LLaMA: Open and Efficient Foundation Language Models

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet Marie-Anne Lachaux, Timothee Lacroix, Baptiste Rozière, Naman Goyal Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin Edouard Grave, Guillaume Lample

Meta AI

- Published in 2023
- ~12.5k citations

Why LLaMa?

- Previous works (GPT-3, PaLM, Scaling Laws) suggest more parameters lead to better performance
- Chinchilla (DeepMind) suggests best performance given a compute budget is achieved by training smaller models on more data
- Main focus of current LLM work is cheap/efficient training
 - But what about the inference budget?
- Authors suggest best model does not have fastest train time, but rather fastest inference time

LLaMa's Contribution

- Smaller models trained on more data
 - Chinchilla's 10B model trained on 200B tokens
 - LLaMa's 7B model trained on 1T tokens with continuing improvement vs Chinchilla
- Train on "more tokens than what is typically used"
- Fast inference capable of running on a single GPU
- Only train on publicly available datasets
 - Compared to OpenAI, Google (private datasets)

Pre-Training Data

- CommonCrawl
 - 2017-2020; removal of non-English pages and filter low quality content via n-gram model
- C4
 - Similar to CommonCrawl; main difference in quality filtering (heuristic based)
- Github
 - Google BigQuery dataset; heuristic filtering; open source licensing
- Wikipedia
 - June-August 2022 covering 20 languages
- Books
 - Gutenberg Project and Books3 section of ThePile
- ArXiv
 - Processed latex files
- StackExchange
 - Data from the 28 largest websites; scored answers from highest to lowest

Dataset	Sampling prop.	Epochs	Disk size
CommonCrawl	67.0%	1.10	3.3 TB
C4	15.0%	1.06	783 GB
Github	4.5%	0.64	328 GB
Wikipedia	4.5%	2.45	83 GB
Books	4.5%	2.23	85 GB
ArXiv	2.5%	1.06	92 GB
StackExchange	2.0%	1.03	78 GB

Table 1: **Pre-training data.** Data mixtures used for pre-training, for each subset we list the sampling proportion, number of epochs performed on the subset when training on 1.4T tokens, and disk size. The pre-training runs on 1T tokens have the same sampling proportion.

Tokenizer

- Uses BPE algorithm using SentencePiece implementation
- All numbers are split into individual digits
 - Numbers i.r.l. appear in different variations
 - Allows for learning reusable patterns in numeric sequences
- If tokenizer encounters unknown character, encodes it as raw UTF-8 bytes
 - Ability to handle any possible input even if character was not seen in training
- Training Data Statistics: 1.4T tokens
- Mostly, each token is used only once during training

Transformer Architecture Modifications

- Pre-normalization (GPT-3)
 - Normalize input of each transformer sublayer instead of normalized output
 - RMSNorm function

$$y_i = rac{x_i}{ ext{RMS}(x)} * \gamma_i, \quad ext{where} \quad ext{RMS}(x) = \sqrt{\epsilon + rac{1}{n} \sum_{i=1}^n x_i^2}$$

Transformer Architecture Modifications

- SwiGLU activation function (PaLM)
 - Swish + Gated Linear Units (GLU)
 - GLU a neural network layer defined as the componentwise product of two linear transformations of the input, one of which is sigmoid-activated (*GLU Variants Improve Transformer, 2020*)

$$\mathrm{GLU}(x, W, V, b, c) = \sigma(xW + b) \otimes (xV + c)$$

 $\mathrm{SwiGLU}(x, W, V, b, c, \beta) = \mathrm{Swish}_{\beta}(xW + b) \otimes (xV + c)$

Replaces ReLU

Transformer Architecture Modifications

- Rotary Embeddings (GPTNeo)
 - Remove absolute positional embeddings and add rotary positional embeddings (Roformer: Enhanced transformer with rotary position embedding, Neurocomputing 2024)

Figure 1: Implementation of Rotary Position Embedding(RoPE).

Optimization

- AdamW optimizer w/ $\beta_1=0.9$, $\beta_2=0.95$
 - Variant of Adam that decouples weight decay from the gradient update
- Cosine Annealing learning rate scheduling
 - Final learning rate is 10% of maximal learning rate
- Weight decay of 0.1
- Gradient clipping of 1.0
- 2,000 warmup steps

Summarization of Training

params	dimension	n heads	n layers	learning rate	batch size	n tokens
6.7B	4096	32	32	$3.0e^{-4}$	4M	1.0T
13.0B	5120	40	40	$3.0e^{-4}$	4 M	1.0T
32.5B	6656	52	60	$1.5e^{-4}$	4M	1.4T
65.2B	8192	64	80	$1.5e^{-4}$	4M	1.4T

Table 2: Model sizes, architectures, and optimization hyper-parameters.

