College of OCEANIC & ATMOSPHERIC SCIENCES

Submarine-based Hydrographic Observations of the Arctic Ocean

March-May 1995

SCICEX-95

Timothy Boyd Mary Sue Moustafa Michael Steele

> Reference 97-5 December 1997 Data Report 167

Office of Naval Research N00014-95-1-0479

OREGON STATE UNIVERSITY

19990201 046

Submarine-based Hydrographic Observations of the Arctic Ocean

March-May 1995

SCICEX-95

Timothy Boyd

Oregon State University
College of Oceanic and Atmospheric Sciences
104 Ocean Admin Bldg
Corvallis, OR 97331

Mary Sue Moustafa

Science Applications International Corporation

Michael Steele

Polar Science Center/Applied Physics Laboratory University of Washington

> Sponsor: Office of Naval Research Grant: N00014-95-1-0479

Oregon State University

Reference 97-5 December 1997 Data Report 167 Approved for Public Release Distribution is Unlimited December 1997

ACKNOWLEDGEMENTS

The data presented in this volume resulted from the efforts of a large number of individuals, to whom we are greatly indebted. Knut Aagaard and Jamie Morison of the Polar Science Center, University of Washington, and Ruth Keenan and Peter Mikhalevsky of Science Applications International Corporation participated in planning the cruise and the sampling program. Jeff Gossett, Dan Steele, Marshall Moser, Mike Hacking and Burt Markham of the US Navy Arctic Submarine Laboratory (ASL) participated in the design and installation of instrumentation used in the underway and surface sampling. Barry Campbell was our liaison at the office of the Commander Submarine Force, US Pacific Fleet (COMSUBPAC) in Pearl Harbor. Bernie Coakley of Lamont Dougherty Earth Observatory, Columbia University recorded, decoded, and cleaned up the submarine (SDRS) navigation data and directed the winch operations on the ice. Jeff Gossett, Dan Steele, and Al Hayashida of ASL participated in a variety of sampling on the cruise: drawing and hauling water samples, launching XCTD's, and overseeing the surface sampling. Ted DeLaca (University of Alaska, Fairbanks) and Dean Stockwell (University of Texas, Marine Science Institute) assisted with the watersampling programs. One of us (T.B.) is greatly indebted to the officers and crew of the USS Cavalla for technical assistance provided throughout the cruise. This program benefited from the "can-do" attitude and enthusiastic participation of the crew, under the exemplary leadership of Commanding Officer, CDR C. J. Leidig and Chief of the Boat, MMCM Carroll. The technical assistance provided underway by Chief (ETC) Pat Miller was especially valuable. Many of the figures were prepared by Steve Gard (OSU).

We appreciate the efforts of program managers Tom Curtin and Mike Van Woert of the Office of Naval Research High Latitude Program and Odile de la Beaujardiere of the National Science Foundation Office of Polar Programs for their support and leadership in this program. The support through ONR grants N00014-95-1-0479 to OSU (T.B.), N00014-95-1-0437 to APL/UW (M.S.), and N00014-93-C-0217 to SAIC (M.S.M.) is gratefully acknowledged.

TABLE OF CONTENTS

INTRODUCTION	1
CTD DATA FROM SURFACE CASTS	4
CTD data processing	4
XCTD DATA	
Summary of XCTD errors	6
Determination of the XCTD fall rates	6
XCTD data processing	13
SALINITY FROM BOTTLE SAMPLES	23
SAIL CTD DATA	23
Sail CTD data processing	25
SDRS data processing	25
References	28
Table 5. SCICEX-95 Under-Ice SSXCTD Log	29
Table 6. Water Sample Salinity Log	35
TEMPERATURE and SALINITY Profiles: CTD Surface Casts	41
TEMPERATURE and SALINITY Profiles: XCTD Underway Casts	45
TEMPERATURE and SALINITY Time Series: Sail CTD Underway Sampling	77

INTRODUCTION

This report documents observations of temperature and salinity made in the Arctic Ocean during the 1995 cruise of the submarine *USS Cavalla*. This cruise was the second civilian scientific cruise to the Arctic Ocean aboard a U.S. Navy *Sturgeon*-class submarine, and the first of five annual SCICEX cruises.

The SCICEX-95 cruise began on March 8 with a transit from Pearl Harbor, Hawaii through Bering Strait to the Arctic Ocean data sampling area, defined to exclude non-U.S. EEZs. The *Cavalla* entered the sampling area on March 26, covered approximately 10,800 nautical miles within that area while collecting data over the next 44 days, and exited the sampling area on May 8 (**Figure 1**). Following a second passage through Bering Strait, the scientific party departed the submarine in Victoria, B.C., Canada on May 24.

Observations of temperature and salinity were made for two physical oceanographic programs during the SCICEX-95 cruise. The goals of these sampling programs were to: (1) determine the variability in sound speed and surface ice cover over a single, long transect across the Canadian and Eurasian Basins (PIs: Keenan and Mikhalevsky/SAIC), and (2) determine the temperature and salinity variability in the halocline layer over broad regions within the central Arctic basins (PIs: Aagaard, Morison, and Steele/APL and Boyd/OSU). Sound speed was derived from temperature and salinity obtained using Sippican XCTD's, which were launched at roughly 40 km separations along an approximately 2500 km path from the southern Beaufort Sea to the Nansen Basin north of Frans Joseph Land. Temperature and salinity in the halocline were sampled continuously underway with a CTD mounted in the submarine sail and intermittently with XCTD's. Temperature and salinity profiles were also made with a wire-lowered CTD at five surface stations in order to calibrate the XCTD's and to provide background information for biological and chemical investigations. In addition, water samples were also collected underway for later determination of salinity as background information for the underway biological and chemical sampling programs.

Detailed descriptions of the objectives and methods of the various geophysical, biological, and chemical sampling programs conducted during the SCICEX-95 cruise can be found in DeLaca and Gossett (1996) and Gossett (1996). A detailed chronology of the sampling during the cruise can be found in the *Water Sample Log* prepared by SCICEX-95 chief scientist Ted DeLaca and the *Technical Advisor's Log* prepared by Jeff Gossett, both available from the Arctic Submarine Laboratory. Interpretation of the temperature and salinity distributions represented in these figures can be found in Steele and Boyd, (1998).

This report is divided into two sections. The first section contains descriptions of the instrumentation used during the cruise, sampling times and locations, and data processing methods. The second section contains tables and plots of the resulting processed data:

Figure 1. SCICEX-95 cruise track with XCTD locations and 1995 year-days superimposed $\,$

salinity from bottle samples, time series from the sail-mounted CTD, profiles from the CTD lowered at surface stations, and XCTD profiles.

The sail CTD data, XCTD data, and CTD profile data are currently available on request from the authors, and will soon be available through the National Snow and Ice Data Center, Boulder, Co.

CTD DATA FROM SURFACE CASTS

CTD profiles were obtained at each of the five locations listed in **Table 1** and identified in **Figure 2**. A scheduled surface station at the North Pole was cancelled after the vessel surfaced several times through ice which was too thin from which to conduct the surface sampling. (Note that the surface stations are numbered 1-4 and 6 in the ASL logs, because the canceled North Pole station was designated station 5.)

