Description of columns from dataset documentation

Attributes:-

Row ID	int64				
Order ID	object				
Order Date	object				
Ship Date	object				
Ship Mode	object				
Customer ID	object				
Customer Name	object				
Segment	object				
Country	object				
City	object				
State	object				
Postal Code	float64				
Region	object				
Product ID	object				
Category	object				
Sub-Category	object				
Product Name	object				
Sales	float64				

reference of dataset:-

https://www.kaggle.com/datasets/rohitsahoo/sales-forecasting (https://www.kaggle.com/datasets/rohitsahoo/sales-forecasting)

IMPORTING LIBRARY

```
In [1]: import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
```

Reading dataset

```
In [2]: df = pd.read_csv('train.csv')
```

Out[3]:

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	City	
0	1	CA- 2017- 152156	08/11/2017	11/11/2017	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson	
1	2	CA- 2017- 152156	08/11/2017	11/11/2017	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson	
2	3	CA- 2017- 138688	12/06/2017	16/06/2017	Second Class	DV-13045	Darrin Van Huff	Corporate	United States	Los Angeles	
3	4	US- 2016- 108966	11/10/2016	18/10/2016	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale	
4	5	US- 2016- 108966	11/10/2016	18/10/2016	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale	
9795	9796	CA- 2017- 125920	21/05/2017	28/05/2017	Standard Class	SH-19975	Sally Hughsby	Corporate	United States	Chicago	
9796	9797	CA- 2016- 128608	12/01/2016	17/01/2016	Standard Class	CS-12490	Cindy Schnelling	Corporate	United States	Toledo	
9797	9798	CA- 2016- 128608	12/01/2016	17/01/2016	Standard Class	CS-12490	Cindy Schnelling	Corporate	United States	Toledo	
9798	9799	CA- 2016- 128608	12/01/2016	17/01/2016	Standard Class	CS-12490	Cindy Schnelling	Corporate	United States	Toledo	
9799	9800	CA- 2016- 128608	12/01/2016	17/01/2016	Standard Class	CS-12490	Cindy Schnelling	Corporate	United States	Toledo	
9800 rows × 18 columns											

In [4]: df.head()

Out[4]:

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	City	
0	1	CA- 2017- 152156	08/11/2017	11/11/2017	Second Class	CG-12520	C l aire Gute	Consumer	United States	Henderson	Κŧ
1	2	CA- 2017- 152156	08/11/2017	11/11/2017	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson	Κŧ
2	3	CA- 2017- 138688	12/06/2017	16/06/2017	Second Class	DV-13045	Darrin Van Huff	Corporate	United States	Los Angeles	Cŧ
3	4	US- 2016- 108966	11/10/2016	18/10/2016	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale	
4	5	US- 2016- 108966	11/10/2016	18/10/2016	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale	
•											>

In []: ## we can see there is 9800 rows 18 columns

In [5]: df.shape

Out[5]: (9800, 18)

```
In [6]: | df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 9800 entries, 0 to 9799
         Data columns (total 18 columns):
          #
              Column
                             Non-Null Count Dtype
              -----
                              _____
              Row ID
          0
                             9800 non-null
                                              int64
              Order ID
          1
                             9800 non-null
                                              object
                             9800 non-null
          2
              Order Date
                                              object
          3
              Ship Date
                             9800 non-null
                                              object
          4
              Ship Mode
                             9800 non-null
                                              object
          5
              Customer ID
                             9800 non-null
                                              object
          6
              Customer Name
                             9800 non-null
                                              object
          7
              Segment
                             9800 non-null
                                              object
              Country
          8
                             9800 non-null
                                              object
          9
              City
                             9800 non-null
                                              object
          10
              State
                             9800 non-null
                                              object
                             9789 non-null
                                              float64
          11
              Postal Code
          12 Region
                             9800 non-null
                                              object
          13
              Product ID
                             9800 non-null
                                              object
                             9800 non-null
          14 Category
                                              object
              Sub-Category
                             9800 non-null
                                              object
                             9800 non-null
          16
              Product Name
                                              object
          17
             Sales
                             9800 non-null
                                              float64
         dtypes: float64(2), int64(1), object(15)
         memory usage: 1.3+ MB
In [36]: | ## In above cell we can obserb there is 2 float values, 1 integer value, 15 object
```

