Optimal Monetary Policy Response to Belief Distortions: Model-Free Evidence

KC FRB Brown Bag Series, 3 June 2025

Jonathan J. Adams¹ Symeon Taipliadis²

The views expressed herein are those of the authors and do not necessarily represent the views of the Federal Reserve Bank of Kansas City or the Federal Reserve System.

¹Federal Reserve Bank of Kansas City

²University of Florida

• Mounting evidence: belief distortions (difference between expectations and FIRE) can have large macroeconomic effects

- Mounting evidence: belief distortions (difference between expectations and FIRE) can have large macroeconomic effects
- ... but no consensus on what drives aggregate belief distortions

- Mounting evidence: belief distortions (difference between expectations and FIRE) can have large macroeconomic effects
- ... but no consensus on what drives aggregate belief distortions
 - Causes vary: Behavioral errors? Information frictions?

- Mounting evidence: belief distortions (difference between expectations and FIRE) can have large macroeconomic effects
- ... but no consensus on what drives aggregate belief distortions
 - Causes vary: Behavioral errors? Information frictions?
 - Effects vary: Expansionary? Contractionary?

- Mounting evidence: belief distortions (difference between expectations and FIRE) can have large macroeconomic effects
- ... but no consensus on what drives aggregate belief distortions
 - Causes vary: Behavioral errors? Information frictions?
 - Effects vary: Expansionary? Contractionary?
- How to determine optimal policy without the microfoundations?

• How should monetary policy respond to inflation belief distortions?

- How should monetary policy respond to inflation belief distortions?
- We estimate the model-free optimal policy response to belief distortion shocks

- How should monetary policy respond to inflation belief distortions?
- We estimate the model-free optimal policy response to belief distortion shocks

 Belief distortion shocks are contractionary; optimal interest rate response is roughly 1:1

- How should monetary policy respond to inflation belief distortions?
- We estimate the model-free optimal policy response to belief distortion shocks

- Belief distortion shocks are contractionary; optimal interest rate response is roughly 1:1
- Target rate is a more effective tool than forward guidance, QE

1. Measure Belief Distortions (BDs)

- 1. Measure Belief Distortions (BDs)
 - Inflation expectations from surveys

- 1. Measure Belief Distortions (BDs)
 - Inflation expectations from surveys
 - Estimate the rational expectation (FIRE) from a VAR

- 1. Measure Belief Distortions (BDs)
 - Inflation expectations from surveys
 - Estimate the rational expectation (FIRE) from a VAR
 - Difference is the BD

- 1. Measure Belief Distortions (BDs)
 - Inflation expectations from surveys
 - Estimate the rational expectation (FIRE) from a VAR
 - Difference is the BD
- 2. Estimate IRFs to BD Shocks

- 1. Measure Belief Distortions (BDs)
 - Inflation expectations from surveys
 - Estimate the rational expectation (FIRE) from a VAR
 - Difference is the BD
- 2. Estimate IRFs to BD Shocks
 - Identify BD shocks by SVAR (Adams and Barrett, 2024)

- 1. Measure Belief Distortions (BDs)
 - Inflation expectations from surveys
 - Estimate the rational expectation (FIRE) from a VAR
 - Difference is the BD
- 2. Estimate IRFs to BD Shocks
 - Identify BD shocks by SVAR (Adams and Barrett, 2024)
 - Also reduced form (statistical innovation) as a sanity check

- 1. Measure Belief Distortions (BDs)
 - Inflation expectations from surveys
 - Estimate the rational expectation (FIRE) from a VAR
 - Difference is the BD
- 2. Estimate IRFs to BD Shocks
 - Identify BD shocks by SVAR (Adams and Barrett, 2024)
 - Also reduced form (statistical innovation) as a sanity check
- 3. Estimate IRFs to Monetary Policy Shocks

- 1. Measure Belief Distortions (BDs)
 - Inflation expectations from surveys
 - Estimate the rational expectation (FIRE) from a VAR
 - Difference is the BD
- 2. Estimate IRFs to BD Shocks
 - Identify BD shocks by SVAR (Adams and Barrett, 2024)
 - Also reduced form (statistical innovation) as a sanity check
- 3. Estimate IRFs to Monetary Policy Shocks
- 4. Calculate Reduced-form Optimal Policy Counterfactual

- 1. Measure Belief Distortions (BDs)
 - Inflation expectations from surveys
 - Estimate the rational expectation (FIRE) from a VAR
 - Difference is the BD
- 2. Estimate IRFs to BD Shocks
 - Identify BD shocks by SVAR (Adams and Barrett, 2024)
 - Also reduced form (statistical innovation) as a sanity check
- 3. Estimate IRFs to Monetary Policy Shocks
- 4. Calculate Reduced-form Optimal Policy Counterfactual
 - Reduced-form approach inspired by McKay and Wolf (2023)

- 1. Measure Belief Distortions (BDs)
 - Inflation expectations from surveys
 - Estimate the rational expectation (FIRE) from a VAR
 - Difference is the BD
- 2. Estimate IRFs to BD Shocks
 - Identify BD shocks by SVAR (Adams and Barrett, 2024)
 - Also reduced form (statistical innovation) as a sanity check
- 3. Estimate IRFs to Monetary Policy Shocks
- 4. Calculate Reduced-form Optimal Policy Counterfactual
 - Reduced-form approach inspired by McKay and Wolf (2023)
 - Construct optimal monetary policy response to offset BDS effects

- 1. Measure Belief Distortions (BDs)
 - Inflation expectations from surveys
 - Estimate the rational expectation (FIRE) from a VAR
 - Difference is the BD
- 2. Estimate IRFs to BD Shocks
 - Identify BD shocks by SVAR (Adams and Barrett, 2024)
 - Also reduced form (statistical innovation) as a sanity check
- 3. Estimate IRFs to Monetary Policy Shocks
- 4. Calculate Reduced-form Optimal Policy Counterfactual
 - Reduced-form approach inspired by McKay and Wolf (2023)
 - Construct optimal monetary policy response to offset BDS effects
 - Counterfactual is robust to the Lucas critique!

Data

- We use (monthly) median household 1-year-ahead inflation forecasts from the Michigan Survey of Consumers.
 - We infer the implied 1-year-ahead CPI forecasts according to:

$$f_t^{CPI} = (1 + f_t^{\pi,12}) \times CPI_t$$

- Coverage: Jan 1978 May 2024
- We source high-frequency monetary policy shocks from Swanson (2023)
 - Three instruments: target rate, forward guidance, and large-scale asset purchases
 - Coverage: Feb 1988 Dec 2023

Data

- The VAR setting is completely standard (similar to Gertler and Karadi (2015))
- We load our (baseline) VAR model with log of CPI, log of IP, unemployment, excess bond premium (Gilchrist and Zakrajšek, 2012), 2-year treasury yield
- Lag length chosen by AIC

Structural Shock to Belief Distortions

- Follow Adams and Barrett (2024): assume that structural BD shocks are the only shocks to drive forecasts away from FIRE contemporaneously
- Stack 1-year-ahead inflation forecasts in a VAR model of the form:

$$\begin{pmatrix} f_t^{CPI,h} \\ x_t \end{pmatrix} = \sum_{j=1}^J B_j^s \begin{pmatrix} f_{t-j}^{CPI,h} \\ x_{t-j} \end{pmatrix} + \underbrace{w_t^s}_{A^s \varepsilon_t^s}$$
(1)

- VAR identifies B_j^S ; structural restrictions decompose $Var(w_t^S)$ to identify first column of A^S . Combine \implies IRFs to BD shocks
- Inflation BD shocks surprisingly robust. Many different specifications: same qualitative effects.

Structural Shock to Belief Distortions

Reduced-form Shock to Belief Distortions

- An alternative approach (sanity check) is to infer BD shocks as the *statistical innovation* of Belief Distortions.
- Estimate BD from the data: Rational Expectations Time Series

$$d_t^{y,h} \equiv f_t^{y,h} - r e_t^{y,h} \tag{2}$$

• Include BD in the VAR model:

$$\begin{pmatrix} d_t^{y,h} \\ x_t \end{pmatrix} = \sum_{j=1}^J B_j^r \begin{pmatrix} d_{t-j}^{y,h} \\ x_{t-j} \end{pmatrix} + \underbrace{w_t^r}_{A^r \in I}$$
 (3)

- Reduced form:
 - Linear combination of structural shocks (extra assumptions needed for McKay-Wolf)
 - Does it resemble the structural BD shock?

