Stone Spaces

Peter T. Johnstone

March 9, 2021

Contents

1	Preliminaries	1
	1.1 Lattices	1

1 Preliminaries

1.1 Lattices

Let A be a poset in which every finite subset has a join. Then the binary operation \lor and the element 0 defiend above satisfy the equations

- 1. $a \lor a = a$
- 2. $a \lor b = b \lor a$
- 3. $a \lor (b \lor c) = (a \lor b) \lor c$
- **4.** $a \lor 0 = a$

for all a,b,c. We can say that $(A,\vee,0)$ is a commutative monoid where every element is idempotent. Conversely we have

Theorem 1.1. Let $(A, \vee, 0)$ be a commutative monoid in which every element is idempotent. Then there exists a unique partial order on A s.t. $a \vee b$ is the join of a and b, and 0 is the least element

Proof. If such a partial order exists, we must have $a \le b$ iff $a \lor b = b$. Take this as a definition of \le . Suppose $a \le b$ and $b \le c$. Then

$$a \lor c = a \lor (b \lor c)$$
$$= (a \lor b) \lor c$$
$$= b \lor c = c$$

so $a \leq c$.

Now let a,b be any two elements of A. Then $a \lor (a \lor b) = (a \lor a) \lor b = a \lor b$, so $a \le a \lor b$ and similarly $b \le a \lor b$. But if $a \le c$ and $b \le c$, then $(a \lor b) \lor c = a \lor (b \lor c) = a \lor c = c$, so $a \lor b \le c$; i.e. $a \lor b$ is the join of a and b.

A set with the structure described in the theorem is called a **semilattice**. A semilattice homomorphism $f:A\to B$ (i.e. a map preserving the distinguished element 0 and the operation \vee) is necessarily an order-preserving map.

A **lattice** is a poset *A* in which every finite subset has both a join and a meet.

Proposition 1.2. *Suppose* $(A, \vee, 0)$ *and* $(A, \wedge, 1)$ *are semilattices. Then* $(A, \vee, \wedge, 0, 1)$ *is a lattice iff the absorptive laws*

$$a \wedge (a \vee b) = a, \quad a \vee (a \wedge b) = a$$

are satisfied for all $a, b \in A$

Proof. If $a \lor b = b$, then $a \land b = a \land (a \lor b) = a$. So the two partial orders on A agree. \Box

distributive law

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

Lemma 1.3. *If the distributive law holds in a lattice, then so does its dual, i.e. the identity*

$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$

Proof.

$$(a \vee b) \wedge (a \vee c) = ((a \vee b) \wedge a) \vee ((a \vee b) \wedge c)$$