Cálculo Diferencial

Juan Cribillero Aching

Marzo 22, 2024

Contenido

- 1 Función
 - Funciones reales de variable real
 - Funciones especiales
 - Funciones trigonométricas
 - Funciones trascendentes
- 2 Referencias

Sesión 01

- 1 Función
 - Funciones reales de variable real
 - Funciones especiales
 - Funciones trigonométricas
 - Funciones trascendentes
- 2 Referencias

Definición (Producto cartesiano)

Sean A y B dos conjuntos no vacíos, el producto cartesiano de Apor B es:

$$A \times B = \{(x, y)/x \in A, y \in B\}$$

Ejemplo

Sean $A = \{ \land, \bigcirc, \square \}$ y $B = \{a, b, c, d\}$.

$$\begin{split} A\times B = & \{(\bigwedge,a), (\bigwedge,b), (\bigwedge,c), (\bigwedge,d), (\bigcirc,a), (\bigcirc,b), (\bigcirc,c), \\ & (\bigcirc,d), (\square,a), (\square,b), (\square,c), (\square,d)\} \end{split}$$

Definición (Relación)

Sean A y B dos conjuntos no vacíos. Se dice que R es una relación de A en B, si $R \subset A \times B$.

Ejemp<u>lo</u>

$$f = \{(\bigwedge, a), (\bigcirc, b), (\Box, b)\} \subset A \times B ,$$

$$g = \{(\bigwedge, c), (\square, b), (\square, d)\} \subset A \times B$$
.

Definición (Función)

Dados A y B dos conjuntos no vacío. Una función de A en B es un subconjunto f del producto cartesiano $A \times B$ donde para cada elemento x de A, existe a lo más un elemento y de B tal que el par ordenado (x,y) está en f.

En símbolos, f es una función de A en B si

$$\forall x \in A, \exists ! y \in B : (x, y) \in f$$

Al conjunto A se le llama dominio y al conjunto B se le llama codominio.

UNIVERSIDAD NACIONAL DE INGEN

Ejemplo

Del ejemplo anterior, tenemos que f es una función.

$$f = \{(\bigwedge, a), (\bigcirc, b), (\square, b)\}.$$

Observación:

■ El concepto de función también se puede definir de la siguiente manera. Una función f de A en B es un subconjunto del producto cartesiano que satisface las siguientes condiciones:

Existencia : $\forall x \in A, \exists y \in B : (x, y) \in f$.

Unicidad : Si $(x, y) \in f$ y $(x, z) \in f$, entonces y = z.

Observación:

- Si f es una función de A en B y $(x,y) \in f$, se escribe y = f(x) y se dice que y es la imagen de x bajo f y que x es una preimagen de y bajo f.
- f y f(x) tienen diferente significado, f es la función, mientras que f(x) es el valor de la función en x.
- Al dominio de f se le denota Dom(f) donde Dom(f) = A.

Ejemplo

$$A = \{-1, 0, 1\}, B = \{0, 1, 2\}, f : A \to B, f(x) = x^2.$$

Ejemplo

Tome los conjuntos $A = \{\text{Alumnos de la EPM}\}\$ y $B = \{\text{Profesores de la EPM}\}\$, considere el conjunto de pares ordenados que se pueden formar del siguiente modo

$$f = \{(x, y) \in A \times B/y \text{ es profesor de } x\}$$

En este caso f no es función.

Ejemplo

Tome los conjuntos $A=\{{\rm Alumnos\ de\ la\ EPM}\}$ y $B=\{{\rm Palabra\ alfanum\'erica\ de\ 9\ caracteres}\},$ considere el conjunto de pares ordenados que se pueden formar del siguiente modo

$$f = \{(x,y) \in A \times B/y \text{ es el código UNI de } x\}$$

En este caso f es función.

Función real de variable real

Las funciones $f: X \to Y$, donde $X \subset \mathbb{R}, Y \subset \mathbb{R}$ son llamadas funciones reales de variable real. Las funciones reales de variable real pueden ser bien representadas en el plano cartesiano por su gráfica.