Reduced-form Shock to Belief Distortions

Monetary Policy Shocks (MPS)

- High frequency-identified MPS from Swanson (2023): Target Rate, Forward Guidance, Large-Scale Asset Purchases (LSAP)
- ullet For each response variable i, we regress each residual $w_{i,t}$ on the MPS

$$w_{i,t} = \alpha_i + \underbrace{\omega_i}_{\text{impact}} m_t + \eta_{i,t} \tag{4}$$

and estimate IRFs by proxy-VAR

Optimal Response to Belief Distortions

• We set a welfare criterion consistent with the Fed's dual mandate:

$$W_s = \lambda V_s^u(H) + (1 - \lambda)V_s^{\pi}(H) \tag{5}$$

- $V_s^u(H)$ and $V_s^{\pi}(H)$: variance of unemployment and inflation due to BD shocks s (up to horizon h)
- \mathcal{W}_s is a function of the IRF to shock s
- Baseline: equal weight to *full-employment* and *price stabilization* i.e. $\lambda = 1/2$ Computation

Optimal Response to Belief Distortions

• As in McKay and Wolf (2023) we construct a counterfactual rule for MP shock *m*:

$$m_t = \psi s_t$$

• By responding to the shock, the IRF to a BD shock becomes:

$$\phi_{\psi}(\mathbf{k}) = \phi_{s}(\mathbf{k}) + \phi_{m}(\mathbf{k})\psi$$

- ullet $\phi_{\psi}(k)$ is the counterfactual IRF to a BD shock
- ullet \implies implies counterfactual welfare \mathcal{W}_{ψ}

Optimal Response to Belief Distortions

- ullet The optimal policy response is the ψ that minimizes the counterfactual welfare loss \mathcal{W}_{ψ} . ullet Minimization Problem
- To be robust to Lucas critique: shocks must be unanticipated.
 - Definitely for Swanson MPS
 - Yes for structural BD shocks, if structural assumptions hold
 - Yes for reduced-form shocks, if our rational expectation estimation is accurate

Optimal Policy Response Reduced-form alternative

Policy Tools	Structu	R^2		
Independent	Target -0.85 (0.30)	FG	LSAP	R ² 0.95
		1.42 (0.46)		0.73
			-0.95 (0.35)	0.85
Pairwise	-0.68 (0.25)	0.41 (0.34)		0.97
	-0.65 (0.28)		-0.26 (0.23)	0.96
Triplewise	- 0.46 (0.21)	0.43 (0.27)	-0.28 (0.18)	0.99

Counterfactual Responses to BD shocks (Structural Method)

Counterfactual Responses to BD shocks (Structural Method)

Conclusion

- Evidence: Belief distortions exert contractionary effects (why?)
- Intuitively, MP should respond by easing
- We employ model-free counterfactuals following McKay and Wolf (2023) and find optimal policy in line with this intuition.
- Quantitatively: respond \sim 1:1
- Monetary easing through short-term rates is the most effective tool
- Robustness checks confirm our conclusions across many specification choices

Time Series of Belief Distortion Shocks • Back

• Rational Expectation (RE) is the conditional expectation of y_{t+h} for some information set Ω_t :

$$re_t^{y,h} = \mathbb{E}_t[y_{t+h}|\Omega_t]$$

- The Rational Expectation is **not directly observed** in the data.
- We proxy for the info set using lags of macro variables and inflation forecasts.
- We estimate ex-post RE using the fitted values of the following model:

$$y_{t+h} = \sum_{i=0}^{J} \left(\alpha_{j} f_{t-j}^{y,h} + \beta_{j} x_{t-j} \right) + v_{t+h}$$
 (6)

Optimal Response Identification • Back

• The Welfare criterion:

$$W_s = \lambda V_s^u(H) + (1 - \lambda)V_s^{\pi}(H) \tag{7}$$

• where $V_s^{\times}(H)$ is the horizon-H conditional variance of x:

$$V_s^{\times}(h) = \sum_{k=0}^{H} Var(x_{t+k}|s_t) = \sum_{k=0}^{H} (\phi_w^{\times}(k))^2 Var(w_t)$$

• Example: Any shock s would give the following welfare loss over H horizons:

$$W_s = \sum_{k=0}^{H} \left(\lambda \left(e_u \phi_w(k) \right)^2 + (1 - \lambda) \left(e_\pi \phi_w(k) \right)^2 \right) \tag{8}$$

