Линейная алгебра. Теория

Александр Сергеев

1 Аналитическая геометрия

1.1 Элементы векторной алгебры

1.1.1 Основные определения

Beктор(reометрический) - направленный отрезок; упорядоченная пара точек пространства

$$\overrightarrow{0} = \overrightarrow{AA}$$

 $|\overrightarrow{AB}|$ - длина отрезка AB

 $\overrightarrow{a} \parallel \overrightarrow{b} \Leftrightarrow$ - вектора *коллинеарны*, т.е. лежат на одной прямой или параллельных

$$\forall \overrightarrow{a} \parallel \overrightarrow{0}$$

$$\overrightarrow{a} = \overrightarrow{b} \Leftrightarrow \begin{cases} |\overrightarrow{a}| = |\overrightarrow{b}| \\ \overrightarrow{a} \uparrow \uparrow \overrightarrow{b} \end{cases}$$

Свободные вектора - вектора, не зависящие от точки приложения

 \overrightarrow{d} , \overrightarrow{b} , . . . - κ омпланарны, если лежат в одной плоскости или в параллельных плоскостях.

$$\overrightarrow{a_0}$$
 - opt $\overrightarrow{a} \Leftrightarrow \left\{ \begin{array}{l} \overrightarrow{a_0} & \uparrow \overrightarrow{a} \\ |\overrightarrow{a_0}| = 1 \end{array} \right.$

Операции над векторами:

1. $\overrightarrow{c} = \overrightarrow{a} \pm \overrightarrow{b}$ - сложение/вычитание

2. $\overrightarrow{c} = \alpha \overrightarrow{a}$ - умножение на скаляр

Свойства операций:

1. $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$ - ассоциативность сложения

2. $\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{b}+\overrightarrow{a}$ - коммутативность сложения

3. $\exists \overrightarrow{0}: \overrightarrow{a} + \overrightarrow{0} = \overrightarrow{a}$ - нейтральный элемент относительно сложения

4. $\exists \overrightarrow{-a} : \overrightarrow{a} + \overrightarrow{-a} = \overrightarrow{0}$ - существование противоположного элемента

5. $\forall \overrightarrow{a}, \overrightarrow{b}, \alpha \in \mathbb{R} \ \alpha(\overrightarrow{a} + \overrightarrow{b}) = \alpha \overrightarrow{a} + \alpha \overrightarrow{b}$ - дистрибутивность отностиетльно сложения

6. $\forall \alpha, \beta \in \mathbb{R}, \overrightarrow{a} (\alpha + \beta) \overrightarrow{a} = \alpha \overrightarrow{a} + \beta \overrightarrow{b}$ - дистрибутивность

7. $\forall \alpha, \beta \in \mathbb{R} \ \alpha(\beta \overrightarrow{a}) = (\alpha \beta) \overrightarrow{a} = \beta(\alpha \overrightarrow{a})$

8. $\forall \overrightarrow{a} \ 1 \cdot \overrightarrow{a} = \overrightarrow{a}$

- аксиомы линейного пространства

Определение

Пусть $\overrightarrow{v_1} \dots \overrightarrow{v_k} \in V_3$

$$\overrightarrow{v} = \sum_{i=1}^{k} \alpha_i \overrightarrow{v_i}, \ d\alpha_i \in \mathbb{R}$$

 \overrightarrow{v} - линейная комбинация векторов

Тривиальная линейная комбинация: $\forall i \ d_i = 0$

Определение

 $\overrightarrow{v_1} \dots \overrightarrow{v_k}$ - линейная независимая система векторов, если любая нулевая линейная комбинация этих векторов тривиальна.

Иначе - линейно зависимая система векторов.

Свойства:

1. Если в системе есть нулевой вектор, то такая система всегда линейно зависима.

- 2. Если подсистема системы векторов линейно зависима, то и вся система линейно зависима.
- 3. Система векторов линейно зависима ⇔ найдется вектор, который является линейной комбинацией других.
- 4. Если вектора коллинеарны, то они линейно зависимы.

Определение

Базисом прямой называется любой ненулевой вектор на этой прямой Базисом прямой называется упорядоченная пара любых неколлинеарных вектора.

Базисом пространства называется упорядоченная тройка любых некомпланарных вектора.

Определение Пусть $\overrightarrow{l_1}$, $\overrightarrow{l_2}$, $\overrightarrow{l_3}$ - базис пространства; $\overrightarrow{V} = \alpha_1 \cdot \overrightarrow{l_1} + \alpha_2 \cdot \overrightarrow{l_2} + \alpha_3 \cdot \overrightarrow{l_3}$.

Тогда $\alpha_1, \alpha_2, \alpha_3$ - координаты этого вектора.

Теорема

- 1. Любой вектор, параллельный плоскости, выражается через ее базис единственным образом.
- 2. Любой вектор, параллельный плоскости, выражается через ее базис единственным образом.
- 3. Любой вектор в пространстве выражается через его базис единственным образом.
- 0. Для любого вектора его координаты относительно базиса определяются однозначно.

Свойства:

- 1. $\overrightarrow{a} = \overrightarrow{b} \Leftrightarrow$ равны координаты этих векторов относительно фиксированного
- 2. $\overrightarrow{c} = \overrightarrow{a} + \overrightarrow{b} \Leftrightarrow \forall i \ c_i = a_i + b_i$

3.
$$\overrightarrow{b} = \lambda \overrightarrow{b} \Leftrightarrow \forall i \ b_i = \lambda b_i$$

Определение
$$\overrightarrow{a} \parallel \overrightarrow{b}, \overrightarrow{b} \neq \overrightarrow{0} \Leftrightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$$

Теорема

Система из более 2 компланарных векторов линейно зависима. Система из более 3 векторов линейно зависима.

1.1.2 Системы координат в пространстве/плоскости

Определение

Будем говорить, что в пространстве задана Декартова система координат, если зафиксирована точка $(\cdot)O$ - начало координат - и зафиксирован базис $(\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$, приложенный к точке

$$(\cdot)M = (m_1, m_2, m_3) \leftrightarrow \overrightarrow{OM} = m_1\overrightarrow{e_1} + m_2\overrightarrow{e_2} + m_3\overrightarrow{e_3}.$$

Оси координат (прямые, проходящие через $(\cdot)O$ и направленные в сторону базисного вектора):

- ОХ ось абсцисс
- ОҮ ось ординат
- OZ ось аппликат

Задача

Разделить отрезок AB точкой M в отношении λ к μ

Решение
$$\forall i \ m_i = \frac{\lambda b_k + \mu a_k}{\lambda + \mu}$$

В дальнейшем рассматриваем прямоугольную декартову систему коордиат

- ортонормированную систему координат:
$$\overrightarrow{e_i} \cdot \overrightarrow{e_j} = (\overrightarrow{e_i}, \overrightarrow{e_j}) = \left\{ \begin{array}{l} 1, i = j \\ 0, i \neq j \end{array} \right.$$

$$|\overrightarrow{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

$$\overrightarrow{a_0} = \frac{\overrightarrow{a}}{|\overrightarrow{a}|} - \text{opt.}$$

$$\overrightarrow{a_0} = \frac{a'}{|\overrightarrow{a}|} - \text{opt.}$$

 $\overrightarrow{a_0}=(\cos\alpha,\cos\beta,\cos\gamma)$, где α,β,γ - углы между вектором и OX,OY,OZ.

Косинусы называют направляющими. $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$

Определение

Полярная система координат - система координат в плоскости, задаваемая точкой и лучом, где положение точки определяется длиной ее $pa\partial uyc$ вектора и полярным углом между радиус-вектором и данным лучом.

Зададим полярную системой координат точкой О и лучом ОХ, а д.с.к. точкой О и базисом ОХҮ.

Отсюда

$$(\phi,r) \to (r\cos\phi,r\sin\phi)$$
 $(x,y) \to (\sqrt{x^2+y^2},\phi)$, где $\phi=\mathrm{atan2}(x,y)$ с учетом знака x,y

1.1.3 Основные преобразования д.с.к.

- 1. Параллельный перенос д.с.к. на $\overrightarrow{OO'}:\overrightarrow{O'M}=\overrightarrow{OM}-\overrightarrow{OO'}$
- 2. Поворот д.с.к в плоскости на $\phi:(\alpha-\phi,r)=R_O^\phi((\alpha,r)),$ где R_O^ϕ поворот д.с.к на ϕ . $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ - матрица поворота.

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
 - матрица поворота

3. Поворот д.с.к. в пространстве (через матрицы).

1.1.4 Скалярное произведение

$$(\overrightarrow{a},\overrightarrow{b})=\overrightarrow{a}\cdot\overrightarrow{b}=|\overrightarrow{a}||\overrightarrow{b}|\cos\angle(\overrightarrow{a},\overrightarrow{b})$$

Свойства:

- 1. Симметричность $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$
- 2. Аддитивность по первому аргументу $(\overrightarrow{a_1} + \overrightarrow{a_2}) \cdot \overrightarrow{b} = \overrightarrow{a_1} \cdot \overrightarrow{b} + \overrightarrow{a_2} \cdot \overrightarrow{b}$
- 3. Однородность по первому аргументу $\forall \lambda \in \mathbb{R} \ (\lambda \overrightarrow{a}, \overrightarrow{b}) = \lambda(\overrightarrow{a}, \overrightarrow{b})$
- 4. Положительная определенность $\overrightarrow{a}\cdot\overrightarrow{a}\geq 0$, причем $\overrightarrow{a}\cdot\overrightarrow{a}=0$ \Leftrightarrow $\overrightarrow{a} = 0$

Из свойств 1-3 - линейность по второму аргументу.

Замечание

В линейной алгебре любая функция $V \times V \to \mathbb{R}$, удовлетворяющая аксиомам 1-4 называется скалярным произведением.

$$|\overrightarrow{a}| = \sqrt{\overrightarrow{a} \cdot \overrightarrow{a}}$$

Доказательство свойства 2 для данного скалярного произведения

- 1) Если $\overrightarrow{b} = 0$ очевидно
- 2) Если $\overrightarrow{b} \neq 0$:

Введем д.с.к. таким образом, чтобы $\overrightarrow{i}\parallel\overrightarrow{b}$.

$$\overrightarrow{i} = \frac{\overrightarrow{b}}{|\overrightarrow{b}|}$$

 $(\overrightarrow{a_1}+\overrightarrow{a_2},\overrightarrow{i})=|\overrightarrow{a_1}+\overrightarrow{a_2}|\cos\alpha=$ первая координата $(\overrightarrow{a_1}+\overrightarrow{a_2})=$ первая координата $\overrightarrow{a_1}+$ первая координата $\overrightarrow{a_2}=(\overrightarrow{a_1},\overrightarrow{i})+(\overrightarrow{a_2},\overrightarrow{i}).$ Отсюда $(\overrightarrow{a_1}+\overrightarrow{a_2},\overrightarrow{b})=|\overrightarrow{b}|(\overrightarrow{a_1}+\overrightarrow{a_2},\overrightarrow{i})=|\overrightarrow{b}|((\overrightarrow{a_1},\overrightarrow{i})+(\overrightarrow{a_2},\overrightarrow{i}))=(\overrightarrow{a_1},\overrightarrow{b})+(\overrightarrow{a_2},\overrightarrow{b}),$ ч.т.д.

$$(\overrightarrow{a}, \overrightarrow{b}) = 0 \Leftrightarrow \overrightarrow{a} \perp \overrightarrow{b}$$

$$(\overrightarrow{a}, \overrightarrow{b}) = \ldots = a_1b_1 + a_2b_2 + a_3b_3$$

Определение

Определение
$$\frac{|(\overrightarrow{a},\overrightarrow{b})|}{|\overrightarrow{b}|}$$
 - проекция \overrightarrow{a} на \overrightarrow{b} .

Векторное произведение

Определение
$$\overrightarrow{a} \times \overrightarrow{b} = [\overrightarrow{a}, \overrightarrow{b}] = \overrightarrow{c}$$
:

- 1. $\overrightarrow{c} \perp \overrightarrow{a}$. \overrightarrow{b}
- 2. \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} правая тройка
- 3. $|\overrightarrow{c}| = |\overrightarrow{a}| |\overrightarrow{b}| \sin \angle (\overrightarrow{a}, \overrightarrow{b})$

Свойства:

1. Антисимметричность $[\overrightarrow{a}, \overrightarrow{b}] = -[\overrightarrow{b}, \overrightarrow{a}]$

2. Аддитивность по первому аргументу $[\overrightarrow{a_1} + \overrightarrow{a_2}, \overrightarrow{b}] = [\overrightarrow{a_1}, \overrightarrow{b}] + [\overrightarrow{a_2}, \overrightarrow{b}]$

3. Однородность по первому аргументу $\forall \lambda \in \mathbb{R} \ [\lambda \overrightarrow{a}, \overrightarrow{b}] = \lambda [\overrightarrow{a}, \overrightarrow{b}]$

4. $|[\overrightarrow{a}, \overrightarrow{b}]|$ - площадь параллелограмма, натянутого на $\overrightarrow{a}, \overrightarrow{b}$

Из аксиом 1-3 следует линейность по второму аргументу.

$$[\overrightarrow{a}, \overrightarrow{b}] = 0 \Leftrightarrow \overrightarrow{a} \parallel \overrightarrow{b}$$

$$[\overrightarrow{a}, \overrightarrow{b}] = \dots = \overrightarrow{i}(a_2b_3 - a_3b_2) - \overrightarrow{j}(a_1b_3 - a_3b_1) + \overrightarrow{k}(a_1b_2 - a_2b_1)$$

$$= \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
The response we approximately

Доказательство

Для i-ой координаты: $((\overrightarrow{a_1} + \overrightarrow{a_2}) \times \overrightarrow{b}, \overrightarrow{e_i}) = (\overrightarrow{a_1} \times \overrightarrow{b}, \overrightarrow{e_i}) + (\overrightarrow{a_2} \times \overrightarrow{b}, \overrightarrow{e_i})$ (где $\overrightarrow{e_i}$ - i-ый вектор базиса)

- из свойств смешенного произведения. Также это i-ая координата.

Отсюда для всех координат выполняется аддитивность. Тогда векторное произведение аддитивно, ч.т.д.

1.1.6 Смешанное произведение

$$\overrightarrow{a} \overrightarrow{b} \overrightarrow{c} = (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$$

Свойства:

1. $\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}=\pm V_{\text{параллелепипеда}}$. + при правой тройке, - при левой

2
$$\overrightarrow{a} \overrightarrow{b} \overrightarrow{c} = \overrightarrow{c} \overrightarrow{d} \overrightarrow{b} = \overrightarrow{b} \overrightarrow{c} \overrightarrow{d} = -\overrightarrow{c} \overrightarrow{b} \overrightarrow{d} = -\overrightarrow{d} \overrightarrow{c} \overrightarrow{b} = -\overrightarrow{b} \overrightarrow{d} \overrightarrow{c}$$

3. Аддитивность по первому аргументу $(\overrightarrow{a_1} + \overrightarrow{a_2})\overrightarrow{b}\overrightarrow{c} = \overrightarrow{a_1}\overrightarrow{b}\overrightarrow{c} +$

4. Однородность $\forall \lambda \in \mathbb{R} \ (\lambda \overrightarrow{a}) \overrightarrow{b} \overrightarrow{c} = \lambda (\overrightarrow{a} \overrightarrow{b} \overrightarrow{c})$

Доказательство

1. Из геометрии

- 2. Из пункта 1(т.к. параллелепипед один)
- 3. $(\overrightarrow{a_1} + \overrightarrow{a_2})\overrightarrow{b}\overrightarrow{c} = \overrightarrow{b}\overrightarrow{c}(\overrightarrow{a_1} + \overrightarrow{a_2}) = \overrightarrow{b}\overrightarrow{c}\overrightarrow{a_1} + \overrightarrow{b}\overrightarrow{c}\overrightarrow{a_2} = \overrightarrow{a_1}\overrightarrow{b}\overrightarrow{c} + \overrightarrow{a_2}\overrightarrow{b}\overrightarrow{c}$ (Замечание!!! Аддитивность векторного произведения доказывается через этот пункт)
- 4. Аналогично пункту 3

Из 2-4 следует линейность по всем аргументам.

$$\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}=0\Leftrightarrow V=0\Leftrightarrow \overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$$
 - компланарны. $\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}=\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$

1.1.7 Двойное векторное произведение

$$\overrightarrow{d} \times (\overrightarrow{b} \times \overrightarrow{c}) = \overrightarrow{b}(\overrightarrow{a} \cdot \overrightarrow{c}) - \overrightarrow{c}(\overrightarrow{a} \cdot \overrightarrow{b})$$
Доказательство
Пусть $\overrightarrow{i} \uparrow \uparrow \overrightarrow{b}$
 $\overrightarrow{j} \parallel (\overrightarrow{b}, \overrightarrow{c})$
 \overrightarrow{k} - по правилу правой тройки.
 $\overrightarrow{b} = (b_1, 0, 0)$
 $\overrightarrow{c} = (c_1, c_2, 0)$
 $\overrightarrow{a} = (a_1, a_2, a_3)$.
Если $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ - не коллинеарны
 $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (a_2b_1c_2, -a_1b_1c_2, 0) = (b_1a_1c_1 + b_1a_2c_2 - c_1a_1b_1, -a_1b_1c_2, 0) = (b_1, 0, 0)(a_1c_1 + a_2c_2) - (c_1, c_2, 0)(a_1b_1) = \overrightarrow{b}(\overrightarrow{a} \cdot \overrightarrow{c}) - \overrightarrow{c}(\overrightarrow{a} \cdot \overrightarrow{b})$, ч.т.д. Если коллинеарны: очевидно.

1.2 Прямая на плоскости. Плоскость и прямая в пространстве

Определение

Уравнение вида Ax + By + C = 0 ($A^2 + B^2 \neq 0$), где x, y - координаты в некоторой д.с.к на плоскости, а также уравнение вида Ax + By + Cz + D = 0 ($A^2 + B^2 + C^2 \neq 0$), где x, y, z - координаты в некотором д.с.к. в пространстве, называется алгебраическим уравнением первого

порядка(линейным уравнением)

Теорема

Любая прямая на плоскости (любая плоскость в пространстве) может быть задана линейным уравнением

Любое линейное уравнение на плоскости(в пространстве) определяет некоторую прямую (плоскость).

