# COMP2610 / COMP6261 Information Theory Lecture 12: The Source Coding Theorem

#### Thushara Abhayapala

Audio & Acoustic Signal Processing Group School of Engineering, College of Engineering & Computer Science The Australian National University, Canberra, Australia.

Acknowledgement: These slides were originally developed by Professor Robert C. Williamson.



#### Last time

Basic goal of compression

Key concepts: codes and their types, raw bit content, essential bit content

Informal statement of source coding theorem

## A General Communication Game (Recap)

Data compression is the process of replacing a message with a smaller message which can be reliably converted back to the original.

 Want small messages on average when outcomes are from a fixed, known, but uncertain source (e.g., coin flips with known bias)



## Definitions (Recap)

#### Source Code

Given an ensemble X, the function  $c: \mathcal{A}_X \to \mathcal{B}$  is a **source code** for X. The number of symbols in c(x) is the **length** I(x) of the codeword for x.

The **extension** of *c* is defined by  $c(x_1 ... x_n) = c(x_1) ... c(x_n)$ 

## Definitions (Recap)

#### Source Code

Given an ensemble X, the function  $c: A_X \to \mathcal{B}$  is a **source code** for X. The number of symbols in c(x) is the **length** I(x) of the codeword for x. The **extension** of c is defined by  $c(x_1 \dots x_n) = c(x_1) \dots c(x_n)$ 

#### Smallest $\delta$ -sufficient subset

Let X be an ensemble and for  $\delta \geq 0$  define  $S_{\delta}$  to be the smallest subset of  $\mathcal{A}_X$  such that

$$P(x \in S_{\delta}) \ge 1 - \delta$$

# Definitions (Recap)

#### Source Code

Given an ensemble X, the function  $c: \mathcal{A}_X \to \mathcal{B}$  is a **source code** for X. The number of symbols in c(x) is the **length** l(x) of the codeword for x.

The **extension** of c is defined by  $c(x_1 ... x_n) = c(x_1) ... c(x_n)$ 

#### Smallest $\delta$ -sufficient subset

Let X be an ensemble and for  $\delta \geq 0$  define  $S_{\delta}$  to be the smallest subset of  $\mathcal{A}_X$  such that

$$P(x \in S_{\delta}) \ge 1 - \delta$$

#### **Essential Bit Content**

Let *X* be an ensemble then for  $\delta \geq 0$  the **essential bit content** of *X* is

$$H_{\delta}(X) \stackrel{\mathsf{def}}{=} \log_2 |\mathcal{S}_{\delta}|$$

Intuitively, construct  $S_\delta$  by removing elements of X in ascending order of probability, till we have reached the  $1-\delta$  threshold

| X | $P(\mathbf{x})$ |
|---|-----------------|
| а | 1/4             |
| b | 1/4             |
| С | 1/4             |
| d | 3/16            |
| е | 1/64            |
| f | 1/64            |
| g | 1/64            |
| h | 1/64            |
|   |                 |

• Outcomes ranked (high - low) by  $P(x=a_i)$  removed to make set  $S_\delta$  with  $P(x \in S_\delta) \ge 1 - \delta$ 

$$\delta = \mathbf{0} \, : \mathsf{S}_{\delta} = \{\mathsf{a} \mbox{ ,b, c, d, e, f, g, h}\}$$

Intuitively, construct  $S_\delta$  by removing elements of X in ascending order of probability, till we have reached the  $1-\delta$  threshold

| X | $P(\mathbf{x})$ |
|---|-----------------|
| a | 1/4             |
| b | 1/4             |
| С | 1/4             |
| d | 3/16            |
| е | 1/64            |
| f | 1/64            |
| g | 1/64            |
|   |                 |

• Outcomes ranked (high - low) by  $P(x = a_i)$  removed to make set  $S_\delta$  with  $P(x \in S_\delta) \ge 1 - \delta$ 

$$\delta=0\,:\mathsf{S}_{\delta}=\{\mathsf{a}\text{ ,b, c, d, e, f, g, h}\}$$
 
$$\delta=1/64\,:\mathsf{S}_{\delta}=\{\mathsf{a}\text{ ,b, c, d, e, f, g}\}$$

Intuitively, construct  $S_\delta$  by removing elements of X in ascending order of probability, till we have reached the  $1-\delta$  threshold

| X | $P(\mathbf{x})$ |
|---|-----------------|
| а | 1/4             |
| b | 1/4             |
| С | 1/4             |
| d | 3/16            |

