

King Saud University College of Computer and Information Sciences Computer Science Department

10 10 10 10 10 10 10 10 10 10 10 10 10 1		computer ber	once Bepar			
Course Course Tit	le: CSC 220 e: Computer Organization		nm r: 2 nd (2018-20 n: 3 hours	019)		
Student's	Name:		_			
Student's	ID:					
Section N	O. ————————————————————————————————————		_			
1. Ans	at Exam Regulations wer all questions calculator/electronic devi	ce is allowed				
	,	EVALUATION		,		
	NCAAA: Intended L Student ABET: Program Le	nce B.Sc. Program: Learning Outcomes (ILO) t Outcomes arning Outcomes (PLO) t outcomes	Question No. Relevant Is Hyperlink ed	Covering %	Full Mark	Obtained Mark
NCAAA	Knowledge (NCAAA)		Exercise 1	∑ABET%		
ABET	(a) Apply knowledge of cappropriate to the discipli	edge of computing and mathematics e discipline;		40 %	8	
			Exercise 2		8	
NCAAA	Cognitive Skills (NCAA	A)	Exercise 2-3	∑ ABET%		
	1 0 1	roblem, and identify and uirements appropriate to its	Exercise 3	30 %	6	
ABET	solution.		Exercise 4	30 70	6	
	(c) An ability to design, is computer-based system, I	process, component, or	Exercise 5	30 %	6	
	program to meet desired	needs.	Exercise 6		6	
			Total	100%	40	
Feedback ar	d Remarks:					
I certify that	the work contained withi	n this assignment is all my or	wn work and i	eferenced who	ere requir	ed.
Student's Si	gnature:	Date:				

Question 1. Short Questions (8 Marks: 8 ×1)

a) Find the 8-bit signed-magnitude representation of (-63).

Answer: 10111111

b) Write the truth table for a full adder circuit.

Answer:

X	Y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

c) Given A=1100 and B=0100 in 2's complement form. Find A+B and A-B

Answer: A+B = 0000A-B = 1000

d) Show how to construct a 3-bit parallel adder using full adders?

Answer:

e) Show how to use a Demux 1 to 4 as a decoder 2 to 4 with enable (Hint: used block diagram of a Demux).

Answer:

f) Write the block diagram and characteristic table for JK flip flop Answer:

С	J	K	Q_{next}
0	X	Х	No change
1	0	0	No change
1	0	1	0 (reset)
1	1	0	1 (set)
1	1	1	Q' _{current}

g) Suppose a 4-bit register initially contains 1101. What will be the content of the register after arithmetical shift left followed by arithmetical shift right operations?

Answer:

After arithmetical shift Left: 1010

arithmetical shift right: 1101

h) Convert the 2's complement signed binary number (11011000) into decimal.

Answer: -40

Question 2. Short Questions (8 Marks: $2+6\times1$)

a) Convert the assembly instructions given in the following table into RTL instructions

Instructions	RTL
LD R5, (R1)	$R5 \leftarrow M[R1]$
ST (R5), 0	M[R5] ← 0
ADD R0, R5, R1	R0 ← R5 +R1
INC R0, R1	R0 ← R1 + 1

b) Choose correct answer and write them in the following table

1	2	3	4	5	6
A	D	D	С	В	С

1. Assuming registers are 8-bits width, and R1 = CF, R2 = 6F, R3 = 9F, R4 = FF, ""numbers are represented in HEX and in 2's complement" what is the contents of R1 in decimal, if the instruction ADD, R1, R1, R4 (in RTL: $R1 \leftarrow R1 + R4$) is executed?

[A] - 50

[B] 50

[C] 51

[D] -51

2. A digital computer has a common bus system for 8 registers of 32 bit each. The bus is constructed with multiplexers. How many multiplexers are there in the bus?

[A] 16,

[B] 8,

[C] 4,

[D] 32

3. Assuming registers are 8-bits width, and R1 = CF, R2 = 6F, R3 = 9F, R4 = FF, ""numbers are represented in HEX and in 2's complement" what is the contents of overflow Flag "V" and Zero Flag "Z" and Sign "N" if the instruction SUB, R1, R1, R4 (in RTL: R1 <-- R1 - R4) is executed?

