Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Série de Fourie

Transformée de Fourier

Analyse multi-résoluti

Analyse en Ondelettes Projet mathématiques-informatique

Chloé Rouyer, Pierre Gervais, Souhaib Boulahia

Université Paris Diderot

13 juin 2017

Introduction

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Série de Fourie Transformée de

Analyse multi-résoluti

Joseph Fourier (1768 -1830) et Yves Meyer (1939-)

Série de Fourie Transformée de Fourier

Analyse multi-résolutio 1 Outils

Analyse de Hilbert

Espaces de Lebesgue

- 2 Première approche : Analyse de Fourier Série de Fourier Transformée de Fourier
- 3 Ondelettes et application Analyse multi-résolution

Espaces de Lebesgue

Première approche : Analyse de

Série de Fourie

Transformée d

Ondelettes e

Analyse multi-résolutio • Signaux : fonctions $\mathbb{R}^n o \mathbb{R}^m$

Espaces de Lebesgue

Première approche : Analyse de

Série de Fourie Transformée de Fourier

Analyse multi-résolution

- Signaux : fonctions $\mathbb{R}^n o \mathbb{R}^m$
- On veut généraliser les outils de la géométrie euclidienne

Espaces de Lebesgue

Première approche : Analyse de

Série de Fourie Transformée de Fourier

Analyse multi-résolution • ℓ^2 et la famille $\{x_n = \delta(n - \cdot)\}_n$

Espaces de Lebesgue

Première approche : Analyse de

Série de Fourie Transformée de Fourier

Analyse multi-résolutio

- ℓ^2 et la famille $\{x_n = \delta(n \cdot)\}_n$
- But : pouvoir écrire

$$u=\sum_{n=0}^{\infty}u_nx_n$$

Espaces de Lebesgue

Première approche : Analyse de

Série de Fourier Transformée de Fourier

Analyse

Un espace de Hilbert est la donnée

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Première approche : Analyse de

Série de Fourie Transformée d Fourier

Ondelettes

Analyse multi-résolution Un espace de Hilbert est la donnée

• D'un espace vectoriel réel E

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Première approche : Analyse de

Série de Fourier Transformée de Fourier

Analyse multi-résolution

Un espace de Hilbert est la donnée

- D'un espace vectoriel réel E
- D'un produit scalaire $\langle \cdot, \cdot \rangle$ défini sur E

Analyse de Hilbert Espaces de Lebesgue

Série de Fourie Transformée d Fourier

Analyse multi-résolution

Un espace de Hilbert est la donnée

- D'un espace vectoriel réel E
- D'un produit scalaire $\langle \cdot, \cdot \rangle$ défini sur E
- tel que E soit complet pour la norme induite par ce produit scalaire

Exemple d'espace hilbertien

Rouyer, Gervais, Boulahia

Analyse de Hilbert

Espaces de Lebesgue

Première approche : Analyse de

Série de Fourie

Transformée o

application

Analyse multi-résolution ℓ^2 avec le produit scalaire défini par $\langle u,v\rangle=\sum_{n=0}^{\infty}u_n\overline{v_n}$

Espace de Hilbert séparable

Rouyer, Gervais, Boulahia

Analyse de Hilbert

Espaces de Lebesgue

Première approche : Analyse de

Série de Fourie

Transformée de

Ondelettes

Analyse

E est dit *séparable* s'il existe $\mathbf{g} = \{g_n\}_{n \in \mathbb{N}}$ tel que $\overline{\mathbf{g}} = E$.

Séparabilité et base hilbertienne

Rouyer, Gervais, Boulahia

Analyse de Hilbert

Espaces de Lebesgue

Première approche : Analyse de

Série de Fourie Transformée d Fourier

Analyse

 $\it E$ est séparable si et seulement s'il admet une base hilbertienne

Analyse de Hilbert Espaces de Lebesgue

Série de Fouri Transformée de

Analyse multi-résolution E est séparable si et seulement s'il admet une base hilbertienne où une base hilbertienne est une famille orthonormée **totale**, c'est-à-dire une famille orthonormée $\mathcal B$ telle que $\mathrm{Vect}(\mathcal B)$ soit dense dans E.

Analyse de Hilbert

 $\mathbf{g} = \{g_n\}_{n \in \mathbb{N}} \subset E \text{ telle que } \overline{\mathbf{g}} = E.$

Espaces de Lebesgue

Première approche : Analyse de

Série de Fouri

Transformée d

Ondelette

Analyse

Analyse de Hilbert Espaces de Lebesgue

remière

Série de Fourie

Transformée d Fourier

Analyse multi-résoluti $\mathbf{g}=\{g_n\}_{n\in\mathbb{N}}\subset E$ telle que $\overline{\mathbf{g}}=E$. On construit par récurrence $\mathbf{f}=\{f_n\}_{n\in\mathbb{N}}$ de manière à ce que $\{f_0,\cdots f_n\}$ soit orthonormale pour tout n.

