Chapitre 13

Equations différentielles linéaires

1. Equations différentielles linéaires scalaires du 1^{ier} ordre

(rappels et compléments)

1.1. Equation résolue

a) Définitions et notations

Définitions 1:

- \clubsuit équation différentielle linéaire (E.D.L.) scalaire résolue du 1 $^{\rm ier}$ ordre :
 - ... toute équation du type : x' = a(t)x + b(t) (E)
 - $\Rightarrow\;$ Dans le cadre du programme $(a,b)\in\mathcal{C}(I,\mathbb{K})^2$, I est un intervalle
- \clubsuit solution de (**E**) : toute fonction $\varphi: I \to \mathbb{K}$ qui vérifie :

$$\forall t \in I : \varphi'(t) = a(t)\varphi(t) + b(t)$$

- lacktriangledown courbe intégrale de (\mathbf{E}) :
 - ... toute courbe \mathcal{C}_{φ} représentive d'une solution φ de (\mathbf{E}) .
- lacktriangle l'équation homogène associée à $(\mathbf{E}): \overline{X'=a(t)X}$ $(\mathbf{E^*})$
- \clubsuit un problème de Cauchy : $\begin{cases} x'=a(t)x+b(t)\\ x(t_0)=x_0 \end{cases}$ où $(t_0,x_0)\in I\times \mathbb{K}$
- \blacksquare on notera \mathcal{S} (resp. \mathcal{S}^*) l'ensemble des solutions de (\mathbf{E}) (resp. (\mathbf{E}^*))

b) Solutions de l'équation homogène

 $\underline{\text{Th\'eor\`eme 1}}: \text{Soit } A$ une primitive (fixée) de $a \ \text{sur } I$

Les solutions de l'équation différentielle homogène X'=a(t)X s'écrivent

$$egin{bmatrix} I
ightarrow \mathbb{K} \ t
ightarrow C.e^{A(t)} \end{pmatrix}$$
 où $C \in \mathbb{K}$.

Ainsi \mathcal{S}^* est un \mathbb{K} -espace vectoriel de dimension 1 : $\mathcal{S}^* = Vect(e^A)$

- On notera qu'une primitive A existe toujours puisque $a \in \mathcal{C}(I, \mathbb{K})$.
- © On notera aussi que si une connaît une solution évidente \hat{x} non nulle, on les connaît immédiatement toutes puisqu'alors $S^* = Vect(\hat{x})$
- Exemple 1: $y' = -y \tan(x)$

c) Solutions de l'équation générale

<u>Théorème 2</u>: L'ensemble \mathcal{S} des solutions de l'équation x' = a(t)x + b(t) (**E**)

- \bullet s'écrit $S = \tilde{x} + S^*$ où \tilde{x} : une solution particulière de (\mathbf{E})
- \clubsuit est donc un espace affine de direction \mathcal{S}^* , de dimension 1
- Les solutions de (**E**) s'écrivent donc $\begin{cases} I \to \mathbb{K} \\ t \to \tilde{x}(t) + C.e^{A(t)} \end{cases}$

• <u>Théoriquement</u> : 1

une solution particulière est définie par $\tilde{x}(t) = e^{A(t)} \int_{t_0}^t b(u) e^{-A(u)} du$

- Pratiquement : on utilise la méthode de "variation de la constante". $\[oxedsymbol{arnothing} \]$
 - * Exemple 2: $(1+t^2)x' + tx = \sqrt{1+t^2}$
- Néanmoins, dans certains cas, on connaît directement la forme de $\tilde{x}(t)$, souvent du même "type" que le second membre b(t).

* Exemple 3
$$x' = kx + P(t)e^{mt}$$
 où $(k, m) \in \mathbb{K}^2$ et $P \in \mathbb{K}[X]$

Bon à retenir : la solution particulière est si $m \neq k$... du type $Q(t)e^{mt}$ avec $Q \in \mathbb{K}[X]$ et $d^{\circ}(Q) = d^{\circ}(P)$ si m = k ... égale à $Q(t)e^{mt}$ où $Q = \operatorname{Prim}_{0}(P)$

d) Problème de Cauchy, courbes intégrales

Théorème 3:

Le problème de Cauchy $\begin{cases} x' = a(t)x + b(t) \\ x(t_0) = x_0 \end{cases}$ admet une unique solution

- ... puisque la condition initiale $x(t_0) = x_0$ fixe la constante C.
- Il existe en fait une écriture (de peu d'intérêt!) de cette unique solution

$$x(t) = x_0 e^{A(t) - A(t_0)} + e^{A(t)} \int_{t_0}^t b(u) e^{-A(u)} du$$

Interprétation géométrique

Courbes intégrales de l'exemple 1 $C \in [-10,10], \ t \in [-4,4]$

- \Rightarrow Par tout point (t_0, x_0) de la bande $I \times \mathbb{K}$ passe une courbe intégrale et une seule.
- $\Rightarrow \ \, \text{Les courbes intégrales}$ forment ainsi une "partition" de la bande $I \times \mathbb{K}$

e) Propriété de régularité :

