Solving multivariate quadratic systems in practice

Monika Trimoska

Summer school on RWC and privacy June 30, Dubrovnik, Croatia

A type of cryptanalytic methods where the problem of finding the secret key (or any attack goal) is reduced to the problem of finding a solution to a nonlinear multivariate polynomial system of equations.

Kluoska

forgery

or

secret key

Kluoska

forgery

or

secret key

The MQ problem (recall)

The MQ problem

Given m multivariate quadratic polynomials $f_1, ..., f_m$ of n variables over a finite field \mathbb{F}_q , find a tuple $\mathbf{x} = (x_1, ..., x_n)$ in \mathbb{F}_q^n , such that $f_1(\mathbf{x}) = ... = f_m(\mathbf{x}) = 0$.

Example.

$$f_1: x_1x_3 + x_2x_4 + x_1 + x_3 + x_4 = 0$$

$$f_2: x_2x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_4 = 0$$

$$f_3: x_2x_4 + x_3x_4 + x_1 + x_3 + 1 = 0$$

$$f_4: x_1x_2 + x_1x_3 + x_2x_3 + x_3 + x_4 + 1 = 0$$

$$f_5: x_1x_2 + x_2x_3 + x_1x_4 + x_3 = 0$$

 $f_6: x_1x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_3 + x_4 = 0$

Example.

Given matrices $\mathbf{C}_1, \mathbf{C}_2, \mathbf{D}_1, \mathbf{D}_2 \in \mathcal{M}_{n,n}(\mathbb{F}_q)$ (the space of matrices over \mathbb{F}_q of size $n \times n$), find $\mathbf{A}, \mathbf{B} \in \mathrm{GL}_n(\mathbb{F}_q)$ (the space of invertible matrices over \mathbb{F}_q of size $n \times n$), such that

$$\mathbf{D}_1 = \mathbf{A}\mathbf{C}_1\mathbf{B}$$

$$\mathbf{D}_2 = \mathbf{A}\mathbf{C}_2\mathbf{B}$$

Example.
$$\begin{aligned} \mathbf{D}_1 &= \mathbf{A}\mathbf{C}_1\mathbf{B} \\ \mathbf{D}_2 &= \mathbf{A}\mathbf{C}_2\mathbf{B} \end{aligned}$$

	1

$d_{1,1}$	$d_{1,2}$	$d_{1,3}$	$d_{1,4}$	$d_{1,5}$
$d_{2,1}$	$d_{2,2}$	$d_{2,3}$	$d_{2,4}$	$d_{2,5}$
$d_{3,1}$	$d_{3,2}$	$d_{3,3}$	$d_{3,4}$	$d_{3,5}$
$d_{4,1}$	$d_{4,2}$	$d_{4,3}$	$d_{4,4}$	$d_{4,5}$
$d_{5,1}$	$d_{5,2}$	$d_{5,3}$	$d_{5,4}$	$d_{5,5}$

A

$a_{1,1}$	$a_{1,2}$	$a_{1,3}$	$a_{1,4}$	$a_{1,5}$
$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	$a_{2,4}$	$a_{2,5}$
$a_{3,1}$	$a_{3,2}$	$a_{3,3}$	$a_{3,4}$	$a_{3,5}$
$a_{4,1}$	$a_{4,2}$	$a_{4,3}$	$a_{4,4}$	$a_{4,5}$
$a_{5,1}$	$a_{5,2}$	<i>a</i> _{5,3}	$a_{5,4}$	$a_{5,5}$

 \mathbf{C}_1

$c_{1,1}$	$c_{1,2}$	$c_{1,3}$	$c_{1,4}$	$c_{1,5}$
$c_{2,1}$	$c_{2,2}$	$c_{2,3}$	$c_{2,4}$	$c_{2,5}$
$c_{3,1}$	$c_{3,2}$	$c_{3,3}$	$c_{3,4}$	$c_{3,5}$
$c_{4,1}$	$c_{4,2}$	$c_{4,3}$	$c_{4,4}$	$c_{4,5}$
$c_{5,1}$	$c_{5,2}$	$c_{5,3}$	c _{5,4}	$c_{5,5}$

R

$b_{1,1}$	$b_{1,2}$	$b_{1,3}$	$b_{1,4}$	$b_{1,5}$
$b_{2,1}$	$b_{2,2}$	$b_{2,3}$	$b_{2,4}$	$b_{2,5}$
$b_{3,1}$	$b_{3,2}$	$b_{3,3}$	$b_{3,4}$	$b_{3,5}$
$b_{4,1}$	$b_{4,2}$	$b_{4,3}$	$b_{4,4}$	$b_{4,5}$
$b_{5,1}$	$b_{5,2}$	$b_{5,3}$	$b_{5,4}$	$b_{5,5}$

Example.
$$\mathbf{D}_1 = \mathbf{A}\mathbf{C}_1\mathbf{B}$$

$$\mathbf{D}_2 = \mathbf{A}\mathbf{C}_2\mathbf{B}$$

$\mathbf{AC}_1\mathbf{B}$

$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,5}$

ر حرح عرح

Example.
$$\begin{aligned} \mathbf{D}_1 &= \mathbf{A}\mathbf{C}_1\mathbf{B} \\ \mathbf{D}_2 &= \mathbf{A}\mathbf{C}_2\mathbf{B} \end{aligned} \qquad d_{1,1} - \sum_{i=1}^n \sum_{j=1}^n a_{1,j}c_{j,i}b_{i,1} = 0,$$

$$d_{1,1} - \sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,1} = 0,$$

$d_{1,1}$	$d_{1,2}$	$d_{1,3}$	$d_{1,4}$	$d_{1,5}$
$d_{2,1}$	$d_{2,2}$	$d_{2,3}$	$d_{2,4}$	$d_{2,5}$
$d_{3,1}$	$d_{3,2}$	$d_{3,3}$	$d_{3,4}$	$d_{3,5}$
$d_{4,1}$	$d_{4,2}$	$d_{4,3}$	$d_{4,4}$	$d_{4,5}$
$d_{5,1}$	$d_{5,2}$	$d_{5,3}$	$d_{5,4}$	$d_{5,5}$

$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,5}$

Example.
$$\mathbf{D}_1 = \mathbf{A}\mathbf{C}_1\mathbf{B}$$

$$\mathbf{D}_2 = \mathbf{A}\mathbf{C}_2\mathbf{B}$$

$$d_{1,1} - \sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,1} = 0,$$

$$d_{2,1} - \sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,1} = 0,$$

$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,5}$

 AC_1B

Example.
$$\mathbf{D}_1 = \mathbf{A}\mathbf{C}_1\mathbf{B}$$

$$\mathbf{D}_2 = \mathbf{A}\mathbf{C}_2\mathbf{B}$$

$$d_{1,1} - \sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,1} = 0,$$

$$d_{2,1} - \sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,1} = 0,$$

$$d_{1,2} - \sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,2} = 0, \dots$$

		\mathbf{D}_1		
$d_{1,1}$	$d_{1,2}$	$d_{1,3}$	$d_{1,4}$	$d_{1,5}$
$d_{2,1}$	$d_{2,2}$	$d_{2,3}$	$d_{2,4}$	$d_{2,5}$
$d_{3,1}$	$d_{3,2}$	$d_{3,3}$	$d_{3,4}$	$d_{3,5}$
$d_{4,1}$	$d_{4,2}$	$d_{4,3}$	$d_{4,4}$	$d_{4,5}$
$d_{5,1}$	$d_{5,2}$	$d_{5,3}$	$d_{5,4}$	$d_{5,5}$

$$\mathbf{AC}_{1}\mathbf{B}$$

$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,5}$

ر حرح حرح

Example.
$$\mathbf{D}_1 = \mathbf{A}\mathbf{C}_1\mathbf{B}$$

$$\mathbf{D}_2 = \mathbf{A}\mathbf{C}_2\mathbf{B}$$

$$d_{1,1} - \sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,1} = 0,$$

$$d_{1,2} - \sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,2} = 0, \dots$$

$$d_{2,1} - \sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,1} = 0,$$

$$d_{l,p} - \sum_{i=1}^{n} \sum_{j=1}^{n} a_{l,j} c_{j,i} b_{i,p} = 0$$

$$A C_{1} B$$

$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{1,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{2,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{3,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{4,j} c_{j,i} b_{i,5}$
$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,1}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,2}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,3}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,4}$	$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{5,j} c_{j,i} b_{i,5}$

47 q

A motivating example: a better idea for modelisation.

