

Chapter – 2

Relation and Functions

NCERT Exercises:

Exercise 2.1

Ques 1: $\left(\frac{x}{3}+1,y-\frac{2}{3}\right)=\left(\frac{5}{3},\frac{1}{3}\right)$, find the values of x and y.

Ans 1: It is given that
$$\left(\frac{x}{3} + 1, y - \frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$$

Since the ordered pairs are equal, the corresponding elements will also be equal. Therefore,

$$\frac{x}{3} + 1 = \frac{5}{3}$$
 and $y - \frac{2}{3} = \frac{1}{3}$

$$\frac{x}{3} + 1 = \frac{5}{3}$$

$$=> \frac{x}{3} = \frac{5}{3} - 1, y - \frac{2}{3} = \frac{1}{3}$$

$$=>\frac{x}{3}=\frac{2}{3}$$
, $y=\frac{1}{3}+\frac{2}{3}$

$$=> x = 2$$
 , $y = 1$.

$$\therefore x = 2 \text{ and } y = 1$$

Ques 2: If the set A has 3 elements and the set $B = \{3, 4, 5\}$, then find the number of elements in $(A \times B)$?

Ans 2: It is given that set A has 3 elements and the elements of set B are 3, 4, and 5.

 \Rightarrow Number of elements in set B = 3

Number of elements in $(A \times B)$

= $(Number of elements in A) \times (Number of elements in B)$

$$= 3 \times 3 = 9$$

Thus, the number of elements in $(A \times B)$ is 9.

Ques 3: If $G = \{7, 8\}$ and $H = \{5, 4, 2\}$, find $G \times H$ and $H \times G$.

Ans 3:
$$G = \{7, 8\}$$
 and $H = \{5, 4, 2\}$

We know that the Cartesian product $P \times Q$ of two non-empty sets P and Q is defined as

$$P \times Q = \{(p,q): p \in P, q \in Q\}$$

$$: G \times H = \{(7,5), (7,4), (7,2), (8,5), (8,4), (8,2)\}$$

$$H \times G = \{(5,7), (5,8), (4,7), (4,8), (2,7), (2,8)\}$$

Ques 4: State whether each of the following statement are true or false. If the statement is false, rewrite the given statement correctly.

- (i) If $P = \{m, n\}$ and $Q = \{n, m\}$, then $P \times Q = \{(m, n), (n, m)\}$.
- (ii) If A and B are non empty sets, then $A \times B$ is a non empty set of ordered pairs (x,y) such that $x \in A$ and $y \in B$.

(iii) If
$$A = \{1, 2\}, B = \{3, 4\}, \text{ then } A \times (B \cap \Phi) = \Phi$$
.

Ans 4:

(i) False

If
$$P = \{m, n\}$$
 and $Q = \{n, m\}$, then

$$P \times Q = \{(m, m), (m, n), (n, m), (n, n)\}$$

- (ii) True
- (iii) True

Ques 5: If
$$A = \{-1, 1\}$$
, find $A \times A \times A$.

Ans 5: It is known that for any non-empty set A, $A \times A \times A$ is defined as

$$A \times A \times A = \{(a,b,c): a,b,c \in A\}$$

It is given that $A = \{-1, 1\}$

$$A \times A \times A = \{(-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (-1, 1, 1, 1), (-1, 1, 1, 1), (-1, 1, 1, 1), (-1, 1, 1, 1), (-1, 1, 1, 1), (-1, 1, 1, 1), (-1,$$

$$(1,-1,-1),(1,-1,1),(1,1,-1),(1,1,1)$$

Ques 6: If $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$. Find A and B.

Ans 6: It is given that $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$

We know that the Cartesian product of two non-empty sets P and Q is defined as

$$P \times Q = \{(p,q): p \in P, q \in Q\}$$

: A is the set of all first elements and B is the set of all second elements.

Thus, $A = \{a, b\}$ and $B = \{x, y\}$

Ques 7: Let $A = \{1, 2\}$, $B = \{1, 2, 3, 4\}$, $C = \{5, 6\}$ and $D = \{5, 6, 7, 8\}$. Verify that

- (i) $\mathbf{A} \times (\mathbf{B} \cap \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cap (\mathbf{A} \times \mathbf{C})$
- (ii) $A \times C$ is a subset of $B \times D$

Ans 7: (i) To verify: $A \times (B \cap C) = (A \times B) \cap (A \times C)$

We have B \cap C = {1, 2, 3, 4} \cap {5, 6} = Φ

$$\therefore$$
 L. H. S. = A \times (B \cap C) = A \times Φ = Φ

$$A \times B = \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4)\}$$

$$A \times C = \{(1,5), (1,6), (2,5), (2,6)\}$$

$$\therefore R.H.S. = (A \times B) \cap (A \times C) = \Phi$$

$$\therefore$$
 L. H. S. = R. H. S

Hence,
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

(ii) To verify: $A \times C$ is a subset of $B \times D$

$$A \times C = \{(1,5), (1,6), (2,5), (2,6)\}$$

$$A \times D = \{(1,5), (1,6), (1,7), (1,8), (2,5), (2,6), (2,7), (2,8), (2,7), (2,8), (2,7), (2,8)$$

$$(3,5), (3,6), (3,7), (3,8), (4,5), (4,6), (4,7), (4,8)$$

We can observe that all the elements of set A \times C are the elements of set B \times D.

Therefore, $A \times C$ is a subset of $B \times D$.

Ques 8: Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Write $A \times B$. How many subsets will $A \times B$ have? List them.

Ans 8: $A = \{1, 2\}$ and $B = \{3, 4\}$

$$\therefore A \times B = \{(1,3), (1,4), (2,3), (2,4)\}$$

$$\Rightarrow$$
 n(A \times B) = 4

We know that if C is a set with n(C) = m, then $n[P(C)] = 2^{m}$.

Therefore, the set A \times B has $2^4 = 16$ subsets.

These are: -

 Φ , {(1,3)}, {(1,4)}, {(2,3)}, {(2,4)}, {(1,3), (1,4)}, {(1,3), (2,3)},

 $\{(1,3),(2,4)\},\{(1,4),(2,3)\},\{(1,4),(2,4)\},\{(2,3),(2,4)\},$

 $\{(1,3),(1,4),(2,3)\},\{(1,3),(1,4),(2,4)\},\{(1,3),(2,3),(2,4)\},$

 $\{(1,4),(2,3),(2,4)\},\{(1,3),(1,4),(2,3),(2,4)\}$

Ques 9: Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, find A and B, where x, y and z are distinct elements.

Ans 9: It is given that n(A) = 3 and n(B) = 2; and (x, 1), (y, 2), (z, 1) are in $A \times B$.

We know that

A = Set of first elements of the ordered pair elements of $A \times B$

B = Set of second elements of the ordered pair elements of $A \times B$.

 \therefore x, y, and z are the elements of A; and 1 and 2 are the elements of B.

Since n(A) = 3 and

$$n(B) = 2,$$

It is clear that $A = \{x, y, z\}$ and $B = \{1, 2\}$

Ques 10: The Cartesian product $A \times A$ has 9 elements among which are found (-1,0) and (0,1). Find the set A and the remaining elements of $A \times A$.

Ans 10: We know that if n(A) = p and n(B) = q, then $n(A \times B) = pq$.

$$\therefore n(A \times A) = n(A) \times n(A)$$

It is given that $n(A \times A) = 9$

$$\therefore n(A) \times n(A) = 9$$

$$\Rightarrow$$
 n(A) = 3

The ordered pairs (-1,0) and (0,1) are two of the nine elements of $A \times A$.

We know that $A \times A = \{(a, a): a \in A\}.$

Therefore, – 1, 0, and 1 are elements of A.

Since n(A) = 3, it is clear that $A = \{-1, 0, 1\}$.

