

INR - Introduction aux Réseaux INT1GIR

Année 2014-2015 PMA

Septembre 2014

10. Architecture TCP/IP

- Généralités
- Routage IP
- > IP
- > TCP

Origine

- Décembre 1969 : ARPAnet réseau expérimental à commutation de paquets reliant 4 nœuds informatiques
- Modèle TCP/IP développé en 1974 pour le compte du DoD s'appuie sur cette expérience
- Description d'un réseau logique : masquer l'hétérogénéité des réseaux existants
- 1980
 - intégration dans UNIX BSD 4
 - interconnexion de nombreux réseaux LAN
 - Invention du DNS
- 1983 : Standard universel
- 1994 : invention de l'application WEB
- Evolution : flux multimédia, QoS, mobilité, sécurité, ...

Besoins

- Robustesse du sous-réseau
- Applications communicantes très variées
- Réseaux hétérogènes à interconnecter

Figure 10.1 Le réseau logique IP et sous-réseaux physiques réels (SRx).

Principe architectural

Différences entre OSI et TCP/IP

Approches

services ←→ protocoles

Nombre de couches

- 2 à l'origine pour TCP/IP
- Transport : TCP ou UDP
- IP : mode non connecté

Applications

- API \rightarrow sockets

Figure 10.2 Le modèle OSI et l'architecture TCP/IP.

Description générale

Pile et applications de TCP/IP

Mécanismes de base

- Modes de mise en relation
 - IP : offre un service non connecté (mode datagramme)
 - Systèmes d'extrémité : TCP offre un mode connecté fiable
 - Réseau relais : protocoles du réseau physique réel

Instances de normalisation

- IAB : politique d'évolution à long terme
- IETF: court et moyen terme
- IANA: attribution des @IP et des noms DNS
- Organismes régionaux délégués ex. RIPE, AFNIC
- Publications de RFC

Principe

 Adresses logiques et physiques : résolution d'adresses (ARP)

- Adresse et routage
- Classes d'adressage

its	7	Oc	tet 1	0 7	octet 2	0 7	Octet 3	0 7	Octet 4	7
ang Iasse A	0	ID	réseau	7 8			ID Machin	e		is alah
ang	0	1				15 16				31
lasse B	1			ID réseau		12.100		ID Machin	e	
ang	0	1 2						23 24		3
asse C	1_	0		EE 3000 E000	ID rése	au			ID Machine	
ng	0	1 2	3							31
sse D	1	1 1	1 0 Adresse de diffusion de groupe							
ng	0	1 2	3 4							31
asse E	1	1 1 1 0 Réservé aux expérimentations								

Figure 10.13 Les classes d'adresse IP.

Adresses spéciales

- <Net ID> <0>
- -0.0.0.0
- $127 \times \times \times$
- **-** 255.255.255.255
- <Net ID><1>

Exemples:

- 123.0.0.0
- 123.0.0.18
- 123.255.255.255

Figure 10.14 L'adresse de boucle locale.

- Adresses publiques et adresses privées
 - IANA : adresses légales uniques
 - Adressage automatique: 169.254.0.0

Classe	Début de la plage	Fin de la plage	Nombre de réseaux
A	10.0.0.0		1
В	172.16.0.0	172.31.0.0	16
c	192.168.0.0	192.168.255	256

Figure 10.16 Les adresses privées (RFC 1918).

Figure 10.17 Le NAT est l'interface entre un réseau privé et un réseau public.

- Calcul de la destination d'un paquet IP
 - masque de sous-réseau et passerelle par défaut

Figure 10.21 Informations de configuration d'une machine NT.

Techniques d'adressage

Notions de « subnetting » et masque de sous-réseau

Techniques d'adressage

• Utilisation du masque de sous-réseau

Protocole TCP

Généralités

- Protocole de bout en bout en mode connecté
- Assure un transport fiable
 - Délivrance en séquence des segments
 - Intégrité des données
 - Contrôle de flux

Protocole TCP

Gestion de la connexion et de l'échange

- Référence de transport et socket
 - Connexion de transport entre processus communicants
 - Identification des flux : référence de transport
 - Identification de la connexion = socket {protocole, (port A, IP A), (port B, IP B) }

Protocole TCP

Gestion de la connexion et de l'échange

- Notions de port
 - Identification d'un processus
 - Permet le multiplexage des connexions sur 1 machine
 - « Well known ports » : 1024 premiers ports réservés

