Lambda Calculus

Programming Languages Lecture 8

Adeesha Wijayasiri

Lambda Calculus

- To obtain the "value" of an RPAL program:
 - Transduce RPAL source to an AST.
 - 2. Standardize the AST into ST.
 - 3. Linearize the ST into a lambda-expression.
 - Evaluate the lambda-expression, using the CSE machine

First, need some theory.

```
RPAL's flattener grammar: use bracket tree notation: <'root' s_1 \dots s_n >
```

end RPAL.

Result of Tree Flattening: a string

- An Applicative Expression (AE).
- The interpretation of the AE is ambiguous.
- Need parentheses to disambiguate.

Disambiguation Rules

- 1. Function application is left associative.
- 2. If an expression of the form $\lambda x.M$ occurs in a larger expression, then M is extended as far as possible (i.e. to the end of the entire expression or to the next unmatched right parenthesis).

Example:

$$\lambda$$
 x. λ y.+xy 2 3

is equivalent to

$$\lambda$$
 x.(λ y.+xy 2 3)

 Must be parenthesized to obtain the intended expression:

$$(\lambda x. \lambda y.+xy) 2 3.$$

Definition

- Let M and N be λ -expressions. An occurrence of x in a λ -expression is free if it can be proved so via the following three rules:
 - 1. The occurrence of x in λ -expression "x" is free.
 - 2. Any free occurrence of x in either M or N is free in M N.
 - 3. Any free occurrence of x in M is free in $\lambda y.M$, if x and y are different.

Practical, Equivalent Definition

• An occurrence of x in M is free if the path from x to the root of M includes no λ node with x on its left.

Definition:

• An occurrence of x in a λ -expression M is said to be bound if it is not free in M.

Examples:

```
    a - a occurs free
    x - x occurs free
    a x - a and x both occur free
    (λ x.ax)x - a occurs free; x occurs both free and bound
    (λ x. λ y.x+y) y 3
    - first occurrence of y is not free, second occurrence is free, in the entire expression.
```

More definitions

Definition:

• In an expression of the form λ x.M, x is the bound variable, and M is the body.

Definition:

• The scope of an identifier x, in an expression of the form λ x.M, consists of all free occurrences of x in M.

Axiom Delta

Let M and N be AE's that do not contain λ -expressions.

Then $M =>_{\delta} N$ if Val(M) = Val(N).

We say that M and N are delta-convertible, pronounced "M delta reduces to N".

Val: Value obtained from ordinary evaluation.

•Example: $+35 = >_{\delta} 8$.

Axiom Alpha

Let x and y be names, and M be an AE with no free occurrences of y. Then, in any context, λ x.M => $_{\alpha}$ λ y.subst[y,x,M]

subst[y,x,M] means "substitute y for x in M".

Axiom Alpha used to rename the bound variable.

•Example: $\lambda x.+x3 =>_{\alpha} \lambda y.+y3$

Axiom Beta

• Let x be a name, and M and N be AE's. Then, in any context, $(\lambda x.M) N =>_{\beta} subst[N,x,M].$

- Called a "beta-reduction", used to apply a function to its argument.
- Pronounced "beta reduces to".

Definition (subst):

- Let M and N be AE's, and x be a name.
- Then subst[N,x,M], also denoted as [N/x]M, means:
 - 1. If M is an identifier, then
 - 1.1. if M=x, then return N.
 - 1.2. if M is not x, then return M.
 - 2. If M is of the form X Y, then return ([N/x]X) ([N/x]Y).

Definition (subst[N,x,M], cont'd)

3. If M is of the form λ y.Y, then

- 3.1. if y=x then return λ y.Y.
- 3.2. if y is not x then
 - 3.2.1. if x does not occur free in Y, then return λ y.Y.
 - 3.2.2. if y does not occur free in N, then return λ y.[N/x]Y.
 - 3.2.3. if x occurs free in Y, and y occurs free in N, then return λw.[N/x] ([w/y]Y), for any w that does not occur free in either N or Y.

Examples

```
• [3/x](\lambda x.+x2) = \lambda x.+x2 (by 3.1)

• [3/x](\lambda y.y) = \lambda y.y (by 3.2.1)

• [3/x](\lambda y.+xy) = \lambda y.[3/x](+xy)

= \lambda y.+3y (by 3.2.2 and 2)

• [y/x](\lambda y.+xy) = \lambda z.[y/x]([z/y](+xy))

= \lambda z.[y/x](+xz)

= \lambda z.+yz (by 3.2.3, 2, and 2)
```

Definition

 An AE M is said to be "directly convertible" to an AE N, denoted

M => N, if one of these three holds:

- $M =>_{\alpha} N$, $M =>_{\beta} N$, $M =>_{\delta} N$.
- Definition:
 - Two AE's M and N are said to be equivalent if M =>* N.

