Evaluating the Benefits of Sample Splitting for Double Machine Learning

Michael Sarkis, Jack McCarthy

Double ML

In this section we will replicate the methods put forth in the paper by Chernozhukov et al., dubbed "CCD-DHNR", which establishes an unbiased Bayesian machine learning framework for treatment effect estimation.

Simulated Dataset

First we will generated a toy dataset on which we may test each method. We will assume the data is generated according to the following simpler model derived from the general form considered in CCDDHNR:

$$Y_i = D_i \theta + g_0(X_i) + \epsilon_i, \quad \epsilon_i \sim N(0, 1),$$

$$D_i = m_0(X_i) + \tau_i, \quad \tau_i \sim N(0, 1),$$

where Y is the outcome, D is the treatment, and X is the vector of covariates. $g_0(X)$ and $m_0(X)$ relate the covariates to the value of the response and the treatment respectively. We define these "nuisance" functions to be

$$g_0(x) = x_1 + \sigma(x_3),$$

 $m_0(x) = x_3 + \sigma(x_1),$

where $\sigma(x)$ is the sigmoid function

$$\sigma(x) = \frac{1}{1 + e^{-x}}.$$

We also define $X_i \sim N(0, \Sigma)$ where $\Sigma_{ij} = 0.5^{|i-j|}$

Assuming a continuous response and treatment, N total observations, a p-dimensional covariate vector, and a true value of $\theta = 0.5$, we may generate a toy dataset as follows:

```
# data dimensions
N = 250
p = 100
theta = 0.5

# covariance matrix
i_mat <- matrix(rep(1:p, p), p)</pre>
```

```
j_mat <- matrix(rep(1:p, each=p), p)
Sigma <- 0.5^abs(i_mat - j_mat)

generate_data <- function(N, p, theta, S) {
    # generate covariates
    X <- mvrnorm(n=N, mu=rep(0, p), Sigma=Sigma)

# generate treatment
    D <- m_0(X) + rnorm(N)

# generate response
    Y <- D*theta + g_0(X) + rnorm(N)

return(tibble(X=X, D=D, Y=Y))
}</pre>
```

where we will use the **generate_data** function to obtain distributions on the predicted value of θ through multiple fits to many random datasets.

Naive ML

A naive approach to estimating θ would be to estimate $D\theta + g_0(X)$ using some machine learning method. In line with the demonstration in Chernozhukov et al., we will split the samples into two index sets of equal size, R (auxiliary) and S (primary). We will then use the auxiliary set generate the estimate $D\hat{\theta} + \hat{g}_0(X)$, and use the primary set to estimate θ as

$$\hat{\theta} = \left(\frac{1}{n} \sum_{i \in S} D_i^2\right)^{-1} \frac{1}{n} \sum_{i \in S} D_i (Y_i - \hat{g}_0(X_i)).$$

We do so for our simulated dataset below using random forest regressors.