

Formation interne à Python

Deep Learning

Du premier neurone à Tensorflow

Séminaire 2

Julien Villemejane

PRAG Institut d'Optique LEnsE

https://bit.ly/3LZV9uE

Formation à Python Contenus et objectifs des séminaires

Série de 5 séminaires (45min) / ateliers (1h)

MatLab vs Python

Premières ondulations pour les scientifiques

- Découverte du langage Python par l'exemple (en s'appuyant sur MatLab - Jeu des différences)
- Découverte de quelques bibliothèques utiles
- Découverte de l'environnement JupyterHub
- + Installation d'un environnement local

Deep Learning / Machine Learning

(Re)Découvrir les neurones informatiques

- Création d'un neurone et d'un réseau
- Découverte de Tensorflow

Traitement du signal

Etude de systèmes et de signaux

- Systèmes asservis / Fonction de transfert et représentation d'état (via Scipy.signal et Control)

Interfaçage

Développement d'une IHM simple

- Découverte de QT et Tkinter
- + Interfaçage avec une liaison série

Traitement d'images OpenCV

Maltraitance d'images avec OpenCV

- Découverte de la bibliothèque OpenCV

2

Apprentissage Profond Objectifs « pédagogiques »

Deep Learning / Machine Learning

(Re)Découvrir les neurones informatiques

- Création d'un neurone et d'un réseau
- Découverte de Tensorflow

A la suite de ce séminaire / atelier, vous serez capable de :

- Lister les éléments d'un réseau de neurones
- Comprendre les mécanismes « cachés » derrière l'apprentissage d'un réseau de neurones
- Développer un premier neurone et un réseau

« Ceci est un chat »

Bibliothèques utiles

- Numpy
- Matplotlib / Pyplot
- Tensorflow
- Keras
- SciKitLearn

Apprentissage Profond Objectifs « pédagogiques »

Deep Learning / Machine Learning

(Re)Découvrir les neurones informatiques

- Création d'un neurone et d'un réseau
- Découverte de Tensorflow

« Ceci est un chat »

Quelques ressources intéressantes

https://playground.tensorflow.org/

https://youtu.be/XUFLq6dKQok

Hello TensorFlow: 3 ateliers pour débuter avec TensorFlow 2.0 (Alexia Audevart et Philippe Antoine)

https://youtu.be/hQ6pmoNZzU8

Principe des deux approches

Approche « classique » / Algorithmique

Données
Règles
Modèle

Ordinateur
Résultats

Approche « IA » / Deep Learning

Principe des deux approches

Approche « classique » / Algorithmique

Données

Règles
Modèle

Ordinateur

Résultats

Approche « IA » / Deep Learning

Principe des deux approches

Approche « classique » / Algorithmique Données Ordinateur Résultats Règles Modèle

Approche « IA » / Deep Learning

Principe des deux approches

Principe des deux approches

Apprentissage Profond TensorFlow Applications

Applications du Deep Learning

Apprentissage Profond Neurone

Qu'est-ce qu'un neurone?

Hello TensorFlow: 3 ateliers pour débuter avec TensorFlow 2.0 (Alexia Audevart et Philippe Antoine)

Issu d'une région du cerveau appelée «substance noire compacte», ce neurone dopaminergique intrique et fascine. **CHARLES DUCROT,** UNIVERSITÉ DE MONTRÉAL

Apprentissage Profond *Neurone*

Qu'est-ce qu'un neurone?

Hello TensorFlow: 3 ateliers pour débuter avec TensorFlow 2.0 (Alexia Audevart et Philippe Antoine)

Apprentissage Profond Neurone artificiel

$$f = \sum_{k=1}^{n} w_k \cdot x_k + b$$

$$y = \begin{cases} 1 & si \ f \ge 0 \\ 0 & sinon \end{cases}$$

Apprentissage Profond Neurone artificiel

Qu'est-ce qu'un neurone artificiel ? *Perceptron – 1957 – Frank Rosenblatt*

Phase 1 : Apprentissage / Entrainement

$$f = \sum_{k=1}^{n} w_k \cdot x_k + b$$

$$y = \begin{cases} 1 & si \ f \ge 0 \\ 0 & sinon \end{cases}$$

Phase d'apprentissage en plusieurs « epochs »

$$f = \sum_{k=1}^{n} w_k \cdot x_k + b$$

$$y = \begin{cases} 1 & si \ f \ge 0 \\ 0 & sinon \end{cases}$$

1 epoch = 1 cycle d'apprentissage (c)

$$w_k(c+1) = w_k(c) + \alpha \cdot (y_v - y) \cdot x_k$$

 α : vitesse d'apprentissage

 y_{ν} : valeur de sortie attendue

y: valeur fournie par le neurone

Exemple à un perceptron

Epochs= 1000

 $\alpha = 0.002$

Phase 1 : Apprentissage / Entrainement

$$w_k(c+1) = w_k(c) + \alpha \cdot (y_v - y) \cdot x_k$$

Phase d'apprentissage / Les étapes pour 1 neurone

Etape 1: Forward Propagation

$$f = \sum_{k=1}^{n} w_k \cdot x_k + b \qquad y = \begin{cases} 1 & \text{si } f \ge 0 \\ 0 & \text{sinor} \end{cases}$$

