3 | Implementando XOR e NXOR usando portas NAND e NOR

Lista de Material

- $-2 \times CI74LS00 (4 \times NAND(2));$
- $-2 \times CI74LS02 (4 \times NOR(2));$
- 2 led's;
- -2 resistores de 330 Ω ;
- Fonte de Alimentação TTL (5 Volts @ 5%).

3.1 Objetivos

Projetar circuitos usando álgebra boolena.

3.2 Fundamentos Teóricos

Principais propriedades de álgebra booleana:

1.
$$A \cdot 0 = 0$$

$$A \cdot 1 = A$$

2.
$$A + 0 = A$$

$$A + 1 = 1$$

3.
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

4.
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

3.3 Parte Prática

3.3.1 Primeira Parte

Projete e monte uma **porta XOR**, usando apenas portas lógicas NAND de 2 entradas.

Dica: uma porta XOR trabalha como um detector de desigualdade, desempenhando a seguinte função lógica:

$$Y = A \oplus B = \overline{A}B + A\overline{B} \tag{3.1}$$

3.3.2 Segunda Parte

Monte uma porta **NXOR** usando apenas portas lógicas NOR de 2 entradas. Esta porta desempenha a seguinte função lógica:

$$Y = A \otimes B = AB + \overline{A}\overline{B} \tag{3.2}$$

Atenção para a pinagem do CI 7402 (diferente do que poderia ser esperado).

3.4 Dados

Pinagens dos CI's utilizados – figura 3.1. Tabela verdade das portas XOR e NXOR:

Entradas		Saídas	
A	В	XOR	NXOR
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

3.5 Completar (Durante a Aula)

Antes de iniciar qualquer montagem preencha com o que pede abaixo:

- 5.1) Deduza usando álgebra de Boole, a síntese de uma porta XOR usando um número mínimo de portas NAND de 2 entradas. Finalize apresentando o diagrama elétrico (circuito) final obtido (item 3.3.1) para montagem em sala de aula. *Dica*: Partir da equação (3.1).
- 5.2) Deduza usando álgebra de Boole, a síntese de uma porta NXOR usando um número reduzido de portas NOR de 2 entradas. Finalize apresentando o diagrama elétrico (circuito) final obtido (item 3.3.32) para montagem em sala de aula.

Dica: Partir da equação (3.2).

Figura 3.1: Pinagens dos componentes utilizados.

÷	
Universidade de Passo Fundo Lab. de Circuitos Digitais I	Engenharia Elétrica Prof. Fernando Passold
Aluno(a) ₁ :	Lab. #3. Implementando XOR e NXOR
Aluno(a) ₂ :	Data:

Aproveite o espaço abaixo para incluir as deduções e diagramas elétricos refentes aos itens 5.1 (síntese da porta XOR) e 5.2 (síntese da porta NXOR):

14 de 53 Prof. Fernando Passold