Доказательство прямого утверждения

Докажем для прямой.

Пусть L - прямая. Введем д.с.к., где ось X проходит через L.

 $M \in L \Leftrightarrow y = 0$ (линейное уравнение).

Лемма

Если в какой-то д.с.к. прямая задается линейным уравнением, то и в любой другой д.с.к. она тоже будет задаваться линейным уравнением.

Доказательство

Любые две д.с.к. могут быть совмещены путем композиции параллельного переноса и сдвига.

Пусть в первой системе координат задана прямая Ax + By + C = 0.

1. Для переноса:

$$\begin{cases} x' = x - x_0 \\ y' = y - y_0 \end{cases}$$

 $\begin{cases} x' = x - x_0 \\ y' = y - y_0 \end{cases}$ Тогда в новой системе координат эта же прямая будет задана уравнением $Ax' + By' + (C + Ax_0 + By_0) = 0$

2. Для поворота:

$$\begin{cases} x = x' \cos \alpha - y' \sin \alpha \\ y = x' \sin \alpha + y' \cos \alpha \end{cases}$$

 $\begin{cases} x = x'\cos\alpha - y'\sin\alpha \\ y = x'\sin\alpha + y'\cos\alpha \end{cases}$ Тогда в новой системе координат эта же прямая будет задана уравнением $(A\cos\alpha + B\sin\alpha)x' + (B\cos\alpha - A\sin\alpha)y' + C = 0$

Доказательство обратного утверждения

$$Ax + By + C = 0 \ (A^2 + B^2 \neq 0)$$

Пусть $A \neq 0$. Возьмем точку $(-\frac{C}{A}, 0)$.Она будет лежать на прямой.

Аналогично для В. Тогда уравнение имеет как минимум одно решение. Возьмем любую точку $M_0(x_0, y_0)$

$$\begin{cases} Ax_0 + By_0 + C = 0 \\ Ax + By + C = 0 \end{cases} \Rightarrow A(x - x_0) + B(y - y_0) = 0 \Leftrightarrow (A, B) \cdot (x - x_0, y - x_0) = 0 \Leftrightarrow (A, B) \perp (x, y). Получаем, что уравнение задает$$

множество направленных отрезков с началом в M_0 , перпендикулярных (A,B). Отсюда это прямая. Такая прямая задается единственным образом. Определение

(A,B) в уравнении прямой и (A,B,C) в уравнении плоскости называется вектором нормали.

1. Прямая на плоскости

- (a) Общее уравнение $Ax + By + C = 0 \ (A^2 + B^2 \neq 0)$
- (b) Уравнение в отрезках $\frac{x}{a} + \frac{y}{b} = 1, \text{ если } L \text{ не проходит через } (0,0)$ a,b отрезки на координатных осях, которые отсекает прямая
- (c) Через нормаль $\overrightarrow{N}(A,B)$ и точку $M_0(x_0,y_0)$ $\overrightarrow{N}\cdot(\overrightarrow{OM}-\overrightarrow{OM_0})=0$ $A(x-x_0)+B(y-y_0)=0$
- (d) Каноническое и параметрическое уравнение прямой $\frac{M_0 \in L}{\overrightarrow{S}} = (l,m)$ $\overrightarrow{S} \parallel L$ $\overrightarrow{M_0M} = t \overrightarrow{S}$ $\begin{cases} x = tl + x_0 \\ y = tm + y_0 \end{cases}$ параметрическое уравнение прямой $t = \frac{x x_0}{l} = \frac{y y_0}{m}$ каноническое уравнение прямой 3амечание $\overrightarrow{S} = (l,m)$ Если знаменатель 0, то от числителя требуется быть 0, а

Если знаменатель 0, то от числителя требуется быть 0, а $\frac{0}{0}$ - любое число

- (е) Нормальное уравнение $\overrightarrow{n_0} \perp L, |\overrightarrow{n_0}| = 1, \rho(0,L) = p \geq 0, M \in L$ Зададим $\overrightarrow{n_0}$ через направляющие косинусы: В такой записи $\overrightarrow{n_0}$ смотрит в сторону прямой L $\overrightarrow{n_0} = (\cos\alpha, \sin\alpha)$ $\Pi p_{\overrightarrow{n_0}} \overrightarrow{OM} = p \Leftrightarrow (\overrightarrow{OM}, \overrightarrow{n_0}) = p \Leftrightarrow x \cos\alpha + y \sin\alpha p = 0$
- (f) Полярное уравнение прямой Рассмотрим полярную систему координат:

$$\begin{cases} x = r \cos \phi \\ y = r \sin \phi \\ x \cos \alpha + y \sin \alpha - p = 0 \end{cases}$$

Отсюда $r\cos\phi\cos\alpha+r\sin\phi\sin\alpha-p=0\Leftrightarrow r\cos(\phi-\alpha)=p$ - полярное уравнение прямой, где ϕ - угол наклона точки, α - угол наклона нормали, r - расстояние до точки, p - расстояние до прямой

$$\cos(\phi - \alpha) = \frac{p}{r}$$

2. Плоскость в пространстве

- (a) Общее уравнение $Ax + By + Cz + D = 0 \ (A^2 + B^2 + C^2 \neq 0)$
- (b) Уравнение в отрезках $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1, если \ \alpha \ не проходит через \ (0,0,0)$ a,b,c отрезки на координатных осях, которые отсекает плоскость
- (c) Через нормаль $\overrightarrow{N}(A,B,C)$ и точку $M_0(x_0,y_0,z_0)$ $\overrightarrow{N}\cdot(\overrightarrow{OM}-\overrightarrow{OM_0})=0$ $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$
- (d) Через параллельный вектор \overrightarrow{d} и точки M_1, M_2 . Выберем произвольную точку M. $M \in \alpha \Leftrightarrow \overrightarrow{M_1M_2}\overrightarrow{M_1M}\overrightarrow{d}=0$
- (e) Нормальное уравнение $\overrightarrow{n_0} \perp \alpha, |\overrightarrow{n_0}| = 1, \rho(0,\alpha) = p \geq 0, M \in \alpha$ В такой записи $\overrightarrow{n_0}$ смотрит в сторону плоскости α Зададим $\overrightarrow{n_0}$ через направляющие косинусы: $\overrightarrow{n_0} = (\cos\alpha, \cos\beta, \cos\gamma)$ $\Pi p_{\overrightarrow{n_0}} \overrightarrow{OM} = p \Leftrightarrow (\overrightarrow{OM}, \overrightarrow{n_0}) = p \Leftrightarrow x\cos\alpha + y\cos\beta + z\cos\gamma p = 0$

3. Прямая в пространстве

(а) Первый способ задания

i.
$$\begin{cases} A_1x + B_1y + C_1z + D = 0 \\ A_2x + B_2y + C_2z + D = 0 \end{cases}$$
$$(A_1, B_1, C_1) \not\parallel (A_2, B_2, C_2)$$

(b) Из первого способа

$$\begin{cases} A_1x + B_1y + C_1z + D = 0, & \overrightarrow{N_1} = (A_1, B_1, C_1) \\ A_2x + B_2y + C_2z + D = 0, & \overrightarrow{N_2} = (A_2, B_2, C_2) \end{cases}$$

$$(A_1 B_1 C_2) \not \models (A_2 B_2 C_2)$$

$$(A_1, B_1, C_1) \not \parallel (A_2, B_2, C_2)$$

$$\overrightarrow{S} = \overrightarrow{N_1} \times \overrightarrow{N_2}$$

Точку M_0 находим путем подстановки одной из координат в систему.

(с) Каноническое и параметрическое уравнение прямой

$$M_0 \in L$$
 $S = (l, m, n)$
 $M_0 \in L$
 $M_0 = l$

Если знаменатель 0, то от числителя требуется быть 0, а $\frac{0}{0}$ - любое число

1. Расстояние от точки до прямой в плоскости

 $L:x\cos\alpha+y\sin\alpha-p=0$ - нормальное уравнение M'=(x',y') - точка $d=\rho(M',L)$ $\overrightarrow{n_0}=(\cos\alpha,\sin\alpha)$ $\delta=\Pi p_{\overrightarrow{n_0}}\overrightarrow{OM'}-p$ $d=|\delta|=|x'\cos\alpha+y'\sin\alpha-p|=rac{|Ax'+By'+C|}{\sqrt{A^2+R^2}}$

 $\sqrt{A^2 + B}$

2. Расстояние от точки до плоскости $L: x \cos \alpha + y \cos \beta + z \cos \gamma - p = 0$ - нормальное уравнение

M' = (x', y', z') - точка

$$d = \rho(M', L)$$

 $\overrightarrow{n_0} = (\cos \alpha, \cos \beta, \cos \gamma)$

$$\delta = \prod p_{\overrightarrow{n_0}} \overrightarrow{OM'} - p$$

$$d = |\delta| = |x'\cos\alpha + y'\cos\beta + z'\cos\gamma - p| = \frac{|Ax' + By' + Cz' + D|}{\sqrt{A^2 + B^2 + C^2}}$$

3. Расстояние от точки до прямой в пространстве

$$L(\overrightarrow{S}, N_0)$$

$$M' = (x', y', z')$$

$$d = \frac{|\overrightarrow{M_0M} \times \overrightarrow{S}|}{|\overrightarrow{S}|}$$

4. Расстияние между скрещивающимися прямыми

$$d(L_1, L_2) = \frac{V_{\text{параллелепипеда}} \overrightarrow{S_1} \overrightarrow{S_2} \overrightarrow{M_1} \overrightarrow{M_2}}{S_{\text{плоскости}} \overrightarrow{S_1} \overrightarrow{S_2}} = \frac{|\overrightarrow{S_1}, \overrightarrow{S_2}, \overrightarrow{M_1} \overrightarrow{M_2}|}{|\overrightarrow{S_1} \times \overrightarrow{S_2}|}$$

Взаимное расположение прямой и плоскости

1. $L \parallel \alpha$ или $L \subset \alpha$

Условие параллельности:

$$L(\overrightarrow{S}, M_0)$$

$$\alpha : Ax + By + Cz + D = 0$$

$$\overrightarrow{S} \perp \overrightarrow{N} \Leftrightarrow (\overrightarrow{S}, \overrightarrow{N}) = 0 \Leftrightarrow Al + Bm + Cn = 0$$

$$M_0 \in \alpha \Leftrightarrow Ax_0 + By_0 + Cz_0 + D = 0 \Leftrightarrow L \subset \alpha$$

$$\rho(L, \alpha) = \rho(M_0, \alpha)$$

2. $L \cap \alpha = P$

Пересечение возможно найти, решая систему уравнений.

Взаимное расположение

1. прямых на плоскости

$$L_1 \parallel L_2$$
 или $L_1 = L_2$ при $\frac{A_1}{A_2} = \frac{B_1}{B_2} \Leftrightarrow \overrightarrow{N_1} \parallel \overrightarrow{N_2} \Leftrightarrow \overrightarrow{S_1} \parallel \overrightarrow{S_2} \Leftrightarrow \frac{S_{1x}}{S_{2x}} = \frac{S_{1y}}{S_{2y}}$ Причем $L_1 = L_2 \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$

2. плоскостей в пространстве

$$lpha_1 \parallel lpha_2$$
 или $lpha_1 = lpha_2$ при $rac{A_1}{A_2} = rac{B_1}{B_2} = rac{C_1}{C_2} \Leftrightarrow \overrightarrow{N_1} \parallel \overrightarrow{N_2}$ Причем $lpha_1 = lpha_2 \Leftrightarrow rac{A_1}{A_2} = rac{B_1}{B_2} = rac{C_1}{C_2} = rac{D_1}{D_2}$

3. прямых в пространстве

- (a) $L_1 \parallel L_2$ или $L_1 = L_2$ при $\overrightarrow{S_1} \parallel \overrightarrow{S_2} \Leftrightarrow \frac{S_{1x}}{S_{2x}} = \frac{S_{1y}}{S_{2y}} = \frac{S_{1z}}{S_{2z}}$ Причем $L_1 = L_2 \Leftrightarrow \overrightarrow{M_1M_2} \parallel \overrightarrow{S_1} \parallel \overrightarrow{S_2}$
- (b) $P = L_1 \cap L_2 \Leftrightarrow \overrightarrow{S_1} \not \mid \overrightarrow{S_2} \wedge \overrightarrow{S_1}, \overrightarrow{S_2}, \overrightarrow{M_1M_2}$ компланарны $\Leftrightarrow \begin{cases} \overrightarrow{S_1} \not \mid \overrightarrow{S_2} \\ (\overrightarrow{S_1}, \overrightarrow{S_2}, \overrightarrow{M_1M_2}) = 0 \end{cases}$
- (c) L_1,L_2 скрещиваются $\Leftrightarrow \overrightarrow{S_1},\overrightarrow{S_2},\overrightarrow{M_1M_2}$ не компланарны $\Leftrightarrow (\overrightarrow{S_1},\overrightarrow{S_2},\overrightarrow{M_1M_2}) \neq 0$

Задача о поиске общего перпендикуляра L к L_1 и L_2

Пусть
$$\alpha_1(L_1,L)$$
 $\alpha_2(L_2,L)$ Найдем $\overrightarrow{S} = \overrightarrow{S_1} \times \overrightarrow{S_2}$. $\overrightarrow{N_1} = \overrightarrow{S_1} \times \overrightarrow{S}$ Отсюда $\alpha_1(\overrightarrow{N_1},M_1), \alpha_2(\overrightarrow{N_2},M_2)$ Тогда $L = \alpha_1 \cap \alpha_2$

Задача о поиске точки P', симметричной данной точке P

1. Относительно плоскости α

Возьмем вектор нормали $\overrightarrow{N}=(A,B,C)$ $\overrightarrow{N}\parallel PP'.$

Отсюда
$$PP': \frac{x-p_x}{A}=\frac{y-p_y}{B}=\frac{z-p_z}{C}=t\in\mathbb{R}.$$
 Решая систему, найдем $Q=\alpha\cap PP'$ $P'=P+2\overline{PQ}$

2. Относительно прямой $L(\overrightarrow{S},M_0)$ в пространстве

Пусть
$$\alpha(P, \overrightarrow{S})$$

 $Q = \alpha \cap L$
 $P' = P + 2\overrightarrow{PQ}$

1.3 Кривые второго порядка на плоскости

Определение

Алгебраические уравнения второго порядка - это уравнения вида $a_{11}x^2+2a_{12}xy+a_{22}y^2+2a_1x+2a_2y+a_0=0$ ($a_{11}^2+a_{12}^2+a_{22}^2\neq 0$), где x,y - координаты точек в д.с.к.

Кривые второго порядка:

- 1. Невырожденные
 - (а) Эллипс
 - (b) Гипербола
 - (с) Парабола
- 2. Вырожденные
 - (а) пара пересекающихся прямых
 - (b) пара параллельных прямых
 - (с) пара совпадающих прямых (прямая)
 - (d) точка
 - (e) Ø

1.3.1 Канонические уравнения невырожденных кривых второго порядка и их основные свойства

- 1. Эллипс
 - (а) Определение 1:

Геометрическое место точек, для которых сумма расстояний для двух данных точек F_1 и F_2 - величина постоянная и равная 2a

$$F_1M + F_2M = 2a > F_1F_2$$

(b) Каноническое уравнение:

Эллипс рассматривается в канонической д.с.к

$$F_1 = (-c, 0), F_2 = (c, 0)$$

Тогда эллипс задается уравнением $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, где a - большая полуось

$$b=\sqrt{a^2-c^2}$$
 - малая полуось F_1,F_2 - фокусы

$$r_1 = MF_1, r_2 = MF_2$$
 - фокальные радиусы

(с) Эксцентриситет:

$$\varepsilon = \frac{\dot{c}}{a} < 1$$

Если эллипс - окружность, то $\varepsilon = 0$

(d) Фокальные радиусы:

$$r_{1,2} = a \pm \varepsilon x$$

(е) Директрисы:

$$D_1: x = -\frac{a}{\varepsilon} = -\frac{a^2}{c}$$

$$D_2: x = \frac{a}{\varepsilon} = \frac{a^2}{c}$$

$$D_1: x = -rac{a}{arepsilon} = -rac{a^2}{c}$$
 $D_2: x = rac{a}{arepsilon} = rac{a^2}{c}$
 $rac{r_1}{d_1} = rac{r_2}{d_2} = arepsilon$, где $d_i =
ho(M, D_i)$

(f) Определение 2:

Геометрическое место точек, для которых отношение $\frac{r}{d} = const < 0$ 1, где r - расстояние до данной точки F на плоскости, d расстояние до данной прямой D на плоскости

2. Гипербола

(а) Определение 1:

Геометрическое место точек, для которых модуль разности расстояний до двух фиксированных точек F_1 и F_2 - величина постоянная и равная 2a

$$|F_1M - F_2M| = 2a < F_1F_2$$

(b) Каноническое уравнение:

Гипербола рассматривается в канонической д.с.к.

$$F_1 = (-c, 0), F_2 = (c, 0), c > a$$

Тогда гипербола задается уравнением $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, где

а - действительная полуось

$$b = \sqrt{c^2 - a^2}$$
 - мнимая полуось

 F_1, F_2 - фокусы

 $r_1 = MF_1, r_2 = MF_2$ - фокальные радиусы

$$y = \pm \frac{b}{a}x$$
 - асимптоты

 $y=\pm rac{b}{a}x$ - асимптоты Если a=b, то гипербола называется $\emph{pавнобочной}$

(c) Эксцентриситет: $\varepsilon = \frac{c}{a} > 1$

$$\varepsilon = \frac{c}{a} > 1$$

(d) Фокальные радиусы:

