Funzioni #3

Lettura di un grafico

2 dicembre 2022

Consideriamo una funzione f.

Consideriamo una funzione f.

Un certo valore x_0 è nel dominio di f se

la sua immagine $f(x_0)$ esiste

Consideriamo una funzione f.

Un certo valore x_0 è nel dominio di f se

la sua immagine $f(x_0)$ esiste

Un certo valore x_0 è nel dominio di f se

la retta verticale $x = x_0$ interseca il grafico di f. In tal caso, l'ordinata del punto di intersezione è $f(x_0)$

Immagine

Immagine

Un certo valore y_0 è nell'immagine di f se

l'equazione $f(x) = y_0$ ha almeno una soluzione. Le soluzioni sono le controimmagini di y_0

Immagine

Un certo valore y_0 è nell'immagine di f se

l'equazione $f(x) = y_0$ ha almeno una soluzione. Le soluzioni sono le controimmagini di y_0

Un certo valore y_0 è nell'immagine di f se

la retta orizzontale $y = y_0$ interseca il grafico di f. In tal caso, le ascisse dei punti di intersezione sono le controimmagini di y_0

▶ La funzione f è pari se f(-x) = f(x)

- ▶ La funzione f è pari se f(-x) = f(x)
- La funzione f è pari se il suo grafico è simmetrico rispetto all'asse y (simmetria assiale)

- ▶ La funzione f è pari se f(-x) = f(x)
- ► La funzione f è pari se il suo grafico è simmetrico rispetto all'asse y (simmetria assiale)

▶ La funzione f è dispari se f(-x) = -f(x)

- ▶ La funzione f è pari se f(-x) = f(x)
- ► La funzione f è pari se il suo grafico è simmetrico rispetto all'asse y (simmetria assiale)

- ▶ La funzione f è dispari se f(-x) = -f(x)
- La funzione f è dispari se il suo grafico è simmetrico rispetto all'origine (simmetria centrale)