• Outcomes ranked (high - low) by  $P(x=a_i)$  removed to make set  $S_\delta$  with  $P(x \in S_\delta) \ge 1 - \delta$ 

$$\begin{split} \delta &= 0 \, : \mathsf{S}_{\delta} = \{ \mathsf{a} \text{ ,b, c, d, e, f, g, h} \} \\ \delta &= 1/64 \, : \mathsf{S}_{\delta} = \{ \mathsf{a} \text{ ,b, c, d, e, f, g} \} \\ \delta &= 1/16 \, : \mathsf{S}_{\delta} = \{ \mathsf{a} \text{ ,b, c, d} \} \end{split}$$

Intuitively, construct  $S_{\delta}$  by removing elements of X in ascending order of probability, till we have reached the  $1-\delta$  threshold

| X | $P(\mathbf{x})$ |
|---|-----------------|
| а | 1/4             |

• Outcomes ranked (high - low) by  $P(x = a_i)$  removed to make set  $S_\delta$  with  $P(x \in S_\delta) \ge 1 - \delta$ 

$$\begin{split} \delta &= 0 \, : \mathsf{S}_{\delta} = \{\mathsf{a} \text{ ,b, c, d, e, f, g, h}\} \\ \delta &= 1/64 \, : \mathsf{S}_{\delta} = \{\mathsf{a} \text{ ,b, c, d, e, f, g}\} \\ \delta &= 1/16 \, : \mathsf{S}_{\delta} = \{\mathsf{a} \text{ ,b, c, d}\} \\ \delta &= 3/4 \, : \mathsf{S}_{\delta} = \{\mathsf{a}\} \end{split}$$

# Lossy Coding (Recap)

Consider a coin with P(Heads) = 0.9

If we are happy to fail on up to 2% of the sequences we can ignore any sequence of 10 outcomes with more than 3 tails

There are only  $176 < 2^8$  sequences with 3 or fewer tails

So, we can just code those, and **ignore** the rest!

 Coding 10 outcomes with 2% failure doable with 8 bits, or 0.8 bits/outcome

P(h) = 0.9, P(t) = 0.1Seguence Size N=10 on number of sequences = 210 = 1024 We want to consider most probable sequence (ignore some quences that are cuss probable) What happen if we ignore sequences with more than 3 tails p (i.e consider the ones with o'ts its its Number of sequences and the tails =  $\begin{pmatrix} 10 \\ 0 \end{pmatrix}$  $=\frac{10!}{10!0!}=1$ # of Sequences with 1 thil =  $(10) = \frac{10!}{9!} = 10$ # of n with 2 tails = (10) =  $\frac{10!}{8!2!} = \frac{10\times 9}{2} = 45$ # of n with 3 tails = (10) =  $\frac{10!}{8!2!} = \frac{10\times 9}{2} = 45$ = 1+10+45+120

Prob. of having these 17th segments  $= 1 \times (0.9) + 10 \times (0.9) \times 0.1 + 45 \times (0.9) \times (0.1) + 120(0.9)(0.1)$   $\approx 0.987 \approx 98\%$ 

### This time

Recap: typical sets

Formal statement of source coding theorem

Proof of source coding theorem

(Theorem 4.1 in MacKay)

Our aim this week is to understand this:

## The Source Coding Theorem

Let X be an ensemble with entropy H=H(X) bits. Given  $\epsilon>0$  and  $0<\delta<1$ , there exists a positive integer  $N_0$  such that for all  $N>N_0$ 

$$\left|\frac{1}{N}H_{\delta}\left(X^{N}\right)-H\right|<\epsilon.$$

N

- •
- •
- •
- •

(Theorem 4.1 in MacKay)

Our aim this week is to understand this:

## The Source Coding Theorem

Let X be an ensemble with entropy H=H(X) bits. Given  $\epsilon>0$  and  $0<\delta<1$ , there exists a positive integer  $N_0$  such that for all  $N>N_0$ 

$$\left|\frac{1}{N}H_{\delta}\left(X^{N}\right)-H\right|<\epsilon.$$

- Given outcomes drawn from X . . .
- •
- •
- $\overline{N}$

(Theorem 4.1 in MacKay)

Our aim this week is to understand this:

## The Source Coding Theorem

Let X be an ensemble with entropy H=H(X) bits. Given  $\epsilon>0$  and  $0<\delta<1$ , there exists a positive integer  $N_0$  such that for all  $N>N_0$ 

$$\left|\frac{1}{N}H_{\delta}\left(X^{N}\right)-H\right|<\epsilon.$$

- Given outcomes drawn from X . . .
- ullet . . . no matter what *reliability* 1  $-\delta$  and *tolerance*  $\epsilon$  you choose . . . . .
- •
- $\overline{N}$

(Theorem 4.1 in MacKay)

Our aim this week is to understand this:

### The Source Coding Theorem

Let X be an ensemble with entropy H=H(X) bits. Given  $\epsilon>0$  and  $0<\delta<1$ , there exists a positive integer  $N_0$  such that for all  $N>N_0$ 

$$\left|\frac{1}{N}H_{\delta}\left(X^{N}\right)-H\right|<\epsilon.$$

- Given outcomes drawn from X . . .
- ullet ... no matter what *reliability* 1  $-\delta$  and *tolerance*  $\epsilon$  you choose ...
- ... there is always a length  $N_0$  so sequences  $X^N$  longer than this ...
- · · ·

(Theorem 4.1 in MacKay)

Our aim this week is to understand this:

### The Source Coding Theorem

Let X be an ensemble with entropy H=H(X) bits. Given  $\epsilon>0$  and  $0<\delta<1$ , there exists a positive integer  $N_0$  such that for all  $N>N_0$ 

$$\left|\frac{1}{N}H_{\delta}\left(X^{N}\right)-H\right|<\epsilon.$$

- Given outcomes drawn from X . . .
- ullet ... no matter what *reliability* 1  $-\delta$  and *tolerance*  $\epsilon$  you choose ...
- ... there is always a length  $N_0$  so sequences  $X^N$  longer than this ...
- ... have an average essential bit content  $\frac{1}{N}H_{\delta}(X^N)$  within  $\epsilon$  of H(X)

(Theorem 4.1 in MacKay)

Our aim this week is to understand this:

## The Source Coding Theorem

Let X be an ensemble with entropy H=H(X) bits. Given  $\epsilon>0$  and  $0<\delta<1$ , there exists a positive integer  $N_0$  such that for all  $N>N_0$ 

$$\left|\frac{1}{N}H_{\delta}\left(X^{N}\right)-H\right|<\epsilon.$$

#### In English:

- Given outcomes drawn from X . . .
- ullet ... no matter what *reliability* 1  $-\delta$  and *tolerance*  $\epsilon$  you choose ...
- ullet ... there is always a length  $N_0$  so sequences  $X^N$  longer than this ...
- ... have an average essential bit content  $\frac{1}{N}H_{\delta}(X^N)$  within  $\epsilon$  of H(X)

 $H_{\delta}(X^N)$  measures the *fewest* number of bits needed to uniformly code *smallest* set of *N*-outcome sequence  $S_{\delta}$  with  $P(x \in S_{\delta}) \ge 1 - \delta$ .

