

OUTLINE

- O Double ES
- Triple ES
- Addaptive Approach
- Pegel's Classification

Exponential Smoothing

Analisis exponential smoothing merupakan suatu metode peramalan rata – rata bergerak yang melakukan pembobotan menurun secara exponential terhadap nilai – nilai observasi yang lebih tua

SINGLE EXPONENTIAL SMOOTHING

• Exponential Smoothing memberikan penekanan yang lebih besar kepada time series saat ini melalui penggunaan sebuah konstanta smoothing (α)

$$0 \le \alpha \le 1$$

• Nilai α dekat dengan 1 memberikan penekanan terbesar pada saat nilai **saat ini**, sedangkan nilai α yang dekat dengan **0** memberi penekanan pada titik data **sebelumnya**.

$$F_t = F_{t-1} + \alpha (A_{t-1} - F_{t-1})$$

$$F_t = \alpha \cdot A_{t-1} + (1 - \alpha)F_{t-1}$$

 F_t = Nilai forecast pada periode t

$$F_{t+1} = \alpha \cdot A_t + (1 - \alpha)F_t$$

 F_{t-1} = Nilai forecast pada periode t sebelumnya

 A_{t-1} = Nilai Actual pada periode t sebelumnya

 α = Konstanta Smoothing

Contoh

Periode	Y_t
1	138
2	136
3	152
4	127
5	151
6	130
7	119
8	153
9	200
10	123
11	145
12	178

$$\alpha = 0.1$$

Tentukan forecast pada periode 13 Dengan menggunakan SES!

Contoh

Periode	Demand	Forecast
1	138	138
2	136	138
3	152	137,8
4	127	139,22
5	151	137,998
6	130	139,298
7	119	138,368
8	153	136,432
9	200	138,088
10	123	144,28
11	145	142,152
12	178	142,436
13		?

$$\alpha = 0.1$$

$$F_t = F_{t-1} + \alpha (A_{t-1} - F_{t-1})$$

$$F_3 = F_2 + 0.1(A_2 - F_2)$$

$$F_3 = 138 + 0.1(136 - 138)$$

$$F_3 = 137.8$$

•

$$F_{13} = F_{12} + 0.1(A_{12} - F_{12})$$

$$F_{13} = 142,436 + 0,1(178 - 142,436)$$

$$F_{13} = 145,99$$

Double Exponential Smoothing cocok digunakan untuk:

- Data yang memiliki trend
- Data tanpa pola seasonal
- Forecasting jangka pendek

Double Exponential Smoothing dibagi menjadi dua:

- Double Exponential dua parameter dari Holt
- Double Exponential smoothing satu parameter dari Brown

DOUBLE EXPONENTIAL HOLT

Holt (1957) mengembangkan single exponential smoothing menjadi linear exponential smoothing agar bisa digunakan untuk meramalkan data yang memiliki trend Peramalan dengan Holt's Linear Exponential Smoothing menggunakan 2 konstanta yang bernilai antara 0 sampai 1

Menghitung nilai Level Menghitung nilai trend

Menghitung nilai forecast

$$L_t = \alpha A_t + (1 - \alpha)(L_{t-1} + b_{t-1})$$

$$b_t = \beta(L_t - L_{t-1}) + (1 - \beta)b_{t-1}$$

$$F_{t+m} = L_t + b_t m$$

Inisiasi:

$$L_1 = A_1$$

$$b_1 = A_2 - A_1$$

Diketahui:

Alpha = 0.2

L1 = Y1	b1 = Y2 - y1
4	· · · · · · · · · · · · · · · · · · ·

	Α	В	D	E	F
	Tahun	Permintaan	Level (L)	Trend (b)	Forecast
1	2001	143	143	9	
2	2002	152			
3	2003	161			
4	2004	139			
5	2005	137			

Diketahui:

Alpha = 0.2

$$L_t = \alpha Y_t + (1 - \alpha)(L_{t-1} + b_{t-1})$$
$$0.2(152)(1 - 0.2)(143 + 9)$$

