LISTA 6. SEQUÊNCIAS DE NÚMEROS REAIS

Exercício 1. Prove que se $\{x_n\}_{n\in\mathbb{N}}$ é uma sequência não crescente e limitada inferiormente, então

$$\lim_{n \to \infty} x_n = \inf\{x_n \colon n \in \mathbb{N}\}.$$

Exercício 2. Sejam $\{x_n\}_{n\in\mathbb{N}}$ uma sequência de números reais, $a\in\mathbb{R}$ e suponha que

$$\lim_{n \to \infty} x_n = a.$$

Prove para todo $c \in \mathbb{R}$ tem-se

$$\lim_{n \to \infty} c \cdot x_n = c \cdot a.$$

Exercício 3. Prove que se $\lim_{n\to\infty} x_n = a$ então

$$\lim_{n \to \infty} |x_n| = |a|.$$

Exercício 4. Se $\lim_{n\to\infty} x_{2n} = a$ e $\lim_{n\to\infty} x_{2n-1} = a$ então $\lim_{n\to\infty} x_n = a$.

Exercício 5. Seja $x_1 = 1$ e ponha $x_{n+1} = 1 + \frac{1}{x_n}$. Prove que

$$|x_{n+2} - x_{n+1}| \le \frac{1}{2} |x_{n+1} - x_n|.$$

Conclua que a sequência $\{x_n\}_{n\geq 1}$ é convergente e determine seu limite.