Министерство транспорта Российской Федерации Федеральное агентство железнодорожного транспорта

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Дальневосточный государственный университет путей сообщения»

Кафедра «Вычислительная техника и компьютерная графика»

АЛГОРИТМ ОБРАТНОГО РАСПРОСТРАНЕНИЯ ОШИБКИ

Лабораторная работа №11 ЛР 09.04.01.MPO.08.01.MO921ИВС

Выполнил	
студент гр. МО921ИВС	А.Ю. Панченко
Проверил	
доцент, к.фм.н.	Ю.В. Пономарчук

Цель работы: изучение и применение метода обратного распространения ошибки для обучения многослойной бинарной однородной нейронной сети.

1 УСЛОВИЕ ЗАДАЧИ

Просчитать одну итерацию цикла обучения методом обратного распространения ошибки многослойной бинарной неоднородной нейронной сети, состоящей из 2 слоёв, причем в первом слое находится 2 нейрона и используется пороговая функция активации (T=0,6), а во втором -1, гиперболический тангенс (k=2). В качестве обучающей выборки использовать таблицу истинности для операции «стрелка Пирса» (не использовать первую строчку таблицы). Синаптические веса задать случайным образом.

1.1 Описание процесса решения

Для обучения нейронной сети методом обратного распространения ошибки необходимо:

- 1. Графически отобразить структуру нейронной сети. Определить размерность и количество матриц синаптических весов (для каждого слоя своя матрица).
 - 2. Определить обучающую выборку, представив ее в табличном виде.
- 3. Выбрать входные данные, на которых будет рассматриваться итерация цикла обучения.
- 4. Следуя алгоритмы обучения методом обратного обучения ошибки просчитать одну итерацию цикла и представить новые синаптические веса в матричном виде.

1 РЕШЕНИЕ

По заданию нейронная сеть состоит из трех нейронов, два входных, один выходной, значит синаптических весов 6. Первый слой имеет пороговую функцию активации (T=0,6) и второй слой нейронов имеет функцию активации гиперболический тангенс (k=2).

На рисунке 1 показана структура рассматриваемой нейронной сети.

Рисунок 1 – Архитектура нейронной сети и выбранные случайным образом веса

Сеть бинарная, поэтому на ее входы могут подаваться только нули и единицы, так как входа 2, то возможных комбинаций входных значений будет 4 (обучающая выборка будет состоять из 3 векторов без первой строки). Выход нейронной сети, согласно заданию, соответствует оператору «стрелка Пирса». Поэтому таблица с обучающей выборкой будет выглядеть следующим образом:

X1	X2	D
0	1	0
1	0	0
1	1	0

Пусть в качестве вектора обучения будет рассматриваться 1-ая строка таблицы.

Следуя алгоритму обучения по Δ -правилу:

Wij(1)	1	2
1	0.4	0.5
2	0.6	0.7

Wg(1)	1	2
	0.8	0.9

Вектор
$$X = \{0,1\}, D = \{0\}.$$

Прямой проход: вычисление в циклах выходов всех слоев и получение выходных значений нейронной сети (вектор Y).

$$S_{1} = x_{1} \cdot w_{11} + x_{2} \cdot w_{21} = 0 \cdot 0.4 + 1 \cdot 0.6 = 0.6;$$

$$S_{2} = x_{1} \cdot w_{12} + x_{2} \cdot w_{22} = 0 \cdot 0.5 + 1 \cdot 0.7 = 0.7;$$

$$T = 0.6;$$

$$Y_{1} = \begin{cases} 1, S_{1} \geq T \\ 0, S_{1} < T \end{cases} => 0.6 \geq 0.6 => Y_{1} = 1;$$

$$Y_{2} = \begin{cases} 1, S_{2} \geq T \\ 0, S_{2} < T \end{cases} => 0.7 \geq 0.6 => Y_{2} = 1;$$

$$S_{3} = Y_{1} \cdot w_{1} + Y_{2} \cdot w_{2} = 1 \cdot 0.8 + 1 \cdot 0.9 = 1.7;$$

$$k = 2;$$

$$\frac{S_{3}}{k} = \frac{1.7}{2} = 0.85;$$

$$e^{\frac{S_{3}}{k}} = e^{0.85} = 2.34;$$

$$Y = \frac{e^{\frac{S_{3}}{k}} + e^{-\frac{S_{3}}{k}}}{e^{\frac{S_{3}}{k}} - e^{-\frac{S_{3}}{k}}} = \frac{2.34 + 0.43}{2.34 - 2.34} = \frac{2.77}{1.91} = 1.45.$$

Обратный проход:

$$\begin{split} \eta &= \ 0.7 \\ \delta^2 &= (d-Y) \cdot Y \cdot (1-Y) = (0-1.45) \cdot 1.45 \cdot (1-1.45) = 0.9461 \\ w_1(2) &= w_1(1) + \eta \cdot \delta^2 \cdot Y_1 = 0.8 + 0.7 \cdot 0.9461 \cdot 1 = 1.4623 \\ w_2(2) &= w_2(1) + \eta \cdot \delta^2 \cdot Y_2 = 0.9 + 0.7 \cdot 0.9461 \cdot 1 = 1.5623 \\ \delta^1_1 &= \delta^2 \cdot w_1 = 0.9461 \cdot 0.8 = 0.7569 \\ \delta^1_2 &= \delta^2 \cdot w_2 = 0.9461 \cdot 0.9 = 0.8515 \\ w_{11}(2) &= w_{11}(1) + \eta \cdot \delta^1_1 \cdot x_1 = 0.4 + 0.7 \cdot 0.7569 \cdot 0 = 0.4 \\ w_{12}(2) &= w_{12}(1) + \eta \cdot \delta^1_2 \cdot x_1 = 0.5 + 0.7 \cdot 0.8515 \cdot 0 = 0.5 \\ w_{21}(2) &= w_{21}(1) + \eta \cdot \delta^1_1 \cdot x_2 = 0.6 + 0.7 \cdot 0.7569 \cdot 1 = 1.1298 \\ w_{22}(2) &= w_{22}(1) + \eta \cdot \delta^1_2 \cdot x_2 = 0.7 + 0.7 \cdot 0.8515 \cdot 1 = 1.2961 \end{split}$$

Wij(2)	1	2
1	0.4	0.5
2	1.1298	1.2961

Wg(2)	1	2
	1.4623	1.5623

$$\varepsilon = \sum (d_i - y_i)^2 = (1 - 1.45)^2 = 0.2025$$

Так как мы рассматриваем одну итерацию цикла обучения, в любом случае выходим из цикла.

Вывод: В результате выполнения одной итерации обучения методом обратного распространения ошибки для многослойной бинарной неоднородной нейронной сети имеющей 2 нейрона в первом слое с пороговой функцию активации (T=0,6) и одним нейронов во втором свое, имеющем функцию активации гиперболический тангенс (k=2), удалось скорректировать синаптические веса, что привело к улучшению приближения к целевому выходу операции «стрелка Пирса» с квадратичной ошибкой 0.2025, которая при дальнейших итерациях обучения будет уменьшаться.