	Α	В	D	Е	F
	Tahun	Permintaan	Level (L)	Trend (b)	Forecast
1	2001	143	143 <u> </u>	9	
2	2002	152	152 👎		
3	2003	161			
4	2004	139			
5	2005	137			

Diketahui:

Alpha = 0.2

$$b_t = \beta(L_t - L_{t-1}) + (1 - \beta)b_{t-1}$$

$$0.3(152 - 143) + (1 - 0.3)(9)$$

	Α	В	D	E	F
	Tahun	Permintaan	Level (L)	Trend (b)	Forecast
1	2001	143	143	9	
2	2002	152	152	9	
3	2003	161			
4	2004	139			
5	2005	137			

Diketahui:

Alpha = 0.2

$$F_{t+m} = L_t + b_t m$$

$$143 + 9$$

	A B		D	Е	F
	Tahun	Permintaan	Level (L)	Trend (b)	Forecast
1	2001	143	143	9	
2	2002	152	152	9	152
3	2003	161			
4	2004	139			
5	2005	137			

Diketahui:

Alpha = 0.2

Beta = 0.3

$$L_t = \alpha Y_t + (1 - \alpha)(L_{t-1} + b_{t-1})$$

$$b_t = \beta (L_t - L_{t-1})(1 - \beta)b_{t-1})$$

$$F_{t+m} = L_t + b_t m$$

	Α	В	D	Е	ļ F
	Tahun	Permintaan	Level (L)	Trend (b)	Forecast
1	2001	143	143	9	İ
2	2002	152	152	9	152
3	2003	161			
4	2004	139			
5	2005	137			

DENGAN CARA

YANG SAMA

	Α	В	D	E	F
	Tahun	Permintaan	Level (L)	Trend (b)	Forecast
1	2001	143	143	9	
2	2002	152	152	9	152
3	2003	161	161.0	9.0	161.0
4	2004	139	163.8	7.1	170.0
5	2005	137	164.2	5.1	170.9

DOUBLE EXPONENTIAL HOLT

(1957) mengembangkan Holt single exponential smoothing menjadi linear exponential smoothing agar bisa digunakan untuk meramalkan data yang memiliki trend

Peramalan dengan Holt's Linear Exponential Smoothing menggunakan 2 konstanta yang bernilai antara 0 sampai 1

Double Exponential

DOUBLE EXPONENTIAL BROWN

Brown Double Exponential Smoothing merupakan metode peramalan yang mirip dengan Simple Exponential Smoothing. Perbedaanya terletak pada konstanta smoothing pada Double Exponential smoothing yang diperoleh dari hasil "resmoothing" konstanta single exponential smoothing.

Brown Double Exponential Smoothing dimaksudkan untuk diterapkan pada data yang menunjukkan tren linear dari waktu ke waktu.

ODouble Exponential Brown

Persamaan Double Exponential Brown

Exponential Smoothing Pertama

$$L = \alpha Y_t + (1 - \alpha) L_{t-1}$$

Hitung Komponen A

$$a_t = 2L_t - L'_t$$

Exponential Smoothing Kedua

$$L'_{t} = \alpha L_{t} + (1 - \alpha) L'_{t-1}$$

Hitung Komponen B

$$b_t = \frac{\alpha}{1 - \alpha} (L_t - L'_t)$$

Forecast

$$F_{t+m} = a_t + b_t m$$

O Contoh Soal

Alpha = 0.2

 Y_{t}

Period e	Permintaan suatu produk	, L	Ľ'ę	a _t	b _t	Nilai ramalan
1	143	1 43	143			
2	152					
3	161					
4	139					
5	137					

🔘 Contoh Soal

Alpha = 0.2

Period e	Permintaan suatu produk	L _t	L' _t	a _t	b _t	Nilai ramalan
1	143	143	143	143 🗸		
2	152					
3	161					
4	139					
5	137					

