

# Les 09 – Microarray's en differentiële gen expressie (2)

## **Emile Apol**





Institute for Life Science & Technology

## **LES 09**

- O Doe meer met DEG's:
  - Volcano plot
  - "Effect size ( $\eta^2$ ) plot"
- Algemene aanpak MA analyse: ANOVA
  - Meerdere factoren
  - Confounding
  - Experimentele opzet (DOE)

#### **MICROARRAY ANALYSE: STAPPENPLAN**

- Background correctie
- Log transformatie
- Normalisatie (bijv. loess)
- Toetsen op DEG's:
  - t-toets, 1-way ANOVA, ...
  - Wilcoxon's toets, Kruskall-Wallis toets, ...
- Aanpassen p-waarden voor multiple toetsing
- Clustering van DEG's:
  - Hiërarchisch clusteren
  - k-means
  - Principale Componenten Analyse (PCA)
- Toetsen op functionaliteit genen binnen clusters

- Wat zijn "biologisch relevante" DEG's?
  - Kleine p-waarde
  - Grote (absolute) log fold change |M|







- o Plot  ${}^{10}\log(p\text{-waarden})$ , evt. met multiple toets correctie, als functie van M-waarden.
- "Biologisch interessante" genen:
  - bijv. |M| > 2
  - bijv.  $^{10}\log(p_{\rm adj}) > ^{10}\log(0.05)$



• Snelle manier om volcano-plot te maken uit dataframe M (met enkel M-waarden, per regel één gen), en een vector pVec en/of pVec.adjust met (aangepaste) p-waarden uit t-toets/ANOVA/... per gen:

### • Resultaat:



• Gewone punten **zwart**, maar **rood** als  $p_{\rm adj}$  < 0.05 en |M| > 2 :

```
# make colors red for special points
colors.ALL <-1 + (pVec.adjust.ALL < 0.05 & abs(logFold.ALL) > 2)
plot(-log10(pVec.adjust.ALL) ~ logFold.ALL,
     xlab="Log fold change M",
                                                              00
                                                                  യ
     ylab="- log10(p.adjust)",
     col=colors.ALL)
                                       - log10( p.adjust
abline(h=-log10(0.05), lty=2)
abline(v=-2, lty=2)
                                           \mathfrak{C}
abline(v=2, lty=2)
                                                               ത്തത്ത താ
                                           \mathcal{O}
                                           0
                                                          0
                                                    Log fold change M
```

#### KLEUREN IN R

- Verschillende manieren om in R kleur aan te geven:
  - ol = c("black", "red")
  - col = c(1, 2)
  - col = rainbow.colors(12)
- O Logicals: T = TRUE = 1, F = FALSE = 0, dus

```
# make colors red for special points colors.ALL <- 1 + (pVec.adjust.ALL < 0.05 & abs(logFold.ALL) > 2)
```

levert normaal 1 (= "black") maar als  $p_{\rm adj}$  < 0.05 en |M| > 2 , dus 1 + ( T & T ) = 1 + T = 2 (= "red"); dit maakt een vector van 1'en en 2'en...

- p-waarde geeft statistische significantie (> toeval?)
- o |M|-waarde geeft "biologische" significantie: effect sterkte, aribraire grens |M| > 2
- Bij t-toetsen en 1-way ANOVA ook statistische definitie van effect sterkte:  $\eta^2$  (eta kwadraat) = practische significantie

$$\eta^2 \equiv \frac{SS_{\text{tussen}}}{SS_{\text{tot}}} = \frac{SS_{\text{tussen}}}{SS_{\text{tot}} + SS_{\text{binnen}}}$$

1-way ANOVA

$$\eta^2 \equiv \frac{SS_{\text{tussen}}}{SS_{\text{tot}}} = \frac{t^2}{t^2 + df}$$

*t*-toets

# **E**FFECT STERKTE: $\eta^2$

- Voorbeeld: 1-way ANOVA



```
> summary(aov(y ~ samples))
           Df Sum Sq Mean Sq F value Pr(>F)
               1.50
                       0.75 75 5.69e-05
samples
Residuals
                0.06
                       0.01
```

$$\eta^2 = \frac{SS_{\text{tussen}}}{SS_{\text{tot}} + SS_{\text{binnen}}} = \frac{1.50}{1.50 + 0.06} = 0.96$$

Dit betekent dat 96% van alle variatie in de data komt door verschillen tussen de groepen (de andere 4% is "ruis")

### • Voorbeeld: 2-sample *t*-toets

> t.test(y ~ samples, var.equal=T)