Given matrices $\mathbf{C}_1, \mathbf{C}_2, \mathbf{D}_1, \mathbf{D}_2 \in \mathcal{M}_{n,n}(\mathbb{F}_q)$ (the space of matrices over \mathbb{F}_q of size $n \times n$), find $\mathbf{A}, \mathbf{B} \in \mathrm{GL}_n(\mathbb{F}_q)$ (the space of invertible matrices over \mathbb{F}_q of size $n \times n$), such that

$$\mathbf{A}^{-1}\mathbf{D}_1 = \mathbf{C}_1\mathbf{B}$$
$$\mathbf{A}^{-1}\mathbf{D}_2 = \mathbf{C}_2\mathbf{B}$$

Example.
$$A^{-1}D_1 = C_1B$$

 $A^{-1}D_2 = C_2B$

 \mathbf{A}^{-1}

$a_{1,1}$	$a_{1,2}$	$a_{1,3}$	$a_{1,4}$	$a_{1,5}$
$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	$a_{2,4}$	$a_{2,5}$
$a_{3,1}$	$a_{3,2}$	$a_{3,3}$	$a_{3,4}$	$a_{3,5}$
$a_{4,1}$	$a_{4,2}$	$a_{4,3}$	$a_{4,4}$	$a_{4,5}$
$a_{5,1}$	$a_{5,2}$	$a_{5,3}$	$a_{5,4}$	$a_{5,5}$

 \mathbf{D}_1

$d_{1,1}$	$d_{1,2}$	$d_{1,3}$	$d_{1,4}$	$d_{1,5}$
$d_{2,1}$	$d_{2,2}$	$d_{2,3}$	$d_{2,4}$	$d_{2,5}$
$d_{3,1}$	$d_{3,2}$	$d_{3,3}$	$d_{3,4}$	$d_{3,5}$
$d_{4,1}$	$d_{4,2}$	$d_{4,3}$	$d_{4,4}$	$d_{4,5}$
$d_{5,1}$	$d_{5,2}$	$d_{5,3}$	$d_{5,4}$	$d_{5,5}$

 \mathbf{C}_1

$c_{1,1}$	$c_{1,2}$	$c_{1,3}$	$c_{1,4}$	$c_{1,5}$
$c_{2,1}$	$c_{2,2}$	$c_{2,3}$	$c_{2,4}$	$c_{2,5}$
$c_{3,1}$	$c_{3,2}$	$c_{3,3}$	$c_{3,4}$	$c_{3,5}$
$c_{4,1}$	$C_{4,2}$	$c_{4,3}$	$c_{4,4}$	$c_{4,5}$
$c_{5,1}$	$c_{5,2}$	$c_{5,3}$	$c_{5,4}$	$c_{5,5}$

B

$b_{1,1}$	$b_{1,2}$	$b_{1,3}$	$b_{1,4}$	$b_{1,5}$
$b_{2,1}$	$b_{2,2}$	$b_{2,3}$	$b_{2,4}$	$b_{2,5}$
$b_{3,1}$	$b_{3,2}$	$b_{3,3}$	$b_{3,4}$	$b_{3,5}$
$b_{4,1}$	$b_{4,2}$	$b_{4,3}$	$b_{4,4}$	$b_{4,5}$
$b_{5,1}$	$b_{5,2}$	$b_{5,3}$	$b_{5,4}$	$b_{5,5}$

Example,
$$\mathbf{A}^{-1}\mathbf{D}_1 = \mathbf{C}_1\mathbf{B}$$

 $\mathbf{A}^{-1}\mathbf{D}_2 = \mathbf{C}_2\mathbf{B}$

 $\mathbf{A}^{-1}\mathbf{D}_1$

$$\sum_{i=1}^{n} a_{1,i}d_{i,1} \sum_{i=1}^{n} a_{1,i}d_{i,2} \sum_{i=1}^{n} a_{1,i}d_{i,3} \sum_{i=1}^{n} a_{1,i}d_{i,4} \sum_{i=1}^{n} a_{1,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{2,i}d_{i,1} \sum_{i=1}^{n} a_{2,i}d_{i,2} \sum_{i=1}^{n} a_{2,i}d_{i,3} \sum_{i=1}^{n} a_{2,i}d_{i,4} \sum_{i=1}^{n} a_{2,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{3,i}d_{i,1} \sum_{i=1}^{n} a_{3,i}d_{i,2} \sum_{i=1}^{n} a_{3,i}d_{i,3} \sum_{i=1}^{n} a_{3,i}d_{i,4} \sum_{i=1}^{n} a_{3,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{4,i}d_{i,1} \sum_{i=1}^{n} a_{4,i}d_{i,2} \sum_{i=1}^{n} a_{4,i}d_{i,3} \sum_{i=1}^{n} a_{4,i}d_{i,4} \sum_{i=1}^{n} a_{4,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{5,i}d_{i,1} \sum_{i=1}^{n} a_{5,i}d_{i,2} \sum_{i=1}^{n} a_{5,i}d_{i,3} \sum_{i=1}^{n} a_{5,i}d_{i,4} \sum_{i=1}^{n} a_{5,i}d_{i,5}$$

$\sum_{i=1}^{n} c_{1,i} b_{i,1}$	$\sum_{i=1}^{n} c_{1,i} b_{i,2}$	$\sum_{i=1}^{n} c_{1,i} b_{i,3}$	$\sum_{i=1}^{n} c_{1,i} b_{i,4}$	$\sum_{i=1}^{n} c_{1,i} b_{i,5}$
$\sum_{i=1}^{n} c_{2,i} b_{i,1}$	$\sum_{i=1}^{n} c_{2,i} b_{i,2}$	$\sum_{i=1}^{n} c_{2,i} b_{i,3}$	$\sum_{i=1}^{n} c_{2,i} b_{i,4}$	$\sum_{i=1}^{n} c_{2,i} b_{i,5}$
$\sum_{i=1}^{n} c_{3,i} b_{i,1}$	$\sum_{i=1}^{n} c_{3,i} b_{i,2}$	$\sum_{i=1}^{n} c_{3,i} b_{i,3}$	$\sum_{i=1}^{n} c_{3,i} b_{i,4}$	$\sum_{i=1}^{n} c_{3,i} b_{i,5}$
$\sum_{i=1}^{n} c_{4,i} b_{i,1}$	$\sum_{i=1}^{n} c_{4,i} b_{i,2}$	$\sum_{i=1}^{n} c_{4,i} b_{i,3}$	$\sum_{i=1}^{n} c_{4,i} b_{i,4}$	$\sum_{i=1}^{n} c_{4,i} b_{i,5}$
$\sum_{i=1}^{n} c_{5,i} b_{i,1}$	$\sum_{i=1}^{n} c_{5,i} b_{i,2}$	$\sum_{i=1}^{n} c_{5,i} b_{i,3}$	$\sum_{i=1}^{n} c_{5,i} b_{i,4}$	$\sum_{i=1}^{n} c_{5,i} b_{i,5}$

Example
$$A^{-1}D_1 = C_1B$$

 $A^{-1}D_2 = C_2B$

$$\sum_{i=1}^{n} a_{1,i} d_{i,1} - \sum_{i=1}^{n} c_{1,i} b_{i,1} = 0,$$

$\mathbf{A}^{-1}\mathbf{D}_1$

$\sum_{i=1}^{n} a_{1,i} d_{i,1}$	$\sum_{i=1}^{n} a_{1,i} d_{i,2}$	$\sum_{i=1}^{n} a_{1,i} d_{i,3}$	$\sum_{i=1}^{n} a_{1,i} d_{i,4}$	$\sum_{i=1}^{n} a_{1,i} d_{i,5}$
$\sum_{i=1}^{n} a_{2,i} d_{i,1}$	$\sum_{i=1}^{n} a_{2,i} d_{i,2}$	$\sum_{i=1}^{n} a_{2,i} d_{i,3}$	$\sum_{i=1}^{n} a_{2,i} d_{i,4}$	$\sum_{i=1}^{n} a_{2,i} d_{i,5}$
				$\sum_{i=1}^{n} a_{3,i} d_{i,5}$
$\sum_{i=1}^{n} a_{4,i} d_{i,1}$	$\sum_{i=1}^{n} a_{4,i} d_{i,2}$	$\sum_{i=1}^{n} a_{4,i} d_{i,3}$	$\sum_{i=1}^{n} a_{4,i} d_{i,4}$	$\sum_{i=1}^{n} a_{4,i} d_{i,5}$
$\sum_{i=1}^{n} a_{5,i} d_{i,1}$	$\sum_{i=1}^{n} a_{5,i} d_{i,2}$	$\sum_{i=1}^{n} a_{5,i} d_{i,3}$	$\sum_{i=1}^{n} a_{5,i} d_{i,4}$	$\sum_{i=1}^{n} a_{5,i} d_{i,5}$

$\sum_{i=1}^{n} c_{1,i} b_{i,1}$	$\sum_{i=1}^{n} c_{1,i} b_{i,2}$	$\sum_{i=1}^{n} c_{1,i} b_{i,3}$	$\sum_{i=1}^{n} c_{1,i} b_{i,4}$	$\sum_{i=1}^{n} c_{1,i} b_{i,5}$
$\sum_{i=1}^{n} c_{2,i} b_{i,1}$	$\sum_{i=1}^{n} c_{2,i} b_{i,2}$	$\sum_{i=1}^{n} c_{2,i} b_{i,3}$	$\sum_{i=1}^{n} c_{2,i} b_{i,4}$	$\sum_{i=1}^{n} c_{2,i} b_{i,5}$
				$\sum_{i=1}^{n} c_{3,i} b_{i,5}$
$\sum_{i=1}^{n} c_{4,i} b_{i,1}$	$\sum_{i=1}^{n} c_{4,i} b_{i,2}$	$\sum_{i=1}^{n} c_{4,i} b_{i,3}$	$\sum_{i=1}^{n} c_{4,i} b_{i,4}$	$\sum_{i=1}^{n} c_{4,i} b_{i,5}$
$\sum_{i=1}^{n} c_{5,i} b_{i,1}$	$\sum_{i=1}^{n} c_{5,i} b_{i,2}$	$\sum_{i=1}^{n} c_{5,i} b_{i,3}$	$\sum_{i=1}^{n} c_{5,i} b_{i,4}$	$\sum_{i=1}^{n} c_{5,i} b_{i,5}$

Example.
$$\mathbf{A}^{-1}\mathbf{D}_1 = \mathbf{C}_1\mathbf{B}$$

 $\mathbf{A}^{-1}\mathbf{D}_2 = \mathbf{C}_2\mathbf{B}$

$$\mathbf{A}^{-1}\mathbf{D}_1$$

$$\sum_{i=1}^{n} a_{1,i}d_{i,1} \sum_{i=1}^{n} a_{1,i}d_{i,2} \sum_{i=1}^{n} a_{1,i}d_{i,3} \sum_{i=1}^{n} a_{1,i}d_{i,4} \sum_{i=1}^{n} a_{1,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{2,i}d_{i,1} \sum_{i=1}^{n} a_{2,i}d_{i,2} \sum_{i=1}^{n} a_{2,i}d_{i,3} \sum_{i=1}^{n} a_{2,i}d_{i,4} \sum_{i=1}^{n} a_{2,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{3,i}d_{i,1} \sum_{i=1}^{n} a_{3,i}d_{i,2} \sum_{i=1}^{n} a_{3,i}d_{i,3} \sum_{i=1}^{n} a_{3,i}d_{i,4} \sum_{i=1}^{n} a_{3,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{4,i}d_{i,1} \sum_{i=1}^{n} a_{4,i}d_{i,2} \sum_{i=1}^{n} a_{4,i}d_{i,3} \sum_{i=1}^{n} a_{4,i}d_{i,4} \sum_{i=1}^{n} a_{4,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{5,i}d_{i,1} \sum_{i=1}^{n} a_{5,i}d_{i,2} \sum_{i=1}^{n} a_{5,i}d_{i,3} \sum_{i=1}^{n} a_{5,i}d_{i,4} \sum_{i=1}^{n} a_{5,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{1,i} d_{i,1} - \sum_{i=1}^{n} c_{1,i} b_{i,1} = 0,$$

$$\sum_{i=1}^{n} a_{1,i} d_{i,1} - \sum_{i=1}^{n} c_{1,i} b_{i,1} = 0,$$

$$\sum_{i=1}^{n} a_{2,i} d_{i,1} - \sum_{i=1}^{n} c_{2,i} b_{i,1} = 0,$$

$$\sum_{i=1}^{n} c_{1,i}b_{i,1} \sum_{i=1}^{n} c_{1,i}b_{i,2} \sum_{i=1}^{n} c_{1,i}b_{i,3} \sum_{i=1}^{n} c_{1,i}b_{i,4} \sum_{i=1}^{n} c_{1,i}b_{i,5}$$

$$\sum_{i=1}^{n} c_{2,i}b_{i,1} \sum_{i=1}^{n} c_{2,i}b_{i,2} \sum_{i=1}^{n} c_{2,i}b_{i,3} \sum_{i=1}^{n} c_{2,i}b_{i,4} \sum_{i=1}^{n} c_{2,i}b_{i,5}$$

$$\sum_{i=1}^{n} c_{3,i}b_{i,1} \sum_{i=1}^{n} c_{3,i}b_{i,2} \sum_{i=1}^{n} c_{3,i}b_{i,3} \sum_{i=1}^{n} c_{3,i}b_{i,4} \sum_{i=1}^{n} c_{3,i}b_{i,5}$$

$$\sum_{i=1}^{n} c_{4,i}b_{i,1} \sum_{i=1}^{n} c_{4,i}b_{i,2} \sum_{i=1}^{n} c_{4,i}b_{i,3} \sum_{i=1}^{n} c_{4,i}b_{i,4} \sum_{i=1}^{n} c_{4,i}b_{i,5}$$

$$\sum_{i=1}^{n} c_{5,i}b_{i,1} \sum_{i=1}^{n} c_{5,i}b_{i,2} \sum_{i=1}^{n} c_{5,i}b_{i,3} \sum_{i=1}^{n} c_{5,i}b_{i,4} \sum_{i=1}^{n} c_{5,i}b_{i,5}$$

Example
$$\mathbf{A}^{-1}\mathbf{D}_1 = \mathbf{C}_1\mathbf{B}$$

 $\mathbf{A}^{-1}\mathbf{D}_2 = \mathbf{C}_2\mathbf{B}$

$\mathbf{A}^{-1}\mathbf{D}_1$

$$\sum_{i=1}^{n} a_{1,i}d_{i,1} \sum_{i=1}^{n} a_{1,i}d_{i,2} \sum_{i=1}^{n} a_{1,i}d_{i,3} \sum_{i=1}^{n} a_{1,i}d_{i,4} \sum_{i=1}^{n} a_{1,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{2,i}d_{i,1} \sum_{i=1}^{n} a_{2,i}d_{i,2} \sum_{i=1}^{n} a_{2,i}d_{i,3} \sum_{i=1}^{n} a_{2,i}d_{i,4} \sum_{i=1}^{n} a_{2,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{3,i}d_{i,1} \sum_{i=1}^{n} a_{3,i}d_{i,2} \sum_{i=1}^{n} a_{3,i}d_{i,3} \sum_{i=1}^{n} a_{3,i}d_{i,4} \sum_{i=1}^{n} a_{3,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{4,i}d_{i,1} \sum_{i=1}^{n} a_{4,i}d_{i,2} \sum_{i=1}^{n} a_{4,i}d_{i,3} \sum_{i=1}^{n} a_{4,i}d_{i,4} \sum_{i=1}^{n} a_{4,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{5,i}d_{i,1} \sum_{i=1}^{n} a_{5,i}d_{i,2} \sum_{i=1}^{n} a_{5,i}d_{i,3} \sum_{i=1}^{n} a_{5,i}d_{i,4} \sum_{i=1}^{n} a_{5,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{1,i} d_{i,1} - \sum_{i=1}^{n} c_{1,i} b_{i,1} = 0, \qquad \sum_{i=1}^{n} a_{1,i} d_{i,2} - \sum_{i=1}^{n} c_{1,i} b_{i,2} = 0, \dots$$

$$\sum_{i=1}^{n} a_{2,i} d_{i,1} - \sum_{i=1}^{n} c_{2,i} b_{i,1} = 0,$$

$$\sum_{i=1}^{n} c_{1,i}b_{i,1} \sum_{i=1}^{n} c_{1,i}b_{i,2} \sum_{i=1}^{n} c_{1,i}b_{i,3} \sum_{i=1}^{n} c_{1,i}b_{i,4} \sum_{i=1}^{n} c_{1,i}b_{i,5}$$

$$\sum_{i=1}^{n} c_{2,i}b_{i,1} \sum_{i=1}^{n} c_{2,i}b_{i,2} \sum_{i=1}^{n} c_{2,i}b_{i,3} \sum_{i=1}^{n} c_{2,i}b_{i,4} \sum_{i=1}^{n} c_{2,i}b_{i,5}$$

$$\sum_{i=1}^{n} c_{3,i}b_{i,1} \sum_{i=1}^{n} c_{3,i}b_{i,2} \sum_{i=1}^{n} c_{3,i}b_{i,3} \sum_{i=1}^{n} c_{3,i}b_{i,4} \sum_{i=1}^{n} c_{3,i}b_{i,5}$$

$$\sum_{i=1}^{n} c_{4,i}b_{i,1} \sum_{i=1}^{n} c_{4,i}b_{i,2} \sum_{i=1}^{n} c_{4,i}b_{i,3} \sum_{i=1}^{n} c_{4,i}b_{i,4} \sum_{i=1}^{n} c_{4,i}b_{i,5}$$

$$\sum_{i=1}^{n} c_{5,i}b_{i,1} \sum_{i=1}^{n} c_{5,i}b_{i,2} \sum_{i=1}^{n} c_{5,i}b_{i,3} \sum_{i=1}^{n} c_{5,i}b_{i,4} \sum_{i=1}^{n} c_{5,i}b_{i,5}$$

Example
$$\mathbf{A}^{-1}\mathbf{D}_1 = \mathbf{C}_1\mathbf{B}$$

 $\mathbf{A}^{-1}\mathbf{D}_2 = \mathbf{C}_2\mathbf{B}$

$\mathbf{A}^{-1}\mathbf{D}_1$

$$\sum_{i=1}^{n} a_{1,i}d_{i,1} \sum_{i=1}^{n} a_{1,i}d_{i,2} \sum_{i=1}^{n} a_{1,i}d_{i,3} \sum_{i=1}^{n} a_{1,i}d_{i,4} \sum_{i=1}^{n} a_{1,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{2,i}d_{i,1} \sum_{i=1}^{n} a_{2,i}d_{i,2} \sum_{i=1}^{n} a_{2,i}d_{i,3} \sum_{i=1}^{n} a_{2,i}d_{i,4} \sum_{i=1}^{n} a_{2,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{3,i}d_{i,1} \sum_{i=1}^{n} a_{3,i}d_{i,2} \sum_{i=1}^{n} a_{3,i}d_{i,3} \sum_{i=1}^{n} a_{3,i}d_{i,4} \sum_{i=1}^{n} a_{3,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{4,i}d_{i,1} \sum_{i=1}^{n} a_{4,i}d_{i,2} \sum_{i=1}^{n} a_{4,i}d_{i,3} \sum_{i=1}^{n} a_{4,i}d_{i,4} \sum_{i=1}^{n} a_{4,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{5,i}d_{i,1} \sum_{i=1}^{n} a_{5,i}d_{i,2} \sum_{i=1}^{n} a_{5,i}d_{i,3} \sum_{i=1}^{n} a_{5,i}d_{i,4} \sum_{i=1}^{n} a_{5,i}d_{i,5}$$

$$\sum_{i=1}^{n} a_{1,i} d_{i,1} - \sum_{i=1}^{n} c_{1,i} b_{i,1} = 0, \qquad \sum_{i=1}^{n} a_{1,i} d_{i,2} - \sum_{i=1}^{n} c_{1,i} b_{i,2} = 0, \dots$$

$$\sum_{i=1}^{n} a_{2,i} d_{i,1} - \sum_{i=1}^{n} c_{2,i} b_{i,1} = 0, \qquad \sum_{i=1}^{n} a_{l,i} d_{i,p} - \sum_{i=1}^{n} c_{l,i} b_{i,p} = 0$$

$$\mathbf{C}_{1} \mathbf{B}$$

$$\sum_{i=1}^{n} c_{1,i}b_{i,1} \sum_{i=1}^{n} c_{1,i}b_{i,2} \sum_{i=1}^{n} c_{1,i}b_{i,3} \sum_{i=1}^{n} c_{1,i}b_{i,4} \sum_{i=1}^{n} c_{1,i}b_{i,5}$$

$$\sum_{i=1}^{n} c_{2,i}b_{i,1} \sum_{i=1}^{n} c_{2,i}b_{i,2} \sum_{i=1}^{n} c_{2,i}b_{i,3} \sum_{i=1}^{n} c_{2,i}b_{i,4} \sum_{i=1}^{n} c_{2,i}b_{i,5}$$

$$\sum_{i=1}^{n} c_{3,i}b_{i,1} \sum_{i=1}^{n} c_{3,i}b_{i,2} \sum_{i=1}^{n} c_{3,i}b_{i,3} \sum_{i=1}^{n} c_{3,i}b_{i,4} \sum_{i=1}^{n} c_{3,i}b_{i,5}$$

$$\sum_{i=1}^{n} c_{4,i}b_{i,1} \sum_{i=1}^{n} c_{4,i}b_{i,2} \sum_{i=1}^{n} c_{4,i}b_{i,3} \sum_{i=1}^{n} c_{4,i}b_{i,4} \sum_{i=1}^{n} c_{4,i}b_{i,5}$$

$$\sum_{i=1}^{n} c_{5,i}b_{i,1} \sum_{i=1}^{n} c_{5,i}b_{i,2} \sum_{i=1}^{n} c_{5,i}b_{i,3} \sum_{i=1}^{n} c_{5,i}b_{i,4} \sum_{i=1}^{n} c_{5,i}b_{i,5}$$

A motivating example: a better idea for modelisation.

Given matrices $\mathbf{C}_1, \mathbf{C}_2, \mathbf{D}_1, \mathbf{D}_2 \in \mathcal{M}_{n,n}(\mathbb{F}_q)$ (the space of matrices over \mathbb{F}_q of size $n \times n$), find $\mathbf{A}, \mathbf{B} \in \mathrm{GL}_n(\mathbb{F}_q)$ (the space of invertible matrices over \mathbb{F}_q of size $n \times n$), such that

$$\mathbf{A}^{-1}\mathbf{D}_1 = \mathbf{C}_1\mathbf{B}$$
$$\mathbf{A}^{-1}\mathbf{D}_2 = \mathbf{C}_2\mathbf{B}$$

A motivating example: a better idea for modelisation.

Given matrices $\mathbf{C}_1, \mathbf{C}_2, \mathbf{D}_1, \mathbf{D}_2 \in \mathcal{M}_{n,n}(\mathbb{F}_q)$ (the space of matrices over \mathbb{F}_q of size $n \times n$), find $\mathbf{A}, \mathbf{B} \in \mathrm{GL}_n(\mathbb{F}_q)$ (the space of invertible matrices over \mathbb{F}_q of size $n \times n$), such that

$$\mathbf{A}^{-1}\mathbf{D}_1 = \mathbf{C}_1\mathbf{B}$$
$$\mathbf{A}^{-1}\mathbf{D}_2 = \mathbf{C}_2\mathbf{B}$$

Results in a linear system with the same number of variables and equations.

A motivating example: a better idea for modelisation.

Given matrices $\mathbf{C}_1, \mathbf{C}_2, \mathbf{D}_1, \mathbf{D}_2 \in \mathcal{M}_{n,n}(\mathbb{F}_q)$ (the space of matrices over \mathbb{F}_q of size $n \times n$), find $\mathbf{A}, \mathbf{B} \in \mathrm{GL}_n(\mathbb{F}_q)$ (the space of invertible matrices over \mathbb{F}_q of size $n \times n$), such that

$$\mathbf{A}^{-1}\mathbf{D}_1 = \mathbf{C}_1\mathbf{B}$$
$$\mathbf{A}^{-1}\mathbf{D}_2 = \mathbf{C}_2\mathbf{B}$$

- Results in a linear system with the same number of variables and equations.
 - \longrightarrow If C_1 , C_2 , D_1 , D_2 are all full rank, we should have a unique solution.
 - \longrightarrow We can easily recover **A** from \mathbf{A}^{-1} .

(Fast) Exhaustive Search

[Bouillaguet, Chen, Cheng, Chou, Niederhagen, Shamir, Yang, 2010]

$$x_1 \cdot x_2 + x_1 \cdot x_3 + x_3 \cdot x_4 + x_3 = 0$$

$$x_2 \cdot x_3 + x_2 \cdot x_4 + x_1 + x_2 + 1 = 0$$

$$x_1 \cdot x_2 + x_2 \cdot x_3 + x_2 \cdot x_4 + x_1 + x_4 = 0$$

$$x_1 \cdot x_4 + x_2 \cdot x_3 + x_2 + x_3 + x_4 = 0$$

Binary search tree

Worst-case complexity: $\mathcal{O}(2^n)$

$$x_1 \cdot x_2 + x_1 \cdot x_3 + x_3 \cdot x_4 + x_3 = 0$$

$$x_2 \cdot x_3 + x_2 \cdot x_4 + x_1 + x_2 + 1 = 0$$

$$x_1 \cdot x_2 + x_2 \cdot x_3 + x_2 \cdot x_4 + x_1 + x_4 = 0$$

$$x_1 \cdot x_4 + x_2 \cdot x_3 + x_2 + x_3 + x_4 = 0$$

Binary search tree

$$1 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 + 0 = 0$$

$$0 \cdot 0 + 0 \cdot 1 + 1 + 0 + 1 = 0$$

$$1 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 + 1 + 1 = 0$$

$$1 \cdot 1 + 0 \cdot 0 + 0 + 0 + 1 = 0$$

Binary search tree

$$1 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 + 0 = 0$$

$$0 \cdot 0 + 0 \cdot 1 + 1 + 0 + 1 = 0$$

$$1 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 + 1 + 1 = 0$$

$$1 \cdot 1 + 0 \cdot 0 + 0 + 0 + 1 = 0$$

Binary search tree

Fast Exhaustive Search

* The libFES solver

Gray code

• An ordering of the binary system where two successive values differ in only one bit.

Example. n=4

1100
1101
1111
1110
1010
1011
1001
1000

Fast Exhaustive Search

Gray code

0000	1100
0001	1101
0011	1111
0010	1110
0110	1010
0111	1011
0101	1001
0100	1000

$$1 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 + 0 = 0$$
 $0 \cdot 0 + 0 \cdot 1 + 1 + 0 + 1 = 0$
 $1 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 + 1 + 1 = 0$
 $1 \cdot 1 + 0 \cdot 0 + 0 + 0 + 1 = 0$

Fast Exhaustive Search

Worst-case complexity: $\mathcal{O}(2^n)$

! But, it differs from the depth-first traversal in the polynomial factors

Gray code

_	
0000	1100
0001	1101
0011	1111
0010	1110
0110	1010
0111	1011
0101	1001
0100	1000

$$1 \cdot 0 + 1 \cdot 0 + 0 \cdot 1 + 0 = 0$$
 $0 \cdot 0 + 0 \cdot 1 + 1 + 0 + 1 = 0$
 $1 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 + 1 + 1 = 0$
 $1 \cdot 1 + 0 \cdot 0 + 0 + 0 + 1 = 0$

SAT solvers

CryptoMiniSat [Soos, Nohl, Castelluccia, 2009], WDSat [T., Dequen, Ionica, 2020]

Simple algorithm

[Bouillaguet, Delaplace, T., 2021]

(SAT solvers)

• Propositional formula in Conjunctive Normal Form (CNF): a conjunction of clauses where each clause is a disjunction of literals and where each literal is a variable or a negated variable.

Example.
$$(x_1 \lor \neg x_2) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_4)$$

(SAT solvers)

• Propositional formula in Conjunctive Normal Form (CNF): a conjunction of clauses where each clause is a disjunction of literals and where each literal is a variable or a negated variable.

