Notes

Intro

- Software = debugged + partially tested code with documentation
- Problems with defect injections + detection approach
 - MY GUESS = defect system is limited by the performance of the detection system
 - REAL ANSWER = early defects are detected late, mostly during test activities
 since relying only on tests == hardly detects * defects

Wide spectrum of SQA practices

- How to produce quality software within schedule + budget
 - House of software quality

- "Life is a bitch" -15:58
- From your projects, can you provide the following process measures?
 - Percentage of nonconformance cost = ____%
 - Percentage of prevention cost = ____%
- Can you provide the following QA measures for your product?
 - o Defects per 1000 LOCS or defects per function point
 - The density of defects in the software delivered by my organization

ISO/IEC 29110 series for VSEs

- VSE = Very Small Entity === public/non-profit organizations ≤ 25 employees
- Reviewing your own work allows you to see the types of mistakes that you make
 - Peer reviews == experience++
 - Analogy = treatment of river water

Types of reviews

- Personal review
- Inspection
- Desk check
- Walkthrough

Process to Develop a Document

- Defect detection == put filters
 - Using reviews
 - Walkthroughs
 - Common space
 - Defect removal effectiveness for each test == inspections is about 50%

Approach used to minimize defect escape

				Reviewer effectiveness Defect detection rate					
				C	В	A	Е	D	F
				94%	80%	75%	50%	45%	30%
Ī		A	0,5	0,0	0,1	0,1	0,3	0,3	0,4
	Author Effectiveness	В	1,0	0,1	0,2	0,3	0,5	0,6	0,7
ı		C	3,0	0,2	0,6	0,8	1,5	1,7	2,1
!	Defects introduced per 1000 lines	D	4,0	0,2	0,8	1,0	2,0	2,2	2,8
		Е	10,0	0,6	2,0	2,5	5,0	5,5	7,0
		F	18,0	1,1	3,6	4,5	9,0	9,9	12,6

ISO/IEC 29110 series for VSE (his stuff)

- What happens if we don't follow standards
 - Software defect from 1 of the producers went into a product + resulted in a loss of over \$200 million by the manufacturer
- How do we implement standards
 - VSE throughout company
- International organization for standardization

Type of VSE	Description	Number of ppl		
Entry	Startups	6 ppl		
Basic	1 product	1 working team		

Type of VSE	Description	Number of ppl	
Intermediate	1+ project in parallel	1+ working team	
Advanced	Sustainable growth/software development business	A lot of teams	

- Implementing proven practices of the ISO/IEC 29110 accelerated the maturity of VSEs
- Data
 - 79% + of respondents are completely or largely satisfied with ISO/IEC 29110 standards results

Business Benefits

- Better <u>credibility</u> to bid on projects
- Access to <u>markets</u> that require demonstration of <u>compliance</u> to a process <u>standard</u>
- Better recognition of the quality of work and products
- Better <u>trust</u> from <u>customers</u> and business <u>partners</u>
 - e.g. delivering functionalities, on time, within budget
- A good foundation towards a <u>CMMI® level 2</u>
- Better recognition of the quality of work and products
- Reduction of rework
 - Higher profit margin
 - Shorter development time
 - More competitive
- Thailand VSEs can team up on 1 contract to bid on a bigger project

Conclusion

- A <u>wide</u> spectrum of <u>proven</u> software quality assurance <u>practices</u> are <u>available</u> to facilitate the development of <u>quality</u> software products
- <u>Software quality assurance</u> can help you increase the <u>confidence</u> about the development of quality software products, within <u>budget</u> and <u>schedule</u>
- ISO 29110 has been <u>specifically</u> developed for VSEs (organisations having <u>up to 25 people</u>) developing <u>systems</u> (having hardware and software components) <u>or software</u> <u>products</u>
- ISO 29110 <u>4-stage roadmap</u> and the set of Management and Engineering <u>Guides</u> provides a path to increase

1:01:16 / 1:22:15

Why do a large number of software organizations either <u>ignore</u> the existence or <u>don't use</u> software practices that have been available since the <u>1970's</u>!

Why are so many software people <u>not</u> working '<u>smarter</u>' and <u>not</u> using the <u>proven</u> practices?

Is it because many software <u>developers</u> and software <u>managers</u> have a big '<u>Ego</u>'?