Some Network Basics with R

Nick Switanek

Northwestern University

Chicago R User Group 2012.10.03

Nick Switanek

Visiting Assistant Professor at Northwestern U

Kellogg School of Management

NU Institute for Complex Systems

Evolution & flow of information over networks

- 1. Science of science
- 2. Financial market microstructure

Dots and Lines

Vertices

Substrate, receptacle, something w memory

Edges

Conduit, pathway, pipe, tie, relationship

Vertices

Edges

Science

Scholars

Collaboration

Scholarly teams

Apprenticeship

Departments

Competition

Articles

Similarity

NSF, funding agencies

Financial resources

Finance

Traders

Communication

Securities, Companies

Proximity

News

Trades (Long/Short)

Raw Data

```
> IM_raw <- read.csv('IMs.txt',
header = FALSE,
stringsAsFactors = FALSE)
```

```
465181,77622D63-C579-4685-884F-30AD47404A64,trader,{05b1e80a-c9d5-4053-b073-aae299fbfcc3},trader,2007-01-05 17:04:57,see what i'm dealing with,TRITON,1,0,0,2
```

```
465183,F73D0ADD-2E22-40BD-B735-7CE159D22600,trader,,trader,2007-01-05 17:05:04,dont know,TRITON,0,0,0,1 465184,F73D0ADD-2E22-40BD-B735-7CE159D22600,trader,,trader,2007-01-05 17:05:14,but it looks fine,TRITON,0,0,0,1 465185,77622D63-C579-4685-884F-30AD47404A64,trader,,trader,2007-01-05 17:05:21,ugh,TRITON,0,0,0,1 465187,77622D63-C579-4685-884F-30AD47404A64,trader,,trader,2007-01-05 17:05:27,go to japonais,TRITON,0,0,0,1 465225,5694D93B-F0F8-4462-9191-A1A3E5A54C72,trader,,trader,2007-01-05 17:06:13,quite messy,TRITON,0,0,0,1 465226,566F4512-A372-42F7-8BC8-AF63F227A511,trader,,trader,2007-01-05 17:06:13,but,TRITON,0,0,0,1 465227,77622D63-C579-4685-884F-30AD47404A64,trader,,trader,2007-01-05 17:06:14,too packed,TRITON,0,0,0,1
```

• • •

"Map" Step

> IM <- IM_raw[, c(7, 8, 4, 6)]

```
2007-01-05 17:11:16, bio tech, trader, trader
2007-01-05 17:11:17,my im jsut started giving me an away message ,trader,trader
2007-01-05 17:11:20, im holding a core, trader, trader
2007-01-05 17:11:21, swing, trader, trader
2007-01-05 17:11:22, how do i shut it off , trader, trader
2007-01-05 17:11:25, great, trader, trader
2007-01-05 17:11:34, could be some drug or something, trader, trader
2007-01-05 17:11:38,no clue,trader,trader
2007-01-05 17:11:40,10 points easy,trader,trader
2007-01-05 17:11:45,i dont know where mine came from either,trader,trader
2007-01-05 17:11:48, awesome, trader, trader
2007-01-05 17:11:00, somethings going on, trader, trader
2007-01-05 17:11:02, with it, trader, trader
2007-01-05 17:11:13, double bottom now monthlys, trader, trader
2007-01-05 17:11:13, could be, trader, trader
```

Vertices

Traders

Edges

Sends instant message

Data into igraph

- > library(igraph)
- > g <- graph.data.frame(relations,

vertices = traders,

directed = TRUE)

- > # naïve first visualization
- > gIFR <- layout.fruchterman.reingold(g)
- > plot(g, layout = glFR)


```
> plot(g, layout = glFR,
       # vertex formatting
       vertex.color = 'chocolate1',
       vertex.size = 8,
       vertex.label = "",
       #as.character(V(g)$traderLabels),
       # edge formatting
       edge.width = .8 * log10(E(g)$nTexts),
       edge.curved = TRUE,
       # arrow formatting
       edge.arrow.size = .3,
       edge.color = 'white'
```


Vertices Traders

Edges

Sends instant message

But when?

(Implicitly) At any time

Time Span: 2 years

Giant component > 98% of vertices

Time Span: 2 seconds

NO Giant component

Aggregation over Time

Concurrency

2007-01-05 17:11:16 bio tech, trader, trader

2007-01-05 17:11:17 my im jsut started giving me an away

message ,trader,trader

2007-01-05 17:11:20 im holding a core, trader, trader

2007-01-05 17:11:21 swing, trader, trader

2007-01-05 17:11:22 how do i shut it off ,trader,trader

Create Time Resolution Variables

```
> str(IM$datetime)
POSIXIt[1:2311572], format: "2008-12-01 14:40:42" "2008-12-01 14:40:45" ...
> IMin$yday_15min <- factor(paste(IMin$datetime[['yday']],
                                   IMin$datetime[['hour']],
                                   floor(IMin$datetime[['min']]/15), sep=' '))
> IMin$yday_hour <- factor(paste(IMin$datetime[['yday']],
                                   IMin$datetime[['hour']], sep=' '))
> IMin$yday <- factor(IMin$datetime[['yday']])
> IMin$week <- factor(floor(IMin$datetime[['yday']]/7))
> IMin$month <- factor(IMin$datetime[['mon']])
> IMin$quarter <- factor(floor(IMin$datetime[['mon']]/3))
```

NB: The above procedure introduces selection bias...

Collect Sizes of Largest Components

```
> sizesLargestComponentByTimeWindowSize <- list()
> for (v in c('yday_15min','yday_hour','yday','week','month','quarter')) {
  sizesLargestComponentByTimeWindowSize[[v]] <- list()
  for (period in levels(IMin[[v]])) {
    # subset the IM data, collect mere existence of edges (thus the unique())
    IMsub <- unique(IMin[IMin[[v]] == period, c('sender','receiver')])</pre>
    # construct graph
    gPeriod <- graph.data.frame(IMsub)</pre>
    # get components
    comps <- decompose.graph(gPeriod, min.vertices=2)</pre>
    # get largest component
    compSizes <- unlist(lapply(comps, function(comp) unlist(comp[1])))
    largestCompIndex <- which(compSizes == max(compSizes))[1] # in case of ties</pre>
    sizeOfLargestComp <- compSizes[largestCompIndex]</pre>
    sizesLargestComponentByTimeWindowSize[[v]][[period]] <- sizeOfLargestComp
```

ggplot the Distributions

```
# massage into a data.frame
vars <- names(sizesLargestComponentByTimeWindowSize)</pre>
dfList <- list()
for (v in vars) {
  print(v)
  sizes <- unlist(sizesLargestComponentByTimeWindowSize[[v]])
  timeDF <- data.frame(sizeOfLargestComp = sizes,
              timespan = v
  dfList[[v]] <- timeDF
sizesOfLargestCompsDF <- rbind.fill(dfList)
levels(sizesOfLargestCompsDF$timespan) <-</pre>
  c('15 minutes', 'hour', 'day', 'week', 'month', 'quarter')
# now ggplot
gs <- ggplot(data = sizesOfLargestCompsDF,
       aes(x = sizeOfLargestComp, fill = timespan))
gs + geom histogram(aes(y = ..density..)) + facet wrap(~ timespan) +
  opts(legend.position = 'none')
```


ggplot the boxplots

```
gs2 + geom_boxplot() + opts(legend.position = 'none')
```


Thank you

nswitanek@gmail.com