

B38EM Introduction to Electricity and Magnetism Lecture 9

Electromagnetic Plane Waves

Dr. Yuan Ding (Heriot-Watt University)
yuan.ding@hw.ac.uk
yding04.wordpress.com

Outline & Outcome

- Uniform plane EM waves
- Doppler effect
- Plane wave in lossless media
- Polarisation
- Poynting vector

References & Resources

 Elements of Electromagnetics (7th Edition), by Sadiku, Oxford University Press

Fundamentals of Applied Electromagnetics (7th Edition), by Ulaby and Ravaioli

 Field and Wave Electromagnetics (2nd Edition), by David Cheng

•

Time-harmonic electromagnetics (source-free)

$$\rho = 0$$
, and $\boldsymbol{J} = 0$

Homogenous vector wave equations

Homogenous vector Helmholtz equations

$$\nabla^2 \mathbf{E} - \frac{1}{u^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0.$$

$$\nabla^2 \mathbf{E} + k^2 \mathbf{E} = 0$$

$$\nabla^2 \mathbf{H} - \frac{1}{u^2} \frac{\partial^2 \mathbf{H}}{\partial t^2} = 0.$$

$$\nabla^2 \mathbf{H} + k^2 \mathbf{H} = 0,$$

Any twice differentiable function of (t - R/u) or (t + R/u) is a solution of the wave equation.

A simple solution [sine and cosine function $\sin(\omega t - kx)$, $\cos(\omega t - kx)$] can be immediately derived.

Time-harmonic electromagnetics (source-free)

$$\rho = 0$$
, and $\boldsymbol{J} = 0$

Homogenous vector Helmholtz equations

$$\nabla^2 \mathbf{E} + k^2 \mathbf{E} = 0$$

$$\nabla^2 \mathbf{H} + k^2 \mathbf{H} = 0,$$

Time-harmonic plane wave: sine and cosine function $\sin(\omega t - kx)$, $\cos(\omega t - kx)$

Uniform plane wave: the field with the same direction, same magnitude, and same phase in infinite planes (perpendicular to the direction of propagation)

Wavefront: the surface of constant phase

Note: The uniform plane wave does not exist in practice.

Uniform plane wave

Doppler effect

When there is relative motion between a time-harmonic source and a receiver, the frequency of the wave detected by the receiver tends to be different from that emitted by the source. This phenomenon is known as the *Doppler effect*. The Doppler effect manifests itself in acoustics as well as in electromagnetics.

Plane waves in lossless media

For free space, the source-free equation becomes a homogeneous vector **Helmholtz's equation**:

$$\nabla^2 \mathbf{E} + k_0^2 \mathbf{E} = 0$$

Free-space wavenumber: $k_0 = \omega \sqrt{\mu_0 \epsilon_0} = \frac{\omega}{c}$ (rad/m).

In Cartesian coordinate, it can be expanded

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + k_0^2\right) E_x = 0.$$

For uniform plane wave, E_x propagating along z axis, we have

$$\partial^2 E_x/\partial x^2 = 0$$
 $\partial^2 E_x/\partial y^2 = 0$. $\frac{d^2 E_x}{dz^2} + k_0^2 E_x = 0$

Plane waves in lossless media

Solutions of Helmholtz equation of $\frac{d^2E_x}{dz^2} + k_0^2E_x = 0$

$$E_x(z) = E_x^+(z) + E_x^-(z)$$

= $E_0^+ e^{-jk_0 z} + E_0^- e^{jk_0 z}$

Forward wave

Backward wave

(propagating in the +z direction)

(propagating in the -z direction)

Phasor: A quantity that contains amplitude and phase information but is independent of time t (D. K. Cheng, p. 337).

Real electric field of a travelling wave (propagating in the +z direction):

$$E_x^+(z,t) = \Re e \left[E_x^+(z) e^{j\omega t} \right]$$

$$= \Re e \left[E_0^+ e^{j(\omega t - k_0 z)} \right]$$

$$= E_0^+ \cos(\omega t - k_0 z) \qquad (V/m).$$

Plane waves in lossless media

If we fix our attention on a particular point (with a constant phase) on the wave

$$\omega t - k_0 z = A$$
 constant phase

Phase velocity (the velocity of propagation of an equiphase front):

$$u_p = \frac{dz}{dt} = \frac{\omega}{k_0} = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = c.$$

Wavenumber in vacuum:

$$k_0 = \frac{2\pi}{\lambda_0}$$
 (rad/m)

Plane waves in lossless media

$$\nabla \times \boldsymbol{E} = -j\omega \mu \boldsymbol{H}$$

$$\nabla \times \mathbf{E} = \begin{vmatrix} \mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\ 0 & 0 & \frac{\partial}{\partial z} \\ E_{x}^{+}(z) & 0 & 0 \end{vmatrix} = -j\omega\mu_{0}(\mathbf{a}_{x}H_{x}^{+} + \mathbf{a}_{y}H_{y}^{+} + \mathbf{a}_{z}H_{z}^{+})$$
which leads to
$$H_{x}^{+} = 0, \qquad \downarrow \qquad \qquad \downarrow E$$

$$H_{y}^{+} = \frac{1}{-j\omega\mu_{0}} \frac{\partial E_{x}^{+}(z)}{\partial z}, \qquad \qquad \downarrow E$$

$$H_{z}^{+} = 0.$$

Now you can see that **E**, **H**, **k** are in the x, y, z directions, respectively. (D. K. Cheng, p. 357) **E**, **H**, **k form a right-handed system**.

