

2019/11/28

Version for Third Part IoT Platform Integration

Product BOB 1.0 and 1.1, PN 3.x and 4.x; Sensor version: MPU and KX

Sensor firmware version v0.3.5 or higher / v0.4.5 or higher

Contact: bob@eolane.com

Table of content

Document history	2
Product Variants 'MPU' and 'KX'	3
Product variants	3
Incidence on Payload type identification	3
Incidence on Payload data content	3
Uplink payloads (Device to LoRa server)	4
Introduction	4
LEARNING MESSAGE payload structure	4
REPORT MESSAGE payload structure	5
ALARM MESSAGE payload structure	6
STATE MESSAGE payload structure	8
Downlink (LoRa to device)	9
Renew learning phase or over-learning	9
Changing measurement period	9
Measurement period ranges	9
Activate/deactivate STATE MESSAGE	9
ALARM MESSAGE threshold	10
Additional computation (at server level)	10
Charts examples	12
Breakdown of the operating time of the machine	12
Anomaly distribution	12
Average unnatural vibration level in reports	12
Number of drift notifications	13
Temperature	13
Max. vibration value	13
Peak Frequency	14
Report view	15
Vibration drift Alarm view	16
Payload examples	16
Raw payload	17
Payload samples for MPU version (BoB v1.0 / PN:3.x)	17
Payload samples for KX version (BoB v1.1 / PN:4.x)	18
KX version Decode examples	19
LEARNING TYPE	19
REPORT TYPE	19
ALARM TYPE	21
STATE TYPE	22

Document history

2019/08/27: document compilation for third party platform integration

2019/08/30: header coding corrected for some uplink frames; added byte#2 (bat level) on STATE frame; added 'chart examples'; 2019/9/2: payload examples added; fixed for KX frames;

2019/9/10: changes only for downlink payloads after fw improvements (V0.4.4); removed 'very slow measurement'; added Alarm threshold; Enable/Disable state index shifted! 2019/9/17: some wording changes in the fields explanations;

2019/9/25: adding chapter about variants KX and MPU; Important, fix for Start message header!

2019/10/15: Adding raw payload examples and correct downlink values
2019/11/28: Report message table correction (anomaly distribution) and payload decryption examples

Product Variants 'MPU' and 'KX'

Product variants

BOB ASSISTANT is available into 2 major variants, depending on the mounted accelerometer sensor. Those 2 variants present both different range of measurement, accuracy, and therefore monitoring capabilities.

	Sensor type	PN*	Monitored frequencies	Sampling rate	32 values FFT report	Available for markets
BOB 1.0	MPU	3.x	20 Hz - 500 Hz	1000 Hz	32 values between 0 and 500Hz (step 16 Hz)	EU only
B0B 1.1	KX	4.x	20 Hz - 12800 Hz	Low Frequency 800Hz and High Frequency 25600Hz	32 values between 0 and 3200 Hz (step 100Hz)	EU US as prototype

^{*}label at the back of the product

Incidence on Payload type identification

Each type of message is identified using the byte 0.

Value is different between KX and MPU in order to know if the message is coming from a MPU or KX device.

Example: for the frame 'report', a MPU payload would be identified by the byte 0 = 'r', as for KX sensor, the payload would be identified by the byte 0 = 'R'. See the payload tables for more details.

Incidence on Payload data content

MPU and KX are sending the same message. However, the **peak frequency** value is calculated using the following Low Frequency data rate.

MPU:

FREQ_SAMPLING_ACC_LF = FREQ_SAMPLING_ACC_HF = 1000 Hz

KX:

- FREQ_SAMPLING_ACC_LF = 800Hz
- FREQ_SAMPLING_ACC_HF = 25600Hz

Uplink payloads (Device to LoRa server)

Introduction

BOB ASSISTANT sends 4 types of messages: LEARNING, REPORT, ALARM and STATE. The payload for each message has a different structure, and each message type is identified with the byte 0 of the payload (header).

