Dataset Selection

The file i just uploaded is named heart.csv

Data Prepocessing

Start coding or generate with AI.

Step 1: Load the Dataset

Start coding or generate with AI.

Double-click (or enter) to edit

import pandas as pd

Load the dataset
file_path = "/content/heart.csv"
df = pd.read_csv(file_path)

Display the first few rows
df.head()

→		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	tha
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	,
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	;

Step 2: Summary Statistics

Display information about the dataset
df.info()

Summary statistics for numerical columns
df.describe()

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 303 entries, 0 to 302
 Data columns (total 14 columns):

	\			, .
#	Column	Non-	-Null Count	Dtype
0	age	303	non-null	int64
1	sex	303	non-null	int64
2	ср	303	non-null	int64
3	trestbps	303	non-null	int64
4	chol	303	non-null	int64
5	fbs	303	non-null	int64
6	restecg	303	non-null	int64
7	thalach	303	non-null	int64
8	exang	303	non-null	int64
9	oldpeak	303	non-null	float64
10	slope	303	non-null	int64
11	ca	303	non-null	int64
12	thal	303	non-null	int64
13	target	303	non-null	int64
	67	4/41		

dtypes: float64(1), int64(13)

memory usage: 33.3 KB

	age	sex	ср	trestbps	chol	fbs	restec
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.00000
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.52805
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.52586
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.00000
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.00000
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.00000
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.00000
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.00000

Step 3: Check for Missing Values python Copy code

```
# Check for missing values
missing_values = df.isnull().sum()
missing_values
```

	0
age	0
sex	0
ср	0
trestbps	0
chol	0
fbs	0
restecg	0
thalach	0
exang	0
oldpeak	0
slope	0
са	0
thal	0
target	0

dtype: int64

Double-click (or enter) to edit

Step 4: Data Visualizations

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.countplot(x="target", data=df)
plt.title("Distribution of Target Variable")
plt.show()
```


a. Distribution of the Target Variable

```
import seaborn as sns
import matplotlib.pyplot as plt

sns.countplot(x="target", data=df)
plt.title("Distribution of Target Variable")
plt.show()
```


b. Histograms for Numerical Features

df.hist(figsize=(15, 10), bins=20)
plt.tight_layout()
plt.show()

c. Correlation Heatmap

```
correlation_matrix = df.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt=".2f")
plt.title("Correlation Heatmap")
plt.show()
```


d. Boxplots for Categorical Variables

```
categorical_features = ["cp", "sex", "fbs", "restecg", "exang", "slope", "ca", "thal"]
for feature in categorical_features:
    sns.boxplot(x=feature, y="target", data=df)
    plt.title(f"Boxplot of {feature} vs Target")
    plt.show()
```


8 of 19

9 of 19

10 of 19

Step 5: Handle Missing Values

Handle missing values by filling with the median
df.fillna(df.median(), inplace=True)

Step 6: Encode Categorical Variables

One-hot encode categorical variables if needed
df = pd.get_dummies(df, columns=categorical_features, drop_first=True)
df.head()

	age	trestbps	chol	thalach	oldpeak	target	cp_1	cp_2	cp_3	sex_1	• • •	exan
0	63	145	233	150	2.3	1	False	False	True	True		Fa
1	37	130	250	187	3.5	1	False	True	False	True		Fa
2	41	130	204	172	1.4	1	True	False	False	False		Fa
3	56	120	236	178	0.8	1	True	False	False	True		Fa
4	57	120	354	163	0.6	1	False	False	False	False		Tı

5 rows × 23 columns

Step 7: Normalize/Standardize Features

