

Josh Poduska, Sr. Business Analytics Consultant,
Actian Corporation

Beyond Sampling: Fast, Whole-Dataset Analytics for Big Data on Hadoop

October 2013 KNIME Day Boston

Agenda

- The Age of Data
- Scaling Gap
- Enter the Data Scientists
- POS Hadoop Analytics in KNIME
- Conclusions

The Age of Data

- In the last two years we have generated more data than in the history of mankind
- Data is expected to double in size every two years through 2020, exceeding 40 zettabytes (40 trillion gigabytes)

2020

2012 - 2014

The Beginning – 2011

Entering the Age of Data

What's Changed?

- Data is THE central business asset:
 "Data are an organization's sole, non-depletable, non-degrading, durable asset. Engineered right, data's value increases over time because the added dimensions of time, geography, and precision." (Peter Aitken)
- Data generation has changed forever
 - Instrumentation of ALL businesses, people, machines
- Data is born digitally and flows constantly
 - "All things are flowing.." (Heraclitus, 500 BC)

The Scaling Gap

- - In the Age of Data, if you are not super-scaling you are failing. What does super-scaling entail?
 - Software stacks to consume, analyze and act on event pipelines must be frictionless to set up
 - Yet extremely performant: must scale-up and scale-out (SUSO) to fully exploit game-changing price/performance on modern commodity hardware
 - And be elastic
 - And still be affordable
 - The hard truth:
 - Almost no legacy data/event processing stacks super-scale
 - And there is no path to reasonably (and economically) get there

Your legacy analytic software WILL fail in the Age of Data

Venn Diagram of Data Scientists

Data Mining is a Process

 Successfully completing the process requires having a CONVERSATION with the data.

Tools Available (in big data context)

- Distributed Platforms
 - Hadoop, Mesos, ...
 - Dataflow, HPCC
- Analytic Databases
 - ParAccel, Vectorwise, Vertica, Aster Data, GreenPlum, Netezza, ...
 - Cassandra, HBase, MongoDB, ...
- Analytic Platforms
 - Dataflow Analytics, SAS, SPSS, ...
 - KNIME, R, RapidMiner, ...

Hadoop

- Open source, distributed (scale out) platform for data processing on cheap hardware
- Components
 - HDFS Hadoop Distributed File System
 - MapReduce computation framework
 - Broken into two phases
 - Map takes input, produces a name/value mapping
 - Reduce applies a final reduction of the mapping phase
 - HBase name/value pair data store
 - Oozie, ZooKeeper, ...
 - Distributions: Apache, Cloudera, HortonWorks, MapR, Intel, ...

Retail POS Application

Market Basket Analysis

The Data

- Retailers have Point of Sales (POS) data
- Items purchased in same basket are captured (line items)
- Summary of each basket (basket or order)
- Information about items UPC, SKU, description, category hierarchy

Analysis

- Need to sell longer-held produce, labeled CLOSEOUT ITEMS
- Want to know what drives total receipt spend
- Want to know what items sell well together
- Which items drive purchase of other items

Configuration

- Hundreds of millions of rows of POS data
- Hadoop platform
 - 3 worker nodes, 1 head node
 - Running Cloudera CDH4
 - Distributed Dataflow 6.1
- Analysis Tools (run on desktop)
 - Actian Dataflow Analytics for Hadoop (KNIME installation library)
 - Gephi (open source graph visualization)

Dataflow Analytics for KNIME

- KNIME (knime.org)
 - Open source analytics workflow platform
 - Highly extensible
 - Active community of plugin contributors
 - Commercially available Server, Teamspace and Report products
- Dataflow Analytics
 - Actian developed extensions to KNIME
 - Includes scalable Dataflow technology
 - Large set of "nodes" based on Dataflow

Dataflow Analytics for KNIME

Dataflow Analytics for KNIME

Demo

Visualize Associations in Gephi

Big Data Conversation → Analytical Impact

- Retail Goal: Increase Spend on Closeout Produce
- High confidence antecedent:
 - Cheese + Bananas
 - Snacks + Bananas
 - Bread + Bananas ...
- High support antecedents:
 - Bananas
 - Tomatoes
 - Milk + Cheese ...

Big Data Conversation -> Analytical Impact

Retail Goal: Increase Spend on Closeout Produce

- What Closeout Produce associations exist with low lift?
 (↑ lift → bring consequent into basket)
 - Chicken or Cheese + Soft Drinks
 - > Action = Same visit coupon

Big Data Conversation -> Analytical Impact

Retail Goal: Increase Spend on Closeout Produce

- What has high support but no Closeout Produce association?
 - Candy, Canned Vegetables, Soup.
 - > Action = Same visit coupon, receipt coupon, delivered coupon, etc.

Big Data Conversation → Analytical Impact

Retail Goal: Increase Total Spend per Customer

 Clustering points to % Basket in Market Department being a key factor in total spend.

Cluster Results

Big Data Conversation -> Analytical Impact

Retail Goal: Increase Total Spend per Customer

- Follow up Cluster with Linear Regression
 - % Basket in Market Department is indeed a key predictor even after factoring for:
 - DOW
 - Season
 - %Basket Market Department
 - %Basket Produce Department
 - %Basket Grocery Department
 - %Basket Discount Department

Conclusion

- The Age of Data is here
 - Data is the central business asset
 - Data generation has changed forever
 - Shift of analysis focus to time-stamped events
 - Crisis of software that scales to meet demand
- Data Science is changing how data is:
 - Collected, discovered, analyzed, used, acted upon ...
- Big Data Conversations
 - Deep analysis is required to move beyond basic findings
 - Actionable results require very heavy lifting

Questions

www.actian.com

facebook.com/actiancorp

@actiancorp

joshua.poduska@action.com

Backup slides

Start with data discovery

Cleanse, enrich & aggregate

Cleanse and enrich

Analyze

100.0

97.5

95.0

92.5

90.0

87.5

85.0

82.5

80.0

Settings

0.10

Scaling factor:

Display labels

0.15

Confidence %

History of Dataflow

- Initially developed as next-gen data engine for integration
- Used to be DataRush
- Requirements
 - High data throughput
 - Scalable (data, multicore)
 - Based on dataflow concepts
 - Component based architecture
 - Easy to extend
 - Easily fits in visual development environment
- Embedded in Pervasive products (DataProfiler)
- Extended with SDK for more general use

Dataflow Concepts

- Operators (nodes) linked together in a directed graph
- Data flows along edges
- Shared nothing architecture
- Provides pipeline parallelism
- Supports data parallelism
- Data scalable

Operator Library

Data Explorer
Data Quality Analyzer
Data Summarizer
Data Summarizer Viewer
Distinct Values
DataMatcher
Cluster Duplicates
Cluster Links
Discover Duplicates
Discover Links
Encode

Integration with Hadoop

- Data Level
 - HDFS access
 - File system abstraction works with all I/O operators
 - Distributed execution uses splits much like MR
 - HBase
 - Temporal key-value data store based on column families
 - Fast loading using HFile integration
 - Fast temporal queries
- Execution
 - Distributed execution uses distribute DataRush engines (not MapReduce)
 - Integrating with YARN for resource sharing

Distributed Execution

Distributed I/O

- Allows downstream operators to be parallelized
- Parallelization concepts are the same whether the graph is run locally or distributed

Performance Test

Dataflow versus PIG

- Used TPC-H data
- Generated 1TB data set in **HDFS**
- Ran several "queries" coded in Dataflow and PIG
- Run times in seconds (smaller is better)

Cluster Configuration:

- 5 worker nodes
- 2 X Intel E5-2650 (8 core)
- 64GB RAM
- 24 X 1TB SATA 7200 rpm

TPC-H: 1 Terabyte Test: Run times

Dataflow Analytics Solutions

- Opera Solutions
 - · Data science solutions provider
 - · Embedding DataRush in engineered solutions
- Healthcare
 - Claims cleansing & processing
- Retail
 - Market basket analysis
 - · Product category resolution (MDM)
- Telecom
 - CDR processing & analysis

"[Dataflow's] efficiency and ability to automatically scale, whether on a single server or a Hadoop cluster, supports our vision for consistent, reusable, scalable Big Data analytics."

- Armando Escalante, Chief Operating Officer, Opera Solutions