Análisis de Datos en Python: descriptivo e inferencial 3

Dora Suárez, Juan F. Pérez

Departamento MACC Matemáticas Aplicadas y Ciencias de la Computación Universidad del Rosario

juanferna.perez@urosario.edu.co

2018

Contenidos

Estimadores puntuales

Estimadores de intervalo

Inferencia a partir de una muestra aleatoria

Población: X

- Valor esperado $\mu = E[X]$
- Varianza $\sigma^2 = V[X]$
- Desviación estándar $\sigma = \sqrt{V[X]}$

Inferencia a partir de una muestra aleatoria

Muestra aleatoria $\{X_1, \ldots, X_n\}$:

Media muestral:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Inferencia a partir de una muestra aleatoria

Muestra aleatoria $\{X_1, \ldots, X_n\}$:

Media muestral:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Varianza muestral:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

• Media muestral como estimador de la media poblacional:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Media muestral como estimador de la media poblacional:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Varianza muestral como estimador de la varianza muestral:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Media muestral como estimador de la media poblacional:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Varianza muestral como estimador de la varianza muestral:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Obtengo un número que uso para estimar el valor del parámetro

datosPresion = datos[u'Presión Sangre']

ser = pd. Series (datos Presion)

Cargue y descripción de datos

```
\# -*- coding: utf-8 -*-
import numpy as np
import scipy stats as st
import pandas as pd
filename = "data/data_blood.txt"
datos = pd.read_csv(filename, header=None, sep="\s+",
         names = [u'Indice', u'Uno', u'Edad',
                                   u'Presión Sangre'])
```

print(ser.describe())

Cargue y descripción de datos

```
n = len(datosPresion)
print("n: ", n)
print("media: ", np.mean(datosPresion))
print("desv estandar (n): ", np.std(datosPresion))
print("desv estandar (n-1):",
       np.std(datosPresion, ddof = 1))
```

Cargue y descripción de datos

	Indice	Uno	Edad	Presion Sangre
count	30.000000	30.0	30.000000	30.000000
mean	15.500000	1.0	45.133333	142.533333
std	8.803408	0.0	15.294203	22.581245
min	1.000000	1.0	17.000000	110.000000
25 %	8.250000	1.0	36.750000	125.750000
50 %	15.500000	1.0	45.500000	141.000000
75 %	22.750000	1.0	56.000000	157.000000
max	30.000000	1.0	69.000000	220.000000

Cargue y descripción de datos

```
n: 30
media: 142.533333333
desv estandar (n): 22.2017016365
desv estandar (n-1): 22.581245397
```


ullet $ar{X}$ estimador puntual de μ

- ullet $ar{X}$ estimador puntual de μ
- Intervalo: [a, b]

- \blacksquare \bar{X} estimador puntual de μ
- Intervalo: [a, b]
- ullet Alta probabilidad de que μ esté en el intervalo

$$P(\mu \in [a,b]) = 0.95$$

- ullet $ar{X}$ estimador puntual de μ
- Intervalo: [a, b]
- Alta probabilidad de que μ esté en el intervalo

$$P(\mu \in [a, b]) = 0.95$$

■ Aprovechando \bar{X} :

$$[\bar{X}-c,\bar{X}+c]$$

• ¿Cómo se comporta \bar{X} ?

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• ¿Cómo se comporta \bar{X} ?

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Depende del comportamiento de X_i , es decir, de X

Variable aleatoria continua

Normal: https://www.geogebra.org/m/QEayZCpM

- Variable aleatoria continua
- Función de densidad de probabilidad (no de masa)

- Normal: https://www.geogebra.org/m/QEayZCpM
- Normal estándar ($\mu = 0$, $\sigma^2 = 1$): https://www.geogebra.org/m/Xhp5vB98

- Variable aleatoria continua
- Función de densidad de probabilidad (no de masa)
- Probabilidad: área bajo la curva

- Normal: https://www.geogebra.org/m/QEayZCpM
- Normal estándar ($\mu = 0$, $\sigma^2 = 1$): https://www.geogebra.org/m/Xhp5vB98

