

И 3 В Е С Т И Я ВЫСШИХУЧЕБНЫХ 3 А В Е Д Е Н И Й

# РАДИОЭЛЕКТРОНИКА



## том 41 9-10

И З Д А Н И Е НАЦИОНАЛЬНОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА У К Р А И Н Ы « К И Е В С К И Й ПОЛИТЕХНИЧЕСКИЙ И Н С Т И Т У Т »

1998

#### ТРИФОНОВ А. П., ЗАХАРОВ А. В., ЧЕРНОЯРОВ О. В.

### ПОРОГОВЫЕ ХАРАКТЕРИСТИКИ КВАЗИПРАВДОПОДОБНОЙ ОЦЕНКИ ВРЕМЕНИ ПРИХОДА СЛУЧАЙНОГО РАДИОИМПУЛЬСА

Найдены характеристики оценки времени прихода радиоимпульса с неточно известной длительностью при наличии аномальных ошибок. Приведены результаты статистического моделирования алгоритма оценки.

Задача оценки времени прихода импульсных сигналов имеет широкие приложения в связи, радио- и гидролокации, системах синхронизации и т. п. Такие сигналы не только наблюдаются на фоне случайных помех, но и сами часто являются случайными. Примерами случайного радиоимпульса могут служить отраженный локационный сигнал, радиосигнал, искаженный модулирующей помехой, сигналы в радио- и оптической астрономии [1—3] и др.

Рассмотрим оценку времени прихода  $\lambda_0$  случайного радиоимпульса

$$s(t, \lambda_0, \tau_0) = I[(t - \lambda_0) / \tau_0] \xi(t),$$
 (1)

\*1

наблюдаемого на фоне аддитивного гауссовского белого шума n (t) с односторонней спектральной плотностью  $N_0$ . Здесь I (x) = 1 при  $|x| \le 1/2$ , I (x) = 0 при |x| > 1/2,  $\tau_0$  — длительность импульса, а $\xi$  (t) — узкополосный центрированный стационарный гауссовский случайный процесс. Спектральную плотность процесса  $\xi$  (t) представим в виде G ( $\omega$ ) = ( $\gamma$ /2) |g [ ( $\nu$  –  $\omega$ )/ $\Omega$ ] + |g [ ( $\nu$  +  $\omega$ )/|g], где  $|\gamma$  — величина,  $|\alpha|$  — ширина полосы частот,  $|\nu|$  — центральная частота спектральной плотности, а функция |g| (x) описывает форму

спектральной плотности и нормирована так, что max g(x) = 1,  $\int g^2(x) dx = 1$ .

Полагаем, что длительность импульса (1) значительно больше времени корреляции узкополосного случайного процесса  $\xi$  (t),  $\tau$ . e.

$$\mu = \tau_0 \Omega / 2\pi >> 1, \ \Omega << \nu. \tag{2}$$

В [4] исследована оценка максимального правдоподобия (ОМП) времени прихода импульса (1) с учетом аномальных ошибок при условии, что остальные параметры импульса априори известны. Однако в ряде практических задач длительность импульса известна не точно. Ниже найдены характеристики оценки времени прихода импульса (1) с неточно известной длительностью, а также приведены результаты теоретического и экспериментального (методом статистического моделирования на ЭВМ) исследования пороговых эффектов.

При выполнении (2) логарифм функционала отношения правдоподобия (ФОП)  $L(\lambda, \tau)$  для наблюдаемой реализации  $x(t) = s(t, \lambda_0, \tau_0) + n(t)$  как функция неизвестных времени прихода и длительности радиоимпульса (1) имеет вид [4]:

$$L(\lambda, \tau) = M(\lambda, \tau) / N_0 - (\tau \Omega / 2\pi) \int_0^\infty \ln[1 + q g(x)] dx,$$
 (3)

$$M(\lambda, \tau) = \int_{\lambda - \tau/2}^{\lambda + \tau/2} y^2(t) dt, \qquad (4)$$

где  $q = \gamma / N_0$ , а  $y(t) = \int \{ x(t') h(t-t') dt'$ — отклик фильтра с импульсной

