STL (Theory) – Inner Loop

Time series decomposition

The main idea

- De-trend the data: y(t) trend(t).
 For the first iteration assume trend(t) = 0
- 2. Extract seasonal(t) using LOESS on the cycle-subseries of y_detrend(t)
- 3. Extract trend(t) by subtracting seasonal(t) from y(t) and smoothing using LOESS

- De-trend the data: y(t) trend(t).
 For the first iteration assume trend(t) = 0
- Extract seasonal(t) using LOESS on the cycle-subseries of y_detrend(t)
- 3. Extract trend(t) by subtracting seasonal(t) from y(t) and smoothing using LOESS

- De-trend the data: y(t) trend(t).
 For the first iteration assume trend(t) = 0
- 2. Extract seasonal(t) using LOESS on the cycle-subseries of y_detrend(t)
- Extract trend(t) by subtracting seasonal(t) from y(t) and smoothing using LOESS

Extract seasonal component: Step 1 – Apply LOESS to Cycle-Subseries

- User specifies n_p (aka period in statsmodels): number of periods in a seasonal cycle
- Compute all the cycle-subseries for y_detrend(t)
- Apply LOESS to each cyclesubseries with smoothing parameter n_s . n_s is set by the user.

Extract seasonal component: Step 1 – Apply LOESS to Cycle-Subseries

- User specifies n_p (aka period in statsmodels): number of periods in a seasonal cycle
- Compute all the cycle-subseries for y_detrend(t)
- Apply LOESS to each cyclesubseries with smoothing parameter n_s . n_s is set by the user.
- Denote output as C_t

$$n_{s} = 7$$

Extract seasonal component: Step 2 – De-trend the cycle-subseries

Apply a series of moving averages to each smooth cycle-subseries:

$$[3 \times MA][n_p \times MA][n_p \times MA]$$

• Apply LOESS, with smoothing parameter n_l , to each smooth cycle-subseries:

$$L_t = [LOESS] [3 \times MA][n_p \times MA][n_p \times MA](C_t)$$

- Acts as a "low-pass filter" meaning that L_t represents any long term trend in the cycle-subseries
- De-trend the smoothed cycle-subseries. The gives the seasonality

$$S_t = C_t - L_t$$

Extract seasonal component: Step 2 – De-trend the cycle-subseries

- As the seasonal component is derived from cycle-subseries it can vary in time!
- So seasonal component isn't exactly periodic over each cycle

Extract seasonal component: Step 2 – De-trend the cycle-subseries

- As the seasonal component is derived from cycle-subseries it can vary in time!
- So seasonal component isn't exactly periodic over each cycle

- 1. De-trend the data: y(t) trend(t). For the first iteration assume trend(t) = 0
- 2. Extract seasonal(t) using LOESS on a set of time series derived from y_detrend(t) called cycle-subseries. Will require us to specify the seasonal period.
- 3. Extract trend(t) by subtracting seasonal(t) from y(t) and smoothing using LOESS

Extract trend component

De-seasonalize original series:

$$T_t^* = y_t - S_t$$

• Smooth T_t^* using LOESS, with smoothing parameter n_T , to give trend estimate:

$$T_t = LOESS(T_t^*)$$

- 1. De-trend the data: y(t) trend(t). For the first iteration assume trend(t) = 0
- 2. Extract seasonal(t) using LOESS on a set of time series derived from y_detrend(t) called cycle-subseries. Will require us to specify the seasonal period.
- 3. Extract trend(t) by subtracting seasonal(t) from y(t) and smoothing using LOESS

ITERATE

- 1. De-trend the data: y(t) trend(t). For the first iteration assume trend(t) = 0
- 2. Extract seasonal(t) using LOESS on a set of time series derived from y_detrend(t) called cycle-subseries. Will require us to specify the seasonal period.
- 3. Extract trend(t) by subtracting seasonal(t) from y(t) and smoothing using LOESS

How many times to iterate, n_i ?

Until the outputted seasonal(t) and trend(t) are stable

Typically $n_i = 2$ or 3

ITERATE

- 1. De-trend the data: y(t) trend(t). For the first iteration assume trend(t) = 0
- 2. Extract seasonal(t) using LOESS on a set of time series derived from y_detrend(t) called cycle-subseries. Will require us to specify the seasonal period.
- 3. Extract trend(t) by subtracting seasonal(t) from y(t) and smoothing using LOESS

Robustness to outliers

Remember in LOESS that residuals are used to re-weight data during regression

Outer loop provides these weights for all uses of LOESS in inner loop

Parameters from inner loop

Symbol	Statsmodels	Description	Typical value
n_i	inner_iter	Number of inner loops	2 or 3
n_p	period	Number of periods in a seasonal cycle	Depends on data
$n_{\scriptscriptstyle S}$	seasonal	Window size for LOESS for cycle-subseries (aka seasonal component)	Depends on data
d_s	seasonal_deg	Degree for LOESS for cycle-subseries (aka seasonal component)	1 or in rare cases 0 (see notebook)
n_l	low_pass	Window size for LOESS for low pass filter of cycle-subseries	n_p or the next largest odd integer
d_l	low_pass_deg	Degree for LOESS for low pass filter of cycle- subseries	1
n_T	trend	Window size for LOESS for Trend	1.5 to $2 \times n_p$
d_T	trend_deg	Degree for LOESS for Trend	1

The main idea

