

Sequence Listing

<110> Ashkenazi, Avi J. Baker, Kevin P. Botstein, David Desnoyers, Luc Eaton, Dan L. Ferrara, Napoleone Fong, Sherman Gerber, Hanspeter Gerritsen, Mary E. Goddard, Audrey Godowski, Paul J. Grimaldi, J. Christopher Gurney, Austin L. Kljavin, Ivar J. Napier, Mary A. Pan, James Paoni, Nicholas F. Roy, Margaret Ann Stewart, Timothy A. Tumas, Daniel Watanabe, Colin K. Williams, P. Mickey Wood, William I. Zhang, Zemin

- $<\!120\!>$ Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same
- <130> P2730P1C58
- <150> 60/049787
- <151> 1997-06-16
- <150> 60/062250
- <151> 1997-10-17
- <150> 60/065186
- <151> 1997-11-12
- <150> 60/065311
- <151> 1997-11-13
- <150> 60/066770 <151> 1997-11-24
- <150> 60/075945 <151> 1998-02-25
- <150> 60/078910
- <151> 1998-03-20
- <150> 60/083322 <151> 1998-04-28
- <150> 60/084600
- <151> 1998-05-07
- <150> 60/087106
- <151> 1998-05-28
- <150> 60/087607

- <151> 1998-06-02
- <150> 60/087609
- <151> 1998-06-02
- <150> 60/087759
- <151> 1998-06-02
- <150> 60/087827
- <151> 1998-06-03
- <150> 60/088021 <151> 1998-06-04
- <150> 60/088025 <151> 1998-06-04
- <150> 60/088026 <151> 1998-06-04
- <150> 60/088028 <151> 1998-06-04
- <150> 60/088029
- <151> 1998-06-04
- <150> 60/088030
- <151> 1998-06-04
- <150> 60/088033
- <151> 1998-06-04
- <150> 60/088326
- <151> 1998-06-04
- <150> 60/088167
- <151> 1998-06-05
- <150> 60/088202
- <151> 1998-06-05
- <150> 60/088212
- <151> 1998-06-05
- <150> 60/088217 <151> 1998-06-05
- <150> 60/088655 <151> 1998-06-09
- <150> 60/088734
- <151> 1998-06-10
- <150> 60/088738
- <151> 1998-06-10
- <150> 60/088742
- <151> 1998-06-10
- <150> 60/088810 <151> 1998-06-10
- <150> 60/088824

- <151> 1998-06-10
- <150> 60/088826
- <151> 1998-06-10
- <150> 60/088858
- <151> 1998-06-11
- <150> 60/088861
- <151> 1998-06-11
- <150> 60/088876
- <151> 1998-06-11
- <150> 60/089105
- <151> 1998-06-12
- <150> 60/089440
- <151> 1998-06-16
- <150> 60/089512
- <151> 1998-06-16
- <150> 60/089514
- <151> 1998-06-16
- <150> 60/089532
- <151> 1998-06-17
- <150> 60/089538
- <151> 1998-06-17
- <150> 60/089598
- <151> 1998-06-17
- <150> 60/089599
- <151> 1998-06-17
- <150> 60/089600
- <151> 1998-06-17
- <150> 60/089653
- <151> 1998-06-17
- <150> 60/089801 <151> 1998-06-18
- <150> 60/089907
- <151> 1998-06-18
- <150> 60/089908
- <151> 1998-06-18
- <150> 60/089947
- <151> 1998-06-19
- <150> 60/089948
- <151> 1998-06-19
- <150> 60/089952
- <151> 1998-06-19
- <150> 60/090246

<151> 1998-06-22 <150> 60/090252 <151> 1998-06-22 <150> 60/090254 <151> 1998-06-22 <150> 60/090349 <151> 1998-06-23 <150> 60/090355 <151> 1998-06-23 <150> 60/090429 <151> 1998-06-24 <150> 60/090431 <151> 1998-06-24 <150> 60/090435 <151> 1998-06-24 <150> 60/090444 <151> 1998-06-24 <150> 60/090445 <151> 1998-06-24 <150> 60/090472 <151> 1998-06-24 <150> 60/090535 <151> 1998-06-24 <150> 60/090540 <151> 1998-06-24 <150> 60/090542 <151> 1998-06-24 <150> 60/090557 <151> 1998-06-24 <150> 60/090676 <151> 1998-06-25 <150> 60/090678 <151> 1998-06-25 <150> 60/090690 <151> 1998-06-25 <150> 60/090694 <151> 1998-06-25 <150> 60/090695 <151> 1998-06-25

<150> 60/090696 <151> 1998-06-25 <150> 60/090862

<150> 60/090863 <151> 1998-06-26

<150> 60/091360 <151> 1998-07-01

<150> 60/091478

<151> 1998-07-02

<150> 60/091544 <151> 1998-07-01

<150> 60/091519 <151> 1998-07-02

<150> 60/091626

<151> 1998-07-02

<150> 60/091633 <151> 1998-07-02

<150> 60/091978

<151> 1998-07-07

<150> 60/091982 <151> 1998-07-07

<150> 60/092182 <151> 1998-07-09

<150> 60/092472

<151> 1998-07-10

<150> 60/091628 <151> 1998-07-02

<150> 60/091646 <151> 1998-07-02

<150> 60/091673

<151> 1998-07-02

<150> 60/093339 <151> 1998-07-20

<150> 60/094651 <151> 1998-07-30

<151> 1998-07-30

<150> 60/095282 <151> 1998-08-04

<150> 60/095285 <151> 1998-08-04

<150> 60/095302 <151> 1998-08-04

<150> 60/095318 <151> 1998-08-04

<150> 60/095321

- <151> 1998-08-04
- <150> 60/095301
- <151> 1998-08-04
- <150> 60/095325
- <151> 1998-08-04
- <150> 60/095916
- <151> 1998-08-10
- <150> 60/095929
- <151> 1998-08-10
- <150> 60/096012
- <151> 1998-08-10
- <150> 60/096143
- <151> 1998-08-11
- <150> 60/096146
- <151> 1998-08-11
- <150> 60/096329
- <151> 1998-08-12
- <150> 60/096757
- <151> 1998-08-17
- <150> 60/096766
- <151> 1998-08-17
- <150> 60/096768
- <151> 1998-08-17
- <150> 60/096773
- <151> 1998-08-17
- <150> 60/096791
- <151> 1998-08-17
- <150> 60/096867
- <151> 1998-08-17
- <150> 60/096891
- <151> 1998-08-17
- <150> 60/096894
- <151> 1998-08-17
- <150> 60/096895
- <151> 1998-08-17
- <150> 60/096897 <151> 1998-08-17
- <150> 60/096949 <151> 1998-08-18
- <150> 60/096950 <151> 1998-08-18
- <150> 60/096959

<150>	60/096960	
/1 E 1 \	1000 00 1	_

- <150> 60/097218
- <151> 1998-08-20
- <150> 60/097661
- <151> 1998-08-24
- <150> 60/097952
- <151> 1998-08-26
- <150> 60/097954 <151> 1998-08-26
- <150> 60/097955
- <151> 1998-08-26
- <150> 60/098014
- <151> 1998-08-26
- <150> 60/097971
- <151> 1998-08-26
- <150> 60/097974
- <151> 1998-08-26
- <150> 60/097978
- <151> 1998-08-26
- <150> 60/097986
- <151> 1998-08-26
- <150> 60/097979
- <151> 1998-08-26
- <150> 60/098525
- <151> 1998-08-31
- <150> 60/100634 <151> 1998-09-16
- <150> 60/100858 <151> 1998-09-17
- 12027 2000 00 17
- <150> 60/113296 <151> 1998-12-22
- <150> 60/123957
- <151> 1999-03-12
- <150> 60/141037 <151> 1999-06-23
- <150> 60/143048

<151>	1999-07-07
<150>	60/144758
<151>	1999-07 - 20
<150>	60/145698
<151>	1999-07-26
<150> <151>	
<150>	60/149396
<151>	1999-08-17
<150>	60/158663
<151>	1999-10-08
<150>	60/213637
<151>	2000-06-23
<150> <151>	
<150>	08/743698
<151>	1996-11-06
<150> <151>	
<150>	08/965056
<151>	1997-11-05
<150>	09/105413
<151>	1998-06-26
<150>	09/168978
<151>	1998-10-07
<150>	09/187368
<151>	1998-11-06
<150>	09/202054
<151>	1998-12-07
<150>	09/218517
<151>	1998-12-22
<150>	09/254311
<151>	1999-03-03
<150>	09/254460
<151>	1999 - 03-09
<150>	09/267213
<151>	1999-03-12
<150>	09/284291
<151>	1999-04-12
	09/380137 1999-08-25

<150> 09/380138

- <150> 09/380139
- <151> 1999-08-25
- <150> 09/403296
- <151> 1999-10-18
- <150> 09/423844
- <151> 1999-11-12
- <150> 09/664610
- <151> 2000-09-18
- <150> 09/665350
- <151> 2000-09-18
- <150> 09/709238
- <151> 2000-11-08
- <150> 09/808689
- <151> 2001-03-14
- <150> 09/854816
- <151> 2001-05-15
- <150> 09/866028
- <151> 2001-05-25
- <150> 09/866034
- <151> 2001-05-25
- <150> 09/872035 <151> 2001-06-01
- <150> 09/882636
- <151> 2001-06-14
- <150> 09/941,992
- <151> 2001-08-28
- <150> PCT/US97/20069
- <151> 1997-11-05
- <150> PCT/US98/19330
- <151> 1998-09-16
- <150> PCT/US98/19437
- <151> 1998-09-17
- <150> PCT/US98/21141
- <151> 1998-10-07
- <150> PCT/US98/25108
- <151> 1998-12-01
- <150> PCT/US99/00106
- <151> 1999-01-05
- <150> PCT/US99/05028
- <151> 1999-03-08
- <150> PCT/US99/12252

- <151> 1999-06-02
- <150> PCT/US99/21090
- <151> 1999-09-15
- <150> PCT/US99/21547
- <151> 1999-09-15
- <150> PCT/US99/28313
- <151> 1999-11-30
- <150> PCT/US99/28301
- <151> 1999-12-01
- <150> PCT/US99/28634
- <151> 1999-12-01
- <150> PCT/US99/30095
- <151> 1999-12-16
- <150> PCT/US99/30911
- <151> 1999-12-20
- <150> PCT/US00/00219
- <151> 2000-01-05
- <150> PCT/US00/00376
- <151> 2000-01-06
- <150> PCT/US00/03565
- <151> 2000-02-11
- <150> PCT/US00/04341
- <151> 2000-02-18
- <150> PCT/US00/04414
- <151> 2000-02-22
- <150> PCT/US00/04914
- <151> 2000-02-24
- <150> PCT/US00/05004
- <151> 2000-02-24
- <150> PCT/US00/05841
- <151> 2000-03-02
- <150> PCT/US00/06319
- <151> 2000-03-10
- <150> PCT/US00/06884
- <151> 2000-03-15
- <150> PCT/US00/07377
- <151> 2000-03-20
- <150> PCT/US00/08439
- <151> 2000-03-30
- <150> PCT/US00/13358
- <151> 2000-05-15
- <150> PCT/US00/13705

- <151> 2000-05-17
- <150> PCT/US00/14042
- <151> 2000-05-22
- <150> PCT/US00/14941
- <151> 2000-05-30
- <150> PCT/US00/15264
- <151> 2000-06-02
- <150> PCT/US00/20710
- <151> 2000-07-28
- <150> PCT/US00/22031
- <151> 2000-08-11
- <150> PCT/US00/23522
- <151> 2000-08-23
- <150> PCT/US00/23328
- <151> 2000-08-24
- <150> PCT/US00/30952
- <151> 2000-11-08
- <150> PCT/US00/32678
- <151> 2000-12-01
- <150> PCT/US01/06520
- <151> 2001-02-28
- <150> PCT/US01/17800
- <151> 2001-06-01
- <150> PCT/US01/19692
- <151> 2001-06-20
- <150> PCT/US01/21066
- <151> 2001-06-29
- <150> PCT/US01/21735
- <151> 2001-07-09
- <160> 532
- <210> 1
- <211> 1943
- <212> DNA
- <213> Homo sapiens
- <400> 1
- cggacgcgtg ggtgcgaggc gaaggtgacc ggggaccgag catttcagat 50
- ctgctcggta gacctggtgc accaccacca tgttggctgc aaggctggtg 100
- tgtctccgga cactaccttc tagggttttc cacccagctt tcaccaaggc 150
- ctcccctgtt gtgaagaatt ccatcacgaa gaatcaatgg ctgttaacac 200
- ctagcaggga atatgccacc aaaacaagaa ttgggatccg gcgtgggaga 250
- actggccaag aactcaaaga ggcagcattg gaaccatcga tggaaaaaat 300

atttaaaatt gatcagatgg gaagatggtt tgttgctgga ggggctgctg 350 ttggtcttgg agcattgtgc tactatggct tgggactgtc taatgagatt 400 ggagctattg aaaaggctgt aatttggcct cagtatgtca aggatagaat 450 tcattccacc tatatgtact tagcagggag tattggttta acagctttgt 500 ctgccatagc aatcagcaga acgcctgttc tcatgaactt catgatgaga 550 ggctcttggg tgacaattgg tgtgaccttt gcagccatgg ttggagctgg 600 aatgctggta cgatcaatac catatgacca gagcccaggc ccaaagcatc 650 ttgcttggtt gctacattct ggtgtgatgg gtgcagtggt ggctcctctg 700 acaatattag ggggtcctct tctcatcaga gctgcatggt acacagctgg 750 cattgtggga ggcctctcca ctgtggccat gtgtgcgccc agtgaaaagt 800 ttctgaacat gggtgcaccc ctgggagtgg gcctgggtct cgtctttgtg 850 tecteattgg gatetatgtt tettecacet accacegtgg etggtgeeae 900 tctttactca gtggcaatgt acggtggatt agttcttttc agcatgttcc 950 ttctgtatga tacccagaaa gtaatcaagc gtgcagaagt atcaccaatg 1000 tatggagttc aaaaatatga tcccattaac tcgatgctga gtatctacat 1050 ggatacatta aatatatta tgcgagttgc aactatgctg gcaactggag 1100 gcaacagaaa gaaatgaagt gactcagctt ctggcttctc tgctacatca 1150 aatatcttgt ttaatggggc agatatgcat taaatagttt gtacaagcag 1200 ctttcgttga agtttagaag ataagaaaca tgtcatcata tttaaatgtt 1250 ccggtaatgt gatgcctcag gtctgccttt ttttctggag aataaatgca 1300 gtaatcctct cccaaataag cacacatt ttcaattctc atgtttgagt 1350 gattttaaaa tgttttggtg aatgtgaaaa ctaaagtttg tgtcatgaga 1400 atgtaagtet tttttetaet ttaaaattta gtaggtteae tgagtaaeta 1450 aaatttagca aacctgtgtt tgcatatttt tttggagtgc agaatattgt 1500 aattaatgtc ataagtgatt tggagctttg gtaaagggac cagagagaag 1550 gagtcacctg cagtcttttg tttttttaaa tacttagaac ttagcacttg 1600 tgttattgat tagtgaggag ccagtaagaa acatctgggt atttggaaac 1650 aagtggtcat tgttacattc atttgctgaa cttaacaaaa ctgttcatcc 1700 tgaaacaggc acaggtgatg cattctcctg ctgttgcttc tcagtgctct 1750 ctttccaata tagatgtggt catgtttgac ttgtacagaa tgttaatcat 1800 acagagaatc cttgatggaa ttatatatgt gtgttttact tttgaatgtt 1850 acaaaaggaa ataactttaa aactattctc aagagaaaat attcaaagca 1900

tgaaatatgt tgctttttcc agaatacaaa cagtatactc atg 1943

<210> 2

<211> 345

<212> PRT

<213> Homo sapiens

<400> 2

Met Leu Ala Ala Arg Leu Val Cys Leu Arg Thr Leu Pro Ser Arg
1 5 10 15

Val Phe His Pro Ala Phe Thr Lys Ala Ser Pro Val Val Lys Asn 20 25 30

Ser Ile Thr Lys Asn Gln Trp Leu Leu Thr Pro Ser Arg Glu Tyr 35 40 45

Ala Thr Lys Thr Arg Ile Gly Ile Arg Arg Gly Arg Thr Gly Gln 50 55 60

Glu Leu Lys Glu Ala Ala Leu Glu Pro Ser Met Glu Lys Ile Phe
65 70 75

Lys Ile Asp Gln Met Gly Arg Trp Phe Val Ala Gly Gly Ala Ala 80 85 90

Val Gly Leu Gly Ala Leu Cys Tyr Tyr Gly Leu Gly Leu Ser Asn 95 100 105

Glu Ile Gly Ala Ile Glu Lys Ala Val Ile Trp Pro Gln Tyr Val 110 115 120

Lys Asp Arg Ile His Ser Thr Tyr Met Tyr Leu Ala Gly Ser Ile 125 130 135

Gly Leu Thr Ala Leu Ser Ala Ile Ala Ile Ser Arg Thr Pro Val 140 145 150

Leu Met Asn Phe Met Met Arg Gly Ser Trp Val Thr Ile Gly Val 155 160

Thr Phe Ala Ala Met Val Gly Ala Gly Met Leu Val Arg Ser Ile 170 175 180

Pro Tyr Asp Gln Ser Pro Gly Pro Lys His Leu Ala Trp Leu Leu 185 190 195

His Ser Gly Val Met Gly Ala Val Val Ala Pro Leu Thr Ile Leu 200 205 210

Gly Gly Pro Leu Leu Ile Arg Ala Ala Trp Tyr Thr Ala Gly Ile 215 220 225

Val Gly Gly Leu Ser Thr Val Ala Met Cys Ala Pro Ser Glu Lys 230 235 240

Phe Leu Asn Met Gly Ala Pro Leu Gly Val Gly Leu Gly Leu Val 245 250 255

Phe Val Ser Ser Leu Gly Ser Met Phe Leu Pro Pro Thr Thr Val
260 265 270

Ala Gly Ala Thr Leu Tyr Ser Val Ala Met Tyr Gly Gly Leu Val

275 280 285											
Leu Phe Ser Met Phe Leu Leu Tyr Asp Thr Gln Lys Val Ile Lys 290 295 300											
Arg Ala Glu Val Ser Pro Met Tyr Gly Val Gln Lys Tyr Asp Pro 305 310 315											
Ile Asn Ser Met Leu Ser Ile Tyr Met Asp Thr Leu Asn Ile Phe 320 325 330											
Met Arg Val Ala Thr Met Leu Ala Thr Gly Gly Asn Arg Lys Lys 335 340 345											
<210> 3 <211> 43 <212> DNA <213> Artificial Sequence											
<220> <223> Synthetic oligonucleotide probe											
<400> 3 tgtaaaacga cggccagtta aatagacctg caattattaa tct 43											
<210> 4 <211> 41 <212> DNA <213> Artificial Sequence											
<220> <223> Synthetic oligonucleotide probe											
<400> 4 caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41											
<210> 5 <211> 3033 <212> DNA <213> Homo sapiens											
<400> 5 gaaggetgee tegetggtee gaatteggtg gegeeaegte egeeegtete 50											
cgccttctgc atcgcggctt cggcggcttc cacctagaca cctaacagtc 100											
geggageegg eegegtegtg agggggtegg eaeggggagt egggeggtet 150											
tgtgcatctt ggctacctgt gggtcgaaga tgtcggacat cggagactgg 200											
ttcaggagca tcccggcgat cacgcgctat tggttcgccg ccaccgtcgc 250											
cgtgcccttg gtcggcaaac tcggcctcat cagcccggcc tacctcttcc 300											
totggcccga agcottoott tatogottto agatttggag gccaatcact 350											
gccacctttt atttccctgt gggtccagga actggatttc tttatttggt 400											
caatttatat ttcttatatc agtattctac gcgacttgaa acaggagctt 450											

ttgatgggag gccagcagac tatttattca tgctcctctt taactggatt 500

tgcatcgtga ttactggctt agcaatggat atgcagttgc tgatgattcc 550

tctgatcatg tcagtacttt atgtctgggc ccagctgaac agagacatga 600 ttgtatcatt ttggtttgga acacgattta aggcctgcta tttaccctgg 650 gttatccttg gattcaacta tatcatcgga ggctcggtaa tcaatgagct 700 tattggaaat ctggttggac atctttattt tttcctaatg ttcagatacc 750 caatggactt gggaggaaga aattttctat ccacacctca gtttttgtac 800 cgctggctgc ccagtaggag aggaggagta tcaggatttg gtgtgccccc 850 tgctagcatg aggcgagctg ctgatcagaa tggcggaggc gggagacaca 900 actggggcca gggctttcga cttggagacc agtgaagggg cggcctcggg 950 cagccgctcc tctcaagcca catttcctcc cagtgctggg tgcacttaac 1000 aactgcgttc tggctaacac tgttggacct gacccacact gaatgtagtc 1050 tttcagtacg agacaaagtt tcttaaatcc cgaagaaaaa tataagtgtt 1100 ccacaagttt cacgattctc attcaagtcc ttactgctgt gaagaacaaa 1150 taccaactgt gcaaattgca aaactgacta cattttttgg tgtcttctct 1200 teteceettt eegtetgaat aatgggtttt agegggteet aatetgetgg 1250 cattgagetg gggetgggte accaaaccet teceaaaagg acettatete 1300 tttcttgcac acatgcctct ctcccacttt tcccaacccc cacatttgca 1350 actagaaaaa gttgcccata aaattgctct gcccttgaca ggttctgtta 1400 tttattgact tttgccaagg ctggtcacaa caatcatatt cacgttattt 1450 tccccttttg gtggcagaac tgttaccaat agggggagaa gacagccacg 1500 gatgaagcgt ttctcagctt ttggaattgc ttcgactgac atccgttgtt 1550 aaccgtttgc cactcttcag atatttttta taaaaaaagt accactgagt 1600 tcatgagggc cacagattgg ttattaatga gatacgaggg ttggtgctgg 1650 gtgtttgttt cctgagctaa gtgatcaaga ctgtagtgga gttgcagcta 1700 acatgggtta ggtttaaacc atgggggatg cacccctttg cgtttcatat 1750 gtagccctac tggctttgtg tagctggagt agttgggttg ctttgtgtta 1800 ggaggatcca gatcatgttg gctacaggga gatgctctct ttgagaggtc 1850 ctgggcattg attcccattt caatctcatt ctggatatgt gttcattgag 1900 taaaggagga gagaccctca tacgctattt aaatgtcact tttttgccta 1950 tcccccgttt tttggtcatg tttcaattaa ttgtgaggaa ggcgcagctc 2000 ctctctgcac gtagatcatt ttttaaagct aatgtaagca catctaaggg 2050 aataacatga tttaaggttg aaatggcttt agaatcattt gggtttgagg 2100 gtgtgttatt ttgagtcatg aatgtacaag ctctgtgaat cagaccagct 2150

taaataccca caccttttt tcgtaggtgg gcttttccta tcagagcttg 2200 gctcataacc aaataaagtt ttttgaaggc catggctttt cacacagtta 2250 ttttatttta tgacgttatc tgaaagcaga ctgttaggag cagtattgag 2300 tggctgtcac actttgaggc aactaaaaag gcttcaaacg ttttgatcag 2350 tttcttttca ggaaacattg tgctctaaca gtatgactat tctttccccc 2400 actcttaaac agtgtgatgt gtgttatcct aggaaatgag agttggcaaa 2450 caacttctca ttttgaatag agtttgtgtg tacttctcca tatttaattt 2500 atatgataaa ataggtgggg agagtctgaa ccttaactgt catgttttgt 2550 tgttcatctg tggccacaat aaagtttact tgtaaaattt tagaggccat 2600 tactccaatt atgttgcacg tacactcatt gtacaggcgt ggagactcat 2650 tgtatgtata agaatatttc tgacagtgag tgacccggag tctctggtgt 2700 eacctettae caqteagetg cetgegagea gteatttitt cetaaaggtt 2750 tacaagtatt tagaactttt cagttcaggg caaaatgttc atgaagttat 2800 tcctcttaaa catggttagg aagctgatga cgttattgat tttgtctgga 2850 ttatgtttct ggaataattt taccaaaaca agctatttga gttttgactt 2900 tccttatttt gtataaagga cttccctttt tgtaaactaa tcctttttat 3000 tggtaaaaat tgtaaattaa aatgtgcaac ttg 3033

<210> 6

<211> 251

<212> PRT

<213> Homo sapiens

<400> 6

Met Ser Asp Ile Gly Asp Trp Phe Arg Ser Ile Pro Ala Ile Thr
1 5 10 15

Arg Tyr Trp Phe Ala Ala Thr Val Ala Val Pro Leu Val Gly Lys 20 25 30

Leu Gly Leu Ile Ser Pro Ala Tyr Leu Phe Leu Trp Pro Glu Ala 35 40 45

Phe Leu Tyr Arg Phe Gln Ile Trp Arg Pro Ile Thr Ala Thr Phe 50 55 60

Tyr Phe Pro Val Gly Pro Gly Thr Gly Phe Leu Tyr Leu Val Asn
65 70 75

Leu Tyr Phe Leu Tyr Gln Tyr Ser Thr Arg Leu Glu Thr Gly Ala 80 85 90

Phe Asp Gly Arg Pro Ala Asp Tyr Leu Phe Met Leu Leu Phe Asn 95 100 105

Trp I	le Cys	Ile	Val 110	Ile	Thr	Gly	Leu	Ala 115	Met	Asp	Met	Gln	Leu 120
Leu M	et Ile	Pro	Leu 125	Ile	Met	Ser	Val	Leu 130	Tyr	Val	Trp	Ala	Gln 135
Leu A	sn Arg	Asp	Met 140	Ile	Val	Ser	Phe	Trp 145	Phe	Gly	Thr	Arg	Phe 150
Lys A	la Cys	Tyr	Leu 155	Pro	Trp	Val	Ile	Leu 160	Gly	Phe	Asn	Tyr	Ile 165
Ile G	ly Gly	Ser	Val 170	Ile	Asn	Glu	Leu	Ile 175	Gly	Asn	Leu	Val	Gly 180
His L	eu Tyr	Phe	Phe 185	Leu	Met	Phe	Arg	Tyr 190	Pro	Met	Asp	Leu	Gly 195
Gly A	rg Asn	Phe	Leu 200	Ser	Thr	Pro	Gln	Phe 205	Leu	Tyr	Arg	Trp	Leu 210
Pro S	er Arç	Arg	Gly 215	Gly	Val	Ser	Gly	Phe 220	Gly	Val	Pro	Pro	Ala 225
Ser M	let Arg	Arg	Ala 230	Ala	Asp	Gln	Asn	Gly 235	Gly	Gly	Gly	Arg	His 240
Asn T	rp Gly	Gln	Gly 245	Phe	Arg	Leu	Gly	Asp 250	Gln				

<210> 7 <211> 1373 <212> DNA

<213> Homo sapiens

<400> 7
ggggccgcgg tctagggcgg ctacgtgtt tgccatagcg accattttgc 50
attaactggt tggtagcttc tatcctgggg gctgagcgac tgcgggccag 100
ctcttcccct actccctctc ggctccttgt ggcccaaagg cctaaccggg 150
gtccggcggt ctggcctagg gatcttcccc gttgcccctt tggggcgga 200
tggctgcgga agaagaagac gaggtggagt gggtagtgga gagcatcgcg 250
gggttcctgc gaggcccaga ctggtccatc cccatcttgg actttgtgga 300
acagaaatgt gaagttaact gcaaaggagg gcatgtgata actccaggaa 350
gcccagagcc ggtgattttg gtggcctgtg ttccccttgt ttttgatgat 400
gaagaagaaa gcaaattgac ctatacagag attcatcagg aatacaaaga 450
actagttgaa aagctgttag aaggttacct caaagaaatt ggaattaatg 500
aagatcaatt tcaagaagca tgcacttctc ctcttgcaaa gacccataca 550
tcacaggcca ttttgcaacc tgtgttggca gcagaagatt ttactatctt 600
taaagcaatg atggtccaga aaaacattga aatgcagctg caagccattc 650
gaataattca agagagaaat ggtgtattac ctgactgctt aaccgatggc 700

tctgatgtgg tcagtgacct tgaacacgaa gagatgaaaa tcctgaggga 750 agttcttaga aaatcaaaag aggaatatga ccaggaagaa gaaaggaaga 800 ggaaaaaaca gttatcagag gctaaaacag aagagcccac agtgcattcc 850 agtgaagctg caataatgaa taattcccaa qqqqatqqtg aacattttgc 900 acacccaccc tcagaagtta aaatgcattt tgctaatcag tcaatagaac 950 ctttgggaag aaaagtggaa aggtctgaaa cttcctccct cccacaaaaa 1000 ggcctgaaga ttcctggctt agagcatgcg agcattgaag gaccaatagc 1050 aaacttatca gtacttggaa cagaagaact tcggcaacga gaacactatc 1100 tcaagcagaa gagagataag ttgatgtcca tgagaaagga tatgaggact 1150 aaacagatac aaaatatgga gcagaaagga aaacccactg gggaggtaga 1200 ggaaatgaca gagaaaccag aaatgacagc agaggagaag caaacattac 1250 taaagaggag attgcttgca gagaaactca aagaagaagt tattaataag 1300 taataattaa gaacaattta acaaaatgga agttcaaatt gtcttaaaaa 1350 taaattattt agtccttaca ctg 1373

<210> 8 <211> 367 <212> PRT <213> Homo sapiens

<400> 8 Met Ala Ala Glu Glu Glu Asp Glu Val Glu Trp Val Val Glu Ser Ile Ala Gly Phe Leu Arg Gly Pro Asp Trp Ser Ile Pro Ile Leu Asp Phe Val Glu Gln Lys Cys Glu Val Asn Cys Lys Gly Gly His Val Ile Thr Pro Gly Ser Pro Glu Pro Val Ile Leu Val Ala Cys Val Pro Leu Val Phe Asp Asp Glu Glu Glu Ser Lys Leu Thr Tyr 65 Thr Glu Ile His Gln Glu Tyr Lys Glu Leu Val Glu Lys Leu Leu Glu Gly Tyr Leu Lys Glu Ile Gly Ile Asn Glu Asp Gln Phe Gln 105 Glu Ala Cys Thr Ser Pro Leu Ala Lys Thr His Thr Ser Gln Ala 115 Ile Leu Gln Pro Val Leu Ala Ala Glu Asp Phe Thr Ile Phe Lys 130 Ala Met Met Val Gln Lys Asn Ile Glu Met Gln Leu Gln Ala Ile

145

Arg Ile Ile Gln Glu Arg Asn Gly Val Leu Pro Asp Cys Leu Thr Asp Gly Ser Asp Val Val Ser Asp Leu Glu His Glu Glu Met Lys Ile Leu Arg Glu Val Leu Arg Lys Ser Lys Glu Glu Tyr Asp Gln 190 Glu Glu Glu Arg Lys Arg Lys Lys Gln Leu Ser Glu Ala Lys Thr 200 205 Glu Glu Pro Thr Val His Ser Ser Glu Ala Ala Ile Met Asn Asn 220 Ser Gln Gly Asp Gly Glu His Phe Ala His Pro Pro Ser Glu Val 235 Lys Met His Phe Ala Asn Gln Ser Ile Glu Pro Leu Gly Arg Lys Val Glu Arg Ser Glu Thr Ser Ser Leu Pro Gln Lys Gly Leu Lys 265 Ile Pro Gly Leu Glu His Ala Ser Ile Glu Gly Pro Ile Ala Asn Leu Ser Val Leu Gly Thr Glu Glu Leu Arg Gln Arg Glu His Tyr Leu Lys Gln Lys Arg Asp Lys Leu Met Ser Met Arg Lys Asp Met 310 Arg Thr Lys Gln Ile Gln Asn Met Glu Gln Lys Gly Lys Pro Thr 320 325 Gly Glu Val Glu Glu Met Thr Glu Lys Pro Glu Met Thr Ala Glu Glu Lys Gln Thr Leu Leu Lys Arg Arg Leu Leu Ala Glu Lys Leu 355 360 Lys Glu Glu Val Ile Asn Lys

<210> 9

<211> 418

<212> DNA

<213> Homo sapiens

<400> 9

gggcacagca catgtgaagt ttttgatgat gaagaagaaa gcaaattgac 50 ctatacagag attcatcagg aatacaaaga actagttgaa aagctgttag 100 aaggttacct caaagaaatt ggaattaatg aagatcaatt tcaagaagca 150 tgcacttctc ctcttgcaaa gacccataca tcacaggcca tttttgcaac 200 ctgtgttggc agcagaagat tttactatct ttaaagcaat gatggtccag 250 aaaaacattg aaatgcagct gcaagccatt cgaataattc aagagagaaa 300

tggtgtatta cctgactgct taaccgatgg ctctgatgtg gtcagtgacc 350 ttgaacacga agagatgaaa atcctgaggg aagttcttag aaaatcaaaa 400 gaggaatatg accaggaa 418

- <210> 10 <211> 22
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 10

ttgacctata cagagattca tc 22

- <210> 11
- <211> 23
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 11

ctaagaactt ccctcaggat ttt 23

- <210> 12
- <211> 40
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 12

atgaagatca atttcaagaa gcatgcactt ctcctcttgc 40

- <210> 13
- <211> 2886
- <212> DNA
- <213> Homo sapiens
- <400> 13

gcgtggtttt tgttctgcaa taggcggctt agagggaggg gctttttcgc 50

ctatacctac tgtagcttct ccacgtatgg accctaaagg ctactgctgc 100

tactacgggg ctagacagtt actgtctcag ctctaggatg tgcgttcttc 150

cactagaagc tcttctgagg gaggtaatta aaaaacagtg gaatggaaaa 200

acagtgctgt agtcatcctg taatatgctc cttgtcaaca atgtatacat 250

tcctgctagg tgccatattc attgctttaa gctcaagtcg catcttacta 300

gtgaagtatt ctgccaatga agaaaacaag tatgattatc ttccaactac 350

tgtgaatgtg tgctcagaac tggtgaagct agttttctgt gtgcttgtgt 400

cattctgtgt tataaagaaa gatcatcaaa gtagaaattt gaaatatgct 450

tcctggaagg aattctctga tttcatgaag tggtccattc ctgcctttct 500 cagccatggc tgttatcttc tcaaatttta gcattataac aacagctctt 600 ctattcagga tagtgctgaa gaggcgtcta aactggatcc agtgggcttc 650 cctcctgact ttatttttgt ctattgtggc cttgactgcc gggactaaaa 700 ctttacagca caacttggca ggacgtggat ttcatcacga tgcctttttc 750 agcccttcca attcctgcct tcttttcaga agtgagtgtc ccagaaaaga 800 caattgtaca gcaaaggaat ggacttttcc tgaagctaaa tggaacacca 850 cagccagagt tttcagtcac atccgtcttg gcatgggcca tgttcttatt 900 atagtccagt gttttatttc ttcaatggct aatatctata atgaaaagat 950 actgaaggag gggaaccagc tcactgaaag catcttcata cagaacagca 1000 aactctattt ctttggcatt ctgtttaatg ggctgactct gggccttcag 1050 aggagtaacc gtgatcagat taagaactgt ggatttttt atggccacag 1100 tgcattttca gtagccctta tttttgtaac tgcattccag ggcctttcag 1150 tggctttcat tctgaagttc ctggataaca tgttccatgt cttgatggcc 1200 caggttacca ctgtcattat cacaacagtg tctgtcctgg tctttgactt 1250 caggocotco ctggaatttt tottggaago cocatcagto ottotota 1300 tatttattta taatgccagc aagcctcaag ttccggaata cgcacctagg 1350 caagaaagga teegagatet aagtggeaat etttgggage gtteeagtgg 1400 ggatggagaa gaactagaaa gacttaccaa acccaagagt gatgagtcag 1450 atgaagatac tttctaactg gtacccacat agtttgcagc tctcttgaac 1500 cttattttca cattttcagt gtttgtaata tttatctttt cactttgata 1550 aaccagaaat gtttctaaat cctaatattc tttgcatata tctagctact 1600 ccctaaatgg ttccatccaa ggcttagagt acccaaaggc taagaaattc 1650 taaagaactg atacaggagt aacaatatga agaattcatt aatatctcag 1700 tacttgataa atcagaaagt tatatgtgca gattattttc cttggccttc 1750 aagetteeaa aaaacttgta ataateatgt tagetatage ttgtatatae 1800 acatagagat caatttgcca aatattcaca atcatgtagt tctagtttac 1850 atgccaaagt cttccctttt taacattata aaagctaggt tgtctcttga 1900 attttgaggc cctagagata gtcattttgc aagtaaagag caacgggacc 1950 ctttctaaaa acgttggttg aaggacctaa atacctggcc ataccataga 2000 tttgggatga tgtagtctgt gctaaatatt ttgctgaaga agcagtttct 2050

cagacacaac atctcagaat tttaattttt agaaattcat gggaaattgg 2100 atttttgtaa taatcttttg atgttttaaa cattggttcc ctagtcacca 2150 tagttaccac ttgtatttta agtcatttaa acaagccacg gtggggcttt 2200 tttctcctca gtttgaggag aaaaatcttg atgtcattac tcctgaatta 2250 ttacattttg gagaataaga gggcatttta ttttattagt tactaattca 2300 agctgtgact attgtatatc tttccaagag ttgaaatqct ggcttcagaa 2350 tcataccaga ttgtcagtga agctgatgcc taggaacttt taaagggatc 2400 ctttcaaaag gatcacttag caaacacatg ttgactttta actgatgtat 2450 gaatattaat actctaaaaa tagaaagacc agtaatatat aagtcacttt 2500 acagtgctac ttcacactta aaagtgcatg gtatttttca tggtattttg 2550 catgcagcca gttaactctc gtagatagag aagtcaggtg atagatgata 2600 ttaaaaatta gcaaacaaaa gtgacttgct cagggtcatg cagctgggtg 2650 atgatagaag agtgggcttt aactggcagg cctgtatgtt tacagactac 2700 catactgtaa atatgagctt tatggtgtca ttctcagaaa cttatacatt 2750 tetgetetee ttteteetaa gttteatgea gatgaatata aggtaatata 2800 ctattatata attcatttgt gatatccaca ataatatgac tggcaagaat 2850 tggtggaaat ttgtaattaa aataattatt aaacct 2886

<210> 14

<211> 424

<212> PRT

<213> Homo sapiens

<400> 14

Met Glu Lys Gln Cys Cys Ser His Pro Val Ile Cys Ser Leu Ser 1 5 10 15

Thr Met Tyr Thr Phe Leu Leu Gly Ala Ile Phe Ile Ala Leu Ser 20 25 30

Ser Ser Arg Ile Leu Leu Val Lys Tyr Ser Ala Asn Glu Glu Asn 35 40 45

Lys Tyr Asp Tyr Leu Pro Thr Thr Val Asn Val Cys Ser Glu Leu 50 55 60

Val Lys Leu Val Phe Cys Val Leu Val Ser Phe Cys Val Ile Lys . 65 70 75

Lys Asp His Gln Ser Arg Asn Leu Lys Tyr Ala Ser Trp Lys Glu 80 85 90

Phe Ser Asp Phe Met Lys Trp Ser Ile Pro Ala Phe Leu Tyr Phe 95 100 105

Leu Asp Asn Leu Ile Val Phe Tyr Val Leu Ser Tyr Leu Gl
n Pro 110 115 120

Ala	Met	Ala	Val	Ile 125	Phe	Ser	Asn	Phe	Ser 130	Ile	Ile	Thr	Thr	Ala 135
Leu	Leu	Phe	Arg	Ile 140	Val	Leu	Lys	Arg	Arg 145	Leu	Asn	Trp	Ile	Gln 150
Trp	Ala	Ser	Leu	Leu 155	Thr	Leu	Phe	Leu	Ser 160	Ile	Val	Ala	Leu	Thr 165
Ala	Gly	Thr	Lys	Thr 170	Leu	Gln	His	Asn	Leu 175	Ala	Gly	Arg	Gly	Phe 180
His	His	Asp	Ala	Phe 185	Phe	Ser	Pro	Ser	Asn 190	Ser	Cys	Leu	Leu	Phe 195
Arg	Ser	Glu	Cys	Pro 200	Arg	Lys	Asp	Asn	Cys 205	Thr	Ala	Lys	Glu	Trp 210
Thr	Phe	Pro	Glu	Ala 215	Lys	Trp	Asn	Thr	Thr 220	Ala	Arg	Val	Phe	Ser 225
His	Ile	Arg	Leu	Gly 230	Met	Gly	His	Val	Leu 235	Ile	Ile	Val	Gln	Cys 240
Phe	Ile	Ser	Ser	Met 245	Ala	Asn	Ile	Tyr	Asn 250	Glu	Lys	Ile	Leu	Lys 255
Glu	Gly	Asn	Gln	Leu 260	Thr	Glu	Ser	Ile	Phe 265	Ile	Gln	Asn	Ser	Lys 270
Leu	Tyr	Phe	Phe	Gly 275	Ile	Leu	Phe	Asn	Gly 280	Leu	Thr	Leu	Gly	Leu 285
Gln	Arg	Ser	Asn	Arg 290	Asp	Gln	Ile	Lys	Asn 295	Суз	Gly	Phe	Phe	Tyr 300
Gly	His	Ser	Ala	Phe 305	Ser	Val	Ala	Leu	Ile 310	Phe	Val	Thr	Ala	Phe 315
Gln	Gly	Leu	Ser	Val 320	Ala	Phe	Ile	Leu	Lys 325	Phe	Leu	Asp	Asn	Met 330
Phe	His	Val	Leu	Met 335	Ala	Gln	Val	Thr	Thr 340	Val	Ile	Ile	Thr	Thr 345
Val	Ser	Val	Leu	Val 350	Phe	Asp	Phe	Arg	Pro 355	Ser	Leu	Glu	Phe	Phe 360
Leu	Glu	Ala	Pro	Ser 365	Val	Leu	Leu	Ser	Ile 370	Phe	Ile	Tyr	Asn	Ala 375
Ser	Lys	Pro	Gln	Val 380	Pro	Glu	Tyr	Ala	Pro 385	Arg	Gln	Glu	Arg	Ile 390
Arg	Asp	Leu	Ser	Gly 395	Asn	Leu	Trp	Glu	Arg 400	Ser	Ser	Gly	Asp	Gly 405
Glu	Glu	Leu	Glu	Arg 410	Leu	Thr	Lys	Pro	Lys 415	Ser	Asp	Glu	Ser	Asp 420
Glu	Asp	Thr	Phe											

<210> 18

tcagagaatt ccttccagga 20

<211> 40

<400> 17

<212> DNA


```
<213> Artificial Sequence
```

<220>

<223> Synthetic oligonucleotide probe

<400> 18

acagtgctgt agtcatcctg taatatgctc cttgtcaaca 40

<210> 19

<211> 2142

<212> DNA

<213> Homo sapiens

<400> 19

cggacgcgtg ggcggacgcg tgggcggacg cgtggggccg gcttggctag 50 cgcgcggcgg ccgtggctaa ggctgctacg aagcgagctt gggaggagca 100 gcggcctgcg gggcagagga gcatcccgtc taccaggtcc caagcggcgt 150 ggcccgcggg tcatggccaa aggagaaggc gccgagagcg gctccgcggc 200 ggggctgcta cccaccagca tcctccaaag cactgaacgc ccqqcccaqq 250 tgaagaaaga accgaaaaag aagaaacaac agttgtctgt ttgcaacaag 300 ctttgctatg cacttggggg agccccctac caggtgacgg gctgtgccct 350 gggtttcttc cttcagatct acctattgga tgtqqctcaq gtqqqcctt 400 tctctgcctc catcatcctg tttgtgggcc gagcctggga tgccatcaca 450 gacccctgg tgggcctctg catcagcaaa tcccctqqa cctqcctqqq 500 tegeettatg ecetggatea tetteteeae geecetggee gteattgeet 550 acttecteat etggttegtg ceegacttee cacaeggeea gacetattgg 600 tacctgcttt tctattgcct ctttgaaaca atggtcacgt gtttccatgt 650 tecetacteg geteteacea tgtteateag caacegagea gaetgagegg 700 gattctgcca ccgcctatcg gatgactgtg gaagtgctgg gcacagtgct 750 gggcacggcg atccagggac aaatcgtggg ccaaqcagac acgccttqtt 800 tccaggactt caatagctct acagtagctt cacaaagtgc caaccataca 850 catggcacca cttcacacag ggaaacgcaa aaggcatacc tqctqqcaqc 900 gggggtcatt gtctgtatct atataatctg tgctgtcatc ctgatcctgg 950 gcgtgcggga gcagagagaa ccctatgaag cccaqcaqtc tqaqccaatc 1000 gcctacttcc ggggcctacg gctggtcatg agccacggcc catacatcaa 1050 acttattact ggcttcctct tcacctcctt ggctttcatg ctggtggagg 1100 ggaactttgt cttgttttgc acctacacct tgggcttccg caatgaattc 1150 cagaatctac teetggeeat catgeteteg gecaetttaa ceatteecat 1200 ctggcagtgg ttcttgaccc ggtttggcaa gaagacagct gtatatgttg 1250

ggatctcatc agcagtgcca tttctcatct tggtggccct catggagagt 1300 aacctcatca ttacatatgc ggtagctgtg gcagctggca tcagtgtggc 1350 agctgccttc ttactaccct ggtccatgct gcctgatgtc attgacgact 1400 tecatetgaa geageeceae ttecatggaa eegageecat ettettetee 1450 ttctatgtct tcttcaccaa gtttgcctct ggagtgtcac tgggcatttc 1500 taccetcagt ctggactttg cagggtacca gaccegtggc tgctcqcaqc 1550 cggaacgtgt caagtttaca ctgaacatgc tcgtgaccat qqctcccata 1600 gttctcatcc tgctgggcct gctgctcttc aaaatgtacc ccattgatga 1650 ggagaggcgg cggcagaata agaaggccct gcaggcactq aqqqacqaqq 1700 ccagcagete tggetgetea gaaacagaet ccacagaget ggetageate 1750 ctctagggcc cgccacgttg cccgaagcca ccatgcagaa ggccacagaa 1800 gggatcagga cctgtctgcc ggcttgctga gcaqctggac tgcaqqtqct 1850 aggaagggaa ctgaagactc aaggaggtgg cccaggacac ttgctgtgct 1900 cactgtgggg ccggctgctc tgtggcctcc tgcctcccct ctqcctqcct 1950 gtggggccaa gccctggggc tgccactgtg aatatgccaa ggactgatcg 2000 ggcctagccc ggaacactaa tgtagaaacc tttttttac agagcctaat 2050 taataactta atgactgtgt acatagcaat gtgtgtgtat gtatatgtct 2100 gtgagctatt aatgttatta attttcataa aagctggaaa gc 2142

- <210> 20
- <211> 458
- <212> PRT
- <213> Homo sapiens
- <400> 20
- Met Trp Leu Arg Trp Ala Leu Ser Leu Pro Pro Ser Ser Cys Leu 1 5 10 15
- Trp Ala Glu Pro Gly Met Pro Ser Gln Thr Pro Trp Trp Ala Ser 20 25 30
- Ala Ser Ala Asn Pro Pro Gly Pro Ala Trp Val Ala Leu Cys Pro
 35 40 45
- Gly Ser Ser Ser Pro Arg Pro Trp Pro Ser Leu Pro Thr Ser Ser 50 55 60
- Ser Gly Ser Cys Pro Thr Ser His Thr Ala Arg Pro Ile Gly Thr 65 70 75
- Cys Phe Ser Ile Ala Ser Leu Lys Gln Trp Ser Arg Val Ser Met 80 85 90
- Phe Pro Thr Arg Leu Ser Pro Cys Ser Ser Ala Thr Glu Gln Thr 95 100 105

Glu	Arg	Asp	Ser	Ala 110	Thr	Ala	Tyr	Arg	Met 115	Thr	Val	Glu	Val	Leu 120
Gly	Thr	Val	Leu	Gly 125	Thr	Ala	Ile	Gln	Gly 130	Gln	Ile	Val	Gly	Gln 135
Ala	Asp	Thr	Pro	Cys 140	Phe	Gln	Asp	Phe	Asn 145	Ser	Ser	Thr	Val	Ala 150
Ser	Gln	Ser	Ala	Asn 155	His	Thr	His	Gly	Thr 160	Thr	Ser	His	Arg	Glu 165
Thr	Gln	Lys	Ala	Tyr 170	Leu	Leu	Ala	Ala	Gly 175	Val	Ile	Val	Cys	Ile 180
Tyr	Ile	Ile	Cys	Ala 185	Val	Ile	Leu	Ile	Leu 190	Gly	Val	Arg	Glu	Gln 195
Arg	Glu	Pro	Tyr	Glu 200	Ala	Gln	Gln	Ser	Glu 205	Pro	Ile	Ala	Tyr	Phe 210
Arg	Gly	Leu	Arg	Leu 215	Val	Met	Ser	His	Gly 220	Pro	Tyr	Ile	Lys	Leu 225
Ile	Thr	Gly	Phe	Leu 230	Phe	Thr	Ser	Leu	Ala 235	Phe	Met	Leu	Val	Glu 240
Gly	Asn	Phe	Val	Leu 245	Phe	Cys	Thr	Tyr	Thr 250	Leu	Gly	Phe	Arg	Asn 255
Glu	Phe	Gln	Asn	Leu 260	Leu	Leu	Ala	Ile	Met 265	Leu	Ser	Ala	Thr	Leu 270
Thr	Ile	Pro	Ile	Trp 275	Gln	Trp	Phe	Leu	Thr 280	Arg	Phe	Gly	Lys	Lys 285
Thr	Ala	Val	Tyr	Val 290	Gly	Ile	Ser	Ser	Ala 295	Val	Pro	Phe	Leu	Ile 300
Leu	Val	Ala	Leu	Met 305	Glu	Ser	Asn	Leu	Ile 310	Ile	Thr	Tyr	Ala	Val 315
Ala	Val	Ala	Ala	Gly 320	Ile	Ser	Val	Ala	Ala 325	Ala	Phe	Leu	Leu	Pro 330
Trp	Ser	Met	Leu	Pro 335	Asp	Val	Ile	Asp	Asp 340	Phe	His	Leu	Lys	Gln 345
Pro	His	Phe	His	Gly 350	Thr	Glu	Pro	Ile	Phe 355	Phe	Ser	Phe	Tyr	Val 360
Phe	Phe	Thr	Lys	Phe 365	Ala	Ser	Gly	Val	Ser 370	Leu	Gly	Ile	Ser	Thr 375
Leu	Ser	Leu	Asp	Phe 380	Ala	Gly	Tyr	Gln	Thr 385	Arg	Gly	Cys	Ser	Gln 390
Pro	Glu	Arg	Val	Lys 395	Phe	Thr	Leu	Asn	Met 400	Leu	Val	Thr	Met	Ala 405
Pro	Ile	Val	Leu	Ile 410	Leu	Leu	Gly	Leu	Leu 415	Leu	Phe	Lys	Met	Tyr 420

Pro Ile Asp Glu Glu Arg Arg Gln Asn Lys Lys Ala Leu Gln 425 430 435

Ala Leu Arg Asp Glu Ala Ser Ser Ser Gly Cys Ser Glu Thr Asp 440 445 450

Ser Thr Glu Leu Ala Ser Ile Leu 455

- <210> 21
- <211> 571
- <212> DNA
- <213> Homo sapiens
- <400> 21

gggaaacgca aaaggcatac ctgctggcag cgggggtcat tgtctgtatc 50 tatataatct gtgctgtcat cctgatcctg ggcgtgcggg agcagagaga 100 accctatgaa gcccagcagt ctgagccaat cgcctacttc cggggcctac 150 ggctggtcat gagccacggc ccatacatca aacttattac tggcttcctc 200 ttcacctcct tggctttcat gctggtggag gggaactttg tcttgttttg 250 cacctacacc ttgggcttcc gcaatgaatt ccagaatcta ctcctggcca 300 tcatgctctc ggccacttta accattcca tctggcagtg gttcttgacc 350 cggtttggca agaagacagc tgtatatgtt gggatctcat cagcagtgcc 400 atttctcatc ttggtggcc tcatggagag taacctcatc attacatatg 450 cggtagctgt ggcagctggc atcagtgtgg cagctgcctt cttactaccc 500 tggtccatgc tgcctgatgt cattgacgac ttccatctga agcagcccca 550

- <210> 22
- <211> 1173
- <212> DNA
- <213> Homo sapiens

cttccatgga accgagccca t 571

- <400> 22
- agggettegg egecagegge eagegetagt eggtetggta aggatttaca 50 aaaggtgeag gtatgageag gtetgaagae taacattttg tgaagttgta 100 aaacagaaaa eetgttagaa atgtggtggt tteageaagg eeteagttee 150 etteetteag eeettgtaat ttggacatet getgetttea tatttteata 200 eattactgea gtaacactee accatataga eeeggettta eettatatea 250 gtgacactgg tacagtaget eeagaaaaat gettatttgg ggeaatgeta 300 aatattgegg eagttttatg eattgetaee atttatgtte gttataagea 350 agtteatget eegagteetg aagagaaegt tateateaa ttaaacaagg 400 etggeettgt aettggaata etgagttgtt taggaeette tattgtggea 450

aacttccaga aaacaaccct ttttgctgca catgtaagtg gagctgtgct 500 tacctttggt atgggctcat tatatatgtt tgttcagacc atcctttcct 550 accaaaatgca gcccaaaatc catggcaaac aagtcttctg gatcagactg 600 ttgttggtta tctggtgtgg agtaagtgca cttagcatgc tgacttgctc 650 atcagttttg cacagtggca attttgggac tgatttagaa cagaaactcc 700 attggaaccc cgaggacaaa ggttatgtgc ttcacatgat cactactgca 750 gcagaatggt ctatgtcatt ttccttcttt ggtttttcc tgacttacat 800 tcgtgattt cagaaaattt cttacaggt ggaagccaat ttacatggat 850 taaccctcta tgacactgca ccttgcccta ttaacaatga acgaacacgg 900 ctactttcca gagatatttg atgaaaggat aaaatattc tgtaatgatt 950 atgattcca gggattggg aaaggttcac agaagttgct tattcttct 1000 tgaaattttc aaccacttaa tcaaggctga cagtaacact gatgaatgct 1050 gataatcagg aaacatgaaa gaagccatt gatagatta tctaaaggat 1100 atcatcaaga agactattaa aaacacctat gcctatactt ttttatctca 1150 gaaaataaag tcaaaagact atg 1173

- <210> 23
- <211> 266
- <212> PRT
- <213> Homo sapiens
- <400> 23
- Met Trp Trp Phe Gln Gln Gly Leu Ser Phe Leu Pro Ser Ala Leu
 1 5 10
- Val Ile Trp Thr Ser Ala Ala Phe Ile Phe Ser Tyr Ile Thr Ala 20 25 30
- Val Thr Leu His His Ile Asp Pro Ala Leu Pro Tyr Ile Ser Asp 35 40 45
- Thr Gly Thr Val Ala Pro Glu Lys Cys Leu Phe Gly Ala Met Leu
 50 55 60
- Asn Ile Ala Ala Val Leu Cys Ile Ala Thr Ile Tyr Val Arg Tyr 65 70 75
- Lys Gln Val His Ala Leu Ser Pro Glu Glu Asn Val Ile Ile Lys 80 85 90
- Leu Asn Lys Ala Gly Leu Val Leu Gly Ile Leu Ser Cys Leu Gly
 95 100 105
- Leu Ser Ile Val Ala Asn Phe Gln Lys Thr Thr Leu Phe Ala Ala 110 115 120
- His Val Ser Gly Ala Val Leu Thr Phe Gly Met Gly Ser Leu Tyr 125 130 135

Met Phe Val Gln Thr Ile Leu Ser Tyr Gln Met Gln Pro Lys Ile 145 His Gly Lys Gln Val Phe Trp Ile Arg Leu Leu Val Ile Trp Cys Gly Val Ser Ala Leu Ser Met Leu Thr Cys Ser Ser Val Leu 175 His Ser Gly Asn Phe Gly Thr Asp Leu Glu Gln Lys Leu His Trp 190 Asn Pro Glu Asp Lys Gly Tyr Val Leu His Met Ile Thr Thr Ala 200 205 Ala Glu Trp Ser Met Ser Phe Ser Phe Phe Gly Phe Phe Leu Thr 220 Tyr Ile Arg Asp Phe Gln Lys Ile Ser Leu Arg Val Glu Ala Asn 230 Leu His Gly Leu Thr Leu Tyr Asp Thr Ala Pro Cys Pro Ile Asn 245 250 Asn Glu Arg Thr Arg Leu Leu Ser Arg Asp Ile 260

<210> 24 <211> 485 <212> DNA <213> Homo sapiens

<220> <221> unsure <222> 14, 484 <223> unknown base

<400> 24
cggacgcttg ggcngcgcca gcggccagcg ctagtcggtc tggtaagtgc 50
ctgatgccga gttccgtctc tcgggtcttt tcctggtccc aggcaaagcg 100
gagcggagat cctcaaacgg cctagtgctt cgcgcttccg gagaaaatca 150
gcggtctaat taattcctct ggtttgttga agcagttacc aagaatcttc 200
aaccctttcc cacaaaagct aattgagtac acgttcctgt tgagtacacg 250
ttcctgttga tttacaaaag gtgcaggtat gagcaggtct gaagactaac 300
attttgtgaa gttgtaaaac agaaaacctg ttagaaatgt ggtggtttca 350
gcaaggcctc agtttccttc cttcagccct tgtaatttgg acatctgctg 400
ctttcatatt ttcatacatt actgcagtaa cactccacca tatagacccg 450
gctttacctt atatcagtga cactggtaca gtanc 485

<210> 25 <211> 40 <212> DNA <213> Artificial Sequence

aaatttagtc agaaacatct gcaattgaat gaaacaagta ctgctaatca 850 tatacacagt agaaaagaca catgatctgg attttctgtt tgccacatcc 900

ctggactcag ttgcttattt gtgtaatgga tgtggtcctc taaaqcccct 950

cattgttttt gattgccttc tataggtgat gtggacactg tgcatcaatg 1000

tgcagtgtct tttcagaaag gacactctgc tcttgaaggt gtattacatc 1050 aggttttcaa accagccctg gtgtagcaga cactgcaaca gatgcctcct 1100 agaaaatgct gtttgtggcc gggcgcggtg gctcacgcct gtaatcccag 1150 cactttggga ggccgaggcc ggtgattcac aaggtcagga gttcaagacc 1200 agcctggcca agatggtgaa atcctgtctc taataaaaat acaaaaatta 1250 gccaggcgtg gtggcaggca cctgtaatcc cagctactcg ggaggctgag 1300 gcaggagaat tgcttgaacc aaggtggcag aggttgcagt aagccaagat 1350 cacaccactg cactccagcc tgggtgatag agtgagacac tgtcttgac 1399

<210> 28

<211> 264

<212> PRT

<213> Homo sapiens

<400> 28

Met Arg Pro Leu Leu Gly Leu Leu Leu Val Phe Ala Gly Cys Thr 1 5 10 15

Phe Ala Leu Tyr Leu Leu Ser Thr Arg Leu Pro Arg Gly Arg Arg 20 25 30

Leu Gly Ser Thr Glu Glu Ala Gly Gly Arg Ser Leu Trp Phe Pro 35 40 45

Ser Asp Leu Ala Glu Leu Arg Glu Leu Ser Glu Val Leu Arg Glu 50 55 60

Tyr Arg Lys Glu His Gln Ala Tyr Val Phe Leu Leu Phe Cys Gly 65 70 75

Ala Tyr Leu Tyr Lys Gln Gly Phe Ala Ile Pro Gly Ser Ser Phe 80 85 90

Leu Asn Val Leu Ala Gly Ala Leu Phe Gly Pro Trp Leu Gly Leu
95 100 105

Leu Leu Cys Cys Val Leu Thr Ser Val Gly Ala Thr Cys Cys Tyr
110 115 120

Leu Leu Ser Ser Ile Phe Gly Lys Gln Leu Val Val Ser Tyr Phe 125 130 135

Pro Asp Lys Val Ala Leu Leu Gln Arg Lys Val Glu Glu Asn Arg 140 145 150

Asn Ser Leu Phe Phe Phe Leu Leu Phe Leu Arg Leu Phe Pro Met
155 160 165

Thr Pro Asn Trp Phe Leu Asn Leu Ser Ala Pro Ile Leu Asn Ile 170 175 180

Pro Ile Val Gln Phe Phe Phe Ser Val Leu Ile Gly Leu Ile Pro 185 190

Tyr Asn Phe Ile Cys Val Gln Thr Gly Ser Ile Leu Ser Thr Leu 200 205 210

Thr Ser Leu Asp Ala Leu Phe Ser Trp Asp Thr Val Phe Lys Leu 215 220 225

Leu Ala Ile Ala Met Val Ala Leu Ile Pro Gly Thr Leu Ile Lys 230 235 240

Lys Phe Ser Gln Lys His Leu Gln Leu Asn Glu Thr Ser Thr Ala $245 \hspace{1.5cm} 250 \hspace{1.5cm} 255$

Asn His Ile His Ser Arg Lys Asp Thr 260

<210> 29

<211> 1292

<212> DNA

<213> Homo sapiens

<400> 29

ccgaggcggg aggagcccga gggggcgcga gccccgcatg aatcattgta 50 gtcaatcatt ttccagttct cagccgctca gttgtgatca agggacacqt 100 ggtttccgaa ctgccagctc agaataggaa aataacttgg gattttatat 150 tggaagacat ggatcttgct gccaacgaga tcagcattta tgacaaactt 200 tcagagactg ttgatttggt gagacagacc ggccatcagt gtggcatgtc 250 agagaaggca attgaaaaat ttatcagaca qctqctqqaa aaqaatqaac 300 ctcagagacc cccccgcag tatcctctcc ttatagttgt gtataaggtt 350 ctcgcaacct tgggattaat cttgctcact gcctactttg tgattcaacc 400 tttcagccca ttagcacctg agccagtgct ttctggagct cacacctggc 450 gctcactcat ccatcacatt aggctgatgt ccttgcccat tgccaagaag 500 tacatgtcag aaaataaggg agttcctctg catgggggtg atgaagacag 550 accettteca gaetttgace cetggtggae aaacgaetgt gageagaatg 600 agtcagagcc cattcctgcc aactgcactg gctgtgccca gaaacacctg 650 aaggtgatgc teetggaaga egeceeaagg aaatttgaga ggeteeatee 700 actggtgatc aagacgggaa agcccctgtt ggaggaagag attcagcatt 750 ttttgtgcca gtaccctgag gcgacagaag gcttctctga agggtttttc 800 gccaagtggt ggcgctgctt tcctgagcgg tggttcccat ttccttatcc 850 atggaggaga cctctgaaca gatcacaaat gttacgtgag ctttttcctg 900 ttttcactca cctgccattt ccaaaagatg cctctttaaa caagtgctcc 950 tttcttcacc cagaacctgt tgtggggagt aagatgcata agatgcctga 1000 cctatttatc attggcagcg gtgaggccat gttgcagctc atccctccct 1050 tccagtgccg aagacattgt cagtctgtgg ccatgccaat agagccaggg 1100 gatatcggct atgtcgacac cacccactgg aaggtctacg ttatagccag 1150

aggggtccag cctttggtca tctgcgatgg aaccgctttc tcagaactgt 1200 aggaaataga actgtgcaca ggaacagctt ccagagccga aaaccaggtt 1250 gaaaggggaa aaataaaaac aaaaacgatg aaactgcaaa aa 1292

<210> 30

<211> 347

<212> PRT

<213> Homo sapiens

<400> 30

Met Asp Leu Ala Ala Asn Glu Ile Ser Ile Tyr Asp Lys Leu Ser 1 5 10

Glu Thr Val Asp Leu Val Arg Gln Thr Gly His Gln Cys Gly Met 20 25 30

Ser Glu Lys Ala Ile Glu Lys Phe Ile Arg Gln Leu Leu Glu Lys 35 40 45

Asn Glu Pro Gln Arg Pro Pro Pro Gln Tyr Pro Leu Leu Ile Val 50 55 60

Val Tyr Lys Val Leu Ala Thr Leu Gly Leu Ile Leu Leu Thr Ala 65 70 75

Tyr Phe Val Ile Gln Pro Phe Ser Pro Leu Ala Pro Glu Pro Val 80 85 90

Leu Ser Gly Ala His Thr Trp Arg Ser Leu Ile His His Ile Arg 95 100 105

Leu Met Ser Leu Pro Ile Ala Lys Lys Tyr Met Ser Glu Asn Lys 110 115 120

Gly Val Pro Leu His Gly Gly Asp Glu Asp Arg Pro Phe Pro Asp 125 130 135

Phe Asp Pro Trp Trp Thr Asn Asp Cys Glu Gln Asn Glu Ser Glu
140 145 150

Pro Ile Pro Ala Asn Cys Thr Gly Cys Ala Gln Lys His Leu Lys
155 160 165

Val Met Leu Glu Asp Ala Pro Arg Lys Phe Glu Arg Leu His
170 175 180

Pro Leu Val Ile Lys Thr Gly Lys Pro Leu Leu Glu Glu Glu Ile 185 190 195

Gln His Phe Leu Cys Gln Tyr Pro Glu Ala Thr Glu Gly Phe Ser 200 205 210

Glu Gly Phe Phe Ala Lys Trp Trp Arg Cys Phe Pro Glu Arg Trp
215 220 225

Phe Pro Phe Pro Tyr Pro Trp Arg Arg Pro Leu Asn Arg Ser Gln 230 235

Met Leu Arg Glu Leu Phe Pro Val Phe Thr His Leu Pro Phe Pro 245 250 250

Lys Asp Ala Ser Leu Asn Lys Cys Ser Phe Leu His Pro Glu Pro 260 265 270

Val Val Gly Ser Lys Met His Lys Met Pro Asp Leu Phe Ile Ile 275 280 285

Gly Ser Gly Glu Ala Met Leu Gln Leu Ile Pro Pro Phe Gln Cys 290 295 300

Arg Arg His Cys Gln Ser Val Ala Met Pro Ile Glu Pro Gly Asp 305 310 315

Ile Gly Tyr Val Asp Thr Thr His Trp Lys Val Tyr Val Ile Ala 320 325 330

Arg Gly Val Gln Pro Leu Val Ile Cys Asp Gly Thr Ala Phe Ser 335 340 345

Glu Leu

<210> 31

<211> 478

<212> DNA

<213> Homo sapiens

<400> 31

ccacggtgtc cgttcttcgc ccggcggcag ctgtccccga ggcgggagga 50 gcccgagggg cgcgagccc gcatgaatca ttgtagtcaa tcattttcca 100 gttctcagcc gttcagttgt gatcaaggga cacgtggttt ccgaactgcc 150 agctcagaat aggaaaataa cttgggattt tatattggaa gacatggatc 200 ttgctgccaa cgagatcagc atttatgaca aactttcaga gactgttgat 250 ttggtgagac agaccggcca tcagtgtggc atgtcagaga aggcaattga 300 aaaatttatc agacagctgc tggaaaagaa tgaacctcag agacccccc 350 cgcagtatcc tctccttata gttgtgtata aggttctcgc aaccttggga 400 ttaatcttgc tcactgccta ctttgtgatt caacctttca gcccattagc 450 acctgagcca gtgctttgtg gagctcac 478

<210> 32

<211> 3531

<212> DNA

<213> Homo sapiens

<400> 32

cccacgegte egeccacgeg teeggetgaa cacetettet teggagteag 50 ccactgatga ggeagggtee ecacttgeag etgeageage tegeageaget 100 geagageget geteetgget ggtgecactg gtgegeaege tegetagaeeg 150 tegeetatgag eegetgggge tegeagtgggg actegeetee etgeeaeee 200 ccaatggeag ecceaeette tetgaagaet teeaggett teggageae 250

cccgaatggc gccacttcat cgacaaacag gtacagccaa ccatgtccca 300 gttcgaaatg gacacgtatg ctaagagcca cgaccttatg tcaggtttct 350 ggaatgcctg ctatgacatg cttatgagca gtgggcagcg gcgccagtgg 400 gagegegeee agagtegteg ggeetteeag gagetggtge tggaacetge 450 gcagaggcgg gcgcgcctgg aggggctacg ctacacggca gtgctgaagc 500 agcaggcaac gcagcactcc atggccctgc tgcactgggg ggcgctgtgg 550 cgccagctcg ccagcccatg tggggcctgg gcgctgaggg acactcccat 600 cccccgctgg aaactgtcca gcgccgagac atattcacgc atgcgtctga 650 agctggtgcc caaccatcac ttcgaccctc acctggaagc cagcgctctc 700 cgagacaatc tgggtgaggt tcccctgaca cccaccgagg aggcctcact 750 gcctctggca gtgaccaaag aggccaaagt gagcacccca cccgagttgc 800 tgcaggagga ccagctcggc gaggacgagc tggctgagct ggagaccccg 850 atggaggcag cagaactgga tgagcagcgt gagaagctgg tgctgtcggc 900 cgagtgccag ctggtgacgg tagtggccgt ggtcccaggg ctgctggagg 950 tcaccacaca gaatgtatac ttctacgatg gcagcactga gcgcgtggaa 1000 accgaggagg gcatcggcta tgatttccgg cgcccactgg cccagctgcg 1050 tgaggtccac ctgcggcgtt tcaacctgcg ccgttcagca cttgagctct 1100 tetttatega teaggeeaac taetteetea aetteeeatg eaaggtggge 1150 acgaccccag tctcatctcc tagccagact ccgagacccc agcctggccc 1200 cateceaece catacecagg taeggaaeca ggtgtaeteg tggeteetge 1250 gcctacggcc cccctctcaa ggctacctaa gcagccgctc cccccaggag 1300 atgctgcgtg cctcaggcct tacccagaaa tgggtacagc gtgagatatc 1350 caacttcgag tacttgatgc aactcaacac cattgcgggg cggacctaca 1400 atgacctgtc tcagtaccct gtgttcccct gggtcctgca ggactacgtg 1450 tececaacee tggaceteag caaceeagee gtetteeggg acetgtetaa 1500 gcccatcggt gtggtgaacc ccaagcatgc ccagctcgtg agggagaagt 1550 atgaaagctt tgaggaccca gcagggacca ttgacaagtt ccactatggc 1600 acccactact ccaatgcagc aggcgtgatg cactacctca tccgcgtgga 1650 gcccttcacc tccctgcacg tccagctgca aagtggccgc tttgactgct 1700 ccgaccggca gttccactcg gtggcggcag cctggcaggc acgcctggag 1750 agccctgccg atgtgaagga gctcatcccg gaattcttct actttcctga 1800 cttcctggag aaccagaacg gttttgacct gggctgtctc cagctgacca 1850

acgagaaggt	aggcgatgtg	gtgctacccc	cgtgggccag	ctctcctgag	1900
gacttcatcc	agcagcaccg	ccaggctctg	gagtcggagt	atgtgtctgc	1950
acacctacac	gagtggatcg	acctcatctt	tggctacaag	cagcgggggc	2000
cagccgccga	ggaggccctc	aatgtcttct	attactgcac	ctatgagggg	2050
gctgtagacc	tggaccatgt	gacagatgag	cgggaacgga	aggctctgga	2100
gggcattatc	agcaactttg	ggcagactcc	ctgtcagctg	ctgaaggagc	2150
cacatccaac	tcggctctca	gctgaggaag	cagcccatcg	ccttgcacgc	2200
ctggacacta	actcacctag	catcttccag	cacctggacg	aactcaaggc	2250
attcttcgca	gaggtgactg	tgagtgccag	tgggctgctg	ggcacccaca	2300
gctggttgcc	ctatgaccgc	aacataagca	actacttcag	cttcagcaaa	2350
gaccccacca	tgggcagcca	caagacgcag	cgactgctga	gtggcccgtg	2400
ggtgccaggc	agtggtgtga	gtggacaagc	actggcagtg	gccccggatg	2450
gaaagctgct	attcagcggt	ggccactggg	atggcagcct	gcgggtgact	2500
gcactacccc	gtggcaagct	gttgagccag	ctcagctgcc	accttgatgt	2550
agtaacctgc	cttgcactgg	acacctgtgg	catctacctc	atctcaggct	2600
cccgggacac	cacgtgcatg	gtgtggcggc	tcctgcatca	gggtggtctg	2650
tcagtaggcc	tggcaccaaa	gcctgtgcag	gtcctgtatg	ggcatggggc	2700
tgcagtgagc	tgtgtggcca	tcagcactga	acttgacatg	gctgtgtctg	2750
gatctgagga	tggaactgtg	atcatacaca	ctgtacgccg	cggacagttt	2800
gtagcggcac	tacggcctct	gggtgccaca	ttccctggac	ctattttcca	2850
cctggcattg	gggtccgaag	gccagattgt	ggtacagagc	tcagcgtggg	2900
aacgtcctgg	ggcccaggtc	acctactcct	tgcacctgta	ttcagtcaat	2950
gggaagttgc	gggcttcact	gcccctggca	gagcagccta	cagccctgac	3000
ggtgacagag	gactttgtgt	tgctgggcac	cgcccagtgc	gccctgcaca	3050
tcctccaact	aaacacactg	ctcccggccg	cgcctccctt	gcccatgaag	3100
gtggccatcc	gcagcgtggc	cgtgaccaag	gagcgcagcc	acgtgctggt	3150
gggcctggag	gatggcaagc	tcatcgtggt	ggtcgcgggg	cagccctctg	3200
aggtgcgcag	cagccagttc	gcgcggaagc	tgtggcggtc	ctcgcggcgc	3250
atctcccagg	tgtcctcggg	agagacggaa	tacaacccta	ctgaggcgcg	3300
ctgaacctgg	ccagtccggc	tgctcgggcc	ccgcccccgg	caggcctggc	3350
ccgggaggcc	ccgcccagaa	gtcggcggga	acaccccggg	gtgggcagcc	3400
cagggggtga	gcggggccca	ccctgcccag	ctcagggatt	ggcgggcgat	3450

gttacccct cagggattgg cgggcggaag tcccgccct cgccggctga 3500 ggggccgccc tgagggccag cactggcgtc t 3531

<210> 33

<211> 1003

<212> PRT

<213> Homo sapiens

<400> 33

Met Ser Gln Phe Glu Met Asp Thr Tyr Ala Lys Ser His Asp Leu 1 5 10 15

Met Ser Gly Phe Trp Asn Ala Cys Tyr Asp Met Leu Met Ser Ser 20 25 30

Gly Gln Arg Arg Gln Trp Glu Arg Ala Gln Ser Arg Arg Ala Phe
35 40 45

Gln Glu Leu Val Leu Glu Pro Ala Gln Arg Arg Ala Arg Leu Glu
50 55 60

Gly Leu Arg Tyr Thr Ala Val Leu Lys Gln Gln Ala Thr Gln His 65 70 75

Ser Met Ala Leu Leu His Trp Gly Ala Leu Trp Arg Gln Leu Ala 80 85 90

Ser Pro Cys Gly Ala Trp Ala Leu Arg Asp Thr Pro Ile Pro Arg 95 100 105

Trp Lys Leu Ser Ser Ala Glu Thr Tyr Ser Arg Met Arg Leu Lys 110 115 120

Leu Val Pro Asn His His Phe Asp Pro His Leu Glu Ala Ser Ala 125 130 135

Leu Arg Asp Asn Leu Gly Glu Val Pro Leu Thr Pro Thr Glu Glu
140 145 150

Ala Ser Leu Pro Leu Ala Val Thr Lys Glu Ala Lys Val Ser Thr 155 160 165

Pro Pro Glu Leu Gln Glu Asp Gln Leu Gly Glu Asp Glu Leu 170 175 180

Ala Glu Leu Glu Thr Pro Met Glu Ala Ala Glu Leu Asp Glu Gln
185 190 195

Arg Glu Lys Leu Val Leu Ser Ala Glu Cys Gln Leu Val Thr Val 200 205 210

Val Ala Val Val Pro Gly Leu Leu Glu Val Thr Thr Gln Asn Val 215 220 225

Tyr Phe Tyr Asp Gly Ser Thr Glu Arg Val Glu Thr Glu Glu Gly 230 235

Ile Gly Tyr Asp Phe Arg Arg Pro Leu Ala Gln Leu Arg Glu Val 245 250 255

His Leu Arg Arg Phe Asn Leu Arg Arg Ser Ala Leu Glu Leu Phe 260 265 270

Phe	Ile	Asp	Gln	Ala 275	Asn	Tyr	Phe	Leu	Asn 280	Phe	Pro	Суз	Lys	Val 285
Gly	Thr	Thr	Pro	Val 290	Ser	Ser	Pro	Ser	Gln 295	Thr	Pro	Arg	Pro	Gln 300
Pro	Gly	Pro	Ile	Pro 305	Pro	His	Thr	Gln	Val 310	Arg	Asn	Gln	Val	Tyr 315
Ser	Trp	Leu	Leu	Arg 320	Leu	Arg	Pro	Pro	Ser 325	Gln	Gly	Tyr	Leu	Ser 330
Ser	Arg	Ser	Pro	Gln 335	Glu	Met	Leu	Arg	Ala 340	Ser	Gly	Leu	Thr	Gln 345
Lys	Trp	Val	Gln	Arg 350	Glu	Ile	Ser	Asn	Phe 355	Glu	Tyr	Leu	Met	Gln 360
Leu	Asn	Thr	Ile	Ala 365	Gly	Arg	Thr	Tyr	Asn 370	Asp	Leu	Ser	Gln	Tyr 375
Pro	Val	Phe	Pro	Trp 380	Val	Leu	Gln	Asp	Tyr 385	Val	Ser	Pro	Thr	Leu 390
Asp	Leu	Ser	Asn	Pro 395	Ala	Val	Phe	Arg	Asp 400	Leu	Ser	Lys	Pro	Ile 405
Gly	Val	Val	Asn	Pro 410	Lys	His	Ala	Gln	Leu 415	Val	Arg	Glu	Lys	Tyr 420
Glu	Ser	Phe	Glu	Asp 425	Pro	Ala	Gly	Thr	Ile 430	Asp	Lys	Phe	His	Tyr 435
Gly	Thr	His	Tyr	Ser 440	Asn	Ala	Ala	Gly	Val 445	Met	His	Tyr	Leu	Ile 450
Arg	Val	Glu	Pro	Phe 455	Thr	Ser	Leu	His	Val 460	Gln	Leu	Gln	Ser	Gly 465
Arg	Phe	Asp	Cys	Ser 470	Asp	Arg	Gln	Phe	His 475	Ser	Val	Ala	Ala	Ala 480
Trp	Gln	Ala	Arg	Leu 485	Glu	Ser	Pro	Ala	Asp 490	Val	Lys	Glu	Leu	Ile 495
Pro	Glu	Phe	Phe	Tyr 500		Pro	Asp	Phe	Leu 505	Glu	Asn	Gln	Asn	Gly 510
Phe	Asp	Leu	Gly	Cys 515		Gln	Leu	Thr	Asn 520	Glu	Lys	Val	Gly	Asp 525
Val	Val	Leu	Pro	Pro 530		Ala	Ser	Ser	Pro 535		Asp	Phe	Ile	Gln 540
Gln	His	Arg	Gln	Ala 545		Glu	Ser	Glu	Tyr 550	Val	Ser	Ala	His	Leu 555
His	Glu	Trp	Ile	Asp 560		Ile	Phe	Gly	Tyr 565		Gln	Arg	Gly	Pro 570
Ala	Ala	Glu	Glu	Ala 575		Asn	Val	Phe	Tyr 580	Tyr	Cys	Thr	Tyr	Glu 585

Gly	Ala	Val	Asp	Leu 590	Asp	His	Val	Thr	Asp 595	Glu	Arg	Glu	Arg	Lys 600
Ala	Leu	Glu	Gly	Ile 605	Ile	Ser	Asn	Phe	Gly 610	Gln	Thr	Pro	Cys	Gln 615
Leu	Leu	Lys	Glu	Pro 620	His	Pro	Thr	Arg	Leu 625	Ser	Ala	Glu	Glu	Ala 630
Ala	His	Arg	Leu	Ala 635	Arg	Leu	Asp	Thr	Asn 640	Ser	Pro	Ser	Ile	Phe 645
Gln	His	Leu	Asp	Glu 650	Leu	Lys	Ala	Phe	Phe 655	Ala	Glu	Val	Thr	Val 660
Ser	Ala	Ser	Gly	Leu 665	Leu	Gly	Thr	His	Ser 670	Trp	Leu	Pro	Tyr	Asp 675
Arg	Asn	Ile	Ser	Asn 680	Tyr	Phe	Ser	Phe	Ser 685	Lys	Asp	Pro	Thr	Met 690
Gly	Ser	His	Lys	Thr 695	Gln	Arg	Leu	Leu	Ser 700	Gly	Pro	Trp	Val	Pro 705
Gly	Ser	Gly	Val	Ser 710	Gly	Gln	Ala	Leu	Ala 715	Val	Ala	Pro	Asp	Gly 720
Lys	Leu	Leu	Phe	Ser 725	Gly	Gly	His	Trp	Asp 730	Gly	Ser	Leu	Arg	Val 735
Thr	Ala	Leu	Pro	Arg 740	Gly	Lys	Leu	Leu	Ser 745	Gln	Leu	Ser	Cys	His 750
Leu	Asp	Val	Val	Thr 755	Cys	Leu	Ala	Leu	Asp 760	Thr	Cys	Gly	Ile	Tyr 765
Leu	Ile	Ser	Gly	Ser 770	Arg	Asp	Thr	Thr	Cys 775	Met	Val	Trp	Arg	Leu 780
Leu	His	Gln	Gly	Gly 785	Leu	Ser	Val	Gly	Leu 790	Ala	Pro	Lys	Pro	Val 795
Gln	Val	Leu	Tyr	Gly 800	His	Gly	Ala	Ala	Val 805	Ser	Суз	Val	Ala	Ile 810
Ser	Thr	Glu	Leu	Asp 815	Met	Ala	Val	Ser	Gly 820	Ser	Glu	Asp	Gly	Thr 825
Val	Ile	Ile	His	Thr 830	Val	Arg	Arg	Gly	Gln 835	Phe	Val	Ala	Ala	Leu 840
Arg	Pro	Leu	Gly	Ala 845	Thr	Phe	Pro	Gly	Pro 850	Ile	Phe	His	Leu	Ala 855
Leu	Gly	Ser	Glu	Gly 860	Gln	Ile	Val	Val	Gln 865	Ser	Ser	Ala	Trp	Glu 870
Arg	Pro	Gly	Ala	Gln 875	Val	Thr	Tyr	Ser	Leu 880	His	Leu	Tyr	Ser	Val 885
Asn	Gly	Lys	Leu	Arg 890	Ala	Ser	Leu	Pro	Leu 895	Ala	Glu	Gln	Pro	Thr 900


```
Ala Leu Thr Val Thr Glu Asp Phe Val Leu Leu Gly Thr Ala Gln
Cys Ala Leu His Ile Leu Gln Leu Asn Thr Leu Leu Pro Ala Ala
Pro Pro Leu Pro Met Lys Val Ala Ile Arg Ser Val Ala Val Thr
                935
                                    940
Lys Glu Arg Ser His Val Leu Val Gly Leu Glu Asp Gly Lys Leu
```

950 955

Ile Val Val Ala Gly Gln Pro Ser Glu Val Arg Ser Ser Gln 965 970

Phe Ala Arg Lys Leu Trp Arg Ser Ser Arg Arg Ile Ser Gln Val 985

Ser Ser Gly Glu Thr Glu Tyr Asn Pro Thr Glu Ala Arg 995 1000

<210> 34 <211> 43 <212> DNA

<213> Artificial Sequence

<220>

<400> 34

<223> Synthetic oligonucleotide probe

tgactgcact accccgtggc aagctgttga gccagctcag ctg 43

<210> 35 <211> 1395 <212> DNA

<213> Homo sapiens

<400> 35

cggacgcgtg ggcggacgcg tgggggctgt gagaaagtgc caataaatac 50 atcatgcaac cccacggccc accttgtgaa ctcctcgtgc ccagggctga 100 tgtgcgtctt ccagggctac tcatccaaag gcctaatcca acgttctgtc 150 ttcaatctgc aaatctatgg ggtcctgggg ctcttctgga cccttaactg 200 ggtactggcc ctgggccaat gcgtcctcgc tggagccttt gcctccttct 250 actgggcctt ccacaagccc caggacatcc ctaccttccc cttaatctct 300 gccttcatcc gcacactccg ttaccacact gggtcattgg catttggagc 350 cctcatcctg acccttgtgc agatagcccg ggtcatcttg gagtatattg 400 accacaaget cagaggagtg cagaaccetg tagecegetg cateatgtge 450 tgtttcaagt gctgcctctg gtgtctggaa aaatttatca agttcctaaa 500 ccgcaatgca tacatcatga tcgccatcta cgggaagaat ttctgtgtct 550 cagccaaaaa tgcgttcatg ctactcatgc gaaacattgt cagggtggtc 600 gtcctggaca aagtcacaga cctgctgctg ttctttggga agctgctggt 650

eggectggg taaagacttt aagagecee aceteaacta thactggetg 750 cecateatga cetecateet gggggectat gteategeaa geggettett 800 cagegttte ggeatgtgg tggacacget etteetege tteetggaag 850 acetggageg gaacaacgge tecetggace ggeetacta catgtecaag 900 ageettetta agattetggg caagaagaac gaggegeee eggacaacaa 950 gaagaggaag aagtgacage teceggeeegg atecaggee etecatea etecaggace ggacaacaa 950 cecacegtee ageeateeaa eeteacteg eeteacta geaceeeace 1000 eecacegtee ageeateeaa eeteacteg eeteactge etecatttg 1050 tggtaaaaaa aggtttagg eeaggegeeg tggeteacge etgtaateea 1100 acaetttgag aggetgagge gggeggatea eetgagteag gagttegaga 1150 eeageetgge eaacatggtg aaaceetegt etecagetae tegggagget 1250 gaggeaggag aategettga aeeegggagg eagaggttge agtgageega 1300 gategegeea etgeacteea aeetgggtga eagaetetgt etecaaaaca 1350 aaacaaacaa acaaaaagat tttattaaag atattttgtt aacte 1395

<210> 36

<211> 321

<212> PRT

<213> Homo sapiens

<400> 36

Arg Thr Arg Gly Arg Thr Arg Gly Gly Cys Glu Lys Val Pro Ile 1 5 10 15

Asn Thr Ser Cys Asn Pro Thr Ala His Leu Val Asn Ser Ser Cys 20 25 30

Pro Gly Leu Met Cys Val Phe Gln Gly Tyr Ser Ser Lys Gly Leu
35 40 45

Ile Gln Arg Ser Val Phe Asn Leu Gln Ile Tyr Gly Val Leu Gly
50 55 60

Leu Phe Trp Thr Leu Asn Trp Val Leu Ala Leu Gly Gln Cys Val
65 70 75

Leu Ala Gly Ala Phe Ala Ser Phe Tyr Trp Ala Phe His Lys Pro 80 85 90

Gln Asp Ile Pro Thr Phe Pro Leu Ile Ser Ala Phe Ile Arg Thr 95 100

Leu Arg Tyr His Thr Gly Ser Leu Ala Phe Gly Ala Leu Ile Leu 110 115 120

Thr Leu Val Gln Ile Ala Arg Val Ile Leu Glu Tyr Ile Asp His
125 130 135


```
Lys Leu Arg Gly Val Gln Asn Pro Val Ala Arg Cys Ile Met Cys
                                     145
 Cys Phe Lys Cys Cys Leu Trp Cys Leu Glu Lys Phe Ile Lys Phe
 Leu Asn Arg Asn Ala Tyr Ile Met Ile Ala Ile Tyr Gly Lys Asn
 Phe Cys Val Ser Ala Lys Asn Ala Phe Met Leu Leu Met Arg Asn
                 185
                                     190
 Ile Val Arg Val Val Leu Asp Lys Val Thr Asp Leu Leu Leu
                                     205
 Phe Phe Gly Lys Leu Leu Val Val Gly Val Gly Val Leu Ser
                 215
 Phe Phe Phe Ser Gly Arg Ile Pro Gly Leu Gly Lys Asp Phe
                 230
 Lys Ser Pro His Leu Asn Tyr Tyr Trp Leu Pro Ile Met Thr Ser
                                     250
 Ile Leu Gly Ala Tyr Val Ile Ala Ser Gly Phe Phe Ser Val Phe
 Gly Met Cys Val Asp Thr Leu Phe Leu Cys Phe Leu Glu Asp Leu
                 275
 Glu Arg Asn Asn Gly Ser Leu Asp Arg Pro Tyr Tyr Met Ser Lys
                                     295
 Ser Leu Leu Lys Ile Leu Gly Lys Lys Asn Glu Ala Pro Pro Asp
                 305
                                     310
 Asn Lys Lys Arg Lys Lys
                 320
<210> 37
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 37
tcgtgcccag gggctgatgt gc 22
<210> 38
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 38
```

43

gtctttaccc agccccggga tgcg 24

<210> 39 <211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 39

ggcctaatcc aacgttctgt cttcaatctg caaatctatg gggtcctggg 50

<210> 40

<211> 1365

<212> DNA

<213> Homo sapiens

<400> 40

gagtettgae egeegeeggg etettggtae eteagegega gegeeaggeg 50 teeggeegee gtggetatgt tegtgteega ttteegeaaa gagttetaeg 100 aggtggtcca gagccagagg gtccttctct tcgtggcctc ggacgtggat 150 gctctgtgtg cgtgcaagat ccttcaggcc ttgttccagt gtgaccacgt 200 gcaatatacg ctggttccag tttctgggtg gcaagaactt qaaactgcat 250 ttcttgagca taaagaacag tttcattatt ttattctcat aaactgtgga 300 gctaatgtag acctattgga tattcttcaa cctgatgaag acactatatt 350 ctttgtgtgt gactcccata ggccagtcaa tgtcgtcaat gtatacaacg 400 atacccagat caaattactc attaaacaag atgatgacct tgaagttccc 450 gcctatgaag acatcttcag ggatgaagag gaggatgaag agcattcagg 500 aaatgacagt gatgggtcag agccttctga gaagcgcaca cggttagaag 550 aggagatagt ggagcaaacc atgcggagga ggcagcggcg agagtgggag 600 gcccggagaa gagacatcct ctttgactac gagcagtatg aatatcatgg 650 gacatcgtca gccatggtga tgtttgagct ggcttggatg ctgtccaagg 700 acctgaatga catgctgtgg tgggccatcg ttggactaac agaccagtgg 750 gtgcaagaca agatcactca aatgaaatac gtgactgatg ttggtgtcct 800 gcagcgccac gtttcccgcc acaaccaccg gaacgaggat gaggagaaca 850 cacteteegt ggactgeaca eggateteet ttgagtatga ceteegeetg 900 gtgctctacc agcactggtc cctccatgac agcctgtgca acaccagcta 950 taccgcagcc aggttcaagc tgtggtctgt gcatggacag aagcggctcc 1000 aggagtteet tgeagacatg ggtetteece tgaageaggt gaageagaag 1050 ttccaggcca tggacatctc cttgaaggag aatttgcggg aaatgattga 1100 agagtctgca aataaatttg ggatgaagga catgcgcgtg cagactttca 1150 gcattcattt tgggttcaag cacaagtttc tggccagcga cgtggtcttt 1200

gccaccatgt ctttgatgga gagccccgag aaggatggct cagggacaga 1250 tcacttcatc caggctctgg acagcctctc caggagtaac ctggacaagc 1300 tgtaccatgg cctggaactc gccaagaagc agctgcgagc cacccagcag 1350 accattgcca gctgc 1365

<210> 41

<211> 566

<212> PRT

<213> Homo sapiens

<400> 41

Met Phe Val Ser Asp Phe Arg Lys Glu Phe Tyr Glu Val Val Gln 1 5 10 10

Ser Gln Arg Val Leu Leu Phe Val Ala Ser Asp Val Asp Ala Leu 20 25 30

Cys Ala Cys Lys Ile Leu Gln Ala Leu Phe Gln Cys Asp His Val 35 40 45

Gln Tyr Thr Leu Val Pro Val Ser Gly Trp Gln Glu Leu Glu Thr 50 55 60

Ala Phe Leu Glu His Lys Glu Gln Phe His Tyr Phe Ile Leu Ile 65 70 75

Asn Cys Gly Ala Asn Val Asp Leu Leu Asp Ile Leu Gln Pro Asp 80 85 90

Glu Asp Thr Ile Phe Phe Val Cys Asp Ser His Arg Pro Val Asn 95 100 105

Val Val Asn Val Tyr Asn Asp Thr Gln Ile Lys Leu Leu Ile Lys 110 115 120

Gln Asp Asp Asp Leu Glu Val Pro Ala Tyr Glu Asp Ile Phe Arg 125 130 135

Asp Glu Glu Glu Asp Glu Glu His Ser Gly Asn Asp Ser Asp Gly 140 145 150

Ser Glu Pro Ser Glu Lys Arg Thr Arg Leu Glu Glu Glu Ile Val 155 160 165

Glu Gln Thr Met Arg Arg Gln Arg Arg Glu Trp Glu Ala Arg 170 175 180

Arg Arg Asp Ile Leu Phe Asp Tyr Glu Gln Tyr Glu Tyr His Gly 185 190 195

Thr Ser Ser Ala Met Val Met Phe Glu Leu Ala Trp Met Leu Ser 200 205 210

Lys Asp Leu Asn Asp Met Leu Trp Trp Ala Ile Val Gly Leu Thr 215 220

Asp Gln Trp Val Gln Asp Lys Ile Thr Gln Met Lys Tyr Val Thr 230 235 240

Asp Val Gly Val Leu Gln Arg His Val Ser Arg His Asn His Arg

				245					250					255
Asn	Glu	Asp	Glu	Glu 260	Asn	Thr	Leu	Ser	Val 265	Asp	Cys	Thr	Arg	Ile 270
Ser	Phe	Glu	Tyr	Asp 275	Leu	Arg	Leu	Val	Leu 280	Tyr	Gln	His	Trp	Ser 285
Leu	His	Asp	Ser	Leu 290	Cys	Asn	Thr	Ser	Tyr 295	Thr	Ala	Ala	Arg	Phe 300
Lys	Leu	Trp	Ser	Val 305	His	Gly	Gln	Lys	Arg 310	Leu	Gln	Glu	Phe	Leu 315
Ala	Asp	Met	Gly	Leu 320	Pro	Leu	Lys	Gln	Val 325	Lys	Gln	Lys	Phe	Gln 330
Ala	Met	Asp	Ile	Ser 335	Leu	Lys	Glu	Asn	Leu 340	Arg	Glu	Met	Ile	Glu 345
Glu	Ser	Ala	Asn	Lys 350	Phe	Gly	Met	Lys	Asp 355	Met	Arg	Val	Gln	Thr 360
Phe	Ser	Ile	His	Phe 365	Gly	Phe	Lys	His	Lys 370	Phe	Leu	Ala	Ser	Asp 375
Val	Val	Phe	Ala	Thr 380	Met	Ser	Leu	Met	Glu 385	Ser	Pro	Glu	Lys	Asp 390
Gly	Ser	Gly	Thr	Asp 395	His	Phe	Ile	Gln	Ala 400	Leu	Asp	Ser	Leu	Ser 405
Arg	Ser	Asn	Leu	Asp 410	Lys	Leu	Tyr	His	Gly 415	Leu	Glu	Leu	Ala	Lys 420
Lys	Gln	Leu	Arg	Ala 425	Thr	Gln	Gln	Thr	Ile 430	Ala	Ser	Cys	Leu	Cys 435
Thr	Asn	Leu	Val	Ile 440	Ser	Gln	Gly	Pro	Phe 445	Leu	Tyr	Cys	Ser	Leu 450
Met	Glu	Gly	Thr	Pro 455	Asp	Val	Met	Leu	Phe 460	Ser	Arg	Pro	Ala	Ser 465
Leu	Ser	Leu	Leu	Ser 470	Lys	His	Leu	Leu	Lys 475	Ser	Phe	Val	Суз	Ser 480
Thr	Lys	Asn	Arg	Arg 485	Cys	Lys	Leu	Leu	Pro 490	Leu	Val	Met	Ala	Ala 495
Pro	Leu	Ser	Met	Glu 500	His	Gly	Thr	Val	Thr 505	Val	Val	Gly	Ile	Pro 510
Pro	Glu	Thr	Asp	Ser 515	Ser	Asp	Arg	Lys	Asn 520	Phe	Phe	Gly	Arg	Ala 525
Phe	Glu	Lys	Ala	Ala 530	Glu	Ser	Thr	Ser	Ser 535	Arg	Met	Leu	His	Asn 540
His	Phe	Asp	Leu	Ser 545	Val	Ile	Glu	Leu	Lys 550	Ala	Glu	Asp	Arg	Ser 555
Lys	Phe	Leu	Asp	Ala	Leu	Ile	Ser	Leu	Leu	Ser				

<210> 46

560 565

```
<210> 42
<211> 380
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 44, 118, 172, 183
<223> unknown base
<400> 42
 gtacctcagc gcgagcgcca ggcgtccggc cgccgtggct atgntcgtgt 50
 ccgatttccg caaagagttc tacgaggtgg tccagagcca gagggtcctt 100
 ctcttcgtgg cctcggangt ggatgctctg tgtgcgtgca agatccttca 150
 ggccttgttc cagtgtgacc angtgcaata tangctggtt ccagtttctg 200
 ggtggcaaga acttgaaact gcatttcttg agcataaaga acagtttcat 250
 tattttattc tcataaactg tggagctaat gtagacctat tggatattct 300
 tcaacctgat gaagacacta tattctttgt gtgtgacacc cataggccag 350
 tcaatgttgt caatgtatac aacgataccc 380
<210> 43
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 43
ttccgcaaag agttctacga ggtgg 25
<210> 44
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 44
attgacaaca ttgactggcc tatggg 26
<210> 45
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
gtggatgctc tgtgtgcgtg caagatcctt caggccttgt tccagtgtga 50
```


<211> 3089 <212> DNA

<213> Homo sapiens

<400> 46 caggaaccct ctctttgggt ctggattggg acccctttcc agtaccattt 50 tttctagtga accacgaagg gacgatacca gaaaacaccc tcaacccaaa 100 ggaaatagac tacagcccca attggctgac tttggctata gaaaaaagaa 150 aggaacgaaa agagacagtt ttttttggaa agctaagtct tccctttatc 200 gagtcaagaa acccccctt cttgagctat ttacagcttt taacaattga 250 gtaaagtacg ctccggtcac catggtgaca gccgccctgg gtcccgtctg 300 ggcagcqctc ctgctctttc tcctgatgtg tgagatccqt atggtggagc 350 tcacctttga cagagetgtg gccagegget gccaaeggtg etgtgaetet 400 gaggaccccc tggatcctgc ccatgtatcc tcagcctctt cctccggccg 450 ccccacqcc ctgcctgaga tcagacccta cattaatatc accatcctga 500 agggtgacaa aggggaccca ggcccaatgg gcctgccagg gtacatgggc 550 agggagggtc cccaagggga gcctggccct cagggcagca agggtgacaa 600 gggggagatg ggcagcccg gcgcccgtg ccagaagcgc ttcttcgcct 650 tctcagtggg ccgcaagacg gccctgcaca gcggcgagga cttccagacg 700 ctgctcttcg aaagggtctt tgtgaacctt gatgggtgct ttgacatggc 750 gaccggccag tttgctgctc ccctgcgtgg catctacttc ttcagcctca 800 atgtgcacag ctggaattac aaggagacgt acgtgcacat tatgcataac 850 cagaaagagg ctgtcatcct gtacgcgcag cccagcgagc gcagcatcat 900 gcagagccag agtgtgatgc tggacctggc ctacggggac cgcgtctggg 950 tgcggctctt caagcgccag cgcgagaacg ccatctacag caacqacttc 1000 gacacctaca tcaccttcag cggccacctc atcaaggccg aggacgactg 1050 agggcctctg ggccaccctc ccggctggag agctcaggtg ctggtcccgt 1100 cccctgcagg gctcagtttg cactgctgtg aagcaggaag gccagggagg 1150 tccccgggga cctggcattc tggggagacc ctgcttctat cttggctgcc 1200 atcatecete ecageetatt tetgeteete tettetetet tggaeetatt 1250 ttaagaaget tgetaaceta aatattetag aacttteeca geetegtage 1300 ccagcacttc tcaaacttgg aaatgcatgc gaatcacccg gggttcgtgt 1350 taaatgcaga ttctgactca gcaggtctga gtgggtccag gattctgtgt 1400 ttctcatatg ttcctgggtg atgctgatgg ggtcagtcta tgaaccacac 1450

taaagaatgc tgtctcctct tggaaaaaaa aaaaaaaaa 3089

```
<210> 47
<211> 259
<212> PRT
<213> Homo sapiens
<220>
<221> Signal Peptide
<222> 1-20
<223> Signal Peptide
<220>
<221> N-glycosylation Site
<222> 72-75
<223> N-glycosylation Site
<220>
<221> Clq Domain Proteins
<222> 144-178, 78-111, 84-117
<223> Clq Domain Proteins
<400> 47
Met Val Thr Ala Ala Leu Gly Pro Val Trp Ala Ala Leu Leu Leu
Phe Leu Leu Met Cys Glu Ile Arg Met Val Glu Leu Thr Phe Asp
Arg Ala Val Ala Ser Gly Cys Gln Arg Cys Cys Asp Ser Glu Asp
Pro Leu Asp Pro Ala His Val Ser Ser Ala Ser Ser Ser Gly Arg
Pro His Ala Leu Pro Glu Ile Arg Pro Tyr Ile Asn Ile Thr Ile
 Leu Lys Gly Asp Lys Gly Asp Pro Gly Pro Met Gly Leu Pro Gly
 Tyr Met Gly Arg Glu Gly Pro Gln Gly Glu Pro Gly Pro Gln Gly
 Ser Lys Gly Asp Lys Gly Glu Met Gly Ser Pro Gly Ala Pro Cys
 Gln Lys Arg Phe Phe Ala Phe Ser Val Gly Arg Lys Thr Ala Leu
```

140

Ala Pro Leu Arg Gly Ile Tyr Phe Phe Ser Leu Asn Val His Ser 175

Val Asn Leu Asp Gly Cys Phe Asp Met Ala Thr Gly Gln Phe Ala

His Ser Gly Glu Asp Phe Gln Thr Leu Leu Phe Glu Arg Val Phe

Trp Asn Tyr Lys Glu Thr Tyr Val His Ile Met His Asn Gln Lys

Glu Ala Val Ile Leu Tyr Ala Gln Pro Ser Glu Arg Ser Ile Met

40

115

130

200	205	210

Gln Ser Gln Ser Val Met Leu Asp Leu Ala Tyr Gly Asp Arg Val 215 220 225

Trp Val Arg Leu Phe Lys Arg Gln Arg Glu Asn Ala Ile Tyr Ser 230 235 240

Asn Asp Phe Asp Thr Tyr Ile Thr Phe Ser Gly His Leu Ile Lys 245 250 255

Ala Glu Asp Asp

- <210> 48
- <211> 25
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 48
- ccagacgctg ctcttcgaaa gggtc 25
- <210> 49
- <211> 23
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 49

ggtccccgta ggccaggtcc agc 23

- <210> 50
- <211> 50
- <212> DNA
- <213> Artificial sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 50

ctacttcttc agcctcaatg tgcacagctg gaattacaag gagacgtacg 50

- <210> 51
- <211> 2768
- <212> DNA
- <213> Homo sapiens
- <400> 51
- actogaacgo agttgcttcg ggacccagga cccctcggg cccgacccgc 50
- caggaaagac tgaggccgcg gcctgccccg cccggctccc tgcgccgccg 100
- ccgcctcccg ggacagaaga tgtgctccag ggtccctctg ctgctgccgc 150
- tgctcctgct actggccctg gggcctgggg tgcagggctg cccatccggc 200
- tgccagtgca gccagccaca gacagtcttc tgcactgccc gccaggggac 250

cacggtgccc cgagacgtgc cacccgacac ggtggggctg tacgtctttg 300 agaacggcat caccatgctc gacgcaggca gctttgccgg cctgccgggc 350 ctgcagctcc tggacctgtc acagaaccag atcgccagcc tgcccagcgg 400 ggtcttccag ccactcgcca acctcagcaa cctggacctg acggccaaca 450 ggctgcatga aatcaccaat gagaccttcc gtggcctgcg gcgcctcgag 500 cgcctctacc tgggcaagaa ccgcatccgc cacatccagc ctggtgcctt 550 cgacacgete gacegeetee tggageteaa getgeaggae aacgagetge 600 gggcactgcc cccgctgcgc ctgccccgcc tgctgctgct ggacctcagc 650 cacaacagcc teetggeect ggagecegge atectggaca etgecaacgt 700 ggaggcgctg cggctggctg gtctggggct gcagcagctg gacgaggggc 750 tcttcagccg cttgcgcaac ctccacgacc tggatgtgtc cgacaaccag 800 ctggagcgag tgccacctgt gatccgaggc ctccggggcc tgacgcgcct 850 geggetggee ggeaacacce geattgeeca getgeggeee gaggaeetgg 900 ccggcctggc tgccctgcag gagctggatg tgagcaacct aagcctgcag 950 gecetgeetg gegacetete gggeetette eeeegeetge ggetgetgge 1000 agetgeeege aacceettea actgegtgtg eeeeetgage tggtttggee 1050 cctgggtgcg cgagagccac gtcacactgg ccagccctga ggagacgcgc 1100 tgccacttcc cgcccaagaa cgctggccgg ctgctcctgg agcttgacta 1150 cgccgacttt ggctgcccag ccaccaccac cacagccaca gtgcccacca 1200 cgaggcccgt ggtgcgggag cccacagcct tgtcttctag cttggctcct 1250 acctggctta gcccacagc gccggccact gaggccccca gcccgccctc 1300 cactgcccca ccgactgtag ggcctgtccc ccagccccag gactgcccac 1350 cgtccacctg cctcaatggg ggcacatgcc acctggggac acggcaccac 1400 ctggcgtgct tgtgccccga aggcttcacg ggcctgtact gtgagagcca 1450 gatggggcag gggacacggc ccagccctac accagtcacg ccgaggccac 1500 caeggteect gaeeetggge ategageegg tgageeecae eteeetgege 1550 gtggggctgc agcgctacct ccaggggagc tccgtgcagc tcaggagcct 1600 ccgtctcacc tatcgcaacc tatcgggccc tgataagcgg ctggtgacgc 1650 tgcgactgcc tgcctcgctc gctgagtaca cggtcaccca gctgcggccc 1700 aacgccactt actccgtctg tgtcatgcct ttggggcccg ggcgggtgcc 1750 ggagggcgag gaggcctgcg gggaggccca tacaccccca gccgtccact 1800 ccaaccacgc cccagtcacc caggcccgcg agggcaacct gccgctcctc 1850

attgcgcccg ccctggccgc ggtqctcctq qccqcqctqq ctqcqqtqqq 1900 ggcagcctac tgtgtgcggc gggggcgggc catggcagca gcggctcagg 1950 acaaagggca ggtggggcca ggggctgggc ccctggaact ggagggagtg 2000 aaggtcccct tggagccagg cccgaaggca acagagggcg gtggagaggc 2050 cctgcccagc gggtctgagt gtgaggtgcc actcatgggc ttcccagggc 2100 ctggcctcca gtcacccctc cacgcaaagc cctacatcta agccagagag 2150 agacagggca gctggggccg ggctctcagc cagtgagatg gccagccccc 2200 tectgetgee acaccaegta agtteteagt eccaaceteg gggatgtgtg 2250 cagacagggc tgtgtgacca cagctgggcc ctgttccctc tggacctcgg 2300 tetecteate tgtgagatge tgtggeecag etgaegagee etaaegteee 2350 cagtecetgg geacggeggg ceetgecatg tgetggtaac geatgeetgg 2450 gtcctgctgg gctctcccac tccaggcgga ccctgggggc cagtgaagga 2500 agctcccgga aagagcagag ggagagcggg taggcggctg tgtgactcta 2550 gtcttggccc caggaagcga aggaacaaaa gaaactggaa aggaagatgc 2600 tttaggaaca tgttttgctt ttttaaaata tatatttta taagagatcc 2650 tttcccattt attctgggaa gatgtttttc aaactcagag acaaggactt 2700 tggtttttgt aagacaaacg atgatatgaa ggccttttgt aagaaaaaat 2750 aaaagatgaa gtgtgaaa 2768

<210> 52

<211> 673

<212> PRT

<213> Homo sapiens

<400> 52

Met Cys Ser Arg Val Pro Leu Leu Leu Pro Leu Leu Leu Leu 1 5 10

Ala Leu Gly Pro Gly Val Gln Gly Cys Pro Ser Gly Cys Gln Cys 20 25 30

Ser Gln Pro Gln Thr Val Phe Cys Thr Ala Arg Gln Gly Thr Thr 35 40 45

Val Pro Arg Asp Val Pro Pro Asp Thr Val Gly Leu Tyr Val Phe 50 55 60

Glu Asn Gly Ile Thr Met Leu Asp Ala Gly Ser Phe Ala Gly Leu 65 70 75

Pro Gly Leu Gln Leu Leu Asp Leu Ser Gln Asn Gln Ile Ala Ser 80 85 90

Leu Pro Ser Gly Val Phe Gln Pro Leu Ala Asn Leu Ser Asn Leu

				95					100					105
Asp	Leu	Thr	Ala	Asn 110	Arg	Leu	His	Glu	Ile 115	Thr	Asn	Glu	Thr	Phe 120
Arg	Gly	Leu	Arg	Arg 125	Leu	Glu	Arg	Leu	Tyr 130	Leu	Gly	Lys	Asn	Arg 135
Ile	Arg	His	Ile	Gln 140	Pro	Gly	Ala	Phe	Asp 145	Thr	Leu	Asp	Arg	Leu 150
Leu	Glu	Leu	Lys	Leu 155	Gln	Asp	Asn	Glu	Leu 160	Arg	Ala	Leu	Pro	Pro 165
Leu	Arg	Leu	Pro	Arg 170	Leu	Leu	Leu	Leu	Asp 175	Leu	Ser	His	Asn	Ser 180
Leu	Leu	Ala	Leu	Glu 185	Pro	Gly	Ile	Leu	Asp 190	Thr	Ala	Asn	Val	Glu 195
Ala	Leu	Arg	Leu	Ala 200	Gly	Leu	Gly	Leu	Gln 205	Gln	Leu	Asp	Glu	Gly 210
Leu	Phe	Ser	Arg	Leu 215	Arg	Asn	Leu	His	Asp 220	Leu	Asp	Val	Ser	Asp 225
Asn	Gln	Leu	Glu	Arg 230	Val	Pro	Pro	Val	Ile 235	Arg	Gly	Leu	Arg	Gly 240
Leu	Thr	Arg	Leu	Arg 245	Leu	Ala	Gly	Asn	Thr 250	Arg	Ile	Ala	Gln	Leu 255
Arg	Pro	Glu	Asp	Leu 260	Ala	Gly	Leu	Ala	Ala 265	Leu	Gln	Glu	Leu	Asp 270
Val	Ser	Asn	Leu	Ser 275	Leu	Gln	Ala	Leu	Pro 280	Gly	Asp	Leu	Ser	Gly 285
Leu	Phe	Pro	Arg	Leu 290	Arg	Leu	Leu	Ala	Ala 295	Ala	Arg	Asn	Pro	Phe 300
Asn	Cys	Val	Cys	Pro 305	Leu	Ser	Trp	Phe	Gly 310	Pro	Trp	Val	Arg	Glu 315
Ser	His	Val	Thr	Leu 320	Ala	Ser	Pro	Glu	Glu 325	Thr	Arg	Cys	His	Phe 330
Pro	Pro	Lys	Asn	Ala 335	Gly	Arg	Leu	Leu	Leu 340	Glu	Leu	Asp	Tyr	Ala 345
Asp	Phe	Gly	Cys	Pro 350	Ala	Thr	Thr	Thr	Thr 355	Ala	Thr	Val	Pro	Thr 360
Thr	Arg	Pro	Val	Val 365	Arg	Glu	Pro	Thr	Ala 370	Leu	Ser	Ser	Ser	Leu 375
Ala	Pro	Thr	Trp	Leu 380	Ser	Pro	Thr	Ala	Pro 385	Ala	Thr	Glu	Ala	Pro 390
Ser	Pro	Pro	Ser	Thr 395	Ala	Pro	Pro	Thr	Val 400	Gly	Pro	Val	Pro	Gln 405
Pro	Gln	Asp	Cys	Pro	Pro	Ser	Thr	Cys	Leu	Asn	Gly	Gly	Thr	Cys

