Category Theory In Context

Emily Riehl

November 23, 2021

Contents

1	Categories, Functors, Natural Transformations		1
	1.1	Abstract and concrete categories	1
	1.2	Duality	4
	1.3	Functoriality	6
	1.4	Naturality	8
	1.5	Equivalence of categories	9
	1.6	The art of the diagram chase	11
	1.7	The 2-category of categories	12
2	TOI	OO CHECK	15

1 Categories, Functors, Natural Transformations

1.1 Abstract and concrete categories

Definition 1.1. A category consists of

- a collection of **objects** X, Y, Z, ...
- a collection of **morphisms** f, g, h, ...

so that

- ullet Each morphism has specified **domain** and **codomain** objects; the notation $f:X \to Y$ signifies that f is a morphism with domain X and codomain Y

• For any pair of morphisms f, g with the codomain of f equal to the domain of g, there exists a specified **composite morphism** gf whose domain is equal to the domain of f and whose codomain is equal to the codomain of g, i.e., :

$$f: X \to Y, \quad g: Y \to Z \qquad \leadsto \qquad gf: X \to Z$$

This data is subject to the following two axioms

- ullet For any f:X o Y, the composites 1_Yf and $f1_X$ are both equal to f
- For any composable triple of morphisms f, g, h, the composites h(gf) and (hg)f are equal and hence denoted by hgf.

$$f:X\to Y,\quad g:Y\to Z,\quad h:Z\to W\qquad \rightsquigarrow\qquad hgf:X\to W$$

- **Example 1.1.** 1. For any language \mathcal{L} and any theory T of \mathcal{L} , there is a category \mathbf{MODEL}_T whose objects are models of T. Morphisms is just homomorphisms
 - 2. For a fixed unital but not necessarily commutative ring R, Mod_R is the category of left R-modules and R-modules homomorphisms. This category is denoted by $\operatorname{Vect}_{\Bbbk}$ when the ring happens to be a field \Bbbk and abbreviated as Ab in the case of $\operatorname{Mod}_{\mathbb{Z}}$, as a \mathbb{Z} -module is precisely ab abelian group

Concrete categories are those whose objects have underlying sets and whose morphisms are functions between underlying sets
Abstract categories

- **Example 1.2.** 1. A group defines a category BG with a single object
 - 2. A category is **discrete** if every morphism is an identity

Definition 1.2. A category is **small** if it has only a set's worth of arrows Both $ob(\mathcal{C})$ and $hom(\mathcal{C})$ are sets

Thus it has only a set's worth of objects

Definition 1.3. A category is **locally small** if between any pair of objects there is only a set's worth of morphisms

The set of arrows between a pair of fixed objects in a locally small category is typically called a **hom-set**

Definition 1.4. An **isomorphism** in a category is a morphism $f: X \to Y$ for which there exists a morphism $g: Y \to X$ so that $gf = 1_X$ and $fg = 1_X$, denoted by $X \cong Y$

An **endomorphism** is a morphism whose domain equals its codomain

Definition 1.5. A **groupoid** is a category in which every morphism is an isomorphism

Lemma 1.6. Any category \mathcal{C} contains a **maximal groupoid**, the subcategory containing all of the objects and only those morphisms that are isomorphisms

Exercise 1.1.1. 1. Consider a morphism $f: x \to y$. Show that if there exists a pair of morphisms $g, h: y \rightrightarrows : x$ s.t. $gf = 1_x$ and $fh = 1_y$, then g = h and f is an isomorphism

2. Show that a morphism can have at most one inverse isomorphism

$$\textit{Proof.} \hspace{5mm} \textbf{1.} \hspace{2mm} g = 1_x g = (hf)g = h(fg) = h1_y = h$$

2. From 1

Exercise 1.1.2. For any category \mathcal{C} and any object $c \in \mathcal{C}$, show that

1. There is a category c/\mathcal{C} whose objects are morphisms $f:c\to x$ with domain c in which a morphism from $f:c\to x$ to $g:c\to y$ is a map $h:x\to y$ between the codomains so that the triangle

commutes.

