AMENDMENT TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application.

1. (Currently amended) A compound of the formula L

(I)
$$P_{N}^{(1)} = P_{N}^{(1)} = P_{N}^{(2)} = P_{N}^{(2)$$

wherein

- R⁰ is 1) a monocyclic or bicyclic 6- to 14-membered aryl, wherein the aryl is mono-, di- or trisubstituted independently of one another by R8.
 - 2) a monocyclic or bicyclic 4-to 15-membered heterocyclyl selected from the group consisting of benzimicazyly, 1-3-benzediazolyl, benzediazolyl, benzediazolyl, benzediazolyl, benzediazolyl, benzediazolyl, indizediyl, isochromanyl, isoindelyl, isochromanyl, isoindelyl, isochromanyl, isoindelyl, isochromanyl, principly, principly, pyridolyl, pyridoimidazolyl, pyridopyridinyl, pyridopyridinyl, pyridopyridinyl, quinoxalinyl, quinoxalinyl, quinoxalinyl, quinoxalinyl, quinoxalinyl and 1-4.5-6 tetrahydro-pyridazinyl, wherein said heterocyclylwhich is unsubstituted or mono-, dior trisubstituted independently of one another by RS, or
 - 3) a monocyclic or bicyclic 4-to 15-membered heterocyclyl, containing one, two, three or four heterostome-chosen from nitrogen, suffur or exygen, isoxazolyl, which wherein said heterocyclyl is unsubstituted or mono, di- or trisubstituted independently of one another by R8, and is additionally substituted by a monocyclic or bicyclic 4- to 15-membered heterocyclyl, containing one, two, three or four heteroatoms chosen from nitrogen, sulfur or exygen-dinicnyl, wherein the heterocyclyl-thicnyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8:

R8 is 1) halogen.

2) -NO₂,

3) -CN.

-C(O)-NH₂.

OH.

6) -NH₂,

7) -O-CF:

- 8) a monocyclic or bicyclic 6- to 14-membered aryl, wherein the aryl is mono-, di- or trisubstituted independently of one another by halogen or -O-(C_1 - C_8)-alkyl,
- -(C₁-C₈)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen. NH₂, -OH or methoxy,
- 10) —O-(C₁-C₈)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, NH₂, -OH or methoxy.
- 11) -SO2-CH3 or
- 12) -SO2-CF3.

provided that when R^0 is a monocyclic or bicyclic 6- to 14-membered aryl, then R8 is at least one-of-the-substitutent-of-the-aryl-is-halogen, -C(O)-NH2 or -O-(C_1 - C_8)-alkyl;

the substructure

another by halogen, ·NH2 or -OH;

in formula I is a 4 to 8-monibered saturated, partially unsaturated or aromatic cyclic group containing zero, 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen pyridyl, and is unsubstituted or substituted 1, 2, 3, 4, 5 or 6 times by R3, or substituted 1 or 2 times by=O_T provided that said cyclic group is not a phenyl residue;

Q is a direct bond, $-(C_0-C_2)$ -alkylene-C(O)-NR 10 -, $-NR^{10}$ -C(O)-, $-NR^{10}$ -, $-NR^{10}$ -C(O)-, $-SO_2$ -, $-(C_1-C_6)$ -alkylene, $-(CH_2)_m$ -NR 10 -C(O)-NR 10 -C(O)-NR 10 -C(O)- $C(H_2)_n$ -, $-(CH_2)_m$ -NR 10 -C(O)- $C(H_2)_n$ -, $-(CH_2)_m$ -SO $_2$ -NR 10 -C(O)- $C(H_2)_n$ -, $-(CH_2)_m$ -NR 10 -SO $_2$ -NR 10 - $C(H_2)_n$ -, $-(CH_2)_m$ -NR 10 -SO $_2$ -NR 10 - $C(H_2)_n$ -, $-(CH_2)_m$ -NR 10 -SO $_2$ -NR 10 - $C(H_2)_n$ -, $-(CH_2)_m$ -NR 10 -SO $_2$ -NR 10 - $C(H_2)_n$ -, $-(CH_2)_m$ -NR 10 -C(O)-NR 10 - $C(C_2$ -C₃)-alkylene-O- $(C_0$ -C₃)-alkylene-S(O)-, $-(C_2$ -C₃)-alkylene-S(O)-, $-(C_2$ -C₃)-alkylene-S(O)-NH 10 -C(O)-O- $(CH_2)_n$ -, $-(C_2$ -C₃)-alkylene-S(O)-2-NH- (R^{10}) -, $-(C_2$ -C₃)-alkylene-N(O)-O- $(CH_2)_m$ -, wherein $-(CH_2)_m$ - are alkylene that is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, -NH $_2$ or -OH, or - $(C_3$ -C₆)-cv-loalkylene-, thawwhich is unsubstituted or mono-, di- or trisubstituted independently of one

- R¹ is hydrogen, -(C₁-C₄)-alkyl, wherein the alkyl is unsubstituted or substituted one to three times by R13, -(C₁-C₃)-alkylene-C(O)-NH-R⁰, -(C₁-C₃)-alkylene-C(O)-O-R¹⁵, a monocyclic or bicyclic 6- to 14-membered aryl, wherein the aryl is mono-, di- or trisubstituted independently of one another by R8: a monocyclic or bicyclic 4- to 15-membered heterocyclyl, containing one, two, three or four heteroatoms chosen from nitrogen, sulfur or oxygen, -(C₁-C₃)-perfluoroalkylene, -(C₁-C₃)-alkylene-S(O)-(C₁-C₄)-alkyl, -(C₁-C₃)-alkylene-S(O)₂-N(R⁴)-R⁵', -(C₁-C₃)-alkylene-S(O)₂-N(R⁴)-R⁵', -(C₁-C₃)-alkylene-O(C₁-C₄)-alkyl, or -(C₁-C₃)-alkylene-S(O)₂-N(R⁴)-R⁵', -(C₁-C₃)-alkylene-O(C₁-C₄)-alkyl, or -(C₁-C₃)-alkylene-S(O)₂-N(R⁴)-R⁵', -(C₁-C₃)-alkylene-bett, wherein the hot is a 3-to 7-membered cyclic residue, containing up to 1, 2, 3 or 4-heteroatoms chosen from nitrogen, sulfur or oxygen, and is unsubstituted or mono-, di- or trisubstituted independently of one another by R14.
- $R^{4'}$ and $R^{5'}$ are independent of one another are identical or different and are hydrogen atom or (C_1-C_4) -alkyl_{t_2}
- R2 is a direct bond or -(C1-C4)-alkylene, or
- R⁴-and R³ together with the atoms to which they are bonded form a

 6-to 8-membered cyclic group, containing 1, 2, 3 or 4-heteroatoms chosen from
 mitrogen, sulfur or oxygen, wherein said cyclic group is unsubstituted or mono , di-or
 trivubstituted independently of one another by R14, or
- R⁴-N R²-V form a 4- to 7 membered cyclic group, containing 1, 2, 3 or 4 heteroatoms chosen from nitrogen, sulfur or oxygen, and wherein said cyclic group is unsubstituted or mono - di- or trisubstituted independently of one another by R14;
- R14 is balogen, -OH, =O, -(C₁-C₈)-alkyl, -(C₁-C₄)-alkoxy, -NO₂, -C(O)-OH, -CN, -NH₂,
 -C(O)-O+(C₁-C₄)-alkyl, -(C₀-C₈)-alkyl-SO₂-(C₁-C₄)-alkyl,
 -(C₀-C₈)-alkyl-SO₂-(C₁-C₃)-perfluoroalkyl, -(C₀-C₈)-alkyl-SO₂-N(R¹⁸)-R²¹,
 -C(O)-NH-(C₁-C₈)-alkyl, -C(O)-N-[(C₁-C₈)-alkyl]₂, -NR¹⁸-C(O)-NH-(C₁-C₈)-alkyl,
 -C(O)-NH₂, -S-R¹⁸, or -NR¹⁸-C(O)-NH-[(C₁-C₈)-alkyl]₂,
 wherein R¹⁸ and R²¹ are independently from each other hydrogen, -(C₁-C₃)-perfluoroalkyl
 or -(C₁-C₆)-alkyl;

