V"'D" Workshop 2003 Frankfurt

3D Model Retrieval

Dejan V. Vranić

University of Konstanz, Dept. of Comp. Science

March 19, 2003

DFG Teilprojekt "Ähnlichkeitssuche durch Gestaltcharakterisierung auf 3D Datenbanken"

DFG SPP V3D2 Phase 3

Joint project of

Multimedia Signal Processing Group

Prof. Dietmar Saupe

Dejan V. Vranić (starting date: April 2002)

Databases, Data Mining and Visualization Group

Prof. Daniel Keim

Tobias Schreck (starting date: November 2002)

University of Konstanz, Dept. of Comp. Science

Overview

Part A: 3D Model Retrieval (Dejan V. Vranić)

- Problem of 3D Model Retrieval
- Requirements
- Approach
- Demo
- Exposition of a small group of feature vectors

Part B: Kombination von Feature-Vektoren (Tobias Schreck)

- Problemstellung
- Untersuchungsansatz
- Effektivitätsresultate
- Entwicklungsziel: Query Processor

Content-based retrieval

- Goal
 - Use a multimedia object (image, movie clip, audio file, or 3D-model) as a key;
- Approach
 - Extract appropriate features (descriptors (D)) from objects automatically and use them as points in a search space;

Typical retrieval algorithm

Normalization

 Problem: 3D objects are defined in arbitrary coordinates and units;

◆ Feature Extraction

• Problem: describe object in few variables yet with sufficient discriminant power;

Similarity search

• Problem: for a given query object efficiently find nearest neighbors (curse of dimensionality).

3D-shape descriptors criteria

- Invariance with respect to translation, rotation, scaling, and reflections;
- ◆ Robustness with respect to level-of-detail (different tessellations);
- Robustness with respect to noise and outliers;
- Efficient feature extraction and retrieval:
- Multiresolution feature representation;
- Discriminating of shape similarities.

Demo

Invariance w.r.t. similarity transforms

Three approaches:

- Finding canonical coordinate frame
 - Principle Component Analysis (PCA);
- Aligning objects pairwise
 - Fitting objects (time-consuming);
- Defining Ds that possess the invariance inherently
 - Considering some relative features of sets of points or triangles (curvature spectrum, "shape distributions", representation of topology);
 - By summing up (or averaging) features over a group of transformations (e.g., FFT on a sphere).

Normalization (pose estimation)

◆ Purpose

Finding a canonical frame
 (i.e., position and orientation);

Result

 Translation, rotation, scaling, and reflection invariance of descriptors;

♦ Tools

- · Center of mass,
- "Continuous" PCA (CPCA) (rotation),
- Test based on moments (reflections), and
- Formula for calculating the scale factor.

3D-shape descriptors

Classification of our 3D-shape descriptors:

- ◆ Geometry-based
 - Volume,
 - · Voxel, and
 - Moment-based Ds;
- ♦ Image-based
 - Ray-based,
 - Depth-buffer,
 - Silhouette,
 - Shading, and
 - "Complex" Ds.

Representation: spatial or frequency (spectral) domain.

Ray-based D (spatial domain)

- Idea
 - Sample a 3D-model in regularly spaced directions and treat these samples as components of a feature vector.
- Realization
 - Measure extent of a model

$$r: S^2 \to R$$

 $\mathbf{u} \mapsto \max\{r \ge 0 \mid r\mathbf{u} \in I \cup \{\mathbf{0}\}\},\$

u - a directional unit vector

I – the point set of the model

Features as functions on a sphere

[Saupe, Vranić, MMSP 2001, DAGM 2001]

Spherical harmonics

 Use Fourier coefficients of a function on the 2sphere to form a feature vector with an embedded multiresolution representation;

Realization

• Sample a 3D-model in appropriate radial directions \mathbf{u}_{ij} (i, j = 0,..., n -1) and treat these samples as values of a function on the 2-sphere.

