	Score:	/10
Name:	Length:	15 minutes

Directions: Answer all the questions below in the space provided; you must show the work for full credit. Use proper notation. Clearly label the final answers.

1. (1 point) Let $\sum_{n=1}^{\infty} a_n$ be a series and suppose $a_n = f(n)$, where f(x) is some function and $x \ge 1$. What requirements does f(x) need to have in order to use the Integral Test? (There are 3 of them).

Solution: f needs to be positive, continuous, and decreasing on $[1, \infty)$ to use the Integral Test.

2. (1 point) True or False: If $a_n \to 0$, then the series $\sum a_n$ converges. (No work needed, the answer is enough)

Solution: False. The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is a counterexample. $\frac{1}{n} \to 0$, however, $\sum \frac{1}{n}$ diverges.

3. (1 point) True or False: $\lim_{n\to\infty}\frac{2^n}{n!}=0$. (No work needed, the answer is enough)

Solution: True. This can be proved using the Monotone Convergence Theorem (10.5 in the textbook). Or just recognize $2^n << n!$ when n is really large.

4. (3 points) Determine whether the series below converges or diverges (**justify your answer**). If it converges, find the value of the series.

$$\sum_{n=1}^{\infty} \frac{1}{3} \left(-\frac{1}{12} \right)^{n-1}$$

Solution: Since $\left|-\frac{1}{12}\right| < 1$, the geometric series converges. Moreover,

$$\sum_{n=1}^{\infty} \frac{1}{3} \left(-\frac{1}{12} \right)^{n-1} = \frac{\frac{1}{3}}{1 - \left(-\frac{1}{12} \right)} = \frac{\frac{1}{3}}{\frac{13}{12}} = \frac{4}{13}$$

- 5. For each part, determine whether each series converges or diverges. For full points, explain why it converges/diverges and state the test used.
 - (a) (2 points)

$$\sum_{n=1}^{\infty} \frac{n}{2025n+1}$$

Solution: Diverges by the Test for Divergence:

$$\lim_{n \to \infty} \frac{n}{2025n + 1} = \frac{1}{2025} \neq 0$$

(b) (2 points)

$$\sum_{n=1}^{\infty} \frac{1}{n^{2025}}$$

Solution: This is a p-series where p=2025>1, so the series converges. You can also use the Integral Test here.