Amélioration du passage à l'échelle de l'espace pris par la blockchain Bitcoin

Benjamin Loison

Introduction aux blockchains

(a) Réseau maître-esclave

(b) Réseau pair-à-pair

Le problème du passage à l'échelle

Blockchain Size

L'idée du stage

 Mining in Logarithmic Space 2021 Aggelos Kiayias, Nikos Leonardos and Dionysis Zindros

Historique des transactions

personne 2	n Bitcoins				
Alice	5				
Bob	2				
Charlie	1				
Charlie	5				
Bob	3				
Alice	5				
Charlie	2				
Alice	1				
	Bob Charlie Charlie Bob Alice Charlie				

Etat courant

Personne possède	n Bitcoins
Alice	8
Bob	2
Charlie	5

Le fonctionnement de Bitcoin

Miner des blocs

Données:

Bloc 0 n Alice gagne 5 BTC Alice paie Bob 2 BTC Alice paie Charlie 1 BTC

n	haché SHA-256²
0	6c7c2450bd52e950a3db47d8dc91cbdb04a792561759
1	6442a403b0cd2bac7b3af363a342769d1955f9851d65
86	00e9d707e8f386a73d2455cfa9c06d618285f03e434a

Le problème du fork

Le problème du fork

8/15

Les atouts de la théorie

Proposal	Storage	Communication	Can mine?
BTC Full	$n(c+\delta)$	$n(c+\delta)$	yes
BTC SPV	nc	nc	no
Ethereum	$nc + k\delta + a$	$nc + k\delta + a$	yes
This work	$poly\log(n)c + k\delta + a$	$poly\log(n)c + k\delta + a$	yes

Table 1. A comparison of our results and previous work. n: the number of blocks in the chain; δ : size of transactions in a block; c: block header size; a: size of snapshot; k: common prefix parameter

Figure: Extrait du tableau page 9 de "Mining in Logarithmic Space" (BTC signifiant Bitcoin)

n=695590, δ entre 0 et 2 Mo, c=97, a=4.24 Go, k=6

Le problème de l'interlink set

Fig. 2. The interlinked blockchain. Each superblock is drawn taller according to its level. A new block links to all previous blocks that have not been overshadowed by higher levels in the meantime.

Figure: Ensemble de pointeurs de "Mining in Logarithmic Space" nécessaire à la bonne exécution de leur approche

10/15

Quelques statistiques

Figure: Répartition des hachés des blocs de Bitcoin par difficulté m (n) où m est le nombre de zéros hexadécimaux au début du haché et n le nombre de hachés débutant précisément par m zéros hexadécimaux

Quelques statistiques

Figure: Répartition des hachés des blocs de Bitcoin par difficulté m (n) où m est le nombre de zéros binaires au début du haché et n le nombre de hachés débutant précisément par m zéros binaires

L'algorithme de compression

Algorithm 1 Chain compression algorithm for transitioning a full miner to a logspace miner. Given a full chain, it compresses it into logspace state.

```
1: function Dissolve<sub>m,k</sub>(C)
              C^* \leftarrow C[:-k]
             \mathcal{D} \leftarrow \emptyset
              if |\mathcal{C}^*| \geq 2m then
                     \ell \leftarrow \max\{\mu : |\mathcal{C}^*\uparrow^{\mu}| \geq 2m\}
                     \mathcal{D}[\ell] \leftarrow \mathcal{C}^* \uparrow^{\ell}
                    for \mu \leftarrow \ell - 1 down to 0 do
                            b \leftarrow C^* \uparrow^{\mu+1} [-m]
                           \mathcal{D}[\mu] \leftarrow \mathcal{C}^{*\uparrow\mu} [-2m:] \cup \mathcal{C}^{*\uparrow\mu} \{b:\}
                     end for
11:
               else
12:
                     \mathcal{D}[0] \leftarrow \mathcal{C}^*
13:
              end if
              \chi \leftarrow C[-k:]
               return (\mathcal{D}, \ell, \chi)
16: end function
17: function Compress<sub>m,k</sub>(C)
               (\mathcal{D}, \ell, \chi) \leftarrow \mathsf{Dissolve}_{m,k}(\mathcal{C})
               \pi \leftarrow \bigcup_{\mu=0}^{\ell} \mathcal{D}[\mu]
19:
               return \pi \chi
21: end function
```

Figure: Algorithme 1 de "Mining in Logarithmic Space" permettant de compresser une blockchain.

C est la chaîne de blocs

 $C^* \uparrow^{\mu}$ désigne les blocs de niveau de difficulté exactement μ de C^* $C^* \uparrow^{\mu} \{b:\}$ désigne les blocs de $C^* \uparrow^{\mu}$ plus récents que le bloc b

Les résultats

Figure: Répartition des hachés des blocs sélectionnés par l'algorithme 1, où chaque bloc a une largeur de 1 pixel

Sources des illustrations

- ▶ Page 2: Wikipedia: peer-to-peer
- ▶ Page 3: Blockchain.com