Module Interface Specification for IP Simulator

Mina Mahdipour

 $March\ 22,\ 2023$

1 Revision History

Date	Version	Notes
March 2, 2023	1.0	First version, created and added introduction parts
March 10, 2023	1.1	Added three modules
March 12, 2023	1.2	Added the rest of modules
March 17, 2023	1.3	Updated ODE modules
March 21, 2023	1.4	Updated according to feedback of reviewers

2 Symbols, Abbreviations and Acronyms

The reader can refer to SRS.

Contents

1	Rev	vision 1	History		i
2	Syn	nbols,	Abbreviations and Acronyms		ii
3	Intr	\mathbf{coduct}	cion		1
4	Not	ation			1
5	Mo	dule D	Decomposition		1
6	MI	S of In	nput Parameters Module		2
	6.1		ı <mark>le</mark>		2
	6.2				2
	6.3		NX		2
		6.3.1	Exported Constants		2
		6.3.2	Exported Access Programs		3
	6.4	Semar	ntics		3
		6.4.1	State Variables		3
		6.4.2	Environment Variables		3
		6.4.3	Assumptions		3
		6.4.4	Access Routine Semantics		4
		6.4.5	Local Functions	 •	5
7	MIS	S of O	output Parameters Module		6
	7.1	Modu	<u>lle </u>		6
	7.2	Uses			6
	7.3	Syntax	<u>ux</u>		6
		7.3.1	Exported Constants		6
		7.3.2	Exported Access Programs		6
	7.4	Semar	ntics		6
		7.4.1	State Variables		6
		7.4.2	Environment Variables		6
		7.4.3	Assumptions		6
		7.4.4	Access Routine Semantics		6
		7.4.5	Local Functions		7
8	MIS	S of Co	onstant Parameter Module		8
	8.1	Modu	ı <mark>le</mark>		8
	8.2	Uses			8
	8.3	Syntax	<u>ux</u>		8
		8.3.1	Exported Constants		8
		8.3.2	Exported Access Programs		8

	8.4	Seman	ntics		8
9	MIS	of Mo	otion ODE Module		9
	9.1	Module	<u>le</u>		9
	9.2	Uses .			9
	9.3	Syntax	X		9
		9.3.1	Exported Constants		9
		9.3.2	Exported Access Programs		9
	9.4	Seman	ntics		9
		9.4.1	State Variables		9
		9.4.2	Environment Variables		9
		9.4.3	Assumptions		9
		9.4.4	Access Routine Semantics		9
		9.4.5	Local Functions		10
10	MIS	of IP	Control Module		11
			le		11
	10.2	Uses			11
			x		11
		•	Exported Constants		11
			Exported Access Programs		11
	10.4		ntics		11
		10.4.1	State Variables		11
			Environment Variables		11
		10.4.3	Assumptions		11
			Access Routine Semantics		11
			Local Functions		12
11	MIS	of OI	DE Solver Module		13
	11.1	Module	le		13
	11.2	Uses			13
			X		13
		•	Exported Constants		13
			Exported Access Programs		13
	11.4		ntics		13
			State Variables		13
			Environment Variables		13
			Assumptions		13
			Access Routine Semantics		13
			Local Functions		14

12 MIS of Plotting Module	15
12.1 Module	 15
12.2 Uses	 15
12.3 Syntax	 15
12.3.1 Exported Constants	 1!
12.3.2 Exported Access Programs	 1!
12.4 Semantics	1.
12.4.1 State Variables	 1.
12.4.2 Environment Variables	 1
12.4.3 Assumptions	 1
12.4.4 Access Routine Semantics	1
12.4.5 Local Functions	1
13 Appendix	1
List of Tables	
1 Module Hierarchy	
2 Possible Exceptions	1

3 Introduction

The following document details the Module Interface Specifications for IP Simulator software. This document specifies how every module is interfacing with every other part of the program based on "module state machine" approach.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at the github repository for the IP Simulator. The author uses [3] as a reference to write this document.

