Présentation 2 PSAR

David TOTY
Maxime TRAN

Objectif:

Modéliser et résoudre le problème du Sudoku

Qu'est ce que le Sudoku?

- Jeu de reflexion
- Règles

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

Qu'est ce qu'un solveur ?

- Programme informatique
- Représenté sous forme booléenne
- Syntaxe: \land (ET), \lor (OU), \neg (NON), \Rightarrow (IMPLICATION), \Leftrightarrow (EQUIVALENCE)

```
Ex: ((a \lor b) \land \neg b) \lor c
```

```
<u>Solution:</u> 1) (a, b, c) = (true, false, false)
2) (a, b, c) = (false, false, true)
```

Problème SAT

- Boolean SATisfiability problem
- Déterminer s'il existe une assignation de valeur pour rendre la formule vraie.
- Formule booléenne : tester assignation
- Solveurs prennent les expressions en Forme Normale Conjonctive
- Pas d'imbrications, pas de NON devant une formule

<u>Ex:</u>

```
A \land B, A \lor B, (A \lor B) \land C (FNC)

\neg (A \land B) \text{ et } A \land (B \lor (C \land D)) (pas FNC)
```

Et pour les nombres ?

- Remplacer booléens par des prédicats selon une théorie
- C'est ce qu'on appelle la Satisfiability Modulo Theories (SMT)

Ex:

"Si x < 5, alors y = x + 3" :
$$x < 5 \land y = x + 3$$

Et pour les nombres ?

Dans un programme C:

```
if ( x < 5)

y = x + 3

else => (x < 5 \land y = x + 3) \lor (x \ge 5 \land y = x + 2)

y = x + 2
```

Pour trouver une solution

- Hypothèse valide
- Propager les conséquences
- Si absurdité, hypothèse contestée

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

<u>Hypothèse:</u> plus petit chiffre disponible, pas présent dans la ligne. Puis on teste sur la colonne.

1	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

1	2	3		2		6	
9			3		5		1
		1	8		6	4	
		8	1		2	9	
7							8
		6	7		8	2	
		2	6		9	5	
8			2		3		9
		5		1		3	

1	3	3		2		6	
9			3		5		1
		1	8		6	4	
		8	1		2	9	
7							8
		6	7		8	2	
		2	6		9	5	
8			2		3		9
		5		1		3	

1	4	3		2		6	
9			3		5		1
		1	8		6	4	
		8	1		2	9	
7							8
		6	7		8	2	
		2	6		9	5	
8			2		3		9
		5		1		3	

1	4	3	5	2	7	6	8	9
9			3		5			1
		1	8		6	4		
		8	1		2	9		
7								8
		6	7		8	2		
		2	6		9	5		
8			2		3			9
		5		1		3		

1	4	3	5	2	7	6	9	8
9			3		5			1
		1	8		6	4		
		8	1		2	9		
7								8
		6	7		8	2		
		2	6		9	5		
8			2		3			9
		5		1		3		

4	8	3	9	2	1	6	5	7
9	6	7	3	4	5	8	2	1
2	5	1	8	7	6	4	9	3
5	4	8	1	3	2	9	7	6
7	2	9	5	6	4	1	3	8
1	3	6	7	9	8	2	4	5
3	7	2	6	8	9	5	1	4
8	1	4	2	5	3	7	6	9
6	9	5	4	1	7	3	8	2

Brute force

Comment résoudre le problème ?

- Or-Tools
- Programmation par contraintes (variables, contraintes, domaines)
- Filtrage
- Propagation
- Backtracking

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7						8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

Programmation Par Contrainte

Variables: Chacun des 81 cases de la grille

<u>Contraintes:</u> 1 occurrence d'un chiffre par colonne, ligne et cellule.

<u>Domaines:</u> {1, 2, 3, 4, 5, 6, 7, 8, 9}

	3		2		6	
9		3		5		1
	1	8		6	4	
	8	1		2	9	
7				X		8
	6	7		8	2	
	2	6		9	5	
8		2		3		9
	5		1		3	

Programmation Par Contrainte

Variables: Chacun des 81 cases de la grille

<u>Contraintes:</u> 1 occurrence d'un chiffre par colonne, ligne et cellule.

<u>Domaines:</u> {1, 2, 3, 4, 5, 6, 7, 8, 9}

Exemple: La case avec la croix rouge X

$$D(X) = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} = D(X) = \{4\}$$

Problème des 4-Queens

<u>Variable:</u> Q_i où i est la colonne

<u>Domaine:</u> $D_i = \{1, 2, 3, 4\}$ (*ligne*)

Contraintes:

 $Q_i \neq Q_j$ (pas sur la même ligne) $|Q_i - Q_j| \neq |i - j|$ (pas sur la même diagonale)

Problème des 4-Queens

<u>Solution:</u> S1 = (Q_3, Q_1, Q_4, Q_2)

<u>Solution:</u> S2 = (Q_2, Q_4, Q_1, Q_3)

Modélisation

- Les contraintes du Sudoku

Soit x une valeur d'une case du Sudoku. x s'identifie par le triplet $(x_i, x_i, Région_x)$.

On a:

$$\forall (x,y), x = y \land (x_i = y_i) \land (x_j = y_j) \land (Région_x = Région_y)$$
 (F)

$$\Leftrightarrow$$

$$\forall x, \exists y, x = y \land (x_i = y_i) \lor (x_j = y_j) \lor (Région_x = Région_y)$$

Arbre de recherche:

$$x \in (F) \{1, 2, ..., 9\}$$

Parcours en profondeur

Principe de OR-Tools

Principe de OR-Tools

Exemple

```
\{ \{0, 0, 3, 0, 2, 0, 6, 0, 0 \},
                                                                              483921657
 \{9, 0, 0, 3, 0, 5, 0, 0, 1\},\
                                                                              967345821
 \{0, 0, 1, 8, 0, 6, 4, 0, 0\},\
                                                                              251876493
 \{0, 0, 8, 1, 0, 2, 9, 0, 0\},\
                                                                              548132976
                                             Solveur Or-Tools
 \{7, 0, 0, 0, 0, 0, 0, 0, 8\},\
                                                                             729564138
                                                                              136798245
 \{0, 0, 6, 7, 0, 8, 2, 0, 0\},\
 \{0, 0, 2, 6, 0, 9, 5, 0, 0\},\
                                                                              372689514
                                                                              814253769
 \{8, 0, 0, 2, 0, 3, 0, 0, 9\},\
                                                                              695417382
 \{0, 0, 5, 0, 1, 0, 3, 0, 0\}
                                                                              Solutions: 1
                                                                              Failures: 0
                                                                              Branches: 0
                                                                              Wall time: 16ms
```

Plan du Cahier des Charges

- Objectifs
 - A) A propos du Sudoku
 - B) A propos du solveur SMT
- II. Présentation du problème posé
 - A) Modélisation
 - B) Résolution
- III. Evaluation
 - A) Comparaison avec d'autres solveurs

Questions?

Merci!

Nous contacter:

david.toty@etu.upmc.fr maxime.tran@etu.upmc.fr

