Non-linear Regression

A biochemical experiment

Michaelis-Menten equation

$$V = \frac{V_{\text{max}} \times C}{K + C}$$

V = initial velocity

C = concentration

 $V_{\text{max}} = \text{maximum velocity}$

K = rate constant

Linearize

$$V = \frac{V_{\text{max}} \times C}{K + C}$$

$$\Rightarrow \quad \frac{\mathbf{1}}{V} = \frac{K + C}{V_{\text{max}} \times C}$$

$$= \frac{K}{V_{\text{max}} \times C} + \frac{\mathbf{1}}{V_{\text{max}}}$$

$$\Rightarrow \quad \frac{\mathbf{1}}{V} = \left(\frac{\mathbf{1}}{V_{\text{max}}}\right) + \left(\frac{K}{V_{\text{max}}}\right) \times \left(\frac{\mathbf{1}}{C}\right)$$

Fit the line

Model:

$$\frac{1}{V}$$
 = $\beta_0 + \beta_1 \left(\frac{1}{C}\right) + \text{error}$

Intercept 0.00697 Slope 0.00022

 $\hat{V}_{\text{max}} = 1/\text{Intercept} = 1/0.00697$ = 143

 $\hat{K} = \text{Slope} \times \hat{V}_{\text{max}} = 0.031$

Residuals vs fitted values

Which is more reasonable?

$$\frac{1}{V} = \beta_0 + \beta_1 \left(\frac{1}{C}\right) + \text{error}$$

$$V = \frac{V_{\text{max}} \times C}{K + C} + \text{error}$$

Nonlinear regression

We imagine that

$$V_{\rm i} \!\!=\!\! \frac{V_{\rm max} \times C_{\rm i}}{K + C_{\rm i}} + \epsilon, \quad \epsilon \sim \ \, {\rm iid} \, \, {\rm Normal}({\bf 0}, \sigma^2)$$

We estimate V_{max} and K by the values for which

$$RSS = \sum_{i} \left(V_{i} - \frac{\hat{V}_{max} \times C_{i}}{\hat{K} + C_{i}} \right)^{2}$$

is minimized.

→ An iterative method; need "starting values".

Nonlinear regression in R

> summary(nls.out)\$param

```
Est SE t-val P-val Vm 160.28 6.48 24.7 1.4e-09 K 0.048 0.008 6.1 1.7e-04
```

The fit

160 - 0 0 0 140 - 120 - Regr of 1/V on 1/C 80 - 0.0 0.2 0.4 0.6 0.8 1.0 concentration

Residuals vs fitted values Nonlinear regression

A second set of data

$$V = \frac{(V_{\max} + \Delta V_{\max} \, \mathbf{x}) \times C}{(K + \Delta K \, \mathbf{x}) + C} + \text{ error }$$

x = 0/1 if cells were untreated/treated.

Estimation in R

> summary(nls.outC)\$param

	Est	SE	t-val	P-val
Vm	160.28	6.90	23.2	2.0e-15
K	0.048	0.008	5.8	1.5e-05
dV	52.40	9.55	5.5	2.7e-05
dK	0.016	0.011	1.4	1.7e-01

From last time...

An alternative model

Linear "spline"

$$y = \begin{cases} \beta_0 + \beta_1 x + \epsilon & \text{if } x \leq x_0 \\ \beta_0 + \beta_1 x_0 + \epsilon & \text{if } x \geq x_0 \end{cases}$$

- > f <- function(x,b0,b1,x0)
 ifelse(x<x0, b0+b1*x, b0+b1*x0)</pre>
- > nls.out <- nls(y $\tilde{}$ f(time,b0,b1,x0), data=mydata, start=c(b0=200, b1=100, x0=30))
- > summary(nls.out)\$param

```
Est
              SE
                             P-val
                  -2.0
b0
     -146
            71.3
                           5.8e-02
             4.3
                   9.0
b1
       39
                           2.1e-07
             1.8
                   14.6
                           2.9e-10
x0
       26
```

Results

One last example...

R code

- > summary(nls.out)\$param

	Est	SE	t-val	P-val
a	0.390	0.006	66.7	1.9e-43
b	0.219	0.031	7.0	1.7e-08
С	0.099	0.018	5.5	2.4e-06