NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

THESIS

THE IMPACT OF THE MILITARY DRAWDOWN ON USN AVIATOR RETENTION RATES

by

Russell S. Turner

March, 1995

Thesis Co-Advisors:

Stephen L. Mehay Mark J. Eitelberg

Approved for public release; distribution is unlimited.

19950817 093

DTIC QUALITY INSPECTED 5

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

AGENCY USE ONLY (Leave blank) 2. REPORT DATE REPORT TYPE AND DATES COVERED March 1995 Master's Thesis TITLE AND SUBTITLE THE IMPACT OF THE MILITARY 5. FUNDING NUMBERS DRAWDOWN ON USN AVIATOR RETENTION RATES 6. AUTHOR(S) Russell S. Turner PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) PERFORMING Naval Postgraduate School **ORGANIZATION** Monterey CA 93943-5000 REPORT NUMBER SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

The objective of this thesis is to design and construct a unique analytical data base to be used to examine the effects of the military drawdown on the retention of Naval aviators. Past analyses of retention have focused primarily on the individual retention decision. This thesis uses grouped data defined by year of commission, fiscal year, and aviator type. The analysis quantifies the relationship between various downsizing policies and cohort continuation rates while controlling for the effects of time-since-MSR (minimum service requirement) and civilian unemployment. Separate regression models are specified for the jet, prop, and helo pilot communities, and for the jet and prop NFO communities, with the continuation rate as the dependent variable. The models are estimated using weighted OLS. The samples contained observations on a total of 1,907 cohort continuation rates for each fiscal year between 1977 and 1993. The study found that the percentage of Aviation Continuation Pay bonuses available in a given year is directly related to the grouped continuation rate. The effect of the VSI/SSB and IRAD programs was found to be statistically insignificant. Thus, it was concluded that the downsizing policies have had only a minor effect on the underlying, baseline continuation rate.

14.	SUBJECT TERMS	Aviate	or Retention, Contin	uation	Rates, Downsizing	15.	NUMBER OF PAGES 80
						16.	PRICE CODE
17.	SECURITY CLASSIFICATION OF REPORT Unclassified	18.	SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19.	SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20.	LIMITATION OF ABSTRACT UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102 Approved for public release; distribution is unlimited.

THE IMPACT OF THE MILITARY DRAWDOWN ON USN AVIATOR RETENTION RATES

by

Russell S. Turner
Lieutenant, United States Navy
B.S., Old Dominion University, 1988

Accesion For

NTIS CRA&I

DTIC TAB Unannounced Justification

Distribution /

Dist

Availability Codes

Avail and/or

Special

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL March 1995

Author:

Russell S. Turner

Approved by:

Stephen L. Mehry, Co-Advisor

Mark J. Eitelberg, Co-Advisor

David R. Whipple, Chairman / Department of Systems Management

ABSTRACT

The objective of this thesis is to design and construct a unique analytical data base to be used to examine the effects of the military drawdown on the retention of Naval aviators. Past analyses of retention have focused primarily on the individual retention decision. This thesis uses grouped data defined by year of commission, fiscal year, and aviator type. The analysis quantifies the relationship between various downsizing policies and cohort continuation rates while controlling for the effects of time-since-MSR (minimum service requirement) and civilian unemployment. Separate regression models are specified for the jet, prop, and helo pilot communities, and for the jet and prop NFO communities, with the continuation rate as the dependent variable. The models are estimated using weighted OLS. The samples contained observations on a total of 1,907 cohort continuation rates for each fiscal year between 1977 and 1993. The study found that the percentage of Aviation Continuation Pay bonuses available in a given year is directly related to the grouped continuation rate. The effect of the VSI/SSB and IRAD programs was found to be statistically insignificant. Thus, it was concluded that the downsizing policies have had only a minor effect on the underlying, baseline continuation rate.

TABLE OF CONTENTS

I.	INTRO	DDUCTION	. 1
II.	LITE	RATURE REVIEW	. 5
	A.	CALCULATING CONTINUATION RATES	. 5
	В.	METHODOLOGIES	. 5
	C .	CRITIQUE	. 7
	D.	BASELINE CONTINUATION RATES	. 8
	E.	SUMMARY	9
III.	MET	HODOLOGY	11
	A .	INDIVIDUAL DATA	11
	В.	COHORT DATA	12
	C.	MODEL SPECIFICATION	12
IV.	STAT	TISTICAL RESULTS	15
	A.	RESULTS OF ESTIMATING OLS MODELS FOR ALL PILOTS	
		COMBINED AND NFOS COMBINED	15
		1. The Pilot Model	15
		2. The NFO Model	15
	В.	RESULTS OF ESTIMATING SEPARATE OLS MODELS BY	
		AIRCRAFT TYPE	17
		1. Jet Pilots	17
		2. Helo Pilots	17
		3. Prop Pilots	18
		4. Prop NFOs	19
		5 Jet NFOs	19

C. DISCUSSION OF THE EFFECTS OF THE EXPLANATORY	
VARIABLES	21
1. Aviation Continuation Pay Program (ACP)	21
2. Voluntary Separation Incentive Program (VSI)	21
3. Involuntary Reduction in Active Duty Policy (IRAD)	21
4. MSR2	21
5. MSR3	22
6. Civilian Unemployment	22
D. GOODNESS-OF-FIT OF THE OLS MODELS	22
V. CONCLUSIONS	25
A. SPECIFICATION BIAS	26
B. RECOMMENDATIONS	27
C. SUMMARY	27
APPENDIX A. COHORT CONTINUATION RATES	29
APPENDIX B. SAMPLE MEAN VALUES	61
LIST OF REFERENCES	67
INITIAL DISTRICTION LIST	60

LIST OF TABLES

2.1	Calculation of CCR ₆₋₁₁ for Fiscal 1993	6
2.2	Baseline Continuation Rates by Years of Service	10
4.1	OLS Results for Pilots	16
4.2	OLS Results for NFOs	16
4.3	OLS results for Jet Pilots	17
4.4	OLS Results for Helo Pilots	18
4.5	OLS Results for Prop Pilots	18
4.6	OLS Results for Prop NFOs	19
4.7	OLS Results for Jet NFOs	20

I. INTRODUCTION

The objective of this thesis is to design and construct a unique analytical data base and to examine the effects of the military drawdown on the retention of Naval aviators. Having accurate measures of retention is vital to policymakers and planners, since retention rates influence many manpower requirements and force management policies. Herein lies the current problem: as part of the military drawdown, a number of policies were implemented whose goal was to induce separation. These policies thus reduced retention rates below what they normally would have been and distorted the underlying trend in voluntary retention. The purpose of this thesis is to identify and isolate the effect of these specific drawdown policies on aviator retention. The goal is to provide manpower planners with adjusted historical retention rates during that drawdown will serve as the basis for more accurate and reliable forecasts of future aviator retention in the post-drawdown period. These rates may also provide an early warning signal that policies may need to be altered to offset predicted changes in retention.

The training of Naval aviators, both pilots and Naval flight officers (NFOs), is among the most costly training provided by the Department of Defense and one of the biggest investments in human capital made by the Department of the Navy. Because of the size of this investment, retention must be sufficiently high to guarantee the Navy a return on its investment. Because of this, aviator retention rates are tracked and analyzed closely to detect future changes and to provide accurate and reliable data for policy formulation and manpower planning.

Two types of survival or retention rates are used to describe trends in the voluntary retention behavior of Naval aviators: (a) minimum service requirement (MSR) survival rates, and (b) cumulative continuation rates (CCR). MSR survival rates are true cohort rates in the sense that they track an aviation community from MSR-1 (the year before service obligation from flight school has been completed) to MSR+2 (two years after the obligation has been completed). This period, MSR-1 to MSR+2, encompasses

the period at the end of a service obligation incurred in return for flight training; and it is generally the time of highest voluntary losses in the pre-retirement career period.

The cumulative continuation rate (CCR) is the second (and official) method of calculating a survival rate. The CCR is calculated as the product of continuation or retention rates from a given MSR (generally, year of service 6) through the eleventh year of service. The continuation rates are calculated based on the "spot" retention rates from the cross section of aviators in the Navy spanning those years of service. Hence, the CCR is not a cohort survival rate, but rather a cross-sectional snapshot of continuation behavior.

Although, both the MSR and CCR are used to describe trends in the voluntary retention behavior of Naval aviators, there is some debate as to which of the two measures provides the better indicator of retention trends. However, policies implemented as part of the force downsizing have made identifying trends more difficult. These policies include:

- 1. requiring additional obligated service in return for flight training,
- 2. changing the augmentation policies for reserves,
- 3. requiring additional obligated service in return for aviation continuation pay (bonus).
- 4. and offering voluntary separation incentives (Voluntary Separation Incentive/Special Separation Bonus program) to target officers.

Hence, it is appropriate to determine what effects the policies that have been implemented to achieve the drawdown, may have had on underlying voluntary survival rates of Naval aviators. Note, too, that the military downsizing itself may have influenced retention behavior, independent of the specific policies.

The purpose of this study is to separate the influence of drawdown policies affecting observed retention from the decisions of aviators that form the "true" underlying voluntary survival rates. A new set of survival rates can be constructed that reflect

voluntary separation decisions, independent of separation induced by the drawdown policies. The effect of the various policies on observed retention in the original rates can then be estimated for both the MSR cohort rates and the CCRs. An overall assessment of the relative merits of the two methods of calculating retention is presented.

The effect of various policies is assessed at both a "micro" and a "macro" level. At the "micro" or individual level, the effect of policies on observed retention rates is assessed by calculating cohort rates based on the retention decisions of individual officers. A time line of policies affecting retention (e.g., date at which new MSR is effective and date for changes in Involuntary Reduction in Active Duty policies) is compared to actual transactions as indicated on personnel records. Involuntary individual retention/separation decisions have been deleted from the cohort rates. A synthetic set of "voluntary " rates is then constructed and compared with the original MSR and CCR rates.

The second, "macro" level adjustment to observed CCRs and MSR rates is based on a simple regression model. Continuation rates are calculated by fiscal year and year of service and related to policies that have likely influenced the rates in an "event" analysis. A regression analysis provides a quantitative estimate of the effect of those policies along with a method to adjust CCR and MSR rates.

4

•

II. LITERATURE REVIEW

Although no prior research has been conducted on the impact of military downsizing on Naval aviators, numerous studies have addressed aviator continuation rates. The continuation rate for a group of officers is the percent of a particular cohort (based on year of entry) remaining in the Navy over a given period. Because these rates influence numerous decisions concerning personnel policy, having accurate measures of aviator continuation is vital to defense policymakers and planners.

A. CALCULATING CONTINUATION RATES

Continuation rates measure the fraction of a cohort (sorted by designator and year group) remaining in a community from one year to the next. The continuation rate, C_{t} , is generally defined as the ratio of the inventory of a given cohort at the end of a period, A_{t} , divided by the inventory at the beginning of the period, N_{t} :

$$C_t = A_t / N_t$$

These simple continuation rates are used by planners to project the future availability of manpower. Accurate historical continuation rates are needed in planning for the number of pilots to train, the number to retain at different career points, and for determining the size and availability of monetary incentives such as the aviator bonus.

B. METHODOLOGIES

As previously observed, two methods are used to measure continuation behavior (Cymrot, 1988). The CCR is based on a cross section of continuation rates from different year groups in a single year. The CCR is used as an estimate of the probability of continuation over a segment of an aviator's career. In the aviation community, CR₆₋₁₁ is used to measure continuation after the completion of the minimum service obligation for flight training. By using year of service (YOS) 6 as a starting point, the calculation captures all of the decisions at the time of completion of the initial service obligation, and encompasses the period of highest voluntary losses for aviators. The CCR is calculated

as the product of the annual continuation rates for the desired range of years of service. Table 2.1 illustrates the calculation of CCR_{6-11} for pilots in Fiscal Year 1993 (omitting all involuntary separations). Thus, in 1993 the CCR was 36.02 percent. In Table 2.1, YG denotes the year group, and CR is the continuation rate for each YOS. The concept behind this calculation is that if we start with one hundred aviators at YOS = 6 and six leave, then ninety-four continue to YOS = 7 at which time fourteen leave, and so on until YOS = 11. Thus, at YOS = 11, only thirty-six of the original aviators are shown to remain.

Table 2.1 Calculation of CCR₆₋₁₁ for Fiscal 1993

YOS	YG	N _t	<u> </u>	CR(%) A _t /N _t
		•	•	
6	87	270	257	95.2
7	86	1,086	942	83.6
8	85	723	574	71.5
9	84	345	295	80.1
10	83	321	296	85.6
11	82	358	297	92.0

Source: See Appendix A

CCR = 36.02%

Legend: YOS = year of service, CR = continuation rate, N_t = beginning inventory, A_t = ending inventory.

An alternative method for calculating continuation is the historical continuation rate, which is calculated by tracking a single year group (YG) or set of year groups over a period of years. For example, YG 82 could be tracked from fiscal 1987 to fiscal 1990 to determine the minimum service requirement or MSR survival rates from MSR-1 to MSR+2. The starting inventory for each group is determined by counting the number of aviators on active duty at the end of the initial year (i.e., for MSR-1, the end of fiscal 1987 for YG 82). The aviators in this cohort are then tracked until the end of the final year (i.e., for MSR+2, the end of fiscal 1992 for YG 82). The continuation rate is the inventory at YOS 8 divided by the starting inventory.

C. CRITIQUE

Continuation rates reflect the outflow of manpower from a community. Difficulties in accurately measuring continuation rates arise due to manpower "turbulence," which results from the following cohort inflows and outflows:

- 1. Lateral ins Lateral transfer of a non-aviator to an aviator designator.
- 2. Lateral outs Lateral transfer of an aviator to a non-aviator designator.
- 3. Accessions Those not on active duty the previous year (i.e., interservice transfer of an aviator or return to active duty).
- 4. Year group ins Change of year group.
- 5. Year group outs Change of year group.
- 6. Attrition Those leaving the Navy.

Inflows result in the ending inventory for one fiscal year not corresponding to the inventory at the beginning of the following year. This leads to a difference in calculated gross and net continuation rates. Continuation rates based on the gross flow are generally lower than rates based on net flows and tend to exaggerate attrition. As the amount of

turbulence in the data increases, the difference between gross and net continuation rates increases. (Cymrot, 1988) The following example illustrates the problem:

Gross CR	Net CR
Fiscal 1992 Beginning Inventory = 100	Fiscal 1992 Beginning Inventory = 100
Fiscal 1992 Ending Inventory = 90	Fiscal 1993 Beginning Inventory = 95
Gross CR = 90 percent	Net CR = 95 percent

Manpower planners and policymakers need to be aware of these differences and apply the appropriate rates to each situation. Cymrot (1988) concludes that, when continuation is used as an indicator of total inventory, inflows should be included in the calculation of endstrength. If the continuation rate is being used to measure the response of separation to policy changes, then the tracking of initial inventories (net CR) is a more accurate measure of continuation.

The inherent flaw with the CCR and MSR measures is that they do not take account of policies that are designed to alter retention. The potential failure to adjust in the CCR for changes in the MSR is a good example of this. The effects of aviator bonuses, voluntary and involuntary separation programs, and other policies are impounded in the rates. Although it is generally agreed that these policies affect the observed rates, policymakers and manpower planners are left conjecturing about the influence of such policies and the underlying retention rates.

D. BASELINE CONTINUATION RATES

Baseline continuation rates are defined as a set of continuation rates that would exist in the absence of any policies introduced to accomplish the downsizing. Forecasted baseline rates can be compared with the actual continuation rates during the downsizing to estimate the aggregate effect of the various downsizing policies on aviator continuation

rates. Thus, the underlying continuation rate is the difference between the predicted baseline and the actual rates during the downsizing period.