Two Sample t-test

data: y by samples

t = 6.1237, df = 4, p-value = 0.003602

alternative hypothesis: true difference in means is not equal to 0

$$\eta^2 = \frac{t^2}{t^2 + df} = \frac{6.1237^2}{6.1237^2 + 4} = 0.90$$

Dit betekent dat 90% van alle variatie in de data komt door verschillen tussen de groepen (de andere 10% is "ruis")



- Wanneer is een effect (verschil tussen biologische samples) groot?
- Vuistregel (Cohen, 1988):

| $\eta^2$ waarde | Effect sterkte   |
|-----------------|------------------|
| 0.01            | zwak effect      |
| 0.10            | matig effect     |
| > 0.25          | sterk effect     |
| 1               | perfecte relatie |

NB. Vaak gaan statistische significantie (p-waarde < 0.05) en practische significantie (effect sterkte) samen, soms niet!

13

- o Voorbeeld van R functie om p-waarde en  $\eta^2$  per gen te berekenen: t-toets (2-sample, Welch, gepaard)
- o Input:
  - M-waarden per gen ( $\mathbf{x}$  = rij matrix)
  - Vector g (factor) met groepslevels

```
matrixTTest <- function(x, g, ...){

g <- as.factor(g)
Q <- t.test(x ~ g, ...)
p.value <- Q$p.value
eta2 <- Q$statistic^2/(Q$statistic^2 + Q$parameter)
a <- c()
a[1] <- p.value
a[2] <- eta2
names(a) <- c("p-value","eta2")
return(a)
}</pre>
```

O Data:



#### Resultaat:

```
> apply(M, 1, matrixTTest, g=samples, var.equal=T)
             gene1
                  gene2
                                   gene3
p-value 0.00219213 0.2745766 0.008049893
                                              anonieme argumenten
       0.92452830 0.2857143 0.857142857
eta2
> apply(M, 1, matrixTTest, g=samples, var.equal=F)
              gene1
                       gene2
                                    gene3
p-value 0.004833894 0.2846272 0.008049893
                                              anonieme argumenten
        0.938697318 0.3169399 0.857142857
eta2
> apply(M, 1, matrixTTest, g=samples, paired=T)
                      gene2
              gene1
p-value 0.005063324 0.05719096 0.05719096
                                                        15
eta2
        0.989898990 0.88888889 0.88888889
```

- Voorbeeld van R functie om p-waarde en  $\eta^2$  per gen te berekenen: 1-way ANOVA
- o Input:
  - M-waarden per gen ( $\mathbf{x}$  = rij matrix)
  - Vector g (factor) met groepslevels

```
matrix1WayANOVATest <- function(x, g){
    g <- as.factor(g)
    Q <- summary(aov(x ~ g))[[1]]
    p.value <- Q$Pr[1]
    SS.g <- Q$Sum[1]; SS.tot <- sum(Q$Sum); eta2 <- SS.g/SS.tot
    a <- c()
    a[1] <- p.value
    a[2] <- eta2
    names(a) <- c("p-value","eta2")
    return(a)
}</pre>
```

O Data:

| File |           |     |     |     |     |     |     |
|------|-----------|-----|-----|-----|-----|-----|-----|
|      | row.names | M1  | M2  | МЗ  | M4  | M5  | M6  |
| 1    | gene1     | 1   | 1.1 | 0.9 | 0.5 | 0.6 | 0.5 |
| 2    | gene2     | 0.9 | 0.8 | 0.7 | 0.8 | 0.7 | 0.5 |
| 3    | gene3     | 0.3 | 0.4 | 0.2 | 0.6 | 0.7 | 0.8 |

• Resultaat:

samples 
$$\leftarrow$$
 as.factor(c(1,1,2,2,3,3))

### **ALTERNATIEF VOLCANO: GLIDER PLOT?**

o Plot -  $^{10}$ log ( $p_{adj}$ ) vs.  $\eta^2$  voor alle genen:



## **ALGEMENE ANALYSE MA'S: ANOVA**

- Veel "ad hoc" preprocessings stappen, o.a. normalisatie, kunnen door systematische aanpak automatisch worden gedaan:
- ANOVA analyse (Jackson-groep: Churchill, Kerr, Cui)



**Gary Churchill** 



Kathleen Kerr



Xiangqui Cui

## DIFFERENTIËLE GEN EXPRESSIES: 1 GEN, 2 SAMPLES

• Data format 1: r replica's van M' waarden per gen:

| Gene     | $M'_1$ | <b>M'</b> <sub>2</sub> | ••• | $M'_i$ | ••• | $M'_r$ |
|----------|--------|------------------------|-----|--------|-----|--------|
| gene 1   | 0.51   | 0.34                   | ••• | 0.55   | ••• | 0.44   |
| gene 2   | -0.14  | -0.31                  | ••• | 0.11   | ••• | -0.27  |
|          |        |                        |     |        |     |        |
| gene $g$ | 0.78   | 0.85                   | ••• | 0.69   | ••• | 0.75   |
| •••      |        |                        |     |        |     |        |
| gene $G$ | 1.15   |                        | ••• | 0.66   | ••• | 0.91   |

