Logic PD

AM3x SOM-M2

Report No. LGPD0023.1

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2010 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: July 7, 2010 Logic PD

Model: AM3x SOM-M2

Emissions					
Test Description	Specification	Test Method	Pass/Fail		
Occupied Bandwidth	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Output Power	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Band Edge Compliance	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Spurious Conducted Emissions	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Power Spectral Density	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Spurious Radiated Emissions	FCC 15.247:2010	ANSI C63.10:2009	Pass		
AC Powerline Conducted Emissions	FCC 15.207:2010	ANSI C63.10:2009	Pass		

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 9349 W Broadway Ave. Brooklyn Park, MN 55445

Phone: (763) 425-2281 Fax: (763) 424-3469

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834E-1).

Approved By:

Don Facteau, IS Manager

GAJVN

NVLAP Lab Code: 200881-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 06/29/09

Revision Number	Description	Date	Page Number
00	None		

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

NVLAP LAB CODE 200881-0

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NEMKO

Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Accreditations and Authorizations

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-1784, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Rev 11/17/06

Party Requesting the Test

Company Name:	Logic PD
Address:	411 Washington Avenue North, Suite 400
City, State, Zip:	Minneapolis, MN 55401
Test Requested By:	Nathan Kro
Model:	AM3x SOM-M2
First Date of Test:	June 30, 2010
Last Date of Test:	July 7, 2010
Receipt Date of Samples:	June 29, 2010
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):
One combination 802 11h/g/n - Bluetooth radio module

Testing Objective:	
Seeking approval for the Bluetooth portion of the radio under FCC 15.247.	

Configurations

Revision 9/21/05

CONFIGURATION 1 LGPD0023

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
SOM Module	Logic PD	1015597 Rev A	2010M00186	

Peripherals in test setup boundary				
Description Manufacturer Model/Part Number Serial Number				
Breakout Board	Logic PD	1014472 Rev B	4909M00209	
Power Brick	Sceptre	AD2405A	PS2D-5038APL6A	

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
DC Power	No	1.65m	No	Breakout Board	Power Brick	
AC Power	No	1.5m	No	Power Brick	AC Mains	
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.						

CONFIGURATION 2 LGPD0023

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
SOM Module	Logic PD	1015597 Rev A	2010M00186	

Peripherals in test setup boundary				
Description Manufacturer Model/Part Number Serial Number				
Breakout Board	Logic PD	1014472 Rev B	4909M00209	
Power Brick	Sceptre	AD2405A	PS2D-5038APL6A	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	No	1.5m	No	Power Brick	AC Mains
DC Power	No	1.35m	Yes	Breakout Board	Power Brick
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Revision 4/28/03

	Equipment modifications						
Item	Date	Test	Modification	Note	Disposition of EUT		
1	6/30/2010	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
2	6/30/2010	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
3	6/30/2010	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
4	7/2/2010	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
5	7/6/2010	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
6	7/6/2010	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.		
7	7/7/2010	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.		

BLUETOOTH APPROVALS

FCC Procedure Received from Joe Dichoso on 2-15-02

The following exhibit indicates the FCC Spread Spectrum requirements in Section 15.247 for devices meeting the Bluetooth Specifications in the 2.4 GHz band as of February 2001 operating in the USA. The purpose of this exhibit is to help expedite the approval process for Bluetooth devices. This exhibit provides items that vary for each device and also provides a list of items that are common to Bluetooth devices that explains the remaining requirements. The list of common items can be submitted for each application for equipment authorization. This exhibit only specifies requirements in Section 15.247, requirements in other rule Sections for intentional radiators such as in Section 15.203 or 15.207 must be also be addressed. A Bluetooth device is a FHSS transmitter in the data mode and applies as a Hybrid spread spectrum device in the acquisition mode.

For each individual device, the following items, 1-7 will vary from one device to another and must be submitted.

- 1) The occupied bandwidth in Section 15.247(a)(1)(ii).
- 2) Conducted output power specified in Section 15.247(b)(1).
- 3) EIRP limit in Section 15.247(b)(3).
- 4) RF safety requirement in Section 15.247(b)(4)
- 5) Spurious emission limits in Section 15.247(c).
- 6) Processing gain and requirements for Hybrids in Section 15.247(f) in the acquisition mode.
- 7) Power spectral density requirement in Section 15.247(f) in the acquisition mode.

For all devices, the following items, 1-12, are common to all Bluetooth devices and will not vary from one device to another. This list can be copied into the filing.

1 Output power and channel separation of a Bluetooth device in the different operating modes:

The different operating modes (data-mode, acquisition-mode) of a Bluetooth device don't influence the output power and the channel spacing. There is only one transmitter which is driven by identical input parameters concerning these two parameters.

Only a different hopping sequence will be used. For this reason, the RF parameters in one op-mode is sufficient.

2 Frequency range of a Bluetooth device:

The maximum frequency of the device is: 2402 – 2480 MHz.

This is according the Bluetooth Core Specification V 1.0B (+ critical errata) for devices which will be operated in the USA. Other frequency ranges (e.g. for Spain, France, Japan) which are allowed according the Core Specification must **not be** supported by the device.

3 Co-ordination of the hopping sequence in data mode to avoid simultaneous occupancy by multiple transmitters:

Bluetooth units which want to communicate with other units must be organized in a structure called piconet. This piconet consist of max. 8 Bluetooth units. One unit is the master the other seven are the slaves. The master co-ordinates frequency occupation in this piconet for all units. As the master hop sequence is derived from it's BD address which is unique for every Bluetooth device, additional masters intending to establish new piconets will always use different hop sequences.

