The Gas Station Problem

Samir Khuller

UMD

Azarakhsh Malekian

Julian Mestre UMD → MPI

General Description

- Suppose you want to go on a road trip across the US.
 You start from New York City and would like to drive to San Francisco.
- You have :
 - roadmap
 - gas station locations and their gas prices
- Want to:
 - minimize travel cost (gas expenses)

- Information:
 - map of the road: G=(V, E)
 - length of the roads: d: E→ R⁺
 - gas prices: c: V→ R⁺
- Constraint:
 - tank capacity: U
- Goal:
 - find a min. cost solution to go from s to t

- Two vertices s & t
- A fixed path

- Optimal solution involves stops at every station!
- Thus we permit at most Δ stops.

The Problem we want to solve

- Input:
 - Road map G=(V,E), source s, destination t
 - U: tank capacity
 - d: E→R⁺
 - c: V→R⁺
 - Δ: No. of stops allowed
 - μ: The initial amount of gas at s
- Goal:
 - Minimize the cost to go from s to t.
- Output:
 - The chosen path
 - The stops
 - The amount of gas filled at each stop
- We can assume we start with 0 gas at s.

Dynamic Programming

OPT[x,q,g] = Minimum cost to go from x to t in q stops, starting with g units of gas.

- Assuming all values are integral, we can find an optimal solution in O(n² Δ U²) time.
- Not a strongly polynomial time algorithm.

Why not Shortest Path?

- Shortest path is of length 17. Cost = $37 = 4 \times 7 + 3 \times 3$
- Cheapest path is of length 18. Cost = $28 = 4 \times 2 + 2 \times 7 + 2 \times 3$

Let the length of (u,v) be $d(u,v)\times c(u)$, if $d(u,v) \leq U$

- Shortest path has length 30. Cost = 1x10 + 2x10 = 30
- Cheapest path has length 35. Cost = $1 \times 10 + 5 \times 1 = 15$

Key Property

Suppose the optimal sequence of stops is $u_1, u_2, \dots, u_{\Delta}$

- If $c(u_i) < c(u_{i+1}) \Rightarrow$ Fill up the whole tank
- If c(u_i) > c(u_{i+1}) ⇒ Just fill enough to reach u_{i+1}.

Solution

OPT[x,q,g] =Minimum cost to go from x to t in q stops, starting with g units of gas.

- For each x we need to keep track of at most n different values of g.

Dynamic Program

OPT[x,q,g] =Minimum cost to go from x to t in q stops, starting with g units of gas.

$$\min_{v} \ \begin{cases} \text{OPT[v,q-1,0]} + (d(x,v)-g) \ c(x) & \text{if } c(v) \leq c(x) \ \& \ d(x,v) > g \\ \text{OPT[v,q-1,U-d(x,v)]} + (U-g) \ c(x) & \text{if } c(v) > c(x) \end{cases}$$

Problem Wrap Up

- The given DP table can be filled in:
 - $O(\Delta n^3)$ time by the direct and naïve solution
 - $O(\Delta n^2 \log n)$ time by a more intricate solution
- Faster algorithm using a different approach for the "all-pairs" version
- Faster algorithm for the fixed path with ∆=n with running time O(n log n)

Tour Gas Station problem

- Would like to visit a set of cities T.
- We have access to set of gas stations S.
- Assume gas prices are uniform.
 - The problem is NP-hard even with this restriction.
 - Guess the range of prices the optimal solution uses, pay extra factor in approximation ratio.
 - Deals with gas companies.

- There is a set **S** of **gas stations** and a set **T** of **cities**.
- Want to visit the cities with min cost.
- Gas prices are the **same**.

- Problem is APX-hard since it generalizes TSP.
- If each city has a gas station (T⊆S) the two problems are equivalent:
 - Let c(x,y) be shortest feasible path from x to y.
 - Triangle inequality holds in c

- The method works only when T⊆ S
 - c(x, y) depends on the last stop before x.
- Assumption:
 - Each city has a gas station within distance at most $\alpha U/2$.

A simple case

1. Find the TSP on the cities.

2. Start from $g(x_1)$, go to x_1

3. Continue along the tour until x_2 , farthest city at distance at most $(1-\alpha)U$

4. Go to $g(x_2)$, repeat the procedure from $g(x_2)$

5. Continue until you reach x₁.

For all edges (u,v) in the tour $d(u,v) \leq (1-\alpha)U$

> Let g(v) be nearest gas station to v

- In this solution
 - $|T(x_i, x_{i+1})| \le (1 \alpha)U$
 - $|T(x_i, x_{i+2})| > (1 \alpha)U$

Charge cost of trips to Gas Stations to the tour:

$$|T| + \alpha U k \le (1 + 2\alpha/(1-\alpha)) |T|$$
Round trips
to $g(x_i)$

- Obtain a bound of $(1+\alpha)/(1-\alpha)$ 1.5 c(OPT).
- Note that when α =0, then we get 1.5 c(OPT).
- Let c(x,y) be cheapest traversal to go from x to y, such that we start at g(x) and end at g(y).

Main problem

- Lack of triangle inequality.
- To get around it, use Christofides's method combine with previous approach to get a feasible solution.

- Suppose the salesman lives near a gas station.
- He wants to go to a set of cities.
- In each trip we can travel a distance of U.

Single Gas Station

- We are given G=(V,E)
- We want to cover the vertices in V
- We have only one gas station
- Dist. of the farthest city to the gas station is $\alpha U/2$.

Each cycle has length ≤ U

Naïve Solution

- Find the TSP on cities & gas station
- Chop the tour into parts of length $(1-\alpha)U$
- Connect each segment to the root
- This is a **1.5/(1-\alpha)** approximation
- Given by Li et al. [1991]

- Group cities based on their distance to the gas station
- Solve the problem for each group separately

Problem	Complexity	Approx. Ratio
2 Cities Graph Case	Single sink: $O(\Delta n^2 \log n)$ All pairs: $O(n^3 \Delta^2)$	
Fixed Path (∆=n)	O(n log n)	
Single gas station	APX-hard	O(log 1/(1-α))
Uniform Tour	APX-hard	Ο(1/(1-α))

Conclusion

- Incorporate the algorithms as part of a "tool" for path planning.
- Solve the tour gas station problem with arbitrary gas prices.
- Remove the assumption that every city has a gas station at distance αU/2.
- Planar instances

Thanks for your attention