Claims

1. A 2H-benzotriazole compound of the formula

$$Ar^{1} = N N - Y^{3}$$

$$N - Y^{1} - N N - Y^{1} - N N - Y^{2}$$

$$N - Y^{1} - N N - Y^{2} - N N - Y^{2}$$

$$N - Y^{1} - N N - Y^{2} - N N - Y^{2}$$

$$N - Y^{2} - N N - Y^{2} - N N - Y^{2}$$

$$N - Y^{2} - N N - Y^{2} - N N - Y^{2} - N N - Y^{2}$$

$$N - Y^{2} - N N - Y^{2} - N N$$

Y¹ is a divalent linking group, and

 Y^3 is C_1 - C_{25} alkyl, especially C_1 - C_4 alkyl, aryl or heteroaryl, which can optionally be substituted, especially C_6 - C_{30} aryl, or C_2 - C_{26} heteroaryl, which can optionally be substituted,

$$Ar^1$$
 N Ar^2 N N and Ar^2 N N

are independently of each other a group of

formula

5

10

$$A^{22}$$
 A^{21}
 A^{23}
 A^{21}
 A^{23}
 A^{21}
 A^{15}
 A^{15}
 A^{14}
 A^{12}
 A^{14}
 A^{15}
 A^{15}
 A^{14}
 A^{15}
 A^{15}
 A^{15}
 A^{16}
 A^{17}
 A^{18}
 A^{18}
 A^{19}
 A^{19}
 A^{11}
 A^{11}
 A^{12}
 A^{14}
 A^{15}
 A

A²¹, A²², A²³, A²⁴, A¹¹, A¹², A¹³, A¹⁴, A¹⁵, A¹⁶, A¹⁶, A¹⁷ and A¹⁸ are independently of each other H, halogen, especially fluorine, hydroxy, C₁-C₂₄alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkyl which is substituted by G and/or interrupted by S-, -O-, or -NR²⁵-, -NR²⁵R²⁶, C₁-C₂₄alkylthio, -PR³²R³², C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkoxy which is substituted by G, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-

$$A^{31}$$
 A^{32}
 A^{34}
 A^{33}
 A^{34}
 A^{34}
 A^{34}
 A^{35}
 A^{35}
 A^{36}
 A^{36}
 A^{36}
 A^{36}
, or

 A^{22} and A^{23} or A^{11} and A^{23} are a group

two groups A¹¹, A¹², A¹³, A¹⁴, A¹⁵, A¹⁶, A¹⁶ and A¹⁸, which are neighbouring to each

$$A^{31}$$
 A^{32}
 A^{34}
 A^{33}
 A^{34}
 A^{34}
 A^{35}
 A^{35}
 A^{35}
 A^{36}
 A^{35}

other, are a group

or a group of formula

5

10

15

20

25

, wherein A³¹, A³², A³³, A³⁴, A³⁵ and , or A³⁶ are independently of each other H, halogen, hydroxy, C₁-C₂₄alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkyl which is substituted by G and/or interrupted by S-, -O-, or -NR²⁵-, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkoxy which is substituted by G, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₁-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, C₇-C₂₅aralkyl, which is substituted by G, C₇-C₂₅aralkoxy, C₇-C₂₅aralkoxy which is substituted by G, or -CO-R²⁸, wherein preferably at least one of the substituents A²¹, A^{22} , A^{23} , A^{24} , A^{11} , A^{12} , A^{13} , A^{14} , A^{15} , A^{16} , A^{17} and A^{18} is C_6 - C_{24} aryl which is substituted by fluorine, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl; or C₂-C₂₆heteroaryl, especially thiophenyl, pyrrolyl, furanyl, benzoxazolyl, or benzothiazolyl, which is substituted by fluorine, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl,

10

15

20

25

wherein X^{70} , X^{71} , X^{72} , X^{73} , X^{74} , X^{75} , X^{76} , X^{77} , X^{80} , X^{81} , X^{82} , X^{83} , X^{84} , X^{85} , X^{86} , and X^{87} are independently of each other E and/or interrupted by D, C_1 - C_2 4perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, C_5 - C_{12} cycloalkyl, C_6 - C_{12} cycloalkyl which is substituted by G and/or interrupted by S-, -O-, or -NR²⁵-, -NR²⁵R²⁶, C_1 - C_2 4alkylthio, -PR³² R³², C_5 - C_{12} cycloalkoxy, C_5 - C_{12} cycloalkoxy which is substituted by G, C_6 - C_2 4aryl, C_6 - C_2 4aryl which is substituted by G, C_1 - C_2 4alkyl, C_5 - C_{12} cycloalkyl, C_7 - C_2 5aralkyl, C_1 - C_2 4perfluoroalkyl, C_6 - C_1 4perfluoroaryl, especially pentafluorophenyl, or C_1 - C_2 4haloalkyl; C_2 - C_2 0heteroaryl which is substituted by G, fluorine, C_1 - C_2 4alkoxyl, C_5 - C_1 2cycloalkyl, C_7 - C_2 5aralkyl, C_1 - C_2 4perfluoroalkyl, C_6 - C_1 4perfluoroaryl, especially pentafluorophenyl, or C_1 - C_2 4haloalkyl; C_2 - C_2 4alkenyl, C_5 - C_1 4perfluoroaryl, especially pentafluorophenyl, or C_1 - C_2 4haloalkyl; C_2 - C_2 4alkenyl, C_5 - C_1 4perfluoroaryl, C_1 - C_2 4alkoxy which is substituted by E and/or interrupted by D, C_7 - C_2 5aralkyl, C_7 - C_2 5aralkyl, which is substituted by G, C_7 - C_2 5aralkoxy which is substituted by G, C_7 - C_2 5aralkoxy which is substituted by G, or - C_1 - C_2 7.

two groups X^{70} , X^{71} , X^{72} , X^{73} , X^{74} , X^{75} , X^{76} , X^{77} , X^{80} , X^{81} , X^{82} , X^{83} , X^{84} , X^{85} , X^{86} , and X^{87} ,

which are neighbouring to each other, are a group A , or A , wherein A 90 , A 91 , A 92 , A 93 , A 94 , A 95 , A 96 and A 97 are independently of each other H, halogen, especially fluorine, hydroxy, C $_1$ -C $_{24}$ alkyl, C $_1$ -C $_{24}$ alkyl which is substituted by E and/or interrupted by D, C $_1$ -C $_{24}$ perfluoroalkyl, C $_6$ -C $_{14}$ perfluoroaryl, especially pentafluorophenyl, C $_5$ -C $_{12}$ cycloalkyl, C $_5$ -C $_{12}$ cycloalkyl which is substituted by G and/or interrupted by S-, -O-, or -NR 25 -, C $_5$ -C $_{12}$ cycloalkoxy, C $_5$ -C $_{12}$ cycloalkoxy which is substituted by G, C $_6$ -C $_{24}$ aryl, C $_6$ -C $_{24}$ aryl which is substituted by G, C $_2$ -C $_2$ 0heteroaryl, C $_2$ -C $_2$ 0heteroaryl which is substituted by G, C $_2$ -C $_2$ 4alkoxy, C $_1$ -C $_2$ 4alkoxy which is substituted by E and/or interrupted by D, C $_7$ -C $_2$ 5aralkyl, C $_7$ -

10

25

C₂₅aralkyl, which is substituted by G, C₇-C₂₅aralkoxy, C₇-C₂₅aralkoxy which is substituted by G, or -CO-R²⁸,

 E^2 is $-CR^{23}=CR^{24}$ -, especially $-CX^{68}X^{69}$ -,

 E^2 is $-SiR^{30}R^{31}$ -; $-POR^{32}$ -; especially -S-, -O-, or -NR^{25'}-, wherein $R^{25'}$ is C_1-C_{24} alkyl, or C_6-C_{10} aryl,

 X^{68} , X^{78} , X^{79} , X^{88} and X^{89} are independently of each other C_1 – C_{18} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by G, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by G, C_2 - C_{24} alkynyl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, or

 X^{78} and X^{79} , and/or X^{88} and X^{89} form a ring, especially a five- or six-membered ring, or

 X^{68} and X^{70} , X^{69} and X^{73} , X^{77} and X^{78} and/or X^{84} and X^{89} are a group

D is -CO-; -COO-; -S-; -SO-; -SO₂-; -O-; -NR²⁵-; -SiR³⁰R³¹-; -POR³²-; -CR²³=CR²⁴-; or -CEC-; and

15 E is $-OR^{29}$; $-SR^{29}$; $-NR^{25}R^{26}$; $-COR^{28}$; $-COOR^{27}$; $-CONR^{25}R^{26}$; -CN; $-OCOOR^{27}$; or halogen;

G is E, or C₁-C₂₄alkyl, wherein

R²³, R²⁴, R²⁵ and R²⁶ are independently of each other H; C₆-C₁₈aryl; C₆-C₁₈aryl which is substituted by C₁-C₂₄alkyl, or C₁-C₂₄alkoxy; C₁-C₂₄alkyl; or C₁-C₂₄alkyl which is

20 interrupted by -O-; or

R²⁵ and R²⁶ together form a five or six membered ring, in particular

 R^{27} and R^{28} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkoxy; C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl which is interrupted by -O-,

 R^{29} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl which is interrupted by -O-,

15

20

 R^{30} and R^{31} are independently of each other C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, and R^{32} is C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl.

5 2. A 2H-benzotriazole compound according to claim 1, wherein at least one of the substituents A²¹, A²², A²³, A²⁴, A¹¹, A¹², A¹³, A¹⁴, A¹⁵, A¹⁶, A¹⁷ and A¹⁸, especially A¹², A²¹

