

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年 4月16日

出願番号 Application Number: 特願2003-111719

[ST. 10/C]: [JP2003-111719]

出願人 Applicant(s): 株式会社デンソー

2004年 1月30日

特許庁長官
Commissioner,
Japan Patent Office

今井康泰

【書類名】 特許願

【整理番号】 IP07928

【提出日】 平成15年 4月16日

【あて先】 特許庁長官殿

【国際特許分類】 B60H 1/00

【発明者】

【住所又は居所】 愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【氏名】 穂満 敏伸

【発明者】

【住所又は居所】 愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【氏名】 大村 充世

【特許出願人】

【識別番号】 000004260

【氏名又は名称】 株式会社デンソー

【代理人】

【識別番号】 100100022

【弁理士】

【氏名又は名称】 伊藤 洋二

【電話番号】 052-565-9911

【選任した代理人】

【識別番号】 100108198

【弁理士】

【氏名又は名称】 三浦 高広

【電話番号】 052-565-9911

【選任した代理人】

【識別番号】 100111578

【弁理士】

【氏名又は名称】 水野 史博

【電話番号】 052-565-9911

【手数料の表示】

【予納台帳番号】 038287

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 空調装置

【特許請求の範囲】

【請求項1】 蒸気圧縮式冷凍機（20）にて室内に吹き出す空気の温度を調節する空調装置であって、

前記蒸気圧縮式冷凍機（20）内を循環する冷媒と室内に吹き出す空気とを熱交換する室内熱交換器（25）の能力を検出する実能力検出手段（11e）と、

前記室内熱交換器（25）の目標能力を決定する目標能力決定手段（S24）と、

前記実能力検出手段（11e）が検出した実能力と前記目標能力決定手段（S24）が検出した目標能力との差に基づいて圧縮機（21）の制御目標回転数を決定する第1目標回転数決定手段（S24～S27）と、

前記第1目標回転数決定手段（S24～S27）により決定される制御目標回転数の変化率より大きく前記圧縮機（21）の回転数が変化し得る状態であるか否かを判定する判定手段（S22）と、

前記判定手段（S22）により、前記第1目標回転数決定手段（S24～S27）により決定される制御目標回転数の変化率より大きく前記圧縮機（21）の回転数が変化し得る状態であると判定されたときに、前記第1目標回転数決定手段（S24～S27）により決定される制御目標回転数より高い回転数を前記圧縮機（21）の制御目標回転数に設定する第2目標回転数決定手段（S23）とを備えることを特徴とする空調装置。

【請求項2】 前記判定手段（S22）は、前記圧縮機（21）が停止状態から起動する時に、前記第1目標回転数決定手段（S24～S27）により決定される制御目標回転数の変化率より大きく前記圧縮機（21）の回転数が変化し得る状態であると判定することを特徴とする請求項1に記載の空調装置。

【請求項3】 前記第2目標回転数決定手段（S23）は、室内に吹き出す空気の目標温度（TAO）に基づいて前記圧縮機（21）の制御目標回転数を決定することを特徴とする請求項1又は2に記載の空調装置。

【請求項4】 前記第2目標回転数決定手段（S23）は、前記第1目標回

転数決定手段（S24～S27）により決定される制御目標回転数を補正することにより、前記圧縮機（21）の制御目標回転数を決定することを特徴とする請求項1又は2に記載の空調装置。

【請求項5】 前記第2目標回転数決定手段（S23）は、前記室内熱交換器（25）での空調負荷に基づいて、前記第1目標回転数決定手段（S24～S27）により決定される制御目標回転数を補正することを特徴とする請求項4に記載の空調装置。

【請求項6】 前記第2目標回転数決定手段（S23）は、前記室内熱交換器（25）での空調負荷に基づいて、前記圧縮機（21）の制御目標回転数を決定することを特徴とする請求項1又は2に記載の空調装置。

