A quantity-based approach to constructing climate risk hedge portfolios

Georgij Alekseev, Stefano Giglio, Quinn Maingi, Julia Selgrad, Johannes Stroebel (WP,2024)

石宛青

(武汉大学金融系)

2024年11月27日

Motivation

- Climate change presents a global challenge—investors' hedging demand rising.
- Limits of current instruments:
 - small number designed to directly hedge: relatively illiquid catastrophe bonds
 - also can build hedge portfolios using other assets (exposed to climate risks)
- Limits of traditional hedging approaches:
 - Mimicking portfolio approach (Lamont, 2001)—rely on available long time series, frequent risk realizations, substantial time-series stability of risk exposures.
 - poorly suited in targeted risks are new or materialize infrequently—climate risk.
- propose a new quantity-based approach:
 - uses cross-sectional information on investors' trading activity
 - based on idiosyncratic climate belief shocks shift a small set of investors.

Question

- How to build climate risk hedge portfolio in the stock market?
 - new quantity-based approach v.s. mimicking portfolio, alternative approach
 - our approach have significantly better out-of-sample hedging performances

Contribution

- contributes to literature on Climate Risk and Asset Markets
 - prior: valuation discount of high-pollution firms (Hsu et al., 2022) and investor expectations about ESG performance; hedge climate news (Giglio et al., 2023)
 - expand: provide a framework to hedge climate risks using quantity datas
- contributes to literature on Belief Formation and Action
 - prior: how personal experiences shape beliefs and subsequent actions, local house price influence expectations about future national trends. (K&Z, 2019).
 - expand: trading responses of mutual fund investors to local climate, house price.unemployment shocks-construct portfolios
- contributes to literature on Quantity-Based Asset Pricing
 - uses quantity and holdings data for asset pricing (Berk & van Binsbergen, 2016).
 - quantity-based information is valuable for predicting price movements in response to aggregate shocks. 4 D > 4 D > 4 E > 4 E > E = 990

Design

Simple Model: investor i.stockA\B.

supply of A:
$$\int_{i=0}^{i=1} q_A\left(p_A,\epsilon_A(i),\epsilon_B(i)\right) di = \bar{A}$$
 belief $\epsilon_A(i) = \nu_A + \omega_A(i)$.
$$\frac{\partial q}{\partial \omega_A(i)} = \frac{\partial q}{\partial \epsilon_A(i)}$$
 change in Stable Equilibrium Price:
$$\frac{\partial p_A^*}{\partial \omega_A(i)} = \mathbf{0}.$$

$$\omega_A(i): \text{ individual demand adjust: } \frac{\partial q_A^*}{\partial \omega_A(i)} \neq \mathbf{0}.$$
 change in $\nu_A: \frac{\partial p_A^*}{\partial \omega_A} = -\int_{i=0}^{i=1} \frac{\partial q}{\partial \omega_A(i)} di/\frac{\partial q_A}{\partial \omega_A}$

- 1. shocks shift demands by influence beliefs
- 2. affect a few investors
- 3. similar to changes in aggregate climate risk

local extreme

Investor Disclosures shareholder reports

local

google $log(G_{t,s}) = \beta_S S_{t,s} + \delta_s + \gamma_t + \varepsilon_{t,s}$

Identify Idiosyncratic

Belief Shocks

five years prior to t: $\hat{\beta}_t^{I,S}$ $OP^S = \sum_i \hat{\beta}_i^{I,S} (R^I - I)$

 $QP_t^S = \sum_I \hat{\beta}_{t-1}^{I,S} (R_t^I - R_t^f)$

Evaluating Portfolio Performance

target risk : CC_c, t

news index: (Engle;Ardia;Faccini). National Google searches. National Temperature Deviations. out-of-sample correlation

other macro risk: house, employment

Design-Idiosyncratic Belief Shocks Measure

• demand shift by belief, few investor, similar to agg

• Extreme Heat:

- motivated by lots literature:local extreme heat events drive climate change attention and beliefs in affected populations (Zaval et al. $2014\cdots$).
- baseline: events that involve fatalities or injuries due to extreme heat.
- a county-month as experiencing a heat shock if there were positive
- to fund level: eg 2 mutual fund advisers in county A and 1 adviser in county B, A shock, the fund is affected by 2/3 of a local extreme heat shock