- LEARNING occurs only during the Learning phase (up to 7 days);
- REPORT is sent each 3 hours (default configuration);
- ALARM message is sent when anomaly level reaches XX% (25% default).
- STATE is sent when the measured equipment changes its state from ON to OFF or OFF to ON (start/stop), or when sensor is on. STATE message is the first applicative payload sent by the device after power-on.

LEARNING MESSAGE payload structure

MPU = "L" or KX = "I" Learning percentage	MPU = 76 (hex=0x4C) Or KX = 108 (hex=0x6C)		const		
Learning percentage					Head (Learning)
0,	0~100	Value	%	[0, 100]	0-100: Percentage of learning process, int. Followed by the last sample (only 0-100 are learning, others are system messages)
Vibration level (vl_1)	0~127	Value	g	[0, 127]	$vl = (vl_1*128+vl_2+vl_3/100)/10/121.45, float; \\ the threshold of vibration level is 0.01g$
Vibration level (vl_2)		Value			
Peak frequency index (where is the maximum value of					int Frequency_index = Value + 1 Frequency_value = (Value + 1) * FREQ_SAMPLING_ACC_LF / 256
viorationj	0~127	value + 1	HZ		* FREQ_SAMPLING_AUL_LF / 250
Temperature	0~127	Value - 30	°C	[-30, 97]	The Value is constrained to be with a range [-30 97], int
Learning from 0 or additional learning	0~1	Value			1: Learning from 0; 0: Additional learning
FFT signal (needed to be calculated with vibration level)	0~127		g; Hz		Value_g = Value * vl / 127; Frequency_hz = (i * 4 + 4) * FREQ_SAMPLING_ACC_HF / 256 (i is the index of FFT array, begins from 0, ends by 31)
	Vibration level (vl_2) Vibration level (vl_3) Peak frequency index (where is the maximum value of vibration) Temperature Learning from 0 or additional learning	Vibration level (vl_2) 0~127 Vibration level (vl_3) 0~127 Peak frequency index (where is the maximum value of vibration) 0~127 Temperature 0~127 Learning from 0 or additional learning 0~1 FFT signal (needed to be calculated with vibration level)	Vibration level (vl_2) $0\sim127$ Value Vibration level (vl_3) $0\sim127$ Value Peak frequency index (where is the maximum value of vibration) $0\sim127$ Value + 1 Temperature $0\sim127$ Value - 30 Learning from 0 or additional learning $0\sim1$ Value	Vibration level (vl_2) Vibration level (vl_3) 0~127 Value Peak frequency index (where is the maximum value of vibration) 0~127 Value + 1 Hz Temperature 0~127 Value - 30 °C Learning from 0 or additional learning 0~1 Value	Vibration level (vl_2) 0~127 Value Vibration level (vl_3) 0~127 Value Peak frequency index (where is the maximum value of vibration) 0~127 Value + 1 Hz Temperature 0~127 Value - 30 °C 97] Learning from 0 or additional learning 0~1 Value FFT signal (needed to be calculated with vibration level) g; Hz

