DEUTSCHLAND

₁₀ DE 43 17 252 C 1

Patentschrift

⑤ Int. Cl.⁵: H 01 J 61/30 F 21 V 25/00

H 01 J 61/50

PATENTAMT

Aktenzeichen:

P 43 17 252.0-33

Anmeldetag:

24. 5.93

Offenlegungstag:

Veröffentlichungstag

der Patenterteilung:

5. 5. 94

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

BLV Licht- und Vakuumtechnik GmbH, 85643 Steinhöring, DE

(74) Vertreter:

Weber, O., Dipl.-Phys.; Heim, H., Dipl.-Ing. Dipl.-Wirtsch.-Ing.; Lang, F., Dipl.-Ing.Univ., Pat.-Anwälte, 81479 München

(2) Erfinder:

Block, Werner, Dr.-Ing., 8028 Taufkirchen, DE; Claus, Holger, Dr.-Ing., 8098 Pfaffing, DE

66) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> US 49 42 330 US 47 21 876 EP 186 899 B1 EP 1 73 235 B1 EP 1 65 587 B1

(54) Gasentladungslampe

Die Erfindung betrifft eine Gasentladungslampe mit elnem Gasentiadungsgefäß, das mindestens partiell von einem lichtdurchlässigen Schutzkolben umgeben ist, wobei der Schutzkolben ein Berstschutzgitter aufweist. Der Schutzkolben wird hierbei als vollständig geschlossener Hüllkolben ausgelegt, der das Gasentladungsgefäß vakuumdicht umschließt. Ebenfalls ummantelt das Berstschutzgitter den Hüllkolben vollständig.

Beschreibung

Die Erfindung betrifft eine Gasentladungslampe gemäß Oberbegriff des Anspruches 1.

Im Hinblick auf die immer strenger werdenden Schutzbestimmungen bei Lampen und insbesondere bei Gasentladungslampen, die für offene Leuchten, d.h. Leuchten ohne Schutzglas vor der Lampe vorgesehen sind, besteht die Anforderung, daß für diese Gasentladungslampen während der gesamten Lebensdauer einer 10 sichere Betriebsweise garantiert werden muß. Bei derartigen Lampen besteht die geringe Wahrscheinlichkeit, daß das in der Gasentladungslampe vorhandene Gasentladungsgefäß während des Betriebes zerplatzen kann. In einem derartigen Fall können Glassplitter den 15 umgebenden Kolben der Gasentladungslampe zerschlagen und gegebenenfalls Personen oder Materialien gefährden. Es muß daher bei derartigen Gasentladungslampen garantiert sein, daß der äußere Kolben dieser Lampen nicht zerbricht. Aber auch bei Lampen mit 20 Schutzglas besteht ein wenn auch sehr geringes Restrisiko, daß von der Lampe herrührende Splitter dieses Schutzglas zerschlagen.

Eine eingangs genannte gattungsgemäße Lampe, bei deren Konstruktion Probleme der vorgenannten Art 25 bereits teilweise berücksichtigt sind, ist aus der US-PS 4,721,876 bekannt. Die in dieser Druckschrift beschriebene Gasentladungslampe weist einen inneren Hüllkolben auf, der als beidseitig offener, zylindrischer Kolben oder als einseitig offener domartiger Kolben mit relativ starker Zylinderwandung ausgelegt ist. Dieser bekannte Hüllkolben ist von einem Drahtnetz umgeben. Das Gasentladungsgefäß einschließlich Hüllkolben und Drahtnetz sind in dieser Ausführungsform nach außen in einem Glaskolben vakuumdicht gekapselt.

Neben der Tatsache, daß diese Lösung für verschiedene Metalldampflampen ungünstig ist, da das Drahtnetz das elektrische Potential der Lampe beeinflussen kann und somit zu einem erhöhten Natrium-Verlust und damit einer verkürzten Lebensdauer führen kann, ist 40 der Hüllkolben mindestens einseitig offen. Dies birgt die große Gefahr in sich, daß bei einem Bersten des Gasentladungsgefäßes Splitter durch das offene Ende des Hüllkolbens treten können und sogar den äußeren Kolben zerschlagen können. Auch ist bei dieser bekannten Lampe keinerlei UV-Schutz vorgesehen.