Левая вервь: $r_{1,2} = -\varepsilon x \mp a$

Правая вервь: $r_{1,2} = \varepsilon x \pm a$

(е) Директрисы:

$$D_1: x = -\frac{a}{\varepsilon} = -\frac{a^2}{c}$$

$$D_2: x = \frac{a}{5} = \frac{a^2}{6}$$

Директрисы.
$$D_1: x = -\frac{a}{\varepsilon} = -\frac{a^2}{c}$$

$$D_2: x = \frac{a}{\varepsilon} = \frac{a^2}{c}$$

$$\frac{r_1}{d_1} = \frac{r_2}{d_2} = \varepsilon, \text{ где } d_i = \rho(M, D_i)$$

(f) Определение 2:

Геометрическое место точек, для которых отношение $\frac{r}{d}=const>$ 1, где r - расстояние до данной точки F на плоскости, d расстояние до данной прямой D на плоскости

- 3. Парабола
 - (а) Определение 1:

Геометрическое место точек, для которых расстояние до фиксированной точки плоскости F и до прямой D равны

$$\rho(M,D) = MF$$

(b) Каноническое уравнение:

Эллипс рассматривается в канонической д.с.к.

$$\rho(F,D)=p$$
 - фокальный параметр

$$F = (\frac{p}{2}, 0)$$

$$D: x = -\frac{p}{2}$$

 $y^2=2px$ - каноническое уравнение, где

r = MF - фокальный радиус

D - директриса

(с) Эксцентриситет:

$$\varepsilon = 1$$

(d) Фокальные радиусы:

$$r = x + \frac{p}{2}$$

(e) Директрисы: $\frac{r}{d} = \varepsilon = 1$

$$\frac{r}{d} = \varepsilon = 1$$

(f) Определение 2 = Определение 1

Определение

Касательная - предельное положение секущей

- 1. Эллипс
 - (а) Касательная:

$$rac{xx_0}{a^2} + rac{yy_0}{b_2} = 1$$
, где (x_0, y_0) - точка касания

(b) Полярная система координат:

Начало координат выбрано в одном из фокусов F, ось задана в сторону соответствующей директрисы D $r = \frac{p}{1 + \varepsilon \cos \phi}$

$$r = \frac{p}{1 + \varepsilon \cos \phi}$$

p=qarepsilon - фокальный параметр

q - расстояние от F до D

$$q = \frac{a}{\varepsilon} - c \Rightarrow p = a - c\varepsilon = \frac{b^2}{a}$$

(с) Полярная система координат 2:

Начало координат выбрано в одном из фокусов F, ось задана в сторону, противоположную соответствующей директрисе D $r=\frac{p}{1+\varepsilon\cos\phi+\pi}=\frac{p}{1-\varepsilon\cos\phi}$

$$r = \frac{p}{1 + \varepsilon \cos \phi + \pi} = \frac{p}{1 - \varepsilon \cos \phi}$$

(d) Оптические свойства:

Луч, выпущенный из одного фокуса, попадает во второй

- 2. Гипербола
 - (а) Касательная:

$$rac{xx_0}{a^2} - rac{yy_0}{b_2} = 1$$
, где (x_0, y_0) - точка касания

(b) Полярная система координат:

Начало координат выбрано в одном из фокусов F, ось задана

в сторону соответствующей директрисы D

Для первой ветви:
$$r = \frac{p}{1 + \varepsilon \cos \phi}$$

Для второй ветви:
$$r = \frac{-p}{1 - \varepsilon \cos \phi}$$

p=qarepsilon - фокальный параметр

q - расстояние от F до D

$$q = c - \frac{a}{\varepsilon} \Rightarrow p = c\varepsilon - a = \frac{b^2}{a}$$

(с) Полярная система координат 2:

Начало координат выбрано в одном из фокусов F, ось задана в сторону, противоположную соответствующей директрисе D $r=\frac{p}{1+\varepsilon\cos\phi+\pi}=\frac{p}{1-\varepsilon\cos\phi}$

$$r = \frac{p}{1 + \varepsilon \cos \phi + \pi} = \frac{p}{1 - \varepsilon \cos \phi}$$

(d) Оптические свойства:

Луч, выпущенный из одного фокуса, отражается так, как если бы он шел из второго фокуса(мнимый источник света).

(е) Асимптоты гиперболы:

Пусть асимптота y = kx + c левой верхней части гиперболы

$$y = y(x) = b\sqrt{\frac{x^2}{a^2} - 1}$$

$$\begin{cases} k = \lim_{x \to +\infty} \frac{y(x)}{x} = \dots = \frac{a}{b} \\ c = \lim_{x \to +\infty} y(x) - kx = \dots = 0 \end{cases}$$

Из симметрии асимптоты $y = \pm \frac{b}{c}x$

3. Парабола

(а) Касательная:

 $yy_0 = p(x + x_0)$, где парабола $y^2 = 2px$, где (x_0, y_0) - точка касания

(b) Полярная система координат:

Начало координат выбрано в фокусе F, ось задана в сторону директрисы D

$$r = \frac{p}{1 + \varepsilon \cos \phi} = \frac{p}{1 + \cos \phi}$$

$$p=qarepsilon=q$$
 - фокальный параметр q - расстояние от F до D

- (с) Полярная система координат 2: Начало координат выбрано в фокусе F, ось задана в сторону, противоположную директрисе D $r = \frac{p}{1 + \varepsilon \cos \phi + \pi} = \frac{p}{1 - \cos \phi}$
- (d) Оптические свойства: Луч, выпущенный из фокуса, идет параллельно оси.

Приведение уравнения кривой второго порядка к каноническому 1.3.2виду

 $a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_1x + 2a_2y + a_0 = 0; (a_{11}^2 + a_{22}^2 + a_{12}^2 \neq 0)$ Заметим, что если применить параллельный перенос и поворот, то тип уравнения не изменится.

1. $a_{12} \neq 0$

Сделмаем поворот, чтобы в новом уравнении отсутствовало слагаемое

$$\begin{cases} x = x' \cos \alpha - y' \sin \alpha \\ y = x' \sin \alpha + y' \cos \alpha \end{cases}, \alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

Подставим в уравнение и найдем коэффициент при x'y':

 $-2a_{11}\cos\alpha\sin\alpha + 2a_{12}(\cos^2\alpha - \sin^2\alpha) + 2a_{22}\sin\alpha\cos\alpha = 0$

$$\tan^2 \alpha + \frac{a_{11} - a_{22}}{a_{12}} \tan \alpha - 1 = 0$$

Отсюда находим α

- $a_{12} = 0$
 - (a) $a_{11} \neq 0; a_{22} \neq 0$:

$$a_{11}x^2 + 2a_1x = a_{11}(x^2 + \frac{2a_1}{a_{11}}x) = a_{11}(x + \frac{a_1}{a_{11}})^2 - \frac{a_1^2}{a_{11}}$$

Сделаем параллельный перенос:
$$\begin{cases} x' = x + \frac{a_1}{a_{11}} \\ y' = y + \frac{a_2}{a_{22}} \end{cases}$$

и получаем уравнение вида $a_{11}x'^2 + a_{22}y'^2 + a'_0 = 0$

і.
$$a_0 \neq 0$$

$$\frac{x'^2}{\frac{-a_0'}{a_{11}}} + \frac{y'^2}{\frac{-a_0'}{a_{22}}} = 1$$
 - парабола или гипербола

ii. $a_0 = 0$

Точка или скрещивающиеся прямые

(b) $a_{11} \neq 0; a_{22} = 0$

$$a_{11} \neq 0, a_{22} = 0$$

Сделаем параллельный перенос:
$$\begin{cases} x' = x + \frac{a_1}{a_{11}} \\ y' = y \end{cases}$$

и получаем уравнение вида $a_{11}x'^2 + 2a_2y' + a_0' = 0$

- i. $a_2 \neq 0$ Парабола
- ii. $a_2 = 0$ Пустое множество, пара скрещивающихся или параллельных хымкдп
- (c) $a_{11} = 0; a_{22} \neq 0$: Аналогично

1.4 Поверхности второго порядка

Определение

Множество точек пространства, координаты которых удовлетворяют алгебраическим уравнениям второго порядка, называются поверхностями второго порядка $a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + a_{1}x + a_{2}y + a_{3}z + a_{0} = 0$ $(a_{11}^2 + a_{22}^2 + a_{33}^2 + a_{12}^2 + a_{13}^2 + a_{23}^2 \neq 0)$

Определение

Метод сечений - метод изучения формы поверхности, заданной уравнением в д.с.к., построением сечений фигуры плоскостями(в нашем случае x =0; y = 0; z = 0

Всего 15 типов:

- 1. Невырожденные
 - (а) Элипсоид
 - (b) Двуполостной гиперболоид

- (с) Однополостной гиперболоид
- (d) Параболоиды элиптические
- (е) Параболоиды гиперболические
- (f) Конус

2. Вырожденные

- (а) Элиптический цилиндр
- (b) Гиперболический цилиндр
- (с) Параболический цилиндр
- (d) Пара пересекающихся плоскостей
- (е) Пара параллельных плоскостей
- (f) Плоскость
- (g) Прямая
- (h) Точка
- (i) Ø

Невырожденные уравнения второго порядка

1. Элипсоид
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 Сечения:

- (a) $x = h \in (-a, a); y = h \in (-b, b); z = h \in (-c, c)$ эллипс
- (b) $x = \pm a; y = \pm b; z = \pm c$ точки
- (c) $x = h \notin [-a, a]; y = h \notin [-b, b]; c = h \notin [-c, c] \emptyset$

2. Гиперболоид

(а) Однополостной

Каноническое уравнение

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Горловое сечение - сечение в z = 0(Самое маленькое)

(b) Двуполостной
$$x^2 \quad y^2 \quad z^2$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$

Рассмотрим сечение $z = h$:

Сечение \varnothing при h < c

Сечение - точка при h=c

3. Конус

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$$

Конус $\frac{z^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$ Если a = b, то конус - конус вращения

В таком случае поверхность образована прямыми, проходящими через (0,0)

Сечения:

(a)
$$z = 0$$
 - точка

(b)
$$z = h \neq 0$$
 - эллипс

(c)
$$mx + ny = 0$$
 - скрещивающиеся прямые

(d)
$$z = \pm \frac{c}{a}x$$
 - гипербола

(е) Секущая прямая, параллельная прямой на поверхности - парабола

4. Параболоиды

$$\frac{x^2}{2p} + \frac{y^2}{2q} = z$$

p=q - параболоид вращения

Сечения:

i.
$$z = h \ge 0$$
 - эллипс

іі.
$$x = h; y = h$$
 - параболы

(b) Гиперболический

$$\frac{x^2}{2p} - \frac{y^2}{2q} = z$$
 Сечения:

i.
$$z = h \neq 0$$
 - гиперболы

іі.
$$z=0$$
 - скрещивающиеся прямые-асимтоты гипербол

і
іі.
$$x=h; y=h$$
 - параболы

Цилиндрические поверхности 1.4.2

Определение

Поверхность, образованная всеми прямыми L, проходящими через точку пространственной кривой l параллельно заданному вектору $\overrightarrow{d} \neq \overrightarrow{0}$, называется иилиндрической поверхностью

L - обращующая поверхность

l - направляющая

Утверждение

Множество точек пространства, удовлетворяющих заданному уравнению F(x,y) = 0, образуют цилиндрическую поверхность с образующей, параллельной OZ, и направляющей плоской кривой, задаваемой уравнением F(x,y) =0 в плоскости, параллельной OXY

Цилиндрические поверхности второго порядка

1. Эллиптический цилиндр

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

2. Гиперболический цилиндр $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

3. Параболический цилиндр

$$y = 2px^2$$

4. Пара пересекающихся плоскостей $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

5. Пара параллельных плоскостей

$$\frac{x^2}{a^2} = 1$$

6. Плоскость $\frac{x^2}{a^2} = 0$

$$\frac{x^2}{a^2} = 0$$

2 Линейная алгебра

2.1 Алгебраические структуры

2.1.1 Алгебраическая структура. Группа

Определение

Пусть у нас есть множества $A,B,C.*:A\times B\to C$ - закон внешней композиции

Если при этом $*: A \times A \to A$ - закон внутренней композиции - алгебраическая операция - бинарная операция

Определение

- 1. a * b = b * a коммутативность (симметричность)
- 2. (a * b) * c = a * (b * c) ассоциативность

Определение

 $(A,\Omega,S),$ где A - множество, Ω - множество отношений, S - множество алгебраических операций называется алгебраической структурой

 $S=\varnothing$ - модель

 $\Omega = \emptyset$ - алгебра (возможна коллизия имен с будущими "алгебрами")

Определение

(A,*) - $\mathit{группa}$, если

- 1. (a*b)*c = a*(b*c) ассоциативность *
- 2. $\exists e : e * a = a * e = a$
- 3. $\exists a^{-1} : a^{-1} * a = a * a^{-1} = e$

(считаем, что во всех множествах определено отношение равенства)

Определение

Группа называется Aлебевой, если a*b=b*a(умножение коммутативно)

Уточнение

Исторические обозначения

- 1. * иногда обозначают + в Абелевых группах. Нейтральный элемент обозначают 0 и называют *нулем*. Обратный элемент называют *противоположным*. Группу называют $a\partial \partial umu$ вной
- 2. * иногда обозначают · в группах. Нейтральный элемент обозначают 1 и называют единицей. Обратный элемент называют обратным. Группу называют мультипликативной

Свойства Абелевых групп

1. $a + x = b + x \Leftrightarrow a = b$

Доказательство

a+x+(-x)=b+x+(-x), т.к. если к равным элементам прибавить другие равные элементы, то результаты действий равны a+(x+(-x))=b+(x+(-x)), т.к. + ассоциативен a+0=b+0 a=b, ч.т.д.

2. $a + x = b \Rightarrow \exists!$ решение x уравнения; x = b + (-a)

Доказательство

Докажем, что x = b + (-a) - решение a + (b + (-a)) = b a + b + (-a) = a + (-a) + b = b, ч.т.д. Докажем, что x - единственный Пусть x_1, x_2 - решения: $a + x_1 = b = a + x_2$ Тогда $a + x_1 + (-a) = a + x_2 + (-a)$ $a + (-a) + x_1 = a + (-a) + x_2$ $x_1 = x_2$. Отсюда существует одно решение, ч.т.д.

Доказательство

Пусть \mathbb{O}' - нейтральный элемент $a+\mathbb{O}'=a$

Из второго свойства $\mathbb{O}'=a+(-a)=\mathbb{O}.$ Тогда нулевой элемент единственный

Пусть (-a)' - противоположный элемент

$$a + (-a)' = 0$$

 $(-a)' = \mathbb{O} + (-a) = -a$. Отсюда противоположный элемент единственный, ч.т.д.

2.1.2 Кольцо и поле

Определение

Рассмотрим $(K, +, \cdot)$:

- 1. +ассоциативно
- 2. + коммутативно
- 3. Существует нейтральный элемент 0 по +
- 4. Существует противоположный элемент по +
- 5. $(a + b) \cdot c = a \cdot c + b \cdot c$ правая дистрибутивность $a \cdot (b + c) = a \cdot b + a \cdot c$ левая дистрибутивность
- 6. ассоциативно
- $7. \cdot$ коммутативно
- 8. Существует нейтральный элемент $\mathbb{1} \neq \mathbb{0}$ по ·
- 9. Существует противоположный элемент по \cdot для всех элементов кроме элемента $\mathbb 0$

Если выполняются аксиомы:

- 1. 1-5 кольцо (тогда аксиомы 1-4 аддитивная группа кольца
- 2. 1-6 ассоциативное кольцо
- 3. 1-7 ассоциативное коммутативное кольцо
- 4. 1-8 ассоциативное коммутативное кольцо с единицей
- 5. 1-9 *Поле* (тогда аксиомы 6-9 Абелева группа для ненулевых элементов по умножению *мультипликативная группа кольца*)

Свойства

1. K - ассоциативное коммутативное кольцо

$$a\cdot \mathbb{O} = \mathbb{O} \cdot a = \mathbb{O}$$

Доказательство

$$a \cdot (\mathbb{O} + \mathbb{O}) = a \cdot \mathbb{O}$$

$$a\cdot \mathbb{O} + a\cdot \mathbb{O} = a\cdot \mathbb{O}$$

$$a\cdot \mathbb{O}=\mathbb{O}$$
, ч.т.д.

2. К - ассоциативное коммутативное кольцо с единицей

Тогда 1 единственное

Доказательство

Пусть есть $\mathbb{1}'$ - нулевой элемент по умножению

Тогда $\mathbb{1}' = \mathbb{1} \cdot \mathbb{1}' = \mathbb{1}$. Отсюда $\mathbb{1}$ единственная

3. Определение

K называется областью целостности, если $a \cdot b = \mathbb{O} \Leftrightarrow a = \mathbb{O} \lor b = \mathbb{O}$

Всякое поле является областью целостности

Доказательство

Пусть $a \neq 0$. Тогда для него есть противоположный элемент a^{-1}

$$ab = 0$$

$$a^{-1}(ab) = a^{-1}\mathbb{O} = \mathbb{O}$$

$$(a^{-1}a)b = 0$$

$$\mathbb{1}b = \mathbb{0}$$

$$b = \mathbb{O}$$
, ч.т.д.

2.1.3 Линейное пространство. Алгебра

Рассмотрим $(V, +, \cdot)$, где

$$+: V \times V \to V$$

 $\cdot: V \times K \to V$ (операция умножения на скаляр), K - поле

$$\cdot: V \times V \to V$$

$$a,b,c\in V;\alpha,\beta\in K$$

1.
$$(a+b) + c = a + (b+c)$$

2.
$$a + b = b + a$$

$$3. \ \exists \, \mathbb{0} \in V : a + \mathbb{0} = a$$

4.
$$\exists -a \in V : (-a) + a = a + (-a) = 0$$

5.
$$(\alpha + \beta)a = \alpha a + \beta a$$
 - дистрибутивность

6.
$$(\alpha\beta)a = \alpha(\beta a)$$

7.
$$\alpha(a+b) = \alpha a + \alpha b$$

8.
$$\exists 1 \in K : 1a = a1 = a$$

- 9. (a+b)c = ac + bc правая дистрибутивность a(b+c) = ab + ac левая дистрибутивность
- 10. $\alpha(ab) = (\alpha a)b = a(\alpha b)$
- 11. (ab)c = a(bc)
- 12. ab = ba
- 13. $\exists ! e \in V : ea = ae = a$
- 14. $\forall a \neq 0 \exists a^{-1} \in V : a^{-1}a = aa^{-1} = e$

Если выполняются аксиомы:

- 1. 1-4 Абелева аддитивная группа
- 2. 1-4,9 кольцо
- 3. 1-8 линейное пространство над полем K
- 4. 1-10 алгебра
- 5. 1-11 ассоциативная алгебра
- 6. 1-12 ассоциативная коммутативная алгебра
- 7. 1-13 ассоциативная коммутативная унитальная алгебра
- 8. 1-14 ассоциативная коммутативная унитальная алгебра с делением

Свойства

Все свойства кольца переносятся на алгебру

Все свойства абелевой группы переносятся на линейное пространство

1. $a \cdot 0 = 0 \cdot a = 0$

Доказательство

$$\exists -a \cdot 0$$

$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$$

$$a\cdot 0 + (-a\cdot 0) = a\cdot 0 + a\cdot 0 + (-a\cdot 0)$$

$$\mathbb{0}=a\cdot 0$$
, ч.т.д.

2. $\alpha \cdot \mathbb{O} = \mathbb{O}$

Доказательство аналогично

Примеры линейных пространств

- 1. \mathbb{R}^n
- 2. V_3 пространство векторов (направленных отрезков)
- 3. Пространство функций $f: X \to \mathbb{R}$
- 4. P_n пространство многочленов с вещественными коэффициентами степени не более n

2.1.4 Нормированное и метрическое пространство

Определение

 $Hopma \parallel \cdot \parallel : V \rightarrow \mathbb{R} :$, где V - линейное пространство

- 1. $||x|| = 0 \Rightarrow x = 0$ невырожденность
- 2. $\forall \lambda \in K \|\lambda x\| = |\lambda| \|x\|$ однородность
- 3. $||x+y|| \le ||x|| + ||y||$ неравенство треугольника

 $(V,\|\cdot\|)$ - нормированное пространство

Свойства

1.
$$x = \mathbb{O} \Leftrightarrow ||x|| = 0$$

Доказательство \Rightarrow
 $||\mathbb{O}|| = ||0 \cdot \mathbb{O}|| = 0 \cdot ||\mathbb{O}|| = 0$

 $2. ||x|| \ge 0$

Доказательство

$$0 = \|0\| = \|x + (-x)\| \le \|x\| + \|-x\| = 2\|x\|$$

$$0 \le \|x\|$$

Определение

Пусть X - множество

 $Mempuka \rho: X \times X \to \mathbb{R}_+:$

- 1. $\rho(x,y) = 0 \Leftrightarrow x = y$ невырожденность
- 2. $\rho(x,y) = \rho(y,x)$ симметричность
- 3. $\rho(x,y) \leq \rho(x,z) + \rho(z,y)$ неравенство треугольника

В метрическом пространстве норма $\|\cdot\|$ порождает метрику $\rho(x,y) =$ ||x-y||Нормы

1. Евклидова норма:

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

Сфера - привычная

$$\sum_{i=1}^n |x_i y_i| \leq \|x\| \cdot \|y\|$$
 - неравенство Коши-Буняковского
(Шварца)

2. Октаэдрическая норма

$$\|x\|_1 = \sum_{i=1}^n |x_i|$$

Сфера - октаэдр

3. Кубическая норма
$$\|x\|_{\infty} = \max_{i=1}^n |x_i|$$
 Сфера - куб

Определение

Пусть V - алгебра над полем $\mathbb{R}(\mathbb{C})$

 $(V, \|\cdot\|)$ - называется нормированной алгеброй, если норма согласована с операцией умножения аргументов:

$$||xy|| \le ||x|| \cdot ||y||$$

Если алгебра с единицей e, то требуется ||e|| = 1

Определение

Oтношение эквивалентности \sim - рефлексивное симметричное транзитивное отношение

Примеры

- 1. Равенство
- 2. Параллельность
- 3. Подобие
- 4. Экививалентность функций $(\lim_{x\to 0} \frac{f(x)}{g(x)} = 1)$

Определение

Два элемента принадлежат одному *классу эквивалентности*, если между ними выполняется отношение эквивалентности

 $M_a = \{b \in M : b \sim a\}$, где \sim - отношение эквивалентности Свойства

1. $\forall a \ M_a \neq \varnothing$, т.к. $a \in M_a$ по рефлексивности

2.
$$\forall a, b \ (M_a = M_b) \oplus (M_a \cap M_b = \varnothing)$$

Определение

 $f_{M} = \{M_{a}\}_{a \in M}$ - фактор-
множество (фактор-пространство) множества M

2.2 Алгебра комплексных чисел

2.2.1 Нормированное пространство комплексных чисел

Определение

Mножеством комплексных чисел $\mathbb C$ назовем элементы линейного пространства $\mathbb R^2$ над полем $\mathbb R$ с эвклидовой нормой

$$z \in \mathbb{C} \leftrightarrow (x, y) \in \mathbb{R}^2$$

$$||z|| = |z| = \sqrt{x^2 + y^2}$$

$$z_1 + z_2 = (x_1 + x_2, y_1 + y_2)$$

$$\lambda z = (\lambda x, \lambda y)$$

и выполнены все свойства операций сложения векторов и умножения их на скаляр

Различные формы записи комплексного числа

1.
$$z \in \mathbb{C} \leftrightarrow (x,y) \in \mathbb{R}^2$$
 - декартова форма записи $z = (x,y)$

2. В базисе
$$\overrightarrow{e}$$
, \overrightarrow{i} : $|\overrightarrow{e}| = |\overrightarrow{i}| = 1$, $\overrightarrow{e} \perp \overrightarrow{i}$ $z = x \cdot e + y \cdot i$ $x \cdot e \leftrightarrow x$

z=x+yi - алгебраическая форма записи, где i - мнимая единица

$$x=\operatorname{Re} z$$
 - действительная часть $y=\operatorname{Im} z$ - мнимая часть

Если $\operatorname{Re} z = 0$, чисто *мнимое* Если $\operatorname{Im} z = 0$, чисто действительное, $z \in \mathbb{R}$

3. Введем полярную систему координат

$$\begin{cases} x = r\cos\phi \\ y = r\sin\phi \end{cases}$$

 $z=x+iy=r(\cos\phi+i\sin\phi)$ - тригонометрическая форма записи |z|=r

 $\arg z = \phi$ - *аргумент*, $\arg z \in [0,2\pi)$ или $\arg \in [-\pi,\pi)$ (возможен любой диапазон шириной 2π)

$$\operatorname{Arg} z \in [0, 2\pi)$$
 - главный аргумент $\operatorname{arg} z = \operatorname{Arg} z + 2\pi k, k \in \mathbb{Z}$

4.
$$e^{i\phi} = \cos \phi + i \sin \phi$$

 $|e^{i\phi}| = 1$
 $\arg e^{i\phi} = \phi$

 $z=r(\cos\phi+i\sin\phi)=re^{i\phi}$ - показательная форма

2.2.2 Нормированная алгебра комплексного числа

Введем операцию умножения, согласованную с нормой:

Заметим, что

$$i^2 = i \cdot i = \lambda + \mu i \in \mathbb{C}, \lambda, \mu \in \mathbb{R}$$

С одной стороны, $\forall x \in \mathbb{R} |i^2 + ix|^2 = |i(i+x)|^2 \le |i|^2 |i+x|^2 = |i+x|^2 = x^2 + 1$ С другой стороны, $\forall x \in \mathbb{R} |i^2 + ix|^2 = |\lambda + \mu i + ix|^2 = \lambda^2 + (\mu + x)^2 = \lambda^2 + 2\mu x + \mu^2 + x^2$

Отсюда $\forall x \in \mathbb{R} \ \lambda^2 + 2\mu x + \mu^2 \le 1$

Такое возможно только при $\mu=0$

Тогда $\lambda^2 \leq 1$

Тогда
$$\underline{i^2} = \lambda \in \mathbb{R}$$

Гогда
$$i - \lambda \in \mathbb{R}$$
 $2 \le \sqrt{(\lambda + 1)^2 + 4} = |(\lambda + 1) + 2i| = |i^2 + 2i + 1| = |(i + 1)^2| \le |i + 1|^2 = \sqrt{2} = 2$ Отсюда $\sqrt{(\lambda + 1)^2 + 4} = 2 \Leftrightarrow \lambda = -1$ $i^2 = -1$

Определение

$$z_1 = a_1 + b_1 i$$

$$z_2 = a_2 + b_2 i$$

$$z_1z_2=(a_1a_2-b_1b_2)+i(a_1b_2+a_2b_1)$$

Отсюда $(1,0)=e=1$ - нейтральный элемент относительно умножения $z_1z_2=(r_1\cos\phi_1r_2\cos\phi_2-r_1\sin\phi_1r_2\sin\phi_2)+i(r_1\cos\phi_1r_2\sin\phi_2+r_2\cos\phi_2r_1\sin\phi_1)=r_1r_2(\cos(\phi_1+\phi_2)+i\sin(\phi_1+\phi_2))=|z_1||z_2|(\cos(\phi_1+\phi_2)+i\sin(\phi_1+\phi_2))$
Отсюда $|z_1z_2|=|z_1||z_2|$ - согласование с умножением

Геометрический смысл умножения: поворот первого вектора на аргумент второго с изменением длины в $|z_2|$ раз

Проверим аксиомы:

- 1. Левая и правая дистрибутивность: Проверяется через декартову форму раскрытием скобок
- 2. Инвариант порядка умножения на скаляр: Проверяется через декартову форму раскрытием скобок

С - нормированная ассоциативная коммутативная алгебра с единицей

2.2.3 Операция сопряжения комплексного числа. Поле

Определение

Пусть
$$z = a + bi$$

 $\overline{z} = a - bi$ - сопряженное с z

 \overline{z} и z симметричны относительно OX

$$\operatorname{Arg} z = -\operatorname{Arg} \overline{z}$$

Свойства

1.
$$\overline{\overline{z}} = z$$

2.
$$z = \overline{z} \Leftrightarrow z \in \mathbb{R}$$

3.
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

4.
$$\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$$

5. Re
$$z = \frac{z + \overline{z}}{2}$$

6. Im
$$z = \frac{z - \overline{z}}{2i}$$

7.
$$\forall z \neq 0 \exists z^{-1}: zz^{-1} = z^{-1}z = 1$$

$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{1}{|z|}(\cos(-\phi) + i\sin(-\phi)) = \frac{1}{|z|}(\cos\phi - i\sin\phi)$$
Отсюда C - поле

Тогда введем операцию деления: $\frac{z_1}{z_2}=z_1z_2^{-1}=\frac{z_1\overline{z_2}}{|z_2|^2}$

$$8. \ \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$

9.
$$|z| = |\overline{z}|$$

$$10. \ z\overline{z} = |z|^2 = |\overline{z}|^2$$

Замечание

Если V - конечномерное пространство, то все нормы этого пространства эквивалентны, т.е. $\rho_1(x) = \Theta(\rho_2(x))$

2.2.4 Формула Муавра Корень n-ой степени из комплексного числа

Свойства

1.
$$e^{2\pi ik} = 1$$

2.
$$e^{i(\phi_1+\phi_2)} = e^{i\phi_1}e^{i\phi_2}$$

3.
$$|e^{i\phi}| = 1$$

$$4. e^{-i\phi} = \frac{1}{e^{i\phi}}$$

5.
$$\cos\phi=\frac{e^{i\phi}+e^{-i\phi}}{2}$$
 $\sin\phi=\frac{e^{i\phi}-e^{-i\phi}}{2i}$ - формулы Эйлера

6.
$$z^n=|r|^ne^{ni\phi}, n\in\mathbb{Z}$$
 - формула Муавра Найдем $z:z=\sqrt[n]{w}$
$$\left\{ \begin{array}{l} |z|^n=|w|\\ n\phi=\arg w+2\pi k, k\in\mathbb{Z} \end{array} \right.$$

Отсюда
$$\left\{ \begin{array}{l} |z|^n=|w|\\ \phi=\frac{\arg w+2\pi k}{n}, k\in\mathbb{Z} \end{array} \right.$$

Из основной теоремы алгебры $w=z^n$ имеет ровно n корней с учетом кратности

учетом кратности
$$z = \sqrt[n]{|w|} e^{i\frac{\arg w + 2\pi k}{n}}, k \in 0 \dots n-1$$

Следствие

$$\sqrt{z} = \sqrt{a + bi} = \begin{cases} \pm \sqrt{\frac{|z| + a}{2}} \pm i\sqrt{\frac{|z| - a}{2}}, b > 0\\ \pm \sqrt{\frac{|z| + a}{2}} \mp i\sqrt{\frac{|z| - a}{2}}, b < 0 \end{cases}$$

2.2.5 Применение

1. Пусть p(z) - многочлен n-ой степени с действительными коэффициентами, Тогда $p(x) = a_n \underline{z}^n + a_{n-1} z^{n-1} + \ldots + a_0$ Отсюда $p(\overline{x}) = \overline{p(x)}$

Отсюда p(z) = p(z)Отсюда $p(z) = 0 \Leftrightarrow p(\overline{z}) = 0$

- 2. $\sin^3 \phi = \left(\frac{e^{i\phi} e^{-i\phi}}{2i}\right)^3 = \frac{e^{3i\phi} 3e^{i\phi} + 3e^{-i\phi} e^{-3i\phi}}{-8i} = \frac{e^{3i\phi} e^{-3i\phi} + 3e^{-i\phi} 3e^{i\phi}}{-8i} = \frac{e^{3i\phi} e^{-3i\phi} + 3e^{-i\phi} 3e^{i\phi}}{-8i} = \frac{1}{4}\sin 3\phi + \frac{3}{4}\sin \phi$
- 3. $\cos 3\phi = \operatorname{Re}(\cos 3\phi + i\sin 3\phi) = \operatorname{Re}((\cos \phi + i\sin \phi)^3) = \cos^3 \phi 3\cos \phi \sin^2 \phi$

4.
$$\sum_{k=0}^{n} \sin kx = \operatorname{Im} \sum_{k=0}^{n} e^{ikx} \stackrel{q=e^{ix}}{=} \operatorname{Im} \sum_{k=0}^{n} q^{k} = \operatorname{Im} \frac{1 - q^{n+1}}{1 - q} = \operatorname{Im} \frac{1 - e^{ix(n+1)}}{1 - e^{ix}} = \operatorname{Im} \frac{e^{\frac{ix(n+1)}{2}} (e^{\frac{-ix(n+1)}{2}} - e^{\frac{ix(n+1)}{2}})}{e^{\frac{ix}{2}} (e^{\frac{-ix}{2}} - e^{\frac{ix}{2}})} = \operatorname{Im} e^{\frac{inx}{2}} \frac{2i \sin \frac{(n+1)x}{2}}{2i \sin \frac{x}{2}} = \frac{\sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}} \sin \frac{nx}{2}$$

2.2.6 Экспонента комплексного числа

Пусть $e^z = \exp z = e^x (\cos y + i \sin y = e^x e^{iy})$, где z = x + iy Свойства:

1.
$$|e^z| = e^x = e^{\text{Re } z}$$

 $\arg e^z = y = \text{Im } z$

$$2. \ e^{2\pi ki} = 1, k \in \mathbb{Z}$$

3.
$$\forall z_1, z_2 \in \mathbb{C} \ e^{z_1} e^{z_2} = e^{z_1 + z_2}$$

$$4. \ \forall z \in \mathbb{C} \ e^{-z} = \frac{1}{e^z}$$

$$5. e^{z+2\pi ki} = e^z$$

$$\lim_{z \to \infty} (1 + \frac{1}{z})^z = e$$

$$e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

$$\cos z = \frac{2}{e^{iz} - e^{-iz}}$$

$$\sin z = \frac{e^{-e}}{2i}$$

$$k=0$$
 h .
$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\operatorname{tg} z = \frac{1}{i} \frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}} = \frac{1}{i} \frac{e^{2iz} - 1}{e^{2iz} + 1}$$
 Тригонометрические функции

$$\operatorname{sh} x = \frac{e^x - e^{-x}}{2}$$

$$\operatorname{ch} x = \frac{e^x + e^{-x}}{2}$$

$$th x = \frac{\sinh x}{\cosh x}$$

$$th x = \frac{\sinh x}{\cosh x}$$

$$cth x = \frac{\cosh x}{\sinh x}$$

$$\operatorname{ch}^2 z + \operatorname{sh}^2 z = \operatorname{ch} 2z$$

$$\cosh^2 z - \sinh^2 z = 1$$

$$2 \operatorname{sh} z \operatorname{ch} z = \operatorname{sh} 2z$$

$$\cosh^2 \frac{z}{2} = \frac{1 + \cosh z}{2}$$

$$sh^2 \frac{z}{2} = \frac{ch z - 1}{2}$$

$$1 - \operatorname{th}^2 z = \frac{1}{\operatorname{ch}^2 z}$$

$$\cosh^{2} z - \sinh^{2} z = 1$$

$$2 \sinh z \cosh z = \sinh 2z$$

$$\cosh^{2} \frac{z}{2} = \frac{1 + \cosh z}{2}$$

$$\sinh^{2} \frac{z}{2} = \frac{\cosh z - 1}{2}$$

$$1 - \sinh^{2} z = \frac{1}{\cosh^{2} z}$$

$$\coth^{2} z - 1 = \frac{1}{\sinh^{2} z}$$

$$\sinh - z = -\sinh z$$

$$\sinh -z = -\sinh z$$

$$\operatorname{ch} -z = \operatorname{ch} z$$

th
$$-x = - \text{th } x$$

cth $-x = - \text{cth } x$
sh $x = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$
ch $x = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$
sin $z = \frac{\text{sh } iz}{i}$
cos $z = \text{ch } iz$

