Projeto e Análise de Algoritmos Aula 8: Algoritmos Gulosos (DPV 5; CLRS 4)

DECOM/UFOP 2020 – 5°. Período Anderson Almeida Ferreira Adaptado do material de Andréa Iabrudi Tavares

Objetivos

- Entender os conceitos e aplicabilidade de Algoritmos Gulosos
- Entender o papel de estrutura de dados na eficiência de algoritmos
- Conhecer abordagens gulosas ótima para alguns problemas
- Saber utilizar abordagem gulosa para solução sub-ótima
- Bibliografia
 - DPV 5.1-5.3, CLRS 4.

Algoritmos Gulosos

Algoritmos míopes

- Escolha "óbvia" a cada passo
- Escolhe e depois resolve subproblema.
- Solução construtiva.

Quando é ótimo

- Melhor decisão local compõe uma melhor decisão global.
- Mostrar que a solução é ótima normalmente ajuda a formular o problema.
- Sub-estrutura ótima (princípio da otimalidade)

Um problema de seleção de atividades

- Seja S={a₁, a₂, ..., a_n} um conjunto de atividades propostas que desejam usar um recurso, que só pode ser usado por uma atividade de cada vez.
- Cada atividade a_i tem um tempo de início s_i e um tempo de término f_i , onde $0 \le s_i < f_i < \infty$.
- As atividades a_i e a_j são compatíveis se $s_i \ge f_j$ ou $s_j \ge f_i$.
- Problema: Selecionar um subconjunto de tamanho máximo de atividades mutuamente compatíveis.

Exemplo

i	1	2	3	4	5	6	7	8	9	10	11
S _i	1	3	O	5	3	5	6	8	8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14

Subestrutura ótima

- Seja $S_{ij} = \{a_k \in S \mid f_i \le s_k < f_k \le s_j\}$, ou seja, o subconjunto de atividades que podem começar após a_i terminar e que terminam antes da atividade a_j começar.
- Acrescentamos duas atividades fictícias a_o e a_{n+1} , onde f_o =0 e s_{n+1} = ∞ .
- Logo, $S = S_{o n+1}$
- Se uma solução para s_{ij} inclui a_k , então a_k gera dois subproblemas s_{ik} e $s_{kj} \subset s_{ij}$.
- Logo, se há uma solução ótima para s_{ij} que inclui a_k , as soluções para s_{ik} e s_{kj} usadas dentro da solução ótima de s_{ii} também devem ser ótimas.

Teorema

- Uma solução ótima para S_{ij} seria $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$
- A_{o n+1} seria a solução para o problema inteiro.
- Teorema: Considere qualquer subproblema não vazio S_{ij} e seja a_m a atividade em S_{ij} com término mais antigo. Então,
 - 1. A atividade a_m é usada em algum subconjunto de tamanho máximo de atividades mutuamente compatíveis de S_{ii} .
 - 2. O subproblema S_{im} é vazio, de forma que a escolha de a_m deixa o subproblema S_{mj} como único que pode ser não vazio.

Teorema

- 2. Suponha que exista algum $a_k \in S_{im}$. Então $f_i \leq s_k$ $< f_k \leq s_m < f_m \Rightarrow f_k < f_m$. Então $a_k \in S_{ij}$ e ele tem $f_k < f_m$. Contradição.
- 1. Seja A_{ij} um subconjunto de tamanho máximo de atividades mutuamente compatíveis em S_{ij} . Ordene as atividade em A_{ij} em ordem crescente de tempo de término.

Seja a_k a primeira atividade em A_{ij} .

Se $a_k = a_m$, pronto.

Caso contrário, construa $A'_{ij} = A_{ij} - \{a_k\} \cup \{a_m\}$.

• Iteractive-Active-Selector(s,f)

- n = comprimento(s)
- □ A = {1}
- □ i = 1
- o for m=2..n:
 - If $s_m \ge f_i$
 - $A = A \cup \{a_m\}$
 - i = m

Após ordenar pelo tempo de término

Exemplo

i	1	2	3	4	5	6	7	8	9	10	11
S _i	1	3	O	5	3	5	6	8	8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14

Estratégia gulosa

- Moldar o problema de otimização como um problema no qual fazemos uma escolha e ficamos com um único subproblema para resolver.
- Provar que sempre existe uma solução ótima para o problema original que contém a escolha gulosa.
- Demonstrar que, tendo feita a escolha gulosa, o que resta é um subproblema com a propriedade de que, se combinarmos uma solução ótima para o subproblema com a escolha gulosa que fizemos, chegamos a uma solução ótima para o problema original.

