4. (Random children)

- (a) Solution: Let C, B, G denote the RVs the total number of children, the total number of boys, and the total number of girls the couple will have respectively. Then $C \sim Geom(1/2)$, and $\mathbb{E}(C) = 1/(1/2) = 2$. Since the couple will end until they have a girl, thus, $\mathbb{E}(G) = 1$. $\mathbb{E}(B) = \mathbb{E}(C) \mathbb{E}(G) = 2 1 = 1$. Thus, both the expected number of girls and boys are 1.
- (b) Solution: If the probability of having a girl is only 0.4. Then $C \sim Geom(0.4)$, and $\mathbb{E}(C) = 1/(0.4) = 2.5$, and $\mathbb{E}(G) = 1$. Then $\mathbb{E}(B) = \mathbb{E}(C) \mathbb{E}(G) = 2.5 1 = 1.5$.
- (c) Solution: Let C_1 , B_1 , G_1 denote the RVs the total number of children, the total number of boys, and the total number of girls the couple will have respectively following the new rule and p the probability of having a girl.

We can construct other variables C_2 , B_2 and G_2 which denote the additional children the couple would have if they follow the old rule.

$$C = C_1 + C_2 \tag{1}$$

$$B = B_1 + B_2 \tag{2}$$

$$G = G_1 + G_2 \tag{3}$$

$$C_1 = B_1 + G_1 \tag{4}$$

$$C_2 = B_2 + G_2 (5)$$

$$C = B + G \tag{6}$$

Note that $C_2 \sim Geom(p)$ happens with probability $(1-p)^k$ which is denote by Pr[C>k] otherwise $C_2=0$.

$$\mathbb{E}(B_1) = \mathbb{E}(B) - Pr[C > k] \mathbb{E}(B_2)$$

$$= (1/p - 1) - (1 - p)^k (1/p - 1)$$

$$= [1 - (1 - p)^k] (1/p - 1)$$
(7)

Similarly, for the expected number of girls, G_1 , under the new rule,

$$\mathbb{E}(G_1) = \mathbb{E}(G) - Pr[C > k] \mathbb{E}(G_2)$$

$$= 1 - (1 - p)^k 1$$

$$= 1 - (1 - p)^k$$
(8)

If we plug in the value p = 0.5 to (7) and (8) respectively, we obtain the expected number of boys to be $1 - (1/2)^k$, and the expected number of girls to be $1 - (1/2)^k$.

(d) We plug in the value p = 0.4 to (7) and (8) respectively, we obtain the expected number of boys to be $1.5(1-0.6^k)$, and the expected number of girls to be $1-0.6^k$.