

CMOS ANALOG MULTIPLEXERS/DEMULTIPLEXERS

FEATURES

- ◆ Wide Range of Digital and Analog Signal Levels:
Digital-3 to 15V, Analog-to 15V_{p-p}
- ◆ Low ON-Resistance: 80Ω (typ.) over entire 15V_{p-p} Signal-Input Range for V_{DD}-V_{EE} = 15V
- ◆ High OFF-Resistance: Input Leakage ± 10pA (typ) @ V_{DD}-V_{EE} = 10V
- ◆ Logic-Level Conversion for Digital Addressing Signals of 3 to 15V (V_{DD}-V_{SS}= 3V to 15V) to Switch Analog Signals to 15V_{p-p} (V_{DD}-V_{EE} = 15V)
- ◆ Matched Switch Characteristics: ΔR_{ON} = 5Ω (typ.) for V_{DD}-V_{EE} = 18V
- ◆ Very Low Quiescent Power Dissipation under all Digital Control Input and Supply Conditions: 1μW typ. @ V_{DD}-V_{SS} = V_{DD}-V_{EE} = 10V
- ◆ Binary Address Decoding on Chip

DESCRIPTION

The 4051B, 4052B, and 4053B are Digitally-Controlled Analog Switches having low ON-impedance and very low OFF leakage current. Control of analog signals up to 15V_{p-p} can be achieved by digital signal amplitudes of 3 to 15V. For example, if V_{DD} = +5V, V_{SS} = 0V, and V_{EE} = -5V, analog signals from -5V to +5V can be controlled by digital inputs of 0 to 5V. The multiplexer circuits dissipate extremely low quiescent power over the full V_{DD} - V_{SS} and V_{DD} - V_{EE} supply-voltage ranges, independent of the logic state of the control signals. When a logic "1" is present at the Inhibit input terminal all channels are OFF.

4051B is a Single 8-Channel Multiplexer having three binary Control inputs, A, B, and C, and an Inhibit input. The three binary signals select 1 of 8 channels to be turned ON and connect the input to the output.

4052B is a Differential 4-Channel Multiplexer having two binary Control inputs, A and B, and an Inhibit input. The two binary input signals select 1 of 4 pairs of channels to be turned on and connect the differential analog inputs to the differential outputs.

4053B is a Triple 4-Channel Multiplexer having three separate digital Control inputs, A, B, and C and an Inhibit input. Each control input selects one of a pair of channels which are connected in a single-pole double-throw configuration.

When the devices are used as demultiplexers, the "CHANNEL IN/OUT" terminals are the outputs and the "COMMON OUT/IN" terminal(s) is (are) the input(s).

RECOMMENDED OPERATING CONDITIONS

For maximum reliability:

DC Supply Voltage V_{DD} - V_{SS} 3 to 15 Vdc
 V_{DD} - V_{EE} 3 to 15 Vdc

Operating Temperature T_A
C, D, F, H Device -55 to +125 °C
E Device -40 to +85 °C

NOTE: There are no restrictions on the relative magnitudes of V_{SS} and V_{EE}, providing Absolute Maximum Ratings are observed.

LOGIC DIAGRAMS

TRUTH TABLE

INPUT STATES				"ON" CHANNELS		
INHIBIT	C	B	A	4051	4052	4053
0	0	0	0	0	O _x , O _y	c _x , b _x , a _x
0	0	0	1	1	1 _x , 1 _y	c _x , b _x , a _y
0	0	1	0	2	2 _x , 2 _y	c _x , b _y , a _x
0	0	1	1	3	3 _x , 3 _y	c _x , b _y , a _y
0	1	0	0	4		c _y , b _x , a _x
0	1	0	1	5		c _y , b _x , a _y
0	1	1	0	6		c _y , b _y , a _x
0	1	1	1	7		c _y , b _y , a _y
1	*	*	*	NONE	NONE	NONE

