多变量回归模型 社科量化研究的问题

杨点溢

Department of Government London School of Economics and Political Science

Spark 社科量化系列课程

本节课内容

1 测量/描述性研究的问题

② 回顾 OLS Review OLS

③ 回归模型的有效性

测量概念 Measuring Concepts

概念 Concept

↓
概念化 Conceptualisation
↓
操作化 Operationalisation
↓
测量 Measurement

• 测量 (Measurement) 通常是描述性 (descriptive) 研究的目的

- 测量 (Measurement) 通常是描述性 (descriptive) 研究的目的
- 测量也是因果 (causal) 研究的一个常被低估的部分

- 测量 (Measurement) 通常是描述性 (descriptive) 研究的目的
- 测量也是因果 (causal) 研究的一个常被低估的部分
- 测量关联了一个研究者的直觉 (intuition)、理论立场 (theoretical argument) 和研究设计 (research design)。

- 测量 (Measurement) 通常是描述性 (descriptive) 研究的目的
- 测量也是因果 (causal) 研究的一个常被低估的部分
- 测量关联了一个研究者的直觉 (intuition)、理论立场 (theoretical argument) 和研究设计 (research design)。
- 有效的测量就是量化的分数能够有意义地捕捉到对应的概念。 'Valid measurement is achieved when scores (including the results of qualitative clasification) meaningfully capture the ideas contained in the corresponding concept.' (Adcock and Collier, 2001).

有效性 Validity

- 一个有效测量应该能准确地代表它要衡量的概念
 - 表面效度 Face Validity: 符合直觉 (基于我们对概念的理解) Makes intuitive sense (relying on what you know about the concept).
 - 内容效度 Content Validity: 包含了所有关键维度的程度 Covers all critical dimensions of a concept.
 - 建构效度 Construct Validity: 该概念与其应该相关的其他度量相关的程度。Degree that the concept is related to other measures that it is supposed to be related to.
 - 外部效度 External Validity: 该措施在不同背景下(例如不同国家)的 普遍适用程度。Degree to which the measure is generalisable across contexts (e.g. across countries).
 - 前几个为内部效度 (Internal Validity)

表面效度 Face Validity: Polity VI

Democracy around the world

可靠性 Reliability

• 测量的一致性 (稳定且准确) 和可重复的程度。 The extent to which a measure is consistent (stable and accurate) and reproducible.

可靠性 Reliability

- 测量的一致性 (稳定且准确) 和可重复的程度。The extent to which a measure is consistent (stable and accurate) and reproducible.
- 衡量一致性 Measures of Agreement:
 - 一致百分比 Percent Agreement
 - 相关性 Correlation

衡量误差 Measurement Error

- 衡量误差 (Measurement Error) 可以是随机的, 也可能是系统性的。
- 随机误差会导致估计值中的噪声 (noise)
 - 让我们的估计值更不精确 (less precise)
- 系统性误差 (即偏差 bias) 是对内部和外部有效性的威胁
 - 可能导致错误的结论

测量文本 Measurement in Text

- 可以手动(手工编码 Hand-coding),或者是通过电脑(自动化文本分析 automated text analysis)
- 目标是把文本通过编码的方式转化为数字
- 研究问题 → 定义概念 → 明确 (identify) 文本的人口 (population)→ 创造一个编码本 (codebook)→ 根据编码本给文本赋予分数 → 归总 和归纳 (aggregate and summarise) 结果

编码者际可靠性 Inter-coder reliability

Туре	Test Design	Potential causes	Strength
Stability	test-retest	intraobserver inconsistencies	weakest
Reproducibility	test-test	intraobserver inconsistencies + interobserver disagreements	medium
Accuracy	test-standard	intraobserver inconsistencies + interobserver disagreements + deviations from a standard	strongest

社会偏好偏差 Social Desirability Bias

- 人们不表达真实的想法,而是表达社会"接受"的想法 if individuals do not reveal their genuine attitudes or behaviours, but those that are thought to be socially acceptable
 - e.g. 投票给川普
- 路径: 偏好伪造 (preference falsification) 或者回避问题 (avoidance)
- 重点: 压力来自社会上的其他公民
 - 如果压力来自政府 → 政治敏感偏差 (political sensitivity bias)
 - 在成熟的威权系统,社会偏好偏差和政治敏感偏差在政治议题上可能同时存在
- 更多信息可以参见 Yang and Huang (2023) 的文献综述。

霍桑效应 The Hawthorne effect

- 知道被研究这个事情本身会对结果有影响 The effect of knowing that you are part of a study.
- 你可能会因为你被研究而改变你的行为和回应 You might change your responses/behaviour because you are studied.
- 例: 领导视察时学校的饭菜

常见的解决办法

- 不引人注目的测量 unobtrusive measurement
 - 例:使用交通摄像头观察不同种族之间的躲避行为从而测量种族歧 视 (Dietrich and Sands, 2023).
- 间接测量 indirect rather than direct measuremnt
 - 列表实验 List experiment
 - 测量俄罗斯人民对俄乌战争的真实支持率 (Chapkovski and Schaub, 2022)
 - 内隐联想测试 Implicit association test
 - 测量种族歧视 (Greenwald et al., 1998).

IMPLICIT ASSOCIATION TEST

Sequence	Initial target-concept discrimination		2		3		4			5					
Task description			Associated attribute discrimination			Initial combined task			Reversed target-concept discrimination			Reversed combined task			
Task instructions	•	BLACK WHITE	•	•	pleasant unpleasan		•	BLACK pleasant WHITE unpleasan	•		BLACK	•	:	BLACK pleasant WHITE unpleasan	•
	Г	MEREDITH	۰	٥	lucky		ō	JASMINE		۰	COURTNEY		0	peace	
	0	LATONYA		0	honor		0	pleasure		٥	STEPHANIE			LATISHA	0
	0	SHAVONN		١	poison	0		PEGGY	0		SHEREEN	0		filth	0
						0	1	evil	0	0	SUE-ELLEN		0	LAUREN	
Sample	ı	HEATHER	0		grief	0									
Sample stimuli		HEATHER TASHIKA	0	٥	gnet gift	Ü		COLLEEN	0		TIA	0	0	rainbow	
	٥		0	۰		0	۰		0			0	0	rainbow Shanise	0
	۰	TASHIKA		0	gift	•	0	COLLEEN	0			- 1	0		0

13 / 54

潜变量 Latent Variables

- 有很多我们想衡量的变量是潜在的 (latent) 而不是可以直接被衡量的:
 - 政治知识
 - 政治能力
 - 偏见
- 我们通过记录和测量与潜变量相关的可以被观察 observable 的指标 来推断出潜变量的值
 - 结构方程建模 Structural Equation Modelling (SEM)

Different levels of measurement

- 有时候我们想测量的变量不可能在理想 ideal 的级别测量(如个人级别)
- 这时候我们可以在不同的级别测量(比如城市、省、国家)

缺失 Attrition /1

- 研究对象可能在中途离开实验/观察(或者一开始就不参加)
- 这有三个问题
 - 让你的研究不那么精确(imprecise)
 - 危害你的研究的普遍性(generalisability)
 - 可能导致偏差(bias)

磨损 Attrition /2

- 缺失是随机的吗?
 - 是: 只影响精确度
 - 不是: 可能影响普遍性, 造成偏差
- 缺失是自变量的一个函数 (fucntion) 吗?
 - i.e. 和自变量相关
 - 是: 造成偏差
- 在我们设计研究时,如何减少偏差带来的影响呢?
 - 跟踪研究对象
 - 确保研究行为不造成差别 differential 磨损。
 - 再次取样 (double sampling): 为难采访的对象提供更多的激励 incentives.
- 要是还有怎么办?
 - 没有灵丹妙药: 差别性磨损是个严重的问题
 - 你可以使用极限法bounding
 - 比如说 extreme value (Manski) bounds
 - 用最高/最低值取代缺失值

代表性 Representativeness

- 避免 "有偏差的" biased 样本
- 取样中的偏差往往来自选择的方法
- 取样的单位 unit不够有代表性
- 代表什么呢?目标人口 target population/population of interest
- 没有代表性的样本会导致普遍性的缺失
- 解决代表性问题的方法
 - 人口中(简单/分层 stratified) 随机取样
 - 根据人口结果加权 Weighting

本节课内容

1 测量/描述性研究的问题

② 回顾 OLS Review OLS

③ 回归模型的有效性

回顾之前的内容

- 使用观察性数据 (observational data) 来衡量因果关系
 - 可能有选择偏差 (selection bias).
- 但是回归模型 (regression) 在以下情况下还是一个有用的工具:
 - 解读估计的系数(coefficients) 的意义时保持谨慎
 - 我们尽可能地处理了选择偏差 \rightarrow 加尽可能多的对的自变量 (regressors).
 - 但是,有时候尽力了也不够好
- 今天:回顾 OLS 估计量,同时更广阔的地讨论量化研究的问题

20 / 54

简单双变量回归 Simple Regression

$$Y_i = \alpha + \beta X_i + u_i$$

OLS

$$\hat{\beta} = \frac{\sum_{i} (X_i - E(X_i))(Y_i - E(Y_i))}{\sum_{i} (X_i - E(X_i))^2} = \frac{cov(Y_i, X_i)}{var(X_i)}$$

$$\hat{\alpha} = E(Y_i) - \hat{\beta}E(X_i)$$

多变量回归 Multivariate Regression

$$Y_i = \alpha + \beta_1 X_{1i} + \dots + \beta_j X_{ji} + u_i$$

OLS.

$$\begin{split} \hat{\beta_k} &= \frac{cov(Y_i, \tilde{X_{ki}})}{var(\tilde{X_{ki}})} \\ \tilde{X_{ki}} &= X_{ki} - \hat{\alpha} - \sum_{j \neq k} \hat{\beta_j} X_{ji} \\ \hat{\alpha} &= E(Y_i) - \hat{\beta_1} E(X_{1i}) - \dots - \hat{\beta_j} E(X_{ji}) \end{split}$$

每个系数 (coefficient) 都是清除别的自变量的影响后对应的 X_{ki} 和 Y_i 的 双变量回归线斜率 (slope)。

本节课内容

1 测量/描述性研究的问题

② 回顾 OLS Review OLS

③ 回归模型的有效性

回归的有效性 Validity of regression

- 内部效度 Internal Validity: 如果关于因果效应的统计推论对于所研究的人群和环境有效,则研究在内部有效。A study is internally valid if statistical inferences about causal effects are valid for the population and setting studied.
- 外部效度 External Validity: 如果一项研究的推论和结论可以普遍 化到该研究对象之外的其他人群和环境,则该研究是外部有效的。 A study is externally valid if its inferences and conclusions can be generalised to other populations and settings apart from that object of the study.

OLS 的假设

- 1: E(u|X) = 0: u_i 关于 $X_{1i}, X_{2i}, ..., X_{ki}$ 的条件分布 (conditional distribution) 的平均值是 0.
- 2: (X_{1i}, X_{2i}, ..., X_{ki}, Y_i) 是独立且相同 (independently and identically distributed) 分布 (i.i.d) 的随机变量。
- 3: 大的异常值比较少有: 有限峰度 (finite kurtosis): $E(X_i^4) < \infty, E(Y_i^4) < \infty$
- 4: 没有完美多重共线性 (No perfect multicollinearity).
- (5): 同方差性 (Homoskedasticity): var(u|X_i) 不取决于 X.

当假设 1 不满足: 内生性 Endogeneity

即误差项和自变量相关 (correlation between the error term and explanatory variables)。这可能是因为:

- 遗失变量偏差 Ommitted variable bias (OVB)
- 函数形式错误 Misspecification of the functional form
- 测量误差 Measurement error
- 反向因果/联立方程 Reverse causality/Simultaneous equations
- 有偏差的取样选择 Sample selection

内生性 Endogeneity 会破坏内部效度

标准误 SE 的问题

- 异方差性 heteroskedasticity
- 多重共线性 multicollinearity
- 自相关 autocorrelation
 - u 与不同时间、地点的自身相关
 - 不同于 OVB⇒ 不与自变量相关
- 在这种情况下我们的 OLS 系数 Coefficient 是一致的, 但是标准误可能不可靠:我们需要改变使用的标准误算法。

遗失变量偏差 OVB

• 上节课的公式:

 $\label{eq:ovb} OVB = \!\! \text{coefficient of the excluded variable} \times \\ \text{coefficient of regression of the excluded on the included variable}$