переходной функцией h (t) на реализацию наблюдаемых данных x (t), причем передаточная функция H ( $\omega$ ) этого фильтра удовлетворяет условию:|H ( $\omega$ )  $|^2 = f[(v-\omega)/\Omega] + f[(v+\omega)/\Omega], f(x) = qg(x)/[1+qg(x)]$ . Обозначим  $[\Lambda_1,\Lambda_2]$  — априорный интервал возможных значений неизвестного времени прихода  $\lambda_0$ . Тогда ОМП  $\lambda_m$  времени прихода импульса (1) с априори известной длительностью определяется как положение глобального максимума функционала M ( $\lambda$ ,  $\tau_0$ ) (4) при  $\lambda$   $\in$   $[\Lambda_1,\Lambda_2]$ ,  $\tau$ . e.  $\lambda_m$  = arg sup M ( $\lambda$ ,  $\tau_0$ ) [4].

При неточно известной длительности импульса  $\tau_0$  вместо ОМП  $\lambda_m$  можно использовать квазиправдоподобную оценку (КПО)

$$\lambda_{q} = \underset{\lambda \in [\Lambda_{1}, \Lambda_{2}]}{\operatorname{arg sup}} M^{*}(\lambda) , M^{*}(\lambda) = M(\lambda, \tau^{*}) = \int_{\lambda - \tau^{*}/2} y^{2}(t) dt , \qquad (5)$$

где  $\tau^*$  — фиксированное ожидаемое (прогнозируемое) значение длительности  $\tau_0$ , причем в общем случае  $\tau^* \neq \tau_0$ . При  $\tau^* = \tau_0$  КПО  $\lambda_q$  (5) переходит в ОМП  $\lambda_m$ .

Введем в рассмотрение безразмерный параметр  $l = \lambda/\tau_0$ , обозначим  $l_0 = \lambda_0/\tau_0$  и представим функционал  $M^*(\lambda)$  (5) в виде суммы  $M^*(\lambda) = S(l) + N(l)$ . Здесь  $S(l) = \langle M^*(l,\tau_0) \rangle$  — сигнальная,

 $N\left(l\right)=M^{*}\left(l\ \tau_{0}\right)-\langle\ M^{*}\left(l\ \tau_{0}\right)\rangle$  — шумовая функции, а усреднение выполняется по реализациям x(t) при фиксированном  $\lambda_{0}$  [5]. Если выполняется (2), то

$$S(l) = AC(l, l_0) + S_0,$$

$$A = \mu q^2 N_0 \int_{-\infty}^{\infty} \left\{ g^2(x) / [1 + q g(x)] \right\} dx,$$

$$S_0 = \mu q N_0 (1 + \delta) \int_{-\infty}^{\infty} \left\{ g(x) / [1 + q g(x)] \right\} dx,$$

$$C(l, l_0) = \begin{cases} 1 + \min(0; \delta), & |l - l_0| \le |\delta| / 2; \\ 1 + \delta / 2 - |l - l_0|, & |l - l_0| \in (|\delta| / 2; 1 + \delta / 2]; \\ 0, & |l - l_0| > 1 + \delta / 2, \end{cases}$$

$$(6)$$

где  $\delta = (\tau^* - \tau_0) / \tau_0$  — относительное отклонение ожидаемого значения длительности импульса (1) от ее истинного значения. Шумовая функция N(I) является реализацией асимптотически (при  $\mu \to \infty$ ) гауссовского центрированного случайного процесса с корреляционной функцией

$$\langle N(l_1) N(l_2) \rangle = B_1 R_1 (l_1, l_2) + B_2 R_2 (l_0, l_1, l_2), \tag{7}$$

$$B_1 = \mu q^2 N_0^2 \int_{-\infty}^{\infty} \frac{g^2(x) dx}{[1 + qg(x)]^2}, B_2 = \mu q^3 N_0^2 \int_{-\infty}^{\infty} \frac{g^3(x) [2 + qg(x)] dx}{[1 + qg(x)]^2},$$

$$R_1(l_1, l_2) = \begin{cases} 1 + \delta - |l_1 - l_2|, & |l_1 - l_2| \le 1 + \delta; \\ 0, & |l_1 - l_2| > 1 + \delta; \end{cases},$$

$$R_2(l_0, l_1, l_2) = \max \left\{ 0; \min \left[ l_0 + 1/2; l_1 + (1 + \delta)/2; l_2 + (1 + \delta)/2 \right] - \max \left[ l_0 - 1/2; l_1 - (1 + \delta)/2; l_2 - (1 + \delta)/2 \right] \right\}.$$