- V is 1) a 3-to 7 membered cyclic residue, containing 1, 2, 3 or 4 heteroatoms-chosen from nitrogen, sulfur or oxygen, wherein the cyclic residue is unsubstituted or mono, dior trisubstituted independently of one another by R14.
 - a 6- to14-membered aryl, wherein the aryl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14. or
 - 3) a monocyclic or bicyclic 4 to 15-membered heterocyclylpiperidinyl, pyridyl, imidazolyl, isothiazolyl, oxazolyl, pyrrolidinyl, tetrazolyl, or thiazolyl, each of which wherein the heterocyclyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14:
- $$\begin{split} & \text{G is} & \text{a direct bond, } \cdot (\text{CH}_2)_m \cdot \text{NR}^{10} \cdot \text{SO}_2 \cdot \text{NR}^{10} \cdot (\text{CH}_2)_n \cdot \cdot \cdot (\text{CH}_2)_m \cdot \text{CH}(\text{OH}) \cdot (\text{CH}_2)_n \cdot \cdot \cdot (\text{CH}_2)_m \cdot \\ & \cdot (\text{CH}_2)_m \cdot \text{O} \cdot (\text{CH}_2)_m \cdot \cdot (\text{CH}_2)_m \cdot (\text{CH}_2)_n \cdot \cdot \cdot (\text{CH}_2)_n \cdot \cdot \\ & \cdot (\text{CH}_2)_m \cdot \text{NR}^{10} \cdot \text{C(O)} \cdot \text{NR}^{10} \cdot (\text{CH}_2)_n \cdot \cdot \cdot (\text{CH}_2)_m \cdot \text{NR}^{10} \cdot \text{C(O)} \cdot (\text{CH}_2)_n \cdot \\ & \cdot (\text{CH}_2)_m \cdot \text{NR}^{10} \cdot \text{C(O)} \cdot (\text{CH}_2)_n \cdot \cdot \cdot (\text{CH}_2)_n \cdot \cdot \cdot (\text{CH}_2)_m \cdot \text{SO}_2 \cdot \text{NR}^{10} \cdot (\text{CH}_2)_n \cdot \\ & \cdot (\text{CH}_2)_m \cdot \text{NR}^{10} \cdot \text{SO}_2 \cdot (\text{CH}_2)_n \cdot \cdot \cdot (\text{CH}_2)_m \cdot \text{NR}^{10} \cdot \cdot (\text{CH}_2)_m \cdot \text{O} \cdot (\text{CH}_2)_n \cdot \\ & \cdot (\text{CH}_2)_m \cdot \text{NR}^{10} \cdot \text{C(O)} \cdot \text{O} \cdot (\text{CH}_2)_n \cdot \cdot (\text{CH}_2)_m \cdot \text{O} \cdot (\text{CH}_2)_m \cdot \\ & \cdot (\text{CH}_2)_m \cdot \text{NR}^{10} \cdot \text{C(O)} \cdot \text{O} \cdot (\text{CH}_2)_n \cdot \cdot \end{aligned}$$
- n and m are independently of one another identical or different and are the integers zero. 1, 2, 3, 4, 5 or 6;
- M is 1) hydrogen,
 - -(C₁-C₈)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14.
 - -C(O)-N(R11)-R12.
 - 4) (CH₂)_m-NR¹⁰
 - 5) a 6- to 14-membered aryl, wherein the aryl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left($
 - 6) a monocyclic or bicyclic 4 to 15 membered heterocyclyl₁-piperidinyl, pyridyl, imidazolyl, isothiazolyl, oxazolyl, pyrrolidinyl, tetrazolyl, or thiazolyl, each of which wherein the heterocyclyl-is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
 - 7) $-(C_3 \cdot C_8)$ -cycloalkyl, wherein the cycloalkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14-or

8) a 3-to 7-membered cyclic residue, containing 1, 2, 3 or 4-haterontoms chosen from nutrogen, sulfur or oxygen, wherein said cyclic residue is unsubstituted or mone , di-or trisubstituted independently of one another by R14;

- R3 is 1) hydrogen,
 - halogen,
 - -(C₁-C₄)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13.
 - 4) -(C1-C3)-perfluoroalkyl,
 - phenyl, wherein the phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
 - 6) -(C₀-C₄)-alkylene-O-R19,
 - 7) -NO₂,
 - 8) -CN.
 - SO_s-R¹¹, wherein s is 1 or 2,
 - SO₁-N(R¹¹)-R¹², wherein t is 1 or 2,
 - 11) -(C₀-C₄)-alkylene-C(0)-R¹¹,
 - -(C₀-C₄)-alkylene-C(O)-O-R¹¹
 - 13) -(C₀-C₄)-alkylene-C(O)-N(R¹¹)-R¹²,
 - 14) -(C₀-C₄)-alkylene-N(R¹¹)-R¹²,
 - 15) -NR10.SO2-R10,
 - 16) -S-R¹⁰,
 - $(C_0-C_2) alkylene-C(O)-O-(C_2-C_4)-alkylene-O-C(O)-(C_1-C_4)-alkyl,$
 - 18) -C(O)-O-C(R15, R16)-O-C(O)-R17,
 - $-(\mathrm{C}_0\text{-}\mathrm{C}_2) alkylene\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}(\mathrm{C}_2\text{-}\mathrm{C}_4)\text{-}alkylene\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}(\mathrm{C}_1\text{-}\mathrm{C}_6)\text{-}alkylene\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}(\mathrm{C}_1\text{-}\mathrm{C}_6)\text{-}alkylene\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}(\mathrm{C}_1\text{-}\mathrm{C}_6)\text{-}alkylene\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}(\mathrm{C}_1\text{-}\mathrm{C}_6)\text{-}alkylene\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}(\mathrm{C}_1\text{-}\mathrm{C}_6)\text{-}alkylene\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}(\mathrm{C}_1\text{-}\mathrm{C}_6)\text{-}alkylene\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}(\mathrm{C}_1\text{-}\mathrm{C}_6)\text{-}alkylene\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}(\mathrm{C}_1\text{-}\mathrm{C}_6)\text{-}alkylene\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}(\mathrm{C}_1\text{-}\mathrm{C}_6)\text{-}alkylene\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}(\mathrm{C}_1\text{-}\mathrm{C}_6)\text{-}alkylene\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}(\mathrm{C}_1\text{-}\mathrm{C}_6)\text{-}alkylene\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}(\mathrm{C}_1\text{-}\mathrm{C}_6)\text{-}alkylene\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}(\mathrm{C}_1\text{-}\mathrm{C}_6)\text{-}alkylene\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}(\mathrm{C}_1\text{-}\mathrm{C}_6)\text{-}alkylene\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}(\mathrm{C}_1\text{-}\mathrm{C}_6)\text{-}alkylene\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}\text{-}\mathrm{O}\text{-}\mathrm{C}(\mathrm{O})\text{-}\mathrm{O}$
 - 20) -C(O)-O-C(R15, R16)-O-C(O)-O-R17,
 - -(C₀-C₄)-alkylene-(C₆-C₁₄)-aryl, wherein aryl is mono-, di- or trisubstituted independently of one another by R13,
 - 22) (C₀ C₄) alkylene (C₄ C₁₅) heterocyclyl, wherein the heterocyclyl is unsubstituted or mono, di- or trisubstituted independently of one another by R13
 - -(C₀-C₄)-alkylene-(C₃-C₈)-cycloalkyl, wherein the cycloalkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13.
 - (C_G C₄) alkylene het, wherein the het is unsubstituted or mono , di or trisubstituted independently of one another by R13;

- 25) -(C₀-C₄)-alkylene-O-CH₂-(C₁-C₃)-perfluoroalkylene-CH₂-O-(C₀-C₄)-alkyl.
- 26) -SO_w-N(R¹¹)-R¹³, wherein w is 1 or 2,
- 27) -(C₀-C₄)-alkylene-C(O)-N(R¹¹)-R¹³,
- -28) -(C0-C4)-alkylene-N(R11)-R13, or
- 29) a residue selected from the group consisting of

wherein Me is methyl;

R19 is a) hydrogen,

b) -(C_1 - C_4)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by Ri3halogen, -NO₂, -CN, =Q, -OH, -CF₃, -C(O)-OR¹⁰, -C(O)-N(R¹⁰)-R²⁰, -N(R¹⁰)-R²⁰, -(C₀-C₃)-alkylene-O-R¹⁰, -Si-(CH₂)₃, -N(R¹⁰)-Si(O)₁₂-R¹⁰, wherein u is 1 or 2, -SC(O)₂-N(R¹⁰)-R²⁰, wherein u is 1 or 2, -S(O)₂-N(R¹⁰)-R²⁰, wherein u is 1 or 2, -C(O)-R¹⁰, -(C₁-C₃)-alkyl, -(C₁-C₃)-alkyv, phenyloxy-, -O-CF₃, -(C₀-C₄)-alkyl-C(O)-O-C(R¹⁵, R¹⁰)-O-C(O)-R¹⁷, -(C₁-C₄)-alkoxy-phenyl, -(C₀-C₄)-alkyl-C(O)-O-C(R¹⁵, R¹⁶)-O-C(O)-O-R¹⁷, -(C₁-C₄)-alkoxy-phenyl, -(C₁-C₃)-perfluoroalkyl, -O-R¹⁵, -NH-C(O)-NH-R¹⁰, -NH-C(O)-O-R¹⁰ or a residue selected from the group consisting of

d) -CHF2=

or two OR19 residues and adjacent atoms through which they are attached may form together a 5-or 6-membered ring, that is unsubstituted or substituted one, two, three or four times by R13:

R11 and R12 are independently of one another identical or different and are

- 1) hydrogen,
- -(C₁-C₆)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- -(C₀-C₆)-alkyl-(C₃-C₈)-cycloalkyl,
- -SO₁-R¹⁰, wherein t is 1 or 2,
- -(C₀-C₆)-alkyl-(C₆-C₁₄)-aryl, wherein the alkyl and aryl independently from one another are unsubstituted or mono-, di- or trisubstituted by R13,
- 6) -(C1-C3)-perfluoroalkyl, or
- 7) -O_R17_ox
- 8) $(C_0 \cdot C_6)$ alkyl $(C_4 \cdot C_{15})$ heterocyclyl, wherein the alkyl and heterocyclyl independently from one another are unsubstituted or mono., di- or trisubstituted by R13, or

R11 and R12 together with the nitrogen crom to which they are bonded form a 4- to 7-membered monocyclic heterocyclic ring which in addition to the nitrogen atom contain one or two identical or different ring heteroatoms chosen from exygen, sulfur and nitrogen; wherein said heterocyclic ring is unsubstituted or mono-, di- or trisubstituted independently of one another by R13:

$$\label{eq:R13} \begin{split} \text{R13 is} & \text{ halogen, -NO}_2, \text{-CN, =O, -OH, -CF}_3, \text{-C(O)-O-R}_{10}, \text{-C(O)-N}_{\text{R}}_{10}, \text{-R20}, \\ & \cdot \text{N}(\text{R}^{10}) \cdot \text{R}^{20}, \text{-(C}_3 \cdot \text{C}_8) \cdot \text{cycloalkyl, -(C}_0 \cdot \text{C}_3) \cdot \text{alkylene-O-R}_{10}, \text{-Si-(CH}_3)_3, \\ & \cdot \text{N}(\text{R}^{10}) \cdot \text{S(O)}_u \cdot \text{R}^{10}, \text{wherein u is 1 or 2, -S-R}_{10}, \text{-SO}_{r}_{\text{R}}_{10}, \text{wherein r is 1 or 2, -S(O)}_{y}. \end{split}$$

 R^{10} and R^{20} are independently of one another hydrogen, -(C₁-C₆)-alkyl, -(C₀-C₄)-alkyl-O-(C₁-C₄)-akyl or -(C₁-C₃)-perfluoroalkyl;

R15 and R16 are independently of one another hydrogen, -(C₁-C₆)-alkyl, or together with the carbon atom to which they are bonded form a 3- to 6 membered carbocyclic ring which is unsubstituted or substituted one to three times by R¹⁰ and

 $R17 is -(C_1-C_6)-alkyl, -(C_1-C_6)-alkyl-OH, -(C_1-C_6)-alkyl-O-(C_1-C_6)-alkyl, -(C_3-C_8)-cycloalkyl, \\ -(C_1-C_6)-alkyl-O-(C_1-C_8)-alkyl-(C_3-C_8)-cycloalkyl, -(C_1-C_6)-alkyl-(C_3-C_8)-cycloalkyl, \\ wherein the cycloalkyl is unsubstituted or substituted one, two or three times by <math>-OH$, $-O-(C_1-C_4)-alkyl \text{ or } R^{10}$:

or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof.