Propriété 1 : caractère \mathcal{C}^1 des solutions d'une équation différentielle

Sous la condition $(a,b) \in \mathcal{C}(I,\mathbb{K})^2$ (resp. $\mathcal{C}^k(I,\mathbb{K})^2$, resp. $\mathcal{C}^{\infty}(I,\mathbb{K})^2$), toute solution de l'équation différentielle x' = a(t).x + b(t) (**E**) est de classe \mathcal{C}^1 (resp. \mathcal{C}^{k+1} , resp. \mathcal{C}^{∞})

• Démonstration : récurrence sur k 2

f) Changement de corps

Propriété 2

Soient les équations différentielles x' = a(t).x + b(t) (E)

et
$$x' = a(t).x + \tilde{b}(t)$$
 ($\tilde{\mathbf{E}}$)

où $a \in (I, \mathbb{R}), b \in \mathcal{C}(I, \mathbb{C})$ et $\tilde{b}(t) = \text{Re}(b(t))$ (resp. $\tilde{b}(t) = \text{Im}(b(t))$).

Si x est solution de (\mathbf{E}) , alors $\operatorname{Re}(x)$ (resp. $\operatorname{Im}(x)$) est solution de $(\tilde{\mathbf{E}})$.

• Exemple 4: $y' = y + x \cos(x)$ $I = \mathbb{R}$

1.2. Equation non résolue

a) <u>Définition</u>

$\underline{\text{Définition } 2}$:

♣ équation différentielle (non résolue) du 1^{ier} ordre :

... toute équation du type : a(t)x' + b(t)x = c(t) (E)

 \Rightarrow Dans le cadre du programme : $(a,b,c) \in \mathcal{C}(I,\mathbb{K})^3$, I est un <u>intervalle</u>

b) Résolution pratique

- \Rightarrow On "découpe" I en intervalles où la fonction a ne s'annulle pas.
- \Rightarrow Sur chacun de ces intervalles, en divisant dans (**E**) par a(t), on a l'équivalence avec une E.D.L. <u>résolue</u> qu'on sait donc résoudre.
- $\, \, \, \, \, \, \, \,$ On effectue alors si c'est possible un raccordement en 3 $\,$ temps :
 - ① Prolongement par continuité au point de raccordement
 - ② Vérification de la dérivabilité d'un tel prolongement
 - $\ensuremath{\mathfrak{I}}$ Vérification au point de raccord de l'équation différentielle.
- Es propriétés des équations résolues ne sont plus vérifiées :
 - $\quad \Rightarrow \quad \mathcal{S} \quad \text{peut être} \ \varnothing \ \text{ou un espace affine de dimension quel$ $conque.}$
 - ⇒ le problème de Cauchy n'a plus forcément de solution ou peut aussi en avoir une, plusieurs, voire une infinité.

c) Exemples

• Exemple 5:
$$xy' - y = 0$$

$$I = \mathbb{R}$$

$$\Rightarrow \dim(\mathcal{S}) = 1$$

⇒ pb Cauchy : aucune solution ou une infinité

• Exemple 6:
$$xy' - 2y = 0$$

$$I = \mathbb{R}$$

$$\Rightarrow \dim(\mathcal{S}) = 2$$

⇒ Cauchy : aucune solution ou une infinité

• Exemple 7:
$$xy' + 2y = \frac{x^2}{1+x^2}$$

$$I = \mathbb{R}$$

$$\Rightarrow \mathcal{S}$$
 est un singleton

⇒ Cauchy: aucune solution ou une seule solution

• Exemple 8:
$$y' \sin x + y \cos(x) = 1$$

$$I=]-\pi,\pi[$$

 \Rightarrow \mathcal{S} est un singleton

 \Rightarrow Cauchy : aucune solution ou une seule solution

2. Equations différentielles linéaires du 1^{ier} ordre

2.1. Notations et définitions

Notations:

 \clubsuit F: espace vectoriel de dimension finie, I est un intervalle de $\mathbb R$

 \bullet Pour $u \in \mathcal{L}(F)$ et $x \in F$: on écrira u.x au lieu de u(x) on pourra lire u.x: u appliqué à x

à mettre en parallèle avec la notation M.X lorsque $M=M_{\mathcal{B}}(u)$

lacktriangle On considérera une application : $a: I \to \mathcal{L}(F)$

 \blacksquare Pour une application $\varphi: I \to F$, on notera alors $a\varphi$ l'application :

$$a.\varphi:\begin{cases} I \to F \\ t \to a(t).\varphi(t) \end{cases}$$

<u>Définitions 1</u>:

↓ équation différentielle linéaire (E.D.L.) résolue du 1^{ier} ordre :

... toute équation du type : x' = a(t).x + b(t) (E)

 \Rightarrow Ici $a \in \mathcal{C}(I, \mathcal{L}(F))$ et $b \in \mathcal{C}(I, F)$

♣ solution de (**E**) : toute fonction $\varphi \in \mathcal{D}(I,F)$ qui vérifie :

$$\forall t \in I : \varphi'(t) = a(t).\varphi(t) + b(t)$$

 \clubsuit un problème de Cauchy : $\begin{cases} x' = a(t).x + b(t) \\ x(t_0) = v \end{cases}$ où $(t_0, v) \in I \times F$

 \blacksquare on notera \mathcal{S} (resp. \mathcal{S}^*) l'ensemble des solutions de (\mathbf{E}) (resp. (\mathbf{E}^*))

• Remarque: on retrouve les équations différentielles scalaires si $F = \mathbb{R}$.

C'est donc ici une généralisation

• Exemple : si $E = \mathbb{R}^3$, on peut identifier $\mathcal{L}(\mathbb{R}^3)$ avec \mathcal{M}_3 \mathbb{R} .

(**E**) s'écrit alors :
$$X' = A(t).X + B(t)$$

où $A(t) \in \mathcal{M}_3(\mathbb{K})$ et X(t) et B(t) des vecteurs colonnes de taille 3.

$$\operatorname{soit}: \begin{bmatrix} x_1' = a_{1,1}(t)x_1 + a_{1,2}(t)x_2 + a_{1,3}(t)x_3 \\ x_2' = a_{2,1}(t)x_1 + a_{2,2}(t)x_2 + a_{2,3}(t)x_3 \\ x_3' = a_{3,1}(t)x_1 + a_{3,2}(t)x_2 + a_{3,3}(t)x_3 \end{bmatrix}$$

On obtient un "système différentiel linéaire" du 1^{ier} ordre

• Exemple

$$\begin{cases} x' = y \\ y' = x \end{cases}$$
 résolution élémentaire ; remarques.

2.2. Propriétés

Propriété 1: caractère \mathcal{C}^1 des solutions d'une équation différentielle

Toute solution de x' = a(t).x + b(t) (**E**) est de classe C^1

• Démonstration :

Propriété 2 : structures algébriques des espaces de solutions

Soit x' = a(t).x + b(t) (**E**) et l'équation homogène associée x' = a(t).x (**E***)

+ S^* est un sous-espace vectoriel de $C^1(I,F)$

+ S est un sous-espace affine de $C^1(I,F)$ de direction S^*

• Autrement dit : $S = \tilde{x} + S^*$

• Démonstration :

Propriété 3 : principe de superposition des solutions

Soient n équations différentielles $x' = a(t).x + b_i(t)$ (\mathbf{E}_i) (où $i \in [1, n]$).

Soit l'équation différentielle x' = a(t).x + b(t) (**E**)

où
$$b = \sum_{i=1}^n \alpha_i b_i$$
 avec $(\alpha_i)_{1 \leqslant i \leqslant n} \in \mathbb{K}^n$

Si pour tout $i \in [\![1,n]\!], \ x_i$ est une solution particulière de $(\mathbf{E_i}),$

alors $\tilde{x} = \sum_{i=1}^{n} \alpha_i x_i$ est une solution particulière de (\mathbf{E}) .

• Démonstration :

2.3. Le théorème de Cauchy linéaire

Théorème de Cauchy linéaire

Soit l'équation différentielle x' = a(t).x + b(t) (**E**)

où
$$a \in \mathcal{C}(I, \mathcal{L}(F))$$
 et $b \in \mathcal{C}(I, \mathbb{K})$

Le problème de Cauchy : $\begin{cases} x' = a(t).x + b(t) \\ x(t_0) = v \end{cases} \text{ où } (t_0, v) \in I \times F \text{ admet une}$

et une seule solution.

2.4. L'espace des solutions de l'équation homogène

a) Dimension de l'espace des solutions

Théorème fondamental: $\dim(\mathcal{S}^*) = \dim F$

• Démonstration 10 . On utilise le fait essentiel que

$$\Phi_{t_0}: egin{cases} \mathcal{S}^* o F \ arphi & ext{est un isomorphisme.} \end{cases}$$

b) Application : recherche d'une base de S^*

Théorème d'évaluation:

Soit $(\varphi_1, \varphi_2, ..., \varphi_n)$ une famille de n solutions de (\mathbf{E}^*) .