4 Example of a hopping sequence in data mode:

Example of a 79 hopping sequence in data mode:

40, 21, 44, 23, 42, 53, 46, 55, 48, 33, 52, 35, 50, 65, 54, 67,

56, 37, 60, 39, 58, 69, 62, 71, 64, 25, 68, 27, 66, 57, 70, 59,

72, 29, 76, 31, 74, 61, 78, 63, 01, 41, 05, 43, 03, 73, 07, 75,

09, 45, 13, 47, 11, 77, 15, 00, 64, 49, 66, 53, 68, 02, 70, 06,

01, 51, 03, 55, 05, 04

5 Equally average use of frequencies in data mode and short transmissions:

The generation of the hopping sequence in connection mode depends essentially on two input values:

- 1. LAP/UAP of the master of the connection
- 2. Internal master clock

The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24 MSB's of the 48 BD_ADDRESS. The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For synchronization with other units, only the offsets are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5 µs. The clock has a cycle of about one day (23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire LAP (24 bits), 4 LSB's (4 bits) (Input 1) and the 27 MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate the sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions, the Bluetooth system has the following behavior: The first connection between the two devices is established, a hopping sequence is generated. For transmitting the wanted data, the complete hopping sequence is not used and the connection ends. The second connection will be established. A new hopping sequence is generated. Due to the fact that the Bluetooth clock has a different value, because the period between the two transmission is longer (and it cannot be shorter) than the minimum resolution of the clock (312.5 μ s). The hopping sequence will always differ from the first one.

6 Receiver input bandwidth, synchronization and repeated single or multiple packets:

The input bandwidth of the receiver is 1 MHz.

In every connection, one Bluetooth device is the master and the other one is the slave. The master determines the hopping sequence (see chapter 5). The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection (e.g. single or multi-slot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing is according to the packet type of the connection. Also, the slave of the connection uses these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence

7 Dwell time in data mode

The dwell time of 0.3797s within a 30 second period in data mode is independent from the packet type (packet length). The calculation for a 30 second period is a follows: Dwell time = time slot length * hop rate / number of hopping channels *30s Example for a DH1 packet (with a maximum length of one time slot) Dwell time = $625 \, \mu s \, * \, 1600 \, 1/s \, / \, 79 \, * \, 30s = 0.3797s$ (in a 30s period)

For multi-slot packet the hopping is reduced according to the length of the packet.

Example for a DH5 packet (with a maximum length of five time slots)

Dwell time = $5 * 625 \mu s * 1600 * 1/5 * 1/s / 79 * 30s = 0.3797s$ (in a 30s period)

This is according the Bluetooth Core Specification V 1.0B (+ critical errata) for all Bluetooth devices. Therefore, all Bluetooth devices **comply** with the FCC dwell time requirement in the data mode.

This was checked during the Bluetooth Qualification tests.

The Dwell time in hybrid mode is approximately 2.6 mS (in a 12.8s period)

8 Channel Separation in hybrid mode

The nominal channel spacing of the Bluetooth system is 1Mhz independent of the operating mode.

The maximum "initial carrier frequency tolerance" which is allowed for Bluetooth is fcenter = 75 kHz.

This was checked during the Bluetooth Qualification tests (Test Case: TRM/CA/07-E) for three frequencies (2402, 2441, 2480 MHz).

9 Derivation and examples for a hopping sequence in hybrid mode

For the generation of the inquiry and page hop sequences the same procedures as described for the data mode are used (see item 5), but this time with different input vectors:

**For the inquiry hop sequence, a predefined fixed address is always used. This results in the same 32 frequencies used by all devices doing an inquiry but every time with a different start frequency and phase in this sequence.

**For the page hop sequence, the device address of the paged unit is used as the input vector. This results in the use of a subset of 32 frequencies which is specific for that initial state of the connection establishment between the two units. A page to different devices would result in a different subset of 32 frequencies.

So it is ensured that also in hybrid mode, the frequency is used equally on average. Example of a hopping sequence in inquiry mode:

48, 50, 09, 13, 52, 54,41, 45, 56, 58, 11, 15, 60, 62, 43, 47, 00, 02, 64, 68, 04, 06, 17, 21, 08, 10, 66, 70, 12, 14, 19, 23

Example of a hopping sequence in paging mode:

08, 57, 68, 70, 51, 02, 42, 40, 04, 61, 44, 46, 63, 14, 50, 48, 16, 65, 52, 54, 67, 18, 58, 56, 20, 53, 60, 62, 55, 06, 66, 64

10 Receiver input bandwidth and synchronization in hybrid mode:

The receiver input bandwidth is the same as in the data mode (1 MHz). When two Bluetooth devices establish contact for the first time, one device sends an inquiry access code and the other device is scanning for this inquiry access code. If two devices have been connected previously and want to start a new transmission, a similar procedure takes place. The only difference is, instead of the inquiry access code, a special access code, derived from the BD_ADDRESS of the paged device will be, will be sent by the master of this connection. Due to the fact that both units have been connected before (in the inquiry procedure) the paging unit has timing and frequency information about the page scan of the paged unit. For this reason the time to establish the connection is reduced.

11 Spread rate / data rate of the direct sequence signal

The Spread rate / Data rate in inquiry and paging mode can be defined via the access code. The access code is the only criterion for the system to check if there is a valid transmission or not. If you regard the presence of a valid access code as one bit of information, and compare it with the length of the access code of 68 bits, the Spread rate / Data rate will be 68/1.

12 Spurious emission in hybrid mode

The Dwell in hybrid mode is shorter than in data mode. For this reason the spurious emissions average level in data mode is worst case. The spurious emissions peak level is the same for both modes.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT								
	Description	Manufacturer	Model	ID	Last Cal.	Interval		
	Spectrum Analyzer	Agilent	E4446A	AAT	2/24/2010	12		

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The 20 dB occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting in a no hop mode at its maximum data rate for each of the three different modulations available.

