Дискретная математика 2 семестр ПИ, Π екции

Собрано 19 февраля 2022 г. в 13:39

Содержание

1.	Кодирование информации	1
	1.1. Задача об оптимальном префиксном коде	1
	1.2. Неравенство Крафта	3

Раздел #1: Кодирование информации

1.1. Задача об оптимальном префиксном коде

Пусть Λ – произвольное конечное множество (алфавит), $a \in \Lambda$ – символы. Пусть $\forall a \in \Lambda \ \exists l(a) \in \mathbb{N}, \exists c(a) = \{0,1\}^{l(a)}$ – кодовая последовательность a, где l(a) – длина.

Очевидно, условие $\forall a, b \in \Lambda \to (a \neq b \Rightarrow c(a) \neq c(b))$ не является достаточным для однозначного распознавания символов.

Def 1.1.1. Код называется префиксным, если $\forall a,b \in \Lambda$ $c(a) = \omega \Rightarrow \not\equiv m \in \mathbb{N}_0 : c(b) = \omega \gamma$, где $\gamma \in \{0,1\}^m$

Пусть $\forall a \in \Lambda$ соответствует вероятность p(a) появления этого символа в сообщении. $\sum_{a \in \Lambda} p(a) = 1$ и считаем $\forall a \in \Lambda$ p(a) > 0.

Введем дискретную случайную величину $l: \forall a \in \Lambda \ Pr\{l=l(a)\} = p(a)$ – длина кодовой последовательности символа в сообщении.

Def 1.1.2. Оптимальным называется префиксный код, минимизирующий математическое ожидание $l: \mathbb{E} l = \sum_{a \in \Lambda} l(a)p(a)$

Чем чаще встречается символ, тем короче должна быть кодовая последовательность.

Почему вообще ОПК существует? Известно, что $\mathbb{E}l \geqslant 1$ (в каждой кодовой последовательности должен быть хотя бы один символ). Всегда можно сделать префиксный код, в котором все символы имеют одинаковые длины кодовых последовательностей и эти последовательности различны ($\forall a \in \Lambda \ l(a) = \lceil \log_2(|\Lambda|) \rceil$), т.е. префиксный код существует и матожидание длины кодовой последовательности ограничено.

- <u>Lm</u> 1.1.3. Если в некотором коде C существует $x \in \Lambda : c(x) = \omega \alpha$, где $\alpha \in \{0,1\}$ и при этом $\not\equiv y \in \Lambda, y \neq x : c(y) = \omega \gamma$, где $\gamma \in \{0,1\}^k$ (то есть, если ω не является началом никакой другой кодовой последовательности, кроме c(x)), то код $C' : c'(x) = \omega, \forall y \in \Lambda, y \neq x \ c' = c(y)$ будет префиксным (по построению и условию леммы) и $\mathbb{E}l' = \mathbb{E}l p(x)l(x) + p(x)(l(x) 1) = \mathbb{E}l p(x) < \mathbb{E}l$. Тогда код C точно не мог быть оптимальным.
- <u>Lm</u> 1.1.4 (Лемма о кратчайшем префиксе). Если в префиксном коде $C \exists a, b \in \Lambda, a \neq b : p(a) < p(b), l(a) < l(b)$, то такой код не оптимален.

Доказательство. Проверим, что для кода C', в котором c'(a) = c(b), c'(b) = c(a) и $\forall x \in \Lambda : x \neq a, x \neq b$ c'(x) = c(x) верно $\mathbb{E}l - \mathbb{E}l' > 0$.

$$\mathbb{E}l - \mathbb{E}l' = p(a)l(a) + p(b)l(b) - p(a)l(b) - p(b)l(a) = (p(a) - p(b))(l(a) - l(b)) > 0$$

<u>Lm</u> 1.1.5 (Лемма о соседстве самых редких символов). Пусть $a, b \in \Lambda, a \neq b$ – символы с намиеньшими вероятностями ($\forall x \in \Lambda \ p(x) \geqslant p(b) \geqslant p(a)$). Тогда $\exists \ \text{ОПK} : c(a) = \omega 0, c(b) = \omega 1$, где $\exists k \in \mathbb{N}_0 : \omega \in \{0,1\}^k$ и это самые длинные кодовые последовательности.

