

Sequential Data

BOSTON UNIVERSITY
MACHINE INTELLIGENCE
COMMUNITY

https://deepjazz.io/

Brief Recap: Neural Network Architectures

- Feedforward Networks take the weighted sum of inputs passed through a nonlinear activation function to learn patterns within the data.
- Convolutional Neural Networks perform local convolutions of the input data with a kernel to learn spatial patterns within a data sample.

Sequential Data Patterns

- Convolutional and Feedforward networks are agnostic to input order
 - Only localized/relative patterns within a single input are learned
 - To learn relationships across a sequence of inputs, we need to keep track of state

Conditional Probability

Say we want to predict the next word in a sentence.

The color of the bus is _____.

- What is the probability of a word?
 - P(yellow)
- What is the probability of a word given the previous words?
 - P(yellow | the color of the bus is)

Recurrent State Update

RNN Cell

Perceptron

RNN Cell

RNN Cell

RNN Cell

$$s_t = f(s_{t-1}, x_1, x_2, \dots, x_t, \phi)$$
 $\dot{s}_t = tanh(\hat{Ux} + \hat{Ws}_{t-1})$ $\hat{y} = softmax(\hat{Vs}_t)$

Matrix Representation

Forward Pass

- Similar to forward pass for feedforward network
 - Weight sharing/tying: weights are shared across all time steps

Backpropagation Through Time (BPTT)

Target matrix

$$y = \begin{bmatrix} y_1 & y_2 & \dots & y_t \end{bmatrix}$$

Loss function for single time step

$$E_t(y_t, \hat{y_t}) = -y_t \log \hat{y_t}$$
 Cross entropy loss

Loss function across all time steps

$$E(y,\hat{y}) = \sum_t E(y_t,\hat{y_t})$$

$$E_t(y_t, \hat{y}_t) = -y_t \log \hat{y}_t$$
 $s_t = tanh(Ux + Ws_{t-1})$ $\hat{y} = softmax(Vs_t)$

$$s_t = tanh(Ux + Ws_{t-1})$$

$$\hat{y} = softmax(Vs_t)$$

$$\frac{\partial E_t}{\partial V}$$

 ∂E_t

 ∂E_t

$$E_t(y_t, \hat{y}_t) = -y_t \log \hat{y}_t$$
 $s_t = tanh(Ux + Ws_{t-1})$ $\hat{y} = softmax(Vs_t)$

$$s_t = tanh(Ux + Ws_{t-1})$$

$$\hat{y} = softmax(Vs_t)$$

$$\frac{\partial E_t}{\partial V}$$

$$E_t(y_t, \hat{y_t}) = -y_t \log \hat{y_t}$$

$$E_t(y_t, \hat{y}_t) = -y_t \log \hat{y}_t$$
 $s_t = tanh(Ux + Ws_{t-1})$ $\hat{y} = softmax(Vs_t)$

$$\hat{y} = softmax(Vs_t)$$

$$\frac{\partial E_t}{\partial V} = \frac{\partial E_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial V s_t} \frac{\partial V s_t}{\partial V}$$
$$= (\hat{y}_t - y_t) \otimes s_t$$

$$E_t(y_t, \hat{y_t}) = -y_t \log \hat{y_t}$$

$$s_t = tanh(Ux + Ws_{t-1})$$

$$s_{t-1} = tanh(Ux + Ws_{t-2})$$

$$\frac{\partial E_t}{\partial U}$$

$$\hat{y} = softmax(Vs_t)$$

$$E_t(y_t, \hat{y}_t) = -y_t \log \hat{y}_t$$

$$E_t(y_t, \hat{y}_t) = -y_t \log \hat{y}_t$$
 $s_t = tanh(Ux + Ws_{t-1})$

$$s_{t-1} = tanh(Ux + Ws_{t-2})$$

$$\frac{\partial E_t}{\partial U} = \sum_{k=0}^t \frac{\partial E_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial s_t} \frac{\partial s_t}{\partial s_k} \frac{\partial s_k}{\partial U}$$

$$\hat{y} = softmax(Vs_t)$$

$$E_t(y_t, \hat{y_t}) = -y_t \log \hat{y_t}$$

$$s_t = tanh(Ux + Ws_{t-1})$$

$$\hat{y} = softmax(Vs_t)$$

$$\frac{\partial E_t}{\partial U} = \sum_{k=0}^t \frac{\partial E_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial s_t} \frac{\partial s_t}{\partial s_k} \frac{\partial s_k}{\partial U}$$

$$\frac{\partial E_t}{\partial W} = \sum_{k=0}^t \frac{\partial E_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial s_t} \frac{\partial s_t}{\partial s_k} \frac{\partial s_k}{\partial W}$$

$$\begin{split} \frac{\partial s_t}{\partial s_k} &= \frac{\partial s_4}{\partial s_1} = \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial s_1} \\ &= \frac{\partial s_4}{\partial s_3} \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial s_1} \\ \end{split}$$

$$E_t(y_t, \hat{y_t}) = -y_t \log \hat{y_t}$$

$$s_t = tanh(Ux + Ws_{t-1})$$

$$\hat{y} = softmax(Vs_t)$$

$$\begin{split} \frac{\partial E_t}{\partial W} &= \sum_{k=0}^t \frac{\partial E_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial s_t} \frac{\partial s_t}{\partial s_k} \frac{\partial s_k}{\partial W} \\ &= \sum_{k=0}^t \frac{\partial E_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial s_t} \bigg(\prod_{i=k+1}^t \frac{\partial s_j}{\partial s_{j-1}} \bigg) \frac{\partial s_k}{\partial W} \end{split}$$