EMC EUT: AM3x SOM-M2 Serial Number: 2010M00186 Customer: Logic PD Attendees: None Project: None Tested by: Trevor Buls TEST SPECIFICATIONS FCC 15.247:2010 COMMENTS None DEVIATIONS FROM TEST STAND/ No Deviations Configuration # 1	ARD	Power: 120VAC/60Hz Test Method ANSI C63.10:20	To	Work Order: LGPD002 Date: 06/30/10 emperature: 23.25°C Humidity: 43% metric Pres.: 1025.1 Job Site: MN05	23
Serial Number: 2010M00186 Customer: Logic PD Attendees: None Project: None Tested by: Trevor Buls TEST SPECIFICATIONS CCC 15.247:2010 COMMENTS Idone DEVIATIONS FROM TEST STANDA	ARD	Test Method ANSI C63.10:20	To	Date: 06/30/10 emperature: 23.25°C Humidity: 43% metric Pres.: 1025.1	23
Customer: Logic PD Attendees: None Project: None Tested by: Trevor Buls EST SPECIFICATIONS CC 15.247:2010 OMMENTS one EVIATIONS FROM TEST STANDA o Deviations	2	Test Method ANSI C63.10:20	Baron	emperature: 23.25°C Humidity: 43% metric Pres.: 1025.1	
Attendees: None Project: None Tested by: Trevor Buls EST SPECIFICATIONS CC 15.247:2010 OMMENTS one EVIATIONS FROM TEST STAND o Deviations	2	Test Method ANSI C63.10:20	Baron	Humidity: 43% netric Pres.: 1025.1	
Project: None Tested by: Trevor Buls EST SPECIFICATIONS CC 15.247:2010 OMMENTS one EVIATIONS FROM TEST STAND/ o Deviations	2	Test Method ANSI C63.10:20		metric Pres.: 1025.1	
Tested by: Trevor Buls EST SPECIFICATIONS CC 15.247:2010 OMMENTS one EVIATIONS FROM TEST STANDA o Deviations	2	Test Method ANSI C63.10:20			
EST SPECIFICATIONS CC 15.247:2010 OMMENTS one EVIATIONS FROM TEST STANDA to Deviations	2	Test Method ANSI C63.10:20	009	Job Site: MN05	
OCC 15.247:2010 OMMENTS one EVIATIONS FROM TEST STAND o Deviations	2	ANSI C63.10:20	109		
OMMENTS one EVIATIONS FROM TEST STAND/ o Deviations	2		009		
EVIATIONS FROM TEST STANDA to Deviations	2	Trans Buls			
ONE EVIATIONS FROM TEST STANDA O Deviations	2	Trans Buls			
EVIATIONS FROM TEST STANDA o Deviations	2	Trans Buls			
o Deviations	2	Trans Buls			
o Deviations	2	Transport Buls			
o Deviations	2	Tree or Buls			
	Signatura	Jan Buls			
onfiguration # 1	Signatura	Transor Buls			
Configuration # 1	Signatura	Janor Buls			
	Cianatura				
	Signature	3,000			
			Value	Limit	Results
H5			value	LIIIII	Results
Low Channel, 2	402MHz		877.4 kHz	1.5 MHz	Pass
Mid Channel, 24			869.9 kHz	1.5 MHz	Pass
High Channel, 2			865.9 kHz	1.5 MHz	Pass
DH5	<u>-</u>				
Low Channel, 2	402MHz		1.356 MHz	1.5 MHz	Pass
Mid Channel, 24			1.368 MHz	1.5 MHz	Pass
High Channel, 2			1.363 MHz	1.5 MHz	Pass
)H5					
Low Channel, 2	402MHz		1.368 MHz	1.5 MHz	Pass
Mid Channel, 24			1.363 MHz	1.5 MHz	Pass
High Channel, 2			1.362 MHz	1.5 MHz	Pass

DH5, Low Channel, 2402MHz

Result: Pass Value: 877.4 kHz Limit: 1.5 MHz

DH5, Mid Channel, 2440 MHz

Result: Pass Value: 869.9 kHz Limit: 1.5 MHz

DH5, High Channel, 2480 MHz

Result: Pass Value: 865.9 kHz Limit: 1.5 MHz

2DH5, Low Channel, 2402MHz

Result: Pass Value: 1.356 MHz Limit: 1.5 MHz

2DH5, Mid Channel, 2440 MHz

Result: Pass Value: 1.368 MHz Limit: 1.5 MHz

2DH5, High Channel, 2480 MHz

Result: Pass Value: 1.363 MHz Limit: 1.5 MHz

Result: Pass Value: 1.368 MHz Limit: 1.5 MHz

Result: Pass Value: 1.363 MHz Limit: 1.5 MHz

Result: Pass Value: 1.362 MHz Limit: 1.5 MHz

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT								
Description	Manufacturer	Model	ID	Last Cal.	Interval			
Spectrum Analyzer	Agilent	E4446A	AAT	2/24/2010	12			
Signal Generator	Agilent	N5183A	TIA	11/16/2008	24			

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.

NORTHWEST		AUTRUT B	014/ED			XMit 2010.01.14
EMC		OUTPUT P	OWER			
EUT	: AM3x SOM-M2				Work Order: LGPD00	23
Serial Number	: 2010M00186				Date: 06/30/10	
Customer	: Logic PD				Temperature: 23.25°C	
Attendees	: None				Humidity: 43%	
Project	None			Baro	metric Pres.: 1025.1	
	: Trevor Buls		Power: 120VAC/60Hz		Job Site: MN05	
EST SPECIFICAT	TIONS		Test Method			
CC 15.247:2010			ANSI C63.10:2009			
COMMENTS						
None						
SEVIATIONS EDO	M TEST STANDARD					
	M TEST STANDARD					
No Deviations						
Configuration #	1	Signature Trevo	2 Buls			
				Value	Limit	Results
DH5						
	Low Channel, 2402MHz			4.68 mW	125 mW	Pass
	Mid Channel, 2440 MHz			5.13 mW	125 mW	Pass
	High Channel, 2480 MHz			5.52 mW	125 mW	Pass
2DH5						
	Low Channel, 2402MHz			4.47 mW	125 mW	Pass
	Mid Channel, 2440 MHz			4.95 mW	125 mW	Pass
	High Channel, 2480 MHz			5.51 mW	125 mW	Pass
BDH5						
	Low Channel, 2402MHz			5.26 mW	125 mW	Pass
	Mid Channel, 2440 MHz			5.91 mW	125 mW	Pass
	High Channel, 2480 MHz			6.63 mW	125 mW	Pass

