Question 1:

- 1. For each of the following functions $f(x_1, x_2)$, find all critical points (i.e, all x_1, x_2 such that $\nabla f(x_1, x_2) = \mathbf{0}).$
 - (a) $f(x_1, x_2) = (4x_1^2 x_2)^2$
- (b) $f(x_1, x_2) = 2x_2^3 6x_2^2 + 3x_1^2x_2$
- (c) $f(x_1, x_2) = (x_1 2x_2)^4 + 64x_1x_2$ (d) $f(x_1, x_2) = x_1^2 + 4x_1x_2 + x_2^2 + x_1 x_2$

Answer:

Question 2:

- 2. Find the gradient of the following functions, where the space \mathbb{R} and $\mathbb{R}^{n\times n}$ are equipped with the standard inner product.
- (a) $f(\boldsymbol{x}) = \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} \boldsymbol{b}\|_2^2 + \lambda \|\boldsymbol{x}\|_2^2$, where $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $(\lambda > 0)$ are given.
- (b) $f(X) = \mathbf{b}^T X \mathbf{c}$, where $X \in \mathbb{R}^{n \times n}$ and $\mathbf{b}, \mathbf{c} \in \mathbb{R}^n$
- (c) $f(X) = bX^TXc$, where $X \in \mathbb{R}^{n \times n}$ and $b, c \in \mathbb{R}^n$

Answer:

Question 3:

3. Let $\{x_i, y_i\}_{i=1}^N$ be given with $x_i \in \mathbb{R}$ and $y_i \in \mathbb{R}$. Assume N < n. Consider the ridge regression

$$\text{minimize}_{\boldsymbol{a} \in \mathbb{R}^N} \sum_{i=1}^{N} (\langle \boldsymbol{\alpha}, \boldsymbol{x}_i \rangle - y_i)^2 + \lambda \|\boldsymbol{a}\|_2^2,$$

where $\lambda \in \mathbb{R}$ is a regularization parameter, and we set the bias b=0 for simplicity.

(a) Prove that the solution must be in the form of $\boldsymbol{a} = \sum_{i=1}^{N} c_i \boldsymbol{x}_i$ for some $\boldsymbol{c} = [c_1, c_2, \cdots, c_N]^T \in \mathbb{R}^N$.

(hint: similar to the proof of the representer theorem.)

(b) Re-express the minimization in terms of $c \in \mathbb{R}^N$, which has fewer unknowns than the original formulation as N < n.

Answer:

Question 4:

- 4. Let $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + 2 \mathbf{b}^T \mathbf{x} + c$, where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a symmetric positive semidefinite matrix, $b \in \mathbb{R}^n$, and $c \in \mathbb{R}$.
- (a) Prove that x is a global minimizer of f if and only if Ax = -b.
- (b) Prove that f is bounded below over \mathbb{R}^n if and only if $\mathbf{b} \in \{A\mathbf{y} : \mathbf{y} \in \mathbb{R}^n\}$.

Answer: