

Barem de corectare — proba teoretică Clasa a X-a

Problema 1

	Intensitatea câmpului dintre armături: $E = \frac{U}{d}$	1
	Thenshatea campular diffre armaturi. $E = \frac{1}{d_0}$	0,50
	Intensitatea câmpului creat de una dintre armături: $E' = \frac{U}{2d_0}$	0,75
a.	Forța de atracție exercitată asupra celeilalte armături: $F = Q_0 E' = \frac{Q_0 U}{2d_0}$	0,75
	Dar: $U = \frac{Q_0}{C_0} = \frac{Q_0 d_0}{\varepsilon_0 S}$	0,50
	Dar: $U = \frac{Q_0}{C_0} = \frac{Q_0 d_0}{\varepsilon_0 S}$ Rezultă: $F = \frac{Q_0^2}{2\varepsilon_0 S}$	0,50
	Total 1a:	3,00
b.	$ \begin{array}{c c} R \\ \hline C_0 & \downarrow \\ \hline Q_1 & \uparrow \\ \hline \end{array} d_0 & C_1 & \downarrow \\ \hline Q_2 & \uparrow \\ \end{array} d_1 $	
	Conservarea sarcinii totale: $2Q_0 = Q_1 + Q_2$	0,50
-	Condiția de echilibru electrostatic în starea finala: $\frac{Q_1}{C_0} = \frac{Q_2}{C_1}$	0,50
-	Rezultă: $ \begin{cases} Q_{1} = \frac{2Q_{0}C_{0}}{C_{0} + C_{1}} > Q_{0} \\ Q_{2} = \frac{2Q_{0}C_{1}}{C_{0} + C_{1}} < Q_{0} \end{cases} $	0,50
	Respectiv: $ \begin{cases} \Delta Q_1 = \frac{Q_0(d_1 - d_0)}{d_1 + d_0} > 0 \\ \Delta Q_2 = \frac{Q_0(d_0 - d_1)}{d_1 + d_0} < 0 \end{cases} $	0,50
	Energia totală inițială este: $W_0 = \frac{Q_0^2 d_0}{\varepsilon_0 S}$	0,50
	Energia totală finală este: $W_f = \frac{2Q_0^2 d_0 d_1}{\varepsilon_0 S(d_0 + d_1)} > W_0$	1,00
-	Căldura degajată pe rezistor este: $W_R = L - \Delta W$	0,25

	Rezultă: $W_R = L - \frac{Q_0^2 d_0}{\varepsilon_9 S} \frac{d_1 - d_0}{d_1 + d_0}$	0,25
	Total 1b:	4,00
	$(1) \begin{array}{c c} \overrightarrow{E} & \overrightarrow{v_{1\perp}} & \overrightarrow{v_1} \\ \hline (2) & \overrightarrow{v_{2\perp}} & \overrightarrow{v_{2\perp}} & \overrightarrow{v_{1\perp}} \\ \hline (2) & \overrightarrow{v_{2\parallel}} & \overrightarrow{v_{2}} \\ \hline \end{array}$	0,50
	Sub acțiunea forței electrice se modifică numai componenta vitezei <i>paralelă</i> cu liniile câmpului. Componenta <i>perpendiculară</i> pe liniile câmpului este constantă. Rezultă: v sin α = const.	0,75
	Pentru situația dată se obține: $v_1 \sin \alpha_1 = v_2 \sin \alpha_2$ (1)	0,25
c.	Conform teoremei variației energiei cinetice: $\Delta E_C = L \implies \frac{mv^2}{2} = eV \implies v = \sqrt{\frac{2eV}{m}}$	0,50
	Rezultă: $ \begin{cases} v_1 = \sqrt{\frac{2eV_1}{m}} \\ v_2 = \sqrt{\frac{2eV_2}{m}} \end{cases} $	0,50
	Înlocuind în relația (1) obținem: $\sin \alpha_1 \sqrt{\frac{2eV_1}{m}} = \sin \alpha_2 \sqrt{\frac{2eV_2}{m}} \implies \sqrt{V_1} \sin \alpha_1 = \sqrt{V_2} \sin \alpha_2$	0,50
	Total 1c:	3,00
	Total problema 1:	10,00