Eine mit der vorausgehend genannten Gasentladungslampe vergleichbare Lampe ist aus der EP 361 530 A bzw. der US-PS 4,942,330 bekannt. Diese Lampe weist zur Sicherheit gegen ein Zerplatzen oder 50 Zerbersten des Gasentladungsgefäßes ein lichtdurchlässiges Schild, das als beidseitig offener Zylinder konstruiert ist auf, welches von einem Netz aus keramischen Fasern umgeben ist. Diese keramischen Fasern sollen ausreichende Festigkeit besitzen, um im Falle eines Zerberstens des Gasentladungsgerätes bei einem Bruch des Schildes Splitter zurückhalten zu können. Ein gravierender Nachteil zusätzlich zu den beidseitig offenen Enden des Schildes ist die Tatsache, daß das keramische Netz schwer herstellbar und schwierig um das Schild plazier- 60 bar ist. Zum weiteren reduziert das Schild in Verbindung mit dem keramischen Netz den Lichtstrom der Lampe.

Bei einer Gasentladungslampe gemäß der EP 186 899 B1 hat man als Berstschutz ein zylindrisches 65 Element als Quarzmanschette vorgesehen, für dessen genaue Plazierung um das Gasentladungsgefäß ein äu-Berer Halterungsdraht vorgesehen ist, der jedoch keinerlei Zersplitterungsschutz bietet.

Weitere einseitig geschlossene Quarzkolben um das Gasentladungsgefäß sind aus der EP 173 235 B1 oder 165 587 B1 bekannt. Die dort vorgesehenen einseitig offenen Hüllkolben dienen jedoch primär dem thermischen Regime der Lampe, da das offene Ende des Hüllkolbens einen Splitterschutz nach außen nicht bewirken kann und zu dem kein weiterer Splitterschutz um den Hüllkolben vorhanden ist.

Andere Maßnahmen, mit denen eine erhöhte Sicherheit bei Gasentladungslampen gewährleistet werden soll, sind zylindrische Hüllkolben mit einer Wandstärke von 2 mm und größer, die jedoch mindestens einseitig und meist beidseitig offen sind.

Eine weitere Möglichkeit sind zwei ineinander vorgesehene Schutzrohre aus Quarzglas, die das Gasentladungsgefäß umgeben, wobei auf dem einen Schutzrohr ein UV-Filter aufgebracht ist.

Ein weiteres Problem bei Gasentladungslampen ist der geforderte Uv-Schutz, der diesen Lampen immanent sein soll, d. h. die emittierte Strahlung im UVC-, UVB- und UVA-Bereich muß auf bestimmte, vorgeschriebene Werte mindestens begrenzt sein.

Die bekannten Gasentladungslampen benutzen UV-Filter, die durch Sputtern oder Tauchen aufgebracht werden. Diese Aufbringung des UV-Filters geschieht üblicherweise auf dem inneren Hüllkolben oder dem äußeren Glaskolben. Allerdings haben diese Lösungen den Nachteil, daß diese aufgebrachten Filter ihre Eigenschaften während der Lebensdauer der Lampen ändern. Zudem hängen die Transmissionseigenschaften dieser UV-Filter stark vom Lichteinfallswinkel und der Temperatur der aufgebrachten Filterschicht ab.

Unter Berücksichtigung der vorstehenden Nachteile
35 liegt der Erfindung primär die Aufgabe zugrunde, eine
Gasentladungslampe der gattungsgemäßen Art konstruktiv so zu verbessern, daß konstruktiv einfach ein
optimaler Schutz gegen ein Zerplatzen des Lampenaußengefäßes ohne Beeinträchtigung der Lebensdauer
40 der Lampe oder deren Lichtausbeute möglich ist.

Diese Aufgabe wird erfindungsgemäß bei einer gattungsgemäßen Gasentladungslampe durch die Merkmale des kennzeichnenden Teils des Anspruchs 1 gelöst.

