Blockchains & Distributed Ledgers

Lecture 01

Aggelos Kiayias

Introduction

- Introduction to Blockchain
- What is money?
- The never-ending book parable
- Cryptocurrencies from a user's perspective

Why study Blockchains?

Why study Blockchains?

- Provide good foundations for exploring the security of information systems in general.
- Highlight the importance of decentralisation, a property of increasing importance in the design of modern information systems.
- Facilitate a solid understanding of many security critical components, incl.
 - Key management.
 - Software security.
 - Privacy preserving technologies.
 - o Public Key Infrastructure.
- They have an increasing impact on various aspects of societal organisation.
- It's fun!

What is a blockchain?

What is a blockchain?

- A blockchain is a distributed database that satisfies a unique set of safety and liveness properties.
- Distributed ledgers use blockchain protocol as one means of implementation.
- To understand it, we can focus to its first (and so far most successful)
 application.

Case study: Money

(1874) A man offering chicken for a yearly newspaper subscription

Properties of Money

- A medium of exchange: Can be used as medium for the exchange of goods
 no bartering
- A unit of account: Can be used for pricing of all goods and services, for accounting purposes and debt recording
- A store of value: Storing and retrieving it at a point in the future maintains its value.

Money 1.0: Using a trusted object

Analysis of Money 1.0

- A medium of exchange: Medium
 - Ok to face to face transactions
- A unit of account: Mediocre
 - Fungible, but not divisible well
 - Typically forgeable
- A store of value: Bad
 - Some objects may deteriorate.
 - May have unknown hidden quantities.

Money 2.0: Using a trusted entity

Analysis of Money 2.0

- A medium of exchange: good
 - For transactions within the domain of the trusted entity
- A unit of account: great
 - Fungible & divisible
- A store of value: Mediocre
 - Tied to the availability & reputation of the issuing entity

Money 3.0: Using cryptocurrencies

The never-ending book parable

A book of transactions

- Anyone can be a scribe and produce a page.
- New pages are produced indefinitely as long as scribes are interested in doing so.
- Each new page requires some effort to produce.

Importance of consensus

If multiple conflicting books exist, which is the "right one"?

Choosing the correct book?

The correct book to work on & refer to is the book with the most pages. If multiple exist, just pick one at random.

Assembling the current book

- Each page refers only to the previous one
- Current assembled by stringing together the

Rules of extending the book

Effort is needed to produce a page

Equivalent to: each page needs a special combination from a set of dice to be rolled.

The probabilistic nature of the process is paramount to its security

The benefits of randomness

Being a scribe

- Anyone can be a scribe for the book.
- As long as one has a set of dice.
- The more dice one has, the higher the likelihood to produce the winning combination to make a page.

Using the book

Parable & Reality

Analysis of Money 3.0

- A medium of exchange: improving
 - assuming internet connectivity / adoption
- A unit of account: good
 - Fungible* & divisible
- A store of value: good
 - No trusted parties
 - No natural deterioration

Word of caution

From Money to Smart Contracts

- Since we have created the book, why stop at recording monetary transactions?
- We can encode in the book's pages arbitrary relations between persons.
- Furthermore, scribes, can perform tasks such as verifying that stakeholders comply to contractual obligations ... and take action if they do not.

Smart contract

Questions to Consider

- How are pages created? Since the book is empty at the beginning, where do the money come from?
- How is it possible to sign something digitally?
- How does a page properly refer to the previous page?

Questions to Consider

- How are pages created? Since the book is empty at the beginning, where do the money come from? - Proof-of-Work
- How is it possible to sign something digitally? Digital signatures
- How does a page properly refer to the previous page? Hash functions

Hash Functions

- An algorithm that produces a fingerprint of a file.
- what are the required properties (traditionally):
 - a. Efficiency
 - b. A good spread for various input distributions.
- What are Security/Cryptographic considerations

$$\mathcal{H}: \{0,1\}^* \to \{0,1\}^{\lambda}$$

Collision resistance

Collision attack

Find
$$x, y : \mathcal{H}(x) = \mathcal{H}(y)$$

Second pre-image attack

Find
$$y: \mathcal{H}(x) = \mathcal{H}(y)$$

For given x

Birthday paradox

 How many people should be in a room so that the probability that two of them share a birthday becomes larger than 50%?

