GLA University, Mathura

First- Mid Term Examination 2012-13

Course: - B.Tech

Subject: - Mathematic -II (AHM-102)

Time:- 1 Hrs. 30 Minutes

I-Year, II-Sem. Uni. Roll No:-Total Marks:- 20

Notes:-

i) Attempt ALL groups.

- ALL questions of group A are compulsory. Attempt ANY TWO questions from Group B and ANY TWO questions from Group C.
- 3) All questions of a group should be answered at one place.
- Answer should be brief and to-the-point.
- 5) Any missing or wrong data may be assumed suitably giving proper justification.

Section -A (0.5x10 = 5marks)

Q.1 In spherical polar coordinate dxdydz is replaced by

 $*r^2 \sin \phi \, dr \, d\theta \, d\phi$ $*r^2 \sin \theta \, dr \, d\theta \, d\phi$ $*r^2 \sin 2\theta \, dr \, d\theta \, d\phi$ $*r^2 \sin^2 \theta \, dr \, d\theta \, d\phi$

Q.2 The value of $\Gamma\begin{pmatrix} 1\\4 \end{pmatrix}\Gamma\begin{pmatrix} 3\\4 \end{pmatrix}$ is

 $*2\pi$

* π√2

* $\sqrt{2\pi}$

* 77

Q.3 Integral $\int_{0}^{2\pi} \sin^{2} nx \, dx$ is equal to

* 27

* $\pi\sqrt{2}$

 $\sqrt{2\pi}$

7

Q.4 The value of $\iint e^x dv dx$ is

* -

* 0

* 1

2

Q.5 The value of $\Gamma\left(-\frac{1}{2}\right)$ is

* \12

* - \\27

 $* - 2\sqrt{\pi}$

* \\ \(\pi \)

Q.6 For $\iint_{0.0}^{\infty} f(x, y) dxdy$ the change of order of integration is

 $* \iint_{0}^{\infty} f(x,y) dx dy * \iint_{0}^{\infty} f(x,y) dy dx * \iint_{0}^{\infty} f(x,y) dy dx$

None of these

- Q.7 The value of $\int_0^\infty e^{-(x)^{-n}} dy$ is

 - $*\Gamma(m)$ $*\Gamma(m+1)$ $*m\Gamma(m)$
- *None of these
- Q.8 The transformation x + y = u, y = uv transforms the area element dy dx into J du dv, where J is equal to

* None of these

- Q.9 Integral $\int_{0}^{\infty} e^{-x} x^{11} dx$
 - * Γ(11) * Γ(12) * Γ(10)

 $*\Gamma(n)$

- Q.10 $\int_{0}^{\infty} \log \frac{1}{y} dx$ is equal to
 - * $\Gamma(p-1)$ * $\Gamma(p+1)$

- * none of these

Section -B (2.5x2 = 5marks)

- Q.1 Change into polar coordinate and evaluate $\int \int v^2(x^2 + y^2)dy dx$
- Q.2 Prove that $\beta(n,3) = \frac{1}{3}$, find n, where n is a positive integer.
- Q.3 Evaluate $\iiint (x-2y+z) dxdydz$ where $0 \le x \le 1$, $0 \le y \le x^2$, $0 \le z \le x+y$

Section -C (5x2 = 10 marks)

- Q.1 Change the order of the integration and evaluate $\int_{0}^{2} \int_{0}^{1} \frac{x^{3}}{\sqrt{x^{4}-4v^{2}}} dx dy$
- Q.2 Find the Fourier series representing $f(x) = e^{-x}$ in the interval $0 < x < 2\pi$.
- Q.3 Evaluate $\iint x^{t-1} y^{m-1} z^{m-1} dx dy dz$ integrated over the region in the first octant below the surface $\left(\frac{x}{a}\right)'' + \left(\frac{y}{b}\right)'' + \left(\frac{z}{a}\right)' = 1$.