මුඛතම සහ විශ්වාසනීයම Chemistry පන්තිය පුමුඛතම සහ විශ්වාසනීයම Chemistry පන්තිය පුමුඛතම සහ විශ්වාසනීයම Chemistry පන්තිය පුමුඛතම විශ්වාසනීයම Chemistry පත්තිය පුමුබත<mark>ුම මුතුත්තම සිස</mark>න් <mark>විශ්වාස්තිනීයම Chemistry පත්තිය</mark> පුමුබතම සහ විශ්වාසනීයම Chemistry පත්තිය පුමුබතම සහ විශ්වාස්තිමේ Chemistry පත්තිය පුමුබතම සහ විශ්වාසනීයම Chemistry පත්තිය පුමුබතම සහ විශ්වාසනීයම Chemistry න්තිය පුමුබතම සහ විශ්වාසනීයම Chemistry පන්තිය පුමුබතම සහ විශ්වාසනීයම Chemistry පන්තිය පුමුබතම සහ විශ්වාසනීයම Chemistry පන්තිය පුමුබත

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2026

General Certificate of Education (Adv. Level) Examination, 2026

රසායන විදහාව

Ι

Chemistry I

පැය එකයි

One hour

උපදෙස් :

- ኞ ආවර්තිතා වගුවක් සපයා ඇත.
- lpha මෙම පුශ්න පතුය පිටු 05 කින් යුක්ත වේ.
- # සියලුම පුශ්නවලට පිළිතුරු සපයන්න.
- 🅸 ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- ൽ පිළිතුරු පතුයේ නියමිත ස්ථානයේ ඔබේ **විභාග අංකය** ලියන්න.
- 🏶 පිළිතුරු පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත්ව කියවන්න.
- * 1 සිට 25 තෙක් එක් එක් පුශ්නයට (1),(2),(3),(4),(5) යන පිළිතුරුවලින් **නිවැරදි හෝ ඉතාමත් ගැළපෙන හෝ** පිළිතුර තෝරා ගෙන, එය **පිළිතුරු පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයක් (x) යොදා දක්වන්න.**

සාර්වනු වායූ නියතය $R=8.314~\mathrm{JK^{-1}mol^{-1}}$

ප්ලෑන්ක්ගේ නියතය $h = 6.626 \times 10^{-34}$ Js

ඇවගාඩ්රෝ නියතය $m N_A = 6.022 imes 10^{23} mol^{-1}$

ආලෝකයේ පුවේගය $c=3 imes 10^8~ms^{-1}$

- 01. හයිඩුජන් පරමාණුක වර්ණාවලිය සම්බන්ධයෙන් සතා පුකාශය මින් කුමක් ද?
 - (1) ශක්තියෙන් වැඩිම රේඛා ශේණිය ෆන්ඩ් ශේණිය වේ.
 - (2) පාෂන් ශේණීය විදාූත් චුම්භක වර්ණාවලියේ පාරජම්බූල කලාපයට අයත් වේ.
 - $(3) \ n=3 \$ සිට n=2 ශක්ති මට්ටමට සිදුවන ඉලෙක්ටෝන සංකුමණයට අදාළ රේඛාව රතු පැහැතිය.
 - (4) ලයිමාන් ශේුණියේ පළමු රේඛාව n=1 සිට n=2 ශක්ති මට්ටමට සිදුවන ඉලෙක්ටෝන සංකුමණය නිසා ඇති වේ.
 - (5) දෘශා කලාපය තුළ රේඛා ශේණි දෙකක් පිහිටයි.
- 02. පරමාණුක වාූහය සොයා ගැනීම් හා සම්බන්ධ පහත දැක්වෙන පුකාශ සලකන්න.
 - I. උචිත තත්ත්ව යටතේදී විකිරණ ශක්තියට අංශු ධාරාවක් ලෙස හැසිරිය හැකි අතර පදාර්ථයට තරංගයක ගුණ පුදර්ශනය කළ හැකිය.
 - II. ලෝහ පෘෂ්ඨයකින් නිකුත්වන විකිරණ කුඩා ශක්ති පොදි වශයෙන් හැසිරේ.