* = Don't care

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS¹

PARAMETER		CONDITIONS	V_{SS} (Vdc)	V_{DD} (Vdc)	V_{EE} (Vdc)	T_{LOW}^2		$+25^\circ C$			T_{HIGH}^2		Units
						Min.	Max.	Min.	Typ.	Max.	Min.	Max.	
QUIESCENT DEVICE CURRENT	I_{DD}	$V_{IN}=V_{SS}$ or V_{DD} All valid input combinations	0	+5	0	—	5	—	0.05	5	—	150	$\mu A/dc$
			0	+10	0	—	10	—	0.1	10	—	300	
			+5	-5									
			0	+15	0	—	20	—	0.2	20	—	600	
			+7.5	-7.5									
MINIMUM INPUT HIGH VOLTAGE (Control and Inhibit Inputs)	V_{IH}	$V_{is}=V_{EE}$ $V_{os}=V_{DD}$ $I_{os}=10\mu A$	0	5	0	—	3.5	—	2.75	3.5	—	3.5	Vdc
			0	10	0	—	7.0	—	5.5	7.0	—	7.0	
			0	15	0	—	11.0	—	8.25	11.0	—	11.0	
MAXIMUM INPUT LOW VOLTAGE (Control and Inhibit Inputs)	V_{IL}	$V_{is}=V_{EE}$ $V_{os}=V_{DD}$ $I_{os}=10\mu A$	0	5	0	1.5	—	1.5	2.25	—	1.5	—	Vdc
			0	10	0	3.0	—	3.0	4.5	—	3.0	—	
			0	15	0	4.0	—	4.0	6.75	—	4.0	—	
SWITCH INPUT/ OUTPUT LEAKAGE	I_{OFF}	$V_{IN}=V_{SS}$ or V_{DD} $V_{is}=\pm 7.5Vdc$	0	+7.5	-7.5	—	± 100	—	± 0.01	± 100	—	± 1000	nAdc
Any channel OFF	I_{OFF}	$I_{inh} = 7.5Vdc$ $V_{is} = \pm 7.5Vdc$ 4051B	0	+7.5	-7.5	—	± 400	—	± 0.08	± 400	—	± 1000	nAdc
ON-RESISTANCE	R_{ON}	$V_{IN}=V_{SS}$ or V_{DD} $V_{EE} \leq V_{is} \leq V_{DD}$ $R_L = 10k\Omega$	-7.5	+7.5	-7.5	—	220	—	125	280	—	400	Ω
ON-RESISTANCE MATCH (Same Package)	ΔR_{ON}	$V_{IN}=V_{SS}$ or V_{DD} $V_{EE} \leq V_{is} \leq V_{DD}$ $R_L = 10k\Omega$	-7.5	+7.5	-7.5	—	310	—	180	400	—	590	Ω

NOTES: ¹ Remaining Static Characteristics are listed under "4000B Series Family Specifications".

² In certain applications, the external load-resistor current may include both V_{DD} and signal-line components. To avoid drawing V_{DD} current when switch current flows into terminals 1, 4, 8, or 11, the voltage drop across the bidirectional switch must not exceed 0.8 volt (calculated from R_{ON} values shown).

No V_{DD} current will flow through R_L if the switch current flows into terminals 2, 3, 9, or 10. Failure to observe this condition may result in distortion of the signal.

SCL4051B, SCL4052B, SCL4053B
ELECTRICAL CHARACTERISTICS (Continued)

DYNAMIC CHARACTERISTICS ($C_L = 50\text{pF}$, $T_A = 25^\circ\text{C}$)