```
from sklearn.preprocessing import StandardScaler

# Standardize numerical features
numerical_features = ["age", "trestbps", "chol", "thalach", "oldpeak"]
scaler = StandardScaler()
df[numerical_features] = scaler.fit_transform(df[numerical_features])
df.head()
```

age	trestbps	chol	thalach	oldpeak	target	cp_1	cp_2	cp_3	sex_1
0.952197	0.763956	-0.256334	0.015443	1.087338	1	False	False	True	True
-1.915313	-0.092738	0.072199	1.633471	2.122573	1	False	True	False	True
-1.474158	-0.092738	-0.816773	0.977514	0.310912	1	True	False	False	False
0.180175	-0.663867	-0.198357	1.239897	-0.206705	1	True	False	False	True
0.290464	-0.663867	2.082050	0.583939	-0.379244	1	False	False	False	False
	0.952197 -1.915313 -1.474158 0.180175	-1.915313 -0.092738 -1.474158 -0.092738 0.180175 -0.663867	0.952197 0.763956 -0.256334 -1.915313 -0.092738 0.072199 -1.474158 -0.092738 -0.816773 0.180175 -0.663867 -0.198357	0.952197 0.763956 -0.256334 0.015443 -1.915313 -0.092738 0.072199 1.633471 -1.474158 -0.092738 -0.816773 0.977514 0.180175 -0.663867 -0.198357 1.239897	0.952197 0.763956 -0.256334 0.015443 1.087338 -1.915313 -0.092738 0.072199 1.633471 2.122573 -1.474158 -0.092738 -0.816773 0.977514 0.310912 0.180175 -0.663867 -0.198357 1.239897 -0.206705	0.952197 0.763956 -0.256334 0.015443 1.087338 1 -1.915313 -0.092738 0.072199 1.633471 2.122573 1 -1.474158 -0.092738 -0.816773 0.977514 0.310912 1 0.180175 -0.663867 -0.198357 1.239897 -0.206705 1	0.952197 0.763956 -0.256334 0.015443 1.087338 1 False -1.915313 -0.092738 0.072199 1.633471 2.122573 1 False -1.474158 -0.092738 -0.816773 0.977514 0.310912 1 True 0.180175 -0.663867 -0.198357 1.239897 -0.206705 1 True	0.952197 0.763956 -0.256334 0.015443 1.087338 1 False False -1.915313 -0.092738 0.072199 1.633471 2.122573 1 False True -1.474158 -0.092738 -0.816773 0.977514 0.310912 1 True False 0.180175 -0.663867 -0.198357 1.239897 -0.206705 1 True False	0.952197 0.763956 -0.256334 0.015443 1.087338 1 False False True -1.915313 -0.092738 0.072199 1.633471 2.122573 1 False True False -1.474158 -0.092738 -0.816773 0.977514 0.310912 1 True False False 0.180175 -0.663867 -0.198357 1.239897 -0.206705 1 True False False

5 rows × 23 columns

Model Implementation

First five rows of the dataset:

```
# Import necessary libraries
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from xgboost import accuracy_score, classification_report, confusion_matrix

# Load the dataset
file_path = '/content/heart.csv' # Replace with the correct file path in Colab
data = pd.read_csv(file_path)

# Inspect the dataset
print("First five rows of the dataset:")
print(data.head())
```

```
sex cp trestbps chol fbs
                                           restecg thalach exang oldpeak slope \
        age
                                 233
                                                                        2.3
    0
         63
                   3
                           145
                                                 0
                                                        150
                                                                 0
               1
                                        1
                           130
                                 250
    1
        37
               1
                  2
                                                 1
                                                        187
                                                                 0
                                                                        3.5
                                                                                 0
     2
        41
                           130
                                                 0
                                                        172
                                                                        1.4
                                                                                 2
               0 1
                                 204
                                        0
                                                                 0
                                 236
                                                        178
                                                                                 2
     3
        56
               1
                   1
                           120
                                        0
                                                 1
                                                                 0
                                                                        0.8
        57
                   0
                           120
                                 354
                                        0
                                                 1
                                                        163
                                                                        0.6
                                                                                 2
               0
                                                                 1
           thal target
        ca
    0
         0
               1
    1
        0
               2
     2
        0
               2
     3
        0
               2
                       1
                       1
# Split features and target variable (assumes target column is named 'target')
X = data.drop(columns=['target']) # Replace 'target' with the actual target column name
y = data['target']
# Split the dataset into training and testing sets (70/30 split)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Standardize the features (for Logistic Regression and Gradient Boosting)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

Logistic Regression

```
# Logistic Regression
print("\nLogistic Regression:")
lr_model = LogisticRegression(random_state=42)
lr_model.fit(X_train_scaled, y_train)
lr_predictions = lr_model.predict(X_test_scaled)
print("Accuracy:", accuracy_score(y_test, lr_predictions))
print(classification_report(y_test, lr_predictions))

Logistic Regression:
    Accuracy: 0.8131868131868132
```

0.80

0.82

precision recall f1-score

0.78

0.84

13 of 19 11/16/2024, 5:16 PM

0.79

0.83

support

accuracy			0.81	91
macro avg	0.81	0.81	0.81	91
weighted avg	0.81	0.81	0.81	91

Decision Tree

```
print("\nDecision Tree:")
dt_model = DecisionTreeClassifier(random_state=42)
dt_model.fit(X_train, y_train)
dt_predictions = dt_model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, dt_predictions))
print(classification_report(y_test, dt_predictions))

Decision Tree:
```

Accuracy: 0.7362637362637363

	precision	recall	f1-score	support
0	0.68 0.80	0.78 0.70	0.73 0.74	41 50
1	0.00	0.70	0.74	30
accuracy			0.74	91
macro avg	0.74	0.74	0.74	91
weighted avg	0.74	0.74	0.74	91

Start coding or generate with AI.