Contoh Soal

Alpha = 0.2

Period e	Permintaan suatu produk	Ļ	Ľ',	a,	b,	Nilai ramalan
1	143	143	143	143	0.0	
2	152					
3	161					
4	139					
5	137					

O Contoh Soal

Alpha = 0.2

$$L = \alpha Y_t + (1 - \alpha) L_{t-1}$$

Period e	Permintaan suatu produk	الر	Ľ' _t	a _t	b _t	Nilai ramalan
1	143	1 43	143	143	0.0	
2	152	144.8				
3	161					
4	139					
5	137					

O Contoh Soal

Alpha = 0.2

$$L'_{t} = \alpha L_{t} + (1 - \alpha)L'_{t-1}$$

Period e	Permintaan suatu produk	L _t	L't	a _t	b _t	Nilai ramalan
1	143	143	! 143	143	0.0	
2	152	144.8	143.4			
3	161					
4	139					
5	137					

Contoh Soal

Alpha = 0.2

$$F_{t+m} = a_t + b_t m$$

	Permintaan					/
Period	suatu					i
e	produk	L	L' _t	a _t	b _t	Ni <mark>l</mark> ai ramalan
1	143	143	143	143	0.0	<i>i</i>
2	152	144.8	143.4	146.2	0.4	143
3	161					
4	139					
5	137					

O Contoh Soal

Alpha = 0.2

Period e	Permintaan suatu produk	L _t	L' _t	a _t	b _t	Nilai ramalan
1	143	143	143	143.0	0.0	
2	152	144.8	143.4	146.2	0.4	143.0
3	161	?	?	?	?	?
4	139	?	?	?	?	?
5	137	?	?	?	?	?

Period e	Permintaan suatu produk	Ļ	Ľ' _t	a _t	b _t	Nilai ramalan
1	143	143	143	143.0	0.0	
2	152	144.8	143.4	146.2	0.4	143.0
3	161	148.0	144.3	151.8	0.9	146.6
4	139	146.2	144.7	147.8	0.4	152.7
5	137	144.4	144.6	144.1	-0.1	148.2

TRIPLE EXPONENTIAL SMOOTHING

Triple Exponential Brown

Metode Holt-Winter digunakan untuk meramalkan data yang memiliki Level, Trend dan Musiman (Seasonality)

Holt Winter's dibagi menjadi 2, yaitu:

Level

$$L_t = \alpha (A_t - S_{t-s}) + (1 - \alpha)(L_{t-1} + b_{t-1})$$

Trend

$$b_t = \beta(L_t - L_{t-1}) + (1 - \beta)b_{t-1}$$

S = panjang musiman (jumlah bulan/kuartal dalam 1 tahun

Lt = level

bt = trend

St = komponen musiman

Ft+m = peramalan untuk periode ke depan

Seasonal

$$S_t = \gamma (A_t - L_t) + (1 - \gamma) S_{t-s}$$

Forecast

$$F_{t+m} = L_t + b_t m + (S_{t-s+m})$$

$$F_{13} = L_{12} + b_{12} + (S_1)$$

Inisialisasi Additive

• Inisialisasi level diambil dari rata-rata pada satu musim pertama sebelum di forecast.

$$L_s = \frac{1}{s}(Y_1 + Y_2 + \dots + Y_s)$$

🔵 - Inisialisasi Additive

Untuk Menginisiasikan trend, digunakan 2 musim (2 periode)

$$b_{s} = \frac{1}{s} \left[\frac{Y_{s+1} - Y_{1}}{s} + \frac{Y_{s+2} - Y_{2}}{s} + \dots + \frac{Y_{s+s} - Y_{s}}{s} \right]$$

