Math334 HW #2 Solution

Dr. Michael Li

Page 31-32.

9. Solve IVP:

$$y' - y = 2te^{2t}, \quad y(0) = 1.$$

Solution. Step 1. Find the general solution. This is a linear DE, the IF $\mu(t) = e^{-t}$. Multiplying $\mu(t)$ both sides of the DE we obtain

$$e^{-t}y' - e^{-t}y = 2te^t (1)$$

$$\frac{f}{dt}(e^{-t}y) = 2te^t \tag{2}$$

$$e^{-t}y = 2\int te^t dt = 2\int td(e^t) = 2(te^t - \int e^t dt) = 2te^t - 2e^t + c.$$
 (3)

Therefore, the general solution is $y(t) = 2te^{2t} - 2e^{2t} + ce^{t}$.

Step 2. Find the value of c from initial condition by setting t=0 in the general solution:

$$1 = y(0) = -2 + c$$
, thus $c = 3$.

The unique solution to the IVP is $y(t) = 2te^{2t} - 2e^{2t} + 3e^{t}$.

12. Solve

$$ty' + (t+1)y = t$$
, $y(\ln 2) = 1$, $t > 0$.

Solution. Rewrite the equation in standard form

$$y' + \frac{t+1}{t}y = 1.$$

The IF is

$$\mu(t) = e^{\int \frac{1+t}{t} dt} = e^{\ln t + t} = e^{\ln t} e^t = t e^t.$$

Multiplying $\mu(t)$ to both sides of the standard form we obtain

$$te^t y' + (te^t + e^t)y = te^t (4)$$

$$(te^t y)' = te^t (5)$$

$$te^t y = \int te^t dt = te^t - e^t + c. \tag{6}$$

Therefore the general solution is given as

$$y(t) = 1 - \frac{1}{t} + \frac{c}{t}e^{-t}.$$

To determine the value of c, we let $t = \ln 2$ in the general solution,

$$1 = y(\ln 2) = 1 - \frac{1}{\ln 2} + \frac{c}{\ln 2}e^{\ln 2},$$

this gives c = 2, and thus the unique solution to the IVP is

$$y(t) = 1 - \frac{1}{t} + \frac{2}{t}e^{-t}, \quad t > 0.$$

21. Consider the IVP

$$y' - \frac{3}{2}y = 3t + 2e^t$$
, $y(0) = y_0$.

Find the value of y_0 that separate solutions that grow positively as $t \to \infty$ from those that grow negatively.

Solution. Solve the IVP. Multiplying IF $e^{-3t/2}$ to both sides

$$e^{-3t/2}y' - \frac{3}{2}e^{-3t/2}y = 3te^{-3t/2} + 2e^{-t/2}$$
(7)

$$(ye^{-3t/2})' = 3te^{-3t/2} + 2e^{-t/2}$$
(8)

$$ye^{-3t/2} = 3\int te^{-3t/2}dt + 2\int e^{-t/2}dt = -2te^{-3t/2} - \frac{4}{3}e^{-3t/2} - te^{-t/2} + c.$$
(9)

Therefore, the general solution is

$$y(t) = -2t - \frac{4}{3} - 4e^t + ce^{3t/2}.$$

Setting t = 0, we obtain

$$y_0 = y(0) = -\frac{4}{3} - 4 + c,$$

and thus $c = y_0 + \frac{16}{3}$, and the solution to the IVP is

$$y(t) = -2t - \frac{4}{3} - 4e^t + (y_0 + \frac{16}{3})e^{3t/2}.$$

We can observe the following

- 1. If $y_0 + 16/3 > 0$, then, as $t \to \infty$, the solution y(t) is dominated by $(y_0 + 16/3)e^{3t/2}$ and grows positively like $e^{3t/2}$.
- 2. If $y_0 + 16/3 < 0$, then the solution is negative for all t and grows negatively like $-e^{3t/2}$ as $t \to \infty$.