CTD profiles from the surface to about 550 m were conducted using an internally recording, pumped Sea-Bird Electronics SBE-19 SeaCat (s/n 114) with a 600 m pressure case. The sampling rate for the SeaCat during the profiles was 2 Hz. Water samples were taken simultaneously using the same line. The typical lowering rate was about 1 m/sec, with intermittent stops to attach or remove Niskin Bottles, drop messengers, and de-ice the line.

The SeaCat temperature and conductivity sensors were calibrated by Sea-Bird Electronics both before and after the cruise. Differences between the pre- and post-cruise calibrations of the temperature sensor were at most 1.5 x 10⁻³ °C over the temperature range of interest. One end of the conductivity cell was cracked sometime during the cruise, so the pre- to post-cruise calibration difference of up to 0.001 Siemens/meter may be significantly larger than the actual drift over the sampling period. Combining the temperature and conductivity errors results in a salinity drift of approximately -0.01 psu. The pre-cruise calibration values were used for both the temperature and the conductivity sensors.

Complete CTD profiles exist for surface stations 1 to 4. The CTD profile from surface station 5 (referred to as surface station 6 in the ASL logs), over the Alpha Ridge, has a significant gap between 35 m and 115 m, due to: (1) a gap in the pressure signal during the downward segment through the upper halocline, probably due to ice clogging of the sensors, and (2) interruption of the profile to wait out the upwind ships diesel exhaust, resulting in insufficient memory at the time of the upward segment through the upper halocline.

CTD data processing

The basic processing of data from the surface CTD casts was in accordance with the recommendations for SBE-19 processing in the SBE/SEASOFT v4.207 manual. The conductivity signal was filtered using the SEASOFT "filter" module with a time constant of 0.5 seconds. The temperature signal was lagged relative to pressure by 0.5 seconds using the SEASOFT "alignetd" module. Remaining outliers and data near the end of soaking at a depth of 3-5 m (an average of 7.25 minutes from the time the CTD went into the water) were removed. Profiles were then split into a downcast and an upcast. Finally, the downcast and upcast were averaged into 1 decibar bins. The downcasts from the surface CTD profiles were used to calibrate the fall-rate of the XCTD's, with the

Table 1. SCICEX-95 (USS Cavalla) Surface CTD Log

CTD No.		Latitu	titude		7	ongitude.	qe		Month	Day	Time	Depth (m)
1	70	1	54.1	z	141	ī	54.4	≯	3	31	1800	2278
2	80		28.7	z	148	1	43.8	В	4	14	089	2082
က	75		46.8	z	179	•	18.1	8	4	19	006	1220
4	82	•	41.7	Z	173	1	24.2	Ν	4	56	1500	2902
2	84	ı	54.9	z	135	•	26.4	8	5	4	2130	2168

exception of the profile from station 3, in which the surface mixed layer appeared significantly fresher in the downcast than the upcast.

XCTD DATA

Over the first phase of the cruise, XCTD's were launched at an average interval of about 26 hours. This corresponds to an average separation of 176 km along the cruise track during the relatively shallow sampling over the continental slopes of the East Siberian, Chukchi, and Beaufort Seas. Over the Chukchi Plateau and Mendeleyev Ridge this represented an average along-track separation of 307 km. During the second phase, XCTD's were launched at an average separation of 38 km on the long transect across the Canadian and Eurasian Basins. During the repeated crossings of the Lomonosov Ridge in the third phase of the cruise, XCTD's were launched at an average across-ridge separation of 58 km. The locations of the XCTD profiles are shown in **Figures 1** and **2**. A slightly modified version of the ASL *Under-Ice SSXCTD Log* is included here as **Table 5**. (Note that several corrections have been made to the locations or dates of XCTD's listed in the original ASL log - see log sequence numbers 16, 17, 61, 89, and 94 in Table 5.)

Summary of XCTD errors

Errors in the XCTD temperature and salinity data can be attributed to two separate sources: (1) sensor errors and (2) depth errors. Sensor error was determined by comparing nearly concurrent XCTD and CTD casts in a region of low variability (a 100 m depth layer below the thermocline, see **Table 3**). Average temperature sensor error was 0.02 °C with a standard deviation of 0.013 °C, and the average salinity error was 0.014 with a standard deviation of 0.007. (Note that the sensor errors derived in this fashion are somewhat counter-intuitive, since a temperature error of 0.02 °C, with no conductivity error, results in a salinity error of about 0.02.)

For an estimate of the total error in the XCTD T and S, the sensor errors should be combined with the T and S errors that result from the depth errors discussed in detail below. The depth uncertainty in the XCTD data is about 10%; i.e., about 5 m at 50 m depth and about 50 m at 500 m depth. This depth error results in a salinity error of 0.002 at 50 m, which increases to 0.03 at 500 m, and a small potential temperature error of 0.004 °C at 500 m. Combining the CTD drift, XCTD sensor, and XCTD depth errors results in estimated salinity errors that range from 0.03 at 50 m to 0.06 at 500 m. Potential temperature errors range from 0.03 °C at 50 m to 0.04 °C at 500 m.

Determination of the XCTD fall rates

Comparison of XCTD profiles to nearly concurrent CTD profiles from SCICEX-95 revealed significant differences between the depths attributed to easily identified temperature and salinity features in each of the profiles. These depth differences increased with increasing depth, in a manner which is consistent with incorrect conversion from XCTD fall-time to XCTD depth.

Figure 2a. SCICEX-95 cruise track with XCTD locations and CTD surface stations superimposed. The outlined areas are enlarged in Figures 2b, 2c, and 2d.

Figure 2b.

Figure 2c.

Figure 2d.

After launch, the U/I (under-ice) SS (submarine-ship) XCTD rises from the submarine to a prescribed depth where the probe inverts, leaves behind part of the launched package and begins to fall and sample. The Sippican model for the depth of the probe is quadratic in the time of fall: $z = m1 + m2 \cdot time + m3 \cdot time^2$, where m1 is the depth at which the XCTD first sends a recognizable signal. The time of the first good datum varies but is typically 0.4 seconds after the first signal sent by the probe following inverting and flooding. The probe is sampled every 0.25 seconds thereafter.

The process used to determine both the depth and sensor errors for the XCTD's deployed during SCICEX-95 assumes that the SBE-19 can be taken as a standard. That process is summarized here and described in greater detail below. The first step was to compare an XCTD profile to a nearly concurrent SBE CTD profile to determine the best fall-rate parameters for that particular XCTD. There are 5 XCTD's for which this was possible. In these cases the XCTD profile was typically obtained during resubmergence following the surface station at which the CTD cast was made, and lagged the CTD profile by 4-6 hours. The temperature (T) and salinity (S) errors remaining after the best-fits of the XCTD profiles to the CTD profiles are shown in Table 2 for the entire profiles, and in Table 3 for a region of low variability below the thermocline. As noted above, we regard the T and S errors from this 100 m region of low variability as the sensor errors. After finding the parameter values which individually best fit the fall-rate of each XCTD for which a comparison was possible, a single set of parameter values that best fits the fallrate for the ensemble of 5 XCTD's was then obtained. In this case, a best-fit was determined by minimizing the depth error, defined for each XCTD as the difference between depths obtained using the individual XCTD best-fit parameters and ensemble best-fit parameters. The resulting ensemble errors in XCTD depth then imply the errors in salinity (significant) and potential temperature (very small), shown in Table 4.

