

TAREA Nº2 PROGRAMACIÓN EN C: GRAFOS.

I. OBJETIVOS.

El presente enunciado tiene como objetivo: Diseñar e implementar operaciones sobre grafos a través de su representación matricial.

II. INTERFAZ.

El programa deberá solicitar al usuario el nombre de un archivo de texto que debe contener la información del grafo que se desea procesar. El formato del archivo es:

númeroNodos númeroArcos tipoGrafo nodo nodo costo nodo nodo costo nodo nodo costo ...

Donde el tipoGrafo corresponderá a un 1 si se trata de un **grafo dirigido** y a un 2 si se trata de un **grafo no dirigido**. Las siguientes líneas contendrán la información de cada arco del grafo, indicando para aquello nodo de inicio del arco, no de llegada del arco, y costo del arco. En la figura 1 puedes observar un ejemplo de este formato.

Las funcionalidades que debes implementar sobre el grafo recibido dependerán del tipo de grafo que corresponde (algunas coinciden en ambos tipos):

II.1 Funcionalidades solicitadas para un grafo no dirigido:

- Imprimir la matriz de costos del grafo.
- Imprimir la matriz de su grafo complemento.
- Imprimir el arco de mayor costo y su costo.
- Imprimir los adyacentes y grado para cada nodo del grafo.
- Imprimir si se trata de un grafo conexo o desconexo. Si es desconexo debe indicar además el número de componentes conexas.
- Imprimir si se trata de un grafo completo o no.
- Imprimir si se trata de un grafo k-regular o no. Si es k-regular debes imprimir el valor de k.
- Imprimir el recorrido en profundidad desde cada nodo.
- Imprimir el recorrido en amplitud desde cada nodo.
- Imprimir los caminos de costo mínimo desde cada nodo (usando Dijkstra) a todos los otros. Si no existe un camino el programa debe imprimir un mensaje.

II.2 Funcionalidades solicitadas para un grafo dirigido:

- Imprimir la matriz de costos del grafo.
- Imprimir el arco de mayor costo y su costo.
- Imprimir los sucesores y grado de salida para cada nodo del grafo.
- Imprimir los antecesores y grado de entrada para cada nodo del grafo.
- Imprimir el recorrido en profundidad desde cada nodo.
- Imprimir el recorrido en amplitud desde cada nodo.
- Imprimir los caminos de costo mínimo desde cada nodo (usando Dijkstra) a todos los otros. Si no existe un camino el programa debe imprimir un mensaje.

Figura 1: Ejemplos del formato del archivo de entrada con el dibujo del grafo asociado. En (a) aparece un grafo dirigido, y en (b) se muestra cómo se debe almacenar en un archivo de texto. En (c) podrás observar un grafo no dirigido y en (d) su correcto almacenamiento en un archivo de texto.

III. LIBRERÍA DE APOYO Y CÓDIGO FUENTE DE PARTIDA.

Para apoyarte en el desarrollo de esta tarea se te entregarán 2 archivos: Un código fuente para que inicies tu tarea (llamado "código base.c") que ya posee la solicitud del nombre del archivo y su lectura y muestra por pantalla la matriz del grafo, y una librería llamada "funciones.h" que posee las funciones que se describen a continuación:

- creaArregloBool: retorna un arreglo de n de booleanos, inicializado en falsos.
- creaArreglo: retorna un arreglo de n de enteros, inicializado en 0s.
- creaMatriz: retorna una matriz cuadrada de nxn de enteros, inicializada en Os.
- imprimeMatrizGrafo: imprime por pantalla la matriz "Grafo" de nxn enteros, que recibe como parámetros.
- Profundidad: Imprime por pantalla el recorrido en profundidad desde un nodo a través de un grafo, ambos recibidos como parámetros.
- Amplitud: Imprime por pantalla el recorrido en profundidad desde un nodo a través de un grafo, ambos recibidos como parámetros.

- Dijkstra: Imprime por pantalla todos los caminos mínimos desde un nodo v0 a través de un grafo recibidos como parámetros.

También existen otras funciones y definiciones en la librería, que tu profesor de taller te debe explicar. La idea es que simplemente aprendas a utilizar las funciones mencionadas a tu favor para desarrollar esta tarea.

IV. ACTIVIDADES DE LOS TALLERES Y AUTÓNOMO.

En la **primera clase de taller** asociado a esta tarea desarrollarás junto a tu profesor las siguientes funcionalidades:

- Imprimir el arco de mayor costo y su costo.
- Imprimir los adyacentes y grado para cada nodo del grafo.
- Imprimir el recorrido en profundidad desde cada nodo.

En la **segunda clase de taller** asociado a esta tarea desarrollarás junto a tu profesor las siguientes funcionalidades:

- Imprimir si se trata de un grafo k-regular o no. Si es k-regular debes imprimir el valor de k.
- Imprimir si se trata de un grafo conexo o desconexo. Si es desconexo debe indicar además el número de componentes conexas.
- Imprimir los caminos de costo mínimo desde cada nodo (usando Dijkstra) a todos los otros. Si no existe un camino el programa debe imprimir un mensaje.

Autoestudio:

Para tu autoestudio deberás desarrollar el resto de las funciones que no se realicen en taller. Es decir:

- Imprimir el recorrido en amplitud desde cada nodo.
- Generar e imprimir el grafo complemento.
- Imprimir si se trata de un grafo completo o no
- Imprimir los sucesores y grado de salida para cada nodo del grafo.
- Imprimir los antecesores y grado de entrada para cada nodo del grafo.
- Imprimir el recorrido en amplitud desde cada nodo.

Recuerda contactar a tu profesor de taller por cualquier duda que tengas en este proceso.

IV. SOBRE BUENAS PRÁCTICAS DE PROGRAMACIÓN.

- 1. Debes usar identificadores representativos para tus constantes, variables, parámetros de entrada y funciones.
- 2. Las variables locales a cada función **debes** definirlas al **principio** de la función. Puedes darle valores iniciales al momento de definirlas (esto se llama "inializarlas").
- 3. Tu código debe estar correctamente *indentado* (uso de sangrías para cada sub-bloque de instrucciones), esto incluye el correcto alineamiento de las llaves ("{" y "}") que delimitan tales bloques.
- 4. Tu código no puede presentar más de 1 línea en blanco.
- 5. Tu código no puede poseer instrucciones "basura".

6. Debes comentar cada una de las funciones que definas como se indicó en la tarea 0.

IV. SOBRE LA EVALUACIÓN.

En el taller que **corresponda la evaluación de esta tarea** (tercer taller luego de iniciada la Tarea N°2) se pedirá que escribas en **papel** solo una función que realice alguna tarea sobre el arreglo que aprendiste a manejar en los talleres previos.