Two alternative methods to calculate the baseline rate can be employed: (a) net continuation rates for a specific year, and (b) the average of the net continuation rates for a group of years (Cymrot, 1989). Net continuation rates are the ratios of the inventories of each year group at the end of one year to the inventories at the end of the previous year. Each method has its advantages and disadvantages. Utilizing historical rates from a single year will account for current economic conditions, but may exaggerate the influence of a single factor or event. The advantage of taking the average of rates over several years is that long-term trends may be more readily identified. The main disadvantage is that economic conditions that have since changed may bias the calculated results.

The baseline rates calculated in Table 2.2 for fiscal 1987 show that the greatest pilot losses occurred during YOS 6 through 8. An increase in the MSR to seven years would only delay the majority of attrition by two years. Cymrot (1989) concludes that increasing the MSR to seven years has no impact on the percentage of pilots remaining through YOS 11.

E. SUMMARY

The literature reviewed provided a number of alternative methods and approaches that have been used to determine continuation (retention) rates for Naval aviators. The variation in acceptable methods for computing continuation rates indicates the difficulty in clearly defining the continuation rate for a specific situation. By accurately determining the appropriate continuation rate, policy-driven influences can be measured and controlled, resulting in underlying survival rates that more accurately reflect voluntary retention decisions of Naval aviators during the force downsizing. This will be attempted in the following chapter.

Table 2.2 Baseline Continuation Rates by Years of Service

Year of Service	Fiscal 1987	Fiscal 1984-87(Average)
1	.87	.87
2	.98	.98
3	.99	.99
4	.99	.99
5	.98	.97
6	.82	.88
7	.74	.76
8	.78	.79
9	. 8 9	.90
10	.88	.89
11	.85	.91
12	.92	.94
13	.93	.96
14	.94	.97
15	.94	.98

Source: Cymrot, 1989.

III. METHODOLOGY

A major component of this research was the design and construction of a unique data base. Historical research has focused primarily on individual data; however, this study analyzes "grouped" data for which there was no existing data base. The resultant analytical data base created for this study will provide future research with a data base better suited to analyze aviator continuation rates.

A. INDIVIDUAL DATA

The database utilized in this study was created from the Officer Master File (OMF) maintained by the Defense Manpower Data Center (DMDC). The OMF contained information on commissioning date, officer designator, loss code, additional qualifying designators (AQDs), Aviation Continuation Program (ACP) participation, and minimum service requirement (MSR). From these data, separate files were created for each of fifteen different fiscal years during the period 1977 to 1993. However, data were missing for fiscal years 1980 and 1983. The database that resulted from merging these fiscal year files contained observations on 16,626 Naval Aviators from year groups 1960 through 1993. Several constraints were placed on the database.

First, only active duty and active-reserve Naval Aviators were included in the files (designators 1310, 1315, 1320, and 1325). Next, in order to include only aviators who were eligible to make the stay-leave decision, those still obligated under their minimum service requirement during a given year were omitted. Also omitted, were any observations with a Stop-Loss indicator equal to one. This denoted individuals whose normal separation was delayed due to Desert Shield/Desert Storm. Finally, observations with a Separation Code Designator (SPD) that indicated reason for separation as being "other than voluntary" were discarded in order to include only aviators who were able to make a voluntary decision. After applying these filters, 14,580 observations were available for analysis.

B. COHORT DATA

A SAS program, coded to determine cohort beginning inventory and ending inventory was run for each fiscal year. Frequency tables were created for each year group by aviator "type" (jet pilot, helicopter pilot, propeller pilot, jet Naval Flight Officer, and propeller Naval Flight Officer). The first set of tables recorded beginning inventories by including all aviators present at the beginning and end of the fiscal year. The ending inventories were calculated by deleting any observation with an SPD. This process resulted in the dataset containing only aviators still remaining at the end of the corresponding fiscal year. Cohort continuation rates (CRs) were calculated by taking the cohort ending inventory and dividing it by the cohort beginning inventory. CRs were calculated for each fiscal year by year group and by aviator type. This resulted in 1,937 aviator cohort continuation rates (Appendix A).

A grouped data file was created using the aviator cohort continuation rates. Each cohort CR was defined as a separate observation in the new dataset. Each observation represents a separate fiscal year, year group, and aviator type. Variables of interest relevant to each observation were then created using fields from the OMF and external information. Annual unemployment data from the Bureau of Labor Statistics and reserve officer augmentation rates as reported by the Aviation Community Manager were created for each cell in the grouped data set. Any observations with a CR equal to 0 or from a year group that was still under MSR was discarded. The final grouped dataset contained 1,552 observations, representing aviator cohorts (year group 60 to 87) by aviator type for fiscal 1977 to 1993. The data represent continuation rates for each of these cells.

C. MODEL SPECIFICATION

The analysis focused on the effect of downsizing policies on aviator cohort continuation rates. The relationship of various downsizing policies to the continuation rate of aviators was specified by the following Ordinary Least Squares (OLS) multivariate regression model:

$$CR_i = \alpha_0 + B_1ACP + B_2VSI/SSB + B_3IRAD + B_4MSR2 + B_5MSR3 + B_6UNEMP + U$$

where, CR is the continuation rate for cell i, α is the intercept term, and the B's represent the coefficients of the variables in the equation to be estimated. The model is estimated using weighted least squares. Weights are used to account for the large variation in cell size across observations and to avoid heteroscedasticity.

The dependent variable, CR, is a continuous variable representing the continuation rate for a given cell. The independent variables are defined as follows:

- 1. ACP is the number of aviation continuation bonuses available to a cohort, defined as a percentage of the cohort;
- 2. VSI/SSB is the percentage of a cell that meets the eligibility requirements for the voluntary separation incentive (VSI) or special separation bonus (SSB);
- 3. IRAD is a dummy variable that captures the effect of the Involuntary Reduction in Active Duty (IRAD) policy¹;
- 4. MSR2 is a dummy variable for aviators in the period MSR, MSR obligation completed, to MSR+2, two years since the completion of MSR obligation(1 = yes, 0 = no);
- 5. MSR3 is a dummy variable for MSR+3 to MSR+5 (1 = yes, 0 = no);
- 6. UNEMP is the annual unemployment rate as reported by the Bureau of Labor Statistics. The error term is represented by U. Appendix B contains the mean values for each model variable.

¹ Since the IRAD policy is a function of reserve augmentation rates and these rates generally affect only those in YOS 6 through YOS 11, and then, only that portion of the cohort that are reserves, the value of .30 was assumed to be the average percentage of reserves in each cohort. This value was applied only to cohorts with YOS 6 through YOS 11.

The expected or hypothesized direction (sign) of the relationships between the independent variables and the continuation rate is as follows:

- 1. ACP is hypothesized to have a positive effect on the continuation rate of both pilots and NFOs. Historically, the policy of offering monetary incentives to aviators to curtail projected manpower shortages has been successful. Theoretically, then, the assumption can be made that the greater the number of bonuses offered, the greater the continuation rate will be.
- 2. VSI/SSB is theorized to be negatively related to retention (continuation) for both groups. This voluntary downsizing policy is similar to ACP, but opposite in its intent. In this case, a monetary incentive is offered to increase separations, and should result in a decrease in CR.
- 3. IRAD, an involuntary downsizing policy, was the product of abnormally low augmentation rates for reserve aviators.² This policy resulted in the separation of an aviator if he/she failed to augment. Because it is a decrease in the norm, IRAD is hypothesized to have a negative impact on the continuation rates of pilots and NFOs.
- 4. MSR2 is expected to have a negative relationship with both groups since it captures the period of time that historically accounts for the greatest manpower losses. The MSR3 variable is theorized to be positively related to continuation. Historically, once individuals have survived through MSR+2, the relationship between years of service and the continuation rate becomes positive (see the calculated CRs in Appendix A).
- 5. UNEMP is a theoretically relevant environmental variable hypothesized to have an inverse relationship with the continuation rate. It is included in the analysis to investigate the statistical significance and magnitude of the effect of civilian employment conditions.

Seven separate OLS models were estimated, one for pilots, one for NFOs, and one for each respective community (jet, prop, helo, jet nfo, prop nfo). Separate models were run due to the sizable differences in retention behavior between pilots and NFOs, and between aviation communities that have been observed in prior studies (Cymrot, 1987).

²Augmentation rates for 1993, as reported by the Aviation Community Manager, were 21 percent for pilots and 15 percent for NFOs.

IV. STATISTICAL RESULTS

Results of estimating the weighted OLS models are presented in Tables 4.1 through 4.7. Results for each OLS equation (table) are first summarized. Based on the a priori hypothesized effects of the explanatory variables, a one-tail test of significance is used to test the significance of the regression coefficients (Gujarati, 1988). Following the summaries, each explanatory variable is examined by comparing the expected results and observed outcome of the models.

A. RESULTS OF ESTIMATING OLS MODELS FOR ALL PILOTS COMBINED AND NFOS COMBINED

1. The Pilot Model

Table 4.1 displays the results from a combined OLS model for all three pilot communities (jet, helo, prop). The ACP variable and time-since-MSR variables (MSR2 and MSR3) are all statistically significant for this combined model. The VSI/SSB is not statistically significant, and the positive sign is the opposite of the hypothesized negative relationship. This result occurred in all subsequent models and is discussed further in section C. The IRAD variable is also statistically insignificant; however, its sign is negative, as hypothesized. The unemployment variable also was not statistically significant in this model.

2. The NFO Model

Table 4.2 displays the results from an OLS model of NFO communities including both prop and jet aircraft types. The ACP and time-since-MSR variables are significant, as they were in the pilot model. Again, the remaining variables were not statistically significant. The different results (opposite signs for MSR2) between the two models is explained by the historically observed differences in retention behavior between pilots and NFOs (Cymrot, 1987).

Table 4.1 OLS Results for Pilots

MODEL 1 CR PILOT

VARIABLE	COEFF	I-VALUE
ACP	15.12	2.048*
VSI/SSB	5.92	0.884
IRAD	-3.79	-0.746
MSR2	-7.80	-2.909*
MSR3	11.14	3.594*
UNEMP	-0.40	-0.412
CONSTANT	88.56	13.763
Rsq. = .034 n = 932	F = 5.43*	*Sig. at .05

Table 4.2 OLS Results for NFOs

MODEL 2 CR NFO

VARIABLE	COEFF	t-VALUE
ACP	18.92	2.508*
VSI/SSB	4.83	0.838
IRAD	-5.39	-1.253
MSR2	5.44	1.954*
MSR3	10.94	3.852*
UNEMP	-0.79	-0.857
CONSTANT	88.65	14.492
Rsq. = .0431	F = 4.629°	*Sig. at .05
n = 623		

B. RESULTS OF ESTIMATING SEPARATE OLS MODELS BY AIRCRAFT TYPE

1. Jet Pilots

Table 4.3 summarizes the OLS results using the grouped data for jet pilots. The ACP and IRAD variables were not statistically significant; however, the signs of the coefficients were positive and negative, respectively, as hypothesized. MSR2 and MSR3 were both significant with the expected signs. The remaining variables were not statistically significant.

Table 4.3 OLS results for Jet Pilots

MODEL	.3 CRJE	T PILOT
VARIABLE	COEFF	t-VALUE
ACP		
	14.46	0.834
VSI/SSB	1.70	0.108
IRAD	-4.97	-0.443
MSR2	-12.16	-2.009*
MSR3	16.88	2.252*
UNEMP	-0.89	-0.387
CONSTANT	93.63	6.142
Rsq. = .0394	F = 2.10*	*Sig. at .05
n = 310		1

2. Helo Pilots

Table 4.4 summarizes the OLS results for helicopter pilots. ACP and MSR3 were statistically significant for helo pilots. The IRAD variable was insignificant, but displayed the hypothesized sign. Although the MSR2 variable was also insignificant, it should be noted that the sign of the coefficient was positive, which was not expected.

Table 4.4 OLS Results for Helo Pilots

inioper.	4 OIVIIL	LO PILOT
VARIABLE	COEFF	t-VALUE
ACP	20.01	1.783*
VSI/SSB	9.44	0.952
IRAD	-4.40	-0.533
MSR2	5.01	1.109
MSR3	12.06	2.797*
UNEMP	-1.04	-0.727
CONSTANT	89.08	9.427
Rsq. = .0457	F = 2.428*	*Sig. at .05
n = 310		

3. Prop Pilots

Table 4.5 summarizes the OLS results for prop pilots. ACP, MSR2, MSR3, and UNEMP were all statistically significant with the expected signs. VSI/SSB and IRAD were not statistically significant.

Table 4.5 OLS Results for Prop Pilots

VARIABLE	COEFF	t-VALUE
ACP	7.12	1.667*
VSI/SSB	5.94	1.479
IRAD	0.03	0.010
MSR2	-16.08	-11.029*
MSR3	3.11	1.852*
UNEMP	1.46	2.508*
CONSTANT	78.27	20.519
Rsq. = .3548 1 = 310	F = 27.86°	*Sig. at .05

4. Prop NFOs

Table 4.6 summarizes the OLS results for prop NFOs. The ACP and MSR3 variables were statistically significant, and had the hypothesized signs. The remaining explanatory variables were not statistically significant.

Table 4.6 OLS Results for Prop NFOs

MODEL	6 CR PF	KUP NFU
VARIABLE	COEFF	t-VALUE
ACP	17.73	2.014*
VSI/SSB	1.94	0.316
IRAD	-3.50	-0.711
MSR2	4.63	1.486
MSR3	9.74	3.038*
UNEMP	-0.43	-0.401
CONSTANT	87.29	12.446
Rsq. = .0538 n = 311	F = 2.89*	*Sig. at .05

5. Jet NFOs

Table 4.7 summarizes the OLS results for jet NFOs. The ACP and MSR3 variables were statistically significant. The remaining variables were not statistically significant. As with helo pilots, the MSR2 coefficient had a positive sign, which was contrary to expectations.

Table 4.7 OLS Results for Jet NFOs

MODEL 7 CR JET NFO

VARIABLE	COEFF	t-VALUE
ACP	20.49	1.67*
VSI/SSB	8.13	0.787
IRAD	-7.25	-1.023
MSR2	6.20	1.315
MSR3	12.16	2.557*
UNEMP	-1.16	-0.762
CONSTANT	90.00	8.918
Rsq. = .0396 n = 311	F = 2.10*	*Sig. at .05
	<u> </u>	

C. DISCUSSION OF THE EFFECTS OF THE EXPLANATORY VARIABLES

1. Aviation Continuation Pay Program (ACP)

The ACP program variable, ACP, was statistically significant in the combined pilot and NFO models, with the coefficient indicating a direct relationship between the number of bonuses available and the grouped fiscal year continuation rates for pilots and NFOs. This result supports the hypothesized relationship. When the models were run separately for aircraft type, the ACP variable was significant in all models with the exception of jet pilots. This outcome indicates that an increase in the number of bonuses available to a community significantly increases the continuation rate of that community, averaged over year group and fiscal year.

2. Voluntary Separation Incentive Program (VSI)

VSI/SSB was statistically insignificant in all models but with a positive coefficient instead of the hypothesized negative value. This may be explained by the fact that this policy was targeted to a very small group of officers. It affected only 534 aviators (3.7 percent of dataset) and in only one fiscal year (1993). Also, the omission of other variables that influence CR and interact with VSI/SSB (i.e., years of service) will result in an upward bias of the VSI/SSB variable.

3. Involuntary Reduction in Active Duty Policy (IRAD)

The IRAD policy variable, IRAD, was not statistically significant in any model. This may be due to the small percentage of cohorts in the dataset affected by the IRAD (YG82 to YG87) and by the assumption that only 30 percent of those cohorts are affected. However, the signs of the coefficients were negative, as hypothesized. The results indicate that, with the IRAD policy in effect there is an observed decrease in the continuation rate.

