ULBRA - Universidade Luterana do Brasil Sistemas de Informação Qualidade e Auditoria de Software

Aula 03: Métricas

Prof. Márcio Puntel marcio.puntel@ulbra.edu.br

- Uma métrica é a medição de um atributo (propriedades ou características) de uma determinada entidade (produto, processo ou recursos). Exemplos:
 - Tamanho do produto (ex: Número de Linhas de código)
 - Número de pessoas necessárias um módulo do software
 - Esforço para a realização de uma tarefa
 - Tempo para a realização de uma tarefa
 - Custo para a realização de uma tarefa
 - Grau de satisfação do cliente

Medida, Medição e Métrica

- no contexto da Engenharia de SW

	Definição	Exemplo
Medida	Valor quantitativo da extensão, quantidade, dimensões, capacidade ou tamanho de algum atributo do processo ou produto de software	número de erros detectados na revisão de um módulo de software, quantidade de classes-chave
Medição	Ato de determinar uma medida	investigação de um número de revisões de módulos para recompilar medidas do número de erros encontrados em cada revisão
Métrica	Medida quantitativa do grau de posse de um atributo dado por parte de um sistema, componente ou processo	Média de erros detectados por revisão ou número de erros encontrados por pessoa e hora em revisões

 METRICAS – inferências sobre os processos de trabalho que traduzem:

Vantagens

- Satisfação dos cliente
- Produtividade dos recursos
- Visibilidade das ações
- Gerenciabilidade

- Defeitos
- Prazo de Entrega
- Desperdício
- Custo

Possibilidades

 Métricas possíveis no desenvolvimento de sistemas

- obter auto-conhecimento (interna)
- atender a uma pressão imediata (externa)
- preparar-se para o futuro (tendência)

"Se você não sabe para onde você quer ir, qualquer caminho você pode seguir. Se você não sabe onde você está, um mapa não vai ajudar!". Roger Pressman

Por que medir ?

Obter auto conhecimento

- Se não sabemos onde estamos, não conseguimos ...
 - ... saber para onde queremos ir
 - ... saber o que faremos

1. Saber o que temos, o que somos e aonde estamos

Função: ESTÁTICA e POSICIONAL

Por que medir ?

- Atender a uma pressão imediata. Exemplo: ganhar uma licitação
- 2. Saber o que fazer hoje e para onde caminhar Função: DINÂMICA e DIREÇÃO
- Preparar-se para o futuro → atender melhor no futuro
- 3. Saber o que fazer hoje, para onde caminhar e como mudar de direção

Função: DINÂMICA, DIREÇÃO e ADAPTATIVA

- Alinhar os objetivos das inferências com os objetivos da empresa
- Estabelecer um programa de métricas:
 adequado, plausível, factível e gradual
- Não medir mais do que é necessário

Imaturo x Maduro

Critério	Imaturo	Maduro
Papéis e responsabilidades	Não bem definidos. Cada qual faz o que é mais urgente	Claramente definidos, com metas e medições
Tratamento de mudan _ç as	Cada qual inventa a sua forma de trabalhar	O time segue um processo consistente e planejado. Todos aprendem com a experiência
Reação e problemas	Ambiente caótico. <mark>Apagar incêndio</mark> é normal. Cada qual é um herói	Regra é o profissionalismo. Os problemas são analisados e tratados na base do conhecimento
Confiabilidade	Estimativas inexistentes ou não realistas. Não se controla o "já que"	Estimativas tendem a se con- firmar; o escopo é controlado e gerenciado; o atingimento de metas é consistente
Recompensa	Somente para os <mark>bombeiros;</mark> faça errado e depois conserte.	Preferência para os produtos de alta qualidade (atendimento e poucas falhas); estímulo à prevenção de incêndios
Previsibilidade	Qualidade e previsibilidade depende das pessoas; não se pode garantir	Previsões tendem a se confirmar em bases realistas; o progresso pode ser previsto

Métricas Primárias (1a. Ordem):

Apontamentos dos fatos (reais) → MEDIDAS

- Informações objetivas da realidade.
 Exemplos: defeitos, horas trabalhadas, custo, reclamações, ...
- Tendência à expressão numérica

Métricas Secundárias (2a. Ordem):

- São Indicadores, expressam um comportamento além dos números.
- Resultado de uma relação de:

Métrica ÷ Fator

• Exemplo: densidade de defeitos, defeitos por fase do projeto, ...