REPORT MESSAGE payload structure

Byte	Signification	Value (dec)	Real_Value (dec)	Unit	Range	Description
0	MPU = "R" or KX = "r"	MPU = 82 (hex=0x52) Or KX = 114 (hex=0x72)		const		Head (Report)
1	Anomaly level in $\%$ (drift with respect to the reference vibration signature)		Value * 100 / 127	%	[0, 100]	int
2	Operating time of the monitored equipment over the report length	0~127	Value * report length / 127	%	[0, 100]	int report length = byte 6
3	Time, in minutes, spent in the $\left[0\% - 10\%\right]$ range of anomaly level	0~127	Value * operating time / 127	%	[0, 100]	int
4	Number of alarms during this report period	0~127	Value		[0,)	int
5	Temperature	0~127	Value - 30	°C	[-30, 97]	int
6	Report period (R_V)	0~127	Value	Minute		$R_{\star}V$ <= 59, period_report unit is minute, int; $R_{\star}V$ > 59, period_report unit is minute ($R_{\star}V$ - 59)*60, int
7	Report ID	0~9	Value		[0, 9]	int, used to identify the message (increase with time)
8	Vibration level (vl_1)	0~127	Value	g	[0, 127]	Max amplitude (on 3 bytes) vl = (vl_1 * 128 + vl_2 + vl_3 / 100) / 10 / 121.45
9	Vibration level (vl_2)	0~127	Value			
10	Vibration level (vl.3)	0~127	Value			
11	Peak frequency index (frequency at highest amplitude recorded)	0~127	Value + 1			int Freq_index = Value + 1 Freq_value = (Value + 1) * FREQ_SAMPLING_ACC_LF / 256
12	Time, in minutes, spent in the [10% - 20%] range of anomaly level		(Total operating time - time in the [0-10%] anomaly range)*Value/127	mn	[0, 100]	int
13	Time, in minutes, spent in the 20% - 40%] range of anomaly level	0~127	(Total operating time - time in the [0-10%] anomaly range)*Value/127	mn	[0, 100]	înt

Byte	Signification	Value (dec)	Real_Value (dec)	Unit	Range	Description
14	Time, in minutes, spent in the [40% - 60%] range of anomaly level	0~127	(Total operating time - time in the [0-10%] anomaly range)*Value/127	mn	[0, 100]	înt
15	Time, in minutes, spent in the [60% - 80%] range of anomaly level		(Total operating time - time in the [0-10%] anomaly range)*Value/ 127	mn	[0, 100]	int
16	Time, in minutes, spent in the e $[80\%$ - $100\%]$ range of anomaly level	0~127	(Total operating time - time in the [0-10%] anomaly range)*Value/127	mn	[0, 100]	int
17	Battery percentage	0~127	Value * 100 / 127	%	[0, 100]	int
18	Anomaly level reaches 20 $\%$ (Prediction based on the data of last 24 hour	0~255	Value	hour	[0, 255]	int, if 255 means infinite
19	Anomaly level reaches 50 % (Prediction based on the data of last 24 hours)	0~255	Value	hour	[0, 255]	int, if 255 means infinite
	Anomaly level reaches 80 % (Prediction based on the data of last 24 hours)	0~255	Value	hour	[0, 255]	int, if 255 means infinite
	Anomaly level reaches 20 % (Prediction based on the data of last 30 days)	0~255	Value	day	[0, 255]	int, if 255 means infinite
22	Anomaly level reaches 50 % (Prediction based on the data of last 30 days)	0~255	Value	day	[0, 255]	int, if 255 means infinite
	Anomaly level reaches 80 % (Prediction based on the data of last 30 days)	0~255	Value	day	[0, 255]	int, if 255 means infinite
	Anomaly level reaches 20 % (Prediction based on the data of last 6 months)	0~255	Value	month	[0, 255]	int, if 255 means infinite
25	Anomaly level reaches 50 % (Prediction based on the data of last 6 months)	0~255	Value	month	[0, 255]	int, if 255 means infinite
	Anomaly level reaches 80 $\%$ (Prediction based on the data of last 6 months)	0~255	Value	month	[0, 255]	int, if 255 means infinite

