

Вопрос 1. Пусть X_1, \ldots, X_n — случайная выборка из распределения Пуассона с параметром $\lambda > 0$. Известно, что оценка максимального правдоподобия параметра λ равна \bar{X} . Чему равна оценка максимального правдоподобия для $1/\lambda$?

 $A \ln \bar{X}$

C $1/\bar{X}$

 $E e^{j}$

 $B \bar{X}/n$

D \bar{X}

 \overline{F} Нет верного ответа.

Вопрос 2. Время подготовки студента к экзаменам и по статистике, и макроэкономике, имеет нормальное распределение с неизвестными математическими ожиданиями и дисперсиями. По 10 наблюдениям Вениамин получил оценку стандартного отклонения времени подготовки к статистике равную 5 часам. Оценка стандартного отклонения времени подготовки к макроэкономике, рассчитанная по 20 наблюдениям, оказалась равной 2. Тестовая статистика при проверке гипотезы о равенстве дисперсий может быть равна

A 0.16

C 0.4

E 12.5

B = 0.8

D 2.5

 \overline{F} Нет верного ответа.

Вопрос 3. Случайная выборка состоит из одного наблюдения X_1 , которое имеет плотность распределения

$$f(x;\,\theta) = \begin{cases} \frac{1}{\theta^2} x e^{-x/\theta} & \text{при } x > 0, \\ 0 & \text{при } x \leq 0, \end{cases}$$

где $\theta>0$. Чему равна оценка неизвестного параметра θ , найденная с помощью метода максимального правдоподобия?

 $A X_1$

 $C X_1/2$

 $|E| 1/\ln X_1$

 $B \ln X_1$

 $D \quad \frac{X_1}{\ln X_1}$

F Нет верного ответа.

Вопрос 4. Последовательность оценок $\hat{\theta}_n$ называется состоятельной для параметра θ , если

A $\hat{\theta}_n \overset{P}{ o} \theta$ при $n o \infty$

 \boxed{D} $\mathrm{E}((\hat{ heta}_n- heta)^2) o 0$ при $n o\infty$

 $B \operatorname{Var}(\hat{\theta}_n) = (\theta)^2 / n$

 $\boxed{E} \ \mathrm{E}((\hat{\theta}_n - \theta)^2) \leq \mathrm{E}((\tilde{\theta} - \theta)^2)$ для всех $\tilde{\theta} \in K$

C $E(\hat{\theta}_n) = \theta$

F Нет верного ответа.

Вопрос 5. Величина X принимает три значения 1, 2 и 3. По случайной выборке из ста наблюдений оказалось, что 1 выпало 40 раз, 2-40 раз и 3-20 раз. Карл хочет проверить гипотезу о том, что все три вероятности одинаковые. Значение критерия согласия Пирсона равно

$$\overline{D}$$
 5

|F| Нет верного ответа.

Вопрос 6. Пусть X_1, \ldots, X_n — случайная выборка из распределения Бернулли с параметром $p \in (0; 1)$. Чему равна информация Фишера о параметре p, заключенная в двух наблюдениях случайной выборки?

$$\boxed{A} \quad \frac{2}{p(1-p)}$$

$$C 2p(1-p)$$

$$|E| \ 2(1-p)$$

$$D \frac{2}{p}$$

 \overline{F} Нет верного ответа.

Вопрос 7. Температура планеты Плюк и её спутника являются стандартными нормальными случайными величинами, имеющими совместное нормальное распределение. Ковариация между температурами равна 0.5. Найдите вероятность того, что на Плюке положительная температура, если на спутнике температура равна -1.

$$B = 0.596$$

 \overline{F} Нет верного ответа.

Вопрос 8. Математическое ожидание оценки дисперсии $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ для выборки из распределения Пуассона с $\lambda = 3$, равняется

$$|E|$$
 9

F Нет верного ответа.

Вопрос 9. Пусть $X_1,\,\ldots,\,X_n$ — случайная выборка из распределения с плотностью распределения

$$f(x;\,\theta) = \begin{cases} \frac{2x}{\theta^2} & \text{при } x \in [0;\,\theta], \\ 0 & \text{при } x \not\in [0;\,\theta], \end{cases}$$

где $\theta>0$. Используя начальный момент 2-го порядка, при помощи метода моментов найдите оценку неизвестного параметра θ .

$$\boxed{A} \sqrt{\sum_{i=1}^{n} X_i^2}$$

$$C$$
 $\frac{3}{2}\bar{X}$

$$E \mid \frac{2}{3}\bar{X}$$

$$\boxed{B} \sqrt{\frac{2}{n} \sum_{i=1}^{n} X_i^2}$$

$$\boxed{D} \sqrt{\frac{n}{2} \sum_{i=1}^{n} X_i^2}$$

F Нет верного ответа.

Вопрос 10. Даны выборки объёма n из равномерного на отрезке [0,1] распределения. Выборочный начальный момент второго порядка стремится по вероятности при $n \to \infty$ к

$$\overline{A}$$
 1/3

$$\overline{F}$$
 Нет верного ответа.

Вопрос 11. Компоненты вектора $X = (X_1, X_2, X_3)$ имеют совместное нормальное распределение:

$$X \sim \mathcal{N}\left(\begin{bmatrix}1\\1\\1\end{bmatrix}, \begin{bmatrix}3 & 0.5 & 0.5\\0.5 & 2 & 0.5\\0.5 & 0.5 & 3\end{bmatrix}\right).$$

Вероятность $\mathbb{P}(X_1 > X_2 + X_3)$ равна

 $A \mid 0.688$

 $C \mid 0.215$

 $E \mid 0.593$

 $B \mid 0.369$

D 0.701

Нет верного ответа.

Вопрос 12. Случайные величины X и Y распределены нормально с неизвестным математическим ожиданием и неизвестной дисперсией. Для тестирования гипотезы о равенстве дисперсий выбирается 20 наблюдений случайной величины X и 30 наблюдений случайной величины Y. Какое распределение может иметь статистика, используемая в данном случае?

 $|A| F_{20.30}$

C χ^2_{48}

 $|E| \chi^2_{40}$

 $B \mid t_{48}$

 $D F_{29.19}$

 \overline{F} Нет верного ответа.

Вопрос 13. Если функция правдоподобия пропорциональна $a^2(1-a)^6$, априорная плотность пропорциональна $\exp(-a)$, то апостериорная плотность параметра a пропорциональна

 $A 0.5a^2(1-a)^6 + 0.5 \exp(-a)$ $C \frac{a^2(1-a)^6}{\exp(-a)}$

 $\boxed{E} \quad \frac{a^2(1-a)^6}{\exp(a)}$

 $B = \frac{\exp(-a)}{a^2(1-a)^6}$

 $\boxed{D} \ 0.5a^2(1-a)^6 + 0.5\exp(a)$ \boxed{F} Нет верного ответа.