- Introduction
  - Quick Review
- Extended Ensembles
  - Defintion and Properties
  - Essential Bit Content
  - The Asymptotic Equipartition Property
- The Source Coding Theorem
  - Typical Sets
  - Statement of the Theorem

Instead of coding single outcomes, we now consider coding blocks and sequences of blocks

#### Example (Coin Flips):

hhhhthhththh  $\rightarrow$  hh hh th ht ht hh (6  $\times$  2 outcome blocks)  $\rightarrow$  hhh hth hth thh (4  $\times$  3 outcome blocks)

ightarrow hhhh thht hthh (3 imes 4 outcome blocks)

Instead of coding single outcomes, we now consider coding blocks and sequences of blocks

#### Example (Coin Flips):

#### Extended Ensemble

The **extended ensemble** of blocks of size N is denoted  $X^N$ . Outcomes from  $X^N$  are denoted  $\mathbf{x} = (x_1, x_2, \dots, x_N)$ . The **probability** of  $\mathbf{x}$  is defined to be  $P(\mathbf{x}) = P(x_1)P(x_2) \dots P(x_N)$ .

Instead of coding single outcomes, we now consider coding blocks and sequences of blocks

#### Example (Coin Flips):

#### Extended Ensemble

The **extended ensemble** of blocks of size N is denoted  $X^N$ . Outcomes from  $X^N$  are denoted  $\mathbf{x} = (x_1, x_2, \dots, x_N)$ . The **probability** of  $\mathbf{x}$  is defined to be  $P(\mathbf{x}) = P(x_1)P(x_2) \dots P(x_N)$ .

What is the entropy of  $X^N$ ?

Example: Bent Coin



Let X be an ensemble with outcomes  $A_X = \{h, t\}$  with  $p_h = 0.9$  and  $p_t = 0.1$ .

Consider  $X^4$  – i.e., 4 flips of the coin.

 $\mathcal{A}_{\mathcal{X}^4} = \{\mathtt{hhhh},\mathtt{hhht},\mathtt{hhth},\ldots,\mathtt{tttt}\}$ 

#### Example: Bent Coin



Let X be an ensemble with outcomes  $A_X = \{h, t\}$  with  $p_h = 0.9$  and  $p_t = 0.1$ .

Consider  $X^4$  – i.e., 4 flips of the coin.

$$\mathcal{A}_{X^4} = \{\mathtt{hhhh},\mathtt{hhht},\mathtt{hhth},\ldots,\mathtt{tttt}\}$$

#### What is the probability of

- Four heads?  $P(hhhh) = (0.9)^4 \approx 0.656$
- Four tails?  $P(tttt) = (0.1)^4 = 0.0001$

#### Example: Bent Coin



Let X be an ensemble with outcomes  $A_X = \{h, t\}$  with  $p_h = 0.9$  and  $p_t = 0.1$ .

Consider  $X^4$  – i.e., 4 flips of the coin.

$$\mathcal{A}_{X^4} = \{\mathtt{hhhh},\mathtt{hhht},\mathtt{hhth},\ldots,\mathtt{tttt}\}$$

#### What is the probability of

- Four heads?  $P(hhhh) = (0.9)^4 \approx 0.656$
- Four tails?  $P(tttt) = (0.1)^4 = 0.0001$

### What is the entropy and raw bit content of $X^4$ ?

- $\bullet$  The outcome set size is  $|\mathcal{A}_{X^4}| = |\{0000,0001,0010,\dots,1111\}| = 16$
- Raw bit content:  $H_0(X^4) = \log_2 |\mathcal{A}_{X^4}| = 4$
- Entropy:  $H(X^4) = 4H(X) = 4.(-0.9 \log_2 0.9 0.1 \log_2 0.1) = 1.88$

| х    | $P(\mathbf{x})$ | Х    | $P(\mathbf{x})$ |                                   |
|------|-----------------|------|-----------------|-----------------------------------|
| hhhh | 0.656           | thht | 0.008           | N=4 —                             |
| hhht | 0.073           | thth | 0.008           | 3.5                               |
| hhth | 0.073           | tthh | 0.008           | $H_{\delta}(X^4)$ 3 $-$           |
| hthh | 0.073           | httt | 0.001           | 2.5                               |
| thhh | 0.073           | thtt | 0.001           | 2                                 |
| htht | 0.008           | ttht | 0.001           | 1.5 -                             |
| htth | 0.008           | ttth | 0.001           | 1                                 |
| hhtt | 0.008           | tttt | 0.000           | 0.5 -                             |
|      |                 |      |                 | - 0                               |
|      |                 |      |                 | 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 |

