Lab 5: Regression & Neural Networks

CS410: Artificial Intelligence Shanghai Jiao Tong University, Fall 2021

Exercise 1: Linear Regression

It is not hard to compute \hat{Y} . One way to verify the geometric interpretation is to compute and show that $X^\top(Y-\hat{Y})\approx \mathbf{0}$.

Exercise 2: Logistic Regression

Please refer to the code. Reasonable discussions are acceptable.

Exercise 3: L1/L2 Regularization

Ridge regression:

Lasso regression:

Discussions:

- 1. Theoretically, Lasso regression requires more complex optimization techniques, which is usually computationally expensive. However, such difference may not be observed at this scale.
- 2. Lasso regression.
- 3. There is a trade-off. You can discuss it based on the results.

Exercise 4: Two-layer Perceptron Network

hidden_dim=2:

hidden_dim=10:

Generally speaking, larger hidden_dim leads to better fitting (in terms of error and stability).

Any reasonable discussions are acceptable.