Importing Libraries

```
In [1]: import warnings
warnings.filterwarnings("ignore")

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
```

Loading Dataset

```
In [2]: iris = pd.read_csv('iris.csv')
iris
```

Out[2]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

Data Exploration

```
In [3]: iris.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 150 entries, 0 to 149
        Data columns (total 6 columns):
         #
            Column
                           Non-Null Count Dtype
            ____
                           -----
         0
            Ιd
                           150 non-null
                                          int64
         1
            SepalLengthCm 150 non-null
                                          float64
            SepalWidthCm 150 non-null
                                          float64
         2
         3
            PetalLengthCm 150 non-null
                                          float64
         4
            PetalWidthCm 150 non-null
                                          float64
         5
            Species
                      150 non-null
                                          object
        dtypes: float64(4), int64(1), object(1)
        memory usage: 7.2+ KB
```

Features Extraction

```
In [4]: features = iris[['Id','SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWid
In [5]: features
```

_				
(1	H I	+	15	
v	u	u.		

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	1	5.1	3.5	1.4	0.2
1	2	4.9	3.0	1.4	0.2
2	3	4.7	3.2	1.3	0.2
3	4	4.6	3.1	1.5	0.2
4	5	5.0	3.6	1.4	0.2
145	146	6.7	3.0	5.2	2.3
146	147	6.3	2.5	5.0	1.9
147	148	6.5	3.0	5.2	2.0
148	149	6.2	3.4	5.4	2.3
149	150	5.9	3.0	5.1	1.8

150 rows × 5 columns

Data Visualization

```
In [6]: sns.set_style('whitegrid')
   iris['SepalLengthCm'].hist(bins=30)
   plt.xlabel('SepalLengthCm')
```

Out[6]: Text(0.5, 0, 'SepalLengthCm')


```
In [8]: sns.set_style('whitegrid')
   iris['PetalLengthCm'].hist(bins=30)
   plt.xlabel('PetalLengthCm')
```

Out[8]: Text(0.5, 0, 'PetalLengthCm')


```
In [9]: sns.set_style('whitegrid')
    iris['PetalWidthCm'].hist(bins=30)
    plt.xlabel('PetalWidthCm')
```

Out[9]: Text(0.5, 0, 'PetalWidthCm')


```
In [10]: iris.plot.scatter(x = "SepalLengthCm", y = "SepalWidthCm")
```

Out[10]: <Axes: xlabel='SepalLengthCm', ylabel='SepalWidthCm'>

Spliting data for Training & Testing

```
In [11]: x=features
y=iris['Species']
```

In [12]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33)

Model Building By Logistic Regression Algo

Classification Report

weighted avg

In [15]: prediction = reg.predict(x_test) In [16]: print(classification_report(y_test,prediction)) precision recall f1-score support Iris-setosa 1.00 1.00 1.00 15 Iris-versicolor 1.00 1.00 1.00 21 Iris-virginica 1.00 1.00 1.00 14 50 1.00 accuracy macro avg 1.00 1.00 1.00 50

1.00

1.00

50

1.00