Index of definitions of the more important symbols

A	coefficient of n^4 in dispersion relation for cold	
	magnetoplasma	78
	(also used with other meanings)	
A_i	•	
3	quantities used in S_{ij}	190
	(also used with other meanings)	
A	2 × 2 admittance matrix	302
A_{ii} $(i, j = 1, 2)$	elements of A	303
A, A_{ii}	used with different meanings in §13.6.	371
a	half thickness of parabolic layer	332, 456
	(also used with other meanings)	ŕ
$a_1,\ldots,a_6,$	3.7	
$\bar{a}_1,\ldots,\bar{a}_6$	quantities used in elements of S and S^{-1}	190, 191
В	magnetic induction of earth's magnetic field	23, 45
	(used with different meanings in §§1.1, 13.6)	
В	coefficient of $-2n^2$ in dispersion relation for cold	
	magnetoplasma	78
	(also used with other meanings)	
В	4 × 4 matrix whose trailing diagonal elements are unity	184
b	(real) magnetic induction	25
\boldsymbol{C}	$\cos \theta$, cosine of angle of incidence	142
	coefficient of n^0 in dispersion relation for cold	
	magnetoplasma	78
C	cylinder function; solution of Bessel's equation	598
$\mathscr{C}_p(S)$	& integrals	59
c	speed of light in a vacuum	22
	(also used with other meanings)	

D	dispersion of a whistler	378
	function used in a_1, \ldots, a_6	190
	function used in dispersion relation	403
	horizontal range	342
	(also used with other meanings)	
$D_{\mathbf{G}}$	horizontal range measured over earth's curved surface	349
D	4 × 4 diagonal matrix	506
D	complex electric displacement in wave with harmonic	
	time dependence	26, 29
	(also used as 2×2 matrix)	
D_x , D_y , D_z	components of electric displacement D	26, 28
D	Schwarzian derivative	176
d	(real) electric displacement	25
	(also used with other meanings)	
E	complex electric intensity in wave with harmonic time	
	dependence	26
E_x , E_y , E_z	components of E (also used with superscripts)	26
E	magnitude of E	26
	short for E_{ν}	457
E_1, E_2, E_3	contravariant components of E in complex principal axes	51
1, 2, 3	(used with other meanings in §§14.13-14.14).	
8	eikonal function	402
e	exponential	
e	charge on electron (a negative number)	39, 46
e	(real) electric intensity	23
e	column matrix with elements E_x , $-E_y$, \mathcal{H}_x , \mathcal{H}_y	162, 182
F(q)	left side of Booker quartic equation	144
F	function used in equation of ray surface	410
-	(also used to denote other functions)	
$F_{1}, F_{2},$	(and asked to deficit other functions)	
	$F_1 = (q_1 - q_2)(q_1 - q_3)(q_1 - q_4)$ etc.	191
F _H	proton gyro-frequency	383
$\mathcal{F}_{0}, \mathcal{F}_{E}, \mathcal{F}$	field variables in Försterling's equations	
$\mathcal{F}_0, \mathcal{F}_E, \mathcal{F}$	<u> </u>	510, 597
J	frequency (also used with other meanings)	39
$f_{\mathbf{c}}$	critical coupling frequency	496
$f_{ m cr}$	crossover frequency	
$f_{ m crs}$	f_{cr} at satellite	383
		384
f_H, f_{He}	gyro-frequency for electrons	46, 54
f_{Hi}	gyro-frequency for ions of species i	55

	1 1-1-1-1	
$f_{\mathbf{L}}$	lower hybrid frequency	57 20, 55
f_N, f_{Ne}	plasma frequency for electrons	39, 55
f_{Ni}	plasma frequency for ions of species i	55
$f_{\mathbf{p}}$	penetration frequency (also used with superscripts)	332, 357
$f_{\mathbf{R}}$	value of f_N where reflection occurs	360
f_{s}	with various superscripts: transition frequencies of the	266
	plasma near a satellite	366
$f_{\rm U}$	$(f_N^2 + f_H^2)^{\frac{1}{2}}$; upper hybrid resonance frequency	54
f	column matrix with four elements	163, 188
f_1 , f_2 , f_3 , f_4	elements of f; amplitudes of the four characteristic waves	163, 188
G	$\frac{1}{2}(\varepsilon_1 + \varepsilon_2) - \varepsilon_3$	52
	function used in dispersion relation	408
	(also used with other meanings)	
\mathfrak{G}	$\varepsilon_3(\varepsilon_1-\varepsilon_2)/\{\varepsilon_1\varepsilon_2-\frac{1}{2}\varepsilon_3(\varepsilon_1+\varepsilon_2)\}$	383
Н	scale height of atmosphere	7
	rate of heating of unit volume of plasma	396
H	complex magnetic intensity in wave with harmonic time	
	dependence	26
H_x, H_y, H_z	components of <i>H</i>	28
H	Z_0H , alternative measure of magnetic intensity	31
$\mathscr{H}_{x},\mathscr{H}_{y},$	· ·	
\mathscr{H}_z	components of \mathcal{H}	31
h, h(f)	phase height	329
h_0	height of base of ionosphere	331
h', h'(f)	equivalent (or group) height of reflection	329, 359
•, •• (,) /	also used with subscripts, O for ordinary or X for	, , ,
	extraordinary	362
h	(real) magnetic intensity	23
	$\sqrt{(-1)}$	23
į	integer label to indicate species of positive ion	55
	unit vectors parallel to x , y , z axes respectively	28
i, j, k		52
J	$\frac{1}{2}\varepsilon_3(\varepsilon_1+\varepsilon_2)-\varepsilon_1\varepsilon_2$	32
.	(also used with other meanings)	
$J_{ij}(i,j)$	2 2 4 4 4 4 4	415
=x, y, z	3 × 3 tensor	415
i 	(real) current density	24
K	Boltzmann's constant	7, 45
	(also used with other meanings)	
$K_{ij}(i,j)$		