Recursion and Fixed-Point Theory

 We know that the meaning of let x=P in Q

is the value of $(\lambda x.Q)P$

 So, what's the meaning of (the de-sugarized version of)
 let recfn = Pin Q?

Consider Factorial:

let rec f n = n eq $0 \rightarrow 1$ | n*f(n-1) in f 3

- Without the 'rec', we'd have
 - $(\lambda \text{ f.f 3}) [\lambda \text{ n.n eq 0} \rightarrow 1 \mid \text{n*f(n-1)}]$
- Note: the last 'f' is free.
- The 'rec' makes the last 'f' bound to the [λ n. ...] expression.

With 'rec', somehow ...

```
(\lambda \text{ f.f 3}) [\lambda \text{ n.n eq 0} \rightarrow 1 \mid \text{n*f(n-1)}]
=>_{\beta} (\lambda n.n eq 0 \rightarrow 1 | n*f(n-1)) 3
=>_{\beta} 3 eq 0 \rightarrow 1 | 3*f(3-1)
=>_{\delta} 3*f(2)
=>_{\text{magic}} 3*(\lambda \text{ n.n eq } 0 \rightarrow 1 \mid n*f(n-1)) 2
=>_{\beta} 3*(2 eq 0 \rightarrow 1 | 2*f(2-1))
=>_{8} 3*2*f(1)
=>_{\text{magic}} 3*2*(\lambda \text{ n.n eq } 0 \rightarrow 1 \mid n*f(n-1)) 1
=>_{\beta} 3*2*(1 eq 0 \rightarrow 1 | 1*f(1-1))
=>_{\delta} 3*2*1*f(0)
=>_{\text{magic}} 3*2*1*(\lambda \text{ n.n eq } 0 \rightarrow 1 \mid n*f(n-1)) 0
=>_{\beta} 3*2*1*(0 eq 0 \rightarrow 1 | 0*f(0-1))
=>_{\delta} 3*2*1*1
           6
=><sub>δ</sub>
```

To dispel the magic, need some math

- Let F be a function. A value w is called a "fixed-point" of F if F w = w.
- Example:

$$f = \lambda x.x ** 2 - 6$$
 has two fixed points, 3 and -2, because

$$(\lambda x.x ** 2 - 6) 3 =>_{\beta} 3 ** 2 - 6 =>_{\delta} 3$$
, and $(\lambda x.x ** 2 - 6) -2 =>_{\beta} -2 ** 2 - 6 =>_{\delta} -2$

Only two fixed-points:
 solutions to x**2-x-6 = 0.

Fixed-points can be functions

```
T = \lambda f. \lambda ().(f nil)**2-6 has two fixed points,
          \lambda ().3 and \lambda ().-2, because
             (\lambda f. \lambda ().(f nil)**2-6) (\lambda ().3)
      =>_{\beta} \lambda ().((\lambda ().3) \text{ nil})**2-6
      =>_{\beta} \lambda ().3**2-6
       =>_{\delta} \lambda ().3
and
              (\lambda f. \lambda ().(f nil)**2-6) (\lambda ().-2)
      =>_{\beta} \lambda ().((\lambda ().-2) \text{ nil})**2-6
      =>_{\beta} \lambda ().-2**2-6
       =>_{\delta} \lambda ().-2
```

Let's Dispel the Magic

 Now there are no free occurrences of f in F, and only one free occurrence of f overall.

Dispelling magic, (cont'd)

- But, let recf = Ffin Q means we want fto be a fixed point of F!
- So, re-phrase it as let f = A_fixed_point_of F in Q.
- The "A-fixed_point_of" operator is called a "fixed point finder". We call it "Y", or Ystar, or Y*.

Dispelling magic, (cont'd)

```
    So, we have
        let f = Y F in Q
    (λ f.Q) (Y F)
    (λ f.Q) (Y (λ f. λ n.P))
```

- Note: No free occurrences of f!
- So, explaining the purpose of "rec" is the same as finding a fixed point of F.

How do we find a suitable Y?