4. MSR2

Having time in service between MSR0 and MSR+2 was significant for jet and prop pilots only. The results indicate a significant difference in retention behavior

between pilots and NFOs, and between fixed wing and helicopter communities. For helo pilots and NFOs, not only was this variable insignificant, but the sign of the coefficient was positive. The historically large losses of aviators during this period of time are probably best attributed to the substantially larger separation rates in the jet and prop pilot communities due to the draw of the commercial airline industry. Having specialized skills with severely limited civilian applicability, helo pilots and NFOs are less apt than fixed wing pilots to separate at this time.

5. MSR3

For both pilots and NFOs, being at the career point between MSR+3 and MSR+5 (approximately equal to YOS 9-11) is a significant factor explaining continuation. There is a direct relationship, indicating that, as time-since-MSR increases beyond the MSR2 period, the continuation rate will increase, as hypothesized.

6. Civilian Unemployment

The annual civilian unemployment variable was significant only in the model for prop pilots. The coefficient indicates a direct relationship between the annual unemployment rate and the continuation rate of prop pilots. The fact that the skills required for flying multi-engine propeller aircraft and commercial airline aircraft are similar, results in prop pilots being a major source of new hires for the airline industry. Although jet pilots also fly fixed-wing aircraft, there is a significant difference in aircraft type, thus it is not as easy for jet pilots to transfer their skills to the commercial airline industry. As annual unemployment increases, it is be assumed that airline hiring rates are lower, resulting in fewer prop pilots separating.

D. GOODNESS-OF-FIT OF THE OLS MODELS

The model R², defined as the coefficient of determination, is one measure of the goodness-of-fit of a regression model. Specifically, it measures the proportion of the total variation in the dependent variable (CR) explained by the regression model. The R² for each model is displayed in Tables 4.1 through 4.7. The low R² values of the models are a function of attempting only to measure the effect of various policies on the continuation

rate. The models probably suffer from specification bias because they omit some important factors that determine retention behavior (e.g., commercial airline hiring rates).

The F-value of the model is a measure of the overall significance of the estimated regression. It tests the null hypothesis that all of the estimated coefficients are jointly equal to zero. The calculated F-value for each model is displayed in Tables 4.1 through 4.7. The calculated F-value of each model is compared to the critical F-statistic of 2.10 (at the .05 level of significance). A calculated value greater than the critical value indicates that the null hypothesis can be rejected. Thus, despite the low R² values, the models are a significant improvement in explaining the variation in CR.

V. CONCLUSIONS

This thesis examines the relationship between various Navy downsizing policies introduced in the early 1990's and the continuation rate of Naval aviators. A unique database was developed for the analysis and will provide future retention research with the "grouped" data necessary to study aviator continuation rates. The analysis found that a statistically significant positive relationship exists between an increase in the amount of ACP bonuses and the continuation rate, within the pilot and NFO communities. Specifically, the study found that increasing the bonuses to the pilot community by one percent would increase the pilot continuation rate by 17.66 percent. At the same time, increasing the percentage of bonuses available to the NFO community by one percent would increase the NFO continuation rate by 20.68 percent. The VSI/SSB and IRAD downsizing policies were found to be statistically insignificant. The following list summarizes the estimated effect of the bonus on the pilot and NFO communities:

- 1. Jet pilot: a one percent increase in bonuses available to jet pilots resulted in a 15.7 percent increase in the jet pilot mean CR.
- 2. Helo pilot: a one percent increase in bonuses available to helo pilots resulted in a 21.7 percent increase in the helo pilot mean CR.
- 3. Prop pilot: a one percent increase in bonuses available to prop pilots resulted in a 8.1 percent increase in the prop pilot mean CR.
- 4. Jet NFO: a one percent increase in bonuses available to jet NFOs resulted in a 22.2 percent increase in the jet NFO mean CR.
- 5. Prop NFO: a one percent increase in bonuses available to prop NFOs resulted in a 19.6 percent increase in the prop NFO mean CR.

By isolating the effects of the various downsizing policies, estimated adjustments can now be applied to the historical rates to identify the "true" underlying retention rates. The following example illustrates the adjustment process. The CR for pilots in year group 85 for fiscal 1993 was 71.53 percent (see CRs in Appendix A). The variable ACP

estimated coefficient from the pilot model is 15.12. Since the bonus increases retention, the adjustment is made by subtracting the coefficient value from the calculated rate. This results in an adjusted CR of 56.41 percent. The next adjustment is applied for the IRAD policy. Since the IRAD decreased normal retention, the adjustment is now made by adding the estimated coefficient value (3.79) to the CR of 56.41. The adjusted CR is now 60.2 percent. Because of the problems encountered in the model with the VSI/SSB variable, the adjustment for this policy was made by removing VSI/SSB takers from the 85 pilot cohort and then calculating the rate. This resulted in a 12.32 percent increase in the rate. Applying this adjustment to the ACP and IRAD adjusted CR of 60.2, resulted in the underlying baseline CR of 67.62. As can be seen the underlying retention rate is lower than the unadjusted reported rate of 71.53. This process can be applied to other cohorts in the same manner and the adjusted continuation rates can be used to calculate adjusted CCRs or MSR survival rates that will provide manpower planners and policymakers with the "true" underlying retention rate and an indicator of various downsizing policy effects.

A. SPECIFICATION BIAS

The omission of relevant variables in specifying the model may result in bias. Environmental variables, such as airline hiring rates and military/civilian pay ratios among other things, would also influence the continuation rate. The omission of these "influential" variables from the model specification would theoretically bias the resultant coefficient values. The consequences of omitting a relevant variable are as follows:

- 1. If the left out variable is correlated with the VSI/SSB variable, the estimated coefficients of the model will be biased as well as inconsistent.
- The usual confidence interval and hypotheses testing procedures are likely to give misleading conclusions about the statistical significance of the estimated parameters.

3. The VSI/SSB variable will represent not only its direct effect on CR but also its indirect effect (via the omitted relevant variable) on CR. (Gujarati, 1988)

B. RECOMMENDATIONS

Future research should continue by adding new data to the file as the downsizing progresses. This will enable the model to be further refined. The model should also be expanded by adding the "environmental" variables mentioned above. The model should also be run at the level of the aviation subcommunity (i.e., VF, VA, HSL, VS, etc.), since this is the point at which the bonus is applied. Finally, the cohort database developed for this research should be merged with the OMF individual data to specify and estimate a retention model for aviators on individual data.

C. SUMMARY

Monitoring and correctly interpreting trends in aviator retention, along with understanding the impact of Navy policies, is a critical manpower function. This analysis identifies the statistical relationships between the various downsizing policies and the underlying voluntary survival rate of Naval aviators. This information provides manpower planners and policymakers with adjusted continuation rates that should enable a more accurate and reliable forecast of future aviator retention. Ultimately, this information should also provide a more refined force-shaping tool for determining and implementing effective aviator retention policies.

APPENDIX A. COHORT CONTINUATION RATES³

³Voluntary Rates; Involuntary Separations and Obligated Service Restricted Out; other restrictions noted in text.

		CR	1.0000	0.9925	0.9861	0.9900	0.9556	0.9519	0.8385	0.7153	0.8013	0.8561	0.9200	0.9593	0.9382	0.9561	0.9579	0.9548	0.9369	0.9462	0.8199	0.6364	0.7021	0.7273	0.8000	0.6822	0.6310	0.5833	0.5397	0.6538	0.6897	0.5385	0.7143	1.0000	0.8571	
	PILOT	END INV	22	132	142	66	98	257	753	505	242	244	276	259	167	196	205	190	104	211	223	133	66	64	92	88	53	49	34	17	20	7	10	4	9	5022
		BEG INV	22	133	144	100	06	270	868	706	302	285	300	270	178	205	214	199	111	223	272	209	141	88	115	129	84	84	63	26	29	13	14	4	2	5961
		CR	1.0000	0.9773	1.0000	1.0000	1.0000	0.9375	0.7613	0.5959	0.8571	0.8760	0.9275	0.9333	0.9224	0.9850	0.9706	0.9500	0.9565	0.9355	0.8444	0.6488	0.7094	0.7500	0.7981	0.6842	0.6104	0.6125	0.5000	0.6667	0.7200	0.5385	0.6923	1.0000	0.8571	
	PROP	END INV	19	43	25	28	21	06	252	146	06	106	128	126	107	131	165	152	88	174	190	109	83	90	83	28	47	49	28	16	18	7	6	4	9	2710
		BEG INV	19	44	25	28	21	96	331	245	105	121	138	135	116	133	170	160	92	186	225	168	117	80	104	114	11	80	99	24	25	13	13	4	7	3304
		CR	1.0000	1.0000	0.9667	1.0000	1.0000	0.9701	0.8641	0.7912	0.7582	0.8254	0.8706	1.0000	0.9130	0.8958	0.8889	0.9565	0.7778	1.0000	0.7391	0.6957	0.9286	0.6667	0.8571	0.6667	0.8000	•	0.8571	0.5000	0.6667	1	1.0000	•	•	
PILOT	JET	END INV	6	6	29	34	33	9	248	216	69	25	74	51	21	43	24	22	7	19	17	16	13	2	9	8	4	0	9	1	2	0	1	0		1101
		BEG INV	6	6	30	34	33	29	287	273	91	63	85	51	23	48	27	23	6	19	23	23	14	3	7	12	2	2	2	7	E	0	1	0	0	1283
		CR	1.0000	1.0000	0.9825	0.9737	0.8889	0.9533	0.9036	0.7606	0.7830	0.8515	0.9610	0.9762	1.0000	0.9167	0.9412	1.0000	0.9000	1.0000	0.6667	0.4444	0.3000	0.4000	0.7500	0.6667	1.0000	-	-	-	•	-	-	•	•	
	HELO	END INV	27	80	56	37	32	102	253	143	83								0		16	8		2			7	0	0	0	0				0	1211
		BEG INV	27	80	25	38	36	107	280	188	106	101	77	84	39	24	17	16	10	18	24	18	10	5	4	3	2	2	0	0	1	0	0	0	0	1374
Fy93		YG	92	91	06	89	88	87	98	85	84	83	82	81	80	62	78	11	9/	75	74	73	72	71	70	69	68	29	99	65	64	63	62	61	09	

)				
Ī	JET			PROP			NFO	
INV	END INV	CR	BEG INV	END INV	ಜ	BEG INV	END INV	SR
0	0	•	ļ		1.0000		-	1.0000
9	6	1.0000	52		1.0000	35		1.0000
23		1.0000	14	39	0.9512	64		0.9688
33	33	1.0000	74		1.0000	22		1.0000
6		0.7778	28		1.0000	37		0.9459
58		1.0000	131	126	0.9618	189	184	0.9735
177		0.8983	225	186	0.8267	402	345	0.8582
202		0.6040	249		0.6948	451		0.6541
133		0.6842	177	131	0.7401	310		0.7161
92		0.8478	172		0.8605	264		0.8561
90		0.9000	123		0.9675	183		0.9454
29		0.9831	150	140	0.9333	209	198	0.9474
47		0.9362	174		0.9368	221		0.9367
24	21	0.8750	160		0.9625	184		0.9511
17		0.9412	121		0.9291	144		0.9306
19	19	1.0000	121	117	0.9213	146		0.9315
1	11	1.0000	82		0.8902	66		0.9032
15	12	0.8000	146		0.8973	161		0.8882
16		0.8750	154		0.6883	170		0.7059
18	13	0.7222	125		0.6400	143		0.6503
6		0.4444	99	30	0.5455	64	34	0.5313
_		0.4286	65		0.6462	72		0.6250
0		•	99		0.6250	99		0.6250
2		0.6000	39		0.5128	44		0.5227
S	2	0.4000	19		0.6316	24		0.5833
1	1	1.0000	16	o	0.5625	17	10	0.5882
0	0	•	20	11	0.5500	20	11	0.5500
0		•	7		0.7500	4		0.7500
0	0	•	7	3	0.7500	4		0.7500
0		•	9	2	0.4000	5	2	0.4000
0	0	-	0	0	,	0		•
0		•	0	0		0		•
0		٠	2		0.5000	2		0.5000
1040	220							

		S	1.0000	0.9524	1.0000	1.0000	0.9804	0.8963	0.7959	0.7454	0.7821	0.9268	0.9694	0.9613	0.9624	0.9680	0.9751	0.9821	0.9649	0.9708	0.8415	0.7385	0.7611	0.8345	0.8497	0.8224	0.8198	0.7059	0.5952	0.8710	0.8750	0.9333	0.8000	1.0000	
		END INV	18	8	63	45	100	432	299	284	280	329	285	174	205	212	196	110	220	266	207	144	98	116	130	88	16	9	25	72	21	14	4	7	4926
		BEG INV	18	21	63	45	102	482	838	381			294		213	219	201	112	228	274	246	195	113	139	153	107	111	85	42	31	24	15	5	2	5658
		CR	1.0000	1.0000	1.0000	1.0000	0.9677	0.8439	0.7860	0.7034	0.7500	0.9408	0.9630	0.9727	0.9658	0.9688	0.9686	1.0000	0.9630	0.9689	0.8351	0.7160	0.7700	0.8175	0.8433	0.8351	0.8350	0.7013	0.6154	0.8889	0.8571	0.9286	0.8000	1.0000	
		END INV	80	80	18	7	30	173	235	102	111	143	130	107	113	155	154	06	182	218	157	116	11	103	113	81	98	54	24	24	18	13	4	7	2861
		BEG INV	80	80	18	7	31	205	299	145	148	152	135	110	117	160	159	06	189	225	188	162	100	126	134	26	103	77	39	27	21	14	5	7	3306
		SS	1.0000	1.0000	1.0000	1.0000	0.9756	0.8936	0.7791	0.7798	0.6452	0.8300	0.9344	0.8750	0.9524	0.9714	1.0000	0.9167	0.9500	1.0000					0.9333	0.8333	0.8000	1.0000	0.3333	1.0000	1.0000	1.0000	0.000	0.0000	
PILOT	<u>t</u>	END INV	5	2	29	18	40	84	254	85	09	83	22	28	09	34	26	11	19	23	27	14	2	œ	14	5	4	9	1	3	2	1	0	0	1005
		BEG INV	5	2	29	18	41	94	326	109	93	100	61	32	63	35	26	12	20	23	33	17	3	ဆ	15	9	5	9	3	3	2	1	0	0	1191
		SS	1.0000	0.9091	1.0000	1.0000	1.0000	0.9563	0.8357	0.7638	0.9316	1.0000	1.0000	1.0000	0.9697	0.9583	1.0000	0.9000	1.0000	0.9615	0.9200	0.8750	0.7000	1.0000	0.7500	0.5000	0.3333	0.000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	
	<u></u>	END INV	5	10	16	20	30	175	178			1	98					6		25		1		5	ဇ	2	1	0	0	0	1	0	0	0	1060
	-	BEG INV	5	11	16	20	30	183	213	127	117	103	98	39	33	24	16	10	19	26	25	16	10	5	4	4	3	2	0	1	1	0	0	0	1161
Fy92		λG	91	06	68	88	87	98	85	84	83	82	81	80	79	78	7.7	9/	75	74	73	72	71	20	69	68	29	99	65	64	63	62	61	09	