2.2.7 Логарифм комплексного числа

Пусть
$$w = \ln z$$
, $w = u + iv$
Тогда $z = e^w = e^u(\cos v + i\sin v)$
 $w = \ln |z| + i\arg z$
 $\ln z = \ln |z| + i\operatorname{Arg} z + 2\pi ki, k \in \mathbb{Z}$

Замечание

 $\ln z_1z_2=\ln z_1+\ln z_2+2\pi k, k\in\mathbb{Z}$ - с точностью до периода

2.3 Линейные пространства

Для всех линейных пространств над полем K:

 $K=\mathbb{R}$ - вещественное линейное пространство

 $K=\mathbb{C}$ - комплексное линейное пространство

2.3.1 Линейная комбинация

Определение

 $\mathit{Линейной}$ комбинацией векторов v_1, v_2, \ldots, v_n из V называется вектор

$$\sum_{i=1}^{n} d_i v_i, d_i \in K$$

Определение

Вектора u,v называются nponopииональными, если $\exists\, k:u=kv$ или v=ku

Определение

Пусть $v_1, \ldots, v_m \in V$

Линейная оболочка векторов
$$\mathrm{span}(v_1,\dots,v_n)=\left\{\sum_{i=1}^n d_iv_i:d_i\in K\right\}$$
 - множество

всех линейных комбинаций

Определение

Система векторов является *линейно независимой*, если любая линейная комбинация тривиальна, т.е.

$$\sum_{i=1}^{n} d_i v_i = 0 \Leftrightarrow d_1 = \ldots = d_n = 0$$

Иначе система линейно зависима

Теорема

- 1. Система линейно зависима тогда и только тогда, когда какой-то вектор является линейной комбинацией других
- 2. Если подсистема линейно зависима, то и система линейно зависима
- 3. Если v_1,\dots,v_n линейно независима и v_1,\dots,v_{n+1} линейно зависима, то v_{n+1} линейная комбинация v_1,\dots,v_n

Следствие

- 1. $\mathbb{0} \in V \Rightarrow V$ линейно зависима
- 2. Если система линейно независима, то подсистема линейно независима
- 3. Если в системе есть пропорциональные вектора, то система линейно зависима

Теорема о прополе

Если в системе есть хотя бы один ненулевой вектор, то всегда можно выделить линейно независимую подсистему с сохранением исходной линейной оболочки

Алгоритм

Рассмотрим все "префиксы" $S_i = \{v_1, \dots, v_i\}$ нашей системы нашей системы $V = \{v_1, \dots, v_n\}$

Пойдем от префикса S_n . Если span $S_i = \operatorname{span} S_{i-1}$, то v_i - линейная комбинация. Тогда выкинем его

Т.о. оставшиеся вектора будут линейно независимой подсистемой с исходной линейной оболочкой

2.3.2 Порождающая система. Конечномерные пространства. Базис

Определение

Система v_1, v_2, \ldots называется *порождающей* в пространстве V, если любой вектор из V может быть представлен как линейная комбинация этих векторов

Если существует такая конечная система, то пространство V конечномерная Иначе бесконечномерная

Теорема

Следующие утверждения эквивалентны

- 1. $v_1, v_2, \ldots, v_n \in V$ линейно независимая и порождающая
- $2.\ v_1, v_2, \ldots, v_n \in V$ максимальная линейно независимая система из V
- 3. $v_1, v_2, \dots, v_n \in V$ минимальная порождающая система в V

Определение

v называют базисом пространство V

Доказательство $1 \Rightarrow 2$

 $v_1,v_2,\dots,v_n\in V$ - линейно независимая и порождающая ($\mathrm{span}(v_1,\dots,v_n)=V$

Возьмем линейно независимую систему u_1, \ldots, u_m

Рассмотрим u_1, v_1, \dots, v_n . Эта система линейно зависима

Выполним прополку справа и получим $u_m, v_{i_1}, \ldots, v_{i_k}$. Тогда мы получили линейно независимую систему, в которой количество элементов не превосходит n (т.к. как минимум один мы выкинули)

Будем аналогично последовательно добавлять <u>слева</u> остальные элементы из u. После прополки u не уйдут, т.к. они линейно независимы и находятся слева

При этом в получившейся системе количество элементов также не превосходит n. Тогда $m \le n$, а значит v - максимальный набор, ч.т.д.

Доказательство $1 \Leftarrow 2$

 $v_1, v_2, \ldots, v_n \in V$ - максимальная линейно независимая система из V Добавим в нее любой вектор u из V. Из максимальности новая система будет линейно зависимой. Отсюда u - линейная комбинация v. Т.к. вектор любой, то любой вектор из V является линейной комбинацией v. Тогда v - порождающая, ч.т.д.

Доказательство $1 \Rightarrow 3$

 $v_1,v_2,\dots,v_n\in V$ - линейно независимая и порождающая ($\mathrm{span}(v_1,\dots,v_n)=V$

 u_1, \ldots, u_m - порождающая система

Рассмотрим последовательность v_n, u_1, \ldots, u_m . Т.к. u порождающая, то мы получили линейно зависимую систему

Выполним для нее прополку справа

В получившейся системе элементов не больше m

Будем аналогично вводить элементы v слева. Все v останутся, т.к. они слева и линейно независимы

Тогда в исходной системе будет не менее n элементов и не более m. Отсюда v - минимальная

Доказательство $1 \Leftarrow 3$

Пусть $v_1, v_2, \ldots, v_n \in V$ - минимальная порождающая система. Применим прополку

С одной стороны, мы получим линейно независимую систему. Т.к. оболочка сохраняется, то система порождающая

С другой стороны, новая система не может быть меньше, т.к. v - минимальная порождающая система

Теорема

1. Любую линейно независимую систему можно дополнить до базиса Доказательство

Пусть v_1, \ldots, v_n - наша система

Если она порождающая, то она является базисом

Если она не порождающая, добавим в нее вектор, не являющийся линейной комбинацией и повторим рассуждения

2. Из любой порождающей системы можно извлечь базис

Доказательство

Выполним прополку

2.3.3 Координаты вектора в линейном пространстве. Изоморфизм линейных пространств

Определение

Пусть V - линейное пространство над полем $K(\mathbb{R},\mathbb{C})$ e_1,\ldots,e_n - базис V

Тогда
$$\forall x \in V \ x = \sum_{i=1}^{n} x_i e_i, x_i \in K$$

 x_1,\ldots,x_n - координаты вектора x относительно базиса e_1,\ldots,e_n

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 - координатный столбец

Теорема

Координаты любого вектора относительно фиксированного базиса определяются единственным образом

Доказательство

Пусть это не так

Тогда
$$x = \sum_{i=1}^{n} x_i e_i = \sum_{i=1}^{n} x_i' e_i$$

Тогда
$$\sum_{i=1}^{n} (x_i - x_i')e_i = \mathbb{O}$$

Но т.к. базис линейно независимый, то $\forall i = 1 \dots n \ x_i - x_i' = 0$, т.е. $x_i = x_i'$ Отсюда базис единственный

Определение

V,V' - линейные пространства над полем K называются uзоморфизмом ($V\cong V'$), если существует взаимооднозначное соответствие(биекция) между V и V', сохраняющее линейность:

$$\begin{cases} x \in V \leftrightarrow x' \in V' \\ y \in V \leftrightarrow y' \in V' \end{cases} \Rightarrow x + \lambda y \leftrightarrow x' + \lambda y'$$

Свойства изоморфизма

1. $0 \in V \leftrightarrow 0' \in V'$

Доказательство

$$\mathbb{O}=\mathbb{O}+\lambda\mathbb{O}\leftrightarrow x'+\lambda x'$$
 при любых $\lambda.$ Из биекции $x'=\lambda x',$ откуда $x'=\mathbb{O}$

2.
$$x \in V \leftrightarrow x' \in V' \Rightarrow -x \in V \leftrightarrow -x' \in V'$$

3.
$$\forall \alpha_1, \dots, \alpha_m \in K \sum_{i=1}^m \alpha_i x_i \leftrightarrow \sum_{i=1}^m \alpha_i x_i'$$

Доказательство методом математической индукции

4. x_1, \ldots, x_m - линейно (не)зависимое $\Leftrightarrow x_1', \ldots, x_m'$ - линейно (не)зависимое Доказательство

Пусть x_1, \ldots, x_m - линейно зависимое

Тогда существует
$$(\alpha_m)$$
: $\sum_{i=1}^m \alpha_i x_i = 0$

Отсюда $\sum_{i=1}^m \alpha_i x_i' = \mathbb{O}$, а значит x_1', \dots, x_m линейно зависимая

5. x_1,\dots,x_m - порождающая в $V\leftrightarrow x_1',\dots,x_m'$ - порождающая в V' Доказательство

$$x = \sum_{i=1}^{m} \alpha_i x_i \leftrightarrow x' = \sum_{i=1}^{m} \alpha_i x_i'$$

6. x_1,\ldots,x_m - базис $\Leftrightarrow x_1',\ldots,x_m'$ - базис

Теорема

V,V' - конечномерные линейные пространства над полем K $V\cong V'\Leftrightarrow \dim V=\dim V'$

Доказательство ⇒

Из свойства 6

Доказательство ←

Пусть
$$e_1, \ldots, e_n$$
 - базис V e'_1, \ldots, e'_n - базис V'

Определим сопоставление:
$$x = \sum_{i=1}^{n} x_i e_i \leftrightarrow x' = \sum_{i=1}^{n} x_i e_i'$$

Т.к. координаты разложения по базису определяются единственным образом, то сопоставление взаимооднозначное

T.K.
$$x + \lambda y = \sum_{i=1}^{n} (x_i + \lambda y_i) e_i \leftrightarrow \sum_{i=1}^{n} (x_i + \lambda y_i) e_i' \sum_{i=1}^{n} x_i e_i' + \lambda \sum_{i=1}^{n} y_i e_i' = x' + \lambda y',$$

то выполняется линейность

Тогда V, V' изоморфны, ч.т.д.

Следствия

1. Любое пространство V над полем K размерности n изоморфно пространству K^n

Доказательство

$$x = \sum_{i=1}^{n} x_i e_i \leftrightarrow x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in K^n$$

 $2. \cong$ - отношение эквивалентности на множестве конечномерных линейных пространств над одним и тем же полем

2.3.4 Линейное подпространство. Ранг системы векторов. Пересечение, сумма, прямая сумма

Определение

Пусть V - линейное пространство над полем K

 $L \subset V$ - линейное подпространство, если L - линейное пространство

Теорема

L - линейное подпространство $V \Leftrightarrow \forall x,y \in L, \lambda \in K \ \lambda x, \lambda x + y \in L$ (т.е.

L замкнуто относительно операции сложения)

Доказательство ⇒

Из аксиом 1-8

Доказательство ←

Проверим аксиомы:

1,2 следуют из $L \subset V$

3:
$$\lambda = 0 \Rightarrow \lambda x = 0 \in L$$

$$4: \lambda = -1 \Rightarrow -x \in L$$

5-8 следуют из $L \subset L$

Замечания

- 1. L линейное подпространство $\Rightarrow \emptyset \in L$
- 2. $\dim L \leq \dim V$

Доказательство

Пусть $\dim L > \dim V = \operatorname{span}(e_1, \ldots, e_n)$

Тогда $\exists \ e_{n+1}$ такой, что e_1, \dots, e_{n+1} - линейно независимые, что невозможно в V

Определение

Пусть $v_1, \ldots, v_m \in V$

Линейно независимая подсистема v_{i_1}, \ldots, v_{i_k} называется базой набора,

если
$$L = \mathrm{span}(v_1, \dots, v_m) = \mathrm{span}(v_{i_1}, \dots, v_{i_k})$$
 Другими словами, v_{i_1}, \dots, v_{i_k} - базис линейного подпространства L Определение $\mathrm{rg}(v_1, \dots, v_m) = \dim(\mathrm{span}(v_1, \dots, v_m))$ - ранг системы векторов

Определение

Элементарными преобразованиями системы векторов называются следующие операции:

- 1. Добавление в набор нулевого вектора/удаление из набора нулевого вектора
- 2. Перестановка векторов
- 3. умножение любого вектора на $\lambda \neq 0$
- 4. замена любого вектора на его сумму с любыми другими векторами набора

Теорема

Ранг системы векторов не меняется при элементарных преобразованиях этой системы

Определение

```
Пусть L_1,L_2 - линейные подпространства V L_1\cap L_2=\{x\in V:x\in L_1\wedge x\in L_2\} L_1+L_2=\{x+y:x\in L_1,y\in L_2\} Пересечение и сумма являются линейными подпространствами
```

Теорема (формула Грассмана)

$$\dim(L_1 + L_2) = \dim L_1 + \dim L_2 - \dim(L_1 \cap L_2)$$

Доказательство

Пусть
$$L_1 \cap L_2 \neq \{\emptyset\}$$
Тогда $L_1 \cap L_2 = \mathrm{span}(e_1, \dots, e_k)$, где e_1, \dots, e_k - базис Дополним e_1, \dots, e_k векторами u_1, \dots, u_m до базиса L_1 Тогда $\dim L_1 = k + m$ Дополним e_1, \dots, e_k векторами v_1, \dots, v_s до базиса L_2 Тогда $\dim L_2 = k + s$ Докажем, что $L_1 + L_2 = \mathrm{span}(e_1, \dots, e_k, u_1, \dots, u_m, v_1, \dots, v_s)$ и система $e_1, \dots, e_k, u_1, \dots, u_m, v_1, \dots, v_s$ - базис

- 1. Система порождающая
- 2. Система линейно независимая

Докажем
$$\sum \alpha_i e_i + \sum \beta_i u_i + \sum \gamma_i v_i = \mathbb{O}$$
: $A = \sum \alpha_i e_i + \sum \beta_i u_i = \sum -\gamma_i v_i$ Заметим, что $A \in L_1, L_2$. Отсюда $A = \sum \omega_i e_i$ Тогда $\sum \omega_i e_i + \sum \gamma_i v_i = \mathbb{O}$ Отсюда $\sum \omega_i e_i = \sum \gamma_i v_i = \mathbb{O}$ Тогда $\forall i \ \omega_i = 0, \forall i \ \gamma_i = 0$ $\sum \alpha_i e_i + \sum \beta_i u_i = \sum \omega_i e_i = \mathbb{O}$

Тогда
$$\sum \alpha_i e_i = \sum \beta_i u_i$$

Отсюда $\forall i \ \alpha_i = 0, \forall i \ \beta_i = 0$

Отсюда
$$\forall i \ \alpha_i = 0, \forall i \ \beta_i = 0$$

Т.о. система линейно независимая, ч.т.д.

Определение

Линейные подпространства L_1,\ldots,L_m называют ∂u зъюнкmнымu, если $\forall x_1, \dots, x_m : x_i \in L_i \ (x_1 + \dots + x_m = \mathbb{O} \Leftrightarrow x_1 = \dots = x_m = \mathbb{O})$

Определение

 L_1, \ldots, L_m - дизъюнктные линейные подпространства Тогда $\bigoplus L_i := \sum L_i$ - прямая сумма

Теорема(эквивалентность условия прямой суммы)

 $L = \sum_{i} L_{i}$ - прямая - эквивалентно следующим утверждениям:

1.
$$\forall i = 1 \dots m \ L_i \cap \sum_{j \neq i} L_j = \{0\}$$

2. Базис L - "объединение" (конкатенация) базисов L_i

3.
$$\forall x \in L \; \exists ! \, x_1, \dots, x_m : x_i \in L_i, x = \sum_{i=1}^m x_i$$

Доказательство

Докажем, что исходное утверждение эквивалентно каждому

1. (a)
$$\Rightarrow$$
: Пусть $L = \bigoplus_{i=1}^m L_i$, т.е. L_1, \ldots, L_m - дизъюнктные
Тогда $\sum_{i=1}^m x_i = \emptyset \Leftrightarrow \forall i x_i = \emptyset$
Пусть $v \in L_i \cap \sum_{j \neq i} L_j$
 $v \in L_i \Rightarrow v = x_i$
 $v \in \sum_{j \neq i} L_j \Rightarrow v = x_1 + \ldots + x_{i-1} + x_{i+1} + \ldots + x_m$
Отсюда $x_i = \sum_{j \neq i} x_j$
Тогда $\sum_{j \neq i} x_j - x_i = \emptyset$
Заметим, что $-x_i \in L_i$
Тогда обозначим за (x'_m) последовательность $x_1, \ldots, x_{i-1}, -x_i, x_{i+1}, \ldots, x_m$
Из дизъюнктности $\sum_{j \neq i} x'_i = \emptyset \Leftrightarrow x'_i = \emptyset \Leftrightarrow x_i = \emptyset \Leftrightarrow v = \emptyset$
Тогда $L_i \cap \sum_{j \neq i} L_j = \{\emptyset\}$, ч.т.д.

(b)
$$\Leftarrow:$$
 Пусть $L_i \cap \sum_{j \neq i} L_j = \{0\}, \forall j \ x_j \in L_j, \sum_{j=1}^m x_j = 0$
Тогда $-x_i = \sum_{j \neq i} x_j \in \sum_{j \neq i} L_j$
 $-x_i \in L_i \cap \sum_{j \neq i} L_j = \{0\}$
Отсюда $-x_i = 0$
Тогда $\forall i \ x_i = 0$
Отсюда L_1, \ldots, L_m - дизъюнктные, ч.т.д.

2. (a)
$$\Leftarrow$$
 Пусть $L_i = \mathrm{span}(e_1^i, \dots, e_{k_i}^i), L = \sum_{i=1}^m L_i$ - прямая сумма Докажем, что $e_1^1, \dots, e_{k_1}^1, \dots, e_1^m, \dots, e_{k_m}^m$ - базис Система $e_1^1, \dots, e_{k_i}^1, \dots, e_1^m, \dots, e_{k_i}^m$ порождающая (по очевидным причинам)

Система линейно независимая:

Пусть
$$x_i \in L_i$$
. Тогда из дизъюнктности $\sum_{i=1}^m x_i = 0 \Leftrightarrow \forall i \ x_i = 0$

$$x_i = 0 \Leftrightarrow \sum_{j=1}^{k_i} \alpha_j^i e_j^i = 0 \Leftrightarrow \alpha_j^i = 0$$

Тогда
$$\sum_{i=1}^m \sum_{j=1}^{k_i} \alpha^i_j e^i_j = \mathbb{0} \Leftrightarrow \alpha^i_j = 0$$
, ч.т.д.

 $(b) \Rightarrow$

В обратную сторону аналогично доказательству линейной независимости

3. Пусть
$$x \in \sum_{i=1}^m L_i$$
 и $x = \sum_{i=1}^m x_i = \sum_{i=1}^m x_i'$

Тогда
$$\sum_{i=1}^{m} (x_i - x_i') = \mathbb{O}, (x_i - x_i') \in L_i$$

$$y_i := x_i - x_i', \sum_{i=1}^m y_i = 0$$

Тогда из дизъюнктности $\forall i \ y_i = 0$

Тогда представление единственное, ч.т.д.

Следствие

$$\dim \bigoplus L_i = \sum \dim L_i$$

Замечания

- 1. $L_1 + L_2$ прямая $\Leftrightarrow L_1 \cap L_2 = \{0\}$ В таком случае $\dim L_1 \oplus L_2 = \dim L_1 + \dim L_2$
- 2. $V=L_1\oplus L_2$ Тогда L_2 прямое дополнение L_1

Тогда L_1 - прямое дополнение L_2

3. Пусть $V = \bigoplus L_i$

Тогда $\forall x \in V$ $\exists ! x_1 \in L_1, x_2 \in L_2, \dots, x_m \in L_m : x = x_1 + x_2 + \dots + x_m.$

 x_i - npoeкция вектора x на L_i

 $\bigoplus_{j \neq i} L_j$ - прямое дополнение L_i

Утверждение

У каждого линейного подпространства L существует единственное дополнение до V

Доказательство

Пусть $L = \operatorname{span}(e_1, \dots, e_k)$

Дополним наш базис векторами до базиса V, добавив e_{k+1},\ldots,e_n

Тогда единственное дополнение $L' := \mathrm{span}(e_{k+1}, \ldots, e_n)$

$$V = L \oplus L'$$

Определение

Пусть $L \subset V$ - линейное подпространство, $x_o \in V$

Линейное многообразие(афинное пространство) $P = x_0 + L = \{x = x_0 + l : l \in L\}$

Теорема

Пусть
$$P_k = x_k + L_k, k = 1, 2$$

Тогда
$$P_1 = P_2 \Leftrightarrow \begin{cases} L_1 = L_2 = L \\ x_1 - x_2 \in L \end{cases}$$

Доказательство ⇒

 $\forall l_1 \in L_1 \ \exists \ l_2 \in L_2 :$

$$x_1 + l_1 = x_2 + l_2$$

Тогда
$$x_1 - x_2 = l_2 - l_1$$

Если
$$l_1 = 0$$
, то $x_1 - x_2 = l_2 \in L_2$

Если
$$l_2 = 0$$
, то $x_1 - x_2 = -l_1 \in L_1$

Отсюда
$$x_2-x_1\in L_1\cap L_2$$

$$\forall \, l_1 \in L_1 \,\, l_1 = x_2 - x_1 + l_2 \in L_2$$

Отсюда
$$L_1 \subset L_2$$

Аналогично
$$L_2 \subset L_1$$

Тогда
$$L_1 = L_2 = L, x_2 - x_1 \in L$$

Доказательство ←

Пусть
$$L = L_1 = L_2$$

$$P_1 = x_1 + L$$

$$P_2 = x_2 + L$$

$$\forall l \in L \ x = x_1 + l = x_1 - x_2 + x_2 + l = x_2 + (x_1 - x_2 + l) = x_2 + l' \in P_2$$
(т.к.

$$x_1 - x_2 + l \in L$$

Отсюда
$$P_1 \subset P_2$$

Аналогично
$$P_2 \subset P_1$$

Отсюда
$$P_1 = P_2$$
, ч.т.д.

Следствие

Пусть
$$P=x_0+L$$

Тогда $\forall\,x_1\in P\ P'=x_1+L=P$

Определение

Пусть $L\subset V$ - линейное подпространство Тогда $x\sim y\Leftrightarrow x-y\in L$

Определение

$$V|_L = \{P = x + L : x \in V\}$$
 назовем фактор-пространством

Введем линейное пространство над фактор-пространствами

Определение

Пусть
$$P_{x_1} = x_1 + L, P_{x_2} = x_2 + L$$

 $P_{x_1}, P_{x_2} \in V|_L \lambda \in K$

$$P_{x_1} + P_{x_2} = P_{x_1 + x_2}$$

$$\lambda P_x = P_{\lambda x}$$

$$P_0 = L$$
 - нейтральный элемент

$$-P_x=P_{-x}$$
 - противоположный элемент

Будут выполняться все аксиомы линейного пространства

Теорема

Пусть $\dim L = k, \dim V = n$

Тогда $\dim V|_L = n - k$

Доказательство

Пусть $L=\operatorname{span} l_1,\ldots,l_k$, где l_1,\ldots,l_k - базис L

Дополним базис L до базиса V, добавив l_{k+1},\ldots,l_n

Тогда базисом $V|_L$ будут пространства $P_i = l_{k+i} + L$

Докажем это

Система порождающая:

$$\forall x \in V \ x = \sum_{i=1}^k \alpha_i l_i + \sum_{j=1}^{n-k} \alpha_{k+j} l_{k+j}, \sum_{i=1}^k \alpha_i l_i \in L$$

Пусть
$$y = \sum_{j=1}^{n-k} \alpha_{k+j} l_{k+j}$$

$$x-y\in L$$
 Отсюда $P_x=P_y$
$$P_x=P_y=P_{\sum_{j=1}^{n-k}\alpha_{k+j}l_{k+j}}=\sum_{j=1}^{n-k}\alpha_{k+j}P_{l_{k+j}}\in V|_L$$
 Отсюда $P_{l_{k+1}},\dots,P_{l_n}$ - порождающая система, ч.т.д. Система линейно независимая: Пусть $\sum_{j=1}^{n-k}\alpha_{n+j}P_{l_{n+j}}=P_0=L$
$$\sum_{j=1}^{n-k}\alpha_{n+j}P_{l_{n+j}}=P_{\sum_{j=1}^{n-k}\alpha_{n+j}l_{n+j}}$$

$$\sum_{j=1}^{n-k}\alpha_{n+j}P_{l_{n+j}}=P_0\Leftrightarrow\sum_{j=1}^{n-k}\alpha_{n+j}l_{n+j}=0\in L$$
 Тогда $\sum_{j=1}^{n-k}\alpha_{n+j}l_{n+j}\in L$, а значит $\sum_{j=1}^{n-k}\alpha_{n+j}l_{n+j}=\sum_{i=1}^{k}\beta_i l_i$ Отсюда $\sum_{j=1}^{n-k}\alpha_{n+j}l_{n+j}+\sum_{i=1}^{k}-\beta_i l_i=0$ Т.к. l_1,\dots,l_n - базис, то $\alpha_i=0,\beta_i=0$ Т.о. $\sum_{j=1}^{n-k}P_{l_{n+j}}=P_0\Rightarrow\alpha_{n+j}=0$ Отсюда $\dim V|_L=n-k$

3 Алгебра матриц

3.1 Основные понятия

Определение

Матрицей размерности $m \times n$ называется таблица некоторых объектов, занумерованная двумя индексами: номер строки $(1 \dots m)$ и номер столбца $(1 \dots n)$

Далее говорим только про матрицы чисел

$$A = \begin{pmatrix} S_1 \\ S_2 \\ \vdots \\ S_m \end{pmatrix}$$
, где S_i - i -ая строка - $cmpo$ чная запись S_m - S_m - $supplession$ -

 $A = (A_1 \ A_2 \ \dots \ A_n)$, где A_i - i-ый столбец - cтолбцовая запись $\mathrm{span}(A_1,\dots,A_n)$ - столбцовая запись

Квадратные матрицы:

$$E = egin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$
 - единичная матрица
$$A = egin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$
 - диагональная матрица

След диагональной матрицы $\operatorname{tr} A = \sum_{i=1}^n a_{ii}$

$$L = egin{pmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 - нижнедиагональная матрица $U = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$ - верхнедиагональная матрица

3.2 Операции над матрицами

- 1. $C = A + B = (a_{ij} + b_{ij})_{m \times n}$ сложение матриц одной размерности
- 2. $\lambda C = \lambda c_{ij_{m \times n}}$ умножение на скаляр

- 3. Нулевая матрица нейтральный элемент
- 4. -A противоположный элемент

Пространство вещественных матриц - линейное пространство, т.к. все операции выполняются поэлементно Размерность пространства матриц $m \times n$ - mn

Определение

A и B согласованы, если $A_{m \times k}, B_{k \times n}$

$$C = A \cdot B = (c_{ij} = \sum_{s=1}^{k} a_{is} b_{sj})_{m \times n}$$

Дополнительные аксиомы

9. Если
$$A, B, C$$
 согласованы $(A + B)C = AC + BC$ $A(B + C) = AB + AC$

10.
$$\alpha(AB) = (\alpha A)B = A(\alpha B)$$

11.
$$(A \cdot B)C = A(B \cdot C)$$

Доказательство выполнения аксиомы

Пусть A_{mk}, B_{kp}, C_{p*}

$$(AB)_{is} = \sum_{r=1}^{k} A_{ir} B_{rs}$$

$$((AB)C)_{ij} = \sum_{s=1}^{p} (AB)_{is} C_{sj} = \sum_{s=1}^{p} (\sum_{r=1}^{k} A_{ir} B_{rs}) C_{sj} = \sum_{s=1}^{p} (\sum_{r=1}^{k} A_{ir} B_{rs} C_{sj}) = \sum_{s=1}^{k} \sum_{r=1}^{p} (A_{ir} B_{rs} C_{sj}) = \sum_{s=1}^{k} A_{ir} \sum_{r=1}^{p} (A_{ir} B_{rs} C_{sj}) = \sum_{s=1}^{k} A_{ir} (BC)_{rj} = (A(BC))_{ij}$$

3.3 Операция транспорирования

$$(A_{m \times n})^T = A'_{n \times m} : a_{ij} = a'_{ji}$$

Свойства

1.
$$(A^T)^T = A$$

2.
$$(A+B)^T = A^T + B^T$$

3.
$$(\alpha A)^T = \alpha A^T$$

4.
$$(AB)^T = B^T A^T$$

3.4 Обратная матрица

Определение

 $A_{n \times n}^{-1}$ - обратная матрица, если $A^{-1}A = AA^{-1} = E$

Свойства

1. Такая матрица единственная

Доказательство

Пусть существует B:AB=BA=E

$$A^{-1}A = E$$

$$A^{-1}AB = B$$

$$A^{-1} = B$$
, ч.т.д.

2.
$$(A^{-1})^{-1} = A$$

3. Для
$$\alpha \neq 0$$
: $(\alpha A)^{-1} = \frac{1}{\alpha} A^{-1}$

4.
$$E^{-1} = E$$

5. $(AB)^{-1} = B^{-1}A^{-1}$ (при существовании обратных матриц и согласованности A,B)

Доказательство

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AA^{-1} = E$$

 $B^{-1}A^{-1}AB = B^{-1}(A^{-1}A)B = B^{-1}B = E$

6.
$$(A^T)^{-1} = (A^{-1})^T$$

Доказательство

Доказательство
$$(AA^{-1})^T = E^T = (A^{-1}A)^T$$
 $(A^{-1})^T A^T = E = A^T (A^{-1})^T$ Тогда $(A^{-1})^T = (A^T)^{-1}$

3.5 Ранг матрицы

 $\operatorname{rg}_{row} A = \dim \operatorname{span}(S_1, \dots, S_m)$ - строчный ранг матрицы (число линейно независимых строк матрицы)

Отрезок строки \widetilde{S}_{i} длины k - k столбцов строки j

Не умоляя общности, будем считать, что столбцы подряд идущие: $(a_{i1}, a_{i2}, a_{i3}, \dots, a_{ik}), 1 \leq$ $k \le n$

Аналогично для столбцов

Теорема

 A_1,\ldots,A_n - линейно зависима

 A_1,\dots,A_n - линеино зависима Тогда отрезки длины k $\widetilde{A_1},\dots,\widetilde{A_n}$ - линейно зависимы

Доказательство

Очевидно из определения отрезка

Следствие

Пусть отрезки $\widetilde{A_1},\dots,\widetilde{A_n}$ - линейно независимы

Тогда A_1, \ldots, A_n - линейно независима

Аналогично для строк и их отрезков

Теорема

Пусть первые S_1, \ldots, S_k - база пространства строк (т.е. S_1, \ldots, S_k линейно независимы и порождающие пространство строк)

 A_1, \ldots, A_n - отрезки столбцов длины k

 A_1,\ldots,A_n линейно зависимы $\Rightarrow A_1,\ldots,A_n$ линейно зависимы

Доказательство

$$S_1,\ldots,S_k$$
 - база $\Rightarrow \forall \, j=1\ldots m-k \,\, S_{k+j}=\sum_{p=1}^k lpha_{jp}S_p, lpha_{jp}\in K$

Т.к.
$$\widetilde{A_1},\ldots,\widetilde{A_n}$$
 - линейно зависимы, то $\exists \{\alpha_i\}$ - не все нули : $\sum_{i=1}^n \alpha_i \widetilde{A_i} = \mathbb{O}$

Покажем, что в таком случае $\sum_{i=1}^{n} \alpha_{i} A_{i} = 0$

Для первых k координат верно из выбора α_i

Для k + 1-ой координаты это тоже верно:

Заметим, что S_{k+1} порождается базой

Теорема

 $\forall A : \operatorname{rg}_{row} A = \operatorname{rg}_{col} A = : \operatorname{rg} A$ - ранг матрицы

Доказательство

Пусть $\operatorname{rg}_{row} A = k$

Будем считать, что S_1, \dots, S_K - база строк

Рассмотрим отрезки $\bar{A_n}$ длины k

Пусть
$$\operatorname{rg}(\widetilde{A_1},\ldots,\widetilde{A_n})=r$$

Т.к. $\widetilde{A}_1,\ldots,\widetilde{A}_n$ отрезки длины k, то они элементы k-мерного пр-ва. Тогда

Покажем, что $\operatorname{rg}(A_1,\ldots,A_n)=r$

Пусть
$$A_{i_1},\ldots,\widetilde{A_{i_r}}$$
 - база $\widetilde{A}_1,\ldots,\widetilde{A}_n$

По следствию из теоремы A_{i_1}, \ldots, A_{i_r} линейно независимы

$$A_{i_1},\ldots,\widetilde{A_{i_r}},\widetilde{A_j}$$
 - линейно зависима

Тогда $A_{i_1},\ldots,A_{i_r},A_j$ - линейно зависима

Тогда
$$\operatorname{rg}_{col} A = r \leq k = \operatorname{rg}_{row} A$$

Аналогично $\operatorname{rg}_{col} A = r \ge k = \operatorname{rg}_{row} A$

$$\text{T.o. } \operatorname{rg}_{col} = \operatorname{rg}_{row}, \text{ ч.т.д.}$$

Свойства ранга матрицы

- 1. $\operatorname{rg} A_{m \times n} < n, m$
- 2. $\operatorname{rg} A^T = \operatorname{rg} A$
- 3. $\alpha \neq 0$, rg $\alpha A = \operatorname{rg} A$
- 4. $\operatorname{rg}(A+B) \leq \operatorname{rg} A + \operatorname{rg} B$

Доказательство

$$\operatorname{rg}(A+B) = \dim \operatorname{span}(A_1+B_1,\ldots,A_n+B_n)$$

$$\operatorname{span}(A_1+B_1,\ldots,A_n+B_n) \subset \operatorname{span}(A_1,\ldots,A_n) + \operatorname{span}(B_1,\ldots,B_n)$$

$$\dim \operatorname{span}(A_1+B_1,\ldots,A_n+B_n) \leq \dim \operatorname{span}(A_1,\ldots,A_n) + \dim \operatorname{span}(B_1,\ldots,B_n)$$

T.o.
$$\operatorname{rg}(A+B) \leq \operatorname{rg}(A) + \operatorname{rg}(B)$$

5. Пусть A, B согласованы. $\operatorname{rg}(AB) \leq \min \operatorname{rg} A, \operatorname{rg} B$

Доказательство

$$C = A_{m \times k} B_{k \times n} = (C_1 = AB_1 \quad C_2 = AB_2 \quad \cdots \quad C_n = AB_n)$$

Заметим что AB_1 - линейная комбинация столбцов A_1

Заметим, что AB_i - линейная комбинация столбцов A_1,\dots,A_n

Отсюда $\operatorname{span}(C_1, C_2, \dots, C_n) \subset \operatorname{span}(A_1, \dots, A_n)$

Тогда $\operatorname{rg} C \leq \operatorname{rg} A$, т.е. $\operatorname{rg} AB \leq \operatorname{rg} A$

Аналогично $\operatorname{rg} AB = \operatorname{rg} B^{-1}A^{-1} \leq \operatorname{rg} B^{-1} = \operatorname{rg} B$

Тогда $\operatorname{rg} AB \leq \operatorname{rg} A, \operatorname{rg} B$

6. Ранг матрицы не меняется при элементарных преобразованиях, проводимых над столбцами и строками

Определение

Если AB = BA, то матрицы *перестановочные*

Определение

Матрица имеет
$$mpaneuuesu\partial$$
ную форму, если она имеет форму
$$\begin{pmatrix} a_{11} & a_{12} & \dots & \dots & a_{1n} \\ 0 & a_{22} & \dots & \dots & a_{2n} \\ 0 & 0 & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & a_{mn} & \dots & a_{mn} \end{pmatrix}$$
где $a_{ii} \neq 0$

Теорема

Любая матрица $A_{m \times n}$ элементарными преобразованиями строк и перестановкой столбцов может быть приведена к трапиевидной форме Причем число строк в трапециевидной форме совпадет с $\operatorname{rg} A$

Доказательство

1. Если $a_{11} = 0$

Тогда перестановкой строк и столбцов поставим на позицию (1,1) ненулевой элемент (т.к. матрица ненулевая, такой элемент найдется). Затем перейдем к пункту 2

- 2. Если $a_{22} \neq 0$ Занулим столбец A_1 и применим алгоритм к матрице A[2:][2:]Учтем, что при перестановке столбика в подматрице нужно переставлять столбец исходной матрицы
- 3. В какой-то момент мы либо попадем в нулевую подматрицу, либо закончатся строки). Если подматрица стала нулевой, удалим строки, соответствующие данной подматрице.
- 4. В результирующей матрице $a'_{11} \dots a_{kk} \neq 0$ Заметиим, что в результирующей матрице каждая строка не является линейной комбинацией строк ниже, а значит и никаких любых. Тогда ранг матрицы равен количеству строк

4 Системы линейных алгебраических уравнений

4.1 Основные понятия. Теорема Кронекера-Капелли

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m \end{cases}, \text{ где } a_{ij} \in \mathbb{R}(\mathbb{C})$$

$$\vdots$$

$$A = (a_{ij})_{m \times n} - \text{матрица коэффициентов СЛАУ}$$

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} - \text{столбец неизвестных}$$

$$AX = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} - \text{столбец свободных членов}$$

$$AX = B - \text{матричная форма записu}$$

$$\sum A_i X_i = B, \text{ где } A_i - \text{столбец } A - \text{векторная форма запиcu}$$

Матрица вида A|B называется расширенной матрицей системы

Если B = 0, то система называется однородной (СЛОУ)

Если $B \neq \emptyset$, то система называется неоднородной (СЛНУ)

Если существует решение, то система называется разрешимой (совместной)

Если решений нет, то система называется неразрешимой (несовместной)

Если решение существует и единственное, то система называется *определенной* Если решения существуют и их много, то система называется *неопределенной*

Замечание

AX = 0 всегда совместна

Теорема Кронекера-Капелли

Система совместна тогда и только тогда, когда $\operatorname{rg} A = \operatorname{rg} A | B$

Доказательство

Запишем систему в векторной форме

Система совместна
$$\Leftrightarrow \exists (X_i)$$
, что $\sum_i A_i X_i = B \Leftrightarrow B \in \operatorname{span}(A_1, \dots, A_n) \Leftrightarrow$

 $\operatorname{span}(A_1,\ldots,A_n) = \operatorname{span}(A_1,\ldots,A_n,B) \Leftrightarrow \operatorname{rg} A = \operatorname{rg} A|B$

При этом разложение единственное

Следствие

 $\operatorname{rg} A|\mathbb{O}=\operatorname{rg} A\Rightarrow$ система $AX=\mathbb{O}$ совместна всегда

4.2 Множество решенией СЛОУ. Структура ощего решения СЛНУ. Альтернатива Фредгольма

Теорема

$$AX = 0$$

Тогда $\forall U_1, U_2$ - решения, $U_1 + \lambda U_2$ - решение

Доказательство

$$AU_1=0, AU_2=0$$
. Тогда $A(U_1+\lambda U_2)=AU_1+\lambda AU_2=00$, ч.т.д.

Замечание

Множество решений СЛОУ является линейным подпространством $\mathbb{R}^n(\mathbb{C}^n)$

Теорема 2

AX = 0, L - общее решение системы

$$1 \le \operatorname{rg} A = k \le n$$

Тогда $\dim L = n - k = n - \operatorname{rg} A$

Доказательство

1. Пусть $\operatorname{rg} A = k < n, \operatorname{rg} A_1 \dots A_n = k$ Не умоляя общности, предположим, что A_1, \ldots, A_k - линейно независимые

Тогда
$$\forall\,j=1\dots n-k\;A_{k+j}=\sum_{i=1}^k\alpha_i^jA_i$$

Тогда
$$\alpha_1^j A_1 + \ldots + \alpha_k^j A_k - A_{k+j} = 0$$

Тогда
$$\alpha_1^j A_1 + \ldots + \alpha_k^j A_k - A_{k+j} = \mathbb{O}$$

$$\begin{pmatrix} \alpha_1^j \\ \vdots \\ \alpha_k^j \\ 0 \\ \ldots \\ -1 \\ \ldots \\ 0 \end{pmatrix}$$
 - решение $(-1$ в строке $k+j)$

Докажем, что u_1, \ldots, u_{n-k} - базис L

Очевидно, что u_1, \ldots, u_{n-k} линейно независимые, т.к. -1 стоят в различных местах

Покажем, что u_1, \ldots, u_{n-k} - порождающая система

Пусть v - решение

Тогда
$$v'=v+\sum_{j}v_{k+j}u_{j}$$
 - решение

$$Av' = A_1v'_1 + A_2v'_2 + \ldots + A_kv'_k + 0 + \ldots + 0 = 0$$

Из линейной независимости
$$A_1 \dots A_k$$
: $v_1' = \dots = v_k' = 0$, т.е. $v' = 0$

Отсюда v' - линейная комбинация u_1, \ldots, u_{n-k}

$$\dim u_1,\ldots,u_{n-k}=n-k$$
, ч.т.д.

2. Если k = n, то все столбцы линейно независимые

Тогда
$$\sum_{i=1}^{n} X_i A_i = \mathbb{O}$$

Тогда из линейной независимости $X=\mathbb{O}$

Следствие

Если $1 \le \operatorname{rg} A < n$, решений бесконечно много

Если $\operatorname{rg} A = n$, единственное решение X = 0

Теорема(о структуре решения СЛНУ)

СЛОУ 1: Ax = 0

СЛНУ 2: Ax + b = 0

Пусть СЛНУ 2 совместна, X_0 - решение СЛНУ 2

Если X - решение СЛНУ 2, то $X = X_0 + U$, где U - решение СЛОУ 1

Если U - решение СЛОУ 1, то $X=X_0+U$ - решение СЛНУ 2

Доказательство

1. Пусть X - решение СЛНУ 2.

$$AX = B$$

Тогда
$$A(X-X_0)=AX-AX_0=B-B=\mathbb{O}$$

Отсюда
$$U=X-X_0$$
 - решение СЛОУ 1

2. Пусть U - решение СЛОУ 1

Тогда
$$AX=A(X_0+U)=AX_0+AU=B+\mathbb{O}=B.$$
 Тогда X - решение СЛНУ 2

Определение

Базис общего решения СЛОУ 1 называется ϕ ундаментальной системой решенией

$$L = \operatorname{span} u_1, \dots, u_{n-k}$$

Следствие

(если СЛНУ 2 совместна)

- 1. Общее решение СЛНУ 2 является линейным многообразием размерности $n-\operatorname{rg} A$ $P=X_0+L$, где X_0 частное решение СЛНУ 2, L общее решение СЛОУ 1
- 2. $1 \le \operatorname{rg} A < n$ СЛНУ 2 имеет бесконечно много решений
- 3. $\operatorname{rg} A = n$, система имеет единственное решение

Теорема(Альтернатива Фредгольма)

Либо система $A_{m\times n}X=B$ совместна при любом $B\in\mathbb{R}^m$, либо $A^Ty=\mathbb{O}$ имеет нетривиальное решение

(но не одновременно)

Доказательство

- 1. Пусть $\exists\,B:\ A_{m\times n}x=B$ не имеет решений Тогда $\operatorname{rg} A<\operatorname{rg} A|B\leq n$ Тогда $\exists\,A_j=\sum_{i\neq j}\alpha_iA_i$ Отсюда $A^T\begin{pmatrix}\alpha_1\\\alpha_2\\\vdots\\\alpha_{j-1}\\-1\\\alpha_{j+1}\\\vdots\\\alpha_n\end{pmatrix}=\emptyset$ нетривиальное решение
- 2. Пусть $A_{m\times n}^T x = 0$ не имеет нетривиальных решений Тогда $\operatorname{rg} A^T = \operatorname{rg} A = n$ Тогда $\operatorname{rg} A = n = \operatorname{rg} A | B$ система определена при любых B

4.3 Метод Гаусса решения СЛАУ

Элементарные преобразования

- 1. Добавление/удаление уравнения с нулевыми коэффициентами
- 2. Умножение уравнения на ненулевой коэффициент

- 3. Перестановка уравнений
- 4. Замена уравнения на его сумму с другими строками
- 5. Изменение нумерации неизвестных

Замечания

- 1. Элементарные преобразования заменяют систему на эквивалентную
- 2. Элементарные преобразования системы эквивалентны элементарным преобразованиям расширенной матрицы

Теорема

Элементарными преобразованиями матрицы A|B систему AX=B можно заменить на эквивалентную систему с трапециевидной матрицей коэффициентов Причем число строк в результирующей матрице будет равно $\operatorname{rg} A=k$ Если k=n, то матрица будет треугольной

Доказательство

Преобразуем A в трапециевидную форму, выполняя синхронные преобразования столбца B

(заметим, что вычеркивать строки нельзя, т.к. нельзя терять значение в столбце B)

Метод Гаусса(прямой ход)

Приведем матрицу коэффициентов системы к трапециевидной форме Если существуют строки вида $000\dots 0|b\neq 0$ то решений нет (В таком случае $\operatorname{rg} A\neq \operatorname{rg} A|B=\operatorname{rg} A'|B'$, где A'|B' - матрица после преобразований)

Иначе вычеркнем нулевые строки. Тогда мы получим "настоящую" трапециевидную матрицу

Метод Гаусса (обратный ход)

1. k = n

Тогда существует единственное решение

Матрица в таком случае треугольная

Будем последовательно исключать неизвестные, подставляя уже извесные значения

Тогда на каждом шаге будем получать систему на ранг меньше Приведем нашу матрицу к виду $(E|X_0)$, где X_0 - частное решение

2. k < n

Тогда множество решений - линейное многообразие $P=x_0+L$ Тогда обрежем нашу матрицу до треугольной, занеся лишние столбцы в свободный член, и найдем x_0 и L

Тогда "бывшие неизвестные" станут параметрами, определяющими конкретное решение в множестве решений

Перейдем к первому пункту

Нахождение обратной матрицы методом Гаусса

$$AA^{-1} = E \Leftrightarrow AX = E \Leftrightarrow \begin{cases} AX_1 = E_1 \\ AX_2 = E_2 \end{cases}$$

$$\vdots$$

$$AX_n = E_n$$

Найдем X, решив системы уравнений

X существует тогда и только тогда, когда все системы совместны, т.е. $\operatorname{rg} A|E_1=\operatorname{rg} A|E_2=\ldots=\operatorname{rg} A|E_n=\operatorname{rg} A=n$

Заметим, что мы будем решать n систем с одной матрицей коэффициентов. Вместо одного столбца выпишем сразу n столбцов свободных членов

 E_1, \dots, E_n . Применим метод Гаусса и получим $E|A_1^{-1}A_2^{-1}\dots A_n^{-1}$

Докажем, что $A^{-1}A = E$

Пусть B:BA=E

Тогда $BAA^{-1} = BE = EA^{-1}$

Отсюда $B = A^{-1}$

Теорема

Для матрицы $A_{n\times n}$ существует матрица A^{-1} тогда и только тогда, когда гу A=n

Следствие

Пусть есть система $A_{n \times n} X = B$

Существует единственное решение тогда и только тогда, когда A обратима, причем $X=A^{-1}B$

Доказательство

Единственное решение существует при г
gA=n,а тогда существует A^{-1} и наоборот

Теорема (о ранге произведения матриц)

Пусть $A_{n\times n}$, $\operatorname{rg} A = n$

Тогда $\forall B_{m \times n} \operatorname{rg} B = \operatorname{rg}(BA)$

 $\forall B_{n \times m} \operatorname{rg} B = \operatorname{rg}(AB)$

Доказательство

- 1. гg $AB \leq \min$ гg A, гg B было доказано гg $B=\operatorname{rg} A^{-1}AB$ (обратная матрица существует, т.к. гg A=n) Тогда гg $B=\operatorname{rg} A^{-1}AB \leq \operatorname{rg} AB \leq \operatorname{rg} B$ Тогда гg $B=\operatorname{rg} AB$
- 2. $\operatorname{rg} BA = \operatorname{rg} (BA)^T = \operatorname{rg} A^TB^T = \operatorname{rg} B^T = \operatorname{rg} B$ (из предыдущего пункта)

4.4 Геометрический смысл СЛАУ

Определение

Множество точек пространства \mathbb{R}^n , удовлетворяющих уравнению $A_1x_1 + \ldots + A_nB_n + B = 0$ называется гиперплоскостью

Tогда система - пересечение m гиперплоскостей

Тогда система совместна тогда и только тогда, когда пересечение не пусто

Пусть n=3:

- 1. $\operatorname{rg} A = \operatorname{rg} A | B = 1$ (система совместна) Тогда у нас одна плоскость
- 2. $\operatorname{rg} A = \operatorname{rg} A | B = 2$ (система совместна) Тогда у нас два независимых линейных уравнения, т.е. две неравных непараллельных плоскости, а остальные плоскости являются их линейной комбинацией

Получаем прямую пересечения этих плоскостей

3. $\operatorname{rg} A = \operatorname{rg} A | B = 3$ (система совместна)

Тогда у нас три независимых линейных уравнения, т.е. три неравных непараллельных плоскости, а остальные плоскости являются их линейной комбинацией

Получаем единственную точку пересечения

4. $1 = \operatorname{rg} A \le \operatorname{rg} A | B = 2$

Тогда есть две параллельные плоскости, а остальные параллельны им или совпадают

Тогда пересечение пусто

 $5. \ 2 = \operatorname{rg} A \le \operatorname{rg} A | B = 3$

Тогда мы получаем пересекающиеся прямые без общей линии пересечения Общее пересечение пусто

4.5 Матрица перехода от старого базиса к новому Связь координат вектора в новом и старом базисе

Пусть V - линейное пространство над полем $\mathbb{R}(\mathbb{C})$

Пусть e_1, \ldots, e_n - старый базис

 e_1',\ldots,e_n' - новый базис

$$\forall x \in V \ x = \sum_{i=1}^{n} x_i e_i = \sum_{i=1}^{n} x'_i e'_i$$

Свяжем x_i и x_i'

Пусть $e_j' = \sum_{i=1}^n t_{ij} e_i$ - координаты нового базиса в старом

$$e'_{j} \leftrightarrow T_{j} = \begin{pmatrix} t_{1j} \\ \vdots \\ t_{nj} \end{pmatrix}$$

Тогда матрица перехода от старого базиса к новому:

$$T_{e \to e'} = \begin{pmatrix} T_1 & T_2 & \dots & T_n \end{pmatrix}$$

$$(e'_1 \dots e'_n) = (e_1 \dots e_n) T_{e \to e'}$$

Свойства матриц перехода

- 1. $\operatorname{rg} T = n$ (т.к. все столбцы линейно независимы)
- 2. $\exists T^{-1}$ матрица перехода от нового базиса к старому

Доказательство

Т.к. г
дT=n,то обратная матрица существует

$$e' = eT$$

Тогда
$$e'T^{-1} = eTT^{-1} = e$$

3. Связь координат в старом и новом базисе

$$x = \sum_{j=1}^{n} x_{j}' e_{j}' = \sum_{j=1}^{n} \sum_{i=1}^{n} x_{j}' t_{ij} e_{i} = \sum_{i=1}^{n} e_{i} \left(\sum_{j=1}^{n} t_{ij} x_{j}'\right)$$

Отсюда
$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = T_{e \to e'} \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}$$

5 Определители

5.1 Полилинейная антисимметричная форма Определитель числовой матрицы

Пусть V - линейное пространство над полем $\mathbb{R}(\mathbb{C})$ $f: V^P \to K$

Определение

Отображение называется полилинейным, если оно линейно по каждому аргументу, т.е. $f(\ldots, a + \lambda b, \ldots) = f(\ldots, a, \ldots) + \lambda f(\ldots, b, \ldots)$

При p = 1 - линейная форма

При p = 2 - билинейная форма

Правило Эйнштейна

Будем обозначать за x^ie_i сумму $\sum_{i=1}^n x^ie_i$

(Т.е. в случае, если у двух объектов записаны одинаковые индексы, при этом у одного - сверху, у другого - снизу)

Договоримся для векторов из V писать у координат индекс сверху, а у векторов индекс - снизу

T.e.
$$x = \sum_{i=1}^{n} x_i e_i \Leftrightarrow x = x^i e_i$$

Пусть $\xi_i \in V$

$$f(\xi_1, \dots, \xi_p) = f(\xi_1^{i_1} e_{i_1}, \dots, \xi_p^{i_p} e_{i_p}) = \xi_1^{i_1} \xi_2^{i_2} \dots \xi_p^{i_p} f(e_{i_1}, \dots, e_{i_p})$$

 $f(\xi_1,\ldots,\xi_p)=f(\xi_1^{i_1}e_{i_1},\ldots,\xi_p^{i_p}e_{i_p})=\xi_1^{i_1}\xi_2^{i_2}\ldots\xi_p^{i_p}f(e_{i_1},\ldots,e_{i_p})$ $lpha_{i_1,i_2,\ldots,i_p}:=f(e_{i_1},\ldots,e_{i_p})$ - компоненты полиноминальной формы f относительно базиса e_1, \ldots, e_n

Т.о. f однозначно определяется своими значениями на всевозможных наборах базисных векторов, т.е. всеми $\alpha_{i_1,i_2,...,i_n}$

Определение

Полилинейная форма называется антисимметричной, если она равна 0 при совпадении любых двух аргументов

Теорема

fантисимметрична тогда и только тогда, когда $f(\dots,a,\dots,b,\dots) = -f(\dots,b,\dots,a,\dots)$

Доказательство

$$f(..., a + b, ..., a + b, ...) = 0 = f(..., a, ..., b, ...) + f(..., a, ..., a, ...) + f(..., b, ..., a, ...) + f(..., b, ..., b, ...)$$

Отсюда $f(\ldots,a,\ldots,b,\ldots) = -f(\ldots,b,\ldots,a,\ldots)$

Следствие

$$\begin{array}{l} \alpha_{...,m,...,k,...} = -\alpha_{...,k,...,m,...} \\ \alpha_{...,m,...,m,...} = 0 \end{array}$$

Следствие

$$p > n \Rightarrow f = 0$$

Обозначение

Полилинейная антисимметричная форма = p-форма

Рассмотрим n форму для $V : \dim V = n$:

$$\alpha_{i_1\dots i_n} = f(e_{i_1},\dots,e_{i_n})$$

Если хотя бы два индекса совпали, то $\alpha_{i_1...i_n} = 0$

В остальных случаях $i_1, \ldots i_n$ - перестановка n чисел

Определение

 $\ensuremath{\mathit{\Piodcmahoeka}}$ - биекция $\phi:\{1,2,\ldots,n\} o \{1,2,\ldots,n\}$

Перестановка - образ $\phi(\{1,2,\ldots,n\})$

Теорема

Любую перестановку можно привести к тривиальной $(1, \ldots, n)$ за конечное число транспозиций (перестановок 2-х элементов)

Определение

Четностью перестановки назовем четность числа транспозиций, с помощью которых она приводится к тривиальной

$$\epsilon(\sigma) = \begin{cases} 1, & \text{если перестановка нечетная} \\ 0, & \text{если перестановка четная} \end{cases}$$

Знаком перестановки назовем $(-1)^{\epsilon(\sigma)}$

$$\alpha_{i_1,\dots,i_n} = (-1)^{\epsilon(\sigma)} \alpha_{1,2,\dots,n}$$

Пусть
$$\alpha_f = \alpha_{1,2,\dots,n}$$

$$\alpha_{i_1,\dots,i_n} = (-1)^{\epsilon(\sigma)} \alpha_f$$

$$\alpha_{i_1,...,i_n} = (-1)^{\epsilon} \alpha_f$$
Т.о. $f(\xi_1,\ldots,\xi_n) = \alpha_f \sum_{\sigma \in S_n} (-1)^{\epsilon(\sigma)} \xi_1^{i_1} \ldots \xi_n^{i_n}$, где $(i_1,\ldots,i_n) = \sigma$

Определение

D-n-форма - n-форма такая, что $\alpha_f=1$

$$D(\xi_1,\ldots,\xi_n)=\sum_{\sigma\in S_n}(-1)^{\epsilon(\sigma)}\xi_1^{i_1}\ldots\xi_n^{i_n},$$
 где $(i_1,\ldots,i_n)=\sigma$ $orall f(\xi_1,\ldots,\xi_n)=lpha_fD(\xi_1,\ldots,\xi_n)$

$$\forall f \ f(\xi_1, \dots, \xi_n) = \alpha_f D(\xi_1, \dots, \xi_n)$$

Такая форма единственная

Определение

Определителем системы векторов $\xi_1, \ldots, \xi_n \in V$ называется $D(\xi_1, \ldots, \xi_n) =$: $\det(\xi_1,\ldots,\xi_n)$ относительно фиксированного базиса e_1,\ldots,e_n

Определение

Пусть
$$V = \mathbb{R}^n(\mathbb{C}^n)$$

$$\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1-\mathrm{j-ая}\ \mathrm{строкa} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 - базис
$$A_k = \begin{pmatrix} a_{1k} \\ \vdots \\ a_{nk} \end{pmatrix}$$
Тогда $\det(A_1,\ldots,A_n) = \sum_{\sigma \in S_n} (-1)^{\epsilon(\sigma)} a_{i_11} \ldots a_{i_nn}$
Замечания

$$\langle a_{nk} \rangle$$
 Тогда $\det(A_1,\ldots,A_n) = \sum_{\sigma \in S} (-1)^{\epsilon(\sigma)} a_{i_1 1} \ldots a_{i_n n}$

Замечания

- 1. Матрица не обязательно числовая
- 2. $\det E = 1$
- 3. $f(A) = f(E) \det A$

5.2 Некоторые сведения из теории перестановок

Определение

Произведением перестановок называется результат действия композиции соответствующих подстановок

Обратной перестановкой называется $\phi = \sigma^{-1} : \phi \sigma = id$

Определение

Инверсией в перестановке назовем два элемента α, β такие, что α стоит до β и $\alpha > \beta$

Теорема

- 1. $\epsilon(\sigma) = \epsilon(\sigma^{-1})$ Доказательство *TODO*
- 2. Транспозиция любых двух элементов может быть получена нечетным числом транспозиций соседних элементов

Доказательство

Пусть у нас есть элементы α, β , которые мы ходим поменять Сделаем m шагов, чтобы переместить α к β . Затем за шаг поменяем их местами. Теперь сделаем еще m шагов, чтобы поставить β на бывшее место α . Тогда всего 2m+1 шаг

3. Транспозиция двух соседних элементов перестановки меняет четность числа инверсий на противоположную

Доказательство

Пусть мы поменяли α и β местами

Заметим, что в результате перестановки все инверсии, образованные α и β с остальными элементами, сохранились. Тогда появилась или исчезла инверсия между α и β . Тогда число инверсий изменилось на 1, ч.т.д.

4.
$$(-1)^{\epsilon(\sigma)} = (-1)^{\operatorname{inv}\sigma}$$

Доказательство

Пусть у нас была четная перестановка σ

Тогда за четное число транспозиций получим тривиальную перестановку Каждая транспозиция - это нечетное число транспозиций соседних Значит суммарно четное число транспозиций соседних

А значит четность числа инверсий не поменяется

Т.е. в тривиальной перестановке число инверсий четное, то и в исходной было четное

Отсюда в четной перестановке четное число инверсий Аналогично для нечетной перестановки

Следствие

$$\det A = \sum_{\sigma \in S_n} (-1)^{\operatorname{inv} \sigma} a_{i_1 1} \dots a_{i_n n}$$

5.3 Свойства определителя

1. $\det A^T = \det A$

Доказательство

$$\det A^T = \sum_{\sigma \in S_n} (-1)^{\operatorname{inv} \sigma} a_{1i_1} \dots a_{ni_n}$$

Упорядочим $a_{1i_1}\dots a_{ni_n}$ по второму параметру. Тогда в первом параметре мы получим перестановку, обратную σ

$$\det A^{T} = \sum_{\sigma \in S_{n}} (-1)^{\operatorname{inv} \sigma} a_{\sigma^{-1}(1)1} \dots a_{\sigma^{-1}(n)n}$$

$$\det A^{T} = \sum_{\sigma \in S_{n}} (-1)^{\operatorname{inv} \sigma^{-1}} a_{\sigma^{-1}(1)1} \dots a_{\sigma^{-1}(n)n}$$

Заметим, что σ^{-1} пробегает все множество. Отсюда мы получили Отсюда мы получили исходную формулу, ч.т.д.

Замечание

Все свойства определителя, доказанные для столбцов, верны и для строк

2. Линейность определителя

$$\det(\ldots, A_i + \lambda B_i, \ldots) = \det(\ldots, A_i, \ldots) + \lambda \det(\ldots, B_i, \ldots)$$

Доказательство

Из полилинейности определителя

3. Следствие

$$\det(\ldots, 0, \ldots) = 0$$

$$\det(\lambda A) = \lambda^n \det(A)$$

4. Антисимметричность

$$\det(\ldots,B,\ldots,B,\ldots)=0$$
 $\det(\ldots,A_i,\ldots,A_j,\ldots)=-\det(\ldots,A_j,\ldots,A_i,\ldots)$ (столбцы поменяли местами)

5.
$$\det(\dots, A_i, \dots, A_j, \dots) = \det(\dots, A_i + \lambda A_j, \dots, A_j, \dots)$$

6.
$$\begin{vmatrix} A^1 & 0 & 0 & 0 \\ \vdots & A^2 & 0 & 0 \\ \vdots & \vdots & \ddots & 0 \\ \vdots & \vdots & & A^n \end{vmatrix} = \prod \det A^i,$$
где A^i - подматрицы нашей матрицы

Такая матрица называется ступенчатой

Доказательство

Методом мат. индукции

(a) База. Докажем, что
$$\begin{vmatrix} A & \mathbb{O} \\ * & B \end{vmatrix} = \det A \det B$$

i.
$$\begin{vmatrix} E & 0 \\ 0 & E \end{vmatrix} = 1 = \det E \det E$$

ii.
$$\begin{vmatrix} A_{n \times n} & 0 \\ * & E \end{vmatrix}$$

іі. $\begin{vmatrix} A_{n\times n} & 0 \\ * & E \end{vmatrix}$ Занулим * линейными преобразованиями.

Пусть
$$f(A_1, \ldots, A_n) = \begin{vmatrix} A & 0 \\ 0 & E \end{vmatrix}$$

f - n-форма по очевидным соображениеям Заметим, что $f(A_1, ..., A_n) = f(E_1, ..., E_n)D(A_1, ..., A_n) =$ $1 \cdot \det A = \det A$

ііі. Аналогично для матрицы
$$\begin{vmatrix} A_{n \times n} & 0 \\ * & B_{m \times m} \end{vmatrix}$$
 введем m-форму $f(B_1, \dots, B_m) = f(E_1, \dots, E_m) D(B_1, \dots, B_m) = \det A \det B$

- (b) Индукционный переход очевиден
- 7. $\det A = \sum_{i=1}^{n} a_{ij} A_{ij}$, где $A_{ij} = (-1)^{i+j} M_{ij}$ алгебраическое дополнение,

 M_{ij} - минор, ј фиксированный

Доказательство

$$\det A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2} & \dots & a_{nn} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2} & \dots & a_{nn} \end{vmatrix} + \dots + \begin{vmatrix} 0 & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

Поднимем свапами a_{i1} на первые строки в каждой матрице Тогда в матрицах, где і - нечетное, знак определителя не сменится (т.к. свапов будет четное число), а в матрицах, где і - нечетное, поменяется

Т.о. мы получим
$$\det A = (-1)^{1+1} \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2} & \dots & a_{nn} \end{vmatrix} + (-1)^{2+1} \begin{vmatrix} a_{21} & a_{22} & \dots & a_{2n} \\ 0 & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2} & \dots & a_{nn} \end{vmatrix} +$$

$$\dots + (-1)^{n+1} \begin{vmatrix} a_{n1} & a_{n2} & \dots & a_{nn} \\ 0 & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1\,1} & a_{n-1\,2} & \dots & a_{n-1\,n} \end{vmatrix}$$

Теперь применим свойство о ступенчатых матрицах. Тогда для первого столбца формула работает

Докажем для j-ого столбца. Для этого свапами переместим j на первую позицию знак поменяется j-1 раз, получив матрицу A', для которой формула доказана

8.
$$\sum_{i=1}^{n} a_{ik} A_{ij} = 0, k \neq j$$

Рассмотрим матрицу, полученную из A заменой k-ого столбца на j-ый. Тогда данная формула будет формулой ее определителя. Но т.к. в этой матрице два одинаковых столбца, то ее определитель 0

9. $det(A \cdot B) = det A det B$

Доказательство

Зафиксируем A и рассмотрим функцию $f(B_1, ..., B_n) = \det(C_1 = AB_1, ..., C_n = AB_n)$

f является n-формой

$$\det AB = f(B_1, \dots, B_n) = f(E_1, \dots, E_n)D(B_1, \dots, B_n) = \det A \det B$$

5.4 Формула для обратной матрицы

Определение

Матрица называется невырожденной, если ее определитель не равен 0

Теорема Крамера

Матрица обратима тогда и только тогда, когда матрица невырожденная

Причем матрица может быть найдена по формуле
$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}^{T}$$
,

где A_{ij} - алгебраическое дополнение

Матрица дополнений называется союзной/взаимной/присоединенной

Доказательство ⇒

T.к. матрица A обратима, то существует A^{-1}

$$AA^{-1} = E$$

 $\det AA^{-1} = \det A \det A^{-1} = 1$

Отсюда $\det A \neq 0$

Доказательство ←

Т.к. матрица невырожденная, то ее определитель не 0

Из вышедоказанных свойств произведение исходной матрицы на матрицу из формулы (и наоборот) равно единичной матрице

Тогда формула верна. А значит исходная матрица обратима

Замечание

$$\det A^{-1} = \frac{1}{\det A}$$

Следствие (теорема Крамера)

Пусть у нас есть система $A_{n\times n}X = B$

Единственное решение существует тогда и только тогда, когда определитель A не равен 0

Причем
$$X_i = \frac{\Delta_i}{\Delta}, \Delta_i = \det(A_1, \dots, A_{i-1}, B, A_{i+1}, \dots, A_n), \Delta = \det A$$

Доказательство

$$X = A^{-1}B = \frac{1}{\det A} \begin{pmatrix} \Delta_1 \\ \Delta_2 \\ \vdots \\ \Delta_n \end{pmatrix}$$

Теорема Лапласа 5.5

Определение

Выберем k строк $i_1 < \ldots < i_k$ и k столбцов $j_1 < \ldots < j_k$

Тогда минором k-ого порядка назовем определитель матрицы $M_{i_1...i_k}^{i_1...i_k}$, полученной вычеркиванием всех остальных строк и столбцов

Дополнительным минором нашего минора k-ого порядка назовем определитель

матрицы
$$\overline{M}_{j_1...j_k}^{i_1...i_k}$$
, полученной вычеркиванием выбранных строк Алгебраическое дополнение $A_{j_1...j_k}^{i_1...i_k} = (-1)^{i_1+...+i_k+j_1+...+j_n} \overline{M}_{j_1...j_k}^{i_1...i_k}$

Теорема Лапласа

Выберем
$$k$$
 строк $i_1 < \ldots < i_k$ Тогда $\det A = \sum_{1 \le j_1 < j_2 < \ldots < j_k \le n} A^{i_1 \ldots i_k}_{j_1 \ldots j_k} M^{i_1 \ldots i_k}_{j_1 \ldots j_k}$

Доказательство

Методом математической индукции

- База (для 1 строки): Зафиксируем і. Получаем известную формулу
- Пусть верно для k-1 строки //todo

Замечание

Формулу для ступенчатой матрицы можно получить из теоремы Лапласа

5.6 Второе определение ранга матрицы

Определение

Ранг матрицы - это наибольший порядок минора, отличного от нуля $\det A_{m \times n} = \max k : \exists i_1 < \ldots < i_k, j_1 < \ldots < j_k : M_{j_1 \dots j_k}^{j_1 \dots j_k}$ Такой минор называется базисным, его строки и столбцы - базисные

Теорема

Определения эквивалентны

Доказательство

Пусть $rg^1 A = k$

 $A_{j_1} \dots A_{j_k}$ - база столбцов

 $S_{i_1}^{j_1}\dots S_{i_k}^{j_k}$ - база строк $M_{j_1\dots j_k}^{j_1\dots j_k}=\det(A'_{j_1}\dots A'_{j_k})$, где A'_{j_k} - отрезок столбца A_{j_k} Т.к. $A_{j_1}\dots A_{j_k}$ - линейно независимые. Тогда по теореме $A'_{j_1}\dots A'_{j_k}$ линейно независимые

Теперь возьмем столбцы $j'_1 \dots j'_s, s > k$

 ${
m T.k.}\ s>{
m rg}^1\ A,\ {
m to}\ A_{j'_1}\dots A_{j'_s}$ линейно зависимы Тогда и $A'_{j'_1}\dots A'_{j'_s}$ линейно зависимые

Тогда $\det(A_{j'_1} \dots A_{j'_s}) = M_{j'_1 \dots j'_s}^{j'_1 \dots j'_s} = 0$

Отсюда $\operatorname{rg}^2 A = k$, ч.т.д.

Метод окаймляющих миноров

1. Если $a_{ij} \neq 0$ Если все миноры второго порядка, содержащие a_{ij} , равны 0, то ранг - 1

- 2. Если $\exists \, M^{ii_0}_{jj_0} \neq 0$ Если все миноры третьего порядка, содержащие строки i,i_0 и столбцы j,j_0 , равны 0, то ранг - 2
- 3. Аналогично

Теорема

Метод окаймляющих миноров работает:)

Доказательство

Пусть $M_{j_1...j_k}^{j_1...j_k} \neq 0$, а все миноры k+1-го порядка, окаймпляющие его, равны 0

Рассмотрим определитель
$$\begin{pmatrix} a_{i_1j_1} & \dots & a_{i_1j_k} & a_{i_1j} \\ \vdots & \vdots & \vdots & \vdots \\ a_{i_kj_1} & \dots & a_{i_kj_k} & a_{i_kj} \\ a_{ij_1} & \dots & a_{ij_k} & a_{ij} \end{pmatrix} = X.$$

Заметим, X = 0:

Если i совпадает с $i_1 \dots i_k$, то определитель 0

Иначе по условию

$$X=\sum_{s=1}^k a_{ij_s}A'_{is}\pm a_{ij}M^{i_1...i_k}_{j_1...j_k},$$
 где A' - дополнение матрицы из определителя $M^{i_1...i_k}_{j_1...j_k}\neq 0$

Тогда
$$a_{ij} = \sum_{s=1}^{k} a_{ij_s} \frac{\mp A'_{is}}{M^{i_1...i_k}_{j_1...j_k}} = \sum_{s=1}^{k} \lambda_s a_{ij_s}$$

Отсюда
$$A_j = \sum_{s=1}^k \lambda_s A_{j_s}$$

Т.о. любой столбец является линейной комбинацией $A_{j_1} \dots A_{j_k}$ Т.о. $\operatorname{rg} A = k$

5.7 Методы вычисления определителей п-ого порядка

- 1. Приведение к треугольному виду $//{\rm TODO}$
- 2. Метод выделения линейных множителей $//{\rm TODO}$
- 3. Метод рекурентных соотношений //todo

- 4. Разложение в сумму определителей $//{\rm todo}$
- 5. Метод изменения элементов на константу $//{\rm todo}$