Continuous Assessment Test - Solutions	1
$91)$ $x^4 - 18x^2 + 45 = 0$	W =
let f(x) = x - 18x2+45, then f'(x) = 4x3-36x	8
the algorithm for Newton's method is:	
$X_{n+1} = X_n - \frac{f(x_n)}{f'(x_n)} = X_n - \frac{X_n^4 - 18X_n^2 + 45}{4X_n^3 - 36X_n}$	6 J
Use the initial guess Xo=1.5 and construct the table:	
$m \mid x_n \qquad f(x_n) \qquad x_{n-x_{n-1}}$	
0 1.736111 -0.168783 0.236111.	10
9.3.157 -0.004060	
2 1.732051 3 1.732051 3.10 2.10	*
We obtained the desired accuracy after 3 steps. Recall that the last column is a measure for the solution error, since $x_n - x_{n-1} \propto d - x_{n-1}$	۲.
	38
b) The secant we shod algorithm is	
$x_{n+1} = x_n - f(x_n) \cdot \frac{x_{n-x_{n-1}}}{f(x_n) - f(x_{n-1})}$ We take $x_0 = 1, x_1 = 2$	
n X_n $f(x_n)$ $X_{n-X_{n-1}}$	e p
0 1 28	9
1 2 -11	
2 1.717949 0.586193 -0.282051	
3 1.732219 -0.006986 0.014270	
4 1.732051 2.2.107 -0.000168	
5 1.732051 3.108 5.109	

c)	Construct	the	table	* Ø	
)					

n	. a	Ь	С	b-c	f(c)		
1	1	2	1.5	0.5	0.981689		
2	I	1.5	1.25	0.25	0.240343		
3		1.25	1.125	0.125	-0.044783		
4	1.125	1.25	1.1875	0.0625	0.091374		
5	1.125	1.1875	1.1562	0.0312	0.021631		
6	1.125	1.1562	1.1406	0.0156	-0.01195		
7	1.1406	1.1562	1.1484	0.0078	0.004744		
8	1.1406	1.1484	1.1445	6.00 39	-0.003629		
9	1.1445	1.148.4	1.14645	0.00195	0.000551		
10	1.1445	1.14645	1.14547	5 0.000	975 -0.0015		
Note: The algorithm is stopped when b-c & E=10-3							

which hoppens after 10 iterations.

Q3
$$f(x) = x^3 - 2x^2 - 3 = 0$$
 has a root of between 2 and 3 a) $f(x) = 0$ ⇒ $x^3 = 2x^2 + 3$ ⇒ $x = 2 + \frac{3}{x^2} = g_1(x)$ The fixed point iteration algorithm associated with $g_1(x)$ converges to at if and only if $|g_1'(a)| < 1$.

Since $g_1'(x) = -\frac{6}{x^3}$, we have $|g_1'(a)| = \frac{6}{a^3} < \frac{6}{2^3} < 1$ (since $a \ge 2$). Hence, the algorithm converges.

b) Two other algorithms:

 $x^3 - 2x^2 - 3 = 0$ ⇒ $2x^2 = x^3 - 3$ ⇒ $x = \frac{x^2}{2} - \frac{3}{2x} = g_2(x)$
 $x^3 - 2x^2 - 3 = 0$ ⇒ $x^3 = 2x^2 + 3$ ⇒ $x = \sqrt[3]{2x^2 + 3} = g_3(x)$

c) Construct table of iterations for the 3 algorithms:

 $x = g_1(x_{n-1})$ $x_n = g_2(x_{n-1})$ $x_n = g_3(x_{n-1})$
 $x = g_1(x_{n-1})$ $x_n = g_2(x_{n-1})$ $x_n = g_3(x_{n-1})$
 $x = g_1(x_{n-1})$ $x = g_2(x_{n-1})$ $x = g_3(x_{n-1})$
 $x = g_1(x_{n-1})$ $x = g_2(x_{n-1})$ $x = g_3(x_{n-1})$
 $x = g_1(x_{n-1})$ $x = g_2(x_{n-1})$ $x = g_3(x_{n-1})$
 $x = g_1(x_{n-1})$ $x = g_2(x_{n-1})$ $x = g_3(x_{n-1})$
 $x = g_1(x_{n-1})$ $x = g_2(x_{n-1})$ $x = g_3(x_{n-1})$
 $x = g_1(x_{n-1})$ $x = g_2(x_{n-1})$ $x = g_3(x_{n-1})$
 $x = g_1(x_{n-1})$ $x = g_2(x_{n-1})$ $x = g_3(x_{n-1})$
 $x = g_1(x_{n-1})$ $x = g_2(x_{n-1})$ $x = g_3(x_{n-1})$
 $x = g_1(x_n)$ $x = g_2(x_n)$
 $x = g_1(x_n)$ $x = g_1(x_n)$
 $x = g_1(x_n)$
 $x = g_1(x_n)$
 $x = g_1(x_n)$
 $x = g_1(x_n)$
 $x = g_1(x_n)$
 $x = g_1(x_n)$
 $x = g_1(x_n)$
 $x = g_1(x_n)$
 $x = g_1(x_n)$
 $x = g_1(x_n)$
 $x = g_1(x_n)$
 $x = g_1(x_n)$
 $x = g_1(x_n)$
 $x = g_1(x_n)$
 $x = g_1(x_n)$
 $x = g_1(x_n)$
 $x = g_1(x_n)$

$$941$$
 a) Easy to check $x_1 = x_2 = x_3 = 1$ is an exact solution

b) Gaussian elimination without pivoting leads to

$$\begin{pmatrix}
0.002 & 1.231 & 2.471 \\
0 & -732.9 & -1475 \\
0 & 0 & -1.0
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
-2208 \\
-2.0
\end{pmatrix}$$

so the approximate solution is

$$X_2 = -1.012$$
 (Relative error = 200°/0)