Fy92					NFO				
		ţ			0				
		JE!			РКОР			r	
χÇ	BEG INV	END INV	S	BEG INV	END INV	క్ర	BEG INV	END INV	ك
91	0	0	-	1	1	1.0000	1	1	1.0000
90	18	18	1.0000	17	16	0.9412	35	34	0.9714
89	11	11	1.0000	2	2	1.0000	16	16	1.0000
88	5		1.0000	20	20	1.0000	25	25	1.0000
87	11		0.9091	52	52	1.0000	63	62	0.9841
86	92	06	0.9783	114	109	0.9561	206	199	0.9660
85	213		0.9390	255	233	0.9137	468	433	0.9252
84	165	127	0.7697	203	159	0.7833	368		0.7772
83	113		0.8230	202	174	0.8614	315	267	0.8476
82	79	77	0.9747	146	141	0.9658	225	218	0.9689
81	69		1.0000	168	159	0.9464	237		0.9620
80	49		0.9592	179	168	0.9385	228	215	0.9430
79	29		0.9655	164	155	0.9451	193	183	0.9482
78	21	20	0.9524	126	123	0.9762	147	143	0.9728
77	21		1.0000	131		0.9389	152		0.9474
9/	13		1.0000	84		0.8929	97		0.9072
75	13		0.9231	156		0.9295	169		0.9290
74	16		0.9375	167	153	0.9162	183	168	0.9180
73	24		0.9167	156	,	0.8654	180	1	0.8722
72	13		0.7692	23		0.6986	86		0.7093
7.1	8	7	0.8750	78	29	0.8590	86	74	0.8605
20	0		•	29		0.8060	29		0.8060
69	5		1.0000	54		0.8148	59		0.8305
68	5		1.0000	28	22	0.7857	33		0.8182
29	0		•	19	14	0.7368	19		0.7368
99	0		•	30	19	0.6333	30	19	0.6333
65	0		1	9	3	0.3333	9	3	0.3333
64	0	0	•	9	4	0.6667	9	4	0.6667
63	1	1	1.0000	<u> </u>	2	1.0000	8	8	1.0000
62	0	0	•	0	0	•	0	0	•
61	0		•	1	0	•	1	0	•
09	0	0		2		1.0000	2		1.0000
	994	906		2720	2433		3714	3339	

		CR	0.8333	1.0000	1.0000	0.9615	0.9722	0.8010	0.7222	0.6976	0.8451	0.9192	0.9239	0.8945	0.8720	0.9364	0.9250	0.9496	0.9414	0.9008	0.8577	0.6875	0.8951	0.8670	0.8516	0.8857	0.8273	0.7627	0.7500	0.7813	0.7353	0.7778	0.7273	
	PILOT	END INV	10	26	23	75	70	467	351	323	360	307	182	212	218	206	111	226	273	236	205	110	145	163	109	124	91	45	30	25	25	7	80	4793
		BEG INV	12	99	23	78	72	583	486	463	426	334	197	237	250	220	120	. 238	290	262	239	160	162	188	128	140	110	59	40	32	34	6	11	5659
		SS	1.0000	1.0000	1.0000	0.8636	0.9412	0.7049	0.6289	0.6546	0.8671	0.9118	0.9211	0.8917	0.9290	0.9477	0.9744	0.9483	0.9515	0.9191	0.8512	0.6476	0.8796	0.8492	0.8718	0.8721	0.7500	0.7273	0.6667	0.7778	0.7692	0.7143	0.7500	
	PROP	END INV	4	14	2	19	32	172	122	127	150	124	105	107	144	145	92	165	196	159	143	68	95	107	68	75	42	24	12	14	10	5	3	2532
		BEG INV	4	14	5	22	34	244	194	194	173	136	114	120	155	153	78	174	206	173	168	105	108	126	78	86	56	33	18	18	13	7	4	3013
		SR	0.5000	1.0000	1.0000	1.0000	1.0000	0.8427	0.7194	0.6159	0.7328	0.8750	0.8974	0.8765	0.7903	0.8750	0.8125	0.9348	0.9455	0.8710	0.8511	0.8333	0.9574	0.9259	0.8409	0.9388	0.9200	0.8000	0.8095	0.8333	0.6667	1.0000	0.8333	
PILOT	ĘĮ.	END INV	1	30	7	41	20	150	100	85	96	70	35	71	49	42	26	43	52	54	40	30	45	50	37	46	46	20	17	10	12	2	5	1332
		BEG INV	2	30	7	41	20	178	139	138	131	80	39	81	62	48	32	46	55	62	47	36	47	54	44	49	50	25	21	12	18	2	9	1602
		SR	0.8333	1.0000	1.0000	1.0000	1.0000	0.9006	0.8431	0.8473	0.9344	0.9576	0.9545	0.9444	0.7576	1.0000	0.9000	1.0000	0.8621	0.8519	0.9167	0.6316	0.7143	0.7500	0.6667	0.6000	0.7500	1.0000	1.0000	0.5000	1.0000	0.0000	0.0000	
	HIO H	END INV	5	12	11	15	18	145	129	111	114	113	42	34	25	19	6	18	25	23	22	12	5	9	4	e	3	-	-	-	3	0		928
	-		ၒ	12	11	15	18	161	153	131	122	118	44	36	33	19	10	18	29	27	24	19	7	80	9	5	4	-	-	2	က	0	1	1044
Fy91		J.	06	83	88	87	98	82	84	83	82	81	80	79	78	77	9/	75	74	73	72	71	70	69	68	67	99	65	64	63	62	61	09	

VG BEG INV CR BEG INV CR MFO 90 4 4 1,0000 13 1,0000 17 HD INV 90 4 4 1,0000 13 1,0000 7 6 89 3 2 0,6667 4 4 1,0000 28 20 26 22 22 80 4 4 1,0000 33 32 0,6867 36	Fy91					NFO			·	
NEG INV CR BEG INV END INV CR CR CR CR CR CR CR C										
BEG INV CR BEG INV CR BEG INV END INV CR END INV CR BEG INV END INV CR BEG INV END INV CR A 1 0000 17 0000 17 0000 28 000 28 00			JET			PROP			NFO	
4 4 1,0000 13 1,0000 17 3 2 0,6667 4 1,0000 22 4 4 1,0000 33 32 0,9697 36 11 1,1000 28 28 1,0000 39 36 133 126 0,9474 157 148 0,9427 290 133 126 0,9474 157 148 0,9427 290 135 112 0,9633 210 186 0,9685 400 83 80 0,9639 170 163 0,9588 253 95 58 0,6105 174 171 0,9744 152 83 80 0,9639 170 143 0,9459 174 44 40 0,9991 156 141 0,9474 152 23 23 1,0000 74 70 0,9459 176 24 23 <t< td=""><td>λG</td><td>BEG INV</td><td>END INV</td><td>CR</td><td>BEG INV</td><td>END INV</td><td>CR</td><td>BEG INV</td><td>END INV</td><td>CR</td></t<>	λG	BEG INV	END INV	CR	BEG INV	END INV	CR	BEG INV	END INV	CR
3 2 0.6667 4 4 1.0000 7 4 4 1.0000 18 1.0000 22 11 11 1.0000 28 1.0000 33 20 9977 38 133 1.26 0.9474 157 148 0.9427 290 190 172 0.9053 210 194 0.9238 400 190 172 0.9053 213 186 0.9427 296 190 172 0.9053 210 194 0.9238 400 83 0.9551 170 148 0.9125 246 83 0.9651 160 146 0.9126 253 44 40 0.9091 156 141 0.9459 174 44 40 0.9091 156 141 0.9459 174 23 33 0.9429 172 174 175 174 24	96	4	4	1.0000	13	13	1.0000	11	17	1.0000
4 4 1,0000 18 1,0000 22 3 1,0000 33 32 0,9697 36 13 1,0000 28 1,0000 39 30 30 133 126 1,0000 28 1,0000 39 30 30 135 112 0,9053 213 148 0,9236 400 30 135 112 0,8053 213 194 0,9125 246 30 86 83 0,9651 160 146 0,9125 246 30 95 58 0,6105 174 171 0,9538 253 30 30 95 58 0,6105 174 171 0,9459 176 141 0,9459 176 141 0,9459 176 142 0,9459 176 142 0,9459 176 142 0,9459 140 0,9459 140 0,9459 140 0,9459 <	89	3	2	0.6667	4	4	1.0000	2	9	0.8571
3 3 1,0000 33 32 0.9697 36 11 11 1,0000 28 28 1,0000 39 133 122 0.9474 157 148 0.9427 290 190 112 0.9055 213 148 0.9238 340 186 83 0.9651 160 146 0.9125 248 88 83 0.9651 160 146 0.9125 248 95 58 0.6105 174 171 0.9828 253 95 58 0.6105 174 171 0.9828 269 44 40 0.9091 158 150 141 0.9744 152 23 2.3 1.0090 174 171 0.9469 97 24 23 0.9583 150 141 0.9469 97 24 23 0.9683 156 146 0.9469 97 <td>88</td> <td>4</td> <td>4</td> <td>1.0000</td> <td>18</td> <td>18</td> <td>1.0000</td> <td>22</td> <td>22</td> <td>1.0000</td>	88	4	4	1.0000	18	18	1.0000	22	22	1.0000
11 11 11 10000 28 28 1.0000 39 133 126 0.9474 157 148 0.9427 290 135 112 0.9053 210 148 0.9238 348 135 117 0.9639 170 146 0.9636 246 83 80 0.9639 170 163 0.9638 256 95 58 0.6105 174 171 0.928 269 44 40 0.9091 158 151 0.9567 202 23 33 0.9429 177 171 0.9459 97 24 40 0.9091 158 150 141 0.9459 150 23 21 0.0091 156 146 0.9459 174 24 23 0.9824 156 146 0.9359 116 24 24 0.8000 136 124 0.9118	87	က		1.0000	33	32	0.9697	96		0.9722
133 126 0.9474 157 148 0.9427 290 190 172 0.9053 210 194 0.9238 400 135 112 0.8296 213 185 0.8685 348 86 83 0.9651 160 146 0.9125 246 86 83 0.9651 160 146 0.9125 246 95 58 0.6003 170 146 0.9126 253 33 31 0.9429 177 114 0.9744 152 23 23 0.9429 176 173 0.9459 97 23 23 0.9629 176 174 0.9469 97 24 23 0.9682 156 146 0.9459 196 34 30 0.8824 156 146 0.9459 196 4 1 0.8042 156 146 0.9293 112	88	1-1	11	1.0000	28	28	1.0000	39		1.0000
190 172 0.9053 210 194 0.9238 400 135 112 0.8296 213 185 0.8685 348 86 83 0.9651 160 146 0.9125 246 83 0.9651 170 163 0.9588 253 95 58 0.6105 174 171 0.9828 269 33 0.9091 158 151 0.957 202 269 23 30 0.9429 117 114 0.9429 151 0.957 202 23 2.0429 176 123 0.9459 97 97 97 94 97 94 97 94	82	133		0.9474	157	148	0.9427	290	274	0.9448
135 112 0.8296 213 185 0.8685 348 86 83 0.9651 160 146 0.9125 246 83 0.9639 170 163 0.9588 253 95 58 0.6105 174 171 0.9878 269 33 33 0.9091 158 151 0.9572 202 23 2.3 1.0909 177 173 0.9744 152 23 2.3 1.0000 74 70 0.9459 97 24 23 0.9583 156 141 0.9459 97 24 23 0.9684 156 146 0.9459 97 34 30 0.8824 156 146 0.9459 196 50 48 0.9600 136 124 0.918 16 50 48 0.9600 136 124 0.918 16 51	84	190		0.9053	210	194	0.9238	400	366	0.9150
86 83 0.9651 160 146 0.9125 246 83 0.9639 170 163 0.9588 253 84 80 0.9639 174 171 0.9828 269 44 40 0.9091 158 151 0.9574 202 35 33 0.9429 117 114 0.9744 152 33 31 0.9394 126 123 0.9459 97 23 23 1.0000 74 70 0.9459 174 50 24 23 0.9583 150 141 0.9400 174 50 48 0.9600 136 146 0.9459 146 50 48 0.9600 136 146 0.9459 146 50 48 0.9600 136 154 0.918 146 6 0.8000 82 68 0.8293 146 7	83	135		0.8296	213	185	0.8685	348		0.8534
83 80 0.9639 170 163 0.9588 253 95 58 0.6105 174 171 0.9828 269 44 40 0.9091 158 151 0.9557 202 35 33 0.9429 117 114 0.9744 152 23 2.923 1.0000 74 70 0.9459 97 23 2.3 0.9583 150 141 0.9459 97 24 2.3 0.9583 150 141 0.9459 174 50 48 0.9600 136 124 0.918 174 50 48 0.9600 136 124 0.918 146 50 48 0.9600 136 124 0.918 146 50 48 0.9600 136 124 0.918 146 6 0.8750 29 19 0.6552 45 7	82	98		0.9651	160	146	0.9125	246		0.9309
95 58 0.6105 174 171 0.9828 269 44 40 0.9091 158 151 0.9557 202 33 33 0.9429 117 114 0.9744 152 23 2.9429 117 114 0.9762 159 24 23 0.9583 150 141 0.9459 97 50 48 0.9600 74 70 0.9459 97 50 48 0.9600 136 148 0.9400 174 50 48 0.9600 136 148 0.9459 190 34 31 0.9118 82 68 0.8293 116 30 16 0.8421 65 54 0.8308 84 4 16 0.8421 65 54 0.8308 45 7 6 0.8421 20 18 0.9000 40 4 1<	81	83		0.9639	170	163	0.9588	253		0.9605
44 40 0.9091 158 151 0.9557 202 35 33 0.9429 117 114 0.9744 152 23 23 1.0000 74 70 0.9459 97 24 23 0.9583 150 141 0.9400 174 50 48 23 0.9683 150 141 0.9459 97 50 48 0.9683 150 141 0.9400 174 50 48 0.9600 136 124 0.9118 186 30 24 0.8000 82 68 0.8293 116 19 16 0.8421 65 54 0.8308 84 21 17 0.8095 55 47 0.8545 76 20 14 0.7000 20 18 0.9000 40 4 1 0.2500 1 6 0.5455 15 <t< td=""><td>80</td><td>95</td><td></td><td>0.6105</td><td>174</td><td>171</td><td>0.9828</td><td>269</td><td></td><td>0.8513</td></t<>	80	95		0.6105	174	171	0.9828	269		0.8513
35 33 0.9429 117 114 0.9744 152 33 31 0.9394 126 123 0.9762 159 23 23 1.0000 74 70 0.9459 97 24 23 0.9583 150 141 0.9400 174 50 48 0.9600 136 124 0.918 190 50 48 0.9600 136 124 0.918 186 50 48 0.9600 136 124 0.918 186 50 48 0.9600 136 124 0.918 186 34 31 0.9118 82 68 0.8293 112 40 16 0.8421 65 54 0.8308 84 50 14 0.8750 29 19 0.6552 45 7 6 0.8571 20 18 0.9000 40 7 </td <td>79</td> <td>44</td> <td></td> <td>0.9091</td> <td>158</td> <td>151</td> <td>0.9557</td> <td>202</td> <td>191</td> <td>0.9455</td>	79	44		0.9091	158	151	0.9557	202	191	0.9455
33 31 0.9394 126 123 0.9762 159 23 23 1.0000 74 70 0.9459 97 24 23 0.9583 150 141 0.9400 174 50 48 0.9600 136 124 0.918 186 50 48 0.9600 136 124 0.918 186 50 48 0.9600 136 124 0.918 186 30 24 0.8000 82 68 0.8293 112 4 16 0.8421 65 54 0.8308 84 51 17 0.8095 55 47 0.8545 76 7 6 0.8571 20 18 0.9000 27 7 6 0.8571 20 18 0.9000 40 8 5 0.6250 5 5 1.0000 1 1 <	78	35		0.9429	117	114	0.9744	152		0.9671
23 23 1.0000 74 70 0.9459 97 24 23 0.9583 150 141 0.9400 174 34 30 0.8824 156 146 0.9359 190 50 48 0.9600 136 124 0.918 186 34 31 0.9118 82 68 0.8293 116 30 24 0.8000 82 68 0.8293 116 4 16 0.8421 65 54 0.8308 84 21 17 0.8095 55 47 0.8368 84 21 17 0.8095 55 47 0.8545 76 22 14 0.7000 20 18 0.9000 40 20 14 0.7000 20 18 0.5000 40 4 1 0.2500 7 5 0.743 8 1 <	77	33		0.9394	126		0.9762	159		0.9686
24 23 0.9583 150 141 0.9400 174 34 30 0.8824 156 146 0.9359 190 50 48 0.9600 136 124 0.9118 186 34 31 0.9118 82 68 0.8293 112 30 24 0.8000 82 68 0.8293 112 21 17 0.8021 65 54 0.8308 84 21 17 0.8035 55 47 0.8545 76 21 17 0.8035 55 47 0.8545 76 22 14 0.8750 29 18 0.9000 27 20 14 0.7000 20 18 0.9000 40 4 1 0.2500 1 0.9455 15 4 1 0.0500 2 1 0 1 8 5 0.6	9/	23		1.0000	74		0.9459	26		0.9588
34 30 0.8824 156 146 0.9359 190 50 48 0.9600 136 124 0.9118 186 34 31 0.9118 82 68 0.8293 116 30 24 0.8000 82 68 0.8293 112 21 19 16 0.8421 65 54 0.8308 84 21 17 0.8095 55 47 0.8545 76 7 6 0.8750 29 19 0.6552 45 7 6 0.8571 20 18 0.9000 27 8 1 0.7000 20 18 0.9000 40 9 1 0.2500 1 0.9455 15 1 1 0.6250 5 0.7143 8 1 1 0.6250 5 1.0000 1 1 1 0.6250 5	75	24		0.9583	150		0.9400	174		0.9425
50 48 0.9600 136 124 0.9118 186 1 34 31 0.9118 82 68 0.8293 116 30 24 0.8000 82 68 0.8293 112 21 19 0.8421 65 54 0.8308 84 21 17 0.8095 55 47 0.8545 76 16 14 0.8750 29 19 0.6552 45 20 14 0.8571 20 18 0.9000 27 20 14 0.7000 20 18 0.9000 40 30 1 0.9000 27 15 15 4 1 0.2500 11 6 0.5455 15 4 1 1.0000 7 5 0.7143 8 5 0.6250 5 1.0000 - 3 1 0 -	74	34		0.8824	156		0.9359	190		0.9263
34 31 0.9118 82 68 0.8293 116 30 24 0.8000 82 68 0.8293 112 21 16 0.8421 65 54 0.8308 84 21 17 0.8095 55 47 0.8545 76 16 14 0.8750 29 19 0.6552 45 20 14 0.8571 20 18 0.9000 27 4 1 0.7000 20 18 0.9000 40 4 1 0.2500 11 6 0.5455 15 4 1 1.0000 7 5 0.7143 8 5 0.6250 5 1.0000 13 6 0.6250 5 1.0000 13 7 0 - 2 2 1 8 5 0.6250 5 1.0000 - 3	73	20		0.9600	136		0.9118	186		0.9247
30 24 0.8000 82 68 0.8293 112 19 16 0.8421 65 54 0.8308 84 21 17 0.8095 55 47 0.8545 76 16 14 0.8750 29 19 0.6552 45 20 14 0.8571 20 18 0.9000 27 20 14 0.7000 20 18 0.9000 40 4 1 0.2500 11 6 0.5455 15 4 1 0.0500 7 5 0.7143 8 8 5 0.6250 5 1.0000 13 9 - 2 0 - 3 1 0 - 1 0 - 3 1 0 - 1 0 - 3 1 0 - 1 0 - <td< td=""><td>72</td><td>34</td><td></td><td>0.9118</td><td>82</td><td></td><td>0.8293</td><td>116</td><td></td><td>0.8534</td></td<>	72	34		0.9118	82		0.8293	116		0.8534
19 16 0.8421 65 54 0.8308 84 21 17 0.8095 55 47 0.8545 76 16 14 0.8750 29 19 0.6552 45 20 14 0.8571 20 18 0.9000 27 20 14 0.7000 20 18 0.9000 40 4 1 0.2500 11 6 0.5455 15 8 5 0.6250 5 1.0000 13 9 - 2 0 - 3 1 0 - 1 1.0000 - 2 1 1 1.0000 - - 2 2 1 1 1.0000 - 1 1.0000 2 1 1 1.0000 - 2 2 2 1 1.0000 2 2 3	71	30		0.8000	82		0.8293	112	92	0.8214
21 17 0.8095 55 47 0.8545 76 16 14 0.8750 29 19 0.6552 45 20 14 0.7000 20 18 0.9000 27 4 1 0.2500 11 6 0.5455 15 1 1 0.2500 7 5 0.7143 8 8 5 0.6250 5 1.0000 13 1 0 - 2 0 - 3 1 1 0 - 2 13 - 1 0 - 1 1.0000 - 3 1 1 1.0000 - 1 2 2 1 1 1.0000 1 1 1.0000 2 1 1 1.0000 1 1 1.0000 2	20	19		0.8421	65		0.8308	84		0.8333
16 14 0.8750 29 19 0.6552 45 7 6 0.8571 20 18 0.9000 27 20 14 0.7000 20 18 0.9000 40 4 1 0.2500 11 6 0.5455 15 1 1 1.0000 7 5 0.7143 8 8 5 0.6250 5 1.0000 13 1 0 - 2 0 - 3 1 0 - 1 1.0000 - 3 1 1 1.0000 1 1 2 2 1 1 1.0000 1 1 1.0000 2 1153 1013 2477 2280 3630	69	21		0.8095	22		0.8545	9/		0.8421
7 6 0.8571 20 18 0.9000 27 20 14 0.7000 20 18 0.9000 40 4 1 0.2500 11 6 0.5455 15 1 1 1.0000 7 5 0.7143 8 8 5 0.6250 5 5 1.0000 13 1 0 - 2 0 - 3 1 1 1.0000 - 2 2 1 1 1.0000 - 2 2 1 1 1.0000 - 2 2 1 1 1.0000 - 2 2 1 1 1.0000 - 2 2 1 1 1.0000 - 2 2 1 1 1.0000 - 3 3630	89	16		0.8750	29		0.6552	45		0.7333
20 14 0.7000 20 18 0.9000 40 4 1 0.2500 11 6 0.5455 15 8 5 0.6250 5 5 0.7143 8 1 0 - 2 0 13 1 0 - 2 0 13 1 0 - 1 0 - 3 1 1 1.0000 - 2 2 2 1 1 1.0000 - 2 2 2 1 1 1.0000 - 2 2 2 1 1 1.0000 - 2 2 2 1 1 1.0000 - 2 2 2	29	2		0.8571	20		0.9000	27	24	0.8889
4 1 0.2500 11 6 0.5455 15 1 1 1.0000 7 5 0.7143 8 8 5 0.6250 5 5 1.0000 13 1 0 - 2 0 - 3 1 0 - 1 3 - 2 1 1 1.0000 - 2 2 2 1 1 1.0000 - 2 2 2 153 1013 2477 2280 3630 3630	99	20		0.7000	20		0.9000	40		0.8000
1 1 1,0000 7 5 0,7143 8 8 5 0,6250 5 1,0000 13 1 0 - 2 0 - 3 1 0 - 1 0 - 2 1 1 1,0000 1 1 2 1153 1013 2477 2280 3630	65	7	1	0.2500	11	9	0.5455	15	7	0.4667
8 5 0.6250 5 5 1.0000 13 1 0 - 2 0 - 3 1 0 - 1 0 - 2 1 1 1.0000 1 1.0000 2 1153 1013 2477 2280 3630	64	1	1	1.0000	4	9	0.7143	8	9	0.7500
1 0 - 2 0 - 3 1 0 - 1 2 2 2 2 1 1 1 1 0 - 2 2 1 1 1 1 1 1 2 2 1153 1013 2477 2280 3630	63	8		0.6250	S	5	1.0000	13	10	0.7692
1 0 - 1 0 - 2 1 1 1 1 0 - 2 1 1 1 1 1 1 2 1 1 1 2 2 2 3 3 1 1 2 3 3 3 3 3 3	62	1	0		7	0	•	3	0	•
1 1 1.0000 1 1.0000 2 1153 1013 2477 2280 3630	9	1	0	•	1	0	•	2		•
1013 2477 2280 3630	9	1	1	1.0000	l I	1	1.0000	2	2	1.0000
		1153	101		2477	2280		3630	3293	

