Cálculo Numérico - IME/UERJ

Lista de Exercícios 3 - Matemática - Raízes de funções

- 1. Considere o polinômio $p(x) = (x-1)(x-2,5)^2(x-4)^3$ Quais zeros não podem ser determinadas usando o método da bisseção? Justifique a sua resposta.
- 2. Determine um intervalo [a, b] para iniciar o cálculo de $\ln(10)$ usando o método da bisseção. Explique. Quantas iterações são necessárias para obter $\ln(10)$ com erro menor ou igual a 10^{-3} ?
- 3. Considere a função $f(x)=xe^{0.5x}+1,2x-5=0$ representada no gráfico. Para obter o zero de f(x) pelo método do Ponto Fixo, as seguintes funções de iteração foram propostas:

I.
$$g_a(x) = \frac{5 - xe^{0.5x}}{1.2}$$
; II. $g_b(x) = \frac{5}{e^{0.5x} + 1.2}$; III. $g_c(x) = \frac{5 - 1.2x}{e^{0.5x}}$.

- (a) Dentre as funções de iteração propostas acima, qual é a mais adequada para gerar uma sequência de valores convergentes para o zero de f(x)? **Justifique**.
- (b) Com a função escolhida e assumindo $x_0 = 1, 5$, o valor da raiz será obtido com uma tolerância de 5×10^{-4} após quantas iterações? **Justifique**.
- 4. As funções de iterações $\varphi_1(x) = \frac{x^2}{2} 2x + 4$ e $\varphi_2(x) = \frac{x^2}{2} 2$, 5x + 5 geram sequências convergentes para a raiz para qualquer aproximação inicial $x_0 \in (3/2, 3)$. Qual das duas funções converge mais rápido para esta raiz? Justifique a resposta.
- 5. No cálculo das raízes de $f(x) = e^{-2x} + x^2 4 = 0$, pelo método do ponto fixo (ou iteração linear), fazem-se as transformações para as seguintes funções de iteração: $\varphi_1(x) = \pm \sqrt{4 e^{-2x}} \; ((+) \; \text{para a raiz positiva e } (-)) \; \text{para a raiz negativa};$

$$\varphi_1(x) = \pm \sqrt{4 - e^{-2x}}$$
 ((+) para a raiz positiva e (-)) para a raiz nega $\varphi_2(x) = -\frac{1}{2}\ln(4-x^2)$.

- (a) Obtenha, graficamente ou usando o teorema do valor intermediário, boas estimativas iniciais para as duas raízes r_1 e r_2 .
- (b) Indique, sem iteragir, qual função de iteração irá convergir para cada raiz. Justifique.
- (c) Pelo método de Newton-Raphson, calcule as raízes de f(x) com erro menor que 0,0001 a partir dos respectivos valores iniciais obtidos no item (a).

1

- 6. Determine as raízes das funções a seguir usando o Método de Newton-Raphson com tolerância $\varepsilon \leq 1 \cdot 10^{-4}$.
 - (a) $f_1(x) = \sqrt{x} e^{-x}$.

- (d) $f_4(x) = \text{sen}(x) x^2$.
- (b) $f_2(x) = \ln(x) x + 2$.
- (e) $f_5(x) = x/4 \cos(x)$.

(c) $f_3(x) = e^{x/2} - x^3$.