4 Notation

The structure of the MIS for modules comes from Hoffman and Strooper [2], with the addition that template modules have been adapted from [1]. The mathematical notation comes from Chapter 3 of Hoffman and Strooper [2]. For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1 | c_2 \Rightarrow r_2 | ... | c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by IP Simulator.

Data Type	Notation	Description
character real	$\operatorname{char}_{\mathbb{R}}$	a single symbol or digit any number in $(-\infty, \infty)$
non-negative integer	\mathbb{N}_0	a number without a fractional component in $[0, \infty)$

The specification of IP Simulator uses some derived data types: sequences and strings. Sequences are lists filled with elements of the same data type and strings are sequences of characters. In addition, IP Simulator uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2		
Hardware-Hiding Module			
Behaviour-Hiding Module	Input Parameters Module Output Parameters Module Constant Parameter Module Motion ODE Module IP Control Module		
Software Decision Module	ODE Solver Module Data Structure Module Plotting Module		

Table 1: Module Hierarchy

6 MIS of Input Parameters Module

This module is responsible for reading the input parameters from a file and storing them in the data structures. It also verifies them using Constant Parameter Module.

6.1 Module

InputM

6.2 Uses

ConstantM (Section 8)

6.3 Syntax

6.3.1 Exported Constants

6.3.2 Exported Access Programs

Name	In	Out	Exceptions
load_inputs	string	-	FileError
$verify_inputs$	-	-	InvalidInput Error
m_p	-	\mathbb{R}	
l_p	-	\mathbb{R}	
m_c	-	\mathbb{R}	
friction	-	\mathbb{R}	
$f_external(t)$	\mathbb{R}	\mathbb{R}	InvalidFunction
i_p	-	\mathbb{R}	

6.4 Semantics

6.4.1 State Variables

```
#From R1:

m_p: \mathbb{R}

l_p: \mathbb{R}

m_c: \mathbb{R}

friction: \mathbb{R}

f\_external(t): \mathbb{R} \to \mathbb{R}

i_p: \mathbb{R}
```

6.4.2 Environment Variables

In the case of this module, the environment variable is the input file which is containing the input data.

6.4.3 Assumptions

- load_inputs will be called before the values of any state variables will be accessed.
- The file contains the expected inputs data in order, each on a new line. The order of the input data is as below:
 - line 1: the pendulum mass
 - line 2: the pendulum length
 - line 3: the cart mass
 - line 4: the friction of the cart
 - line 5: the external force as a function of time

6.4.4 Access Routine Semantics

The value of each state variable can be accessed through its name (getter). An access program is available for each state variable. There are no setters for the state variables, since the values will be set by load params and not changed for the life of the program.

 $load_inputs(fName: string):$

- transition: The filename fName is associated with the input file. The state variables are modified with the following procedures:
 - 1. Read data from input file to populate the state variables from R1.
 - 2. Store the data parameters.
 - 3. Calculate the derived quantity as follows (from DD3 in SRS): $i_p = \frac{1}{12}(m_p)(l_p^2)$
 - 4. Verify the inputs through verify_inputs().
- exception: exc := a file name fName cannot be found OR the format of input file is incorrect \Rightarrow FileError

verify_inputs():

- out: out := none
- exception: exc :=

```
\neg (m_{\text{pmin}} \leq m_p \leq m_{\text{pmax}}) \Rightarrow \text{Invalid Mass of the Pendulum} 

\neg (l_{\text{pmin}} \leq l_p \leq l_{\text{pmax}}) \Rightarrow \text{Invalid Length of the Pendulum} 

\neg (m_{\text{cmin}} \leq m_c \leq m_{\text{cmax}}) \Rightarrow \text{Invalid Mass of the Cart} 

\neg (0 \leq \text{friction}) \Rightarrow \text{Invalid Value of the Car Friction} 

\neg (0 < l_p) \Rightarrow \text{Invalid Value of the Inertia of the Pendulum} 

f_external is not a function of t \Rightarrow \text{InvalidFunction}
```

etc. See Appendix (Section 13) for the complete list of exceptions and associated error messages.