- 对于 OLS 的因果推断解读依赖条件独立假设Conditional Independence Assumption (CIA):
 - 在我们加上控制变量之后,误差项 error term 不和自变量相关(假设 1)
 - 在遗失变量是可观察的情况下, 这不是个问题
- 但常常有不能被观察的遗失变量

OVB 的解决办法

- 如果我们可以测量/有数据的话,在模型中加上(控制)遗失变量 但经常不可能
- 用一个遗失变量的可被测量的代理 proxy
- 工具变量 Instrumental Variables
- 使用纵向(longitudinal),即面板(panel)数据来控制不可观察的固定 贵失变量
- 在允许的情况下,使用随机对照实验 (RCT)或者自然实验 (如果有 条件)。

函数形式错误 Misspecification of the functional form /1

假设真实的因果关系是曲线的:

$$Y_i = \alpha + \beta X_i + \gamma X_i^2 + e_i$$

但是你的模型估计的是直线:

$$Y_i = \hat{\alpha} + \hat{\beta}X_i + u_i$$

函数形式错误 Misspecification of the functional form /2

函数形式错误 Misspecification of the functional form /3

- 请阅读 Stock and Watson (2014) 的第 8 章了解非直线回归形式
- 可以抽象地理解为一种 OVB⇒ 没有把解释曲线的"变量"涵盖进去
- 解决方案
 - 使用对的(非直线)回归形式
 - 使用 F 统计量来检验是否是直线
- 常见的非直线形式
 - 多项式 (polynomials)
 - 对数 (logarithms)
 - 交互项 (interactions)
- 如果 Y 是二元的 (binary), 即 1 或者 0 (测量的是几率)
 - 考虑logit或者probit.

对数 Logarithms

- Linear(level)-log: $Y_i = \alpha + \beta \ln(X_i) + u_i$
 - 1% change in x is associated with a change in Y of 0.01β
- log-Linear(level): $In(Y_i) = \alpha + \beta X_i + u_i$
 - One unit change in x is associated with $\beta\%$ change in Y.
- log-log: $ln(Y_i) = \alpha + \beta ln(X_i) + u_i$
 - 1% change in x is associated with $\beta\%$ change in Y.
 - β 是 Y 相对于 X 的弹性 (Elasticity)
- 注: ln() 内部往往用 +1 来修正等于 0 的情况。
- Stock and Watson (2014) 的第 8 章有详细推导

交互项 Interactions

$$Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{1i} \times X_{2i}) + u_i$$

- 现在 X₁ 对 Y₁ 的影响是多大呢?
- X₂ 对 Y_i 的影响是多大呢?
- β_3 现在是交叉导数 (cross derivative):

$$\beta_3 = \frac{\partial Y}{\partial X_1} \frac{\partial Y}{\partial X_2}$$

- 可以帮助我们发现<mark>异质性 heterogeneous</mark>影响: X 对 Y 的影响取决于另一个变量的值。
 - 例: 对不同性别的影响

例:教育对收入的分性别异质性影响 (Stock and Watson, 2014, p.334)

Regressor	(1)	(2)	(3)	(4)
Years of education	0.1082** (0.0009)	0.1111** (0.0009)	0.1078** (0.0012)	0.1126** (0.0012)
Female		-0.251** (0.005)	-0.367** (0.026)	-0.392** (0.025)
Female × Years of education			0.0081** (0.0018)	0.0099** (0.0018)
Potential experience				0.0186** (0.0012)
Potential experience ²				-0.000263** (0.000024)
Midwest				-0.080** (0.007)
South				-0.083** (0.007)
West				-0.018** (0.007)
Intercept	1.515** (0.013)	1.585** (0.013)	1.632** (0.016)	1.335** (0.024)
\overline{R}^2	0.221	0.263	0.264	0.276

30 July 2023

测量误差 Measurement Error /1

- 变量的测量往往是"大约的",往往涵盖一些误差
- 甚至官方数据里也可能涵盖测量误差
 - 尼日利亚在 2003 年挖了多少桶油
 - 某一年的财政赤字
- 对于某些指标来讲, 甚至是不可避免的。

测量误差 Measurement Error /2

- 假设自变量 X 可以被不精确 imprecisely地测量为 \tilde{X}
- 那么真实的人口方程

$$Y_i = \alpha + \beta X_i + e_i$$

• 就会变成

$$Y_{i} = \alpha + \beta \tilde{X}_{i} + \eta_{i}$$

$$Y_{i} = \alpha + \beta \tilde{X}_{i} + [\beta(X_{i} - \tilde{X}_{i}) + e_{i}]$$

