Работа 3.2.2

Резонанс напряжений в последовательном контуре

Гаврилин Илья Дмитриевич Б01-101

30 ноября 2022 г.

1 Аннотация

В работе изучили резонанс напряжений в последовательном контуре, изучили резонансные частоты при различных значениях емкости, построили графики ФЧХ и АЧХ, получили значения добротности различными методами.

2 Теоретические сведения

Резонансная частота последовательного контура может быть определена из формулы

$$f_r = \frac{1}{2\pi\sqrt{LC}}. (1)$$

Добротность колебательного контура связана с его параметрами соотношениями:

$$Q = \frac{\rho}{R_{\Sigma}} = \frac{\omega_0 L}{R_{\Sigma}} = \frac{1}{\omega_0 C R_{\Sigma}}.$$
 (2)

Для теоретического расчёта параметров контура используется метод комплексных амплитуд. Импеданс последовательного контура определяется по формуле:

$$Z = R_{\Sigma} + i(\omega L - \frac{1}{\omega C}), \tag{3}$$

где R_{Σ} – суммарное активное сопротивление компонентов. ω_0 – резонансная частота контура, при которой импеданс – действительный. При условии, что $|\Delta\omega|\ll\omega_0$, формулы резонансных значений тока и напряжения упрощаются до:

$$\overrightarrow{I} = \frac{E}{R_{\Sigma}} \frac{\exp i\varphi_I}{\sqrt{1 + (\tau \Delta \omega)^2}},\tag{4}$$

$$\overrightarrow{U_C} = EQ \frac{\omega_0}{\omega} \frac{\exp i\varphi_C}{\sqrt{1 + \tau \Delta \omega)^2}},\tag{5}$$

где

$$\varphi_I = -\arctan(\tau \Delta \omega),$$

$$\varphi_C = -\frac{\pi}{2} + \delta - \arctan(\tau \Delta \varphi).$$
(6)

Здесь $\tau = 2Q/\omega_0$ – время затухания колебаний.

Схожесть поведения вблизи резонанса частотных характеристик тока и напряжений на реактивных элементах последовательного контура с добротностью $Q\gg 1$ упрощает эксперимент, позволяя проводить измерения именно напряжений.

Резонансное напряжение определяется формулой:

$$U_C(\omega_0) \cong QE \tag{7}$$

$$\varphi_C(\omega_0) = -\frac{\pi}{2} + \delta,$$

где δ – малая поправка.

Заметим, что с одной стороны, $Q\gg 1$, так как мы пренебрегаем относительными поправками порядка Q^{-2} , но с другой стороны, в контур встроен резистор для намеренного уменьшения Q, чтобы упростить постройку AЧX.

3 Ход работы

Замеры резонансной частоты

Следуя пунктам 8, 9 лабораторной работы проведем замеры резонансной частоты и напряжения на конденсаторе в этот момент.

Замеры для 6 положения тумблера отсутствуют ввиду невозможности его установки переменным конденсатором

n	C_n , н Φ	$f_{0n},$ к Γ ц	U_C , B	<i>E</i> , B	L , мк Γ н	Q	ρ, Οм	$R_{\sum},$ Om	$R_{S_{\max}},$ OM	R_L , Ом	<i>I</i> , мА
1	24.8	32.207	4.9738	0.1982	985.6	26	326.3	12.55	0.20	8.90	0.0080
2	33.2	27.782	4.4101	0.1982	989.4	23	248.4	10.80	0.17	7.18	0.0093
3	47.6	23.245	3.8094	0.1982	985.8	22	199.5	9.07	0.14	5.47	0.0110
4	57.5	21.148	3.5141	0.1981	985.9	19	157.3	8.28	0.13	4.70	0.0121
5	68.0	19.444	3.2653	0.1982	986.2	17	129.2	7.60	0.12	4.03	0.0132
6	81.6	_	_	_	_	_	_	_	_	_	_
7	102.8	16.2	2.7372	0.1980	985.4	14	87.1	6.22	0.10	2.67	0.0161
	Среднее значение			986.5	_			5.18	_		
	Среднеквадратичная погрешность среднего значения				0.6	_			0.83	-	
Коэффициент Стьюденса t_{nlpha} для				2.34	_			2.34	_		
$n = 7, \alpha = 0.95$											
Случайная погрешность				3.1	_			1.95	_		

Измерение АЧХ

Измерим АЧХ для двух положений тумблера конденсатора: для 3 и 5, результаты запишем в таблицу.

