Lehrstuhl für Automatisierung und Informationssysteme Prof. Dr.-Ing. B. Vogel-Heuser

Vorname:	
Nachname:	
Matrikelnummer:	

Prüfung – Informationstechnik

Wintersemester 2011/2012

9. März 2012

Bitte legen Sie Ihren Lichtbildausweis bereit.

Sie haben für die Bearbeitung der Klausur 120 Minuten Zeit.

Diese Prüfung enthält 22 nummerierte Seiten inkl. Deckblatt.

Bitte prüfen Sie die Vollständigkeit Ihres Exemplars!

Bitte nicht mit rot oder grün schreibenden Stiften oder Bleistift ausfüllen!

Diesen Teil nicht ausfüllen.

Aufgabe	ZS	МО	BS	RK	DB	Σ	Note:
erreichte Punkte							
erzielbare Punkte	40	50	60	55	35	240	

Matrikelnummer

Aufgabe ZS: Zahlensysteme und logische Schaltungen

Aufgabe ZS: 40 Punkte

Punkte

a) Überführen Sie die unten angegebenen Zahlen in die jeweils anderen Zahlensysteme. *Hinweis: Achten Sie genau auf die jeweils angegebene Basis!*

6

b) Unten sehen Sie eine an die IEEE 754 angelehnte Gleitkommazahl Stellen Sie die kodierte Gleitkommazahl im Dezimalsystem dar.

V biased Exponent e (5 Bits) Mantisse (12 Bits)

$$Z = (-1)^V * M * 2^E$$

1. Schritt: Mantisse *M*=1,1100011

2. Schritt: Bias berechnen : $B = 2^{(5-1)} - 1 = 15$

3. Schritt: Exponent E berechnen:

a)
$$e = (10100)_2 \Rightarrow ()_{10} = 20$$
 1

b) E = e - B = 54. Schritt: Einsetzen:

$$Z = (-1)^1 * (1,1100011)_2 * 2^5$$

$$Z = -(111000, 11)_2 = -56, 75$$

Seite 2 12

Vorname, Name

Matrikelnummer

Gegeben ist die folgende Schaltung:

c) Stellen Sie für die oben angegebene Schaltung die Wahrheitstabelle des Ausgangs y in Abhängigkeit der Eingänge a und b auf.

Hinweis: Die freigelassenen Spaltennamen (erste Zeile) der Wahrheitstabelle können als Hilfsmittel für Zwischenergebnisse genutzt werden, werden jedoch nicht bewertet.

а	b	(1)	(2)	y (3)	
0	0	0	0	Ô	1F
0	1	1	0	1	2]
1	0	0	1	1	21
1	1	0	0	0	1F

6P

d) Erstellen Sie die *KNF (Konjunktive Normalform)* aus der Wahrheitstabelle, für die Ausgansfunktion y.

$$\frac{1P}{\left(a \lor b\right) \land \left(\overline{a} \lor \overline{b}\right)}$$

4P

Komplett richtige Formel 1P

Punkte

e) Gegeben ist folgende Wahrheitstabelle:

а	b	С	у
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Erstellen Sie mit Hilfe des KV-Diagramms die minimierte Ausgangsfunktion für y_{min} in DNF (Diskunktive Normalform) und schreiben Sie die minimierte Form in boolescher Algebra auf. Beschriften Sie hierfür das KV-Diagramm entsprechend und zeichnen Sie die Schleifen, die für die Minimierung der Funktion benötigt werden ein in das KV-Diagramm ein.

$$y_{\min} = \overline{a} \vee c$$

8P

Je 1P für richtige Beschriftung (insg. 3P) 1P für richtig eingetragene "0" er (insg. 2P)

richtige Schleife 1P (insg. 2P)

1P für richtige Ausgangsfunktion (insg. 1P)

Punkte

Matrikelnummer

f) Gegeben sei die folgende Master-Slave FlipFlop-Schaltung:

Bei t=0 seien Master- und Slave FlipFlop im Zustand $Q_1=Q_2=0$.

Analysieren Sie die Schaltung, indem Sie die zeitlichen Verläufe für Q_1 und Q_2 in die vorgegebenen Koordinatensysteme eintragen. Die Signallaufzeiten können dabei vernachlässigt werden.