Untuk menginisialisasikan indikasi musim digunakan rumus sebagai berikut :

$$S_1 = Y_1 - L_s$$
, $S_2 = Y_2 - L_s$, ... $S_s = Y_s - L_s$

O Contoh Soal

*Menunjukan perhitungan menggunakan inisisasi level, trend dan seasonal

*Menunjukan perhitungan menggunakan persamaan level, trend dan seasonal

Level

$$L_{t} = \alpha \frac{A_{t}}{S_{t-s}} + (1 - \alpha)(L_{t-1} + b_{t-1})$$

Trend

$$b_t = \beta(L_t - L_{t-1}) + (1 - \beta)b_{t-1}$$

S = panjang musiman (jumlah bulan/kuartal dalam 1 tahun

Lt = level

bt = trend

St = komponen musiman

Ft+m = peramalan untuk periode ke depan

$$S_t = \gamma \frac{A_t}{L_t} + (1 - \gamma)S_{t-s}$$

Forecast

$$F_{t+m} = (L_t + b_t m) * (S_{t-s+m})$$

P A G E **36** © 2018 Slidefabric.com All rights reserved.

Inisialisasi Multiaplicative

• Inisialisasi level diambil dari rata-rata pada satu musim pertama sebelum di forecast.

$$L_s = \frac{1}{s}(Y_1 + Y_2 + \dots + Y_s)$$

Yt adalah data actual pada periode ke t

Inisialisasi Multiaplicative

Untuk Menginisiasikan trend, digunakan 2 musim (2 periode)

$$b_{s} = \frac{1}{s} \left[\frac{Y_{s+1} - Y_{1}}{s} + \frac{Y_{s+2} - Y_{2}}{s} + \dots + \frac{Y_{s+s} - Y_{s}}{s} \right]$$

Untuk menginisialisasikan indikasi musim digunakan rumus sebagai berikut :

$$S_1 = \frac{Y_1}{L_s}, S_2 = \frac{Y_2}{L_s}, \dots S_s = \frac{Y_s}{L_s}$$

Contoh

Data	Level	Trend	Seasonal	Forecast
\$684.20			0.94	
\$584.10			0.80	
\$765.40			1.05	
\$892.30	\$731.50	15.93958333	1.22	
\$885.40	795.8179135	64.31791353	1.07	804.5180217
\$677.00				
\$1,006.60				
\$1,122.10				

*Menunjukan perhitungan menggunakan inisisasi level, trend dan seasonal

*Menunjukan perhitungan menggunakan persamaan level, trend dan seasonal

Adaptive Approach

 Metode ini memungkinkan parameter smoothing dapat berubah dari waktu ke waktu, dalam rangka untuk beradaptasi dengan perubahan karakteristik dari seri waktu

Adaptive Approach

Williamss (1987) menulis bahwa itu diterima secara luas bahwa dalam smoothing multi-dimensi, seperti Holt dan Holt-Winters metode, Namun hanya parameter smoothing untuk level yang disesuaikan untuk menghindari ketidakstabilan. Oleh karena itu, mungkin tidak mengherankan bahwa literatur telah berfokus terutama pada adaptif pemulusan eksponensial sederhana

Rumus

ADAPTIVE APPROACH

Contoh

Period	Sales
1	\$684.20
2	\$584.10
3	\$765.40
4	\$892.30
5	\$885.40
6	\$946.00
7	\$1,006.60
8	\$1,122.10
9	\$1,163.40
10	\$1,237.95
11	\$1,312.50
12	\$1,545.30
13	\$1,596.20
14	\$1,665.70
15	\$1,735.20
16	\$2,029.70
17	\$2,107.80
18	\$2,206.10
19	\$2,304.40
20	\$2,639.40
4.60	Physical St. The

