Series de Tiempo

Econometría Profesor Ricardo Pasquini

Producto Bruto Per Cápita Países seleccionados (1960- 2018) Serie Anual

Bitcoin - Precio por USD- Serie Diaria

Pasajeros molinete línea de Subte (Ene-Feb 2020) Serie cada 15 minutos

Cotización acción IBM por minuto (2-8/1 1998)

Componentes: Tendencia

Índice de Precios Argentina (2016-2020) Serie Mensual

Componentes: Tendencia

Componentes: Seasonality / Estacionalidad

Estimador Mensual de la Producción Argentina (EMAE) (1993-2013)

Componentes: Seasonality / Estacionalidad

Pasajeros molinete línea de Subte (Ene-Feb 2020) Serie cada 15 minutos

Componentes: Autocorrelación

Simulando series

 Separamos las series de tiempo en componentes: tendencia, estacionalidad, autocorrelación, ruido

 Para poder ajustar los componentes respectivos con un modelo, es útil comenzar simulando modelos para entender mejor cómo funcionarán.

• Una tendencia lineal

 $tendencia = \alpha + \beta t$

tendencia = 10 + 0.1t

• Una tendencia cuadrática

$$tendencia = \alpha + \beta t^2$$

 $tendencia = 10+0.001t^{2}$

Estacionalidad

estacionalidad =
$$\cos(2\pi \frac{mes}{12})$$

Estacionalidad

Estacionalidad (función coseno)

Tendencia + Estacionalidad

Estacionalidad

estacionalidad =
$$\cos(2\pi \frac{mes}{12})$$

estacionalidad =
$$sen(2\pi \frac{mes}{12})$$

Una expresión más general:

estacionalidad =
$$\gamma * \cos(2\pi \frac{mes}{12}) + \delta * \sin(2\pi \frac{mes}{12})$$

Autocorrelación

$$y_t = 0.8 * y_{t-1} + \varepsilon_t$$

Autocorrelación orden 1 + Shock cada 10 días

Autocorrelación

12

$$y_t = 0.8 * y_{t-1} + \varepsilon_t$$

12

 $y_t = 0.8 * y_{t-5} + \varepsilon_t$

Shocks con autocorrelación orden 1

Shocks con autocorrelación orden 5

Ruido

$ruido_t \sim U[-0.5, 0.5]$

Autocorrelación

-0.6

$$y_t \sim U[-0.5, 0.5]$$

$$y_t = 0.8 * y_{t-1} + \varepsilon_t$$
$$\varepsilon_t \sim U[-0.5, 0.5]$$

-1.5

Autocorrelación

-1.5

$$y_t = 0.8 * y_{t-1} + \varepsilon_t$$
$$\varepsilon_t \sim U[-0.5, 0.5]$$

$$y_t = 0.8 * y_{t-5} + \varepsilon_t$$
$$\varepsilon_t \sim U[-0.5, 0.5]$$

Ruido Autocorrelacionado Orden 1

-1.5

Ajustando tendencia y estacionalidad

- Nuestro propósito es ajustar una serie de tiempo a un modelo.
- Modelamos a la tendencia y a la estacionalidad como componentes determinísticos (no-estocásticos).
- Vamos a tomar como ejemplo el caso del EMAE.

• Para estimar el modelo:

$$y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \varepsilon_t$$

 Necesitamos que el tiempo esté indexado por una variable.

indice_tiempo	EMAE	t	t^2
1993-01-01	87.3897906	1	1
1993-02-01	85.1416464	31	961
1993-03-01	101.928041	59	3,481
1993-04-01	101.89024	90	8,100
1993-05-01	103.674974	120	14,400
1993-06-01	101.242521	151	22,801
1993-07-01	102.478046	181	32,761
1993-08-01	102.003683	212	44,944
1993-09-01	103.307379	243	59,049
1993-10-01	100.702473	273	74,529
1993-11-01	105.246526	304	92,416
1993-12-01	104.99468	334	111,556
1994-01-01	94.9543818	365	133,225
1994-02-01	91.7632249	396	156,816

