COMSM1302 Overview of Computer Architecture

Lecture 2 - Propositional logic, Boolean algebra

Dan Page, COMS12200

Foundations

• Data representation, logic.

Building blocks

• Transistors, transistor based logic, simple devices, storage.

Modules

 Hex modules, memory, simple controller and processor.

Programming

• Assembly, assembler, language, compilation phases, boot-strapping.

Bigger systems

• ARM & Thumb, I/O, protecting shared systems, memory hierarchy, multi-processors, networks.

Wrap-up

 More examples, historical computers, contemporary systems.

The origins of logic

- Boole, 1840s
 - Enabling the work of Shannon and others in digital logic circuits, for communication and computation.
- Shannon, 1948
 - See previous lecture, brief discussion of bits in information theory.

- A statement that meets the following criteria
 - Can give a truth value (true or false), when evaluated
 - 1 bit result
 - Unambiguous
 - Can contain free variables

- Which of the below statements are valid based on these rules?
 - Can give a truth value (true or false), when evaluated
 - Unambiguous
 - Can contain free variables
- The temperature is 20 degrees C
- The temperature is x degrees C
- It is too warm
- This statement is false
- There is more than x ml of milk in this jug

- Which of the below statements are valid based on these rules?
 - Can give a truth value (true or false), when evaluated
 - Unambiguous
 - Can contain free variables
- The temperature is 20 degrees C
- The temperature is x degrees C
- It is too warm
- This statement is false
- There is more than x ml of milk in this jug

 Statements can be represented as short-hand functions/variables.

- f: The temperature is 20 degrees C
- g(x): The temperature is x degrees C
- h(x): There is more than x ml of milk in this jug

 Statements can be combined with connectives, with brackets to clarify precedence, as necessary.

- f: The temperature is 20 degrees C
- ¬f: The temperature is **not** 20 degrees C not(The temperature is 20 degrees C)
- g(x) ∧ h(y): The temperature is x degrees C and there
 is more than y ml of milk in this jug

More formally

With these connectives, complex logical statements can be assembled.

№ Natural	K Formal	₩ C
not x	¬X	! x
x and y	xΛy	x && y
x or y	xVy	X y
x or y but not x and y	$x \oplus y$	
Exclusively x or y		

Disappointing logic

- Let x be "You can have your cake"
- Let y be "You can eat your cake"
- What does the following statement mean?

 $x \oplus y$

Implication and equivalence

• $x \rightarrow y$

x implies y
if x then y
if there is greater than x ml of
milk in the jug, then I have
enough milk

• X ≡ y

x is equivalent to y x if and only if y x iff. Y

it is raining, this must be Bristol... this is Bristol, it must be raining

Reviewing the connectives

- Natural language is flexible, but there are formal terms.
- Symbolism varies between subjects, but they are usually very similar, and the below are commonly recognisable.

K Symbol	Description	Formal name
7	Not	Compliment
٨	And	Conjunction
V	Or	(Inclusive) disjunction
\oplus	Exclusive-or (xor)	(Exclusive) disjunction
\rightarrow	If x then y	Implication
≣	X if and only if y	Equivalence

Truth tables

• The result of connectives can be represented as a **truth table**, where the input(s) produce a particular output.

Α	¬A
False	True
True	False
	1 3.100

Α	В	АЛВ	А	В	???
False	False	False	False	False	False
False	True	False	False	True	True
True	False	False	True	False	True
True	True	True	True	True	True

Truth tables

 The result of connectives can be represented as a truth table, where the input(s) produce a particular output.

Α	В	A ⊕ B	Α	В	$A \rightarrow B$	Α	В	A≣B
False	False	False	False	False	True	False	False	True
False	True	True	False	True	True	False	True	False
True	False	True	True	False	False	True	False	False
True	True	False	True	True	True	True	True	True

The revision friendly version ☺

А	В	¬A	АЛВ	AVB	A ⊕ B	A → B	A≡B
False	False	True	False	False	False	True	True
False	True	True	False	True	True	True	False
True	False	False	False	True	True	False	False
True	True	False	True	True	False	True	True

Diagrammatically

Α	В	t0	Result (Q)
False	False	True	?
False	True	True	?
True	False	False	?
True	True	False	?

Research Group

🕊 Boolean Algebra

- Represent false as 0 and true as 1.
 - Binary digits
- Statements can only be functions or variables.
 - No more words
- Use ¬, ∧, ∨, ⊕ to connect statements, forming larger expressions.
 - No implication or equivalence
- Observe a set of axioms (rules).
 - These help us manipulate expressions.

 Some rules allow us to condense or rearrange expressions, to make them simpler.

Rule	Axioms
Commutativity	$X \wedge y \equiv y \wedge x$ $X \vee y \equiv y \vee x$
Association	$(X \lor y) \lor Z \equiv X \lor (y \lor Z)$ $(X \land y) \land Z \equiv X \land (y \land Z)$
Distribution	$X \wedge (y \vee z) \equiv (x \wedge y) \vee (x \wedge z)$ $X \vee (y \wedge z) \equiv (x \vee y) \wedge (x \vee z)$

 Some help us avoid evaluating parts, because we can know the answer regardless of variables.

Rule	Axioms	
Identity	$\begin{array}{ccccc} x & \wedge & 1 & \equiv & z \\ x & \vee & 0 & \equiv & z \end{array}$	
Null	$\begin{array}{cccc} x & \wedge & 0 & \equiv & 0 \\ x & \vee & 1 & \equiv & 0 \end{array}$	
Idempotency	$X \wedge X \equiv X$ $X \vee X \equiv X$	
Inverse	x ∧ ¬x ≡ x ∨ ¬x ≡	

• Duality – swap 0s and 1s, conjunction and disjunction. Equivalence property is preserved.

 Some help us avoid evaluating parts, because we can know the answer regardless of variables.

Rule	Axioms
Absorption	$X \wedge (x \vee y) \equiv X$ $X \vee (x \wedge y) \equiv X$
deMorgan	$\neg(x \land y) \equiv \neg x \lor \neg y$ $\neg(x \lor y) \equiv \neg x \land \neg y$
Equivalence	$(x \equiv y) \equiv (x \rightarrow y) \land (y \rightarrow x)$
Implication	$x \rightarrow y \equiv \neg x \lor y$
Involution	$\neg \neg X \equiv X$

- For an expression, e, its complement, ¬e, can be formed by:
 - Complement of all variables
 - Complement of all constants
 - Interchange conjunction and disjunction
- Let's try it!

$$E = x \wedge y \wedge z$$
$$\neg e = ?$$

Standard forms: SoP and PoS

- Sum of Products, disjunctive normal form
 - Groups of conjunctions (products) connected together with disjunctions (sums)

$$(a \land \neg b \land c) \lor (\neg d \land e)$$
Minterm
Minterm

- Product of sums, conjunctive normal form
 - Groups of disjunctions connected with conjunctions

Summary

- Propositional logic
 - Conjunction, implication, equivalence, etc...
 - Truth tables
 - Diagrams
- Boolean algebra
 - Constraints built upon propositional logic
 - Axioms
 - Standard forms

- Lots of maths
 - But now we can start to build digital systems!

Foundations

• Data representation, logic.

Building blocks

• Transistors, transistor based logic, simple devices, storage.

Modules

 Hex modules, memory, simple controller and processor.

Programming

 Assembly, assembler, language, compilation phases, boot-strapping.

Bigger systems

• ARM & Thumb, I/O, protecting shared systems, memory hierarchy, multi-processors, networks.

Wrap-up

 More examples, historical computers, contemporary systems.