# Eigenface-Based Video Compression: Experimental Analysis

Name: Shubham Raut Roll No: 2024201019

## **Experimental Results by Training Configuration**

## **Experiment 1: Complete Dataset Implementation**

**Video Recording:** [https://drive.google.com/file/d/1IhS7Jf\_TzOKQxT2LD-6aLR05R3UuR105/view?usp=drive\_link]

## **Configuration Details:**

- Utilized the entire available dataset comprising both male and female facial images
- Implemented with 400 primary eigenfaces for reconstruction

## **Key Findings:**

- Maintained exceptional video fidelity across various head positions and angles
- Facial reconstruction remained recognizable even with partial occlusion by hand
- The system gracefully handled extreme viewing angles with progressive quality reduction
- Fine facial components (eye region, nasal structure, mouth) retained natural appearance

#### **Performance Metrics:**

- Reconstruction cost: Normally 25 to 30% range if we cover face parts it goes to 45 to 50% range
- Compression ratio: 88.89%
- Demonstrated excellent resilience to both occlusion and orientation variations

## **Experiment 2: Cross-Gender Training Approach**

**Video Recording**: [https://drive.google.com/file/d/1fG5WbRN1-sCzszNmx8xLxxCUunMXJw3o/view?usp=drive\_link]

## **Configuration Details:**

- Being male experimenters, we exclusively used female facial data for eigenface extraction
- Maintained 400 eigenfaces for consistency with other experiments

## **Key Findings:**

- Notable degradation in reconstruction quality compared to full dataset training
- Significant distortion observed in regions with facial hair
- Test subjects noted an uncomfortable "almost-but-not-quite-realistic" sensation in certain frames
- The algorithm struggled particularly with characteristically male facial structures
- Hand occlusion resulted in substantially poorer reconstruction than in Experiment 1

#### **Performance Metrics:**

- Reconstruction cost: Normally 30 to 35% range if we cover face parts it goes to 50 to 60% range
- Compression ratio: 88.89%
- Results clearly demonstrate the necessity of demographically representative training data

## **Experiment 3: Reduced Training Set Implementation**

**Video Recording**:[https://drive.google.com/file/d/13akygUzWLkHGmqREsXcGkvICFgUYKCiv/view?usp=drive\_link]

## **Configuration Details:**

- Limited to 500 total facial images from the dataset (mixed gender representation)
- Maintained 400 eigenfaces for consistency

## **Key Findings:**

- Considerable quality deterioration compared to the complete dataset approach
- Motion produced noticeable trailing artifacts and image softening
- · Reconstruction stability issues manifested as intermittent visual anomalies
- Quality fluctuated substantially between different test subjects
- · Quick facial movements triggered perceptible processing delays and artifacts

#### **Performance Metrics:**

- Reconstruction cost: Normally 50 to 55% range if we cover face parts it goes to 80 to 100% range
- Compression ratio: 88.89%
- Limited training diversity significantly compromised reconstruction accuracy

## **Experiment 4: Subject-Specific Training**

**Video Recording**: [https://drive.google.com/file/d/1Ir5C0HcZ74OnvhFXXeaEQT7KIuEks3iu/view?usp=drive\_link]

### **Configuration Details:**

- Created a custom dataset containing 1200 images (600 each from two specific individuals)
- Maintained 400 eigenfaces for consistency

### **Key Findings:**

- Exceptional reconstruction quality for the individuals included in the training set
- Near-perfect reproduction of trained subjects under normal conditions
- Superior handling of partial face coverage for trained individuals
- Dramatic quality collapse when testing with subjects not in the training data
- Untrained face reconstruction exhibited severe color distortion and feature misalignment

#### **Performance Metrics:**

- Reconstruction cost for trained subjects: 50-100 range
- Reconstruction cost for untrained subjects: 150-200 range

- Compression ratio: 88.89%
- · Results demonstrate high specificity to individuals in the training dataset

# **Eigenface Quantity Optimization Analysis**

We conducted systematic testing to determine the optimal number of eigenfaces for balancing compression efficiency against reconstruction quality.



[Figure: Compression Ratio vs. Reconstruction Cost graph]

As illustrated in the figure:

- The compression efficiency (blue curve) shows a gradual decline as eigenface count increases
- Reconstruction error (orange curve) drops sharply initially before leveling off around 400 eigenfaces
- Analysis reveals a distinct inflection point at approximately 400 eigenfaces

We selected 400 eigenfaces for our experiments based on:

- 1. The identified inflection point in the reconstruction error curve
- 2. Achieving compression efficiency exceeding 87%
- 3. Maintaining sufficient quality for practical video calling applications
- 4. The minimal quality improvements observed beyond this point