Formal Proof of Prime Number Theory in Lean

Release v0

CONTENTS:

1	Indices and tables	7
	Contour Integral 3.1 I. Definitions of Paths	4
2	Definitions	3
1	Introduction	1

CHAPTER	
ONE	

INTRODUCTION

CHAPTER	
TWO	

DEFINITIONS

CHAPTER

THREE

CONTOUR INTEGRAL

3.1 I. Definitions of Paths

A path is a differentiable function $f: \mathbb{R} \to \mathbb{C}$ with a continuous derivative, defined on \mathbb{R} , but we only consider their values on [0,1].

Constant Paths For example, for any fixed point $z : \mathbb{C}$ we have a constant path $\lambda(t : \mathbb{R}), z$.

Inverse of Paths The inverse of a path is to reverse the direction of a path.

For example, given a path $L: \mathbb{R} \to \mathbb{C}$, we define the inverse of the path as $\lambda(t: \mathbb{R}), L(1-t)$.

CHAPTER

FOUR

INDICES AND TABLES

- pdf download : pdf
- genindex
- search