$$X^{41}$$
 X^{42}
 X^{43}
 X^{43}
 X^{45}
 X^{44}
 X^{48}
 X^{49}
 X^{50}
 X^{51}
 X^{52}
 X^{53}

and/or A²³, are a group of formula

 $X^{5'}$ X^{50} X^{51} X^{62} $X^{5'}$ X^{50} , wherein X^{41} , X^{42} , X^{43} , X^{44} , X^{45} , X^{46} , X^{47} , X^{48} , X^{49} , X^{50} , X^{51} , X^{52} , X^{53} , X^{54} , X^{55} , X^{56} , X^{57} , X^{58} , X^{59} , X^{60} , X^{61} , X^{62} , X^{63} , X^{64} , X^{65} , X^{66} and X^{67} are independently of each other H, fluorine, -NR²⁵R²⁶, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl, C₁-C₂₄alkyl, which is optionally substituted by E and/or interrupted by D, C₁-C₂₄alkenyl, which is optionally substituted by E, C₅-C₁₂cycloalkyl, which is optionally substituted by G, C₆-C₁₈aryl, which is optionally substituted by G, C₁-C₂₄alkoxy, which is optionally substituted by E and/or interrupted by D, C₆-C₁₈aryloxy, which is optionally substituted by G, C₇-C₁₈arylalkoxy, which is optionally substituted by G, C₇-C₂₄alkylthio, which is optionally substituted by G, C₇-C₂₆heteroaryl which is substituted by G, or C₆-C₁₈aralkyl, which is optionally substituted by G, or

X⁴³, X⁶⁵ or X⁵² are a group of formula , Ph , or two groups X⁴¹, X⁴², X⁴³, X⁴⁴, X⁴⁵, X⁴⁶, X⁴⁷, X⁴⁸, X⁴⁹, X⁵⁰, X⁵¹, X⁵², X⁵³, X⁵⁴, X⁵⁵, X⁵⁶, X⁵⁷, X⁵⁸, X⁵⁹, X⁶⁰, X⁶¹, X⁶², X⁶³, X⁶⁴, X⁶⁵, X⁶⁶ and X⁶⁷, which are neighbouring to each other,

$$A^{90}$$
 A^{91}
 A^{90}
 A^{94}
 A^{95}
 A^{92}
 A^{91}
 A^{92}
 A^{91}
 A^{96}

are a group A⁵⁰, or A⁵¹ A⁵⁷, wherein A⁹⁰, A⁹¹, A⁹², A⁹³, A⁹⁴, A⁹⁵, A⁹⁶ and A⁹⁷ are independently of each other H, halogen, hydroxy, C₁-C₂₄alkyl, C₁-C₂₄alkyl which

10

15

is substituted by E and/or interrupted by D, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkyl which is substituted by G and/or interrupted by S-, -O-, or -NR²⁵-, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkoxy which is substituted by G, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₁-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, C₇-C₂₅aralkyl, which is substituted by G, C₇-C₂₅aralkoxy, C₇-C₂₅aralkoxy which is substituted by E, or -CO-R²⁸, wherein R²⁵, R²⁶ and R²⁸, D, E and G are as defined in claim 2 and preferably at least one of the substituents X⁴¹, X⁴², X⁴³, X⁴⁴, X⁴⁵, X⁴⁶, X⁴⁷, X⁴⁸, X⁴⁹, X⁵⁰, X⁵¹, X⁵², X⁵³, X⁵⁴, X⁵⁵, X⁵⁶, X⁵⁷, X⁵⁸, X⁵⁹, X⁶⁰, X⁶¹, X⁶², X⁶³, X⁶⁴, X⁶⁵, X⁶⁶ and X⁶⁷ is fluorine, -NR²⁵R²⁶, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄haloalkyl.

3. A 2H-benzotriazole compound according to claim 1, wherein at least one of the substituents A²¹, A²², A²³, A²⁴, A¹¹, A¹², A¹³, A¹⁴, A¹⁵, A¹⁶, A¹⁷ and A¹⁸, especially A¹² and/or A²³ are a group of formula

wherein

X⁶⁸, X⁶⁹, X⁷⁸, X⁷⁹, X⁸⁸ and X⁸⁹ are independently of each other C₁-C₂₄alkyl, especially C₁-C₁₂alkyl, which can be interrupted by one or two oxygen atoms, X⁷⁰, X⁷¹, X⁷², X⁷³, X⁷⁴, X⁷⁵, X⁷⁶, X⁷⁷, X⁸⁰, X⁸¹, X⁸², X⁸³, X⁸⁴, X⁸⁵, X⁸⁶ and X⁸⁷ are independently of each other H, CN, C₁-C₂₄alkyl, C₆-C₁₀aryl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, wherein R²⁵ and R²⁶ are independently of each other H, C₆-C₁₈aryl, C₇-C₁₈aralkyl, or C₁-C₂₄alkyl, and R²⁷ is C₁-C₂₄alkyl, or

, or

R²⁵ and R²⁶ together form a five or six membered ring, in particular

$$-N$$
 $-N$ or $-N$ and

 E^2 is -S-, -O-, or -NR^{25'}-, wherein R^{25'} is C₁-C₂₄alkyl, or C₆-C₁₀aryl.