Из (6) следует, что сигнальная функция S(l) имеет плоскую вершину протяженностью  $|\delta|$ , расположенную на интервале  $\Gamma_0 \equiv [l_0 - |\delta|/2; l_0 + |\delta|/2]$ . В частности, сигнальная функция максимальна при  $l = l_0$ , следовательно выходное отношение сигнал/шум (ОСШ) [5] для квазиправдоподобного алгоритма (5) запишется в виде:

$$z_{q}^{2}(\delta) = \frac{\left[S\left(l_{0}\right) - S_{0}\right]^{2}}{\langle N^{2}(l_{0}) \rangle} = \frac{A^{2}\left[1 + \min\left(0;\delta\right)\right]^{2}}{B_{1}(1 + \delta) + B_{2}\left[1 + \min\left(0;\delta\right)\right]},$$

причем,  $z_q^2(\delta) >> 1$  при выполнении (2), q>0 и  $\delta>-1$ .

Найдем характеристики нормированной КПО  $l_q=\lambda_q/\tau_0$  временного положения импульса (1). В процессе анализа все оценки целесообразно разбить на два класса: надежные и аномальные [5]. Оценка  $l_q$  является надежной, если она находится в пределах интервала  $\Gamma_S\equiv [l_0-1-\delta/2\ ;\ l_0+1+\delta/2\ ]$ , где сигнальная функция (6) отлична от  $S_0$ . Если же КПО  $l_q$  находится вне интервала  $\Gamma_S$ , т. е.  $l_q\in\Gamma_N=\Gamma\setminus\Gamma_S$ ,  $\Gamma\equiv [\ \Lambda_1/\tau_0\ ;\ \Lambda_2/\tau_0\ ]$ , то оценка и соответствующая ошибка оценивания называются аномальными [5].

Установленные свойства функционала  $M^*(\lambda)$  (5) позволяют на основе метода локально-марковской аппроксимации, аналогично [6, 7], найти асимптотически точное (при  $z_q^2(\delta) \to \infty$ ,  $\mu \to \infty$ ) выражение для функции распределения  $F_0(l) = P(l_q < l)$  надежной оценки  $l_q$ :

$$F_{0}(l) = \begin{cases} \varphi(l_{0} - l - |\delta|/2), & l < l_{0} - |\delta|/2; \\ \arccos[2(l_{0} - l)/|\delta|]/\pi, & |l - l_{0}| \le |\delta|/2; \\ 1 - \varphi(l - l_{0} - |\delta|/2), & l > l_{0} + |\delta|/2; \end{cases}$$
(8)
$$\varphi(l) = \frac{2z}{\kappa_{2}} \int_{0}^{\infty} \left\{ \exp\left(-\frac{2zx}{\kappa_{2}}\right) \Phi\left(\frac{x - zl}{\sqrt{\kappa_{2}l}}\right) + \Phi\left(\frac{x + zl}{\sqrt{\kappa_{2}l}}\right) - 1 \right\} \times \left\{ 2\Phi\left(\frac{x}{\sqrt{\kappa_{1} |\delta|}}\right) - 1 - \exp\left(\frac{2z^{2}\kappa_{1}}{\kappa_{2}^{2}}|\delta|\right) \left[ \exp\left(-\frac{2zx}{\kappa_{2}}\right) \times \Phi\left(\frac{x - 2z\kappa_{1} |\delta|/\kappa_{2}}{\sqrt{\kappa_{1} |\delta|}}\right) - \exp\left(\frac{2zx}{\kappa_{2}}\right) \left(1 - \Phi\left(\frac{x + 2z\kappa_{1} |\delta|/\kappa_{2}}{\sqrt{\kappa_{1} |\delta|}}\right)\right) \right] \right\} dx,$$

$$\kappa_{1} = \begin{cases} 2, & \delta < 0; \\ 2B_{1} / (B_{1} + B_{2}), & \delta > 0; \end{cases} \quad \kappa_{2} = \frac{2B_{1} + B_{2}}{B_{1} + B_{2}},$$

где

$$z^{2} = \max_{\delta} z_{q}^{2}(\delta) = z_{q}^{2}(0) = \mu q^{2} \left\{ \int_{-\infty}^{\infty} \frac{g^{2}(x) dx}{[1 + q g(x)]} \right\}^{2}$$
 (9)