【請求項7】 蒸気圧縮式冷凍機（20）にて室内に吹き出す空気の温度を調節する空調装置の圧縮機を制御するためにコンピュータを、

前記蒸気圧縮式冷凍機（20）内を循環する冷媒と室内に吹き出す空気とを熱交換する室内熱交換器（25）の能力を検出する実能力検出手段（11e）、

前記室内熱交換器（25）の目標能力を決定する目標能力決定手段（S24）

前記実能力検出手段（11e）が検出した実能力と前記目標能力決定手段（S24）が検出した目標能力との差に基づいて圧縮機（21）の制御目標回転数を決定する第1目標回転数決定手段（S24～S27）、

前記第1目標回転数決定手段（S24～S27）により決定される制御目標回転数の変化率より大きく前記圧縮機（21）の回転数が変化し得る状態であるか否かを判定する判定手段（S22）、並びに

前記判定手段（S22）により、前記第1目標回転数決定手段（S24～S27）により決定される制御目標回転数の変化率より大きく前記圧縮機（21）の回転数が変化し得る状態であると判定されたときに、前記第1目標回転数決定手段（S24～S27）により決定される制御目標回転数より高い回転数を前記圧縮機（21）の制御目標回転数に設定する第2目標回転数決定手段（S23）、
として機能させることを特徴とする空調装置制御用プログラム。

【発明の詳細な説明】

【0001】**【発明の属する技術分野】**

本発明は空調装置に関するもので、電動圧縮機を用いた空調装置に適用して有効である。

【0002】**【従来の技術】**

従来の空調装置では、蒸発器を通過した直後の空気温度等の室内熱交換器で発生している実際の冷却能力（T E）と室内熱交換器の目標冷却能力（T E O）との差に基づいて、現在の圧縮機の回転数（ f_{n-1} ）に対する増減回転数 Δf を決定し、この決定した増減回転数 Δf を現在の圧縮機の回転数（ f_{n-1} ）に加算することにより、圧縮機の制御目標回転数（ f_n ）を決定している（例えば、特許文献1参照）。

【0003】**【特許文献1】**

特開2001-26214号公報

【0004】**【発明が解決しようとする課題】**

ところで、特許文献1に記載の発明に係るフィードバック制御では、いかなる熱負荷状態においても、制御目標回転数（ f_n ）が安定した回転数に収束するようには設定されているため、過度に大きな増減回転数 Δf を設定することができない。

【0005】

また、圧縮機を起動させる時のごとく、圧縮機の回転数が、実際の冷却能力（T E）と室内熱交換器の目標冷却能力（T E O）との差に基づいて決定される増減回転数 Δf より大きくを変化するときは、現状の圧縮機の回転数（ f_{n-1} ）、つまり0 rpmに増減回転数 Δf を加算するといった特許文献1に記載の制御方法では、前述のごとく、過度に大きな増減回転数 Δf を設定することができないため、圧縮機の回転数を上昇させるに要する時間が長くなってしまう。

【0006】

このため、室内熱交換器で発生する冷却能力の上昇速度が遅く、圧縮機起動直後の急速冷房時等に十分な冷房能力を得ることができないおそれがある。

【0007】

本発明は、上記点に鑑み、第1には、従来と異なる新規な空調装置を提供し、第2には、実際の能力を速やかに目標能力に近づけることを目的とする。

【0008】

【課題を解決するための手段】

本発明は、上記目的を達成するために、請求項1に記載の発明では、蒸気圧縮式冷凍機（20）にて室内に吹き出す空気の温度を調節する空調装置であって、蒸気圧縮式冷凍機（20）内を循環する冷媒と室内に吹き出す空気とを熱交換する室内熱交換器（25）の能力を検出する実能力検出手段（11e）と、室内熱交換器（25）の目標能力を決定する目標能力決定手段（S24）と、実能力検出手段（11e）が検出した実能力と目標能力決定手段（S24）が検出した目標能力との差に基づいて圧縮機（21）の制御目標回転数を決定する第1目標回転数決定手段（S24～S27）と、第1目標回転数決定手段（S24～S27）により決定される制御目標回転数の変化率より大きく圧縮機（21）の回転数が変化し得る状態であるか否かを判定する判定手段（S22）と、判定手段（S22）により、第1目標回転数決定手段（S24～S27）により決定される制御目標回転数の変化率より大きく圧縮機（21）の回転数が変化し得る状態であると判定されたときに、第1目標回転数決定手段（S24～S27）により決定される制御目標回転数より高い回転数を圧縮機（21）の制御目標回転数に設定する第2目標回転数決定手段（S23）とを備えることを特徴とする。

