Accensione dei PC, e avvio del corso (accensione)

Questo problema è preso dalla fase nazionale delle Oii (Olimpiadi Italiane di Informatica, fase nazionale tenutasi in Fisciano, 18 - 20 settembre 2014).

In aula alpha ci sono N computer contrassegnati coi numeri naturali da 1 ad N. Al momento solo alcuni di essi sono accesi, e Romeo e Andrea devono accenderli tutti prima dell'inizio della prima lezione (che è già un laboratorio)! La nuova centralina offre N pulsanti, anch'essi numerati da 1 a N. Il pulsante i ha l'effetto di cambiare lo stato di tutti i computer il cui numero identificativo sia un divisore di i. Ad esempio, il pulsante 12 cambia lo stato dei computer 1, 2, 3, 4, 6, e 12. I pulsanti vanno premuti in ordine strettamente crescente (non si può premere il pulsante i dopo aver premuto il pulsante i se $i \leq j$). Pertanto, nessun pulsante può essere premuto più di una volta. Inizialmente tutti i pulsanti sono in posizione di OFF. Un computer può venire acceso e/o spento anche varie volte; l'importante è che alla fine tutti i computer risultino accesi. Sapendo quali sono i computer inizialmente accesi, dovete stabilire se accenderli tutti sia possibile e, del caso, decidere quali pulsanti premere per ottenere tale obiettivo. Ad esempio, se i computer sono N=6 ci saranno N=6 pulsanti, che cambiano lo stato dei computer secondo la tabella seguente.

Pulsante	Agisce su
1	Computer
2	Computer 1 e 2

Pulsante	Agisce su
3	Computer 1 e 3
4	Computer 1,2 e 4

Pulsante	Agisce su
5	Computer 1 e 5
6	Computer 1,2,3 e 6

Assumendo che lo stato acceso/spento (1/0) dei computer sia inizialmente quello codificato dalla riga

0 1 0 1 0 0

ossia che la configurazione iniziale dei computer e dei pulsanti sia la seguente:

Figure 1: Configurazione iniziale dei computer e dei pulsanti.

allora potremmo portarci allo stato in cui tutti i computer sono accesi pigiando prima il Pulsante 2, poi il Pulsante 5, e infine il Pulsante 6. Con queste azioni attraverseremo le seguenti configurazioni.

Figure 2: Configurazioni attraversate per accendere tutti i computer del laboratorio alpha.

Input

Si legga l'input da stdin. La prima riga contiene T, il numero di testcase (istanze) da risolvere. Seguono T istanze del problema, dove ogni istanza presenta un diverso stato iniziale per i computer dell'aula alpha. Ogni istanza è descritta in due righe, dove la prima riga contiene il numero N di computer presenti quel giorno, e la seconda riga specifica quali computer siano inizialmente accesi (1) oppure spenti (0). Le N cifre contenute in questa seconda ed ultima riga sono separate da spazi.

Output

Per ciascuna istanza, prima di leggere l'istanza successiva, scrivi su stdout il tuo output così strutturato:

- + la prima riga contiene il numero di diverse configurazioni sui pulsanti con le quali tutti gli N computer siano accesi, e raggiungibili pigiando i pulsanti in ordine strettamente crescente.
- + la riga seguente codifica una configurazione dei pulsanti, ossia contiene N numeri interi nell'intervallo [0,1] separati da spazio con l'i-esimo di questi numeri a specificare se Pulsante i è pigiato (1) nella soluzione oppure no 0. Se nella riga precedente si è stampato uno 0, si stampino N zeri separati da spazio. Altrimenti si stampi la codifica per una configurazione dei pulsanti con la quale tutti gli N computer siano accesi quando raggiunta pigiando i pulsanti in ordine strettamente crescente.

Nella descrizione dei subtask è specificato quanti punti si acquisiscono su ciascuna istanza di quel subtask, vuoi per la correttezza del valore riportato nella prima riga, vuoi per la correttezza della configurazione finale dei pulsanti.

Esempio di Input/Output

Input da `stdin`				sto	lin	Output su `stdou	t`
3						1	
6						0 1 0 0 1 1	
0	1	0	1	0	0	1	
6						110111	
0	0	0	0	0	0	1	
6						0 0 0 0 0 0	
1	1	1	1	1	1		

Spiegazione: la prima istanza è l'esempio utilizzato già sopra nel testo. Nella seconda istanza tutti i computer sono inizialmente spenti ed è possibile verificare che l'unica configurazione dei pulsanti con cui tutti i computer sono accesi è quella in cui il Pulsante 3 è l'unico a non essere pressato (posizione di OFF). Nella terza istanza tutti i computer sono inizialmente accesi e non serve fare nulla.

Subtask

Il tempo limite per istanza (ossia per ciascun testcase) è sempre di 1 secondo.

I testcase sono raggruppati nei seguenti subtask.

```
1. [ 3 pts\leftarrow 3 istanze da 0 + 1 punti] esempi_testo: i tre esempi del testo 2. [14 pts\leftarrow 7 istanze da 1 + 1 punti] small: N \le 10 3. [16 pts\leftarrow 8 istanze da 0 + 2 punti] medium: N \le 1000 4. [25 pts\leftarrow 5 istanze da 0 + 5 punti] big: N \le 10000
```

5. [15 pts \leftarrow 5 istanze da 0 + 3 punti] huge: $N \le 100000$

In generale, quando si richiede la valutazione di un subtask vengono valutati anche i subtask che li precedono, ma si evita di avventurarsi in subtask successivi fuori dalla portata del tuo programma che potrebbe andare in crash o comportare tempi lunghi per ottenere la valutazione completa della sottomissione. Ad esempio, chiamando^{1, 2}:

```
rtal -s <URL> connect -x <token> -a size=medium
accensione -- python my_solution.py
```

vengono valutati, nell'ordine, i subtask:

```
esempi_testo, small, medium.
```

Il valore di default per l'argomento size è huge che include tutti i testcase.

¹<URL> server esame: wss://ta.di.univr.it/esame

²<URL> server esercitazioni e simula-prove: wss://ta.di.univr.it/algo