WEEK 10 Orange

Nama: Rizki Ramadhan

NIM : 1103213091

Paint data Pola ke 1

SVM

Decision Tree

XGB

Random Forest

Hasil Predection

	lasses in data	v (Show	classification errors										Restore Ori
Logistic Regression	(1) (1) error	Neural Network (1) (1)	error	Gradient Boosting	error	Tree erro	r Random Forest	error	SVM er	ror	Class	х	у	
0.62:0.38 → C1	0.625	0.10:0.90 - C2	0.100	0.00: 1.00 - C2 (0.001	0.12:0.88 - C2 0.121	0.00: 1.00 - C2	0.000	0.01: 0.99 → C2 0.00	06 C2		0.540404	0.612763	
0.62 : 0.38 - C1	0.616	0.06:0.94 C2	0.065	0.00: 1.00 - C2 0	0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.00:1.00 → C2 0.00	3 C2		0.532699	0.570442	
0.63 : 0.37 → C1	0.626	0.06 : 0.94 C2	0.060	0.00 : 1.00 → C2	0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.00:1.00 → C2 0.00	03 C2		0.454925	0.572684	
0.62:0.38 → C1	0.616	0.08:0.92 - C2	0.078	0.00 : 1.00 C2 0	0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.00 : 1.00 → C2 0.00	14 (2		0.542559	0.575855	
0.62: 0.38 → C1	0.621	0.05:0.95 - C2	0.047	0.00: 1.00 C2 (0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.00 : 1.00 → C2 0.00	00 (2		0.49526	0.57386	
0.61:0.39 - C1	0.611	0.06:0.94 - C2	0.057	0.00 : 1.00 C2 (0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.00: 1.00 - C2 0.00	00 62		0.52409	0.545984	
0.63: 0.37 C1	0.626	0.05:0.95 - C2	0.050	0.00 : 1.00 - C2	0.001	0.12:0.88 - C2 0.121	0.00:1.00 - C2	0.000	0.00 : 1.00 → C2 0.00	3 62		0.498934	0.595571	
0.61: 0.39 → C1	0.610	0.13:0.87 - C2	0.131	0.00 : 1.00 C2 (0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.01: 0.99 → C2 0.00	07 (2		0.572788	0.567163	
0.64: 0.36 → C1	0.635	0.09:0.91 - C2	0.091	0.00 : 1.00 C2 (0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.01:0.99 - C2 0.00	06 02		0.49925	0.636493	
0 0.63: 0.37 → C1	0.626	0.05:0.95 - C2	0.048	0.00:1.00 C2 0	0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.00 : 1.00 → C2 0.00	00 C2		0.480459	0.584712	
1 0.63: 0.37 - C1	0.629	0.08:0.92 - C2	0.081	0.00: 1.00 - C2 (0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.00: 1.00 → CZ 0.00	5 62		0.519254	0.620206	
2 0.62: 0.38 - C1	0.616	0.05:0.95 - C2	0.054	0.00 : 1.00 → C2 0	0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.00 : 1.00 → C2 0.00	00 (2		0.521361	0.56516	
3 0.61:0.39 → C1	0.612	0.06:0.94 C2	0.062	0.00 : 1.00 → C2	0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.00 : 1.00 → C2 0.00	00 02		0.471644	0.521904	
4 0.62:0.38 → C1	0.624	0.08:0.92 - C2	0.082	0.00 : 1.00 C2	0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.00 : 1.00 → C2 0.00	14 C2		0.435207	0.554947	
5 0.60: 0.40 - C1	0.602	0.08:0.92 C2	0.075	0.00 : 1.00 - C2 0	0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 - C2	0.000	0.00:1.00 → C2 0.00	3 62		0.536743	0.516529	
6 0.61:0.39 → C1	0.610	0.06: 0.94 - C2	0.057	0.00 : 1.00 - C2 0	0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.00: 1.00 - C2 0.00	00 02		0.48905	0.523002	
7 0.59: 0.41 → C1	0.588	0.15:0.85 - C2	0.148	0.00 : 1.00 C2	0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.01:0.99 - C2 0.00	18 02		0.526521	0.452961	
8 0.59: 0.41 C1	0.586	0.15:0.85 - C2	0.152	0.00: 1.00 - C2 (0.001	0.12:0.88 - C2 0.121	0.03:0.97 - C2	0.029	0.01: 0.99 - C2 0.01	1 02		0.540098	0.449478	
9 0.63:0.37 - C1	0.628	0.10:0.90 - C2	0.104	0.00 : 1.00 C2 (0.001	0.12 : 0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.01:0.99 - C2 0.00	7 62		0.537032	0.623029	
0 0.61: 0.39 - C1	0.612	0.07:0.93 - C2	0.068	0.00 : 1.00 C2 0	0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.00 : 1.00 → C2 0.00	3 62		0.538026	0.557653	
1 0.62:0.38 → C1	0.619	0.10:0.90 - C2	0.098	0.00 : 1.00 C2 (0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.01:0.99 - C2 0.00	5 (2		0.549937	0.593074	
2 0.62: 0.38 - C1	0.625	0.05 : 0.95 - C2	0.047	0.00 : 1.00 C2 (0.001	0.12 : 0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.00 : 1.00 → C2 0.00	00 02		0.490182	0.587027	
3 0.62: 0.38 - C1	0.616	0.05:0.95 - C2	0.051	0.00 : 1.00 - C2 (0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.00 : 1.00 → C2 0.00	00 02		0.470804	0.539601	
4 0.63 : 0.37 C1	0.626	0.05:0.95 - C2	0.048	0.00:1.00 C2 (0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 - C2	0.000	0.00 : 1.00 → C2 0.00	00 02		0.478919	0.58451	
5 0.61: 0.39 - C1	0.610	0.05 : 0.95 C2	0.055	0.00 : 1.00 C2 0	0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 → C2	0.000	0.00 : 1.00 → C2 0.00	0 (2		0.496354	0.527329	
6 0.62:0.38 - C1	0.624	0.06:0.94 - C2	0.057	0.00 : 1.00 - C2 (0.001	0.12:0.88 - C2 0.121	0.00 : 1.00 C2	0.000	0.00:1.00 - C2 0.00	3 0		0.455686	0.565189	
7 0.59 : 0.41 C1	0.593	0.20:0.80 - C2	0.198	0.00 : 1.00 - C2 (0.001	0.12 : 0.88 - C2 0.121	0.13 : 0.87 → C2	0.129	0.01:0.99 - C2 0.01	3 62		0.463106	0.439669	
8 0.60: 0.40 C1	0.596	0.10:0.90 - C2	0.096	0.00 : 1.00 - C2 (0.001	0.12:0.88 - C2 0.121			0.00 : 1.00 → C2 0.00	14 62		0.526778	0.48468	
9 0.61:0.39 - C1	0.608	0.07:0.93 - C2	0.068		0.001	0.12 : 0.88 - C2 0.121	-		0.00 : 1.00 → C2 0.00	500		0.536611	0.537879	
0.60 : 0.40 → C1	0.599	0.08:0.92 - C2	0.082	0.00 : 1.00 → C2 (0.001	0.12 : 0.88 - C2 0.121	0.00 : 1.00 C2	0.000	0.00 : 1.00 C2 0.00	4 69		0.532578	0.50067	

Model	AUC	CA	F1	Prec	Recall	MCC
Logistic Regression (1) (1)	0.610	0.595	0.468	0.386	0.595	-0.142
Neural Network (1) (1)	1.000	1.000	1.000	1.000	1.000	1.000
Gradient Boosting	1.000	1.000	1.000	1.000	1.000	1.000
Tree	0.959	0.949	0.950	0.955	0.949	0.899
Random Forest	1.000	0.997	0.997	0.997	0.997	0.994
SVM	1.000	1.000	1.000	1.000	1.000	1.000

Berdasarkan hasil yang ditampilkan, **Logistic Regression** menunjukkan performa yang buruk dengan AUC hanya 0.610, akurasi 59,5%, F1 score 0.468, dan MCC negatif (-0.142), yang berarti model ini tidak efektif dalam membedakan kelas positif dan negatif. Precision yang sangat rendah (0.386) menunjukkan banyaknya kesalahan dalam mengklasifikasikan kelas negatif sebagai positif, meskipun recall yang lebih tinggi (0.595) menunjukkan model lebih baik dalam mendeteksi kelas positif.

Sebaliknya, Tree, Random Forest, Gradient Boosting, Neural Network (1), dan SVM menunjukkan performa yang sangat baik dengan AUC, akurasi, F1 score, precision, recall, dan MCC yang hampir sempurna (semua mencapai 1.000). Model-model ini mampu mengklasifikasikan hampir semua data dengan benar dan seimbang dalam mendeteksi kedua kelas, menjadikannya pilihan terbaik untuk tugas klasifikasi ini. Oleh karena itu, model-model seperti Gradient Boosting dan SVM lebih disarankan, sementara Logistic Regression perlu ditingkatkan atau diganti dengan model yang lebih kuat..