【0009】

これにより、現状の圧縮機の回転数に増減回転数を加算するといった特許文献1に記載の制御方法に比べて、室内熱交換器（25）能力を速やかに目標能力に近づくことができる。

【0010】

したがって、短時間で大きな空調能力を得ることができるので、例えば空調装置始動時の急速冷房時等であっても、速やかに室内の温度を快適な温度まで低下

させることができる。

【0011】

請求項2に記載の発明では、判定手段(S22)は、圧縮機(21)が停止状態から起動する時に、第1目標回転数決定手段(S24～S27)により決定される制御目標回転数の変化率より大きく圧縮機(21)の回転数が変化し得る状態であると判定することを特徴とするものである。

【0012】

請求項3に記載の発明では、第2目標回転数決定手段(S23)は、室内に吹き出す空気の目標温度(TAO)に基づいて圧縮機(21)の制御目標回転数を決定することを特徴とするものである。

【0013】

請求項4に記載の発明では、第2目標回転数決定手段(S23)は、第1目標回転数決定手段(S24～S27)により決定される制御目標回転数を補正することにより、圧縮機(21)の制御目標回転数を決定することを特徴とするものである。

【0014】

請求項5に記載の発明では、第2目標回転数決定手段(S23)は、室内熱交換器(25)での空調負荷に基づいて、第1目標回転数決定手段(S24～S27)により決定される制御目標回転数を補正することを特徴とするものである。

【0015】

請求項6に記載の発明では、第2目標回転数決定手段(S23)は、室内熱交換器(25)での空調負荷に基づいて、圧縮機(21)の制御目標回転数を決定することを特徴とするものである。

【0016】

請求項7に記載の発明では、蒸気圧縮式冷凍機(20)にて室内に吹き出す空気の温度を調節する空調装置の圧縮機を制御するためにコンピュータを、蒸気圧縮式冷凍機(20)内を循環する冷媒と室内に吹き出す空気とを熱交換する室内熱交換器(25)の能力を検出する実能力検出手段(11e)、室内熱交換器(25)の目標能力を決定する目標能力決定手段(S24)、実能力検出手段(11e)

1 e) が検出した実能力と目標能力決定手段 (S 2 4) が検出した目標能力との差に基づいて圧縮機 (2 1) の制御目標回転数を決定する第 1 目標回転数決定手段 (S 2 4～S 2 7) 、第 1 目標回転数決定手段 (S 2 4～S 2 7) により決定される制御目標回転数の変化率より大きく圧縮機 (2 1) の回転数が変化し得る状態であるか否かを判定する判定手段 (S 2 2) 、並びに判定手段 (S 2 2) により、第 1 目標回転数決定手段 (S 2 4～S 2 7) により決定される制御目標回転数の変化率より大きく圧縮機 (2 1) の回転数が変化し得る状態であると判定されたときに、第 1 目標回転数決定手段 (S 2 4～S 2 7) により決定される制御目標回転数より高い回転数を圧縮機 (2 1) の制御目標回転数に設定する第 2 目標回転数決定手段 (S 2 3) 、として機能させることを特徴とする。

【0017】

これにより、現状の圧縮機の回転数に増減回転数を加算するといった特許文献 1 に記載の制御方法に比べて、室内熱交換器 (2 5) 能力を速やかに目標能力に近づけることができ得る。

【0018】

したがって、短時間で大きな空調能力を得ることができるので、例えば空調装置始動時の急速冷房時等であっても、速やかに室内の温度を快適な温度まで低下させることができ得る。

【0019】

因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。

【0020】

【発明の実施の形態】

(第 1 実施形態)

