Biçimsel Dil ler ve Ot omat a Teorisi

VII'yi ara Kl eeneKuram II

İZZET FATİH ŞENTÜRK

Kl eene Teoremi

• Düzenl i if adeveya sonl u ot omat veya geçiş graf iği il et anıml anabil en herhangi bir dil , üç yönt eml edet anıml anabil ir • Kanıt üPart 1: Bir FA il et anıml anabil en her dil , bir TG il ede tanıml anabil ir.

üPart 2: Bir TG il et anıml anabil en her dil RE il edet anıml anabil ir

• Böl üm 3: RE il et anımlanabil en her dil, FA il e det anımlanabil ir.

Kanıt, Böl üm3: RE'l eri FA'l ara Dönüşt ürme

- Bu, tümt eoremin en zor kısmıdır Her RE, bel irl i
- kural ların tekrar tekrar uygulanmasıyla Σve∧al fabesinin harflerinden oluşturulabilir:•Toplama, birleştirmeve kapatma
- Bir RE ol uşt urduğumuzda, aynı zamanda aynı dil i kabul eden bir FA da ol uşt uruyor ol abil iriz.

Kural 1: Al fabenin herhangi bir harfini kabul eden bir FA vardır.
 Yal nızca Λ kel imesini kabul eden bir FA vardır.

• Kural 1'in Kanıtı: Eğer x, Σiçindeyse, o zaman FA yal nızca x kelimesini kabul eder $all \ \underline{\Sigma}$ $all \ \underline{\Sigma} \ except \ x$ +

• Kural 1'in Kanıtı: Kabul eden bir FA sadece∧

• REr1 tarafından tanımlanan dili kabul eden FA1 adlı bir FA varsa ve REr2 tarafından tanımlanan dili kabul eden FA2 adlı bir FA varsa, tanımlanan dili kabul eden FA3 olarak adlandır acağımız bir FA vardır. RE tarafından (r1 + r2)

-> ! Birl_ik!

- •İki eski makineden yeni makinenin nasıl yapıl dığını göst ererek Kural 2'yi ispatlayac ağız.
- Genel ilkel eribel irt meden önce bunları bel irli bir örnek üzerinde gösterec eğiz.

• FA1: Σ={ab} üzerindekit ümkel imel erin dil i içl erindebir yerdeçift a

	a	b
$-x_1$	x_2	x_1
x_2	x_3	x_1
$+x_3$	x_3	x_3

• FA2: ÇİFT-ÇİFT (a'l arın çift sayısı veb'l erin çift sayısı)

	a	b
$\pm y_1$	y_3	y_2
y_2	y_4	\boldsymbol{y}_1
y_3	y_1	y_4
y_4	y_2	y_3

• FA3: aa'sı ol an veya EVEN-EVEN içinde ol an ve hiçbir özelliği ol mayan diğer tümdizel eri reddeden tüm kelimel erin dili • Yeni makinenin dili, bu ikisinin birl eşimidir

Dil I er

- Buyeni makinedeki duruml arı gerekt iği kadar z1, z2, z3 ... ol arak adl andırac ağız.
- Bumakineyi geçiş tablosu il etanımlayac ağız •

FA1al oneda çal ışıyorsa girdinin neredeol acağını veFA1'de çal ışıyorsa girdinin neredeol acağını takipedeceğiz tekbaşına FA2

- Öncel ikle, bir z1 başlangıç durumuna iht iyacımız var • z1, x1 (FA1'deçalışıyorsa) vey1'i
- (FA2'deçal ışıyorsa) birl eştirir FA3 makinesindeki tümz-duruml arı çift anl amtaşır HemFA1 hemdeFA2'deçal ışır veikisini detakip ediyoruz aynı anda oyunl ar
- Giriş barfia okunursa bangiyeni durumlar oluşabilir?

- Giriş harfia okunursa hangiyeni durumlar oluşabilir? FA1
 için makineyi x2 durumuna getirir FA2 için makineyi y3
 durumuna getirir
- FA3't e, a harfimakineyi x2 veya y3 anlamına gelen z2 durumuna getirir.

