SI	\boldsymbol{A}	20	I 1	n	10	I2	а	48	I3	a	2	I4	\boldsymbol{A}	40	I5	a	45
	В	4		a	25		b	144		\boldsymbol{b}	-3		В	6		\boldsymbol{b}	15
	\boldsymbol{C}	5		\boldsymbol{z}	205		c	4		c	12		$\boldsymbol{\mathcal{C}}$	198		c	12
	D	$\frac{5}{2}$		S	1		d	572		d	140		D	7		d	2

Group Events

SG		2550	G6	a	1	G7	а	-8	G8	\boldsymbol{A}	2	G9	x	6	G10	c	3
		2452		\boldsymbol{b}	52		b	10		\boldsymbol{b}	171		y	6		a	-2
	P	2501		c	13		area	116		c	3		T_{10}	200		\boldsymbol{b}	5
	Q	10001		d	3		tan θ	2		d	27		n	19		d	5

Sample Individual Event

- **SI.1** Given $A = (b^m)^n + b^{m+n}$. Find the value of A when b = 4, m = n = 1. $A = (4^1)^1 + 4^{1+1} = 4 + 16 = 20$
- SI.2 If $2^A = B^{10}$ and B > 0, find the value of B. $2^{20} = 4^{10}$ $\Rightarrow B = 4$
- **SI.3** Solve for *C* in the following equation: $\sqrt{\frac{20B+45}{C}} = C$.

$$\sqrt{\frac{20 \times 4 + 45}{C}} = C$$

$$125 = C^{3}$$

$$\Rightarrow C = 5$$

SI.4 Find the value of *D* in the figure.

$$D = C \sin 30^\circ = \frac{5}{2}$$

Individual Event 1

I1.1 If the sum of the interior angles of an *n*-sided polygon is 1440°, find the value of *n* . $180^{\circ} \times (n-2) = 1440^{\circ}$

$$\Rightarrow n = 10$$

I1.2 If $x^2 - nx + a = 0$ has 2 equal roots, find the value of a. $(-10)^2 - 4a = 0$

$$\Rightarrow a = 25$$

I1.3 In the figure, if z = p + q, find the value of z.

$$\angle ACB = 180^{\circ} - p^{\circ}$$
 (opp. \angle s cyclic quad.)
 $\angle ABC = 180^{\circ} - q^{\circ}$ (opp. \angle s cyclic quad.)
 $180 - p + 180 - q + a = 180$ (\angle s sum of Δ)
 $z = p + q = 180 + a = 205$

I1.4 If S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + z, find the value of S.

Reference: 1985 FG7.4, 1988 FG6.4, 1990 FG10.1, 1991 FSI.1

$$S = 1 + (2 - 3 - 4 + 5) + (6 - 7 - 8 + 9) + \dots + (202 - 203 - 204 + 205) = 1$$

I2.1 If ar = 24 and $ar^4 = 3$, find the value of a.

$$r^3 = \frac{ar^4}{ar} = \frac{3}{24} = \frac{1}{8}$$

$$\Rightarrow r = \frac{1}{2}$$

$$ar = 24$$

$$\Rightarrow \frac{1}{2}a = 24$$

$$\Rightarrow a = 48$$

12.2 If $\left(x + \frac{a}{4}\right)^2 = x^2 + \frac{a}{2} \cdot x + b$, find the value of b.

$$(x+12)^2 = x^2 + 24x + 144$$

$$\Rightarrow b = 144$$

12.3 If $c = \log_2 \frac{b}{9}$, find the value of c.

$$c = \log_2 \frac{144}{9}$$

$$=\log_2 16$$

12.4 If $d = 12^c - 142^2$, find the value of d.

$$d = 12^4 - 142^2$$

$$=144^2-142^2$$

$$=(144+142)(144-142)$$

$$=2(286)=572$$

I3.1 If $a = \frac{\sin 15^{\circ}}{\cos 75^{\circ}} + \frac{1}{\sin^2 75^{\circ}} - \tan^2 15^{\circ}$, find the value of a.

$$a = \frac{\sin 15^{\circ}}{\sin 15^{\circ}} + \sec^2 15^{\circ} - \tan^2 15^{\circ}$$
$$= 1 + 1 = 2$$

I3.2 If the lines ax + 2y + 1 = 0 and 3x + by + 5 = 0 are perpendicular to each other, find the value of b.

$$-\frac{a}{2} \times \left(-\frac{3}{b}\right) = -1$$

$$\Rightarrow b = -3$$

I3.3 The three points (2, b), (4, -b) and $(5, \frac{c}{2})$ are collinear. Find the value of c.