本実施形態は、本発明に係る蒸気圧縮式冷凍機をハイブリッド自動車用の空調装置に適用したものであって、図 1 はハイブリッド自動車の概要示す図であり、図 2 は本実施形態に係る空調装置の模式図である。

【0021】

ハイブリッド自動車は、図 1 に示すように、ガソリン等の液体燃料を爆発燃焼

させて動力を発生させる走行用内燃機関をなすエンジン1、走行補助用電動機機能及び発電機能を備える電動発電手段としての走行補助用の電動発電機2、エンジン1への燃料供給量や点火時期等を制御するエンジン用電子制御装置3、電動発電機2やエンジン用電子制御装置3等に電力を供給する二次電池であるバッテリ4、電動発電機2の制御及び無断変速機5や電磁クラッチ6の制御を行うと共にエンジン用電子制御装置3に制御信号（例えば、エンジン1の回転数やトルクの目標値等）を出力するハイブリッド電子制御装置（走行用ＥＣＵ）7を備えている。

【0022】

そして、ハイブリッド用電子制御装置7は、電動発電機2及びエンジン1のいずれの駆動力を駆動輪に伝達するかの駆動切替を制御する機能、及び高電圧バッテリ4aの充放電を制御する機能を備えている。具体的には、以下のようないくつかの制御を行う。

【0023】

①車両が停止しているとき、つまり車速が約0km/hのときはエンジン1を停止させる。

【0024】

②走行中は、減速時を除き、エンジン1で発生した駆動力を駆動輪に伝達する。なお、減速時は、エンジン1を停止させて電動発電機2にて発電してバッテリ4に充電する。

【0025】

③発進時、加速時、登坂時及び高速走行時等の走行負荷が大きいときには、電動発電機2を電動モータとして機能させてエンジン1で発生した駆動力に加えて、電動発電機2に発生した駆動力を駆動輪に伝達する。なお、本実施形態では、車速及びアクセルペダル踏み込み量から走行負荷を演算する。

【0026】

④バッテリ4aの充電残量が充電開始目標値以下になったときには、エンジン1の動力を電動発電機2に伝達して電動発電機2を発電機として作動させてバッテリ4の充電を行う。

【0027】

⑤車両が停止しているときにバッテリ4の充電残量が充電開始目標値以下になったときには、エンジン用電子制御装置3に対してエンジン1を始動する指令を発するとともに、エンジン1の動力を電動発電機2に伝達する。

【0028】

因みに、充電開始目標値とは、充電を開始する残充電量のしきい値であり、満充電状態を100とした百分率にて示される。

【0029】

また、エンジン用電子制御装置3は、ハイブリッド用電子制御装置7からの制御信号に基づいて、エンジン1の回転数やトルクが目標値となるように、かつ、高い燃焼効率が得られるように、燃料供給量や点火時期等を最適制御する。

【0030】

電動発電機2は、バッテリ4aから電力を供給されたときは動力を発生する電動機として機能し、エンジン1等により駆動されたときは発電を行う発電機として機能するものである。

【0031】

また、本実施形態ではバッテリ4は、ニッケル水素蓄電池からなるもので、高電圧（例えば、約288V）のメインバッテリ4a及び低電圧（例えば、約12V）のサブバッテリ4bの2種類から構成されている。

【0032】

因みに、走行用インバータ8は電動発電機2とメインバッテリ4aとの間で授受される電力の電圧及び電流の周波数を変換する周波数変換器であり、DC／DCコンバータ9はメインバッテリ4aとサブバッテリ4bとの間で授受される電力の電圧を変換する変圧器である。

