

Módulo 14: Camada de Transporte

CCNA_M1-Introdução às redes v7.0 (ITN)

Prof. Clemilson Oliveira

clemilson.oliveira@edu.sc.senai.br

Objetivos do módulo

Título do módulo: Camada de transporte

Objetivo do módulo: comparar as operações dos protocolos da camada de transporte no suporte à comunicação de ponta a ponta.

Título do Tópico	Objetivo do Tópico
Transporte de dados	Explicar a função da camada de transporte no gerenciamento do transporte de dados na comunicação de ponta a ponta.
TCP Overview	Explique as características do TCP.
Visão Geral do UDP	Explicar as características da UDP.
Números de porta	Explique como TCP e UDP usam números de porta.
Processo de comunicação TCP	Explicar como os processos de estabelecimento e encerramento de sessão TCP tornam a comunicação confiável.
Confiabilidade e controle de fluxo	Explicar como as unidades de dados de protocolo TCP são transmitidas e confirmadas para garantir a entrega.
Comunicação UDP	Comparar as operações de protocolos de camada de transporte no suporte da comunicação de ponta a ponta.

14.1 - Transporte de dados

Transporte de dados Propósito de camada de transporte

A camada de transporte é:

- responsável pela comunicação lógica entre aplicativos executados em hosts diferentes.
- Link entre a camada de aplicação e as camadas inferiores responsáveis pela transmissão da rede.

Transporte de dados Responsabilidades da camada de transporte

A camada de transporte tem as seguintes responsabilidades:

- Acompanhamento de conversas individuais
- Segmentando dados e remontando segmentos
- Adiciona informações de cabeçalho
- Identificar, separar e gerenciar várias conversas
- Usa segmentação e multiplexação para permitir que diferentes conversas de comunicação sejam intercaladas na mesma rede

Transporte de dados Protocolos de camada de transporte

- O IP n\u00e3o especifica como a entrega ou o transporte de pacotes ocorrem.
- Os protocolos de camada de transporte especificam como transferir mensagens entre hosts e são responsáveis pelo gerenciamento dos requisitos de confiabilidade de uma conversa.
- A camada de transporte inclui os protocolos TCP e UDP.

Protocolode Controle de Transmissão deDados

O TCP fornece confiabilidade e controle de fluxo. Operações básicas de TCP:

- Número e rastreamento de segmentos de dados transmitidos para um host específico a partir de um aplicativo específico
- Confirmar dados recebidos
- Retransmitir quaisquer dados não reconhecidos após um certo período de tempo
- Dados de sequência que podem chegar em ordem errada
- Enviar dados a uma taxa eficiente que seja aceitável pelo receptor

Transporte de Dados UDP (User Datagram Protocol)

O UDP fornece as funções básicas para fornecer datagramas entre os aplicativos apropriados, com muito pouca sobrecarga e verificação de dados.

- UDP é um protocolo sem conexão.
- O UDP é conhecido como um protocolo de entrega de melhor esforço porque não há confirmação de que os dados são recebidos no destino.

Transporte de dados

O protocolo de camada de transporte certo para a aplicação certa

O UDP também é usado por aplicativos de solicitação e resposta onde os dados são mínimos, e a retransmissão pode ser feita rapidamente.

Se for importante que todos os dados cheguem e que possam ser processados em sua sequência adequada, TCP é usado como o protocolo de transporte.

14.2 Visão geral do TCP

Visão Geral do TCP

Características do TCP

- Estabelece uma sessão O TCP é um protocolo orientado à conexão que negocia e estabelece uma conexão (ou sessão) permanente entre os dispositivos de origem e de destino antes de encaminhar qualquer tráfego.
- Garante a entrega confiável Por várias razões, é possível que um segmento seja corrompido ou perdido completamente, pois é transmitido pela rede. O TCP garante que cada segmento enviado pela fonte chegue ao destino.
- Fornece entrega no mesmo pedido Como as redes podem fornecer várias rotas que podem ter taxas de transmissão diferentes, os dados podem chegar na ordem errada.
- Suporta controle de fluxo os hosts de rede têm recursos limitados (ou seja, memória e poder de processamento). Quando percebe que esses recursos estão sobrecarregados, o TCP pode requisitar que a aplicação emissora reduza a taxa de fluxo de dados.