Several different techniques were employed to determine the best-fit depth parameters for each CTD/XCTD pair. Since both temperature (T) and conductivity (C) increase with increasing depth over a range of depths above the Atlantic Layer temperature maximum (typically 100 m - 300 m), both CTD depth and XCTD time-of-fall are single-valued functions of smoothed T and smoothed C. Thus it is possible to obtain least squares (constrained and unconstrained) fits of XCTD time to CTD depth over this depth range. The drawback of this method is the shallow depth range over which it can be applied. Errors in the fall-rate result in increasing depth errors at greater depths (times-of-fall), i.e., where this relatively shallow method does not constrain the solution. The parameters m1, m2, and m3 shown in Table 2 were obtained by a search through the three-dimensional parameter space. They are a best-fit in the sense that they result in minimum T and S errors. Since the CTD profiles extended to only 530 m - 570 m, these were the depths to which the comparisons could be made.

To obtain best-fit depth parameters for the ensemble of 5 CTD/XCTD pairs, we assumed that the best-fit depth parameters for each pair separately yield the correct depth as a function of time for each XCTD. Thus, the difference between the individual and

Table 2. Best fit of XCTD profile to SBE CTD profile: errors are evaluated for linearly interpolated data over the full depth depth range available

rors		537	572	572	572	572
e for Er	max					
Depth Range for Errors	,	30	31	23	28	120
De	min	Н				
h Range	max	684.7	831.8	883.3	847.6	743.9
XCTD Depth Range	min	29.4	30.5	22.7	27.8	37.4
			1			2
٦٢	std	0.0197	0.0204	0.0931	0.0332	0.0262
Salinity Error	bias	-0.0379	-0.0242	0.0015	-0.0085	-0.027
rature Error (°C)	std	0.0256	0.0517	0.0444	0.0354	0.0123
Temperature	bias	-0.0012	0.001	0.0231	0.0019	-0.0045
ırs	m3	0.002	0.003	0.005	0.003	0.004
aramete	m2	3.0	3.6	3.5	3.7	2.9
Best-fit Parameters	m1 n	26	19	14	16	29
XCTD		8	20	26	70	119
CTD		-	2	3	4	5

Table 3. Best fit of XCTD profile to SBE CTD profile: errors are evaluated for linearly interpolated data over the lower 100 m of the depth range available

CTD	XCTD	Best-fit	Best-fit Parameters	ers	Temperatu	erature Error (°C)	Salinity Error		Max Depth (m)	(m)	Depth Rar	Range for Errors
		m1	m2	m3	bias	std	bias std		XCTD	CTD	min	max
_	8	26	3.0	0.002	0.0041	0.0106	-0.0247	0.0026	685	537	437	7 537
2	20	19	3.6	0.003	0.0515		-0.0218	0.0081	832	573	472	
8	26	14	3.5	0.005	0.0192		600.0-	0.0068	883	573	472	572
4	70	16	3.7	0.003	0.024		0.0037	0.0149	848	572	472	572
5	119	29	2.9	0.004	0.0006		-0.0198	0.0035	744	573	472	2 572
avg					0.02	2 0.0128	-0.0143	0.0072				

Table 4. Salinity and potential temperature errors resulting from depth error in the average fit of XCTD profiles. The salinity and theta errors are the maxima from XCTD profiles 34, 61, 72, and 90, using the standard deviations of the depth error.

Depth	Depth Error (m)	rror (m)	Sal	Salinity Error	Theta E	Theta Error (°C)
	Avg	Std				
20	2.8	4		0.005		0.0001
100	0.4	3.5		0.002		0.0001
200	-3.2	14.2		600.0		0.001
300	-5.4	25.4		0.016		0.0019
400	-6.3	36.8		0.022		0.0027
200	-6.3	48.4		0.029		0.0035
009	-5.5	60.3		0.035		0.0043

ensemble best-fit XCTD depths is a result of probe-to-probe variability in the XCTD fall-rate. The ensemble best-fit parameters were obtained by searching through the three-dimensional parameter space. The measure of goodness-of-fit for the ensemble is the average depth error, i.e., the difference between depths obtained using ensemble and individual best-fit depth parameters for each of the five XCTD's.

Table 4 for each of the XCTD's. The maximum salinity and potential temperature errors that result from these depth errors are also listed in Table 4, for a collection of XCTD profiles which are representative of each of the major basins sampled in SCICEX-95. The coefficients used to determine the errors in Table 3 (ml = 17, m2 = 3.5, m3 = 0.0025) were used to compute XCTD depths for all of the SCICEX-95 probes except XCTD's 21 and 105, which were produced in 1993 and have significantly different fall-rate coefficients (Moustafa and Boyd, 1998: ml = 12.2, m2 = 4.209, m3 = 0.005).

The scatter plots of T and S from XCTD and CTD casts in Figures 3 a-c illustrate of the magnitude of the XCTD sensor and depth errors for the uncorrected (i.e., original Sippican) coefficients, individual best-fit coefficients, and ensemble best-fit depth coefficients, respectively. The large bias and standard deviation in the uncorrected T and S (Figure 3a) are reduced significantly by the application of the individual best-fit depth parameters (Figure 3b). Small depth errors for the individual best-fit parameters can still result in large S errors within the halocline, although T errors remain small (Figure 3b). Both T and S resulting from the individual best-fit parameters are small at greater depths. The small bias but larger standard deviation in T and S resulting from the ensemble best-fit coefficients is shown in Figure 3c, in which depth errors in the halocline result in large errors at low salinities.

On several occasions, a backup XCTD was launched when the signal from the primary XCTD was particularly noisy, when the signal terminated shallow due to a broken wire, or when the profile appeared unusual for some other reason. These occasions were noted in the XCTD log. In cases where the signal was not too noisy (XCTD's 77/78, 81/82, and 87/88), comparison of the resulting profiles provided another measure of the probe-to-probe variability in the fall rate. In each case, the backup XCTD was launched within an interval of 10 minutes and at a distance no greater than 1.1 km from the primary XCTD. Overlaying temperature profiles from each of these XCTD pairs (**Figure 4**) reveals the magnitude of the random, probe-to-probe variability in the fall-rate. T-S plots for these XCTD pairs (**Figure 5**) demonstrate the magnitude of the resulting errors in potential temperature and salinity.

XCTD data processing

Significant salinity spikes exist across temperature steps in the depth-corrected, but otherwise raw, XCTD data due to unmatched temperature and conductivity sensor response. Many of these spikes are symmetric, and thus cannot be reduced by shifting T relative to C. Prior to computing salinity, T and C have been interpolated to a standard

Figure 3a. Scatter plots of temperature and salinity from CTD and XCTD casts, with no correction for XCTD depth error

Figure 3b. Scatter plots of temperature and salinity from CTD and XCTD casts, with each XCTD depth—corrected separately

Figure 3c. Scatter plots of temperature and salinity from CTD and XCTD casts, with the XCTDs depth—corrected as an ensemble

Figure 4a. Potential temperature vs. Depth for XCTD 77 and XCTD 78 (gray line)

Figure 4b. Potential temperature vs. Depth for XCTD 81 and XCTD 82 (gray line)

Figure 4c. Potential temperature vs. Depth for XCTD 87 and XCTD 88 (gray line)

Figure 5a. Potential temperature $\,$ vs. salinity for XCTD 77 (o) and XCTD 78 ($\!\Delta\!$)

Figure 5b. Potential temperature $\,$ vs. salinity for XCTD 81 (o) and XCTD 82 (Δ)

Figure 5c. Potential temperature $\,$ vs. salinity for XCTD 87 (o) and XCTD 88 ($\!\Delta\!$)

pressure grid with 1-decibar separations. The salinity spikes have been significantly reduced, and many of the resulting density inversions eliminated or reduced in amplitude, by median filtering the 1-decibar salinity over 6 decibars. Profiles of potential temperature and salinity are plotted in this report for each XCTD listed in the XCTD log (Table 5), except XCTD's 43 and 102. Potential temperature plotted in these figures was computed using the filtered salinity, but is otherwise unfiltered.

SALINITY FROM BOTTLE SAMPLES

Water samples were collected through a submarine seawater intake line at the locations of many of the XCTD profiles, as well as some other locations identified in the *Water Sample Log* produced and distributed by ASL. In order to evaluate the quality of salinities determined from samples taken through the seawater line while underway, a comparison was made between water samples collected from identical depths at the surface stations by line-lowered Niskin bottles and through the submarine's seawater line. The samples drawn through the seawater line were taken during resubmergence after the surface sampling, and typically lagged the Niskin bottle samples by 4-6 hours. All water samples collected were stored in bottles for later analysis.

Salinities were obtained from the bottle samples using a Guildline model 8400 Autosal salinometer at OSU in July, 1995. The manufacturer specifies the accuracy of the salinities obtained from this unit at better than ± 0.003 ppt, with a resolution of better than 0.0002 ppt at 35 ppt, and the short term stability of the unit at better than ± 0.002 ppt. **Table 6** lists salinities determined from the water samples together with the time and position of the sample and the ASL *Water Sample Log* code of the sample for cross reference with other water sample data.

Comparison of the salinities from Niskin bottle samples to the salinities from submarine intake samples is illustrated in **Figure 6**. Excluding the single wild outlier, the mean difference is 0.03 ppt and the rms difference is 0.10.

SAIL CTD DATA

Due to failure of the SBE-19 "IceCat" and Ocean Sensors "SubCTD" systems installed at the outset of the cruise, no sail CTD data exist prior to surface station 3. Following surface station 3, a single CTD (SBE-19 s/n 114) was used to provide both time series at the cruising depth and profiles at the surface stations. Calibration of this CTD is discussed above. For most of the cruise, the sail CTD sampled data at 4 second intervals. These data were recorded internally and periodically downloaded when the CTD memory was full. During the last 12 hours of the CTD record the sampling interval was reduced to 0.5 seconds to insure that the CTD memory would be full and consequently no data would be collected outside the approved data collection area.

Figure 6. Comparison of bottle salinities from submarine intake and hydro cast samples

Sail CTD data processing

Examination of the sail CTD record revealed a time constant of roughly 3-4.5 minutes associated with changes in depth of the submarine. A much shorter time constant may be appropriate for sections of the record covered at constant depth. The time constant is readily apparent in rapid changes in submarine depth: the pressure (P) record responds instantly, while the temperature (T) and conductivity (C) records lag the pressure record, approaching the T/C of the new depth exponentially with a time constant which can be easily determined. This e-folding scale is typically about 3.3 minutes, but somewhat larger (as large as 4.5 minutes) when the submarine transits from a deeper to a shallower depth.

Sail CTD data have been divided into time series at a number of transit depths: (approximately 45 m, 120 m, 170 m, 190 m, and 225 m). The vast majority of the sail CTD data were collected at 120 m. The sail CTD data were first edited to remove data following significant changes in depth. Data were eliminated from the time at which the pressure signal leaves a transit depth P until approximately 5 e-folding times after the time at which the pressure signal returns to the transit depth P. After this time (16.67 minutes) the T/C errors associated with the depth change should be less than 0.7% of the difference between T/C at the end points of the depth change. The few obvious outliers remaining after implementation of this procedure were explicitly removed.

Following editing to avoid significant depth changes, the CTD data were edited to remove fluctuations associated with small pressure outliers in an otherwise level transit. Statistics from a typical transit period at each depth were used to eliminate data with pressure more than 3 standard deviations from the mean. In the case of the 120 m data, the reference period was on 4/21/95, during which the mean P was 122.88 dbar with rms fluctuations of 0.71 dbar. The remaining data were low-pass filtered in the time domain using a Gaussian filter with a half-power period of 3 minutes, and subsampled to four minutes. Assuming a vessel speed of 14-15 knots, this corresponds to a point every 1.3 km. Only the resulting time series at 120 m are shown in this report.

Figure 7 is a comparison of salinity from the sail CTD and water samples drawn from the submarine's seawater intake. Figure 8 is a comparison between the sail CTD and XCTD temperature and salinity signals, where the XCTD signal has been averaged over 10 m in the vertical.

Processing of SDRS data

Navigational data from the Submarine Data Recording System (SDRS) were recorded, decoded, and filtered by Dr. Bernard Coakley of Lamont-Doherty Earth Observatory. Most of the variables in the SDRS data stream were sampled every second, although the depth below the keel was typically sampled every 11 seconds. The data were subsequently filtered with a 60-second mode estimator to remove spikes and subsampled

Figure 7. Salinity from the sail CTD at 120 m and bottle samples from 132-134 m

Figure 8. T & S from the sail CTD at 120 m and XCTDs averaged from 115–125 m $\,$

at 15 seconds by Dr. Coakley. Remaining obvious outliers were explicitly removed by editing at OSU. In addition, a short section of errors in latitude and longitude on day 99.85-99.93 was removed and the gap filled with linearly interpolated lat/lon data. Latitude, longitude, and ocean depth were then linearly interpolated to the times of the sail CTD data.

References

DeLaca, T, and J. Gossett, Nuclear Submarines and Oceanography in the Arctic, Witness the Arctic, Arctic Research Consortium of the United States, 3, 1, pp.1-2, 1996.

Gossett, J., Arctic Research Using Nuclear Submarines, *Sea Technology*, **37**, 3, pp.33-40, 1996.

Moustafa, M. S. and T. Boyd, Evaluation of the Sippican SSXCTD Fall Rate Equation, manuscript in preparation, 1998.

Steele, M., and T. Boyd, Retreat of the Cold Halocline Layer in the Arctic Ocean, J. Geophys. Res., in press, 1998.

Table 5. SCICEX-95 Under-Ice SSXCTD Log

This is a modification of the Unclassified SCICEX-95 U/I SSXCTD LOG distributed by the US Navy Arctic Sub Lab.

