函数值域怎么玩儿

更多资讯参见《高考调研》 32页——33页《专题研究函数的值域》

函数值域的概念:函数的函数值y的所有取值组成的集合就是函数的值域.

1 求一般函数的值域

1.1 观察法

直接观察函数解析式就能得答案

例1. $(1)y = x^2, y = |x|, y = \sqrt{x}$ 的值域都是 $[0, +\infty)$.

解析 1. 不管x取什么值, x^2 , |x|, \sqrt{x} 一定都大于等于0.

$$(2)y = \begin{cases} 2 & (x > 0), \\ 0 & (x = 0), \text{ , 的值域为 } \underline{\{-2,0,2\}}. \\ -2 & (x < 0) \end{cases}$$

解析 2. 这个分段函数里面只出现了2,0,-2这三个值,一眼就能看答案。如果不能肯定, 画个图出来也行。

$$(3)y = \begin{cases} 1 & (x 为有理数), \\ -1 & (x 为无理数) \end{cases}$$
 的值域为 $\{-1,1\}$.

思考题1

- (1)y = |x 1|的值域为 $[0, +\infty)$;
- $(2)y = (x-1)^2 + 2$ 的值域为 $[2, +\infty)$;
- $(3)y = \frac{1}{x-2} + 1$ 的值域为 $(-\infty, 1) \cup (1, +\infty)$.

解析 3. 此题相当于将函数 $y=\frac{1}{x}$ 的图象向右平移2个单位,再向上平移1个单位.

1.2 配方法

当所求函数为二次函数类(即形如 $F(x)=af^2(x)+bf(x)+c$ 的函数)的值域时,常用配方法

例2. 求下列函数的值域.

$$(1)y = x^2 + 4x - 2, x \in \mathbf{R};$$
 答案: $[-6, +∞)$

解析 4. $y = x^2 + 4x - 2$ 这个式子可以配成顶点式 $y = (x+2)^2 - 6$, 那么它的图象也就出来了:

看图一分析, 马上得到, 当 $x \in \mathbf{R}$ 时, 函数最小值为-6, 没有最大值, 所以值域为 $[-6, +\infty)$.

$$(3)y = x^2 + 4x - 2, x \in [-6, -3];$$
 答案: $[-5, 10]$

$$(4)y = x^2 + 4x - 2, x \in [0, 2].$$
 答案: $[-2, 10]$

思考题2

- (1)函数 $y = x^4 + x^2 + 1$ 的值域是 $[1, +\infty)$; $y = x^4 x^2 + 1$ 的值域是 $[\frac{3}{4}, +\infty)$.
- 解析 5. 对于函数 $\mathbf{y} = \mathbf{x}^4 + \mathbf{x}^2 + \mathbf{1}$ 这个式子可以配成顶点式 $y = (x^2 + \frac{1}{2})^2 + \frac{3}{4}$ (这里自变量x) 的取值范围默认是全体实数范围),但是要注意这里 x^2 始终大于等于 0,也就是说 $x^2 + \frac{1}{2}$ 的最小值为 $\frac{1}{2}$,那么 $(x^2 + \frac{1}{2})^2$ 的最小值为 $\frac{1}{4}$,则 $(x^2 + \frac{1}{2})^2 + \frac{3}{4}$ 的最小值为1,没有最大值,那么这个函数的值域就是 $[1, +\infty)$.
- 对于函数 $\mathbf{y} = \mathbf{x^4} \mathbf{x^2} + \mathbf{1}$ 这个式子和上面的式子的不同之处在于上面的式子是 $+\mathbf{x^2}$, 下面的式子是 $-\mathbf{x^2}$. 下面这个式子可以配成顶点式 $y = (x^2 \frac{1}{2})^2 + \frac{3}{4}$ (这里自变量x的取值范围默认是全体实数范围),虽然这里 x^2 依然大于等于 x^2 0, 但是当 x^2 1 时,

 $(x^2-\frac{1}{2})^2$ 就可以等于 0 了, $(x^2-\frac{1}{2})^2$ 的取值范围就是 $[0,+\infty)$,那么整体的 $(x^2-\frac{1}{2})^2+\frac{3}{4}$ 的取值范围就是 $[\frac{3}{4},+\infty)$,这也就是函数的值域.

(2) 求下列函数的值域.

解析 6. 只要解决了根号下面的那一整个式子的取值范围,相应的函数值 y 的取值范围也确定了.

