第十三周作业

董仕强

Monday $19^{\rm th}$ May, 2025

0 说明

可以将作业中遇到的问题标注在此. 如有, 请补充.

目录

0	说明			
	0.1	Exercise 1	1	
	0.2	Exercise 2	1	
	0.3	Exercise 2.5	1	
	0.4	Exercise 3	1	
	0.5	Exercise 4	2	
	0.6	Exercise 5	2	

目录 1

0.1 Exercise 1

Determine whether the following are inner product spaces (简要回答即可).

1. V is the vector space continuous functions over \mathbb{R} , and the pairing is

$$(f,g) \mapsto \int_0^1 f(x)g(x) \,\mathrm{d}\,x.$$

2. $V = \mathbb{R}[x]$, and the pairing is

$$(f,g) \mapsto \int_{-\infty}^{\infty} f(x)g(x)e^{-x^2} dx.$$

3. $V = \mathbb{R}^{n \times n}$, and the pairing is

$$(A, B) \mapsto \det(A^T \cdot B).$$

解答 1. 是

- 2. 是, e^{-x^2} 保证了收敛性
- 3. 不是, 没有双线性

0.2 Exercise 2

Show that every real matrix is similar to a block diagonal matrix, wherein the candidates of the blocks are

- 1. the Jordan form of a real eigenvalue;
- 2. the block of the form

$$\begin{vmatrix} H_{r,\theta} & Q \\ & H_{r,\theta} & Q \\ & \ddots & \ddots \\ & & H_{r,\theta} & Q \\ & & & H_{r,\theta} \end{vmatrix},$$

where

1.
$$H_{r,\theta} = \begin{bmatrix} r\cos\theta & -r\sin\theta \\ r\sin\theta & r\cos\theta \end{bmatrix}$$
, and 2. $Q = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.

解答 对实矩阵进行 Jordan 分解, 其特征值为实数的保持不变

对于复数特征值 $\lambda = re^{i\theta}$,可以把复数写成矩阵形式

0.3 Exercise 2.5

Show that every real matrix is a product of two real symmetric matrices.

解答 $A=P^{-1}JP,$ 然后把每个块 J_i 乘次对角线全为 1 的矩阵得到 $J_i',$ 那么 $A=P^{-1}J'(P^{-1})^T\cdot P^TI'P$

0.4 Exercise 3

Let (V, (-, -)) be a finite dimensional real inner product space. For unit vector v_0 (i.e., $(v_0, v_0) = 1$), we define the reflection

$$\varphi: V \to V, \quad x \mapsto x - 2(x, v_0) \cdot v_0.$$

目录 2

Show that for isometric transform ψ (i.e., $(\psi(u), \psi(v)) = (u, v)$), 1 is an eigenvalue for ψ or $\psi \circ \varphi$. Overall, $1 \in \sigma(\psi) \cup \sigma(\psi \circ \varphi)$.

解答 假设 1 不是 ψ 的特征值, 令 $(\psi \circ \phi)(x) = x$,即寻找非 0 的 x 使得 $(\psi - I)(x) = 2(x, v_0)\psi(v_0)$,即 $x = 2(x, v_0)(\psi - I)^{-1}\psi(v_0)$,⇒ $(x, v_0) = 2(x, v_0)((\psi - I)^{-1}\psi(v_0), v_0)$ 所以 $(\psi - I)^{-1}\psi(v_0)$ 非 0, x 非 0

0.5 Exercise 4

Set $V := \mathbb{R}[x]$ and $V_0 := \{ f \in \mathbb{R}[x] \mid f(0) = f(1) \}.$

- 1. Prove that $V \times V \to \mathbb{R}$, $(f,g) \mapsto \int_0^1 f(x)g(x) \, dx$ is an inner product.
- 2. Set $\mathscr{D}: V_0 \to V$, $f(x) \mapsto f'(x)$. Find dim $\ker(\mathscr{D})$ and dim $\operatorname{coker}(\mathscr{D})$.
- 3. Define the inner product restricted on the subspace

$$(\cdot,\cdot)_0: V_0 \times V_0 \to \mathbb{R}, \quad (f,g) \mapsto \int_0^1 f(x)g(x) \,\mathrm{d}\,x.$$