Minimization Problem Back

• Welfare criterion:

$$W_s = \sum_{k=0}^{H} \left(\lambda \left(e_u \phi_{\psi}(k) \right)^2 + (1 - \lambda) \left(e_{\pi} \phi_{\psi}(k) \right)^2 \right) \tag{9}$$

ullet Can minimize \mathcal{W}_s by linear projection of IRFs, i.e. run the regression:

$$\left(\lambda\phi_{s}^{u}(k)^{2}+(1-\lambda)\phi_{s}^{\pi}(k)^{2}\right)=-\left(\lambda\phi_{m}^{u}(k)^{2}+(1-\lambda)\phi_{m}^{\pi}(k)^{2}\right)\times\hat{\psi}+\hat{\epsilon}$$
(10)

Optimal Policy Response Back

Policy Tools	Structural Methodology			Reduced-form Methodology				
	Target	FG	LSAP	R^2	Target	FG	LSAP	R^2
Independent	-0.85			0.95	-0.44			0.81
	(0.30)				(0.34)			
		1.42		0.73		0.24		0.08
		(0.46)				(0.40)		
			-0.95	0.85			-0.42	0.32
			(0.35)				(0.34)	
Pairwise	-0.68	0.41		0.97	-0.52	-0.26		0.87
	(0.25)	(0.34)			(0.48)	(0.48)		
	-0.65		-0.26	0.96	-0.42		-0.04	0.81
	(0.28)		(0.23)		(0.32)		(0.25)	
Triplewise	-0.46	0.43	-0.28	0.99	-0.54	-0.28	0.05	0.88
	(0.21)	(0.27)	(0.18)		(0.44)	(0.44)	(0.21)	

Robustness Checks • Back

- Inflation vs. Full Employment Targeting
 - We shift $\lambda \in (0,1)$.
 - ullet Conventional policy responds with $\psi \in (-1.01, -0.84)$
- Change number of lags p in VAR(p) model.
- Exclude COVID-19 Era from baseline VAR model.
- Truncate Welfare Horizon.
 - Suppose the monetary authorities care about welfare effects over a 1-year vs. 10-year horizon. Conventional policy responds with $\psi \in (-0.87, -0.82)$
- Run parsimonious a VAR model
- Use a high-frequency MPS from a natural-language approach (Aruoba and Drechsel, 2024)
 - This robustness check suggests a more aggressive monetary easing.

Robustness Checks • Back

	Structural		Reduced-form	
Baseline Model	Target -0.845 (0.301)	R ² 0.948	Target -0.435 (0.344)	R ² 0.806
Inflation Targeting ($\lambda=0$)	-1.006 (0.263)	0.718	0.075 (0.284)	0.004
Employment Targeting ($\lambda=1$)	-0.843 (0.339)	0.955	-0.439 (0.354)	0.857
VAR with 3 lags	-1.046 (0.456)	0.892	-0.524 (0.341)	0.894
VAR with 12 lags	-0.599 (0.262)	0.861	-0.186 (0.229)	0.275
Belief Distortion estimation with 12 lags	-	-	-0.378 (0.237)	0.773
Excl. COVID-19 Era	-0.828 (0.239)	0.736	-0.677 (0.475)	0.793
24-Month Truncation of Welfare Objective	-0.874 (0.366)	0.954	-0.378 (0.291)	0.764
120-Month Truncation of Welfare Objective	-0.822 (0.303)	0.913	-0.397 (0.377)	0.596
Aruoba-Drechsel Monetary Policy Shock	-2.092 (1.059)	0.705	-0.912 (0.942)	0.845

Bibliography

References

- Adams, Jonathan J. and Philip Barrett, "Shocks to inflation expectations," *Review of Economic Dynamics*, October 2024, *54*, 101234.
- **Aruoba, S. Borağan and Thomas Drechsel**, "Identifying Monetary Policy Shocks: A Natural Language Approach," May 2024.
- **Gertler, Mark and Peter Karadi**, "Monetary Policy Surprises, Credit Costs, and Economic Activity," *American Economic Journal: Macroeconomics*, January 2015, 7 (1), 44–76.
- **Gilchrist, Simon and Egon Zakrajšek**, "Credit Spreads and Business Cycle Fluctuations," *American Economic Review*, June 2012, *102* (4), 1692–1720.
- McKay, Alisdair and Christian K Wolf, "What can time-series regressions tell