Efficient Implementation

- Reduce memory usage and runtime of causal multi-head attention
 - See xformers library (https://github.com/facebookresearch/xformers)
- Achieved by "not storing the attention weights and not computing the key/query scores that are masked due to causal nature of the language modeling task"
- Save expensive activations (e.g., outputs of linear layers) via a manual implementation of backward function instead of Pytorch autograd
- TL;DR Highly engineering attention computation with trade-off between speed and memory
 - Training speedups come at expense of more memory

Unrealistic Compute Requirements

- Training of largest 65B-parameter model
 - Processes 380 tokens/sec/GPU
 - Uses 2048 A100 GPUs (80GB VRAM each)
 - Training over 1.4T tokens takes ~21 days

Main Results

- Freeform text generation
 - Model generates an answer
- Multiple Choice
 - Model ranks proposed answers
- Zero-shot
 - Provide textual description of task and a test example
- Few-shot
 - Provide few examples of the task (between 1 and 64) and a test example

Common Sense Reasoning

		BoolQ	PIQA	SIQA	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA
GPT-3	175B	60.5	81.0	-	78.9	70.2	68.8	51.4	57.6
Gopher	280B	79.3	81.8	50.6	79.2	70.1	-	-	-
Chinchilla	70B	83.7	81.8	51.3	80.8	74.9	-	-	-
PaLM	62B	84.8	80.5	-	79.7	77.0	75.2	52.5	50.4
PaLM-cont	62B	83.9	81.4	-	80.6	77.0	-	-	-
PaLM	540B	88.0	82.3	-	83.4	81.1	76.6	53.0	53.4
	7B	76.5	79.8	48.9	76.1	70.1	72.8	47.6	57.2
LLaMA	13B	78.1	80.1	50.4	79.2	73.0	74.8	52.7	56.4
LLaWIA	33B	83.1	82.3	50.4	82.8	76.0	80.0	57.8	58.6
	65B	85.3	82.8	52.3	84.2	77.0	78.9	56.0	60.2

Table 3: Zero-shot performance on Common Sense Reasoning tasks.

- Cloze (fill in the blank) and Winograd (pronoun ambiguity) tasks
- LlaMa 65B outperform Chinchilla, PaLM on nearly all benchmarks.
- LLaMa 13B outperforms GPT-3 on nearly all benchmarks despite being 10x smaller

Closed-book Question Answering

• Exact Match Performance – Model does not have access to documents that contain evidence to answer question

		0-shot	1-shot	5-shot	64-shot
GPT-3	175B	14.6	23.0	-	29.9
Gopher	280B	10.1	-	24.5	28.2
Chinchill	a 70B	16.6	-	31.5	35.5
	8B	8.4	10.6	-	14.6
PaLM	62B	18.1	26.5	-	27.6
	540B	21.2	29.3	-	39.6
	7B	16.8	18.7	22.0	26.1
TTOMA	13B	20.1	23.4	28.1	31.9
LLaMA	33B	24.9	28.3	32.9	36.0
	65B	23.8	31.0	35.0	39.9

		0-shot	1-shot	5-shot	64-shot
Gopher	280B	43.5	-	57.0	57.2
Chinchill	a 70B	55.4	-	64.1	64.6
	7B	50.0	53.4	56.3	57.6
LLaMA	13B	56.6	60.5	63.1	64.0
LLawiA	33B	65.1	67.9	69.9	70.4
	65B	68.2	71.6	72.6	73.0

Table 5: **TriviaQA.** Zero-shot and few-shot exact match performance on the filtered dev set.

Table 4: Natural Questions. Exact match performance.

- LLaMa 65B achieves SOTA performance in zero-shot and few-shot
- LLaMa 13B competitive with GPT-3 and Chinchilla despite be 5-10x smaller
 - Runs on single V100 GPU for inference

Reading Comprehension

		RACE-middle	RACE-high
GPT-3	175B	58.4	45.5
	8B	57.9	42.3
PaLM	62B	64.3	47.5
	540B	68.1	49.1
	7B	61.1	46.9
LLaMA	13B	61.6	47.2
LLaMA	33B	64.1	48.3
	65B	67.9	51.6

Table 6: **Reading Comprehension.** Zero-shot accuracy.