• Investor Disclosures: direct

- 1 semi-annual shareholder reports of actively managed mutual funds
- 2 extract sentences: climate change, carbon emission... (Google word2vec)
- 3 extracted passages: extract one sentence before and after selected sentence
- 4 feed into GPT4: classify whether refers to physical, transitional climate risk

Design-Idiosvncratic Belief Shocks Measure Table 2: Heat Shocks and Climate Attention

	Log(Google Search Volume)
Heat Shock	0.016*
	(0.008)
R^2	0.75
State & Month FE	Y
N	5,823

Figure 1: Locations of Mutual Fund Advisers

Design-Idiosyncratic Belief Shocks Measure

• sample with 2,496 unique funds, 57,961 fund-quarter observations between 2010 and 2019.

Table 1: Summary Statistics on Idiosyncratic Climate Belief Shocks

Panel A: Local Sh	ocks: Summary	Frequ	iency
Climate Shock	Event Description	Monthly	Sample
Heat Shock	Injuries or fatalities	0.10%	1.32%
Disclosure Shock	Change in fund disclosures about transition risk	-	0.15%
Pooled Shock	Pool of heat and disclosure shock	-	1.76%

Panel B: Local Shocks: Sample Jaccard Correlations across Fund-Quarters

	Heat Shock	Disclosure Shock
Heat Shock	1.00	1.00
Disclosure Shock	0.00	1.00

Design-mutual fund holdings

- restrict our analysis to actively managed funds
- Thomson Reuters S12: portfolio holdings of U.S. mutual funds.
- Measuring Active Portfolio Changes:
 - fund f and month t with a holdings report, active change in industry I holdings as:

$$ActiveChanges_{f,t}^{I} = 100 * \left[\left(\frac{\sum\limits_{j \in I} P_{j,t-3} S_{f,j,t}}{\sum\limits_{j} P_{j,t-3} S_{f,j,t}} \right) - \left(\frac{\sum\limits_{j \in I} P_{j,t-3} S_{f,j,t-3}}{\sum\limits_{j} P_{j,t-3} S_{f,j,t-3}} \right) \right] \frac{1}{\left(Share_{t-3}^{I} \right)}.$$

• Estimating the Response to Idiosyncratic Climate Shocks:

$$ActiveChanges_{f,t}^{I} = \beta_{t}^{I,S}S_{f,t} + \delta_{t}^{I} + \epsilon_{f,t}^{I},$$

9 / 19

result-beta

Table 3: Industry-Specific Climate Quantity Betas

GICS	Description	Pooled Shock	Disclosure Shock	Heat Shock
2030	Transportation	4.79*	24.42**	0.95
2510	Auto & Components	4.21*	24.58*	2.88
4530	Semiconductors & Equip.	2.46	3.80	4.60**
2010	Capital Goods	2.38*	13.07**	0.53
1510	Materials	1.69	6.45	1.34
4010	Banks	1.60*	1.58	2.46**
3030	Household & Pers. Prod.	1.34	6.18	-0.14
1010	Energy	1.32*	4.50	1.77*
4520	Tech. Hardw. & Equip.	0.96	-8.40	3.81***
2530	Consumer Services	0.20	-2.06	0.27
4020	Diversified Financials.	-0.12	2.15	0.44
4510	Software & Services	-0.19	2.46	0.91
3010	Food & Staples Retailing	-0.21	0.14	0.94
3020	Food, Bev. & Tobacco	-0.69	5.65	-1.91*
2520	Consum. Durables & Apparel	-0.69	1.27	3.67
5020	Media & Entertainment	-0.85	3.85	-1.48
5010	Communication Services	-0.94	1.32	-0.77
5510	Utilities	-1.08	7.60	-2.43*
3520	Pharma., Biotech., & Life Sc.	-1.19	5.05	-1.84**
3510	Health Care Equip. & Serv.	-1.78	-10.06	-1.11
4030	Insurance	-1.90	-4.13	-2.13
2020	Commercial & Prof. Serv.	-2.20	-10.89	-3.52
6010	Real Estate	-2.72**	-4.15	-3.60**
2550	Retailing	-3.52**	5.84	-6.37***

