Задание 3. Теплоёмкость процесса.

В задаче рассматриваются равновесные процессы, проходящие с одним молем идеального газа. Поэтому все характеристики состояния газа и происходящих процессов являются «молярными» - молярный объем, молярные теплоемкости и т.д.

<u>Математическая подсказка.</u> Если аргумент функции $y = ax^m$ изменяется на малую величину Δx , то изменение функции равно $\Delta y = amx^{m-1}\Delta x$, при любом показателе степени.

Часть 1. Политропические процессы.

Теплоемкость является характеристикой процесса. Процессы, в ходе которых теплоемкость остается постоянной, называются **политропическими**. В общем случае уравнение политропического процесса имеет вид

$$PV^{n} = const, (1)$$

где n - постоянное число (не обязательно целое), называемое **показателем политропы.**

3.1.1 Покажите, что теплоемкость идеального газа в произвольном процессе определяется уравнением

$$C = C_V + P \frac{\Delta V}{\Lambda T},\tag{2}$$

где C_V - теплоемкость газа при изохорном процессе, ΔV изменение объема газа в рассматриваемом процессе при малом изменении температуры ΔT .

- 3.1.2 Покажите, что в процессах, описываемых уравнением (1) теплоемкость остается постоянной. Найдите теплоемкость одного моля идеального одноатомного газа в политропическом процессе (1), т.е. установите связь между молярной теплоемкостью C и показателем политропы n.
- 3.1.3 Укажите значения молярной теплоемкости C и соответствующего ей показателя n в известных процессах. Результаты представьте в следующей таблице.

No	Процесс	Молярная теплоемкость С	Показатель п
1	Изобарный		
2	Изотермический		
3	Изохорный		
4	Адиабатный		

Часть 2. «Разорванный» цикл.

Один моль идеального одноатомного газа совершает циклический процесс, в котором теплоемкость зависит от температуры в соответствии с графиком, приведенном на рис. 1. Здесь $T_0 = 300\,K$ - температура газа в состоянии 1;

$$R=8,31\frac{\mathcal{A}\mathcal{H}}{\mathit{моль}\cdot K}$$
 - универсальная газовая постоянная.

- 3.2.1 Изобразите этот цикл на диаграмме $\left(\frac{P}{P_0}, \frac{V}{V_0}\right)$, где P_0, V_0 давление и объем газа в состоянии 1.
- 3.2.2 Рассчитайте работу газа за весь цикл.
- 3.2.3 Найдите термический КПД цикла.
- 3.2.4 Предложите простое устройство, в котором реализуется процесс 1-2.