

## **Biznesmeni**

22Pomorzanka01. Grupa B. Dzień 3. Pamięć 256 MB. Czas 2 sek.

Bajtocja składa się z N miast (ponumerowanych od 1 do N) połączonych M dwukierunkowymi drogami w ten sposób, że z każdego miasta da się dojechać do innego wykorzystując jedną lub więcej dróg. I-te miasto ma ekonomiczną wartość S<sub>i</sub> a każda droga łączy dwa różne miasta.

Twoim zadaniem jest odpowiedzieć na Q zapytań. Każde zapytanie składa się z trójki (A<sub>i</sub>, B<sub>i</sub>, C<sub>i</sub>).

- 1. Jeżeli  $A_i = 0$  to musisz zmienić wartość ekonomiczną miasta  $B_i$  na  $C_i$ .
- 2. Jeżeli A<sub>i</sub> = 1 to na standardowe wyjście powinieneś wypisać odpowiedź na następujące pytanie: Mamy danych dwóch biznesmenów, jeden w mieście B<sub>i</sub>, drugi w mieście C<sub>i</sub>. Oboje uzgodnili między sobą nieujemną liczbę X, gdzie X to liczba dni przez które będą podróżować. Każdego dnia obaj biznesmeni przemieszczają się do jednego z miast, które jest bezpośrednio połączone z miastem, w którym się znajdują. Powtarzają tę czynność przez X dni. Nigdy nie mogą pozostać w mieście, w którym się znajdują, ale mogą ponownie odwiedzać miasta, które odwiedzili w przeszłości. Odpowiedzią jest minimalna wartość bezwzględna różnicy wartości ekonomicznych miast, w których mogą się znaleźć po X dniach. Zauważ, że obaj mogą się znaleźć w tym samym mieście oraz, że dowolnie wybierają X.

## Wejście

W pierwszym wierszu standardowego wejścia znajdują się dwie liczby całkowite: N, M ( $1 \le N \le 100\,000$ ,  $1 \le M \le 200\,000$ ) oznaczające odpowiednio liczbę miast i liczbę dróg w Bajtocji. Druga linia zawiera N liczb całkowitych  $S_1$ ,  $S_2$ , ...,  $S_N$  ( $0 \le S_i \le 1\,000\,000\,000$ ) oznaczających początkowe wartości ekonomiczne miast. Kolejne M linii zawiera po dwie liczby całkowite  $\mathbf{u}_i$ ,  $\mathbf{v}_i$  ( $1 \le \mathbf{u}_i$ ,  $\mathbf{v}_i \le N$ ,  $\mathbf{u}_i \ne \mathbf{v}_i$ ) oznaczające, że miasto  $\mathbf{u}_i$  jest połączone z  $\mathbf{v}_i$  drogą. Następna linia zawiera liczbę całkowitą  $\mathbf{Q}$  ( $1 \le \mathbf{Q} \le 100\,000$ ) oznaczającą liczbę zapytań. Kolejne  $\mathbf{Q}$  linii zawiera trzy liczby całkowite  $\mathbf{A}_i$ ,  $\mathbf{B}_i$ ,  $\mathbf{C}_i$  ( $0 \le \mathbf{A}_i \le 1$ ) opisujące zapytania. Jeśli  $\mathbf{A}_i = 0$  to  $1 \le \mathbf{B}_i \le N$  oraz  $0 \le \mathbf{C}_i \le 1\,000\,000\,000$ . W przeciwnym wypadku  $1 \le \mathbf{B}_i$ ,  $\mathbf{C}_i \le N$ . W każdym teście będzie przynajmniej jedno zapytanie z  $\mathbf{A}_i = 1$ .

## Wyjście

Dla każdego zapytania z  $A_i$ =1 na standardowe wyjście wypisz minimalną bezwzględna różnicę w wartościach ekonomicznych jaką mogą osiągnąć biznesmeni.



## Przykład

| Wejście | Wyjście |
|---------|---------|
| 66      | 0       |
| 00000   | 10      |
| 1 2     | 0       |
| 16      | 1       |
| 5 1     |         |
| 2 3     |         |
| 3 4     |         |
| 3 5     |         |
| 7       |         |
| 112     |         |
| 0 1 10  |         |
| 0 3 20  |         |
| 1 1 2   |         |
| 0 4 11  |         |
| 1 1 3   |         |
| 1 1 6   |         |
|         |         |
|         | I       |