10P

Seite 5 10P

Matrikelnummer

Aufgabe MO: Modellierung

a) Gegeben sei eine Klasse zur Beschreibung des Transportbands eines Transportsystems:

Aufgabe MO: 50Punkte

Punkte

Transportband

- v_ist : float - v_soll : float

Die aktuelle Istgeschwindigkeit des Transportbands sei über das Attribut "v_ist: float" modelliert und die aktuelle Sollgeschwindigkeit über das Attribut "v_soll: float". Das Transportband beschleunigt bzw. bremst in Abhängigkeit dieser Attribute. Die Implementierung dieses Verhaltens soll durch das UML Zustandsdiagramm im Lösungsfeld beschrieben werden. Zeichnen Sie dazu in dem unten im Lösungsfeld alle nötigen Transitionen zwischen den angegebenen Zuständen zur Darstellung der beschriebenen Funktionalität ein. Zeichnen Sie dabei ebenfalls die jeweiligen Transitionsbedingungen in Abhängigkeit der Attribute der Klasse des Transportbands ein.

12 P.

Seite 6 12 P.

Punkte

b) Gegeben sei eine Weiche eines Transportsystems mit einem Motor sowie einem Sensor zur Erkennung der aktuellen Winkelstellung.

Die aktuelle Winkelstellung der Weiche soll durch ein Attribut mit einem Fließkommazahlen-Datentyp modelliert werden. Der Winkelsensor und die Lichtschranke besitzen ein boolesches Signal, der Motor einen ganzzahligen Stellwert für die Geschwindigkeit. Fügen Sie diese Eigenschaften in das Blockdefinitionsdiagramm ein.

Vervollständigen Sie darüber hinaus das unten stehende SysML Blockdefinitionsdiagramm durch die entsprechenden Beziehungen der Weiche zu den Untermodulen "Motor" und "Winkelsensor". Winkelsensor und Motor sollen dabei existenzabhängige Teile der Weiche sein. Des Weiteren besitzt die Weiche eine Referenz auf eine Lichtschranke. Geben Sie für die jeweiligen Beziehungen die Rollennamen (Instanznamen) sowie die Kardinalitäten (Multiplizitäten) an.

10 P.

Seite 7 10 P.

Matrikelnummer

c) Beantworten Sie die folgenden Fragen in dem Lösungskasten unten:

- Punkte
- Welches Kontrollfluss-Konstrukt ist in dem grau hinterlegten Kasten in dem folgenden Aktivitätsdiagramm abgebildet?
- Welches Mittel bietet hierzu die Programmiersprache C zur Implementierung an?
- Zeigen Sie die Syntax der Implementierung mit den Werten aus dem Beispiel und beantworten Sie die Frage nach der Notwendigkeit der geschweiften Klammern.

Abgebildet ist: (bedingte) Verzweigung 2

zählt auch: Entscheidung, Bedingung zählt nicht: if/else

Wird in C umgesetzt durch: <u>if (/else) (-Verzweigung)</u> 2

"if-Schleife" zählt auch obwohl eigentlich falsch

Implementierung:

Sind in diesem Beispiel die geschweiften Klammern zwingend? Falls nicht, warum?

Nein, weil auf if bzw. else nur jeweils eine Anweisung folgt. 1+1

Seite 8

Matrikelnummer

Das unten abgebildete Petrinetz ist die Grundlage für die Aufgabe d). Das Petrinetz ist mit seinen Markierungen im Startzustand abgebildet. Es gilt: K=1 für alle Stellen (S1 bis S6).

Punkte

d) Zeichnen Sie den Erreichbarkeitsgraphen des Petrinetzes und benennen sie die Transitionen.

Hinweis: Fehlerhafte Transitionen führen zu Punktabzügen.

15

15

Vorname, Name

Matrikelnummer

Aufgabe BS: Betriebssysteme

Beantworten Sie hierzu die folgenden Fragen.

Aufgabe BS: 60Punkte

a) Auf einem Einprozessorsystem sollen die nachfolgend angegebenen Tasks ablaufen.