— ОСШ при априори известной длительности радиоимпульса, а  $\Phi(x) = \int_{-\infty}^{x} \exp(-t^2/2) \, dt / \sqrt{2}\pi$  — интеграл вероятности. Выражение (8) полу-

чено, аналогично [6], в предположении, что время корреляции  $1+\delta$  шумовой функции N(l) превосходит ширину  $|\delta|$  плоской вершины сигнальной функции S(l) (6), т. е.

$$|\delta| \ge -1/2. \tag{10}$$

Из (8) следует, что функция распределения надежной КПО времени прихода радиоимпульса (1) имеет существенно негауссовский характер, хотя решающая статистика  $M^*$  ( $\lambda$ ) (5) является асимптотически гауссовской.

Используя (8), находим асимптотические выражения для условных (при фиксированном  $l_0$ ) смещения  $b_0=\langle\ l_q-l_0\ \rangle$  и рассеяния  $V_0=\langle\ (l_q-l_0\ )^2\ \rangle$  надежной КПО  $l_q$ :

$$b_{0} = 0, V_{0} = \frac{\delta^{2}}{8} + \exp\left[\frac{2z^{2} \kappa_{1} |\delta|}{\kappa_{2}^{2}}\right] \left[1 - \Phi\left(\frac{2z}{\kappa_{2}} \sqrt{\kappa_{1} |\delta|}\right)\right] \left[\frac{13\kappa_{2}^{2}}{4z^{4}} + \frac{|\delta|}{z^{2}} \times \left(\frac{3\kappa_{2}}{2} - 8\kappa_{1}\right) + \frac{4\kappa_{1}}{\kappa_{2}^{2}} \delta^{2} \left(3\kappa_{1} - \kappa_{2}\right) + \frac{8z^{2} \kappa_{1}^{2}}{\kappa_{2}^{3}} |\delta|^{3} \left(1 - \frac{4\kappa_{1}}{3\kappa_{2}}\right)\right] + \sqrt{\frac{|\delta| \kappa_{1}}{2\pi}} \times \left[4z\delta^{2} \frac{\kappa_{1}}{\kappa_{2}^{2}} \left(\frac{4\kappa_{1}}{3\kappa_{2}} - 1\right) + \frac{|\delta|}{z} \left(3 - \frac{22\kappa_{1}}{3\kappa_{2}}\right) + \frac{13\kappa_{2}}{2z^{3}}\right], \tag{11}$$

точность которых возрастает с увеличением  $\mu$  (2) и  $z^2$  (9). Полагая в (11)  $\delta$  = 0, получаем рассеяние  $V_{0m} = \langle (l_m - l_0)^2 \rangle = 13 \kappa_2^2 / 8 z^4$  нормированной надежной ОМП  $l_m = \lambda_m / \tau_0$  времени прихода сигнала (1) с априори известной длительностью [4]. Согласно (11) предельное (при  $z^2 \to \infty$ ) значение рассеяния  $V_0$  надежной оценки  $l_q$  равно  $\delta^2 / 8$ . Следовательно, рассеяние КПО (5) даже при очень малых случайных искажениях импульса (1) ограничено снизу постоянной величиной ( $\tau^* - \tau_0$ ) $^2 / 8$ , и при  $\delta$  = 0 КПО (5) не является состоятельной.

Рассмотрим теперь пороговые (т. е. с учетом аномальных ошибок) характеристики КПО (5). Аномальные ошибки возможны, если приведенная длина [5, 7]  $m = (\Lambda_2 - \Lambda_1) / \tau_0$  априорного интервала  $\Gamma$  возможных значений времени

прихода  $l_0$  значительно больше протяженности интервала  $\Gamma_S$  надежной оценки, т. е.