Table 5. SCICEX-95 (USS Cavalla) Under-Ice SSXCTD Log

REMARKS	No Data	No Data	No Data	No Data	XCTD max depth 423 m				XCTD max depth 465 m								7					XCTD probe failure at 433 m			XCTD max depth 683 m			Start Phase 2				
Depth (m) SDRS	N	NC	N	NC		1845.1	2170.4	2035.1		837.6	1386.0	1935.4	2129.2		2629.8	2851.2	3453.7	2383.1		1917.4			2531.7			1112.7	3801.5		3676.0	3712.9	3741.1	3783.6
Depth (m) QM Log					419.3	1690.2	2171.3	2043.1	594.4	837.9	1400.8	2022.6	2132.3	2521.2	2626.2	2651.4	3452.0	2385.5	1550.5	1915.8	2596.2	2743.1	2472.9	1121.1	687.0	1106.4	3800.8	3207.0	3671.2	3705.8	3737.0	3780.9
Filename	CTD	CTD	CTD	СТБ	CTD 5	CTD 6	CTD 7	CTD 8	CTD 9	CTD 10	CTD 11	CTD 12	CTD 13	CTD 14	CTD 15	CTD 16	CTD 17	CTD 18	CTD 19	CTD 20	CTD 21	CTD 22		CTD 24	CTD 25	CTD 26	CTD 27	CTD 28	CTD 29	CTD 30	CTD 31	CTD 32
Serial No.	94090199	94090198	94110029	94110058	94090230	94090204	94090211	94110025	94090213	94090249	94110043	94110006	94110031	94100178	94090234	94110007	94110065	94090202	94110050	94090236	93050043	94090244	94110019	94110016	94090247	94110042	94110012	94090229	94110017	94110057	94090205	94090164
Year					87.351	88.517	89.644	91.316	92.771	93.562	94.297	95.034	96.592	97.288	98.034	98.781	100.283	101.032	103.753	104.678	105.517	106.263	106.933	107.770	108.681	109.806	111.786	112.529	112.629	112.722	112.794	112.890
Date/Time	26 1302 Z MAR	26 1310 Z MAR	27 0906 Z MAR	27 0930 Z MAR	28 0826 Z MAR	29 1224 Z MAR	1528 Z	01 0735 Z APR		03 1329 Z APR	04 0707 Z APR	05 0049 Z APR	06 1413 Z APR	07 0654 Z APR	08 0049 Z APR	08 1844 Z APR	10 0647 Z APR	11 0046 Z APR	13 1805 Z APR	7	15 1224 Z APR	16 0619 Z APR	16 2224 Z APR	17 1829 Z APR	18 1620 Z APR	19 1920 Z APR	21 1852 Z APR	22 1242 Z APR	22 1506 Z APR	1720		22 2121 Z APR
Longitude	2	L	Cu		- 56.0 W	- 23.8 W	- 33.4 W	- 53.1 W	- 06.4 W	- 12.5 W	- 25.5 W	- 05.7 W	- 34.1 W	- 24.5 W	- 07.8 E	- 37.5 W	- 49.3 W	- 11.5 E	- 08.3 E	- 56.4 E	- 16.4 E	- 35.7 E	- 44.1 E	- 56.1 E	- 26.1 E	- 32.2 W	- 12.5 W	- 52.5 W	- 11.5 W	- 20.3 W	- 30.0 W	- 41.3 W
Latitude					73 - 31.6 N 160	72 - 16.4 N 154	١.	70 - 52.7 N 141	٠	76 - 19.1 N 178	77 - 24.8 N 176	75 - 55.6 N 160	١.	١.	١.	١.	١.		80 - 17.6 N 144	١.		80 - 15.1 N 165	79 - 07.6 N 170	77 - 28.7 N 173	76 - 20.8 N 176	75 - 47.2 N 179	75 - 48.5 N 154	١	72 - 28.0 N 150	- 50.7 N	73 - 13.0 N 150	73 - 35.9 N 150
Seq.	-	2	က	4		T		8	\vdash		11 7	12 7		t	15 7	\vdash	Т	18	19	\vdash	\vdash	T	23	-		H	27			T	T	32

* This is a modification of the Unclassified SCICEX-95 U/I SSXCTD LOG distributed by USN/NUWC/ASL 14 Jul 95

Table 5. SCICEX-95 (USS Cavalla) Under-Ice SSXCTD Log

REMARKS						Launcher Failed - No Data					Temperature noisy	Backup for #43																				
Depth (m) SDRS	3794.1	3791.7	3796.0							3791.6	1971.9	2014.4	1930.8	952.2	2393.2	3375.8	3781.6	3775.2	3766.6	3765.1	3458.3			3756.2	3756.0	3755.6	3755.1	2923.1	2795.0	1650.8	2252.8	2755.1
Depth (m) QM Log	3791.1	3791.1	3798.5	3792.9	3799.7		3794.8	3791.1	3797.2	3761.0	2095.3	2043.3	1889.8	1245.7	2371.3	3179.1	3776.1	3776.3	3763.7	3763.1	3188.0	3662.9	3752.7	3754.1	3752.7	3754.0	3745.1	2779.9	2789.7	1822.8	2247.9	2628.7
Filename	CTD 33	CTD 34	CTD 35	CTD 36	CTD 37		CTD 39	CTD 40	CTD 41	CTD 42	CTD 43	CTD 44	CTD 45	CTD 46	CTD 47	CTD 48	CTD 49	CTD 50	CTD 51	CTD 52	CTD 53	CTD 54	CTD 55	CTD 56	CTD 57	CTD 58	CTD 59	CTD 60	CTD 61	CTD 62	CTD 63	CTD 64
Serial No.	94110033	94090237	94090219	94110061	94090206	94110038	94110048	94110026	94110063	94090242	94110056	94110039	94110071	94090235	94110070	94110018	94110062	94090196	94110032	94110034	94110001	94090226	94080073	94110053	94090197	94110051	94110044	94110028	94110005	94110060	94110004	94110067
Serial No.	112.962	113.056	113.128	113.292	113.389		113.556	113.650	113.722	113.816	113.888	113.893	114.045	114.138	114.233	114.307	114.401	114.473	114.566	114.639	114.781	114.890	114.983	115.057	115.150	115.223	115.316	115.388	115.529	115.638	115.733	115.906
ωω	Z APR		Z APR		Z APR		Z APR		Z APR		Z APR		Z APR		Z APR		Z APR															
L I	2305		0304	0701	0350	1130	1321	1536	1720	1935	2119	2126	0105	0319	0536	0722		1121	1335	1520	1844	2122	2335	0122	0336	0521	0735	0919	1242	1519	1735	2144
	/ 22	_	/ 23	/ 23		23	_	_	/ 23	_	/ 23		1	/ 24	/ 24			-	/ 24	/ 24	/ 24	/ 24	/ 24	/ 25	/ 25		/ 25	7 25	7 25	V 25	V 25	۷ 25
Longitude	- 52.1 W	- 4.1 W	- 15.1 W	- 13.1 W	- 40.0 W		- 7.1 W	- 24.1 W	- 42.9 W	- 57.6 W	- 15.9 W	- 14.8 W	- 17.4 W	- 57.5 W	- 19.6 W	- 39.9 W	- 4.9 W	- 29.0 W	- 1.3 W	- 32.9 W	- 58.3 W	- 43.5 W	- 28.8 W	- 8.2 W	- 58.5 W	- 53.6 W	- 49.3 W	- 52.3 W	- 36.0 W	- 29.4 W	- 52.2 W	- 59.7 W
Lon	150	151	151	151	151		152	152	152	152	153	153	153	153	154	154	155	155	156	156	156	157	158	159	159	160	161	162	163	165	166	164
Latitude	57.4 N	20.2 N	. 46.2 N	5.1 N	. 29.1 N		7.3 N	30.6 N	51.8 N	13.5 N	. 36.2 N	35.8 N	53.2 N	13.7 N	36.8 N	. 55.6 N	18.3 N	. 38.8 N	0.4 N	. 22.3 N	. 42.0 N	- 11.0 N	. 32.6 N	- 55.0 N	- 16.4 N	- 36.2 N	- 57.8 N	- 18.9 N	- 39.2 N	N 9.80 -	- 24.6 N	- 57.7 N
크	73 -	74 -	74 -	75 -	75 -		- 9/	- 9/	- 9/	- 77	- 22	- 77	- 22	78 -	78 -	78 -	- 6/	- 6/	- 08	- 08	- 08	81 -	81 -	81 -	- 28	82 -	82 -	83 -	83 -	84 -	84 -	- 83
Seq No.	33	34	32	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54	22	99	22	58	59	9	61	62	63	64