Random Forest

```
print("\nRandom Forest:")
rf_model = RandomForestClassifier(random_state=42, n_estimators=100)
rf_model.fit(X_train, y_train)
rf_predictions = rf_model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, rf_predictions))
print(classification_report(y_test, rf_predictions))
```

Random Forest:

Accuracy: 0.8241758241758241

	precision	recall	f1-score	support	
0	0.80	0.80	0.80	41	
1	0.84	0.84	0.84	50	

accuracy			0.82	91
macro avg	0.82	0.82	0.82	91
weighted avg	0.82	0.82	0.82	91

Q-04

Model Training and Evaluation:

```
# Import necessary libraries
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confus
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
# Load the dataset
from google.colab import files
buploaded = files.upload()
# Load the dataset into a DataFrame
file_name = list(uploaded.keys())[0] # Get the name of the uploaded file
df = pd.read_csv(file_name)
# Ensure the dataset has a "target" column for classification purposes.
# Replace "target" with the actual column name if it is different.
if "target" not in df.columns:
    raise ValueError("The dataset must contain a 'target' column for classification.")
# Splitting data into features (X) and target (y)
X = df.drop(columns="target")
y = df["target"]
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train the model
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)
# Predict on test data
y_pred = model.predict(X_test)
y_prob = model.predict_proba(X_test)[:, 1] # For ROC curve
# Calculate metrics
```

```
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
# Display results
print(f"Accuracy: {accuracy:.2f}")
print(f"Precision: {precision:.2f}")
print(f"Recall: {recall:.2f}")
print(f"F1-Score: {f1:.2f}")
# Confusion Matrix
cm = confusion matrix(y test, y pred)
# Plot Confusion Matrix
plt.figure(figsize=(6, 4))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=["No Disease", "Disease"], y
plt.title("Confusion Matrix")
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.show()
# ROC Curve
fpr, tpr, thresholds = roc_curve(y_test, y_prob)
roc_auc = auc(fpr, tpr)
# Plot ROC Curve
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, color='blue', label=f'ROC Curve (AUC = {roc_auc:.2f})')
plt.plot([0, 1], [0, 1], color='gray', linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend()
plt.show()
```

16 of 19 11/16/2024, 5:16 PM

Cancel upload

Browse... No files selected.

Hyperparameter Tunung

```
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from xgboost import XGBClassifier # Ensure this is imported
from sklearn.ensemble import RandomForestClassifier
# Define hyperparameter grids for each model
param_grid_rf = {
    'n_estimators': [50, 100, 200],
    'max_depth': [None, 10, 20, 30],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
}
param_grid_xgb = {
    'n_estimators': [50, 100, 200],
    'max_depth': [3, 6, 10],
    'learning_rate': [0.01, 0.1, 0.2],
    'subsample': [0.5, 0.7, 1.0],
}
# Perform Grid Search for Random Forest
print("Performing Grid Search for Random Forest...")
grid_rf = GridSearchCV(
    estimator=RandomForestClassifier(random_state=42),
    param_grid=param_grid_rf,
    scoring='accuracy',
    cv=3,
    verbose=2,
    n_jobs=-1
grid_rf.fit(X_train, y_train)
# Perform Random Search for XGBoost
print("Performing Random Search for XGBoost...")
random_xgb = RandomizedSearchCV(
    estimator=XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=
    param_distributions=param_grid_xgb,
    n_iter=20,
    scoring='accuracy',
```

```
cv=3,
   verbose=2,
    random_state=42,
    n_jobs=-1
)
random_xgb.fit(X_train, y_train)
# Display the best parameters and their corresponding scores
print("\nBest parameters for Random Forest:", grid_rf.best_params_)
print("Best score for Random Forest:", grid_rf.best_score_)
print("\nBest parameters for XGBoost:", random_xgb.best_params_)
print("Best score for XGBoost:", random_xgb.best_score_)
# Evaluate the best models on the test set
best_rf = grid_rf.best_estimator_
best_xgb = random_xgb.best_estimator_
# Predict the values using the best models
y_pred_rf = best_rf.predict(X_test)
y_pred_xgb = best_xgb.predict(X_test)
# Evaluate the models
print("\nEvaluating the best Random Forest model...")
evaluate_classification_model(y_test, y_pred_rf, data.target_names)
print("\nEvaluating the best XGBoost model...")
evaluate_classification_model(y_test, y_pred_xgb, data.target_names)
```

Conclusion

```
# ... (Existing code)

# Evaluate the model and print metrics

def evaluate_model(model, X_test, y_test):
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    print(f"Accuracy: {accuracy:.2f}")
    print(classification_report(y_test, y_pred))

# Evaluate and print results for Logistic Regression
print("\nLogistic Regression:")
evaluate_model(lr_model, X_test_scaled, y_test)

# Evaluate and print results for Decision Tree
```

```
" FAGTAGE GUA bitue i contro for acctotou lice
print("\nDecision Tree:")
evaluate_model(dt_model, X_test, y_test)
# Evaluate and print results for Random Forest
print("\nRandom Forest:")
evaluate_model(rf_model, X_test, y_test)
# ... (Rest of your code)
# ... (Existing code)
# Evaluate the best models and print metrics
def evaluate_model(model, X_test, y_test):
 # ... (Same as above)
print("\nEvaluating the best Random Forest model...")
evaluate_model(best_rf, X_test, y_test)
print("\nEvaluating the best XGBoost model...")
evaluate_model(best_xgb, X_test, y_test)
# ... (Rest of your code)
```