Checking the null values in dataset

```
In [7]: df.isnull().sum()
Out[7]: Row ID
                            0
         Order ID
                            0
         Order Date
                            0
                            0
         Ship Date
                            0
         Ship Mode
         Customer ID
                            0
         Customer Name
                            0
                            0
         Segment
                            0
         Country
                            0
         City
                            0
         State
                           11
         Postal Code
         Region
                            0
                            0
         Product ID
                            0
         Category
                            0
         Sub-Category
         Product Name
                            0
         Sales
                            0
         dtype: int64
```

```
In [8]: | df.drop(['Row ID', 'Order ID', 'Postal Code', 'Product ID'], inplace=True, axis=1)
 In [9]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 9800 entries, 0 to 9799
         Data columns (total 14 columns):
          #
              Column
                             Non-Null Count Dtype
          ---
          0
              Order Date
                              9800 non-null
                                              object
              Ship Date
                             9800 non-null
                                              object
          1
           2
              Ship Mode
                             9800 non-null
                                              object
                             9800 non-null
          3
              Customer ID
                                              object
              Customer Name 9800 non-null
                                             object
          5
              Segment
                             9800 non-null
                                              object
          6
              Country
                             9800 non-null
                                             object
          7
              City
                             9800 non-null
                                             object
          8
              State
                             9800 non-null
                                             object
          9
              Region
                             9800 non-null
                                              object
          10 Category
                             9800 non-null
                                              object
          11 Sub-Category
                             9800 non-null
                                              object
          12 Product Name
                             9800 non-null
                                              object
                             9800 non-null
                                              float64
          13 Sales
          dtypes: float64(1), object(13)
         memory usage: 1.0+ MB
In [10]: |df.dtypes
Out[10]: Order Date
                            object
         Ship Date
                            object
         Ship Mode
                            object
         Customer ID
                            object
         Customer Name
                            object
         Segment
                            object
         Country
                            object
         City
                            object
         State
                            object
         Region
                            object
         Category
                            object
         Sub-Category
                            object
         Product Name
                            object
         Sales
                           float64
         dtype: object
In [11]: df.columns
Out[11]: Index(['Order Date', 'Ship Date', 'Ship Mode', 'Customer ID', 'Customer Name',
                 'Segment', 'Country', 'City', 'State', 'Region', 'Category',
                 'Sub-Category', 'Product Name', 'Sales'],
                dtype='object')
In [14]: df.shape
Out[14]: (9800, 14)
```

```
In [16]: | df.drop(['Ship Date', 'Customer ID', 'Customer Name', 'Product Name'], inplace=True, axis=1
In [17]: df.shape
Out[17]: (9800, 10)
In [18]: df.isnull().sum()
Out[18]: Order Date
         Ship Mode
                         0
         Segment
                         0
         Country
                         0
         City
                         0
         State
         Region
                         0
         Category
         Sub-Category
                         0
         Sales
                         0
         dtype: int64
In [ ]: | ## In avobe cell there is no null value
         Checking dublicate values in dataset
In [19]: df.duplicated().sum()
Out[19]: 2
In [37]: ### Droping duplicate value
In [20]: df.drop_duplicates(inplace=True)
```

In [21]: df.duplicated().sum()

Out[21]: 0

EDA

In [31]: sns.heatmap(df.corr(),annot=True)
 plt.show()


```
In [24]: sns.countplot(data=df,x='Segment')
    plt.title('Segment')
    plt.show()
```



```
In [26]: sns.countplot(data=df,x='Ship Mode')
plt.title('Ship MOde')
plt.show()
```


• items can be send through the standard class is more

```
In [27]: sns.countplot(data=df,x='Category')
plt.title('Category')
plt.show()
```


• In the category of the Items the office supplies is more than other

```
In [30]: sns.countplot(data=df,x='Sub-Category')
    plt.title('Sub-Category')
    plt.xticks(rotation=90)
    plt.show()
```



```
In [22]: Category = df.groupby(['Region',"Category"], as_index=False).agg({'Sales': "sum"})
    Category.head
    #so.Plot(data= Region, x="Region", y= "Sales", alpha = 'Category').add(so.Bar())
    sns.barplot(data=Category, x="Region", y="Sales", hue="Category")
    plt.show()
```


- in east region technology have more sales
- in south region furniture ,office supplies, Technology have less sales

```
In [32]: Category = df.groupby(['Region',"Category"], as_index=False).agg({'Sales': "mean"})
    Category.head
    #so.Plot(data= Region, x="Region", y= "Sales", alpha = 'Category').add(so.Bar())
    sns.barplot(data=Category, x="Region", y="Sales", hue="Category")
    plt.show()
```


- In all regions technology have high sales and specially in south region technology have more sales
- in all the region office supplies have less sales

```
In [33]: Category = df.groupby(['Region',"Category"], as_index=False).agg({'Sales': "max"})
    Category.head
    #so.Plot(data= Region, x="Region", y= "Sales", alpha = 'Category').add(so.Bar())
    sns.barplot(data=Category, x="Region", y="Sales", hue="Category")
    plt.show()
```


- In south region technology have maximum sales
- In west region furniture have less sales

```
In [34]: Category = df.groupby(['Region',"Category"], as_index=False).agg({'Sales': "min"})
    Category.head
    #so.Plot(data= Region, x="Region", y= "Sales", alpha = 'Category').add(so.Bar())
    sns.barplot(data=Category, x="Region", y="Sales", hue="Category")
    plt.show()
```


- in west region furniture sales is more than office supplies and technology
- office supply sales is very less in central region

```
In [35]: Category = df.groupby(['Region',"Category"], as_index=False).agg({'Sales': "median"})
    Category.head
    #so.Plot(data= Region, x="Region", y= "Sales", alpha = 'Category').add(so.Bar())
    sns.barplot(data=Category, x="Region", y="Sales", hue="Category")
    plt.show()
```


• Furniture has more sales in all region

In [41]: df["Ship Mode"].value_counts().plot.pie()
 plt.show()

From the above plot we can easily see that-

• items can be send through stadard class is more

```
In [23]: Region = df.groupby(['Region'], as_index=False).agg({'Sales': "sum"})
Region.head
#sns.color_palette(palette= 'bright')
#so.Plot(data= Region, x="Region", y= "Sales").add(so.Bar())
#sns.lineplot(x='year',y= 'Sales', data= Region, hue='Region')
plt.pie(Region['Sales'],labels=Region['Region'], autopct='%1.1f%%')
#Region.plot.pie(y='Sales')
plt.title("Sales by region")
plt.show()
```

Sales by region

From the above plot we can easily see that-

West region has high sales among all the region

```
In [ ]:
```