* This is a modification of the Unclassified SCICEX-95 U/I SSXCTD LOG distributed by USN/NUWC/ASL 14 Jul 95

Table 5. SCICEX-95 (USS Cavalla) Under-Ice SSXCTD Log

			٦						٦			٦				П	٦														T	
REMARKS													XCTD Failed at 504 m	Backup for #77			Shallow Temperature spikes	Backup for #81					100 m Temp mixed layer	Backup for #87						Start Phase 3		
Depth (m) SDRS	2955.3	2867.2	1730.8		2689.0	2681.9	3861.4	3883.7	3894.9	3902.4	3903.5	3911.5	3757.3	3763.9	1158.8	1426.2	4056.6	4058.8	4274.6	4304.6	4314.9	4326.6	3758.8		3751.6	4308.1	1177.4	3211.2	3870.3	3873.5	3880.1	4300.7
Depth (m) QM Log	2931.2	2832.2	1748.7	1751.3	2678.6	2519.5	3859.8	3897.2	3890.5	3899.0	3905.8	3908.8	3822.5	3808.5	1154.6	1404.8	3850.6	4036.0	4273.0	4303.8	4312.9	4320.3	3924.5	3953.1	3823.5	4285.8	1324.7	3306.4	3867.3	3875.3	3876.4	4308.2
Filename	CTD 65	CTD 66	CTD 67	CTD 68	CTD 69	CTD 70	CTD 71	CTD 72	CTD 73	CTD 74	CTD 75	CTD 76	CTD 77	CTD 78	CTD 79	CTD 80	CTD 81			CTD 84		CTD 86	CTD 87		CTD 89	1			CTD 93	CTD 94		CTD 96
Serial No.	94110072	94090216	94110021	94090224	94090163	94110047	94110055	94110054	94080074	94090217	94080076	94090195	94090222	94080077	94110008	94110009	94090218	94090243	94090227	94110024	94090241	94090228	94090207	94110069	94110037	94110030	94080075	94090209	94110010	94110045	94090246	94090194
Serial No.	115.935	115.965	116.279	116.390	116.482	117.056	117.149	117.221	117.316	117.390	117.533	117.639	117.733	117.740	117.806	117.899	117.972	117.978	118.066	118.139	118.278	118.389	118.482	118.487	118.556	118.649	118.722	118.815	118.888	119.051	119.138	120.195
Date/Time	2227 Z APR	2 0		0921 Z APR	1134 Z APR	0120 Z APR	0334 Z APR	0518 Z APR	0735 Z APR	0921 Z APR	1247 Z APR	1520 Z APR	1735 Z APR	1745 Z APR	1920 Z APR	2134 Z APR	Z	2329 Z APR	l	0320 Z APR	0641 Z APR	0920 Z APR	1134 Z APR	1141 Z APR	1320 Z APR	1535 Z APR	1719 Z APR	1934 Z APR	2119 Z APR		0319 Z APR	0441 Z APR
Longitude	- 41.3 W 25	3	- 21.3 W 26	- 13.7 W 26	- 01.2 W 26	- 32.6 W 27	- 50.7 W 27	- 22.7 W 27	- 56.3 E 27	- 50.5 E 27	Ш	ш	- 14.2 E 27	- 26.2 E 27	- 30.8 E 27	- 22.4 E 27	- 04.1 E 27	_	- 18.4 E 28	- 39.6 E 28		- 10.4 E 28	- 16.5 E 28	- 14.5 E 28	- 27.1 E 28	- 03.5 E 28	- 47.8 E 28	- 24.2 E 28	П	- 05.7 E 29	- 21.4 E 29	- 12.4 E 30
	51.9 N 164	z		14.9 N 171	36.3 N 173	50.8 N 174	11.2 N 176	30.7 N 179	52.5 N 176	10.3 N 172	28.2 N 169	z	58.7 N 152	58.9 N 152	08.1 N 143	15.2 N 131	17.3 N 119	17.5 N 119	N 108	960 N 6.80	980 N 9:00	43.1 N 078	25.4 N 071	N 071	08.1 N 066	52.6 N 063	34.4 N 059	17.5 N 057	57.2 N 054	41.4 N 053	19.6 N 051	00.6 N 120
Lafitude	83 - 51	١	١.	١.	١.	١.	86 - 11	١						١.			١.	٠	١			87 - 43	87 - 25	87 - 25	87 - 08	86 - 52		•	١	85 - 41	82 -	- 98
Seq.	65	99	67	89	69	2	7	72	73	74	75	9/	1	78	79	8	8	8	83	84	88	88	87	88	8	8	6	8	93	94	95	96

* This is a modification of the Unclassified SCICEX-95 U/I SSXCTD LOG distributed by USN/NUWC/ASL 14 Jul 95