Ejemplo

$$A = \{-1, 0, 1\}, B = \{0, 1, 2\}, f : A \to B, f(x) = x^2.$$

Funciones reales de variable real

Definición (Gráfica de una función)

Dada $f:A\subset\mathbb{R}\to\mathbb{R}$, una función real de variable real. La gráfico de la función f, denotado por $\mathrm{Graf}(f)$ es el conjunto

$$Graf(f) = \{(x, y) \in \mathbb{R} \times \mathbb{R} | x \in A, y = f(x)\}\$$

Funciones reales de variable real

Ejemplo

Sean $A=\{-1,0,1\}$, $B=\{0,1,2\}$ y la función $f\colon A\to B$ con regla de correspondencia $f(x)=x^2$. La gráfica de f es $\operatorname{Graf}(f)=\{(-1,1),(0,0),(1,1)\}$ cuya representación es

Observación:

- De la definición es claro que $(x,y) \in Graf(f)$ si y solo si y = f(x).
- Dom(f) es la proyección ortogonal de Graf(f) sobre el eje X.
- Ran(f) es la proyección ortogonal de Graf(f) sobre el eje Y.

Definición (Función constante)

Una función $f:A\subset\mathbb{R}\to\mathbb{R}$, es llamada función constante si su rango es un conjunto unitario.

Definición (Función constante)

Sean c un número real y A un subconjunto no vacío de \mathbb{R} . La función $f:A\to\mathbb{R}$ definida por $\forall x\in A:f(x)=c$ se llama función constante.

$$\blacksquare$$
 Dom $(f) = A$.

■ Ran
$$(f) = \{c\}.$$

Definición (Función identidad)

Sea A un subconjunto no vacío de \mathbb{R} . La función identidad sobre A se denota por $I_A:A\to\mathbb{R}$ y se define como $\forall x\in A:I_A(x)=x.$

- lacksquare Dom $(I_A) = A$.
- \blacksquare Ran $(I_A) = A$.

Definición (Función afín)

La función afín $f: \mathbb{R} \to \mathbb{R}$ y se define como f(x) = mx + b, $\forall x \in \mathbb{R}$, donde $m, b \in \mathbb{R}$, son dos constantes reales.

- \blacksquare Dom $(f) = \mathbb{R}$.
- \blacksquare Ran $(f) = \mathbb{R}$.

Observación:

Si b=0, entonces f(x)=mx se denomina función lineal.

- $extbf{Dom}(f) = \mathbb{R}.$
- $\operatorname{Ran}(f) = \mathbb{R}.$

Definición (Función polinomial)

Una función P se llama polinomial si

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

donde n es un número entero no negativo y $a_0, a_1, a_2, \ldots, a_n$ son constantes llamadas los coeficientes de la polinomial. El dominio de cualquier polinomial es \mathbb{R} . Si el coeficiente principal $a_n \neq 0$, entonces el grado de la polinomial es n.

Ejemplo

La función

$$P(x) = 3x^5 + x^4 - \frac{3}{4}x^3 + x + \sqrt{3}$$

es una polinomial de grado 5.

Definición (Función cuadrática)

Una polinomial de grado 2 es de la forma

$$P(x) = ax^2 + bx + c, \quad a \neq 0$$

y se llama función cuadrática.

Su gráfica es siempre una parábola obtenida por desplazamientos de la parábola $y=ax^2$. La parábola se abre hacia arriba si a>0 y hacia abajo si a<0.

Ejemplo

$$f(x) = x^2 + x + 1$$

$$f(x) = -2x^2 + 3x + 1$$

Definición (Función cúbica)

Una polinomial de grado 3 es de la forma

$$P(x) = ax^3 + bx^2 + cx + d, \quad a \neq 0$$

y se llama función cúbica.

Ejemplo

$$f(x) = x^3 - x + 1$$

Definición (Función potencia)

Una función de la forma $f(x)=x^a$, donde a es una constante, se llama función potencia. Consideramos los siguientes casos.