Hinweis: Die Tabelle enthält alle wichtigen Angaben zur Planung der Tasks A,B,C. Die Ausführungsdauer ist eine relative Zeitangabe, wohingegen Bereit und Deadline als eine absolute Zeitangabe zu verstehen sind. Bei der Prioritätsangabe besitzt der Task mit dem niedrigsten nummerischen Wert die höchste Priorität. Geben Sie, wenn gefragt, die Reihenfolge der ablaufenden Tasks an. z.B. ABCABB.

Task	Ausführungsdauer	Bereit	Deadline	Priorität
A	3s	4s	8s	3
В	5s	0s	9s	1
С	6s	5s	13s	2

- 1) Geben Sie die Reihenfolge der Tasks und den Zeitpunkt an, an dem die Ausführung des letzten Tasks zum ersten Mal startet. Als Schedulingverfahren ist das FIFO-Verfahren einzusetzen.
- 2) Würde der Task B bei einem Least-Laxity Scheduling (LL) von Task A zum Zeitpunkt t = 4s unterbrochen werden? Begründen Sie Ihre Antwort stichpunktartig.
- 3) Wird bei einem Earliest Deadline First (EDF) Scheduling die Bedingung der Rechtzeitigkeit aller Tasks A,B,C erfüllt? Begründen Sie Ihre Antwort stichpunktartig.
- 1) 2 2 BAC, 8s
- 2) <u>Ja</u>, da der <u>Spielraum (Laxity) von Task A (1s) kleiner ist als der von Task B (4s).</u>
- 3) Nein, da Task C erst eine Sekunde nach Ablauf der Deadline abgeschlossen

Seite 10 **10**

Matrikelnummer

b) Gegeben ist die Anordnung von Semaphor-Operationen am *Anfang und am Ende der Tasks A,B,C*. Ermitteln Sie für die Fälle I, II, III, *ob und in welcher Reihenfolge* diese Tasks bei der angegebenen Initialisierung der Semaphor-Variablen ablaufen. Geben Sie zusätzlich an, ob es sich bei der Taskreihenfolge um eine Wiederholungsreihenfolge handelt, oder ob ein Deadlock entstanden ist.

Punkte

Hinweis: Sind mehrere Tasks ablauffähig gelten folgende Prioritätslevel A = 1; B = 2; C = 3, wobei 1 die höchste Priorität ist. Geben Sie die Reihenfolge der ablaufenden Tasks in folgender Schreibweise an ABCABB an. P(Si) senkt Si um 1, V(Si) erhöht Si um 1. Pro richtigem Prozess wird 1 Punkt gegeben, sobald in einer Prozessreihe ein Fehler vorkommt, werden auf nachfolgende Prozesse keine Punkte mehr vergeben.

Task	A	В	С
	P(S3) P(S3) P(S3)	P(S2) P(S1)	P(S1) P(S3)
t	V(S1) V(S1) V(S1)	V(S3) V(S3)	V(S2) V(S2)

Fall	S 1	S2	S 3
I	3	0	2
II	2	2	0
III	2	2	2

4 1

Fall I: CBAB -> Wiederholung

1 Punkt pro richtigem
Prozess, sobald in einer
Prozessreihe ein Fehler
vorkommt, werden auf
nachfolgende Prozesse keine
Punkte mehr vergeben. Auf
die Angabe von Deadlock
oder Wiederholung wird
ebenfalls ein Punkt gegeben.

4

BBAC -> Wiederholung

Fall II:

4 1

BABA -> **Deadlock**

Fall III:

15

Seite 11 15

Vorname, Name

Matrikelnummer

c) Stellen Sie das Ist-Systemverhalten der Programmierart *asynchron-preemptiv* in dem angegebenen Diagramm dar.

Hinweis: Priorität 1 ist die höchste Priorität (BS>R1>R2>R3>R4).

Es kann das Lösungsfeld 1 oder das Reservelösungsfeld zum Bearbeiten der Aufgabe genutzt werden. Sollten Sie das Reservelösungsfeld verwenden müssen, markieren Sie dies durch ein "X" im Kästchen des Reservelösungsfelds. Das Lösungsfeld 1 wird nicht gewertet, sobald ein "X" im Kästchen des Reservelösungsfelds angegeben ist!