The remaining elements of set A \times A are (-1, -1), (-1, 1), (0, -1), (0, 0),

(1, -1), (1, 0), and (1, 1).

Chapter – 2

Relation and Functions

Exercise 2.2

Ques 1: Let $A = \{1, 2, 3... 14\}$. Define a relation R from A to A by $R = \{(x, y): 3x - y = 0, \text{ where } x, y \in A\}$. Write down its domain, co domain and range.

Ans 1: The relation R from A to A is given as $R = \{(x, y): 3x - y = 0, where x, y \in A\}$

i. e.,
$$R = \{(x, y): 3x = y, where x, y \in A\}$$

$$\therefore R = \{(1,3), (2,6), (3,9), (4,12)\}$$

The domain of R is the set of all first elements of the ordered pairs in the relation.

: Domain of $R = \{1, 2, 3, 4\}$

The whole set A is the codomain of the relation R.

: Codomain of $R = A = \{1, 2, 3 ... 14\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

 \therefore Range of R = {3, 6, 9, 12}

Ques 2: Define a relation R on the set N of natural numbers by $R = \{(x, y): y = x + 5, x \text{ is a natural number less than 4; } x, y \in N\}$. Depict this relationship using roster form. Write down the domain and the range.

Ans 2: $R = \{(x,y): y = x + 5, x \text{ is a natural number less than } 4, x, y \in N\}$

The natural numbers less than 4 are 1, 2, and 3.

$$\therefore R = \{(1,6), (2,7), (3,8)\}$$

The domain of R is the set of all first elements of the ordered pairs in the relation.

 \therefore Domain of R = $\{1, 2, 3\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

 \therefore Range of R = {6, 7, 8}

Ques 3: $A = \{1, 2, 3, 5\}$ and $B = \{4, 6, 9\}$. Define a relation R from A to B by $R = \{(x, y): \text{ the difference between } x \text{ and } y \text{ is odd}; x \in A, y \in B\}$. Write R in roster form.

Ans 3: $A = \{1, 2, 3, 5\}$ and $B = \{4, 6, 9\}$

 $R = \{(x, y): \text{ the difference between } x \text{ and } y \text{ is odd}; x \in A, y \in B\}$

$$\therefore R = \{(1,4), (1,6), (2,9), (3,4), (3,6), (5,4), (5,6)\}$$

Ques 4: The given figure shows a relationship between the sets P and Q. write this relation (i) in set-builder form (ii) in roster form. What is its domain and range?

Ans 4: According to the given figure, $P = \{5, 6, 7\}, Q = \{3, 4, 5\}$

- (i) $R = \{(x,y): y = x 2; x \in P\} \text{ or } R = \{(x,y): y = x 2 \text{ for } x = 5,6,7\}$
- (ii) $R = \{(5,3), (6,4), (7,5)\}$

Domain of $R = \{5, 6, 7\}$

Range of $R = \{3, 4, 5\}$

Ques 5: Let A = $\{1, 2, 3, 4, 6\}$. Let R be the relation on A defined by $\{(a, b): a, b \in A, b \text{ is exactly divisible by } a\}$.

- (i) Write R in roster form
- (ii) Find the domain of R
- (iii) Find the range of R.

Ans 5: $A = \{1, 2, 3, 4, 6\}, R = \{(a, b): a, b \in A, b \text{ is exactly divisible by a}\}$

(i) $R = \{(1,1), (1,2), (1,3), (1,4), (1,6), (2,2), (2,4), (2,6), (3,3), (2,4), (2,6), (3,6), (2,6)$

(3,6),(4,4),(6,6)

(iii) Range of $R = \{1, 2, 3, 4, 6\}$

Ques 6: Determine the domain and range of the relation R defined by $R = \{(x, x + 5): x \in \{0, 1, 2, 3, 4, 5\}\}.$

Ans 6: $R = \{(x, x + 5): x \in \{0, 1, 2, 3, 4, 5\}\}$

$$\therefore R = \{(0,5), (1,6), (2,7), (3,8), (4,9), (5,10)\}$$

 \therefore Domain of R = {0, 1, 2, 3, 4, 5}

Range of $R = \{5, 6, 7, 8, 9, 10\}$

Ques 7: Write the relation $R = \{(x, x^3): x \text{ is a prime number less than 10}\}$ in roster form.