=x, y, z	3×3 tensor	415

k	$\omega/c = 2\pi f/c$. Propagation constant in a vacuum	29
k_0	predominant value of k in wave packet	258
k_{p}	value of k at the penetration frequency	465
l_D	Debye length	45
l_x , l_y , l_z	direction cosines of Y, antiparallel to the earth's magnetic	
•	field	144
	(also used for components of other unit vectors <i>I</i>)	
l .	unit vector in direction of wave normal	36
M	effective refractive index	446
М	4 × 4 matrizant	558
M	3 × 3 susceptibility matrix of magnetoplasma with ele-	
	ments $M_{ij}(i, j = x, y, z)$	50
M	$n\cos\alpha$; ray refractive index	111
m	mass of electron	39
m_i	mass of ion of species i	55
N, N_{e}	concentration of electrons	23, 55
N_{m}	N at maximum of ionospheric layer	9
N_i	concentration of ions of species i	55
•	(N alone or with various subscripts is also used with other	
	meanings)	
\mathcal{N}_{0}	power per unit solid angle in ray pencil	280
n	refractive index (in general complex)	29, 66
$n_{\rm O}, n_{\rm E}$	n for ordinary and extraordinary wave, respectively	80, 81
n	refractive index vector (in general complex)	78, 103
n _i	Cartesian components of n	70, 102
1	(i = x, y, z)	78
	$(i = \xi, \eta, \zeta)$	103
	(n is also used with other subscripts, and with superscripts,	102
	for the refractive index in specified conditions)	
n'	$\partial (fn)/\partial f$; group refractive index (in general complex)	131
O(x)		131
D	quantity such that $\lim_{x\to 0} \{O(x)/x\}$ is bounded complex electric polarisation in wave with harmonic time	
P	dependence	26
D D D	-	46
P_x , P_y , P_z P_1 , P_2 , P_3	Cartesian components of P contravariant components of P in complex principal axes	52
г ₁ , г ₂ , г ₃ Р	phase path (usually for oblique incidence)	278
r P'	equivalent path (usually for oblique incidence)	278 278
p p	(real) electric polarisation	278
	· · · · · · · · · · · · · · · · · · ·	
p	gradient of X in linear model of ionosphere	262, 439

Q	4×4 diagonal matrix whose 4 elements are solutions q of	
	Booker quartic	183
Q	average thermal energy per electron in plasma	396
	effective value of q	446
q	solution of Booker quartic equation	143
q_i	(i = 1, 2, 3, 4) the four values of q	183
$q_0, q_1, \ldots,$		
q_m, \dots	values of q in successive strata	172
	(q alone, or with subscripts, is also used with other	
	meanings)	
R	reflection coefficient	194
$R_0, R_1 \ldots,$		
R_D	values of R in specified conditions	296, 297
R	2 × 2 reflection coefficient matrix (also used with sub-	
	scripts 0, c)	299
	(also used with other meanings)	
R	2×2 reflection matrix for ordinary and extraordinary	
	component waves	573
R_{ii}	(i, j = 1, 2) elements of R for linearly polarised fields	298
•	$(i, j = 1, r)$ elements of R_0 for circularly polarised fields	301
	$(i, j = 0, E)$ elements of R_c for ordinary and extraordinary	
	waves	310
r	average displacement of an electron	39
r	radius from centre of earth	260
	(also used to denote an integer, and with other meanings)	
S	$\sin \theta$, sine of angle of incidence	146, 342
S_A, S_B, S_C	transition values of $\sin \theta$	156
$S_{\mathbf{R}}$	square root in Appleton-Lassen formula	88
S_1, S_2	x and y direction cosines of wave normal of incident wave	
	in free space	142
S_{10}, S_{20}	predominant values of S_1 , S_2 in wave packet	257, 258
S	4 × 4 matrix of eigen columns of T	162, 183
S_{ij}	(i, j = 1, 2, 3, 4) elements of S	190, 192
\mathscr{G}	energy per unit volume in a plasma	33
$\mathscr{S}_{\mathtt{E}},\mathscr{S}_{\mathtt{M}}$	electric and magnetic parts, respectively, of $\mathscr S$	32
	solutions of Stokes equation	444
S	distance along ray path	409
	kz; height measured in units of $\lambda/2\pi$	516
	(also used with other meanings)	

\mathbf{s}_i	(i = 1, 2, 3, 4) eigen column of T	183
T	temperature	7, 58
	time of travel of wave along a ray	378
	transmission coefficient	297
	(also used with other meanings)	
$T_0, T_1, \ldots,$		
T_m, \ldots	values of transmission coefficient T in discrete strata	172, 173
T	2 × 2 transmission coefficient matrix	299
$T_{ij}(i,j=1,2)$	elements of T	299
Т	4×4 matrix in basic equations (7.80)	182
$T_{ij}(i,j=1,$	-	
2, 3, 4)	elements of T	182
T	Γ^{T} is transpose of any matrix Γ	183
t	time	25
	(also used with other meanings)	
$oldsymbol{U}$	2 × 2 unitary matrix	300
	(also used with other meanings)	
U	4 × 4 transforming matrix	486
U	1-iZ for electrons	44
U_e, U_i	U for electrons and for ions of species i respectively	55
U	3 × 3 unitary matrix	51
	group velocity vector	130
U	magnitude of group velocity	130
\mathcal{U}_z	component of group velocity parallel to wave normal	129, 130
u	$\frac{1}{2}mv^2/KT$ for electrons	58
	(also used with other meanings)	
V	ordered part of electron's velocity	10
	ray velocity vector	111
$V_{\varepsilon}, V_{n}, V_{\varepsilon};$	•	
V_x , V_y , V_z	components of ray velocity V	112, 410