8

Punkte

d) Für diese Aufgabe ist ein 2-dimensionales Array gegeben (numberspace[2][10]). Dieses beinhaltet – wie in der Abbildung unten zu sehen ist – die Zahlen von 1 bis 20. Das Array wird anschließend mit dem folgenden Algorithmus bearbeitet.

```
int i, j;
int currentReference = 3;
int nextReference = 3;
int currentValue;
while (1)
    for (i = 0; i < 2; i++)
        for (j = 0; j < 10; j++)
            currentValue = numberspace[i][j];
            if (currentValue == 1)
                numberspace[i][j] = NULL;
            else if (currentValue > currentReference)
                if (currentValue % currentReference == 0)
                     numberspace[i][j] = NULL;
                else if (nextReference == currentReference)
                     nextReference = currentValue;
            }
        }
    }
    if (currentReference == nextReference)
        break;
    currentReference = nextReference;
```

Streichen Sie in der folgenden Abbildung alle Zahlen, welche durch diesen Algorithmus entfernt werden (auf NULL gesetzt).

Hinweis: Pro falsch gestrichener Zahl gibt es einen Punkt Abzug. Es gibt keine negativen Gesamtpunkte.

-1P pro richtig gestrichenen (1PABZUG pro falsche Streichung)

-1P wenn Lösung komplett richtig

12

Punkte

Das unten angegebene Programm soll die Anzahl der Prozesse in der global definierten Variable szProcessUIDs gespeicherten Zeichenkette ermitteln und in der lokalen Variable iTotalNumber speichern. Die Prozess UIDs sind dabei durch genau ein Symbol getrennt, welches entweder ein Leerzeichen (ASCII 32) oder ein Komma (ASCII 44) oder ein Punkt (ASCII 46) ist. Eine beispielhafte Zeichenkette mit 5 Prozess-UIDs wäre folgende:

```
char szProcessUIDs[] = "15,23 7 39.55";
```

Markieren und beschreiben Sie stichpunktartig die Fehler in folgender main () - Funktion eines C-Programm. Erläutern Sie kurz wofür die Zeilen 10 und 11 benötigt werden.

```
Zeilen
-nr. :
   00: void main()
   01:
       {
   02:
      int iTotalNumber= 0;
   03: int i = 0 Strichpunkt fehlt ! fehlt
       while (szProcessUIDs[i] = '\( \)' ()')
   05:
        if ((szProcessUIDs[i] l=32(\&)szProcessUIDs[i]== 44()
   06:
   07:
               iTotalNumber++;
                                      || wird benötigt
                   Zweites + fehlt
   08:
         i+;
                                       Dritter Vergleich fehlt
   09:
       }
   10: if(i)
   11:
          iTotalNumber++;
   12: return 0
   13:
         Zeile 03: Strichpunkt fehlt
Zeile :
Zeile ___:
          Zeile 04: != da Vergleich, keine Zuordnung
Zeile :
         Zeile 06: == statt !=, || statt &
          Zeile 06: dritter Vergleich fehlt
                    || (szProcessUIDs[i] == 46)
Zeile :
         Zeile 08: Zweites + fehlt
Zeile :
         Zeile 12: main-Funktion hat keinen Rückgabewert 2
Zeile 10/11: Zeile 10+11: Wird benötigt da man nicht die Prozesse
              sondern die Anzahl der Trennzeichen gezählt
              werden. Sofern mind. Ein Trennsymbol erkannt
              wurde muss die Anzahl um 1 inkrementiert werden
```

Seite 14 15

Matrikelnummer

Aufgabe RK: Rechnerkommunikation

Aufgabe RK: 55 Punkte

Punkte

a) Drei Teilnehmer sind an einem Bus mit CSMA/CA Verfahren angeschlossen (z.B. CAN) und wollen zum gleichen Zeitpunkt senden. In der Arbitrierungsphase senden alle Teilnehmer die folgend angegebenen Identifier:

Teilnehmer 1: 34F (hex) Teilnehmer 2: 24E (hex) Teilnehmer 3: 267 (hex)

Stellen Sie im folgenden Diagramm den Arbitrierungsvorgang dar und geben Sie an, welcher Teilnehmer zu welchem Takt aus dem Arbitrierungsprozess ausscheidet. Stellen Sie weiterhin den resultierenden Buspegel im Diagramm dar. Null ist dominant.

```
TN1 - 34F - 011 0100 1111 1

TN2 - 24E - 010 0100 1110 1

TN3 - 267 - 010 0110 0111 1

TN1 - Takt 8,
```

TN1 - Takt 8, TN2 - sendet TN3 - Takt 5,

Alles Richtig +1

Seite 15

Q

Prüfung Informationstechnik WS 2011/2012

Vorname, Name Matrikelnummer

b) Nennen Sie zwei Vorteile der Schnellanschlusstechnik.

