6

Orthogonality and Least Squares

6.2

ORTHOGONAL SETS

- A set of vectors $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$ in \mathbb{R}^n is said to be an **orthogonal set** if each pair of distinct vectors from the set is orthogonal, that is, if $u_i \cdot u_j = 0$ whenever $i \neq j$.
- Theorem 4: If $S = \{u_1, ..., u_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S.

■ **Proof:** If $0 = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$ for some scalars c_1, \dots, c_p , then $0 = 0 \cdot u_1 : (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p) | \cdot u_1$ $= (c_1 \mathbf{u}_1) \cdot u_1 + (c_2 \mathbf{u}_2) | \cdot u_1 + \dots + (c_p \mathbf{u}_p) \cdot u_1$ $= c_1(\mathbf{u}_1 \cdot u_1) + c_2(\mathbf{u}_2 | \cdot u_1) + \dots + c_p(\mathbf{u}_p | \cdot u_1)$

because \mathbf{u}_1 is orthogonal to $\mathbf{u}_2, \dots, \mathbf{u}_p$.

- Since \mathbf{u}_1 is nonzero, $u_1 \cdot u_1$ is not zero and so $c_1 = 0$
- Similarly, $c_2, ..., c_p$ must be zero.

 $=c_1(\mathbf{u}_1\cdot\mathbf{u}_1)$

- Thus *S* is linearly independent.
- **Definition:** An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.
- Theorem 5: Let $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each \mathbf{y} in W, the weights in the linear combination

$$y = c_1 u_1 + \dots + c_p u_p$$
are given by
$$c_j = \frac{y \cdot u_j}{u_j \cdot u_j} \qquad (j = 1, \dots, p)$$

• **Proof:** The orthogonality of $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$ shows that

$$y \cdot u_1 = (c_1 u_1 + c_2 u_2 + \dots + c_p u_p) \cdot u_1 = c_1 u_1 \cdot u_1$$

- Since $u_1 \cdot u_1$ is not zero, the equation above can be solved for c_1 .
- To find c_j for j = 2, ..., p, compute $y \cdot u_j$ and solve for c_j .

- Given a nonzero vector \mathbf{u} in \mathbb{R}^n , consider the problem of decomposing a vector \mathbf{y} in \mathbb{R}^n into the sum of two vectors, one a multiple of \mathbf{u} and the other orthogonal to \mathbf{u} .
- We wish to write

$$(1) y = \hat{y} + z$$

where $\hat{y} = \alpha u$ for some scalar α and z is some vector orthogonal to u. See the following figure.

Finding α to make $\mathbf{y} - \hat{\mathbf{y}}$ orthogonal to \mathbf{u} .

- Given any scalar α , let $z = y \alpha u$, so that (1) is satisfied.
- Then $y \hat{y}$ is orthogonal to **u** if an only if $0 = (y \alpha u) \cdot u = y \cdot u (\alpha u) \cdot u = y \cdot u \alpha (u \cdot u)$
- That is, (1) is satisfied with z orthogonal to u if and

only if
$$\alpha = \frac{y \cdot u}{u \cdot u}$$
 and $\hat{y} = \frac{y \cdot u}{u \cdot u} u$.

• The vector $\hat{\mathbf{y}}$ is called the **orthogonal projection of** \mathbf{y} **onto** \mathbf{u} , and the vector \mathbf{z} is called the **component of** \mathbf{y} **orthogonal to** \mathbf{u} .

- If c is any nonzero scalar and if \mathbf{u} is replaced by $c\mathbf{u}$ in the definition of $\hat{\mathbf{y}}$, then the orthogonal projection of \mathbf{y} onto $c\mathbf{u}$ is exactly the same as the orthogonal projection of \mathbf{y} onto \mathbf{u} .
- Hence this projection is determined by the *subspace L* spanned by **u** (the line through **u** and **0**).
- Sometimes \hat{y} is denoted by $proj_L y$ and is called the **orthogonal projection of y onto** L.
- That is,

$$\hat{\mathbf{y}} = \mathbf{proj}_L \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} \tag{2}$$

• Example 3: Let
$$y = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$$
 and $u = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Find the

orthogonal projection of \mathbf{y} onto \mathbf{u} . Then write \mathbf{y} as the sum of two orthogonal vectors, one in Span $\{\mathbf{u}\}$ and one orthogonal to \mathbf{u} .

Solution: Compute

$$y \cdot u = \begin{bmatrix} 7 \\ 6 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 40$$
$$u \cdot u = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 20$$

The orthogonal projection of y onto u is

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} = \frac{40}{20} \mathbf{u} = 2 \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$$

and the component of y orthogonal to u is

$$\mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 7 \\ 6 \end{bmatrix} - \begin{bmatrix} 8 \\ 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

The sum of these two vectors is y.

That is,

$$\begin{bmatrix} 7 \\ 6 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix} + \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad (y - \hat{y})$$

• The decomposition of y is illustrated in the following

figure:

The orthogonal projection of y onto a line L through the origin.