ඉහත I හා II පුකාශවලට අදාළ විදහාඥයින් දෙදෙනා පිළිවෙලින්,

- (1) මැක්ස් ප්ලාන්ක්, ඇල්බට් අයින්ස්ටයින්
- (2) ඇල්බට් අයින්ස්ටයින්, මැක්ස් ප්ලාන්ක්
- (3) ලුවී ඩි බෝග්ලි, ඇල්බට් අයින්ස්ටයින් (4) ලුවී ඩී බෝග්ලි, මැක්ස් ප්ලාන්ක්

(5) ප්ලාන්ක්, ලූවී ඩී බෝග්ලි

0

03. සුදුසු තත්ත්ව යටතේදී $\mathrm{CH_3-C-H}$ මවුලයක් $\mathrm{CH_3-C-OH}$ බවට ඔක්සිකරණය කළ විට පිට වන ඉලෙක්ටෝන මවුල ගණන,

(1) 1

(2) 2

(3) 4

(4) 8

(5) 10

04. ICl_2^- සහ ClF_3 අණුවල හැඩයන් පිළිවෙළින්,

(1) රේඛීය, තලීය තිකෝණාකාර (2) කෝණික, පිරමීඩාකාර (3) රේඛීය, පිරමීඩාකාර

(4) තලීය සමචතුරසු, T හැඩය (5) රේඛීය, T හැඩය

05. MgCl_2 හා CaCl_2 වලින් සමන්විත සම මවුල මිශුණයක Cl^- අයන සාන්දුණය $142~\mathsf{ppm}$ වේ. එම දාවණයේ අඩංගු $\mathrm{Mg^{2+}}$ අයනවල සංයුතිය ppm වලින් කොපමණ ද $?~(\mathrm{Mg-24,Ca-40,Cl-35.5})$

(1) 71 ppm

(2) 142 ppm

(3) 24 ppm (4) 48 ppm

(5) 96 ppm

06. නිවැරදි වගන්තිය තෝරන්න.

(1) පුධාන ක්වොන්ටම් අංකය n=3 සහ උද්දිගාංශ ක්වොන්ටම් අංකය l=1 ට අදාළ කාක්ෂික සංඛ්ාව හයකි.

(2) ධන කිරණ විදාුත් ක්ෂේතුයකදී ඍණ තහඩුවටත් චුම්බක ක්ෂේතුයකදී උත්තර ධැවයටත් ආකර්ෂණය

(3) නාෂ්ටිය වටා වූ වෘත්තාකාර කක්ෂවල ඉලෙක්ටෝන භුමණය වන බව අර්නස්ට් රදර්ෆර්ඩ් විසින් පුකාශ කරන ලදි.

(4) පළමු නාාෂ්ටික ආකෘතිය ඉදිරිපත් කරනු ලැබුවේ අර්නස්ට් රදර්ෆර්ඩ් විසිනි.

(5) සමස්ථානික වල භෞතික ගුණ සමාන වන නමුත් රසායනික ගුණ වෙනස් වේ.

07. Al ලෝහය Mn0 සමඟ සුදුසු තත්ත්ව යටතේ පහත ආකාරයෙන් පුතිකියා කොට Mn සාදයි.

$$2Al + 3MnO \longrightarrow Al_2O_3 + 3Mn$$

Al~108~g හා MnO~497~g ක් අඩංගු මිශුණයක් අදාළ තත්ත්ව යටතේ පුතිකිුයා කරවූ විට Mn~180~g ක් ලැබුණි. මෙහිදී සීමාකාරී පුතිකාරකය හා Mn වල පුතිශත ඵලදාව පිළිවෙළින්,

$$(Mn - 55, Al - 27, 0 - 16)$$

පුතිශත ඵලදාව =
$$\frac{$$
සතා ඵලදාව} $= \frac{}{}$ ගෙසද්ධාන්තික ඵලදාව (g)

(1) MnO, 45.5% (2) Al, 54.5% (3) MnO, 54.5% (4) Al, 45.5% (5) Al, 49%

08. ජලීය KI වල දාවා I_2 දාවණයක් තුළ තිබිය හැකි අන්තර්කිුයා වර්ග විය හැක්කේ,

(a) H බන්ධන

(c) සහ සංයූජ බන්ධන

(d) අයනික බන්ධන

(e) ද්වීධුැව - පේරිත ද්වීධුැව බන්ධන

(1) c හා d පමණි.