V	ray velocity c/\mathcal{M} ; magnitude of V	111
	volume	33
	(also used with other meanings)	
V	4 × 4 transforming matrix	526
v	speed of an electron	11, 57
	wave velocity	111
	(also used with other meanings)	
W	(also used with other meanings) bilinear concomitant (stratified medium)	184, 185

W	bilinear concomitant vector	427
X	$Ne^2/(\varepsilon_0 m\omega^2)$	39
X_{e}, X_{i}	X for electrons and ions of species i respectively	54, 55
X_{∞}	value of X where one value of n or q is infinite	79, 149
X	Cartesian coordinate	28, 29, 141
Y	$eB/(m\omega)$ (antiparallel to earth's magnetic induction B)	49
Y	magnitude of Y	49
$Y_{\rm e}, Y_{i}, Y_{\rm e}, Y_{i}$	Y, Y for electrons and ions of species i respectively	54, 55
y	Cartesian coordinate	28, 29, 141
Z	v/ω for electrons	44
$Z_{\rm e},Z_i$	Z for electrons and for ions of species i respectively	55
$Z_{\rm t}$	transition value of Z	71
Z_0	$(\mu_0/\varepsilon_0)^{\frac{1}{2}}$; characteristic impedance of a vacuum	31
z	Cartesian coordinate (height in stratified medium)	28, 29, 141
z_0	level of reflection; (complex) value of height z where $n = 0$	0 195, 262,
	or $q = 0$; 'true' height of reflection	329
z_p, z_q	(complex) values of height z at coupling points	387,
		520-2
$z_{\rm m}$	height of maximum N in ionospheric layer	9, 332
α	coefficient of q^4 in Booker quartic	145
	coefficient of z in exponent, for exponential height distri-	-
	bution	331
	angle between wave normal and ray	110
	$\frac{1}{2}(q_1+q_2)$	486
	(also used with other meanings)	
β	coefficient of q^3 in Booker quartic	145
	angle between ray and Y	110
	$\frac{1}{2}(q_1-q_2)$	486
	(also used with other meanings)	
Γ	4 × 4 coupling matrix	188
Γ_{ij}	$(i, j = 1, 2, 3, 4)$ elements of Γ	482
γ	coefficient of q^2 in Booker quartic	145
Δ	discriminant of Booker quartic equation	152
	(also used with other meanings)	
δ	coefficient of q in Booker quartic	145
	(also used to indicate arbitrarily small quantity)	
3	3×3 electric relative permittivity tensor o	
	magnetoplasma	33
ε_{ii}	$(i, j = x, y, z)$ elements of ε	33

$ε_1$, $ε_2$, $ε_3$ diagonal elements of ε in complex principal axes $ε_a$, $ε_b$, $ε_c$ real elements of diagonalised ε for biaxial crystal $ε_0$ permittivity of a vacuum $ε$ relative electric permittivity; n^2 for isotropic plasma coefficient of q^0 in Booker quartic $ξ$ Cartesian coordinate, parallel to Y scaled value of height z (the method of scaling depends on the problem) 9 , 2 332, 4 4 (also used with other meanings) $η$ Cartesian coordinate, perpendicular to wave normal and to earth's magnetic field $η_1$, $η_2$, $η_3$ parameters in Epstein theory 9 angle between wave normal and the vector Y 9 angle between wave normal and the vector Y 9 value of 9 where one refractive index is infinite (resonance) 9 value of 9 at Storey cone 9 9 angle of incidence; angle between wave normal and vertical in reference free space (also used with other meanings) 9 angle of incidence; angle between wave normal and vertical in reference free space (also used with other meanings) 9 9 angle of incidence; angle between wave normal and vertical in reference free space 9 9 9 9 9 9 9 9 9 9			
$ε_{a}$, $ε_{b}$, $ε_{c}$ real elements of diagonalised ε for biaxial crystal $ε_{0}$ permittivity of a vacuum $ε$ relative electric permittivity; n^{2} for isotropic plasma coefficient of q^{0} in Booker quartic $ζ$ Cartesian coordinate, parallel to Y scaled value of height z (the method of scaling depends on the problem) $η$ Cartesian coordinate, perpendicular to wave normal and to earth's magnetic field $η_{1}$, $η_{2}$, $η_{3}$ parameters in Epstein theory $Θ$ angle between wave normal and the vector Y $Θ_{r}$ value of $Θ$ where one refractive index is infinite (resonance) $Θ_{s}$ value of $Θ$ where one refractive index is infinite (resonance) $Θ_{s}$ value of $Θ$ at Storey cone $Θ_{t}$ transition value of $Θ$ $(Θ$ alone or with subscripts is also used with other meanings) $Φ$ angle of incidence; angle between wave normal and vertical in reference free space (also used with other meanings) $κ$ $κ_{t}$ $(i = x, y, z \text{ or } ξ, η, ζ)$ components of $κ$ $κ_{t}$ $(i = x, y, z \text{ or } ξ, η, ζ)$ components of $κ$ $λ_{t}$ wavelength in free space c/f $λ_{t}$ wavelength in free space c/f $λ_{t}$ real part of refractive index $μ_{θ}$ magnetic permeability of a vacuum $μ_{θ}$ magnetic permeability of a vacuum $ν_{eff}$ effective collision frequency for electron with speed v v_{eff} effective collision frequency for electrons $ξ$ Cartesian coordinate (coplanar with wave normal and earth's magnetic field)	ε_{ijk}	(i, j = x, y, z) isotropic tensor or rank three	415