Plane waves in lossless media

Magnetic field calculated through electric field:

$$H_{y}^{+} = \frac{1}{-j\omega\mu_{0}} \frac{\partial E_{x}^{+}(z)}{\partial z} \qquad E_{x}^{+}(z) = E_{0}^{+}e^{-jk_{0}z}$$

$$= \frac{k_{0}}{\omega\mu_{0}} E_{x}^{+}(z) = \frac{1}{\eta_{0}} E_{x}^{+}(z) \quad (A/m).$$

Intrinsic impedance of vacuum:

$$\eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} \cong 120\pi \cong 377 \qquad (\Omega)$$

For a uniform plane wave, the ratio of the magnitudes of **E** and **H** is the intrinsic impedance of the medium.

(D. K. Cheng, p. 358)

Plane waves in lossless media

Transverse electromagnetic (TEM) waves:

E and **H** are perpendicular to each other and both are transverse to the direction **k** of propagation.

Polarisation

- **E** and H have components along the x,y,z directions (E_x, E_y, E_z) and (E_x, E_y, E_z)
- For a plane (single frequency) EM wave propagating along z
 - \circ $E_z = H_z = 0$
 - And it is fully described by either E or H components (It is more usual to describe
 it in terms of its E components)

Polarization is a measurement of the electromagnetic field's alignment

Linear polarisation

The field oscillates in one plane only and is referred to as linear polarisation

Polarisation

B. Y. Toh, R. Cahill and V. F. Fusco, "Understanding and measuring circular polarization," in *IEEE Transactions on Education*, vol. 46, no. 3, pp. 313-318, Aug. 2003.

Circular polarisation RHCP; LHCP

Two linear polarised plane waves of equal amplitude by differing 90° in phase.

$$E_h = E_{oh} \sin \beta (z - vt)$$

$$E_{v} = E_{ov} \sin \beta \left(z - vt - \frac{\pi}{2} \right)$$
$$= E_{ov} \cos \beta (z - vt)$$

Elliptical polarisation

Otherwise

Poynting Vector

Power flow density of an EM wave is given by the instantaneous **Poynting** vector

$$\mathbf{S}(t) = \mathbf{E}(t) \times \mathbf{H}(t) = \mathbf{a}_z \left(\mathbf{E}_x \mathbf{H}_y - \mathbf{E}_y \mathbf{H}_x \right)$$
$$= \mathbf{a}_z \eta \mathbf{H}^2$$
$$= \mathbf{a}_z \frac{\mathbf{E}^2}{\eta}$$

Time-average power flow density (for time harmonic fields):

$$\left\langle \mathbf{S}(t) \right\rangle = \frac{1}{T} \int_{0}^{T} \mathbf{S}(t) \cdot dt$$
$$= \frac{1}{2} \operatorname{Re} \left\{ \mathbf{E} \times \mathbf{H} * \right\}$$

S is the Poynting vector and indicates the direction and magnitude of power flow in the EM field.

Poynting Vector

The door of a microwave oven is left open

Estimate the peak *E* and *H* strengths in the aperture of the door.

DATA:

- Power-750 W
- Area of aperture 0.3 m x 0.2 m
- impedance of free space 377 Ω
- Poynting vector:

$$S = \frac{E^2}{\eta} = \eta H^2 \quad \text{W/m}^2$$

Solution

E and H strengths in the aperture of the door

Power =
$$SA = \frac{E^2}{\eta}A = \eta H^2 A$$
 Watts

$$E = \sqrt{\eta \frac{Power}{A}} = \sqrt{377 \frac{750}{0.3 \times 0.2}} = 2{,}171 \text{kV/m}$$

$$H = \frac{E}{\eta} = \frac{2170}{377} = 5.75 \text{A/m}$$

Poynting Vector

What is the electric field strength due to an omnidirectional generator of radii 100Km radiating 1kW?

Power
$$P = 1kW$$
 $R = 100 km$
Sphere surface orea $S = 47R^2$
Power flow density $= \frac{P}{S} = \frac{E^2}{7}$
 $= \frac{P}{S} = \frac{1}{377} \frac{1 \times 10^3}{47 \times (1 \times 10^5)^2} = 1.73 \text{ mV/m}$