【0033】

無断変速機5はエンジン1及び電動発電機2に発生した駆動力の減速比を変換する変速機であり、電磁クラッチ6は駆動力を断続可能に伝達するものである。

【0034】

また、空調装置は、車室内に搭載され室内ユニット10、及び蒸気圧縮式冷凍

機20、及び室内ユニット10内の機器及び蒸気圧縮式冷凍機20の電動圧縮機21等を制御する空調用電子制御装置11等からなる自動制御方式のものである。

【0035】

室内ユニット10は、図2に示すように、車室内の前方側に配置されて空気通路を形成する空調ケーシング12、この空調ケーシング12内に空気を送風する遠心式の送風機13、空調ケーシング12内を流れる空気を冷却する蒸発器25、エンジン1等の車両で発生する廃熱を熱源として空調ケーシング12内を流れる空気を加熱するヒータ14、及びヒータ14を迂回して下流側に流れる冷風量とヒータ14により加熱されて下流側に流れる温風量とを調節するエアミックスドア15等から構成されたものである。

【0036】

そして、空調ケーシング12の空気流れの最上流側には、空調ケーシング12内に導入する室内空気量と室外空気量とを調節する内外気切替ユニット16が設けられ、一方、空調ケーシング12の空気流れの最下流側には、室内に吹き出す空気の吹出モードを切り換える吹出モード切替装置17が設けられている。

【0037】

なお、吹出モード切替装置17は、室内の窓ガラスに向けて空気を吹き出すデフロスタ開口部、乗員の上半身側に向けて空気を吹き出すフェイス開口部、及び乗員の下半身側に向けて空気を吹き出すフット開口部等を切り換え開閉することにより、吹出モードを切り換えるものである。

【0038】

蒸気圧縮式冷凍機20は、冷媒を吸入圧縮する圧縮機21a、圧縮された冷媒と外気とを熱交換して冷媒を冷却する高圧側熱交換器をなす凝縮器22、凝縮された冷媒を気相冷媒液相冷媒とに分離して液相冷媒を余剰冷媒として蓄えるとともに液相冷媒を排出する気液分離器23、冷媒を減圧膨張させる膨張弁24、及び減圧膨張された冷媒と室内に吹き出す空気とを熱交換して室内に吹き出す空気を冷却する低圧側熱交換器をなす蒸発器25等から構成されたものである。

【0039】

なお、膨脹弁24として、本実施形態では、蒸発器25出口側における冷媒過熱度が所定値となるように絞り開度を制御する、いわゆる温度式膨脹弁を採用しているが、本実施形態は、これに限定されるものではなく、例えばオリフィスやキャピラリーチューブ等の絞り開度が固定された固定絞りを採用してもよい。

【0040】

ところで、本実施形態に係る圧縮機21aは、電動モータ21bにより駆動されるとともに電動モータ21bに一体化されており、電動モータ21bの回転数、つまり圧縮機21aの回転数は、モータハウジング21cに一体化されたインバータ方式の駆動制御回路21dにより制御される。

【0041】

なお、駆動制御回路21dは、高電圧バッテリ4aから供給される直流電流を所定周波数の交流電流に変換して電動モータ21bの回転数を制御する。

【0042】

また、電動モータ21bは、モータハウジング21cの内壁に固定されたステータ21e、及びステータ21e内で回転するロータ21f等からなるもので、本実施形態では、ステータ21eをコイルとし、ロータ21fをマグネットとしたDCブラシレスモータを採用しているとともに、モータハウジング21c内を冷媒通路とすることにより電動モータ21bの冷却を行っている。

【0043】

次に、図3に基づいて制御系について述べる。

【0044】

空調用電子制御装置11、ハイブリッド用電子制御装置7及びエンジン用電子制御装置3は相互に通信可能になっており、本実施形態では、所定のプロトコルに基づいたデータ通信により通信している。

【0045】

そして、空調用電子制御装置11には、ハイブリッド用電子制御装置7から出力される通信信号、車室内前面に設けられたコントロールパネル11aに設けられたスイッチ類からのスイッチ信号、及びセンサ類からのセンサ信号が入力される。

【0046】

ここで、コントロールパネル11aのスイッチとは、蒸気圧縮式冷凍機20、つまり電動圧縮機21aの起動及び停止を指令するためのエアコンスイッチ、吸込口モードを切り替えるための吸込口切替スイッチ、車室内の温度を所望の温度に設定するための温度設定スイッチ、送風量を切り替えるための風量切替スイッチ、及び吹出口モードを切り替えるための吹出口切替スイッチ等である。

