EEL 4837Programming for Electrical Engineers II

Ivan Ruchkin

Assistant Professor

Department of Electrical and Computer Engineering University of Florida at Gainesville

> iruchkin@ece.ufl.edu http://ivan.ece.ufl.edu

Dijkstra's Algorithm

Readings:

- Weiss 9.3.2
- Cormen 24.1–24.3

Shortest Path in a Weighted Graph

Given:

- A weighted directed graph
- Two nodes *s* and *t* in the graph

Find: the **shortest path** from *s* to *t* and its **total weight**

Example: Positive Weights

Example: Negative Weights

Shortest Path Problem

- Given a weighted, directed graph G = (V, E), with weight function $w: E \to \mathbb{R}$. The **weight** w(p) of a path $p = \langle v_0, v_1, ..., v_k \rangle$ is the sum of the weights of its constituent edges
- $w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$
- **Shortest-path weight** $\delta(u, v)$ from u to v is
- $\delta(u,v) = \begin{cases} \min\{w(p): u \xrightarrow{p} v\} & \text{if there is a path from } u \text{ to } v \\ \infty & \text{otherwise} \end{cases}$
- The shortest path is any path with shortest path weight

Problem Variants

- Single-source single-destination shortest path
- Single-source all-destinations shortest paths
- All-sources single-destination shortest paths
- All-pairs shortest paths

Cycles in Shortest Path Problems

- Negative weight cycles?
 - The shortest path is undefined
- Positive weight cycles?
 - Can be removed to produce a shorter path
- Zero-weight cycles?
 - Can be removed without changing the shortest path
- Conclusion: we can disregard cycles in our solutions

Shortest Path Representation

For single-source all-destinations shortest path

Issue: storing all paths explicitly is *expensive*!

Shortest Path Representation

For single-source all-destinations shortest path

• For each vertex v_i , we store its predecessor v_i . π in the shortest-path tree and the cost of the shortest path v_i . $d = \delta(s, v_i)$

The <u>best direction</u> to arrive from, when starting in v_0

- Stores |V| shortest paths in O(|V|) memory

Reminder: BFS

Problem: single-source all-destinations **unweighted** shortest path

```
BFS(G,s)
01 for u \in G.V do
     u.color := white
   u.dist := ∞
    u.pred := NULL
05 s.color := gray
06 s.dist := 0
07 Q := new Queue()
                       // FIFO queue
08 Q.enqueue(s)
09 while not Q.isEmpty() do
      u := Q.dequeue()
      for v \in u.adj do
         if v.color = white
           then v.color := gray
                v.dist := u.dist + 1
                v.pred := u
                Q.enqueue (v)
```

Initialize all vertices

Initialize BFS with s

Handle all of *u*'s children before handling children of children

- A vertex is white if it is undiscovered
- A vertex is gray if it has been discovered but not all of its edges have been explored

Dijkstra's Algorithm: Intuition

Problem: single-source all-destinations **weighted** shortest path

• All edge weights have to be *non-negative*

Ideas:

- Build on the BFS for unweighted shortest path
 - Keep track of the nodes to visit in queue Q
 - Keep track of which nodes have been visited in set S
- Save the best path length to each node so far with dist[v]
- Always visit the lowest-weight unvisited node next
 - o Makes Q a **priority queue**, with edge weight as a priority
 - When we visit the node, we are *guaranteed to know* its shortest path length

Dijkstra's Algorithm

```
dist[s] \leftarrow o
                                     (distance to source vertex is zero)
for all v \in V - \{s\}
     do dist[v] \leftarrow \infty
                                     (set all other distances to infinity)
                                     (S, the set of visited vertices is initially empty)
S←Ø
                                     (Q, the queue initially contains all vertices)
Q←V
                                     (while the queue is not empty)
while Q ≠Ø
do u \leftarrow mindistance(Q,dist)
                                     (select the element of Q with the min. distance)
   S \leftarrow S \cup \{u\}
                                     (add u to list of visited vertices)
    for all v \in neighbors[u]
        do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
                then d[v] \leftarrow d[u] + w(u, v) (set new value of shortest path)
                  (if desired, add traceback code) //pred[v] = u
return dist
```

Question: what if we didn't pick the min-distance node from Q? (e.g., going to a random node from Q instead)

Dijkstra's Algorithm: Analysis

```
dist[s] \leftarrow o
                                      (distance to source vertex is zero)
for all v \in V - \{s\}
     do dist[v] \leftarrow \infty
                                      (set all other distances to infinity)
                                      (S, the set of visited vertices is initially empty)
S←Ø
                                      (Q, the queue initially contains all vertices)
O \leftarrow V
                                      (while the queue is not empty)
while Q ≠Ø
do u \leftarrow mindistance(Q, dist)
                                      (select the element of Q with the min. distance)
                                      (add u to list of visited vertices)
   S \leftarrow S \cup \{u\}
    for all v \in neighbors[u]
         do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
                then d[v] \leftarrow d[u] + w(u, v) (set new value of shortest path)
                   (if desired, add traceback code) //pred[v] = u
return dist
```

Complexity analysis: Dijkstra does |V| insertions, |V| removals, and |E| key-updates

- How is the priority queue implemented?
- Unsorted array: O(1) insertion, O(1) key-update, O(|V|) removal -> O(V2)
- **Binary heap:** $O(\log|V|)$ insertion, $O(\log|V|)$ key-update, and $O(\log|V|)$ removal -> $O((|V|+|E|)*\log|V|)$

Greedy Algorithms: Design Technique

- Dijkstra's algorithm is an example of a greedy algorithm
 - It goes "greedily" towards the low-cost path
- Greedy choice: in each step, make a decision that appears the best
 - Disregard long-term consequences
 - Often, it is a good heuristic: *local optimum* leads to *global optimum*
- Example problem: fewest bills/coins to represent some amount of \$
 - E.g., \$1.58 = \$1 + 2x\$0.25 + 3x\$0.01
 - **Greedy heuristic:** pick max number of the largest denomination; move on to a lower denomination. This always works for the USD denominations.
 - Sometimes greedy algorithms do **not** deliver optimal results
 - **Example:** count 15 cents if 12-cent coins existed: 12+1+1+1 is *worse* than 10+5