Table 5. SCICEX-95 (USS Cavalla) Under-Ice SSXCTD Log

REMARKS						Temperature bad (wrong coeffs?)	Backup for #102																	Start Phase 4	
Depth (m) SDRS	4273.2	4222.6	3616.8	1974.0	1312.6	1679.7	1568.4	3741.9	3667.5	3868.0	1390.3	1309.8	2872.9	4291.4	2413.4	1156.8	38088	3901.6	3904.2	1800.8		4236.6	1985.3	3767.9	1294.4
Depth (m) QM Log	4267.5	4224.1	3587.7	2177.0	1212.7	1618.3	1573.0		3650.6	3873.3	1321.0	1319.8	2806.3	4295.3	2414.0	1126.5	3771.9	3302.2	3902.7	1814.6	2037.3	4233.6	1.1961	3766.2	1358.8
Filename	CTD 97	CTD 98	CTD 99	CTD 100	CTD 101	CTD 102	CTD 103	CTD 104	CTD 105	CTD 106	CTD 107	CTD 108	CTD 109	CTD 110	CTD 111	CTD 112	CTD 113	CTD 114	CTD 115	CTD 116	CTD 117	CTD 118	CTD 119	CTD 120	CTD 121
Serial No.	94090225	94110022	94080080	94090201	94090223	94090251	94100177	94090231	93050004	94090240	94090239	94110059	94110023	94110046	94090210	94110035	94110068	94110040	94110003	94110049	94090214	94090215	94110041	94090220	94090238
Serial No.	120.294	120.367	120.440	120.515	120.640		120.791	120.919	121.041	121.227	121.326	121.420	121.524	121.778	122.083	122.180	122.276	122.369	122.745	122.846	122.942	123.036	125.247	126.034	128.514
ime	Z APR	Z APR	Z APR	Z MAY	Z MAY	Z MAY	Z MAY	Z MAY	Z MAY	Z MAY	Z MAY	Z MAY	Z MAY	Z MAY	Z MAY										
Date/Time	0 0704	0 0849	0 1034	0 1221	0 1521	0 1851	0 1859	0 2204	1 0059	1 0527	1 0750	1 1005	1 1234	1 1840	2 0200	2 0419	2 0638	2 0852	2 1753	2 2018	2 2236	3 0052	05 0556	06 0049	8 1220
Longitude	26 - 10.0 E 30	31 - 56.7 E 30	37 - 42.2 E 30	13 - 28.6 E 30	153 - 12.7 E 30	57 - 28.2 E 30	57 - 32.4 E 30	- 31.2 E	34 - 08.8 E 01	31 - 09.4 E 01	53 - 51.2 E 01	16 - 15.2 E 01	36 - 51.2 E 01	118 - 43.4 E 01	33 - 57.1 E 02	16 - 16.4 E 02	156 - 57.2 E 02	35 - 30.9 E 02	39 - 45.8 E 02	159 - 46.6 E 02	42 - 08.7 E 02	13 - 08.5 E 03	- 32.7 W	- 05.2 W	71 - 30.8 W 08
Latitude	86 - 04.3 N 126	86 - 05.4 N 131	86 - 04.3 N 137	86 - 00.2 N 143	85 - 47.8 N 15	5 - 32.8 N 157	5 - 38.1 N 157	5 - 26.5 N 162	5 - 38.7 N 164	6 - 10.1 N 161	6 - 24.6 N 153	6 - 34.8 N 146	6 - 41.5 N 136	86 - 49.0 N 11	7 - 35.5 N 133	7 - 29.3 N 146	- 16.2 N	7 - 00.8 N 165	88 - 03.8 N 169	N 6:38 -	8 - 57.9 N 142	89 - 08.4 N 113	84 - 53.4 N 135	79 - 52.1 N 147	'5 - 31.1 N 171
Seq No.	97 8	98 86	8 66	100	101 8	102 85	103 85	104 85	105 85	106 86	107 86	108 86	109 86	110 8	111 87	112 87	113 87	114 87	115 8	116 88	117 88	118 8	119 8	120 7	121 75

* This is a modification of the Unclassified SCICEX-95 U/I SSXCTD LOG distributed by USN/NUWC/ASL 14 Jul 95

Table 6. Water Sample Salinity Log

Water samples collected with Niskin Bottles at surface stations and through the submarine's seawater intake were stored in glass bottles for later salinity determination.

Table 6. SCICEX-95 (USS Cavalla) Salt Bottle Log

														ı -																		
Depth (ft)	190	440	190	440	082	190	440	082	190	440	190	440	190	440	780	190	440	280	190	440	082	190	440	280	190	440	190	440	780	190	440	780
XCTD						9			9		8			10			11			12			13			14		15			16	
Salinity	31.901	34.225	31.135	33.755	34.684	32.032	33.045	34.649	31.753	32.483	31.708	33.072	31.871	34.312	34.787	31.732	34.221	34.751	31.853	32.982	34.498	31.941	32.969	34.491	31.911	34.072	33.651	34.333	34.806	31.537	34.141	34.686
Salt Bottle Code	E2	E1	E3	E4	E5	9 3	E7	E8	E9	E10	E11	E12	E13	E14	E15	E16	E17	E18	E19	E20	E21	E22	E23	E24	K1	K2	K3	K4	K5	K6	K7	K8
Water Sample Log Code	1.2.1.b	1.2.1.c	1.2.18.b	1.2.18.c	1.2.18.d	1.3.13.b	1.3.13.c	1.3.13.d	1.4.23.b	1.4.23.c	s1.3	s1.5	1.7.2.b	1.7.2.c	1.7.2.d	1.9.1.b	1.9.1.c	1.9.1.d	1.9.2.b	1.9.2.c	1.9.2.d	1.11.1.b	1.11.1.c	1.11.1d	1.11.2.b	1.11.2.c	1.12.1.b	1.12.1.c	1.12.1.d	1.13.1.b	1.13.1.c	1.13.1.d
Longitude	-170.71	-170.71	-165.63	-165.63	-165.63	-161.00	-160.90	-160.91	-154.45	-154.39	-147.18	-147.18	-178.06	-178.06	-178.06	-176.07	-176.37	-176.05	-159.93	-160.07	-159.95	-158.06	-157.62	-157.71	-170.54	-170.41	172.37	172.21	172.38	-169.52	-169.53	-169.54
Latitude	75.47	75.47	74.78	74.78	74.78	73.55	73.54	73.56	72.28	72.27	71.85	71.85	76.31	76.31	76.31	77.39	77.41	77.39	75.90	75.92	75.91	77.05	76.96	76.98	78.26	78.25	79.41	79.41	79.40	79.40	79.39	79.38
Year-day	85.542	85.542	86.333	86.333	86.333	87.333	87.365	87.375	88.500	88.521	91.667	91.667	93.521	93.521	93.521	94.250	94.292	94.333	94.996	95.032	95.063	96.500	96.597	96.611	97.250	97.271	98.003	98.031	98.052	98.771	98.781	98.792
Time	1300	1300	800	800	800	800	845	900	1200	1230	1600	1600	1230	1230	1230	900	700	800	2354	46	130	1200	1420	1440	009	630	5	45	115	1830	1845	1900
Date	26-Mar	26-Mar	27-Mar	27-Mar	27-Mar	28-Mar	28-Mar	28-Mar	29-Mar	29-Mar	1-Apr	1-Apr	3-Apr	3-Apr	3-Apr	4-Apr	4-Apr	4-Apr	4-Apr	5-Apr	5-Apr	6-Apr	6-Apr	6-Apr	7-Apr	7-Apr	8-Apr	8-Apr	8-Apr	8-Apr	8-Apr	8-Apr