Ein wesentlicher Kerngedanke der Erfindung kann darin gesehen werden, den das Gasentladungsgefäß umgebenden Schutzkolben als vollständig geschlossenen Hüllkolben zu konstruieren, wodurch eine vollkommene Einkapselung des Gasentladungsgefäßes vorliegt und diesen Hüllkolben zu dem noch vakuumdicht darum anzuordnen. Hierdurch wird sichergestellt, daß im Falle des Berstens des Gasentladungsgefäßes an keiner Stelle Splitter nach außen treten können, es sei denn, die Splitter durchschlagen den Hüllkolben. Um den Hüllkolben selbst hiergegen zu sichern, ist das Berstschutzgitter so angeordnet, daß es den Hüllkolben vollständig ummantelt. Sollte daher der Hüllkolben beim Bersten des Gasentladungsgefäßes zerschlagen werden, so werden die zersplitternden Glasteile des Hüllkolbens durch das Berstschutzgitter zurückgehalten.

Diese Konstruktion der Gasentladungslampe ermöglicht einen optimalen Berstschutz bei kleinstmöglichen Außendurchmesser bzw. Außenabmesser des Hüllkolbens. Bei einer zweckmäßigen Auslegung der Gasentladungslampe mit einem Kontakt- und Schraubsockel besteht daher die Möglichkeit, diese Gasentladungslampe auch in standardisierte Sicherheitsfassungen für gegen ein Zerplatzen gesicherte Gasentladungslampen einzudrehen. Bei den eingangs genannten Lampen nach dem

Stand der Technik würden dies die bauchigen Außenkolben verhindern.

Die vakuumdichte Einkapselung des Gasentladungsgefäßes durch den Hüllkolben stellt zudem sicher, daß durch das Berstschutzgitter keine Potentialbeeinflussung des Entladungsgefäßes und damit eine Beeinträchtigung der Lebensdauer der Lampe resultieren kann. Vorzugsweise ist das Berstschutzgitter aus einem hochschmelzenden Material hergestellt. Hierfür eignet sich besonders ein Metalldraht mit einem Durchmesser < 10,12 mm und einem Drahtabstand oder einer Maschenweite von < 2 mm.

Das Berstschutzgitter könnte aber auch als Glasfasernetz oder aus Teflonfasern oder aus hochschmelzenden nichtleitenden Kunststoffasern gebildet sein.

Besonders vorteilhaft ist die Einbeziehung des UV-Filters direkt in den Hüllkolben im Sinne eines Volumenfilters. Hierfür ist der Hüllkolben aus einem Quarzglas oder einem Hartglas hergestellt, das bestimmte Beimischungen bzw. Dotierungen von Materialien enthält, 20 die vor allen Dingen UVB und UVC absorbierend sind.

Hierbei kann das Quarzglas so ausgelegt sein, daß die Wellenlängen des Lichtes im Bereich von oder kleiner 350 nm weitgehenst absorbiert werden und nur eine Transmission von < 5% vorhanden ist. Auf diese Weise lassen sich UVB-und UVC-Strahlen bis etwa 95% absorbieren und UVA-Strahlungen bis etwa 30%.

330 nm fungiert. Das netzartige Berstschutzfilter wird insbesondere enganliegend auf dem Hüllkolben 1 angebracht, wobei der untere Bereich auch punktuell oder ganz miteingeschmolzen sein kann. Auf diese Weise verhindert das Berstschutzgitter auch im seltenen Fall der Zerstörung des Gasentladungsgefäßes 2 oder des

Der weitere Vorteil dieses Volumenfilters kann darin gesehen werden, daß keinerlei Austrittsbereich für die UV-Strahlung offenbleibt, da der Hüllkolben das Gasentladungsgefäß vollständig umkapselt. Auch die Langzeiteinwirkung im Vergleich zu auf gebrachten Filterschichten oder der Einfallswinkel des Lichts kann bei diesem Volumenfilter außer Acht bleiben. Das derart ausgelegte Volumenfilter des Hüllkolbens weist daher eigenständigen Erfindungscharakter auf.