Comparação dos Problemas

Seja um grafo G=(V,E) e uma função de custo w, pede-se

- Caixeiro Viajante
 Ciclo que passe uma única vez por todos os vértices e tenha peso mínimo.
- Árvore Geradora Mínima Árvore que passe por todos os vértices e tenha peso mínimo.

Revisão de Conceitos de Grafo

- O que é ciclo.
- O que é árvore.
- Como determinar se é uma árvore
 - Número de nós
 - Conexo
- Número de nós *n* e arestas *m*.
 - Em grafo conexo, $n-1 \le m \le n^2$

Árvores Geradoras Mínimas (AGM)

 Conectar computadores por rede, cada link com um custo de manutenção

Propriedades

Grafo G=(V,E,w) conexo n=|V| Solução é uma árvore (n-1 arestas)

Formulação

Dado um grafo G=(V,E,w), encontrar árvore $A=(V,E_A,w)$ $E_A\subseteq E$ tal que $w(E_A)$ é mínimo.

Guloso AGM: Algoritmo de Kruskal

 Adicione sempre a aresta de menor peso que não forma ciclo (1956).

Desempates: ordem lexicográfica

Guloso AGM: Algoritmo de Kruskal

 Adicione sempre a aresta de menor peso que não forma ciclo.

Está correto, ou seja, é ótimo?????

Kruskal está correto: cortes

 Partição (S,V-S) ou de forma equivalente conjunto de arestas.

Kruskal está correto

Seja X um subconjunto das arestas E_A de uma AGM. Seja qualquer subconjunto S de vértices tal que X não cruze S e V-S e seja *e* a aresta mais leve do corte. Então X U {e} faz parte de alguma AGM.

Kruskal está correto

Prova

Seja X um subconjunto das arestas E_A de uma AGM. Seja qualquer subconjunto S de vértices tal que X não cruze S e V-S e seja e a aresta mais leve do corte. Então X U $\{e\}$ faz parte de alguma AGM.

decom departamento de computação

Guloso AGM: Algoritmo de Kruskal

```
procedure kruskal (G,w)
Input: A connected undirected graph G=(V,E) with edge weights w_e
Output: A minimum spanning tree defined by the edges X

X = \{\}
Sort the edges E by weight for all edges \{u,v\} \in E, in increasing order of weight: if \{u,v\} \cup X semiciclo add edge \{u,v\} to X
```

Algoritmo está correto como visto anteriormente. Depende de ordenação de arestas (m log m ou m - linear). Faz O(m) vezes a operação de verificação de ciclo.

decom departamento de computação

Guloso AGM: Algoritmo de Kruskal

```
procedure kruskal (G,w)
Input: A connected undirected graph G=(V,E) with edge weights w_e
Output: A minimum spanning tree defined by the edges X
X = \{\}
Sort the edges E by weight for all edges \{u,v\} \in E, in increasing order of weight: if \{u,v\} \cup X semciclo add edge \{u,v\} to X
```

Complexidade depende de qual operação? De saber se há ciclo...

Conjuntos Disjuntos Mesmo componente em log(n)

 $makeset(A), makeset(B), \dots, makeset(G)$:

 (A^0)

 $\left(B^{0}\right)$

 \bigcirc

 (D_0)

 (E_0)

 \mathbf{F}^{0}

 G^0

union(A, D), union(B, E), union(C, F):

union(B,G):

union(C, G), union(E, A):

decom departamento de computação

Guloso AGM: Algoritmo de Kruskal

decom

Algoritmo para componentes disjuntos

Propriedade 1: $rank(x) < rank(\pi(x))$

Propriedade 2: rank da raiz é k, pelo menos 2^k

```
\frac{\text{procedure makeset}}{\pi(x) = x}(x)
\text{rank}(x) = 0
```

```
\begin{array}{l} \underline{\text{procedure union}}(x,y) \\ r_x = \text{find}(x) \\ r_y = \text{find}(y) \\ \text{if } r_x = r_y \colon \text{ return} \\ \text{if } \text{rank}(r_x) > \text{rank}(r_y) \colon \\ \pi(r_y) = r_x \\ \text{else:} \\ \pi(r_x) = r_y \\ \text{if } \text{rank}(r_x) = \text{rank}(r_y) \colon \text{ rank}(r_y) = \text{rank}(r_y) + 1 \end{array}
```



```
\begin{split} & \operatorname{procedure\ union}\left(x,y\right) \\ & r_x = \operatorname{find}(x) \\ & r_y = \operatorname{find}(y) \\ & \text{if}\ r_x = r_y \colon \text{ return} \\ & \text{if}\ \operatorname{rank}(r_x) > \operatorname{rank}(r_y) \colon \\ & \pi(r_y) = r_x \\ & \text{else:} \\ & \pi(r_x) = r_y \\ & \text{if}\ \operatorname{rank}(r_x) = \operatorname{rank}(r_y) \colon \operatorname{rank}(r_y) = \operatorname{rank}(r_y) + 1 \end{split}
```


decom departamento de computação

Guloso AGM: Algoritmo de Kruskal

Complexidade?

