DDL By- Saurabh Kumar Sharma

Course Objective

- To create ,drop and alter the tables in MySQL Database
- To implement constraints in table while creating or altering the table

Session Objective

- DDL create, alter, drop & truncate
- Constraints and its types

MySQL Introduction

- MySQL is a database management system used for many small and big businesses.
- MySQL is developed, marketed and supported by MySQL AB a Swedish company.
- MySQL is a open source database
- MySQL supports large databases, up to 50 million rows or more in a table. The
 - default file size limit for a table is 4GB, but you can increase to a theoretical limit of 8 million terabytes (TB).

Database Client GUI

Database Client GUI

Workbench

Sequel Pro

HeidiSQL

SQLyog

SQLWave

DBTools Manager

MyDB Studio

Navicat for MySQL

Database Client GUI - Workbench

Show Database

```
mysql> SHOW DATABASES;

+-----+
| Database |
+-----+
| mysql |
| test |
+-----+
2 rows in set (0.13 sec)
```

Show databases command
Display all database
instances in MySQL
database

Create Database

You can create and drop a MySQL database instance by using My SQL Workbench by using the command

Create Database:

→ Create database << Database Name >>

Create database Training

Drop Database:

→ Drop Database << Database Name >>

Drop database Training

DDL

- DDL is short name of Data Definition Language.
- DDL deals with database schemas like table.

DDL Commands

- CREATE create the structure of a data base object (ex: table).
- ALTER alters the structure of the existing database
- DROP delete objects from the database
- TRUNCATE remove all records from a table, including all spaces allocated for the records are removed

Create Table

CREATE TABLE Table_Name (column_specifications)

```
(
student_ID INT UNSIGNED NOT NULL,
name VARCHAR(20) NOT NULL,
major VARCHAR(50),
grade VARCHAR(5)
);
Query OK, 0 rows affected (0.00 sec)
```

Student_ID	Name	Major	Grade
------------	------	-------	-------

Display Table Structure show tables: command display the tables from current database

- → show tables

Tables in Training
Student
Employee

2 row in set (0.00 sec)

→ Describe student

Fields	Туре	Null	Key	Default
Student_ID	Int(10)			0
Name	Varachar(20)			
Major	Varchar(20)	Yes		Null
Grade	Varchar(20)	Yes		null

4 rows in set (0.00 sec)

Modify Table Structure

ALTER TABLE: alter the existing structure of the table

→ alter table student add primary key (student_ID);

Query OK, 0 rows affected (0.00 sec) Records: 0 Duplicates: 0 Warnings: (

→ describe student;

Fields	Туре	Null	Key	Default
Student_ID	Int(10)		PRI	0
Name	Varachar(20)			
Major	Varchar(20)	Yes		Null
Grade	Varchar(20)	Yes		null

Drop

Syntax:

DROP TABLE table_name

Example

drop table student;

Query OK, 0 rows affected (0.00 sec)

Truncate

Syntax : TRUNCATE TABLE table_name;

Example:

Truncate table student

SQL – Exercise

- Complete the following
 - Practice DDL

What are Constraints?

- Constraints enforce rules at the table level.
- Constraints prevent the deletion of a table if there are dependencies.

The following constraint types are valid:

- NOT NULL
- UNIQUE
- PRIMARY KEY
- FOREIGN KEY
- CHECK

Defining Constraints

Syntax: CREATE TABLE [schema.]table (column datatype [DEFAULT expr] [column_constraint], [table_constraint][,...]);

```
CREATE TABLE employees(
employee_id NUMBER(6),
first name VARCHAR2(20),
job_id VARCHAR2(10) NOT NULL,
CONSTRAINT emp_emp_id_pk
PRIMARY KEY (EMPLOYEE_ID));
```

The NOT NULL Constraint

- The NOT NULL Constraint Ensures that null values are not permitted for the column
- The NOT NULL constraint can be specified only at the column level, not at the table level.

```
CREATE TABLE employees(
employee_id NUMBER(6),
last_name VARCHAR2(25) NOT NULL,
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
hire_date DATE
CONSTRAINT emp_hire_date_nn
NOT NULL)
```

The UNIQUE Constraint

- A UNIQUE key integrity constraint requires that every value in a column or set of columns (key) be unique
- Defined at either the table level or the column level

```
CREATE TABLE employees(
employee_id NUMBER(6),
last_name VARCHAR2(25) NOT NULL,
email VARCHAR2(25),
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
hire_date DATE NOT NULL,
...
CONSTRAINT emp_email_uk UNIQUE(email));
```

The PRIMARY KEY Constr

- A PRIMARY KEY constraint creates a primary key for the table
- Defined at either the table level or the column level

```
CREATE TABLE departments(
department_id NUMBER(4),
department_name VARCHAR2(30)

CONSTRAINT dept_name_nn NOT NULL,
manager_id NUMBER(6),
location_id NUMBER(4),

CONSTRAINT dept_id_pk PRIMARY KEY(department_id));
```

The FOREIGN KEY Constraint

 The FOREIGN KEY, or referential integrity constraint, designates a column or combination of columns as a foreign key and establishes a relationship between a primary key or a unique key in the same table or a different table.

```
CREATE TABLE employees(
employee_id NUMBER(6),
last_name VARCHAR2(25) NOT NULL,
email VARCHAR2(25),
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
hire_date DATE NOT NULL,
department_id NUMBER(4),
CONSTRAINT emp_dept_fk FOREIGN KEY (department_id)
REFERENCES departments(department_id),
CONSTRAINT emp_email_uk UNIQUE(email));
```

FOREIGN KEY Constraint Keywords

- FOREIGN KEY: Defines the column in the child table at the table constraint level
- REFERENCES: Identifies the table and column in the parent table
- ON DELETE CASCADE: Deletes the dependent rows in the child table when a row in the parent table is deleted.
- ON DELETE SET NULL: Converts dependent foreign key values to null

The CHECK Constraint

Defines a condition that each row must satisfy

```
CREATE TABLE Persons (
ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
CHECK (Age>=18)
);
```

Adding a Constraint Syntax

Use the ALTER TABLE statement to:

- Add or drop a constraint, but not modify its structure
- Enable or disable constraints
- Add a NOT NULL constraint by using the MODIFY Clause

Syntax

ALTER TABLE table
ADD [CONSTRAINT constraint] type (column);

Adding a Constraint

 Add a FOREIGN KEY constraint to the EMPLOYEES table indicating that a manager must already exist as a valid employee in the EMPLOYEES table.

• Example:

ALTER TABLE employees

ADD CONSTRAINT emp_manager_fk

FOREIGN KEY(manager_id)

REFERENCES employees(employee_id);

Dropping a Constraint

Remove the manager constraint from the EMPLOYEES table.

Example:

ALTER TABLE employees

DROP CONSTRAINT emp_manager_fk;

• Remove the PRIMARY KEY constraint on the DEPARTMENTS table and drop the associated FOREIGN KEY constraint on the

Example:

EMPLOYEES.DEPARTMENT_ID column. Table altered.

ALTER TABLE departments
DROP PRIMARY KEY CASCADE;

Questions