Single Exponential Smoothing

Period	Sales	SEM
1	\$684.20	\$684.20
2	\$584.10	\$684.20
3	\$765.40	\$654.17
4	\$892.30	\$687.54
5	\$885.40	\$748.97
6	\$946.00	\$789.90
7	\$1,006.60	\$836.73
8	\$1,122.10	\$887.69
9	\$1,163.40	\$958.01
10	\$1,237.95	\$1,019.63
11	\$1,312.50	\$1,085.13
12	\$1,545.30	\$1,153.34
13	\$1,596.20	\$1,270.93
14	\$1,665.70	\$1,368.51
15	\$1,735.20	\$1,457.67
16	\$2,029.70	\$1,540.93
17	\$2,107.80	\$1,687.56
18	\$2,206.10	\$1,813.63
19	\$2,304.40	\$1,931.37
20	\$2,639.40	\$2,043.28
21		\$2,222.12

O Adaptive Approach

				0.3		adt	0.3
Period	Error	a	Sales	ASEM	a-	a+	
1	0.00	0.3	\$684.20	\$684.20			
2	-100.10	0.4	\$584.10	\$684.20	\$684.20	\$684.20	
3	121.24	0.4	\$765.40	\$644.16	\$674.19	\$614.13	
4	236.02	0.1	\$892.30	\$656.28	\$656.28	\$729.03	
5	134.71	0.4	\$885.40	\$750.69	\$609.08	\$750.69	
6	101.01	0.7	\$946.00	\$844.99	\$764.16	\$844.99	
7	121.21	0.4	\$1,006.60	\$885.39	\$885.39	\$946.00	
8	224.59	0.1	\$1,122.10	\$897.51	\$897.51	\$970.24	
9	176.05	0.4	\$1,163.40	\$987.35	\$852.60	\$987.35	
10	127.37	0.7	\$1,237.95	\$1,110.58	\$1,004.95	\$1,110.58	
11	112.76	0.7	\$1,312.50	\$1,199.74	\$1,161.53	\$1,237.95	
12	300.46	0.4	\$1,545.30	\$1,244.84	\$1,244.84	\$1,312.50	
13	141.04	0.7	\$1,596.20	\$1,455.16	\$1,274.89	\$1,455.16	
14	69.50	1	\$1,665.70	\$1,596.20	\$1,511.58	\$1,596.20	
15	90.35	0.7	\$1,735.20	\$1,644.85	\$1,644.85	\$1,686.55	
16	348.71	0.4	\$2,029.70	\$1,680.99	\$1,680.99	\$1,735.20	
17	182.71	0.7	\$2,107.80	\$1,925.09	\$1,715.86	\$1,925.09	
18	98.30	1	\$2,206.10	\$2,107.80	\$1,998.17	\$2,107.80	
19	98.30	1	\$2,304.40	\$2,206.10	\$2,176.61	\$2,235.59	
20	364.49	0.7	\$2,639.40	\$2,274.91	\$2,274.91	\$2,333.89	
21		1		\$2,639.40	\$2,420.71	\$2,639.40	

Adaptive cont'd

RESULT

Pegel's Classification

- Klasifikasi Pegels pada teknik exponentila smoothing dalam kerangka permodelan state-space memberikan model perkiraan tren-musiman dengan batas prediksi untuk tren dan pola musiman
- Pegel's (1969) Classification termasuk dalam sembilan metode yang berbeda pada exponential smoothing. Hyndman (200 2) telah melanjutkan klasifikasi ini untuk menyertakan damped additive trend with either no seasonality, additive seasonality or multiplicative seasonality.
- Taylor (2003) melanjutkan lagi versi dari Pegel's Klasifikasi pada exponential smoothing.

Pola: Pegel's Classification

Patterns based on Pegels' classification for some exponential smoothing methods

The Exponential Smoothing Classification

Historical evolution: Pegel (1969), extended by Gardner (1985), Hyndman *et al.* (2002) and Taylor (2003).

