In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df=pd.read_csv(r"C:\Users\G S R KARTHIK\Downloads\fiat500_VehicleSelection_Dataset.csv"
print(df)
```

	ID	model	engine_	_power	age_in_days	km	previous_owners	
0	1	lounge	_	- 51	882	25000	1	\
1	2	pop		51	1186	32500	1	
2	3	sport		74	4658	142228	1	
3	4	lounge		51	2739	160000	1	
4	5	рор		73	3074	106880	1	
					• • •			
1533	1534	sport		51	3712	115280	1	
1534	1535	lounge		74	3835	112000	1	
1535	1536	pop		51	2223	60457	1	
1536	1537	lounge		51	2557	80750	1	
1537	1538	pop		51	1766	54276	1	
		lat	lon	price				
0	44.90	7242 8	3.611560	8900				
1	45.66	6359 12	2.241890	8800				
2	45.50	3300 13	1.417840	4200				
3	40.63	3171 17	7.634609	6000				
4	41.90	3221 12	2.495650	5700				
		• • •						
1533	45.06	9679	7.704920	5200				
1534	45.84	5692 8	3.666870	4600				
1535	45.48	1541 9	9.413480	7500				
1536	45.00	0702	7.682270	5990				
1537	40.32	3410 17	7.568270	7900				

[1538 rows x 9 columns]

In [2]: ▶

df.head(10)

Out[2]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
0	1	lounge	51	882	25000	1	44.907242	8.611560
1	2	pop	51	1186	32500	1	45.666359	12.241890
2	3	sport	74	4658	142228	1	45.503300	11.417840
3	4	lounge	51	2739	160000	1	40.633171	17.634609
4	5	рор	73	3074	106880	1	41.903221	12.495650
5	6	pop	74	3623	70225	1	45.000702	7.682270
6	7	lounge	51	731	11600	1	44.907242	8.611560
7	8	lounge	51	1521	49076	1	41.903221	12.495650
8	9	sport	73	4049	76000	1	45.548000	11.549470
9	10	sport	51	3653	89000	1	45.438301	10.991700
4								•

In [3]: ▶

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1538 entries, 0 to 1537
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype	
0	ID	1538 non-null	int64	
1	model	1538 non-null	object	
2	engine_power	1538 non-null	int64	
3	age_in_days	1538 non-null	int64	
4	km	1538 non-null	int64	
5	previous_owners	1538 non-null	int64	
6	lat	1538 non-null	float64	
7	lon	1538 non-null	float64	
8	price	1538 non-null	int64	
<pre>dtypes: float64(2), int64(6), object(1)</pre>				

memory usage: 108.3+ KB

In [4]: ▶

df.describe()

Out[4]:

	ID	engine_power	age_in_days	km	previous_owners	<u>l</u> i
cou	nt 1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.00000
mea	an 769.500000	51.904421	1650.980494	53396.011704	1.123537	43.54136
s	td 444.126671	3.988023	1289.522278	40046.830723	0.416423	2.13351
m	in 1.000000	51.000000	366.000000	1232.000000	1.000000	36.85583
25	% 385.250000	51.000000	670.000000	20006.250000	1.000000	41.80299
50	% 769.500000	51.000000	1035.000000	39031.000000	1.000000	44.39409
75	% 1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.46796
m	ax 1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.79561
4						>

In [5]: ▶

df.columns

Out[5]:

In [6]:

#EDA

sns.pairplot(df)

Out[6]:

<seaborn.axisgrid.PairGrid at 0x11d927903a0>

In [7]: ▶

sns.displot(['Price'])

Out[7]:

<seaborn.axisgrid.FacetGrid at 0x11d97ed2f80>

In [8]: ▶

sns.displot(df['price'])

Out[8]:

<seaborn.axisgrid.FacetGrid at 0x11d97ed33d0>

In [9]: ▶

sns.displot(df['engine_power'])

Out[9]:

<seaborn.axisgrid.FacetGrid at 0x11d92790070>

In [10]:

Out[10]:

<Axes: >


```
In [11]: ▶
```

Out[11]:

<Axes: >


```
In [13]:
```

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=101)
from sklearn.linear_model import LinearRegression
regr=LinearRegression()
regr.fit(X_train,y_train)
print(regr.intercept_)
```

8971.195683500027

y=df['price']

In [14]: ▶

coeff_df=pd.DataFrame(regr.coef_,X.columns,columns=['coefficient'])
coeff_df

Out[14]:

	coefficient
ID	-0.046704
engine_power	11.646408
age_in_days	-0.898018
km	-0.017232
previous_owners	26.400886
lat	32.189709
lon	0.161073

In [15]: ▶

predictions=regr.predict(X_test)
plt.scatter(y_test,predictions)

Out[15]:

<matplotlib.collections.PathCollection at 0x11d9b303e80>

In [17]: ▶

 $\verb|sns.displot((y_test,predictions),bins=50)| \# without semicolon|\\$

Out[17]:

<seaborn.axisgrid.FacetGrid at 0x11d9b2d2c80>


```
In [18]: ▶
```

```
sns.displot((y_test,predictions),bins=50);#with semicolon
```



```
In [19]: ▶
```

```
from sklearn import metrics
print('MAE:',metrics.mean_absolute_error(y_test,predictions))
print('MSE:',metrics.mean_squared_error(y_test,predictions))
print('MAE:',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE: 593.0876179519989 MSE: 551442.6799691883 MAE: 742.5918663500081

```
In [20]: ▶
```

```
#accuracy
regr=LinearRegression()
regr.fit(X_train,y_train)
regr.fit(X_train,y_train)
print(regr.score(X_test,y_test))
```

0.8597136704308846

```
In [22]:

df.fillna(method='ffill',inplace=True)

In [23]:

x=np.array(df['age_in_days']).reshape(-1,1)
y=np.array(df['km']).reshape(-1,1)
df.dropna(inplace=True)

In [24]:

X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
regr.fit(X_train,y_train)
regr.fit(X_train,y_train)
```

Out[24]:

LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [25]:

y_pred=regr.predict(X_test)
plt.scatter(X_test,y_test,color='y')
plt.plot(X_test,y_pred,color='b')
plt.show()
```


H In [57]: #elasticnet from sklearn.linear_model import ElasticNet regr=ElasticNet() regr.fit(X,y) print(regr.coef_) print(regr.intercept_) y_pred_elastic=regr.predict(X_train) mean_squared_error=np.mean((y_pred_elastic-y_train)**2) print("Mean Squared Error on test set", mean_squared_error) [-90.71386288] 8677.92428806976 Mean Squared Error on test set 3678763.554360448 In []: H