Hüllkolbens 1 ein Heraus- oder Herunterfallen größerer Glasteilchen auf Menschen oder entflammbare Materialien, so daß eine optimale Sicherheit gewährleistet ist.

In der Ausführungsform nach Fig. 2 weist die Gasentladungslampe 20 zusätzlich zu der Lampe 10 der Fig. 1 einen äußeren Schutzkolben 7 z. B. aus Hartglas auf. Dieser äußere Schutzkolben 7 und der innere Hüllkolben 1 sind herbei in einem Keramikadapter 6. der in den

Eine weitere Verbesserung der Gasentladungslampe kann mittels eines äußeren Schutzkolbens realisiert werden. Ein derartiger Schutzkolben umgibt den Hüllkolben, wobei beide Kolben über einen nichtleitenden 40 Adapter, vorzugsweise aus Keramik oder Kunststoff, an einem Einschraubsockel befestigt sind. Dieser äußere Schutzkolben sichert daher gegen eventuelles Abrieseln kleinster Glaspartikel, die im Falle eines Zerberstens des Gasentladungsgefäßes freigesetzt werden könnten. 45 Hierbei umgibt der Schutzkolben den Hüllkolben unter Umgebungsdruck, so daß kein Unter- bzw. Überdruck zwischen diesen beiden Kolben existiert.

Eine Gasentladungslampe der vorgenannten Art kann mit einem Stecksockel oder Schraubsockel ausgestattet sein. Die Stromzuführung kann sowohl einseitig wie mehrseitig angeordnet sein. Insbesondere können diese konstruktiven gravierenden Verbesserungen bei einer Metalldampflampe vorgesehen werden.

Im Vergleich zum Stand der Technik beschreitet daher die Erfindung einen vollkommen konträren Weg, indem einerseits der Hüllkolben das Gasentladungsgefäß vakuumdicht einkapselt. Zum anderen wird die Auflage der Uv-Filterung durch das entsprechende Material gelöst, das dann als geschlossenes Gefäß im Sinne eines gleichmäßig und gleichbleibend stark absorbierenden Volumenfilters fungiert.

Die Erfindung wird nachstehend anhand zweier schematischer Ausführungsbeispiele noch näher erläutert. Es zeigen:

Fig. 1 eine Aufrißansicht auf eine erste Ausführungsform, die einen Hüllkolben mit Berstschutzgitter aufweist und Fig. 2 eine Aufrißansicht einer mit Fig. 1 vergleichbaren Lampe, die jedoch einen äußeren Schutzkolben umfaßt.

Die in Fig. 1 gezeigte Gasentladungslampe 10 weist ein inneres Gasentladungsgefäß 2 auf, das vakuumdicht in einen Hüllkolben 1 eingeschmolzen ist. Der Hüllkolben 1 weist im unteren Bereich eine Quetschung 12 auf, durch den die Stromzuführungen 3 über zwei Außenbereiche in den eigentlichen Schraubsockel 4 geleitet sind.

Der Hüllkolben 1 ist am oberen Ende etwas schräg zulaufend zusammengeschmolzen (bei 13).

Auf dem Hüllkolben 1 ist ein Berstschutzgitter 5 als Metallgitter bzw. Metallnetz aufgebracht. Dieses Berstschutzgitter reicht von der oberen Spitze 13, wo es z. B. zusammengeschrumpft sein kann, bis zur unteren Quetschzone 12, ohne daß hierbei eine elektrische Beeinflussung der Stromzuführungen zum zweiseitigen Gasentladungsgefäß auftreten könnte.

Der Hüllkolben 1 besteht hierbei aus einem UV-absorbierenden Quarzglas, das als Volumenfilter für die Absorption von Wellenlängen insbesondere unter 330 nm fungiert. Das netzartige Berstschutzfilter wird insbesondere enganliegend auf dem Hüllkolben 1 angebracht, wobei der untere Bereich auch punktuell oder ganz miteingeschmolzen sein kann. Auf diese Weise verhindert das Berstschutzgitter auch im seltenen Fall der Zerstörung des Gasentladungsgefäßes 2 oder des Hüllkolbens 1 ein Heraus- oder Herunterfallen größerer Glasteilchen auf Menschen oder entflammbare Materialien, so daß eine optimale Sicherheit gewährleistet ist.