	Seasonal Component				
Trend	N	Α	M		
Component	(None)	(Additive)	(Multiplicative)		
N (None)	N,N	N,A	N,M		
A (Additive)	A,N	A,A	A,M		
Ad (Additive damped)	Ad,N	Ad,A	Ad,M		
M (Multiplicative)	M,N	M,A	M,M		
Md (Multiplicative damped)	Md,N	Md,A	Md,M		

OThe Exponential Smoothing Classification Cont'd

(N,N)	=	simple exponential smoothing
(A,N)	=	Holts linear method
(M,N)	=	Exponential trend method
(A_d,N)	=	additive damped trend method
(M_d,N)	=	multiplicative damped trend method
(A,A)	=	additive Holt-Winters method
(A,M)	=	multiplicative Holt-Winters method
(A_d,M)	=	Holt-Winters damped method

Rumus

(Provid		P1	
Trend	N	Seasonal A	M
N	$\hat{y}_{t+h t} = \ell_t$ $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$	$\hat{y}_{t+h t} = \ell_t + s_{t-m+h_m^+}$ $\ell_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)\ell_{t-1}$ $s_t = \gamma(y_t - \ell_{t-1}) + (1 - \gamma)s_{t-m}$	$\hat{y}_{t+h t} = \ell_1 s_{t-m+h_m^+}$ $\ell_t = \alpha(y_t/s_{t-m}) + (1-\alpha)\ell_{t-1}$ $s_t = \gamma(y_t/\ell_{t-1}) + (1-\gamma)s_{t-m}$
Α	$\begin{split} \hat{y}_{t+h t} &= \ell_t + hb_t \\ \ell_t &= \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \end{split}$	$\begin{split} \hat{y}_{t+h t} &= \ell_{t} + hb_{t} + s_{t-m+h_{m}^{+}} \\ \ell_{t} &= \alpha(y_{t} - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_{t} &= \beta^{*}(\ell_{t} - \ell_{t-1}) + (1 - \beta^{*})b_{t-1} \\ s_{t} &= \gamma(y_{t} - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m} \end{split}$	$\hat{y}_{t+h t} = (\ell_t + hb_t)s_{t-m+h_m^+}$ $\ell_t = \alpha(y_t/s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1})$ $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$ $s_t = \gamma(y_t/(\ell_{t-1} + b_{t-1})) + (1 - \gamma)s_{t-m}$
$\mathbf{A}_{\mathbf{d}}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t + \phi_h b_t \\ \ell_t &= \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) \phi b_{t-1} \end{split}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t + \phi_h b_t + s_{t-m+h_m^+} \\ \ell_t &= \alpha (y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1}) \\ b_t &= \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) \phi b_{t-1} \\ s_t &= \gamma (y_t - \ell_{t-1} - \phi b_{t-1}) + (1 - \gamma) s_{t-m} \end{split}$	$\hat{y}_{t+h t} = (\ell_t + \phi_h b_t) s_{t-m+h_m^+}$ $\ell_t = \alpha(y_t/s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$ $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}$ $s_t = \gamma(y_t/(\ell_{t-1} + \phi b_{t-1})) + (1 - \gamma)s_{t-m}$
М	$\begin{split} \hat{y}_{t+h t} &= \ell_t b_t^h \\ \ell_t &= \alpha y_t + (1 - \alpha) \ell_{t-1} b_{t-1} \\ b_t &= \beta^* (\ell_t / \ell_{t-1}) + (1 - \beta^*) b_{t-1} \end{split}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t b_t^{h} + s_{t-m+h\frac{t}{m}} \\ \ell_t &= \alpha (y_t - s_{t-m}) + (1 - \alpha)\ell_{t-1}b_{t-1} \\ b_t &= \beta^* (\ell_t/\ell_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma (y_t - \ell_{t-1}b_{t-1}) + (1 - \gamma)s_{t-m} \end{split}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t b_t^h s_{t-m+h_m^+} \\ \ell_t &= \alpha(y_t/s_{t-m}) + (1-\alpha)\ell_{t-1}b_{t-1} \\ b_t &= \beta^* (\ell_t/\ell_{t-1}) + (1-\beta^*)b_{t-1} \\ s_t &= \gamma(y_t/(\ell_{t-1}b_{t-1})) + (1-\gamma)s_{t-m} \end{split}$
$\mathbf{M}_{\mathbf{d}}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t b_t^{\phi_h} \\ \ell_t &= \alpha y_t + (1-\alpha)\ell_{t-1} b_{t-1}^{\phi} \\ b_t &= \beta^* (\ell_t/\ell_{t-1}) + (1-\beta^*) b_{t-1}^{\phi} \end{split}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t b_t^{\phi_h} + s_{t-m+h_m^+} \\ \ell_t &= \alpha (y_t - s_{t-m}) + (1 - \alpha) \ell_{t-1} b_{t-1}^{\phi} \\ b_t &= \beta^* (\ell_t / \ell_{t-1}) + (1 - \beta^*) b_{t-1}^{\phi} \\ s_t &= \gamma (y_t - \ell_{t-1} b_{t-1}^{\phi}) + (1 - \gamma) s_{t-m} \end{split}$	$\begin{split} \hat{y}_{t+h t} &= \ell_t b_t^{\phi_h} s_{t-m+h_m^+} \\ \ell_t &= \alpha (y_t/s_{t-m}) + (1-\alpha)\ell_{t-1} b_{t-1}^{\phi} \\ b_t &= \beta^* (\ell_t/\ell_{t-1}) + (1-\beta^*) b_{t-1}^{\phi} \\ s_t &= \gamma (y_t/(\ell_{t-1} b_{t-1}^{\phi})) + (1-\gamma) s_{t-m} \end{split}$

