Convex Sets

2nd November, 2023

Convex Set

line through x_1 , x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2 \qquad (\theta \in \mathbf{R})$$

$$\theta = 1.2 \qquad x_1$$

$$\theta = 0.6$$

$$\theta = 0$$

$$\theta = 0.2$$

affine set: contains the line through any two distinct points in the set **Question**: Can every affine set be expressed as solution set of system of linear equations?

Given x_1 , x_2 and x_3 three points in an affine set C, then

$$x = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 \in C$$

where $\alpha_1 + \alpha_2 + \alpha_3 = 1$.

Given x_1 , x_2 and x_3 three points in an affine set C, then

$$x = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 \in C$$

where $\alpha_1 + \alpha_2 + \alpha_3 = 1$.

Proof: Let *y* be affine combination of x_1 and x_2 then $y \in C$

$$y = \frac{\alpha_1}{\alpha_1 + \alpha_2} x_1 + \frac{\alpha_2}{\alpha_1 + \alpha_2} x_2 \in C$$

x is affine combination of y and x_3 hence $x \in C$

$$x = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3$$

= $(1 - \alpha_3)y + \alpha_3 x_3 \in C$

where $1 - \alpha_3 = \alpha_1 + \alpha_2$

Subspace *C* is an affine set and $x_0 \in C$, then the set $V = C - x_0 = \{x - x_0 | x \in C\}$ is a subspace.

Hint: $y \in V$ and $z \in V$ then $\lambda y \in V$ and $y + z \in V$

Affine hull of a set of vectors $\{s_1, \ldots, s_n\}$ is defined as

$$\mathbf{aff}\{\mathbf{s}_1,\ldots,\mathbf{s}_n\} = \left\{ x = \sum_i \theta_i \mathbf{s}_i \mid \sum_i \theta_i = 1 \right\}$$

Subspace *C* is an affine set and $x_0 \in C$, then the set

 $V = C - x_0 = \{x - x_0 | x \in C\}$ is a subspace.

Hint: $y \in V$ and $z \in V$ then $\lambda y \in V$ and $y + z \in V$

If C is an affine set, then there exist a matrix A and a vector b such that $C = \{x : Ax = b\}$

- Let C be an affine set in \mathbb{R}^n , and x_0 be any point in C. Then we can define the set $V = C x_0 = \{x x_0 | x \in C\}$, which is a subspace of \mathbb{R}^n .
- Let k be the dimension of V, and $\{v_1, \ldots, v_k\}$ be a basis of V. Let $\{a_1, \ldots, a_{n-k}\}$ be orthogonal complement to V, and define a matrix A of size $(n-k) \times n$

$$\mathbf{A} = \begin{bmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 & \cdots & \boldsymbol{a}_{n-k} \end{bmatrix}^T$$

• Then null space of **A** is equal to V. To see this, for any x in \mathbb{R}^n and $\mathbf{A}x = 0$, x must belong to V.

Affine set II

• Conversely, if x belongs to V, then x can be written as a linear combination of $V = \{v_1, \dots, v_k\}: x = Vc$.

$$\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{V}\mathbf{c} = 0$$

• This implies that $C = \{x | Ax = b\}$, where $b = Ax_0$.

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2$$

with $0 < \theta < 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

examples (one convex, two nonconvex sets)

Example Let C be a convex set, with $x_1, x_2, \ldots, x_k \in C$ and $\theta_1 + \theta_2 + \cdots + \theta_k = 1, \theta_i \ge 0$. Show that $\theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_k x_k \in C$.

Example Let C be a convex set, with $x_1, x_2, ..., x_k \in C$ and $\theta_1 + \theta_2 + \cdots + \theta_k = 1, \theta_i \ge 0$. Show that $\theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_k x_k \in C$.

Proof.

Let $\alpha_i = \frac{\theta_i}{1-\theta_k}$. It is obvious that $\alpha_i \geq 0$ and $\sum_{i=1}^{k-1} \alpha_i = 1$. By induction, we can assume that $y_{k-1} = \sum_{i=1}^{k-1} \alpha_i x_i \in C$.

Hence

$$\theta_k x_k + (1 - \theta_k) y_{k-1} \in C$$

Example Prove that the set $C = \{x \in \mathbb{R}^2_+ \mid x_1 x_2 \ge a\}$ is convex.

Example Prove that the set $C = \{x \in \mathbb{R}^2_+ \mid x_1 x_2 \ge a\}$ is convex.

Proof.

Let $0 \le \theta \le 1$. Denote two points $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in C. We show that $z = \theta x + (1 - \theta)y$ is also in C

$$z_1 z_2 = (\theta x_1 + (1 - \theta)y_1)(\theta x_2 + (1 - \theta)y_2)$$

$$= \theta^2 x_1 x_2 + (1 - \theta)^2 y_1 y_2 + \theta(1 - \theta)(x_1 y_2 + x_2 y_1)$$

$$\geq \theta^2 a + (1 - \theta)^2 a + \theta(1 - \theta) 2 \sqrt{x_1 y_2 x_2 y_1}$$

$$\geq a(\theta^2 + (1 - \theta)^2 + 2\theta(1 - \theta))$$

$$= a$$

7

Convex set: Example

Example Prove that the set $C_n = \{x \in \mathbb{R}^n_+ \mid x_1 x_2 \cdots x_n \geq a\}$ is convex.

Proof.

(By induction). Assume that C_{n-1} is convex for n > 2, we need to show that C_n is also convex.