1-sample *t*-toets voor  $\mu = 0$ 

## DIFFERENTIËLE GEN EXPRESSIES: 1 GEN, >2 SAMPLES

o Data format 1: k samples, r replica's j van  $M_{ij} = \log(T_{ij})$  waarden per gen per sample i:

|          |                  | sample 1 |           |     |           | sample <i>k</i> |                  |   |
|----------|------------------|----------|-----------|-----|-----------|-----------------|------------------|---|
| Gene     | M' <sub>11</sub> |          | $M'_{1r}$ | ••• | $M'_{k1}$ | •••             | M' <sub>kr</sub> |   |
| gene 1   | 0.51             | •••      | 0.34      | ••• | 0.55      | ***             | 0.44             | P |
| gene 2   | -0.14            | •••      | -0.31     | ••• | 0.11      | •••             | -0.27            |   |
|          |                  |          |           |     |           |                 |                  |   |
| gene $g$ | 0.78             |          | 0.85      |     | 0.69      | •••             | 0.75             | } |
| •••      |                  | 1        |           |     |           |                 |                  |   |
| ge       | 1.               | way AN   |           |     | 0.66      | •••             | 0.91             |   |
|          |                  |          | 21        |     |           |                 |                  |   |

#### ANOVA: PER GEN OF HELE MA?

- Zoeken naar DEG's: t-toets of 1-way ANOVA per gen
- Model per gen (sample s, replica k):

$$M_{s,k} = \mu + S_s + \varepsilon_{s,k}$$

- $aov(x \sim S)$  # S = factor met sample nrs.
- Alternatief: 2-way ANOVA op *hele microarray*:
- Model (gen g, sample s, replica k):

$$M_{g,s,k} = \mu + S_s + G_g + (SG)_{s,g} + \varepsilon_{g,s,k}$$

aov (x ~ S + G + S:G) # G = factor met gen nrs.

## DIFFERENTIËLE GEN EXPRESSIES: 2-WAY ANOVA

o Data format: k samples, r replica's j van  $M_{ij} = \log(T_{ij})$  waarden per gen per sample i:

|          |                          | sample 1 |           |     |           | sample <i>k</i> |           | Y |
|----------|--------------------------|----------|-----------|-----|-----------|-----------------|-----------|---|
| Gene     | <b>M</b> ′ <sub>11</sub> |          | $M'_{1r}$ | ••• | $M'_{k1}$ |                 | $M'_{kr}$ |   |
| gene 1   | 0.51                     | •••      | 0.34      | ••• | 0.55      | * * 10          | 0.44      | P |
| gene 2   | -0.14                    | •••      | -0.31     | ••• | 0.11      | •••             | -0.27     |   |
|          |                          |          |           |     |           |                 |           |   |
| gene $g$ | 0.78                     | •••      | 0.85      |     | 0.69      | •••             | 0.75      | } |
| •••      |                          |          |           |     |           |                 |           |   |
| gene G   | 1.15                     | •••      | 0.45      |     | 0.66      | •••             | 0.91      |   |
|          |                          |          |           |     |           |                 | 23        |   |

#### 2-WAY ANOVA

• 2-way ANOVA model:

"Ruis"

$$M_{g,s,k} = \mu + S_s + G_g + (SG)_{s,g} + \mathcal{E}_{g,s,k}$$

Gemiddelde log fold change: "normalisatie"

Gemiddelde effect van een biologisch sample *s* 

Interactie

(versterkend/verzwakkend effect) tussen sample s en gen g

Gemiddelde effect van een gen g

o DEG's zijn genen g waarvoor de interactie term  $(SG)_{s,g}$  in het model significant is!

#### **MULTI-WAY ANOVA**

 2-way ANOVA model is ook verder uit te breiden naar meer factoren (= verklaringen voor verschillen in log expressie waarden):



## **CONFOUNDING**

 Plantenveredelingsexperiment: 2 soorten graan op 2 soorten grond. Wat is het effect van graansoort op opbrengst?



#### **CONFOUNDING**

 Microarray experiment: 2 soorten cellen met 2 soorten dye. Wat is het effect van celsoort op fluorescentie intensiteit?





# Jullie kunnen nu de opdrachten van les 13 maken











Institute for Life Science & Technology