Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики Факультет информационных технологий и программирования

Методы оптимизации

Отчёт по лабораторной работе №1

Работу

выполнили:

И. О. Шахов

М. А. Гордиенко

А. В. Андреев

Группа: М3236

Преподаватель:

Михаил Свинцов

 ${
m Caнкт-}\Pi{
m erep}{
m бург}$ 2022

Содержание

П	остановка задачи	3							
1.	Аналитическое решение 1.1. График функциина отрезке 1.2. Поиск экстремума функции 1.2.1. Поиск производной 1.2.2. Поиск точек экстремума на заданном отрезке	. 4							
2.	Результаты исследования по каждому методу 2.1. метод дихотомии 2.2. метод золотого сечения 2.3. метод Фиббоначи 2.4. метод парабол 2.5. комбинированный метод Брента	. 6 . 7 . 8							
3.	Сравнение алгоритмов	11							
4.	4.1. Функция, на которой большинство алгоритмов выдают корректный результат								
П	еречень использованных источников	15							

Постановка задачи

Реализовать алгоритмы одномерной минимизации функции:

- метод дихотомии
- метод золотого сечения
- метод Фиббоначи
- метод парабол
- комбинированный метод Брента.

Протестировать реализованные алгоритмы на следующей задачи на интервале [6, 9.9]:

$$f(x) = \lg^{2}(x-2) + \lg^{2}(10-x) - x^{0.2} - > \min[6, 9.9]$$

Провести сравнительный анализ алгоритмов и сравнить полученные значения с результатом аналитического решения.

1. Аналитическое решение

$$f(x) = \lg^{2}(x-2) + \lg^{2}(10-x) - x^{0.2} - > min[6, 9.9]$$

1.1. График функциина отрезке

Рисунок 1.1. График функции

1.2. Поиск экстремума функции

1.2.1. Поиск производной

$$f(x)' = (\lg^2(x-2) + \lg^2(10-x) - x^{0.2})'$$
$$f(x)' = 2 * \frac{\log(x-2)}{(x-2)\log^2 10} - 2 * \frac{\log(10-x)}{(10-x)\log^2 10} - 0.2 * x^{-0.8}$$

1.2.2. Поиск точек экстремума на заданном отрезке

$$2*\frac{\log(x-2)}{(x-2)\log^2 10} - 2*\frac{\log(10-x)}{(10-x)\log^2 10} - 0.2*x^{-0.8} = 0$$

$$\frac{-0.2}{x^{0.8}} - \frac{(2\log(10-x))}{((10-x)(\log(2) + \log(5))^2)} + \frac{(2\log(x-2))}{((x-2)(\log(2) + \log(5))^2)} = 0$$

Корнь уравнения.(см. решение [1])

• x = 8.72691 (см. рисунок 1.1)

2. Результаты исследования по каждому методу

Анализ работы алгоритмов

Таблица 2.1

Метод	Результат работы	Отличие от аналитического $ \Delta $
метод дихотомии	8.726905	$4*10^{-6}$
метод золотого сечения	8.726850	$5*10^{-5}$
метод Фиббоначи	8.726906	$3*10^{-6}$
метод парабол	8.726906	$3*10^{-6}$
комбинированный метод Брента	8.726880	$2*10^{-6}$

2.1. метод дихотомии

Таблица 2.2 **Анализ работы алгоритмов**

$N_{\overline{0}}$	Интервал	Длина	Коэффициент	x1	x2
0	[6,00000 : 9,90000]	3,90000	1,00000	(7,95000:-0,81675)	(7,95000:-0,81675)
1	[7,95000:9,90000]	1,95000	2,00000	(8,92500:-0,84196)	(8,92500:-0,84196)
2	[7,95000:8,92500]	0,97500	2,00000	(8,43750:-0,84035)	(8,43750:-0,84035)
3	[8,43750:8,92500]	$0,\!48750$	2,00000	(8,68125:-0,84586)	(8,68125:-0,84586)
4	[8,68125:8,92500]	$0,\!24375$	2,00000	(8,80312:-0,84550)	(8,80313:-0,84550)
5	[8,68125:8,80313]	$0,\!12188$	1,99999	(8,74219:-0,84602)	(8,74219:-0,84602)
6	[8,68125:8,74219]	0,06094	1,99998	(8,71172:-0,84602)	(8,71172:-0,84602)
7	[8,71172:8,74219]	$0,\!03047$	1,99997	(8,72695:-0,84604)	(8,72695:-0,84604)
8	[8,71172:8,72695]	$0,\!01524$	1,99993	(8,71934:-0,84603)	(8,71934:-0,84603)
9	[8,71934:8,72695]	$0,\!00762$	1,99987	(8,72314:-0,84604)	(8,72314:-0,84604)
10	[8,72314:8,72695]	0,00381	1,99974	(8,72505:-0,84604)	(8,72505:-0,84604)
11	[8,72505:8,72695]	0,00191	1,99948	(8,72600:-0,84604)	(8,72600:-0,84604)
12	[8,72600:8,72695]	0,00095	1,99895	(8,72648:-0,84604)	(8,72648:-0,84604)
13	[8,72648:8,72695]	0,00048	1,99790	(8,72671:-0,84604)	(8,72672:-0,84604)
14	[8,72671:8,72695]	0,00024	1,99582	(8,72683:-0,84604)	(8,72683:-0,84604)

2.2. метод золотого сечения

Таблица 2.3 **Анализ работы алгоритмов**

$N_{\overline{0}}$	Интервал	Длина	Коэффициент	x1	x2
0	[6,00000:9,90000]	3,90000	1,00000	(7,48967:-0,78915)	(8,41033:-0,83938)
1	[7,48967:9,90000]	2,41033	1,61803	(8,41033:-0,83938)	(8,97933:-0,83903)
2	[7,48967:8,97933]	1,48967	1,61803	(8,05867:-0,82282)	(8,41033:-0,83938)
3	[8,05867:8,97933]	0,92067	1,61803	(8,41033:-0,83938)	(8,62767:-0,84526)
4	[8,41033:8,97933]	0,56900	1,61803	(8,62767:-0,84526)	(8,76200:-0.84593)
5	[8,62767:8,97933]	$0,\!35166$	1,61803	(8,76200:-0,84593)	(8,84501:-0,84470)
6	[8,62767:8,84501]	$0,\!21734$	1,61803	(8,71069:-0,84602)	(8,76200:-0.84593)
7	[8,62767:8,76200]	$0,\!13432$	1,61803	(8,67898:-0,84585)	(8,71069:-0,84602)
8	[8,67898:8,76200]	0,08302	1,61803	(8,71069:-0,84602)	(8,73029:-0,84604)
9	[8,71069:8,76200]	$0,\!05131$	1,61803	(8,73029:-0,84604)	(8,74240:-0,84602)
10	[8,71069:8,74240]	0,03171	1,61803	(8,72280:-0,84604)	(8,73029:-0,84604)
11	[8,72280:8,74240]	0,01960	1,61803	(8,73029:-0,84604)	(8,73491:-0,84603)
12	[8,72280:8,73491]	0,01211	1,61803	(8,72743:-0,84604)	(8,73029:-0,84604)
13	[8,72280:8,73029]	0,00749	1,61803	(8,72566:-0,84604)	(8,72743:-0,84604)
14	[8,72566:8,73029]	0,00463	1,61803	(8,72743:-0,84604)	(8,72852:-0,84604)
15	[8,72566:8,72852]	0,00286	1,61803	(8,72675:-0,84604)	(8,72743:-0,84604)
16	[8,72566:8,72743]	0,00177	1,61803	(8,72633:-0,84604)	(8,72675:-0,84604)
17	[8,72633:8,72743]	0,00109	1,61803	(8,72675:-0,84604)	(8,72701:-0,84604)
18	[8,72675:8,72743]	0,00067	1,61803	(8,72701:-0,84604)	(8,72717:-0,84604)
19	[8,72675:8,72717]	0,00042	1,61803	(8,72691:-0,84604)	(8,72701:-0,84604)
20	[8,72675:8,72701]	0,00026	1,61803	(8,72685:-0,84604)	(8,72691:-0,84604)
21	[8,72685:8,72701]	0,00016	1,61803	(8,72691:-0,84604)	(8,72695:-0,84604)
22	[8,72685:8,72695]	0,00010	1,61803	(8,72689:-0,84604)	(8,72691:-0,84604)

2.3. метод Фиббоначи

Таблица 2.4 **Анализ работы алгоритмов**

$N_{\overline{0}}$	Интервал	Длина	Коэффициент	x1	x2
0	[6,00000:9,90000]	3,90000	1,00000	(7,48967:-0,78915)	(8,41033:-0,83938)
1	[7,48967:9,90000]	2,41033	1,61803	(8,41033:-0,83938)	(8,97933:-0,83903)
2	[7,48967:8,97933]	1,48967	1,61803	(8,05867:-0,82282)	(8,41033:-0,83938)
3	[8,05867:8,97933]	0,92067	1,61803	(8,41033:-0,83938)	(8,62767:-0,84526)
4	[8,41033:8,97933]	$0,\!56900$	1,61803	(8,62767:-0,84526)	(8,76200:-0,84593)
5	[8,62767:8,97933]	$0,\!35166$	1,61803	(8,76200:-0,84593)	(8,84501:-0,84470)
6	[8,62767:8,84501]	$0,\!21734$	1,61803	(8,71069:-0,84602)	(8,76200:-0,84593)
7	[8,62767:8,76200]	$0,\!13432$	1,61803	(8,67898:-0,84585)	(8,71069:-0,84602)
8	[8,67898:8,76200]	$0,\!08302$	1,61803	(8,71069:-0,84602)	(8,73029:-0,84604)
9	[8,71069:8,76200]	$0,\!05131$	1,61803	(8,73029:-0,84604)	(8,74240:-0,84602)
10	[8,71069:8,74240]	0,03171	1,61804	(8,72280:-0,84604)	(8,73029:-0,84604)
11	[8,72280:8,74240]	0,01960	1,61803	(8,73029:-0,84604)	(8,73491:-0,84603)
12	[8,72280:8,73491]	0,01211	1,61806	(8,72743:-0,84604)	(8,73029:-0,84604)
13	[8,72280:8,73029]	0,00749	1,61798	(8,72566:-0,84604)	(8,72743:-0,84604)
14	[8,72566:8,73029]	0,00463	1,61818	(8,72743:-0,84604)	(8,72852:-0,84604)
15	[8,72566:8,72852]	0,00286	$1,\!61765$	(8,72675:-0,84604)	(8,72743:-0,84604)
16	[8,72566:8,72743]	0,00177	$1,\!61905$	(8,72633:-0,84604)	(8,72675:-0,84604)
17	[8,72633:8,72743]	0,00109	1,61538	(8,72675:-0,84604)	(8,72701:-0,84604)
18	[8,72675:8,72743]	0,00067	$1,\!62500$	(8,72701:-0,84604)	(8,72717:-0,84604)
19	[8,72675:8,72717]	0,00042	1,60000	(8,72692:-0,84604)	(8,72701:-0,84604)
20	[8,72675:8,72701]	0,00025	$1,\!66667$	(8,72684:-0,84604)	(8,72692:-0,84604)
21	[8,72684:8,72701]	0,00017	1,50000	(8,72692:-0,84604)	(8,72692:-0,84604)
22	[8,72684:8,72692]	0,00008	2,00000	(8,72684:-0,84604)	(8,72692:-0,84604)

2.4. метод парабол

Таблица 2.5 **Анализ работы алгоритмов**

			из раооты алго		
<u>№</u>	Интервал	Длина	Коэффициент	middle	minParabola
0	[6,00000:9,90000]	3,90000	1,00000	(8,4751:-0,8416)	(7,3706:-0,7819)
1	[7,37063:9,90000]	$2,\!52937$	1,54188	(8,4751:-0,8416)	(8,0081:-0,8200)
2	[8,00815:9,90000]	1,89185	1,33698	(8,4751:-0,8416)	(8,2966:-0,8347)
3	[8,29665:9,90000]	1,60335	1,17993	(8,4751:-0,8416)	(8,4252:-0,8399)
4	[8,42522:9,90000]	1,47478	1,08718	(8,4751:-0,8416)	(8,4821:-0,8418)
5	[8,47506:9,90000]	$1,\!42494$	1,03498	(8,4821:-0,8418)	(8,5072:-0,8426)
6	[8,48209:9,90000]	$1,\!41791$	1,00496	(8,5072:-0,8426)	(8,5213:-0,8430)
7	[8,50717:9,90000]	1,39283	1,01800	(8,5213:-0,8430)	(8,5386:-0,8434)
8	[8,52130:9,90000]	$1,\!37870$	1,01026	(8,5386:-0,8434)	(8,5525:-0,8438)
9	[8,53860:9,90000]	1,36140	1,01270	(8,5525:-0,8438)	(8,5662:-0,8441)
10	[8,55246:9,90000]	1,34754	1,01029	(8,5662:-0,8441)	(8,5784:-0,8444)
11	[8,56621:9,90000]	1,33379	1,01031	(8,5784:-0,8444)	(8,5899:-0,8446)
12	[8,57841:9,90000]	$1,\!32159$	1,00923	(8,5899:-0,8446)	(8,6003:-0,8448)
13	[8,58987:9,90000]	1,31013	1,00875	(8,6003:-0,8448)	(8,6100:-0,8450)
14	[8,60033:9,90000]	$1,\!29967$	1,00805	(8,6100:-0,8450)	(8,6189:-0,8451)
15	[8,61002:9,90000]	$1,\!28998$	1,00751	(8,6189:-0,8451)	(8,6272:-0,8453)
16	[8,61893:9,90000]	$1,\!28107$	1,00696	(8,6272:-0,8453)	(8,6348:-0,8454)
17	[8,62716:9,90000]	$1,\!27284$	1,00647	(8,6348:-0,8454)	(8,6418:-0,8455)
18	[8,63475:9,90000]	$1,\!26525$	1,00600	(8,6418:-0,8455)	(8,6482:-0,8455)
19	[8,64176:9,90000]	$1,\!25824$	1,00557	(8,6482:-0,8455)	(8,6542:-0,8456)
20	[8,64822:9,90000]	$1,\!25178$	1,00516	(8,6542:-0,8456)	(8,6597:-0,8457)
21	[8,65419:9,90000]	$1,\!24581$	1,00479	(8,6597:-0,8457)	(8,6648:-0,8457)
22	[8,65970:9,90000]	$1,\!24030$	1,00444	(8,6648:-0,8457)	(8,6695:-0,8458)
23	[8,66479:9,90000]	$1,\!23521$	1,00412	(8,6695:-0,8458)	(8,6738:-0,8458)
24	[8,66948:9,90000]	$1,\!23052$	1,00382	(8,6738:-0,8458)	(8,6778:-0,8458)
25	[8,67382:9,90000]	1,22618	1,00354	(8,6778:-0,8458)	(8,6815:-0,8459)
26	[8,67783:9,90000]	$1,\!22217$	1,00328	(8,6815:-0,8459)	(8,6850:-0,8459)
27	[8,68153:9,90000]	1,21847	1,00304	(8,6850:-0,8459)	(8,6881:-0,8459)
28	[8,68496:9,90000]	$1,\!21504$	1,00282	(8,6881:-0,8459)	(8,6910:-0,8459)
29	[8,68812:9,90000]	1,21188	1,00261	(8,6910:-0,8459)	(8,6937:-0,8459)
30	[8,69104:9,90000]	$1,\!20896$	1,00242	(8,6937:-0,8459)	(8,6962:-0,8460)
31	[8,69374:9,90000]	$1,\!20626$	1,00224	(8,6962:-0,8460)	(8,6985:-0,8460)
32	[8,69624:9,90000]	1,20376	1,00207	(8,6985:-0,8460)	(8,7007:-0,8460)
33	[8,69854:9,90000]	1,20146	1,00192	(8,7007:-0,8460)	(8,7026:-0,8460)
34	[8,70067:9,90000]	1,19933	1,00178	(8,7026:-0,8460)	(8,7045:-0,8460)
35	[8,70265:9,90000]	1,19735	1,00165	(8,7045:-0,8460)	(8,7062:-0,8460)
36	[8,70447:9,90000]	1,19553	1,00152	(8,7062:-0,8460)	(8,7077:-0,8460)
37	[8,70615:9,90000]	1,19385	1,00141	(8,7077:-0,8460)	(8,7092:-0,8460)
38	[8,70771:9,90000]	1,19229	1,00131	(8,7092:-0,8460)	(8,7105:-0,8460)
39	[8,70915:9,90000]	1,19085	1,00121	(8,7105:-0,8460)	(8,7117:-0,8460)
40	[8,71049:9,90000]	1,18951	1,00112	(8,7117:-0,8460)	(8,7129:-0,8460)

<u>№</u>	Интервал	Длина	Коэффициент	middle	minParabola
41	[8,71172:9,90000]	1,18828	1,00104	(8,7129:-0,8460)	(8,7139:-0,8460)
42	[8,71286:9,90000]	1,18714	1,00096	(8,7139:-0,8460)	(8,7149:-0,8460)
43	[8,71391:9,90000]	1,18609	1,00089	(8,7149:-0,8460)	(8,7158:-0,8460)
44	[8,71488:9,90000]	1,18512	1,00082	(8,7158:-0,8460)	(8,7166:-0,8460)
45	[8,71579:9,90000]	1,18421	1,00076	(8,7166:-0,8460)	(8,7174:-0,8460)
46	[8,71662:9,90000]	1,18338	1,00070	(8,7174:-0,8460)	(8,7181:-0,8460)
47	[8,71739:9,90000]	1,18261	1,00065	(8,7181:-0,8460)	(8,7188:-0,8460)
48	[8,71810:9,90000]	1,18190	1,00060	(8,7188:-0,8460)	(8,7194:-0,8460)
49	[8,71876:9,90000]	1,18124	1,00056	(8,7194:-0,8460)	(8,7199:-0,8460)
50	[8,71937:9,90000]	1,18063	1,00052	(8,7199:-0,8460)	(8,7205:-0,8460)
51	[8,71994:9,90000]	1,18006	1,00048	(8,7205:-0,8460)	(8,7209:-0,8460)
52	[8,72046:9,90000]	$1,\!17954$	1,00044	(8,7209:-0,8460)	(8,7214:-0,8460)
53	[8,72094:9,90000]	$1,\!17906$	1,00041	(8,7214:-0,8460)	(8,7218:-0,8460)
54	[8,72139:9,90000]	$1,\!17861$	1,00038	(8,7218:-0,8460)	(8,7222:-0,8460)
55	[8,72180:9,90000]	$1,\!17820$	1,00035	(8,7222:-0,8460)	(8,7225:-0,8460)
56	[8,72218:9,90000]	$1,\!17782$	1,00032	(8,7225:-0,8460)	(8,7229:-0,8460)
57	[8,72254:9,90000]	$1,\!17746$	1,00030	(8,7229:-0,8460)	(8,7232:-0,8460)
58	[8,72286:9,90000]	$1,\!17714$	1,00028	(8,7232:-0,8460)	(8,7234:-0,8460)
59	[8,72317:9,90000]	$1,\!17683$	1,00026	(8,7234:-0,8460)	(8,7237:-0,8460)
60	[8,72345:9,90000]	$1,\!17655$	1,00024	(8,7237:-0,8460)	(8,7239:-0,8460)
61	[8,72371:9,90000]	$1,\!17629$	1,00022	(8,7239:-0,8460)	(8,7242:-0,8460)
62	[8,72395:9,90000]	$1,\!17605$	1,00020	(8,7242:-0,8460)	(8,7244:-0,8460)
63	[8,72417:9,90000]	$1,\!17583$	1,00019	(8,7244:-0,8460)	(8,7246:-0,8460)
64	[8,72437:9,90000]	$1,\!17563$	1,00017	(8,7246:-0,8460)	(8,7247:-0,8460)
65	[8,72456:9,90000]	$1,\!17544$	1,00016	(8,7247:-0,8460)	(8,7249:-0,8460)
66	[8,72474:9,90000]	$1,\!17526$	1,00015	(8,7249:-0,8460)	(8,7250:-0,8460)
67	[8,72490:9,90000]	1,17510	1,00014	(8,7250:-0,8460)	(8,7252:-0,8460)
68	[8,72505:9,90000]	1,17495	1,00013	(8,7252:-0,8460)	(8,7253:-0,8460)
69	[8,72519:9,90000]	1,17481	1,00012	(8,7253:-0,8460)	(8,7254:-0,8460)
70	[8,72532:9,90000]	1,17468	1,00011	(8,7254:-0,8460)	(8,7255:-0,8460)
71	[8,72544:9,90000]	1,17456	1,00010	(8,7255:-0,8460)	(8,7256:-0,8460)
72	[8,72555:9,90000]	1,17445	1,00009	(8,7256:-0,8460)	(8,7257:-0,8460)
73	[8,72565:9,90000]	1,17435	1,00009	(8,7257:-0,8460)	(8,7258:-0,8460)
74	[8,72574:9,90000]	1,17426	1,00008	(8,7258:-0,8460)	(8,7259:-0,8460)
75 7 5	[8,72583:9,90000]	1,17417	1,00007	(8,7259:-0,8460)	(8,7260:-0,8460)
76	[8,72591:9,90000]	1,17409	1,00007	(8,7260:-0,8460)	(8,7261:-0,8460)
77	[8,72598:9,90000]	1,17402	1,00006	(8,7261:-0,8460)	(8,7261:-0,8460)
78 7 0	[8,72605 : 9,90000]	1,17395	1,00006	(8,7261:-0,8460)	(8,7262:-0,8460)
79	[8,72612 : 9,90000]	1,17388	1,00005	(8,7262:-0,8460)	(8,7262:-0,8460)
80	[8,72618:9,90000]	1,17382	1,00005	(8,7262:-0,8460)	(8,7263:-0,8460)
81	[8,72623:9,90000]	1,17377	1,00005	(8,7263:-0,8460)	(8,7263:-0,8460)
82	[8,72628:9,90000]	1,17372	1,00004	(8,7263:-0,8460)	(8,7264:-0,8460)
83	[8,72633:9,90000]	1,17367	1,00004	(8,7264:-0.8460)	(8,7264:-0,8460)
84	[8,72637:9,90000]	1,17363	1,00004	(8,7264:-0,8460)	(8,7264:-0,8460)
85	[8,72641 : 9,90000]	1,17359	1,00003	(8,7264:-0,8460)	(8,7265:-0,8460)

Nº	Интервал	Длина	Коэффициент	middle	minParabola
86	[8,72645:9,90000]	1,17355	1,00003	(8,7265:-0,8460)	(8,7265:-0,8460)
87	[8,72648:9,90000]	$1,\!17352$	1,00003	(8,7265:-0,8460)	(8,7265:-0,8460)
88	[8,72651:9,90000]	1,17349	1,00003	(8,7265:-0,8460)	(8,7266:-0,8460)
89	[8,72654:9,90000]	1,17346	1,00002	(8,7266:-0,8460)	(8,7266:-0,8460)
90	[8,72657:9,90000]	1,17343	1,00002	(8,7266:-0,8460)	(8,7266:-0,8460)
91	[8,72660:9,90000]	1,17340	1,00002	(8,7266:-0,8460)	(8,7266:-0,8460)
92	[8,72662:9,90000]	1,17338	1,00002	(8,7266:-0,8460)	(8,7267:-0,8460)
93	[8,72664:9,90000]	$1,\!17336$	1,00002	(8,7267:-0,8460)	(8,7267:-0,8460)
94	[8,72666:9,90000]	1,17334	1,00002	(8,7267:-0,8460)	(8,7267:-0,8460)
95	[8,72668:9,90000]	$1,\!17332$	1,00002	(8,7267:-0,8460)	(8,7267:-0,8460)
96	[8,72670:9,90000]	1,17330	1,00001	(8,7267:-0,8460)	(8,7267:-0,8460)
97	[8,72671:9,90000]	$1,\!17329$	1,00001	(8,7267:-0,8460)	(8,7267:-0,8460)
98	[8,72673:9,90000]	$1,\!17327$	1,00001	(8,7267:-0,8460)	(8,7268:-0,8460)
99	[8,72674:9,90000]	$1,\!17326$	1,00001	(8,7268:-0,8460)	(8,7268:-0,8460)
100	[8,72675:9,90000]	$1,\!17325$	1,00001	(8,7268:-0,8460)	(8,7268:-0,8460)
101	[8,72676:9,90000]	$1,\!17324$	1,00001	(8,7268:-0,8460)	(8,7268:-0,8460)
102	[8,72677:9,90000]	$1,\!17323$	1,00001	(8,7268:-0,8460)	(8,7268:-0,8460)
103	[8,72678:9,90000]	$1,\!17322$	1,00001	(8,7268:-0,8460)	(8,7268:-0,8460)
104	[8,72679:9,90000]	$1,\!17321$	1,00001	(8,7268:-0,8460)	(8,7268:-0,8460)
105	[8,72680:9,90000]	$1,\!17320$	1,00001	(8,7268:-0,8460)	(8,7268:-0,8460)
106	[8,72681:9,90000]	$1,\!17319$	1,00001	(8,7268:-0,8460)	(8,7268:-0,8460)
107	[8,72682:9,90000]	1,17318	1,00001	(8,7268:-0,8460)	(8,7268:-0,8460)
108	[8,72682:9,90000]	1,17318	1,00001	(8,7268:-0,8460)	(8,7268:-0,8460)
109	[8,72683:9,90000]	$1,\!17317$	1,00001	(8,7268:-0,8460)	(8,7268:-0,8460)
110	[8,72684:9,90000]	$1,\!17316$	1,00000	(8,7268:-0,8460)	(8,7268:-0,8460)
111	[8,72684:9,90000]	1,17316	1,00000	(8,7268:-0,8460)	(8,7268:-0,8460)
112	[8,72685:9,90000]	$1,\!17315$	1,00000	(8,7268:-0,8460)	(8,7269:-0,8460)
113	[8,72685:9,90000]	1,17315	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)
114	[8,72685:9,90000]	1,17315	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)
115	[8,72686:9,90000]	1,17314	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)
116	[8,72686:9,90000]	1,17314	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)
117	[8,72686:9,90000]	1,17314	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)
118	[8,72687:9,90000]	1,17313	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)
119	[8,72687:9,90000]	1,17313	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)
120	[8,72687:9,90000]	1,17313	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)
121	[8,72688:9,90000]	1,17312	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)
122	[8,72688:9,90000]	1,17312	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)
123	[8,72688:9,90000]	1,17312	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)
124	[8,72688 : 9,90000]	1,17312	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)
125	[8,72688:9,90000]	1,17312	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)
126	[8,72689:9,90000]	1,17311	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)
127	[8,72689:9,90000]	1,17311	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)
128	[8,72689:9,90000]	1,17311	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)
129	[8,72689:9,90000]	1,17311	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)
130	[8,72689:9,90000]	1,17311	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)
131	[8,72689:9,90000]	1,17311	1,00000	(8,7269:-0,8460)	(8,7269:-0,8460)