InputM. m_p :

- output: $out := m_p$
- exception: none

InputM. l_p :

• output: $out := l_p$

• exception: none

InputM. i_p :

- ullet output: $out:=i_p$
- exception: none

InputM. m_c :

- output: $out := m_c$
- exception: none

InputM. friction:

- \bullet output: out := friction
- exception: none

InputM. f_external(t):

- output: $out := f_{-}external(t)$
- exception: none

6.4.5 Local Functions

7 MIS of Output Parameters Module

7.1 Module

OutputM

7.2 Uses

ConstantM (Section 8)

7.3 Syntax

7.3.1 Exported Constants

None

7.3.2 Exported Access Programs

Name	In	Out	Exceptions
output	$fOName$: string, t : \mathbb{R} , x : \mathbb{R} , \dot{x} : \mathbb{R} , $\dot{\theta}$: \mathbb{R}	-	-
verify_out	$[x: \mathbb{R}, \dot{x}: \mathbb{R}, \theta: \mathbb{R}, \dot{\theta}: \mathbb{R}]$	-	InvalidOutput

7.4 Semantics

7.4.1 State Variables

None

7.4.2 Environment Variables

The environment variable is the output file which includes the angle of the pendulum and position of the cart with regards to the data inputs.

7.4.3 Assumptions

None

7.4.4 Access Routine Semantics

output (fOName: string, $t: \mathbb{R}, x: \mathbb{R}, \dot{x}: \mathbb{R}, \theta: \mathbb{R}, \dot{\theta}: \mathbb{R}$):

- transition: The filename fOName is associated with the outputFile. The inputs of this function are x and \dot{x} , the position and velocity of the cart while θ and $\dot{\theta}$ are the position and velocity of the pendulum at time t. The below procedure is followed:
 - 1. verify_out $(x: \mathbb{R}, \dot{x}: \mathbb{R}, \theta: \mathbb{R}, \dot{\theta}: \mathbb{R})$

- 2. write the calculated cart position, cart velocity, pendulum angle, and pendulum velocity for a specified time in the output file.
- exception: none

verify_out $(x: \mathbb{R}, \dot{x}: \mathbb{R}, \theta: \mathbb{R}, \dot{\theta}: \mathbb{R})$:

• output: none

• exception: exec:=

 $\theta \leq 0 ~~\Rightarrow$ Invalid Angle the Pendulum

 $\dot{\theta} \leq 0 \implies \text{Invalid Velocity of the Pendulum}$

7.4.5 Local Functions

8 MIS of Constant Parameter Module

8.1 Module

ConstantM

8.2 Uses

Not Applicable

8.3 Syntax

8.3.1 Exported Constants

From Table 2 in SRS

Name	Type	Value	Description
\overline{g}	\mathbb{R}	$9.81~{\rm ms^{-2}}$	the gravity of the earth
$m_{ m pmin}$	\mathbb{R}	0.01 kg	minimum value of the pendulum mass
$m_{ m pmax}$	\mathbb{R}	50 kg	maximum value of the pendulum mass
$l_{ m pmin}$	\mathbb{R}	$0.01~\mathrm{m}$	minimum value of the length of the pendu-
			lum
$l_{ m pmax}$	\mathbb{R}	10 m	maximum value of the length of the pendu-
			lum
$m_{ m cmin}$	\mathbb{R}	0.01 kg	minimum value of the mass of the cart
$m_{ m cmax}$	\mathbb{R}	50 kg	maximum value of the mass of the cart
x	\mathbb{R}	0	the initial value of the position of the cart
\dot{x}	\mathbb{R}	$0~\mathrm{ms^{-2}}$	the initial value of the velocity of the cart
θ	\mathbb{R}	π rad	the initial value of the angle of the pendulum
$\dot{ heta}$	\mathbb{R}	$0~\mathrm{ms^{-2}}$	the initial value of the velocity of the pendu-
			lum
$y_{ m iniCond}$	sequence of	$[x, \dot{x}, \theta, \dot{\theta}]$	the initial condition for solving the ODEs at
0 0 3114	$\mathbb R$. , , , ,	the time t_{start} .
$t_{ m start}$	\mathbb{R}	$0 \min$	the start time of simulation
$t_{ m span}$	\mathbb{R}	100 min	the duration time of simulation