- $\mathbf{a} = n$, donde n es un número entero positivo.
- $\mathbf{a} = \frac{1}{n}$, donde n es un número entero positivo.
- a = -1

Caso I

La forma general de la gráfica de $f(x)=x^n$ depende de si n es par o impar.

- Si n es par, entonces su gráfica es similar a la parábola $y=x^2$.
- Si n es impar, entonces es una función impar, y su gráfica es similar a la de $y=x^3$.

Caso I

La forma general de la gráfica de $f(x)=x^n$ depende de si n es par o impar. cuando n aumenta, la gráfica de $y=x^n$ se aplana más cerca de 0 y es más pronunciada cuando $|x| \geq 1$.

Caso II

La función $f(x) = x^{1/n}$ es una función raíz.

■ Para n=2 es la función raíz cuadrada $f(x)=\sqrt{x}$, con dominio en $[0,+\infty[$ y cuya gráfica es la mitad superior de la parábola $x=y^2$. Para otros valores pares de n, la gráfica de $y=\sqrt[n]{x}$ es similar a la de $y=\sqrt{x}$.

Caso II

La función $f(x) = x^{1/n}$ es una función raíz.

■ Para n=3 se tiene la función raíz cúbica $f(x)=\sqrt[3]{x}$ cuyo dominio es \mathbb{R} . La gráfica de $y=\sqrt[n]{x}$ para n impar (n>3) es similar a la de $y=\sqrt[3]{x}$.

Caso III

La gráfica de la función recíproca $f(x)=x^{-1}=\frac{1}{x}$ es la gráfica que tiene la ecuación $y=\frac{1}{x}$ o xy=1, y es una hipérbola con los ejes de coordenadas como sus asíntotas.

Definición (Función racional)

Una función racional f es un cociente de dos funciones polinomiales:

$$f(x) = \frac{P(x)}{Q(x)}$$

donde P y Q son polinomios. El dominio consiste en todos los valores de x tales que $Q(x) \neq 0$.

Ejemplo

La función

$$f(x) = \frac{2x^4 - x^2 + 1}{x^2 - 4}$$

es una función racional con dominio $\mathbb{R} \setminus \{-2, 2\}$.

Definición (Función algebraica)

Una función f se llama función algebraica si puede construirse utilizando operaciones algebraicas (como suma, resta, multiplicación, división y tomando raíces) comenzando con los polinomios. Cualquier función racional es automáticamente una función algebraica.

Ejemplo

Las siguientes funciones son algebraicas

$$f(x) = \sqrt{x^2 + 1}$$

$$g(x) = \frac{x^4 - 16x^2}{x + \sqrt{x}} + (x - 2)\sqrt[3]{x + 1}$$

Definición (Función seno)

La función seno dado por la regla de correspondencia $f(x) = \sin x$ tiene por gráfica

$$lacksquare$$
 Dom $(f) = \mathbb{R}$.

$$\mathbf{Ran}(f) = [-1, 1].$$

Definición (Función coseno)

La función coseno dado por la regla de correspondencia $f(x) = \cos x$ tiene por gráfica

■
$$Ran(f) = [-1, 1].$$

Definición (Función tangente)

La función tangente dada por la regla de correspondencia $f(x) = \tan x$ tiene por gráfica:

Definición (Función exponencial)

Las funciones exponenciales son funciones de la forma $f(x)=b^x$, donde la base b es una constante positiva.

Definición (Función logarítmica)

Las funciones logarítmicas $f(x) = \log_b x$, donde la base b es una constante positiva, son las funciones inversas de las funciones exponenciales.

Sesión 01

- 1 Función
 - Funciones reales de variable real
 - Funciones especiales
 - Funciones trigonométricas
 - Funciones trascendentes
- 2 Referencias

Referencias

- James Stewart Cálculo de una variable - Trascendentes tempranas. 8e Cengage Learning
- Jon Rogawski Cálculo - Una variable. 2da ed. W. H. Freeman and Company
- Ron Larson Bruce Edwards Cálculo, Tomo I. 10ma ed. Cengage Learning