Example of vibration anomaly data extraction

Decrypted payload

Byte(s)	Description	hex.	dec.	Value	Unit	Comments / indirect data
1	Average anomaly level	08	8	8 x 100 / 127 = 6,3	%	Calculated over « machine on » time
2	Operating time	7f	127	127 x 180/127 = 180	mn	Report length = 180 mn Operating rate in pourcentage : [dec. Value] * 100 / 127
3	Time spent in the [0- 10%] range of anomaly	5a	90	90 x 180 / 127 = 128	mn	To have the value in pourcentage : [value in min] / [Report length] * 100
6	Report length	3e	62	(62 -59) x 3 = 180	min	If value < 59 →= value If value > 59 →= (value – 59) * 60
12	[10-20%] [20-40%]	55 2a	85 42	(180 – 128) x 85 / 127 = 35 (180 – 128) x 42 / 127 = 17	min min	Raw data of time in anomaly in the payload are given on the « bad
13	[40-60%] [60-80%]	00 00	0 0	$(180 - 128) \times 0 / 127 = 0$ $(180 - 128) \times 0 / 127 = 0$ $(180 - 128) \times 0 / 127 = 0$	min min	vibration » period : operating time -(0-10%] time
14	[80-1000%]	00	0	$(180 - 128) \times 0 / 127 = 0$	min	To have the value in pourcentage : [value in minutes] / [Report
15						length] * 100
16						
18-26	Anomaly predictions 24h : 20% - 50% - 80% 30d20% - 50% - 80% 6mo20% - 50% - 80%	77 ff ff ff ff ff ff ff ff	119 255 255 255 255 255 255 255 255	119 / / / / / / / /	hours days months	Projection are calculated with a linear regression using data of the previous 24h, reps. 30 days , and 6 months. If value = 255, we suggest not to display any value

Example other data extraction

 $\frac{0}{52087} \frac{1}{2} \frac{2}{3} \frac{4}{4} \frac{5}{5} \frac{6}{6} \frac{7}{8} \frac{8}{9} \frac{9}{10} \frac{11}{11} \frac{12}{13} \frac{13}{14} \frac{15}{16} \frac{16}{17} \frac{17}{18} \frac{18}{10} \frac{17}{10} \frac{17}{1$

Byte(s)	Description	hex.	dec.	Value	Unit	Comments
5	Temperature	35	53	53-30 = 23	°C	Hardware offset
8,9,10	Maximum vibration amplitude	00 19 26	0 25 38	(0 x 128 + 25 + 38 / 100) / 10 / 121.45 = 0,0209	g	
11	Peak frequency	0с	12	12+ 1 = 13	Hz	
17	Battery percentage	7c	124	124 x 100 / 127 = 97,6	%	Estimated from IA running and Lora RX/TX transmissions + sleep

ALARM MESSAGE payload structure

Byte	Signification	Value (dec)	Real_Value	Unit	Range	Description

0	MPU = "A" or	MPU = 65 Or		const		Header (Alarm)
	KX = "a"	KX = 97				
1	Anomaly level	0~127	Value * 100 / 127	%	[0, 100]	int
2	Temperature	0~127	Value - 30	°C	[-30, 97]	int
3	NA	NA	NA		NA	NA
	Vibration level (vl_1)	0~127	Value	g	[0, 127]	vl = (vl_1*128 + vl_2*+vl_3 / 100) / 10 / 121.45
5	Vibration level (vl_2)	0~127	Value			
6	Vibration level (vl_3)	0~127	Value			
7	NA	NA	NA	NA	NA	NA
8~39	FFT signal (needed to be calculated with vibration level)	0~127		g; Hz		Value $g = Value * vl / 127$; Frequency $hz = (i * 4 + 4) * FREQ SAMPLING ACC HF / 256 (i is the index of FFT array, begins from 0, ends by 31)$

STATE MESSAGE payload structure

(STATE message is the first applicative payload sent by the device after power-on) $\,$

Byte	Signification	Value (dec)	Real_Value	Description
0	MPU/KX = "S"	MPU = 83 (hex=0x53) or KX = 83 (hex=0x53)		Header (State) : same value for any type of Inertial Motion Unit)
1	sensor & machine states	100~101;125~126	(Value)	100: Sensor start; 101: Sensor stop; 125: Machine stop; 126: Machine start
2	Battery percentage	0~127	Value * 100 / 127	% [0,100]

Downlink (LoRa to device)

Only one byte constitutes a downlink message (byte in HEX). Commands have to be sent one by one.