5 4. A 2H-benzotriazole compound according to claim 1, wherein

Y³ is a group of formula

10

15

20

, wherein

 R^{41} , R^{42} , R^{43} , R^{44} , R^{45} , R^{46} , R^{47} , R^{48} , R^{49} , R^{50} , R^{51} , R^{52} , R^{53} , R^{54} , R^{55} , R^{56} , R^{57} , R^{58} , R^{59} , R^{60} , R^{61} , R^{62} , R^{63} , R^{64} , R^{65} , R^{66} , R^{67} , R^{70} , R^{71} , R^{72} , R^{73} , R^{74} , R^{75} , R^{76} , R^{77} , R^{80} , R^{81} , R^{82} , R^{83} , R^{84} , R^{85} , R^{86} , and R^{87} are independently of each other H, fluorine, C_1 - C_{24} perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, - $NR^{25}R^{26}$, C_1 - C_{24} alkyl, which is optionally substituted by E and/or interrupted by D, C_1 - C_{24} alkenyl, which is optionally substituted by E, C_5 - C_{12} cycloalkyl, which is optionally substituted by G, C_6 - C_{18} aryl, which is optionally substituted by G, C_6 - C_{18} aryl, which is optionally substituted by G, C_6 - C_{18} aryloxy, which is optionally substituted by G, C_7 - C_{18} aryloxy, which is optionally substituted by G, C_7 - C_{18} arylalkoxy, which is optionally substituted by G, C_7 - C_{18} arylalkoxy, which is optionally substituted by G, C_7 - C_{18} arylalkoxy, which is optionally substituted by G, C_7 - C_{18} aralkyl, which is optionally substituted by G, C_7 - C_{18} aralkyl, which is optionally substituted by G, C_7 - C_{18} aralkyl, which is optionally substituted by G, or

10

15

20

R⁴³, R⁶⁵ or R⁵² are a group of formula , Ph , or two groups R⁴¹, R⁴², R⁴³, R⁴⁴, R⁴⁵, R⁴⁶, R⁴⁷, R⁴⁸, R⁴⁹, R⁵⁰, R⁵¹, R⁵², R⁵³, R⁵⁴, R⁵⁵, R⁵⁶, R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰, R⁶¹, R⁶², R⁶³, R⁶⁴, R⁶⁵, R⁶⁶, R⁶⁷, R⁷⁰, R⁷¹, R⁷², R⁷³, R⁷⁴, R⁷⁵, R⁷⁶, R⁷⁷, R⁸⁰, R⁸¹, R⁸², R⁸³, R⁸⁴, R⁸⁵, R⁸⁶, and R⁸⁷, which are neighbouring to each other, are a group

$$A^{90}$$
 A^{91}
 A^{91}
 A^{92}
 A^{91}
 A^{96}
 A^{91}
 A^{97}
 A^{96}

, wherein A^{90} , A^{91} , A^{92} , A^{93} , A^{94} , A^{95} , A^{96} and A^{97} are

independently of each other H, halogen, especially fluorine, -NR 25 R 26 , hydroxy, C₁-C₂₄alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₅-C₁₂cycloalkyl, C₅-C₁₂cycloalkyl which is substituted by G and/or interrupted by S-, -O-, or -NR 25 -, C₅-C₁₂cycloalkoxy, C₅-C₁₂cycloalkoxy which is substituted by G, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₁-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, C₇-C₂₅aralkyl, which is substituted by G, C₇-C₂₅aralkoxy, C₇-C₂₅aralkoxy which is substituted by G, or -CO-R²⁸,

R⁶⁸, R⁶⁹, R⁷⁸, R⁷⁹, R⁸⁸ and R⁸⁹ are independently of each other C₁-C₁₈ alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₂₄alkynyl, C₁-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, or C₇-C₂₅aralkyl, or

 R^{68} and R^{69} , R^{78} and R^{79} , and/or R^{88} and R^{89} form a ring, especially a five- or six-membered ring, or

 R^{68} and R^{70} , R^{69} and R^{73} , R^{77} and R^{78} and/or R^{84} and R^{89} are a group A^{70} , A^{70} , R^{69} and R^{70} , R^{7

E is $-OR^{29}$; $-SR^{29}$; $-NR^{25}R^{26}$; $-COR^{28}$; $-COOR^{27}$; $-CONR^{25}R^{26}$; -CN; $-OCOOR^{27}$; or halogen; G is E, or C_1 - C_{24} alkyl; wherein

10

15

20

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkoxy; C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl which is interrupted by -O-; or

$$-N$$

R²⁵ and R²⁶ together form a five or six membered ring, in particular

$$-N$$
 $-N$
or
 $-N$
or

 R^{27} and R^{28} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkoxy; C_1 - C_{24} alkyl; or C_1 - C_{24} alkyl which is interrupted by -O-,

R²⁹ is H; C₆-C₁₈aryl; C₆-C₁₈aryl, which is substituted by C₁-C₂₄alkyl, or C₁-C₂₄alkyl; or C₁-C₂₄alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, and

R³² is C₁-C₂₄alkyl, C₆-C₁₈aryl, or C₆-C₁₈aryl, which is substituted by C₁-C₂₄alkyl, or

R⁴³, or R⁵² are a group of formula

R^{68'} and R^{69'} are independently of each other C₁-C₂₄alkyl, especially C₁-C₁₂alkyl, which can be interrupted by one or two oxygen atoms,

 $R^{70'}$, $R^{71'}$, $R^{72'}$, $R^{73'}$, $R^{74'}$, $R^{75'}$ and $R^{76'}$ are independently of each other H, CN, C_{1} - C_{24} alkyl, C_{6} - C_{10} aryl, C_{1} - C_{24} alkoxy, C_{1} - C_{24} alkylthio, -NR^{25'}R^{26'}, -CONR^{25'}R^{26'}, or -COOR^{27'},

 $R^{25'}$ and $R^{26'}$ are independently of each other H, C_6 - C_{18} aryl, C_7 - C_{18} aralkyl, or C_{17} - C_{24} alkyl, and $R^{27'}$ is C_1 - C_{24} alkyl; and

 $E^{1'}$ is -S-, -O-, or -NR^{25'}-, wherein R^{25'} is C₁-C₂₄alkyl, or C₆-C₁₀aryl.