2. (Currently amended) The compound according to claim 1, wherein

- R⁰ as 1) is phenyl, naphthyl, biphenylyl, anthryl or fluorenyl, each of which is meno-, di- or trisubstituted independently of one another by R8, or
 - 3) is acridinyl, azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolył, benzofuranył, benzothiofuranył, benzothiophenył, benzoxazolył, benzibiazolył, benztriazolył, benztetrazolył, benzisoxazolył, benzisothiazolył, carbazolył, 4aH carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 4.5dihydrooxa zolinyl, dioxazolyl, dioxazinyl, 1,3 dioxolanyl, 1,3 dioxolanyl, 6H 1,5,2 dithiazinyl, dihydrofuro[2,3-b] tetrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl-imidazolyl. HL indazolyl, indolinyl, indolizinyl, indolyl, 3H indolyl, isoberizofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoguinolinyl, isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2isoxazofinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisocuinolinyl, oxadiazolyl, 1,2,3 oxadiazolyl, 1,2,4 oxadiazolyl, 1,2,5 oxadiazolyl, 1,3,4 oxadiazolyl, 1,2, oxa thiepanyl, 1,2 oxathiolanyl, 1,4 oxazepanyl, 1,2 oxazinyl, 1,3 oxazinyl, 1,4 oxazinyl, exazelidinyl, exazelinyl, exazelyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyrazyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H pyrrolyl, pyrrolyl, quinazolinyl, quinofinyl, 4H quinofizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 1.4.5.6 tetrahydro pyridazinyl, tetrahydropyridinyl, tetrahydrothionhenyl, tetrazinyl, tetrazolyl, 6H 1,2,5 thiadiazinyl, 1,2,3 thiadiazolyl, 1,2,4 thiadiazolyl, 1,2,5 thiadiazolyl, 1.3.4 thiadiazolyl, thianthrenyl, 1.2 thiazinyl, 1.3 thiazinyl, 1.4 thiazinyl, 1.3 thiazolyl, thiazolyl, thiazolidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienooxazolyl, thienormidazolyl, thietanyl, thiomorpholinyl, thiophenolyl, thiophenyl, thiopyranyl, 1,2,3 triazinyl, 1,2.4 triazinyl, 1,3,5 triazinyl, 1,2,3 triazolyl, 1,2.4 triazolyl, 1,2,5 triazolyl, 1,3,4 triazelyl or wanthenyl, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, and is additionally substituted by aeridinylazabenzimidazolył, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolył, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzovazolyl, benzthiazolyl, benztriazolyl, benztetrazolył, benzisoxazolył, benzisothiazolył, carbazolył, 4aH-carbazolył, carbolinył, eliromenyl, chromenyl, cinnolinyl, decabydrochinolinyl, 4.5 dibydrooxa zolinyl, dioxazolyi, dioxazinyl, 1.3 dioxolanyl, 1,3 dioxolenyl, 6H 1,5.2 dithiazinyl, dihydrofuro[2,3-b]tetrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 114 indazolyl, indolinyl, indolizinyl, indolyl, 3H indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2 isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octahydroisogumolinyl, oxadiazolyl, 1,2,3 oxadiazolyl, 1,2,4 oxadiazolyl, 1,2,5 oxadiazolyl,

1.3.4 oxazinyl, 1.2 oxa thiepanyl, 1.2 oxathiolanyl, 1.4 oxazepanyl, 1.2 oxazinyl, 1.3 oxazinyl, 1.4 oxazinyl, oxazolidinyl, oxazolinyl, oxazoliyl, phenanthrolinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenothiazinyl, phenothiazinyl, phenothiazinyl, piperazinyl, piperazinyl, piperazinyl, piperazinyl, pyrazolyl, pyridothiazolyl, pyridothiazolyl, pyridyl, pyridyl,

the substructure D is azetidine, azetine, azetane, azotane 2 one, eyelobutyl, cyclooctane, eyelooctane, eyelo

R¹ as a monocyclic or bycyclic 6- to 14-membered ary is phenyl, naphthyl, biphenylyl, anthryl or fluorenyl, each of which is mono-, di- or trisubstituted independently of one another by R8-er

(C₀-C₃) alkylene het, then het is azepine, azetidine, aziridine, azirine. 1,4 diazapane, 1,2diazepine, 1,3 diazepine, 1,4 diazepine, diaziridine, diazirine, dioxazole, dioxazine, dioxazine.

1.3 dioxolene, 1,3 dioxolane, furan, imidazoline, imidazoline, imidazoline, isothiazole; instituzolidine, isothiazoline, isoxazole, isoxazole, isoxazoline, isoxazoline, isoxazoline, isoxazole, isoxazole, isoxazole, isoxazole, isoxazole, isoxazole, isoxazole, isoxazole, isoxazine, 1,4 oxazine, 1,4 oxazine, oxazole, oxaziridine, oxirane, piperazine, piperidine, pyrazole, pyrazole, pyrazoline, pyrazolidine, pyriolidine, tetrazole, thiazole, thiazole, thiazole, 1,3 thiazole, 1,3 thiazole, 1,4 thiazole, 1,4 thiazole, thiazole

R[‡] and R3 with the atoms to which they are bonded form form azocane, azocane 2 one, 1.2-diazepine, 1.3 diazepine, 1.4 diazepine, [1.4]diazocane, [1.2]diazocan 3 one, [1.5]diazocane, 2 one, dioxazine, [1.4]dioxocane, dioxole, ketopiperazine, morpholine, 1.2 oxazine, 1.3 oxazine, [1.4] diazocane, oxocan 3 one, piperazine, piperidine, pyran, pyrazine, pyrindazine, pyrimdne or 5,6,7,8 tetrahydro 1H azocin 2 one, each of which is unsubstituted or mono, di-or trisubstituted independently of one another by R14, or

R[‡] N. R² V form azepine, azetidine, dioxazole, dioxazine, 1,2 diazepine, 1,3 diazepine, 1,1 diazepine, imidazele, imidazeline, imidazelidine, isothiazele, isothiazelidine, isothiazeline, isoxazole, isoxazole, isoxazole, piperazine, tetrazole, thiazole, each of which is unsubstituted or mono, di or trisubstituted independently of one another by R.14.

V is 2) phenyl, naphthyl, biphenylyl, anthryl or fluorenyl, each of which is mono-, di- or trisubstituted independently of one another by R14, or 3) acridinyl. Sarab bicyclo[3,2:1]oct 3 yl. azaindole (—111 pyrrotopyridine), azabenzimidazolyl, azaspirodecanyl, azeipinyl, azeitdinyl, azicidinyl, benzimidazolyl, benzimidazolyl, benzimidazolyl, benzimidazolyl, benzimidazolyl, benzimizolyl, benzimidazolyl, benzimizolyl, benzimizolyl, benzimizolyl, derabinyl, darbazolyl, carbazolyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, ldiazepane. 4.5 dihydrocas zolinyl, dioxazolyl, dioxazolyl, dioxazolyl, benzimiyl, furunyl, furunyl, furunyl, furunyl, furunyl, imidazolinyl, imidazolinyl, imidazolyl, indolinyl, indoliny

indelyl, 3H indelyl, isobenzofuranyl, isochromanyl, isoindazelyl, isoindelinyl, isoindelyl, isoquinolinyl, isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2 isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octubydroisoquinolinyl, oxadiazolyl, 1,2,3 oxadiazolyl, 1,2,4 oxadiazolyl, 1,2,5 oxadiazolyl, 1.3.4 oxadiazolyl, 1.2 oxa thiepanyl, 1.2 oxathiolanyl, 1.4 oxazenanyl, 1.2oxazinyl, 1,3 oxazinyl, 1,4 oxazinyl, oxazolidinyl, oxazolinyl, oxazolyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyrazinyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl. 4H quinolizinyl, quinoxalinyl, quinuclidinyl, tetrabydrofuranyl, tetrahydroisochinolinyl, tetrahydrochinolinyl, 1,4,5,6 tetrahydro pyridazinyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H 1.2.5 thiadiazinyl. 1,2.3 thindiazolyl, 1,2,4 thiadiazolyl, 1,2.5 thiadiazolyl, 1,3,4 thiadiazolyl, thanthrenyl, 1,2 thiazinyl, 1,3 thiazinyl, 1,4 thiazinyl, 1,3 thiazolyl, or thiazolyl, thiazolidinyl, thiazolinyl, thienyl, thietanyl, thienothiazolyl, thienoxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, 126 thiomorpholinyl, thiophenyl, thiopyranyl, 1,2,3 triazinyl, 1,2,3 triazolyl, 1,2,3 triazolyl, 1,2,4 triazolyl, 1,2,5 triazolyl, 1,3,4 triazolyl and xunthenyl, each of which is mono-, di- or trisubstituted independently of one another by R14;

M is 1) hydrogen,

 (C₁-C₈) alkyl, wherein the alkyl is unsubstituted or mono , di or trisubstituted independently of one another by R14.

