

Considerações Gerais (I)

- Rasterização é um processo de amostragem:
 - Domínio contínuo → discreto
 - ◆ Problemas de *aliasing* são esperados
- Cada primitiva pode gerar um grande número de pixels .
 - Rapidez é essencial.
- Em geral, rasterização é feita por hardware.
- Técnicas de *antialiasing* podem ser empregadas, usualmente extraindo um custo em termos de desempenho.

3

Considerações Gerais (II)

- Considerações Sobre Pontos
 - ◆Um ponto será considerado (constituído) como um pixel.
 - •O ponto será desenhado numa determinada posição da tela.
 - ◆ Atribui-se ao pixel a posição correspondente ao ponto na tela.
- Considerações Sobre Retas
 - ◆Um segmento de reta é traçado através de pontos discretos entre os pontos extremos do segmento.
 - As coordenadas dos pontos são calculadas através da equação da reta.
 - As coordenadas dos pontos na tela são referenciadas com valores inteiros, então o segmento de reta obtido é uma aproximação do segmento real.
 - ◆O arredondamento dos valores das coordenadas para inteiro implica numa aparência de escada (*aliasing*).

Considerações Gerais (III)

- Simetria e Reflexões
 - ◆ A representação matricial de segmentos de reta horizontais, verticais e diagonais a 45^o e a 135^o, não apresentam o efeito escada.
 - Essas direções formam na verdade eixos de simetria no espaço matricial.
 - Qualquer imagem representada no espaço matricial pode ser refletida em relação a essas direções sem apresentar qualquer deformação.

5

TSP

Considerações Gerais (IV)

- Características Desejáveis dos Algoritmos Para Traçar Segmentos de Reta:
 - Linearidade → Os pixels traçados devem dar a impressão de que estão sobre uma reta.
 - Precisão → Os segmentos devem iniciar e terminar nos pontos especificados; caso contrário, pode-se ocorrer pequenos "vazios" entre o final de um segmento e o início de outro.
 - ◆ Espessura (densidade) uniforme → A densidade da linha é dada pelo número de pixels traçados, dividido pelo comprimento da linha. Para manter a densidade constante, os pixels devem estar igualmente espaçados.
 - Intensidade independente da inclinação → Para segmentos de diferentes inclinações.
 - Continuidade → A imagem não apresenta interrupções indesejáveis.
 - Rapidez no traçado dos segmentos → A velocidade é essencial nos algoritmos de computação gráfica.

TSP

Rasterização de Segmentos de Reta

- Segmento de reta entre P_1 = (x_1, y_1) e P_2 = (x_2, y_2)
 - ◆ Já foi recortado com relação ao viewport (janela de visão do traçado).
- Objetivo é pintar os pixels atravessados pelo segmento de reta.
 - Na verdade, nem todos, apenas os mais próximos.
- Reta de suporte dada por a x + b y + c = 0
- Queremos distinguir os casos:
 - ◆ Linhas \sim horizontais \rightarrow computar y como função de x
 - Linhas \sim verticais \rightarrow computar x como função de y

7

Algoritmo Analítico (Conceitos)

- Assumimos segmentos de reta no primeiro octante:
 - Demais casos são resolvidos de forma simétrica.
- Inclinação (entre 0 e 1) dada por: $m = (y_2 - y_1) / (x_2 - x_1)$
- Algoritmo:
 - Para x desde x_1 até x_2 fazer:
 - $y \leftarrow y_1 + (m * (x x_1))$
 - Pintar pixel (*x*, *y*)
- Desvantagens:
 - Aritmética em ponto flutuante.
 - Utilização de multiplicação.

Algoritmo Analítico (Implementação)

- Seja a equação da reta: y = m.x + b
- Se reta vertical, i.e., $x_1 = x_2$
 - ullet Então Para y de y_1 passo 1 até y_2 faça
 - Pintar pixel (x_1, y)
 - ◆ Senão
 - $m \leftarrow (y_2 y_1) / (x_2 x_1)$
 - $b \leftarrow y_2 m * x_2$
 - Para x de x_1 passo 1 até x_2 $y \leftarrow m*x + b$ Pintar pixel (x, y)

9

CSP

Algoritmo Analítico (Deslocamento)

- O Efeito Deslocamento do Algoritmo Analítico:
 - Densidade dos pontos não é constante com a inclinação.
 - Deve-se então determinar em qual dos eixos está o **maior deslocamento** e incrementar esta coordenada.

Reta entre (0,0) e (8,8) com m = 1 (INCREMENTO HORIZONTAL)

Reta entre (0,0) e (10,4) com m = 0,4 (INCREMENTO HORIZONTAL)

Algoritmo Analítico (Deslocamento)

Reta entre (0,0) e (4,8) com m = 2 (INCREMENTO HORIZONTAL)

Reta entre (0,0) e (4,8) com m = 2 (INCREMENTO VERTICAL)

11

Algoritmo Incremental (Conceitos)

- Algoritmo analítico simples tem vários problemas:
 - Utiliza aritmética de ponto-flutuante.
 - Sujeito a erros de arredondamento.
 - Usa multiplicação.
 - Muito Lento.
- Se observarmos que *m* é a variação em *y* para um incremento unitário de *x*, tem-se:
 - $m = \Delta y / \Delta x$, então tem-se $\Delta x = 1$
 - Logo:
 - Para $\Delta x = 1$ implica em $\Delta y = m$
- Desvantagem:
 - Utilização de aritmética em ponto flutuante.

TSP

Algoritmo Incremental (Implementação)

- Incrementar os eixos com maior deslocamento
- Se $(x_2 x_1) > (y_2 y_1)$
 - Então
 - $m \leftarrow (y_2 y_1) / (x_2 x_1)$
 - $y \leftarrow y_1$
 - Para x de x_1 até x_2 (passo 1) Pintar pixel (x, y) $y \leftarrow y + m$
 - Senão
 - $m \leftarrow (x_2 x_1) / (y_2 y_1)$
 - $x \leftarrow x_1$
 - Para y de y_1 até y_2 (passo 1) Pintar pixel (x, y) $x \leftarrow x + m$

13

TSP

(x + 1, y + 1)

Algoritmo de Bresenham (I)

- Algoritmo clássico da computação gráfica.
- Algoritmo incremental que utiliza apenas soma e subtração de inteiros.

 Em vez de computar o valor do próximo y em ponto flutuante, decidir se o próximo pixel vai ter coordenadas (x + 1, y) ou (x + 1, y + 1)

• Decisão requer que se avalie se a linha passa acima ou abaixo do ponto médio $(x + 1, y + \frac{1}{2})$

TSP

Algoritmo de Bresenham (II)

- Variável de decisão V é dada pela classificação do ponto médio com relação ao semi-espaço definido pela reta.
- Caso 1: Linha passou abaixo do ponto médio:

$$ax + by + c = V$$
onde
$$\begin{cases} V = 0 \rightarrow (x, y) \text{ sobre a reta} \\ V < 0 \rightarrow (x, y) \text{ abaixo da reta} \\ V > 0 \rightarrow (x, y) \text{ acima da reta} \end{cases}$$

$$V_1 = a(x+1) + b(y + \frac{1}{2}) + c$$

$$V_0 = ax + b(y + \frac{1}{2}) + c$$

$$\therefore V_1 = V_0 + a$$

15

CSP

Algoritmo de Bresenham (III)

• Caso 2: Linha passou acima do ponto médio:

$$V_1 = a(x+1) + b(y+1+\frac{1}{2}) + c$$

$$V_0 = ax + b(y+\frac{1}{2}) + c$$

$$\therefore V_1 = V_0 + a + b$$

TZT

Algoritmo de Bresenham (IV)

