ECE2 Mathématiques

HEC 2009

Exercice avec préparation 1

On étudie la vente d'un certain type de produit sur internet sur trois sites A, B, C et on fait les constatations suivantes :

- si un client choisit le site A pour un achat, il choisit indifféremment A, B ou C pour l'achat suivant,
- si un client fait un achat auprès du site B, il fait l'achat suivant sur le même site B,
- si un client fait un achat sur le site C, il choisira pour l'achat suivant le site A avec une probabilité 1/12, le site B avec une probabilité 7/12 et le site C avec une probabilité 1/3.

Au départ le client choisit au hasard l'un des trois sites.

On suppose que l'expérience est modélisée par un espace probabilisé (Ω, \mathcal{A}, P) .

Pour $n \in \mathbb{N}^*$, on désigne par p_n , q_n et r_n les probabilités pour que, au n-ième achat, le client se fournisse respectivement auprès de A, B et C.

- 1. Question de cours : Enoncer la formule des probabilités totales.
- 2. Quelles sont les valeurs de p_1 , q_1 et r_1 ?
- 3. Pour tout $n \in \mathbb{N}^*$, donner une relation entre p_n , q_n et r_n .
- 4. Exprimer respectivement p_{n+1} , q_{n+1} et r_{n+1} en fonction des trois réels p_n , q_n et r_n .
- **5.** Pour $n \ge 2$, exprimer p_n en fonction de r_n et r_{n-1} .
- 6. Prouver que la suite $(r_n)_{n\in\mathbb{N}^*}$ est une suite récurrente linéaire. Donner l'expression de r_n , puis p_n et q_n en fonction de n.
- 7. Étudier la convergence des trois suites (r_n) , (p_n) et (q_n) .

Exercice sans préparation 1

Donner un exemple de matrice M non nulle telle que $(I, M, {}^tM)$ soit une famille liée. Dans quel cas de telles matrices sont diagonalisables?

Exercice avec préparation 2

- 1. Question de cours : Loi géométrique, espérance et variance.
- 2. Soit x un réel de]0;1[.
 - a) Établir, pour tout $n \in \mathbb{N}^*$, l'égalité :

$$\int_0^x \frac{1 - t^n}{1 - t} = \sum_{k=1}^n \frac{x^k}{k}$$

- **b)** Montrer que $\lim_{n\to+\infty} \int_0^x \frac{t^n}{1-t} dt = 0.$
- c) En déduire la convergence de la série de terme général $\frac{x^k}{k}$ ainsi que l'égalité :

$$\sum_{k=1}^{+\infty} \frac{x^k}{k} = -\ln(1-x).$$

3. Soit X une variable aléatoire réelle définie sur un espace probabilisé (Ω, \mathcal{A}, P) qui suit une loi géométrique de paramètre p (0 .

On pose
$$Y = \frac{1}{X}$$
.

- a) Déterminer $Y(\Omega)$ et la loi de probabilité de Y.
- b) Établir, pour tout entier m de \mathbb{N}^* , l'existence du moment d'ordre m, $\mathbb{E}(Y^m)$, de Y.
- c) Calculer $\mathbb{E}(Y)$ en fonction de p.

Exercice sans préparation 2

Soit la matrice
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ -1 & 4 \end{pmatrix}$$
.

- 1. Existe-t-il $B \in \mathcal{M}_{2,3}(\mathbb{R})$ telle que $AB = I_3$?
- 2. Existe-t-il $C \in \mathcal{M}_{2,3}(\mathbb{R})$ telle que $CA = I_2$?

ECE2 Mathématiques

Exercice avec préparation 3

On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 = 3, \ u_1 = \frac{29}{9} \text{ et } \forall n \in \mathbb{N}, \ u_{n+2} = 9 - \frac{26}{u_{n+1}} + \frac{24}{u_n u_{n+1}}.$$

- 1. Question de cours : Enoncer les résultats concernant les suites récurrentes linéaires d'ordre 2.
- 2. Écrire une fonction en Pascal permettant de calculer la valeur du terme u_n pour tout $n \in \mathbb{N}$ entré par l'utilisateur.
- 3. Montrer qu'il existe une unique suite réelle $(a_n)_{n\in\mathbb{N}}$ à valeurs dans \mathbb{N}^* telles que :

$$\begin{cases} a_0 = 3 \\ \forall n \in \mathbb{N}, \ u_n = \frac{a_{n+1}}{a_n} \\ \forall n \in \mathbb{N}, \ a_{n+3} = 9a_{n+2} - 26a_{n+1} + 24a_n \end{cases}$$

- 4. Prouver que pour tout $n \in \mathbb{N}$, $a_n = 2^n + 3^n + 4^n$.
- **5.** Expliciter u_n en fonction de n, puis $\lim_{n\to+\infty} u_n$.

