Описание РМНК "на пальцах" для студентов ИПСА выполняющих ЛР-1 по предмету "Анализ временных рядов"

Документ составлен Терентьевым А. Н.

Пункт 1

Подготовка тестовых данных

1. Создадим нормально распределённый ряд e из 10 чисел

1.063189 0.200904 1.270492 0.547975 0.598423 -1.264245 0.316438 0.851791 0.372758 0.655125

2. Сгенерируем ряд y по нормально распределённому ряду e:

$$2.1 \ y(1) = e(1)$$

$$2.2 y(2) = e(2)$$

$$y(i) = 0.3 \cdot y(i-1) + 0.5 \cdot y(i-2) + 0.05 \cdot e(i)$$
, для $i = 2...10$

Вектор откликов (выходных значений) y – содержит значения

1.063189 0.200904 0.655390 0.324468 0.454957 0.235509 0.313953 0.254530 0.251973 0.235613

Матрица измерений X = (y(k-1), y(k-2))

Матрица $\it X$				
y(k-1)	y(k-2)			
0.200904	1.063189			
0.655390	0.200904			
0.324468	0.655390			
0.454957	0.324468			
0.235509	0.454957			
0.313953	0.235509			
0.254530	0.313953			
0.251973	0.254530			

Пункт 2.

Прогноз методом наименьших квадратов (МНК)
$$\hat{\theta} = \left(X^T \cdot X\right)^{-1} \cdot X^T \cdot Y = \begin{bmatrix} 0.2853 \\ 0.5557 \end{bmatrix}, \text{ где}$$

Вектор у	Мат	Матрица Х		
0.655390	0.200904	1.063189		
0.324468	0.655390	0.200904		
0.454957	0.324468	0.655390		
0.235509	0.454957	0.324468		
0.313953	0.235509	0.454957		
0.254530	0.313953	0.235509		
0.251973	0.254530	0.313953		
0.235613	0.251973	0.254530		

Код программы на матлабе

Результат

0.2853

0.5557

Средне квадратическое отклонение параметров уравнения модели

$$CKO = \sqrt{(\theta - \hat{\theta})^2} = \sqrt{(0.3 - 0.2853)^2 + (0.5 - 0.5557)^2} = 0.0576$$

Пункт 3.

Прогноз рекурсивным методом наименьших квадратов (РМНК)

2

Начальные значения алгоритма $\theta_0 = \alpha, P_0 = \beta \cdot I, \beta >> 0$.

$$i$$
 — \mathbf{H} шаг рекурсии $P_{i} = P_{i-1} - \frac{P_{i-1} \cdot x^{T}(i) \cdot x(i) \cdot P_{i-1}}{1 + x(i) \cdot P_{i-1} \cdot x^{T}(i)}$

$$\theta_{i} = \theta_{i-1} + P_{i} \cdot x^{T}(i) \cdot \left[y^{T}(i) - x(i) \cdot \theta_{i-1} \right]$$

 Γ де $^{x(i)}$ – это i – я строка матрицы измерений X .

Входные данные

Вектор у		Матрица X		
0.655390	0.2009	004 1.063189		
0.324468	0.6553	0.200904		
0.454957	0.3244	168 0.655390		
0.235509	0.4549	0.324468		
0.313953	0.2355	0.454957		
0.254530	0.3139	0.235509		
0.251973	0.2545	0.313953		
0.235613	0.2519	0.254530		

Начальные значения алгоритма
Пусть
$$\alpha = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \beta = 10$$
 следовательно $\theta_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad P_0 = \begin{pmatrix} 10 & 0 \\ 0 & 10 \end{pmatrix}$

Итерация-1	P_1	9.6824	-1.6809	θ_1	0.1036
	1	-1.6809	1.1046	1	0.5483
Итерация-2	P_2	2.1004	-0.5707	θ_2	0.2884
		-0.5707	0.9420		0.5213
Итерация-3	P_3	2.0321	-0.6668	θ_3	0.2927
		-0.6668	0.8069		0.5275
Итерация-4	$P_{\scriptscriptstyle A}$	1.6489	-0.6443	$\theta_{\scriptscriptstyle A}$	0.2555
		-0.6443	0.8056		0.5297
Итерация-5	P_{5}	1.6408	-0.6626	θ_{5}	0.2566
		-0.6626	0.7644		0.5321
Итерация-6	P_6	1.5242	-0.6535	θ_6	0.2724
		-0.6535	0.7637		0.5309
Итерация-7	P_{7}	1.4930	-0.6660	θ_7	0.2751
		-0.6660	0.7587		0.5320
Итерация-8	P_{8}	1.4526	-0.6710	θ_8	0.2812
		-0.6710	0.7581		0.5327

Результат

0.2812

0.5327

Средне квадратическое отклонение параметров уравнения модели

$$CKO = \sqrt{\left(\theta - \hat{\theta}\right)^2} = \sqrt{(0.3 - 0.2812)^2 + (0.5 - 0.5327)^2} = 0.0378$$

Программа РМНК на МатЛабе-7

```
% rmnk('s_max.txt',3)
function rmnk(file_name_data, n_column);
b=10;
fid_sourse = fopen(file_name_data,'r');
B = fscanf(fid_sourse, '%g', [n_column inf]);
A = B';
y=A(:,1);
x=A(:,2:end);
[x_row, x_column]=size(x);
% задаем начальные значения р0
p0=eye(x_column)*b;
% задаем начальные значения тэта (у нас coef)
for i=1:x_column
  coef(i)=0;
end;
coef=coef';
i=1;
for i=1:x_row
  fprintf('Итерация - %i',i);
  p1 = p0 - (p0 * x(i,:)' * x(i,:) * p0) / (1 + x(i,:) * p0 * x(i,:)'),
  coef = coef + p1*x(i,:)'*(y(i)'-x(i,:)*coef),
  p0=p1;
end;
coef
```