PARAMETER	CONDITIONS	V_{SS} (Vdc)	V_{DD} (Vdc)	V_{EE} (Vdc)	Min.	Typ.	Max.	Units
SIGNAL INPUTS (V_{is}) AND OUTPUTS (V_{os})								
PROPAGATION DELAY TIME Signal Input to Signal Output	t_{PLH} t_{PHL}	Inh = V_{SS} $V_{IN} = V_{SS}$ or V_{DD} V_{is} = Square Wave $R_L = 10\text{k}\Omega$	0 0 0	5 10 15	0 0 0	- - -	30 15 12.5	60 30 25
BANDWIDTH (-3dB) (Sine Wave)	BW	Inh = V_{SS} $V_{IN} = V_{SS}$ or V_{DD} $V_{is} = 5V_{pp}$ centered @ 0.0Vdc	R_L $1\text{k}\Omega$ $10\text{k}\Omega$ $100\text{k}\Omega$ $1\text{M}\Omega$	0	+5	-5	- 54 40 38 37	- - - -
INSERTION LOSS (= $20 \log_{10} \frac{V_{os}}{V_{is}}$)		Inh = V_{SS} $V_{IN} = V_{SS}$ or V_{DD} $V_{is} = 5V_{pp}$ centered @ 0.0Vdc	R_L $1\text{k}\Omega$ $10\text{k}\Omega$ $100\text{k}\Omega$ $1\text{M}\Omega$	0	+5	-5	- 2.3 0.2 0.1 0.05	- - - -
SIGNAL DISTORTION (Sine Wave)		Inh = V_{SS} $V_{IN} = V_{SS}$ or V_{DD} $V_{is} = 5V_{pp}$ centered @ 0.0Vdc $f_s = 1.0\text{kHz}$ $R_L = 10\text{k}\Omega$	-7.5 -5 -2.5	+7.5 +5 +2.5	-7.5 -5 -2.5	- - -	0.1 0.2 1.0	- - -
FEEDTHROUGH (-40dB)		Inh = V_{SS} $V_{IN} = V_{SS}$ or V_{DD} $V_{is} = 5V_{pp}$ centered @ 0.0Vdc	R_L $1\text{k}\Omega$ $10\text{k}\Omega$ $100\text{k}\Omega$ $1\text{M}\Omega$	0	+5	-5	- 1250 140 18 2	- - - -
CROSSTALK (-40dB) Between two switches		Inh = V_{SS} $V_{IN} = V_{SS}$ or V_{DD} $V_{is} = 5V_{pp}$ centered @ 0.0Vdc $R_L = 1.0\text{k}\Omega$		0	+5	-5	- 1.0	- MHz
CAPACITANCE Input	C_{is}	Inh = V_{DD}		0	+5	-5	- 5	- pF
Common	C_{os}	4051B 4052B 4053B		0	+5	-5	- 30 18 10	- - -
Feedthrough	C_{ios}			0	+5	-5	- 0.2	- pF
CONTROL INPUTS								
PROPAGATION DELAY TIME ¹ Turn on	t_{PLH} t_{PHL}	Inh = V_{SS} $V_{EE} \leq V_{IN} \leq V_{DD}$ $R_L = 10\text{k}\Omega$	0 0 0 0 -2.5 0	+7.5 +15 +5 +10 +2.5 +5	-7.5 0 -5 0 -2.5 0	- - - - - -	160 120 225 160 400 360	320 240 450 320 800 720
INHIBIT INPUT								
PROPAGATION DELAY TIME Turn on	t_{PLH} t_{PHL}	$V_{IN} = V_{SS}$ or V_{DD} $V_{is} = V_{DD}$ $R_L = 10\text{k}\Omega$	0 0 0 0 -2.5 0	+7.5 +15 +5 +10 +2.5 +5	-7.5 0 -5 0 -2.5 0	- - - - - -	160 120 200 160 400 360	320 240 400 320 800 720
INHIBIT RECOVERY TIME ²	t_{rel}	$V_{IN} = V_{SS}$ or V_{DD} $V_{EE} \leq V_{IN} \leq V_{DD}$ $R_L = 10\text{k}\Omega$	0 0 0 0 -2.5 0	+7.5 +15 +5 +10 +2.5 +5	-7.5 0 -5 0 -2.5 0	- - - - - -	150 80 200 105 300 225	300 160 400 210 600 450

Notes: ¹ Channel Overlap time - interval following change of control input during which two channels may be ON simultaneously.

² Interval following removal of Inhibit during which channel information is invalid.

Typical Channel "ON" resistance vs. signal voltage

Typical "ON" characteristics

Typ. switch frequency response - switch "ON"

Typ. feedthru vs. freq. - switch "OFF"

Typ. crosstalk between switch circuits in the same package