Fy90					PILOT							
\dashv												
1		HELO			ÆT			PROP			PILOT	
	BEG INV	END INV	SR	BEG INV	END INV	SS	BEG INV	END INV	ಜ	BEG INV	END INV	S
	10	10	1.0000	2	2	1.0000	7	2	1.0000	19	19	1.0000
	æ		1.0000	7	4	1.0000	4	4	1.0000	16	16	1.0000
	13	13	1.0000	66	39	1.0000	17	16	0.9412	69	89	0.9855
	21		1.0000	15	15	1.0000	29	28	0.9655	65	64	0.9846
	7		0.8571	38	37	0.9737	14	13	0.9286	59	56	0.9492
	109			4 5	31	0.6596	139	102	0.7338	295	236	0.8000
	184			,	_	0.6684	230	152	0.6609	604	436	0.7219
	158	137		190	-	0.7000	196		0.6990	544	407	0.7482
	186		0.9301	106	91	0.8585	123	111	0.9024	415	375	0.9036
8	71			51	44	0.8627	91	68	0.9780	213	203	0.9531
	71			62		0.9620	84		0.9762	234	228	0.9744
_	44			72	28	0.8056	135	127	0.9407	251	227	0.9044
	54				46	0.8214	119	116	0.9748	229	213	0.9301
	27					0.9091	61	19	1.0000	121	117	0.9669
	51		İ			0.9464			0.9549	240	228	0.9500
	62		ļ			1.0000	173		0.9653	. 287	279	0.9721
	54			61		0.9180		135	0.9375	259	241	0.9305
	40			41		1.0000	147	142	0.9660	228	221	0.9693
	53			29	26	0.8966	104	83	0.7981	186	152	0.8172
	34					0.7292	135	86	0.7259	217	158	0.7281
	23	19	0.8261	63		0.8571	128		0.8203	214	178	0.8318
	13			41		0.9024	96	82	0.8542	150	130	0.8667
	21			22		0.9800	93		0.8817	164	147	0.8963
_	14	14	1.0000	52		0.9231	9		0.8154	131	115	0.8779
	2		0.0000	33	27	0.8182	45		0.8222	80	64	0.8000
	2			30		0.9000	24	18	0.7500	99	47	0.8393
_	2			18	13	0.7222	28	22	0.7857	51	38	0.7451
	4	9		20	18	0.9000	20	18	0.9000	44	39	0.8864
	-	-	1.0000	=	9	0.5455	17	13	0.7647	29	20	0.6897
	6		0.3333	7		0.8571	7	2	0.7143	17	12	0.7059
	1345	1221		1534	1281		2608	2232		5487	4734	

				NFO				
	JET			PROP			NFO	
BEG INV	END INV	CR	BEG INV	END INV	SS	BEG INV	END INV CR	SR
1	1	1.0000	L	-	1.0000	2	2	1.0000
2	5	1.0000	19	19	1.0000	24		1.0000
2	2	1.0000	24	24	1.0000	26	26	1.0000
7	7	1.0000	25	25	1.0000	32		1.0000
2	2	1.0000	5	4	0.8000	10	6	0.9000
148	139	0.9392	130	126	0.9692	278	265	0.9532
192	173	0.9010	189	174	0.9206	381	347	0.9108
127	102	0.8031	166	137	0.8253	293	239	0.8157
141	132	0.9362	182	171	0.9396	323	303	0.9381
97	96	0.9897	157	155	0.9873	254	251	0.9882
28	25	0.9828	149	142	0.9530	207		0.9614
43	41	0.9535	117	111	0.9487	160		0.9500
59	29	1.0000	100	96	0.9600	159		0.9748
27	27	1.0000	74	02	0.9459	101		0.9604
49	46	0.9388	137	,	0.9416	186	175	0.9409
47	45	0.9574	156	,		203		0.9064
53	25	0.9811	138	132	1	191	184	0.9634
35	34	0.9714	82		1	117	109	0.9316
33	28	0.8485	108		ļ	141	118	0.8369
23	17	0.7391	80		ĺ	103	77	0.7476
27	24	0.8889	63		0.7937	06	74	0.8222
21	18	0.8571	39		0.7179	9	46	0.7667
10	10	1.0000	21	18	0.8571	31	28	0.9032
23	21	0.9130	28	24	0.8571	51	45	0.8824
7	9	0.8571	27	21	0.7778	34	27	0.7941
4	2	0.5000	20	17	0.8500	24	19	0.7917
8	7	0.8750	12	10	0.8333	20	17	0.8500
2	+	0.5000	10	7	0.4000	12	S	0.4167
2	0	-	7	E	0.4286	6	င	0.3333
1	1	1.0000	E	l l	0.3333	4	2	0.5000
1257	1158		2269	2056		3526	321	

Fy89					PILOT							
		HELO			JET			PROP			PILOT	
8	BEG INV	END INV	CR	BEG INV	END INV	S	BEG INV	END INV	ಜ	BEG INV	END INV	S S
	9		1.0000	8	က	1.0000	2	2	1.0000	11	11	1.0000
	8	8	1.0000	37	37	1.0000	12	12	1.0000	57	25	1.0000
	22	21	0.9545	10	10	1.0000	18	15	0.8333	90	46	0.9200
-	9	9	1.0000	29	26	0.8966	7	7	1.0000	42	39	0.9286
	6		1.0000	က	က	1.0000	7	7	1.0000	19	19	1.0000
	93		0.9247	35	25	0.7143	125	81	0.6480	253	192	0.7589
	179	155	0.8659	195	133	0.6821	266	178	0.6692	640	466	0.7281
	206		0.8738	151	105	0.6954	157	114	0.7261	•		0.7763
	96			61	51	0.8361	26		0.8969			0.905
	83		0.9880	87		0.9310		62	0.9518	253	242	0.9565
	55		0.9455	76	74	0.9737	135	131	0.9704	266		0.9662
	57		1.0000	61		0.9016	119		0.9244	237	222	0.9367
	28		0.9643	38		0.8158	63		0.9524	129		0.9147
	53		0.9811	99	22	0.9821	142	134	0.9437	. 251		0.9602
	99					0.9615	182		0.9231	300		0.9400
	56					0.9206		137	0.9514	263		0.9392
Щ	41			86	38	1.0000	154		0.9805			0.9828
	26					0.9655	104		0.9327	189		0.9418
	56			99		0.8393	167	124	0.7425	279	219	0.7849
	35			7.7		0.7222	176	1	0.7159	283	204	0.7208
	14			41	38	0.9268			0.8034	172	145	0.8430
	24	21	0.8750	43	41	0.9535	109		0.8807	176	158	0.8977
	15	15		51		0.9608	08		0.7875	ļ.	127	0.8699
	4	3		35	30	0.8571	20		0.8600	88	9/	0.8539
	4	. 3	0.7500		28	0.8485			0.8462	9/	64	0.842
	5		1.0000	20	17	0.8500		24	0.7273	58	46	0.7931
	5		1.0000	19	17	0.8947	25		0.8000	49	42	0.857
	က		1.0000	13	11	0.8462	22		0.7727	38	31	0.8158
_	9	3	0.5000	12	6	0.7500	15	12	0.8000	33	24	0.7273
_	1291	1187		1419	1202		2650	2222		5360	4611	