Gradient update

Architecture: Single Cell

A single RNN Cell can function as a complete network

Architecture: Single Cell

One to one: Character/sentence generation

One to many: Image captioning

Many to one: Sentiment analysis

Many to many: Sentence translation

Architecture: Stacked RNNs

- Network learns hierarchical relationships through time
- Example: Word generation

Layer 3 *Word Discrimination*

Layer 2 *Two letter combinations*

Layer 1 *Vowels vs Consonants*

RNN example

```
>> import torch.nn as nn
>> cell = nn. RNNCell (10, 20,
nonlinearity='relu')
>> cell
RNNCell(10, 20, nonlinearity=relu)
>> net = nn. RNN (400, 10, 3)
>> net
```

```
>> import torch.nn as nn
>> cell = nn. LSTMCell (10, 20,
nonlinearity='relu')
>> cell
LSTMCell(10, 20,
nonlinearity=relu)
```

```
>> net = nn.LSTM(20, 20, 1)
RNN(400, 100, 3)
                                           >> net
                                           RNN (20, 20, 1)
                                           >>
```


>>

Sigmoid/Tanh Gradient

- As the value of sigmoid and tanh function is close to 0 or 1, the derivative approaches 0.
- What happens when the gradient is backpropagated?

Vanishing & Exploding Gradients

Vanishing Gradient

$$\lim_{x\to\infty}0.5^x=0$$

As the product of partial derivatives approaches zero, the gradient vanishes.

Exploding Gradient

$$\lim_{x \to \infty} 1.5^x = \infty$$

As the product of partial derivatives approaches infinity, the gradient explodes.

$$\frac{\partial E_t}{\partial W} = \sum_{k=0}^t \frac{\partial E_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial s_t} \left(\prod_{j=k+1}^t \frac{\partial s_j}{\partial s_{j-1}} \right) \frac{\partial s_k}{\partial W}$$

Learning Long-term Dependencies

 Vanishing & Exploding gradients prevent vanilla RNNs from effectively learning patterns between inputs many time steps apart

Solutions:

- 1. Orthogonal weight initialization
- 2. Modify the activation function
- 3. Modify the way gradients are propagated

Orthogonal initialization

- In an orthogonal matrix, the rows and columns are orthonormal to each other.
 - Encourages weights to learn different input features
 - They are norm-preserving, i.e. ||Wx|| = ||x||

Rectified Linear Units

ReLUs can help deal with the vanishing gradient problem

LSTM Network

- Long Short Term Memory
 - Extension of RNN cells to handle vanishing gradients
- Key Concepts
 - Memory Cell A representation of all the LSTM's knowledge
 - Hidden State A specific part of memory that the LSTM outputs
 - Gates Interface that controls what is added and deleted from memory

Memory Example

The color of the bus is _____.

Gated Memory

How do we control what goes in and out of memory?

Other LSTM Architectures

Birdirectional LSTM

Tree LSTM

Peephole Connections

$$f_{t} = \sigma \left(W_{f} \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_{t}] + b_{f} \right)$$

$$i_{t} = \sigma \left(W_{i} \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_{t}] + b_{i} \right)$$

$$o_{t} = \sigma \left(W_{o} \cdot [\boldsymbol{C_{t}}, h_{t-1}, x_{t}] + b_{o} \right)$$

Gated Recurrent Units (GRUs)

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

CNNs for Video Classification

- Large-scale Video Classification with Convolutional Neural Networks
 - o Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, Li Fei-Fei
 - Modified CNN architecture for capturing temporal relationships

Frames

CNNs for Video Classification cont.

- Beyond Short Snippets: Deep Networks for Video Classification
 - Joe Yue-Hei Ng et al.
 - Comparison of performance of various deep networks on UCF-101 dataset.
 - 13,320 videos
 - 101 types of different actions

Method	3-fold Accu-
	racy (%)
Improved Dense Trajectories (IDTF)s [23]	87.9
Slow Fusion CNN [14]	65.4
Single Frame CNN Model (Images) [19]	73.0
Single Frame CNN Model (Optical Flow) [19]	73.9
Two-Stream CNN (Optical Flow + Image Frames,	86.9
Averaging) [19]	
Two-Stream CNN (Optical Flow + Image Frames,	88.0
SVM Fusion) [19]	
Our Single Frame Model	73.3
Conv Pooling of Image Frames + Optical Flow (30	87.6
Frames)	
Conv Pooling of Image Frames + Optical Flow	88.2
(120 Frames)	
LSTM with 30 Frame Unroll (Optical Flow + Im-	88.6
age Frames)	

Additional Resources

Christopher Olah (Colah) blog:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

WildML newsletter/informational site:

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Sepp Hochreiter's original LSTM paper:

http://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.1997.9.8.1735

Shoutout to our Sponsors

Boston University Computer Science

Boston University SPARK!

Boston University Software Application and Innovation Lab

Upcoming Events

MIC Paper signup: https://goo.gl/iAm6TL
BUMIC Projects signup: https://goo.gl/GmP9oK

BU MIC DRL Series:

Next semester meeting:
Deep Reinforcement Learning Series
Meeting this Thursday 11.9.17 in Hariri

BU MIC reading group:

Paper: Large Scale Distributed Deep Networks

Location: Fishbowl Conference Room

Date: 11.13.17 Time: 5 PM

Next workshop:

Topic: Deep Reinforcement Learning

Location: BU Hariri Seminar Room

Date: 11.14.17 Time: 7 PM