(2) b හා c පමණි.

(3) b, c හා d පමණි.

(4) a, b, c හා d පමණි.

(5) a, b, c, d, e සියල්ලම.

09. ද්වීධුැව සූර්ණය ශුනා අණුවක් වන්නේ මින් කුමක් ද?

 $(1) H_2 S$

 $(2) 0_3$

(3) CH_2Cl_2 (4) SO_3

(5) HBr

- 10. නිවැරදි පුකාශය තෝරන්න.
 - $(1)~{
 m sp}^3$, ${
 m sp}^2$ සහ ${
 m sp}$ මුහුම් කාක්ෂික වල ${
 m s}$ ලක්ෂණ විචලනය වීම ${
 m sp}^3>{
 m sp}^2>{
 m sp}$ ලෙස වේ.
 - $(2) \ \mathrm{Na^+}$, $\mathrm{K^+}$ සහ $\mathrm{Al^{3+}}$ අයනවල ධුැවීකරණ බලය $\mathrm{Al^{3+}} < \mathrm{K^+} < \mathrm{Na^+}$ ලෙස වැඩි වේ.
 - $(3)~Na_2CO_3$, $MgCO_3$ සහ $CaCO_3$ වල තාප ස්ථායිතාව $Na_2CO_3 < MgCO_3 < CaCO_3$ ආකාරයට වේ.
 - (4) Na , Mg සහ Al යන මූලදුවාවල ලෝහක බන්ධන පුබලතාවය Na > Mg > Al ලෙස වේ.
 - (5) Al , Si , P සහ S යන මූලදුවාවල දෙවන අයනීකරණ ශක්තිය Si < Al < P < S ලෙස වීචලනය වේ.
- $11.~~Na_2SO_4~~11.36~g$ හි ඇති මුළු අයන පුමාණයට සමාන ඇනායන පුමාණයක් ලබා ගැනීම සඳහා අවශාව වන $MgCl_2$ ස්කන්ධය කොපමණ ද?

(Na - 23, Mg - 24, S - 32, 0 - 16, Cl - 35.5)

- (1) 9.82 g
- (2) 10.8 g
- (3) 11.36 g
- (4) 11.4 g
- (5) 12.36 g

- 12. පහත පුභේද අතරින් තාපාංකය ඉහළම වන්නේ,
 - $(1) H_2 0$
- (2) NH₃
- (3) I_2
- (4) HF
- (5) HCl
- 13. සාන්දුණය $0.1~{
 m mol~dm^{-3}}$ වූ ${
 m BaCl_2}$ දුාවණයකින් යම් පරිමාවක් හා සාන්දුණය $0.1~{
 m mol~dm^{-3}}$ වූ ${
 m KCl}$ දාවණයකින් එමෙන් තුන් ගුණයකට සමාන පරිමාවක් හා මිශු කිරීමෙන් ලැබෙන දුාවණයේ ${
 m Cl^{-}}$ අයන සාන්දුණය මින් කුමක් ද?
 - (1) $0.025 \text{ mol dm}^{-3}$
- (2) $0.125 \text{ mol dm}^{-3}$
- (3) 0.05 mol dm^{-3}

- $(4) 0.4 \text{ mol dm}^{-3}$
- $(5) 0.1 \text{ mol dm}^{-3}$
- 14. A නම් මූලදුවාගේ පළමු අනුයාත අයනීකරණ ශක්ති අගයන් හය $kJ\ mol^{-1}$ වලින් පහත දී ඇත.