2. There is a category \mathcal{C}/c whose objects are morphisms $f:x\to c$ with codomain c in which a morphism from $f:x\to c$ to $g:y\to c$ is a map $h:x\to y$ between the codomains so that the triangle

commutes

The category c/\mathcal{C} and \mathcal{C}/c are called **slice categories** of \mathcal{C} **under** and **over** c, respectively

1.2 Duality

Definition 1.7. Let \mathcal{C} be any category. The **opposite category** \mathcal{C}^{op} has

- the same objects as in \mathcal{C}
- a morphism f^{op} in \mathcal{C}^{op} for each a morphism f in \mathcal{C} so that the domain of f^{op} is defined to be the codomain of f and the codomain of f^{op} is defined to be the domain of f
- ullet For each object X, the arrow $\mathbf{1}_X^{\mathrm{op}}$ serves as its identity in $\mathcal{C}^{\mathrm{op}}$
- A pair of morphisms $f^{\mathrm{op}}, g^{\mathrm{op}}$ in $\mathcal{C}^{\mathrm{op}}$ is composable precisely when the pair g, f is composable in \mathcal{C} . We then define $g^{\mathrm{op}} \circ f^{\mathrm{op}}$ to be $(f \circ g)^{\mathrm{op}}$: i.e.

$$\mathrm{dom}(f^\mathrm{op}) = \mathrm{cod}(f) = \mathrm{dom}(g) = \mathrm{cod}(g^\mathrm{op})$$

Lemma 1.8. *T.F.A.E.*

- 1. $f: x \rightarrow y$ is an isomorphism
- 2. For all objects $c \in \mathcal{C}$, post-composition with f defines a bijection

$$f_*: \operatorname{Hom}(c, x) \to \operatorname{Hom}(c, y)$$

3. For all objects $c \in \mathcal{C}$, pre-composition with f defines a bijection

$$f^* : \operatorname{Hom}(y, c) \to \operatorname{Hom}(x, c)$$

Lemma 1.8 asserts that isomorphisms in a locally small category are defined *representably* in terms of isomorphisms in the category of sets.

Proof. $2 \to 1$. Let c = y, since f_* in an bijection, there must be an element $g \in \operatorname{Hom}(y,x)$ s.t. $f_*(g) = 1_y$. Hence $fg = 1_y$. Thus $gf, 1_x$ have common image under f_* , thus $gf = 1_x$. Whence f and g are inverse isomorphisms \Box

Definition 1.9. A morphism $f: x \to y$ in a category is

1. a **monomorphism** if for any parallel morphisms $h, k : w \Rightarrow x, fg = fk$ implies that h = k

2. an **epimorphism** if for any parallel morphisms $h, k : w \Rightarrow x$, hf = kf implies that h = k

Also, we can re-express it

- 1. $f:x\to y$ is a monomorphism in $\mathcal C$ iff for all objects $c\in\mathcal C$, $f_*:\operatorname{Hom}(c,x)\to\operatorname{Hom}(c,y)$ is injective
- 2. $f: x \to y$ is an epimorphism in $\mathcal C$ iff for all $c \in \mathcal C$, $f^*: \operatorname{Hom}(y,c) \to \operatorname{Hom}(x,c)$ is injective

Example 1.3. Suppose that $x \stackrel{s}{\to} y \stackrel{r}{\to} x$ are morphisms s.t. $rs = 1_x$. The map s is a **section** or **right inverse** to r, while the map r defines a **retraction** or **left inverse** to s. The maps s and r express the object x as a **retract** of the object y

In this case, s is always a monomorphism and, dually, r is always an epimorphism. To ackowledge the presence of these one-sided inverses, s is said to be a **split monomorphism** and r is said to be a **split epimorphism**

Example 1.4. By the previous example, an isomorphism is necessarily both monic and epic, but the converse need not hold in general. For example, the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$ is both monic and epic in the category \mathbf{Rng} , but this map is not an isomorphism: there are no ring homomorphisms from \mathbb{Q} to \mathbb{Z}

Lemma 1.10. 1. If $f: x \mapsto y$ and $g: y \mapsto z$ are monomorphisms, then so is $gf: x \mapsto z$

- 2. If $f: x \to y$ and $g: y \to z$ are morphisms so that gf is monic, then f is monic Dually
- 1. If $f: x \twoheadrightarrow y$ and $g: y \twoheadrightarrow z$ are epimorphisms, then so is $gf: x \twoheadrightarrow z$
- 2. If $f: x \to y$ and $g: y \to z$ are morphisms so that gf is epic, then g is epic
- Exercise 1.2.1. 1. Show that a morphism $f:x\to y$ is a split epimorphism in a category $\mathcal C$ iff for all $c\in \mathcal C$, the post-composition function $f_*:\operatorname{Hom}(c,x)\to\operatorname{Hom}(c,y)$ is surjective
 - 2. Show that a morphism $f: x \to y$ is a split monomorphism in a category $\mathcal C$ iff for all $c \in \mathcal C$, the post-composition function $f^*: \operatorname{Hom}(y,c) \to \operatorname{Hom}(x,c)$ is surjective

Exercise 1.2.2. Prove that a morphism that is both a monomorphism and a split epimorphism is necessarily an isomorphism. Argue by duality that a split monomorphism that is an epimorphism is also an isomorphism

Proof. Suppose
$$y \stackrel{g}{\to} x \stackrel{f}{\to} y$$
 and $fg = 1_y$, then $fgf = f = f \circ 1_x$. Since f is mono, $gf = 1_x$

1.3 Functoriality

Definition 1.11. A **functor** $F : \mathcal{C} \to \mathcal{D}$, between categories \mathcal{C} and \mathcal{D} , consists of the following data:

- An object $Fc \in \mathcal{D}$, for each objects $c \in \mathcal{C}$
- A morphism $Ff:Fc\to Fc'\in \mathcal{D}$, for each morphism $f:c\to c'\in \mathcal{C}$ Functoriality axioms
- $\bullet \:$ For any composable pair $f,g \in \mathcal{C}$, $Fg \circ Ff = F(g \circ f)$
- For each object $c \in \mathcal{C}$, $F(1_c) = 1_{Fc}$

Definition 1.12. A contravariant functor F from $\mathcal C$ to $\mathcal D$ is a functor $F:\mathcal C^{\mathrm{op}}\to\mathcal D$

- A morphism $Ff:Fc' \to Fc \in \mathcal{D}$ for each morphism $f:c \to c' \in \mathcal{C}$
- For any composable pair $f,g \in \mathcal{C}$, $Ff \circ Fg = F(g \circ f)$

$$\mathcal{C}^{\mathrm{op}} \stackrel{F}{\longrightarrow} \mathcal{D}$$

Lemma 1.13. Functors preserve isomorphisms

Proof. Consider a functor $F:\mathcal{C}\to\mathcal{D}$ and an isomorphism $f:x\to y$ in \mathcal{C} with inverse $g:y\to x$. Then

$$F(g)F(f) = F(gf) = F(\mathbf{1}_x) = \mathbf{1}_{Fx}$$

Thus $Fg: Fy \to Fx$ is a left inverse to $Ff: Fx \to Fy$

Definition 1.14. If \mathcal{C} is locally small, then for any object $c \in \mathcal{C}$ we may define a pair of covariant and contravariant **functors represented by** c:

Post-composition defines a covariant action on hom-sets

Definition 1.15. For any categories \mathcal{C} and \mathcal{D} , there is a category $\mathcal{C} \times \mathcal{D}$, their **product**, whose

- objects are ordered pairs (c,d), where c is an object of $\mathcal C$ and d is an object of $\mathcal D$
- morphisms are ordered pairs $(f,g):(c,d)\to(c',d')$, where $f:c\to c'\in\mathcal{C}$ and $g:d\to d'\in\mathcal{D}$ and
- in which composition and identities are defined componentwise

Definition 1.16. If $\mathcal C$ is locally small, then there is a **two-sided represented** functor

$$\mathcal{C}(-,-):\mathcal{C}^{\mathrm{op}}\times\mathcal{C}\to\mathbf{Sets}$$

A pair of objects (x,y) is mapped to the hom-set Hom(x,y). A pair of morphisms $f:w\to x$ and $h:y\to z$ is sent to the function

$$\operatorname{Hom}(x,y) \xrightarrow{(f^*,h_*)} \operatorname{Hom}(w,z)$$

$$g \longmapsto hgf$$

An **isomorphism of categories** is given by a pair of inverse functors $F:\mathcal{C}\to\mathcal{D}$ and $G:\mathcal{D}\to\mathcal{C}$ s.t. the composites Gf and FG, respectively, equal the identity functors on \mathcal{C} and \mathcal{D}

1.4 Naturality

Definition 1.17. Given categories \mathcal{C} and \mathcal{D} and functors $F,G:\mathcal{C}\Rightarrow\mathcal{D}$, a **natural transformation** $\alpha:F\Rightarrow G$ consists of

