Course code	Course Name	L-T-P - Credits	Year of	
			Introduction	
FT205	FUDAMENTALS OF HEAT AND	3-1-0-4	2016	
	MASS TRANSFER			

Prerequisite: Nil

Course Objectives

To understand basic principles of heat and mass transfer in food processing and equipment used.

Syllabus

Conduction- Convection - Heat exchangers - Molecular Diffusion in fluids and solids - Gas Liquid Operations - Vapour Liquid Operations

Expected outcome.

The student will be able to

- (i) apply basic principles and mechanism of heat transfer processes in the design of heat transfer equipment.
- (ii) apply mass transfer through molecular diffusion, gas liquid and vapour liquid operations in food processing.

Text Book:

- 1. Geankoplis C.J. "Transport Processes and Unit Operations" 3rd edition Prentice Hall of India, 2002
- 2. Coulson and Richardsons, Chemical Engineering. Vol I & II, Asiali Books Pvt ltd, 1998

Data Book (Approved for use in the examination):

References:

- 1. Treybal R. E.: "Mass Transfer Operations" 3rd edition. McGraw Hill, 1981.
- 2. Binay K Dutta "Principles of Mass Transfer and Separation Processes" PHI Learning Private Ltd
- 3. Yunus A Cengel, "Heat and Mass Transfer: A practical Approach, 3rd edition McGraw Hill, 2006
- 4. J P Holman "Heat transfer" 6th Edition, McGraw Hill

Course Plan

Module	Contents	Hours	Sem. Exam Marks
I	CONDUCTION, Mechanisms of heat conduction - Thermal conductivity. Heat Diffusion Equation- Steady state Conduction in one dimension: Introduction- The Plane wall- Radial Systems-Insulation and R values- multi layer plane walls, cylinders and Spheres; Concept of Individual and Overall heat transfer Coefficient- Critical Thickness of Insulation-Thermal contact resistance- Unsteady State Conduction-Introduction- Lumped Capacity Systems	9 hrs	15%
II	CONVECTION: Basic Concepts –Heat Transfer Coefficients – Boundary Layer Concept–Types of Convection – Free convection – Forced Convection – Dimensional Analysis –Boiling and Condensation: Pool boiling, Flow boiling, Film Condensation, Nusselt analysis, Drop wise condensation; Boilers and condensers.	10 hrs	15%

	FIRST INTERNAL EXAMINATION			
Type LM' III Hea Rad Bolt	t Exchangers: es of Heat Exchangers – Heat Exchanger Analysis – TD Method and NTU method - Effectiveness – Overall t Transfer Coefficient – Fouling Factors. liation: Basic Concepts, Laws of Radiation – Stefan zmann Law, Kirchoffs Law –Black Body Radiation— iative properties	10hrs	15%	
IV Con mole Mix Coe IV Diff Tran Dim Theo Pher phas	LECULAR DIFFUSION IN FLUIDS AND SOLIDS: centration, Flux, Velocity, Fick's Law, Steady State ecular diffusion through constant area in a Binary Gas ture-Multi component Diffusion-Gas phase diffusion fficient-Diffusion Through Variable Area-Knudsen usion-Surface Diffusion-Self diffusion-Application; Mass asfer coefficients: Types of mass Transfer Coefficient-tensionless Groups in Mass Transfer-Eddy diffusion-ories of Mass Transfer , Analogies in Transport nomenon; Interphase Mass Transfer: Equilibrium between ses, Raoult's Law and Henry's Law, Mass Transfer veen Two Phases-The overall Mass Transfer Coefficient	9hrs	15%	
SECOND INTERNAL EXAMINATION				
V Prin absorprin	S LIQUID OPERATIONS: ciples of gas absorption; Single and Multi component orption; absorption with Chemical Reaction; Design ciples of absorbers; Industrial absorbers; NTU HTU cepts.	9hrs	20%	
VI Con azeo	POUR LIQUID OPERATIONS: Equilibria; Simple, Steam and Flash Distillation; tinuous distillation; McCABE-THIELE Principles; otropic and Extractive distillation, Industrial distillation pment, HETP, HTU and NTU concepts. END SEMESTER EXAM	9hrs	20%	

Question Paper Pattern: Max. marks: 100, Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.