Visão Geral do TCP Cabeçalho do TCP

TCP é um protocolo stateful, o que significa que ele controla o estado da sessão de comunicação.

O TCP registra quais informações foram enviadas e quais foram confirmadas.

Visão Geral do TCPCampos de CabeçalhoTCP

Campo de cabeçalho TCP	Descrição
Porta de origem	Um campo de 16 bits usado para identificar o aplicativo de origem por número de porta.
Porta de destino	Um campo de 16 bits usado para identificar o aplicativo de destino por número de porta.
Número de Sequência	Um campo de 32 bits usado para fins de remontagem de dados.
Número de Confirmação	Um campo de 32 bits usado para indicar que os dados foram recebidos e o próximo byte esperado da origem.
Tamanho do cabeçalho	Um campo de 4 bits conhecido como "offset de dados" que indica o comprimento do cabeçalho de segmento TCP.
Reservado	Um campo de 6 bits que é reservado para uso futuro.
Bits de controle	Um campo de 6 bits usado que inclui códigos de bits ou sinalizadores, que indicam a finalidade e a função do segmento TCP.
Tamanho da janela	Um campo de 16 bits usado para indicar o número de bytes que podem ser aceitos ao mesmo tempo.
Checksum	Um campo de 16 bits usado para verificação de erros do cabeçalho e dos dados do segmento.
Urgente	Um campo de 16 bits usado para indicar se os dados contidos são urgentes.

Visão Geral do TCP

Aplicações que usam TCP

O TCP lida com todas as tarefas associadas à divisão do fluxo de dados em segmentos, fornecendo confiabilidade, controlando o fluxo de dados e reordenando segmentos.

14.3 - Visão geral do UDP

Visão Geral do UDP Recursos de UDP

Os recursos UDP incluem o seguinte:

- Os dados são reagrupados na ordem em que são recebidos.
- Quaisquer segmentos perdidos não são reenviados.
- Nenhum estabelecimento de seção.
- O envio n\u00e3o \u00e9 informado sobre a disponibilidade do recurso.

Visão Geral do UDP Cabeçalho UDP

O cabeçalho UDP é muito mais simples do que o cabeçalho TCP porque só tem quatro campos e requer 8 bytes (ou seja, 64 bits).

Visão Geral UDP Campos de Cabeçalho UDP

A tabela identifica e descreve os quatro campos em um cabeçalho UDP.

Campo de Cabeçalho UDP	Descrição
Porta de origem	Um campo de 16 bits usado para identificar o aplicativo de origem por número de porta.
Porta de destino	Um campo de 16 bits usado para identificar o aplicativo de destino pelo número da porta.
Duração	Um campo de 16 bits que indica o comprimento do cabeçalho do datagrama UDP.
Checksum	Um campo de 16 bits usado para verificação de erros do cabeçalho e dos dados do datagrama.

Visão Geral do UDP

Aplicações que usam UDP

- Aplicativos de vídeo ao vivo e multimídia Esses aplicativos podem tolerar a perda de alguns dados, mas exigem pouco ou nenhum atraso. Os exemplos incluem VoIP e transmissão de vídeo ao vivo.
- Aplicações de solicitação e resposta simples -Aplicações com transações simples em que um host envia uma solicitação e pode ou não receber uma resposta. Os exemplos incluem DNS e DHCP.
- Aplicações que lidam elas mesmas com a confiabilidade - Comunicações unidirecionais onde o controle de fluxo, detecção de erro, confirmações, e recuperação de erros não são necessárias ou podem ser executadas pela aplicação. Os exemplos incluem SNMP e TFTP.

14.4 Números de Porta

Número de Portas Várias comunicações separadas

Os protocolos de camada de transporte TCP e UDP usam números de porta para gerenciar várias conversas simultâneas.

O número da porta de origem está associado ao aplicativo de origem no host local, enquanto o número da porta de destino está associado ao aplicativo de destino no host remoto.

Source Port (16) Destination Port (16)

Números de porta Pares de soquete

- As portas origem e destino são colocadas no segmento.
- Os segmentos são encapsulados em um pacote IP.
- A combinação do endereço IP de origem e o número de porta de origem, ou do endereço IP de destino e o número de porta de destino é conhecida como um socket.
- Os sockets permitem que vários processos em execução em um cliente se diferenciem uns dos outros, e várias conexões com um processo no servidor sejam diferentes umas das outras.

Números de Porta Grupos de Números de Porta

Grupo de Portas	Intervalo de números	Descrição
Portas bem conhecidas	0 a 1023	 Esses números de porta são reservados para serviços e aplicativos comuns ou populares, como navegadores da web, clientes de email e clientes de acesso remoto. Portas bem conhecidas definidas para aplicativos comuns de servidor permite que os clientes identifiquem facilmente o serviço associado necessário.
Portas registradas	1.024 a 49.151	 Esses números de porta são atribuídos pela IANA a uma entidade solicitante para uso com processos ou aplicativos específicos. Esses processos são principalmente aplicações que o usuário optou por instalar, e não aplicações comuns que receberiam um número de porta muito conhecida. Por exemplo, a Cisco registrou a porta 1812 para o processo de autenticação do servidor RADIUS.
Portas dinâmicas e/ou privadas	49.152 a 65.535	 Essas portas também são conhecidas como portas efêmeras. O sistema operacional do cliente geralmente atribui números de porta dinamicamente quando uma conexão a um serviço é iniciada. A porta dinâmica é usada para identificar a aplicação cliente durante a comunicação.

CISCO

Números de

Porta Grupos de Números de Porta (Cont.)

Números de Portas Bem Conhecidas

Número da Porta	Protocolo	Aplicação
20	TCP	File Transfer Protocol (FTP) - Dados
21	TCP	Protocolo de transferência de arquivos (FTP) - Controle
22	TCP	Secure Shell (SSH)
23	TCP	Telnet
25	TCP	Protocolo SMTP
53	UDP, TCP	Protocolo DNS
67	UDP	Dynamic Host Configuration Protocol (DHCP) - Servidor
68	UDP	Protocolo de configuração dinâmica de host - cliente
69	UDP	Protocolo de Transferência Trivial de Arquivo (TFTP)
80	TCP	Protocolo HTTP
110	TCP	Protocolo POP3 (Post Office Protocol - Protocolo dos Correios)
143	TCP	Protocolo IMAP
161	UDP	Protocolo de Gerenciamento Simples de Rede (SNMP)
443	TCP	HTTPS (Secure Hypertext Transfer Protocol - Protocolo de Transferência de Hipertexto Seguro)

Números de Porta O Comando netstat

Conexões TCP desconhecidas podem ser uma ameaça de segurança maior. Netstat é uma ferramenta importante para verificar conexões.

```
C:\> netstat
Conexões Ativas
Endereço Local Proto Estado do Endereço Estrangeiro
TCP 192.168.1.124:3126 192.168.0.2:netbios-ssn ESTABLISHED
TCP 192.168.1.124:3158 207.138.126.152:http ESTABLISHED
TCP 192.168.1.124:3159 207.138.126.169:http ESTABLISHED
TCP 192.168.1.124:3160 207.138.126.169:http ESTABLISHED
TCP 192.168.1.124:3161 sc.msn.com:http ESTABLISHED
TCP 192.168.1.124:3166 www.cisco.com:http ESTABLISHED
```


14.5 - Processo de comunicação TCP

Processo de comunicação TCP Processo de servidor TCP

Cada processo de aplicativo em execução em um servidor está configurado para usar um número de porta.

- Um servidor individual não pode ter dois serviços atribuídos ao mesmo número de porta dentro dos mesmos serviços de camada de transporte.
- Um aplicativo de servidor ativo atribuído a uma porta específica é considerado aberto, o que significa que a camada de transporte aceita e processa os segmentos endereçados a essa porta.
- Qualquer solicitação de cliente que chega endereçada ao socket correto é aceita e os dados são transmitidos à aplicação do

Processo de comunicação TCP Estabelecimento de conexão TCP

Etapa 1: O cliente iniciador solicita uma sessão de comunicação cliente-servidor com o servidor.

Etapa 2: O servidor confirma a sessão de comunicação cliente-servidor e solicita uma sessão de comunicação de servidor-cliente.

Etapa 3: O cliente iniciador confirma a sessão de comunicação de servidor-cliente.

