Note in preparation for talk for seminar on Fusion 2-Categories, Winter semester 2022, UHH

Ying Hong Tham

28 December, 2022

The main goal of my talk today is to prove that a finite semisimple 2-category is the category of finite semisimple modules over a multifusion category, and vice versa.

That is, for a semisimple 2-category C, there exists a multifusion category C such that

$$\mathcal{C} \simeq \mathcal{M}od_{s.s.}^{fin}(C)$$

Here $\mathcal{M}od_{s.s.}^{fin}(C)$, which we will abbreviate to $\mathcal{M}od-C$, stands for finite semisimple right module categories over C.

Conversely, for any mutifusion category C, $\mathcal{M}od-C$ is a semisimple 2-category.

0.1 Conventions

Everything is over an algebraically closed field ${\bf k}$ with characteristic 0.

We use different fonts/alphabets for different levels of structures: In relation to a 2-category:

- \bullet \mathcal{C},\mathcal{F} (caligraphic font): 2-category, functor between 2-categories
- C, X, Y (upper case latin): object of 2-category
- f, g (lower case latin): 1-morphism; we write $\mathcal{C}(X, Y)$ for the category of morphisms from X to Y
- $\eta, \varepsilon, \delta$ (lower case greek): 2-morphism; for a 2-morphism $\alpha : f \Rightarrow g : X \to Y$, we may write $\alpha \in \mathcal{C}(X,Y)(f,g)$ to indicate its sources and targets, or simply $\alpha \in \text{Hom}(f,g)$ if the objects are clear

In relation to a 1-category:

- C, A (upper case latin): category, functor between categoreis
- a, b, f, g (lower case latin): objects in category
- α, β (lower case greek): morphism in category

We also compose morphisms from right to left: in a 2-category \mathcal{C} , for $\alpha \in \mathcal{C}(X,Y)(f,f')$, $\beta \in \mathcal{C}(Y,Z)(g,g')$, $\gamma \in \mathcal{C}(X,Y)(f',f'')$, we write

$$g \circ f, g \circ f', \ldots : X \to Z$$

for composition of 1-morphisms,

$$\beta \circ \alpha : (g \circ f) \Rightarrow (g' \circ f') : X \to Z$$

for horizontal composition of 2-morphisms,

$$\gamma \cdot \alpha : f \Rightarrow f'' : X \rightarrow Y$$

for vertical composition of 2-morphisms.

We may also omit the composition symbols if the type of composition is clear (in particular for composition of 1-morphisms).

In general, if P is a property of a 1-category, we say that a 2-category \mathcal{C} is locally P if every hom-category $\mathcal{C}(X,Y)$ satisfies P.

1 Review

Let us recall some definitions and facts concerning semisimple 2-categories. These where covered in more detail in previous talks, so here we will simply state them without proof.

1.1 Idempotent completeness, separable monads, splittings

Definition 1.1. Let (t, μ, η) be a monad on an object X in a 2-category \mathcal{C} . We say t is separable if there is a t-t-bimodule section $\delta : t \Rightarrow t \circ t$ to μ .

Definition 1.2. Let $r \vdash l : X \to Y$ be an adjunction with unit $\eta : \mathrm{id}_X \Rightarrow rl$ and counit $\varepsilon : lr \Rightarrow \mathrm{id}_Y$. We say the adjunction $l \dashv r$ is *separable* if ε admits a section.

Clearly, if an adjunction $l \dashv r$ is separable, then the monad rl is separable.

Definition 1.3. Let (t, μ, η) be a separable monad on an object $X \in \mathcal{C}$. A *splitting* of t is a separable adjunction $r \vdash l : X \to Y$ together with an isomorphism $\psi : rl \simeq t$ as monads on X.

Under the right conditions (local idempotent completeness of C), splittings are unique (see Proposition 1.4).

Proposition 1.4 (Uniqueness of splitting). [[1], Theorem A.3.1] In a locally idempotent complete 2-category C, splittings of a separable monad are unique up to equivalence.

In particular, this holds true when C is locally semisimple.

Thought to self: [1] proves this by showing that a splitting is equivalent to an "Eilenberg-Moore object" and also a "Kleisli object", which are in themselves important and interesting objects characterized by universal properties. I'd like to have a more direct proof, somehow constructing an equivalence between any two splittings directly from the splitting data. I don't have a full proof, but here's an attempt. Say for a separable monad t on X, we have two adjunctions $r \vdash l : X \to Y$ and $r' \vdash l' : X \to Y'$ that split t. There is are obvious 1-morphisms $l' \circ r : Y \to Y'$, $l \circ r' : Y' \to Y$, but it is unlikely that these are equivalences. A promising candidate for an equivalence is $l' \circ_t r$, the coequalizer of $l' \circ t \circ r \Rightarrow l' \circ r$ (here r is a left t-module from the counit: $tr \simeq rlr \Rightarrow r$; similarly l' is a right t-module). Such a coequalizer does appear in the proof of [1][Theorem A.3.1] anyway, and I've found that this thought process makes the consideration of the Eilenberg-Moore and Kleisli objects less of an ass-pull.

1.2 Simple objects

Proposition 1.5 (equivalent notions of simple-ness). Let C be a locally finite semisimple and idempotent complete 2-category, and let $X \in C$ be an object. Then the following notions of X being simple are equivalent:

- any subobject $i: Y \to X$ of X is either 0 ($Y \simeq 0$) or (i is) an equivalence;
- X cannot be written as a non-trivial direct sum, i.e. if $X = \coprod X_i$, then $X_i \simeq 0$ for all but one i;
- id_X is a simple object in C(X,X).

Definition 1.6 ((finite) semisimple 2-category). A 2-category \mathcal{C} is semisimple if it is:

- locally semisimple,
- admits left and right adjoints for every 1-morphism,
- additive,
- idempotent complete.

It is furthermore *finite semisimple* if it is also locally finite and has finitely many equivalence classes of simple objects.

References

[1] Douglas, Christopher L., and David J. Reutter. "Fusion 2-categories and a state-sum invariant for 4-manifolds." arXiv preprint arXiv:1812.11933 (2018).