[A] V = 0, Z = 0, N = 1, [B] V = 1, Z = 0, N = 0, [C] V = 0, Z = 1, N = 0, [D] V = 0, Z = 0, N = 1

4. How many JK flip flops are required to design a MOD-100 counter?

[A] 5

[B] 6

[C] 7

[D] 8

5. How many 128 x 8 RAM chips are needed to provide a memory capacity of 2048 bytes?

[A] 8

[B] 16

[C] 24

[D] 32

6. Which of the following registers is used to keep track of address of the memory location where the next instruction is located?

[A] Address Register, [B] Data Register, [C] Program Counter, [D] Instruction Register

Question 3 (6 Marks: 2+1+3)

(a) Construct a 3-to-8-line decoder with two 2-to-4 line decoders with enable.

Answer of Question 3 (a)

(b) Implement the following Boolean function with a decoder.

$$F(A, B, C) = \sum_{i=1}^{n} m(0, 1, 3, 4)$$

Answer of Question 3 (b)

(c) Write the truth table for decimal to BCD encoder with 10 inputs ($D_0, D_1, ..., D_9$) and 4 output lines (A_3, A_2, A_1, A_0), Write the expression function of the 4 outputs.

Answer of Question 3 (c)

	Inputs											Outputs	3
D _g	D ₈	D ₇	\mathbf{D}_6	D ₅	\mathbf{D}_4	D ₃	D ₂	D ₁	D ₀	\mathbf{A}_3	A ₂	A ₁	A ₀
0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	1	0	O	0	0	1
0	0	0	0	0	0	0	1	0	0	O	0	1	0
0	0	0	0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	0	1	0	0	0	0	O	1	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	0	0	0 _	1	0	0	1

$$A_0 = D_1 + D_3 + D_5 + D_7 + D_9$$

$$A_1 = D_2 + D_3 + D_6 + D_7$$

$$A_2 = D_4 + D_5 + D_6 + D_7$$

$$A_2 = D_4 + D_5 + D_6 + D_7$$

$$A_3 = D_8 + D_9$$

Question 4 (6 Marks: 2 +4)

(a) Complete the diagram below to design a 4-bit combinational shifter whose operations are defined by the following table and I_R and I_L are serial inputs for right shift and left shift respectively.

S1, S	SO	Function
0 0)	Unused
0 1		Pass B unchanged
1 0)	Left shift
1 1		Right shift

Answer of Question 4 (b)

(b) The figure below shows the design of a 4-bit arithmetic unit. Fill the missing parts in the function table below.

Sele	ection c	code	Red	juired adder	Resulted	arithmetic operation	
52	S ₁	S ₀	Α	В	CI	G (A + B +	CI)
0	0	0	0000	X	1	X + 1	(increment)
0	0	1	0000	X	0	X	(transfer)
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1			7		

Question 5 (6 Marks: 3+3)

(a) Compute the control words for the following micro-operations for the datapath below described by the table 8.5.

☐ TABLE 8-5 Encoding of Control Word for the Datapath

	DA, AA	, BA	МВ		FS		MD		RW	,
	Function	Code	Function	Code	Function	Code	Function	Code	Function	Code
BA	R0	000	Register	0	F = A	0000	Function	0	No Write	0
	R1	001	Constant	1	F = A + 1	0001	Data in	1	Write	1
	R2	010			F = A + B	0010				
	R3	011			F = A + B + 1	0011				
	R4	100			$F = A + \overline{B}$	0100				
ut	<i>R</i> 5	101			$F = A + \overline{B} + 1$	0101				
	R6	110			F = A - 1	0110				
	<i>R</i> 7	111			F = A	0111				
					$F = A \wedge B$	1000				
					$F = A \vee B$	1001				
					$F = A \oplus B$	1010				
					$F = \overline{A}$	1011				
					F = B	1100				
					$F = \operatorname{sr} B$	1101				
					$F = \operatorname{sl} B$	1110				

Micro-	DA	AA	BA	MB	FS	MD	RW
operations	(15-13)	(12-10)	(9-7)	(6)	(5-2)	(1)	(0)
R5←R4 – R1	101	100	001	0	0101	0	1
R5←R4 + 4	101	100	XXX	1	0010	0	1
R6←R0 ⊕ R7	110	000	111	0	1010	0	1
R6←R0 ∧ R7	110	000	111	0	1000	0	1
R3← R2	011	010	XXX	X	0000	0	1
R3←sr R2	011	Xxx	010	0	1101	0	1

(b) Show how to design a 8 x n register file using necessary registers, MUXs, and decoders.