Renew learning phase or over-learning

Byte to send (hex)	Downlink Port	Signification
50	1	Restart learning from 0
51	1	Additional Learning

Restart learning will erase the previous knowledge and learn 50 new samples

Additional Learning will learn 50 new samples

Changing measurement period

changing measurement period		
Byte to send (hex)	Downlink Port	Signification
52	1	Very Fast Mode
53	1	Fast Mode
54	1	Recommended Mode
55	1	Slow Mode

Measurement period ranges

Production for the period ranges				
Mode	Learning Period	Detection Period		
Very Fast	10 sec	20 sec		
Fast	20 sec	2 min		
Recommended	60 sec	5 min		
Slow	2 min	10 min		

Activate/deactivate STATE MESSAGE

,		
Byte to send (hex)	Downlink Port	Signification
56	1	Enable State Message
57	1	Disable State Message

The message "Enable State Message" activates the start/stop machine notification

The message "Disable State Message" deactivates the start/stop machine notification (used mostly to spare sensor energy in case of frequent state transitions)

Note:

2 years warantly is guaranteed for nominal operation which implies :

- 5 min period measurement
- 8 start/stop messages per day

Note: Start/stop messages and battery life

We recommend to automatically deactivate start/stop messages if the total number of message received during the first month of operation is more than 500. A warning should be displayed to users.

The ability for the user to manually deactivate start/stop message is optionnal

ALARM MESSAGE threshold

Byte to send (hex)	Downlink Port	Signification
58	1	Alarm Threshold when anomaly > 10%
59	1	Alarm Threshold when anomaly > 15%
5A	1	Alarm Threshold when anomaly > 20%
5B	1	Alarm Threshold when anomaly > 25%

Additional computation (at server level)

To get the $\textbf{Operating Time}: (\text{Report Period} * \text{Percentage Vibration}) \ / \ 100$

The peak frequency value is calculated using the following Low Frequency data rate.

FREQ_SAMPLING_ACC_LF = FREQ_SAMPLING_ACC_HF = 1000 Hz

KX:

- FREQ_SAMPLING_ACC_LF = 800Hz FREQ_SAMPLING_ACC_HF = 25600Hz

Vibration Level value is split in 3 Bytes. In order to get the real value, you must apply the equation describe in the Description column (payload table).

Charts examples

Breakdown of the operating time of the machine

Time of operation, expressed in minutes, over a 3 hours period of analysis.

Operating time Operating Rate Breakdown of the operating time of the machine			Avg unr	Health Anomaly distribution Avg unnatural vibration level in reports Number of drift notifications			Other data Temperature Max value Peak frequency RSSI		
Breakdown o	of the operating t	ime of the machine							
Fri 28/06	180 mn	180 mn	180 mn	180 mn	180 mn	180 mn	180 mn	180 mn	
Sat 29/06	180 mn	180 mn	180 mn	180 mn	180 mn	174 mn	180 mn	159 mn	
Sun 30/06	111 mn	88 mn	105 mn	98 mn	79 mn	82 mn	126 mn	77 mn	
Mon 01/07	91 mn	113 mn	145 mn	170 mn	180 mn	180 mn	180 mn	180 mn	
Tue 02/07	149 mn	129 mn	159 mn	139 mn	170 mn	180 mn	180 mn	180 mn	
Wed 03/07	149 mn	159 mn	119 mn	180 mn	180 mn	180 mn	180 mn	180 mn	
Thu 04/07	180 mn	118 mn	153 mn	135 mn	170 mn	180 mn	180 mn	180 mn	
Fri 05/07	180 mn	118 mn	129 mn	113 mn	174 mn	170 mn	150 mn	159 mn	
Sat 06/07	164 mn	180 mn	149 mn	159 mn	164 mn	159 mn	174 mn	180 mn	
Sun 07/07	180 mn	170 mn	164 mn	174 mn	174 mn	180 mn	174 mn	180 mn	
Mon 08/07	170 mn	133 mn	139 mn	99 mn	159 mn	180 mn	180 mn	180 mn	
Tue 09/07	145 mn	154 mn	149 mn	170 mn	170 mn	180 mn	170 mn	180 mn	
Wed 10/07	164 mn	123 mn	75 mn	88 mn	159 mn	164 mn	133 mn	120 mn	
0 mn/180		04:00	07:00 1-90 mn Missing		13:00	16:00 91-179 mn. Out of scop		22:00	

