

Análisis I - Matemática I - Análisis II (C) - Análisis Matemático I (Q)

Práctica 6: Fuerzas y campos vectoriales en \mathbb{R}^2 y \mathbb{R}^3

Se sugiere complementar la resolución de los ejercicios de esta práctica con GeoGebra.

1. Si hay varias fuerzas actuando sobre un objeto, la **fuerza resultante** experimentada por dicho objeto es la suma de todas las fuerzas.

Dos fuerzas F_1 y F_2 con magnitudes de 10 N y 12 N respectivamente actúan sobre un objeto en un punto P como muestra la figura. Calcular la fuerza resultante F actuando sobre dicho objeto y su magnitud.

2. Sea $u \in \mathbb{R}^2$ un vector de norma 1. Trasladando los vectores a un origen común, hallar gráficamente $u \cdot v$ y $u \cdot w$ en los siguientes casos:

3. Para cada uno de los siguientes vectores u, v, hallar $p_u(v)$, la proyección de v sobre u.

(a)
$$u = (3, -4), v = (5, 0),$$

(b)
$$u = (1, 2), v = (-4, 1),$$

(c)
$$u = (3, 6, 2), v = (1, 2, 3).$$

- 4. Sean u, v vectores. Mostrar que el vector $o_u(v) = v p_u(v)$ es ortogonal a u.
- 5. Sean u, v vectores no nulos. Dar condiciones necesarias y suficientes para que $p_u(v) = p_v(u)$.

1

6. Decidir en que sentido apunta $u \times v$ y hallar $||u \times v||$ en cada uno de los siguientes casos.

7. Cuando se aplica una fuerza en algún punto de un cuerpo rígido, dicho cuerpo tiende a realizar un movimiento de rotación en torno a algún eje. El torque o momento de una fuerza es la capacidad que tiene para producir dicho movimiento de rotación. El torque se calcula como el producto vectorial de los vectores de posición y fuerza. Un pedal de bicicleta es empujado por un pie con una fuerza F de 60 N como muestra la imagen. El eje del pedal es de 18 cm de largo. Encontrar la norma del torque de F respecto al punto P.

Campos

8. Identificar qué campo vectorial F no fue graficado, y graficarlo.

i.
$$\mathbf{F}(x, y) = (y, -x)$$

ii.
$$\mathbf{F}(x,y) = (-x, -y),$$

iii.
$$\mathbf{F}(x,y) = (\text{sen}(x+y), \text{sen}(x+y)),$$
 iv. $\mathbf{F}(x,y) = (-x,y).$

iv.
$$\mathbf{F}(x, y) = (-x, y)$$
.

9. Graficar los siguientes campos $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$.

(a)
$$\mathbf{F}(x, y, z) = (y, 1, -x)$$
, (b) $\mathbf{F}(x, y, z) = (1, y, 1)$, (c) $\mathbf{F}(x, y, z) = (y, 1, 1)$.

10. Encontrar los campos vectoriales gradiente de f.

(a)
$$f(x,y) = \sqrt{x^2 + y^2}$$
, (b) $f(x,y,z) = xyz$, (c) $f(x,y,z) = \frac{e^{xz}}{y^2 + x^2}$.

11. Dibujar las curvas de nivel de las funciones junto con sus campos vectoriales gradiente. ¿Qué observa?

(a)
$$f(x,y) = 1 - x^2 - y^2$$
, (b) $f(x,y) = x^2 - y$, (c) $f(x,y,z) = \sqrt{x^2 + y^2 + z^2}$.

12. Las **líneas de flujo** (o **líneas de corriente**) de un campo vectorial \mathbf{F} son las trayectorias que sigue una partícula cuyo campo de velocidades es \mathbf{F} . Es decir, $\mathbf{r} : \mathbb{R} \to \mathbb{R}^2$ es una línea de flujo de \mathbf{F} si se verifica que

$$\mathbf{r}'(t) = \mathbf{F}(\mathbf{r}(t)).$$

Por tanto, los vectores en un campo vectorial son tangentes a las líneas de flujo.

Hallar una línea de flujo de cada uno de los siguientes campos que pase por el punto indicado.

- (a) $\mathbf{F}(x,y) = (x,-y), p = (1,1),$
- (b) $\mathbf{F}(x,y) = (1,x), p = (1,0).$
- 13. Para cada una de las siguientes trayectorias, hallar un campo vectorial \mathbf{F} tal que \mathbf{r} sea una línea de flujo de \mathbf{F} .
 - (a) $\mathbf{r}(t) = (\cos t, \sin t)$,
 - (b) $\mathbf{r}(t) = (t^3, \sqrt{t}).$