

Python for Variable Star Astronomy a status update

Matt Craig
Department of Physics and Astronomy

Acknowledgements

- Current students
 - IsobelSnellenberger
 - Madelyn Madsen

- Former students
 - Adam Kline
 - Erin Aadland
 - Andy Block
 - •Jane Glanzer
 - Elias Holte
 - •Laura Maixner
 - •Stefan Nelson
 - Elizabeth Dougherty
 - Nathan Walker
 - •Laura Herzog
 - Michael Meraz
 - Connor Stotts
 - Nathan Heidt
- Colleagues (MSUM)
 - Juan Cabanela
 - Linda Winkler

Outline

- Motivation
- Educational materials
- Image viewer
- Source detection and photometry
- Data reduction
- •VSP

Motivation

- Prepare undergraduate students for career
 - Include some programming
 - Choose accessible language
 - Re-use as much community software as possible
- Do science: TESS/exoplanet follow-up

Goals

- Software interoperability
 - Read and write AstroImageJ photometry files
 - Generate/read AIJ source lists
- Data "interoperability"
 - TESS-style for reporting TESS data
 - AAVSO-style for reporting variable star data
- Let others do the hard work
 - Use the community-based astro software large institutions are developing
 - Make user interaction browser-based, built on tools widely used outside astro

Guide to Data Reduction

•http://bit.ly/ccd-guide

CCD Data Reduction Guide

- 1. Understanding astronomical images
- 2. Overscan and bias images
- 3. Dark current and dark frames
- 4. Flat fielding
- 5. Calibrating science images
- 6. Finding and dealing with bad pixels

Image viewer

- •Browser-based; can run
 - on cloud server
 - on local machine
- •Interaction with browser and Python uses
 - Jupiter framework
 - widely support by data science and finance

Image viewer

Image viewer

- Viewer design
 - Python designed to allow multiple implementations in future
 - •STScI considering its use internally
 - •LSST considering plugging their viewer into this framework

- Source detection using sample image
- •Perform aperture photometry on all images in folder for those sources

- Produces (per source per image):
 - Net counts
 - Instrumental magnitude
 - Filter
 - Sky background
 - •RA/Dec
 - Error (from CCD equation)

- Determine color correction and zero point for each frame
 - Use APASS stars in frame as standard stars
 - Prefer those with small error
- Apply corrections to all sources

Sometimes

Differential photometry

- Need to do differential photometry in addition
 - •TESS/AIJ style
 - flux (count) ratio
 - target flux / (sum of comp fluxes)
 - AAVSO style:
 - target magnitude from
 - Difference between instrumental target and comp
 - Catalog magnitude of comp
 - average over all comp stars

All-sky vs differential

- Relatively isolated code
- Clearly defined result (single plot)

VSP: Chart for EY UMa

VSP: Status

- •Start: 3,500 lines of well-written Perl
- •Now: 190 lines of code
 - Really poorly written Python...
 - ...that uses current VSP API to get comp stars
- •Eventually: 500-600 lines of code

Challenges

- Local computer
 - Installation is...painful
 - Relatively easy to break working install
 - Launch from a terminal
 - two or three platforms to support
- •Server:
 - Setup is...painful
 - Authentication is...more painful
 - Storage and CPU cost money

Advantages

- Local computer
 - You control the compute
 - You have already paid for storage and CPU
- Server
 - Software for users easier to manage
 - Can provide large data files without downloads

Slides/links/how to try it out at:

http://bit.ly/aavso-2019

