// Building a

Recommendation Engine

agenda

- 1. an introduction to recommendation engines & how they work (three types!)
- 2. how can we code a recommendation engine?

// part 1: an introduction to recommendation engines

types of recommendation engines, and why????

- why do we need recommendation engines + what are some examples?

types of recommendation engines, and why????

- why do we need recommendation engines + what are some examples?
- three main types of recommendation engines:
 - a. non-personalized
 - b. content-based
 - c. collaborative filtering

non-personalized recommendation engines

content-based recommendation engines

- makes recommendations based on an item's **features**

movies	Genre	Actor	Director	Year	IMDB	Rotten Tomatoes	
1							
2							
3							
4							
5							

- euclidean distance
- jaccard index
- cosine similarity

movies	Genre	Actor	Directo r	Year	IMDB	Rotten Tomato es	
1							
2							
3							
4							
5							

- euclidean distance
- jaccard index
- cosine similarity

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

- euclidean distance
- jaccard index
- cosine similarity

- euclidean distance
- jaccard index
- cosine similarity

Cosine Similarity

- Now that we have learned how to calculate distance metrics, how do we calculate that for documents?
- Two options:
 - Bag of words
 - tf-idf

- Now that we have learned how to calculate distance metrics, how do we calculate that for documents?
- Two options:
 - Bag of words
 - tf-idf

Example:

- 1. "I love dogs"
- 2. "Dogs are awesome pets"
- 3. "I have four pets, two dogs, a guinea pig, and a cat, and i love them" \rightarrow

i	love	dogs	are	awes ome	pets	have	four	two	а	guine a	pig	cat
1	1	1	0	0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	0	0	0	0	0	0	0
2	1	1	0	0	1	1	1	1	2	1	1	1

- Now that we have learned how to calculate distance metrics, how do we calculate that for documents?
- Two options:
 - Bag of words
 - Tf-idf
 - TF: Term Frequence:

TF(t) = (Number of times term t appears in a document) / (Total number of terms in the document).

- IDF: Inverse Document Frequency:
 - IDF(t) = log_e(Total number of documents / Number of documents with term t in it)
- TF-IDF = TF * IDF

- Now that we have learned how to calculate distance metrics, how do we calculate that for documents?
- Documents will then be turned into tf-idf matrix, where each document is an observation, and each column represent a token
- Each document can then be represented as a vector in an n dimensional space, where n stands for number of tokens
- We can then calculate a cosine similarity matrix of p x p, where p is the number of documents

content-based recommendation engines

- what are some pros and some pitfalls of content-based recommendations?

Chinese Money Plant Pass It On Plant - UFO
Plant - Pilea
peperomioides -4" Pot
☆☆☆☆☆ 184
\$8.61

Dolphin Plant - Senecio Peregrinus - Extremely Rare - Live Plant Rooted in 2.5X 3.5 inch Pot - Dolphin Necklace 会会会会 1 \$55.00

8 Hardy Succulent Variety Pack | 2" | Hens & Chicks | Chick Charms | Fairy Garden | Live Plants 1 offer from \$15.99

Chinese Money Plant -Pass It On Plant -Pilea peperomioides-3" Clay Pot/Saucer 会會會會 10 \$9.99

Shop Succulents Crassula Ovata 'Jade' 2In Plant Kit ☆☆☆☆☆ 2 \$14.99 ✓prime

Succulent 3-Pack/2.0" Pot/Live Home and Garden Plants/Free Care Guide 会會會會 1 \$9.99

collaborative filtering

- recommends items based on ratings of other users
- different ways to do collaborative filtering:
 - Memory-based(aka neighborhood based):
 - Item-item similarity
 - User-user similarity
 - model-based: Singular Vector Decomposition (SVD)

collaborative filtering -- the utility matrix

- a utility matrix shows user ratings of different items

- the idea is to fill in the blanks

	Movie 1	Movie 2	Movie	Movie N
User 1	1	BLANK	BLANK	3
User 2	BLANK	5	BLANK	3
User 3	BLANK	BLANK	1	BLANK
User 4	2	3	BLANK	BLANK
User 5	BLANK	BLANK	1	BLANK
User 6	4	BLANK	5	BLANK
User 7	BLANK	4	BLANK	BLANK
User	BLANK	3	BLANK	BLANK
User m	BLANK	BLANK	BLANK	4

	Movie 1	Movie 2	Movie	Movie N
User 1	1	4	2	3
User 2	1	5	3	3
User 3	2.5	2.8	1	3.5
User 4	2	3	2	3.5
User 5	2.5	2.8	1	3.1
User 6	4	1.2	5	1.4
User 7	1	4	2.5	3
User	2	3	2	3
User m	1	4	2	4

user-user collaborative filtering

filling up the utility matrix based on user similarities

to get recommendations for user X:

- 1. get user similarity values
- 2. the predicted rating for item A is a weighted average of others' ratings

	U1	U2	U3	U4
I1	4	2	3	5
12	3	2	4	2
13	?	4	5	4
14	3	2	4	4

cos	U1		
U2	0.65		
U3	0.76		
U4	0.83		
sum = 2.24			

item-item collaborative filtering

filling up the utility matrix based on item similarities

to get recommendations for user X:

- 1. get ITEM similarity values
- 2. the predicted rating for item A is a weighted average of other items

	U1	U2	U3	U4
I1	4	2	3	5
12	3	2	4	2
13	?	4	5	4
14	3	2	4	4

cos	13			
11	0.78			
12	0.83			
14	0.87			
sum = 2.48				

user-user vs item-item

which is better?????

- in general, item-item has proven to be more effective
- it's hard to predict users' unique tastes

time complexity (for **m** users and **n** items)

- user-user: O(m²n)
- item-item: O(mn²)
- which would be faster if **m > n** (more users than items)?

model-based collaborative filtering

singular value decomposition:

- another way to fill in the utility matrix via matrix factorization

modified SVD in recommendation engines:

- breaks down the utility matrix into a user matrix and an item matrix
- the other dimensions are latent features
- gradient descent using Alternating Least Squares to preserve the relationship between items and between users (parallelizable)

very math, but best-in-class models use some form of SVD

SVD for filling in utility matrices

	U1	U2	U3	U4
l1	4	2	3	5
12	3	2	4	2
13	?	4	5	4
14	3	2	4	4

l1	×	×
12	×	×
13	×	×
14	×	×

U1	U2	U3	U4
×	×	×	×
×	×	×	×

collaborative filtering -- pros and cons

- personalized for each user!
- computationally heavy
- popularity bias
- the **cold start** problem

stuff we've learned

recommendation engines!!!

1. non-personalized		
2. content-based		
collaborative filtering	memory-based	3. user-user
		4. item-item
	model-based	5. SVD

// part 2: coding our own recommendation engine!

stuff we've learned

recommendation engines!!!

- 1. non-personalized
- 2. content-based
- 3. model-based collaborative filtering with SVD

code-along: https://github.com/jessicafangfanglee/hotel-recommendation