DIFFERENTIAL CALCULUS

ALGEBRA

Factoring

1.
$$x^2 - a^2 = (x + a)(x - a)$$

$$2. x^2 + 2ax + a^2 = (x + a)^2$$

3.
$$x^2 - 2ax + a^2 = (x - a)^2$$

4.
$$x^2 + (a + b)x + ab = (x + a)(x + b)$$

5.
$$x^3 + 3ax^2 + 3a^2x + a^3 = (x + a)^3$$

6.
$$x^3 - 3ax^2 + 3a^2x - a^3 = (x - a)^3$$

7.
$$x^3 + a^3 = (x + a)(x^2 - ax + a^2)$$

8.
$$x^3 - a^3 = (x - a)(x^2 + ax + a^2)$$

Properties of Exponent

1.
$$a^n a^m = a^{n+m}$$

2.
$$(a^{n)m} = a^{nm}$$

3.
$$(ab)^n = a^n b^n$$

4.
$$a^0 = 1, a \neq 0$$

$$5. \quad \frac{a^n}{a^m} = a^{n-m}$$

$$6. \quad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

7.
$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$

8.
$$a^{-n} = \frac{1}{a^n}$$

Properties of Radicals

$$1. \quad \sqrt[n]{a} = a^{\frac{1}{n}}$$

$$2. \quad \sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

$$3. \quad \sqrt[m]{\sqrt{n}} = \sqrt[mn]{a}$$

$$4. \quad \sqrt[n]{\frac{a}{h}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

Trigonometric Identities

1.
$$Tan \theta = Sin \theta / Cos \theta$$

2.
$$Cot \theta = Cos \theta / Sin \theta$$

3.
$$Csc \theta = 1/Sin \theta$$

4.
$$Sec \theta = 1/Cos \theta$$

5.
$$Cot \theta = 1/Tan \theta$$

6. $Sin^2 \theta + Cos^2 \theta = 1$

7.
$$1 + Tan^2 \theta = Sec^2 \theta$$

8.
$$1 + Cot^2 \theta = Csc^2 \theta$$

9.
$$Sin 2\theta = 2Sin\theta Cos\theta$$

10
$$Cog 20 - Cog^2 0$$
 Sim

10.
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

11.
$$\cos 2\theta = 2\cos^2 \theta - 1$$

12.
$$\cos 2\theta = 1 - \sin^2 \theta$$

Sine Law

$$\frac{Sin A}{a} = \frac{Sin B}{b} = \frac{Sin C}{c}$$

Cosine Law

$$a^2 = b^2 + c^2 - 2bcCosA$$

$$b^2 = a^2 + c^2 - 2acCosB$$

$$c^2 = a^2 + b^2 - 2abCosC$$

ANALYTIC GEOMETRY

Conic sections

Circle

General equation:

$$Ax^2 + By^2 + Dx + Ey + F = 0$$

Standard equation with center at origin

$$x^2 + y^2 = r^2$$

Standard equation with center at (h, k) and radius r:

$$(x - h)^2 + (y - k)^2 = r^2$$

Parabola

Where,

V -vertex Focus

Latus rectum = 4a

Distance from focus to vertex = a Distance from vertex to directrix = a

Standard equation:

Vertex at origin V(0, 0)

1.
$$y^2 = 4ax$$
, parabola opening to the right

2.
$$y^2 = -4ax$$
, parabola opening to the left

3.
$$x^2 = 4ay$$
, parabola opening upward

4.
$$x^2 = -4ay$$
, parabola opening downward

Vertex at h, k. V(h, k)

1.
$$(y - k)^2 = 4a(x - h)$$
, opening to the right

Prepared by

ENGR. SCHUVERT FRIGILLANA

DIFFERENTIAL CALCULUS

- 2. $(y k)^2 = -4a(x h)$, opening to the left
- 3. $(x h)^2 = 4a(y k)$, opening upward
- 4. $(x h)^2 = -4a(y k)$, opening downward

