

Convolutional Neural Networks with Data Augmentation for Object Classification in Automotive Ultrasonic Sensing

Abdellah charki 24.01.2024

Outline

- 1 Introduction to Automotive Ultrasonic Sensing
- 2 Data Augmentation
- 3 Signal Processing and Feature Extraction
- 4 CNN for Ultrasonic Sensing in Object Classification
- 5 Experimental Results and Performance Evaluation
- 6 Conclusion

Introduction to Automotive Ultrasonic Sensing

What is an Ultrasonic Sensor and how it's work?

Why Ultrasonic Sensor?

- Low-cost
- robust
- reliable sensor technology
- High Accuracy in Near-Field Detection
- Low Power Consumption

Introduction to Automotive Ultrasonic Sensing

How to calculate the distance to obstacles?

Pulse-echo method

Time-of-Flight

ToF: Time Need from Transmitter to receiver **Sound Speed**

$$V_s = 343 \, m/s$$

<u>Ultrasonic Distance (d)</u>

$$d = \frac{ToF * V_S}{2}$$

Introduction to Automotive Ultrasonic Sensing

Advantages of Ultrasonic Sensors in Vehicles

Parking Assistance Systems

Collision Avoidance Systems

Obstacle Detection

Blind Spot Monitoring

Augmented data / new Data

Offline augmentation methods:

dynamically modifies the data during the training process. Applied to <u>Raw-Data Representations</u>

Advantages:

- ✓ Scalability in Pretraining
- ✓ Preprocessing Efficiency
- ✓ Reusability

- Slower (Done on CPU)
- More Storge required

Online augmentation methods:

precompute transformation before training Applied to <u>Time-Frequency Representations (Scalograms)</u>

Advantages:

- ✓ No Disk Storage Required
- √ Faster (done on GPU)
- ✓ Model deployment is easier

Disadvantage:

- Increased Computational Overhead
- Risk of Overloading the Training Pipeline

Offline augmentation methods:

White noise: Injection of white Gaussian noise Purpose: Improves robustness to real-world noise variations

<u>Clutter:</u> Superimposes irrelevant or unrelated signals to simulate environments with multiple objects or echoes.

Purpose: Enhances the model's ability to distinguish target objects from background noise.

<u>Pitch shifting:</u> Alters the frequency of the signal to mimic changes in material properties or Doppler effects.

Purpose: Improves the model's generalization across different operating conditions.

Online augmentation methods:

Frequency Masking: Randomly obscures certain frequency ranges in the scalogram or spectrogram.

Purpose: Forces the model to rely on other frequencies, improving robustness.

<u>Time masking:</u> Temporarily mutes specific time intervals in the time-frequency representation

Purpose: Simulates signal occlusions or missing data in real-world conditions.

Salt and pepper noise: Adds random high-intensity noise (black or white pixels) to scalogram images

Purpose: Mimics sensor errors or extreme interference

White noise: Dynamically adds Gaussian noise to the data during training.

Purpose: Continuously simulates environmental variations

Time shifting: The scalogram image is shifted for s pixel steps either to the left or to the right.

Purpose: Improves the model's ability to handle temporal misalignments.

<u>Multi-class and single-class mixup:</u> Combines two signals (from the same or different classes) by mixing their time-domain or frequency-domain representations.

Purpose: Enhances the model's robustness to overlapping signals and improves generalization.

Signal Processing and Feature Extraction

Bandpass Filtering:

Removes unwanted noise, such as environmental sounds.

Continuous Wavelet Transform (CWT):

Converts time signals into <u>scalograms</u> (time-frequency images).

Signal Normalization:

Scales the amplitude of signals to a standard range, making them comparable across different conditions.

Scalogram Examples:

Visual examples of backscatter from different objects: Tube, Pedestrian, Curb, Tree, Small Object

CNN for Ultrasonic Sensing in Object Classification

Feature Extraction:

CNNs use convolutional layers to automatically extract key features such as edges, shapes, and textures from the input data.

Pooling Layers:

Pooling layers reduce the spatial dimensions of feature maps, lowering computational cost and helping prevent overfitting.

Classification:

Fully connected layers process the extracted features to classify the input data into predefined categories.

Experimental Results and Performance Evaluation

CNN#1: Baseline model, which might be a simpler or established CNN architecture.

CNN#2: The newer, improved or modified architecture that is being proposed for the specific task, in this case, ultrasonic object classification.

Table shows that **CNN#2** outperforms **CNN#1** in both the lab and field environments.

For object classes, CNN#2 achieves an accuracy of 86.7% (lab) and 65.4% (field).

In comparison, CNN#1 shows a drop in accuracy by

In comparison, CNN#1 shows a drop in accuracy by 3.8% (lab) and 4.3% (field).

For Traversability classes, CNN#2 reaches 94.9% (lab) and 90.6% (field), whereas CNN#1 shows a drop of 2.7% (lab) and 3.2% (field).

	Mean accuracies ± standard deviation (%)			
	Lab environment		Field environment	
	Object class	Traversability class	Object class	Traversability class
CNN#1: no augmentation	82.9 ± 0.4	92.2 ± 0.4	61.1 ± 0.4	87.4 ± 0.4
CNN#2: no augmentation	86.7 ± 0.4	94.9 ± 0.3	65.4 ± 0.1	90.6 ± 0.3
Offline				
White noise	88.1 ± 0.3	95.9 ± 0.2	65.5 ± 0.1	91.4 ± 0.2
Clutter	86.8 ± 0.3	94.7 ± 0.2	64.9 ± 0.5	90.2 ± 0.2
Pitch shifting	85.5 ± 0.6	93.5 ± 0.3	63.3 ± 0.4	89.1 ± 0.3
Online				
Frequency masking	87.6 ± 0.3	95.3 ± 0.3	65.6 ± 0.2	91.0 ± 0.3
Time masking	87.7 ± 0.3	95.6 ± 0.1	65.8 ± 0.2	91.1 ± 0.2
Salt and pepper noise	87.6 ± 0.4	95.4 ± 0.3	65.2 ± 0.1	91.2 ± 0.2
White noise	86.7 ± 0.2	94.6 ± 0.2	65.2 ± 0.5	90.8 ± 0.2
Time shifting	88.6 ± 0.5	95.5 ± 0.2	66.4 ± 0.2	91.3 ± 0.2
Single-class mixup	87.4 ± 0.5	95.3 ± 0.4	65.3 ± 0.1	90.8 ± 0.2
Multi-class mixup	87.1 ± 0.5	95.2 ± 0.2	65.4 ± 0.3	90.7 ± 0.3
Combination <u>a</u>	90.1 ± 0.3	96.4 ± 0.1	66.2 ± 0.2	91.5 ± 0.2

Conclusion

Single Sensor Classification:

Low-cost ultrasonic sensor classifies obstacles with high accuracy, considering Traversability and object types.

CNN Architecture: Proposed CNN using time-frequency images and distance data outperforms baseline CNN (LeNet-5-like).

Challenges with Small Object Discrimination: it is difficult due to clutter reflections.

Impact of Data Augmentation: Methods like white noise, frequency masking, and time shifting improve accuracy, but careful selection is key.

Best Results with Augmentation: Achieved 90.1% (lab) and 66.2% (field) accuracy for object classes, and 96.4% (lab) and 91.5% (field) for Traversability.

NEW TRENDS IN MACHINE LEARNING AND DATA ANALYTICS

Thank you for your Attention