MATH 254 Tutorial 5 (The Completeness Property):

Remark: For almost all of the following problems, you will see two similar questions at the same time. One is constructed by omitting all []s and the other is constructed by replacing the phrases inside []s with the phrases just before []s. The proof of these are completely similar to each other, so most of the time we will only prove one of them.

Problem 1: For $A \subseteq \mathbb{R}$, prove that:

- a) The converse of the completeness property of real numbers is also true. So we have: " $supA \in \mathbb{R}$ [$infA \in \mathbb{R}$] exists if and only if A is nonempty and bounded above [below]."
- b) $maxA \ [minA]$ exists if and only if $supA \ [infA]$ exists and is in A. Moreover in this case, we have $maxA = supA \ [minA = infA]$. In the sense of this question, we can say that the supremum [infimum] is a generalization of the maximum [minimum].
- c) If supA and infA both exist (according to part a, we should have that A is nonempty and bounded), then $infA \leq supA$. Moreover, prove that the equality happens if and only if $A = \{a\}$ for some $a \in \mathbb{R}$.

Problem 2: Assuming that $A, B \subseteq \mathbb{R}$ are nonempty and bounded above [below], prove the followings:

- a) If $A \subseteq B$, then $supA \le supB$ [$infB \le infA$].
- b) $sup(A \cup B)$ $[inf(A \cup B)]$ exists and equals to $max\{supA, supB\}$ $[min\{infA, infB\}]$.
- c) If $A \cap B$ is nonempty, prove that $sup(A \cap B) \leq min\{supA, supB\}$ $[inf(A \cap B) \geq max\{infA, infB\}]$. Give an example for strict inequality.
- d) If we have $a \leq b$ for all $a \in A$ and $b \in B$, then without any boundedness assumption prove that supA and infB both exist and $supA \leq infB$.
 - e) sup(A+B) [inf(A+B)] exists and equals to
 - sup A + sup B [inf A + inf B]. Note that $A + B := \{a + b : a \in A, b \in B\}$.
- f) If all members of A and B are non-negative, then show that sup(A.B) [inf(A.B)] exists and equals to supA.supB [infA.infB]. Note that $A.B := \{a.b : a \in A, b \in B\}$.
- **Problem 3:** Assume that $X \subseteq \mathbb{R}$ is nonempty and $f,g: X \to \mathbb{R}$ are bounded above [bellow] (i.e. their range f(X) and g(X) are bounded above [below]). Defining $supf = sup_x f(x) = sup\{f(x): x \in X\} = supf(X)$ [similar definition for infimum], prove that:
- a) Any restriction of f to a nonempty set $X' \subseteq X$ will decrease [increase] its supremum [infimum]. Compare with part a of problem 2.
- b) If we have $f \leq g$, then we have $supf \leq supg$ $[inff \leq infg]$. Compare with part d of problem 2.
 - c) sup(f+g) [inf(f+g)] exists and
- $sup(f+g) \le supf + supg \ [inff + infg \le inf(f+g)]$. Compare with part e of problem 2 and give an example for strict inequality.
 - d) If we have $f, g \ge 0$, then we have sup(f.g) [inf(f.g)] exists and

 $sup(f.g) \leq supf.supg \ [inff.infg \leq inf(f.g)]$. Compare with part f of problem 2 and give an example for strict inequality.

Problem 4: Let $A, B \subseteq \mathbb{R}$ be nonempty, $g : B \to \mathbb{R}$ be bounded above [bellow] and $f : A \to B$ be arbitrary.

- a) Prove that $sup(g \circ f) \leq supg \ [inf(g \circ f) \geq infg]$. Give an example for strict inequality.
- b) Prove that if f is surjective, then we have the equality. Is the converse of this statement true? Why?

Problem 5: Find supremum and infimum of the set $\{1/n-1/m : m, n \in \mathbb{N}\}$.

Problem 6: Assume that $X,Y\subseteq\mathbb{R}$ are nonempty and $f:X\times Y\to\mathbb{R}$ is bounded (i.e. its range $f(X\times Y)$ is bounded). Define

```
supf = sup_{x,y}f(x,y) = sup\{f(x,y): x \in X, y \in Y\} = supf(X \times Y), sup_xf(x,y) = sup\{f(x,y): x \in X\} = supf(X \times \{y\}), and other similar definitions. Prove that:
```

- a) $supf = sup_{x,y}f(x,y) = sup_x sup_y f(x,y) = sup_y sup_x f(x,y)$ [same equation for infimum].
- b) $sup_x inf_y f(x,y) \le inf_y sup_x f(x,y)$ [$sup_y inf_x f(x,y) \le inf_x sup_y f(x,y)$]. Give an example for strict inequality.

Problem 7: Prove that we can define supA [infA] for $A \subseteq \mathbb{R}$ equivalently by conditions:

- supA [infA] is an upper [lower] bound for A.
- For any real number $x < \sup A$ $[x > \inf A]$, there is an element $a \in A$ such that a > x [a < x].