ML INFOSEC 2: Probability Theory

January 22, 2019

Notation and Set Theory I

- Ø: the empty set.
- $\mathbb{N} = \{1, 2, 3, \dots\}$: the set of natural numbers.
- \bullet \mathbb{R} : the field of real numbers.
- $x \in A$: x is element of A.
- $x \notin A$: x is not element of A.
- $A \subseteq B$: A is subset of B.
- $2^A = \{B \mid B \subseteq A\}$: power set of A.
- $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$: the union of A and B.
- $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$: the intersection of A and B.
- A and B are disjoint if $A \cap B = \emptyset$.

Notation and Set Theory II

- $A \setminus B = \{x \mid x \in A, x \notin B\}$ set difference.
- If $A \subseteq X$, $A^c = X \setminus A$ complement of A in X.
- $X = A \cup A^c$, $A \cap A^c = \emptyset$.
- $(A^c)^c = A$.
- $(A \cap B)^c = A^c \cup B^c$, $(A \cup B)^c = A^c \cap B^c$.
- $\bullet \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
- |A| (or #A) denotes the (cardinal) number (of elements) of a set A.
- $A \times B = \{(x, y) \mid x \in A, y \in B\}$ the Cartesian product of A and B.

Finite probability spaces I

Let Ω be finite, non-empty set.

Definition

A function $P:2^\Omega \to [0,1]$ is called a probability measure (distribution) on Ω if

- $P(\emptyset) = 0, P(\Omega) = 1$
- If A and B are disjoint subsets of Ω , then $P(A \cup B) = P(A) + P(B)$

Definition

A pair (Ω, P) with a probability measure P on Ω is called a probability space. Subsets of Ω are called events.

Finite probability spaces II

Lemma

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Proof.

$$A \cup B = A \cup (B \setminus A)$$
 and $A \cap (B \setminus A) = \emptyset$, thus

$$P(A \cup B) = P(A) + P(B \setminus A).$$

Moreover,

$$B = (B \setminus A) \cup (A \cap B)$$
 and $(B \setminus A) \cap (A \cap B) = \emptyset$, so

$$P(B) = P(B \setminus A) + P(A \cap B).$$

Probability vectors

Let $\Omega = \{1, \dots, n\}$, P a probability measure on Ω and define

$$p_i = P(\{i\}), 1 \le i \le n.$$

Then $0 \le p_i \le 1$, $\sum_i p_i = 1$ and

$$P(A) = \sum_{i \in A} p_i.$$

Definition

A row-vector $p=(p_1,...,p_n)\in\mathbb{R}^n$ is called a probability vector if

- $0 \le p_i \le 1$ for all $i \in \{1, ..., n\}$,
- $\sum_{i=1}^{n} p_i = 1$.

Examples

• Fair dice: $\Omega = \{1, 2, 3, 4, 5, 6\}$. For an event $A \subseteq \Omega$ we have

$$P(A) = \frac{|A|}{|\Omega|} = \frac{|A|}{6};$$

- $p = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}) = \text{uniform distribution on } \Omega.$
- f 2 Card game: Let $f \Omega$ be set of all cards of a standard 52-card deck and ${\cal A}$ be the set of all kings. Then

$$P(A) = \frac{4}{52} = \frac{1}{13}.$$

Conditional probability I

Definition

If P(B) > 0, then

$$P(A \mid B) := \frac{P(A \cap B)}{P(B)}$$

is called the conditional probability of A, given B.

Conditional probability II

Lemma

If
$$0 < P(B) < 1$$
, then

$$P(A) = P(A \mid B)P(B) + P(A \mid B^c)P(B^c)$$

Proof.

$$P(A \mid B)P(B) + P(A \mid B^{c})P(B^{c}) = P(A \cap B) + P(A \cap B^{c})$$

$$= P((A \cap B) \cup (A \cap B^{c}))$$

$$= P(A \cap (B \cup B^{c}))$$

$$= P(A \cap \Omega) = P(A)$$

Conditional probability III: Examples

• Fair dice. $A = \{2, 4, 6\}$, $B = \{3, 4, 5\}$. Then $A \cap B = \{4\}$, i.e. $P(A \cap B) = 1/6$, P(B) = 1/2, thus

$$P(A \mid B) = 1/3.$$

② Draw two cards without replacement from a standard 52-card deck. Let A=1st card is ace and B=2nd card is ace. Then P(A)=4/52 and $P(B\mid A)=3/51$, thus

$$P(A \cap B) = P(B \mid A)P(A) = \frac{4}{52} \frac{3}{51} = \frac{1}{221}.$$

Bayes theorem

Theorem

If P(A), P(B) > 0, then

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}.$$

Proof.

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A \mid B)P(B)}{P(A)}.$$

Example: Medical diagnosis problem

Let D be a disease such that $P(D) = 0.008, P(\neg D) = 0.992$ and Test T for D with the following properties

$$P(T pos | D) = 0.98$$
 $P(T neg | D) = 0.02$
 $P(T pos | \neg D) = 0.03$ $P(T neg | \neg D) = 0.97$

How large is $P(D \mid T \text{ is pos})$?

$$P(D \mid T pos) = \frac{P(T pos \mid D)P(D)}{P(T pos)} = \frac{0.98 \times 0.008}{P(T pos)}$$

$$P(T pos) = P(T pos | D)P(D) + P(T pos | \neg D)P(\neg D)$$

= 0.98 × 0.008 + 0.03 × 0.992
= 0.00784 + 0.02976 = 0.0376

Thus

$$P(D \mid T pos) = \frac{0.00784}{0.0376} = 0.2085.$$

