# LTAT.02.004 MACHINE LEARNING II

# **Sequence models**

Sven Laur University of Tartu

# Motivating examples

Supervised learning

# **Higher-order Markov chains**



#### Time-series models

- $\triangleright$  We assume that  $x_{i+1}$  depends only on the values of  $x_i, \ldots, x_{i-\ell}$
- $\triangleright$  A linear model assumes  $x_{i+1} = w_0 + w_1 x_i + \cdots + w_{\ell+1} x_{i-\ell} + \varepsilon_i$ .
- $\triangleright$  All error terms  $\varepsilon_i$  are assumed to be independent.
- $\triangleright$  All error terms  $\varepsilon_i$  are drawn from a normal distribution  $\mathcal{N}(0,\sigma)$ .

### Linear time-series model

- $\triangleright$  Fix a set of initial inputs  $x_{-\ell}, \ldots, x_0 \in \mathbb{R}$ . Denote them by  $\boldsymbol{x}_{\circ}$ .
- $\triangleright$  Think of  $x_1, x_2, \ldots, x_n$  as observations. Denote them by  $\boldsymbol{x}$ .
- > A probabilistic model for state transitions is defined as follows

$$x_{i+1} = \underbrace{w_0 + w_1 x_i + \dots w_{\ell+1} x_{i-\ell}}_{\hat{x}_{i+1}} + \varepsilon_i, \qquad \varepsilon_i \sim \mathcal{N}(0, \sigma)$$

$$p[\boldsymbol{x}|\boldsymbol{x}_{\circ},\boldsymbol{w},\sigma] = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \cdot \exp\left(-\frac{(x_{i} - \hat{x}_{i})^{2}}{2\sigma^{2}}\right)$$

#### Maximum likelihood estimate

As usual we can find  $m{w} \in \mathbb{R}^{\ell+2}$  and  $\sigma \in \mathbb{R}$  that maximise the log-likelihood

$$\log p[\boldsymbol{x}|\boldsymbol{x}_{\circ},\boldsymbol{\beta},\sigma] = const - n\log\sigma - \sum_{i=1}^{n} \frac{(x_{i} - \hat{x}_{i})^{2}}{2\sigma^{2}}$$

and thus we can find  $oldsymbol{w}$  by minimising

$$MSE = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - w_0 - w_1 x_{i-1} - \dots - w_{\ell+1} x_{i-1-\ell})^2.$$

The latter is the standard multivariate linear regression setup. The variance of the model  $\sigma^2$  can be found by the same formula as for linear regression.

#### Prediction intervals for time-series

After we have fitted the linear regrssion model to timeseries data we might want to compute prediction intervals for iterative stepwise predictions.

- $\triangleright$  Let  $m{x}_0$  be the known initial state and  $m{x}_1,\ldots,m{x}_n$  iterative predictions.
- $\triangleright$  We need priors  $\pi[x_i] = p[x_i|x_0]$  to compute confidence intervals.
- $\triangleright$  It turns out that all priors  $p[{m x}_i]$  are normal distributions.
- ▶ Moment matching allows us to learn the parameters of the distributions.

# Smoothing and reverse Markov chain

Sometimes we have to interpolate observations in the time series. This can be stated as amoothing task where we know  $x_0$  and  $x_n$ .

- $\triangleright$  We need likelihoods  $\lambda[x_i] = p[x_n|x_i]$  for the smoothing.
- ▷ Likelihood propagation formula is analogous to the prior propagation.
- riangle We can define a reverse Markov chain such that the prior  $\pi^*[m{x}_i] \propto \lambda[m{x}_i]$ .
- The resulting chain has reversed dynamics.
- $\triangleright$  It turns out that all likelihoods  $\lambda[x_i]$  are normal distributions.
- $\triangleright$  The posterior as product  $\pi[x_i] \cdot \lambda[x_i]$  is also a normal distribution.