Ans 7: $R = \{(x, x^3): x \text{ is a prime number less than } 10\}$

The prime numbers less than 10 are 2, 3, 5, and 7.

 \therefore R = {(2,8), (3,27), (5,125), (7,343)}

Ques 8: Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Find the number of relations from A to B.

Ans 8: It is given that $A = \{x, y, z\}$ and $B = \{1, 2\}$.

$$\therefore \ A \times B = \{(x,1), (x,2), (y,1), (y,2), (z,1), (z,2)\}$$

Since $n(A \times B) = 6$, the number of subsets of $A \times B$ is 2^6 .

Therefore, the number of relations from A to B is 2^6 .

Ques 9: Let R be the relation on Z defined by $R = \{(a, b): a, b \in \mathbb{Z}, a - b \text{ is an integer}\}$. Find the domain and range of R.

Ans 9: $R = \{(a, b): a, b \in Z, a - b \text{ is an integer}\}$

It is known that the difference between any two integers is always an integer.

 \therefore Domain of R = Z

Range of R = Z

Chapter – 2

Relation and Functions

Exercise 2.3

Ques 1: Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

- (i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$
- (ii) $\{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5), (12, 6), (14, 7)\}$
- (iii) $\{(1,3),(1,5),(2,5)\}$

Ans 1:

(i)
$$\{(2,1), (5,1), (8,1), (11,1), (14,1), (17,1)\}$$

Since 2, 5, 8, 11, 14, and 17 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain = $\{2, 5, 8, 11, 14, 17\}$ and range = $\{1\}$

$$(ii) \ \{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$$

Since 2, 4, 6, 8, 10, 12, and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain = $\{2, 4, 6, 8, 10, 12, 14\}$ and range = $\{1, 2, 3, 4, 5, 6, 7\}$

(iii)
$$\{(1,3), (1,5), (2,5)\}$$

Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.

Ques 2: Find the domain and range of the following real function:

(i)
$$f(x) = -|x|$$

(ii)
$$f(x) = \sqrt{9 - x^2}$$

Ans 2:

(i)
$$f(x) = -|x|, x \in R$$

We know that $|x| = \begin{cases} if \ x \ge 0 \end{cases}$

$$-x, x < 0$$

$$\therefore (x) = -|x| = \{-x, if \ x \ge 0\}$$

$$x, i \quad f \quad x < 0$$

Since f(x) is defined for $x \in \mathbb{R}$, the domain of f is \mathbb{R} .

It can be observed that the range of f(x) = -|x| is all real numbers except positive real numbers.

 \therefore The range of f is $(-\infty, 0]$.

$$(ii)f(x) = \sqrt{9-x^2}$$

Since $\sqrt{9-x^2}$ is defined for all real numbers that are greater than or equal to -3 and less than or equal to 3, the domain of f(x) is $\{x:-3 \le x \le 3\}$ or [-3,3].

For any value of x such that $-3 \le x \le 3$, the value of f(x) will lie between 0 and 3.

:The range of f(x) is $\{x: 0 \le x \le 3\}$ or [0,3].

Ques 3: A function f is defined by f(x) = 2x - 5. Write down the values of

- (i) f(0),
- (ii) f(7),
- $(iii) \quad f(-3)$

Ans 3: The given function is f(x) = 2x - 5.

Therefore,

(i)
$$f(0) = 2 \times 0 - 5 = 0 - 5 = -5$$

(ii)
$$f(7) = 2 \times 7 - 5 = 14 - 5 = 9$$

(iii)
$$f(-3) = 2 \times (-3) - 5 = -6 - 5 = -11$$

Ques 4: The function 't' which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by $f(C) = \frac{9C}{5} + 32$. Find

(iv) The value of C, when
$$t(C) = 212$$

Ans 4: The given function is $(C) = \frac{9C}{5} + 32$.