Question 6 (6 Marks: 2+4)

□ TABLE 8-8

Instruction Specifications for the Simple Computer

		Mne-			Status
Instruction	Opcode	monic	Format	Description	Bits
Move A	0000000	MOVA	RD, RA	$R[DR] \leftarrow R[SA]^*$	N, Z
Increment	0000001	INC	RD, RA	$R[DR] \leftarrow R[SA] + 1*$	N, Z
Add	0000010	ADD	RD, RA, RB	$R[DR] \leftarrow R[SA] + R[SB]^*$	N, Z
Subtract	0000101	SUB	RD, RA, RB	$R[DR] \leftarrow R[SA] - R[SB]^*$	N, Z
Decrement	0000110	DEC	RD, RA	$R[DR] \leftarrow R[SA] - 1*$	N, Z
AND	0001000	AND	RD,RA,RB	$R[DR] \leftarrow R[SA] \wedge R[SB]^*$	N, Z
OR	0001001	OR	RD, RA, RB	$R[DR] \leftarrow R[SA] \vee R[SB]^*$	N, Z
Exclusive OR	0001010	XOR	RD, RA, RB	$R[DR] \leftarrow R[SA] \oplus R[SB]^*$	N, Z
NOT	0001011	NOT	RD, RA	$R[DR] \leftarrow \overline{R[SA]}^*$	N, Z
Move B	0001100	MOVB	RD, RB	$R[DR] \leftarrow R[SB]^*$	
Shift Right	0001101	SHR	RD, RB	$R[DR] \leftarrow sr R[SB]^*$	
Shift Left	0001110	SHL	RD, RB	$R[DR] \leftarrow sl R[SB]^*$	
Load	1001100	LDI	RD, OP	$R[DR] \leftarrow zf OP^*$	
Immediate					
Add Immediate			RD, RA, OP	$R[DR] \leftarrow R[SA] + zf OP^*$	N, Z
Load	0010000	LD	RD, RA	$R[DR] \leftarrow M[SA]^*$	
Store	0100000	ST	RA, RB	$M[SA] \leftarrow R[SB]^*$	
Branch on Zero	1100000	BRZ	RA,AD	if $(R[SA] = 0) PC \leftarrow PC + se AD$,	N, Z
				if $(R[SA] \neq 0) PC \leftarrow PC + 1$	
Branch on	1100001	BRN	RA,AD	if $(R[SA] < 0) PC \leftarrow PC + se AD$,	N, Z
Negative				if $(R[SA] \ge 0) PC \leftarrow PC + 1$	
Jump	1110000	JMP	RA	$PC \leftarrow R[SA]^*$	

[•] For all of these instructions, PC ← PC + 1 is also executed to prepare for the next cycle.

(a) Consider table 8-8 containing instruction specification for a simple computer. Translate the following instructions into 16-bit binary machine codes (**NB**: use 0 for don't care).

Instruction	Binary machine code							
	Opcode	RD/AD(left)	RA	RB/OP/AD(Right)				
ADD R5, R0, R3	0000010	101	000	011				
LD R5, (R6)	0010000	101	110	000				
LDI R2, 5	1001100	010	000	101				
BRN R1 AD	110001	110	001	001				
$(AD = 110\ 001)$								

(b) Assume that variable x is located at the address 200 in data memory contains 2, and variable y is located at the address 250 contains 20. Write an assembly language program to evaluate the equation z = (x+1) - (y+5) where variable z is located at the address 300. (**NB**: use only register R0 as the address register).

Solution:

LDI R0, 200

LD R1, (R0)

INC R1, R1

LDI R0, 250

LD R2, (R0)

ADI R2, R2, 5

SUB R3, R1, R2

LDI R0, 300

ST (R0), R3