CS 437 Lecture Notes

Andrew Li

Fall Quarter 2025

Original lecture notes for **CS 437: Approximation Algorithms**, from Fall Quarter 2025, taught by Professor Konstantin Makarychev. This course follows ???????, ISBN ??.

Table of Contents

1	Sept	tember	16,	202	5													2
	1.1	Macro	s															2
	1.2	Set Co	over															2
		1.2.1	Pro	of														3
2	Sept	tember	18,	202	5													4

§1 September 16, 2025

I joined this class after this lecture.

§1.1 Macros

Below is an example algorithm using the macros in this repository. For simplicity, this algorithm computes the largest element of a fixed size array.

Algorithm 1.1: Algorithm to compute max(list)	
input list	1
$curmax \leftarrow list[0]$	2
for $n \in list do$	3
	4
return curmax	5

There are also other environments, namely

Lemma 1.1 This is a lemma.

Proposition 1.2 and a proposition.

Definition 1.3 and a definition.

Example 1.4 These boxes are for examples.

Note These boxes are sparingly used, for asides.

Theorem 1.5 And finally, we've got the theorem.

As is standard, we can use the proof environment for proofs.

Proof. Trivial. \Box

§1.2 Set Cover

Definition 1.6 Set Cover Let V be some universe, with |V| = n. Let

$$S_1, \dots, S_m \subset V \tag{1.1}$$

such that $\bigcup_i S_i = V$. Select the smallest $I \subseteq \{1, \dots, m\}$ such that $\bigcup_{i \in I} S_i = V$.

Example 1.7 Let $V \equiv \{1,2,3,4,5\}$ and sets be pairs $\{i,j\}$ such that $i \neq j$. Then, an optimal solution is

$$I \equiv \{\{1, 2\}, \{3, 4\}, \{1, 5\}\}$$
 (1.2)

In this case, opt(I) = 3

Definition 1.8 The approximation factor of an algorithm is α_n if for every I of size n, we have

$$alg(I) \le \alpha_n \cdot opt(I) \tag{1.3}$$

The first theorem of this course is

Theorem algorithm	1.9 with		exists pproximati		polynomial factor	time $\log n$.
Algorithm gorithm	n 1.2: Po	lynomial	time set c	over aj	oproximation al-	
$U_0 \leftarrow V$	// set o	f not ye	t covered	lelem	ents in V	1
$t \leftarrow 0 //$	iterati	on count	er			2
for $U_t \neq$	\emptyset do					3
Select	S_i from	sets that	maximises	$ S_i \cap l $	U_t	4
Inclu	$de S_i$ in so	oln				5
$U_t \leftarrow$	$U_t \setminus S_i$					6
$t \leftarrow t$	+1					7
return s	soln					8

1.2.1 **Proof**

§2 September 18, 2025