Dhaka University of Engineering & Technology (DUET), Gazipur

Department of Computer Science and Engineering (CSE)

Course Title: Microprocessor & Interfacing Sessional (CSE-3812)

:: Lab: 02

Familiarizing with MDA 8086 trainer Kit Commands in Serial Monitor Mode.

Objectives:

- To familiarize with the operation of MDA-8086 in "Serial Monitor" mode.
- To learn the procedure of loading a program in RAM of MDA-8086 in "Serial Monitor" mode.

Basic Theory:

8086 and a computer. So as to use serial monitor, we have to move jumper P1 which located Serial monitor is the basic monitor program to perform data communication between MDAon the PCB like this.

observe the contents of different registers in the LCD. On the other hand, users can load instructions/programs from the computer via serial port in Serial Monitor Mode.

On a power-up, the following message will be displayed on a LCD.

MDA-8086 Kit		Serial moment
Wides 2109-5964	ŏ	Midas 2109-5964

To use "Serial Monitor" mode, move jumper P1 which is located on the PCB like this.

Connect the serial interface of the MDA-8086 with the computer (PC) interface and run the WinComm program in PC and press the RES key to change the mode of MDA-8086 trainer Kit.

Operation of serial monitor command

the user types command and then CR (carriage return) key. If there is no command at the serial monitor, an error Users can only use commands which are stored at the serial monitor. Serial monitor can execute to command when message will be displayed with a bell sound and the serial monitor prompt will be displayed again.

HELP Command

E segment: offset Enter Data to Memory
D segment: offset length Dump Memory Contents
R [register name]Register Display & Change
M address1, length, address2 Move Memory From 1 to 2
Faddress, length, dataFill Memory with any Data
L Return Key Program Download
G Segment : offset Execute Program
I Program 1 step execute

Basic Command Syntax:

Memory Modify Command

Syntax: E segment: offset

Purpose: This command is used to enter data to memory.

Example:

8086> E 0000:1000 ₽

0000:1000 FF? 11

0000:1001 FF? 22

0000:1002 FF? 33

0000:1003 FF? 44 0000:1004 FF? 55

0000:1005 FF? / (Offset decrement)

Memory Display Command 0000:1004 55?

Syntax: D segment: offset

Purpose: This command is used to display the data stored in memory.

Example:

8086> D 0000:1000

0000:1020 PF FF 0000:1000 11 22 33 44 55 FF FF FF FF FF FF FF FF FF FF

Display Register Command 3

Syntax: R

Purpose: The R command is used to display the 8086 processor registers

Example:

8086> R

_
BX=0000 CX=0000

To Change individual register:

8086 > R AX

AX= 0000 1234

8086 > R BX

BX= 0000 4567

8086 > R CX

CX= 0000 7788

8086 > R DX

DX= 0000 1111

4. Program download and execute command:

The L command moves object data in hex format from an external device to memory.

8086> L ↔

Download start!! (Note: See section 5. Serial monitor experiment)

:14100000B800008ED88EC0BB00208B078A6F028A4F038BB6

:101014003E8B5604268B76068B7E088B1E0A20CCCC

:0E20000012345678ABCDF0146853B1C41020E2

:00000001FF

OK completed!!

8086>R IP Set IP A

IP=1000

CX=7788 BX=4567 AX=1234 → L<9808

DX=1111

DI=0000 CS=0000 ...t... 0000=IS SS=0000 BP=0000 ES=0000 FL=0100 DS=0000 SP=0540 IP=1003

Next address

Execute Program Command

A

Execute Address = 0000:10008086> G 0000:1000 ↔

Task to do:

Write Assembly Language Program using notepad to transfer the following hexa-decimal values to the specified

registers:

AX=3789 h, BX= AB9F h, CX=C25A h, DX= B21C h

Then, ADD the value of AX with BX and SUBTRACT the value of DX from CX. MOV the content from AX to BX and CX to DX. Then, make an AND operation using the updated contents of AX and CX.

Experiment Procedure:

- Write the above program in notepad and save the file as "filename.asm". Place this file in the folder where "masm.exe" exists.
- Go to the command prompt and execute "masm.exe". You will see the following message Microsoft (R) Macro Assembler Version 5.10 Copyright (C) Microsoft Corp 1981, 1988. All right reserved. Source filename [.ASM]: 3
- Follow the procedure given below to prepare machine code for your program: Object filename [C: file name.OBJ]: Press ENTER Source listing [NUL.LST]: filename Press ENTER Source filename [.ASM]: filename Press ENTER Cross reference [NUL.CRF]: Press ENTER ç,
- Execute "LOD186.exe". You will see the following Copyright (C) 1983 - 1986 Microtec Research Inc. ALL RIGHT RESERVED. message Paragon LOD186 Loader-Version 4.0h Object/Command File [.OBJ]: 4
- Follow the procedure given below to prepare HEX (ABS) file for your program: Š.

[C:filename.ABS]: Press ENTER Press ENTER Press ENTER [C:NUL.MAP] filename [.OBJ] Object/Command File Output Object File Map Filename

**LOAD COMPLETE

- Turn on the 8086 microprocessor kit.
- Open the "Wincomm" window. Press "L" then "Enter". You will see the following message: 9.7
- ** Serial Monitor 1.0 **
- 8086 >L Press ENTER ** Midas 335-0964/5 Down load start!!
- Strike PgUp or F3 key of your keyboard. A new window will appear. Locate the "filename.ABS" file and open it. ∞:
 - You will observe that file download has started. A message like the following one will be shown: 14100000B800008ED88EC0BB00208B078A6F028A4F038BB6 ;101014003E8B5604268B76068B7E088B1E0A20CCCC ;0E20000012345678ABCDF0146853B1C41020E2 6

:00000001FF

OK completed!!

After loading the program, run the program in (press T command or G from the keyboard, then press enter) in MDA-8086 kit and ensure the display output and verify the calculated value of different registers. Perform theoretical calculations and verify results and fill-up the given data table. 10

Seg. Address	Offset Address	Machine Code	Instruction