• the Auto & Components industry has a relative market cap of 1.1%, pool shock: $1.1\% \times 4.21 = 4.5$ bp; for the disclosure shock is 27bp.

result-Portfolio Construction

- estimating β using data from the five years prior to t
- compute excess returns of each of the 24 industries R_t^I
- use the estimated β as the portfolio weights, excess return of quantity based hedge portfolio is:

$$QP_t^S = \sum_{I} \widehat{\beta}_{t-1}^{I,S} (R_t^I - R_t^f).$$

- Climate Hedge Targets:
 - climate news measures: AR(1) innovations in month t as $CC_{c,t}$, Engle et al. (2020), Ardia et al. (2021). Faccini et al. (2021).
 - National Google searches
 - National Temperature Deviations: AR(1) of nationwide monthly max temperature, control month fixed effects

result-Portfolio Construction

- Narrative approach: ex-ante view of the possible exposures
 - 1 long position of 50 in the company with the highest ESG score (Engle et al.,2020)
 - 2 industries view—using four ETFs:long PBD,ICLN and short XLE,IYE
 - 3 stranded asset portfolio as in Jung et al. (2021) shorts 0.3XLE + 0.7KOL-SPY
 - 4 long position of 50 in the company with the lowest carbon intensity
 - **5** sentiment analysis of climate sentence in 10-K(Baz et al. 2023).
- Mimicking portfolio approach:
 - $CC_{c,t} = \mathbf{w}_c \mathbf{R}_t + \varepsilon_{c,t}$, estimated each month using five-year rolling windows
 - Asset Selection:(1)S&P 500 ETF;(2)+ FF3 (3)+ Ind ETFs: (PBD,XLE); (4)Ind Portfolios: 24 GICS industry (5) 207 factor zoo portfolio(C& Z,2022)
 - (4)(5) using LASSO, minimize overfitting

result-Portfolio Construction

Table 7: Climate Hedge Performance of Various Portfolios

		Faccini et al.			Engle et al.		Ardia et al.	Google	Temp.	
	Avg.	IntSummit	$\operatorname{GlobWarm}$	NatDis	Narrative	WSJ	CHNEG	MCCC	National	National
Pooled Shock	0.18***	0.23	0.26**	0.12	0.02	0.08	0.13	0.31*	0.38***	0.11
Heat Shock	0.17***	0.38***	0.18	0.05	0.06	0.05	0.10	0.25**	0.34*	0.14
Disclosure Shock	0.11**	0.10	0.15	0.26**	0.01	0.06	0.06	0.23	0.06	0.09
Emission Portfolio	0.08*	-0.03	0.13	0.06	-0.03	0.20	0.31**	0.18	0.05	-0.15
Long PBD ETF	0.07	0.06	0.09	0.19	0.04	-0.02	-0.03	0.23	0.02	0.05
Short Stranded Asset	0.02	-0.06	0.05	0.25****	0.12	-0.01	0.14	-0.11	0.04	-0.20
Long ICLN ETF	0.01	0.02	-0.02	0.22**	-0.06	-0.06	-0.11	0.12	-0.04	0.00
Short IYE ETF	-0.08*	-0.08	-0.16	-0.10	0.13	-0.12	0.06	-0.27**	-0.05	-0.09
Short XLE ETF	-0.08*	-0.09	-0.16	-0.12	0.14	-0.12	0.05	-0.27**	-0.05	-0.07
10-K Negative Portfolio	-0.09**	0.04	-0.01	0.02	0.08	-0.16	-0.17	-0.26**	-0.30***	-0.09
Sustainalytics Portfolio	-0.10**	0.13	-0.08	0.06	0.07	-0.25**	-0.23	-0.20	-0.27**	-0.14
Lasso: All Industry+FF	-0.02	0.15*	0.08	0.14*	0.04	0.01	-0.06	-0.36***	-0.19*	0.00
Lasso: Factor Zoo	-0.03	0.09	-0.03	-0.06	-0.12	-0.10	0.00	-0.04	0.00	0.00
Reg: ETFs+FF	-0.03	0.01	0.05	0.05	-0.04	0.11	-0.17	-0.32**	0.03	-0.02
Reg: FF 3-Factors	-0.04	-0.02	0.06	0.06	-0.11	0.20	-0.27**	-0.26	0.00	0.01
Reg: SPY ETF	-0.09**	-0.09	-0.03	-0.12	-0.08	-0.17	-0.14	-0.13	-0.00	-0.07