【0047】

また、各センサとは、車室内の空気温度を検出する内気温センサ11b、車室外の空気温度を検出する外気温センサ11c、車室内に照射される日射量を検出する日射センサ11d、蒸発器25を通過した直後の空気温度を検出する蒸発器吹出空気温度センサ11e、ヒータ14に流入する冷却水の温度を検出する水温センサ11f、及び車両の走行速度を検出する車速センサ11g等がある。

【0048】

そして、空調用電子制御装置11の内部には、CPU（中央演算装置）、ROM（読み専用記憶装置）及びRAM（読み書き可能記憶装置）等からなるマイクロコンピュータ11hが設けられ、各センサ11b～11gからのセンサ信号は、空調用電子制御装置11内の入力回路11iによってA/D変換等された後にマイクロコンピュータ11hに入力されるように構成されている。

【0049】

また、マイクロコンピュータ11hから出力された制御信号は空調用電子制御装置11内の出力回路11jによってD/A変換や増幅等された後に、エアミックスドア15等を駆動する各種アクチュエータM1～M4に駆動信号として出力される。

【0050】

次に、空調用電子制御装置11の制御処理について述べる。なお、以下に述べる制御フローが記載されたプログラムは、上記ROMに記憶されている。

【0051】

図4は空調用電子制御装置11による基本的な制御処理を示したフローチャートであり、イグニッシュョンスイッチが投入されて空調用電子制御装置11に電源

が供給されると、各パラメータ等を初期化（イニシャライズ）する（S1）。

【0052】

次に、温度設定スイッチや内気温センサ11b、外気温センサ11c、日射センサ11d、蒸発器吸込空気温度センサ74、蒸発器吹出空気温度センサ11e、水温センサ11f、及び車速センサ11gの信号を読み込んで（S2、S3）、ROMに記憶された下記の数1の式に基づいて、車室内に吹き出す空気の目標吹出温度TAOを算出する（S4）。

【0053】

【数1】

$$TAO = K_{set} \times T_{set} - KR \times TR - KAM \times TAM - KS \times TS + C$$

ここで、 T_{set} は温度設定スイッチにて設定した設定温度、 TR は内気温センサ11bにて検出した内気温度、 TAM は外気温センサ11cにて検出した外気温度、 TS は日射センサ11dにて検出した日射量である。また、 K_{set} 、 KR 、 KAM 及び KS はゲインで、 C は補正用の定数である。

【0054】

次に、ROMに記憶された特性図から、目標吹出温度TAOに対応するプロワ電圧、つまり送風機13のファンモータへの印可電圧）を決定する（S5）。具体的には、プロワ電圧は、目標吹出温度TAOと所定目標吹出温度TAOとの偏差の絶対値が大きくなるほど高い値に選定され、目標吹出温度TAOと所定目標吹出温度TAOとの偏差の絶対値が小さくなるほど低くい値が選定される。

【0055】

次に、ROMに記憶された特性図から、目標吹出温度TAOに対応する吸込口モードを決定する（S6）。具体的には、目標吹出温度TAOが高いときには内気循環モードが選択され、目標吹出温度TAOが低いときには外気導入モードが選択される。

【0056】

次に、ROMに記憶された特性図から、目標吹出温度TAOに対応する吹出口モードを決定する（S7）。具体的には、目標吹出温度TAOが高いときにはフットモードが選択され、目標吹出温度TAOが低くなるに伴って、バイレベル

モード、更にはフェイスモードの順に選択される。

【0057】

次に、目標吹出温度TAO、蒸発器吹出空気温度センサ11eで検出したエバ後温度、水温センサ11fで検出した冷却水温等に応じて、エアミックスドア15の開度を決定する（S8）。

【0058】

次に、図5に示すフローチャートに基づいて電動圧縮機21の回転数を決定した後（S9）、各S4～S9で算出または決定した各制御状態が得られるよう、アクチュエータ、ファンモータ駆動回路及びハイブリッド用電子制御装置7に対して制御信号を出力する（S10）。

