# MIMM4750G Score matrices and BLAST

### Search a sequence database

- So far we have learned about querying the Genbank database using keywords.
- What if we only have a nucleotide or protein sequence to work with?
- An unknown species has no keywords to search by.
- One approach would be to align the sequence against every other sequence in the database, and take whatever aligns best.
- This would take too long! (More on alignment later.)

# **Dot plots**

- A simple visualization tool for comparing two unaligned sequences.
- Make a table with one sequence along the top, and a second down the left.
- Fill in cells where both sequences contain the same residue.

|   | g | a | t | С | g | a | a | С | t | g | g |
|---|---|---|---|---|---|---|---|---|---|---|---|
| t |   |   | • |   |   |   |   |   | • |   |   |
| g | • |   |   |   | • |   |   |   |   | • | • |
| a |   | • |   |   |   | • | • |   |   |   |   |
| a |   | • |   |   |   | • | • |   |   |   |   |
| С |   |   |   | • |   |   |   | • |   |   |   |
| g | • |   |   |   | • |   |   |   |   | • |   |
| g | • |   |   |   | • |   |   |   |   |   | • |



# **INCA Q1**

• Fill out this dot plot!

|   | C | Α | G | Α | Α | G | Α | Α | Т | С |
|---|---|---|---|---|---|---|---|---|---|---|
| G |   |   |   |   |   |   |   |   |   |   |
| Α |   |   |   |   |   |   |   |   |   |   |
| G |   |   |   |   |   |   |   |   |   |   |
| Α |   |   |   |   |   |   |   |   |   |   |
| Α |   |   |   |   |   |   |   |   |   |   |
| G |   |   |   |   |   |   |   |   |   |   |
| С |   |   |   |   |   |   |   |   |   |   |

(Portions of 16S rRNA from Vibrio cholerae and S.typhimurium.)

#### **BLAST**

- Basic Local Alignment Search Tool
- Developed by Stephen Altschul, Walter Gish and David Lipman at the NCBI.
- Local similarity = search for conserved intervals.
- This requires some way to measure the similarity of unaligned sequences.

#### **Word search**

- The original BLAST algorithm attempts to find high-scoring segment pairs (HSP).
- The HSP is the set of equal-length segments from 2 sequences that maximizes the total similarity score.
- BLAST constructs an *index* of all "words" of length k.
- These words are often called "k-mers".
- What are the frequencies of 2-mers in TACCTAGGGG?



# **INCA Q2**

- Sequence: TACCTAGGGG
- 2-mer counts:

AC AG CC CT GG TA

How I handled this question in R:

```
s <- paste(sample(c('A', 'C', 'G', 'T'), 10, replace=T), collapse='')
pieces <- sapply(1:(nchar(s)-1), function(i) substr(s, i, i+1))
table(pieces)</pre>
```

# **Building the HSP**

- BLAST scans the database for high-scoring words (3-mers for proteins).
- From one pair of high-scoring words (hit), search left and right for a second hit within some maximum distance A.
- Require 2 hits to trigger a gap-free extension (incorporate flanking residues into candidate alignment).



Database sequence

# Finishing the HSP

- If the gap-free extension retains a high enough score, BLAST calculates a gapped extension (tolerate indels).
- Gapped extensions are very time consuming two-hit method is designed to minimize the number carried out.
- Only high scoring gapped extensions are reported.
- Clearly, scoring plays an important role in BLAST searches.

#### What is a score?

- A measure of sequence homology (similarity that implies common ancestry).
- Sequences do not have to be exactly the same to be closely related.
- BUT this means that we have to know how some residues are more similar than others!
- e.g., is glutamic acid (E) closer to cysteine (C) or aspartic acid (D)?
- A score is a rough estimate of how likely one type of substitution is over another.