- For two distint points, $x=(x_1,\ldots,x_n)$ and $y=(y_1,\ldots,y_n)\in C_n$, if $y\geq x$, then for any $0\leq \theta\leq 1$, the new point $z=(1-\theta)x+\theta y=x+\theta(y-x)\geq x$. Hence $\prod_i z_i\geq \prod_i x_i\geq a$. Thus $z\in C$. The case, x>y, is proved similarly.
- When neither y nor x is dominant, we can always choose $i \neq j$ such that $(x_i y_i)(x_j y_j) \leq 0$. Wolg, assume (i, j) = (n 1, n). $(\theta x_{n-1} + (1 \theta)y_{n-1})(\theta x_n + (1 \theta)y_n) (\theta x_{n-1}x_n + (1 \theta)y_{n-1}y_n)$

$$= -\theta(1-\theta)(x_{n-1} - y_{n-1})(x_n - y_n) \ge 0$$

Since
$$\tilde{x} = (x_1, \dots, x_{n-2}, x_{n-1}x_n)$$
 and $\tilde{y} = (y_1, \dots, y_{n-2}, y_{n-1}y_n) \in C_{n-1}$, $z = \theta \tilde{x} + (1 - \theta)\tilde{y} \in C_{n-1}$, for $0 \le \theta \le 1$, and $a \le z_1 \cdots z_{n-2}z_{n-1}$

$$= (\theta x_1 + (1 - \theta)y_1) \cdots (\theta x_{n-2} + (1 - \theta)y_{n-2})(\theta x_{n-1}x_n + (1 - \theta)y_{n-1}y_n)$$

$$\leq (\theta x_1 + (1 - \theta)y_1) \cdots (\theta x_{n-1} + (1 - \theta)y_{n-1})(\theta x_n + (1 - \theta)y_n)$$

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with
$$\theta_1 + \cdots + \theta_k = 1$$
, $\theta_i > 0$

convex hull $\operatorname{conv} S$: set of all convex combinations of points in S

Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$

with $\theta_1 > 0$, $\theta_2 > 0$

convex cone: set that contains all conic combinations of points in the set

Conic hull: examples

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^Tx = b\}$ $(a \neq 0)$

halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$

- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Hyperplanes and halfspaces

Example two distint points a and $b \in \mathbb{R}^n$. Set of all points x which are closer to a than b, i.e.

$$\{x \mid ||x - a|| \le ||x - b||\}$$

is a halfspace.

Hint The halfspace $S = \{x \in \mathbb{R}^n \mid c^T x \le d\}$ where c = 2(b-a) and $d = b^T b - a^T a$.

Hyperplanes and halfspaces

Question When a halfspace $\{x \mid a^T x \le b\}$ contains another halfspace $\{x \mid c^T x \le d\}$?

Answer if there exists a $\lambda > 0$ such that $a = \lambda c$ and $b \ge \lambda d$.

Euclidean balls and ellipsoids

(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^n$ (i.e., P symmetric positive definite)

other representation: $\{x_c + Au \mid ||u||_2 \le 1\}$ with A square and nonsingular

Question Is Euclidean ball a convex set? **Question** prove that $A = P^{1/2}$.

Norm balls and norm cones

norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- $||tx|| = |t| \, ||x||$ for $t \in \mathbf{R}$
- $||x + y|| \le ||x|| + ||y||$

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text{symb}}$ is particular norm **norm ball** with center x_c and radius r: $\{x\mid \|x-x_c\|\leq r\}$

norm cone:
$$\{(x,t) \mid ||x|| \le t\}$$

Euclidean norm cone is called secondorder cone

norm balls and cones are convex

Norm cones are epi-graphs of norm functions

Examples of norms

- ℓ_p -norm on \mathbb{R}^n : $||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$ • ℓ_∞ -norm on \mathbb{R}^n : $||x||_\infty = \max_i |x_i|$
- Quadratic norms: for P ∈ Sⁿ₊₊, the P-quadratic norm of x

$$||x||_P = (x^T P x)^{1/2} = ||P^{1/2} x||_2$$

• **Question** Find the set of points whose distance to a does not exceed a fixed fraction $0 \le \theta \le 1$ of the distance to b, i.e.

$$S = \{x|||x - a||_2 \le \theta ||x - b||_2\}$$

Hint

Examples of norms

- ℓ_p -norm on \mathbb{R}^n : $||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$ • ℓ_∞ -norm on \mathbb{R}^n : $||x||_\infty = \max_i |x_i|$
- Quadratic norms: for P ∈ Sⁿ₊₊, the P-quadratic norm of x

$$||x||_P = (x^T P x)^{1/2} = ||P^{1/2} x||_2$$

• **Question** Find the set of points whose distance to a does not exceed a fixed fraction $0 \le \theta \le 1$ of the distance to b, i.e.

$$S = \{x | ||x - a||_2 \le \theta ||x - b||_2\}$$

Hint

$$S = \{x \mid (1 - \theta^2)x^Tx - 2(a - \theta^2b)^Tx + (a^Ta - \theta^2b^Tb) \le 0\}$$

If $\theta = 1$, S is a halfspace. If $\theta < 1$, S is a ball

Polyhedra

Set of finitely many linear inequalities and equalities

$$S = \{x \mid Ax \le b, Cx = d\}$$

(≤ is componentwise inequality)

- Every polyhedral set is convex (because it is the intersection of finite number of halfspaces and hyperplanes)
- Linear Programming problem

min
$$c^T x$$

s.t. $Bx \le b, Dx = d$

Polyhedra: example

Verifying that the following set is polyhedron

$$S = \{x \in \mathbb{R}^n | x^T y \le 1 \text{ for all } y \text{ with } \sum_{i=1}^n |y_i| = 1\}$$

