$$=\frac{n\log(2\pi)}{2}+\frac{1}{2}(\varphi(\mathbf{y})-\mu_{\mathbf{x}})^{\top}\sum_{i=1}^{n-1}(\varphi(\mathbf{y})-\mu_{\mathbf{x}}) \qquad \qquad \lim_{|t|\leq |s|}=|t|_{s}+\sum_{\mathbf{x}\in \Sigma_{s/s}}\sum_{\mathbf{y}\in S}|t|_{s}$$

$$+\frac{1}{2}\log|\Sigma_{\mathbf{x}\mathbf{x}}| \qquad -\sum_{i=1}^{n}\log\left(\frac{d\varphi(y_{i})}{dy}\right)\cdot\mathbb{E}_{\mathbf{y}}[\mathbf{y}]=\int\varphi^{-1}(\mathbf{x})\,p_{\mathbf{x}}(\mathbf{x})\,d\mathbf{x}$$

$$p_{\mathbf{y}}(\mathbf{y}|\mathbf{y})\,d\mathbf{y}=\int_{(t)}p_{\mathbf{x}}(\mathbf{x}|\mathbf{y})\,d\mathbf{x}=\int_{\varphi(\mathbf{E})}p_{\mathbf{x}}(\mathbf{x}|\mathbf{x})\,d\mathbf{x}, \qquad \approx \frac{1}{\sqrt{\pi}}\sum_{i=1}^{k}|t|_{\varphi}\varphi^{-1}\left(\sqrt{2}\sigma_{\mathbf{x}}\right)$$

$$I_{\mathbf{y}(t)}^{p}=\left[\varphi^{-1}\left(m(t)-z_{p}\sigma(t)\right)\cdot\varphi^{-1}\left(m(t)+z_{p}\sigma(t)\right)\right], \quad |\nabla\varphi(\mathbf{y})|=\prod_{i=1}^{n}\left[\frac{d\varphi(y_{i})}{dy}\right]$$

Procesamiento de datos textuales de EthicApp

Presentación de avances

Camilo Carvajal Reyes

8 de junio, 2023

Índ<u>i</u>ce de contenidos

- 1 Introducción
 - Resumen y motivación
 - Procesamiento de texto de EthicApp
- 2 Análisis exploratorio de datos
 - Métricas Básicas
 - Exploración básica de texto
 - Características de elecciones
- 3 Primer modelo de predicción de postura
 - Modelo de base
 - Pre-procesamiento
 - Resultados
- 4 Trabajo futuro
 - Modelos interpretables
 - Modelos de aprendizaje profundo
 - Referencias

Índ<u>ice de contenidos</u>

- 1 Introducción
 - Resumen y motivación
 - Procesamiento de texto de EthicApp
- 2 Análisis exploratorio de datos
 - Métricas Básicas
 - Exploración básica de texto
 - Características de elecciones
- 3 Primer modelo de predicción de postura
 - Modelo de base
 - Pre-procesamiento
 - Resultados
- 4 Trabajo futuro
 - Modelos interpretables
 - Modelos de aprendizaje profundo
 - Referencias

Resumen y motivación

En el marco de actividades ética en cursos iniciales de la FCFM, estudiantes evalúan en una escala de 1 a 6 las respuestas a una dilema, a través de la aplicación *EthicApp* [1]. En seguida escriben una justificación a tal decisión. Este texto puede contener información relevante de la decisión y su estudio es importante para los equipos docentes y el área de ética. Este análisis se dificulta por la gran cantidad de respuestas.

Resumen y motivación

En el marco de actividades ética en cursos iniciales de la FCFM, estudiantes evalúan en una escala de 1 a 6 las respuestas a una dilema, a través de la aplicación *EthicApp* [1]. En seguida escriben una justificación a tal decisión. Este texto puede contener información relevante de la decisión y su estudio es importante para los equipos docentes y el área de ética. Este análisis se dificulta por la gran cantidad de respuestas.

Resumen y motivación

Se plantea la utilización de algoritmos de procesamiento de lenguaje natural para:

- evaluar la progresión de competencia ética de los estudiantes con menor inversión humana,
- estudiar las capacidades de algoritmos de texto de modelar ética.

Ejemplo de caso

En el último control realizado **Julieta** se ve en la posibilidad de copiar una respuesta que fue compartida en el grupo de WhatsApp de su sección. Julieta en esta situación a la que se ve enfrentada en el control debiera

- 1 Usar la información del grupo de WhatsApp
- 6 No usar la información del grupo de WhatsApp

Predicción de respuestas de estudiantes

Se propone la utilización de modelos para la predicción de valoración de la problemática, usando el texto. Hacer esto con modelos interpretables nos dará una idea de que **elementos lingüísticos** se usaron para escoger tal opción. Por otro lado se plantea usar modelos profundos con fines exploratorios.

Predicción de respuestas de estudiantes

Se propone la utilización de modelos para la predicción de valoración de la problemática, usando el texto. Hacer esto con modelos interpretables nos dará una idea de que **elementos lingüísticos** se usaron para escoger tal opción. Por otro lado se plantea usar modelos profundos con fines exploratorios.

Predicción de cambio en respuesta

Similarmente, queremos usar modelos similares para predecir cambios en las valoraciones de una etapa a otra. Esto nos permite estudiar que **elementos** son **comunes** en un futuro **cambio de postura o valoración**.

Dilema ético

Etapa 3

Predicción de cambio en respuesta

Similarmente, queremos usar modelos similares para predecir cambios en las valoraciones de una etapa a otra. Esto nos permite estudiar que **elementos** son **comunes** en un futuro **cambio de postura o valoración**.

Dilema ético

Etapa 3

Índice de contenidos

- 1 Introducción
 - Resumen y motivación
 - Procesamiento de texto de EthicApp
- 2 Análisis exploratorio de datos
 - Métricas Básicas
 - Exploración básica de texto
 - Características de elecciones
- 3 Primer modelo de predicción de postura
 - Modelo de base
 - Pre-procesamiento
 - Resultados
- 4 Trabajo futuro
 - Modelos interpretables
 - Modelos de aprendizaje profundo
 - Referencias

Datos textuales de EthicApp

Cantidad de datos por caso

Caso	Cursos	Cantidad estudiantes	Cantidad grupos
Caso Julieta	1	819	247
Caso Adela	1	237	142
Caso Laura	1	602	335
Caso Alicia	2	1628	549

Datos textuales de EthicApp

Cantidad de datos por caso

n-gramas comunes caso Laura

Preliminarmente mostramos los 1-gramas y 3-gramas más frecuentes del dataset para el caso Laura.

Es adecuado que Laura le dedique paulatinamente más tiempo al trabajo y su desarrollo profesional que a la familia y las otras dimensiones de su vida.

n-gramas comunes caso Laura

Preliminarmente mostramos los 1-gramas y 3-gramas más frecuentes del dataset para el caso Laura.

Es adecuado que Laura le dedique paulatinamente más tiempo al trabajo y su desarrollo profesional que a la familia y las otras dimensiones de su vida.

```
parte familia manera debe a pueden forma vida persona caso deberia idea de la vida persona caso deberia idea de la vida persona caso familia pues la ura a vida deberia idea de la vida persona caso familia pues la ura a vida deberia idea de la vida persona caso familia pues la ura a vida deberia idea de la vida persona caso familia pues la ura a vida deberia idea de la vida persona caso familia pues la ura a vida deberia idea deber
```


Largos de texto caso Laura

Con stop words

Media: 33.042

Desviación estándar: 20.793

Mediana: 30.0

Mínimo: 1 Máximo: 163

Sin stop words

Media: 16.658

Desviación estándar: 10.280

Mediana: 15.0 Mínimo: 0

Máximo: 78

n-gramas comunes caso Alicia

Preliminarmente mostramos los 1-gramas y 3-gramas más frecuentes del dataset para el caso Julieta.

n-gramas comunes caso Alicia

Preliminarmente mostramos los 1-gramas y 3-gramas más frecuentes del dataset para el caso Julieta.

```
debería priorizar criterio cuplir scarco

minorizar provecto

minorizar

minori
```


Largos de texto caso Alicia

Con stop words

Media: 42.591

Desviación estándar: 27.023

Mediana: 37.0

Mínimo: 1 Máximo: 371

Sin stop words

Media: 21.601

Desviación estándar: 13.610

Mediana: 19.0

Mínimo: 0 Máximo: 178

n-gramas comunes caso Adela

Preliminarmente mostramos los 1-gramas y 3-gramas más frecuentes del dataset para el caso Laura.

n-gramas comunes caso Adela

Preliminarmente mostramos los 1-gramas y 3-gramas más frecuentes del dataset para el caso Laura.

Largos de texto caso Adela

Con stop words

Media: 43.341

Desviación estándar: 25.996

Mediana: 38.0

Mínimo: 1 Máximo: 272

Largo de texto

Sin stop words

Media: 21.833

Desviación estándar: 13.021

Mediana: 19.0

Mínimo: 0 Máximo: 138

n-gramas comunes caso Julieta

Preliminarmente mostramos los 1-gramas y 3-gramas más frecuentes del dataset para el caso Julieta.

En el último control realizado Julieta se ve en la posibilidad de copiar una respuesta que fue compartida en el grupo de WhatsApp de su sección.

n-gramas comunes caso Julieta

Preliminarmente mostramos los 1-gramas y 3-gramas más frecuentes del dataset para el caso Julieta.

En el último control realizado Julieta se ve en la posibilidad de copiar una respuesta que fue compartida en el grupo de WhatsApp de su sección.

```
universidad continuo evaluation contra por contra quita que de la contra por contra por contra por contra por contra por contra pulieta debería copiar problem debería debería por conoccimiento i manera julieta debería copiar problem copiar copi
```


Largos de texto caso Julieta

Con stop words

Media: 43.652

Desviación estándar: 36.528

Mediana: 35.0

Mínimo: 1 Máximo: 528

Sin stop words

Media: 22.077

Desviación estándar: 18.345

Mediana: 17.0

Mínimo: 0 Máximo: 279

Largos de texto por opción caso Laura

Largos de texto por opción.

Es adecuado que Laura le dedique paulatinamente más tiempo al trabajo y su desarrollo profesional que a la familia y las otras dimensiones de su vida.

Palabras frecuentes por opción caso Laura

Largos de texto por opción. Es adecuado que Laura le dedique paulatinamente más tiempo al trabajo y su desarrollo profesional que a la familia y las otras dimensiones de su vida.

Frecuencias de posturas caso Alicia

Porcentaje de elección de estudiantes por opción y etapa.

Largos de texto por opción caso Alicia

Largos de texto por opción.

Palabras frecuentes por opción caso Alicia

Largos de texto por opción.

Largos de texto por etapa caso Alicia

Largos de texto por etapa.

Palabras frecuentes por etapa caso Alicia

Largos de texto por etapa.

Frecuencias de posturas caso Adela

Porcentaje de elección de estudiantes por opción y etapa.

Largos de texto por opción caso Adela

Largos de texto por opción.

Palabras frecuentes por opción caso Adela

Largos de texto por opción.

Largos de texto por etapa caso Adela

Largos de texto por etapa.

Adela es una ingeniera de una startup que busca generar un nuevo alimento en beneficio de niñas/os y personas de tercera edad. No obstante, la producción de este alimento consume una cantidad importante de agua en un sector de escasez.

Palabras frecuentes por etapa caso Adela

Largos de texto por etapa.

Adela es una ingeniera de una startup que busca generar un nuevo alimento en beneficio de niñas/os y personas de tercera edad. No obstante, la producción de este alimento consume una cantidad importante de agua en un sector de escasez.

Frecuencias de posturas caso Julieta

Porcentaje de elección de estudiantes por opción y etapa.

Largos de texto por opción caso Julieta

Largos de texto por opción.

Palabras frecuentes por opción caso Julieta

Largos de texto por opción.

Largos de texto por etapa caso Julieta

Largos de texto por etapa.

Palabras frecuentes por etapa caso Julieta

Largos de texto por etapa.

Cambios de postura Julieta

Porcentaje de cambios de postura [2].

Cambios de postura Julieta

Magnitud de cambio de postura por par de etapas [2].

Cambios de postura Julieta

Detalle de cambios de postura por par de etapas [2].

Índice de contenidos

- 1 Introducción
 - Resumen y motivación
 - Procesamiento de texto de EthicApp
- 2 Análisis exploratorio de datos
 - Métricas Básicas
 - Exploración básica de texto
 - Características de elecciones
- 3 Primer modelo de predicción de postura
 - Modelo de base
 - Pre-procesamiento
 - Resultados
- 4 Trabajo futuro
 - Modelos interpretables
 - Modelos de aprendizaje profundo
 - Referencias

Clasificación con Naive-Bayes

Naive-Bayes:

Modelo de clasificación que asigna a cada elemento (palabra) una probabilidad de pertenecer a una clase. Las probabilidades se suman para la predicción final.[3]

Naive Bayes

Los métodos Naive-Bayes son una familia de algoritmos supervisados basados en aplicación del teorema de Bayes

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

con la hipótesis "naive" de independencia condicional entre pares de características dado el valor de la variable objetivo (clase).

Consideremos vectores n-dimensionales, cada uno correspondiente a un documento sobre un vocabulario de largo n. Dado un documento $x = (x_1, \ldots, x_n)$, nos gustaría etiquetarlos con alguna clase $C_k \in \{C_1, \ldots, C_k\}$, Por el teorema de Bayes tenemos $\forall k \in \{1, \ldots, K\}$:

$$\mathbb{P}(C_k|x_1,\ldots,x_n) = \frac{\mathbb{P}(C_k)\mathbb{P}(x_1,\ldots,x_n|C_k)}{\mathbb{P}(x_1,\ldots,x_n)}$$

$$\propto \mathbb{P}(C_k)\mathbb{P}(x_1,\ldots,x_n|C_k)$$

Naive Bayes

El término $\mathbb{P}(C_k)$ puede ser estimado por la frecuencia de la clase C_k en los datos. Para calcular la verosimilitud $\mathbb{P}(x_1,\ldots,x_n|C_k)$ primero asumimos una distribución de probabilidad (por ejemplo Gaussiana o Multinomial). En el caso de clasificación binaria ($k \in \{0,1\}$)) usando una distribución de Bernoulli, tenemos para cada característica j (palabra/token):

$$\mathbb{P}(x_j|C_k) = \mathbb{P}(j|C_k)x_j + (1 - \mathbb{P}(j|C_k))(1 - x_j)$$

 $\mathbb{P}(j|C_k)$ puede ser estimada también, tomándolo la proporción de documentos que contienen la palabra j entre las realizaciones de la clase C_k .

Pre-procesamiento

Pasos para vectorizar texto:

- Todo a minúscula
- 2 Remover stop-words
- 3 Stemming

Pre-procesamiento

Pasos para vectorizar texto:

- Todo a minúscula
- 2 Remover stop-words
- Stemming
- 4 Clasificador

Resultados preliminares Laura

Resultados de clasificación.

Es adecuado que Laura le dedique paulatinamente más tiempo al trabajo y su desarrollo profesional que a la familia y las otras dimensiones de su vida.

(1) Ajustar dedicación — (6) Mantener dedicación

Resultados	clasifi	cador	Naive-Bay	es multino	mial
	prec	ision	recall	f1-score	support
	1	0.54	0.39	0.45	171
	2	0.39	0.75	0.51	251
	3	0.53	0.29	0.37	164
	4	0.67	0.31	0.42	135
	5	0.60	0.39	0.47	153
	6	0.66	0.74	0.70	143
accura	су			0.50	1017
macro a	vg	0.56	0.48	0.49	1017
weighted a	vg	0.54	0.50	0.49	1017

Resultados preliminares Laura

Resultados preliminares Laura

Versión binaria: pasamos las elecciones "indecisas" a "fuertes".

Resultados	s cl	asificador precision		es multinom f1-score	ial (binario) support
	1 6	0.80 0.83	0.90 0.69	0.85 0.76	586 431
accura macro a weighted a	avg	0.82 0.81	0.80 0.81	0.81 0.80 0.81	1017 1017 1017

Resultados preliminares Alicia

Resultados de clasificación.

Ante problemas y retrasos por contingencia mundial, Alicia debería priorizar los plazos o los criterios técnicos?

(1) Priorizar criterios técnicos — (6) Priorizar plazos

Resultados	clasificador	Naive-Baye	s multinomi	al
	precision	recall	f1-score	support
	1 0.59	0.31	0.41	540
	2 0.42		0.57	911
	3 0.48	0.11	0.17	427
	4 0.43	0.07	0.13	270
	5 0.44	0.24	0.31	263
	6 1.00	0.01	0.02	87
accurac	cy		0.44	2498
macro av	vg 0.56	0.27	0.27	2498
weighted av	vg 0.49	0.44	0.37	2498

Resultados preliminares Alicia

Predicción

Resultados preliminares Alicia

Versión binaria: pasamos las elecciones "indecisas" a "fuertes".

Resultados	cl	asificador precision	,	s multinomi f1-score	al (binario) support
	1 6	0.85 0.79	0.96 0.48	0.90 0.60	1878 620
accura macro a weighted a	ıvg	0.82 0.83	0.72 0.84	0.84 0.75 0.83	2498 2498 2498

Resultados preliminares Adela

Resultados de clasificación.

Adela busca generar un nuevo alimento con vitaminas. No obstante, la producción de este alimento consume una cantidad importante de agua en un sector de escasez.

(1) Producir el alimento contra el déficit — (6) Resguardar tradiciones/recursos

Resultados	cla	asificador	Naive-Baye	s multinom	ial
		precision	recall	f1-score	support
	1	0.75	0.04	0.08	203
	2	0.49	0.86	0.62	629
	3	0.42	0.47	0.44	406
	4	0.47	0.12	0.19	221
	5	0.39	0.05	0.09	142
	6	0.00	0.00	0.00	44
accura	cv			0.47	1645
macro a	•	0.42	0.26	0.24	1645
weighted a	vg	0.48	0.47	0.39	1645

Resultados preliminares Adela

Resultados preliminares Adela

Versión binaria: pasamos las elecciones "indecisas" a "fuertes".

Resultado	s cl			s multinomi f1-score	ial (binario) support
	1 6	0.83 0.71	0.94 0.43	0.89 0.54	1239 406
accur macro weighted	avg	0.77 0.80	0.69 0.82	0.82 0.71 0.80	1645 1645 1645

Resultados preliminares Julieta

Resultados de clasificación.

En el último control realizado Julieta se ve en la posibilidad de copiar una respuesta que fue compartida en el grupo de WhatsApp de su sección.

(1) Usar la info del grupo — (6) No usar la info del grupo

Resultados	cla	sificador	Naive-Baye	s multinon	nial
		precision	recall	f1-score	support
	1	0.00	0.00	0.00	53
	2	1.00	0.03	0.06	125
	3	0.38	0.17	0.24	219
	4	0.32	0.46	0.38	253
	5	0.27	0.51	0.36	283
	6	0.59	0.45	0.51	269
accura	су			0.35	1202
macro a	vg	0.43	0.27	0.26	1202
weighted a	vg	0.44	0.35	0.33	1202

Resultados preliminares Julieta

Resultados preliminares Julieta

Versión binaria: pasamos las elecciones "indecisas" a "fuertes".

Resultado		sificador precision		s multinomi f1-score	al (binario) support
	1 6	0.74 0.72	0.26 0.96	0.38 0.82	398 804
accur macro weighted	avg	0.73 0.73	0.61 0.72	0.72 0.60 0.68	1202 1202 1202

Índice de contenidos

- 1 Introducción
 - Resumen y motivación
 - Procesamiento de texto de EthicApp
- 2 Análisis exploratorio de datos
 - Métricas Básicas
 - Exploración básica de texto
 - Características de elecciones
- 3 Primer modelo de predicción de postura
 - Modelo de base
 - Pre-procesamiento
 - Resultados
- 4 Trabajo futuro
 - Modelos interpretables
 - Modelos de aprendizaje profundo
- 5 Referencias

Interpretación de modelos

Con el modelo de base y otros clasificadores

- Ordenar tokens según probabilidad por clase (Naive-Bayes)
- Verificar que variables son las que afectan más el output (shap values)
- Hacer una clasificación más gruesa (binaria o sacando los extremos)
- Búsqueda de grilla para optimizar parámetros
- Oversampling de clases menos frecuentes para entrenamiento Se considerarán desde luego modelos de regresión.

Modelos con interpretabilidad

■ **Topic modelling** (Latent Dirichlet allocation - LDA)
Es una técnica que agrupa de manera no supervisada los textos.
Genera una distribución palabra - tópico latente (oculto) y tópico - palabra.[4]

Modelos con interpretabilidad

Figure source: Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.

Modelos con interpretabilidad

■ **Topic modelling** (Latent Dirichlet allocation - LDA)
Es una técnica que agrupa de manera no supervisada los textos.
Genera una distribución palabra - tópico latente (oculto) y tópico - palabra.[4]

■ Naive-Bayes:

Modelo de clasificación que asigna a cada elemento (palabra) una probabilidad de pertenecer a una clase. Las probabilidades se suman para la predicción final.[3]

Modelos de aprendizaje profundo

Word embeddings: modelos que permiten vectorizar palabras, basados en su co-ocurrencia.

Algunos ejemplos:

- Word2vec
- GloVe
- Td-idf

Se pueden combinar con diversos modelos de clasificación.

Modelos de aprendizaje profundo

BETO/BERT:

modelo profundo basado en la arquitectura Transformers (como es el caso de ChatGPT). Son pre-entrenados en grandes corpuses de texto y se pueden usar en variadas tareas de NLP. Permiten vectorizar palabras y texto.

Referencias

- Alvarez, C., Zurita, G., Hasbún, B., Peñafiel, S., Pezoa, Á., Alvarez, C., Zurita, G., Hasbún, B., Peñafiel, S., Pezoa, Á. (2021). A Social Platform for Fostering Ethical Education through Role-Playing. In Factoring Ethics in Technology, Policy Making, Regulation and Al. IntechOpen. https://doi.org/10.5772/intechopen.96602
- Ramírez Rivas, P., Guerrero, S., Cerda Maureira, J., Ross, J. P., Flores Mandeville, G. (2022). La formación ética canalizada mediante la tecnología. Experiencia y resultados preliminares del uso de la herramienta web Ethicapp. XXXIV Congreso Chileno de Educación en Ingeniería.
- Metsis, V., Androutsopoulos, I., Paliouras, G. (2006, July). Spam filtering with naive bayes-which naive bayes?. In CEAS (Vol. 17, pp. 28-69).
- Blei, D. M., Ng, A. Y., Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research, 3(null), 993–1022.
- Devlin, J., Chang, M.-W., Lee, K., Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186. https://doi.org/10.18653/v1/N19-1423

$$=\frac{n\log(2\pi)}{2}+\frac{1}{2}(\varphi(\mathbf{y})-\mu_{\mathbf{x}})^{\top}\mathcal{E}_{\mathbf{x}\mathbf{x}}^{-1}(\varphi(\mathbf{y})-\mu_{\mathbf{x}})$$

$$=\frac{1}{2}\log|\mathcal{E}_{\mathbf{x}\mathbf{x}}|-\sum_{i=1}^{n}\log\left(\frac{d\varphi(y_{i})}{dy}\right)+\mathbb{E}_{\mathbf{y}}[\mathbf{y}]=\int_{\mathbf{y}^{-1}}(\mathbf{x})\,p_{\mathbf{x}}(\mathbf{x})\,d\mathbf{x}$$

$$=\frac{1}{2}\log|\mathcal{E}_{\mathbf{x}\mathbf{x}}|-\sum_{i=1}^{n}\log\left(\frac{d\varphi(y_{i})}{dy}\right)+\mathbb{E}_{\mathbf{y}}[\mathbf{y}]=\int_{\mathbf{y}^{-1}}(\mathbf{x})\,p_{\mathbf{x}}(\mathbf{x})\,d\mathbf{x}$$

$$=\frac{1}{\sqrt{\pi}}\sum_{i=1}^{n}|\omega_{i}\varphi^{-1}\left(\sqrt{2}\alpha_{i}\right)$$

$$=\frac{1}{2}\sum_{i=1}^{n}|\omega_{i}\varphi^{-1}\left(\sqrt{2}\alpha_{i}\right)$$

Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE

Procesamiento de datos textuales de EthicApp

Presentación de avances

Camilo Carvajal Reyes

8 de junio, 2023