Dynamic Programming

Thomas J. Sargent and John Stachurski

Longye Tian longye.tian@anu.edu.au

Australian National University School of Economics

March 7th, 2025

Outline

- 1 3.1.1.1. Order Isomorphisms
- 2 3.1.1.2 Conjugate Dynamics
- 3.1.1.3 Isomorphic ADP
- 4 3.1.1.4 Isomorphisms and Optimality

Order Isomorphism

Order Isomorphism

Definition 1

A surjective map F from poset (V, \lesssim) to poset (\hat{V}, \leq) is called an

- Order isomorphism if $v \lesssim w \iff Fv \leq Fw$
- Order anti-isomorphism if $v \lesssim w \iff Fw \leq Fv$

Comment: F under this definition is bijective.

Exercise 3.1.1.

Given $h \in \mathbb{R}^X$, let $Fh = \exp(\theta h)$. Show that F is an order isomorphism from \mathbb{R}^X to $(0,\infty)^X$ whenever $\theta > 0$.

Proof.

Fix $\theta > 0$. We know that $\exp(\theta x)$ is a bijective function. Let $h_1, h_2 \in \mathbb{R}^X$ such that $h_1 < h_2$. This implies

$$\theta h_1 \le \theta h_2$$

As $\exp(\cdot)$ is order preserving, hence, we have

$$Fh_1 = \exp(\theta h_1) \le \exp(\theta h_2) = Fh_2$$

Let $k_1, k_2 \in (0, \infty)^X$, $k_1 < k_2$ by surjectivity, we have

$$k_1 = F(q_1) = \exp(\theta q_1), k_2 = F(q_2) = \exp(\theta q_2), q_1, q_2 \in \mathbb{R}^X$$

5 / 30

DP2Longve

Exercise 3.1.1. Continue

Proof.

We have

$$q_1 = \frac{\ln k_1}{\theta} \le \frac{\ln k_2}{\theta} = q_2$$

as ln is order preserving. Therefore, by definition, F is an order isomorphism from \mathbb{R}^X to $(0,\infty)^X$

Exercise 3.1.2.

Let $V = M^X$ and $\hat{V} = \hat{M}^X$, $M, \hat{M} \subset \mathbb{R}$. Let φ be a map from M onto \hat{M} and let $Fv = \varphi \circ v$. Prove if φ is an order isomorphism from M to \hat{M} , then F is an order isomorphism from V to \hat{V} .

Proof.

 φ is order isomorphism then φ is bijective, order preserving with order preserving inverse. Hence apply this dim X times, we get F is bijective, order preserving with order preserving inverse.

Exercise 3.1.3

Let V, \hat{V} be posets. Show that every order isomorphism F is a bijection. Show that every order anti-isomorphism is also a bijection.

Proof.

Let $v_1, v_2 \in \hat{V}$ such that $v_1 = v_2$. By surjectivity, we have

$$v_1 = F(w_1), \quad v_2 = F(w_2), \quad w_1, w_2 \in V$$

Hence, we have

$$F(w_1) \le F(w_2) \implies w_1 \lesssim w_2$$

$$F(w_2) \le F(w_1) \implies w_2 \lesssim w_1$$

Hence, $w_1 = w_2$. This proves that F is injective.

Exercise 3.1.4.

Let F be a bijection from (V, \preceq) to (\hat{V}, \leq) . Show that

- \bullet F is an order isomorphism if and only if F and F^{-1} are order preserving

Proof.

Skip

Lemma 3.1.1.

Let F be an order isomorphism from (V, \preceq) to (\hat{V}, \leq) . If the supremum of $\{v_{\alpha}\}_{{\alpha} \in \Lambda} \subset V$ exists in V, then

$$\bigvee_{\alpha} Fv_{\alpha}$$
 exists in \hat{V} and $\bigvee_{\alpha} Fv_{\alpha} = F\bigvee_{\alpha} v_{\alpha}$

Proof.