3) C(O) N(R11) R12.

 (C₆-C₁₄) and, wherein the aryl is as defined above and wherein aryl is unsubstituted or more, di- or trisubstituted independently of one another by R14.

(C₄-C₁₅) heterocyclyl, wherein the heterocyclyl is as defined above and is
unsubstituted or mono, di-or trisubstituted independently of one another by R14, or
 (C₂-C₃) cycloalkyl, wherein the cycloalkyl is unsubstituted or mono, di-or
trisubstituted independently of one another by R14;

two OR19 residues and adjacent atoms through which they are attached may form together a 1,3dioxole ring or a 2.3 dibydro [1.4]dioxine ring, each of which is substituted one, two, three or four times by R13;

- R11 and R12 together with the nitrogen atom to which they are bonded may form azepine, azetidine, dioxazole, dioxazine, 1,4 diazepine, 1,2 diazepine, 1,3 diazepine, 1,4 diazepine, imidazole, imidazole, imidazole, isothiazolidine, isothiazolidine, isothiazolidine, isothiazolidine, isothiazolidine, isotazolidine, zisoxazolime, ketopiperazine, morpholine, [1,4]oxazepane, oxazole, piperazine, piperazine, pyrazole, pyrazole, pyrazolidine, pyridine, tetrazole, thiazole, thiazole, thiazolidine, thiazolidine, thiazolime, thiazolidine, thiazolidine, action of which is unsubstituted or mono, di- or trisubstituted independently of one another by R13;
- R15 and R16 are independently of one another hydrogen, or -(C₁-C₆)-alkyl, or together with the carbon atom to which they are bonded form cyclopropyl, cyclobutyl, cyclopentyl or cyclobexyl, wherein each ring is unsubstituted or substituted one to three times by R¹⁰; and
- $R17 \ is \ -(C_1-C_6)-alkyl, -(C_1-C_6)-alkyl-OH, -(C_1-C_6)-alkyl-O-(C_1-C_6)-alkyl, \\ -(C_1-C_6)-alkyl-O-(C_1-C_8)-alkyl-(C_3-C_8)-cycloalkyl, -(C_0-C_6)-alkyl-(C_3-C_8)-cycloalkyl, \\ wherein the cycloalkyl is unsubstituted or substituted one, two or three times by <math>-OH$, $-O-(C_1-C_4)-alkyl \ or \ R^{10},$

or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof.

- 3. (Currently amended) The compound according to claim 1, wherein
- R⁰ as 1) is phenyl, naphthyl, biphenyl, anthryl or fluorenyl, each of which is mono-, di- or trisubstituted independently of one another by R8, or
 - 3) is azabenzimidazolył, benzimidazolył, 1,3 benzodioxolył, benzofaranył, benzodiazolył, benzodiazolył, benzodiazolył, benzodiazolył, benzodiazolył, benzodiazolył, inidazolył, isochronanył, isoindolył, isochronanył, isoindolył, isocarolył, pridazolył, portediazolył, peridazolył, pyridazinył, pyridolył, pyridopyridinył, pyridopyridinył, pyridolył, 2 pyridyl, 3 pyridyl, 4 pyridyl, pyridolinył, pyridolył, 2 pyridyl, 3 pyridyl, quinolinył, quinazolinył, quinoxalinył, thiazolył, 2-thienył or 3 thienył.
 - each of which is additionally substituted by acridinyl, azabenzimidazolyl, azaspirodecanyl, azepinyl, azetidinyl, aziridinyl, benzimidazolyl, benzofuranyl, benzothiophenyl, benzotazolyl, benzimizolyl, benzimizolyl, benzimizolyl, benzimizolyl, benzimizolyl, carbazolyl, denzimizolyl, carbazolyl, decanyl, chromanyl, chromanyl, chromanyl, chromanyl, chromanyl, chromanyl, chromanyl, chromanyl, chromanyl, decanyl, decan

dioxolenyl, 6H 1.5,2 dithiazinyl, dihydrofuro[2,3 b] tetrahydrofuranyl, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H indazolyl, indolinyl, indolizinyl, indolyl, 3H indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isocuinolinyl (benzimidazolyl), isothiazolyl, isothiazolidinyl, isothiazolinyl, isoxazolyl, isoxazolinyl, isoxazolidinyl, 2 isoxazolinyl, ketopiperazinyl, morpholinyl, naphthyridinyl, octabydroisoquinolinyl, oxadiazolyl, 1.2,3 oxadiazolyl, 1,2.4 oxadiazolyl, 1,2.5 oxadiazolyl, 1.3.4 oxadiazolyl, 1.2 oxa thiepanyl, 1.2 oxathiolanyl, 1.4 oxazepanyl, 1.2 oxazinyl, 1.3 oxazinyi. 1,4 oxazinyi, oxazolidinyi, oxazolinyi, oxazolyi, phenanthridinyi, phenanthrolinyi, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purinyl, pyrazyly, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinył, pyridoxazolył, pyridoimidazolył, pyridothiazolył, pyridył, pyrimidinył, pyrrolidinyl, pyrrolidinonyl, pyrrolinyl, 2H pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisowhinolinyl, tetrahydrochinolinyl, 1,4,5,6 tetrahydro pyridazinyl, tetrahydropyridinyl, tetrahydrothiophenyl, tetrazinyl, tetrazolyl, 6H-1,2.5 thiadiazinyl, 1,2.3 thiadiazolyl, 1,2.4 thiadiazolyl, 1,2,5 thiadiazolyl, 1,3,4 thiadiazolyl, thianthrenyl, 1,2 thiazinyl, 1,3 thiazinyl, 1-4 thinzinyl, 1-3 thinzolyl, thinzolyl, thinzolidinyl, thinzolinyl, thieraryl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thietanyl, thiomorpholinyl, thiophenyl, thiopyranyl, 1,2,3 triazinyl, 1,2,3 triazolyl, 1,2,3 triazolyl, 1,2,4 triazolyl, 1,2,5 triazolyl, 1,3,4 triazolyl and xanthenyl, each of which wherein the thienyl is unsubstituted or mono-, dior trisubstituted independently of one another by R8;

- R8 as 1) is fluorine, chlorine or bromine, provided R8 is at least one halogen, -C(O)-NH₂ or --O-(C₁-C₈)-alkyl residue;
- substructure D is pyridyl, pyridyl N oxido pyridyl, pyrrolyl, furyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, triacolyl, isothiazolyl, thiadiazolyl, pyrimidinyl, pyridazinyl, or pyrazinyl, and is unsubstituted or substituted 1, 2, 3 or 4 times by R3, or is substituted 1 or 2 times by =0:
- Q is a direct bond, -(C₀-C₂)-alkylene-C(O)-NR¹⁰-, -NR¹⁰-C(O)-NR¹⁰-, -NR¹⁰-C(O)-, -SO₂- or -(C₁-C₆)-alkylene:
- R¹ is hydrogen, -{C₁-C₄}-alkyl, wherein the alkyl is unsubstituted or substituted one to three times by R13, -{C₁-C₅}-alkylene-C(O)-NH-R⁰, -{C₁-C₃}-alkylene-C(O)-O-R15,

-(C₁-C₃)-perfluoroalkylene, -(C₁-C₃)-alkylene-S(O)-(C₁-C₄)-alkyl.
-(C₁-C₃)-alkylene-S(O)₂-(C₁-C₃)-alkyl, -(C₁-C₃)-alkylene-S(O)₂-N(R⁴)-R⁵',
-(C₁-C₃)-alkylene-O-(C₁-C₄)-alkyl, or -(C₀-C₃)-alkylene-(C₃-C₈)-cycloalkyl-os
-(C₃-C₃)-alkylene-O-(C₁-C₄)-alkyl, or -(C₀-C₃)-alkylene-(C₃-C₈)-cycloalkyl-os
-(C₀-C₃)-alkylene-het, wherein the het-is azepine, azeitdine, aziridine, aziridine, azirine, 1.4 diazepine, 1.4 diazepine, 1.4 diazepine, 1.4 diazepine, 1.4 diazepine, diaziridine, diaziridine, aziridine, 1.4 diazepine, 1.4 diazepine, furni, imidazole, imidazole, imidazole, imidazole, isothiazole, isoth

- R⁴. N R². V. form azepine, azetidine, 1,4 diazepane, dioxazole, dioxazine, 1,2 diazepine, 1,3 diazepine, 1,4 diazepine, imidazoli, imidazoline, inidazolidine, isothiazole, isothiazolidine, isothiazoline, isotazoline, isotazoline, isotazoline, isotazoline, isotazoline, isotazoline, isotazoline, isotazoline, isotazoline, isotazole, isotazoline, isotazoline, pyrazoline, pyrazoline, pyrazolidine, pyridine, tetrazole, pyridine, pyridine, tetrazole, pyridine, pyridine, tetrazole, thiazolidine, thia
- V is 2) phenyl, wherein the phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
 - 3) azaindole (HI pytrolopycidine), azepine, azetidine, aziridine, azirine, I,4 diazepane, I,2 diazepine, I,3 diazepine, I,1 diazepine, diaziridine, diazirine, dioxazole, dioxazine, dioxazole, dioxazine, dioxole, I,3 dioxolene, I,3 dioxolene, I,3 dioxolene, inidiazoline, imidiazoline, isotazoline, isotazoline, isotazoline, isotazoline, isotazoline, isotazoline, isotazoline, isotazoline, isotazoline, inidiazoline, isotazoline, morpholine, I,2 oxa thiepane, I,2 oxathiolane, I,4 oxazepane, I,2 oxazine, I,3 oxazine, I,4 oxazine, oxazole, oxaziridine, oxirane, piperazine, piperazine, piperazine, pyrazole, pyrazoline, pyrroldine, pyrrol

thiezeline, thienyl, thietun, thiomorpholine, thiopyran, 1,2,3 triazine, 1,2,4 triazine, 1,3,5 triazine, 1,2,3 triazine, 1,2,3 triazine, 1,2,3 triazine or 1,2,4 triazine, cach of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;