8.3.2 Exported Access Programs

None

8.4 Semantics

Not Applicable

9 MIS of Motion ODE Module

9.1 Module

EqMo

9.2 Uses

ConstantM (Section 8)

9.3 Syntax

9.3.1 Exported Constants

None

9.3.2 Exported Access Programs

Name	In	Out	Exceptions
ODE_Motion	m_p : \mathbb{R} , l_p : \mathbb{R} , m_c : \mathbb{R} , friction: \mathbb{R} ,	\dot{x} : \mathbb{R} , \ddot{x} : \mathbb{R} , $\dot{\theta}$: \mathbb{R} , $\ddot{\theta}$: \mathbb{R}	-
	$f_{-}external(t)$: string, i_p : \mathbb{R} , x : \mathbb{R} ,		
	\dot{x} : \mathbb{R} , θ : \mathbb{R} , $\dot{\theta}$: \mathbb{R}		

9.4 Semantics

9.4.1 State Variables

None

9.4.2 Environment Variables

None

9.4.3 Assumptions

None

9.4.4 Access Routine Semantics

ODE_Motion $(m_p: \mathbb{R}, l_p: \mathbb{R}, m_c: \mathbb{R}, friction: \mathbb{R}, f_external(t)):$

$$\ddot{x} = \frac{friction}{(m_c + m_p)} \dot{x} + \frac{f_{-}external(t) - m_p l_p \ddot{\theta} \cos \theta + m_p l_p (\dot{\theta})^2 \sin \theta}{(m_c + m_p)}$$

$$\ddot{\theta} = \frac{m_p g l_p}{(i_p + m_p l_p^2)} \sin \theta - \frac{m_p l_p \ddot{x}}{(i_p + m_p l_p^2)} \cos \theta$$

• output: $[\dot{x}, \ddot{x}, \dot{\theta}, \ddot{\theta}]$

• exception: none

9.4.5 Local Functions

10 MIS of IP Control Module

10.1 Module

Control

10.2 Uses

InputM (Section 6), OutputM (Section 7), EqMo (Section 9), ODE Solver (Section 11), Plot (Section 12),

10.3 Syntax

10.3.1 Exported Constants

10.3.2 Exported Access Programs

Name	In	Out	Exceptions
control	-	-	_

10.4 Semantics

The Control Module is designed to control the process flow in the software. It organizes all other modules to satisfy all the requirements and also helps maintainability and expandability of IP Simulator by classifying different parts of the code.

10.4.1 State Variables

None

10.4.2 Environment Variables

None

10.4.3 Assumptions

None

10.4.4 Access Routine Semantics

control():

• transition: Control the flow input data, calculation, and the output data by following below steps:

Get (fName: string) from user load_inputs(fName)

```
verify_inputs()
ODE_Motion(m_p: \mathbb{R}, l_p: \mathbb{R}, m_c: \mathbb{R}, friction: \mathbb{R}, f_external(t), i_p: \mathbb{R}, x: \mathbb{R}, \dot{x}: \mathbb{R}, \dot{\theta}: \mathbb{R},
solveODE(\mathbf{f}: (\mathbb{R}^8 \to \mathbb{R}^4), t_{\text{start}}: \mathbb{R}, \mathbf{y}_{\text{iniCond}}: \mathbb{R}^4, t_{\text{span}}: \mathbb{R})
verify_out(x: \mathbb{R}, \dot{x}: \mathbb{R}, \dot{\theta}: \mathbb{R})
plot(t: \mathbb{R}, x: \mathbb{R}, \dot{\theta}: \mathbb{R})
output(fOName, x: \mathbb{R}, \dot{x}: \mathbb{R}, \dot{\theta}: \mathbb{R})
```