- WE DON'T NEED TO!
- We only need to use some of its characteristics:
 - 1. f = YF
 - 2. Ff = f
- Substituting 1) in 2), we obtain

$$F(YF) = YF$$

This is the fixed point identity.

Let's extend some earlier definitions:

- Definition:
 - Axiom ρ (rho): Y F => $_{\rho}$ F (Y F).

Let's Do the Factorial

- This time, no magic. Just science.
- $F = \lambda f. \lambda n.n eq 0 \rightarrow 1 \mid n*f(n-1)$, so

```
(\lambda \text{ f.f 3}) \text{ (Y F)}
=><sub>\beta</sub> Y F 3
=><sub>\rho</sub> F (Y F) 3
= (\lambda \text{ f. } \lambda \text{ n.n eq 0} \rightarrow 1 \mid \text{n*f(n-1)}) \text{ (Y F) 3}
=><sub>\beta</sub> (\lambda \text{ n.n eq 0} \rightarrow 1 \mid \text{n* Y F (n-1)}) \text{ 3}
=><sub>\beta</sub> 3^* \text{ Y F (2)}
=><sub>\rho</sub> 3^* \text{ F (Y F) 2}
```

Let's Do the Factorial (cont'd)

```
3* (\lambda f. \lambda n.n eq 0 \rightarrow 1 \mid n*f(n-1)) (Y F) 2
=>_{\beta} 3* (\lambda n.n eq 0 \rightarrow 1 | n* Y F (n-1)) 2
=>_{\beta.\delta} 3*2* Y F (1)
=>_{0} 3*2* F (Y F) 1
= 3*2* (\lambda f. \lambda n.n eq 0 \rightarrow 1 \mid n*f(n-1)) (Y F) 1
=>_{\beta} 3*2* (\lambda n.n eq 0 \rightarrow 1 | n* Y F (n-1)) 1
=>_{\beta,\delta} 3*2*1* Y F (0)
=>_0 3*2*1* F (Y F) 0
= 3*2*1* (\lambda f. \lambda n.n eq 0 \rightarrow 1 \mid n*f(n-1)) (Y F) 0
=>_{\beta} 3*2*1* (\lambda n.n eq 0 \rightarrow 1 | n* Y F (n-1)) 0
=>_{\beta,\delta} 3*2*1*1
=><sub>δ</sub>
```

Subtree transformation for 'rec'

- Build AST for factorial, and standardize it.
- RPAL subtree transformation rule for 'rec'. (remember we skipped it ?)
- Example: factorial (see diagram)

Standardizing 'rec'

Control Structures and CSE Machine Evaluation

- See diagram.
- CSE Rule 12:
 - Applying Y to F
 - Results in in (YF). We represent it using a single symbol : η
- CSE Rule 13:
 - Applying F to Y F.
 - Results in F (Y F)

Recursion Example (factorial)

let rec f n = n eq 1 -> 1 | n * f (n-1) in f 3

— Standardized tree:

Control Structures:

$$\delta_0 = \gamma \lambda_1^f \gamma Y \lambda_2^f$$

$$\delta_1 = \gamma f 3$$

$$\delta_2 = \lambda_3^n$$

$$\delta_3 = \delta_4 \delta_5 \beta \text{ eq n 1}$$

$$\delta_4 = 1$$

$$\delta_5 = * n \gamma f - n 1$$

CSE Rules:

	CONTROL	STACK	ENV
CSE Rule 12 (applying Y)	γ 	$Y^{c}_{i}\lambda_{i}^{v}$ $^{c}_{i}\eta_{i}^{v}$	
CSE Rule 13 (applying f.p.)	γ γ γ	${}^{c}\eta_{i}^{v}R$ ${}^{c}\lambda_{i}^{v}{}^{c}\eta_{i}^{v}R$	

CSE Evaluation:

RULE	CONTROL	STACK	ENV
2	$e_0 \gamma \lambda_1^f \gamma Y \lambda_2^f$	e_0	e ₀ =PE
1	$e_0 \gamma \lambda_1^f \gamma Y$	$^{0}\lambda_{2}^{\mathrm{f}}\;\mathrm{e}_{0}$	
12	$e_0 \gamma \lambda_1^f \gamma$	$\mathrm{Y}~^{0}\lambda_{2}^{\mathrm{f}}~\mathrm{e}_{0}$	
2	$e_0 \gamma \lambda_1^f$	$^{0}\eta_{2}^{\mathrm{f}}\;\mathrm{e}_{0}$	
4	e ₀ γ	${}^{0}\lambda_{1}^{\mathrm{f}}{}^{0}\eta_{2}^{\mathrm{f}}\;\mathrm{e}_{0}$	_
1	$e_0 e_1 \gamma f 3$	$e_1 e_0$	$e_1 = [0 \eta_2^f/f]e_0$
1	$e_0 e_1 \gamma f$	$3 e_1 e_0$	
13	$e_0 e_1 \gamma$	$^{0}\eta_{2}^{f}$ 3 e_{1} e_{0}	

4	$e_0 e_1 \gamma \gamma$	${}^{0}\lambda_{2}^{\mathrm{f}}{}^{0}\eta_{2}^{\mathrm{f}}3\mathrm{e}_{1}\mathrm{e}_{0}$	
2	$e_0 e_1 \gamma e_2 \lambda_3^n$	$e_2 3 e_1 e_0$	$e_2 = [0 \eta_2^f/f]e_0$
5	$e_0 e_1 \gamma e_2$	$^{2}\lambda_{3}^{n} e_{2} 3 e_{1} e_{0}$	1
4	$e_0 e_1 \gamma$	$^{2}\lambda_{3}^{n}$ 3 e_{1} e_{0}	
1	$e_0 e_1 e_3 \delta_4 \delta_5 \beta eq n 1$	$e_3 e_1 e_0$	$e_3 = [3/n]e_2$
1	$\mathbf{e}_0 \ \mathbf{e}_1 \ \mathbf{e}_3 \ \delta_4 \ \delta_5 \ \boldsymbol{\beta} \ \mathbf{eq} \ \mathbf{n}$	$1 e_3 e_1 e_0$	
6	$e_0 e_1 e_3 \delta_4 \delta_5 \beta eq$	$3 \ 1 \ e_3 \ e_1 \ e_0$	
8	$e_0 e_1 e_3 \delta_4 \delta_5 \beta$	$false e_3 e_1 e_0$	
1	$e_0 e_1 e_3 * n \gamma f - n 1$	$e_3 e_1 e_0$	
1	$e_0 e_1 e_3 * n \gamma f - n$	$1 e_3 e_1 e_0$	
6	e ₀ e ₁ e ₃ * n γ f -	$3 \ 1 \ e_3 \ e_1 \ e_0$	
1	$e_0 e_1 e_3 * n \gamma f$	$2 e_3 e_1 e_0$	
13	$e_0 e_1 e_3 * n \gamma$	$^{0}\eta_{2}^{\mathrm{f}} \ 2 \ \mathrm{e_{3}} \ \mathrm{e_{1}} \ \mathrm{e_{0}}$	
4	$e_0 e_1 e_3 * n \gamma \gamma$	${}^{0}\lambda_{2}^{\mathrm{f}}{}^{0}\eta_{2}^{\mathrm{f}}2\;\mathrm{e_{3}}\;\mathrm{e_{1}}\;\mathrm{e_{0}}$	
2	$\mathbf{e}_0 \ \mathbf{e}_1 \ \mathbf{e}_3 \ ^* \mathbf{n} \ \gamma \ \mathbf{e}_4 \ \lambda_3^n$	$e_4 \ 2 \ e_3 \ e_1 \ e_0$	$e_4 = [0\eta_2^f/f]e_0$
5	$e_0 e_1 e_3 * n \gamma e_4$	$^{4}\lambda_{3}^{n} e_{4} 2 e_{3} e_{1} e_{0}$	
4	$e_0 e_1 e_3 * n \gamma$	$^{4}\lambda_{3}^{n} \ 2 \ e_{3} \ e_{1} \ e_{0}$	

