Teorema Espectral (Real e Complexo)

Alexandre Fernandes

Operador Adjunto. Seja V um espaço vetorial de dimensão finita, munido de produto interno. Para cada operador linear $T: V \to V$, existe um único operador linear $T^*: V \to V$ tal que $\langle Tw, v \rangle = \langle w, T^*v \rangle$ para quaisquer $v, w \in V$.

O operador T^* é chamado de operador adjunto de T. Quando, $T = T^*$ dizemos que T é um operador auto-adjunto.

Observação. Seja V um espaço vetorial de dimensão finita, munido de produto interno. Seja $T:V\to V$ um operador auto-adjunto. Se $W\subset V$ é um subespaço invariante por T, então a restrição de T a W define um operador auto-adjunto sobre o subespaço W

Teorema 1 (Teorema Espectral - Caso Real). Seja V um espaço vetorial de dimensão finita sobre \mathbb{R} , munido de produto interno. $T:V\to V$ um operador auto-adjunto se, e somente se, existe uma base de V formada por autovetores de T, dois a dois ortogonais.

Proposição 2. Seja V espaço vetorial, não nulo, de dimensão finita sobre \mathbb{R} . Para cada operador linear $T:\to V$ existe um subespaço vetorial não nulo $W\subset V$ que é invariante por T e tem dimensão no máximo 2.

Demonstração. Seja P_T o polinômio característico de T. Podemos escrever $P_T = P_1 \cdots P_k$, em que cada P_i é irredutível em $\mathbb{R}[t]$. Como $P_T(T)$ é o operador nulo, para algum i, $P_i(T)$ não é injetivo. Isto é, existe $v \neq 0$ tal que $P_i(T)v = 0$. Temos que $P_i(t) = t^2 + at + b$ ou $P_i(t) = t + c$. Daí, concluímos que o subespaço W de V gerado por v e Tv é invariante por T e tem dimensão no máximo 2.

Proposição 3. Seja V um espaço vetorial de dimensão finita, munido de produto interno. Seja $T: V \to V$ um operador auto-adjunto. Se $W \subset V$ é um subespaço invariante por T, então W^{\perp} é invariante por T.

Prova do Teorema Espectral - Caso Real. É fácil ver que o teorema vale para os casos em que $\dim(V) = 1$ ou $\dim(V) = 2$. Então, seja $\dim(V) = n$ maior

do que 2 e suponhamos que o teorema valha para espaços de dimensão < n. Seja W subespaço (não nulo) de V que é invariante por T e tem dimensão no máximo 2. Nesse caso, W^{\perp} é subespaço (não nulo) de V que é invariante por T e tem dimensão no máximo n-1. Como as restric cões de T a W e a W^{\perp} definem operadores auto-adjuntos, por hipótese de indução, temos bases β_1 de W e β_2 de W^{\perp} formadas por autovetores de T dois a dois ortogonais. Finalmente, definindo β por $\beta_1 \cup \beta_2$ temos uma base de $V = W \oplus W^{\perp}$ formada por autovetores de T dois a dois ortogonais. A outra implicação proposta no teorema não oferece resistência.

A partir de agora, passaremos a uma exposição do Teorema Espectral no caso complexo. Antes de enunciá-lo, consideremos a seguinte definição.

Seja V um espaço vetorial de dimensão finita, munido de produto interno. Um operador linear $T:V\to V$ é dito normal se $T\circ T^*=T^*\circ T$.

Teorema 4 (Teorema Espectral - Caso Complexo). Seja V um espaço vetorial de dimensão finita sobre \mathbb{C} , munido de produto interno. $T:V\to V$ é um operador normal se, e somente se, existe uma base de V formada por autovetores de T, dois a dois ortogonais.

Seja V um espaço vetorial de dimensão finita sobre \mathbb{C} , munido de produto interno. Sejam $T:V\to V$ um operador normal e $\alpha\in\mathbb{C}$. Abaixo, listamos algumas propriedades que podem ser facilmente verificadas.

- $T \alpha$ é normal;
- $Tv = \alpha v$ se, e somente se, $T^*v = \bar{\alpha}v$
- $Ker(T-\alpha)$ e $[Ker(T-\alpha)]^{\perp}$ são invariantes por T.

Prova do Teorema Espectral - Caso Complexo. Se Existe base de V formada por autovetores de T, dois a dois ortogonais, claramente T é normal. Agora, suponhamos que T seja um operador normal. Seja $W = Ker(T-\alpha)$ em que $\alpha \in \mathbb{C}$ é um autovalor de T. Se W = V, nada temos a provar. Então suponhamos que $W \neq V$. Nesse caso, W e W^{\perp} são subespaços de V, invariantes por T, que possuem dimensão inferior à diemnsão de V. Como as restrções de T a W e a W^{\perp} definem operadores normais, podemos usar hipótese de indução sobre a dimensão do espaço para concluir que temos bases β_1 de W e β_2 de W^{\perp} formadas por autovetores de T dois a dois ortogonais. Finalmente, definindo β por $\beta_1 \cup \beta_2$ temos uma base de $V = W \oplus W^{\perp}$ formada por autovetores de T dois a dois ortogonais. \square