Analyse de Hilbert

Espaces de Lebesgue

Série de Fouri

Transformée de Fourier

Analyse multi-résoluti $\mathbf{g} = \{g_n\}_{n \in \mathbb{N}} \subset E \text{ telle que } \overline{\mathbf{g}} = E.$

On construit par récurrence $\mathbf{f}=\{f_n\}_{n\in\mathbb{N}}$ de manière à ce que $\{f_0,\cdots f_n\}$ soit orthonormale pour tout n.

On pose
$$f_0 = \frac{g_0}{\|g_0\|}, \ g_0 \neq 0.$$

Analyse de Hilbert

Espaces de Lebesgue

Série de Fourie

Transformée de Fourier

Analyse multi-résolution $\mathbf{g} = \{g_n\}_{n \in \mathbb{N}} \subset E \text{ telle que } \overline{\mathbf{g}} = E.$

On construit par récurrence $\mathbf{f} = \{f_n\}_{n \in \mathbb{N}}$ de manière à ce que $\{f_0, \dots f_n\}$ soit orthonormale pour tout n.

On pose $f_0 = \frac{g_0}{\|g_0\|}, \ g_0 \neq 0.$

On construit par récurrence f_{n+1} à l'aide de $f_0, \dots f_n$:

Analyse de Hilbert

Espaces de Lebesgue

Série de Fourie

Analyse multi-résoluti $\mathbf{g} = \{g_n\}_{n \in \mathbb{N}} \subset E \text{ telle que } \overline{\mathbf{g}} = E.$

On construit par récurrence $\mathbf{f}=\{f_n\}_{n\in\mathbb{N}}$ de manière à ce que $\{f_0,\cdots f_n\}$ soit orthonormale pour tout n.

On pose $f_0 = \frac{g_0}{\|g_0\|}, \ g_0 \neq 0.$

On construit par récurrence f_{n+1} à l'aide de $f_0, \dots f_n$:

• on choisit $x \in \text{Vect}(g_0 \cdots g_m) \setminus \text{Vect}(f_0 \cdots f_n)$, avec m le plus petit possible pour que x existe

Analyse de Hilbert

Espaces de Lebesgue

Série de Fourier Transformée de

Analyse multi-résolution $\mathbf{g} = \{g_n\}_{n \in \mathbb{N}} \subset E \text{ telle que } \overline{\mathbf{g}} = E.$

On construit par récurrence $\mathbf{f} = \{f_n\}_{n \in \mathbb{N}}$ de manière à ce que $\{f_0, \dots f_n\}$ soit orthonormale pour tout n.

On pose $f_0 = \frac{g_0}{\|g_0\|}, g_0 \neq 0.$

On construit par récurrence f_{n+1} à l'aide de $f_0, \dots f_n$:

on choisit x ∈ Vect(g₀ ··· g_m) \ Vect(f₀ ··· f_n), avec m le plus petit possible pour que x existe (il existe car E est de dimension infinie).

Analyse de Hilbert

Espaces de Lebesgue

Série de Fourie Transformée de Fourier

Analyse multi-résoluti $\mathbf{g} = \{g_n\}_{n \in \mathbb{N}} \subset E \text{ telle que } \overline{\mathbf{g}} = E.$

On construit par récurrence $\mathbf{f} = \{f_n\}_{n \in \mathbb{N}}$ de manière à ce que $\{f_0, \dots f_n\}$ soit orthonormale pour tout n.

On pose $f_0 = \frac{g_0}{\|g_0\|}, \ g_0 \neq 0.$

On construit par récurrence f_{n+1} à l'aide de $f_0, \dots f_n$:

on choisit x ∈ Vect(g₀ ··· g_m) \ Vect(f₀ ··· f_n), avec m le plus petit possible pour que x existe (il existe car E est de dimension infinie). Ainsi Vect(g₀ ··· g_m) = Vect(f₀ ··· f_n, x)

Analyse de Hilbert Espaces de Lebesgue $\mathbf{g} = \{g_n\}_{n \in \mathbb{N}} \subset E \text{ telle que } \overline{\mathbf{g}} = E.$

On construit par récurrence $\mathbf{f} = \{f_n\}_{n \in \mathbb{N}}$ de manière à ce que $\{f_0, \dots f_n\}$ soit orthonormale pour tout n.

On pose $f_0 = \frac{g_0}{\|g_0\|}, \ g_0 \neq 0.$

On construit par récurrence f_{n+1} à l'aide de $f_0, \dots f_n$:

- on choisit $x \in \text{Vect}(g_0 \cdots g_m) \setminus \text{Vect}(f_0 \cdots f_n)$, avec m le plus petit possible pour que x existe (il existe car E est de dimension infinie). Ainsi $Vect(g_0 \cdots g_m) = Vect(f_0 \cdots f_n, x)$
- on orthogonalise la nouvelle famille : $y = x \sum \langle y, f_k \rangle f_k$

Analyse de Hilbert Espaces de Lebesgue

Série de Fourie Transformée de

Analyse multi-résoluti $\mathbf{g} = \{g_n\}_{n \in \mathbb{N}} \subset E \text{ telle que } \overline{\mathbf{g}} = E.$

On construit par récurrence $\mathbf{f} = \{f_n\}_{n \in \mathbb{N}}$ de manière à ce que $\{f_0, \dots f_n\}$ soit orthonormale pour tout n.

On pose $f_0 = \frac{g_0}{\|g_0\|}, \ g_0 \neq 0.$

On construit par récurrence f_{n+1} à l'aide de $f_0, \dots f_n$:

- on choisit x ∈ Vect(g₀ ··· g_m) \ Vect(f₀ ··· f_n), avec m le plus petit possible pour que x existe (il existe car E est de dimension infinie). Ainsi Vect(g₀ ··· g_m) = Vect(f₀ ··· f_n, x)
- on orthogonalise la nouvelle famille : $y = x \sum_{k=0}^{n} \langle y, f_k \rangle f_k$
- on normalise le nouveau vecteur : $f_{n+1} = \frac{y}{\|y\|}$

Analyse de Hilbert Espaces de Lebesgue

Série de Fourie Transformée de

Analyse multi-résoluti $\mathbf{g} = \{g_n\}_{n \in \mathbb{N}} \subset E \text{ telle que } \overline{\mathbf{g}} = E.$

On construit par récurrence $\mathbf{f} = \{f_n\}_{n \in \mathbb{N}}$ de manière à ce que $\{f_0, \dots f_n\}$ soit orthonormale pour tout n.

On pose $f_0 = \frac{g_0}{\|g_0\|}, g_0 \neq 0.$

On construit par récurrence f_{n+1} à l'aide de $f_0, \dots f_n$:

- on choisit x ∈ Vect(g₀ ··· g_m) \ Vect(f₀ ··· f_n), avec m le plus petit possible pour que x existe (il existe car E est de dimension infinie). Ainsi Vect(g₀ ··· g_m) = Vect(f₀ ··· f_n, x)
- on orthogonalise la nouvelle famille : $y = x \sum_{k=0}^{n} \langle y, f_k \rangle f_k$
- on normalise le nouveau vecteur : $f_{n+1} = \frac{y}{\|y\|}$

En passant à l'adhérence : $E = \overline{\mathbf{g}} \subset \overline{\mathrm{Vect}(\mathbf{f})} \subset E$

Espaces de Lebesgue

Rouyer, Gervais. Boulahia

Espaces de Lebesgue

Analyse

Soit (X, \mathcal{A}, μ) un espace mesuré.

Soit (X, \mathcal{A}, μ) un espace mesuré.

$$\mathcal{L}^p(X) = \left\{ f : X \to \mathbb{C} \text{ mesurable } | \int_X |f|^p d\mu < \infty
ight\}$$

Soit (X, A, μ) un espace mesuré.

$$\mathcal{L}^p(X)=\left\{f\ :\ X o\mathbb{C}\ ext{mesurable}\ |\ \int_X|f|^pd\mu<\infty
ight\}$$

$$\|f\|_p=\left(\int_X|f|^pd\mu
ight)^{rac{1}{p}}$$

Analyse

Soit la relation d'équivalence définie par $f\mathcal{R}g \Longleftrightarrow f \equiv g$ p.p.

Transformée d Fourier

Analyse multi-résoluti Soit la relation d'équivalence définie par $f\mathcal{R}g \Longleftrightarrow f \equiv g$ p.p.

$$L^p(X)=\mathcal{L}^p(X)/\mathcal{R}$$

Analyse multi-résolution Soit la relation d'équivalence définie par $f\mathcal{R}g \Longleftrightarrow f \equiv g$ p.p.

$$L^p(X)=\mathcal{L}^p(X)/\mathcal{R}$$

$$(L^p(X), \|\cdot\|_p)$$
 est alors normé ...