Example.
$$(x_1 \lor \neg x_2) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_4)$$

The SATisfiability problem

Given a propositional formula, determine whether there exists an interpretation (assignment of all variables) such that the formula is satisfied (evaluates to TRUE).

(SAT solvers)

• Propositional formula in Conjunctive Normal Form (CNF): a conjunction of clauses where each clause is a disjunction of literals and where each literal is a variable or a negated variable.

Example.
$$(x_1 \lor \neg x_2) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_4)$$

The SATisfiability problem

Given a propositional formula, determine whether there exists an interpretation (assignment of all variables) such that the formula is satisfied (evaluates to TRUE).

SAT solver: a tool for solving the SAT problem.

$$1 \cdot 0 + 1 \cdot x_3 + x_3 \cdot x_4 + x_3 = 0$$

$$0 \cdot x_3 + 0 \cdot x_4 + 1 + 0 + 1 = 0$$

$$1 \cdot 0 + 0 \cdot x_3 + 0 \cdot x_4 + 1 + x_4 = 0$$

$$1 \cdot x_4 + 0 \cdot x_3 + 0 + x_3 + x_4 = 0$$

Which (portion of) branches are missing ??

$$1 \cdot 0 + 1 \cdot x_3 + x_3 \cdot x_4 + x_3 = 0$$

$$0 \cdot x_3 + 0 \cdot x_4 + 1 + 0 + 1 = 0$$

$$1 \cdot 0 + 0 \cdot x_3 + 0 \cdot x_4 + 1 + x_4 = 0$$

$$1 \cdot x_4 + 0 \cdot x_3 + 0 + x_3 + x_4 = 0$$

Which (portion of) branches are missing ??

Worst-case complexity: $\mathcal{O}(2^n)$

$$1 \cdot 0 + 1 \cdot x_3 + x_3 \cdot x_4 + x_3 = 0$$

$$0 \cdot x_3 + 0 \cdot x_4 + 1 + 0 + 1 = 0$$

$$1 \cdot 0 + 0 \cdot x_3 + 0 \cdot x_4 + 1 + x_4 = 0$$

$$1 \cdot x_4 + 0 \cdot x_3 + 0 + x_3 + x_4 = 0$$

Which (portion of) branches are missing ??

Worst-case complexity: $\mathcal{O}(2^n)$

$$1 \cdot 0 + 1 \cdot x_3 + x_3 \cdot x_4 + x_3 = 0$$

$$0 \cdot x_3 + 0 \cdot x_4 + 1 + 0 + 1 = 0$$

$$1 \cdot 0 + 0 \cdot x_3 + 0 \cdot x_4 + 1 + x_4 = 0$$

$$1 \cdot x_4 + 0 \cdot x_3 + 0 + x_3 + x_4 = 0$$

Macaulay matrix

Linear systems are easy to solve, nonlinear systems are hard.

Linear systems are easy to solve, nonlinear systems are hard.

Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.

Linear systems are easy to solve, nonlinear systems are hard.

Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.

Example.

$$f_1: x_1x_3 + x_2x_4 + x_1 + x_3 + x_4 = 0$$

$$f_2: x_2x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_4 = 0$$

$$f_3: x_2x_4 + x_3x_4 + x_1 + x_3 + 1 = 0$$

$$f_4: x_1x_2 + x_1x_3 + x_2x_3 + x_3 + x_4 + 1 = 0$$

$$f_5: x_1x_2 + x_2x_3 + x_1x_4 + x_3 = 0$$

$$f_6: x_1x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_3 + x_4 = 0$$

$$f_1: y_2 + y_5 + x_1 + x_3 + x_4 = 0$$

$$f_2: y_4 + y_3 + y_6 + x_1 + x_2 + x_4 = 0$$

$$f_3: y_5 + y_6 + x_1 + x_3 + 1 = 0$$

$$f_4: y_1 + y_2 + y_4 + x_3 + x_4 + 1 = 0$$

$$f_5: y_1 + y_4 + y_3 + x_3 = 0$$

$$f_6: y_2 + y_3 + y_6 + x_1 + x_2 + x_3 + x_4 = 0$$

Linear systems are easy to solve, nonlinear systems are hard.

Linearisation: for each nonlinear monomial, replace all of its occurrences by a new variable.

Example.

$$f_1: x_1x_3 + x_2x_4 + x_1 + x_3 + x_4 = 0$$

$$f_2: x_2x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_4 = 0$$

$$f_3: x_2x_4 + x_3x_4 + x_1 + x_3 + 1 = 0$$

$$f_4: x_1x_2 + x_1x_3 + x_2x_3 + x_3 + x_4 + 1 = 0$$

$$f_5: x_1x_2 + x_2x_3 + x_1x_4 + x_3 = 0$$

$$f_6: x_1x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_3 + x_4 = 0$$

$$f_1: y_2 + y_5 + x_1 + x_3 + x_4 = 0$$

$$f_2: y_4 + y_3 + y_6 + x_1 + x_2 + x_4 = 0$$

$$f_3: y_5 + y_6 + x_1 + x_3 + 1 = 0$$

$$f_4: y_1 + y_2 + y_4 + x_3 + x_4 + 1 = 0$$

$$f_5: y_1 + y_4 + y_3 + x_3 = 0$$

$$f_6: y_2 + y_3 + y_6 + x_1 + x_2 + x_3 + x_4 = 0$$

Linearisation adds solutions: a *random* quadratic system of m equations in n variables, when n=m, is expected to have one solution (probability is $\sim \frac{1}{q}$ for systems over \mathbb{F}_q). The corresponding linearised system has a solution space of dimension $\binom{n+1}{2}-m$.

Linearisation adds solutions: a *random* quadratic system of m equations in n variables, when n=m, is expected to have one solution (probability is $\sim \frac{1}{q}$ for systems over \mathbb{F}_q). The corresponding linearised system has a solution space of dimension $\binom{n+1}{2}-m$.

Loss of information: e.g. assignment $x_1 = 1$; $x_2 = 0$; $y_1 = 1$; is part of a valid solution to the linearised system, but $x_1x_2 \neq y_1$.

Macaulay matrix

Equations		x_1x_2	x_1x_3	x_1x_4	x_1	x_2x_3	x_2x_4	x_2	x_3x_4	x_3	x_4	1
	f_1											
	f_2											
	f_3											
	f_4											
	f_5											
	f_6											

$$f_1: x_1x_3 + x_2x_4 + x_1 + x_3 + x_4 = 0$$

$$f_2: x_2x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_4 = 0$$

$$f_3: x_2x_4 + x_3x_4 + x_1 + x_3 + 1 = 0$$

$$f_4: x_1x_2 + x_1x_3 + x_2x_3 + x_3 + x_4 + 1 = 0$$

$$f_5: x_1x_2 + x_2x_3 + x_1x_4 + x_3 = 0$$

$$f_6: x_1x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_3 + x_4 = 0$$

Macaulay matrix

Monomials

Equations

	x_1x_2	x_1x_3	x_1x_4	x_1	x_2x_3	x_2x_4	x_2	x_3x_4	x_3	\mathcal{X}_4	1
f_1	0	1	0	1	0	1	0	0	1	1	0
f_2	0	0	1	1	1	0	1	1	0	1	0
f_3	0	0	0	1	0	1	0	1	1	0	1
f_4	1	1	0	1	1	0	0	0	1	1	1
f_5	1	0	1	1	1	0	0	0	1	0	0
f_6	0	1	1	1	0	0	1	1	1	1	0

$$f_1: x_1x_3 + x_2x_4 + x_1 + x_3 + x_4 = 0$$

$$f_2: x_2x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_4 = 0$$

$$f_3: x_2x_4 + x_3x_4 + x_1 + x_3 + 1 = 0$$

$$f_4: x_1x_2 + x_1x_3 + x_2x_3 + x_3 + x_4 + 1 = 0$$

$$f_5: x_1x_2 + x_2x_3 + x_1x_4 + x_3 = 0$$

$$f_6: x_1x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_3 + x_4 = 0$$

Simple algorithm

[Bouillaguet, Delaplace, T., 2021]

Simple algorithm

- Partial assignment
 - Gaussian elimination

$$1 \cdot 0 + 1 \cdot x_3 + x_3 \cdot x_4 + x_3 = 0$$

$$0 \cdot x_3 + 0 \cdot x_4 + 1 + 0 + 1 = 0$$

$$1 \cdot 0 + 0 \cdot x_3 + 0 \cdot x_4 + 1 + x_4 = 0$$

$$1 \cdot x_4 + 0 \cdot x_3 + 0 + x_3 + x_4 = 0$$

Simple algorithm

Guess sufficiently many variables so that the remaining polynomial system can be solved by linearization.

- *n* number of variables
- *m* number of equations

- *n* number of variables
- *m* number of equations

number of monomials ≤ number of equations

- *n* number of variables
- *m* number of equations

number of monomials ≤ number of equations

$$\binom{n-?}{2} \le m$$

- *n* number of variables
- *m* number of equations

number of monomials ≤ number of equations

$$\binom{n-?}{2} \le m$$

$$- \mathcal{O}(2^{n} - \sqrt{2m})$$

- *n* number of variables
- *m* number of equations

Enumeration ends when:

number of monomials ≤ number of equations

$$\binom{n-?}{2} \le m$$

$$-\mathcal{O}(2^{n}-\sqrt{2m})$$

See also: Quantum BDT [Edme, Fouque, Schrottenloher]

Gröbner basis algorithms

[Buchberger, 1965]

[Lazard, 1983] F_4/F_5 [Faugère, 1999/2002]

(XL [Courtois, Klimov, Patarin, Shamir, 2000])

*We are essentially describing the XL algorithm.

*We are essentially describing the XL algorithm.

	x_1x_2	x_1x_3	x_1x_4	x_1	x_2x_3	x_2x_4	x_2	$x_{3}x_{4}$	x_3	x_4	1
f_1	0	1	0	1	0	1	0	0	1	1	0
f_2	0	0	1	1	1	0	1	1	0	1	0
f_3	0	0	0	1	0	1	0	1	1	0	1
f_4	1	1	0	1	1	0	0	0	1	1	1
f_5	1	0	1	1	1	0	0	0	1	0	0
f_6	0	1	1	1	0	0	1	1	1	1	0

*We are essentially describing the XL algorithm.

	x_1x_2	x_1x_3	x_1x_4	x_1	x_2x_3	x_2x_4	x_2	x_3x_4	x_3	\mathcal{X}_4	1
f_1	0	1	0	1	0	1	0	0	1	1	0
f_2	0	0	1	1	1	0	1	1	0	1	0
f_3	0	0	0	1	0	1	0	1	1	0	1
f_4	1	1	0	1	1	0	0	0	1	1	1
f_5	1	0	1	1	1	0	0	0	1	0	0
f_6	0	1	1	1	0	0	1	1	1	1	0

$$f_1: x_1x_3 + x_2x_4 + x_1 + x_3 + x_4 = 0$$

$$f_2: x_2x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_4 = 0$$

$$f_3: x_2x_4 + x_3x_4 + x_1 + x_3 + 1 = 0$$

$$f_4: x_1x_2 + x_1x_3 + x_2x_3 + x_3 + x_4 + 1 = 0$$

$$f_5: x_1x_2 + x_2x_3 + x_1x_4 + x_3 = 0$$

$$f_6: x_1x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_3 + x_4 = 0$$

*We are essentially describing the XL algorithm.

$$D = 3$$

 $f_1: x_1x_3 + x_2x_4 + x_1 + x_3 + x_4 = 0$ $f_2: x_2x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_4 = 0$ $f_3: x_2x_4 + x_3x_4 + x_1 + x_3 + 1 = 0$ $f_4: x_1x_2 + x_1x_3 + x_2x_3 + x_3 + x_4 + 1 = 0$ $f_5: x_1x_2 + x_2x_3 + x_1x_4 + x_3 = 0$ $f_6: x_1x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_3 + x_4 = 0$

	x_1x_2	x_1x_3	x_1x_4	x_1	x_2x_3	$x_2 x_4$	x_2	x_3x_4	x_3	x_4	1	$x_1x_2x_3$	$x_1x_2x_4$	$x_1x_3x_4$	$x_2x_3x_3$
f_1	0	1	0	1	0	1	0	0	1	1	0				
f_2	0	0	1	1	1	0	1	1	0	1	0				
f_3	0	0	0	1	0	1	0	1	1	0	1				
f_4	1	1	0	1	1	0	0	0	1	1	1				
f_5	1	0	1	1	1	0	0	0	1	0	0				
f_6	0	1	1	1	0	0	1	1	1	1	0				
x_1f_1															
x_2f_1															

*We are essentially describing the XL algorithm.

$$D = 4$$

 $f_1: x_1x_3 + x_2x_4 + x_1 + x_3 + x_4 = 0$ $f_2: x_2x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_4 = 0$ $f_3: x_2x_4 + x_3x_4 + x_1 + x_3 + 1 = 0$ $f_4: x_1x_2 + x_1x_3 + x_2x_3 + x_3 + x_4 + 1 = 0$ $f_5: x_1x_2 + x_2x_3 + x_1x_4 + x_3 = 0$ $f_6: x_1x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_3 + x_4 = 0$

	x_1x_2	x_1x_3	x_1x_4	x_1	x_2x_3	$x_2 x_4$	x_2	x_3x_4	x_3	\mathcal{X}_4	$1 x_1 x_2 x_3$	$x_3 x_1 x_2 x_4$	$x_1x_3x_4$	$x_2 x_3 x_4$	$x_1x_2x_3$
f_1	0	1	0	1	0	1	0	0	1	1	0				
f_2	0	0	1	1	1	0	1	1	0	1	0				
f_3	0	0	0	1	0	1	0	1	1	0	1				
f_4	1	1	0	1	1	0	0	0	1	1	1				
f_5	1	0	1	1	1	0	0	0	1	0	0				
f_6	0	1	1	1	0	0	1	1	1	1	0				
x_1f_1															
$x_2 f_1$															
$x_1x_2f_1$															
$x_1 x_2 f_1$ $x_1 x_3 f_1$															1

• Let $R = \mathbb{F}_q[x_1, ..., x_n]$ be the polynomial ring in n variables.

- Let $R = \mathbb{F}_q[x_1, ..., x_n]$ be the polynomial ring in n variables.
- An ideal in R is an additive subgroup I such that if $g \in R$ and $f \in I$, then $gf \in I$.

- Let $R = \mathbb{F}_q[x_1, ..., x_n]$ be the polynomial ring in n variables.
- An ideal in R is an additive subgroup I such that if $g \in R$ and $f \in I$, then $gf \in I$.
- The subset $\{f_1, ..., f_m\} \subset R$ is a set of generators for an ideal I if every element $t \in I$ can be written in the form $t = \sum_{i=1}^{n} \text{ with } g_i \in R$.

- Let $R = \mathbb{F}_q[x_1, ..., x_n]$ be the polynomial ring in n variables.
- An ideal in R is an additive subgroup I such that if $g \in R$ and $f \in I$, then $gf \in I$.
- The subset $\{f_1, ..., f_m\} \subset R$ is a set of generators for an ideal I if every element $t \in I$ can be written in the form $t = \sum_{i=1}^{n} \text{ with } g_i \in R$.
- By the Hilbert basis theorem: every ideal in *R* has a finite set of generators.

- Let $R = \mathbb{F}_q[x_1, ..., x_n]$ be the polynomial ring in n variables.
- An ideal in R is an additive subgroup I such that if $g \in R$ and $f \in I$, then $gf \in I$.
- The subset $\{f_1, ..., f_m\} \subset R$ is a set of generators for an ideal I if every element $t \in I$ can be written in the form $t = \sum_{i=1}^{n} \text{ with } g_i \in R$.
- By the Hilbert basis theorem: every ideal in *R* has a finite set of generators.
- The subset of R defined as $V(I) = \{(a_1, ..., a_n) \in \mathbb{F}_q^n | f(a_1, ..., a_n) = 0 \text{ for all } f \in I\}$ is called an algebraic variety. It is the set of all solutions to the system of equations $f_1(x_1, ..., x_n) = ... = f_1(x_1, ..., x_n) = 0.$

- Let $R = \mathbb{F}_q[x_1, ..., x_n]$ be the polynomial ring in n variables.
- An ideal in R is an additive subgroup I such that if $g \in R$ and $f \in I$, then $gf \in I$.
- The subset $\{f_1, ..., f_m\} \subset R$ is a set of generators for an ideal I if every element $t \in I$ can be written in the form $t = \sum_{i=1}^{n} \text{ with } g_i \in R$.
- By the Hilbert basis theorem: every ideal in *R* has a finite set of generators.
- The subset of R defined as $V(I) = \{(a_1, ..., a_n) \in \mathbb{F}_q^n | f(a_1, ..., a_n) = 0 \text{ for all } f \in I\}$ is called an algebraic variety. It is the set of all solutions to the system of equations $f_1(x_1, ..., x_n) = ... = f_1(x_1, ..., x_n) = 0.$
- By the Nullstellensatz: I(V(I)) = I, where I(V) denotes the ideal of V, i.e. $I(V) = \{f \in R | f(a) = 0 \text{ for all } a \in V\}$ (Similar to Gauss' fundamental theorem, but for polynomials in many variables).

• A Gröbner basis of an ideal *I* is a set of generators with some nice (useful) property.

• A Gröbner basis of an ideal *I* is a set of generators with some nice (useful) property.

For our case, the nice property is that a solution can be extracted easily from the Gröbner basis.

• A Gröbner basis of an ideal *I* is a set of generators with some nice (useful) property.

For our case, the nice property is that a solution can be extracted easily from the Gröbner basis.

Example. The shape of a GB with respect to the lexicographic order

$$f_1: x_1x_3 + x_1 + x_2x_4 + x_5 + x_6 + 1 = 0$$

$$f_2: x_1x_4 + x_1 + x_2x_3 + x_2 + x_3x_4 + x_3x_6 + x_4 + x_5 = 0$$

$$f_3: x_1x_5 + x_1 + x_2 + x_3x_4 + x_6 + 1 = 0$$

$$f_4: x_1x_2 + x_1x_3 + x_2x_5 + x_3 + x_4 + x_6 + 1 = 0$$

$$f_5: x_1x_4 + x_2x_3 + x_2x_5 + x_5x_6 + 1 = 0$$

$$f_6: x_1x_3 + x_1x_4 + x_1 + x_2 + x_3x_6 + x_3 + x_5 = 0$$

• A Gröbner basis of an ideal *I* is a set of generators with some nice (useful) property.

For our case, the nice property is that a solution can be extracted easily from the Gröbner basis.

Example. The shape of a GB with respect to the lexicographic order

$$f_{1}: x_{1}x_{3} + x_{1} + x_{2}x_{4} + x_{5} + x_{6} + 1 = 0$$

$$f_{2}: x_{1}x_{4} + x_{1} + x_{2}x_{3} + x_{2} + x_{3}x_{4} + x_{3}x_{6} + x_{4} + x_{5} = 0$$

$$f_{3}: x_{1}x_{5} + x_{1} + x_{2} + x_{3}x_{4} + x_{6} + 1 = 0$$

$$f_{4}: x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{5} + x_{3} + x_{4} + x_{6} + 1 = 0$$

$$f_{5}: x_{1}x_{4} + x_{2}x_{3} + x_{2}x_{5} + x_{5}x_{6} + 1 = 0$$

$$f_{5}: x_{1}x_{4} + x_{2}x_{3} + x_{2}x_{5} + x_{5}x_{6} + 1 = 0$$

$$f_{5}: x_{1}x_{3} + x_{1}x_{4} + x_{1} + x_{2} + x_{3}x_{6} + x_{3} + x_{5} = 0$$

• A Gröbner basis of an ideal *I* is a set of generators with some nice (useful) property.

For our case, the nice property is that a solution can be extracted easily from the Gröbner basis.

Example. The shape of a GB with respect to the lexicographic order

$$f_{1}: x_{1}x_{3} + x_{1} + x_{2}x_{4} + x_{5} + x_{6} + 1 = 0$$

$$f_{2}: x_{1}x_{4} + x_{1} + x_{2}x_{3} + x_{2} + x_{3}x_{4} + x_{3}x_{6} + x_{4} + x_{5} = 0$$

$$f_{3}: x_{1}x_{5} + x_{1} + x_{2} + x_{3}x_{4} + x_{6} + 1 = 0$$

$$f_{4}: x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{5} + x_{3} + x_{4} + x_{6} + 1 = 0$$

$$f_{5}: x_{1}x_{4} + x_{2}x_{3} + x_{2}x_{5} + x_{5}x_{6} + 1 = 0$$

$$f_{5}: x_{1}x_{4} + x_{2}x_{3} + x_{2}x_{5} + x_{5}x_{6} + 1 = 0$$

$$f_{5}: x_{1}x_{3} + x_{1}x_{4} + x_{1} + x_{2} + x_{3}x_{6} + x_{3} + x_{5} = 0$$

$$V(\langle f_1, ..., f_6 \rangle) = \{(0,0,0,1,0,0), (1,1,1,0,0,1)\}$$

Gröbner basis algorithms:

Buchberger, Lazard, F4, F5

Follow the core idea that we described, but combine the equations in an organised way, rather than multiplying them by all possible monomials.

Not covered in this talk:

- Monomial orders
- S-polynomials
- Polynomial long division
- Row reduction in parallel
- Reductions to zero
- Syzygy criterion
- •

$$\mathcal{O}\left(mD_{reg}\left(n+D_{reg}-1\right)^{\omega}\right)$$

$$\mathcal{O}\left(mD_{reg}\left(n+D_{reg}-1\right)^{\omega}\right)$$

 D_{reg} : degree of regularity

the power of the first non-positive coefficient in the expansion of

$$\frac{(1-t^2)^m}{(1-t)^n}$$

The number of monomials (columns) minus linearly independent

equations (rows) at degree D = 4 is 14.

D_{reg} : degree of regularity

the power of the first non-positive coefficient in the expansion of

$$\frac{(1-t^2)^m}{(1-t)^n}$$

```
m=8
n=7
R.<t> = PowerSeriesRing(ZZ)
hs = ((1-t^2)^(m)) / (1-t)^(n)
print(hs)

0.0s

1 + 7*t + 20*t^2 + 28*t^3 + 14*t^4 - 14*t^5 - 28*t^6 - 20*t^7 - 7*t^8 - t^9 + 0(t^20)
```

The number of monomials (columns) minus linearly independent equations (rows) at degree D=4 is 14.

FXL

[Courtois, Klimov, Patarin, Shamir, 2000]

Hybrid

[Bettale, Faugère, Perret, 2009]

BoolSolve

[Bardet, Faugère, Salvy, Spaenlehauer, 2013]

FXL, Hybrid, BoolSolve

Techniques are already covered in the previous section.

Algorithms will be explained in the summary.

The crossbred algorithm

[Joux, Vitse, 2017]

	x_1x_2	x_1x_3	x_1x_4	x_1	x_2x_3	x_2x_4	x_2	x_3x_4	x_3	\mathcal{X}_4	1
f_1	0	1	0	1	0	1	0	0	1	1	0
f_2	0	0	1	1	1	0	1	1	0	1	0
f_3	0	0	0	1	0	1	0	1	1	0	1
f_4	1	1	0	1	1	0	0	0	1	1	1
f_5	1	0	1	1	1	0	0	0	1	0	0
f_6	0	1	1	1	0	0	1	1	1	1	0

$$f_1: x_1x_3 + x_2x_4 + x_1 + x_3 + x_4 = 0$$

$$f_2: x_2x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_4 = 0$$

$$f_3: x_2x_4 + x_3x_4 + x_1 + x_3 + 1 = 0$$

$$f_4: x_1x_2 + x_1x_3 + x_2x_3 + x_3 + x_4 + 1 = 0$$

$$f_5: x_1x_2 + x_2x_3 + x_1x_4 + x_3 = 0$$

$$f_6: x_1x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_3 + x_4 = 0$$

Put matrix in reduced row echelon form

	x_1x_2	x_1x_3	x_2x_3	x_1x_4	x_2x_4	x_3x_4	x_1	x_2	x_3	\mathcal{X}_4	1
f_1	1	0	0	0	0	0	0	0	0	1	1
f_2	0	1	0	0	0	0	1	1	1	1	0
f_3	0	0	1	0	0	0	1	1	0	1	0
f_4	0	0	0	1	0	0	1	1	1	0	1
f_5	0	0	0	0	1	0	0	1	0	0	0
f_6	0	0	0	0	0	1	1	1	1	0	1

• • •

$$f_1: x_1x_3 + x_2x_4 + x_1 + x_3 + x_4 = 0$$

$$f_2: x_2x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_4 = 0$$

$$f_3: x_2x_4 + x_3x_4 + x_1 + x_3 + 1 = 0$$

$$f_4: x_1x_2 + x_1x_3 + x_2x_3 + x_3 + x_4 + 1 = 0$$

$$f_5: x_1x_2 + x_2x_3 + x_1x_4 + x_3 = 0$$

$$f_5: x_1x_2 + x_2x_3 + x_1x_4 + x_3 = 0$$

$$f_6: x_1x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_3 + x_4 = 0$$

→ Take linear subsystem

	x_1x_2	x_1x_3	x_2x_3	x_1x_4	x_2x_4	x_3x_4	x_1	x_2	x_3	\mathcal{X}_4	1
f_1	1	0	0	0	0	0	0	0	0	1	1
f_2	0	1	0	0	0	0	1	1	1	1	0
f_3	0	0	1	0	0	0	1	1	0	1	0
f_4	0	0	0	1	0	0	1	1	1	0	1
f_5	0	0	0	0	1	0	0	1	0	0	0
f_6	0	0	0	0	0	1	1	1	1	0	1

. . .

$$f_1: x_1x_3 + x_2x_4 + x_1 + x_3 + x_4 = 0$$

$$f_2: x_2x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_4 = 0$$

$$f_3: x_2x_4 + x_3x_4 + x_1 + x_3 + 1 = 0$$

$$f_4: x_1x_2 + x_1x_3 + x_2x_3 + x_3 + x_4 + 1 = 0$$

$$f_5: x_1x_2 + x_2x_3 + x_1x_4 + x_3 = 0$$

$$f_6: x_1x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_3 + x_4 = 0$$

...if we had another 4 equations

	x_1x_2	x_1x_3	x_2x_3	x_1x_4	x_2x_4	x_3x_4	x_1	x_2	x_3	x_4	1
f_1	1	0	0	0	0	0	0	0	0	1	1
f_2	0	1	0	0	0	0	1	1	1	1	0
f_3	0	0	1	0	0	0	1	1	0	1	0
f_4	0	0	0	1	0	0	1	1	1	0	1
f_5	0	0	0	0	1	0	0	1	0	0	0
f_6	0	0	0	0	0	1	1	1	1	0	1

• • •

$$f_1: x_1x_3 + x_2x_4 + x_1 + x_3 + x_4 = 0$$

$$f_2: x_2x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_4 = 0$$

$$f_3: x_2x_4 + x_3x_4 + x_1 + x_3 + 1 = 0$$

$$f_4: x_1x_2 + x_1x_3 + x_2x_3 + x_3 + x_4 + 1 = 0$$

$$f_5: x_1x_2 + x_2x_3 + x_1x_4 + x_3 = 0$$

$$f_6: x_1x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_3 + x_4 = 0$$

- Subsystem is linear in variables $\{x_1, x_2, x_3\}$.
 - Enumerating x_4 will result in a linear subsystem.