Вопрос 14. Величина X принимает три значения 1, 2 и 3. По случайной выборке из ста наблюдений оказалось, что 1 выпало 40 раз, 2-40 раз и 3-20 раз. Андрей Николаевич хочет проверить гипотезу о том, что все три вероятности одинаковые. Значение критерия согласия Колмогорова равно

 $A \mid 2/5$

 $C \mid 3/4$

B | 2/15

 $D \mid 1/4$

F Нет верного ответа.

Вопрос 15. Пусть X_1, \ldots, X_n — случайная выборка и $\ell(\theta)$ — её логарифмическая функция правдоподобия. Тестируется гипотеза $H_0: \theta=1$. Известно, что $\max_{\theta} \ell(\theta)=-10$, а $\ell(1)=-20$. Чему равно значение статистики отношения правдоподобия?

$$|E| - 10$$

$$B = 0$$

$$D$$
 -20

|F| Нет верного ответа.

Вопрос 16. Максимальная ширина 90%-го симметричного по вероятности доверительного интервала для доли, построенного по выборке из 64 наблюдений, приблизительно равна

A 0.102

C 0.368

E 0.234

B = 0.156

D 0.206

 \overline{F} Нет верного ответа.

Вопрос 17. Требуется проверить гипотезу о равенстве математических ожиданий по двум нормальным независимым выборкам размером 33 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 196. Разница выборочных средних равна 1. Тестовая статистика может быть равна

$$A - 1/7$$

$$C - 1/4$$

$$|E| -1/14$$

$$B - 1/49$$

$$D -1/2$$

|F| Heт верного ответа.

Вопрос 18. При проверке гипотезы о равенстве математических ожиданий оценок по статистике в двух группах против альтернативной гипотезы, что в первой группе оценки выше, оказалось, что выборочные средние равны. Тогда Р-значение в этом тесте

A равно 0.25

 \boxed{C} равно 0

Е Недостаточно данных для ответа

B равно 0.5

D равно 1

 \overline{F} Нет верного ответа.

Вопрос 19. Величина X принимает три значения $1,\,2$ и 3. По случайной выборке из ста наблюдений оказалось, что 1 выпало 40 раз, 2-40 раз и 3-20 раз. Карл хочет проверить гипотезу о том, что все три вероятности одинаковые. При верной H_0 критерий Пирсона имеет распределение

$$A$$
 χ_1^2

$$C \mathcal{N}(0;1)$$

$$E \chi_2^2$$

$$\boxed{B} \ \chi_3^2$$

$$D$$
 χ^2_{99}

 \overline{F} Hет верного ответа.

Вопрос 20. Вася считает, что контрольные по макроэкономике и статистике нравятся студентам с одинаковой вероятностью. Чтобы проверить эту гипотезу, он опросил по 100 случайных однокурсников после каждой контрольной и выяснил, что макроэкономика понравилась 30 студентам, а статистика — 50. При проверке этой гипотезы, тестовая статистика может иметь распределение

 $A t_{100}$

C t_{99}

 $oxedsymbol{E} t_{198}$

 $B \mathcal{N}(0,1)$

D t_{98}

F Hет верного ответа.

Вопрос 21. Рассмотрим алгоритм Метрополиса-Гастингса для получения выборки параметра с апостериорной плотностью пропорциональной t^2 . Предлагаемый переход из a в b задаётся правилом, b=a+Z, где $Z\sim\mathcal{N}(0;4)$. Вероятность одобрения перехода из точки 0.5 в точку 0.3 равна

A 0.6

C 0.5

 $\lfloor E \rfloor 0.36$

B

 \overline{D} 0.64

|F| Нет верного ответа.

Вопрос 22. Оценка $\hat{\theta}_n$ называется эффективной оценкой параметра θ в классе оценок K, если

 $A \operatorname{Var}(\hat{\theta}_n) = (\theta)^2/n$

 $D E(\hat{\theta}_n) = \theta$

 \boxed{B} $\mathrm{E}((\hat{\theta}_n - \theta)^2) \to 0$ при $n \to \infty$

 $egin{aligned} E & \hat{ heta}_n \stackrel{\mathbb{P}}{ o} heta \ \text{при } n o \infty \end{aligned}$

 $|C| \ \mathrm{E}((\hat{ heta}_n - heta)^2) \leq \mathrm{E}((\tilde{ heta} - heta)^2)$ для всех $\tilde{ heta} \in K$

 \overline{F} Her верного ответа.

Вопрос 23. Дана реализация выборки: -1, 1, 0, 2. Эмпирическая (выборочная) функция распределения в точке x=0.5 принимает значение равное

A 0.25

C 1

E 0.5

B

D 0.8

 \overline{F} Her верного ответа.

Вопрос 24. Длины катетов в сантиметрах прямоугольного треугольника являются модулями независимых стандартных нормальных случайных величин. Какую длину не превысит гипотенуза этого треугольника с вероятностью 0.95?

 \overline{A} 4.61

C 0.21

E 0.68

B 5.99

D 0.1

F Нет верного ответа.

Вопрос 25. При построения доверительного интервала для разности математических ожиданий в двух нормальных независимых выборках размером m и n в случае равных известных дисперсий используется распределение

 \overline{A} $F_{m-1,n-1}$

 $C \mathcal{N}(0,1)$

 \overline{E} t_{m+n-2}

B $F_{m,n}$

D t_{m+n}

F Нет верного ответа.

Вопрос 26. Вася считает, что контрольные по макроэкономике и статистике нравятся студентам с одинаковой вероятностью. Чтобы проверить эту гипотезу, он опросил по 100 случайных однокурсников после каждой контрольной и выяснил, что макроэкономика понравилась 30 студентам, а статистика — 50. При расчётах Вася получил Р-значение равное 0.0038. Это означает, что гипотеза

- \boxed{A} отвергается на уровне значимости 5%, но не отвергается на 1%
- D отвергается на любом возможном уровне значимости
- $\fbox{$B$}$ отвергается на уровне значимости 1%, но не отвергается на 5%
- $\lceil E \rceil$ отвергается на уровне значимости 1%
- С не отвергается на любом возможном уровне значимости
- \overline{F} Нет верного ответа.

Вопрос 27. Для выборки 1, 2, 3, 4, 5 границы 95%-го доверительного интервала для математического ожидания равны

A [1.04, 4.96]

C [-4.02, 1, 02]

E [0.86, 5.14]

B [3.08, 5.92]

D [1.54, 5.46]

 \overline{F} Heт верного ответа.

Вопрос 28. Пусть t_n — случайная величина, распределенная по Стьюденту с n степенями свободы. Предел $\lim_{n \to \infty} \mathbb{P}\left(t_n^2 > 1\right)$ равен

A 0.102

C 0.788

|E| 0.317

B 0.841

D 0.253

 \overline{F} Her верного ответа.