С	=47.6 н	Φ	С=68.0 нФ				
f, kГц	Uc, B	Е, В	f, kГц	Uc, B	E, B		
22.37	2.0403	0.1968	18.571	1.8138	0.2031		
22.565	2.458	0.1967	18.751	2.114	0.2032		
22.82	2.855	0.197	19.008	2.669	0.2033		
22.977	3.43	0.1968	19.243	3.1804	0.2034		
23.253	3.7784	0.197	19.523	3.3135	0.2033		
23.5	3.4991	0.1967	19.737	2.996	0.2031		
23.754	2.9572	0.1965	19.995	2.4756	0.2029		
24.064	2.346	0.1962	20.221	2.0747	0.2027		
24.266	2.0231	0.1962	20.605	1.573	0.2026		
24.508	1.718	0.1962	_	_	_		

Таблица 1: АЧХ для последовательного контура при различных значениях емкости

По полученным данным построим АЧХ, после нормализуем ее для оценки добротности системы.

Рис. 1: АЧХ последовательного контура

По нормализованному графику оценим добротность колебательной системы. Проведем линию на уровне 0.707 и замерим ширину АЧХ. $Q_3=21\pm 8; Q_5=15\pm 6.$ Получили значения сходные с рассчитанными ранее.

Рис. 2: Нормализованное АЧХ последовательного контура

Фазо-частотная характеристика

$C_n = 1$	02.8	ΗΦ	$C_n = 33.2 \; \text{н}\Phi$			
f, kГц	X	x_0	f, kГц	X	x_0	
13.646	0.3	4	25.758	0.3	3.9	
13.808	0.3	4	26.015	0.4	3.9	
14.043	0.3	3.9	26.237	0.4	3.8	
14.258	0.4	3.9	26.502	0.5	3.8	
14.522	0.4	3.9	26.714	0.6	3.8	
14.728	0.5	3.9	27.036	0.7	3.7	
15.021	0.6	3.2	27.253	0.9	3.7	
15.241	0.8	3.3	27.488	1.2	3.7	
15.498	1.1	3.3	27.763	1.7	3.7	
15.811	1.6	3.2	28.094	1.3	3.6	
15.995	1.8	3.1	28.201	1.4	3.6	
16.236	1.2	3.1	28.573	2.7	3.6	
16.552	1.4	3	28.826	2.8	3.5	
16.761	2.4	3	29.087	2.9	3.5	
17.078	2.5	3	_	_	_	
17.331	2.5	2.9	_	_	_	
18.278	2.5	2.8	_	_	_	

Таблица 2: Зависимость сдвига фазы от частоты в последовательном контуре

Замерим зависимость фазы от частоты для последовательного контура, отнормируем координаты, построим требуемый график.

Рис. 3: Нормализованное ФЧХ последовательного контура

С помощью данных замеров рассчитаем добротность контура: $Q_7=13\pm 4; Q_2=24\pm 7.$ Также построим зависимость R_L от частоты.

Рис. 4: Зависимость R_L от f_{0n}

4 Выводы

- 1) В работе изучили резонанс напряжения в последовательном контуре, получили значения резонансных частот и напряжение на конденсаторе в этот момент.
- 2) Замерили Φ ЧХ и AЧХ для этого контура, по графикам характеристик получили значения добротности.

3) При всех способах измерения добротности пого справедливости всех методов измерения.	тучили сходные значени:	я добротности,	что говорит
	6		