AuAu2010 (pp 2009) data QA

May, 2, 2012 Alán Dávila

Data Cuts

AuAu 200 GeV Run 10:

Inline triggers: 260 504

,260 514

,260 524

(vpd-mb + Tower
$$E_T > 4.3 \text{ GeV}$$
)

|zVertex| < 30 cm $|zV_{TPC} - zV_{VPD}|$ < 6 cm

RefMult > 266 (0-20 %) 118 < RefMult <= 266 (20-40%)

Had Frac Corr = 1.0 (0.5) Run 11042049 excluded Pile Up corrected (global vs primary cut)

pp 200 GeV Run 9:

Inline triggers: 240 530 (Tower $E_T > 6$ GeV)

240 540 (Tower $E_T > 4.3 \text{ GeV}$)

 $240\ 570\ (2.6 < E_T < 4.3\ GeV)$

|zVertex| < 30 cm

 $|zV_{TPC} - zV_{VPD}| < 6$ cm

Had Frac Corr = 1.0

Trigger Definition

Offline trigger: Jet $P_T = 8 - 20 \text{ GeV/c}$

Jet must contain a tower of $E_T > 5$ GeV

JFA

R = 0.4

Anti-Kt

 P_T cut > 3.0 GeV (/c) on towers (tracks)

Accepted Events QA

A event is accepted if it passes the cuts and a Trigger jet (defined before) is found!

Per Trigger zVertex distribution

Per Event zVertex distribution

- ➤pp zVertex distribution shifted to negative values.
- ➤ The jet-triggered events are less affected.

Accepted Events QA

Low pt cut - > more particles in jet

Similar number of particles distributions

Similar jet area distributions (except higher centrality -> higher +'ve fluctuations)

R = 0.4, area circle = 0.5026

Accepted Events QA

Towers, normalized by number of Jet triggers

Tracks

Jet Triggered central AuAu Events

RefMult > 266 (0-20 %), RFF

Jet Triggered central AuAu Events

118 < RefMult <= 266 (20-40%), RFF

Jet Triggered pp Events

pp, RFF

Jet Trigger Pt distributions

Offline trigger: Jet $P_T = 8 - 20 \text{ GeV/c}$ Jet must contain a tower $E_T > 5 \text{ GeV}$

Low Pt cut -> more bias toward hard jets (5 + 2.5 < 8 required for my jet cut)
Peripheral > Central: more high towers per event in peripheral (slide 14)
Is it a surface bias (of the collision)? or another trigger efficiency that I am not thinking about?

Jet Trigger Pt distributions

Offline trigger: 8 – 20 GeV/c Jet. Jet must contain a tower of at least 5 GeV R = 0.4 Anti-Kt Pt_cut > 3.0 GeV (/c) on towers (tracks)

Better agreement if normalized to 1 (ratios at slide 13)
This is the shape I have to focus on since my ratios are calculated as "per jet trigger"

Hadronic correction fraction and B field effect

20% most central

20 - 40 % most central

FF / RFF

HadCorr = 1.0 /

HadCorr = 0.5

Jet Trigger Pt distributions

Offline trigger: 8 – 20 GeV/c Jet. Jet must contain a tower of at least 5 GeV

How does the jet trigger bias the event track and tower distributions?

Jet triggered events' tower distributions (E_T)

How does the jet trigger bias the event track and tower distributions?

Jet triggered events' track distributions (P_T)

Conclusions

Unexplained shift on z Vertex distribution in pp

Jet's area and Jet's number of particles distributions are similar in central and peripheral AuAu, not in pp (except at tail)

AuAu data: Higher multiplicity at large eta in tower hits, even after I applied my Hot towers removal...

Peripheral AuAu has higher per event high P_T jets. Collision surface bias or detector trigger efficiency effect?

hadronic corrections of high tower choice -> 2.5 - 5 % change in jet P_T spectra.

FF vs RFF -> 2.5 - 10 % change in jet P_T spectra

Peripheral vs central trigger jet P_T spectra: 10-20% difference

pp vs central trigger jet P_T spectra: 20-40% difference

Tracks P_{τ} dist looks free of trigger bias blow 3.0 GeV/c