Исследование колебательных процессов в колебательном контуре

Гордеев К.М. Можаров А.Р.

26 февраля 2024

Теоретическая часть

Базовые понятия

Колебательным контуром (последовательным) называется электрическая цепь, состоящая из резистора, конденсатора, индуктивности и источника, в общем случае, некоторого переменного, не обязательно гармонического, напряжения (рис. 1).

Рис. 1: Колебательный контур

Запишем второй закон Кирхгофа для данной цепи

$$U_L + U_R + U_C = \mathcal{E}(t)$$

Выразим каждое из напряжений через заряд

$$U_L = L \frac{dI}{dt} = L\ddot{q}$$
 $U_R = RI = R\dot{q}$ $U_C = \frac{q}{C}$

При подстановке получим уравнение колебательного контура

$$L\ddot{q} + R\dot{q} + \frac{q}{C} = \mathcal{E}(t)$$

Поделив на L и сделав классические замены получим ypashenue rapmonuveckoro ocuun-namopa

$$\ddot{q} + 2\delta\dot{q} + \omega_0^2 q = f(t)$$

Где $\delta = \frac{R}{2L}$ называется декрементом затухания, $\omega_0 = \frac{1}{\sqrt{LC}}$ собственной частотой колебательного контура, f(t) вынуждающей силой.

Если $\delta \neq 0$, то колебания называются затухающими (при $\delta = 0$, соответственно, незатухающими), а при $f(t) \not\equiv 0$ колебания называют вынужденными (в противном случае, соответственно, называют свободными).

Уравнение гармонического осциллятора (в общем случае) — это неоднородное дифференциальное уравнение второго порядка, решением которого является сумма общего решения однородного дифференциального уравнения (при $f(t) \equiv 0$, т.е. когда в осцилляторе происходят свободные колебания) и любого частного решения исходного неоднородного дифференциального уравнения.

$$x_{\text{o.H.}} = x_{\text{o.o.}} + x_{\text{ч.н.}}$$

(сокращения имеют смысл: о.н. — общее неоднородное, о.о. — общее однородное, ч.н. — частное неоднородное)

Uиклическая частота колебаний ω — это величина, равная числу полных колебаний в системе, совершаемых за 2π секунд. Более глубокий физический смысл эта величина имеет при рассмотрении вращательного движения, при котором она будет в точности равна угловой скорости вращения $\dot{\varphi}$.

 $\it Vacmoma$ колебаний $\it v$ — это количество колебаний за секунду. Из определения можно установить нехитрую связь с циклической частотой

$$\omega = 2\pi\nu$$

 Π ериодом T колебаний называется время, за которое система совершает одно полное колебание. Таким образом величина, обратная периоду, есть количество колебаний за секунду, т.е. частота.

$$T = \frac{1}{\nu} = \frac{2\pi}{\omega}$$

Свободные затухающие колебания

Найдём решение в случае свободных затухающих колебаний ($\delta \neq 0, f(t) \equiv 0$). Будем искать его в виде $e^{\lambda t}$. Тогда

$$\begin{split} \lambda^2 e^{\lambda t} + 2\delta \lambda e^{\lambda t} + \omega_0^2 e^{\lambda t} &= 0 \\ \lambda^2 + 2\delta \cdot \lambda + \omega_0^2 &= 0 \\ \lambda &= -\delta \pm \sqrt{\delta^2 - \omega_0^2} \\ q_{\text{o.o.}}(t) &= c_1 \cdot e^{(-\delta + \sqrt{\delta^2 - \omega_0^2})t} + c_2 \cdot e^{(-\delta - \sqrt{\delta^2 - \omega_0^2})t} \end{split}$$

Далее в зависимости от δ^2 и ω_0^2 возможны три случая:

- 1. Случай $\delta^2 \omega_0^2 \geqslant 0$. В этом случае в показателях экспонент будет находиться действительное число, что означает, что процесс не будет периодическим.
- 2. Случай $\delta^2 \omega_0^2 < 0$. В этом случае под корнем будет стоять отрицательное число, т.е. показатель экспоненты станет комплексным.

Первый случай не представляет особого интереса, поэтому рассмотрим подробнее второй случай. Заменим $\sqrt{\omega_0^2 - \delta^2}$ на ω . В этом случае решение примет вид

$$q(t) = c_1 \cdot e^{(-\delta + i\omega)t} + c_2 \cdot e^{(-\delta - i\omega)t}$$

Используя формулу Эйлера $(e^{i\varphi}=\cos(\varphi)+i\cdot\sin(\varphi))$ и сделав более приятный коэффициент перед синусом (так можно делать т.к. требуется лишь линейная независимость решений) получим более привычный вид

$$q(t) = Ae^{-\delta t}cos(\omega t) + Be^{-\delta t}sin(\omega t)$$

Приведём к другой форме записи. Вынесем за скобку $e^{-\delta t}\sqrt{A^2+B^2}$.

$$q(t) = \sqrt{A^2 + B^2} \cdot e^{-\delta t} \left(\frac{A}{\sqrt{A^2 + B^2}} cos(\omega t) + \frac{B}{\sqrt{A^2 + B^2}} sin(\omega t) \right)$$

Заметим, что (т.к. $A, B \in \mathbb{R}$) можно представить

$$\frac{A}{\sqrt{A^2+B^2}}=\cos(\varphi) \qquad -\frac{B}{\sqrt{A^2+B^2}}=\sin(\varphi) \qquad \varphi=-arc\ tg\left(\frac{B}{A}\right)$$

(будет выполнятся *основное тригонометрическое тождество*), тогда мы получим формулу косинуса суммы

$$q(t) = \sqrt{A^2 + B^2} \cdot e^{-\delta t} (\cos(\omega t)\cos(\varphi) - \sin(\omega t)\sin(\varphi)) = \sqrt{A^2 + B^2} \cdot e^{-\delta t}\cos(\omega t + \varphi)$$

И т.к. $A,B\in\mathbb{R},$ то можно обозначить $\sqrt{A^2+B^2}=C\in\mathbb{R}$ — амплитуда колебаний, тогда получим

$$q(t) = Ce^{-\delta t}cos(\omega t + \varphi)$$

Т.е. мы получили уравнение гармонических колебаний с экспоненциально убывающей со временем амплитудой.

Погарифмическим декрементом колебаний называется отношение амплитуд (предшествующей к данной).

$$d = \ln\left(\frac{q_n}{q_{n+1}}\right)$$

Таким образом логарифмический декремент есть величина, обратная количеству N колебаний, за которое амплитуда уменьшится в e раз.

В случае свободных колебаний без затухания, амплитуда колебаний сохраняется, поэтому для колебаний в идеальном колебательном контуре (без потерь, т.е. R=0 или,по другому, $\delta=0$) d=0. Таким образом, чем ближе d к нулю, тем лучше колебательный контур.

В случае затухающих колебаний отношение амплитуд колебаний будет выглядеть следующим образом

$$d = \ln\left(\frac{Ce^{-\delta t}}{Ce^{-\delta(t+T)}}\right) = \ln\left(\frac{1}{e^{-\delta T}}\right) = \ln\left(e^{\delta T}\right) = \delta T$$

Заметим, что формула остаётся верной и для незатухающих колебаний (просто $\delta=0$, откуда d=ln(1)=0, что согласуется с формулой).

 \mathcal{A} обротностью колебаний называется величина, в π раз большая количества колебаний, за которое амплитуда последних уменьшается в e раз.

$$Q = \pi N = \frac{\pi}{d}$$

Добротность имеет физическим смыслом отношение энергии, запасенной в колебательной системе, к энергии, теряемой системой за один период колебания.

Запишем выражения для введённых величин в приложении к используемому контору

$$\omega = \sqrt{\omega_0^2 - \delta^2} = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} = \frac{1}{2LC}\sqrt{4LC - R^2C^2}$$

$$T = \frac{2\pi}{\omega} = \frac{4LC}{\sqrt{4LC - R^2C^2}}$$

$$d = \delta T = \frac{2RC}{\sqrt{4LC - R^2C^2}} \qquad Q = \frac{\pi}{d} = \frac{\pi}{4RC}\sqrt{4LC - R^2C^2}$$

При $\delta \ll \omega_0$ эти формулы перейдут в

$$\omega \approx \omega_0 = \frac{1}{\sqrt{LC}}$$
 $T \approx 2\pi\sqrt{LC}$

$$d \approx \pi R \sqrt{\frac{C}{L}}$$
 $Q \approx \frac{1}{R} \sqrt{\frac{L}{C}}$

Вынужденные колебания

Рассмотрим случай, когда колебания в контуре происходят под действием гармонической силы. В более общем случае если сила изменяется не по гармоническому закону, то разложением её в тригонометрический ряд Фурье сводим задачу к случаю гармонической силы. Тогда сумма частных решений дифференциального уравнения для каждой гармоники даст частное решение для исходной негармонической силы.