IE ₁	IE ₂	IE ₃	IE ₄	IE ₅	IE ₆
1012	1907	2914	4964	6274	21267

A මූලදුවා අයත් කාණ්ඩය වනුයේ,

- (1) 5
- (2) 6
- (3) 14
- (4) 15
- (5) 16
- 15. $n+l \leq 2$ වන පරිදි P පරමාණුවක පවතින ඉලෙක්ටුෝන සංඛාාව වනුයේ,
 - (1) 2
- (2) 3
- (3) 4
- (4) 5
- (5) 6

- අංක 16 සිට 20 තෙක් එක් එක් පුශ්නය සඳහා දී ඇති (a), (b), (c) සහ (d) යන පුතිචාර හතර අතුරෙන්, එකක් හෝ වැඩි සංඛ්‍යාවක් හෝ නිවැරදි ය. නිවැරදි පුතිචාරය/පුතිචාර කවරේ දැ'යි තෝරා ගන්න.
 - (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද,
 - (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද,
 - (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද,
 - (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද,

වෙනත් පුතිචාර සංඛ්‍යාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද පිළිතුරු පතුයෙහි දැක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

ඉහත උපදෙස් සම්පිණ්ඩනය

(1)	(2)	(3)	(4)	(5)
(a) සහ (b)	(b) සහ (c)	(c) සහ (d)	(d) සහ (a)	වෙනත් පුතිචාර සංඛ්‍යාවක්
පමණක්	පමණක්	පමණක්	පමණක්	හෝ සංයෝජනයක් හෝ
නිවැරදිය.	නිවැරදිය.	නිවැරදිය.	නිවැරදිය.	නිවැරදිය.

- 16. විත්ති ගුණයක්/ ගුණ නොවන්නේ,
 - (a) ස්කන්ධය
- (b) උෂ්ණත්වය
- (c) ඝනත්වය
- (d) එන්තැල්පි විපර්යාසය

- 17. ${
 m sp}^2$ මුහුම්කරණය වූ පරමාණුවක් සම්බන්ධව සතා වන්නේ,
 - (a) පරමාණුව වටා හැඩය කෝණික විය හැක.
 - (b) පරමාණුව වටා හැඩය තිු ආනති පිරමීඩාකාර විය හැක.
 - (c) පරමාණුවට සම්බන්ධ ෆයි බන්ධන තිබිය යුතුමය.
 - $({
 m d})$ මධා පරමාණුව වටා බන්ධන කෝණය 100^0 වලට වඩා විශාල වේ.
- 18. පහත ඒවායෙන් නිර්ධැවීය පුභේදය/ පුභේද වන්නේ,
 - (a) XeF₂
- (b) SO_3
- (c) PH_3
- (d) NCl₃
- 19. විදාූත් සෘණතාවයේ විශාලත්වය වැඩිවීම කෙරෙහි බලපාන සාධකය ℓ සාධක වන්නේ,
 - (a) මුහුම් කාක්ෂිකයේ p ලක්ෂණ වැඩිවීම
- (b) ඔක්සිකරණ අංකය අඩුවීම
- (c) ඉහළ ධන ආරෝපණයක් තිබීම
- (d) මුහුම් කාක්ෂිකයේ S ලක්ෂණ වැඩිවීම
- - (a) කැටායනයේ අරය විශාල වීම.
- (b) කැටායනයේ ආරෝපණය වැඩිවීම.
- (c) ඇතායනයේ ආරෝපණය වැඩිවීම.
- (d) ඇතායනයේ අරය විශාල වීම.

• අංක 21 සිට 25 තෙක් එක් පක් පුශ්නය සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින්ම ගැළපෙනුයේ පහත වගුවෙහි දැක්වෙන පරිදි (1), (2), (3), (4) සහ (5) යන පුතිචාරවලින් කවර පුතිචාරය දැ'යි තෝරා පිළිතුරු පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

පුතිචාරය	පළමුවැනි වගන්තිය	දෙවෙනි වගන්තිය
(1)	සතාය.	සතා වන අතර පළමුවැන්න නිවැරදිව පහදා දෙයි.
(2)	සතාය.	සතා වන අතර පළමුවැන්න නිවැරදිව පහදා නොදෙයි.
(3)	සතාය.	අසතාය.
(4)	අසතාය.	සතාය.
(5)	අසතාය.	අසතාය.

