

Kernel Based Non-Parametric Activation Functions for Neural Networks

S. Scardapane et al.

Author: Federico Peconi

Project: Review and result's reproduction of the homonymous paper

Course: Neural Networks for Data Science Applications, Msc in Data Science @Sapienza University of Rome

Activation Functions

- ❖ To avoid that the composition of two linear models stays linear we need to introduce non-linearity

$$\psi(Wx)$$

 $\ \ \, \mbox{\ \ \, }$ Any continuous function can be approximated by some $\,\psi(Wx)\,^{\mbox{\tiny [2]}}$

lacktriangle Common examples of ψ are: tanh, ReLU, ELU, ...

Parametric Activation Functions

- Nowadays, the activation functions used inside neural networks are mostly fixed functions specifically chosen with respect to the task, architecture or other hyperparameters
- ❖ To promote more flexibility, several authors proposed the concept of trainable activation functions, two main types of such functions take shape:
 - 1. Parametric Activation Functions: gen-tanh, PReLU, PELU, SReLU, ...^[3,4,5,6]
 Few #parameters, limited flexibility
 - 2. Non-Parametric Activation Functions: APL, Maxout Networks, Spline Activation Functions [7,8,9]
 - In theory unbounded #parameters, model a large number of shapes
- However, none of these approaches has gained wide acceptance in practice

KAF - Overview

* Authors propose a novel non-parametric function:

$$\psi(Wx) = Kaf(s) := \sum_{i=1}^{D} a_i k(s, d_i)$$

- Where:
 - $\star k(\cdot,\cdot): \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a 1-dimensional kernel function
 - \bullet D is the user-defined size of the dictionary and $\{d_i\}$ are fixed dictionary elements
 - \diamond $\{a_i\}$ are called mixing-coefficients and are the actual trainable parameters
- � BPP easy to compute: $\frac{\partial Kaf(s)}{\partial a_i} = k(s,d_i)$

Kernel Function,Parameters initialization

KAF - Design

- \diamond Dictionary elements uniformly sampled around 0 with step size Δ
- Gaussian 1D kernel: $k(s,d_i) = \exp\{-\gamma(s-d_i)^2\}$
 - \bullet Heuristic: $\gamma := \frac{1}{6\Delta^2}$
 - Guarantees local behavior of mixing coefficients w.r.t. the overall function
- Mixing coefficients are initialized either:
 - * Randomly from a normal distribution

- Such KAF satisfies:
 - Smoothness over the entire domain
 - Linear number of trainable parameters
 - Admits any regularization technique

Experiment - Set Up

- ❖ Features normalized between 0 and 1.
- ❖ Validation set is chosen randomly from trainset and used as metric evaluation during training. If no relevant improvement happens after 3 epochs, early stop is applied.
- \diamond All the networks use a softmax in their output layer and the loss function is cross-entropy to which we add a small l_2 regularization factor.
- ❖ Weights of linear layers are initialized using the Uniform He strategy.

- ❖ Computing platform: 8th-gen Intel Core i7-8750H CPU, 16GB DDR4 of RAM and exploiting the CUDA capabilities of an NVIDIA GeForce GTX 1050 Ti Max-Q with 4GB of memory. OS is Ubuntu 19.10.
- ❖ TensorFlow v2.1.0, KAF implemented as a Keras Layer

Experiment - KFNN, SUSY

- ❖ SUSY dataset: binary classification problem in high energy particle physics [10]
 - \clubsuit Last $500\cdot 10^3$ records used for test, another $500\cdot 10^3$ for validation, $500\cdot 10^6$ dataset size
- Models:
 - ❖ Feed-forward NN: 5 Dense layers of 300 neurons, ReLU activation and Dropout on the last two layers (p=0.5)
 - ❖ Feed-forward NN: 2 hidden Dense layers of 300 neurons, KAF (both random and ridge init.) activation and Dropout on the last two layers (p=0.5)

Activation Function	Testing AUC	#Trainable Params
ReLU	0.8729	367201
\mathbf{KAF}	0.8720	108301
KAF-ELU	0.8715	108301

Experiment - KCNN, CIFAR10

- CIFAR10 dataset: multi label image classification[11]
 - $•60000 32 \times 32$ colour images in 10 classes
- ❖ Block:
 - \diamond conv2D with 150 filters, filter size 5×5 , stride of 1
 - \clubsuit MaxPooling2D 3×3 w/ stride of 2
 - ightharpoonup Dropout p=0.25
- ❖ Models:
 - CNN with 4 blocks, ELU
 - * KAF-CNN 2 blocks, rand. initialized
 - * KAF-CNN 2 blocks, ELU-ridge initialized

Activation Function	Testing Accuracy	#Trainable Params
ELU	0.7474	1700860
KAF	0.7485	653600
KAF-ELU	0.7285	653600

Considerations

All the details regarding the implementation: https://github.com/arbiter1elegantiae/kaf-nets

* KAFs combine different beneficial properties for non-parametric activation functions, whereas introducing only a linear number of additional parameters

❖ They're effectiveness is supported with different experiments including CNNs and FNNs

- Future works may focus on:
 - * The study of other design choices: different kernels, better heuristics
 - * How well do KAFs perform when extended to different scenarios like RNNs or Adversarial Attacks

References

- [1]: Scardapane, S., Van Vaerenbergh, S., Totaro, S. and Uncini, A., 2019. Kafnets: Kernel-based non-parametric activation functions for neural networks. Neural Networks, 110, pp.19-32.
- [2]: Hornik, K., Stinchcombe, M. and White, H., 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), pp.359-366.
- [3]: Chen, C.-T., Chang, W.-D., 1996. A feedforward neural network with function shape autotuning. Neural Networks 9 (4), 627–641.
- [4]: He, K., Zhang, X., Ren, S., Sun, J., 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proc. IEEE International Conference on Computer Vision (ICCV). pp. 1026–1034.
- [5]: Trottier, L., Gigu`ere, P., Chaib-draa, B., 2016. Parametric exponential linear unit for deep convolutional neural net works.
- [6]: Jin, X., Xu, C., Feng, J., Wei, Y., Xiong, J., Yan, S., 2016. Deep learning with S-shaped rectified linear activation units. In: Proc. Thirtieth AAAI Conference on Artificial Intelligence.pp. 1–7.
- [7]: Agost inelli, F., Hoffman, M., Sadowski, P., Baldi, P., 2014. Learning activation functions to improve deep neural networks.
- [8]: Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y., 2013. Maxout networks. In: Proc. 30th International Conference on Machine Learning (ICML). pp. 1–9.
- [9]: Vecci, L., Piazza, F., Uncini, A., 1998. Learning and approximation capabilities of adaptive spline activation function neural networks. Neural Networks 11 (2), 259–270.
- [10]: Baldi, P., Sadowski, P., Whiteson, D., 2014. Searching for exotic particles in high-energy physics with deep learning. Nature communications 5, 4308
- [11]: Cs.toronto.edu. 2020. CIFAR-10 And CIFAR-100 Datasets. [online] Available at: https://www.cs.toronto.edu/~kriz/cifar.html [Accessed 20 2020].