5. A 2H-benzotriazole compound to claim 1, wherein Y¹ is a group of formula

$$R^{7} = R^{7} + R^{7$$

10

15

20

n1, n2, n3, n4, n5, n6, n7 and n8 are 1, 2, or 3, in particular 1, E¹ is -S-, -O-, or -NR²⁵⁻-, wherein R²⁵⁻ is C₁-C₂₄alkyl, or C₆-C₁₀aryl, R⁶ and R⁷ are independently of each other H, halogen, especially fluorine, -NR²⁵R²⁶, hydroxy, C₁-C₂₄alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₆-C₁₂cycloalkyl, C₆-C₁₂cycloalkyl which is substituted by G and/or interrupted by S-, -O-, or -NR²⁵-, C₆-C₁₂cycloalkoxy, C₆-C₁₂cycloalkoxy which is substituted by G, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₁-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, C₁-C₂₅aralkyl, C₁-C₂₅aralkyl, which is substituted by G, C₁-C₂₅aralkoxy, C₁-C₂₅aralkoxy which is substituted by G, or -CO-R²⁶,

A⁹¹
A⁹²
A⁹³

 R^6 and R^7 have the meaning of R^6 , or together form a group $A^{\circ\circ}$, wherein $A^{\circ\circ}$, $A^{\circ\circ}$, $A^{\circ\circ}$, and $A^{\circ\circ}$ are independently of each other H, halogen, hydroxy, C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_1 - C_2 -perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl which is substituted by G and/or interrupted by S-, -O-, or -NR 25 -, C_5 - C_{12} cycloalkoxy, C_5 - C_{12} cycloalkoxy which is substituted by G, C_6 - C_2 -aryl, C_6 - C_2 -aryl which is substituted by G, C_2 - C_2 -heteroaryl, C_2 - C_2 -heteroaryl which is substituted by E and/or interrupted by C_1 - C_2 -alkoxy, C_1 - C_2 -alkoxy which is substituted by E and/or interrupted by

25

D, C₇-C₂₅aralkyl, C₇-C₂₅aralkyl, which is substituted by G, C₇-C₂₅aralkoxy, C₇-C₂₅aralkoxy which is substituted by E, or -CO-R²⁸,

 R^8 is C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, or C_7 - C_{25} aralkyl,

- R⁹ and R¹⁰ are independently of each other C₁-C₂₄alkyl, C₁-C₂₄alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by G, C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by G, C₂-C₂₄alkenyl, C₂-C₂₄alkynyl, C₁-C₂₄alkoxy, C₁-C₂₄alkoxy which is substituted by E and/or interrupted by D, or C₇-C₂₅aralkyl, or
- R⁹ and R¹⁰ form a ring, especially a five- or six-membered ring,
 R¹⁴ and R¹⁵ are independently of each other H, C₁-C₂₄alkyl, C₁-C₂₄alkyl which is
 substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by
 G, C₂-C₂₀heteroaryl, or C₂-C₂₀heteroaryl which is substituted by G,
 D is -CO-, -COO-, -S-, -SO-, -SO₂-, -O-, -NR²⁵-, -SiR³⁰R³¹-, -POR³²-, -CR²³=CR²⁴-, or C≡C-, G is E, or C₁-C₂₄alkyl, and

E is $-OR^{29}$, $-SR^{29}$, $-NR^{25}R^{26}$, $-COR^{28}$, $-COOR^{27}$, $-CONR^{25}R^{26}$, -CN, $-OCOOR^{27}$, or halogen, wherein

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl which is interrupted by -O-, or

R²⁵ and R²⁶ together form a five or six membered ring, in particular

$$-N$$
 $-N$
 $-N$
 or

 R^{27} and R^{28} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{24} alkyl, or C_1 - C_{24} alkoxy, C_1 - C_{24} alkyl, or C_1 - C_{24} alkyl which is interrupted by -O-,

 R^{29} is H, C_6 - C_{18} aryl, C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, C_1 - C_{24} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{24} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{24} alkyl, and

10

15

20

R³² is C₁-C₂₄alkyl, C₆-C₁₈aryl, or C₆-C₁₈aryl, which is substituted by C₁-C₂₄alkyl.