	x_1x_2	x_1x_3	x_2x_3	x_1x_4	x_2x_4	x_3x_4	x_1	x_2	x_3	\mathcal{X}_4	1
f_1	1	0	0	0	0	0	0	0	0	1	1
f_2	0	1	0	0	0	0	1	1	1	1	0
f_3	0	0	1	0	0	0	1	1	0	1	0
f_4	0	0	0	1	0	0	1	1	1	0	1
f_5	0	0	0	0	1	0	0	1	0	0	0
f_6	0	0	0	0	0	1	1	1	1	0	1

$$f_1: x_1x_3 + x_2x_4 + x_1 + x_3 + x_4 = 0$$

$$f_2: x_2x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_4 = 0$$

$$f_3: x_2x_4 + x_3x_4 + x_1 + x_3 + 1 = 0$$

$$f_4: x_1x_2 + x_1x_3 + x_2x_3 + x_3 + x_4 + 1 = 0$$

$$f_5: x_1x_2 + x_2x_3 + x_1x_4 + x_3 = 0$$

$$f_5: x_1x_2 + x_2x_3 + x_1x_4 + x_3 = 0$$

$$f_6: x_1x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_3 + x_4 = 0$$

	x_1x_2	x_1x_3	x_2x_3	x_1x_4	x_2x_4	x_3x_4	x_1	x_2	x_3	\mathcal{X}_4	1
f_1	1	0	0	0	0	0	0	0	0	1	1
f_2	0	1	0	0	0	0	1	1	1	1	0
f_3	0	0	1	0	0	0	1	1	0	1	0
f_4	0	0	0	1	0	0	1	1	1	0	1
f_5	0	0	0	0	1	0	0	1	0	0	0
f_6	0	0	0	0	0	1	1	1	1	0	1

• • •

$$f_1: x_1x_3 + x_2x_4 + x_1 + x_3 + x_4 = 0$$

$$f_2: x_2x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_4 = 0$$

$$f_3: x_2x_4 + x_3x_4 + x_1 + x_3 + 1 = 0$$

$$f_4: x_1x_2 + x_1x_3 + x_2x_3 + x_3 + x_4 + 1 = 0$$

$$f_5: x_1x_2 + x_2x_3 + x_1x_4 + x_3 = 0$$

$$f_6: x_1x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_3 + x_4 = 0$$

Subsystem can be linearised

	x_1x_2	x_1x_3	x_2x_3	x_1x_4	x_2x_4	x_3x_4	x_1	x_2	x_3	\mathcal{X}_4	1
f_1	1	0	0	0	0	0	0	0	0	1	1
f_2	0	1	0	0	0	0	1	1	1	1	0
f_3	0	0	1	0	0	0	1	1	0	1	0
f_4	0	0	0	1	0	0	1	1	1	0	1
f_5	0	0	0	0	1	0	0	1	0	0	0
f_6	0	0	0	0	0	1	1	1	1	0	1

• • •

$$f_1: x_1x_3 + x_2x_4 + x_1 + x_3 + x_4 = 0$$

$$f_2: x_2x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_4 = 0$$

$$f_3: x_2x_4 + x_3x_4 + x_1 + x_3 + 1 = 0$$

$$f_4: x_1x_2 + x_1x_3 + x_2x_3 + x_3 + x_4 + 1 = 0$$

$$f_5: x_1x_2 + x_2x_3 + x_1x_4 + x_3 = 0$$

$$f_6: x_1x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_3 + x_4 = 0$$

Subsystem can be linearised

	x_1x_2	x_1x_3	x_2x_3	x_1x_4	x_2x_4	x_3x_4	x_1	x_2	x_3	x_4	1
f_1	1	0	0	0	0	0	0	0	0	1	1
f_2	0	1	0	0	0	0	1	1	1	1	0
f_3	0	0	1	0	0	0	1	1	0	1	0
f_4	0	0	0	1	0	0	1	1	1	0	1
f_5	0	0	0	0	1	0	0	1	0	0	0
f_6	0	0	0	0	0	1	1	1	1	0	1

. . .

$$f_1: x_1x_3 + x_2x_4 + x_1 + x_3 + x_4 = 0$$

$$f_2: x_2x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_4 = 0$$

$$f_3: x_2x_4 + x_3x_4 + x_1 + x_3 + 1 = 0$$

$$f_4: x_1x_2 + x_1x_3 + x_2x_3 + x_3 + x_4 + 1 = 0$$

$$f_5: x_1x_2 + x_2x_3 + x_1x_4 + x_3 = 0$$

$$f_6: x_1x_3 + x_1x_4 + x_3x_4 + x_1 + x_2 + x_3 + x_4 = 0$$

...if we had another 4 equations, the subsystem would have a unique solution.

Otherwise: check candidate solutions against the other equations.

Parameters of the algorithm: *D*, *k*, *d*, *h*

- \longrightarrow Enumerate h variables.
- \longrightarrow Choose k of the remaining variables.
- \longrightarrow Augment system up to degree D (compute degree-D Macaulay matrix).
- Take the subsystem that is at most degree d in the k chosen variables.
- \longrightarrow Enumerate all but the k chosen variables.
- Linearise the subsystem and solve it.
- Check if candidate solutions are consistent with the rest of the system.

Parameters of the algorithm: *D*, *k*, *d*, *h*

- \longrightarrow Enumerate h variables.
- \longrightarrow Choose k of the remaining variables.
- \longrightarrow Augment system up to degree D (compute degree-D Macaulay matrix).
- Take the subsystem that is at most degree d in the k chosen variables.
- \longrightarrow Enumerate all but the k chosen variables.
- Linearise the subsystem and solve it.
- Check if candidate solutions are consistent with the rest of the system.

The complexity is calculated as the best trade-off between the four parameters.

	Number of Variables (n)	Seed (0,1,2,3,4)	Date	Contestants	Computational Resource	Data
1	83	0	2023/09/16	Charles Bouillaguet and Julia Sauvage	https://gitlab.lip6. fr/almasty/hpXbre d, 3488 AMD EPYC 7J13 cores on the Oracle public cloud	<u>Details</u>
6	74	0	2016/12/17	Antoine Joux	New hybridized XL related algorithm, Heterogeneous cluster of Intel Xeon @ 2.7-3.5 Ghz	<u>Details</u>
7	74	4	2017/11/15	Kai-Chun Ning, Ruben Niederhagen	Parallel Crossbred, 54 GPUs in the Saber cluster	<u>Details</u>
25	66	0	2016/01/22	Tung Chou, Ruben Niederhagen, Bo- Yin Yang	Gray Code enumeration, Rivyera, 128 Spartan 6 FPGAs	<u>Details</u>

Fukuoka MQ challenge record computations (m = 2n)

(Partial) enumeration

Candidate solutions (subsystem)

Conflict search

Extending to higher degrees

Computing a Gröbner Basis

FES

Simple

FXL

 F_4/F_5

SAT solvers

Crossbred

BoolSolve

(Partial) enumeration

Candidate solutions (subsystem)

Conflict search

Extending to higher degrees

Computing a Gröbner Basis

FES

SAT solvers

Crossbred

BoolSolve

(Partial) enumeration

Candidate solutions (subsystem)

Conflict search

Extending to higher degrees

Computing a Gröbner Basis

FES

Simple

FXL

 F_4/F_5

SAT solvers

Crossbred

BoolSolve

(Partial) enumeration

Candidate solutions (subsystem)

Conflict search

Extending to higher degrees

Computing a Gröbner Basis

FES

Simple

FXL

 F_4/F_5

SAT solvers

Crossbred

BoolSolve

Candidate (Partial) Extending to Computing a Conflict search solutions higher degrees Gröbner Basis enumeration (subsystem) **FES** BoolSolve **SAT** solvers Crossbred Hybrid

(Partial) enumeration

Candidate solutions (subsystem)

Conflict search

Extending to higher degrees

Computing a Gröbner Basis

FES

Simple

FXL

 F_4/F_5

SAT solvers

Crossbred

BoolSolve

Hybrid

(Partial) enumeration

Candidate solutions (subsystem)

Conflict search

Extending to higher degrees

Computing a Gröbner Basis

FES

Simple

FXL

 F_4/F_5

SAT solvers

Crossbred

BoolSolve

Hybrid

(Partial) enumeration

Candidate solutions (subsystem)

Conflict search

Extending to higher degrees

Computing a Gröbner Basis

$$f_1': x_1 + x_6 = 0$$

$$f_2': x_2 + x_6 = 0$$

$$f_3': x_3 + x_6 = 0$$

$$f_4': x_4 + x_6 + 1 = 0$$

$$f_5': x_5 = 0$$

**** *** *** **

FES

Simple

FXL

 F_4/F_5

SAT solvers

Crossbred

BoolSolve

Hybrid

Recap

- ▶ The MQ problem is (usually) hard.
- Modelisation can be crucial to how efficient an attack is.
- ▶ We have a variety of solvers for (over)determined systems.
- ▶ We can estimate the complexity of solving random systems, but for structured systems this requires deeper analysis.

To implement a solver and practice modelisation of different attacks:

Tutorial Tuesday, July 1

(install SageMath beforehand: https://github.com/LarsMath/tutorial-algebraic-cryptanalysis)

→ joint with Lars Ran

