TEOREMA Fórmula de Herão

Sejam a, b e c os lados do $\triangle ABC$, e seja s o semiperímetro:

$$\frac{(a+b+c)}{2}$$

então, a área de $\triangle ABC$ é dada por Área = $\sqrt{s(s-a)(s-b)(s-c)}$.

EXEMPLO 20 Usando a fórmula de Herão

Encontre a área de um triângulo com lados 13, 15, 18.

SOLUÇÃO

Primeiro calcularemos o semiperímetro: $s = \frac{(13+15+18)}{2} = 23$. Então, usaremos a fórmula de Herão.

Área =
$$\sqrt{23} (23 - 13)(23 - 15)(23 - 18)$$

= $\sqrt{23 \cdot 10 \cdot 8 \cdot 5} = \sqrt{9200} = 20\sqrt{23}$.

A área aproximada é 96 unidades quadradas.

EXERCÍCIOS

Nos exercícios 1 a 8, converta de radianos para graus.

1. $\frac{\pi}{6}$

2. $\frac{\pi}{4}$

3. $\frac{\pi}{10}$

4. $\frac{3\pi}{5}$

5. $\frac{7\pi}{9}$

6. $\frac{13\pi}{20}$

7. 2

8. 1,3

Nos exercícios de 9 a 12, use as fórmulas para cálculo do comprimento do arco para completar com as informações que estão faltando.

S	r	θ
9. ?	1 cm	70 rad
10. 2,5 cm	?	$\frac{\pi}{3}$ rad
11. 3 m	1 m	?
12 10 cm	9	200

13. Múltipla escolha Qual é a medida em radianos de um ângulo de *x* graus?

229

- (a) πx
- **(b)** $\frac{x}{180}$
- (c) $\frac{\pi x}{190}$
- (d) $\frac{180x}{\pi}$
- (e) $\frac{180}{x\pi}$
- **14. Múltipla escolha** Se o perímetro de um setor é 4 vezes seu raio, então a medida em radianos do ângulo central do setor é:
 - (a) 2 (b)
 - (c) $\frac{2}{\pi}$
 - (e) impossível determinar sem saber o raio.

O teorema de Pitágoras diz que, em um triângulo retângulo, o quadrado da medida da hipotenusa é a soma dos quadrados das medidas dos outros dois lados. Entende-se hipotenusa como o lado oposto ao

a. Se as partes fo-

em termos dessas

temos:

como a base.

o dentro de um

 $\frac{60}{2} = 45^{\circ}$. A área

entes.

230 Pré-cálculo

ângulo de 90°. Nos exercícios de 15 a 18, use esse teorema para encontrar x.

16.

17.

18.

Nos exercícios de 19 a 26, encontre o valor do seno, do cosseno e da tangente do ângulo θ .

25.

seno e tangente).

27. sen $\theta = \frac{3}{7}$

29. $\cos \theta = \frac{5}{11}$

31. tg $\theta = \frac{5}{9}$

35.

34.

Nos exercícios de 33 a 38, encontre o valor da variá-

26.

Nos exercícios de 27 a 32, encontre as outras medidas dos ângulos que faltam (sabemos calcular seno, cos-

28. sen $\theta = \frac{2}{3}$

30. $\cos \theta = \frac{5}{8}$

21.

22.

23.

24.

36.

Nos exercícios de 39 a 42, dê o valor do ângulo θ em

$$39.~\theta=-\frac{\pi}{6}$$

40.
$$\theta = -\frac{5\pi}{6}$$

42.
$$\theta = \frac{16\pi}{3}$$

Nos exercícios de 43 a 46, calcule o seno, o cosseno Nos exercícios de e a tangente do ângo colobo adjuntante aprilantando seus maleros. e a tangente do ângulo.

43.

44.

45.

46.

Nos exercícios determina a a cosseno e a ta **47.** *P*(3, 4)

49. *P*(0, 5)

51. P(5, -2 Nos exercício

tg θ para o ân **53.** −450°

ntre as outras medidas os calcular seno, cos-

28. sen
$$\theta = \frac{2}{3}$$

30.
$$\cos \theta = \frac{5}{8}$$

32. tg
$$\theta = \frac{12}{13}$$

entre o valor da variá-

valor do ângulo θ em

40.
$$\theta = -\frac{5\pi}{6}$$

42.
$$\theta = \frac{16\pi}{3}$$

ule o seno, o cosseno

43.

44.

45.

46.

Nos exercícios de 47 a 52, o ponto P está na reta que determina a abertura do ângulo. Encontre o seno, o cosseno e a tangente do ângulo θ .

51.
$$P(5, -2)$$

Nos exercícios de 53 a 58, encontre sen θ , cos θ e tg θ para o ângulo dado.