Paradox explained

n possible dates

k people

$$\Pr[\neg Col] =$$

$$\frac{n}{n} \frac{n-1}{n} \frac{n-2}{n} \dots \frac{n-k+1}{n} = \prod_{\ell=1}^{k} (1 - \frac{\ell}{n})$$

$$\leq \exp(-\frac{1}{n} \sum_{\ell=1}^{k} \ell) = \exp(-k(k+1)/2n)$$

$$\exp(-\frac{1}{n}\sum_{\ell=1}^{n}\ell) = \exp(-k(k+1)/2n)$$

$$\Pr[Col] = \frac{1}{2} \Rightarrow k \approx 1.177\sqrt{n}$$

What do we learn about collision finding?

Describe an algorithm that finds collisions taking advantage of the Birthday paradox.

Pre-image attack

Given
$$\mathcal{H}(m)$$
 $m \in \{0,1\}^t$

Find an element of $\mathcal{H}^{-1}(\mathcal{H}(m))$

Generic algorithm tries all possible candidates Complexity: ?

One-way functions

$$f: X \to Y$$

easy: given x find f(x)

hard: given f(x) sample $f^{-1}(f(x))$

Does one-way functions exist?

Relates to most important open question in computer science right now:

Hash function instantiations

- Retired. MD5, SHA1.
- **Current.** SHA2, SHA3, available for 224,256,384,512 bits fingerprints.
- Bitcoin. Uses SHA2 with 256 bits output, SHA-256.

Digital Signatures

- Can be produced by one specified entity.
- Can be verified by anyone (that is suitably "equipped" and "initialised").
- Cannot be forged on a new message even if multiple signatures have been transmitted.

Digital Signatures

Three algorithms (**KeyGen**, **Sign**, **Verify**)

KeyGen: takes as input the *security parameter*. returns the signing-key and verification-key.

Sign: takes as input the *signing-key* and the *message* to be signed and returns a signature.

Verify: takes as input the *verification-key*, a *message* and a *signature* on the message and returns either True or False.

Digital Signature Security

Digital Signature Security

Existential Unforgeability under a Chosen Message Attack (EU-CMA)

Constructing Digital Signatures

- Major challenge:
 - what prevents the adversary from learning how to sign messages by analyzing the verification-key?
- Exercise: construct a digital signature based on a hash-function that is one-time secure (i.e., it is secure for signing only a single message)

Digital Signature Implementations

- Based on the RSA (Rivest Shamir Adleman), one way trapdoor function (with hardness that relates to the factoring problem).
 - The RSA algorithm
- Based on the discrete-logarithm problem.
 - the DSA algorithm
- Bitcoin. Uses ECDSA, a DSA variant over elliptic curve groups.

Proof of Work

Objective: given some *data* ensure that some amount of work has been invested for them.

```
int counter;
counter = 0
while Hash(data, counter) > Target
    increment counter
return counter
```

In this case: proof-of-work of data equals to a value w with the property Hash $(data, w) \le Target$

(Informal) Properties: efficient verification, no computational shortcuts (i.e., independent of algorithm that computes it complexity is proportional to Target), independence for symmetry-breaking.

Proof-of-Work Algorithms

Hashcash (as in previous slide)

Memory hardness

ASIC resistance (ASIC = application specific integrated circuit).

A number of algorithms proposed: scrypt, argon, progpow

Cryptocurrencies from a user's perspective

Bitcoin

What is bitcoin?

Bitcoin / bitkoin/

- First decentralized digital currency.
- Digital coins you can send through the Internet.