Tipos de métricas

Processo

Gestão

Quantitativa

Métricas primárias

Produtividade

Direta

Qualitativa

Métricas secundárias

Qualidade

Indireta

Processos de medição

Produção dos tipos de métricas

Produção das métricas primárias Produção das métricas secundárias

Definição

Coleta

Tabulação

Avaliação

Validação e verificação das métricas em si

Validação e verificação das métricas no contexto Comparação

Ciclo periódico

Tipos de métricas

Pessoas

Custos

- Natureza do tempo:
 - volatilidade, incontrolabilidade, perecibilidade
- Definição da unidade de medida:
 - normalmente HORAS
- Distribuição do tempo:

• Métricas primárias:

- Quantidade de tempo (...) para fazer (...)
- O objetivo não é medir as pessoas, mas medir o tempo utilizado para realizar as atividades

Métricas secundárias:

- Duração = Σ tempos das atividades
- Prazo = Calendário + duração
 - Critério do "empurrar": processo precedente
 - Data de início + duração → quando é o término ?
 - Critério do "puxar": processo dependente
 - Data de fim duração → quando é o início ?

Métricas secundárias (continuação):

Horas produtivas

• Taxa de Produtividade = -----
Total de Horas disponibilizadas

Produtivas ou totais?

 Esforço = quantidade total de horas/homem (???) para fazer uma determinada quantidade de trabalho

Métrica do produto

Quantidade de trabalho

• Produtividade =----Esforço

Métricas secundárias (continuação):

- Distribuição % do tempo por atividade
- Tempo parado
 Taxa de ociosidade = ----- Tempo disponibilizado

Calendário

	maio						
D	S	T	Q	Q	S	S	
						1	
2	3	4	5	6	7	8	
9	10	11	12	13	14	15	
16	17	18	19	20	21	22	
23	24	25	26	27	28	29	
30	31						

junho						
D	S	T	Q	Q	S	S
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30			

Considerando-se:

- Tx.Produtividade = 80 %
- Produtividade teórica para um determinado tipo de projeto =
 pf / hora
- •Tamanho do projeto = 1520 pf
- •Calendário= não se trabalha aos sábados, domingos e feriados

•Qual a duração prevista?

Produtividade mais realista = _____

Jornada diária mais realista = _____

Duração em horas: _____

Duração em dias : _____

•Qual a data de término se o início ocorrer em 03 de maio ?

03/mai + ___ dias uteis = ____ / ____

•Qual a data de início se o término deve ocorrer em 17 de junho?

17/06 - ___ dias úteis = ___/___

Calendário

	maio						
D	S	T	Q	Q	S	S	
						1	
2	3	4	5	6	7	8	
9	10	11	12	13	14	15	
16	17	18	19	20	21	22	
23	24	25	26	27	28	29	
30	31						

junho						
D S T Q			Q	S	S	
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30			

Considerando-se:

- Tx.Produtividade = 80 %
- Produtividade (sem a tx de produtividade) para um determinado tipo de projeto =
 pf / hora
- •Tamanho do projeto = 1520 pf
- •Calendário= não se trabalha aos sábados, domingos e feriados

•Qual a duração prevista?

Produtividade + realista = $15 * 0.8 \rightarrow 12 pf / hm$

Jornada diária = 8 h * 0.8 = 6.4 hm

Duração em horas: 1520 pf / 12 pf / hm \rightarrow 126,7 hm

Duração em dias : $126,7 \div 6,4 = 19,8$ dias úteis

•Qual a data de término se o início ocorrer em 03 de maio ?

03/mai + 19 dias uteis = 28 / mai

•Qual a data de início se o término deve ocorrer em 17 de junho?