Etape 2: Cost Function / Loss

$$w_k(c+1) = w_k(c) + \alpha \cdot (y_v - y) \cdot x_k$$

 α : vitesse d'apprentissage

Etape 3 : *Mise à jour*

 y_{ν} : valeur de sortie attendue

y: valeur fournie par le neurone

Exemple à un perceptron

Epochs= 1000

 $\alpha = 0,002$

Phase 1 : Apprentissage / Entrainement

Cost Function = erreur commise par le modèle

Exemple à un perceptron

Phase 1 : Apprentissage / Entrainement

Exemple à un perceptron

Phase 1 : Apprentissage / Entrainement

$$f = \sum_{k=1}^{n} w_k \cdot x_k + b$$

$$y = \begin{cases} 1 & si \ f \ge 0 \\ 0 & sinon \end{cases}$$

Exemple à un perceptron

Phase 1 : Apprentissage / Entrainement

Données d'entrée

Evolution du premier paramètre W

Réseau de neurones

Réseau de neurones

Etape 1 : Forward Propagation

- Calcul des fi[k]
- Activation : calcul des yi[k]

Etape 2 : Cost Function / Loss

- Comparaison de Y à la valeur attendue

Réseau de neurones

Etape 1 : Forward Propagation

- Calcul des fi[k]
- Activation : calcul des yi[k]

Etape 2: Cost Function / Loss

- Comparaison de Y à la valeur attendue

Etape 3 : *Back Propagation*

- Chaine de gradients

Etape 4 : *Descente de gradients*

 Calcul des paramètres W pour minimiser l'erreur en sortie

Exemple d'un réseau à 2 couches

Phase 1 : Apprentissage / Entrainement

Données d'entrée

Epochs= 400

 $\alpha = 0.01$

Exemple d'un réseau à 2 couches

Phase 1 : Apprentissage / Entrainement

Données d'entrée

Epochs= 170 $\alpha = 0.01$

Comment vérifier que le réseau apprend bien ?

Phase 1 : Apprentissage / Entrainement

Comment vérifier que le réseau apprend bien ?

Phase 1 : Apprentissage / Entrainement

Comment vérifier que le réseau apprend bien ?

Des réseaux plus « complexes » pour la classification

https://www.futura-sciences.com/tech/definitions/intelligence-artificielle-deep-learning-17262/ Céline Deluzarche

Des réseaux plus « complexes » pour la classification

Des réseaux plus « complexes » pour la classification

Image = matrice

Des réseaux plus « complexes » pour la classification

Image = matrice

aplanir

Des réseaux plus « complexes » pour la classification

Des réseaux plus « complexes » pour la classification

CNN classifier using 1D, 2D and 3D feature vectors Site de MathWorks

Des réseaux plus « complexes » pour la classification

Y1[M] Plus que 2 classes **F1[M]** T shirt **Y2[M]** Trouser **F2[M]** Pullover Dress YK[M] Coat FK[M] Sandal Apprentissage: 60000 images de 28x28 Shirt Sneaker Bag Test: 10000 images de 28x28 Ankle boot Couche M

Des réseaux plus « complexes » pour la classification

Des réseaux plus « complexes » pour la classification

Les étapes de conception et d'entrainement

Préparation des données

- Images de mêmes dimensions
- 2 sets différents pour entrainement et test
- Classification (résultat attendu)

Conception du modèle de réseau

- Dimensions données d'entrée
- Etages de convolution
- Etages de classification / Couches du réseau

Entrainement du modèle

- Calcul des paramètres du modèle

import tensorflow as tf from tensorflow import keras

Vérification avec données test

Vérification du bon apprentissage

Les étapes de conception et d'entrainement

Préparation des données

- Images de mêmes dimensions
- 2 sets différents pour entrainement et test
- Classification (résultat attendu)
- Normalisation des données

import tensorflow as tf
from tensorflow import keras

fashion_mnist = keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

max_img = train_images.max()
train_images = train_images / max_img
test_images = test_images / max_img

Les étapes de conception et d'entrainement

Préparation des données

- Images de mêmes dimensions
- 2 sets différents pour entrainement et test
- Classification (résultat attendu)
- Normalisation des données