1					NFO				
_ '									
	$\neg \neg$	JET			PROP			NFO	
	BEG INV	END INV	CR	BEG INV	END INV	೫	BEG INV	END INV	CR S
-	4	4	1.0000	12	12	1.0000	16	16	1.0000
-	2	2	1.0000	0	0	-	2	2	1.0000
	2	2	1.0000	10	10	1.0000	12	12	1.0000
-	2	2	1.0000	2	2	1.0000	4	4	1.0000
\vdash	16	16	1.0000	2	2	1.0000	18	18	1.0000
Н	137	125	0.9124	125	114	0.9120	262	239	0.9122
\vdash	144	124	0.8611	179	158	0.8827	323	282	0.8731
	168	145	0.8631	200	171	0.8550	368	316	0.8587
	138	129	0.9348	193	182	0.9430	331	311	0.9396
Н	19	28	0.9508	157	150	0.9554	218	208	0.9541
	46	43	0.9348	123	121	0.9837	169	164	0.9704
	62	62	1.0000	104	98	0.9423	166	160	0.9639
-	28	28	1.0000	75	72	0.9600	103	100	0.9709
	47	47	1.0000	142	138	0.9718	189	185	0.9788
	47	43	0.9149	171	149	0.8713	218	192	0.8807
	53	20	0.9434	144	137	0.9514	161	187	0.9492
	35	34	0.9714	86	84	0.9767	121	118	0.9752
	36	34	0.9444	109	105	0.9633	145	139	0.9586
	31	24	0.7742	66	81	0.8182	130	105	0.8077
	37	26	0.7027	86	61	0.7093	123	87	0.7073
	26	21	0.8077	42	35	0.8333	89	56	0.8235
	10	6	0.9000	26	19	0.7308	36	28	0.7778
	23	21	0.9130	30	27	0.9000	53	48	0.9057
	5	5	1.0000	34	30	0.8824	39	35	0.8974
	5	2	0.4000	25	21	0.8400	30	23	0.7667
	9	8	0.8889	15	14	0.9333	24	22	0.9167
	5	2	0.4000	13	10	0.7692	18	12	0.6667
	3	7	0.6667	7	7	1.0000	10	6	0.9000
	3	3	1.0000	5	5	1.0000	80	8	1.0000
	1185	1071		2216	2015		3401	3086	

Fy88					PILOT							
		HELO			JET			PROP			PILOT	
χ	BEG INV	END INV	S S	BEG INV	END INV	CR	BEG INV	END INV	ಜ	BEG INV	END INV	ಜ
87	9	9	1.0000	1	1	1.0000	-	-	1.0000	8	80	1.0000
86	8	8	1.0000	9	5	0.8333	80	2	0.8750	22	20	0.9091
85	5	5	1.0000	15	10	0.6667	7	7	1.0000	27	22	0.8148
84	4	4	1.0000	,	1	1.0000	2	2	1.0000	7	7	1.0000
83	9	6	1.0000	3	ε	1.0000	7	9	0.8571	19	18	0.9474
82	111		0.8468	53	39	0.7358	196	115	0.5867	360	248	0.6889
81	243	218	0.8971	212	133	0.6274	214	119	0.5561	699	470	0.7025
8	116			105	70	0.6667	87	22	0.8276			0.8019
79	102				106	0.8480	78	71	0.9103	305	279	0.9148
78	77	74		91	88	0.9670	119	112	0.9412	287		0.9547
11	67			73		0.8630	114	102	0.8947	254	231	0.9094
92	31		_	42		0.8810	19	89	0.9508	134		0.9254
75	62			99		0.9545	133	128	0.9624	261	253	0.9693
74	81			54	54	1.0000		156	0.9017			0.9448
73	63				62	0.9254		128	0.9343	267		0.9326
72	49			42		1.0000	147	142	0.9660	238	232	0.9748
71	09		Ì	26	25	0.9615	106	102	0.9623	192		0.9635
20	65	64	0.9846			0.9811	164		0.9573	282		0.9681
69	56		0.9107			0.7901	202	160	0.7921	339	275	0.8112
89	27	16	0.5926			0.6615		111	0.7025	250		0.6800
29	28		0.9286	47	38	0.8085	131	108	0.8244	206	172	0.8350
99	20	15	0.7500	51		0.9804	06	11	0.8556	161	142	0.8820
65	5	4	0.8000	36	32	0.8889	29	48	0.8421	98	84	0.8571
64	7	4	0.5714	28	26	0.9286	99		0.8000			0.8222
63	€	7	0.8750	22	20	0.9091	14	35	0.8537		62	0.8732
62	5		1.0000	20	17	0.8500	36		0.7222	61	48	0.7869
91	3	3	1.0000	15	13	0.8667	24		0.9167	42	38	0.9048
90	6	9	0.6667	11	6	0.8182	22		0.7273	42		0.7381
	1327	1229		1411	1166		2570	2132		5308	4527	

Fy88					NFO				
		JET			PROP			NFO	
ည	BEG INV	END INV	CR	BEG INV	END INV	CR	BEG INV	END INV	CR
87	0	0	•	0	0		0	0	•
86	1	1	1.0000	11	11	1.0000	12	12	1.0000
85	1	+	1.0000	2	7	1.0000		က	1.0000
84	2	2	1.0000	3	E	1.0000	5	5	1.0000
83	08	30	1.0000	25	24	0.9600	55	54	0.9818
82	130	117	0.9000	133	122	0.9173	263	239	0.9087
81	207	185	0.8937	212	185	0.8726	419	370	0.8831
80	175	155	0.8857	200	169	0.8450	375	324	0.8640
79	92		0.9783	182	641	0.9835	274	269	0.9818
78	89	99	0.9706	125	123	0.9840	193	189	0.9793
77	69		1.0000	105	86	0.9333	174	167	0.9598
9/	32		0.9688	74	02	0.9459	106	101	0.9528
75	50	49	0.9800	141	137	0.9716	191	186	0.9738
74	53		0.9434	170	163	0.9588	223	213	0.9552
73	59		0.9492	140	135	0.9643	199	191	0.9598
72	34		0.9706	91	06	0.9890	125	123	0.9840
71	36		0.9722	111	110	0.9910	147	145	0.9864
20	32		0.9688	105	<u> </u>	0.9048	137	126	0.9197
69	51		0.8039	103	82	0.7961	154	123	0.7987
68	31	26	0.8387	58	43	0.7414	68	69	0.7753
29	12		0.8333	35	25	0.7143	47	35	0.7447
99	23	21	0.9130	36	06	0.8333	59	51	0.8644
65	9		0.6667	39	96	0.9231	45	40	0.8889
64	8	5	0.6250	28	24	0.8571	96	29	0.8056
63	11	9	0.9091	19	16	0.8421	06	56	0.8667
62	4	3	0.7500	19	14	0.7368	23	17	0.7391
61	4	4	1.0000	10	2	0.7000	14	11	0.7857
90	3	3	1.0000	7	9	0.7143	10	8	0.8000
	1224	1128		2184	1998		3408	3126	

		SS	1.0000	1.0000	1.0000	1.0000	0.9362	0.7559	0.8261	0.8818	0.9583	0.9743	0.9507	0.9771	0.9642	0.9307	0.9758	0.9746	0.9795	0.9592	0.8304	0.7846	0.8750	0.8868	0.9310	0.9200	0.8590	0.8400	0.9286	
	PILOT	END INV	20	18	2	15	88	415	304	306	299	265	135	256	296	255	242	192	286	329	240	193	147	94	81	69	29	42	39	4698
		BEG INV	20	18	9	15	94	549	898	347	312	272	142	262	200	274	248	197	292	343	289	246	168	106	28	75	28	20	42	5206
		CR	1.0000	1.0000	1.0000	1.0000	0.8980	0.5907	0.7778	0.8659	0.9744	0.9737	0.9365	0.9760	0.9351	0.9389	0.9609	0.9787	0.9783	0.9392	0.8690	0.7500	0.8846	0.8814	0.9322	0.8667	0.8571	0.8571	0.9048	
	PROP	END INV	10	7	2	9	44	127	84	71	114	111	59	122	144	123	123	92	135	170	146	66	69	25	22	39	96	24	19	2077
		BEG INV	10	7	2	9	49	215	108	82	117	114	63	125	154	131	128	94	138	181	168	124	82	69	69	45	42	28	21	2348
		S	1.0000	1.0000	-	1.0000	1.0000	0.6957	0.7574	0.8477	0.9238	0.9744	0.9756	0.9559	1.0000	0.8986	1.0000	0.9615	0.9630	0.9762	0.7600	0.8254	0.9200	0.8710	0.9412	1.0000	0.8750	0.7333	1.0000	
PILOT	JET	END INV	4	7	0	2	2	80	103	128	26	76	40	65	51	62	47	25	25	82	25	52	46	27	16	19	14	11	6	1174
		BEG INV	4	7	0	2	2	115	136	151	105	78	41	89	51	69	47	26	54	84	75	63	50	31	17	19	16	15	6	1335
		<u>გ</u>	1.0000	1.0000	1.0000	1.0000	0.9767	0.9498	0.9435	0.9386		0.9750		1.0000					0.9900	0.9872	0.8043			0.9375	0.9091	1.0000	0.8500	1.0000	0.9167	
	HELO	END INV	9	4	3	7			117												37					11	17	7	11	1447
		BEG INV	9	4	3	7	43	219	124	114	06	80	38	69	102	74	23	11	100	82	46	59	40	16	11	11	20	2	12	1523
Fy87		χg	98	85	84	83	82	81	80	79	78	77	92	75	74	73	72	7.1	20	69	68	29	99	65	64	63	62	61	9	

		CR	1.0000	1.0000	1.0000	1.0000	0.9333	0.9493	0.9138	0.9366	0.9802	0.9944	0.9810	0.9794	0.9539	0.9694	0.9692	0.9787	0.9621	0.9653	0.9022	0.7059	0.9000	0.9149	0.8919	0.9310	0.9200	0.6875	1.0000	
	NFO	END INV	12	4	4	23	56	337	371	266	198	178	103	190	207	190	126	138	127	139	83	36	54	43	33	27	23	11	6	2988
		BEG INV	12	4	4	23	9	355	406	284	202	179	105	194	217	196	130	141	132	144	92	51	09	47	37	29	25	16	6	3154
		CR	1.0000	1.0000	1.0000	1.0000	1.0000	0.9714	0.8899	0.9382	0.9839	0.9903	0.9855	0.9781	0.9539	0.9766	0.9775	0.9697	0.9574	0.9540	0.9000	0.6129	0.8947	0.9444	0.8621	0.8947	0.9048	0.5833	1.0000	
NFO	PROP	END INV	-	3	2	11	27	170	194	167	122	102	68	134	145	125	87	96	06	83	24	19	34	34	25	17	19	7	7	1853
		BEG INV	11	3	2	11	27	175	218	178	124	103	69	137	152	128	88	66	94	87	09	31	38	36	29	19	21	12	7	1960
		꼾	1.0000	1.0000	1.0000	1.0000	0.8788	0.9278	0.9415	0.9340	0.9744	1.0000	0.9722	0.9825	0.9538	0.9559	0.9512	1.0000	0.9737	0.9825	0.9063	0.8500	0.9091	0.8182	1.0000	1.0000	1.0000	1.0000	1.0000	
	JET	END INV	1	1	2	12	29	167	177	66	76	9/	35	56	62	92	39	42	37	26	29	17	20	6	80	10	4	4	2	1135
	_	BEG INV	-		2	12	33	180	188	106	78	9/	36	22	65	89	41	42	38	22	32	20	22	11	80	10	4	4	2	1194
Fy87		ΥG	98	85	84	83	82	81	80	79	78	77	76	75	74	73	72	71	70	69	68	29	99	65	64	63	62	61	09	

			PILOT							
ıl			JET			PROP			PILOT	
	CR	BEG INV	END INV	SS	BEG INV	END INV	S	BEG INV	END INV	S
	1.0000	0	0	0.0000	0	0	0.0000	1	-	1.0000
	1.0000	0	0	0.0000	0	0	0.0000	2	2	1.0000
	1.0000	0	0	0.0000	5	2	1.0000	12	12	1.0000
ш	1.0000	2	2	1.0000	32	32	1.0000	65	65	1.0000
	1.0000	59	69	1.0000	134	132	0.9851	292	290	0.9932
ш	0.9627	121	111	0.9174	166	121	0.7289		361	0.8575
135	0.9122	195	158	0.8103	160	102	0.6375	503	395	0.7853
-	0.8992	144	122	0.8472	134	114	0.8507	407	352	0.8649
102	0.9714	103		0.9320	-	117	0.9286	334	315	0.9431
	0.9565	49	47	0.9592	73	69	0.9452			0.9524
78	0.9630	80		0.9125	140		0.9429		283	0.9402
	0.9730			0.9821		152	0.9500	327	315	0.9633
	0.9259			0.8933			0.9556		271	0.9313
78	0.9873	56		0.9464	126		0.9524			0.9617
_	0.9765	29	27	0.9310	91	88	0.9670	205	198	0.9659
	0.9914	09		0.9667			0.9769		300	0.9804
ᅰ	1.0000	95		0.9895	182	174	0.9560	329		0.9749
	0.9592		79	0.9875	172		0.9884	301	296	0.9834
2	0.9333		71	0.9467		143	0.9051			0.9221
45	0.9000	75	99	0.7467	115	98	0.7478	240	187	0.7792
_	0.8571	33	31	0.9394	72	69	0.8194	126	108	0.8571
0	1.0000	23	18	0.7826	71	09	0.8451	104	88	0.8462
7	1.0000	20	19	0.9500	51	47	0.9216	83	78	0.9398
6	0.9500	22	21	0.9545	20	41	0.8200	92	81	0.8804
9	0.8571	18	17	0.9444	14	31	0.7561	99	54	0.8182
6	0.8889	တ		1.0000	32		0.8750	59	53	0.8983
1528		1479	1343		2556	2279		5634	5150	

Γ	Τ		Г		0	0	0	0	0	6	-	0	0	4	80	6	ဖ	80	6	S	2	2	4	60	80	lC.	60	c	~	T
			SR SR	•	1.0000	1.0000	1.0000	1.0000	0.9590	0.9249	0.9251	0.9500	0.9520	0.9854	0.9518	0.9803	0.9926	0.9728	0.9779	0.9935	0.9802	0.9275	0.7654	0.8393	0.9318	0.9375	0.8438	0.8636	0.8462	
		NFO	END INV CR	0	2	23	15	88	374	308	210	209	119	203	217	199	134	143	133	153	66	64	62	47	41	30	27	19	11	2931
			BEG INV	0	2	23	15	88	390	333	227	220	125	206	228	203	135	147	136	154	101	69	81	99	44	32	32	22	13	3083
			SS		ı	1.0000	1.0000	1.0000	0.9497	0.9286	0.9231	0.9646	0.9359	0.9930	0.9490	0.9850	1.0000	0.9596	0.9783	1.0000	0.9683	0.9730	0.7037	0.8182	0.9412	0.9048	0.8800	0.8333	0.8182	
NFO		PROP	END INV	0	0	12	6	32	189	182	120	109	73	141	149	131	89	95	06	88	61	36	38	36	32	19	22	15	6	1777
			BEG INV	0	0	12	6	32	199	196	130	113	78	142	157	133	89	66	92	88	63	37	54	44	34	21	25	18	11	1876
			CR	•	1.0000	1.0000	1.0000	1.0000	0.9686	0.9197	0.9278	0.9346	0.9787	0.9688	0.9577	0.9714	0.9783	1.0000	0.9773	0.9848	1.0000	0.8750	0.8889	0.9167	0.9000	1.0000	0.7143	1.0000	1.0000	
		ᄪ	END INV	0	2	11	9	57	185	126	90	100	46	62	69	68	45	48	43	65	38	28	24	11	6	11	5	4	2	1154
		- 1	BEG INV	0	2	11	9	22	191	137	26	107	47	64	71	20	46	48	44	99	38	32	27	12	10	11	7	4	2	1207
Fy86			ΥG	85	84	83	82	81	80	79	78	77	76	75	74	73	72	71	70	69	88	67	99	65	99	63	62	61	09	

