Four Bar Linkages

- 1. Types of linkages
- 2. Synthesis (Design)

Four Bar Linkage

- □ Simplest 1 dof linkage
- □ *Used very commonly*

Types of four bar linkages

Grashof Type I

- Crank rocker s + l
- Double-rocker
- Drag-link

Non-Grashof or Grashof Type II

• Triple-rocker

$$s + l > p + q$$

s = smallest link length l = longest link lengthp, q = other two lengths

Facts

Grashof linkages

- There exists one link that completes a full 360 degree rotation relative to another link
- This is the shortest link
- The pair of joints connecting this link to other links are such that they rotate through 360 degrees
- Three types of linkages
 - > Crank rotates through 360 deg. (relative to frame)
 - > Coupler rotates through 360 deg. (relative to frame)
 - > Frame rotates through 360 deg. (relative to, let us say, crank)

Non Grashof linkages

 No link completes a full 360 degree rotation relative to another link

Geometric significance of Grashof Inequality

Crank Rocker

$$s + l$$

Synthesis

PROBLEM

DOOR IN OLD DESIGN SWINGS OUT

NEED

DOOR IN NEW DESIGN SWINGS OUT 40% LESS

Two-Position Synthesis of Linkages

Find a four bar linkage whose coupler, when attached to a specified rigid body, guides the rigid body between two given positions (and orientations).

Three-Position Synthesis of Linkages