- Variable aleatoria continua
- Función de densidad de probabilidad (no de masa)
- Probabilidad: área bajo la curva
- Parámetros: media μ y varianza σ^2

- Normal: https://www.geogebra.org/m/QEayZCpM
- Normal estándar ($\mu = 0$, $\sigma^2 = 1$): https://www.geogebra.org/m/Xhp5vB98

• X sigue una distribución normal (μ, σ^2)

- X sigue una distribución normal (μ, σ^2)
- Cada muestra X_i sigue la misma distribución normal

- X sigue una distribución normal (μ, σ^2)
- Cada muestra X_i sigue la misma distribución normal
- La media muestral

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

sigue una distribución normal $\left(\mu,\frac{\sigma^2}{n}\right)$

Estimador de intervalo para la media μ :

$$\left[\bar{X}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{X}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

• Estimador de intervalo para la media μ :

$$\left[\bar{X}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{X}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

■ Punto medio: \bar{X}

Estimador de intervalo para la media μ :

$$\left[\bar{X}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{X}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

- Punto medio: \bar{X}
- \bullet $\frac{\sigma}{\sqrt{n}}$: error estándar (variabilidad de \bar{X})

Estimador de intervalo para la media μ :

$$\left[\bar{X}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{X}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

- Punto medio: \bar{X}
- $\frac{\sigma}{\sqrt{n}}$: error estándar (variabilidad de \bar{X})
- $z_{\alpha/2}$: factor que depende de la distribución normal

• Problema: intervalo depende de σ (desconocido)

- Problema: intervalo depende de σ (desconocido)
- Solución: reemplazar σ por su estimador puntual S (desviación estándar muestral)

- Problema: intervalo depende de σ (desconocido)
- Solución: reemplazar σ por su estimador puntual S (desviación estándar muestral)
- Resultado:

$$\left[ar{X} - t_{lpha/2} rac{\mathcal{S}}{\sqrt{n}}, ar{X} + t_{lpha/2} rac{\mathcal{S}}{\sqrt{n}}
ight]$$

- Problema: intervalo depende de σ (desconocido)
- Solución: reemplazar σ por su estimador puntual S (desviación estándar muestral)
- Resultado:

$$\left[\bar{X}-t_{lpha/2}rac{S}{\sqrt{n}},ar{X}+t_{lpha/2}rac{S}{\sqrt{n}}
ight]$$

■ Punto medio: \bar{X}

- Problema: intervalo depende de σ (desconocido)
- Solución: reemplazar σ por su estimador puntual S (desviación estándar muestral)
- Resultado:

$$\left[ar{X} - t_{lpha/2} rac{S}{\sqrt{n}}, ar{X} + t_{lpha/2} rac{S}{\sqrt{n}}
ight]$$

- Punto medio: \bar{X}
- $\frac{S}{\sqrt{n}}$: error estándar (variabilidad estimada de \bar{X})

- Problema: intervalo depende de σ (desconocido)
- Solución: reemplazar σ por su estimador puntual S (desviación estándar muestral)
- Resultado:

$$\left[\bar{X}-t_{lpha/2}rac{\mathcal{S}}{\sqrt{n}},ar{X}+t_{lpha/2}rac{\mathcal{S}}{\sqrt{n}}
ight]$$

- Punto medio: \bar{X}
- $\frac{S}{\sqrt{n}}$: error estándar (variabilidad estimada de \bar{X})
- $t_{\alpha/2}$: factor que depende de la **distribución T**

- Problema: intervalo depende de σ (desconocido)
- Solución: reemplazar σ por su estimador puntual S (desviación estándar muestral)
- Resultado:

$$\left[\bar{X}-t_{lpha/2}rac{\mathcal{S}}{\sqrt{n}},ar{X}+t_{lpha/2}rac{\mathcal{S}}{\sqrt{n}}
ight]$$

- Punto medio: \bar{X}
- $\frac{S}{\sqrt{n}}$: error estándar (variabilidad estimada de \bar{X})
- $t_{\alpha/2}$: factor que depende de la **distribución T**
- https://www.geogebra.org/m/RPGjU7Vz

Distribución T

- Distribución T
- https://www.geogebra.org/m/RPGjU7Vz

- Distribución T
- https://www.geogebra.org/m/RPGjU7Vz
- Parámetro adicional (grados de libertad):
 - Cercano a uno: más variable/dispersa que la normal estándar

- Distribución T
- https://www.geogebra.org/m/RPGjU7Vz
- Parámetro adicional (grados de libertad):
 - Cercano a uno: más variable/dispersa que la normal estándar
 - Al llegar a 40: similar a la normal estándar

- Distribución T
- https://www.geogebra.org/m/RPGjU7Vz
- Parámetro adicional (grados de libertad):
 - Cercano a uno: más variable/dispersa que la normal estándar
 - Al llegar a 40: similar a la normal estándar
- Grados de libertad: asociados al número de observaciones

- Distribución T
- https://www.geogebra.org/m/RPGjU7Vz
- Parámetro adicional (grados de libertad):
 - Cercano a uno: más variable/dispersa que la normal estándar
 - Al llegar a 40: similar a la normal estándar
- Grados de libertad: asociados al número de observaciones
 - Pocas observaciones: más incertidumbre sobre el valor del parámetro

- Distribución T
- https://www.geogebra.org/m/RPGjU7Vz
- Parámetro adicional (grados de libertad):
 - Cercano a uno: más variable/dispersa que la normal estándar
 - Al llegar a 40: similar a la normal estándar
- Grados de libertad: asociados al número de observaciones
 - Pocas observaciones: más incertidumbre sobre el valor del parámetro
 - Muchas observaciones: más certeza sobre el valor del parámetro

$$\left[\bar{X}-t_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{X}+t_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

• Intervalo de **confianza** para la media μ :

$$\left[\bar{X}-t_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{X}+t_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

• Garantiza que μ está en el intervalo con probabilidad $1-\alpha$ (nivel de confianza)

$$\left[\bar{X}-t_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{X}+t_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

- lacksquare Garantiza que μ está en el intervalo con probabilidad 1-lpha (nivel de confianza)
- Probabilidad de que esté por fuera del intervalo: α

$$\left[\bar{X}-t_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{X}+t_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

- lacksquare Garantiza que μ está en el intervalo con probabilidad 1-lpha (nivel de confianza)
- Probabilidad de que esté por fuera del intervalo: α
- A mayor confianza $1-\alpha$, más grande el intervalo

$$\left[\bar{X}-t_{lpha/2}rac{\sigma}{\sqrt{n}}, \bar{X}+t_{lpha/2}rac{\sigma}{\sqrt{n}}
ight]$$

- lacksquare Garantiza que μ está en el intervalo con probabilidad 1-lpha (nivel de confianza)
- Probabilidad de que esté por fuera del intervalo: α
- A mayor confianza $1-\alpha$, más grande el intervalo
- https://www.geogebra.org/m/Xhp5vB98

Calculando intervalos de confianza en python (versión 1)

Después de cargar los datos y tenerlos almacenados en la lista datosPresion

```
import numpy as np
import scipy stats as st
intervalo = st.t.interval(0.95,
               len (datos Presion) -1,
               loc = np.mean(datosPresion),
               scale=st.sem(datosPresion) )
print(intervalo)
```

Calculando intervalos de confianza en python (versión 2)

Después de cargar los datos y tenerlos almacenados en la lista datosPresion

```
import statsmodels.stats.api as sms
intervalo = sms. DescrStatsW(datosPresion).
              tconfint_mean(0.05)
print(intervalo)
```

Calculando intervalos de confianza en python (resultado)

(134.1013577264643, 150.96530894020236)

Probemos ahora con otros datos

```
https://goo.gl/xt3LJp
```

```
■ Y otros: https:
 //www.kaggle.com/jessicali9530/honey-production/data
```