Вопрос 29. Истинное значение параметра θ равно 2, в случайной выборке 100 наблюдений, а информация Фишера о параметре θ , заключенная в одном наблюдении равна $I_1(\theta)=9$. Распределение оценки максимального правдоподобия $\hat{\theta}$ похоже на

 $A \mathcal{N}(2, 1/900)$

 $C \mathcal{N}(2, 1/3)$

 $E \ \mathcal{N}(2, 1/30)$

 $B \mathcal{N}(2, 9)$

 $D \mathcal{N}(2, 1/9)$

 \overline{F} Нет верного ответа.

Вопрос 30. При проверке гипотезы о равенстве дисперсии 5 по 11 наблюдениям за нормально распределенной случайной величиной, оказалось, что тестовая статистика равна 2. Несмещённая оценка дисперсии была равна

 \boxed{A} 5/11

C 5

E | 5/10

B 10

D 1

|F| Heт верного ответа.

Вопрос 6. При построения доверительного интервала для разности математических ожиданий в двух нормальных независимых выборках размером m и n в случае равных известных дисперсий используется распределение

$$A$$
 $F_{m-1,n-1}$

$$C t_{m+n}$$

$$E \mathcal{N}(0,1)$$

$$B F_{m,n}$$

$$D$$
 t_{m+n-2}

 \overline{F} Нет верного ответа.

Вопрос 7. Для выборки 1, 2, 3, 4, 5 границы 95%-го доверительного интервала для математического ожидания равны

$$A [-4.02, 1, 02]$$

$$C$$
 [0.86, 5.14]

$$[E]$$
 [1.54, 5.46]

$$D$$
 [1.04, 4.96]

$$\overline{F}$$
 Нет верного ответа.

Вопрос 8. Величина X принимает три значения 1, 2 и 3. По случайной выборке из ста наблюдений оказалось, что 1 выпало 40 раз, 2-40 раз и 3-20 раз. Карл хочет проверить гипотезу о том, что все три вероятности одинаковые. При верной H_0 критерий Пирсона имеет распределение

$$A$$
 χ_1^2

$$C$$
 χ^2_{99}

$$E \chi_2^2$$

$$B$$
 χ_3^2

$$D \mathcal{N}(0;1)$$

$$F$$
 Нет верного ответа.

Вопрос 9. Пусть X_1, \ldots, X_n — случайная выборка из распределения Пуассона с параметром $\lambda > 0$. Известно, что оценка максимального правдоподобия параметра λ равна \bar{X} . Чему равна оценка максимального правдоподобия для $1/\lambda$?

$$A 1/\bar{X}$$

$$C$$
 \bar{X}

$$E \bar{X}/n$$

$$B$$
 $e^{\bar{X}}$

$$D \ln \bar{X}$$

$$\overline{F}$$
 Нет верного ответа.

Вопрос 10. При проверке гипотезы о равенстве математических ожиданий оценок по статистике в двух группах против альтернативной гипотезы, что в первой группе оценки выше, оказалось, что выборочные средние равны. Тогда Р-значение в этом тесте

$$\overline{A}$$
 равно 0.5

$$E$$
 равно 0

$$[B]$$
 Недостаточно данных для ответа

$$\boxed{D}$$
 равно 0.25

$$|F|$$
 Heт верного ответа.

Вопрос 11. Пусть X_1, \ldots, X_n — случайная выборка и $\ell(\theta)$ — её логарифмическая функция правдоподобия. Тестируется гипотеза $H_0: \theta=1$. Известно, что $\max_{\theta}\ell(\theta)=-10$, а $\ell(1)=-20$. Чему равно значение статистики отношения правдоподобия?

$$\boxed{A}$$
 20

$$C$$
 -20

$$|E|$$
 10

$$|D| -10$$

|F| Нет верного ответа.

Вопрос 12. Пусть $X_1,\,\dots,\,X_n$ — случайная выборка из распределения с плотностью распределения

$$f(x;\,\theta) = \begin{cases} \frac{2x}{\theta^2} & \text{при } x \in [0;\,\theta], \\ 0 & \text{при } x \not\in [0;\,\theta], \end{cases}$$

где $\theta>0$. Используя начальный момент 2-го порядка, при помощи метода моментов найдите оценку неизвестного параметра θ .

$$\boxed{A} \sqrt{\sum_{i=1}^{n} X_i^2}$$

$$C$$
 $\frac{3}{2}\bar{X}$

$$E = \frac{2}{3}\bar{X}$$

$$\boxed{B} \sqrt{\frac{2}{n} \sum_{i=1}^{n} X_i^2}$$

$$\boxed{D} \sqrt{\frac{n}{2} \sum_{i=1}^{n} X_i^2}$$

 \overline{F} Нет верного ответа.

Вопрос 13. Максимальная ширина 90%-го симметричного по вероятности доверительного интервала для доли, построенного по выборке из 64 наблюдений, приблизительно равна

 \overline{F} Нет верного ответа.

Вопрос 14. Математическое ожидание оценки дисперсии $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ для выборки из распределения Пуассона с $\lambda = 3$, равняется

$$E \mid 3$$

$$\boxed{B} \ 3/n$$

$$D$$
 1

F Нет верного ответа.

Вопрос 15. Случайные величины X и Y распределены нормально с неизвестным математическим ожиданием и неизвестной дисперсией. Для тестирования гипотезы о равенстве дисперсий выбирается 20 наблюдений случайной величины X и 30 наблюдений случайной величины Y. Какое распределение может иметь статистика, используемая в данном случае?

$$A$$
 χ^2_{48}

$$C$$
 t_{48}

$$E \chi_{49}^2$$

$$B F_{20,30}$$

$$D F_{29,19}$$

$$|F|$$
 Heт верного ответа.

Вопрос 16. Последовательность оценок $\hat{\theta}_n$ называется состоятельной для параметра θ , если

$$A \operatorname{Var}(\hat{\theta}_n) = (\theta)^2/n$$

$$D \mid E(\hat{\theta}_n) = \theta$$

$$oxed{B}$$
 $\hat{ heta}_n \stackrel{P}{ o} heta$ при $n o \infty$

$$|E|$$
 $\mathrm{E}((\hat{ heta}_n- heta)^2) o 0$ при $n o\infty$

$$oxedcirclet$$
 $\mathrm{E}((\hat{ heta}_n- heta)^2) \leq \mathrm{E}((ilde{ heta}- heta)^2)$ для всех $ilde{ heta} \in K$

|F| Нет верного ответа.

Вопрос 17. Оценка $\hat{\theta}_n$ называется эффективной оценкой параметра θ в классе оценок K, если

$$A \operatorname{Var}(\hat{\theta}_n) = (\theta)^2/n$$

$$\boxed{D} \ {
m E}((\hat{ heta}_n- heta)^2) \leq {
m E}((\tilde{ heta}- heta)^2)$$
 для всех $\tilde{ heta} \in K$

$$B E(\hat{\theta}_n) = \theta$$

$$oxed{E} \hat{ heta}_n \overset{\mathbb{P}}{ o} heta$$
 при $n o \infty$

$$C$$
 $E((\hat{\theta}_n - \theta)^2) \to 0$ при $n \to \infty$

$$\overline{F}$$
 Нет верного ответа.

Вопрос 18. Вася считает, что контрольные по макроэкономике и статистике нравятся студентам с одинаковой вероятностью. Чтобы проверить эту гипотезу, он опросил по 100 случайных однокурсников после каждой контрольной и выяснил, что макроэкономика понравилась 30 студентам, а статистика — 50. При проверке этой гипотезы, тестовая статистика может иметь распределение

$$A t_{99}$$

$$C$$
 t_{98}

$$\overline{E}$$
 t_{198}

$$B \mathcal{N}(0,1)$$

$$\overline{D}$$
 t_{100}

F Нет верного ответа.

Вопрос 19. Вася считает, что контрольные по макроэкономике и статистике нравятся студентам с одинаковой вероятностью. Чтобы проверить эту гипотезу, он опросил по 100 случайных однокурсников после каждой контрольной и выяснил, что макроэкономика понравилась 30 студентам, а статистика -50. При расчётах Вася получил Р-значение равное 0.0038. Это означает, что гипотеза

- A отвергается на любом возможном уровне значимости
- |D| отвергается на уровне значимости 1%, но не отвергается на 5%
- B не отвергается на любом возможном уровне значимости
- |E| отвергается на уровне значимости 5%, но не отвергается на 1%
- отвергается на уровне значимости 1%
- F | Нет верного ответа.

Вопрос 20. Если функция правдоподобия пропорциональна $a^2(1-a)^6$, априорная плотность пропорциональна $\exp(-a)$, то апостериорная плотность параметра a пропорциональна

A
$$0.5a^2(1-a)^6 + 0.5\exp(a)$$

$$C \frac{a^2(1-a)^6}{\exp(a)}$$

$$\boxed{E} \quad \frac{\exp(-a)}{a^2(1-a)^6}$$

$$\boxed{B} \quad \frac{a^2(1-a)^6}{\exp(-a)}$$

$$F$$
 Нет верного ответа.

Вопрос 21. Даны выборки объёма n из равномерного на отрезке [0,1] распределения. Выборочный начальный момент второго порядка стремится по вероятности при $n \to \infty$ к

$$B$$
 1

$$D$$
 1/4

F Нет верного ответа.

Вопрос 22. Рассмотрим алгоритм Метрополиса-Гастингса для получения выборки параметра с апостериорной плотностью пропорциональной t^2 . Предлагаемый переход из a в b задаётся правилом, b=a+Z, где $Z\sim\mathcal{N}(0;4)$. Вероятность одобрения перехода из точки 0.5 в точку 0.3 равна

$$C$$
 1

$$| F |$$
 Heт верного ответа.

Вопрос 23. Пусть X_1, \ldots, X_n — случайная выборка из распределения Бернулли с параметром $p \in (0; 1)$. Чему равна информация Фишера о параметре p, заключенная в двух наблюдениях случайной выборки?

$$A$$
 $\frac{2}{p(1-p)}$

$$C$$
 $2(1-p)$

$$B \frac{2}{p}$$

$$D 2p(1-p)$$

$$F$$
 Нет верного ответа.

Вопрос 24. Требуется проверить гипотезу о равенстве математических ожиданий по двум нормальным независимым выборкам размером 33 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 196. Разница выборочных средних равна 1. Тестовая статистика может быть равна

$$A$$
 $-1/7$

$$C - 1/49$$

$$|E| - 1/14$$

$$B - 1/2$$

$$D - 1/4$$

$$\overline{F}$$
 Нет верного ответа.

Вопрос 25. Компоненты вектора $X = (X_1, X_2, X_3)$ имеют совместное нормальное распределение:

$$X \sim \mathcal{N}\left(\begin{bmatrix}1\\1\\1\end{bmatrix}, \begin{bmatrix}3 & 0.5 & 0.5\\0.5 & 2 & 0.5\\0.5 & 0.5 & 3\end{bmatrix}\right).$$

Вероятность $\mathbb{P}(X_1 > X_2 + X_3)$ равна

$$E$$
 0.701

B 0.688

$$|F|$$
 Нет верного ответа.

Вопрос 26. Случайная выборка состоит из одного наблюдения X_1 , которое имеет плотность распределения

$$f(x;\,\theta) = \begin{cases} \frac{1}{\theta^2} x e^{-x/\theta} & \text{при } x > 0, \\ 0 & \text{при } x \le 0, \end{cases}$$

где $\theta>0$. Чему равна оценка неизвестного параметра θ , найденная с помощью метода максимального правдоподобия?

 $A 1/\ln X_1$

C $\frac{X_1}{\ln X_1}$

 $\boxed{E} \ln X_1$

 $B X_1/2$

 $D X_1$

 \overline{F} Нет верного ответа.

Вопрос 27. При проверке гипотезы о равенстве дисперсии 5 по 11 наблюдениям за нормально распределенной случайной величиной, оказалось, что тестовая статистика равна 2. Несмещённая оценка дисперсии была равна

A 10

C 5

|E| 5/11

B 1

D | 5/10

 \overline{F} Нет верного ответа.

Вопрос 28. Дана реализация выборки: -1, 1, 0, 2. Эмпирическая (выборочная) функция распределения в точке x=0.5 принимает значение равное

A 0.8

 $C \mid 0.5$

|E| 1

B

D 0.25

 \overline{F} Her верного ответа.

Вопрос 29. Величина X принимает три значения 1, 2 и 3. По случайной выборке из ста наблюдений оказалось, что 1 выпало 40 раз, 2-40 раз и 3-20 раз. Андрей Николаевич хочет проверить гипотезу о том, что все три вероятности одинаковые. Значение критерия согласия Колмогорова равно

A 3/5

 \boxed{C} 3/4

E 1/4

 $B \ 2/15$

D 2/5

|F| Нет верного ответа.

Вопрос 30. Величина X принимает три значения $1,\,2$ и 3. По случайной выборке из ста наблюдений оказалось, что 1 выпало 40 раз, 2-40 раз и 3-20 раз. Карл хочет проверить гипотезу о том, что все три вероятности одинаковые. Значение критерия согласия Пирсона равно

A

C 6

E = 5

B 8

D 7

 \overline{F} Нет верного ответа.

Фамилия, имя, номер группы:

Вопрос 1. При проверке гипотезы о равенстве дисперсии 5 по 11 наблюдениям за нормально распределенной случайной величиной, оказалось, что тестовая статистика равна 2. Несмещённая оценка дисперсии была равна

 $A \mid 10$

B | 5/10

D = 5/11

 \overline{F} Нет верного ответа.

Вопрос 2. Случайные величины X и Y распределены нормально с неизвестным математическим ожиданием и неизвестной дисперсией. Для тестирования гипотезы о равенстве дисперсий выбирается 20 наблюдений случайной величины X и 30 наблюдений случайной величины Y. Какое распределение может иметь статистика, используемая в данном случае?

A χ^2_{48}

 $|C| t_{48}$

 $E \chi_{49}^2$

 $B F_{20.30}$

 $D F_{29.19}$

 $\lceil F \rceil$ Нет верного ответа.

Вопрос 3. Вася считает, что контрольные по макроэкономике и статистике нравятся студентам с одинаковой вероятностью. Чтобы проверить эту гипотезу, он опросил по 100 случайных однокурсников после каждой контрольной и выяснил, что макроэкономика понравилась 30 студентам, а статистика — 50. При проверке этой гипотезы, тестовая статистика может иметь распределение

 $A \mid t_{99}$

 $|C| t_{198}$

B t_{100}

 $D \mathcal{N}(0,1)$

F Нет верного ответа.

Вопрос 4. Требуется проверить гипотезу о равенстве математических ожиданий по двум нормальным независимым выборкам размером 33 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 196. Разница выборочных средних равна 1. Тестовая статистика может быть равна

|A| - 1/4

C - 1/49

|E| - 1/7

B - 1/2

D - 1/14

 \overline{F} Нет верного ответа.

Вопрос 5. Если функция правдоподобия пропорциональна $a^2(1-a)^6$, априорная плотность пропорциональна $\exp(-a)$, то апостериорная плотность параметра a пропорциональна

 $E 0.5a^2(1-a)^6 + 0.5\exp(-a)$

- $B = 0.5a^2(1-a)^6 + 0.5 \exp(a)$ $D = \frac{a^2(1-a)^6}{\exp(-a)}$

|F| Нет верного ответа.

Вопрос 6. Вася считает, что контрольные по макроэкономике и статистике нравятся студентам с одинаковой вероятностью. Чтобы проверить эту гипотезу, он опросил по 100 случайных однокурсников после каждой контрольной и выяснил, что макроэкономика понравилась 30 студентам, а статистика — 50. При расчётах Вася получил Р-значение равное 0.0038. Это означает, что гипотеза

- \fbox{A} отвергается на уровне значимости 5%, но не отвергается на 1%
- \boxed{D} отвергается на уровне значимости 1%, но не отвергается на 5%
- \overline{B} отвергается на уровне значимости 1%
- [E] отвергается на любом возможном уровне значимости
- С не отвергается на любом возможном уровне значимости
- \overline{F} Нет верного ответа.

Вопрос 7. При проверке гипотезы о равенстве математических ожиданий оценок по статистике в двух группах против альтернативной гипотезы, что в первой группе оценки выше, оказалось, что выборочные средние равны. Тогда Р-значение в этом тесте

 \overline{A} равно 1

C равно 0.25

E равно 0

 $\boxed{\textit{B}}$ равно 0.5

- D Недостаточно данных для ответа
- |F| Нет верного ответа.

Вопрос 8. Случайная выборка состоит из одного наблюдения X_1 , которое имеет плотность распределения

$$f(x;\,\theta) = \begin{cases} \frac{1}{\theta^2} x e^{-x/\theta} & \text{при } x>0,\\ 0 & \text{при } x\leq 0, \end{cases}$$

где $\theta>0$. Чему равна оценка неизвестного параметра θ , найденная с помощью метода максимального правдоподобия?

 $A X_1/2$

 $C X_1$

 $E 1/\ln X_1$

 $B \ln X_1$

 $D \frac{X_1}{\ln X_1}$

|F| Нет верного ответа.

Вопрос 9. Последовательность оценок $\hat{\theta}_n$ называется состоятельной для параметра θ , если

 $\boxed{A} \operatorname{Var}(\hat{\theta}_n) = (\theta)^2 / n$

 $\boxed{D} \ \mathsf{E}(\hat{\theta}_n) = \theta$

 \fbox{B} $\hat{ heta}_n \overset{P}{ o} heta$ при $n o \infty$

 $\boxed{E} \ \mathrm{E}((\hat{ heta}_n - heta)^2) \leq \mathrm{E}((\tilde{ heta} - heta)^2)$ для всех $\tilde{ heta} \in K$

 $oxed{C} \ \mathrm{E}((\hat{ heta}_n - heta)^2) o 0$ при $n o \infty$

F Нет верного ответа.

Вопрос 10. Рассмотрим алгоритм Метрополиса-Гастингса для получения выборки параметра с апостериорной плотностью пропорциональной t^2 . Предлагаемый переход из a в b задаётся правилом, b=a+Z, где $Z\sim \mathcal{N}(0;4)$. Вероятность одобрения перехода из точки 0.5 в точку 0.3 равна

A 0.6

C 0.64

 \overline{E} 0.5

B 1

D 0.36

F Нет верного ответа.

Вопрос 11. Математическое ожидание оценки дисперсии $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ для выборки из распределения Пуассона с $\lambda = 3$, равняется

A 9/n

C 1

|E| 3/n

B 3

D 9

F Нет верного ответа.

Вопрос 12. Пусть X_1, \ldots, X_n — случайная выборка из распределения Бернулли с параметром $p \in (0; 1)$. Чему равна информация Фишера о параметре p, заключенная в двух наблюдениях случайной выборки?

A 2p

 $C \ 2(1-p)$

 $E = \frac{2}{n}$

B $\frac{2}{p(1-p)}$

 $\boxed{D} \ 2p(1-p)$

F Нет верного ответа.

Вопрос 13. Истинное значение параметра θ равно 2, в случайной выборке 100 наблюдений, а информация Фишера о параметре θ , заключенная в одном наблюдении равна $I_1(\theta)=9$. Распределение оценки максимального правдоподобия $\hat{\theta}$ похоже на

 $A \mathcal{N}(2, 1/9)$

 $C \ \mathcal{N}(2, 1/900)$

 $E \mathcal{N}(2, 9)$

 $B \mathcal{N}(2, 1/3)$

 $D \mathcal{N}(2, 1/30)$

 \overline{F} Нет верного ответа.

Вопрос 14. Дана реализация выборки: -1, 1, 0, 2. Эмпирическая (выборочная) функция распределения в точке x=0.5 принимает значение равное

A 1

C 0.8

E = 0

B 0.5

D 0.25

 \overline{F} Нет верного ответа.

Вопрос 15. Пусть t_n — случайная величина, распределенная по Стьюденту с n степенями свободы. Предел $\lim_{n\to\infty}\mathbb{P}\left(t_n^2>1\right)$ равен

A 0.788

C 0.102

E 0.317

B 0.253

D 0.841

 \overline{F} Нет верного ответа.

Вопрос 16. Оценка $\hat{\theta}_n$ называется эффективной оценкой параметра θ в классе оценок K, если

$$A \operatorname{Var}(\hat{\theta}_n) = (\theta)^2/n$$

$$D E(\hat{\theta}_n) = \theta$$

$$oxed{B} \ \mathrm{E}((\hat{ heta}_n - heta)^2) o 0$$
 при $n o \infty$

$$oxed{E}\ {
m E}((\hat{ heta}_n- heta)^2) \le {
m E}((ilde{ heta}- heta)^2)$$
 для всех $ilde{ heta} \in K$

$$\boxed{C} \ \hat{\theta}_n \overset{\mathbb{P}}{\to} \theta$$
 при $n \to \infty$

 \overline{F} Нет верного ответа.

Вопрос 17. Пусть X_1, \ldots, X_n — случайная выборка и $\ell(\theta)$ — её логарифмическая функция правдоподобия. Тестируется гипотеза $H_0: \theta=1$. Известно, что $\max_{\theta}\ell(\theta)=-10$, а $\ell(1)=-20$. Чему равно значение статистики отношения правдоподобия?

$$C = 0$$

$$\overline{E}$$
 20

$$B -20$$

$$D$$
 -10

$$\overline{F}$$
 Нет верного ответа.

Вопрос 18. Пусть X_1, \ldots, X_n — случайная выборка из распределения Пуассона с параметром $\lambda > 0$. Известно, что оценка максимального правдоподобия параметра λ равна \bar{X} . Чему равна оценка максимального правдоподобия для $1/\lambda$?

$$A$$
 \bar{X}

$$C \ln \bar{X}$$

$$|E| 1/\bar{X}$$

$$B e^{\bar{X}}$$

$$D \bar{X}/n$$

$$F$$
 Нет верного ответа.

Вопрос 19. Время подготовки студента к экзаменам и по статистике, и макроэкономике, имеет нормальное распределение с неизвестными математическими ожиданиями и дисперсиями. По 10 наблюдениям Вениамин получил оценку стандартного отклонения времени подготовки к статистике равную 5 часам. Оценка стандартного отклонения времени подготовки к макроэкономике, рассчитанная по 20 наблюдениям, оказалась равной 2. Тестовая статистика при проверке гипотезы о равенстве дисперсий может быть равна

$$D$$
 12.5

$$F$$
 Heт верного ответа.

Вопрос 20. Величина X принимает три значения $1,\,2$ и 3. По случайной выборке из ста наблюдений оказалось, что 1 выпало 40 раз, 2-40 раз и 3-20 раз. Андрей Николаевич хочет проверить гипотезу о том, что все три вероятности одинаковые. Значение критерия согласия Колмогорова равно

E
$$2/15$$

$$\boxed{B}$$
 3/5

$$F$$
 Нет верного ответа.

Вопрос 21. Даны выборки объёма n из равномерного на отрезке [0,1] распределения. Выборочный начальный момент второго порядка стремится по вероятности при $n \to \infty$ к

$$D$$
 1/2

F Нет верного ответа.

Вопрос 22. Для выборки 1, 2, 3, 4, 5 границы 95%-го доверительного интервала для математического ожидания равны

$$|A|$$
 [0.86, 5.14]

$$C$$
 [3.08, 5.92]

$$E$$
 [1.04, 4.96]

$$D$$
 [-4.02, 1, 02]

$$F$$
 Heт верного ответа.

Вопрос 23. Пусть $X_1, \, \dots, \, X_n$ — случайная выборка из распределения с плотностью распределения

$$f(x;\,\theta) = \begin{cases} \frac{2x}{\theta^2} & \text{при } x \in [0;\,\theta], \\ 0 & \text{при } x \not\in [0;\,\theta], \end{cases}$$

где $\theta>0$. Используя начальный момент 2-го порядка, при помощи метода моментов найдите оценку неизвестного параметра θ .

$$\boxed{A} \sqrt{\sum_{i=1}^{n} X_i^2}$$

$$C$$
 $\frac{2}{3}\bar{X}$

$$\boxed{E} \sqrt{\frac{2}{n} \sum_{i=1}^{n} X_i^2}$$

$$B = \frac{3}{2}\bar{X}$$

$$\boxed{D} \sqrt{\frac{n}{2} \sum_{i=1}^{n} X_i^2}$$

|F| Нет верного ответа.

Вопрос 24. Величина X принимает три значения 1, 2 и 3. По случайной выборке из ста наблюдений оказалось, что 1 выпало 40 раз, 2-40 раз и 3-20 раз. Карл хочет проверить гипотезу о том, что все три вероятности одинаковые. Значение критерия согласия Пирсона равно

$$A$$
 5

$$C$$
 4

$$|E|$$
 6

$$B$$
 8

$$D \mid 7$$

 \boxed{F} Нет верного ответа.

Bonpoc 25. Температура планеты Плюк и её спутника являются стандартными нормальными случайными величинами, имеющими совместное нормальное распределение. Ковариация между температурами равна 0.5. Найдите вероятность того, что на Плюке положительная температура, если на спутнике температура равна -1.

$$|F|$$
 Heт верного ответа.

Вопрос 26. Максимальная ширина 90%-го симметричного по вероятности доверительного интервала для доли, построенного по выборке из 64 наблюдений, приблизительно равна

A 0.102

C 0.234

 \boxed{E} 0.206

B 0.368

D 0.156

F Нет верного ответа.

Вопрос 27. Компоненты вектора $X = (X_1, X_2, X_3)$ имеют совместное нормальное распределение:

$$X \sim \mathcal{N}\left(\begin{bmatrix}1\\1\\1\end{bmatrix}, \begin{bmatrix}3 & 0.5 & 0.5\\0.5 & 2 & 0.5\\0.5 & 0.5 & 3\end{bmatrix}\right).$$

Вероятность $\mathbb{P}(X_1 > X_2 + X_3)$ равна

A 0.701

C 0.369

E 0.593

B 0.215

D 0.688

F Нет верного ответа.

Вопрос 28. При построения доверительного интервала для разности математических ожиданий в двух нормальных независимых выборках размером m и n в случае равных известных дисперсий используется распределение

A $\mathcal{N}(0,1)$

 $C t_{m+n-2}$

 $oxed{E} F_{m-1,n-1}$

B t_{m+n}

 $D \mid F_{m,n}$

|F| Нет верного ответа.

Вопрос 29. Длины катетов в сантиметрах прямоугольного треугольника являются модулями независимых стандартных нормальных случайных величин. Какую длину не превысит гипотенуза этого треугольника с вероятностью 0.95?

A 0.68

C 4.61

E 0.21

B = 5.99

 $D \mid 0.1$

 \overline{F} Нет верного ответа.

Вопрос 30. Величина X принимает три значения 1, 2 и 3. По случайной выборке из ста наблюдений оказалось, что 1 выпало 40 раз, 2-40 раз и 3-20 раз. Карл хочет проверить гипотезу о том, что все три вероятности одинаковые. При верной H_0 критерий Пирсона имеет распределение

A $\mathcal{N}(0;1)$

C χ_2^2

 $E \chi_3^2$

 $B \chi_1^2$

 $D \chi_{99}^2$

|F| Нет верного ответа.