Scatter Plot

Logistic Regression

SVM

Decision Tree

XGB

Random Forest

Paint data pola ke 2

Hasil Predictions

Model	AUC	CA	F1	Prec	Recall	МСС
Logistic Regression (1) (1) (1)	1.000	1.000	1.000	1.000	1.000	1.000
Neural Network (1) (1) (1)	1.000	0.996	0.996	0.996	0.996	0.992
Gradient Boosting (1)	1.000	1.000	1.000	1.000	1.000	1.000
Tree (1)	0.969	0.965	0.965	0.965	0.965	0.929
Random Forest (1)	1.000	0.996	0.996	0.996	0.996	0.992
SVM (1)	1.000	0.996	0.996	0.996	0.996	0.992

Berdasarkan hasil evaluasi model yang ditampilkan, dapat dilihat bahwa sebagian besar model menunjukkan kinerja yang sangat baik dengan nilai AUC, CA, F1, Precision, Recall, dan MCC mendekati 1.0, yang menandakan bahwa model tersebut berhasil mengklasifikasikan data dengan sangat akurat. Logistic Regression, Neural Network, Gradient Boosting, Random Forest, dan SVM semuanya mencapai skor sempurna (1.000) untuk AUC, CA, F1, Precision, dan Recall, menunjukkan bahwa model-model ini dapat memprediksi kelas dengan tingkat kesalahan yang sangat rendah. Tree model sedikit lebih rendah performanya dengan AUC 0.969, CA 0.965, dan MCC 0.929, yang masih tergolong sangat baik meskipun ada sedikit penurunan dibandingkan model lainnya.

Scatter Plot

Logistic Regression

SVM

Decision Tree

XGB

Random Forest

Paint data pola ke 3

Hasil predictions

Model	AUC	CA	F1	Prec	Recall	MCC
Logistic Regression (1) (1) (1)	0.809	0.725	0.708	0.710	0.725	0.328
Neural Network (1) (1) (1) (1)	1.000	0.987	0.987	0.988	0.987	0.971
Gradient Boosting (1) (1)	1.000	1.000	1.000	1.000	1.000	1.000
Tree (1) (1)	0.912	0.877	0.880	0.902	0.877	0.759
Random Forest (1) (1)	1.000	1.000	1.000	1.000	1.000	1.000
SVM (1) (1)	1.000	1.000	1.000	1.000	1.000	1.000

Hasil evaluasi model menunjukkan perbedaan kinerja yang signifikan antar model dalam hal AUC, CA, F1, Precision, Recall, dan MCC. Model Gradient Boosting, Random Forest, dan SVM memiliki performa yang sangat baik dengan nilai 1.000 di hampir semua metrik, mencerminkan kemampuannya dalam mengklasifikasikan data dengan tingkat kesalahan yang sangat rendah. Neural Network juga menunjukkan hasil yang sangat kuat dengan nilai AUC, CA, F1, Precision, dan Recall mendekati 1.000, meskipun sedikit lebih rendah dibandingkan dengan model Random Forest dan SVM. Sebaliknya, Logistic Regression mengalami penurunan yang signifikan dengan skor AUC 0.809, CA 0.725, dan F1 0.708, menunjukkan bahwa model ini kurang efektif dalam mengklasifikasikan data pada masalah ini.

Pada sisi lain, Tree model menunjukkan kinerja yang lebih baik dibandingkan Logistic Regression dengan nilai AUC 0.912, CA 0.877, dan F1 0.880, meskipun masih berada jauh di bawah model-model seperti Gradient Boosting, Random Forest, dan SVM. Meskipun Tree lebih unggul dibandingkan Logistic Regression, ia masih tidak sebanding dengan kinerja model-model ensemble dan SVM yang secara konsisten menghasilkan skor sempurna. Secara keseluruhan, model-model berbasis ensemble seperti Random Forest, Gradient Boosting, dan SVM memberikan kinerja terbaik, sementara Logistic Regression dan Tree menunjukkan performa yang lebih rendah, dengan Logistic Regression terutama membutuhkan perbaikan untuk dapat bersaing pada tingkat ini.

Scatter Plot

Logistic Regression

SVM

Decision Tree

XGB

Random Forest