Hint
$$S = \{x \mid |x_k| \le 1, k = 1, \dots, n\}.$$

Select $y = \pm e_k$, then

$$\pm x^T e_k = \pm x_k \le 1$$

Next with any x such that $|x_k| \le 1$,

$$x^T y \le \sum_i |x_i| |y_i| \le \sum_i |y_i| = 1.$$

Example

$$S = \{x \in \mathbb{R}^n | x^T y \le 1 \text{ for all } y \text{ with } ||y||_2 = 1\}$$

Hint $S = \{x \mid ||x||_2 \le 1\}.$

Simplex

A simplex is a set given as a convex combination of a finite collection of vectors v_0, v_1, \ldots, v_k

$$C = \text{conv}\{v_0, v_1, \dots, v_k\} = \{\theta_0 v_0 + \dots + \theta_k v_k \mid \theta \ge 0, \mathbf{1}^T \theta = 1\}$$

The dimension of the simplex C is equal to the maximum number of linearly independent vectors among $v_1 - v_0, \dots, v_m - v_0$.

Probability simplex

 $P = \{x \in \mathbb{R}^{n+1} \mid \mathbf{1}^T x = 1, x \ge 0\}$ vertices are the standard unit vectors **Question:** Projection of a point x onto a probability simplex?

Example: Projection onto a probability simplex I

$$\min_{x} ||x - y||_{2}^{2}$$
s.t. $\mathbf{1}^{T} x = 1, x \ge 0$

Lagrangian function

$$L(x, \lambda, \nu) = \frac{1}{2} ||x - y||_2^2 - \nu (\mathbf{1}^T x - 1) - \lambda^T x$$
$$\nabla_x L = x - y - \mathbf{1} \nu - \lambda = 0$$

gives the optimal $x^* = y + \mathbf{1}\nu + \lambda$, where $\lambda \ge 0$. For positive elements $x_i > 0$, $i \in I$, we have $\lambda_i = 0$, hence $\nu = \frac{1}{I}(\sum_{i \in I} x_i - y_i) = \frac{1}{I}(1 - \sum_{i \in I} y_i)$. $x_i = y_i - \nu > 0$ indicates that for all $y_i > -\nu$ we get $x_i > 0$, or $I = \{i : y_i > -\nu\}$. This suggests an algorithm which

- Sort $y_1 \ge y_2 \ge \cdots \ge y_n$
- Check and find the largest *I* such that $y_I \ge \frac{1}{I}(1 \sum_{i=1}^{I} y_i)$.

Example: LP I

Solve the LP

min
$$c^T x$$

s.t. $\mathbf{1}^T x = 1, x \ge 0$

Lagrangian function

$$L(x, \lambda, \nu) = c^T x - \nu (\mathbf{1}^T x - 1) - \lambda^T x$$
$$\nabla_x L = c - \mathbf{1}\nu - \lambda = 0$$

For the optimal solution, x^* , denote by $I = \{i : x_i^* > 0\}$. From the complementary slackness condition, we have $\lambda_i = 0$ for $i \in I$, implying that

$$c_i = v$$
, for all $i \in \mathcal{I}$

The loss function is rewritten as

$$f(x^*) = c^T x^* = \sum_{i \in I} c_i x_i^* = \nu \sum_{i \in I} x_i^* = \nu$$

Example: LP II

It means ν is the minimum element of c: $f(x^\star)=\nu=c_{min}$ and the optimal $x_I^\star=\frac{1}{|I|}$ The Dual problem

$$\begin{array}{ll}
\text{max} & y \\
\text{s.t.} & \mathbf{1}y \le c
\end{array}$$

has the optimal dual solution $y^* = c_{min}$.

Positive semidefinite cone

- S^n is set of symmetric $n \times n$ matrices
- $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}^n_+ \iff z^T X z \ge 0 \text{ for all } z$$

 \mathbf{S}^n_{+} is a convex cone

• $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}$: positive definite $n \times n$ matrices

example:
$$\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbf{S}_+^2$$

Equivalent to $\{x \ge 0, z \ge 0, xz \ge y^2\}$

Problem prove S^n_{\perp} is a convex cone

Question: find a nearest psd matrix to a given matrix?

Example: find a nearest psd matrix to a given matrix I

Given a symmetrix matrix, $\mathbf{A} = \mathbf{A}^T$, and a skew-symmetric matrix, $\mathbf{B} = -\mathbf{B}^T$, then

$$\|\mathbf{B} + \mathbf{A}\|_F^2 = \|\mathbf{B}\|_F^2 + \|\mathbf{A}\|_F^2$$

since

$$2 \operatorname{trace}(\mathbf{A}\mathbf{B}^{T}) = \operatorname{trace}(\mathbf{A}\mathbf{B}^{T}) + \operatorname{trace}(\mathbf{A}\mathbf{B}^{T})$$

$$= \operatorname{trace}(\mathbf{A}^{T}\mathbf{B}^{T}) + \operatorname{trace}(\mathbf{A}(-\mathbf{B}))$$

$$= \operatorname{trace}((\mathbf{B}\mathbf{A})^{T}) - \operatorname{trace}(\mathbf{A}\mathbf{B})$$

$$= \operatorname{trace}(\mathbf{B}\mathbf{A}) - \operatorname{trace}(\mathbf{A}\mathbf{B})$$

$$= \operatorname{trace}(\mathbf{A}\mathbf{B}) - \operatorname{trace}(\mathbf{A}\mathbf{B}) = 0$$