- *Note:* If the calculations above are correct, then $\{\hat{y}, y \hat{y}\}$ will be an orthogonal set.
- As a check, compute

$$\hat{y} \cdot (y - \hat{y}) = \begin{bmatrix} 8 \\ 4 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 2 \end{bmatrix} = -8 + 8 = 0$$

Since the line segment in the figure on the previous slide between yand \hat{y} is perpendicular to L, by construction of \hat{y} , the point identified with \hat{y} is the closest point of L to y.

- A set $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$ is an **orthonormal set** if it is an orthogonal set of unit vectors.
- If W is the subspace spanned by such a set, then $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$ is an **orthonormal basis** for W, since the set is automatically linearly independent, by Theorem 4.
- The simplest example of an orthonormal set is the standard basis $\{e_1, ..., e_n\}$ for \mathbb{R}^n .

• Any nonempty subset of $\{e_1, ..., e_n\}$ is orthonormal, too.

Example 2: Show that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthonormal basis of \mathbb{R}^3 , where

$$\mathbf{v}_{1} = \begin{bmatrix} 3/\sqrt{11} \\ 1/\sqrt{11} \\ 1/\sqrt{11} \end{bmatrix}, \ \mathbf{v}_{2} = \begin{bmatrix} -1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}, \ \mathbf{v}_{3} = \begin{bmatrix} -1/\sqrt{66} \\ -4/\sqrt{66} \\ 7/\sqrt{66} \end{bmatrix}$$

Solution: Compute

$$v_1 \cdot v_2 = -3 / \sqrt{66} + 2 / \sqrt{66} + 1 / \sqrt{66} = 0$$

 $v_1 \cdot v_3 = -3 / \sqrt{726} - 4 / \sqrt{726} + 7 / \sqrt{726} = 0$

$$v_2 \cdot v_3 = 1/\sqrt{396} - 8/\sqrt{396} + 7/\sqrt{396} = 0$$

- Thus $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal set.
- Also, $V_1 \cdot V_1 = 9/11 + 1/11 + 1/11 = 1$ $V_2 \cdot V_2 = 1/6 + 4/6 + 1/6 = 1$ $V_3 \cdot V_3 = 1/66 + 16/66 + 49/66 = 1$

which shows that \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are unit vectors.

- Thus $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthonormal set.
- Since the set is linearly independent, its three vectors form a basis for . See the figure on the next slide.

• When the vectors in an orthogonal set of nonzero vectors are *normalized* to have unit length, the new vectors will still be orthogonal, and hence the new set will be an orthonormal set.

- Theorem 6: An $m \times n$ matrix U has orthonormal columns if and only if $U^TU = I$.
- **Proof:** To simplify notation, we suppose that U has only three columns, each a vector in \mathbb{R}^m .
- Let $U = [\mathbf{u}_1 \quad \mathbf{u}_2 \quad \mathbf{u}_3]$ and compute

$$U^{T}U = \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \mathbf{u}_{2}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_{1}^{T}\mathbf{u}_{1} & \mathbf{u}_{1}^{T}\mathbf{u}_{2} & \mathbf{u}_{1}^{T}\mathbf{u}_{3} \\ \mathbf{u}_{2}^{T}\mathbf{u}_{1} & \mathbf{u}_{2}^{T}\mathbf{u}_{2} & \mathbf{u}_{2}^{T}\mathbf{u}_{3} \\ \mathbf{u}_{3}^{T}\mathbf{u}_{1} & \mathbf{u}_{3}^{T}\mathbf{u}_{2} & \mathbf{u}_{3}^{T}\mathbf{u}_{3} \end{bmatrix}$$

$$(\Delta)$$

- The entries in the matrix at the right are inner products, using transpose notation.
- The columns of U are orthogonal if and only if $\mathbf{u}_{1}^{T}\mathbf{u}_{2} = \mathbf{u}_{2}^{T}\mathbf{u}_{1} = 0, \mathbf{u}_{1}^{T}\mathbf{u}_{3} = \mathbf{u}_{3}^{T}\mathbf{u}_{1} = 0, \mathbf{u}_{2}^{T}\mathbf{u}_{3} = \mathbf{u}_{3}^{T}\mathbf{u}_{2} = 0$ (5)
- The columns of U all have unit length if and only if $\mathbf{u}_1^T \mathbf{u}_1 = 1$, $\mathbf{u}_2^T \mathbf{u}_2 = 1$, $\mathbf{u}_3^T \mathbf{u}_3 = 1$ (6)
- The theorem follows immediately from (4)–(6).

Theorem 7: Let *U* be an $m \times n$ matrix with orthonormal columns, and let **x** and **y** be in \mathbb{R}^n .

Then

$$||Ux|| = ||x||$$

$$(Ux) \cdot (Uy) = x \cdot y$$
a. $(Ux) \cdot (Uy)$ if and only if $x \cdot y = 0$

$$= 0$$

Properties (a) and (c) say that the linear mapping $x \mapsto Ux$ preserves lengths and orthogonality.