The three points are (2, -3), (4, 3) and $(5, \frac{c}{2})$, so their slopes are equal.

$$\frac{3 - \left(-3\right)}{4 - 2} = \frac{\frac{c}{2} - 3}{5 - 4}$$

$$\Rightarrow \frac{c}{2} - 3 = 3$$

$$\Rightarrow c = 12$$

13.4 If $\frac{1}{x}: \frac{1}{y}: \frac{1}{z} = 3:4:5$ and $\frac{1}{x+y}: \frac{1}{y+z} = 9c:d$, find the value of d.

$$x:y:z=\frac{1}{3}:\frac{1}{4}:\frac{1}{5}$$

$$=\frac{20}{60}:\frac{15}{60}:\frac{12}{60}$$

$$x = 20k$$
, $y = 15k$, $z = 12k$

$$\frac{1}{x+y} : \frac{1}{y+z} = \frac{1}{20k+15k} : \frac{1}{15k+12k}$$
$$= 27 : 35$$
$$= 108 : 140 = 9c : d$$

$$\Rightarrow d = 140$$

I4.1 In the figure, the area of PQRS is 80 cm².

If the area of $\triangle QRT$ is A cm², find the value of A.

 ΔQRT has the same base and same height as the parallelogram PQRS.

$$A = \frac{1}{2} \cdot 80 = 40$$

I4.2 If $B = \log_2\left(\frac{8A}{5}\right)$, find the value of B.

$$B = \log_2\left(\frac{8\cdot 40}{5}\right)$$
$$= \log_2 64$$
$$= \log_2 2^6$$

I4.3 Given $x + \frac{1}{x} = B$. If $C = x^3 + \frac{1}{x^3}$, find the value of C.

$$x + \frac{1}{x} = 6$$

$$x^{2} + \frac{1}{x^{2}} = (x + \frac{1}{x})^{2} - 2$$
$$= 6^{2} - 2 = 34$$

$$C = x^{3} + \frac{1}{x^{3}}$$

$$= \left(x + \frac{1}{x}\right)\left(x^{2} + \frac{1}{x^{2}} - 1\right)$$

$$= 6(34 - 1) = 198$$

14.4 Let (p, q) = qD + p. If (C, 2) = 212, find the value of D.

$$2D + C = 212$$

$$\Rightarrow 2D = 212 - 198 = 14$$

$$\Rightarrow D = 7$$

15.1 Let p, q be the roots of the quadratic equation $x^2 - 3x - 2 = 0$ and $a = p^3 + q^3$.

Find the value of a.

$$p + q = 3, pq = -2$$

$$a = (p + q)(p^{2} - pq + q^{2})$$

$$= 3[(p + q)^{2} - 3pq]$$

$$= 3[3^{2} - 3(-2)] = 45$$

I5.2 If AH = a, CK = 36, BK = 12 and BH = b, find the value of b.

 $\Delta ABH \sim \Delta CBK$ (equiangular)

$$\frac{b}{12} = \frac{45}{36}$$
 (ratio of sides, ~\Delta s)
$$b = 15$$

I5.3 Find the value of c.

Reference: 1985 FG6.4

$$15^2 + 20^2 = 25^2$$

 \Rightarrow *ML* \perp *LN* (converse, Pythagoras' theorem)

Area of
$$\triangle MNL = \frac{1}{2} \cdot 15 \cdot 20 = \frac{1}{2} \cdot 25c$$

$$c = 12$$

I5.4 Let $\sqrt{2x+23} + \sqrt{2x-1} = c$ and $d = \sqrt{2x+23} - \sqrt{2x-1}$. Find the value of d.

Reference: 2014 HG1

$$cd = \left(\sqrt{2x+23} + \sqrt{2x-1}\right)\left(\sqrt{2x+23} - \sqrt{2x-1}\right)$$

$$12d = (2x + 23) - (2x - 1) = 24$$

$$\Rightarrow d = 2$$

Sample Group Event Reference HKCEE Mathematics 1990 Paper 1 Q14

Consider the following groups of numbers:

(2)

.....

SG.1 Find the last number of the 50th group.

$$2 = 2 \times 1$$

$$6 = 2(1+2)$$

$$12 = 2(1+2+3)$$

$$20 = 2(1 + 2 + 3 + 4)$$

$$30 = 2(1+2+3+4+5)$$

The last number of the 50th group

$$=2(1+2+...+50)$$

$$=2\cdot\frac{1}{2}\cdot50\cdot(1+50)=2550$$

SG.2 Find the first number of the 50th group.

There are 50 numbers in the 50th group.

The first number of the 50^{th} group = 2550 - 2(50 - 1) = 2452

SG.3 Find the value of P if the sum of the numbers in the 50^{th} group is 50P.

$$2452 + 2454 + \dots + 2550 = 50P$$

$$\frac{1}{2} \cdot 50 \cdot (2452 + 2550) = 50P$$

$$P = 2501$$

SG.4 Find the value of Q if the sum of the numbers in the 100^{th} group is 100Q.

The last number in the 100^{th} group = $2(1 + 2 + ... + 100) = 2 \cdot \frac{1}{2} \cdot 100 \cdot (1 + 100) = 10100$

The first number of the 100^{th} group = 10100 - 2(100 - 1) = 9902

$$9902 + 9904 + ... + 10100 = 100P$$

$$\frac{1}{2} \cdot 100 \cdot (9902 + 10100) = 100P$$

$$P = 10001$$

As shown in the figure, $\triangle ABC$ and $\triangle XYZ$ are equilateral triangles and are ends of a right prism. P is the mid-point of BY and BP = 3 cm, XY = 4 cm.

$$CP = \sqrt{3^2 + 4^2}$$
 cm = 5 cm = PX (Pythagoras' theorem)
 $a = 1$

$$CX = \sqrt{6^2 + 4^2}$$
 cm = $\sqrt{52}$ cm (Pythagoras' theorem)
 $b = 52$

G6.3 If
$$\cos \angle PCX = \frac{\sqrt{c}}{5}$$
, find the value of c .

$$\cos \angle PCX = \frac{\sqrt{52} \div 2}{5} = \frac{\sqrt{13}}{5}$$

$$\Rightarrow c = 13$$

G6.4 If
$$\sin \angle PCX = \frac{2\sqrt{d}}{5}$$
, find the value of d.

$$\sin^2 \angle PCX = 1 - \cos^2 \angle PCX = \frac{12}{25}$$

$$\sin \angle PCX = \frac{2\sqrt{3}}{5}$$

$$\Rightarrow d = 3$$

In the figure, *OABC* is a parallelogram.

G7.1 Find the value of a.

$$a - 0 = 4 - 12$$
$$\Rightarrow a = -8$$

G7.2 Find the value of b.

$$b - 1 = 9 - 0$$
$$\Rightarrow b = 10$$

G7.3 Find the area of *OABC*.

Area =
$$2 \cdot \frac{1}{2} \begin{vmatrix} 0 & 0 \\ 12 & 1 \\ 4 & 10 \\ 0 & 0 \end{vmatrix} = 116$$

G7.4 Find the value of $\tan \theta$.

$$OC = \sqrt{145}$$

$$OB = \sqrt{116}$$

$$BC = \sqrt{(12 - 4)^2 + (1 - 10)^2} = \sqrt{145}$$

$$\cos \theta = \frac{\sqrt{145}^2 + \sqrt{116}^2 - \sqrt{145}^2}{2(\sqrt{145})(\sqrt{116})} = \frac{1}{\sqrt{5}}$$

$$tan \ \theta = 2$$

Method 2

$$m_{OC} = \frac{1-0}{12-0} = \frac{1}{12}$$

$$m_{OB} = \frac{10-0}{4-0} = \frac{5}{2}$$

$$\tan \theta = \frac{\frac{5}{2} - \frac{1}{12}}{1 + \frac{5}{2} \cdot \frac{1}{12}} = 2$$