Comunicação de TCP Término da sessão de TCP

Etapa 1: quando o cliente não tem mais dados para enviar no fluxo, ele envia um segmento com o sinalizador FIN definido.

Etapa 2: O servidor envia um ACK para confirmar o recebimento do FIN para encerrar a sessão do cliente para o servidor.

Etapa 3: O servidor envia um FIN ao cliente para finalizar a sessão servidor para cliente.

Etapa 4: O cliente responde com um ACK para confirmar o FIN do servidor.

Processo de comunicação TCP Análise do handshake triplo do TCP

Estas são as funções do handshake de três vias:

- Estabelece que o dispositivo de destino está presente na rede.
- Ele verifica se o dispositivo de destino possui um serviço ativo e está aceitando solicitações no número da porta de destino que o cliente inicial pretende usar.
- Ele informa ao dispositivo de destino que o cliente de origem pretende estabelecer uma sessão de comunicação nesse número de porta.

Após a conclusão da comunicação, as sessões são fechadas e a conexão é encerrada. Os mecanismos de conexão e sessão ativam a função de confiabilidade do TCP.

Processo de comunicação TCP Análise do handshake triplo do TCP

Os seis sinalizadores de bit de controle são os seguintes:

- **URG** Campo indicador de urgência
- ACK Indicador de confirmação usado no estabelecimento de conexão e encerramento de sessão
- PSH Função Push
- RST Redefina a conexão quando ocorrer um erro ou tempo limite
- SYN Sincronizar números de sequência usados no estabelecimento de conexão
- FIN Não há mais dados do remetente e usados no encerramento da sessão

Processo de comunicação TCP Demonstração em vídeo - Handshake triplo do TCP

Este vídeo aborda o seguinte:

- Handshake triplo TCP
- Encerramento de uma conversa TCP

14.6 - Confiabilidade e controle de fluxo

Controle de fluxo e confiabilidade Confiabilidade de TCP – entrega ordenada

- O TCP também pode ajudar a manter o fluxo de pacotes para que os dispositivos não fiquem sobrecarregados.
- Pode haver momentos em que os segmentos TCP não cheguem ao destino ou fora de ordem.
- Todos os dados devem ser recebidos e os dados nesses segmentos devem ser remontados na ordem original.
- Os números de sequência são atribuídos no cabeçalho de cada pacote para alcançar esse objetivo.

Controle de fluxo e confiabilidade

Vídeo - confiabilidade do TCP - Números de sequência e confirmações

Este vídeo mostra um exemplo simplificado das operações TCP.

Confiabilidade e controle de fluxo

TCP Confiabilidade - Perda e retransmissão de dados

Não importa o quão bem projetada uma rede é, a perda de dados ocasionalmente ocorre.

O TCP fornece métodos de gerenciamento dessas perdas de segmento. Entre esses métodos há um mecanismo que retransmite segmentos dos dados não confirmados.

Confiabilidade e Controle de FluxoConfiabilidadeTCP — Perda e Retransmissão de Dados (Cont.)

Hoje em dia, os sistemas operacionais de host utilizam um recurso TCP opcional chamado reconhecimento seletivo (SACK), negociado durante o handshake de três vias.

Se ambos os hosts suportarem SACK, o receptor pode reconhecer explicitamente quais segmentos (bytes) foram recebidos, incluindo quaisquer segmentos descontínuos.

Confiabilidade e controle de fluxo

Vídeo -Confiabilidade TCP - Perda e retransmissão de dados

Este vídeo mostra o processo de reenvio de segmentos que não são recebidos inicialmente pelo destino.

Confiabilidade e Controle de Fluxo Controle de Fluxo TCP- Tamanho da Janela e Reconhecimentos

O TCP também fornece mecanismos para controle de fluxo da seguinte maneira:

- Controle de fluxo é a quantidade de dados que o destino pode receber e processar de forma confiável.
- O controle de fluxo ajuda a manter a confiabilidade da transmissão TCP definindo a taxa de fluxo de dados entre a origem e o destino em uma determinada sessão.

Controle de Fluxo

TCP de Confiabilidade e Controle de Fluxo — Tamanho Máximo do Segmento

Tamanho Máximo do Segmento (MSS) é a quantidade máxima de dados que o dispositivo de destino pode receber.