【0059】

次に、図5に示すフローチャートについて述べる。

【0060】

エアコンスイッチの投入されているか否か、又はデフロスタスイッチが投入されているか否かに基づいて電動圧縮機21を稼動させる必要があるか否かを判定し（S20）、電動圧縮機21を稼動させる必要がない場合には、目標回転数IVOを0rpmとする（S21）。

【0061】

一方、電動圧縮機21を稼動させる必要があると判定された場合には、電動圧縮機21を停止状態から起動させる時であるか否か、つまり前回の目標回転数IVO_{n-1}が0rpmであるか否かを判定し（S22）、電動圧縮機21を停止状態から起動させる時、つまり前回の目標回転数IVO_{n-1}が0rpmである場合には、空調負荷の大きさを示す目標吹出温度TAOに基づいて目標回転数IVO_nを決定する（S23）。

【0062】

また、電動圧縮機21を停止状態から起動させる時でない、つまり前回の目標回転数IVO_{n-1}が0rpmでない場合には、各種センサ11b～11gのセンサ信号に基づいて目標エバ後温度TEOを算出し、この目標エバ後温度TEOに基づいて目標回転数IVOを算出する（S24～S27）。

【0063】

なお、目標回転数 IVO は、目標エバ後温度 TEO とエバ後温度 TE、つまり蒸発器吹出空気温度センサ 11e の検出温度との偏差 En、及び差変化率 Edot にパラメータとして、下記数式 1、数式 2 に基づいて決定する。

【0064】**【数2】**

$$E_n = TEO - TE$$

【0065】**【数3】**

$$Edot = E_n - E_{n-1}$$

ここで、 E_{n-1} は偏差 E_n の前回の値であり、偏差 E_n は 4 秒毎に更新されるため、前回の偏差 E_{n-1} は偏差 E_n に対して 4 秒前の値となる。

【0066】

そして、ROM に記憶された所定のメンバーシップ関数及びルールに基づいて、上記で算出した偏差 E_n 及び偏差変化率 $Edot$ における目標増加回転数 Δf (rpm) を算出する。

【0067】

ここで、この目標増加回転数 Δf とは、前回の目標回転数 IVO_{n-1} 、すなわち 4 秒前の目標回転数 IVO_{n-1} に対して増減する圧縮機 21a の回転数のことである。

【0068】

次に、本実施形態の作用効果を述べる。

【0069】

本実施形態では、電動圧縮機 21 を起動させる時、つまり、電動圧縮機 21 の回転数が、実際の冷却能力であるエバ後温度 TE と目標冷却能力である目標エバ後温度 TEO との差に基づいて決定される増減回転数 Δf より大きくを変化する時には、空調負荷の大きさを示す目標吹出温度 TAO に基づいて目標回転数 IVO_n を決定するので、図 6 に示すように、現状の電動圧縮機 21 の回転数 ($f_n - 1$)、つまり 0 rpm に増減回転数 Δf を加算するといった特許文献 1 に記載

の制御方法に比べて、エバ後温度TEを速やかに目標冷却能力(TEO)に近づけることができる。

【0070】

したがって、短時間で大きな冷房能力を得ることができるので、空調装置始動時の急速冷房時に速やかに室内の温度を快適な温度まで低下させることができる。

【0071】

(第2実施形態)

第1実施形態では、電動圧縮機21の起動時には目標吹出温度TAOに基づいて目標回転数IVOを決定したが、本実施形態は、S24～S27と同様に、目標エバ後温度TEOとエバ後温度TEとの偏差Enに基づいて増減回転数 Δf を求め、この求めた増減回転数 Δf に空調負荷に応じて決定される補正係数を乗じる、又はこの求めた増減回転数 Δf に空調負荷に応じて決定される補正項を加えたものである。

【0072】

(第3実施形態)