decom departamento de computação

Guloso AGM: Algoritmo de Kruskal

```
procedure kruskal (G,w)
Input: A connected undirected graph G=(V,E) with edge weights w_e
Output: A minimum spanning tree defined by the edges X

for all u \in V:
  makeset(u)

X = \{\}
Sort the edges E by weight
for all edges \{u,v\} \in E, in increasing order of weight:
  if \operatorname{find}(u) \neq \operatorname{find}(v):
  add edge \{u,v\} to X
  union(u,v)
```

Complexidade?

$$T(n) = \Theta(m \log n)$$

$$\Theta(n \log n) \le T(n) \le \Theta(n^2 \log n)$$

Guloso AGM: Algoritmo de Prim

 Cresça a árvore, colocando sempre a menor aresta que liga X aos vértices que faltam (1930 Jarnik, 1957 Prim, 1959 Dijkstra)

Guloso AGM: Algoritmo de Prim

```
procedure prim(G, w)
Input: A connected undirected graph G = (V, E) with edge weights w_e
Output: A minimum spanning tree defined by the array prev
for all u \in V:
   cost(u) = \infty
   prev(u) = nil
Pick any initial node u_0
cost(u_0) = 0
H = makequeue(V) (priority queue, using cost-values as keys)
while H is not empty:
   v = deletemin(H)
   for each \{v,z\} \in E:
      if cost(z) > w(v, z):
         cost(z) = w(v, z)
         prev(z) = v
         decreasekey(H,z)
```


Guloso Menor caminho: Dijkstra

```
procedure dijkstra(G, l, s)
         Graph G = (V, E), directed or undirected;
Input:
           positive edge lengths \{l_e: e \in E\}; vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set
          to the distance from s to u.
for all u \in V:
   dist(u) = \infty
   prev(u) = nil
dist(s) = 0
H = makequeue(V) (using dist-values as keys)
while H is not empty:
   u = deletemin(H)
   for all edges (u,v) \in E.
      if dist(v) > dist(u) + l(u, v):
          dist(v) = dist(u) + l(u, v)
          prev(v) = u
          decreasekey(H, v)
```


$\operatorname{Set} S$	A	B	C	D	E	F'
{}	0/nil	∞/nil	∞ /nil	∞/nil	∞ /nil	∞ /nil

Atenção: apesar de ser linear nesse exemplo, representa qualquer árvore.

prev: permite recuperar árvore

$\operatorname{Set} S$	A	B	C	D	E	F
{}	0/nil	∞/nil	∞/nil	∞/nil	∞/nil	∞/nil
A		5/A	6/A	4/A	∞/nil	∞/nil
A, D		2/D	2/D		∞/nil	4/D
A, D, B			1/B		∞/nil	4/D
A, D, B, C					5/C	3/C
A, D, B, C, F					4/F	

Outro exemplo:

- http://en.wikipedia.org/wiki/Prim%27s_algorithm
- http://en.wikipedia.org/wiki/Kruskal%27s algorithm

Árvores podem ser diferentes, mas têm o mesmo peso!

Código de Huffman

Symbol	Frequency
A	70 million
B	3 million
C	20 million
D	37 million

Código de Huffman

Symbol	Frequency
A	70 million
B	3 million
C	20 million
D	37 million

Symbol	Codeword							
A	0							
B	100							
C	101							
D	11							

Código de Huffman - Fazendo as árvores

Symbol	Frequency
A	70 million
B	3 million
C	20 million
D	37 million

Código de Huffman

- 1952, David Huffman
- Compressão (MP3, por exemplo)
- Propriedades
 - Número variável de bits
 - Não-ambiguidade (árvore binária completa)

Algoritmo Guloso: Huffman Ótimo

```
procedure Huffman (f)
Input: An array f[1\cdots n] of frequencies
Output: An encoding tree with n leaves

let H be a priority queue of integers, ordered by f for i=1 to n: insert (H,i) for k=n+1 to 2n-1:
i=\mathrm{deletemin}(H),\ j=\mathrm{deletemin}(H)
create a node numbered k with children i,j
f[k]=f[i]+f[j]
insert(H,k)
```


