Energy: the work-energy theorem

Physics 211 Syracuse University, Physics 211 Spring 2015 Walter Freeman

March 5, 2015

Announcements

- Exams (+ regrades) will be returned tomorrow in recitation
- If you didn't get your exam 1 back, email me
- Exam average etc. will be posted once I have it
 - ullet The average of the 65 grades from one TA is 66/100; remember this can be no worse than a B-
- Next homework will be short, posted Friday, and due Friday after break
- Next Mastering Physics will be short, posted Friday, and due before class Tuesday

Energy methods, in general

- "Conventional" kinematics: compute $\vec{x}(t)$, $\vec{v}(t)$
 - "Time-aware" and "path-aware" tells us the history of a thing's movement
 - Time is an essential variable here
- ullet Newton's second law: forces o acceleration o history of movement
- Sometimes we don't care about all of this
- Roll a ball down a track: how fast is it going at the end?

Energy methods, in general

We will see that things are often simpler when we look at something called "energy"

- Basic idea: don't treat \vec{a} and \vec{v} as the most interesting things any more
- Treat v^2 as fundamental: $\frac{1}{2}mv^2$ called "kinetic energy"

Previous methods:

- Velocity is fundamental
- Force: causes velocities to change over time
- Intimately concerned with vector quantities

Energy methods:

- v^2 (related to kinetic energy) is fundamental
- Force: causes KE to change over distance
- Energy is a scalar

Energy methods: useful when you don't know and don't care about time

We've encountered something before that eliminates time as a variable...

We've encountered something before that eliminates time as a variable...

The "third kinematics relation"

$$v_f^2 - v_0^2 = 2a\Delta x$$

We've encountered something before that eliminates time as a variable...

The "third kinematics relation"

$$v_f^2 - v_0^2 = 2a\Delta x$$

Multiply by $\frac{1}{2}m$:

$$\frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 = am\,\Delta x$$

That thing on the right looks familiar...

We've encountered something before that eliminates time as a variable...

We've encountered something before that eliminates time as a variable...

The "third kinematics relation"

$$v_f^2 - v_0^2 = 2a\Delta x$$

We've encountered something before that eliminates time as a variable...

The "third kinematics relation"

$$v_f^2 - v_0^2 = 2a\Delta x$$

Multiply by $\frac{1}{2}m$:

$$\frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 = F\Delta x$$

We've encountered something before that eliminates time as a variable...

The "third kinematics relation"

$$v_f^2 - v_0^2 = 2a\Delta x$$

Multiply by $\frac{1}{2}m$:

$$\frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 = F\Delta x$$

Some new terminology:

- $\frac{1}{2}mv^2$ called the "kinetic energy" (positive only!)
- $F\Delta x$ called the "work" (negative or positive!)
- "Work is the change in kinetic energy"

Sample problem: dropping an object

A rather clumsy cat falls off of a cat tree 2m high. At what speed does he hit the ground?

Sample problem: dropping an object

A rather clumsy cat falls off of a cat tree 2m high. At what speed does he hit the ground?

Feet first, of course – we're not cruel!

$$KE_f - KE_0 = F\Delta y$$

Sample problem: dropping an object

A rather clumsy cat falls off of a cat tree 2m high. At what speed does he hit the ground?

Feet first, of course - we're not cruel!

$$KE_f - KE_0 = F\Delta y$$

- $KE_0 = 0$
- Work done by gravity: $(-h) \times (-mg) = mgh$
- $KE_f KE_0 = mgh \rightarrow v_f = \sqrt{2gh} = 6.26 \mathrm{m/s}$

Sample problem: Baseball problem (exam 1)

I throw a ball straight up with initial speed v_0 . Someone catches it at height h. How fast is it going?

Sample problem: Baseball problem (exam 1)

I throw a ball straight up with initial speed v_0 . Someone catches it at height h. How fast is it going?

•
$$\frac{1}{2}mv_f^2 - \frac{1}{2}mv_0^2 = (-mg) \times h$$

ullet ... algebra follows: solve for v_f

Multiple pendulum demo

The total work done is zero!

One side has a large Δs and a small F. One side has a small Δs and a large F.

