Problema di flusso di costo minimo

E' dato il grafo orientato in figura. Il nodo s è una sorgente con domanda -15, il nodo t è un pozzo con domanda +15, mentre tutti gli altri nodi sono nodi di transito. In tabella sono riportati, per ogni arco, la capacità dell'arco, il costo di percorrenza e una soluzione di base ammissibile. A partire da questa determinare un flusso ammissibile di costo minimo utilizzando il simplesso su reti. Scegliere come arco entrante quello con massima violazione dei vincoli duali, e come arco uscente quello di costo massimo.

archi	(s,a)	(s,b)	(s,c)	(a,d)	(b,d)	(b,c)	(c,e)	(e,b)	(d,e)	(d,t)	(e,t)
flusso	10	0	5	10	5	0	5	5	0	15	0
capacità	30	10	10	15	5	7	7	8	6	15	10
costo	4	1	5	1	10	1	3	1	2	12	4

Soluzione ottima

La violazione di un vincolo violato del tipo u_j - $u_i \ge c_{ij}$ (ovvero un arco saturo entrante in base) è la quantità $(c_{ij}$ - u_j + u_i), mentre per un vincolo u_j - $u_i \le c_{ij}$ (arco scarico entrante in base) è la quantità $(u_j$ - u_i + c_{ij}). La scelta di far entrare sempre in base l'arco a massima violazione, porta a far entrare in base, nei vari passi di pivot, gli archi seguenti:

- 1. entra (b,d) esce (b,d) (da saturo diventa scarico);
- 2. entra (s,b) esce (s,c) (iterazione degenere);
- 3. entra (d,t) esce (e,b) (altra iterazione degenere);
- 4. entra (b,c) esce (c,e);
- 5. entra (d,e) esce (e,t). La soluzione è ottima.

Nota che gli archi (b,c), (c,e) e (e,t) sono saturi. Tuttavia, mentre gli ultimi due sono archi fuori base, l'arco (b,c) si trova in base pur essendo saturo, ovvero la soluzione di base ottima è degenere.

Problema di massimo flusso

E' dato il grafo orientato in figura. In tabella sono riportati, per ogni arco, un valore ammissibile di flusso st e la capacità dell'arco. A partire dal flusso iniziale dato, determinare il massimo flusso inviabile da s a t utilizzando l'algoritmo di Ford e Fulkerson.

archi	(s,a)	(s,b)	(s,c)	(a,d)	(b,d)	(b,c)	(c,e)	(e,b)	(d,e)	(d,t)	(e,t)
flusso	10	0	5	10	5	0	5	5	0	15	0
capacità	10	10	10	15	5	7	7	8	6	15	10

Soluzione ottima

Il flusso iniziale dato è pari a 15.

La ricerca del primo cammino aumentante termina con il cammino s,b,e,t su cui può essere inviato un flusso pari a 5.

La ricerca del secondo cammino aumentante termina con il cammino s,c,e,t su cui può essere inviato un flusso pari a 2.

La ricerca del terzo cammino aumentante termina con un insuccesso evidenziando il taglio di capacità minima costituito dai nodi {s,b,c}. La capacità di questo taglio uscente è data dalle capacità degli archi (s,a), (b,d) e (c,e), ovvero è pari a 22. La soluzione ottima è pertanto la seguente:

Problema di flusso di costo minimo

E' dato il grafo orientato in figura. La domanda dei nodi è data in tabella 1, mentre in tabella 2 sono riportati, per ogni arco, la capacità dell'arco, il costo di percorrenza e una soluzione di base ammissibile. A partire dalla soluzione data, determinare un flusso ammissibile di costo minimo utilizzando il simplesso su reti. Scegliere come arco entrante quello con massima violazione dei vincoli duali, e come arco uscente quello di costo massimo.

	Tabella 1															
nodi	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
domanda	0	0	0	+7	0	0	-11	0	0	-5	0	0	0	0	+9	0

arco	(1,5	5)(2,1)(2,3	(3,4)	(3,7)	(5,6)	(6,2)((6,10)	(7,6)	(7,11)	(8,4)	(8,7)	(9,5)	(9,13)	(10,9)	(11,10)	(11,12)	(11,15)	(12,8)	(13,14)	(14,10)	(14,15)	(16,12)	(16,15)
capacità	ì 1	3	10	7	7	8	6	2	2	18	8	4	7	3	6	3	8	10	5	6	4	10	1	1
costo	2	1	2	16	1	1	1	4	8	1	1	2	3	14	7	8	2	6	2	4	2	1	1	6
flusso	0	0	6	6	0	5	6	0	1	8	1	0	5	0	5	0	1	9	1	0	0	0	0	0

Occorre anzitutto definire una base iniziale. Se si sceglie quella in figura si hanno tre archi fuori base che violano il vincolo di ammissibilità duale: sono (1,5) con violazione 16, (6,2) con violazione 21 e (3,7) con violazione 9. Facendo entrare in base l'arco (6,2) si ha t=1 ed esce (7,6).

Alla seconda iterazione i vincoli duali violati sono quelli relativi agli archi (3,7) e (9,13). Entra (3,7) che ha la violazione maggiore (9). Si ha t=3 ed esce (12,8) che si satura. la base ottenuta è ottima. Il flusso ottimo è indicato in figura.

Problema di flusso di costo minimo senza vincoli di capacità

E' dato il grafo orientato in figura. La domanda dei nodi è data in tabella 1, mentre in tabella 2 è riportata una marca di valore 0,1 per ogni arco. Si utilizzi la fase 1 del simplesso su reti per trovare un flusso ammissibile. Nello scegliere un albero ricoprente all'inizio della fase 1 si scelga un albero contenente tutti gli archi con marca 1.

	Tabella 1															
nodi	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
domanda	+8	0	0	+4	0	0	0	0	0	0	0	0	-14	0	+9	-7

arco (1,5)	(2,1)	(2,3)	(3,4)	(3,7)	(5,6)	(6,2)	(6,10)	(7,6)	(7,11)	(8,4)	(8,7)	(9,5)	(9,13)	(10,9)(11,10)(11,12	(11,15	(12,8)	(13,14)	(14,10)	(14,15)	(16,12)	(16,15)
marca	0	0	1	0	1	1	1	0	0	0	0	0	1	0	1	1	1	0	1	1	1	0	0	0

L'albero iniziale si ottiene aggiungendo il nodo fittizio f, gli archi artificiali (f,1), (f,15), (f,4), (13,f), (16,f) e gli archi marcati. Si ottiene così la base in figura:

Le successive 4 iterazioni fanno entrare in base (ad esempio) gli archi (2,1) (14,15) (16,15) (3,4) e fanno uscire di base tutti gli archi artificiali tranne (16,f). Si ha così la soluzione ammissibile in figura:

