《数据结构》期末考试卷(A)答题纸

学号 姓名 班级

题 数	_	=	三	四	总	分
得 分						

本题 得分

一、单选题〖每题 1.5 分, 共计 15 分〗

1.	A	2.	A	3.	D	4.	D	5.	В
6.	F	7.	С	8.	D	9.	В	10.	D

本题 得分

二、填空题〖每题4分,共计24分〗

- 1. capacity==num, num==0
- 2. p->next->pre = p->pre; p->pre->next = p->next ; free(p)
- 3. 任何一个结点的左右子树的高度差的绝对值不超过1

C的先序后序序列分被都是 ABC 和 CBA

5. rear = (rear+1)%(m+1)

6. 带权路径长度为 3*(6+2)+(7+10+9)*2+19 = 24+52+19=95

考试形式开卷()、闭卷(√),在选项上打(√)

开课教研室______ 命题教师_____ 命题时间_____

三、应用题〖共计41分〗

1.

1	
Z	•

7	0
9	0
∞	0
∞	0
14	0

-	0
9	0
22	1
∞	0
14	0

0
0
2
0
2

-	0
-	0
20	2
20	5
_	2

-	0
-	0
_	2
20	5
-	2

3.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	46	32	78	19	90			8	23	83		27		

等概率情况下查找成功的平均查找长度为:

$$(2+3+1*7)/9 = 12/9 = 4/3$$

4. 邻接矩阵

0	1	1	1	0
1	0	1	0	1
1	1	0	1	1
1	0	1	0	1
0	1	1	1	0


```
5.

17, 27, 31, 41, 13, 90, 22, 76, 37, 40

17, 27, 31, 41, 13, 22, 76, 90, 37, 40

13, 17, 22, 27, 31, 41, 76, 90, 37, 40

13, 17, 22, 27, 31, 37, 40, 41, 76, 90
```

本题 得分

四、编程题〖每题 10 分, 共计 20 分〗

```
1. void del multi(LNode *head) {
    LNode *p = head->next;
     while (p->next) {
       if(p\rightarrow next\rightarrow Data==p\rightarrow data) {
           Lnode *q = p \rightarrow next;
           p\rightarrow next = q\rightarrow next; delete q;
       else p = p \rightarrow next;
2. void HeapAdjust(T a[], int s, int m){
     Tt = a[s]; //暂时保存待下移的数据
     for(int j = 2 * s; j \le m; j *= 2) {
        if(j \le m \&\& LT(a[j], a[j+1])
                        //i 指向 s 较大的"儿子"
              j ++;
        if(!(t< a[j])) break; //若 j 的值比 t 小,说明找到了 s 的位置
        a[s] = a[i]; //否则元素 i 上移
        s = j;
     a[s] = t;
               //写入 s
```