2.5. комбинированный метод Брента

Анализ работы алгоритмов

Таблица 2.6

$N_{\overline{0}}$	Интервал	Длина	Коэф.	X	W	u	M
0	[6,0000:9,9000]	3,9000	1,0000	(7,9500:-0,8168)	(7,9500:-0,8168)	(8,6948:-0,8460)	G
1	[7,9500:9,9000]	1,9500	2,0000	(8,6948:-0,8460)	(7,9500:-0,8168)	(9,1552:-0,8214)	G
2	[7,9500:9,1552]	$1,\!2052$	1,6180	(9,1552:-0,8214)	(8,6948:-0,8460)	(8,5778:-0,8444)	Р
3	$[7,\!9500:\!9,\!1552]$	$1,\!2052$	1,0000	(8,5778:-0,8444)	(9,1552:-0,8214)	(8,6953:-0,8460)	Ρ
4	$[8,\!5778:\!9,\!1552]$	$0,\!5773$	2,0875	(8,6953:-0,8460)	(8,5778:-0,8444)	(8,6953:-0,8460)	Ρ
5	[8,6953:9,1552]	$0,\!4599$	$1,\!2553$	(8,6953:-0,8460)	(8,6953:-0,8460)	(8,7318:-0,8460)	Ρ
6	[8,6953:9,1552]	$0,\!4599$	1,0001	(8,7318:-0,8460)	(8,6953:-0,8460)	(8,7272:-0,8460)	Ρ
7	[8,6953:8,7318]	$0,\!0364$	12,6193	(8,7272:-0,8460)	(8,7318:-0,8460)	(8,7268:-0,8460)	Ρ
8	[8,6953:8,7272]	0,0319	1,1423	(8,7268:-0,8460)	(8,7272:-0,8460)	(8,7269:-0,8460)	Ρ
9	[8,7268:8,7272]	0,0004	83,4753	(8,7269:-0,8460)	(8,7268:-0,8460)	(8,7269:-0,8460)	Р

3. Сравнение алгоритмов

Рисунок 3.1. График зависимости количества вычислений минимизируемой функции от $-\lg(\epsilon)$

Из полученных нами результатов видно, что все алгоритмы смогли найти минимум функции, но в их работе присутствовали отличия. На каждой итерации алгоритм золотого сечения сжимал отрезок на фиксированный коэффицент, в отличии от метода дихотомии и Фибоначчи. При этом метод дихотомии совершил больше вызовов функций,

чем методы золотого сечения и Фибоначчи. Алгоритм Фибоначчи показал себя немного лучше алгоритма золотого сечения, но он требует дополнительную память. Хуже всего себя показал метод парабол, а самый лучший результат по всем параментрам продемонстрировал метод Брента. В итоге мы получаем, что если вам требуется минимизировать одномерную функцию на отрезке без использования производных, то метод Брента - это ваш выбор.

4. Тестирование алгоритмов для задач минимизации многомодальных функций

4.1. Функция, на которой большинство алгоритмов выдают корректный результат

Рассмотрим многомодальную функцию $f(x) = x \sin(x)$ на отрезке [-2; 6]. На ней метод золотого сечения, метод Фибоначчи, метод парабол и метод Брента найдут глобальный минимум.