- Estimamos mediante MCO
- Predicción

$$y_t = \widehat{\beta_0} + \widehat{\beta_1}t + \widehat{\beta_2}t^2$$

Resultados regresión

	Coeficientes	Error típico	Estadístico t	Probabilidad
Intercepción	111.812063	2.06050197	54.2644777	5.81E-140
Т	-0.0088488	0.00124639	-7.0995723	1.3029E-11
T^2	2.9677E-06	1.5796E-07	18.7871091	1.2279E-49

Estacionalidad

 Como primera aproximación modelamos la estacionalidad utilizando las funciones basadas en Seno y coseno.

$$y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 sen\left(\frac{2\pi}{12}mes\right) + \beta_4 cos\left(\frac{2\pi}{12}mes\right) + \varepsilon_t$$

indice_tiemp				
0	mes	EMAE	seno	coseno
1993-01-01	1	87.3897906	0.5	0.8660254
1993-02-01	2	85.1416464	0.8660254	0.5
1993-03-01	3	101.928041	1	6.1257E-17
1993-04-01	4	101.89024	0.8660254	-0.5
1993-05-01	5	103.674974	0.5	-0.8660254
1993-06-01	6	101.242521	1.2251E-16	-1
1993-07-01	7	102.478046	-0.5	-0.8660254

Estacionalidad

 Como alternativa usamos variables dummys para modelar efectos mes-específicos

$$y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \sum_{j=1}^{11} \beta_{mes} dmes + \varepsilon_t$$

indice_tiem	0									
0	mes	EMAE	t t	t^2	d1	d2	d3	d4	d5	d6
1993-01-0	1	1 87.3897906	1	1	1	0	0	0	0	0
1993-02-0	1	2 85.1416464	31	961	0	1	0	0	0	0
1993-03-0	1	3 101.928041	59	3,481	0	0	1	0	0	0
1993-04-0	1	4 101.89024	90	8,100	0	0	0	1	0	0

Autocorrelación

 Definimos la <u>auto</u>correlación como la correlación de una serie consigo misma cuando esta se presenta con un rezago.

$$Corr(y_t, y_{t-1}) = \frac{Cov(y_t, y_{t-1})}{\sqrt{Var(y_t)Var(y_{t-1})}}$$

• El concepto se extiende a cualquier rezago l

$$Corr(y_t, y_{t-l}) = \frac{Cov(y_t, y_{t-l})}{\sqrt{Var(y_t)Var(y_{t-l})}}$$

Calculando autocorrelación

	В	С	
Se	erie de datos (t)	Serie (t-1)	
1/1/2000	0.10821413	-0.4478578	
2/1/2000	-0.4478578	0.38615868	
3/1/2000	0.38615868	0.12150953	
4/1/2000	0.12150953	-0.2441563	
5/1/2000	-0.2441563	0.31369721	
6/1/2000	0.31369721	0.03354672	
7/1/2000	0.03354672	-0.3516055	
8/1/2000	-0.3516055	0.33887105	
9/1/2000	0.33887105	0.19783315	
10/1/2000	0.19783315	-0.2597335	

=Coef.de.Correl(B2:B10, C2:C10)

Correlograma: Ejemplo simulado 1

$ruido_t \sim U[-0.5, 0.5]$

Correlograma Ruido

Correlograma: Ejemplo simulado 2

$$y_t = 0.8 * y_{t-1} + \varepsilon_t$$
$$\varepsilon_t \sim U[-0.5, 0.5]$$

Correlograma: Ejemplo simulado 3

$$y_t = 0.8 * y_{t-5} + \varepsilon_t$$
$$\varepsilon_t \sim U[-0.5, 0.5]$$

Autocorrelacionado Orden 5 + Ruido

Correlograma Ruido

Caso EMAE: Paso 1. Removiendo tendencia y estacionalidad

$$y_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \sum_{j=1}^{11} \beta_{mes} dmes + \varepsilon_t$$

$$\widehat{\varepsilon_t} = y_t - \widehat{y_t} = z_t$$

EMAE sin tendencia ni estacionalidad

Caso EMAE: Paso 2. Autocorrelación

Incluyendo Autocorrelación al Modelo: Modelo Autoregresivo Simple

• Modelo Autoregresivo de Orden 1. AR(1)

$$z_t = \theta_0 + \theta_1 z_{t-1} + \varepsilon_t$$

indice_tiemp			
0	EMAE	Zt	Z t-1
1993-01-01	87.3897906	-10.032786	
1993-02-01			
1993-03-01	101.928041	-11.972484	-13.883853
1993-04-01	101.89024	-13.172196	-11.972484
1993-05-01	103.674974	-16.862718	-13.172196
1993-06-01	101.242521	-11.951195	-16.862718
1993-07-01	102.478046	-10.354031	-11.951195
1993-08-01	102.003683	-9.8009403	-10.354031
1993-09-01	103.307379	-6.4433674	-9.8009403
1993-10-01	100.702473	-9.0249648	-6.4433674
1993-11-01	105.246526	-7.6239132	-9.0249648
1993-12-01	104.99468	-7.6235741	-7.6239132
1994-01-01	94.9543818	0.38813921	-7.6235741

Incluyendo Autocorrelación al Modelo: Modelo Autoregresivo Simple

Modelo Autoregresivo de Orden 1. AR(1)

$$z_t = \theta_0 + \theta_1 z_{t-1} + \varepsilon_t$$

Estadísticas de la regresión		
Coeficiente de correlación múltiple	0.929655416	
Coeficiente de determinación R^2	0.864259193	
R^2 ajustado	0.863714049	
Error típico	3.223572627	
Observaciones	251	

ANÁLISIS DE V	'ARIANZA				
Grados de liberta		na de cuadrad	dio de los cuac	F	alor crítico de F
Regresión	1	16474.33322	16474.33322	1585.378366	5.7182E-110
Residuos	249	2587.463699	10.39142048		
Total	250	19061.79692			
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%
Intercepción	0.008117531	0.203471673	0.03989514	0.968208695	-0.39262743
Z(t-1)	0.929005145	0.023331983	39.81681009	5.7182E-110	0.883051944

Caso EMAE: Predicción

$$y_t = \widehat{eta_0} + \widehat{eta_1}t + \widehat{eta_2}t^2 + \sum_{j=1}^{11} \widehat{eta_{mes}} dmes$$

$$z_t = \widehat{ heta_0} + \widehat{ heta_1}z_{t-1}$$
 Tendend

Tendencia + Estacionalidad + AR1

	<u> </u>	
	Prediccion	Tendencia
	tendencia +	+estacionalid
Fecha	estacionalidad	ad + AR(1)
1993-02-01	99.02549961	89.71310723
1993-03-01	113.900525	101.0104714
1993-04-01	115.0624368	103.948055
1993-05-01	120.5376918	108.3087712
1993-06-01	113.1937156	97.53628153
1993-07-01	112.8320775	101.7374736
1993-08-01	111.8046231	102.1937924
1993-09-01	109.7507463	100.6537399
1993-10-01	109.7274378	103.7496339
1993-11-01	112.870439	104.4943179
1993-12-01	112.618254	105.5437169
1994-01-01	94.56624262	87.49202058
1994-02-01	96.22743371	96.59613456
199/1_03_01	111 162155	107 022007

Función de Autocorrelación Parcial: Motivación

Modelo Autoregresivo de Orden 1. AR(1)

$$z_t = \theta_0 + \theta_1 z_{t-1} + \varepsilon_t$$

Modelo Autoregresivo de Orden 2. AR(2)

$$z_t = \theta_0 + \theta_1 z_{t-1} + \theta_2 z_{t-2} + \varepsilon_t$$

• ¿Qué función usar?

Función de Autocorrelación Parcial: Motivación

• AR(1)

$$z_t = \theta_0 + \theta_1 z_{t-1} + \varepsilon_t$$

Efecto del período anterior sobre el contemporáneo.

AR(2)

$$z_t = \theta_0 + \theta_1 z_{t-1} + \theta_2 z_{t-2} + \varepsilon_t$$

Efecto del rezago de dos períodos sobre el contemporáneo, pero cuando ya tuve en cuenta el efecto del período anterior.

• AR(3)

$$z_{t} = \theta_{0} + \theta_{1} z_{t-1} + \theta_{2} z_{t-2} + \theta_{3} z_{t-3} + \varepsilon_{t}$$

Efecto del rezago de dos períodos sobre el contemporáneo, pero cuando ya tuve en cuenta los dos primeros rezagos.

Función de Autocorrelación Parcial

 $z_{t} = \theta_{0} + \theta_{1} z_{t-1} + \theta_{2} z_{t-2} + \theta_{3} z_{t-3} + \varepsilon_{t}$

• AR(1)

 $z_t = heta_0 + heta_1 z_{t-1} + arepsilon_t$ Función de Autocorrelación Parcial $z_t = heta_0 + heta_1 z_{t-1} + heta_2 z_{t-2} + arepsilon_t$ $z_t = heta_0 + heta_1 z_{t-1} + heta_2 z_{t-2} + arepsilon_t$ $z_t = heta_0 + heta_1 z_{t-1} + heta_2 z_{t-2} + arepsilon_t$ $z_t = heta_0 + heta_1 z_{t-1} + heta_2 z_{t-2} + arepsilon_t$ $z_t = heta_0 + heta_1 z_{t-1} + heta_2 z_{t-2} + arepsilon_t$ $z_t = heta_0 + heta_1 z_{t-1} + heta_2 z_{t-2} + arepsilon_t$ $z_t = heta_0 + heta_1 z_{t-1} + heta_2 z_{t-2} + arepsilon_t$ $z_t = heta_0 + heta_1 z_{t-1} + heta_2 z_{t-2} + arepsilon_t$ $z_t = heta_0 + heta_1 z_{t-1} + heta_2 z_{t-2} + arepsilon_t$ $z_t = heta_0 + heta_1 z_{t-1} + heta_2 z_{t-2} + arepsilon_t$ $z_t = heta_0 + heta_1 z_{t-1} + heta_2 z_{t-2} + arepsilon_t$ $z_t = heta_0 + heta_1 z_{t-1} + heta_2 z_{t-2} + arepsilon_t$ $z_t = heta_0 + heta_1 z_{t-1} + heta_2 z_{t-2} + arepsilon_t$ $z_t = heta_0 + heta_1 z_{t-1} + heta_2 z_{t-2} + heta_2 z_{t-2} + heta_1 z_{t-1} + heta_2 z_{t-2} + heta_3 z_{t-2} + heta_4 z_{t-2} + heta_5 z_{$

Ejemplo simulado 1: AR(1)

$$y_t = 0.8 * y_{t-1} + \varepsilon_t$$
$$\varepsilon_t \sim U[-0.5, 0.5]$$

Autocorrelacionado Orden 1 + Ruido

Correlograma

Ejemplo simulado 1: AR(1)

$$y_t = 0.8 * y_{t-1} + \varepsilon_t$$
$$\varepsilon_t \sim U[-0.5, 0.5]$$

Autocorrelacionado Orden 1 + Ruido

Función de Autocorrelación Parcial

Ejemplo: AR(2)

$$y_t = 0.8 * y_{t-1} - 0.2 * y_{t-2} + \varepsilon_t$$

 $\varepsilon_t \sim U[-0.5, 0.5]$

Correlograma

Ejemplo: AR(2)

$$y_t = 0.8 * y_{t-1} - 0.2 * y_{t-2} + \varepsilon_t$$

 $\varepsilon_t \sim U[-0.5, 0.5]$

Caso real: EMAE

Caso real: EMAE. Modelo Autoregresivo ampliado

$$z_{t} = \theta_{0} + \theta_{1} z_{t-1} + \theta_{3} z_{t-3} + \theta_{5} z_{t-5} + \varepsilon_{t}$$

.,
egresión
0.93687292
0.87773086
0.87622136
3.08361793
247

ANÁLISIS DE VARIANZA				
			Promedio de	
	Grados de	Suma de	los	
	libertad	cuadrados	cuadrados	F
Regresión	3	16587.1552	5529.05173	581.472967
Residuos	243	2310.61399	9.50869953	
Total	246	18897.7692		
	Coeficientes	Error típico	Estadístico t	Probabilidad
Intercepción	-0.0396264	0.19631415	-0.2018518	0.84020146
Z (t-1)	0.70588323	0.04890759	14.4329994	1.6099E-34
Z (t-3)	0.15043487	0.05732529	2.62423237	0.00923455
Z (t-5)	0.11508766	0.04942072	2.3287328	0.02069417

Caso real: EMAE

Función de Autocorrelación Parcial

-0.4

Caso real: EMAE. Modelo Autoregresivo ampliado

$$z_{t} = \theta_{0} + \theta_{1} z_{t-1} + \theta_{3} z_{t-3} + \theta_{5} z_{t-5} + \varepsilon_{t}$$

