

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ciencias Exactas y Naturales Departamento de Ciencias de la Computación R-423 — Complementos de Matemática II

Nombre y Apellido:

Examen Parcial 1

Ej. 1 (2 puntos). Consideremos el conjunto $A = \{1, 2, 3, 4\}$ y sea \mathcal{R} , \mathcal{S} y \mathcal{T} las relaciones en A dadas por:

$$\mathcal{R} = \{(1,1), (1,3), (1,4), (2,1), (2,2), (2,4), (3,2), (3,3), (4,1), (4,3), (4,4)\}$$

$$S = \{(1, 2), (1, 3), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 2), (4, 3)\}$$

$$\mathcal{T} = \{(1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (4,2)\}$$

Determinar la matriz de $\mathcal{U} = C(\mathcal{S}^{-1} \cap \mathcal{R}) \circ \mathcal{T}$ y analizar si \mathcal{U} es reflexiva, simétrica, antisimética y/o transitiva.

Ej. 2 (2,5 puntos). Sea (X, \preceq) , con $X \neq \emptyset$, un conjunto bien ordenado (i.e., (X, \preceq) es un poset tal que todo subconjunto no vacío de X tiene un mínimo). Para cada $x \in X$, sea s(x) (si existe) el elemento

$$s(x) = \min\{y \in X : x \prec y\}.$$

s(x) se denomina sucesor de x.

- a) Probar que x tiene un sucesor si y sólo si $x \neq 1 = \max X$, en caso de que este máximo exista.
- **b)** Pongamos

$$X^* = \begin{cases} X & \text{si } X \text{ no tiene máximo,} \\ X - \{1\} & \text{si existe } 1 = \text{máx}(X). \end{cases}$$

Probar que $s: X^* \to X$, $x \mapsto s(x)$ es una función inyectiva bien definida.

- c) Un elemento $x \in X$ se denomina un *límite* si $x \neq 0$ y x no es el sucesor de ningún elemento. Probar que x es un límite si y sólo si se verifican simultáneamente:
 - $I_x = \{ y \in X : y \prec x \} \neq \emptyset;$
 - Para cada $w \in I_x$, existe $z \in I_x$ tal que $w \prec z$.

Ej. 3 (2,5 puntos). Sea $m \in \mathbb{Z}$ y sea $f_m : \mathbb{Z} \to \mathbb{Z}$ la función dada por

$$f(x) = x + m.$$

Un subconjunto A de \mathbb{Z} se dice m-periódico si $f_m(A) = A$. Sea $B_m \subseteq \mathcal{P}(\mathbb{Z})$ el conjunto de conjuntos m-periódicos de \mathbb{Z} .

- a) Dar el diagrama de Hasse de B_2 y B_3 .
- **b)** Probar que (B_m, \subseteq) es un álgebra de Boole.
- c) Describir los elementos atómicos de B_m .

Ej. 4 (3 puntos). Determinar si las siguientes afirmaciones son verdaderas o falsas justificando adecuadamente la respuesta.

a) El retículo L cuyo diagrama de Hasse es el siguiente es un retículo distributivo.

- b) Sea $X \neq \emptyset$ un conjunto y $B = \mathcal{P}_{fin}(X) \cup \mathcal{P}_{cof}(X)$ el álgebra de Boole de partes finitas y cofinitas de X. Sea $f: B \to \mathbf{2}$ tal que f(A) = 0 si A es finito y f(A) = 1 si A es cofinito. Entonces f es un homomorfismo de álgebras de Boole.
- c) Todo subconjunto de $(\mathbb{N}, |)$ con el orden heredado tiene ínfimo.