Рисунок 4.1. График функции $f(x) = x \sin(x)$

Метод дихотомии для данной функции на первой итерации переходит к отрезку [-2;2] на котором f(x) унимодальна. Значит он найдет локальный минимум в точке O. Интервал (2;6], в котором лежит глобальный минимум K будет исключен из рассмотрения этим методом. Таким образом, из-за отсутствия унимодальности на всем отрезке, глобальный минимум найден не будет.

Метод золотого сечения и Фиббоначи на первой итерации рассматривает точки $x_1 = 1.055, f(x_1) = 0.918$ и $x_2 = 2.944, f(x_2) = 0.577$ и переходит к отрезку [1.055; 6] где все еще нет унимодальности. На следующем шаге рассматривается отрезок [2.944; 6], где выполнено свойство унимодальности, а значит локальный минимум будет найден корректно. В этом тестовом случае он совпадает с глобальным из-за выполнения неравенства

 $f(x_i) > f(x_{i+1})$ на первых двух итерациях. В общем случае данным методам необходимы свойства унимодальности на каждом промежутке.

В методе парабол изначально выбираются три точки $x_1 = -2$, $f(x_1) = 1.818$, $x_2 = 4.787$, $f(x_2) = -4.4774$, $x_3 = 6$, $f(x_3) = -1.676$. Далее находится минимум параболы в точке $x_m = 2.495$, $f(x_m) = 1.502$ и происходит сужение интервала до $[x_m; x_3]$, на котором f(x) - унимодальна. В этом тестовом случае исходя из условий всегда будет выбрана точка, значение в которой строго меньше второго конца промежтука. Поэтому при сужении на новый интервал f(x) будет унимодальной и минимум найдется корректно. Однако в общих случаях это может быть неверно из-за многомодальности функции на некоторых интервалах.

Комбинированный метод Брента на первой итерации произведет перерасчет точки x -- наименьшего значения f(x) и u -- минимум аппроксимирующей параболы с помощью метода золотого сечения(парабола не была принята). Теперь x=u=4.472 и на следующих итерациях мы попадаем в промежуток [2.029; 6] унимодальности функции f(x). Значит локальный минимум там будет найден. В данной тестовой ситуации он совпадает с глобальным, но это в общем случае неверно, так как возможен переход на другие промежутки, где унимодальности не наблюдается.

4.2. Функция, на которой все алгоритмы работают некорректно

Посмотрим на функцию $f(x) = 12x + 2x^2 - 5x^3 - \frac{5}{4}x^4 + \frac{3}{5}x^5 + \frac{1}{6}x^6$, являющейся многомодальной на отрезке [-3.4; 2.2]. В этом случае глобальный минимум в точке C корректно найден не будет.

Рисунок 4.2. График функции $f(x)=12x+2x^2-5x^3-\frac{5}{4}x^4+\frac{3}{5}x^5+\frac{1}{6}x^6$

Метод дихотомии на первой итерации сократит интервал поиска до [-3.4; -0.6], где унимодальность не наблюдается. Далее будет рассмотрен промежуток [-2; -0.6], на котором функция f(x) унимодальна. В итоге метод дихотомии найдет локальный минимум в точке E, отличный от глобального в точке C.

Метод золотого сечения и метод Фибоначчи на первом шаге сузит промежуток до [-3.4;0.06]. На нем также отсуствует унимодальность f(x). Потом мы переходим к интервалу [-2.078;0.06], где функция становится почти унимодальной (начиная с -2). На третьей итерации рассматривается отрезок [-2.077;-0.756], унимодальности нет. В конце концов перейдя к промежутку унимодальности f(x) [-1.573;-0.756] будет найден локальный минимум в E.

В методе парабол после первого шага в качестве средней точки будет выбрана $x_m=-0.9391,\ c$ левой и правой границей $x_l=-1.3399, x_r=2.2.$ На следующей итерации мы достигаем промежутка унимодальности $x_l=-1.3399, x_r=-0.6119,\ где$ находится локальный минимум E.

Метод Брента найдет минимум аппроксимирующей параболы через две итерации в точке u=-1.0085 с помощью метода золотого сечения. Интервал поиска сужается до [-1.0571; 0.4695], где функция унимодальна и в конечном счете найдется локальный минимум в точке E как и в предыдущих случаях.

Перечень использованных источников

1. wolfram. find extremum function. — URL: https://www.wolframalpha.com/input/?i= %281g%5E2%28x-2%29+%2B+1g%5E2%2810+-+x%29+-+x%5E%280.2%29%29%27+%3D+0.