- Um MSS comum é 1.460 bytes ao usar IPv4.
- Um host determina o valor do seu campo MSS subtraindo os cabeçalhos IP e TCP da MTU (Ethernet Maximum Transmission Unit), que é de 1500 bytes como padrão.
- 1500 menos 60 (20 bytes para o cabeçalho IPv4 e 20 bytes para o cabeçalho TCP) deixa 1460

Confiabilidade e controle de fluxo Controle de fluxo de TCP - Prevenção de congestionamento

Quando ocorre um congestionamento em uma rede, isso resulta em pacotes sendo descartados pelo roteador sobrecarregado.

Para evitar e controlar o congestionamento, o TCP emprega alguns mecanismos para lidar com o congestionamento, temporizadores e algoritmos.

14.7 - Comunicação UDP

Comunicação de UDP Baixa sobrecarga do UDP versus confiabilidade

O UDP não estabelece uma conexão. O UDP fornece transporte de dados de baixa sobrecarga, porque tem um cabeçalho de datagrama pequeno e nenhum tráfego de gerenciamento de rede.

Comunicação de UDP Reagrupamento de datagrama UDP

- O UDP não rastreia os números de sequência da mesma maneira que o TCP.
- O UDP não tem um meio de reordenar os datagramas em sua ordem de transmissão.
- O UDP simplesmente remonta os dados na ordem em que foram recebidos e os encaminha para o aplicativo.

Comunicação UDP Solicitações e processos de servidor UDP

Os aplicativos de servidor baseados em UDP recebem números de porta conhecidos ou registrados.

Quando o UDP recebe um datagrama destinado a uma destas portas, ele encaminha os dados à aplicação apropriada com base em seu número de porta.

Comunicação UDP Processos de cliente UDP

- O processo no cliente UDP seleciona dinamicamente um número de porta a partir de uma faixa de números de portas e a usa como a porta de origem para a conversa.
- A porta de destino será geralmente o número de porta muito conhecida ou registrada atribuído ao processo no servidor.
- Depois que um cliente seleciona as portas de origem e de destino, o mesmo par de portas é usado no cabeçalho de todos os datagramas na transação.

14.8 - Módulo Prática e Quiz

Módulo de Prática e Quiz

Packet Tracer - Comunicações TCP e UDP

Neste Packet Tracer, você fará o seguinte:

- Gerar Tráfego de Rede no Modo de Simulação
- Examinar a Funcionalidade dos Protocolos TCP e UDP

Módulo Prática e Quiz

O que aprendi neste módulo?

- A camada de transporte é o link entre a camada de aplicativo e as camadas inferiores responsáveis pela transmissão da rede.
- A camada de transporte inclui TCP e UDP.
- O TCP estabelece sessões, garante confiabilidade, fornece entrega de mesma ordem e oferece suporte ao controle de fluxo.
- O UDP é um protocolo simples que fornece as funções básicas da camada de transporte.
- O UDP reconstrói os dados na ordem em que são recebidos, os segmentos perdidos não são reenviados, nenhum estabelecimento de sessão e o UPD não informa o remetente da disponibilidade de recursos.
- Os protocolos de camada de transporte TCP e UDP usam números de porta para gerenciar várias conversas simultâneas.
- Cada processo de aplicativo em execução em um servidor está configurado para usar um número de porta.
- O número da porta é atribuído automaticamente ou configurado manualmente por um administrador do sistema.
- Para que a mensagem original seja entendida pelo destinatário, todos os dados devem ser recebidos e os dados nesses segmentos devem ser remontados na ordem original.

Confidencial da Cisco

Módulo Prática e Quiz

O que eu aprendi neste módulo (Cont.)?

- Os números de sequência são atribuídos no cabeçalho de cada pacote.
- O controle de fluxo ajuda a manter a confiabilidade da transmissão TCP, ajustando a taxa de fluxo de dados entre a origem e o destino.
- Uma fonte pode estar transmitindo 1.460 bytes de dados dentro de cada segmento TCP.
 Este é o MSS típico que um dispositivo de destino pode receber.
- O processo de envio de confirmações pelo destino enquanto processa os bytes recebidos, e o ajuste contínuo da janela de envio da origem é conhecido como janelas deslizantes.
- Para evitar e controlar o congestionamento, o TCP emprega vários mecanismos de manipulação de congestionamento.