Доказательство. Пусть C' – ОПК. По лемме о кратчайшем префиксе a и b имеют самые длинные кодовые последовательности в C': $\forall x \in \Lambda, x \neq a, x \neq b \ l'(a) \geqslant l'(b) \geqslant l'(x)$

Если $c(a) = \omega \gamma, \omega \in \{0,1\}^{l'(b)}, \gamma \in \{0,1\}^{l'(a)-l'(b)}$ и ω не является началом никакой кодовой последовательности (т.к. остальные кодовые последовательности не длиннее ω и $\not\equiv$ символа с кодовой последовательностью ω в силу префиксности C') \Rightarrow можно сократить кодовую последовательность a, создав более оптимальный код (?!).

 \Rightarrow из оптимальности C' следует l(a) = l(b). Пусть $c'(b) = \omega 1$, тогда, если $\exists x \in \Lambda : c'(x) = \omega 0$, то построим ОПК $C : c(a) = c'(x), c(x) = c'(a), \forall z \in \Lambda, z \neq a, z \neq x \ c(z) = c'(z)$.

Если $\nexists x \in \Lambda : c'(x) = \omega 0$, то построим ОПК $C : c(a) = \omega 0, \forall z \in \Lambda, z \neq a \ c(z) = c'(z)$.

<u>Lm</u> 1.1.6 (Лемма об ОПК для расширенного алфавита). Пусть $a,b \in \Lambda, a \neq b$ — символы с намиеньшими вероятностями. $\Lambda' = \Lambda \setminus \{a,b\} \cup \{ab\}$, где $ab \notin \Lambda$, p(ab) = p(a) + p(b). Пусть C'

– ОПК для $\Lambda', c'(\underline{ab}) = \omega$. Тогда для Λ код $C: c(a) = \omega 0, c(b) = \omega 1, \forall x \in \Lambda, x \neq a, x \neq b$ c(x) = c'(x) будет ОПК.

Доказательство. $l(a)p(a)+l(b)p(b)=(l'(\underline{ab})+1)(p(a)+p(b))=l'(\underline{ab})p(\underline{ab})+p(\underline{ab})$. Тогда $\mathbb{E}l=\mathbb{E}l'+p(\underline{ab})$.

Пусть \overline{C} – ОПК для Λ и $\mathbb{E}\overline{l}$ < $\mathbb{E}l$. По лемме о соседстве: $\overline{c}(a) = \gamma 0, \overline{c}(b) = \gamma 1$. Построим \overline{C}' для $\Lambda': \overline{c}'(ab) = \gamma$ и $\forall x \in \Lambda, x \neq a, x \neq b$ $\overline{c}'(x) = \overline{c}(x)$.

 \overline{C}' – префиксный? По Лемме о кратчайшем префиксе $\not\equiv$ символа с кодовой последовательностью длины > $\overline{l}(a)$. Никакой символ не мог иметь кодовую последовательность γ , т.к. \overline{C} префиксный. Единственные две последовательности длины $\overline{l}(a)$, начинающиеся на γ – это коды a и b. Но их нет в Λ' . При этом $\mathbb{E}\overline{l} = \mathbb{E}\overline{l}' = p(-ab_-)$. По предположению $\mathbb{E}l' + p(-ab_-) = \mathbb{E}l > \mathbb{E}\overline{l} = \mathbb{E}\overline{l}' + p(-ab_-)$

(?!) оптимальности
$$C'\Rightarrow \mathbb{E}\bar{l}\geqslant \mathbb{E}l$$
, но т.к. $\overline{C}-\mathrm{O}\Pi\mathrm{K}\Rightarrow \mathbb{E}\bar{l}=\mathbb{E}l$ и $C-\mathrm{O}\Pi\mathrm{K}$.

Задача: нужно построить ОПК на алфавите Λ , $|\Lambda| = M$. По лемме об ОПК для расширенного алфавита задачу построения ОПК можно свести к такой же задаче, но с исходным алфавитом с числом букв на единицу меньше, и с набором вероятностей, получющимся из первоначального сложением двух наименьших вероятностей.

