

1) The coordinate number of Be is not more than 4 where as other alkali

2) The M.P and B.P are higher when compared to the other elements

4) Be does not react with H₂O like the other companions of the group

3) They forms covalent bonds whereas the other members of

Be & Al are not attacked easily by acids[HNO₃] forms protective layer

BeCl₂ & AlCl₃ → Lewis acid and form dimer

• BeCl₂ in vapour as dimer and solid as polymer

• Both form complexes - $[BeF_4]^{2-}$ -sp³ $[Al(H_2o)_6]^{3+}$ -sp³d²

• BeO, Be(OH)₂, Al_2O_3 , $Al(OH)_3 \rightarrow Amphoteric$

metals have coordination number of 6

the group forms ionic bonds

Ca < Mg < Be < Sr < Ba

 $\propto \frac{}{\text{hydration}}$

Be2+ < Mg2+ < Ca2+ < Sr2+ < Ba2