而 $-x^2+4x-1$ 的顶点式表示就是 $-(x-2)^2+3$, 图象开口向下, 其最大值就是 3, 又因为 $-x^2+4x-1$ 在根号下面, 所以它一定大于等于 0. 规范的解答书写过程如下:

解:
$$y = \sqrt{-x^2 + 4x - 1}$$

$$y = \sqrt{-(x-2)^2 + 3}$$

$$3 : 0 \le -(x-2)^2 + 3 \le 3$$

$$\therefore 0 \leqslant \sqrt{-(x-2)^2 + 3} \leqslant \sqrt{3}$$

 \therefore 该函数的值域为 $[0,\sqrt{3}]$.

②
$$y = 2 - \sqrt{4x - x^2} (0 \le x \le 4);$$
 答案: $[0, 2]$

解析 7. 同样的,先把 $4x-x^2$ 的取值范围找出来,因为这是一个二次函数式,可以直接画出它在 $0 \le x \le 4$ 这段范围对应的图象,接着找出这个整体的取值范围,然后一步步地变到 $2-\sqrt{4x-x^2}$ 的形式去. 规范的解答书写过程如下:

解: $:: 0 \le x \le 4$

$$\therefore 0 \leqslant 4x - x^2 \leqslant 4$$

$$\therefore 0 \leqslant \sqrt{4x - x^2} \leqslant 2$$

$$\therefore -2 \leqslant -\sqrt{4x - x^2} \leqslant 0$$

$$\therefore 0 \leqslant 2 - \sqrt{4x - x^2} \leqslant 2$$

: 该函数的值域为[0,2].

1.3 换元法

就一句话,用 t 去替换掉复杂带根号的那一坨

例3. 求函数
$$y = x - \sqrt{1 - 2x}$$
 的值域. 答案: $(-\infty, \frac{1}{2}]$

解析 8. 这个式子和上面思考题2(2) ② $y=2-\sqrt{4x-x^2}$ 那个式子的一个很大的区别点在于,其中一个式子根号里面外面都有 x,而另一个式子只有根号里面才有 x,所以两种题目的解法是不一样的,大家不要弄混淆了. 规范的解答书写过程如下:

$$\Re: \ \diamondsuit \ t = \sqrt{1 - 2x} (t \ge 0),$$

则
$$t^2 = 1 - 2x$$

$$2x = 1 - t^2$$

$$x = \frac{1 - t^2}{2}$$

$$\therefore y = \frac{1 - t^2}{2} - t$$

$$y = \frac{1}{2} - \frac{1}{2}t^2 - t$$

$$y = -\frac{1}{2}t^2 - t + \frac{1}{2}$$

$$\therefore t \geqslant 0$$

$$\therefore -\frac{1}{2}t^2 - t + \frac{1}{2} \leqslant \frac{1}{2}$$

 $\therefore y \leqslant \frac{1}{2}$

 \therefore 该函数的值域为 $(-\infty,\frac{1}{2}]$

思考题3 求下列函数的值域.

解析 9. 这道题里面, $(x-2)^2$ 就相当于是 $(|x-2|)^2$, 那么这个式子就可以改写为 y= $(|x-2|)^2 + 2|x-2| - 1$. 用 t 去替换 |x-2|, 并且 $t \ge 0$, 就可以得到 $y = t^2 + 2t - 1$, 把这 个二次函数式解出来就行. 规范的解答书写过程如下:

解:
$$y = (x-2)^2 + 2|x-2| - 1$$

$$y = (|x-2|)^2 + 2|x-2| - 1$$

$$y = t^2 + 2t - 1$$

$$y = (t+1)^2 - 2$$

$$::$$
 当 $t \ge 0$ 时,

$$(t+1)^2 - 2 \ge -2$$

$$\therefore y \geqslant -2$$

 \therefore 该函数的值域为 $[-2,+\infty)$.

1.4 分离常数法

将式子改写为一个经过上下左右平移的反比例函数式

解析 10. 规范的解答书写过程如下:

解: $y = \frac{x+1}{x+2}$

$$\therefore y = \frac{x+2-1}{x+2}$$

$$y = 1 - \frac{1}{x+2}$$

$$y = -\frac{1}{x+2} + 1$$

 \therefore 该函数的值域为 $(-\infty,1) \cup (1,+\infty)$.

解析 11. 将这个函数式变形为

$$y = \frac{-\frac{1}{2}(2x+5) + \frac{15}{2}}{2x+5}$$

就能得出答案了.

1.5 判别式法

把函数式转化为关于x的二次方程,通过已知方程有实根,即判定 $\Delta \geqslant 0$,从而求得原 函数的值域.