	පළමුවැනි පුකාශය	දෙවැනි පුකාශය						
21.	ඝන NaCl විදයුතය සන්නයනය කරයි.	Na පරමාණුවක් වටා Cl පරමාණු හයක් ද, Cl පරමාණුවක් වටා Na පරමාණු හයක් ද, පුබල ස්ථිති විදහුත් ආකර්ෂණ බල වලින් බැදීමෙන් NaCl දැලිස සාදයි.						
22.	$\mathrm{CH_3F}$ හි දුවාංකය, $\mathrm{CCl_4}$ හි දුවාංකයට වඩා අඩු ය.	ද්වීධුැව - ද්වීධුැව අන්තර්කිුයා ඉක්මවා යන අපකිරණ බල පවතින අවස්ථාද ඇත.						
23.	සමස්ථානික වල දුවාංක තාපාංක සමාන නොවේ.	සමස්ථානික වල ස්කන්ධ කුමාංකයන් වෙනස් ය.						
24.	$ m Na^+ > Mg^{2+} > Al^{3+}$ ලෙස නිවාරක ආචරණය අඩු වේ.	$ m Na^+ < Mg^{2+} < Al^{3+}$ ලෙස සඵල නාෂ්ටික ආරෝපණය වැඩි වේ.						
25.	ඝන I ₂ ජලීය KI තුළ හොදින් දිය වේ.	ජලීය KI සහ I_2 අතර අයන ජේරිත ද්වීධුැව අන්තර්කිුයා ඇති වේ.						

PERIODIC TABLE OF THE ELEMENTS

1 																	² He Helium
3 Lithium	Be Beryllium											5 B	6 Carbon	7 N Nitrogen	8 O Oxygen	9 F. Fluorine	Ne Neon
Na Sodium	Ng Magnesium											13 Al Aluminium	Si Silicon	15 P Phosphorus	S Sulfur	17 Cl Chlorine	18 Ar
19 K	Ca Calcium	SC Scandium	22 Til	23 V Vanabium	Chromium	Mn Manganese	Fe lion	CO Cobalt	28 Ni Nickel	Cu Copper	Zn Zinc	Ga Gallium	Ge Germanium	AS Arsenic	Se Selenium	Br Bromine	36 Kr
Rb Rubidium	Sr Stronium	39 Y	Zr Zirconium	ND Noblum	MO Molybderum	TC Technatium	RU Ruthenium	Rh Rhodium	Pd Palladium	Ag Silver	Cd Cadmium	49 In Indiam	\$n	Sb Antimony	Tellurium	53 Iodine	Xe Xence
55 CS Caesium	56 Ba	* 57-71	72 Hf	73 Ta	74 W Tungsten	75 Re Renium	76 OS Osmium	77	78 Pt	79 Au Gold	Hg Mercury	81 TI	Pb Lead	Bi Bi Bismuth	PO Pollonium	At Astatine	Rn Radon
87 Francium	Ra Radium	** 89-103	Rf Rutherfordium	105 Db Dubrium	Sg Seaborgium	Bh Bohrium	HS Hassium	109 Mt Meitnerium	DS Darmstadtium	Rg Roentgenium	Copernicium	113 Nh Nihonium	114 Fl Flevolum	NC Moscovium	LV Livermoarium	TS Tennessine	Og Ognesson
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Nv	Но	Er	Tm	Yb	Lu	
		Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dy	Holmium	Erbium	Tm	Ytterbium	Lutetium	
		Actinium	90 Th Thorium	Pa Protactiunium	92 Uranium	Np Neptunium	Pu Plutonium	Am Americium	Cm Curium	BK Berkelium	Cf Californium	ES Einstenium	Fermium	Md Mendelevium	NO Nobellium	LT Lawrencium	