REPORT DELIVERABLE 3

Nome: Chiacchia Matteo

Matricola: 0300177

Email: matteoch99@gmail.com

DECISIONE PROGETTUALE PRESA TRAMITE TECNICA CBAM

Introduzione

Obiettivo: documentare una decisione progettuale (in questo caso su un linguaggio di programmazione) presa tramite la tecnica *CBAM*

Progetto considerato : The fridge

Progetto della triennale di ISPW

Link Github:

https://github.com/ValerioCristofori/thefridge-web

Avere un 'frigorifero' online per tener traccia degli alimenti utilizzando l'applicazione.

CBAM (Cost Benefit Analysis Method): 8 step

- Decisione : Linguaggio di programmazione da utilizzare per implementare l'applicazione
- Linguaggio che permetta di avere Desiderability più alta

- Definire **attributi di qualità** del Progetto.
- Dare un valore ad ogni attributo di qualità in modo tale che la somma totale sia 100

Importance
25
20
20
15
10
10

- Valutare ogni *alternativa* per ogni *attributo di qualità*
- Il valore dato è nel range [-1; 1]
 - Maggiore è il valore, meglio l'alternativa si comporta per quell'attributo

Java

Performance: 0.5
Security: 0.2
Modifiability: -0.1
Availability: 0.2
Interoperability: -0.1

Integrability : 0.2

Python

Performance: -0.2

Security: -0.1

Modifiability : 0.5

Availability: 0.2

Interoperability : 0.2

Integrability : 0.3

PHP

Performance: 0.3

Security: 0.1

Modifiability : -0.3

Availability : 0.6

Interoperability : -0.2

Integrability: 0.1

- Valutare il *rischio* per ogni **alternativa**
 - *Rischio* come esposizione a conseguenze indesiderate
- Il valore dato è nel range [0; 1]
 - Maggiore è il valore, maggiore è il rischio, peggiore l'alternativa.

Alternatives	Risk
Java	0.4
Pyhton	0.3
PHP	0.5

• Calcolo del *Benefit* per ogni alternativa

$$Benefit(AS_i) = (\sum_j (AS_{ij} * QAscore_j)) * |Risk_i - 1|$$

Alternatives	Benefit
Java	11.1
Pyhton	7.7
PHP	5.75

• Valutazione del *costo* per ogni **alternativa**

Alternatives	Cost
Java	100\$
Pyhton	70\$
PHP	85\$

• Calcolo della *desiderability* per ogni alternativa

$$Desirability(ASi) = Benefit(ASi)/Cost(ASi)$$

Alternatives	Cost
Java	0.111
Pyhton	0.110
PHP	0.068

Conclusioni

- Evidente che *Java* e *Python* siano entrambe due valide alternative
 - Java ha un valore leggermente superiore Linguaggio migliore da utilizzare per il nostro caso
- PHP ha un valore di Desiderability inferiore
 - Scartato