第1実施形態では、電動圧縮機21の起動時には目標吹出温度TAOに基づいて目標回転数IVOを決定したが、本実施形態は、S24～S27と同様に、目標エバ後温度TEOとエバ後温度TEとの偏差Enに基づいて増減回転数 Δf を求め際のメンバーシップ関数及びルールと異なる別のメンバーシップ関数及びルールにて目標回転数IVOを決定するものである。

【0073】

なお、このとき、電動圧縮機21の起動時に用いるメンバーシップ関数及びルールは、空調負荷に応じて変化させてもよいことは言うまでもない。

【0074】

(その他の実施形態)

上述の実施形態では、蒸発器吹出空気温度センサ11eにて蒸発器25で発生している実際の冷却能力を検出したが、本発明はこれに限定されるものではなく、例えば低圧側冷媒圧力、低圧側冷媒温度及び冷媒流量のうち少なくとも1つの

パラメータから求めてもよい。

【0075】

また、上述の実施形態では、蒸気圧縮式冷凍機20は蒸発器25で発生する冷熱を利用するものであったが、本発明はこれに限定されるものではなく、凝縮器22で発生する温熱を利用して暖房装置にも適用することができる。

【0076】

上述の実施形態では、吸入冷媒がモータハウジング21c内を流れるタイプであったが、本発明はこれに限定されるものではなく、吐出冷媒がモータハウジング21c内を流れるタイプであってもよい。

【0077】

また、上述の実施形態では、ハイブリッド自動車に発明を適用したが、本発明はこれに限定されものではない。

【0078】

また、上述の実施形態では、駆動制御回路21dが電動モータ21bに一体化されていたが、本発明はこれに限定されるものではない。

【0079】

また、上述の実施形態では、冷媒をフロン（R134a）としたが、本発明はこれに限定されるものではなく、二酸化炭素及び窒素等の自然冷媒、又は二種類以上の冷媒が混合された混合冷媒を採用してもよい。

【0080】

また、上記した制御内容を含むプログラムを、例えばインターネット経由等に入手し、制御プログラムを更新することができるような更新手段を設けてもよい。

【図面の簡単な説明】

【図1】

本発明の実施形態に係るハイブリッド自動車の概要示す図である。

【図2】

本発明の実施形態に係る空調装置の模式図である。

【図3】

本発明の実施形態に係る空調装置の制御系を示す図である。

【図4】

本発明の実施形態に係る空調装置の制御フローを示すフローチャートである。

【図5】

本発明の実施形態に係る空調装置の制御フローを示すフローチャートである。

【図6】

圧縮機の回転数及びエバ後温度と時間と関係を示すグラフである。

【符号の説明】

20…蒸気圧縮式冷凍機、21…電動圧縮機、21a…圧縮機、

21b…電動モータ、21c…モータハウジング、22…凝縮器、

23…気液分離器、24…膨脹弁、25…蒸発器。

【書類名】

図面

【図1】

【図2】

20：蒸気圧縮式冷凍機

21：電動圧縮機

21a：圧縮機

21b：電動モータ

21c：モータハウジング

22：凝縮器

23：気液分離器

24：膨張弁

25：蒸発器

【図3】

【図4】

【図5】

【図6】

【書類名】 要約書

【要約】

【課題】 圧縮機の起動時に、実際の冷房能力を速やかに目標冷房能力に近づける。

【解決手段】 電動圧縮機21を起動させる時には、空調負荷の大きさを示す目標吹出温度TAOに基づいて目標回転数IVO_nを決定する。これにより、現状の電動圧縮機21の回転数(f_{n-1})、つまり0rpmに増減回転数△fを加算するといった制御方法に比べて、エバ後温度TEを速やかに目標冷却能力(TEO)に近づけることができる。したがって、短時間で大きな冷房能力を得ることができるので、空調装置始動時の急速冷房時に速やかに室内の温度を快適な温度まで低下させることができる。

【選択図】 図2

特願 2003-111719

出願人履歴情報

識別番号 [00004260]

1. 変更年月日 1996年10月 8日

[変更理由] 名称変更

住所 愛知県刈谷市昭和町1丁目1番地

氏名 株式会社デンソー