Ellipse

Where,
a = semi-major axis
2a = major axis
b = semi-minor axis
2b = minor axis
c = focal distance
V = vertices
F = foci

General equation of an ellipse

$$Ax^2 + Cy^2 + Dx + Ey + F = 0$$

Standard equation:

Center at origin, C(0, 0)

Major Axis Horizontal

1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Where: a = semi-major axis b = semi-minor axis

Major Axis Vertical

$$2 \quad \frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

Where: a = semi-major axis b = semi-minor axis

Center at C(h, k)

Major Axis horizontal

3.
$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Where: a = semi-major axis b = semi-minor axis

Major Axis vertical

4.
$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

Where: a = semi-major axis b = semi-minor axis

Hyperbola

General equation of the hyperbola

$$Ax^2 - Cy^2 + Dx + Ey + F = 0$$

Standard equation

Center at origin, C(0, 0)

Transverse axis horizontal

$$3. \quad \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Transverse axis vertical

4.
$$\frac{y^2}{h^2} - \frac{x^2}{a^2} = 1$$

Center at C(h,k)

Transverse axis horizontal

5.
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

Transverse axis vertical

6.
$$\frac{(x-h)^2}{b^2} - \frac{(y-k)^2}{a^2} = 1$$

Graphs of polar equations

PRACTICE PROBLEMS

Prepared by

ENGR. SCHUVERT FRIGILLANA

DIFFERENTIAL CALCULUS

Algebra

1. Find the value/s of b. $8(2b^2 + 4)^{2/3} = 32$

Ans. $b = \pm \sqrt{2}$

2. Get the factor of the polynomial by synthetic division. $x^4 - x^3 - 7x^2 + x + 6$

Ans. (x + 1)(x - 1)(x + 2)(x - 3)

3. Solve the system of linear equation

$$7x - 8y = -12$$

 $-4x + 2y = 3$

Ans. x = 0, y = 3/2

4. Solve the inequality -14 < -7(3x + 2) < 1

Ans. (-5/7,0)

5. Perform the operation.

$$\left(\frac{x^2-49}{2x^2-3x-5}\right)\left(\frac{x^2+7x+6}{x^2-x-42}\right)$$

Ans. $\frac{x+7}{2x-5}$

Trigonometry

6. A triangle has the following, sides a = 8 cm, b = 11 cm, and angle C = 37 degrees. Find the value of side c.

Ans. c = 6.67cm

7. A hot air balloon that is 4280 ft above the ground measures an *angle of depression* of 24degrees from its horizontal line of sight to the base of a house on the ground. Assuming the ground is flat, how far away along the ground is the house from the balloon?

Ans. 9,613 *ft*

8. What is the value/s of x in the interval $0^{\circ} \le x \le 180^{\circ}$ for Tan3x = -1

Ans. $x = 45^{\circ}$, 105° , 165°

9. The hypotenuse of a right triangle is 34m. What is the lengths of the two legs if one leg is 14m longer than the other.

Ans.16*m* and 30*m*

Analytic Geometry

10. What is the general equation of a circle with center at (-3, 5) and diameter of 20.

Ans.
$$x^2 + y^2 + 6x - 10y = 66$$

11. Determine the standard equation of the ellipse.

$$x^2 + 3y^2 + 8x - 6y = -7$$

Ans.
$$\frac{(x+4)^2}{12} + \frac{(y-1)^2}{4} = 1$$

12. Determine the coordinate of the vertex of the parabola with an equation of $y = 4x^2 - 4x + 1$

Ans. (1/2, 0)

13. What do you call the polar equation $r = 5\cos\theta$

Ans. a circle

14. Determine the radius and center of the circle with an equation of $x^2 + y^2 + 14x - 8y = -56$

Ans.
$$r = 3$$
, $c(-7, 4)$

15. Sketch and describe the curve, $r = 4 \sin \theta$

Ans.It is a circle with radius of 2.

16. Sketch the curve, $r = 7 \sin 2\theta$