1	$e_0 e_1 e_3 * n e_5 \delta_4 \delta_5 \beta eq n 1$	$\mathbf{e}_5 \; \mathbf{e}_3 \; \mathbf{e}_1 \; \mathbf{e}_0$	$e_5 = [2/n]e_4$
1	$e_0 e_1 e_3 * n e_5 \delta_4 \delta_5 \beta eq n$	$1 e_5 e_3 e_1 e_0$	
6	$e_0 e_1 e_3 * n e_5 \delta_4 \delta_5 \beta eq$	$2 \ 1 \ e_5 \ e_3 \ e_1 \ e_0$	
8	$e_0 e_1 e_3 * n e_5 \delta_4 \delta_5 \beta$	$false e_5 e_3 e_1 e_0$	
1	$e_0 e_1 e_3 * n e_5 * n \gamma f - n 1$	$\mathbf{e}_{5} \; \mathbf{e}_{3} \; \mathbf{e}_{1} \; \mathbf{e}_{0}$	
1	$e_0 e_1 e_3 * n e_5 * n \gamma f - n$	$1 e_5 e_3 e_1 e_0$	
6	$e_0 e_1 e_3 * n e_5 * n \gamma f$	$2 \ 1 \ e_5 \ e_3 \ e_1 \ e_0$	
1	$e_0 e_1 e_3 * n e_5 * n \gamma f$	$1 e_5 e_3 e_1 e_0$	
13	$e_0 e_1 e_3 * n e_5 * n \gamma$	$^{0}\eta_{2}^{\mathrm{f}}$ 1 e_{5} e_{3} e_{1} e_{0}	
4	$e_0 e_1 e_3 * n e_5 * n \gamma \gamma$	${}^{0}\lambda_{2}^{\mathrm{f}} {}^{0}\eta_{2}^{\mathrm{f}} 1 e_{5} e_{3} e_{1} e_{0}$	
2	$e_0 e_1 e_3 * n e_5 * n \gamma e_6 \lambda_3^n$	$\mathbf{e}_6 \ 1 \ \mathbf{e}_5 \ \mathbf{e}_3 \ \mathbf{e}_1 \ \mathbf{e}_0$	$e_6 = [0 \eta_2^f/f]e_0$
5	$e_0 e_1 e_3 * n e_5 * n \gamma e_6$	$^{6}\lambda_{3}^{n}$ e_{6} 1 e_{5} e_{3} e_{1} e_{0}	
4	$e_0 e_1 e_3 * n e_5 * n \gamma$	$^6\lambda_3^{\mathrm{n}}$ 1 e_5 e_3 e_1 e_0	
1	$e_0 e_1 e_3 * n e_5 * n e_7 \delta_4 \delta_5 \beta eq n 1$	$e_7\ e_5\ e_3\ e_1\ e_0$	$e_7 = [1/n]e_6$
1	$\mathbf{e}_0 \ \mathbf{e}_1 \ \mathbf{e}_3 \ ^* \mathbf{n} \ \mathbf{e}_5 \ ^* \mathbf{n} \ \mathbf{e}_7 \ \delta_4 \ \delta_5 \ \beta \ \mathbf{eq} \ \mathbf{n}$	$1 e_7 e_5 e_3 e_1 e_0$	
6	$e_0 e_1 e_3 * n e_5 * n e_7 \delta_4 \delta_5 \beta eq$	$1 \ 1 \ e_7 \ e_5 \ e_3 \ e_1 \ e_0$	
	1		ı

8	$e_0 e_1 e_3 * n e_5 * n e_7 \delta_4 \delta_5 \beta$	true e_7 e_5 e_3 e_1 e_0
1	$e_0 e_1 e_3 * n e_5 * n e_7 1$	$\mathbf{e}_7 \ \mathbf{e}_5 \ \mathbf{e}_3 \ \mathbf{e}_1 \ \mathbf{e}_0$
5	$e_0 e_1 e_3 * n e_5 * n e_7$	$1 e_7 e_5 e_3 e_1 e_0$
1	e ₀ e ₁ e ₃ * n e ₅ * n	$1 e_5 e_3 e_1 e_0$
6	e ₀ e ₁ e ₃ * n e ₅ *	$2 \ 1 \ e_5 \ e_3 \ e_1 \ e_0$
5	$e_0 e_1 e_3 * n e_5$	$2 e_5 e_3 e_1 e_0$
1	$e_0 e_1 e_3 * n$	$2 e_3 e_1 e_0$
6	e ₀ e ₁ e ₃ *	$3 \ 2 \ e_3 \ e_1 \ e_0$
5	$e_0 e_1 e_3$	$6 e_3 e_1 e_0$
5	$e_0 e_1$	6 e ₁ e ₀
5	e_0	6 e ₀
-	_	6

Whew!

Exercise:

Show the environment tree.

Thank You!

REFERENCES

- Programming Language Pragmatics by Michael L. Scott. 3rd edition.
 Morgan Kaufmann Publishers. (April 2009).
- Lecture Slides of Dr.Malaka Walpola and Dr.Bermudez