

Certification CDSD Block 1 & 3

August 28th, 2025 – Louis Le Pogam

Agenda

- Block 1 Build & Manage a Data Infrastructure Kayak Project
- Block 3 Unsupervised Machine Learning Uber Pickups Project

Project

- Kayak Marketing Team would like to create a holiday recommendation application based on :
 - Weather
 - Hotels in the area
 - Based on real-time data

Goal

- The data are not available and the goal is to get the needed data as following:
 - Scrape data from destinations.
 - Get weather data from each destination.
 - Get hotels' info about each destination.
 - Store all the information above in a data lake.
 - Extract, transform and load cleaned data from your datalake to a data warehouse.

4 building blocks for the data scrapping model

Description

- 1 Geolocalisation
- Processing of list of cities by obtaining GPS coordinates and INSEE codes with API
- Saving all data to CSV for weather queries
- Weather Data
- Retrieving 7-day weather forecasts for cities based on INSEE codes
- Ranking cities based on customizable criteria and creates aggregated rankings
- Saving ranked list based on number of favorable days to CSV
- Booking Website
 Scrapping
- Taking the top 5 cities based on previous analysis
- Searching for hotels in each city available on booking.com
- · Saving in into a JSON file
- Transformation and Storage
- Processing previous data by removing low-quality hotels and identifying consecutive night availability
- Creating interactive visualizations and uploads all results to AWS S3 and SQL server

All 4 blocks are used to get the final output

The weather module scraps the weather by city and ranks them based on defined ideal conditions

get_weather_data

- Reads a list of French cities from a file based on the INSEE code
- Connects to a weather service (Meteo Concept API) for each city
- Gathers 7-day forecasts including:
 - Daily rainfall predictions
 - Temperature highs and lows
 - Wind speed information
- Organizes everything in a DataFrame where each row represents one day's weather forecast for a specific city

Output: DataFrame with weather prediction for eachs targeted cities

get_city_ranking

- Flags Less-Than-Ideal Weather Days when:
 - Too hot / Too cold / Too rainy / Too windy
 - Default value: 35°C / 20°C/ 10mm / 50 km/h
 - Can be changed depending on the season
- Calculates Problem Days for each city over the forecast period
- Ranks Cities by:
 - Fewest problematic weather days
 - Lowest average rainfall as tiebreaker

Output: DataFrame with a prioritized list of cities with optimal weather conditions for travelers

700 pages scrapped to get the available hotels of the next 7 days

Get Weather Data

Open file of ranked cities and select top 5

Get URL for each city and date

- · Loop on each cities and for the next 7 days
- Get the URL of the search for each city x date

Get the Details from the Search Results

- For each results on the search page, get the main info: Name, ranking, price, distance...
- Keep only 20 first results to limit output size

Open each page and get detailed data

For each hotel, open the hotel page to get detailed info: Adress, latitude, longitude, description, URL...

Store Data in a JSON file

- Gather all data in one JSON
- 700 pages scrapped (5 cities x 20 hotels x dates x 7 dates) in 6 minutes

All outputs are stored on a AWS S3 and SQL server and ready to be used

Output 1: All database

- Dataframe with weather forecast
- Dataframe with City Ranking
- JSON with all booking.com data scrapped

Output 2 : Visualization of available hotels for each top 5 cities

Hotels available in Saintes Maries de la mer

Output 3 : Overview of average temperature for the next 7 days of all targeted cities

Average max temperature for the next 7 days per city

All outputs are stored in a S3 and SQL server and ready to be extracted and used

Agenda

- Block 1 Build & Manage a Data Infrastructure Kayak Project
- Block 3 Unsupervised Machine Learning Uber Pickups Project

Project Reminder

Project

- One of the main pain point that Uber's team found is that sometimes drivers are not around when users need them.
- Therefore, Uber's data team would like to work on a project where their app would recommend hot-zones in major cities to be in at any given time of day.

Goal

The target of the project is to

- Develop an algorithm to identify "hot zones" where drivers should position themselves
- Create time-based recommendations that adapt to changing demand patterns
- Visualize results for easy implementation by drivers

The dataset represents latitude and longitude of 564k pickups in April 2014

Dataset description

Overview of the pickup location for a given hour oof a given day

- Dataset of April 2014 used with 564k lines
- 4 columns:
- Date
- Latitude
- Longitude
- Base : Internal code, not used in the analysis
- Preprocessing limited to converting the date column into several sub-columns
- Focus on New York City inside this latitude and longitude line :
- Latitude minimum = 40.4774
- Latitude maximum = 40.9176
- Longitude minimum = -74.2591
- Longitude maximum = -73.7004
- Analysis done on the 30th of April 2014 at 5pm to limit the number of lines

Pick up of the 30th at 5pm

Monday and Sunday are the lowest day while the peak in on Wednesday

Number of pickups per Day | April 2014, NYC only, 0 = Monday

During the week, there is a peak at 7am then between 5pm and 8pm while the night is busy during the weekend

Number of pickups per Hour depending on the day | April 2014, NYC only, 0 = Monday

DBScan is used to calculate coordinates of hot zones at any given time

Kmeans Clustering

Description

Cluster Overview

- Elbow and silhouette methods to get the optimal number of clusters
- 9 clusters seems to be the best for April 30th

DBScan

Description

- DBScan used to handle different numbers of cluster depending on the time
- Parameters : Epsilon = 0.1 / Min Sample = 10
- 6 clusters + outliers

Cluster Center Overview

DBScan chosen for algorithm as the number of cluster adapts to the dataset

Hot zone are calculated and plotted for any given time with a DBScan clustering

Plot_hot_zone function

- Input: dataset, day of the week, hour, dbscan parameters
- For any given hours, would calculate the clusters center and plot them
- The output would be a map with the hot zones of this hour
- For a given day, the evolution of hot spots can be shown by looping over different hours

Evolution of hot zones for a Saturday at 12am, 6am, 12pm, 6pm

Thanks!

