SEABORN LIBRARY:

```
In [2]: # As per now, we have closed with - 'pandas', 'numpy', 'matplotlib' -
        # Now the most important thing is - 'Seaborn Liberary'
        # Seaborn - has been build on top of 'matplotlib'.
        # Seaborn - is Specially designed to work with an a 'Stat' data - Statistical Graphical Representation
                     something like 'Uni-Variant'. Means, Whenever we want to work with an a
                    'Single Variable', 'Multivariant'....
        # And i want 'Identify' the 'Co-ralation' - Actually the next step in the Statistics.
        # 'Seaborn' --> has been designed to Identify (or) to work on top of an a Statistical like -
                       "Uni-Variable", "Bi-Variable", "Multi-Variable" Working Environment.
        # Seaborn - Also, We Call it as an a 'Statistical plotting Library'.
        # Seaborn - We can see as an a - "UPDATAED GRAPHICAL REPRESENTATION OF DATA".
In [3]: # Calling Seaborn Library :
        import seaborn as sns
In [4]: # Now, There is an a 'Inbuilt DataSet' Called as 'Tips' :
        tips = sns.load dataset('tips')
```

```
In [5]: tips
```

Out[5]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

```
In [5]: # Now Let's go indepth of 'seaborn' :
```

1. DIST PLOT:

Page 271

```
In [6]: # sns.distplot(plotting name) applying on the 'total dataset'(tips and here,particular column-
# ['total_bill']). This is called 'distplot' (output)

# Th Blue Line = KDE (KERNAL DENSITY ESTIMATOR)

# Point to Point(eg- dot. to 0) - We Call it as an a 'Bins'(Number of Bins)
```

```
In [26]: sns.distplot(tips['total_bill'])
```

C:\Users\my pc\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[26]: <AxesSubplot:xlabel='total_bill', ylabel='Density'>

2. DISTPLOT: Removing 'KDE' (Blue line), declaring No. of Bins:

page 272

```
In [9]: sns.distplot(tips['total_bill'], kde = False, bins = 50)
```

C:\Users\my pc\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

3. JOINT PLOT: V.IMP

```
In [10]: sns.jointplot(x ='total_bill', y = 'tip', data = tips, kind = 'hex')
```

Out[10]: <seaborn.axisgrid.JointGrid at 0x29b458aa730>

4. PAIR PLOT: NUMERIC DATA:

```
In [13]: sns.pairplot(tips)
```

Out[13]: <seaborn.axisgrid.PairGrid at 0x29b4639a220>

total_bill

tip

size

5. PAIR PLOT: Here we can Changing Something like --

hue = 'sex'(Gender i'm taking)

page 274

```
In [14]: sns.pairplot(tips, hue ='sex')
Out[14]: <seaborn.axisgrid.PairGrid at 0x29b4626b3d0>
```


total_bill

size

6. RUG PLOT:

PAGE 274

```
In [28]:
         sns.rugplot(tips['total_bill'])
Out[28]: <AxesSubplot:xlabel='total_bill'>
            0.06
            0.04
            0.02
            0.00
           -0.02
           -0.04
           -0.06
                            10
                                        20
                                                     30
                                                                  40
                                                                              50
```

tip

7. BAR PLOT: CATEGORICAL PLOT: IMP

total_bill

PAGE 275

```
In [31]: sns.barplot(x = 'sex', y = 'total_bill', data = tips)
```

Out[31]: <AxesSubplot:xlabel='sex', ylabel='total_bill'>

8. COUNT PLOT:

```
In [18]: sns.countplot(x = 'sex', data = tips)
```

Out[18]: <AxesSubplot:xlabel='sex', ylabel='count'>

9. BOX PLOT: V.IMP

```
In [19]: sns.boxplot(x = 'day', y = 'total_bill', data = tips)
```

Out[19]: <AxesSubplot:xlabel='day', ylabel='total_bill'>

10. BOX PLOT: ADDING EXTRA PARAMETERS:

```
In [20]: sns.boxplot(x = 'day', y = 'total_bill', data = tips, hue = 'smoker')
```

Out[20]: <AxesSubplot:xlabel='day', ylabel='total_bill'>

11. VIOLIN PLOT:

```
In [21]: sns.violinplot(x = 'day', y = 'total_bill', data = tips)
```

Out[21]: <AxesSubplot:xlabel='day', ylabel='total_bill'>

12. Indepth of VIOLIN PLOT: 'SWARM PLOT': and ADDING COLOR to it:

page 277

```
In [22]: sns.violinplot(x = 'day', y = 'total_bill', data = tips)
sns.swarmplot(x = 'day', y = 'total_bill', data = tips, color = 'black')
```

Out[22]: <AxesSubplot:xlabel='day', ylabel='total_bill'>

13. CO-RELATION: V.IMP

```
In [23]: tc = tips.corr()
sns.heatmap(tc)
```

Out[23]: <AxesSubplot:>

14. CO-RELATION: KNOWING %'PERCENTAGE' OF C0-RELATION:

```
In [24]: tc = tips.corr()
    sns.heatmap(tc)
    sns.heatmap(tc,annot = True)
```

Out[24]: <AxesSubplot:>

In []: