1

ICSE 10,2019

AI21BTECH11016

PROBLEM 4-C:

From $\triangle OQ2P$,

Draw a circle of radius 4cm. Take a point P outside the circle at a distance of 7cm from the centre of the circle and construct a pair of tangents to the circle from that point. Measure and write down the length of any one tangent.

Solution: The input parameters for this construction are available in TABLE 1.

Symbol	Value	Description
r	4	Radius
d	7	Distance of P from the origin
sin heta	$\frac{r}{d}$	Angle between the tangent from P and d
P	0	Origin
О	$\begin{pmatrix} d \\ 0 \end{pmatrix}$	Center of circle
\mathbf{Q}_i	$r \cot \theta \begin{pmatrix} \cos \theta \\ \pm \sin \theta \end{pmatrix}$	Points of Contact

TABLE I

 $sin\theta = \frac{r}{d}$ $\Rightarrow cos\theta = \frac{\sqrt{d^2 - r^2}}{d}$ (3)

Also, From $\triangle OQ2P$,

$$cos\theta = \frac{PQ2}{d} \tag{4}$$

From equations 3 and 4,

$$\frac{\sqrt{d^2 - r^2}}{d} = \frac{PQ2}{d}$$

$$\Rightarrow PQ2 = \sqrt{d^2 - r^2} = \sqrt{7^2 - 4^2} = \sqrt{33}$$
(5)

... The length of tangent drawn from P onto the Circle is $\sqrt{33}$.

Generating the figure using Python.

Given:

$$OP = d = 7 \tag{1}$$

$$OQ2 = r = 4 \tag{2}$$