Advantages

Person to person

Fees determined by free market

Available to the whole world

You own your account

No prerequisites or arbitrary limits

Trust to third party is not a requirement

Open source: Anyone can review the code

Great! But... how can I use it?

Exchange: Buy or sell bitcoin for various currencies

Digital wallet: Bitcoins are kept in your computer or mobile device

Transactions: Bob wants to buy a coffee from Alice

Transactions: Bob pays Alice by sending the proper amount to Alice's bitcoin address

Exchanges

Exchanges

- Bittrex
- Kraken
- Coinbase
- CoinMama
- SpectroCoin
- BitPanda
- LocalBitcoins (Buy / Sell from people near you)
- Bisq (Decentralized)
- Friends!!

Order book

	SUM	TOTAL	SIZE (ETH)	BID (BTC)		Order Book 10 25 50 100		ASK (BTC)	SIZE (ETH)	TOTAL	SUM	
									152,471	5,4966	5.4966	
						BUY SELL			0.204	0.0074	5.5039	
	0.2832	0.0178	0.495						0.699	0.0252	6.1799	
	0.2956	0.0124	0.343			ORDER TYPE			62,873	2,2719	8.4518	
	0.3379	0.0423	1,174						56.000	2.0257	10.4775	
	0.3441	0.0062	0.173						79.215	2.8658	13.3434	
	0.9981	0.0049	0.137			QUANTITY						
	1.0118	0.0137	0.380						4.418	0.1600	13.5034	
	1.0181	0.0064	0.177			BID PRICE ▼			15.546	0.5631	14.1933	
	1.0197	0.0016	0.044						7.071	0.2563	14,4496	
	1.0220	1,4717	40.902						18.856	0.6835	15.1331	
	1.0317	0.0097	0.268			TOTAL			231.999	8,4137	23.5468	
	1.0322	0.0005	0.014						0.015	0.0006	23.5474	
	1.0374	0.0052	0.144						46.990	1,7043	25.2517	
	1.0473	0.0099	0.276			TIME IN FORCE ③			213.070	7,7291	32,9808	
	1.1209	0.0736	2.045						10.929	0.3965	33.3773	
	1.4785	0.3576	9.941						15.815	0.5739	33.9512	
	2.7508	1,2723	35.371			Buy Ethereum			0.033	0.0012	33.9524	
	2.7581	0.0073	0.204			Available Balance 0.0000013 BTC			6.704	0.2433	34.1958	
	2.7936	0.0355	0.988						0.022	0.0008	34,1966	
	2.8889	0.0953	2.651						5.910	0.2148	34,4114	
	2.8899	0.0010	0.028						15.403	0.5600	34.9714	
	2,8939	0.0040	0.112			MAX BUY			0.100	0.0036	34,9750	
	2.8974	0.0034	0.096						0.020	0.0007	34.9757	
	2.9014	0.0040	0.112			ETH can be traded by both						
7.645 ET	н				49.642 BTC	International and US customers.	228.516 B	втс			59	936.912 E

Coinmarketcap

Top 100 Cryptocurrencies by Market Capitalization

Cr	yptocurrencies +	Exchanges -	Watchlist				EUR +	Next 100 → V	iew All
#	Name		Market Cap	Price	Volume (24h)	Circulating Supply	Change (24h)	Price Graph (7d)	
1	Bitcoin		€100,224,829,671	€5,789.60	€3,251,993,662	17,311,175 BTC	1.02%	mmy	•••
2	Ethereum		€20,417,608,184	€199.31	€1,306,793,211	102,443,089 ETH	2.26%	mm	***
3	\times XRP		€17,186,959,019	€0.430369	€498,128,515	39,935,410,492 XRP *	3.55%	man	***
4	los Bitcoin Cash		€7,948,065,112	€457.02	€321,770,513	17,391,038 BCH	2.63%	home	
5	♦ EOS		€4,620,248,403	€5.10	€500,237,959	906,245,118 EOS *	3.02% 🔨	mond	•••
6			€4,030,353,583	€0.214303	€32,985,454	18,806,826,278 XLM *	2.70%	mmu	•••
7	Litecoin		€3,018,579,217	€51.48	€251,794,961	58,633,852 LTC	1.75%	٧ ١	•••

Addresses

Addresses

- Like an email address.
- You send bitcoins to a person by sending bitcoins to one of their addresses.
- You can have as many addresses as you want.
- No need to be online to create an address.
- Pseudonymous: A unique address should be used for each transaction.
- Most wallets do it automatically.