Huffman: Complexidade

```
procedure Huffman (f)
Input: An array f[1\cdots n] of frequencies
Output: An encoding tree with n leaves

let H be a priority queue of integers, ordered by f for i=1 to n: insert (H,i)
for k=n+1 to 2n-1:
i=\mathrm{deletemin}(H),\ j=\mathrm{deletemin}(H)
create a node numbered k with children i,j
f[k]=f[i]+f[j]
insert (H,k)
```

Complexidade: O(n log n)

Α	С	D	Е	F	G	Н	I	L	N	0	R	S	Т	U	٧	W	X	Υ	Z
3	3	2	26	5	3	8	13	2	16	9	6	27	22	2	5	8	4	5	1

decom departamento de computação

Huffman: Exercício

Suponha que os símbolos a, b, c, d, e ocorram com frequências ½, ¼, 1/8, 1/16, 1/16, respectivamente.

- a) Qual a codificação de Huffman do alfabeto?
- b) Se esta codificação é aplicada a um arquivo consistindo em 1.000.000 caracteres com as dadas frequências, qual é o tamanho do arquivo codificado em bits?

Um problema de lógica

A mulher do coronel foi assassinada e existem três suspeitos: o coronel, o açougueiro e o amante.

Definir quem é o assassino, dado que:

- o assassinato aconteceu na cozinha
- o assassinato aconteceu às 8 da noite
- o coronel estava dormindo às 8 da noite

Problema de satisfabilidade

A mulher do coronel foi assassinada e existem três suspeitos: o coronel, o açougueiro e o amante. Definir quem é o assassino, dado que:

- o assassinato aconteceu na cozinha
- o assassinato aconteceu às 8 da noite
- o coronel estava dormindo às 8 da noite

U – o coronel é inocente

X – o assassinato aconteceu na cozinha

W – o assassinato aconteceu às 8 da noite

Y – o açougueiro é inocente

Z – o coronel estava dormindo às 8 da noite

Cláusulas de Horn

- 1951, Alfred Horn
- É possível deduzir um fato a partir de um conjunto de implicações?
 - Fatos: variáveis lógicas
 - Implicações : com antecedente de conjunto de fatos e um consequente unitário
- Conjunção de cláusulas de disjunção com no máximo uma variável não-negada
 - Subconjunto de problemas de satisfabilidade

Cláusulas de Horn

A mulher do coronel foi assassinada e existem três suspeitos: o coronel, o açougueiro e o amante. Definir quem é o assassino, dado que:

- o assassinato aconteceu na cozinha
- o assassinato aconteceu às 8 da noite
- o coronel estava dormindo às 8 da noite
- U o coronel é inocente
- X o assassinato aconteceu na cozinha
- W o assassinato aconteceu às 8 da noite
- Y o açougueiro é inocente
- Z o coronel estava dormindo às 8 da noite

Cláusulas de Horn

$$(w \land y \land z) \Rightarrow x, \ (x \land z) \Rightarrow w, \ x \Rightarrow y, \ \Rightarrow x, \ (x \land y) \Rightarrow w, \ (\overline{w} \lor \overline{x} \lor \overline{y}), \ (\overline{z})$$

Horn - Algoritmo Guloso Exato

```
Input: a Horn formula
Output: a satisfying assignment, if one exists
set all variables to false
while there is an implication that is not satisfied:
   set the right-hand variable of the implication to true
if all pure negative clauses are satisfied: return the assignment else: return ''formula is not satisfiable''
```

Implementação em tempo linear: Norvig and Russel, Lógica Proposicional Forward Chaining

- Há n itens, onde o i-ésimo item vale v_i e pesa w_i quilos.
- Deve-se colocar uma carga tão valiosa quanto possível em uma mochila, mas ela comporta no máximo w quilos.

Problema da mochila

- Problema da mochila 0-1
 - Subestrutura ótima: Para a carga mais valiosa que pese no máximo w quilos, se removermos o item j, a carga restante deve ser a mais valiosa que pese w w_j.
- Problema da mochila fracionada
 - Se removermos um peso w de um item j da carga ótima, a carga restante deve ser mais valiosa que pese no máximo W-w que o ladrão pode levar dos n-1 itens originais, mais w_i-w do item j.

Problema da mochila

Fracionada

- Estratégia gulosa
 - Divida v_i/w_i para cada item
 - · Pega o máximo do item de maior valor por quilo
 - Se o suprimento deste item esgotar e puder levar mais, pega o máximo possível do próximo item com maior valor por quilo.

Exemplo:

- Mochila 50 quilos
- □ Item 1 10 quilos, \$60
- □ Item 2 20 quilos, \$100
- □ Item 3 30 quilos, \$120