Segment Tree is my passion

Segtree 2D - Dinâmica

2	5	-3	12	0	3	7	1
---	---	----	----	---	---	---	---

27							
16					1	1	
7	7	(9	3		8	3
2	5	-3	12	0	3	7	1

- Memória: 4N
- Update/Query: O(log N)
- Build: O(N)

Segment Tree 2D

Query em range:

X: (a, b)

Y: (c, d)

#	1	2	3	4
1	0	7	1	1
2	2	1	5	3
3	3	4	0	4
4	1	0	0	8

$$X = (1, 2); Y = (2, 4)$$

#	1	2	3	4
1	0	7	1	1
2	2	1	5	3
3	3	4	0	4
4	1	0	0	8

#	1	2	3	4
1	0	7	1	1
2	2	1	5	3
3	3	4	0	4
4	1	0	0	8

#	1	2	3	4
1	0	7	1	1

9				
-	7	2		
0	7	1	1	

#	1	2	3	4
2	2	1	5	3

11				
3	3		3	
2	1	5	3	

#	1	2	3	4
1	0	7	1	1

9			
-	7		2
0	7	1	1

#	1	2	3	4
2	2	1	5	3

#	1	2	3	4
1	0	7	1	1
2	2	1	5	3

	#	1	2	3	4
	1	O	0	6	1
	2	2	8	6	4

#	1	2	3	4
1				
2	2	8	6	4

$$X = (2, 4); Y = (1, 3)$$

#	1	2	3	4
1	0	7	1	1
2	2	1	5	3
3	3	4	0	4
4	1	0	0	8

Segtree:

Seg[no] = Seg[2*no] + Seg[2*no+1]

Segtree 2D:

Seg[noX][noY] = Seg[noX][2*noY] + Seg[noX][2*noY+1]?

Segtree 2D:

Seg[noX][noY] = Seg[noX][2*noY] + Seg[noX][2*noY+1]?

Seg[noX][noY] = Seg[2*noX][noY] + Seg[2*noX+1][noY] ??

Segtree 2D:

Seg[noX][noY] = Seg[noX][2*noY] + Seg[noX][2*noY+1]?

Seg[noX][noY] = Seg[2*noX][noY] + Seg[2*noX+1][noY] ??

Seg[noX][noY] = Seg[2*noX][2*noY] + Seg[2*noX+1][2*noY+1]???

Segtree 2D:

Seg[noX][noY] = Seg[2*noX][noY] + Seg[2*noX+1][noY]?

Seg[noX][noY] = Seg[noX][2*noY] + Seg[noX][2*noY+1] ??

Seg[noX][noY] = Seg[2*noX][2*noY] + Seg[2*noX+1][2*noY+1] ???

Segment Tree 2D

- Memória: 4N*4M = 16MN:
 - Seg externa(em X) 4N nós
 - Cada nó é uma Seg(em Y) de tamanho 4M
- Update/Query: O(log N * log M)
- Build: O(NM)

Build vs Update

Build: O(NM)

Update: O(NM*log N * log M)

Código

Memória

- 4N é muito.
- 16NM é demais.

Numeração dos nós

Filho esquerdo: 2i / Filho direito: 2i + 1

1															
2 3															
4 5							6 7								
8	3	(9	1	10 11			12 13			3	1	4	1	5
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

N = 9: Nós utilizados: 17 Maior índice: 31

1															
2 3															
	4 5						6 7								
8	8	(9	10 11			12 13			3	14		1	5	
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Memória

$$2^x < N \le 2^{x+1}:$$

$$1+2+4+\ldots+2^x+2^{x+1}=2\cdot 2^{x+1}-1 \approx 2\cdot 2^{x+1}$$
 Como: $x+1=\lceil\log_2 N
ceil$ Nós necessários: $2\cdot 2^{\lceil\log_2 N
ceil}$

Para N próximo de $2^x \colon 2 \cdot 2^{\lceil \log_2 N \rceil} pprox 4N$

Para N próximo de 2^{x+1} : $2 \cdot 2^{\lceil \log_2 N \rceil} pprox 2N$

- g: y = 4x
- h: y = 3x
- p: y = 2x
- A = Ponto(f)

 → (1000, 2048)

Em uma Seg 2D 1000 x 1000

$$16NM = 16 \cdot 1000 \cdot 1000$$

 $16NM = 16000000 = 1.6 \cdot 10^7$

$$egin{aligned} 2 \cdot 2^{\lceil \log_2 N
ceil} \cdot 2 \cdot 2^{\lceil \log_2 M
ceil} &= 2 \cdot 1024 \cdot 2 \cdot 1024 \ 2 \cdot 2^{\lceil \log_2 N
ceil} \cdot 2 \cdot 2^{\lceil \log_2 M
ceil} &= 4194304 = 4 \cdot 10^6 \end{aligned}$$

Segtree Dinâmica

Criamos os nós que vamos utilizando

S[5] = 4

S[3] = -1

0	0	-1	0	4	0	0	0
3							
-1				4			
* -1		1	4		;	*	
*	*	-1	*	4	*	*	*

- Útil para N muito grande.
- Como a cada update criamos no máximo log N nós, em Q updates temos menos de Q log N nós.
- Ex:

$$N=10^9, Q=10^5 \ log Npprox 30$$

Seg normal: $4N=4\cdot 10^9$

Seg dinâmica: $QlogN=3\cdot 10^6$

S[3][2] = 1

#	1	2	3	4
1	0	0	0	0
2	0	0	0	0
3	0	1	0	0
4	0	0	0	0

S[2][4] = -3

#	1	2	3	4
1	0	0	0	0
2	0	0	0	-3
3	0	1	0	0
4	0	0	0	0

Q log N log M.

A cada update criamos log N Seg's, e em cada uma delas log M nós.

Problemas:

- https://vjudge.net/contest/404319
- https://neps.academy/problem/382
- https://dmoj.ca/problem/ioi13p6io