Вопрос 1. При проверке гипотезы о равенстве математических ожиданий оценок по статистике в двух группах против альтернативной гипотезы, что в первой группе оценки выше, оказалось, что выборочные средние равны. Тогда Р-значение в этом тесте

A равно 0

C равно 0.5

E равно 0.25

B равно 1

- D Недостаточно данных для ответа
- F Нет верного ответа.

Вопрос 2. Максимальная ширина 90%-го симметричного по вероятности доверительного интервала для доли, построенного по выборке из 64 наблюдений, приблизительно равна

 $A \mid 0.206$

 $C \mid 0.156$

 $E \mid 0.368$

 $B \mid 0.234$

 \overline{D} 0.102

F Нет верного ответа.

Вопрос 3. Вася считает, что контрольные по макроэкономике и статистике нравятся студентам с одинаковой вероятностью. Чтобы проверить эту гипотезу, он опросил по 100 случайных однокурсников после каждой контрольной и выяснил, что макроэкономика понравилась 30 студентам, а статистика — 50. При проверке этой гипотезы, тестовая статистика может иметь распределение

 $A \mid t_{99}$

 $E \mid \mathcal{N}(0,1)$

|F| Нет верного ответа.

Вопрос 4. Последовательность оценок $\hat{\theta}_n$ называется состоятельной для параметра θ , если

- $oxed{A}\ {
 m E}((\hat{ heta}_n- heta)^2) o 0$ при $n o\infty$ $oxed{C}\ {
 m E}(\hat{ heta}_n)= heta$

- $|E| \operatorname{Var}(\hat{\theta}_n) = (\theta)^2/n$
- \overline{F} Нет верного ответа.

Вопрос 5. Пусть X_1, \ldots, X_n — случайная выборка и $\ell(\theta)$ — её логарифмическая функция правдоподобия. Тестируется гипотеза $H_0: \theta=1$. Известно, что $\max_{\theta}\ell(\theta)=-10$, а $\ell(1)=-20$. Чему равно значение статистики отношения правдоподобия?

$$A -20$$

$$C$$
 -10

$$E = 0$$

$$\overline{D}$$
 20

|F| Нет верного ответа.

Вопрос 6. Длины катетов в сантиметрах прямоугольного треугольника являются модулями независимых стандартных нормальных случайных величин. Какую длину не превысит гипотенуза этого треугольника с вероятностью 0.95?

$$E \mid 4.61$$

$$\overline{F}$$
 Нет верного ответа.

Вопрос 7. Для выборки 1, 2, 3, 4, 5 границы 95%-го доверительного интервала для математического ожидания равны

$$\overline{A}$$
 [1.04, 4.96]

$$C$$
 [0.86, 5.14]

$$E$$
 [3.08, 5.92]

$$B = [-4.02, 1, 02]$$

$$D$$
 [1.54, 5.46]

$$\overline{F}$$
 Нет верного ответа.

Вопрос 8. Рассмотрим алгоритм Метрополиса-Гастингса для получения выборки параметра с апостериорной плотностью пропорциональной t^2 . Предлагаемый переход из a в b задаётся правилом, b=a+Z, где $Z \sim \mathcal{N}(0;4)$. Вероятность одобрения перехода из точки 0.5 в точку 0.3 равна

$$E \mid 0.36$$

$$B = 0.6$$

$$D$$
 1

$$\overline{F}$$
 Нет верного ответа.

Вопрос 9. Случайные величины X и Y распределены нормально с неизвестным математическим ожиданием и неизвестной дисперсией. Для тестирования гипотезы о равенстве дисперсий выбирается 20 наблюдений случайной величины X и 30 наблюдений случайной величины Y. Какое распределение может иметь статистика, используемая в данном случае?

$$A$$
 χ^2_{49}

$$C$$
 t_{48}

$$E F_{20,30}$$

$$B F_{29,19}$$

$$D \chi_{48}^2$$

$$F$$
 Heт верного ответа.

Bonpoc 10. Требуется проверить гипотезу о равенстве математических ожиданий по двум нормальным независимым выборкам размером 33 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 196. Разница выборочных средних равна 1. Тестовая статистика может быть равна

$$A -1/4$$

$$C -1/7$$

$$E -1/2$$

$$B - 1/14$$

$$D - 1/49$$

$$\overline{F}$$
 Нет верного ответа.

Вопрос 11. Оценка $\hat{\theta}_n$ называется эффективной оценкой параметра θ в классе оценок K, если

$$A E(\hat{\theta}_n) = \theta$$

$$\overline{E}$$
 $\mathrm{E}((\hat{ heta}_n- heta)^2) o 0$ при $n o\infty$

$$D \operatorname{Var}(\hat{\theta}_n) = (\theta)^2/n$$

Вопрос 12. Время подготовки студента к экзаменам и по статистике, и макроэкономике, имеет нормальное распределение с неизвестными математическими ожиданиями и дисперсиями. По 10 наблюдениям Вениамин получил оценку стандартного отклонения времени подготовки к статистике равную 5 часам. Оценка стандартного отклонения времени подготовки к макроэкономике, рассчитанная по 20 наблюдениям, оказалась равной 2. Тестовая статистика при проверке гипотезы о равенстве дисперсий может быть равна

 $A \mid 0.16$

 $C \mid 12.5$

 $B \mid 0.4$

 \overline{F} Нет верного ответа.

Вопрос 13. Пусть X_1, \ldots, X_n — случайная выборка из распределения Пуассона с параметром $\lambda > 0$. Известно, что оценка максимального правдоподобия параметра λ равна \bar{X} . Чему равна оценка максимального правдоподобия для $1/\lambda$?

 $A \bar{X}/n$

 $C \ln \bar{X}$

 $D 1/\bar{X}$

F Нет верного ответа.

Вопрос 14. Величина X принимает три значения 1, 2 и 3. По случайной выборке из ста наблюдений оказалось, что 1 выпало 40 раз, 2-40 раз и 3-20 раз. Карл хочет проверить гипотезу о том, что все три вероятности одинаковые. Значение критерия согласия Пирсона равно

|F| Нет верного ответа.

Вопрос 15. Температура планеты Плюк и её спутника являются стандартными нормальными случайными величинами, имеющими совместное нормальное распределение. Ковариация между температурами равна 0.5. Найдите вероятность того, что на Плюке положительная температура, если на спутнике температура равна -1.

 $A \mid 0.282$

0.596

 $E \mid 0.718$

 $B \mid 0.114$

 $D \mid 0.739$

|F| Нет верного ответа.

Вопрос 16. Пусть t_n — случайная величина, распределенная по Стьюденту с n степенями свободы. Предел $\lim_{n o \infty} \mathbb{P}\left(t_n^2 > 1\right)$ равен

Нет верного ответа.

Вопрос 17. Компоненты вектора $X = (X_1, X_2, X_3)$ имеют совместное нормальное распределение:

$$X \sim \mathcal{N}\left(\begin{bmatrix}1\\1\\1\end{bmatrix}, \begin{bmatrix}3 & 0.5 & 0.5\\0.5 & 2 & 0.5\\0.5 & 0.5 & 3\end{bmatrix}\right).$$

Вероятность $\mathbb{P}(X_1 > X_2 + X_3)$ равна

$$F$$
 Нет верного ответа.

