

planetmath.org

Math for the people, by the people.

Choquet capacity

Canonical name ChoquetCapacity
Date of creation 2013-03-22 18:47:26
Last modified on 2013-03-22 18:47:26

Owner gel (22282) Last modified by gel (22282)

Numerical id 5

Author gel (22282)
Entry type Definition
Classification msc 28A12
Classification msc 28A05
Synonym capacity
Defines capacitable

A Choquet capacity, or just capacity, on a set X is a kind of set function, mapping the power set $\mathcal{P}(X)$ to the real numbers.

Definition. Let \mathcal{F} be a collection of subsets of X. Then, an \mathcal{F} -capacity is an increasing set function

$$I \colon \mathcal{P}(X) \to \mathbb{R}_+$$

satisfying the following.

- 1. If $(A_n)_{n\in\mathbb{N}}$ is an increasing sequence of subsets of X then $I(A_n) \to I(\bigcup_m A_m)$ as $n \to \infty$.
- 2. If $(A_n)_{n\in\mathbb{N}}$ is a decreasing sequence of subsets of X such that $A_n \in \mathcal{F}$ for each n, then $I(A_n) \to I(\bigcap_m A_m)$ as $n \to \infty$.

The condition that I is increasing means that $I(A) \leq I(B)$ whenever $A \subseteq B$. Note that capacities differ from the concepts of measures and outer measures, as no additivity or subadditivity conditions are imposed. However, for any finite measure, there is a http://planetmath.org/CapacityGeneratedByAMeasurecorrespond capacity. An important application to the theory of measures and analytic sets is given by the capacitability theorem.

The (\mathcal{F}, I) -capacitable sets are defined as follows. Recall that \mathcal{F}_{δ} denotes the collection of countable intersections of sets in the paving \mathcal{F} .

Definition. Let I be an \mathcal{F} -capacity on a set X. Then a subset $A \subseteq X$ is (\mathcal{F}, I) -capacitable if, for each $\epsilon > 0$, there exists a $B \in \mathcal{F}_{\delta}$ such that $B \subseteq A$ and $I(B) \geq I(A) - \epsilon$.

Alternatively, such sets are called *I*-capacitable or, simply, capacitable.