha^{mn}.$$

$$(\alpha\beta)^m = \underbrace{(\alpha\beta)(\alpha\beta)\cdots(\alpha\beta)}_{m} = \underbrace{(\alpha\alpha\cdots\alpha)(\beta\beta\cdots\beta)}_{m} = \alpha^m\beta^m.$$

Theorem 1.2 (Commutativity of addition in Fⁿ**)** If $x, y \in \mathbf{F}^n$, then x + y = y + x.

Proof. For $x, y \in \mathbf{F}^n$, let $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$, then

$$x + y = (x_1, \dots, x_n) + (y_1, \dots, y_n)$$

$$= (x_1 + y_1, \dots, x_n + y_n)$$

$$= (y_1 + x_1, \dots, y_n + x_n)$$

$$= (y_1, \dots, y_n) + (x_1, \dots, x_n)$$

$$= y + x.$$

Theorem 1.3 (Unique additive identity) A vector space has a unique additive indentity.

Proof. Suppose that a vector space V has another additive indentity 0', so v+0=v+0'=v for all $v \in V$. Then

$$0 + 0' = 0' + 0
 0 + 0' = 0'
 0' + 0 = 0$$

$$\Rightarrow 0 = 0'.$$

Thus, a vector space has a unique additive indentity.

Theorem 1.4 (Unique additive inverse) Every element in a vector space has a unique additive inverse.

Proof. Suppose that every element in a vector space V has another additive inverse, so for every $v \in V$, there exists $w, w' \in V$ such that v + w = v + w' = 0. Then

$$w = w + 0 = w + (v + w') = (w + v) + w' = 0 + w' = w'.$$

Thus, every element in a vector space has a unique additive inverse.

Theorem 1.5 (The number 0 times a vector) $0 \cdot v = 0$ for every $v \in V$.

Proof. For every $v \in V$, we have

$$0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v \quad \Rightarrow \quad 0 \cdot v = 0.$$

Thus, $0 \cdot v = 0$ for every $v \in V$.

Theorem 1.6 (A number times the vector 0) $a \cdot 0 = 0$ for every $a \in \mathbf{F}$.

Proof. For every $a \in \mathbf{F}$, we have

$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0 \implies a \cdot 0 = 0.$$

Thus, $a \cdot 0 = 0$ for every $a \in \mathbf{F}$.

Theorem 1.7 (The number -1 times a vector) $(-1) \cdot v = -v$ for every $v \in V$.

Proof. For every $v \in V$, we have

$$v + (-1) \cdot v = 1 \cdot v + (-1) \cdot v = [1 + (-1)] \cdot v = 0 \cdot v = 0.$$

Thus, $(-1) \cdot v = -v$ for every $v \in V$.