				410					415					420
His	Leu	Gly	Thr	Arg 425	His	His	Leu	Ala	Cys 430	Leu	Cys	Pro	Glu	Gly 435
Phe	Thr	Gly	Leu	Tyr 440	Cys	Glu	Ser	Gln	Met 445	Gly	Gln	Gly	Thr	Arg 450
Pro	Ser	Pro	Thr	Pro 455	Val	Thr	Pro	Arg	Pro 460	Pro	Arg	Ser	Leu	Thr 465
Leu	Gly	Ile	Glu	Pro 470	Val	Ser	Pro	Thr	Ser 475	Leu	Arg	Val	Gly	Leu 480
Gln	Arg	Tyr	Leu	Gln 485	Gly	Ser	Ser	Val	Gln 490	Leu	Arg	Ser	Leu	Arg 495
Leu	Thr	Tyr	Arg	Asn 500	Leu	Ser	Gly	Pro	Asp 505	Lys	Arg	Leu	Val	Thr 510
Leu	Arg	Leu	Pro	Ala 515	Ser	Leu	Ala	Glu	Tyr 520	Thr	Val	Thr	Gln	Leu 525
Arg	Pro	Asn	Ala	Thr 530	Tyr	Ser	Val	Cys	Val 535	Met	Pro	Leu	Gly	Pro 540
Gly	Arg	Val	Pro	Glu 545	Gly	Glu	Glu	Ala	Cys 550	Gly	Glu	Ala	His	Thr 555
Pro	Pro	Ala	Val	His 560	Ser	Asn	His	Ala	Pro 565	Val	Thr	Gln	Ala	Arg 570
Glu	Gly	Asn	Leu	Pro 575	Leu	Leu	Ile	Ala	Pro 580	Ala	Leu	Ala	Ala	Val 585
Leu	Leu	Ala	Ala	Leu 590	Ala	Ala	Val	Gly	Ala 595	Ala	Tyr	Cys	Val	Arg 600
Arg	Gly	Arg	Ala	Met 605	Ala	Ala	Ala	Ala	Gln 610	Asp	Lys	Gly	Gln	Val 615
Gly	Pro	Gly	Ala	Gly 620	Pro	Leu	Glu	Leu	Glu 625	Gly	Val	Lys	Val	Pro 630
Leu	Glu	Pro	Gly	Pro 635	Lys	Ala	Thr	Glu	Gly 640	Gly	Gly	Glu	Ala	Leu 645
Pro	Ser	Gly	Ser	Glu 650	Суз	Glu	Val	Pro	Leu 655	Met	Gly	Phe	Pro	Gly 660
Pro	Gly	Leu	Gln	Ser 665	Pro	Leu	His	Ala	Lys 670	Pro	Tyr	Ile		
<210><211><211><212><213>	> 23 > DNZ		cial	Sequ	ience	÷								
<220> <223>		nthet	cic o	oligo	onucl	_eoti	ide p	orobe)					
<400> tctt		ccg (cttgo	cgcaa	ac ct	c 23	3							

205

210

Gln Ser Gln Ser Val Met Leu Asp Leu Ala Tyr Gly Asp Arg Val 215 220

Trp Val Arg Leu Phe Lys Arg Gln Arg Glu Asn Ala Ile Tyr Ser

Asn Asp Phe Asp Thr Tyr Ile Thr Phe Ser Gly His Leu Ile Lys 245 250 255

Ala Glu Asp Asp

- <210> 48
- <211> 25
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 48

ccagacgctg ctcttcgaaa gggtc 25

- <210> 49
- <211> 23
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 49

ggtccccgta ggccaggtcc agc 23

- <210> 50
- <211> 50
- <212> DNA
- <213> Artificial sequence
- <220>
- <223> Synthetic oligonucleotide probe

ctacttcttc agcctcaatg tgcacagctg gaattacaag gagacgtacg 50

- <210> 51
- <211> 2768
- <212> DNA
- <213> Homo sapiens
- <400> 51

actogaacgo agttgcttcg ggacccagga cccctcggg cccqacccgc 50

caggaaagac tgaggccgcg gcctgccccg cccggctccc tgcgccgccg 100

ccgcctcccg ggacagaaga tgtgctccag ggtccctctg ctgctgccgc 150

tgctcctgct actggccctg gggcctgggg tgcagggctg cccatccggc 200

tgccagtgca gccagccaca gacagtcttc tgcactgccc gccaggggac 250

cacggtgccc cgagacgtgc cacccgacac ggtggggctg tacgtctttg 300 agaacggcat caccatgctc gacgcaggca gctttgccgg cctgccgggc 350 ctgcagctcc tggacctgtc acagaaccag atcgccagcc tgcccagcgg 400 ggtcttccag ccactcgcca acctcagcaa cctggacctg acggccaaca 450 ggctgcatga aatcaccaat gagaccttcc gtggcctgcg gcgcctcgag 500 cgcctctacc tgggcaagaa ccgcatccgc cacatccagc ctggtgcctt 550 cgacacgctc gaccgcctcc tggagctcaa gctgcaggac aacgagctgc 600 gggcactgcc cccgctgcgc ctgccccgcc tgctgctgct ggacctcagc 650 cacaacagee teetggeeet ggageeegge ateetggaea etgeeaaegt 700 ggaggcgctg cggctggctg gtctggggct gcagcagctg gacgaggggc 750 tettcageeg ettgegeaac etceaegace tggatgtgte egacaaceag 800 ctggagcgag tgccacctgt gatccgaggc ctccggggcc tgacgcgcct 850 gcggctggcc ggcaacaccc gcattgccca gctgcggccc gaggacctgg 900 ccggcctggc tgccctgcag gagctggatg tgagcaacct aagcctgcag 950 gccctgcctg gcgacctctc gggcctcttc ccccgcctgc ggctgctggc 1000 agetgeeege aacceettea aetgegtgtg eeceetgage tggtttggee 1050 cctgggtgcg cgagagccac gtcacactgg ccagccctga ggagacgcgc 1100 tgccacttcc cgcccaagaa cgctggccgg ctgctcctgg agcttgacta 1150 cgccgacttt ggctgcccag ccaccaccac cacagccaca gtgcccacca 1200 cgaggcccgt ggtgcgggag cccacagcct tgtcttctag cttggctcct 1250 acctggetta gecceacage geeggeeact gaggeeecea geeegeeete 1300 cactgeecca ecgaetgtag ggeetgteec ecageeccag gaetgeecae 1350 cgtccacctg cctcaatggg ggcacatgcc acctggggac acggcaccac 1400 ctggcgtgct tgtgccccga aggcttcacg ggcctgtact gtgagagcca 1450 gatggggcag gggacacggc ccagccctac accagtcacg ccgaggccac 1500 cacggtccct gaccctgggc atcgagccgg tgagccccac ctccctgcgc 1550 gtggggctgc agcgctacct ccaggggagc tccgtgcagc tcaggagcct 1600 ccgtctcacc tatcgcaacc tatcgggccc tgataagcgg ctggtgacgc 1650 tgcgactgcc tgcctcgctc gctgagtaca cggtcaccca gctgcggccc 1700 aacgccactt actccgtctg tgtcatgcct ttggggcccg ggcgggtgcc 1750 ggagggcgag gaggcctgcg gggaggccca tacaccccca gccgtccact 1800 ccaaccacge cccagtcace caggecegeg agggeaacet geegeteete 1850

attgcgcccg ccctggccgc ggtgctcctg gccgcgctgg ctgcggtggg 1900 ggcagcctac tgtgtgcggc gggggcgggc catggcagca gcggctcagg 1950 acaaagggca ggtggggcca ggggctgggc ccctggaact ggagggagtg 2000 aaggtcccct tggagccagg cccgaaggca acagagggcg gtggagaggc 2050 cctgcccagc gggtctgagt gtgaggtgcc actcatgggc ttcccagggc 2100 ctggcctcca gtcacccctc cacgcaaagc cctacatcta agccagagag 2150 agacagggca gctggggccg ggctctcagc cagtgagatg gccagccccc 2200 tectgetgee acaccaegta agtteteagt eccaaecteg gggatgtgtg 2250 cagacaggge tgtgtgacca cagetgggee etgtteeete tggacetegg 2300 tetecteate tgtgagatge tgtggeecag etgaegagee etaaegteee 2350 cagtccctgg gcacggcggg ccctgccatg tgctggtaac gcatgcctgg 2450 gtcctgctgg gctctcccac tccaggcgga ccctgggggc cagtgaagga 2500 agctcccgga aagagcagag ggagagcggg taggcggctg tgtgactcta 2550 gtcttggccc caggaagcga aggaacaaaa gaaactggaa aggaagatgc 2600 tttaggaaca tgttttgctt ttttaaaata tatatttta taagagatcc 2650 tttcccattt attctgggaa gatgttttc aaactcagag acaaggactt 2700 tggtttttgt aagacaaacg atgatatgaa ggccttttgt aagaaaaaat 2750 aaaagatgaa gtgtgaaa 2768

<210> 52

<211> 673

<212> PRT

<213> Homo sapiens

<400> 52

Met Cys Ser Arg Val Pro Leu Leu Leu Pro Leu Leu Leu Leu 1 5 10 15

Ala Leu Gly Pro Gly Val Gln Gly Cys Pro Ser Gly Cys Gln Cys 20 25 30

Ser Gln Pro Gln Thr Val Phe Cys Thr Ala Arg Gln Gly Thr Thr
35 40 45

Val Pro Arg Asp Val Pro Pro Asp Thr Val Gly Leu Tyr Val Phe
50 55 60

Glu Asn Gly Ile Thr Met Leu Asp Ala Gly Ser Phe Ala Gly Leu
65 70

Pro Gly Leu Gln Leu Leu Asp Leu Ser Gln Asn Gln Ile Ala Ser 80 85 90

Leu Pro Ser Gly Val Phe Gln Pro Leu Ala Asn Leu Ser Asn Leu

				95					100					105
Asp	Leu	Thr	Ala	Asn 110		Leu	His	Glu	Ile 115		: Asn	Glu	Thr	Phe 120
Arg	Gly	Leu	Arg	Arg 125		. Glu	Arg	Leu	Туг 130		Gly	Lys	Asn	Arg 135
Ile	Arg	His	Ile	Gln 140	Pro	Gly	Ala	Phe	Asp 145		Leu	. Asp	Arg	Leu 150
Leu	Glu	Leu	Lys	Leu 155		Asp	Asn	Glu	Leu 160	Arg	Ala	Leu	Pro	Pro 165
Leu	Arg	Leu	Pro	Arg 170	Leu	Leu	Leu	Leu	Asp 175	Leu	Ser	His	Asn	Ser 180
Leu	Leu	Ala	Leu	Glu 185	Pro	Gly	Ile	Leu	Asp 190	Thr	Ala	Asn	Val	Glu 195
Ala	Leu	Arg	Leu	Ala 200	Gly	Leu	Gly	Leu	Gln 205	Gln	Leu	Asp	Glu	Gly 210
Leu	Phe	Ser	Arg	Leu 215	Arg	Asn	Leu	His	Asp 220	Leu	Asp	Val	Ser	Asp 225
Asn	Gln	Leu	Glu	Arg 230	Val	Pro	Pro	Val	Ile 235	Arg	Gly	Leu	Arg	Gly 240
Leu	Thr	Arg	Leu	Arg 245	Leu	Ala	Gly	Asn	Thr 250	Arg	Ile	Ala	Gln	Leu 255
Arg	Pro	Glu	Asp	Leu 260	Ala	Gly	Leu	Ala	Ala 265	Leu	Gln	Glu	Leu	Asp 270
Val	Ser	Asn	Leu	Ser 275	Leu	Gln	Ala	Leu	Pro 280	Gly	Asp	Leu	Ser	Gly 285
Leu	Phe	Pro	Arg	Leu 290	Arg	Leu	Leu	Ala	Ala 295	Ala	Arg	Asn	Pro	Phe 300
Asn	Cys	Val	Cys	Pro 305	Leu	Ser	Trp	Phe	Gly 310	Pro	Trp	Val	Arg	Glu 315
Ser	His	Val	Thr	Leu 320	Ala	Ser	Pro	Glu	Glu 325	Thr	Arg	Суѕ	His	Phe 330
Pro	Pro	Lys	Asn	Ala 335	Gly	Arg	Leu	Leu	Leu 340	Glu	Leu	Asp	Tyr	Ala 345
Asp	Phe	Gly	Cys	Pro 350	Ala	Thr	Thr	Thr	Thr 355	Ala	Thr	Val	Pro	Thr 360
Thr	Arg	Pro	Val	Val 365	Arg	Glu	Pro	Thr	Ala 370	Leu	Ser	Ser	Ser	Leu 375
Ala	Pro	Thr	Trp	Leu 380	Ser	Pro	Thr	Ala	Pro 385	Ala	Thr	Glu	Ala	Pro 390
Ser	Pro	Pro	Ser	Thr 395	Ala	Pro	Pro	Thr	Val 400	Gly	Pro	Val	Pro	Gln 405
Pro	Gln	Asp	Cys	Pro	Pro	Ser	Thr	Суз	Leu	Asn	Gly	Gly	Thr	Cys

				410					415					420
His	Leu	Gly	Thr	Arg 425	His	His	Leu	. Ala	Cys 430		Cys	Pro	Glu	Gly 435
Phe	Thr	Gly	Leu	Tyr 440	Cys	Glu	Ser	Gln	Met 445	Gly	Gln	Gly	Thr	Arg 450
Pro	Ser	Pro	Thr	Pro 455	Val	Thr	Pro	Arg	Pro 460	Pro	Arg	Ser	Leu	Thr 465
Leu	Gly	Ile	Glu	Pro 470	Val	Ser	Pro	Thr	Ser 475	Leu	Arg	Val	Gly	Leu 480
Gln	Arg	Tyr	Leu	Gln 485	Gly	Ser	Ser	Val	Gln 490	Leu	Arg	Ser	Leu	Arg 495
Leu	Thr	Tyr	Arg	Asn 500	Leu	Ser	Gly	Pro	Asp 505	Lys	Arg	Leu	Val	Thr 510
Leu	Arg	Leu	Pro	Ala 515	Ser	Leu	Ala	Glu	Tyr 520	Thr	Val	Thr	Gln	Leu 525
Arg	Pro	Asn	Ala	Thr 530	Tyr	Ser	Val	Cys	Val 535	Met	Pro	Leu	Gly	Pro 540
Gly	Arg	Val	Pro	Glu 545	Gly	Glu	Glu	Ala	Cys 550	Gly	Glu	Ala	His	Thr 555
Pro	Pro	Ala	Val	His 560	Ser	Asn	His	Ala	Pro 565	Val	Thr	Gln	Ala	Arg 570
Glu	Gly	Asn	Leu	Pro 575	Leu	Leu	Ile	Ala	Pro 580	Ala	Leu	Ala	Ala	Val 585
Leu	Leu	Ala	Ala	Leu 590	Ala	Ala	Val	Gly	Ala 595	Ala	Tyr	Cys	Val	Arg 600
Arg	Gly	Arg	Ala	Met 605	Ala	Ala	Ala	Ala	Gln 610	Asp	Lys	Gly	Gln	Val 615
Gly	Pro	Gly	Ala	Gly 620	Pro	Leu	Glu	Leu	Glu 625	Gly	Val	Lys	Val	Pro 630
Leu	Glu	Pro	Gly	Pro 635	Lys	Ala	Thr	Glu	Gly 640	Gly	Gly	Glu	Ala	Leu 645
Pro	Ser	Gly	Ser	Glu 650	Cys	Glu	Val	Pro	Leu 655	Met	Gly	Phe	Pro	Gly 660
Pro	Gly	Leu	Gln	Ser 665	Pro	Leu	His	Ala	Lys 670	Pro	Tyr	Ile		
<210> <211> <212> <213>	23 DNA		ial	Sequ	ence									
<220> <223>	Syn	thet	ic o	ligo	nucl	eoti	de p	robe						

<400> 53 tcttcagccg cttgcgcaac ctc 23


```
<210> 54
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 54
  ttgctcacat ccagctcctg cagg 24
 <210> 55
 <211> 41
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 55
  tggatgttgt ccagacaacc agctggagct gtatccgagg c 41
 <210> 56
 <211> 3462
 <212> DNA
 <213> Homo sapiens
 <400> 56
  gaatcatcca cgcacctgca gctctgctga gagagtgcaa gccgtggggg 50
  ttttgagctc atcttcatca ttcatatgag gaaataagtg gtaaaatcct 100
  tggaaataca atgagactca tcagaaacat ttacatattt tgtagtattg 150
  ttatgacagc agagggtgat gctccagagc tgccagaaga aagggaactg 200
  atgaccaact gctccaacat gtctctaaga aaggttcccg cagacttgac 250
  cccagccaca acgacactgg atttatccta taacctcctt tttcaactcc 300
  agagttcaga ttttcattct gtctccaaac tgagagtttt gattctatgc 350
  cataacagaa ttcaacagct ggatctcaaa acctttgaat tcaacaagga 400
  gttaagatat ttagatttgt ctaataacag actgaagagt gtaacttggt 450
  atttactggc aggtctcagg tatttagatc tttcttttaa tgactttgac 500
  accatgccta tctgtgagga agctggcaac atgtcacacc tggaaatcct 550
  aggtttgagt ggggcaaaaa tacaaaaatc agatttccag aaaattgctc 600
  atctgcatct aaatactgtc ttcttaggat tcagaactct tcctcattat 650
 gaagaaggta gcctgcccat cttaaacaca acaaaactgc acattgtttt 700
 accaatggac acaaatttct gggttctttt gcgtgatgga atcaagactt 750
 caaaaatatt agaaatgaca aatatagatg gcaaaagcca atttgtaagt 800
tatgaaatgc aacgaaatct tagtttagaa aatgctaaga catcggttct 850
 attgcttaat aaagttgatt tactctggga cgaccttttc cttatcttac 900
```


aatttgtttg gcatacatca gtggaacact ttcagatccg aaatgtgact 950 tttggtggta aggettatet tgaccacaat teatttgaet aeteaaatae 1000 tgtaatgaga actataaaat tggagcatgt acatttcaga gtgttttaca 1050 ttcaacagga taaaatctat ttgcttttga ccaaaatgga catagaaaac 1100 ctgacaatat caaatgcaca aatgccacac atgcttttcc cgaattatcc 1150 tacgaaattc caatatttaa attttgccaa taatatctta acagacgagt 1200 tgtttaaaag aactatccaa ctgcctcact tgaaaactct cattttgaat 1250 ggcaataaac tggagacact ttctttagta agttgctttg ctaacaacac 1300 accettggaa caettggate tgagteaaaa tetattacaa cataaaaatg 1350 atgaaaattg ctcatggcca gaaactgtgg tcaatatgaa tctgtcatac 1400 aataaattgt ctgattctgt cttcaggtgc ttgcccaaaa gtattcaaat 1450 acttgaccta aataataacc aaatccaaac tgtacctaaa gagactattc 1500 atctgatggc cttacgagaa ctaaatattg catttaattt tctaactgat 1550 ctccctggat gcagtcattt cagtagactt tcagttctga acattgaaat 1600 gaacttcatt ctcagcccat ctctggattt tgttcagagc tgccaggaag 1650 ttaaaactct aaatgcggga agaaatccat tccggtgtac ctgtgaatta 1700 aaaaatttca ttcagcttga aacatattca gaggtcatga tggttggatg 1750 gtcagattca tacacctgtg aatacccttt aaacctaagg ggaactaggt 1800 taaaagacgt tcatctccac gaattatctt gcaacacagc tctgttgatt 1850 gtcaccattg tggttattat gctagttctg gggttggctg tggccttctg 1900 ctgtctccac tttgatctgc cctggtatct caggatgcta ggtcaatgca 1950 cacaaacatg gcacagggtt aggaaaacaa cccaagaaca actcaagaga 2000 aatgtccgat tccacgcatt tatttcatac agtgaacatg attctctgtg 2050 ggtgaagaat gaattgatcc ccaatctaga gaaggaagat ggttctatct 2100 tgatttgcct ttatgaaagc tactttgacc ctggcaaaag cattagtgaa 2150 aatattgtaa gcttcattga gaaaagctat aagtccatct ttgttttgtc 2200 teceaacttt gteeagaatg agtggtgeea ttatgaatte taetttgeee 2250 accacaatct cttccatgaa aattctgatc atataattct tatcttactg 2300 gaacccattc cattetattg catteceacc aggtateata aactgaaage 2350 tctcctggaa aaaaaagcat acttggaatg gcccaaggat aggcgtaaat 2400 gtgggctttt ctgggcaaac cttcgagctg ctattaatgt taatgtatta 2450 gccaccagag aaatgtatga actgcagaca ttcacagagt taaatgaaga 2500

gtctcgaggt tctacaatct ctctgatgag aacagattgt ctataaaatc 2550 ccacagtcct tgggaagttg gggaccacat acactgttgg gatgtacatt 2600 gatacaacct ttatgatggc aatttgacaa tatttattaa aataaaaaat 2650 ggttattccc ttcatatcag tttctagaag gatttctaag aatgtatcct 2700 atagaaacac cttcacaagt ttataagggc ttatggaaaa aggtgttcat 2750 cccaggattg tttataatca tgaaaaatgt ggccaggtgc agtggctcac 2800 tettgtaate ceageactat gggaggeeaa ggtgggtgae ceaegaggte 2850 aagagatgga gaccatcctg gccaacatgg tgaaaccctg tctctactaa 2900 aaatacaaaa attagctggg cgtgatggtg cacgcctgta qtcccaqcta 2950 cttgggaggc tgaggcagga gaatcgcttg aacccgggag gtggcagttg 3000 cagtgagctg agatcgagcc actgcactcc agcctggtga cagagcgaga 3050 ctccatctca aaaaaaagaa aaaaaaaaaa gaaaaaaatg gaaaacatcc 3100 tcatggccac aaaataaggt ctaattcaat aaattatagt acattaatgt 3150 aatataatat tacatgccac taaaaagaat aaggtagctg tatatttcct 3200 ggtatggaaa aaacatatta atatgttata aactattagg ttggtgcaaa 3250 actaattgtg gtttttgcca ttgaaatggc attgaaataa aagtgtaaag 3300 aaatctatac cagatgtagt aacagtggtt tgggtctggg aggttggatt 3350 acagggagca tttgatttct atgttgtgta tttctataat gtttgaattg 3400 tttagaatga atctgtattt cttttataag tagaaaaaaa ataaagatag 3450 tttttacagc ct 3462

<210> 57

<211> 811

<212> PRT

<213> Homo sapiens

<400> 57

Met Arg Leu Ile Arg Asn Ile Tyr Ile Phe Cys Ser Ile Val Met 1 5 10 15

Thr Ala Glu Gly Asp Ala Pro Glu Leu Pro Glu Glu Arg Glu Leu 20 25 30

Met Thr Asn Cys Ser Asn Met Ser Leu Arg Lys Val Pro Ala Asp
35 40

Leu Thr Pro Ala Thr Thr Leu Asp Leu Ser Tyr Asn Leu Leu
50 55 60

Phe Gln Leu Gln Ser Ser Asp Phe His Ser Val Ser Lys Leu Arg
65 70 75

Val Leu Ile Leu Cys His Asn Arg Ile Gl
n Gl
n Leu Asp Leu Lys 80 $\,$ 85 $\,$ 90

Thr	Phe	Glu	Phe	Asn 95		Glu	Leu	Arg	Tyr 100	Leu	Asp	Leu	Ser	Asn 105
Asn	Arg	Leu	Lys	Ser 110	Val	Thr	Trp	Tyr	Leu 115	Leu	Ala	Gly	Leu	Arg 120
Tyr	Leu	Asp	Leu	Ser 125		Asn	Asp	Phe	Asp 130	Thr	Met	Pro	Ile	Cys 135
Glu	Glu	Ala	Gly	Asn 140	Met	Ser	His	Leu	Glu 145	Ile	Leu	Gly	Leu	Ser 150
Gly	Ala	Lys	Ile	Gln 155	Lys	Ser	Asp	Phe	Gln 160	Lys	Ile	Ala	His	Leu 165
His	Leu	Asn	Thr	Val 170	Phe	Leu	Gly	Phe	Arg 175	Thr	Leu	Pro	His	Tyr 180
Glu	Glu	Gly	Ser	Leu 185	Pro	Ile	Leu	Asn	Thr 190	Thr	Lys	Leu	His	Ile 195
Val	Leu	Pro	Met	Asp 200	Thr	Asn	Phe	Trp	Val 205	Leu	Leu	Arg	Asp	Gly 210
Ile	Lys	Thr	Ser	Lys 215	Ile	Leu	Glu	Met	Thr 220	Asn	Ile	Asp	Gly	Lys 225
Ser	Gln	Phe	Val	Ser 230	Tyr	Glu	Met	Gln	Arg 235	Asn	Leu	Ser	Leu	Glu 240
Asn	Ala	Lys	Thr	Ser 245	Val	Leu	Leu	Leu	Asn 250	Lys	Val	Asp	Leu	Leu 255
Trp	Asp	Asp	Leu	Phe 260	Leu	Ile	Leu	Gln	Phe 265	Val	Trp	His	Thr	Ser 270
Val	Glu	His	Phe	Gln 275	Ile	Arg	Asn	Val	Thr 280	Phe	Gly	Gly	Lys	Ala 285
Tyr	Leu	Asp	His	Asn 290	Ser	Phe	Asp	Tyr	Ser 295	Asn	Thr	Val	Met	Arg 300
Thr	Ile	Lys	Leu	Glu 305	His	Val	His	Phe	Arg 310	Val	Phe	Tyr	Ile	Gln 315
Gln	Asp	Lys	Ile	Tyr 320	Leu	Leu	Leu	Thr	Lys 325	Met	Asp	Ile	Glu	Asn 330
Leu	Thr	Ile	Ser	Asn 335	Ala	Gln	Met	Pro	His 340	Met	Leu	Phe	Pro	Asn 345
Tyr	Pro	Thr	Lys	Phe 350	Gln	Tyr	Leu	Asn	Phe 355	Ala	Asn	Asn	Ile	Leu 360
Thr	Asp	Glu	Leu	Phe 365	Lys	Arg	Thr	Ile	Gln 370	Leu	Pro	His	Leu	Lys 375
Thr	Leu	Ile	Leu	Asn 380	Gly	Asn	Lys	Leu	Glu 385	Thr	Leu	Ser	Leu	Val 390
Ser	Cys	Phe	Ala	Asn 395	Asn	Thr	Pro	Leu	Glu 400	His	Leu	Asp	Leu	Ser 405

Gln	Asn	Leu	Leu	Gln 410	His	Lys	Asn	Asp	Glu 415	Asn	Cys	Ser	Trp	Pro 420
Glu	Thr	Val	Val	Asn 425	Met	Asn	Leu	Ser	Tyr 430	Asn	Lys	Leu	Ser	Asp 435
Ser	Val	Phe	Arg	Cys 440	Leu	Pro	Lys	Ser	Ile 445	Gln	Ile	Leu	Asp	Leu 450
Asn	Asn	Asn	Gln	Ile 455	Gln	Thr	Val	Pro	Lys 460	Glu	Thr	Ile	His	Leu 465
Met	Ala	Leu	Arg	Glu 470	Leu	Asn	Ile	Ala	Phe 475	Asn	Phe	Leu	Thr	Asp 480
Leu	Pro	Gly	Суз	Ser 485	His	Phe	Ser	Arg	Leu 490	Ser	Val	Leu	Asn	Ile 495
Glu	Met	Asn	Phe	Ile 500	Leu	Ser	Pro	Ser	Leu 505	Asp	Phe	Val	Gln	Ser 510
Cys	Gln	Glu	Val	Lys 515	Thr	Leu	Asn	Ala	Gly 520	Arg	Asn	Pro	Phe	Arg 525
Суз	Thr	Cys	Glu	Leu 530	Lys	Asn	Phe	Ile	Gln 535	Leu	Glu	Thr	Tyr	Ser 540
Glu	Val	Met	Met	Val 545	Gly	Trp	Ser	Asp	Ser 550	Tyr	Thr	Cys	Glu	Tyr 555
Pro	Leu	Asn	Leu	Arg 560	Gly	Thr	Arg	Leu	Lys 565	Asp	Val	His	Leu	His 570
Glu	Leu	Ser	Cys	Asn 575	Thr	Ala	Leu	Leu	Ile 580	Val	Thr	Ile	Val	Val 585
Ile	Met	Leu	Val	Leu 590	Gly	Leu	Ala	Val	Ala 595	Phe	Суз	Cys	Leu	His 600
Phe	Asp	Leu	Pro	Trp 605	Tyr	Leu	Arg	Met	Leu 610	Gly	Gln	Cys	Thr	Gln 615
Thr	Trp	His	Arg	Val 620	Arg	Lys	Thr	Thr	Gln 625	Glu	Gln	Leu	Lys	Arg 630
Asn	Val	Arg	Phe	His 635	Ala	Phe	Ile	Ser	Tyr 640	Ser	Glu	His	Asp	Ser 645
Leu	Trp	Val	Lys	Asn 650	Glu	Leu	Ile	Pro	Asn 655	Leu	Glu	Lys	Glu	Asp 660
Gly	Ser	Ile	Leu	Ile 665	Cys	Leu	Tyr	Glu	Ser 670	Tyr	Phe	Asp	Pro	Gly 675
Lys	Ser	Ile	Ser	Glu 680	Asn	Ile	Val	Ser	Phe 685	Ile	Glu	Lys	Ser	Tyr 690
Lys	Ser	Ile	Phe	Val 695	Leu	Ser	Pro	Asn	Phe 700	Val	Gln	Asn	Glu	Trp 705
Cys	His	Tyr	Glu	Phe 710	Tyr	Phe	Ala	His	His 715	Asn	Leu	Phe	His	Glu 720


```
Asn Ser Asp His Ile Ile Leu Ile Leu Leu Glu Pro Ile Pro Phe
                                      730
 Tyr Cys Ile Pro Thr Arg Tyr His Lys Leu Lys Ala Leu Leu Glu
 Lys Lys Ala Tyr Leu Glu Trp Pro Lys Asp Arg Arg Lys Cys Gly
                                      760
                 755
                                                          765
 Leu Phe Trp Ala Asn Leu Arg Ala Ile Asn Val Asn Val Leu
 Ala Thr Arg Glu Met Tyr Glu Leu Gln Thr Phe Thr Glu Leu Asn
                                      790
 Glu Glu Ser Arg Gly Ser Thr Ile Ser Leu Met Arg Thr Asp Cys
 Leu
<210> 58
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 58
tcccaccagg tatcataaac tgaa 24
<210> 59
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 59
ttatagacaa tctgttctca tcagaga 27
<210> 60
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
aaaaagcata cttggaatgg cccaaggata ggtgtaaatg 40
<210> 61
<211> 3772
<212> DNA
<213> Homo sapiens
<400> 61
```

gggggctttc ttgggcttgg ctgcttggaa cacctgcctc caaggaccgg 50

cctcggaggg gtcgccggga aagggaggga agaaggaagg gcggggccgg 100

ecceetgeg eeegeeege geetetgege geeeetgtee geeeeggeee 150 ageceageee ageceegegg geeggteaca egegeageea geeggeegee 200 tecegegeee aagegegeeg etetgetgtg eeetgegeee ttgeeeegeg 250 ccagettetg egecegeage eegeeggeg eeceeggtga eegtgaeeet 300 gccctgggcg cggggcggag caggcatgtc ccgcccgggg accgctaccc 350 cagcgctggc cctggtgctc ctggcagtga ccctggccgg ggtcggagcc 400 cagggcgcag ccctcgagga ccctgattat tacgggcagg agatctggag 450 ccgggagccc tactacgcgc gcccggagcc cgagctcgag accttctctc 500 cgccgctgcc tgcggggccc ggggaggagt gggagcggcg cccgcaggag 550 cccaggccgc ccaagagggc caccaagccc aagaaagctc ccaagaggga 600 gaagtcggct ccggagccgc ctccaccagg taaacacagc aacaaaaaag 650 ttatgagaac caagagctct gagaaggctg ccaacgatga tcacagtgtc 700 cgtgtggccc gtgaagatgt cagagagagt tgcccacctc ttggtctgga 750 aaccttaaaa atcacagact tccagctcca tgcctccacg gtgaagcgct 800 atggcctggg ggcacatcga gggagactca acatccaggc gggcattaat 850 gaaaatgatt tttatgacgg agcgtggtgc gcgggaagaa atgacctcca 900 gcagtggatt gaagtggatg ctcggcgcct gaccagattc actggtgtca 950 tcactcaagg gaggaactcc ctctggctga gtgactgggt gacatcctat 1000 aaggtcatgg tgagcaatga cagccacacg tgggtcactg ttaagaatgg 1050 atctggagac atgatatttg agggaaacag tgagaaggag atccctgttc 1100 tcaatgagct accepteece atggtggeee getacateeg cataaaceet 1150 cagtcctggt ttgataatgg gagcatctgc atgagaatgg agatcctggg 1200 ctgcccactg ccagatccta ataattatta tcaccgccgg aacgagatga 1250 ccaccactga tgacctggat tttaagcacc acaattataa ggaaatgcgc 1300 cagttgatga aagttgtgaa tgaaatgtgt cccaatatca ccagaattta 1350 caacattgga aaaagccacc agggcctgaa gctgtatgct gtggagatct 1400 cagatcaccc tggggagcat gaagtcggtg agcccgagtt ccactacatc 1450 gegggggeee aeggeaatga ggtgetggge egggagetge tgetgetget 1500 ggtgcagttc gtgtgtcagg agtacttggc ccggaatgcg cgcatcgtcc 1550 acctggtgga ggagacgcgg attcacgtcc teceeteect caaccecgat 1600 ggctacgaga aggcctacga agggggctcg gagctgggag gctggtccct 1650 gggacgctgg acccacgatg gaattgacat caacaacaac tttcctgatt 1700

taaacacgct gctctgggag gcagaggatc gacagaatgt ccccaggaaa 1750 gttcccaatc actatattgc aatccctgag tggtttctgt cggaaaatgc 1800 cacggtggct gccgagacca gagcagtcat agcctggatg gaaaaaatcc 1850 cttttgtgct gggcggcaac ctgcagggcg gcgagctggt ggtggcgtat 1900 ccctacgacc tggtgcggtc cccctggaag acgcaggaac acacccccac 1950 ccccgatgac cacgtgttcc gctggctggc ctactcctat gcctccacac 2000 accgcctcat gacagacgcc cggaggaggg tgtgccacac ggaggacttc 2050 cagaaggagg agggcactgt caatggggcc teetggcaca eegtegetgg 2100 aagtetgaae gattteaget acetteatae aaactgette gaactgteea 2150 tctacgtggg ctgtgataaa tacccacatg agagccagct gcccgaggag 2200 tgggagaata accgggaatc tctgatcgtg ttcatggagc aggttcatcg 2250 tggcattaaa ggcttggtga gagattcaca tggaaaagga atcccaaacg 2300 ccattatctc cgtagaaggc attaaccatg acatccgaac agccaacgat 2350 ggggattact ggcgcctcct gaaccctgga gagtatgtgg tcacagcaaa 2400 ggccgaaggt ttcactgcat ccaccaagaa ctgtatggtt ggctatgaca 2450 tgggggccac aaggtgtgac ttcacactta gcaaaaccaa catggccagg 2500 atccgagaga tcatggagaa gtttgggaag cagcccgtca gcctgccagc 2550 caggoggetg aagetgeggg ggeggaagag acgacagegt gqgtgaecet 2600 cctgggccct tgagactcgt ctgggaccca tgcaaattaa accaacctgg 2650 tagtagetee atagtggaet cacteaetgt tgttteetet gtaatteaag 2700 aagtgcctgg aagagaggt gcattgtgag gcaggtccca aaagggaagg 2750 ctggaggctg aggctgtttt cttttctttg ttcccattta tccaaataac 2800 ttggacagag cagcagagaa aagctgatgg gagtgagaga actcagcaag 2850 ccaacctggg aatcagagag agaaggagaa ggaggggagc ctgtccgttc 2900 agageetetg getgeataga aaaggattet ggtgetteee etgtttgegt 2950 ggcagcaagg gttccacgtg catttgcaat ttgcacagct aaaattgcag 3000 catttcccca gctgggctgt cccaaatgtt accatttgag atgctcccag 3050 gcgtcctaag agaatccacc ctctctggcc ctgggacatt gcaagctgct 3100 acaaataaat tctgtgttct tttgacaata gcgtcattgc caagtgcaca 3150 tcagtgagcc tcttgaatct gtttagtctc ctttttcaac aaaggagtgt 3200 gttcagaaaa ggagagagag gctgagatca ttcaggagtt tgttgggcag 3250 caagcatgga gcttcttgca caaattctgg gtccataaac aacccccaaa 3300

gtccctgctg atccagtagc cctggaggtt ccccaggtag ggagagccag 3350 aggtgccagc cttcctgaag ggccagaaaa tttagcctgg atctcctctt 3400 ttacctgcta ggactggaaa gagccagaag tggggtggcc tgaagccctc 3450 tctctgcttg aggtattgcc cctgtgtgga attgagtgct catgggttgg 3500 cctcatatca gcctgggagt tatttttgat atgtagaatg ccagatcttc 3550 cagattaggc taaatgtaat gaaaacctct taggattatc tgtggagcat 3600 cagtttgga agaattattg aattacttg caagaaaaa gtatgtctca 3650 cttttgtta atgttgctgc ctcattgacc tgggaaaaat gaaaaaaaa 3700 aataaagcaa atggtaagac ccttaaaaaa aaaaaaaaa aaaaaaaaa 3750 aaaaaaaaaa aaaaaaaaa aaaaaaaaa aa 3772

<210> 62

<211> 756

<212> PRT

<213> Homo sapiens

<400> 62

Met Ser Arg Pro Gly Thr Ala Thr Pro Ala Leu Ala Leu Val Leu 1 5 10 15

Leu Ala Val Thr Leu Ala Gly Val Gly Ala Gln Gly Ala Ala Leu 20 25 30

Glu Asp Pro Asp Tyr Tyr Gly Gln Glu Ile Trp Ser Arg Glu Pro \$35\$ 40 45

Tyr Tyr Ala Arg Pro Glu Pro Glu Leu Glu Thr Phe Ser Pro Pro 50 55 60

Leu Pro Ala Gly Pro Gly Glu Glu Trp Glu Arg Arg Pro Gln Glu
65 70 75

Pro Arg Pro Pro Lys Arg Ala Thr Lys Pro Lys Lys Ala Pro Lys 80 85 90

Arg Glu Lys Ser Ala Pro Glu Pro Pro Pro Pro Gly Lys His Ser 95 100 105

Asn Lys Lys Val Met Arg Thr Lys Ser Ser Glu Lys Ala Ala Asn 110 115

Asp Asp His Ser Val Arg Val Ala Arg Glu Asp Val Arg Glu Ser 125 130

Cys Pro Pro Leu Gly Leu Glu Thr Leu Lys Ile Thr Asp Phe Gln 140 145 150

Leu His Ala Ser Thr Val Lys Arg Tyr Gly Leu Gly Ala His Arg
155 160 165

Gly Arg Leu Asn Ile Gln Ala Gly Ile Asn Glu Asn Asp Phe Tyr 170 175 180

Asp Gly Ala Trp Cys Ala Gly Arg Asn Asp Leu Gln Gln Trp Ile

				185					190					195
Glu	Val	Asp	Ala	Arg 200	Arg	Leu	Thr	Arg	Phe 205	Thr	Gly	Val	Ile	Thr 210
Gln	Gly	Arg	Asn	Ser 215	Leu	Trp	Leu	Ser	Asp 220	Trp	Val	Thr	Ser	Tyr 225
Lys	Val	Met	Val	Ser 230	Asn	Asp	Ser	His	Thr 235	Trp	Val	Thr	Val	Lys 240
Asn	Gly	Ser	Gly	Asp 245	Met	Ile	Phe	Glu	Gly 250	Asn	Ser	Glu	Lys	Glu 255
Ile	Pro	Val	Leu	Asn 260	Glu	Leu	Pro	Val	Pro 265	Met	Val	Ala	Arg	Tyr 270
Ile	Arg	Ile	Asn	Pro 275	Gln	Ser	Trp	Phe	Asp 280	Asn	Gly	Ser	Ile	Cys 285
Met	Arg	Met	Glu	Ile 290	Leu	Gly	Cys	Pro	Leu 295	Pro	Asp	Pro	Asn	Asn 300
Tyr	Tyr	His	Arg	Arg 305	Asn	Glu	Met	Thr	Thr 310	Thr	Asp	Asp	Leu	Asp 315
Phe	Lys	His	His	Asn 320	Tyr	Lys	Glu	Met	Arg 325	Gln	Leu	Met	Lys	Val 330
Val	Asn	Glu	Met	Cys 335	Pro	Asn	Ile	Thr	Arg 340	Ile	Tyr	Asn	Ile	Gly 345
Lys	Ser	His	Gln	Gly 350	Leu	Lys	Leu	Tyr	Ala 355	Val	Glu	Ile	Ser	Asp 360
His	Pro	Gly	Glu	His 365	Glu	Val	Gly	Glu	Pro 370	Glu	Phe	His	Tyr	Ile 375
Ala	Gly	Ala	His	Gly 380	Asn	Glu	Val	Leu	Gly 385	Arg	Glu	Leu	Leu	Leu 390
Leu	Leu	Val	Gln	Phe 395	Val	Cys	Gln	Glu	Tyr 400	Leu	Ala	Arg	Asn	Ala 405
Arg	Ile	Val	His	Leu 410	Val	Glu	Glu	Thr	Arg 415	Ile	His	Val	Leu	Pro 420
Ser	Leu	Asn	Pro	Asp 425	Gly	Tyr	Glu	Lys	Ala 430	Tyr	Glu	Gly	Gly	Ser 435
Glu	Leu	Gly	Gly	Trp 440	Ser	Leu	Gly	Arg	Trp 445	Thr	His	Asp	Gly	Ile 450
Asp	Ile	Asn	Asn	Asn 455	Phe	Pro	Asp	Leu	Asn 460	Thr	Leu	Leu	Trp	Glu 465
Ala	Glu	Asp	Arg	Gln 470	Asn	Val	Pro	Arg	Lys 475	Val	Pro	Asn	His	Tyr 480
Ile	Ala	Ile	Pro	Glu 485	Trp	Phe	Leu	Ser	Glu 490	Asn	Ala	Thr	Val	Ala 495
Ala	Glu	Thr	Arg	Ala	Val	Ile	Ala	Trp	Met	Glu	Lys	Ile	Pro	Phe

				500					505					510
Val	Leu	Gly	Gly	Asn 515	Leu	Gln	Gly	Gly	Glu 520	Leu	Val	Val	Ala	Tyr 525
Pro	Tyr	Asp	Leu	Val 530	Arg	Ser	Pro	Trp	Lys 535	Thr	Gln	Glu	His	Thr 540
Pro	Thr	Pro	Asp	Asp 545	His	Val	Phe	Arg	Trp 550	Leu	Ala	Tyr	Ser	Tyr 555
Ala	Ser	Thr	His	Arg 560	Leu	Met	Thr	Asp	Ala 565	Arg	Arg	Arg	Val	Cys 570
His	Thr	Glu	Asp	Phe 575	Gln	Lys	Glu	Glu	Gly 580	Thr	Val	Asn	Gly	Ala 585
Ser	Trp	His	Thr	Val 590	Ala	Gly	Ser	Leu	Asn 595	Asp	Phe	Ser	Tyr	Leu 600
His	Thr	Asn	Суз	Phe 605	Glu	Leu	Ser	Ile	Tyr 610	Val	Gly	Cys	Asp	Lys 615
Tyr	Pro	His	Glu	Ser 620	Gln	Leu	Pro	Glu	Glu 625	Trp	Glu	Asn	Asn	Arg 630
Glu	Ser	Leu	Ile	Val 635	Phe	Met	Glu	Gln	Val 640	His	Arg	Gly	Ile	Lys 645
Gly	Leu	Val	Arg	Asp 650	Ser	His	Gly	Lys	Gly 655	Ile	Pro	Asn	Ala	Ile 660
Ile	Ser	Val	Glu	Gly 665	Ile	Asn	His	Asp	Ile 670	Arg	Thr	Ala	Asn	Asp 675
Gly	Asp	Tyr	Trp	Arg 680	Leu	Leu	Asn	Pro	Gly 685	Glu	Tyr	Val	Val	Thr 690
Ala	Lys	Ala	Glu	Gly 695	Phe	Thr	Ala	Ser	Thr 700	Lys	Asn	Cys	Met	Val 705
Gly	Tyr	Asp	Met	Gly 710	Ala	Thr	Arg	Cys	Asp 715	Phe	Thr	Leu	Ser	Lys 720
Thr	Asn	Met	Ala	Arg 725	Ile	Arg	Glu	Ile	Met 730	Glu	Lys	Phe	Gly	Lys 735
Gln	Pro	Val	Ser	Leu 740	Pro	Ala	Arg	Arg	Leu 745	Lys	Leu	Arg	Gly	Arg 750
Lys	Arg	Arg	Gln	Arg 755	Gly									
<211> <212>	<210> 63 <211> 24 <212> DNA <213> Artificial Sequence													
<220> <223>		thet	ic c	ligo	nucl	.eoti	de p	robe	:					
<400> gttc		ıtg a	ıgcta	.cccg	rt cc	:cc 2	:4							

```
<210> 64
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 64
 cgcgatgtag tggaactcgg gctc 24
<210> 65
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 65
atccgcataa accctcagtc ctggtttgat aatgggagca tctgcatgag 50
<210> 66
<211> 2854
<212> DNA
<213> Homo sapiens
<400> 66
ctaagaggac aagatgaggc ccggcctctc atttctccta gcccttctgt 50
tetteettgg ccaagetgea ggggatttgg gggatgtggg acctecaatt 100
cccagccccg gcttcagctc tttcccaggt gttgactcca gctccagctt 150
cagetecage tecaggtegg getecagete cageegeage ttaggeageg 200
gaggttctgt gtcccagttg ttttccaatt tcaccggctc cgtggatgac 250
cgtgggacct gccagtgctc tgtttccctg ccagacacca cctttcccgt 300
ggacagagtg gaacgettgg aatteacage teatgttett teteagaagt 350
ttgagaaaga actttctaaa gtgagggaat atgtccaatt aattagtgtg 400
tatgaaaaga aactgttaaa cctaactgtc cgaattgaca tcatggagaa 450
ggataccatt tcttacactg aactggactt cgagctgatc aaggtagaag 500
tgaaggagat ggaaaaactg gtcatacagc tgaaggagag ttttggtgga 550
agctcagaaa ttgttgacca gctggaggtg gagataagaa atatgactct 600
cttggtagag aagcttgaga cactagacaa aaacaatgtc cttgccattc 650
gccgagaaat cgtggctctg aagaccaagc tgaaagagtg tgaggcctct 700
aaagatcaaa acaccctgt cgtccaccct cctcccactc cagggagctg 750
tggtcatggt ggtgtggtga acatcagcaa accgtctgtg gttcagctca 800
actggagagg gttttcttat ctatatggtg cttggggtag ggattactct 850
ccccagcatc caaacaaagg actgtattgg gtggcgccat tgaatacaga 900
```


aagaccttgg agcatatgtg caacttatga gtgtatcagt tgttgcatgt 2550 aatttttgcc tttgtttaag cctggaactt gtaagaaaat gaaaatttaa 2600 ttttttttc taggacgagc tatagaaaag ctattgagag tatctagtta 2650 atcagtgcag tagttggaaa ccttgctggt gtatgtgatg tgcttctgtg 2700 cttttgaatg actttatcat ctagtctttg tctattttc ctttgatgtt 2750 caagtcctag tctataggat tggcagttta aatgctttac tccccctttt 2800 aaaataaatg attaaaatgt gctttgaaaa aaaaaaaaa aaaaaaaaa 2850 aaaa 2854

<210> 67 <211> 510 <212> PRT <213> Homo sapiens

<400> 67

Met Arg Pro Gly Leu Ser Phe Leu Leu Ala Leu Leu Phe Phe Leu 1 5 10 15

Gly Gln Ala Ala Gly Asp Leu Gly Asp Val Gly Pro Pro Ile Pro 20 25 30

Ser Pro Gly Phe Ser Ser Phe Pro Gly Val Asp Ser Ser Ser Ser 35 40 45

Phe Ser Ser Ser Ser Arg Ser Gly Ser Ser Ser Ser Arg Ser Leu
50 55 60

Gly Ser Gly Gly Ser Val Ser Gln Leu Phe Ser Asn Phe Thr Gly
65 70 75

Ser Val Asp Asp Arg Gly Thr Cys Gln Cys Ser Val Ser Leu Pro 80 90

Asp Thr Thr Phe Pro Val Asp Arg Val Glu Arg Leu Glu Phe Thr 95 100 105

Ala His Val Leu Ser Gln Lys Phe Glu Lys Glu Leu Ser Lys Val 110 115 120

Arg Glu Tyr Val Glń Leu Ile Ser Val Tyr Glu Lys Lys Leu Leu 125 130 135

Asn Leu Thr Val Arg Ile Asp Ile Met Glu Lys Asp Thr Ile Ser 140 145

Tyr Thr Glu Leu Asp Phe Glu Leu Ile Lys Val Glu Val Lys Glu
155 160 165

Met Glu Lys Leu Val Ile Gln Leu Lys Glu Ser Phe Gly Gly Ser 170 175

Ser Glu Ile Val Asp Gln Leu Glu Val Glu Ile Arg Asn Met Thr 185 190 195

Leu Leu Val Glu Lys Leu Glu Thr Leu Asp Lys Asn Asn Val Leu 200 205 210

Ala Ile Arg Arg Glu Ile Val Ala Leu Lys Thr Lys Leu Lys Glu 215 Cys Glu Ala Ser Lys Asp Gln Asn Thr Pro Val Val His Pro Pro 230 Pro Thr Pro Gly Ser Cys Gly His Gly Gly Val Val Asn Ile Ser 245 Lys Pro Ser Val Val Gln Leu Asn Trp Arg Gly Phe Ser Tyr Leu 260 Tyr Gly Ala Trp Gly Arg Asp Tyr Ser Pro Gln His Pro Asn Lys Gly Leu Tyr Trp Val Ala Pro Leu Asn Thr Asp Gly Arg Leu Leu Glu Tyr Tyr Arg Leu Tyr Asn Thr Leu Asp Asp Leu Leu Leu Tyr 305 310 Ile Asn Ala Arg Glu Leu Arg Ile Thr Tyr Gly Gln Gly Ser Gly Thr Ala Val Tyr Asn Asn Met Tyr Val Asn Met Tyr Asn Thr 335 Gly Asn Ile Ala Arg Val Asn Leu Thr Thr Asn Thr Ile Ala Val 350 355 Thr Gln Thr Leu Pro Asn Ala Ala Tyr Asn Asn Arg Phe Ser Tyr Ala Asn Val Ala Trp Gln Asp Ile Asp Phe Ala Val Asp Glu Asn Gly Leu Trp Val Ile Tyr Ser Thr Glu Ala Ser Thr Gly Asn Met 395 400 Val Ile Ser Lys Leu Asn Asp Thr Thr Leu Gln Val Leu Asn Thr 410 Trp Tyr Thr Lys Gln Tyr Lys Pro Ser Ala Ser Asn Ala Phe Met Val Cys Gly Val Leu Tyr Ala Thr Arg Thr Met Asn Thr Arg Thr 445 450 Glu Glu Ile Phe Tyr Tyr Tyr Asp Thr Asn Thr Gly Lys Glu Gly Lys Leu Asp Ile Val Met His Lys Met Gln Glu Lys Val Gln Ser 470 Ile Asn Tyr Asn Pro Phe Asp Gln Lys Leu Tyr Val Tyr Asn Asp Gly Tyr Leu Leu Asn Tyr Asp Leu Ser Val Leu Gln Lys Pro Gln 500 505

<210> 68

<211> 410

<212> DNA

<213> Homo sapiens

```
<213> Homo sapiens
 <220>
 <221> unsure
 <222> 206, 217, 387
 <223> unknown base
 <400> 68
 gctctgaaga ccaagctgaa agagtgtgag gcctctaaag atcaaacacc 50
 cctgtcgtcc accetcctcc cactccaggg agctgtggtc atggtggtgt 100
 ggtgaacatc agcaaaccgt ctgtggttca gctcaactgg agagggtttt 150
 cttatctata tggtgcttgg ggtagggatt actctcccca gcatccaaac 200
 aaaggnatgt attgggnggc gccattgaat acagatggga gactgttgga 250
 gtattataga ctgtacaacc cactggatga tttgctattg tatataaatg 300
 ctcgagagtt gcggatcacc tatggccaag gtagtggtac agcagtttac 350
 aacaacaaca tgtacgtcaa catgtacaac accgggnata ttgccagagt 400
 taacctgacc 410
<210> 69
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 69
 agctgtggtc atggtggtgt ggtg 24
<210> 70
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 70
 ctaccttggc cataggtgat ccgc 24
<210> 71
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 71
 catcagcaaa ccgtctgtgg ttcagctcaa ctggagaggg tt 42
<210> 72
<211> 3127
<212> DNA
```

<400> 72 tctcgcagat agtaaataat ctcggaaagg cgagaaagaa gctgtctcca 50 tcttgtctgt atccgctgct cttgtgacgt tgtggagatg gggagcgtcc 100 tggggctgtg ctccatggcg agctggatac catgtttgtg tggaagtgcc 150 ccgtgtttgc tatgccgatg ctgtcctagt ggaaacaact ccactgtaac 200 tagattgatc tatgcacttt tcttgcttgt tggagtatgt gtagcttgtg 250 taatgttgat accaggaatg gaagaacaac tgaataagat tcctggattt 300 tgtgagaatg agaaaggtgt tgtcccttgt aacattttgg ttggctataa 350 agctgtatat cgtttgtgct ttggtttggc tatgttctat cttcttctct 400 ctttactaat gatcaaagtg aagagtagca gtgatcctag agctgcagtg 450 cacaatggat tttggttctt taaatttgct gcagcaattg caattattat 500 tggggcattc ttcattccag aaggaacttt tacaactgtg tggttttatg 550 taggcatggc aggtgccttt tgtttcatcc tcatacaact agtcttactt 600 attgattttg cacattcatg gaatgaatcg tgggttgaaa aaatggaaga 650 agggaactcg agatgttggt atgcagcctt gttatcagct acagctctga 700 attatetget gtetttagtt getategtee tgttetttgt etactaeact 750 catccagcca gttgttcaga aaacaaggcg ttcatcagtg tcaacatgct 800 cctctgcgtt ggtgcttctg taatgtctat actgccaaaa atccaagaat 850 cacaaccaag atctggtttg ttacagtctt cagtaattac agtctacaca 900 atgtatttga catggtcagc tatgaccaat gaaccagaaa caaattgcaa 950 cccaagtcta ctaagcataa ttggctacaa tacaacaagc actgtcccaa 1000 aggaagggca gtcagtccag tggtggcatg ctcaaggaat tataggacta 1050 attctctttt tgttgtgtgt attttattcc agcatccgta cttcaaacaa 1100 tagtcaggtt aataaactga ctctaacaag tgatgaatct acattaatag 1150 aagatggtgg agctagaagt gatggatcac tggaggatgg ggacgatgtt 1200 caccgagctg tagataatga aagggatggt gtcacttaca gttattcctt 1250 ctttcacttc atgctttcc tggcttcact ttatatcatg atgaccctta 1300 ccaactggtc caggtatgaa ccctctcgtg agatgaaaag tcagtggaca 1350 gctgtctggg tgaaaatctc ttccagttgg attggcatcg tgctgtatgt 1400 ttggacactc gtggcaccac ttgttcttac aaatcgtgat tttgactgag 1450 tgagacttct agcatgaaag tcccactttg attattgctt atttgaaaac 1500 agtattccca acttttgtaa agttgtgtat gtttttgctt cccatgtaac 1550

ttctccagtg ttctggcatg aattagattt tactgcttgt cattttgtta 1600 ttttcttacc aagtgcattg atatgtgaag tagaatgaat tgcagaggaa 1650 agttttatga atatggtgat gagttagtaa aagtggccat tattgggctt 1700 attctctgct ctatagttgt gaaatgaaga gtaaaaacaa atttgtttga 1750 ctattttaaa attatattag accttaagct gttttagcaa gcattaaagc 1800 aaatgtatgg ctgccttttg aaatatttga tgtgttgcct ggcaggatac 1850 tgcaaagaac atggtttatt ttaaaattta taaacaagtc acttaaatgc 1900 cagttgtctg aaaaatctta taaggtttta cccttgatac ggaatttaca 1950 caggtaggga gtgtttagtg gacaatagtg taggttatgg atggaggtgt 2000 cggtactaaa ttgaataacg agtaaataat cttacttggg tagagatggc 2050 ctttgccaac aaagtgaact gttttggttg ttttaaactc atgaagtatg 2100 ggttcagtgg aaatgtttgg aactctgaag gatttagaca aggttttgaa 2150 aaggataatc atgggttaga aggaagtgtt ttgaaagtca ctttgaaagt 2200 tagttttggg cccagcacgg tagctcaccc ttggtaatcc cagcactttg 2250 ggagcttaag tgggtagatt acttgagccc aggaattcag accagcttgg 2300 cacatggtga acctgttcta taaaaataat ctggctttga gcatatgcct 2350 gtggtccagc actgagaggc tagtgaagat tgctgagccc agagccaaag 2400 gttgcagtga gcaagtcacg tcactgcact ctagctggca cagagtaagc 2450 caaaaaaata tatatatt gaaatcaagg aggcaaaatt ttgacaggga 2500 aggaagtaac tgcaaaacca ctaggcttta gtaggtactt atataaaatc 2550 tagtccagtt ctctcattta aaaaaatgaa gacactgaaa tacagactta 2600 aatagctcag atagctaatt aggaaatttc aagttggcca ataatagcat 2650 totototgac atttaaaaat aatttotatt caaaatacat gcatattgat 2700 ttacacctca tactgtgata attaatgtga tgtggattgc tggtgtccag 2750 catgacccat aaacaggtca gaagaatgat ggaatgtttt agaataaact 2800 cctgcttata gtatactaca cagttcaaaa gatgtttaaa atgcttttgt 2850 atttactgcc atgtaattga aatatataga ttattgtaac ctttcaacct 2900 gaaaatcaag cagtatgaga gtttagttat ttgtatgtgt cactagtgtc 2950 taatgaaget tttaaaatet acaatttett etttaaaaat atttattaat 3000 gtgaatggaa tataacaatt cagcttaatt ccccaacctt attctgtgtg 3050 tagacattgt attccacaat tttgaatggc tgtgttttac ctctaaataa 3100 atgaattcag agaaaaaaa aaaaaaa 3127

<210>	73	
<211>	453	
<212>	PRT	
<213>	Homo	sapien

<400> 73 Met Gly Ser Val Leu Gly Leu Cys Ser Met Ala Ser Trp Ile Pro Cys Leu Cys Gly Ser Ala Pro Cys Leu Leu Cys Arg Cys Cys Pro Ser Gly Asn Asn Ser Thr Val Thr Arg Leu Ile Tyr Ala Leu Phe Leu Leu Val Gly Val Cys Val Ala Cys Val Met Leu Ile Pro Gly Met Glu Glu Gln Leu Asn Lys Ile Pro Gly Phe Cys Glu Asn Glu Lys Gly Val Val Pro Cys Asn Ile Leu Val Gly Tyr Lys Ala Val Tyr Arg Leu Cys Phe Gly Leu Ala Met Phe Tyr Leu Leu Ser Leu Leu Met Ile Lys Val Lys Ser Ser Ser Asp Pro Arg Ala Ala 110 Val His Asn Gly Phe Trp Phe Phe Lys Phe Ala Ala Ala Ile Ala 130 Ile Ile Ile Gly Ala Phe Phe Ile Pro Glu Gly Thr Phe Thr Thr Val Trp Phe Tyr Val Gly Met Ala Gly Ala Phe Cys Phe Ile Leu 155 160 Ile Gln Leu Val Leu Leu Ile Asp Phe Ala His Ser Trp Asn Glu 170 Ser Trp Val Glu Lys Met Glu Glu Gly Asn Ser Arg Cys Trp Tyr 190 Ala Ala Leu Leu Ser Ala Thr Ala Leu Asn Tyr Leu Leu Ser Leu 205 Val Ala Ile Val Leu Phe Phe Val Tyr Tyr Thr His Pro Ala Ser Cys Ser Glu Asn Lys Ala Phe Ile Ser Val Asn Met Leu Leu Cys 230 Val Gly Ala Ser Val Met Ser Ile Leu Pro Lys Ile Gln Glu Ser 250 Gln Pro Arg Ser Gly Leu Leu Gln Ser Ser Val Ile Thr Val Tyr Thr Met Tyr Leu Thr Trp Ser Ala Met Thr Asn Glu Pro Glu Thr 280

Asn	Cys	Asn	Pro	Ser 290	Leu	Leu	Ser	Ile	Ile 295	Gly	Tyr	Asn	Thr	Thr 300
Ser	Thr	Val	Pro	Lys 305	Glu	Gly	Gln	Ser	Val 310	Gln	Trp	Trp	His	Ala 315
Gln	Gly	Ile	Ile	Gly 320	Leu	Ile	Leu	Phe	Leu 325	Leu	Cys	Val	Phe	Tyr 330
Ser	Ser	Ile	Arg	Thr 335	Ser	Asn	Asn	Ser	Gln 340	Val	Asn	Lys	Leu	Thr 345
Leu	Thr	Ser	Asp	Glu 350	Ser	Thr	Leu	Ile	Glu 355	Asp	Gly	Gly	Ala	Arg 360
Ser	Asp	Gly	Ser	Leu 365	Glu	Asp	Gly	Asp	Asp 370	Val	His	Arg	Ala	Val 375
Asp	Asn	Glu	Arg	Asp 380	Gly	Val	Thr	Tyr	Ser 385	Tyr	Ser	Phe	Phe	His 390
Phe	Met	Leu	Phe	Leu 395	Ala	Ser	Leu	Tyr	Ile 400	Met	Met	Thr	Leu	Thr 405
Asn	Trp	Ser	Arg	Tyr 410	Glu	Pro	Ser	Arg	Glu 415	Met	Lys	Ser	Gln	Trp 420
Thr	Ala	Val	Trp	Val 425	Lys	Ile	Ser	Ser	Ser 430	Trp	Ile	Gly	Ile	Val 435
Leu	Tyr	Val	Trp	Thr 440	Leu	Val	Ala	Pro	Leu 445	Val	Leu	Thr	Asn	Arg 450

<210> 74

<211> 480

Asp Phe Asp

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 48, 163

<223> unknown base

<400> 74

gegagaaaga agetgtetee atettgtetg tateeegetg ettettgnga 50
egttgtggag atggggageg teeetgggge tgtgeteeat ggegagetgg 100
ataeeatgtt tgtgtggaag tgeeeegtgt ttgetatgee gatgetgtee 150
tagtggaaae aanteeactg taaeetagatt gatetatgea etttettge 200
ttgttggagt atgtgtaget tgtgtaatgt tgataeeagg aatggaagaa 250
caaeetgaata agatteetgg attttgtgag aatggaaaag gtgttgteee 300
ttgtaaeatt ttggttgget ataaegetgt ataeegttt tgetttagtt 350
tggetatgtt etaeettett eteetttae taatgateaa agtgaagagt 400

agcagtgatc ctagagctgc agtgcacaat ggattttggt tctttaaatt 450 tgctgcagca attgcaatta ttattggggc 480 <210> 75 <211> 438 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 32, 65, 92, 121, 142, 154, 170, 293, 315, 323 <223> unknown base <400> 75 gttattgtga actttgtgga gatgggaggt cntggggctg tgttccatgg 50 cgagctggat accangtttg tgtggaagtg ccccgtgttt gntatgccga 100 tgctgtccta gtggaaacaa ntccactgta attagattga tntatgcact 150 tttnttgctt gttggagtan gtgtagcttg tgtaatgttg ataccaggaa 200 tggaagaaca actgaataag attcctggat tttgtgagaa tgagaaaggt 250 gttgtccctt gtaacatttt ggttggctat aaagctgtat atngtttgtg 300 ctttggtttg gctangttct atnttcttct ctctttacta atgatcaaag 350 tgaagagtag cagtgatcct agagctgcag tgcacaatqg attttqgttt 400 tttaaatttg ctgcagcaat tgcaattatt attggggc 438 <210> 76 <211> 473 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 48 <223> unknown base <400> 76 aagaagctgt ctccatcttg tctgtatccg ctgctcttgt gaacgttntg 50 gagatgggga gcgtccttgg ggttgtgctc catggcgagc tggataccat 100 gtttgtgtgg aagtgccccg tgtttgctat gccgatgctg tcctagtgga 150 aacaactcca ctgtaactag attgatctat gcacttttct tgcttgttgg 200

agtatgtgta gcttgtgtaa tgttgatacc aggaatggaa gaacaactga 250 ataagattcc tggattttgt gagaatgaga aaggtgttgt cccttgtaac 300

attttggttg gctataaagc tgtatatcgt ttgtgctttg gtttggctat 350

gttctatctt cttctcttt tactaatgat caaagtgaag agtagcagtg 400

atcctagage tgcagtgcac aatggatttt ggttctttaa atttgctgca 450

gcaattgcaa ttattattgg ggc 473

<211> 26

```
<210> 77
<211> 666
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 21, 111
<223> unknown base
<400> 77
 gctgtcctta gtggaaacaa ntccaacttg taacttggat tgatctatgc 50
 actttttcct tgcttgttgg agtatgtgta gctttgtgta atgttgttcc 100
 caggattgga ngaacaactg aataagattc ctggattttt gtgagaatga 150
 gaaaggtgtt gtccccttgt aacatttttg gttggctata aagctgtata 200
 tcgtttgtgc tttggtttgg ctatgttcta tcttcttctc tctttactaa 250
 tgatcaaagt gaagagtagc agtgatccta gagctgcagt gcacaatgga 300
 ttttggttct ttaaatttgc tgcagcaatt gcaattatta ttggggcatt 350
 cttcattcca gaaggaactt ttacaactgt gtggttttat gtaggcatgg 400
 caggtgcctt ttgtttcatc ctcatacaac tagtcttact tattgatttt 450
 gcacattcat ggaatgaatc gtgggttgaa aaaatggaag aagggaactc 500
 gagatgttgg tatgcagcct tgttatcagc tacagctctg aattatctqc 550
 tgtctttagt tgctatcgtc ctgttctttg tctactacac tcatccagcc 600
 agttgttcag aaaacaaggc gttcatcagt gtcaacatgc tcctctgcgt 650
 tggtgcttct gtaatg 666
<210> 78
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 78
atgtttgtgt ggaagtgccc cg 22
<210> 79
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 79
gtcaacatgc tcctctgc 18
<210> 80
```

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 80
 aatccattgt gcactgcagc tctagg 26
<210> 81
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 81
 gagcatgcca ccactggact gac 23
<210> 82
<211> 54
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 82
gccgatgctg tcctagtgga aacaactcca ctgtaactag attgatctat 50
gcac 54
<210> 83
<211> 3906
<212> DNA
<213> Homo sapiens
<400> 83
ctcgggcgcg cacaggcagc tcggtttgcc ctgcgattga gctgcgggtc 50
gcggccggcg ccggcctctc caatggcaaa tgtgtgtggc tggaggcgag 100
cgcgaggctt tcggcaaagg cagtcgagtg tttgcagacc ggggcgagtc 150
ctgtgaaagc agataaaaga aaacatttat taacgtgtca ttacgagggg 200
agegeeegge eggggetgte geacteeegg eggaacattt ggeteetee 250
agctccgaga gaggagaaga agaaagcgga aaagaggcag attcacgtcg 300
tttccagcca agtggacctg atcgatggcc ctcctgaatt tatcacgata 350
tttgatttat tagcgatgcc ccctggtttg tgtgttacgc acacacagt 400
gcacacaagg ctctggctcg cttccctccc tcgtttccag ctcctgggcg 450
aatcccacat ctgtttcaac tctccgccga gggcgagcag gagcgagagt 500
gtgtcgaatc tgcgagtgaa gagggacgag ggaaaagaaa caaagccaca 550
gacgcaactt gagactcccg catcccaaaa gaagcaccag atcagcaaaa 600
```


gtccgcagtc gctccatccg ctcagtggcc atcgaggtgg acggcagggt 2250 gtaccacgta ggcctgggtg atgccgccca gccccgaaac ctcaccaagc 2300 ggcactggcc aggggcccct gaggaccaag atgacaagga tggtggggac 2350 ttcagtggca ctggaggcct tcccgactac tcagccgcca accccattaa 2400 agtgacacat cggtgctaca tcctagagaa cgacacagtc cagtgtgacc 2450 tggacctgta caagtccctg caggcctgga aagaccacaa gctgcacatc 2500 gaccacgaga ttgaaaccct gcagaacaaa attaagaacc tgagggaagt 2550 ccgaggtcac ctgaagaaaa agcggccaga agaatgtgac tgtcacaaaa 2600 tcagctacca cacccagcac aaaggccgcc tcaagcacag aggctccagt 2650 ctgcatcctt tcaggaaggg cctgcaagag aaggacaagg tgtggctgtt 2700 gcgggagcag aagcgcaaga agaaactccg caagctgctc aagcgcctgc 2750 agaacaacga cacgtgcagc atgccaggcc tcacgtgctt cacccacgac 2800 aaccagcact ggcagacggc gcctttctgg acactggggc ctttctgtgc 2850 ctgcaccage gccaacaata acaegtactg gtgcatgagg accatcaatg 2900 agactcacaa tttcctcttc tgtgaatttg caactggctt cctagagtac 2950 tttgatctca acacagaccc ctaccagctg atgaatgcag tgaacacact 3000 ggacagggat gtcctcaacc agctacacgt acagctcatg gagctgagga 3050 gctgcaaggg ttacaagcag tgtaaccccc ggactcgaaa catggacctg 3100 gatggaggaa gctatgagca atacaggcag tttcagcgtc gaaagtggcc 3150 agaaatgaag agaccttctt ccaaatcact gggacaactg tgggaaggct 3200 gggaaggtta agaaacaaca gaggtggacc tccaaaaaca tagaggcatc 3250 acctgactgc acaggcaatg aaaaaccatg tgggtgattt ccagcagacc 3300 tgtgctattg gccaggaggc ctgagaaagc aagcacgcac tctcagtcaa 3350 catgacagat tctggaggat aaccagcagg agcagagata acttcaggaa 3400 gtccattttt gcccctgctt ttgctttgga ttatacctca ccagctgcac 3450 aaaatgcatt ttttcgtatc aaaaagtcac cactaaccct cccccagaag 3500 ctcacaaagg aaaacggaga gagcgagcga gagagatttc cttggaaatt 3550 tctcccaagg gcgaaagtca ttggaatttt taaatcatag gggaaaagca 3600 gtcctgttct aaatcctctt attcttttgg tttgtcacaa agaaggaact 3650 aagaagcagg acagaggcaa cgtggagagg ctgaaaacag tgcagagacg 3700 tttgacaatg agtcagtagc acaaaagaga tgacatttac ctagcactat 3750 aaaccctggt tgcctctgaa gaaactgcct tcattgtata tatgtgacta 3800

tttacatgta atcaacatgg gaacttttag gggaacctaa taagaaatcc 3850 caattttcag gagtggtggt gtcaataaac gctctgtggc cagtgtaaaa 3900 gaaaaa 3906

<210> 84

<211> 867

<212> PRT

<213> Homo sapiens

<400> 84

Met Gly Pro Pro Ser Leu Val Leu Cys Leu Leu Ser Ala Thr Val 1 5 10 15

Phe Ser Leu Leu Gly Gly Ser Ser Ala Phe Leu Ser His His Arg
20 25 30

Leu Lys Gly Arg Phe Gln Arg Asp Arg Arg Asn Ile Arg Pro Asn 35 40 45

Ile Ile Leu Val Leu Thr Asp Asp Gln Asp Val Glu Leu Gly Ser 50 55 60

Met Gln Val Met Asn Lys Thr Arg Arg Ile Met Glu Gln Gly Gly 65 70 75

Ala His Phe Ile Asn Ala Phe Val Thr Thr Pro Met Cys Cys Pro 80 85 90

Ser Arg Ser Ser Ile Leu Thr Gly Lys Tyr Val His Asn His Asn 95 100 105

Thr Tyr Thr Asn Asn Glu Asn Cys Ser Ser Pro Ser Trp Gln Ala 110 115 120

Gln His Glu Ser Arg Thr Phe Ala Val Tyr Leu Asn Ser Thr Gly
125 130 135

Tyr Arg Thr Ala Phe Phe Gly Lys Tyr Leu Asn Glu Tyr Asn Gly 140 145 150

Ser Tyr Val Pro Pro Gly Trp Lys Glu Trp Val Gly Leu Leu Lys 155 160 165

Asn Ser Arg Phe Tyr Asn Tyr Thr Leu Cys Arg Asn Gly Val Lys 170 175 180

Glu Lys His Gly Ser Asp Tyr Ser Lys Asp Tyr Leu Thr Asp Leu 185 190 195

Ile Thr Asn Asp Ser Val Ser Phe Phe Arg Thr Ser Lys Lys Met
200 205 210

Tyr Pro His Arg Pro Val Leu Met Val Ile Ser His Ala Ala Pro 225 225

His Gly Pro Glu Asp Ser Ala Pro Gln Tyr Ser Arg Leu Phe Pro 230 235

Asn Ala Ser Gln His Ile Thr Pro Ser Tyr Asn Tyr Ala Pro Asn 245 250 255

Pro Asp Lys His Trp Ile Met Arg Tyr Thr Gly Pro Met Lys Pro Ile His Met Glu Phe Thr Asn Met Leu Gln Arg Lys Arg Leu Gln Thr Leu Met Ser Val Asp Asp Ser Met Glu Thr Ile Tyr Asn Met 295 Leu Val Glu Thr Gly Glu Leu Asp Asn Thr Tyr Ile Val Tyr Thr 315 Ala Asp His Gly Tyr His Ile Gly Gln Phe Gly Leu Val Lys Gly Lys Ser Met Pro Tyr Glu Phe Asp Ile Arg Val Pro Phe Tyr Val 335 Arg Gly Pro Asn Val Glu Ala Gly Cys Leu Asn Pro His Ile Val 350 355 Leu Asn Ile Asp Leu Ala Pro Thr Ile Leu Asp Ile Ala Gly Leu 365 Asp Ile Pro Ala Asp Met Asp Gly Lys Ser Ile Leu Lys Leu Leu 380 Asp Thr Glu Arg Pro Val Asn Arg Phe His Leu Lys Lys Met 400 Arg Val Trp Arg Asp Ser Phe Leu Val Glu Arg Gly Lys Leu Leu His Lys Arg Asp Asn Asp Lys Val Asp Ala Gln Glu Glu Asn Phe 425 Leu Pro Lys Tyr Gln Arg Val Lys Asp Leu Cys Gln Arg Ala Glu 445 Tyr Gln Thr Ala Cys Glu Gln Leu Gly Gln Lys Trp Gln Cys Val Glu Asp Ala Thr Gly Lys Leu Lys Leu His Lys Cys Lys Gly Pro Met Arg Leu Gly Gly Ser Arg Ala Leu Ser Asn Leu Val Pro Lys 490 Tyr Tyr Gly Gln Gly Ser Glu Ala Cys Thr Cys Asp Ser Gly Asp Tyr Lys Leu Ser Leu Ala Gly Arg Arg Lys Lys Leu Phe Lys Lys 515 520 Lys Tyr Lys Ala Ser Tyr Val Arg Ser Arg Ser Ile Arg Ser Val 535 Ala Ile Glu Val Asp Gly Arg Val Tyr His Val Gly Leu Gly Asp 550 Ala Ala Gln Pro Arg Asn Leu Thr Lys Arg His Trp Pro Gly Ala 560

<210> 85

<211> 19

<212> DNA

```
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 85
 gaagccggct gtctgaatc 19
<210> 86
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 86
 ggccagctat ctccgcag 18
<210> 87
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 87
 aagggcctgc aagagaag 18
<210> 88
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 88
 cactgggaca actgtggg 18
<210> 89
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 89
 cagaggcaac gtggagag 18
<210> 90
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 90
aagtattgtc atacagtgtt c 21
```

```
<210> 91
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 91
 tagtacttgg gcacgaggtt ggag 24
<210> 92
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 92
 tcataccaac tgctggtcat tggc 24
<210> 93
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 93
 ctcaagctgc tggacacgga gcggccggtg aatcggtttc acttg 45
<210> 94
<211> 971
<212> DNA
<213> Homo sapiens
<400> 94
 aacaaagttc agtgactgag agggctgagc ggaggctgct gaaggggaga 50
 aaggagtgag gagctgctgg gcagagaggg actgtccggc tcccagatgc 100
 tgggcctcct ggggagcaca gccctcgtgg gatggatcac aggtgctgct 150
 gtggcggtcc tgctgctgct gctgctgctg gccacctgcc ttttccacgg 200
 acggcaggac tgtgacgtgg agaggaaccg tacagctgca gggggaaacc 250
 gagtccgccg ggcccagcct tggcccttcc ggcggcgggg ccacctggga 300
 atctttcacc atcaccgtca tcctggccac gtatctcatg tgccgaatgt 350
 gggcctccac caccaccacc acccccgcca cacccctcac cacctccacc 400
 accaccacca ccccaccgc caccatcccc gccacgctcg ctgaggctgc 450
 tgtcgccggt gcctgtggac agcagctgcc cctgccctcc catctgttcc 500
caggacaagt ggaccccatg tttccatgtg gaaggatgca tctctggggt 550
gaacgagggg aacaatagac tggggcttgc tccagctgca tttgcatggc 600
```

<210> 95 <211> 115 <212> PRT

<213> Homo sapiens

<400> 95

Met Leu Gly Leu Leu Gly Ser Thr Ala Leu Val Gly Trp Ile Thr 1 5 10 15

Gly Ala Ala Val Ala Val Leu Leu Leu Leu Leu Leu Leu Ala Thr 20 25 30

Cys Leu Phe His Gly Arg Gln Asp Cys Asp Val Glu Arg Asn Arg 35 40 45

Thr Ala Ala Gly Gly Asn Arg Val Arg Arg Ala Gln Pro Trp Pro 50 55 60

Phe Arg Arg Gly His Leu Gly Ile Phe His His Arg His 65 70 75

Pro Gly His Val Ser His Val Pro Asn Val Gly Leu His His His 80 85 90

His His Pro Arg His Thr Pro His His Leu His His His His 95 100 105

Pro His Arg His His Pro Arg His Ala Arg 110 115

<210> 96

<211> 1312

<212> DNA

<213> Homo sapiens

<400> 96

ggcggctgct gagctgcctt gaggtgcagt gttggggatc cagagccatg 50 tcggacctgc tactactggg cctgattggg ggcctgactc tcttactgct 100 gctgacgctg ctggcctttg ccgggtactc agggctactg gctggggtgg 150 aagtgagtgc tgggtcaccc cccatccgca acgtcactgt ggcctacaag 200 ttccacatgg ggctctatgg tgagactggg cggctttca ctgagagctg 250 cagcatctc cccaagctcc gctccatcgc tgtctactat gacaaccccc 300

acatggtgcc ccctgataag tgccgatgtg ccgtgggcag catcctgagt 350 gaaggtgagg aatcgccctc ccctgagctc atcgacctct accagaaatt 400 tggcttcaag gtgttctcct tcccggcacc cagccatgtg gtgacagcca 450 cettececta caccaccatt etgtecatet ggetggetae eegeegtgte 500 catcctgcct tggacaccta catcaaggag cggaagctgt gtgcctatcc 550 teggetggag atctaceagg aagaceagat ceattteatg tgeceaetgg 600 cacggcaggg agacttctat gtgcctgaga tgaaggagac agagtggaaa 650 tggcgggggc ttgtggaggc cattgacacc caggtggatg gcacaggagc 700 tgacacaatg agtgacacga gttctgtaag cttggaagtg agccctggca 750 gccgggagac ttcagctgcc acactgtcac ctggggcgag cagccgtggc 800 tgggatgacg gtgacacccg cagcgagcac agctacagcg agtcaggtgc 850 cagcggctcc tcttttgagg agctggactt ggagggcgag gggcccttag 900 gggagtcacg gctggaccct gggactgagc ccctggggac taccaagtgg 950 ctctgggagc ccactgcccc tgagaagggc aaggagtaac ccatggcctg 1000 cacceteetg cagtgeagtt getgaggaac tgageagact etceageaga 1050 ctctccagcc ctcttcctcc ttcctctggg ggaggagggg ttcctgaggg 1100 acctgacttc ccctgctcca ggcctcttgc taagccttct cctcactgcc 1150 ctttaggctc ccagggccag aggagccagg gactattttc tgcaccagcc 1200 cccagggctg ccgccctgt tgtgtctttt tttcagactc acagtggagc 1250 ttccaggacc cagaataaag ccaatgattt acttgtttca cctggaaaaa 1300 aaaaaaaaa aa 1312

<210> 97

<211> 313

<212> PRT

<213> Homo sapiens

<400> 97

Met Ser Asp Leu Leu Leu Gly Leu Ile Gly Gly Leu Thr Leu 1 5 10 15

Leu Leu Leu Thr Leu Leu Ala Phe Ala Gly Tyr Ser Gly Leu 20 25 30

Leu Ala Gly Val Glu Val Ser Ala Gly Ser Pro Pro Ile Arg Asn 35 40 45

Val Thr Val Ala Tyr Lys Phe His Met Gly Leu Tyr Gly Glu Thr 50 55 60

Gly Arg Leu Phe Thr Glu Ser Cys Ser Ile Ser Pro Lys Leu Arg
65 70 75

<210> 98

<211> 725

<212> DNA

<213> Homo sapiens

<400> 98

ccgcgggaac gctgtcctgg ctgccgccac ccgaacagcc tgtcctggtg 50 ccccggctcc ctgccccgcg cccagtcatg accctgcgcc cctcactcct 100 cccgctccat ctgctgctgc tgctgctgct cagtgcggcg gtgtgccggg 150 ctgaaggctgg gctcgaaacc gaaagtcccg tccggaccct ccaagtggag 200 accctggtgg agccccaga accatgtgcc gagcccgctg cttttggaga 250

cacgetteae atacactaca egggaagett ggtagatgga egtattattg 300 acaceteect gaccagagae ectetggtta tagaacttgg ecaaaageag 350 gtgatteeag gtetggagea gagtettete gacatgtgtg tgggagagaa 400 gegaagggea ateatteett eteaettgge etatggaaaa eggggattte 450 caccatetgt eceageggat geagtggtge agtatgaegt ggagetgatt 500 geaetaatee gageeaacta etggetaaag etggtgaagg geattttgee 550 tetggtaggg atggeeatgg tgeeageeet eetgggeete attgggtate 600 acetataeag aaaggeeaat agacceaaag teteeaaaa gaageteaag 650 gaagagaaac gaaacaagag eaaaaagaa taataaataa taaatttaa 700 aaaacttaaa aaaaaaaaa aaaaa 725

<210> 99 <211> 201 <212> PRT <213> Homo sapiens

<400> 99

Met Thr Leu Arg Pro Ser Leu Leu Pro Leu His Leu Leu Leu 1 5 10 15

Leu Leu Ser Ala Ala Val Cys Arg Ala Glu Ala Gly Leu Glu 20 25 30

Thr Glu Ser Pro Val Arg Thr Leu Gln Val Glu Thr Leu Val Glu 35 40 45

Pro Pro Glu Pro Cys Ala Glu Pro Ala Ala Phe Gly Asp Thr Leu
50 55 60

His Ile His Tyr Thr Gly Ser Leu Val Asp Gly Arg Ile Ile Asp 65 70 .75

Thr Ser Leu Thr Arg Asp Pro Leu Val Ile Glu Leu Gly Gln Lys 80 85 90

Gln Val Ile Pro Gly Leu Glu Gln Ser Leu Leu Asp Met Cys Val 95 100 105

Gly Glu Lys Arg Arg Ala Ile Ile Pro Ser His Leu Ala Tyr Gly
110 115 120

Lys Arg Gly Phe Pro Pro Ser Val Pro Ala Asp Ala Val Val Gln 125 130 135

Tyr Asp Val Glu Leu Ile Ala Leu Ile Arg Ala Asn Tyr Trp Leu 140 145 150

Lys Leu Val Lys Gly Ile Leu Pro Leu Val Gly Met Ala Met Val 155 160 165

Pro Ala Leu Leu Gly Leu Ile Gly Tyr His Leu Tyr Arg Lys Ala 170 175 180

Asn Arg Pro Lys Val Ser Lys Lys Leu Lys Glu Glu Lys Arg

185 190 195

Asn Lys Ser Lys Lys Lys 200

<210> 100

<211> 705 <212> DNA

<213> Homo sapiens

<400> 100

cccgggaacg tgttcctggc tgccgcaccc gaacagcctg tcctggtgcc 50
ccggctccct gccccgcgcc cagtcatgac cctgcgcccc tcactcctcc 100
cgctccatct gctgctgct ctgctgctca gtgcggcggt gtgccgggct 150
gaggctgggc tcgaaaccga aagtcccgtc cggaccctcc aagtggagac 200
cctggtggag cccccagaac catgtgccga gcccgctgct tttggagaca 250
cgcttcacat acactacacg ggaagcttgg tagatggacg tattattgac 300
acctccctga ccagagaccc tctggttata gaacttggcc aaaagcaggt 350
gattccaggt ctggagcaga gtcttctcga catgtgtgtg ggagagaagc 400
gaagggcaat cattccttct cacttggcct atggaaaacg gggatttcca 450
cccatctgtcc cagcggatgc agtggtgcag tatgacgtgg agctgattgc 500
actaatccga gccaactact ggctaaagct ggtgaagggc attttgcctc 550
tggtagggat ggccatggtg ccaccctcct gggcctcatt gggtatcacc 600
tataacagaaa ggccaataga cccaaagtct ccaaaaagaa gctcaaggaa 650
gagaaaccgaa acaagagcaa aaagaaataa taaataataa attttaaaaa 700

<210> 101

actta 705

<211> 543

<212> DNA

<213> Homo sapiens

<400> 101

ccgaaagtcc cgtccggacc ctccaagtgg agaccctggt ggagcccca 50 gaaccatgtg ccgagcccgc tgcttttgga gacacgcttc acatacacta 100 cacgggaagc ttggtagatg gacgtattat tgacacctcc ctgaccagag 150 accctctggt tatagaactt ggccaaaagc aggtgattcc aggtctggag 200 cagagtcttc tcgacatgtg tgtgggagag aagcgaaggg caatcattcc 250 ttctcacttg gcctatggaa aacggggatt tccaccatct gtcccagcgg 300 atgcagtggt gcagtatgac gtggagctga ttgcactaat ccgagccaac 350 tactggctaa agctggtgaa gggcattttg cctctggtag ggatggccat 400

ggtgccagcc ctcctgggcc tcattgggta tcacctatac agaaaggcca 450 atagacccaa agtctccaaa aagaagctca aggaagagaa acgaaacaag 500 agcaaaaaga aataataaat aataaatttt aaaaaactta aaa 543

<210> 102 <211> 1316 <212> DNA

<213> Homo sapiens <400> 102

ctgctgcatc cgggtgtctg gaggctgtgg ccgttttgtt ttcttggcta 50 aaatcggggg agtgaggcgg gccggcgcgg cgcgacaccg ggctccggaa 100 ccactgcacg acggggctgg actgacctga aaaaaatgtc tggatttcta 150 gagggcttga gatgctcaga atgcattgac tggggggaaa agcgcaatac 200 tattgcttcc attgctgctg gtgtactatt ttttacaggc tggtggatta 250 tcatagatgc agctgttatt tatcccacca tgaaagattt caaccactca 300 taccatgcct gtggtgttat agcaaccata gccttcctaa tgattaatgc 350 agtatcgaat ggacaagtcc gaggtgatag ttacagtgaa ggttgtctgg 400 gtcaaacagg tgctcgcatt tggcttttcg ttggtttcat gttggccttt 450 ggatctctga ttgcatctat gtggattctt tttggaggtt atgttgctaa 500 agaaaaagac atagtatacc ctggaattgc tgtatttttc cagaatgcct 550 tcatcttttt tggagggctg gtttttaagt ttggccgcac tgaagactta 600 tggcagtgaa cacatctgat ttcccacagc acaacagccc tgcatgggtt 650 tgtttgtttt tttactgctc actcccaacc ttttgtaatg ccattttcta 700 aacttatttc tgagtgtagt ctcagcttaa agttgtgtaa tactaaaatc 750 acgagaacac ctaaacaaca accaaaaatc tattgtggta tgcacttgat 800 taacttataa aatgttagag gaaactttca catgaataat ttttgtcaaa 850 ttttatcatg gtataatttg taaaaataaa aagaaattac aaaagaaatt 900 atggatttgt caatgtaagt atttgtcata tctgaggtcc aaaaccacaa 950 tgaaagtgct ctgaagattt aatgtgttta ttcaaatgtg gtctcttctg 1000 tgtcaaatgt taaatgaaat ataaacattt tttagttttt aaaatattcc 1050 gtggtcaaaa ttcttcctca ctataattgg tatttacttt taccaaaaat 1100 tctgtgaaca tgtaatgtaa ctggcttttg agggtctccc aaggggtgag 1150 tggacgtgtt ggaagagag agcaccatgg tccagccacc aggctccctg 1200 tgtcccttcc atgggaaggt cttccgctgt gcctctcatt ccaagggcag 1250 gaagatgtga ctcagccatg acacgtggtt ctggtgggat gcacagtcac 1300

tccacatcca ccactg 1316

<210> 103

<211> 157

<212> PRT

<213> Homo sapiens

<400> 103

Met Ser Gly Phe Leu Glu Gly Leu Arg Cys Ser Glu Cys Ile Asp 1 5 10 15

Trp Gly Glu Lys Arg Asn Thr Ile Ala Ser Ile Ala Ala Gly Val 20 25 30

Leu Phe Phe Thr Gly Trp Trp Ile Ile Ile Asp Ala Ala Val Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Tyr Pro Thr Met Lys Asp Phe Asn His Ser Tyr His Ala Cys Gly 50 55 60

Val Ile Ala Thr Ile Ala Phe Leu Met Ile Asn Ala Val Ser Asn
65 70 75

Gly Gln Val Arg Gly Asp Ser Tyr Ser Glu Gly Cys Leu Gly Gln 80 85 90

Thr Gly Ala Arg Ile Trp Leu Phe Val Gly Phe Met Leu Ala Phe 95 100 105

Gly Ser Leu Ile Ala Ser Met Trp Ile Leu Phe Gly Gly Tyr Val 110 115 120

Ala Lys Glu Lys Asp Ile Val Tyr Pro Gly Ile Ala Val Phe Phe 125 130 135

Gln Asn Ala Phe Ile Phe Phe Gly Gly Leu Val Phe Lys Phe Gly 140 145 150

Arg Thr Glu Asp Leu Trp Gln 155

<210> 104

<211> 545

<212> DNA

<213> Homo sapiens

<400> 104

ttettggeta aaateggggg agtgaggegg geeggeggg egegaeaceg 50 ggeteeggaa ecactgeacg aegggetgg aetgaeetga aaaaaatgte 100 tggatteta gagggettga gatgeteaga atgeattgae tggggggaaa 150 agegeaatae tattgettee attgetgetg gtgtaetatt ttttaeagge 200 tggtggatta teatagatge agetgttatt tateeeacea tgaaagattt 250 caaceactea taceatgeet gtggtgttat ageaaceata geetteetaa 300 tgattaatge agtategaat ggaeaagtee gaggtgatag ttaeagtgaa 350 ggttgtetgg gteaaacagg tgetegeatt tggettteeg ttggttteat 400

gttggccttt ggatctctga ttgcatctat gtggattctt tttggaggtt 450 atgttgctaa agaaaaagac atagtatacc ctggaattgc tgtatttttc 500 cagaatgcct tcatctttt tggagggctg qtttttaagt ttgqc 545 <210> 105 <211> 490 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 31, 39, 108, 145, 179, 219, 412, 479 <223> unknown base <400> 105 tggacggacc tgaaaaaaat gtttggattt ntagagggnt tgagatgttc 50 agaatgcatg actgggggaa aagcgcaaat actattgctt ccattgctgc 100 tggtgtanta ttttttacag gctggtggat tatcatagat gcaqntqtta 150 tttatcccac catgaaagat ttcaaccant cataccatgc ctgtggtgtt 200 atagcaacca tagccttcnt aatgattaat gcagtatcga atggacaagt 250 ccgaggtgat agttacagtg aaggttgttt gggtcaaaca ggtgctcqca 300 tttggctttt cgttggtttc atgttggcct ttggatctct gattgcatct 350 atgtggattc tttttggagg ttatgttgct aaagaaaaag acatagtata 400 ccctggaatt gntgtatttt tccagaatgc cttcatcttt tttggagggc 450 tggtttttaa gtttggccgc actgaagant tatggcagtg 490 <210> 106 <211> 466 <212> DNA <213> Homo sapiens <220> <221> unsure <222> 26, 38, 81, 115, 207, 329, 380, 446, 449 <223> unknown base <400> 106 ggacaccggg ttccggacca atgcangacg gggtggantg acctgaaaaa 50 aatgtttgga tttttagagg gcttgagatg ntcagaatgc attgactggg 100 ggaaaagcgc aatantattg ctttccattg ctgctggtgt actattttt 150 acagggtggt ggattatcat agatgcagct gttatttatc ccaccatqaa 200 agatttnaac cactcatacc atgcctgtgg tgttatagca accatagcct 250 tcctaatgat taatgcagta tcgaatggac aagtccgagg tgatagttac 300 agtgaaggtt gtttgggtca aacaggtgnt cgcatttggc ttttcgttgg 350

tttcatgttg gcctttggat ttctgattgn attctatgcg gattcttctt 400

```
ggaggttatg ttgctaaaga aaaagacata gtataccctg qaattnctnt 450
 atttttccag aatgcc 466
<210> 107
<211> 377
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 52, 67, 70, 78, 105, 144, 150, 209, 266, 268, 282, 310, 331, 356
<223> unknown base
<400> 107
 tagagggctt gagatgctca gaatgcattg actgggggga aaagcgcaat 50
 antattgctt ccattgntgn tggtgtanta ttttttaca ggctggtgga 100
 ttatnataga tgcagctgtt atttatccca ccatgaaaga tttnaaccan 150
 tcataccatg cctgtggtgt tatagcaacc atagccttcc taatgattaa 200
 tgcagtatng aatggacaag tccgaggtga tagttacagt gaaggttgtt 250
 tgggtcaaac aggtgntngc atttggcttt tngttggttt catgttggcc 300
 tttggatctn tgattgcatt tatgtggatt ntttttggag gttatgttgc 350
 taaagnaaaa gacatagtat accctgt 377
<210> 108
<211> 552
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 12, 25, 65, 130, 437, 537
<223> unknown base
<400> 108
 gggaggctgt gnccgttttg ttttnttggc taaaatcggg ggagtgaggc 50
 ggcccggcgc ggcgngacac cgggttccgg gaaccattgc acgacggggt 100
 ggactgacct gaaaaaaatg tttggatttn tagagggctt gagatgctca 150
 gaatgcattg actgggggga aaagcgcaat actattgctt ccattgctgc 200
 tggtgtacta ttttttacag gctggtggat tatcatagat gcagctgtta 250
 tttatcccac catgaaagat ttcaaccact cataccatgc ctgtggtgtt 300
 atagcaacca tagccttcct aatgattaat gcagtatcga atggacaagt 350
 ccgaggtgat agttacagtg aaggttgtct gggtcaaaca ggtgctcgca 400
 tttggctttt cgttggtttc atgttggcct ttggatntct gattgcatct 450
atgtggattc tttttggagg ttatgttgct aaaqaaaaag acatagtata 500
ccctggaatt gctgtatttt tccagaatgc cttcatnttt tttggagggc 550
```

```
tq 552
<210> 109
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 109
 gggtggatgg tactgctgca tcc 23
<210> 110
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 110
tgttgtgctg tgggaaatca gatgtg 26
<210> 111
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 111
gtgtctggag gctgtggccg ttttgttttc ttgggctaaa atcggg 46
<210> 112
<211> 3004
<212> DNA
<213> Homo sapiens
<400> 112
 cgacgccggc gtgatgtggc ttccgctggt gctgctcctg gctgtgctgc 50
 tgctggccgt cctctgcaaa gtttacttgg gactattctc tggcagctcc 100
 ccgaatcctt tctccgaaga tgtcaaacgg cccccagcgc ccctggtaac 150
 tgacaaggag gccaggaaga aggttctcaa acaagctttt tcagccaacc 200
 aagtgccgga gaagctggat gtggtggtaa ttggcagtgg ctttgggggc 250
 ctggctgcag ctgcaattct agctaaagct ggcaagcgag tcctggtgct 300
 ggaacaacat accaaggcag ggggctgctg tcataccttt ggaaagaatg 350
 gccttgaatt tgacacagga atccattaca ttgggcgtat ggaagagggc 400
 agcattggcc gttttatctt ggaccagatc actgaagggc agctggactg 450
 ggctcccctg tcctctctt ttgacatcat ggtactggaa gggcccaatg 500
 gccgaaagga gtaccccatg tacagtggag agaaagccta cattcagggc 550
```


taactcagtg atcaaagcga atattccatc tgtggataga acccctggca 2200 gtgttgtcag ctcaacctgg tgggttcagt tctgtcctga ggcttctgct 2250 ctcattcatt tagtgctacg ctgcacagtt ctacactgtc aagggaaaag 2300 ggagactaat gaggettaac teaaaacetg ggegtggttt tggttgeeat 2350 tccataggtt tggagagctc tagatctctt ttgtgctggg ttcagtggct 2400 cttcagggga caggaaatgc ctgtgtctgg ccagtgtggt tctggagctt 2450 tggggtaaca gcaggatcca tcagttagta gggtgcatgt cagatgatca 2500 tatccaattc atatggaagt cccgggtctg tcttccttat catcggggtg 2550 gcagctggtt ctcaatgtgc cagcagggac tcagtacctg agcctcaatc 2600 aagccttatc caccaaatac acagggaagg gtgatgcagg gaagggtgac 2650 atcaggagtc agggcatgga ctggtaagat gaatactttg ctggqctqaa 2700 gcaggctgca gggcattcca gccaagggca cagcagggga cagtgcaggg 2750 aggtgtgggg taagggaggg aagtcacatc agaaaaggga aagccacgga 2800 atgtgtgtga agcccagaaa tggcatttgc agttaattag cacatgtgag 2850 ggttagacag gtaggtgaat gcaagctcaa ggtttggaaa aatgactttt 2900 cagttatgtc tttggtatca gacatacgaa aggtctcttt gtagttcgtg 2950 aaaa 3004

<210> 113

<211> 610

<212> PRT

<213> Homo sapiens

<400> 113

Met Trp Leu Pro Leu Val Leu Leu Leu Ala Val Leu Leu Leu Ala 1 5 10 15

Val Leu Cys Lys Val Tyr Leu Gly Leu Phe Ser Gly Ser Ser Pro 20 25 30

Asn Pro Phe Ser Glu Asp Val Lys Arg Pro Pro Ala Pro Leu Val 35 40 45

Thr Asp Lys Glu Ala Arg Lys Lys Val Leu Lys Gln Ala Phe Ser 50 55 60

Ala Asn Gln Val Pro Glu Lys Leu Asp Val Val Val Ile Gly Ser
65 70 75

Gly Phe Gly Gly Leu Ala Ala Ala Ala Ile Leu Ala Lys Ala Gly 80 85 90

Lys Arg Val Leu Val Leu Glu Gln His Thr Lys Ala Gly Gly Cys 95 100 105

Cys	His	Thr	Phe	Gly 110	Lys	Asn	Gly	Leu	Glu 115	Phe	Asp	Thr	Gly	Ile 120
His	Tyr	Ile	Gly	Arg 125	Met	Glu	Glu	Gly	Ser 130	Ile	Gly	Arg	Phe	Ile 135
Leu	Asp	Gln	Ile	Thr 140	Glu	Gly	Gln	Leu	Asp 145	Trp	Ala	Pro	Leu	Ser 150
Ser	Pro	Phe	Asp	Ile 155	Met	Val	Leu	Glu	Gly 160	Pro	Asn	Gly	Arg	Lys 165
Glu	Tyr	Pro	Met	Tyr 170	Ser	Gly	Glu	Lys	Ala 175	Tyr	Ile	Gln	Gly	Leu 180
Lys	Glu	Lys	Phe	Pro 185	Gln	Glu	Glu	Ala	Ile 190	Ile	Asp	Lys	Tyr	Ile 195
Lys	Leu	Val	Lys	Val 200	Val	Ser	Ser	Gly	Ala 205	Pro	His	Ala	Ile	Leu 210
Leu	Lys	Phe	Leu	Pro 215	Leu	Pro	Val	Val	Gln 220	Leu	Leu	Asp	Arg	Cys 225
Gly	Leu	Leu	Thr	Arg 230	Phe	Ser	Pro	Phe	Leu 235	Gln	Ala	Ser	Thr	Gln 240
Ser	Leu	Ala	Glu	Val 245	Leu	Gln	Gln	Leu	Gly 250	Ala	Ser	Ser	Glu	Leu 255
Gln	Ala	Val	Leu	Ser 260	Tyr	Ile	Phe	Pro	Thr 265	Tyr	Gly	Val	Thr	Pro 270
Asn	His	Ser	Ala	Phe 275	Ser	Met	His	Ala	Leu 280	Leu	Val	Asn	His	Tyr 285
Met	Lys	Gly	Gly	Phe 290	Tyr	Pro	Arg	Gly	Gly 295	Ser	Ser	Glu	Ile	Ala 300
Phe	His	Thr	Ile	Pro 305	Val	Ile	Gln	Arg	Ala 310	Gly	Gly	Ala	Val	Leu 315
Thr	Lys	Ala	Thr	Val 320	Gln	Ser	Val	Leu	Leu 325	Asp	Ser	Ala	Gly	Lys 330
Ala	Cys	Gly	Val	Ser 335	Val	Lys	Lys	Gly	His 340	Glu	Leu	Val	Asn	Ile 345
Tyr	Cys	Pro	Ile	Val 350	Val	Ser	Asn	Ala	Gly 355	Leu	Phe	Asn	Thr	Tyr 360
Glu	His	Leu	Leu	Pro 365	Gly	Asn	Ala	Arg	Cys 370	Leu	Pro	Gly	Val	Lys 375
Gln	Gln	Leu	Gly	Thr 380	Val	Arg	Pro	Gly	Leu 385	Gly	Met	Thr	Ser	Val 390
Phe	Ile	Cys	Leu	Arg 395	Gly	Thr	Lys	Glu	Asp 400	Leu	His	Leu	Pro	Ser 405
Thr	Asn	Tyr	Tyr	Val 410	Tyr	Tyr	Asp	Thr	Asp 415	Met	Asp	Gln	Ala	Met 420

Glu Arg Tyr Val Ser Met Pro Arg Glu Glu Ala Ala Glu His Ile 425 Pro Leu Leu Phe Phe Ala Phe Pro Ser Ala Lys Asp Pro Thr Trp Glu Asp Arg Phe Pro Gly Arg Ser Thr Met Ile Met Leu Ile Pro 455 460 Thr Ala Tyr Glu Trp Phe Glu Glu Trp Gln Ala Glu Leu Lys Gly 475 480 Lys Arg Gly Ser Asp Tyr Glu Thr Phe Lys Asn Ser Phe Val Glu 485 Ala Ser Met Ser Val Val Leu Lys Leu Phe Pro Gln Leu Glu Gly 500 Lys Val Glu Ser Val Thr Ala Gly Ser Pro Leu Thr Asn Gln Phe 515 520 Tyr Leu Ala Ala Pro Arg Gly Ala Cys Tyr Gly Ala Asp His Asp 530 Leu Gly Arg Leu His Pro Cys Val Met Ala Ser Leu Arg Ala Gln 545 550 Ser Pro Ile Pro Asn Leu Tyr Leu Thr Gly Gln Asp Ile Phe Thr 560 565 Cys Gly Leu Val Gly Ala Leu Gln Gly Ala Leu Leu Cys Ser Ser 580 Ala Ile Leu Lys Arg Asn Leu Tyr Ser Asp Leu Lys Asn Leu Asp 595 Ser Arg Ile Arg Ala Gln Lys Lys Asn

<210> 114

<211> 1701

<212> DNA

<213> Homo sapiens

605

<400> 114

gcagcggcga ggcggcggtg gtggctgagt ccgtggtggc agaggcgaag 50
gcgacagctc taggggttgg caccggcccc gagaggagga tgcgggtccg 100
gatagggctg acgctgctgc tgtgtgcggt gctgctgagc ttggcctcgg 150
cgtcctcgga tgaagaaggc agccaggatg aatccttaga ttccaagact 200
actttgacat cagatgagtc agtaaaggac catactactg caggcagagt 250
agttgctggt caaatattc ttgattcaga agaatctgaa ttagaatcct 300
ctattcaaga agaggaagac agcctcaaga gccaagaggg ggaaagtgtc 350
acagaagata tcagcttct agagtctcca aatccagaaa acaaggacta 400
tgaagagcca aagaaagtac ggaaaccagc tttgaccgc attgaaggca 450

610

cagcacatgg ggagccctgc cacttccctt ttcttttcct agataaggag 500 tatgatgaat gtacatcaga tgggagggaa gatggcagac tgtggtgtgc 550 tacaacctat gactacaaag cagatgaaaa gtggggcttt tgtgaaactg 600 aagaagaggc tgctaagaga cggcagatgc aggaagcaga aatgatgtat 650 caaactggaa tgaaaatcct taatggaagc aataagaaaa gccaaaaaag 700 agaagcatat cggtatctcc aaaaggcagc aagcatgaac cataccaaag 750 ccctggagag agtgtcatat gctcttttat ttggtgatta cttgccacag 800 aatatccagg cagcgagaga gatgtttgag aagctgactg aggaaggctc 850 tcccaaggga cagactgctc ttggctttct gtatgcctct ggacttggtg 900 ttaattcaag tcaggcaaag gctcttgtat attatacatt tggagctctt 950 gggggcaatc taatagccca catggttttg gtaagtagac tttagtggaa 1000 ggctaataat attaacatca gaagaatttg tggtttatag cggccacaac 1050 tttttcagct ttcatgatcc agatttgctt gtattaagac caaatattca 1100 gttgaacttc cttcaaattc ttgttaatgg atataacaca tggaatctac 1150 atgtaaatga aagttggtgg agtccacaat ttttctttaa aatgattagt 1200 ttqqctqatt qcccctaaaa agagagatct gataaatggc tctttttaaa 1250 ttttctctga gttggaattg tcagaatcat tttttacatt agattatcat 1300 aattttaaaa atttttcttt agtttttcaa aattttgtaa atggtggcta 1350 tagaaaaaca acatgaaata ttatacaata ttttgcaaca atgccctaag 1400 aattgttaaa attcatggag ttatttgtgc agaatgactc cagagagctc 1450 tactttctgt tttttacttt tcatgattgg ctgtcttccc atttattctg 1500 gtcatttatt gctagtgaca ctgtgcctgc ttccagtagt ctcattttcc 1550 ctattttgct aatttgttac tttttctttg ctaatttgga agattaactc 1600 a 1701

<210> 115

<211> 301 <212> PRT

<213> Homo sapiens

<400> 115

Met Arg Val Arg Ile Gly Leu Thr Leu Leu Leu Cys Ala Val Leu

Leu Ser Leu Ala Ser Ala Ser Ser Asp Glu Glu Gly Ser Gln Asp 25

Glu Ser Leu Asp Ser Lys Thr Thr Leu Thr Ser Asp Glu Ser Val Lys Asp His Thr Thr Ala Gly Arg Val Val Ala Gly Gln Ile Phe Leu Asp Ser Glu Glu Ser Glu Leu Glu Ser Ser Ile Gln Glu Glu Glu Asp Ser Leu Lys Ser Gln Glu Gly Glu Ser Val Thr Glu Asp Ile Ser Phe Leu Glu Ser Pro Asn Pro Glu Asn Lys Asp Tyr Glu Glu Pro Lys Lys Val Arg Lys Pro Ala Leu Thr Ala Ile Glu Gly Thr Ala His Gly Glu Pro Cys His Phe Pro Phe Leu Phe Leu Asp 125 130 Lys Glu Tyr Asp Glu Cys Thr Ser Asp Gly Arg Glu Asp Gly Arg Leu Trp Cys Ala Thr Thr Tyr Asp Tyr Lys Ala Asp Glu Lys Trp 155 Gly Phe Cys Glu Thr Glu Glu Glu Ala Ala Lys Arg Arg Gln Met 170 175 Gln Glu Ala Glu Met Met Tyr Gln Thr Gly Met Lys Ile Leu Asn Gly Ser Asn Lys Lys Ser Gln Lys Arg Glu Ala Tyr Arg Tyr Leu 200 Gln Lys Ala Ala Ser Met Asn His Thr Lys Ala Leu Glu Arg Val 220 Ser Tyr Ala Leu Leu Phe Gly Asp Tyr Leu Pro Gln Asn Ile Gln Ala Ala Arg Glu Met Phe Glu Lys Leu Thr Glu Glu Gly Ser Pro Lys Gly Gln Thr Ala Leu Gly Phe Leu Tyr Ala Ser Gly Leu Gly Val Asn Ser Ser Gln Ala Lys Ala Leu Val Tyr Tyr Thr Phe Gly Ala Leu Gly Gly Asn Leu Ile Ala His Met Val Leu Val Ser Arg 290 295

Leu

<210> 116

<211> 584

<212> DNA

<213> Homo sapiens

<400> 116

ttctacttgc ctgccccca aagcacctgg agcatatagc cttgcagaac 50 ttctacttgc ctgcctccct gcctctggcc atggcctgcc ggtgcctcag 100 cttccttctg atggggacct tcctgtcagt ttcccagaca gtcctggcc 150 agctggatgc actgctggtc ttcccaggcc aagtggctca actcctgc 200 acgctcagcc cccagcacgt caccatcagg gactacggtg tgtcctggta 250 ccagcagcgg gcaggcagtg cccctcgata tctcctctac taccgctcgg 300 aggaggatca ccaccagcc gctgacatcc ccgatcgatt ctcggcagcc 350 aaggaggatga cccacaatgc ctgtgtcctc accattagtc ccgtgcagcc 400 tgaagacgac gcggattact actgctctgt tggctacggc tttagtccct 450 aggggtgggg tgtgagatgg gtgcctccc tctgcctcc atttctgccc 500 ctgaccttgg gtccctttta aactttctct gagccttgct tcccctctgt 550 aaaatgggtt aataatattc aacatgtcaa caac 584

<210> 117

<211> 123

<212> PRT

<213> Homo sapiens

<400> 117

Met Ala Cys Arg Cys Leu Ser Phe Leu Leu Met Gly Thr Phe Leu 1 5 10 15

Ser Val Ser Gln Thr Val Leu Ala Gln Leu Asp Ala Ieu Leu Val 20 25 30

Phe Pro Gly Gln Val Ala Gln Leu Ser Cys Thr Leu Ser Pro Gln 35 40

His Val Thr Ile Arg Asp Tyr Gly Val Ser Trp Tyr Gln Gln Arg 50 55 60

Ala Gly Ser Ala Pro Arg Tyr Leu Leu Tyr Tyr Arg Ser Glu Glu
65 70 75

Asp His His Arg Pro Ala Asp Ile Pro Asp Arg Phe Ser Ala Ala 80 85 90

Lys Asp Glu Ala His Asn Ala Cys Val Leu Thr Ile Ser Pro Val 95 100 105

Gln Pro Glu Asp Asp Ala Asp Tyr Tyr Cys Ser Val Gly Tyr Gly
110 115 120

Phe Ser Pro

<210> 118

<211> 3402

<212> DNA

<213> Homo sapiens

<400> 118

gaaggaagac tgggttgcag ggactgtggt ctctcctggg gcccgggacc 3250 cgcctggtct ttcagccatg ctgatgacca caccccgtcc aggccagaca 3300 ccaccccca ccccactgtc gtggtggccc cagatctctg taattttatg 3350 tagagtttga gctgaagccc cgtatattta atttatttg ttaaacacaa 3400 aa 3402

<210> 119

<211> 504

<212> PRT

<213> Homo sapiens

<400> 119

Met Thr Pro Ser Pro Leu Leu Leu Leu Leu Leu Pro Pro Leu Leu 1 5 10 15

Leu Gly Ala Phe Pro Pro Ala Ala Ala Ala Arg Gly Pro Pro Lys 20 25 30

Met Ala Asp Lys Val Val Pro Arg Gln Val Ala Arg Leu Gly Arg
35 40 45

Thr Val Arg Leu Gln Cys Pro Val Glu Gly Asp Pro Pro Pro Leu
50 55 60

Thr Met Trp Thr Lys Asp Gly Arg Thr Ile His Ser Gly Trp Ser 65 70 75

Arg Phe Arg Val Leu Pro Gln Gly Leu Lys Val Lys Gln Val Glu 80 85 90

Arg Glu Asp Ala Gly Val Tyr Val Cys Lys Ala Thr Asn Gly Phe 95 100 105

Gly Ser Leu Ser Val Asn Tyr Thr Leu Val Val Leu Asp Asp Ile 110 115 120

Ser Pro Gly Lys Glu Ser Leu Gly Pro Asp Ser Ser Ser Gly Gly 125 130

Gln Glu Asp Pro Ala Ser Gln Gln Trp Ala Arg Pro Arg Phe Thr 140 145 150

Gln Pro Ser Lys Met Arg Arg Arg Val Ile Ala Arg Pro Val Gly
155 160 165

Ser Ser Val Arg Leu Lys Cys Val Ala Ser Gly His Pro Arg Pro 170 175 180

Asp Ile Thr Trp Met Lys Asp Asp Gln Ala Leu Thr Arg Pro Glu 185 190 195

Ala Ala Glu Pro Arg Lys Lys Trp Thr Leu Ser Leu Lys Asn 200 205

Leu Arg Pro Glu Asp Ser Gly Lys Tyr Thr Cys Arg Val Ser Asn 215 220 225

Arg Ala Gly Ala Ile Asn Ala Thr Tyr Lys Val Asp Val Ile Gln 230 235 240

- <213> Artificial Sequence
- <223> Synthetic oligonucleotide probe
- <400> 120

```
cgagatgacg ccgagccccc 20
<210> 121
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 121
cggttcgaca cgcggcaggt g 21
<210> 122
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 122
tgctgctcct gctgccgccg ctgctgctgg gggccttccc gccgg 45
<210> 123
<211> 4420
<212> DNA
<213> Homo sapiens
<400> 123
cccagctgag gagccctgct caagacacgg tcactggatc tgagaaactt 50
cccaggggac cgcattccag agtcagtgac tctgtgaagc acccacatct 100
acctcttgcc acgttcccac gggcttgggg gaaagatggt ggggaccaag 150
gcctgggtgt tctccttcct ggtcctggaa gtcacatctg tgttggggag 200
acagacgatg ctcacccagt cagtaagaag agtccagcct gggaagaaga 250
accccagcat ctttgccaag cctgccgaca ccctggagag ccctggtgag 300
tggacaacat ggttcaacat cgactaccca ggcqqqaaqq qcqactatqa 350
gcggctggac gccattcgct tctactatgg ggaccgtgta tgtgcccgtc 400
ccctgcggct agaggctcgg accactgact ggacacctgc gggcagcact 450
ggccaggtgg tccatggtag tccccgtgag ggtttctggt gcctcaacag 500
ggagcagcgg cctggccaga actgctctaa ttacaccgta cgcttcctct 550
gcccaccagg atccctgcgc cgagacacag agcgcatctg gagcccatgg 600
tctccctgga gcaagtgctc agctgcctgt ggtcagactg gggtccagac 650
tcgcacacgc atttgcttgg cagagatggt gtcgctgtgc agtgaggcca 700
gcgaagaggg tcagcactgc atgggccagg actgtacagc ctgtgacctg 750
acctgcccaa tgggccaggt gaatgctgac tgtgatgcct gcatgtgcca 800
ggacttcatg cttcatgggg ctgtctccct tcccggaggt gccccagcct 850
```

caggggctgc tatctacctc ctgaccaaga cgccgaagct gctgacccag 900 acagacagtg atgggagatt ccgaatccct ggcttgtgcc ctgatggcaa 950 aagcatcctg aagatcacaa aggtcaagtt tgcccccatt gtactcacaa 1000 tgcccaagac tagcctgaag gcagccacca tcaaggcaga gtttgtgagg 1050 gcagagactc catacatggt gatgaaccct gagacaaaag cacggagagc 1100 tgggcagagc gtgtctctgt gctgtaaggc cacagggaag cccaggccag 1150 acaagtattt ttggtatcat aatgacacat tgctggatcc ttccctctac 1200 aagcatgaga gcaagctggt gctgaggaaa ctgcagcagc accaggctgg 1250 ggagtacttt tgcaaggccc agagtgatgc tggggctgtg aagtccaagg 1300 ttgcccagct gattgtcaca gcatctgatg agactccttg caacccagtt 1350 cctgagagct atcttatccg gctgccccat gattgctttc agaatgccac 1400 caacteette tactatgaeg tgggaegetg ceetgttaag aettgtgeag 1450 ggcagcagga taatgggatc aggtgccgtg atgctgtgca gaactgctgt 1500 acccaccaag gtggccaagg agtgcagctg ccagcggtgt acggaaactc 1600 ggagcatcgt gcggggccgt gtcagtgctg ctgacaatgg ggagcccatg 1650 cgctttggcc atgtgtacat ggggaacagc cgtgtaagca tgactggcta 1700 caagggcact ttcaccctcc atgtccccca ggacactgag aggctggtgc 1750 tcacatttgt ggacaggctg cagaagtttg tcaacaccac caaagtgcta 1800 cctttcaaca agaaggggag tgccgtgttc catgaaatca agatgcttcg 1850 teggaaagag eccateaett tggaageeat ggagaceaac ateateece 1900 tgggggaagt ggttggtgaa gaccccatgg ctgaactgga gattccatcc 1950 aggagtttct acaggcagaa tggggagccc tacataggaa aagtgaaggc 2000 cagtgtgacc ttcctggatc cccggaatat ttccacagcc acagctgccc 2050 agactgacct gaacttcatc aatgacgaag gagacacttt cccccttcgg 2100 acgtatggca tgttctctgt ggacttcaga gatgaggtca cctcagagcc 2150 acttaatgct ggcaaagtga aggtccacct tgactcgacc caggtcaaga 2200 tgccagagca catatccaca gtgaaactct ggtcactcaa tccagacaca 2250 gggctgtggg aggaggaagg tgatttcaaa tttgaaaatc aaaggaggaa 2300 caaaagagaa gacagaacct tcctggtggg caacctggag attcgtgaga 2350 ggaggctctt taacctggat gttcctgaaa gcaggcggtg ctttgttaag 2400 gtgagggcct accggagtga gaggttcttg cctagtgagc agatccaggg 2450

ggttgtgatc tccgtgatta acctggagcc tagaactggc ttcttgtcca 2500 accetaggge ctggggeege tttgacagtg teatcacagg ceceaacggg 2550 gcctgtgtgc ctgccttctg tgatgaccag tcccctgatg cctactctgc 2600 ctatgtcttg gcaagcctgg ctggggagga actgcaagca gtggagtctt 2650 ctcctaaatt caacccaaat gcaattggcg tccctcagcc ctatctcaac 2700 aagctcaact accgtcggac ggaccatgag gatccacggg ttaaaaaagac 2750 agctttccag attagcatgg ccaagccaag gcccaactca gctgaggaga 2800 gcaatgggcc catctatgcc tttgagaacc tccgggcatg tgaagaggca 2850 ccacccagtg cagcccactt ccggttctac cagattgagg gggatcgata 2900 tgactacaac acagtcccct tcaacgaaga tgaccctatg agctggactg 2950 aagactatct ggcatggtgg ccaaagccga tggaattcag ggcctgctat 3000 atcaaggtga agattgtggg gccactggaa gtgaatgtgc gatcccgcaa 3050 catggggggc actcatcggc ggacagtggg gaagctgtat ggaatccgag 3100 atgtgaggag cactcgggac agggaccagc ccaatgtctc agctgcctgt 3150 ctggagttca agtgcagtgg gatgctctat gatcaggacc gtgtggaccg 3200 caccctggtg aaggtcatcc cccagggcag ctgccgtcga gccagtgtga 3250 accccatget geatgagtae etggteaace acttgecaet tgeagteaac 3300 aacgacacca gtgagtacac catgctggca cccttggacc cactgggcca 3350 caactatggc atctacactg tcactgacca ggaccctcgc acggccaagg 3400 agategeget eggeeggtge tttgatggea cateegatgg etecteeaga 3450 atcatgaaga gcaatgtggg agtagccctc accttcaact gtgtagagag 3500 gcaagtaggc cgccagagtg ccttccagta cctccaaagc accccagccc 3550 agtcccctgc tgcaggcact gtccaaggaa gagtgccctc gaggaggcag 3600 cagcgagcga gcaggggtgg ccagcgccag ggtggagtgg tggcctctct 3650 gagattteet agagttgete aacageeest gateaactaa gttttgtggt 3700 acttcaccct cttctgccct catttcatgt gacagccatt gtgagactga 3750 tgcacaaact gtcacttggt taatttaagc acttctgttt tcgtgaattt 3800 gcttgtttgt ttcttcatgc ctttacttac tttgtcccat gctactgatt 3850 ggcacgtggc ccccacaatg gcacaataaa gcccctttgt gaaactgttc 3900 tttaaatgaa acacaagaaa ttggccactg gtaaaactct gcagcttcaa 3950 ctgtacttca tttaatgcca ttaatgcaaa tatacttcct cttctttttg 4000 catggttttg cccacctctg caatagtgat aatctgatgc tgaagatcaa 4050

ataaccaata taaagcatat ttcttggcct tgctcacag gacataggca 4100 agccttgatc atagttcata catataaatg gtggtgaaat aaagaaataa 4150 aacacaatac ttttacttga aatgtaaata acttattat ttctttgcta 4200 aatttggaat tctagtgcac attcaaagtt aagctattaa atatagggtg 4250 atcatagttc ctctaccaag tctggaaaga acatctcctg gtatccacaa 4300 ttacaccagg ttgctaactg tatttgtaca tttccctttg cattcgcttt 4350 tgttcttgct agaaacccag tgtagcccag ggcagatgtc aataaatgca 4400 tactctgtat ttcgaaaaaa 4420

<210> 124

<211> 1184

<212> PRT

<213> Homo sapiens

<400> 124

Met Val Gly Thr Lys Ala Trp Val Phe Ser Phe Leu Val Leu Glu
1 5 10 15

Val Thr Ser Val Leu Gly Arg Gln Thr Met Leu Thr Gln Ser Val 20 25 30

Arg Arg Val Gln Pro Gly Lys Lys Asn Pro Ser Ile Phe Ala Lys 35 40 45

Pro Ala Asp Thr Leu Glu Ser Pro Gly Glu Trp Thr Trp Phe 50 55 60

Asn Ile Asp Tyr Pro Gly Gly Lys Gly Asp Tyr Glu Arg Leu Asp 65 70 75

Ala Ile Arg Phe Tyr Tyr Gly Asp Arg Val Cys Ala Arg Pro Leu 80 85 90

Arg Leu Glu Ala Arg Thr Thr Asp Trp Thr Pro Ala Gly Ser Thr 95 100 105

Gly Gln Val Val His Gly Ser Pro Arg Glu Gly Phe Trp Cys Leu 110 115 120

Asn Arg Glu Gln Arg Pro Gly Gln Asn Cys Ser Asn Tyr Thr Val 125 130 135

Arg Phe Leu Cys Pro Pro Gly Ser Leu Arg Arg Asp Thr Glu Arg
140 145 150

Ile Trp Ser Pro Trp Ser Pro Trp Ser Lys Cys Ser Ala Ala Cys 155 160 165

Gly Gln Thr Gly Val Gln Thr Arg Thr Arg Ile Cys Leu Ala Glu 170 175 180

Met Val Ser Leu Cys Ser Glu Ala Ser Glu Glu Gly Gln His Cys 185 190 195

Met Gly Gln Asp Cys Thr Ala Cys Asp Leu Thr Cys Pro Met Gly 200 205 210

Gln Val Asn Ala Asp Cys Asp Ala Cys Met Cys Gln Asp Phe Met 215 Leu His Gly Ala Val Ser Leu Pro Gly Gly Ala Pro Ala Ser Gly 230 Ala Ala Ile Tyr Leu Leu Thr Lys Thr Pro Lys Leu Leu Thr Gln 245 250 Thr Asp Ser Asp Gly Arg Phe Arg Ile Pro Gly Leu Cys Pro Asp 265 Gly Lys Ser Ile Leu Lys Ile Thr Lys Val Lys Phe Ala Pro Ile Val Leu Thr Met Pro Lys Thr Ser Leu Lys Ala Ala Thr Ile Lys Ala Glu Phe Val Arg Ala Glu Thr Pro Tyr Met Val Met Asn Pro 305 310 Glu Thr Lys Ala Arg Arg Ala Gly Gln Ser Val Ser Leu Cys Cys 320 Lys Ala Thr Gly Lys Pro Arg Pro Asp Lys Tyr Phe Trp Tyr His 335 Asn Asp Thr Leu Leu Asp Pro Ser Leu Tyr Lys His Glu Ser Lys 350 355 Leu Val Leu Arg Lys Leu Gln Gln His Gln Ala Gly Glu Tyr Phe Cys Lys Ala Gln Ser Asp Ala Gly Ala Val Lys Ser Lys Val Ala Gln Leu Ile Val Thr Ala Ser Asp Glu Thr Pro Cys Asn Pro Val 400 Pro Glu Ser Tyr Leu Ile Arg Leu Pro His Asp Cys Phe Gln Asn 410 415 Ala Thr Asn Ser Phe Tyr Tyr Asp Val Gly Arg Cys Pro Val Lys Thr Cys Ala Gly Gln Gln Asp Asn Gly Ile Arg Cys Arg Asp Ala 445 Val Gln Asn Cys Cys Gly Ile Ser Lys Thr Glu Glu Arg Glu Ile Gln Cys Ser Gly Tyr Thr Leu Pro Thr Lys Val Ala Lys Glu Cys 470 Ser Cys Gln Arg Cys Thr Glu Thr Arg Ser Ile Val Arg Gly Arg 490 Val Ser Ala Ala Asp Asn Gly Glu Pro Met Arg Phe Gly His Val 505 Tyr Met Gly Asn Ser Arg Val Ser Met Thr Gly Tyr Lys Gly Thr 520

Lys Phe Asn Pro Asn Ala Ile Gly Val Pro Gln Pro Tyr Leu Asn Lys Leu Asn Tyr Arg Arg Thr Asp His Glu Asp Pro Arg Val Lys Lys Thr Ala Phe Gln Ile Ser Met Ala Lys Pro Arg Pro Asn Ser 875 Ala Glu Glu Ser Asn Gly Pro Ile Tyr Ala Phe Glu Asn Leu Arg 890 900 Ala Cys Glu Glu Ala Pro Pro Ser Ala Ala His Phe Arg Phe Tyr Gln Ile Glu Gly Asp Arg Tyr Asp Tyr Asn Thr Val Pro Phe Asn Glu Asp Asp Pro Met Ser Trp Thr Glu Asp Tyr Leu Ala Trp Trp 935 940 Pro Lys Pro Met Glu Phe Arg Ala Cys Tyr Ile Lys Val Lys Ile Val Gly Pro Leu Glu Val Asn Val Arg Ser Arg Asn Met Gly Gly 965 Thr His Arg Arg Thr Val Gly Lys Leu Tyr Gly Ile Arg Asp Val 980 Arg Ser Thr Arg Asp Arg Asp Gln Pro Asn Val Ser Ala Ala Cys 1000 Leu Glu Phe Lys Cys Ser Gly Met Leu Tyr Asp Gln Asp Arg Val 1010 1015 Asp Arg Thr Leu Val Lys Val Ile Pro Gln Gly Ser Cys Arg Arg 1025 1030 Ala Ser Val Asn Pro Met Leu His Glu Tyr Leu Val Asn His Leu Pro Leu Ala Val Asn Asn Asp Thr Ser Glu Tyr Thr Met Leu Ala 1060 Pro Leu Asp Pro Leu Gly His Asn Tyr Gly Ile Tyr Thr Val Thr 1070 1075 1080 Asp Gln Asp Pro Arg Thr Ala Lys Glu Ile Ala Leu Gly Arg Cys 1090 Phe Asp Gly Thr Ser Asp Gly Ser Ser Arg Ile Met Lys Ser Asn 1105 Val Gly Val Ala Leu Thr Phe Asn Cys Val Glu Arg Gln Val Gly 1120 Arg Gln Ser Ala Phe Gln Tyr Leu Gln Ser Thr Pro Ala Gln Ser 1135 Pro Ala Ala Gly Thr Val Gln Gly Arg Val Pro Ser Arg Arg Gln 1145 1150

Gln Arg Ala Ser Arg Gly Gly Gln Arg Gln Gly Gly Val Val Ala 1160 1165 1170

Ser Leu Arg Phe Pro Arg Val Ala Gln Gln Pro Leu Ile Asn 1175 1180

<210> 125

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 125

ctggtgcctc aacagggagc ag 22

<210> 126

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 126

ccattgtgca ggtcaggtca cag 23

<210> 127

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 127

ctggagcaag tgctcagctg cctgtggtca gactggggtc 40

<210> 128

<211> 2819

<212> DNA

<213> Homo sapiens

<400> 128

ctgcaagttg ttaacgccta acacacaagt atgttaggct tccaccaaag 50

tcctcaatat acctgaatac 'gcacaatatc ttaactcttc atatttggtt 100

ttgggatctg ctttgaggtc ccatcttcat ttaaaaaaaa atacagagac 150

ctacctaccc gtacgcatac atacatatgt gtatatatat gtaaactaga 200

caaagatcgc agatcataaa gcaagctctg ctttagtttc caagaagatt 250

acaaagaatt tagagatgta tttgtcaaga tccctgtcga ttcatgccct 300

ttgggttacg gtgtcctcag tgatgcagcc ctaccctttg gtttggggac 350

attatgattt gtgtaagact cagatttaca cggaagaagg gaaagtttgg 400

gattacatgg cctgccagcc ggaatccacg gacatgacaa aatatctgaa 450

agtgaaactc gatcctccgg atattacctg tggagaccct cctgagacgt 500 tctgtgcaat gggcaatccc tacatgtgca ataatgagtg tgatgcgagt 550 acccctgagc tggcacaccc ccctgagctg atgtttgatt ttgaaqqaaq 600 acatecetee acattttgge agtetgeeae ttggaaggag tateceaage 650 ctctccaggt taacatcact ctgtcttgga gcaaaaccat tqaqctaaca 700 gacaacatag ttattacctt tgaatctggg cgtccagacc aaatgatcct 750 ggagaagtct ctcgattatg gacgaacatg gcagccctat cagtattatg 800 ccacagactg cttagatgct tttcacatgg atcctaaatc cgtgaaggat 850 ttatcacago atacggtott agaaatcatt tgcacagaag agtactcaac 900 agggtataca acaaatagca aaataatcca ctttgaaatc aaagacaggt 950 tcgcgctttt tgctggacct cgcctacgca atatggcttc cctctacgga 1000 cagctggata caaccaagaa actcagagat ttctttacag tcacagacct 1050 gaggataagg ctgttaagac cagccgttgg ggaaatattt gtagatgagc 1100 tacacttggc acgctacttt tacgcgatct cagacataaa ggtgcgagga 1150 aggtgcaagt gtaatctcca tgccactgta tgtgtgtatg acaacagcaa 1200 attgacatgc gaatgtgagc acaacactac aggtccagac tgtgggaaat 1250 gcaagaagaa ttatcagggc cgaccttgga gtccaggctc ctatctcccc 1300 atccccaaag gcactgcaaa tacctgtatc cccagtattt ccagtattqq 1350 tacgaatgtc tgcgacaacg agctcctgca ctgccagaac ggagggacgt 1400 gccacaacaa cgtgcgctgc ctgtgcccgg ccgcatacac gggcatcctc 1450 tgcgagaagc tgcggtgcga ggaggctggc agctgcggct ccgactctgg 1500 ccagggcgcg cccccgcacg gcaccccagc gctgctgctg ctgaccacgc 1550 tgctgggaac cgccagcccc ctggtgttct aggtgtcacc tccagccaca 1600 ccggacgggc ctgtgccgtg gggaagcaga cacaacccaa acatttgcta 1650 ctaacatagg aaacacaca atacagacac ccccactcag acagtgtaca 1700 aactaagaag gcctaactga actaagccat atttatcacc cgtggacagc 1750 acatccgagt caagactgtt aatttctgac tccagaggag ttggcagctg 1800 ttgatattat cactgcaaat cacattgcca gctgcagagc atattgtgga 1850 atcaaccgac ctaaaaacat tggctactct agcgtggtgc gccctagtac 1950 gactccgccc agtgtgtgga ccaaccaaat agcattcttt gctgtcaggt 2000 gcattgtggg cataaggaaa tctgttacaa gctgccatat tggcctgctt 2050

ccgtccctga atcccttcca acctgtgctt tagtgaacgt tgctctgtaa 2100 ccctcgttgg ttgaaagatt tctttgtctg atgttagtga tgcacatgtg 2150 taacagcccc ctctaaaagc gcaagccagt catacccctg tatatcttag 2200 cagcactgag tocagtgcga gcacacacc actatacaag agtggctata 2250 ggaaaaaaga aagtgtatct atccttttgt attcaaatga agttattttt 2300 cttgaactac tgtaatatgt agattttttg tattattgcc aatttgtgtt 2350 accagacaat ctgttaatgt atctaattcg aatcagcaaa gactgacatt 2400 ttattttgtc ctctttcgtt ctgttttgtt tcactgtgca gagatttctc 2450 tgtaagggca acgaacgtgc tggcatcaaa gaatatcagt ttacatatat 2500 aacaagtgta ataagattcc accaaaggac attctaaatg ttttcttgtt 2550 gctttaacac tggaagattt aaagaataaa aactcctgca taaacgattt 2600 caggaatttg tattgcaatt tcttaagatg aaaggaacag ccaccaagca 2650 gtttcacact cactttactg atttctgtgt ggactgagta cattcagctg 2700 acgaatttag ttcccaggaa gatggattga tgttcactag cttggacaac 2750 ttctgcaaaa tatgagacta tttccacttg ggaaaaatta caacagcaaa 2800 aaaaaaaaa aaaaaaaaa 2819

<210> 129 <211> 438

<212> PRT

<213> Homo sapiens

<400> 129

Met Tyr Leu Ser Arg Ser Leu Ser Ile His Ala Leu Trp Val Thr 1 5 10 15

Val Ser Ser Val Met Gln Pro Tyr Pro Leu Val Trp Gly His Tyr
20 25 30

Asp Leu Cys Lys Thr Gln Ile Tyr Thr Glu Glu Gly Lys Val Trp 35 40 45

Asp Tyr Met Ala Cys Gln Pro Glu Ser Thr Asp Met Thr Lys Tyr 50 55 60

Leu Lys Val Lys Leu Asp Pro Pro Asp Ile Thr Cys Gly Asp Pro 75

Pro Glu Thr Phe Cys Ala Met Gly Asn Pro Tyr Met Cys Asn Asn 80 85 90

Glu Cys Asp Ala Ser Thr Pro Glu Leu Ala His Pro Pro Glu Leu 95 100 105

Met Phe Asp Phe Glu Gly Arg His Pro Ser Thr Phe Trp Gln Ser 110 115 120

Ala Thr Trp Lys Glu Tyr Pro Lys Pro Leu Gln Val Asn Ile Thr

				125					130					135
Leu	Ser	Trp	Ser	Lys 140		Ile	Glu	Leu	Thr 145	Asp	Asn	Ile	Val	Ile 150
Thr	Phe	Glu	Ser	Gly 155		Pro	Asp	Gln	Met 160	Ile	Leu	Glu	Lys	Ser 165
Leu	Asp	Tyr	Gly	Arg 170	Thr	Trp	Gln	Pro	Туг 175	Gln	Tyr	Tyr	Ala	Thr 180
Asp	Cys	Leu	Asp	Ala 185	Phe	His	Met	Asp	Pro 190	Lys	Ser	Val	Lys	Asp 195
Leu	Ser	Gln	His	Thr 200	Val	Leu	Glu	Ile	Ile 205	Cys	Thr	Glu	Glu	Tyr 210
Ser	Thr	Gly	Tyr	Thr 215	Thr	Asn	Ser	Lys	Ile 220	Ile	His	Phe	Glu	Ile 225
Lys	Asp	Arg	Phe	Ala 230	Leu	Phe	Ala	Gly	Pro 235	Arg	Leu	Arg	Asn	Met 240
Ala	Ser	Leu	Tyr	Gly 245	Gln	Leu	Asp	Thr	Thr 250	Lys	Lys	Leu	Arg	Asp 255
Phe	Phe	Thr	Val	Thr 260	Asp	Leu	Arg	Ile	Arg 265	Leu	Leu	Arg	Pro	Ala 270
Val	Gly	Glu	Ile	Phe 275	Val	Asp	Glu	Leu	His 280	Leu	Ala	Arg	Tyr	Phe 285
Tyr	Ala	Ile	Ser	Asp 290	Ile	Lys	Val	Arg	Gly 295	Arg	Cys	Lys	Cys	Asn 300
Leu	His	Ala	Thr	Val 305	Cys	Val	Tyr	Asp	Asn 310	Ser	Lys	Leu	Thr	Cys 315
Glu	Cys	Glu	His	Asn 320	Thr	Thr	Gly	Pro	Asp 325	Суз	Gly	Lys	Cys	Lys 330
Lys	Asn	Tyr	Gln	Gly 335	Arg	Pro	Trp	Ser	Pro 340	Gly	Ser	Tyr	Leu	Pro 345
Ile	Pro	Lys	Gly	Thr 350	Ala	Asn	Thr	Cys	Ile 355	Pro	Ser	Ile	Ser	Ser 360
Ile	Gly	Thr	Asn	Val 365	Cys.	Asp	Asn	Glu	Leu 370	Leu	His	Cys	Gln	Asn 375
Gly	Gly	Thr	Cys	His 380	Asn	Asn	Val	Arg	Cys 385	Leu	Суз	Pro	Ala	Ala 390
Tyr	Thr	Gly	Ile	Leu 395	Cys	Glu	Lys	Leu	Arg 400	Cys	Glu	Glu	Ala	Gly 405
Ser	Cys	Gly	Ser	Asp 410	Ser	Gly	Gln	Gly	Ala 415	Pro	Pro	His	Gly	Thr 420
Pro	Ala	Leu	Leu	Leu 425	Leu	Thr	Thr	Leu	Leu 430	Gly	Thr	Ala	Ser	Pro 435
Leu	Val	Phe												

```
<210> 130
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 130
 tcgattatgg acgaacatgg cagc 24
<210> 131
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 131
 ttctgagatc cctcatcctc 20
<210> 132
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 132
 aggttcaggg acagcaagtt tggg 24
<210> 133
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 133
tttgctggac ctcggctacg gaattggctt ccctctacgg acagctggat 50
<210> 134
<211> 1493
<212> DNA
<213> Homo sapiens
<400> 134
cccacgcgtc cgggtgacct gggccgagcc ctcccggtcg gctaagattg 50
ctgaggaggc ggcgggtagc tggcaggcgc cgacttccga aggccgccgt 100
ccgggcgagg tgtcctcatg acttctcttg tggaccatgt ccgtgatctt 150
ttttgcctgc gtggtacggg taagggatgg actgccctc tcagcctcta 200
ctgattttta ccacacccaa gatttttgg aatggaggag acggctcaag 250
agtttagcct tgcgactggc ccagtatcca ggtcgaggtt ctgcagaagg 300
```

ttgtgacttt agtatacatt tttcttcttt cggggacgtg gcctgcatgg 350 ctatctgctc ctgccagtgt ccagcagcca tggccttctg cttcctggag 400 accetgtggt gggaattcac agetteetat gacactacet geattggeet 450 agcctccagg ccatacgctt ttcttgagtt tgacagcatc attcagaaag 500 tgaagtggca ttttaactat gtaagttcct ctcagatgga gtgcagcttg 550 gaaaaaattc aggaggagct caagttgcag cctccagcgg ttctcactct 600 ggaggacaca gatgtggcaa atggggtgat gaatggtcac acaccgatgc 650 acttggagee tgeteetaat tteegaatgg aaccagtgae ageeetgggt 700 atcctctccc tcattctcaa catcatgtgt gctgccctga atctcattcg 750 aggagttcac cttgcagaac attctttaca ggatccaagg agctggttct 800 gctggttgga ccaaacctcg tgagccagcc acccctgacc caaatgagga 850 gagetetgat teteceatee gggageagtg atgteaaact tetgetgetg 900 gggaaatctc atcagcaggg agcctgtgga aaagggcatg tcagtgaaat 950 ctgggaatgg ctggattcgg aaacatctgc ccatgtgtat tgatggcaga 1000 gctgttgccc acaagcgcct tttatttagg gtaaaattaa caaatccatt 1050 ctattcctct gacccatgct tagtacatat gacctttaac ccttacattt 1100 atatgattct ggggttgctt cagaagtgtt atttcatgaa tcattcatat 1150 gatttgatcc cccaggattc tattttgttt aatgggcttt tctactaaaa 1200 gcataaaata ctgaggctga tttagtcagg gcaaaaccat ttactttaca 1250 tattcgtttt caatacttgc tgttcatgtt acacaagctt cttacggttt 1300 tcttgtaaca ataaatattt tgagtaaata atgggtacat tttaacaaac 1350 tcagtagtac aacctaaact tgtataaaag tgtgtaaaaa tgtatagcca 1400 tttatatcct atgtataaat taaatgaggt ggcttcagaa atggcagaat 1450 aaatctaaag tgtttattaa aaaaaaaaaa aaaaaaaaa aag 1493

<210> 135

<211> 228

<212> PRT

<213> Homo sapiens

<400> 135

Met Ser Val Ile Phe Phe Ala Cys Val Val Arg Val Arg Asp Gly
1 5 10 15

Leu Pro Leu Ser Ala Ser Thr Asp Phe Tyr His Thr Gln Asp Phe
20 25 30

Leu Glu Trp Arg Arg Leu Lys Ser Leu Ala Leu Arg Leu Ala 35 40 45

Gln Tyr Pro Gly Arg Gly Ser Ala Glu Gly Cys Asp Phe Ser Ile His Phe Ser Ser Phe Gly Asp Val Ala Cys Met Ala Ile Cys Ser Cys Gln Cys Pro Ala Ala Met Ala Phe Cys Phe Leu Glu Thr Leu Trp Trp Glu Phe Thr Ala Ser Tyr Asp Thr Thr Cys Ile Gly Leu 105 100 Ala Ser Arg Pro Tyr Ala Phe Leu Glu Phe Asp Ser Ile Ile Gln 115 Lys Val Lys Trp His Phe Asn Tyr Val Ser Ser Ser Gln Met Glu 130 135 125 Cys Ser Leu Glu Lys Ile Gln Glu Glu Leu Lys Leu Gln Pro Pro 140 145 Ala Val Leu Thr Leu Glu Asp Thr Asp Val Ala Asn Gly Val Met 155 1.60 1.65 Asn Gly His Thr Pro Met His Leu Glu Pro Ala Pro Asn Phe Arg 170 Met Glu Pro Val Thr Ala Leu Gly Ile Leu Ser Leu Ile Leu Asn 185 Ile Met Cys Ala Ala Leu Asn Leu Ile Arg Gly Val His Leu Ala 205 Glu His Ser Leu Gln Asp Pro Arg Ser Trp Phe Cys Trp Leu Asp 220

Gln Thr Ser

<210> 136

<211> 239

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 39, 61, 143, 209

<223> unknown base

<400> 136

tgetteetgg agaceetgtg gtgggaatte acagettent atgacactae 50 etgeattgge ntageetcea ggeeataege ttttettgag tttgacagea 100 teatteagaa agtgaagtgg cattttaaet atgtaagtte etnteagatg 150 gagtgeaget tggaaaaaat teaggaggag eteaagttge ageeteeage 200 ggtteteant atggaggaca cagatgtgge aaatggggt 239

<210> 137

<211> 2300

<212> DNA

<213> Homo sapiens

<400> 137 ctcagcggcg cttcctcgta gcgagcctag tggcgggtgt ttgcattgaa 50 acgtgagcgc gacccgacct taaagagtgg ggagcaaagg gaggacagag 100 ccctttaaaa cgaggcgggt ggtgcctgcc cctttaaggg cggggcqtcc 150 ggacgactgt atctgagccc cagactgccc cgagtttctg tcgcaggctg 200 cgaggaaagg cccctaggct gggtctgggt gcttggcggc ggcggcttcc 250 teccegeteg tectecegg geecagagge accteggett caqteatget 300 gagcagagta tggaagcacc tgactacgaa gtgctatccg tgcgagaaca 350 gctattccac gagaggatcc gcgagtgtat tatatcaaca cttctgtttg 400 caacactgta catcctctgc cacatcttcc tgacccgctt caagaagcct 450 gctgagttca ccacagtgga tgatgaagat gccaccgtca acaagattgc 500 gctcgagctg tgcaccttta ccctggcaat tgccctqggt gctqtcctqc 550 tectgeeett etecateate ageaatgagg tgetgetete eetgeetegg 600 aactactaca tocagtggct caacggctcc ctcatccatg gcctctggaa 650 ccttgttttt ctcttcccca acctgtccct catcttcctc atgccctttg 700 catatttett cactgagtet gagggetttg etggetecag aaagggtgte 750 ctgggccggg tctatgagac agtggtgatg ttgatgctcc tcactctgct 800 ggtgctaggt atggtgtggg tggcatcagc cattgtggac aagaacaagg 850 ccaacagaga gtcactctat gacttttggg agtactatct cccctacctc 900 tactcatgca tetecttect tggggttetg etgeteetgg tgtgtactee 950 actgggtctc gcccgcatgt tctccgtcac tgggaagctg ctaqtcaagc 1000 cccggctgct ggaagacctg gaggagcagc tgtactgctc agcctttgag 1050 gaggcagccc tgacccgcag gatctgtaat cctacttcct gctqqctqcc 1100 tttagacatg gagctgctac acagacaggt cctggctctg cagacacaga 1150 gggtcctgct ggagaagagg cggaaggctt cagcctggca acgqaacctq 1200 ggctaccccc tggctatgct gtgcttgctg gtgctgacgg gcctgtctgt 1250 gctcattgtg gccatccaca tcctggagct gctcatcgat gaggctgcca 1300 tgccccgagg catgcagggt acctccttag gccaggtctc cttctccaag 1350 ctgggctcct ttggtgccgt cattcaggtt gtactcatct tttacctaat 1400 ggtgtcctca gttgtgggct tctatagctc tccactcttc cggagcctgc 1450 ggcccagatg gcacgacact gccatgacgc agataattgg gaactgtgtc 1500

tgtctcctgg tcctaagctc agcacttcct gtcttctctc gaaccctggg 1550 gctcactcgc tttgacctgc tgggtgactt tggacgcttc aactggctgg 1600 gcaatttcta cattgtgttc ctctacaacg cagcctttgc aggcctcacc 1650 acactctgtc tggtgaagac cttcactgca gctqtgcggg caqagctgat 1700 ccgggccttt gggctggaca gactgccgct gcccgtctcc ggtttccccc 1750 aggcatctag gaagacccag caccagtgac ctccagctgg gggtgggaag 1800 gaaaaaactg gacactgcca tctgctgcct aggcctggag ggaagcccaa 1850 ggctacttgg acctcaggac ctggaatctg agagggtggg tggcagaggg 1900 gagcagagcc atctgcacta ttgcataatc tgagccagag tttgggacca 1950 ggacctcctg cttttccata cttaactgtg gcctcagcat ggggtagggc 2000 tgggtgactg ggtctagccc ctgatcccaa atctgtttac acatcaatct 2050 gcctcactgc tgttctgggc catccccata gccatgttta catgatttga 2100 tgtgcaatag ggtggggtag gggcagggaa aggactgggc cagggcaggc 2150 tegggagata gattgtetee ettgeetetg geeeageaga geetaageae 2200 tgtgctatcc tggaggggct ttggaccacc tgaaagacca aqqqqataqq 2250 gaggaggagg cttcagccat cagcaataaa gttgatccca gggaaaaaaa 2300

<210> 138

<211> 489

<212> PRT

<213> Homo sapiens

<400> 138

Met Glu Ala Pro Asp Tyr Glu Val Leu Ser Val Arg Glu Gln Leu 1 5 10 15

Phe His Glu Arg Ile Arg Glu Cys Ile Ile Ser Thr Leu Leu Phe 20 25 30

Ala Thr Leu Tyr Ile Leu Cys His Ile Phe Leu Thr Arg Phe Lys
35 40 45

Lys Pro Ala Glu Phe Thr Thr Val Asp Asp Glu Asp Ala Thr Val 50 55 60

Asn Lys Ile Ala Leu Glu Leu Cys Thr Phe Thr Leu Ala Ile Ala 65 70 75

Leu Gly Ala Val Leu Leu Pro Phe Ser Ile Ile Ser Asn Glu 80 85 90

Val Leu Leu Ser Leu Pro Arg Asn Tyr Tyr Ile Gln Trp Leu Asn 95 100 105

Gly Ser Leu Ile His Gly Leu Trp Asn Leu Val Phe Leu Phe Pro 110 115 120

Asn Leu Ser Leu Ile Phe Leu Met Pro Phe Ala Tyr Phe Phe Thr

				125					130					135
Glu	Ser	Glu	Gly	Phe 140	Ala	Gly	Ser	Arg	Lys 145	Gly	Val	Leu	Gly	Arg 150
Val	Tyr	Glu	Thr	Val 155	Val	Met	Leu	Met	Leu 160	Leu	Thr	Leu	Leu	Val 165
Leu	Gly	Met	Val	Trp 170	Val	Ala	Ser	Ala	Ile 175	Val	Asp	Lys	Asn	Lys 180
Ala	Asn	Arg	Glu	Ser 185	Leu	Tyr	Asp	Phe	Trp 190	Glu	Tyr	Tyr	Leu	Pro 195
Tyr	Leu	Tyr	Ser	Cys 200	Ile	Ser	Phe	Leu	Gly 205	Val	Leu	Leu	Leu	Leu 210
Val	Cys	Thr	Pro	Leu 215	Gly	Leu	Ala	Arg	Met 220	Phe	Ser	Val	Thr	Gly 225
Lys	Leu	Leu	Val	Lys 230	Pro	Arg	Leu	Leu	Glu 235	Asp	Leu	Glu	Glu	Gln 240
Leu	Tyr	Cys	Ser	Ala 245	Phe	Glu	Glu	Ala	Ala 250	Leu	Thr	Arg	Arg	Ile 255
Cys	Asn	Pro	Thr	Ser 260	Cys	Trp	Leu	Pro	Leu 265	Asp	Met	Glu	Leu	Leu 270
His	Arg	Gln	Val	Leu 275	Ala	Leu	Gln	Thr	Gln 280	Arg	Val	Leu	Leu	Glu 285
Lys	Arg	Arg	Lys	Ala 290	Ser	Ala	Trp	Gln	Arg 295	Asn	Leu	Gly	Tyr	Pro 300
Leu	Ala	Met	Leu	Cys 305	Leu	Leu	Val	Leu	Thr 310	Gly	Leu	Ser	Val	Leu 315
Ile	Val	Ala	Ile	His 320	Ile	Leu	Glu	Leu	Leu 325	Ile	Asp	Glu	Ala	Ala 330
Met	Pro	Arg	Gly	Met 335	Gln	Gly	Thr	Ser	Leu 340	Gly	Gln	Val	Ser	Phe 345
Ser	Lys	Leu	Gly	Ser 350	Phe	Gly	Ala	Val	Ile 355	Gln	Val	Val	Leu	Ile 360
Phe	Tyr	Leu	Met	Val 365	Ser	Ser	Val	Val	Gly 370	Phe	Tyr	Ser	Ser	Pro 375
Leu	Phe	Arg	Ser	Leu 380	Arg	Pro	Arg	Trp	His 385	Asp	Thr	Ala	Met	Thr 390
Gln	Ile	Ile	Gly	Asn 395	Cys	Val	Cys	Leu	Leu 400	Val	Leu	Ser	Ser	Ala 405
Leu	Pro	Val	Phe	Ser 410	Arg	Thr	Leu	Gly	Leu 415	Thr	Arg	Phe	Asp	Leu 420
Leu	Gly	Asp	Phe	Gly 425	Arg	Phe	Asn	Trp	Leu 430	Gly	Asn	Phe	Tyr	Ile 435
Val	Phe	Leu	Tyr	Asn	Ala	Ala	Phe	Ala	Gly	Leu	Thr	Thr	Leu	Cys

440 445 450

Leu Val Lys Thr Phe Thr Ala Ala Val Arg Ala Glu Leu Ile Arg 455 460 465

Ala Phe Gly Leu Asp Arg Leu Pro Leu Pro Val Ser Gly Phe Pro 470 475 480

Gln Ala Ser Arg Lys Thr Gln His Gln 485

<210> 139

<211> 294

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 53, 57

<223> unknown base

<400> 139

ggctgccgag ggaaggcccc ttgggttggt cttggttgct tggcggcggc 50

ggnttentee eegetegtee teecegggee cagaggeace teggetteag 100

tcatgctgag cagagtatgg aagcacctga ctacgaagtg ctatccgtgc 150

gagaacagct attccacgag aggatccgcg agtgtattat atcaacactt 200

ctgtttgcaa cactgtacat cctctgccac atcttcctga cccgcttcaa 250

gaagcctgct gagttcacca cagtggatga tgaagatgcc accg 294

<210> 140

<211> 526

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 197, 349

<223> unknown base

<400> 140

gaccgacctt aaagagtgg agcaaaggga ggacagagcc ttttaaaacg 50 aggcggtggt gcctgcctt taagggcggg gcgtccggac gactgtatct 100 gagccccaga ctgccccgag tttctgtcgc aggctgcgag gaaaggcccc 150 taggctgggt ctggtcttg gcggcgggg cttcctcccc gttgtcntcc 200 ccgggcccag aggcacctcg gcttcagtca tgctgagcag agtatggaag 250 cacctgacta cgaagtgcta tccgtgcgag aacagctatt ccacgagagg 300 atccgcgagt gtattatatc aacacttctg tttgcaacac tgtacatcnt 350 ctgccacatc ttcctgaccc gcttcaagaa gcctgctgag ttcaccacag 400

tggatgatga agatgccacc gtcaacaaga ttgcqctcqa gctgtqcacc 450

```
tttaccctgg caattgccct gggtgctgtc ctgctcctgc ccttctccat 500
 catcagcaat gaggtgctgc actccc 526
<210> 141
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 141
 gactgtatct gagccccaga ctgc 24
<210> 142
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 142
tcagcaatga ggtgctgctc 20
<210> 143
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 143
tgaggaagat gagggacagg ttgg 24
<210> 144
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 144
 tatggaagca cctgactacg aagtgctatc cgtgcgagaa caqctattcc 50
<210> 145
<211> 685
<212> DNA
<213> Homo sapiens
<400> 145
 gatgtgctcc ttggagctgg tgtgcagtgt cctgactgta agatcaagtc 50
 caaacctgtt ttggaattga ggaaacttct cttttgatct cagcccttgg 100
 tggtccaggt cttcatgctg ctgtgggtga tattactggt cctggctcct 150
 gtcagtggac agtttgcaag gacacccagg cccattattt tcctccagcc 200
 tecatggace acagtettee aaggagagag agtgaceete acttgeaagg 250
```

gatttegett etacteacea cagaaaacaa aatggtacea teggtacett 300 gggaaagaaa tactaagaga aaccecagae aatateettg aggtteagga 350 atetggagag tacagatgee aggeeeaggg eteceetete agtageeetg 400 tgcaettgga ttttettea gagatgggat tteeteatge tgeeeagget 450 aatgttgaae teetgggete aagtgatetg eteaeetagg eeteteaaag 500 egetgggatt acagettege tgateetgea ageteeaett tetgtgtttg 550 aaggagaete tgtggttetg aggtgeeggg caaaggegga agtaacaetg 600 aataataeta tttacaagaa tgataatgte etggeattee ttaataaaag 650 aactgaette caaaaaaaaa aaaaaaaaa aaaaa 685

<210> 146

<211> 124 <212> PRT

<213> Homo sapiens

<400> 146

Met Leu Leu Trp Val Ile Leu Leu Val Leu Ala Pro Val Ser Gly
1 5 10 15

Gln Phe Ala Arg Thr Pro Arg Pro Ile Ile Phe Leu Gln Pro Pro 20 25 30

Trp Thr Thr Val Phe Gln Gly Glu Arg Val Thr Leu Thr Cys Lys 35 40 45

Gly Phe Arg Phe Tyr Ser Pro Gln Lys Thr Lys Trp Tyr His Arg 50 55 55

Tyr Leu Gly Lys Glu Ile Leu Arg Glu Thr Pro Asp Asn Ile Leu 65 70 75

Glu Val Gln Glu Ser Gly Glu Tyr Arg Cys Gln Ala Gln Gly Ser

Pro Leu Ser Ser Pro Val His Leu Asp Phe Ser Ser Glu Met Gly
95 100 105

Phe Pro His Ala Ala Gln Ala Asn Val Glu Leu Leu Gly Ser Ser 110 115 120

Asp Leu Leu Thr

<210> 147

<211> 1621

<212> DNA

<213> Homo sapiens

<400> 147

cagaagaggg ggctagctag ctgtctctgc ggaccaggga gaccccgcg 50 cccccccggt gtgaggcggc ctcacagggc cgggtgggct ggcgagccga 100 cgcggcggcg gaggaggctg tgaggagtgt gtggaacagg acccgggaca 150 gaggaaccat ggctccgcag aacctgagca ccttttgcct gttgctgcta 200 tacctcatcg gggcggtgat tgccggacga gatttctata agatcttggg 250 ggtgcctcga agtgcctcta taaaggatat taaaaaggcc tataggaaac 300 tagecetgea getteateee gaceggaace etgatgatee acaageecag 350 qaqaaattcc aggatctqqq tqctqcttat qaqqttctqt caqataqtqa 400 gaaacggaaa cagtacgata cttatggtga agaaggatta aaagatggtc 450 atcagagete ceatggagae attttteae acttetttgg ggattttggt 500 ttcatgtttg gaggaacccc tcgtcagcaa gacagaaata ttccaagagg 550 aagtgatatt attgtagatc tagaagtcac tttggaagaa gtatatgcag 600 gaaattttgt ggaagtagtt agaaacaaac ctqtqqcaaq qcaqqctcct 650 ggcaaacgga agtgcaattg tcggcaagag atgcggacca cccaqctggg 700 ccctgggcgc ttccaaatga cccagqaggt ggtctgcgac gaatgcccta 750 atgtcaaact agtgaatgaa gaacgaacgc tggaagtaga aatagagcct 800 ggggtgagag acggcatgga gtaccccttt attggagaag gtgagcctca 850 cqtqqatqqq qaqcctqqaq atttacqqtt ccqaatcaaa qttqtcaaqc 900 acccaatatt tgaaaggaga ggagatgatt tgtacacaaa tgtgacaatc 950 tcattagttq agtcactqqt tqqctttqaq atqqatatta ctcacttqqa 1000 tggtcacaag gtacatattt cccgggataa gatcaccagg ccaggagcga 1050 agctatggaa gaaaggggaa gggctcccca actttgacaa caacaatatc 1100 aagggctctt tgataatcac ttttgatgtg gattttccaa aagaacagtt 1150 aacagaggaa gcgagagaag gtatcaaaca gctactgaaa caagggtcag 1200 tgcagaaggt atacaatgga ctgcaaggat attgagagtg aataaaattg 1250 gactttgttt aaaataagtg aataagcgat atttattatc tgcaaggttt 1300 ttttgtgtgt gtttttgttt ttattttcaa tatgcaagtt aggcttaatt 1350 tttttatcta atgatcatca tgaaatgaat aagagggctt aagaatttgt 1400 ccatttgcat tcggaaaaga atgaccagca aaaggtttac taatacctct 1450 ccctttgggg atttaatgtc tggtgctgcc gcctgagttt caagaattaa 1500 agctgcaaga ggactccagg agcaaaagaa acacaatata gagggttgga 1550 gttgttagca atttcattca aaatgccaac tggagaagtc tgtttttaaa 1600 tacattttgt tgttattttt a 1621

<210> 148

<211> 358

<212> PRT

<213> Homo sapiens

			_											
)> 14 : Alá		Glr	n Asn 5	Leu S	ı Ser	Thr	Phe	Cys 10	Leu	Leu	Leu	ı Leı	Tyr 15
Leu	ı Ile	e Gly	Ala	20 Val	Ile	Ala	Gly	' Arg	Asp 25	Phe	Tyr	Lys	Il€	Leu 30
Gly	v Val	. Pro	Arç	Ser 35	Ala	Ser	Ile	Lys	Asp 40	Ile	Lys	Lys	Ala	Tyr 45
Arg	Lys	: Leu	Ala	Leu 50	Gln	Leu	His	Pro	Asp 55	Arg	Asn	Pro	Asp	Asp 60
Pro	Gln	Ala	Gln	Glu 65	Lys	Phe	Gln	Asp	Leu 70	Gly	Ala	Ala	Tyr	Glu 75
Val	Leu	Ser	Asp	Ser 80	Glu	Lys	Arg	Lys	Gln 85	Tyr	Asp	Thr	Tyr	Gly 90
Glu	Glu	Gly	Leu	Lys 95	Asp	Gly	His	Gln	Ser 100	Ser	His	Gly	Asp	Ile 105
Phe	Ser	His	Phe	Phe 110	Gly	Asp	Phe	Gly	Phe 115	Met	Phe	Gly	Gly	Thr 120
Pro	Arg	Gln	Gln	Asp 125	Arg	Asn	Ile	Pro	Arg 130	Gly	Ser	Asp	Ile	Ile 135
Val	Asp	Leu	Glu	Val 140	Thr	Leu	Glu	Glu	Val 145	Tyr	Ala	Gly	Asn	Phe 150
Val	Glu	Val	Val	Arg 155	Asn	Lys	Pro	Val	Ala 160	Arg	Gln	Ala	Pro	Gly 165
Lys	Arg	Lys	Cys	Asn 170	Cys	Arg	Gln	Glu	Met 175	Arg	Thr	Thr	Gln	Leu 180
Gly	Pro	Gly	Arg	Phe 185	Gln	Met	Thr	Gln	Glu 190	Val	Val	Cys	Asp	Glu 195
Cys	Pro	Asn	Val	Lys 200	Leu	Val	Asn	Glu	Glu 205	Arg	Thr	Leu	Glu	Val 210
Glu	Ile	Glu	Pro	Gly 215	Val	Arg	Asp	Gly	Met 220	Glu	Tyr	Pro	Phe	Ile 225
Gly	Glu	Gly	Glu	Pro 230	His	Val	Asp	Gly	Glu 235	Pro	Gly	Asp	Leu	Arg 240
Phe	Arg	Ile	Lys	Val 245	Val	Lys	His	Pro	Ile 250	Phe	Glu	Arg	Arg	Gly 255
Asp	Asp	Leu	Tyr	Thr 260	Asn	Val	Thr	Ile	Ser 265	Leu	Val	Glu	Ser	Leu 270
Val	Gly	Phe	Glu	Met 275	Asp	Ile	Thr		Leu . 280	Asp	Gly	His	Lys	Val 285
His	Ile	Ser	Arg	Asp 290	Lys	Ile	Thr		Pro 295	Gly	Ala	Lys	Leu	Trp 300

```
Lys Lys Gly Glu Gly Leu Pro Asn Phe Asp Asn Asn Ile Lys
                  305
                                      310
 Gly Ser Leu Ile Ile Thr Phe Asp Val Asp Phe Pro Lys Glu Gln
                  320
                                      325
 Leu Thr Glu Glu Ala Arg Glu Gly Ile Lys Gln Leu Leu Lys Gln
                  335
 Gly Ser Val Gln Lys Val Tyr Asn Gly Leu Gln Gly Tyr
<210> 149
<211> 509
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 34, 52, 134, 142, 155, 158, 196, 217, 228, 272, 347, 410, 445,
      482
<223> unknown base
<400> 149
 tgggaccagg gaaccccggg cccccggtg gagngcctaa caggccggtg 50
 gntgcgaccg aagcggcggg cggaggaggt tttgaggatt tttgggaacag 100
 gacccggaca gaggaaccat ggttccgcag aacntgagca cnttttgcct 150
 gttgntgnta tacttcatcg gggcggtgat tgccggacga gatttntata 200
 agattttggg gtgcctngaa gtgccttnta taaaggatat taaaaaggcc 250
 tataggaaac tagccctgca gntttatccc gaccggaacc ctgatgatcc 300
 acaageceag gagaaattee aggatttggg tgetgettat gaggttntgt 350
 cagatagtga gaaacggaaa cagtacgata attatggtga agaaggatta 400
 aaagatggtn atcagagctc ccatggagac atttttcac acttntttgg 450
 ggattttggt ttcatgtttg gaggaacccc tngtcagcaa gacagaaata 500
 ttccaagag 509
<210> 150
<211> 1532
<212> DNA
<213> Homo sapiens
<400> 150
 ggcacgaggc ggcggggcag tcgcgggatg cgcccgggag ccacagcctg 50
 aggccctcag gtctctgcag gtgtcgtgga ggaacctagc acctgccatc 100
ctcttcccca atttgccact tccagcagct ttagcccatg aggaggatgt 150
 gaccgggact gagtcaggag ccctctggaa gcatggagac tgtggtgatt 200
gttgccatag gtgtgctggc caccatcttt ctggcttcgt ttgcagcctt 250
ggtgctggtt tgcaggcagc gctactgccg gccgcgagac ctgctgcagc 300
```

gctatgattc taagcccatt gtggacctca ttggtgccat ggagacccag 350 tctgagccct ctgagttaga actggacgat gtcgttatca ccaaccccca 400 cattgaggcc attctggaga atgaagactg gatcgaagat gcctcgggtc 450 tcatgtccca ctgcattgcc atcttgaaga tttgtcacac tctgacagag 500 aagcttgttg ccatgacaat gggctctggg gccaagatga agacttcagc 550 cagtgtcagc gacatcattg tggtggccaa gcggatcagc cccagggtgg 600 atgatgttgt gaagtcgatg taccctccgt tggaccccaa actcctggac 650 gcacggacga ctgccctgct cctgtctgtc agtcacctgg tgctggtgac 700 aaggaatgcc tgccatctga cgggaggcct ggactggatt gaccagtctc 750 tgtcggctgc tgaggagcat ttggaagtcc ttcgagaagc agccctagct 800 tetgagecag ataaaggeet eccaggeet gaaggettee tgeaggagea 850 gtctgcaatt tagtgcctac aggccagcag ctagccatga aggcccctgc 900 cgccatccct ggatggctca gcttagcctt ctactttttc ctatagagtt 950 agttgttctc cacggctgga gagttcagct gtgtgtgcat agtaaagcag 1000 gagateceeg teagtttatg cetettttge agttgeaaac tgtggetggt 1050 gagtggcagt ctaatactac agttagggga gatgccattc actctctgca 1100 agaggagtat tgaaaactgg tggactgtca gctttattta gctcacctag 1150 tgttttcaag aaaattgagc caccgtctaa gaaatcaaga ggtttcacat 1200 taaaattaga atttctggcc tctctcgatc ggtcagaatg tgtggcaatt 1250 ctgatctgca ttttcagaag aggacaatca attgaaacta agtaggggtt 1300 tcttcttttg gcaagacttg tactctctca cctggcctgt ttcatttatt 1350 tgtattatet gcctggtccc tgaggcgtct gggtctctcc tctcccttgc 1400 aggtttgggt ttgaagctga ggaactacaa agttgatgat ttctttttta 1450 tctttatgcc tgcaatttta cctagctacc actaggtgga tagtaaattt 1500 atacttatgt ttccctcaaa aaaaaaaaaa aa 1532

<210> 151

<211> 226

<212> PRT

<213> Homo sapiens

<400> 151

Met Glu Thr Val Val Ile Val Ala Ile Gly Val Leu Ala Thr Ile 1 5 10 15

Phe Leu Ala Ser Phe Ala Ala Leu Val Leu Val Cys Arg Gln Arg 20 25 30

Tyr Cys Arg Pro Arg Asp Leu Leu Gln Arg Tyr Asp Ser Lys Pro

35 40 45 Ile Val Asp Leu Ile Gly Ala Met Glu Thr Gln Ser Glu Pro Ser Glu Leu Glu Leu Asp Asp Val Val Ile Thr Asn Pro His Ile Glu Ala Ile Leu Glu Asn Glu Asp Trp Ile Glu Asp Ala Ser Gly Leu 85 Met Ser His Cys Ile Ala Ile Leu Lys Ile Cys His Thr Leu Thr 105 Glu Lys Leu Val Ala Met Thr Met Gly Ser Gly Ala Lys Met Lys 110 Thr Ser Ala Ser Val Ser Asp Ile Ile Val Val Ala Lys Arg Ile 125 135 Ser Pro Arg Val Asp Asp Val Val Lys Ser Met Tyr Pro Pro Leu 140 145 150 Asp Pro Lys Leu Leu Asp Ala Arg Thr Thr Ala Leu Leu Leu Ser Val Ser His Leu Val Leu Val Thr Arg Asn Ala Cys His Leu Thr 170 175 180 Gly Gly Leu Asp Trp Ile Asp Gln Ser Leu Ser Ala Ala Glu Glu 185 190 195 His Leu Glu Val Leu Arg Glu Ala Ala Leu Ala Ser Glu Pro Asp 200 Lys Gly Leu Pro Gly Pro Glu Gly Phe Leu Gln Glu Gln Ser Ala 215 220

Ile

<210> 152

<211> 1027

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 1017, 1020

<223> unknown base

<400> 152

getteattte teecgaetea getteecaee etgggette egaggtget 50
teggeegetgt eeceaeeae geageeatga teteettaae ggaeaegeag 100
aaaattggaa tgggattaae aggatttgga gtgttttee tgttetttgg 150
aatgattete tttttgaea aageaetaet ggetattgga aatgtttat 200
ttgtageegg ettggettt gtaattggt tagaaagaae atteagatte 250
ttetteeaaa aacataaaat gaaagetaea ggtttttte tgggtggtgt 300

attigtagte citatiggit ggeetitgat aggeatgate tiegaaatti 350 atggatitti teetetgite aggggetiet tieetgegi tigtiggetii 400 attagaagag tigeeagteet tiggateecete etaaattiae etagaattag 450 ateattigta gataaagtig gagaaageaa caatatiggia taacaacaag 500 tigaattigaa gaeteattia aaatatigtig tiatitataa agteattiga 550 agaatatiee geacaaaatt aaattaeatig aaatagetig taatigtiett 600 taeaggagti taaaacgtat ageetacaaa giaeeagaag eaaattagea 650 aagaageagi gaaaacagge tieetaeteaa gigaactaag aagaagteag 700 caageaaact gagagaggig aaateeatig taatigatee taaagaactee 750 tigaaggeta titigiigii titieeacaa tigtigegaaae teageeagea 850 ageateeaa gigaeteeaa titigaagaa tieegaaaaa 900 tatiteeaat tigaactii titiaaagtat aaaaceaagg aaaceeeaat titigatigta 1000 gigattaeett tititigiigen eagggee 1027

<210> 153 <211> 138 <212> PRT <213> Homo sapiens

<220>

<221> N-myristoylation Sites <222> 11-16, 51-56 and 116-121 <223> N-myristoylation Sites.

<220>

<221> Transmembrane domains

<222> 12-30, 33-52, 69-89 and 93-109

<223> Transmembrane domains

<220>

<221> Aminoacyl-transfer RNA Synthetases.

<222> 49-59

<223> Aminoacyl-transfer RNA synthetases class-II protein.

<400> 153

Met Ile Ser Leu Thr Asp Thr Gln Lys Ile Gly Met Gly Leu Thr 1 5 10 15

Gly Phe Gly Val Phe Phe Leu Phe Phe Gly Met Ile Leu Phe Phe 20 25 30

Asp Lys Ala Leu Leu Ala Ile Gly Asn Val Leu Phe Val Ala Gly 35 40 45

Leu Ala Phe Val Ile Gly Leu Glu Arg Thr Phe Arg Phe Phe 50 55 60

Gln Lys His Lys Met Lys Ala Thr Gly Phe Phe Leu Gly Gly Val
65 70 75

Phe Val Val Leu Ile Gly Trp Pro Leu Ile Gly Met Ile Phe Glu 80 85 90

Ile Tyr Gly Phe Phe Leu Leu Phe Arg Gly Phe Phe Pro Val Val 95 100 105

Val Gly Phe Ile Arg Arg Val Pro Val Leu Gly Ser Leu Leu Asn 110 115 120

Leu Pro Gly Ile Arg Ser Phe Val Asp Lys Val Gly Glu Ser Asn 125 130 135

Asn Met Val

<210> 154

<211> 405

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 66

<223> unknown base

<400> 154

gaagacgtgg cggctctcgc ctgggctgtt tcccggcttc atttcccg 50 actcagcttc ccaccntggg ctttccgagg tgctttcgcc gctgtcccca 100 ccactgcagc catgatctcc ttaacggaca cgcagaaaat tggaatggga 150 ttaaccggat ttgggagtgtt tttcctgttc tttggaatga ttctctttt 200 tgacaaagca ctactggcta ttggaaatgt tttattgta gccggcttgg 250 cttttgtaat tggtttagaa agaacattca gattcttctt ccaaaaacat 300 aaaatgaaag ctacaggttt ttttctggt ggtgtatttg tagtccttat 350 tggttggcct ttgataggca tgatcttcga aatttatgga ttttttctct 400

<210> 155

<211> 1781

tgttc 405

<212> DNA

<213> Homo sapiens

<400> 155

ggcacgaggc tgaacccagc cggctccatc tcagcttctg gtttctaagt 50 ccatgtgcca aaggctgcca ggaaggagac gccttcctga gtcctggatc 100 tttcttcctt ctggaaatct ttgactgtgg gtagttattt atttctgaat 150 aagagcgtcc acgcatcatg gacctcgcgg gactgctgaa gtctcagttc 200 ctgtgccacc tggtcttctg ctacgtcttt attgcctcag ggctaatcat 250

<210> 156

<211>	378	
<212>	PRT	

<213> Homo sapiens

<400> 156 Met Asp Leu Ala Gly Leu Leu Lys Ser Gln Phe Leu Cys His Leu Val Phe Cys Tyr Val Phe Ile Ala Ser Gly Leu Ile Ile Asn Thr Ile Gln Leu Phe Thr Leu Leu Leu Trp Pro Ile Asn Lys Gln Leu Phe Arg Lys Ile Asn Cys Arg Leu Ser Tyr Cys Ile Ser Ser Gln Leu Val Met Leu Leu Glu Trp Trp Ser Gly Thr Glu Cys Thr Ile Phe Thr Asp Pro Arg Ala Tyr Leu Lys Tyr Gly Lys Glu Asn Ala Ile Val Val Leu Asn His Lys Phe Glu Ile Asp Phe Leu Cys Gly Trp Ser Leu Ser Glu Arg Phe Gly Leu Leu Gly Gly Ser Lys Val 110 Leu Ala Lys Lys Glu Leu Ala Tyr Val Pro Ile Ile Gly Trp Met 130 Trp Tyr Phe Thr Glu Met Val Phe Cys Ser Arg Lys Trp Glu Gln Asp Arg Lys Thr Val Ala Thr Ser Leu Gln His Leu Arg Asp Tyr 155 160 Pro Glu Lys Tyr Phe Phe Leu Ile His Cys Glu Gly Thr Arg Phe Thr Glu Lys Lys His Glu Ile Ser Met Gln Val Ala Arg Ala Lys 190 Gly Leu Pro Arg Leu Lys His His Leu Leu Pro Arg Thr Lys Gly 205 Phe Ala Ile Thr Val Arg Ser Leu Arg Asn Val Val Ser Ala Val Tyr Asp Cys Thr Leu Asn Phe Arg Asn Asn Glu Asn Pro Thr Leu 230 Leu Gly Val Leu Asn Gly Lys Lys Tyr His Ala Asp Leu Tyr Val 250 Arg Arg Ile Pro Leu Glu Asp Ile Pro Glu Asp Asp Glu Cys 260 265 Ser Ala Trp Leu His Lys Leu Tyr Gln Glu Lys Asp Ala Phe Gln

Glu Glu Tyr Tyr Arg Thr Gly Thr Phe Pro Glu Thr Pro Met Val

				290					295					300
Pro	Pro	Arg	Arg	Pro 305	Trp	Thr	Leu	Val	Asn 310	Trp	Leu	Phe	Trp	Ala 315
Ser	Leu	Val	Leu	Tyr 320	Pro	Phe	Phe	Gln	Phe 325	Leu	Val	Ser	Met	Ile 330
Arg	Ser	Gly	Ser	Ser 335	Leu	Thr	Leu	Ala	Ser 340	Phe	Ile	Leu	Val	Phe 345
Phe	Val	Ala	Ser	Val 350	Gly	Val	Arg	Trp	Met 355	Ile	Gly	Val	Thr	Glu 360
Ile	Asp	Lys	Gly	Ser 365	Ala	Tyr	Gly	Asn	Ser 370	Asp	Ser	Lys	Gln	Lys 375

Leu Asn Asp

<210> 157 <211> 1849 <212> DNA <213> Homo sapiens

<213> Homo sapiens

<400> 157

ctgaggcggc ggtagcatgg agggggagag tacgtcggcg gtgctctcgg 50

gctttgtgct cggcgcactc gctttccagc acctcaacac ggactcggac 100

gctttgtgct cggcgcactc gctttccagc acctcaacac ggactcggac 100 acggaaggtt ttcttcttgg ggaagtaaaa ggtgaagcca agaacagcat 150 tactgattcc caaatggatg atgttgaagt tgtttataca attgacattc 200 agaaatatat tccatgctat cagcttttta gcttttataa ttcttcaggc 250 gaagtaaatg agcaagcact gaagaaaata ttatcaaatg tcaaaaagaa 300 tgtggtaggt tggtacaaat tccgtcgtca ttcagatcag atcatgacgt 350 ttagagagag gctgcttcac aaaaacttgc aggagcattt ttcaaaccaa 400 gaccttgttt ttctgctatt aacaccaagt ataataacag aaagctgctc 450 tactcatcga ctggaacatt ccttatataa acctcaaaaa ggactttttc 500 acagggtacc tttagtggtt gccaatctgg gcatgtctga acaactgggt 550 tataaaactg tatcaggttc ctgtatgtcc actggtttta gccgagcagt 600 acaaacacac agctctaaat tttttgaaga agatggatcc ttaaaggagg 650 tacataagat aaatgaaatg tatgcttcat tacaagagga attaaagagt 700 atatgcaaaa aagtggaaga cagtgaacaa gcagtagata aactagtaaa 750 ggatgtaaac agattaaaac gagaaattga gaaaaggaga ggagcacaga 800 ttcaggcagc aagagagaag aacatccaaa aagaccctca ggagaacatt 850 tttctttgtc aggcattacg gacctttttt ccaaattctg aatttcttca 900 ttcatgtgtt atgtctttaa aaaatagaca tgtttctaaa agtagctgta 950

actacaacca ccatctcgat gtagtagaca atctgacctt aatggtagaa 1000 cacactgaca ttcctgaagc tagtccagct agtacaccac aaatcattaa 1050 gcataaagcc ttagacttag atgacagatg gcaattcaag agatctcggt 1100 tgttagatac acaagacaaa cgatctaaag caaatactgg tagtagtaac 1150 caagataaag catccaaaat gagcagccca gaaacagatg aagaaattga 1200 aaagatgaag ggttttggtg aatattcacg gtctcctaca ttttgatcct 1250 tttaacctta caaggagatt tttttatttg gctgatgggt aaagccaaac 1300 atttctattg tttttactat gttgagctac ttgcagtaag ttcatttgtt 1350 tttactatgt tcacctgttt gcagtaatac acagataact cttagtgcat 1400 ttacttcaca aagtactttt tcaaacatca gatgctttta tttccaaacc 1450 tttttttcac ctttcactaa gttgttgagg ggaaggctta cacagacaca 1500 ttctttagaa ttggaaaagt gagaccaggc acagtggctc acacctgtaa 1550 tcccagcact tagggaagac aagtcaggag gattgattga agctaggagt 1600 tagagaccag cctgggcaac gtattgagac catgtctatt aaaaaataaa 1650 atggaaaagc aagaatagcc ttattttcaa aatatggaaa gaaatttata 1700 tgaaaattta tctgagtcat taaaattctc cttaagtgat acttttttag 1750 aagtacatta tggctagagt tgccagataa aatgctggat atcatgcaat 1800

<210> 158

<211> 409

<212> PRT

<213> Homo sapiens

<400> 158

Met Glu Gly Glu Ser Thr Ser Ala Val Leu Ser Gly Phe Val Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Gly Ala Leu Ala Phe Gln His Leu Asn Thr Asp Ser Asp Thr Glu
20 25 30

Gly Phe Leu Leu Gly Glu Val Lys Gly Glu Ala Lys Asn Ser Ile 35 40 45

Thr Asp Ser Gln Met Asp Asp Val Glu Val Val Tyr Thr Ile Asp 50 55 60

Ile Gln Lys Tyr Ile Pro Cys Tyr Gln Leu Phe Ser Phe Tyr Asn 65 70 75

Ser Ser Gly Glu Val Asn Glu Gln Ala Leu Lys Lys Ile Leu Ser 80 85 90

Asn Val Lys Lys Asn Val Val Gly Trp Tyr Lys Phe Arg Arg His 95 100 105

Ser	: Asp	Gln	ılle	Met 110	Thr	: Phe	arç	g Glu	Arg		Leu	His	Lys	120
Leu	Gln	Glu	His	Phe 125	Ser	Asn	Glr	a Asp	Leu 130		Phe	Leu	Leu	Leu 135
Thr	Pro	Ser	lle	Ile 140		Glu	Ser	Cys	Ser 145		His	Arg	Leu	Glu 150
His	Ser	Leu	Tyr	Lys 155	Pro	Gln	Lys	Gly	Leu 160		His	Arg	Val	Pro 165
Leu	Val	Val	Ala	Asn 170	Leu	Gly	Met	Ser	Glu 175		Leu	Gly	Tyr	Lys 180
Thr	Val	Ser	Gly	Ser 185	Cys	Met	Ser	Thr	Gly 190		Ser	Arg	Ala	Val 195
Gln	Thr	His	Ser	Ser 200	Lys	Phe	Phe	Glu	Glu 205		Gly	Ser	Leu	Lys 210
Glu	Val	His	Lys	Ile 215	Asn	Glu	Met	Tyr	Ala 220	Ser	Leu	Gln	Glu	Glu 225
Leu	Lys	Ser	Ile	Cys 230	Lys	Lys	Val	Glu	Asp 235	Ser	Glu	Gln	Ala	Val 240
Asp	Lys	Leu	Val	Lys 245	Asp	Val	Asn	Arg	Leu 250	Lys	Arg	Glu	Ile	Glu 255
Lys	Arg	Arg	Gly	Ala 260	Gln	Ile	Gln	Ala	Ala 265	Arg	Glu	Lys	Asn	Ile 270
Gln	Lys	Asp	Pro	Gln 275	Glu	Asn	Ile	Phe	Leu 280	Cys	Gln	Ala	Leu	Arg 285
Thr	Phe	Phe	Pro	Asn 290	Ser	Glu	Phe	Leu	His 295	Ser	Cys	Val	Met	Ser 300
Leu	Lys	Asn	Arg	His 305	Val	Ser	Lys	Ser	Ser 310	Cys	Asn	Tyr	Asn	His 315
His	Leu	Asp	Val	Val 320	Asp	Asn	Leu	Thr	Leu 325	Met	Val	Glu	His	Thr 330
Asp	Ile	Pro	Glu	Ala 335	Ser	Pro	Ala	Ser	Thr 340	Pro	Gln	Ile	Ile	Lys 345
His	Lys	Ala	Leu	Asp 350	Leu	Asp	Asp	Arg	Trp 355	Gln	Phe	Lys	Arg	Ser 360
Arg	Leu	Leu	Asp	Thr 365	Gln	Asp	Lys	Arg	Ser 370	Lys	Ala	Asn	Thr	Gly 375
Ser	Ser	Asn	Gln	Asp 380	Lys	Ala	Ser	Lys	Met 385	Ser	Ser	Pro	Glu	Thr 390
Asp	Glu	Glu	Ile	Glu 395	Lys	Met	Lys	Gly	Phe 400	Gly	Glu	Tyr	Ser	Arg 405
C	D	m).	1											

Ser Pro Thr Phe

<210>	159	
<211>	2651	
<212>	DNA	
<213>	Homo	sapiens

<400> 159 acgageggae cagegeaggg cageecaage agegegeage gaaegeeege 100 cgccgcccac accetetgeg gtccccgcgg cgcctgccac cettecetec 150 ttccccgcgt ccccgcctcg ccggccagtc agcttgccgg gttcgctgcc 200 ecgegaaacc ecgaggteac eagecegege etetgettee etgggeegeg 250 cgccgcctcc acgccctcct tctcccctgg cccggcgcct ggcaccgggg 300 accepttgcct gacgcgaggc ccagctctac ttttcgcccc gcgtctcctc 350 cgcctgctcg cctcttccac caactccaac tccttctccc tccagctcca 400 ctegetagte ecegaeteeg ceageceteg gecegetgee gtagegeege 450 ttcccgtccg gtcccaaagg tgggaacgcg tccgccccgg cccgcaccat 500 ggcacggttc ggcttgcccg cgcttctctg caccctggca gtgctcagcg 550 ccgcgctgct ggctgccgag ctcaagtcga aaagttgctc ggaagtgcga 600 cgtctttacg tgtccaaagg cttcaacaag aacgatgccc ccctccacga 650 gatcaacggt gatcatttga agatctgtcc ccagggttct acctgctgct 700 ctcaagagat ggaggagaag tacagcctgc aaagtaaaga tgatttcaaa 750 agtgtggtca gcgaacagtg caatcatttg caagctgtct ttgcttcacg 800 ttacaagaag tttgatgaat tcttcaaaga actacttgaa aatgcagaga 850 aatccctgaa tgatatgttt gtgaagacat atggccattt atacatgcaa 900 aattetgage tatttaaaga tetettegta gagttgaaae gttaetaegt 950 ggtgggaaat gtgaacctgg aagaaatgct aaatgacttc tgggctcgcc 1000 teetggageg gatgtteege etggtgaaet eecagtaeea etttaeagat 1050 gagtatctgg aatgtgtgag caagtatacg gagcagctga agcccttcgg 1100 agatgtccct cgcaaattga agctccaggt tactcgtgct tttgtagcag 1150 cccgtacttt cgctcaaggc ttagcggttg cgggagatgt cgtgagcaag 1200 gtctccgtgg taaaccccac agcccagtgt acccatgccc tgttgaagat 1250 gatctactgc teceactgee ggggtetegt gaetgtgaag ecatgttaca 1300 actactgete aaacateatg agaggetgtt tggeeaacea aggggatete 1350 gattttgaat ggaacaattt catagatgct atgctgatgg tggcagagag 1400 gctagagggt cctttcaaca ttgaatcggt catggatccc atcgatgtga 1450

agatttctga tgctattatg aacatgcagg ataatagtgt tcaagtgtct 1500 cagaaggttt tccagggatg tggacccccc aagcccctcc cagctggacg 1550 aatttctcgt tccatctctg aaagtgcctt cagtgctcgc ttcagaccac 1600 atcacccega ggaacgccca accacagcag ctggcactag tttggaccga 1650 ctggttactg atgtcaagga gaaactgaaa caggccaaga aattctggtc 1700 ctcccttccg agcaacgttt gcaacgatga gaggatggct gcaggaaacg 1750 gcaatgagga tgactgttgg aatgggaaag gcaaaagcag gtacctgttt 1800 gcagtgacag gaaatggatt agccaaccag ggcaacaacc cagaggtcca 1850 ggttgacacc agcaaaccag acatactgat ccttcgtcaa atcatggctc 1900 ttcgagtgat gaccagcaag atgaagaatg catacaatgg gaacgacgtg 1950 gacttctttg atatcagtga tgaaagtagt ggagaaggaa gtggaagtgg 2000 ctgtgagtat cagcagtgcc cttcagagtt tgactacaat gccactgacc 2050 atgctgggaa gagtgccaat gagaaagccg acagtgctgg tgtccgtcct 2100 ggggcacagg cctacctcct cactgtcttc tgcatcttgt tcctggttat 2150 gcagagagag tggagataat tctcaaactc tgagaaaaag tgttcatcaa 2200 aaagttaaaa ggcaccagtt atcacttttc taccatccta gtgactttgc 2250 tttttaaatg aatggacaac aatgtacagt ttttactatg tggccactgg 2300 tttaagaagt gctgactttg ttttctcatt cagttttggg aggaaaaggg 2350 actgtgcatt gagttggttc ctgctccccc aaaccatgtt aaacgtggct 2400 aacagtgtag gtacagaact atagttagtt gtgcatttgt gattttatca 2450 ctctattatt tgtttgtatg ttttttctc atttcgtttg tgggtttttt 2500 tttccaactg tgatctcgcc ttgtttctta caagcaaacc agggtccctt 2550 cttggcacgt aacatgtacg tatttctgaa atattaaata gctgtacaga 2600 agcaggtttt atttatcatg ttatcttatt aaaagaaaaa gcccaaaaag 2650 c 2651

<210> 160

<211> 556

<212> PRT

<213> Homo sapiens

<400> 160

Met Ala Arg Phe Gly Leu Pro Ala Leu Leu Cys Thr Leu Ala Val 1 5 10 15

Leu Ser Ala Ala Leu Leu Ala Ala Glu Leu Lys Ser Lys Ser Cys 20 25 30

Ser Glu Val Arg Arg Leu Tyr Val Ser Lys Gly Phe Asn Lys Asn

					35	5				40)				45
	Asp	Ala	Pro	Let	His 50	s Glu	Ile	e Asn	Gly	Asp 55		Leu	Lys	: Ile	Cys 60
	Pro	Gln	Gly	ser Ser	Thr 65		суз	Ser	Gln	Glu 70		Glu	ı Glu	Lys	Tyr 75
	Ser	Leu	Gln	Ser	8C		Asp	Phe	: Lys	Ser 85		Val	Ser	Glu	Gln 90
	Cys	Asn	His	Leu	. Gln 95	Ala	Val	Phe	Ala	Ser 100		Туг	Lys	Lys	Phe 105
	Asp	Glu	Phe	Phe	Lys 110	Glu	Leu	Leu	Glu	Asn 115	Ala	Glu	Lys	Ser	Leu 120
	Asn	Asp	Met	Phe	Val 125	Lys	Thr	Tyr	Gly	His 130	Leu	Tyr	Met	Gln	Asn 135
	Ser	Glu	Leu	Phe	Lys 140	Asp	Leu	Phe	Val	Glu 145	Leu	Lys	Arg	Tyr	Tyr 150
	Val	Val	Gly	Asn	Val 155	Asn	Leu	Glu	Glu	Met 160	Leu	Asn	Asp	Phe	Trp 165
	Ala	Arg	Leu	Leu	Glu 170	Arg	Met	Phe	Arg	Leu 175	Val	Asn	Ser	Gln	Tyr 180
	His	Phe	Thr	Asp	Glu 185	Tyr	Leu	Glu	Cys	Val 190	Ser	Lys	Tyr	Thr	Glu 195
	Gln	Leu	Lys	Pro	Phe 200	Gly	Asp	Val	Pro	Arg 205	Lys	Leu	Lys	Leu	Gln 210
٠	Val	Thr	Arg	Ala	Phe 215	Val	Ala	Ala	Arg	Thr 220	Phe	Ala	Gln	Gly	Leu 225
1	Ala	Val	Ala	Gly	Asp 230	Val	Val	Ser	Lys	Val 235	Ser	Val	Val	Asn	Pro 240
,	Thr	Ala	Gln	Суз	Thr 245	His	Ala	Leu	Leu	Lys 250	Met	Ile	Tyr	Cys	Ser 255
]	His	Cys	Arg	Gly	Leu 260	Val	Thr	Val	Lys	Pro 265	Cys	Tyr	Asn	Tyr	Cys 270
	Ser	Asn	Ile	Met	Arg 275	Gly	Cys	Leu	Ala	Asn 280	Gln	Gly	Asp	Leu	Asp 285
]	?he	Glu	Trp	Asn	Asn 290	Phe	Ile	Asp	Ala	Met 295	Leu	Met	Val	Ala	Glu 300
Z	∤rg	Leu	Glu	Gly	Pro 305	Phe	Asn	Ile	Glu	Ser 310	Val	Met	Asp	Pro	Ile 315
Z	lsp	Val	Lys	Ile	Ser 320	Asp	Ala	Ile	Met	Asn 325	Met	Gln	Asp	Asn	Ser 330
7	al	Gln	Val	Ser	Gln 335	Lys	Val	Phe	Gln	Gly 340	Cys	Gly	Pro	Pro	Lys 345
Ε	ro	Leu	Pro	Ala	Gly	Arg	Ile	Ser	Arg	Ser	Ile	Ser	Glu	Ser	Ala

				350					355					360
Phe	Ser	Ala	Arg	Phe 365	Arg	Pro	His	His	Pro 370	Glu	Glu	Arg	Pro	Thr 375
Thr	Ala	Ala	Gly	Thr 380	Ser	Leu	Asp	Arg	Leu 385	Val	Thr	Asp	Val	Lys 390
Glu	Lys	Leu	Lys	Gln 395	Ala	Lys	Lys	Phe	Trp 400	Ser	Ser	Leu	Pro	Ser 405
Asn	Val	Cys	Asn	Asp 410	Glu	Arg	Met	Ala	Ala 415	Gly	Asn	Gly	Asn	Glu 420
Asp	Asp	Cys	Trp	Asn 425	Gly	Lys	Gly	Lys	Ser 430	Arg	Tyr	Leu	Phe	Ala 435
Val	Thr	Gly	Asn	Gly 440	Leu	Ala	Asn	Gln	Gly 445	Asn	Asn	Pro	Glu	Val 450
Gln	Val	Asp	Thr	Ser 455	Lys	Pro	Asp	Ile	Leu 460	Ile	Leu	Arg	Gln	Ile 465
Met	Ala	Leu	Arg	Val 470	Met	Thr	Ser	Lys	Met 475	Lys	Asn	Ala	Tyr	Asn 480
Gly	Asn	Asp	Val	Asp 485	Phe	Phe	Asp	Ile	Ser 490	Asp	Glu	Ser	Ser	Gly 495
Glu	Gly	Ser	Gly	Ser 500	Gly	Cys	Glu	Tyr	Gln 505	Gln	Cys	Pro	Ser	Glu 510
Phe	Asp	Tyr	Asn	Ala 515	Thr	Asp	His	Ala	Gly 520	Lys	Ser	Ala	Asn	Glu 525
Lys	Ala	Asp	Ser	Ala 530	Gly	Val	Arg	Pro	Gly 535	Ala	Gln	Ala	Tyr	Leu 540
Leu	Thr	Val	Phe	Cys 545	Ile	Leu	Phe	Leu	Val 550	Met	Gln	Arg	Glu	Trp 555
Arg														
<210><211><212><213>	23 DNA		ial	Sequ	ence									
<220> <223>		thet	ic o	ligo	nucl	eoti	de p	robe						
<400> ctcc		ta a	accc	caca	g cc	c 23								
<210> <211> <212> <213>	24 DNA	ific	ial :	Seque	ence									

<220> <223> Synthetic oligonucleotide probe

```
<400> 162
 tcacatcgat gggatccatg accg 24
<210> 163
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 163
 ggtctcgtga ctgtgaagcc atgttacaac tactgctcaa acatcatgag 50
<210> 164
<211> 870
<212> DNA
<213> Homo sapiens
<400> 164
 ctcgccctca aatgggaacg ctggcctggg actaaagcat agaccaccag 50
 gctgagtatc ctgacctgag tcatccccag ggatcaggag cctccagcag 100
 ggaaccttcc attatattct tcaagcaact tacagctgca ccgacagttg 150
 cgatgaaagt tctaatctct tccctcctcc tgttgctgcc actaatgctg 200
 atgtccatgg tctctagcag cctgaatcca ggggtcgcca gaggccacag 250
 ggaccgaggc caggettcta ggagatggct ccaggaaggc ggccaagaat 300
 gtgagtgcaa agattggttc ctgagagccc cgagaagaaa attcatgaca 350
 gtgtctgggc tgccaaagaa gcagtgcccc tgtgatcatt tcaagggcaa 400
 tgtgaagaaa acaagacacc aaaggcacca cagaaagcca aacaagcatt 450
 ccagagcctg ccagcaattt ctcaaacaat gtcagctaag aagctttgct 500
 ctgcctttgt aggagetetg agegeeeact ettecaatta aacattetea 550
 gccaagaaga cagtgagcac acctaccaga cactcttett eteccacete 600
 acteteceae tgtacecaee cetaaateat teeagtgete teaaaaagea 650
 tgtttttcaa gatcattttg tttgttgctc tctctagtgt cttcttctct 700
 cgtcagtctt agcctgtgcc ctccccttac ccaggcttag gcttaattac 750
 ctgaaagatt ccaggaaact gtagcttcct agctagtgtc atttaacctt 800
 aaatgcaatc aggaaagtag caaacagaag tcaataaata tttttaaatg 850
 tcaaaaaaaa aaaaaaaaa 870
<210> 165
<211> 119
<212> PRT
<213> Homo sapiens
<400> 165
Met Lys Val Leu Ile Ser Ser Leu Leu Leu Leu Pro Leu Met
```

1 10 15 Leu Met Ser Met Val Ser Ser Ser Leu Asn Pro Gly Val Ala Arg 25 Gly His Arg Asp Arg Gly Gln Ala Ser Arg Arg Trp Leu Gln Glu Gly Gly Gln Glu Cys Glu Cys Lys Asp Trp Phe Leu Arg Ala Pro 5.5 Arg Arg Lys Phe Met Thr Val Ser Gly Leu Pro Lys Lys Gln Cys Pro Cys Asp His Phe Lys Gly Asn Val Lys Lys Thr Arg His Gln Arg His His Arg Lys Pro Asn Lys His Ser Arg Ala Cys Gln Gln Phe Leu Lys Gln Cys Gln Leu Arg Ser Phe Ala Leu Pro Leu 115 <210> 166 <211> 551 <212> DNA <213> Homo sapiens <400> 166 aatggctgtc ttagtacttc gcctgacagt tgtcctggga ctgcttgtct 50 tattcctgac ctgctatgca gacgacaaac cagacaagcc agacgacaag 100 ccagacgact cgggcaaaga cccaaagcca gacttcccca aattcctaag 150 cctcctgggc acagagatca ttgagaatgc agtcgagttc atcctccgct 200 ccatgtccag gagcacagga tttatggaat ttgatgataa tgaaggaaaa 250 cattcatcaa agtgacatcc tcaggacaca cccatgtggc tcctggacaa 300 tccaagagca gccaaatcct gcttttccag tttggctcca caagtcctcc 350 aggacagage ceteaaagea acteecaacg agtteteagg atteaggete 400 tggcttcaac caaacagaac tcattttgaa caccctgact gcatttttgc 450 ttttagaaag ttagaataaa tatggcgctt tgggatcaca tagttgatgg 500 a 551 <210> 167 <211> 87 <212> PRT <213> Homo sapiens <400> 167 Met Ala Val Leu Val Leu Arg Leu Thr Val Val Leu Gly Leu Leu Val Leu Phe Leu Thr Cys Tyr Ala Asp Asp Lys Pro Asp Lys Pro

20 25 30

Asp Asp Lys Pro Asp Asp Ser Gly Lys Asp Pro Lys Pro Asp Phe 35 40 45

Pro Lys Phe Leu Ser Leu Leu Gly Thr Glu Ile Ile Glu Asn Ala 50 55 60

Val Glu Phe Ile Leu Arg Ser Met Ser Arg Ser Thr Gly Phe Met 65 70 75

Glu Phe Asp Asp Asn Glu Gly Lys His Ser Ser Lys 80 85

<210> 168

<211> 1371

<212> DNA

<213> Homo sapiens

<400> 168

ggacgccagc gcctgcagag gctgagcagg gaaaaagcca gtgccccagc 50 ggaagcacag ctcagagctg gtctgccatg gacatcctgg tcccactcct 100 gcagctgctg gtgctgcttc ttaccctgcc cctgcacctc atggctctgc 150 tgggctgctg gcagcccctg tgcaaaagct acttccccta cctgatgqcc 200 gtgctgactc ccaagagcaa ccgcaagatg gagagcaaga aacgggagct 250 cttcagccag ataaaggggc ttacaggagc ctccgggaaa gtggccctac 300 tggagctggg ctgcggaacc ggagccaact ttcagttcta cccaccgggc 350 tgcagggtca cctgcctaga cccaaatccc cactttgaga agttcctgac 400 aaagagcatg gctgagaaca ggcacctcca atatgagcgg tttgtggtgg 450 ctcctggaga ggacatgaga cagctggctg atggctccat ggatgtggtg 500 gtctgcactc tggtgctgtg ctctgtgcag agcccaagga aggtcctgca 550 ggaggtccgg agagtactga gaccgggagg tgtgctcttt ttctgggagc 600 atgtggcaga accatatgga agctgggcct tcatgtggca gcaagttttc 650 gagcccacct ggaaacacat tggggatggc tgctgcctca ccaqaqaqac 700 ctggaaggat cttgagaacg cccagttctc cgaaatccaa atggaacgac 750 agccccctcc cttgaagtgg ctacctgttg ggccccacat catgggaaag 800 gctgtcaaac aatctttccc aagctccaag gcactcattt gctccttccc 850 cagcctccaa ttagaacaag ccacccacca gcctatctat cttccactga 900 gagggaccta gcagaatgag agaagacatt catgtaccac ctactagtcc 950 ctctctcccc aacctctgcc agggcaatct ctaacttcaa tcccgccttc 1000 gacagtgaaa aagctctact tctacgctga cccagggagg aaacactagg 1050 accetgttgt atcetcaact geaagtttet ggactagtet eccaaegttt 1100 geeteccaat gitgiceett teetegite eeatggtaaa geteeteteg 1150 ettieeteet gaggetaeae eeatgegiet etaggaaetg giteacaaaag 1200 teatggigee tgeateeetg eeaageeeee etgaeeetet eteeeeaeta 1250 eeacettett eetgagetig giggeaeeagg gagaateaga gatgetiggig 1300 atgeeagage aagaeteaaa gaggeagagg tittigitete aaatattit 1350 taataaatag aegaaaeeae g 1371

<210> 169

<211> 277

<212> PRT

<213> Homo sapiens

<400> 169

Met Asp Ile Leu Val Pro Leu Leu Gln Leu Leu Val Leu Leu 1 5 10 15

Thr Leu Pro Leu His Leu Met Ala Leu Leu Gly Cys Trp Gln Pro $20 \\ 25 \\ 30$

Leu Cys Lys Ser Tyr Phe Pro Tyr Leu Met Ala Val Leu Thr Pro 35 40 45

Lys Ser Asn Arg Lys Met Glu Ser Lys Lys Arg Glu Leu Phe Ser 50 55 60

Gln Ile Lys Gly Leu Thr Gly Ala Ser Gly Lys Val Ala Leu Leu 65 70 75

Glu Leu Gly Cys Gly Thr Gly Ala Asn Phe Gln Phe Tyr Pro Pro 80 85 90

Gly Cys Arg Val Thr Cys Leu Asp Pro Asn Pro His Phe Glu Lys 95 100 105

Phe Leu Thr Lys Ser Met Ala Glu Asn Arg His Leu Gln Tyr Glu 110 115 120

Arg Phe Val Val Ala Pro Gly Glu Asp Met Arg Gln Leu Ala Asp 125 130 135

Gly Ser Met Asp Val Val Cys Thr Leu Val Leu Cys Ser Val 140 145

Gln Ser Pro Arg Lys Val Leu Gln Glu Val Arg Arg Val Leu Arg 155 160 165

Pro Gly Gly Val Leu Phe Phe Trp Glu His Val Ala Glu Pro Tyr 170 175 180

Gly Ser Trp Ala Phe Met Trp Gln Gln Val Phe Glu Pro Thr Trp 185 190 195

Lys His Ile Gly Asp Gly Cys Cys Leu Thr Arg Glu Thr Trp Lys 200 205 210

Asp Leu Glu Asn Ala Gln Phe Ser Glu Ile Gln Met Glu Arg Gln 225

Pro Pro Pro Leu Lys Trp Leu Pro Val Gly Pro His Ile Met Gly 230 235 240

Lys Ala Val Lys Gln Ser Phe Pro Ser Ser Lys Ala Leu Ile Cys 245 250

Ser Phe Pro Ser Leu Gln Leu Glu Gln Ala Thr His Gln Pro Ile $260 \hspace{1cm} 265 \hspace{1cm} 265 \hspace{1cm} 270 \hspace{1cm}$

Tyr Leu Pro Leu Arg Gly Thr 275

<210> 170

<211> 1621

<212> DNA

<213> Homo sapiens

<400> 170

gtgggattta tttgagtgca agatcgtttt ctcagtggtg gtggaagttg 50 cetcategea ggcagatgtt ggggetttgt cegaacaget ceeetetgee 100 agcttctgta gataagggtt aaaaactaat atttatatga cagaagaaaa 150 agatgtcatt ccgtaaagta aacatcatca tcttggtcct ggctgttgct 200 ctcttcttac tggttttgca ccataacttc ctcagcttga gcagtttgtt 250 aaggaatgag gttacagatt caggaattgt agggcctcaa cctatagact 300 ttgtcccaaa tgctctccga catgcagtag atgggagaca agaggagatt 350 cctgtggtca tcgctgcatc tgaagacagg cttggggggg ccattgcagc 400 tataaacagc attcagcaca acactcgctc caatgtgatt ttctacattg 450 ttactctcaa caatacagca gaccatctcc ggtcctggct caacagtgat 500 tccctgaaaa gcatcagata caaaattgtc aattttgacc ctaaactttt 550 ggaaggaaaa gtaaaggagg atcctgacca gggggaatcc atgaaacctt 600 taacctttgc aaggttctac ttgccaattc tggttcccag cgcaaagaag 650 gccatataca tggatgatga tgtaattgtg caaggtgata ttcttgccct 700 ttacaataca gcactgaagc caggacatgc agctgcattt tcagaagatt 750 gtgattcagc ctctactaaa gttgtcatcc gtggagcagg aaaccagtac 800 aattacattg gctatcttga ctataaaaag gaaagaattc gtaagctttc 850 catgaaagcc agcacttgct catttaatcc tggagttttt gttgcaaacc 900 tgacggaatg gaaacgacag aatataacta accaactgga aaaatggatg 950 aaactcaatg tagaagaggg actgtatagc agaaccctgg ctggtagcat 1000 cacaacacct cctctgctta tcgtatttta tcaacagcac tctaccatcg 1050 atcctatgtg gaatgtccgc caccttggtt ccagtgctgg aaaacgatat 1100 tcacctcagt ttgtaaaggc tgccaagtta ctccattgga atggacattt 1150

gaagccatgg ggaaggactg cttcatatac tgatgtttgg gaaaaatggt 1200 atattccaga cccaacaggc aaattcaacc taatccgaag atataccgag 1250 atctcaaaca taaagtgaaa cagaatttga actgtaagca agcatttctc 1300 aggaagtcct ggaagatagc atgcatggga agtaacagtt gctaggcttc 1350 aatgcctatc ggtagcaagc catggaaaaa gatgtgtcag ctaggtaaag 1400 atgacaaact gccctgtctg gcagtcagct tcccagacag actatagact 1450 ataaatatgt ctccatctgc cttaccaagt gtttcttac tacaatgctg 1500 aatgactgga aagaagaact gatatggcta gttcagctag ctggtacaga 1550 taattcaaaa ctgctgttgg ttttaattt gtaacctgtg gcctgatctg 1600 taaataaaac ttacatttt c 1621

<210> 171

<211> 371

<212> PRT

<213> Homo sapiens

<400> 171

Met Ser Phe Arg Lys Val Asn Ile Ile Ile Leu Val Leu Ala Val 1 5 10 15

Ala Leu Phe Leu Leu Val Leu His His Asn Phe Leu Ser Leu Ser 20 25 30

Ser Leu Leu Arg Asn Glu Val Thr Asp Ser Gly Ile Val Gly Pro 35 40 45

Gln Pro Ile Asp Phe Val Pro Asn Ala Leu Arg His Ala Val Asp
50 55 60

Gly Arg Gln Glu Glu Ile Pro Val Val Ile Ala Ala Ser Glu Asp 65 70 75

Arg Leu Gly Gly Ala Ile Ala Ile Asn Ser Ile Gln His Asn 80 85 90

Thr Arg Ser Asn Val Ile Phe Tyr Ile Val Thr Leu Asn Asn Thr 95 100 105

Ala Asp His Leu Arg Ser Trp Leu Asn Ser Asp Ser Leu Lys Ser 110 115 120

Ile Arg Tyr Lys Ile Val Asn Phe Asp Pro Lys Leu Leu Glu Gly
125 130 130

Lys Val Lys Glu Asp Pro Asp Gln Gly Glu Ser Met Lys Pro Leu 140 145 150

Thr Phe Ala Arg Phe Tyr Leu Pro Ile Leu Val Pro Ser Ala Lys 155 160 165

Lys Ala Ile Tyr Met Asp Asp Asp Val Ile Val Gln Gly Asp Ile
170 175

Leu Ala Leu Tyr Asn Thr Ala Leu Lys Pro Gly His Ala Ala Ala

				185					190					195
Phe	Ser	Glu	Asp	Cys 200	Asp	Ser	Ala	Ser	Thr 205	Lys	Val	Val	Ile	Arg 210
Gly	Ala	Gly	Asn	Gln 215	Tyr	Asn	Tyr	Ile	Gly 220	Tyr	Leu	Asp	Tyr	Lys 225
Lys	Glu	Arg	Ile	Arg 230	Lys	Leu	Ser	Met	Lys 235	Ala	Ser	Thr	Cys	Ser 240
Phe	Asn	Pro	Gly	Val 245	Phe	Val	Ala	Asn	Leu 250	Thr	Glu	Trp	Lys	Arg 255
Gln	Asn	Ile	Thr	Asn 260	Gln	Leu	Glu	Lys	Trp 265	Met	Lys	Leu	Asn	Val 270
Glu	Glu	Gly	Leu	Tyr 275	Ser	Arg	Thr	Leu	Ala 280	Gly	Ser	Ile	Thr	Thr 285
Pro	Pro	Leu	Leu	Ile 290	Val	Phe	Tyr	Gln	Gln 295	His	Ser	Thr	Ile	Asp 300
Pro	Met	Trp	Asn	Val 305	Arg	His	Leu	Gly	Ser 310	Ser	Ala	Gly	Lys	Arg 315
Tyr	Ser	Pro	Gln	Phe 320	Val	Lys	Ala	Ala	Lys 325	Leu	Leu	His	Trp	Asn 330
Gly	His	Leu	Lys	Pro 335	Trp	Gly	Arg	Thr	Ala 340	Ser	Tyr	Thr	Asp	Val 345
Trp	Glu	Lys	Trp	Tyr 350	Ile	Pro	Asp	Pro	Thr 355	Gly	Lys	Phe	Asn	Leu 360
Ile	Arg	Arg	Tyr	Thr 365	Glu	Ile	Ser	Asn	Ile 370	Lys				
<210><211><211><212><213>	> 585 > DNZ	7	ıpien	ıs										
<221> <222>	<220> <221> unsure <222> 71, 76, 86, 91, 162, 220, 269, 281 <223> unknown base													
	<400> 172 tggtttttgc cccataaatt ccctcagctt gagcagtttg ttaaggaatg 50													
aggt	taca	ıga t	tcag	gaat	t nt	aggn	cctc	aac	ctnt	aga	nttt	gtcc	ca 1	.00
~ ~ + ~														

tggtttttgc cccataaatt ccctcagctt gagcagtttg ttaaggaatg 50
aggttacaga ttcaggaatt ntaggncctc aacctntaga ntttgtccca 100
aatgttctcc gacatgcagt agatgggaga caagaggaga ttcctgtggt 150
catcgctgca tntgaagaca ggcttggggg ggccattgca gctataaaca 200
gcattcagca caacactcgn tccaatgtga ttttctacat tgttactctc 250
aacaatacag cagaccatnt ccggtcctgg ntcaacagtg attccctgaa 300
aagcatcaga tacaaaattg tcaatttga ccctaaactt ttggaaggaa 350

<210> 173

<211> 1866

<212> DNA

<213> Homo sapiens

<400> 173

cgacgctcta gcggttaccg ctgcgggctg gctgggcgta gtggggctgc 50 gcggctgcca cggagctaga gggcaagtgt gctcggccca gcgtgcaggg 100 aacgcgggcg gccagacaac gggctgggct ccgggggcctg cggcgcgggc 150 gctgagctgg cagggcgggt cggggcgcgg gctgcatccg catctcctcc 200 atcgcctgca gtaagggcgg ccgcggcgag cctttgaggg gaacgacttg 250 tcggagccct aaccaggggt gtctctgagc ctggtgggat ccccggagcg 300 tcacatcact ttccgatcac ttcaaagtgg ttaaaaacta atatttatat 350 gacagaagaa aaagatgtca ttccgtaaag taaacatcat catcttggtc 400 ctgggctgtt gctctcttct tactggtttt gcaccataac ttcctcagct 450 tgaggcagtt tgttaaggaa tgaggttaca gattcaggaa ttgtagggcc 500 tcaacctata ggactttgtc ccaaatgctc tccgacatgc agtagatggg 550 agacaagagg agatteetgt ggteateget geatetgaag acaggettgg 600 gggggccatt gcagctataa acagcattca gcacaacact cgctccaatg 650 tgattttcta cattgttact ctcaacaata cagcagacca tctccggtcc 700 tgggctcaac agtgattccc tgaaaagcat cagatacaaa attgtcaatt 750 ttgaccctaa acttttggaa ggaaaagtaa aggaggatcc tgaccagggg 800 gaatccatga aacctttaac ctttgcaagg ttctacttgc caattctggg 850 ttcccagcgc aaagaaggcc atatacatgg atgatgatgt aattgtgcaa 900 ggtgatattc ttgcccttta caatacagca ctgaagccag gacatgcagc 950 tgcattttca gaagattgtg attcagcctc tactaaagtt gtcatccgtg 1000 gagcaggaaa ccagtacaat tacattggct atcttgacta taaaaaggaa 1050 agaattcgta agctttccat gaaagccagc acttgctcat ttaatcctgg 1100 agtttttgtt gcaaacctga cggaatggaa acgacagaat ataactaacc 1150 aactggaaaa atggatgaaa ctcaatgtag aagagggact gtatagcaga 1200

<210> 174

<211> 823 <212> DNA

<213> Homo sapiens

<400> 174

ctgcaggtag acatetecae tgccaggaa teactgagce tgcagacagce 50 acaggcetect etgaaggeeg gccataceag agtectgeet eggeatggge 150 ctcaccattg aggcagetee actgtetgtg etggtetgag ggtgetgeet 150 gtcatggggg cagceatete ecagggggee etcategeea tegtetgeaa 200 eggtetegtg ggettettge tgetgetget etgggteate etcatgetag 250 ectgecatte tegtetgeeg acgttgaete teetetgaa tecaggteeca 300 actecageee tggeeeetgt ectgagaagg ececaaceae ecagaageee 350 aggeatgaag gacetaaete getgeageee tgaaggeeee tggeetagee 400 tggaggeeeag gacetaagte eaceteaeet agaggeeeg etggeeeag gteeagaaet eaagagteeg ectgetgga 500 getggaeeea geggeeeaga gtetageeag ettggeteea ataggagete 550 agtggeeea ectetggae ateggeggee eatetggae ateggeggee eatetggae ateggeggee eatetggae ateggeggee etetggaee etetggaee ectetggae ectetggae ectetggae 600 geegggteea etetteeet aggetgagea ectetaggee etetaggee etetaggee 700 gggaaageaaa etggaaacea tggeaataat aggaggtgt ecaggetgg 750

cccctccct ggtcctccca gtgtttgctg gataataaat ggaactatgg 800 ctctaaaaaa aaaaaaaaa aaa 823

<210> 175

<211> 87

<212> PRT

<213> Homo sapiens

<400> 175

Met Gly Ala Ala Ile Ser Gln Gly Ala Leu Ile Ala Ile Val Cys 1 5 10 15

Asn Gly Leu Val Gly Phe Leu Leu Leu Leu Leu Trp Val Ile Leu 20 25 30

Cys Trp Ala Cys His Ser Arg Leu Pro Thr Leu Thr Leu Ser Leu
35 40 45

Asn Pro Val Pro Thr Pro Ala Leu Ala Pro Val Leu Arg Arg Pro 50 55 60

His His Pro Arg Ser Pro Ala Met Lys Ala Ala Thr Cys Cys Ser 65 70 75

Pro Glu Gly Pro Trp Pro Ser Leu Glu Pro Arg Thr 80 85

<210> 176

<211> 1660

<212> DNA

<213> Homo sapiens

<400> 176

cccaggctac cagttcctcc aagcaagtca tttcccttat ttaaccgatg 100
tgtccctcaa acacctgagt gctactccct atttgcatc gttttgataa 150
atgatgttga caccctccac cgaattctaa gtggaatcat gtcgggaaga 200
gatacaatcc ttggcctgtg tatcctcgca ttagccttgt ctttggccat 250
gatgtttacc ttcagattca tcaccaccct tctggttcac attttcattt 300
cattggttat tttgggattg ttgtttgtct gcggtgtttt atggtggctg 350
tattatgact ataccaacga cctcagcata gaattggaca cagaaaggga 400
aaaatatgaag tgcgtgctgg ggtttgctat cgtatccaca ggcatcacgg 450
cagtgctct cgtcttgatt tttgttctca gaaagagaat aaaattgaca 500
gttgagcttt tccaaatcac aaataaagcc atcaggag tgcccaggtt 550
gctgttccag ccactgtgga catttgcat cctcatttt ttctgggtcc 650
atggaaggcg gccaagtgga atataagccc ctttcggca ttcggtaca 700
gttggtcgtac catttaattg gcctcatctg gactagtgaa ttcatccttg 750

cgtgccagca aatgactata gctggggcag tggttacttg ttatttcaac 800 agaagtaaaa atgatcctcc tgatcatccc atcctttcgt ctctctccat 850 tctcttcttc taccatcaag gaaccgttgt gaaagggtca tttttaatct 900 ctgtggtgag gattccgaga atcattgtca tgtacatgca aaacgcactg 950 aaagaacagc agcatggtgc attgtccagg tacctgttcc gatgctgcta 1000 ctgctgtttc tggtgtcttg acaaatacct gctccatctc aaccagaatg 1050 catatactac aactgctatt aatgggacag atttctqtac atcaqcaaaa 1100 gatgcattca aaatcttgtc caagaactca agtcacttta catctattaa 1150 ctgctttgga gacttcataa tttttctagg aaaggtgtta gtggtgttt 1200 tcactgtttt tggaggactc atggctttta actacaatcg ggcattccag 1250 gtgtgggcag tccctctgtt attggtagct ttttttgcct acttagtagc 1300 ccatagtttt ttatctgtgt ttgaaactgt gctggatgca cttttcctgt 1350 gttttgctgt tgatctggaa acaaatgatg gatcgtcaga aaagccctac 1400 tttatggatc aagaatttct gagtttcgta aaaaggagca acaaattaaa 1450 caatgcaagg gcacagcagg acaagcactc attaaggaat gaggagggaa 1500 cagaactcca ggccattgtg agatagatac ccatttaggt atctgtacct 1550 ggaaaacatt tccttctaag agccatttac agaatagaag atgagaccac 1600 tagagaaaag ttagtgaatt ttttttaaa agacctaata aaccctattc 1650 ttcctcaaaa 1660

<210> 177

<211> 445

<212> PRT

<213> Homo sapiens

<400> 177

Met Ser Gly Arg Asp Thr Ile Leu Gly Leu Cys Ile Leu Ala Leu 1 5 10 15

Ala Leu Ser Leu Ala Met Met Phe Thr Phe Arg Phe Ile Thr Thr 20 25 30

Leu Leu Val His Ile Phe Ile Ser Leu Val Ile Leu Gly Leu Leu 35 40

Phe Val Cys Gly Val Leu Trp Trp Leu Tyr Tyr Asp Tyr Thr Asn 50 55 60

Asp Leu Ser Ile Glu Leu Asp Thr Glu Arg Glu Asn Met Lys Cys
65 70 70

Val Leu Gly Phe Ala Ile Val Ser Thr Gly Ile Thr Ala Val Leu 80 85 90

Leu Val Leu Ile Phe Val Leu Arg Lys Arg Ile Lys Leu Thr Val

				0.5					100					
				95					100					105
Glu	ı Leu	Phe	Gln	Ile 110		Asn	Lys	: Ala	Ile 115		Ser	Ala	Pro	Phe 120
Leu	l Leu	Phe	Gln	Pro 125		Trp	Thr	Phe	Ala 130		Leu	Ile	Phe	Phe 135
Trp	Val	Leu	Trp	Val 140	Ala	Val	Leu	. Leu	Ser 145		Gly	Thr	Ala	Gly 150
Ala	Ala	Gln	Val	Met 155	Glu	Gly	Gly	Gln	Val 160		Tyr	Lys	Pro	Leu 165
Ser	Gly	Ile	Arg	Tyr 170	Met	Trp	Ser	Tyr	His 175		Ile	Gly	Leu	Ile 180
Trp	Thr	Ser	Glu	Phe 185	Ile	Leu	Ala	Cys	Gln 190		Met	Thr	Ile	Ala 195
Gly	Ala	Val	Val	Thr 200	Cys	Tyr	Phe	Asn	Arg 205		Lys	Asn	Asp	Pro 210
Pro	Asp	His	Pro	Ile 215	Leu	Ser	Ser	Leu	Ser 220	Ile	Leu	Phe	Phe	Tyr 225
His	Gln	Gly	Thr	Val 230	Val	Lys	Gly	Ser	Phe 235	Leu	Ile	Ser	Val	Val 240
Arg	Ile	Pro	Arg	Ile 245	Ile	Val	Met	Tyr	Met 250	Gln	Asn	Ala	Leu	Lys 255
Glu	Gln	Gln	His	Gly 260	Ala	Leu	Ser	Arg	Tyr 265	Leu	Phe	Arg	Cys	Cys 270
Tyr	Cys	Cys	Phe	Trp 275	Cys	Leu	Asp	Lys	Tyr 280	Leu	Leu	His	Leu	Asn 285
Gln	Asn	Ala	Tyr	Thr 290	Thr	Thr	Ala	Ile	Asn 295	Gly	Thr	Asp	Phe	Cys 300
Thr	Ser	Ala	Lys	Asp 305	Ala	Phe	Lys	Ile	Leu 310	Ser	Lys	Asn	Ser	Ser 315
His	Phe	Thr	Ser	Ile 320	Asn	Cys	Phe	Gly	Asp 325	Phe	Ile	Ile	Phe	Leu 330
Gly	Lys	Val	Leu	Val 335	Val	Cys	Phe	Thr	Val 340	Phe	Gly	Gly	Leu	Met 345
Ala	Phe	Asn	Tyr	Asn 350	Arg	Ala	Phe	Gln	Val 355	Trp	Ala	Val	Pro	Leu 360
Leu	Leu	Val	Ala	Phe 365	Phe	Ala	Tyr	Leu	Val 370	Ala	His	Ser	Phe	Leu 375
Ser	Val	Phe	Glu	Thr 380	Val	Leu	Asp	Ala	Leu 385	Phe	Leu	Cys	Phe	Ala 390
Val	Asp	Leu	Glu	Thr 395	Asn	Asp	Gly	Ser	Ser 400	Glu	Lys	Pro	Tyr	Phe 405
Met	Asp	Gln	Glu	Phe	Leu	Ser	Phe	Val	Lys	Arg	Ser	Asn	Lys	Leu

410 415 420

Asn Asn Ala Arg Ala Gln Gln Asp Lys His Ser Leu Arg Asn Glu 425 430 435

Glu Gly Thr Glu Leu Gln Ala Ile Val Arg
440 445

<210> 178

<211> 2773

<212> DNA

<213> Homo sapiens

<400> 178

gttcgattag ctcctctgag aagaagagaa aaggttcttg gacctctccc 50 tgtttcttcc ttagaataat ttgtatggga tttgtgatgc aggaaagcct 100 aagggaaaaa gaatattcat tctgtgtggt gaaaattttt tgaaaaaaaa 150 attgccttct tcaaacaagg gtgtcattct gatatttatg aggactgttg 200 ttctcactat gaaggcatct gttattgaaa tgttccttgt tttgctggtg 250 actggagtac attcaaacaa agaaacggca aagaagatta aaaggcccaa 300 gttcactgtg cctcagatca actgcgatgt caaagccgga aagatcatcg 350 atcctgagtt cattgtgaaa tgtccagcag gatgccaaga ccccaaatac 400 catgtttatg gcactgacgt gtatgcatcc tactccagtg tgtgtggcgc 450 tgccgtacac agtggtgtgc ttgataattc aggagggaaa atacttgttc 500 ggaaggttgc tggacagtct ggttacaaag ggagttattc caacggtgtc 550 caatcgttat ccctaccacg atggagagaa tcctttatcg tcttagaaag 600 taaacccaaa aagggtgtaa cctacccatc agctcttaca tactcatcat 650 cgaaaagtcc agctgcccaa gcaggtgaga ccacaaaagc ctatcagagg 700 ccacctattc cagggacaac tgcacagccg gtcactctga tgcagcttct 750 ggctgtcact gtagctgtgg ccacccccac caccttgcca aggccatccc 800 cttctgctgc ttctaccacc agcatcccca gaccacaatc agtgggccac 850 aggagccagg agatggatct ctggtccact gccacctaca caagcagcca 900 aaacaggccc agagctgatc caggtatcca aaggcaagat ccttcaggag 950 ctgccttcca gaaacctgtt ggagcggatg tcagcctggg acttgttcca 1000 aaagaagaat tgagcacaca gtctttggag ccagtatccc tqqqaqatcc 1050 aaactgcaaa attgacttgt cgtttttaat tgatgggagc accagcattg 1100 gcaaacggcg attccgaatc cagaagcagc tcctggctga tgttqcccaa 1150 gctcttgaca ttggccctgc cggtccactg atgggtgttg tccagtatgg 1200 agacaaccct gctactcact ttaacctcaa gacacacacg aattctcgag 1250

<210> 179

<211> 678

<212> PRT

<213> Homo sapiens

<400> 179

Met Arg Thr Val Val Leu Thr Met Lys Ala Ser Val Ile Glu Met 1 5 10 15

Phe Leu Val Leu Leu Val Thr Gly Val His Ser Asn Lys Glu Thr 20 25 30

Ala Lys Lys Ile Lys Arg Pro Lys Phe Thr Val Pro Gln Ile Asn
35

Cys Asp Val Lys Ala Gly Lys Ile Ile Asp Pro Glu Phe Ile Val 50 55 60

Lys Cys Pro Ala Gly Cys Gln Asp Pro Lys Tyr His Val Tyr Gly
65 70 75

Thr Asp Val Tyr Ala Ser Tyr Ser Ser Val Cys Gly Ala Ala Val 80 85 90

His Ser Gly Val Leu Asp Asn Ser Gly Gly Lys Ile Leu Val Arg 95 100 105

Lys Val Ala Gly Gln Ser Gly Tyr Lys Gly Ser Tyr Ser Asn Gly 110 115 120

Val Gln Ser Leu Ser Leu Pro Arg Trp Arg Glu Ser Phe Ile Val 125 130 135

Leu Glu Ser Lys Pro Lys Lys Gly Val Thr Tyr Pro Ser Ala Leu 140 145 150

Thr Tyr Ser Ser Ser Lys Ser Pro Ala Ala Gln Ala Gly Glu Thr 155 160 165

Thr Lys Ala Tyr Gln Arg Pro Pro Ile Pro Gly Thr Thr Ala Gln 170 175 180

Pro Val Thr Leu Met Gln Leu Leu Ala Val Thr Val Ala Val Ala 185 190 195

Thr Pro Thr Thr Leu Pro Arg Pro Ser Pro Ser Ala Ala Ser Thr 200 205 210

Thr Ser Ile Pro Arg Pro Gln Ser Val Gly His Arg Ser Gln Glu 215 220 225

Met Asp Leu Trp Ser Thr Ala Thr Tyr Thr Ser Ser Gln Asn Arg 230 235 240

Pro Arg Ala Asp Pro Gly Ile Gln Arg Gln Asp Pro Ser Gly Ala 245 250 255

Ala Phe Gln Lys Pro Val Gly Ala Asp Val Ser Leu Gly Leu Val 260 265 270

Pro Lys Glu Glu Leu Ser Thr Gln Ser Leu Glu Pro Val Ser Leu 275 280 285

Gly Asp Pro Asn Cys Lys Ile Asp Leu Ser Phe Leu Ile Asp Gly

			290					295					300
Ser Thr	Ser	Ile	Gly 305	Lys	Arg	Arg	Phe	Arg 310		Gln	Lys	Gln	Leu 315
Leu Ala	Asp	Val	Ala 320	Gln	Ala	Leu	Asp	· Ile 325	Gly	Pro	Ala	Gly	7 Pro 330
Leu Met	Gly	Val	Val 335	Gln	Tyr	Gly	Asp	Asn 340	Pro	Ala	Thr	His	Phe 345
Asn Leu	Lys	Thr	His 350	Thr	Asn	Ser	Arg	Asp 355	Leu	Lys	Thr	Ala	11e 360
Glu Lys	Ile	Thr	Gln 365	Arg	Gly	Gly	Leu	Ser 370	Asn	Val	Gly	Arg	Ala 375
Ile Ser	Phe	Val	Thr 380	Lys	Asn	Phe	Phe	Ser 385	Lys	Ala	Asn	Gly	Asn 390
Arg Ser	Gly .	Ala	Pro 395	Asn	Val	Val	Val	Val 400	Met	Val	Asp	Gly	Trp 405
Pro Thr	Asp :	Lys	Val 410	Glu	Glu	Ala	Ser	Arg 415	Leu	Ala	Arg	Glu	Ser 420
Gly Ile	Asn	Ile	Phe 425	Phe	Ile	Thr	Ile	Glu 430	Gly	Ala	Ala	Glu	Asn 435
Glu Lys	Gln '	Tyr	Val 440	Val	Glu	Pro	Asn	Phe 445	Ala	Asn	Lys	Ala	Val 450
Cys Arg	Thr A	Asn	Gly 455	Phe	Tyr	Ser	Leu	His 460	Val	Gln	Ser	Trp	Phe 465
Gly Leu	His]	Lys	Thr 470	Leu	Gln	Pro	Leu	Val 475	Lys	Arg	Val	Cys	Asp 480
Thr Asp	Arg 1	Leu .	Ala 485	Cys	Ser	Lys	Thr	Cys 490	Leu	Asn	Ser	Ala	Asp 495
Ile Gly			500					505					510
Phe Arg	Thr V	/al :	Leu 515	Gln	Phe	Val	Thr	Asn 520	Leu	Thr	Lys	Glu	Phe 525
Glu Ile		ţ	530					535					540
Tyr Glu	Gln A	rg ا	Leu 545	Glu	Phe	Gly	Phe	Asp 550	Lys	Týr	Ser	Ser	Lys 555
Pro Asp	Ile I	Leu A	Asn . 560	Ala	Ile	Lys		Val 565	Gly	Tyr	Trp	Ser	Gly 570
Gly Thr		į	575					580					585
Phe Lys		Ļ	90					595					600
Thr Asp	Gly A	rg S	Ger !	Гуr	Asp .	Asp	Val .	Arg	Ile	Pro	Ala	Met	Ala

				605					610					615
Ala	His	Leu	Lys	Gly 620	Val	Ile	Thr	Tyr	Ala 625	Ile	Gly	Val	Ala	Trp 630
Ala	Ala	Gln	Glu	Glu 635	Leu	Glu	Val	Ile	Ala 640	Thr	His	Pro	Ala	Arg 645
Asp	His	Ser	Phe	Phe 650	Val	Asp	Glu	Phe	Asp 655	Asn	Leu	His	Gln	Tyr 660
Val	Pro	Arg	Ile	Ile 665	Gln	Asn	Ile	Cys	Thr 670	Glu	Phe	Asn	Ser	Gln 675
D-1-	70	70												

Pro Arg Asn

<210> 180 <211> 1759 <212> DNA <213> Homo sapiens

<400> 180 caggatgaac tggttgcagt ggctgctgct gctgcggggg cgctgagagg 50 acacgagete tatgeettte eggetgetea teeegetegg eeteetgtge 100 gcgctgctgc ctcagcacca tggtgcgcca ggtcccgacg gctccgcgcc 150 agatcccgcc cactacagtt tttctctgac tctaattgat gcactggaca 200 ccttgctgat tttggggaat gtctcagaat tccaaagagt ggttgaagtg 250 ctccaggaca gcgtggactt tgatattgat gtgaacgcct ctgtgtttga 300 aacaaacatt cgagtggtag gaggactcct gtctgctcat ctgctctcca 350 agaaggetgg ggtggaagta gaggetggat ggeeetgtte egggeetete 400 ctgagaatgg ctgaggaggc ggcccgaaaa ctcctcccag cctttcagac 450 ccccactggc atgccatatg gaacagtgaa cttacttcat ggcgtgaacc 500 caggagagac ccctgtcacc tgtacggcag ggattgggac cttcattgtt 550 gaatttgcca ccctgagcag cctcactggt gacccggtgt tcgaagatgt 600 ggccagagtg gctttgatgc gcctctggga gagccggtca gatatcgggc 650 tggtcggcaa ccacattgat gtgctcactg gcaagtgggt ggcccaggac 700 gcaggcatcg gggctggcgt ggactcctac tttgagtact tggtgaaagg 750 agccatcctg cttcaggata agaagctcat ggccatgttc ctagagtata 800 acaaagccat ccggaactac acccgcttcg atgactggta cctgtgggtt 850 cagatgtaca aggggactgt gtccatgcca gtcttccagt ccttggaggc 900 ctactggcct ggtcttcaga gcctcattgg agacattgac aatgccatga 950 ggaccttcct caactactac actgtatgga agcagtttgg ggggctcccg 1000

gaattctaca acattcctca gggatacaca gtggagaagc gagagggcta 1050 cccacttcgg ccagaactta ttgaaagcgc aatgtacctc taccgtgcca 1100 cgggggatcc caccetecta gaacteggaa gagatgetgt ggaatecatt 1150 gaaaaaatca gcaaggtgga gtgcggattt gcaacaatca aagatctgcg 1200 agaccacaag ctggacaacc gcatggagtc gttcttcctg gccgagactg 1250 tgaaatacct ctacctcctg tttgacccaa ccaacttcat ccacaacaat 1300 gggtccacct tcgacgcggt gatcaccccc tatggggagt gcatcctggg 1350 ggctgggggg tacatcttca acacagaagc tcaccccatc gaccttgccg 1400 ccctgcactg ctgccagagg ctgaaggaag agcagtggga ggtggaggac 1450 ttgatgaggg aattctactc tctcaaacgg agcaggtcga aatttcagaa 1500 aaacactgtt agttcggggc catgggaacc tccagcaagg ccaggaacac 1550 tcttctcacc agaaaaccat gaccaggcaa gggagaggaa gcctgccaaa 1600 cagaaggtee caetteteag etgeeceagt cagecettea cetecaagtt 1650 ggcattactg ggacaggttt tcctagactc ctcataacca ctggataatt 1700 tttttatttt tattttttg aggctaaact ataataaatt gcttttggct 1750 atcataaaa 1759

<210> 181 <211> 541 <212> PRT

<213> Homo sapiens

<400> 181

Met Pro Phe Arg Leu Leu Ile Pro Leu Gly Leu Leu Cys Ala Leu 1 5 10 15

Leu Pro Gln His His Gly Ala Pro Gly Pro Asp Gly Ser Ala Pro
20 25 30

Asp Pro Ala His Tyr Ser Phe Ser Leu Thr Leu Ile Asp Ala Leu 35 40 45

Asp Thr Leu Leu Ile Leu Gly Asn Val Ser Glu Phe Gln Arg Val 50 55 60

Val Glu Val Leu Gln Asp Ser Val Asp Phe Asp Ile Asp Val Asn 65 70 75

Ala Ser Val Phe Glu Thr Asn Ile Arg Val Val Gly Gly Leu Leu 80 85 90

Ser Ala His Leu Leu Ser Lys Lys Ala Gly Val Glu Val Glu Ala 95 100 105

Gly Trp Pro Cys Ser Gly Pro Leu Leu Arg Met Ala Glu Glu Ala 110 115 120

Ala Arg Lys Leu Leu Pro Ala Phe Gln Thr Pro Thr Gly Met Pro

				125	5				130)				135
Туз	Gly	7 Thi	· Val	L Asr	Leu)	ı Lev	l His	s Gly	Val 145		Pro	Gly	g Glu	Thr 150
Pro	Val	. Thr	Cys	Thr 155	Ala	Gly	7 Ile	e Gly	Thr 160		: Ile	val	. Glu	Phe 165
Ala	Thr	Leu	ı Ser	Ser 170	Leu	Thr	Gly	Asp	Pro 175		. Phe	e Glu	Asp	Val 180
Ala	Arg	y Val	. Ala	Leu 185	Met	Arg	Leu	Trp	Glu 190	Ser	Arg	Ser	: Asp	195
Gly	Leu	Val	Gly	Asn 200	His	Ile	Asp	Val	Leu 205	Thr	Gly	Lys	Trp	Val 210
Ala	Gln	Asp	Ala	Gly 215	Ile	Gly	Ala	Gly	Val 220	Asp	Ser	Tyr	Phe	Glu 225
Tyr	Leu	Val	Lys	Gly 230	Ala	Ile	Leu	Leu	Gln 235	Asp	Lys	Lys	Leu	Met 240
Ala	Met	Phe	Leu	Glu 245	Tyr	Asn	Lys	Ala	Ile 250	Arg	Asn	Tyr	Thr	Arg 255
Phe	Asp	Asp	Trp	Tyr 260	Leu	Trp	Val	Gln	Met 265	Tyr	Lys	Gly	Thr	Val 270
Ser	Met	Pro	Val	Phe 275	Gln	Ser	Leu	Glu	Ala 280	Tyr	Trp	Pro	Gly	Leu 285
Gln	Ser	Leu	Ile	Gly 290	Asp	Ile	Asp	Asn	Ala 295	Met	Arg	Thr	Phe	Leu 300
				Val 305					310					315
Tyr	Asn	Ile	Pro	Gln 320	Gly	Tyr	Thr	Val	Glu 325	Lys	Arg	Glu	Gly	Tyr 330
				Glu 335					340				-	345
				Pro 350					355					Val 360
				Lys 365					370					Thr 375
				Arg 380					385					390
				Glu 395					400					405
				Ile 410					415					Val 420
				Gly 425					430					Ile 435
Phe	Asn	Thr	Glu	Ala	His	Pro	Ile	Asp	Leu	Ala	Ala	Leu	His	Cys

440		445	450
Cys Gln Arg Leu Lys 455	Glu Glu Gln	Trp Glu Val Glu 460	Asp Leu Met 465
Arg Glu Phe Tyr Ser 470	Leu Lys Arg	Ser Arg Ser Lys 475	Phe Gln Lys 480
Asn Thr Val Ser Ser 485	Gly Pro Trp	Glu Pro Pro Ala 490	Arg Pro Gly 495
Thr Leu Phe Ser Pro	Glu Asn His	Asp Gln Ala Arg 505	Glu Arg Lys 510
Pro Ala Lys Gln Lys 515	Val Pro Leu	Leu Ser Cys Pro 520	Ser Gln Pro 525
Phe Thr Ser Lys Leu 530	Ala Leu Leu	Gly Gln Val Phe 535	Leu Asp Ser 540
Ser			
<210> 182 <211> 2056 <212> DNA <213> Homo sapiens			
<400> 182 aaagttacat tttctctg	ga actotoctac	gecacteest este	atacaa 50
catctgggtt tgggcaga			
gcttcctggg ccggctct			-
tcagctccaa catatgca			
gctttatttt ggaaagaa			
tgcagacttt cacaatgg			
tggtttttct acgcattg			
tctgcctgcc cctcagaa			
tcttgatgtg gagcccag			
gtcgaatacc agggggagt			
ccccagcage tggtgctca			
atgacatcac ggccactg	g ccatacaacc	ttcgtgtcag ggcca	acattg 600
ggctcacaga cctcagcet	g gagcatcctg	aagcatccct ttaat	agaaa 650
ctcaaccatc cttacccga	c ctgggatgga	gatcaccaaa gatgo	jcttcc 700
acctggttat tgagctgga	g gacctggggc	cccagtttga gttcc	ttgtg 750
gcctactgga ggagggagc	c tggtgccgag	gaacatgtca aaatg	ggtgag 800
gagtgggggt attccagto	c acctagaaac	catggagcca ggggc	tgcat 850

```
actgtgtgaa ggcccagaca ttcgtgaagg ccattgggag gtacagcgcc 900
ttcagccaga cagaatgtgt ggaggtgcaa ggagaggcca ttcccctggt 950
actggccctg tttgcctttg ttggcttcat gctgatcctt gtggtcgtgc 1000
cactgttcgt ctggaaaatg ggccggctgc tccagtactc ctgttgcccc 1050
gtggtggtcc tcccagacac cttgaaaata accaattcac cccagaagtt 1100
aatcagctgc agaagggagg aggtggatgc ctgtgccacg gctgtgatgt 1150
ctcctgagga actcctcagg gcctggatct cataggtttg cggaagggcc 1200
caggtgaagc cgagaacctg gtctgcatga catggaaacc atgaggggac 1250
aagttgtgtt tctgttttcc gccacggaca agggatgaga gaagtaggaa 1300
gagcctgttg tctacaagtc tagaagcaac catcagaggc agggtggttt 1350
gtctaacaga acactgactg aggcttaggg gatgtgacct ctagactggg 1400
ggctgccact tgctggctga gcaaccctgg gaaaagtgac ttcatccctt 1450
cggtcctaag ttttctcatc tgtaatgggg gaattaccta cacacctgct 1500
aaacacacac acacagagtc tctctctata tatacacacq tacacataaa 1550
tacacccage acttgcaagg ctagagggaa actggtgaca ctctacagtc 1600
tgactgattc agtgtttctg gagagcagga cataaatgta tgatgagaat 1650
gatcaaggac tctacacact gggtggcttg gagagcccac tttcccagaa 1700
taatccttga gagaaaagga atcatgggag caatggtgtt gagttcactt 1750
caageceaat geeggtgeag aggggaatgg ettagegage tetacagtag 1800
gtgacctgga ggaaggtcac agccacactg aaaatgggat gtgcatgaac 1850
acggaggatc catgaactac tgtaaagtgt tgacagtgtg tgcacactgc 1900
agacagcagg tgaaatgtat gtgtgcaatg cgacgagaat gcagaagtca 1950
gtaacatgtg catgtttgtt gtgctccttt tttctgttgg taaagtacag 2000
aaaaaa 2056
```

<210> 183

<211> 311

<212> PRT

<213> Homo sapiens

<220>

<221> Signal peptide

<222> 1-29

<223> Signal peptide

<220>

<221> N-glycosylation sites

<222> 40-43, 134-137

<223	<223> N-glycosylation sites.													
<222	l> Ti 2> 92	2-119	9	ctor					_					
<221 <222	<220> <221> Transmembrane domain <222> 230-255 <223> Transmembrane domain													
<220> <221> Integrins alpha chain protein homology <222> 232-262 <223> Integrins alpha chain protein homology														
<400 Met 1	Gln		Phe	Thr	Met	Val	. Leu	Glu	Glu 10		e Trp	Thr	Ser	Leu 15
Phe	Met	Trp	Phe	Phe 20	Tyr	Ala	Leu	Ile	Pro 25		Leu	Leu	Thr	Asp 30
Glu	Val	Ala	Ile	Leu 35	Pro	Ala	Pro	Gln	Asn 40		Ser	Val	Leu	Ser 45
Thr	Asn	Met	Lys	His 50	Leu	Leu	Met	Trp	Ser 55		Val	Ile	Ala	Pro 60
Gly	Glu	Thr	Val	Tyr 65	Tyr	Ser	Val	Glu	Tyr 70		Gly	Glu	Туг	Glu 75
Ser	Leu	Tyr	Thr	Ser 80	His	Ile	Trp	Ile	Pro 85		Ser	Trp	Cys	Ser 90
Leu	Thr	Glu	Gly	Pro 95	Glu	Cys	Asp	Val	Thr 100	Asp	Asp	Ile	Thr	Ala 105
Thr	Val	Pro	Tyr	Asn 110	Leu	Arg	Val	Arg	Ala 115	Thr	Leu	Gly	Ser	Gln 120
Thr	Ser	Ala	Trp	Ser 125	Ile	Leu	Lys	His	Pro 130	Phe	Asn	Arg	Asn	Ser 135
Thr	Ile	Leu	Thr	Arg 140	Pro	Gly	Met	Glu	Ile 145	Thr	Lys	Asp	Gly	Phe 150
His	Leu	Val	Ile	Glu 155	Leu	Glu	Asp	Leu	Gly 160	Pro	Gln	Phe	Glu	Phe 165
Leu	Val	Ala	Tyr	Trp 170	Arg	Arg	Glu	Pro	Gly 175	Ala	Glu	Glu	His	Val 180
Lys	Met	Val	Arg	Ser 185	Gly	Gly	Ile	Pro	Val 190	His	Leu	Glu	Thr	Met 195
Glu	Pro	Gly	Ala	Ala 200	Tyr	Cys	Val	Lys	Ala 205	Gln	Thr	Phe	Val	Lys 210
Ala	Ile	Gly	Arg	Tyr 215	Ser	Ala	Phe	Ser	Gln 220	Thr	Glu	Cys	Val	Glu 225

Val Gln Gly Glu Ala Ile Pro Leu Val Leu Ala Leu Phe Ala Phe 230 235 240

Val Gly Phe Met Leu Ile Leu Val Val Val Pro Leu Phe Val Trp 245 250 255

Lys Met Gly Arg Leu Leu Gln Tyr Ser Cys Cys Pro Val Val 260 265 270

Leu Pro Asp Thr Leu Lys Ile Thr Asn Ser Pro Gln Lys Leu Ile 275 280 285

Ser Cys Arg Arg Glu Glu Val Asp Ala Cys Ala Thr Ala Val Met 290 295 300

Ser Pro Glu Glu Leu Leu Arg Ala Trp Ile Ser 305 310

<210> 184

<211> 808

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 654, 711, 748

<223> unknown base

<400> 184

tcctgctgat gcacatctgg gtttggcaaa aggaggttgc ttcgagccgc 50 cetttetage tteetggeeg getetagaac aatteagget tegetgegae 100 tagacctcag ctccaacata tgcattctga agaaagatgg ctgagatgac 150 agaatgcttt attttggaaa gaaacaatgt tctaggtcaa actgagtcta 200 ccaaatgcag actttcacaa tggttctaga agaaatctgg acaagtcttt 250 tcatgtggtt tttctacgca ttgattccat gtttgctcac agatgaagtg 300 gccattctgc ctgcccctca gaacctctct gtactctcaa ccaacatgaa 350 gcatctcttg atgtggagcc cagtgatcgc gcctggagaa acagtgtact 400 attetgtega ataccagggg gagtacgaga geetgtacae gageeacate 450 tggatcccca gcagctggtg ctcactcact gaaggtcctg agtgtgatgt 500 cactgatgac atcacggcca ctgtgccata caacctttgt gtcagggcca 550 cattgggctc acagacetca geetggagca teetgaagca teeetttaat 600 agaaactcaa ccatccttac ccgacctggg atggagatca ccaaagatgg 650 cttncacctg gttattgagc tggaggacct ggggccccag tttgagttcc 700 ttgtggccta ntggaggagg ggcgaacccc ttgcggcgca aggggttngc 750 gaaccccttg cggccgctgg ggtatctctc gagaaaagag aggcccaata 800 tgacccac 808

```
<210> 185
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 185
 aggetteget gegactagae etc 23
 <210> 186
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
<400> 186
 ccaggtcggg taaggatggt tgag 24
<210> 187
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 187
 tttctacgca ttgattccat gtttgctcac agatgaagtg gccattctgc 50
<210> 188
<211> 1227
<212> DNA
<213> Homo sapiens
<400> 188
cggacgcgtg ggccgccacc tccggaacaa gccatggtgg cggcgacggt 50
 ggcagcggcg tggctgctcc tgtgggctgc ggcctgcgcg cagcaggagc 100
 aggacticta cgacticaag gcggtcaaca tccggggcaa actggtgtcg 150
 ctggagaagt accgcggatc ggtgtccctg gtggtgaatg tggccagcga 200
 gtgcggcttc acagaccagc actaccgagc cctgcagcag ctgcagcgag 250
 acetgggeee ecaceaettt aaegtgeteg eetteeeetg caaceagttt 300
 ggccaacagg agcctgacag caacaaggag attgagaget ttgcccgccg 350
 cacctacagt gtctcattcc ccatgtttag caagattgca gtcaccggta 400
 ctggtgccca tcctgccttc aagtacctgg cccagacttc tgggaaggag 450
 cccacctgga acttctggaa gtacctagta gccccagatg gaaaggtggt 500
 aggggcttgg gacccaactg tgtcagtgga ggaggtcaga ccccagatca 550
 cagegetegt gaggaagete ateetaetga agegagaaga ettataacca 600
```

caatgcaaac tcaaatggtg cttcaacaggg agagacccac tgactctcct 700 tcctttactc ttatgccatt ggtcccatca ttcttgtggg ggaaaaattc 750 tagtattttg attattgaa tcttacagca acaaatagga actcctggcc 800 aatgagagct cttgaccagt gaatcaccag ccgatacgaa cgtcttgcca 850 acaaaaaatg gtggcaaata gaagtatatc aagcaataat ctcccacca 900 aggcttctgt aaactgggac caatgattac ctcatagggc tgttgtgagg 950 attaggatg aatacctgtg aaagtgccta ggcagtgcca gccaaatagg 1000 aggcattcaa tgaacattt ttgcatataa accaaaaaat aacttgttat 1050 caataaaaac ttgcatcaa catgaattc cagccgatga taatccaggc 1100 caaaggttta gttgttgta tttcctctgt attatttc tcattacaaa 1150 agaaaatgcaa gttcattgta acaatccaaa caatacctca cgatataaaa 1227

<210> 189 <211> 187 <212> PRT

<213> Homo sapiens

<400> 189

Met Val Ala Ala Thr Val Ala Ala Ala Trp Leu Leu Trp Ala 1 5 10 15

Ala Ala Cys Ala Gln Gln Gln Gln Asp Phe Tyr Asp Phe Lys Ala 20 25 30

Val Asn Ile Arg Gly Lys Leu Val Ser Leu Glu Lys Tyr Arg Gly
35 40 45

Ser Val Ser Leu Val Val Asn Val Ala Ser Glu Cys Gly Phe Thr
50 55 60

Asp Gln His Tyr Arg Ala Leu Gln Gln Leu Gln Arg Asp Leu Gly
65 70 75

Pro His His Phe Asn Val Leu Ala Phe Pro Cys Asn Gln Phe Gly 80 85 90

Gln Gln Glu Pro Asp Ser Asn Lys Glu Ile Glu Ser Phe Ala Arg 95 100 105

Arg Thr Tyr Ser Val Ser Phe Pro Met Phe Ser Lys Ile Ala Val 110 115 120

Thr Gly Thr Gly Ala His Pro Ala Phe Lys Tyr Leu Ala Gln Thr 125 130 135

Ser Gly Lys Glu Pro Thr Trp Asn Phe Trp Lys Tyr Leu Val Ala 140 145 150

Pro Asp Gly Lys Val Val Gly Ala Trp Asp Pro Thr Val Ser Val

155 160 165 Glu Glu Val Arg Pro Gln Ile Thr Ala Leu Val Arg Lys Leu Ile 175 180 Leu Leu Lys Arg Glu Asp Leu 185 <210> 190 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 190 gcaggacttc tacgacttca aggc 24 <210> 191 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 191 agtctgggcc aggtacttga aggc 24 <210> 192 <211> 50 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 192 caacatccgg ggcaaactgg tgtcgctgga gaagtaccgc ggatcggtgt 50 <210> 193 <211> 2187 <212> DNA <213> Homo sapiens <400> 193 cggacgcgtg ggcgggccgg gacgcagggc aaagcgagcc atggctgtct 50 acgtcgggat gctgcgcctg gggaggctgt gcgccgggag ctcgggggtg 100 ctgggggccc gggccgccct ctctcggagt tggcaggaag ccaggttgca 150 gggtgtccgc ttcctcagtt ccagagaggt ggatcgcatg gtctccacgc 200 ccatcggagg cctcagctac gttcaggggt gcaccaaaaa gcatcttaac 250 agcaagactg tgggccagtg cctggagacc acagcacaga gggtcccaga 300 acgagaggcc ttggtcgtcc tccatgaaga cgtcaggttg acctttgccc 350

aactcaagga ggaggtggac aaagctgctt ctggcctcct gagcattggc 400

aatgtcaagg aattgactga acgaactaag agctcctgga tgggtccggg 2050 aactcgcctg ggcacaaggt gccaaaaggc aggcagcctg cccaggccct 2100 ccctcctgtc catccccac attcccctgt ctgtccttgt gatttggcat 2150 aaagagcttc tgtttcttt gaaaaaaaaa aaaaaaa 2187

<210> 194

<211> 615

<212> PRT

<213> Homo sapiens

<400> 194

Met Ala Val Tyr Val Gly Met Leu Arg Leu Gly Arg Leu Cys Ala 1 5 10 15

Gly Ser Ser Gly Val Leu Gly Ala Arg Ala Ala Leu Ser Arg Ser 20 25 30

Trp Gln Glu Ala Arg Leu Gln Gly Val Arg Phe Leu Ser Ser Arg
35
40

Glu Val Asp Arg Met Val Ser Thr Pro Ile Gly Gly Leu Ser Tyr 50 55 60

Val Gln Gly Cys Thr Lys Lys His Leu Asn Ser Lys Thr Val Gly 65 70 75

Gln Cys Leu Glu Thr Thr Ala Gln Arg Val Pro Glu Arg Glu Ala 80 85 90

Leu Val Val Leu His Glu Asp Val Arg Leu Thr Phe Ala Gln Leu 95 100 105

Lys Glu Glu Val Asp Lys Ala Ala Ser Gly Leu Leu Ser Ile Gly
110 115 120

Leu Cys Lys Gly Asp Arg Leu Gly Met Trp Gly Pro Asn Ser Tyr 125 130 135

Ala Trp Val Leu Met Gln Leu Ala Thr Ala Gln Ala Gly Ile Ile 140 145 150

Leu Val Ser Val Asn Pro Ala Tyr Gln Ala Met Glu Leu Glu Tyr 155 160 165

Val Leu Lys Lys Val Gly Cys Lys Ala Leu Val Phe Pro Lys Gln
170 175

Phe Lys Thr Gln Gln Tyr Tyr Asn Val Leu Lys Gln Ile Cys Pro 185 190 195

Glu Val Glu Asn Ala Gln Pro Gly Ala Leu Lys Ser Gln Arg Leu 200 205 210

Pro Asp Leu Thr Thr Val Ile Ser Val Asp Ala Pro Leu Pro Gly 215 220 225

Thr Leu Leu Leu Asp Glu Val Val Ala Ala Gly Ser Thr Arg Gln 230 235 240

His Leu Asp Gln Leu Gln Tyr Asn Gln Gln Phe Leu Ser Cys His

				245					250					255
Asp	Pro	Ile	Asn	Ile 260	Gln	Phe	Thr	Ser	Gly 265	Thr	Thr	Gly	Ser	Pro 270
Lys	Gly	Ala	Thr	Leu 275	Ser	His	Tyr	Asn	Ile 280	Val	Asn	Asn	Ser	Asn 285
Ile	Leu	Gly	Glu	Arg 290	Leu	Lys	Leu	His	Glu 295	Lys	Thr	Pro	Glu	Gln 300
Leu	Arg	Met	Ile	Leu 305	Pro	Asn	Pro	Leu	Tyr 310	His	Cys	Leu	Gly	Ser 315
Val	Ala	Gly	Thr	Met 320	Met	Cys	Leu	Met	Tyr 325	Gly	Ala	Thr	Leu	Ile 330
Leu	Ala	Ser	Pro	Ile 335	Phe	Asn	Gly	Lys	Lys 340	Ala	Leu	Glu	Ala	Ile 345
Ser	Arg	Glu	Arg	Gly 350	Thr	Phe	Leu	Tyr	Gly 355	Thr	Pro	Thr	Met	Phe 360
Val	Asp	Ile	Leu	Asn 365	Gln	Pro	Asp	Phe	Ser 370	Ser	Tyr	Asp	Ile	Ser 375
Thr	Met	Cys	Gly	Gly 380	Val	Ile	Ala	Gly	Ser 385	Pro	Ala	Pro	Pro	Glu 390
Leu	Ile	Arg	Ala	Ile 395	Ile	Asn	Lys	Ile	Asn 400	Met	Lys	Asp	Leu	Val 405
Val	Ala	Tyr	Gly	Thr 410	Thr	Glu	Asn	Ser	Pro 415	Val	Thr	Phe	Ala	His 420
Phe	Pro	Glu	Asp	Thr 425	Val	Glu	Gln	Lys	Ala 430	Glu	Ser	Val	Gly	Arg 435
Ile	Met	Pro	His	Thr 440	Glu	Ala	Arg	Ile	Met 445	Asn	Met	Glu	Ala	Gly 450
Thr	Leu	Ala	Lys	Leu 455	Asn	Thr	Pro	Gly	Glu 460	Leu	Cys	Ile	Arg	Gly 465
Tyr	Cys	Val	Met	Leu 470	Gly	Tyr	Trp	Gly	Glu 475	Pro	Gln	Lys	Thr	Glu 480
Glu	Ala	Val	Asp	Gln 485	Asp	Lys	Trp	Tyr	Trp 490	Thr	Gly	Asp	Val	Ala 495
Thr	Met	Asn	Glu	Gln 500	Gly	Phe	Cys	Lys	Ile 505	Val	Gly	Arg	Ser	Lys 510
Asp	Met	Ile	Ile	Arg 515	Gly	Gly	Glu	Asn	Ile 520	Tyr	Pro	Ala	Glu	Leu 525
Glu	Asp	Phe	Phe	His 530	Thr	His	Pro	Lys	Val 535	Gln	Glu	Val	Gln	Val 540
Val	Gly	Val	Lys	Asp 545	Asp	Arg	Met	Gly	Glu 550	Glu	Ile	Cys	Ala	Cys 555
Ile	Arg	Leu	Lys	Asp	Gly	Glu	Glu	Thr	Thr	Val	Glu	Glu	Ile	Lys

			_
	560	565	570
Ala Phe Cys Ly	s Gly Lys Ile 575	Ser His Phe Ly 580	s Ile Pro Lys Tyr 585
Ile Val Phe Va	1 Thr Asn Tyr 590	Pro Leu Thr Il	e Ser Gly Lys Ile 600
Gln Lys Phe Ly	s Leu Arg Glu 605	Gln Met Glu Are 610	g His Leu Asn Leu 615
<210> 195 <211> 642 <212> DNA <213> Homo sapi	ens		
<400> 195 caactccaac att	ttaggag agcgco	ctgaa actgcatga	g aagacaccag 50
agcagttgcg gate	gatectg cecaad	cccc tgtaccatte	g cctgggttcc 100
gtggcaggca caa	tgatgtg tctgat	gtac ggtgccacco	c tcatcctggc 150
ctctcccatc ttca	aatggca agaagg	gcact ggaggccato	agcagagaga 200
gaggcacctt cct	gtatggt acccc	acga tgttcgtgga	a cattctgaac 250
cagccagact tct	ccagtta tgacat	ctcg accatgtgtç	g gaggtgtcat 300
tgctgggtcc cct	gcacctc cagagt	tgat ccgagccato	atcaacaaga 350
taaatatgaa ggad	cctggtg gttgct	tatg gaaccacaga	gaacagtccc 400
gtgacattcg cgca	acttccc tgagga	cact gtggagcaga	aggcagaaag 450
cgtgggcaga atta	atgeete acaegg	aggc gcggatcatg	aacatggagg 500
cagggacgct ggca	aagctg aacacg	cccg gggagctgtg	catccgaggg 550
tactgcgtca tgct	gggcta ctgggg	tgag cctcagaaga	cagaggaagc 600
agtggatcag gaca	agtggt attgga	cagg agatgtcgcc	ac 642
<210> 196 <211> 1575 <212> DNA <213> Homo sapie	ens		
<400> 196			
gagcaggacg gagc			
gatctggact gcag			
aggccctgga gtgc			
ccgaacaaga tgaa			
cgaggccgtg gggg	cggtgg agacca	tcca cggacaattc	tcgctggcag 250

tgcggggttg cggttcggga ctccccggca agaatgaccg cggcctggat 300

cttcacgggc ttctggcgtt catccagctg cagcaatgcg ctcaggatcg 350

ctgcaacgcc aagctcaacc tcacctcgcg ggcgctcgac ccggcaggta 400 atgagagtgc ataccegece aacggegtgg agtgetacag etgtgtggge 450 ctgagccggg aggcgtgcca gggtacatcg ccgccggtcg tgagctgcta 500 caacgccagc gatcatgtct acaagggctg cttcgacggc aacgtcacct 550 tgacggcagc taatgtgact gtgtccttgc ctgtccgggg ctgtgtccag 600 gatgaattct gcactcggga tggagtaaca ggcccagggt tcacgctcag 650 tggctcctgt tgccaggggt cccgctgtaa ctctgacctc cgcaacaaga 700 cctacttctc ccctcgaatc ccacccttg tccggctgcc ccctccagag 750 cccacgactg tggcctcaac cacatctgtc accacttcta cctcggcccc 800 agtgagaccc acatecacca ccaaacccat gccagcgcca accagtcaga 850 ctccgagaca gggagtagaa cacgaggcct cccgggatga ggagcccagg 900 ttgactggag gcgccgctgg ccaccaggac cgcagcaatt cagggcagta 950 teetgeaaaa ggggggeece ageageecea taataaagge tgtgtggete 1000 ccacagetgg attggcagee ettetgttgg cegtggetge tggtgteeta 1050 ctgtgagctt ctccacctgg aaatttccct ctcacctact tctctggccc 1100 tgggtacccc tcttctcatc acttcctgtt cccaccactg gactgggctg 1150 gcccagcccc tgtttttcca acattcccca gtatccccag cttctgctgc 1200 gctggtttgc ggctttggga aataaaatac cgttgtatat attctgccag 1250 gggtgttcta gctttttgag gacagctcct gtatccttct catccttgtc 1300 teteegettg teetettgtg atgttaggae agagtgagag aagteagetg 1350 tcacggggaa ggtgagagag aggatgctaa gcttcctact cactttctcc 1400 tagecageet ggaetttgga gegtggggtg ggtgggaeaa tggeteeca 1450 ctctaagcac tgcctccct actcccgca tctttgggga atcggttccc 1500 catatgtctt ccttactaga ctgtgagctc ctcgaggggg ggcccggtac 1550 ccaattcgcc ctatagtgag tcgta 1575

<210> 197

<211> 346

<212> PRT

<213> Homo sapiens

<400> 197

Met Asp Pro Ala Arg Lys Ala Gly Ala Gln Ala Met Ile Trp Thr 1 5 10 15

Ala Gly Trp Leu Leu Leu Leu Leu Arg Gly Gly Ala Gln Ala 20 25 30

Leu Glu Cys Tyr Ser Cys Val Gln Lys Ala Asp Asp Gly Cys Ser

35 40 45 Pro Asn Lys Met Lys Thr Val Lys Cys Ala Pro Gly Val Asp Val Cys Thr Glu Ala Val Gly Ala Val Glu Thr Ile His Gly Gln Phe Ser Leu Ala Val Arg Gly Cys Gly Ser Gly Leu Pro Gly Lys Asn Asp Arg Gly Leu Asp Leu His Gly Leu Leu Ala Phe Ile Gln Leu Gln Gln Cys Ala Gln Asp Arg Cys Asn Ala Lys Leu Asn Leu Thr 115 Ser Arg Ala Leu Asp Pro Ala Gly Asn Glu Ser Ala Tyr Pro Pro Asn Gly Val Glu Cys Tyr Ser Cys Val Gly Leu Ser Arg Glu Ala 145 Cys Gln Gly Thr Ser Pro Pro Val Val Ser Cys Tyr Asn Ala Ser 160 Asp His Val Tyr Lys Gly Cys Phe Asp Gly Asn Val Thr Leu Thr Ala Ala Asn Val Thr Val Ser Leu Pro Val Arg Gly Cys Val Gln 190 Asp Glu Phe Cys Thr Arg Asp Gly Val Thr Gly Pro Gly Phe Thr Leu Ser Gly Ser Cys Cys Gln Gly Ser Arg Cys Asn Ser Asp Leu 215 220 Arg Asn Lys Thr Tyr Phe Ser Pro Arg Ile Pro Pro Leu Val Arg 230 235 Leu Pro Pro Pro Glu Pro Thr Thr Val Ala Ser Thr Thr Ser Val 250 Thr Thr Ser Thr Ser Ala Pro Val Arg Pro Thr Ser Thr Thr Lys 260 Pro Met Pro Ala Pro Thr Ser Gln Thr Pro Arg Gln Gly Val Glu 285 His Glu Ala Ser Arg Asp Glu Glu Pro Arg Leu Thr Gly Gly Ala 290 Ala Gly His Gln Asp Arg Ser Asn Ser Gly Gln Tyr Pro Ala Lys 305 Gly Gly Pro Gln Gln Pro His Asn Lys Gly Cys Val Ala Pro Thr 320 330 Ala Gly Leu Ala Ala Leu Leu Leu Ala Val Ala Ala Gly Val Leu 340

Leu

<400> 198 cgggactcgg cgggtcctcc tgggagtctc ggaggggacc ggctgtgcag 50 acgccatgga gttggtgctg gtcttcctct gcagcctgct ggcccccatg 100 gtcctggcca gtgcagctga aaaggagaag gaaatggacc cttttcatta 150 tgattaccag accctgagga ttgggggact ggtgttcgct gtggtcctct 200 tctcggttgg gatcctcctt atcctaagtc gcaggtgcaa gtgcagtttc 250 aatcagaagc cccgggcccc aggagatgag gaagcccagg tggagaacct 300 catcaccgcc aatgcaacag agccccagaa gcagagaact gaagtgcagc 350 catcaggtgg aagcctctgg aacctgaggc ggctgcttga acctttggat 400 gcaaatgtcg atgcttaaga aaaccggcca cttcagcaac agccctttcc 450 ccaggagaag ccaagaactt gtgtgtcccc caccctatcc cctctaacac 500 cattecteca cetgatgatg caactaacae ttgeeteece actgeageet 550 gcggtcctgc ccacctcccg tgatgtgtgt gtgtgtgtgt gtgtgtgact 600 gtgtgtgttt gctaactgtg gtctttgtgg ctacttgttt gtggatggta 650 ttgtgtttgt tagtgaactg tggactcgct ttcccaggca ggggctgagc 700 cacatggcca tetgeteete eetgeeeeg tggeeeteea teacettetg 750 ctcctaggag gctgcttgtt gcccgagacc agccccctcc cctgatttag 800 ggatgcgtag ggtaagagca cgggcagtgg tcttcagtcg tcttgggacc 850 tgggaaggtt tgcagcactt tgtcatcatt cttcatggac tcctttcact 900 cctttaacaa aaaccttgct tccttatccc acctgatccc agtctgaagg 950 tctcttagca actggagata caaagcaagg agctggtgag cccagcgttg 1000 acgtcaggca ggctatgccc ttccgtggtt aatttcttcc caggggcttc 1050 cacgaggagt ccccatctgc cccgcccctt cacagagcgc ccggggattc 1100 caggcccagg gcttctactc tgcccctggg gaatgtgtcc cctgcatatc 1150 ttctcagcaa taactccatg ggctctggga ccctacccct tccaaccttc 1200 cctgcttctg agacttcaat ctacagccca gctcatccag atgcagacta 1250 cagtccctgc aattgggtct ctggcaggca atagttgaag gactcctgtt 1300 ccgttggggc cagcacaccg ggatggatgg agggagagca gaggcctttg 1350 cttctctgcc tacgtcccct tagatgggca gcagaggcaa ctcccgcatc 1400

ctttgctctg cctgtcggtg gtcagagcgg tgagcgaggt gggttggaga 1450 ctcagcaggc tccgtgcagc ccttgggaac agtgagaggt tgaaggtcat 1500 aacgagagtg ggaactcaac ccagatcccg ccctcctgt cctctgtgtt 1550 cccgcggaaa ccaaccaaac cgtgcgctgt gacccattgc tgttctctgt 1600 atcgtgatct atcctcaaca acaacagaaa aaaggaataa aatatccttt 1650 gtttcct 1657

<210> 199 <211> 120

<212> PRT

<213> Homo sapiens

<400> 199

Met Glu Leu Val Leu Val Phe Leu Cys Ser Leu Leu Ala Pro Met 1 5 10 15

Val Leu Ala Ser Ala Ala Glu Lys Glu Lys Glu Met Asp Pro Phe 20 25 30

His Tyr Asp Tyr Gln Thr Leu Arg Ile Gly Gly Leu Val Phe Ala 35 40 45

Val Val Leu Phe Ser Val Gly Ile Leu Leu Ile Leu Ser Arg Arg 50 55 60

Cys Lys Cys Ser Phe Asn Gln Lys Pro Arg Ala Pro Gly Asp Glu 65 70 75

Glu Ala Gln Val Glu Asn Leu Ile Thr Ala Asn Ala Thr Glu Pro $80 \\ 85 \\ 90$

Gln Lys Gln Arg Thr Glu Val Gln Pro Ser Gly Gly Ser Leu Trp 95 100

Asn Leu Arg Arg Leu Leu Glu Pro Leu Asp Ala Asn Val Asp Ala 110 115 120

<210> 200

<211> 415

<212> DNA

<213> Homo sapiens

<400> 200

aaacttgacg ccatgaagat cccggtcctt cctgccgtgg tgctcctctc 50 cctcctggtg ctccactctg cccagggagc caccctgggt ggtcctgagg 100 aagaaagcac cattgagaat tatgcgtcac gacccgaggc ctttaacacc 150 ccgttcctga acatcgacaa attgcgatct gcgtttaagg ctgatgagtt 200 cctgaactgg cacgccctct ttgagtctat caaaaggaaa cttcctttcc 250 tcaactggga tgcctttcct aagctgaaag gactgaggag cgcaactcct 300 gatgcccagt gaccatgacc tccactggaa gagggggcta gcgtagcgc 350 tgattctcaa cctaccataa ctctttcctg cctcaggaac tccaataaaa 400

cattttccat ccaaa 415

<210> 201

<211> 99

<212> PRT

<213> Homo sapiens

<400> 201

Met Lys Ile Pro Val Leu Pro Ala Val Val Leu Leu Ser Leu Leu 1 5 10 15

Val Leu His Ser Ala Gln Gly Ala Thr Leu Gly Gly Pro Glu Glu
20 25 30

Glu Ser Thr Ile Glu Asn Tyr Ala Ser Arg Pro Glu Ala Phe Asn 35 40 45

Thr Pro Phe Leu Asn Ile Asp Lys Leu Arg Ser Ala Phe Lys Ala 50 55 60

Asp Glu Phe Leu Asn Trp His Ala Leu Phe Glu Ser Ile Lys Arg
65 70 75

Lys Leu Pro Phe Leu Asn Trp Asp Ala Phe Pro Lys Leu Lys Gly 80 85 90

Leu Arg Ser Ala Thr Pro Asp Ala Gln
95

<210> 202

<211> 678

<212> DNA

<213> Homo sapiens

<400> 202

cagttetgaa ateaatgag ttaatttagg gaatacaaac cagccatggg 50 ggtggagatt geetttgeet cagtgattet cacetgeete teeettettgg 100 cagcaggagt eteecaggtt gttettetee agecagttee aactcaggag 150 acaggteeca aggccatggg agatetetee tgtggetttg eeggeeacte 200 atgaggagtt ttttgtgtaa agtattttt agaatactgt tgaettette 250 atgattaat aaccateett tgegaagtt tatgaggett taggggaatg 300 teaaceetea aattttgtt atactagatg getteeattt acceaceact 350 attttaaggt eeetttatt ttaggtteaa ggtteatttg acttgagaaa 400 gtgeeettet geagetteat tgattttgt tatetteaet attaattgta 450 acgattaaaa aagaataaga geaegeagae etetaggaga atattttate 500 eetgggtgee eetgacacat ttatgtagtg ateceacaaa tgtgattgtt 550 aatttaaatg ttattetaa attagtacat teagttgtga tgtaatatga 600 ataaceagaa tetattett aaaagttttg agtatattt teaactagat 650 atttgatag aaagaetgaa tagtgatg 678

```
<210> 203
<211> 52
<212> PRT
<213> Homo sapiens
<400> 203
 Met Gly Val Glu Ile Ala Phe Ala Ser Val Ile Leu Thr Cys Leu
 Ser Leu Leu Ala Ala Gly Val Ser Gln Val Val Leu Leu Gln Pro
 Val Pro Thr Gln Glu Thr Gly Pro Lys Ala Met Gly Asp Leu Ser
 Cys Gly Phe Ala Gly His Ser
                  50
<210> 204
<211> 1917
<212> DNA
```

<213> Homo sapiens

<400> 204

ggggaatctg cagtaggtct gccggcgatg gagtggtggg ctagctcgcc 50 gcttcggctc tggctgctgt tgttcctcct gccctcagcg cagggccgcc 100 agaaggagtc aggttcaaaa tggaaagtat ttattgacca aattaacagg 150 tctttggaga attacgaacc atgttcaagt caaaactgca gctgctacca 200 tggtgtcata gaagaggatc taactccttt ccgaggaggc atctccagga 250 agatgatggc agaggtagtc agacggaagc tagggaccca ctatcagatc 300 actaagaaca gactgtaccg ggaaaatgac tgcatgttcc cctcaaggtg 350 tagtggtgtt gagcacttta ttttggaagt gatcgggcgt ctccctgaca 400 tggagatggt gatcaatgta cgagattatc ctcaggttcc taaatggatg 450 gagectgeca teccagtett etectteagt aagacateag agtaceatga 500 tatcatgtat cctgcttgga cattttggga agggggacct gctgtttggc 550 caatttatcc tacaggtctt ggacggtggg acctcttcag agaagatctg 600 gtaaggtcag cagcacagtg gccatggaaa aagaaaaact ctacagcata 650 tttccgagga tcaaggacaa gtccagaacg agatcctctc attcttctgt 700 ctcggaaaaa cccaaaactt gttgatgcag aatacaccaa aaaccaggcc 750 tggaaatcta tgaaagatac cttaggaaag ccagctgcta aggatgtcca 800 tcttgtggat cactgcaaat acaagtatct gtttaatttt cgaggcgtag 850 ctgcaagttt ccggtttaaa cacctcttcc tgtgtggctc acttgttttc 900 catgttggtg atgagtggct agaattcttc tatccacagc tgaagccatg 950 ggttcactat atcccagtca aaacagatct ctccaatgtc caagagctgt 1000 tacaatttgt aaaagcaaat gatgatgtag ctcaagagat tgctgaaagg 1050 ggaagccagt ttattaggaa ccatttgcag atggatgaca tcacctgtta 1100 ctgggagaac ctcttgagtg aatactctaa attcctgtct tataatgtaa 1150 cgagaaggaa aggttatgat caaattattc ccaaaatgtt gaaaactgaa 1200 ctatagtagt catcatagga ccatagtcct ctttgtggca acagatctca 1250 gatatectae ggtgagaage ttaccataag ettggeteet atacettgaa 1300 tatctgctat caagccaaat acctggtttt ccttatcatg ctgcacccag 1350 agcaactctt gagaaagatt taaaatgtgt ctaatacact gatatgaagc 1400 agttcaactt tttggatgaa taaggaccag aaatcgtgag atgtggattt 1450 tgaacccaac tctacctttc attttcttaa gaccaatcac agcttgtgcc 1500 tcagatcatc cacctgtgtg agtccatcac tgtgaaattg actgtgtcca 1550 tgtgatgatg ccctttgtcc cattatttgg agcagaaaat tcgtcatttg 1600 gaagtagtac aactcattgc tggaattgtg aaattattca aggcgtgatc 1650 tctgtcactt tattttaatg taggaaaccc tatggggttt atgaaaaata 1700 aatgatgtag gagttctctt ttgtaaaacc ataaactctg ttactcagga 1800 ggtttctata atgccacata gaaagaggcc aattgcatga gtaattattg 1850 caattggatt tcaggttccc tttttgtgcc ttcatgccct acttcttaat 1900 gcctctctaa agccaaa 1917

<210> 205

<211> 392

<212> PRT

<213> Homo sapiens

<400> 205

Met Glu Trp Trp Ala Ser Ser Pro Leu Arg Leu Trp Leu Leu Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Phe Leu Leu Pro Ser Ala Gln Gly Arg Gln Lys Glu Ser Gly Ser 20 25 30

Lys Trp Lys Val Phe Ile Asp Gln Ile Asn Arg Ser Leu Glu Asn 35 40 45

Tyr Glu Pro Cys Ser Ser Gln Asn Cys Ser Cys Tyr His Gly Val
50 55 60

Ile Glu Glu Asp Leu Thr Pro Phe Arg Gly Gly Ile Ser Arg Lys
65 70 75

Met Met Ala Glu Val Val Arg Arg Lys Leu Gly Thr His Tyr Gln 80 85 90

Ile Thr Lys Asn Arg Leu Tyr Arg Glu Asn Asp Cys Met Phe Pro

				95	5				100					105
Sei	a Arg	ј Суз	Ser	Gly 110	Val	. Glu	His	Phe	: Ile 115		Glu	Val	Ile	Gly 120
Arg	J Leu	Pro	Asp	Met 125	Glu	Met	. Val	Ile	Asn 130		Arg	Asp	Туг	Pro 135
Gln	val	. Pro	Lys	Trp 140		Glu	Pro	Ala	Ile 145		Val	Phe	Ser	Phe 150
Ser	Lys	Thr	Ser	Glu 155	Tyr	His	Asp	Ile	Met 160	Tyr	Pro	Ala	Trp	Thr 165
Phe	Trp	Glu	Gly	Gly 170	Pro	Ala	Val	Trp	Pro 175	Ile	Tyr	Pro	Thr	Gly 180
Leu	Gly	Arg	Trp	Asp 185	Leu	Phe	Arg	Glu	Asp 190	Leu	Val	Arg	Ser	Ala 195
Ala	Gln	Trp	Pro	Trp 200	Lys	Lys	Lys	Asn	Ser 205	Thr	Ala	Tyr	Phe	Arg 210
Gly	Ser	Arg	Thr	Ser 215	Pro	Glu	Arg	Asp	Pro 220	Leu	Ile	Leu	Leu	Ser 225
Arg	Lys	Asn	Pro	Lys 230	Leu	Val	Asp	Ala	Glu 235	Tyr	Thr	Lys	Asn	Gln 240
Ala	Trp	Lys	Ser	Met 245	Lys	Asp	Thr	Leu	Gly 250	Lys	Pro	Ala	Ala	Lys 255
Asp	Val	His	Leu	Val 260	Asp	His	Cys	Lys	Tyr 265	Lys	Tyr	Leu	Phe	Asn 270
Phe	Arg	Gly	Val	Ala 275	Ala	Ser	Phe	Arg	Phe 280	Lys	His	Leu	Phe	Leu 285
Cys	Gly	Ser	Leu	Val 290	Phe	His	Val	Gly	Asp 295	Glu	Trp	Leu	Glu	Phe 300
Phe	Tyr	Pro	Gln	Leu 305	Lys	Pro	Trp	Val	His 310	Tyr	Ile	Pro	Val	Lys 315
Thr	Asp	Leu	Ser	Asn 320	Val	Gln	Glu	Leu	Leu 325	Gln	Phe	Val	Lys	Ala 330
Asn	Asp	Asp	Val	Ala 335	Gln	Glu	Ile	Ala	Glu 340	Arg	Gly	Ser	Gln	Phe 345
Ile	Arg	Asn	His	Leu 350	Gln	Met	Asp	Asp	Ile 355	Thr	Cys	Tyr	Trp	Glu 360
Asn	Leu	Leu	Ser	Glu 365	Tyr	Ser	Lys	Phe	Leu 370	Ser	Tyr	Asn	Val	Thr 375
Arg	Arg	Lys		Tyr 380	Asp	Gln	Ile	Ile	Pro 385	Lys	Met	Leu	Lys	Thr 390
Glu	Leu													

<210> 206

<211> 1425 <212> DNA <213> Homo sapiens

<400> 206 cacceteca tttetegeea tggeecetge actgeteetg atceetgetg 50 ccetcgcctc tttcatcctg gcctttggca ccgqaqtgga gttcgtgcgc 100 tttacctccc ttcggccact tcttggaggg atcccggagt ctggtggtcc 150 ggatgcccgc cagggatggc tggctgccct gcaggaccgc agcatccttg 200 ccccctggc atgggatctg gggctcctgc ttctatttgt tgggcagcac 250 agecteatgg cagetgaaag agtgaaggea tggacateee ggtaetttgg 300 ggtccttcag aggtcactgt atgtggcctg cactgccctg gccttgcagc 350 tggtgatgcg gtactgggag cccataccca aaggccctgt gttgtgggag 400 gctcgggctg agccatgggc cacctgggtg ccgctcctct gctttgtgct 450 ccatgtcatc tcctggctcc tcatctttag catccttctc gtctttgact 500 atgctgagct catgggcctc aaacaggtat actaccatgt gctggggctg 550 ggcgagcctc tggccctgaa gtctccccqq qctctcagac tcttctccca 600 cctgcgccac ccagtgtgtg tggagctgct gacagtgctg tgggtggtgc 650 ctaccetggg cacggaccgt etcetecttg ettteeteet taccetetae 700 ctgggcctgg ctcacgggct tgatcagcaa gacctccgct acctccgggc 750 ccagctacaa agaaaactcc acctgctctc tcggccccag gatggggagg 800 cagagtgagg agctcactct ggttacaagc cctgttcttc ctctcccact 850 gaattetaaa teettaacat eeaggeeetg getgetteat geeagaggee 900 caaatccatg gactgaagga gatgccctt ctactacttg agactttatt 950 ctctgggtcc agctccatac cctaaattct gagtttcagc cactgaactc 1000 caaggtccac ttctcaccag caaggaagag tggggtatgg aagtcatctg 1050 tcccttcact gtttagagca tgacactctc cccctcaaca gcctcctgag 1100 aaggaaagga tetgeeetga ceaeteeeet ggeaetgtta ettgeetetg 1150 cgcctcaggg gtccccttct gcaccgctgg cttccactcc aagaaggtgg 1200 accagggtct gcaagttcaa cggtcatagc tgtccctcca ggccccaacc 1250 ttgcctcacc actcccggcc ctagtctctg cacctcctta ggccctgcct 1300 ctgggctcag accccaacct agtcaagggg attctcctgc tcttaactcg 1350 atgacttggg gctccctgct ctcccgagga agatgctctg caggaaaata 1400 aaagtcagcc tttttctaaa aaaaa 1425

<213 <212	0> 20 1> 20 2> PI	62 RT												
<400)> 20 = Ala				Leu	Leu	Ile	Pro	Ala		Leu	ı Ala	ı Sei	r Phe
Ile	e Let	ı Ala	Phe		Thr	Gly	. Val	Glu			Arg	r Phe	. Thr	15 Ser 30
Leu	a Arç	g Pro	Leu	Leu 35	Gly	Gly	Ile	Pro	Glu 40	Ser	Gly	Gly	Pro	Asp 45
Ala	. Arg	g Gln	Gly	Trp 50	Leu	Ala	Ala	Leu	Gln 55	Asp	Arg	Ser	· Ile	Leu 60
Ala	Pro	Leu	Ala	Trp 65	Asp	Leu	Gly	Leu	Leu 70	Leu	Leu	Phe	Val	Gly 75
Gln	His	Ser	Leu	Met 80	Ala	Ala	Glu	Arg	Val 85	Lys	Ala	Trp	Thr	Ser 90
Arg	Tyr	Phe	Gly	Val 95	Leu	Gln	Arg	Ser	Leu 100	Tyr	Val	Ala	Cys	Thr 105
Ala	Leu	Ala	Leu	Gln 110	Leu	Val	Met	Arg	Tyr 115	Trp	Glu	Pro	Ile	Pro 120
Lys	Gly	Pro	Val	Leu 125	Trp	Glu	Ala	Arg	Ala 130	Glu	Pro	Trp	Ala	Thr 135
		Pro		140					145					150
		Phe		155					160					165
Gly	Leu	Lys	Gln	Val 170	Tyr	Tyr	His	Val	Leu 175	Gly	Leu	Gly	Glu	Pro 180
		Leu		185					190					195
		Pro		200					205					210
		Leu		215					220					225
		Leu		230					235					240
		Arg		245			Arg	Lys	Leu 250	His	Leu	Leu	Ser	Arg 255
Pro	Gln	Asp	Gly	Glu . 260	Ala	Glu								

<210> 208 <211> 2095 <212> DNA

<213> Homo sapiens

<400> 208 ccgagcacag gagattgcct gcgtttagga ggtggctgcg ttgtgggaaa 50 agctatcaag gaagaaattg ccaaaccatg tcttttttc tgttttcaga 100 gtagttcaca acagatctga gtgttttaat taagcatgga atacagaaaa 150 caacaaaaaa cttaagcttt aatttcatct ggaattccac agttttctta 200 gctccctgga cccggttgac ctgttggctc ttcccgctgg ctgctctatc 250 acgtggtgct ctccgactac tcaccccgag tgtaaagaac cttcggctcg 300 egtgettetg agetgetgtg gatggeeteg getetetgga etgteettee 350 gagtaggatg tcactgagat ccctcaaatg gagcctcctg ctgctgtcac 400 tcctgagttt ctttgtgatg tggtacctca gccttcccca ctacaatgtg 450 atagaacgcg tgaactggat gtacttctat gagtatgagc cgatttacag 500 acaagacttt cacttcacac ttcgagagca ttcaaactgc tctcatcaaa 550 atccatttct ggtcattctg gtgacctccc acccttcaga tgtgaaagcc 600 aggcaggcca ttagagttac ttggggtgaa aaaaagtctt ggtggggata 650 tgaggttctt acatttttct tattaggcca agaggctgaa aaggaagaca 700 aaatgttggc attgtcctta gaggatgaac accttcttta tggtgacata 750 atccgacaag attttttaga cacatataat aacctgacct tgaaaaccat 800 tatggcattc aggtgggtaa ctgagttttg ccccaatgcc aagtacgtaa 850 tgaagacaga cactgatgtt ttcatcaata ctggcaattt agtgaagtat 900 cttttaaacc taaaccactc agagaagttt ttcacaggtt atcctctaat 950 tgataattat tcctatagag gattttacca aaaaacccat atttcttacc 1000 aggagtatcc tttcaaggtg ttccctccat actgcagtgg gttgggttat 1050 ataatgtcca gagatttggt gccaaggatc tatgaaatga tgggtcacgt 1100 aaaacccatc aagtttgaag atgtttatgt cgggatctgt ttgaatttat 1150 taaaagtgaa cattcatatt ccagaagaca caaatctttt ctttctatat 1200 agaatccatt tggatgtctg tcaactgaga cgtgtgattg cagcccatgg 1250 cttttcttcc aaggagatca tcactttttg gcaggtcatg ctaaggaaca 1300 ccacatgcca ttattaactt cacattctac aaaaagccta gaaggacagg 1350 ataccttgtg gaaagtgtta aataaagtag gtactgtgga aaattcatgg 1400 ggaggtcagt gtgctggctt acactgaact gaaactcatg aaaaacccag 1450 actggagact ggagggttac acttgtgatt tattagtcag gcccttcaaa 1500

gatgatatgt ggaggaatta aatataaagg aattggaggt ttttgctaaa 1550 gaaattaata ggaccaaaca atttggacat gtcattctgt agactagaat 1600 ttcttaaaag ggtgttactg agttataagc tcactaggct gtaaaaacaa 1650 aacaatgtag agttttattt attgaacaat gtagtcactt gaaggttttg 1700 tgtatatctt atgtggatta ccaatttaaa aatatatgta gttctgtgtc 1750 aaaaaacttc ttcactgaag ttatactgaa caaaatttta cctgtttttg 1800 gtcatttata aagtacttca agatgttgca gtattcaca gttattatta 1850 tttaaaatta cttcaacttt gtgttttaa atgtttgac gatttcaata 1900 caagataaaa aggatagtga atcattctt acatgcaaac attttccagt 1950 tacttaactg atcagttat tattgataca tcactccatt aatgtaaagt 2000 cataggtcat tattgcatat cagtaatctc ttggactttg ttaaatattt 2050 tactgtggta atatagagaa gaattaaagc aagaaaatct gaaaa 2095

<210> 209

<211> 331

<212> PRT

<213> Homo sapiens

<400> 209

Met Ala Ser Ala Leu Trp Thr Val Leu Pro Ser Arg Met Ser Leu 1 5 10 15

Arg Ser Leu Lys Trp Ser Leu Leu Leu Leu Ser Leu Leu Ser Phe 20 25 30

Phe Val Met Trp Tyr Leu Ser Leu Pro His Tyr Asn Val Ile Glu 35 40 45

Arg Val Asn Trp Met Tyr Phe Tyr Glu Tyr Glu Pro Ile Tyr Arg
50 55 60

Gln Asp Phe His Phe Thr Leu Arg Glu His Ser Asn Cys Ser His 65 70 75

Gln Asn Pro Phe Leu Val Ile Leu Val Thr Ser His Pro Ser Asp 80 85 90

Val Lys Ala Arg Gln Ala Ile Arg Val Thr Trp Gly Glu Lys Lys 95 100 105

Ser Trp Trp Gly Tyr Glu Val Leu Thr Phe Phe Leu Leu Gly Gln 110 115 120

Glu Ala Glu Lys Glu Asp Lys Met Leu Ala Leu Ser Leu Glu Asp 125 130 135

Glu His Leu Leu Tyr Gly Asp Ile Ile Arg Gln Asp Phe Leu Asp 140 145 150

Thr Tyr Asn Asn Leu Thr Leu Lys Thr Ile Met Ala Phe Arg Trp
155 160 165

Val Thr Glu Phe Cys Pro Asn Ala Lys Tyr Val Met Lys Thr Asp 170 175 Thr Asp Val Phe Ile Asn Thr Gly Asn Leu Val Lys Tyr Leu Leu 190 185 Asn Leu Asn His Ser Glu Lys Phe Phe Thr Gly Tyr Pro Leu Ile 205 Asp Asn Tyr Ser Tyr Arg Gly Phe Tyr Gln Lys Thr His Ile Ser Tyr Gln Glu Tyr Pro Phe Lys Val Phe Pro Pro Tyr Cys Ser Gly Leu Gly Tyr Ile Met Ser Arg Asp Leu Val Pro Arg Ile Tyr Glu Met Met Gly His Val Lys Pro Ile Lys Phe Glu Asp Val Tyr Val 260 265 Gly Ile Cys Leu Asn Leu Leu Lys Val Asn Ile His Ile Pro Glu 275 280 Asp Thr Asn Leu Phe Phe Leu Tyr Arg Ile His Leu Asp Val Cys 290 295 Gln Leu Arg Arg Val Ile Ala Ala His Gly Phe Ser Ser Lys Glu 305 310 Ile Ile Thr Phe Trp Gln Val Met Leu Arg Asn Thr Thr Cys His

Tyr

<210> 210 <211> 745 <212> DNA

<213> Homo sapiens

<400> 210

cctctgtcca ctgctttcgt gaagacaaga tgaagttcac aattgtcttt 50 gctggacttc ttggagtctt tctagctcct gccctagcta actataatat 100 caacgtcaat gatgacaaca acaatgctgg aagtgggcag cagtcagtga 150 gtgtcaacaa tgaacacaat gtggccaatg ttgacaataa caacggatgg 200 gactcctgga attccatctg ggattatgga aatggctttg ctgcaaccag 250 actcttcaa aagaagacat gcattgtgca caaaatgaac aaggaagtca 300 tgccctccat tcaatccctt gatgcactgg tcaaggaaaa gaagcttcag 350 ggtaagggac caggaggacc acctcccaag ggcctgatgt actcagtcaa 400 cccaaacaaa gtcgatgacc tgagcaagtt cggaaaaaac attgcaaaca 450 tgtgtcgtgg gattccaaca tacatggctg aggagatgca agaggcaagc 500 ctgtttttt actcaggaac gtgctacacg accagtgtac tatggattgt 550

ggacatttcc ttctgtggag acacggtgga gaactaaaca atttttaaa 600 gccactatgg atttagtcat ctgaatatgc tgtgcagaaa aaatatgggc 650 tccagtggtt tttaccatgt cattctgaaa tttttctcta ctagttatgt 700 ttgatttctt taagtttcaa taaaatcatt tagcattgaa aaaaa 745

<210> 211

<211> 185

<212> PRT

<213> Homo sapiens

<400> 211

Met Lys Phe Thr Ile Val Phe Ala Gly Leu Leu Gly Val Phe Leu 1 5 10 15

Ala Pro Ala Leu Ala Asn Tyr Asn Ile Asn Val Asn Asp Asp Asn 20 25 30

Asn Asn Ala Gly Ser Gly Gln Gln Ser Val Ser Val Asn Asn Glu 35 40 45

His Asn Val Ala Asn Val Asp Asn Asn Asn Gly Trp Asp Ser Trp 50 55 60

Asn Ser Ile Trp Asp Tyr Gly Asn Gly Phe Ala Ala Thr Arg Leu 65 70 75

Phe Gln Lys Lys Thr Cys Ile Val His Lys Met Asn Lys Glu Val 80 85 90

Met Pro Ser Ile Gln Ser Leu Asp Ala Leu Val Lys Glu Lys Lys 95 100 105

Leu Gln Gly Lys Gly Pro Gly Gly Pro Pro Pro Lys Gly Leu Met
110 115 120

Tyr Ser Val Asn Pro Asn Lys Val Asp Asp Leu Ser Lys Phe Gly 125 130 135

Lys Asn Ile Ala Asn Met Cys Arg Gly Ile Pro Thr Tyr Met Ala 140 145 150

Glu Glu Met Gln Glu Ala Ser Leu Phe Phe Tyr Ser Gly Thr Cys 155 160 165

Tyr Thr Thr Ser Val Leu Trp Ile Val Asp Ile Ser Phe Cys Gly 170 175 180

Asp Thr Val Glu Asn 185

<210> 212

<211> 1706

<212> DNA

<213> Homo sapiens

<400> 212

catttctgaa actaatcgtg tcagaattga ctttgaaaag cattgctttt 50 tacagaagta tattaacttt ttaggagtaa tttctagttt ggattgtaat 100

atgaaataat ttaaaagggc ttcgctcata tataggaaaa tcgcatatgg 150 tcctagtatt aaattcttat tgcttactga tttttttgag ttaagagttg 200 ttatatqcta qaatatqaqq atqtqaatat aaataaqaqa aqaaaaaaqa 250 ataaagtaga ttgagtctcc aattttatgt aagcttcaga agaactggtt 300 tgtttacatg caagcttata gttgaaatat ttttcaggaa ttacatgaat 350 gacagtette gaaccaatgt gtttgttega tttcaaccag agactatage 400 atgtgcttgc atctaccttg cagctagagc acttcagatt ccgttgccaa 450 ctcgtcccca ttggtttctt ctttttggta ctacagaaga ggaaatccag 500 gaaatctgca tagaaacact taggetttat accaqaaaaa agccaaacta 550 tgaattactg gaaaaagaag tagaaaaaag aaaagtagcc ttacaagaag 600 ccaaattaaa agcaaaggga ttgaatccgg atggaactcc agccctttca 650 accetgggtg gattttctcc agcetccaag ccatcatcac caaqaqaagt 700 aaaagctgaa gagaaatcac caatctccat taatgtgaag acagtcaaaa 750 aagaacctga qqataqacaa caqqcttcca aaaqccctta caatqqtqta 800 agaaaagaca gcaagagaag tagaaatagc agaagtgcaa gtcgatcgag 850 gtcaagaaca cgatcacgtt ctagatcaca tactccaaga agacactata 900 ataataggcg gagtcgatct ggaacataca gctcgagatc aagaagcagg 950 tcccgcagtc acagtgaaag ccctcgaaga catcataatc atggttctcc 1000 tcaccttaag gccaagcata ccagagatga tttaaaaagt tcaaacagac 1050 atggtcataa aaggaaaaaa tctcgttctc gatctcagag caagtctcgg 1100 gatcactcag atgcagccaa gaaacacagg catgaaaggg gacatcatag 1150 ggacaggcgt gaacgatctc gctcctttga gaggtcccat aaaagcaagc 1200 accatggtgg cagtcgctca ggacatggca ggcacaggcg ctgactttct 1250 cttcctttga gcctgcatca gttcttggtt ttgcctatct acagtgtgat 1300 cttgaaaccc tctaggtctc tagaacactg aggacagttt cttttgaaaa 1400 gaactatgtt aatttttttg cacattaaaa tgccctagca gtatctaatt 1450 aaaaaccatg gtcaggttca attgtacttt attatagttg tgtattgttt 1500 attgctataa gaactggagc gtgaattctg taaaaatgta tcttattttt 1550 atacagataa aattgcagac actgttctat ttaagtggtt atttgtttaa 1600 atgatggtga atactttctt aacactggtt tgtctgcatg tgtaaagatt 1650

aaaagt 1706

<210> 213

<211> 299

<212> PRT

<213> Homo sapiens

<400> 213

Met Asn Asp Ser Leu Arg Thr Asn Val Phe Val Arg Phe Gln Pro 1 5 10 15

Glu Thr Ile Ala Cys Ala Cys Ile Tyr Leu Ala Ala Arg Ala Leu 20 25 30

Gln Ile Pro Leu Pro Thr Arg Pro His Trp Phe Leu Leu Phe Gly 35 40 45

Thr Thr Glu Glu Glu Ile Gln Glu Ile Cys Ile Glu Thr Leu Arg
50 55 60

Leu Tyr Thr Arg Lys Lys Pro Asn Tyr Glu Leu Leu Glu Lys Glu
65 70 75

Val Glu Lys Arg Lys Val Ala Leu Gln Glu Ala Lys Leu Lys Ala 80 85 90

Lys Gly Leu Asn Pro Asp Gly Thr Pro Ala Leu Ser Thr Leu Gly
95 100 105

Gly Phe Ser Pro Ala Ser Lys Pro Ser Ser Pro Arg Glu Val Lys 110 115 120

Ala Glu Glu Lys Ser Pro Ile Ser Ile Asn Val Lys Thr Val Lys
125
130
135

Lys Glu Pro Glu Asp Arg Gln Gln Ala Ser Lys Ser Pro Tyr Asn 140 145

Gly Val Arg Lys Asp Ser Lys Arg Ser Arg Asn Ser Arg Ser Ala 155 160 165

Ser Arg Ser Arg Ser Arg Thr Arg Ser Arg Ser Arg Ser His Thr

Pro Arg Arg His Tyr Asn Asn Arg Arg Ser Arg Ser Gly Thr Tyr 185 190 195

Ser Ser Arg Ser Arg Ser Arg Ser Arg Ser His Ser Glu Ser Pro
200 205 210

Arg Arg His His Asn His Gly Ser Pro His Leu Lys Ala Lys His 215 220 225

Thr Arg Asp Asp Leu Lys Ser Ser Asn Arg His Gly His Lys Arg 230 235 240

Lys Lys Ser Arg Ser Arg Ser Gln Ser Lys Ser Arg Asp His Ser 245 250

Asp Ala Ala Lys Lys His Arg His Glu Arg Gly His His Arg Asp 260 265 270

Arg Arg Glu Arg Ser Arg Ser Phe Glu Arg Ser His Lys Ser Lys

275 280 285

His His Gly Gly Ser Arg Ser Gly His Gly Arg His Arg Arg 290 295

<210> 214

<211> 730

<212> DNA <213> Homo sapiens

<220>

<221> unsure

<222> 72-73, 85, 91, 127, 226, 268, 454, 484, 513, 566, 663

<223> unknown base

<400> 214

tggggataaa ggaaaaatgg tcaggtatta atggcttaaa gattattgga 50 aggggtttat catttttga anntattcgg gtcanaattg nctttgaaaa 100 gcattgcttt ttacagaaat atattanctt tttagagtaa tttctagttt 150 ggattgtaat atgaaattat ttaaaagggc ttcgctcata tataggaaaa 200 tcgcatatgg tcctagtatt aaattnttat tgcttactga ttttttgag 250 ttaagggttg ttatatgnta gaatatgagg atgtgaatat aaataagaga 300 agaaaaaaga ataaagtaga ttgagtctcc aatttatgt aagcttcaga 350 agaactggtt tgtttacatg caagcttata gttgaaatat tttcaggaa 400 ttacatgaat gacagtcttc gaaccaatgt gtttgttcga tttcaaccag 450 agantatagc atgtgcttgc atctaccttg cagntagagc acttcagatt 500 ccgttgccaa ctngtccca ttggtttctt ctttttggta ctacagaaga 550 ggaaatccag gaaatntgca tagaaacact taggctttat accagaaaaa 600 agccaaacta tgaattactg gaaaaagag tagaaaaaag aaaagtagcc 650 ttacaagaag ccnaattaaa agcaaagga ttgaatccgg atggaactcc 700 agccctttca accctgggtg gattttctc 730

<210> 215

<211> 1807

<212> DNA

<213> Homo sapiens

<400> 215

ggcacgaggc ctcgtgccaa gcttggcacg agggtgcacc gcgttctcgc 50 acgcgtcatg gcggtcctcg gagtacagct ggtggtgacc ctgctcactg 100 ccaccctcat gcacaggctg gcgccacact gctccttcgc gcgctggctg 150 ctctgtaacg gcagtttgtt ccgatacaag cacccgtctg aggaggagct 200 tcgggccctg gcggggaagc cgaggcccag aggcaggaaa gagcggtggg 250 ccaatggcct tagtgaggag aagccactgt ctgtgccccg agatgcccq 300

<210> 216

<211> 479 <212> PRT

<213> Homo sapiens

<400> 216

Met Ala Val Leu Gly Val Gln Leu Val Val Thr Leu Leu Thr Ala 1 5 10 15

Thr Leu Met His Arg Leu Ala Pro His Cys Ser Phe Ala Arg Trp
20 25 30

Leu Leu Cys Asn Gly Ser Leu Phe Arg Tyr Lys His Pro Ser Glu

Glu Glu Leu Arg Ala Leu Ala Gly Lys Pro Arg Pro Arg Gly Arg
50 55 60

Lys Glu Arg Trp Ala Asn Gly Leu Ser Glu Glu Lys Pro Leu Ser
65 70 75

Val Pro Arg Asp Ala Pro Phe Gln Leu Glu Thr Cys Pro Leu Thr 80 85 90

Thr Val Asp Ala Leu Val Leu Arg Phe Phe Leu Glu Tyr Gln Trp 95 100 105

Phe Val Asp Phe Ala Val Tyr Ser Gly Gly Val Tyr Leu Phe Thr 110 115 120

Glu Ala Tyr Tyr Tyr Met Leu Gly Pro Ala Lys Glu Thr Asn Ile 125 130 135

Ala Val Phe Trp Cys Leu Leu Thr Val Thr Phe Ser Ile Lys Met
140 145 150

Phe Leu Thr Val Thr Arg Leu Tyr Phe Ser Ala Glu Glu Gly Gly 155 160 165

Glu Arg Ser Val Cys Leu Thr Phe Ala Phe Leu Phe Leu Leu Leu 170 175 180

Ala Met Leu Val Gln Val Val Arg Glu Glu Thr Leu Glu Leu Gly
185 190 190

Leu Glu Pro Gly Leu Ala Ser Met Thr Gln Asn Leu Glu Pro Leu 200 205 210

Leu Lys Lys Gln Gly Trp Asp Trp Ala Leu Pro Val Ala Lys Leu 215 220 225

Ala Ile Arg Val Gly Leu Ala Val Val Gly Ser Val Leu Gly Ala 230 235 240

Phe Leu Thr Phe Pro Gly Leu Arg Leu Ala Gln Thr His Arg Asp 245 250 255

Ala Leu Thr Met Ser Glu Asp Arg Pro Met Leu Gln Phe Leu Leu 260 265 270

His Thr Ser Phe Leu Ser Pro Leu Phe Ile Leu Trp Leu Trp Thr 275 280 285

Lys Pro Ile Ala Arg Asp Phe Leu His Gln Pro Pro Phe Gly Glu

				290					295					300
Thr	Arg	Phe	Ser	Leu 305	Leu	Ser	Asp	Ser	Ala 310	Phe	Asp	Ser	Gly	Arg 315
Leu	Trp	Leu	Leu	Val 320	Val	Leu	Cys	Leu	Leu 325	Arg	Leu	Ala	Val	Thr 330
Arg	Pro	His	Leu	Gln 335	Ala	Tyr	Leu	Суз	Leu 340	Ala	Lys	Ala	Arg	Val 345
Glu	Gln	Leu	Arg	Arg 350	Glu	Ala	Gly	Arg	Ile 355	Glu	Ala	Arg	Glu	Ile 360
Gln	Gln	Arg	Val	Val 365	Arg	Val	Tyr	Cys	Tyr 370	Val	Thr	Val	Val	Ser 375
Leu	Gln	Tyr	Leu	Thr 380	Pro	Leu	Ile	Leu	Thr 385	Leu	Asn	Cys	Thr	Leu 390
Leu	Leu	Lys	Thr	Leu 395	Gly	Gly	Tyr	Ser	Trp 400	Gly	Leu	Gly	Pro	Ala 405
Pro	Leu	Leu	Ser	Pro 410	Asp	Pro	Ser	Ser	Ala 415	Ser	Ala	Ala	Pro	Ile 420
Gly	Ser	Gly	Glu	Asp 425	Glu	Val	Gln	Gln	Thr 430	Ala	Ala	Arg	Ile	Ala 435
Gly	Ala	Leu	Gly	Gly 440	Leu	Leu	Thr	Pro	Leu 445	Phe	Leu	Arg	Gly	Val 450
Leu	Ala	Tyr	Leu	Ile 455	Trp	Trp	Thr	Ala	Ala 460	Суз	Gln	Leu	Leu	Ala 465
Ser	Leu	Phe	Gly	Leu 470	Tyr	Phe	His	Gln	His 475	Leu	Ala	Gly	Ser	
<210> <211> <212> <213>	> 574 > DNA	! A	pien	ıs										
<220> <221> <222> <223>	uns	146	bas	e										
<400> cgtt			gtca	.atgg	c gg	tcct	cgga	gta	cagc	tgg	tggt	gacc	ct 5	0
gctc	actg	cc a	ccct	catg	c ac	aggc	tggc	gcc	acac	tgc	tcct	tcgc	gc 1	00
gctg	gctg	ct c	tgta	acgg	c ag	tttg	ttcc	gat	acaa	gca	cccg	tntt	ga 1	50
ggag	gagc	tt c	gggc	cctg	g cg	ggga	agcc	gag	gccc	aga	ggca	ggaa	ag 2	00

ageggtggge caatggeett agtgaggaga agecaetgte tgtgeecega 250 gatgeecegt teeagetgga gaeetgeece eteaegaeeg tggatgeeet 300

ggtcctgcgc ttcttcctgg agtaccagtg gtttgtggac tttgctgtgt 350

actegggegg egtgtacete tteacagagg ectaetaeta eatgetggga 400 ceagecaagg agactaacat tgetgtgte tggtgeetge teacagtgae 450 cttetecate aagatgttee tgacagtgae aeggetgtae tteagegeeg 500 aggaggggg tgagegetet gtetgeetea eetttgeett eetetteetg 550 ctgetggeea tgetggtgea ageg 574

<210> 218

<211> 2571

<212> DNA

<213> Homo sapiens

<400> 218

ggttcctaca tcctctcatc tgagaatcag agagcataat cttcttacgg 50 gcccgtgatt tattaacgtg gcttaatctg aaggttctca gtcaaattct 100 ttgtgatcta ctgattgtgg gggcatggca aggtttgctt aaaggagctt 150 ggctggtttg ggcccttgta gctgacagaa ggtggccagg gagaatgcag 200 cacactgctc ggagaatgaa ggcgcttctg ttgctggtct tgccttggct 250 cagtcctgct aactacattg acaatgtggg caacctgcac ttcctgtatt 300 cagaactctg taaaggtgcc tcccactacg gcctgaccaa agataggaag 350 aggegeteae aagatggetg teeagaegge tgtgegagee teacageeae 400 ggctccctcc ccagaggttt ctgcagctgc caccatctcc ttaatgacag 450 acgagectgg cetagacaac cetgeetacg tgteetegge agaggaeggg 500 cagccagcaa tcagcccagt ggactctggc cggagcaacc gaactagggc 550 acggcccttt gagagatcca ctattagaag cagatcattt aaaaaaataa 600 atcgagcttt gagtgttctt cgaaggacaa agagcgggag tgcagttgcc 650 aaccatgccg accagggcag ggaaaattct gaaaacacca ctgcccctga 700 agtctttcca aggttgtacc acctgattcc agatggtgaa attaccagca 750 tcaagatcaa tcgagtagat cccagtgaaa gcctctctat taggctggtg 800 ggaggtagcg aaaccccact ggtccatatc attatccaac acatttatcg 850 tgatggggtg atcgccagag acggccggct actgccagga gacatcattc 900 taaaggtcaa cgggatggac atcagcaatg tccctcacaa ctacgctgtg 950 cgtctcctgc ggcagccctg ccaggtgctg tggctgactg tgatgcgtga 1000 acagaagttc cgcagcagga acaatggaca ggccccggat gcctacagac 1050 cccgagatga cagctttcat gtgattctca acaaaagtag ccccgaggag 1100 cagcttggaa taaaactggt gcgcaaggtg gatgagcctg gggttttcat 1150 cttcaatgtg ctggatggcg gtgtggcata tcgacatggt cagcttgagg 1200

agaatgaccg tgtgttagcc atcaatggac atgatcttcg atatggcagc 1250 ccagaaagtg cggctcatct gattcaggcc agtgaaagac gtgttcacct 1300 cgtcgtgtcc cgccaggttc ggcagcggag ccctgacatc tttcaggaag 1350 ccggctggaa cagcaatggc agctggtccc cagggccagg ggagaggagc 1400 aacactccca agcccctcca tcctacaatt acttgtcatg agaaggtggt 1450 aaatatccaa aaagaccccg gtgaatctct cggcatgacc gtcgcagggg 1500 gagcatcaca tagagaatgg gatttgccta tctatgtcat cagtgttgag 1550 cccggaggag tcataagcag agatggaaga ataaaaacag gtgacatttt 1600 gttgaatgtg gatggggtcg aactgacaga ggtcagccgg agtgaggcag 1650 tggcattatt gaaaagaaca tcatcctcga tagtactcaa agctttggaa 1700 gtcaaagagt atgagcccca ggaagactgc agcagcccag cagccctgga 1750 ctccaaccac aacatggccc cacccagtga ctggtcccca tcctgggtca 1800 tgtggctgga attaccacgg tgcttgtata actgtaaaga tattgtatta 1850 cgaagaaaca cagctggaag tctgggcttc tgcattgtag gaggttatga 1900 agaatacaat ggaaacaaac ctttttcat caaatccatt gttgaaggaa 1950 caccagcata caatgatgga agaattagat gtggtgatat tcttcttgct 2000 gtcaatggta gaagtacatc aggaatgata catgcttgct tggcaagact 2050 gctgaaagaa cttaaaggaa gaattactct aactattgtt tcttggcctg 2100 gcactttttt atagaatcaa tgatgggtca gaggaaaaca gaaaaatcac 2150 aaataggcta agaagttgaa acactatatt tatcttgtca gtttttatat 2200 ttaaagaaag aatacattgt aaaaatgtca ggaaaagtat gatcatctaa 2250 tgaaagccag ttacacctca gaaaatatga ttccaaaaaa attaaaacta 2300 ctagtttttt ttcagtgtgg aggatttctc attactctac aacattgttt 2350 atattttttc tattcaataa aaagccctaa aacaactaaa atgattgatt 2400 tgtatacccc actgaattca agctgattta aatttaaaat ttggtatatg 2450 ctgaagtctg ccaagggtac attatggcca tttttaattt acagctaaaa 2500 tattttttaa aatgcattgc tgagaaacgt tgctttcatc aaacaagaat 2550 aaatattttt cagaagttaa a 2571

<210> 219

<211> 632

<212> PRT

<213> Homo sapiens

<400> 219

Met Lys Ala Leu Leu Leu Val Leu Pro Trp Leu Ser Pro Ala

1				5					10					15
Asn	Tyr	Ile	Asp	Asn 20	Val	Gly	Asn	Leu	His 25	Phe	Leu	Tyr	Ser	Glu 30
Leu	Суз	Lys	Gly	Ala 35	Ser	His	Tyr	Gly	Leu 40	Thr	Lys	Asp	Arg	Lys 45
Arg	Arg	Ser	Gln	Asp 50	Gly	Cys	Pro	Asp	Gly 55	Cys	Ala	Ser	Leu	Thr 60
Ala	Thr	Ala	Pro	Ser 65	Pro	Glu	Val	Ser	Ala 70	Ala	Ala	Thr	Ile	Ser 75
Leu	Met	Thr	Asp	Glu 80	Pro	Gly	Leu	Asp	Asn 85	Pro	Ala	Tyr	Val	Ser 90
Ser	Ala	Glu	Asp	Gly 95	Gln	Pro	Ala	Ile	Ser 100	Pro	Val	Asp	Ser	Gly 105
Arg	Ser	Asn	Arg	Thr 110	Arg	Ala	Arg	Pro	Phe 115	Glu	Arg	Ser	Thr	Ile 120
Arg	Ser	Arg	Ser	Phe 125	Lys	Lys	Ile	Asn	Arg 130	Ala	Leu	Ser	Val	Leu 135
Arg	Arg	Thr	Lys	Ser 140	Gly	Ser	Ala	Val	Ala 145	Asn	His	Ala	Asp	Gln 150
Gly	Arg	Glu	Asn	Ser 155	Glu	Asn	Thr	Thr	Ala 160	Pro	Glu	Val	Phe	Pro 165
Arg	Leu	Tyr	His	Leu 170	Ile	Pro	Asp	Gly	Glu 175	Ile	Thr	Ser	Ile	Lys 180
Ile	Asn	Arg	Val	Asp 185	Pro	Ser	Glu	Ser	Leu 190	Ser	Ile	Arg	Leu	Val 195
Gly	Gly	Ser	Glu	Thr 200	Pro	Leu	Val	His	Ile 205	Ile	Ile	Gln	His	Ile 210
Tyr	Arg	Asp	Gly	Val 215	Ile	Ala	Arg	Asp	Gly 220	Arg	Leu	Leu	Pro	Gly 225
Asp	Ile	Ile	Leu	Lys 230	Val	Asn	Gly	Met	Asp 235	Ile	Ser	Asn	Val	Pro 240
His	Asn	Tyr	Ala	Val 245	Arg	Leu	Leu	Arg	Gln 250	Pro	Cys	Gln	Val	Leu 255
Trp	Leu	Thr	Val	Met 260	Arg	Glu	Gln	Lys	Phe 265	Arg	Ser	Arg	Asn	Asn 270
Gly	Gln	Ala	Pro	Asp 275	Ala	Tyr	Arg	Pro	Arg 280	Asp	Asp	Ser	Phe	His 285
Val	Ile	Leu	Asn	Lys 290	Ser	Ser	Pro	Glu	Glu 295	Gln	Leu	Gly	Ile	Lys 300
Leu	Val	Arg	Lys	Val 305	Asp	Glu	Pro	Gly	Val 310	Phe	Ile	Phe	Asn	Val 315
Leu	Asp	Gly	Gly	Val	Ala	Tyr	Arg	His	Gly	Gln	Leu	Glu	Glu	Asn

	32	0			325					330
Asp Arg Val	Leu Ala 33	a Ile A 5	sn Gly	His	Asp 340	Leu	Arg	Tyr	Gly	Ser 345
Pro Glu Ser	Ala Ala 350	a His L)	eu Ile	Gln	Ala 355	Ser	Glu	Arg	Arg	Val 360
His Leu Val	. Val Sei 36	r Arg G	ln Val	Arg	Gln 370	Arg	Ser	Pro	Asp	Ile 375
Phe Gln Glu	Ala Gly 380	y Trp A	sn Ser	Asn	Gly 385	Ser	Trp	Ser	Pro	Gly 390
Pro Gly Glu	Arg Sei	Asn T	hr Pro	Lys	Pro 400	Leu	His	Pro	Thr	Ile 405
Thr Cys His	Glu Lys 410	s Val Va	al Asn	Ile	Gln 415	Lys	Asp	Pro	Gly	Glu 420
Ser Leu Gly	Met Thr 425	Val A	la Gly	Gly	Ala 430	Ser	His	Arg	Glu	Trp 435
Asp Leu Pro	Ile Tyr 440	Val I	Le Ser	Val	Glu 445	Pro	Gly	Gly	Val	Ile 450
Ser Arg Asp	Gly Arg 455	Ile Ly	ys Thr	Gly	Asp 460	Ile	Leu	Leu	Asn	Val 465
Asp Gly Val	Glu Leu 470	Thr G	lu Val	Ser	Arg 475	Ser	Glu	Ala	Val	Ala 480
Leu Leu Lys	Arg Thr 485	Ser Se	er Ser	Ile	Val 490	Leu	Lys	Ala	Leu	Glu 495
Val Lys Glu	Tyr Glu 500	Pro Gl	.n Glu	Asp	Cys 505	Ser	Ser	Pro	Ala	Ala 510
Leu Asp Ser	Asn His 515	Asn Me	et Ala		Pro 520	Ser	Asp	Trp	Ser	Pro 525
Ser Trp Val	Met Trp 530	Leu Gl	u Leu		Arg 535	Cys	Leu	Tyr	Asn	Cys 540
Lys Asp Ile	Val Leu 545	Arg Ar	g Asn		Ala 550	Gly	Ser	Leu	Gly	Phe 555
Cys Ile Val	Gly Gly 560	Tyr Gl	u Glu		Asn 565	Gly	Asn	Lys	Pro	Phe 570
Phe Ile Lys	Ser Ile 575	Val Gl	u Gly		Pro 1 580	Ala	Tyr	Asn	Asp	Gly 585
Arg Ile Arg	Cys Gly 590	Asp Il	e Leu		Ala ' 595	Val .	Asn	Gly	Arg	Ser 600
Thr Ser Gly	Met Ile 605	His Al	a Cys		Ala 1 610	Arg :	Leu :	Leu		Glu 615
Leu Lys Gly	Arg Ile 620	Thr Le	u Thr		Val 5 625	Ser '	Trp	Pro		Thr 630
Phe Leu										

```
<210> 220
<211> 773
<212> DNA
<213> Homo sapiens
<400> 220
ccaaagtgat catttg
```

ccaaagtgat catttgaaaa agagatatcc acatcttcaa qcccatataa 50 aggatagaag ctgcacaggg cagctttact tactccagca ccttcctct 100 ccaggcaaat ggtgctgacc atctttggga tacaatctca tggatacgag 150 gtttttaaca tcatcagccc aagcaacaat ggtggcaatg ttcaggagac 200 agtgacaatt gataatgaaa aaaataccgc catcgttaac atccatgcag 250 gatcatgctc ttctaccaca atttttgact ataaacatgg ctacattgca 300 tocagggtgc totocogaag agootgottt atootgaaga tggaccatca 350 gaacatccct cctctgaaca atctccaatg gtacatctat gagaaacagg 400 ctctggacaa catgttctcc aacaaataca cctgggtcaa gtacaaccct 450 ctggagtctc tgatcaaaga cgtggattgg ttcctgcttg ggtcacccat 500 tgagaaactc tgcaaacata tccctttgta taagggggaa gtggttgaaa 550 acacacataa tgtcggtqct qgagqctgtg caaaggctgg gctcctgggc 600 atcttgggaa tttcaatctg tgcagacatt catgtttagg atgattagcc 650 ctcttgtttt atcttttcaa agaaatacat ccttggttta cactcaaaag 700 tcaaattaaa ttctttccca atgccccaac taattttgag attcagtcag 750 aaaatataaa tgctgtattt ata 773