Punkte

- •Leiter anschließen ohne isolieren durch Schneidklemmtechnik
- •Bis zu 60 %ige Verkürzung der Verdrahtungszeit
- •Leiteranschluss durch den Dreh mit einem Standard-Schraubendreher / Kein Spezialwerkzeug erforderlich

2 Punkt für jede richtige. Max 4 Punkte

c) Nennen Sie zu jedem Buszugriffsverfahren ein entsprechendes Beispiel. Ein Beispiel kann (falls zutreffend) mehrmals verwendet werden.

Buszugriffsverfahren	Beispiel		
zentral gesteuert	Polling /delegated Token / Mast	er-Sla	νe
dezentral gesteuert	Token-Passing / -Ring / TDMA		
kollisionsfrei ungesteuert	CSMA/CA/Token/TDMA		
nicht kollisionsfrei ungesteuert	CSMA/CD / Aloha		

1 Punkt für jede richtige Bezeichnung in pro Zeile max 4 Punkte

Seite 16

Punkte

d) Benennen Sie die zwei Maßnahmen der Fehlersicherung und geben Sie jeweils mindestens einen Methodenbeispiel. Erklären Sie stichpunktartig die Wirkungsweise jeweiliger Maßnahme.

9

Fehlererkennende Maßnahmen 2

Coderedundanz zur Fehlererkennung 1 Wiederholung der Übertragung bei Fehlern

Methoden:

Paritätsbits Prüfsumme, CRC

Fehlerkorrigierende Maßnahmen 2

Codierungen mit Redundanz zur Fehlerkorrektur beim Empfänger

Methoden:

Fehlerkorrigierende Codes, z.B. Hamming-Code

Seite 17 9

Punkte

e) Eine Wetterstation speichert aktuelle Messwerte in einem Array mit dem Namen Messwerte. Das Array selbst ist wie folgt aufgebaut:

Messgröße	Тур	Mögliche Werte
Temperatur	Integer (32Bit)	ganzzahlig 0-100
Luftdruck	Integer (32Bit)	ganzzahlig 500-1100
Regenstärke	Char	0 oder 1

Temperatur und Luftdruck werden nur ganzzahlig und nicht negativ gemessen. Der Rechner der Wetterstation legt die Werte in der oben angegebenen Reihenfolge direkt aufeinanderfolgend im "Little Endian" Format.

Allgemeine Fragen:

Die Zahl 513 wird in einer 32 Bit Integer Variablen gespeichert (Little Endian!). Tragen Sie die Werte der einzelnen Bytes in die Kästchen ein:

Adresse:	100	101	102	103	
Wert:	1	2	0	0	4

Warum ist in diesem Beispiel der Datentyp Integer für die Temperatur eine schlechte Wahl:

Platzverschwendung ²

Welcher Datentyp wäre dafür besser geeignet:

Char 2 short zählt auch

Zur Implementierung in C:

Definieren Sie ein Array vom Typ char mit dem Namen "Messwerte", das alle drei Messwerte hintereinander aufnehmen kann:

char Messwerte[9]; 2

Definieren Sie einen Zeiger auf Integer mit dem Namen pLuftdruck, initialisiert mit dem Wert 0:

int* pLuftdruck = 0; 2

Biegen Sie den Zeiger auf den Luftdruck im Array:

pLuftdruck = Messwerte+4; 2//&Messwerte[4]

Überschreiben Sie den Luftrduck im Array unter Verwendung des Zeigers mit dem Wert 1234: *pLuftdruck = 1234; 2

Überschreiben Sie den Wert des Regensensors im Array ohne Verwendung einer zusätzlichen Zeigervariablen mit dem Wert 1:

Messwerte[8] = 1; //*Messerte+8

Seite 18 18

Q

Punkte

```
f) Überführen Sie die main-Funktion in ein Nassi-Shneiderman-Diagramm.
```

```
int main(void)
{
  unsigned int iZaehler = 0, iMaxNetzwerkkarten = 0, iAnzahlRechner = 0, iIndex = 0;
  printf("\nGeben Sie die Anzahl der Computer ein: ");
  scanf("%d", &iAnzahlRechner);
  iIndex = 1;
  do
  {
    printf("\nAnzahl der Netzwerkkarten des %d-ten Computers eingeben: ", iIndex);
    scanf("%d", &iZaehler);
    if(iZaehler > iMaxNetzwerkkarten)
        iMaxNetzwerkkarten = iZaehler;
    iIndex++;
  } while (iIndex <= iAnzahlRechner);
  printf("\nDie groesste Anzahl an Netzwerkarten ist %d!\n", iMaxNetzwerkkarten);
  return 0;</pre>
```


12 P

Seite 19 12 P

Vorname, Name Matrikelnummer

Aufgabe DB: Datenbanken

Aufgabe DB: 35 Punkte

a) Zeichen Sie ein Entity-Relationship-Diagramm. Ergänzen Sie sinnvolle Primärschlüssel. Geben Sie die entsprechenden Kardinalitäten an.

Eine deutsche Boulevardzeitung möchte ihre Anrufbeantworternachrichten archivieren. Aufgrund der Vielzahl möchte sie dafür eine Datenbank aufsetzen. Die aufgesprochenen Nachrichten kommen von einem Anrufer mit Name sowie Beruf (z.B. Politiker, Polizist ...) und haben eine bestimmte Länge mit Inhalt. Ein Anrufer kann beliebig viele Nachrichten hinterlegen. Eine Nachricht kann beliebig viele Adressaten haben und dieser kann in mehreren Nachrichten vorkommen. Die Adressaten sollen mit Namen und Adresse in der Datenbank hinterlegt werden. Um später nach Drohanrufen sortieren zu können soll einer Nachricht außerdem eine Kritikalität zugeordnet werden können. Die Kritikalität kann sich während eines Gesprächs ändern und soll mit einem Zeitstempel gespeichert werden.

18

Seite 20 **18**

Vorname, Name

Matrikelnummer

Für alle weiteren Teilaufgaben ist folgender unvollständiger Datenbankausschnitt gegeben. Der folgende Datenbankausschnitt steht in keinem Zusammenhang mit der Teilaufgabe a).

Absender				
Name	Beruf	<u>AID</u>		
Peter Hudson	Politiker	1		
Karl Lewis	Staatsanwalt	2		
Charlie Runkle	Schauspieler	3		

Gesprochen			
<u>AID</u>	ADID		
1	1		
2	3		
3	2		

В	Bezug		
NID	ADID		
1	1		
2	3		
3	2		

Nachricht			
<u>NID</u>	Inhalt	Laenge	Kritikalitaet
1	Text	5.2	5
2	Text	10.0	8
3	Text	12.3	10

Adressat		
ADID	Name	
1	Kai D.	
3	Friede S.	
2	Herbert G.	

b) Legen Sie mit einer SQL-Anweisung die Tabelle Nachricht an.

2

4

CREATE TABLE Nachricht (NID INT PRIMARY KEY,

Inhalt VARCHAR(50),

Laenge FLOAT,

Kritikalitaet INT);

Seite 21

Matrikelnummer

Punkte

c) Befüllen Sie die Tabelle *Nachricht* mit einer SQL-Anweisung mit folgenden Daten:

Laenge: 12,30Inhalt: TextNID: 3

Kritikalitaet: 10

INSERT INTO Nachricht (NID, Inhalt, Laenge, Kritikalitaet)

VALUES (3, "Text", 12.30, 10);

1

d) Geben Sie eine SQL-Anweisung an, mit der der *Name* des *Absenders* angezeigt wird, der eine *Nachricht* mit der *Kritikalitaet* 10 hinterlassen hat.

SELECT Name FROM Absender WHERE AID = 1

SELECT AID FROM Gesprochen WHERE ADID = 1

SELECT ADID FROM Bezug WHERE NID = 1

SELECT NID FROM Nachricht WHERE Kritikalitaet = 10;

Seite 22 10