Optimal flow problems, the Edmonds-Karp algorithm, and birdsong

Dan Stowell

Centre for Digital Music School of Elec Eng & Computer Science Queen Mary, University of London

Oct 2014, Big-O

Intro

My research:

- "Machine listening"
 - = machine learning & signal processing for understanding sound
- Automatic analysis of bird sounds (which species, how many, how often...)

Intro

Algorithm: Edmonds-Karp

- ► Graph theory, "flow networks"
- ▶ We'll consider the *maximum flow* problem
- Related to shortest-path problems (SatNav routing, travelling salesman)
 - ... but harder
- Imagine you have to send as many trains-per-hour as possible from London to Edinburgh, and that different segments of the route have different maximum capacities.

Intro

What does that have to do with birdsong?

Undirected graph

Directed graph (or "digraph")

Network

Capacities on each arc

Flow

Flow values must balance at each node (except s, t)

The maximum flow problem:

For a given network, find the flow of maximum value that is compatible with the network capacities (a flow that is "feasible")

Flow might be integer or real-valued; I'll focus on integer.

Greedy approach: use a single-path algorithm, and iterate

Complexity: O(|V| + |A|) per iteration

Greedy approach may fail

Many networks lead to local optima

Greedy approach may fail

Many networks lead to local optima

The **Edmonds-Karp algorithm** is guaranteed to find the exact solution.

Based on the Ford-Fulkerson algorithm (plus shortest-path).

Key concept: the *residual network*.

Network

Network

Network

Residual network

Network

Residual network

Network

Network

Residual network

- Guaranteed to have no local optima
- Guaranteed to terminate in bounded number of iterations (as long as all capacities are rational)
- ► Complexity: $O(|V||A|^2)$

Pause

Disentagling birds

Disentagling birds

Modelling an intermittent source

Markov renewal process ("MRP"):

$$P(\tau_{n+1} \le t, X_{n+1} = j \mid (X_1, T_1), \dots, (X_n = i, T_n)$$

$$= P(\tau_{n+1} \le t, X_{n+1} = j \mid X_n = i)$$

where τ_{n+1} is the time difference $T_{n+1} - T_n$.

Multiple MRPs

Problem sketch: assume multiple MRPs, plus potential "clutter".

Given transition probabilities, find the most likely set of paths. (Max 1 path per node)

Convert max-likelihood problem to a flow problem

Convert likelihood expression to flow "costs":

$$a_b(X) = -\log p_b(X)$$

$$a_d(X) = -\log p_d(X)$$

$$a_t(X, X', \tau) = -\log f_X(X', \tau)$$

$$a_c(X) = \log p_c(X)$$

Convert max-likelihood problem to a flow problem

Convert likelihood expression to flow "costs":

$$a_b(X) = -\log p_b(X)$$

$$a_d(X) = -\log p_d(X)$$

$$a_t(X, X', \tau) = -\log f_X(X', \tau)$$

$$a_c(X) = \log p_c(X)$$

Convert max-likelihood problem to a flow problem

Convert likelihood expression to flow "costs":

$$a_b(X) = -\log p_b(X)$$

$$a_d(X) = -\log p_d(X)$$

$$a_t(X, X', \tau) = -\log f_X(X', \tau)$$

$$a_c(X) = \log p_c(X)$$

Minimum cost flow

Minimum cost flow problem, with binary capacities

is solved the same way as a

Maximum flow problem

- ▶ Optimal minimum-cost flow: Edmonds-Karp algorithm, asymptotic time complexity $O(|V||A|^2)$.
- ▶ Or use inexact (greedy) algorithm: O(|V||A|) or lower.

Synthetic example

Lesson

Lesson

If your problem can be represented on a graph/network, you can probably transform it into a well-studied problem.

Further reading

A good textbook: Bang-Jensen and Gutin

(free PDF on website)

Journal paper: JMLR, Stowell & Plumbley (2013)

4D + 4B + 4B + B + 990

(free, open-access)

Funded PhD position available next year!

Working with me at QMUL on machine learning, signal processing and bird sounds

Drop me a line: dan.stowell@qmul.ac.uk