$ε_a$, $ε_b$, $ε_c$ real elements of diagonalised ε for biaxial crystal $ε_0$ permittivity of a vacuum $ε$ relative electric permittivity; n^2 for isotropic plasma coefficient of q^0 in Booker quartic $ζ$ Cartesian coordinate, parallel to Y scaled value of height z (the method of scaling depends on the problem) $η$ Cartesian coordinate, perpendicular to wave normal and to earth's magnetic field $η_1$, $η_2$, $η_3$ parameters in Epstein theory $Θ$ angle between wave normal and the vector Y $Θ_r$ value of $Θ$ where one refractive index is infinite (resonance) $Θ_s$ value of $Θ$ where one refractive index is infinite (resonance) $Θ_s$ value of $Θ$ at Storey cone $Θ_1$ transition value of $Θ$ $(Θ$ alone or with subscripts is also used with other meanings) $Φ$ angle of incidence; angle between wave normal and vertical in reference free space (also used with other meanings) $κ$ $κ_n$ $κ$	$\varepsilon_1, \varepsilon_2, \varepsilon_3$	diagonal elements of ε in complex principal axes	52
relative electric permittivity; n^2 for isotropic plasma coefficient of q^0 in Booker quartic Cartesian coordinate, parallel to Y scaled value of height z (the method of scaling depends on the problem) 9, 2 332, 44 (also used with other meanings) η Cartesian coordinate, perpendicular to wave normal and to earth's magnetic field η_1, η_2, η_3 parameters in Epstein theory Θ angle between wave normal and the vector Y Θ_r value of Θ where one refractive index is infinite (resonance) Θ_s value of Θ at Storey cone Θ_t transition value of Θ (Θ alone or with subscripts is also used with other meanings) θ angle of incidence; angle between wave normal and vertical in reference free space (also used with subscripts to indicate specified conditions, and with other meanings) κ κ_t κ_t ($i = x, y, z$ or ξ, η, ξ) components of κ κ_t ($i = x, y, z$ or ξ, η, ξ) components of κ λ wavelength in free space c/f λ_e mean free path of electron 11, $\lambda_1, \lambda_2, \lambda_3$ Stokes multipliers μ real part of refractive index μ_0 magnetic permeability of a vacuum $\nu_t \nu(v)$ average collision frequency for electrons with speed v $v_{\rm eff}$ effective collision frequency for electrons ξ Cartesian coordinate (coplanar with wave normal and earth's magnetic field)		real elements of diagonalised ε for biaxial crystal	113
coefficient of q^0 in Booker quartic Cartesian coordinate, parallel to Y scaled value of height z (the method of scaling depends on the problem) 9, 2 332, 44 (also used with other meanings) η Cartesian coordinate, perpendicular to wave normal and to earth's magnetic field η_1, η_2, η_3 parameters in Epstein theory Θ angle between wave normal and the vector Y Θ_r value of Θ where one refractive index is infinite (resonance) Θ_s value of Θ at Storey cone Θ_t transition value of Θ (Θ alone or with subscripts is also used with other meanings) θ angle of incidence; angle between wave normal and vertical in reference free space (also used with subscripts to indicate specified conditions, and with other meanings) \mathbf{k} kn , $\omega n/c$ wave propagation vector, magnitude κ κ_i ($i = x, y, z$ or ξ , η , ζ) components of κ λ wavelength in free space c/f λ_e mean free path of electron $\lambda_1, \lambda_2, \lambda_3$ Stokes multipliers μ real part of refractive index μ_0 magnetic permeability of a vacuum $\nu_v \nu(v)$ average collision frequency for electrons where ν_v short for ν_{eff} effective collision frequency for electrons ν short for ν_{eff} effective collision frequency for electrons ν average collision frequency for electrons ν cartesian coordinate (coplanar with wave normal and earth's magnetic field)			22
Cartesian coordinate, parallel to Y scaled value of height z (the method of scaling depends on the problem) 9, 2 332, 4 (also used with other meanings) $η$ Cartesian coordinate, perpendicular to wave normal and to earth's magnetic field $η_1, η_2, η_3$ parameters in Epstein theory $Θ$ angle between wave normal and the vector Y $Θ_r$ value of $Θ$ where one refractive index is infinite (resonance) $Θ_s$ value of $Θ$ at Storey cone $Θ_t$ transition value of $Θ$ ($Θ$ alone or with subscripts is also used with other meanings) $θ$ angle of incidence; angle between wave normal and vertical in reference free space (also used with subscripts to indicate specified conditions, and with other meanings) $κ$ $κ_n, ωn/c$ wave propagation vector, magnitude $κ$ $κ_i$ ($i = x, y, z$ or $ξ, η, ζ$) components of $κ$ $λ$ wavelength in free space c/f $λ_e$ mean free path of electron $λ_1, λ_2, λ_3$ Stokes multipliers $μ$ real part of refractive index $μ_0$ magnetic permeability of a vacuum $ν, ν(v)$ average collision frequency for electrons whore for $ν_{eff}$ effective collision frequency for electrons $ν$ short for $ν_{eff}$ effective collision frequency for electrons $ζ$ Cartesian coordinate (coplanar with wave normal and earth's magnetic field)	ε	relative electric permittivity; n ² for isotropic plasma	29
Cartesian coordinate, parallel to Y scaled value of height z (the method of scaling depends on the problem) 9, 2 332, 4 (also used with other meanings) $η$ Cartesian coordinate, perpendicular to wave normal and to earth's magnetic field $η_1, η_2, η_3$ parameters in Epstein theory $Θ$ angle between wave normal and the vector Y $Θ_r$ value of $Θ$ where one refractive index is infinite (resonance) $Θ_s$ value of $Θ$ at Storey cone $Θ_t$ transition value of $Θ$ ($Θ$ alone or with subscripts is also used with other meanings) $θ$ angle of incidence; angle between wave normal and vertical in reference free space (also used with subscripts to indicate specified conditions, and with other meanings) $κ$ $κ_n, ωn/c$ wave propagation vector, magnitude $κ$ $κ_i$ ($i = x, y, z$ or $ξ, η, ζ$) components of $κ$ $λ$ wavelength in free space c/f $λ_e$ mean free path of electron $λ_1, λ_2, λ_3$ Stokes multipliers $μ$ real part of refractive index $μ_0$ magnetic permeability of a vacuum $ν, ν(v)$ average collision frequency for electrons whore for $ν_{eff}$ effective collision frequency for electrons $ν$ short for $ν_{eff}$ effective collision frequency for electrons $ζ$ Cartesian coordinate (coplanar with wave normal and earth's magnetic field)		coefficient of q^0 in Booker quartic	145
scaled value of height z (the method of scaling depends on the problem) 9, 2 332, 4 (also used with other meanings) η Cartesian coordinate, perpendicular to wave normal and to earth's magnetic field η_1, η_2, η_3 parameters in Epstein theory Θ angle between wave normal and the vector Y Θ_r value of Θ where one refractive index is infinite (resonance) Θ_s value of Θ at Storey cone Θ_t transition value of Θ (Θ alone or with subscripts is also used with other meanings) θ angle of incidence; angle between wave normal and vertical in reference free space (also used with subscripts to indicate specified conditions, and with other meanings) κ kn , om/c wave propagation vector, magnitude κ κ_i ($i=x,y,z$ or ξ,η,ξ) components of κ λ wavelength in free space c/f λ_e mean free path of electron $\lambda_1,\lambda_2,\lambda_3$ Stokes multipliers μ real part of refractive index μ_0 magnetic permeability of a vacuum $\nu_{\rm eff}$ effective collision frequency for electrons where $\nu_{\rm eff}$ effective collision frequency for electrons ν short for $\nu_{\rm eff}$ average collision frequency for electrons ν average collision frequency for electrons ν cartesian coordinate (coplanar with wave normal and earth's magnetic field)	ζ		103
the problem) (also used with other meanings) (b) (c) (angle between wave normal and the vector Y (d) (e) (e) (e) (e) (e) (e) (e)	-	· •	
(also used with other meanings) η Cartesian coordinate, perpendicular to wave normal and to earth's magnetic field η_1, η_2, η_3 parameters in Epstein theory Θ angle between wave normal and the vector Y Θ_r value of Θ where one refractive index is infinite (resonance) Θ_s value of Θ at Storey cone Θ_t transition value of Θ (Θ alone or with subscripts is also used with other meanings) θ angle of incidence; angle between wave normal and vertical in reference free space (also used with subscripts to indicate specified conditions, and with other meanings) \mathbf{k} kn , $\omega n/c$ wave propagation vector, magnitude κ ki ($i = x, y, z \text{ or } \xi, \eta, \zeta$) components of κ λ wavelength in free space c/f λ_e mean free path of electron $\lambda_1, \lambda_2, \lambda_3$ Stokes multipliers μ real part of refractive index μ_0 magnetic permeability of a vacuum v , $v(v)$ average collision frequency for electrons whort for v_{eff} effective collision frequency for electrons ξ Cartesian coordinate (coplanar with wave normal and earth's magnetic field)		· · · · · · · · · · · · · · · · · · ·	9, 200
(also used with other meanings) η Cartesian coordinate, perpendicular to wave normal and to earth's magnetic field η_1, η_2, η_3 parameters in Epstein theory Θ angle between wave normal and the vector Y Θ_r value of Θ where one refractive index is infinite (resonance) Θ_s value of Θ at Storey cone Θ_t transition value of Θ (Θ alone or with subscripts is also used with other meanings) θ angle of incidence; angle between wave normal and vertical in reference free space (also used with subscripts to indicate specified conditions, and with other meanings) \mathbf{k} kn , $\omega n/c$ wave propagation vector, magnitude κ k_i ($i = x, y, z \text{ or } \xi, \eta, \zeta$) components of \mathbf{k} λ wavelength in free space c/f λ_e mean free path of electron $\lambda_1, \lambda_2, \lambda_3$ Stokes multipliers μ real part of refractive index μ_0 magnetic permeability of a vacuum v , $v(v)$ average collision frequency for electrons whort for v_{eff} effective collision frequency for electrons ξ Cartesian coordinate (coplanar with wave normal and earth's magnetic field)		•	332, 440,
