Theorem 2.1.1 Logical Equivalences

Given any statement variables p, q, and r, a tautology \mathbf{t} and a contradiction \mathbf{c} , the following logical equivalences hold.

1.	Commutative laws:	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
2.	Associative laws:	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
3.	Distributive laws:	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
4.	Identity laws:	$p \wedge \mathbf{t} \equiv p$	$p \lor \mathbf{c} \equiv p$
5.	Negation laws:	$p \lor \sim p \equiv \mathbf{t}$	$p \wedge \sim p \equiv \mathbf{c}$
6.	Double negative law:	$\sim (\sim p) \equiv p$	
7.	Idempotent laws:	$p \wedge p \equiv p$	$p \lor p \equiv p$
8.	Universal bound laws:	$p \lor \mathbf{t} \equiv \mathbf{t}$	$p \wedge \mathbf{c} \equiv \mathbf{c}$
9.	De Morgan's laws:	$\sim (p \wedge q) \equiv \sim p \vee \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$
10.	Absorption laws:	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
11.	Negations of t and c :	$\sim t \equiv c$	\sim c \equiv t

Modus Ponens	$p \rightarrow q$		Elimination	a. $p \lor q$	b. $p \lor q$
	<i>p</i> ∴ <i>q</i>			~q ∴ p	~p ∴ q
Modus Tollens	$ \begin{array}{c} p \to q \\ \sim q \\ \therefore \sim p \end{array} $		Transitivity	$p \rightarrow q$ $q \rightarrow r$ $\therefore p \rightarrow r$	
Generalization	a. <i>p</i> ∴ <i>p</i> ∨ <i>q</i>	b. <i>q</i> ∴ <i>p</i> ∨ <i>q</i>	Proof by Division into Cases	$ \begin{array}{c} p \lor q \\ p \to r \end{array} $	
Specialization	a. <i>p</i> ∧ <i>q</i> ∴ <i>p</i>	b. $p \wedge q$ $\therefore q$		$\begin{matrix} q \to r \\ \therefore r \end{matrix}$	
Conjunction	$p \\ q \\ \therefore p \land q$		Contradiction Rule	$ \sim p \to \mathbf{c} $ $ \therefore p $	

Valid Argument Forms

Figure 3: Theorem 2.1.1 and Theorem 2.3.1