Prescriptive Analytics - HW 4

Saundarya Badhrinathan, Nabeel Ahmed, Divya Chandramohan, Uttara Thiagarajan, Megan Mugavero

- 1. Readings completed
- 2. Dijkstra's algorithm:

Node	Distance	Route
1-2	4	1-2
1-3	5	1-3
1-4	2	1-4
1-5	6	1-4-5
1-6	11	1-3-6
1-7	13	1-3-6-7

3. Initial Feasible Solution:

	Х		Υ		Z		Supply
A	40,000	11		5		8	40,000
В	50,000	8	50,000	9		12	100,000
С		13	10,000	10	70,000	7	80,000
Demand	90,000		60,000		70,000		220,000

Total Transportation Cost:

$$(11*40,000)+(8*50,000)+(9*50,000)+(10*10,000)+(7*70,000)=\$1,880,000$$

Evaluation:

$$R1 + K1 = 11$$
 $R1 = 0$ $K1 = 11$ $R2 + K1 = 8$ $R2 = -3$ $R2 + K2 = 9$ $K2 = 12$ $R3 + K2 = 10$ $R3 = -2$ $R3 + K3 = 7$ $K3 = 9$

A-Y = 5 -
$$(0 + 12) = -7$$

A-Z = 8 - $(0 + 9) = -1$
B-Z = 12 - $(-3 + 9) = 6$
C-X = 13 - $(-2 + 11) = 4$

Improvement in Optimality:

	X		Y		Z		Supply
A		11	40,000	5		8	40,000
В	90,000	8	10,000	9		12	100,000
С		13	10,000	10	70,000	7	80,000
Demand	90,000		60,000		70,000		220,000

Evaluation:

$$R1 + K2 = 5$$
 $R1 = 0$ $K2 = 5$ $R2 + K1 = 8$ $K1 = 4$ $R2 + K2 = 9$ $R3 + K2 = 10$ $R3 = 5$ $K3 = 7$

A-X = 11 -
$$(0 + 4) = 7$$

A-Z = 8 - $(0 + 2) = 6$
B-Z = 12 - $(4 + 2) = 6$
C-X = 13 - $(5 + 4) = 4$

Optimal solution achieved since all evaluations are zero or positive.

The optimal shipping schedule is given below.

From	То	Shipment
A	Y	40,000
В	X	90,000
В	Y	10,000
С	Y	10,000
С	Z	70,000

Minimum Total Transportation Cost:

$$(5*40,000)+(8*90,000)+(9*10,000)+(10*10,000)+(7*70,000) = \$1,600,000$$

4. Decision variables:

Let x be the number of drums produced.

Let y be the number of gallons produced for bulk-orders.

MILP:

Solver Solution:

Objective Cell (Max)

Cell	Name	Original Value	Final Value
\$E\$6	Max Z	0	2965.085227

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$C\$5	Α	0	47	Integer
\$D\$5	В	0	492.0681818	Contin

Constraints

Cell	Name	Cell Value	Formula	Status	Slack
\$E\$8		1000) \$E\$8<=\$G\$8	Binding	0
\$E\$9		749.5270455	\$E\$9<=\$G\$9	Not Binding	0.472954545
\$E\$10		44.59272727	\$E\$10<=\$G\$10	Not Binding	35.40727273
\$C\$5=Integer					

The optimal solution is producing 47 drums and 492.0681 gallons of the termite spray. This will maximize revenue at \$2965.08.

5. Greedy Algorithm:

Minimum Distance = 4.15

6. Ford-Fulkerson Algorithm:

Path	Capacities	Minimum Capacity
Entry - 1 - 2 - 3 - Exit	5, 6, 5, 6	5
Entry - 4 - 1 - 2 - 5 - Exit	10, 3, 1, 5, 7	1
Entry - 4 - 5 - Exit	9, 3, 6	3
Entry - 6 - 7 - 8 - Exit	7, 9, 6, 7	6
Entry - 6 - 9 - 8 - Exit	1, 3, 5, 1	1

Maximum Flow:

$$(5+10+7+11) - (0+6+0+11) = (9+4+7) - (4+0+0)$$

Gas capacity of **16,000** cubic feet per minute.