DH5, Low Channel, 2402MHz **Result:** Pass **Value:** 4.68 mW **Limit:** 125 mW

DH5, Mid Channel, 2440 MHz

Result: Pass Value: 5.13 mW Limit: 125 mW

DH5, High Channel, 2480 MHz

Result: Pass Value: 5.52 mW Limit: 125 mW

2DH5, Low Channel, 2402MHz

Result: Pass Value: 4.47 mW Limit: 125 mW

2DH5, Mid Channel, 2440 MHz

Result: Pass Value: 4.95 mW Limit: 125 mW

2DH5, High Channel, 2480 MHz

Result: Pass Value: 5.51 mW Limit: 125 mW

3DH5, Low Channel, 2402MHz **Result:** Pass **Value:** 5.26 mW **Limit:** 125 mW

Result: Pass Value: 5.91 mW Limit: 125 mW

Result: Pass Value: 6.63 mW Limit: 125 mW

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT								
Description	Manufacturer	Model	ID	Last Cal.	Interval			
Spectrum Analyzer	Agilent	E4446A	AAT	2/24/2010	12			

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The requirements of FCC 15.247(d) for emissions at least 20dB below the carrier in any 100kHz bandwidth outside the allowable band was measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from at least 25 MHz below the band edge to 25 MHz above the band edge.

NORTHWEST						XMit 2010.01.14
EMC		BAND EDGE (COMPLIANCE			
_	AM3x SOM-M2			W	ork Order: LGPD002	3
Serial Number:				•••	Date: 07/06/10	,
Customer:				Ten	nperature: 23.06°C	
Attendees:					Humidity: 62%	
Project:					tric Pres.: 1010.9	
	Trevor Buls		Power: 120VAC/60Hz	24.0	Job Site: MN05	
TEST SPECIFICAT			Test Method		CON CINCI	
FCC 15.247:2010			ANSI C63.10:2009			
1 00 13.247.2010			74161 666:16:2666			
COMMENTS						
None						
None						
DEVIATIONS FROM	M TEST STANDARD					
No Deviations	I IEOI OTANDAND					
NO DEVIATIONS						
Configuration #	2		vor Buls			
oomigaration "	-	Signature	sol ville			
		Signature				
			,	Value	Limit	Results
DH5						
	Low Channel		-58	3.73 dBc	≤ -20 dBc	Pass
	High Channel		-60).25 dBc	≤ -20 dBc	Pass
2DH5	3					
	Low Channel		-46	6.45 dBc	≤ -20 dBc	Pass
	High Channel		-51	1.53 dBc	≤ -20 dBc	Pass
3DH5	_					
	Low Channel		-47	7.01 dBc	≤ -20 dBc	Pass
	High Channel		-49	9.21 dBc	≤ -20 dBc	Pass

 DH5, Low Channel

 Result:
 Pass
 Value:
 -58.73 dBc
 Limit:
 ≤ -20 dBc

DH5, High Channel

Result: Pass Value: -60.25 dBc Limit: ≤ -20 dBc

 2DH5, Low Channel

 Result: Pass
 Value: -46.45 dBc
 Limit: ≤ -20 dBc

2DH5, High Channel

Result: Pass Value: -51.53 dBc Limit: ≤ -20 dBc

3DH5, Low Channel

Result: Pass Value: -47.01 dBc Limit: ≤ -20 dBc

3DH5, High Channel

Result: Pass Value: -49.21 dBc Limit: ≤ -20 dBc

SPURIOUS CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT								
Description	Manufacturer	Model	ID	Last Cal.	Interval			
Spectrum Analyzer	Agilent	E4446A	AAT	2/24/2010	12			

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. For each transmit frequency, the spectrum was scanned throughout the specified frequency.

NORTHWEST	OPUDIOU	SPURIOUS CONDUCTED EMISSIONS				
EMC	SPURIOU	S CONDUCTED EMISSIONS				
	T: AM3x SOM-M2		Work Order:	LGPD0023		
	r: 2010M00186			07/06/10		
Custome	r: Logic PD		Temperature:	23.06°C		
Attendees	s: None		Humidity:	62%		
Projec	t: None		Barometric Pres.:	1010.9		
	y: Trevor Buls	Power: 120VAC/60Hz	Job Site:	MN05		
TEST SPECIFICA	TIONS	Test Method				
FCC 15.247:2010		ANSI C63.10:2009				
COMMENTS						
None						
DEVIATIONS FRO	DM TEST STANDARD					
No Deviations	TEOT OTANDAND					
Configuration #	2 Signa	ture Trevor Buls				
		Valu	e Li	mit Results		
DH5	Low Channel					
	30MHz - 12.5GHz	< -40 (4Pa < 2	0 dBc Pass		
	12.5GHz-25GHz	< -40 (0 dBc Pass		
	Mid Channel	< -40 (JDC 3-2	O UBC Pass		
	30MHz - 12.5GHz	< -40 (1Bc < -2	0 dBc Pass		
	12.5GHz-25GHz	<-40		0 dBc Pass		
	High Channel	- 100		. 465		
	30MHz - 12.5GHz	< -40 (dBc ≤ -2	0 dBc Pass		
	12.5GHz-25GHz	< -40 (0 dBc Pass		
2DH5						
	Low Channel					
	30MHz - 12.5GHz	< -40 (dBc ≤ -2	0 dBc Pass		
	12.5GHz-25GHz	< -40 (dBc ≤ -2	0 dBc Pass		
	Mid Channel					
	30MHz - 12.5GHz	< -40 (0 dBc Pass		
	12.5GHz-25GHz	< -40 (dBc ≤-2	0 dBc Pass		
	High Channel	40	ID 1.0	2 ID D		
	30MHz - 12.5GHz	< -40 (0 dBc Pass		
ODLIE	12.5GHz-25GHz	< -40 (3BC ≤-2	0 dBc Pass		
3DH5	Low Channel					
	30MHz - 12.5GHz	< -40 (4Pa < 2	0 dBc Pass		
	12.5GHz-25GHz	< -40 (0 dBc Pass		
	Mid Channel	C -40 (3-2	1 433		
	30MHz - 12.5GHz	< -40 (dBc ≤ -2	0 dBc Pass		
	12.5GHz-25GHz	< -40 (0 dBc Pass		
	High Channel					
	30MHz - 12.5GHz	< -40 (dBc ≤ -2	0 dBc Pass		
	12.5GHz-25GHz	< -40 (dBc ≤ -2	0 dBc Pass		

