Results are obtained with h_0^P estimated

ESTIMATED PARAMETERS ON WEDNESDAYS MLE UNDER P (10 YEARS), h_0^P ESTIMATED									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
$\omega \ {f std}$	3.2471e - 11 (1.8702e - 11)	3.7260e - 11 (2.2181e - 11)	4.0801e - 11 (2.2912e - 11)	4.4358e - 11 (2.7067e - 11)	5.1345e - 11 (3.5885e - 11)	6.7672e - 11 (6.0739e - 11)	5.3989e - 08 (6.9836e - 08)	1.3672e - 08 (4.3927e - 08)	2.5992e - 08 (5.4680e - 08)
	(1.8702e - 11)	(2.2101e – 11)	(2.2912e - 11)	(2.7007e - 11)	(3.3663e – 11)	(0.0739e - 11)	(0.9030e - 00)	(4.33216 - 00)	(3.40806 - 00)
α	2.8646e - 06	3.0327e - 06	3.3176e - 06	3.4298e - 06	3.2345e - 06	3.8367e - 06	5.0098e - 06	4.7859e - 06	4.2951e - 06
$\operatorname{\mathbf{std}}$	(1.6263e - 07)	(1.7088e - 07)	(9.8402e - 08)	(9.1026e - 08)	(9.6265e - 08)	(4.4112e - 07)	(3.0255e - 07)	(5.1019e - 07)	(6.3185e - 07)
β	0.7557	0.7817	0.7784	0.7764	0.7524	0.7372	0.7188	0.7196	0.7324
std	(0.0087)	(0.0088)	(0.0038)	(0.0033)	(0.0085)	(0.0091)	(0.0105)	(0.0042)	(0.0127)
	001 1041	055 0005	044 4505	200 6072	262 2220	0.47 0000	201 2405	005 1 405	000 0400
$rac{\gamma}{\mathbf{std}}$	281.1041 (14.0379)	255.6267 (9.7941)	244.4727 (4.2959)	239.6072 (3.8623)	262.2239 (6.0708)	247.8002 (12.6609)	221.2495 (4.5794)	227.1427 (15.0710)	232.8483 (19.3878)
	(14.0373)	(9.7941)	(4.2555)	(3.8023)	(0.0708)	(12.0009)	(4.0794)	(13.0710)	(19.3010)
λ	-0.6694	0.1175	0.8455	1.5825	1.6284	1.5274	1.1784	1.1498	1.7781
\mathbf{std}	(0.1859)	(0.1647)	(0.4294)	(0.2290)	(0.1371)	(0.1717)	(0.1271)	(0.1070)	(0.5702)
-									
h_0^P	1.7770e - 04	1.4799e - 04	2.7731e - 04	1.5455e - 04	4.7574e - 05	3.8897e - 05	3.3683e - 05	1.1355e - 04	1.7245e - 03
std	(1.0680e - 04)	(9.2622e - 05)	(2.0642e - 04)	(1.2388e - 04)	(2.5907e - 05)	(3.4980e - 05)	(2.8699e - 05)	(8.0641e - 05)	(2.0226e - 03)
	0.0014	0.0505	0.0500	0.0500	0.0545	0.0500	0.0005	0.0044	0.001=
persistency std	0.9814 (0.0010)	0.9795 (0.0009)	0.9766 (0.0015)	0.9732 (0.0012)	0.9747 (0.0007)	0.9709 (0.0029)	0.9635 (0.0022)	0.9641 (0.0029)	0.9617 (0.0057)
stu	(0.0010)	(0.0009)	(0.0013)	(0.0012)	(0.0007)	(0.0029)	(0.0022)	(0.0029)	(0.0057)