- 那么偏差 bias 的大小和方向取决于 \tilde{X}_i 和 $(X_i \tilde{X}_i)$ 的相关性
- 要分辨随机random 误差和系统性systematic 偏差

测量误差 Measurement Error /3

- 系统性偏差 (systematic error):
 - 都小了/大了一个固定的数 ⇒ 没啥问题
 - 随着 X 或 Y 变大, 误差也变大/小 ⇒ 有偏差 (biased) 且不一致 (inconsistent).
- 随机误差 (random error)
 - Y 的测量有随机误差 ⇒ 没啥问题,只是不精确 (imprecise)
 - X 的测量有随机误差 ⇒衰减偏差 Attenuation bias (影响大小被低估)

$$\begin{split} \tilde{X}_i &= X_i + w_i \\ E(w_i) &= 0, \ E(w_i|X_i) = E(w_i|e_i) = 0 \\ \rho \lim \hat{\beta}^{OLS} &= \frac{\sigma_x^2}{\sigma_x^2 + \sigma_w^2} \beta \end{split}$$

测量误差的解决办法

- 使用更好的数据(总是好事)
- 工具变量 Instrumental Variables IV (针对 X 的随机误差)
- 建立一个调整估计值中测量误差的数学模型

样本选择误差 Sample Selection Bias

- 可用的数据不一定是从人口中随机取样的:如果取样的过程和 Y 的 取值相关那么我们就会有样本选择偏差。
 - 例子: 1936 年美国大选预测 (Roosevelt vs Landon)
 - Literay Gazette 通过 240 万回应着的大样本预测 Landon 53% vs Roosevelt 43%.
 - Gallup, 一个小公司通过只有 50000 的样本预测罗斯福胜 56%
 - 结果是 Roosevelt 61% vs Landon 37%.
- 样本选择导致内生性 (endogeneity), 即误差项和自变量的相关性
- 解决方案:
 - 更好的研究设计
 - 用可以克服样本选择的估计量: Tobit, Heckman

30 July 2023

互为因果 Simultaneous Equations /1

当 X 影响 Y, 但 Y 也影响 X 时:

- 比如说,政府会给自己的支持者拨更多的款,但是拨款也会导致支 持者更多。这时候我们怎么估计党派支持对金钱分配的影响呢?
- 假设我们想要估计

$$Y_i = \alpha + \beta X_i + e_i$$

• 但是,同时有

$$X_i = \gamma + \delta Y_i + v_i$$

• 当 e 增加时,Y 增加,但 Y 增加时,X 又增加 $\Rightarrow e$ 和 X 相关 \Rightarrow 内生性

互为因果 Simultaneous Equations /2

举个栗子:

● 公共支出 G 对 GDP 影响如何?

$$GDP = \alpha + \beta G + e$$

• 如果,政府有意识地采取反周期财政政策 councer-cyclical fiscal policies 呢 $?(\delta < 0)$

$$G = \gamma + \delta GDP + v$$

• 对 GDP 的负面冲击 negative shocks (负面的 e) 会增加 $G \Rightarrow \hat{\beta}^{OLS}$ 会受向下偏差影响 (downward biased)

互为因果 Simultaneous Equations /3

解决方案:

- 工具变量 Instrumental Variables (IV)
 - 就是为了解决这个问题发明的
- 随机对照试验

同方差性和异方差性

- 如果 var(u|X = x) 是常数 ⇒ 同方差性 (Homoskedasticity)
- 如果 var(u|X = x)不是常数 ⇒ 异方差性 (Heteroskedasticity)
- ⇒ 总是使用稳健标准误 (robust se)

自回归 Autocorrelation

- 当误差项 e 和观察量之间相关 correlated aross observations
 - 基于地理单位的取样
 - 对于同一些单位 units 的重复观察(时间不同)
 - 面板数据 panel data
 - 时间序列数据 time series data
 - 在这两种情况下观察量可能是聚类 clustered的
- OLS 系数还是一致且无偏的
- 但是标准误 (SE) 是错的, t 检验是无效的, 甚至稳健标准误也是无效的
- 解决方案: 聚类标准误 (clustered se)
 - 也有别的解决方案: wild cluster, DK, NW, conley 等。