- Dedução dos Coeficientes da Reta: a.x + b.y + c = 0
 - Obtenção dos parâmetros a e b
 - $m = (y_2 y_1)/(x_2 x_1) \Leftrightarrow inclinação \Leftrightarrow y = m.x$
 - $(y_2 y_1).x (x_2 x_1).y = 0$
 - $(y_2 y_1).x + (x_1 x_2).y = 0$
 - Substituindo *a* e *b* na equação da reta suporte:
 - a.x + b.y + c = 0
 - c = -a.x b.y
 - $c = -(y_2 y_1).x (x_1 x_2).y$; mas $x_2 x_1 = 1$
 - $c = (y_1 y_2).x + y$; Substituindo $(x, y) = (x_1, y_1) = (x_2 1, y_1)$
 - $c = (y_1 y_2).(x_2 1) + y_1 = y_1.x_2 y_1 y_2.x_2 y_2 + y_1$
 - $c = y_1.x_2 y_2.x_2 y_2 = y_1.x_2 y_2.(x_2 1)$; mas $x_1 = x_2 1$
 - $c = y_1.x_2 y_2.x_1$

1

TSP

Algoritmo de Bresenham (V)

- Coeficientes da reta: a.x + b.y + c = 0
 - $a = y_2 y_1$
 - $b = x_1 x_2$
 - $c = x_2 y_1 x_1 y_2$
- Para iniciar o algoritmo, precisamos saber o valor de $V \text{ em } (x_1 + 1, y_1 + \frac{1}{2})$
 - $V = a (x_1 + 1) + b (y_1 + \frac{1}{2}) + c$ = $\underbrace{a x_1 + b y_1 + c}_{0} + a + b/2 = a + b/2$
- Podemos evitar a divisão por 2 multiplicando *a*, *b* e *c* por 2 (não altera a equação da reta)

Algoritmo de Bresenham (Implementação)

```
a \leftarrow y_2 - y_1
b \leftarrow x_1 - x_2
V \leftarrow 2 * a + b
x \leftarrow x_1
y \leftarrow y_1
Enquanto x \le x_2 fazer:
\begin{cases} \text{Pintar pixel } (x, y) \\ x \leftarrow x + 1 \\ \text{Se } V \le 0 \end{cases}
Então: V \leftarrow V + 2 * a \; ; \{\text{não altera posição de } y\}
\begin{cases} V \leftarrow V + 2 * (a + b) \\ y \leftarrow y + 1 \end{cases}
Fim_Enquanto
```


Extensão para demais Octantes

- Se $x_2 < x_1$
 - Trocar P_1 com P_2
- Se $y_2 < y_1$
 - $y_1 \leftarrow -y_1$
 - y₂ ← y₂
 - Pintar pixel (x, -y)
- Se $|y_2 y_1| > |x_2 x_1|$
 - ◆ Repetir o algoritmo trocando "y" com "x"

Aplicação do Algoritmo de Bresenham

Confecção de Gráficos on-line

• Propósito

- Construir gráficos dinamicamente e mostrá-los ao usuário na forma de página de internet.
 - D.H. Spatti, P.R. de Aguiar, F.R.L. Dotto (Projeto de Iniciação científica).
- A partir de uma base de dados TXT, os pontos são manipulados e ajustados para ser impressos em um gráfico para acompanhamento de processos de usinagem.
- Para que o sistema não ficasse sobrecarregado, utilizou-se apenas imagens estáticas em formato GIF, contendo os pixels e tabelas HTML.
- Utilizou-se o algoritmo de Bresenham para preencher espaços entre pontos.

23

Aplicação do Algoritmo de Bresenham

Confecção de Gráficos on-line

Para corrigir a descontinuidade, o intervalo entre pontos com espaçamento maior que 1 pixel foi preenchido com retas, geradas pela inserção de pontos, através do algoritmo de Bresenham.

Aplicação do Algoritmo de Bresenham

Classificação de Padrões de Café

- Propósito
 - Classificar grãos de café relacionando-os em 4 grupos distintos {verde, cereja, passa, maduro}.
 - I. N. Silva, R. A. Flauzino, J. A. Ulson (Proj. Pesquisa).
 - Quantificar automaticamente os volumes dos tipos de café que foram colhidos pela máquina agrícola.
 - O Algoritmo de Bresenham foi empregado para se traçar o resultado gráfico da quantificação, no display da máquina agrícola.
 - Devido à natureza dos recursos computacionais disponíveis no implemento agrícola, todas as funções gráficas tiveram que ser implementadas manualmente, incluindo traçar gráficos na tela.