• an arrow $\alpha_c: Fc \to Gc$ in $\mathcal D$ for each object $c \in \mathcal C$, the collection of which define the **components** of the natural transformation s.t. for any morphism $f: c \to c'$ in $\mathcal C$, the following square of morphisms in $\mathcal D$

$$\begin{array}{ccc} Fc & \stackrel{\alpha_c}{-\!\!\!-\!\!\!-\!\!\!-} & Gc \\ Ff \!\!\!\! \downarrow & & \downarrow Gf \\ Fc' & \stackrel{\alpha_{c'}}{-\!\!\!\!-\!\!\!\!-} & Gc' \end{array}$$

commutes

A **natural isomorphism** is a natural transformation $\alpha:F\Rightarrow G$ in which every component α_c is an isomorphism. In this case, the natural isomorphism may be depicted as $\alpha:F\cong G$

$$A \qquad \qquad A \qquad \qquad B$$

Example 1.5. Consider morphism $f: w \to x$ and $h: y \to z$ in a locally small category C. Post-composition by h and pre-composition by f define functions between hom-sets

$$\begin{array}{ccc} C(x,y) & \stackrel{h \circ -}{\longrightarrow} & C(x,z) \\ & & \downarrow^{-\circ f} & & \downarrow^{-\circ f} \\ C(w,y) & \stackrel{h \circ -}{\longrightarrow} & C(w,z) \end{array}$$

 $h\circ -$ is denoted by h_* and $-\circ f$ is denoted by f^* . By interpreting the horizontal arrows as the image of h under the actions of the functors C(x,-) and C(w,-), the square demonstrates that there is a natural transformation

$$f^*: C(x, -) \Rightarrow C(w, -)$$

Exercise 1.4.1. Given a pair of functors $F : \mathbf{A} \times \mathbf{B} \times \mathbf{B}^{\mathrm{op}} \to \mathbf{D}$ and $G : \mathbf{A} \times \mathbf{C} \times \mathbf{C}^{\mathrm{op}} \to \mathbf{D}$, a family of morphisms

$$\alpha_{a,b,c}:F(a,b,b)\to G(a,c,c)$$

in **D** defines the components of an **extranatural transformation** $\alpha: F \Rightarrow G$ if for any $f: a \rightarrow a'$, $g: b \rightarrow b'$ and $h: c \rightarrow c'$ the following diagram commutes

1.5 Equivalence of categories

Let $\mathbb 1$ denote the discrete category with a single object and let 2 denote the category with two objects $0,1\in 2$ and a single non-identity arrow $0\to 1$. There are two evident functors $i_0,i_1:\mathbb 1\Rightarrow 2$ whose subscripts designate the objects in their image

Lemma 1.18. Fixing a parallel pair of functors $F, G: C \Rightarrow D$, natural transformations $\alpha: F \Rightarrow G$ correspond bijectively to functors $H: C \times 2 \rightarrow D$ s.t. H restricts along i_0 and i_1 to the functors F, G, i.e., so that

commutes

Hence i_0 denotes the functor defined on objects by $c \mapsto (c,0)$

Definition 1.19. An **equivalence of categories** consists of functors $F: \mathbf{C} \hookrightarrow \mathbf{D}: G$ together with natural isomorphisms $\eta: 1_{\mathbf{C}} \cong GF, \epsilon: FG \cong 1_{\mathbf{D}}$. Categories \mathbf{C} and \mathbf{D} are **equivalent**, written $\mathbf{C} \simeq \mathbf{D}$, if there exists an equivalence between them

Lemma 1.20. *If* $C \simeq D$ *and* $D \simeq E$ *, then* $C \simeq E$

Definition 1.21. A functor $F : \mathbf{C} \to \mathbf{D}$ is

- **full** if for each $x, y \in \mathbb{C}$, the map $\mathbb{C}(x, y) \to \mathbb{D}(Fx, Fy)$ is surjective
- **faithful** if for each $x, y \in \mathbb{C}$, the map $\mathbb{C}(x, y) \to \mathbb{D}(Fx, Fy)$ is injective

• essentially surjective on objects if for every object $d \in \mathbf{D}$ there is $c \in \mathbb{C}$ s.t. d is isomorphic to Fc

Lemma 1.22. Any morphism $f: a \to b$ and fixed isomorphism $a \cong a'$ and $b \cong b'$ determine a unique morphism $f': a' \to b'$ so that any of - or, equivalently, all of - the following four diagrams commutes

Theorem 1.23 (characterizing equivalences of categories). *A functor defining an equivalence of categories is full, faithful and essentially surjective on objects. Assuming the axiom of choice, any functor with these properties defines an equivalence of categories*

