Quantum Computing Approaches for the Quadratic Knapsack Problem (QKP)

Andres F. Valencia F.

June 9, 2025

Abstract

Brief summary of the QKP, motivation for using quantum computing approaches.

1 Introduction

- Definition of the Quadratic Knapsack Problem (QKP)
- Talk about QUBOs.
- Motivation to explore quantum algorithms

2 Literature Review

Chronologically organized presentation of key works relevant to QKP and quantum computation.

2.1 Quantum-Inspired Evolutionary Algorithms (QIEA)

These algorithms are a classical heuristic that simulates concepts of quantum computing, but doesn't require quantum hardware to execute. QEIA is **inspired** by quantic mechanics, but can be performed **classically**.

2.1.1 A Novel Quantum Evolutionary Algorithm for Quadratic Knapsack Problem, (2009) [1]

• **Approach:** QKP has a graph-theoretic interpretation, is a generalization of the *Clique* problem. Algorithm starts with the *greedy* solution. The first Q-gate has a greater tendency for exploration, the other two Q-gates, looking to converge towards the best solution. Observations are made to checking the constraint.

• Contribution: Algorithm uses concepts of superposition and quantum measurement (not really interesting).

2.1.2 An Angle-expressed Quantum Evolutionary Algorithm for Quadratic Knapsack Problem, (2019) [2]

- Approach: The authors don't start in uniform random values, instead, define an "initial value density" for each item $d_i = \frac{p_i}{w_i}$. Q-Gate of rotation Bit, the current state versus the best previous global solution are compared. Observations are made to checking the constraint. Implementation a H_{ε} -Gate prevents states from being located.
- Contribution: The idea of starting with a preferential state.

2.2 Quantum Approximate Optimization Algorithm (QAOA)

QAOA is a variational quantum algorithm used to solve combinatorial optimization problems. It works by encoding the problem into a quantum circuit and using a classical optimizer to find the optimal parameters that yield the best solution. QAOA can solve binary optimization problems like QUBOs.

2.2.1 Translating Constraints into QUBOs for the Quadratic Knapsack Problem, (2023) [3]

- Approach: They present six different QUBO formulations of the QKP, all of these formulations use a different technique to include the weight constraint into the objective function. Is introduced penalty values for the constraint. The results are obtained using the D-Wave implementation as a simulated annealing. The best performance is obtained by a formulation that uses no auxiliary variables for modelling the inequality constraint.
- Contribution: The authors present different and useful QUBOs formulations to implement in Quantum Annealing, but all require more than n qubits to transform the problem into QUBO.

2.2.2 Solving Quadratic Knapsack Problem with Biased Quantum State Optimization Algorithm, (2024) [4]

- Approach: They implement a QAOA algorithm, and use gradient and gradient-free optimizers with initial parameters (β, γ) . They proposed a novel initial state that allow to execute in a low-depth circuits, and without using more qubits as is proposed by [3] in the six QUBOs formulations. Furthermore, don't need to include the penalty method such [2]. This article is the first to apply QAOA in solving the quadratic knapsack problem. The results are obtained using the qiskit-aer simulator.
- Contribution: The authors propose a new quantum state that improves the QAOA performance and does not require additional variables to transform the problem into QUBO.

3 Summary of Existing Methods

Strengths and weaknesses. Identified gaps or open problems.

4 Proposed Method

5 Experimental Plan / Future Work

- Simulation tools (Qiskit, D-Wave Ocean, PennyLane)
- Benchmarks or datasets

References

- [1] A. Narayan, C. Patvardhan, A novel quantum evolutionary algorithm for quadratic knap-sack problem, in: 2009 IEEE International Conference on Systems, Man and Cybernetics, IEEE, 2009, pp. 1388–1392.
- [2] L. Hao, An angle-expressed quantum evolutionary algorithm for quadratic knapsack problem, in: IOP Conference Series: Materials Science and Engineering, Vol. 631, IOP Publishing, 2019, p. 052054.
- [3] T. Bontekoe, F. Phillipson, W. v. d. Schoot, Translating constraints into qubos for the quadratic knapsack problem, in: International Conference on Computational Science, Springer, 2023, pp. 90–107.
- [4] H. P. N. Ha, V. H. Nguyen, A. S. Ta, Solving quadratic knapsack problem with biased quantum state optimization algorithm, in: M. Sevaux, A.-L. Olteanu, E. G. Pardo, A. Sifaleras, S. Makboul (Eds.), Metaheuristics, Springer Nature Switzerland, Cham, 2024, pp. 268–280.