Proyecto 2: Series de Tiempo I

Prof: Ronny Vallejos

Fecha de Entrega: Lunes 29 de Abril

Este proyecto puede ser abordado por grupos maximo de 2 personas.

Problema 1: Considere un modelo de la forma

$$Y_t = \beta_0 + \sum_{i=1}^6 \beta_i \cos(2\pi t/T_i) + \epsilon_t, \tag{1}$$

donde el proceso ϵ_t es un ruido blanco con varianza σ^2 y T_i son los periodos de la serie.

- a) Escriba este modelo en la forma $Y = X\beta + e$
- b) Explique cómo obtener estimaciones de β_0, \ldots, β_6 y σ^2 .
- c) ¿Qué consideraciones hay que establecer para que el modelo (1) incluya una tendencia cuadrática?

Problema 2: Sea $\{X_t : t \in T\}$ un proceso estacionario normal con función de media μ_X y función de autocovarianza $C_X(\cdot)$. Definamos la serie no lineal

$$Y_t = \exp(X_t), t \in T.$$

- a) Exprese la media del proceso Y_t en términos de μ_X y C(0).
- b) Determine la función de autocovarianza de Y_t .

Problema 3: Si $C_j(h)$ son funciones de covarianza de un proceso estacionario débil para todo j = 1, ..., n. Demuestre que $\sum_{j=1}^{n} b_j C_j(h)$ también es una función de covarianza si $b_j \geq 0, \forall j$.

Problema 4: Describa que hace exactamente la siguiente rutina en R

```
x=rnorm(200,0,1)
y=vector(mode="numeric", length=200)
for (i in 2:200){
y[i]=0.5*y[i-1]+x[i]
}
par(mfrow=c(1,2),pty = "s")
plot.ts(y)
acf(y)
```

Problema 5: Considere el proceso $X_t = \delta + X_{t-1} + \epsilon_t$, donde $t = 1, 2, ..., \epsilon_t$ es una secuencia de variables aleatorias iid con media cero y varianza σ^2 .

a) Escriba la ecuación del proceso X_t como sigue

$$X_t = \delta t + \sum_{j=1}^t \epsilon_t$$

- **b)** Calcule $\mu(t) = \mathbb{E}[X_t] \text{ y } V(t) = \mathbb{V}[X_t].$
- c) ¿Es el proceso X_t débilmente estacionario?

Problema 6 Sea X_t un proceso intrínsecamente estacionario. El semivariograma de X_t se define como

$$\gamma_X(h) = \frac{1}{2} \mathbb{E}[(X_{t+h} - X_t)^2].$$

- a) Si X_t es un ruido blanco con varianza σ^2 , calcule $\gamma_X(h)$.
- b) Si $X_t = \beta_0 + \beta_1 t + \epsilon_t$, donde ϵ_t es un ruido blanco con varianza σ^2 , calcule $\gamma_X(h)$.

Problema 7 Sea $C_X(\cdot)$ la función de covarianza asociada a un proceso de media nula. Si

$$C_X(t) = C_X(0),$$

para algún t > 0, Demuestre que $C_X(\cdot)$ es periódica.