$$m > 1. (12)$$

Обозначим  $P_0=P\left[\ l_q\in\Gamma_S\ \right]$  — вероятность надежной оценки,  $W_0\left(l\right)=dF_0(l)\ /\ d\ l$  и  $W_a(l)$  — плотности вероятностей надежной и аномальной КПО  $l_q$  соответственно. Так как надежные и аномальные решения об оценке являются несовместимыми событиями, то плотность вероятности КПО  $l_q$  с учетом аномальных ошибок можно представить в виде  $W\left(l\right)=P_0W_0\left(l\right)+(1-P_0)W_a(l)$ . Здесь при выполнении (12) можно использовать аппроксимацию:  $W_a(l)=1/m$  при  $l\in\Gamma$  и  $W_a(l)=0$  при  $l\notin\Gamma$  [5]. Тогда условные (при фиксированном  $l_0$ ) смещение и рассеяние оценки  $l_q$  с учетом аномальных ошибок запишутся в виде:

$$b = \langle l_q - l_0 \rangle = P_0 b_0 + (1 - P_0) b_a = (1 - P_0) b_a,$$

$$V = \langle (l_q - l_0)^2 \rangle = P_0 V_0 + (1 - P_0) V_a,$$
(13)

где  $b_0$  и  $V_0$  — условные смещение и рассеяние надежной оценки, которые определяются из (11), а  $b_a$  и  $V_a$  — условные смещение и рассеяние аномальной оценки, причем при выполнении (12)  $b_a = (\Lambda_2 + \Lambda_1) \, / \, 2\tau_0 - l_0$ ,  $V_a = \left[ (\Lambda_2^2 + \Lambda_2 \, \Lambda_1 + \Lambda_1^2) \, / \, 3\tau_0^2 - l_0 \, (\Lambda_2 + \Lambda_1) \, / \, \tau_0 + l_0^2 \, \right]$  [5].

Вероятность надежной оценки при  $\tau^* = \tau_0$  найдена в [4]. Поэтому ограничимся рассмотрением случая  $\tau^* \neq \tau_0$  ( $\delta \neq 0$ ). Согласно определению [5]  $P_0 = P$  [ $H_S > H_N$ ], где  $H_S$  и  $H_N$ — величины глобальных максимумов функционала  $M^*$  ( $\lambda$ ) (5) на интервалах надежной  $\Gamma_S$  и аномальной оценок  $\Gamma_N$  соответственно. При выполнении (12) случайные величины  $H_S$  и  $H_N$  приближенно статистически независимы, поэтому [5]

$$P_0 \approx \int_{-\infty}^{\infty} F_N(u) dF_S(u), \qquad (14)$$

где  $F_N(u) = P(H_N < u)$  и  $F_S = P(H_S < u)$  — функции распределения случайных величин  $H_N$  и  $H_S$  соответственно. Будем считать, что ОСШ (9) достаточно велико, поэтому для расчета вероятности (14) достаточно найти аппроксима-

щии подынтегральных функций  $F_N(u)$  и  $F_S(u)$ , асимптотически точные при  $u \to \infty$  [5].

Согласно (6), (7), если  $l \in \Gamma_N$ , то  $S(l) = S_0$ , а шумовая функция N(l) является асимптотически (при  $\mu \to \infty$ ) гауссовским стационарным центрированным случайным процессом с корреляционной функцией  $\langle N(l_1)N(l_2) \rangle = B_1 R_1(l_1, l_2)$ . Поэтому при выполнении (2)

$$\begin{split} F_{N}\left(u\right) &= P\left[\sup_{\mathbf{l} \in \Gamma_{N}} M^{*}\left(l\,\tau_{0}\right) < u\right] = P\left[\sup_{\mathbf{l} \in \Gamma_{N}} N\left(l\right) < u - S_{0}\right] = \\ &= P\left\{\sup_{\mathbf{l} \in \Gamma_{N}} r\left[l/\left(1 + \delta\right)\right] < \zeta_{N}\left(u\right)\right\}, \end{split}$$

где  $\zeta_N(u) = (u - S_0) / \sqrt{B_1(1 + \delta)}$ , а r(l) — стационарный центрированный гауссовский случайный процесс с корреляционной функцией  $K(l) = \max [0; 1 - |l|]$ . Когда выполняется (12)

$$F_N(u) \approx P \left\{ \sup_{1 \in \Gamma} r[l/(1+\delta)] < \zeta_N(u) \right\}. \tag{15}$$

Воспользовавшись в (15) асимптотической (при  $m \to \infty$ ,  $u \to \infty$ ) аппроксимацией функции распределения  $F(u) = P\begin{bmatrix} \sup_{l \in \Gamma} r(l) < u \\ l \in \Gamma \end{bmatrix}$ , приведенной в [8], находим:

$$F_N(u) = \begin{cases} \exp\left\{-\frac{m\,\zeta_N(u)}{(1+\delta)\sqrt{2\pi}} \exp\left[-\frac{\zeta_N^2(u)}{2}\right]\right\}, & u \ge S_0 + \sqrt{B_1}\,(1+\delta); \\ 0, & u < S_0 + \sqrt{B_1}\,(1+\delta). \end{cases}$$
(16)

Точность этого выражения возрастает с увеличением u, m и  $\mu$ .