Пусть $f(t) = f_0 \cdot cos(\omega t)$, где $f_0 = \frac{\mathcal{E}_0}{L}$, тогда решение дифференциального уравнения

$$\ddot{q} + 2\delta\dot{q} + \omega_0^2 q = f_0 \cdot \cos(\omega t)$$

соответствующее установившемуся режиму колебаний, будет иметь вид

$$q_{\text{\tiny \tiny T.H.}}(t) = \frac{f_0}{\sqrt{(\omega^2 - \omega_0^2)^2 + 4\delta^2\omega^2}} \cdot \cos\left(\omega t + arc\ tg\left(\frac{2\delta\omega}{\omega^2 - \omega_0^2}\right)\right)$$

 ${
m T.e.}$ при установлении колебаний система будет колебаться с частотой вынуждающей силы, но со сдвигом по фазе — ${
m c}$ некоторым откликом.

До установления колебаний в системе будет действовать суперпозиция колебаний, но собственные колебания системы, как уже было сказано, экспоненциально затухают, поэтому со временем они станут практически не заметны.

Продифференцировав зависимость заряда по времени получим ток

$$I(t) = \frac{\omega f_0}{\sqrt{(\omega^2 - \omega_0^2)^2 + 4\delta^2 \omega^2}} = \frac{\mathcal{E}_0}{\sqrt{\left(\omega L - \frac{1}{\omega C}\right)^2 + R^2}}$$

Заметим, что в знаменателе стоит модуль импеданса колебательного контура, т.е. это выражение можно было получить и из *законов Кирфгофа* для переменных токов.

Зная ток, можно получить амплитуды напряжений на элементах контура: на индуктивности, на конденсаторе и на резисторе они будут равны, соответственно

$$U_{L} = \frac{\omega L \mathcal{E}_{0}}{\sqrt{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}}} \cdot e^{i\frac{\pi}{2}}$$

$$U_{C} = \frac{\mathcal{E}_{0}}{\omega C \sqrt{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}}} \cdot e^{-i\frac{\pi}{2}}$$

$$U_{R} = \frac{R\mathcal{E}_{0}}{\sqrt{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}}}$$

Практическая часть

1. Исследование собственных колебаний

Построены графики практических зависимостей d (рис. 2), Q (рис. 3), δ (рис. 4) и T (рис. 5) от R и посчитаны (T=480 мкс, C=32.3 нФ) индуктивность $L=0.181\pm0.047$ Гн и критическое сопротивление контура $R_{\rm kp.}=2\sqrt{\frac{L}{C}}=4730$ Ом.

Теоретические зависимости d, Q, δ и T от R имеют вид

$$d(R)=k_d\cdot R \qquad Q(R)=\frac{k_Q}{R} \qquad \delta(R)=k_\delta\cdot R \qquad T(R)=k_T$$
 где $k_d=\pi\sqrt{\frac{C}{L}},\ k_Q=\sqrt{\frac{L}{C}},\ k_\delta=\frac{1}{2L},\ k_T=2\pi\sqrt{LC}.$

2. Исследование вынужденных колебаний

На рис. 6 и рис. 7 показаны практические зависимости напряжений на различных элементах контура при сопротивлениях, соответственно, R = 50 Ом и R = 500 Ом.

На самом деле, ввиду неидеальности контура у последнего имеется внутреннее сопротивление $r \approx 80$ Ом, поэтому в формулах для U_C , U_L и U_R в модуле импеданса системы должно браться полное сопротивление системы R+r, но эта поправка не вносит изменений в импеданс резистора и он берётся просто R.

$$I(t) = \frac{\omega f_0}{\sqrt{(\omega^2 - \omega_0^2)^2 + 4\delta^2 \omega^2}} = \frac{\mathcal{E}_0}{\sqrt{\left(\omega L - \frac{1}{\omega C}\right)^2 + (R+r)^2}}$$

$$U_L = \frac{\omega L \mathcal{E}_0}{\sqrt{(R+r)^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} \cdot e^{i\frac{\pi}{2}}$$

$$U_C = \frac{\mathcal{E}_0}{\omega C \sqrt{(R+r)^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} \cdot e^{-i\frac{\pi}{2}}$$

$$U_R = \frac{R \mathcal{E}_0}{\sqrt{(R+r)^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

3. Исследование процессов установления вынужденных колебаний

На рис. 10 показана практическая зависимость времени установления колебаний в контуре от сопротивления резистора.

Рис. 2: d(R)

Рис. 3: Q(R)

Рис. 4: $\delta(R)$

Рис. 5: T(R)

Рис. 6: Экспериментальные значения при $R=50~{
m Om}$

Рис. 7: Экспериментальные значения при $R=500~{
m Om}$

Рис. 8: Теоретические значения при $R=50~{
m Om}$

Рис. 9: Теоретические значения при $R=500~{
m Om}$

Рис. 10: Установление колебаний

R, Om	q_n	q_{n+1}
0	1.46	1.32
20	1.44	1.26
50	1.39	1.16
100	1.32	1.03
230	1.15	0.75
500	0.88	0.4
1000	0.54	0.12

Таблица 1: Собственные колебания

	77 D	TT 15	TT 10
ν, κΓιι	U_C , B	U_L , B	U_R , B
1000	0.31	0.07	0.0
1100	0.33	0.09	0.0
1200	0.35	0.12	0.0
1300	0.39	0.15	0.0
1400	0.43	0.19	0.01
1500	0.49	0.25	0.01
1600	0.57	0.33	0.01
1700	0.69	0.45	0.12
1800	0.89	0.65	0.02
1900	1.28	1.05	0.03
1950	1.67	1.44	0.04
2000	2.36	2.15	0.05
2025	2.94	2.75	0.06
2050	3.76	3.6	0.08
2060	4.13	4.0	0.09
2070	4.49	4.39	0.1
2080	4.76	4.7	0.11
2085	4.85	4.81	0.11
2088	4.88	4.86	0.11
2090	4.89	4.88	0.11
2091	4.89	4.88	0.11
2092	4.89	4.89	0.11
2093	4.89	4.89	0.11
2094	4.89	4.89	0.11
2095	4.88	4.89	0.11
2096	4.88	4.89	0.11
2097	4.86	4.88	0.11
2099	4.84	4.87	0.11
2102	4.79	4.84	0.11
2105	4.74	4.79	0.11
2110	4.61	4.69	0.11
2120	4.29	4.4	0.1
2130	3.94	4.07	0.09
2150	3.25	3.42	0.08
2200	2.09	2.31	0.05
2300	1.14	1.37	0.03
2400	0.76	0.99	0.02
2500	0.57	0.8	0.02
2600	0.45	0.68	0.01
2700	0.37	0.6	0.01
2800	0.31	0.54	0.01
2900	0.26	0.5	0.01
3000	0.23	0.47	0.01
	1	1	1

Таблица 2: Вынужденные колебания $R=50~\mathrm{Om}$

ν, кΓц	U_C , B	U_L , B	U_R , B
1000	0.31	0.07	0.03
1100	0.32	0.09	0.04
1200	0.35	0.03	0.04
1300	0.37	0.11	0.04
1400	0.41	0.14	0.06
1500	0.46	0.13	0.07
1600	0.52	0.25	0.09
1700	0.6	0.39	0.03
1800	0.7	0.51	0.13
1900	0.82	0.67	0.17
1950	0.88	0.76	0.18
2000	0.93	0.85	0.2
2030	0.95	0.89	0.21
2040	0.96	0.9	0.21
2045	0.96	0.91	0.21
2050	0.96	0.92	0.21
2055	0.96	0.92	0.21
2060	0.96	0.92	0.21
2063	0.96	0.93	0.21
2065	0.96	0.93	0.21
2066	0.96	0.93	0.21
2067	0.96	0.93	0.21
2068	0.96	0.93	0.21
2069	0.96	0.93	0.21
2070	0.96	0.94	0.21
2072	0.96	0.94	0.21
2075	0.96	0.94	0.21
2080	0.96	0.94	0.21
2090	0.96	0.95	0.21
2100	0.95	0.96	0.21
2110	0.95	0.96	0.21
2120	0.94	0.96	0.21
2125	0.94	0.96	0.21
2128	0.94	0.96	0.21
2131	0.93	0.96	0.21
2133	0.93	0.96	0.21
2134	0.93	0.96	0.21
2135	0.93	0.96	0.21
2137	0.93	0.96	0.21
2140	0.93	0.96	0.21
2145	0.92	0.97	0.21
2150	0.91	0.96	0.21
2160	0.9	0.96	0.21
2170	0.89	0.95	0.21
2190	0.87	0.94	0.2
2200	0.85	0.94	0.2
2300	0.71	0.84	0.17
2400	0.57	0.75	0.15
2500	0.47	0.67	0.12
2600	0.39	0.6	0.11
2700	0.33	0.54	0.09
2800	0.28	0.5	0.08
2900	0.25	0.47	0.08
3000	0.22	0.44	0.07
	I	I	

Таблица 3: Вынужденные колебания $R=500~{
m Om}$

R, кОм	τ , MC
0	5.2
0.02	3.8
0.05	2.8
0.1	1.6
0.23	1.4
0.5	0.7

Таблица 4: Установление колебаний