Variable Selection

Variable Selection

- Consider a MLR model $Y \sim 1 + X_1 + X_2 + \cdots + X_p$ where we have p non-intercept predictors. Later we drop the intercept for notational simplicity.
- In many applications, we have a lot of potential explanatory variables, i.e., p is large and we could even have p >> n, but only a small portion of the p variables are believed to be relevant to Y.
- Of interest is to find the following subset of the p predictors:

$$S = \{j : \beta_j \neq 0\}$$

- In some applications as sales prediction, the key question we need to answer is to identify this set S, e.g., which variables among the p variables are really effective for boosting the sales (Y).
- If our goal is simply to do well on prediction, then should we care about variable selection?

Recall that the LS estimate $\hat{\beta}$ is unbiased, i.e., estimates for irrelevant $\hat{\beta}_j$ (with $j \in S^c$) will eventually go to zero anyway. To understand this, let's examine the training and the test errors.

Test Error vs. Training Error

- Training data: $(\mathbf{x}_i, y_i)_{i=1}^n$
- Test data: $(\mathbf{x}_i, y_i^*)_{i=1}^n$ is an independent (imaginary) data set collected at the same location \mathbf{x}_i 's (also known as, in-sample prediction)
- Assume the data comes from a linear model: $\mathbf{y}_{n\times 1}$, $\mathbf{y}_{n\times 1}^*$ are i.i.d $\sim N_n(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ and $\boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$
- We can also write:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$
 $\mathbf{y}^* = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}^*$

with $\mathbf{e}_{n\times 1}$, $\mathbf{e}_{n\times 1}^*$ $i.i.d \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ are independent.

Mean square testing error and Mean square training error

$$\begin{split} E[\mathsf{Test}\;\mathsf{Error}] &= E||\mathbf{y}^* - \mathbf{X}\hat{\boldsymbol{\beta}}||^2 \\ &= E||(\mathbf{y}^* - \mathbf{X}\boldsymbol{\beta}) + (\mathbf{X}\boldsymbol{\beta} - \mathbf{X}\hat{\boldsymbol{\beta}})||^2 \\ &= E||\mathbf{y}^* - \boldsymbol{\mu}||^2 + E||\mathbf{X}\boldsymbol{\beta} - \mathbf{X}\hat{\boldsymbol{\beta}}||^2 \\ &= E||\mathbf{e}^*||^2 + Tr(\mathbf{X}Cov(\hat{\boldsymbol{\beta}})\mathbf{X}^\top) \\ &= n \cdot \sigma^2 + \sigma^2 Tr\mathbf{H} = n \cdot \sigma^2 + p \cdot \sigma^2 \end{split}$$

$$E[\text{Train Error}] = E||\mathbf{y} - \hat{\mathbf{y}}||^2 = E||(\mathbf{I} - \mathbf{H})\mathbf{y}||^2$$
$$= Tr((\mathbf{I} - \mathbf{H})Cov(\mathbf{y})(\mathbf{I} - \mathbf{H})^\top)$$
$$= \sigma^2 Tr((\mathbf{I} - \mathbf{H})) = (n - p) \cdot \sigma^2$$

From the previous equations we can conclude:

- ullet Testing error increases with p
- Training error decreases with p
- ullet When adding more variables (p large) the testing error increases. If our goal is pure prediction, adding more variables to matrix ${\bf X}$ is not the best option. We should remove some irrelevant variables.
- ullet The analysis on the previous slide might indicate that the best model (i.e., the one with the smallest expected test error), is the intercept-only model with p=0.
- This of course is not true. The previous analysis is based on the assumption that the mean of y is in the column space of X, i.e., there exists some coefficient vector β such that $\mu = X\beta$. In general, we run a linear regression model using only a subset of the columns of X. This means there will be an additional Bias term.

Model Index γ

 Index each model (i.e., each subset of the p variables) by a p-dimensional binary vector γ:

$$\gamma = (\gamma_1, \gamma_2, \dots, \gamma_p), \quad \gamma_j = 0/1$$

where $\gamma_j=1$ indicates that X_j is included in the model, and $\gamma_j=0$ otherwise.

ullet So there are a total of 2^p possible subsets or sub-models. In particular

$$\gamma = (1, 1, \dots, 1)$$

refers to the full model including all p variables (largest dim), and

$$\gamma = (0, 0, \dots, 0)$$

refers to the intercept-only model (smallest dim).

.

Suppose that $\mu=\mathbf{X}\boldsymbol{\beta}$ where μ is the mean of \mathbf{y} . If we fit the data \mathbf{y} with respect to model γ , i.e., we fit a linear model with a sub-design matrix X_{γ} where X_{γ} contains only columns from \mathbf{X} such that $\gamma_j=1$. We can show that the Testing Error and the Training error for model γ are:

$$E[\text{Test Error}] = n\sigma^2 + p\sigma^2 + Bias_{\gamma}$$

$$E[\text{Training Error}] = n\sigma^2 - p\sigma^2 + Bias_{\gamma}$$

Bigger model (i.e., p large) \rightarrow small Bias, but large variance $(p\sigma^2)$; Smaller model (i.e., p small) \rightarrow large Bias, but small variance $(p\sigma^2)$. So to reduce the test error (i.e., prediction error), the key is to find the best trade-off between Bias and Variance.

.

Model selection procedures

- Testing-based procedures: Select best model based on statistical tests for model comparison.
- Criterion-based procedures: Select best model based on an information criteria (combining model fit and model complexity) for model comparison.

Testing-based procedures

Backward elimination

- Start with all the predictors in the model.
- **②** Remove the predictor with highest p value $> \alpha_0$ (most insignificant).
- 3 Refit the model, and repeat the above process.
- Stop when all p values $\leq \alpha_0$. (α_0 is often set to 15% or 20% which is higher than usual)

Testing-based procedures

Forward selection

- Start with the intercept-only model.
- ② For all predictors not in the model, check their p-value if being added to the model. Add the one with the lowest p value $\leq \alpha_0$ (most significant).
- 3 Refit the model, and repeat the above process.
- Stop when no more predictors can be added.

Pros and Cons of Testing-based procedures

- Main advantage: Computation cost is low.
- Due to the "one-at-a-time" nature of adding/dropping variables, this type of procedures does not compare all possible models. So it's possible to miss the "optimal" model.
- It's not clear how to choose α_0 , the cut-off for p-values.

Criterion-based procedures

- Score each model according to an information criteria
- Use a searching algorithm to find the optimal model Model selection criteria/scores often takes the following form:

Training error + Complexity-penalty

- In the context of linear regression models, complexity of a model increases with the number of predictor variables (i.e., p_{γ}).
- Why we do not use R^2 or RSS?

Model Selection Criteria

AIC/BIC - lower is better

$$AIC : -2 \times log lik_{\gamma} + 2p_{\gamma}$$

 $BIC : -2 \times log lik_{\gamma} + \log(n)p_{\gamma}$

where p_{γ} is the number of predictors included in model γ .

- **R** functions AIC and BIC use $p_{\gamma} + 1$ instead of p_{γ} , due to estimating σ^2 , but the extra constant does not affect the comparison between models.
- For the Gaussian linear regression model:

$$-2 \times loglik_{\gamma} = n \log \frac{RSS_{\gamma}}{n} + \text{constant}$$

• When n is large, adding predictors costs more in BIC than AIC. So AIC tends to pick a bigger model than BIC.

ullet Adjusted- R^2 for model $oldsymbol{\gamma}$

$$R_a^2 = 1 - \frac{RSS/(n - p_{\gamma} - 1)}{TSS/(n - 1)}$$
$$= 1 - (1 - R^2)(\frac{n - 1}{n - p_{\gamma} - 1})$$
$$= 1 - \frac{\hat{\sigma}_{\gamma}^2}{\hat{\sigma}_0^2}$$

The higher the R_a^2 the better.

• Mallow's C_p

$$C_p = \frac{RSS_{\gamma}}{\hat{\sigma}^2} + 2p_{\gamma} - n$$

where $\hat{\sigma}^2$ is the estimate of the error variance from the full model. Mallow's C_n behaves very similar to AIC.

Searching Algorithms

- Leaps and Bounds: return the global optimal solution among all possible models, but only feasible for less than 50 variables.
 - Find the p models with the smallest RSS amongst all models of the same size¹.
 - ullet Then evaluate the score on the p models and report the optimal one.

 $^{^1\}text{Note}$ that step 1, we do not need to visit every model. For example, suppose we know that RSS(X1,X2) < RSS(X3,X4,X5,X6); then we do not need to visit any size 2 or 3 sub-models of set (X3,X4,X5,X6), which can be leaped over

- Greedy algorithms: fast, but only return a local optimal solution (which might be good enough in practice).
 - Backward: start with the full model and sequentially delete predictors until the score does not improve.
 - Forward: start with the null model and sequentially add predictors until the score does not improve.
 - Stepwise: consider both deleting and adding one predictor at each stage.

Example: Life Expectancy data set

state.77 data set from library datasets

Leaps and Bounds method

Use function $\emph{regsubsets}$ from library **leaps** to evaluate different scores for sub-sets of models up to size p (including the intercept). In this example a model of size p=5 is selected by all criteria. This is not always the case.

Searching methods

Use function step from the stats library to apply searching algorithms based on the AIC (default) or BIC criteria ($k = \log(n)$). The option direction=both uses the Stepwise searching algorithm. You can also use the options direction=forward and direction=backward.

```
```{r}
step(g, direction="both")
step(g, direction="both", k=log(n))
```
```