Problema 2

	Rezistența porțiunii <i>AB</i> din Fig. 2.1: $R_{1AB} = 4R_0$	1,00
	Rezistența porțiunii AB din Fig. 2.2: $R_{2AB} = R_0$	1,00
	Egalitatea puterilor: $R_{1AB}I_1^2 = R_{2AB}I_2^2$	0,50
	Fie r rezistența internă echivalentă a unei surse, de t.e.m. E , în al cărei circuit	
a.	exterior se află porțiunea de circuit AB:	1,00
	$r = r_0 + R$	1,00
	$r = 2R_0 = 2 \Omega$	
	Putere maximă când $R_{eAB} = r$	0,50
	$R' = 4R_0 = 4\Omega$	0,50
	R' se conectează între A și B în paralel cu porțiunea de circuit inițială.	0,50
	Total 2a:	5,00
	$I = \frac{E}{r + 4R_0} = \frac{E}{6R_0}$	0,50
b.	$U_1 = U_{AN} = U_{MB} = 3R_0I \implies U_1 = 14 \text{ V}$	0,50
	$Q_1 = C_1 U_1 \implies Q_1 = 14 \cdot 10^{-6} \text{ C}$	0,50
	$Q_2 = C_2 U_2 \implies Q_2 = 28 \cdot 10^{-6} \text{ C}$	0,50
	Total 2b:	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
c.	$I_{MN} = 0$	0,50
	$I_1 = I_2 = \frac{I}{2}$	0,50
	$(1) E_0 = -\frac{I}{2}R_0 + \frac{I}{2}2R_0$	0,75
	(2) $E = Ir + 2R_0 \frac{I}{2} + R_0 \frac{I}{2}$	0,75
	Rezolvând sistemul format din ecuațiile (1) și (2) se obține: $E_0 = 4 \text{ V}$	0,50
	Total 2c:	3,00
	Total problema 2:	10,00

Problema 3

	Α.	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$U_1 = I_1 R_V \frac{r + R_V}{r + 2R_V}$	1,00
	$U_2 = I_1 R_V \frac{R_V}{r + 2R_V}$	1,00
	$U_2 < U_1^{'} < U_1^{}$	0,50
	Total 3A:	2,50
	B.	
	Numărul de celule fiind mare, adăugarea unei celule nu modifică rezistența echivalentă a circuitului	1,50
a.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$X = r + R_{V} + \frac{XR_{V}}{X + R_{V}}$	1,00
	$\frac{U_1}{U_1} = \frac{X + R_V}{X}$	0,50
	$\Rightarrow X = 2R_V \text{ si } r = \frac{R_V}{3}$	0,50
	$U = 2R_V I_1 = 2U_1 = 12 \text{ V}$	0,50
	Total 3Ba:	4,00
	$\frac{U_2}{U_2} = \frac{X + R_V}{X} = \frac{3}{2}$	1,00
b.	$\frac{U_{2}}{U_{2}^{'}} = \frac{X + R_{V}}{X} = \frac{3}{2}$ $U_{2} = \frac{U_{1}^{'}}{2} = 2 \text{ V}$ $U_{2}^{'} = \frac{4}{3} \text{ V}$	0,50
	$U_2 = \frac{4}{3} \text{ V}$	0,50
	Total 3Bb:	2.00
c.	Prin recurență: $U_{3} = \frac{U_{2}^{'}}{2} = \frac{2}{3} \text{ V}$ $U_{3}^{'} = \frac{2}{3}U_{3} = \frac{4}{9} \text{ V}$	0,50

$U_1 + U_1 = 10 \text{ V}$		
$U_2 + U_2' = \frac{10}{3} \text{ V}$		
$U_3 + U_3' = \frac{10}{9} \text{ V}$		
		0,50
$U_k + U_k = \frac{10}{3^{k-1}} \text{ V}$		3,2 3
$U_m + U_m = \frac{10}{3^{m-1}} \text{ V}$		
$\frac{U_k + U_k'}{U_m + U_m'} = 3^{m-k}$		0,50
Pentru $m > k \implies U_k + U_k > U_m + k$	$J_m^{'}$	
	Total 3Bc:	1,50
	Total problema 3:	10,00