GA-026 Ciência da Computação: Algoritmos I Grafos

• Programação Dinâmica é uma técnica na qual um problema maior é solucionado a partir da resolução dos sub-problemas pelos quais ele é constituído, obedecendo-se critérios de precedência.

- Programação Dinâmica é uma técnica na qual um problema maior é solucionado a partir da resolução dos sub-problemas pelos quais ele é constituído, obedecendo-se critérios de precedência.
- É uma técnica algorítmica mais geral para solucionar diversos tipos de problemas.

- Programação Dinâmica é uma técnica na qual um problema maior é solucionado a partir da resolução dos sub-problemas pelos quais ele é constituído, obedecendo-se critérios de precedência.
- É uma técnica algorítmica mais geral para solucionar diversos tipos de problemas.
- Revendo o exemplo de caminho mínimo em um DAG.

- Programação Dinâmica é uma técnica na qual um problema maior é solucionado a partir da resolução dos sub-problemas pelos quais ele é constituído, obedecendo-se critérios de precedência.
- É uma técnica algorítmica mais geral para solucionar diversos tipos de problemas.
- Revendo o exemplo de caminho mínimo em um DAG.
- \bullet A característica especial que distingue um DAG é que seus nós podem ser linearizados.

- Programação Dinâmica é uma técnica na qual um problema maior é solucionado a partir da resolução dos sub-problemas pelos quais ele é constituído, obedecendo-se critérios de precedência.
- É uma técnica algorítmica mais geral para solucionar diversos tipos de problemas.
- Revendo o exemplo de caminho mínimo em um DAG.
- \bullet A característica especial que distingue um DAG é que seus nós podem ser linearizados.
- Os nós podem ser arrumados em uma linha de modo que todas as arestas sigam da esquerda para a direita.

DAG linearizado (ordenado topologicamente)

DAG linearizado (ordenado topologicamente)

Suponha que se queira descobrir as distâncias do nó ${\cal S}$ para todos os outros nós.

DAG linearizado (ordenado topologicamente)

Por exemplo, para se chegar ao nó D, a única maneira de chegar a ele é pelos seus predecessores B ou C.

DAG linearizado (ordenado topologicamente)

Portanto, para encontrarmos o caminho mínimo para D, precisamos apenas comparar estas duas rotas:

DAG linearizado (ordenado topologicamente)

Portanto, para encontrarmos o caminho mínimo para D, precisamos apenas comparar estas duas rotas:

$$dist(D) = \min\{dist(B) + 1, dist(C) + 3\}$$

• Uma relação similar pode ser escrita para qualquer nó.

- Uma relação similar pode ser escrita para qualquer nó.
- Se for computados os valores de dist na ordem da esquerda para a direita, pode-se sempre estar certo de que, quando chegar-se ao nó v, já haverá toda a informação necessária para computar dist(v).

- Uma relação similar pode ser escrita para qualquer nó.
- Se for computados os valores de dist na ordem da esquerda para a direita, pode-se sempre estar certo de que, quando chegar-se ao nó v, já haverá toda a informação necessária para computar dist(v).
- Portanto, deve ser capaz de computar todas as distâncias em uma única passada:

- Uma relação similar pode ser escrita para qualquer nó.
- Se for computados os valores de dist na ordem da esquerda para a direita, pode-se sempre estar certo de que, quando chegar-se ao nó v, já haverá toda a informação necessária para computar dist(v).
- Portanto, deve ser capaz de computar todas as distâncias em uma única passada:

```
inicializa todos os valores dist(·) como \infty dist(s) = 0 para cada v \in V \setminus \{s\}, em ordem linearizada: dist(v) = \min_{(u, v) \in E} \{ \text{dist}(u) + l(u, v) \}
```

 \bullet Esse algoritmo está resolvendo uma coleção de subproblemas, $\{dist(u):u\in V\}$

- \bullet Esse algoritmo está resolvendo uma coleção de subproblemas, $\{dist(u):u\in V\}$
- ullet Começando com o menor deles, dist(s), sabe-se que sua resposta é 0.

- \bullet Esse algoritmo está resolvendo uma coleção de subproblemas, $\{dist(u):u\in V\}$
- ullet Começando com o menor deles, dist(s), sabe-se que sua resposta é 0.
- Depois procedem-se subproblemas progressivamente "maiores", ou seja, com distâncias para vértices que estão cada vez mais longe na linearização;

- \bullet Esse algoritmo está resolvendo uma coleção de subproblemas, $\{dist(u):u\in V\}$
- ullet Começando com o menor deles, dist(s), sabe-se que sua resposta é 0.
- Depois procedem-se subproblemas progressivamente "maiores", ou seja, com distâncias para vértices que estão cada vez mais longe na linearização;
- Considera-se um subproblema grande quando temos de resolver muitos outros subproblemas antes de poder chegar a ele.

 Essa é uma técnica muito geral. Em cada nó, computamos alguma função dos valores dos predecessores do nó.

- Essa é uma técnica muito geral. Em cada nó, computamos alguma função dos valores dos predecessores do nó.
- No exemplo dado, a função é uma soma de mínimos

- Essa é uma técnica muito geral. Em cada nó, computamos alguma função dos valores dos predecessores do nó.
- No exemplo dado, a função é uma soma de mínimos
- Programação dinâmica é um paradigma algorítmico muito poderoso no qual um problema é resolvido identificando-se uma coleção de subproblemas e lidando com eles um por um, primeiro os menores.

- Essa é uma técnica muito geral. Em cada nó, computamos alguma função dos valores dos predecessores do nó.
- No exemplo dado, a função é uma soma de mínimos
- Programação dinâmica é um paradigma algorítmico muito poderoso no qual um problema é resolvido identificando-se uma coleção de subproblemas e lidando com eles um por um, primeiro os menores.
- Usam-se as respostas aos problemas menores para ajudar a descobrir as respostas aos maiores, até que toda a coleção esteja solucionada.

 \bullet Em programação dinâmica o $D\!AG$ está implícito.

- \bullet Em programação dinâmica o DAG está implícito.
- Seus nós são os subproblemas que definimos e suas arestas são as dependências entre subproblemas.

• No problema da subsequência crescente mais longa, a entrada é uma sequência de números $a_1, ..., a_n$.

- No problema da subsequência crescente mais longa, a entrada é uma seqüência de números $a_1, ..., a_n$.
- Uma subsequência é qualquer subconjunto desses números tomados em ordem, da forma, $a_{i1}, a_{i2}, ..., a_{ik}$ onde $1 \le i_1 < i_2 < \cdots < i_k \le n$.

- No problema da subsequência crescente mais longa, a entrada é uma sequência de números $a_1,...,a_n$.
- Uma subsequência é qualquer subconjunto desses números tomados em ordem, da forma, $a_{i1}, a_{i2}, ..., a_{ik}$ onde $1 \le i_1 < i_2 < \cdots < i_k \le n$.
- Uma subsequência crescente é aquela na qual os números vão ficando estritamente maiores.

- No problema da subsequência crescente mais longa, a entrada é uma sequência de números $a_1,...,a_n$.
- Uma subsequência é qualquer subconjunto desses números tomados em ordem, da forma, $a_{i1}, a_{i2}, ..., a_{ik}$ onde $1 \le i_1 < i_2 < \cdots < i_k \le n$.
- Uma subsequência crescente é aquela na qual os números vão ficando estritamente maiores.
- A tarefa é encontrar a subsequência crescente de maior comprimento.

- No problema da subsequência crescente mais longa, a entrada é uma sequência de números $a_1,...,a_n$.
- Uma subsequência é qualquer subconjunto desses números tomados em ordem, da forma, $a_{i1}, a_{i2}, ..., a_{ik}$ onde $1 \le i_1 < i_2 < \cdots < i_k \le n$.
- Uma subsequência crescente é aquela na qual os números vão ficando estritamente maiores.
- A tarefa é encontrar a subsequência crescente de maior comprimento.
- Por exemplo, a subsequência crescente mais longa de $\{5,2,8,6,3,6,9,7\}$ é $\{2,3,6,9\}$:

- No problema da subsequência crescente mais longa, a entrada é uma sequência de números $a_1,...,a_n$.
- Uma subsequência é qualquer subconjunto desses números tomados em ordem, da forma, $a_{i1}, a_{i2}, ..., a_{ik}$ onde $1 \le i_1 < i_2 < \cdots < i_k \le n$.
- Uma subsequência crescente é aquela na qual os números vão ficando estritamente maiores.
- A tarefa é encontrar a subsequência crescente de maior comprimento.
- Por exemplo, a subsequência crescente mais longa de $\{5,2,8,6,3,6,9,7\}$ é $\{2,3,6,9\}$:

 Nesse exemplo, as setas denotam transições entre elementos consecutivos da solução ótima.

- Nesse exemplo, as setas denotam transições entre elementos consecutivos da solução ótima.
- De forma mais geral, para entender melhor o espaço de soluções, vamos criar um grafo de todas as possíveis transições:

- Nesse exemplo, as setas denotam transições entre elementos consecutivos da solução ótima.
- De forma mais geral, para entender melhor o espaço de soluções, vamos criar um grafo de todas as possíveis transições:

 $\bullet\,$ Este grafo G = (V, E) é um DAG,pois todas as arestas (i, j) têm i < j

- \bullet Este grafo G = (V, E) é um DAG,pois todas as arestas (i, j) têm i < j
- Existe uma correspondência um-para-um entre as subsequências crescentes e os caminhos nesse DAG.

- \bullet Este grafo G = (V, E) é um $\mathit{DAG}, pois todas as arestas <math display="inline">(i, j)$ têm i < j
- Existe uma correspondência um-para-um entre as subsequências crescentes e os caminhos nesse *DAG*.
- \bullet Portanto, nosso objetivo é simplesmente encontrar o caminho mais longo no DAG :

- \bullet Este grafo G = (V, E) é um $\mathit{DAG}, pois todas as arestas <math display="inline">(i, j)$ têm i < j
- Existe uma correspondência um-para-um entre as subsequências crescentes e os caminhos nesse DAG.
- Portanto, nosso objetivo é simplesmente encontrar o caminho mais longo no DAG:

para
$$j = 1, 2, ..., n$$
:

$$L(j) = 1 + \max\{L(i): (i, j) \in E\}$$
retornar $\max_{i} L(j)$

```
para j=1,2,...,n:

L(j)=1+\max\{L(i):(i,j)\in E\}

retornar \max_j L(j)
```

• L(j) é o tamanho do caminho mais longo, isto é, a subseqüência crescente mais longa terminando em j.

```
para j = 1, 2, ..., n:

L(j) = 1 + \max\{L(i): (i, j) \in E\}
retornar \max_{j} L(j)
```

- L(j) é o tamanho do caminho mais longo, isto é, a subseqüência crescente mais longa terminando em j.
- Raciocinando de maneira análoga a caminhos mínimos, qualquer caminho para o nó j tem de passar por um de seus predecessores e, portanto, L(j) é 1 mais o máximo valor $L(\cdot)$ entre esses predecessores.

```
para j = 1, 2, ..., n:

L(j) = 1 + \max\{L(i):(i, j) \in E\}
retornar \max_{j} L(j)
```

• Isso é programação dinâmica: para resolvermos nosso problema original, definimos uma coleção de subproblemas $\{L(j): 1 \leq j \leq n\}$ com a seguinte propriedade-chave que permite que eles sejam resolvidos em uma única passada:

```
para j = 1, 2, ..., n:

L(j) = 1 + \max\{L(i):(i, j) \in E\}
retornar \max_{j} L(j)
```

- Isso é programação dinâmica: para resolvermos nosso problema original, definimos uma coleção de subproblemas $\{L(j): 1 \leq j \leq n\}$ com a seguinte propriedade-chave que permite que eles sejam resolvidos em uma única passada:
 - Existe uma ordenação para os subproblemas e uma relação que mostra como resolver um subproblema dadas as respostas para subproblemas "menores", ou seja, subproblemas que aparecem antes nesta ordenação.

```
para j=1,2,...,n:

L(j)=1+\max\{L(i):(i,j)\in E\}

retornar \max_j L(j)
```

- Isso é programação dinâmica: para resolvermos nosso problema original, definimos uma coleção de subproblemas $\{L(j): 1 \leq j \leq n\}$ com a seguinte propriedade-chave que permite que eles sejam resolvidos em uma única passada:
 - Existe uma ordenação para os subproblemas e uma relação que mostra como resolver um subproblema dadas as respostas para subproblemas "menores", ou seja, subproblemas que aparecem antes nesta ordenação.
- Neste exemplo, cada subproblema é resolvido usando uma expressão que envolve somente subproblemas menores:

$$L(j) = 1 + \max\{L(i) : (i, j) \in E\}$$

Grafo de uma rede de comunicação

Caminho de menor distância: 4 arestas

Caminho com menor chance de perda de dados: 2 arestas

Escolher o caminho mínimo, com restrição no número de arestas

• Suponha, então, que seja dado um grafo G com comprimentos nas arestas, juntamente com dois nós s e t e um inteiro k.

- Suponha, então, que seja dado um grafo G com comprimentos nas arestas, juntamente com dois nós s e t e um inteiro k.
- Deseja-se obter o caminho mínimo de s até t que use no máximo k arestas.

- Suponha, então, que seja dado um grafo G com comprimentos nas arestas, juntamente com dois nós s e t e um inteiro k.
- Deseja-se obter o caminho mínimo de s até t que use no máximo k arestas.
- Defini-se para cada vértice v e cada inteiro $i \leq k$, dist(v,i) como o comprimento do menor caminho de s até v que usa i arestas.

- Suponha, então, que seja dado um grafo G com comprimentos nas arestas, juntamente com dois nós s e t e um inteiro k.
- Deseja-se obter o caminho mínimo de s até t que use no máximo k arestas.
- Defini-se para cada vértice v e cada inteiro $i \leq k$, dist(v,i) como o comprimento do menor caminho de s até v que usa i arestas.
- Os valores inciais de dist(v,0) é ∞ para todos os vértices exceto s, para o qual é 0.

- Suponha, então, que seja dado um grafo G com comprimentos nas arestas, juntamente com dois nós s e t e um inteiro k.
- \bullet Deseja-se obter o caminho mínimo de s até t que use no máximo k arestas.
- Defini-se para cada vértice v e cada inteiro $i \leq k$, dist(v,i) como o comprimento do menor caminho de s até v que usa i arestas.
- Os valores inciais de dist(v,0) é ∞ para todos os vértices exceto s, para o qual é 0.
- A equação geral de atualização é:

$$\mathrm{dist}(v,i) \; = \; \min_{(u,v) \in E} \{ \mathrm{dist}(u,i-1) + \ell(u,v) \}$$

• Encontrar o caminho mínimo não apenas entre s e t, mas entre todos os pares de vértices.

- Encontrar o caminho mínimo não apenas entre s e t, mas entre todos os pares de vértices.
- Enumeram-se os vértices em V como $\{1, 2, ..., n\}$, e denota por dist(i, j, k) o comprimento do caminho mínimo de i até j no qual apenas os nós $\{1, 2, ..., k\}$ podem ser usados como nós intermediários.

- Encontrar o caminho mínimo não apenas entre s e t, mas entre todos os pares de vértices.
- Enumeram-se os vértices em V como $\{1, 2, ..., n\}$, e denota por dist(i, j, k) o comprimento do caminho mínimo de i até j no qual apenas os nós $\{1, 2, ..., k\}$ podem ser usados como nós intermediários.
- Inicialmente, dist(i,j,0) é o comprimento entre a aresta direcionada entre i e j, se ela existe, e é ∞ , caso contrário.

• Usar k nos dá um caminho menor de i até j se e somente se dist(i, k, k-1) + dist(k, j, k-1) < dist(i, j, k-1)

Programação Dinâmica Algoritmo de Floyd-Warshall

```
para i=1 até n:
  para j=1 até n:
  dist(i,j,0)=\infty

para todo (i,j)\in E:
  dist (i,j,0)=\ell(i,j)

para k=1 até n:
  para i=1 até n:
  para j=1 até n:
  dist(i,j,k)=\min\{\mathrm{dist}(i,k,k-1)+\mathrm{dist}(k,j,k-1),\mathrm{dist}(i,j,k-1)\}
```


• Um caixeiro-viajante está se preparando para uma grande jornada de vendas.

- Um caixeiro-viajante está se preparando para uma grande jornada de vendas.
- Começando em sua cidade natal, maleta em mãos, ele vai conduzir uma jornada na qual cada uma das suas cidades-alvo será visitada exatamente uma vez antes que retorne para casa.

- Um caixeiro-viajante está se preparando para uma grande jornada de vendas.
- Começando em sua cidade natal, maleta em mãos, ele vai conduzir uma jornada na qual cada uma das suas cidades-alvo será visitada exatamente uma vez antes que retorne para casa.
- Dadas as distâncias entre os pares de cidades, qual é a melhor ordem na qual visitá-las, para minimizar a distância total viajada?

• Subproblema associado:

Para um subconjunto de cidades $S \subseteq 1, 2, ..., n$ que inclui $1 e j \in S$, seja C(S, j) o comprimento do caminho, mínimo visitando cada nó em S exatamente uma vez, começaando em 1 e terminando em j.

• Subproblema associado:

Para um subconjunto de cidades $S \subseteq 1, 2, ..., n$ que inclui $1 e j \in S$, seja C(S, j) o comprimento do caminho, mínimo visitando cada nó em S exatamente uma vez, começaando em 1 e terminando em j.

• Quando |S| > 1, definimos $C(S,1) = \infty$, pois o caminho não pode começar e terminar em 1.

• Expressando C(S, j) em termos de subproblemas menores, precisamos começar em 1 e terminar em j.

- Expressando C(S, j) em termos de subproblemas menores, precisamos começar em 1 e terminar em j.
- A penúltima cidade a ser visitada tem de ser algum $i \in S$, tal que o comprimento total seja a distância de 1 até i, ou seja, C(S-j,i), mais o comprimento da aresta final, d_{ij} .

- Expressando C(S, j) em termos de subproblemas menores, precisamos começar em 1 e terminar em j.
- A penúltima cidade a ser visitada tem de ser algum $i \in S$, tal que o comprimento total seja a distância de 1 até i, ou seja, C(S-j,i), mais o comprimento da aresta final, d_{ij} .
- Temos de selecionar o melhor *i* tal que:

- Expressando C(S, j) em termos de subproblemas menores, precisamos começar em 1 e terminar em j.
- A penúltima cidade a ser visitada tem de ser algum $i \in S$, tal que o comprimento total seja a distância de 1 até i, ou seja, C(S-j,i), mais o comprimento da aresta final, d_{ij} .
- Temos de selecionar o melhor *i* tal que:

$$C(S, j) = \min_{i \in S: i \neq j} C(S - \{j\}, i) + d_{ij}$$

```
C(\{1\},1)=0 para s=2 até n:
    para todos os subconjuntos S\subseteq\{1,2,...,n\} de tamanho s e contendo 1:
    C(S,1)=\infty    para todo j\in S,\ j\neq 1:
    C(S,j)=\min\{C(S-\{j\},\ i)\ +\ d_{ij}\colon i\in S,\ i\neq j\} retornar \min_iC(\{1,...,n\},j)+d_{i1}
```

Programação Dinâmica Multiplicação de cadeias de matrizes

Programação Dinâmica Multiplicação de cadeias de matrizes

• Suponha que queiramos multiplicar quatro matrizes, $A \times B \times C \times D$, de dimensões 50×20 , 20×1 , 1×10 e 10×100 , respectivamente.

Programação Dinâmica Multiplicação de cadeias de matrizes

- Suponha que queiramos multiplicar quatro matrizes, $A \times B \times C \times D$, de dimensões 50×20 , 20×1 , 1×10 e 10×100 , respectivamente.
- Isso envolve multiplicar iterativamente duas matrizes por vez.

- Suponha que queiramos multiplicar quatro matrizes, $A \times B \times C \times D$, de dimensões 50×20 , 20×1 , 1×10 e 10×100 , respectivamente.
- Isso envolve multiplicar iterativamente duas matrizes por vez.
- Multiplicação de matrizes não é comutativa (em geral, $A \times B \neq B \times A$), mas associativa, o que significa, por exemplo, que:

- Suponha que queiramos multiplicar quatro matrizes, $A \times B \times C \times D$, de dimensões 50×20 , 20×1 , 1×10 e 10×100 , respectivamente.
- Isso envolve multiplicar iterativamente duas matrizes por vez.
- Multiplicação de matrizes não é comutativa (em geral, $A \times B \neq B \times A$), mas associativa, o que significa, por exemplo, que:

$$A \times (B \times C) = (A \times B) \times C)$$

- Suponha que queiramos multiplicar quatro matrizes, $A \times B \times C \times D$, de dimensões 50×20 , 20×1 , 1×10 e 10×100 , respectivamente.
- Isso envolve multiplicar iterativamente duas matrizes por vez.
- Multiplicação de matrizes não é comutativa (em geral, $A \times B \neq B \times A$), mas associativa, o que significa, por exemplo, que:

$$A \times (B \times C) = (A \times B) \times C)$$

 Portanto, podemos computar o nosso produto de quatro matrizes de muitas maneiras diferentes, dependendo de como organizamos os parênteses.

