

Previously...

- In predicate logic, a *predicate* is modeled as a *proposional function P*(⋅) from subjects to propositions.
 - P(x): "x is a prime number" (x: any subject)
 - P(3): "3 is a prime number." (proposition!)
- Propositional functions of any number of arguments, each of which may take any grammatical role that a noun can take
 - P(x,y,z): "x gave y the grade z"
 - P(Mike,Mary,A): "Mike gave Mary the grade A."

Universe of Discourse (U.D.)

- The power of distinguishing subjects from predicates is that it lets you state things about many objects at once.
- e.g., let P(x) = "x + 1 > x". We can then say, "For *any* number x, P(x) is true" instead of $(\mathbf{0} + 1 > \mathbf{0}) \land (\mathbf{1} + 1 > \mathbf{1}) \land (\mathbf{2} + 1 > \mathbf{2}) \land ...$
- The collection of values that a variable *x* can take is called *x*'s *universe of discourse* or the *domain of discourse* (often just referred to as the *domain*).

Quantifier Expressions

- Quantifiers provide a notation that allows us to quantify (count) how many objects in the universe of discourse satisfy the given predicate.
- "∀" is the FOR∀LL or *universal* quantifier.
 ∀x P(x) means <u>for all</u> x in the domain, P(x).
- "∃" is the ∃XISTS or *existential* quantifier. $\exists x P(x)$ means there *exists* an x in the domain (that is, 1 or more) such that P(x).

The Universal Quantifier ∀

- $\forall x P(x)$: For all x in the domain, P(x).
- $\forall x P(x)$ is
 - true if P(x) is true for every x in D (D: domain of discourse)
 - false if P(x) is false for at least one x in D
 - For every real number x, $x^2 \ge 0$ TRUE
 - For every real number x, $x^2 1 > 0$ FALSE
- A *counterexample* to the statement $\forall x P(x)$ is a value x in the domain D that makes P(x) false
- What is the truth value of $\forall x P(x)$ when the domain is empty? TRUE

The Universal Quantifier ∀

If all the elements in the domain can be listed as x₁, x₂,..., xₙ then, ∀x P(x) is the same as the conjunction:

$$P(x_1) \wedge P(x_2) \wedge \cdots \wedge P(x_n)$$

- Example: Let the domain of x be parking spaces at UH. Let P(x) be the statement "x is full." Then the universal quantification of P(x), ∀x P(x), is the proposition:
 - "All parking spaces at UH are full."
 - or "Every parking space at UH is full."
 - or "For each parking space at UH, that space is full."

The Existential Quantifier 3

- ∃x P(x): There exists an x in the domain (that is, 1 or more) such that P(x).
- $\exists x P(x) \text{ is}$
 - true if P(x) is true for at least one x in the domain
 - false if P(x) is false for every x in the domain
- What is the truth value of $\exists x P(x)$ when the domain is empty? FALSE
- If all the elements in the domain can be listed as $x_1, x_2,..., x_n$ then, $\exists x P(x)$ is the same as the disjunction:

$$P(x_1) \vee P(x_2) \vee \cdots \vee P(x_n)$$

The Existential Quantifier 3

Example:

Let the domain of x be parking spaces at UH. Let P(x) be the statement "x is full." Then the **existential quantification** of P(x), $\exists x P(x)$, is the *proposition*:

- "Some parking spaces at UH are full."
- or "There is a parking space at UH that is full."
- or "At least one parking space at UH is full."

Free and Bound Variables

An expression like P(x) is said to have a free variable x (meaning, x is undefined).

A quantifier (either ∀ or ∃) operates on an expression having one or more free variables, and binds one or more of those variables, to produce an expression having one or more bound variables.

