Vektory - lineárna závislosť, lineárna nezávislosť

Vypracovala: PaedDr. Elena Šimová

Vektor môžeme definovať ako posunutie. Všetky orientované úsečky, ktoré majú ten istý smer a tú istú veľkosť, znázorňujú ten istý vektor.

Súradnice vektora: Ak u = AB, A [a₁, a₂, a₃], B[b₁, b₂, b₃] súradnicami vektora u v danej sústave súradníc nazveme usporiadanú trojicu čísel b₁ - a₁, b₂ - a₂, b₃ - a₃ . (v priestore)

$$u = [b_1 - a_1, b_2 - a_2, b_3 - a_3]$$

DEF: Daných je n ľubovoľných vektorov v_1 , v_2 ,, v_n . Každý vektor $v = a_1 \cdot v_1 + a_2 \cdot v_2 + \dots + a_n \cdot v_n$, kde a_1 , a_2 ,, a_n sú reálne čísla, nazývame lineárnou kombináciou vektorov v_1 , v_2 ,, v_n .

Pozn.: Pomocou pojmu lineárna kombinácia vektorov sa definujú pojmy lineárna závislosť a lineárna nezávislosť vektorov.

Napr. Ak $z = k \cdot a + l \cdot b$, kde k, $l \in R$, hovoríme, že vektor z je lineárnou kombináciou vektorov a, b.

DEF: Vektory **u**, **v**, **w**, ...,**z** sa nazývajú **lineárne závislé** práve vtedy, keď aspoň jeden z nich je lineárnou kombináciou ostatných. Hovoríme tiež, že sústava vektorov **u**, **v**, **w**, ...,**z** je lineárne závislá.

Pozn.: Ak je jeden z vektorov nulový, potom sú vektory sústavy lineárne závislé, pretože nulový vektor môžeme pokladať za lineárnu kombináciu ľubovoľných vektorov.

Pozn.: Množina vektorov, ktorá je lineárne závislá, ostane lineárne závislá aj po pridaní ďalšieho vektora.

Veta 1: Vektory u, v, w,..., z sú lineárne závislé práve vtedy, keď rovnica $k_1.u + k_2.v + k_3.w + + k_n.z = 0$ platí pre čísla k_1 , k_2 , k_3 , k_n , z ktorých aspoň jedno číslo je rôzne od nuly.

Veta 2: Vektory u, v, w,..., z sú lineárne nezávislé práve vtedy, keď rovnica $k_1 \cdot u + k_2 \cdot v + k_3 \cdot w + \dots + k_n \cdot z = 0$ je splnená len pre $k_1 = k_2 = k_3 = \dots = k_n = 0$.

Pozn.: Vektory \mathbf{u} a \mathbf{v} sú v rovine lineárne závislé práve vtedy , keď existujú také čísla \mathbf{k}_1 , \mathbf{k}_2 , že aspoň jedno z nich je rôzne od nuly a zároveň platí $\mathbf{k}_1 \cdot \mathbf{u} + \mathbf{k}_2 \cdot \mathbf{v} = \mathbf{0}$.

Po matematických úpravách môžeme dostať vzťahy:

$$v = -k_1 / k_2 \cdot u = t \cdot u$$
, kde $t = -k_1 / k_2$

Z toho môžeme dedukovať, že vektory, u, v sú lineárne závislé v rovine práve vtedy, keď jeden z nich je číselným násobkom druhého, alebo keď ležia na jednej priamke, čiže sú kolineárne.

DEF: **Kolineárnosť bodov**: Body A, B, C, nazveme kolineárnymi, ak ležia na jednej priamke. **Platí**: A, B, C sú kolineárne <=> k \in R, **AC** = k . **AB**

S lineárnou závislosťou resp. nezávislosťou sa stretávame v dvoch typoch príkladov.

- 1. ak máme iba zistiť závislosť / nezávislosť daných vektorov
- 2. ak máme zistiť hodnoty číselných koeficientov tak, aby dané vektory spĺňali podmienku lineárnej závislosti

Použitá literatúra:

RNDr. Marta Rácová – Matematika – prehľad stredoškolského učiva pre maturantov a uchádzačov o štúdium na vysokých školách

Zdeněk Vošický – krok za krokom k maturite - MATEMATIKA vlastné poznámky