Proof. First suppose that $F: \mathbf{C} \leftrightarrows \mathbf{D}: G$, $\eta: 1_{\mathbf{C}} \cong GF$ and $\epsilon: FG \cong 1_{\mathbf{D}}$ define an equivalence of categories. For any $d \in \mathbf{D}$, the component of the natural isomorphism $\epsilon_d: FGd \cong d$ demonstrates that F is essentially surjective. Consider a parallel pair $f,g:c \rightrightarrows c'$ in \mathbf{C} . If Ff=Fg, then both f and g define an arrow $c \to c'$ making the diagram

$$\begin{array}{ccc}
c & \xrightarrow{\eta_c} & GFc \\
f \text{ or } g & GFf = GFg \\
& & \downarrow & \downarrow \\
c' & \xrightarrow{cong} & GFc'
\end{array}$$

that expresses the naturality of η commute. Lemma implies that there is a unique arrow $c \to c'$ with this property, whence f = g. Thus F is faithful and by symmetry, so is G. Given $k: Fc \to Fc'$, by Lemma 1.22, Gk and the isomorphism η_c and $\eta_{c'}$ define a unique $h: c \to c'$ for which both Gk and GFh make the diagram

$$\begin{array}{ccc} c & \xrightarrow{\eta_c} & GFc \\ \downarrow & & & Gk \text{ or } GFh \\ \downarrow & & & \downarrow \\ c' & \xrightarrow{\cong} & GFc' \end{array}$$

commute. By Lemma 1.22, GFh = Gk

For the converse, suppose now that $F: \mathbf{C} \to \mathbf{D}$ is full, faithful and essentially surjective on objects. Using essential surjectivity and the axiom of choice, choose, for each $d \in \mathbf{D}$, an object $Gd \in \mathbf{C}$ and an isomorphism

 $\epsilon_d: FGd \cong d.$ For each $l: d \to d'$, Lemma 1.22 defines a unique morphism making the square

$$FGd \xrightarrow{\epsilon_d} d$$

$$\downarrow \qquad \qquad \downarrow l$$

$$FGd' \xrightarrow{\cong} d'$$

commute. Since F is fully faithful, there is a unque morphism $Gd \to G'$ with this image under F, which we define to be Gl.

A category is **connected** if any pair of objects can be connected by a finite zig-zag of morphisms

Proposition 1.24. Any connected groupoid is equivalent, as a category, to the automorphism group of any of its objects.

Proof. Choose any object g of a connected groupoid \mathbf{G} and let $G = \mathbf{G}(g,g)$ denote its automorphism group. The inclusion $\mathbf{B} \, G \hookrightarrow \mathbf{G}$ mapping the unique object of $\mathbf{B} \, G$ to $g \in \mathbf{G}$ is full and faithful, by definition, and essentially surjective, since \mathbf{G} was assumed to be connected. Apply Theorem 1.23

Definition 1.25. A category **C** is **skeletal** if it contains just one object in each isomorphism class. The **skeleton** sk **C** of a category **C** is the unique skeletal category that is equivalent to **C**

1.6 The art of the diagram chase

Definition 1.26. A **monoid** is an object $M \in \mathbf{Sets}$ together with a pair of morphisms $\mu: M \times M \to M$ and $\eta: 1 \to M$ so that the following diagrams commute:

 μ defines a binary "multiplication" operation on M. η identifies an element $\eta \in M$

Definition 1.27. A **diagram** in a category C is a functor $F : J \to C$ whose domain, the **indexing category**, is a small category

Lemma 1.28. Functors preserve commutative diagrams

Lemma 1.29. Suppose f_1, \ldots, f_n is a composable sequence - a "path" - of morphisms in a category. If the composite $f_k f_{k-1} \ldots f_{i+1} f_i$ equals $g_m \cdots g_1$, for another composable sequence of morphisms g_1, \ldots, g_m , then $f_n \cdots f_1 = f_n \cdots f_{k+1} g_m \cdots g_1 f_{i-1} \cdots f_1$

Lemma 1.30. For any commutative square $\beta\alpha=\delta\gamma$ in which each of the morphisms is an isomorphism, then the inverses define a commutative square $\alpha^{-1}\beta^{-1}=\gamma^{-1}\delta^{-1}$

Definition 1.31. An object $i \in \mathbf{C}$ is **initial** if for every $c \in \mathbf{C}$ there is a unique morphism $i \to c$. Dually, an object $t \in \mathbf{C}$ is **terminal** if for every $c \in \mathbf{C}$ there is a unique morphism $c \to t$

