Prednáška 5 Dátové modelovanie

Obsoh prednášky

- Organizácia
- Dátové modelovanie
 - Úroveň abstrakcie dátových modelov
 - Entitno Relačný diagram
- Zadanie 3

Organizácia

- Posunutie zadania 2 v dôsledku IO operácií v rámci Azure DB
 - Môžete sa vypnúť DB v rámci Azure

Motivácia

- Ako navrhnúť správne DB?
 - Môžeme vytvoriť jednu tabuľku/súbor alebo viacero tabuliek
 - Redundancia dát, možnosť porušenia integrity
 - Ako sa budú dáta meniť v čase, čo všetko chcem mať uchované
- Ako postupovať pri návrhu DB?

Dátové modelovanie

Dátové modelovanie

- Proces, pri ktorom sa definujú a analyzujú požiadavky na štruktúru dát pre informačný systém
 - Výsledok dátový model

Dátový model

- Popisuje formát, štruktúru a vzťahy dát informačného systému
- V kontexte relačných DB
 - Definovanie tabuliek, ich prepojení, obmedzení
 - Všetko čo sme si ukazovali doteraz v rámci DDL

Dizojn DB - Tozy

- Analyzovanie požiadaviek
- Konceptuálny dizajn
- Logický dizajn
- Fyzický dizajn
 - Súvisí aj s optimalizáciou query processing
 - Vstupujú špecifiká DBMS

Konceptuálny a logický model sa prelínajú – závisi od spôsobu návrhu DB

Viazané na konkrétnu implementáciu DBMS

Konceptuálny model

- Možnosť reprezentovaním Entitno-Relačný (ER) modelom
 - Relation relácia
 - Relationship vzťah medzi reláciami
- Entitno-relačný model
 - Transformácia reálneho sveta na entity a ich vzájomné vzťahy
 - Grafické znázornenie
 - Závisí od vybranej grafickej reprezentácie
 - L'ahká transformácia na relačný model

Entitho-relachy model

- Základné pojmy
 - Entita konkrétny objekt rovnakého charakteru
 - Množina entít zoskupenie entít rovnakého typu
 - Tabuľka/Relácia v relačnom modeli
 - Atribút
 - Vzťah
 - Vzťahová množina matematická relácia nad množinami entít
 - Kľúčový atribút (key atrribute)

E-R model -vizualizácia

UML

Zdroj: Elmasri, Navathe - Fundtamentals of Database Systems

Kordinolita

- Označované aj ako násobnosť (multiplicity)
- Súvisí so vzťahmi medzi entitami
- V rámci relačného modelu súvisí s tým ako sú vytvorené referencie medzi jednotlivými tabuľkami
- Tri typy
 - · I:I (One-to-One)
 - prezident riadi štát
 - I:N (One-to-Many) alebo N:I (Many-to-One)
 - oddelenie zamestnáva zamestnanca, zamestnanec je zamestnaný na oddelení
 - M:N (Many-to-Many)
 - zamestnanec pracuje na viacerých projektoch a na projekte môže pracovať viacero zamestnancov

ISO ONE-TO-MONY

Príklad: prezident riadi štát

ISA One-to-lagary

• Príklad: oddelenie zamestnáva zamestnanca, zamestnanec je zamestnaný na oddelení

Man Many To-Many

• Príklad: zamestnanec pracuje na viacerých projektoch a na projekte môže pracovať viacero zamestnancov

Afributy

ER VS FEIDCHY MODEI

ER model	Relačný model
Entitná množina	Relácia/tabuľka
1:1 alebo 1:N vzťah	Cudzí kľúč alebo dodatočná relácia vzťahu
M:N vzťah	Relácia/tabuľka vzťahu s 2 cudzími kľúčmi
n-ary vzťah	Relácia/tabuľka vzťahu s n cudzími kľúčmi
Jednoduchý atribút	Atribút
Zložený atribút	Viacero jednoduchých atribútov
Viachodnotové atribúty	Relácia/tabuľka a cudzí kľúč
Množina hodnôt	Doména
Kľúčový atribút	Primárny kľúč

ER transformácia no relachy

Relachy model - kardinality

Priklad - konceptuálny dátový model

Priklad - logicky dátovy model

Priklad - fyzický dátový model

Motivácia

• Uvažujeme nad DB, ktorá obsahuje študentov, predmety, ktoré si zapisujú a tiež miesnosť, kde sa uskutočňuje daný predmet.

Študent	Predmet 🧠	— Miestnosť
Janko	DBS	Google-meet
Ferko	DBS	Google-meet
Jožko	DBS	Google-meet

• Čo je na danom dizajne nedostatočne?

Anomália pri vkladaní

- Ako vložíme nový predmet, ktorý nemá žiadnych študentov?
 - Nutnosť použitia null hodnoty

Študent	Predmet	Miestnosť
Janko	DBS	Google-meet
Ferko	DBS	Google-meet
Jožko	DBS	Google-meet

Anomália pri mazaní

- Keď chceme odstrániť študenta z daného predmetu tak ako realizovať danú zmenu v tabuľke?
 - Ak zmažeme celý záznam, tak môžeme prísť o celú informáciu o tom, že nejaký predmet máme
 - Ak nahradíme študenta NULL hodnotami, tak nám začnú vznikať rovnaké záznamy
 - Aj keď nie su to rovnaké záznamy, kedže NULL hodnoty sú navzájom neporovnateľné

Študent	Predmet	Miestnosť
Janko	DBS	Google-meet
Ferko	DBS	Google-meet
Jožko	DBS	Google-meet

Anomália pri aktualizácií

- Ak chceme zmeniť miestnosť predmetu napr. v dôsledku preklepu alebo z dakého iného dôvodu
 - Potreba aktualizovania veľkého množstva riadkov
 - · Niekedy je potrebné dať pozor na to, či je možné urobiť danú zmenu
 - Napr. Zmenenie preklepu PU42 na PU41 v dosledku preklepu je potrebne robiť spolu s atribútom Predmet inak by sme prepísali miestnosť PKS, ktorý však je správny

Študent	Predmet	Miestnosť
Janko	DBS	PU41
Ferko	DBS	PU42
Jožko	PKS	PU42
Anicka	DBS	PU42

Dekompozicio

- Správny návrh relačnej DB pre predchádzajúci scenár by mohol vyzerať nasledovne
 - Vieme dospieť pomocou normálizácie

Študent	Predmet
Janko	DBS
Ferko	DBS
Jožko	DBS
••	••

Predmet	Miestnosť
DBS	Google-meet
PKS	Aula

Normolizácio

- Slúži nám na overenie kvality návrhu
- V rámci normálizácie
- Dekompozícia slúži nám na to ako fixnúť daný problém
- Normálové formy slúžia na odhalenie nedostatkov v dizajne.
- Každú relačnú DB je možné reprezentovať jednou veľkou tabuľkou
 - Prečo sa to nerobí?
 - Redundancia
 - Riziko nekonzistencie
 - Anomálie pri vkladaní, mazaní, a modifikácií dát
 - Potreba NULL hodnôt
 - Plýtvanie pamäťou

####