1ères STD2A

Révisions du BAC - Physique-Chimie

N. Bancel

Mai 2025

Concepts importants à retenir

- Taux d'évolution d'une grandeur
- Pourcentages
- Fractions irréductibles
- Equations du 1er degré

L'énergie / Les ondes électromagnétiques

Méthode

Étapes à suivre pour relier énergie, fréquence et longueur d'onde d'un photon :

- Relier énergie et fréquence : Utiliser la relation $E = h \times v$ pour calculer la fréquence v (en Hz), si l'énergie E est donnée (la constante de Planck h est **toujours** donnée).
- **Déduire la longueur d'onde à partir de la fréquenc :** Utiliser $\lambda = \frac{c}{v}$ pour trouver la longueur d'onde λ (en m).
- Convertir la longueur d'onde en nanomètre : $1 \text{ nm} = 1 \times 10^{-9} \text{ m}$.
- Identifier le type de rayonnement : Comparer la longueur d'onde obtenue avec les domaines connus :

- Infrarouge : $\lambda > 700 \, \text{nm}$ - Visible : $400 \, \text{nm} \le \lambda \le 700 \, \text{nm}$

- Ultraviolet : $\lambda < 400 \, \text{nm}$

Il est aussi important de connaître les types d'ondes électro magnétiques, et les longueurs d'ondes essentielles

Exemple d'exercice corrigé

Données

Énergie E d'un photon d'une onde de fréquence $v : E = h \times v$

Relation entre la longueur d'onde λ et la fréquence ν : $\lambda = \frac{c}{r}$

Célérité de la lumière dans le vide : $c = 3,00 \times 10^8 \,\mathrm{m.s^{-1}}$

 $1 \text{ nm} = 10^{-9} \text{ m}$

Constante de Planck : $h = 6.63 \times 10^{-34}$ J.s

Extrait de BAC STD2A 2019

A.7. Les photons du rayonnement utilisé par la caméra ont une énergie moyenne E de valeur 1,42 × 10⁻¹⁹ J. Vérifier qu'il s'agit bien d'un rayonnement infrarouge.

Donnée : $E=1.42\times 10^{-19}\,\mathrm{J}$ Constante de Planck : $h=6.63\times 10^{-34}\,\mathrm{J}\,\mathrm{s}$

1. Calcul de la fréquence :

$$v = \frac{E}{h} = \frac{1.42 \times 10^{-19} \,\text{J}}{6.63 \times 10^{-34} \,\text{Js}} \approx 2.14 \times 10^{14} \,\text{Hz}$$

2. Calcul de la longueur d'onde :

$$\lambda = \frac{c}{v} = \frac{3.00 \times 10^8 \,\mathrm{m \, s^{-1}}}{2.14 \times 10^{14} \,\mathrm{Hz}} \approx 1.40 \times 10^{-6} \,\mathrm{m}$$

$$\lambda = 1.40 \times 10^{-6} \,\mathrm{m} = 1400 \,\mathrm{nm}$$

3. Conclusion:

1400 nm > 700 nm, donc il s'agit bien d'un rayonnement **infrarouge**.

Exercice à faire vous-même

Extrait du BAC 2019 - Polynésie

Document 2 - Relations et constantes

Énergie d'un photon E en fonction de la fréquence de l'onde v et de la constante de

Planck $h: E = h \times v$

Longueur d'onde λ en fonction de la célérité c et de la période T: $\lambda = c \times T$

Période *T* en fonction de la fréquence ν : $T = \frac{1}{\nu}$

Célérité de la lumière dans le vide : $c = 3,00 \times 10^8 \text{ m.s}^{-1}$

Constante de Planck : $h = 6,63 \times 10^{-34}$ J.s

A.5. Attribuer à chaque numéro 1, 2 et 3 figurant dans l'échelle ci-dessous les trois familles d'ondes électromagnétiques suivantes : ultraviolet, infrarouge et visible.

A.6. Un photon de l'onde utilisée pour la radiographie décrite dans le document 1 a une énergie E égale à 2.0×10^{-16} J. Vérifier que cette onde appartient bien à la famille des rayons X.

Ondes électromagnétiques - Définitions à connaître par coeur

Terme	Définition
Lumière (modèle on- dulatoire)	La lumière peut être décrite comme une onde électromag- nétique qui se propage dans le vide et engendre une vari- ation locale du champ électrique et magnétique. Direction de propagation de l'énergie de cette onde : rayon lumineux.
Lumière (modèle par- ticulaire)	La lumière est également décrite comme un ensemble de particules appelées photons . Un rayon lumineux est alors la trajectoire de propagation de ces particules de masse nulle se déplaçant dans la vide à la vitesse de la lumière : c
Photon	Un photon est une particule de lumière, sans masse, sans charge, qui transporte une énergie proportionnelle à la fréquence de l'onde associée : $E = h \times v$.
Rayonnements invis- ibles utilisés en pein- ture	Les rayonnements infrarouges (IR) et ultraviolets (UV) sont souvent utilisés pour révéler des couches sous-jacentes dans les œuvres picturales, comme les dessins préparatoires ou les restaurations anciennes.
Limites du spectre visible	La lumière visible correspond aux longueurs d'onde comprises entre 400 nm (violet) et 750 nm (rouge). En dessous, on parle d'ultraviolet ; au-dessus, d'infrarouge.

Les métaux

Terme	Définition
Composition du verre	Le verre est principalement composé de silice (dioxyde de silicium) SiO_2
Solide amorphe	Solide dont la structure d'atomes n'est pas régulière (contrairement à un solide cristallin)
Transition vitreuse	Le phénomène de transition vitreuse consiste en un pas- sage d'un état caoutchouteux à un état vitreux, solide (et inversement)

Céramique	Ensemble des matériaux inorganiques, non métalliques et qui nécessitent de hautes températures lors de leur fabri- cation. Structure généralement cristalline.
Propriétés des céramiques	 Les céramiques sont généralement très rigide Elles ont une température de fusion très élevée, supérieure à 2000°C. Insensibles à la corrosion Bonne résistance à l'usure Inertes chimiquement, bons isolants

Les métaux

Terme		Définition
Métal pur		Métal composé d'un seul élément chimique. Exemple Fer Fe, Or Au, Argent Ag.
Alliage		Métal composé d'au moins deux éléments chimiques
Composition l'acier	de	Fer + Carbone
Composition bronze	du	Cuivre + Etain

Les autres types de matériaux

Terme	Définition
Matériau organique	Matériau dont la molécule est composée d'un squelette carboné (constitué d'atomes de carbones liés les uns aux autres)
Matériau composite	Combinaison d'au moins deux matériaux différents, non miscibles. Permet de combiner les avantages de chacun des composants. Il est composé de • Un renfort : squelette du matériau. Assure la solidité (exemples : fibres, cailloux dans béton) • Une matrice : Enveloppe le renfort, assure la cohésion du matériau Exemple de matériau composite : le béton armé
Composition de l'acier	Fer + Carbone
Composition du bronze	Cuivre + Etain

La photographie

Formules essentielles

Formules essentielles en optique photographique

• Relation de conjugaison (lentille mince) :

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$$

avec distances algébriques orientées vers la droite.

- \overline{OA} : distance objet (positive si objet réel, négative si virtuel).
- $\overline{OA'}$: distance image (positive si réelle, négative si virtuelle).
- f': distance focale (positive pour lentille convergente, négative pour divergente).
- Grandissement (rapport linéaire) :

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}}$$

- Si γ < 1 l'image est réduite par rapport à la taille de l'objet
- Si $\gamma > 1$ elle est agrandie.
- Nombre d'ouverture :

$$N = \frac{f'}{D}$$

avec D le diamètre du diaphragme, et f' est la distance focale.

- Formule inverse:

$$D = \frac{f'}{N}$$

- Quand N $augmente \Rightarrow D$ $diminue \Rightarrow$ moins de lumière atteint le capteur
- Quand N diminue $\Rightarrow D$ augmente \Rightarrow plus de lumière atteint le capteur.
- Flux lumineux (stops) :

Passer d'un nombre d'ouverture au suivant (par ex. $N=4 \rightarrow N=5,6$) divise par 2 la quantité de lumière reçue ; l'opération inverse la multiplie par 2. Un « stop » = un facteur 2 de flux lumineux.

Méthode - vérifier qu'un sujet tient sur le capteur

Méthode : le sujet tient-il dans l'image ?

Étapes à suivre :

- Mesurer ou relever la distance objet-lentille (OA).
- Calculer OA' via la relation de conjugaison.
- Déterminer le grandissement : $\frac{OA'}{OA}$
- Grâce à l'énoncé, on a la longueur / hauteur de l'objet (AB) (c'est la taille de l'objet photographié)
- En déduire la hauteur (ou largeur) de l'image : (A'B').
- Comparer aux dimensions utiles du capteur.
- Si l'image est plus grande que le capteur, elle ne peut pas être intégrale-

ment capturée sur la photo

• Pour la faire rentrer : reculer l'appareil ou choisir une focale plus courte.

Définitions

Terme	Définition
ISO	Sensibilité du capteur ; un ISO élevé permet d'exposer avec moins de lumière mais accroît le bruit numérique.
Distance focale	Distance entre le centre optique et le foyer image d'une lentille ou d'un objectif. Elle fixe l'angle de champ (courte focale : grand angle, longue focale : téléobjectif).
Diaphragme	Orifice circulaire de l'objectif dont le diamètre règle la quantité de lumière et la profondeur de champ ; relié à par .
Profondeur de champ	Intervalle de distances où les objets sont nets. Elle diminue quand on ouvre le diaphragme (petit), allonge la focale ou rapproche le sujet.
Grandissement	Rapport de la taille de l'image sur la taille de l'objet ; permet de vérifier qu'un sujet tient sur le capteur.
Capteur	Surface photosensible (ex. : 23.5 mm × 15.6 mm en APS-C) qui convertit la lumière en signal numérique.
Image	Reproduction optique formée par l'objectif sur le capteur ; codée en pixels.
Pixel	Plus petite unité d'une image ou d'un capteur ; stocke l'information de couleur et de luminosité.
Définition (de l'image ou du capteur)	Nombre total de pixels : $N_{\rm px} = N_x \times N_y$, où
	N_x est le nombre de pixels horizontaux N_y le nombre de pixels verticaux ; Le résultat s'exprime généralement en mégapixels (Mpx).
Nombre d'ouverture N	$N = f'/D$ avec D diamètre du diaphragme. Si N augmente $\Rightarrow D$ diminue \Rightarrow moins de lumière passe.
Temps de pose t	Durée pendant laquelle l'obturateur est ouvert ; doubler t double la lumière reçue.
DPI (dots per inch)	Résolution d'impression : nombre de points par pouce ; plus le DPI est élevé, plus l'impression est fine.