Aplicații ale Schemelor de Partajare a Secretelor

Dragoș Alin Rotaru

Universitatea din București

9 februarie, 2015

Motivație: scheme de partajare

Motivație: scheme de partajare

Motivație: scheme de partajare

Motivație: sisteme de stocare

Motivație: sisteme de stocare

Motivație: sisteme de stocare

Schema Shamir - intuiție

 k puncte distincte în plan definesc o curbă polinomială unică având acelasi grad

Schema Shamir - intuiție

- k puncte distincte în plan definesc o curbă polinomială unică având acelasi grad
- Mai puțin de k puncte nu pot reconstitui polinomul original

Schema Shamir - intuiție

- k puncte distincte în plan definesc o curbă polinomială unică având acelasi grad
- Mai puțin de k puncte nu pot reconstitui polinomul original

ullet Secret ${\cal S}$

- ullet Secret ${\cal S}$
- ullet Schema (k,n) majoritară

- ullet Secret ${\cal S}$
- Schema (k, n) majoritară
- ullet Oricare k participanți din cei n pot reconstitui ${\mathcal S}$

- Secret S
- Schema (k, n) majoritară
- ullet Oricare k participanți din cei n pot reconstitui ${\cal S}$
- ullet Mai puțin de k participanți nu obțin nici o informație despre ${\mathcal S}$

- ullet Secret ${\cal S}$
- Schema (k, n) majoritară
- ullet Oricare k participanți din cei n pot reconstitui ${\cal S}$
- ullet Mai puțin de k participanți nu obțin nici o informație despre ${\mathcal S}$
- Se alege un polinom f de grad k având coeficienți aleatori, termenul liber fiind \mathcal{S}

- ullet Secret ${\cal S}$
- Schema (k, n) majoritară
- ullet Oricare k participanți din cei n pot reconstitui ${\cal S}$
- ullet Mai puțin de k participanți nu obțin nici o informație despre ${\mathcal S}$
- Se alege un polinom f de grad k având coeficienți aleatori, termenul liber fiind $\mathcal S$
- Participantul P_i primeste f(i), $i = \{1, 2, ...n\}$

- Secret S
- Schema (k, n) majoritară
- ullet Oricare k participanți din cei n pot reconstitui ${\cal S}$
- ullet Mai puțin de k participanți nu obțin nici o informație despre ${\mathcal S}$
- Se alege un polinom f de grad k având coeficienți aleatori, termenul liber fiind $\mathcal S$
- Participantul P_i primeste f(i), $i = \{1, 2, ...n\}$
- Dupa reconstituire secretul S se afla în f(0).

Example

Se consideră 8 participanți, unde oricare 3 pot reconstitui secretul S. Fie polinomul $f(x) = 20x^3 + 14x^2 + 31x + S$

Schema unanimă XOR

• Schema majoritară (n, n).

Schema unanimă XOR

- Schema majoritară (n, n).
- n-1 participanți primesc numere aleatoare: $s_1, s_2, \dots s_{n-1}$.

Schema unanimă XOR

- Schema majoritară (n, n).
- n-1 participanți primesc numere aleatoare: $s_1, s_2, \dots s_{n-1}$.
- Cel de-al *n*-lea participant primește $S \oplus s_1 \oplus s_2 \oplus \cdots \oplus s_{n-1}$.

Schema Ito, Saito și Nishizeki

ullet Schema Shamir e insuficientă pentru a realiza partajarea lui ${\cal S}$ unui grup particular de participanți.

Schema Ito, Saito și Nishizeki

ullet Schema Shamir e insuficientă pentru a realiza partajarea lui ${\cal S}$ unui grup particular de participanți.

Asigurarea disponibiltății cu ajutorul sistemelor RAID