Rigid Motions and Symmetries

A **rigid motion** is the action of taking an object and moving it to a different location without altering its shape or size.

A **symmetry** is a rigid motion that moves the object back onto itself.

- What sets of symmetries can an object have?
- When do two objects have the same set of symmetries?

Equilateral: Six symmetries

Isosceles: Two symmetries

Scalene: One symmetry

No reflections

One rotation

Same symmetry type!

An equilateral triangle and a 3-bladed propeller each have three rotational symmetries (by 0° , 120° , and 360°) and three reflection symmetries.

An equilateral triangle and a 3-bladed propeller each have three rotational symmetries (by 0°, 120°, and 360°) and three reflection symmetries.

We say that the triangle and the propeller **have the same** symmetry type.

An equilateral triangle and a 3-bladed propeller each have three rotational symmetries (by 0°, 120°, and 360°) and three reflection symmetries.

We say that the triangle and the propeller **have the same** symmetry type.

Any object with exactly this set of symmetries is said to have symmetry type D_3 .

Symmetry type?

Symmetry type?

An object has **symmetry type** D_N if has N reflection symmetries and N rotation symmetries (and no others).

Symmetry type?

If we have a circle with center O...

If we have a circle with center O...

► Every line through the point *O* is an axis of reflection for a symmetry of the circle.

If we have a circle with center O...

- ► Every line through the point *O* is an axis of reflection for a symmetry of the circle.
- **Every** rotation with rotocenter *O* is a symmetry

If we have a circle with center O...

- ► Every line through the point *O* is an axis of reflection for a symmetry of the circle.
- ▶ Every rotation with rotocenter O is a symmetry
- ► So, the circle has **infinitely many symmetries**.

If we have a circle with center O...

- ► Every line through the point *O* is an axis of reflection for a symmetry of the circle.
- ▶ Every rotation with rotocenter O is a symmetry
- ▶ So, the circle has **infinitely many symmetries**.

We say that the circle has symmetry type D_{∞} .

Symmetry type D_∞

An object has **symmetry type** D_N if has N reflection symmetries and N rotation symmetries (and no others).

N can be a positive integer, or it can be infinity (∞) .

An object has **symmetry type** D_N if has N reflection symmetries and N rotation symmetries (and no others).

N can be a positive integer, or it can be infinity (∞) .

- ▶ A regular polygon with N sides has symmetry type D_N .
- A circle has symmetry type D_{∞} .

An object has **symmetry type** D_N if has N reflection symmetries and N rotation symmetries (and no others).

N can be a positive integer, or it can be infinity (∞) .

- ▶ A regular polygon with N sides has symmetry type D_N .
- A circle has symmetry type D_{∞} .

```
(Why "D"?)
```

Symmetry Type D_1

An object with symmetry type D_1 has:

- one rotation symmetry, which must be the identity motion;
- one reflection symmetry.

Officially, the "D" stands for "dihedral".

► The prefix "di" (two) reminds you that an object of symmetry type D_N has two kinds of symmetries: reflections and rotations.

▶ The *number* of symmetries for an object of symmetry type D_N is therefore 2N.

Symmetry Type D_2

An object with **symmetry type D₂** has:

- ▶ two rotation symmetries, which must be the identity motion (360°) and a "half-turn" (180°);
- two reflection symmetries, whose axes must meet at a right angle.

Symmetry type D₂

Symmetry type D₂

Two reflections (axes meet at a right angle) Two rotations (same rotocenter, 180° and 360°)

Symmetry type D₄

Symmetry type D₄

Four reflections (axes evenly spaced)

Four rotations (90, 180, 270, 360)

An object can have rotational symmetry but no reflection symmetry.

Typically, this happens when there is something "clockwise" about the object that would be reversed by a reflection.

Propeller #1 (has reflection symmetry)

Propeller #2 (no reflection symmetry)

Propeller #1 (has reflection symmetry)

Propeller #2 (no reflection symmetry)

An object with **symmetry type Z_N** has:

N rotational symmetries with the same rotocenter, and angles

$$1\times\frac{360^\circ}{\textit{N}},~2\times\frac{360^\circ}{\textit{N}},~\dots,~\textit{N}\times\frac{360^\circ}{\textit{N}}.$$

No reflection symmetries.