- Suponha que queiramos multiplicar quatro matrizes, $A \times B \times C \times D$, de dimensões 50×20 , 20×1 , 1×10 e 10×100 , respectivamente.
- Isso envolve multiplicar iterativamente duas matrizes por vez.
- Multiplicação de matrizes não é comutativa (em geral, $A \times B \neq B \times A$), mas associativa, o que significa, por exemplo, que:

$$A \times (B \times C) = (A \times B) \times C)$$

- Portanto, podemos computar o nosso produto de quatro matrizes de muitas maneiras diferentes, dependendo de como organizamos os parênteses.
- Será que algumas dessas maneiras são melhores do que outras?

• Multiplicar uma matriz $m \times n$ por uma matriz $n \times p$ toma mnp multiplicações, em uma aproximação suficiente.

- Multiplicar uma matriz $m \times n$ por uma matriz $n \times p$ toma mnp multiplicações, em uma aproximação suficiente.
- Usando essa fórmula, vamos comparar várias maneiras diferentes de avaliar $A \times B \times C \times D$:

- Multiplicar uma matriz $m \times n$ por uma matriz $n \times p$ toma mnp multiplicações, em uma aproximação suficiente.
- Usando essa fórmula, vamos comparar várias maneiras diferentes de avaliar $A \times B \times C \times D$:

Organização de parênteses	Computação do custo	Custo
$A \times ((B \times C) \times D)$	20 · 1 · 10 + 20 · 10 · 100 + 50 · 20 · 100	120.200
$(A \times (B \times C)) \times D$	$20 \cdot 1 \cdot 10 + 50 \cdot 20 \cdot 10 + 50 \cdot 10 \cdot 100$	60.200
$(A \times B) \times (C \times D)$	$50 \cdot 20 \cdot 1 + 1 \cdot 10 \cdot 100 + 50 \cdot 1 \cdot 100$	7.000

- Multiplicar uma matriz $m \times n$ por uma matriz $n \times p$ toma mnp multiplicações, em uma aproximação suficiente.
- Usando essa fórmula, vamos comparar várias maneiras diferentes de avaliar $A \times B \times C \times D$:

Organização de parênteses	Computação do custo	Custo
$A \times ((B \times C) \times D)$	20 · 1 · 10 + 20 · 10 · 100 + 50 · 20 · 100	120.200
$(A \times (B \times C)) \times D$	20 · 1 · 10 + 50 · 20 · 10 + 50 · 10 · 100	60.200
$(A \times B) \times (C \times D)$	$50 \cdot 20 \cdot 1 + 1 \cdot 10 \cdot 100 + 50 \cdot 1 \cdot 100$	7.000

• Como determinar a ordem ótima para computar $A_1 \times A_2 \times \cdots \times A_n$, onde os A_i são matrizes com dimensões $m_0 \times m_1, m_1 \times m_2, ..., m_{n-1} \times m_n$, respectivamente?

• As possíveis ordens, nas quais fazer a multiplicaçãoo, correspondem às várias árvores binárias cheias com n folhas.

- As possíveis ordens, nas quais fazer a multiplicaçãoo, correspondem às várias árvores binárias cheias com n folhas.
- Para uma árvore ser ótima, suas sub-árvores também têm de ser ótimas.