SPURIOUS CONDUCTED EMISSIONS

 DH5, Low Channel, 30MHz - 12.5GHz

 Result:
 Pass
 Value:
 < -40 dBc</th>
 Limit:
 ≤ -20 dBc

DH5, Low Channel, 12.5GHz-25GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

SPURIOUS CONDUCTED EMISSIONS

DH5, Mid Channel, 12.5GHz-25GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

 DH5, High Channel, 30MHz - 12.5GHz

 Result:
 Pass
 Value:
 < -40 dBc</th>
 Limit:
 ≤ -20 dBc

DH5, High Channel, 12.5GHz-25GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

2DH5, Low Channel, 30MHz - 12.5GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

2DH5, Low Channel, 12.5GHz-25GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

2DH5, Mid Channel, 30MHz - 12.5GHz **Result:** Pass **Value:** < -40 dBc **Limit:** ≤ -20 dBc

2DH5, Mid Channel, 12.5GHz-25GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

2DH5, High Channel, 30MHz - 12.5GHz **Result:** Pass **Value:** < -40 dBc **Limit:** ≤ -20 dBc

2DH5, High Channel, 12.5GHz-25GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

3DH5, Low Channel, 30MHz - 12.5GHz **Result:** Pass **Value:** < -40 dBc **Limit:** ≤ -20 dBc

3DH5, Low Channel, 12.5GHz-25GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

3DH5, Mid Channel, 30MHz - 12.5GHz **Result:** Pass **Value:** < -40 dBc **Limit:** ≤ -20 dBc

3DH5, Mid Channel, 12.5GHz-25GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

3DH5, High Channel, 30MHz - 12.5GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

3DH5, High Channel, 12.5GHz-25GHz

Result: Pass Value: < -40 dBc Limit: ≤ -20 dBc

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAT	2/24/2010	12
Signal Generator	Agilent	N5183A	TIA	11/16/2008	24

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The peak power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate for each modulation type available. Per the procedure outlined in FCC KDB 558074, March 23, 2005, the spectrum analyzer was used as follows:

The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be 1.5 x $10^6 \div 3 \times 10^3 = 500$ seconds. External attenuation was used and added to the reading. The following FCC procedure was used for modifying the power spectral density measurements:

"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 35 dB for correction to 3 kHz."

NORTHWEST					XMit 2010.01.14
EMC		POWER SPECTRAL DENSITY			
	: AM3x SOM-M2			Work Order: LGPD0023	
Serial Number				Date: 07/07/10	
				Temperature: 22.45°C	
Attendees	Logic PD				
			Bara	Humidity: 59% metric Pres.: 1017.5	
Project		D 400VA C/C011-	Daro		
	Trevor Buls	Power: 120VAC/60Hz		Job Site: MN05	
TEST SPECIFICAT	IUNS	Test Method			
FCC 15.247:2010		ANSI C63.10:2009			
COMMENTS					
None					
	M TEST STANDARD				
No Deviations					
	_	0 0			
Configuration #	2	Signature Trevor Buls			
		Signature STUDIO			
D. 15			Value	Limit	Results
DH5					
	Low Channel, 2402 MHz		.74 dBm / 3 kHz	8 dBm / 3 kHz	Pass
	Mid Channel, 2440 MHz		.24 dBm / 3 kHz	8 dBm / 3 kHz	Pass
	High Channel, 2480 MHz	-11	.85 dBm / 3 kHz	8 dBm / 3 kHz	Pass
2DH5					
	Low Channel, 2402 MHz		.35 dBm / 3 kHz	8 dBm / 3 kHz	Pass
	Mid Channel, 2440 MHz		.12 dBm / 3 kHz	8 dBm / 3 kHz	Pass
	High Channel, 2480 MHz	-20	.23 dBm / 3 kHz	8 dBm / 3 kHz	Pass
3DH5					
	Low Channel, 2402 MHz		.90 dBm / 3 kHz	8 dBm / 3 kHz	Pass
	Mid Channel, 2440 MHz	-20	.67 dBm / 3 kHz	8 dBm / 3 kHz	Pass
	High Channel, 2480 MHz	-20	.34 dBm / 3 kHz	8 dBm / 3 kHz	Pass

DH5, Low Channel, 2402 MHz **Result:** Pass **Value:** -12.74 dBm / 3 kHz **Limit:** 8 dBm / 3 kHz

 DH5, Mid Channel, 2440 MHz

 Result:
 Pass
 Value:
 -12.24 dBm / 3 kHz
 Limit:
 8 dBm / 3 kHz

DH5, High Channel, 2480 MHz

Result: Pass Value: -11.85 dBm / 3 kHz Limit: 8 dBm / 3 kHz

2DH5, Low Channel, 2402 MHz **Result:** Pass **Value:** -20.35 dBm / 3 kHz **Limit:** 8 dBm / 3 kHz

 2DH5, Mid Channel, 2440 MHz

 Result:
 Pass
 Value:
 -20.12 dBm / 3 kHz
 Limit:
 8 dBm / 3 kHz

2DH5, High Channel, 2480 MHz **Result:** Pass **Value:** -20.23 dBm / 3 kHz **Limit:** 8 dBm / 3 kHz

3DH5, Low Channel, 2402 MHz **Result:** Pass **Value:** -20.90 dBm / 3 kHz **Limit:** 8 dBm / 3 kHz