Analyse multi-résolutio Soit la relation d'équivalence définie par $f\mathcal{R}g \Longleftrightarrow f \equiv g$ p.p.

$$L^p(X)=\mathcal{L}^p(X)/\mathcal{R}$$

 $(L^p(X), \|\cdot\|_p)$ est alors normé ... et complet!

Dans $L^2(\mathbb{T})$:

• Les $\{e^{-ikt}\}_{k\in\mathbb{Z}}$ forment une base Hilbertienne

Dans $L^2(\mathbb{T})$:

- \bullet Les $\{e^{-ikt}\}_{k\in\mathbb{Z}}$ forment une base Hilbertienne
- Toute fonction de $L^2(\mathbb{T})$ se décompose dans la base des $\{e^{-ikt}\}_{k\in\mathbb{Z}}$

Dans $L^2(\mathbb{T})$:

- Les $\{e^{-ikt}\}_{k\in\mathbb{Z}}$ forment une base Hilbertienne
- Toute fonction de $L^2(\mathbb{T})$ se décompose dans la base des $\{e^{-ikt}\}_{k\in\mathbb{Z}}$
- On définit les coefficients de Fourier par $c_k = \langle f, e^{-ikt} \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{e^{-ikt}} dt$

Dans $L^2(\mathbb{T})$:

- Les $\{e^{-ikt}\}_{k\in\mathbb{Z}}$ forment une base Hilbertienne
- Toute fonction de $L^2(\mathbb{T})$ se décompose dans la base des $\{e^{-ikt}\}_{k\in\mathbb{Z}}$
- On définit les coefficients de Fourier par $c_k = \langle f, e^{-ikt} \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{e^{-ikt}} dt$
- Et $S_N(f) = \sum_{k=-N}^N c_k(f)e^{-ikt}$

La décomposition en série de Fourier s'applique aux fonctions périodiques.

Dans $L^2(\mathbb{T})$:

- Les $\{e^{-ikt}\}_{k\in\mathbb{Z}}$ forment une base Hilbertienne
- Toute fonction de $L^2(\mathbb{T})$ se décompose dans la base des $\{e^{-ikt}\}_{k\in\mathbb{Z}}$
- On définit les coefficients de Fourier par $c_k = \langle f, e^{-ikt} \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{e^{-ikt}} dt$
- Et $S_N(f) = \sum_{k=-N}^N c_k(f)e^{-ikt}$
- Avec $\lim_{N\to\infty} \|S_N(f) f\|_2 = 0$

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Première approche : Analyse de

Série de Fourier

Fourier

applicatio

Analyse multi-résolutie

Preuve de $\lim_{N\to\infty} ||S_N(f) - f||_2 = 0$

Soit $f \in L^2(\mathbb{T})$, soit $\varepsilon > 0$. Soit $f_0 \in L^2(\mathbb{T})$ une fonction continue telle que $|f_0 - f| < \varepsilon$

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Série de Fourier

Fourier

Analyse multi-résoluti

Preuve de $\lim_{N\to\infty} ||S_N(f) - f||_2 = 0$

Soit $f \in L^2(\mathbb{T})$, soit $\varepsilon > 0$. Soit $f_0 \in L^2(\mathbb{T})$ une fonction continue telle que $|f_0 - f| < \varepsilon$ Soit F_0 tel que $f_0(t) = F_0(e^{it})$ Il existe un polynôme trigonométrique P tel que pour tout t, $\|f_0(t) - P(t)\| < \varepsilon$ Ce qui permet de déduire que : Analyse de Hilbert Espaces de Lebesgue

Série de Fourier

Transformée d Fourier

multi-résolut

Soit

Soit $f \in L^2(\mathbb{T})$, soit $\varepsilon > 0$.

Soit $f_0 \in L^2(\mathbb{T})$ une fonction continue telle que $|f_0 - f| < \varepsilon$

Soit F_0 tel que $f_0(t) = F_0(e^{it})$

Il existe un polynôme trigonométrique P tel que pour tout t, $||f_0(t) - P(t)|| < \varepsilon$