M is 1) hydrogen,

- 2) -(C₁-C₈)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- -C(O)-N(R11)-R12.
- -(CH₂)_m-NR¹⁰,
- phenyl or naphthyl, wherein the phenyl or naphthyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- 6) azepano-azepine, 1.4 diazepane, 1,2 diazepine. 1.3 diazepine, 1,4 diazepine, imidazole, isothiazole, isosazele, isosazelidine, 2 isosazoline, ketomorpholine, ketopiperazine, morpholine, oxazole, [1,4] osazepane, piperazine, piperazine, propridize, pyridize, pyrid
- -(C₃-C₈)-cycloalkyl, wherein the cycloalkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14;
- R3 is 1) hydrogen,
 - 2) halogen,
 - -(C₁-C₄)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13.
 - 4) -(C₁-C₃)-perfluoroalkyl,
 - phenyl, wherein the phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
 - 6) -(C0-C4)-alkylene-O-R19,
 - 8) -CN,
 - SO_s-R¹¹, wherein s is 1 or 2,
 - 10) -SO_t-N(R¹¹)-R¹², wherein t is 1 or 2,
 - 11) -(C₀-C₄)-alkylene-C(O)-R¹¹,

- 12) -(Cn-C4)-alkylene-C(O)-O-R11.
- 13) -(C₀-C₄)-alkylene-C(O)-N(R¹¹)-R¹²
- 14) -(C₀-C₄)-alkylene-N(R¹¹)-R¹²,
- 15) -NR¹⁰-SO₂-R¹⁰,
- 17) -(C₀-C₂)-alkylene-C(O)-O-(C₂-C₄)-alkylene-O-C(O)-(C₁-C₄)-alkyl,
- 18) -C(O)-O-C(R15, R16)-O-C(O)-R17.
- 19) --(C₀-C₂)-alkylene-C(O)-O-(C₂-C₄)-alkylene-O-C(O)-O-(C₁-C₆)-alkyl.
- 20) -C(O)-O- C(R15, R16)-O-C(O)-O-R17,
- 21) -(C₀·C₄)-alkylene-(C₆-C₁₄)-aryl, wherein aryl is as defined above and is mono-, dior trisubstituted independently of one another by R13.
- 22) (C₀-C₄) alkylene (C₄-C_{1S}) heterocyclyl, wherein the heterocyclyl is unsubstituted or mone —di or trisubstituted independently of one another by R13.
- -(C₀-C₄)-alkylene-(C₃-C₈)-cycloalkyl, wherein cycloalkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 24) (C₀ C₄) alkylene het, wherein the het is as defined above and is unsubstituted or mone, di- or trisubstituted independently of one another by R13,
- $$\label{eq:condition} \begin{split} -(C_0\cdot C_3) alkyl \text{ene-O-CH}_2\cdot CF_2\cdot CH_2\cdot O\cdot (C_0\cdot C_3) alkyl, \\ -(C_0\cdot C_3) alkyl \text{ene-O-CH}_2\cdot CF_2\cdot CF_2\cdot CH_2\cdot O\cdot (C_0\cdot C_3) alkyl, \text{ or } -(C_0\cdot C_3) alkyl \text{ene-O-CH}_2\cdot (C_1\cdot C_3) \text{perfluoroalkylene-CH}_2\cdot O\cdot CH_2\cdot (C_1\cdot C_3) \text{perfluoroalkylene-CH}_3\cdot O\cdot CH_3\cdot (C_1\cdot C_3) \text{pe$$
- 26) SOw-N(R11)-R13, wherein w is 1 or 2,
- 27) -(C₀-C₄)-alkylene-C(O)-N(R¹¹)-R¹³,
- 28) -(C₀-C₄)-alkylene-N(R¹¹)-R¹³, or
- 29) a residue selected from the group consisting of

wherein Me is methyl, and two OR19 residues and adjacent atoms through which they are attached form together with the atoms which they are attached to a 1.3 dioxole ring or a 2.3 dihydro-[1.4]dioxine ring, which is substituted one, two, three or four times by R13;

R11 and R12 are independently of one another identical or different and are

- bydrogen.
- -(C₁-C₆)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 35) -(C₀-C₆)-alkyl-(C₆-C₁₄)-aryl, wherein the alkyl and aryl are independently from one another unsubstituted or mono-, di- or trisubstituted by R13, or

[[4]]7) -O-R17, or

 (C₀-C₆) alkyl (C₄-C₁₅) heterocyclyl, wherein alkyl and heterocyclyl independently from one another are unsubstituted or mono. di- or trisubstituted by R13, or

- R11 and R12 together with the nitrogen atom to which they are bonded form azepine, azetidine, 1,4 diazepine, dioxazole, piperazine, piperazine, pyrazole, pyrazole, pyrazole, pyrazole, pyrimidine, pyriolazine, pyriolidine, pyriolidine, pyriolidine, pyriolidine, pyriolidine, pyriolidine, diazole, d
- $\label{eq:reconstruction} $$R13$ is fluorine, chlorine, bromine, iodine, -NO_2, -CN, =O, -OH, -CF_3, -C(O)-O-R^{10}, -C(O)-N(R^{10})-R^{20}, -N(R^{10})-R^{20}, -(C_0-C_3)-alkylene-O-R^{10}, -Si-(CH_3)_3, -N(R^{10})-S(O)_2-R^{10}, -S-R^{10}, -SO_2-R^{10}, -S(O)_2-N(R^{10})-R^{20}, -C(O)-R^{10}, -(C_1-C_8)-alkyl, -(C_1-C_8)-alkyx, phenyl, phenyloxy-, -O-CF_3, -(C_1-C_3)-perfluoroalkyl, -(C_1-C_8)-alkyx, -(C_1-C_8)-alkyx, -(C_1-C_8)-alkyx, -(C_1-C_8)-alkyx, -(C_1-C_8)-alkyx, -(C_1-C_8)-alkyx, -(C_1-C_8)-alkyx, -(C_1-C_8)-alkyx, -(C_1-C_8)-alkxy, -$

 $$ -(C_0-C_4)-alkyl-C(O)-O-C(R15,R16)-O-C(O)-R17,-(C_1-C_4)-alkoxy-phenyl, $$ -(C_0-C_4)-alkyl-C(O)-O-C(R15,R16)-O-C(O)-O-R17,-O-R15,-NH-C(O)-NH-R^{10}, $$ $$$

-NH-C(O)-O-R10, or a residue selected from the group consisting of

wherein Me is methyl:

- R15 and R16 are independently of one another hydrogen, -(C₁-C₆)-alkyl, or together form cyclopropyl, cyclobutyl, cyclopentyl or cyclobexyl, wherein each ring is unsubstituted or substituted one to three times by R¹⁰, and

or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof.

- 4. (Currently amended) The compound according claim 1, wherein
- R0 as 1) is phenyl, wherein phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, or
 - 3) is pyridyl, 2 pyridyl, 3 pyridyl, 4 pyridyl, pyrrolyl, 2 pyrrolyl, 3 pyrrolyl, faryl, 2-furyl, 3 furyl; thienyl, 2 thienyl, 3 thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl,

thiazolyl, thiadiazolyl, isothiazolyl, trazolyl, tetrazolyl, pyridazinyl ir pyrazinyl, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R8, and in addition is substituted by pyridyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyridyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrazolyl, pyrazolyl, isothiazolyl, thiadiazolyl, thiadiazolyl, isothiazolyl, triazolyl, tetrazolyl, pyridazinyl, cach of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R8;

- R8 is 1) F. Cl. Br or I.
 - 4) -C(O)-NH.,
 - -(C₁-C₄)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, -OH or methoxy, or
 - 10) —O-(C₁-C₄)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen or methoxy, provided that R8 is at least one halogen, -C(O)-NH₃ or -O-(C₁-C₈)-alkyl;
- substructure D is pyridyl, pyridyl N oxide, pyrrolyl, furyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiadiazolyl, thiadiazolyl, pyrimidinyl, pyridazinyl, or pyrazinyl, and is unsubstituted or substituted 1, 2, 3 or 4 times by R3, or is substituted 1 or 2 times by =O;
- Q is a direct bond, -C(O)-, -SO₂- or -(C₁-C₆)-alkylene, -(C₀-C₂)-alkylene-C(O)-NR¹⁰-;
- $$\label{eq:R1} \begin{split} R^1 \ is & \ \ hydrogen, -(C_1-C_2)-alkyl, -(C_1-C_3)-alkylene-C(O)-NH-R^0, -(C_1-C_3)-perfluoroalkylene, \\ -(C_1-C_3)-alkylene-C(O)-O-R^{15}, -(C_1-C_3)-alkylene-S(O)_2-(C_1-C_3)-alkylene-S(O)_2-N(R^4)-R^5, \\ +(C_1-C_3)-alkylene-S(O)_2-N(R^4)-R^5, \\ + \text{wherein } R^4 \ \text{ and } R^5 \ \text{ independently of one another are } \\ + \text{hydrogen atom or -(C_1-C_4)-alkyl,} \end{split}$$
- R² is a direct bond or -(C₁-C₂)-alkylene, or
- R⁴ N R² V (orm azetidine, azetidinone, piperidine, piperazine, pyridine, pyrrolidine, pyrrolidine, pyrrolidinone, 1,2,3 triazine, 1,3,5 triazine, 1,2,3 triazine, 1,2,4 triazole, tetrazine, tetrazole, 1,4 diazepine, 1,2 diazepine, 1,3 diazepine, 1,4 diazepine, azepine, ketopiperazine, 1,4 oxazepane, oxazole, isoxazolidine, 2 isoxazoline, morpholine,

thiazole, isothiazole, thiadiazole or thiomorpholine, each of which is unsubstituted or mono , di-or trisubstituted independently of one another by R14:

- $\label{eq:R14} $$ fluorine, chlorine, -OH, =O, -(C_1-C_8)-alkyl, -C(O)-OH, -CN, -NH_2, -C(O)-O+(C_1-C_4)-alkyl, -C(O)-NH-(C_1-C_8)-alkyl, -C(O)-NH-(C_1-C_8)-alkyl, -C(O)-NH-(C_1-C_8)-alkyl, -C(O)-NH_2 or -N(R^{18})-R^{21}, $$ wherein R^{18} and R^{21} are independently from each other hydrogen, -(C_1-C_3)-perfluoroalkyl or -(C_1-C_4)-alkyl; $$$
- V is 2) phenyl, wherein the phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
 - 3) azaindole (HI pytrolopyridine), aziridine, azirine, azeitdine, azeitdinene, 1,4 diazepane-pytrole, pytrolidine, pyridonyli inidazole, pytrazele, 1,2,3 triazole, 1,2,4 triazole, tetrazole, pyridine, pyrimidine, pyrazine, 1,2,3 triazine, 1,2,4 triazole, 1,3,5 triazine, tetrazole, pyridine, pyrimidine, pyrazine, 1,3 diazepine, 1,4 diazepine, pyridazine, piperidine, pyrendidinene, ketopiperazine, furun, pyran, dioxole, 1,4 oxazepane, oxazole, isoxazole, 2 isoxazole, isoxazolidine, morpholine, oxirane, oxaziridine, 1,3 dioxolene, 1,3 dioxolene, 1,3 dioxolene, 1,3 dioxolene, 1,3 dioxolene, 1,2 triazole, jestinazole, isotrazole, isotrazole, dioxolene, thiopyran, thietan, thiazole, jestinazole, isotrazole, dioxolene, thiopyran, 1,2 thiazine, 1,3 thiazole, 1,3 thiazole, 1,4 thiazine, thiadiazine or thiomorpholine, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R14:
- G is a direct bond, -(CH2)m-, or -(CH2)m-NR10-;
- m is zero, 1, 2, 3 or 4;
- M is 1) hydrogen,
 - -(C₁·C₆)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
 - -C(O)-N(R¹¹)-R¹², or
 - 6) heterocyclyl, wherein the heterocyclyl is selected from the group consisting of azepane, azepine, 1,4 diazepane, 1,2 diazepine, 1,3 diazepine, 1,4 diazepine, imidazole, isothiazole, isoxazole, isoxazole, isoxazole, isoxazole, ektomorpholine, ketopisperazine, morpholine, oxazole, 11,41 oxazepane, piperazine, piperazine, piperazine, piperidinone, pyrazine, pyridazine, pyridazine, pyridazine, pyridazine, pyridazine, pyridazine, in pyridazine, pyridazine, pyridazine, totazole, thiadiazole, or thiazole, thiomorpholine, thiomorpholine, 1,2,3 frigazine, 1,2,4 frigazine, 1,3,5.

triuzine, 1,2,3 triazole or 1,2,4 triazole, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or

(C₃-C₆)-cycloalkyl;

R3 is

- hydrogen,
- 2) halogen,
- (C₁-C₄)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- 4) -(C1-C3)-perfluoroalkyl,
- phenyl, wherein the phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13.
- (C₀-C₄)-alkylene-O-R19,
- 8) -CN,
- 8) -NR10-SO2-R10,
- SO_S-R¹¹, wherein s is 1 or 2,
- 10) -SO_t-N(R¹¹)-R¹², wherein t is 1 or 2,
- -(Co-C₄)-alkylene-C(O)-R¹¹.
- 12) -(Cn-C4)-alkylene-C(O)-O-R11,
- 13) -(C0-C4)-alkylene-C(O)-N(R11)-R12,
- 14) -(C₀-C₄)-alkylene-N(R¹¹)-R¹²,
- $\hspace{1.5cm} \textbf{ -(C_0\cdot C_2)} alkylene-C(O)-O-(C_2-C_4)-alkylene-O-C(O)-(C_1-C_4)-alkyl, \\$
- 18) -C(O)-O-C(R15, R16)-O-C(O)-R17,
- $-(C_0-C_2)alkylene-C(O)-O-(C_2-C_4)-alkylene-O-C(O)-O-(C_1-C_6)-alkyl,\\$
- 20) -C(O)-O- C(R15, R16)-O-C(O)-O-R17,
- $\qquad \qquad \text{-(C$_0$-C$_3)-alkylene-O-CH$_2$-CF$_2$-CH$_2$-O-(C$_0$-C$_3)-alkyl}, \\$
- -(C0-C3)-alkylene-O-CH2-CF2-CF2-CH2-O-(C0-C3)-alkyl, or

 $\hbox{-(C$_0$-C$_3)-alkylene-O-CH$_2$-(C$_1$-C$_3)-perfluoroalkylene-CH$_2$-OH,}\\$

- 26) -SO_w-N(R¹¹)-R¹³, wherein w is 1 or 2,
- 27) $-(C_0-C_4)$ -alkylene- $C(O)-N(R^{11})-R^{13}$.
- 28) -(C₀-C₄)-alkylene-N(R¹¹)-R¹³, or
- 29) a residue selected from the group consisting of

wherein Me is methyl;

- two—OR19 residues and adjacent atoms through which they are attached may form together a 1,3dioxale ring or a 2.3 dihydro [1.4]dioxine ring, each of which is substituted one, two, three or four times by R13:
- R⁺¹ and R⁺² together with the nitrogen atom to which they are bonded form azepine, azetidine, 1.4 diazepine, dioxazole, dioxazole, 1.2 diazepine, 1.3 diazepine, 1.4 diazepine, imidazoler, imidazoler, imidazoler, imidazoler, imidazoler, imidazoler, imidazoler, imidazoler, isoxazoler, isoxazoler, isoxazoler, isoxazoler, isoxazoler, isoxazoler, isoxazoler, isoxazoler, principe, prezide, principe, princ
- $R13 \ is \ fluorine, chlorine, -NO_2, -CN, =O, -OH, -CF_3, -C(O)-O-R^{10}, -C(O)-N(R^{10})-R^{20}, \\ -N(R^{10})-R^{20}, -(C_0-C_3)-alkylene-O-R^{10}, -Si-(CH_3)_3, -N(R^{10})-S(O)_2-R^{10}, -S-R^{10}, \\ -SO_2-R^{10}, -S(O)_2-N(R^{10})-R^{20}, -C(O)-R^{10}, -(C_1-C_8)-alkyl, -(C_1-C_8)-alkoxy, phenyl, \\ phenyloxy-, -O-CF_3, -(C_1-C_3)-perfluoroalkyl, -NH-C(O)-NH-R^{10}, \\ -(C_0-C_4)-alkyl-C(O)-O-C(R15, R16)-O-C(O)-R17, -(C_1-C_4)-alkoxy-phenyl, \\ -(C_0-C_4)-alkyl-C(O)-O-C(R15, R16)-O-C(O)-O-R17, -O-R15, -NH-C(O)-O-R^{10}, or a \\ residue selected from the group consisting of$

wherein Me is methyl:

R15 and R16 are independently of one another hydrogen, -(C₁-C₆)-alkyl, or together form cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, wherein each ring is unsubstituted or substituted one to three times by R¹⁰- and

or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof.

- 5. (Currently amended) The compound according to claim 1, wherein
- R0 is 1) phenyl, wherein the phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R8,
 - 2) indolył, isoindolył, benzofuranył, benzothiophenył, 1,3 benzodioxotył, induzolył, benzimidazolył, benzokazolył, benzothiazolył, quinolinył, sisoquinolinył, chromanył, sochromanył, cinnolinył, quinazolnył, quinoxalinył, phthalazinył, pyridopyridinył, pyridopyrimidinył, pyridyl, purinył or pteridinył, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R8,
 - 3) pyridyl, 2 pyridyl, 3 pyridyl, 4 pyridyl, pyrrolyl, 2 pyrrolyl, 3 pyrrolyl, furyl, 2 furyl, 5 furyl; thienyl, 2 thienyl, imidazolyl, pyridazanyl, escarolyl, isoxazolyl, thiazolyl, isothiazolyl, isothiazolyl, isothiazolyl, isothiazolyl, isothiazolyl, isothiazolyl, isothiazolyl, isothiazolyl, isothiazolyl, pyridyl, pyridyl, a mother by R8, and in addition is substituted or pyridyl, 2 pyridyl, 3 pyridyl, 4 pyridyl, pyrrolyl, 2 pyrrolyl, 3 pyrrolyl, furyl, 2 furyl, 2 furyl, thirpyl, thinyl, thin

pyrazinyl, each of which is unsubstituted or mono-, di- or trisubstituted independently of one another by R8;

- R8 is 1) F. Cl. Br. or I.
 - 4) -C(O)-NH_s.
 - (C₁-C₄)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen, -OH or methoxy, or
 - 10) —O-(C₁-C₄)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by halogen or methoxy, provided that R8 is at least one halogen. -C(O)-NH₂ or -O-(C₁-C₈)-alkyl residue;
- substructure D is pyridyl, pyridyl N oxide, pyrrolyl, furyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, triazolyl, isoxhiazolyl, thiadiazolyl, pyrimidinyl, pyridazinyl, or pyrazinyl, and is unsubstituted or substituted 1, 2, 3 or 4 times by \mathbb{R}^3 , or is substituted 1 or 2 times by =0;
- Q is a direct bond, -C(O)-, -SO₂-, -(C₁-C₆)-alkylene or -(C₀-C₂)-alkylene-C(O)-NR¹⁰-:
- R1 is bydrogen or -(C1-C2)-alkyl,
- R2 is a direct bond or -(C1-C2)-alkylene-or
- R⁴ N R² V form piperidine, piperazine, pyridine, pyrinidine, pyrrolidine, pyrrolidinone, 1,2,3 triazine, 1,2,4 triazine, 1,2,5 triazine, 1,2,3 triazile, 1,2,4 triazile, tetrazine, tetrazile, 1,2,4 diazepine, 1,3 diazepine, 1,4 diazepine, azepine, ketopiperazine, oscazole, isosazole, isosazolidine, 2 isosazolidine, populari propholine, thiazole, isothiazole, thiadiazole or thiomorpholine, each of which is unsubstituted or mono di-or trisubstituted independently of one another by R14:
- R14 is fluorine, chlorine, =O, -(C1-C1)-alkyl or -NH1:
- V is 2) phenyl, wherein the phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14, or
 - 3) azaindolyl (IH pyrrolopyridyl), azetidine, azepine, aziridine, azirine, 1,4 diazepane, 1,2 diazepine, 1,3 diazepine, 1,4 diazepine, diazirine, 1,3 dioxolane, dioxazole, furun, imidazole, isoquinoline, isothiazoli, isothiazolidine, isothiazolidine, isoxazole, 2 isoxazoline, isoxazolidine, ketopiperazine, morpholine, 1,2 oxazine, 1,3 oxazine, 1,4 oxazine, 0xazole,

1.2 exathiolan, piperidine, pyran, pyrazine, pyrazole, pyridazine, piperazine, pyridine, pyridone, pyridine, pyridin

m is zero, 1, 2, 3 or 4;

M is 1) hydrogen,

- 2) $-(C_1-C_6)$ -alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R14,
- 6) heterocyclyl, wherein the heterocyclyl is selected from the group consisting of 1.4 diazepune, ketemorpholine, thiophene, pyridazene, piperidine, piperazine, pyridine, pyrididine, 1.2.3 triazine, 1.2.3 triazine, 1.2.4 triazine, tetrazine, tetrazine
- (C₃-C₆)-cycloalkyl;
- R3 is 1) bydrogen,
 - halogen,
 - -(C₁-C₄)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13.
 - -(C₁-C₃)-perfluoroalkyl,
 - phenyl, wherein the phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13.
 - -(C₀-C₄)-alkylene-O-R19,
 - 8) -CN
 - SO_e-R¹¹, wherein s is 1 or 2.
 - SO_t-N(R¹¹)-R¹², wherein t is 1 or 2,
 - 11) $-(C_0-C_4)$ -alkylene-C(O)-R¹¹,

- 12) -(C₀-C₄)-alkylene-C(O)-O-R¹¹,
- 13) -(C₀-C₄)-alkylene-C(O)-N(R¹¹)-R¹²,
- 14) -(C₀-C₄)-alkylene-N(R¹¹)-R¹²,
- 15) -NR¹⁰-SO₂-R¹⁰.
- 17) -(C₀-C₂)alkylene-C(O)-O-(C₂-C₄)-alkylene-O-C(O)-(C₁-C₄)-alkyl,
- 18) -C(O)-O-C(R15, R16)-O-C(O)-R17.
- 19) –(C₀-C₂)alkylene-C(O)-O-(C₂-C₄)-alkylene-O-C(O)-O-(C₁-C₆)-alkyl.
- 20) -C(O)-O- C(R15, R16)-O-C(O)-O-R17, or
- 29) a residue selected from the group consisting of

wherein Me is methyl;

R19 is a) hydrogen,

- d) -(C₁-C₄)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- c) -CF3, or
- d) -CHF₂;

R11 and R12 are independently of one another identical or different and are

- 1) hydrogen,
- -(C₁-C₄)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13.
- -(C₀-C₆)-alkyl-(C₃-C₆)-cycloalkyl, or
- 7) -O-R¹⁷-os

8) (C₀ C₀) alkyl (C₄ C₁₅) heterocyclyl, wherein the alkyl and heterocyclyl independently from one mother are unsubstituted or mone, di- or trisubstituted by R13 and wherein the heterecyclyl is azetidine, cyclopropyl, cyclobutyl, 4.5 dihydro oxazole, imidazolidine, morpholine, (1,4) oxazepane, oxazolidine, piperidine, piperazine, pyrrolidine, tetrahydrothiophene, thiazolidine or thiomorpholine, or

- R11 and R12 together with the nitrogen atom to which they are bonded form azetidine, ey-lopropyl, eyelobutyl, 4.5 dihydro oxazole, imidazolidine, morpholine, (1,1) oxazepane, oxazolidine, piperidine, piperazine, pyrrolidine, tetrahydrothiophene, thiazolidine or thiomorpholine;
- $$\label{eq:R13} \begin{split} \text{R13 is} & & \text{fluorine, -CN, $=$O, -OH, -CF_3, -C(O)-O-R^{10}, -C(O)-N(R^{10})-R^{20}, -N(R^{10})-R^{20}, \\ & & \text{-(C}_3\text{-C}_6)\text{-cycloalkyl, -(C}_0\text{-C}_3)\text{-alkylene-O-R}^{10}, -\text{Si-(CH}_3)_3, -\text{S-R}^{10}, -\text{SO}_2\text{-R}^{10}, \\ & & \text{-(C}_1\text{-C}_3)\text{-perfluoroalkyl, or a residue selected fro the group consisting of} \end{split}$$

wherein Me is methyl:

 R^{10} and R^{20} are independently of one another hydrogen, $-(C_1-C_4)$ -alkyl or $-(C_1-C_3)$ -perfluoroalkyl;

- R^{15} and R^{16} are independently of one another hydrogen, ${}_{^+}C_1 {}_{^-}C_4 {}_{^+}$ alkyl, or together form cyclopropyl, cyclobutyl, cyclopentyl or cyclobexyl, wherein each ring is unsubstituted or substituted one to three times by R^{10} , and
- R17 is $-(C_1-C_6)$ -alkyl, $-(C_1-C_6)$ -alkyl-OH, $-(C_1-C_6)$ -alkyl-O- $-(C_1-C_6)$ -alkyl, $-(C_1-C_6)$ -alkyl-O- $-(C_1-C_8)$ -alkyl-($-(C_3-C_8)$ -cycloalkyl, $-(C_0-C_6)$ -alkyl-($-(C_3-C_8)$ -cycloalkyl, wherein the cycloalkyl is unsubstituted or substituted one, two or three times by -OH, $-O-(C_1-C_4)$ -alkyl or R^{10} .

or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof.

6. (Currently amended) The compound according to claim 1, wherein

R0 is 1) phenyl, wherein the phenyl is unsubstituted or mono- or disubstituted independently of one another by R8.

- pyridyl or benzothiophenyl, wherein the pyridyl and benzothiophenyl areis unsubstituted or mono- or disubstituted independently of one another by R8, or
- 3) thienyl, thiadiazolyl, isoxazolyl or thiazolyl, each of which is substituted by thienyl, 2-thienyl or 3-thienyl or 3-thienyl, wherein the thienyl, 2-thienyl or 3-thienyl is unsubstituted or mono- or disubstituted independently of one another by R8;

R8 is F, Cl, Br, -OCH3 or -C(O)-NH2;

substructure D is pyridyl, pyridyl N oxide, pyrrolyl, thienyl, imidazelyl, pyrazolyl, oxazelyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrimidinyl, pyridazinyl or pyrazinyl, and is unsubstituted or substituted 1, 2, 3 or 4 times by R3, or is substituted 1 or 2 times by =O;

Q is a direct bond, -C(O)-, -SO2-, -CH2-C(O)-NH-, methylene or ethylene;

R1 is hydrogen,

n2.

R2 is a direct bond or methylene, or

R⁴ N R² V form azetidine, pyrrolidine, piperidine and piperazine;

R14 is fluorine, chlorine, =O, methyl, ethyl or -NH2;

- V is 2) phenyl, wherein the phenyl is unsubstituted or mono- or disubstituted independently of one another by R14₂ or
 - 3) azaindolyl (IM pyrrolopyridyl), azeitdine, 1.4 diazepane, isoxazole, isoquinoline, piperazine, piperdine, pyrazine, pyridazine, pyrimidine, or pyrrolidine, quinazeline, quinoline or tetrahydropyrane, each of which is unsubstituted or mono- or disubstituted independently of one another by R14;
- G is a direct bond, $(CH_2)_{m}$, or $-(CH_2)_{m}$ -NR¹⁰-;
- m is zero, I or 2;

- M is 1) hydrogen,
 - (C₂-C₄)-alkyl, wherein the alkyl is unsubstituted or mono- or disubstituted independently of one another by R14. er
 - 6) næpanyl, eyelopropyl, eyelobutyl, eyelopentyl, eyelopentyl, imidazolyi, ketomorpholinyl, morpholinyl, H.A.Dosazepanyl, piperidinyl, piperidonyl, pyrazinyl, pyrazelyl, pyridazinyl, pyrididyl, pyrididzinyl, pyrididzinyl, pyrididzinyl, or tetrahydropyranyl, each of which is unsubstituted or mono- or disubstituted independently of one another by R14, or
 - cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl, each of which is unsubstituted or mono- or disubstituted independently of one another by R14;

R3 18

- 1) hydrogen,
- F or Cl.,
- -(C₁-C₄)-alkyl, wherein alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13.
- 4) -(C1-C3)-perfluoroalkyl,
- phenyl, wherein the phenyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
- -(C₀-C₂)-alkylene-O-R19,
- 8) -CN.
- 9) -SO₈-R¹¹, wherein s is 1 or 2,
- 10) -SO_t-N(R¹¹)-R¹², wherein t is 1 or 2.
- 11) -(C₀-C₄)-alkylene-C(O)-R¹¹,
- 12) -(C₀-C₄)-alkylene-C(O)-O-R¹¹,
- 13) -(C₀-C₄)-alkylene-C(O)-N(R¹¹)-R¹²,
- 14) -(C0-C4)-alkylene-N(R11)-R12,
- 15) -NR10-SO2-R10,
- $-(C_0-C_2)alkylene-C(O)-O-(C_2-C_4)-alkylene-O-C(O)-(C_1-C_4)-alkyl.$
- 18) -C(O)-O-C(R15, R16)-O-C(O)-R17.
- 19) -(C₀-C₂)alkylene-C(O)-O-(C₂-C₄)-alkylene-O-C(O)-O-(C₁-C₆)-alkyl or
- 20) -C(O)-O- C(R15, R16)-O-C(O)-O-R17;

R19 is a) hydrogen,

- (C₁-C₄) alkyl, wherein the alkyl is unsubstituted or mono, di- or trisubstituted independently of one another by R13, or
- e) CF3, or
- d) -CHF2:

R11 and R12 are independently of one another identical or different and are

- hydrogen,
- -(C₁-C₄)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13.
- 3) -(C0-C6)-alkyl-(C3-C6)-cycloalkyl, or
- 7) -O-R17, or
- 8) (C₀ · C₀) alkyl heterocyclyl, wherein the alkyl and heterocyclyl independently from one unother are unsubstituted or mono , di or trisubstituted by R13 and wherein the heterocyclyl is azetidine, imidazolidine, morpholine. (1,1) oxazepane or pyrrolidine.