Anomaly distribution

Displays the level of abnormal vibration, related to a percentage of time spent in each zone, from very good (green) to very bad (red). Each bar shows a 3hour period of time. Gray zone exhibits the time the machine is off

Average unnatural vibration level in reports

Vibration drift ratio mean value, calculated over a 3h period, and compared to the reference vibration signature(s). Custom notifications are usually set on this value (see elsewhere)

Number of drift notifications

Number of alarms that BoB has sent, when anomaly level exceeds 25%

Temperature

Average temperature reported every 3h. Please note that this temperature is not the surface temperature of your machine, but an ambient average value measured inside the sensor casing.

Max. vibration value

Maximum vibration amplitude in [g].

Peak Frequency

Frequency related to the maximal amplitude reported

Report view

(Report

×

Machine	
BOB's ID	
BOB's name	BOB7754
Description de BOB	
Rapport envoyé	2019/07/23 08:27:53
Operating Time	180 min
Operating Rate	100 %
Time in Anomaly Stop 0-10% (Very good) 10-20% (Good) 20-40% (Average) 40-60% (Bad) 60-80% (Very bad) 80-100% (Danger)	■ Very good: 26.67% ■ Good: 39.44% ■ Average: 33.89%
Unnatural vibration level	16.5%
Number of drift notifications	0
Peak Frequency	207.03125 Hz
Max vibration amplitude	0.0575 g
Temperature	32 °C
RSSI	-42 dBm
Report length	180 min
Battery percentage	76% Remaining: – 3 years

Anomaly prediction / Observed period	Last 24 hours	Last 30 days	Last 6 months
Anomaly 20 %	0 hours	infini	infini
Anomaly 50 %	194 hours	infini	infini
Anomaly 80 %	infini	infini	infini

Vibration drift Alarm view

(!) Alarm

Machine Demo fleet BOB's ID 70b3d531c0001189 BOB's name BOB7754 Description de BOB Rapport envoyé 2019/06/05 16:22:35 Unnatural vibration level Peak Frequency 39 Hz Max vibration amplitude 0.0639 g Temperature 31 °C RSSI -21 dBm Signature vibratoire 0 Hz fs/2

Payload examples

Raw payload

Payload samples for MPU version (BoB v1.0 / PN:3.x)

Туре	Payload cleartext (hex)	frame number	Comment
UPLINK	417f3800010c2e156551377f3b7d63425a4e231b1711101a100c0b0a0a0707050605060505050506	10	Anomaly
UPLINK	52017f7f003802000108460c0000000007fffffffffffffffffffffffffff	9	Report
UPLINK	537e7f	8	machine on
UPLINK	537d7f	7	machine off
UPLINK	4c640109140c38010303087607041303010201010101010101010101010100000000	6	Learning complete
UPLINK	4c500108090c38010304097f070414020203010101010101010101010101010100000000	5	Learning 80%
UPLINK	4 c3 c0109580 c38010303087 f07031303020301010101010101010101010100000000	4	Learning 60%
UPLINK	4c28010a5a0c38010303087 f070313020203010101010101010101010101010101	3	Learning 40%
UPLINK	4c14010b3e0c38010203097f0703130202030201010101010101010101010100000000	2	Learning 20%
UPLINK	4c00010e2e0c38010204097f0503110202030101010101010101010101010100000000	1	Learning process start
UPLINK	53647í		Sensor start
JOIN			

Payload samples for KX version (BoB v1.1 / PN:4.x)

