BodyFat Analysis

Xi He, Cecily Liu, Fang Wang

May 2, 2018

- Data preprocessing: EDA, datacleaning
- Statistical Modeling:
 - Multiple Linear Regression
 - Variable Selection: stepwise method
 - Model Diagnosis
 - Lasso
- Model selection:
 - ► Make predictions on validation set and choose the best model (the one with smallest mse)
- Model Interpretation, "rule of thumb"
- Strengths and weaknesses

Explore the data

IDNO	BOD	YFAT	DENS	ITY .	AGE	WEIG	HT HE	SHT /	ADIPOSITY	NECK	CHE	ST ABI	OMEN	HIP	THIGH	KNEE	ANKL	E BIC	EPS F	OREARM	WRIS	ST.
1		12.6 1.0708		708	23	154	.25 6	7.75	23.7	36.2	93.1		85.2	85.2 94.5	59.0	37.3	21	21.9 32.0		27.4	17	1.1
2		6.9	9 1.0853		22	173	3.25 7	2.25	23.4	23.4 38.5		93.6		98.7	58.7	37.3	23	.4 :	30.5	28.9	18	1.2
3		24.6	1.0	1.0414		154	.00 6	6.25	24.7	34.0	95.8		87.9	99.2	59.6	38.9	24.0	.0 2	28.8	25.2	16	.6
4		10.9	9 1.0751		26	184	1.75 7	2.25	24.9	37.4	37.4 101.8		86.4	101.2	60.1	37.3	22	.8 3	32.4		29.4 18.2	
5		27.8	27.8 1.03		340 24		.25 7	1.25	25.6	34.4 9		7.3	100.0	101.9	63.2	42.2	24	.0 :	32.2	27.7	27.7 17.7	
6		20.6	1.05	502	24	210	0.25 7	4.75	26.5	39.0	104	4.5	94.4	107.8	66.0	42.0	25	.6	35.7	30.6	18	1.8
	IDNO	BODY	FAT I	DENS	ITY	AGE	WEIGHT	HEIG	HT ADIPO	SITY	NECK	CHEST	ABDO	MEN	HIP 1	нын	KNEE	ANKLE	BICER	PS FORE	ARM	WRIST
247	247	2	29.1 1.03		308	69	215.50	70	.50	30.5	40.8	113.7		107.6	110.0	63.3	44.0	22.6	37	7.5	32.6	18.8
248	248	- 1	11.5	1.0	736	70	134.25	67	.00	21.1	34.9	89.2		83.6	88.8	49.6	34.8	21.5	25	5.6	25.7	18.5
249	249		32.3	1.0	236	72	201.00	69	.75	29.1	40.9	108.5		105.0	104.5	59.6	40.8	23.2	35	5.2	28.6	20.1
250	250		28.3	1.0	328	72	186.75	66	.00	30.2	38.9	111.1		111.5	101.7	60.3	37.3	21.5	31	1.3	27.2	18.0
251	251	2	25.3	1.0	399	72	190.75	70	.50	27.0	38.9	108.3		101.3	97.8	56.0	41.6	22.7	30	0.5	29.4	19.8
252	252		30.7	1.0	271	74	207.50	70	.00	29.8	40.8	112.4		108.5	107.1	59.3	42.2	24.6	33	3.7	30.0	20.9

Data Cleaning

We decide to remove 3 points for further analysis:

The one with BODYFAT=0; the one with HEIGHT=29.5 inches (only 75cm tall); the one with WEIGHT=363.15 pounds

Variable Selection

- Divide the whole data into train (80%) and validation (20%) set
- Train set: Use several different methods to choose the best subset of variables
- 1.Mallow's Cp: leaps() in R (do an exhaustive search)
- 2. Stepwise regression based on AIC
- 3. Stepwise regression based on BIC
- ▶ Validation set: See if the models generalize well on unseendata

```
## Model
MSE ## 1
Mallow's Cp 15.069
```

```
##2 AIC14.702
##3 BIC13.989
```

BIC results

Start:

```
> model.BIC <- step(model, k=log(249))
Start: AIC=624.5
BODYFAT ~ AGE + WEIGHT + HEIGHT + ADIPOSITY + NECK + CHEST +
ABDOMEN + HIP + THIGH + KNEE + ANKLE + BICEPS + FOREARM +
WRIST
```

```
Df Sum of Sq
                             RSS
                    0.16 3002.1 618.99
- KNEE
                    6.13 3008.1 619.39
- BICEPS
- NECK
                    6.38 3008.3 619.41
                   11.80 3013.7 619.77
- CHEST
                   15.46 3017.4 620.01
- HIP
- ANKLE
                   20.35 3022.3 620.33
                   20.53 3022.4 620.35
- FOREARM
                   25.75 3027.7 620.69
- THIGH
                   32.21 3034.1 621.12
- HEIGHT
                   38.57 3040.5 621.54
- AGE
- ADIPOSITY
                   42.18 3044.1 621.77
- WEIGHT
                   47.07 3049.0 622.09
                         3001.9 624.50
<none>
                  121.38 3123.3 626.91
- WRIST
- ABDOMEN
                 1117.80 4119.7 682.29
```

End:

```
Step: AIC=576.93
BODYFAT ~ WEIGHT + ABDOMEN + WRIST

Df Sum of Sq RSS AIC

<none> 3205.4 576.93
- WRIST 1 121.7 3327.1 578.86
- WEIGHT 1 138.9 3344.3 579.89
- ABDOMEN 1 3348.7 6554.1 714.46
```

Variables selected by BIC:

At this point, we come up with a multiple linear regression:

► Bodyfat ~ Abdomen + Wrist + Weight

Model Diagnosis

Adjusted R-squared for the final model: 0.7175

Linear regression assumptions?

Another approach: Lasso

$$\min_{\beta} (y_i - \beta_0 - \beta_1 x_i - \dots - \beta_{p p}) \qquad x)^2 + \lambda \qquad \sum_{j=1}^{p} \beta_j$$

Conclusion

Our proposed linear model to predict body fat %:

```
(BodyFat %)=
-23.794+0.852×Abdomen-1.258×Wrist-0.073×Weight
```

- Possible rule of thumb:
 - Your % Bodyfat =
 - Your abdomen circumference (cm) ×0.9
 - minus wrist circumference (cm) ×1.3
 - minus weight (lbs) ×0.1
 - minus 24
 - ► For a normal graduate male student, with circumferences: Abdomen=85cm, Wrist=18cm, Weight=130lbs, his predicted body fat percentage would be around 16.43%. There is a 95% probability that his body fat is between 8.26% and 24.59%.

Strengths and Weaknesses

- Strengths
- 1. Use a separate validation set to avoid overfitting
- 2. Simple, easy to interpret
- Weaknesses
- 1. May lose information using only 200 data points
- 2.Trade off between simplicity and precision