6. A 2H-benzotriazole compound to claim 1, wherein the 2H-benzotriazole compound is a compound of formula

$$A^{21} \qquad A^{21} \qquad A^{16} \qquad A^{18} \qquad A^{16} \qquad A^{18} \qquad A^{11} \qquad A^{18} \qquad A^{11} \qquad A^{11} \qquad A^{12} \qquad A^{12} \qquad A^{13} \qquad A^{14} \qquad A^{12} \qquad A^{14} \qquad A^{14} \qquad A^{15} \qquad A^{15} \qquad A^{14} \qquad A^{15} \qquad A$$

(Id), wherein A¹² or A²³ are a group of formula

$$X^{41}$$
 X^{42}
 X^{43}
 X^{48}
 X^{49}
 X^{50}
 X^{51}
 X^{55}
 X^{56}
 X^{59}
 X^{60}
 X^{63}
 X^{64}
 X^{65}
 X^{65}
 X^{58}
 X^{61}
 X^{62}
 X^{66}
 X^{65}

 X^{41} , X^{42} , X^{43} , X^{44} , X^{45} , X^{46} , X^{47} , X^{48} , X^{49} , X^{50} , X^{51} , X^{52} , X^{53} , X^{54} , X^{55} , X^{56} , X^{57} , X^{58} , X^{59} , X^{60} , X^{61} , X^{62} , X^{63} , X^{64} , X^{65} , X^{66} and X^{67} are independently of each other are independently of each other H, CN, fluorine, C_1 - C_{24} alkyl, C_5 - C_{12} cycloalkyl, C_7 - C_{25} aralkyl, C_1 - C_{24} perfluoroalkyl, C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, C_1 - C_{24} haloalkyl, C_6 - C_{10} aryl, which can optionally be substituted by one, or more C_1 - C_8 alkyl, or C_1 - C_8 alkoxy groups; C_1 - C_2 4alkoxy, C_1 - C_2 4alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or two groups X^{41} , X^{42} , X^{43} , X^{44} , X^{45} , X^{46} , X^{47} , X^{48} , X^{49} , X^{50} , X^{51} , X^{52} , X^{53} , X^{54} , X^{55} , X^{56} , X^{57} , X^{58} , X^{59} , X^{60} , X^{61} , X^{62} , X^{63} , X^{64} , X^{65} , X^{66} and X^{67} , which are neighbouring to each other,

are a group , or , wherein preferably at least one of the substituents X^{41} , X^{42} , X^{43} , X^{44} , X^{45} , X^{46} , X^{47} , X^{48} , X^{49} , X^{50} , X^{51} , X^{52} , X^{53} , X^{54} , X^{55} , X^{56} , X^{57} , X^{58} , X^{59} , X^{60} , X^{61} , X^{62} , X^{63} , X^{64} , X^{65} , X^{66} and X^{67} is fluorine, -NR²⁵R²⁶, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl, or A¹² and A²³ are a group of formula

wherein

5

15

20

 X^{68} , X^{69} , X^{78} , X^{79} , X^{88} and X^{89} are independently of each other C_1 - C_{24} alkyl, especially C_1 - C_{12} alkyl, which can be interrupted by one or two oxygen atoms, X^{70} , X^{71} , X^{72} , X^{73} , X^{74} , X^{75} , X^{76} , X^{77} , X^{80} , X^{81} , X^{82} , X^{83} , X^{84} , X^{85} , X^{86} and X^{87} are independently of each other H, CN, C_1 - C_{24} alkyl, C_6 - C_{10} aryl, which can optionally be substituted by one, or more C_1 - C_8 alkyl, or C_1 - C_8 alkoxy groups; C_1 - C_2 4alkoxy, C_1 - C_2 4alkylthio, -NR 25 R 26 , -CONR 25 R 26 , or -COOR 27 ,

E² is -S-, -O-, or -NR²⁵-, wherein R²⁵ is C₁-C₂₄alkyl, or C₆-C₁₀aryl,

A²¹, A²² and A²⁴ are independently of each other hydrogen, halogen, especially fluorine,

C₁-C₂₄alkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₅
C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄haloalkyl, C₆-C₁₈aryl, which can optionally be substituted by one, or more C₁-C₈alkyl, or C₁-C₈alkoxy groups; -NR²⁵R²⁶, -CONR²⁵R²⁶,

or -COOR²⁷, or C₂-C₁₀heteroaryl, especially a group of formula o

$$N = 1$$
, or

 A^{22} and A^{23} or A^{11} and A^{23} are a group of formula , or

A¹¹, A¹³, A¹⁴, A¹⁵, A¹⁶, A¹⁷, and A¹⁸ are independently of each other H, CN, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₁-C₂₄haloalkyl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, C₆-C₁₈aryl, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or C₂-C₁₀heteroaryl, wherein R²⁵ and R²⁶ are independently of each other H, C₆-C₁₈aryl, C₇-C₁₈aralkyl, or C₁-C₂₄alkyl, R²⁷ is C₁-C₂₄alkyl, and

Y³ is a group of formula

$$R^{70}$$
 E^{1}
 R^{73}
 R^{74}
 R^{72}
 R^{76}
 R^{75}
 R^{75}

 R^{41} is hydrogen, C_1 - C_{24} alkoxy, or -OC₇- C_{18} aralkyl, R^{42} is hydrogen, or C_1 - C_{24} alkyl,

R⁴³ is hydrogen, halogen, -CONR²⁵R²⁶, -COOR²⁷,

especially ,
$$R^{70}$$
 R^{68} R^{69} R^{73} R^{70} R^{74} R^{71} R^{72} R^{76} R^{75}