R+1 and R+2 together with the nitrogen atom to which they are bonded form azetidine, inidazolidine, morpholine, (1,4) oxazepune piperazine, piperidine, pytrolidine or thiomorpholine;

 ${
m R}^{10}$ and ${
m R}^{20}$ are independently of one another hydrogen. -(C1-C4)-alkyl or -(C1-C3)-perfluoroalkyl;

 R^{15} and R^{16} are independently of one another hydrogen, ${}^{4}C_{1}{}^{-}C_{4}$)-alkyl, or together form cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, wherein each ring is unsubstituted or substituted one to three times by R^{10} ; and

R17 is
$$-(C_1-C_6)$$
-alkyl, $-(C_1-C_6)$ -alkyl-OH. $-(C_1-C_6)$ -alkyl-O-($-(C_1-C_6)$ -alkyl or $-(C_1-C_6)$ -al

or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof.

7. (Currently amended) The compound according to claim 1, wherein

- R0 is 42) pyridyl or benzothiophenyl, wherein the pyridyl and benzothiophenyl are is unsubstituted or mono- or disubstituted independently of one another by R8, or
 - 23) thienyl, thiadiezelyl, isoxazolyl and thiezelyl, each of which is substituted by thienyl, 2-thienyl and 3-thienyl, wherein the thienyl, 2-thienyl or 3-thienyl is unsubstituted or monoor disubstituted independently of one another by R8;
- R8 is F, Cl, Br, -OCH3 or -C(O)-NH2;

substructure D is pyridyl and is unsubstituted or substituted 1, 2, 3 or 4 times by R3, or is substituted 1 or 2 times by =O;

- Q is -CH2-C(O)-NH- or methylene;
- R1 is hydrogen atom;
- R2 is a direct bond;
- R14 is fluorine, chlorine, =O, methyl, ethyl or -NH2;
- V is piperidine, wherein the piperidine is unsubstituted or mono- or disubstituted independently of one another by R14:
- G is a direct bond-
- M is hydrogen, (C₂-C₄)-alkyl, or pyridyl, wherein the alkyl or pyridyl is unsubstituted or mono- or disubstituted independently of one another by R14;
- R3 is 1) hydrogen,
 - fluorine, or chlorine.
 - -(C₁-C₄)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13,
 - -(C₀-C₂)-alkylene-O-R19,
 - 12) -(Co-C₄)-alkylene-C(O)-O-R¹¹ or
 - -(C₀-C₄)-alkylene-C(O)-N(R¹¹)-R¹²;

- a) ltydrogen, or
- d(C₁-C₄)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13:

R11 and R12 are independently of one another identical or different and are

- 1) hydrogen, or
- -(C₁-C₄)-alkyl, wherein the alkyl is unsubstituted or mono-, di- or trisubstituted independently of one another by R13-or

R11 and R12 (ogether with the nitrogen atom to which they are bonded form exetidine, imidazelidine, morpholine, (1,4) exazepane piperazine, piperidine, pyrrolidine or thiomorpholine.

 R^{10} and R^{20} are independently of one another hydrogen, $-(C_1-C_4)$ -alkyl or $-(C_1-C_3)$ -perfluoroalkyl, or a stereoisomer of a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof.

8. (Currently amended) The compound according to claim 1, wherein the compound is

1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-pyrrolo[2,3-b]pyridine-2- carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,

1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-pyrrolo[2,3-b]pyridine-5-carboxylic acid methyl ester,

 $1\hbox{-}[5\hbox{-}(5\hbox{-}Chloro\hbox{-}thiophen-2\hbox{-}yl)\hbox{-}isoxazol-3\hbox{-}ylmethyl]-2\hbox{-}(1\hbox{-}isopropyl\hbox{-}piperidin-4\hbox{-}lisopropyl-piperidin-4\hbox{-}lisopropy$

ylearbamoyl)-1H-pyrrolo[2,3-b]pyridine-5-carboxylic acid,

1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-IH-pyrrolo[2,3-b]pyridine-2,5-dicarboxylic acid 5-amide 2-[(1-isopropyl-piperidin-4-yl)-amide].

 $\label{lem:condition} $$1-\{5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl\}-1$$H-pyrrolo[3,2-b]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide ,$

1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-

ylearbamoyl)-1H-pyrrolo[3,2-b]pyridine-5-carboxylic acid,

1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-oxo-4,5-dihydro-1H-pyrrolo(3,2-

b]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,

1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(3,4,5,6-tetrahydro-2H-

[1.4]bipyridinyl-4-ylcarbamoyl)-1H-pyrrolo[3,2-b]pyridine-5-carboxylic acid methyl ester,

- 1-[5-(5-Chloro-thiophen-2-vl)-isoxazol-3-vlmethyl1-2-(3.4.5.6-tetrahydro-2H-
- [1.4]bipyridinyl-4-ylcarbamoyl)-1H-pyrrolo[3.2-b]pyridine-5-carboxylic acid.
- 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-(2-methoxy-ethoxy)-1H-pyrrolo[2,3-elbyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide.
- 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-(2-hydroxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide .
- 1-[(5-Chloro-pyridin-2-ylcarbamoyl)-methyl]-5-(2-methoxy-ethoxy)-1H-pyrrolo[2,3-c]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
- 1-[(5-Chloro-pyridin-2-ylearbamoyl)-methyl]-5-(2-hydroxy-ethoxy)-1H-pyrrolo[2,3-
- 1-[13-C.moro-pyrtum-2-yicaroamoyi)-methylj-5-(2-hydroxy-ethoxy)-1H-pyrrofo[2,3-c]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
- 1-(6-Chloro-benzo[b]thiophen-2-ylmethyl)-5-(2-methoxy-ethoxy)-IH-pyrrolo[2,3-c]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide or
- $\label{lem:continuous} $$1-(6-Chloro-benzo[b]thiophen-2-ylmethyl)-5-(2-hydroxy-ethoxy)-1H-pymolo[2,3-e]pyridine-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide_a$

or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof.

9. (Withdrawn) A process for the preparation of a compound according to claim 1, which comprises condensing a compound of formula 29 with a compound of the formula HR8' to give a compound of formula 30 and converting the compound of the formula 30 into a compound of the formula 1,

wherein the residue R^{S^i} has the donation of $-N(R^1)-R^2-V-G-M$ as indicated claim 1, but where in R^{S^i} functional groups can also be present in the form of groups that are subsequently transformed into the final functional groups present in $-N(R^1)-R^2-V-G-M$. and where the residue R^{54} denotes the group $-Q-R^0$ or can denote a group which is subsequently transformed into the group $-Q-R^0$, and where the group $-C(O)-R^{53}$ can be a carboxylic acid group or derivatives thereof, and where the groups R^{3a} in the formulae 29 and 30 have the corresponding definitions of R^3 in formula 1 as defined in claim 1 or functional groups in them can also be present in protected form or in the form of precursor groups.

10. (Currently amended) A pharmaceutical composition, comprising at least one compound according to claim 1, or a stereoisomer or a mixture of stereoisomers thereof in any ratio, or a physiologically acceptable salt thereof, and a pharmaceutically acceptable carrier.

- 11. (Withdrawn) A method for inhibiting factor Xa in a patient in need thereof, comprising administering to the patient a pharmaceutically effective amount of a compound according to claim 1.
- 12. (Withdrawn) A method for inhibiting factor VIIa in a patient in need thereof, comprising administering to the patient a pharmaceutically effective amount of a compound according to claim 1.
- 13. (Withdrawn) A method for influencing blood coagulation in a patient in need thereof, comprising administering to the patient a pharmaceutically effective amount of a compound according to claim 1.
- 14. (Withdrawn) A method for inhibiting influencing blood fibrinolysis in a patient in need thereof, comprising administering to the patient a pharmaceutically effective amount of a compound according to claim 1.
- 15. (Withdrawn) A method for treating abnormal thrombus formation, acute myocardial infarction, cardiovascular disorders, unstable angina, thromboembolism, acute vessel closure associated with thrombolytic therapy or percutaneous transluminal coronary angioplasty (PTCA). transient ischemic attacks, stroke, intermittent claudication, bypass grafting of the coronary or peripheral arteries, vessel luminal narrowing, restenosis post coronary or venous angioplasty, maintenance of vascular access patency in long-term hemodialysis patients, pathologic thrombus formation occurring in the veins of the lower extremities following abdominal, knee or hip surgery, pathologic thrombus formation occurring in the veins of the lower extremities following abdominal, knee and hip surgery, a risk of pulmonary thromboembolism, or disseminated systemic intravascular coagulatopathy occurring in vascular systems during septic shock, viral infections or cancer, or reducing an inflammatory response, fibrinolysis, or treatment of coronary heart disease, myocardial infarction, angina pectoris, vascular restenosis, for example restenosis following angioplasty like PTCA, adult respiratory distress syndrome, multi-organ failure and disseminated intravascular clotting disorder, deep vein or proximal vein thrombosis, which can occur following surgery, in a patient in need thereof, comprising administering to the patient a pharmaceutically effective amount of a compound according to claim 1.