```
<210> 221
<211> 184
<212> PRT
<213> Homo sapiens
```

<400> 221

Met Lys Ile Leu Val Ala Phe Leu Val Val Leu Thr Ile Phe Gly 15

Ile Gln Ser His Gly Tyr Glu Val Phe Asn Ile Ile Ser Pro Ser 25

Asn Asn Gly Gly Asn Val Gln Glu Thr Val Thr Ile Asp Asn Glu 45

Lys Asn Thr Ala Ile Val Asn Ile His Ala Gly Ser Cys Ser 60

Thr Thr Ile Phe Asp Tyr Lys His Gly Tyr Ile Ala Ser Arg Val

Leu Ser Arg Arg Ala Cys Phe Ile Leu Lys Met Asp His Gln Asn 80 85 90

Ile Pro Pro Leu Asn Asn Leu Gln Trp Tyr Ile Tyr Glu Lys Gln 105

Ala Leu Asp Asn Met Phe Ser Asn Lys Tyr Thr Trp Val Lys Tyr 120

Asn Pro Leu Glu Ser Leu Ile Lys Asp Val Asp Trp Phe Leu Leu 135

Gly Ser Pro Ile Glu Lys Leu Cys Lys His Ile Pro Leu Tyr Lys 150

Gly Glu Val Val Glu Asn Thr His Asn Val Gly Ala Gly Gly Cys 165

Ala Lys Ala Gly Leu Leu Gly Ile Leu Gly Ile Leu Gly Ile Ser Ile Cys Ala 180

Asp Ile His Val

<210> 222 <211> 992 <212> DNA <213> Homo sapiens

<400> 222 ggcacgagcc aggaactagg aggttctcac tgcccgagca gaggccctac 50 acceaccgag gcatggggct ccctgggctg ttctgcttgg ccgtgctggc 100 tgccagcagc ttctccaagg cacgggagga agaaattacc cctgtggtct 150 ccattgccta caaagtcctg gaagttttcc ccaaaggccg ctgggtgctc 200 ataacctgct gtgcacccca gccaccaccg cccatcacct attccctctg 250 tggaaccaag aacatcaagg tggccaagaa ggtggtgaag acccacgagc 300 acctacttct gccgggcgtc ctccacctca ggtgcccatg tggacagtgc 400 caggetacag atgeactggg agetgtggte caagecagtg tetgagetge 450 gggccaactt cactctgcag gacagagggg caggccccag ggtggagatg 500 atctgccagg cgtcctcggg cagcccacct atcaccaaca gcctgatcgg 550 gaaggatggg caggtccacc tgcagcagag accatgccac aggcagcctg 600 ccaacttete ettectgeeg agecagaeat eggaetggtt etggtgeeag 650 gctgcaaaca acgccaatgt ccagcacagc gccctcacag tggtgccccc 700 aggtggtgac cagaagatgg aggactggca gggtcccctg gagagcccca 750 teettgeett geegetetae aggageaece geegtetgag tgaagaggag 800 tttggggggt tcaggatagg gaatggggag gtcagaggac gcaaagcagc 850 agccatgtag aatgaaccgt ccagagagcc aagcacggca gaggactgca 900

ggccatcagc gtgcactgtt cgtatttgga gttcatgcaa aatgagtgtg 950 ttttagctgc tcttgccaca aaaaaaaaaa aaaaaaaaa aa 992

<210> 223

<211> 265

<212> PRT

<213> Homo sapiens

<400> 223

Met Gly Leu Pro Gly Leu Phe Cys Leu Ala Val Leu Ala Ala Ser 1 10 15

Ser Phe Ser Lys Ala Arg Glu Glu Glu Ile Thr Pro Val Val Ser 20 25 30

Ile Ala Tyr Lys Val Leu Glu Val Phe Pro Lys Gly Arg Trp Val 35 40 45

Leu Ile Thr Cys Cys Ala Pro Gln Pro Pro Pro Ile Thr Tyr
50 55 60

Ser Leu Cys Gly Thr Lys Asn Ile Lys Val Ala Lys Lys Val Val 65 70 75

Lys Thr His Glu Pro Ala Ser Phe Asn Leu Asn Val Thr Leu Lys 80 85 90

Ser Ser Pro Asp Leu Leu Thr Tyr Phe Cys Arg Ala Ser Ser Thr 95 100 105

Ser Gly Ala His Val Asp Ser Ala Arg Leu Gln Met His Trp Glu 110 115 120

Leu Trp Ser Lys Pro Val Ser Glu Leu Arg Ala Asn Phe Thr Leu 125 130 135

Gln Asp Arg Gly Ala Gly Pro Arg Val Glu Met Ile Cys Gln Ala 140 145 150

Ser Ser Gly Ser Pro Pro Ile Thr Asn Ser Leu Ile Gly Lys Asp 155 160 165

Gly Gln Val His Leu Gln Gln Arg Pro Cys His Arg Gln Pro Ala 170 175 180

Asn Phe Ser Phe Leu Pro Ser Gln Thr Ser Asp Trp Phe Trp Cys 185 190 195

Gln Ala Ala Asn Asn Ala Asn Val Gln His Ser Ala Leu Thr Val 200 205 210

Val Pro Pro Gly Gly Asp Gln Lys Met Glu Asp Trp Gln Gly Pro 215 220 225

Leu Glu Ser Pro Ile Leu Ala Leu Pro Leu Tyr Arg Ser Thr Arg 230 235 240

Arg Leu Ser Glu Glu Glu Phe Gly Gly Phe Arg Ile Gly Asn Gly 245 250 255

Glu Val Arg Gly Arg Lys Ala Ala Met 260 265

<210> 224 <211> 1297 <212> DNA <213> Homo sapiens

<400> 224 ggtccttaat ggcagcagcc gccgctacca agatccttct gtgcctcccg 50 cttctgctcc tgctgtccgg ctggtcccgg gctgggcgag ccgaccctca 100 ctctctttgc tatgacatca ccgtcatccc taagttcaga cctggaccac 150 ggtggtgtgc ggttcaaggc caggtggatg aaaagacttt tcttcactat 200 gactgtggca acaagacagt cacacctgtc agtcccctgg ggaagaaact 250 aaatgtcaca acggcctgga aagcacagaa cccagtactg agagaggtgg 300 tggacatact tacagagcaa ctgcgtgaca ttcagctgga gaattacaca 350 cccaaggaac ccctcaccct gcaggcaagg atgtcttgtg agcagaaagc 400 tgaaggacac agcagtggat cttggcagtt cagtttcgat gggcagatct 450 tcctcctctt tgactcagag aagagaatgt ggacaacggt tcatcctgga 500 gccagaaaga tgaaagaaaa gtgggagaat gacaaggttg tggccatgtc 550 cttccattac ttctcaatgg gagactgtat aggatggctt gaggacttct 600 tgatgggcat ggacagcacc ctggagccaa gtgcaggagc accactcgcc 650 atgtcctcag gcacaaccca actcagggcc acagccacca ccctcatcct 700 ttgctgcctc ctcatcatcc tcccctgctt catcctccct ggcatctgag 750 gagagteett tagagtgaca ggttaaaget gataccaaaa ggeteetgtg 800 agcacggtct tgatcaaact cgcccttctg tctggccagc tgcccacgac 850 ctacggtgta tgtccagtgg cctccagcag atcatgatga catcatggac 900 ccaatagctc attcactgcc ttgattcctt ttgccaacaa ttttaccagc 950 agttatacct aacatattat gcaattttct cttggtgcta cctgatggaa 1000 ttcctgcact taaagttctg gctgactaaa caagatatat cattttcttt 1050 cttctctttt tgtttggaaa atcaagtact tctttgaatg atgatctctt 1100 tcttgcaaat gatattgtca gtaaaataat cacgttagac ttcagacctc 1150 tggggattct ttccgtgtcc tgaaagagaa tttttaaatt atttaataag 1200 aaaaaattta tattaatgat tgtttccttt agtaatttat tgttctgtac 1250 tgatatttaa ataaagagtt ctatttccca aaaaaaaaa aaaaaaa 1297

<210> 225

<211> 246

<212> PRT

<213> Homo sapiens

<400>	> 225	5												
	_		Ala	Ala 5	Ala	Thr	Lys	Ile	Leu 10	Leu	Cys	Leu	Pro	Leu 15
Leu	Leu	Leu	Leu	Ser 20	Gly	Trp	Ser	Arg	Ala 25	Gly	Arg	Ala	Asp	Pro 30
His	Ser	Leu	Cys	Tyr 35	Asp	Ile	Thr	Val	Ile 40	Pro	Lys	Phe	Arg	Pro 45
Gly	Pro	Arg	Trp	Cys 50	Ala	Val	Gln	Gly	Gln 55	Val	Asp	Glu	Lys	Thr 60
Phe	Leu	His	Tyr	Asp 65	Cys	Gly	Asn	Lys	Thr 70	Val	Thr	Pro	Val	Ser 75
Pro	Leu	Gly	Lys	Lys 80	Leu	Asn	Val	Thr	Thr 85	Ala	Trp	Lys	Ala	Gln 90
Asn	Pro	Val	Leu	Arg 95	Glu	Val	Val	Asp	Ile 100	Leu	Thr	Glu	Gln	Leu 105
Arg	Asp	Ile	Gln	Leu 110	Glu	Asn	Tyr	Thr	Pro 115	Lys	Glu	Pro	Leu	Thr 120
Leu	Gln	Ala	Arg	Met 125	Ser	Cys	Glu	Gln	Lys 130	Ala	Glu	Gly	His	Ser 135
Ser	Gly	Ser	Trp	Gln 140	Phe	Ser	Phe	Asp	Gly 145	Gln	Ile	Phe	Leu	Leu 150
Phe	Asp	Ser	Glu	Lys 155	Arg	Met	Trp	Thr	Thr 160	Val	His	Pro	Gly	Ala 165
Arg	Lys	Met	Lys	Glu 170	Lys	Trp	Glu	Asn	Asp 175	Lys	Val	Val	Ala	Met 180
Ser	Phe	His	Tyr	Phe 185	Ser	Met	Gly	Asp	Cys 190	Ile	Gly	Trp	Leu	Glu 195
Asp	Phe	Leu	Met	Gly 200	Met	Asp	Ser	Thr	Leu 205	Glu	Pro	Ser	Ala	Gly 210
Ala	Pro	Leu	Ala	Met 215	Ser	Ser	Gly	Thr	Thr 220	Gln	Leu	Arg	Ala	Thr 225
Ala	Thr	Thr	Leu	Ile 230	Leu	Cys	Cys	Leu	Leu 235	Ile	Ile	Leu	Pro	Cys 240
Phe	Ile	Leu	Pro	Gly 245	Ile									

<210> 226

<211> 735

<212> DNA

<213> Homo sapiens

<400> 226

gggaaagcca tttcgaaaac ccatctatac aaactatata ttttcattc 50
tgctgctagc tgccttgggc ctcacaattt tcattctgtt ttctgacttt 100
caagttatat accgtggaat ggagttgatc ccaaccataa catcgtggag 150

ggttttaatt ttggtggtag ccctcaccca attctggtgt ggctttcttt 200 gcagaggatt ccaccttcaa aatcatgaac tctggctgtt gatcaaaaga 250 gaatttggat tctactctaa aagtcaatat aggacttggc aaaagaagct 300 agcagaagac tcaacctggc ctcccataaa caggacagat tattcaggtg 350 atggcaaaaa tggattctac atcaacggag gctatgaaag ccatgaacag 400 attccaaaaa gaaaactcaa attgggaggc caacccacag aacagcattt 450 ctgggccagg ctgtaatcag aattgtcgtc gtacatgctc aacagcattg 500 ctttttccc caaaattaac acattgtgga gaagtgatga tactctccc 550 ttaccttcc tctctccatt caagcattca aagtatattt tcaatgaatt 600 aaaccttgca gcaagggacc ttagataggc ttattctgac tgtatgctt 650 accaatgaga gaaaaaaaa caattacctt tcaataaact 700 gtattcattt tgaaaaaaaa aaaaaaaaa aaaaa 735

<210> 227 <211> 115 <212> PRT <213> Homo sapiens

<400> 227

Met Glu Leu Ile Pro Thr Ile Thr Ser Trp Arg Val Leu Ile Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Val Val Ala Leu Thr Gln Phe Trp Cys Gly Phe Leu Cys Arg Gly 20 25 30

Phe His Leu Gln Asn His Glu Leu Trp Leu Leu Ile Lys Arg Glu 35 40 45

Phe Gly Phe Tyr Ser Lys Ser Gln Tyr Arg Thr Trp Gln Lys Lys 50 55 60

Leu Ala Glu Asp Ser Thr Trp Pro Pro Ile Asn Arg Thr Asp Tyr
65 70 75

Ser Gly Asp Gly Lys Asn Gly Phe Tyr Ile Asn Gly Gly Tyr Glu 80 85 90

Ser His Glu Gln Ile Pro Lys Arg Lys Leu Lys Leu Gly Gln 95 100 105

Pro Thr Glu Gln His Phe Trp Ala Arg Leu 110 115

<210> 228

<211> 2185

<212> DNA

<213> Homo sapiens

<400> 228

gttctccttt ccgagccaaa atcccaggcg atggtgaatt atgaacgtgc 50 cacaccatga agctcttgtg qcaggtaact gtgcaccacc acacctggaa 100

tgccatcctg ctcccgttcg tctacctcac ggcgcaagtg tggattctgt 150 gtgcagccat cgctgctgcc gcctcagccg ggccccagaa ctgcccctcc 200 gtttgctcgt gcagtaacca gttcagcaag gtggtgtgca cgcgccgggg 250 cctctccgag gtcccgcagg gtattccctc gaacacccgg tacctcaacc 300 tcatggagaa caacatccag atgatccagg ccgacacctt ccgccacctc 350 caccacctgg aggtectgca gttgggcagg aactccatcc ggcagattga 400 ggtgggggcc ttcaacggcc tggccagcct caacaccctg gagctgttcg 450 acaactggct gacagtcatc cctagcgggg cctttgaata cctgtccaag 500 ctgcgggagc tctggcttcg caacaacccc atcgaaagca tcccctctta 550 cgccttcaac cgggtgccct ccctcatgcg cctggacttg ggggagctca 600 agaagctgga gtatatctct gagggagctt ttgaggggct gttcaacctc 650 aagtatctga acttgggcat gtgcaacatt aaagacatgc ccaatctcac 700 ccccctggtg gggctggagg agctggagat gtcagggaac cacttccctg 750 agatcaggcc tggctccttc catggcctga gctccctcaa gaagctctgg 800 gtcatgaact cacaggtcag cctgattgag cggaatgctt ttgacgggct 850 ggcttcactt gtggaactca acttggccca caataacctc tcttctttgc 900 cccatgacct ctttaccccg ctgaggtacc tggtggagtt qcatctacac 950 cacaaccctt ggaactgtga ttgtgacatt ctgtggctag cctggtggct 1000 tcgagagtat atacccacca attccacctg ctgtggccgc tgtcatgctc 1050 ccatgcacat gcgaggccgc tacctcgtgg aggtggacca ggcctccttc 1100 cagtgctctg ccccttcat catggacgca cctcgagacc tcaacatttc 1150 tgagggtcgg atggcagaac ttaagtgtcg gactccccct atgtcctccg 1200 tgaagtggtt gctgcccaat gggacagtgc tcagccacgc ctcccgccac 1250 ccaaggatet etgteeteaa egaeggeace ttgaactttt eccaegtget 1300 gctttcagac actggggtgt acacatgcat ggtgaccaat gttgcaggca 1350 actocaacgo ctoggoctae ctoaatgtga goacggotga gottaacaco 1400 tecaactaca gettetteae cacagtaaca gtggagacea eggagatete 1450 gcctgaggac acaacgcgaa agtacaagcc tgttcctacc acgtccactg 1500 gttaccagcc ggcatatacc acctctacca cggtgctcat tcagactacc 1550 cgtgtgccca agcaggtggc agtacccgcg acagacacca ctgacaagat 1600 gcagaccage ctggatgaag tcatgaagac caccaagate atcattggct 1650 gctttgtggc agtgactctg ctagctgccg ccatgttgat tgtcttctat 1700 aaacttcgta agcggcacca gcagcggagt acagtcacag ccgcccggac 1750 tgttgagata atccaggtgg acgaagacat cccagcagca acatccgcag 1800 cagcaacagc agctccgtcc ggtgtatcag gtgagggggc agtagtgctg 1850 cccacaattc atgaccatat taactacaac acctacaaac cagcacatgg 1900 ggcccactgg acagaaaaca gcctggggaa ctctctgcac cccacagtca 1950 ccactatctc tgaaccttat ataattcaga cccataccaa ggacaaggta 2000 caggaaactc aaatatgact cccctcccc aaaaaactta taaaatgcaa 2050 tagaatgcac acaaagacag caacttttgt acagagtggg gagagacttt 2100 ttcttgtata tgcttatata ttaagtctat gggctggtta aaaaaaacag 2150 attatattaa aatttaaaga caaaaagtca aaaca 2185

<210> 229 <211> 653

<212> PRT

<213> Homo sapiens

<400> 229

Met Lys Leu Leu Trp Gln Val Thr Val His His His Thr Trp Asn $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ala Ile Leu Leu Pro Phe Val Tyr Leu Thr Ala Gln Val Trp Ile 20 25 30

Leu Cys Ala Ala Ile Ala Ala Ala Ala Ser Ala Gly Pro Gln Asn 35 40 45

Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val Val 50 55 60

Cys Thr Arg Arg Gly Leu Ser Glu Val Pro Gln Gly Ile Pro Ser
65 70 75

Asn Thr Arg Tyr Leu Asn Leu Met Glu Asn Asn Ile Gln Met Ile 80 85 90

Gln Ala Asp Thr Phe Arg His Leu His His Leu Glu Val Leu Gln 95 100 105

Leu Gly Arg Asn Ser Ile Arg Gln Ile Glu Val Gly Ala Phe Asn 110 115 120

Gly Leu Ala Ser Leu Asn Thr Leu Glu Leu Phe Asp Asn Trp Leu
125 130 135

Thr Val Ile Pro Ser Gly Ala Phe Glu Tyr Leu Ser Lys Leu Arg 140 145 150

Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser Tyr 155 160 165

Ala Phe Asn Arg Val Pro Ser Leu Met Arg Leu Asp Leu Gly Glu 170 175 180

Leu Lys Lys Leu Glu Tyr Ile Ser Glu Gly Ala Phe Glu Gly Leu

				185					190					195
Phe	Asn	Leu	Lys	Tyr 200	Leu	Asn	Leu	Gly	Met 205	Cys	Asn	Ile	Lys	Asp 210
Met	Pro	Asn	Leu	Thr 215	Pro	Leu	Val	Gly	Leu 220	Glu	Glu	Leu	Glu	Met 225
Ser	Gly	Asn	His	Phe 230	Pro	Glu	Ile	Arg	Pro 235	Gly	Ser	Phe	His	Gly 240
Leu	Ser	Ser	Leu	Lys 245	Lys	Leu	Trp	Val	Met 250	Asn	Ser	Gln	Val	Ser 255
Leu	Ile	Glu	Arg	Asn 260	Ala	Phe	Asp	Gly	Leu 265	Ala	Ser	Leu	Val	Glu 270
Leu	Asn	Leu	Ala	His 275	Asn	Asn	Leu	Ser	Ser 280	Leu	Pro	His	Asp	Leu 285
Phe	Thr	Pro	Leu	Arg 290	Tyr	Leu	Val	Glu	Leu 295	His	Leu	His	His	Asn 300
Pro	Trp	Asn	Cys	Asp 305	Cys	Asp	Ile	Leu	Trp 310	Leu	Ala	Trp	Trp	Leu 315
Arg	Glu	Tyr	Ile	Pro 320	Thr	Asn	Ser	Thr	Cys 325	Cys	Gly	Arg	Cys	His 330
Ala	Pro	Met	His	Met 335	Arg	Gly	Arg	Tyr	Leu 340	Val	Glu	Val	Asp	Gln 345
Ala	Ser	Phe	Gln	Cys 350	Ser	Ala	Pro	Phe	Ile 355	Met	Asp	Ala	Pro	Arg 360
Asp	Leu	Asn	Ile	Ser 365	Glu	Gly	Arg	Met	Ala 370	Glu	Leu	Lys	Cys	Arg 375
Thr	Pro	Pro	Met	Ser 380	Ser	Val	Lys	Trp	Leu 385	Leu	Pro	Asn	Gly	Thr 390
Val	Leu	Ser	His	Ala 395	Ser	Arg	His	Pro	Arg 400	Ile	Ser	Val	Leu	Asn 405
Asp	Gly	Thr	Leu	Asn 410		Ser	His	Val	Leu 415	Leu	Ser	Asp	Thr	Gly 420
Val	Tyr	Thr	Cys	Met 425		Thr	Asn	Val	Ala 430	Gly	Asn	Ser	Asn	Ala 435
Ser	Ala	Tyr	Leu	Asn 440		Ser	Thr	Ala	Glu 445	Leu	Asn	Thr	Ser	Asn 450
Tyr	Ser	Phe	Phe	Thr 455		Val	Thr	Val	Glu 460	Thr	Thr	Glu	Ile	Ser 465
Pro	Glu	Asp	Thr	Thr 470		Lys	туг	Lys	Pro 475		Pro	Thr	Thr	Ser 480
Thr	Gly	Tyr	Gln	Pro 485		Tyr	Thr	Thr	Ser 490		Thr	· Val	Leu	11e 495
Gln	Thr	Thr	Arg	Val	Pro	Lys	Gln	val	Ala	Val	Pro	Ala	Thr	: Asp

				500					505					510
Thr	Thr	Asp	Lys	Met 515	Gln	Thr	Ser	Leu	Asp 520	Glu	Val	Met	Lys	Thr 525
Thr	Lys	Ile	Ile	Ile 530	Gly	Cys	Phe	Val	Ala 535	Val	Thr	Leu	Leu	Ala 540
Ala	Ala	Met	Leu	Ile 545	Val	Phe	Tyr	Lys	Leu 550	Arg	Lys	Arg	His	Gln 555
Gln	Arg	Ser	Thr	Val 560	Thr	Ala	Ala	Arg	Thr 565	Val	Glu	Ile	Ile	Gln 570
Val	Asp	Glu	Asp	Ile 575	Pro	Ala	Ala	Thr	Ser 580	Ala	Ala	Ala	Thr	Ala 585
Ala	Pro	Ser	Gly	Val 590	Ser	Gly	Glu	Gly	Ala 595	Val	Val	Leu	Pro	Thr 600
Ile	His	Asp	His	Ile 605	Asn	Tyr	Asn	Thr	Tyr 610	Lys	Pro	Ala	His	Gly 615
Ala	His	Trp	Thr	Glu 620	Asn	Ser	Leu	Gly	Asn 625	Ser	Leu	His	Pro	Thr 630
Val	Thr	Thr	Ile	Ser 635	Glu	Pro	Tyr	Ile	Ile 640	Gln	Thr	His	Thr	Lys 645
Asp	Lys	Val	Gln	Glu 650	Thr	Gln	Ile							

<210> 230 <211> 2846

<212> DNA

<213> Homo sapiens

<400> 230

tggggctcac ttttctcag ctccttctca tctcgtcctt gccaagagag 100
tacacagtca ttaatgaage ctgccctgga gcagagtgga atatcatgtg 150
tcgggagtgc tgtgaatatg atcagattga gtgcgtctgc cccggaaaga 200
gggaagtcgt gggttatacc atcccttgct gcaggaatga ggagaatgag 250
tgtgactcct gcctgatcca cccaggttgt accatctttg aaaactgcaa 300
gagctgccga aatggctcat gggggggtac cttggatgac ttctatgtga 350
aggggttcta ctgtgcagag tgccgagcag gctggtacgg aggagactgc 400
atgcgatgtg gccaggttct gcgagcccca aagggtcaga ttttgttgga 450
aagctatccc ctaaatgctc actgtgaatg gaccattcat gctaaacctg 500
ggtttgtcat ccaactaaga tttgtcatgt tgaggtctgg gttgacaca accgcgatgg 600
ccagatcatc aagcgttct gtggcaacga gcggccagct cctatccaga 650

gcataggatc ctcactccac gtcctcttcc actccgatgg ctccaagaat 700 tttgacggtt tccatgccat ttatgaggag atcacagcat gctcctcatc 750 cccttgtttc catgacggca cgtgcgtcct tgacaaggct ggatcttaca 800 agtgtgcctg cttggcaggc tatactgggc agcgctgtga aaatctcctt 850 gaagaaagaa actgctcaga ccctgggggc ccagtcaatg ggtaccagaa 900 aataacaggg ggccctgggc ttatcaacgg acgccatgct aaaattggca 950 ccgtggtgtc tttcttttgt aacaactcct atgttcttag tggcaatgag 1000 aaaagaactt gccagcagaa tggagagtgg tcagggaaac agcccatctg 1050 cataaaagcc tgccgagaac caaagatttc agacctggtg agaaggagag 1100 ttcttccgat gcaggttcag tcaagggaga caccattaca ccagctatac 1150 tcagcggcct tcagcaagca gaaactgcag agtgccccta ccaagaagcc 1200 agecetteee tttggagate tgeceatggg ataceaacat etgeatacee 1250 agctccagta tgagtgcatc tcacccttct accgccgcct gggcagcagc 1300 aggaggacat gtctgaggac tgggaagtgg agtgggcggg caccatcctg 1350 catccctatc tgcgggaaaa ttgagaacat cactgctcca aagacccaag 1400 ggttgcgctg gccgtggcag gcagccatct acaggaggac cagcggggtg 1450 catgacggca gcctacacaa gggagcgtgg ttcctagtct gcagcggtgc 1500 cctggtgaat gagcgcactg tggtggtggc tgcccactgt gttactgacc 1550 tggggaaggt caccatgatc aagacagcag acctgaaagt tgttttgggg 1600 aaattctacc gggatgatga ccgggatgag aagaccatcc agagcctaca 1650 gatttctgct atcattctgc atcccaacta tgaccccatc ctgcttgatg 1700 ctgacatege cateetgaag etectagaea aggeeegtat cageaceega 1750 gtccagccca tctgcctcgc tgccagtcgg gatctcagca cttccttcca 1800 ggagtcccac atcactgtgg ctggctggaa tgtcctggca gacgtgagga 1850 geoctggett caagaacgae acaetgeget ctggggtggt cagtgtggtg 1900 gactcgctgc tgtgtgagga gcagcatgag gaccatggca tcccagtgag 1950 tgtcactgat aacatgttct gtgccagctg ggaacccact gccccttctg 2000 atatctgcac tgcagagaca ggaggcatcg cggctgtgtc cttcccggga 2050 cgagcatctc ctgagccacg ctggcatctg atgggactgg tcagctggag 2100 ctatgataaa acatgcagcc acaggctctc cactgccttc accaaggtgc 2150 tgccttttaa agactggatt gaaagaaata tgaaatgaac catgctcatg 2200 cactccttga gaagtgtttc tgtatatccg tctgtacgtg tgtcattgcg 2250

<210> 231

<211> 720

<212> PRT

<213> Homo sapiens

<400> 231

Met Glu Leu Gly Cys Trp Thr Gln Leu Gly Leu Thr Phe Leu Gln
1 5 10

Leu Leu Leu Ile Ser Ser Leu Pro Arg Glu Tyr Thr Val Ile Asn 20 25 30

Glu Ala Cys Pro Gly Ala Glu Trp Asn Ile Met Cys Arg Glu Cys
35 40 45

Cys Glu Tyr Asp Gln Ile Glu Cys Val Cys Pro Gly Lys Arg Glu
50 55 60

Val Val Gly Tyr Thr Ile Pro Cys Cys Arg Asn Glu Glu Asn Glu
65 70 75

Cys Asp Ser Cys Leu Ile His Pro Gly Cys Thr Ile Phe Glu Asn 80 85 90

Cys Lys Ser Cys Arg Asn Gly Ser Trp Gly Gly Thr Leu Asp Asp 95 100 105

Phe Tyr Val Lys Gly Phe Tyr Cys Ala Glu Cys Arg Ala Gly Trp 110 115 120

Tyr Gly Gly Asp Cys Met Arg Cys Gly Gln Val Leu Arg Ala Pro 125 130 135

Lys Gly Gln Ile Leu Leu Glu Ser Tyr Pro Leu Asn Ala His Cys 140 145 150

Glu Trp Thr Ile His Ala Lys Pro Gly Phe Val Ile Gln Leu Arg 155 160 165

Phe	Va]	. Met	Let	Ser 170	Leu	Glu	Phe	Asp	Tyr 175		Cys	Gln	Tyr	Asp 180
Tyr	Val	Glu	ı Val	Arc 185	Asp	Gly	' Asp	Asn	Arg 190	Asp	Gly	Gln	Ile	Ile 195
Lys	Arg	y Val	. Cys	Gly 200	Asn	Glu	Arg	Pro	Ala 205	Pro	Ile	Gln	Ser	Ile 210
Gly	Ser	Ser	Leu	His 215	Val	Leu	Phe	His	Ser 220	Asp	Gly	Ser	Lys	Asn 225
Phe	Asp	Gly	Phe	His 230	Ala	Ile	Tyr	Glu	Glu 235	Ile	Thr	Ala	Cys	Ser 240
Ser	Ser	Pro	Cys	Phe 245	His	Asp	Gly	Thr	Cys 250	Val	Leu	Asp	Lys	Ala 255
Gly	Ser	Tyr	Lys	Cys 260	Ala	Cys	Leu	Ala	Gly 265	Tyr	Thr	Gly	Gln	Arg 270
Cys	Glu	Asn	Leu	Leu 275	Glu	Glu	Arg	Asn	Cys 280	Ser	Asp	Pro	Gly	Gly 285
Pro	Val	Asn	Gly	Tyr 290	Gln	Lys	Ile	Thr	Gly 295	Gly	Pro	Gly	Leu	Ile 300
Asn	Gly	Arg	His	Ala 305	Lys	Ile	Gly	Thr	Val 310	Val	Ser	Phe	Phe	Cys 315
				320	Leu				325					330
				335	Ser				340					345
*				350	Ile				355					360
				365	Ser				370					375
				380	Lys				385					390
				395	Phe				400					405
				410	Gln				415					420
Arg				425					430					435
				440	Ser				445					450
Asn				455					460					465
Ala	Ala	Ile	Tyr	Arg 470	Arg	Thr	Ser	Gly	Val 475	His	Asp	Gly	Ser	Leu 480

His Lys Gly Ala Trp Phe Leu Val Cys Ser Gly Ala Leu Val Asn 485 Glu Arg Thr Val Val Val Ala Ala His Cys Val Thr Asp Leu Gly Lys Val Thr Met Ile Lys Thr Ala Asp Leu Lys Val Val Leu Gly 515 Lys Phe Tyr Arg Asp Asp Asp Arg Asp Glu Lys Thr Ile Gln Ser Leu Gln Ile Ser Ala Ile Ile Leu His Pro Asn Tyr Asp Pro Ile 545 Leu Leu Asp Ala Asp Ile Ala Ile Leu Lys Leu Leu Asp Lys Ala 560 Arg Ile Ser Thr Arg Val Gln Pro Ile Cys Leu Ala Ala Ser Arg 575 580 Asp Leu Ser Thr Ser Phe Gln Glu Ser His Ile Thr Val Ala Gly 590 Trp Asn Val Leu Ala Asp Val Arg Ser Pro Gly Phe Lys Asn Asp Thr Leu Arg Ser Gly Val Val Ser Val Val Asp Ser Leu Leu Cys 625 Glu Glu Gln His Glu Asp His Gly Ile Pro Val Ser Val Thr Asp Asn Met Phe Cys Ala Ser Trp Glu Pro Thr Ala Pro Ser Asp Ile 650 Cys Thr Ala Glu Thr Gly Gly Ile Ala Ala Val Ser Phe Pro Gly 670 Arg Ala Ser Pro Glu Pro Arg Trp His Leu Met Gly Leu Val Ser 680 685 Trp Ser Tyr Asp Lys Thr Cys Ser His Arg Leu Ser Thr Ala Phe 695 700 Thr Lys Val Leu Pro Phe Lys Asp Trp Ile Glu Arg Asn Met Lys 715

- <210> 232
- <211> 24
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 232
- aggttcgtga tggagacaac cgcg 24
- <210> 233
- <211> 24
- <212> DNA
- <213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 233
tgtcaaggac gcactgccgt catg 24
<210> 234
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 234
tggccagatc atcaagcgtg tctgtggcaa cqaqcqqcca gctcctatcc 50
<210> 235
<211> 1964
<212> DNA
<213> Homo sapiens
<400> 235
accaggcatt gtatcttcag ttgtcatcaa gttcgcaatc agattggaaa 50
agctcaactt gaagctttct tgcctgcagt gaagcagaga gatagatatt 100
attcacgtaa taaaaaacat gggcttcaac ctgactttcc acctttccta 150
caaattccga ttactgttgc tgttgacttt gtgcctgaca gtggttgggt 200
gggccaccag taactacttc gtgggtgcca ttcaagagat tcctaaagca 250
aaggagttca tggctaattt ccataagacc ctcattttgg ggaagggaaa 300
aactctgact aatgaagcat ccacgaagaa ggtagaactt gacaactgtc 350
cttctgtgtc tccttacctc agaggccaga gcaagctcat tttcaaacca 400
gatctcactt tggaagaggt acaggcagaa aatcccaaag tgtccagagg 450
ccggtatcgc cctcaggaat gtaaagcttt acagagggtc gccatcctcg 500
ttccccaccg gaacagagag aaacacctga tgtacctgct ggaacatctg 550
catcccttcc tgcagaggca gcagctggat tatggcatct acgtcatcca 600
ccaggctgaa ggtaaaaagt ttaatcgagc caaactcttg aatgtgggct 650
atctagaagc cctcaaggaa gaaaattggg actgctttat attccacgat 700
gtggacctgg tacccgagaa tgactttaac ctttacaagt gtgaggagca 750
tcccaagcat ctggtggttg gcaggaacag cactgggtac aggttacgtt 800
acagtggata ttttgggggt gttactgccc taagcagaga gcagtttttc 850
aaggtgaatg gattetetaa caactactgg ggatggggag gegaagaega 900
tgacctcaga ctcagggttg agctccaaag aatgaaaatt tcccggcccc 950
tgcctgaagt gggtaaatat acaatggtct tccacactag agacaaaggc 1000
```

aatgaggtga acgcagaacg gatgaagctc ttacaccaag tgtcacgagt 1050 ctggagaaca gatgggttga gtagttgttc ttataaatta gtatctgtgg 1100 aacacaatcc tttatatatc aacatcacag tggatttctg gtttggtgca 1150 tgaccctgga tcttttggtg atgtttggaa gaactgattc tttgtttgca 1200 ataattttgg cctagagact tcaaatagta gcacacatta agaacctgtt 1250 acageteatt gttgagetga atttteett tttgtatttt ettageagag 1300 ctcctggtga tgtagagtat aaaacagttg taacaagaca gctttcttag 1350 tcattttgat catgagggtt aaatattgta atatggatac ttgaaggact 1400 ttatataaaa ggatgactca aaggataaaa tgaacgctat ttgaggactc 1450 tggttgaagg agatttattt aaatttgaag taatatatta tgggataaaa 1500 ggccacagga aataagactg ctgaatgtct gagagaacca gagttgttct 1550 cgtccaaggt agaaaggtac gaagatacaa tactgttatt catttatcct 1600 gtacaatcat ctgtgaagtg gtggtgtcag gtgagaaggc gtccacaaaa 1650 gaggggagaa aaggcgacga atcaggacac agtgaacttg ggaatgaaga 1700 gttgcaggtg ctgatagcct tcaggggagg acctgcccag gtatgccttc 1800 cagtgatgcc caccagagaa tacattctct attagttttt aaagagtttt 1850 tgtaaaatga ttttgtacaa gtaggatatg aattagcagt ttacaagttt 1900 acatattaac taataataaa tatgtctatc aaatacctct gtagtaaaat 1950 gtgaaaaagc aaaa 1964

```
<210> 236
<211> 344
```

<212> PRT

<213> Homo sapiens

<220>

<221> Signal peptide

<222> 1-27

<223> Signal peptide

<220>

<221> N-glycosylation sites

<222> 4-7, 220-223, 335-338

<223> N-glycosylation sites

<220>

<221> Xylose isomerase proteins

<222> 191-201

<223> Xylose isomerase proteins

<400> 236

Met Gly Phe Asn Leu Thr Phe His Leu Ser Tyr Lys Phe Arg Leu 1 5 10 15

Leu Leu Leu Thr Leu Cys Leu Thr Val Val Gly Trp Ala Thr Ser Asn Tyr Phe Val Gly Ala Ile Gln Glu Ile Pro Lys Ala Lys Glu Phe Met Ala Asn Phe His Lys Thr Leu Ile Leu Gly Lys Gly Lys Thr Leu Thr Asn Glu Ala Ser Thr Lys Lys Val Glu Leu Asp Asn Cys Pro Ser Val Ser Pro Tyr Leu Arg Gly Gln Ser Lys Leu Ile Phe Lys Pro Asp Leu Thr Leu Glu Glu Val Gln Ala Glu Asn Pro Lys Val Ser Arg Gly Arg Tyr Arg Pro Gln Glu Cys Lys Ala 110 115 Leu Gln Arg Val Ala Ile Leu Val Pro His Arg Asn Arg Glu Lys 125 His Leu Met Tyr Leu Leu Glu His Leu His Pro Phe Leu Gln Arg 145 Gln Gln Leu Asp Tyr Gly Ile Tyr Val Ile His Gln Ala Glu Gly 160 Lys Ly's Phe Asn Arg Ala Lys Leu Leu Asn Val Gly Tyr Leu Glu Ala Leu Lys Glu Glu Asn Trp Asp Cys Phe Ile Phe His Asp Val Asp Leu Val Pro Glu Asn Asp Phe Asn Leu Tyr Lys Cys Glu Glu 205 His Pro Lys His Leu Val Val Gly Arg Asn Ser Thr Gly Tyr Arg 215 220 Leu Arg Tyr Ser Gly Tyr Phe Gly Gly Val Thr Ala Leu Ser Arg Glu Gln Phe Phe Lys Val Asn Gly Phe Ser Asn Asn Tyr Trp Gly 250 Trp Gly Gly Glu Asp Asp Asp Leu Arg Leu Arg Val Glu Leu Gln 265 Arg Met Lys Ile Ser Arg Pro Leu Pro Glu Val Gly Lys Tyr Thr 275 Met Val Phe His Thr Arg Asp Lys Gly Asn Glu Val Asn Ala Glu 295 Arg Met Lys Leu Leu His Gln Val Ser Arg Val Trp Arg Thr Asp 310 Gly Leu Ser Ser Cys Ser Tyr Lys Leu Val Ser Val Glu His Asn 325

<210> 237

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 237

ccttacctca gaggccagag caagc 25

<210> 238

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 238

gagetteate egttetgegt teace 25

<210> 239

<211> 46

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 239

caggaatgta aagctttaca gagggtcgcc atcctcgttc cccacc 46

<210> 240

<211> 2567

<212> DNA

<213> Homo sapiens

<400> 240

cgtgggccgg ggtcgcgcag cgggctgtgg gcgcgcccgg aggagcgacc 50

gccgcagttc tcgagctcca gctgcattcc ctccgcgtcc gccccacgct 100

tetecegete egggeeeege aatggeeeag geagtgtggt egegeetegg 150

cegeatecte tggettgeet geeteetgee etgggeeeeg geaggggtgg 200

ccgcaggcct gtatgaactc aatctcacca ccgatagccc tgccaccacg 250

ggagcggtgg tgaccatctc ggccagcctg gtggccaagg acaacggcag 300

cctggccctg cccgctgacg cccacctcta ccgcttccac tggatccaca 350

ccccgctggt gcttactggc aagatggaga agggtctcag ctccaccatc 400

cgtgtggtcg gccacgtgcc cggggaattc ccggtctctg tctgggtcac 450

tgccgctgac tgctggatgt gccagcctgt ggccaggggc tttgtggtcc 500

tececateae agagtteete gtgggggaee ttgttgteae eeagaacaet 550

tecetaceet ggeecagete etateteaet aagacegtee tgaaagtete 600 cttcctcctc cacgacccga gcaacttcct caagaccgcc ttgtttctct 650 acagetggga etteggggae gggaeecaga tggtgaetga agaeteegtg 700 gtctattata actattccat catcgggacc ttcaccgtga agctcaaagt 750 ggtggcggag tgggaagagg tggagccgga tgccacgagg gctgtgaagc 800 agaagaccgg ggacttctcc gcctcgctga agctgcagga aacccttcga 850 ggcatccaag tgttggggcc caccctaatt cagaccttcc aaaagatgac 900 egtgacettg aactteetgg ggageeetee tetgactgtg tgetggegte 950 tcaagcctga gtgcctcccg ctggaggaag gggagtgcca ccctgtgtcc 1000 gtggccagca cagcgtacaa cctgacccac accttcaggg accctgggga 1050 ctactgcttc agcatccggg ccgagaatat catcagcaag acacatcagt 1100 accacaagat ccaggtgtgg ccctccagaa tccagccggc tgtctttgct 1150 ttcccatgtg ctacacttat cactgtgatg ttggccttca tcatgtacat 1200 gaccetgegg aatgecacte ageaaaagga catggtggag aacceggage 1250 caccetetgg ggteaggtge tgetgeeaga tgtgetgtgg geetttettg 1300 ctggagactc catctgagta cctggaaatt gttcgtgaga accacgggct 1350 gctcccgccc ctctataagt ctgtcaaaac ttacaccgtg tgagcactcc 1400 ccctccccac cccatctcag tgttaactga ctgctgactt ggagtttcca 1450 gcagggtggt gtgcaccact gaccaggagg ggttcatttg cgtggggctg 1500 ttggcctgga tcatccatcc atctgtacag ttcagccact gccacaagcc 1550 cctccctctc tgtcacccct gaccccagcc attcacccat ctgtacagtc 1600 cagecactga cataagecee acteggttae caeeceettg acceetace 1650 tttgaagagg cttcgtgcag gactttgatg cttggggtgt tccgtgttga 1700 ctcctaggtg ggcctggctg cccactgccc attcctcta tattggcaca 1750 tetgetgtee attgggggtt eteagtttee teecceagae agecetacet 1800 gtgccagaga gctagaaaga aggtcataaa gggttaaaaa tccataacta 1850 aaggttgtac acatagatgg gcacactcac agagagaagt gtgcatgtac 1900 acacaccaca cacacacac cacacacaca cacagaaata taaacacatg 1950 cgtcacatgg gcatttcaga tgatcagctc tgtatctggt taagtcggtt 2000 gctgggatgc accctgcact agagctgaaa ggaaatttga cctccaagca 2050 gccctgacag gttctgggcc cgggccctcc ctttgtgctt tgtctctgca 2100 gttcttgcgc cctttataag gccatcctag tccctgctgg ctggcagggg 2150

cctggatggg gggcaggact aatactgagt gattgcagag tgctttataa 2200 atatcacctt attttatcga aacccatctg tgaaactttc actgaggaaa 2250 aggccttgca gcggtagaag aggttgagtc aaggccgggc gcggtggctc 2300 acgcctgtaa tcccagcact ttgggaggcc gaggcgggtg gatcacgaga 2350 tcaggagatc gagaccaccc tggctaacac ggtgaaaccc cgtctctact 2400 aaaaaaatac aaaaagttag ccgggcgtgg tggtgggtgc ctgtagtccc 2450 agctactcgg gaggctgagg caggagaatg gtgcgaaccc gggaggcgga 2500 gcttgcagtg agcccagatg gcgccactgc actccagcct gagtgacaga 2550 gcgagactct gtctcca 2567

<210> 241 <211> 423

<212> PRT

<213> Homo sapiens

<400> 241

Met Ala Gln Ala Val Trp Ser Arg Leu Gly Arg Ile Leu Trp Leu 1 5 10 15

Ala Cys Leu Leu Pro Trp Ala Pro Ala Gly Val Ala Ala Gly Leu 20 25 30

Tyr Glu Leu Asn Leu Thr Thr Asp Ser Pro Ala Thr Thr Gly Ala 35 40 45

Val Val Thr Ile Ser Ala Ser Leu Val Ala Lys Asp Asn Gly Ser 50 55 60

Leu Ala Leu Pro Ala Asp Ala His Leu Tyr Arg Phe His Trp Ile 65 70 75

His Thr Pro Leu Val Leu Thr Gly Lys Met Glu Lys Gly Leu Ser $80 \\ \hspace{1.5cm} 85 \\ \hspace{1.5cm} 90$

Ser Thr Ile Arg Val Val Gly His Val Pro Gly Glu Phe Pro Val 95 100 105

Ser Val Trp Val Thr Ala Ala Asp Cys Trp Met Cys Gln Pro Val 110 115 120

Ala Arg Gly Phe Val Val Leu Pro Ile Thr Glu Phe Leu Val Gly 125 130 135

Asp Leu Val Val Thr Gln Asn Thr Ser Leu Pro Trp Pro Ser Ser 140 145 150

Tyr Leu Thr Lys Thr Val Leu Lys Val Ser Phe Leu Leu His Asp 155 160 160

Pro Ser Asn Phe Leu Lys Thr Ala Leu Phe Leu Tyr Ser Trp Asp 170 175 180

Phe Gly Asp Gly Thr Gln Met Val Thr Glu Asp Ser Val Val Tyr 185 190 195

Tyr Asn Tyr Ser Ile Ile Gly Thr Phe Thr Val Lys Leu Lys Val Val Ala Glu Trp Glu Glu Val Glu Pro Asp Ala Thr Arg Ala Val 215 Lys Gln Lys Thr Gly Asp Phe Ser Ala Ser Leu Lys Leu Gln Glu Thr Leu Arg Gly Ile Gln Val Leu Gly Pro Thr Leu Ile Gln Thr Phe Gln Lys Met Thr Val Thr Leu Asn Phe Leu Gly Ser Pro Pro Leu Thr Val Cys Trp Arg Leu Lys Pro Glu Cys Leu Pro Leu Glu Glu Gly Glu Cys His Pro Val Ser Val Ala Ser Thr Ala Tyr Asn 290 295 Leu Thr His Thr Phe Arg Asp Pro Gly Asp Tyr Cys Phe Ser Ile 305 Arg Ala Glu Asn Ile Ile Ser Lys Thr His Gln Tyr His Lys Ile 320 Gln Val Trp Pro Ser Arg Ile Gln Pro Ala Val Phe Ala Phe Pro 340 Cys Ala Thr Leu Ile Thr Val Met Leu Ala Phe Ile Met Tyr Met Thr Leu Arg Asn Ala Thr Gln Gln Lys Asp Met Val Glu Asn Pro 365 Glu Pro Pro Ser Gly Val Arg Cys Cys Cys Gln Met Cys Cys Gly 385 Pro Phe Leu Glu Thr Pro Ser Glu Tyr Leu Glu Ile Val Arg 395 Glu Asn His Gly Leu Leu Pro Pro Leu Tyr Lys Ser Val Lys Thr

Tyr Thr Val

- <210> 242
- <211> 26
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe

410

- <400> 242
- cattteetta ecetggacee agetee 26
- <210> 243
- <211> 25
- <212> DNA
- <213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 243
 gaaaggccca cagcacatct ggcag 25
<210> 244
<211> 46
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 244
ccacgacccg agcaacttcc tcaagaccga cttgtttctc tacagc 46
<210> 245
<211> 485
<212> DNA
<213> Homo sapiens
<400> 245
gctcaagacc cagcagtggg acagccagac agacggcacg atggcactga 50
gctcccagat ctgggccgct tgcctcctgc tcctcctcct cctcgccagc 100
 ctgaccagtg gctctgtttt cccacaacag acgggacaac ttgcagagct 150
 gcaaccccag gacagagctg gagccagggc cagctggatg cccatgttcc 200
 agaggcgaag gaggcgagac acccacttcc ccatctgcat tttctgctgc 250
ggctgctgtc atcgatcaaa gtgtgggatg tgctgcaaga cgtagaacct 300
acctgccctg cccccgtccc ctcccttcct tatttattcc tgctgcccca 350
gaacataggt cttggaataa aatggctggt tcttttgttt tccaaaaaaa 400
aaaaaaaaaa aaaaaaaaaa aaaaaa 485
<210> 246
<211> 84
<212> PRT
<213> Homo sapiens
<400> 246
Met Ala Leu Ser Ser Gln Ile Trp Ala Ala Cys Leu Leu Leu
Leu Leu Ala Ser Leu Thr Ser Gly Ser Val Phe Pro Gln Gln
                 20
                                   2.5
Thr Gly Gln Leu Ala Glu Leu Gln Pro Gln Asp Arg Ala Gly Ala
Arg Ala Ser Trp Met Pro Met Phe Gln Arg Arg Arg Arg Asp
Thr His Phe Pro Ile Cys Ile Phe Cys Cys Gly Cys Cys His Arg
```

Ser Lys Cys Gly Met Cys Cys Lys Thr

<210> 247 <211> 2359

<212> DNA

<213> Homo sapiens

<400> 247 ctgtcaggaa ggaccatctg aaggctgcaa tttgttctta gggaggcagg 50 tgctggcctg gcctggatct tccaccatgt tcctgttgct gccttttgat 100 agectgattg teaacettet gggeatetee etgactgtee tetteaceet 150 ccttctcgtt ttcatcatag tgccagccat ttttggagtc tcctttggta 200 tccgcaaact ctacatgaaa agtctgttaa aaatctttgc gtgggctacc 250 ttgagaatgg agcgaggagc caaggagaag aaccaccagc tttacaagcc 300 ctacaccaac ggaatcattg caaaggatcc cacttcacta gaagaagaga 350 tcaaagagat tcgtcgaagt ggtagtagta aggctctgga caacactcca 400 gagttcgagc tctctgacat tttctacttt tgccggaaag gaatggagac 450 cattatggat gatgaggtga caaagagatt ctcagcagaa gaactggagt 500 cctggaacct gctgagcaga accaattata acttccagta catcagcctt 550 cggctcacgg tcctgtgggg gttaggagtg ctgattcggt actgctttct 600 gctgccgctc aggatagcac tggctttcac agggattagc cttctggtgg 650 tgggcacaac tgtggtggga tacttgccaa atgggaggtt taaggaattc 700 atgagtaaac atgttcactt aatgtgttac cggatctgcg tgcgagcgct 750 gacagccatc atcacctacc atgacaggga aaacagacca agaaatggtg 800 gcatctgtgt ggccaatcat acctcaccga tcgatgtgat catcttggcc 850 agcgatggct attatgccat ggtgggtcaa gtgcacgggg gactcatggg 900 tgtgattcag agagccatgg tgaaggcctg cccacacgtc tggtttgagc 950 gctcggaagt gaaggatcgc cacctggtgg ctaagagact gactgaacat 1000 gtgcaagata aaagcaagct gcctatcctc atcttcccag aaggaacctg 1050 catcaataat acatcggtga tgatgttcaa aaagggaagt tttgaaattg 1100 gagecacagt ttaccetgtt getateaagt atgaceetca atttggegat 1150 gccttctgga acagcagcaa atacgggatg gtgacgtacc tgctgcgaat 1200 gatgaccage tgggccattg tctgcagcgt gtggtacctg cctcccatga 1250 ctagagaggc agatgaagat gctgtccagt ttgcgaatag ggtgaaatct 1300 gccattgcca ggcagggagg acttgtggac ctgctgtggg atgggggcct 1350

gaagagggag aaggtgaagg acacgttcaa ggaggagcag cagaagctgt 1400 acagcaagat gatcgtgggg aaccacaagg acaggagccg ctcctgagcc 1450 tgcctccagc tggctggggc caccgtgcgg ggtgccaacg ggctcagagc 1500 tggagttgcc gccgccgccc ccactgctgt gtcctttcca gactccaggg 1550 ctccccgggc tgctctggat cccaggactc cggctttcgc cgagccgcag 1600 cgggatccct gtgcacccgg cgcagcctac ccttggtggt ctaaacggat 1650 gctgctgggt gttgcgaccc aggacgagat gccttgtttc ttttacaata 1700 agtcgttgga ggaatgccat taaagtgaac tccccacctt tgcacgctgt 1750 gcgggctgag tggttgggga gatgtggcca tggtcttgtg ctagagatgg 1800 cggtacaaga gtctgttatg caagcccgtg tgccagggat gtgctggggg 1850 cggccacccg ctctccagga aaggcacagc tgaggcactg tggctggctt 1900 cggcctcaac atcgccccca gccttggagc tctgcagaca tgataggaag 1950 gaaactgtca tctgcagggg ctttcagcaa aatgaagggt tagattttta 2000 tgctgctgct gatggggtta ctaaagggag gggaagaggc caggtgggcc 2050 gctgactggg ccatggggag aacgtgtgtt cgtactccag gctaaccctg 2100 aactccccat gtgatgcgcg ctttgttgaa tgtgtgtctc ggtttcccca 2150 tctgtaatat gagtcggggg gaatggtggt gattcctacc tcacagggct 2200 gttgtgggga ttaaagtgct gcgggtgagt gaaggacaca tcacgttcag 2250 tgtttcaagt acaggcccac aaaacggggc acggcaggcc tgagctcaga 2300 gctgctgcac tgggctttgg atttgttctt gtgagtaaat aaaactggct 2350 ggtgaatga 2359

<210> 248

<211> 456

<212> PRT

<213> Homo sapiens

<400> 248

Met Phe Leu Leu Pro Phe Asp Ser Leu Ile Val Asn Leu Leu 1 5 10 15

Gly Ile Ser Leu Thr Val Leu Phe Thr Leu Leu Val Phe Ile 20 25 30

Ile Val Pro Ala Ile Phe Gly Val Ser Phe Gly Ile Arg Lys Leu 35 40 45

Tyr Met Lys Ser Leu Leu Lys Ile Phe Ala Trp Ala Thr Leu Arg 50 55 60

Met Glu Arg Gly Ala Lys Glu Lys Asn His Gln Leu Tyr Lys Pro 65 70 75

Tyr Thr Asn Gly Ile Ile Ala Lys Asp Pro Thr Ser Leu Glu Glu Glu Ile Lys Glu Ile Arg Arg Ser Gly Ser Ser Lys Ala Leu Asp 95 Asn Thr Pro Glu Phe Glu Leu Ser Asp Ile Phe Tyr Phe Cys Arg 115 Lys Gly Met Glu Thr Ile Met Asp Asp Glu Val Thr Lys Arg Phe 135 Ser Ala Glu Glu Leu Glu Ser Trp Asn Leu Leu Ser Arg Thr Asn Tyr Asn Phe Gln Tyr Ile Ser Leu Arg Leu Thr Val Leu Trp Gly 155 160 Leu Gly Val Leu Ile Arg Tyr Cys Phe Leu Leu Pro Leu Arg Ile 170 175 Ala Leu Ala Phe Thr Gly Ile Ser Leu Leu Val Val Gly Thr Thr 190 Val Val Gly Tyr Leu Pro Asn Gly Arg Phe Lys Glu Phe Met Ser 200 Lys His Val His Leu Met Cys Tyr Arg Ile Cys Val Arg Ala Leu 220 Thr Ala Ile Ile Thr Tyr His Asp Arg Glu Asn Arg Pro Arg Asn 235 Gly Gly Ile Cys Val Ala Asn His Thr Ser Pro Ile Asp Val Ile 245 Ile Leu Ala Ser Asp Gly Tyr Tyr Ala Met Val Gly Gln Val His 265 Gly Gly Leu Met Gly Val Ile Gln Arg Ala Met Val Lys Ala Cys 280 Pro His Val Trp Phe Glu Arg Ser Glu Val Lys Asp Arg His Leu 295 Val Ala Lys Arg Leu Thr Glu His Val Gln Asp Lys Ser Lys Leu Pro Ile Leu Ile Phe Pro Glu Gly Thr Cys Ile Asn Asn Thr Ser 320 Val Met Met Phe Lys Lys Gly Ser Phe Glu Ile Gly Ala Thr Val 340 Tyr Pro Val Ala Ile Lys Tyr Asp Pro Gln Phe Gly Asp Ala Phe 355 Trp Asn Ser Ser Lys Tyr Gly Met Val Thr Tyr Leu Leu Arg Met 370 Met Thr Ser Trp Ala Ile Val Cys Ser Val Trp Tyr Leu Pro Pro 385

Met Thr Arg Glu Ala Asp Glu Asp Ala Val Gln Phe Ala Asn Arg Val Lys Ser Ala Ile Ala Arg Gln Gly Gly Leu Val Asp Leu Leu 410 Trp Asp Gly Gly Leu Lys Arg Glu Lys Val Lys Asp Thr Phe Lys 435 Glu Glu Gln Gln Lys Leu Tyr Ser Lys Met Ile Val Gly Asn His Lys Asp Arg Ser Arg Ser

<210> 249 <211> 1103 <212> DNA <213> Homo sapiens

<400> 249 gcccctcgaa accaggactc cagcacctct qqtcccqccc tcacccqqac 50 ccctggccct cacgtctcct ccagggatgg cgctggcggc tttgatgatc 100 gccctcggca gcctcggcct ccacacctgg caggcccagg ctgttcccac 150 catcctgccc ctgggcctgg ctccagacac ctttgacgat acctatgtgg 200 gttgtgcaga ggagatggag gagaaggcag ccccctgct aaaqgaggaa 250 atggcccacc atgccctgct gcgggaatcc tgggaggcag cccaggagac 300 ctgggaggac aagcgtcgag ggcttacctt gcccctggc ttcaaagccc 350 agaatggaat agccattatg gtctacacca actcatcgaa caccttgtac 400 tgggagttga atcaggccgt gcggacgggc ggaggctccc gggagctcta 450 catgaggcac tttcccttca aggccctgca tttctacctg atccgggccc 500 tgcagctgct gcgaggcagt gggggctgca gcaggggacc tgqggaggtg 550 gtgttccgag gtgtgggcag ccttcgcttt gaacccaaga ggctggggga 600 ctctgtccgc ttgggccagt ttgcctccag ctccctggat aaggcagtgg 650 cccacagatt tggggagaag aggcggggct gtgtgtctgc gccaggggtg 700 cagctagggt cacaatctga gggggcctcc tctctgcccc cctggaagac 750 tetgetettg geceetggag agtteeaget eteaggggtt gggeeetgaa 800 agtccaacat ctgccactta ggagccctgg gaacgggtga ccttcatatg 850 acgaagaggc acctccagca gccttgagaa gcaaqaacat qqttccqqac 900 ccagccctag cagccttctc cccaaccagg atgttggcct ggggaggcca 950 cagcagggct gagggaactc tgctatgtga tggggacttc ctgggacaag 1000 caaggaaagt actgaggcag ccacttgatt gaacggtgtt gcaatgtgga 1050

gacatggagt tttattgagg tagctacgtg attaaatggt attgcagtgt 1100
gga 1103

<210> 250

<211> 240

<212> PRT

<213> Homo sapiens

<400> 250

Met Ala Leu Ala Ala Leu Met Ile Ala Leu Gly Ser Leu Gly Leu
1 5 10 15

His Thr Trp Gln Ala Gln Ala Val Pro Thr Ile Leu Pro Leu Gly 20 25 30

Leu Ala Pro Asp Thr Phe Asp Asp Thr Tyr Val Gly Cys Ala Glu
35 40 45

Glu Met Glu Glu Lys Ala Ala Pro Leu Leu Lys Glu Glu Met Ala 50 55 60

His His Ala Leu Leu Arg Glu Ser Trp Glu Ala Ala Gln Glu Thr
65 70 75

Trp Glu Asp Lys Arg Arg Gly Leu Thr Leu Pro Pro Gly Phe Lys
80 85 90

Ala Gln Asn Gly Ile Ala Ile Met Val Tyr Thr Asn Ser Ser Asn $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105$

Thr Leu Tyr Trp Glu Leu Asn Gln Ala Val Arg Thr Gly Gly Gly 110 115

Ser Arg Glu Leu Tyr Met Arg His Phe Pro Phe Lys Ala Leu His 125 130 135

Phe Tyr Leu Ile Arg Ala Leu Gln Leu Leu Arg Gly Ser Gly Gly 140 145 150

Cys Ser Arg Gly Pro Gly Glu Val Val Phe Arg Gly Val Gly Ser 155 160 165

Leu Arg Phe Glu Pro Lys Arg Leu Gly Asp Ser Val Arg Leu Gly 170 175 180

Gln Phe Ala Ser Ser Ser Leu Asp Lys Ala Val Ala His Arg Phe 185 190 195

Gly Glu Lys Arg Arg Gly Cys Val Ser Ala Pro Gly Val Gln Leu

Gly Ser Gln Ser Glu Gly Ala Ser Ser Leu Pro Pro Trp Lys Thr 215 220 225

<210> 251

<211> 50

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 251
ccaccacctg gaggtcctgc agttgggcag gaactccatc cggcagattg 50
<210> 252
<211> 1076
<212> DNA
<213> Homo sapiens
<400> 252
 gtggcttcat ttcagtggct gacttccaga gagcaatatg gctggttccc 50
caacatgeet caeceteate tatateettt ggeageteae agggteagea 100
 gcctctggac ccgtgaaaga gctgqtcgqt tccgttgqtg qqqccqtqac 150
 tttccccctg aagtccaaag taaagcaagt tgactctatt gtctggacct 200
 tcaacacaac ccctcttgtc accatacagc cagaaggggg cactatcata 250
 gtgacccaaa atcgtaatag ggagagagta gacttcccag atggaggcta 300
 ctccctgaag ctcagcaaac tgaagaagaa tgactcaggg atctactatg 350
 tggggatata cagctcatca ctccagcagc cctccaccca ggagtacgtg 400
 ctgcatgtct acgagcacct gtcaaagcct aaagtcacca tgggtctgca 450
 gagcaataag aatggcacct gtgtgaccaa tctgacatgc tgcatggaac 500
 atggggaaga ggatgtgatt tatacctgga aggccctggg gcaagcagcc 550
 aatgagtccc ataatgggtc catcctcccc atctcctgga gatggggaga 600
 aagtgatatg accttcatct gcgttgccag gaaccctgtc agcagaaact 650
 tctcaagccc catccttgcc aggaagctct gtgaaggtgc tgctgatgac 700
 ccagattcct ccatggtcct cctgtgtctc ctgttggtgc ccctcctgct 750
 cagtetettt gtactgggge tatttetttg gtttetgaag agagagagae 800
 aagaagagta cattgaagag aagaagagag tggacatttg tcgggaaact 850
 cctaacatat gcccccattc tggagagaac acagagtacg acacaatccc 900
 tcacactaat agaacaatcc taaaggaaga tccagcaaat acggtttact 950
 ccactgtgga aataccgaaa aagatggaaa atccccactc actgctcacg 1000
atgccagaca caccaaggct atttgcctat gagaatgtta tctagacagc 1050
agtgcactcc cctaagtctc tgctca 1076
<210> 253
<211> 335
<212> PRT
<213> Homo sapiens
```

Met Ala Gly Ser Pro Thr Cys Leu Thr Leu Ile Tyr Ile Leu Trp

1 10 15 Gln Leu Thr Gly Ser Ala Ala Ser Gly Pro Val Lys Glu Leu Val Gly Ser Val Gly Gly Ala Val Thr Phe Pro Leu Lys Ser Lys Val Lys Gln Val Asp Ser Ile Val Trp Thr Phe Asn Thr Thr Pro Leu Val Thr Ile Gln Pro Glu Gly Gly Thr Ile Ile Val Thr Gln Asn Arg Asn Arg Glu Arg Val Asp Phe Pro Asp Gly Gly Tyr Ser Leu Lys Leu Ser Lys Leu Lys Lys Asn Asp Ser Gly Ile Tyr Tyr Val 100 Gly Ile Tyr Ser Ser Ser Leu Gln Gln Pro Ser Thr Gln Glu Tyr 110 115 Val Leu His Val Tyr Glu His Leu Ser Lys Pro Lys Val Thr Met Gly Leu Gln Ser Asn Lys Asn Gly Thr Cys Val Thr Asn Leu Thr Cys Cys Met Glu His Gly Glu Glu Asp Val Ile Tyr Thr Trp Lys Ala Leu Gly Gln Ala Ala Asn Glu Ser His Asn Gly Ser Ile Leu 170 Pro Ile Ser Trp Arg Trp Gly Glu Ser Asp Met Thr Phe Ile Cys 185 190 Val Ala Arg Asn Pro Val Ser Arg Asn Phe Ser Ser Pro Ile Leu 205 200 Ala Arg Lys Leu Cys Glu Gly Ala Ala Asp Asp Pro Asp Ser Ser 215 Met Val Leu Leu Cys Leu Leu Leu Val Pro Leu Leu Ser Leu 235 Phe Val Leu Gly Leu Phe Leu Trp Phe Leu Lys Arg Glu Arg Gln Glu Glu Tyr Ile Glu Glu Lys Lys Arg Val Asp Ile Cys Arg Glu 260 265 Thr Pro Asn Ile Cys Pro His Ser Gly Glu Asn Thr Glu Tyr Asp Thr Ile Pro His Thr Asn Arg Thr Ile Leu Lys Glu Asp Pro Ala 290 Asn Thr Val Tyr Ser Thr Val Glu Ile Pro Lys Lys Met Glu Asn 305 310 Pro His Ser Leu Leu Thr Met Pro Asp Thr Pro Arg Leu Phe Ala

320 325 330

Tyr Glu Asn Val Ile 335

<210> 254

<211> 1053

<212> DNA

<213> Homo sapiens

<400> 254

ctggttcccc aacatgcctc accctcatct atatcctttg gcagctcaca 50 gggtcagcag cctctggacc cgtgaaagag ctggtcggtt ccgttggtgg 100 ggccgtgact ttccccctga agtccaaagt aaagcaagtt gactctattq 150 tctggacctt caacacaacc cctcttgtca ccatacagcc agaagggggc 200 actatcatag tgacccaaaa tcgtaatagg gagagagtag acttcccaga 250 tggaggctac tccctgaagc tcagcaaact gaagaagaat gactcaggga 300 tctactatgt ggggatatac agctcatcac tccagcagcc ctccacccag 350 gagtacgtgc tgcatgtcta cgagcacctg tcaaaqccta aagtcaccat 400 gggtctgcag agcaataaga atggcacctg tgtgaccaat ctgacatgct 450 gcatggaaca tggggaagag gatgtgattt atacctggaa ggccctgggg 500 caagcagcca atgagtccca taatgggtcc atcctcccca tctcctqqaq 550 atggggagaa agtgatatga ccttcatctg cgttgccagg aaccctgtca 600 gcagaaactt ctcaagcccc atccttgcca ggaagctctg tgaaggtgct 650 getgatgace cagatteete catggteete etgtqtetee tgttqqtqce 700 cctcctgctc agtctctttg tactggggct atttctttgg tttctgaaga 750 gagagagaca agaagagtac attgaagaga agaagagagt ggacatttgt 800 cgggaaactc ctaacatatg cccccattct ggagagaaca cagagtacga 850 cacaatccct cacactaata gaacaatcct aaaggaagat ccagcaaata 900 cggtttactc cactgtggaa ataccgaaaa agatggaaaa tccccactca 950 ctgctcacga tgccagacac accaaggcta tttgcctatg agaatgttat 1000 ctagacagca gtgcactccc ctaagtctct gctcaaaaaa aaaaaaaaa 1050

<210> 255

aaa 1053

<211> 860

<212> DNA

<213> Homo sapiens

<400> 255

gaaagacgtg gtcctgacag acagacaatc ctattcccta ccaaaatgaa 50

gatgctgctg ctgctgtgtt tgggactgac cctagtctgt gtccatgcag 100 aagaagctag ttctacggga aggaacttta atgtagaaaa gattaatggg 150 gaatggcata ctattatcct ggcctctgac aaaagagaaa agatagaaga 200 acatggcaac tttagacttt ttctggagca aatccatgtc ttggagaatt 250 ccttagttct taaagtccat actgtaagag atgaagagtg ctccgaatta 300 tctatggttg ctgacaaaac agaaaaggct ggtgaatatt ctgtgacgta 350 tgatggattc aatacattta ctatacctaa gacagactat gataactttc 400 ttatggctca cctcattaac gaaaaggatg gggaaacctt ccaqctgatg 450 gggctctatg gccgagaacc agatttgagt tcagacatca aggaaaggtt 500 tgcacaacta tgtgaggagc atggaatcct tagagaaaat atcattgacc 550 tatecaatge caategetge etceaggece gagaatgaag aatggeetga 600 gcctccagtg ttgagtggac acttctcacc aggactccac catcatccct 650 tectatecat acageatece cagtataaat tetgtgatet geattecate 700 ctgtctcact gagaagtcca attccagtct atcaacatgt tacctaggat 750 acctcatcaa gaatcaaaga cttctttaaa tttctctttg atacaccctt 800 gacaattttt catgaaatta ttcctcttcc tgttcaataa atgattaccc 850 ttgcacttaa 860

<210> 256 <211> 180 <212> PRT

<213> Homo sapiens

<400> 256

Met Lys Met Leu Leu Leu Cys Leu Gly Leu Thr Leu Val Cys 1 5 10 15

Val His Ala Glu Glu Ala Ser Ser Thr Gly Arg Asn Phe Asn Val 20 25 30

Glu Lys Ile Asn Gly Glu Trp His Thr Ile Ile Leu Ala Ser Asp 35 40 45

Lys Arg Glu Lys Ile Glu Glu His Gly Asn Phe Arg Leu Phe Leu 50 55 60

Glu Gln Ile His Val Leu Glu Asn Ser Leu Val Leu Lys Val His
65 70 75

Thr Val Arg Asp Glu Glu Cys Ser Glu Leu Ser Met Val Ala Asp 80 85 90

Lys Thr Glu Lys Ala Gly Glu Tyr Ser Val Thr Tyr Asp Gly Phe 95 100 105

Asn Thr Phe Thr Ile Pro Lys Thr Asp Tyr Asp Asn Phe Leu Met 110 115 120

Ala His Leu Ile Asn Glu Lys Asp Gly Glu Thr Phe Gln Leu Met 125 $$ 130 $$ 135

Gly Leu Tyr Gly Arg Glu Pro Asp Leu Ser Ser Asp Ile Lys Glu 140 145 150

Arg Phe Ala Gln Leu Cys Glu Glu His Gly Ile Leu Arg Glu Asn 155 160 165

Ile Ile Asp Leu Ser Asn Ala Asn Arg Cys Leu Gln Ala Arg Glu 170 175 180

<210> 257

<211> 766

<212> DNA

<213> Homo sapiens

<400> 257

gactogagog tttetgagoe aggggtgace atgacetget gegaaggatg 50 gacatectge aatggattea geetgetggt tetactgetg ttaggagtag 100 tteeteaatge gataceteta attgteaget tagttgagga agaceaattt 150 tetecaaaace ecatetettg etttgagtgg tggtteecag gaattatagg 200 ageaggtetg atggeeatte eageaacaae aatgteettg aeageaagaa 250 aaagagegtg etgeaacaae agaactggaa tgtteette ateattete 300 agtgtgatea eagteattgg tgeteetgat tgeatgetga tatecateea 350 ggeteetetta aaaggteete teatgtgtaa teeteeaage aacagtaatg 400 ecaattgga attteeattg aaaaacatea gtgacattea teeaagatee 450 teeaacttge agtggtttt eaatgactet tgtgeaecte etaetggttt 500 eaataaacee accagtaacg acaceatgge gagtggetgg agagcateta 550 gttteeactt egattetga gaaaacaaae ataggettat ecaetteea 650 gtattttag gtetattget tgttggaatt etggaggtee tgtttggget 650 eagteagata gteateggt teettggea gteetetaage 700 gaagaagtea aattgtgtag tttaatggga ataaaatgta agtateeagta 750

<210> 258

<211> 229

<212> PRT

<213> Homo sapiens

gtttgaaaaa aaaaaa 766

<400> 258

Met Thr Cys Cys Glu Gly Trp Thr Ser Cys Asn Gly Phe Ser Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Val Leu Leu Leu Gly Val Val Leu Asn Ala Ile Pro Leu 20 25 30

Ile Val Ser Leu Val Glu Glu Asp Gln Phe Ser Gln Asn Pro Ile

40 45 Ser Cys Phe Glu Trp Trp Phe Pro Gly Ile Ile Gly Ala Gly Leu 50 Met Ala Ile Pro Ala Thr Thr Met Ser Leu Thr Ala Arg Lys Arg Ala Cys Cys Asn Asn Arq Thr Gly Met Phe Leu Ser Ser Phe Phe Ser Val Ile Thr Val Ile Gly Ala Leu Tyr Cys Met Leu Ile Ser Ile Gln Ala Leu Leu Lys Gly Pro Leu Met Cys Asn Ser Pro Ser 110 115 Asn Ser Asn Ala Asn Cys Glu Phe Ser Leu Lys Asn Ile Ser Asp 130 Ile His Pro Glu Ser Phe Asn Leu Gln Trp Phe Phe Asn Asp Ser 140 Cys Ala Pro Pro Thr Gly Phe Asn Lys Pro Thr Ser Asn Asp Thr 155 Met Ala Ser Gly Trp Arg Ala Ser Ser Phe His Phe Asp Ser Glu 170 175 180 Glu Asn Lys His Arg Leu Ile His Phe Ser Val Phe Leu Gly Leu Leu Leu Val Gly Ile Leu Glu Val Leu Phe Gly Leu Ser Gln Ile 200 Val Ile Gly Phe Leu Gly Cys Leu Cys Gly Val Ser Lys Arg Arg 220 Ser Gln Ile Val

<210> 259

<211> 434

<212> DNA

<213> Homo sapiens

<400> 259

gtcgaatcca aatcactcat tgtgaaagct gagctcacag ccgaataagc 50 caccatgagg ctgtcagtgt gtctcctgat ggtctcgctg gccctttgct 100 gctaccaggc ccatgctctt gtctgcccag ctgttgcttc tgagatcaca 150 gtcttcttat tcttaagtga cgctgcggta aacctccaag ttgccaaact 200 taatccacct ccagaagctc ttgcagccaa gttggaagtg aagcactgca 250 ccgatcagat atctttaag aaacgactct cattgaaaaa gtcctggtgg 300 aaatagtgaa aaaatgtggt gtgtgacatg taaaaatgct caacctggtt 350 tccaaagtct ttcaacgaca ccctgatctt cactaaaaat tgtaaaggtt 400

tcaacacgtt gctttaataa atcacttgcc ctgc 434

```
<210> 260
```

<211> 83

<212> PRT

<213> Homo sapiens

<400> 260

Met Arg Leu Ser Val Cys Leu Leu Met Val Ser Leu Ala Leu Cys 1 5 10 15

Cys Tyr Gln Ala His Ala Leu Val Cys Pro Ala Val Ala Ser Glu 20 25 30

Ile Thr Val Phe Leu Phe Leu Ser Asp Ala Ala Val Asn Leu Gln 35 40 45

Val Ala Lys Leu Asn Pro Pro Pro Glu Ala Leu Ala Ala Lys Leu
50 55 60

Glu Val Lys His Cys Thr Asp Gln Ile Ser Phe Lys Lys Arg Leu 65 70 75

Ser Leu Lys Lys Ser Trp Trp Lys

<210> 261

<211> 636

<212> DNA

<213> Homo sapiens

<400> 261

atcegttete tgegetgee geteaggtga geeetegeea aggtgacete 50 geaggacact ggtgaaggag cagtgaggaa cetgcagagt cacacagttg 100 ctgaccaatt gagetgtgag cetggageag atcegtggge tgeagaceee 150 cgeeecagtg ceteteece tgeageeetg eeeetegaac tgtgacatgg 200 agaagagtgae eetggeeett eteetactgg eaggeetgae tgeettggaa 250 geeaatgace catttgeeaa taaagaegat eeettetaet atgactggaa 300 aaacetgeag etgageggae tgatetgegg agggeteetg geeattgetg 350 ggategeege agttetgagt ggeaaatgea aatacaagag eageeagaag 400 cageacagte etgetgagea ggaeetgee teeagggatg geetgaagee 500 taacactgee eeecageace teeteecetg ggaggeetta teeteaagga 550 aggaettete teeaagggea ggetgttagg eeeetttetg atcaggage 600 ttetttatga attaaacteg eeeeaceace eeetea 636

<210> 262

<211> 89

<212> PRT

<213> Homo sapiens

bys Ald lie Pro Leu lie Thr Pro Gly Ser Ald Thr Thr Cys
80 85

<210> 263 <211> 1676 <212> DNA <213> Homo sapiens

<400> 263 ggagaagagg ttgtgtggga caaqctqctc ccqacaqaaq qatqtcqctq 50 ctgagcctgc cctggctggg cctcagaccg gtggcaatgt ccccatgqct 100 actcctgctg ctggttgtgg gctcctggct actcgcccgc atcctggctt 150 ggacctatgc cttctataac aactgccgcc ggctccaqtg tttcccacaq 200 cccccaaaac ggaactggtt ttggggtcac ctgggcctga tcactcctac 250 agaggagggc ttgaaggact cgacccagat gtcggccacc tattcccaqg 300 gctttacggt atggctgggt cccatcatcc ccttcatcgt tttatgccac 350 cctgacacca tccggtctat caccaatgcc tcagctgcca ttgcacccaa 400 ggataatctc ttcatcaggt tcctgaagcc ctggctggga gaagggatac 450 tgctgagtgg cggtgacaag tggagccgcc accgtcggat gctgacgccc 500 gccttccatt tcaacatcct gaagtcctat ataacgatct tcaacaagag 550 tgcaaacatc atgcttgaca agtggcagca cctggcctca qaqqqcaqca 600 gtcgtctgga catgtttgag cacatcagcc tcatgacctt ggacagtcta 650 cagaaatgca tcttcagctt tgacagccat tgtcaggaga ggcccagtga 700 atatattgcc accatcttgg agctcagtgc ccttgtagag aaaagaagcc 750 agcatatect ecageaeatg gaetttetgt attacetete ecatgaeggg 800 cggcgcttcc acagggcctg ccgcctggtg catgacttca cagacgctgt 850 catccgggag cggcgtcgca ccctccccac tcagggtatt gatgattttt 900 tcaaagacaa agccaagtcc aagactttgg atttcattga tgtgcttctg 950

ctgagcaagg atgaagatgg gaaggcattg tcagatgagg atataagagg 1000
agaaggctgac accttcatgt ttggaggca tgacaccacg gccagtggcc 1050
tctcctgggt cctgtacaac cttgcgaggc acccagaata ccaggagcgc 1100
tgccgacagg aggtgcaaga gcttctgaag gaccgcgatc ctaaagagat 1150
tgaatgggac gacctggccc agctgccctt cctgaccatg tgcgtgaagg 1200
agaagcctgag gttacatccc ccagctccct tcatctcccg atgctgcacc 1250
caggacattg ttctcccaga tggccgagtc acccaaaag gcattacctg 1300
cctcatcgat attatagggg tccatcacaa cccaactgtg tggccggatc 1350
ctgaggtcta cgacccttc cgctttgacc cagagaacag caaggggagg 1400
tcacctctgg ctttattcc ttctccgca gggcccagga actgcatcgg 1450
gcaggcgttc gccatggcg agatgaaagt ggtcctggcg ttgatgctgc 1500
tgcacttccg gttcctgcca gaccacactg agccccgcag gaagctggaa 1550
ttgatcatgc gcgccgaggg cgggctttg ctgcgggtgg agcccctgaa 1600
tgtaggcttg cagtgactt ctgaccac cacctgttt tttgcagatt 1650
gtcatgaata aaacggtgct gtcaaa 1676

<210> 264

<211> 524

<212> PRT

<213> Homo sapiens

<400> 264

Met Ser Leu Leu Ser Leu Pro Trp Leu Gly Leu Arg Pro Val Ala $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Met Ser Pro Trp Leu Leu Leu Leu Val Val Gly Ser Trp Leu 20 25 30

Leu Ala Arg Ile Leu Ala Trp Thr Tyr Ala Phe Tyr Asn Asn Cys 35 40 45

Arg Arg Leu Gln Cys Phe Pro Gln Pro Pro Lys Arg Asn Trp Phe 50 55 60

Trp Gly His Leu Gly Leu Ile Thr Pro Thr Glu Glu Gly Leu Lys
65 70 75

Asp Ser Thr Gln Met Ser Ala Thr Tyr Ser Gln Gly Phe Thr Val $80 \\ 85 \\ 90$

Trp Leu Gly Pro Ile Ile Pro Phe Ile Val Leu Cys His Pro Asp 95 100 105

Thr Ile Arg Ser Ile Thr Asn Ala Ser Ala Ala Ile Ala Pro Lys 110 115 120

Asp Asn Leu Phe Ile Arg Phe Leu Lys Pro Trp Leu Gly Glu Gly 125 130 135

Ile Leu Leu Ser Gly Gly Asp Lys Trp Ser Arg His Arg Arg Met 140 Leu Thr Pro Ala Phe His Phe Asn Ile Leu Lys Ser Tyr Ile Thr 155 160 Ile Phe Asn Lys Ser Ala Asn Ile Met Leu Asp Lys Trp Gln His 175 Leu Ala Ser Glu Gly Ser Ser Arg Leu Asp Met Phe Glu His Ile 185 Ser Leu Met Thr Leu Asp Ser Leu Gln Lys Cys Ile Phe Ser Phe 200 Asp Ser His Cys Gln Glu Arg Pro Ser Glu Tyr Ile Ala Thr Ile 215 220 Leu Glu Leu Ser Ala Leu Val Glu Lys Arg Ser Gln His Ile Leu 230 235 Gln His Met Asp Phe Leu Tyr Tyr Leu Ser His Asp Gly Arg Arg 250 Phe His Arg Ala Cys Arg Leu Val His Asp Phe Thr Asp Ala Val 260 265 Ile Arg Glu Arg Arg Thr Leu Pro Thr Gln Gly Ile Asp Asp Phe Phe Lys Asp Lys Ala Lys Ser Lys Thr Leu Asp Phe Ile Asp Val Leu Leu Ser Lys Asp Glu Asp Gly Lys Ala Leu Ser Asp 305 310 Glu Asp Ile Arg Ala Glu Ala Asp Thr Phe Met Phe Gly Gly His 320 Asp Thr Thr Ala Ser Gly Leu Ser Trp Val Leu Tyr Asn Leu Ala 340 Arg His Pro Glu Tyr Gln Glu Arg Cys Arg Gln Glu Val Gln Glu 355 Leu Leu Lys Asp Arg Asp Pro Lys Glu Ile Glu Trp Asp Asp Leu Ala Gln Leu Pro Phe Leu Thr Met Cys Val Lys Glu Ser Leu Arg 380 Leu His Pro Pro Ala Pro Phe Ile Ser Arg Cys Cys Thr Gln Asp Ile Val Leu Pro Asp Gly Arg Val Ile Pro Lys Gly Ile Thr Cys Leu Ile Asp Ile Ile Gly Val His His Asn Pro Thr Val Trp Pro 430 Asp Pro Glu Val Tyr Asp Pro Phe Arg Phe Asp Pro Glu Asn Ser 445

Lys Gly Arg Ser Pro Leu Ala Phe Ile Pro Phe Ser Ala Gly Pro 465

Arg Asn Cys Ile Gly Gln Ala Phe Ala Met Ala Glu Met Lys Val 470

Val Leu Ala Leu Met Leu Leu His Phe Arg Phe Leu Pro Asp His 485

Thr Glu Pro Arg Arg Lys Leu Glu Leu Ile Met Arg Ala Glu Gly 500

Gly Leu Trp Leu Arg Val Glu Pro Leu Asn Val Gly Leu Gln 515

<210> 265
<211> 584
<212> DNA

<212> DNA <213> Homo sapiens

<400> 265

caacagaagc caagaaggaa gccgtctatc ttgtggcgat catgtataag 50 ctggcctcct gctgtttgct tttcacagga ttcttaaatc ctctcttatc 100 tcttcctctc cttgactcca gggaaatatc ctttcaactc tcagcacctc 150 atgaagacgc gcgcttaact ccggaggagc tagaaagagc ttcccttcta 200 cagatattgc cagagatgct gggtgcagaa agaggggata ttctcaggaa 250 agcagactca agtaccaaca tttttaaccc aagaggaaat ttgagaaagt 300 ttcaggattt ctctggacaa gatcctaaca ttttactgag tcatctttg 350 gccagaatct ggaaaccata caagaaacgt gagactcctg attgcttctg 400 gaaatactgt gtctgaagtg aaataagcat ctgttagtca gctcagaaac 450 acccatctta gaatatgaaa aataacacaa tgcttgattt gaaaacagtg 500 tggagaaaaa ctaggcaaac tacaccctgt tcattgttac ctggaaaata 550 aatcctctat gttttgcaca aaaaaaaaaa aaaa 584

<210> 266 <211> 124

<212> PRT

<213> Homo sapiens

<400> 266

Met Tyr Lys Leu Ala Ser Cys Cys Leu Leu Phe Thr Gly Phe Leu
1 5 10 15

Asn Pro Leu Leu Ser Leu Pro Leu Leu Asp Ser Arg Glu Ile Ser 20 25 30

Phe Gln Leu Ser Ala Pro His Glu Asp Ala Arg Leu Thr Pro Glu 35 40 45

Glu Leu Glu Arg Ala Ser Leu Leu Gln Ile Leu Pro Glu Met Leu
50 55 60

Gly Ala Glu Arg Gly Asp Ile Leu Arg Lys Ala Asp Ser Ser Thr 65 70 75

Asn Ile Phe Asn Pro Arg Gly Asn Leu Arg Lys Phe Gln Asp Phe 80 85 90

Ser Gly Gln Asp Pro Asn Ile Leu Leu Ser His Leu Leu Ala Arg 95 100 105

Ile Trp Lys Pro Tyr Lys Lys Arg Glu Thr Pro Asp Cys Phe Trp 110 115 120

Lys Tyr Cys Val

<210> 267

<211> 654

<212> DNA

<213> Homo sapiens

<400> 267

gaacatttt agttccaag gaatgtacat cagcccacg gaagctaggc 50 cacctctggg atgggttgc tggtttaaaa caaacgccag tcatcctata 100 taaggacctg acagccacca ggcaccacct ccgccaggaa ctgcaggccc 150 acctgtctgc aacccagctg aggccatgcc ctccccaggg accgtctgca 200 gcctcctgct cctcggcatg ctctggctgg acttggccat ggcaggctcc 250 agcttcctga gccctgaaca ccaggaggtc cagcaggaaa aggagtcgaa 300 gaagccacca gccaagctgc agccccgagc tctagcaggc tggctccgcc 350 cggaagatgg aggtcaagca gaaggggcag aggatgaact ggaagtccgg 400 ttcaacgccc cctttgatgt tggaatcaag ctgtcagggg ttcagtacca 450 gcagcacaagc caggccctgg ggaagtttct tcaggacatc ctctgggaag 500 aggccaaaga ggcccaagc gccaagtgat cgcccacaag ccttactcac 550 ctctctctaa gtttagaagc gctcatctgg cttttcgctt gcttctgcag 600 caactcccac gactgttgta caagctcagg aggcgaataa atgttcaaac 650

tgta 654 <210> 268

<211> 117

<212> PRT

<213> Homo sapiens

<400> 268

Met Pro Ser Pro Gly Thr Val Cys Ser Leu Leu Leu Gly Met $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu Trp Leu Asp Leu Ala Met Ala Gly Ser Ser Phe Leu Ser Pro $20 \\ 25 \\ 30$

Glu His Gln Arg Val Gln Gln Arg Lys Glu Ser Lys Lys Pro Pro
35 40 45

Ala Lys Leu Gln Pro Arg Ala Leu Ala Gly Trp Leu Arg Pro Glu

Asp Gly Gly Gln Ala Glu Gly Ala Glu Asp Glu Leu Glu Val Arg

Phe Asn Ala Pro Phe Asp Val Gly Ile Lys Leu Ser Gly Val Gln

Tyr Gln Gln His Ser Gln Ala Leu Gly Lys Phe Leu Gln Asp Ile

Leu Trp Glu Glu Ala Lys Glu Ala Pro Ala Asp Lys

<210> 269

<211> 1332

<212> DNA

<213> Homo sapiens

<400> 269

cggccacage tggcatgete tgectgateg ceatectget gtatgteete 50 gtccagtacc tcgtgaaccc cggggtgctc cgcacggacc ccagatgtca 100 agaatatgaa cacgtggctg ctgttcctcc ccctgttccc ggtgcaggtg 150 cagaccctga tagtcgtgat catcgggatg ctcgtgctcc tgctggactt 200 tettggettg gtgcacetgg gccagetget catettecae atetacetga 250 gtatgtcccc caccctaagc ccccgatccc cccaaggctg ggtggtcaga 300 gctgctcatc ttacacctct acttgagtat gtccctaacc ctgagccccc 350 cacgcctggg gccagagtct ttgtcccccg tgtgcgcatg tgttcagggt 400 cagcctctcc cagaagtgag atcatggaca aaaagggcaa atcacaggaa 450 gaaattaaat ccatgaggac ccagcaggcc cagcaagaag ctgaactcac 500 gccgagacct gcaggagtgg tgccaggtgc ttgaagtaac aagtttaaaa 550 tgttcagaga caatggaatg gaatctatta ggcaagaaca ggacattatg 600 aaataaggac aggtggactt ccaaaaacac aagtagaaat tctaacaatg 650 aaatatatta caggcaggtc acccactaac caaacaactg aagcgagagc 700 tgtggtcttg cttggtctca cagtgggcac agcggtaggc ggtcagtcat 750 gttgctgaac gacggagggt aaactcccca gccccaagaa aacctgtgtt 800 ggaagtaaca acaacctccc tgctcctggc accagccgtt ttggtcatgg 850 tgggccagct gcaaagcgtc ttccattctc tgggcagtgg tggccccgag 900 gctgtggcct ctcagggggt ttctgtggac acgggcagca gagtgtgtcc 950

aggccagccc ccaagaatgc cctgctcctg acagcttggc caacccctgg 1000 tcagggcaga gggagttggg tgggtcaggc tctgggctca cctccatctc 1050 cagagcatcc cctgcctgca gttgtggcaa gaacgcccag ctcagaatga 1100
acacacccca ccaagagcct ccttgttcat aaccacaggt taccctacaa 1150
accactgtcc ccacacaacc ctggggatgt tttaaaacac acacctctaa 1200
cgcatatctt acagtcactg ttgtcttgcc tgagggttga attttttta 1250
atgaaagtgc aatgaaaatc actggattaa atcctacgga cacagagctg 1300
aaaaaaaaaa aaaaaaaaa aaaaaaaaa aa 1332

<210> 270

<211> 142

<212> PRT

<213> Homo sapiens

<400> 270

Met Asn Thr Trp Leu Leu Phe Leu Pro Leu Phe Pro Val Gln Val 1 5 10 15

Gln Thr Leu Ile Val Val Ile Ile Gly Met Leu Val Leu Leu 20 25 30

Asp Phe Leu Gly Leu Val His Leu Gly Gln Leu Leu Ile Phe His $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ile Tyr Leu Ser Met Ser Pro Thr Leu Ser Pro Arg Ser Pro Gln
50 55 60

Gly Trp Val Val Arg Ala Ala His Leu Thr Pro Leu Leu Glu Tyr
65 70 70

Val Pro Asn Pro Glu Pro Pro Thr Pro Gly Ala Arg Val Phe Val 80 85 90

Pro Arg Val Arg Met Cys Ser Gly Ser Ala Ser Pro Arg Ser Glu 95 100 105

Ile Met Asp Lys Lys Gly Lys Ser Gln Glu Glu Ile Lys Ser Met 110 115 120

Arg Thr Gln Gln Ala Gln Gln Glu Ala Glu Leu Thr Pro Arg Pro 125 130 135

Ala Gly Val Val Pro Gly Ala

<210> 271

<211> 1484

<212> DNA

<213> Homo sapiens

<400> 271

ggagtgcaga tggcatcctt cggttcttcc agacaagctg caagacgctg 50 accatggcca agatggagct ctcgaaggcc ttctctggcc agcggacact 100 cctatctgcc atcctcagca tgctatcact cagcttctcc acaacatccc 150 tgctcagcaa ctactggttt gtgggcacac agaaggtgcc caagcccctg 200 tgcgagaaag gtctggcagc caagtgcttt gacatgccag tgtccctgga 250

tggagatacc aacacatcca cccaggaggt ggtacaatac aactgggaga 300 ctggggatga ccggttctcc ttccggagct tccggagtgg catgtggcta 350 tcctgtgagg aaactgtgga agaaccaggg gagaggtgcc gaagtttcat 400 tgaacttaca ccaccagcca agagaggtga gaaaggacta ctggaatttg 450 ccacgttgca aggcccatgt caccccactc tccgatttgg agggaagcgg 500 ttgatggaga aggetteeet eeetteeet eeettgggge tttgtggeaa 550 aaatcctatg gttatccctg ggaacgcaga tcacctacat cggacttcaa 600 ttcatcagct tcctcctgct actaacagac ttgctactca ctgggaaccc 650 tgcctgtggg ctcaaactga gcgcctttgc tgctgtttcc tctgtcctgt 700 caggitetect ggggatggtg geceacatga tgtatteaca agtetteeaa 750 gcgactgtca acttgggtcc agaagactgg agaccacatg tttggaatta 800 tggctgggcc ttctacatgg cctggctctc cttcacctgc tgcatggcgt 850 cggctgtcac caccttcaac acgtacacca ggatggtgct ggagttcaag 900 tgcaagcata gtaagagctt caaggaaaac ccgaactgcc taccacatca 950 ccatcagtgt ttccctcggc ggctgtcaag tgcagccccc accgtgggtc 1000 ctttgaccag ctaccaccag tatcataatc agcccatcca ctctgtctct 1050 gagggagtcg acttctactc cgagctgcgg aacaagggat ttcaaagagg 1100 ggccagccag gagctgaaag aagcagttag gtcatctgta gaggaagagc 1150 agtgttagga gttaagcggg tttggggagt aggcttgagc cctaccttac 1200 acgtctgctg attatcaaca tgtgcttaag ccaacatccg tctcttgagc 1250 atggttttta gaggctacga ataaggctat gaataagggt tatctttaag 1300 tcctaaggga ttcctgggtg ccactgctct cttttcctct acagctccat 1350 cttgtttcac ccaccccaca tctcacacat ccagaattcc cttctttact 1400 gatagtttct gtgccaggtt ctgggctaaa ccatggagat aaaaagaaga 1450 gtaaaataca cttcccgacc ttaaggatct gaaa 1484

<210> 272

<211> 285

<212> PRT

<213> Homo sapiens

<400> 272

Met Ala Lys Met Glu Leu Ser Lys Ala Phe Ser Gly Gln Arg Thr 1 5 10 15

Leu Leu Ser Ala Ile Leu Ser Met Leu Ser Leu Ser Phe Ser Thr 20 25 30

Thr Ser Leu Leu Ser Asn Tyr Trp Phe Val Gly Thr Gln Lys Val

40 45 Pro Lys Pro Leu Cys Glu Lys Gly Leu Ala Ala Lys Cys Phe Asp 50 Met Pro Val Ser Leu Asp Gly Asp Thr Asn Thr Ser Thr Gln Glu Val Val Gln Tyr Asn Trp Glu Thr Gly Asp Asp Arg Phe Ser Phe Arg Ser Phe Arg Ser Gly Met Trp Leu Ser Cys Glu Glu Thr Val Glu Glu Pro Gly Glu Arg Cys Arg Ser Phe Ile Glu Leu Thr Pro 110 115 Pro Ala Lys Arg Gly Glu Lys Gly Leu Leu Glu Phe Ala Thr Leu 125 130 Gln Gly Pro Cys His Pro Thr Leu Arg Phe Gly Gly Lys Arg Leu 140 145 Met Glu Lys Ala Ser Leu Pro Ser Pro Pro Leu Gly Leu Cys Gly 160 Lys Asn Pro Met Val Ile Pro Gly Asn Ala Asp His Leu His Arg 175 180 Thr Ser Ile His Gln Leu Pro Pro Ala Thr Asn Arg Leu Ala Thr His Trp Glu Pro Cys Leu Trp Ala Gln Thr Glu Arg Leu Cys Cys 200 Cys Phe Leu Cys Pro Val Arg Ser Pro Gly Asp Gly Pro His 220 225 Asp Val Phe Thr Ser Leu Pro Ser Asp Cys Gln Leu Gly Ser Arg 230 235 Arg Leu Glu Thr Thr Cys Leu Glu Leu Trp Leu Gly Leu Leu His 245 250 Gly Leu Ala Leu Leu His Leu Leu His Gly Val Gly Cys His His 265 Leu Gln His Val His Gln Asp Gly Ala Gly Val Gln Val Gln Ala <210> 273 <211> 1158 <212> DNA <213> Homo sapiens <400> 273 aactggaagg aaagaaagaa aggtcagctt tggcccagat gtggttaccc 50 cttggtctcc tgtctttatg tctttctcct cttcctattc tgtcatctcc 100

ctcacttaag tetcaggeet gtcageaget cetgtggaca ttgccatece 150 etctggtage ettcagagea aacaggacaa ectatgttat ggatgtttee 200

accaaccagg gtagtggcat ggagcaccgt aaccatctgt gcttctgtga 250 tctctatgac agagccactt ctccacctct gaaatgttcc ctgctctgaa 300 atctggcatg agatggcaca ggtgaccacg cagaagccac cagaatcttg 350 cctgccctat tcctcctccc aagtctgttc tcttattgtc aacctcagca 400 caacaggctg gcgccaatgg cattacagag aaagcaatct gtgtggctag 450 tgggcagatt accatgcaag ccccaggaga aatggaggag ctttgtagcc 500 acctccctgt cagccagtat taacatgtcc ccttccccct gccccgccgt 550 agattcagga cattcgcccc tgtgtgccac caaaccagga ctttcccctt 600 ggcttggcat ccctggctct ctcctggtac ccagcaagac gtctgttcca 650 gggcagtgta gcatctttca agctccgtta ctatggcgat ggccatgatg 700 ttacaatccc acttgcctga ataatcaagt gggaagggga agcagaggga 750 aatggggcca tgtgaatgca gctgctctgt tctccctacc ctgaggaaaa 800 accaaaggga agcaacagga acttctgcaa ctggttttta tcggaaagat 850 catcctgcct gcagatgctg ttgaaggggc acaagaaatg tagctggaga 900 agattgatga aagtgcaggt gtgtaaggaa atagaacagt ctgctgggag 950 tcagacctgg aattctgatt ccaaactctt tattactttg ggaagtcact 1000 cagcetecce gtagecatet ecagggtgae ggaacecagt gtattacetg 1050 ctggaaccaa ggaaactaac aatgtaggtt actagtgaat accccaatgg 1100 tttctccaat tatgcccatg ccaccaaaac aataaaacaa aattctctaa 1150 cactgaaa 1158

<210> 274

<211> 86

<212> PRT

<213> Homo sapiens

<400> 274

Met Trp Leu Pro Leu Gly Leu Leu Ser Leu Cys Leu Ser Pro Leu 1 5 10 15

Pro Ile Leu Ser Ser Pro Ser Leu Lys Ser Gln Ala Cys Gln Gln 20 25 30

Leu Leu Trp Thr Leu Pro Ser Pro Leu Val Ala Phe Arg Ala Asn 35 40 45

Arg Thr Thr Tyr Val Met Asp Val Ser Thr Asn Gln Gly Ser Gly 50 55 60

Met Glu His Arg Asn His Leu Cys Phe Cys Asp Leu Tyr Asp Arg 65 70 75

Ala Thr Ser Pro Pro Leu Lys Cys Ser Leu Leu 80 85

<210> 275 <211> 2694 <212> DNA <213> Homo sapiens

<400> 275 gtagcgcgtc ttgggtctcc cggctgccgc tgctgccgcc gccgcctcgg 50 gtcgtggagc caggagcgac gtcaccgcca tggcaggcat caaaqctttq 100 attagtttgt cctttggagg agcaatcgga ctgatgtttt tgatgcttgg 150 atgtgccctt ccaatataca acaaatactg gcccctcttt gttctatttt 200 tttacatcct ttcacctatt ccatactgca tagcaagaag attagtggat 250 gatacagatg ctatgagtaa cgcttgtaag gaacttgcca tctttcttac 300 aacgggcatt gtcgtgtcag cttttggact ccctattgta tttgccagag 350 cacatctgat tgagtgggga gcttgtgcac ttgttctcac aggaaacaca 400 gtcatctttg caactatact aggctttttc ttggtctttg gaagcaatga 450 cgacttcagc tggcagcagt ggtgaaaaga aattactgaa ctattgtcaa 500 atggacttcc tgtcatttgt tggccattca cgcacacagg agatggggca 550 gttaatgctg aatggtatag caagcctctt gggggtattt taggtgctcc 600 cttctcactt ttattgtaag catactattt tcacagagac ttgctgaagg 650 attaaaagga ttttctcttt tggaaaagct tgactgattt cacacttatc 700 tatagtatgc tttttgtggt gtcctgctga atttaaatat ttatgtgttt 750 ttcctgttag gttgattttt tttggaatca atatgcaatg ttaaacactt 800 ttttaatgta atcatttgca ttggttagga attcagaatt ccqccqqctc 850 tattactggt caagtacatc ttttctctta aaattattta gcctccatta 900 ttacaaaaaa ttataaaaat aagttttcag tcagtcagga tgacatcact 950 cccaatgtta tgcagacata cagacggttg gcatacgtta tagactgtat 1000 actcagtgca aatatagctg catttatacc tcagaggggc caagtgttaa 1050 tgcccatgcc ctccgttaag ggttgttggt tttactggta gacagatgtt 1100 ttgtggattg aaaattattt tatggaattg ctacagagga gtgcttttct 1150 tctcaattgt tagaagaatt tatgttaaac tttaaggtaa gggtgtaaaa 1200 tgcaatgtgg gaagaaatga cattgaaatt ccagtttttg aatcctgttt 1300 ctatttataa gtgaaatttg tgatctccta tcaacctttc atgttttacc 1350 ctgttaaaat ggacatacat ggaaccacta ctgatgaggg acagttgtat 1400 gtttgcatca tatatgccag aaaaccttcc tctgcttcct ccttttgact 1450

tatttggtat gttgtatata ttacataaaa taacttttca aatatagttt 1500 aataacactt agaagtgttt acttacctgg aaaataattg ctatgccgta 1550 cattcagagt gcccctccc ctgcaaqqcc ttqccatqat taacaaqtaa 1600 cttgttagtc ttacagataa ttcatgcatt aacagtttaa gatttagacc 1650 atggtaatag tagttettat tetetaaggt tatateatat gtaatttaaa 1700 agtattttta agacaagttt cctqtatacc tctqaactqt tttqattttq 1750 agttcatcat gatagatctg ctgtttcctt ataaaaggca tttgttgtgt 1800 gagttaatgc aaagtagcca agtccagcta tatagcagct tcagaaacat 1850 acctgaccaa aaaattccca gtaaccaggc atgatcaatt tatagtggtc 1900 gtttacatct aataattatc aggacttttt tcaggagtgg gttataaaaa 1950 cattcaagtt ggtctgacag tattttgtta aggatatttg tttgtatgtt 2000 tattcagtat acttacataa aaattatttc gccatcagcc aaaactcagt 2050 aatcatgaca gctgtctgtt gttttatgaa gtttatttct caagaaaatg 2100 ggaataaatt tgggatttgt tcagcttttt tactaaagat gcctaaagcc 2150 acaggtttta ttgcctaact taagccatga cttttagata tgagatgacg 2200 ggaagcagga cgaaatatcg gcgtgtggct ggagccttcc cactggaggc 2250 tgaaagtggc ttgtggtatt ataatgttca gatttcaaga ggaaggtgca 2300 ggtacacatg agttagagag ctggtgagac agttgggaac tctttgtgct 2350 tgtgatctac tggacttttt ttttgcagga agtgcattct ctggtccttc 2400 cctattttct gttctggatg tcagtgcagt gcactgctac tgttttatcc 2450 acttggccac agactttttc taacagctgc gtattatttc tatatactaa 2500 ttgcattggc agcattgtgt ctttgacctt gtatactagc ttgacatagt 2550 gctgtctctg atttctaggc tagttacttg agatatgaat tttccataga 2600 atatgcactg atacaacatt accattcttc tatggaaaga aaacttttga 2650

<210> 276

<211> 131

<212> PRT

<213> Homo sapiens

<400> 276

Met Ala Gly Ile Lys Ala Leu Ile Ser Leu Ser Phe Gly Gly Ala 1 5 10 15

Ile Gly Leu Met Phe Leu Met Leu Gly Cys Ala Leu Pro Ile Tyr 20 25 30

Asn Lys Tyr Trp Pro Leu Phe Val Leu Phe Phe Tyr Ile Leu Ser

35 40 45 Pro Ile Pro Tyr Cys Ile Ala Arg Arg Leu Val Asp Asp Thr Asp 55 Ala Met Ser Asn Ala Cys Lys Glu Leu Ala Ile Phe Leu Thr Thr Gly Ile Val Val Ser Ala Phe Gly Leu Pro Ile Val Phe Ala Arg Ala His Leu Ile Glu Trp Gly Ala Cys Ala Leu Val Leu Thr Gly Asn Thr Val Ile Phe Ala Thr Ile Leu Gly Phe Phe Leu Val Phe 110 115

Gly Ser Asn Asp Asp Phe Ser Trp Gln Gln Trp 125

<210> 277 <211> 4104 <212> DNA

<213> Homo sapiens

cccacgcgtc cgcccacgcg tccgcccacg cgtccgccca cqcqtccqcc 50 cacgcgtccg cccacgcgtc cgcccacgcg tccggtgcaa gctcgcgccg 100 cacactgcct ggtggaggga aggagcccgg gcgcctctcg ccgctccccg 150 egecgecgte egeaceteec caeegecege egecegeege eegecgeeeg 200 caaagcatga gtgagcccgc tctctgcagc tgcccggggc gcgaatggca 250 ggctgtttcc gcggagtaaa aggtggcgcc ggtcagtggt cgtttccaat 300 gacggacatt aaccagactg tcagatcctg gggagtcgcg agccccgagt 350 ttggagtttt ttcccccac aacgtcacag tccgaactgc agagggaaag 400 gaaggcggca ggaaggcgaa gctcgggctc cqqcacgtag ttqqqaaact 450 tgcgggtcct agaagtcgcc tccccgcctt gccggccgcc cttgcagccc 500 cgagccgagc agcaaagtga gacattgtgc gcctgccaga tccqccgqcc 550 gcggaccggg gctgcctcqq aaacacaqaq qqqtcttctc tcqccctqca 600 tataattagc ctgcacacaa agggagcagc tgaatggagg ttgtcactct 650 ctggaaaagg atttctgacc gagcqcttcc aatggacatt ctccagtctc 700 tctggaaaga ttctcgctaa tggatttcct gctgctcggt ctctgtctat 750 actggctgct gaggaggccc tcgggggtgg tcttgtgtct gctgggggcc 800 tgctttcaga tgctgcccgc cgcccccagc gggtgcccgc agctgtgccg 850 gtgcgagggg cggctgctgt actgcgaggc gctcaacctc accgaggcgc 900 cccacaacct gtccggcctg ctgggcttgt ccctgcgcta caacaqcctc 950

teggagetge gegeeggeea gtteaegggg ttaatgeage teaegtgget 1000 ctatctggat cacaatcaca tctgctccgt gcagggggac gcctttcaga 1050 aactgcgccg agttaaggaa ctcacgctga gttccaacca gatcacccaa 1100 ctgcccaaca ccaccttccg gcccatgccc aacctgcgca gcgtggacct 1150 ctcgtacaac aagctgcagg cgctcgcgcc cgacctcttc cacgggctgc 1200 ggaagctcac cacgetgcat atgcgggcca acgccatcca gtttgtgccc 1250 gtgcgcatct tccaggactg ccgcagcctc aagtttctcg acatcggata 1300 caatcagete aagagtetgg egegeaacte tttegeegge ttgtttaage 1350 tcaccgagct gcacctcgag cacaacgact tggtcaaggt gaacttcgcc 1400 cactteeege geeteatete eetgeacteg etetgeetge ggaggaacaa 1450 ggtggccatt gtggtcagct cgctggactg ggtttggaac ctggagaaaa 1500 tggacttgtc gggcaacgag atcgagtaca tggagcccca tgtgttcgag 1550 acceptgccgc acctgcagtc cctgcagctg gactccaacc gcctcaccta 1600 categagece eggateetea actettggaa gteeetgaca ageateacee 1650 tggccgggaa cctgtgggat tgcgggcgca acgtgtgtgc cctagcctcg 1700 tggctcagca acttccaggg gcgctacgat ggcaacttgc agtgcgccag 1750 cccggagtac gcacagggcg aggacgtcct ggacgccgtg tacgccttcc 1800 acctgtgcga ggatggggcc gagcccacca gcggccacct gctctcggcc 1850 gtcaccaacc gcagtgatct ggggccccct gccagctcgg ccaccacgct 1900 cgcggacggc ggggaggggc agcacgacgg cacattcgag cctgccaccg 1950 tggctcttcc aggcggcgag cacgccgaga acgccgtgca gatccacaag 2000 gtggtcacgg gcaccatggc cetcatette teetteetea tegtggteet 2050 ggtgctctac gtgtcctgga agtgtttccc agccagcctc aggcagctca 2100 gacagtgctt tgtcacgcag cgcaggaagc aaaagcagaa acagaccatg 2150 catcagatgg ctgccatgtc tgcccaggaa tactacgttg attacaaacc 2200 gaaccacatt gagggagccc tggtgatcat caacgagtat ggctcgtgta 2250 cctgccacca gcagcccgcg agggaatgcg aggtgtgatt gtcccagtgg 2300 ctctcaaccc atgcgctacc aaatacgcct gggcagccgg gacgggccgg 2350 cgggcaccag gctggggtct ccttgtctgt gctctgatat gctccttgac 2400 tgaaacttta aggggatctc tcccagagac ttgacatttt agctttattg 2450 aaccttcagg acagtctatc ttaaatttca tatgagaact ccttcctccc 2550

tttgaagatc tgtccatatt caggaatctg agagtgtaaa aaaggtggcc 2600 ataagacaga gagagaataa tcgtgctttg ttttatqcta ctcctcccac 2650 cctgcccatg attaaacatc atgtatgtag aagatcttaa gtccatacgc 2700 atttcatgaa gaaccattgg aaagaggaat ctgcaatctg ggagcttaag 2750 agcaaatgat gaccatagaa agctatgttc ttactttgtg tgtgtgtctg 2800 tatgtttctg cgttgtgtgt ctttgtaggc aagcaaacgt tgtctacaca 2850 aacgggaatt tagctcacat catttcatgc ccctgtgcct ctagctctqq 2900 agattggtgg ggggaggtgg ggggaaacgg caggaataag ggaaagtggt 2950 agttttaact aaggttttgt aacacttgaa atcttttctt tctcaaatta 3000 attatcttta agcttcaaga aacttgctct gacccctcta agcaaactac 3050 taagcattta aaagagaatc taatttttaa aggtgtagca ccttttttt 3100 tattcttccc acagagggtg ctaatctcat tatgctgtgc tatctgaaaa 3150 gaacttaagg ccacaattca cgtctcgtcc tgggcattgt gatggattga 3200 ccctccattt gcagtacctt cccagctgat taaagttcag cagtggtatt 3250 gaggtttttc gaatatttat atagaaaaaa agtcttttca catgacaaat 3300 gacactetea caccagtett agecetagta gttttttagg ttggaccaga 3350 ggaagcaggt taaatgagac ctgtcctctg ctgcactcag aaaaaatagg 3400 cagtccctga tgctcagatc ttagccttga tattaatagt tgagaccacc 3450 tacccacaat gcagcctata ctcccaagac tacaaagtta ccatcgcaaa 3500 ggaaaggtta ttccagtaaa aggaaatagt tttctcaacc atttaaaaat 3550 attettetga acteateaaa gtagaagage ceceaacett ttetetetge 3600 cttcaagaag gcagacattt ggtatgattt agcatcaaca acacatttat 3650 gagtatatgt aagtaatcag aggggcaaat gccacttgtt attcctccca 3700 agttttccaa gcaagtacac acagatctct ggtaggatta ggggccactt 3750 gtgtttccgg cttattttag tcgacttgtc agcaagtttg atgcctagtc 3800 tatctgacat ggcccagtag aacagggcat tgatggatca catgagatgg 3850 tagaaggaac atcatcacat acccctctca cagagaaaat tatcaaagaa 3900 ccagaaatta tatctgtttt ggagcaagag tgtcataatg tttcagggta 3950 gtcaaaataa acataaatta tctcctctag atgagtggcg atgttggctg 4000 atttgggtct gccattgaca gaatgtcaaa taaaaaggaa ttagctagaa 4050 tatgaccatt aaatgtgctt ctgaaatata ttttgagata ggtttagaat 4100 gtca 4104

<210 <211 <212 <213	> 52 > PR	2 T	apie	ns										
<400 Met			Leu	Leu 5	Leu	Gly	Leu	Cys	Leu 10	Tyr	Trp	Leu	Leu	Arg 15
Arg	Pro	Ser	Gly	Val 20	Val	Leu	Cys	Leu	Leu 25	Gly	Ala	Cys	Phe	Gln 30
Met	Leu	Pro	Ala	Ala 35	Pro	Ser	Gly	Cys	Pro 40	Gln	Leu	Cys	Arg	Cys 45
Glu	Gly	Arg	Leu	Leu 50	Tyr	Cys	Glu	Ala	Leu 55	Asn	Leu	Thr	Glu	Ala 60
Pro	His	Asn	Leu	Ser 65	Gly	Leu	Leu	Gly	Leu 70	Ser	Leu	Arg	Tyr	Asn 75
Ser	Leu	Ser	Glu	Leu 80	Arg	Ala	Gly	Gln	Phe 85	Thr	Gly	Leu	Met	Gln 90
Leu	Thr	Trp	Leu	Tyr 95	Leu	Asp	His	Asn	His 100	Ile	Суз	Ser	Val	Gln 105
Gly	Asp	Ala	Phe	Gln 110	Lys	Leu	Arg	Arg	Val 115	Lys	Glu	Leu	Thr	Leu 120
Ser	Ser	Asn	Gln	Ile 125	Thr	Gln	Leu	Pro	Asn 130	Thr	Thr	Phe	Arg	Pro 135
Met	Pro	Asn	Leu	Arg 140	Ser	Val	Asp	Leu	Ser 145	Tyr	Asn	Lys	Leu	Gln 150
Ala	Leu	Ala	Pro	Asp 155	Leu	Phe	His	Gly	Leu 160	Arg	Lys	Leu	Thr	Thr 165
Leu	His	Met	Arg	Ala 170	Asn	Ala	Ile	Gln	Phe 175	Val	Pro	Val	Arg	Ile 180
Phe	Gln	Asp	Cys	Arg 185	Ser	Leu	Lys	Phe	Leu 190	Asp	Ile	Gly	Tyr	Asn 195
Gln	Leu	Lys	Ser	Leu 200	Ala	Arg	Asn	Ser	Phe 205	Ala	Gly	Leu	Phe	Lys 210
Leu	Thr	Glu	Leu	His 215	Leu	Glu	His	Asn	Asp 220	Leu	Val	Lys	Val	Asn 225

Met Glu Pro His Val Phe Glu Thr Val Pro His Leu Gln Ser Leu 275 280 285

Phe Ala His Phe Pro Arg Leu Ile Ser Leu His Ser Leu Cys Leu

Arg Arg Asn Lys Val Ala Ile Val Val Ser Ser Leu Asp Trp Val

Trp Asn Leu Glu Lys Met Asp Leu Ser Gly Asn Glu Ile Glu Tyr

230

245

235

250

Gln Leu Asp Ser Asn Arg Leu Thr Tyr Ile Glu Pro Arg Ile Leu 290 Asn Ser Trp Lys Ser Leu Thr Ser Ile Thr Leu Ala Gly Asn Leu Trp Asp Cys Gly Arg Asn Val Cys Ala Leu Ala Ser Trp Leu Ser 320 325 Asn Phe Gln Gly Arg Tyr Asp Gly Asn Leu Gln Cys Ala Ser Pro Glu Tyr Ala Gln Gly Glu Asp Val Leu Asp Ala Val Tyr Ala Phe His Leu Cys Glu Asp Gly Ala Glu Pro Thr Ser Gly His Leu Leu 370 Ser Ala Val Thr Asn Arg Ser Asp Leu Gly Pro Pro Ala Ser Ser 380 385 Ala Thr Thr Leu Ala Asp Gly Gly Glu Gly Gln His Asp Gly Thr 395 Phe Glu Pro Ala Thr Val Ala Leu Pro Gly Gly Glu His Ala Glu Asn Ala Val Gln Ile His Lys Val Val Thr Gly Thr Met Ala Leu 425 430 Ile Phe Ser Phe Leu Ile Val Val Leu Val Leu Tyr Val Ser Trp Lys Cys Phe Pro Ala Ser Leu Arg Gln Leu Arg Gln Cys Phe Val 455 Thr Gln Arg Arg Lys Gln Lys Gln Lys Gln Thr Met His Gln Met Ala Ala Met Ser Ala Gln Glu Tyr Tyr Val Asp Tyr Lys Pro Asn 485 490 His Ile Glu Gly Ala Leu Val Ile Ile Asn Glu Tyr Gly Ser Cys 500 505 Thr Cys His Gln Gln Pro Ala Arg Glu Cys Glu Val <210> 279 <211> 46 <212> DNA <213> Artificial Sequence

- <223> Synthetic oligonucleotide probe
- <400> 279
- tccgtgcagg gggacgcctt tcagaaactg cgccgagtta aggaac 46
- <210> 280
- <211> 709
- <212> DNA
- <213> Homo sapiens

<400> 280 gtgcaaggag ccgaggcgag atgggcgtcc tgggccqqqt cctqctqtqq 50 ctgcagctct gcgcactgac ccaggcggtc tccaaactct gggtccccaa 100 cacggacttc gacgtcgcag ccaactggag ccagaaccgg accccgtgcg 150 ccggcggcgc cgttgagttc ccggcggaca agatggtgtc agtcctggtg 200 caagaaggtc acgccgtctc agacatgctc ctgccgctgg atggggaact 250 cgtcctggct tcaggagccg gattcggcgt ctcagacgtg ggctcgcacc 300 tggactgtgg cgcgggcgaa cctgccgtct tccgcgactc tgaccgcttc 350 tectggcatg accegeacet gtggegetet ggggacgagg cacetggeet 400 cttcttcgtg gacgccgagc gcgtgccctg ccgccacgac gacgtcttct 450 ttccgcctag tgcctccttc cgcgtggggc tcggccctgg cgctagcccc 500 gtgcgtgtcc gcagcatctc ggctctgggc cggacgttca cgcgcgacga 550 ggacctggct gttttcctgg cgtcccgcgc gggccgccta cgcttccacg 600 ggccgggcgc gctgagcgtg ggccccgagg actgcgcgga cccgtcgggc 650 tgcgtctgcg gcaacgcgga ggcgcagccg tggatctgcg cggccctgct 700 ccagcccct 709

<210> 281

<211> 229

<212> PRT

<213> Homo sapiens

<400> 281

Met Gly Val Leu Gly Arg Val Leu Leu Trp Leu Gln Leu Cys Ala 1 5 10 15

Leu Thr Gln Ala Val Ser Lys Leu Trp Val Pro Asn Thr Asp Phe 20 25 30

Asp Val Ala Ala Asn Trp Ser Gln Asn Arg Thr Pro Cys Ala Gly 35 40

Gly Ala Val Glu Phe Pro Ala Asp Lys Met Val Ser Val Leu Val
50 55 60

Gln Glu Gly His Ala Val Ser Asp Met Leu Leu Pro Leu Asp Gly 65 70 75

Glu Leu Val Leu Ala Ser Gly Ala Gly Phe Gly Val Ser Asp Val 80 85

Gly Ser His Leu Asp Cys Gly Ala Gly Glu Pro Ala Val Phe Arg 95 100 105

Asp Ser Asp Arg Phe Ser Trp His Asp Pro His Leu Trp Arg Ser 110 115 120

Gly Asp Glu Ala Pro Gly Leu Phe Phe Val Asp Ala Glu Arg Val 125 130 135 ProCysArgHisAsp 140Asp 140Phe Phe Phe Pro 145ProSer Ala Ser Phe 150ArgValGlyLeuGlyProGlyAla Ser Pro 160ValArg ValArg Ser 165IleSerAla LeuGlyArgThrPhe Phe Pro 160Arg Arg ArgAsp GluAsp LeuAla 180ValPhe LeuAla SerArgAla GlyArgLeuArgPhe HisGlyPro 195GlyAla LeuSerValGlyProGluAsp CysAla Asp ProSerGlyCysValCysGlyAla GluAla GluAla GluProTrpIleCysAla Ala Ala