Ce qui permet de déduire que :

$$||S_{N}(f) - f||_{2} \leq ||S_{N}(f) - S_{N}(P)||_{2} + ||S_{N}(P) - P||_{2} + ||f - P||_{2}$$

$$\leq 2||f - P||_{2} + ||S_{N}(P) - P||_{2}$$

$$\leq 2||f - P||_{2}$$

$$\leq 2||f - f_{0}||_{2} + 2||f_{0} - P||_{2}$$

$$\leq 4\varepsilon$$

Vitesse de décroissance des coefficients. Si $f \in C^k$ alors :

$$|c_p(f)| \leqslant \frac{C}{|p|^k}$$

Transformée de Fourier pour $f \in L^1(\mathbb{R})$

$$\mathcal{F}[f](\xi) = F(\xi) = \int_{-\infty}^{+\infty} f(t)e^{-i\xi t}dt$$

Transformée de Fourier pour $f \in L^1(\mathbb{R})$

$$\mathcal{F}[f](\xi) = F(\xi) = \int_{-\infty}^{+\infty} f(t)e^{-i\xi t}dt$$

Transformée de Fourier inverse pour $f,F\in L^1(\mathbb{R})$ et f continue

$$\overline{\mathcal{F}}[F](t) = f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\xi) e^{i\xi t} dt$$

Rouyer, Gervais, Boulahia

Espaces de Lebesgue

Série de Fourie

Transformée de Fourier

Analyse multi-résolution

2 signaux ayant des transformées de Fourier similaires

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Série de Fourie

Transformée de Fourier

Analyse multi-résolution

2 signaux ayant des transformées de Fourier similaires

$$F(\xi,\tau) = \int_{-\infty}^{+\infty} f(t)e^{-i\xi t}\overline{w(t-\tau)}dt$$

Analyse multi-résolution

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Série de Fourie Transformée de

Analyse multi-résolution

Une image de voiture pour trois résolutions différentes

Série de Fourie

Fourier

Analyse multi-résolution Une analyse multi-résolution de $L^2(\mathbb{R})$ est une famille de sous-espaces fermés $\{V_n\}_{n\in\mathbb{Z}}\subset L^2(\mathbb{R})$ telle que

Une analyse multi-résolution de $L^2(\mathbb{R})$ est une famille de sous-espaces fermés $\{V_n\}_{n\in\mathbb{Z}}\subset L^2(\mathbb{R})$ telle que

$$\forall n \in \mathbb{Z}, \ V_n \subset V_{n+1}$$

Une analyse multi-résolution de $L^2(\mathbb{R})$ est une famille de sous-espaces fermés $\{V_n\}_{n\in\mathbb{Z}}\subset L^2(\mathbb{R})$ telle que

$$\forall n \in \mathbb{Z}, \ V_n \subset V_{n+1}$$

$$\forall n \in \mathbb{Z}, \forall f \in L^2(\mathbb{R}), \ f \in V_n \Longleftrightarrow f(2 \cdot) \in V_{n+1}$$

Analyse multi-résolution Une analyse multi-résolution de $L^2(\mathbb{R})$ est une famille de sous-espaces fermés $\{V_n\}_{n\in\mathbb{Z}}\subset L^2(\mathbb{R})$ telle que

$$\forall n \in \mathbb{Z}, \ V_n \subset V_{n+1}$$

$$\forall n \in \mathbb{Z}, \forall f \in L^2(\mathbb{R}), \ f \in V_n \Longleftrightarrow f(2 \cdot) \in V_{n+1}$$

Il existe φ telle que $\{\varphi_k=\varphi(\cdot+k)\}_{k\in\mathbb{Z}}$ forme une base orthonormée de V_0

Série de Fourie Transformée de Fourier

Analyse multi-résolution Une analyse multi-résolution de $L^2(\mathbb{R})$ est une famille de sous-espaces fermés $\{V_n\}_{n\in\mathbb{Z}}\subset L^2(\mathbb{R})$ telle que

$$\forall n \in \mathbb{Z}, \ V_n \subset V_{n+1}$$

$$\forall n \in \mathbb{Z}, \forall f \in L^2(\mathbb{R}), \ f \in V_n \Longleftrightarrow f(2 \cdot) \in V_{n+1}$$

Il existe φ telle que $\{\varphi_k = \varphi(\cdot + k)\}_{k \in \mathbb{Z}}$ forme une base orthonormée de V_0

$$\overline{\bigcup V} = L^2(\mathbb{R})$$

Analyse

Une analyse multi-résolution de $L^2(\mathbb{R})$ est une famille de sous-espaces fermés $\{V_n\}_{n\in\mathbb{Z}}\subset L^2(\mathbb{R})$ telle que

$$\forall n \in \mathbb{Z}, \ V_n \subset V_{n+1}$$

$$\forall n \in \mathbb{Z}, \forall f \in L^2(\mathbb{R}), \ f \in V_n \Longleftrightarrow f(2 \cdot) \in V_{n+1}$$

