Homework 1 for MATH 104 - Solutions

Due: Tuesday, September 12, 9:40am in class

Problem 1

Determine whether the following sets are bounded (from below, above, or both). If so, determine their infimum and/or supremum and find out whether these infima/suprema are actually minima/maxima.

(1)
$$S_1 = \{ 1 + (-1)^n : n \in \mathbb{N} \};$$

Solution. For even n, we have $1 + (-1)^n = 2$, for odd n, we have $1 + (-1)^n = 0$. Therefore, $S_1 = \{0, 2\}$, and hence the set is finite, and hence bounded, with min $S_1 = 0$ and max $S_1 = 2$.

(2)
$$S_2 = \{\frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N}\};$$

Solution. Since $\frac{1}{n}$ is positive whenever n is positive, it follows that S_2 is bounded from below, 0 being a lower bound. We claim that the same holds for the set S_2 . Suppose $\inf S_2 > 0$. Since the sequence $\frac{1}{n}$ converges to 0, there exists an $n \in \mathbb{N}$ such that $\frac{1}{n} < \frac{\sup S_2}{2}$. Then $\frac{1}{n} + \frac{1}{n} \in S_2$, and $\frac{1}{n} + \frac{1}{n} < \sup S_2$, a contradiction. 0 is an infimum which is not contained in the set, so S_2 does not have a minimum.

The set S_2 is also bounded from above, since the sequence $(\frac{1}{n})$ is decreasing. 2 is an upper bound, which is also a maximum.

(3)
$$S_3 = \{x \in \mathbb{R} : x^2 + x + 1 \ge 0\};$$

Solution. We claim that $S_3 = \mathbb{R}$. To prove this, note that $x^2 + x + 1 = (x + \frac{1}{2})^2 + \frac{3}{4}$. Hence $x \in S_3$ iff $(x + \frac{1}{2})^2 + \frac{3}{4} \ge 0$. But $(x + \frac{1}{2})^2$ is always nonnegative, and $\frac{3}{4} > 0$, so this holds for any x. Therefore, S_3 is neither bounded from below nor from above. By the convention concerning $\infty, -\infty$, we have $\inf S_3 = -\infty$, and $\sup S_3 = \infty$.

(4)
$$S_4 = \{\cos(\frac{n\pi}{3}): n \in \mathbb{N}\}.$$

Solution. It is known from calculus (we may pove this formally later) that for all $x \in \mathbb{R}$, $-1 \le \cos(x) \le 1$. Therefore S_4 is bounded from below by -1, and from above by 1. Furthermore, for n = 0 we have $\cos(\frac{0\pi}{3}) = \cos(0) = 1$, and for n = 3 we have $\cos(\frac{3\pi}{3}) = \cos(\pi) = -1$. Therefore, inf $S_4 = \min S_4 = -1$, and $\sup S_4 = \max S_4 = 1$.

Problem 2

Prove that in any ordered field F, the following hold:

 $(1) \quad 0 < 1;$

Solution. If $1 \le 0$, then $0 \le -1$ by Theorem 3.2 (i). It follows from Theorem 3.2 (iv) that $0 \le (-1)^2$. Theorem 3.1 (iv) yields $(-1)^2 = 1^2 = 1$. Hence 0 = 1, in contradiction to the property of F being a field (which means that 0 and 1 must be distinct).

(2) if 0 < a < b, then $0 < b^{-1} < a^{-1}$ for $a, b \in F$.

Solution. Suppose 0 < a < b. It follows from Theorem 3.2 (vi) that a^{-1} , $b^{-1} > 0$. Hence we can use (O5) to infer

$$\alpha < b \ \Rightarrow \ \alpha \alpha^{-1} \leqslant b \alpha^{-1} \ \Rightarrow \ b^{-1} \leqslant \alpha^{-1} b b^{-1} \ \Rightarrow \ b^{-1} \leqslant \alpha^{-1}.$$

It remains to show that $b^{-1} \neq a^{-1}$. If $b^{-1} = a^{-1}$, we can infer

$$b^{-1} = a^{-1} \implies b^{-1}a = a^{-1}a \implies b^{-1}a = 1 \implies ab^{-1}b = b \implies a = b$$

contradicting a < b.

Problem 3

Let A and B sets of real numbers such that

- (i) $A \cup B = \mathbb{R}$,
- (ii) if a is in A and b is in B, then a < b,
- (iii) A contains no largest element (maximum).

Prove that B contains a smallest element (minimum).

Solution. It follows from (ii) that every $a \in A$ is a lower bound for the set B. In particular, B is bounded from below, and by completeness of \mathbb{R} there exists a real number $b_0 = \inf B$.

We have to show that $b_0 \in B$. Suppose $b_0 \notin B$. By (i), it follows that $b_0 \in A$. Since A does not have a maximal element (iii), there exists some $a_0 \in A$ with $b_0 < a_0$. But now (ii) implies that a_0 is a lower bound for B, in contradiction to $b_0 = \inf B$.

Problem 4

Let A and B nonempty sets of reals which are both bounded from above. Define the set A + B as

$$A + B = \{a + b : a \in A \text{ and } b \in B\}.$$

Show that $\sup A + B = \sup A + \sup B$.

Solution. We first show that A + B is bounded from above. We claim that $\sup A + \sup B$ is an upper bound on A + B. Let $c \in A + B$, i.e. c = a + b for some $a \in A$, $b \in B$. Then $a \le \sup A$ and $b \le \sup B$ and hence $c = a + b \le \sup A + \sup B$. It follows from this that $\sup A + B \le \sup A + \sup B$.

Suppose that $\sup A + B < \sup A + \sup B$. By the density of the rational numbers, we can choose some (rational) r such that $\sup A + B < r < \sup A + \sup B$. This implies that $r - \sup A < \sup B$. It follows from the definition of \sup that there must exist some $b \in B$ such that $r - \sup A < b \le \sup B$. (Otherwise, $r - \sup A$ would be an upper bound on B less than $\sup B$.) It follows that $r - b < \sup A$. The same reasoning as before yields the existence of some $a \in A$ with $a \in A$, $a \in A$. Hence we have $a \in A$ with $a \in A$, $a \in B$. But this contradicts $a \in A$, $a \in A$,

2