Therefore,

(i)
$$t(0) = \frac{9 \times 0}{5} + 32 = 0 + 32 = 32$$

(ii)
$$t(28) = \frac{9 \times 28}{5} + 32 = \frac{252 + 160}{5} = \frac{412}{5}$$

(iii)
$$t(-10) = \frac{9 \times (-10)}{5} + 32 = 9 \times (-2) + 32 = -18 + 32 = 14$$

(iv) It is given that
$$t(C) = 212$$

$$212 = \frac{9C}{5} + 32$$

$$\Rightarrow \frac{9C}{5} = 212 - 32$$

$$\Rightarrow \frac{9C}{5} = 180$$

$$\Rightarrow$$
 9 $C = 180 \times 5$

$$\Rightarrow C = \frac{180 \times 5}{9} = 100$$

Thus, the value of t, when t(C) = 212, is 100.

Ques 5: Find the range of each of the following functions.

(i)
$$f(x) = 2 - 3x, x \in R, x > 0$$
.

(ii)
$$f(x) = x^2 + 2$$
, x , is a real number.

(iii)
$$f(x) = x, x \text{ is a real number}$$

Ans 5:

(i)
$$f(x) = 2 - 3x, x \in R, x > 0$$

The values of f(x) for various values of real numbers x > 0 can be written in the tabular form as

X	0.01	0.1	0.9	1	2	2.5	4	5	•••
f(x)	1.97	1.7	_	_	_	_	_	_	•••
			0.7	1	4	5.5	10	13	

Thus, it can be clearly observed that the range of f is the set of all real numbers less than 2. i.e., range of $f = (-\infty, 2)$

(ii)
$$f(x) = x^2 + 2$$
, x, is a real number

The values of f(x) for various values of real numbers x can be written in the tabular form as

Х	0	±0.3	±0.8	±1	±2	±3	•••
f(x)	2	2.09	2.64	3	6	11	

Thus, it can be clearly observed that the range of f is the set of all real numbers greater than 2. i.e., range of $f = [2, \infty)$

(iii)
$$f(x) = x, x$$
 is a real number

It is clear that the range of f is the set of all real numbers.

$$\therefore \text{ Range of } f = R$$

Chapter - 2

Relation and Functions

Miscellaneous Exercise on Chapter 2

Ques 1: The relation
$$f$$
 is defined by $f(x) = \begin{cases} x^2, 0 \le x \le 3 \\ 3x, 3 \le x \le 10 \end{cases}$

The relation
$$g$$
 is defined by $g(x) = \begin{cases} x^2, 0 \le x \le 2\\ 3x, 2 \le x \le 10 \end{cases}$

Show that f is a function and g is not a function.

Ans 1: The relation f is defined as

$$f(x) = \begin{cases} x^2, 0 \le x \le 3\\ 3x, 3 \le x \le 10 \end{cases}$$

It is observed that for

$$0 \le x < 3, f(x) = x^2$$

$$3 < x \le 10, f(x) = 3x$$

Therefore, for $0 \le x \le 10$, the images of f(x) are unique.

Thus, the given relation is a function.

The relation g is defined as

$$g(x) = \begin{cases} x^2, 0 \le x \le 2\\ 3x, 2 \le x \le 10 \end{cases}$$

It can be observed that for x = 2, $g(x) = 2^2 = 4$ and $g(x) = 3 \times 2 = 6$

Hence, element 2 of the domain of the relation g corresponds to two different images i.e.,

4 and 6.

Hence, this relation is not a function.

Ques 2: If
$$f(x) = x^2$$
, find $\frac{f(1.1) - f(1)}{1.1 - 1}$

Ans 2:
$$f(x) = x^2$$

$$\frac{f(1.1)-f(1)}{(1.1-1)} = \frac{(1.1)^2 - (1)^2}{(1.1-1)} = \frac{1.21-1}{0.1} = \frac{0.21}{0.1} = 2.1$$

Ques 3: Find the domain of the function $f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$

Ans 3: The given function is
$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$$

$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12} = \frac{x^2 + 2x + 1}{(x - 6)(x - 2)}$$

It can be seen that function f is defined for all real numbers except at x = 6 and x = 2.

Hence, the domain of f is $R - \{2, 6\}$.

Ques 4: Find the domain and the range of the real function f defined by

$$f(x) = \sqrt{x - 1}$$

Ans 4: The given real function is $f(x) = \sqrt{x-1}$

It can be seen that $\sqrt{x-1}$ is defined for $x \ge 1$

Therefore, the domain of f is the set of all real numbers greater than or equal to 1 i.e., the domain of f = [1, 1].

As
$$x \ge 1 \Rightarrow (x-1) \ge 0 \Rightarrow \sqrt{x-1} \ge 0$$

Therefore, the range of f is the set of all real numbers greater than or equal to 0 i.e., the range of $f = (0, \infty)$.

Ques 5: Find the domain and the range of the real function f defined by f(x) = |x - 1|.

Ans 5: The given real function is f(x) = |x - 1|. It is clear that |x - 1| is defined for all real numbers.

 \therefore Domain of f = R

Also, for $x \in R$, |x - 1| assumes all real numbers.

Hence, the range of f is the set of all non — negative real numbers.

Ques 6: Let $f = \{(x, \frac{x^2}{1+x^2}); x \in R\}$ be a function from R into R. Determine the range of f.

Ans 6:
$$f = \{(x, \frac{x^2}{1+x^2}); x \in R\}$$

$$= \left\{ (0,0), \left(\pm 0.5, \frac{1}{5}\right), \left(\pm 1, \frac{1}{2}\right), \left(\pm 1.5, \frac{9}{13}\right), \left(\pm 2, \frac{4}{5}\right), \left(3, \frac{9}{10}\right), \left(4, \frac{16}{17}\right), \dots \dots \right\}$$

The range of f is the set of all second elements. It can be observed that all these elements are greater than or equal to 0 but less than 1. [Denominator is greater numerator]

Thus, range of f = (0, 1)

Ques 7: Let $f, g: \mathbb{R}^- \to \mathbb{R}$ be defined, respectively by f(x) = x + 1, g(x) = 2x - 3. Find f + g, f - g and $\frac{f}{g}$.

Ans 7: $f, g: R \rightarrow R$ is defined as f(x) = x + 1, g(x) = 2x - 3

$$(f + g)(x) = f(x) + g(x) = (x + 1) + (2x - 3) = 3x - 2$$

$$\therefore (f + g)(x) = 3x - 2$$

$$(f-g)(x) = f(x)-g(x) = (x + 1)-(2x - 3) = x + 1 - 2x + 3 = -x + 4$$

$$\therefore (f-g)(x) = -x + 4$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \ \ g(x) \neq 0, x \in R$$

$$\left(\frac{f}{g}\right)(x) = \frac{x+1}{2x-3}, \ 2x-3 \neq 0,2x \neq 3$$

$$\left(\frac{f}{g}\right)(x) = \frac{x+1}{2x-3}, x \neq \frac{3}{2}$$

Ques 8: Let $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$ be a function from Z to Z defined by f(x) = ax + b, for some integers a, b. Determine a, b.

Ans 8: $f = \{(1,1), (2,3), (0,-1), (-1,-3)\}$ and f(x) = ax + b

$$(1,1) \in f \Rightarrow f(1) = 1 \Rightarrow a \times 1 + b = 1$$

$$\Rightarrow$$
 a + b = 1

$$(0,-1) \in f \Rightarrow f(0) = -1 \Rightarrow a \times 0 + b = -1$$

$$\Rightarrow$$
 b = -1

On substituting b = -1 in a + b = 1,

We obtain
$$a + (-1) = 1 \Rightarrow a = 1 + 1 = 2$$
.

Thus, the respective values of a and b are 2 and – 1.

Ques 9: Let R be a relation from N to N defined by $R = \{(a, b): a, b \in \mathbb{N} \text{ and } a = b^2\}$. Are the following true?

 $(i)(a,a) \in \mathbb{R}$, for all $a \in \mathbb{N}$

 $(ii)(a, b) \in \mathbb{R}$, implies $(b, a) \in \mathbb{R}$

 $(iii)(a,b) \in \mathbb{R}, (b,c) \in \mathbb{R}$ implies $(a,c) \in \mathbb{R}$. Justify your answer in each case.

Ans 9: $R = \{(a,b): a,b \in N \text{ and } a = b^2\}$

(i) It can be seen that $2 \in N$;

however,
$$2 \neq 2^2 = 4$$
.

Therefore, the statement " $(a, a) \in R$, for all $a \in N$ " is not true.

(ii) It can be seen that $(9,3) \in N$ because $9,3 \in N$ and $9 = 3^2$.

Now,
$$3 \neq 9^2 = 81$$
; therefore, $(3,9) \notin N$

Therefore, the statement " $(a,b) \in R$, implies $(b,a) \in R$ " is not true.

(iii) It can be seen that $(9,3) \in R$, $(16,4) \in R$ because $9,3,16,4 \in N$ and $9 = 3^2$ and $16 = 4^2$.

Now, $9 \neq 4^2 = 16$; therefore, $(9, 4) \notin N$

Therefore, the statement " $(a,b) \in R$, $(b,c) \in R$ implies $(a,c) \in R$ " is not true.

Ques 10: Let $A = \{1, 2, 3, 4\}$, $B = \{1, 5, 9, 11, 15, 16\}$ and $f = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\}$. Are the following true?

- (i) f is a relation from A to B
- (ii) f is a function from A to B. Justify your answer in each case.

Ans 10: $A = \{1, 2, 3, 4\}$ and $B = \{1, 5, 9, 11, 15, 16\}$

It is given that $f = \{(1,5), (2,9), (3,1), (4,5), (2,11)\}$

(i) A relation from a non-empty set A to a non-empty set B is a subset of the Cartesian product $A \times B$.

It is observed that f is a subset of $A \times B$. Thus, f is a relation from A to B.

(ii) Since the same first element i.e., 2 corresponds to two different images i.e., 9 and 11, relation f is not a function.

Ques 11: Let f be the subset of $\mathbb{Z} \times \mathbb{Z}$ defined by $f = \{(ab, a + b): a, b \in \mathbb{Z}\}$. Is f a function from \mathbb{Z} to \mathbb{Z} : justify your answer.

Ans 11: The relation f is defined as $f = \{(ab, a + b): a, b \in Z\}$

We know that a relation f from a set A to a set B is said to be a function if every element of set A has unique images in set B.

Since.

$$2,6,-2,-6 \in \mathbb{Z}, (2 \times 6,2+6), (-2 \times -6,-2+(-6)) \in f \ i.e., (12,8), (12,-8) \in f$$

It can be seen that the same first element i.e., 12 corresponds to two different images i.e., 8 and -8. Thus, relation f is not a function.

Ques 12: Let $A = \{9, 10, 11, 12, 13\}$ and let $f: A \to N$ be defined by f(n) = the highest prime factor of n. Find the range of f.

Ans 12: A = $\{9, 10, 11, 12, 13\}$ f: A \rightarrow N is defined as

f(n) = The highest prime factor of n

Prime factor of 9 = 3

Prime factors of 10 = 2,5

Prime factor of 11 = 11

Prime factors of 12 = 2.3

Prime factor of 13 = 13

 \therefore f(9) = The highest prime factor of 9 = 3

f(10) = The highest prime factor of 10 = 5

f(11) = The highest prime factor of 11 = 11

f(12) = The highest prime factor of 12 = 3

f(13) =The highest prime factor of 13 = 13

The range of f is the set of all f(n), where $n \in A$.

 \therefore Range of $f = \{3, 5, 11, 13\}$