3DH5, Mid Channel, 2440 MHz

Result: Pass Value: -20.67 dBm / 3 kHz Limit: 8 dBm / 3 kHz

3DH5, High Channel, 2480 MHz

Result: Pass Value: -20.34 dBm / 3 kHz Limit: 8 dBm / 3 kHz

EMC

Spurious Radiated Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the

MODES OF OPERATION

Bluetooth 3DH5, Mid Channel 2440 MHz Bluetooth 2DH5, Mid Channel 2440 MHz Bluetooth DH5, High Channel 2480 MHz

Bluetooth DH5, Mid Channel 2440 MHz Bluetooth DH5, Low Channel 2402 MHz

Bluetooth Operation in the Restricted Band

POWER SETTINGS INVESTIGATED

CONFIGURATIONS INVESTIGATED

2 - AC Power Cable Ferrite

FREQUENCY RANGE INVESTIGATED 30 MHz Stop Frequency

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Low Pass Filter	Micro-Tronics	LPM50004	HGK	7/24/2009	12 mo
High Pass Filter	Micro-Tronics	HPM50111	HGQ	6/24/2009	13 mo
Attenuator, 20 dB, 'SMA'	SM Electronics	SA6-20	REO	6/18/2009	13 mo
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	1/27/2010	13 mo
MN05 Cables	ESM Cable Corp.	6GHz Standard Gain Horn C	EVD	1/27/2010	13 mo
Antenna, Horn	ETS	3160-09	AHG	NCR	0 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVV	7/1/2009	13 mo
Antenna, Horn	ETS	3160-07	AXP	NCR	0 mo
MN05 Cables	ESM Cable Corp.	Standard Gain Horn Cables	MNJ	7/1/2009	13 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVW	7/1/2009	13 mo
Antenna, Horn	ETS Lindgren	3160-08	AIQ	NCR	0 mo
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	7/1/2009	13 mo
MN05 Cables	ESM Cable Corp.	uble Ridge Guide Horn Cabl	MNI	7/1/2009	13 mo
Antenna, Horn (DRG)	ETS Lindgren	3115	AIP	12/22/2009	24 mo
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	1/15/2010	13 mo
Pre-Amplifier	Miteq	AM-1616-1000	AVY	7/1/2009	13 mo
Antenna, Biconilog	ETS Lindgren	3142D	AXN	12/30/2009	13 mo
Spectrum Analyzer	Agilent	E4446A	AAT	2/24/2010	12 mo

MEASUREMENT BANDWIDTHS						
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data		
	(MHz)	(kHz)	(kHz)	(kHz)		
	0.01 - 0.15	1.0	0.2	0.2		
	0.15 - 30.0	10.0	9.0	9.0		
	30.0 - 1000	100.0	120.0	120.0		

Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the

1000.0

1000.0 FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used

MEASUREMENT UNCERTAINTY

Above 1000

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

NORTHWEST Spurious Radiated Emissions Work Order: LGPD0023 07/02/10 Date: Project: None Temperature: 23.09 Job Site: MN05 . Humidity: 57.65 Tested by: Trevor Buls 2010M00186 **Barometric Pres.** 1019.3 Serial Number: EUT: AM3x SOM-M2 2 - AC Power Cable Ferrite Configuration: **Customer:** Logic PD Attendees: None **EUT Power:** 120VAC/60Hz Bluetooth DH5, Low Channel 2402 MHz **Operating Mode: Deviations:** EUT antenna Vertical. Comments Test Specifications Test Method FCC 15.247:2010 ANSI C63.10:2009 Run# Test Distance (m) Antenna Height(s) 1-4m Results Pass 80 70 60 50 dBuV/m 40 30 20 10 0 6000 11000 1000 16000 21000 MHz Polarity/ External Attenuation Transducer Type Compared to Spec. Distance Amplitude Azimuth Test Distance Adjusted Freq Detector (MHz) (dBuV) (dB) (meters) (degrees) (meters) (dB) (dB) (dBuV/m) (dBuV/m) (dB) 7205.900 32.5 9.2 52.0 0.0 Vert 41.7 54.0 -12.3 3.0 ΑV 0.0 4803.983 39.5 224.0 ΑV 41.2 54.0 -12.8 1.7 1.2 3.0 0.0 Vert 0.0 36.7 7208.475 27.5 9.2 1.2 ΑV 54.0 -17.3 11.0 3.0 0.0 Horz 0.0 9607.868 -17.4 44.5 -7.9 1.2 19.0 3.0 0.0 Vert ΑV 0.0 36.6 54.0 12009.830 187.0 Vert 9607.793 39.3 -7.9 1.4 96.0 3.0 0.0 Horz ΑV 0.0 31.4 54.0 -22.6 4803.958 29.5 1.7 38.0 3.0 Horz 0.0 31.2 54.0 -22.8 7205.792 41.7 9.2 1.6 52.0 3.0 0.0 Vert PΚ 0.0 50.9 74.0 -23.1 12009.990 38.2 -7.7 1.2 326.0 3.0 0.0 Horz 0.0 30.5 54.0 -23.5 7206.183 1.2 0.0 PK 48 7 74 0 -25.3 39.5 9.2 11.0 3.0 Horz 0.0 1.2 1.2 0.0 PK 47.4 74.0 -26.6 4803.892 1.7 224.0 45.7 3.0 Vert 0.0 9607.068 -7.9 PK 74.0 52.0 19.0 3.0 0.0 Vert 0.0 44.1 -29.9 12010.160 -7.7 1.2 187.0 3.0 0.0 PK 44.0 74.0 -30.0 51.7 Vert 0.0 1.7 PK 42.5 74.0 4804.358 40.8 1.6 38.0 3.0 0.0 Horz 0.0 -31.5

9607.518

12009.330

49.8

-7.9

96.0

3.0

0.0

Horz

PΚ

0.0

41.9

74.0

-32.1

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
7319.932	37.0	10.1	2.2	275.0	3.0	0.0	Vert	AV	0.0	47.1	54.0	-6.9
9759.883	51.3	-7.8	1.4	45.0	3.0	0.0	Vert	AV	0.0	43.5	54.0	-10.5
4879.972	40.7	2.2	1.1	212.0	3.0	0.0	Vert	AV	0.0	42.9	54.0	-11.1
7319.842	26.8	10.1	2.4	281.0	3.0	0.0	Horz	AV	0.0	36.9	54.0	-17.1
12199.870	43.7	-7.3	1.4	348.0	3.0	0.0	Vert	AV	0.0	36.4	54.0	-17.6
17080.590	35.0	0.5	1.2	240.0	3.0	0.0	Vert	AV	0.0	35.5	54.0	-18.5
9759.917	43.3	-7.8	1.6	83.0	3.0	0.0	Horz	AV	0.0	35.5	54.0	-18.5
7320.065	43.9	10.1	2.2	275.0	3.0	0.0	Vert	PK	0.0	54.0	74.0	-20.0
17080.610	32.9	0.5	1.2	252.0	3.0	0.0	Horz	AV	0.0	33.4	54.0	-20.6
14639.110	33.3	-0.1	1.2	95.0	3.0	0.0	Vert	AV	0.0	33.2	54.0	-20.8
12199.840	39.6	-7.3	1.2	101.0	3.0	0.0	Horz	AV	0.0	32.3	54.0	-21.7
4879.958	29.8	2.2	1.0	218.0	3.0	0.0	Horz	AV	0.0	32.0	54.0	-22.0
14627.600	30.9	-0.1	1.2	281.0	3.0	0.0	Horz	AV	0.0	30.8	54.0	-23.2
9759.233	56.7	-7.8	1.4	45.0	3.0	0.0	Vert	PK	0.0	48.9	74.0	-25.1
7318.692	38.7	10.1	2.4	281.0	3.0	0.0	Horz	PK	0.0	48.8	74.0	-25.2
4880.072	46.2	2.2	1.1	212.0	3.0	0.0	Vert	PK	0.0	48.4	74.0	-25.6

NORTHWEST Spurious Radiated Emissions Work Order: LGPD0023 07/02/10 Date: Project: None Temperature: 23.09 Job Site: MN05 . Humidity: 57.65 Barometric Pres. Tested by: Trevor Buls Serial Number: 2010M00186 1019.3 EUT: AM3x SOM-M2 2 - AC Power Cable Ferrite Configuration: **Customer:** Logic PD Attendees: None **EUT Power:** 120VAC/60Hz Bluetooth DH5, High Channel 2480 MHz **Operating Mode: Deviations:** EUT antenna Vertical. Comments Test Specifications Test Method FCC 15.247:2010 ANSI C63.10:2009 Run# Test Distance (m) Antenna Height(s) 1-4m Results Pass 80 70 60 50 dBuV/m 40 30 20 10 6000 11000 1000 16000 21000 MHz Polarity/ External Attenuation Transducer Type Compared to Spec. Distance Amplitude Azimuth Test Distance Adjusted Freq Detector (MHz) (dBuV) (dB) (meters) (degrees) (meters) (dB) (dB) (dBuV/m) (dBuV/m) (dB) 7439.926 34.8 10.8 322.0 0.0 Vert 45.6 54.0 -8.4 3.0 ΑV 0.0 1.0 9919.898 45.0 ΑV 42.4 54.0 -11.6 50.1 -7.7 1.3 3.0 0.0 Vert 0.0 12399.830 237.0 Vert ΑV 39.4 54.0 -14.6 46.3 -6.9 1.0 3.0 0.0 0.0 7440.083 124.0 37.3 26.5 10.8 2.7 3.0 0.0 Horz ΑV 0.0 54.0 -16.7 12399.850 106.0 4959.942 32.1 2.5 1.0 198.0 3.0 0.0 Horz ΑV 0.0 34.6 54.0 -19.4 7440.260 43.2 322.0 3.0 Vert 0.0 54.0 74.0 -20.0 9919.882 41.0 -7.7 1.2 62.0 3.0 0.0 Horz ΑV 0.0 33.3 54.0 -20.7 7441,433 39.7 10.8 2.7 124.0 3.0 0.0 Horz PK 0.0 50.5 74.0 -23.5 4962 086 215.0 0.0 ΑV 29 2 54 0 -24 8 26.7 2.5 1.0 3.0 Vert 0.0 0.0 PK 9919.365 -7.7 48.3 74.0 -25.7 56.0 1.3 45.0 3.0 Vert 0.0 12399.120 PK 46.6 74.0 -27.4 53.5 -6.9 1.0 237.0 3.0 0.0 Vert 0.0 12398.960 -6.9 106.0 3.0 0.0 PΚ 44.4 74.0 -29.6 51.3 1.0 Horz 0.0 PK 43.7 74.0 4959.950 41.2 2.5 1.0 198.0 3.0 0.0 Horz 0.0 -30.3 9919.448 50.4 -7.7 1.2 62.0 3.0 0.0 Horz PΚ 0.0 42.7 74.0 -31.3

4960.469

NORTHWEST Spurious Radiated Emissions Work Order: LGPD0023 07/02/10 Date: Project: None Temperature: 23.09 Job Site: MN05 . Humidity: 57.65 Tested by: Trevor Buls Serial Number: 2010M00186 **Barometric Pres.** 1019.3 EUT: AM3x SOM-M2 2 - AC Power Cable Ferrite Configuration: **Customer:** Logic PD Attendees: None **EUT Power:** 120VAC/60Hz Bluetooth 2DH5, Mid Channel 2440 MHz **Operating Mode: Deviations:** EUT antenna Vertical. Comments Test Specifications Test Method FCC 15.247:2010 ANSI C63.10:2009 Run# 61 Test Distance (m) Antenna Height(s) 1-4m Results Pass 80 70 60 50 dBuV/m 40 30 20 10 6000 11000 1000 16000 21000 MHz Polarity/ External Attenuation Transducer Type Compared to Spec. Distance Amplitude Azimuth Test Distance Adjusted Freq Detector (MHz) (dBuV) (dB) (meters) (degrees) (meters) (dB) (dB) (dBuV/m) (dBuV/m) (dB) 9759.958 51.1 -7.8 45.0 0.0 Vert 43.3 54.0 -10.7 3.0 ΑV 0.0 7317.675 0.0 Horz ΑV 36.9 54.0 -17.1 26.8 10.1 2.7 93.0 3.0 0.0 7317.583 10.1 1.2 350.0 ΑV 36.9 54.0 -17.1 26.8 3.0 0.0 Vert 0.0 4879.967 210.0 32.8 2.2 1.2 3.0 0.0 Vert ΑV 0.0 35.0 54.0 -19.0 9760.101 104.0 9759.392 60.3 -7.8 1.2 45.0 3.0 0.0 Vert PΚ 0.0 52.5 74.0 -21.5 12200.300 37.9 -7.3 348.0 3.0 Vert 0.0 30.6 54.0 -23.4 4879.983 27.4 2.2 1.2 1.0 3.0 0.0 Horz ΑV 0.0 29.6 54.0 -24.4 PK PK 7320.942 39.1 10.1 2.7 93.0 3.0 0.0 Horz 0.0 49.2 74.0 -24.8 7319.850 1.2 350.0 0.0 49 2 74 0 -24 8 39 1 10.1 3.0 Vert 0.0 0.0 12199.270 1.2 98.0 ΑV 27.1 54.0 -26.9 34.4 -7.3 3.0 Horz 0.0 4880.258 PK 74.0 42.1 2.2 1.2 210.0 3.0 0.0 Vert 0.0 44.3 -29.7 9759.618 -7.8 1.2 104.0 3.0 0.0 PΚ 44.0 74.0 -30.0 51.8 Horz 0.0 -7.3 1.3 348.0 PK 41.6 74.0 12198.830 48.9 3.0 0.0 Vert 0.0 -32.4

41.6

74.0

-32.4

4878.725

12198.840

39.4

2.2

1.2

1.0

3.0

0.0

Horz

PΚ

0.0

NORTHWEST Spurious Radiated Emissions Work Order: LGPD0023 07/02/10 Date: Project: None Temperature: 23.09 Job Site: MN05 . Humidity: 57.65 Tested by: Trevor Buls Serial Number: 2010M00186 **Barometric Pres.** 1019.3 EUT: AM3x SOM-M2 2 - AC Power Cable Ferrite Configuration: **Customer:** Logic PD Attendees: None EUT Power: 120VAC/60Hz Bluetooth 3DH5, Mid Channel 2440 MHz **Operating Mode: Deviations:** EUT antenna Vertical. Comments Test Specifications Test Method FCC 15.247:2010 ANSI C63.10:2009 Run# 64 Test Distance (m) Antenna Height(s) 1-4m Results Pass 80 70 60 50 dBuV/m 40 30 20 10 0 6000 11000 1000 16000 21000 MHz Polarity/ External Attenuation Transducer Type Compared to Spec. Distance Amplitude Azimuth Test Distance Adjusted Freq Detector (MHz) (dBuV) (dB) (meters) (degrees) (meters) (dB) (dB) (dBuV/m) (dBuV/m) (dB) 9759.950 51.6 -7.8 45.0 0.0 Vert 43.8 54.0 -10.2 3.0 ΑV 0.0 7317.508 31.0 ΑV 36.9 54.0 -17.1 26.8 10.1 1.2 3.0 0.0 Vert 0.0 7318.217 26.7 10.1 55.0 Horz ΑV 36.8 54.0 -17.2 3.3 3.0 0.0 0.0 9759.925 -17.8 44.0 -7.8 1.6 81.0 3.0 0.0 Horz ΑV 0.0 36.2 54.0 4879.992 33.6 213.0 Vert 9759.792 61.7 -7.8 1.2 45.0 3.0 0.0 Vert PΚ 0.0 53.9 74.0 -20.1 4880.050 2.2 1.2 102.0 3.0 Horz 0.0 29.9 54.0 -24.1 7318.275 38.8 10.1 1.2 31.0 3.0 0.0 Vert PΚ 0.0 48.9 74.0 -25.1 PΚ 7320.617 38.7 10.1 3.3 55.0 3.0 0.0 Horz 0.0 48.8 74.0 -25.2 12199.800 -7.3 1.2 102.0 0.0 ΑV 27.8 54 0 -26.2 35.1 3.0 Horz 0.0 12199.860 0.0 -7.3 1.2 ΑV 54.0 -26.9 34.4 84.0 3.0 Vert 0.0 27.1 9759.658 -7.8 PK 74.0 -27.1 54.7 1.6 81.0 3.0 0.0 Horz 0.0 46.9 4880.842 42.7 1.3 213.0 3.0 0.0 PΚ 44.9 74.0 -29.1 2.2 Vert 0.0

4881.975

12200.700

12199.680

47.0

-7.3

1.2

1.2

102.0

102.0

3.0

3.0

0.0

0.0

Horz

Horz

PK

PΚ

0.0

0.0

41.7

39.7

74.0

74.0

-32.3

-34.3

EMC

AC Powerline Conducted Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Bluetooth DH5, High Channel 2480 MHz

Bluetooth DH5, Mid Channel 2440 MHz

Bluetooth DH5, Low Channel 2402 MHz

POWER SETTINGS INVESTIGATED

120VAC/60Hz

CONFIGURATIONS INVESTIGATED

LGPD0023 - 1

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
MN03 Cables	ESM Cable Corp.	Conducted Cables	MNC	6/8/2010	13 mo
LISN	Solar	9252-50-R-24-BNC	LIO	3/12/2010	12 mo
Attenuator, 20 dB	SM Electronics	SA01B-20	REF	12/11/2009	13 mo
High Pass Filter	TTE	H97-100K-50-720B	HGN	6/28/2010	13 mo
Receiver	Rohde & Schwarz	ESCI	ARF	3/30/2010	12 mo

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10-2009.

0.595

10.8

31.2

56.0

-24.8

0.595

10.8

20.4

31.2

46.0

-14.8