For example, an object with symmetry type Z_4 has rotational symmetries of 90°, 180°, 270° and 360°.

Type Z₁

Summary: D and Z Symmetry Types

An object has **symmetry type** D_N if it has N rotation symmetries and N reflection symmetries (for a total of 2N symmetries).

Summary: D and Z Symmetry Types

- An object has **symmetry type** D_N if it has N rotation symmetries and N reflection symmetries (for a total of 2N symmetries).
- ▶ An object can also have symmetry type D_{∞} (e.g., a circle or a disk).

Summary: D and Z Symmetry Types

- ► An object has **symmetry type D**_N if it has *N* rotation symmetries and *N* reflection symmetries (for a total of 2*N* symmetries).
- ▶ An object can also have symmetry type D_{∞} (e.g., a circle or a disk).
- ► An object has **symmetry type Z**_N if it has *N* rotation symmetries and no reflection symmetries.

(Mnemonic: The letter D has symmetry type D_1 , while the letter Z has symmetry type Z_2 .)

Other Symmetry Types?

► Are there any other symmetry types for 2-dimensional figures?

▶ In particular, if an object has N rotational symmetries, can its number of reflections be anything other than N or 0?

Composition

Definition: If \mathcal{M} and \mathcal{P} are rigid motions, then the **composition** of \mathcal{M} and \mathcal{P} is the rigid motion you get by first doing \mathcal{M} , then doing \mathcal{P} .

(Notation: $\mathcal{M} \star \mathcal{P}$.)

Composition

Definition: If \mathcal{M} and \mathcal{P} are rigid motions, then the **composition** of \mathcal{M} and \mathcal{P} is the rigid motion you get by first doing \mathcal{M} , then doing \mathcal{P} .

```
(Notation: \mathcal{M} \star \mathcal{P}.)
```

- ▶ If \mathcal{M} and \mathcal{P} are symmetries of an object, then so is $\mathcal{M} \star \mathcal{P}$.
- ▶ $\mathcal{M} \star \mathcal{P}$ is not always the same as $\mathcal{P} \star \mathcal{M}$ (although they can be the same).

(All rotations on this page have the same rotocenter.)

• $\mathcal{M}=30^\circ$ clockwise; $\mathcal{P}=45^\circ$ clockwise

(All rotations on this page have the same rotocenter.)

- $\mathcal{M}=30^\circ$ clockwise; $\mathcal{P}=45^\circ$ clockwise
- $\mathcal{M} \star \mathcal{P} = 75^{\circ}$ clockwise

(All rotations on this page have the same rotocenter.)

- $\mathcal{M}=30^\circ$ clockwise; $\mathcal{P}=45^\circ$ clockwise
- $\mathcal{M} \star \mathcal{P} = 75^{\circ}$ clockwise

• $\mathcal{M}=30^{\circ}$ clockwise; $\mathcal{P}=45^{\circ}$ counterclockwise

(All rotations on this page have the same rotocenter.)

- $\mathcal{M}=30^\circ$ clockwise; $\mathcal{P}=45^\circ$ clockwise
- $\mathcal{M} \star \mathcal{P} = 75^{\circ}$ clockwise

- $\mathcal{M}=30^\circ$ clockwise; $\mathcal{P}=45^\circ$ counterclockwise
- ▶ $\mathcal{M} \star \mathcal{P} = 75^{\circ}$ clockwise

(All rotations on this page have the same rotocenter.)

- $\mathcal{M}=30^\circ$ clockwise; $\mathcal{P}=45^\circ$ clockwise
- $\mathcal{M} \star \mathcal{P} = 75^{\circ}$ clockwise

- $\mathcal{M}=30^\circ$ clockwise; $\mathcal{P}=45^\circ$ counterclockwise
- ▶ $\mathcal{M} \star \mathcal{P} = 75^{\circ}$ clockwise

 $ightharpoonup \mathcal{M} = 30^{\circ}$ clockwise; $\mathcal{P} = 30^{\circ}$ counterclockwise

(All rotations on this page have the same rotocenter.)