G8.1 The area of an equilateral triangle of side A cm is $\sqrt{3}$ cm². Find the value of A.

$$\frac{1}{2} \cdot A^2 \sin 60^\circ = \sqrt{3}$$

$$\Rightarrow A = 2$$

G8.2 If $19 \times 243^{\frac{A}{5}} = b$, find the value of b.

$$b = 19 \times (3^5)^{\frac{2}{5}} = 171$$

G8.3 The roots of the equation $x^3 - 173x^2 + 339x + 513 = 0$ are -1, b and c. Find the value of c.

$$-1 + 171 + c = \text{sum of roots} = 173$$

$$\Rightarrow c = 3$$

G8.4 The base of a triangular pyramid is an equilateral triangle of side 2c cm.

If the height of the pyramid is $\sqrt{27}$ cm, and its volume is $d \text{ cm}^3$, find the value of d.

$$d = \frac{1}{3} \cdot \frac{1}{2} \cdot \left(6^2 \cdot \sin 60^\circ\right) \cdot \sqrt{27} = 27$$

If the area of a regular hexagon ABCDEF is $54\sqrt{3}$ cm² and AB = x cm, AC = $y\sqrt{3}$ cm,

G9.1 find the value of x.

The hexagon can be cut into 6 identical equilateral triangles

$$6 \cdot \frac{1}{2} \cdot \left(x^2 \cdot \sin 60^\circ\right) = 54\sqrt{3}$$

$$\Rightarrow x = 6$$

G9.2 find the value of y.

$$\angle ABC = 120^{\circ}$$
 $AC^{2} = (x^{2} + x^{2} - 2x^{2} \cos 120^{\circ}) \text{ cm}^{2}$
 $= [6^{2} + 6^{2} - 2(6)^{2} \cdot \left(-\frac{1}{2}\right)] \text{ cm}^{2}$
 $= 3 \times 6^{2} \text{ cm}^{2}$
 $y\sqrt{3} = 6\sqrt{3}$
 $\Rightarrow y = 6$

G9.3 - G9.4 (Reference: 1991 FG8.1-2)

Consider the following number pattern:

$$T_1 = 2$$
 $T_2 = 8$ $T_3 = 18$ $T_4 = 32$

G9.3 Find the value of T_{10} .

$$8-2=6, 18-8=10, 32-18=14$$

$$\Rightarrow T_1=2, T_2=2+6, T_3=2+6+10, T_4=2+6+10+14$$

$$T_{10} = \frac{10}{2} \cdot [2(2) + (10-1) \cdot 4] = 200$$

G9.4 If $T_n = 722$, find the value of *n* .

$$\frac{n}{2} \cdot [2(2) + (n-1) \cdot 4] = 722$$

$$n^2 = 361$$

$$n = 19$$

The following shows the graph of $y = ax^2 + bx + c$.

G10.1 Find the value of c.

$$x = 0, y = c = 3$$

G10.2 Find the value of a.

$$y = a(x + \frac{1}{2})(x - 3)$$

Sub.
$$x = 0, y = 3$$

$$\Rightarrow -\frac{3}{2}a = 3$$

$$a = -2$$

G10.3 Find the value of b.

$$3 - \frac{1}{2} = \text{sum of roots} = -\frac{b}{(-2)}$$

$$b = 5$$

G10.4 If y = x + d is tangent to $y = ax^2 + bx + c$, find the value of d.

Sub.
$$y = x + d$$
 into $y = ax^2 + bx + c$

$$-2x^2 + 5x + 3 = x + d$$

$$2x^2 - 4x + d - 3 = 0$$

$$\Delta = (-4)^2 - 4(2)(d-3) = 0$$

$$4 - 2d + 6 = 0$$

$$d = 5$$