Il existe φ telle que $\{\varphi_k = \varphi(\cdot + k)\}_{k \in \mathbb{Z}}$ forme une base orthonormée de V_0

$$\overline{\bigcup V} = L^2(\mathbb{R})$$

$$\bigcap V = \{0\}$$

Une analyse multi-résolution de $L^2(\mathbb{R})$ est une famille de sous-espaces fermés $\{V_n\}_{n\in\mathbb{Z}}\subset L^2(\mathbb{R})$ telle que

$$\forall n \in \mathbb{Z}, \ V_n \subset V_{n+1}$$

$$\forall n \in \mathbb{Z}, \forall f \in L^2(\mathbb{R}), \ f \in V_n \Longleftrightarrow f(2 \cdot) \in V_{n+1}$$

Il existe φ telle que $\{\varphi_k = \varphi(\cdot + k)\}_{k \in \mathbb{Z}}$ forme une base orthonormée de V_0

$$\overline{\bigcup V} = L^2(\mathbb{R})$$

$$\bigcap V = \{0\}$$

 φ est appelée fonction d'échelle.

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Première approche : Analyse de

Série de Fourie

Fourier

Analyse multi-résolution L'espace V_{n+1} est plus "fin" que V_n .

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Première approche : Analyse de

Série de Fourier Transformée de Fourier

Analyse multi-résolution L'espace V_{n+1} est plus "fin" que V_n . Soit $P_n:V_{n+1}\to V_n$ la projection orthogonale Première approche : Analyse de

Série de Fourier Transformée de Fourier

Analyse multi-résolution L'espace V_{n+1} est plus "fin" que V_n . Soit $P_n:V_{n+1}\to V_n$ la projection orthogonale

 $\rightarrow v_n$ ia projection orthogonal

$$W_n = \ker(P_n)$$

L'espace V_{n+1} est plus "fin" que V_n .

Soit $P_n: V_{n+1} o V_n$ la projection orthogonale

$$W_n = \ker(P_n) = V_{n+1} \cap V_n^{\perp}$$

L'espace V_{n+1} est plus "fin" que V_n .

Soit $P_n: V_{n+1} o V_n$ la projection orthogonale

$$W_n = \ker(P_n) = V_{n+1} \cap V_n^{\perp}$$

On définit l'espace de détails par

$$V_{n+1} = W_n \oplus V_n$$

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Première approche : Analyse de

Série de Fourie

Fourier

Analyse multi-résolution

$$V_n = V_{n-1} \oplus W_{n-1}$$

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Première approche Analyse de

Série de Fourie Transformée d

Fourier

Analyse multi-résolution

$$V_n = V_{n-1} \oplus W_{n-1}$$
$$= V_{n-2} \oplus W_{n-2} \oplus W_{n-1}$$

Rouyer, Gervais, Boulahia

Analyse de Hilbert Espaces de Lebesgue

Première approche : Analyse de

Série de Fourie Transformée de

Analyse multi-résolution $V_{n} = V_{n-1} \oplus W_{n-1}$ $= V_{n-2} \oplus W_{n-2} \oplus W_{n-1}$ $= V_{n-3} \oplus W_{n-3} \oplus W_{n-2} \oplus W_{n-1}$

approche : Analyse de

Série de Fourier Transformée de Fourier

Analyse multi-résolution

$$V_{n} = V_{n-1} \oplus W_{n-1}$$

$$= V_{n-2} \oplus W_{n-2} \oplus W_{n-1}$$

$$= V_{n-3} \oplus W_{n-3} \oplus W_{n-2} \oplus W_{n-1}$$

$$\vdots$$

$$= \underbrace{\bigcap_{\{0\}} V} \oplus \left(\bigoplus_{k < n} W_k \right)$$

Analyse multi-résolution

$$V_{n} = V_{n-1} \oplus W_{n-1}$$

$$= V_{n-2} \oplus W_{n-2} \oplus W_{n-1}$$

$$= V_{n-3} \oplus W_{n-3} \oplus W_{n-2} \oplus W_{n-1}$$

$$\vdots$$

$$= \underbrace{\bigcap V}_{\{0\}} \oplus \left(\bigoplus_{k < n} W_{k}\right)$$

Et en faisant l'union pour tout $n \in \mathbb{Z}$ à droite et à gauche

$$\bigcup_{n\in\mathbb{Z}}V_n=\bigoplus_{n\in\mathbb{Z}}W_n$$

Série de Fourier Transformée de

Analyse multi-résolution

$$V_{n} = V_{n-1} \oplus W_{n-1}$$

$$= V_{n-2} \oplus W_{n-2} \oplus W_{n-1}$$

$$= V_{n-3} \oplus W_{n-3} \oplus W_{n-2} \oplus W_{n-1}$$

$$\vdots$$

$$= \underbrace{\bigcap_{k < n} V} \oplus \left(\bigoplus_{k < n} W_{k} \right)$$