Is there any linear map $\mathscr{D}^*: V \to V_0$ such that for any $h \in V_0$ and $g \in V$,

$$(\mathscr{D}^*g, h)_0 = (g, \mathscr{D}h)?$$

解答 1. 双线性, 对称, 正定

- 2. $\dim \ker(\mathcal{D}) = 1$, $\dim \operatorname{coker}(\mathcal{D}) = 1$
- 3. $\mathcal{D}^* = -\mathcal{D}$

0.6 Exercise 5

Let (V, (,)) be an inner product space, where V is not necessary finite dimensional.

- Say φ^* is the adjoint of $\varphi \in \operatorname{Hom}_{\mathbb{R}}(V, V)$, provided $(\varphi^*(x), y) = (x, \varphi(y))$ for arbitrary $x, y \in V$.
- Let U be a subspace of V. Set

$$U^{\perp} := \{ v \in V \mid (u, v) = 0, \forall u \in U \} = \bigcap_{u \in U} \ker((u, -))$$

Now we assume that φ is invertible, and φ^* exists.

- 1. Show that φ^* is injective, and $(\operatorname{im}(\varphi^*))^{\perp} = 0$.
- 2. Show that φ^* is surjective $\implies (\varphi^{-1})^*$ exists and $(\varphi^{-1})^* = (\varphi^*)^{-1}$.
- 3. Show that $(\varphi^{-1})^*$ exists $\implies \varphi^*$ is invertible and $(\varphi^{-1})^* = (\varphi^*)^{-1}$.
- 4. Let $V = \mathbb{R}[x]$ and $(f,g) := \sum_{n \geq 0} f_i g_i$, where $h = \sum_{i=1}^n h_i \cdot x^i$. Show that
- 1. (V, (,)) is an inner product space;
- 2. $L: f \mapsto \frac{f-f(0)}{x}$ is the linear map of moving left. Show that (id + L) is invertible;
- 3. Show that $\varphi := (\mathrm{id} + L)^{-1}$ has no adjoint φ^* .

解答 1. 令 $\phi^*(x) = 0$, 那么 $(\phi^*(x), y) = (x, \phi(y)) = 0$ 对任意的 y 都成立, 所以 x = 0

令 $y \in (\text{im}(\phi^*))^{\perp}$,那么对任意 x, $(,\phi(y)) = 0$, $\phi(y) = 0$, y = 0.

- 2. ϕ^* bij, $\exists z, \phi(z) = x$, $(\phi^*((\phi^{-1})^*(x)), y) = ((\phi^{-1})^*(x), \phi(y)) = (x, y)$, 因此 $(\varphi^{-1})^* = (\varphi^*)^{-1}$
- 3. $(\phi^*((\phi^{-1})^*(x)), y) = ((\phi^{-1})^*(x), \phi(y)) = (x, y)$,因此 $(\varphi^{-1})^* = (\varphi^*)^{-1}$

目录 3

- 4.1. 双线性, 对称, 正定
- 4.2. $(id+L)(f) = \sum_{i=0}^{n-1} (f_i + f_{i+1})x^i + f_n x^n$, 显然可逆. 4.3. $(id+L)^{-1}(f) = \sum_{i=0}^{n-1} (\sum_{j=i}^{n} (-1)^{j-1} f_j)x^i + f_n x^n$

假设 $\phi = (id + L)^{-1}$ 存在 ϕ^* , 那么取 f = 1, $(\phi^*(1), g) = (1, \phi(g)) = g_0 - g_1 + g_2 - \cdots$, 取不同的 g, 得 到的 $\phi^*(1)$ 不同, 矛盾.