Exercice sans préparation 3

Soient X_1 et X_2 deux variables aléatoires définies sur un espace probabilisé (Ω, \mathcal{A}, P) , indépendantes et de lois géométriques de paramètres p_1 et p_2 respectivement $(p_i \in]0; 1[$ pour i = 1, 2). On pose $U = X_1 + X_2$ et $T = X_1 - X_2$.

- a) On suppose $p_1 \neq p_2$. Les variables aléatoires U et T sont-elles indépendantes?
- b) On suppose $p_1 = p_2 = p$. Les variables aléatoires U et T sont-elles indépendantes?

Exercice avec préparation 4

Soient
$$(a, b, c) \in \mathbb{R}^3$$
 et $A = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$.

On pose N = A - I et $M = N^2 - N'$ (où I désigne la matrice identité de $\mathcal{M}_3(\mathbb{R})$.

Soient u et v les endomorphismes de \mathbb{R}^3 canoniquement associés aux matrices N et M.

- 1. Question de cours : Matrices semblables, définition et propriétés.
- 2. Étudier la diagonalisabilité de A.
- 3. Montrer que A est inversible et exprimer A^{-1} en fonction de I et de M.
- 4. On suppose dans cette question que le rang de u est égal à 2.
 - a) Montrer l'existence d'un vecteur x de \mathbb{R}^3 tel que $\mathcal{B} = (u^2(x), u(x), x)$ soit une base de \mathbb{R}^3 .

En déduire que
$$N$$
 est semblable à $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

- b) Exprimer la matrice de v dans la base \mathcal{B} et en déduire que M et N sont semblables.
- c) Conclure que A et A^{-1} sont aussi semblables.

Exercice sans préparation 4

Soit X une variable aléatoire que suit la loi de Poisson de paramètre $\lambda > 0$. On désigne l'espérance par E.

- 1. Établir l'existence de $E\left(\frac{1}{1+X}\right)$.
- 2. Montrer que $E\left(\frac{1}{1+X}\right) \leqslant \min\left(1, \frac{1}{\lambda}\right)$.

ECE2 Mathématiques

Exercice avec préparation 5

Une urne contient des boules blanches, noires et rouges. Les proportions respectives de ces boules sont b pour les blanches, n pour les noires et r pour les rouges (b + n + r = 1).

On effectue dans cette urne des tirages successifs indépendants avec remise. Les proportions de boules restent ainsi les mêmes au cours de l'expérience.

On modélise l'expérience par un espace probabilisé (Ω, \mathcal{A}, P) .

- 1. Question de cours : Loi d'un couple de variables aléatoires discrètes. Lois marginales.
- 2. Pour $k \in \mathbb{N}^*$, on note Z_k la variable aléatoire qui prend la valeur +1 si une boule blanche est tirée au k-ième tirag, -1 si une boule noire est tirée au k-ième tirage et 0 si une boule rouge est tirée au k-ième tirage. On note $S_k = Z_1 + \cdots + Z_k$.
 - a) Trouver la loi de probabilité de S_1 . Calculer son espérance et sa variance. En déduire l'espérance et la variance de S_k .
 - **b)** Pour tout réel t strictement positif et pour tout k de \mathbb{N}^* , on pose $g_k(t) = E\left(t^{S_k}\right)$. Expliciter $g_k(t)$ en fonction de t et de k.
 - c) Montrer que $g'_k(1) = \mathbb{E}(S_k)$ et retrouver le résultat de la question (a).
- 3. a) On note X_1 la variable aléatoire représentant le numéro du tirage auquel une boule blanche sort pour la première fois. Trouver la loi de probabilité de X_1 . Calculer son espérance et sa variance.
 - b) Sachant que $X_1 = k$, quelle est la probabilité de tirer une boule rouge à chacun des k-1 premiers tirages?
 - c) On note W la variable aléatoire représentant le nombre de boules rouges tirées avant l'obtention de la première boule blanche. Quelle est la loi conditionnelle de W sachant $X_1 = k$?
 - d) En déduire la loi de W (sous forme d'une somme qu'on ne cherchera pas à calculer).
- 4. On note Y_1 la variable représentant le numéro du tirage auquel une boule noire sort pour la première fois.
 - a) Trouver, pour tout couple d'entiers strictement positifs (k,l), la probabilité de l'évènement $[X_1 = k , Y_1 = l]$ (on pourra distinguer selon que k > l, k = l ou k < l). Les variables aléatoires X_1 et Y_1 sont-elles indépendantes?
 - b) On se place, pour cette question, dans le cas particulier où r=0 (c'est-à-dire qu'il n'y a pas de boule rouge). Calculer alors la covariance de X_1 et Y_1 .

Exercice sans préparation 5

Soient $n \ge 2$ et $(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n - \{(0, \ldots, 0)\}.$

On pose
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
, puis $B = {}^t XX$ et $A = X^t X$.

- 1. Écrire la matrice B.
- 2. Déterminer les vecteurs propres et les sous-espaces propres de la matrice A.