Nearest symmetrix matrix to a matrix $\mathbf{Y} : \mathbf{X} = \frac{1}{2}(\mathbf{Y} + \mathbf{Y}^T)$

$$\|\mathbf{Y} - \mathbf{X}\|_F^2 = \|\frac{\mathbf{Y} - \mathbf{Y}^T}{2} + \frac{\mathbf{Y} + \mathbf{Y}^T}{2} - \mathbf{X}\|_F^2$$
$$= \|\frac{\mathbf{Y} - \mathbf{Y}^T}{2}\|_F^2 + \|\frac{\mathbf{Y} + \mathbf{Y}^T}{2} - \mathbf{X}\|_F^2$$

Example: find a nearest psd matrix to a given matrix

Nearest psd matrix to a symmetric matrix \mathbf{Y} Denote EVD of $\mathbf{Y} = \mathbf{U}\Lambda\mathbf{U}^T$ and $\mathbf{Z} = \mathbf{U}^T\mathbf{X}\mathbf{U}$

$$\begin{aligned} \|\mathbf{Y} - \mathbf{X}\|_F^2 &= \|\mathbf{\Lambda} - \mathbf{Z}\|_F^2 = \sum_{i \neq j} z_{i,j}^2 + \sum_i (\lambda_i - z_{i,i})^2 \\ &\geq \sum_{\lambda_i < 0} (\lambda_i - z_{i,i})^2 \geq \sum_{\lambda_i < 0} \lambda_i^2 \end{aligned}$$

Note that $z_{ii} \geq 0$ since \mathbf{Z} is psd. The lower bound is attained when $\mathbf{Z} = \mathrm{diag}([\lambda]_+)$, or $\mathbf{X} = \mathbf{U}\,\mathrm{diag}([\lambda]_+)\mathbf{U}^T$

Example

Let $C = \{x \in \mathbb{R}^n \mid f(x) = x^T A x + b^T x + c \le 0\}$. Show that C is convex if $A \ge 0$.

Example

Let $C = \{x \in \mathbb{R}^n \mid f(x) = x^T A x + b^T x + c \le 0\}$. Show that C is convex if $A \ge 0$.

Proof.

Let $x_1 \in C$ and $x_2 \in C$ and $z = \theta x_1 + (1 - \theta)x_2$ for $0 \le \theta \le 1$.

$$f(z) = z^{T}Az + b^{T}z + c$$

$$= (\theta x_{1} + (1 - \theta)x_{2})^{T}A(\theta x_{1} + (1 - \theta)x_{2}) + b^{T}(\theta x_{1} + (1 - \theta)x_{2}) + c$$

$$= \theta(x_{1}^{T}Ax_{1} + b^{T}x_{1} + c) + (1 - \theta)(x_{2}^{T}Ax_{2} + b^{T}x_{2} + c)$$

$$- \theta(1 - \theta)(x_{1} - x_{2})^{T}A(x_{1} - x_{2})$$

$$= \theta f(x_{1}) + (1 - \theta)f(x_{2}) - \theta(1 - \theta)(x_{1} - x_{2})^{T}A(x_{1} - x_{2})$$

$$< 0$$

Since $x_1 \in C$ and $x_2 \in C$, $f(x_1) \le 0$, $f(x_2) \le 0$ Since $A \ge 0$, $(x_1 - x_2)^T A(x_1 - x_2) \ge 0$ for all x_1 and x_2 . Hence $z \in C$.

Convexity preserving operations I

Prove that a set is convex

Build it up from simple convex sets using convexity preserving operations.

- **Intersection** If C and D are convex sets, then $C \cap D$ is also convex.
- Affine function If $C \subset \mathbb{R}^n$ is a convex set, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, then $AC + b = \{Ax + b | x \in C\}$ is also convex.

Example: Elipsoid $\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$ is an affine tranform $Ax + x_c$ of the unit ball $B = \{x \mid ||x||_2 \le 1\}$, where $A = P^{1/2}$.

Convexity preserving operations II

• Perspective transform $C \in \mathbb{R}^n \times \mathbb{R}_{++}$ is a convex set, then the perpestive transform P(C) is also convex

$$P(x \in C) = P(x_1, x_2, ..., x_n, t) = (x_1/t, x_2/t, ..., x_n/t) \in \mathbb{R}^n$$
.

Proof: Assume (x, t_1) and (z, t_2) in C and $u = x/t_1$ and $v = z/t_2$ are their perpestive transform, respectively.

We need to show that a new point $y = \theta u + (1 - \theta)v$ is in perpestive transform P(C), where $0 \le \theta \le 1$

i.e.,
$$\exists (x', t') \in C, y = \frac{x'}{t'}$$

Actually we can find $0 \le \alpha \le 1$ such that

$$\frac{x'}{t'} = \frac{\alpha x + (1 - \alpha)z}{\alpha t_1 + (1 - \alpha)t_2} = \theta \frac{x}{t_1} + (1 - \theta) \frac{z}{t_2}$$

$$\alpha = \frac{\theta t_2}{(1 - \theta)t_1 + \theta t_2}$$

Recognizing a convex set

- Using the definition of a convex set
- Writing C as the convex hull of a set of points X, or the intersection of a set of halfspaces
- Building it up from convex sets using convexity preserving operations

Intersection

the intersection of (any number of) convex sets is convex

example:

$$S = \{x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \cdots + x_m \cos mt$

for m=2:

Intersection: example

Show that the positive semidefinite cone $S_+^n = \{P \in S^n | P \ge 0\}$ is convex.

by definition of convexity.