			457
		(also used with other meanings)	
to earth's magnetic field η_1, η_2, η_3 parameters in Epstein theory Θ angle between wave normal and the vector Y Θ_r value of Θ where one refractive index is infinite (resonance) Θ_s value of Θ at Storey cone Θ_t transition value of Θ (Θ alone or with subscripts is also used with other meanings) θ angle of incidence; angle between wave normal and vertical in reference free space (also used with subscripts to indicate specified conditions, and with other meanings) \mathbf{k} kn , $\omega n/c$ wave propagation vector, magnitude κ kn , $\omega n/c$ wave propagation vector, magnitude κ λ wavelength in free space c/f λ_e mean free path of electron $\lambda_1, \lambda_2, \lambda_3$ Stokes multipliers μ real part of refractive index μ_0 magnetic permeability of a vacuum ν , $\nu(v)$ average collision frequency for electron with speed ν $\nu_{\rm eff}$ effective collision frequency for electrons ν short for $\nu_{\rm eff}$ $\nu_{\rm av}$ average collision frequency for electrons ν cartesian coordinate (coplanar with wave normal and earth's magnetic field)	η		
η_1, η_2, η_3 parameters in Epstein theory Θ angle between wave normal and the vector Y Θ_r value of Θ where one refractive index is infinite (resonance) Θ_s value of Θ at Storey cone Θ_t transition value of Θ $(\Theta$ alone or with subscripts is also used with other meanings) θ angle of incidence; angle between wave normal and vertical in reference free space (also used with subscripts to indicate specified conditions, and with other meanings) \mathbf{k} $k\mathbf{n}$, $\omega\mathbf{n}/c$ wave propagation vector, magnitude κ is λ wavelength in free space c/f and wavelength in free space c/f are mean free path of electron $\lambda_1, \lambda_2, \lambda_3$ Stokes multipliers $\lambda_1, \lambda_2, \lambda_3$ Stokes frequency for electron with speed λ_2 effective collision frequency for electrons short for λ_1 average collision frequency for electrons $\lambda_1, \lambda_2, \lambda_3$ average collision frequency for electrons $\lambda_1, \lambda_2, \lambda_3$ cartesian coordinate (coplanar with wave normal and earth's magnetic field)			103
$\Theta \qquad \text{angle between wave normal and the vector } Y$ $\Theta_r \qquad \text{value of } \Theta \text{ where one refractive index is infinite} $ $(\text{resonance}) \qquad \text{index} $ $\Theta_s \qquad \text{value of } \Theta \text{ at Storey cone} $ $\Theta_t \qquad \text{transition value of } \Theta$ $(\Theta \text{ alone or with subscripts is also used with other meanings})}$ $\theta \qquad \text{angle of incidence; angle between wave normal and vertical in reference free space} \qquad 142, 3$ $(\text{also used with subscripts to indicate specified conditions, and with other meanings})}$ $\mathbf{k} \qquad k\mathbf{n}, \omega \mathbf{n}/c \text{ wave propagation vector, magnitude } \kappa \qquad 14$ $\lambda_i \qquad (i = x, y, z \text{ or } \xi, \eta, \zeta) \text{ components of } \kappa \qquad 14$ $\lambda_i \qquad \text{wavelength in free space } c/f \qquad 24$ $\lambda_e \qquad \text{mean free path of electron} \qquad 11,$ $\lambda_1, \lambda_2, \lambda_3 \qquad \text{Stokes multipliers} \qquad 24$ $\mu_0 \qquad \text{magnetic permeability of a vacuum}$ $\nu, \nu(v) \qquad \text{average collision frequency for electron with speed } v$ $v_{\text{eff}} \qquad \text{effective collision frequency for electrons}$ $\nu \qquad \text{short for } v_{\text{eff}}$ $\nu_{\text{av}} \qquad \text{average collision frequency for electrons}$ $\xi \qquad \text{Cartesian coordinate (coplanar with wave normal and earth's magnetic field)}$	η_1, η_2, η_3	-	470
Θ_r value of Θ where one refractive index is infinite (resonance)1 Θ_s value of Θ at Storey cone1 Θ_t transition value of Θ (Θ alone or with subscripts is also used with other meanings)142, 3 θ angle of incidence; angle between wave normal and vertical in reference free space (also used with subscripts to indicate specified conditions, and with other meanings)142, 3 κ kn , $\omega n/c$ wave propagation vector, magnitude κ 1 κ_i $(i=x, y, z \text{ or } \xi, \eta, \zeta)$ components of κ 1 λ wavelength in free space c/f 2 λ_e mean free path of electron11, $\lambda_1, \lambda_2, \lambda_3$ Stokes multipliers2 μ real part of refractive index2 μ_0 magnetic permeability of a vacuum2 v v(v)average collision frequency for electron with speed v v short for v_{eff} 2 v average collision frequency for electrons ξ Cartesian coordinate (coplanar with wave normal and earth's magnetic field)1	_		68