Spherical harmonics

[Heally, Rockmore, Kostelec, Moore]

• Functions on the 2-sphere

$$f: S^{2} \to \mathbb{C}$$

$$(\theta, \varphi) \to f(\theta, \varphi),$$

$$0 \le \theta \le \pi,$$

$$0 \le \varphi < 2\pi;$$

- ♦ Spherical harmonics Y_l^m : $S^2 \to \mathbb{C}$, $|m| \le l$ provide orthonormal basis of $L^2(S^2)$;
- ♦ Subspace X_l spanned by $\{Y_l^m \mid -l \le m \le l\}$ is invariant w.r.t. rotations of the sphere;

Fourier transform on the sphere

• Expansion of the function $f(\theta, \varphi)$

$$f \approx \sum_{l \geq 0} \sum_{|m| \leq l} c(l,m) \cdot Y_l^m$$

- $f \approx \sum_{l \geq 0} \sum_{|m| \leq l} c(l,m) \cdot Y_l^m;$ $c(l,m) = \langle f, Y_l^m \rangle$ is (l,m) Fourier coefficient;
- ♦ Use special FFT algorithms (Healy et al), public domain source code.

Frequency domain representation

I = point set of (filled-in) triangles,

$$r: S^2 \to R$$

 $\mathbf{u} \mapsto \max\{r \ge 0 \mid r\mathbf{u} \in I \cup \{\mathbf{0}\}\},\$

$$\mathbf{u}_{ij} = (x_{ij}, y_{ij}, z_{ij}) = (\cos \varphi_i \sin \theta_j, \sin \varphi_i \sin \theta_j, \cos \theta_j),$$

$$\varphi_{\cdot} = 2i\pi/n$$
.

$$\varphi_i = 2i\pi/n,$$
 $\theta_j = (2j+1)\pi/2n,$ $i, j = 0,..., n-1.$

$$i \quad i = 0 \qquad n-1$$

Original

8² harmonics

16² harmonics

24² harmonics

Absolute values of coefficients

$$c(l,m) = c(l,-m) \Rightarrow |c(l,m)| = |c(l,-m)|$$

$$l = 0$$
 1.161

$$l=3$$
 0.017 0.008 0.010 0.008 0.010 0.008 0.017 $m=-3$ $m=-2$ $m=-1$ $m=0$ $m=1$ $m=2$ $m=3$

Dimension: n(n + 1) / 2, l < n.

"Complex" feature vector

[Vranić, Saupe ICME 2002]

I = point set of (filled-in) triangles,

$$\mathbf{u}_{ij} = (x_{ij}, y_{ij}, z_{ij}) = (\cos \varphi_i \sin \theta_j, \sin \varphi_i \sin \theta_j, \cos \theta_j),$$

$$\varphi_i = 2i\pi/n$$
, $\theta_j = (2j+1)\pi/2n$, $i, j = 0,...,n-1$,

$$r:S^2\to\mathbb{C}$$

$$r(\mathbf{u}) = x(\mathbf{u}) + i \ y(\mathbf{u}),$$

$$x: S^2 \to [0,+\infty) \in \mathbb{R}, y: S^2 \to [0,1] \in \mathbb{R},$$

$$x(\mathbf{u}) = \max\{ x \ge 0 \mid x \mathbf{u} \in I \cup \{\mathbf{0}\} \}, \quad y(\mathbf{u}) = \begin{cases} 0, & \text{if } x(\mathbf{u}) = 0 \\ \mathbf{u} \cdot \mathbf{n}(\mathbf{u}), & \text{otherwise} \end{cases}.$$

♦ Find spherical power spectrum for $r(\mathbf{u})$ and for l < n use <u>all</u> coefficient magnitudes as components of the feature vector

Dimension: n^2 , l < n.

Related work

- [Paquet et al. '98]
 - Cords-based, moments-based, and wavelet transform-based descriptors (Ds);
- ◆ [Suzuki et al. '00]
 - Grid-based and "rotation invariant" Ds;
- **♦** [MPEG-7]
 - 3D shape spectrum and 2D-3D multiple view;
- ♦ [Hilaga et al. '01]
 - Topology matching;
- ♦ [Funkhouser et al. '01, '02, '03]
 - Reflective symmetry, shape distribution, spherical harmonics, skeletal graphs.

- * Spherical harmonics $Y_i^m\colon S^2\to \mathbb{C}, \text{ in its } i$ provide orthonormal basis of $L^2(S^2)$:
- ♦ Subspace X_l spanned by $\{Y_l^m \mid -l \le m \le l\}$ is invariant w.r.t. rotations of the sphere;

$$f_{i,l} = \sqrt{\sum_{|m| \le l} |c_i(l,m)|^2}, \quad 0 \le l < n, \ 1 \le i \le R$$

