Macroeconometrics

Exam No. 1 of 3

Winter 2017/2018

- Answer all of the following four exercises in either German or English.
- Hand in your solutions before Tuesday November, 7 2017 at 14:00.
- Please e-mail the solutions file to willi@mutschler.eu.
- The solution files should contain your executable (and commented) Matlab functions and script files as well as an additional documentation preferably as pdf, not doc or docx.
- I will confirm the receipt of your work also by email.
- All students must work on their own, please also give your student ID number.
- It is advised to regularly check the learnweb in case of urgent updates.
- If there are any questions, do not hesitate to contact Willi Mutschler.

1 AR(1) with time trend

Consider the AR(1) model with constant and time trend

$$y_t = c + d \cdot t + \phi y_{t-1} + u_t$$

where u_t is $iid(0, \sigma^2)$, $|\phi| < 1$, $c \in \mathbb{R}$ and $d \in \mathbb{R}$.

- 1. Compute the unconditional first and second moments, i.e. the unconditional mean, variance, autocovariance and autocorrelation of y_t .
- 2. Why is this process not covariance-stationary? How could one proceed to make it covariance-stationary?

2 Portmanteau Test For Residual Autocorrelation

The portmanteau test checks the null hypothesis that there is no remaining residual autocorrelation at lags 1 to h against the alternative that at least one of the autocorrelations is nonzero. In other words, the pair of hypotheses:

$$H_0: \rho_u(1) = \rho_u(2) = \dots = \rho_u(h) = 0$$

versus:

$$H_1: \rho_u(j) \neq 0$$
 for at least one $j = 1, ..., h$

is tested, where $\rho_u(j) = Corr(u_t, u_{t-j})$ denotes an autocorrelation coefficient of the residual series. Consider the Box-Pierce test statistic Q_h

$$Q_h = T \sum_{j=1}^h \hat{\rho}_u^2(j)$$

which has an approximate $\chi^2(h-p)$ -distribution if the null hypothesis holds and T is the length of the residual series. The null hypothesis of no residual autocorrelation is rejected for large values of the test statistic.

- 1. Load Quarterly data for the price index of US Gross National Product given in gnpdeflator.txt by simply calling load gnpdeflator.txt. This is a chain-type price index with basis year 2005. The data is seasonally adjusted and spans from 1954.Q4 to 2007.Q4.
- 2. Compute the inflation series. That is, take the first difference of log(gnpdeflator).
- 3. Use the Akaike information criteria to determine the lag length \hat{p} .
- 4. Estimate two models: (i) an $AR(\hat{p})$ model and (ii) an AR(1) model with OLS.
- 5. Set $h = \hat{p} + 10$ and compute Q_h as well as the corresponding p-value (chi2pdf(Q_h ,h-p)) for both models.
- 6. Comment, based on your findings, whether the residuals are white noise.

3 Maximum Likelihood Estimation

Consider the AR(1) model with constant

$$y_t = c + \phi y_{t-1} + u_t$$

Assume that the error terms u_t are i.i.d. Laplace distributed with known density

$$f_{u_t}(u) = \frac{1}{2} \exp\left(-|u|\right)$$

Note that $E(u_t) = 0$ and $Var(u_t) = 2$.

- 1. Derive the log-likelihood function conditional on the first observation.
- 2. Write a MATLAB function that calculates the conditional log-likelihood of c and ϕ .
- 3. Load the dataset LaPlace.txt by running load LaPlace.txt.
- 4. Numerically find the maximum likelihood estimates of c and ϕ by minimizing the negative conditional log-likelihood function.
- 5. Compare your results with the maximum likelihood estimate under the assumption of Gaussianity. That is, redo the estimation by minimizing the negative Gaussian log-likelihood function.

4 Bootstrap Test Statistics

Consider the AR(1) model with constant

$$y_t = c + \phi y_{t-1} + u_t$$

for t = 1, ..., T with i.i.d. error terms u_t and $E(u_t|y_{t-1}) = 0$. Usually, we construct a 95%-confidence interval for e.g. ϕ using the normal approximation

$$\left[\hat{\phi} - 1.96 \cdot SE(\hat{\phi}); \ \hat{\phi} + 1.96 \cdot SE(\hat{\phi})\right]$$

with $\hat{\phi}$ denoting the OLS estimate and $SE(\hat{\phi})$ the estimated standard error of ϕ . If one does not know the asymptotic distribution of a test statistic (or it has a very complicated form), one often relies on a nonparametric approach. To this end, we are going to "bootstrap", i.e. recompute the t-statistics a large number of times on artificial data generated from resampled residuals. We will do this step-by-step, i.e. write a Matlab script for the following:

- Simulate T = 100 observations with c = 1, $\phi = 0.8$ and errors drawn from the exponential distribution using u = exprnd(1,T,1)-1 such that $E(u_t) = 0$.
- Estimate the model with OLS and calculate the t-statistic $\tau = \frac{\hat{\phi}}{SE(\hat{\phi})}$.
- Store the OLS residuals in a vector $\hat{u} = (\hat{u}_2, \dots, \hat{u}_T)'$.
- Set B = 10000 and initialize the output vector $\tau^* = (\tau_1^*, ..., \tau_B^*)$.
- For b = 1, ..., B:
 - Draw a sample with replacement from \hat{u} and save it as $u^* = u_2^*, \dots, u_T^*$. Hint: For sampling with replacement use either the datasample or randi function. If you don't have the necessary toolbox installed you can also use ustar = uhat(ceil(size(uhat,1)*rand(T-1,1)),:).
 - Initialize an artificial time series y_t^* with T observations and set $y_1^* = y_1$.
 - For $t = 2, \ldots, T$ generate

$$y_t^* = \hat{c} + \hat{\phi} y_{t-1}^* + u_t^*$$

- Estimate an AR(1) model on this artificial dataset with OLS. Store the following t-statistic in your output vector at position b:

$$\tau^{\star} = \frac{\phi^{\star} - \hat{\phi}}{SE(\phi^{*})}$$

- Sort the output vector using sort such that $\tau_{(1)}^* \leq ... \leq \tau_{(B)}^*$.
- The bootstrap approximate confidence interval for ϕ is then

$$\left[\hat{\phi} - \tau^*_{((1-\alpha/2)R)} \cdot SE(\hat{\phi}); \ \hat{\phi} - \tau^*_{((\alpha/2)R)} \cdot SE(\hat{\phi}) \right]$$

Set $\alpha = 0.05$ and compare this with the normal approximation.

• Redo the exercise for T=30 and T=10000. Comment on your findings.