• exception: none

10.4.5 Local Functions

11 MIS of ODE Solver Module

11.1 Module

ODE Solver

11.2 Uses

None

11.3 Syntax

11.3.1 Exported Constants

None

11.3.2 Exported Access Programs

Name	In	Out	Except.
solveODE	$\mathbf{f}: (\mathbb{R}^8 \to \mathbb{R}^4), t_{\mathrm{start}}: \mathbb{R}, \mathbf{y}_{\mathrm{iniCond}}: \mathbb{R}^4, t_{\mathrm{span}}: \mathbb{R}$		ODE_Error
		$\mathbb{R},\; heta\colon \mathbb{R}, \ \dot{ heta}\colon \mathbb{R}]$	

11.4 Semantics

11.4.1 State Variables

None

11.4.2 Environment Variables

None

11.4.3 Assumptions

None

11.4.4 Access Routine Semantics

solveODE(\mathbf{f} , t_{start} , $\mathbf{y}_{\text{iniCond}}$, t_{span}):

• output: $out := \mathbf{y}(t)$ where

$$\mathbf{y}(t) = \mathbf{y}_{\text{iniCond}} + \int_{t_{\text{start}}}^{t_{\text{span}}} \mathbf{f}(s, \mathbf{y}(s)) ds$$

f are the ODEs generated by module EqMo 9. y(t) is calculated from $t = t_{\text{start}}$ to $t = t_{\text{span}}$, and the $\mathbf{y}_{\text{iniCond}}$ is the initial conditions for solving the ODE. We have two coupled ODEs in the IP software, which the first one describes the motion of the cart and the second one describes the motion of the pendulum.

• exception: $exc := (ODE Solver Fails \Rightarrow ODE_ERR)$

11.4.5 Local Functions

12 MIS of Plotting Module

12.1 Module

Plot

12.2 Uses

Not Applicable

12.3 Syntax

12.3.1 Exported Constants

None

12.3.2 Exported Access Programs

Name	In	Out	Exceptions
plot	$t: \mathbb{R}, x: \mathbb{R}, \theta: \mathbb{R}$	-	-

12.4 Semantics

12.4.1 State Variables

None

12.4.2 Environment Variables

win: 2D diagram displayed on the screen

12.4.3 Assumptions

12.4.4 Access Routine Semantics

 $plot(t: \mathbb{R}, x: \mathbb{R}, \theta: \mathbb{R})$:

- transition: Modify win to display a plot where the vertical axis is the angle of the pendulum and the position of the cart. The time should run from t_{start} to t_{span} .
- exception: none

12.4.5 Local Functions

References

- [1] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.
- [2] Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.
- [3] W. Spencer Smith. A rational document driven design process for scientific computing software. In Jeffrey C. Carver, editor, *Software Engineering for Science*, chapter Section I Examples of the Application of Traditional Software Engineering Practices to Science. Submitted 2016. 30 pp.

13 Appendix

Table 2: Possible Exceptions

Message ID	Error Message	
FileError	Error: The expected file does not exist.	
InvalidFunction	Error: The function of external force must be only	
	the function of time.	
Invalid Mass of the Pendulum	Error: The mass of the pendulum should be posi-	
	tive.	
Invalid Length of the Pendulum	Error: The length of the pendulum should be pos-	
	itive.	
Invalid Mass of the Cart	Error: The mass of the cart should be positive.	
Invalid Value of the Car Friction	Error: The <i>friction</i> must be greater that zero.	
InvalidOutput	Error: The angle and velocity of the pendulum	
	must be greater that zero.	
ODE_Error	Error: When fails to solve the ODE.	