Lecture 7 - Feb 3, 2023

- Reinforcemement Learning Preliminaries
 - · State, Action, Reward, Policy
 - · Returns and Expected Returns
 - · State Value Function
 - · State-Action Value Fundion
- I Bellman Equation and optimality
 - Dynamic programming
 - · Policy Iteration
 - · Value Iteration

Project 1 - Due Feb 7

TA's office hour: Wendsdags, 2.pm_3pm (in-person)
Fridags, 2pm_3pm (virtual)

$$V(s) = E[G_2 \mid S_2 = S, T]$$

9 🗪	10	11	12
8 1		14人	13 ,
7 1		16	15
6 🛧	5		
4 "	3 1	2	1
Wall Bump			Goal

9 🕇	10	11	12
8 1		14,	13)
7 1		16	15%
6 🛧	5		
4 "	3 1	2	1
Wall Bump			Goal

$$T > T$$
 is and only if $V_{\pi}(s) > V_{\pi'}(s)$ for all $s \in S$

$$V_{\pi}(s) = E \left[G_{t} \mid S_{t=S}, \pi \right]$$

$$Q_{\pi}(15, R) = -1 + 99 = 98$$

 $Q_{\pi}(15, D) = 98$
 $Q_{\pi}(15, L) = 99$

$$Q_{\pi}(S, \pi(S)) = V_{\pi}(S)$$

$$V_{\pi}(s) = E \left[G_{\xi} \mid S_{\xi} = S, q_{\xi} = X(s), q_{\pi 1:\infty} \pi \right]$$

$$Q_{\pi}(s; a) = E \left[G_{\xi} \mid S_{\xi} = S, q_{\xi} = a, q_{\pi 1:\infty} \pi \right]$$

$$V_{\pi} \qquad \qquad V_{\pi^{2}} \qquad \qquad V_{\pi^{2}(s)}$$

$$10 \qquad \qquad 10 \qquad \qquad V_{\pi^{2}(s)}$$

$$\sqrt{\pi^2}$$
 $\sqrt{\pi^2}$
 \sqrt

V(s) > V(s) Smalls TE

$$V_{\pi^*}(s) = V(s) = \max_{\pi \in \Pi} V_{\pi}(s)$$
, freelises

$$Q_{\pi^*}(s,a) = Q^*(s,a) = \max_{\pi \in \Pi} Q_{\pi}(s,a)$$
was sometimes from s, a

Belman Equation

$$V(\xi) = E \left[S_{t} \mid S_{t} = S, \pi \right]$$

$$= E \left[R_{t+1} + \delta R_{t+2} + \delta^{2} R_{t+3} + \dots \mid S_{t} = S, \pi \right]$$

$$= E \left[R_{t+1} + \delta \left(R_{t+2} + \delta R_{t+3} + \dots \right) \mid S_{t} = S, \pi \right]$$

$$V_{t}(s) = E \left[R_{t+1} + \delta \left(S_{t+1} \mid S_{t} = S, \pi \right) \right]$$

$$V_{t}(s_{t+1})$$

$$V_{t}($$

$$V_{\pi}(15) = -1 + 100 = 99$$
 $V_{\pi}(13) = E[R_{t+1} + V_{\pi}(S_{t+1}) | S_{t} = 13, \pi]$
 $= -1 + V_{\pi}(15)$

Stochestic Environd

9 🔿	10	11	12
8 1		14人	13 ,
7 1		16	15
6 🛧	5		
4 🎌	3 1	2	1
Wall Bump		Goal	

Yr(F)= E[R++1+8 Vyr(S++1)] St=8,77]

=
$$P(\$ | \$_{t=\$}, o_{t}=X(\$_{t}))$$

 $\$_{t+1} = \$_{t} = \$_{t}$

Elet 154:5, 77

= [ptoi Gtoi

$$V_{\mathcal{H}}(s) = \sum_{S'} P(S'|S, \mathcal{H}(s)) \left[R(S, \mathcal{H}(s), S') + 8 V_{\mathcal{H}}(S') \right]$$

$$V_{\pi}(15) = RS = 16 (S = 15, \pi(15) = L) \left[R(15, L, 16) + 8 V_{\pi}(16) \right]$$

Bellman E9

$$= \sum_{s=1}^{\infty} P(s'|s, \chi(s)) \left[R_{++1} + \delta \chi(s') \right] \\ R(s, \chi(s), s')$$

$$S=\{A,B,C,D\}$$

$$A=\{1,2\}$$

$$\mathcal{T} = \begin{cases} \mathcal{T}(A) \\ \mathcal{T}(B) \\ \mathcal{T}(C) \end{cases}^{2}$$

$$V_{R}(B) = 0.9 [-10 + 8 V_{R}(D)] + 0.1 [-10 + 8 V_{R}(A)]$$

$$V_{R}(C) = 0.9 [-10 + 8 V_{R}(A)] + 0.1 [-10 + 8 V_{R}(D)]$$

$$V_{R}(D) = 100$$

$$A \begin{bmatrix} 3 \\ 5 \\ 5 \end{bmatrix} = a \begin{bmatrix} -10 \\ -10 \\ -10 \\ -10 \end{bmatrix}$$

$$A^{-1}a$$

$$A^{-1}a$$

$$A^{-1}a$$

$$A^{-1}a$$

$$A^{-1}a$$

$$A^{-1}a$$

$$A^{-1}a$$

$$\mathcal{X} = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix} \rightarrow \mathcal{Y}_{\mathcal{X}} = \begin{pmatrix} 75 \\ 68 \\ 87 \\ 100 \end{pmatrix}$$

not comparable

9	10	11	12
8 1		14人	13 ,
7 1		16	15
6 🛧	5		
4 1	3 1	2	1
Wall Bump Goal			

- = E[Rfrit & Rfrzt & Ktr3+ --- | St= Si at= a, 7]
- = E[R++ + 8 V7 (S++1) | S+=5, a+=9, 7]
- $= \sum_{s'} P(s'|s,a) \left[R(s,a,s') + \delta V_{T}(s') \right]$