 R^{73} R^{74} R^{72} R^{76} R^{75} R^{75} R^{75}

A^{11′}, A^{12′}, A^{13′}, and A^{14′} are independently of each other H, CN, C₁-C₂₄alkyl, C₁-C₂₄alkyl, C₁-C₂₄alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, E¹ is -S-, -O-, or -NR^{25′}-, wherein R^{25′} is C₁-C₂₄alkyl, or C₆-C₁₀aryl, R¹¹⁰ is H, CN, C₁-C₂₄alkyl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or

15 R⁴⁴ is hydrogen, or C₁-C₂₄alkyl,

15

20

R⁴⁵ is hydrogen, or C₁-C₂₄alkyl,

R⁶⁸ and R⁶⁹ are independently of each other C₁-C₂₄alkyl, especially C₁-C₁₂alkyl, which can be interrupted by one or two oxygen atoms,

R⁷⁰, R⁷¹, R⁷², R⁷³, R⁷⁴, R⁷⁵, R⁷⁶, R⁹⁰, R⁹¹, R⁹², and R⁹³ are independently of each other H, CN, C₁-C₂₄alkyl, C₆-C₁₀aryl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷,

R²⁵ and R²⁶ are independently of each other H, C₆-C₁₈aryl, C₇-C₁₈aralkyl, or C₁-C₂₄alkyl, and R²⁷ is C₁-C₂₄alkyl.

A 2H-benzotriazole compound according to claim 1, wherein the 2H-benzotriazole 10 7. compound is a compound of formula

$$A^{41} = A^{41} = A^{41} = A^{41} = A^{42} = A^{41} = A$$

, wherein X^{41} , X^{42} , X^{43} , X^{44} , X^{45} , X^{46} , X^{47} , X^{48} , X^{49} , X^{50} , X^{51} , X^{52} , X^{53} , X^{54} , X^{55} , X^{56} , X^{57} , X^{58} , X^{59} , X^{60} , X^{61} , X^{62} , X^{63} , X^{64} , X^{65} , X^{66} and X^{67} are independently of each other are independently of each other H, fluorine, CN, C1-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl, C₆-C₁₀aryl, which can optionally be substituted by one, or more C₁-C₈alkyl, or C₁-C₈alkoxy groups;

10

15

20

25

C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or two groups X⁴¹, X⁴², X⁴³, X⁴⁴, X⁴⁵, X⁴⁶, X⁴⁷, X⁴⁸, X⁴⁹, X⁵⁰, X⁵¹, X⁵², X⁵³, X⁵⁴, X⁵⁵, X⁵⁶, X⁵⁷, X⁵⁸, X⁵⁹, X⁶⁰, X⁶¹, X⁶², X⁶³, X⁶⁴, X⁶⁵, X⁶⁶ and X⁶⁷, which are neighbouring to each other,

are a group , or , wherein preferably at least one of the substituents X^{41} , X^{42} , X^{43} , X^{44} , X^{45} , X^{46} , X^{47} , X^{48} , X^{49} , X^{50} , X^{51} , X^{52} , X^{53} , X^{54} , X^{55} , X^{56} , X^{57} , X^{58} , X^{59} , X^{60} , X^{61} , X^{62} , X^{63} , X^{64} , X^{65} , X^{66} and X^{67} is fluorine, -NR²⁵R²⁶, C₁-C₂₄alkyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, or C₁-C₂₄haloalkyl, or A⁴³ or A⁵² are a group of formula

$$X^{70}$$
 X^{68}
 X^{69}
 X^{73}
 X^{77}
 X^{78}
 X^{79}
 X^{88}
 X^{89}
 X^{84}
 X^{71}
 X^{72}
 X^{76}
 X^{75}
 X^{80}
 X^{81}
 X^{82}
 X^{83}
 X^{87}
 X^{86}
 X^{70}
 X

wherein

 X^{68} , X^{69} , X^{78} , X^{79} , X^{88} and X^{89} are independently of each other C_1 - C_{24} alkyl, especially C_1 - C_{12} alkyl, which can be interrupted by one or two oxygen atoms, X^{70} , X^{71} , X^{72} , X^{73} , X^{74} , X^{75} , X^{76} , X^{77} , X^{80} , X^{81} , X^{82} , X^{83} , X^{84} , X^{85} , X^{86} and X^{87} are independently of each other H, CN, C_1 - C_{24} alkyl, C_6 - C_{10} aryl, C_1 - C_{24} alkoxy, C_1 - C_{24} alkylthio, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷,

 E^2 is -S-, -O-, or -NR²⁵-,

A⁴¹, A⁴² and A⁴⁴ are independently of each other hydrogen, halogen, C₁-C₂₄alkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄haloalkyl, C₆-C₁₈aryl, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or C₂-

$$N$$
 or N , or

C₁₀heteroaryl, especially a group of formula

 A^{51} , A^{53} , A^{54} , A^{55} , A^{56} , A^{57} , A^{58} , A^{59} and A^{60} are independently of each other H, fluorine, CN, C₁-C₂₄alkyl, C₁-C₂₄alkoxy, C₁-C₂₄alkylthio, C₅-C₁₂cycloalkyl, C₇-C₂₅aralkyl, C₁-C₂₄perfluoroalkyl, C₆-C₁₄perfluoroaryl, especially pentafluorophenyl, C₁-C₂₄haloalkyl, C₆-C₁₈aryl, -NR²⁵R²⁶, -CONR²⁵R²⁶, or -COOR²⁷, or C₂-C₁₀heteroaryl, wherein E¹ is O, S, or -NR²⁵-.

R²⁵ and R²⁶ are independently of each other H, C₆-C₁₈aryl, C₇-C₁₈aralkyl, or C₁-C₂₄alkyl,

$$\times$$
 0 $-$

or R²⁵ and R²⁶ together form a five or six membered ring, in particular

$$-N$$
 $-N$
 $-N$
or
 $-N$

R²⁷ is C₁-C₂₄alkyl, and

Y¹ is a group of formula

5

15

, wherein $R^6 \text{ is } C_{1}\text{-}C_{24}\text{alkoxy, or -O-C}_7\text{-}C_{25}\text{aralkyl, } R^7 \text{ is H, or } C_{1}\text{-}C_{24}\text{alkyl, } R^9 \text{ and } R^{10} \text{ are independently of each other } C_{1}\text{-}C_{24}\text{alkyl, especially } C_4\text{-}C_{12}\text{alkyl, which can be interrupted by one or two oxygen atoms, and } R^{25'} \text{ is } C_1\text{-}C_{24}\text{alkyl, or } C_6\text{-}C_{10}\text{aryl.}$

10

8. A 2H-benzotriazole compound according to claim 1, wherein the 2H-benzotriazole is a compound of formula

$$A^{23}$$
 A^{23}
 A

R¹⁰² is C₁-C₂₄alkyl, especially C₁-C₁₂alkyl, in particular H, A²³ is a group of formula

10

$$X^{65}$$

$$X$$

 C_{24} alkyl, especially C_1 - C_{12} alkyl, very especially tert-butyl, or , wherein X^{51} , X^{52} , X^{53} , X^{63} , X^{64} , X^{65} and X^{66} are independently of each other fluorine, C_1 - C_{24} alkyl, especially C_1 - C_{12} alkyl, very especially tert-butyl, C_5 - C_{12} cycloalkyl, especially cyclohexyl, which can optionally be substituted by one, or two C_1 - C_8 alkyl groups, or 1-adamantyl, C_1 - C_{24} perfluoroalkyl, especially C_1 - C_{12} perfluoroalkyl, such as CF_3 , C_6 - C_{14} perfluoroaryl, especially pentafluorophenyl, $NR^{25}R^{26}$, wherein R^{25} and R^{26} are C_6 - C_{14} aryl, especially phenyl, which can be substituted by one, or two C_1 - C_{24} alkyl groups, or R^{25} and R^{26} together form a five or six membered heterocyclic ring, especially

, or a compound of formula , or a compound of formula (IVa), especially
$$A^{12}$$
 (IVb), or A^{12} (IVb), or A^{12} (IVc), wherein Y³ is as defined above, or is , and

$$A^{12} \text{ is } NR^{25}R^{26}, \qquad \qquad Ph \qquad Ph \qquad Ph \qquad Ph \qquad Ph \qquad Ph \qquad Ph \qquad Ph \qquad \qquad Ph \qquad Ph \qquad Ph \qquad \qquad Ph \qquad$$

, or N , wherein R^{25} and R^{26} are C_6 - C_{14} aryl, especially phenyl, 1-naphthyl, 2-naphthyl, which can optionally be substituted by one, or two C_1 - C_8 alkyl groups, or C_1 - C_8 alkoxy groups, or

a compound of formula IVa, IVb, or IVc, wherein A¹² is

, and
$$Y^3$$
 is is

a compound of formula

5

and $A^{23'}$ are independently of each other a group of formula ,

a compound of formula Ia, Ib, Ic, or Id, especially

$$Y^3 = N \cdot N$$
, wherein A^{12} is H,

especially , wherein
$$X^{43}$$
 is C_1 - C_{24} alkyl, especially C_1 - C_{12} alkyl, Y^3 is a group of formula , wherein R^{70} is C_1 - C_{24} alkyl, especially C_1 -

group of formula

5 C₂₄alkoxy.

9. A 2H-benzotriazole compound according to claim 8, wherein the 2H-benzotriazole is a compound of formula

10 (IIa), very especially

particular H, Y 1 is a group of formula

, or , wherein R^9 and R^{10} are independently of each other C_{1-} C_{24} alkyl, especially C_4 - C_{12} alkyl, which can be interrupted by one or two oxygen atoms, and R^{25} is C_1 - C_{24} alkyl, especially C_4 - C_{12} alkyl.

- 10. An electroluminescent device, comprising a 2H-benzotriazole compound according to any of claims 1 to 9.
- 10 11. The electroluminescent device according to claim 10, wherein the electroluminescent device comprises in this order
 - (a) an anode
 - (b) a hole injecting layer and/or a hole transporting layer
 - (c) a light-emitting layer
 - (d) optionally an electron transporting layer and
 - (e) a cathode.
 - 12. The electroluminescent device according to claim 11, wherein the 2H-benzotriazole compound forms the light-emitting layer.

20

15

5

13. Use of the 2H-benzotriazole compounds according to any of claims 1 to 9 for electrophotographic photoreceptors, photoelectric converters, solar cells, image sensors, dye lasers and electroluminescent devices.