Положим теперь  $l\in\Gamma_S$ . Согласно (8) при  $\tau^*\neq\tau_0$  и  $z^2\to\infty$  надежная КПО  $l_q$  принимает значения из интервала  $\Gamma_0\equiv [\;l_0-|\delta|\,/\,2\;;l_0+|\delta|\,/\,2\;]$  с вероятностью, стремящейся к 1. На этом интервале:  $S(l)=S(l_0)=A\;[1+\min(0\;;\delta\;)\;]+S_0$ , а шумовая функция N(l) является асимптотически ауссовским стационарным центрированным случайным процессом с корреляционной функцией  $\langle\;N(l_1)\,N(l_2)\;\rangle=B_1\;R_1\;(l_1\;,l_2)+B_2$  при  $\delta\geq 0$  и  $\langle N(l_1)\,N(l_2)\;\rangle=(B_1+B_2)\,R_1(l_1\;,l_2)$  при  $\delta<0$ . Поэтому при  $z^2>>1$  и выполнении (2):

$$F_{S}(u) = P \left\{ \sup_{I \in \Gamma_{S}} M^{*} (I \tau_{0}) < u \right\} \approx P \left\{ \sup_{I \in \Gamma_{0}} M^{*} (I \tau_{0}) < u \right\} =$$

$$= P \left[ \sup_{I \in [0; m_{S}]} r(I) < \zeta_{S}(u) \right], \qquad (17)$$

$$\zeta_{S}(u) = \left\{ u - A \left[ 1 + \min(0; \delta) \right] - S_{0} \right\} / \sigma,$$

$$\sigma^{2} = \begin{cases} (B_{1} + B_{2}) (1 + \delta), & \delta < 0; \\ B_{1} (1 + \delta) + B_{2}, & \delta \geq 0; \end{cases} m_{S} = \begin{cases} \mid \delta \mid / (1 + \delta), \\ \mid B_{1} \mid \delta \mid / \left[B_{1} (1 + \delta) + B_{2}\right], & \delta < 0; \\ \mid B_{1} \mid \delta \mid / \left[B_{1} (1 + \delta) + B_{2}\right], & \delta \geq 0. \end{cases}$$

Используя [9] можно найти вероятность непревышения порога u реализацией процесса r(l) на интервале длительностью  $\rho \le 1$ :

$$P\left[\sup_{\mathbf{I}\in[0;\,\rho]}r(\mathbf{I}) < u\right] = \Psi_0(u,\,\rho) = \int_{-\infty}^{u} \Phi\left[\frac{u-x(1-\rho)}{\sqrt{\rho(2-\rho)}}\right] \exp\left(-\frac{x^2}{2}\right) \frac{dx}{\sqrt{2\pi}} - \frac{\rho u}{\sqrt{2\pi}} \times \exp\left(-\frac{u^2}{2}\right) \Phi\left(u\sqrt{\frac{\rho}{2-\rho}}\right) - \frac{\sqrt{\rho(2-\rho)}}{2\pi} \exp\left(-\frac{u^2}{2-\rho}\right).$$
(18)

При выполнении (10) в (17) величина  $m_S < 1$ . Воспользовавшись (18), находим асимптотическую аппроксимацию функции (17)

$$F_S(u) \approx \Psi_0 \left[ \zeta_S(u), m_S \right], \tag{19}$$

точность которой возрастает с увеличением  $\mu$  и z. Подставляя (16), (19) в (14), при  $\delta \neq 0$  окончательно получаем

$$P_{0} = \frac{1}{\sqrt{2\pi}} \int_{1}^{\infty} \exp\left[-\frac{mx}{(1+\delta)\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right)\right] \left\{ \left[2 + m_{S}\zeta^{2}(x) - m_{S}\right] \times \exp\left(-\frac{\zeta^{2}(x)}{2}\right) \Phi\left[\zeta(x)\sqrt{\frac{m_{S}}{2 - m_{S}}}\right] + \sqrt{\frac{m_{S}(2 - m_{S})}{2\pi}} \zeta(x) \times \exp\left[-\frac{\zeta_{2}(x)}{2 - m_{S}}\right] \right\} dx,$$

$$(20)$$

$$\zeta(x) = \left\{ \left[\frac{x - A\sqrt{(1+\delta)/B_{1}}}{x - A/\sqrt{B_{1}(1+\delta)}}\right] / \sqrt{1 + B_{2}/B_{1}}, \quad \delta < 0; \\ \left[x - A/\sqrt{B_{1}(1+\delta)}\right] / \sqrt{1 + B_{2}/B_{1}(1+\delta)}, \quad \delta \ge 0,$$

где  $m_S$  определяется из (17), а коэффициенты A,  $B_1$ , $B_2$  — из (6), (7). Точность приближенного выражения (20) возрастает с увеличением m,  $\mu$  (2) и z (9).

На рис. 1, 2 сплошными линиями нанесены зависимости нормированного рассеяния  $\mathcal{V} = 12V/m^2$  КПО  $l_a$  с учетом аномальных ошибок, а на рис. 3, 4 вероятности  $P_a = P\left[l_q \in \Gamma_N\right] = 1 - P_0$  аномальной ошибки, рассчитанные по формулам (13), (20) при  $g(x)=I(x), \lambda_0=(\Lambda_2+\Lambda_1)/2, m=20$  и  $\delta=0,1$  (рис. 1, 3), либо  $\delta = -0.1$  (рис. 2, 4). Штриховыми линиями на рис. 1, 2 показаны соответствующие зависимости нормированного рассеяния  $V_0 = 12V_0 / m^2$  (11) надежной КПО. Кривые I на рис. 1—4 соответствуют  $\mu = 50$ ,  $2 - \mu = 100$ ,  $3 - \mu = 100$  $\mu$  = 200. Из рис. 1—4 следует, что с уменьшением q, когда ОСШ z ≤ 5...7, вероятность  $P_a$  аномальных ошибок значительно возрастает и приближается к 1. Это приводит (по сравнению со случаем надежной оценки) к скачкообразному увеличению рассеяния КПО. С ростом q, когда z > 5...7, рассеяние Vсходится к рассеянию  $\mathcal{V}_0$ , и оценка становится надежной с вероятностью, близкой к 1. Из (13), (20) и рис. 1, 2 следует, что минимальное (пороговое) значение параметра q, при котором влиянием аномальных ошибок на точность КПО еще можно пренебречь, уменьшается с увеличением µ и возрастает с увеличением т.



С целью экспериментальной проверки работоспособности квазиправдоподобного алгоритма оценки (5) и установления границ применимости асимптотически точных формул (11), (13), (20) для характеристик КПО выполнялось статистическое моделирование алгоритма (5) на ЭВМ. При моделировании форма спектральной плотности процесса  $\xi$  (t) предполагалась прямоугольной, так что g(x) = I(x). Для сокращения затрат машинного времени использовалось

представление отклика y(t) узкополосного фильтра с импульсной переходной функцией h(t) (4) через его низкочастотные квадратуры. С учетом условия узкополосности (2) это позволило сформировать решающую статистику  $M^*(\lambda)$  (4) в виде суммы двух независимых случайных процессов

$$M^{*}(\lambda) = C[L_{1}(\lambda) + L_{2}(\lambda)], L_{i}(\lambda) = \int_{\lambda - \tau^{*}/2}^{\lambda + \tau^{*}/2} y_{i}^{2}(t) dt, i = 1, 2,$$

$$y_{i}(t) = \int_{0}^{\infty} x_{i}(t') \; h_{0}(t - t') \; dt', \; x_{i}(t) = I\left[(t - \lambda_{0}) \, / \, \tau_{0} \, \right] \, \xi_{i}(t) + n_{i}(t) \; .$$