56.
$$\frac{11\pi}{2}$$

57.
$$-\frac{7\pi}{2}$$

58.
$$-4\pi$$

59. Encontre
$$\cos \theta$$
, se sen $\theta = \frac{1}{4}$ e tg $\theta < 0$.

60. Encontre tg
$$\theta$$
, se sen $\theta = -\frac{2}{5}$ e cos $\theta > 0$.

61. Verdadeiro ou falso? Se
$$\theta$$
 é um ângulo na posição padrão determinado pelo ponto $(\theta, -6)$, então sen $\theta = -0.6$. Justifique sua resposta.

62. Múltipla escolha Se
$$\cos \theta = \frac{5}{13}$$
 e tg $\theta > 0$, então sen $\theta =$

(a)
$$-\frac{12}{13}$$

(b)
$$-\frac{5}{12}$$

(a)
$$-\frac{12}{13}$$
 (b) $-\frac{5}{12}$ (c) $\frac{5}{13}$ (d) $\frac{5}{12}$ (e) $\frac{12}{13}$

No exercício 63, identifique o gráfico de cada função.

63. Gráficos de dois períodos de 0,5 tg x e 5 tg x são mostrados.

No exercício 64, analise a função quanto a: domínio, imagem, continuidade, comportamento crescente ou decrescente, se é limitada e se é simétrica; analise extremos, assíntotas e comportamento nos extremos do domínio.

64.
$$f(x) = \lg \frac{x}{2}$$

Nos exercícios de 65 a 67, avalie sem o uso de uma calculadora.

65.
$$\operatorname{sen}\left(\frac{\pi}{3}\right)$$

66.
$$\cot\left(\frac{\pi}{6}\right)$$

67.
$$\cos\left(\frac{\pi}{4}\right)$$

Nos exercícios de 68 a 73, avalie sem usar uma calculadora, mas usando índices em um triângulo de referência.

69. sec
$$\frac{\pi}{3}$$

70. sen
$$\frac{13\pi}{6}$$

71. tg
$$\frac{15\pi}{4}$$

72.
$$\cos \frac{23\pi}{6}$$

73. sen
$$\frac{11\pi}{3}$$

Nos exercícios de 74 a 79, determine o valor exato.

74.
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

76.
$$\cos^{-1}\left(\frac{1}{2}\right)$$

77.
$$tg^{-1}(-1)$$

78.
$$\operatorname{sen}^{-1}\left(-\frac{1}{\sqrt{2}}\right)$$

Nos exercícios 80 e 81, use identidades para determinar o valor da expressão.

80. Se sen
$$\theta = 0.45$$
, determine $\cos\left(\frac{\pi}{2} - \theta\right)$.

81. Se sen
$$\left(\theta - \frac{\pi}{2}\right) = 0.73$$
, determine cos $(-\theta)$.

Nos exercícios de 82 a 85, use identidades básicas para simplificar a expressão.

82.
$$\operatorname{tg} x \cdot \cos x$$

83.
$$\sec y \sec \left(\frac{\pi}{2} - y\right)$$

$$84. \ \frac{1 + tg^2 x}{\csc^2 x}$$

85.
$$\cos x - \cos^3 x$$

Nos exercícios de 86 a 88, simplifique a expressão para 1 ou -1.

86. sen
$$x \csc(-x)$$

87.
$$\cot(-x) \cdot \cot\left(\frac{\pi}{2} - x\right)$$

88.
$$sen^2(-x) + cos^2(-x)$$

Nos exercícios de 89 a 93, use uma identidade de soma ou diferença para determinar um valor exato.

91.
$$\cos \frac{\pi}{12}$$

92.
$$tg \frac{5\pi}{12}$$

93.
$$\cos \frac{7\pi}{12}$$

Nos exercícios de 94 a 96, escreva a expressão como o seno, o cosseno ou a tangente de um ângulo.

94. sen
$$42^{\circ} \cos 17^{\circ} - \cos 42^{\circ} \sin 17^{\circ}$$

95.
$$\sin \frac{\pi}{5} \cos \frac{\pi}{2} + \sin \frac{\pi}{2} \cos \frac{\pi}{5}$$

96.
$$\frac{\text{tg } 19^{\circ} + \text{tg } 47^{\circ}}{1 - \text{tg } 19^{\circ} \text{ tg } 47^{\circ}}$$

Nos exercícios de 97 a 98, determine todas as soluções para a equação no intervalo $[0, 2\pi]$.

97. sen
$$2x = 2 \sin x$$

98. sen
$$2x - tg x = 0$$

Nos exercícios de 99 a 101, utilize identidades de meio ângulo para encontrar um valor exato sem auxílio de calculadora.

101.
$$tg \left(\frac{7\pi}{12} \right)$$

Limi

Objetivos de

- Velocidade
- Distância c
- Limites no
- Propriedade
- Limites de
- Limites uni
- Limites env

Velocid

Velocidad espaço percorr

EXEMPLO

Um automóvel automóvel, ap

SOLUÇÃO

A velocidade variação do te

Note que a vermento qualque de 80 quilôm também ter di de velocidade

EXEMPLO

Uma bola des te t² centímet