Et en faisant l'union pour tout $n \in \mathbb{Z}$ à droite et à gauche

$$\bigcup_{n\in\mathbb{Z}}V_n=\bigoplus_{n\in\mathbb{Z}}W_n=V_0\oplus\left(\bigoplus_{n\in\mathbb{N}}W_n\right)$$

Première approche : Analyse de

Série de Fourie

Fourier

Analyse multi-résolution $\{W_n\}_{n\in\mathbb{Z}}$ n'est pas une suite croissante mais on conserve l'auto-similarité.

Série de Fourie

Fourier

Analyse multi-résolution $\{W_n\}_{n\in\mathbb{Z}}$ n'est pas une suite croissante mais on conserve l'auto-similarité.

$$f \in W_0 \Longleftrightarrow f(2\cdot) \in W_1 \Longleftrightarrow f(2^n \cdot) \in W_n$$

$$f \in W_0 \Longleftrightarrow f(2\cdot) \in W_1 \Longleftrightarrow f(2^n \cdot) \in W_n$$

Il existe $\psi \in W_0$ tel que

$$f \in W_0 \Longleftrightarrow f(2\cdot) \in W_1 \Longleftrightarrow f(2^n \cdot) \in W_n$$

Il existe $\psi \in W_0$ tel que

• $\{\psi(\cdot+k)\}_{k\in\mathbb{Z}}$ est une base orthonormée de W_0

$$f \in W_0 \Longleftrightarrow f(2\cdot) \in W_1 \Longleftrightarrow f(2^n \cdot) \in W_n$$

Il existe $\psi \in W_0$ tel que

- $\{\psi(\cdot+k)\}_{k\in\mathbb{Z}}$ est une base orthonormée de W_0
- $\int_{\mathbb{R}} \psi(t)dt = 0$

Série de Fourie Transformée d Fourier

Analyse multi-résolutio $\{W_n\}_{n\in\mathbb{Z}}$ n'est pas une suite croissante mais on conserve l'auto-similarité.

$$f \in W_0 \iff f(2\cdot) \in W_1 \iff f(2^n \cdot) \in W_n$$

Il existe $\psi \in W_0$ tel que

- $\{\psi(\cdot + k)\}_{k \in \mathbb{Z}}$ est une base orthonormée de W_0
- $\int_{\mathbb{R}} \psi(t) dt = 0$

 $\{\sqrt{2^n}\psi(2^n\cdot -k)\}_{k\in\mathbb{Z}}$ est une base orthonormée de W_n .

Analyse multi-résolutio $\{W_n\}_{n\in\mathbb{Z}}$ n'est pas une suite croissante mais on conserve l'auto-similarité.

$$f \in W_0 \Longleftrightarrow f(2\cdot) \in W_1 \Longleftrightarrow f(2^n \cdot) \in W_n$$

Il existe $\psi \in W_0$ tel que

- $\{\psi(\cdot + k)\}_{k \in \mathbb{Z}}$ est une base orthonormée de W_0
- $\int_{\mathbb{R}} \psi(t) dt = 0$

 $\{\sqrt{2^n}\psi(2^n\cdot -k)\}_{k\in\mathbb{Z}}$ est une base orthonormée de W_n . La famille définie par $\psi_{n,k}(t)=\sqrt{2^n}(2^nt-k)$ forme une famille orthonormée de $\bigoplus_{n\in\mathbb{Z}^n}W_n$

$$f \in W_0 \Longleftrightarrow f(2\cdot) \in W_1 \Longleftrightarrow f(2^n \cdot) \in W_n$$

Il existe $\psi \in W_0$ tel que

- $\{\psi(\cdot+k)\}_{k\in\mathbb{Z}}$ est une base orthonormée de W_0
- $\int_{\mathbb{R}} \psi(t) dt = 0$

 $\{\sqrt{2^n}\psi(2^n\cdot -k)\}_{k\in\mathbb{Z}}$ est une base orthonormée de W_n . La famille définie par $\psi_{n,k}(t)=\sqrt{2^n}(2^nt-k)$ forme une famille orthonormée de $\bigoplus_{r\in\mathbb{Z}}W_n$

 $\{\psi_{n,k}\}_{n,k\in\mathbb{Z}}$ est une base hilbertienne de $L^2(\mathbb{R})$!