- As possíveis ordens, nas quais fazer a multiplicação o, correspondem às várias árvores binárias cheias com n folhas.
- Para uma árvore ser ótima, suas sub-árvores também têm de ser ótimas.
- \bullet Os sub-problemas correspondentes às sub-árvores são produtos da forma $A_i\times A_{i+1}\times \cdots \times A_j$

- As possíveis ordens, nas quais fazer a multiplicaçãoo, correspondem às várias árvores binárias cheias com n folhas.
- Para uma árvore ser ótima, suas sub-árvores também têm de ser ótimas.
- \bullet Os sub-problemas correspondentes às sub-árvores são produtos da forma $A_i\times A_{i+1}\times \cdots \times A_j$
- Defini-se:

- As possíveis ordens, nas quais fazer a multiplicaçãoo, correspondem às várias árvores binárias cheias com n folhas.
- Para uma árvore ser ótima, suas sub-árvores também têm de ser ótimas.
- \bullet Os sub-problemas correspondentes às sub-árvores são produtos da forma $A_i\times A_{i+1}\times \cdots \times A_j$
- Defini-se:

$$C(i,j) = \text{custo mínimo de multiplicar } A_i \times A_{i+1} \times \cdots \times A_j$$

• A primeira coisa a notar é que uma particular organização de parênteses pode ser representada muito naturalmente por uma árvore binária na qual as matrizes individuais correspondem a folhas, a raiz é o produto final e nós interiores são produtos intermediários:

 A primeira coisa a notar é que uma particular organização de parênteses pode ser representada muito naturalmente por uma árvore binária na qual as matrizes individuais correspondem a folhas, a raiz é o produto final e nós interiores são produtos intermediários:

Figure 6.7 (a) $((A \times B) \times C) \times D$; (b) $A \times ((B \times C) \times D)$; (c) $(A \times (B \times C)) \times D$.

- O tamanho desse subproblema é o número de multiplicações de matrizes, |j-i|.
- O menor subproblema é quando i = j, caso em que não há nada a multiplicar, portanto C(i, j) = 0.

- \bullet O tamanho desse subproblema é o número de multiplicações de matrizes, |j-i|.
- O menor subproblema é quando i=j, caso em que não há nada a multiplicar, portanto C(i,j)=0.

- O tamanho desse subproblema é o número de multiplicações de matrizes, |j-i|.
- O menor subproblema é quando i = j, caso em que não há nada a multiplicar, portanto C(i, j) = 0.
- Para j > i, considere a subárvore ótima para C(i, j).

- O tamanho desse subproblema é o número de multiplicações de matrizes, |j-i|.
- O menor subproblema é quando i=j, caso em que não há nada a multiplicar, portanto C(i,j)=0.
- Para j > i, considere a subárvore ótima para C(i, j).
- A primeira ramificação nessa subárvore, aquela no topo, vai dividir o produto em duas partes:
- \bullet da forma $A_i \cdots \times A_k$ e $A_{k+1} \cdots \times A_j$, para algum k entre i e j.

- O tamanho desse subproblema é o número de multiplicações de matrizes, |j-i|.
- O menor subproblema é quando i = j, caso em que não há nada a multiplicar, portanto C(i, j) = 0.
- Para j > i, considere a subárvore ótima para C(i, j).
- A primeira ramificação nessa subárvore, aquela no topo, vai dividir o produto em duas partes:
- \bullet da forma $A_i \cdots \times A_k$ e $A_{k+1} \cdots \times A_j$, para algum k entre i e j.
- O custo da subárvore é, então, o custo destes dois produtos parciais, mais o custo de combiná-los:
- $C(i,k) + C(k+1,j) + m_i \cdot m_k \cdot m_j .$

 E precisamos apenas encontrar o ponto de divisão k para o qual isso é mínimo:

 E precisamos apenas encontrar o ponto de divisão k para o qual isso é mínimo:

$$C(i,j) = \min_{i \le k < j} \{ C(i,k) + C(k+1,j) + m_{i-1} \cdot m_k \cdot m_j \}$$

 \bullet E precisamos apenas encontrar o ponto de divisão k para o qual isso é mínimo:

$$C(i,j) = \min_{i \leq k < j} \left\{ C(i,k) + C(k+1,j) + m_{i-1} \cdot m_k \cdot m_j \right\}$$

• Algorimo:

```
para i=1 até n: C(i,i)=0 para s=1 até n-1: para i=1 até n-s: j=i+s \\ C(i,j)=\min\{C(i,k)+C(k+1,j)+m_{i-1}\cdot m_k\cdot m_j\colon i\leq k< j\} retornar C(1,n)
```