Problem Set 5

Anson Zhou

October 10, 2016

1. We can first identify that the maximum (minimum) problem has a solution on the constraint set since $f(x, y) = x^2 - y^2$ is continuous, and $\{(x, y) | x^2 + y^2 = 1\}$ is a compact set. By Weierstrass theorem, a maximum (minimum) exists.

The Lagrange Multipliers method

We first solve the maximum problem. Let

$$\mathcal{L} = x^2 - y^2 + \lambda(1 - x^2 - y^2)$$

The first order conditions are given by

$$\begin{cases} (2-2\lambda)x &= 0\\ (2+2\lambda)y &= 0\\ 1-x^2-y^2 &= 0 \end{cases}$$

The critical points are $(\pm 1, 0)$, $(0, \pm 1)$.

The constraint qualification matrix is (-2x, -2y). The constraint qualification requirement is satisfied by all four critical points. For points that violate the constraint qualification, i.e. (0,0), it also violates constraint $x^2 + y^2 = 0$, thus cannot be a maximum. We compute the value of f on four critical points, and find local maximum $(\pm 1,0)$ and local minimum $(0,\pm 1)$.

Substitution method

Suppose we substitute $y^2 = 1 - x^2$, we would get $\tilde{f}(x) = 2x^2 - 1$. If we solve this unconstrained maximization problem, we can see \tilde{f} has a global minimum at x = 0, but has no global (even local) minimum. This is because there is a hidden constraint $y^2 \ge 0$, which implies for \tilde{f} , the domain should be $x \in [-1,1]$. Namely, after substitution, \tilde{f} is in fact a maximization problem with inequality constraints.

2. First, the domain D is not a compact set since it is not bounded. We cannot use Weierstrass theorem to establish existence of minimum or maximum. In this problem, if we substitute y = 1 - x, we would have

$$\tilde{f}(x) = 3x^2 - 3x + 1, \quad x \in \mathbb{R}$$

and \tilde{f} has no global (local) maximum, but has a global minimum at $x = \frac{1}{2}$. Therefore, the problem of maximizing f on D has no solution, since the image of f on D is not bounded above.

For Lagrangian

$$\mathcal{L} = x^3 + y^3 - \lambda(1 - x - y)$$

The first order conditions are

$$\begin{cases} 3x^2 + \lambda &= 0\\ 3y^2 + \lambda &= 0\\ 1 - x - y &= 0 \end{cases}$$

The only critical point is $(\frac{1}{2}, \frac{1}{2})$. We have already identified this point to be global (local) minimum.

3. (a) The problem is

$$\max_{x,y \ge 0} 50x^{1/2}y^{1/2}$$

s.t.
$$x + y = 80000$$

We substitute y = 80000 - x into the objective function, and the problem becomes

$$\max_{x} 50x^{1/2} (80000 - x)^{1/2}, \quad 0 \le x \le 80000$$

The constraint on the domain of *x* comes from $x, y \ge 0$.

Suppose the solution is interior, the first order condition of this problem gives $x^* = 40000$, and the second order condition confirms that it is a local maximum. The boundary values x = 0 or 80000 are not solutions since the objective function is 0 at those values of x.

Therefore, $x^* = y^* = 40000$. The largest possible output is attained by equalizing the input directed to labor and to equipment.

(b) By Envelope Theorem,

$$\left. \frac{\partial Q}{\partial y} \right|_{(x^*, y^*)} = 25 \sqrt{\frac{x^*}{y^*}} = 25$$

By first order linear approximation, the change in output is given by $25 \cdot 1000 = 25000$.

(c) The actual output change is given by

$$\Delta f = f(x^*, y^*) - f(x^*, y^* - 1000) = 25158.234$$