

Introduction to Nomad

Nomad is a Container Orchestrator

(Ok, it can do more than just containers.....)

- Much simpler alternative to Kubernetes
- Nomad can deploy, manage, and scale containers for your environment
- You can use Nomad to deploy containers on-prem, at the edge, and on any cloud platform. Multi-region and multi-datacenter support.
- Nomad can scale to thousands of nodes in a single cluster
- Supports non-containerized workloads as well, such as VMs, binaries, and more...
- Tight integration into the HashiCorp ecosystem

Where Does Nomad Fit into the HashiCorp Ecosystem?

Nomad powers the application deployment and placement

Simple Container Orchestration

The Foundation for Cloud Application Automation

Developer

GΖ

Orchestrate Any Application

- Containerized
- Non-Containerized
- Batch Applications
- Java Apps

"Nomad is an emerging disruptor in the container orchestrator world"

-NetApp

"Nomad does an amazing job of scheduling both containers and WebAssembly, and we think it's the future of cloud orchestrators.

I think that we can imagine a world where Kubernetes fades, and Nomad takes its place."

-Matt Butcher

Author of Go in Practice

Node

A physical or virtual machine in the cluster. A node is a machine running the Nomad agent.

Agent

Long-running daemon running on every member of the Nomad cluster. Agent can run in either client or server mode. This is essentially the binary that is downloaded from HashiCorp.

Server Mode

An agent running on a server that holds the global state of the cluster and participates in scheduling decisions.

Client Mode

An agent that fingerprints the host to determine the capabilities, resources, and available drivers. Responsible for running workloads, such as containers.

Jobs

- Definition of how a workload should be scheduled.
 The job specification (spec) is composed of one or
 more task groups, and each task defines a series of
 resource configurations and constraints.
- A job is submitted to Nomad and represents a desired state. For example, run 3 instances of my application using this Docker image and spread them across three nodes to ensure high-availability.

Job Specification (jobspec)

- An HCL configuration file on disk which describes how a workload should be scheduled.
- It contains multiple stanzas that define configurations such as jobs, groups, tasks, services, and resources for the application

Job Specification File


```
vault-cluster.nomad
    job "vault" {
      datacenters = ["dc1"]
      group "vault_cluster" {
        count = 3
        spread {
          attribute = "{node.datacenter}
          target "dc1" {
 8
 9
            percent = 100
10
11
12
13
        network {
14
          mode = "host"
15
          port "vault_api" {
16
            to = 8200
17
18
19
20
        service {
                    = "vault"
21
          name
```


Driver

- Pluggable components that execute a task and provide resource isolation.
- Example drivers include: docker, java, podman, and raw-exec
- Drive must be installed/available before tasks can be executed. For example, if you submit a job to schedule Docker containers, Docker must be available on the Nomad clients to use...

Task

- A command, service, application, or "set of work" to be executed by Nomad.
- Tasks are executed by their driver.
- Examples include:
 - Run these containers
 - Execute these commands
 - Run this Java application from a .jar file

Task Example

```
vault-cluster.nomad
    task "vault" {
       driver = "docker"
       config {
                         = "hashicorp/vault"
          image
                         = ["vault_api"]
 6
         ports
         auth_soft_fail = true
 8
10
        resources {
11
                 = 500
          cpu
12
          memory = 256
13
14
```


Task Group

- A collection of individual task that should be colocated on the same node
- Any task within the defined group will be placed on the same Nomad client
- This is especially useful for applications that require low latency or have high throughput to another application in the task group.

Task Group - Example


```
group "hpc_application" {
     constraint {
       attribute = "${attr.cpu.arch}"
       value
                = "amd64"
     task "cache" {
                               Resources defined in
                              both cache and server
                               will be scheduled on
10
     task "server" {
                                 the same Nomad
       # ...
                                        client
13
```


Evaluation

- A calculation performed by the Nomad servers to determine what action(s) need to take place to execute a job.
- Nomad performs evaluations whenever jobs are submitted or client state changes to determine if what changes need to be made to ensure the desired state

Allocation

- The mapping of tasks in a job to clients is done using allocations.
- An allocation is used to declare that a set of tasks in a job should be run on a particular node.
- Allocations can fail if there are not enough resources to execute the task, a node is down, etc.

Scheduling in Nomad

Job → Evaluation → Allocation → Client

- Submitted by users
- Represents desired state
- Triggers an evaluation when submitted

- Compared current state to desired state
- Evaluates the state and reconciles it

- Map the tasks in the job to a client
- Determines set of tasks that should run on a client

- Runs the set of tasks defined in the job spec.
- This is where the containers are scheduled

Nomad Architecture

Nomad Architecture

Environment that has private, low latency and high-bandwidth between nodes.

Agreement of an elected leader in the cluster

Collection of multiple datacenters, often grouped geographically.

Single-Region Architecture

Multi-Region Architecture

Comparing Nomad to Kubernetes

How Does Nomad Compare to Kubernetes?

- Nomad is not based on Kubernetes, and Kubernetes is not based on Nomad, they are separate products
- Both solutions are open-source, although HashiCorp does currently offer an Enterprise version of Nomad
- Nomad supports more types of workloads than Kubernetes, such as VMs, Java JAR, Qemu, Raw Executables, Firecracker microVMs, and Wasm
- Nomad is a single binary for everything Nomad-related
- Kubernetes is much more architecturally complex than a Nomad environment
- Nomad can scale to millions of containers (check out the 1 million and 2 million container challenge HashiCorp did)
- Kubernetes is considered the industry standard, but it doesn't mean it's always the right tool

How Does Nomad Compare to Kubernetes?

- Nomad doesn't have the concept of Ingress Controllers for managing network connectivity
- Nomad is primarily a task-scheduling platform and can't orchestrate load balancing, config management, or routing
- Most cloud platforms provide a managed service for Kubernetes, simplifying the deployment and management of the platform. There is currently no managed service for Nomad on any cloud platform, including HCP
- Kubernetes has an extensive community for support, but it comes with the increased complexity of deployment
- Nomad is an emerging disruptor in the container orchestrator world

Comparing Terminology

HashiCorp Nomad	Kubernetes
Job	Job
Tasks/Group	Pods
Client Agent	Kubelet
Server Node	Controllers/Control Plane
Client Node	Worker Node
Task Driver	Container Runtime
Service Discovery/Reverse Proxy	Load Balancer/Ingress
Integrated API	API Server
Raft	etcd
HCL	YAML

End of Section

