HW 3

Juntang Wang, 04/08/2025

Problem 1

Using Definition 2.1.1, show the following.

- (i) If A is an event and A^c denotes its complement, then $P(A)=1-P(A^c)$
- (ii) If A_1, A_2, \ldots, A_n is a finite set of events, then

$$P\left(igcup_{n=1}^N A_n
ight) \leq \sum_{n=1}^N P(A_n).$$

If the events A_1, A_2, \ldots, A_n are disjoint, then equality holds.

Definition 2.1.1. A finite probability space consists of a sample space Ω and a probability measure P. The sample space Ω is a nonempty finite set and the probability measure P is a function that assigns to each element ω of Ω a number in [0,1] so that

$$\sum_{\omega \in \Omega} P(\omega) = 1.$$

An event is a subset of Ω , and we define the probability of an event A to be

$$P(A) = \sum_{\omega \in A} P(\omega).$$

As mentioned before, this is a model for some random experiment. The set Ω is the set of all possible outcomes of the experiment, $P(\omega)$ is the probability that the particular outcome ω occurs, and P(A) is the probability that the outcome that occurs is in the set A. If P(A)=0, then the outcome of the experiment is sure not to be in A; if P(A)=1, then the outcome is sure to be in A. Because of (2.1.4), we have the equation

$$P(\Omega) = 1$$
.

i.e., the outcome that occurs is sure to be in the set Ω . Because $P(\omega)$ can be zero for some values of ω , we are permitted to put in Ω even some outcomes of the experiment that are sure not to occur. It is clear from (2.1.5) that if A and B are disjoint subsets of Ω , then

$$P(A \cup B) = P(A) + P(B)$$

Solution:

(i) We need to show that $P(A)=1-P(A^c)$ using Definition 2.1.1.

From the definition, we know that Ω is the sample space and $A\subset\Omega$ is an event. The complement $A^c=\Omega\setminus A$ consists of all outcomes that are not in A. Since A and A^c are disjoint and $A\cup A^c=\Omega$, we have:

$$P(\Omega) = P(A \cup A^c) = P(A) + P(A^c)$$

From the definition, we know that $P(\Omega)=1$, so: $1=P(A)+P(A^c)$

Rearranging, we get: $P(A) = 1 - P(A^c)$

(ii) We need to show that $P\left(igcup_{n=1}^N A_n
ight) \leq \sum_{n=1}^N P(A_n).$

Let's denote $B = \bigcup_{n=1}^N A_n$. Then B is the set of all outcomes that belong to at least one of the events A_1, A_2, \ldots, A_N .

For any outcome $\omega \in B$, let $k(\omega)$ be the number of sets A_n that contain ω . Clearly, $k(\omega) \geq 1$ for all $\omega \in B$.

Now, we can write:

$$P(B) = \sum_{\omega \in B} P(\omega)$$

$$\sum_{n=1}^N P(A_n) = \sum_{n=1}^N \sum_{\omega \in A_n} P(\omega) = \sum_{\omega \in \Omega} k(\omega) \cdot P(\omega)$$

Since $k(\omega) \geq 1$ for all $\omega \in B$ and $k(\omega) = 0$ for all $\omega \not \in B$, we have:

$$\sum_{\omega \in \Omega} k(\omega) \cdot P(\omega) \ge \sum_{\omega \in B} P(\omega) = P(B)$$

Therefore,
$$P\left(\bigcup_{n=1}^{N}A_{n}\right)\leq\sum_{n=1}^{N}P(A_{n}).$$

If the events A_1,A_2,\ldots,A_N are disjoint, then for each $\omega\in B$, there is exactly one set A_n that contains ω , so $k(\omega)=1$ for all $\omega\in B$. In this case: $\sum_{\omega\in\Omega}k(\omega)\cdot P(\omega)=\sum_{\omega\in B}P(\omega)=P(B)$

Therefore, if the events are disjoint, equality holds: $P\left(\bigcup_{n=1}^N A_n\right) = \sum_{n=1}^N P(A_n)$.

Problem 2

Consider the stock price S_3 in Figure 2.3.1.

- (i) What is the distribution of S_3 under the risk-neutral probabilities $\tilde{p}=\frac{1}{2}, \tilde{q}=\frac{1}{2}$?
- (ii) Compute $\tilde{\mathbb{E}}[S_1]$, $\tilde{\mathbb{E}}[S_2]$, and $\tilde{\mathbb{E}}[S_3]$. What is the average rate of growth of the stock price under $\tilde{\mathbb{P}}$?
- (iii) Answer (i) and (ii) again under the actual probabilities $p=rac{2}{3},q=rac{1}{3}.$

Description of Figure 2.3.1: Figure 2.3.1 depicts a **three-period binomial model** representing the evolution of a stock price S_t across a sequence of coin tosses. Each time step corresponds to a fair coin toss (Heads or Tails), and the stock price evolves accordingly. The model begins at time t=0 with a stock price of:

•
$$S_0 = 4$$

Each outcome in the tree represents a possible path of coin flips up to time t=3. The paths and stock prices are defined as follows:

Time Step 1:

- $S_1(H) = 8$
- $S_1(T) = 2$

Time Step 2:

- $S_2(HH) = 16$
- $S_2(HT) = S_2(TH) = 4$
- $S_2(TT) = 1$

Time Step 3:

- $S_3(HHH) = 32$
- $S_3(HHT) = S_3(HTH) = S_3(THH) = 8$
- $S_3(HTT) = S_3(THT) = S_3(TTH) = 2$
- $S_3(TTT) = 0.5$

Solution:

(i) Under the risk-neutral probabilities $ilde{p}=rac{1}{2}, ilde{q}=rac{1}{2}$, the distribution of S_3 is:

•
$$P(S_3 = 32) = \tilde{p}^3 = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$ullet \ P(S_3=8) = ilde{p}^2 ilde{q} + ilde{p} ilde{q} ilde{p} + ilde{q} ilde{p}^2 = 3 ilde{p}^2 ilde{q} = 3 \Big(rac{1}{2}\Big)^2 \left(rac{1}{2}
ight) = rac{3}{8}$$

$$ullet P(S_3=2) = ilde p ilde q^2 + ilde q ilde p ilde q + ilde q^2 ilde p = 3 ilde p ilde q^2 = 3 \left(rac{1}{2}
ight) \left(rac{1}{2}
ight)^2 = rac{3}{8}$$

•
$$P(S_3 = 0.5) = \tilde{q}^3 = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

(ii) Computing the expected values under risk-neutral probabilities:

$$\begin{split} \tilde{\mathbb{E}}[S_1] &= \tilde{p} \cdot S_1(H) + \tilde{q} \cdot S_1(T) = \frac{1}{2} \cdot 8 + \frac{1}{2} \cdot 2 = 4 + 1 = 5 \\ \tilde{\mathbb{E}}[S_2] &= \tilde{p}^2 \cdot S_2(HH) + \tilde{p}\tilde{q} \cdot S_2(HT) + \tilde{q}\tilde{p} \cdot S_2(TH) + \tilde{q}^2 \cdot S_2(TT) \\ &= \frac{1}{4} \cdot 16 + \frac{1}{4} \cdot 4 + \frac{1}{4} \cdot 4 + \frac{1}{4} \cdot 1 = 4 + 1 + 1 + 0.25 = 6.25 \\ \tilde{\mathbb{E}}[S_3] &= \frac{1}{8} \cdot 32 + \frac{3}{8} \cdot 8 + \frac{3}{8} \cdot 2 + \frac{1}{8} \cdot 0.5 = 4 + 3 + 0.75 + 0.0625 = 7.8125 \end{split}$$

The average rate of growth under risk-neutral probabilities $\tilde{\mathbb{P}}$ is:

$$rac{ ilde{\mathbb{E}}[S_t]}{S_0} = rac{S_0\cdot(1+r)^t}{S_0} = (1+r)^t$$

For
$$t=1$$
: $\frac{\hat{\mathbb{E}}[S_1]}{S_0}=\frac{5}{4}=1.25=(1+r)^1$, so $r=0.25$ or 25% For $t=2$: $\frac{\hat{\mathbb{E}}[S_2]}{S_0}=\frac{6.25}{4}=1.5625=(1+r)^2=(1.25)^2$, confirming $r=0.25$ For $t=3$: $\frac{\hat{\mathbb{E}}[S_3]}{S_0}=\frac{7.8125}{4}=1.953125=(1+r)^3=(1.25)^3$, confirming $r=0.25$

Therefore, the average rate of growth under risk-neutral probabilities is 25% per period.