With partial pivoting we get:

(R2-R1.0.8108) R3-R1.0.001356)

$$\begin{pmatrix}
R_3 - R_1 \cdot 0.001356
\end{pmatrix}$$

$$\begin{pmatrix}
1.475 & 4.271 & 2.142 & 7.888
\\
0 & -0.298 & 0.866 & 0.508
\\
0 & 1.225 & 26468 & 3.693
\end{pmatrix}$$

$$\begin{pmatrix}
R_2 \leftarrow R_3 \\
0 & 1.225 & 2.468 & 3.693
\\
0 & -0.298 & 0.866 & 0.508
\\
0 & -0.298 & 0.866 & 0.508
\end{pmatrix}$$

All relative errors = 0!

We need to colculate A and B and then get X as:

Colculate A':

$$\begin{pmatrix}
2 & 1 & 3 & | & 1 & 0 & 0 \\
-1 & 0 & 4 & | & 0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -4 & | & 0 & -1 & 0 \\
2 & 1 & 3 & | & 1 & 0 & 0 \\
4 & -2 & 3 & | & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
10 - 4 & 0 - 1 & 0 \\
0 & 1 & 11 & 1 & 2 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 - 4 & 0 & -1 & 0 \\
0 & 1 & 11 & 1 & 2 & 0 \\
0 & 0 & 41 & 2 & 8 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 - 4 & 0 & -1 & 0 \\
0 & 1 & 11 & 1 & 2 & 0 \\
0 & 0 & 1 & 2 & 8 & 41
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & | \frac{8}{41} & -\frac{9}{41} & \frac{4}{41} \\
0 & 1 & 0 & | \frac{19}{41} & -\frac{6}{41} & -\frac{11}{41} \\
0 & 0 & 1 & 2 & 8 & 41
\end{pmatrix}$$

hence
$$A^{-1} = \frac{1}{41} \begin{pmatrix} 8 - 9 & 4 \\ 19 & -6 & -11 \\ 2 & 8 & 1 \end{pmatrix}$$

Similarly, we find that
$$B^{-1} = \frac{1}{5}\begin{pmatrix} 2 & -1 & 1 \\ -2 & -4 & -1 \\ 1 & -3 & -2 \end{pmatrix}$$

A+B+C=
$$\begin{pmatrix} 4 & 5 & 4 \\ 0 & -3 & 5 \end{pmatrix}$$
 hence $X = \frac{1}{205} \begin{pmatrix} -27 & -309 & -1 \\ -182 & -534 & -151 \\ 106 & -108 & -72 \end{pmatrix}$

b)
$$AY = D = A'D = \frac{1}{41}\begin{pmatrix} 29 \\ -8 \\ -3 \end{pmatrix}$$

$$A = \begin{pmatrix} 3 & 6 & -9 \\ 2 & 5 & -3 \\ -4 & 1 & 10 \end{pmatrix}, B = \begin{pmatrix} -3 \\ 0 \\ 15 \end{pmatrix}$$

a) If we write
$$\begin{pmatrix} 3 & 6 - 9 \\ 2 & 5 - 3 \\ -4 & 1 & 10 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 21 & 1 & 0 \\ 31 & 32 & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix}$$

we obtain:
$$l_{21} = \frac{2}{3}$$
, $l_{31} = -\frac{4}{3}$, $l_{32} = 9$
 $u_{11} = 3$, $u_{12} = 6$, $u_{13} = -9$, $u_{22} = 1$, $u_{23} = 3$
 $u_{33} = -29$

$$AX = B = \sum LUX = B$$
. Let $Y = UX$ and solve $LY = B$
to get $Y_1 = -3$, $Y_2 = 2$, $Y_3 = -7$.
Then solve $UX = Y$ and get $X_1 = -\frac{82}{29}$, $X_2 = \frac{37}{29}$

b) Write
$$\begin{pmatrix} 3 & 6 - 9 \\ 2 & 5 & -3 \\ -4 & 1 & 10 \end{pmatrix} = \begin{pmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{pmatrix}$$

to get:
$$l_{11} = 3$$
, $l_{21} = 2$, $l_{22} = 1$, $l_{31} = -4$, $l_{32} = 9$, $l_{33} = -29$.

 $l_{12} = 2$, $l_{13} = -3$, $l_{23} = 3$.

Follow the same procedure as in part (a) to get:
$$y_1 = -1$$
, $y_2 = 2$, $y_3 = \frac{1}{29}$ and then
$$x_1 = -\frac{82}{29}$$
, $x_2 = \frac{37}{29}$, $x_3 = \frac{1}{29}$