(resonance) Θ_s value of Θ at Storey cone Θ_t transition value of Θ (Θ alone or with subscripts is also used with other meanings) θ angle of incidence; angle between wave normal and vertical in reference free space (also used with subscripts to indicate specified conditions, and with other meanings) κ kn , $\omega n/c$ wave propagation vector, magnitude κ 1. κ_i ($i=x, y, z \text{ or } \xi, \eta, \zeta$) components of κ 1. λ wavelength in free space c/f 2. λ_e mean free path of electron 11, $\lambda_1, \lambda_2, \lambda_3$ Stokes multipliers 2. μ real part of refractive index magnetic permeability of a vacuum ν , $\nu(\nu)$ average collision frequency for electrons ν short for ν_{eff} effective collision frequency for electrons ξ Cartesian coordinate (coplanar with wave normal and earth's magnetic field) 1.	Θ,	•	
Θ_s value of Θ at Storey cone Θ_t transition value of Θ (Θ alone or with subscripts is also used with other meanings) θ angle of incidence; angle between wave normal and vertical in reference free space (also used with subscripts to indicate specified conditions, and with other meanings) \mathbf{k} $k\mathbf{n}$, $\omega\mathbf{n}/c$ wave propagation vector, magnitude κ 1. κ_i ($i=x,y,z$ or ξ,η,ζ) components of κ 1. λ wavelength in free space c/f 2. λ_e mean free path of electron 11, $\lambda_1,\lambda_2,\lambda_3$ Stokes multipliers 2. μ real part of refractive index 4. μ_0 magnetic permeability of a vacuum 2. $\nu_{\rm eff}$ effective collision frequency for electron with speed ν 2. $\nu_{\rm eff}$ effective collision frequency for electrons 3. ν short for $\nu_{\rm eff}$ average collision frequency for electrons 4. $\nu_{\rm av}$ average collision frequency for electrons 5. $\nu_{\rm av}$ average collision frequency for electrons 5. $\nu_{\rm av}$ average collision frequency for electrons 6. $\nu_{\rm av}$ average collision frequency for electrons 8. $\nu_{\rm av}$ average collision frequency for electrons 9. $\nu_{\rm av}$ average collision frequency for electrons 9.	•		105
$\Theta_{\rm t}$ transition value of Θ (Θ alone or with subscripts is also used with other meanings) θ angle of incidence; angle between wave normal and vertical in reference free space (also used with subscripts to indicate specified conditions, and with other meanings) \mathbf{k} $k\mathbf{n}$, $\omega\mathbf{n}/c$ wave propagation vector, magnitude κ 1. λ_i ($i=x,y,z$ or ξ,η,ζ) components of \mathbf{k} 2. λ_e mean free path of electron 11, $\lambda_1,\lambda_2,\lambda_3$ Stokes multipliers 2. μ real part of refractive index μ_0 magnetic permeability of a vacuum $\nu,\nu(v)$ average collision frequency for electron with speed ν veff effective collision frequency for electrons ν short for $\nu_{\rm eff}$ average collision frequency, for electrons ξ Cartesian coordinate (coplanar with wave normal and earth's magnetic field) 1.	Θ_{ϵ}		106
(Θ alone or with subscripts is also used with other meanings) angle of incidence; angle between wave normal and vertical in reference free space (also used with subscripts to indicate specified conditions, and with other meanings) \mathbf{k} \mathbf{k} \mathbf{n} , $\omega \mathbf{n}/c$ wave propagation vector, magnitude κ ($i = x, y, z$ or ξ, η, ζ) components of \mathbf{k} wavelength in free space c/f 2 λ_e mean free path of electron 11, $\lambda_1, \lambda_2, \lambda_3$ Stokes multipliers 2 μ real part of refractive index μ_0 magnetic permeability of a vacuum ν , $\nu(\nu)$ average collision frequency for electron with speed ν effective collision frequency for electrons ν short for $\nu_{\rm eff}$ effective collision frequency for electrons ν average collision frequency for electrons ν Cartesian coordinate (coplanar with wave normal and earth's magnetic field)	•		90
meanings) angle of incidence; angle between wave normal and vertical in reference free space (also used with subscripts to indicate specified conditions, and with other meanings) \mathbf{k} $k\mathbf{n}$, $\omega\mathbf{n}/c$ wave propagation vector, magnitude κ ($i=x,y,z$ or ξ,η,ζ) components of \mathbf{k} wavelength in free space c/f 2 λ_e mean free path of electron 11, $\lambda_1,\lambda_2,\lambda_3$ Stokes multipliers 2 μ real part of refractive index magnetic permeability of a vacuum $v,v(v)$ average collision frequency for electron with speed v effective collision frequency for electrons v short for v_{eff} average collision frequency for electrons v cartesian coordinate (coplanar with wave normal and earth's magnetic field)			, ,