17/06 - 19 dias úteis = 21/05

- Identificar quanto implica monetariamente:
 - Custo direto devido a realização de cada uma das atividades
 - Custos indiretos das demais desembolsos
- Comportamento do custo da mão-de-obra

Variação:

Variável

Semi-variável

Por degrau

Custos indiretos envolvidos:

- Estrutura da área de TI:
 - equipamentos e materiais de consumo
 - assessoria, consultoria, auditoria, treinamentos
- Estrutura da empresa:
 - Utilidades, administração, instalação
- Estrutura do atendimento do projeto:
 - Locomoção, estadia
- Seguros, eventuais e imprevistos
- Qualidade e da falta da qualidade:
 - falhas internas e externas, avaliação da qualidade

• Métricas primárias:

- Custo total do projeto ou por fase do projeto
- Custos imprevistos
- Custos de ociosidade
- Custos de retrabalho e de modificações

Métricas secundárias:

- Custo do projeto por unidade de tamanho do projeto
- Curva de variação de custos
- Custos reais x orçados x replanejados
- Redistribuição dos custos

- Valor do trabalho efetuado: análise do trabalho efetuado e comparação com o valor orçado e o realizado.
- Motivo: síndrome dos 90% os primeiros 90% do trabalho consomem 90% do tempo disponível e os últimos 10 % consomem outros 90%.

Valor do trabalho feito (VTF) = custo planejado (CP) x % do trabalho feito (PTF)

Comparação do valor do trabalho feito (VTF) vs:

<u>Custo Realizado</u> (CR) → mostra a intensidade da ultrapassagem do orçamento inicial.

Custo Planejado (CP) → mostra a velocidade de projeto

Proporção do custo realizado: permite analisar o grau de controle financeiro do projeto face ao orçamento

Análise do PCR: mostra se os gastos estão sob controle ou se o orçamento inicial está sendo ultrapassado:

- Se PCR > 1 → o orçamento está sendo ultrapassado
- Se PCR $< 1 \rightarrow$ o projeto está ainda sob controle;

Proporção do custo do trabalho realizado : permite analisar a tendência de controle ou perda de controle

Análise do PCTR: mostra a tendencia:

- Se PCR > 1 → a tendência é não respeitar o orçamento
- Se PCR < 1 → a tendência é permanecer dentro dos limites;

Um projeto foi planejado para ter 10 atividades, com duração prevista de 1 mês cada, a um custo unitário de \$ 10. Após 4 meses, apurou-se que somente 3 atividades tinham sido realizadas a um custo unitário de \$ 15. Conclusões ?

CP (Custo Planejado) = 4 meses x \$ 10 = \$ 40

CR (Custo Real) = 3 meses x \$ 15 = \$ 45

PTF (Percentual de Trabalho Feito) = 3 atividades de um total de 4 atividades = 75%

VTF (Valor do Trabalho Feito) = PFT x CP = 75 % x \$ 40 = \$ 30

 O objetivo é evidenciar a situação presente e a tendência dos recursos pessoais. Tendência: rotular pessoas x problemas.

Métricas primárias :

- Diversidade de conhecimentos (técnicos, metodológicos, ...)
- Profundidade dos conhecimentos (Quantidade de detalhes conhecidos e Aplicação dos conhecimentos)
- Quantidade de problemas entregues x resolvidos
- Ocupação lotação do tempo disponível

Métricas secundárias :

- Capacidade para resolver problemas
- Índice de assertividade na solução de problemas
- Capacidade para receber/transmitir conhecimentos
- Índice de presença, disponibilidade e ociosidade

Métricas para as pessoas

æ å	Ruim	Despedir	Aguardar	Horas extras Subcontratar		
Perspectiva longo prazo	Normal	Reduzir / Treinar	Aguardar	Horas extras Subcontratar		
Persp	Boa	Treinar	Contratar e treinar	Contratar		
		Ruim	Normal	Boa		
		Perspectiva a curto prazo				

Métricas para o Produto

Métricas primárias:

- Tamanho do software: pronto (acervo); a ser desenvolvido (estimativa); a ser modificado (rearranjo do conteúdo)
- Quantidade de defeitos por origem ou complexidade. Acesso e segurança
- Quantidade manutenções, usuários, versões ativas
- Utilidade (confiabilidade, consistência, robustez) e usabilidade do produto (legibilidade, eficiência, agradabilidade)

Métricas secundárias:

- Qualidade do produto
- Estimativa de durabilidade
- Comportamento dos defeitos
- Taxa de inovação: novas funcionalidades

Métricas para o Produto

Linhas de código - K lines of code (Kloc)