Table 6. SCICEX-95 (USS Cavalla) Salt Bottle Log

																									_		_		_		_	_
Depth (ft)	190	440	082	190	440	082	190	440	190	440	780	190	440	787	190	440	780	190	440	780	190	440	780	190	440	780	190	440	780	190	440	780
XCTD		17			18					19						20			21			22			23			24			25	
Salinity	31.577	33.879	34.583	33.737	34.244	34.770	33.788	34.400	33.236	34.530	34.778	33.211	33.092	34.849	33.433	34.397	34.818	33.639	34.356	34.821	33.785	34.456	34.811	33.660	34.341	34.783	33.679	34.396	34.806	33.726	34.404	34.789
Salt Bottle Code	K9	K10	K11	K12	K13	K14	K15	K16	K20	K21	K22	K17	K18	K19	K23	K24	11	12	13	14	- 12	15	91	18	61	110	111	112	113	117	118	119
Water Sample Log Code	1.15.1.b	1.15.1.c	1.15.1.d	1.15.2.b	1.15.2.c	1.15.2.d	1.16.2.b	1.16.2.c	1.18.7.b	1.18.7.c	1.18.7.d	s2.3	s2.5	s2.9	s-2-b	s-2-c	s-2-d	1.18.30.b	1.18.30.c	1.18.30.d	1.19.6.b	1.19.6.c	1.19.6.d	1.19.20.b	1.19.20.c	1.19.20.d	1.20.13.b	1.20.13.c	1.20.13.d	1.22.4.b	1.22.4.c	1.22.4.d
Longifude	-159.92	-159.89	-159.95	177.17	177.14	177.10	152.66	152.66	143.98	144.10	144.38	148.71	148.73	148.73	148.78	148.81	148.95	157.06	157.21	157.43	165.56	165.56	165.56	170.68	170.73	170.86	173.94	173.93	173.93	176.41	176.43	176.44
Lafitude	79.51	79.52	79.53	80.89	80.90	80.91	81.24	81.24	80.28	80.29	80.32	80.48	80.48	80.48	80.47	80.47	80.49	80.64	80.65	80.65	80.27	80.27	80.27	79.16	79.14	79.11	77.47	77.47	77.46	76.35	76.35	76.35
Year-day	100.271	100.281	100.302	101.021	101.031	101.042	101.750	101.750	103.708	103.750	103.781	104.396	104.458	104.500	104.646	104.667	104.688	105.500	105.514	105.535	106.250	106.250	106.250	106.917	106.931	106.951	107.750	107.778	107.785	108.674	108.684	108.694
Time	930	645	715	30	45	100	1800	1800	1700	1800	1845	930	1100	1200	1530	1600	1630	1200	1220	1250	900	900	009	2200	2220	2250	1800	1840	1850	1610	1625	1640
Date	10-Apr	10-Apr	10-Apr	11-Apr	11-Apr	11-Apr	11-Apr	11-Apr	13-Apr	13-Apr	13-Apr	14-Apr	14-Apr	14-Apr	14-Apr	14-Apr	14-Apr	15-Apr	15-Apr	15-Apr	16-Apr	16-Apr	16-Apr	16-Apr	16-Apr	16-Apr	17-Apr	17-Apr	17-Apr	18-Apr	18-Apr	18-Apr

Table 6. SCICEX-95 (USS Cavalla) Salt Bottle Log

					·····,									,																	_	
Depth (ft)	190	440	282	190	440	082	190	440	082	190	440	780	190	440	280	190	440	780	190	440	787	190	440	780	190	440	780	190	440	780	190	440
ХСТР					26			36			45			53			61			69	•		94			92			105			110
Salinity	32.195	34.394	34.790	32.204	34.366	34.786	31.426	32.729	34.120	31.898	33.011	34.550	31.436	33.533	34.583	32.127	34.031	34.654	33.133	34.322	34.763	34.145	34.364	34.907	34.118	34.418	34.869	33.456	34.296	34.753	34.03	34.401
Salt Bottle Code	114	115	116	121	120	122	123	124	J1	J2	J3	J4	35	J6	J7	J8	96 6F	J10	J11	J12	J13	J14	J15	J16	J20	J21	J22	J23	J24	C1	C2	င္သ
Water Sample Log Code	s3.3	83.5	s3.9	q-e-s	s-3-c	p-g-s	2.1.9.b	2.1.9.c	2.1.9.d	2.1.16.b	2.1.16.c	2.1.16.d	2.1.24.b	2.1.24.c	2.1.24.d	2.1.32.b	2.1.32.c	2.1.32.d	s.4.3	8.4.5	8.4.9	2.3.24.b	2.3.24.c	2.3.24.d	3.2.1.b	3.2.1.c	3.2.1.d	3.3.1.b	3.3.1.c	3.3.1.d	3.5.1.b	3.5.1.c
Longitude	-179.36	-179.36	-179.36	-179.44	-179.44	-179.44	-151.34	-151.34	-151.34	-153.61	-153.61	-153.61	-157.91	-157.91	-157.91	-163.78	-163.62	-163.56	-173.48	-173.48	-173.48	52.83	52.83	52.83	120.01	120.01	120.01	165.12	165.12	165.12	118.16	118.16
Latitude	75.78	75.78	75.78	75.78	75.78	75.78	75.13	75.13	75.13	96'2/	77.96	96'2/2	80.73	80.73	80.73	83.67	83.66	83.66	85.71	85.71	85.71	85.64	85.64	85.64	86.01	86.01	86.01	85.47	85.47	85.47	86.84	86.84
Year-day	109.583	109.583	109.583	109.833	109.833	109.833	113.250	113.250	113.250	113.979	113.979	113.979	114.750	114.750	114.750	115.510	115.531	115.542	116.542	116.542	116.542	118.979	118.979	118.979	120.167	120.167	120.167	120.979	120.979	120.979	121.750	121.750
Time	1400	1400	1400	2000	2000	2000	900	900	900	2330	2330	2330	1800	1800	1800	1215	1245	1300	1300	1300	1300	2330	2330	2330	400	400	400	2330	2330	2330	1800	1800
Date	19-Apr	19-Apr	19-Apr	19-Apr	19-Apr	19-Apr	23-Apr	23-Apr	23-Apr	23-Apr	23-Apr	23-Apr	24-Apr	24-Apr	24-Apr	25-Apr	25-Apr	25-Apr	26-Apr	26-Apr	26-Apr	28-Apr	28-Apr	28-Apr	30-Apr	30-Apr	30-Apr	30-Apr	30-Apr	30-Apr	1-May	1-May

Table 6. SCICEX-95 (USS Cavalla) Salt Bottle Log

Date	Time	Year-day	Latitude	Longitude	Water Sample	Salt Bottle	Salinity	XCTD	Depth (ft)
					Log Code	Code			
1-May	1800	121.750	86.84	118.16	3.5.1.d	C4	34.888		780
2-May	1130	122.479	87.34	173.25	3.7.1.b	CS	33.047		190
2-May	1130	122.479	87.34	173.25	3.7.1.c	90	34.266		440
2-May	1130	122.479	87.34	173.25	3.7.1.d	C7	34.746		780
4-May	800	124.333	87.39	-135.37	3.11.2.b	117	33.122		190
4-May	800	124.333	87.39	-135.37	3.11.2.c	318	34.112	119	440
4-May	800	124.333	87.39	-135.37	3.11.2.d	J19	34.671		780
4-May	2130	124.896	84.92	-135.44	s.6.3	C8	31.878		190
4-May	2130	124.896	84.92	-135.44	s.6.5	60	33.665		440
4-May	2130	124.896	84.92	-135.44	8.6.9	C10	34.639		787

CTD Surface Casts

Profiles from line lowered casts with SBE-19 (s/n 114). Profiles are the downward section of the cast for stations 1,2,3, and 5 and upward section of the cast for station 4.

XCTD Underway Casts

Potential Temperature and salinity interpolated to 1-decibar grid. Salinity median filtered over 6 decibars.

Sail CTD Underway Time Series

Pressure, potential temperature, salinity, potential density, and bottom depth along the submarine track at the nominal cruising depth of 122 m.

