Отчет по лабораторной работе №7

Эффективность рекламы. Вариант 33

Соколова Анастасия Витальевна НФИбд-03-18

Содержание

1	Цель работы	4
2	Задание	5
3		6
	3.1 Условие задачи	6
	3.2 Теоретическое введение	6
	3.3 Решение	7
4	Выводы	13

List of Figures

3.1	График распространения информации о товаре при $a_1(t) > a_2(t)$	7
3.2	График распространения информации о товаре при $a_1(t) < a_2(t)$	8
3.3	График распространения информации о товаре при коэффициентных	
	функциях	Ç
3.4	Модель Мальтуса для 1 случая	10
3.5	Решение для 3 случая только при вкладе платной рекламы	10
3.6	График логистической кривой для 1 случая	11
3.7	Решение для 3 случая только при "сарашанном радио"	11

1 Цель работы

Рассмотреть и построить модель рекламной кампании.

2 Задание

- Построить графики распространения рекламы для 3 случаев
- Определить в какой момент времени эффективность рекламы будет иметь максимально быстрый рост во 2 случае
- Построить решение, если учитывать вклад только платной рекламы
- Построить решение, если предположить, что информация о товаре распространятся только путем «сарафанного радио»

3 Выполнение лабораторной работы

3.1 Условие задачи

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением: 1. $\frac{dn}{dt}=(0.61+0.000061n(t))(N-n(t))$ 2. $\frac{dn}{dt}=(0.000061+0.61n(t))(N-n(t))$ 3. $\frac{dn}{dt}=(0.61sin(t)+0.61cos(t)n(t))(N-n(t))$ При этом объем аудитории N=537, в начальный момент о товаре знает 6 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значении.

3.2 Теоретическое введение

Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $a_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $a_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в

рекламу описывается величиной $a_2(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt}=(a_1(t)+a_2(t)n(t))(N-n(t))$$

3.3 Решение

1. Построила график распространения рекламы о товаре с учетом платной рекламы и с учетом сарафанного радио для 1 случая.

Figure 3.1: График распространения информации о товаре при $a_1(t)>a_2(t)$

2. Построила график распространения рекламы о товаре с учетом платной рекламы и с учетом сарафанного радио для 2 случая. Скорость распространения рекламы будет иметь максимальное значение при t~0

Figure 3.2: График распространения информации о товаре при $a_1(t) < a_2(t)$

3. Построила график распространения рекламы о товаре с учетом платной рекламы и с учетом сарафанного радио для 3 случая.

Figure 3.3: График распространения информации о товаре при коэффициентных функциях

4. Построила решение, учитывая вклад только платной рекламы, для 1 и 3 случаев.

Figure 3.4: Модель Мальтуса для 1 случая

Figure 3.5: Решение для 3 случая только при вкладе платной рекламы

5. Построила решение, предполагая, что информация о товаре распространятся

только путем «сарафанного радио».

Figure 3.6: График логистической кривой для 1 случая

Figure 3.7: Решение для 3 случая только при "сарашанном радио"

6. Код в среде python

```
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
x0 = 6
N = 537
t = np.linspace(0,30,500)
def k(t):
    #return 0.61
    #return 0.000061
    return 0.61*np.sin(t)
def p(t):
    #return 0.000061
    #return 0.61
    return 0.61*np.cos(t)
def f(x,t):
    return (k(t)+p(t)*x)*(N-x)
x = odeint(f, x0, t)
plt.plot(t, x)
plt.xlabel('t')
plt.ylabel('N')
plt.show()
```

4 Выводы

- Рассмотрела модель рекламной кампании
- Построила графики распространения рекламы для различных случаев
- Построила решения, учитывая только вклад платной рекламы
- Построила решения, учитывая только вклад «сарафанного радио»
- Проанализировала эффективность платной рекламы и «сарафанного радио»