Conception du modèle de réseau

- Dimensions données d'entrée
- Etages de convolution
- Etages de classification / Couches du réseau

```
model = keras.Sequential()
model.add(tf.keras.layers.Conv2D(64, (3,3),
activation=tf.nn.relu, input shape=(28,28,1)))
model.add(tf.keras.layers.MaxPooling2D((2,2)))
model.add( keras.layers.Flatten() )
model.add( keras.layers.Dense(512,
activation='selu') )
model.add( keras.layers.Dense( 10,
activation=tf.nn.softmax) )
```


Les étapes de conception et d'entrainement

Préparation des données

- Images de mêmes dimensions
- 2 sets différents pour entrainement et test
- Classification (résultat attendu)
- Normalisation des données

Conception du modèle de réseau

- Dimensions données d'entrée
- Etages de convolution
- Etages de classification / Couches du réseau

```
model.compile(
optimizer=tf.keras.optimizers.Adam(),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
```

```
model = keras.Sequential()
model.add(tf.keras.layers.Conv2D(64, (3,3),
activation=tf.nn.relu, input_shape=(28,28,1)))
model.add(tf.keras.layers.MaxPooling2D((2,2)))
model.add( keras.layers.Flatten() )
model.add( keras.layers.Dense(512,
activation='selu') )
model.add( keras.layers.Dense( 10,
activation=tf.nn.softmax) )
```


Les étapes de conception et d'entrainement

Préparation des données

- Images de mêmes dimensions
- 2 sets différents pour entrainement et test
- Classification (résultat attendu)
- Normalisation des données

Conception du modèle de réseau

- Dimensions données d'entrée
- Etages de convolution
- Etages de classification / Couches du réseau

model.compile(
optimizer=tf.keras.optimizers.Adam(),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

model.summary()

Model:	"sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 26, 26, 32)	320
max_pooling2d (MaxPooling2D	(None, 13, 13, 32)	Θ
conv2d_1 (Conv2D)	(None, 11, 11, 64)	18496
max_pooling2d_1 (MaxPooling 2D)	(None, 5, 5, 64)	Θ
conv2d_2 (Conv2D)	(None, 3, 3, 32)	18464
max_pooling2d_2 (MaxPooling 2D)	(None, 1, 1, 32)	Θ
flatten (Flatten)	(None, 32)	Θ
dense (Dense)	(None, 512)	16896
dense_1 (Dense)	(None, 256)	131328
dense_2 (Dense)	(None, 128)	32896
dense_3 (Dense)	(None, 10)	1290

Total params: 219,690 Trainable params: 219,690 Non-trainable params: 0

Les étapes de conception et d'entrainement

Préparation des données

- Images de mêmes dimensions
- 2 sets différents pour entrainement et test
- Classification (résultat attendu)

Conception du modèle de réseau

- Dimensions données d'entrée
- Etages de convolution
- Etages de classification / Couches du réseau

Entrainement du modèle

- Calcul des paramètres du modèle

history = model.fit(train_images, train_labels, epochs=10, steps_per_epoch=20, validation_data=(test_images, test_labels))

model.save('model.h5')

Vérification avec données test

Vérification du bon apprentissage

Apprentissage Profond Quelques résultats

Quelques résultats (avec convolution)

10 epochs

Layer (type) Output Shape Param # conv2d (Conv2D) (None, 26, 26, 32) 320 max_pooling2d (MaxPooling2D (None, 13, 13, 32) 0) conv2d_1 (Conv2D) (None, 11, 11, 64) 18496 max_pooling2d_1 (MaxPooling (None, 5, 5, 64) 0 2D) conv2d_2 (Conv2D) (None, 3, 3, 32) 18464 max_pooling2d_2 (MaxPooling (None, 1, 1, 32) 0 2D) flatten (Flatten) (None, 32) 0 dense (Dense) (None, 512) 16896

(None, 256)

(None, 128)

(None, 10)

131328

Total params: 219,690 Trainable params: 219,690 Non-trainable params: 0

dense_1 (Dense)

dense 2 (Dense)

dense 3 (Dense)

Model: "sequential"

Apprentissage Profond

Quelques résultats

Quelques résultats (sans convolution)

10 epochs

Apprentissage:

10000 images de 28x28

Test:

10000 images de 28x28

Model: "sequential"	
---------------------	--

Layer (type)	Output Shape	Param #
flatten (Flatten)	(None, 784)	Θ
dense (Dense)	(None, 512)	401920
dense_1 (Dense)	(None, 256)	131328
dense_2 (Dense)	(None, 128)	32896
dense_3 (Dense)	(None, 64)	8256
dense_4 (Dense)	(None, 10)	650

Total params: 575,050 Trainable params: 575,050 Non-trainable params: 0

Apprentissage Profond

Quelques **autres** résultats

Quelques résultats sur des signaux

Données d'entrée

Génération signaux sinusoïdaux à 10, 20 ou 30 Hz bruités

Train set: 1000 Test set: 100

