In the claims:

1. (currently amended): A polymer comprising a repeating unit of the formula

$$(I), \frac{R^{1}}{R^{2}}$$

$$(I), \frac{R^{1}}{R^{2}}$$

$$(Ia), \frac{R^{1}}{R^{2}}$$

$$(Ia), \frac{R^{2}}{R^{2}}$$

$$(Ia), \frac{R^{3}}{R^{3}}$$

$$(II), \frac{R^{3}}{R^{3}}$$

$$(II), \frac{R^{3}}{R^{4}}$$

 R^1 , R^2 , R^3 , R^4 and R^5 are independently of each other an organic substituent, especially C_2 - C_{30} aryl or a C_2 - C_{26} heteroaryl, which optionally can be substituted,

 X^{1} , X^{2} and X^{3} are independently of each other a divalent linking group.

(IIb), or

2. (currently amended): A polymer according to claim 1, wherein X¹ and X² are independently of

each other a group of the formula
$$R^{15'}$$
 , $R^{14'}$, $R^{15'}$, or $R^{15'}$, $R^{15'}$, $R^{15'}$

(Hc); wherein

n1, n2, n3, n4, n5, n6 and n7 are integers of 1 to 10, in particular 1 to 3,

 R^6 and R^7 are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl, which is substituted by E, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{18} alkoxyl, C_1 - C_{18} alkoxyl, C_1 - C_{18} alkoxyl, C_1 - C_{18} alkoxyl, which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, or -CO- R^{28} ,

 R^8 is C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, or C_7 - C_{25} aralkyl,

 R^9 and R^{10} are independently of each other C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, or

R⁹ and R¹⁰ form a ring, especially a five- or six-membered ring, which may optionally be substituted by R⁶,

 $R^{14'}$ and $R^{15'}$ are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl which is substituted by E,

D is -CO-, -COO-, -S-, -SO-, -SO₂-, -O-, -NR²⁵-, -SiR³⁰R³¹-, -POR³²-, -CR²³=CR²⁴-, or -C \equiv C-, and E is -OR²⁹, -SR²⁹, -NR²⁵R²⁶, -COR²⁸, -COOR²⁷, -CONR²⁵R²⁶, -CN, -OCOOR²⁷, or halogen, wherein

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by $-O_7$ or

R²⁵ and R²⁶ together form a five or six membered ring, in particular

 R^{27} and R^{28} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by -O-,

 R^{29} is H, C_6 - C_{18} aryl, C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, and

 R^{32} is C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl.

3. (currently amended): A polymer according claim 1-or- 2, wherein R¹ and R² are independently of each other H, C₁-C₁8alkyl, C₁-C₁8alkyl which is substituted by E and/or interrupted by D, C₂-C₁8alkenyl, C₂-C₁8alkynyl, C₁-C₁8alkoxy, C₁-C₁8alkoxy which is substituted by E and/or

interrupted by D,
$$R^{15'}$$
, X^4 , X^4 , X^4 , X^5 , X^5 , X^5 , X^5 , X^5 , X^5 , X^6 ,

Contetroary, which optionally can be substituted, expectally
$$R^{6}$$
 R^{7} R^{7} R^{7} R^{7} R^{7} R^{6} R^{7} R^{7} R^{7} R^{7} R^{7} R^{7} R^{7} R^{7} R^{8} R^{8} R^{7} R^{8} R^{7} R^{7} R^{8} R^{8} R^{8}

wherein m1, m2, m3, m4, m5, m6 and m7 are integers of 1 to 10, in particular 1 to 3, X^6 is H, C_4 - C_{18} alkyl, C_4 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{30} aryl,

which optionally can be substituted, especially

G₁-C₁8alkoxy which is substituted by E-and/or interrupted by D, or C₂-C₂5aralkyl,

 X^4 is C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, which optionally can be substituted,

 X^5 is C_1 - C_{18} alkyl, C_6 - C_{24} aryl, C_6 - C_{24} aryl substituted by -OC₁- C_{18} alkyl or -OC₆- C_{24} aryl. \leftarrow R^{14} , R^{12} -and R^{13} -are independently of each other H, C_4 - C_{48} alkyl, C_4 - C_{48} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{48} alkoxy, C_4 - C_{48} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{48} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl -, and

D, E, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹⁴ and R¹⁵ are as defined in claim 2.

4. (currently amended): A polymer according to any of claims 1-to-3, comprising a co-monomer T

which is selected from the group consisting of
$$R^{13} = R^{13} =$$

,-or

, especially

especially
$$R^{g}$$
 R^{g} R

 R^{16} is H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl, C_7 - C_{25} aralkyl, or C_1 - C_{18} alkyl which is interrupted by -O-,

p is an integer from 1 to 10, especially 1, 2 or 3,

q is an integer from 1 to 10, especially 1, 2 or 3,

s is an integer from 1 to 10, especially 1, 2 or 3,

R⁶, R⁷, R⁸, R⁹ and R¹⁰ are as defined in claim 2,

 R^6 and R^7 are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl, which is substituted by E, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by

E, C₂-C₁₈alkenyl, C₂-C₁₈alkynyl, C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D, C₇-C₂₅aralkyl, or -CO-R²⁸,

 R^8 is C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, or C_7 - C_{25} aralkyl,

 R^9 and R^{10} are independently of each other C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, or

 R^9 and R^{10} form a five- or six-membered ring, which may optionally be substituted by R^6 , $R^{14'}$ and $R^{15'}$ are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl which is substituted by E,

<u>D is -CO-, -COO-, -S-, -SO-, -SO₂-, -O-, -NR²⁵-, -SiR³⁰R³¹-, -POR³²-, -CR²³=CR²⁴-, or -C≡C-, and E is -OR²⁹, -SR²⁹, -NR²⁵R²⁶, -COR²⁸, -COOR²⁷, -CONR²⁵R²⁶, -CN, -OCOOR²⁷, or halogen, wherein</u>

R²³, R²⁴, R²⁵ and R²⁶ are independently of each other H, C₆-C₁₈aryl, C₆-C₁₈aryl which is substituted by C₁-C₁₈alkyl, C₁-C₁₈alkoxy, C₁-C₁₈alkyl, or C₁-C₁₈alkyl which is interrupted by -O-, or

 R^{25} and R^{26} together form a five or six membered ring, R^{27} and R^{28} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by $-O_-$.

 R^{29} is H, C_6 - C_{18} aryl, C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by $-O_-$,

R³⁰ and R³¹ are independently of each other C₁-C₁₈alkyl, C₆-C₁₈aryl, or C₆-C₁₈aryl, which is substituted by C₁-C₁₈alkyl, and

 $\underline{\mathsf{R}^{32} \text{ is } C_1\text{-}C_{18}\text{alkyl}, \ C_6\text{-}C_{18}\text{aryl}, \ \text{or } C_6\text{-}C_{18}\text{aryl}, \ \text{which is substituted by } C_1\text{-}C_{18}\text{alkyl},}$

or

R⁹ and R¹⁰ together form a five or six membered ring that is substituted by R⁶,

R⁹ and R¹⁰ together form a group of formula =CR¹⁰⁰R¹⁰¹, wherein

 R^{100} and R^{101} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, or C_2 - C_{20} heteroaryl which is substituted by E, and

 R^{14} and R^{15} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, or C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E.

5. (currently amended): A polymer according to any of claim [[s]] 1, to 3, comprising repeating units of formula la or lb, wherein R¹ is a group of formula

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

wherein R2 is H,

 R^6 and R^7 are independently of each other H, C_1 - C_{12} alkyl, C_5 - C_{12} cycloalkyl, especially-eyclohexyl, C_6 - C_{24} aryl, especially phenyl, naphthyl, or biphenyl, which can be substituted by – C_1 - C_{12} alkyl, or C_1 - C_{18} alkoxy,

 R^8 is C_1 - C_{18} alkyl, C_1 - C_{18} alkyl interrupted by one or two oxygen atoms, or C_6 - C_{12} aryl, which optionally can be substituted by C_1 - C_{12} alkyl, or C_1 - C_{12} alkoxy,

R⁹ and R¹⁰ are independently of each other H, C₁-C₁₂alkyl, or C₁-C₁₂alkoxy,

 R^9 and R^{10} are independently of each other C_1 - C_{18} alkyl, especially C_4 - C_{12} alkyl, which can be interrupted by one or two oxygen atoms., and

X⁴ and X² are as defined in claim 1.

6.(currently amended): A polymer according to claim 5, comprising a co-monomer T which is selected from the group consisting of

 R^9 and R^{10} are independently of each other C_1 - C_{18} alkyl, especially C_4 - C_{42} alkyl, which can be interrupted by one or two oxygen atoms, or

 R^9 and R^{10} form a five or six membered carbocyclic ring, which optionally can be substituted by C_1 - C_8 alkyl.

7. (currently amended): A polymer according to claim 1, comprising a repeating unit of formula

x is in the range of 0.005 to 1, especially 0.4 to 0.6, and y is in the range of 0.995 to 0, especially 0.6 to 0.4, wherein the sum of x and y is 1,

$$\xrightarrow{R^6}$$
 $\xrightarrow{R^6}$
 $\xrightarrow{R^6}$

R1 is a group of formula

H, C₁-C₁₈alkyl, cyclohexyl, or C₁-C₁₈alkoxy, R² is H.

$$\mathbb{R}^{7}$$

X¹ and X² are independently of each other a group of formula

$$\mathbb{R}^{6}$$
 \mathbb{R}^{6} , especially , or , and \mathbb{R}^{9} \mathbb{R}^{10} , wherein s is one or two, and \mathbb{R}^{9}

T is a group of formula

, wherein s is one or two, and R9 and R10 are independently of each other C₁-C₁₈alkyl, especially C₄-C₁₂alkyl, which can be interrupted by one or two oxygen atoms, and

 R^6 and R^7 are independently of each other H, C_1 - C_{12} alkyl, C_5 - C_{12} cycloalkyl, such as cyclohexyl, C₆-C₂₄aryl, especially phonyl, naphthyl, or biphonyl, which can be substituted by -O-C₁-C₁₂alkyl, or C₁-C₁₈alkoxy.

8. (currently amended): A polymer according to claim 1, comprising a repeating unit having the formula IIa, IIb or IIc,

$$\begin{array}{c|c}
\hline
 & X^3 \\
\hline
 & N \\
\hline
 & N \\
\hline
 & R^4
\end{array}$$
(IIa), (IIb), (IIb), (IIc);

wherein
$$X^3$$
 is a group of the formula R^{56} , errors is a group

wherein the dotted line represent the bond to the pyrimidine ring,

R³. R⁴ and R⁵ are as defined in claim 1,

 R^{56} and R^{57} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl, which is substituted by E, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkoxy, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl,

 R^{58} is H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, or C_7 - C_{25} aralkyl,

 R^{59} and R^{60} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, or

R⁵⁹ and R⁶⁰ form a ring, especially a five- or six-membered ring,

 R^{71} is H, C_1 - C_{18} alkyl, - $C \equiv N$, - $CONR^{25}R^{26}$ or - $COOR^{27}$,

D is -CO-; -COO-; -OCOO-; -S-; -SO-; -SO₂-; -O-; -NR²⁵-; -SiR³⁰R³¹-; -POR³²-; -CR²³=CR²⁴-; or -C=C-; and

E is -OR²⁹; -SR²⁹; -NR²⁵R²⁶; -COR²⁸; -COR²⁷; -CONR²⁵R²⁶; -CN; -OCOOR²⁷; or halogen; wherein

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-; or

R²⁵ and R²⁶ together form a five or six membered ring, in particular-

 R^{27} and R^{28} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-, and R^{29} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, and

 R^{32} is C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl.

9. (currently amended): A polymer according to claim 8, wherein R³, R⁴ and R⁵ are independently of each other H, C₁-C₁8 alkyl, C₁-C₁8alkyl which is substituted by E and/or interrupted by D, C₂-C₁8alkenyl, C₂-C₁8alkynyl, C₁-C₁8alkoxy, C₁-C₁8alkoxy which is substituted by E and/or

interrupted by D,
$$R^{64}$$
 X^4 X^4 X^6 X^6 , X^6 X^6 , X^6 X^6 , X^6 X

m1, m2, m3, m4, m5, m6 and m7 are integers of 1 to 10, in particular 1 to 3, $X^6 \text{ is H, C}_4\text{-C}_{18}\text{alkyl, C}_4\text{-C}_{18}\text{alkoxy, C}_4\text{-C}_{18}\text{alkyl which is substituted by E and/or interrupted by D},$

$$C_6 - C_{24} \text{aryl, which can optionally be substituted, especially} \xrightarrow{R^{61}} R^{62} \xrightarrow{R^{56}} R^{56} \text{ or } R^{56} = 0$$

, C2-C20heteroaryl, which can optionally be substituted, especially

C₁₈alkoxy which is substituted by E and/or interrupted by D, or C₂-C₂₅aralkyl,

 X^4 is C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, or C_2 - C_{20} heteroaryl, which can optionally be substituted,

 X^5 is C_1 - C_{18} alkyl, C_6 - C_{24} aryl, or C_2 - C_{20} heteroaryl, which can optionally be substituted by -OC₁- C_{18} alkyl or -OC₆- C_{24} aryl,

 R^{61} , R^{62} -and R^{63} -are independently of each other-H, C_4 - C_{18} alkyl, C_4 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{48} alkoxy, C_4 - C_{48} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl,

 R^{64} and R^{65} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, or C_2 - C_{20} heteroaryl which is substituted by E, and

D. E. R⁵⁶, R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ are as defined in claim 8.

10. (currently amended): A polymer according to claim 8, or 9, comprising a co-monomer T which is

$$\begin{bmatrix}
R^{64} \\
R^{65}
\end{bmatrix}_{s} \qquad \begin{bmatrix}
R^{56} \\
R^{57}
\end{bmatrix}_{s}$$
The group consisting of

selected from the group consisting of

$$\mathbb{R}^{57}$$
 , or \mathbb{R}^{56} , \mathbb{R}^{56} , \mathbb{R}^{56} , \mathbb{R}^{56} , \mathbb{R}^{56} , \mathbb{R}^{56}

$$R^{56} \longrightarrow R^{57} \longrightarrow R^{56} \longrightarrow R^{57} \longrightarrow R$$

wherein p is an integer from 1 to 10, especially 1, 2 or 3,

q is an integer from 1 to 10, especially 1, 2 or 3,

s is an integer from 1 to 10, especially 1, 2 or 3,

 R^{72} is H, C_6 - C_{18} aryl, C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by -O-;

R⁵⁶, R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰, R⁶⁴ and R⁶⁵ are as defined in claim 8, or

R⁵⁹ and R⁶⁰ together can also form a group of formula =CR¹⁰⁰R¹⁰¹, wherein

 R^{100} and R^{101} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, or C_2 - C_{20} heteroaryl which is substituted by E, wherein E and D are defined as in claim 8.

11. (currently amended): A polymer according to any of claim [[s]] 8, to 10, comprising a repeating unit of formula IIb, especially a repeating unit of formula IIa, or IIc, and a co-monomer T, wherein

 X^3 is a group of the formula , wherein the dotted line represent the bond to the pyrimidine ring and R^{71} is H, alkyl, $-C \equiv N$, or $-COOR^{27}$, wherein R^{27} is H, or C_1-C_{18} alkyl; which optionally can be interrupted by one or more oxygen atoms, especially C_4-C_{42} alkyl, which can be interrupted by one or two oxygen atoms,

 R^3 , R^4 , and R^5 are independently of each other H,

T is a group of formula
$$R^{59}R^{60}$$
, or $R^{59}R^{60}$

T is a group of formula

wherein R^{59} and R^{60} are independently of each other C_1 - C_{18} alkyl, especially C_4 - C_{12} alkyl, which

can be interrupted by one or two oxygen atoms,

- 12. (currently amended): An optical device or a component therefore, comprising a substrate and a polymer according to any of claim [[s]] 1. to 11.
- 13 .(original): An optical device according to claim 12, wherein the optical device comprises an electroluminescent device.
- 14 .(currently amended): An optical device according to claim 13, wherein the electroluminescent device comprises
 - (a) a charge injecting layer for injecting positive charge carriers,
 - (b) a charge injecting layer for injecting negative charge carriers,
 - (c) a light-emissive layer located between the layers (a) and (b) comprising a polymer according to any of claim [[s]] 1. to 11.

15. (currently amended): A monomer of the formula

$$X^{11} = X^{1} \times X^{2} = X^{11}$$

$$X^{11} = X^{11} \times X^{2} = X^{11} \times X^{11} = X^{11} \times X^{2} = X^{11} \times X^{11} = X^{11} \times$$

 R^1 , R^2 , R^3 , R^4 and R^5 are independently of each other an organic substituent, especially C_{2^-} C_{30} aryl or a C_{2^-} C_{26} heteroaryl, which optionally can be substituted, X^1 , X^2 , and X^3 are independently of each other a divalent linking group, and

-B $\stackrel{\frown}{\searrow}$ $\stackrel{\frown}{\longrightarrow}$ $\stackrel{\frown}{\longrightarrow}$

16. (new): A polymer according to claim 3, wherein when R¹ or R² is R¹⁵

- = X^5 , C_6 - C_{24} aryl or C_2 - C_{20} heteroaryl, it is selected from the group consisting of the formulae

wherein m1, m2, m3, m4, m5, m6 and m7 are integers of 1 to 10,

 X^6 is H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{30} aryl, which optionally can be substituted, C_2 - C_{26} heteroaryl, which optionally can be substituted, C_2 -

 C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl,

 R^{11} , R^{12} and R^{13} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl.

17. (new): A polymer according to claim 7, comprising a repeating unit of formula

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

a co-monomer , wherein

x is in the range of 0.4 to 0.6, and y is in the range of 0.6 to 0.4, wherein the sum of x and y is 1.

18. (new): A polymer according to claim 8, wherein when
$$R^3$$
, R^4 or R^5 is R^{15} .

- = - X^5 , C_6 - C_{24} aryl or C_2 - C_{20} heteroaryl, it is selected from the group consisting of the formulae

m1, m2, m3, m4, m5, m6 and m7 are integers of 1 to 10, X^6 is H, C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, which can optionally be substituted, C_2 - C_{20} heteroaryl, which can optionally be substituted, C_2 - C_{18} alkoxy, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl,

 R^{61} , R^{62} and R^{63} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl.

19. (new): A monomer according to claim 15 of the formula

$$X^{11}$$
 X^{11} X^{11} X^{11} X^{11} X^{11} X^{11} X^{11} X^{11} X^{11} (IIIb),