

EXAMEN DE CALCUL DES STRUCTURES

Documents Non Autorisé - Durée : 2H

Ex.1 : Déterminer le degré d'hyperstatisme.

Structure	DDH	Justification
F1 = 8 kN M = 10 kN m F2 = 4 kN L = 16 m		
q = 2 kN/m A B C L = 5 m L		
(a)		
(b)		

Ex. 2

Sur la poutre suivante, lorsque P=10KN on mesure le déplacement au point p, $\left(\delta_p\right)_p=12~mm$ et le déplacement au point q, $\left(\delta_q\right)_p=9~mm$.

Si, par la suite, on ajoute une force Q=5kN en q, sans rien mesurer à nouveau.

On demande de trouver $\left(\delta_p\right)_{total}$

Ex. 3

Soit la poutre bi-encastrée de longueur L sollicitée par une charge uniformément répartie q. On fera l'hypothèse d'un calcul plan, et on négligera l'énergie due à l'effort tranchant. L = 5m q = -50kN/m.

Par la méthode des forces, calculer le moment fléchissant et tracer son diagramme.

Ex. 4

On considère une poutre continue (ABCD) de trois travées, de rigidité El constante. Elle supporte une charge répartie de 10kN/m sur la travée AB et CD et une charge concentrée de 40 KN au milieu de la travée BC.

En utilisant la méthode des trois moments, déterminer :

- Les réactions aux appuis.
- Tracer le digramme des moments fléchissant et des efforts tranchants.

