MO6 Přenos informace

- přenos zdigitalizovaného analogového signálu pomocí přenosového média
- zahrnuje vysílání a příjem
- datová komunikace zahrnuje i přípravu k odeslání, řízení přenosu a procesy navazující na příjem
- způsoby přenosu: opticky, mechanicky, bezdrátově

Vzorkovací teorém

- "K dosažení přesné rekonstrukce spojitého signálu s omezeným frekvenčním rozsahem z jeho vzorků je potřeba, aby vzorkovací frekvence přesáhla dvojnásobek frekvence nejvyšší harmonické složky vzorkovaného signálu."
- v praxi se vzorkovací volí dvakrát větší plus rezerva

Šířka pásma

- rozdíl mezi nejvyšší a nejnižší frekvencí přenášeného signálu
- vyjádřeno v hertzech (Hz)
- v informatice se používá ve smyslu přenosové rychlosti

$$B = f_H - f_l$$

Šum

- nežádoucí signál zpravidla náhodné povahy; data bez významu
- nejčastější příčiny: vysoká frekvence, nízká energie
- vlnka je funkce používaná k rozkladu funkce nebo signálu vlnkovou transformací
- vlnková transformace umožňuje získat časově-frekvenční popis signálu; lze na ni nahlížet také jako na prostředek k rozkladu signálu na nezávislé stavební kameny

Obraz

- například obraz z digitálních nebo filmových kamer, kde je k dispozici pouze jediná realizace snímku
- typy šumu
 - náhodný šum, také nezávislý šum (příkladem tohoto typu šumu je šum typu "sůl a pepř")
 - Gaussův šum, také závislý šum, kde je každý pixel obrazu mírně pozměněn

Odstranění

- bez znalosti charakteristiky šumu nebo signálu není možné šum odstranit
- prahování vlnkových koeficientů
 - nejprve se spočítá diskrétní vlnková transformace signálu
 - pro prahování koeficientů je možno použít jakýkoli postup
 - nejčastěji se ale používá tvrdé (hard) či měkké (soft) prahování
 - při tvrdém se koeficienty menší než práh λ nahradí nulami

$$ho_{\lambda}^{hard}(x) = egin{cases} x & |x| \geq \lambda \ 0 & |x| < \lambda \end{cases}$$

• u měkkého se navíc ostatní posunou o velikost prahu směrem k nule (to má za následek větší ztrátu energie signálu).

$$ho_{\lambda}^{soft}(x) = egin{cases} x - \lambda & & x \geq \lambda \ x + \lambda & & x \leq -\lambda \ 0 & & |x| < \lambda \end{cases}$$

volba prahu závisí na použitých vlnkách i charakteru šumu a může být odlišná v různých měřítkách

- metody odstranění šumu u obrazu
 - je třeba vhodně zvolit barevný model
 - lineární filtry
 - podle frekvenční charakteristiky šumu mají tyto lineární filtry často charakter dolní propusti
 - Gaussův filtr
 - tato metoda vede k rozmazání obrázku, což může být pro další zpracování obrazu problém (například pro detekci hran)j
 - je to efektivní technika k potlačení Gaussova šumu.
 - průměrování
 - hodnota každého pixelu je určena průměrem jeho a jeho nejbližších sousedů
 - vede k rozmazání obrazu
 - je efektní k potlačení Gaussova šumu
 - dolní propust
 - obecná dolní propust propustí jen nízké frekvence (šum je zpravidla vysokofrekvenční)
 - nelineární filtry
 - mediánový filtr
 - filtr vezme pro každý pixel obrazu jeho okolí; ze všech těch pixelů vybere medián, který se stává novou hodnotou zpracovávaného pixelu
 - prahování vlnkových koeficientů