Four Common Problems with Recommenders

And How to Address Them

The **Problems**

1. Wrong Metric

2. Cold Start Problem

3. Difficulty Utilizing All Useful Data

4. Speed and Stability

Mean Squared Error Not Right Metric If We Recommend Small Subset of Items

	True	Model A Pred	Model B Pred
Item 1	5	1	4
Item 2	3	3	2
Item 3	3	3	2
Item 4	3	3	2
Item 5	3	3	2
Item 6	1	5	2

Metrics Solutions

- Alternative metrics
 - Average of Top N Recommendations
 - Objective function asymmetries

- SGD / Optimization
 - Differentiable and convex objective function

• Approximate true objective with something optimizable

 $\sum r_i e_i$

Cold Start Problem

Recommendations for new people or items are typically bad

Cold Starts
Problems in
Various
Recommender
Systems

Item-Item and User-User

Moderately Affected Latent Factors (SVD-based)

Least Affected

- Observable factors
- Popularity

Address Cold-Starts Without Sacrificing the Rest of Your Model

- Master model can be weighted average or switching model
- Commonly solved with UI/UX rather than data science

What Predictive
Data Do We
Have That SVD
Isn't Using

What Predictive Data Do We Have That SVD Isn't Using

 Average Ratings for Each User or Item (biases)

Known Item Characteristics

Known User Characteristics

Implicit Feedback

Adding Item and/or User Biases

 Subtract bias before factorization, add back when predicting

Preserve sparsity

Item bias more important than user bias

Integrating Known Item Characteristics

SVD Feature

Item Matrix

	Latent 1	Latent 2	Latent 3	Observed 1	Observed 2
Item A	?	?	?	1	3
Item B	?	?	?	0	0
Item C	?	?	?	1	5

User Taste Matrix

	Latent 1	Latent 2	Latent 3	Observed 1	Observed 2
Al	?	?	?	?	?
Betty	?	?	?	?	?
Carl	?	?	?	?	?

Known User Characteristics

An Idea That Hasn't Caught On

Item Matrix

	Latent 1	Latent 2	Latent 3	Observed 1	Observed 2
Item A	?	?	?	?	?
Item B	?	?	?	?	?
Item C	?	?	?	?	?

User Taste Matrix

	Latent 1	Latent 2	Latent 3	Observed 1	Observed 2
Al	?	?	?	1	5
Betty	?	?	?	0	1
Carl	?	?	?	1	0

Implicit Feedback

SVD++

 The items a user has chosen to purchase/rate tells us about their tastes.

SVD

$$\hat{r}_{ui} = b_{ui} + p_u^T q_i$$

$$\hat{r}_{ui} = b_{ui} + q_i^T \left(p_u + |\mathrm{N}(u)|^{-rac{1}{2}} \sum_{j \in \mathrm{N}(u)} y_j
ight)$$

Execution Speed Tips

- Optimize from near the optimum
- Good practice in general

Vectorize Operations

- Language dependent
- Important in Python

Switching Models

Skip unnecessary work

Work in Batches

 Benefits from understanding usage patterns **Another Take on Speed / Stability**

Spark and GraphLab

Simple API

- DataFrame objects
- Familiar modeling API

Scalable

- Built for distributed computing
- Fast

Tested

- Reliability
- Documentation

```
from pyspark.mllib.recommendation import ALS, MatrixFactorizationModel, Rating
# Load and parse the data
data = sc.textFile("data/mllib/als/test.data")
ratings = data.map(lambda l: l.split(',')).map(lambda l: Rating(int([0]), int([1]), float([2])))
# Build the recommendation model using Alternating Least Squares
rank = 10
numIterations = 20
model = ALS.train(ratings, rank, numIterations)
# Evaluate the model on training data
testdata = ratings.map(lambda p: (p[0], p[1]))
predictions = model.predictAll(testdata).map(lambda r: ((r[0], r[1]), r[2]))
ratesAndPreds = ratings.map(lambda r: ((r[0], r[1]), r[2])).join(predictions)
MSE = ratesAndPreds.map(lambda r: (r[1][0] - r[1][1])**2).reduce(lambda x, y: x + y) / ratesAndPreds.count()
print("Mean Squared Error = " + str(MSE))
# Save and load model
model.save(sc, "myModelPath")
sameModel = MatrixFactorizationModel.load(sc, "myModelPath")
```

Should You Use Graphlab or Spark

Graphlab

- Matrix factorization, Item-Item and Popularity
- Appropriate for range of scales

MILib

- Requires Spark
- ALS solver at scale

Your Class

- Flexibility
- Potential for greater predictive accuracy

Framework Conclusions

Fast, reliable, well documented

Harder to extend

Only part of what you need