Les trois affirmations suivantes sont équivalentes :

- \bigcirc $(\varphi_1, \varphi_2, ..., \varphi_n)$ est une base de \mathcal{S}^*

- Démonstration 11
- Exemple (reprise) $\begin{cases} x' = y \\ y' = x \end{cases}$

2.5. Méthode de variation des constantes pour l'équation complète

<u>Principe</u>:

- \square On suppose avoir résolu l'équation homogène (**E***) donc avoir trouvé une base de solutions $(\varphi_1, \varphi_2, ..., \varphi_n)$ de \mathcal{S}^* .
- \square Les solutions de l'équation (**E**) s'écrivent donc $\tilde{x} + \sum_{i=1}^{n} C_i \varphi_i$

où $(C_i)_i \in \mathbb{K}^n$: les C_i sont donc des constantes.

lacksquare On cherche alors \tilde{x} sous la forme $\tilde{x}(t) = \sum_{i=1}^{n} C_i(t) \varphi_i(t)$

où $(C_i)_i \in \mathcal{C}^1(I,\mathbb{K})^n\colon \text{les } C_i$ sont maintenant des fonctions.

- \odot on dit qu'on a fait "varier les constantes" C_i
- Justification

3. Systèmes différentiels linéaires à coefficients constants

3.1.Objet d'étude

On étudie ici le cas où a est constante i.e. l'équation

(E)
$$x' = a.x + b(t)$$
 avec $a \in \mathcal{L}(F)$ et $b \in \mathcal{C}(I, \mathbb{K})$.

Matriciellement (**E**) s'écrit X' = a.X + B(t) ce qui donne le

¥ Système différentiel linéaire à coefficients constants :

$$\begin{cases} x_1' = a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n + b_1(t) \\ x_2' = a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n + b_2(t) \\ & \dots \\ x_n' = a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n + b_n(t) \end{cases}$$

$$\Rightarrow$$
 Ici $A = (a_{i,j})_{i,j} \in \mathcal{M}_n(\mathbb{K})$ et $\forall i \in [1, n] : b_i \in \mathcal{C}(I, \mathbb{K})$

Sur l'exponentielle d'un endomorphisme, d'une matrice 3.2.

Rappel et extension des résultats du Chapitre 6

Dans l'espace vectoriel normé $E = \mathcal{M}_n(\mathbb{K})$, pour $M \in \mathcal{M}_n(\mathbb{K})$:

- \Rightarrow la série exponentielle $\sum \frac{M^n}{n!}$ converge (quelle que soit la norme choisie).
- \Rightarrow sa somme est la matrice notée $\exp(M)$ ou e^M
- $\Rightarrow \ \forall \ (M,N) \in \mathcal{M}_n(\mathbb{K})^2 \ : \text{si} \ M \text{ et } N \text{ commutent, alors } e^{M+N} = e^M \times e^N$
- $\Rightarrow \exp(diag(\lambda_1, \lambda_2, ..., \lambda_n)) = diag(e^{\lambda_1}, e^{\lambda_2}, ..., e^{\lambda_n})$
- \Rightarrow si N est nilpotente d''ordre p: $\exp(N) = \sum_{i=0}^{p-1} N^i$
 - Démonstration du point 3
- 13 (autres points → Chapitre 6)
- Conséquence : $\exp(0_n) = I_n$ $\exp(tI_n) = e^tI_n$

• De même (par isomorphisme):

Dans l'espace vectoriel normé $\mathcal{L}(F)$, pour $u \in \mathcal{L}(F)$:

- \Rightarrow la série exponentielle $\sum \frac{u^n}{n!}$ converge (quelle que soit la norme choisie).
- \Rightarrow sa somme est l'endomorphisme de F noté $\exp(u)$ ou e^u
- $\Rightarrow \ \forall (u,v) \in \mathcal{L}(F)^2 \ : \text{si} \ u \text{ et } v \text{ commutent, alors } e^{u+v} = e^u \circ e^v$ $\Rightarrow \boxed{\exp(0_{\mathcal{L}(E)}) = Id_E} \boxed{\exp(tId_E) = e^tId_E}$
- Propriété immédiate : si $M=M_{\mathcal{S}}(u)$, alors $\exp(M)=M_{\mathcal{S}}(\exp(u))$
 - Démonstration **15**

Soit
$$t \in \mathbb{R}$$
 et $J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\exp(tJ) = \begin{pmatrix} 1 & t & t^2/2 & t^3/6 \\ 0 & 1 & t & t^2/2 \\ 0 & 0 & 1 & t \\ 0 & 0 & 0 & 1 \end{pmatrix}$

c) Méthode pour l'exponentielle d'une matrice diagonalisable ou trigonalisable

Propriété : Si $M = P \, \Delta \, P^{-1}$ alors $\exp(M) = P \, \exp(\Delta) \, P^{-1}$

17

d) Dérivation de $t \mapsto e^{tA}$ et de $t \mapsto e^{ta}$

Propriété : Soient $u \in \mathcal{L}(F)$ et $A \in \mathcal{M}_n(\mathbb{K})$.

Les applications $\varphi: t \to e^{tA}$ et $\psi: t \to e^{ta}$ sont dérivables sur $\mathbb R$ et ont pour dérivées respectives $t \to A \times \varphi(t) = A \times e^{tA}$ et $t \to a \circ \psi(t) = a \circ e^{ta}$.

• Démonstration difficile

18

3.3. Systèmes différentiels homogènes à coefficients constants

a) Trois théorèmes pour les résoudre

Théorème 1 : écriture de la solution du problème de Cauchy homogène

Soit le problème de Cauchy $\begin{cases} x'=a.x\\ x(t_0)=v \end{cases} \text{ où } (t_0,v)\in\mathbb{R}\times F \ .$

L'unique solution est la fonction $\varphi: t \to \exp((t-t_0)a).v$

• Démonstration

19

Théorème 2 : base de solutions de l'équation homogène

Soit (v_1,v_2,\ldots,v_n) n vecteurs de F (où $n=\dim(F))$.

Soient les n fonctions $\varphi_i:t\to \exp((t-t_0)a).v_i$ définies sur $\mathbb R$. Alors $(\varphi_1,\varphi_2,...,\varphi_n) \text{ est une base de l'ensemble } \mathcal S^* \text{ des solutions de } x'=a.x$ si et seulement si $(v_1,v_2,...,v_n) \text{ est une base de } F.$

• Démonstration

20

<u>Lemme</u>: effet sur un vecteur propre

Si v est vecteur propre de a associé à λ , alors $e^{ta}.v=e^{\lambda t}v$.

 $\underline{\underline{\text{Traduction matricielle}}}: \quad \text{si } Av = \lambda v \text{ , alors } e^{tA}.v = e^{\lambda t}v.$

• Démonstration

21

• \bigcirc Faire le lien avec $P(u).v = P(\lambda)v$ (cf. chapitre 4)

Théorème 3 : écriture des solutions si a est diagonalisable

Soit $a \in \mathcal{L}(E)$ un endomoprphisme diagonalisable.

Soit donc $(v_1, v_2, ..., v_n)$ une base de vecteurs propres de a.

Soit pour tout $j \in [1, n]$, λ_j la valeur propre associée à v_j ($\lambda_j \in \mathbb{K}$).

Les solutions de l'équation différentielle homogène x' = a.x sont les

fonctions définies sur \mathbb{R} par $t \to \sum_{j=1}^n \alpha_j e^{\lambda_j t}.v_j$ où $\forall j \in [1,n] \ \alpha_j \in \mathbb{K}$.

• Démonstration

b) Quatre méthodes pour les résoudre

- \square Si A est diagonalisable (cas simple qui tombe le plus souvent ! 0)
 - ð Méthode 1 : ici on a tout intérêt à utiliser le théorème 3
 - Exemple 1 : cas où A est \mathbb{R} -diagonalisable $\begin{cases} x' = x + 3y + (t - 4) \\ y' = 3x + y + (3t - 1) \end{cases}$
 - Exemple 2 : cas où A est \mathbb{C} -diagonalisable 23 $\begin{cases} x' = x - y + e^t \\ y' = x + y \end{cases}$

\square Si A est trigonalisable avec une seule valeur propre

- Méthode 2 : ici on a tout intérêt à utiliser le théorème 1
 - $\Rightarrow \text{ Les solutions s'écrivent}: \begin{vmatrix} e^{tA} \cdot \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{vmatrix} \quad \text{avec } t_0 = 0 \text{ et } v = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}.$
 - Ici, μ_A est scindé avec une seule racine.
 - \Rightarrow Donc $A = \lambda I + N$ avec N nilpotente (Chapitre 4)
 - \Rightarrow ... et e^{tA} est facile à calculer.
 - Exemple 3: cas A trigonalisable et Card(Sp(A)) = 1. $\begin{cases} x' = 3x + y - z \\ y' = 2y \\ z' = x + y + z \end{cases}$

\square Autres cas pour n=3

- Seul cas restant à traiter : A non diagonalisable et Card(Sp(A)) = 2.
- Ici, on a le choix entre 2 méthodes:

Méthode 3 : utiliser le théorème 2

Avec la base (u,v,w) dans laquelle A est trigonalisable et $t_0=0$, les solutions s'écrivent : $t\to \alpha\,e^{tA}.u+\beta\,e^{tA}.v+\gamma\,e^{tA}.w$.

On notera que si $u \in E_{\lambda}$, alors $e^{tA}.u = e^{\lambda t}u$

Méthode 4 : utiliser un changement de fonctions inconnues

- \Rightarrow ① Ecrire $A = PTP^{-1}$, ② changer de fonctions inconnues dans le système, ③ résoudre le nouveau système triangulaire (plus facile) avant de ④ revenir aux fonctions inconnues initiales
- © Cette méthode s'applique bien aussi au cas 'A diagonalisable'
- Exemple $\underline{4}$: cas où A est trigonalisable avec deux valeurs propres. $\underline{25}$

$$\begin{cases} x' = \frac{3}{2}x + \frac{1}{2}y - \frac{1}{2}z \\ y' = -\frac{1}{2}x + \frac{3}{2}y + \frac{1}{2}z \\ z' = y + z \end{cases}$$

- c) Un exemple avec des coefficients non constants
 - <u>Exemple 5</u>: **26**

$$\begin{cases} x' = \frac{(1+t^4)x - 2t^2y}{t(t^4-1)} \\ y' = \frac{(1+t^4)y - 2t^2x}{t(t^4-1)} \end{cases}$$
 Indication: $\left(t \to \frac{1}{t}, t \to t\right)$ est solution...

4. Equations scalaires d'ordre n

4.1. Définitions et principes généraux

Définition:

- lacktriangledown équation différentielle linéaire (E.D.L.) scalaire résolue d'ordre n:
 ... toute équation $x^{(n)} + a_{n-1}(t)x^{(n-1)} + ... + a_1(t)x' + a_0(t)x = b(t)$ (E)
 - \Rightarrow Au programme MP : $(a_{\!\scriptscriptstyle i})_{\!\scriptscriptstyle i}\in\mathcal{C}(I,\mathbb{K})^{\scriptscriptstyle n}\,,\;b\in\mathcal{C}(I,\mathbb{K})$ I est un <code>intervalle</code>
- ♣ l'équation homogène associée à (E) :

$$X^{(n)} + a_{n-1}(t)X^{(n-1)} + \dots + a_1(t)X' + a_0(t)X = 0$$
 (**E***)

↓ un problème de Cauchy :

$$\begin{cases} x^{(n)} + a_{n-1}(t)x^{(n-1)} + \ldots + a_1(t)x' + a_0(t)x = b(t) \\ \forall i \in [0, n-1]: x^{(i)}(t_0) = x_i \end{cases} \text{ où } (t_0, (x_i)_i) \in I \times \mathbb{K}^n$$

• Propriété immédiate : toute solution est de classe C^n

4.2. Représentation par un système différentiel linéaire

 $\underline{\text{Proposition}}$: Soit l'équation différentielle scalaire d'ordre n (\mathbf{E}) ci-dessus.

$$\text{On pose } \forall t \in I: A(t) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -a_0(t) & -a_1(t) & \cdots & \cdots & -a_{n-1}(t) \end{pmatrix} \text{ et } B(t) = \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 0 \\ b(t) \end{pmatrix}$$

Alors x est solution de $x^{(n)} + a_{n-1}(t)x^{(n-1)} + \dots + a_1(t)x' + a_0(t)x = b(t)$ si et seulement si $X = (x, x', \dots, x^{(n-1)})$ est solution de $X' = A(t) \cdot X + B(t)$

• Démonstration 27. Noter l'analogie avec la matrice compagnon!

4.3. Théorème de Cauchy

Théorème de Cauchy

 $\begin{aligned} & \text{Soit } (a_i)_i \in \mathcal{C}(I,\mathbb{K})^n, \ b \in \mathcal{C}(I,\mathbb{K}) \ \text{et } (t_0,(x_i)_i) \in I \times \mathbb{K}^n \\ & \text{Le problème de Cauchy} \ \begin{cases} x^{(n)} + a_{n-1}(t)x^{(n-1)} + \ldots + a_1(t)x' + a_0(t)x = b(t) \\ \forall i \in \llbracket \ 0, n-1 \ \rrbracket : x^{(i)}(t_0) = x_i \end{cases} \end{aligned}$

admet une et une seule solution.

• Démonstration **28**

4.4. Structure et dimension des espaces de solutions

Théorème fondamental :

Soit \mathcal{S} (resp. \mathcal{S}^*) l'ensemble des solutions de l'équation (**E**) (resp. (**E***)).

- * \mathcal{S}^* est un sous--espace vectoriel de $\mathcal{C}^n(I,\mathbb{K})$ et $\dim(\mathcal{S}^*) = n$.
- * \mathcal{S} est un sous-espace affine de direction \mathcal{S}^* donc de même dimension n.
- <u>Démonstration</u> **29**
- On utilise le fait essentiel que

$$\Phi_{t_0}: egin{cases} \mathcal{S}^* &
ightarrow \ \mathbb{K}^n \ x &
ightarrow (x(t_0), x'(t_0)..., x^{(n-1)}(t_0)) \end{cases}$$
 est un isomorphisme.