Здесь C — несущественная постоянная,  $\xi_i(t)$  и  $n_i(t)$  — статистически независимые центрированные гауссовские случайные процессы со спектральными плотностями  $G_0(\omega) = \gamma I\left(\omega/\Omega\right)$  и  $N_0$  соответственно, а спектр  $H_0\left(\omega\right)$  функции  $h_0\left(t\right)$  удовлетворяет условию:  $|H_0\left(\omega\right)|^2 = I\left(\omega/\Omega\right)$ . В процессе моделирования с шагом  $\Delta t = 0.05$  /  $\mu$  формировались отсчеты случайных процессов  $y_i\left(t\right)$ , а затем для всех  $\lambda \in [\Lambda_1 \ ; \Lambda_2 \ ]$  с шагом  $\Delta \lambda = 0.01\tau_0$  — отсчеты случайного процесса  $M^*\left(\lambda\right)$ , и согласно (5) вычислялась оценка времени прихода случайного радиоимпульса. При этом среднеквадратическая погрешность ступенчатой аппроксимации непрерывных реализаций  $M^*\left(\lambda\right)$  на основе сформированных дискретных отсчетов не превышала 10%.



Некоторые результаты статистического моделирования при  $\lambda_0 = (\ \Lambda_2 + \Lambda_1\ )\ /\ 2,\ m = 20$  и  $\delta = 0,1$  показаны на рис. 1, 3, а при  $\delta = -0,1$  — на рис. 2, 4. На рис. 1, 2 нанесены экспериментальные значения нормированного рассеяния  $\mathcal{V}$  КПО  $l_a$  с учетом аномальных ошибок при  $\mu = 50$  (квадратики),  $\mu = 100~$  (крестики) и  $~\mu = 200~$  (ромбики), а также значения  $\mathcal{V}_0$  нормированного рассеяния надежной оценки при  $\mu = 50$  (треугольники),  $\mu = 100$  (звездочки) и  $\mu$  = 200 (кружочки). На рис. 3, 4 квадратиками (при  $\mu$  = 50 ), крестиками (при  $\mu$  = 100 ) и ромбиками (при  $\mu$  = 200) показаны экспериментальные значения вероятности  $P_a = 1 - P_0$  аномальной ошибки. Каждое экспериментальное значение получено в результате обработки не менее  $10^4$  реализаций  ${\it M}^*$  ( $\lambda$ ). Поэтому с вероятностью 0,9 границы доверительных интервалов отклоняются от экспериментальных значений не более, чем на 10...15 %. Из рис. 1-4 следует, что теоретические зависимости для характеристик КПО с учетом аномальных ошибок удовлетворительно аппроксимируют экспериментальные данные по крайней мере при  $\mu \geq 50, z \geq 0,5$  . При z < 1,5...2 теоретические зависимости для рассеяния  $\mathcal{V}_0$  надежной КПО заметно отклоняются от экспериментальных, поскольку найдены без учета конечной длительности интервала  $\Gamma_S$  надежной оценки [5-7].

Приведенные результаты получены при поддержке Российского фонда фундаментальных исследований.

#### БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Ван Трис Г. Теория обнаружения, оценок и модуляции.— М.: Сов. радио, 1977.— 664 с.

2. Ахманов С. А., Дьяков Ю.Е., Чиркин А.С. Введение в статистическую радиофизику и оптику.— М.: Наука, 1981.— 640 с.

3. Вопросы статистической теории радиолокации. П. А. Бакут, И. А. Большаков, Б. М. Герасимов и др.; Под ред. Г. П. Тартаковского.— М.: Сов. радио, 1963.— 426 с.

4. Трифонов А. П., Захаров А. В. Прием сигнала с неизвестной задержкой при наличии модулирующей помехи // Радиоэлектроника.— 1986.— Т.29.— № 4.— С. 36—41.

5. Куликов Е. И., Трифонов А. П. Оценка параметров сигналов на фоне помех.— М.: Сов.

радио, 1978.— 296 с.
6. *Трифонов А. П., Галун С. А.* Требования к точности тактовой синхронизации при использовании ШИМ // Радиоэлектроника.— 1980.— Т. 23.— № 7.— С. 37—43.

7. Трифонов А. П., Шинаков Ю. С. Совместное различение сигналов и оценка их параметров на фоне помех.— М.: Радио и связь, 1986.— 264 с.

8. Трифонов А. П. Обнаружение сигналов с неизвестными параметрами // Теория

обнаружения сигналов.— М.: Радио и связь, 1984.— С.12—89.

9. Shepp L. A. Radon-Nicodym derivatives of Gaussian measures // Ann. Math. Statist.—1966.— V. 37.— P.321—354.

Воронежский госуниверситет.

Поступила в редакцию 02.09.97.