Estatística aplicada

Lino Costa

Departamento de Produção e Sistemas Escola de Engenharia Iac@dps.uminho.pt

Ano letivo 2015/2016

Sumário

- dados categoriais
- 2. probabilidades completamente especificadas
 - hipóteses
 - frequências esperadas
 - estatística de qui-quadrado
- 3. probabilidades não completamente especificadas
 - estimação de parâmetros
 - hipóteses
 - · frequências esperadas
 - estatística de qui-quadrado

Dados categoriais

Uma variável categórica é usada para representar um conjunto de categorias. Dois tipos de variáveis categóricas podem ser definidos:

- variável nominal a medição apenas define a que classe a unidade pertence, em relação àquela propriedade (e.g., sexo)
- variável ordinal a medição também esclarece quando uma unidade tem mais da propriedade do que outra unidade (e.g., opinião)

Classe	1	2	 k
Frequência	f_1	f_2	 f_k

Teste de bom ajuste

A distribuição da variável categórica é desconhecida. O objetivo do teste de bom ajuste é testar se uma determinada distribuição se ajusta à população com base nos dados de uma grande amostra ($n \ge 30$).

Probabilidades completamente especificadas

A distribuição está completamente especificada na hipótese nula para as k classes, sem haver necessidade de estimar parâmetros.

$$H_0: p_1 = p_{10}, p_2 = p_{20}, \dots, p_k = p_{k0} \quad (p_{10} + p_{20} + \dots + p_{k0} = 1)$$

 $H_1: p_i \neq p_{i0} \quad \exists i \in \{1, \dots, k\}$

Estatística de teste

$$E.T.:Q=\sum\limits_{i=1}^krac{(f_i-e_i)^2}{e_i}$$
 onde f_i são as frequências observadas e $e_i=np_i$

são as frequências esperadas. Se a frequência esperada de uma classe i for pequena ($e_i < 5$), a classe deve ser agrupada com a classe adjacente e o número de classes k reduzido de uma unidade.

Região de rejeição

 $R.R.: Q > \chi^2_{\alpha,k-1}$ onde α é o nível de significância.

Exemplo 1

Em 2003, o número de AVCs masculinos no concelho de Braga foram os reportados na tabela, de acordo com a estação do ano. Teste se as probabilidades de ocorrência de AVCs é idêntica nas quatro estações do ano ($\alpha=0.05$).

Estação do ano	Primavera	Verão	Outono	Inverno
Número de AVCs	64	81	39	28

- Estação do ano é uma variável categórica nominal com k=4 classes
- Teste do bom ajuste para testar se as probabilidades de AVCs são idênticas (probabilidades completamente especificadas), i.e.,

$$H_0: p_1 = 1/4, p_2 = 1/4, p_3 = 1/4, p_4 = 1/4$$
 $H_1: \neg H_0$

	Estação do ano	Primavera	Verão	Outono	Inverno	Σ
	f_i	64	81	39	28	212 = n
•	p_i	1/4	1/4	1/4	1/4	1
	$e_i = np_i$	53	53	53	53	212
	$\frac{(f_i-e_i)^2}{e_i}$	2.28	14.79	3.70	11.79	32.56 = Q

•
$$E.T.: Q = \sum_{i=1}^{4} \frac{(f_i - e_i)^2}{e_i} = 32.56$$

- $R.R.: Q > \chi^2_{0.05,3} \Leftrightarrow Q > 7.81$ (Tabela 7)
- Rejeita-se H_0 para $\alpha=0.05$, pelo que a probabilidade de AVCs não é idêntica nas quatro estações do ano.

Probabilidades não completamente especificadas

A distribuição não está completamente especificada na hipótese nula para as k classes, havendo a necessidade de estimar parâmetros com base nos dados.

 H_0 : as probabilidades das classes provêm de uma distribuição da família... H_1 : as probabilidades das classes não provêm de uma distribuição da família...

Estatística de teste

$$E.T.: Q = \sum_{i=1}^k rac{(f_i - e_i)^2}{e_i}$$
 onde f_i são as frequências observadas e $e_i = np_i$

são as frequências esperadas. Se a frequência esperada de uma classe i for pequena ($e_i < 5$), a classe deve ser agrupada com a classe adjacente e o número de classes k reduzido de uma unidade.

Região de rejeição

 $R.R.:Q>\chi^2_{\alpha,gl}$ onde gl=k-1 – número de parâmetros estimados e α é o nível de significância.

Exemplo 2

Julga-se que o número de emails por hora (X) que chegam a uma instituição segue uma distribuição de Poisson.Os seguintes dados foram obtidos durante 100 horas. Teste se o número de emails por hora que chegam à instituição segue uma distribuição de Poisson ($\alpha=0.05$).

