Predicting Severity of Car Crashes

Avani Kanungo, Kathy Nguyen-Ly, Jenna Schindele, Sarah Zhari (Lecture 2, Group E)

Table of Contents

Introduction

Car crash context and data set overview

Goal: Predicting Severity of Traffic Delays after a Car Accident

Data: 35k training, 15k testing

Variables with NA Values

PREDICTORS WITH NAS **CATEGORICAL** LOGICAL **NUMERICAL** City Temperature.F. Sunrise_Sunset **Zipcode** Civil_Twilight Wind Chill.F. Timezone Nautical_Twilight Humidity... Airport_Code Astronomical_Twilight Pressure.in. Weather_Timestamp Visibility.mi. Wind_Direction Wind_Speed.mph Used the library mice to impute numerical missing values Weather_Condition

02

Methodology

Data cleaning and modeling

Methodology Process

Data Cleaning

Create new variables

Modeling

Create numerous models using our training data

Analyze Models

Calculate accuracy and error rates

Model Selection

Choose the best model based on accuracy and simplicity

Creation of Numerical Variables

- Time, Latitude, and Longitude themselves may not be useful
- The following may indicate higher likelihood of SEVERE:
 - Large difference in time (more time to clear accident)
 - Large difference in Lat/Lng (larger area affected by accident)
- Components of Date can also be useful:
 - Year: certain years (COVID) may have had decreased driving rates
 - Month: holiday months often have increased driving rates
 - Hour: dusk to dawn hours have increased chance of accidents

Numerical Variables				
Change in Time	= End_Time – Start_Time			
Change in Latitude	= End_Lat – Start_Lat			
Change in Longitude	= End_Lng – Start_Lng			
Year	= Year(Start_Time)			
Month	= Month(Start_Time)			
Hour	= Hour(Start_Time)			

Creation of Variables from Description

- Cannot use "Description" predictor as is since each description is different from each other
- Generated word clouds using the "Description" predictor for both MILD and SEVERE accidents
- Based on word clouds, created logical predictors for whether the following words/phrases were in the description:
 - Accident
 - accident
 - Closed
 - closed
 - Traffic/traffic
 - Blocked/blocked
 - Caution
 - Incident/incident
 - Road closed due to accident

Creation of Variables from Weather_Condition

Finalized Model Data Set

Logistic Regression & Tree Modeling

Logistic Regression:

- We constructed a logistic regression model using all 25 predictors to predict the Severity of a car accident
- When applied to the testing data, this model produced a 93.46% accuracy rate

Tree Modeling

- We constructed a tree model using all 25 predictors to predict the Severity of a car accident
- When applied to the testing data, this model produced a 93.28% accuracy rate

Year, Month, Hour, Side, State, Timezone, Change_Time, Change_Lat, Change_Lng, Closed, closed, Accident, accident, Traffic, Blocked, Caution, Incident, Rain, Cloudy, Windy, Thunderstorm, Haze, Snow, Clear, Road_Closed_Due_To_Accident

Random Forest Modeling

- Using the library randomForest, we constructed Random Forest models
- Modified the parameter, mtry, to values ranging from 1 to 9 to assess variance in accuracy rates
- Although mtry = 7 had the highest <u>training</u> accuracy, mtry = 6 resulted in the best <u>testing</u> accuracy

SVM Modeling

When predicting the testing data, SVM using a linear kernel had an accuracy rate of **93.33%**, while SVM using a radial kernel had an accuracy rate of **93.29%**. Therefore, we used the <u>linear</u> kernel for our SVM model.

Model Testing Accuracies

Evaluating our testing accuracies, we conclude that our Random Forest model is the best at predicting our testing data.

Proposed Models Summary

	MODEL PROPERTIES			
	Interpretable	Efficient	Accurate	Flexible
Logistic Regression	⊗	((8)	(3)
Тгее	⊗	⊗	(%)	(%)
Random Forest	(%)	×	(⊗
SVM	×	X	(%)	⊗

Final Model

Choosing the Model:

- Ideally, we would want to maximize accuracy while minimizing complexity
 - Increased accuracy rates generate higher predicting power
 - Simpler models are often easier to interpret
 - In reality, achieving both is difficult, so we must prioritize one over another
- We chose our first priority to be maximizing the accuracy rate
 - Therefore, our final model is: <u>Random Forest (mtry = 6) using all 25 predictors</u>

Year, Month, Hour, Side, State, Timezone, Change_Time, Change_Lat, Change_Lng, Closed, closed, Accident, accident, Traffic, Blocked, Caution, Incident, Rain, Cloudy, Windy, Thunderstorm, Haze, Snow, Clear, Road_Closed_Due_To_Accident

Results & Discussion

Final model analysis

Model Analysis

FINAL RANKING

3rd

FINAL SCORE

94.55%

FINAL MODEL

Random Forest, mtry = 6

PREDICTORS

25

OBSERVATIONS

35,000

ACCURACY RATE

94.43%

Important Predictors

MOST Important Predictors

Most Important

Description

Roads closed were a strong sign of severe accidents – caused more traffic

Weather

Weather can impact visibility and cause slippery roads – leading to severe accidents

04

Limitations & Conclusions

Setbacks, assumptions, and final words

Most Useful Variables Extracted from "Description"

Numerical Predictors

Most predictors weren't helpful as is

Categorical Predictors

Extracting key phrases was key to our model

Limitations with Missing Values

Additional Data That Could Be Useful

REMINDERS!

Thank you for listening! Questions?