5. Equation différentielle linéaires scalaires d'ordre 2

5.1. Système fondamental de solutions (S.F.S.), wronskien

Définitions:

- ♣ On appelle système fondamental de solutions de l'équation différentielle linéaire scalaire homogène du 2^{nd} ordre x'' + a(t)x' + b(t)x = 0 (**E***) toute base (φ_1, φ_2) de son espace des solutions \mathcal{S}^* .
- \clubsuit On appelle wronskien d'un couple $(\varphi, \psi) \in \mathcal{C}^2(I, \mathbb{K})^2$ la fonction

$$W_{\varphi,\psi}:I o\mathbb{K}$$
 définie par $\forall t\in I: W_{\varphi,\psi}(t)=egin{bmatrix} arphi(t) & \psi(t) \ arphi'(t) & \psi'(t) \ \end{pmatrix}$

5.2. Détermination d'un S.F.S par le wronskien

Théorème :

Soit (φ, ψ) un couple de solutions de x'' + a(t)x' + b(t)x = 0 (**E***).

Les trois affirmations suivantes sont équivalentes :

- \bigcirc (φ, ψ) est un système fondamental de solutions de (\mathbf{E}^*) .

- <u>Démonstration</u> **30**

5.3. Propriétés du wronskien d'un couple de solutions

Théorème:

Soit (φ, ψ) un couple de solutions de x'' + a(t)x' + b(t)x = 0 (**E***).

Alors $W_{\varphi,\psi}$ est solution de l'E.D.L. du 1^{ier} oudre x' + a(t)x = 0

- <u>Démonstration</u> **31**
- <u>Conséquence</u> pour l'équation x'' + q(t)x = 0, $W_{\varphi,\psi}$ est constant C'est le cas par exemple pour x'' + x = 0 et x'' - x = 0

5.4. <u>Méthodes pratiques de résolution de (E*)</u>

Principe général

- \Box On recherche deux solutions φ et ψ (E*) (diverses méthodes $\underline{\Psi}$)
- \square On vérifie par le wronskien que (φ, ψ) est un S.F.S. de (\mathbf{E}^*) .
- \square On conclut : $S^* = Vect(\varphi, \psi)$

Diverses méthodes pour trouver φ et ψ (à faire dans l'ordre)

- On pense d'abord à voir s'il n'y a pas de solution évidente.
- ① On peut rechercher une solution polynomiale
 - Ce peut être le cas si les fonctions a et b sont polynomiales.
 - On a intérêt à raisonner sur le degré possible de cette solution
- ② On cherche des solutions développables en série entière.
 - Cette méthode est très prisée!
 - Si on a trouvé une famille libre (utiliser le wronskien !) de solutions on a donc la base cherchée de (\mathbf{E}^*) .
- ③ Si on n'a trouvé (à une constante multiplicative près) qu'une solution φ de (**E***), on peut au choix :
 - > soit utiliser la propriété 5.3 et passer par le wronskien :
 - ψ solution de (**E***) est telle que $W_{\varphi,\psi}$ vérifie x' + a(t)x = 0 (2)
 - Sur un intervalle J où φ ne s'annule pas, on remarque alors que

$$\left(\frac{\psi}{\varphi}\right)' = \frac{W_{\varphi,\psi}}{\varphi^2} \quad (3)$$

- Ayant résolu (2), on trouve $W_{\varphi,\psi}$ puis on primitive (3)
- > soit utiliser la méthode dite de variation de <u>la</u> constante
 - On pose $x = \varphi \times z$, on substitue dans (**E***).
 - lacktriangle On résout l'équation différentielle vérifiée par z .
- Méthode ② : précisions
 - \blacksquare Supposer qu'il existe une solution D.S.E. de rayon R > 0
 - \clubsuit Reporter le D.S.E. $\sum_{i=0}^{+\infty}a_ix^i$ dans l'équation différentielle
 - → Justifier par l'unicité du D.S.E. pour trouver des relations
 - \blacksquare Vérifier que pour les a_i trouvés, on a bien R > 0.
- <u>Méthode ③ (variation de la constante)</u> ② <u>Pourquoi ça marche?</u>

 Cette dernière équation vérifiée par z ne contient pas de termes en z, donc en posant Z = z', on tombe sur du 1^{ier} ordre! \longrightarrow 32.
- Exemples
 - * Exemple 1 : recherche d'une solution polynomiale $(t^2 2)x'' + (t^2 2t 2)x' 2t \ x = 0$
 - * Exemple 2 : recherche de solutions D.S.E. x'' + tx' + x = 0
 - * Exemple 3 : méthode du wronskien $(t+1)x'' x' t \ x = 0$

5.5. Méthodes pratiques pour résoudre (E)

• On résout ici (**E**) x'' + a(t)x' + b(t)x = c(t) où $(a,b,c) \in \mathcal{C}(I,\mathbb{K})^3$

Méthode standard : variation des deux constantes

On a résolu (**E***) x'' + a(t)x' + b(t)x = 0 et trouvé un S.F.S. : (φ, ψ) .