Example of Binding

- P(x,y) has 2 free variables, x and y.
- $\forall x P(x,y)$ has 1 free variable (x,y), and one bound variable (x,y). [Which is which?]
- "P(x), where x = 3" is another way to bind x.
- An expression with <u>zero</u> free variables is a bona-fide (actual) proposition.
- An expression with <u>one or more</u> free variables is not a proposition:

$$e.g. \ \forall x \ P(x,y) = Q(y)$$

Quantifiers with Restricted Domains

- Sometimes the universe of discourse is restricted within the quantification, e.g.,
 - $\forall x > 0$ P(x) is shorthand for "For all x that are greater than zero, P(x)." = $\forall x (x > 0 \rightarrow P(x))$
 - $\exists x > 0$ P(x) is shorthand for "There is an x greater than zero such that P(x)." $= \exists x (x > 0 \land P(x))$

Translating from English

- Express the statement "Every student in this class has studied calculus" using predicates and quantifiers.
 - Let C(x) be the statement: "x has studied calculus."
 - If <u>domain for x consists of the students in this</u> <u>class</u>, then
 - it can be translated as $\forall x C(x)$

or

- If domain for x consists of all people
- Let S(x) be the predicate: "x is in this class"
- Translation: $\forall x (S(x) \rightarrow C(x))$

Translating from English

- Express the statement "Some students in this class has visited Mexico" using predicates and quantifiers.
 - Let M(x) be the statement: "x has visited Mexico"
 - If domain for x consists of the students in this class, then
 - it can be translated as $\exists x M(x)$ or
 - If domain for x consists of all people
 - Let S(x) be the statement: "x is in this class"
 - Then, the translation is $\exists x (S(x) \land M(x))$

Translating from English

- Express the statement "Every student in this class has visited either Canada or Mexico" using predicates and quantifiers.
 - Let C(x) be the statement: "x has visited Canada" and M(x) be the statement: "x has visited Mexico"
 - If domain for x consists of the students in this class, then
 - it can be translated as ∀x (C(x) ∨ M(x))

Negations of Quantifiers

- ∀x P(x): "Every student in the class has taken a course in calculus" (P(x): "x has taken a course in calculus")
 - "Not every student in the class ... calculus" $\neg \forall x P(x) \equiv \exists x \neg P(x)$
- Consider $\exists x P(x)$: "There is a student in the class who has taken a course in calculus"
 - "There is <u>no</u> student in the class who has taken a course in calculus"

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Negations of Quantifiers

- Definitions of quantifiers: If the domain = {a, b, c,...}
 - $\forall x P(x) \equiv P(a) \land P(b) \land P(c) \land \cdots$
 - $\exists x P(x) \equiv P(a) \lor P(b) \lor P(c) \lor \cdots$
- From those, we can prove the laws:

$$\neg \forall x \ P(x) \equiv \neg (P(a) \land P(b) \land P(c) \land \cdots)$$
$$\equiv \neg P(a) \lor \neg P(b) \lor \neg P(c) \lor \cdots$$
$$\equiv \exists x \neg P(x)$$

$$\neg \exists x \ P(x) \equiv \neg (P(a) \lor P(b) \lor P(c) \lor \cdots)$$
$$\equiv \neg P(a) \land \neg P(b) \land \neg P(c) \land \cdots$$
$$\equiv \forall x \neg P(x)$$

Which propositional equivalence law was used to prove this?
DeMorgan's

Negations of Quantifiers

Theorem:

Generalized De Morgan's laws for logic

1.
$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

2.
$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

Negations: Examples

- What are the negations of the statements $\forall x (x^2 > x)$ and $\exists x (x^2 = 2)$?

 - $\neg \exists x (x^2 = 2) \equiv \forall x \neg (x^2 = 2) \equiv \forall x (x^2 \neq 2)$
- Show that $\neg \forall x(P(x) \rightarrow Q(x))$ and $\exists x(P(x) \land \neg Q(x))$ are logically equivalent.

$$\neg \forall x (P(x) \to Q(x)) \equiv \exists x \neg (P(x) \to Q(x))$$
$$\equiv \exists x \neg (\neg P(x) \lor Q(x))$$
$$\equiv \exists x (P(x) \land \neg Q(x))$$

© The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 1 Quantifiers.			
Statement	When True?	When False?	
$\forall x P(x)$ $\exists x P(x)$	P(x) is true for every x . There is an x for which $P(x)$ is true.	There is an x for which $P(x)$ is false. $P(x)$ is false for every x .	

@ The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 2 De Morgan's Laws for Quantifiers. Negation			
reguuon	Equivalent Statement	men is regulon true.	men luise.
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .