Метод ранжирования информационных источников по степени доверия

Выполнил: Павелко Павел Юрьевич, ИУ7-81 Руководитель: Бекасов Денис Евгеньевич, ИУ7

МГТУ им. Баумана

Москва, 2017

Цель

Разработка системы мониторинга новостей с последующим ранжированием источников по степени доверия

Задачи

- Проанализировать предметную область
- 2 Разработать метод ранжирование источников
- 3 Разработать программное обеспечение
- Исследовать применимость метода

Актуальность

- Более 100 тыс. новостных сообщений ежедневно от почти 7 тыс. значимых источников
- Достоверность новостей вызывает сомнения
- Эксперты способны проверить лишь новости популярных источников

Вывод

Необходим метод распространения оценки эксперта на схожие новости менее популярных источников с последующим ранжированием источников по степени доверия

Постановка задачи

Предложенный метод

Потоки данных в системе

Мониторинг новостей

Извлечение содержимого

Readability Algorithm

- Оценка узлов DOM-дерева по различным показателям
- 2 Ранжирование узлов по оценке
- ③ Извлечение текстового содержимое наиболее значимых узлов

Основные показатели

- Длина текста и доля ссылок в тексте
- Количество запятых в тексте
- Доля изображений, списков и т.д.
- Классы, идентификаторы и теги

Кластеризация новостей

Выбор алгоритма кластеризации

	k-m	HAC	DHCA	ICA
Адаптивное кол-во кластеров	_	+	+	+
Иерархические кластеры	_	+	+	_
Онлайновый алгоритм	_	_	+	+
Возможность оптимизаций	_	_	_	+

Алгоритмы

k-m - K-means

HAC — Hierarchical Agglomerative Clustering

DHC — Dynamic Hierarchical Compact Algorithm

ICA — Incremental Clustering Algorithm

Incremental Clustering Algorithm

Добавление новости:

UPGMA:

$$upgma(C_i, C_j) = \frac{1}{|C_i||C_j|} \sum_{\mathbf{x} \in C_i} \sum_{\mathbf{y} \in C_j} sim(\mathbf{x}, \mathbf{y}),$$

где C_i, C_j — кластеры

 \mathbf{x}, \mathbf{y} — новости как «мешки слов» $sim(\cdot, \cdot)$ — мера схожести новостей:

 $sim(\mathbf{x}, \mathbf{y}) = \mathbf{x}\mathbf{y} \cdot (1 - penalty(x, y))$

Ранжирование источников

Исследование влияния выбора меры сходства на качество кластеризации

TODO

- постановка
- 2 цель
- размер выборки

Выводы из работы

- Проанализирована предметная область
- Разработан метод ранжирования источников
- Разработано программное обеспечение
- Исследована применимость метода

Дальнейшее развитие

- Построение тематического рейтинга источников
- Агрегированная экспертная оценка
- Ранжирование экспертов
- Нахождение дубликатов и определение первоисточника
- Связывание сюжетов по тематике