外部效度 External validity

- 我们的结果可以<mark>普遍化</mark>吗?我们从一个样本/情景获取的信息可以 应用在一个不同的人口/设定下嘛?
- 比如说我们讲过的一个关于个人拉票(邮件、电话)对选举(投票率)影响的研究(Gerber et al., 2008)
 - 假设这个研究有很好的内部效度 (internal validity)⇒ 在 1998 年的
 New Haven, US 是有效的。
 - 我们可以在 2012 年的同一个地方得到同样的结果吗? 2016 年的伦敦市长选举呢? 2010 年的巴西选举呢?
 - 这取决于很多因素,通常非常难估量。如果有很多研究在不同的时间 和地点得到同样的结果,那么我们可以对这些研究的外部效度更有 信心。

田野实验 field experiment (Gerber et al., 2009)

- 居民样本 Sample of residents: Prince William County, Virginia
- Surveyed before and after the gubernatorial(州长) election of Nov 2005
- 地区有两个主要报纸: 华盛顿邮报 Washington Post (左)、华盛顿时报 Washington Times (保守)。
- 还没有订阅报纸的家庭(样本量: 3347) 将被随机分配:
 - 收到免费的邮报订阅
 - 收到免费的时报订阅
 - 啥也没有(控制组)
- 这里处理分组是处理意向(intent-to-treat),因为我们不知道他们到 底看没看送的报纸(但是在之后的问卷里会问到)

报纸分发和读者信息

TABLE 2-PAPER DISTRIBUTION AND READERSHIP (OLS)

(oupand to	Receives a newspaper (1)	Receives the Post	Receives the Times (3)	Frequency reads a paper (0 = Never, 3 = Every day) (4)	Reads at least several times/week (5)
Panel A: Separate treatment ef Washington Post treatment	fects estimated 0.287 (0.035)	for Washing 0.344 (0.035)	gton Post and -0.006 (0.021)	d Washington Times 0.151 (0.084)	0.089 (0.038)
Washington Times treatment	0.100 (0.034)	0.031 (0.035)	0.133 (0.021)	0.086 (0.083)	0.057 (0.037)
Adjusted R ² F-test: Post = Times p-value	0.32 24.76 0.00	0.18 66.96 0.00	0.19 37.81 0.00	0.24 0.51 0.48	0.18 0.63 0.43
Panel B: Pooled treatment effe Received either Post or Times treatment Adjusted R ²	0.191 (0.029) 0.30	0.183 (0.031) 0.11	0.066 (0.018) 0.15	0.118 (0.070) 0.24	0.072 (0.032) 0.18
Observation counts for both pa Observations Refused/no opinion Total surveyed in follow-up	1,080 1 1,081	1,080 1 1,081	1,080 1 1,081	1,075 6 1,081	1,075 6 1,081

对政治知识和立场的影响

TABLE 3—Effect of Treatment on Political Knowledge and Attitudes (OLS)

	Fact Accuracy Index (higher is more accurate) (1)	Specific Issue Index (higher is conservative) (2)	Broad Policy Index (higher is conservative) (3)
Panel A: Separate treatment effect	s estimated for Washingto	on Post and Washington Tim	es
Washington Post treatment	$^{-0.023}_{(0.057)}$ \times	-0.045 (0.049) bero	7 -0.085 (0.055)
Washington Times treatment	0.047 (0.056)	-0.027 (0.048) beca	$\frac{-0.051}{(0.054)}$
Adjusted R ²	0.16	0.25	0.32
F-test: Post = Times p-value	1.32 0.25	0.12 0.73	0.33 0.57
Panel B: Pooled treatment effect e	stimated for receiving eith	ner newspaper	
Received either Post or Times treatment	0.013 (0.047)	-0.036 (0.041)	-0.068 (0.046)
Adjusted R ²	0.15	0.25	0.32
Observation counts for both panel	\$		
Observations	1,080	1,081	1,076
Refused/no opinion	1	0	5
Total surveyed in follow-up	180,1	1,081	1,081

对投票率和投票党派的影响

Table 4—Effect of Treatment on Voting Behavior in Virginia Governors Race (OLS)

	Voted in 2005 election ^a (1)	Voted in 2005 election ^b (2)	Voted in 2006 election ^b (3)	Voted for Democrat (set to missing if did not vote) ^a (4)	Voted for Democrat (set to zero if did not vote) ^a (5)
Panel A: Separate trea	itment effects esi	timated for Was	hington Post an	d Washington Times	
Washington Post treatment	-0.001 (0.033)	0.011 (0.019)	0.025 (0.019)	0.112 (0.045)	0.072 (0.035)
Washington Times treatment	0.005 (0.033)	-0.006 (0.019)	0.031 (0.020)	0.074 (0.045)	0.060 (0.035)
Adjusted R ² F-test: Post = Times p-value	0.21 0.03 0.86	0.39 0.65 0.42	0.31 0.10 0.75	0.31 0.58 0.44	0.26 0.09 0.76
Panel B: Pooled treatn	nent effect estim	ated for receiving	ng either newspe	aper	
Received either Post or Times treatment	0.002 (0.028)	0.003 (0.016)	0.028 (0.016)	0.093 (0.038)	0.066 (0.029)
Adjusted R ²	0.21	0.39	0.31	0.31	0.26
Observation counts for	r both panels				
Observations	1,079	2,571	2,571	718	1,003
Refused/not asked	2			363	78
Total not merged (columns 2 and 3)		776	776		
Total surveyed in follow-up	1,081			1,081	1,081

• 因果推断的难题可以用换一种计量模型的方法解决吗?

- 因果推断的难题可以用换一种计量模型的方法解决吗?
 - 通常来讲不能
 - 计量模型的选择取决于研究命题和数据的特征

- 因果推断的难题可以用换一种计量模型的方法解决吗?
 - 通常来讲不能
 - 计量模型的选择取决于研究命题和数据的特征
 - 当因变量 Y 是二元 Binary 时,可以考虑 probit 或者 logit
 - 应对质性 qualitative的因变量时,可以考虑 ordered logit 或者 multinomial logit.

- 因果推断的难题可以用换一种计量模型的方法解决吗?
 - 通常来讲不能
 - 计量模型的选择取决于研究命题和数据的特征
 - 当因变量 Y 是二元 Binary 时,可以考虑 probit 或者 logit
 - 应对质性 qualitative的因变量时,可以考虑 ordered logit 或者 multinomial logit.
- 但是如果你有内生性问题,用哪种办法都白扯

References I

- Adcock, R., & Collier, D. (2001). Measurement Validity: A Shared Standard for Qualitative and Quantitative Research. American Political Science Review, 95(3), 529–546. https://doi.org/10.1017/S0003055401003100
- Chapkovski, P., & Schaub, M. (2022). Solid support or secret dissent? A list experiment on preference falsification during the Russian war against Ukraine. Research & Politics, 9(2), 20531680221108328. https://doi.org/10.1177/20531680221108328
- Dietrich, B. J., & Sands, M. L. (2023). Seeing racial avoidance on New York City streets. Nature Human Behaviour, 1–7. https://doi.org/10.1038/s41562-023-01589-7
- Gerber, A. S., Green, D. P., & Larimer, C. W. (2008). Social pressure and voter turnout: Evidence from a large-scale field experiment. American Political Science Review, 102(1), 33–48.
 - https://doi.org/10.1017/S000305540808009X

References II

- Gerber, A. S., Karlan, D., & Bergan, D. (2009). Does the Media Matter? A Field Experiment Measuring the Effect of Newspapers on Voting Behavior and Political Opinions. *American Economic Journal:*Applied Economics, 1(2), 35–52.

 https://doi.org/10.1257/app.1.2.35
- Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. K. (1998). Measuring individual differences in implicit cognition: The implicit association test. *Journal of Personality and Social Psychology*, 74(6), 1464–1480. https://doi.org/10.1037/0022-3514.74.6.1464
- Stock, J., & Watson, M. (2014). *Econometrics, Update PDF Ebook, Global Edtion*. Pearson Education, Limited. Retrieved July 19, 2023, from http://ebookcentral.proquest.com/lib/londonschoolecons/detail.action?docID=5174962

References III

Yang, D., & Huang, J. (2023, July). The Differential Impact of the Hong Kong National Security Law on Political Sensitivity Bias in Local Opinion Polls (No. 4499460).

https://doi.org/10.2139/ssrn.4499460