Leu Leu Gln Pro

<210> 282

<211> 644

<212> DNA

<213> Homo sapiens

<400> 282

```
<210> 283
```

Met Gly Pro Val Lys Gln Leu Lys Arg Met Phe Glu Pro Thr Arg
1 5 10 15

Leu Ile Ala Thr Ile Met Val Leu Leu Cys Phe Ala Leu Thr Leu

<211> 77

<212> PRT

<213> Homo sapiens

<400> 283

20 25 30

Cys Ser Ala Phe Trp Trp His Asn Lys Gly Leu Ala Leu Ile Phe
35 40 45

Cys Ile Leu Gln Ser Leu Ala Leu Thr Trp Tyr Ser Leu Ser Phe
50 55 60

Ile Pro Phe Ala Arg Asp Ala Val Lys Lys Cys Phe Ala Val Cys 65 70 75

Leu Ala

<210> 284

<211> 2623

<212> DNA

<213> Homo sapiens

<400> 284

ttgagegeag gtgageteet gegegtteeg ggggegttee tecagteace 50 ctcccgccgt tacccgcggc gcgcccgagg gagtctcctc cagaccctcc 100 ctcccgttgc tccaaactaa tacggactga acggatcgct gcgagggtgg 150 gagagaaaat tagggggaga aaggacagag agagcaacta ccatccatag 200 ccagatagat tatcttacac tgaactgatc aagtactttg aaaatgactt 250 cgaaatttat cttggtgtcc ttcatacttg ctgcactgag tctttcaacc 300 accttttctc tccaactaga ccagcaaaag gttctactag tttcttttga 350 tggattccgt tgggattact tatataaagt tccaacgccc cattttcatt 400 atattatgaa atatggtgtt cacgtgaagc aagttactaa tgtttttatt 450 acaaaaacct accctaacca ttatactttg gtaactggcc tctttgcaga 500 gaatcatggg attgttgcaa atgatatgtt tgatcctatt cggaacaaat 550 ctttctcctt ggatcacatg aatatttatg attccaagtt ttgggaagaa 600 gcgacaccaa tatggatcac aaaccagagg gcaggacata ctagtggtgc 650 agecatgtgg cccggaacag atgtaaaaat acataagcgc tttcctactc 700 attacatgcc ttacaatgag tcagtttcat ttgaagatag agttgccaaa 750 attgttgaat ggtttacgtc aaaagagccc ataaatcttg gtcttctcta 800 ttgggaagac cctgatgaca tgggccacca tttgggacct gacagtccgc 850 tcatggggcc tgtcatttca gatattgaca agaagttagg atatctcata 900 caaatgctga aaaaggcaaa gttgtggaac actctgaacc taatcatcac 950 aagtgatcat ggaatgacgc agtgctctga ggaaaggtta atagaacttg 1000 accagtacct ggataaagac cactataccc tgattgatca atctccagta 1050 qcaqccatct tqccaaaaga aggtaaattt qatqaagtct atqaagcact 1100

aactcacgct catcctaatc ttactgttta caaaaaagaa gacgttccag 1150 aaaqqtqqca ttacaaatac aacaqtcqaa ttcaaccaat cataqcaqtq 1200 gctgatgaag ggtggcacat tttacagaat aagtcagatg actttctgtt 1250 aggcaaccac ggttacgata atgcgttagc agatatgcat ccaatatttt 1300 tagcccatgg tcctgccttc agaaagaatt tctcaaaaga agccatgaac 1350 tccacagatt tgtacccact actatgccac ctcctcaata tcactgccat 1400 gccacacaat ggatcattct ggaatgtcca ggatctgctc aattcagcaa 1450 tgccaagggt ggtcccttat acacagagta ctatactcct ccctggtagt 1500 gttaaaccag cagaatatga ccaagagggg tcataccctt atttcatagg 1550 ggtctctctt ggcagcatta tagtgattgt attttttgta attttcatta 1600 agcatttaat tcacagtcaa atacctgcct tacaagatat gcatgctgaa 1650 atagctcaac cattattaca agcctaatgt tactttgaag tggatttgca 1700 tattgaagtg gagattccat aattatgtca gtgtttaaag gtttcaaatt 1750 ctgggaaacc agttccaaac atctgcagaa accattaagc agttacatat 1800 ttaggtatac acacacaca acacacaca atacacaca acggaccaaa 1850 atacttacac ctgcaaagga ataaagatgt gagagtatgt ctccattgtt 1900 cactgtagca tagggataga taagatcctg ctttatttgg acttggcgca 1950 gataatgtat atatttagca actttgcact atgtaaagta ccttatatat 2000 tgcactttaa atttctctcc tgatgggtac tttaatttga aatgcacttt 2050 atggacagtt atgtcttata acttgattga aaatgacaac tttttgcacc 2100 catqtcacag aatacttqtt acqcattqtt caaactqaag qaaatttcta 2150 ataatcccga ataatgaaca tagaaatcta tctccataaa ttgagagaag 2200 aagaaggtga taagtgttga aaattaaatg tgataacctt tgaaccttga 2250 attttggaga tgtattccca acagcagaat gcaactgtgg gcatttcttg 2300 tcttatttct ttccagagaa cgtggttttc atttatttt ccctcaaaag 2350 agagtcaaat actgacagat tcgttctaaa tatattgttt ctgtcataaa 2400 attattgtga tttcctgatg agtcatatta ctgtgatttt cataataatg 2450 aagacaccat gaatatactt ttcttctata tagttcagca atggcctgaa 2500 tagaagcaac caggcaccat ctcagcaatg ttttctcttg tttgtaatta 2550 tttgctcctt tgaaaattaa atcactatta attacattaa aaatcaaatt 2600 ggataaaaaa aaaaaaaaaa aaa 2623

· <210> 285

<211>	477
<212>	PRT

<213> Homo sapiens

<400> 285 Met Thr Ser Lys Phe Ile Leu Val Ser Phe Ile Leu Ala Ala Leu Ser Leu Ser Thr Thr Phe Ser Leu Gln Leu Asp Gln Gln Lys Val Leu Leu Val Ser Phe Asp Gly Phe Arg Trp Asp Tyr Leu Tyr Lys Val Pro Thr Pro His Phe His Tyr Ile Met Lys Tyr Gly Val His Val Lys Gln Val Thr Asn Val Phe Ile Thr Lys Thr Tyr Pro Asn His Tyr Thr Leu Val Thr Gly Leu Phe Ala Glu Asn His Gly Ile Val Ala Asn Asp Met Phe Asp Pro Ile Arg Asn Lys Ser Phe Ser Leu Asp His Met Asn Ile Tyr Asp Ser Lys Phe Trp Glu Glu Ala 110 115 120 Thr Pro Ile Trp Ile Thr Asn Gln Arg Ala Gly His Thr Ser Gly Ala Ala Met Trp Pro Gly Thr Asp Val Lys Ile His Lys Arg Phe Pro Thr His Tyr Met Pro Tyr Asn Glu Ser Val Ser Phe Glu Asp 155 160 Arg Val Ala Lys Ile Val Glu Trp Phe Thr Ser Lys Glu Pro Ile 175 Asn Leu Gly Leu Leu Tyr Trp Glu Asp Pro Asp Asp Met Gly His 190 His Leu Gly Pro Asp Ser Pro Leu Met Gly Pro Val Ile Ser Asp Ile Asp Lys Lys Leu Gly Tyr Leu Ile Gln Met Leu Lys Lys Ala Lys Leu Trp Asn Thr Leu Asn Leu Ile Ile Thr Ser Asp His Gly 230 235 Met Thr Gln Cys Ser Glu Glu Arg Leu Ile Glu Leu Asp Gln Tyr 250 Leu Asp Lys Asp His Tyr Thr Leu Ile Asp Gln Ser Pro Val Ala Ala Ile Leu Pro Lys Glu Gly Lys Phe Asp Glu Val Tyr Glu Ala

Leu Thr His Ala His Pro Asn Leu Thr Val Tyr Lys Lys Glu Asp

280

				290					295					300
Val	Pro	Glu	Arg	Trp 305	His	Tyr	Lys	Tyr	Asn 310	Ser	Arg	Ile	Gln	Pro 315
Ile	Ile	Ala	Val	Ala 320	Asp	Glu	Gly	Trp	His 325	Ile	Leu	Gln	Asn	Lys 330
Ser	Asp	Asp	Phe	Leu 335	Leu	Gly	Asn	His	Gly 340	Tyr	Asp	Asn	Ala	Leu 345
Ala	Asp	Met	His	Pro 350	Ile	Phe	Leu	Ala	His 355	Gly	Pro	Ala	Phe	Arg 360
Lys	Asn	Phe	Ser	Lys 365	Glu	Ala	Met	Asn	Ser 370	Thr	Asp	Leu	Tyr	Pro 375
Leu	Leu	Cys	His	Leu 380	Leu	Asn	Ile	Thr	Ala 385	Met	Pro	His	Asn	Gly 390
Ser	Phe	Trp	Asn	Val 395	Gln	Asp	Leu	Leu	Asn 400	Ser	Ala	Met	Pro	Arg 405
Val	Val	Pro	Tyr	Thr 410	Gln	Ser	Thr	Ile	Leu 415	Leu	Pro	Gly	Ser	Val 420
Lys	Pro	Ala	Glu	Tyr 425	Asp	Gln	Glu	Gly	Ser 430	Tyr	Pro	Tyr	Phe	Ile 435
Gly	Val	Ser	Leu	Gly 440	Ser	Ile	Ile	Val	Ile 445	Val	Phe	Phe	Val	Ile 450
Phe	Ile	Lys	His	Leu 455	Ile	His	Ser	Gln	Ile 460	Pro	Ala	Leu	Gln	Asp 465
Met	His	Ala	Glu	Ile 470	Ala	Gln	Pro	Leu	Leu 475	Gln	Ala			

<211> 1337

<212> DNA

<213> Homo sapiens

<400> 286

ggatttttgt gatccgcgat tegeteccae gggeggaece tttgtaactg 50
cgggaggece aggacaggee caecetgegg ggegggagge ageeggggtg 100
agggaggtga agaaaccaag acgcagagag gecaagecee ttgeettggg 150
teacacagee aaaggaggea gagecagaae teacaaaccag ateeagagge 200
aacagggaea tggecaectg ggaegaaaag geagteaece geagggeeaa 250
ggtggeteee getgagagga tgageaagtt ettaaggeae tteacggteg 300
tgggagaega etaceatgee tggaacatea actacaagaa atgggagaat 350
gaagaggagg aggaggaga ggageageea ceaeceaeae cagteteagg 400
cgaggaagge eeeeettgae tteagggea tgttgaggaa actgtteage 500

tcccacaggt ttcaggtcat catcatctgc ttggtggttc tggatgccct 550 cctggtgctt gctgagctca tcctggacct gaagatcatc cagcccgaca 600 agaataacta tgctgccatg gtattccact acatgagcat caccatcttg 650 gtctttttta tgatggagat catctttaaa ttatttgtct tccgcctgag 700 ttctttcacc acaagtttga gatcctggat gcccgtcgtg gtggtggtct 750 cattcatcct ggacattqtc ctcctqttcc aggagcacca gtttgaggct 800 ctgggcctgc tgattctgct ccggctgtgg cgggtggccc ggatcatcaa 850 tqqqattatc atctcagtta agacacgttc agaacggcaa ctcttaaggt 900 taaaacaqat qaatqtacaa ttqqccqcca aqattcaaca ccttqagttc 950 agctgctctg agaagcccct ggactgatga gtttgctgta tcaacctgta 1000 aggagaaget eteteeggat ggetatggga atgaaagaat eegaetteta 1050 ctctcacaca gccaccgtga aagtcctgga gtaaaatgtg ctgtgtacag 1100 aagagagaga aggaagcagg ctggcatgtt cactgggctg gtgttacgac 1150 agagaacctg acagtcactg gccagttatc acttcagatt acaaatcaca 1200 cagagcatct gcctgttttc aatcacaaga gaacaaaacc aaaatctata 1250 aagatattct gaaaatatga cagaatttga caaataaaag cataaacgtg 1300 taaaaaaaaa aaaaaaaaa aaaaaaaa aaaaaaa 1337

<210> 287 <211> 255 <212> PRT

<213> Homo sapiens

<400> 287Met Ala Thr Trp Asp 1Glu Lys Ala Val Thr Arg Arg Arg Ala Lys Val 10Ala Pro Ala Glu Arg Met 20Ser Lys Phe Leu Arg His Phe Thr Val 25Val Gly Asp Asp Tyr His Ala Trp Asn Ile Asn Tyr Lys Lys Trp 40Glu Asn Glu Glu Glu Glu Glu Glu Glu Glu Glu Gln Pro Pro Pro Thr 50Pro Val Ser Gly Glu Glu Gly Arg Ala Ala Ala Pro Asp Val Ala 70Pro Ala Pro Gly Pro Ala Pro Arg Ala Pro Leu Asp Phe Arg Gly 80Met Leu Arg Lys Leu Phe Ser Ser His Arg Phe Gln Val Ile Ile 105Ile Cys Leu Val Val Leu Asp Ala Leu Leu Val Leu Ala Glu Leu

115

120

Ile	Leu	Asp	Leu	Lys 125	Ile	Ile	Gln	Pro	Asp 130	Lys	Asn	Asn	Tyr	Ala 135
Ala	Met	Val	Phe	His 140	Tyr	Met	Ser	Ile	Thr 145	Ile	Leu	Val	Phe	Phe 150
Met	Met	Glu	Ile	Ile 155	Phe	Lys	Leu	Phe	Val 160	Phe	Arg	Leu	Ser	Ser 165
Phe	Thr	Thr	Ser	Leu 170	Arg	Ser	Trp	Met	Pro 175	Val	Val	Val	Val	Val 180
Ser	Phe	Ile	Leu	Asp 185	Ile	Val	Leu	Leu	Phe 190	Gln	Glu	His	Gln	Phe 195
Glu	Ala	Leu	Gly	Leu 200	Leu	Ile	Leu	Leu	Arg 205	Leu	Trp	Arg	Val	Ala 210
Arg	Ile	Ile	Asn	Gly 215	Ile	Ile	Ile	Ser	Val 220	Lys	Thr	Arg	Ser	Glu 225
Arg	Gln	Leu	Leu	Arg 230	Leu	Lys	Gln	Met	Asn 235	Val	Gln	Leu	Ala	Ala 240
Lys	Ile	Gln	His	Leu 245	Glu	Phe	Ser	Суз	Ser 250	Glu	Lys	Pro	Leu	Asp 255

<211> 3334

<212> DNA

<213> Homo sapiens

<400> 288

eggetegage tegageegaa teggetegag gggeagtgga geaeceagea 50 ggeegeeaac atgetetgte tgtgeetgta egtgeeggte ateggggaag 100 eeceagacega gtteeagtae tttgagtega aggggeteee tgeegagetg 150 aagteeattt teaageteag tgtetteate eeceteeagg aatteteeae 200 etaeegeeag tggaageaga aaattgtaca agetggagat aaggaeettg 250 atgggeaget agaetttgaa gaatttgtee attateteea agateatgag 300 aagaagetga ggetggtgt taagattttg gacaaaaaga atgatggaeg 350 eattgaege eaggagatea tgeagteeet gegggaettg ggagteaaga 400 tatetgaaca geaggeagaa aaaattetea agageatgga taaaaacgge 450 aegatgaeea tegaetggaa egagtggaga gactaceaee teeteeaeee 500 egtggaaaae ateeeegaga teateeteta etggaageat teeaegate 550 ttgatgtggg tgagaateta aeggteeeg atgagteae agtggagga gtggggeagg 650 ggeegtatee agaacetgea eggeeeeeet ggacaageet taggtgetee 750 tgeaggteea tgeeteeeg ageaacaaca tgggeateeg tggtggetee 750

aaagggtttt gtccagaagg acaagccgga caaatgagcg acttctgtgc 2400 ttccagagga agacgaggga gcaggagctt ggctgactgc tcagagtctg 2450 ttctgacgcc ctgggggttc ctgtccaacc ccagcagggg cgcagcggga 2500 ccaqccccac attccacttg tgtcactgct tggaacctat ttattttgta 2550 tttatttgaa cagagttatg tcctaactat ttttatagat ttgtttaatt 2600 aataqcttqt cattttcaag ttcattttt attcatattt atgttcatgg 2650 ttgattgtac cttcccaagc ccgcccagtg ggatgggagg aggaggagaa 2700 ggggggcctt gggccgctgc agtcacatct gtccagagaa attccttttg 2750 ggactggagg cagaaaagcg gccagaaggc agcagccctg gctcctttcc 2800 tttggcaggt tggggaaggg cttgcccca gccttaggat ttcagggttt 2850 gactgggggc gtggagaga agggaggaac ctcaataacc ttgaaggtgg 2900 aatccagtta tttcctgcgc tgcgagggtt tctttatttc actcttttct 2950 gaatgtcaag gcagtgaggt gcctctcact gtgaatttgt ggtgggcggg 3000 ggctggagga gagggtgggg ggctggctcc gtccctccca gccttctgct 3050 gcccttgctt aacaatgccg gccaactggc gacctcacgg ttgcacttcc 3100 attocaccag aatgacctga tgaggaaatc ttcaatagga tgcaaagatc 3150 aatgcaaaaa ttgttatata tgaacatata actggagtcg tcaaaaagca 3200 aattaagaaa gaattggacg ttagaagttg tcatttaaag cagccttcta 3250 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 3334

<210> 289

<211> 469

<212> PRT

<213> Homo sapiens

<400> 289

Met Leu Cys Leu Cys Leu Tyr Val Pro Val Ile Gly Glu Ala Gln
1 5 10 15

Thr Glu Phe Gln Tyr Phe Glu Ser Lys Gly Leu Pro Ala Glu Leu 20 25 30

Lys Ser Ile Phe Lys Leu Ser Val Phe Ile Pro Ser Gln Glu Phe 35 40 45

Ser Thr Tyr Arg Gln Trp Lys Gln Lys Ile Val Gln Ala Gly Asp 50 55 60

Lys Asp Leu Asp Gly Gln Leu Asp Phe Glu Glu Phe Val His Tyr 65 70 75

Leu Gln Asp His Glu Lys Lys Leu Arg Leu Val Phe Lys Ile Leu 80 85 90 Asp Lys Lys Asn Asp Gly Arg Ile Asp Ala Gln Glu Ile Met Gln Ser Leu Arg Asp Leu Gly Val Lys Ile Ser Glu Gln Gln Ala Glu 115 Lys Ile Leu Lys Ser Met Asp Lys Asn Gly Thr Met Thr Ile Asp Trp Asn Glu Trp Arg Asp Tyr His Leu Leu His Pro Val Glu Asn Ile Pro Glu Ile Ile Leu Tyr Trp Lys His Ser Thr Ile Phe Asp Val Gly Glu Asn Leu Thr Val Pro Asp Glu Phe Thr Val Glu Glu 175 Arg Gln Thr Gly Met Trp Trp Arg His Leu Val Ala Gly Gly Gly 190 Ala Gly Ala Val Ser Arg Thr Cys Thr Ala Pro Leu Asp Arg Leu 200 205 Lys Val Leu Met Gln Val His Ala Ser Arg Ser Asn Asn Met Gly 220 Ile Val Gly Gly Phe Thr Gln Met Ile Arg Glu Gly Gly Ala Arg Ser Leu Trp Arg Gly Asn Gly Ile Asn Val Leu Lys Ile Ala Pro Glu Ser Ala Ile Lys Phe Met Ala Tyr Glu Gln Ile Lys Arg Leu 260 265 Val Gly Ser Asp Gln Glu Thr Leu Arg Ile His Glu Arg Leu Val Ala Gly Ser Leu Ala Gly Ala Ile Ala Gln Ser Ser Ile Tyr Pro 295 Met Glu Val Leu Lys Thr Arg Met Ala Leu Arg Lys Thr Gly Gln 305 310 Tyr Ser Gly Met Leu Asp Cys Ala Arg Arg Ile Leu Ala Arg Glu Gly Val Ala Ala Phe Tyr Lys Gly Tyr Val Pro Asn Met Leu Gly Ile Ile Pro Tyr Ala Gly Ile Asp Leu Ala Val Tyr Glu Thr Leu 350 355 Lys Asn Ala Trp Leu Gln His Tyr Ala Val Asn Ser Ala Asp Pro 365 Gly Val Phe Val Leu Leu Ala Cys Gly Thr Met Ser Ser Thr Cys 385 Gly Gln Leu Ala Ser Tyr Pro Leu Ala Leu Val Arg Thr Arg Met 395 400

Gln Ala Gln Ala Ser Ile Glu Gly Ala Pro Glu Val Thr Met Ser 420

Ser Leu Phe Lys His Ile Leu Arg Thr Glu Gly Ala Phe Gly Leu 435

Tyr Arg Gly Leu Ala Pro Asn Phe Met Lys Val Ile Pro Ala Val 450

Ser Ile Ser Tyr Val Val Tyr Glu Asn Leu Lys Ile Thr Leu Gly 465

Val Gln Ser Arg

<210> 290 <211> 1658 <212> DNA <213> Homo sapiens

<400> 290 ggaaggcagc ggcagctcca ctcagccagt acccagatac gctgggaacc 50 ttccccagcc atggcttccc tggggcagat cctcttctgg agcataatta 100 qcatcatcat tattctggct ggagcaattg cactcatcat tggctttggt 150 atttcaggga gacactccat cacagtcact actgtcgcct cagctgggaa 200 cattggggag gatggaatcc tgagctgcac ttttgaacct gacatcaaac 250 tttctgatat cgtgatacaa tggctgaagg aaggtgtttt aggcttggtc 300 catgagttca aagaaggcaa agatgagctg tcggagcagg atgaaatgtt 350 cagaggccgg acagcagtgt ttgctgatca agtgatagtt ggcaatgcct 400 ctttgcggct gaaaaacgtg caactcacag atgctggcac ctacaaatgt 450 tatatcatca cttctaaagg caaggggaat gctaaccttg agtataaaac 500 tggagccttc agcatgccgg aagtgaatgt ggactataat gccagctcag 550 agaccttgcg gtgtgaggct ccccgatggt tcccccagcc cacagtggtc 600 tgggcatccc aagttgacca gggagccaac ttctcggaag tctccaatac 650 cagctttgag ctgaactctg agaatgtgac catgaaggtt gtgtctgtgc 700 tctacaatgt tacgatcaac aacacatact cctgtatgat tgaaaatgac 750 attgccaaag caacagggga tatcaaagtg acagaatcgg agatcaaaag 800 gcggagtcac ctacagctgc taaactcaaa ggcttctctg tgtgtctctt 850 ctttctttgc catcagctgg gcacttctgc ctctcagccc ttacctgatg 900 ctaaaataat gtgccttggc cacaaaaaag catgcaaagt cattgttaca 950 acagggatct acagaactat ttcaccacca gatatgacct agttttatat 1000 ttctgggagg aaatgaattc atatctagaa gtctggagtg agcaaacaag 1050

- <210> 291
- <211> 282
- <212> PRT
- <213> Homo sapiens

<400> 291

- Met Ala Ser Leu Gly Gln Ile Leu Phe Trp Ser Ile Ile Ser Ile 1 5 10 15
- Ile Ile Ile Leu Ala Gly Ala Ile Ala Leu Ile Ile Gly Phe Gly 20 25 30
- Ile Ser Gly Arg His Ser Ile Thr Val Thr Thr Val Ala Ser Ala 35 40 45
- Gly Asn Ile Gly Glu Asp Gly Ile Leu Ser Cys Thr Phe Glu Pro
 50 55 60
- Asp Ile Lys Leu Ser Asp Ile Val Ile Gln Trp Leu Lys Glu Gly 65 70 75
- Val Leu Gly Leu Val His Glu Phe Lys Glu Gly Lys Asp Glu Leu 80 85 90
- Ser Glu Gln Asp Glu Met Phe Arg Gly Arg Thr Ala Val Phe Ala 95 100 105
- Asp Gln Val Ile Val Gly Asn Ala Ser Leu Arg Leu Lys Asn Val 110 115 120
- Gln Leu Thr Asp Ala Gly Thr Tyr Lys Cys Tyr Ile Ile Thr Ser 125 130 135
- Lys Gly Lys Gly Asn Ala Asn Leu Glu Tyr Lys Thr Gly Ala Phe \$140\$ \$150\$
- Ser Met Pro Glu Val Asn Val Asp Tyr Asn Ala Ser Ser Glu Thr

				155					160					165
Leu	Arg	Cys	Glu	Ala 170	Pro	Arg	Trp	Phe	Pro 175	Gln	Pro	Thr	Val	Val 180
Trp	Ala	Ser	Gln	Val 185	Asp	Gln	Gly	Ala	Asn 190	Phe	Ser	Glu	Val	Ser 195
Asņ	Thr	Ser	Phe	Glu 200	Leu	Asn	Ser	Glu	Asn 205	Val	Thr	Met	Lys	Val 210
Val	Ser	Val	Leu	Tyr 215	Asn	Val	Thr	Ile	Asn 220	Asn	Thr	Tyr	Ser	Cys 225
Met	Ile	Glu	Asn	Asp 230	Ile	Ala	Lys	Ala	Thr 235	Gly	Asp	Ile	Lys	Val 240
Thr	Glu	Ser	Glu	Ile 245	Lys	Arg	Arg		His 250	Leu	Gln	Leu	Leu	Asn 255
Ser	Lys	Ala	Ser	Leu 260	Суѕ	Val	Ser	Ser	Phe 265	Phe	Ala	Ile	Ser	Trp 270
Ala	Leu	Leu	Pro	Leu 275	Ser	Pro	Tyr	Leu	Met 280	Leu	Lys			

<211> 1484

<212> DNA

<213> Homo sapiens

<400> 292

gaatttgtag aagacagegg egttgecatg geggegtete tggggeaggt 50 gttggctctg gtgctggtgg ccgctctgtg gggtggcacg cagccgctgc 100 tgaageggge eteegeegge etgeageggg tteatgagee gaeetgggee 150 cagcagttgc tacaggagat gaagaccctc ttcttgaata ctgagtacct 200 gatgcccttt ctcctcaacc agtgtggatc ccttctctat tacctcacct 250 tggcatcgac agatctgacc ctggctgtgc ccatctgtaa ctctctggct 300 atcatcttca cactgattgt tgggaaggcc cttggagaag atattggtgg 350 aaaacgtaag ttagactact gcgagtgcgg gacgcagctc tgtggatctc 400 gacatacctg tgttagttcc ttcccagaac ccatctcccc agagtgggtg 450 aggacacggc cttttcccat cctgcccttt cctctgcagc tgttttgctt 500 ccttgtggcc atcagagttc ccttcccctg gacagtctgg agaaagacag 550 aggctggggt ttgggattga agaccagacc ccatctgagc ccttcctcca 600 gccctgtacc agctcctact ggcatggctg agctcagacc ctcctgattt 650 ctgcctatta tcccaggagc agttgctggc atggtgctca ccgtgatagg 700 aatttcactc tgcatcacaa gctcagtgag taagacccag gggcaacagt 750 ctaccetttg agtgggeega acceaettee agetetgetg cetecaggaa 800 <210> 293

<211> 180

<212> PRT

<213> Homo sapiens

<400> 293

Met Ala Ala Ser Leu Gly Gln Val Leu Ala Leu Val Leu Val Ala 1 5 10 15

Ala Leu Trp Gly Gly Thr Gln Pro Leu Leu Lys Arg Ala Ser Ala 20 25 30

Gly Leu Gln Arg Val His Glu Pro Thr Trp Ala Gln Gln Leu Leu
35
40
45

Gln Glu Met Lys Thr Leu Phe Leu Asn Thr Glu Tyr Leu Met Pro
50 55 60

Phe Leu Leu Asn Gln Cys Gly Ser Leu Leu Tyr Tyr Leu Thr Leu 65 70 75

Ala Ser Thr Asp Leu Thr Leu Ala Val Pro Ile Cys Asn Ser Leu 80 85 90

Ala Ile Ile Phe Thr Leu Ile Val Gly Lys Ala Leu Gly Glu Asp 95 100 105

Ile Gly Gly Lys Arg Lys Leu Asp Tyr Cys Glu Cys Gly Thr Gln 110 115 120

Leu Cys Gly Ser Arg His Thr Cys Val Ser Ser Phe Pro Glu Pro 125 130 135

Ile Ser Pro Glu Trp Val Arg Thr Arg Pro Phe Pro Ile Leu Pro 140 145

Phe Pro Leu Gln Leu Phe Cys Phe Leu Val Ala Ile Arg Val Pro 155 160 165

Phe Pro Trp Thr Val Trp Arg Lys Thr Glu Ala Gly Val Trp Asp 170 175 180

<210> 294

<211> 1164

<212> DNA

<213> Homo sapiens

<400> 294

cttctgtagg acagtcacca ggccagatcc agaagcctct ctaggctcca 50 gctttctctg tggaaqatqa cagcaattat agcaggaccc tgccaggctg 100 tcgaaaagat tccgcaataa aactttgcca gtgggaagta cctagtgaaa 150 cggcctaaga tgccacttct tctcatgtcc caggcttgag gccctgtggt 200 ccccatcctt gggagaagtc agctccagca ccatgaaggg catcctcgtt 250 gctggtatca ctgcagtgct tgttgcagct gtagaatctc tgagctgcgt 300 gcagtgtaat tcatgggaaa aatcctgtgt caacagcatt gcctctgaat 350 gtccctcaca tgccaacacc agctgtatca gctcctcagc cagctcctct 400 ctagagacac cagtcagatt ataccagaat atgttctgct cagcggagaa 450 ctgcagtgag gagacacaca ttacagcctt cactgtccac gtgtctgctg 500 aagaacactt tcattttgta agccagtgct qccaaggaaa ggaatgcagc 550 aacaccagcg atgccctgga ccctcccctg aagaacgtgt ccagcaacgc 600 agagtgccct gcttgttatg aatctaatgg aacttcctgt cgtgggaagc 650 cctggaaatg ctatgaagaa gaacagtgtg tctttctagt tgcagaactt 700 aagaatgaca ttgagtctaa gagtctcgtg ctgaaaggct gttccaacgt 750 cagtaacqcc acctgtcagt tcctgtctgg tgaaaacaag actcttggag 800 gagtcatctt tcgaaagttt gagtgtgcaa atgtaaacag cttaaccccc 850 acgtctgcac caaccacttc ccacaacgtg ggctccaaag cttccctcta 900 cctcttggcc cttgccagcc tccttcttcg gggactgctg ccctgaggtc 950 ctggggctgc actttgccca gcaccccatt tctgcttctc tgaggtccag 1000 agcaccccct gcggtgctga caccctcttt ccctgctctg ccccgtttaa 1050 ctgcccagta agtgggagtc acaggtctcc aggcaatgcc gacagctgcc 1100 aaaaaaaaa aaaa 1164

<210> 295

<211> 237

<212> PRT

<213> Homo sapiens

```
<400> 295
Met Lys Gly Ile Leu Val Ala Gly Ile Thr Ala Val Leu Val Ala
Ala Val Glu Ser Leu Ser Cys Val Gln Cys Asn Ser Trp Glu Lys
Ser Cys Val Asn Ser Ile Ala Ser Glu Cys Pro Ser His Ala Asn
Thr Ser Cys Ile Ser Ser Ser Ala Ser Ser Ser Leu Glu Thr Pro
Val Arg Leu Tyr Gln Asn Met Phe Cys Ser Ala Glu Asn Cys Ser
Glu Glu Thr His Ile Thr Ala Phe Thr Val His Val Ser Ala Glu
Glu His Phe His Phe Val Ser Gln Cys Cys Gln Gly Lys Glu Cys
Ser Asn Thr Ser Asp Ala Leu Asp Pro Pro Leu Lys Asn Val Ser
                 110
Ser Asn Ala Glu Cys Pro Ala Cys Tyr Glu Ser Asn Gly Thr Ser
                                     130
Cys Arg Gly Lys Pro Trp Lys Cys Tyr Glu Glu Glu Gln Cys Val
Phe Leu Val Ala Glu Leu Lys Asn Asp Ile Glu Ser Lys Ser Leu
                 155
                                     160
Val Leu Lys Gly Cys Ser Asn Val Ser Asn Ala Thr Cys Gln Phe
Leu Ser Gly Glu Asn Lys Thr Leu Gly Gly Val Ile Phe Arg Lys
                                     190
Phe Glu Cys Ala Asn Val Asn Ser Leu Thr Pro Thr Ser Ala Pro
                 200
                                     205
Thr Thr Ser His Asn Val Gly Ser Lys Ala Ser Leu Tyr Leu Leu
Ala Leu Ala Ser Leu Leu Leu Arg Gly Leu Leu Pro
```

<210> 296

<211> 1245

<212> DNA

<213> Homo sapiens

<400> 296

ggcctcggtt caaacgaccc ggtgggtcta cagcggaagg gagggagcga 50
aggtaggagg cagggcttgc ctcactggcc accctcccaa ccccaagagc 100
ccagccccat ggtccccgcc gccggcgcgc tgctgtgggt cctgctgctg 150

aatctgggtc cccgggcggc gggggcccaa ggcctgaccc agactccgac 200 cgaaatgcag cgggtcagtt tacgctttgg gggccccatg acccgcagct 250 accggagcac cgcccggact ggtcttcccc qqaaqacaaq qataatccta 300 gaggacgaga atgatgccat ggccgacgcc gaccgcctgg ctggaccagc 350 ggctgccgag ctcttggccg ccacggtgtc caccggcttt agccggtcgt 400 ccgccattaa cgaggaggat gggtcttcag aagaggggt tgtgattaat 450 gccggaaagg atagcaccag cagagagctt cccagtgcga ctcccaatac 500 agcggggagt tccagcacga ggtttatagc caatagtcag gagcctgaaa 550 tcaggctgac ttcaagcctg ccgcgctccc ccgggaggtc tactgaggac 600 ctgccaggct cgcaggccac cctgagccag tggtccacac ctgggtctac 650 cccgagccgg tggccgtcac cctcacccac agccatgcca tctcctgagg 700 atctgcggct ggtgctgatg ccctggggcc cgtggcactg ccactgcaag 750 tcgggcacca tgagccggag ccggtctggg aagctgcacg gcctttccgg 800 gcgccttcga gttggggcgc tgagccaqct ccqcacqqaq cacaaqcctt 850 gcacctatca acaatgtccc tgcaaccgac ttcgggaaga gtgcccctg 900 gacacaagtc tetgtactga caccaactgt gcctctcaga gcaccaccag 950 taccaggace accactacce cettececae catecacete agaagcagte 1000 ccagcetgcc accegecage ecetgeceag ecetggettt ttggaaacgg 1050 gtcaggattg gcctggagga tatttggaat agcctctctt cagtgttcac 1100 agagatgcaa ccaatagaca gaaaccagag gtaatggcca cttcatccac 1150 atgaggagat gtcagtatct caacctctct tgccctttca atcctagcac 1200 ccactagata tttttagtac agaaaaacaa aactggaaaa cacaa 1245

<210> 297

<211> 341

<212> PRT

<213> Homo sapiens

<400> 297

Met Val Pro Ala Ala Gly Ala Leu Leu Trp Val Leu Leu Leu Asn 1 5 10 15

Leu Gly Pro Arg Ala Ala Gly Ala Gln Gly Leu Thr Gln Thr Pro 20 25 30

Thr Glu Met Gln Arg Val Ser Leu Arg Phe Gly Gly Pro Met Thr 35 40 40

Arg Ser Tyr Arg Ser Thr Ala Arg Thr Gly Leu Pro Arg Lys Thr 50 55 60

Arg Ile Ile Leu Glu Asp Glu Asn Asp Ala Met Ala Asp Ala Asp

					03					70					12
	Arg	Leu	Ala	Gly	Pro 80	Ala	Ala	Ala	Glu	Leu 85	Leu	Ala	Ala	Thr	Va]
	Ser	Thr	Gly	Phe	Ser 95	Arg	Ser	Ser	Ala	Ile 100	Asn	Glu	Glu	Asp	Gl _y 105
	Ser	Ser	Glu	Glu	Gly 110	Val	Val	Ile	Asn	Ala 115	Gly	Lys	Asp	Ser	Thr 120
	Ser	Arg	Glu	Leu	Pro 125	Ser	Ala	Thr	Pro	Asn 130	Thr	Ala	Gly	Ser	Ser 135
	Ser	Thr	Arg	Phe	Ile 140	Ala	Asn	Ser	Gln	Glu 145	Pro	Glu	Ile	Arg	Let 150
	Thr	Ser	Ser	Leu	Pro 155	Arg	Ser	Pro	Gly	Arg 160	Ser	Thr	Glu	Asp	Leu 165
	Pro	Gly	Ser	Gln	Ala 170	Thr	Leu	Ser	Gln	Trp 175	Ser	Thr	Pro	Gly	Ser 180
	Thr	Pro	Ser	Arg	Trp 185	Pro	Ser	Pro	Ser	Pro 190	Thr	Ala	Met	Pro	Ser 195
	Pro	Glu	Asp	Leu	Arg 200	Leu	Val	Leu	Met	Pro 205	Trp	Gly	Pro	Trp	His 210
	Cys	His	Cys	Lys	Ser 215	Gly	Thr	Met	Ser	Arg 220	Ser	Arg	Ser	Gly	Lys 225
	Leu	His	Gly	Leu	Ser 230	Gly	Arg	Leu	Arg	Val 235	Gly	Ala	Leu	Ser	Gln 240
	Leu	Arg	Thr	Glu	His 245	Lys	Pro	Cys	Thr	Tyr 250	Gln	Gln	Cys	Pro	Cys 255
	Asn	Arg	Leu	Arg	Glu 260	Glu	Cys	Pro	Leu	Asp 265	Thr	Ser	Leu	Cys	Thr 270
	Asp	Thr	Asn	Cys	Ala 275	Ser	Gln	Ser	Thr	Thr 280	Ser	Thr	Arg	Thr	Thr 285
	Thr	Thr	Pro	Phe	Pro 290	Thr	Ile	His	Leu	Arg 295	Ser	Ser	Pro	Ser	Leu 300
	Pro	Pro	Ala	Ser	Pro 305	Cys	Pro	Ala	Leu	Ala 310	Phe	Trp	Lys	Arg	Val 315
	Arg	Ile	Gly	Leu	Glu 320	Asp	Ile	Trp	Asn	Ser 325	Leu	Ser	Ser	Val	Phe 330
	Thr	Glu	Met	Gln	Pro 335	Ile	Asp	Arg	Asn	Gln 340	Arg				
<: <:	211> 212>	298 269 DNA Hom	92	pien	ıs										

<400> 298

cccgggtcga cccacgcgtc cggggagaaa ggatggccgg cctggcggcg 50

cggttggtcc tgctagctgg ggcagcggcg ctggcgagcg gctcccaggg 100 cgaccgtgag ccggtgtacc gcgactgcgt actgcagtgc gaagagcaga 150 actgctctgg gggcgctctg aatcacttcc gctcccgcca gccaatctac 200 atgagtctag caggctggac ctgtcgggac gactgtaagt atgagtgtat 250 gtgggtcacc gttgggctct acctccagga aggtcacaaa gtgcctcagt 300 tecatggeaa gtggeeette teeeggttee tgttetttea agageeggea 350 teggeegtgg cetegtttet caatggeetg geeageetgg tgatgetetg 400 cegetacege acettegtge cageetecte ecceatgtae cacacetgtg 450 tggccttcgc ctgggtgtcc ctcaatgcat ggttctggtc cacagtcttc 500 cacaccaggg acactgacct cacagagaaa atggactact tctgtgcctc 550 cactgtcatc ctacactcaa tctacctgtg ctgcgtcagg accgtggggc 600 tgcagcaccc agctgtggtc agtgccttcc gggctctcct gctgctcatg 650 ctgaccgtgc acgtctccta cctgagcctc atccgcttcg actatggcta 700 caacctggtg gccaacgtgg ctattggcct ggtcaacgtg gtgtggtggc 750 tggcctggtg cctgtggaac cagcggcggc tgcctcacgt gcgcaagtgc 800 gtggtggtgg tcttgctgct gcaggggctg tccctgctcg agctgcttga 850 cttcccaccg ctcttctggg tcctggatgc ccatgccatc tggcacatca 900 gcaccatccc tgtccacgtc ctctttttca gctttctgga agatgacagc 950 ctgtacctgc tgaaggaatc agaggacaag ttcaagctgg actgaagacc 1000 ttggagcgag tctgccccag tggggatcct gccccgccc tgctggcctc 1050 cettetecee teaaceettg agatgatttt etettteaa ettettgaae 1100 ttggacatga aggatgtggg cccagaatca tgtggccagc ccacccctg 1150 ttggccctca ccagccttgg agtctgttct agggaaggcc tcccagcatc 1200 tgggactcga gagtgggcag cccctctacc tcctggagct gaactggggt 1250 ggaactgagt gtgttcttag ctctaccggg aggacagctg cctgtttcct 1300 ccccaccage etecteccca catecccage tgeetggetg ggteetgaag 1350 ccctctgtct acctgggaga ccagggacca caggccttag ggatacaggg 1400 ggtccccttc tgttaccacc ccccaccctc ctccaggaca ccactaggtg 1450 gtgctggatg cttgttcttt ggccagccaa ggttcacggc gattctcccc 1500 atgggatett gagggaceaa getgetggga ttgggaagga gttteaceet 1550 gaccgttgcc ctagccaggt tcccaggagg cctcaccata ctccctttca 1600 gggccagggc tccagcaagc ccagggcaag gatcctgtgc tgctgtctgg 1650

ttgagagcct gccaccgtgt gtcgggagtg tgggccaggc tgagtgcata 1700 ggtgacaggg ccgtgagcat gggcctgggt gtgtgtgagc tcaggcctag 1750 gtgcgcagtg tggagacggg tgttgtcggg gaagaggtgt ggcttcaaag 1800 tgtgtgtgtg cagggggtgg gtgtgttagc gtgggttagg ggaacgtgtg 1850 tgcgcgtgct ggtgggcatg tgagatgagt gactgccggt gaatgtgtcc 1900 acagttgaga ggttggagca ggatgaggga atcctgtcac catcaataat 1950 cacttgtgga gcgccagctc tgcccaagac gccacctggg cggacagcca 2000 ggagetetee atggecagge tgeetgtgtg catgtteet gtetggtgee 2050 cctttgcccg cctcctgcaa acctcacagg gtccccacac aacagtgccc 2100 tccagaagca gcccctcgga ggcagaggaa ggaaaatggg gatggctggg 2150 gctctctcca tcctcctttt ctccttgcct tcgcatggct ggccttcccc 2200 tocaaaacct ccattoccct gotgocagoo cotttgocat agootgattt 2250 tggggaggag gaaggggga tttgagggag aaggggagaa agcttatggc 2300 tgggtctggt ttcttccctt cccagagggt cttactgttc cagggtggcc 2350 ccagggcagg caggggccac actatgcctg tgccctggta aaggtgaccc 2400 ctgccattta ccagcagccc tggcatgttc ctgccccaca ggaatagaat 2450 ggagggagct ccagaaactt tccatcccaa aggcagtctc cgtggttgaa 2500 gcagactgga tttttgctct gcccctgacc ccttgtccct ctttgaggga 2550 ggggagctat gctaggactc caacctcagg gactcgggtg gcctgcgcta 2600 gcttcttttg atactgaaaa cttttaaggt gggagggtgg caagggatgt 2650 gcttaataaa tcaattccaa gcctcaaaaa aaaaaaaaa aa 2692

<210> 299

<211> 320

<212> PRT

<213> Homo sapiens

<400> 299

Met Ala Gly Leu Ala Ala Arg Leu Val Leu Leu Ala Gly Ala Ala $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ala Leu Ala Ser Gly Ser Gln Gly Asp Arg Glu Pro Val Tyr Arg 20 25 30

Asp Cys Val Leu Gln Cys Glu Glu Gln Asn Cys Ser Gly Gly Ala 35 40 45

Leu Asn His Phe Arg Ser Arg Gln Pro Ile Tyr Met Ser Leu Ala 50 55 60

Gly Trp Thr Cys Arg Asp Asp Cys Lys Tyr Glu Cys Met Trp Val 65 70 75

<211> 1674

<212> DNA

<213> Homo sapiens

<400> 300

ggccgcctgg aattgtggga gttgtgtctg ccactcggct gccggaggcc 50 gaaggtccgt gactatggct ccccagagcc tgccttcatc taggatggct 100 cctctgggca tgctgctgg gctgctgatg gccgcctgct tcaccttctg 150

<211> 461 <212> PRT

<213> Homo sapiens

<400> 301 Met Ala Pro Gln Ser Leu Pro Ser Ser Arg Met Ala Pro Leu Gly Met Leu Gly Leu Leu Met Ala Ala Cys Phe Thr Phe Cys Leu Ser His Gln Asn Leu Lys Glu Phe Ala Leu Thr Asn Pro Glu Lys Ser Ser Thr Lys Glu Thr Glu Arg Lys Glu Thr Lys Ala Glu Glu Glu Leu Asp Ala Glu Val Leu Glu Val Phe His Pro Thr His Glu Trp Gln Ala Leu Gln Pro Gly Gln Ala Val Pro Ala Gly Ser His Val Arg Leu Asn Leu Gln Thr Gly Glu Arg Glu Ala Lys Leu Gln Tyr Glu Asp Lys Phe Arg Asn Asn Leu Lys Gly Lys Arg Leu Asp Ile Asn Thr Asn Thr Tyr Thr Ser Gln Asp Leu Lys Ser Ala Leu Ala Lys Phe Lys Glu Gly Ala Glu Met Glu Ser Ser Lys Glu Asp Lys Ala Arg Gln Ala Glu Val Lys Arg Leu Phe Arg Pro Ile Glu 155 160 Glu Leu Lys Lys Asp Phe Asp Glu Leu Asn Val Val Ile Glu Thr 175 Asp Met Gln Ile Met Val Arg Leu Ile Asn Lys Phe Asn Ser Ser 190 Ser Ser Ser Leu Glu Glu Lys Ile Ala Ala Leu Phe Asp Leu Glu Tyr Tyr Val His Gln Met Asp Asn Ala Gln Asp Leu Leu Ser Phe Gly Gly Leu Gln Val Val Ile Asn Gly Leu Asn Ser Thr Glu Pro 235 Leu Val Lys Glu Tyr Ala Ala Phe Val Leu Gly Ala Ala Phe Ser Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly Gly Ala Leu Gln Lys Leu Val Ile Leu Ala Thr Glu Gln Pro Leu Thr Ala

Lys Lys Lys Val Leu Phe Ala Leu Cys Ser Leu Leu Arg His Phe

					290					295					300
	Pro	Tyr	Ala	Gln	Arg 305	Gln	Phe	Leu	Lys	Leu 310	Gly	Gly	Leu	Gln	Val 315
	Leu	Arg	Thr	Leu	Val 320	Gln	Glu	Lys	Gly	Thr 325	Glu	Val	Leu	·Ala	Val 330
	Arg	Val	Val	Thr	Leu 335	Leu	Tyr	Asp	Leu	Val 340	Thr	Glu	Lys	Met	Phe 345
	Ala	Glu	Glu	Glu	Ala 350	Glu	Leu	Thr	Gln	Glu 355	Met	Ser	Pro	Glu	Lys 360
	Leu	Gln	Gln	Tyr	Arg 365	Gln	Val	His	Leu	Leu 370	Pro	Gly	Leu	Trp	Glu 375
	Gln	Gly	Trp	Суз	Glu 380	Ile	Thr	Ala	His	Leu 385	Leu	Ala	Leu	Pro	Glu 390
	His	Asp	Ala	Arg	Glu 395	Lys	Val	Leu	Gln	Thr 400	Leu	Gly	Val	Leu	Leu 405
	Thr	Thr	Cys	Arg	Asp 410	Arg	Tyr	Arg	Gln	Asp 415	Pro	Gln	Leu	Gly	Arg 420
	Thr	Leu	Ala	Ser	Leu 425	Gln	Ala	Glu	Tyr	Gln 430	Val	Leu	Ala	Ser	Leu 435
	Glu	Leu	Gln	Asp	Gly 440	Glu	Asp	Glu	Gly	Tyr 445	Phe	Gln	Glu	Leu	Leu 450
	Gly	Ser	Val	Asn	Ser 455	Leu	Leu	Lys	Glu	Leu 460	Arg				
_	210	303													

<211> 2136

<212> DNA

<213> Homo sapiens

<400> 302

tteggettee gtagaggaag tggeeggae etteattgg ggtteeggtt 50
ceeeeeette eeetteeeeg gggtetgggg gtgacattge aceegegeee 100
tegtggggte gegttgeeae eeeaeggga eteeeeaget ggeegeeee 150
teeeatttge etgteetggt eaggeeeeea eeeeettee eacetgaeea 200
geeatggggg etgeggtgtt ttteeggetge actttegteg egtteeggee 250
ggeetteegeg ettteettga teaetgtgge tggggaeeeg etteeggeta 300
teateetggt egeagggea tttteetgge tggteeeet geteetggee 350
tetgtggtet ggtteatett ggteeatgtg aceegget eagatgeeeg 400
geteeagtae ggeeteetga tttteggtge tgetgtetet gteettetae 450
aggaggtgtt eegetttgee taetaeage tgettaagaa ggeagatgaa 500
gggttageat egetgagtga ggaeggaaga teaeeeatet eeateegeea 550

gatggcctat gtttctggtc tctccttcgg tatcatcagt ggtgtcttct 600 ctgttatcaa tattttggct gatgcacttg ggccaggtgt ggttgggatc 650 catggagact caccetatta etteetgact teageettte tgacageage 700 cattatcctg ctccatacct tttggggagt tgtgttcttt gatgcctgtg 750 agaggagacg gtactgggct ttgggcctgg tggttgggag tcacctactg 800 acategggae tgacatteet gaaceeetgg tatgaggeea geetgetgee 850 catctatgca gtcactgttt ccatggggct ctgggccttc atcacagctg 900 gagggteeet eegaagtatt eagegeagee tettgtgtaa ggaetgaeta 950 cctggactga tcgcctgaca gatcccacct gcctgtccac tgcccatgac 1000 tgagcccagc cccagcccgg gtccattgcc cacattctct gtctccttct 1050 cgtcggtcta ccccactacc tccagggttt tgctttgtcc ttttgtgacc 1100 gttagtctct aagctttacc aggagcagcc tgggttcagc cagtcagtga 1150 ctggtgggtt tgaatctgca cttatcccca ccacctgggg acccccttgt 1200 tgtgtccagg actcccctg tgtcagtgct ctgctctcac cctgcccaag 1250 actcacctcc cttcccctct gcaggccgac ggcaggagga cagtcgggtg 1300 atggtgtatt ctgccctgcg catcccaccc gaggactgag ggaacctagg 1350 ggggacceet gggeetgggg tgeecteetg atgteetege cetgtattte 1400 tccatctcca gttctggaca gtgcaggttg ccaagaaaag ggacctagtt 1450 tagecattgc cctggagatg aaattaatgg aggetcaagg atagatgage 1500 tetgagttte teagtactee etcaagaetg gacatettgg tettttete 1550 aggcctgagg gggaaccatt tttggtgtga taaataccct aaactgcctt 1600 tttttctttt ttgaggtggg gggagggagg aggtatattg gaactcttct 1650 aacctccttg ggctatattt teteteeteg agttgeteet catggetggg 1700 ctcatttcgg tccctttctc cttggtccca gaccttgggg gaaaggaagg 1750 aagtgcatgt ttgggaactg gcattactgg aactaatggt tttaacctcc 1800 ttaaccacca gcatccctcc tctccccaag gtgaagtgga gggtgctgtg 1850 gtgagctggc cactccagag ctgcagtgcc actggaggag tcagactacc 1900 atgacatcgt agggaaggag gggagatttt tttgtagttt ttaattgggg 1950 tgtgggaggg gcggggaggt tttctataaa ctgtatcatt ttctgctgag 2000 ggtggagtgt cccatccttt taatcaaggt gattgtgatt ttgactaata 2050 aaaaaaaaa aaaaaaaaaa aaaaaaaa aaaaaa 2136

```
<210> 303
<211> 247
<212> PRT
<213> Homo sapiens
<400> 303
Met Gly Ala Ala Val Phe Phe Gly Cys Thr Phe Val Ala Phe Gly
Pro Ala Phe Ala Leu Phe Leu Ile Thr Val Ala Gly Asp Pro Leu
Arg Val Ile Ile Leu Val Ala Gly Ala Phe Phe Trp Leu Val Ser
Leu Leu Leu Ala Ser Val Val Trp Phe Ile Leu Val His Val Thr
Asp Arg Ser Asp Ala Arg Leu Gln Tyr Gly Leu Leu Ile Phe Gly
Ala Ala Val Ser Val Leu Leu Gln Glu Val Phe Arg Phe Ala Tyr
 Tyr Lys Leu Leu Lys Lys Ala Asp Glu Gly Leu Ala Ser Leu Ser
 Glu Asp Gly Arg Ser Pro Ile Ser Ile Arg Gln Met Ala Tyr Val
                                     115
 Ser Gly Leu Ser Phe Gly Ile Ile Ser Gly Val Phe Ser Val Ile
                 125
                                     130
 Asn Ile Leu Ala Asp Ala Leu Gly Pro Gly Val Val Gly Ile His
 Gly Asp Ser Pro Tyr Tyr Phe Leu Thr Ser Ala Phe Leu Thr Ala
                                     160
 Ala Ile Ile Leu Leu His Thr Phe Trp Gly Val Val Phe Phe Asp
                 170
 Ala Cys Glu Arg Arg Tyr Trp Ala Leu Gly Leu Val Val Gly
 Ser His Leu Leu Thr Ser Gly Leu Thr Phe Leu Asn Pro Trp Tyr
                 200
                                     205
 Glu Ala Ser Leu Leu Pro Ile Tyr Ala Val Thr Val Ser Met Gly
 Leu Trp Ala Phe Ile Thr Ala Gly Gly Ser Leu Arg Ser Ile Gln
                 230
                                     235
Arg Ser Leu Leu Cys Lys Asp
                 245
<210> 304
<211> 240
<212> DNA
```

<213> Homo sapiens

<220>

```
<221> unsure
<222> 108, 123, 126, 154, 198, 206, 217
<223> unknown base
<400> 304
aagctggttt aaggaagcag aggagggtta gattcgttga gtgaggacgg 50
aagatcaacc catttccatt ccgccagatg gcctatgttt ctggtctctc 100
ccttcggnat catcagtggt gtnttntctg ttatcaatat tttggctgat 150
gcanttgggc caggtgtggt tgggatccat ggagactcac cctattantt 200
cctganttca gcctttntga cagcagccat tatcctgctc 240
<210> 305
<211> 378
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 58, 94, 132, 186, 191, 220, 240, 248, 280, 311, 332
<223> unknown base
<400> 305
gaccgaccgt tcagatgccc ggttccagta cggcttcctg atttttggtg 50
ctgctgtntc tgtccttcta caggaggtgt tccgctttgc ctantacaag 100
ctgcttaaga aggcagatga ggggttagca tngctgagtg aggacggaag 150
atcacccatt tccatccgcc agatggccta tgtttntggt ntttccttcg 200
 gtatcatcag tggtgttttn tctgttatca atattttggn tgatgcantt 250
 gggccaggtg tggttgggat ccatggagan tcaccctatt aattcctgaa 300
 ttcagccttt ntgacagcag ccattatcct gntccatacc ttttggggag 350
ttgtgttttt tgatgcctgt gagaggag 378
<210> 306
<211> 655
<212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> 1, 22, 129, 133, 184
<223> unknown base
<400> 306
ngttggagaa gtggcgcgga cnttcatttg gggtttcggt ttcccccctt 50
tecettteee eggggtetgg ggtgacattg caegggeece tegtggggte 100
 gegttgecac eccaegegga etceceagnt ggngegeeet teccatttge 150
 ctgtcctggt caggccccca cccccttcc cacntgacca gccatggggg 200
 ctgeggtgtt ttteggetge actttegteg egtteggeee ggeettegeg 250
```

cttttcttga tcactgtggc tggggacccg cttcgcgtta tcatcctggt 300 cgcaggggca tttttctggc tggtctccct gctcctggcc tctgtggtct 350 ggttcatctt ggtccatgtg accgaccggt cagatgcccg gctccagtac 400 ggcctcctga tttttggtgc tgctgtctct gtccttctac aggaggtgtt 450 ccgctttgcc tactacaagc tgcttaagaa ggcagatgag gggttagcat 500 cgctgagtga ggacggaaga tcacccatct ccatccgcca gatggcctat 550 gtttctggtc tctccttcgg tatcatcagt ggtgtcttct ctgttatcaa 600 tattttggct gatgcacttg ggccaggtgt ggttgggatc catggagact 650 caccc 655 <210> 307 <211> 650 <212> DNA <213> Homo sapiens <223> unknown base

<220> <221> unsure <222> 52, 89, 128

<400> 307 gtaaaagaaa gtggccggac cttcattggg gtttcggttc ccccctttcc 50 cnttccccgg ggtctggggg tgacattgca ccgcgcccnt cgtggggtcg 100 cgttgccacc ccacgeggac tecccagntg gegegeeect eccatttgcc 150 tgtcctggtc aggccccac ccccttccc acctgaccag ccatgggggc 200 tgcggtgttt ttcgggctgc actttcgtcg cgttcgggcc cggccttcgc 250 gcttttcttg atcactgtgg ctggggaccc gcttcgcgtt atcatcctgg 300 tcgcaggggc atttttctgg ctggtctccc tgctcctggc ctctgtggtc 350 tggttcatct tggtccatgt gaccgaccgg tcagatgccc ggctccagta 400 cggcctcctg attittggtg ctgctgtctc tgtccttcta caggaggtgt 450 tccgctttgc ctactacaag ctgcttaaga aggcagatga ggggttagca 500 tegetgagtg aggaeggaag atcacceate tecateegee agatggeeta 550 tgtttctggt ctctccttcg gtatcatcag tggtgtcttc tctgttatca 600 atattttggc tgatgcactt gggccaggtg tggttgggat ccatggagac 650

<210> 308 <211> 1570 <212> DNA <213> Homo sapiens

<400> 308 gccccaggga gcagtgggtg gttataactc aggcccggtg cccagagccc 50

<211> 293

<212> PRT

<213> Homo sapiens

<400> 309

Met Ala Thr Ala Arg Pro Pro Trp Met Trp Val Leu Cys Ala Leu
1 5 10 15

Ile Thr Ala Leu Leu Gly Val Thr Glu His Val Leu Ala Asn 20 25 30

Asn Asp Val Ser Cys Asp His Pro Ser Asn Thr Val Pro Ser Gly
35
40

Ser Asn Gln Asp Leu Gly Ala Gly Ala Gly Glu Asp Ala Arg Ser 50 55 60

Asp Asp Ser Ser Ser Arg Ile Ile Asn Gly Ser Asp Cys Asp Met 65 70 75

His Thr Gln Pro Trp Gln Ala Ala Leu Leu Leu Arg Pro Asn Gln 80 85 90

Leu Tyr Cys Gly Ala Val Leu Val His Pro Gln Trp Leu Leu Thr 95 100 105

Ala Ala His Cys Arg Lys Lys Val Phe Arg Val Arg Leu Gly His
110 115

Tyr Ser Leu Ser Pro Val Tyr Glu Ser Gly Gln Gln Met Phe Gln 125 130 135

Gly Val Lys Ser Ile Pro His Pro Gly Tyr Ser His Pro Gly His 140 145 150

Ser Asn Asp Leu Met Leu Ile Lys Leu Asn Arg Arg Ile Arg Pro 155 160 165

Thr Lys Asp Val Arg Pro Ile Asn Val Ser Ser His Cys Pro Ser 170 175 180

Ala Gly Thr Lys Cys Leu Val Ser Gly Trp Gly Thr Thr Lys Ser 185 190

Pro Gln Val His Phe Pro Lys Val Leu Gln Cys Leu Asn Ile Ser 200 205 210

Val Leu Ser Gln Lys Arg Cys Glu Asp Ala Tyr Pro Arg Gln Ile 215 220 225

Asp Asp Thr Met Phe Cys Ala Gly Asp Lys Ala Gly Arg Asp Ser 230 235 240

Cys Gln Gly Asp Ser Gly Gly Pro Val Val Cys Asn Gly Ser Leu 245 250 255

Gln Gly Leu Val Ser Trp Gly Asp Tyr Pro Cys Ala Arg Pro Asn 260 265 270

Arg Pro Gly Val Tyr Thr Asn Leu Cys Lys Phe Thr Lys Trp Ile 275 280 285

Gln Glu Thr Ile Gln Ala Asn Ser

```
<210> 310
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 310
tcctgtgacc accctctaa cacc 24
<210> 311
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 311
ctggaacatc tgctgcccag attc 24
<210> 312
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 312
gtcggatgac agcagcagcc gcatcatcaa tggatccgac tgcgatatgc 50
<210> 313
<211> 3010
<212> DNA
<213> Homo sapiens
<400> 313
atggtcaacg accggtggaa gaccatgggc ggcgctgccc aacttgagga 50
ccggccgcgc gacaagccgc agcggccgag ctgcggctac gtgctgtgca 100
ccgtgctgct ggccctggct gtgctgctgg ctgtagctgt caccggtgcc 150
gtgctcttcc tgaaccacgc ccacgcgccg ggcacggcgc ccccacctgt 200
cgtcagcact ggggctgcca gcgccaacag cgccctggtc actgtggaaa 250
gggcggacag ctcgcacctc agcatcctca ttgacccgcg ctgccccgac 300
ctcaccgaca gcttcgcacg cctggagagc gcccaggcct cggtgctgca 350
ggcgctgaca gagcaccagg cccagccacg gctggtgggc gaccaggagc 400
aggagetget ggacaegetg geegaeeage tgeeeegget getggeeega 450
gcctcagagc tgcagacgga gtgcatgggg ctgcggaagg ggcatggcac 500
gctgggccag ggcctcagcg ccctgcagag tgagcagggc cgcctcatcc 550
```

agettetete tgagageeag ggeeacatgg eteacetggt gaacteegte 600 agcgacatec tggatgeect geagagggae egggggetgg geeggeeeeg 650 caacaaggee gaeetteaga gagegeetge eeggggaaee eggeeeeggg 700 gctgtgccac tggctcccgg ccccgagact gtctggacgt cctcctaagc 750 ggacagcagg acgatggcgt ctactctgtc tttcccaccc actacccggc 800 cggcttccag gtgtactgtg acatgcgcac ggacggcggc ggctggacgg 850 tgtttcagcg ccgggaggac ggctccgtga acttcttccg gggctgggac 900 gcgtaccgag acggctttgg caggctcacc ggggagcact ggctagggct 950 caagaggatc cacgccctga ccacacaggc tgcctacgag ctgcacgtgg 1000 acctggagga ctttgagaat ggcacggcct atgcccgcta cgggagcttc 1050 ggcgtgggct tgttctccgt ggaccctgag gaagacgggt acccgctcac 1100 cgtggctgac tattccggca ctgcaggcga ctccctcctg aagcacagcg 1150 gcatgaggtt caccaccaag gaccgtgaca gcgaccattc agagaacaac 1200 tgtgccgcct tctaccgcgg tgcctggtgg taccgcaact gccacacgtc 1250 caaceteaat gggcagtace tgcgcggtgc gcacgcetec tatgccgacg 1300 gcgtggagtg gtcctcctgg accggctggc agtactcact caagttctct 1350 gagatgaaga teeggeeggt eegggaggae egetagaetg gtgeaeettg 1400 teettggeee tgetggteee tgtegeeeea teeeegaeee caecteaete 1450 tttcgtgaat gttctccacc cacctgtgcc tggcggaccc actctccagt 1500 agggaggggc cgggccatcc ctgacacgaa gctccctggg ccggtgaagt 1550 cacacatege ettetegeeg tecceaecee etceatttgg cageteaetg 1600 atctcttgcc tctgctgatg ggggctggca aacttgacga ccccaactcc 1650 tgcctgcccc cactgtgact ccggtgctgt ttgccgtccc ctggccagga 1700 tggtggagtc tgccccaggc accetetgce etgcccggcc aaatacccgg 1750 cattatgggg acagagaca gggggcagac agcacccctg gagtcctcct 1800 agcagategt ggggaatgte aggtetetet gaggteaggt etgaggeeag 1850 tatectecag ceeteceaat gecaaceeec acceegttte eetggtgeec 1900 agagaaccca cctctccccc aagggcctca gcctggctgt gggctgggtg 1950 gccccatcct accaggccct gaggtcagga tggggagctg ctgcctttgg 2000 ggacccacgc tccaaggctg agaccagttc cctggaggcc acccaccctg 2050 tgccccggca ggcctggggt ctgcagtcct cttacctgct gtgcccacct 2100 gctctctgtc tcaaatgagg cccaacccat ccccaccca gctcccggcc 2150

gtcctcctac ctggggcagc cggggctgcc atcccatttc tcctgcctct 2200 ggaaggtggg tggggccctg caccgtgggg ctggactgcg ctaatgggaa 2250 gctcttggtt ttctgggctg gggcctaggc agggctggga tqaggcttqt 2300 acaaccccca ccaccaattt cccagggact ccagggtcct gaggcctccc 2350 aggagggcct tgggggtgat gaccccttcc ctgaggtggc tqtctccatq 2400 ccggcccggc gagtggtcaa gggacaggga ccacctcacc gggcaaatgg 2500 ggtcgggggg actggggcac cagaccaggc accacctgga cactttcttq 2550 ttgaatcctc ccaacaccca gcacgctgtc atccccactc cttgtgtgca 2600 cacatgcaga ggtgagaccc gcaggctccc aggaccagca gccacaaggg 2650 cagggctgga gccgggtcct cagctgtctg ctcagcagcc ctggacccgc 2700 gtgcgttacg tcaggcccag atgcagggcg gcttttccaa ggcctcctga 2750 tgggggcctc cgaaagggct ggagtcagcc ttggggagct gcctagcagc 2800 ctctcctcgg gcaggagggg aggtggcttc ctccaaagga cacccgatgg 2850 caggtgccta gggggtgtgg ggttccgttc tcccttcccc tcccactgaa 2900 gtttgtgctt aaaaaacaat aaatttgact tggcaccact gggggttggt 2950 gggagaggcc gtgtgacctg gctctctgtc ccagtgccac caggtcatcc 3000 acatgcgcag 3010

<210> 314

<211> 461

<212> PRT

<213> Homo sapiens

<400> 314

Met Val Asn Asp Arg Trp Lys Thr Met Gly Gly Ala Ala Gln Leu 1 5 10 15

Glu Asp Arg Pro Arg Asp Lys Pro Gln Arg Pro Ser Cys Gly Tyr
20 25 30

Val Leu Cys Thr Val Leu Leu Ala Leu Ala Val Leu Leu Ala Val
35 40

Ala Val Thr Gly Ala Val Leu Phe Leu Asn His Ala His Ala Pro 50 55 60

Gly Thr Ala Pro Pro Pro Val Val Ser Thr Gly Ala Ala Ser Ala 65 70 75

Asn Ser Ala Leu Val Thr Val Glu Arg Ala Asp Ser Ser His Leu 80 85 90

Ser Ile Leu Ile Asp Pro Arg Cys Pro Asp Leu Thr Asp Ser Phe 95 100 105

Ala Arg Leu Glu Ser Ala Gln Ala Ser Val Leu Gln Ala Leu Thr 110 115 Glu His Gln Ala Gln Pro Arg Leu Val Gly Asp Gln Glu Gln Glu Leu Leu Asp Thr Leu Ala Asp Gln Leu Pro Arg Leu Leu Ala Arg Ala Ser Glu Leu Gln Thr Glu Cys Met Gly Leu Arg Lys Gly His 160 Gly Thr Leu Gly Gln Gly Leu Ser Ala Leu Gln Ser Glu Gln Gly Arg Leu Ile Gln Leu Leu Ser Glu Ser Gln Gly His Met Ala His 185 Leu Val Asn Ser Val Ser Asp Ile Leu Asp Ala Leu Gln Arg Asp 205 Arg Gly Leu Gly Arg Pro Arg Asn Lys Ala Asp Leu Gln Arg Ala Pro Ala Arg Gly Thr Arg Pro Arg Gly Cys Ala Thr Gly Ser Arg 230 235 Pro Arg Asp Cys Leu Asp Val Leu Leu Ser Gly Gln Gln Asp Asp 250 Gly Val Tyr Ser Val Phe Pro Thr His Tyr Pro Ala Gly Phe Gln Val Tyr Cys Asp Met Arg Thr Asp Gly Gly Gly Trp Thr Val Phe 275 Gln Arg Arg Glu Asp Gly Ser Val Asn Phe Phe Arg Gly Trp Asp 295 Ala Tyr Arg Asp Gly Phe Gly Arg Leu Thr Gly Glu His Trp Leu 310 Gly Leu Lys Arg Ile His Ala Leu Thr Thr Gln Ala Ala Tyr Glu Leu His Val Asp Leu Glu Asp Phe Glu Asn Gly Thr Ala Tyr Ala 340 Arg Tyr Gly Ser Phe Gly Val Gly Leu Phe Ser Val Asp Pro Glu Glu Asp Gly Tyr Pro Leu Thr Val Ala Asp Tyr Ser Gly Thr Ala Gly Asp Ser Leu Leu Lys His Ser Gly Met Arg Phe Thr Thr Lys 380 390 Asp Arg Asp Ser Asp His Ser Glu Asn Asn Cys Ala Ala Phe Tyr 400 Arg Gly Ala Trp Trp Tyr Arg Asn Cys His Thr Ser Asn Leu Asn 410

```
Gly Gln Tyr Leu Arg Gly Ala His Ala Ser Tyr Ala Asp Gly Val
Glu Trp Ser Ser Trp Thr Gly Trp Gln Tyr Ser Leu Lys Phe Ser
                 440
                                      445
Glu Met Lys Ile Arg Pro Val Arg Glu Asp Arg
<210> 315
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 315
cacacgtcca acctcaatgg gcag 24
<210> 316
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probė
<400> 316
gaccagcagg gccaaggaca agg 23
<210> 317
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 317
gttctctgag atgaagatcc ggccggtccg ggagtaccgc ttag 44
<210> 318
<211> 1841
<212> DNA
<213> Homo sapiens
<400> 318
 gcagtcagag acttcccctg cccctcgctg ggaaagaaca ttaggaatgc 50
 cttttagtgc cttgcttcct gaactagetc acagtagecc ggcggcccag 100
 ggcaatccga ccacatttca ctctcaccgc tgtaggaatc cagatgcagg 150
 ccaagtacag cagcacgagg gacatgctgg atgatgatgg ggacaccacc 200
 atgagectge atteteaage etetgecaea acteggeate cagageceeg 250
 gcgcacagag cacagggctc cctcttcaac gtggcgacca gtggccctga 300
 ccctgctgac tttgtgcttg gtgctgctga tagggctggc agccctgggg 350
```

cttttgtttt ttcagtacta ccagctctcc aatactggtc aagacaccat 400

ttctcaaatg gaagaaagat taggaaatac gtcccaagag ttgcaatctc 450 ttcaagtcca gaatataaag cttgcaggaa gtctgcagca tgtggctgaa 500 aaactctgtc gtgagctgta taacaaagct ggagcacaca ggtgcagccc 550 ttgtacagaa caatggaaat ggcatggaga caattgctac cagttctata 600 aagacagcaa aagttgggag gactgtaaat atttctgcct tagtgaaaac 650 tctaccatgc tgaagataaa caaacaagaa gacctggaat ttgccgcgtc 700 tcagagctac tctgagtttt tctactctta ttggacaggg cttttgcgcc 750 ctgacagtgg caaggcctgg ctgtggatgg atggaacccc tttcacttct 800 gaactgttcc atattataat agatgtcacc agcccaagaa gcagagactg 850 tgtggccatc ctcaatggga tgatcttctc aaaggactgc aaagaattga 900 agcgttgtgt ctgtgagaga agggcaggaa tggtgaagcc agagagcctc 950 catgtccccc ctgaaacatt aggcgaaggt gactgattcg ccctctgcaa 1000 ctacaaatag cagagtgagc caggcggtgc caaagcaagg gctagttgag 1050 acattgggaa atggaacata atcaggaaag actatctctc tgactagtac 1100 aaaatgggtt ctcgtgtttc ctgttcagga tcaccagcat ttctgagctt 1150 gggtttatgc acgtatttaa cagtcacaag aagtcttatt tacatgccac 1200 caaccaacct cagaaaccca taatgtcatc tgccttcttg gcttagagat 1250 aacttttagc tctctttctt ctcaatgtct aatatcacct ccctgttttc 1300 atgtcttcct tacacttggt ggaataagaa actttttgaa gtagaggaaa 1350 tacattgagg taacatcctt ttctctgaca gtcaagtagt ccatcagaaa 1400 ttggcagtca cttcccagat tgtaccagca aatacacaag gaattctttt 1450 tgtttgtttc agttcatact agtcccttcc caatccatca gtaaagaccc 1500 catctgcctt gtccatgccg tttcccaaca gggatgtcac ttgatatgag 1550 aatctcaaat ctcaatgcct tataagcatt ccttcctgtg tccattaaga 1600 ctctgataat tgtctcccct ccataggaat ttctcccagg aaagaaatat 1650 atccccatct ccgtttcata tcagaactac cgtccccgat attcccttca 1700 gagagattaa agaccagaaa aaagtgagcc tcttcatctg cacctgtaat 1750 agtttcagtt cctattttct tccattgacc catatttata cctttcaggt 1800 actgaagatt taataataat aaatgtaaat actgtgaaaa a 1841

<210> 319

<211> 280

<212> PRT

<213> Homo sapiens

<400> 319 Met Gln Ala Lys Tyr Ser Ser Thr Arg Asp Met Leu Asp Asp Gly Asp Thr Thr Met Ser Leu His Ser Gln Ala Ser Ala Thr Thr Arg His Pro Glu Pro Arg Arg Thr Glu His Arg Ala Pro Ser Ser Thr Trp Arg Pro Val Ala Leu Thr Leu Leu Thr Leu Cys Leu Val Leu Leu Ile Gly Leu Ala Ala Leu Gly Leu Leu Phe Phe Gln Tyr Tyr Gln Leu Ser Asn Thr Gly Gln Asp Thr Ile Ser Gln Met Glu 85 Glu Arg Leu Gly Asn Thr Ser Gln Glu Leu Gln Ser Leu Gln Val Gln Asn Ile Lys Leu Ala Gly Ser Leu Gln His Val Ala Glu Lys Leu Cys Arg Glu Leu Tyr Asn Lys Ala Gly Ala His Arg Cys Ser Pro Cys Thr Glu Gln Trp Lys Trp His Gly Asp Asn Cys Tyr Gln Phe Tyr Lys Asp Ser Lys Ser Trp Glu Asp Cys Lys Tyr Phe Cys 155 Leu Ser Glu Asn Ser Thr Met Leu Lys Ile Asn Lys Gln Glu Asp 170 175 Leu Glu Phe Ala Ala Ser Gln Ser Tyr Ser Glu Phe Phe Tyr Ser 185 Tyr Trp Thr Gly Leu Leu Arg Pro Asp Ser Gly Lys Ala Trp Leu 200 Trp Met Asp Gly Thr Pro Phe Thr Ser Glu Leu Phe His Ile Ile 220 Ile Asp Val Thr Ser Pro Arg Ser Arg Asp Cys Val Ala Ile Leu Asn Gly Met Ile Phe Ser Lys Asp Cys Lys Glu Leu Lys Arg Cys Val Cys Glu Arg Arg Ala Gly Met Val Lys Pro Glu Ser Leu His 265 Val Pro Pro Glu Thr Leu Gly Glu Gly Asp <210> 320

<211> 468

<212> DNA

<213> Homo sapiens

```
<220>
<221> unsure
<222> 59, 95, 149, 331, 364, 438, 446
<223> unknown base
<400> 320
aattttcacc gctgtaggaa tccagatgca ggccaagtac agcagcacga 50
gggacatgnt ggatgatgat gggacaccac catgagcctg cattntcaag 100
cttttgccac aattcggcat ccagagcccc ggcgcacaga gcacagggnt 150
cctttttcaa cgtggcgacc agtggccctg accctgctga ctttgtgctt 200
ggtgctgctg atagggctgg cagccctggg gcttttgttt tttcagtact 250
accagetete caatactggt caagacacca ttteteaaat ggaagaaaga 300
 ttaggaaata cgtcccaaga gttgcaattt nttcaagtcc agaatataaa 350
 gcttgcagga agtntgcagc atgtggctga aaaactctgt cgtgagctgt 400
 ataacaaagc tggaggaact ttgaaggagg gcaaagtntc ctcatntact 450
 atacacaca cacttccc 468
<210> 321
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 321
atgcaggcca agtacagcag cac 23
<210> 322
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 322
catgctgacg acttcctgca agc 23
<210> 323
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 323
ccacacagtc tctgcttctt ggg 23
<210> 324
<211> 40
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 324
atgctggatg atgatgggga caccaccatg agcctgcatt 40
<210> 325
<211> 2988
<212> DNA
<213> Homo sapiens
<400> 325
gccgagcgca agaaccctgc gcagcccaga gcagctgctg gaggggaatc 50
gaggcgcggc tccggggatt cggctcgggc cgctggctct gctctgcggg 100
gagggagcgg gcccgccgc ggggcccgag ccctccggat ccgcccctc 150
eccggteecg ecceetegga gaeteetetg getgetetgg gggttegeeg 200
gggccgggga cccgcggtcc gggcgccatg cgggcatcgc tgctgctgtc 250
ggtgctgcgg cccgcagggc ccgtggccgt gggcatctcc ctgggcttca 300
ccctgagcct gctcagcgtc acctgggtgg aggagccgtg cggcccaggc 350
ccgccccaac ctggagactc tgagctgccg ccgcgcggca acaccaacgc 400
ggcgcgccgg cccaactcgg tgcagcccgg agcggagcgc gagaagcccg 450
gggccggcga aggcgccggg gagaattggg agccgcgcgt cttgccctac 500
caccctgcac agcccggcca ggccgccaaa aaggccgtca ggacccgcta 550
catcagcacg gagctgggca tcaggcagag gctgctggtg gcggtgctga 600
cctctcagac cacgctgccc acgctgggcg tggccgtgaa ccgcacgctg 650
gggcaccggc tggagcgtgt ggtgttcctg acgggcgcac ggggccgccg 700
ggccccacct ggcatggcag tggtgacgct gggcgaggag cgacccattg 750
gacacctgca cctggcgctg cgccacctgc tggagcagca cggcgacgac 800
tttgactggt tcttcctggt gcctgacacc acctacaccg aggcgcacgg 850
cctggcacgc ctaactggcc acctcagcct ggcctccgcc gcccacctgt 900
acctgggccg gccccaggac ttcatcggcg gagagcccac ccccggccgc 950
tactgccacg gaggctttgg ggtgctgctg tcgcgcatgc tgctgcaaca 1000
actgcgcccc cacctggaag gctgccgcaa cgacatcgtc agtgcgcgcc 1050
ctgacgagtg gctgggtcgc tgcattctcg atgccaccgg ggtgggctgc 1100
actggtgacc acgagggggt gcactatagc catctggagc tgagccctgg 1150
ggagccagtg caggagggg accctcattt ccgaagtgcc ctgacagccc 1200
accetgtgcg tgaccetgtg cacatgtace agetgcacaa agetttegee 1250
cgagctgaac tggaacgcac gtaccaggag atccaggagt tacagtggga 1300
```

gatccagaat accagccatc tggccgttga tggggaccgg gcagctgctt 1350 ggcccgtggg tattccagca ccatcccgcc cggcctcccg ctttgaggtg 1400 ctgcgctggg actacttcac ggagcagcac gctttctcct gcgccgatgg 1450 ctcaccccgc tgcccactgc gtggggctga ccgggctgat gtggccgatg 1500 ttctggggac agctctagag gagctgaacc gccgctacca cccggccttg 1550 cggctccaga agcagcagct ggtgaatggc taccgacgct ttgatccggc 1600 ccggggtatg gaatacacgc tggacttgca gctggaggca ctgaccccc 1650 agggaggccg ccggccctc actcgccgag tgcagctgct ccggccgctg 1700 agccgcgtgg agatcttgcc tgtgccctat gtcactgagg cctcacgtct 1750 cactgtgctg ctgcctctag ctgcggctga gcgtgacctg gcccctggct 1800 tettggagge etttgeeact geageactgg ageetggtga tgetgeggea 1850 gccctgaccc tgctgctact gtatgagccg cgccaggccc agcgcgtggc 1900 ccatgcagat gtcttcgcac ctgtcaaggc ccacgtggca gagctggagc 1950 ggcgtttccc cggtgcccgg gtgccatggc tcagtgtgca gacagccgca 2000 ccctcaccac tgcgcctcat ggatctactc tccaagaagc acccgctgga 2050 cacactgttc ctgctggccg ggccagacac ggtgctcacg cctgacttcc 2100 tgaaccgctg ccgcatgcat gccatctccg gctggcaggc cttctttccc 2150 atgcatttcc aagcettcca cccaggtgtg gccccaccac aagggcctgg 2200 gcccccagag ctgggccgtg acactggccg ctttgatcgc caggcagcca 2250 gcgaggcctg cttctacaac tccgactacg tggcagcccg tgggcgcctg 2300 gcggcagcct cagaacaaga agaggagctg ctggagagcc tggatgtgta 2350 cgagctgttc ctccacttct ccagtctgca tgtgctgcgg gcggtggagc 2400 cggcgctgct gcagcgctac cgggcccaga cgtgcagcgc gaggctcagt 2450 gaggacctgt accaccgctg cctccagagc gtgcttgagg gcctcggctc 2500 ccgaacccag ctggccatgc tactctttga acaggagcag ggcaacagca 2550 acttctcccc caaaaccaga gccacctgcc agcctcgctg ggcagggctg 2650 gccgtagcca gaccccaage tggcccactg gtcccctctc tggctctgtg 2700 ggtccctggg ctctggacaa gcactggggg acgtgccccc agagccaccc 2750 actteteate ccaaacceag tttecetgee ecetgacget getgattegg 2800 gctgtggcct ccacgtattt atgcagtaca gtctgcctga cgccagccct 2850 gcctctgggc cctgggggct gggctgtaga agagttgttg gggaaggagg 2900

gagctgagga gggggcatct cccaacttct cccttttgga ccctgccgaa 2950 gctccctgcc tttaataaac tggccaagtg tggaaaaa 2988

<210> 326

<211> 775

<212> PRT

<213> Homo sapiens

<400> 326

Met Arg Ala Ser Leu Leu Leu Ser Val Leu Arg Pro Ala Gly Pro 1 5 10 15

Val Ala Val Gly Ile Ser Leu Gly Phe Thr Leu Ser Leu Leu Ser 20 25 30

Val Thr Trp Val Glu Glu Pro Cys Gly Pro Gly Pro Pro Gln Pro 35 40 45

Gly Asp Ser Glu Leu Pro Pro Arg Gly Asn Thr Asn Ala Ala Arg
50 55 60

Arg Pro Asn Ser Val Gln Pro Gly Ala Glu Arg Glu Lys Pro Gly 65 70 75

Ala Gly Glu Gly Ala Gly Glu Asn Trp Glu Pro Arg Val Leu Pro 80 85 90

Tyr His Pro Ala Gln Pro Gly Gln Ala Ala Lys Lys Ala Val Arg 95 100 105

Thr Arg Tyr Ile Ser Thr Glu Leu Gly Ile Arg Gln Arg Leu Leu 110 115 120

Val Ala Val Leu Thr Ser Gln Thr Thr Leu Pro Thr Leu Gly Val 125 130 135

Ala Val Asn Arg Thr Leu Gly His Arg Leu Glu Arg Val Val Phe 140 145 150

Leu Thr Gly Ala Arg Gly Arg Arg Ala Pro Pro Gly Met Ala Val 155 160 165

Val Thr Leu Gly Glu Glu Arg Pro Ile Gly His Leu His Leu Ala 170 175 180

Leu Arg His Leu Leu Glu Gln His Gly Asp Asp Phe Asp Trp Phe 185 190 195

Phe Leu Val Pro Asp Thr Thr Tyr Thr Glu Ala His Gly Leu Ala 200 205 210

Arg Leu Thr Gly His Leu Ser Leu Ala Ser Ala Ala His Leu Tyr 215 220 225

Leu Gly Arg Pro Gln Asp Phe Ile Gly Glu Pro Thr Pro Gly 230 235 240

Arg Tyr Cys His Gly Gly Phe Gly Val Leu Leu Ser Arg Met Leu 245 250 255

Leu Gln Gln Leu Arg Pro His Leu Glu Gly Cys Arg Asn Asp Ile 260 265 270

Val Ser Ala Arg Pro Asp Glu Trp Leu Gly Arg Cys Ile Leu Asp Ala Thr Gly Val Gly Cys Thr Gly Asp His Glu Gly Val His Tyr Ser His Leu Glu Leu Ser Pro Gly Glu Pro Val Gln Glu Gly Asp 305 Pro His Phe Arg Ser Ala Leu Thr Ala His Pro Val Arg Asp Pro 330 Val His Met Tyr Gln Leu His Lys Ala Phe Ala Arg Ala Glu Leu Glu Arg Thr Tyr Gln Glu Ile Gln Glu Leu Gln Trp Glu Ile Gln 350 Asn Thr Ser His Leu Ala Val Asp Gly Asp Arg Ala Ala Trp 365 370 375 Pro Val Gly Ile Pro Ala Pro Ser Arg Pro Ala Ser Arg Phe Glu 385 Val Leu Arg Trp Asp Tyr Phe Thr Glu Gln His Ala Phe Ser Cys 395 Ala Asp Gly Ser Pro Arg Cys Pro Leu Arg Gly Ala Asp Arg Ala 415 Asp Val Ala Asp Val Leu Gly Thr Ala Leu Glu Glu Leu Asn Arg Arg Tyr His Pro Ala Leu Arg Leu Gln Lys Gln Gln Leu Val Asn 440 Gly Tyr Arg Arg Phe Asp Pro Ala Arg Gly Met Glu Tyr Thr Leu 460 Asp Leu Gln Leu Glu Ala Leu Thr Pro Gln Gly Gly Arg Arg Pro 470 Leu Thr Arg Arg Val Gln Leu Leu Arg Pro Leu Ser Arg Val Glu 485 Ile Leu Pro Val Pro Tyr Val Thr Glu Ala Ser Arg Leu Thr Val 505 510 Leu Leu Pro Leu Ala Ala Glu Arg Asp Leu Ala Pro Gly Phe Leu Glu Ala Phe Ala Thr Ala Ala Leu Glu Pro Gly Asp Ala Ala 530 535 Ala Ala Leu Thr Leu Leu Leu Tyr Glu Pro Arg Gln Ala Gln 545 550 Arg Val Ala His Ala Asp Val Phe Ala Pro Val Lys Ala His Val 565 Ala Glu Leu Glu Arg Arg Phe Pro Gly Ala Arg Val Pro Trp Leu 575 580

Ser Val Gln Thr Ala Ala Pro Ser Pro Leu Arg Leu Met Asp Leu 590 Leu Ser Lys Lys His Pro Leu Asp Thr Leu Phe Leu Leu Ala Gly Pro Asp Thr Val Leu Thr Pro Asp Phe Leu Asn Arg Cys Arg Met His Ala Ile Ser Gly Trp Gln Ala Phe Phe Pro Met His Phe Gln Ala Phe His Pro Gly Val Ala Pro Pro Gln Gly Pro Gly Pro Pro Glu Leu Gly Arg Asp Thr Gly Arg Phe Asp Arg Gln Ala Ala Ser 665 Glu Ala Cys Phe Tyr Asn Ser Asp Tyr Val Ala Ala Arg Gly Arg 690 Leu Ala Ala Ser Glu Gln Glu Glu Glu Leu Leu Glu Ser Leu Asp Val Tyr Glu Leu Phe Leu His Phe Ser Ser Leu His Val Leu 710 Arg Ala Val Glu Pro Ala Leu Leu Gln Arg Tyr Arg Ala Gln Thr 730 Cys Ser Ala Arg Leu Ser Glu Asp Leu Tyr His Arg Cys Leu Gln Ser Val Leu Glu Gly Leu Gly Ser Arg Thr Gln Leu Ala Met Leu 755 Leu Phe Glu Gln Glu Gln Gly Asn Ser Thr <210> 327 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 327 tggaaggctg ccgcaacgac aatc 24 <210> 328 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe

<210> 329 <211> 20

<400> 328

ctgatgtggc cgatgttctg 20

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 329
 atggctcagt gtgcagacag 20
<210> 330
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 330
 gcatgctgct ccgtgaagta gtcc 24
<210> 331
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 331
atgcatggga aagaaggcct gccc 24
<210> 332
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 332
tgcactggtg accacgaggg ggtgcactat agccatctgg agctgag 47
<210> 333
<211> 1095
<212> DNA
<213> Homo sapiens
<400> 333
 gctctggccg gccccggcga ttggtcaccg cccgctaggg gacaqccctg 50
gcctcctctg attggcaagc gctggccacc tccccacacc ccttgcgaac 100
gctcccctag tggagaaaag gagtagctat tagccaattc ggcagggccc 150
gctttttaga agcttgattt cctttgaaga tgaaagacta gcggaagctc 200
tgcctctttc cccagtgggc gagggaactc ggggcgattg gctgggaact 250
gtatccaccc aaatgtcacc gatttcttcc tatgcaggaa atgagcagac 300
ccatcaataa gaaatttctc agcctggccg aaaatggttg gccccacgaa 350
gccacgacaa ctggaggcaa agagggttgc tcaacgcccc gcctcattgg 400
```

aaaaccaaat cagatetggg acctatatag egtggeggag geggggegat 450 gattgteege etecgacea etgeagetge geacagtege atttettee 500 eegeceetga gaccetgeag eaccatetgt eatggegget gggetgtttg 550 gtttgagege tegeegtett ttggeggeag eggegaegeg agggeteeeg 600 geegeeegg teegetggga atetagette teeaggaetg tggtegeee 650 gteegetgtg gegggaaage ggeeeecaga accgaceae eeggggaage 700 aggaeceaga accegaggae gaaaacttgt atgagaagaa eccagaetee 750 eatggtatg acaaggaee egtttggae gtetggaaca tgegaettgt 800 ettettett ggegteteea teateetggt eettggaaea tgegaettgg 850 eetatetgee tgactacaag accaagaage ggeeaatgge etteceatea tggaateeaa 950 etgettegae eccageage eetagaege etteceatea tggaateeaa 950 etgettegae eccagaage teeagaege eccageage ectgeeege ectgeeatee 1050 etgacetete teaagaage accgeettee ecaceeetg ectgeeatee 1050 etgacetette teaagaage accgeettee ecaceeetg ectgeeatee 1050 etgacetette teaagaege taataaagg ggetgaaagt etgaa 1095

<210> 334 <211> 153

<212> PRT

<213> Homo sapiens

<400> 334

Met Ala Ala Gly Leu Phe Gly Leu Ser Ala Arg Arg Leu Leu Ala 1 5 10 15

Ala Ala Ala Thr Arg Gly Leu Pro Ala Ala Arg Val Arg Trp Glu
20 25 30

Ser Ser Phe Ser Arg Thr Val Val Ala Pro Ser Ala Val Ala Gly 35 40 45

Lys Arg Pro Pro Glu Pro Thr Thr Pro Trp Gln Glu Asp Pro Glu 50 55 60

Pro Glu Asp Glu Asn Leu Tyr Glu Lys Asn Pro Asp Ser His Gly 65 70 75

Tyr Asp Lys Asp Pro Val Leu Asp Val Trp Asn Met Arg Leu Val 80 85 90

Phe Phe Phe Gly Val Ser Ile Ile Leu Val Leu Gly Ser Thr Phe 95 100 105

Val Ala Tyr Leu Pro Asp Tyr Arg Met Lys Glu Trp Ser Arg Arg 110 115 120

Glu Ala Glu Arg Leu Val Lys Tyr Arg Glu Ala Asn Gly Leu Pro 125 130 135

Ile Met Glu Ser Asn Cys Phe Asp Pro Ser Lys Ile Gln Leu Pro 140 145 150

<211> 2162 <212> DNA

Glu Asp Glu

<210> 335 <211> 442 <212> DNA <213> Homo sapiens <400> 335 ggcggctggg ctgtttggtt tgagcgctcg ccgtcttttg gcggcagcgg 50 cgacgcgagg gctcccggcc gcccgcgtcc gctgggaatc tagcttctcc 100 aggactgtgg tcgccccgtc cgctgtggcg ggaaagcggc ccccagaacc 150 gaccacaccg tggcaagagg acccagaacc cgaggacgaa aacttgtatg 200 agaagaaccc agactcccat ggttatgaca aggaccccgt tttggacgtc 250 tggaacatgc gacttgtctt cttctttggc gtctccatca tcctggtcct 300 tggcagcacc tttgtggcct atctgcctga ctacaggatg aaagagtggt 350 cccgccgcga agctgagagg cttgtgaaat accgagaggc caatggcctt 400 cccatcatgg aatccaactg cttcgacccc agcaagatcc ag 442 <210> 336 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 336 ctgagaccct gcagcaccat ctg 23 <210> 337 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 337 ggtgcttctt gagccccact tagc 24 <210> 338 <211> 40 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 338 aatctagett etceaggaet gtggtegeec egteegetgt 40 <210> 339

<213> Homo sapiens

<400> 339 gcggcggcta	tgccgcttgc	tctgctcgtc	ctgttgctcc	tggggcccgg	50
cggctggtgc	cttgcagaac	ccccacgcga	cagcctgcgg	gaggaacttg	100
tcatcacccc	gctgccttcc	ggggacgtag	ccgccacatt	ccagttccgc	150
acgcgctggg	attcggagct	tcagcgggaa	ggagtgtccc	attacaggct	200
ctttcccaaa	gccctggggc	agctgatctc	caagtattct	ctacgggagc	250
tgcacctgtc	attcacacaa	ggcttttgga	ggacccgata	ctgggggcca	300
cccttcctgc	aggccccatc	aggtgcagag	ctgtgggtct	ggttccaaga	350
cactgtcact	gatgtggata	aatcttggaa	ggagctcagt	aatgtcctct	400
cagggatctt	ctgcgcctct	ctcaacttca	tcgactccac	caacacagtc	450
actcccactg	cctccttcaa	acccctgggt	ctggccaatg	acactgacca	500
ctactttctg	cgctatgctg	tgctgccgcg	ggaggtggtc	tgcaccgaaa	550
acctcacccc	ctggaagaag	ctcttgccct	gtagttccaa	ggcaggcctc	600
tctgtgctgc	tgaaggcaga	tcgcttgttc	cacaccagct	accactccca	650
ggcagtgcat	atccgccctg	tttgcagaaa	tgcacgctgt	actagcatct	700
cctgggagct	gaggcagacc	ctgtcagttg	tatttgatgc	cttcatcacg	750
gggcagggaa	agaaagactg	gtccctcttc	cggatgttct	cccgaaccct	800
cacggagccc	tgccccctgg	cttcagagag	ccgagtctat	gtggacatca	850
ccacctacaa	ccaggacaac	gagacattag	aggtgcaccc	acccccgacc	900
actacatatc	aggacgtcat	cctaggcact	cggaagacct	atgccatcta	950
tgacttgctt	gacaccgcca	tgatcaacaa	ctctcgaaac	ctcaacatcc	1000
agctcaagtg	gaagagaccc	ccagagaatg	aggcccccc	agtgcccttc	1050
ctgcatgccc	agcggtacgt	gagtggctat	gggctgcaga	agggggagct	1100
gagcacactg	ctgtacaaca	cccacccata	ccgggccttc	ccggtgctgc	1150
tgctggacac	cgtaccctgg	tatctgcggc	tgtatgtgca	caccctcacc	1200
atcacctcca	agggcaagga	gaacaaacca	agttacatcc	actaccagcc	1250
tgcccaggac	cggctgcaac	cccacctcct	ggagatgctg	attcagctgc	1300
cggccaactc	agtcaccaag	gtttccatcc	agtttgagcg	ggcgctgctg	1350
aagtggaccg	agtacacgcc	agatcctaac	catggcttct	atgtcagccc	1400
atctgtcctc	agcgcccttg	tgcccagcat	ggtagcagcc	aagccagtgg	1450
actgggaaga	gagtcccctc	ttcaacagcc	tgttcccagt	ctctgatggc	1500

tctaactact ttgtgegget ctacaeggag cegetgetgg tgaaectgee 1550 gacaceggac ttcagcatge cetacaaegt gatetgeete aegtgeaetg 1600 tggtggeegt gtgetaegge teettetaca ateteeteae eegaaectte 1650 cacategagg ageceegaae aggtggeetg gecaagegge tggecaaecet 1700 tateeggege gecegaggtg teeceecaet etgattettg eeettteeag 1750 cagetgeage tgecgaggtg teeceecaet etgattettg eeettteeag 1750 cagetgeage tgecgttet etetgggag gggageecaa gggetgtte 1800 tgecaettge tetecteaga gttggettt gaaecaaagt gecetggaee 1850 aggteaggge etacagetgt gttgteeagt acaggageea egageeaaat 1900 gtggeatttg aatttgaatt aaecttagaaa tteatteet eaectgtagt 1950 ggecaectet atattgaggt geteaataag eaaaagtggt eggtggetge 2000 tgtattggae ageacagaaa aagattteea teaecacaga aaggtegget 2050 ggeageactg gecaaggtga tggggtgge tacaeagtgt atgteectgt 2100 gtagtggatg gagtttaetg tttgtggaat aaaaaagget gttteegtgg 2150 aaaaaaaaaa aa 2162

<210> 340

<211> 574

<212> PRT

<213> Homo sapiens

<400> 340

Met Pro Leu Ala Leu Leu Val Leu Leu Leu Gly Pro Gly Gly 1 5 10 15

Trp Cys Leu Ala Glu Pro Pro Arg Asp Ser Leu Arg Glu Glu Leu
20 25 30

Val Ile Thr Pro Leu Pro Ser Gly Asp Val Ala Ala Thr Phe Gln
35 40 45

Phe Arg Thr Arg Trp Asp Ser Glu Leu Gln Arg Glu Gly Val Ser 50 55 60

His Tyr Arg Leu Phe Pro Lys Ala Leu Gly Gln Leu Ile Ser Lys 65 70 75

Tyr Ser Leu Arg Glu Leu His Leu Ser Phe Thr Gln Gly Phe Trp 80 85 90

Arg Thr Arg Tyr Trp Gly Pro Pro Phe Leu Gln Ala Pro Ser Gly 95 100 105

Ala Glu Leu Trp Val Trp Phe Gln Asp Thr Val Thr Asp Val Asp 110 115

Lys Ser Trp Lys Glu Leu Ser Asn Val Leu Ser Gly Ile Phe Cys 125 130 135

Ala Ser Leu Asn Phe Ile Asp Ser Thr Asn Thr Val Thr Pro Thr 140 145 150

Ala Ser Phe Lys Pro Leu Gly Leu Ala Asn Asp Thr Asp His Tyr Phe Leu Arg Tyr Ala Val Leu Pro Arg Glu Val Val Cys Thr Glu 170 Asn Leu Thr Pro Trp Lys Lys Leu Leu Pro Cys Ser Ser Lys Ala Gly Leu Ser Val Leu Leu Lys Ala Asp Arg Leu Phe His Thr Ser Tyr His Ser Gln Ala Val His Ile Arg Pro Val Cys Arg Asn Ala Arg Cys Thr Ser Ile Ser Trp Glu Leu Arg Gln Thr Leu Ser Val 230 235 Val Phe Asp Ala Phe Ile Thr Gly Gln Gly Lys Lys Asp Trp Ser Leu Phe Arg Met Phe Ser Arg Thr Leu Thr Glu Pro Cys Pro Leu Ala Ser Glu Ser Arg Val Tyr Val Asp Ile Thr Thr Tyr Asn Gln 275 Asp Asn Glu Thr Leu Glu Val His Pro Pro Pro Thr Thr Tyr 295 Gln Asp Val Ile Leu Gly Thr Arg Lys Thr Tyr Ala Ile Tyr Asp Leu Leu Asp Thr Ala Met Ile Asn Asn Ser Arg Asn Leu Asn Ile 320 Gln Leu Lys Trp Lys Arg Pro Pro Glu Asn Glu Ala Pro Pro Val 340 Pro Phe Leu His Ala Gln Arg Tyr Val Ser Gly Tyr Gly Leu Gln 350 Lys Gly Glu Leu Ser Thr Leu Leu Tyr Asn Thr His Pro Tyr Arg 365 370 Ala Phe Pro Val Leu Leu Asp Thr Val Pro Trp Tyr Leu Arg 385 Leu Tyr Val His Thr Leu Thr Ile Thr Ser Lys Gly Lys Glu Asn Lys Pro Ser Tyr Ile His Tyr Gln Pro Ala Gln Asp Arg Leu Gln 410 415 Pro His Leu Leu Glu Met Leu Ile Gln Leu Pro Ala Asn Ser Val 425 430 Thr Lys Val Ser Ile Gln Phe Glu Arg Ala Leu Leu Lys Trp Thr Glu Tyr Thr Pro Asp Pro Asn His Gly Phe Tyr Val Ser Pro Ser 455 460

<212> DNA

<213> Homo sapiens

Val Leu Ser Ala Leu Val Pro Ser Met Val Ala Ala Lys Pro Val 470 475 Asp Trp Glu Glu Ser Pro Leu Phe Asn Ser Leu Phe Pro Val Ser 485 Asp Gly Ser Asn Tyr Phe Val Arg Leu Tyr Thr Glu Pro Leu Leu 500 505 Val Asn Leu Pro Thr Pro Asp Phe Ser Met Pro Tyr Asn Val Ile Cys Leu Thr Cys Thr Val Val Ala Val Cys Tyr Gly Ser Phe Tyr 530 535 Asn Leu Leu Thr Arg Thr Phe His Ile Glu Glu Pro Arg Thr Gly 545 Gly Leu Ala Lys Arg Leu Ala Asn Leu Ile Arg Arg Ala Arg Gly 560 565 570 Val Pro Pro Leu <210> 341 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 341 tggacaccgt accctggtat ctgc 24 <210> 342 <211> 24 <212> DNA <213> Artificial Segeunce <220> <221> Artificial Sequence <222> 1-24 <223> Synthetic oligonucleotide probe <400> 342 ccaactctga ggagagcaag tggc 24 <210> 343 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 343 tgtatgtgca caccctcacc atcacctcca agggcaagga gaac 44 <210> 344 <211> 762

<400> 344 caacatgggg tocagcagct tottggtcct catggtgtct ctcgttcttg 50 tgaccctggt ggctgtggaa ggagttaaag agggtataga gaaagcaggg 100 gtttgcccag ctgacaacgt acgctgcttc aagtccgatc ctccccagtg 150 tcacacagac caggactgtc tgggggaaag gaagtgttgt tacctgcact 200 gtggcttcaa gtgtgtgatt cctgtgaagg aactggaaga aggaggaaac 250 aaggatgaag atgtgtcaag gccataccct gagccaggat gggaggccaa 300 gtgtccaggc tcctctcta ccaggtgtcc tcagaaatga tgctgggtcc 350 tttctacctc tgggggtcac tctcacttgg cacctgcccc tgagggtcct 400 gagacttgga atatggaaga agcaataccc aaccccacca aagaaaacct 450 gagcttgaag tccttttccc caaaaagagg gaagagtcac aaaaagtcca 500 gaccccaggg acggtacttt ccctctctac ctggtgctcc tccctaatgc 550 tcatgaatgg acccctcatg aatgaaacca gtgcccttat aagagacccc 600 aaagagctgc cttgcccttc tgcaatgtgt gatcacagct agaaggcact 650 gtcagagaag agaaactggt cctcaccaga tgctgaatct gctgqtgcct 700 tgatcttgga cttcccagcc tctagaactg taagaaataa atatttgctg 750 tttataatcc aa 762

<210> 345

<211> 111

<212> PRT

<213> Homo sapiens

<400> 345

Met Gly Ser Ser Ser Phe Leu Val Leu Met Val Ser Leu Val Leu 1 5 10 15

Val Thr Leu Val Ala Val Glu Gly Val Lys Glu Gly Ile Glu Lys 20 25 30

Ala Gly Val Cys Pro Ala Asp Asn Val Arg Cys Phe Lys Ser Asp 35 40

Pro Pro Gln Cys His Thr Asp Gln Asp Cys Leu Gly Glu Arg Lys
50 55 60

Cys Cys Tyr Leu His Cys Gly Phe Lys Cys Val Ile Pro Val Lys 65 70 75

Glu Leu Glu Glu Gly Gly Asn Lys Asp Glu Asp Val Ser Arg Pro 80 85 90

Tyr Pro Glu Pro Gly Trp Glu Ala Lys Cys Pro Gly Ser Ser Ser 95 100 105

Thr Arg Cys Pro Gln Lys 110 <210> 346 <211> 2528 <212> DNA <213> Homo sapiens

<400> 346 aaactcagca cttgccggag tggctcattg ttaagacaaa gggtgtgcac 50 ttcctggcca ggaaacctga gcggtgagac tcccagctgc ctacatcaag 100 gccccaggac atgcagaacc ttcctctaga acccgaccca ccaccatgag 150 gtcctgcctg tggagatgca ggcacctgag ccaaggcgtc cagtggtcct 200 tgcttctggc tgtcctggtc ttctttctct tcgccttgcc ctcttttatt 250 aaggagcctc aaacaaagcc ttccaggcat caacgcacag agaacattaa 300 agaaaggtct ctacagtccc tggcaaagcc taagtcccag gcacccacaa 350 gggcgaggag gacaaccatc tatgcagagc cagcgccaga gaacaatgcc 400 ctcaacaca aaacccagcc caaggcccac accaccggag acagaggaaa 450 ggaggccaac caggcaccgc cggaggagca ggacaaggtg ccccacacag 500 cacagagggc agcatggaag agcccagaaa aagagaaaac catggtgaac 550 acactgtcac ccagagggca agatgcaggg atggcctctg gcaggacaga 600 ggcacaatca tggaagagcc aggacacaaa gacgacccaa ggaaatgggg 650 gccagaccag gaagctgacg gcctccagga cggtgtcaga gaagcaccag 700 ggcaaagcgg caaccacagc caagacgctc attcccaaaa gtcagcacag 750 aatgctggct cccacaggag cagtgtcaac aaggacgaga cagaaaggag 800 tgaccacage agtcatecca ectaaggaga agaaacetea ggecacecca 850 ccccctgccc ctttccagag ccccacgacg cagagaaacc aaagactgaa 900 ggccgccaac ttcaaatctg agcctcggtg ggattttgag gaaaaataca 950 gcttcgaaat aggaggcctt cagacgactt gccctgactc tgtgaagatc 1000 aaagcctcca agtcgctgtg gctccagaaa ctctttctgc ccaacctcac 1050 tctcttcctg gactccagac acttcaacca gagtgagtgg gaccgcctgg 1100 aacactttgc accaccttt ggcttcatgg agctcaacta ctccttggtg 1150 cagaaggtcg tgacacgctt ccctccagtg ccccagcagc agctgctcct 1200 ggccagcete eccgetggga geeteeggtg cateacetgt geegtggtgg 1250 gcaacggggg catcctgaac aactcccaca tgggccagga gatagacagt 1300 cacgactacg tgttccgatt gagcggaget ctcattaaag gctacgaaca 1350 ggatgtgggg actcggacat ccttctacgg ctttaccgcc ttctccctga 1400 cccagtcact ccttatattg ggcaatcggg gtttcaagaa cgtgcctctt 1450

gggaaggacg teegetaett geactteetg gaaggeacee gggaetatga 1500 gtggctggaa gcactgctta tgaatcagac ggtgatgtca aaaaaccttt 1550 tetggtteag geacagaece caggaagett ttegggaage cetgeacatg 1600 gacaggtacc tgttgctgca cccagacttt ctccgataca tgaagaacag 1650 gtttctgagg tctaagaccc tggatggtgc ccactggagg atataccqcc 1700 ccaccactgg ggccctcctg ctgctcactg cccttcagct ctgtgaccag 1750 gtgagtgctt atggcttcat cactgagggc catgagcgct tttctgatca 1800 ctactatgat acatcatgga agcggctgat cttttacata aaccatgact 1850 tcaagctgga gagagaagtc tggaagcggc tacacgatga agggataatc 1900 cggctgtacc agcgtcctgg tcccggaact gccaaagcca agaactgacc 1950 ggggccaggg ctgccatggt ctccttgcct gctccaaggc acaggataca 2000 gtgggaatct tgagactctt tggccatttc ccatggctca gactaagctc 2050 caagcccttc aggagttcca agggaacact tgaaccatgg acaagactct 2100 ctcaagatgg caaatggcta attgaggttc tqaagttctt cagtacattg 2150 ctgtaggtcc tgaggccagg gatttttaat taaatggggt gatgggtggc 2200 caataccaca attectgetg aaaaacacte ttecagteca aaagettett 2250 gatacagaaa aaagagcctg gatttacaga aacatataga tctggtttga 2300 attccagatc gagtttacag ttgtgaaatc ttgaaggtat tacttaactt 2350 cactacagat tgtctagaag acctttctag gagttatctg attctagaag 2400 ggtctatact tgtccttgtc tttaagctat ttgacaactc tacgtgttgt 2450 agaaaactga taataataca aatgattgtt gtccatggaa aggcaaataa 2500 attttctaca gtgaaaaaaa aaaaaaaa 2528

<210> 347

<211> 600

<212> PRT

<213> Homo sapiens

<400> 347

Met Arg Ser Cys Leu Trp Arg Cys Arg His Leu Ser Gln Gly Val $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Gln Trp Ser Leu Leu Leu Ala Val Leu Val Phe Phe Leu Phe Ala 20 25 30

Leu Pro Ser Phe Ile Lys Glu Pro Gln Thr Lys Pro Ser Arg His 35 40 40

Gln Arg Thr Glu Asn Ile Lys Glu Arg Ser Leu Gln Ser Leu Ala 50 55. 60

Lys Pro Lys Ser Gln Ala Pro Thr Arg Ala Arg Arg Thr Thr Ile

				65					70					75
Tyr	Ala	Glu	Pro	Ala 80	Pro	Glu	Asn	Asn	Ala 85	Leu	Asn	Thr	Gln	Thr 90
Gln	Pro	Lys	Ala	His 95	Thr	Thr	Gly	Asp	Arg 100	Gly	Lys	Glu	Ala	Asn 105
Gln	Ala	Pro	Pro	Glu 110	Glu	Gln	Asp	Lys	Val 115	Pro	His	Thr	Ala	Gln 120
Arg	Ala	Ala	Trp	Lys 125	Ser	Pro	Glu	Lys	Glu 130	Lys	Thr	Met	Val	Asn 135
Thr	Leu	Ser	Pro	Arg 140	Gly	Gln	Asp	Ala	Gly 145	Met	Ala	Ser	Gly	Arg 150
Thr	Glu	Ala	Gln	Ser 155	Trp	Lys	Ser	Gln	Asp 160	Thr	Lys	Thr	Thr	Gln 165
Gly	Asn	Gly	Gly	Gln 170	Thr	Arg	Lys	Leu	Thr 175	Ala	Ser	Arg	Thr	Val 180
Ser	Glu	Lys	His	Gln 185	Gly	Lys	Ala	Ala	Thr 190	Thr	Ala	Lys	Thr	Leu 195
Ile	Pro	Lys	Ser	Gln 200	His	Arg	Met	Leu	Ala 205	Pro	Thr	Gly	Ala	Val 210
Ser	Thr	Arg	Thr	Arg 215	Gln	Lys	Gly	Val	Thr 220	Thr	Ala	Val	Ile	Pro 225
Pro	Lys	Glu	Lys	Lys 230	Pro	Gln	Ala	Thr	Pro 235	Pro	Pro	Ala	Pro	Phe 240
Gln	Ser	Pro	Thr	Thr 245	Gln	Arg	Asn	Gln	Arg 250	Leu	Lys	Ala	Ala	Asn 255
Phe	Lys	Ser	Glu	Pro 260	Arg	Trp	Asp	Phe	Glu 265	Glu	Lys	Tyr	Ser	Phe 270
Glu	Ile	Gly	Gly	Leu 275	Gln	Thr	Thr	Cys	Pro 280	Asp	Ser	Val	Lys	Ile 285
Lys	Ala	Ser	Lys	Ser 290	Leu	Trp	Leu	Gln	Lys 295	Leu	Phe	Leu	Pro	Asn 300
Leu	Thr	Leu	Phe	Leu 305	Asp	Ser	Arg	His	Phe 310	Asn	Gln	Ser	Glu	Trp 315
Asp	Arg	Leu	Glu	His 320	Phe	Ala	Pro	Pro	Phe 325	Gly	Phe	Met	Glu	Leu 330
Asn	Tyr	Ser	Leu	Val 335	Gln	Lys	Val	Val	Thr 340	Arg	Phe	Pro	Pro	Val 345
Pro	Gln	Gln	Gln	Leu 350	Leu	Leu	Ala	Ser	Leu 355	Pro	Ala	Gly	Ser	Leu 360
Arg	Cys	Ile	Thr	Cys 365	Ala	Val	Val	Gly	Asn 370	Gly	Gly	Ile	Leu	Asn 375
Asn	Ser	His	Met	Gly	Gln	Glu	Ile	Asp	Ser	His	Asp	Tyr	Val	Phe

				380					385					390
Arg	Leu	Ser	Gly	Ala 395	Leu	Ile	Lys	Gly	Tyr 400	Glu	Gln	Asp	Val	Gly 405
Thr	Arg	Thr	Ser	Phe 410	Tyr	Gly	Phe	Thr	Ala 415	Phe	Ser	Leu	Thr	Gln 420
Ser	Leu	Leu	Ile	Leu 425	Gly	Asn	Arg	Gly	Phe 430	Lys	Asn	Val	Pro	Leu 435
Gly	Lys	Asp	Val	Arg 440	Tyr	Leu	His	Phe	Leu 445	Glu	Gly	Thr	Arg	Asp 450
Tyr	Glu	Trp	Leu	Glu 455	Ala	Leu	Leu	Met	Asn 460	Gln	Thr	Vaļ	Met	Ser 465
Lys	Asn	Leu	Phe	Trp 470	Phe	Arg	His	Arg	Pro 475	Gln	Glu	Ala	Phe	Arg 480
Glu	Ala	Leu	His	Met 485	Asp	Arg	Tyr	Leu	Leu 490	Leu	His	Pro	Asp	Phe 495
Leu	Arg	Tyr	Met	Lys 500	Asn	Arg	Phe	Leu	Arg 505	Ser	Lys	Thr	Leu	Asp 510
Gly	Ala	His	Trp	Arg 515	Ile	Tyr	Arg	Pro	Thr 520	Thr	Gly	Ala	Leu	Leu 525
Leu	Leu	Thr	Ala	Leu 530	Gln	Leu	Cys	Asp	Gln 535	Val	Ser	Ala	Tyr	Gly 540
Phe	Ile	Thr	Glu	Gly 545	His	Glu	Arg	Phe	Ser 550	Asp	His	Tyr	Tyr	Asp 555
Thr	Ser	Trp	Lys	Arg 560	Leu	Ile	Phe	Tyr	Ile 565	Asn	His	Asp	Phe	Lys 570
Leu	Glu	Arg	Glu	Val 575	Trp	Lys	Arg	Leu	His 580	Asp	Glu	Gly	Ile	Ile 585
Arg	Leu	Tyr	Gln	Arg 590	Pro	Gly	Pro	Gly	Thr 595	Ala	Lys	Ala	Lys	Asn 600

<210> 348

<211> 496

<212> DNA

<213> Homo sapiens

<400> 348

cgatgcggg acccgggcac cccctcctcc tggggctgct gctggtgctg 50 gggccttcgc cggagcagcg agtggaaatt gttcctcgag atctgaggat 100 gaaggacaag tttctaaaac accttacagg ccctctttat tttagtccaa 150 agtgcagcaa acacttccat agactttatc acaacacag agactgcacc 200 attcctgcat actataaaag atgcgccagg cttcttaccc ggctggctgt 250 cagtccagtg tgcatggagg ataagtgagc agaccgtaca ggagcagcac 300 accaggagcc atgagaagtg ccttggaaac caacagggaa acagaactat 350

ctttatacac atcccctcat ggacaagaga tttatttttg cagacagact 400 cttccataag tcctttgagt tttgtatgtt gttgacagtt tgcagatata 450 tattcgataa atcagtgtac ttgacagtgt tatctgtcac ttattt 496

<210> 349

<211> 91

<212> PRT

<213> Homo sapiens

<400> 349

Met Arg Gly Pro Gly His Pro Leu Leu Gly Leu Leu Val 1 5 10 15

Leu Gly Pro Ser Pro Glu Gln Arg Val Glu Ile Val Pro Arg Asp 20 25 30

Leu Arg Met Lys Asp Lys Phe Leu Lys His Leu Thr Gly Pro Leu 35 40 45

Tyr Phe Ser Pro Lys Cys Ser Lys His Phe His Arg Leu Tyr His
50 55 60

Asn Thr Arg Asp Cys Thr Ile Pro Ala Tyr Tyr Lys Arg Cys Ala 65 70 75

Arg Leu Leu Thr Arg Leu Ala Val Ser Pro Val Cys Met Glu Asp 80 85 90

Lys

<210> 350

<211> 1141

<212> DNA

<213> Homo sapiens

<400> 350

actetacca getggcece cagtetacaa ceetgcaget cetecteet 650 atatgccace acagecetet taccegggag cetgaggaac cagecatgte 700 tetgetgece etteagtgat gecaacettg ggagatgeec teateetgta 750 cetgeatetg gteetggggg tggeaggagt cetecageea ecaggeecea 800 gaccaageea agecetggge ectactgggg acagageece agggaagtgg 850 aacaggaget gaactagaac tatgagggt tggggggagg gettggaatt 900 atgggetatt tttactgggg geaagggagg gagatgacag ectgggteac 950 agtgeetgtt tteaaatagt ecetetgete ecaagateec agecaggaag 1000 getggggeec tactgttgt eceetetggg etggggtggg gggagggagg 1050 aggtteegte ageagetgge agtageecte etetetgget geeceactgg 1100 ceacatetet ggeetgetag attaaagetg taaagacaaa a 1141

<210> 351

<211> 197

<212> PRT

<213> Homo sapiens

<400> 351

Met Pro Pro Ala Gly Leu Arg Arg Ala Ala Pro Leu Thr Ala Ile 1 5 10 15

Ala Leu Leu Val Leu Gly Ala Pro Leu Val Leu Ala Gly Glu Asp $20 \\ 25 \\ 30$

Cys Leu Trp Tyr Leu Asp Arg Asn Gly Ser Trp His Pro Gly Phe 35 40 45

Asn Cys Glu Phe Phe Thr Phe Cys Cys Gly Thr Cys Tyr His Arg 50 55 60

Tyr Cys Cys Arg Asp Leu Thr Leu Leu Ile Thr Glu Arg Gln Gln 65 70 75

Lys His Cys Leu Ala Phe Ser Pro Lys Thr Ile Ala Gly Ile Ala 80 85 90

Ser Ala Val Ile Leu Phe Val Ala Val Val Ala Thr Thr Ile Cys 95 100 105

Cys Phe Leu Cys Ser Cys Cys Tyr Leu Tyr Arg Arg Arg Gln Gln 110 115 120

Leu Gln Ser Pro Phe Glu Gly Gln Glu Ile Pro Met Thr Gly Ile 125 130 135

Pro Val Gln Pro Val Tyr Pro Tyr Pro Gln Asp Pro Lys Ala Gly
140 145

Pro Ala Pro Pro Gln Pro Gly Phe Met Tyr Pro Pro Ser Gly Pro
155 160 165

Ala Pro Gln Tyr Pro Leu Tyr Pro Ala Gly Pro Pro Val Tyr Asn 170 175 180

Pro Ala Ala Pro Pro Pro Tyr Met Pro Pro Gln Pro Ser Tyr Pro 185 190 190

Gly Ala

<210> 352 <211> 3226

<211> 522 <212> DNA

<213> Homo sapiens

<400> 352

gggggagcta ggccggcggc agtggtggtg gcggcggcgc aagggtgagg 50 gcggccccag aaccccaggt aggtagagca agaagatggt gtttctgccc 100 ctcaaatggt cccttgcaac catgtcattt ctactttcct cactgttggc 150 tctcttaact gtgtccactc cttcatggtg tcagagcact gaagcatctc 200 caaaacgtag tgatgggaca ccatttcctt ggaataaaat acgacttcct 250 gagtacgtca tcccagttca ttatgatctc ttgatccatg caaaccttac 300 cacgctgacc ttctggggaa ccacgaaagt agaaatcaca gccagtcagc 350 ccaccagcac catcatcctg catagtcacc acctgcagat atctagggcc 400 acceteagga agggagetgg agagaggeta teggaagaac eeetgeaggt 450 cctggaacac cccctcagg agcaaattgc actgctggct cccgagcccc 500 teettgtegg geteeegtae acagttgtea tteactatge tggeaatett 550 tcggagactt tccacggatt ttacaaaagc acctacagaa ccaaggaagg 600 ggaactgagg atactagcat caacacaatt tgaacccact gcagctagaa 650 tggcctttcc ctgctttgat gaacctgcct tcaaagcaag tttctcaatc 700 aaaattagaa gagagccaag gcacctagcc atctccaata tgccattggt 750 gaaatctgtg actgttgctg aaggactcat agaagaccat tttgatgtca 800 ctgtgaagat gagcacctat ctggtggcct tcatcatttc agattttgag 850 tctgtcagca agataaccaa gagtggagtc aaggtttctg tttatgctgt 900 gccagacaag ataaatcaag cagattatgc actggatgct gcggtgactc 950 ttctagaatt ttatgaggat tatttcagca taccgtatcc cctacccaaa 1000 caagatettg etgetattee egacttteag tetggtgeta tggaaaactg 1050 gggactgaca acatatagag aatctgctct gttgtttgat gcagaaaagt 1100 cttctgcatc aagtaagctt ggcatcacag tgactgtqqc ccatqaactg 1150 gcccaccagt ggtttgggaa cctggtcact atggaatggt ggaatgatct 1200 ttggctaaat gaaggatttg ccaaatttat ggagtttgtg tctgtcagtg 1250 tgacccatcc tgaactgaaa gttggagatt atttctttgg caaatgtttt 1300

aacgtatgta aaaattcctc ccttgcccgg ttcctgttat ctctaatcac 2950 caacattttg ttgagtgtat tttcaaacta gagatggctg ttttggctcc 3000 aactggagat actttttcc cttcaactca ttttttgact atccctgtga 3050 aaagaatagc tgttagttt tcatgaatgg gcttttcat gaatgggcta 3100 tcgctaccat gtgtttgtt catcacaggt gttgccctgc aacgtaaacc 3150 caagtgttgg gttccctgcc acagaagaat aaagtacctt attcttctca 3200 aaaaaaaaaa aaaaaaaaa aaaaaaaa 3226

<210> 353

<211> 941

<212> PRT

<213> Homo sapiens

<400> 353

Met Val Phe Leu Pro Leu Lys Trp Ser Leu Ala Thr Met Ser Phe 1 5 10 15

Leu Leu Ser Ser Leu Leu Ala Leu Leu Thr Val Ser Thr Pro Ser 20 25 30

Trp Cys Gln Ser Thr Glu Ala Ser Pro Lys Arg Ser Asp Gly Thr
35 40 45

Pro Phe Pro Trp Asn Lys Ile Arg Leu Pro Glu Tyr Val Ile Pro 50 55 60

Val His Tyr Asp Leu Leu Ile His Ala Asn Leu Thr Thr Leu Thr
65 70 75

Phe Trp Gly Thr Thr Lys Val Glu Ile Thr Ala Ser Gln Pro Thr
80 85 90

Ser Thr Ile Ile Leu His Ser His His Leu Gln Ile Ser Arg Ala 95 100 105

Thr Leu Arg Lys Gly Ala Gly Glu Arg Leu Ser Glu Glu Pro Leu
110 115 120

Gln Val Leu Glu His Pro Pro Gln Glu Gln Ile Ala Leu Leu Ala 125 130 135

Pro Glu Pro Leu Leu Val Gly Leu Pro Tyr Thr Val Val Ile His

Tyr Ala Gly Asn Leu Ser Glu Thr Phe His Gly Phe Tyr Lys Ser 155 160 165

Thr Tyr Arg Thr Lys Glu Gly Glu Leu Arg Ile Leu Ala Ser Thr 170 175 180

Gln Phe Glu Pro Thr Ala Ala Arg Met Ala Phe Pro Cys Phe Asp

Glu Pro Ala Phe Lys Ala Ser Phe Ser Ile Lys Ile Arg Arg Glu 200 · 205 210

Pro Arg His Leu Ala Ile Ser Asn Met Pro Leu Val Lys Ser Val

				215					220					225
Thr	Val	Ala	Glu	Gly 230	Leu	Ile	Glu	Asp	His 235	Phe	Asp	Val	Thr	Val 240
Lys.	Met	Ser	Thr	Tyr 245	Leu	Val	Ala	Phe	Ile 250	Ile	Ser	Asp	Phe	Glu 255
Ser	Val	Ser	Lys	Ile 260	Thr	Lys	Ser	Gly	Val 265	Lys	Val	Ser	Val	Tyr 270
Ala	Val	Pro	Asp	Lys 275	Ile	Asn	Gln	Ala	Asp 280	Tyr	Ala	Leu	Asp	Ala 285
Ala	Val	Thr	Leu	Leu 290	Glu	Phe	Tyr	Glu	Asp 295	Tyr	Phe	Ser	Ile	Pro 300
Tyr	Pro	Leu	Pro	Lys 305	Gln	Asp	Leu	Ala	Ala 310	Ile	Pro	Asp	Phe	Gln 315
Ser	Gly	Ala	Met	Glu 320	Asn	Trp	Gly	Leu	Thr 325	Thr	Tyr	Arg	Glu	Ser 330
Ala	Leu	Leu	Phe	Asp 335	Ala	Glu	Lys	Ser	Ser 340	Ala	Ser	Ser	Lys	Leu 345
Gly	Ile	Thr	Val	Thr 350	Val	Ala	His	Glu	Leu 355	Ala	His	Gln	Trp	Phe 360
Gly	Asn	Leu	Val	Thr 365	Met	Glu	Trp	Trp	Asn 370	Asp	Leu	Trp	Leu	Asn 375
Glu	Gly	Phe	Ala	Lys 380	Phe	Met	Glu	Phe	Val 385	Ser	Val	Ser	Val	Thr 390
His	Pro	Glu	Leu	Lys 395	Val	Gly	Asp	Tyr	Phe 400	Phe	Gly	Lys	Cys	Phe 405
Asp	Ala	Met	Glu	Val 410	Asp	Ala	Leu	Asn	Ser 415	Ser	His	Pro	Val	Ser 420
Thr	Pro	Val	Glu	Asn 425	Pro	Ala	Gln	Ile	Arg 430	Glu	Met	Phe	Asp	Asp 435
Val	Ser	Tyr	Asp	Lys 440	Gly	Ala	Cys	Ile	Leu 445	Asn	Met	Leu	Arg	Glu 450
Tyr	Leu	Ser	Ala	Asp 455	Ala	Phe	Lys	Ser	Gly 460	Ile	Val	Gln	Tyr	Leu 465
Gln	Lys	His	Ser	Tyr 470	Lys	Asn	Thr	Lys	Asn 475	Glu	Asp	Leu	Trp	Asp 480
Ser	Met	Ala	Ser	Ile 485	Cys	Pro	Thr	Asp	Gly 490	Val	Lys	Gly	Met	Asp 495
Gly	Phe	Cys	Ser	Arg 500	Ser	Gln	His	Ser	Ser 505	Ser	Ser	Ser	His	Trp 510
His	Gln	Glu	Gly	Val 515	Asp	Val	Lys	Thr	Met 520	Met	Asn	Thr	Trp	Thr 525
Leu	Gln	Arg	Gly	Phe	Pro	Leu	Ile	Thr	Ile	Thr	Val	Arg	Gly	Arg

				530					535					540
Asn	Val	His	Met	Lys 545	Gln	Glu	His	Tyr	Met 550	Lys	Gly	Ser	Asp	Gly 555
Ala	Pro	Asp	Thr	Gly 560	Tyr	Leu	Trp	His	Val 565	Pro	Leu	Thr	Phe	Ile 570
Thr	Ser	Lys	Ser	Asn 575	Met	Val	His	Arg	Phe 580	Leu	Leu	Lys	Thr	Lys 585
Thr	Asp	Val	Leu	Ile 590	Leu	Pro	Glu	Glu	Val 595	Glu	Trp	Ile	Lys	Phe 600
Asn	Val	Gly	Met	Asn 605	Gly	Tyr	Tyr	Ile	Val 610	His	Tyr	Glu	Asp	Asp 615
Gly	Trp	Asp	Ser	Leu 620	Thr	Gly	Leu	Leu	Lys 625	Gly	Thr	His	Thr	Ala 630
Val	Ser	Ser	Asn	Asp 635	Arg	Ala	Ser	Leu	Ile 640	Asn	Asn	Ala	Phe	Gln 645
Leu	Val	Ser	Ile	Gly 650	Lys	Leu	Ser	Ile	Glu 655	Lys	Ala	Leu	Asp	Leu 660
Ser	Leu	Tyr	Leu	Lys 665	His	Glu	Thr	Glu	Ile 670	Met	Pro	Val	Phe	Gln 675
Gly	Leu	Asn	Glu	Leu 680	Ile	Pro	Met	Tyr	Lys 685	Leu	Met	Glu	Lys	Arg 690
Asp	Met	Asn	Glu	Val 695	Glu	Thr	Gln	Phe	Lys 700	Ala	Phe	Leu	Ile	Arg 705
Leu	Leu	Arg	Asp	Leu 710	Ile	Asp	Lys	Gln	Thr 715	Trp	Thr	Asp	Glu	Gly 720
Ser	Val	Ser	Glu	Gln 725	Met	Leu	Arg	Ser	Glu 730	Leu	Leu	Leu	Leu	Ala 735
Cys	Val	His	Asn	Tyr 740	Gln	Pro	Cys	Val	Gln 745	Arg	Ala	Glu	Gly	Tyr 750
Phe	Arg	Lys	Trp	Lys 755	Glu	Ser	Asn	Gly	Asn 760	Leu	Ser	Leu	Pro	Val 765
Asp	Val	Thr	Leu	Ala 770	Val	Phe	Ala	Val	Gly 775	Ala	Gln	Ser	Thr	Glu 780
Gly	Trp	Asp	Phe	Leu 785	Tyr	Ser	Lys	Tyr	Gln 790	Phe	Ser	Leu	Ser	Ser 795
Thr	Glu	Lys	Ser	Gln 800	Ile	Glu	Phe	Ala	Leu 805	Cys	Arg	Thr	Gln	Asn 810
Lys	Glu	Lys	Leu	Gln 815	Trp	Leu	Leu	Asp	Glu 820	Ser	Phe	Lys	Gly	Asp 825
Lys	Ile	Lys	Thr	Gln 830	Glu	Phe	Pro	Gln	Ile 835	Leu	Thr	Leu	Ile	Gly 840
Arg	Asn	Pro	Val	Gly	Tyr	Pro	Leu	Ala	Trp	Gln	Phe	Leu	Arg	Lys

					845					850					855	
	Asn	Trp	Asn	Lys	Leu 860	Val	Gln	Lys	Phe	Glu 865	Leu	Gly	Ser	Ser	Ser 870	
	Ile	Ala	His	Met	Val 875	Met	Gly	Thr	Thr	Asn 880	Gln	Phe	Ser	Thr	Arg 885	
	Thr	Arg	Leu	Glu	Glu 890	Val	Lys	Gly	Phe	Phe 895	Ser	Ser	Leu	Lys	Glu 900	
	Asn	Gly	Ser	Gln	Leu 905	Arg	Cys	Val	Gln	Gln 910	Thr	Ile	Glu	Thr	Ile 915	
	Glu	Glu	Asn	Ile	Gly 920	Trp	Met	Asp	Lys	Asn 925	Phe	Asp	Lys	Ile	Arg 930	
	Val	Trp	Leu	Gln	Ser 935	Glu	Lys	Leu	Glu	Arg 940	Met					
<	(210)	> 354	l													

<210> 354 <211> 1587 <212> DNA

<213> Homo sapiens

<400> 354 cagccacaga cgggtcatga gcgcggtatt actgctggcc ctcctggggt 50 tcatcctccc actgccagga gtgcaggcgc tgctctgcca gtttgggaca 100 gttcagcatg tgtggaaggt gtccgaccta ccccggcaat ggacccctaa 150 gaacaccagc tgcgacagcg gcttggggtg ccaggacacg ttgatgctca 200 ttgagagcgg accccaagtg agcctggtgc tctccaaggg ctgcacggag 250 gccaaggacc aggagccccg cgtcactgag caccggatgg gccccggcct 300 ctccctgatc tcctacacct tcgtgtgccg ccaggaggac ttctgcaaca 350 acctcgttaa ctccctcccg ctttgggccc cacagccccc agcagaccca 400 ggatccttga ggtgcccagt ctgcttgtct atggaaggct gtctggaggg 450 gacaacagaa gagatctgcc ccaaggggac cacacactgt tatgatggcc 500 tcctcaggct caggggagga ggcatcttct ccaatctgag agtccaggga 550 tgcatgcccc agccaggttg caacctgctc aatgggacac aggaaattgg 600 gcccgtgggt atgactgaga actgcaatag gaaagatttt ctgacctgtc 650 atcgggggac caccattatg acacacggaa acttggctca agaacccact 700 gattggacca catcgaatac cgagatgtgc gaggtggggc aggtgtgtca 750 ggagacgctg ctgctcatag atgtaggact cacatcaacc ctggtgggga 800 caaaaggctg cagcactgtt ggggctcaaa attcccagaa gaccaccatc 850 cactcagccc ctcctggggt gcttgtggcc tcctataccc acttctgctc 900 ctcggacctg tgcaatagtg ccagcagcag cagcgttctg ctgaactccc 950

tecetectea agetgeecet gteceaggag aceggeagtg tectacetgt 1000 gtgcagecec ttggaacetg tteaagtgge tececegaa tgacetgeec 1050 caggggegee acteattgtt atgatgggta catteatete teaggaggtg 1100 ggetgteeae caaaatgage atteaggget gegtggeeca acetteeage 1150 ttettgttga aceaecaeg acaaateggg atetteetg egegtgagaa 1200 gegtgatgtg cageeteetg ceteteagea tgagggaggt ggggetgagg 1250 geetggagte teteaettgg ggggtggge tggeaetgge eceagegetg 1300 tggtggggag tggtttgeee tteetgetaa etetataee eceaegatte 1350 tteaeegetg etgaeeaeee acaeteaaee teeetetgae eteataaeet 1400 aatggeettg gaeaecagat tettteeaet tetgteeatg aateatette 1450 eeeaeaeaea ateateata tetaeteaee taaeageaee acetggggaga 1500 geetggagea teeggaettg ecetatagga gaggggaege tggaggagtg 1550 getgeatgta tetgataata eagaeeetgt eetttea 1587

<210> 355

<211> 437

<212> PRT

<213> Homo sapiens

<400> 355

Met Ser Ala Val Leu Leu Leu Ala Leu Leu Gly Phe Ile Leu Pro 1 5 10 15

Leu Pro Gly Val Gln Ala Leu Leu Cys Gln Phe Gly Thr Val Gln 20 25 30

His Val Trp Lys Val Ser Asp Leu Pro Arg Gln Trp Thr Pro Lys
35 40 45

Asn Thr Ser Cys Asp Ser Gly Leu Gly Cys Gln Asp Thr Leu Met 50 55 60

Leu Ile Glu Ser Gly Pro Gln Val Ser Leu Val Leu Ser Lys Gly 65 70 75

Cys Thr Glu Ala Lys Asp Gln Glu Pro Arg Val Thr Glu His Arg 80 85 90

Met Gly Pro Gly Leu Ser Leu Ile Ser Tyr Thr Phe Val Cys Arg 95 100 105

Gln Glu Asp Phe Cys Asn Asn Leu Val Asn Ser Leu Pro Leu Trp 110 115 120

Ala Pro Gln Pro Pro Ala Asp Pro Gly Ser Leu Arg Cys Pro Val 125 130 135

Cys Leu Ser Met Glu Gly Cys Leu Glu Gly Thr Thr Glu Glu Ile 140 145 150

Cys Pro Lys Gly Thr Thr His Cys Tyr Asp Gly Leu Leu Arg Leu

				155					160					165
Arg	Gly	Gly	Gly	Ile 170	Phe	Ser	Asn	Leu	Arg 175	Val	Gln	Gly	Cys	Met 180
Pro	Gln	Pro	Gly	Cys 185	Asn	Leu	Leu	Asn	Gly 190	Thr	Gln	Glu	Ile	Gly 195
Pro	Val	Gly	Met	Thr 200	Glu	Asn	Cys	Asn	Arg 205	Lys	Asp	Phe	Leu	Thr 210
Cys	His	Arg	Gly	Thr 215	Thr	Ile	Met	Thr	His 220	Gly	Asn	Leu	Ala	Gln 225
Glu	Pro	Thr	Asp	Trp 230	Thr	Thr	Ser	Asn	Thr 235	Glu	Met	Cys	Glu	Val 240
Gly	Gln	Val	Суз	Gln 245	Glu	Thr	Leu	Leu	Leu 250	Ile	Asp	Val	Gly	Leu 255
Thr	Ser	Thr	Leu	Val 260	Gly	Thr	Lys	Gly	Cys 265	Ser	Thr	Val	Gly	Ala 270
Gln	Asn	Ser	Gln	Lys 275	Thr	Thr	Ile	His	Ser 280	Ala	Pro	Pro	Gly	Val 285
Leu	Val	Ala	Ser	Tyr 290	Thr	His	Phe	Cys	Ser 295	Ser	Asp	Leu	Суз	Asn 300
Ser	Ala	Ser	Ser	Ser 305	Ser	Val	Leu	Leu	Asn 310	Ser	Leu	Pro	Pro	Gln 315
Ala	Ala	Pro	Val	Pro 320	Gly	Asp	Arg	Gln	Cys 325	Pro	Thr	Cys	Val	Gln 330
Pro	Leu	Gly	Thr	Cys 335	Ser	Ser	Gly	Ser	Pro 340	Arg	Met	Thr	Cys	Pro 345
Arg	Gly	Ala	Thr	His 350	Cys	Tyr	Asp	Gly	Tyr 355	Ile	His	Leu	Ser	Gly 360
Gly	Gly	Leu	Ser	Thr 365	Lys	Met	Ser	Ile	Gln 370	Gly	Cys	Val	Ala	Gln 375
Pro	Ser	Ser	Phe	Leu 380	Leu	Asn	His	Thr	Arg 385	Gln	Ile	Gly	Ile	Phe 390
Ser	Ala	Arg	Glu	Lys 395	Arg	Asp	Val	Gln	Pro 400	Pro	Ala	Ser	Gln	His 405
Glu	Gly	Gly	Gly	Ala 410	Glu	Gly	Leu	Glu	Ser 415	Leu	Thr	Trp	Gly	Val 420
Gly	Leu	Ala	Leu	Ala 425	Pro	Ala	Leu	Trp	Trp 430	Gly	Val	Val	Cys	Pro 435
Ser	Cys													

<210> 356 <211> 1238 <212> DNA <213> Homo sapiens

<400> 356 gcgacgggca ggacgccccg ttcgcctagc gcgtgctcag gagttggtgt 50 cctgcctgcg ctcaggatga gggggaatct ggccctggtg ggcgttctaa 100 tcagcctggc cttcctgtca ctgctgccat ctggacatcc tcagccggct 150 ggcgatgacg cctgctctgt gcagatcctc gtccctggcc tcaaagggga 200 tgcgggagag aagggagaca aaggcgcccc cggacggcct ggaagagtcg 250 gccccacggg agaaaaagga gacatggggg acaaaggaca gaaaggcagt 300 gtgggtcgtc atggaaaaat tggtcccatt ggctctaaag gtgagaaagg 350 agattccggt gacataggac cccctggtcc taatggagaa ccaggcctcc 400 catgtgagtg cagccagctg cgcaaggcca tcggggagat ggacaaccag 450 gtctctcagc tgaccagcga gctcaagttc atcaagaatg ctgtcgccgg 500 tgtgcgcgag acggagagca agatctacct gctggtgaag gaggagaagc 550 gctacgcgga cgcccagctg tcctgccagg gccgcggggg cacgctgagc 600 atgcccaagg acgaggctgc caatggcctg atggccgcat acctggcgca 650 agcoggootg gooogtgtot toatoggoat caacgacotg gagaaggagg 700 gegeettegt gtactetgae eacteecea tgeggaeett caacaagtgg 750 cgcagcggtg agcccaacaa tgcctacgac gaggaggact gcgtggagat 800 ggtggcctcg ggcggctgga acgacgtggc ctgccacacc accatgtact 850 tcatgtgtga gtttgacaag gagaacatgt gagcctcagg ctggggctgc 900 ccattggggg ccccacatgt ccctgcaggg ttggcaggga cagagcccag 950 accatggtgc cagccaggga gctgtccctc tgtgaagggt ggaggctcac 1000 tgagtagagg gctgttgtct aaactgagaa aatggcctat gcttaagagg 1050 aaaatgaaag tgttcctggg gtgctgtctc tgaagaagca gagtttcatt 1100 acctgtattg tagccccaat gtcattatgt aattattacc cagaattgct 1150 cttccataaa gcttgtgcct ttgtccaagc tatacaataa aatctttaag 1200 tagtgcagta gttaagtcca aaaaaaaaa aaaaaaaa 1238

```
<210> 357
```

<211> 271

<212> PRT

<213> Homo sapiens

<400> 357

Met Arg Gly Asn Leu Ala Leu Val Gly Val Leu Ile Ser Leu Ala 1 5 10 15

Phe Leu Ser Leu Leu Pro Ser Gly His Pro Gln Pro Ala Gly Asp 20 25 30

Asp Ala Cys Ser Val Gln Ile Leu Val Pro Gly Leu Lys Gly Asp. Ala Gly Glu Lys Gly Asp Lys Gly Ala Pro Gly Arg Pro Gly Arg Val Gly Pro Thr Gly Glu Lys Gly Asp Met Gly Asp Lys Gly Gln Lys Gly Ser Val Gly Arg His Gly Lys Ile Gly Pro Ile Gly Ser Lys Gly Glu Lys Gly Asp Ser Gly Asp Ile Gly Pro Pro Gly Pro Asn Gly Glu Pro Gly Leu Pro Cys Glu Cys Ser Gln Leu Arg Lys Ala Ile Gly Glu Met Asp Asn Gln Val Ser Gln Leu Thr Ser Glu 125 130 Leu Lys Phe Ile Lys Asn Ala Val Ala Gly Val Arg Glu Thr Glu 140 Ser Lys Ile Tyr Leu Leu Val Lys Glu Glu Lys Arg Tyr Ala Asp Ala Gln Leu Ser Cys Gln Gly Arg Gly Gly Thr Leu Ser Met Pro 170 175 Lys Asp Glu Ala Ala Asn Gly Leu Met Ala Ala Tyr Leu Ala Gln Ala Gly Leu Ala Arg Val Phe Ile Gly Ile Asn Asp Leu Glu Lys Glu Gly Ala Phe Val Tyr Ser Asp His Ser Pro Met Arg Thr Phe 220 Asn Lys Trp Arg Ser Gly Glu Pro Asn Asn Ala Tyr Asp Glu Glu 230 235 Asp Cys Val Glu Met Val Ala Ser Gly Gly Trp Asn Asp Val Ala 245 250 Cys His Thr Thr Met Tyr Phe Met Cys Glu Phe Asp Lys Glu Asn

Met

<210> 358

<211> 972

<212> DNA

<213> Homo sapiens

<400> 358

agtgactgca gccttcctag atcccctcca ctcggtttct ctctttgcag 50 gagcaccggc agcaccagtg tgtgagggga gcaggcagcg gtcctagcca 100 gttccttgat cctgccagac cacccagcc ccggcacaga gctgctccac 150

aggcaccatg aggatcatgc tgctattcac agccatcctg gccttcagcc 200 tagctcagag ctttggggct gtctgtaagg agccacagga ggaggtggtt 250 cctggcgggg gccgcagcaa gagggatcca gatctctacc agctgctcca 300 gagactette aaaageeact catetetgga gggattgete aaageeetga 350 gccaggctag cacagateet aaggaateaa cateteega gaaacgtgae 400 atgcatgact tctttgtggg acttatgggc aagaggagcg tccagccaga 450 gggaaagaca ggacctttct taccttcagt gagggttcct cggccccttc 500 atcccaatca gcttggatcc acaggaaagt cttccctggg aacagaggag 550 cagagacctt tataagactc tcctacggat gtgaatcaag agaacgtccc 600 cagetttggc atceteaagt atceceegag ageagaatag gtacteeact 650 tccggactcc tggactgcat taggaagacc tctttccctg tcccaatccc 700 caggtgcgca cgctcctgtt accctttctc ttccctgttc ttgtaacatt 750 cttgtgcttt gactccttct ccatcttttc tacctgaccc tggtgtggaa 800 actgcatagt gaatatcccc aaccccaatg ggcattgact gtagaatacc 850 ctagagttcc tgtagtgtcc tacattaaaa atataatgtc tctctctatt 900 aaaaaaaaa aa 972

<210> 359

<211> 135

<212> PRT

<213> Homo sapiens

<400> 359

Met Arg Ile Met Leu Leu Phe Thr Ala Ile Leu Ala Phe Ser Leu 1 5 10 15

Ala Gln Ser Phe Gly Ala Val Cys Lys Glu Pro Gln Glu Glu Val 20 25 30

Val Pro Gly Gly Gly Arg Ser Lys Arg Asp Pro Asp Leu Tyr Gln
35 40

Leu Leu Gln Arg Leu Phe Lys Ser His Ser Ser Leu Glu Gly Leu 50 55 60

Leu Lys Ala Leu Ser Gln Ala Ser Thr Asp Pro Lys Glu Ser Thr 65 70 75

Ser Pro Glu Lys Arg Asp Met His Asp Phe Phe Val Gly Leu Met 80 85 90

Gly Lys Arg Ser Val Gln Pro Glu Gly Lys Thr Gly Pro Phe Leu 95 100 105

Pro Ser Val Arg Val Pro Arg Pro Leu His Pro Asn Gln Leu Gly
110 115 120

<210> 360

<211> 1738

<212> DNA

<213> Homo sapiens

<400> 360

gggcgtctcc ggctgctcct attgagctgt ctgctcgctg tgcccgctgt 50 gcctgctgtg cccgcgctgt cgccgctgct accgcgtctg ctggacgcgg 100 gagacgccag cgagctggtg attggagccc tgcggagagc tcaagcgccc 150 agetetgece caggagecca ggetgecceg tgagteccat agttgetgea 200 ggagtggagc catgagctgc gtcctgggtg gtgtcatccc cttggggctg 250 ctgttcctgg tctgcggatc ccaaggctac ctcctgccca acgtcactct 300 cttagaggag ctgctcagca aataccagca caacqagtct cactcccggg 350 teegeagage cateeecagg gaggacaagg aggagateet catgetgeac 400 aacaagette ggggccaggt gcageeteag geetecaaca tggagtacat 450 ggtgagcgcc ggctccggcc gcagaggctg gcaccggggg tggggcctgg 500 gccaccagcc tgctctgttc cccagccagc tctgttcccc agccagtgcg 550 tgtgatgget ggctcagggt ctcctctggc aggggaggat cccggctctg 600 ttctgttttg tttgtttgtt ttgagacagg gtctcactct gccactgacg 650 ctggagtgca atggcacaat cgtcatgccc tgaaacctta gactcccggg 700 gttaagcgat cctgcttcag cctcccaagt agctggaact acaggcatgc 750 accatggtgc ccagctagat tttaaatatt ttgtggagat gggggtcttg 800 ctacgttgcc caggctggtc ttgaactcct aggctcaagc aatcctcctg 850 cctcagcctc tcaaagtgct aggattatag gcatgagtca ccctgtctgg 900 ctctggctct gttcttaaca ttctgccaaa acaacacacg tgggttccct 950 gtgcagagcc tgcctcgttg ccttcatgtc actcttggta gctccactgg 1000 gaacacaget etcageettt eccaeetgga ggeagagtgg ggaggggeee 1050 agggctgggc tttgctgatg ctgatctcag ctgtgccaca cgctagctgc 1100 accaccetga etteteetta geeegtgtga geeteaettt eeaettggag 1150 agteetteet egegtggttg ceatgactgt gagataagte gaggetgtga 1200 agggcccggc acagactgac ctgcctcccc aacccctagg ctttgctaac 1250 cgggaaagga gctaacggtg acagaagaca gccaaggtca accctcccgg 1300 gtgattgtga tgggtgttcc aggtgtggtt gggcgatgct gctacttgac 1350

cccaagctcc agtgtgaaa cttccttcct ggctgtttt ccagaactac 1400
agaggaatgg accacagtct tccagggtcc ctcctcgtcc accaaccggg 1450
agcctccacc ttggccatcc gtcagctatg aatggctttt taaacaaacc 1500
cacgtcccag cctgggtaac atggtaaagc cccgtctcta caaaaaaatc 1550
caagttagcc gggcatggtg gtgcgcacct gtagtcccag ctgcagtggg 1600
actgaggtgg aggtggaggt gggggtggg agctgaggaa ggaggatcgc 1650
ttgagcctgg gaagtcgagg ctgcagtgag ctgagattgc accactgcac 1700
tccagcctgg gtgacagagc aagaccctgt ctcaaaaa 1738

<210> 361

<211> 159

<212> PRT

<213> Homo sapiens

<400> 361

Leu Val Cys Gly Ser Gln Gly Tyr Leu Leu Pro Asn Val Thr Leu 20 25 30

Leu Glu Glu Leu Leu Ser Lys Tyr Gln His Asn Glu Ser His Ser 35 40 45

Arg Val Arg Arg Ala Ile Pro Arg Glu Asp Lys Glu Glu Ile Leu
50 55 60

Met Leu His Asn Lys Leu Arg Gly Gln Val Gln Pro Gln Ala Ser 65 70 75

Asn Met Glu Tyr Met Val Ser Ala Gly Ser Gly Arg Arg Gly Trp $80\,$ $85\,$ 90

His Arg Gly Trp Gly Leu Gly His Gln Pro Ala Leu Phe Pro Ser 95 100 105

Gln Leu Cys Ser Pro Ala Ser Ala Cys Asp Gly Trp Leu Arg Val 110 115 120

Ser Ser Gly Arg Gly Gly Ser Arg Leu Cys Ser Val Leu Phe Val 125 130 135

Cys Phe Glu Thr Gly Ser His Ser Ala Thr Asp Ala Gly Val Gln 140 145 150

Trp His Asn Arg His Ala Leu Lys Pro

<210> 362

<211> 422

<212> DNA

<213> Homo sapiens

<400> 362

aaggagaggc caccgggact tcagtgtctc ctccatccca ggagcgcagt 50

ggccactatg gggtctgggc tgccccttgt cctcctcttg accctccttg 100 gcagctcaca tggaacaggg ccgggtatga ctttgcaact gaagctgaag 150 gagtcttttc tgacaaattc ctcctatgag tccagcttcc tggaattgct 200 tgaaaagctc tgcctcctcc tccatctccc ttcagggacc agcgtcaccc 250 tccaccatgc aagatctcaa caccatgttg tctgcaacac atgacagcca 300 ttgaagcctg tgtccttctt ggcccgggct tttgggccgg ggatgcagga 350 ggcaggcccc gaccctgtct ttcagcaggc ccccaccctc ctgagtggca 400 ataaataaaa ttcggtatgc tg 422

<210> 363

<211> 78

<212> PRT

<213> Homo sapiens

<400> 363

Met Gly Ser Gly Leu Pro Leu Val Leu Leu Thr Leu Leu Gly

Ser Ser His Gly Thr Gly Pro Gly Met Thr Leu Gln Leu Lys Leu

Lys Glu Ser Phe Leu Thr Asn Ser Ser Tyr Glu Ser Ser Phe Leu

Glu Leu Leu Glu Lys Leu Cys Leu Leu Leu His Leu Pro Ser Gly

Thr Ser Val Thr Leu His His Ala Arg Ser Gln His His Val Val

Cys Asn Thr

<210> 364

<211> 826

<212> DNA

<213> Homo sapiens

<400> 364

ctttctgagt ttcaaaaaca acagactagt actctaaaga actctttaaa 100 acaattaact gttaggattg cagttatgat tggatattat ttaattctgt 150 ttctgatgtg gggttcctcc actgtgttct gtgtgctatt aatatttacc 200 attgcagaag cttcattcag tgttgaaaat gaatgcttag tggatctgtg 250 cctcttacgc atatgttaca aattatctgg agttcctaat caatgcagag 300 ttcccctccc ctccgattgt tctaaataat tgaaagatgt ctgctgtgga 350 aaaaggcatg tatttaaatc tgtatgattc tcaaccatct ttagttggga 400 aaggtccttg aaagccaatg gaaatacttt ttttttttct tggcactaat 450

caagtgagtg ttacctttc acttagtagg atgtgttgtt acgctagtaa 500 aatagaaacc tgtgtttatt ctcaggtatt ttagaaacaa cagccatcat 550 tttattttat gtgtgttc ttggctgtat tcataaatta tatatttgg 600 gctatcaaat attacttcat tcaatataaa taacaatagt agaagttgtt 650 tacttagata tgctttctag ttgcatttc tcagcctatg taagactact 700 ttgttgtaat agcctttgaa atttacagta ctgtctctct actatctca 750 gattacttga ttcaaataaa ccaattatgt ttgtaattga tattaataaa 800 accagaataa aagttcatat ctaccc 826

<210> 365 <211> 67 <212> PRT <213> Homo

<213> Homo sapiens

<400> 365

Met Ile Gly Tyr Tyr Leu Ile Leu Phe Leu Met Trp Gly Ser Ser 1 5 10 15

Thr Val Phe Cys Val Leu Leu Ile Phe Thr Ile Ala Glu Ala Ser 20 25 30

Phe Ser Val Glu Asn Glu Cys Leu Val Asp Leu Cys Leu Leu Arg 35 40 45

Ile Cys Tyr Lys Leu Ser Gly Val Pro Asn Gln Cys Arg Val Pro
50 55 60

Leu Pro Ser Asp Cys Ser Lys
65

<210> 366 <211> 2475 <212> DNA <213> Homo sapiens

<400> 366
gaggatttgc cacagcagcg gatagagcag gagagcacca ccggagccct 50

tgagacatcc ttgagaagag ccacagcata agagactgcc ctgcttggtg 100

ttttgcagga tgatggtggc ccttcgagga gcttctgcat tgctggttct 150

gttccttgca gctttctgc ccccgccgca gtgtacccag gacccagcca 200

tggtgcatta catctaccag cgctttcgag tcttggagca agggctggaa 250

aaatgtaccc aagcaacgag ggcatacatt caagaattcc aagagttctc 300

aaaaaatata tctgtcatgc tgggaagatg tcagacctac acaagtgagt 350

acaagagtgc agtgggtaac ttggcactga gagttgaacg tgcccaacgg 400

gagattgact acatacaata ccttcgagag gctgacgagt gcatcgtatc 450

agagggacaag acactggcag aaatgttgct ccaagaagct gaagaagaga 500

aaaagatccg gactctgctg aatgcaagct gtgacaacat gctgatgggc 550 ataaagtctt tgaaaatagt gaagaagatg atggacacac atggctcttg 600 gatgaaagat gctgtctata actctccaaa ggtgtactta ttaattggat 650 ccagaaacaa cactgtttgg gaatttgcaa acatacgggc attcatggag 700 gataacacca agccagetee eeggaagcaa ateetaacae ttteetggea 750 gggaacaggc caagtgatct acaaaggttt tctatttttt cataaccaag 800 caacttctaa tgagataatc aaatataacc tgcagaagag gactgtggaa 850 gategaatge tgeteecagg aggggtagge egageattgg tttaccagea 900 ctccccctca acttacattg acctggctgt ggatgagcat gggctctggg 950 ccatccactc tgggccaggc acccatagcc atttggttct cacaaagatt 1000 gagccgggca cactgggagt ggagcattca tgggataccc catgcagaag 1050 ccaggatgct gaagcctcat tcctcttgtg tggggttctc tatgtggtct 1100 acagtactgg gggccagggc cetcategea teacetgeat etatgateea 1150 ctgggcacta tcagtgagga ggacttgccc aacttgttct tccccaagag 1200 accaagaagt cactccatga tccattacaa ccccagagat aagcagctct 1250 atgcctggaa tgaaggaaac cagatcattt acaaactcca gacaaagaga 1300 aagctgcctc tgaagtaatg cattacagct gtgagaaaga gcactgtggc 1350 tttggcagct gttctacagg acagtgaggc tatagcccct tcacaatata 1400 gtatccctct aatcacaca aggaagagtg tgtagaagtg gaaatacgta 1450 tgcctccttt cccaaatgtc actgccttag gtatcttcca agagcttaga 1500 tgagagcata tcatcaggaa agtttcaaca atgtccatta ctcccccaaa 1550 cctcctggct ctcaaggatg accacattct gatacagcct acttcaagcc 1600 ttttgtttta ctgctcccca gcatttactg taactctgcc atcttccctc 1650 ccacaattag agttgtatgc cagcccctaa tattcaccac tggcttttct 1700 ctcccctggc ctttgctgaa gctcttccct ctttttcaaa tgtctattga 1750 tattctccca ttttcactgc ccaactaaaa tactattaat atttctttct 1800 tttcttttct ttttttgag acaaggtctc actatgttgc ccaggctggt 1850 ctcaaactcc agagctcaag agatcctcct gcctcagcct cctaagtacc 1900 tgggattaca ggcatgtgcc accacactg gcttaaaata ctattctta 1950 ttgaggttta acctetattt cccctagccc tgtccttcca ctaagcttgg 2000 tagatgtaat aataaagtga aaatattaac atttgaatat cgctttccag 2050 gtgtggagtg tttgcacatc attgaattct cgtttcacct ttgtgaaaca 2100

tgcacaagtc tttacagctg tcattctaga gtttaggtga gtaacacaat 2150 tacaaagtga aagatacagc tagaaaatac tacaaatccc atagttttc 2200 cattgcccaa ggaagcatca aatacgtatg tttgttcacc tactcttata 2250 gtcaatgcgt tcatcgtttc agcctaaaaa taatagtctg tccctttagc 2300 cagttttcat gtctgcacaa gacctttcaa taggcctttc aaatgataat 2350 tcctccagaa aaccagtcta agggtgagga ccccaactct agcctcctct 2400 tgtcttgctg tcctctgttt ctctctttct gctttaaatt caataaagt 2450 gacactgagc aaaaaaaaaa aaaaa 2475

<210> 367

<211> 402

<212> PRT

<213> Homo sapiens

<400> 367

Met Met Val Ala Leu Arg Gly Ala Ser Ala Leu Leu Val Leu Phe 1 5 10 15

Leu Ala Ala Phe Leu Pro Pro Pro Gln Cys Thr Gln Asp Pro Ala 20 25 30

Met Val His Tyr Ile Tyr Gln Arg Phe Arg Val Leu Glu Gln Gly 35 40 45

Leu Glu Lys Cys Thr Gln Ala Thr Arg Ala Tyr Ile Gln Glu Phe 50 55 60

Gln Glu Phe Ser Lys Asn Ile Ser Val Met Leu Gly Arg Cys Gln 65 70 75

Thr Tyr Thr Ser Glu Tyr Lys Ser Ala Val Gly Asn Leu Ala Leu 80 85 90

Arg Val Glu Arg Ala Gln Arg Glu Ile Asp Tyr Ile Gln Tyr Leu 95 100 105

Arg Glu Ala Asp Glu Cys Ile Val Ser Glu Asp Lys Thr Leu Ala 110 115 120

Glu Met Leu Leu Gl
n Glu Ala Glu Glu Glu Lys Lys Ile Arg Thr
 125 130 135

Leu Leu Asn Ala Ser Cys Asp Asn Met Leu Met Gly Ile Lys Ser 140 145 150

Leu Lys Ile Val Lys Lys Met Met Asp Thr His Gly Ser Trp Met
155 160 165

Lys Asp Ala Val Tyr Asn Ser Pro Lys Val Tyr Leu Leu Ile Gly
170 175

Ser Arg Asn Asn Thr Val Trp Glu Phe Ala Asn Ile Arg Ala Phe 185 190 195

Met Glu Asp Asn Thr Lys Pro Ala Pro Arg Lys Gln Ile Leu Thr 200 205 210

Leu Ser Trp Gln Gly Thr Gly Gln Val Ile Tyr Lys Gly Phe Leu 215 Phe Phe His Asn Gln Ala Thr Ser Asn Glu Ile Ile Lys Tyr Asn 230 235 240 Leu Gln Lys Arg Thr Val Glu Asp Arg Met Leu Leu Pro Gly Gly 250 255 Val Gly Arg Ala Leu Val Tyr Gln His Ser Pro Ser Thr Tyr Ile 270 Asp Leu Ala Val Asp Glu His Gly Leu Trp Ala Ile His Ser Gly 275 Pro Gly Thr His Ser His Leu Val Leu Thr Lys Ile Glu Pro Gly 290 295 300 Thr Leu Gly Val Glu His Ser Trp Asp Thr Pro Cys Arg Ser Gln 305 310 315 Asp Ala Glu Ala Ser Phe Leu Leu Cys Gly Val Leu Tyr Val Val 320 Tyr Ser Thr Gly Gly Gln Gly Pro His Arg Ile Thr Cys Ile Tyr 335 345 Asp Pro Leu Gly Thr Ile Ser Glu Glu Asp Leu Pro Asn Leu Phe 360 Phe Pro Lys Arg Pro Arg Ser His Ser Met Ile His Tyr Asn Pro 365 375 Arg Asp Lys Gln Leu Tyr Ala Trp Asn Glu Gly Asn Gln Ile Ile 380 Tyr Lys Leu Gln Thr Lys Arg Lys Leu Pro Leu Lys 395

<210> 368

<211> 2281

<212> DNA

<213> Homo sapiens

<400> 368

gggcgcccgc gtactcacta gctgaggtgg cagtggttcc accaacatgg 50
agctctcgca gatgtcggag ctcatggggc tgtcggtgtt gcttgggetg 100
ctggccctga tggcgacggc ggcggtagcg cgggggtggc tgcgcggggg 150
ggagggagag agcggccggc ccgcctgcca aaaagcaaat ggatttccac 200
ctgacaaatc ttcgggatcc aagaagcaga aacaatatca gcggattcgg 250
aaggagaagc ctcaacaaca caacttcacc caccgcctcc tggctgcagc 300
tctgaagagc cacagcgga acatatcttg catggacttt agcagcaatg 350
gcaaatacct ggctacctgt gcagatgatc gcaccatccg catctggagc 400
accaaggact tcctgcagcg agagcaccgc agcatgagag ccaacgtgga 450

gctggaccac gccaccctgg tgcgcttcag ccctgactgc agagccttca 500 tcgtctggct ggccaacggg gacaccctcc gtgtcttcaa gatgaccaag 550 cgggaggatg ggggctacac cttcacagcc accccagagg acttccctaa 600 aaagcacaag gcgcctgtca tcgacattgg cattgctaac acagggaagt 650 ttatcatgac tgcctccagt gacaccactg tcctcatctg gagcctgaag 700 ggtcaagtgc tgtctaccat caacaccaac cagatgaaca acacacacgc 750 tgctgtatct ccctgtggca gatttgtagc ctcgtgtggc ttcaccccag 800 atgtgaaggt ttgggaagtc tgctttggaa agaaggggga gttccaggag 850 gtggtgcgag ccttcgaact aaagggccac tccgcggctg tgcactcgtt 900 tgctttctcc aacgactcac ggaggatggc ttctgtctcc aaggatggta 950 catggaaact gtgggacaca gatgtggaat acaagaagaa gcaggacccc 1000 tacttgctga agacaggccg ctttgaagag gcggcgggtg ccgcgccgtg 1050 ccgcctggcc ctctccccca acgcccaggt cttggccttg gccagtggca 1100 gtagtattca tctctacaat acccggcggg gcgagaagga ggagtgcttt 1150 gagegggtee atggegagtg tategeeaac ttgteetttg acateaetgg 1200 ccgctttctg gcctcctgtg gggaccgggc ggtgcggctg tttcacaaca 1250 ctcctggcca ccgagccatg gtggaggaga tgcagggcca cctgaagcgg 1300 gcctccaacg agagcacccg ccagaggctg cagcagcagc tgacccaggc 1350 ccaagagacc ctgaagagcc tgggtgccct gaagaagtga ctctgggagg 1400 gcccggcgca gaggattgag gaggagggat ctggcctcct catggcactg 1450 ctgccatctt tcctcccagg tggaagcctt tcagaaggag tctcctggtt 1500 ttcttactgg tggccctgct tcttcccatt gaaactactc ttgtctactt 1550 aggtetetet ettettgetg getgtgaete etecetgaet agtggecaag 1600 gtgcttttct tcctcccagg cccagtgggt ggaatctgtc cccacctggc 1650 tggccttgtg gcagcacatc ctcacaccca aagaagtttg taaatgttcc 1750 agaacaacct agagaacacc tgagtactaa gcagcagttt tgcaaggatg 1800 ggagactggg atagcttccc atcacagaac tgtgttccat caaaaagaca 1850 ctaagggatt tccttctggg cctcagttct atttgtaaga tggagaataa 1900 tcctctctgt gaactccttg caaagatgat atgaggctaa gagaatatca 1950 agtccccagg tctggaagaa aagtagaaaa gagtagtact attgtccaat 2000 gtcatgaaag tggtaaaagt gggaaccagt gtgctttgaa accaaattag 2050

<210> 369

<211> 447

<212> PRT

<213> Homo sapiens

<400> 369

Met Glu Leu Ser Gln Met Ser Glu Leu Met Gly Leu Ser Val Leu 1 5 10 15

Leu Gly Leu Leu Ala Leu Met Ala Thr Ala Ala Val Ala Arg Gly
20 25 30

Trp Leu Arg Ala Gly Glu Glu Arg Ser Gly Arg Pro Ala Cys Gln 35 40 45

Lys Ala Asn Gly Phe Pro Pro Asp Lys Ser Ser Gly Ser Lys 50 55 60

Gln Lys Gln Tyr Gln Arg Ile Arg Lys Glu Lys Pro Gln Gln His
65 70 75

Asn Phe Thr His Arg Leu Leu Ala Ala Leu Lys Ser His Ser 80 85 90

Gly Asn Ile Ser Cys Met Asp Phe Ser Ser Asn Gly Lys Tyr Leu 95 100 105

Ala Thr Cys Ala Asp Asp Arg Thr Ile Arg Ile Trp Ser Thr Lys 110 115 120

Asp Phe Leu Gln Arg Glu His Arg Ser Met Arg Ala Asn Val Glu 125 130 135

Leu Asp His Ala Thr Leu Val Arg Phe Ser Pro Asp Cys Arg Ala 140 145 150

Phe Ile Val Trp Leu Ala Asn Gly Asp Thr Leu Arg Val Phe Lys 155 160 165

Met Thr Lys Arg Glu Asp Gly Gly Tyr Thr Phe Thr Ala Thr Pro 170 175 180

Glu Asp Phe Pro Lys Lys His Lys Ala Pro Val Ile Asp Ile Gly 185 190 195

Ile Ala Asn Thr Gly Lys Phe Ile Met Thr Ala Ser Ser Asp Thr 200 205 210

Thr Val Leu Ile Trp Ser Leu Lys Gly Gln Val Leu Ser Thr Ile 215 220 225

Asn Thr Asn Gln Met Asn Asn Thr His Ala Ala Val Ser Pro Cys 230 235 240

Gly Arg Phe Val Ala Ser Cys Gly Phe Thr Pro Asp Val Lys Val 245 Trp Glu Val Cys Phe Gly Lys Lys Gly Glu Phe Gln Glu Val Val 260 Arg Ala Phe Glu Leu Lys Gly His Ser Ala Ala Val His Ser Phe Ala Phe Ser Asn Asp Ser Arg Met Ala Ser Val Ser Lys Asp 290 300 Gly Thr Trp Lys Leu Trp Asp Thr Asp Val Glu Tyr Lys Lys 305 Gln Asp Pro Tyr Leu Leu Lys Thr Gly Arg Phe Glu Glu Ala Ala 320 325 Gly Ala Ala Pro Cys Arg Leu Ala Leu Ser Pro Asn Ala Gln Val 335 340 Leu Ala Leu Ala Ser Gly Ser Ser Ile His Leu Tyr Asn Thr Arg 355 Arg Gly Glu Lys Glu Glu Cys Phe Glu Arg Val His Gly Glu Cys 365 Ile Ala Asn Leu Ser Phe Asp Ile Thr Gly Arg Phe Leu Ala Ser 385 Cys Gly Asp Arg Ala Val Arg Leu Phe His Asn Thr Pro Gly His 400 Arg Ala Met Val Glu Glu Met Gln Gly His Leu Lys Arg Ala Ser 410 Asn Glu Ser Thr Arg Gln Arg Leu Gln Gln Gln Leu Thr Gln Ala 425 430 Gln Glu Thr Leu Lys Ser Leu Gly Ala Leu Lys Lys

<210> 370

<211> 1415

<212> DNA

<213> Homo sapiens

<400> 370

tggcctcccc agcttgccag gcacaaggct gagcgggagg aagcgagagg 50
catctaagca ggcagtgttt tgccttcacc ccaagtgacc atgagaggtg 100
ccacgcgagt ctcaatcatg ctcctcctag taactgtgtc tgactgtgct 150
gtgatcacag gggcctgtga gcgggatgtc cagtgtgggg caggcacctg 200
ctgtgccatc agcctgtggc ttcgagggct gcggatgtgc accccgctgg 250
ggcgggaagg cgaggagtgc cacccggca gccacaaggt ccccttcttc 300
aggaaacgca agcaccaca ctgtccttgc ttgcccaacc tgctgtgctc 350
caggttcccg gacggcaggt accgctgctc catggacttg aagaacatca 400

445

atttttaggc gcttgcctgg tctcaggata cccaccatcc ttttcctgag 450 cacagootgg attittatti otgocatgaa accoagotoo catgactoto 500 ccagtcccta cactgactac cctgatctct cttgtctagt acgcacatat 550 gcacacagge agacatacet eccateatga catggteece aggetggeet 600 gaggatgtca cagcttgagg ctgtggtgtg aaaggtggcc agcctggttc 650 tcttccctgc tcaggctgcc agagaggtgg taaatggcag aaaggacatt 700 ccccctcccc tccccaggtg acctgctctc tttcctgggc cctgcccctc 750 tececacatg tatecetegg tetgaattag acatteetgg geacaggete 800 ttgggtgcat tgctcagagt cccaggtcct ggcctgaccc tcaggccctt 850 cacgtgaggt ctgtgaggac caatttgtgg gtagttcatc ttccctcgat 900 tggttaactc cttagtttca gaccacagac tcaagattgg ctcttcccag 950 agggcagcag acagtcaccc caaggcaggt gtagggagcc cagggaggcc 1000 aatcagcccc ctgaagactc tggtcccagt cagcctgtgg cttgtggcct 1050 gtgacctgtg accttctgcc agaattgtca tgcctctgag gccccctctt 1100 accacacttt accagttaac cactgaagcc cccaattccc acagcttttc 1150 cattaaaatg caaatggtgg tggttcaatc taatctgata ttgacatatt 1200 agaaggcaat tagggtgttt ccttaaacaa ctcctttcca aggatcagcc 1250 ctgagagcag gttggtgact ttgaggaggg cagtcctctg tccagattgg 1300 ggtgggagca agggacaggg agcagggcag gggctgaaag gggcactgat 1350 tcagaccagg gaggcaacta cacaccaaca tgctggcttt agaataaaag 1400 caccaactga aaaaa 1415

<210> 371

<211> 105

<212> PRT

<213> Homo sapiens

<400> 371

Met Arg Gly Ala Thr Arg Val Ser Ile Met Leu Leu Val Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Val Ser Asp Cys Ala Val Ile Thr Gly Ala Cys Glu Arg Asp Val $20 \\ 25 \\ 30$

Gln Cys Gly Ala Gly Thr Cys Cys Ala Ile Ser Leu Trp Leu Arg 35 40 45

Gly Leu Arg Met Cys Thr Pro Leu Gly Arg Glu Gly Glu Cys
50 55 60

His Pro Gly Ser His Lys Val Pro Phe Phe Arg Lys Arg Lys His
65 70 75

His Thr Cys Pro Cys Leu Pro Asn Leu Leu Cys Ser Arg Phe Pro 80 85 90

Asp Gly Arg Tyr Arg Cys Ser Met Asp Leu Lys Asn Ile Asn Phe 95 100 105

<210> 372

<211> 1281

<212> DNA

<213> Homo sapiens

<400> 372

agcgcccggg cgtcggggcg gtaaaaggcc ggcagaaggg aggcacttga 50 gaaatgtctt tcctccagga cccaagtttc ttcaccatgg ggatgtggtc 100 cattggtgca ggagccctgg gggctgctgc cttggcattg ctgcttgcca 150 acacagacgt gtttctgtcc aagccccaga aagcggccct ggagtacctg 200 gaggatatag acctgaaaac actggagaag gaaccaagga ctttcaaagc 250 aaaggagcta tgggaaaaaa atggagctgt gattatggcc gtgcggaggc 300 caggetgttt cctctgtcga gaggaagctg cggatctgtc ctccctgaaa 350 agcatgttgg accagctggg cgtccccctc tatgcagtgg taaaggagca 400 catcaggact gaagtgaagg atttccagcc ttatttcaaa ggagaaatct 450 tcctggatga aaagaaaaag ttctatggtc cacaaaggcg gaagatgatg 500 tttatgggat ttatccgtct gggagtgtgg tacaacttct tccgagcctg 550 gaacggaggc ttctctggaa acctggaagg agaaggcttc atccttgggg 600 gagttttcgt ggtgggatca ggaaagcagg gcattcttct tgagcaccga 650 gaaaaagaat ttggagacaa agtaaaccta ctttctgttc tggaagctgc 700 taagatgatc aaaccacaga ctttggcctc agagaaaaaa tgattgtgtg 750 aaactgccca gctcagggat aaccagggac attcacctgt gttcatggga 800 tgtattgttt ccactcgtgt ccctaaggag tgagaaaccc atttatactc 850 tactctcagt atggattatt aatgtatttt aatattctgt ttaggcccac 900 taaggcaaaa tagccccaaa acaagactga caaaaatctg aaaaactaat 950 gaggattatt aagctaaaac ctgggaaata ggaggcttaa aattgactgc 1000 caggetgggt geagtggete acaeetgtaa teecageaet ttgggaggee 1050 aaggtgagca agtcacttga ggtcgggagt tcgagaccag cctgagcaac 1100 atggcgaaac cccgtctcta ctaaaaatac aaaaatcacc cgggtgtggt 1150 ggcaggcacc tgtagtccca gctacccggg aggctgaggc aggagaatca 1200 cttgaacctg ggaggtggag gttgcggtga gctgagatca caccactgta 1250 ttccagcctg ggtgactgag actctaacta a 1281

```
<210> 373
<211> 229
<212> PRT
<213> Homo sapiens
<400> 373
Met Ser Phe Leu Gln Asp Pro Ser Phe Phe Thr Met Gly Met Trp
 Ser Ile Gly Ala Gly Ala Leu Gly Ala Ala Leu Ala Leu Leu
 Leu Ala Asn Thr Asp Val Phe Leu Ser Lys Pro Gln Lys Ala Ala
 Leu Glu Tyr Leu Glu Asp Ile Asp Leu Lys Thr Leu Glu Lys Glu
 Pro Arg Thr Phe Lys Ala Lys Glu Leu Trp Glu Lys Asn Gly Ala
 Val Ile Met Ala Val Arg Arg Pro Gly Cys Phe Leu Cys Arg Glu
 Glu Ala Ala Asp Leu Ser Ser Leu Lys Ser Met Leu Asp Gln Leu
 Gly Val Pro Leu Tyr Ala Val Val Lys Glu His Ile Arg Thr Glu
                                     115
 Val Lys Asp Phe Gln Pro Tyr Phe Lys Gly Glu Ile Phe Leu Asp
                 125
                                     130
 Glu Lys Lys Lys Phe Tyr Gly Pro Gln Arg Arg Lys Met Met Phe
 Met Gly Phe Ile Arg Leu Gly Val Trp Tyr Asn Phe Phe Arg Ala
                 155
                                     160
 Trp Asn Gly Gly Phe Ser Gly Asn Leu Glu Gly Glu Gly Phe Ile
                 170
 Leu Gly Gly Val Phe Val Val Gly Ser Gly Lys Gln Gly Ile Leu
                 185
 Leu Glu His Arg Glu Lys Glu Phe Gly Asp Lys Val Asn Leu Leu
 Ser Val Leu Glu Ala Ala Lys Met Ile Lys Pro Gln Thr Leu Ala
```

Ser Glu Lys Lys

<210> 374

<211> 744

<212> DNA

<213> Homo sapiens

<400> 374

acggaccgag ggttcgaggg agggacacgg accaggaacc tgagctaggt 50 caaagacgcc cgggccaggt gccccgtcgc aggtgcccct ggccggagat 100

<210> 375

<211> 123

<212> PRT

<213> Homo sapiens

<400> 375

Met Ala Asn Pro Gly Leu Gly Leu Leu Leu Ala Leu Gly Leu Pro 1 5 10 15

Phe Leu Leu Ala Arg Trp Gly Arg Ala Trp Gly Gln Ile Gln Thr 20 25 30

Thr Ser Ala Asn Glu Asn Ser Thr Val Leu Pro Ser Ser Thr Ser 35 40 45

Ser Ser Ser Asp Gly Asn Leu Arg Pro Glu Ala Ile Thr Ala Ile
50 55 60

Ile Val Val Phe Ser Leu Leu Ala Ala Leu Leu Leu Ala Val Gly 65 70 75

Leu Ala Leu Leu Val Arg Lys Leu Arg Glu Lys Arg Gln Thr Glu
80 85 90

Gly Thr Tyr Arg Pro Ser Ser Glu Glu Gln Phe Ser His Ala Ala 95 100 105

Leu Pro Ile

<210> 376

<211> 713

<212> DNA

<213> Homo sapiens

<400> 376 aatatatcat ctatttatca ttaatcaata atqtattctt ttattccaat 50 aacatttggg ttttgggatt ttaattttca aacacagcag aatgacattt 100 tttctgtcac tattattatt gttggtatgt gaagctattt ggagatccaa 150 ttcaggaagc aacacattgg agaatggcta ctttctatca agaaataaag 200 agaaccacag tcaacccaca caatcatctt tagaagacag tgtgactcct 250 accaaagctg tcaaaaccac aggcaagggc atagttaaag gacggaatct 300 tgactcaaga gggttaattc ttggtgctga agcctggggc aggggtgtaa 350 agaaaaacac ttagattcaa tgattgtaaa tttaaggcaa atacacatat 400 tagtattacc ttagtgtaat gtatccctgt catatataca ataaggtgaa 450 attataagta ccctatgcag ttggctggac agttctaaat tggactttat 500 taatttttaa aatcagtaac tgatttatca ctggctatgt gcttagatct 550 acaggagate atataatttg atacaaataa aagaaaagtg tteteteec 600 ttacagaatt gacattttaa atgcgataca gttagaatag gaaatatgac 650 attagaaagg aagaatgaca gggagaaagg aaagaaggga aaatgttgcc 700 aaggaaaaaa aaa 713

<210> 377

<211> 90

<212> PRT

<213> Homo sapiens

<400> 377

Met Thr Phe Phe Leu Ser Leu Leu Leu Leu Leu Val Cys Glu Ala 1 5 10

Ile Trp Arg Ser Asn Ser Gly Ser Asn Thr Leu Glu Asn Gly Tyr 20 25 30

Phe Leu Ser Arg Asn Lys Glu Asn His Ser Gln Pro Thr Gln Ser 35 40 45

Ser Leu Glu Asp Ser Val Thr Pro Thr Lys Ala Val Lys Thr Thr 50 60

Gly Lys Gly Ile Val Lys Gly Arg Asn Leu Asp Ser Arg Gly Leu 65 70 75

Ile Leu Gly Ala Glu Ala Trp Gly Arg Gly Val Lys Lys Asn Thr 80 85 90

<210> 378

<211> 3265

<212> DNA

<213> Homo sapiens

<400> 378

cctcttagtt ctgtqcctqc tqcaccaqtc aaatacttcc ttcattaaqc 100 tgaataataa tggctttgaa gatattgtca ttgttataga tcctagtgtg 150 ccagaagatg aaaaaataat tgaacaaata gaggatatgg tgactacagc 200 ttctacgtac ctgtttgaag ccacagaaaa aagatttttt ttcaaaaaatg 250 tatctatatt aattcctgag aattggaagg aaaatcctca gtacaaaagg 300 ccaaaacatg aaaaccataa acatgctgat gttatagttg caccacctac 350 actcccaggt agagatgaac catacaccaa gcagttcaca gaatgtggag 400 agaaaggcga atacattcac ttcacccctg accttctact tggaaaaaaa 450 caaaatgaat atggaccacc aggcaaactg tttgtccatg agtgggctca 500 cctccggtgg ggagtgtttg atgagtacaa tgaagatcag cctttctacc 550 gtgctaagtc aaaaaaaatc gaagcaacaa ggtgttccgc aggtatctct 600 ggtagaaata gagtttataa gtgtcaagga ggcagctgtc ttagtagagc 650 atgcagaatt gattctacaa caaaactgta tggaaaagat tgtcaattct 700 ttcctgataa agtacaaaca gaaaaagcat ccataatgtt tatgcaaagt 750 attgattctg ttgttgaatt ttgtaacgaa aaaacccata atcaagaagc 800 tccaagccta caaaacataa agtgcaattt tagaagtaca tgggaggtga 850 ttagcaattc tgaggatttt aaaaacacca tacccatggt gacaccacct 900 cctccacctg tettetcatt getgaagate agtcaaagaa ttgtgtgett 950 agttcttgat aagtctggaa gcatgggggg taaggaccgc ctaaatcgaa 1000 tgaatcaagc agcaaaacat ttcctgctgc agactgttga aaatggatcc 1050 tgggtgggga tggttcactt tgatagtact gccactattg taaataagct 1100 aatccaaata aaaagcagtg atgaaagaaa cacactcatg gcaggattac 1150 ctacatatcc tctgggagga acttccatct gctctggaat taaatatgca 1200 tttcaggtga ttggagagct acattcccaa ctcgatggat ccgaagtact 1250 gctgctgact gatggggagg ataacactgc aagttcttqt attgatgaag 1300 tgaaacaaag tggggccatt gttcatttta ttgctttggg aagagctgct 1350 gatgaagcag taatagagat gagcaagata acaggaggaa gtcatttta 1400 tgtttcagat gaagctcaga acaatggcct cattgatgct tttggggctc 1450 ttacatcagg aaatactgat ctctcccaga agtcccttca gctcgaaagt 1500 aagggattaa cactgaatag taatgcctgg atgaacgaca ctgtcataat 1550 tgatagtaca gtgggaaagg acacgttctt tctcatcaca tggaacagtc 1600 tgcctcccag tatttctctc tgggatccca gtggaacaat aatggaaaat 1650

ttcacagtgg atgcaacttc caaaatggcc tatctcagta ttccaggaac 1700 tgcaaaggtg ggcacttggg catacaatct tcaagccaaa gcgaacccag 1750 aaacattaac tattacagta acttctcgag cagcaaattc ttctgtgcct 1800 ccaatcacag tgaatgctaa aatgaataag gacgtaaaca gtttccccag 1850 cccaatgatt gtttacgcag aaattctaca aggatatgta cctgttcttg 1900 gagecaatgt gactgettte attgaateae agaatggaea tacagaagtt 1950 ttggaacttt tggataatgg tgcaggcgct gattctttca agaatgatgg 2000 agtctactcc aggtatttta cagcatatac agaaaatggc agatatagct 2050 taaaagttcg ggctcatgga ggagcaaaca ctgccaggct aaaattacgg 2100 cctccactga atagagccgc gtacatacca ggctgggtag tgaacgggga 2150 aattgaagca aacccgccaa gacctgaaat tgatgaggat actcagacca 2200 ccttggagga tttcagccga acagcatccg gaggtgcatt tgtggtatca 2250 caagtcccaa gccttccctt gcctgaccaa tacccaccaa gtcaaatcac 2300 agaccttgat gccacagttc atgaggataa gattattctt acatggacag 2350 caccaggaga taattttgat gttggaaaag ttcaacgtta tatcataaga 2400 ataagtgcaa gtattcttga tctaagagac agttttgatg atgctcttca 2450 agtaaatact actgatctgt caccaaagga ggccaactcc aaggaaagct 2500 ttgcatttaa accagaaat atctcagaag aaaatgcaac ccacatattt 2550 attgccatta aaagtataga taaaagcaat ttgacatcaa aagtatccaa 2600 cattgcacaa gtaactttgt ttatccctca agcaaatcct gatgacattg 2650 atcctacacc tactcctact cctactccta ctcctgataa aagtcataat 2700 tctggagtta atatttctac gctggtattg tctgtgattg ggtctgttgt 2750 aattgttaac tttattttaa gtaccaccat ttgaacctta acgaagaaaa 2800 aaatcttcaa gtagacctag aagagagttt taaaaaacaa aacaatgtaa 2850 gtaaaggata tttctgaatc ttaaaattca tcccatgtgt gatcataaac 2900 tcataaaaat aattttaaga tgtcggaaaa ggatactttg attaaataaa 2950 aacactcatg gatatgtaaa aactgtcaag attaaaattt aatagtttca 3000 tttatttgtt attttatttg taagaaatag tgatgaacaa agatcctttt 3050 tcatactgat acctggttgt atattatttg atgcaacagt tttctgaaat 3100 gatatttcaa attgcatcaa gaaattaaaa tcatctatct gagtagtcaa 3150 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 3250

aaaaaaaaa aaaaa 3265

<210> 379

<211> 919

<212> PRT

<213> Homo sapiens

<400> 379

Met Gly Leu Phe Arg Gly Phe Val Phe Leu Leu Val Leu Cys Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu His Gln Ser Asn Thr Ser Phe Ile Lys Leu Asn Asn Gly
20 25 30

Phe Glu Asp Ile Val Ile Val Ile Asp Pro Ser Val Pro Glu Asp 35 40 45

Glu Lys Ile Ile Glu Gln Ile Glu Asp Met Val Thr Thr Ala Ser
50 55 60

Thr Tyr Leu Phe Glu Ala Thr Glu Lys Arg Phe Phe Lys Asn
65 70 75

Val Ser Ile Leu Ile Pro Glu Asn Trp Lys Glu Asn Pro Gln Tyr 80 85 90

Lys Arg Pro Lys His Glu Asn His Lys His Ala Asp Val Ile Val $95 \hspace{1.5cm} 100 \hspace{1.5cm} 105$

Ala Pro Pro Thr Leu Pro Gly Arg Asp Glu Pro Tyr Thr Lys Gln
110 115 120

Phe Thr Glu Cys Gly Glu Lys Gly Glu Tyr Ile His Phe Thr Pro 125 130 135

Asp Leu Leu Gly Lys Lys Gln Asn Glu Tyr Gly Pro Pro Gly
140 145 150

Lys Leu Phe Val His Glu Trp Ala His Leu Arg Trp Gly Val Phe \$155\$ 160 \$165

Asp Glu Tyr Asn Glu Asp Gln Pro Phe Tyr Arg Ala Lys Ser Lys 170 175

Lys Ile Glu Ala Thr Arg Cys Ser Ala Gly Ile Ser Gly Arg Asn 185 190

Arg Val Tyr Lys Cys Gln Gly Gly Ser Cys Leu Ser Arg Ala Cys 200 205

Arg Ile Asp Ser Thr Thr Lys Leu Tyr Gly Lys Asp Cys Gln Phe 215 220 225

Phe Pro Asp Lys Val Gln Thr Glu Lys Ala Ser Ile Met Phe Met 230 235

Gln Ser Ile Asp Ser Val Val Glu Phe Cys Asn Glu Lys Thr His 245 250 255

Asn Gln Glu Ala Pro Ser Leu Gln Asn Ile Lys Cys Asn Phe Arg 260 265 270

Ser Thr Trp Glu Val Ile Ser Asn Ser Glu Asp Phe Lys Asn Thr

				275	5				280)				285
Ile	Pro	o Me	t Vai	1 Thi 290	Pro	Pro	Pro	Pro	Pro 295	Val	. Phe	e Ser	: Lei	1 Leu 300
Lys	Ile	e Se:	c Glr	a Arg 305	ı Ile	val	Суз	Leu	Val 310		Asp	Lys	Sei	Gly 315
Ser	Met	: Gly	7 Gly	, Lys 320	Asp	Arg	Leu	Asn	Arg 325		Asn	Gln	ı Ala	Ala 330
Lys	His	s Phe	e Leu	1 Leu 335	Gln	Thr	Val	Glu	Asn 340	Gly	Ser	Trp	Val	Gly 345
Met	Val	His	Ph∈	350	Ser	Thr	Ala	Thr	Ile 355	Val	Asn	Lys	Leu	Ile 360
Gln	Ile	. Lys	Ser	Ser 365	Asp	Glu	Arg	Asn	Thr 370	Leu	Met	Ala	Gly	Leu 375
Pro	Thr	Туг	Pro	Leu 380	Gly	Gly	Thr	Ser	Ile 385	Cys	Ser	Gly	Ile	Lys 390
Tyr	Ala	Phe	Gln	. Val 395	Ile	Gly	Glu	Leu	His 400	Ser	Gln	Leu	Asp	Gly 405
Ser	Glu	Val	Leu	Leu 410	Leu	Thr	Asp	Gly	Glu 415	Asp	Asn	Thr	Ala	Ser 420
Ser	Cys	Ile	Asp	Glu 425	Val	Lys	Gln	Ser	Gly 430	Ala	Ile	Val	His	Phe 435
Ile	Ala	Leu	Gly	Arg 440	Ala	Ala	Asp	Glu	Ala 445	Val	Ile	Glu	Met	Ser 450
Lys	Ile	Thr	Gly	Gly 455	Ser	His	Phe	Tyr	Val 460	Ser	Asp	Glu	Ala	Gln 465
Asn	Asn	Gly	Leu	Ile 470	Asp	Ala	Phe	Gly	Ala 475	Leu	Thr	Ser	Gly	Asn 480
Thr	Asp	Leu	Ser	Gln 485	Lys	Ser	Leu	Gln	Leu 490	Glu	Ser	Lys	Gly	Leu 495
Thr	Leu	Asn	Ser	Asn 500	Ala	Trp	Met	Asn	Asp 505	Thr	Val	Ile	Ile	Asp 510
Ser	Thr	Val	Gly	Lys 515	Asp	Thr	Phe	Phe	Leu 520	Ile	Thr	Trp	Asn	Ser 525
Leu	Pro	Pro	Ser	Ile 530	Ser	Leu	Trp	Asp	Pro 535	Ser	Gly	Thr	Ile	Met 540
Glu 1	Asn	Phe	Thr	Val 545	Asp	Ala	Thr	Ser	Lys 550	Met	Ala	Tyr	Leu	Ser 555
Ile :	Pro	Gly	Thr	Ala 560	Lys	Val	Gly	Thr	Trp 565	Ala	Tyr	Asn	Leu	Gln 570
Ala 1	Lys	Ala	Asn	Pro 575	Glu	Thr	Leu		Ile 580	Thr	Val	Thr	Ser	Arg 585
Ala A	Ala	Asn	Ser	Ser	Val	Pro	Pro	Ile	Thr	Val	Asn	Ala	Lys	Met

				590	0				595	,				600
Asn	ı Ly:	s Ası	o Vai	l Ası 60!	n Sei 5	r Phe	e Pro	Ser	Pro 610		∶Il∈	val	Туз	Ala 615
Glu	ı Ile	e Lei	ı Glı	n Gly 620	у Туг)	r Val	L Pro	Val	Leu 625	Gly	Ala	. Asr	ı Val	Thr 630
Ala	Phe	e Ile	e Glu	1 Sen 635	Glr	n Asr	ı Gly	7 His	Thr 640		Val	Let	ı Glu	Leu 645
Leu	Asp	Asr	ı Gly	7 Ala 650	a Gly	Ala	Asp) Ser	Phe 655		Asn	Asp	Gly	7 Val 660
Tyr	Ser	Arç	ј Туг	Phe 665	Thr	: Ala	Tyr	Thr	Glu 670	Asn	Gly	Arg	Туг	Ser 675
Leu	Lys	Val	Arç	Ala 680	His	Gly	Gly	Ala	Asn 685	Thr	Ala	Arg	Leu	Lys 690
Leu	Arg	Pro	Pro	695	Asn	Arg	Ala	Ala	Tyr 700	Ile	Pro	Gly	Trp	Val 705
Val	Asn	Gly	glu	Ile 710	Glu	Ala	Asn	Pro	Pro 715	Arg	Pro	Glu	Ile	Asp 720
Glu	Asp	Thr	Gln	Thr 725	Thr	Leu	Glu	Asp	Phe 730	Ser	Arg	Thr	Ala	Ser 735
Gly	Gly	Ala	Phe	Val 740	Val	Ser	Gln	Val	Pro 745	Ser	Leu	Pro	Leu	Pro 750
Asp	Gln	Tyr	Pro	Pro 755	Ser	Gln	Ile	Thr	Asp 760	Leu	Asp	Ala	Thr	Val 765
His	Glu	Asp	Lys	Ile 770	Ile	Leu	Thr	Trp	Thr 775	Ala	Pro	Gly	Asp	Asn 780
Phe	Asp	Val	Gly	Lys 785	Val	Gln	Arg	Tyr	Ile 790	Ile	Arg	Ile	Ser	Ala 795
Ser	Ile	Leu	Asp	Leu 800	Arg	Asp	Ser	Phe	Asp 805	Asp	Ala	Leu	Gln	Val 810
Asn	Thr	Thr	Asp	Leu 815	Ser	Pro	Lys	Glu	Ala 820	Asn	Ser	Lys	Glu	Ser 825
Phe	Ala	Phe	Lys	Pro 830	Glu	Asn	Ile	Ser	Glu 835	Glu	Asn	Ala	Thr	His 840
Ile	Phe	Ile	Ala	Ile 845	Lys	Ser	Ile	Asp	Lys 850	Ser	Asn	Leu	Thr	Ser 855
Lys	Val	Ser	Asn	Ile 860	Ala	Gln	Val	Thr	Leu 865	Phe	Ile	Pro	Gln	Ala 870
Asn	Pro	Asp	Asp	Ile 875	Asp	Pro	Thr	Pro	Thr 880	Pro	Thr	Pro	Thr	Pro 885
Thr	Pro	Asp	Lys	Ser 890	His	Asn	Ser	Gly	Val 895	Asn	Ile	Ser	Thr	Leu 900
Val	Leu	Ser	Val	Ile	Gly	Ser	Val	Val	Ile	Val.	Asn	Phe	Ile	Leu

905 910 915

Ser Thr Thr Ile

<210> 380 <211> 3877 <212> DNA <213> Homo sapiens

<400> 380 ctccttaggt ggaaaccctg ggagtagagt actgacagca aagaccggga 50 aagaccatac gtccccgggc aggggtgaca acaggtgtca tctttttgat 100 ctcgtgtgtg gctgccttcc tatttcaagg aaagacgcca aggtaatttt 150 gacccagagg agcaatgatg tagccacctc ctaaccttcc cttcttgaac 200 ccccagttat gccaggattt actagagagt gtcaactcaa ccagcaagcg 250 gctccttcgg cttaacttgt ggttggagga gagaaccttt gtggggctgc 300 gttctcttag cagtgctcag aagtgacttg cctgagggtg gaccagaaga 350 aaggaaaggt cccctcttgc tgttggctgc acatcaggaa ggctgtgatg 400 ggaatgaagg tgaaaacttg gagatttcac ttcagtcatt gcttctgcct 450 gcaagatcat cctttaaaag tagagaagct gctctgtgtg gtggttaact 500 ccaagaggca gaactcgttc tagaaggaaa tggatgcaag cagctccggg 550 ggccccaaac gcatgcttcc tgtggtctag cccagggaag cccttccgtg 600 ggggcccgg ctttgaggga tgccaccggt tctggacgca tggctgattc 650 ctgaatgatg atggttcgcc gggggctgct tgcgtggatt tcccgggtgg 700 tggttttgct ggtgctcctc tgctgtgcta tctctgtcct gtacatgttg 750 gcctgcaccc caaaaggtga cgaggagcag ctggcactgc ccagggccaa 800 cagececacg gggaaggagg ggtaccagge cgteetteag gagtgggagg 850 agcagcaccg caactacgtg agcagcctga agcggcagat cgcacagctc 900 aaggaggagc tgcaggagag gagtgagcag ctcaggaatg ggcagtacca 950 agccagcgat gctgctggcc tgggtctgga caggagcccc ccagagaaaa 1000 cccaggccga cctcctggcc ttcctgcact cqcaggtgga caaggcagag 1050 gtgaatgctg gcgtcaagct ggccacagag tatgcagcag tgcctttcga 1100 tagctttact ctacagaagg tgtaccagct ggagactggc cttacccgcc 1150 accccgagga gaagcctgtg aggaaggaca agcgggatga gttggtggaa 1200 gccattgaat cagccttgga gaccctgaac aatcctgcag agaacagccc 1250

caatcaccgt ccttacacgg cctctgattt catagaaggg atctaccgaa 1300

cagaaaggga caaagggaca ttgtatgagc tcaccttcaa aggggaccac 1350 aaacacgaat tcaaacggct catcttattt cgaccattca gccccatcat 1400 gaaagtgaaa aatgaaaagc tcaacatggc caacacgctt atcaatgtta 1450 tcgtgcctct agcaaaaagg gtggacaagt tccggcagtt catgcagaat 1500 ttcagggaga tgtgcattga gcaggatggg agagtccatc tcactgttgt 1550 ttactttggg aaagaagaaa taaatgaagt caaaggaata cttgaaaaca 1600 cttccaaagc tgccaacttc aggaacttta ccttcatcca gctgaatgga 1650 gaattttctc ggggaaaggg acttgatgtt ggagcccgct tctggaaggg 1700 aagcaacgtc cttctctttt tctgtgatgt ggacatctac ttcacatctg 1750 aattcctcaa tacgtgtagg ctgaatacac agccagggaa gaaggtattt 1800 tatccagttc ttttcagtca gtacaatcct ggcataatat acggccacca 1850 tgatgcagtc cctcccttgg aacagcagct ggtcataaag aaggaaactg 1900 gattttggag agactttgga tttgggatga cgtgtcagta tcggtcagac 1950 ttcatcaata taggtgggtt tgatctggac atcaaaggct ggggcggaga 2000 ggatgtgcac ctttatcgca agtatctcca cagcaacctc atagtggtac 2050 ggacgcctgt gcgaggactc ttccacctct ggcatgagaa gcgctgcatg 2100 gacgagetga ecceegagea gtacaagatg tgeatgeagt ecaaggeeat 2150 gaacgaggca tcccacggcc agctgggcat gctggtgttc aggcacgaga 2200 tagaggetea cettegeaaa cagaaacaga agacaagtag caaaaaaaca 2250 tgaactccca gagaaggatt gtgggagaca ctttttcttt ccttttgcaa 2300 ttactgaaag tggctgcaac agagaaaaga cttccataaa ggacgacaaa 2350 agaattggac tgatgggtca gagatgagaa agcctccgat ttctctctgt 2400 tgggcttttt acaacagaaa tcaaaatctc cgctttgcct gcaaaagtaa 2450 cccagttgca ccctqtgaag tqtctgacaa aggcagaatq cttqtqaqat 2500 tataagccta atggtgtgga ggttttgatg gtgtttacaa tacactgaga 2550 cctgttgttt tgtgtgctca ttgaaatatt catgatttaa gagcagtttt 2600 gtaaaaaatt cattagcatg aaaggcaagc atatttctcc tcatatgaat 2650 gagcctatca gcagggctct agtttctagg aatgctaaaa tatcagaagg 2700 caggagagga gataggctta ttatgatact agtgagtaca ttaagtaaaa 2750 taaaatggac cagaaaagaa aagaaaccat aaatatcqtq tcatattttc 2800 cccaagatta accaaaaata atctgcttat ctttttggtt gtccttttaa 2850 ctgtctccgt ttttttcttt tatttaaaaa tgcacttttt ttcccttgtg 2900

agttatagtc tgcttattta attaccactt tgcaagcctt acaagagagc 2950 acaagttggc ctacattttt atatttttta agaagatact ttgagatgca 3000 ttatgagaac tttcagttca aagcatcaaa ttgatgccat atccaaggac 3050 atgccaaatg ctgattctgt caggcactga atgtcaggca ttgagacata 3100 gggaaggaat ggtttgtact aatacagacg tacagatact ttctctgaag 3150 agtattttcg aagaggagca actgaacact ggaggaaaag aaaatgacac 3200 tttctgcttt acagaaaagg aaactcattc agactggtga tatcgtgatg 3250 tacctaaaag tcagaaacca cattttctcc tcagaagtag ggaccgcttt 3300 cttacctgtt taaataaacc aaagtatacc gtgtgaacca aacaatctct 3350 tttcaaaaca gggtgctcct cctggcttct ggcttccata agaagaaatg 3400 gagaaaaata tatatata tatatatatt gtgaaagatc aatccatctg 3450 ccagaatcta gtgggatgga agtttttgct acatgttatc caccccaggc 3500 caggtggaag taactgaatt atttttaaa ttaagcagtt ctactcaatc 3550 accaagatgc ttctgaaaat tgcattttat taccatttca aactattttt 3600 taaaaataaa tacagttaac atagagtggt ttcttcattc atgtgaaaat 3650 tattagccag caccagatgc atgagctaat tatctctttg agtccttgct 3700 tetgtttget cacagtaaac teattgttta aaagetteaa gaacatteaa 3750 gctgttggtg tgttaaaaaa tgcattgtat tgatttgtac tggtagttta 3800 tgaaatttaa ttaaaacaca ggccatgaat ggaaggtggt attgcacagc 3850 taataaaata tgatttgtgg atatgaa 3877

<210> 381

<211> 532

<212> PRT

<213> Homo sapiens

<400> 381

Met Met Met Val Arg Arg Gly Leu Leu Ala Trp Ile Ser Arg Val 1 5 10

Val Val Leu Leu Val Leu Leu Cys Cys Ala Ile Ser Val Leu Tyr
20 25 30

Met Leu Ala Cys Thr Pro Lys Gly Asp Glu Glu Gln Leu Ala Leu
35

Pro Arg Ala Asn Ser Pro Thr Gly Lys Glu Gly Tyr Gln Ala Val
50 55

Leu Gln Glu Trp Glu Glu Gln His Arg Asn Tyr Val Ser Ser Leu 65 70 75

Lys Arg Gln Ile Ala Gln Leu Lys Glu Glu Leu Gln Glu Arg Ser 80 85 90

Glu Gln Leu Arg Asn Gly Gln Tyr Gln Ala Ser Asp Ala Ala Gly Leu Gly Leu Asp Arg Ser Pro Pro Glu Lys Thr Gln Ala Asp Leu 110 115 Leu Ala Phe Leu His Ser Gln Val Asp Lys Ala Glu Val Asn Ala Gly Val Lys Leu Ala Thr Glu Tyr Ala Ala Val Pro Phe Asp Ser Phe Thr Leu Gln Lys Val Tyr Gln Leu Glu Thr Gly Leu Thr Arg 155 160 His Pro Glu Glu Lys Pro Val Arg Lys Asp Lys Arg Asp Glu Leu Val Glu Ala Ile Glu Ser Ala Leu Glu Thr Leu Asn Asn Pro Ala Glu Asn Ser Pro Asn His Arg Pro Tyr Thr Ala Ser Asp Phe Ile 200 205 Glu Gly Ile Tyr Arg Thr Glu Arg Asp Lys Gly Thr Leu Tyr Glu 215 Leu Thr Phe Lys Gly Asp His Lys His Glu Phe Lys Arg Leu Ile Leu Phe Arg Pro Phe Ser Pro Ile Met Lys Val Lys Asn Glu Lys Leu Asn Met Ala Asn Thr Leu Ile Asn Val Ile Val Pro Leu Ala Lys Arg Val Asp Lys Phe Arg Gln Phe Met Gln Asn Phe Arg Glu 280 Met Cys Ile Glu Gln Asp Gly Arg Val His Leu Thr Val Val Tyr 290 295 Phe Gly Lys Glu Glu Ile Asn Glu Val Lys Gly Ile Leu Glu Asn 305 310 Thr Ser Lys Ala Ala Asn Phe Arg Asn Phe Thr Phe Ile Gln Leu Asn Gly Glu Phe Ser Arg Gly Lys Gly Leu Asp Val Gly Ala Arg Phe Trp Lys Gly Ser Asn Val Leu Leu Phe Phe Cys Asp Val Asp 355 Ile Tyr Phe Thr Ser Glu Phe Leu Asn Thr Cys Arg Leu Asn Thr 365 370 Gln Pro Gly Lys Lys Val Phe Tyr Pro Val Leu Phe Ser Gln Tyr 380 385 Asn Pro Gly Ile Ile Tyr Gly His His Asp Ala Val Pro Pro Leu

400

<212> DNA

```
Glu Gln Gln Leu Val Ile Lys Lys Glu Thr Gly Phe Trp Arg Asp
 Phe Gly Phe Gly Met Thr Cys Gln Tyr Arg Ser Asp Phe Ile Asn
                 425
                                      430
 Ile Gly Gly Phe Asp Leu Asp Ile Lys Gly Trp Gly Gly Glu Asp
 Val His Leu Tyr Arg Lys Tyr Leu His Ser Asn Leu Ile Val Val
                 455
 Arg Thr Pro Val Arg Gly Leu Phe His Leu Trp His Glu Lys Arg
                 470
                                      475
 Cys Met Asp Glu Leu Thr Pro Glu Gln Tyr Lys Met Cys Met Gln
 Ser Lys Ala Met Asn Glu Ala Ser His Gly Gln Leu Gly Met Leu
                 500
                                      505
 Val Phe Arg His Glu Ile Glu Ala His Leu Arg Lys Gln Lys Gln
                 515
                                      520
                                                          525
Lys Thr Ser Ser Lys Lys Thr
                 530
<210> 382
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 382
ctcggggaaa gggacttgat gttgg 25
<210> 383
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 383
gcgaaggtga gcctctatct cgtgcc 26
<210> 384
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 384
cagcctacac gtattgagg 19
<210> 385
<211> 48
```

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 385
 cagtcagtac aatcctggca taatatacgg ccaccatgat gcagtccc 48
<210> 386
<211> 1346
<212> DNA
<213> Homo sapiens
<400> 386
 gaaagaatgt tgtggctgct cttttttctg gtgactgcca ttcatgctga 50
actctgtcaa ccaggtgcag aaaatgcttt taaagtgaga cttagtatca 100
gaacagetet gggagataaa geatatgeet gggataeeaa tgaagaatae 150
ctcttcaaag cgatggtagc tttctccatg agaaaagttc ccaacagaga 200
agcaacagaa atttcccatg tcctactttg caatgtaacc cagagggtat 250
cattctggtt tgtggttaca gacccttcaa aaaatcacac ccttcctgct 300
gttgaggtgc aatcagccat aagaatgaac aagaaccgga tcaacaatgc 350
cttctttcta aatgaccaaa ctctggaatt tttaaaaatc ccttccacac 400
ttgcaccacc catggaccca tctgtgccca tctggattat tatatttggt 450
gtgatatttt gcatcatcat agttgcaatt gcactactga ttttatcagg 500
gatctggcaa cgtagaagaa agaacaaaga accatctgaa gtggatgacg 550
ctgaagataa gtgtgaaaac atgatcacaa ttgaaaatgg catcccctct 600
gatcccctgg acatgaaggg gggcatatta atgatgcctt catgacagag 650
gatgagaggc tcacccctct ctgaagggct gttgttctgc ttcctcaaga 700
aattaaacat ttgtttctgt gtgactgctg agcatcctga aataccaaga 750
gcagatcata tattttgttt caccattctt cttttgtaat aaattttgaa 800
tgtgcttgaa agtgaaaagc aatcaattat acccaccaac accactgaaa 850
tcataagcta ttcacgactc aaaatattct aaaatatttt tctgacagta 900
tagtgtataa atgtggtcat gtggtatttg tagttattga tttaagcatt 950
tttagaaata agatcaggca tatgtatata ttttcacact tcaaagacct 1000
aaggaaaaat aaattttcca gtggagaata catataatat ggtgtagaaa 1050
tcattgaaaa tggatccttt ttgacgatca cttatatcac tctgtatatg 1100
actaagtaaa caaaagtgag aagtaattat tgtaaatgga tggataaaaa 1150
tggaattact catatacagg gtggaatttt atcctgttat cacaccaaca 1200
```

gttgattata tattttctga atatcagccc ctaataggac aattctattt 1250

gttgaccatt tctacaattt gtaaaagtcc aatctgtgct aacttaataa 1300 agtaataatc atctctttt aaaaaaaaaa aaaaaaaaa aaaaaa 1346

<210> 387

<211> 212

<212> PRT

<213> Homo sapiens

<400> 387

Met Leu Trp Leu Leu Phe Phe Leu Val Thr Ala Ile His Ala Glu 1 5 10 15

Leu Cys Gln Pro Gly Ala Glu Asn Ala Phe Lys Val Arg Leu Ser 20 25 30

Ile Arg Thr Ala Leu Gly Asp Lys Ala Tyr Ala Trp Asp Thr Asn 35 40 45

Glu Glu Tyr Leu Phe Lys Ala Met Val Ala Phe Ser Met Arg Lys 50 55 60

Val Pro Asn Arg Glu Ala Thr Glu Ile Ser His Val Leu Leu Cys
65 70 75

Asn Val Thr Gln Arg Val Ser Phe Trp Phe Val Val Thr Asp Pro $80\ . \ \ 85\ \ 90$

Ser Lys Asn His Thr Leu Pro Ala Val Glu Val Gln Ser Ala Ile 95 100 105

Arg Met Asn Lys Asn Arg Ile Asn Asn Ala Phe Phe Leu Asn Asp 110 115 120

Gln Thr Leu Glu Phe Leu Lys Ile Pro Ser Thr Leu Ala Pro Pro 125 130 135

Met Asp Pro Ser Val Pro Ile Trp Ile Ile Ile Phe Gly Val Ile 140 145 150

Phe Cys Ile Ile Ile Val Ala Ile Ala Leu Leu Ile Leu Ser Gly
155 160 165

Ile Trp Gln Arg Arg Arg Lys Asn Lys Glu Pro Ser Glu Val Asp 170 175 180

Asp Ala Glu Asp Lys Cys Glu Asn Met Ile Thr Ile Glu Asn Gly 185 190 190

Ile Pro Ser Asp Pro Leu Asp Met Lys Gly Gly Ile Leu Met Met 200 205

Pro Ser

<210> 388

<211> 1371

<212> DNA

<213> Homo sapiens

<400> 388

aactcaaact cctctctcg ggaaaacgcg gtgcttgctc ctcccggagt 50

ggccttggca gggtgttgga gccctcggtc tgccccgtcc ggtctctggg 100 gccaaggctg ggtttccctc atgtatggca agagctctac tcgtgcggtg 150 cttcttctcc ttggcataca gctcacagct ctttggccta tagcagctgt 200 ggaaatttat acctcccggg tgctggaggc tgttaatggg acagatgctc 250 ggttaaaatg cactttctcc agctttgccc ctgtgggtga tgctctaaca 300 gtgacctgga attttcgtcc tctagacggg ggacctgagc agtttgtatt 350 ctactaccac atagatccct tccaacccat gagtgggcgg tttaaggacc 400 gggtgtcttg ggatgggaat cctgagcggt acgatgcctc catccttctc 450 tggaaactgc agttcgacga caatgggaca tacacctgcc aggtgaagaa 500 cccacctgat gttgatgggg tgatagggga gatccggctc agcgtcgtgc 550 acactgtacg cttctctgag atccacttcc tggctctggc cattggctct 600 gcctgtgcac tgatgatcat aatagtaatt gtagtggtcc tcttccagca 650 ttaccggaaa aagcgatggg ccgaaagagc tcataaagtg gtggagataa 700 aatcaaaaga agaggaaagg ctcaaccaag agaaaaaggt ctctgtttat 750 ttagaagaca cagactaaca attttagatg gaagctgaga tgatttccaa 800 gaacaagaac cctagtattt cttgaagtta atggaaactt ttctttggct 850 tttccagttg tgacccgttt tccaaccagt tctgcagcat attagattct 900 agacaagcaa cacccctctg gagccagcac agtgctcctc catatcacca 950 gtcatacaca gcctcattat taaggtctta tttaatttca gagtgtaaat 1000 tttttcaagt gctcattagg ttttataaac aagaagctac atttttgccc 1050 ttaagacact acttacagtg ttatgacttg tatacacata tattggtatc 1100 aaaggggata aaagccaatt tgtctgttac atttcctttc acgtatttct 1150 tttagcagca cttctgctac taaagttaat gtgtttactc tctttccttc 1200 ccacattete aattaaaagg tgagetaage eteeteggtg tttetgatta 1250 acagtaaatc ctaaattcaa actgttaaat gacattttta tttttatgtc 1300 tctccttaac tatgagacac atcttgtttt actgaatttc tttcaatatt 1350 ccaggtgata gatttttgtc g 1371

<210> 389

<211> 215

<212> PRT

<213> Homo sapiens

<400> 389

Met Tyr Gly Lys Ser Ser Thr Arg Ala Val Leu Leu Leu Gly
1 5 10 15

Ile Gln Leu Thr Ala Leu Trp Pro Ile Ala Ala Val Glu Ile Tyr Thr Ser Arg Val Leu Glu Ala Val Asn Gly Thr Asp Ala Arg Leu Lys Cys Thr Phe Ser Ser Phe Ala Pro Val Gly Asp Ala Leu Thr Val Thr Trp Asn Phe Arg Pro Leu Asp Gly Gly Pro Glu Gln Phe Val Phe Tyr Tyr His Ile Asp Pro Phe Gln Pro Met Ser Gly Arg Phe Lys Asp Arg Val Ser Trp Asp Gly Asn Pro Glu Arg Tyr Asp Ala Ser Ile Leu Leu Trp Lys Leu Gln Phe Asp Asp Asn Gly Thr 110 115 120 Tyr Thr Cys Gln Val Lys Asn Pro Pro Asp Val Asp Gly Val Ile Gly Glu Ile Arg Leu Ser Val Val His Thr Val Arg Phe Ser Glu Ile His Phe Leu Ala Leu Ala Ile Gly Ser Ala Cys Ala Leu Met 155 160 Ile Ile Val Ile Val Val Leu Phe Gln His Tyr Arg Lys Lys Arg Trp Ala Glu Arg Ala His Lys Val Val Glu Ile Lys Ser 185 Lys Glu Glu Arg Leu Asn Gln Glu Lys Lys Val Ser Val Tyr 210 Leu Glu Asp Thr Asp 215 <210> 390 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 390 ccgaggccat ctagaggcca gagc 24 <210> 391

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 391

acaggcagag ccaatggcca gagc 24

<211> 25

```
<210> 392
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 gagaggactg cgggagtttg ggacctttgt gcagacgtgc tcatq 45
<210> 393
<211> 471
<212> DNA
<213> Homo sapiens
<400> 393
 gcatttttgt ctgtgctccc tgatcttcag gtcaccacca tgaagttctt 50
 agcagtcctg gtactcttgg gagtttccat ctttctggtc tctgcccaga 100
 atccgacaac agctgctcca gctgacacgt atccagctac tggtcctgct 150
 gatgatgaag cccctgatgc tgaaaccact gctgctgcaa ccactgcgac 200
 cactgctgct cctaccactg caaccaccgc tgcttctacc actgctcgta 250
 aagacattcc agttttaccc aaatqqqttq qqqatctccc qaatqqtaqa 300
 gtgtgtccct gagatggaat cagcttgagt cttctgcaat tggtcacaac 350
 tattcatgct tcctgtgatt tcatccaact acttaccttg cctacgatat 400
 cccctttatc tctaatcagt ttattttctt tcaaataaaa aataactatg 450
 agcaacataa aaaaaaaaa a 471
<210> 394
<211> 90
<212> PRT
<213> Homo sapiens
<400> 394
Met Lys Phe Leu Ala Val Leu Val Leu Gly Val Ser Ile Phe
Leu Val Ser Ala Gln Asn Pro Thr Thr Ala Ala Pro Ala Asp Thr
 Tyr Pro Ala Thr Gly Pro Ala Asp Asp Glu Ala Pro Asp Ala Glu
 Thr Thr Ala Ala Ala Thr Thr Ala Thr Thr Ala Ala Pro Thr Thr
                  50
                                      55
Ala Thr Thr Ala Ala Ser Thr Thr Ala Arg Lys Asp Ile Pro Val
Leu Pro Lys Trp Val Gly Asp Leu Pro Asn Gly Arg Val Cys Pro
<210> 395
```

```
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 395
gctccctgat cttcatgtca ccacc 25
<210> 396
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 396
 cagggacaca ctctaccatt cgggag 26
<210> 397
<211> 42
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 397
ccatctttct ggtctctgcc cagaatccga caacagctgc tc 42
<210> 398
<211> 907
<212> DNA
<213> Homo sapiens
<400> 398
 ggactctgaa ggtcccaagc agctgctgag gcccccaagg aagtggttcc 50
 aaccttggac ccctaggggt ctggatttgc tggttaacaa gataacctga 100
 gggcaggacc ccatagggga atgctacctc ctgcccttcc acctgccctg 150
 gtgttcacgg tggcctggtc cctccttgcc gagagagtgt cctgggtcag 200
 ggacgcagag gacgctcaca gactccagcc ctttgttacc gagaggacac 250
 ttggcaaggt ccagcgatgg tccggagtcc acacacagac tgqcgqcagg 300
 gcaggagggg gacagttctg ttgtgcttgg ttggacagta agagggtctt 350
 ggccagtcca gggtggggg cggcaaactc cataaagaac cagagggtct 400
 gggccccggc cacagagtca tctgcccagc tcctctgctg ctqqccaqtq 450
ggagtggcac gaggtggggc tttgtgccag taaaaccaca ggctggattt 500
gcctgcgggc catggtccct gtctagggca gcaattctca accttcttgc 550
 tctcaggacc ccaaagagct ttcattgtat ctattgattt ttaccacatt 600
 agcaattaaa actgagaaat gggccgggca cggtggctca cgcctgtaat 650
```

cccagcactt tgggaggccg aggcggtgg atcacctgag atcaggagtt 700 caagaccagc ctggccaaca tggtgaaacc ttgtctacta aaaatacaaa 750 aaattagcca ggcacagtgg tgtgcactgg tagtcccagt tactcgggag 800 gctgaggcag gaaaatcgct tgaacccagg aggcggacgt tgcggtgagc 850 cgagatcgcg ccgctgattc cagcctgggc gacaagagtg agactccatc 900 tcacaca 907

<210> 399

<211> 120

<212> PRT

<213> Homo sapiens

<400> 399

Met Leu Pro Pro Ala Leu Pro Pro Ala Leu Val Phe Thr Val Ala 1 5 10 15

Trp Ser Leu Leu Ala Glu Arg Val Ser Trp Val Arg Asp Ala Glu 20 25 30

Asp Ala His Arg Leu Gln Pro Phe Val Thr Glu Arg Thr Leu Gly 35 40 45

Lys Val Gln Arg Trp Ser Gly Val His Thr Gln Thr Gly Gly Arg
50 55 60

Ala Gly Gly Gln Phe Cys Cys Ala Trp Leu Asp Ser Lys Arg
65 70 75

Val Leu Ala Ser Pro Gly Trp Gly Ala Ala Asn Ser Ile Lys Asn 80 85 90

Gln Arg Val Trp Ala Pro Ala Thr Glu Ser Ser Ala Gln Leu Leu 95 100 105

Cys Cys Trp Pro Val Gly Val Ala Arg Gly Gly Ala Leu Cys Gl
n 110 115 120

<210> 400

<211> 893

<212> DNA

<213> Homo sapiens

<400> 400

gtcatgccag tgcctgctct gtgcctgctc tgggccctgg caatggtgac 50 ccggcctgcc tcagcggccc ccatgggcgg cccagaactg gcacagcatg 100 aggagctgac cctgctcttc catgggaccc tgcagctggg ccaggccctc 150 aacggtgtg acaggaccac ggagggacgg ctgacaaagg ccaggaacag 200 cctgggtctc tatggccgca caatagaact cctggggcag gaggtcagcc 250 ggggccggga tgcagcccag gaacttcggg caagcctgtt ggagactcag 300 atggaggagg atattctgca gctgcaggca gaggccacag ctgaggtgct 350 gggggaggtg gcccaggcac agaaggtgct acgggacaqc gtgcagcgc 400

<210> 401

<211> 198

<212> PRT

<213> Homo sapiens

<400> 401

Met Pro Val Pro Ala Leu Cys Leu Leu Trp Ala Leu Ala Met Val 1 5 10

Thr Arg Pro Ala Ser Ala Ala Pro Met Gly Gly Pro Glu Leu Ala 20 25 30

Gln His Glu Glu Leu Thr Leu Leu Phe His Gly Thr Leu Gln Leu
35 40 45

Gly Gln Ala Leu Asn Gly Val Tyr Arg Thr Thr Glu Gly Arg Leu
50 55 60

Thr Lys Ala Arg Asn Ser Leu Gly Leu Tyr Gly Arg Thr Ile Glu 65 70 75

Leu Leu Gly Gln Glu Val Ser Arg Gly Arg Asp Ala Ala Gln Glu 80 85 90

Leu Arg Ala Ser Leu Leu Glu Thr Gln Met Glu Glu Asp Ile Leu 95 100 105

Gln Leu Gln Ala Glu Ala Thr Ala Glu Val Leu Gly Glu Val Ala 110 115 120

Gln Ala Gln Lys Val Leu Arg Asp Ser Val Gln Arg Leu Glu Val 125 130 135

Gln Leu Arg Ser Ala Trp Leu Gly Pro Ala Tyr Arg Glu Phe Glu
140 145

Val Leu Lys Ala His Ala Asp Lys Gln Ser His Ile Leu Trp Ala 155 160 165

Leu Thr Gly His Val Gln Arg Gln Arg Glu Met Val Ala Gln
170 175 180

Gln His Arg Leu Arg Gln Ile Gln Glu Arg Leu His Thr Ala Ala

185 190 195

Leu Pro Ala

<210> 402 <211> 1915 <212> DNA <213> Homo sapiens

<400> 402 ggcaacatgg ctcagcaggc ttgccccaga gccatggcaa agaatggact 50 tgtaatttgc atcctggtga tcaccttact cctggaccag accaccagcc 100 acacatccag attaaaagcc aggaagcaca gcaaacgtcg agtgagagac 150 aaggatggag atctgaagac tcaaattgaa aagctctgga cagaagtcaa 200 tgccttgaag gaaattcaag ccctgcagac agtctgtctc cgaggcacta 250 aagttcacaa gaaatgctac cttgcttcag aaggtttgaa gcatttccat 300 gaggccaatg aagactgcat ttccaaagga ggaatcctgg ttatccccag 350 gaactccgac gaaatcaacg ccctccaaga ctatggtaaa aggagcctgc 400 caggtgtcaa tgacttttgg ctgggcatca atgacatggt cacggaaggc 450 aagtttgttg acgtcaacgg aatcgctatc tccttcctca actgggaccg 500 tgcacagcct aacggtggca agcgagaaaa ctqtqtcctq ttctcccaat 550 cagctcaggg caagtggagt gatgaggcct gtcgcagcag caagagatac 600 atatgcgagt tcaccatccc taaataggtc tttctccaat gtgtcctcca 650 agcaagattc atcataactt ataggttcat gatctctaag atcaagtaaa 700 aatcataatt tttacttatt aaaaaattgc aacacaagat caatgtccat 750 agcaatatga tagcatcagc caattttgct aacacatttc tttgggattt 800 tgcccttcct ggggtatagg ggatcagaaa tattgatcca tgtqcacgca 850 gataaaatgg cttctgctaa acagactaaa atctttctct ctagtctttc 900 tcacttgtac aaacccagtt tgttttcaaa aaatcacagt agcaatgcaa 950 ctcatcactc tagaaaagca agcttaggct acctgaaaga ttttcccttg 1000 gaagtttagc gtatgtttga ctaacaaaaa ttccctacat cagagactct 1050 aggtgctata taatccaaaa acttttcagc ctgttgctca ttctgtccca 1100 tgctggcaat aataccttgt cagcccatta cccttatttt gaattgctcc 1150 atctcctggt gggacttgta tcttgtctgc catatcagaa cacaaacccc 1200 tgaagaggtt ctgatttgat ttttttttt tcttcatgcc tacccttttt 1250 ttggaagttt ccagccgcaa tttgaaatga aatgacaagg tgtatatttg 1300 atcaattttc attcccacca ttgcattaca acctctaact taaatgggta 1350 accctaaggc atatcaaaga agcagattgc atgataaacg gaaatagaaa 1400 aaaagaacct acatttatt tgctttagca tccttactct caccttttat 1450 gagattgaga gtggacttac atttccttt ttacattttc gtatattat 1500 tttttttagc catcattata tgtttaagtc tattatgggc aaccaatctt 1550 tggaagctga aaactgaatt taaagaatgc tatcttggaa aattgcatac 1600 gtctgtgcaa tttttattc tgcctagtgc tattctgctt gtttaactag 1650 attgtacaaa ataacttcat tgcttaatat caaattacaa agtttagact 1700 tggagggaaa tgggctttt agaagcaaac aattttaaat atattttgtt 1750 cttcaaataa atagtgtta aacattgaat gtgttttgtg aacaatatcc 1800 cactttgcaa actttaacta cacatgcttg gaattaagtt ttagctgtt 1850 tcattgctca ataataaagc ctgaattctg atcaataaa aaaaaaaaa 1900 aaaaaaaaaa aaaaa 1915