$$\delta = 0 \text{ gives } H_{\delta}(X^4) = \log_2 16 = 4$$

| Х    | $P(\mathbf{x})$ | Х    | $P(\mathbf{x})$ |                                |
|------|-----------------|------|-----------------|--------------------------------|
| hhhh | 0.656           | thht | 0.008           | - 4 N=4                        |
| hhht | 0.073           | thth | 0.008           | 3.5                            |
| hhth | 0.073           | tthh | 0.008           | $H_{\delta}(X^4)$ 3 $-$        |
| hthh | 0.073           | httt | 0.001           | 2.5                            |
| thhh | 0.073           | thtt | 0.001           | 2                              |
| htht | 0.008           | ttht | 0.001           | 1.5 -                          |
| htth | 0.008           | ttth | 0.001           | 1                              |
| hhtt | 0.008           |      |                 | 0.5                            |
|      |                 |      |                 | 0 0.05 0.1 0.15 0.2 0.25 0.3 0 |
|      |                 |      |                 | 0 0.05 0.1 0.15 0.2 0.25 0.3   |

$$\delta = 0.0001$$
 gives  $H_{\delta}(X^4) = \log_2 15 = 3.91$ 

|      |                 |      |                 | -                            |
|------|-----------------|------|-----------------|------------------------------|
| X    | $P(\mathbf{x})$ | X    | $P(\mathbf{x})$ |                              |
| hhhh | 0.656           | thht | 0.008           | - 4 N=4 —                    |
| hhht | 0.073           | thth | 0.008           | 3.5                          |
| hhth | 0.073           | tthh | 0.008           | $H_{\delta}(X^4)$ 3          |
| hthh | 0.073           |      |                 | 2.5                          |
| thhh | 0.073           |      |                 | 2                            |
| htht | 0.008           |      |                 | 1.5                          |
| htth | 0.008           |      |                 | 1                            |
| hhtt | 0.008           |      |                 | 0.5                          |
|      |                 |      |                 | 0 005 01 015 02 025 03 035 0 |

$$\delta = 0.005$$
 gives  $H_{\delta}(X^4) = \log_2 11 = 3.46$ 

| X    | $P(\mathbf{x})$ | X | $P(\mathbf{x})$ |
|------|-----------------|---|-----------------|
| hhhh | 0.656           |   |                 |
| hhht | 0.073           |   |                 |
| hhth | 0.073           |   |                 |
| hthh | 0.073           |   |                 |
| thhh | 0.073           |   |                 |
|      |                 |   |                 |
|      |                 |   |                 |
|      |                 |   |                 |
| -    |                 | _ |                 |
|      |                 |   |                 |

$$\delta = 0.05 \text{ gives } H_{\delta} \left( X^4 \right) = \log_2 5 = 2.32$$

| Х    | $P(\mathbf{x})$ | Х | $P(\mathbf{x})$ |
|------|-----------------|---|-----------------|
| hhhh | 0.656           |   |                 |
| hhht | 0.073           |   |                 |
| hhth | 0.073           |   |                 |
|      |                 |   |                 |
|      |                 |   |                 |
|      |                 |   |                 |
|      |                 |   |                 |
|      |                 |   |                 |
|      |                 |   |                 |

$$\delta = 0.25 \text{ gives } H_{\delta} \left( X^4 \right) = \log_2 3 = 1.6$$

What happens as *N* increases?



Recall that the entropy of a single coin flip with  $p_{\rm h}=0.9$  is  $H(X)\approx0.47$ 

Some Intuition

Why does the curve flatten for large *N*?

Recall that for N=1000 e.g., sequences with 900 heads are considered typical

Such sequences occupy most of the probability mass, and are roughly equally likely

As we increase  $\delta$ , we will quickly encounter these sequences, and make small, roughly equal sized changes to  $|S_{\delta}|$ 

# Typical Sets and the AEP (Review)



# Typical Sets and the AEP (Review)

#### Typical Set

For "closeness"  $\beta > 0$  the typical set  $T_{N\beta}$  for  $X^N$  is

$$T_{N\beta} \stackrel{\text{def}}{=} \left\{ \mathbf{x} : \left| -\frac{1}{N} \log_2 P(\mathbf{x}) - H(X) \right| < \beta \right\}$$

The name "typical" is used since  $\mathbf{x} \in T_{N\beta}$  will have roughly  $p_1 N$  occurrences of symbol  $a_1, p_2 N$  of  $a_2, \ldots, p_K N$  of  $a_K$ .

# Typical Sets and the AEP (Review)

#### Typical Set

For "closeness"  $\beta > 0$  the typical set  $T_{N\beta}$  for  $X^N$  is

$$T_{N\beta} \stackrel{\text{def}}{=} \left\{ \mathbf{x} : \left| -\frac{1}{N} \log_2 P(\mathbf{x}) - H(X) \right| < \beta \right\}$$

The name "typical" is used since  $\mathbf{x} \in T_{N\beta}$  will have roughly  $p_1 N$  occurences of symbol  $a_1, p_2 N$  of  $a_2, ..., p_K N$  of  $a_K$ .

## Asymptotic Equipartition Property (Informal)

As  $N \to \infty$ ,  $\log_2 P(x_1, \dots, x_N)$  is close to -NH(X) with high probability.

For large block sizes "almost all sequences are typical" (i.e., in  $T_{N\beta}$ ).

- Introduction
  - Quick Review
- Extended Ensembles
  - Defintion and Properties
  - Essential Bit Content
  - The Asymptotic Equipartition Property
- The Source Coding Theorem
  - Typical Sets
  - Statement of the Theorem

### The Source Coding Theorem

Let X be an ensemble with entropy H=H(X) bits. Given  $\epsilon>0$  and  $0<\delta<1$ , there exists a positive integer  $N_0$  such that for all  $N>N_0$ 

$$\left|\frac{1}{N}H_{\delta}\left(X^{N}\right)-H\right|<\epsilon.$$



- Given a tiny probability of error
  δ, the average bits per outcome
  can be made as close to H as
  required.
- Even if we allow a large probability of error, we cannot compress more than H bits per outcome for large sequences.

# Warning: proof ahead



I don't expect you to reproduce the following proof

- I present it as it sheds some light on why the result is true
- And it is a remarkable and fundamental result
- You are expected to understand and be able to apply the theorem

#### Proof of the SCT

The absolute value of a difference being bounded (e.g.,  $|x-y| \le \epsilon$ ) says two things:

- **①** When x y is positive, it says  $x y < \epsilon$  which means  $x < y + \epsilon$
- ② When x-y is negative, it says  $-(x-y) < \epsilon$  which means  $x < y \epsilon$   $|x-y| < \epsilon$  is equivalent to  $y-\epsilon < x < y + \epsilon$

Using this, we break down the claim of the SCT into two parts: showing that for any  $\epsilon$  and  $\delta$  we can find N large enough so that:

Part 1: 
$$\frac{1}{N}H_{\delta}(X^N) < H + \epsilon$$

Part 2: 
$$\frac{1}{N}H_{\delta}(X^N) > H - \epsilon$$



## Proof the SCT

Idea

#### **Proof Idea**: As *N* increases

- $T_{N\beta}$  has  $\sim 2^{NH(X)}$  elements
- almost all **x** are in  $T_{N\beta}$
- $S_{\delta}$  and  $T_{N\beta}$  increasingly overlap
- ullet so  $\log_2 |S_\delta| \sim NH$

Basically, we look to encode all typical sequences uniformly, and relate that to the essential bit content