Les solutions de (**E***) s'écrivent donc $\lambda \varphi + \mu \psi$ avec λ et μ constantes.

- ① On recherche une solution particulière de (\mathbf{E}) sous la forme : $\tilde{x} = \lambda \varphi + \mu \psi \quad \text{où } \lambda \text{ et } \mu \text{ sont maintenant des fonctions.}$
- ② On résout alors le système suivant : $\begin{cases} \lambda'\varphi + \mu'\psi = 0 \\ \lambda'\varphi' + \mu'\psi' = c(t) \end{cases}$ où les inconnues sont λ' et μ' .
 - \odot Le système est facile à retenir car son déterminant est le wronskien (φ, ψ) : il n'y a plus qu'à retenir le second membre.
- ③ Ayant résolu le système précédent et trouvé les valeurs de λ' et μ' , on en déduit par primitivation λ et μ donc \tilde{x} (on prend comme constantes de primitivation 0 car on veut <u>une</u> solution particulière).
- ③ On conclut: les solutions s'écrivent $\tilde{x} + \lambda \varphi + \mu \psi$ où $(\lambda, \mu) \in \mathbb{K}^2$.
- <u>Justification</u> 36
 - * Exemple 4: utilisation de la variation des deux constantes $(x-1)y'' x\,y' + y = e^{2x}(x-1)^2$

Autre méthode : variation de la constante (à nouveau)

Si (à l'issue des étapes @@@ de résolution de (E^*) on n'a qu'une solution φ pour (E^*) et qu'on veut lui appliquer comme dans l'exemple 3 la variation de la constante, autant l'appliquer directement à (E).

* Exemple 3-bis : utilisation de la variation de la constante $(t+1)x'' - x' - t \ x = e^{-t}$

5.6. Cas de l'équation à coefficients constants (rappels de M.P.S.I. revisités)

a) Cas homogène

- On résout ici : (\mathbf{E}^*) x'' + ax' + bx = 0 où $(a,b) \in \mathbb{K}^2$.
- L'équation caractéristique est : (E) $X^2 + aX + b = 0$.
- On obtient alors pour système fondamental de solutions de l'équation homogène, en fonction de la valeur de $\Delta\,$:

		Solutions de (E)	S.F.S. de (E*)
$\mathbb{K}=\mathbb{C}$	$\Delta \neq 0$	$\{\lambda,\mu\}$ où $(\lambda,\mu)\in\mathbb{C}^2$	$t ightarrow e^{\lambda t}, t ightarrow e^{\mu t}$
	$\Delta = 0$	$\{\lambda\}$ où $\lambda\in\mathbb{R}$	$t ightarrow t e^{\lambda t}, t ightarrow e^{\lambda t}$
	$\Delta > 0$	$\{\lambda,\mu\}$ où $(\lambda,\mu)\in\mathbb{R}^2$	$t ightarrow e^{\lambda t}, t ightarrow e^{\mu t}$
$\mathbb{K}=\mathbb{R}$	$\Delta = 0$	$\{\lambda\}$ où $\lambda\in\mathbb{R}$	$t o t e^{\lambda t}, t o e^{\lambda t}$
	A 0	$\{\lambda, \bar{\lambda}\}$ où $\lambda \in \mathbb{C} - \mathbb{R}$	$(t \to e^{at}\cos(bt), t \to e^{at}\sin(bt))$
	$\Delta < 0$	avec $\lambda = a + ib$	

b) <u>Cas général</u>

- On résout ici : $x'' + ax' + bx = P(t)e^{mt}$ où $m \in \mathbb{K}$ et $P \in \mathbb{K}[X]$.
- La solution particulière est alors donnée par le tableau suivant :

	Bon à retenir : la solution particulière est
Si m non solution de (E)	$\tilde{x}(t)$ du type $Q(t)e^{mt}$ où $Q \in \mathbb{R}[X]$ et $d^{\circ}(Q) = d^{\circ}(P)$
Si m racine simple de (E)	$\tilde{x}(t)$ du type $tQ(t)e^{mt}$ où $Q \in \mathbb{R}[X]$ et $d^{\circ}(Q) = d^{\circ}(P)$
Si m racine double de (E)	$\tilde{x}(t) = Q(t)e^{mt}$ où $Q = \operatorname{Prim}_0(\operatorname{Prim}_0(P))$