Addresses

Wallets

Desktop Wallet - Exodus

Desktop Bitcoin Wallet - Electrum (open source)

More Bitcoin wallets ... (mobile)

Mobile wallet - Android

Hardware wallets

Explorers

Explorers

- An online blockchain browser.
- Displays the contents of individual blocks and transactions
- Displays the transaction histories and balances of addresses.
- Quick way to see if your transactions are confirmed.
- Bitcoin:
 - https://www.blockchain.com/explorer (Mainnet)
 - https://testnet.blockexplorer.com/ (Testnet)
- Ethereum:
 - https://etherscan.io/ (Mainnet)
 - https://ropsten.etherscan.io/ (Testnet)
 - https://rinkeby.etherscan.io/ (Testnet)

Transactions

BLOCKS TRANSACTIONS

Transaction Hash	Age	Amount (BTC)	Amount (USD)
7dd6b6e07ea48577ce11fd43cbf20e259d187defc0888eaa698d7	5 seconds	1.91072766 BTC	\$7,304.54
94613360083b2e9bdff659d026021c3df9abad4820c1f2bb6add	3 seconds	0.02130671 BTC	\$81.45
bbda790399d9f44f25d247ea2785b9a687b714665b1fb021cd537	3 seconds	1.23166111 BTC	\$4,708.53
5d96b437de67fc604b025671f4fa199832b60fc21aedcf94b0455	2 seconds	0.05533534 BTC	\$211.54
6e7e9284d3c45111a036dab93aae7f7b057e76935c6186051cf92d	2 seconds	0.03158347 BTC	\$120.74

View More

Blocks

BLOCKS TRANSACTIONS

Height	Age	Transactions	Miner	Size (bytes)
564593	4 minutes	2734	Unknown	1,185,499
564592	9 minutes	2725	AntPool	1,297,232
564591	16 minutes	2537	BTC.com	1,183,625
564590	54 minutes	1757	F2Pool	1,158,256
564589	1 hour	2230	BitClub Network	1,300,144

View More

Development

- Local blockchains: e.g., ganache
 - Used for local development.
 - o Instant mining.
 - Very small in size.
 - In class we will use our own ETH deployment.
- Testnets:
 - Used for testing and experiment. Very useful specifically for smart contract development.
 - Different blockchain and different genesis block.
 - Coins are separated and distinct from actual coins (with no real value).
 - Different ports and DNS seeds.
 - Bitcoin: Testnet3 (Run bitcoin or bitcoind with the -testnet flag)
 - Ethereum: Rinkeby, Ropsten, Kovan
- Main net (production):
 - Blockchains are immutable and irrevertible.
 - You cannot simply update your code once deployed!

Faucet

- A way to get test coins necessary for any testing.
- Ethereum:
 - https://faucet.rinkeby.io/
 - https://faucet.metamask.io/
 - https://faucet.ropsten.be/
- Bitcoin:
 - http://tbtc.bitaps.com/
 - https://bitcoinfaucet.uo1.net/
 - https://testnet-faucet.mempool.co/
 - https://block.io/ (Online testnet wallet)

Enter your testnet account address

Enter your testnet account address

Send me test Ether

This faucet drips 1 Ether every 30 seconds. You can register your account in our queue. Max queue size is currently 5. Serving from account 0x687422eea2cb73b5d3e242ba5456b782919afc85(balance 2,559,755 ETH).

Example command line: wget https://faucet.ropsten.be/donate/<your ethereum address>
API docs