Уменьшаем пока не получится алфавит из двух букв. ОПК для алфавита из 2-х букв – $\{0,1\}$. Строже: $\Lambda_0 := \Lambda$. $\forall k \in 0...(M-3)$ берем $a_k, b_k \in \Lambda_k$: $\forall x \in \Lambda_k, x \neq a_k, x \neq b_k$ $p(a_k) \leq p(b_k) \leq p(x)$ и построим $\Lambda_{k+1} = \Lambda_k \setminus \{a_k, b_k\} \cup \{a_k b_k\}...$

Для $\Lambda_{M-2} = \{a_{M-2}, b_{M-2}\}$ оптимальным будет код $C_{M-2} : c_{M-2}(a_{M-2}) = 0, c_{M-2}(b_{M-2}) = 1$, т.к. для него $\mathbb{E}l_{M-2} = 1$.

Теперь для $k \in 1...(M-2)$ есть ОПК C_k для Λ_k . По лемме об ОПК для расширенного алфавита строится ОПК C_{k-1} для Λ_{k-1} такой, что $c_{k-1}(a_{k-1}) = c_k(a_{k-1}b_{k-1})0$, $c_{k-1}(b_{k-1}) = c_k(a_{k-1}b_{k-1})1$, $\forall x \in \Lambda_k, x \neq a_{k-1}b_{k-1}$ $c_{k-1}(x) = c_k(x)$.

Выполняем, пока не получится C_0 – ОПК для Λ_0 = Λ .

Пример 1.1.7. $\Lambda_0 = \{a, b, c, d, e, f, g\}, p(a) = 0.13, p(b) = 0.08, p(c) = 0.25, p(d) = 0.18, p(e) = 0.03, p(f) = 0.12, p(g) = 0.21.$

$$a_0$$
, = e, b_0 = b, Λ_1 = $\{a, \underbrace{e, b}, c, d, f, g\}, p(a)$ = $0.13, p(\underbrace{eb})$ = $0.11, p(c)$ = $0.25, p(d)$ = $0.18, p(f)$ =

$$0.12, p(g) = 0.21.$$
 $a_1 = \underbrace{eb}, b_1 = f, \Lambda_2 = \{a, \underbrace{ebf}, c, d, g\}, p(a) = 0.13, p(\underbrace{ebf}) = 0.23, p(c) = 0.25, p(d) = 0.18, p(g) = 0.21.$ $a_2 = a, b_2 = d, \Lambda_3 = \{\underbrace{ad}, \underbrace{ebf}, c, g\}, p(\underbrace{ad}) = 0.31, p(\underbrace{ebf}) = 0.23, p(c) = 0.25, p(g) = 0.21.$ $a_3 = g, b_3 = \underbrace{ebf}, \Lambda_4 = \{\underbrace{ad}, \underbrace{gebf}, c\}, p(\underbrace{ad}) = 0.31, p(\underbrace{gebf}) = 0.44, p(c) = 0.25.$ $a_4 = c, b_4 = \underbrace{ad}, \Lambda_5 \{\underbrace{cad}, \underbrace{gebf}\}, p(\underbrace{cad}) = 0.56, p(\underbrace{gebf}) = 0.44.$ Тогда $c_5(\underbrace{gebf}) = 0, c(\underbrace{cad}) = 1.$ Теперь раскрываем алфавит обратно:

$$c_4(gebf) = 0, c_4(c) = 10, c_4(ad) = 11.$$

$$c_3(g) = 00, c_3(\underbrace{ebf}) = 01, c_3(c) = 10, c_3(\underbrace{ad}) = 11.$$

$$c_1(g) = 00, c_1(eb) = 010, c_1(f) = 011, c_1(c) = 10, c_1(a) = 110, c_1(d) = 111.$$

$$c_0(g) = 00, c_0(e) = 0100, c_0(b) = 0101, c_0(f) = 011, c_0(c) = 10, c_0(a) = 110, c_0(d) = 111.$$

1.2. Неравенство Крафта

Пусть задан набор длин $l_1, ..., l_m$, не все обязательно различны. Может ли такой набор оказаться набором длин некоторого префиксного кода.

Теорема 1.2.1. Для того, чтобы набор длин $l_1, ..., l_m$ мог быть набором длин кодовых последовательностей некоторого ПК для алфавита из m символов необходимо и достаточно, чтобы $\sum_{i=1}^{m} 2^{-l_i} \le 1$.