 Dataset composed of English reading comprehension exams designed for middle and high school Chinese students (multiple choice)

Mathematical Reasoning

MATH

 12k middle school and high school math problems

• GSM8k

- Middle school math problems
- Minerva
 - Series of PaLM models finetuned on 38.5B tokens from math resources
- maj1@k Majority voting over k samples

		MATH	+maj1@k	GSM8k	+maj1@k
	8B	1.5	-	4.1	-
PaLM	62B	4.4	-	33.0	-
	540B	8.8	-	56.5	-
	8B	14.1	25.4	16.2	28.4
Minerva	62B	27.6	43.4	52.4	68.5
	540B	33.6	50.3	68.5	78.5
	7B	2.9	6.9	11.0	18.1
LLaMA	13B	3.9	8.8	17.8	29.3
	33B	7.1	15.2	35.6	53.1
	65B	10.6	20.5	50.9	69.7

Table 7: Model performance on quantitative reasoning datasets. For majority voting, we use the same setup as Minerva, with k=256 samples for MATH and k=100 for GSM8k (Minerva 540B uses k=64 for MATH and and k=40 for GSM8k). LLaMA-65B outperforms Minerva 62B on GSM8k, although it has not been fine-tuned on mathematical data.

Code Generation

HumanEval

- Receives description of program in few sentences and few input-output examples
- Receives function signature and prompt formatted as natural code with text description
- Test with docstring

MBPP

- Receives description of program in few sentences and few input-output examples
- Finetuning LLaMa on code not explored

	Params	HumanEval		MBPP	
pass@		@1	@100	@1	@80
LaMDA	137B	14.0	47.3	14.8	62.4
PaLM	8B	3.6*	18.7*	5.0*	35.7*
PaLM	62B	15.9	46.3*	21.4	63.2*
PaLM-cont	62B	23.7	-	31.2	-
PaLM	540B	26.2	76.2	36.8	75.0
	7B	10.5	36.5	17.7	56.2
LLaMA	13B	15.8	52.5	22.0	64.0
LLaWIA	33B	21.7	70.7	30.2	73.4
	65B	23.7	79.3	37.7	76.8

Table 8: Model performance for code generation. We report the pass@ score on HumanEval and MBPP. HumanEval generations are done in zero-shot and MBBP with 3-shot prompts similar to Austin et al. (2021). The values marked with * are read from figures in Chowdhery et al. (2022).

Massive Multitask Language Understanding

		Humanities	STEM	Social Sciences	Other	Average
GPT-NeoX	20B	29.8	34.9	33.7	37.7	33.6
GPT-3	175B	40.8	36.7	50.4	48.8	43.9
Gopher	280B	56.2	47.4	71.9	66.1	60.0
Chinchilla	70B	63.6	54.9	79.3	73.9	67.5
	8B	25.6	23.8	24.1	27.8	25.4
PaLM	62B	59.5	41.9	62.7	55.8	53.7
	540B	77.0	55.6	81.0	69.6	69.3
	7B	34.0	30.5	38.3	38.1	35.1
LLaMA	13B	45.0	35.8	53.8	53.3	46.9
	33B	55.8	46.0	66.7	63.4	57.8
	65B	61.8	51.7	72.9	67.4	63.4

Table 9: Massive Multitask Language Understanding (MMLU). Five-shot accuracy.

- Multiple choice questions covering various domains of knowledge
- Evaluated in 5-shot setting
- LLaMa shows lacking performance
 - Possible due to limited amounts of books in training (177GB) while PaLM, Gopher and Chinchilla train up to 2TB

Evolution of Performance During Training

Figure 2: Evolution of performance on question answering and common sense reasoning during training.

- Track performance of models on few question answering and common sense benchmarks
- Mostly observe steady performance increases

Instruction Finetuing

- Briefly finetuning on instructions data rapidly leads to improvements on MMLU
- Non-finetuned LLaMa 65B already does pretty good
- SOTA GPT is 77.4 LLaMa far from superior

OPT	30B	26.1
GLM	120B	44.8
PaLM	62B	55.1
PaLM-cont	62B	62.8
Chinchilla	70B	67.5
LLaMA	65B	63.4
OPT-IML-Max	30B	43.2
Flan-T5-XXL	11B	55.1
Flan-PaLM	62B	59.6
Flan-PaLM-cont	62B	66.1
LLaMA-I	65B	68.9

Table 10: **Instruction finetuning – MMLU (5-shot).** Comparison of models of moderate size with and without instruction finetuning on MMLU.

RealToxicityPrompts

- RealToxicityPrompts
 - ~100k prompts that model must complete
 - Toxicity score is then automatically evaluated via PerspectiveAPI request
- For each prompt, greedily generate with model and measure toxicity score
 - 0 (non-toxic) 1 (toxic)
- Toxicity increases with size of model, especially for Respectful prompts

		Basic	Respectful
	7B	0.106	0.081
	13B	0.104	0.095
LLaMA	33B	0.107	0.087
	65B	0.128	0.141

Table 11: **RealToxicityPrompts.** We run a greedy decoder on the 100k prompts from this benchmark. The "respectful" versions are prompts starting with "Complete the following sentence in a polite, respectful, and unbiased manner:", and "Basic" is without it. Scores were obtained using the PerplexityAPI, with higher score indicating more toxic generations.

CrowS-Pairs

- Evaluated biases in model in 9 categories
- Each example composed of stereotype and anti-stereotype
- Measure model preferences for stereotypical sentence using perplexity of both sentences in zero-shot setting
- Higher score = higher bias
- LLaMa is favorable
 - Biases hypothesized to come from CommonCrawl

LLaMA	GPT3	ODT
	0. 10	OPT
70.6	62.6	65.7
79.0	73.3	68.6
57.0	64.7	68.6
81.0	76.2	78.6
70.1	64.4	67.8
64.2	61.6	62.9
66.7	76.7	76.7
77.8	74.6	76.2
71.5	73.8	76.2
66.6	67.2	69.5
	79.0 57.0 81.0 70.1 64.2 66.7 77.8 71.5	79.0 73.3 57.0 64.7 81.0 76.2 70.1 64.4 64.2 61.6 66.7 76.7 77.8 74.6 71.5 73.8

Table 12: **CrowS-Pairs.** We compare the level of biases contained in LLaMA-65B with OPT-175B and GPT3-175B. Higher score indicates higher bias.

WinoGender

- Each sentence has three mentions
 - Occupation, participant, pronoun
 - Pronoum co-references either occupation or participant
- Prompt model to determine co-reference relation and measure correctness according to sentence context
- Try to reveal societal biases associated with occupations
- Example
 - "The nurse notified the patient that his shift would be ending in an hour"
 - 'His' refers to
 - Compare perplexities of nurse and patient
- Gotcha cases correspond to pronouns not matching majority gender of occupation

	7B	13B	33B	65B
All	66.0	64.7	69.0	77.5
her/her/she	65.0	66.7	66.7	78.8
his/him/he their/them/someone	60.8 72.1	62.5 65.0	62.1 78.3	72.1 81.7
	72.1	05.0	70.5	01.7
her/her/she (gotcha)	64.2	65.8	61.7	75.0
his/him/he (gotcha)	55.0	55.8	55.8	63.3

Table 13: **WinoGender.** Co-reference resolution accuracy for the LLaMA models, for different pronouns ("her/her/she" and "his/him/he"). We observe that our models obtain better performance on "their/them/someone' pronouns than on "her/her/she" and "his/him/he', which is likely indicative of biases.

TruthfulQA

- Measure model's ability to identify when claim is true
 - Literal truth about the real world
 - Not true in context of belief system
- Evaluate risks of a model to generate misinformation or false claims
- Better than GPT-3 but still low
 - LLaMa likely to hallucinate

		Truthful	Truthful*Inf
GPT-3	1.3B	0.31	0.19
	6B	0.22	0.19
	175B	0.28	0.25
LLaMA	7B	0.33	0.29
	13B	0.47	0.41
	33B	0.52	0.48
	65B	0.57	0.53

Table 14: **TruthfulQA.** We report the fraction of truthful and truthful*informative answers, as scored by specially trained models via the OpenAI API. We follow the QA prompt style used in Ouyang et al. (2022), and report the performance of GPT-3 from the same paper.

Conclusion

- LLaMa's smaller model sizes are in general better than larger models when evaluated on the same task
- Training on larger corpus of data allows smaller models to be competitive
- Good performance can be achieved on Open-Sourced datasets
- Instruction-tuning leads to promising results
- Open-Source models > closed source capitalistic models