(iii) Under the actual probabilities $p=\frac{2}{3}, q=\frac{1}{3}$:

Distribution of S_3 :

•
$$P(S_3 = 32) = p^3 = \left(\frac{2}{3}\right)^3 = \frac{8}{27}$$

• $P(S_3 = 8) = 3p^2q = 3\left(\frac{2}{3}\right)^2\left(\frac{1}{3}\right) = 3 \cdot \frac{4}{9} \cdot \frac{1}{3} = \frac{4}{9}$
• $P(S_3 = 2) = 3pq^2 = 3\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^2 = 3 \cdot \frac{2}{3} \cdot \frac{1}{9} = \frac{2}{9}$
• $P(S_3 = 0.5) = q^3 = \left(\frac{1}{3}\right)^3 = \frac{1}{27}$

Expected values:

$$\mathbb{E}[S_1] = p \cdot S_1(H) + q \cdot S_1(T) = \frac{2}{3} \cdot 8 + \frac{1}{3} \cdot 2 = \frac{16}{3} + \frac{2}{3} = 6$$

$$\mathbb{E}[S_2] = p^2 \cdot S_2(HH) + pq \cdot S_2(HT) + qp \cdot S_2(TH) + q^2 \cdot S_2(TT)$$

$$= \frac{4}{9} \cdot 16 + \frac{2}{9} \cdot 4 + \frac{2}{9} \cdot 4 + \frac{1}{9} \cdot 1 = \frac{64}{9} + \frac{8}{9} + \frac{8}{9} + \frac{1}{9} = \frac{81}{9} = 9$$

$$\mathbb{E}[S_3] = \frac{8}{27} \cdot 32 + \frac{4}{9} \cdot 8 + \frac{2}{9} \cdot 2 + \frac{1}{27} \cdot 0.5$$

$$= \frac{256}{27} + \frac{32}{9} + \frac{4}{9} + \frac{0.5}{27} = \frac{256}{27} + \frac{96}{27} + \frac{12}{27} + \frac{0.5}{27} = \frac{364.5}{27} = 13.5$$

The average rate of growth under actual probabilities is: For t=1: $\frac{\mathbb{E}[S_1]}{S_0}=\frac{6}{4}=1.5=(1+r)^1$, so r=0.5 or 50%

For
$$t=2$$
: $rac{\mathbb{E}[S_2]}{S_0}=rac{9}{4}=2.25=(1+r)^2=(1.5)^2$, confirming $r=0.5$ For $t=3$: $rac{\mathbb{E}[S_3]}{S_0}=rac{13.5}{4}=3.375=(1+r)^3=(1.5)^3$, confirming $r=0.5$

Therefore, the average rate of growth under actual probabilities is 50% per period.

Problem 3

Show that a convex function of a martingale is a submartingale. In other words, let M_0,M_1,\ldots,M_N be a martingale and let φ be a convex function. Show that $\varphi(M_0),\varphi(M_1),\ldots,\varphi(M_N)$ is a submartingale.

To show that a convex function of a martingale is a submartingale, I need to prove that $\mathbb{E}[\varphi(M_{t+1})|\mathcal{F}_t] \geq \varphi(M_t)$ for all $t=0,1,\ldots,N-1$.

Let's first clarify that \mathcal{F}_t represents the filtration (information available) up to time t. A martingale M_t is adapted to this filtration, meaning M_t is \mathcal{F}_t -measurable.

Starting with the definition of a martingale, we know that:

$$\mathbb{E}[M_{t+1}|\mathcal{F}_t] = M_t$$

Since φ is a convex function, by Jensen's inequality, for any random variable X and σ -algebra \mathcal{G} :

$$\varphi(\mathbb{E}[X|\mathcal{G}]) \leq \mathbb{E}[\varphi(X)|\mathcal{G}]$$

Here, $\mathcal G$ represents any σ -algebra with respect to which we are taking the conditional expectation. In our specific application below, we will use $\mathcal G=\mathcal F_t$, which is the σ -algebra representing all information available up to time t.

Applying Jensen's inequality with $X=M_{t+1}$ and $\mathcal{G}=\mathcal{F}_t$:

$$\varphi(\mathbb{E}[M_{t+1}|\mathcal{F}_t]) \leq \mathbb{E}[\varphi(M_{t+1})|\mathcal{F}_t]$$

Since $\mathbb{E}[M_{t+1}|\mathcal{F}_t]=M_t$ from the martingale property, we have:

$$arphi(M_t) \leq \mathbb{E}[arphi(M_{t+1})|\mathcal{F}_t]$$

This is precisely the definition of a submartingale. Therefore, $\varphi(M_0), \varphi(M_1), \ldots, \varphi(M_N)$ is a submartingale.

Problem 4

Consider an N-period binomial model.

- (i) Let M_0, M_1, \ldots, M_N and M'_0, M'_1, \ldots, M'_N be martingales under the risk-neutral measure $\tilde{\mathbb{P}}$. Show that if $M_N = M'_N$ (for every possible outcome of the sequence of coin tosses), then, for each n between 0 and N, we have $M_n = M'_n$ (for every possible outcome of the sequence of coin tosses).
- (ii) Let V_N be the payoff at time N of some derivative security. This is a random variable that can depend on all N coin tosses. Define recursively $V_{N-1},V_{N-2},\ldots,V_0$ by the algorithm (1.2.16) of Chapter 1. Show that

$$rac{V_0}{(1+r)^0}, rac{V_1}{(1+r)^1}, \ldots, rac{V_{N-1}}{(1+r)^{N-1}}, rac{V_N}{(1+r)^N}$$

is a martingale under $\tilde{\mathbb{P}}$.

(iii) Using the risk-neutral pricing formula (2.4.11) of this chapter, define

$$V_n' = ilde{\mathbb{E}}_n\left[rac{V_N}{(1+r)^{N-n}}
ight], \quad n=0,1,\dots,N-1.$$

Show that

$$V_0', rac{V_1'}{(1+r)^1}, \ldots, rac{V_{N-1}'}{(1+r)^{N-1}}, rac{V_N'}{(1+r)^N}$$

is a martingale.

(iv) Conclude that $V_n = V_n'$ for every n (i.e., the algorithm (1.2.16) of Theorem 1.2.2 of Chapter 1 gives the same derivative security prices as the risk-neutral pricing formula (2.4.11) of Chapter 2).

Theorem 1.2.2 (Replication in the multiperiod binomial model) Consider an N-period binomial asset-pricing model, with 0 < d < 1 + r < u, and with $\tilde{p} = \frac{1+r-d}{u-d}, \quad \tilde{q} = \frac{u-1-r}{u-d} Description of \text{(1.2.16)} of Chapter 1: Let \text{V_n}$ bear and omvariable (aderivative security paying of fattime N) depending on the first N cointosses w_1 w_2 \ldots w_N . Define recursively backward in time the sequence of random variables \text{V_{N-1}}, \text{V_10ots}, \text{V_0by} $V_n(w_1w_2\dots w_n) = \frac{1}{1+r} [\tilde{p}V_{n+1}(w_1w_2\dots w_nH) + \tilde{q}V_{n+1}(w_1w_2\dots w_nT)],$

Solution:

(i) Let's prove that if $M_N=M_N'$ for every possible outcome, then $M_n=M_n'$ for all n between 0 and N.

Consider the martingales M_0, M_1, \ldots, M_N and M'_0, M'_1, \ldots, M'_N under the risk-neutral measure $\tilde{\mathbb{P}}$. We'll use backward induction to prove this.

By assumption, we have $M_N=M_N^\prime$ for all possible outcomes.

For the inductive step, assume that $M_{n+1}=M_{n+1}'$ for all possible outcomes at time n+1. We need to show that $M_n=M_n'$ for all possible outcomes at time n.

Since both M and M' are martingales under $\tilde{\mathbb{P}}$, we have:

$$ilde{\mathbb{E}}[M_{n+1}|\mathcal{F}_n]=M_n$$

$$ilde{\mathbb{E}}[M_{n+1}'|\mathcal{F}_n]=M_n'$$

By our inductive hypothesis, $M_{n+1}=M_{n+1}^{\prime}$, so:

$$ilde{\mathbb{E}}[M_{n+1}|\mathcal{F}_n] = ilde{\mathbb{E}}[M'_{n+1}|\mathcal{F}_n]$$

Therefore, $M_n=M_n'$ for all possible outcomes at time n.

By induction, we conclude that $M_n=M_n^\prime$ for all n between 0 and N and for all possible outcomes.

(ii) Let's define $M_n=rac{V_n}{(1+r)^n}$ for $n=0,1,\ldots,N.$ We need to show that M_n is a martingale under $ilde{\mathbb{P}}.$

From the recursive algorithm (1.2.16), we know that:

$$V_n = rac{1}{1+r} [ilde{p} V_{n+1}(H) + (1- ilde{p}) V_{n+1}(T)]$$

where $V_{n+1}(H)$ and $V_{n+1}(T)$ are the values at time n+1 if the coin toss at time n+1 is heads or tails, respectively, and \tilde{p} is the risk-neutral probability.

Now, let's compute $\tilde{\mathbb{E}}[M_{n+1}|\mathcal{F}_n]$:

$$ilde{\mathbb{E}}[M_{n+1}|\mathcal{F}_n] = ilde{\mathbb{E}}\left[rac{V_{n+1}}{(1+r)^{n+1}}|\mathcal{F}_n
ight] = rac{1}{(1+r)^{n+1}}[ilde{p}V_{n+1}(H) + (1- ilde{p})V_{n+1}(T)]$$

Using the recursive formula for V_n :

$$ilde{\mathbb{E}}[M_{n+1}|\mathcal{F}_n] = rac{1}{(1+r)^{n+1}} \cdot (1+r) \cdot V_n = rac{V_n}{(1+r)^n} = M_n$$

Therefore, M_n is a martingale under $\tilde{\mathbb{P}}$.

(iii) Let's define $M_n'=rac{V_n'}{(1+r)^n}$ for $n=0,1,\ldots,N$, where $V_N'=V_N$. We need to show that M_n' is a martingale under $\tilde{\mathbb{P}}$.

For n < N, we have:

$$V_n' = ilde{\mathbb{E}}_n \left[rac{V_N}{(1+r)^{N-n}}
ight]$$

Now, let's compute $\tilde{\mathbb{E}}[M'_{n+1}|\mathcal{F}_n]$:

$$ilde{\mathbb{E}}[M_{n+1}'|\mathcal{F}_n] = ilde{\mathbb{E}}\left[rac{V_{n+1}'}{(1+r)^{n+1}}|\mathcal{F}_n
ight] = ilde{\mathbb{E}}\left[rac{1}{(1+r)^{n+1}}\cdot ilde{\mathbb{E}}_{n+1}\left[rac{V_N}{(1+r)^{N-(n+1)}}
ight]|\mathcal{F}_n
ight]$$

Using the tower property of conditional expectation:

$$ilde{\mathbb{E}}[M_{n+1}'|\mathcal{F}_n] = rac{1}{(1+r)^{n+1}} \cdot ilde{\mathbb{E}}\left[rac{V_N}{(1+r)^{N-(n+1)}}|\mathcal{F}_n
ight] = rac{1}{(1+r)^n} \cdot ilde{\mathbb{E}}_n\left[rac{V_N}{(1+r)^{N-n}}
ight] = rac{V_n'}{(1+r)^n}$$

Therefore, M_n' is a martingale under $\tilde{\mathbb{P}}$.

(iv) From parts (ii) and (iii), we have shown that both $\frac{V_n}{(1+r)^n}$ and $\frac{V_n'}{(1+r)^n}$ are martingales under $\tilde{\mathbb{P}}$. Additionally, we know that $V_N=V_N'$ (the payoff at maturity).

Applying the result from part (i), since these are two martingales with the same terminal value, they must be equal at all times. Therefore, $V_n = V'_n$ for all n between 0 and N.

This confirms that the algorithm (1.2.16) of Theorem 1.2.2 of Chapter 1 gives the same derivative security prices as the risk-neutral pricing formula (2.4.11) of Chapter 2.

Problem 5

(Asian option). Consider an N-period binomial model. An Asian option has a payoff based on the average stock price, i.e.,

$$V_N = f\left(rac{1}{N+1}\sum_{n=0}^N S_n
ight)$$

where the function f is determined by the contractual details of the option.

- (i) Define $Y_n=\sum_{k=0}^n S_k$ and use the Independence Lemma 2.5.3 to show that the two-dimensional process (S_n,Y_n) , $n=0,1,\ldots,N$ is Markov.
- (ii) According to Theorem 2.5.8, the price V_n of the Asian option at time n is some function v_n of S_n and Y_n ; i.e.,

$$V_n=v_n(S_n,Y_n),\quad n=0,1,\ldots,N$$

Give a formula for $v_N(s,y)$, and provide an algorithm for computing $v_n(s,y)$ in terms of v_{n+1} .

Lemma 2.5.3 (Independence Lemma)

In the N-period binomial asset pricing model, let n be an integer between 0 and N. Suppose the random variables X^1,\ldots,X^K depend only on coin tosses 1 through n and the random variables Y^1,\ldots,Y^L depend only on coin tosses n+1 through N. (The superscripts $1,\ldots,K$ on X and $1,\ldots,L$ on Y are superscripts, not exponents.) Let $f(x^1,\ldots,x^K,y^1,\ldots,y^L)$ be a function of dummy variables x^1,\ldots,x^K and y^1,\ldots,y^L , and define

$$g(x^1, \dots, x^K) = \mathbb{E}[f(x^1, \dots, x^K, Y^1, \dots, Y^L)].$$
 (2.5.3)

Then

$$\mathbb{E}_n[f(X^1, \dots, X^K, Y^1, \dots, Y^L)] = g(X^1, \dots, X^K). \tag{2.5.4}$$

For the following discussion and proof of the lemma, we assume that $K=L=1. \ \,$ Then (2.5.3) takes the form

$$g(x) = \mathbb{E}[f(x, Y)] \tag{2.5.3'}$$

and (2.5.4) takes the form

$$\mathbb{E}_n[f(X,Y)] = g(X), \tag{2.5.4}$$

where the random variable X is assumed to depend only on the first n coin tosses, and the random variable Y depends only on coin tosses n+1 through N.

Theorem 2.5.8

Let X_0, X_1, \ldots, X_N be a Markov process under the risk-neutral probability measure \tilde{P} in the binomial model. Let $v_N(x)$ be a function of the dummy variable x, and consider a derivative security whose payoff at time N is $v_N(X_N)$. Then, for each n between 0 and N, the price V_n of this derivative security is some function v_n of X_n , i.e.,

$$V_n = v_n(X_n), \quad n = 0, 1, \dots, N$$

There is a recursive algorithm for computing u_n whose exact formula depends on the underlying Markov process X_0, X_1, \ldots, X_N . Analogous results hold if the underlying Markov process is multidimensional.

(i) To show that (S_n, Y_n) is a Markov process, we need to demonstrate that the future values depend only on the current state, not on the past history.

Let's consider the transition from time n to time n+1. We know that:

- ullet $S_{n+1}=S_n\cdot Z_{n+1}$, where Z_{n+1} denotes either u or d depending on the (n+1)-th coin toss
- $Y_{n+1} = Y_n + S_{n+1} = Y_n + S_n \cdot Z_{n+1}$

Since Z_{n+1} depends only on the (n+1)-th coin toss, and both S_{n+1} and Y_{n+1} are determined by S_n , Y_n , and Z_{n+1} , we can apply the Independence Lemma 2.5.3.

Let $X^1=S_n$ and $X^2=Y_n$, which depend only on the first n coin tosses. Let $Y^1=Z_{n+1}$, which depends only on the (n+1)-th coin toss.

By the Independence Lemma, the conditional expectation of any function of (S_{n+1}, Y_{n+1}) given the history up to time n depends only on the current values (S_n, Y_n) . This confirms that (S_n, Y_n) is a Markov process.

(ii) At maturity, the Asian option payoff is:

$$V_N = f\left(rac{1}{N+1}\sum_{n=0}^N S_n
ight) = f\left(rac{Y_N}{N+1}
ight)$$

Therefore, the function $v_N(s,y)$ is given by:

$$v_N(s,y) = f\left(rac{y}{N+1}
ight)$$

For n < N, we can compute $v_n(s,y)$ recursively using the risk-neutral pricing formula:

$$v_n(s,y) = rac{1}{1+r} ilde{\mathbb{E}}_n[v_{n+1}(S_{n+1},Y_{n+1})]$$

Since (S_n,Y_n) is Markov, and under the risk-neutral measure $\tilde{\mathbb{P}}$, S_{n+1} equals uS_n with probability \tilde{p} and dS_n with probability $1-\tilde{p}$, we have:

$$v_n(s,y) = rac{1}{1+r} [ilde{p} \cdot v_{n+1}(us,y+us) + (1- ilde{p}) \cdot v_{n+1}(ds,y+ds)]$$

where $ilde{p}=rac{1+r-d}{u-d}$ is the risk-neutral probability.

This recursive formula allows us to compute the option price at any time n by working backward from maturity.

Problem 6

Consider a N-period binomial model for a European call option with the initial stock price S_0 , up factor u, down factor d, interest rate r, and strike price K. Implement the option price in two ways.

- 1. Direct formula using the binomial distribution, as we did in the class.
- 2. Recursively calculate the price backwards.

Use your code to calculate the option price for $S_0=4$, u=2, $d=rac{1}{2}$, $r=rac{1}{4}$, K=5, and N=10

```
In [9]: import numpy as np
        from scipy.stats import binom
        S0 = 4
        u = 2
        d = 1/2
        r = 1/4
        K = 5
        N = 10
        p_{tilde} = (1 + r - d) / (u - d) # risk-neutral p
        # Method 1: Direct formula using binomial distribution
        def option_price_direct(S0, u, d, r, K, N):
            j_values = np.arange(N + 1)
            price = np.sum(np.maximum(50 * (u ** j_values) * (d ** (N - j_values)) - K, 0) *
            return price
        # Method 2: Recursive calculation (backward induction)
        def option_price_recursive(S0, u, d, r, K, N):
            # Define a helper function for the recursive calculation
            def calculate_value(s, n):
                # Base case: at maturity
                if n == N:
                    return max(s - K, 0)
                # Recursive case: calculate expected value of future payoffs
                up value = calculate value(s * u, n + 1)
                down_value = calculate_value(s * d, n + 1)
                # Apply risk-neutral pricing formula
                return (p_tilde * up_value + (1 - p_tilde) * down_value) / (1 + r)
            # Start the recursion from initial state
            return calculate_value(S0, 0)
        price_direct = option_price_direct(S0, u, d, r, K, N)
        price_recursive = option_price_recursive(S0, u, d, r, K, N)
        print(f"Option price using direct formula: {price_direct:.6f}")
        print(f"Option price using recursive calculation: {price_recursive:.6f}")
        # Verify the implementations are correct by checking if they give the same result
        print(f"Are the results equal? {np.isclose(price_direct, price_recursive)}")
```

Option price using direct formula: 3.666451 Option price using recursive calculation: 3.666451 Are the results equal? True