# How to write a good touchscreen keyboard?

#### Possibilities

exobiology exocarp exodus exogamous exogamy exogenous exonerate exoneration exorbitant exorbitance exorcism exorcist exorcize exordium exoteric exotic

#### Likelihoods

exobiology exocarp 23 exodus exogamous exogamy 15 exogenous 30 exonerate 12 exoneration exorbitant 43 5 exorbitance 16 exorcism 13 exorcist 12 exorcize exordium exoteric 130 exotic



#### Discrete random variables

- $\triangleright$  A random variable X with possible outcomes  $x \in \text{supp}(X)$

$$\Pr[x_1] := \Pr[\xi \leftarrow X_1 : \xi = x_1]$$

$$\Pr[x_1 \land x_2] := \Pr[\xi_1 \leftarrow X_1, \xi_2 \leftarrow X_2 : \xi_1 = x_1 \land \xi_2 = x_2]$$

▶ Bayes formula

$$\Pr[a|b] = \frac{\Pr[a \land b]}{\Pr[b]} = \frac{\Pr[b|a]\Pr[a]}{\Pr[b]}$$

 $\triangleright$  Independence of random variables  $X_1 \dots X_m \perp Y_1, \dots Y_n$ :

$$\Pr\left[x_1 \wedge \ldots \wedge x_m \wedge y_1 \wedge \ldots \wedge y_n\right] = \Pr\left[x_1 \wedge \ldots \wedge x_m\right] \cdot \Pr\left[y_1 \wedge \ldots \wedge y_n\right]$$

 $\triangleright$  Marginalisation over variables  $Y_1, \ldots, Y_n$ :

$$\Pr\left[x_1 \wedge \ldots \wedge x_m\right] = \sum_{y_1, \ldots, y_n} \Pr\left[x_1 \wedge \ldots \wedge x_m \wedge y_1 \wedge \ldots \wedge y_n\right]$$

#### Markov chain



**Definition.** Let  $X_1, X_2, \ldots$  be correlated random variables such that the probability of the observation  $x_{i+1}$  depends only on the observation  $x_i$ . Then the entire process is known as Markov chain.

Parametrisation. Markov chain is determined by specifying

- $\triangleright$  state spaces  $\mathcal{S}_1 \dots, \mathcal{S}_n$
- $\triangleright$  initial probabilities  $\Pr[x_1]$  given as vectors
- $\triangleright$  state transition probabilities  $\Pr[x_{i+1}|x_i]$  given as matrices

### What questions can we ask?

Sampling: What are typical outcomes of the chain?

▷ Synthesis of time-series, textures, sounds, games movements.

**Stationary distribution:** What happens if we run the chain infinitely long? 
▷ Getting samples from an unnormalised posterior, optimisation tasks.

**Likelihood estimation:** What is a probability of an observation  $x_1, \ldots, x_n$ ?  $\triangleright$  Reasoning about probabilities and clustering sequences.

**Decoding:** What is the most probable outcome  $x_1, \ldots, x_n$ ?  $\triangleright$  Imputing missing values. Rudimentary logical reasoning.

Parameter estimation: What is are the model parameters?

▷ Machine learning – finding parameters based on observations.

#### Posterior maximisation in a chain



**Inference goal.** Given evidence at the ends of the chain find the sequence of states x that maximise the posterior probability  $\Pr[x|\text{evidence}]$ .

- $\triangleright$  The log-posterior  $\log \Pr[x| \text{evidence}]$  decomposes into a sum.
- > We must find a sequence with maximal weight.
- ▶ The task can be split into subtask as all subpaths of the path with maximal weight must have maximal weight.
- > The corresponding iterative algorithm is known as Viterbi algorithm.

# Belief propagation in a chain



**Inference goal.** Given evidence at the ends of the chain find marginal posterior probabilities for each node in the chain.

- $\triangleright$  Evidence  $\varepsilon_V$  is an observational data associated with the node V.
- ▶ Upstream evidence<sup>+</sup> is the evidence at the beginning of chain.
- ▷ Downstream evidence is the evidence at the end of chain.
- $\triangleright$  Attributes  $\pi_V, \lambda_V, p_V$  are needed to compute marginal distributions.