In der Ausführungsform nach Fig. 2 weist die Gasentladungslampe 20 zusätzlich zu der Lampe 10 der Fig. 1
einen äußeren Schutzkolben 7 z. B. aus Hartglas auf.
Dieser äußere Schutzkolben 7 und der innere Hüllkolben 1 sind herbei in einem Keramikadapter 6, der in den
Schraubsockel 4 übergeht, montiert. Dieser Schutzkolben 7 ist einseitig verschlossen, so daß zwischen Schutzkolben 7 und innerem Hüllkolben 1 bzw. dem Berstschutzgitter 5 Atmosphärendruck herrscht. Dieser
Schutzkolben 7 verhindert daher sogar im Fall des Zerspringens des inneren Hüllkolbens ein Abrieseln kleinster Teilchen, so daß die Gasentladungslampe 20 noch
weitreichendere Sicherheit bietet.

Unter Berücksichtigung des geforderten Berstschutzes und der hohen UV-Absorption schafft daher die Erfindung eine äußerst kostengünstige, langlebige Gasentladungslampe, die den denkbaren Sicherheitsanforderungen in hervorragender Weise gerecht wird.

Patentansprüche

- (1) angeordnet ist und diesen vollständig ummantelt.
- 2. Gasentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß das Berstschutzgitter (5) aus hochschmelzendem Material besteht.
- 3. Gasentladungslampe nach Anspruch 2, dadurch gekennzeichnet, daß das Berstschutzgitter (5) aus

Metalldraht mit einem Draht-Durchmesser < 0,12 mm und einem Drahtabstand von < 2 mm gebildet ist.

4. Gasentladungslampe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Berstschutzgitter 5 (5) aus Glasfaser, Teflonfaser oder einer hochschmelzenden Kunststoffaser ausgebildet ist.

5. Gasentladungslampe, insbesondere nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Hüllkolben (1) aus UV-absorbierendem 10 Quarzglas oder Hartglas besteht.

6. Gasentladungslampe nach Anspruch 5, dadurch gekennzeichnet, daß das Quarzglas oder Hartglas für Wellenlängen von gleich oder kleiner 350 nm, insbesondere 330 nm, eine Transmission von < 5% 15 aufweist.

7. Gasentladungslampe nach einem der Ansprüche 1 bis 6 mit Schraubsockel, dadurch gekennzeichnet, daß der maximale Durchmesser oder die maximale Breite des Hüllkolben (1) kleiner oder gleich dem Durchmesser des Schraubsockels (4) ausgelegt ist. 8. Gasentladungslampe nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß ein Schutzkol-

ben (7) um den Hüllkolben (5) vorgesehen ist.

9. Gasentladungslampe nach Anspruch 8, dadurch 25 gekennzeichnet, daß ein Adapter (6) insbesondere aus einem Keramikmaterial vorgesehen ist, in dem der Hüllkolben (1) und der Schutzkolben (7) angebracht sind.

Gasentladungslampe nach Anspruch 8, dadurch 30 gekennzeichnet, daß zwischen Hüllkolben (1) und Schutzkolben (7) Umgebungsdruck herrscht.

11. Gasentladungslampe nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Stromzuführungen einseitig oder zweiseitig vorgesehen sind.

12. Gasentladungslampe nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Lampe eine Metalldampflampe ist.

13. Gasentladungslampe nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, daß der maximale Durchmesser oder die maximale Breite des Hüllkolbens (1) 31 mm beträgt.

Hierzu 2 Seite(n) Zeichnungen

55

50

60

Nummer: Int. Cl.⁵:

DE 43 17 252 C1 H 01 J 61/30

Veröffentlichungstag: 5. Mai 1994

408 118/39

Int. Cl.⁵:

DE 43 17 252 C1 H 01 J 61/30

Veröffentlichungstag: 5. Mai 1994

Fig. 2