Número de emails/hora (X)	0	1	2	3
Frequência	60	28	7	5

- Número de emails/hora (X) é uma variável categórica ordinal com k=4 classes
- Teste do bom ajuste para testar X segue uma distribuição de Poisson sem λ especificado (probabilidades não completamente especificadas), i.e.,

$$H_0:$$
 as probabilidades das classes provêm de uma distribuição de Poisson $H_1:
eg H_0$

- estimar parâmetro λ : $\hat{\lambda} = \bar{x} = \frac{0 \times 60 + 1 \times 28 + 2 \times 7 + 3 \times 5}{100} = 0.57$
- logo $X \sim P(0.57)$ e $p_1 = P(X = 0) = \frac{e^{-0.57}0.57^0}{0!} = 0.57$, $p_2 = P(X = 1) = 0.32$, $p_3 = P(X = 2) = 0.09$ e $p_4 = P(X > 3) = 1 (0.57 + 0.32 + 0.09) = 0.02$

	Número de emails/hora (X)	0	1	2	3 ou mais	\sum
•	f_i	60	28	7	5	100 = n
•	p_i	0.57	0.32	0.09	0.02	1
	$e_i = np_i$	57	32	9	2	100

• como $e_4 = 2 < 5$ tem de se agrupar classes

Exemplo 2

	Número de emails/hora (X)	0	1	2 ou mais	\sum
	f_i	60	28	12	100 = n
•	p_i	0.57	0.32	0.11	1
	$e_i = np_i$	57	32	11	100
	$rac{(f_i - e_i)^2}{e_i}$	0.16	0.50	0.09	0.75 = Q

- com o agrupamento, passa-se a ter k=3
- $E.T.: Q = \sum_{i=1}^{3} \frac{(f_i e_i)^2}{e_i} = 0.75$
- $R.R.: Q > \chi^2_{\alpha,gl}$ com gl = k-1 número de parâmetros estimados = 3-1-1=1, logo $Q > \chi^2_{0.05,1} \Leftrightarrow Q > 3.84$ (Tabela 7)
- Não se rejeita H_0 para $\alpha=0.05$, pelo que o número de emails por hora que chegam à instituição poderá seguir uma distribuição de Poisson.

Exemplo 3

Recolheu-se uma amostra aleatória de 100 operários de uma grande empresa, tendo-se obtido para o vencimento por hora uma média e um desvio padrão de 132 e 5, respetivamente. Pretende-se testar se o vencimento por hora segue uma distribuição normal ($\alpha=0.05$) tendo em conta os dados da seguinte tabela:

Vencimento	N ^o de operários	
x < 125	10	
$125 \le x < 130$	20	
$130 \le x < 135$	38	
$135 \le x < 140$	25	
$x \ge 140$	7	

- Vencimento por hora (X) é uma variável agrupada em k=5 classes
- Teste do bom ajuste para testar X segue uma distribuição normal sem μ e σ especificados (probabilidades não completamente especificadas), i.e., H_0 : as probabilidades das classes provêm de uma distribuição normal $H_1: \neg H_0$
- estimativas dos parâmetros μ e σ : $\hat{\mu}=\bar{x}=132$ e $\hat{\sigma}=s=5$, logo $X\sim N(132,5^2)$ e $Z=\frac{X-132}{5}\sim N(0,1)$
- $p_1 = P(X < 125) = P(Z < -1.4) = 0.0808,$ $p_2 = P(125 \le X < 130) = P(Z < -0.4) - P(Z < -1.4) = 0.2638,$ $p_3 = P(130 \le X < 135) = P(Z < 0.6) - P(Z < -0.4) = 0.3811,$ $p_4 = P(135 \le X < 140) = P(Z < 1.6) - P(Z < 0.6) = 0.2195$ e $p_5 = P(X \ge 140) = P(Z \ge 1.6) = 1 - P(Z < 1.6) = 0.0548$ (Tabela 5)

Exemplo 3

	Vencimento	f_i	p_i	$e_i = np_i$	$\frac{(f_i-e_i)^2}{e_i}$
	x < 125	10	0.0808	8.080	0.4562
	$125 \le x < 130$	20	0.2638	26.38	1.5430
•	$130 \le x < 135$	38	0.3811	38.11	0.0003
	$135 \le x < 140$	25	0.2195	21.95	0.4238
	$x \ge 140$	7	0.0548	5.480	0.4216
	Σ	n = 100	1	100	Q = 2.845

- $E.T.: Q = \sum_{i=1}^{5} \frac{(f_i e_i)^2}{e_i} = 2.845$
- $R.R.: Q > \chi^2_{\alpha,gl}$ com gl = k-1 número de parâmetros estimados = 5-1-2=2, logo $Q > \chi^2_{0.05,2} \Leftrightarrow Q > 5.99$ (Tabela 7)
- Não se rejeita H_0 para $\alpha=0.05$, pelo que o vencimento por hora poderá seguir uma distribuição normal.