Trees

CSc106

- The height of trees
 - Level of a node n in a tree T
 - If n is the root of T, it is at level 1
 - If n is not the root of T, its level is 1 greater than the level of its parent
 - Height of a tree T defined in terms of the levels of its nodes
 - If T is empty, its height is 0
 - If T is not empty, its height is equal to the maximum level of its nodes

- Full, complete, and balanced binary trees
 - Recursive definition of a full binary tree
 - If T is empty, T is a full binary tree of height 0
 - If T is not empty and has height h > 0, T is a full binary tree if its root's subtrees are both full binary trees of height h 1

- Complete binary trees
 - A binary tree T of height h is complete if
 - All nodes at level h 2 and above have two children each, and
 - When a node at level h 1 has children, all nodes to its left at the same level have two children each, and
 - When a node at level h 1 has one child, it is a left child

- Balanced binary trees
 - A binary tree is balanced if the height of any node's right subtree differs from the height of the node's left subtree by no more than 1
- Full binary trees are complete
- Complete binary trees are balanced

Number of Nodes (n) vs Height (h)

For Full Binary Trees:

 $h = \log_2(n+1)$ or $n = 2^h - 1$

For *Complete Binary Trees*:

 $ightharpoonup h \leq \log_2(n+1)$ or $h = \lceil \log_2(n+1) \rceil$

For *Balanced Binary Trees*:

 \rightarrow h $\leq \log_2(n+1)$

Binary Search Tree

A binary tree that has the following properties for each node n

- n's value is greater than all values in its left subtree T_L
- n's value is less than all values in its right subtree T_{R}
- Both T_L and T_R are binary search trees

Construct BST for: 60,20,70,10,50,30,40

Traversals of a Binary Tree

- A traversal algorithm for a binary tree visits each node in the tree
- Big O run-time for a Traversal?
- Recursive traversal algorithms (examples on next slide)
 - Preorder traversal
 - Inorder traversal
 - Postorder traversal

Binary Tree Traversal

DisplayInPreOrder(binTree)

- ➤ if (binTree not empty)
 - > display data in root of binTree
 - ➤ DisplayInPreOrder(left subtree of binTree)
 - ➤ DisplayInPreOrder(right subtree of binTree)

DisplayInPostOrder(binTree)

- ➤ if (binTree not empty)
 - ➤ DisplayInPostOrder(left subtree of binTree)
 - ➤ DisplayInPostOrder(right subtree of binTree)
 - > display data in root of binTree

DisplayInOrder(binTree)

- ➤ if (binTree not empty)
 - ➤ DisplayInOrder(left subtree of binTree)
 - display data in root of binTree
 - ➤ DisplayInOrder(right subtree of binTree)