REU(G): BACKGROUND PROBLEMS

ALONSO DELFÍN

The following problems are meant to provide a general background on operator norms and operator algebras for our summer REU(G) project on "Numerical computations of p-operator norms".

1. Operator Norms on $M_d(\mathbb{C})$

In what follows we assume $d \in \mathbb{Z}_{\geq 1}$ and $a = (a_{j,k})_{j,k=1}^d \in M_d(\mathbb{C})$ (that is a is a $d \times d$ matrix with entries $a_{j,k} \in \mathbb{C}$). Recall that for any $p \in [1, \infty)$ we defined the p-operator norm of a as

$$||a||_p := \max_{||\boldsymbol{z}||_p = 1} ||a(\boldsymbol{z})||_p$$

Problem 1.1. Show that $||a||_1$ is maximum absolute column sum, that is

$$||a||_1 = \max_{k \in \{1, \dots, d\}} ||(a_{1,k}, \dots, a_{d,k})||_1$$

Problem 1.2. Write an algorithm that computes $||a||_1$ given $a \in M_d(\mathbb{C})$.

Problem 1.3. Show that $||a||_2$ is the largest singular value of A. That is, show that if $\sigma(\overline{a}^T a) = \{\text{eigenvalues of } \overline{a}^T a\}$, then

$$||a||_2 = \max_{\lambda \in \sigma(\overline{a}^T a)} \sqrt{\lambda}$$

Problem 1.4. Write an algorithm that computes $||a||_2$ given $a \in M_d(\mathbb{C})$. (*Hint:* Optimize using the method of Lagrange Multipliers)

Problem 1.5. Show that $||a||_{\infty}$ is maximum absolute row sum, that is

$$||a||_{\infty} = \max_{j \in \{1, \dots, d\}} ||(a_{j,1}, \dots, a_{j,d})||_1$$

Problem 1.6. Write an algorithm that computes $||a||_{\infty}$ given $a \in M_d(\mathbb{C})$.

2. General Operator Norms

Let V and W be normed vector spaces with respective norms $\|-\|_V$ and $\|-\|_W$. If $a: V \to W$ is a linear transformation we define its operator norm as

$$||a||_{V\to W} := \sup\{||a(\mathbf{v})||_W : ||\mathbf{v}||_V = 1\}$$

The set $\mathcal{L}(V, W) = \{a \colon V \to W \mid ||a||_{V \to W} < \infty\}$ is the space of bouded linear transformations. When V = W we write $\mathcal{L}(V) = \mathcal{L}(V, V)$.

Problem 2.1. Show that

$$||a||_{V\to W} = \sup\{||a(\mathbf{v})||_W \colon ||\mathbf{v}||_V \le 1\}$$

Date: 13 May 2024.

Problem 2.2. Show that

$$\|a\|_{V \to W} = \sup \left\{ \frac{\|a(\boldsymbol{v})\|_W}{\|\boldsymbol{v}\|_V} \colon \boldsymbol{v} \neq 0 \right\}$$

Problem 2.3. Show that

$$||a||_{V\to W} = \inf\{M > 0 \colon ||a(v)||_W \le M||v||_V\}.$$

Conclude that $||a(\mathbf{v})||_W \leq ||a|| ||\mathbf{v}||_V$ for all $\mathbf{v} \in V$.

3. Hilbert Spaces

Problem 3.1. Let \mathcal{H} be a Hilbert space and let $a \colon \mathcal{H} \to \mathcal{H}$, $b \colon \mathcal{H} \to \mathcal{H}$ be two functions satisfying $\langle a(\xi), \eta \rangle = \langle \xi, b(\eta) \rangle$ for any $\xi, \eta \in \mathcal{H}$. Show that both a and b are linear transformations. For those of you with functional analysis background, use the Closed Graph theorem to show also that a, b are bounded with ||a|| = ||b||.

Problem 3.2. For $d \in \mathbb{Z}_{\geq 1}$, consider the Hilbert space ℓ_d^2 so that $\mathcal{L}(\ell_d^2) = M_d^2(\mathbb{C})$. Show that for any $a \in M_d^2(\mathbb{C})$ we have $a^* = \overline{a}^T$.