O Pola: Time Series Pegel's Classification

Menggunakan α , β , χ Exponential Smoothing

Menggunakan Solver Add-in (Ms. Excel)

1. Tambahkan Solver Add-in pada Ms. Excel

- Menggunakan Solver Add-in (Ms. Excel)
- 2. Buat lembar kerja Excel mengenai Exponential Smoothing

Alpha	0,4					
Data		Error Anal	Error Analysis			
Period	Demand	Forecast	Error	Absolute	Squared	% Error
Past period	225000	225000				
Past pariod	275000	225000	50000	50000	2,56+09	0,18181
Past period	275000	245000	30000	30000	9E+08	0,10909
Past period	325000	257000	68000	68000	4,625+09	0,20923
Past period	350000	284200	65800	65800	4,33E+09	0,18
Past period	400000	310520	89480	89480	8,01E+09	0,223
Past partod	450000	346312	103688	103688	1,086+10	0,23041
Past period	500000	387787,2	112212,8	112212,8	1,266+10	0,224426
Past period	500000	432672,3	67327,68	67327,68	4,53E+09	0,13465
Past period	575000	459603,4	115396,6	115396,6	1,33E+10	0,20069
Past period	700000	505762	194238	194238	3,77E+10	0,27748
Past period	800000	583457,2	216542,8	216542,8	4,698+10	0,270670
Past period	800000	670074,3	129925,7	129925,7	1,69E+10	0,16240
Past period	1000000	722044,6	277955,4	277955,4	7,73E+10	0,277953
Past period	1000000	833226,8	166773,2	166773,2	2,786+10	0,16677
Past period	1000000	899936,1	100063,9	100063,9	1E+10	0,100064
Past period	1000000	939961,6	60038,37	60033,37	3,66+09	0,06003
		Total	1847442	1847442	2,825+11	3,01742
		Average	115465,2	115465,2	1,765+10	0,188583
			Bias	MAD	MSE	MAPE
				SE	141860,7	

Menggunakan Solver Add-in (Ms. Excel)

3. Pilih Tab Data - Solver

- Set Objectives: Hasil Akurasi Error
- By Changin Variable Cells: Cell alpha, beto, gamma
- Subject to the Constraints: batasan yang berlaku

Misalnya nilai konstanta $0 \le \alpha \le 1$

4. Klik Solve

5. Konstanta terbaik akan muncul pada cell yang telah ditentukan

