Obviously, A has rank 1. The right-hand side is

$$c = K_m$$
.

The symmetric positive definite $(p+q)\times(p+q)$ matrix P defining the quadratic functional is

$$P = X^{\top}X + \begin{pmatrix} \mathbf{1}_{p}\mathbf{1}_{p}^{\top} & -\mathbf{1}_{p}\mathbf{1}_{q}^{\top} \\ -\mathbf{1}_{q}\mathbf{1}_{p}^{\top} & \mathbf{1}_{q}\mathbf{1}_{q}^{\top} \end{pmatrix} + \frac{1}{2K_{s}}I_{p+q}, \quad \text{with} \quad X = \begin{pmatrix} -u_{1} & \cdots & -u_{p} & v_{1} & \cdots & v_{q} \end{pmatrix},$$

and

$$q = 0_{p+q}.$$

Since there are p+q Lagrange multipliers (λ,μ) , the $(p+q)\times(p+q)$ matrix P does not have to be augmented with zero's.

We ran our Matlab implementation of the above version of (SVM_{s5}) on the data set of Section 54.14. Since the value of ν is irrelevant, we picked $\nu = 1$. First we ran our program with K = 190; see Figure 54.24. We have $p_m = 23$ and $q_m = 18$. The program does not converge for $K \geq 200$.

Figure 54.24: Running (SVM_{s5}) on two sets of 30 points; K = 190.