#### **Initialisation**



- $\triangleright$  Direct evidence  $\varepsilon_V$  determines the value of V.
- $\triangleright$  Indirect evidence  $\varepsilon_V$  determines the value distribution for V.
- > We can assign the prior for the first and likelihood for the last node

$$\pi_A(a) = \Pr\left[A = a | \text{evidence}^+\right] = \Pr\left[A = a | \varepsilon_A\right]$$

$$\lambda_E(e) = \Pr\left[\text{evidence}^-|E=e\right] = \Pr\left[\varepsilon_E|E=e\right]$$

# **Belief propagation**



#### Inference goal

$$\pi_B(b) = \Pr\left[b|\text{evidence}^+\right]$$

$$\lambda_D(d) = \Pr\left[\text{evidence}^-|d\right]$$

### Iterative propagation rules

- $\triangleright$  Marginalisation gives an update rule  $\lambda_D = M_{D \to E} \lambda_E$ .
- $\triangleright$  Marginalisation gives an update rule  $\pi_B \propto \pi_A M_{A \to B}$ .

# **Belief propagation**



### Inference goal

$$p_C(c) = \Pr\left[c|\text{evidence}^+, \text{evidence}^-\right]$$

#### Iterative update rule

 $\triangleright$  Bayes formula gives  $p_C \propto \pi_C \otimes \lambda_C$ .

### Parameter inference for homogenous case



For a sequence of observations  $\boldsymbol{x}=(x_1,\ldots,x_n)$  the log-likelihood is

$$\ell[\mathbf{x}] = \log \Pr[x_1] + \sum_{i=1}^{n-1} \log \Pr[x_{i+1}|x_i]$$

$$= \log \beta[x_1] + \sum_{u_1, u_2} k(u_1, u_2) \log \alpha[u_1, u_2]$$

where  $k(u_1, u_2)$  is the count of bigrams  $u_1, u_2$  in the sequence  $\boldsymbol{x}$ .

### Posterior decomposition

As a result the log-likelihood of unnormalised posterior decomposes into the sum of independent terms

$$\log p[\boldsymbol{\alpha}, \boldsymbol{\beta} | \boldsymbol{x}] = \sum_{u_1} k(u_1) \log \beta[u_1] + \log p(\boldsymbol{\beta})$$
$$+ \sum_{u_1, u_2} k(u_1, u_2) \log \alpha[u_1, u_2] + \sum_{u_1} \log p(\boldsymbol{\alpha}[u_1, \cdot])$$

#### where

- $\triangleright k(u_1)$  is the count  $u_1$  at the beginning of the observed sequences
- $\triangleright k(u_1, u_2)$  is the count of bigrams  $u_1, u_2$  in the observed sequences.
- $\triangleright p(\beta)$  is the prior for an entire vector of initial probabilities
- $\triangleright p(\alpha[u_1,\cdot])$  is the prior for the transition probabilities from  $u_1$

# Reduction to the dice throwing experiment

Posterior decomposition leads to many independent optimisation tasks

$$\sum_{u_1} k(u_1) \log \beta[u_1] + \log p(\boldsymbol{\beta}) \to \max$$

$$\sum_{u_2} k(u_1, u_2) \log \alpha[u_1, u_2] + \log p(\boldsymbol{\alpha}[u_1, \cdot]) \to \max$$

where each of these is equivalent to optimisation of dice throwing posterior. Thus Maximum Aposteriori estimates for parameters are

$$\beta[u_1] = \frac{k(u_1) + c}{k(*) + mc} \qquad \alpha[u_1, u_2] = \frac{k(u_1, u_2) + c}{k(u_1, *) + mc}$$

where

- > \* is a wildcard symbol in the count queries
- $\triangleright m$  is the number of states and c is a constant for Laplacian smoothing.

# Why discrete Markov chains fail in practice?



The number of possible observation is to big already for  $8 \times 8$  patch:

$$256^{8\times8} \times 256^8 \times 2^{10} = 2^{8\times8\times8+8\times8+10} = 2^{586}$$

 $8 \times 9$  pathces are needed to estimate probabilities within  $\pm 3$  percent points.

# **Higher-order Markov chains**



#### Time-series models

- $\triangleright$  We assume that  $x_{i+1}$  depends only on the values of  $x_i, \ldots, x_{i-\ell}$
- $\triangleright$  A linear model assumes  $x_{i+1} = w_0 + w_1 x_i + \cdots + w_{\ell+1} x_{i-\ell} + \varepsilon_i$ .
- $\triangleright$  All error terms  $\varepsilon_i$  are assumed to be independent.
- $\triangleright$  All error terms  $\varepsilon_i$  are drawn from a normal distribution  $\mathcal{N}(0,\sigma)$ .

#### Linear time-series model

- $\triangleright$  Fix a set of initial inputs  $x_{-\ell},\ldots,x_0\in\mathbb{R}$ . Denote them by  $\boldsymbol{x}_{\circ}$ .
- $\triangleright$  Think of  $x_1, x_2, \ldots, x_n$  as observations. Denote them by  $\boldsymbol{x}$ .
- > A probabilistic model for state transitions is defined as follows

$$x_{i+1} = \underbrace{w_0 + w_1 x_i + \dots w_{\ell+1} x_{i-\ell}}_{\hat{x}_{i+1}} + \varepsilon_i, \qquad \varepsilon_i \sim \mathcal{N}(0, \sigma)$$

$$p[\boldsymbol{x}|\boldsymbol{x}_{\circ},\boldsymbol{w},\sigma] = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \cdot \exp\left(-\frac{(x_{i} - \hat{x}_{i})^{2}}{2\sigma^{2}}\right)$$

#### Maximum likelihood estimate

As usual we can find  $m{w} \in \mathbb{R}^{\ell+2}$  and  $\sigma \in \mathbb{R}$  that maximise the log-likelihood

$$\log p[\boldsymbol{x}|\boldsymbol{x}_{\circ},\boldsymbol{\beta},\sigma] = const - n\log\sigma - \sum_{i=1}^{n} \frac{(x_{i} - \hat{x}_{i})^{2}}{2\sigma^{2}}$$

and thus we can find  $oldsymbol{w}$  by minimising

$$MSE = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - w_0 - w_1 x_{i-1} - \dots - w_{\ell+1} x_{i-1-\ell})^2.$$

The latter is the standard multivariate linear regression setup. The variance of the model  $\sigma^2$  can be found by the same formula as for linear regression.

# Two ways to build continious Markov chains

- ▶ Replace a list of discrete states with continous variable.
  - $\diamond$  We get  $8 \times 8$  input features and 8 output features.
  - $\diamond$  We need 8 functions of type  $f_i:\mathbb{R}^{64}\to\mathbb{R}$  to fix expectation.
  - $\diamond$  We need 8 functions of type  $g_i: \mathbb{R}^{64} \to \mathbb{R}$  to fix variance.
  - $\diamond$  If we use linear functions then we need  $8 \times 65 \times 2$  parameters.
- - Ideally, these features are have semantical meaning.
  - In practice, features are fixed up to affine transformations.
  - Thus, features do not have clear interpretation.

#### **Hidden Markov Model**



**Definition.** Let  $X_1, X_2, \ldots$  be hidden states that form a Markov chain and let  $Y_1, Y_2, \ldots$  be observations that the probability of  $y_i$  depends only on the state  $x_i$ . Then the entire process is known as Hidden Markov Model.

#### **Common tasks**

- > parameter estimation

# **Applications**

### Modelling and prediction

- ▷ linear control algorithms

#### **Sequence annotation**

#### **Decoding**

- > speech recognition
- > communication over a nosy channels
- ▷ object tracking and data fusion

#### Posterior maximisation in a tree



**Inference goal.** Given evidence at the ends of the chain find the sequence of states x that maximise the posterior probability  $\Pr[x|\text{evidence}]$ .

- $\triangleright$  The log-posterior  $\log \Pr[x|\text{evidence}]$  decomposes into a sum.
- ▶ We must find a tree with maximal weight.

# **Decomposition into subtasks**



All subtrees of the tree with maximal weight must have maximal weight.

- > We can merge subtrees with maximum weight to maximise the weight.
- > The algorithm works from leafs to the root node.
- > The corresponding iterative algorithm is known as Viterbi algorithm.

### Belief propagation in a tree



**Inference goal.** Given evidence at the ends of the leafs and the root of tree find marginal posterior probabilities for each node in the tree.

- $\triangleright$  Evidence  $\varepsilon_V$  is an observational data associated with the node V.
- $\triangleright$  Attributes  $\pi_V, \lambda_V, p_V$  are needed to compute marginal distributions.

# **Evidence decomposition**





- ▷ Evidence decomposes into up- and downstream evidence
- $\triangleright$  Downstream evidence (V) is reachable through child nodes.
- $\triangleright$  Upstream evidence<sup>+</sup>(V) is reachable through the predessesor node.
- ▷ Different nodes have totally different decompositions.

### **Initialisation**



Goal. Assign prior to the root node and likelihood to the leaf nodes.

$$\pi_A(a) = \Pr\left[A = a | \text{evidence}^+(A)\right] = \Pr\left[A = a | \varepsilon_A\right]$$

$$\lambda_B(b) = \Pr\left[\text{evidence}^-(B)|F = f\right] = \Pr\left[\varepsilon_B|B = b\right]$$

. . .

$$\lambda_F(f) = \Pr\left[\text{evidence}^-(F)|F = f\right] = \Pr\left[\varepsilon_F|F = f\right]$$

# Likelihood propagation



#### Inference goal

$$\lambda_D(d) = \Pr\left[\text{evidence}^-(D)|D = d\right]$$

### **Iterative propagation rules**

- $\triangleright$  Independence gives a pooling rule  $\lambda_D = \lambda_1 \otimes \lambda_2$
- $\triangleright$  Marginalisation gives rules  $\lambda_1 = M_{D \to E} \lambda_E$  and  $\lambda_2 = M_{D \to F} \lambda_F$ .

# **Posterior propagation**



### Inference goal

$$p_A(a) = \Pr\left[A = a | \text{evidence}^+(A), \text{evidence}^-(A)\right]$$

# Iterative propagation rule

hd Marginal conditional probability  $p_A \propto \pi_A \otimes \lambda_A$ 

# **Prior propagation**



#### Inference goal

$$\pi_D(d) = \Pr\left[D = d | \text{evidence}^+(D) \right]$$

$$= \Pr\left[D = d | \text{evidence}^+(A), \text{evidence}^-(B), \text{evidence}^-(C) \right]$$

#### Iterative propagation rule

 $\triangleright$  Prior can be computed as  $\pi_D \propto \pi_A M_{A \to D} \otimes M_{A \to B} \lambda_B \otimes M_{A \to C} \lambda_C$ .

# **Application on rainfall data**



There are two monsoon seasons in Singapore: dry and wet phase.

# Modelling with Hidden Markov Model



Markov chain with states  $S = \{0, 1\}$  and parameters

$$\boldsymbol{\beta} = (0.5, 0.5)$$

$$\alpha = \begin{pmatrix} 0.95 & 0.05 \\ 0.05 & 0.95 \end{pmatrix}$$

Emission distributions

$$Y_i|X_i=0 \sim \mathcal{N}(\mu_0,\sigma_0)$$

$$Y_i|X_i=1\sim\mathcal{N}(\mu_1,\sigma_1)$$

# Belief propagation. Initialisation



- $\triangleright$  We have a direct evidence  $Y_i = y_i$  for each node  $Y_i$ .
- $\triangleright$  The likelihood vector is infinite and captured by  $\lambda_{Y_i} = \delta_{y_i}$ .
- $\triangleright$  The local likelihood  $\lambda_i^*(x_i) = \Pr[Y_i = y_i | x_i]$  is a finite vector.

# Prior propagation. Filtering



Prior propagation rule yields

$$\pi_{X_i}(x_i) \propto \sum_{x_{i-1} \in \mathcal{S}} \alpha[x_{i-1}, x_i] \cdot \lambda_{i-1}^*(x_{i-1}) \cdot \pi_{X_{i-1}}(x_{i-1})$$

Now we can do filtering

$$\Pr[x_i|y_1,\ldots,y_i] \propto \pi_{X_i}(x_i) \cdot \lambda_i^*(x_i)$$

# Likelihood propagation. Smoothing



Likelihood propagation rule yields

$$\lambda_{X_i}(x_i) \propto \sum_{x_{i+1} \in \mathcal{S}} \alpha[x_i, x_{i+1}] \cdot \lambda_{X_{i+1}}(x_{i+1}) \cdot \lambda_i^*(x_i)$$

Now we can do smoothing

$$\Pr[x_i|y_1,\ldots,y_n] \propto \pi_{X_i}(x_i) \cdot \lambda_{X_i}(x_i)$$

# **Annotated rainfall data**