Resumen	
Estadísticas de la	regresión
Coeficiente de	
correlación múltiple	0.93687292
Coeficiente de	
determinación R^2	0.87773086
R^2 ajustado	0.87622136
Error típico	3.08361793
Observaciones	247

Estadísticas de la regresió		
Coeficiente de correlación múltiple	0.929655416	
Coeficiente de determinación R^2	0.864259193	
R^2 ajustado	0.863714049	$-\Lambda D(1)$
Error típico	3.223572627	← AR(1)
Observaciones	251	

ANÁLISIS DE VARIA	NZA			
			Promedio de	
	Grados de	Suma de	los	
	libertad	cuadrados	cuadrados	F
Regresión	3	16587.1552	5529.05173	581.472967
Residuos	243	2310.61399	9.50869953	
Total	246	18897.7692		
	Coeficientes	Error típico	Estadístico t	Probabilidad
Intercepción	-0.0396264	0.19631415	-0.2018518	0.84020146
Z (t-1)	0.70588323	0.04890759	14.4329994	1.6099E-34
Z (t-3)	0.15043487	0.05732529	2.62423237	0.00923455
Z (t-5)	0.11508766	0.04942072	2.3287328	0.02069417

Caso EMAE: Sumando predicciones

$$y_{t} = \widehat{\beta_{0}} + \widehat{\beta_{1}}t + \widehat{\beta_{2}}t^{2} + \sum_{j=1}^{11} \widehat{\beta_{mes}}dmes$$

$$z_{t} = \widehat{\theta_{0}} + \widehat{\theta_{1}}z_{t-1} + \widehat{\theta_{3}}z_{t-3} + \widehat{\theta_{5}}z_{t-5}$$

EMAE vs. Predicción

Fecha	Prediccion tendencia + estacionalidad	Tendencia +estacionalidad
recha	estacionalidad	+ Modelo AR(2)
1993-02-01	99.03	87.55
1993-03-01	113.90	101.83
1993-04-01	115.06	100.98
1993-05-01	120.54	109.59
1993-06-01	113.19	104.04
1993-07-01	112.83	103.68
1993-08-01	111.80	106.15
1993-09-01	109.75	101.72
1993-10-01	109.73	104.13

Modelos de Media Móvil: Motivación

Modelo MA(1)

$$z_t = \theta_0 + \theta_1 \varepsilon_{t-1} + \varepsilon_t$$

Modelo MA(2)

$$z_t = \theta_0 + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \varepsilon_t$$

• Equivale a un AR con infinitos rezagos

Ejemplo simulado 1: MA(1)

$$\varepsilon_t \sim U[-0.5, 0.5]$$

$$z_t = 0 - 0.8 \,\varepsilon_{t-1} + \varepsilon_t$$
$$\varepsilon_t \sim U[-0.5, 0.5]$$

Ejemplo simulado 1: MA(1)

$$z_t = 0 - 0.8 \, \varepsilon_{t-1} + \varepsilon_t$$

Correlograma ACF

Ejemplo simulado 1: MA(1)

Caso real: EMAE

Modelos ARMA

 $\bullet \quad \mathsf{ARMA}(1,0) = \mathsf{AR}(1)$

$$z_t = \theta_0 + \theta_1 z_{t-1} + \varepsilon_t$$

• ARMA(2,0) = AR(2)

$$z_t = \theta_0 + \theta_1 z_{t-1} + \theta_2 z_{t-2} + \varepsilon_t$$

ARMA(0,1) = Modelo MA(1)

$$z_t = \theta_0 + \theta_1 \varepsilon_{t-1} + \varepsilon_t$$

ARMA(0,2) = Modelo MA(2)

$$z_t = \theta_0 + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \varepsilon_t$$

• ARMA(1,1)

$$z_t = \theta_0 + \theta_1 z_{t-1} + \theta_3 \varepsilon_{t-1} + \varepsilon_t$$

• ARMA(2,2)

$$z_t = \theta_0 + \theta_1 z_{t-1} + \theta_2 z_{t-2} + \theta_3 \varepsilon_{t-1} + \theta_4 \varepsilon_{t-2} + \varepsilon_t$$