<210> 403

<211> 206

<212> PRT

<213> Homo sapiens

<400> 403

Met Ala Gln Gln Ala Cys Pro Arg Ala Met Ala Lys Asn Gly Leu 1 5 10 15

Val Ile Cys Ile Leu Val Ile Thr Leu Leu Leu Asp Gln Thr Thr 20 25 30

Ser His Thr Ser Arg Leu Lys Ala Arg Lys His Ser Lys Arg Arg 45

Val Arg Asp Lys Asp Gly Asp Leu Lys Thr Gln Ile Glu Lys Leu
50 55 60

Trp Thr Glu Val Asn Ala Leu Lys Glu Ile Gln Ala Leu Gln Thr
65 70 75

Val Cys Leu Arg Gly Thr Lys Val His Lys Lys Cys Tyr Leu Ala 80 85 90

Ser Glu Gly Leu Lys His Phe His Glu Ala Asn Glu Asp Cys Ile 95 100 105

Ser Lys Gly Gly Ile Leu Val Ile Pro Arg Asn Ser Asp Glu Ile 110 115 120

Asn Ala Leu Gln Asp Tyr Gly Lys Arg Ser Leu Pro Gly Val Asn 125 130 135

Asp Phe Trp Leu Gly Ile Asn Asp Met Val Thr Glu Gly Lys Phe 140 145

Val Asp Val Asn Gly Ile Ala Ile Ser Phe Leu Asn Trp Asp Arg

	155	160	165								
Ala Gln Pro Asn	Gly Gly Lys 170	Arg Glu Asn Cys 175	s Val Leu Phe Ser 180								
Gln Ser Ala Gln	Gly Lys Trp 185	Ser Asp Glu Ala 190	a Cys Arg Ser Ser 195								
Lys Arg Tyr Ile	Cys Glu Phe 200	Thr Ile Pro Lys	3								
<210> 404 <211> 25 <212> DNA <213> Artificial	Sequence										
<220> <223> Synthetic	oligonucleot	ide probe									
<400> 404 cctggttatc ccca	ggaact ccgac	25									
<210> 405 <211> 23 <212> DNA <213> Artificial	Sequence										
<220> <223> Synthetic oligonucleotide probe											
<400> 405 ctcttgctgc tgcga	<400> 405 ctcttgctgc tgcgacaggc ctc 23										
<210> 406 <211> 46 <212> DNA <213> Artificial Sequence											
<220> <223> Synthetic of	oligonucleot	ide probe									
<400> 406 cgccctccaa gacta	atggta aaagg	agcct gccaggtgtc	aatgac 46								
<210> 407 <211> 570 <212> DNA <213> Homo sapier	15										
<400> 407 gcgaggaccg ggtat	aagaa gcctc	gtggc cttgcccggg	cagccgcagg 50								
tteceegege geece	gagee eeege	gccat gaagctcgcc	gccctcctgg 100								
ggctctgcgt ggcc	tgtcc tgcag	ctccg ctgctgcttt	cttagtgggc 150								
tcggccaagc ctgtc	gccca gcctg	cgct gcgctggagt	cggcggcgga 200								
ggccggggcc gggad	cctgg ccaac	ccct cggcaccctc	aacccgctga 250								
agctcctgct gagca	gcctg ggcato	cccg tgaaccacct	catagagggc 300 ·								
tcccagaagt gtgtg	gctga gctgg	stece caggeegtgg	gggccgtgaa 350								

<210> 408

<211> 104

<212> PRT

<213> Homo sapiens

<400> 408

Met Lys Leu Ala Ala Leu Leu Gly Leu Cys Val Ala Leu Ser Cys 1 5 10 15

Ser Ser Ala Ala Ala Phe Leu Val Gly Ser Ala Lys Pro Val Ala 20 25 30

Gln Pro Val Ala Ala Leu Glu Ser Ala Ala Glu Ala Gly Ala Gly 35 40 45

Thr Leu Ala Asn Pro Leu Gly Thr Leu Asn Pro Leu Lys Leu 50 55 60

Leu Ser Ser Leu Gly Ile Pro Val Asn His Leu Ile Glu Gly Ser
65 70 75

Gln Lys Cys Val Ala Glu Leu Gly Pro Gln Ala Val Gly Ala Val 80 85 90

Lys Ala Leu Lys Ala Leu Gly Ala Leu Thr Val Phe Gly 95 100

<210> 409

<211> 2089

<212> DNA

<213> Homo sapiens

<400> 409

tgaaggactt ttccaggacc caaggccaca cactggaagt cttgcagctg 50
aagggaggca ctccttggcc tccgcagccg atcacatgaa ggtggtgcca 100
agtctcctgc tctccgtcct cctggcacag gtgtggctgg tacccggctt 150
ggcccccagt cctcagtcgc cagagacccc agcccctcag aaccagacca 200
gcagggtagt gcaggctccc agggaggaag aggaagatga gcaggaggcc 250
agcgagggaa aggccggtga ggaagagaaa gcctggctga tggccagcag 300
gcagcagctt gccaaggaga cttcaaactt cggattcagc ctgctgcaa 350
agatctccat gaggcacgat ggcaacatgg tcttctctcc atttggcatg 400
tccttggcca tgacaggctc acttgcaggc cctgaagccc accaagcccg 500
ccagatcaag agagggctcc acttgcaggc cctgaagccc accaagcccg 500

ggctcctgcc ttccctcttt aagggactca gagagaccct ctcccgcaac 550 ctggaactgg gcctctcaca ggggagtttt gccttcatcc acaaggattt 600 tgatgtcaaa gagactttct tcaatttatc caagaggtat tttgatacag 650 agtgcgtgcc tatgaatttt cgcaatgcct cacaggccaa aaggctcatg 700 aatcattaca ttaacaaaga gactcggggg aaaattccca aactgtttga 750 tgagattaat cctgaaacca aattaattct tgtggattac atcttgttca 800 aagggaaatg gttgacccca tttgaccctg tcttcaccga agtcgacact 850 ttccacctgg acaagtacaa gaccattaag gtgcccatga tgtacggtgc 900 aggcaagttt gcctccacct ttgacaagaa ttttcgttgt catgtcctca 950 aactgcccta ccaaggaaat gccaccatgc tggtggtcct catggagaaa 1000 atgggtgacc acctcgccct tgaagactac ctgaccacag acttggtgga 1050 gacatggctc agaaacatga aaaccagaaa catggaagtt ttctttccga 1100 agttcaagct agatcagaag tatgagatgc atgagctgct taggcagatg 1150 ggaatcagaa gaatcttctc accctttgct gaccttagtg aactctcagc 1200 tactggaaga aatctccaag tatccagggt tttacgaaga acagtgattg 1250 aagttgatga aaggggcact gaggcagtgg caggaatctt gtcagaaatt 1300 catgatctat gaagaaacct ctggaatgct tctgtttctg ggcagggtgg 1400 tgaatccgac tctcctataa ttcaggacat gcataagcac ttcgtgctgt 1450 agtagatgct gaatctgagg tatcaaacac acacaggata ccagcaatgg 1500 atggcagggg agagtgttcc ttttgttctt aactagttta gggtgttctc 1550 aaataaatac agtagtcccc acttatctga gggggataca ttcaaagacc 1600 cccagcagat gcctgaaacg gtggacagtg ctgaacctta tatatattt 1650 ttcctacaca tacataccta tgataaagtt taatttataa attaggcaca 1700 gtaagagatt aacaataata acaacattaa gtaaaatgag ttacttgaac 1750 gcaagcactg caataccata acagtcaaac tgattataga gaaggctact 1800 aagtgactca tgggcgagga gcatagacag tgtggagaca ttgggcaagg 1850 ggagaattca catcctgggt gggacagagc aggacgatgc aagattccat 1900 cccactactc agaatggcat gctgcttaag acttttagat tgtttatttc 1950 tggaattttt catttaatgt ttttggacca tggttgacca tggttaactg 2000 agactgcaga aagcaaaacc atggataagg gaggactact acaaaagcat 2050 taaattgata catattttt aaaaaaaaaa aaaaaaaa 2089

<210> 410

<211 <212	> 44 > 44 > PR > Ho	4 .T	apie	ns										
<400	> 41	0												
	Lys		Val	Pro 5	`Ser	Leu	Leu	Leu	Ser 10	Val	Leu	Leu	Ala	Gln 15
Val	Trp	Leu	Val	Pro 20		Leu	Ala	Pro	Ser 25	Pro	Gln	Ser	Pro	Glu 30
Thr	Pro	Ala	Pro	Gln 35	Asn	Gln	Thr	Ser	Arg 40	Val	Val	Gln	Ala	Pro 45
Arg	Glu	Glu	Glu	Glu 50	Asp	Glu	Gln	Glu	Ala 55	Ser	Glu	Glu	Lys	Ala 60
Gly	Glu	Glu	Glu	Lys 65	Ala	Trp	Leu	Met	Ala 70	Ser	Arg	Gln	Gln	Leu 75
Ala	Lys	Glu	Thr	Ser 80	Asn	Phe	Gly	Phe	Ser 85	Leu	Leu	Arg	Lys	Ile 90
Ser	Met	Arg	His	Asp 95	Gly	Asn	Met	Val	Phe 100	Ser	Pro	Phe	Gly	Met 105
Ser	Leu	Ala	Met	Thr 110	Gly	Leu	Met	Leu	Gly 115	Ala	Thr	Gly	Pro	Thr 120
Glu	Thr	Gln	Ile	Lys 125	Arg	Gly	Leu	His	Leu 130	Gln	Ala	Leu	Lys	Pro 135
Thr	Lys	Pro	Gly	Leu 140	Leu	Pro	Ser	Leu	Phe 145	Lys	Gly	Leu	Arg	Glu 150
Thr	Leu	Ser	Arg	Asn 155	Leu	Glu	Leu	Gly	Leu 160	Ser	Gln	Gly	Ser	Phe 165
Ala	Phe	Ile	His	Lys 170	Asp	Phe	Asp	Val	Lys 175	Glu	Thr	Phe	Phe	Asn 180
Leu	Ser	Lys	Arg	Tyr 185	Phe	Asp	Thr	Glu	Cys 190	Val	Pro	Met	Asn	Phe 195
Arg	Asn	Ala	Ser	Gln 200	Ala	Lys	Arg	Leu	Met 205	Asn	His	Tyr	Ile	Asn 210
Lys	Glu	Thr	Arg	Gly 215	Lys	Ile	Pro	Lys	Leu 220	Phe	Asp	Glu	Ile	Asn 225
Pro	Glu	Thr	Lys	Leu 230	Ile	Leu	Val	Asp	Tyr 235	Ile	Leu	Phe	Lys	Gly 240
Lys	Trp	Leu	Thr	Pro 245	Phe	Asp	Pro	Val	Phe 250	Thr	Glu	Val	Asp	Thr 255
Phe	His	Leu	Asp	Lys 260	Tyr	Lys	Thr	Ile	Lys 265	Val	Pro	Met	Met	Tyr 270
Gly	Ala	Gly	Lys	Phe 275	Ala	Ser	Thr	Phe	Asp 280	Lys	Asn	Phe	Arg	Cys 285

His Val Leu Lys Leu Pro Tyr Gln Gly Asn Ala Thr Met Leu Val 290 295 Val Leu Met Glu Lys Met Gly Asp His Leu Ala Leu Glu Asp Tyr 305 315 Leu Thr Thr Asp Leu Val Glu Thr Trp Leu Arg Asn Met Lys Thr 320 325 330 Arg Asn Met Glu Val Phe Phe Pro Lys Phe Lys Leu Asp Gln Lys 345 Tyr Glu Met His Glu Leu Leu Arg Gln Met Gly Ile Arg Arg Ile 350 355 Phe Ser Pro Phe Ala Asp Leu Ser Glu Leu Ser Ala Thr Gly Arg 365 Asn Leu Gln Val Ser Arg Val Leu Arg Arg Thr Val Ile Glu Val 380 385 390 Asp Glu Arg Gly Thr Glu Ala Val Ala Gly Ile Leu Ser Glu Ile 395 400 Thr Ala Tyr Ser Met Pro Pro Val Ile Lys Val Asp Arg Pro Phe 415 His Phe Met Ile Tyr Glu Glu Thr Ser Gly Met Leu Leu Phe Leu 425 430 Gly Arg Val Val Asn Pro Thr Leu Leu

<210> 411 <211> 636 <212> DNA

<213> Homo sapiens

<400> 411

cccagacatg aggaggetec teetgagea etetetacag agaegeggae 50
cccagacatg aggaggetec teetggteae eageetggtg gttgtgetge 100
tgtgggagge aggtgeagte eageaceea aggteeetat eaagatgeaa 150
gteaaacact ggeeeteaga geaggaeeea gagaaggeet ggggegeeeg 200
tgtggtggag eeteeggaga aggaegaeea getggtggtg etgtteeetg 250
teeagaagee gaaactettg accaeegagg agaageeaeg aggteaggge 300
aggggeeeea teetteeagg eaceaaggee tggatggaga eegaggaeae 350
eetgggeegt gteetgagte eegageeega eeatgaeage etgtaeeaee 400
eteegeetga ggaggaeeag ggegaggaga ggeeeeggtt gtgggtgatg 450
eeaaateace aggtgeteet gggaeeggag gaagaeeaag accaeateta 500
eeaceeeeag tagggeteea ggggeeatea etgeeeeege eetgteeeaa 550
ggeeeagget gttgggaetg ggaeeeteee taeeetgeee eagetagaea 600

aataaacccc agcaggcaaa aaaaaaaaa aaaaaa 636

<210> 412

<211> 151

<212> PRT

<213> Homo sapiens

<400> 412

Met Arg Arg Leu Leu Val Thr Ser Leu Val Val Val Leu Leu 1 5 10 15

Trp Glu Ala Gly Ala Val Pro Ala Pro Lys Val Pro Ile Lys Met
20 25 30

Gln Val Lys His Trp Pro Ser Glu Gln Asp Pro Glu Lys Ala Trp
35 40 45

Gly Ala Arg Val Val Glu Pro Pro Glu Lys Asp Asp Gln Leu Val
50 55 60

Val Leu Phe Pro Val Gln Lys Pro Lys Leu Leu Thr Thr Glu Glu 65 70 75

Lys Pro Arg Gly Gln Gly Arg Gly Pro Ile Leu Pro Gly Thr Lys 80 85 90

Ala Trp Met Glu Thr Glu Asp Thr Leu Gly Arg Val Leu Ser Pro 95 100 105

Glu Pro Asp His Asp Ser Leu Tyr His Pro Pro Pro Glu Glu Asp 110 115 120

Gln Gly Glu Glu Arg Pro Arg Leu Trp Val Met Pro Asn His Gln 125 130 135

Val Leu Leu Gly Pro Glu Glu Asp Gln Asp His Ile Tyr His Pro 140 145 150

Gln

<210> 413

<211> 1176

<212> DNA

<213> Homo sapiens

<400> 413

agaaagctgc actctgttga gctccagggc gcagtggagg gagggagtga 50
aggagctctc tgtacccaag gaaagtgcag ctgagactca gacaagatta 100
caatgaacca actcagcttc ctgctgtttc tcatagcgac caccagagga 150
tggagtacag atgaggctaa tacttacttc aaggaatgga cctgttcttc 200
gtctccatct ctgcccagaa gctgcaagga aatcaaagac gaatgtccta 250
gtgcatttga tggcctgtat tttctccgca ctgagaatgg tgttatctac 300
cagaccttct gtgacatgac ctctggggat ggcggctgga ccctggtggc 350
cagcgtgcat gagaatgaca tgcgtggaa gtgcacggt ggcgatcgct 400

ggtccagtca gcagggcagc aaagcagact acccagaggg ggacggcaac 450 tgggccaact acaacactt tggatctgca gaggcggcca cgagcgatga 500 ctacaagaac cctggctact acgacatcca ggccaaggac ctgggcatct 550 ggcacgtgcc caataagtcc cccatgcagc actggagaaa cagctccctg 600 ctgaggtacc gcacggacac tggcttcctc cagacactgg gacataatct 650 gtttggcatc taccagaaat atccagtgaa atatggagaa ggaaagtgtt 700 ggactgacaa cggcccggtg atccctgtgg tctatgattt tggcgacgcc 750 cagaaaacag catcttatta ctcaccctat ggccagcggg aattcactgc 800 gggatttgtt cagttcaggg tatttaataa cgagagagca gccaacgcct 850 tgtgtgctgg aatgagggtc accggatgta acactgagca tcactgcatt 900 ggtggaggag gatactttcc agaggccagt ccccagcagt gtggagattt 950 ttctggtttt gattggagtg gatatggaac tcatgttggt tacagcagca 1000 gccgtgagat aactgaggca gctgtgcttc tattctatcg ttgagagttt 1050 tgtgggaggg aacccagacc tctcctccca accatgagat cccaaggatg 1100 gagaacaact tacccagtag ctagaatgtt aatggcagaa gagaaaacaa 1150 taaatcatat tgactcaaga aaaaaa 1176

<210> 414 <211> 313 <212> PRT

<213> Homo sapiens

<400> 414

Met Asn Gln Leu Ser Phe Leu Leu Phe Leu Ile Ala Thr Thr Arg
1 5 10 15

Gly Trp Ser Thr Asp Glu Ala Asn Thr Tyr Phe Lys Glu Trp Thr 20 25 30

Cys Ser Ser Ser Pro Ser Leu Pro Arg Ser Cys Lys Glu Ile Lys 35 40 45

Asp Glu Cys Pro Ser Ala Phe Asp Gly Leu Tyr Phe Leu Arg Thr 50 55 60

Glu Asn Gly Val Ile Tyr Gln Thr Phe Cys Asp Met Thr Ser Gly 65 70 75

Gly Gly Gly Trp Thr Leu Val Ala Ser Val His Glu Asn Asp Met 80 85 90

Arg Gly Lys Cys Thr Val Gly Asp Arg Trp Ser Ser Gln Gln Gly 95 100 105

Ser Lys Ala Asp Tyr Pro Glu Gly Asp Gly Asn Trp Ala Asn Tyr 110 115 120

Asn Thr Phe Gly Ser Ala Glu Ala Ala Thr Ser Asp Asp Tyr Lys

Asn Pro Gly Tyr Tyr Asp Ile Gln Ala Lys Asp Leu Gly Ile Trop Misson Val Pro Asn Lys Ser Pro Met Gln His Trp Arg Asn Ser Ser 165 165 165 165 165 165 165 165 165 165															
His Val Pro Asn Lys Ser Pro Met Gln His Trp Arg Asn Ser Ser 165 Leu Leu Arg Tyr Arg Thr Asp Thr Gly Phe Leu Gln Thr Leu Gly 186 His Asn Leu Phe Gly 11e Tyr Gln Lys Tyr Pro Val Lys Tyr Gly 195 Glu Gly Lys Cys Trp Thr Asp Asn Gly Pro Val Ile Pro Val Val 205 Tyr Asp Phe Gly Asp Ala Gln Lys Thr Ala Ser Tyr Tyr Ser Pro 225 Tyr Gly Gln Arg Glu Phe Thr Ala Gly Phe Val Gln Phe Arg 245 Phe Asn Asn Glu Arg Ala Ala Ala Asn Ala Leu Cys Ala Gly Met Arg 265 Val Thr Gly Cys Asn Thr Glu His His Cys Ile Gly Gly Gly 270 Tyr Phe Pro Glu Ala Ser Pro Gln Gln Cys Gly Asp Phe Ser Gly 285 Phe Asp Trp Ser Gly Tyr Gly Thr His Val Gly Tyr Ser Ser Ser 300 Arg Glu Ile Thr Glu Ala Ala Ala Val Leu Leu Phe Tyr Arg 310					125					130					135
Leu Leu Arg Tyr Arg Thr Asp Thr Gly Phe Leu Gln Thr Leu Gly 185 His Asn Leu Phe Gly 11e Tyr Gln Lys Tyr Phe Pro Val Lys Tyr Gly 225 Val Thr Gly Cys Asn Thr Glu His His Cys 12e Gly Asp Phe Ser Gly 270 Tyr Phe Pro Glu Ala Ser Pro Gln Gln Cys Gly Asp Phe Ser Gly 285 Phe Asp Trp Ser Gly Tyr Gly Thr His Val Gly Tyr Ser Ser Ser 300 Arg Glu Ile Thr Glu Ala Ala Ala Val Leu Leu Phe Tyr Arg 310	Asn	Pro	Gly	Tyr	Tyr 140	Asp	Ile	Gln	Ala		Asp	Leu	Gly	Ile	Trp 150
His Asn Leu Phe Gly 11e Tyr Gln Lys Tyr Pro Val Lys Tyr Gly 195 Glu Gly Lys Cys Trp 200 Thr Asp Asn Gly Pro Val Ile Pro Val Val 216 Tyr Asp Phe Gly Asp 215 Ala Gln Lys Thr Ala Ser Tyr Tyr Ser Pro 225 Tyr Gly Gln Arg Glu Phe Thr Ala Gly Phe Val Gln Phe Arg Val 240 Phe Asn Asn Glu Arg Ala Ala Ala Asn Ala Leu Cys Ala Gly Met Arg 255 Val Thr Gly Cys Asn Thr Glu His His Cys Ile Gly Gly Gly 270 Tyr Phe Pro Glu Ala Ser Pro Gln Gln Cys Gly Asp Phe Ser Gly 285 Phe Asp Trp Ser Gly Tyr Gly Thr His Val Gly Tyr Ser Ser 300 Arg Glu Ile Thr Glu Ala Ala Ala Val Leu Leu Phe Tyr Arg	His	Val	Pro	Asn	Lys 155	Ser	Pro	Met	Gln		Trp	Arg	Asn	Ser	Ser 165
Glu Gly Lys Cys Trp Thr Asp Asn Gly Pro Val Ile Pro Val Val 210 Tyr Asp Phe Gly Asp Ala Gln Lys Thr Ala Ser Tyr Tyr Ser Pro 225 Tyr Gly Gln Arg Glu Phe Thr Ala Gly Phe Val Gln Phe Arg Val 230 Phe Asn Asn Glu Arg Ala Ala Asn Ala Leu Cys Ala Gly Met Arg 245 Val Thr Gly Cys Asn Thr Glu His His Cys Ile Gly Gly Gly Gly 270 Tyr Phe Pro Glu Ala Ser Pro Gln Gln Cys Gly Asp Phe Ser Gly 285 Phe Asp Trp Ser Gly Tyr Gly Thr His Val Gly Tyr Ser Ser Ser 300 Arg Glu Ile Thr Glu Ala Ala Ala Val Leu Leu Phe Tyr Arg 310	Leu	Leu	Arg	Tyr		Thr	Asp	Thr	Gly		Leu	Gln	Thr	Leu	Gly 180
Tyr Asp Phe Gly Asp Ala Gln Lys Thr Ala Ser Tyr Tyr Ser Pro 225 Tyr Gly Gln Arg Glu Phe Thr Ala Gly Phe Val Gln Phe Arg Val 230 Phe Asn Asn Glu Arg Ala Ala Asn Ala Leu Cys Ala Gly Met Arg 245 Val Thr Gly Cys Asn Thr Glu His His Cys Ile Gly Gly Gly 270 Tyr Phe Pro Glu Ala Ser Pro Gln Gln Cys Gly Asp Phe Ser Gly 285 Phe Asp Trp Ser Gly Tyr Gly Thr His Val Gly Tyr Ser Ser 300 Arg Glu Ile Thr Glu Ala Ala Ala Val Leu Leu Phe Tyr Arg 300	His	Asn	Leu	Phe		Ile	Tyr	Gln	Lys		Pro	Val	Lys	Tyr	Gly 195
Tyr Gly Gln Arg Glu Phe Thr Ala Gly Phe Val Gln Phe Arg Val 230 Phe Asn Asn Glu Arg Ala Ala Asn Ala Leu 250 Val Thr Gly Cys Asn Thr Glu His His Cys Ile Gly Gly Gly 270 Tyr Phe Pro Glu Ala Ser Pro Gln Gln Cys Gly Asp Phe Ser Gly 285 Phe Asp Trp Ser Gly Tyr Gly Thr His Val Gly Tyr Ser Ser Ser 300 Arg Glu Ile Thr Glu Ala Ala Ala Val Leu Leu Phe Tyr Arg 310	Glu	Gly	Lys	Cys		Thr	Asp	Asn	Gly		Val	Ile	Pro	Val	Val 210
Phe Asn Asn Glu Arg Ala Ala Asn Ala Leu Cys Ala Gly Met Arg 255 Val Thr Gly Cys Asn Thr Glu His His Cys 265 Tyr Phe Pro Glu Ala Ser Pro Gln Gln Cys 280 Phe Asp Trp Ser Gly Tyr Gly Thr His Val 295 Arg Glu Ile Thr Glu Ala Ala Ala Val Leu Leu Phe Tyr Arg 305	Tyr	Asp	Phe	Gly		Ala	Gln	Lys	Thr		Ser	Tyr	Tyr	Ser	Pro 225
Val Thr Gly Cys Asn Thr Glu His His Cys 265 Tyr Phe Pro Glu Ala Ser Pro Gln Gln Cys 280 Phe Asp Trp Ser Gly Tyr Gly Thr His Val Gly Tyr Ser Ser 300 Arg Glu Ile Thr Glu Ala Ala Val Leu Leu Phe Tyr Arg 310	Tyr	Gly	Gln	Arg	Glu 230	Phe	Thr	Ala	Gly		Val	Gln	Phe	Arg	Val 240
Tyr Phe Pro Glu Ala Ser Pro Gln Gln Cys Gly Asp Phe Ser Gly 285 Phe Asp Trp Ser Gly Tyr Gly Thr His Val Gly Tyr Ser Ser Ser 300 Arg Glu Ile Thr Glu Ala Ala Val Leu Leu Phe Tyr Arg 310	Phe	Asn	Asn	Glu	Arg 245	Ala	Ala	Asn	Ala		Cys	Ala	Gly	Met	Arg 255
Phe Asp Trp Ser Gly Tyr Gly Thr His Val Gly Tyr Ser Ser Ser 290 Arg Glu Ile Thr Glu Ala Ala Val Leu Leu Phe Tyr Arg 305	Val	Thr	Gly	Cys	Asn 260	Thr	Glu	His	His		Ile	Gly	Gly	Gly	Gly 270
Arg Glu Ile Thr Glu Ala Ala Val Leu Leu Phe Tyr Arg 305 300	Tyr	Phe	Pro	Glu	Ala 275	Ser	Pro	Gln	Gln		Gly	Asp	Phe	Ser	Gly 285
305 310	Phe	Asp	Trp	Ser	Gly 290	Tyr	Gly	Thr	His		Gly	Tyr	Ser	Ser	Ser 300
	Arg	Glu	Ile	Thr	Glu 305	Ala	Ala	Val	Leu		Phe	Tyr	Arg		
<210> 415	<210>	× 415	,												

<211> 1281

<212> DNA

<213> Homo sapiens

<400> 415

gcggagccgg cgccggctgc gcagaggagc cgctctcgcc gccgccacct 50 cggctgggag cccacgaggc tgccgcatcc tgccctcgga acaatgggac 100 tcggcgcgcg aggtgcttgg gccgcgctgc tcctggggac gctgcaggtg 150 ctagcgctgc tgggggccgc ccatgaaagc gcagccatgg cggcatctgc 200 aaacatagag aattotgggo ttocacacaa otocagtgot aactoaacag 250 agacteteca acatgtgeet tetgaceata caaatgaaac ttecaacagt 300 actgtgaaac caccaacttc agttgcctca gactccagta atacaacggt 350 caccaccatg aaacctacag cggcatctaa tacaacaaca ccagggatgg 400 tctcaacaaa tatgacttct accaccttaa agtctacacc caaaacaaca 450 agtgtttcac agaacacatc tcagatatca acatccacaa tgaccgtaac 500

ccacaatagt tcagtgacat ctgctgcttc atcagtaaca atcacaacaa 550 ctatgcattc tgaagcaaag aaaggatcaa aatttgatac tgggagcttt 600 gttggtggta ttgtattaac gctgggagtt ttatctattc tttacattgg 650 atgcaaaatg tattactcaa gaagaggcat tcggtatcga accatagatg 700 aacatgatgc catcatttaa ggaaatccat ggaccaagga tggaatacag 750 attgatgctg ccctatcaat taattttggt ttattaatag tttaaaacaa 800 tattctcttt ttgaaaatag tataaacagg ccatgcatat aatgtacagt 850 gtattacgta aatatgtaaa gattcttcaa ggtaacaagg gtttgggttt 900 tgaaataaac atctggatct tatagaccgt tcatacaatg gttttagcaa 950 gttcatagta agacaaacaa gtcctatctt ttttttttgg ctggggtggg 1000 ggcattggtc acatatgacc agtaattgaa agacgtcatc actgaaagac 1050 agaatgccat ctgggcatac aaataagaag tttgtcacag cactcaggat 1100 tttgggtatc ttttgtagct cacataaaga acttcagtgc ttttcagagc 1150 tggatatatc ttaattacta atgccacaca gaaattatac aatcaaacta 1200 gatctgaagc ataatttaag aaaaacatca acattttttg tgctttaaac 1250 tgtagtagtt ggtctagaaa caaaatactc c 1281

<210> 416

<211> 208

<212> PRT

<213> Homo sapiens

<400> 416

Met Gly Leu Gly Ala Arg Gly Ala Trp Ala Ala Leu Leu Gly 1 5 10 15

Thr Leu Gln Val Leu Ala Leu Leu Gly Ala Ala His Glu Ser Ala
20 25 30

Ala Met Ala Ala Ser Ala Asn Ile Glu Asn Ser Gly Leu Pro His $35 \hspace{1cm} 40 \hspace{1cm} 45$

Asn Ser Ser Ala Asn Ser Thr Glu Thr Leu Gln His Val Pro Ser 50 55 60

Asp His Thr Asn Glu Thr Ser Asn Ser Thr Val Lys Pro Pro Thr
65 70 75

Ser Val Ala Ser Asp Ser Ser Asn Thr Thr Val Thr Thr Met Lys 80 85 90

Pro Thr Ala Ala Ser Asn Thr Thr Thr Pro Gly Met Val Ser Thr 95 100 105

Asn Met Thr Ser Thr Thr Leu Lys Ser Thr Pro Lys Thr Thr Ser 110 115 120

Val Ser Gln Asn Thr Ser Gln Ile Ser Thr Ser Thr Met Thr Val

				125					130	135				
Thr	His	Asn	Ser	Ser 140	Val	Thr	Ser	Ala	Ala 145	Ser	Ser	Val	Thr	Ile 150
Thr	Thr	Thr	Met	His 155	Ser	Glu	Ala	Lys	Lys 160	Gly	Ser	Lys	Phe	Asp 165
Thr	Gly	Ser	Phe	Val 170	Gly	Gly	Ile	Val	Leu 175	Thr	Leu	Gly	Val	Leu 180
Ser	Ile	Leu	Tyr	Ile 185	Gly	Cys	Lys	Met	Tyr 190	Tyr	Ser	Arg	Arg	Gly 195
Ile	Arg	Tyr	Arg	Thr 200	Ile	Asp	Glu	His	Asp 205	Ala	Ile	Ile		
<210><211><211>	172	28												

<:

<213> Homo sapiens

<400> 417 cageegggte ecaageetgt geetgageet gageetgage etgageeega 50 gccgggagcc ggtcgcgggg gctccgggct gtgggaccgc tgggccccca 100 gcgatggcga ccctgtgggg aggccttctt cggcttggct ccttgctcag 150 cctgtcgtgc ctggcgcttt ccgtgctgct gctggcgcag ctgtcagacg 200 ccgccaagaa tttcgaggat gtcagatgta aatgtatctg ccctccctat 250 aaagaaaatt ctgggcatat ttataataag aacatatctc agaaagattg 300 tgattgcctt catgttgtgg agcccatgcc tgtgcggggg cctgatgtag 350 aagcatactg tctacgctgt gaatgcaaat atgaagaaag aagctctgtc 400 acaatcaagg ttaccattat aatttatctc tccattttgg gccttctact 450 totgtacatg gtatatotta ototggttga goocatactg aagaggogoo 500 tctttggaca tgcacagttg atacagagtg atgatgatat tggggatcac 550 cagecttttg caaatgcaca egatgtgeta geeegeteee geagtegage 600 caacgtgctg aacaaggtag aatatgcaca gcagcgctgg aagcttcaag 650 tccaagagca gcgaaagtct gtctttgacc ggcatgttgt cctcagctaa 700 ttgggaattg aattcaaggt gactagaaag aaacaggcag acaactggaa 750 agaactgact gggttttgct gggtttcatt ttaatacctt gttgatttca 800 ccaactgttg ctggaagatt caaaactgga agcaaaaact tgcttgattt 850 ttttttcttg ttaacgtaat aatagagaca tttttaaaag cacacagctc 900 aaagtcagcc aataagtctt ttcctatttg tgacttttac taataaaaat 950 aaatctgcct gtaaattatc ttgaagtcct ttacctggaa caagcactct 1000

<210> 418

<211> 198

<212> PRT

<213> Homo sapiens

<400> 418

Met Ala Thr Leu Trp Gly Gly Leu Leu Arg Leu Gly Ser Leu Leu 1 5 10 15

Ser Leu Ser Cys Leu Ala Leu Ser Val Leu Leu Leu Ala Gln Leu 20 25 30

Ser Asp Ala Ala Lys Asn Phe Glu Asp Val Arg Cys Lys Cys Ile 35 40 45

Cys Pro Pro Tyr Lys Glu Asn Ser Gly His Ile Tyr Asn Lys Asn 50 55 60

Ile Ser Gln Lys Asp Cys Asp Cys Leu His Val Val Glu Pro Met 65 70 75

Pro Val Arg Gly Pro Asp Val Glu Ala Tyr Cys Leu Arg Cys Glu 80 85 90

Cys Lys Tyr Glu Glu Arg Ser Ser Val Thr Ile Lys Val Thr Ile 95 100 105

Ile Ile Tyr Leu Ser Ile Leu Gly Leu Leu Leu Tyr Met Val 110 115 120

Tyr Leu Thr Leu Val Glu Pro Ile Leu Lys Arg Arg Leu Phe Gly 125 130 135

His Ala Gln Leu Ile Gln Ser Asp Asp Ile Gly Asp His Gln 140 145 150

Pro Phe Ala Asn Ala His Asp Val Leu Ala Arg Ser Arg Ser Arg 155 160 165

Ala Asn Val Leu Asn Lys Val Glu Tyr Ala Gln Gln Arg Trp Lys 170 175 180

Leu Gln Val Gln Glu Gln Arg Lys Ser Val Phe Asp Arg His Val 185 190 195

Val Leu Ser

<210> 419

<211> 681

<212> DNA

<213> Homo sapiens

<400> 419

gcacctgcga ccaccgtgag cagtcatggc gtactccaca gtgcagagag 50

tegetetgge ttetgggett gteetggete tgtegetget getgeecaag 100

gccttcctgt cccgcgggaa gcggcaggag ccgccgccga cacctgaagg 150

aaaattgggc cgatttccac ctatgatgca tcatcaccag gcaccctcag 200

atggccagac tcctggggct cgtttccaga ggtctcacct tgccgaggca 250

tttgcaaagg ccaaaggatc aggtggaggt gctggaggag gaggtagtgg 300

aagaggtctg atggggcaga ttattccaat ctacggtttt gggatttttt 350

tatatatact gtacattcta tttaaggtaa gtagaatcat cctaatcata 400

ttacatcaat gaaaatctaa tatggcgata aaaatcattg tctacattaa 450

aacttcttat agttcataaa attatttcaa atccatcatc tctttaaatc 500

ctgcctcctc ttcatgaggt acttaggata gccattattt cagtttcaca 550

taagaatgtt tactcaatgt ttaagtgttt tgccccaaaa ttcacaacta 600

acaaggcaga actaggactt gaacatggat cttttggttc ttaatccagt 650

gagtgataca attcaatgca ctcccctgcc a 681

<210> 420

<211> 128

<212> PRT

<213> Homo sapiens

<400> 420

Met Ala Tyr Ser Thr Val Gln Arg Val Ala Leu Ala Ser Gly Leu
1 5 10 15

Val Leu Ala Leu Ser Leu Leu Pro Lys Ala Phe Leu Ser Arg
20 25 30

Gly Lys Arg Gln Glu Pro Pro Pro Thr Pro Glu Gly Lys Leu Gly 35 40 45

<210> 421 <211> 1630 <212> DNA <213> Homo sapiens

<213> Homo s

<400> 421

cggctcgagt gcagctgtgg ggagatttca gtgcattgcc tcccctgggt 50 gctcttcatc ttggatttga aagttgagag cagcatgttt tgcccactga 100 aactcatcct gctgccagtg ttactggatt attccttggg cctgaatgac 150 ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct 200 gatgggatgt gttttccaga gcacagaaga caaatgtata ttcaagatag 250 actggactct gtcaccagga gagcacgcca aggacgaata tgtgctatac 300 tattactcca atctcagtgt gcctattggg cgcttccaga accgcgtaca 350 cttgatgggg gacatcttat gcaatgatgg ctctctcctg ctccaagatg 400 tgcaagaggc tgaccaggga acctatatct gtgaaatccg cctcaaaggg 450 gagagccagg tgttcaagaa ggcggtggta ctgcatgtgc ttccagagga 500 gcccaaagag ctcatggtcc atgtgggtgg attgattcag atgggatgtg 550 ttttccagag cacagaagtg aaacacgtga ccaaggtaga atggatattt 600 tcaggacggc gcgcaaagga ggagattgta tttcgttact accacaaact 650 caggatgtct gtggagtact cccagagctg gggccacttc cagaatcgtg 700 tgaacctggt gggggacatt ttccgcaatg acggttccat catgcttcaa 750 ggagtgaggg agtcagatgg aggaaactac acctgcagta tccacctagg 800 gaacctggtg ttcaagaaaa ccattgtgct gcatgtcagc ccggaagagc 850 ctcgaacact ggtgaccccg gcagccctga ggcctctggt cttgggtggt 900 aatcagttgg tgatcattgt gggaattgtc tgtgccacaa tcctgctgct 950 ccctgttctg atattgatcg tgaagaagac ctgtggaaat aagagttcag 1000 tgaattctac agtcttggtg aagaacacga agaagactaa tccagagata 1050 aaagaaaaac cctgccattt tgaaagatgt gaaggggaga aacacattta 1100 ctccccaata attgtacggg aggtgatcga ggaagaagaa ccaagtgaaa 1150 aatcagaggc cacctacatg accatgcacc cagtttggcc ttctctgagg 1200 tcagatcgga acaactcact tgaaaaaaaag tcaggtgggg gaatgccaaa 1250 aacacagcaa gccttttgag aagaatggag agtcccttca tctcagcagc 1300 ggtggagact ctctcctgtg tgtgtcctgg gccactctac cagtgattc 1350 agactcccgc tctcccaget gtcctctgt ctcattgtt ggtcaataca 1400 ctgaagatgg agaatttgga gcctggcaga gagactggac agctctggag 1450 gaacaggcct gctgaggga ggggagcatg gacttggcc ctggagtggg 1500 acactggccc tgggaaccag gctgagctga gtggcctcaa acccccgtt 1550 ggatcagac ctcctgtggg cagggttctt agtggatgag ttactgggaa 1600 gaatcagaga taaaaaccaa cccaaatcaa 1630

<210> 422

<211> 394

<212> PRT

<213> Homo sapiens

<400> 422

Met Phe Cys Pro Leu Lys Leu Ile Leu Leu Pro Val Leu Leu Asp 1 5 10 15

Tyr Ser Leu Gly Leu Asn Asp Leu Asn Val Ser Pro Pro Glu Leu 20 25 30

Thr Val His Val Gly Asp Ser Ala Leu Met Gly Cys Val Phe Gln
35 40 45

Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile Asp Trp Thr Leu Ser 50 55 60

Pro Gly Glu His Ala Lys Asp Glu Tyr Val Leu Tyr Tyr Tyr Ser 65 70 75

Asn Leu Ser Val Pro Ile Gly Arg Phe Gln Asn Arg Val His Leu 80 85 90

Met Gly Asp Ile Leu Cys Asn Asp Gly Ser Leu Leu Gln Asp 95 100 105

Val Gln Glu Ala Asp Gln Gly Thr Tyr Ile Cys Glu Ile Arg Leu 110 115 120

Lys Gly Glu Ser Gln Val Phe Lys Lys Ala Val Val Leu His Val 125 130

Leu Pro Glu Glu Pro Lys Glu Leu Met Val His Val Gly Gly Leu
140 145 150

Ile Gln Met Gly Cys Val Phe Gln Ser Thr Glu Val Lys His Val

				155					160					165
Thr	Lys	Val	Glu	Trp 170	Ile	Phe	Ser	Gly	Arg 175	Arg	Ala	Lys	Glu	Glu 180
Ile	Val	Phe	Arg	Tyr 185	Tyr	His	Lys	Leu	Arg 190	Met	Ser	Val	Glu	Tyr 195
Ser	Gln	Ser	Trp	Gly 200	His	Phe	Gln	Asn	Arg 205	Val	Asn	Leu	Val	Gly 210
Asp	Ile	Phe	Arg	Asn 215	Asp	Gly	Ser	Ile	Met 220	Leu	Gln	Gly	Val	Arg 225
Glu	Ser	Asp	Gly	Gly 230	Asn	Tyr	Thr	Cys	Ser 235	Ile	His	Leu	Gly	Asn 240
Leu	Val	Phe	Lys	Lys 245	Thr	Ile	Val	Leu	His 250	Val	Ser	Pro	Glu	Glu 255
Pro	Arg	Thr	Leu	Val 260	Thr	Pro	Ala	Ala	Leu 265	Arg	Pro	Leu	Val	Leu 270
Gly	Gly	Asn	Gln	Leu 275	Val	Ile	Ile	Val	Gly 280	Ile	Val	Cys	Ala	Thr 285
Ile	Leu	Leu	Leu	Pro 290	Val	Leu	Ile	Leu	Ile 295	Val	Lys	Lys	Thr	Cys 300
Gly	Asn	Lys	Ser	Ser 305	Val	Asn	Ser	Thr	Val 310	Leu	Val	Lys	Asn	Thr 315
Lys	Lys	Thr	Asn	Pro 320	Glu	Ile	Lys	Glu	Lys 325	Pro	Cys	His	Phe	Glu 330
Arg	Cys	Glu	Gly	Glu 335	Lys	His	Ile	Tyr	Ser 340	Pro	Ile	Ile	Val	Arg 345
Glu	Val	Ile	Glu	Glu 350	Glu	Glu	Pro	Ser	Glu 355	Lys	Ser	Glu	Ala	Thr 360
Tyr	Met	Thr	Met	His 365	Pro	Val	Trp	Pro	Ser 370	Leu	Arg	Ser	Asp	Arg 375
Asn	Asn	Ser	Leu	Glu 380	Lys	Lys	Ser	Gly	Gly 385	Gly	Met	Pro	Lys	Thr 390
Gln	Gln	Ala	Phe											

<210> 423

<211> 963

<212> DNA

<213> Homo sapiens

<400> 423

ctatgaagaa gcttcctgga aaacaataag caaaggaaaa caaatgtgtc 50 ccatctcaca tggttctacc ctactaaaga caggaagatc ataaactgac 100 agatactgaa attgtaagag ttggaaacta cattttgcaa agtcattgaa 150 ctctgagctc agttgcagta ctcgggaagc catgcaggat gaagatggat 200

acatcacctt aaatattaaa actcggaaac cagctctcgt ctccgttggc 250 cctgcatcct cctcctggtg gcgtgtgatg gctttgattc tgctgatcct 300 gtgcgtgggg atggttgtcg ggctggtggc tctggggatt tggtctgtca 350 tgcagcgcaa ttacctacaa gatgagaatg aaaatcgcac aggaactctg 400 caacaattag caaagcgctt ctgtcaatat gtggtaaaac aatcagaact 450 aaagggcact ttcaaaggtc ataaatgcag cccctgtgac acaaactgga 500 gatattatgg agatagctgc tatgggttct tcaggcacaa cttaacatgg 550 gaagagagta agcagtactg cactgacatg aatgctactc tcctgaagat 600 tgacaaccgg aacattgtgg agtacatcaa agccaggact catttaattc 650 gttgggtcgg attatctcgc cagaagtcga atgaggtctg gaagtgggag 700 gatggctcgg ttatctcaga aaatatgttt gagtttttgg aagatggaaa 750 aggaaatatg aattgtgctt attttcataa tgggaaaatg caccctacct 800 tctgtgagaa caaacattat ttaatgtgtg agaggaaggc tggcatgacc 850 aaggtggacc aactacctta atgcaaagag gtggacagga taacacagat 900 aagggcttta ttgtacaata aaagatatgt atgaatgcat cagtagctga 950 aaaaaaaaa aaa 963

<210> 424

<211> 229

<212> PRT

<213> Homo sapiens

<400> 424

Met Gln Asp Glu Asp Gly Tyr Ile Thr Leu Asn Ile Lys Thr Arg
1 5 10 15

Lys Pro Ala Leu Val Ser Val Gly Pro Ala Ser Ser Ser Trp Trp 20 25 30

Arg Val Met Ala Leu Ile Leu Leu Ile Leu Cys Val Gly Met Val 35 40 45

Val Gly Leu Val Ala Leu Gly Ile Trp Ser Val Met Gln Arg Asn 50 55 60

Tyr Leu Gln Asp Glu Asn Glu Asn Arg Thr Gly Thr Leu Gln Gln
65 70 75

Leu Ala Lys Arg Phe Cys Gln Tyr Val Val Lys Gln Ser Glu Leu 80 85 90

Lys Gly Thr Phe Lys Gly His Lys Cys Ser Pro Cys Asp Thr Asn 95 100 105

Trp Arg Tyr Tyr Gly Asp Ser Cys Tyr Gly Phe Phe Arg His Asn 110 115

Leu Thr Trp Glu Glu Ser Lys Gln Tyr Cys Thr Asp Met Asn Ala

125 130 13 Thr Leu Leu Lys Ile Asp Asn Arg Asn Ile Val Glu Tyr Ile Ly														135
Thr	Leu	Leu	Lys	Ile 140	Asp	Asn	Arg	Asn	Ile 145	Val	Glu	Tyr	Ile	Lys 150
Ala	Arg	Thr	His	Leu 155	Ile	Arg	Trp	Val	Gly 160	Leu	Ser	Arg	Gln	Lys 165
Ser	Asn	Glu	Val	Trp 170	Lys	Trp	Glu	Asp	Gly 175	Ser	Val	Ile	Ser	Glu 180
Asn	Met	Phe	Glu	Phe 185	Leu	Glu	Asp	Gly	Lys 190	Gly	Asn	Met	Asn	Cys 195
Ala	Tyr	Phe	His	Asn 200	Gly	Lys	Met	His	Pro 205	Thr	Phe	Cys	Glu	Asn 210
Lys	Lys His Tyr Leu Met Cys Glu Arg Lys Ala Gly Met Thr Lys Val 215 220 225													
Asp Gln Leu Pro														
<211> <212>	<210> 425 <211> 24 <212> DNA <213> Artificial Sequence													
<220> <223> Synthetic oligonucleotide probe														
	<400> 425 tgcagcccct gtgacacaaa ctgg 24													
<211> <212>	<210> 426 <211> 26 <212> DNA <213> Artificial Sequence													
<220> <223>		thet	ic c	ligo	nucl	.eoti	.de p	robe	!					
<400> ctga			gago	cato	c to	ccac	: 26							
<210> <211> <212> <213>	49 DNA		ial	Sequ	ence									
<220> <223>	Syn	thet	ic o	ligo	nucl	eoti	de p	robe						
<400> 427 gcttcctgac actaaggctg tctgctagtc agaattgcct caaaaagag 49														
<211> <212>	<210> 428 <211> 21 <212> DNA <213> Artificial Sequence													
<220> <223> Synthetic oligonucleotide probe														

```
<400> 428
 ccaccaatgg cagccccacc t 21
<210> 429
<211> 17
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 429
 gactgccctc cctgcca 17
<210> 430
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 430
 caaaaagcct ggaagtcttc aaag 24
<210> 431
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 431
 cagctggact gcaggtgcta 20
<210> 432
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 432
 cagtgagcac agcaagtgtc ct 22
<210> 433
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 433
ggccacctcc ttgagtcttc agttccct 28
<210> 434
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 434
caactactgg ctaaagctgg tgaa 24
<210> 435
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 435
 cctttctgta taggtgatac ccaatga 27
<210> 436
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 436
tggccatccc taccagaggc aaaa 24
<210> 437
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 437
 ctgaagacga cgcggattac ta 22
<210> 438
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 438
 ggcagaaatg ggaggcaga 19
<210> 439
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 439
 tgctctgttg gctacggctt tagtccctag 30
<210> 440
<211> 22
```

```
<212> DNA
  <213> Artificial Sequence
  <223> Synthetic oligonucleotide probe
  <400> 440
   agcagcagcc atgtagaatg aa 22
  <210> 441
  <211> 22
  <212> DNA
  <213> Artificial Sequence
  <223> Synthetic oligonucleotide probe
  <400> 441
   aatacgaaca gtgcacgctg at 22
  <210> 442
  <211> 23
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
  <400> 442
  tccagagagc caagcacggc aga 23
  <210> 443
  <211> 22
  <212> DNA
  <213> Artificial Sequence
  <223> Synthetic oligonucleotide probe
  <400> 443
   tctagccagc ttggctccaa ta 22
  <210> 444
  <211> 23
  <212> DNA
  <213> Artificial Sequence
<223> Synthetic oligonucleotide probe
  <400> 444
   cctggctcta gcaccaactc ata 23
  <210> 445
  <211> 25
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Synthetic oligonucleotide probe
  <400> 445
   tcagtggccc taaggagatg ggcct 25
```

```
<210> 446
 <211> 24
 <212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 446
 caggatacag tgggaatctt gaga 24
<210> 447
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 447
 cctgaagggc ttggagctta qt 22
<210> 448
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 448
tctttggcca tttcccatgg ctca 24
<210> 449
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 449
 cccatggcga ggaggaat 18
<210> 450
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 450
 tgcgtacgtg tgccttcag 19
<210> 451
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 451
 cagcacccca ggcagtctgt gtgt 24
<210> 452
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 452
 aacgtgctac acgaccagtg tact 24
<210> 453
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 453
 cacagcatat tcagatgact aaatcca 27
<210> 454
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 454
 ttgtttagtt ctccaccgtg tctccacaga a 31
<210> 455
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 455
 tgtcagaatg caacctggct t 21
<210> 456
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 456
tgatgtgcct ggctcagaac 20
<210> 457
<211> 24
<212> DNA
```

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 457
tgcacctaga tgtccccagc accc 24
<210> 458
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 458
aagatgcgcc aggcttctta 20
<210> 459
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 459
ctcctgtacg gtctgctcac ttat 24
<210> 460
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 460
tggctgtcag tccagtgtgc atgg 24
<210> 461
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 461
gcatagggat agataagatc ctgctttat 29
<210> 462
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 462
caaattaaag tacccatcag gagagaa 27
<210> 463
<211> 37
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 463
aagttgctaa atatatacat tatctgcgcc aagtcca 37
<210> 464
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 464
gtgctgccca caattcatga 20
<210> 465
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 465
gtccttggta tgggtctgaa ttatat 26
<210> 466
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 466
 actototgca coccacagto accactatot c 31
<210> 467
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 467
 ctgaggaacc agccatgtct ct 22
<210> 468
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 468
 gaccagatgc aggtacagga tga 23
```

```
<210> 469
 <211> 25
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 469
 ctgccccttc agtgatgcca acctt 25
 <210> 470
 <211> 22
 <212> DNA
 <213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 470
 gggtggaggc tcactgagta ga 22
<210> 471
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 471
 caatacaggt aatgaaactc tgcttctt 28
<210> 472
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 472
 tcctcttaag cataggccat tttctcagtt tagaca 36
<210> 473
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 473
 ggtggtcttg cttggtctca c 21
<210> 474
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 474
 ccgtcgttca gcaacatgac 20
<210> 475
 <211> 20
 <212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 475
 accgcctacc gctgtgccca 20
<210> 476
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 476
 cagtaaaacc acaggctgga ttt 23
<210> 477
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 477
 cctgagagca agaaggttga gaat 24
<210> 478
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 478
 tagacaggga ccatggcccg ca 22
<210> 479
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 479
 tgggctgtag aagagttgtt g 21
<210> 480
<211> 20
<212> DNA
```

<213> Artificial Sequence

```
<220>
<223> Synthetic oligonucleotide probe
<400> 480
tccacacttg gccagtttat 20
<210> 481
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 481
cccaacttct cccttttgga ccct 24
<210> 482
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 482
gtcccttcac tgtttagagc atga 24
<210> 483
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 483
actetecce teaacageet cetgag 26
<210> 484
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 484
 gtggtcaggg cagatccttt 20
<210> 485
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 485
acagatccag gagagactcc aca 23
<210> 486
<211> 21
```

```
<212> DNA
 <213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 486
 agcggcgctc ccagcctgaa t 21
<210> 487
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 487
 catgattggt cctcagttcc atc 23
<210> 488
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 488
 atagagggct cccagaagtg 20
<210> 489
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 489
 cagggccttc agggccttca c 21
<210> 490
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 490
gctcagccaa acactgtca 19
<210> 491
<211> 17
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 491
ggggccctga cagtgtt 17
```

```
<210> 492
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 492
 ctgagccgag actggagcat ctacac 26
<210> 493
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 493
 gtgggcagcg tcttgtc 17
<210> 494
<211> 1231
<212> DNA
<213> Homo Sapien
<400> 494
 cccacgcgtc cgcgcagtcg cgcagttctg cctccgcctg ccagtctcgc 50
ccgcgatccc ggcccggggc tgtggcgtcg actccgaccc aggcagccag 100
cagecegege gggageegga eegeegeegg aggagetegg aeggeatget 150
gagccccctc ctttgctgaa gcccgagtgc ggagaagccc gggcaaacgc 200
aggctaagga gaccaaagcg gcgaagtcgc gagacagcgg acaagcagcg 250
gaggagaagg aggaggaggc gaacccagag aggggcagca aaagaagcgg 300
tggtggtggg cgtcgtggcc atggcggcgg ctatcgccag ctcgctcatc 350
cgtcagaaga ggcaagcccg cgagcgcgag aaatccaacg cctgcaagtg 400
tgtcagcagc cccagcaaag gcaagaccag ctgcgacaaa aacaagttaa 450
atgtcttttc ccgggtcaaa ctcttcggct ccaagaagag gcgcagaaga 500
agaccagagc ctcagcttaa gggtatagtt accaagctat acagccgaca 550
aggetaceae ttgcagetge aggeggatgg aaccattgat ggcaceaaag 600
atgaggacag cacttacact ctgtttaacc tcatccctgt gggtctgcga 650
gtggtggcta tccaaggagt tcaaaccaag ctgtacttgg caatgaacag 700
tgagggatac ttgtacacct cggaactttt cacacctgag tgcaaattca 750
aagaatcagt gtttgaaaat tattatgtga catattcatc aatgatatac 800
cgtcagcagc agtcaggccg agggtggtat ctgggtctga acaaagaagg 850
agagatcatg aaaggcaacc atgtgaagaa gaacaagcct gcagctcatt 900
```

ttctgcctaa accactgaaa gtggccatgt acaaggagcc atcactgcac 950 gatctcacgg agttctcccg atctggaagc gggaccccaa ccaagagcag 1000 aagtgtctct ggcgtgctga acggaggcaa atccatgagc cacaatgaat 1050 caacgtagcc agtgagggca aaagaagggc tctgtaacag aaccttacct 1100 ccaggtgctg ttgaattctt ctagcagtcc ttcacccaaa agttcaaatt 1150 tgtcagtgac atttaccaaa caaacaggca gagttcacta ttctatctgc 1200 cattagacct tcttatcatc catactaaag c 1231

<210> 495

<211> 245

<212> PRT

<213> Homo Sapien

<400> 495

Met Ala Ala Ile Ala Ser Ser Leu Ile Arg Gln Lys Arg Gln 1 5 10 15

Ala Arg Glu Arg Glu Lys Ser Asn Ala Cys Lys Cys Val Ser Ser 20 25 30

Pro Ser Lys Gly Lys Thr Ser Cys Asp Lys Asn Lys Leu Asn Val 35 40 45

Phe Ser Arg Val Lys Leu Phe Gly Ser Lys Lys Arg Arg Arg 50 55 60

Arg Pro Glu Pro Gln Leu Lys Gly Ile Val Thr Lys Leu Tyr Ser
65 70 75

Arg Gln Gly Tyr His Leu Gln Leu Gln Ala Asp Gly Thr Ile Asp 80 85 90

Gly Thr Lys Asp Glu Asp Ser Thr Tyr Thr Leu Phe Asn Leu Ile 95 100 105

Pro Val Gly Leu Arg Val Val Ala Ile Gln Gly Val Gln Thr Lys 110 115 120

Leu Tyr Leu Ala Met Asn Ser Glu Gly Tyr Leu Tyr Thr Ser Glu 125 130 135

Leu Phe Thr Pro Glu Cys Lys Phe Lys Glu Ser Val Phe Glu Asn 140 145 150

Tyr Tyr Val Thr Tyr Ser Ser Met Ile Tyr Arg Gln Gln Ser 155 : 160 165

Gly Arg Gly Trp Tyr Leu Gly Leu Asn Lys Glu Gly Glu Ile Met 170 175 180

Lys Gly Asn His Val Lys Lys Asn Lys Pro Ala Ala His Phe Leu 185 190 195

Pro Lys Pro Leu Lys Val Ala Met Tyr Lys Glu Pro Ser Leu His 200 205 210

Asp Leu Thr Glu Phe Ser Arg Ser Gly Ser Gly Thr Pro Thr Lys

215 220 225

Ser Arg Ser Val Ser Gly Val Leu Asn Gly Gly Lys Ser Met Ser 230 235 240

His Asn Glu Ser Thr 245

<210> 496

<211> 1471

<212> DNA

<213> Homo Sapien

<400> 496

ccaggatgga gctggggcct gtatagccat attattgttc tatgctacta 50 gacatggggg ggacttggtg aaaaaggtat tatccagcca gagggtctgg 100 gagccctgtc ttactgaacc tgggcaacct ggatattctg agacatattt 150 tggggggatt tcagtgaaaa aagtggggga tcccctccat ttagagtgta 200 gcaaaggaaa aaacaccaag gttgggttcc ttcctgacat tggcagtgcc 250 ccagtagggg tgggatgagc gaatattccc aaagctaaag tcccacaccc 300 tgtagattac aagagtggat ttggcaggag tgtgccccaa aatacagtgg 350 aaaggtgcct gaagatattt aaaccacgtc ttggaaattt agtgggtctt 400 ggctttggga taggtgaagt gaggacagac actggagagg agggaaaggg 450 gacgttttca ataggaggca aaactcgagg gtgggatcca ctgaggagta 500 cataggctgc tggatctggt ggagccagca ctgggcccac gggtggtaac 550 tggctgctgt ggagggggt acgtgagggg ggggtctggg gcttatcctc 600 aggtcctgtg ggtggggcag cgagtcgggg cctgagcgtc aagagcatgc 650 cctagtgagc gggctcctct gggggagccc agcgcgctcc gggcgcctgc 700 cggtttgggg gtgtctcctc ccggggcgct atggcggcgc tggccagtag 750 cctgatccgg cagaagcggg aggtccgcga gcccgggggc agccggccgg 800 tgtcggcgca gcggcgcgtg tgtccccgcg gcaccaagtc cctttgccag 850 aagcagctcc tcatcctgct gtccaaggtg cgactgtgcg ggggggggcc 900 cgcgcggccg gaccgcggcc cggagcctca gctcaaaggc atcgtcacca 950 aactgttctg ccgccagggt ttctacctcc aggcgaatcc cgacggaagc 1000 atccagggca ccccagagga taccagctcc ttcacccact tcaacctgat 1050 ccctgtgggc ctccgtgtgg tcaccatcca gagcgccaag ctgggtcact 1100 acatggccat gaatgctgag ggactgctct acagttcgcc gcatttcaca 1150 gctgagtgtc gctttaagga gtgtgtcttt gagaattact acgtcctgta 1200 cgcctctgct ctctaccgcc agcgtcgttc tggccgggcc tggtacctcg 1250

gcctggacaa ggagggccag gtcatgaagg gaaaccgagt taagaagacc 1300
aaggcagctg cccacttct gcccaagctc ctggaggtgg ccatgtacca 1350
ggagccttct ctccacagtg tccccgaggc ctccccttcc agtcccctg 1400
ccccctgaaa tgtagtccct ggactggagg ttccctgcac tcccagtgag 1450
ccagccacca ccacaacctg t 1471

<210> 497

<211> 225

<212> PRT

<213> Homo Sapien

<400> 497

Met Ala Ala Leu Ala Ser Ser Leu Ile Arg Gln Lys Arg Glu Val 1 5 10 15

Arg Glu Pro Gly Gly Ser Arg Pro Val Ser Ala Gln Arg Arg Val
20 25 30

Cys Pro Arg Gly Thr Lys Ser Leu Cys Gln Lys Gln Leu Leu Ile 35 40 45

Leu Leu Ser Lys Val Arg Leu Cys Gly Gly Arg Pro Ala Arg Pro 50 55 60

Asp Arg Gly Pro Glu Pro Gln Leu Lys Gly Ile Val Thr Lys Leu 65 70 75

Phe Cys Arg Gln Gly Phe Tyr Leu Gln Ala Asn Pro Asp Gly Ser 80 85 90

Ile Gln Gly Thr Pro Glu Asp Thr Ser Ser Phe Thr His Phe Asn 95 100 105

Leu Ile Pro Val Gly Leu Arg Val Val Thr Ile Gln Ser Ala Lys 110 115 120

Leu Gly His Tyr Met Ala Met Asn Ala Glu Gly Leu Leu Tyr Ser 125 130 135

Ser Pro His Phe Thr Ala Glu Cys Arg Phe Lys Glu Cys Val Phe 140 145 150

Glu Asn Tyr Tyr Val Leu Tyr Ala Ser Ala Leu Tyr Arg Gln Arg \$155\$ \$160\$

Arg Ser Gly Arg Ala Trp Tyr Leu Gly Leu Asp Lys Glu Gly Gln
170 175

Val Met Lys Gly Asn Arg Val Lys Lys Thr Lys Ala Ala Ala His 185 190 190

Phe Leu Pro Lys Leu Leu Glu Val Ala Met Tyr Gln Glu Pro Ser 200 205

Leu His Ser Val Pro Glu Ala Ser Pro Ser Ser Pro Pro Ala Pro 215 220 225

<210> 498 <211> 744

<212> DNA <213> Homo Sapien

<400> 498 atggccgcgg ccatcgctag cggcttgatc cgccagaagc ggcaggcgcg 50 ggagcagcac tgggaccggc cgtctgccag caggaggcgg agcagcccca 100 gcaagaaccg cgggctctgc aacggcaacc tggtggatat cttctccaaa 150 gtgcgcatct tcggcctcaa gaagcgcagg ttgcggcgcc aagatcccca 200 gctcaagggt atagtgacca ggttatattg caggcaaggc tactacttgc 250 aaatqcaccc cqatqqaqct ctcqatqqaa ccaaqqatqa caqcactaat 300 tctacactct tcaacctcat accagtggga ctacgtgttg ttgccatcca 350 gggagtgaaa acagggttgt atatagccat gaatggagaa ggttacctct 400 acccatcaga actttttacc cctgaatgca agtttaaaga atctgttttt 450 gaaaattatt atgtaatcta ctcatccatq ttqtacaqac aacaqqaatc 500 tggtagagcc tggtttttgg gattaaataa ggaagggcaa gctatgaaag 550 ggaacagagt aaagaaaacc aaaccagcag ctcattttct acccaagcca 600 ttggaagttg ccatgtaccg agaaccatct ttgcatgatg ttggggaaac 650 ggtcccgaag cctggggtga cgccaagtaa aagcacaagt gcgtctgcaa 700 taatgaatgg aggcaaacca gtcaacaaga gtaagacaac atag 744

<210> 499 <211> 247

<212> PRT

<213> Homo Sapien

<400> 499

Met Ala Ala Ala Ile Ala Ser Gly Leu Ile Arg Gln Lys Arg Gln 15

Ala Arg Glu Gln His Trp Asp Arg Pro Ser Ala Ser Arg Arg 20 25 30

Ser Ser Pro Ser Lys Asn Arg Gly Leu Cys Asn Gly Asn Leu Val 35 40

Asp Ile Phe Ser Lys Val Arg Ile Phe Gly Leu Lys Lys Arg Arg 50 55 60

Leu Arg Arg Gln Asp Pro Gln Leu Lys Gly Ile Val Thr Arg Leu
65 70 75

Tyr Cys Arg Gln Gly Tyr Tyr Leu Gln Met His Pro Asp Gly Ala 80 85 90

Leu Asp Gly Thr Lys Asp Asp Ser Thr Asn Ser Thr Leu Phe Asn 95 100 105

Leu Ile Pro Val Gly Leu Arg Val Val Ala Ile Gln Gly Val Lys 110 115 120

Thr	Gly	Leu	Tyr	Ile 125	Ala	Met	Asn	Gly	Glu 130	Gly	Tyr	Leu	Tyr	Pro 135
Ser	Glu	Leu	Phe	Thr 140	Pro	Glu	Cys	Lys	Phe 145	Lys	Glu	Ser	Val	Phe 150
Glu	Asn	Tyr	Tyr	Val 155	Ile	Tyr	Ser	Ser	Met 160	Leu	Tyr	Arg	Gln	Gln 165
Glu	Ser	Gly	Arg	Ala 170	Trp	Phe	Leu	Gly	Leu 175	Asn	Lys	Glu	Gly	Gln 180
Ala	Met	Lys	Gly	Asn 185	Arg	Val	Lys	Lys	Thr 190	Lys	Pro	Ala	Ala	His 195
Phe	Leu	Pro	Lys	Pro 200	Leu	Glu	Val	Ala	Met 205	Tyr	Arg	Glu	Pro	Ser 210
Leu	His	Asp	Val	Gly 215	Glu	Thr	Val	Pro	Lys 220	Pro	Gly	Val	Thr	Pro 225
Ser	Lys	Ser	Thr	Ser 230	Ala	Ser	Ala	Ile	Met 235	Asn	Gly	Gly	Lys	Pro 240
Val	Asn	Lys	Ser	Lys	Thr	Thr								

Val Asn Lys Ser Lys Thr Thr 245

<210> 500

<211> 2906

<212> DNA

<213> Homo Sapien

<400> 500

ggggagaggaattgaccatgtaaaaggagactttttttttggtgtgtg50ggctgttgggtgccttgcaaaaatgaaggatgcaaggacgcagctttctcc100tggaaccgaacgcaatggataaactgattgtgcaagaagaaaggaagaac150gaagctttttcttgtgagccctggatcttaacacaaatgtgtatatgtgc200acacaagggagcattcaagaatgaaataaaccagagttagacccgcggggg250ttggtgtgtctgacataaataaataatcttaaagcagctgttcccctcc300ccacccccaaaaaaaaggatgattggaaatgaagaaaccgaggattcacaa350agaaaaaagtatgttcatttttctctataaaggagaaaggtaaagaact450ggtgtggtggtgttttcctttctttttgaatttcccacaagaggagagga500aattaataaacatctgcaaagaaatttcagagaagaaaagttgaccgcg550gcagattgaggcattgattgggggagagaaaccagcagagcacagttgga600tttgtgcctatgttgactaaaattgacggataattgcagttatcaagatc700atggttttctctttttttaaattttattccttttggtatcaagatc700

gtgatcagtc tgaaatacaa ctgtttgaat tccagaagga ccaacaccag 800 ataaattatg aatgttgaac aagatgacct tacatccaca gcagataatg 850 ataggtccta ggtttaacag ggccctattt gaccccctgc ttgtggtgct 900 gctggctctt caacttcttg tggtggctqg tctqgtqcqq gctcaqacct 950 gcccttctgt gtgctcctgc agcaaccagt tcagcaaggt gatttgtgtt 1000 cggaaaaacc tgcgtgaggt tccggatggc atctccacca acacacggct 1050 gctgaacctc catgagaacc aaatccagat catcaaagtg aacagcttca 1100 agcacttgag gcacttggaa atcctacagt tgagtaggaa ccatatcaga 1150 accattgaaa ttggggcttt caatggtctg gcgaacctca acactctgga 1200 actctttgac aatcgtctta ctaccatccc gaatggagct tttgtatact 1250 tgtctaaact gaaggagctc tggttgcgaa acaaccccat tgaaagcatc 1300 ccttcttatg cttttaacag aattccttct ttgcgccgac tagacttagg 1350 ggaattgaaa agactttcat acatctcaga aggtgccttt gaaggtctgt 1400 ccaacttgag gtatttgaac cttgccatgt gcaaccttcg ggaaatccct 1450 aacctcacac cgctcataaa actagatgag ctggatcttt ctgggaatca 1500 tttatctgcc atcaggcctg gctctttcca gggtttgatg caccttcaaa 1550 aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgccttt 1600 gacaaccttc agtcactagt ggagatcaac ctggcacaca ataatctaac 1650 attactgcct catgacctct tcactccctt gcatcatcta gagcqgatac 1700 atttacatca caaccettgg aactgtaact gtgacatact gtggctcagc 1750 tggtggataa aagacatggc cccctcgaac acagcttgtt gtgcccggtg 1800 taacactcct cccaatctaa aggggaggta cattggagag ctcgaccaga 1850 attacttcac atgctatgct ccggtgattg tggagccccc tgcagacctc 1900 aatgtcactg aaggcatggc agctgagctg aaatgtcggg cctccacatc 1950 cctgacatct gtatcttgga ttactccaaa tggaacagtc atgacacatg 2000 gggcgtacaa agtgcggata gctgtgctca gtgatggtac gttaaatttc 2050 acaaatgtaa ctgtgcaaga tacaggcatg tacacatgta tggtgagtaa 2100 ttccgttggg aatactactg cttcagccac cctgaatgtt actgcagcaa 2150 ccactactcc tttctcttac ttttcaaccg tcacagtaga gactatggaa 2200 ccgtctcagg atgaggcacg gaccacagat aacaatgtgg gtcccactcc 2250 agtggtcgac tgggagacca ccaatgtgac cacctctctc acaccacaga 2300 gcacaaggtc gacagagaaa accttcacca tcccagtgac tgatataaac 2350

agtgggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400 tgggtgtttt gtggccatca cactcatggc tgcagtgatg ctggtcattt 2450 tctacaagat gaggaagcag caccatcggc aaaaccatca cgccccaaca 2500 aggactgttg aaattattaa tgtggatgat gagattacgg gagacacacc 2550 catggaaagc cacctgcca tgcctgctat cgagcatgag cacctaaatc 2600 actataactc atacaaatct cccttcaacc acacaacaac agttaacaca 2650 ataaattcaa tacacagttc agtgcatgaa ccgttattga tccgaatgaa 2700 ctctaaagac aatgtacaag agactcaaat ctaaaacat tacagagtta 2750 caaaaaacaa acaatcaaaa aaaaagacag tttattaaaa atgacacaaa 2800 tgactgggct aaatctactg tttcaaaaaa gtgtctttac aaaaaacaa 2850 aaaagaaaag aaatttatt attaaaaatt ctattgtgat ctaaagcaga 2900 caaaaa 2906

<210> 501 <211> 640

<212> PRT

<213> Homo Sapien

<400> 501

Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly
1 5 10 15

Pro Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu 20 25 30

Leu Ala Leu Gln Leu Leu Val Val Ala Gly Leu Val Arg Ala Gln 35 40

Thr Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val
50 55 60

Ile Cys Val Arg Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser
65 70 75

Thr Asn Thr Arg Leu Leu Asn Leu His Glu Asn Gln Ile Gln Ile 80 85 90

Ile Lys Val Asn Ser Phe Lys His Leu Arg His Leu Glu Ile Leu 95 100 105

Gln Leu Ser Arg Asn His Ile Arg Thr Ile Glu Ile Gly Ala Phe 110 115 120

Asn Gly Leu Ala Asn Leu Asn Thr Leu Glu Leu Phe Asp Asn Arg 125 130 135

Leu Thr Thr Ile Pro Asn Gly Ala Phe Val Tyr Leu Ser Lys Leu 140 145 150

Lys Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser 155 160 165

Tyr	: Ala	a Phe	e Ası	n Arg	g Ile	Pro	Ser	Let	Arg 175	Arg	, Leu	ı Asp	Lei	Gly 180
Glu	ı Leı	і Гу:	s Ar	g Leu 185	s Ser	Tyr	Ile	e Ser	Glu 190	Gly	Ala	Phe	e Glu	1 Gly 195
Leu	Sei	Ası	n Leu	200	Tyr	Leu	Asn	Leu	Ala 205		Cys	Asr	ı Let	1 Arg 210
Glu	Il€	Pro) Asr	1 Leu 215	Thr	Pro	Leu	Ile	Lys 220	Leu	Asp	Glu	Leu	225
Leu	Ser	: Gl	y Asn	1 His 230	Leu	Ser	Ala	Ile	Arg 235	Pro	Gly	Ser	Phe	e Gln 240
Gly	Leu	. Met	His	245	Gln	Lys	Leu	Trp	Met 250	Ile	Gln	Ser	Gln	11e 255
Gln	Val	Ile	e Glu	Arg 260	Asn	Ala	Phe	Asp	Asn 265	Leu	Gln	Ser	Leu	Val 270
Glu	Ile	Asn	Leu	Ala 275	His	Asn	Asn	Leu	Thr 280	Leu	Leu	Pro	His	Asp 285
				290					Arg 295					300
				305					Leu 310					315
				320					Ala 325					330
				335					Tyr 340					345
				350					Val 355					360
				365					Ala 370					375
				380			•		Ser 385					390
				395					Lys 400					405
				410					Asn 415					420
				425					Asn 430					Thr 435
				440					Ala . 445					Pro 450
				455					Glu ' 460					Ser 465
Gln .	Asp	Glu	Ala	Arg 470	Thr	Thr .	Asp	Asn	Asn ' 475	Val	Gly	Pro	Thr	Pro 480

Val '	Val	Asp	Trp	Glu 485	Thr	Thr	Asn	Val	Thr 490	Thr	Ser	Leu	Thr	Pro 495
Gln :	Ser	Thr	Arg	Ser 500	Thr	Glu	Lys	Thr	Phe 505	Thr	Ile	Pro	Val	Thr 510
Asp :	Ile	Asn	Ser	Gly 515	Ile	Pro	Gly	Ile	Asp 520	Glu	Val	Met	Lys	Thr 525
Thr :	Lys	Ile	Ile	Ile 530	Gly	Cys	Phe	Val	Ala 535	Ile	Thr	Leu	Met	Ala 540
Ala '	Val	Met	Leu	Val 545	Ile	Phe	Tyr	Lys	Met 550	Arg	Lys	Gln	His	His 555
Arg (Gln	Asn	His	His 560	Ala	Pro	Thr	Arg	Thr 565	Val	Glu	Ile	Ile	Asn 570
Val 2	Asp	Asp	Glu	Ile 575	Thr	Gly	Asp	Thr	Pro 580	Met	Glu	Ser	His	Leu 585
Pro i	Met	Pro	Ala	Ile 590	Glu	His	Glu	His	Leu 595	Asn	His	Tyr	Asn	Ser 600
Tyr 1	Lys	Ser	Pro	Phe 605	Asn	His	Thr	Thr	Thr 610	Val	Asn	Thr	Ile	Asn 615
Ser :	Ile	His	Ser	Ser 620	Val	His	Glu	Pro	Leu 625	Leu	Ile	Arg	Met	Asn 630
Ser 1	Lys	Asp	Asn	Val 635	Gln	Glu	Thr	Gln	Ile 640					

<210> 502 <211> 2458

<212> DNA

<213> Homo Sapien

<400> 502

gegeeggaa cecatetgee cecagggea eggegeegg ggeeggetee 50
cgeeeggeac atggetgeag ceaeetegge eggeegeege ggageegeege 100
ceagetegee eggaggeege eggeegeee ggageeaage 150
ageaaetgaa eggggaageg eeeggeteeg gggateggga tgteeeteet 200
cetteteete ttgetagttt eetaetatgt tggaaeettg gggaeteaea 250
ctgagateaa gagagtggea gaggaaaagg teaetttgee etgeeaeeat 300
caaetgggge tteeagaaaa agaeaetetg gatattgaat ggetgeteae 350
cgataatgaa gggaaeeaaa aagtggtgat eaettaetee agtegteatg 400
tetaeaataa ettgaetgag gaaeagaagg geegagtgge etttgettee 450
aattteetgg eaggagatge eteettgeag attgaaeete tgaageeeag 500
tgatgaggge eggtaeaeet gtaaggttaa gaatteaggg egetaeegtgt 550
ggageeatgt eaetttaaaaa gtettagtga gaeeateeaa geeeaagtgt 600

gagttggaag gagagctgac agaaggaagt gacctgactt tgcagtgtga 650 gtcatcctct ggcacagagc ccattgtgta ttactggcag cgaatccgag 700 agaaagaggg agaggatgaa cgtctgcctc ccaaatctag gattgactac 750 aaccaccctg gacgagttct gctgcagaat cttaccatgt cctactctgg 800 actgtaccag tgcacagcag gcaacgaagc tgggaaggaa agctgtgtgg 850 tgcgagtaac tgtacagtat gtacaaagca tcggcatggt tgcaggagca 900 gtgacaggca tagtggctgg agccctgctg attttcctct tggtgtggct 950 gctaatccga aggaaagaca aagaaagata tgaggaagaa gagagaccta 1000 atgaaattcg agaagatgct gaagctccaa aagcccgtct tgtgaaaccc 1050 ageteetett eeteaggete teggagetea egetetggtt etteeteeae 1100 tegetecaca geaaatagtg ceteaegeag ceageggaea etgteaactg 1150 acgcagcacc ccagccaggg ctggccaccc aggcatacag cctagtgggg 1200 ccagaggtga gaggttctga accaaagaaa gtccaccatg ctaatctgac 1250 caaagcagaa accacacca gcatgatccc cagccagagc agagccttcc 1300 aaacggtctg aattacaatg gacttgactc ccacgctttc ctaggagtca 1350 gggtctttgg actcttctcg tcattggagc tcaagtcacc agccacacaa 1400 ccagatgaga ggtcatctaa gtagcagtga gcattgcacg gaacagattc 1450 agatgagcat tttccttata caataccaaa caagcaaaag gatgtaagct 1500 gattcatctg taaaaaggca tcttattgtg cctttagacc agagtaaggg 1550 aaagcaggag tccaaatcta tttgttgacc aggacctgtg gtgagaaggt 1600 tggggaaagg tgaggtgaat atacctaaaa cttttaatgt gggatatttt 1650 gtatcagtgc tttgattcac aattttcaag aggaaatggg atgctgtttg 1700 taaattttct atgcatttct gcaaacttat tggattatta gttattcaga 1750 cagtcaagca gaacccacag cettattaca cetgtetaca ceatgtactg 1800 agctaaccac ttctaagaaa ctccaaaaaa ggaaacatgt gtcttctatt 1850 ctgacttaac ttcatttgtc ataaggtttg gatattaatt tcaaggggag 1900 ttgaaatagt gggagatgga gaagagtgaa tgagtttctc ccactctata 1950 ctaatctcac tatttgtatt gagcccaaaa taactatgaa aggagacaaa 2000 aatttgtgac aaaggattgt gaagagcttt ccatcttcat gatgttatga 2050 ggattgttga caaacattag aaatatataa tggagcaatt gtggatttcc 2100 cctcaaatca gatgcctcta aggactttcc tgctagatat ttctggaagg 2150 agaaaataca acatgtcatt tatcaacgtc cttagaaaga attcttctag 2200

agaaaaaggg atctaggaat gctgaaagat tacccaacat accattatag 2250 tctcttcttt ctgagaaaat gtgaaaccag aattgcaaga ctgggtggac 2300 tagaaaggga gattagatca gttttctctt aatatgtcaa ggaaggtagc 2350 cgggcatggt gccaggcacc tgtaggaaaa tccagcaggt ggaggttgca 2400 gtgagccgag attatgccat tgcactccag cctgggtgac agagcggac 2450 tccgtctc 2458

<210> 503

<211> 373

<212> PRT

<213> Homo Sapien

<400> 503

Met Ser Leu Leu Leu Leu Leu Leu Val Ser Tyr Tyr Val Gly 1 5 10

Thr Leu Gly Thr His Thr Glu Ile Lys Arg Val Ala Glu Glu Lys 20 25 30

Val Thr Leu Pro Cys His His Gln Leu Gly Leu Pro Glu Lys Asp 35 40 45

Thr Leu Asp Ile Glu Trp Leu Leu Thr Asp Asn Glu Gly Asn Gln 50 55 60

Lys Val Val Ile Thr Tyr Ser Ser Arg His Val Tyr Asn Asn Leu 65 70 75

Thr Glu Glu Gln Lys Gly Arg Val Ala Phe Ala Ser Asn Phe Leu 80 85 90

Ala Gly Asp Ala Ser Leu Gln Ile Glu Pro Leu Lys Pro Ser Asp 95 100 105

Glu Gly Arg Tyr Thr Cys Lys Val Lys Asn Ser Gly Arg Tyr Val 110 115 120

Trp Ser His Val Ile Leu Lys Val Leu Val Arg Pro Ser Lys Pro $125 \\ 130 \\ 135$

Lys Cys Glu Leu Glu Gly Glu Leu Thr Glu Gly Ser Asp Leu Thr 140 145 150

Leu Gln Cys Glu Ser Ser Ser Gly Thr Glu Pro Ile Val Tyr Tyr
155 160 165

Trp Gln Arg Ile Arg Glu Lys Glu Gly Glu Asp Glu Arg Leu Pro 170 175 180

Pro Lys Ser Arg Ile Asp Tyr Asn His Pro Gly Arg Val Leu Leu 185 190 195

Gln Asn Leu Thr Met Ser Tyr Ser Gly Leu Tyr Gln Cys Thr Ala $200 \hspace{1cm} 205 \hspace{1cm} 210 \hspace{1cm}$

Gly Asn Glu Ala Gly Lys Glu Ser Cys Val Val Arg Val Thr Val $215 \\ 220 \\ 225$

Gln	Tyr	Val	Gln	Ser 230	Ile	Gly	Met	Val	Ala 235	Gly	Ala	Val	Thr	Gly 240
Ile	Val	Ala	Gly	Ala 245	Leu	Leu	Ile	Phe	Leu 250	Leu	Val	Trp	Leu	Leu 255
Ile	Arg	Arg	Lys	Asp 260	Lys	Glu	Arg	Tyr	Glu 265	Glu	Glu	Glu	Arg	Pro 270
Asn	Glu	Ile	Arg	Glu 275	Asp	Ala	Glu	Ala	Pro 280	Lys	Ala	Arg	Leu	Val 285
Lys	Pro	Ser	Ser	Ser 290	Ser	Ser	Gly	Ser	Arg 295	Ser	Ser	Arg	Ser	Gly 300
Ser	Ser	Ser	Thr	Arg 305	Ser	Thr	Ala	Asn	Ser 310	Ala	Ser	Arg	Ser	Gln 315
Arg	Thr	Leu	Ser	Thr 320	Asp	Ala	Ala	Pro	Gln 325	Pro	Gly	Leu	Ala	Thr 330
Gln	Ala	Tyr	Ser	Leu 335	Val	Gly	Pro	Glu	Val 340	Arg	Gly	Ser	Glu	Pro 345
Lys	Lys	Val	His	His 350	Ala	Asn	Leu	Thr	Lys 355	Ala	Glu	Thr	Thr	Pro 360
Ser	Met	Ile	Pro	Ser 365	Gln	Ser	Arg	Ala	Phe 370	Gln	Thr	Val		

<210> 504 <211> 3060

<212> DNA

<213> Homo Sapien

<400> 504

cgcgaggcgcggggagcctgggaccaggagcgagagccgcctacctgcag50ccgccgcccacggcacggcagccaccatggcgctcctgctgtgcttcgtg100ctcctgtgcggagtagtggatttcgccagaagtttgagtatcactactcc150tgaagagatgattgaaaaagccaaaggggaaactgcctatctgccatgca200aatttacgcttagtcccgaagaccagggaccgctggacatcgagtggctg250atatcaccagctgataatcagaaggtggatcaagtgattattttatattc300tggagacaaaatttatgatgactactatccagatctgaaaggccgagtac350attttacgagtaatgatctcaaatctggtgatgcatcaataaatgtaacg400aatttacaactgtcagatattggcacatatcagtgcaaagtgaaaaaagc450tcctggtgttgcaaataagaagattcatctggtagttcttgttaagcctt500caggtgcgagatgtaaccaaaagaaggttcacttccattacagtatgagtg600gcaaaaaattgtctgactcacagaaaatgcccacttcatggttagcagaaa650tgacttcatctgttatatctgtaaaaaatgcccacttcttctgagtactctggg700

acatacagct gtacagtcag aaacagagtg ggctctgatc agtgcctgtt 750 gcgtctaaac gttgtccctc cttcaaataa agctggacta attgcaggag 800 ccattatagg aactttgctt gctctagcgc tcattggtct tatcatcttt 850 tgctgtcgta aaaagcgcag agaagaaaaa tatgaaaagg aagttcatca 900 cgatatcagg gaagatgtgc cacctccaaa gagccgtacg tccactgcca 950 gaagctacat cggcagtaat cattcatccc tggggtccat gtctccttcc 1000 aacatggaag gatattccaa gactcagtat aaccaagtac caagtgaaga 1050 ctttgaacgc actcctcaga gtccgactct cccacctgct aagttcaagt 1100 accettacaa gactgatgga attacagttg tataaatatg gactactgaa 1150 gaatctgaag tattgtatta tttgacttta ttttaggcct ctagtaaaga 1200 cttaaatgtt ttttaaaaaa agcacaaggc acagagatta gagcagctgt 1250 aagaacacat ctactttatg caatggcatt agacatgtaa gtcagatgtc 1300 atgtcaaaat tagtacgagc caaattcttt gttaaaaaac cctatgtata 1350 gtgacactga tagttaaaag atgttttatt atattttcaa taactaccac 1400 taacaaattt ttaacttttc atatgcatat tctgatatgt ggtcttttag 1450 gaaaagtatg gttaatagtt gatttttcaa aggaaatttt aaaattctta 1500 cgttctgttt aatgtttttg ctatttagtt aaatacattg aagggaaata 1550 cccgttcttt tcccctttta tgcacacaac agaaacacgc gttgtcatgc 1600 ctcaaactat tttttatttg caactacatg atttcacaca attctcttaa 1650 acaacgacat aaaatagatt teettgtata taaataaett acataegete 1700 cataaagtaa attotoaaag gtgotagaac aaatogtoca ottotacagt 1750 gttctcgtat ccaacagagt tgatgcacaa tatataaata ctcaagtcca 1800 atattaaaaa cttaggcact tgactaactt taataaaatt tctcaaacta 1850 tatcaatatc taaagtgcat atatttttta agaaagatta ttctcaataa 1900 cttctataaa aataagtttg atggtttggc ccatctaact tcactactat 1950 tagtaagaac ttttaacttt taatgtgtag taaggtttat tctacctttt 2000 tctcaacatg acaccaacac aatcaaaaac gaagttagtg aggtgctaac 2050 atgtgaggat taatccagtg attccggtca caatgcattc caggaggagg 2100 tacccatgtc actggaattg ggcgatatgg tttattttt cttccctgat 2150 ttggataacc aaatggaaca ggaggaggat agtgattctg atggccattc 2200 cctcgataca ttcctggctt ttttctgggc aaagggtgcc acattggaag 2250 aggtggaaat ataagttctg aaatctgtag ggaagagaac acattaagtt 2300

aattcaaagg aaaaaatcat catctatgtt ccagatttct cattaaagac 2350 aaagttaccc acaacactga gatcacatct aagtgacact cctattgtca 2400 ggtctaaata cattaaaaac ctcatgtgta ataggcgtat aatgtataac 2450 aggtgaccaa tgttttctga atgcataaag aaatgaataa actcaaacac 2500 agtacttcct aaacaacttc aaccaaaaaa gaccaaaaca tggaacgaat 2550 ggaagcttgt aaggacatgc ttgttttagt ccagtggttt ccacagctgg 2600 ctaagccagg agtcacttgg aggcttttaa atacaaaaca ttggagctgg 2650 aggecattat cettageaaa etaatgeaga aacagaaaat caactaeege 2700 atgttctcac ttataagtgg gaggtaatga taagaactta tgaacacaaa 2750 gaaggaaaca atagacattg gagtctattt gagaggggag ggtgggagaa 2800 ggaaaaggag cagaaaagat aactattgag tactgccttc acacctgggt 2850 gatgaaataa tatgtacaac aaatccctgt gacacatgtt tacctatgga 2900 aaaaaaaaa 3060

<210> 505 <211> 352

<212> PRT

<213> Homo Sapien

<400> 505

Phe Ala Arg Ser Leu Ser Ile Thr Thr Pro Glu Glu Met Ile Glu 20 25 30

Lys Ala Lys Gly Glu Thr Ala Tyr Leu Pro Cys Lys Phe Thr Leu $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ser Pro Glu Asp Gln Gly Pro Leu Asp Ile Glu Trp Leu Ile Ser 50 55 60

Pro Ala Asp Asn Gln Lys Val Asp Gln Val Ile Ile Leu Tyr Ser 65 70 75

Gly Asp Lys Ile Tyr Asp Asp Tyr Tyr Pro Asp Leu Lys Gly Arg 80 85 90

Val His Phe Thr Ser Asn Asp Leu Lys Ser Gly Asp Ala Ser Ile $95\,$ 100 105

Lys Val Lys Lys Ala Pro Gly Val Ala Asn Lys Lys Ile His Leu

				125					130					135
Val	Val	Leu	Val	Lys 140	Pro	Ser	Gly	Ala	Arg 145	Cys	Tyr	Val	Asp	Gly 150
Ser	Glu	Glu	Ile	Gly 155	Ser	Asp	Phe	Lys	Ile 160	Lys	Cys	Glu	Pro	Lys 165
Glu	Gly	Ser	Leu	Pro 170	Leu	Gln	Tyr	Glu	Trp 175	Gln	Lys	Leu	Ser	Asp 180
Ser	Gln	Lys	Met	Pro 185	Thr	Ser	Trp	Leu	Ala 190	Glu	Met	Thr	Ser	Ser 195
Val	Ile	Ser	Val	Lys 200	Asn	Ala	Ser	Ser	Glu 205	Tyr	Ser	Gly	Thr	Tyr 210
Ser	Cys	Thr	Val	Arg 215	Asn	Arg	Val	Gly	Ser 220	Asp	Gln	Cys	Leu	Leu 225
Arg	Leu	Asn	Val	Val 230	Pro	Pro	Ser	Asn	Lys 235	Ala	Gly	Leu	Ile	Ala 240
Gly	Ala	Ile	Ile	Gly 245	Thr	Leu	Leu	Ala	Leu 250	Ala	Leu	Ile	Gly	Leu 255
Ile	Ile	Phe	Cys	Cys 260	Arg	Lys	Lys	Arg	Arg 265	Glu	Glu	Lys	Tyr	Glu 270
Lys	Glu	Val	His	His 275	Asp	Ile	Arg	Glu	Asp 280	Val	Pro	Pro	Pro	Lys 285
Ser	Arg	Thr	Ser	Thr 290	Ala	Arg	Ser	Tyr	Ile 295	Gly	Ser	Asn	His	Ser 300
Ser	Leu	Gly	Ser	Met 305	Ser	Pro	Ser	Asn	Met 310	Glu	Gly	Tyr	Ser	Lys 315
Thr	Gln	Tyr	Asn	Gln 320	Val	Pro	Ser	Glu	Asp 325	Phe	Glu	Arg	Thr	Pro 330
Gln	Ser	Pro	Thr	Leu 335	Pro	Pro	Ala	Lys	Phe 340	Lys	Tyr	Pro	Tyr	Lys 345
Thr	Asp	Gly	Ile	Thr 350	Val	Val								
<210> 506														
<211> 1705														
101 ns	T 3 7 7 7													

<212> DNA

<213> Homo Sapien

tgaaatgact tccacggctg ggacgggaac cttccaccca cagctatgcc 50 tctgattggt gaatggtgaa ggtgcctgtc taacttttct gtaaaaagaa 100 ccagctgcct ccaggcagcc agccctcaag catcacttac aggaccagag 150 ggacaagaca tgactgtgat gaggagctgc tttcgccaat ttaacaccaa 200 gaagaattga ggctgcttgg gaggaaggcc aggaggaaca cgagactgag 250

<210> 507

<211> 206

<212> PRT

<213> Homo Sapien

<400> 507 Met Asn Phe Gln Gln Arg Leu Gln Ser Leu Trp Thr Leu Ala Arg Pro Phe Cys Pro Pro Leu Leu Ala Thr Ala Ser Gln Met Gln Met Val Val Leu Pro Cys Leu Gly Phe Thr Leu Leu Leu Trp Ser Gln Val Ser Gly Ala Gln Gly Gln Glu Phe His Phe Gly Pro Cys Gln Val Lys Gly Val Val Pro Gln Lys Leu Trp Glu Ala Phe Trp Ala Val Lys Asp Thr Met Gln Ala Gln Asp Asn Ile Thr Ser Ala Arg Leu Leu Gln Gln Glu Val Leu Gln Asn Val Ser Asp Ala Glu Ser Cys Tyr Leu Val His Thr Leu Leu Glu Phe Tyr Leu Lys Thr Val 110 120 Phe Lys Asn His His Asn Arg Thr Val Glu Val Arg Thr Leu Lys Ser Phe Ser Thr Leu Ala Asn Asn Phe Val Leu Ile Val Ser Gln 140 145 Leu Gln Pro Ser Gln Glu Asn Glu Met Phe Ser Ile Arg Asp Ser 155 Ala His Arg Arg Phe Leu Leu Phe Arg Arg Ala Phe Lys Gln Leu 170 Asp Val Glu Ala Ala Leu Thr Lys Ala Leu Gly Glu Val Asp Ile Leu Leu Thr Trp Met Gln Lys Phe Tyr Lys Leu

- <210> 508
- <211> 924
- <212> DNA
- <213> Homo Sapien

200

<400> 508

aaggagcagc ccgcaagcac caagtgagag gcatgaagtt acagtgtgt 50 teeetttgge teetgggtac aatactgata ttgtgeteag tagacaacca 100 cggteteagg agatgtetga tttecacaga catgeaceat atagaagaga 150 gtttecaaga aatcaaaaga gecatecaag etaaggacac etteceaaat 200 gteactatee tgtecacatt ggagaetetg cagateatta ageeettaga 250 tgtgtgetge gtgaceaaga aceteetgge gttetaegtg gacagggtgt 300

teaaggatea teaggageea aaceceaaaa tettgagaaa aateageage 350 attgeeaact ettteeteta eatgeagaaa actetgegge aatgteagga 400 acagaggeag tgteactgea ggeaggaage eaceaatgee aceagagtea 450 teeatgacaa etatgateag etggaggtee aegetgetge eattaaatee 500 etgggagage tegaegtet tetageetgg attaataaga ateatgaagt 550 aatgteeta gettgatgae aaggaacetg tatagtgate eagggatgaa 600 eaceeeetg geggtttaet gtgggagaea geeeaeettg aaggggaagg 650 agatgggaa ggeeeettge agetgaaagt eceaeetgget ggeeteagge 700 tgtettatte egettgaaaa taggeaaaaa gtetaetgg gtattgtaa 750 taaaetetat etgetgaaag ggeetgeagg eeateetggg agtaaaggge 800 tgeetteeea tetaatttat tgtaaagtea tatagteeat gtetgtgatg 850 tgageeaagt gatateetgt agtacacatt gtaetgagtg gtitteetga 900 ataaatteea tatttaeet atga 924

<210> 509

<211> 177

<212> PRT

<213> Homo Sapien

<400> 509

Met Lys Leu Gln Cys Val Ser Leu Trp Leu Leu Gly Thr Ile Leu 1 5 10 15

Ile Leu Cys Ser Val Asp Asn His Gly Leu Arg Arg Cys Leu Ile $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Ser Thr Asp Met His His Ile Glu Glu Ser Phe Gln Glu Ile Lys 35 40 45

Arg Ala Ile Gln Ala Lys Asp Thr Phe Pro Asn Val Thr Ile Leu
50 55 60

Ser Thr Leu Glu Thr Leu Gln Ile Ile Lys Pro Leu Asp Val Cys
75

Cys Val Thr Lys Asn Leu Leu Ala Phe Tyr Val Asp Arg Val Phe 80 85 90

Lys Asp His Gln Glu Pro Asn Pro Lys Ile Leu Arg Lys Ile Ser 95 100

Ser Ile Ala Asn Ser Phe Leu Tyr Met Gln Lys Thr Leu Arg Gln 110 115 120

Cys Gln Glu Gln Arg Gln Cys His Cys Arg Gln Glu Ala Thr Asn 125 130 135

Ala Ala Ile Lys Ser Leu Gly Glu Leu Asp Val Phe Leu Ala

155 160 165

Trp Ile Asn Lys Asn His Glu Val Met Phe Ser Ala 170 175

<210> 510

<211> 996

<212> DNA

<213> Homo Sapien

<400> 510

cccgtgccaa gagtgacgta agtaccgcct atagagtcta taggcccact 50 tggcttcgtt agaacgcggc tacaattaat acataacctt atgtatcata 100 cacatacgat ttaggtgaca ctatagaata acatccactt tgcctttctc 150 tocacaggtg tocactocca ggtocaactg cacctoggtt ctatogataa 200 teteageace agecacteag ageagggeae gatgttgggg geeegeetea 250 ggctctgggt ctgtgccttg tgcagcgtct gcagcatgag cgtcctcaga 300 gcctatccca atgcctcccc actgctcggc tccagctggg gtggcctgat 350 ccacctgtac acagccacag ccaggaacag ctaccacctg cagatccaca 400 agaatggcca tgtggatggc gcaccccatc agaccatcta cagtgccctg 450 atgatcagat cagaggatgc tggctttgtg gtgattacag gtgtgatgag 500 cagaagatac ctctgcatgg atttcagagg caacattttt ggatcacact 550 atttcgaccc ggagaactgc aggttccaac accagacgct ggaaaacggg 600 tacgacgtct accactetee teagtateae tteetggtea gtetgggeeg 650 ggcgaagaga gccttcctgc caggcatgaa cccacccccg tactcccagt 700 tectgteeeg gaggaacgag atececetaa tteaetteaa caececeata 750 ccacggcggc acacccggag cgccgaggac gactcggagc gggaccccct 800 gaacgtgctg aagccccggg cccggatgac cccggccccg gcctcctgtt 850 cacaggaget eccgagegee gaggacaaca geeegatgge cagtgaceca 900 ttaggggtgg tcaggggcgg tcgagtgaac acgcacgctg ggggaacggg 950 cccggaaggc tgccgccct tcgccaagtt catctagggt cgctgg 996

<210> 511

<211> 251

<212> PRT

<213> Homo Sapien

<400> 511

Met Leu Gly Ala Arg Leu Arg Leu Trp Val Cys Ala Leu Cys Ser 1 5 10

Val Cys Ser Met Ser Val Leu Arg Ala Tyr Pro Asn Ala Ser Pro 20 25 30

Leu Leu Gly Ser Ser Trp Gly Gly Leu Ile His Leu Tyr Thr Ala Thr Ala Arg Asn Ser Tyr His Leu Gln Ile His Lys Asn Gly His Val Asp Gly Ala Pro His Gln Thr Ile Tyr Ser Ala Leu Met Ile Arg Ser Glu Asp Ala Gly Phe Val Val Ile Thr Gly Val Met Ser Arg Arg Tyr Leu Cys Met Asp Phe Arg Gly Asn Ile Phe Gly Ser 95 His Tyr Phe Asp Pro Glu Asn Cys Arg Phe Gln His Gln Thr Leu 110 Glu Asn Gly Tyr Asp Val Tyr His Ser Pro Gln Tyr His Phe Leu 130 Val Ser Leu Gly Arg Ala Lys Arg Ala Phe Leu Pro Gly Met Asn Pro Pro Pro Tyr Ser Gln Phe Leu Ser Arg Arg Asn Glu Ile Pro 160 Leu Ile His Phe Asn Thr Pro Ile Pro Arg Arg His Thr Arg Ser 175 Ala Glu Asp Asp Ser Glu Arg Asp Pro Leu Asn Val Leu Lys Pro Arg Ala Arg Met Thr Pro Ala Pro Ala Ser Cys Ser Gln Glu Leu 200 Pro Ser Ala Glu Asp Asn Ser Pro Met Ala Ser Asp Pro Leu Gly 220 Val Val Arg Gly Gly Arg Val Asn Thr His Ala Gly Gly Thr Gly 230 235 Pro Glu Gly Cys Arg Pro Phe Ala Lys Phe Ile

<210> 512

<211> 2015

<212> DNA

<213> Homo Sapien

245

<400> 512

ggaaaaggta cccgcgagag acagccagca gttctgtgga gcagcggtgg 50
ccggctagga tgggctgtct ctggggtctg gctctgcccc ttttcttctt 100
ctgctgggag gttggggtct ctgggagctc tgcaggcccc agcacccgca 150
gagcagacac tgcgatgaca acggacgaca cagaagtgcc cgctatgact 200
ctagcaccgg gcccaccccc tctggaaact caaacgctga gcgctgagac 250
ctcttctagg gcctcaaccc cagccggccc cattccagaa gcagagacca 300

ggtgtccttg gactcacctt ggcacatgtt ctgtgtttca gtaaagagag 1950 acctgatcac ccatctgtgt gcttccatcc tgcattaaaa ttcactcagt 2000 gtggcccaaa aaaaa 2015

<210> 513

<211> 482

<212> PRT

<213> Homo Sapien

<400> 513

Met Gly Cys Leu Trp Gly Leu Ala Leu Pro Leu Phe Phe Cys
1 10 15

Trp Glu Val Gly Val Ser Gly Ser Ser Ala Gly Pro Ser Thr Arg
20 25 30

Arg Ala Asp Thr Ala Met Thr Thr Asp Asp Thr Glu Val Pro Ala
35 40

Met Thr Leu Ala Pro Gly His Ala Ala Leu Glu Thr Gln Thr Leu
50 55 60

Ser Ala Glu Thr Ser Ser Arg Ala Ser Thr Pro Ala Gly Pro Ile 65 70 75

Pro Glu Ala Glu Thr Arg Gly Ala Lys Arg Ile Ser Pro Ala Arg 80 85 90

Glu Thr Arg Ser Phe Thr Lys Thr Ser Pro Asn Phe Met Val Leu 95 100 105

Ile Ala Thr Ser Val Glu Thr Ser Ala Ala Ser Gly Ser Pro Glu 110 115 120

Gly Ala Gly Met Thr Thr Val Gln Thr Ile Thr Gly Ser Asp Pro 125 130 135

Glu Glu Ala Ile Phe Asp Thr Leu Cys Thr Asp Asp Ser Ser Glu 140 145 150

Glu Ala Lys Thr Leu Thr Met Asp Ile Leu Thr Leu Ala His Thr
155 160 165

Ser Thr Glu Ala Lys Gly Leu Ser Ser Glu Ser Ser Ala Ser Ser 170 175 180

Asp Gly Pro His Pro Val Ile Thr Pro Ser Arg Ala Ser Glu Ser 185 190 195

Ser Ala Ser Ser Asp Gly Pro His Pro Val Ile Thr Pro Ser Arg 200 205 210

Ala Ser Glu Ser Ser Ala Ser Ser Asp Gly Pro His Pro Val Ile 215 220 225

Thr Pro Ser Trp Ser Pro Gly Ser Asp Val Thr Leu Leu Ala Glu 230 235 240

Ala Leu Val Thr Val Thr Asn Ile Glu Val Ile Asn Cys Ser Ile 245 250 255

Gln Thr

<210> 514

<211> 2284

<212> DNA

<213> Homo Sapien

<400> 514

geggageate egetgeggte etegeegga eeceeggeg gattegeegg 50
teetteeege gggegegaca gagetgteet egeacetgga tggeageagg 100
ggegeegggg teetetegae geeagagaga aateteatea tetgtgeage 150
ettettaaag eaaactaaga eeagaggag gattateett gaeetttgaa 200
gaeeaaaaet aaactgaaat ttaaaatgtt etteggggga gaagggaget 250

<210> 515

<211> 431

<212> PRT

<213> Homo Sapien

<400> 515

Met Phe Phe Gly Gly Glu Gly Ser Leu Thr Tyr Thr Leu Val Ile 1 5 10 15

Ile Cys Phe Leu Thr Leu Arg Leu Ser Ala Ser Gln Asn Cys Leu 20 25 30

Lys Lys Ser Leu Glu Asp Val Val Ile Asp Ile Gln Ser Ser Leu 35 40 45

Ser Lys Gly Ile Arg Gly Asn Glu Pro Val Tyr Thr Ser Thr Gln
50 55 60

Glu Asp Cys Ile Asn Ser Cys Cys Ser Thr Lys Asn Ile Ser Gly
65 70 75

Asp Lys Ala Cys Asn Leu Met Ile Phe Asp Thr Arg Lys Thr Ala 80 85 90

Arg Gln Pro Asn Cys Tyr Leu Phe Phe Cys Pro Asn Glu Glu Ala 95 100

Cys Pro Leu Lys Pro Ala Lys Gly Leu Met Ser Tyr Arg Ile Ile 110 115 120

Thr Asp Phe Pro Ser Leu Thr Arg Asn Leu Pro Ser Gln Glu Leu 125 130 135

Pro Gln Glu Asp Ser Leu Leu His Gly Gln Phe Ser Gln Ala Val 140 145 150

Thr Pro Leu Ala His His His Thr Asp Tyr Ser Lys Pro Thr Asp 155 160 165

Ile Ser Trp Arg Asp Thr Leu Ser Gln Lys Phe Gly Ser Ser Asp 170 175 180

His Leu Glu Lys Leu Phe Lys Met Asp Glu Ala Ser Ala Gln Leu 185 190 195

<210> 516

<211> 2749

<212> DNA

<213> Homo Sapien

<220>

<221> unsure

<222> 1869, 1887

<223> unknown base

<400> 516

ctcccacggt gtccagcgcc cagaatgcgg cttctggtcc tgctatgggg 50

ttgcctgctg ctcccaggtt atgaagccct ggagggccca gaggaaatca 100

gagtetgeat ttgggetgtg aegteteeae etgeeceaat agatetgete 1750 tgtctgcgac accagatcca cgtggggact cccctgaggc ctgctaagtc 1800 caggccttgg tcaggtcagg tgcacattgc aggataagcc caggaccggc 1850 acagaagtgg ttgcctttnc catttgccct ccctggncca tgccttcttg 1900 cctttggaaa aaatgatgaa gaaaaccttg gctccttcct tgtctggaaa 1950 gggttacttg cctatgggtt ctggtggcta gagagaaaag tagaaaacca 2000 gagtgcacgt aggtgtctaa cacagaggag agtaggaaca gggcggatac 2050 ctgaaggtga ctccgagtcc agccccctgg agaaggggtc gggggtggtg 2100 gtaaagtagc acaactacta tttttttct ttttccatta ttattgtttt 2150 ttaagacaga atctcgtgct gctgcccagg ctggagtgca gtggcacgat 2200 ctgcaaactc cgcctcctgg gttcaagtga ttcttctgcc tcagcctccc 2250 gagtagctgg gattacaggc acgcaccacc acacctggct aatttttgta 2300 cttttagtag agatggggtt tcaccatgtt ggccaggctg gtcttgaact 2350 cctgacctca aatgagcctc ctgcttcagt ctcccaaatt gccgggatta 2400 caggcatgag ccactgtgtc tggccctatt tcctttaaaa agtgaaatta 2450 gaagaaaaaa atgtcaccca tagtctcacc agagactatc attatttcgt 2550 tttgttgtac ttccttccac tcttttcttc ttcacataat ttgccggtgt 2600 tetttttaca gageaattat ettgtatata caaetttgta teetgeettt 2650 tccaccttat cgttccatca ctttattcca gcacttctct gtgttttaca 2700 gaccttttta taaataaaat gttcatcagc tgcataaaaa aaaaaaaaa 2749

<210> 517

<211> 332

<212> PRT

<213> Homo Sapien

<400> 517

Met Arg Leu Leu Val Leu Leu Trp Gly Cys Leu Leu Pro Gly 1 5 10 15

Tyr Glu Ala Leu Glu Gly Pro Glu Glu Ile Ser Gly Phe Glu Gly
20 25 30

Asp Thr Val Ser Leu Gln Cys Thr Tyr Arg Glu Glu Leu Arg Asp 35 40 45

His Arg Lys Tyr Trp Cys Arg Lys Gly Gly Ile Leu Phe Ser Arg 50 55 60

Cys Ser Gly Thr Ile Tyr Ala Glu Glu Glu Gly Gln Glu Thr Met
65 70 75

Ser Ala

<210> 518

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 518

```
ccctgcagtg cacctacagg gaag 24
 <210> 519
 <211> 24
 <212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 519
 ctgtcttccc ctgcttggct gtgg 24
<210> 520
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 520
 ggtgcaggaa gggtgggatc ctcttctctc gctgctctgg ccacatc 47
<210> 521
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 521
 ccagtgcaca gcaggcaacg aagc 24
<210> 522
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 522
actaggctgt atgcctgggt gggc 24
<210> 523
<211> 43
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 523
 gtatgtacaa agcatcggca tggttgcagg agcagtgaca ggc 43
<210> 524
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
```

<212> DNA

```
<223> Synthetic oligonucleotide probe
<400> 524
 aatctcagca ccagccactc agagca 26
<210> 525
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 525
gttaaagagg gtgcccttcc agcga 25
<210> 526
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 526
 tatcccaatg cctccccact gctc 24
<210> 527
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
 gatgaacttg gcgaaggggc ggca 24
<210> 528
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 528
 agggaggatt atccttgacc tttgaagacc 30
<210> 529
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 529
 gaagcaagtg cccagctc 18
<210> 530
<211> 18
```


<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 530

cgggtccctg ctctttgg 18

<210> 531

<211> 24

<212> DNA

<213> Artificial Sequence

<2220S

<223> Synthetic oligonucleotide probe

<400> 531

caccgtagct gggagcgcac tcac 24

<210> 532

<211> 18

<212> DNA

<213> Artificial Sequence

<2205

<223> Synthetic oligonucleotide probe

<400> 532

agtgtaagtc aagctccc 18