• A positive correlation means the portfolio effectively hedges negative climate

result-Robustness

- Portfolio Construction
 - Fixed Effects, Winsorizing, Total Changes, No Industry Weighting, No ESG Fund, Heat Shock Measure…
- Notable Exception:Rolling Window
 - 1 Year: Reduces data by 80%, impairing industry quantity beta identification
 - 3-Year: Performs moderately worse than the 5-year baseline, but better than the 1-year window.
- Hedging Macro Factors:

	Hedge Target			
	Growth in House Prices	Δ Unemployment Rate		
Mimicking Portfolio Approaches Reg: Fama-French Three-Factors Reg: SPY Lasso Reg: All-Industries + Fama-French	0.11 0.13 0.01	-0.03 -0.01 -0.13		
Quantity-based Approaches Quantity: Local Shocks Quantity: Disclosure	0.18 0.14	0.20 0.10		

ideas

- 方法层面:
 - 扩展到股票层面:使用机器学习方法解决稀疏性问题,如不按照行业,使用PCA 在股票层面分组;多纳入几种特殊信念冲击
 - 跨资产组合,如受到冲击的基金经理可能增加债券类别资产的配置
 - 也考察投资组合的经济绩效
- 应用层面:
 - 新风险、不稳定的风险: AI 应用、数据网络安全、生物多样性……

question

- 问题 1: 从 mimicking 到 quantity 的逻辑?
 - mimicking 使用的是股票自身历史价格计算风险暴露,其 beta 完全取决于资产价格对 macro risk 的反应,当可用数据时间跨度够长、风险发生较频繁时,数据才有效,算出的 beta 才更有信息含量。
 - 气候风险本身近几年才被投资者重视(2016年巴黎协定),且其发生具有随机性、 偶然性,并不频繁,故数据可用性低,难以从价格市场反应中获取有效的 mimicking beta,噪音较大
 - 如何挖掘有效市场反应呢?既然没有这么长的有效时序数据来从"以前"推断 "未来",能否寻找一些横截面上的有效数据来"以小见大"呢?
 - 因此本文使用一小部分面临特殊气候冲击的投资者(基金经理)的投资持仓反应 变动计算 beta,这种小部分变动不会影响市场整体价格,称之为 quantity-based

question

• 问题 2: 为什么这里选用 active change, 而不是其他?

$$ActiveChanges_{f,t}^{I} = \beta_t^{I,S} S_{f,t} + \delta_t^{I} + \epsilon_{f,t}^{I},$$

- 针对问题 1,我们需要分析市场在经受气候风险冲击后,由信念变化所引发的一系列反应,例如价格波动、持仓变化和关注度等。
- 首先, 选择市场价格并不合适, 因为特质性冲击通常不会显著影响价格。
- 其他可能的信念冲击反应,例如分析师预测、消费者购买行为、银行信贷分配以及当地居民对相关股票或公司的关注度等,也可以选择。然而,本文的目标是构建投资组合,因此选择投资反应作为研究重点更为直接。
- 同时,由于普通投资者的持仓数据较难获取,共同基金占据了投资者群体的重要份额,其投资组合的持有量可按季度观测,同时其地理分布数据也可以与局部气候冲击相匹配,是一个自然的选择。
- 若使用其他代理变量可以转换研究框架,不专注于风险对冲组合。例如,可以探讨银行信念变化所带来的影响等,以寻找新的研究价值。

question

• 问题 3: 构建投资组合时为什么这样加权?

$$QP_t^S = \sum_I \widehat{\beta}_{t-1}^{I,S} (R_t^I - R_t^f).$$

- 首先,所计算出的 $beta^{l,S}$ 表示受到特质冲击的基金经理对 I 行业投资份额的变动
- 这些受到冲击的基金经理信念被改变,进行投资时会考虑到气候风险
- 由此,按照该公式就可以相同比例地模仿这些基金经理如何做多、做空各类资产来构造投资组合,理论上在再面临气候风险时会取得良好的风险对冲表现。

Thanks!