Туре	Payload cleartext (hex)	frame number	Comment
UPLINK	6137320003105C0E201F45462A171F18483E454C285D7F37241610181C10180D0E0E070C110C0A0C	10	Anomaly
UPLINK	72097f5f00313e0700284c537f00000007cffffffffffffffff	9	Report
UPLINK	537e7d	8	machine on
UPLINK	537d7d	7	machine off
UPLINK	6c64002d190133014c7f4731542f383531263326292c403046433d472c181e252e34232c38202531	6	Learning complete
UPLINK	6c5000333f013301407f3d25572f3228333b251c231b2e3831492d26241812181f1d182d2029383a	5	Learning 80%
UPLINK	6c3c00384b013301347f4f2a512830343a2221152d1c273242492d331e171618262413221b2d3841	4	Learning 60%
UPLINK	6c2800394e013301417f432b4f2f36232d23261c242731233a452d341714171a261f1c2324333738	3	Learning 40%
UPLINK	6c140031150134013c7f3c284b2a393f29321f1e223248294754492b191616202720212a2d28383b	2	Learning 20%
UPLINK	6c00001f3f013601407f5b4467393c303176301c332b61345b7e303e2318373f333f2231444a4245	1	Learning process start
UPLINK	53647f		Sensor start
JOIN			

KX version Decode examples

LEARNING TYPE

```
"type": "learning",
 "sensor": "KX",
 "msg": {
   "temperature": 29,
   "learningfromscratch": 1,
   "learningpercentage": 100,
"vibrationlevel": 0.107,
   "peakfrequencyindex":11,
   "peakfrequency":34.38,
   "fft": [
0.0034,
    0.0051,
    0.107,
    0.0093,
    0.0051,
    0.0126,
    0.0868,
    0.0051,
    0.0042,
    0.0261,
    0.016,
    0.0126,
    0.0548,
    0.0194,
    0.0059,
    0.0168,
    0.0059,
    0.0059.
    0.0168,
    0.0337,
    0.0067,
    0.016,
    0.0312,
    0.0059,
    0.0034,
    0.0025,
    0.0025,
    0.0017,
    0.0017,
    0.0017,
    0.0017,
    0.0017
}
          REPORT TYPE
"type": "report",
  "sensor": "KX",
  "msg": {
    "batterypercentage": 100,
    "anomalylevel": 10.2,
    "anomalylevelto20last6mo": 255,
    "nbalarmreport": 1,
    "operatingtime": 2,
    "totalunknown6080": 0,
    "totalunknown4060": 0,
    "totalunknown2040": 0,
    "anomalylevelto80last30d": 255,
    "vibrationlevel": 0.0222,
    "totalunknown1020": 1,
    "anomalylevelto80last6mo": 255,
    "anomalylevelto50last24h": 255,
    "anomalylevelto20last24h": 255,
    "anomalylevelto50last30d": 255,
```

"temperature": 29, "reportlength": 2,

```
"anomalylevelto20last30d": 255,
   "peakfrequencyindex": 27,
   "totalunknown80100": 0,
   "totaloperatingtimeknown": 1,
   "anomalylevelto50last6mo": 255,
   "anomalylevelto80last24h": 255
   }
}
```

ALARM TYPE

```
Payload: [611C3B010044351C7F121D1D101D2F302B291E15110C090908080707060504030303020201020102] \\
  "type": "alarm",
  "sensor": "KX",
  "msg": {
    "temperature": 29,
    "vibrationlevel": 0.0564,
    "anomalylevel": 22,
    "fft": [
0.0564,
      0.008,
      0.0129,
      0.0129,
      0.0071,
      0.0129,
      0.0209,
      0.0213,
      0.0191,
      0.0182,
      0.0133,
      0.0093,
      0.0076,
      0.0053,
      0.004,
      0.004,
      0.0036,
      0.0036,
      0.0031,
      0.0031,
      0.0027,
      0.0022,
      0.0018,
      0.0013,
      0.0013,
      0.0013,
      0.0009,
      0.0009,
      0.0004,
      0.0009,
      0.0004,
      0.0009
 }
}
```

STATE TYPE

```
Payload: [73647F]
{
    "type": "state",
    "sensor": "KX",
    "msg": {
        "state": 0,
        "batterypercentage": 100
    }
}
```

--- end of document ---