Let
$$A \in S_+^n$$
 and $B \in S_+^n$ and $\theta \in [0, 1]$. For all x , $x^T(\theta A + (1 - \theta)B)x = \theta x^T A x + (1 - \theta)x^T B x \ge 0$.

based on intersection.

 S^n_{\perp} can be expressed as

$$S_{+}^{n} = \bigcap_{z \neq 0} \{ X \in S^{n} | z^{T} X z \geq 0 \}$$

Since the set $\{X \in S^n | z^T X z = (z \otimes z)^T \text{vec}(X) \ge 0\}$ is a halfspace in S^n , it is convex.

 S_{+}^{n} is the intersection of an infinite number of halfspaces, so it is convex.

Intersection: example

The set of points closer to a given point than a given set, i.e.,

$$\{x|||x-x_0||_2 \le ||x-y||_2 \text{ for all } y \in S\}$$

where $S \subset \mathbb{R}^n$.

Hint: This set is an intersection of halfspaces

$$\bigcap_{y \in S} \{x \mid ||x - x_0||_2 \le ||x - y||_2\}$$

Line Restriction: example

$$C = \{ x \in \mathbb{R}^n \mid f(x) = x^T A x + b^T x + c \le 0 \}$$

C is convex if A > 0.

Hint: C is convex if its intersection with an arbitrary line $\{x + tv \mid t \in R\}$ is convex.

Let \hat{x} be a point in the intersection of C and a line $\{\hat{x} + tv \mid t \in R\}$

$$C \cap {\hat{x} + tv} = {\hat{x} + tv | f(\hat{x} + tv) \le 0}$$
$$= {\hat{x} + tv | \alpha t^2 + \beta t + \gamma \le 0}$$

where $\alpha = v^T A v$, $\beta = b^T v + 2\hat{x}^T A v$, $\gamma = c + b^T \hat{x} + \hat{x}^T A \hat{x}$. The set is convex if $\alpha = v^T A v \ge 0$.

Line Restriction: Example

Prove the set $S = \{(x, y)|x^2 + y^2 \le 1\}$ is convex in \mathbb{R}^2 .

We need to show that for any line $L = \{(x, y) : ax + by + c = 0\}$ in \mathbb{R}^2 , the intersection $S \cap L$ is a convex set.

Let $p = [p_x, p_y]$ and $q = [q_x, q_y]$ be any two points in the intersection of S and L. We need to show that for any $\theta \in [0, 1]$, the point $r = \theta p + (1 - \theta)q$ is also in $S \cap L$.

It is obvious that $r \in L$. Since the norm function is convex, we have

$$||r|| = ||\theta p + (1 - \theta)q|| \le \theta ||p|| + (1 - \theta)||q|| \le \theta + (1 - \theta) = 1$$

This means that r is in the set S, as required.

Euclidean distance matrix

- The matrix $D \in S^n$, where $D_{i,j} = ||x_i x_j||_2^2$, is an Euclidean distance matrix (EDM) if and only if $D_{ii} = 0$ and $x^T D x \le 0$ for all x with $1^T x = 0$. $D = \text{diag}(X^T X) 1^T + 1 \text{diag}(X^T X)^T 2X^T X$ where $X = [x_1, \dots, x_n] \in \mathbb{R}^{k \times n}$.
- Show that the set of EDMs D is a convex cone.

Euclidean distance matrix

- The matrix $D \in S^n$, where $D_{i,j} = ||x_i x_j||_2^2$, is an Euclidean distance matrix (EDM) if and only if $D_{ii} = 0$ and $x^T D x \le 0$ for all x with $1^T x = 0$. $D = \text{diag}(X^T X) 1^T + 1 \text{diag}(X^T X)^T 2X^T X$ where $X = [x_1, \dots, x_n] \in \mathbb{R}^{k \times n}$.
- Show that the set of EDMs D is a convex cone.
 Hint: The set of EDMs in Sⁿ is the intersection of (infinitely many) halfspaces defined by the following homogeneous inequalities

$$e_i^T D e_i \le 0,$$
 $e_i^T D e_j \ge 0,$
$$x^T D x = \sum_{i,k} x_j x_k D_{jk} \le 0$$

for all i = 1, ..., n, and all x with $1^T x = 1$.

Affine functions I

suppose
$$f: \mathbf{R}^n \to \mathbf{R}^m$$
 is affine $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$

• the image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

ullet the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m \text{ convex} \implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\} \text{ convex}$$

examples

- scaling, translation, projection
- solution set of linear matrix inequality $\{x \mid x_1A_1 + \cdots + x_mA_m \leq B\}$ (with $A_i, B \in \mathbf{S}^p$)
- hyperbolic cone $\{x \mid x^T P x \leq (c^T x)^2, c^T x \geq 0\}$ (with $P \in \mathbf{S}_+^n$)

Affine functions II

Example

Show that the hyperbolic cone $S = \{x \in R^n \mid x^T P x \le (c^T x)^2, c^T x \ge 0 \text{ where } P \in S^n_+, \text{ is convex.}$

Proof Define an affine function $f: \mathbb{R}^n \to \mathbb{S}^{n+1}$

$$f(x) = (P^{1/2}x, c^Tx)$$

The S is the inverse image of the second-order cone

$$\{(z,t) \mid ||z||_2 \le t, t \ge 0\}$$

Hence it is convex.