4. L^1 -operator algebras

Problem 4.1. Equip \mathbb{C}^2 with point-wise multiplication and max norm so that \mathbb{C}^2 becomes a normed algebra. That is, if $\boldsymbol{z}=(z_1,z_2)\in\mathbb{C}^2$ we put as usual $\|\boldsymbol{z}\|_{\infty}=\max\{|z_1|,|z_2|\}$, and if in addition $\boldsymbol{w}=(w_1,w_2)\in\ell^{\infty}(\{0,1\})$ we define a new element $\boldsymbol{z}\cdot\boldsymbol{w}\in\mathbb{C}^2$ by

$$\boldsymbol{z} \cdot \boldsymbol{w} = (z_1 w_1, z_2 w_2).$$

Define a map $\varphi \colon \mathbb{C}^2 \to \mathcal{L}(\ell^1(\{0,1\}))$ as follows: For every $\mathbf{z} = (z_1, z_2) \in \mathbb{C}^2$, we define $\varphi(\mathbf{z}) \in \mathcal{L}(\ell^1(\{0,1\}))$ by the formula

$$[\varphi(\mathbf{z})](\xi) := (z_1 \xi(0), z_2 \xi(1)) \quad \forall \quad \xi = (\xi(0), \xi(1)) \in \ell^1(\{0, 1\}).$$

Show that φ is an isometric algebra homomorphism, that is show that for any $z, w \in \mathbb{C}^2$, $\alpha \in \mathbb{C}$, we have

- (1) $\varphi(\boldsymbol{z} + \alpha \boldsymbol{w}) = \varphi(\boldsymbol{z}) + \alpha \varphi(\boldsymbol{w}).$
- (2) $\varphi(\boldsymbol{z} \cdot \boldsymbol{w}) = \varphi(\boldsymbol{z}) \circ \varphi(\boldsymbol{w}).$
- (3) $\|\varphi(z)\|_{1\to 1} = \|z\|_{\infty}$.

Problem 4.2. Equip $\ell^1(\{0,1\})$ with multiplication via convolution modulo 2 so that $\ell^1(\{0,1\})$ becomes a normed algebra. That is, for $\xi, \eta \in \ell^1(\{0,1\})$ define a new element $\xi * \eta \in \ell^1(\{0,1\})$ as follows

$$\xi * \eta = (\xi(0)\eta(0) + \xi(1)\eta(1), \xi(0)\eta(1) + \xi(1)\eta(0))$$

Define a map $\psi \colon \ell^1(\{0,1\}) \to \mathcal{L}(\ell^1(\{0,1\}))$ as follows: For every $\xi \in \ell^1(\{0,1\})$, we define $\varphi(\xi) \in \mathcal{L}(\ell^1(\{0,1\}))$ by the formula

$$[\psi(\xi)](\eta) := \xi * \eta \ \forall \ \eta \in \ell^1(\{0,1\})$$

Show that ψ is an isometric algebra homomorphism, that is show that for any $\xi, \zeta \in \ell^1(\{0,1\}), \alpha \in \mathbb{C}$, we have

- (1) $\psi(\xi + \alpha\zeta) = \psi(\xi) + \alpha\psi(\zeta)$.
- (2) $\psi(\xi * \zeta) = \psi(\xi) \circ \psi(\zeta)$.
- (3) $\|\psi(\xi)\|_{1\to 1} = \|\xi\|_1$.

Problem 4.3. Equip \mathbb{C}^2 with point-wise multiplication, as in Problem 4.1, and equip $\ell^1(\{0,1\})$ with multiplication via convolution, as in Problem 4.2. Define a map $\mathcal{F} \colon \ell^1(\{0,1\}) \to \mathbb{C}^2$ as follows: For every $\xi \in \ell^1(\{0,1\})$, we define $\mathcal{F}(\xi) \in \mathbb{C}^2$ by the formula

$$\mathcal{F}(\xi) := (\xi(0) + \xi(1), \xi(0) - \xi(1))$$

Show that \mathcal{F} is an algebra isomorphism, that is show that

- (1) $\mathcal{F}(\xi + \alpha \zeta) = \mathcal{F}(\xi) + \alpha \mathcal{F}(\zeta)$.
- (2) $\mathcal{F}(\xi * \zeta) = \mathcal{F}(\xi) \cdot \mathcal{F}(\zeta)$.
- (3) \mathcal{F} is both one-to-one and onto.

Problem 4.4. Conclude using Problems 4.1, 4.2, and 4.3 above that \mathbb{C}^2 can be equipped with **two different norms** that make \mathbb{C}^2 an L^1 -operator algebra.