- Criada na década de 70
- Tem por base a quantidade linhas do código fonte de todos os programas de um sistema.
- Apresenta alta correlação com o tempo de desenvolvimento
- Pré-requisitos:
 - Estabilidade do ambiente em termos de linguagem utilizada
 - Estabilidade da capacidade da equipe de desenvolvimento
 - Estabilidade dos procedimentos de programação quanto à arquitetura dos códigos

Métricas para o Produto Análise de pontos de função (APF)

Criado em 1979 por Allan J. Albrecht (IBM)

- Padrão internacional:
 - Parte 1 → ISO/IEC 14143-1:1998 (jun, 1998)
 - Parte 2 → Commitee Draft (CD)
 - Partes 3,4 e 5 → Padrão ISO/IEC 20296
- Medir a quantidade de funcionalidades sob o ponto de vista do usuário
- Permite calcular:
 - Estimativa, Acervo e Modificações de projetos
- Independência do ambiente computacional
- Críticas quanto aos 14 fatores de ajuste

Métricas para o Produto Pontos de Caso de Uso

- Criado em 1993 por Gustav Karner (Rational)
- Dificuldades:
 - inexistência de padronização dos formatos, nas especificações e formalização dos casos de uso
 - representar a visão que um ator têm de um sistema, principalmente quando um sistema tem estados diferentes
 - complexidade intrínseca do desenvolvimento
- Utilizado para estimativas do esforço e tamanho da equipe
- Contagem dos atores e dos casos de uso
- Os fatores ambientais consideram apenas a relação desenvolvedor x ambiente

Métricas de Clientes

Objetivo: Medir e acompanhar o atendimento às necessidades dos clientes e usuários

• Métricas primárias:

- Quantidade de reclamações
- Satisfação = Realizado Expectativa
- Quantidade/ Expectativas de novos projetos
- Tolerância a falhas (antiguidade como cliente/usuário)

Métricas secundárias:

- Índice de atendimento satisfatório
- Tendência ao desenvolvimento de novos serviços
- Tendência de capacitação tecnológica

Métricas do Processo

Objetivos:

- Acompanhamento do processo de desenvolvimento
- Acompanhamento com a aprendizagem do processo
- Acompanhamento da taxa de perfeição
- Acompanhamento da atualidade tecnológica

Métricas do Processo

Métricas primárias:

- Mapeamento dos métodos de desenvolvimento/tecnologias utilizadas
- Mapeamento da infra-estrutura existente/necessária
- Introdução de novos métodos (histórico)
- Capacitação metodológica e tecnológica da equipe

Métricas secundárias:

- Tamanho: estimado x entregue
- Produtividade do desenvolvimento total e por fase
- Eficiência na remoção de defeitos
- Densidade de defeitos total, por fase, por equipe, por tipo de negócio, por ambiente computacional
- Impacto na introdução de novas metodologias
- Confiabilidade na entrega

Objetivos:

- Prover um mapeamento sobre a melhoria dos processos implantados
- Indicar a qualidade da mão de obra
- Indicar os níveis de satisfação dos clientes e usuários
- Indicar os níveis de investimento e despesas com tecnologia da Informação
- Medir a eficácia do uso da tecnologia

Métricas secundárias:

- Estabilidade dos processos de desenvolvimento
- Taxa de melhoria do domínio de novas metodologias e tecnologias
- Índice de satisfação dos colaboradores / usuários
- Taxa de inovação tecnológica
- Tendências da produtividade
- Tendência da qualidade
- Contribuição no ROI
- Índice de aderência às estratégias empresariais
- Crescimento da demanda por TI

- CMM (Capability Maturity Model)
- CMMI (Capability Maturity Model Integration) (por estágio / contínuo)
- MPS.BR (Melhoria de Processos do Software Brasileiro)
- ISO 15504 (SPICE) e ISO 12207

- GARVIN, David A. Gerenciando a qualidade: a visão estratégica e competitiva. Rio de Janeiro: Qualitymark, 1992.
- KANTORSKI, Gustavo. Material da Disciplina de Qualidade e Auditoria de Software. Ulbra, Santa Maria. 2008.
- PRESSMAN, Roger S. <u>Engenharia de Software</u>. São Paulo: Makron, 2002.
- TONINI, Antonio Carlos. Métricas de software. Material de Aula, 2004
- WEBER, K. ROCHA, A. NASCIMENTO, C. <u>Qualidade e Produtividade em</u> software. São Paulo: Makron Books. 2001.