Perspective and linear-fractional function

perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x,t) = x/t,$$
 dom $P = \{(x,t) \mid t > 0\}$

images and inverse images of convex sets under perspective are convex

linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 dom $f = \{x \mid c^T x + d > 0\}$

images and inverse images of convex sets under linear-fractional functions are convex

Perspective: example

The polyhedron $C = \text{conv}\{(v_1, t_1), \dots, (v_K, t_K)\}$ where $v_i \in \mathbb{R}^n$ and $t_i > 0$. Show that image of C

$$P(C) = \{v/t \mid (v,t) \in C, t > 0\}$$

is also a convex hull.

Perspective: example

The polyhedron $C = \text{conv}\{(v_1, t_1), \dots, (v_K, t_K)\}$ where $v_i \in \mathbb{R}^n$ and $t_i > 0$. Show that image of C

$$P(C) = \{v/t \mid (v, t) \in C, t > 0\}$$

is also a convex hull.

Hint

• For $\theta \ge 0$ and $\mathbf{1}^T \theta = 1$, let $v = \sum_{i=1}^K \theta_i v_i$ and $t = \sum_{i=1}^K \theta_i t_i$,

$$P(v,t) = v/t = \sum_{i=1}^{K} \frac{\theta_i t_i}{t} \frac{v_i}{t_i}.$$

Since $\sum_{i=1}^{K} \frac{\theta_i t_i}{t} = 1$, $P(v, t) \in \text{conv}\{v_1/t_1, \dots, v_K/t_K\}$.

• Consider a point $z = \sum_{i=1}^K \mu_i \frac{v_i}{t_i}$ in $\operatorname{conv}\{v_1/t_1, \dots, v_K/t_K\}$ for some $\mu \geq 0$ and $\mathbf{1}^T \mu = 1$. We need to show $z \in P(C)$. Define $\theta_i = \frac{\mu_i}{t_i \sum_{j=1}^K \mu_j/t_j}$, $t = \sum_i \theta_i t_i = \frac{1}{\sum_j \mu_j/t_j}$ and $v = \sum_i \theta_i v_i$, i.e., $(v, t) \in C$. It can be shown that $z = P(v, t) \in P(C)$.

Perspective: example

Find perspective image of $C = \{(v, t)|f^Tv + gt = h, t > 0\}$. **Hint**

$$\begin{split} P(C) &= \{z \mid f^T z + g = h/t, t > 0\} \\ &= \begin{cases} \{z \mid f^T z + g = 0\}, & h = 0 \\ \{z \mid f^T z + g > 0\}, & h > 0 \\ \{z \mid f^T z + g < 0\}, & h < 0 \end{cases} \end{split}$$

Linear-fractional function: example

Find the inverse image of $C = \{y | g^T y \le h\}$ after the linear-fractional function

$$f(x) = (Ax + b)/(c^T x + d),$$
 dom $f = \{x | c^T x + d > 0\}$

Hint

$$f^{-1}(C) = \{x \in \mathbf{dom} f \mid g^T f(x) \le h\}$$

= \{x \left| g^T (Ax + b) / (c^T x + d) \left| h, c^T x + d > 0\}
= \{x \left| (A^T g - hc)^T x \left| hd - g^T b, c^T x + d > 0\}

Generalized inequalities

a convex cone $K \subseteq \mathbf{R}^n$ is a **proper cone** if

- *K* is closed (contains its boundary)
- *K* is solid (has nonempty interior)
- K is pointed (contains no line)

examples

- nonnegative orthant $K = \mathbf{R}^n_+ = \{x \in \mathbf{R}^n \mid x_i \ge 0, i = 1, \dots, n\}$
- positive semidefinite cone $K = \mathbf{S}^n_+$
- ullet nonnegative polynomials on [0,1]:

$$K = \{x \in \mathbf{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0,1]\}$$

Positive Semidefinite Cone S^n_+ I

 S_{+}^{n} is a closed pointed convex cone in S^{n} with interior S_{++}^{n} .

- If X and −X ∈ Sⁿ₊, then X = 0, all eigen values of X are zeros, hence, Sⁿ₊ contains no line.
- $\mathbf{S}_{+}^{n} = \{A \in \mathbf{S}^{n} : x^{T}Ax \geq 0, \forall x \in \mathbb{R}^{n}\} = \bigcup_{x \in \mathbb{R}^{n}} \{A \in \mathbf{S}^{n} : x^{T}Ax \geq 0\}$ where half space $H_{x} = \{A \in \mathbf{S}^{n} : x^{T}Ax \geq 0\}$ is a closed convex set in \mathbf{S}^{n} for any fixed x. \mathbf{S}_{+}^{n} is intersection of closed halfspaces, H_{x} , hence \mathbf{S}_{+}^{n} is closed.
- $int(\mathbf{S}_{+}^{n}) = \mathbf{S}_{++}^{n}$. We need to show
 - $ightharpoonup S_{++}^n$ is contained in S_{+}^n and
 - if $X \in \mathbf{S}_{+}^{n} \setminus \mathbf{S}_{++}^{n}$, X is not in the interior of \mathbf{S}_{+}^{n}

Positive Semidefinite Cone S^n_{\perp} II

 $ightharpoonup \mathbf{S}_{++}^n \subseteq \operatorname{int}(\mathbf{S}_{+}^n)$

Let $X \in \mathbf{S}_{++}^n$, then $\lambda_n(X) > 0$. We need to prove that there exists a ball centered at X that is contained in \mathbf{S}_{-}^n

Define spectral norm ball $B=\{Y\in \mathbf{S}^n_+: \|Y-X\|_2<\lambda_n(X)\}$. Then for every $x\in\mathbb{R}^n$

$$x^{T}Yx = x^{T}Xx + x^{T}(Y - X)x \ge \lambda_{n}(X)||x||^{2} - ||Y - X|| ||x||^{2} > 0$$

implying that S_{++}^n is contained in the interior of S_{+}^n

$$x^{T}(Y - X)x = ||x||^{2}u^{T}(Y - X)u \ge -||x||^{2}||Y - X||$$

where $u = \frac{x}{\|x\|}$ is a unit lenth vector.

Assume $X \in \mathbf{S}_{+}^{n} \setminus \mathbf{S}_{++}^{n}$, hense its EVD $X = U \operatorname{diag}(\lambda(X))U^{T}$ has $\lambda_{n}(X) = 0$. Define $X_{k} = U \operatorname{diag}(\lambda(X) - \frac{1}{k})U^{T}$. Then $X_{k} \to X$.

If X is in the interior of \mathbf{S}_{+}^{n} , any ball centered at X contained in \mathbf{S}_{+}^{n} would contain some of the matrices X_{k} for large enough k. However, $X_{k} \notin \mathbf{S}_{+}^{n}$ since its has negative eigenvalues, $\lambda_{n}(X_{k}) < 0$. This contradicts.

Therefore, X must be on the boundary of S_+^n , and hence not in its interior.

Generalized inequalities

generalized inequality defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{int} K$$

examples

• componentwise inequality $(K = \mathbf{R}_{+}^{n})$

$$x \leq_{\mathbf{R}^n} y \iff x_i \leq y_i, \quad i = 1, \dots, n$$

• matrix inequality $(K = \mathbf{S}_{\perp}^n)$

$$X \leq_{\mathbf{S}_{+}^{n}} Y \iff Y - X$$
 positive semidefinite

these two types are so common that we drop the subscript in \preceq_K properties: many properties of \preceq_K are similar to \leq on \mathbf{R} , e.g.,

$$x \prec_K y$$
, $u \prec_K v \implies x + u \prec_K y + v$

Minimum and minimal elements I

 \leq_K is not in general a linear ordering: we can have $x \nleq y$ and $y \nleq x$ $x \in S$ is **the minimum element** of S with respect to \leq_K if

$$\forall y \in S \implies x \leq_K y$$

 $S \subseteq x + K$ $x \in S$ is **the minimal element** of S with respect to \leq_K if

$$y \in S$$
, $y \leq_K x \implies x = y$

$$S \cap (x - K) = x$$

Minimum and minimal elements II

A minimum element of S is always minimal, but minimal elements need not be unique.

example
$$(K = \mathbf{R}_+^2)$$

 x_1 is the minimum element of S_1 x_2 is a minimal element of S_2

example: S is the ball $S = \{x \in \mathbb{R}^2 : ||x - 1|| \le 1\}$ and $K = \mathbb{S}^n_+$, U is a given matrix of size $m \times n$.

example: S is the set of symmetric matrices

$$S = \{U \operatorname{diag}(v)U^T : v \in \mathbb{R}^n_+ : 1^T v = 1, v \ge 0\} \text{ and } K = \mathbf{S}^n_+$$

Dual cones and generalized inequalities

dual cone of a cone K:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

examples

- $K = \mathbf{R}^{n}_{+}$: $K^{*} = \mathbf{R}^{n}_{+}$
- $K = \mathbf{S}_{+}^{n}$: $K^{*} = \mathbf{S}_{+}^{n}$
- $K = \{(x,t) \mid ||x||_2 \le t\}$: $K^* = \{(x,t) \mid ||x||_2 \le t\}$
- $K = \{(x,t) \mid ||x||_1 \le t\}$: $K^* = \{(x,t) \mid ||x||_\infty \le t\}$

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$

Problem Prove dual cones of \mathbb{R}_+ and \mathbb{S}_+^n .

Dual cones: example

Find the dual cone of $\{Ax \mid x \geq 0\}$ where $A \in \mathbb{R}^{m \times n}$.

$$\mathbf{Hint}\ K^* = \{y \mid A^T y \ge 0\}$$

Dual of positive semidefinite cone

The positive semidefinite cone S_+^n is self-dual.

Proof.

Let Y in dual cone K^* of S^n_+ . Suppose $Y \notin S^n_+$, then $\exists q$ with $q^T Y q = \operatorname{tr}((qq^T)Y) < 0$, which contradicts $Y \in K^*$. If $Y \in S^n_+$, it is obvious that $\operatorname{tr}(XY) \geq 0$ for all $X \in S^n_+$.

55/63

Dual of ℓ_1 -norm cone

The dual of the cone $K = \{(x, t) \in \mathbb{R}^{n+1} \mid ||x||_1 \le t\}$ is the cone

$$K^* = \{(u, s) \in \mathbb{R}^{n+1} \mid ||u||_{\infty} \le s\}$$

Proof.

Let
$$y = (u, s)$$
. Denote $C = \{(u, s) \in \mathbb{R}^{n+1} \mid ||u||_{\infty} \le s\}$

- 1. For a point $(u, s) \in K^*$, then $u^T x + st \ge 0$ for all $(x, t) \in K$. Select $x = \pm t e_n$. $u^T x + st = \pm u_n t + s t \ge 0$. Hence $|u_n| \le s$, for all n, or $||u||_{\infty} \le s$, or $K^* \subseteq C$
- **2.** For a point (u, s) in the norm cone $C: ||u||_{\infty} \le s$

$$(u, s)^{T}(x, t) = u^{T} x + st \ge \sum_{n} - \max(|u_{n}|)|x_{n}| + st$$

$$= -\sum_{n} ||u||_{\infty} |x_{n}| + st$$

$$\ge s(t - \sum_{n} - \max(|u_{n}|)|x_{n}|) \ge 0$$

implying that $(u, s) \in K^*$ or $C \subseteq K^*$

Dual of a norm cone

The dual of the cone $K = \{(x, t) \in \mathbb{R}^{n+1} \mid ||x|| \le t\}$ is the cone defined by the dual norm $||u||_* = \sup\{u^T x \mid ||x|| \le 1\}$

$$K^* = \{(u, s) \in \mathbb{R}^{n+1} |||u||_* \le s\}$$

Proof.

Assume that $(u, s) \in K^*$. We need to prove

$$x^T u + ts \ge 0 \quad \forall ||x|| \le t \iff ||u||_* \le s$$

- 1. Suppose $||u||_* > s$. From definition of the dual norm, $\exists x$ with $||x|| \le 1$ and $u^T x \ge s$, or $u^T (-x) + s < 0$. This is a contradiction.
- **2.** Suppose $||u||_* \le s$. Let $\bar{x} = x/||x||$, i.e., $||\bar{x}|| = 1$.

$$x^{T}u + ts \ge ||x||\bar{x}^{T}u + ||x||||u||_{*}$$
$$= ||x||(\bar{x}^{T}u + ||u||_{*}) \ge 0$$

г

Separating hyperplane theorem I

if C and D are disjoint convex sets, then there exists $a \neq 0$, b such that

$$a^Tx \leq b \text{ for } x \in C, \qquad a^Tx \geq b \text{ for } x \in D$$

the hyperplane $\{x \mid a^T x = b\}$ separates C and D

strict separation requires additional assumptions ($e.g.,\ C$ is closed, D is a singleton)

Separating hyperplane theorem II

Proof: Denote by $c \in C$ and $d \in D$ two closest points between C and D, i.e.,

$$(c,d) = \underset{x \in C, y \in D}{\arg \min} \quad ||x - y||_2^2$$

Define a = c - d, and the hyperplane $f(x) = a^{T}(x - (c + d)/2)$. We have

$$f(c) = \frac{1}{2} ||c - d||_2^2 \ge 0$$
, $f(d) = \frac{-1}{2} ||c - d||_2^2 \le 0$

We need to prove (by contradiction) that $\forall x \in C$: $f(x) \ge 0$ Assume that $\exists x \in C$ such that

$$0 > f(x) = (c - d)^{T} (x - \frac{c + d}{2}) = (c - d)^{T} (x - c) + \frac{\|c - d\|^{2}}{2}$$

Note that (x - c) is a descent direction for $g(x) = ||x - d||^2$ at c

$$(\nabla g(c))^{T}(x-c) = 2(c-d)^{T}(x-c) < -\|c-d\|^{2}$$

Hence $\exists \varepsilon > 0$ s.t. $\forall t \in (0, \varepsilon)$

$$g(c + t(c - x)) < g(c)$$

this contradicts since c is the closest point to d.

System of strict linear inequalities

Let $A \in \mathbb{R}^{m \times n}$.

$$\{x \mid Ax \le b\}$$
 is empty $\iff \exists \lambda \ge 0 \text{ s.t. } \lambda^T A = 0, \lambda^T b < 0.$

Hint

Let $C = \{b - Ax | x \in \mathbb{R}^n\}$ and $D = R_{++}^n$. Since D is open and C is an affine set, the two sets are disjoint if there exists a separating hyperplane $\lambda^T y \le \mu$ on C and $\lambda^T y \ge \mu$ on D.

For C, it means that $\lambda^T(b-Ax) \leq \mu$ for all x, implying that $A^T\lambda = 0$ and $\lambda^Tb \leq \mu$.

For D, the condition $\lambda^T y \ge \mu$ for all y > 0, implies that $\mu \le 0$. All together

$$\lambda \neq 0, \lambda \geq 0, A^T \lambda = 0, \lambda^T b \leq 0$$

Example Check feasibility of the inequality system Ax < 0 where

$$A = \begin{bmatrix} -1 & 1 & -2 \\ 1 & -1 & 1 \\ -2 & 1 & -3 \\ 4 & -1 & 10 \end{bmatrix}$$

Hint: $\lambda = [1, 5/3, 1, 1/3]^T$ is a solution of $A^T \lambda = 0$. Hence the set is infeasible.

Farkas's Lemma

Let $A \in \mathbb{R}^{m \times n}$ and $c \in \mathbb{R}^n$,

$$(S) \begin{cases} Ax \ge 0 \\ c^T x < 0 \end{cases} \quad \text{and } (S^*) \begin{cases} A^T y = c \\ y \ge 0 \end{cases}$$

The system (S) has a solution if and only if the dual system (S^*) has no solution.

Example The system

$$(S) \begin{cases} x_1 - x_2 + 2x_3 \ge 0 \\ -x_1 + x_2 - x_3 \ge 0 \\ 2x_1 - x_2 + 3x_3 \ge 0 \\ 4x_1 - x_2 + 10x_3 < 0 \end{cases}$$

has no solution, because the dual system

$$\begin{cases} y_1 - y_2 + 2y_3 = 4 \\ -y_1 + y_2 - y_3 = -1 \\ 2y_1 - y_2 + 3y_3 = 10 \end{cases}$$

has a nonnegative solution y = (3, 5, 3).

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0 :

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

supporting hyperplane theorem: if ${\cal C}$ is convex, then there exists a supporting hyperplane at every boundary point of ${\cal C}$