	а	b
$-x_1$	x_2	x_1
x_2	x_3	x_1
$+x_3$	x_3	x_3

	а	b
$\pm y_1$	y_3	y_2
y_2	y_4	\boldsymbol{y}_1
y_3	y_1	y_4
y_4	y_2	y_3

- z1'deysekveb harf ini okuyorsak
 - FA1 için makineyi x1 durumuna get irir (x1 durumundan) FA2 için makineyi y2 durumuna get irir (y1 durumundan)

	a	<u>b</u>
$-x_1$	x_2	x_1
x_2	x_3	x_1
$+x_3$	x_3	x_3

	a	b
$\pm y_1$	y_3	y ₂
y_2	y_4	\mathbf{y}_1
y_3	y_1	y_{a}
y_4	y_2	y_3

 $\pm z_1 = x_1$ or y_1 • FA3 için geçiş tabl osunun başlangıcı

- z2'deysekve a harf ini okursak FA1 için makineyi
 x3 durumuna (son durum) get irir FA2 için makineyi y1 durumuna
 get irir
- Eğer z2'deysekveb harf ini okuyorsak
 - FA1 için makineyi x1 durumuna get irir FA2 için makineyi y4 durumuna get irir

	a	b		a	b				a	
$ \begin{array}{c} -x_1 \\ x_2 \\ +x_3 \end{array} $	$\begin{array}{c c} x_2 \\ x_3 \\ x_3 \end{array}$	x_1 x_1 x_3	$ \begin{array}{c} \pm y_1 \\ y_2 \\ y_3 \\ y_4 \end{array} $	y_3 y_4 y_1 y_2	y_2 y_1 y_4 y_2	$\begin{aligned} +z_4 &= x_3 \\ z_5 &= x_1 \end{aligned}$		$\frac{\pm z_1}{z_2}$	z ₂ z ₄	z

• Makine FA1 veya FA2 tarafından kabul, FA3 tarafından kabul için yeterlidir

- z3't eysekvea harf ini okuyorsak
 - FA1 için makineyi x2 durumuna get irir FA2 için makineyi y4 durumuna get irir
- z3't eysekveb harf ini okuyorsak
 - FA1 için makineyi x1 durumuna get irir FA2 için makineyi y1 durumuna get irir

	а	<u>b</u>
$-x_1$	x_2	x_1
x_2	x_3	x_1
$+x_3$	x_3	x_3

	a	b
$\pm y_1$	y_3	y_2
y_2	y_4	\boldsymbol{y}_1
y_3	y_1	y_4
y_4	y_2	y_3

$$z_6 = x_2 \quad \text{or} \quad y_4$$

	а	<u>b</u>
$\pm z_1$	z_2	z_3
z_2	z_4	z_5
z_3	z_6	z_1

- z4't eysekvea harf ini okursak• FA1 için makineyi x3 durumuna (son durum) get irir • FA2 için makineyi y3 durumuna get irir
- z4't eysekveb harf ini okursak
 rakineyi x3 durumuna (son durum) get irir
 rakineyi y2 durumuna get irir

	а	b
$-x_1$	x_2	x_1
x_2	x_3	x_1
$+x_3$	x_3	x_3

	а	b
$\pm y_1$	y_3	y_2
y_2	y_4	\boldsymbol{y}_1
y_3	y_1	y_4
y_4	y_2	y_3

$$+z_7 = x_3 \quad \text{or} \quad y_3$$

$$+z_8 = x_3 \quad \text{or} \quad y_2$$

	а	b
$\pm z_1$	z_2	z_3
z_2	z_4	z_5
z_3	z_6	z_1

If we are in z_5 and we read an a, we go to x_2 or y_2 , which we shall call z_9 . If we are in z_5 and we read a b, we go to x_1 or y_3 , which we shall call z_{10} .

$$z_9 = x_2 \quad \text{or} \quad y_2$$
$$z_{10} = x_1 \quad \text{or} \quad y_3$$

If we are in z_6 and we read an a, we go to x_3 or y_2 , which is our old z_8 . If we are in z_6 and we read a b, we go to x_1 or y_3 , which is z_{10} again. If we are in z_7 and we read an a, we go to x_3 or y_1 , which is z_4 again. If we are in z_7 and we read a b, we go to x_3 or y_4 , which is a new state, z_{11} .

$$+z_{11} = x_3$$
 or y_4

If we are in z_8 and we read an a, we go to x_3 or $y_4 = z_{11}$. If we are in z_8 and we read a b, we go to x_3 or $y_1 = z_4$. If we are in z_9 and we read an a, we go to x_3 or $y_4 = z_{11}$. If we are in z_9 and we read a b, we go to x_1 or $y_1 = z_1$. If we are in z_{10} and we read an a, we go to x_2 or y_1 , which is our last new state, z_{12} .

$$+z_{12} = x_2$$
 or y_1

If we are in z_{10} and we read a b, we go to x_1 or $y_4 = z_5$.