Lemma 1.32. Let f_1, \ldots, f_n and g_1, \ldots, g_m be composable sequences of morphisms so that the domain of f_1 equals the domain of g_1 and the codomain of f_n equals the codomain of g_m . If this common codomain is a terminal object, or if this common domain is an initial object, then $f_n \cdots f_1 = g_m \cdots g_1$

Definition 1.33. A **concrete category** is a category C equipped with a faithful functor $U : C \rightarrow \mathbf{Sets}$

Lemma 1.34. If $U: C \to D$ is faithful, then any diagram in C whose image commutes in D also commutes in C

Lemma 1.35. *Consider morphisms with the induced sources and targets*

and suppose that the outer rectangle commutes. This data defines a commutative rectangle if either

- 1. the right-hand square commutes and m is a monomorphism
- 2. the left-hand square commutes and f is an epimorphism

1.7 The 2-category of categories

For any fixed pair of categories C and D, there is a **functor category** D^C whose objects are functors $C \to D$ and whose morphisms are natural transformations.

Lemma 1.36 (vertical composition). Suppose $\alpha: F \Rightarrow G$ and $\beta: G \Rightarrow H$ are natural transformations between parallel functors $F, G, H: \mathbf{C} \to \mathbf{D}$. Then there is a natural transformation $\beta \cdot \alpha: F \Rightarrow H$ whose composites

$$(\beta \cdot \alpha)_c := \beta_c \cdot \alpha_c$$

are defined to be the composites of the components of α and β

$$\begin{array}{ccc} Fc & \xrightarrow{\alpha_c} & Gc & \xrightarrow{\beta_c} & Hc \\ Proof. & & \downarrow_{Ff} & & \downarrow_{Gf} & & \downarrow_{Hf} \\ & & Fc' & \xrightarrow{\alpha_{c'}} & Gc' & \xrightarrow{\beta_{c'}} & Hc' \end{array}$$

Corollary 1.37. For any pair of categories C and D, the functors from C to D and natural transformations between them define a category D^C

The composition operation defined in Lemma 1.36 is called **vertical composition**. Drawing the parallel functors horizontally, a composable pair of natural transformations in the category $\mathbf{D}^{\mathbf{C}}$ fits into a **pasting diagram**

$$\begin{array}{cccc}
& F & & F \\
& & & \downarrow & \alpha & \downarrow \\
& G & \rightarrow & D & = & C & \downarrow & \beta \cdot \alpha & D \\
& & & \downarrow & \beta & \nearrow & & H
\end{array}$$

There is also a horizontal composition operation defined by the follow-

ing lemma

Lemma 1.38 (horizontal composition). Given a pair of natural transformations there is a natural transformation $\beta * \alpha : HF \Rightarrow KG$ whose component at $c \in C$ is defined as the composite of the following commutative square

$$\begin{array}{c} HFc \xrightarrow{\beta_{F_c}} KFc \\ H\alpha_c \downarrow & (\beta*\alpha)_c & \downarrow K\alpha_c \\ HGc \xrightarrow{\beta_{G_c}} KGc \end{array}$$

$$\begin{array}{ccc} HFc \xrightarrow{H\alpha_{c}} HGc \xrightarrow{\beta_{Gc}} KGc \\ HFf \downarrow & HGf \downarrow & \downarrow KGf \\ HFc' \xrightarrow{H\alpha_{c'}} HGc' \xrightarrow{\beta_{Gc'}} KGc' \end{array}$$

Proof.

Lemma 1.39 (middle four interchange). *Given functors and natural transformations*

$$\begin{array}{c|c} F & J \\ \hline \downarrow \alpha & \downarrow \gamma \\ \hline C & G \to D & K \to E \\ \hline \downarrow \beta & \downarrow \delta \\ H & L \end{array}$$

the natural transformation $JF \Rightarrow LH$ defined by first composing vertically and then composing horizontally equals the natural transformation defined by first composing horizontally and then composing vertically

Definition 1.40. A **2-category** is comprised of

- objects, e.g., the categories C
- 1-morphisms between pairs of objects, e.g., the functors $\mathbf{C} \xrightarrow{F} \mathbf{D}$

• 2-morphisms between parallel pairs of 1-morphisms, e.g., the natural transformations

so that

- the objects and 1-morphisms form a category, with identities $1_{\mathbf{C}}:\mathbf{C}\to\mathbf{C}$
- For each fixed pair of objects C and D, the 1-morphisms $F: C \to D$ and 2-morphisms between such form a category under an operation called vertical composition
- There is also a category whose objects are the objects in which a morphism from **C** to **D** is a 2-cell

2 TODO CHECK

1.38