De $\bigcup_{n\in\mathbb{Z}}V_n=\bigoplus_{n\in\mathbb{Z}}W_n=V_0\oplus\left(\bigoplus_{n\in\mathbb{N}}W_n\right)$

Analyse multi-résolution

De
$$\bigcup_{n\in\mathbb{Z}}V_n=\bigoplus_{n\in\mathbb{Z}}W_n=V_0\oplus\left(\bigoplus_{n\in\mathbb{N}}W_n\right)$$
 on déduit pour tout $f\in L^2(\mathbb{R})$

$$f = \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{Z}}} \langle \psi_{n,k}, f \rangle \psi_{n,k} = \sum_{k \in \mathbb{Z}} \langle \varphi_k, f \rangle \varphi_k + \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}}} \langle \psi_{n,k}, f \rangle \psi_{n,k}$$

L'ondelette de Haar est définie par :

$$\psi(t) = egin{cases} -1 & ext{si } 0 \leqslant t < rac{1}{2} \ 1 & ext{si } rac{1}{2} \leqslant t < 1 \ 0 & ext{sinon} \end{cases}$$

La fonction d'échelle associée est la fonction porte :

$$\varphi(t) = \begin{cases} 1 & \text{si } 0 \leqslant t < 1 \\ 0 & \text{sinon} \end{cases}$$

Peu régulière, discontinue

L'ondelette chapeau mexicain est définie par :

$$\psi(t) = \lambda \left(1 - t^2\right) e^{-\frac{t^2}{2}}$$

avec:

$$\lambda = \frac{2}{\sqrt{2}\pi^{\frac{1}{4}}}$$

On rappelle:

$$\bigcup_{n\in\mathbb{Z}}V_n=V_0\stackrel{\perp}{\oplus}\left(\bigoplus_{n\in\mathbb{N}}^{\perp}W_n\right)$$

On peut décomposer tout fonction $f \in L^2(\mathbb{R})$ ainsi :

$$f = \sum_{k \in \mathbb{Z}} \langle f, \varphi_k \rangle \varphi_k + \sum_{\substack{k \in \mathbb{Z} \\ n \in \mathbb{N}}} \langle f, \psi_{n,k} \rangle \psi_{n,k}$$

On manipule des fonctions $f \in L^2(\mathbb{R})$ de la forme

$$f = \sum_{i=0}^{2^{N_0}-1} a_j \mathbb{1}_{[2^{-N_0}j, 2^{-N_0}(j+1)[}$$

$$\langle f, \psi_{n,k} \rangle = \int_0^1 f(t) \overline{\psi_{n,k}(t)} dt$$
$$= \sum_{j=0}^{N-1} a_j \left(\Phi\left(\frac{j+1}{N} - \frac{k}{N}\right) - \Phi\left(\frac{j}{N} - \frac{k}{N}\right) \right)$$

où Ψ est une primitive de $\overline{\psi},$ Φ est une primitive de $\overline{\phi}$ et ${\it N}=2^{\it N_0}.$

Algorithme d'encodage

```
Rouyer,
Gervais,
Boulahia
```

Analyse de Hilbert Espaces de Lebesgue

Première

Série de Fourie

Transformée de Fourier

Analyse multi-résolution

```
1: procedure Encoder(\Psi, \tilde{f}, N_0, s)
        S_m := \Phi(1) - \Phi(0)
        P_0 := \text{Construire}(\Psi, 0, s(0))
        for n = 0, 1 \cdots N_0 do
            for k = 0, 1 \cdots 2^{N_0 - n} do
                 S_{n,k} := 0
 6:
                 for x = 0, 1 \cdots 2^{N_0} do
 7:
                     S_{n,k} := S_{n,k} + \frac{1}{\sqrt{2^{3n}}} (\Psi(2^n x - k) - \Psi(2^n (x + 1) - k)) \times f(x)
 9:
                 end for
            end for
10:
         end for
11:
12:
        return S_m, (S_{n,k})_{n,k}
13: end procedure
14: procedure Décoder(\psi, S_m, A = (\alpha_{n,k})_{n,k}, N_0, s(n))
         for x = 0, 2^{-N_0}, 2 \times 2^{-N_0} \dots, 1 do
15:
             f(x) := S_m
16:
             for n = 0, 1 \cdots, N_0 do
17:
                 for k = 0, 1 \cdots, s(n) do
18-
                      f(x) := f(x) + \alpha_{n,k} \times \psi(2^{-n}x - k)
19:
                 end for
20.
21:
             end for
         end for
22:
         return f
23:
```