Вопрос 18. Пусть X_1, \ldots, X_n — случайная выборка из распределения с плотностью распределения

$$f(x;\,\theta) = \begin{cases} \frac{2x}{\theta^2} & \text{при } x \in [0;\,\theta], \\ 0 & \text{при } x \not\in [0;\,\theta], \end{cases}$$

где $\theta > 0$. Используя начальный момент 2-го порядка, при помощи метода моментов найдите оценку неизвестного параметра θ .

$$A \frac{2}{3}\bar{X}$$

$$\boxed{C} \sqrt{\sum_{i=1}^{n} X_i^2}$$

$$\boxed{E} \sqrt{\frac{n}{2} \sum_{i=1}^{n} X_i^2}$$

$$B = \frac{3}{2}\bar{X}$$

$$\boxed{D} \sqrt{\frac{2}{n} \sum_{i=1}^{n} X_i^2}$$

$$\overline{F}$$
 Нет верного ответа.

Вопрос 19. Если функция правдоподобия пропорциональна $a^2(1-a)^6$, априорная плотность пропорциональна $\exp(-a)$, то апостериорная плотность параметра a пропорциональна

$$A = 0.5a^2(1-a)^6 + 0.5 \exp(a)$$
 $C = \frac{a^2(1-a)^6}{\exp(a)}$

$$\boxed{C} \quad \frac{a^2(1-a)^6}{\exp(a)}$$

$$\boxed{E} \quad \frac{a^2(1-a)^6}{\exp(-a)}$$

$$\boxed{B} \quad \frac{\exp(-a)}{a^2(1-a)^6}$$

$$|F|$$
 Нет верного ответа.

Вопрос 20. Величина X принимает три значения 1, 2 и 3. По случайной выборке из ста наблюдений оказалось, что 1 выпало 40 раз, 2-40 раз и 3-20 раз. Карл хочет проверить гипотезу о том, что все три вероятности одинаковые. При верной H_0 критерий Пирсона имеет распределение

$$\boxed{A} \mathcal{N}(0;1)$$

$$C$$
 χ_2^2

$$E$$
 χ^2_{99}

$$B \chi_3^2$$

$$D \chi_1^2$$

$$|F|$$
 Нет верного ответа.

Вопрос 21. При построения доверительного интервала для разности математических ожиданий в двух нормальных независимых выборках размером m и n в случае равных известных дисперсий используется распределение

 $A t_{m+n}$

 $C \mathcal{N}(0,1)$

 $\boxed{E} \ t_{m+n-2}$

 $B F_{m,n}$

 \overline{D} $F_{m-1,n-1}$

|F| Нет верного ответа.

Вопрос 22. При проверке гипотезы о равенстве дисперсии 5 по 11 наблюдениям за нормально распределенной случайной величиной, оказалось, что тестовая статистика равна 2. Несмещённая оценка дисперсии была равна

 \overline{A} 1

C 10

 \overline{E} 5

B = 5/10

D = 5/11

 \overline{F} Нет верного ответа.

Вопрос 23. Вася считает, что контрольные по макроэкономике и статистике нравятся студентам с одинаковой вероятностью. Чтобы проверить эту гипотезу, он опросил по 100 случайных однокурсников после каждой контрольной и выяснил, что макроэкономика понравилась 30 студентам, а статистика — 50. При расчётах Вася получил Р-значение равное 0.0038. Это означает, что гипотеза

A отвергается на уровне значимости 5%, но не отвергается на 1%

С отвергается на уровне значимости 1%, но не отвергается на 5%

[E] не отвергается на любом возможном уровне значимости

В отвергается на уровне значимости 1%

D отвергается на любом возможном уровне значимости

|F| Нет верного ответа.

Вопрос 24. Дана реализация выборки: -1, 1, 0, 2. Эмпирическая (выборочная) функция распределения в точке x=0.5 принимает значение равное

 $A \mid 1$

C 0.5

E 0.25

B 0.8

D 0

|F| Нет верного ответа.

Вопрос 25. Величина X принимает три значения 1,2 и 3. По случайной выборке из ста наблюдений оказалось, что 1 выпало 40 раз, 2-40 раз и 3-20 раз. Андрей Николаевич хочет проверить гипотезу о том, что все три вероятности одинаковые. Значение критерия согласия Колмогорова равно

$$B \ 2/15$$

$$\overline{D}$$
 3/4

$$\overline{F}$$
 Нет верного ответа.

Вопрос 26. Пусть X_1, \ldots, X_n — случайная выборка из распределения Бернулли с параметром $p \in (0; 1)$. Чему равна информация Фишера о параметре p, заключенная в двух наблюдениях случайной выборки?

$$\boxed{A} \quad \frac{2}{p(1-p)}$$

$$C$$
 $\frac{2}{n}$

$$|B| 2p(1-p)$$

$$D 2(1-p)$$

$$\overline{F}$$
 Нет верного ответа.

Вопрос 27. Математическое ожидание оценки дисперсии $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ для выборки из распределения Пуассона с $\lambda = 3$, равняется

$$B$$
 9

$$D \mid 1$$

$$\boxed{F}$$
 Нет верного ответа.

Вопрос 28. Случайная выборка состоит из одного наблюдения X_1 , которое имеет плотность распределения

$$f(x;\,\theta) = \begin{cases} \frac{1}{\theta^2} x e^{-x/\theta} & \text{при } x > 0, \\ 0 & \text{при } x \leq 0, \end{cases}$$

где $\theta>0$. Чему равна оценка неизвестного параметра θ , найденная с помощью метода максимального правдоподобия?

$$A \ln X_1$$

$$C$$
 $\frac{X_1}{\ln X_1}$

$$E 1/\ln X_1$$

$$B X_1/2$$

$$D$$
 X_1

$$\overline{F}$$
 Нет верного ответа.

Вопрос 29. Даны выборки объёма n из равномерного на отрезке [0,1] распределения. Выборочный начальный момент второго порядка стремится по вероятности при $n \to \infty$ к

$$B$$
 1

$$D$$
 1/4

$$F$$
 Нет верного ответа.

Вопрос 30. Истинное значение параметра θ равно 2, в случайной выборке 100 наблюдений, а информация Фишера о параметре θ , заключенная в одном наблюдении равна $I_1(\theta)=9$. Распределение оценки максимального правдоподобия $\hat{\theta}$ похоже на

$$A \mathcal{N}(2, 9)$$

$$C \mathcal{N}(2, 1/3)$$

$$E \ \mathcal{N}(2, 1/900)$$

$$B \ \mathcal{N}(2, 1/30)$$

$$D \ \mathcal{N}(2, 1/9)$$

$$F$$
 Нет верного ответа.