Thus the critical value of y_0 is -16/3. Furthermore, when $y_0 = -16/3$, the solution grows negatively like $-e^t$.

Page 38-39.

2. Solve

$$y' + y^2 \sin x = 0.$$

Solution. Rewrite as

$$\frac{dy}{dx} = -y^2 \sin x.$$

This is a separable DE. Assuming that $y \neq 0$, separate the variables and integrate

$$\int \frac{1}{y^2} dy = -\int \sin x dx \tag{10}$$

$$-\frac{1}{y} = \cos x + c \tag{11}$$

Therefore, the general solution is

$$y(x) = -\frac{1}{\cos x + c}.$$

Note: We can verify that $y \equiv 0$ is also a solution of the DE and it is not included in the general solution by choosing a value for c.

6. Solve the DE

$$y' = \frac{x^2}{1 + y^2}.$$

Solution. This is a separable DE. Separation of variables and integration

$$\int (1+y^2)dy = \int x^2 dx \tag{12}$$

$$y + \frac{y^3}{3} = \frac{x^3}{3} + c. ag{13}$$

The general solution is defined implicitly by the equation

$$x^3 - y^3 - 3y = c.$$

28. Solve the DE

$$\frac{dy}{dx} = \frac{4y - 3x}{2x - y}.$$

Solution. (a) The right-hand function

$$f(x,y) = \frac{4y - 3x}{2x - y}$$

is homogeneous of degree 0. In fact, for $\lambda \neq 0$,

$$f(\lambda x, \lambda y) = \frac{4\lambda y - 3\lambda x}{2\lambda x - \lambda y} = \frac{4y - 3x}{2x - y} = f(x, y).$$

(b). Make the change of variables u = y/x, and thus y = xu. Differentiating both sides y' = u + xu'. Substitution, we obtain a DE for u

$$u + x\frac{du}{dx} = \frac{4ux - 3x}{2x - ux} = \frac{4u - 3}{2 - u}.$$
 (14)

$$x\frac{du}{dx} = \frac{4u - 3}{2 - u} - u = \frac{u^2 + 2u - 3}{2 - u}.$$
 (15)

This is a separable equation. Separation of variables and integration

$$\int \frac{2-u}{u^2 + 2u - 3} du = \int \frac{1}{x} dx \tag{16}$$

$$\int \frac{2-u}{(u+3)(u-1)} du = \ln|x| + c \tag{17}$$

$$\int \left[-\frac{5}{4(u+3)} + \frac{1}{4(u-1)} \right] du = \ln|x| + c \tag{18}$$

$$-\frac{5}{4}\ln|u+3| + \frac{1}{4}\ln|u-1| = \ln|x| + c \tag{19}$$

$$\ln \frac{|u-1|}{|u+3|^5} = 4\ln|x| + c$$
(20)

$$\frac{|u-1|}{|u+3|^5} = cx^4 \ (c>0) \tag{21}$$

Change back to y by substituting u = y/x

$$\frac{|y/x - 1|}{|y/x + 3|^5} = cx^4.$$

Page 67. 2. Phase-line analysis for the autonomous DE

$$\frac{dy}{dt} = y(y-1)(y-2), \quad y_0 \ge 0.$$

Solution. The DE has three equilibria (constant solutions):

$$x_1 = 0, \quad x_2 = 1, \quad x_3 = 2.$$

The graph of the vector field f(y) = y(y-1)(y-2) is shown in Figure, and we see that

$$f(y) \text{ is } \begin{cases} > 0, & \text{if } 2 < y \\ < 0, & \text{if } 1 < y < 2 \\ > 0, & \text{if } 0 < y < 1 \\ < 0, & \text{if } y < 0. \end{cases}$$

Therefore,

- 1. solutions near y=2 moves away from y=2 and the equilibrium y=2 is unstable;
- 2. solutions near y = 1 moves towards y = 1 and the equilibrium y = 1 is stable;
- 3. solutions near y=0 moves away from y=0 and the equilibrium y=0 is unstable;

The sketches of solutions are shown in Figure.

