MIT OpenCourseWare http://ocw.mit.edu

18.01 Single Variable Calculus Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.01 Practice Exam 4

Problem 1. (15) Evaluate $\int_0^{1/2} \frac{x^2}{\sqrt{1-x^2}} dx$ by making a trigonometric substitution; remember to change the limits also.

Problem 2. (15) Find the volume of the solid obtained by rotating about the y-axis (that's the y-axis) the area under the graph of $y = e^x$ and over the interval $0 \le x \le 1$. (Suggestion: use cylindrical shells.)

Problem 3. (20) Evaluate $\int \frac{4x}{(x^2-1)(x-1)} dx$.

(Begin by factoring the denominator completely; don't forget the final integration.)

Problem 4. (15: 8, 7)

- a) Write down the definite integral of the form $\int_a^b f(x) dx$ which represents the arclength of the curve $y = \sin^2 x$ for $0 \le x \le \pi/4$.
 - b) Show that the arclength is less than 1.2 by estimating the integral.

 (Indicate how you are estimating it. It helps to write the integral in the simplest-looking form.)

Problem 5. (15)

A circle in the xy-plane has radius a and center at the point (b,0) on the x-axis; assume a < b.

a) Write its equation in rectangular coordinates, and change the equation to polar coordinates.

Problem 5b can be skipped; no question similar to 5b will appear on the 2006 exam.

b) Check your answer by deriving it directly in polar coordinates, using a geometric formula.

Problem 6. (20)

I forgot how professor derived it in the lec 32

Once every century the Klingon moon Bosok completely eclipses the moon Yan-ki. As seen from the city Mitek, the two moons appear as circular discs, with radii respectively $\sqrt{2}$ and 1 (units: dorks).

When the center of Bosok is exactly on the <u>circumference</u> of Yan-ki, the problem is to find the area (in square dorks) of the region of the Yan-ki disc that is not yet covered.

- Draw a diagram in polar coordinates, placing the center of Bosok at the origin, and the other center on the positive x-axis. Set up a definite integral representing the area of the desired region. Indicate how the significant limit on the integral was determined. very interesting question it is
 - b) Evaluate the integral.

(If you have time, check your answer by elementary geometry, but no credit for this, just a warm glow of satisfaction and a smug feeling of superiority.)