- $\mathcal{M}=30^\circ$ clockwise; $\mathcal{P}=45^\circ$ clockwise
- $\mathcal{M} \star \mathcal{P} = 75^{\circ}$ clockwise

- $ightharpoonup \mathcal{M}=30^\circ$ clockwise; $\mathcal{P}=45^\circ$ counterclockwise
- ▶ $\mathcal{M} \star \mathcal{P} = 75^{\circ}$ clockwise

- $\mathcal{M}=30^{\circ}$ clockwise; $\mathcal{P}=30^{\circ}$ counterclockwise
- $\mathcal{M} \star \mathcal{P} = identity$

Composition of Symmetries of Type D_2

Symmetry type D₂

 \mathcal{A} : identity

 \mathcal{B} : rotation 180°

C: vertical reflection

 \mathcal{D} : horizontal reflection

Composition of Symmetries of Type D_2

	\mathcal{A}	\mathcal{B}	\mathcal{C}	\mathcal{D}
$ \mathcal{A} $				
\mathcal{B}				
\mathcal{C}				
\mathcal{D}				

(Entry in \mathcal{M} th row and \mathcal{P} th column is $\mathcal{M} \star \mathcal{P}$)

Composition of Symmetries of Type D_2

	\mathcal{A}	\mathcal{B}	С	\mathcal{D}
$ \mathcal{A} $	\mathcal{A}	\mathcal{B}	\mathcal{C}	\mathcal{D}
\mathcal{B}	\mathcal{B}	\mathcal{A}	\mathcal{D}	\mathcal{C}
\mathcal{C}	С	\mathcal{D}	\mathcal{A}	\mathcal{B}
\mathcal{D}	\mathcal{D}	С	\mathcal{B}	\mathcal{A}

(Entry in \mathcal{M} th row and \mathcal{P} th column is $\mathcal{M} \star \mathcal{P}$)

Each symmetry occurs once in each row and each column.

The composition of a rotation and a rotation is a rotation. The composition of a rotation and a reflection is a reflection. The composition of a rotation and a reflection is a reflection. The composition of a reflection and a reflection is a rotation.

A even number plus a even number is even.

A even number plus a odd number is odd.

A even number plus a odd number is odd.

A odd number plus a odd number is even.

A positive number times a positive number is positive.

A positive number times a negative number is negative.

A positive number times a negative number is negative.

A negative number times a negative number is positive.

Composition

	Rotation	Reflection
Rotation	Rotation	Reflection
Reflection	Reflection	Rotation

Addition

	Even	Odd
Even	Even	Odd
Odd	Odd	Even

Multiplication

	Positive	Negative
Positive	Positive	Negative
Negative	Negative	Positive

	\mathcal{A}	\mathcal{B}	\mathcal{C}	\mathcal{D}
\mathcal{A}	\mathcal{A}	\mathcal{B}	\mathcal{C}	\mathcal{D}
B	B	\mathcal{A}	\mathcal{D}	С
\mathcal{C}	С	\mathcal{D}	\mathcal{A}	\mathcal{B}
\mathcal{D}	\mathcal{D}	C	\mathcal{B}	\mathcal{A}

	\mathcal{A}	\mathcal{B}	\mathcal{C}	\mathcal{D}
$ \mathcal{A} $	\mathcal{A}	\mathcal{B}	C	\mathcal{D}
B	B	\mathcal{A}	\mathcal{D}	С
\mathcal{C}	С	\mathcal{D}	\mathcal{A}	\mathcal{B}
\mathcal{D}	\mathcal{D}	C	B	\mathcal{A}

If we write down the "multiplication table" of symmetries of any object with reflection symmetry, then half the entries will be blue and half red.

Possible Symmetry Types

- In the "multiplication table" of symmetries of any object with reflection symmetry, half the entries are blue and half are red.
- ▶ In the "multiplication table" of symmetries of any object without reflection symmetry, all the entries are blue.

Possible Symmetry Types

- In the "multiplication table" of symmetries of any object with reflection symmetry, half the entries are blue and half are red.
- ▶ In the "multiplication table" of symmetries of any object without reflection symmetry, all the entries are blue.

Punchline: Any two-dimensional object with N rotation symmetries has either N or 0 reflection symmetries.

Possible Symmetry Types

- In the "multiplication table" of symmetries of any object with reflection symmetry, half the entries are blue and half are red.
- ▶ In the "multiplication table" of symmetries of any object without reflection symmetry, all the entries are blue.

Punchline: Any two-dimensional object with N rotation symmetries has either N or 0 reflection symmetries.

Therefore, the only two-dimensional symmetry types are D_N and Z_N .