If we are in z_{11} and we read an a, we go to x_3 or $y_2 = z_8$. If we are in z_{11} and we read a b, we go to x_3 or $y_3 = z_7$. If we are in z_{12} and we read an a, we go to x_3 or $y_3 = z_7$. If we are in z_{12} and we read a b, we go to x_1 or $y_2 = z_3$.

	а	b
$\pm z_1$	z_2	z_3
z_2	z_4	z_5
z_3	z_6	z_1
$+z_4$	z_7	z_8
z_5	z_9	z_{10}
z ₆	z_8	z_{10}
$+z_7$	z_4	z_{11}
$+z_8$	z ₁₁	z_4
z_9	z ₁₁	z_1
z_{10}	z ₁₂	z_5
$+z_{11}$	z_8	z_7
$+z_{12}$	z_7	z_3

• FA3

	а	<u>b</u>
$\pm z_1$	z_2	z_3
z_2	z_4	z_5
z_3	z ₆	z_1
$+z_4$	z_7	z_8
z ₅	z_9	z_{10}
<i>z</i> ₆	z_8	z_{10}
$+z_7$	z_4	z_{11}
$+z_8$	z ₁₁	z_4
z_9	z ₁₁	z_1
z ₁₀	z ₁₂	z_5
$+z_{11}$	z_8	z_7
$+z_{12}$	z_7	z_3

• FA1, içinde çifta bul unan tümkel imel erikabul eder • FA2, bil ebiten tümkel imel erikabul eder

Example

$$-z_1 = x_1$$
 or y_1

In z_1 if we read an a, we go to x_2 or $y_1 = z_2$ In z_1 if we read a b, we go to x_1 or $y_2 = z_3$, which is a final state since y_2 is.

Example

In z_2 if we read an a, we go to x_3 or $y_1 = z_4$, which is a final state because x_3 is. In z_2 if we read a b, we go to x_1 or $y_2 = z_3$.

In z_3 if we read an a, we go to x_2 or $y_1 = z_2$.

In z_3 if we read a b, we go to x_1 or $y_2 = z_3$.

In z_4 if we read an a, we go to x_3 or $y_1 = z_4$.

In z_4 if we read a b, we go to x_3 or $y_2 = z_5$, which is a final state.

In z_5 if we read an a, we go to x_3 or $y_1 = z_4$.

In z_5 if we read a b, we go to x_3 or $y_2 = z_5$.

• FA1, ail ebiten tümkel imel erikabul eder • FA2, harfl eriteksayılı olan tümkel imel erikabul eder

- FA3, teksayılı harfleresahipolan veya a ilebiten tümkelimeleri kabul eder.
 - + durumu ol mayan t ekdurum-'dir. durum

- FA1, a il ebiten tümkel imel erikabul eder
- FA2, bil ebiten tümkel imel erikabul eder

 FA3, a veya bil ebit en tümkel imel eri kabul eder (Λ hariç tümkel imel er) • x2 veya y2 durumuna ul aşıl amaz

Birliği Üret mekİçin Alternatif Bir Prosedür makine

• FA1'in x1, x2, ... durum arına sahip

ol masına izin verin • FA2'nin y1, y2, ...

durumlarına sahipol masına izin verin • Birl eştirme makinesini (FA3) başlangıçta tüm i vej kombinasyonları için tümolası x1 veya y1 durumlarına sahipolacak şekilde

tanımlayabiliriz. FA3't eki durumların sayısı her zaman FA1 ve FA2'deki durum sayısının çarpımlol acaktır • FA3't eki her durum için her hangi bir sırayla akenarını ve bkenarını çizebiliriz

Daha önceyaptığımız şey, şu durumlarda yeniz durumları yarat maktı:
 gerekli

Birliği Üret mekİçin Alternatif Bir Prosedür makine

• Önceki örnekiçin dört olası durumla başlayabiliriz.

• Bu dört durumun her biri için iki kenar çizec eğiz

Birliği Üret mekİçin Alternatif Bir Prosedür makine

 Bu, FA1 + FA2 birl eşimdil i için tamamen ol ası bir FA'dır • Ancak sağal t taraftaki
 durumunun tamamen işeyaramaz ol duğunu görüyoruz • Asl a herhangi bir dizi il ebaşl ayan giril emez -de

• Yararsız bir duruma sahipol makFA'nın tanımına aykırı değil dir.

- Kural 3
 - Normal if ader 1 tarafından tanımlanan dili kabul eden bir FA1 ver 2 normal if adesitarafından tanımlanan dili kabul eden bir FA2 varsa, o zaman r 1 r 2 bir leştirme iletanımlanan dili, ürün dilini kabul eden bir FA3 vardır.

• L1: İkinci harfi bol an tüm kelimel erin dili

- D2: Tümkel imel erin dil i a'l arın teksayısı ol an
- (ab)(abbaa) giriş dizisini dikat eal ın FA1
 il ebaşl ayın ve+ il ebit irin Kal an
 dizeyl eFA'ya at l ayın vebit irin
 +

• Bu basit fikir işeyaramaz • Aynı ürün dil i için farklı bir giriş dizesi düşünün: ababbab

• (abab)(bab) kabul edil ir • (ab)(abbab) reddedil ir • Ne zaman at l ayac ağımızı nasıl bil ebil iriz?

- Tamol arakx1'ebenzeyen z1 durumuyl a başl ayın
 - Giriş dizisi yal nızca FA1'deçal ışıyor z1'den, a b okunursa, x1'edönmel iyiz z1'den, a okunursa, x2'yegit mel iyiz (z2, x2 il eaynıdır) z2'den a okunursa, z3'egit mel iyiz (z3, x3 il eaynıdır)
- X3'ün çif t kim iği vardır
 - Ya FA1'deson duruma gel diğimizanlamına gel ir
 - Yoksa geçeriz

$$z_3 = \begin{cases} x_3, \text{ and we are still running on } FA_1 \\ \text{or} \\ y_1, \text{ and we have begun to run on } FA_2 \end{cases}$$

 FA_2

• z3't eyiz ve bir a okuyoruz, üç seçeneğimiz var

We are back in x_3 continuing to run the string on FA_1

or

we have just finished on FA_1 and we are now in y_1 beginning to run on FA_2

or

we have looped from y_1 back to y_1 while already running on FA_2

- = x₃ or y₁
 (because being in y₁ is the same whether we are there for the first time or not)
- = z_3 a'yı okumakbizi z3't en z3'egeri göt ürür

• z3'deyiz vea bokuyoruz, dört anl am ol an z4'egidiyoruz

$$+z_4 = \begin{cases} \text{We are still in } x_3 \text{ continuing to run on } FA_1 \\ \text{or} \\ \text{we have just finished running on } FA_1 \text{ and are now in } y_1 \text{ on } FA_2 \\ \text{or} \\ \text{we are now in } y_2 \text{ on } FA_2, \text{ having reached there via } y_1 \\ = x_3 \text{ or } y_1 \text{ or } y_2 \end{cases}$$

Bir yol z4't ebit iyorsa, bu yol iki kısma ayrıl abil ir: Birinci kısım x1'den x3'e İkinci kısım y1'den y2'ye Bu nedenl ekabul edil mel idir. z4 son bir durumdur

 z4't eyiz ve bir a okuyoruz, seçenek erimiz:

remaining in x_3 and continuing to run on FA_1 or
having just finished FA_1 and beginning at y_1 or
having moved from y_2 back to y_1 in FA_2 $= x_3 \quad \text{or} \quad y_1$

• But amol arakz3'ün tanımdır • Eğer z4't eysekvebir a okuyorsak z3'egeri dönüyoruz

 z4'deyiz ve a b okuyoruz, seçimlerimiz:

remaining in x_3 and continuing to run on FA_1 or

having just finished FA_1 and beginning at y_1 or

having looped back from y_2 to y_2 running on FA_2 = x_3 or y_1 or y_2 = z_4

Bu z4'ün t anımdır • Eğer
 z4't eysekvea bokuyorsak z4'egeri döneriz

- Kural 4
 - r düzenli bir if adeve FA1 sonlu bir ot omat ise tamolarakı tarafından tanımlanan dili kabul eder, ozaman tamolarak r* tarafından tanımlanan dili kabul edecekolan FA2 adında bir FA vardır.