angle of incidence; angle between wave normal and vertical in reference free space (also used with subscripts to indicate specified conditions, and with other meanings) \mathbf{k} $k\mathbf{n}$, $\omega\mathbf{n}/c$ wave propagation vector, magnitude κ ($i=x,y,z$ or ξ,η,ζ) components of \mathbf{k} wavelength in free space c/f 2 λ_e mean free path of electron 11, $\lambda_1,\lambda_2,\lambda_3$ Stokes multipliers 2 μ real part of refractive index magnetic permeability of a vacuum $v,v(v)$ average collision frequency for electron with speed v effective collision frequency for electrons v short for v_{eff} average collision frequency for electrons v Cartesian coordinate (coplanar with wave normal and earth's magnetic field) 1			
vertical in reference free space (also used with subscripts to indicate specified conditions, and with other meanings)	θ	· ·	
(also used with subscripts to indicate specified conditions, and with other meanings)			142, 342
and with other meanings) $kn, \omega n/c \text{ wave propagation vector, magnitude } \kappa \qquad 1$ $\kappa_i \qquad (i=x, y, z \text{ or } \xi, \eta, \zeta) \text{ components of } \kappa \qquad 1$ $\lambda \qquad \text{wavelength in free space } c/f \qquad 2$ $\lambda_e \qquad \text{mean free path of electron} \qquad 11,$ $\lambda_1, \lambda_2, \lambda_3 \qquad \text{Stokes multipliers} \qquad 2$ $\mu \qquad \text{real part of refractive index}$ $\mu_0 \qquad \text{magnetic permeability of a vacuum}$ $v, v(v) \qquad \text{average collision frequency for electron with speed } v$ $v_{\text{eff}} \qquad \text{effective collision frequency for electrons}$ $v \qquad \text{short for } v_{\text{eff}}$ $v_{\text{av}} \qquad \text{average collision frequency for electrons}$ $\xi \qquad \text{Cartesian coordinate (coplanar with wave normal and earth's magnetic field)}$		-	,
k k k k k k k k k k			
κ_i $(i=x, y, z \text{ or } \xi, \eta, \zeta)$ components of κ 1 λ wavelength in free space c/f 2 λ_e mean free path of electron 11, $\lambda_1, \lambda_2, \lambda_3$ Stokes multipliers 2 μ real part of refractive index μ_0 magnetic permeability of a vacuum $v, v(v)$ average collision frequency for electron with speed v v_{eff} effective collision frequency for electrons v short for v_{eff} v_{av} average collision frequency for electrons ξ Cartesian coordinate (coplanar with wave normal and earth's magnetic field) 1	K	.	130
$\begin{array}{llllllllllllllllllllllllllllllllllll$			130
$\lambda_{\rm e}$ mean free path of electron 11, $\lambda_1, \lambda_2, \lambda_3$ Stokes multipliers 2 μ real part of refractive index μ_0 magnetic permeability of a vacuum $v, v(v)$ average collision frequency for electron with speed v effective collision frequency for electrons v short for $v_{\rm eff}$ average collision frequency for electrons ξ Cartesian coordinate (coplanar with wave normal and earth's magnetic field) 1	•		289
$\lambda_1, \lambda_2, \lambda_3$ Stokes multipliers μ real part of refractive index μ_0 magnetic permeability of a vacuum $\nu, \nu(\nu)$ average collision frequency for electron with speed ν effective collision frequency for electrons ν short for $\nu_{\rm eff}$ $\nu_{\rm av}$ average collision frequency for electrons ξ Cartesian coordinate (coplanar with wave normal and earth's magnetic field)		- · · · · · · · · · · · · · · · · · · ·	11, 58
μ real part of refractive index μ_0 magnetic permeability of a vacuum $\nu, \nu(\nu)$ average collision frequency for electron with speed ν $\nu_{\rm eff}$ effective collision frequency for electrons ν short for $\nu_{\rm eff}$ $\nu_{\rm av}$ average collision frequency for electrons ξ Cartesian coordinate (coplanar with wave normal and earth's magnetic field)	-	-	212
μ_0 magnetic permeability of a vacuum $v, v(v)$ average collision frequency for electron with speed v effective collision frequency for electrons v short for $v_{\rm eff}$ average collision frequency for electrons ξ Cartesian coordinate (coplanar with wave normal and earth's magnetic field)			34
v , $v(v)$ average collision frequency for electron with speed v effective collision frequency for electrons v short for $v_{\rm eff}$ average collision frequency for electrons ξ Cartesian coordinate (coplanar with wave normal and earth's magnetic field)		_	22
$v_{\rm eff}$ effective collision frequency for electrons short for $v_{\rm eff}$ vav average collision frequency for electrons ξ Cartesian coordinate (coplanar with wave normal and earth's magnetic field)			10
v short for $v_{\rm eff}$ $v_{\rm av}$ average collision frequency for electrons ξ Cartesian coordinate (coplanar with wave normal and earth's magnetic field)			10
v_{av} average collision frequency for electrons ξ Cartesian coordinate (coplanar with wave normal and earth's magnetic field)		• •	43
ξ Cartesian coordinate (coplanar with wave normal and earth's magnetic field) 1	v_{av}		58
earth's magnetic field)			
	-	, -	103
		scaled value of height z	447

angular frequency where one refractive index is infinite

with one or two subscripts: transition values of ω or ω_N

 ω_{∞}

ω

127

124