

TB-Bench: Training and Testing Multi-Modal Al for Understanding Spatio-Temporal Traffic Behaviors from Dashcam Images/Videos

Lane relative to ego-car (EGO-LANE)

Question: How would you describe the lane

position of Entity #1? Options: front lane, front

left lane, front right lane, or oncoming traffic lane.

Korawat Charoenpitaks¹, Van-Quang Nguyen², Masanori Suganuma¹, Kentaro Arai³, Seiji Totsuka³, Hiroshi Ino³, Takayuki Okatani¹, ² ¹Tohoku University ²RIKEN AIP ³DENSO Corporation

Motivation & Tasks

- MLLMs in the autonomous driving domain struggle with spatiotemporal understanding, lacking traffic-specific data and dedicated benchmarks.
- Existing benchmarks focus on static spatial tasks (i.e., object detection) or single-image evaluations, and thus fail to capture temporal aspects of traffic behavior.
- Contributions:
 - Closing the dataset gap: Create eight spatiotemporal tasks covering critical traffic behaviors* and provide two training sets (TB-100k and TB-250k) and the TB-Bench benchmark.
 - Findings: Off-the-shelf proprietary models exhibit poor spatiotemporal performance; finetuning substantially improves results.
- Cross-dataset transfer: Co-training with our training set boosts other performance.

Statistics of TB-Bench, TB-100k, and TB-250K.

Source datasets: K (KITTI), O (ONCE), Arv2 (Argoverse2).

[Arv2]/8 [Arv2]/8

[Arv2]/8

Spatial Information

Relative Distance

Spatial Reasoning

Orientation Reasoning

Object Behavior:

Other Lane to Ego Other Lane Changing

Other Turning

Ego Behavior:

Ego Traverse Distance

Relative Distance (RD) Question: How many meters away is Entity #2 from Entity #1?

of Entity #1 relative to Entity #2?

meters away from Entity #1.

Other lane change (OBJ-LANE)

Question: How would you describe **Question:** How would you describe #1? Please explain, focusing on the Please explain, focusing on the vehicle's lane change maneuver.

performs a right lane change.

Spatial Reasoning (SR) **Question:** What is the spatial position **Question:** What is the orientation of

Answer: Entity #2 is situated **15.53 Answer:** Entity #1 is positioned at the **back right** relative to Entity #2.

Other object turning (OBJ-TURN)

the driving scene involving Entity the driving scene involving Entity #1? driving scene involving our car? Please vehicle's turning maneuver.

Answer: Entity #1 executes a rightturn maneuver, smoothly navigating the vehicle in a clockwise direction.

Orientation Reasoning (SR)

Entity #2 relative to Entity #1, similar, opposite or perpendicular?

Answer: Entity #2 is oriented in a direction that is diametrically opposed to the orientation of Entity #1.

Ego-vehicle turning (EGO-TURN)

Question: How would you describe the

explain, focusing on our car's turning

Answer: Our car executed a precise

navigating the corner with adept control.

right-turn maneuver, smoothly

maneuver.

Ego-vehicle traverse distance (EGO-TRA)

designated for oncoming traffic.

Question: How far has our car driven and what kind of steering maneuver did it perform In the current scene?

Answer: Entity #1 is positioned in the lane

Answer: The car has driven 11.97 meters with a straight steering maneuver.

Answer: Entity #1 smoothly

Results on TR-Rench

Results on 16-bench									
Model	RD	SR	OR	EGO-LANE	OBJ-LANE	OBJ-TURN	EGO-TURN	EGO-TRA	Avg
Zero-shot: Bunny- v1.1-4B	24.4	20.4	19.6	28.4	16.0	20.0	34.4	0.0	20.4
Zero-shot: Mini-InternVL2-1B-DriveLM	0.0	31.2	20.0	28.4	24.8	47.2	41.6	0.0	24.2 More than
Zero-shot : GPT-40-2024-08-06	8.4	32.0	40.8	54.4	39.6	43.2	40.4	16.0	34.4 50%
Fine-tuned: Ours with TB-100k	80.4	74.8	88.8	93.6	65.2	76.4	80.0	60.4	77.5
Fine-tuned: Ours with TB-250k	91.2	83.2	94.8	99.6	69.6	80.4	82.8	78.8	85.1

Cross-dataset results

Metric	Standard training (only BDD-X)	With co-training (Sampling: BDD-X=20, TB-100k=1)
Speed RMSE↓	1.40	1.38
Speed A _{0·1} ↑	26.1	26.3
Speed A _{0.5} ↑	55.7	57.6
Turning RMSE↓	11.2	11.3
Turning A _{0·1} ↑	44.2	44.5
Turning A _{0.5} ↑	62.2	63.7

*Based on Pre-crash Scenarios typology from the National Automotive Sampling System (NASS)