		SS	1.0000	1.0000	1.0000	9066.0	0.9967	0.8742	0.7662	0.8947	0.9442	0.9846	0.9714	0.9400	0.9698	0.9667	0.9838	0.9755	0.9842	0.9725	0.9017	0.8171	0.8516	0.8713	0.9231	0.9103	0.9157	
	PILOT	END INV	-	29	155	211	306	431	472	391	186	319	340	282	257	203	304	358	312	318	266	143	109	88	96	71	9/	5754
		BEG INV	-	69	155	213	307	493	616	437	197	324	350	300	265	210	309	367	317	327	295	175	128	101	104	78	83	6211
		CR	0.0000	1.0000	1.0000	0.9888	0.9937	0.7990	0.6741	0.8571	0.9250	0.9851	0.9539	0.9412	0.9569	0.9655	0.9712	0.9529	0.9800	0.9710	0.9274	0.8272	0.8333	0.8644	0.8519	0.9149	0.9231	
	PROP	END INV	0	27	71	88	157	155	151	138	74	132	145	112	111	84	101	162	147	134	115	29	65	51	46	43	36	2412
		BEG INV	0	27	71	68	158	194	224	161	80	134	152	119	116	87	104	170	150	138	124	81	78	29	54	47	39	2656
		CR	0.0000	1.0000	1.0000	1.0000	1.0000	0.8582	0.7425	0.8912	0.9524	0.9697	0.9710	0.9268	0.9677	0.9412	0.9859	0.9905	0.9904	0.9528	0.8750	0.8039	0.8286	0.9583	1.0000	0.9524	0.8750	
PILOT	JET	END INV	0	23	44	62	22	121	173	131	09	96	29	92	09	32	70	104	103	101	91	41	29	23	31	20	21	1634
	-	BEG INV	0	23	44	62	55	141	233	147	63	66	69	82	62	34	71	105	104	106	104	51	35	24	31	21	24	1790
		S	1.0000	1.0000	1.0000	0.9839	1.0000	0.9810	0.9308	0.9457	0.9630	1.0000	0.9922	0.9495	0.9885	0.9775	0.9925	1.0000	0.9841	1.0000	0.8955	0.8140	1.0000	0.7778	1.0000	0.8000	0.9500	
	HELO	END INV	+	6	40	61	94	155	148	122	52	91	128	94	98	87	133	92	62	83	09	35	15	14	19	8	19	1708
		BEG INV	-	6	40	62	94	158	159	129	54	91	129	66	87	89	134	92	63	83	29	43	15	18	19	10	20	1765
Fy85		YG	84	83	82	81	80	79	78	77	9/	75	74	73	72	71	20	69	68	29	99	65	64	63	62	61	09	

			_	_	_	_	_	<u> </u>	_	-		_						Ī				I		1		I	Τ_	
		ಜ	1.0000	1.0000	1.0000	1.0000	1.0000	0.9562	0.9683	0.9266	0.6786	0.9730	0.9593	0.9808	0.9648	0.9615	0.9718	1.0000	0.9811	0.9863	0.8962	0.7065	0.8475	0.9231	0.8649	0.8462	0.8500	
	NFO	END INV	0	85	20	55	160	349	244	240	133	216	236	204	137	150	138	162	104	72	95	65	20	36	32	22	17	3031
		BEG INV	6	85	20	55	160	365	252	259	196	222	246	208	142	156	142	162	106	73	106	82	29	39	37	26	20	3237
		CR	-	1.0000	1.0000	1.0000	1.0000	0.9714	0.9710	0.9015	0.5683	0.9792	0.9684	0.9848	0.9438	0.9703	0.9670	1.0000	0.9841	1.0000	0.8923	0.7101	0.8409	0.8750	0.8519	0.8095	0.8000	
NFO	PROP	END INV	0	41	8	26	81	204	134	119	62	141	153	130	84	86	88	78	62	36	28	49	37	21	23	17	12	1779
		BEG INV	0	41	8	26	81	210	138	132	139	144	158	132	89	101	91	78	63	36	65	69	44	24	27	21	15	1932
		CR	1.0000	1.0000	1.0000	1.0000	1.0000	0.9355	0.9649	0.9528	0.9474	0.9615	0.9432	0.9737	1.0000	0.9455	0.9804	1.0000	0.9767	0.9730	0.9024	0.6957	0.8667	1.0000	0.9000	1.0000	1.0000	
	JET	END INV	6	44	12	29	79	145	110	121	54	75	83	74	53	52	50	84	42	36	37	16	13	15	6	5	5	1252
	-	BEG INV	6	44	12	29	62	155	114	127	22	78	88	92	53	55	51	84	43	37	41	23	15	15	10	5	5	1305
Fy85		YG	84	83	82	81	80	79	78		9/	75	74	73	72	71	70	69	89	67	99	65	64	63	62	61	9	

		SR	1.0000	1.0000	0.9873	1.0000	0.9766	0.9190	0.8958	0.9127	0.9549	0.9707	0.9416	0.9674	0.9579	0.9778	0.9784	0.9815	0.9849	0.9707	0.8832	0.7711	0.8609	0.9279	0.8966	0.8687	
	PILOT	END INV	13	64	155	38	125	420	490	209	360	365	290	267	205	308	363	319	327	298	189	128	66	103	78	86	5299
		BEG INV	13	64	157	38	128	457	247	229	377	376	308	276	214	315	371	325	332	307	214	166	115	111	87	66	5626
		꼯	1.0000	1.0000	0.9583	1.0000	0.9348	0.9120	0.8288	0.9213	0.9568	0.9474	0.9380	0.9462	0.9674	0.9762	0.9626	0.9783	0.9714	0.9728	0.8720	0.7692	0.8571	0.9153	0.8393	0.8333	
	PROP	END INV	2	26	46	11	43	197	184	82	155	162	121	123	89	123	180	180	170	143	109	8	09	54	47	40	2427
		BEG INV	2	26	48	11	46	216	222	89	162	171	129	130	92	126	187	184		147	125	104	02	99	99	48	2625
		CR	0.0000	1.0000	1.0000	1.0000	1.0000	0.9058	0.9375	0.8861	0.9304	0.9867	0.9419	0.9831	0.9375	0.9545	0.9900	0.9885	1.0000	0.9667	0.8571	0.8000	0.9231	0.9259	1.0000	0.9524	
PILOT	JET	END INV	0	4	99	11	29	125	165	70	107	74	81	58	30	63	66	86	80	87	42	32	24	25	19	20	1397
		BEG INV	0	4	99	11	29	138	176	79	115	75	86	59	32	99	100	87	8	06	49	40	26	27	19	21	1475
		S	1.0000	1.0000	1.0000	1.0000	1.0000	0.9515	0.9463	0.9344	0.9800	0.9923	0.9462	0.9885	0.9556	0.9919	1.0000	0.9815	1.0000	0.9714	0.9500	0.7273	0.7895	0.9600	1.0000	0.8667	
	HELO	END INV	11	34	43	16	53	98	141	22	98	129	88	86	98	122	84	53	77	89	38	16	15	24	12	26	1475
	=+	BEG INV	11	34	43	16	53	103	149	61	100	130	93	87	06	123	84	54	77	70	40	22	19	25	12	30	1526
Fy84		ΥG	83	82	84	80	79	78	77	76	75	74	73	72	71	20	69	89	67	99	65	64	63	62	61	9	

					NFO				
		JET			PROP			NFO	
YG	BEG INV	END INV	CR	BEG INV	END INV	SS	BEG INV	END INV	SR
83	0	0	•	7	2	1.0000	7	7	1.0000
82	11	11	1.0000	10	10	1.0000	21	21	1.0000
81	25	25	1.0000	24	24	1.0000	49	49	1.0000
80	7	7	1.0000	2	2	1.0000	12	12	1.0000
79	84	82	0.9762	74	72	0.9730	158	154	0.9747
78	114	112	0.9825	140	131	0.9357	254	243	0.9567
77	148	134	0.9054	140	131	0.9357	288	265	0.9201
92	64	62	0.9688	85	83	0.9022	156	145	0.9295
75	89		0.9663	163	159	0.9755	252	245	0.9722
74	06		0.9778	166	158	0.9518	256	246	0.9609
73	62	92	0.9620	137	135	0.9854	216		0.9769
72	52	51	0.9808	93	36	0.9892	145	143	0.9862
71	53		1.0000	108	103	0.9537	161	156	0.9689
70	48		0.9792	66	86	0.9899	147	145	0.9864
69	78		0.9872	06	88	0.9778	168		0.9821
68	39		0.9744	70	89	0.9714	109	106	0.9725
29	37	37	1.0000	39	86	0.9744	76	75	0.9868
99	42		0.9762	29	99	0.9851	109	107	0.9817
65	31	25	0.8065	88	92	0.8523	119	100	0.8403
64	15	14	0.9333	63	65	0.8413	78	29	0.8590
63	14	13	0.9286	29	56	0.8966	43	39	0.9070
62	10	80	0.8000	34	32	0.9412	44	40	0.9091
61	5	5	1.0000	23	19	0.8261	28		0.8571
09	5	5	1.0000	18	15	0.8333	23	20	0.8696
	1140	1097		1779	1688		2919	27	

		S	1.0000	1.0000	0.9000	1.0000	0.8646	0.8496	0.8391	0.9281	0.9356	0.9448	0.9391	0.9689	0.9711	0.9815	0.9829	0.9817	0.9565	0.9409	0.8908	0.8662	0.9327	0.9492	
	PILOT	END INV	18	10	6	16	83	209	386	400	305	274	216	312	369	319	344	321	220	207	155	123	26	112	4505
		BEG INV	18	10	10	16	96	246	460	431	326	290	230	322	380	325	350	327	230	220	174	142	104	118	4825
		S	1.0000	1.0000	0.7500	1.0000	0.7857	0.8100	0.8085	0.9144	0.9280	0.9083	0.9239	0.9643	0.9451	0.9821	0.9765	0.9722	0.9603	0.9635	0.8929	0.8395	0.9189	0.9394	
	PROP	END INV	11	-	ဇ	-	33	81	152	171	116	109	85	108	172	165	166	140	121	132	100	89	89	62	2065
		BEG INV	11	-	4	-	42	100	188	187	125	120	6	112	182	168	170	144	126	137	112	81	74	99	2243
		CR	1.0000	1.0000	1.0000	1.0000	0.9167	0.8161	0.7938	0.8929	0.9286	0.9552	0.9459	0.9452	0.9909	0.9794	0.9802	0.9911	0.9649	0.9245	0.8529	0.9412	1.0000	0.9167	
PILOT	JET	END INV	2	3	9	6	33	71	127	75	78	64	35	69	109	95	66	111	52	49	29	32	17	22	1190
		BEG INV	2	3	9	6	36	87	160	84	84	29	37	73	110	97	101	112	22	53	34	34	17	24	1287
		CR	1.0000	1.0000	0.0000	1.0000	0.9444	0.9661	0.9554	0.9625	0.9487	0.9806		0.9854	1.0000	0.9833	1.0000	0.9859	0.9362	0.8667	0.9286	0.8519	0.9231	1.0000	
	HELO	END INV	2	9	0	9	17	22	107	154	111	101			88							23	12	28	1250
		BEG INV	2	9	0	9	18	59	112	160	117	103	101	137	88	9	79	71	47	30	28	27	13	28	1267
Fy82		YG	81	80	79	78	77	9/	75	74	73	72	71	70	69	89	67	99	65	64	63	62	61	90	

Γ	Τ	Г	Τ	0	0	0	0	-	0	_	2	m	က	80	0	က	0	0	S	6	0	8	60	80		Γ
			CR	1.0000	1.0000	1.0000	1.0000	0.9661	0.9640	0.9577	0.9362	0.9593	0.9873	0.9558	0.9560	0.9653	1.0000	0.9750	0.9735	0.9843	0.9910	0.8933	0.8136	0.7838	0.8611	
		NFO	END INV CR	5	2	9	3	57	134	272	279	236	156	173	152	167	116	78	110	125	110	29	48	29	31	2356
			BEG INV	5	2	9	3	59	139	284	298	246	158	181	159	173	116	80	113	127	111	75	59	37	36	2467
			S	1.0000	1.0000	1.0000	1.0000	0.9259	0.9367	0.9651	0.9448	0.9799	0.9800	0.9391	0.9500	0.9432	1.0000	1.0000	0.9571	0.9783	0.9885	0.8542	0.8000	0.7931	0.8276	
NFO		PROP	END INV	2	2	-	က	25	74	166	171	146	98	108	95	83	99	41	29	06	98	41	36	23	24	1448
			BEG INV	2	2	-	3	72	62	172	181	149	100	115	100	88	99	41	70	92	87	48	45	29	29	1526
			CR	1.0000	-	1.0000	-	1.0000	1.0000	0.9464	0.9231	0.9278	1.0000	0.9848	0.9661	0.9882	1.0000	0.9487	1.0000	1.0000	1.0000	0.9630	0.8571	0.7500	1.0000	
		JET	END INV	3	0	5	0	32	9	106	108	06	58	65	57	84	20	37	43	35	24	26	12	9	7	808
			BEG INV	က	0	5	0	32	09	112	117	26	28	99	29	85	95	39	43	35	24	27	14	8	7	941
Fy82			λG	81	8	79	78	11	76	75	74	73	72	71	70	69	88	67	99	65	64	63	62	61	9	

		SS	1.0000	1.0000	1 0000	1 0000	0.8627	0.7905	0.8078	0.8824	0.9061	0 9177	0.9665	0.9762	0.9641	0.9830	0.9882	0.9588	0.9690	0.9728	0.8820	0.8451	0.9023	
	PILOT	END INV	4	-	2	6	44	415	416	300	280	223	317	369	322	346	336	233	219	179	157	120	120	4412
		BEG INV	4	-	2	6	51	525	515	340	309	243	328	378	334	352	340	243	226	184	178	142	133	4837
		SS	1.0000	0.0000	0.0000	1.0000	0.8065	0.7181	0.7391	0.8939	0.8770	0.9158	0.9439	0.9548	0.9591	0.9813	0.9864	0.9538	0.9856	0.9750	0.8796	0.8247	0.8649	
	PROP	END INV	-	0	0	4	25	163	170	118	107	87	101	169	164	157	145	124	137	117	95	80	64	2028
		BEG INV	-	0	0	4	31	227	230	132	122	95	107	177	171	160	147	130	139	120	108	76	74	2272
		CR	0.0000	1.0000	0.000	1.0000	0.9091	0.8171	0.7745	0.8235	0.9167	0.8750	0.9600	0.9909	0.9694	0.9732	0.9917	0.9552	0.9464	0.9706	0.8750	0.9583	0.9355	
PILOT	JET	END INV	0	1	0	2	10	143	62	70	99	35	72	109	95	109	120	64	53	33	35	23	29	1151
		BEG INV	0	-	0	5	11	175	102	85	72	40	75	110	98	112	121	29	26	34	40	24	31	1259
		CR	1.0000	0.0000	1.0000	0.0000	1.0000	0.8862	0.9126	0.9106	0.9304	0.9352	0.9863	1.0000	0.9692	1.0000	0.9861	0.9783	0.9355	0.9667	0.9000	0.8095	0.9643	
	HELO	END INV	9	0	2	0	6	109	167	112	107	101	144	91	63	80	71	45	29	29	27	17	27	1233
		_	က	0	2	0	6	123	183	123	115	108	146	91	65	80	72	46	31	30	30	21	28	1306
Fy81		YG	80	79	78	77	9/	75	74	73	72	71	70	69	89	67	99	65	64	63	62	61	09	

	Т		_	_	1		Τ-	_	1		_	T		_	_	_	_			T		_	_		_
			SR R	1.0000	1.0000	•	0.9773	0.9604	0.9293	0.8852	0.9498	0.9489	0.9735	0.9294	0.8978	0.9915	0.9759	0.9915	0.9565	0.9746	0.9880	0.9351	0.8200	0.9487	
		NFO	END INV	-	2	0	43	97	289	293	246	167	184	158	167	116	81	116	132	115	82	72	41	37	2439
			BEG INV	-	2	0	44	101	311	331	259	176	189	170	186	117	83	117	138	118	83	111	20	39	2592
			CR	1.0000	1.0000		1.0000	0.9655	0.9613	0.9124	0.9740	0.9537	0.9669	0.9340	0.9457	1.0000	0.9762	1.0000	0.9800	0.9670	1.0000	0.9355	0.8333	0.9333	
NFO		PROP	END INV	1	1	0	19	29	174	1771	150	103	117	66	87	29	41	70	98	88	54	58	30	28	1518
			BEG INV	1	1	0	19	58	181	194	154	108	121	106	85	29	42	20	100	91	54	62	36	30	1587
			CR	•	1.0000	-	0.9600	0.9535	0.8846	0.8467	0.9143	0.9412	0.9853	0.9219	0.8511	0.9800	0.9756	0.9787	0.8947	1.0000	0.9655	0.9333	0.7857	1.0000	
		JET	END INV	0	-	0	24	41	115	116	96	64	29	59	80	49	40	46	34	27	28	14	11	6	921
			BEG INV	0	-	0	25	43	130	137	105	89	99	64	94	20	41	47	38	27	29	15	14	တ	1005
Fy81			ΥĞ	80	79	78	77	9/	75	74	73	72	71	70	69	89	29	99	65	64	63	62	61	09	

			S S	0	1.0000	0.000	1.0000	0.5976	0.6563	0.7524	0.8018	0.8945	0.8438	0.9191	0.9429	0.9777	0.9696	0.9752	0.9697	0.9744	0.9719	0.9070	
	10	FILOI	END INV	0	-	0	12	98	338	319	263	373	405	352	363	351	255	236	192	190	173	195	4116
			BEG INV	0	1	0	12	164	515	424	328	417	480	383	385	359	263	242	198	195	178	215	4759
			SS	0	0	0	1.0000	0.4952	0.5923	0.6947	0.7426	0.8897	0.8043	0.9192	0.9425	0.9664	0.9586	0.9800	0.9760	0.9746	0.9587	0.8855	
	000	ב ה ה	END INV	0	0	0	4	25	138	132	101	121	185	182	164	144	139	147	122	115	116	116	1978
			BEG INV	0	0	0	4	105	233	190	136	136	230	198	174	149	145	150	125	118	121	131	2345
			CR	0	1.0000	0.000	1.0000	0.5909	0.6103	0.6939	0.7000	0.8247	0.8288	0.9231	0.9197	0.9932	0.9740	0.9500	0.9750	0.9778	1.0000	0.9318	
PILOT	T	ובו	END INV	0	-	0	5	13	83	89	42	80	121	108	126	147	75	57	39	44	28	41	1078
			BEG INV	0	-	0	5	22	136	98	09	26	146	117	137	148	77	90	40	45	28	44	1261
			25	0	0	0	1.0000	0.8919	0.8014	0.8750	0.9091	0.9348	0.9519	0.9118	0.9865	0.9677	1.0000	1.0000	0.9394	0.9688	1.0000	0.9500	
	0	212	END INV	0	0	0	3	33	117	119	120	172	66	62	73	09	41	32	31	31	29	38	1060
				0	0	0	က	37	146	136	132	184	104	99	74	62	41	32	33	32	29	40	1153
Fy79		Ç	5	78	7.1	9/	75	74	73	72	71	70	69	89	29	99	65	64	63	62	61	90	

_	-	_		,		_	_	_	,			1		_		_		,		_	,	
		S	•	1.0000		0.8603	0.8717	0.9060	0.8489	0.9395	0.9655	0.9227	0.9272	0.9787	0.9923	0.9868	0.9922	0.9885	0.9540	0.9508	0.9400	
	NFO	END INV CR	0	-	0	117	333	289	191	202	196	215	140	92	129	149	128	86	83	58	47	2456
		BEG INV	0	-	0	136	382	319	225	215	203	233	151	94	130	151	129	87	87	61	20	2654
		SS		1.0000	•	0.8548	0.8411	0.8978	0.8696	0.9485	0.9680	0.8926	0.9101	0.9592	1.0000	0.9907	0.9901	0.9831	0.9545	0.9362	0.9250	
NFO	PROP	END INV	0	-	0	53	180	167	120	129	121	108	81	47	75	106	100	58	63	44	37	1490
		BEG INV	0	-	0	62	214	186	138	136	125	121	88	49	75	107	101	69	99	47	40	1616
		CR	-	•		0.8649	0.9107	0.9173	0.8161	0.9241	0.9615	0.9554	0.9516	1.0000	0.9818	0.9773	1.0000	1.0000	0.9524	1.0000	1.0000	
	JET	END INV	0	0	0	64	153	122	71	73	75	107	59	45	54	43	28	28	20	14	10	996
		BEG INV	0	0	0	74	168	133	28	79	78	112	62	45	52	44	28	28	21	14	10	1038
Fy79		YG	78	11	76	22	74	73	72	71	70	69	68	67	99	65	64	63	62	61	60	

		SS	0.0000	0.0000	1.0000	1.0000	0.6957	0.6648	0.7528	0.8248	0.8846	0.9238	0.9423	0.9806	0.9634	0.9714	0.9709	0.9757	0.9784	0.9333	
	PILOT	END INV	0	0	-	4	112	359	335	433	206	400	392	353	263	238	200	201	181	224	4202
		BEG INV	0	0	-	4	161	540	445	525	572	433	416	360	273	245	206	206	185	240	4812
		CR	0.0000	0.0000	0.0000	1.0000	0.5904	0.6383	0.7204	0.8075	0.8868	0.9436	0.9492	0.9714	0.9577	0.9803	0.9704	0.9767	0.9766	0.9351	
	PROP	END INV	0	0	0	2	49	180	134	130	235	184	168	136	136	149	131	126	125	144	2029
		BEG INV	0	0	0	2	83	282	186	161	265	195	177	140	142	152	135	129	128	154	2331
		S S	0.000	0.0000	1.0000	0.0000	0.6667	0.5652	0.5979	0.7329	0.8534	0.8790	0.9359	0.9869	0.9524	0.9355	0.9722	0.9773	1.0000	0.9286	
PILOT	JET	END INV	0	0	1	0	24	65	28	107	163	138	146	151	80	58	35	43	27	39	1135
		BEG INV	0	0	1	0	36	115	26	146	191	157	156	153	84	62	36	44	12	42	1347
		CR	0.0000	0.0000	0.0000	1.0000	0.9286	0.7972	0.8827	0.8991	0.9310	0.9630	0.9398	0.9851	1.0000	1.0000	0.9714	0.9697	0.9667	0.9318	
	HELO	END INV	0	0	0	2	39	114	143	196	108	78	78	99	47	31	34	32	29	41	1038
		BEG INV	0	0	0	7	42	143	162	218	116	81	83	29	47	31	35	33	30	44	1134
Fy78		YG	77	92	75	74	73	72	71	70	69	89	29	99	65	64	63	62	61	90	

		CR	•	1,0000	1.0000	0.9249	0.9124	0.8830	0.8950	0.9289			0.9623	0.9627	0.9871	0.9924	1.0000	0.9451	0.9403	0.9804	
	NFO	END INV CR	0			197	302	234	213	209	238	158	102	129	153	130	86	86	63	20	2352
		BEG INV	0	1	1	213	331	265	238	225	246	169	106	134	155	131	86	91	29	51	2510
		SR		1.0000	•	0.9652	0.9243	0.9063	0.8851	0.9420	0.9685	0.9072	0.9636	0.9872	0.9906	0.9900	1.0000	0.9552	0.9423	0.9756	
NFO	PROP	END INV	0	-	0	111	171	145	131	130	123	88	53	11	105	66	58	64	49	40	1445
		BEG INV	0	1	0	115	185	160	148	138	127	26	55	78	106	100	58	29	52	41	1528
		CR		•	1.0000	0.8776	0.8973	0.8476	0.9111	0.9080	0.9664	0.9722	0.9608	0.9286	0.9796	1.0000	1.0000	0.9167	0.9333	1.0000	
	JET	END INV	0	0	1	98	131	89	82	79	115	70	49	25	48	31	28	22	14	10	206
		BEG INV	0	0	1	98	146	105	06	87	119	72	51	56	49	31	28	24	15	10	982
Fy78		χg	11	76	75	74	73	72	71	2	69	89	29	99	65	64	63	62	61	90	

		CR	0.0000	1.0000	0.000	1.0000	0.8230	0.8140	0.8279	0.9286	0.9439	0.9659	0.9840	0.9683	0.9689	0.9766	0.9860	0.9741	0.9839	
	PILOT	END INV	0	-	0	9	200	372	558	598	488	453	369	275	249	209	211	188	244	4421
		BEG INV	0	-	0	9	243	457	674	644	517	469	375	284	257	214	214	193	248	4796
		S S	0.0000	0.0000	0.0000	1.0000	0.7803	0.7833	0.7904	0.9257	0.9351	0.9652	0.9793	0.9583	0.9814	0.9779	0.9776	0.9701	0.9811	
	PROP	END INV	0	0	0	4	103	159	181	274	216	194	142	138	158	133	131	130	156	2119
		BEG INV	0	0	0	4	132	203	229	296	231	201	145	144	161	136	134	134	159	2309
		CR	0.0000	1.0000	0.000	1.0000	0.8000	0.6966	0.7850	0.9241	0.9375	0.9714	0.9877	0.9677	0.9231	0.9535	1.0000	1.0000	1.0000	
PILOT	JET	END INV	0	1	0	2	20	62	157	207	180	170	161	90	09	41	47	28	44	1270
	_	BEG INV	0	1	0	2	25	89	200	224	192	175	163	93	65	43	47	28	44	1391
		S.	0.0000	0.0000	0.0000	0.0000	0.8953	0.9152	0.8980	0.9435	0.9787	0.9570	0.9851	1.0000	1.0000	1.0000	1.0000	0.9677	0.9778	
	HELO	END INV	0	0	0	0	77	151	220	117	92	89	99	47	31	35	33	30	44	1032
		BEG INV	0	0	0	0	98	165	245	124	94	93	29	47	31	35	33	31	45	1096
Fy77		χc	76	75	74	73	72	71	20	69	89	29	99	65	64	63	62	61	09	

		/ ICR		1.0000	4 0.8000	7 0.9153	3 0.9101	3 0.9135	6 0.9004	7 0.9574			5 0.9854	0 0.9877	3 0.9925	8 0.9778	2 0.9892	L	2 0.9811	
	S P S	END INV CR				227	243	243	226	247		118	135	160	133	88	92	68	52	0000
		BEG INV	0	-	3	248	267	266	251	258	185	120	137	162	134	90	93	70	53	0000
		SS	-	•	1	0.9048	0.9182	0.9217	0.9007	0.9407	0.9903	0.9839	0.9873	6066'0	1.0000	1.0000	0.9853	0.9630	0.9767	
NFO	PROP	END INV	0	0	0	133	146	153	136	127	102	61	78	109	101	29	29	52	42	1266
		BEG INV	0	0	-	147	159	166	151	135	103	62	79	110	101	59	89	54	43	4438
		CR	,	1.0000	1.0000	0.9307	0.8981	0.9000	0.9000	0.9756	0.9878	0.9828	0.9828	0.9808	0.9697	0.9355	1.0000	1.0000	1.0000	
	JET	END INV	0	1	4	94	97	06	90	120	81	22	22	51	32	29	25	16	10	854
		BEG INV	0	1	4	101	108	100	100	123	82	58	28	52	33	31	25	16	10	205
Fy77		႒	9/	75	74	73	72	71	2	69	99	29	99	65	64	63	62	61	90	

APPENDIX B. SAMPLE MEAN VALUES

Table B-1. Mean Values for Full Sample of Aviators

Variable	Mean
CR%	91.0605968
ACP%	0.0450780
VSISSIB%	0.0240245
IRAD%	0.0180602
MSR2%	0.0418060
MSR3%	0.0418060
UNEMP%	6.6065775

Table B-2. Mean Values for Pilot Sample

Variable	Mean
CRPILOT%	85.6314223
ACP%	0.0443630
VSISSIB%	0.0209424
IRAD%	0.0141361
MSR2%	0.0392670
MSR3%	0.0392670
UNEMP%	6.6172775

Table B-3. Mean Values for NFO Sample

Variable	Mean
CRNFO%	91.4860112
ACP%	0.0421178
VSISSIB%	0.0267882
IRAD%	0.0227209
MSR2%	0.0420757
MSR3%	0.0420757
UNEMP%	6.6011220

Table B-4. Mean Values for Helo Pilot Sample

Variable	Mean
CRHELO%	92.2326705
ACP%	0.0500852
VSISSIB%	0.0237784
IRAD%	0.0153409
MSR2%	0.0426136
MSR3%	0.0426136
UNEMP%	6.6008523

Table B-5. Mean Values for Jet Pilot Sample

Variable	Mean
CRJET%	91.9451247
ACP%	0.0474792
VSISSIB%	0.0207479
IRAD%	0.0149584
MSR2%	0.0415512
MSR3%	0.0415512
UNEMP%	6.6102493

Table B-6. Mean Values for Prop Pilot Sample

Variable	Mean .
CRPROP%	88.2486957
ACP%	0.0436685
VSISSIB%	0.0221196
IRAD%	0.0146739
MSR2%	0.0407609
MSR3%	0.0407609
UNEMP%	6.6190217

Table B-7. Mean Values for Jet NFO Sample

Variable	Mean	
CRJNFO%	92.4948276	
ACP%	0.0466954	
VSISSIB%	0.0255747	
IRAD%	0.0232759	
MSR2%	0.0431034	
MSR3%	0.0431034	
UNEMP%	6.5870690	

Table B-8. Mean Values for Prop NFO Sample

Variable	Mean
CRNFO%	90.5215385
ACP%	0.0377534
VSISSIB%	0.0279452
IRAD%	0.0221918
MSR2%	0.0410959
MSR3%	0.0410959
UNEMP%	6.6145205

LIST OF REFERENCES

Cymrot, D.J., <u>Determining Continuation Rates For Pilots From The Officer Master File</u>, Center for Naval Analyses Research Memorandum, CRM 88-90 June 1988, The Center for Naval Analysis, Alexandria, Virginia, June 1988.

Cymrot, D.J., <u>Implementation Of The Aviation Continuation Pay (ACP) Program</u>, Center for Naval Analysis Research Memorandum, CRM 89-61 April 1989, The Center for Naval Analysis, Alexandria, Virginia, April 1989.

Cymrot, D.J., <u>The Size, Timing, And Policy Implications Of Pilot Endstrength Growth</u>, Center for Naval Analysis Research Memorandum, CRM 89-90 June 1989, The Center for Naval Analysis, Alexandria, Virginia, June 1989.

Gujarati, D.N., Basic Econometrics, 2nd Ed., McGraw-Hill, Inc., New York, 1988.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145	No. Copies 2
2.	Library, Code 52 Naval Postgraduate School Monterey, California 93943-5101	2
3.	Mark J. Eitelberg Department of Systems Management (SM/Eb) Naval Postgraduate School Monterey, CA 93943	1
4.	Stephen L. Mehay Department of Systems Management (SM/Mp) Naval Postgraduate School Monterey, CA 93943	2
5.	LT Russell S. Turner, USN 352 Sigwin Drive Fairfield, CT 06430	. 1