Employee Attrition Classfication Model

Overview

Employee attrition is defined as the natural process by which employees leave the workforce – for example, through resignation for personal reasons or retirement.

problem statement attrition proves to be costly and time-consuming problem for the organization, and it also leads to loss of productivity.

The objective of this project is to classify the employee attrition for each employee.

Dataset

- **Dataset Source** from Kaggle named "IBM HR Analytics Employee" Attrition & Performance "
- **The Data Contains** records of 1470 employee with 35 features.
- **It Has Information** about employees' current employment status, the total number of companies worked for in the past. Total number of years at the current company and the current role, the education level , distance from home monthly income, etc.

EXPLORATORY DATA ANALYSIS

No Null Values

No Missing Values

No duplicated Rows and columns

Data Processing

Models

- Baseline model (KNN and Logistic Regression).
- Logistic Regression with Down sampling and dummy variables.
- Decision Tree Model.
- Random Forest Classifier Model.

Baseline model (KNN and Logistic Regression).

KNN Logistic Regression

Training score: 0.83 Training score: 0.83

Testing score: 0.86 Testing score: 0.87

Cross val:0.83 Cross val:0.84

	precision	recall	f1-score
0	0.87	0.98	0.92
1	0.00	0.00	0.00

Class Imbalance

Logistic Regression with Down sampling and dummy variables

Down Sample:

Training score: 0.62

Testing score: 0.66

Cross val:0.84

-	precision	recall	f1-score
0	0.66	0.68	0.67
1	0.67	0.65	0.66
accuracy			0.66

Dummy variables:

Training score: 0.64

Testing score:0.62

Cross val:0.84

-	precision	recall	f1-score
0	0.65 0.60	0.51 0.73	0.57 0.66
accuracy	0.00	0.75	0.62

Decision Tree Model.

1) Without pruning

Train score: 1.0

Test score:0.67

Cross Valdation: 0.62

	precision	recall	f1-score
9	0.66	0.71	0.68
1	0.69	0.63	0.66
accuracy			0.67

2) With pruning

Training score: 75

Testing score: 66

Cross validation: 60

	precision	recall	f1-score
0	0.67	0.63	0.65
1	0.66	0.70	0.68
accuracy			0.66

Random Forest Classifier Model

Training Score: 0.83

Test Score: 0.71

Cross Validation: 0.74

	precision	recall	f1-score
0 1	0.72 0.69	0.66 0.75	0.69 0.72
accuracy			0.71

Conclution

the model will help organization to find ways to prevent attrition or to plan the hiring of new candidate.

Thanks!

Any questions?