Let $v := \bigvee_{\alpha} v_{\alpha} \in V$. Let \hat{w} be any upper bound of $\{Fv_{\alpha}\}$, i.e., $Fv_{\alpha} \leq \hat{w}$ for all $\alpha \in \Lambda$. By surjectivity, we let $\hat{w} = F(w)$, and by order isomorphism, we have

$$v_{\alpha} \preceq w$$
 for all $\alpha \in \Lambda$

Hence, w is an upper bound of $\{v_{\alpha}\}$, this implies $v \lesssim w$. Hence,

$$F(v) \le F(w) = \hat{w}$$

This implies $F(v) = F \bigvee_{\alpha} v_{\alpha}$ is the least upper bound of $\{Fv_{\alpha}\}$.

Exercise 3.1.6

Let V, \hat{V} be posets and let (v_n) be a sequence in V. And let F be a map from V to \hat{V} . Prove the following

- If F is an order isomorphism, then $v_n \uparrow v$ if and only if $Fv_n \uparrow Fv$ in V
- \bullet If F is an order anti-isomorphism, then $v_n \uparrow v$ if and only if $Fv_n \downarrow Fv$ in \hat{V} .

Proof.

$$v_n \uparrow v \implies v_1 \le v_2 \le \dots \le v \text{ and } v = \bigvee_n v_n.$$

Hence, by order isomorphism, we have

$$Fv_1 \le Fv_2 \le \cdots \le Fv$$

and $Fv = \bigvee_n Fv_n$ Moreover, F is order isomorphism implies F^{-1} is order isomorphism. Hence, the other direction follows.

> DP2March 7th, 2025 11 / 30 Longye

Exercise 3.1.7

Prove

- If V, \hat{V} are order isomorphic, then V is totally ordered if and only if \hat{V} is totally ordered
- F is an order anti-isomorphism from V to \hat{V} if and only if F is an order isomorphism from V to its dual \hat{V}^{∂}

Proof.

Skip.

Conjugate Dynamics

- We start with the definition of conjugacy between dynamical systems $((V, T_{\sigma}))$ is a dynamical system with state space V and evolution T_{σ}).
- ullet Then, we go to the most basic structure, V as a poset, and upgrade conjugacy to order conjugacy.
- This prepares for the later upgrade from dynamical system to ADP

Definitions

Definition 2

We call a **discrete time dynamical system** is a pair (V, S), where V is any set, and S is a self-map on V.

Definition 3

Two dynamical systems (V,S) and (\hat{V},\hat{S}) are said to be **conjugate under** F if

F is a bijection from V into \hat{V} and $F \circ S = \hat{S} \circ F$ on V

or we can write it as

$$S = F^{-1} \circ \hat{S} \circ F$$

Proposition 3.1.2.

If (V, S) and (\hat{V}, \hat{S}) are conjugate, then

- ② v is a fixed point of S if and only if Fv is a fixed point of \hat{S}
- \bullet \hat{v} is fixed point of \hat{S} if and only if $F^{-1}\hat{v}$ is a fixed point of S
- v is the unique fixed point of S in V if and only if Fv is the unique fixed point of \hat{S} in \hat{V} .

Proof.

Let v be the unique fixed point of S, i.e., Sv = v. Hence,

$$F(v) = F(Sv) = \hat{S}(Fv)$$

Hence, F(v) is a fixed point of \hat{S} . Let $\hat{w} = F(w)$ be a fixed point \hat{S} , then by part 2, w is the fixed point of S. Hence, w = v, and this implies F(w) = F(v).

Longye DP2 March 7th, 2025 15 / 30

Conjugate Dynamical Systems

Example 3.1.2

Phase Lines and Dynamics

Conjugacy Verification: $F \circ S = \hat{S} \circ F$

$$F(S(x)) = e^{(2x + 1)} = e^{1} \cdot e^{(2x)} = e \cdot (e^{x})^{2} = \hat{S}(F(x))$$

Order conjugacy

Definition 4

Consider two dynamical systems (V, S) and (\hat{V}, \hat{S}) , where V, \hat{V} are posets. We call these systems **order conjugate under** F if they are conjugate under F, and, F is an order isomorphism.

Exercise 3.1.9.

Prove that order conjugacy is an equivalence relation on the set of dynamical systems over partially ordered set.

Proof.

We denote $(V, S) \sim (\hat{V}, \hat{S})$ is they are order conjugate. We need to show this relation is reflexive, symmetric and transitive.

• (Reflexivity) Let F = Id which is a bijection. We have

$$F \circ S = S = S \circ F$$

Moreover, we have $F = F^{-1}$ is order preserving. Hence,

$$(V,S) \sim (V,S)$$

18 / 30

Longye DP2 March 7th, 2025

Exercise 3.1.9 Continue

Proof.

- (Symmetry) Let $(V, S) \sim (\hat{V}, \hat{S})$ under F.
 - F is bijection implies F^{-1} is bijection
 - $F \circ S = \hat{S} \circ F \implies F^{-1} \circ \hat{S} = S \circ F^{-1}$

Hence, (V, S) and (\hat{V}, \hat{S}) are conjugate under F^{-1} .

• F is order preserving with order preserving inverse implies F^{-1} is order preserving with order preserving inverse

Hence, F^{-1} is order isomorphism. Hence $(\hat{V}, \hat{S}) \sim (V, S)$

DP2March 7th, 2025 Longve 19 / 30

Exercise 3.1.9 Continue

Proof.

- (Transitive) Let $(V_1, S_1) \sim (V_2, S_2)$ under F and $(V_2, S_2) \sim (V_3, S_3)$ under G.
 - F, G are bijective implies $H := (G \circ F)$ is bijective
 - \bullet $F \circ S_1 = S_2 \circ F, G \circ S_2 = S_3 \circ G \implies (G \circ F) \circ S_1 = G \circ S_2 \circ F = S_3 \circ (G \circ F)$

Hence, (V_1, S_1) and (V_3, S_3) are conjugate under H.

- F, G are order preserving with order perserving inverses
- $G \circ F$ are order preserving with order preserving inverses

Hence, $(V_1, S_1) \sim (V_3, S_3)$ under $(G \circ F)$.

Lemma 3.1.3.

If (V, S) and (\hat{V}, \hat{S}) are order conjugate under F, then S is order stable on V if and only if \hat{S} is order stable on \hat{V} .

Proof.

- (\Longrightarrow) Suppose S is order stable on V. This implies
- (S1) S has a unique fixed point $v^* \in V$
- (S2) $v \in V, v \preceq v^* \implies v \preceq Sv \text{ and } v \in V, v^* \preceq v \implies Sv \preceq v$
- (S1) implies \hat{S} has a unique fixed point $\hat{v}^* := F(v) \in \hat{V}$ by Proposition 3.1.2. Moreover we have
 - For $\hat{v} := F(v) \in \hat{V}, \hat{v} \le \hat{v}^* \underset{o.i.}{\Longrightarrow} v \lesssim v^* \underset{S2}{\Longrightarrow} v \lesssim Sv \underset{o.i.}{\Longrightarrow} Fv \le \underbrace{FSv = \hat{S}\hat{v}}_{conjugate}$

Longye DP2 March 7th, 2025 21 / 30

Isomorphic ADP

In this section, we will see how one ADP can be transformed into another ADP (or ADPs are equivalent up to a transformation).

Such transformation will result

- Simpler form of Bellman equation
- Tailored to solve for some problems (Exponential BE)
- etc.

Definitions

Definition 5

Let (V, \mathbb{T}) and $(\hat{V}, \hat{\mathbb{T}})$ be ADPs with policy sets $\mathbb{T} := \{T_{\sigma} : \sigma \in \Sigma\}$ and $\hat{\mathbb{T}} := \{\hat{T}_{\sigma} : \sigma \in \Sigma\}$. We call these ADPs **isomorphic** under F if

- F is an order isomorphism from V to \hat{V}
- 2 these two ADPs have the same policy set Σ
- **3** (V, T_{σ}) and (V, \hat{T}_{σ}) are order conjugate under F for all $\sigma \in \Sigma$.

Example 3.1.3. Fei et al. (2021) Exponential Bellman Equation

Exponential risk-sensitive Q-factor Bellman equation (ADP: $((0, \infty)^G, \mathbb{M})$)

$$M_{\sigma}h = \exp(\theta r + \beta \ln P_{\sigma}h), \quad P_{\sigma}h(x, a) := \sum_{x'} h(x', \sigma(x'))P(x, a, x')$$

Risk-sensitive Q-factor policy operator (ADP: $(\mathbb{R}^G, \mathbb{T})$)

$$T_{\sigma}f = r + \frac{\beta}{\theta} \ln \left[P_{\sigma} \exp(\theta f) \right], \quad P_{\sigma} \exp(\theta f)(x, a) := \sum_{x'} \exp(\theta f(x', \sigma(x')) P(x, a, x'))$$

DP2March 7th, 2025 Longye 24 / 30

Example 3.1.3. Continue

Let $\theta > 0$, and

$$Fh = \exp(\theta h)$$

is an order isomorphism from \mathbb{R}^G to $(0, \infty)^G$. For conjugacy, we have

$$(F \circ T_{\sigma})(h) = \exp\left(\theta(r + \frac{\beta}{\theta}) \ln\left[P_{\sigma} \exp(\theta h)\right]\right)$$
$$= \exp(\theta r + \beta \ln P_{\sigma}(Fh))$$
$$= (M_{\sigma} \circ F)(h)$$

Hence, $((0,\infty)^G, \mathbb{M})$ and $(\mathbb{R}^G, \mathbb{T})$ are isomorphic

Example 3.1.4. RDP

Let (Γ, V, B) and $(\Gamma, \hat{V}, \hat{B})$ be two RDPs with identical state sapce X, action space A, and feasible correspondence Γ . Let $V = M^X, \hat{V} = \hat{M}^X$, where $M, \hat{M} \subset \mathbb{R}$. If there exists an order isomorphism φ from M to \hat{M} such that

$$B(x, a, v) = \varphi^{-1}[\hat{B}(x, a, \varphi \circ v)]$$
 for all $v \in V$ and $(x, a) \in G$

then (V, \mathbb{T}) and $(\hat{V}, \hat{\mathbb{T}})$ are isomorphic. From exercise 3.1.2, F is an order isomorphism from V to \hat{V} , and

$$T_{\sigma} = F^{-1} \circ \hat{T}_{\sigma} \circ F$$

Lemma 3.1.4.

Lemma 6

Isomorphism between ADPs is an equivalence relation on the set of ADPs.

Proof.

Let \mathbb{A} be the set of ADPs. We denote $(V_1, \mathbb{T}_1) \cong (V_2, \mathbb{T}_2)$ if there are isomorphic. We need to prove that \sim is reflexive, symmetric and transitive.

- (Reflexivity) Let $(V, \mathbb{T}) \in \mathbb{A}$, as the ADP has the same policy set as itself and by Exercise 3.1.9, we get reflexivity.
- (Symmetry) Let $(V_1, \mathbb{T}_1) \cong (V_2, \mathbb{T}_2)$, then they have the same policy set. We use Exercise 3.1.9 get symmetry
- (Transitivity) Let $(V_1, \mathbb{T}_1) \cong (V_2, \mathbb{T}_2)$ and $(V_2, \mathbb{T}_2) \cong (V_3, \mathbb{T}_3)$, hence these three ADPs have the same policy set. We use Exercise 3.1.9. get transitivity.

Longye DP2 March 7th, 2025 27 / 30

Isomorphisms and Optimality

Notations

We take

- (V, \mathbb{T}) and $(\hat{V}, \hat{\mathbb{T}})$ be two ADPs
- $\mathbb{T} := \{ T_{\sigma} : \sigma \in \Sigma \}; \ \hat{\mathbb{T}} := \{ \hat{T}_{\sigma} : \sigma \in \Sigma \}$
- $v_{\sigma}(resp.\hat{v}_{\sigma})$ be the unique fixed point of $T_{\sigma}(resp.\hat{T}_{\sigma})$
- $T(resp.\hat{T})$ be the Bellman operator of (V, \mathbb{T}) (resp. $(\hat{V}, \hat{\mathbb{T}})$)
- v^* (resp. \hat{v}^*) be the value function of (V, \mathbb{T}) (resp. $(\hat{V}, \hat{\mathbb{T}})$)

Theorem 3.1.5.

Theorem 7

If (V, \mathbb{T}) and $(\hat{V}, \hat{\mathbb{T}})$ are isomorphic under F, then

- $\bullet \ \sigma \ is \ v\text{-}greedy \ for \ (V,\mathbb{T}) \iff \sigma \ is \ Fv\text{-}greedy \ for \ (\hat{V},\hat{\mathbb{T}})$
- \bullet σ is optimal for $(V, \mathbb{T}) \iff \sigma$ is optimal for $(\hat{V}, \hat{\mathbb{T}})$
- 3 Regularity, well-posedness, and order stability is preserved under isomorphism.