## **Calculating scores**

- Dayhoff pioneered the concept of quantifying amino acid substitution rates from the comparative analysis of protein sequences.
- Dayhoff *et al.* (1978) mapped 1,572 AA substitutions to trees relating protein sequences in the *Atlas* with <15% divergence.

|       | Α   | R   | N   | D   | С | Q   |
|-------|-----|-----|-----|-----|---|-----|
| A Ala |     |     |     |     |   |     |
| R Arg | 30  |     |     |     |   |     |
| N Asn | 109 | 17  |     |     |   |     |
| D Asp | 154 | 0   | 532 |     |   |     |
| C Cys | 33  | 10  | 0   | 0   |   |     |
| Q Gln | 93  | 120 | 50  | 76  | 0 |     |
| E Glu | 266 | 0   | 94  | 831 | 0 | 422 |

#### **PAM matrices**

- accepted point mutations (abbreviated as PAM)
- calculate mutation probability matrix (M) from observed mutation counts (A):

$$M_{ij} = rac{\lambda m_j A_{ij}}{\sum_i A_{ij}}$$

where  $\lambda$  is a scaling constant, and

$$m_j = rac{\sum_{i 
eq j} A_{ij}}{n_j}$$

(the total number of mutations away from amino acid j, divided by total number of occurrences of this AA in the sequences).

#### PAM250 matrix

250 mutations per 100 amino acids (scaled from PAM1).



**Is** glutamic acid (E) closer to cysteine (C) or aspartic acid (D)?

#### **BLOSUM62**

- BLOcks SUbstitution Matrix
- Calculated from the (no longer maintained) BLOCKS database of local alignments of highly conserved regions of proteins.
- PAM is based on mutations mapped to a phylogeny.
- BLOSUM is based on odds ratios of AAs in an alignment.

# **Log-odds**

- Consider an alignment of protein sequences.
- Frequency of amino acid a is  $p_a$ .
- If an aligned pair of AAs a and b are independent, then their probability is  $p_a \times p_b$ .
- Ratio of the observed probability  $(q_{a,b})$  to this expectation is the odds.
- Taking the log of the odds gives us the log-odds:

$$s(a,b) = \lambda \log rac{q_{a,b}}{p_a p_b}$$

where  $\lambda$  is used to round s to nice integers.



## **INCA Q3**

- The observed frequency of aligned pairs of tryptophan (W) is  $q_{\scriptscriptstyle W,W}=0.0065$ .
- The observed frequency of W alone is  $p_{\scriptscriptstyle W}=0.013$ .
- What is  $s_{WW}$  if we set  $\lambda=2.88$ ? Round to one decimal place (i.e., xy.z).
- Now do the same for leucine ( $q_{\scriptscriptstyle L,\scriptscriptstyle L}=0.0371$ ,  $p_L=0.099$ )

Example stolen from SR Eddy (2004), Nature Biotechnol 22(8):1035.

#### **BLOSUM62**

- Like PAM, there are several BLOSUM matrices for different levels of evolutionary divergence.
- Unlike PAM, each BLOSUM matrix is derived from its own alignment, rather than being extrapolated from one data-derived matrix.
- BLOSUM62 derived from an alignment of protein segments of <62% identity</li>
- Considered to be comparable to PAM250.
- BLAST generally uses BLOSUM62

# **Back to BLAST - evaluating significance**

- Recall BLAST searches for high-scoring sequence pair (HSP).
- The expected number of HSPs with score  $\geq S$ :

$$E = Kmne^{-\lambda S}$$

where m and n are the sequence lengths.

• K and  $\lambda$  are pre-defined parameters that depend on the BLOSUM matrix.

# **Types of BLAST queries**

NCBI maintains both nucleotide and protein databases



#### **BLAST** databases

- nr/nt (non-redundant nucleotide collection) identical sequences merged into same record
- 16S rRNA
- est (expressed sequence tags) partial cDNA sequences
- SRA (sequence read archive) next-generation sequence data
- VecScreen identify segments of vector origin
- IgBLAST search immunoglobulin and T-cell receptor sequences

## **Further readings**

- The Statistics of Sequence Similarity Scores
- Selecting the Right Similarity-Scoring Matrix
- Database resources of the National Center for Biotechnology Information