例5 求函数 $y = \frac{x^2 - 2x + 3}{x^2 + 2x - 3}$ 的值域. 答案: $(-\infty, -1) \cup (\frac{1}{2}, +\infty)$

解析 12. 将这个函数式改写为关于 x 的二次方程, 具体的解答过程如下:

解:
$$y = \frac{x^2 - 2x + 3}{x^2 + 2x - 3}$$
 (其中 $x^2 + 2x - 3 \neq 0$, 也即 $x \neq -1$ 和 3)

$$(x^2 + 2x - 3)y = x^2 - 2x + 3$$

$$\therefore yx^2 + 2yx - 3y = x^2 - 2x + 3$$

$$\therefore (y-1)x^2 + 2(y+1)x - 3(y+1) = 0$$

① 当
$$y=1$$
 时, $x=\frac{3}{2}$ 在定义域内

② 当
$$y \neq 1$$
 时, $\Delta \geqslant 0$,

$$\mathbb{P}\left(2(y+1)\right)^2 - 4(y-1)(-3(y+1)) \geqslant 0$$

$$\therefore y \geqslant \frac{1}{2} \stackrel{\checkmark}{\bowtie} y \leqslant -1$$

 \therefore 该函数的值域为 $(-\infty, -1) \cup (\frac{1}{2}, +\infty)$.

思考题5 求下列函数的值域.

1.6 单调性法

若函数在某个区间内具有单调性,则可借助单调性求值域.常用于对勾函数求值域. **例6** 求函数 $y = x + \frac{2}{x}(0 < x < 1)$ 的值域. 答案: $(3,+\infty)$

解析 13. 这就是一个对勾函数, 我们可以直接画出它的图象来找出值域, 也可以通过严谨 的推导过程来获得答案, 规范的解答书写过程如下:

解: 任取 $x_1, x_2 \in (0,1)$, 设 $x_1 < x_2$

$$f(x_1) - f(x_2) = x_1 + \frac{2}{x_1} - (x_2 + \frac{2}{x_2})$$

$$= x_1 - x_2 + \frac{2}{x_1} - \frac{2}{x_2}$$

$$= (x_1 - x_2) + 2(\frac{1}{x_1} - \frac{1}{x_2})$$

$$= (x_1 - x_2) + 2(\frac{x_2 - x_1}{x_1 x_2})$$

$$= (x_1 - x_2)(1 - \frac{2}{x_1 x_2})$$

$$= \frac{(x_1 - x_2)(x_1 x_2 - 2)}{x_1 x_2}$$

$$=\frac{(x_1-x_2)(x_1x_2-2)}{x_1x_2}$$

$$\therefore x_1 < x_2 \quad \therefore x_1 - x_2 < 0$$

$$\mathbb{X} : 0 < x < 1$$
 $\therefore x_1 x_2 > 0, x_1 x_2 - 2 < 0$

$$f(x_1) - f(x_2) > 0$$

$$\therefore f(x_1) > f(x_2)$$

f(x) 在 f(x) 上为减函数

当
$$x = 1$$
 时, $f(1) = 3$

: 该函数的值域为 $(3,+\infty)$.

5

1.7 数形结合法

常见用于形如f(x) = |g(x)| + |h(x)|的函数,关键就在于去掉"| |"符号,x 应当如 何取值.

例7 求函数 y = |x+3| + |x-5| 的值域. 答案: $[8, +\infty)$

解析 14. 想要去掉式子中的"|"符号,就得先搞清楚,当 x 取何值时,去掉绝对值符 号要变号,之后就以这些刚好要变号的值作为分界点,对不同x取值情况进行讨论,就能 写出一个分段函数了,写出来之后,把分段函数的图象画出来就成.具体解答过程如下:

$$\therefore y = \begin{cases} -2x + 2 & (x < -3) \\ 8 & (-3 \le x < 5) \\ 2x - 2 & (x \ge 5) \end{cases}$$

: 该函数的值域为 $[8,+\infty)$.

思考题7 求函数 y = |x-2| - |x+1| 的值域.

解析 15. 该函数式改写为分段函数为:
$$y=\left\{ egin{array}{ll} 3 & (x<-1) \\ -2x+1 & (-1\leqslant x<2) \\ -3 & (x\geqslant 2) \end{array} \right.$$

之后画出分段函数图象来就能判断出函数值域, 当然你也可以牢记下面关于求分段函数的 值域的那一句话.

求分段函数的值域 2

分段函数的值域为每一区间函数的值域的并集

求复合函数的值域 3

复合函数的值域即为外层函数的值域