## Proof of the SCT (Part 1)

For  $\epsilon > 0$  and  $\delta > 0$ , want N large enough so  $\frac{1}{N}H_{\delta}(X^N) < H(X) + \epsilon$ . Recall (see Lecture 10) for the *typical set*  $T_{N\beta}$  we have for any  $N, \beta$  that

$$|T_{N\beta}| \le 2^{N(H(X)+\beta)} \tag{1}$$

and, by the AEP, for any  $\beta$  as  $N \to \infty$  we have  $P(x \in T_{N\beta}) \to 1$ . So for any  $\delta > 0$  we can always find an N such that  $P(x \in T_{N\beta}) \ge 1 - \delta$ . Now recall the definition of the *smallest*  $\delta$ -sufficient subset  $S_{\delta}$ : it is the smallest subset of outcomes such that  $P(x \in S_{\delta}) \ge 1 - \delta$  so  $|S_{\delta}| \le |T_{N\beta}|$ . So, given any  $\delta$  and  $\beta$  we can find an N large enough so that, by (1)

$$|S_{\delta}| \le |T_{N\beta}| \le 2^{N(H(X)+eta)}$$
  $\log_2 |S_{\delta}| \le \log_2 |T_{Neta}| \le N(H(X)+eta)$   $H_{\delta}(X^N) = \log_2 |S_{\delta}| \le \log_2 |T_{Neta}| \le N(H(X)+eta)$ 

Setting  $\beta = \epsilon$  and dividing through by *N* gives result.

# Proof of the SCT (Part 2)

For  $\epsilon > 0$  and  $\delta > 0$ , want *N* large enough so  $\frac{1}{N}H_{\delta}(X^N) > H(X) - \epsilon$ .

Suppose this was not the case – that is, for every N we have

$$\frac{1}{N}H_{\delta}(X^{N}) \leq H(X) - \epsilon \iff |S_{\delta}| \leq 2^{N(H(X) - \epsilon)}$$

Let's look at what this says about  $P(x \in S_{\delta})$  by writing

$$P(x \in S_{\delta}) = P(x \in S_{\delta} \cap T_{N\beta}) + P(x \in S_{\delta} \cap \overline{T_{N\beta}})$$
  
$$\leq |S_{\delta}|2^{-N(H-\beta)} + P(x \in \overline{T_{N\beta}})$$

since every  $x \in T_{N\beta}$  has  $P(x) \leq 2^{-N(H-\beta)}$  and  $S_{\delta} \cap \overline{T_{N\beta}} \subset \overline{T_{N\beta}}$ .

So

$$P(x \in S_{\delta}) \leq 2^{-N(\epsilon-\beta)} + P(x \in \overline{T_{N\beta}}) \to 0 \text{ as } N \to \infty$$

since  $P(x \in T_{N\beta}) \to 1$ . But  $P(x \in S_{\delta}) \ge 1 - \delta$ , by defn. Contradiction

## Interpretation of the SCT

## The Source Coding Theorem

Let X be an ensemble with entropy H=H(X) bits. Given  $\epsilon>0$  and  $0<\delta<1$ , there exists a positive integer  $N_0$  such that for all  $N>N_0$ 

$$\left|\frac{1}{N}H_{\delta}\left(X^{N}\right)-H\right|<\epsilon.$$

If you want to uniformly code blocks of N symbols drawn i.i.d. from X

- If you use more than NH(X) bits per block you can do so without almost no loss of information as  $N \to \infty$
- If you use less than NH(X) bits per block you will almost certainly lose information as  $N \to \infty$

## Interpretation of the SCT

#### The Source Coding Theorem

Let X be an ensemble with entropy H = H(X) bits. Given  $\epsilon > 0$  and  $0 < \delta < 1$ , there exists a positive integer  $N_0$  such that for all  $N > N_0$ 

$$\left|\frac{1}{N}H_{\delta}\left(X^{N}\right)-H\right|<\epsilon.$$

Making the error probability  $\delta \approx$  1 doesn't really help

We're still "stuck with" coding the typical sequences

#### Assumes we deal with $X^N$

- If outcomes are dependent, entropy H(X) need not be the limit
- We won't look at such extensions

## Implications of SCT

How practical is it to perform coding inspired by the SCT?

#### Not very!

- Theorem might require huge block sizes N<sub>0</sub>
- We'd need lookup tables of size  $|S_{\delta}(X^{N_0})| \sim 2^{N_0 \cdot H(X)}$

Can we design more practical compression algorithms?

• And will the entropy still feature with the fundamental limit?

#### Next time

We move towards more practical compression ideas

Prefix and Uniquely Decodeable variable-length codes

The Kraft Inequality