Work-energy theorem: 2D

We can do this in two dimensions, too:

•
$$\frac{1}{2}mv_{x,f}^2 - \frac{1}{2}mv_{x,0}^2 = F_x \Delta x$$

$$\bullet \ \frac{1}{2}mv_{y,f}^2 - \frac{1}{2}mv_{y,0}^2 = F_y \Delta y$$

Add these together:

•
$$\frac{1}{2}m(v_{x,f}^2+v_{y,f}^2)-\frac{1}{2}m(v_{x,0}^2+v_{y,0}^2)=F_x\Delta x+F_y\Delta y$$

Work-energy theorem: 2D

We can do this in two dimensions, too:

•
$$\frac{1}{2}mv_{x,f}^2 - \frac{1}{2}mv_{x,0}^2 = F_x \Delta x$$

$$\bullet \ \frac{1}{2}mv_{y,f}^2 - \frac{1}{2}mv_{y,0}^2 = F_y \Delta y$$

Add these together:

•
$$\frac{1}{2}m(v_{x,f}^2+v_{y,f}^2)-\frac{1}{2}m(v_{x,0}^2+v_{y,0}^2)=F_x\Delta x+F_y\Delta y$$

- The thing on the left can be simplified with the Pythagorean theorem:
- $\frac{1}{2}m(v_f^2) \frac{1}{2}mv_0^2 = F_x \Delta x + F_y \Delta y$
- That funny thing on the right is called a "dot product".

Dot products

$$A_x B_x + A_y B_y$$
 is written as $\vec{A} \cdot \vec{B}$.

What does this mean? It's a way of "multiplying" two vectors to get a scalar (a number).

Dot products

$$A_x B_x + A_y B_y$$
 is written as $\vec{A} \cdot \vec{B}$.

What does this mean? It's a way of "multiplying" two vectors to get a scalar (a number). We can choose coordinate axes as always: choose them to align either with \vec{F} or $\Delta \vec{s}$.

• "The component of the displacement parallel to the force, times the force

- $\vec{F} \cdot \Delta \vec{s} = (F_{\parallel})(\Delta s) = (F \cos \theta)(\Delta s)$
- "The component of the force parallel to the motion, times the displacement

Different cases where each form is useful, but it's the same trig either way

• What is the work done by the string?

- What is the work done by the string?
- Zero it's always perpendicular to the motion!
- How high will it swing on the other side?

- What is the work done by the string?
- Zero it's always perpendicular to the motion!
- How high will it swing on the other side?
- Gravity does positive work on the way down and negative work on the way up
- The kinetic energy can't go below zero
- The height at each end of the swing must be the same!
- ... and the return height can't be greater than the initial height...

- What is the work done by the string?
- Zero it's always perpendicular to the motion!
- How high will it swing on the other side?
- Gravity does positive work on the way down and negative work on the way up
- The kinetic energy can't go below zero
- The height at each end of the swing must be the same!
- ... and the return height can't be greater than the initial height...

(If physics stops working and I go splat, have a nice spring break!)

Ball rolling down a ramp demo

• What is the work done by the normal force?

Ball rolling down a ramp demo

- What is the work done by the normal force?
- Zero the normal force is always perpendicular to the motion!
- What is the work done by gravity?

Ball rolling down a ramp demo

- What is the work done by the normal force?
- Zero the normal force is always perpendicular to the motion!
- What is the work done by gravity?
- Use the "force times parallel component of motion" formulation:
- ullet $W=(-mg) imes(y_f-y_0)$ note both components are negative, for a positive result
- The shape of the ramp doesn't matter: the velocities will all be the same at the end!

Hot Wheels demo

How does the velocity at the middle photogate relate to that at the bottom?

Hot Wheels demo

How does the velocity at the middle photogate relate to that at the bottom?

All I need are the heights; the shape doesn't matter at all!

Hot Wheels demo

How does the velocity at the middle photogate relate to that at the bottom?

All I need are the heights; the shape doesn't matter at all!

Middle: Work done by gravity =
$$mg(1h)$$
, $\frac{1}{2}mv^2 = mg(1h)$, $v = \sqrt{2gh}$ Bottom: Work done by gravity = $mg(2h)$, $\frac{1}{2}mv^2 = mg(2h)$, $v = \sqrt{4gh}$

The velocity at the bottom is larger by a factor of $\sqrt{2}$!