CODE No.: 19BT40402 SVEC-19

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

II B.Tech II Semester (SVEC-19) Regular Examinations August – 2021

ELECTRONIC CIRCUIT ANALYSIS AND DESIGN

 $[\ Electronics\ and\ Communication\ Engineering, Electronics\ and\ Instrumentation\ Engineering\]$

Time: 3 hours		hours				Max. Marks: 60						
Answer One Question from each Unit All questions carry equal marks				TARIA MARIASI VV								
UNIT-I												
1.	a)	Derive an expression for lower cut-off frequency of the BJT	6 Marks	L4	CO1	PO1						
	b)	amplifier due to the effect of input coupling capacitor. "To achieve larger input impedances and current amplification factor Darlington pair is used".	6 Marks	L3	CO1	PO2						
		Discuss on the above statement by giving suitable expressions with your analytical skills on multistage amplifiers. (OR)										
2.	a)	Develop an expression for voltage gain, input and output impedances of common source MOSFET amplifier.	6 Marks	L4	CO1	PO3						
	b)	Describe the small signal model of MOSFET at low-frequency.	6 Marks	L2	CO1	PO1						
3.	a)		6 Marks	L3	CO2	PO2						
3.	a)	shown are given at room temperature: $g_m = 50 \text{mA/V}$,	0 Marks	L3	CO2	102						
		$\mathbf{r}_{\mathbf{b}\mathbf{b}'} = 100\Omega$, $\mathbf{r}_{\mathbf{b}'\mathbf{e}} = 1K\Omega$, $\mathbf{r}_{\mathbf{b}'\mathbf{c}} = 4M\Omega$, $\mathbf{r}_{\mathbf{c}\mathbf{e}} = 80K\Omega$, $\mathbf{C}_{\mathbf{c}} = 3pF$,										
		$C_e = 100$ pF. Using Miller's theorem and approximate analysis,										
		compute the upper 3-dB frequency of the current gain $A_I = I_L/I_i$.										
		V_{CC}										
		Ŷ										
		$I_L \uparrow \lesssim 1 \mathrm{K}$										
		o V										
		900 Ω										
		V. + VV										
		$v_i \bigcirc I_i$										
		- L										
	b)	Derive the expression for voltage gain of an emitter follower circuit at high frequencies.	6 Marks	L4	CO2	PO2						
		(OR)										
4.	a)	Derive the expression for Hybrid- π conductance of common emitter transistor.	6 Marks	L4	CO2	PO2						
	b)	Derive the expression for CE Short Circuit Current Gain Ai as a	6 Marks	L4	CO2	PO2						
		function of frequency. Draw the frequency Response Curve. UNIT-III										
5.	a)	Elucidate the concept of negative feedback with neat block diagram and give the outlines of each block.	6 Marks	L2	CO3	PO1						
	b)	The open loop gain of an amplifier is $A = 5 \times 10^4$. If the open	6 Marks	L3	CO3	PO2						
		loop gain decreases by 10%, the closed loop gain must not be										
		change by more than 0.1%. Determine the required value of the										
		feedback transfer function (β) and the closed loop gain (A_f).										

(()	R١
l	ľ	,	IN)

6.	a)	Derive the expressions for input and output impedance of current-series feedback amplifier.	6 Marks	L4	CO3	PO2					
	b)	A voltage-series feedback amplifier employs a basic amplifier with input and output resistances each of $2k\Omega$ and gain $A=1000$ V/V. The feedback factor $\beta=0.1$ V/V. Find the gain $A_{\rm f}$, the input resistance $R_{\rm if}$, and the output resistance $R_{\rm of}$ of the closed loop amplifier.	6 Marks	L3	CO3	PO2					
(UNIT-IV)											
7.	a)	Derive the expression for frequency of oscillation of Wien bridge oscillator using BJT.	6 Marks	L3	CO3	PO2					
	b)	Derive the expression for frequency of oscillations of Hartley oscillator.	6 Marks	L3	CO3	PO2					
	(OR)										
8.	a)	State and explain Barkhausen criterion to be satisfied to get the sustained oscillations.	6 Marks	L2	CO3	PO1					
	b)	Derive the expression for frequency of oscillations and gain condition for RC phase shift oscillator using BJT.	6 Marks	L4	CO3	PO2					
		UNIT-V									
9.	a) b)	A power transistor operating in class A transformer coupled amplifier is to deliver a maximum of 5W to a 4Ω load (i.e. $R_L = 4\Omega$). The quiescent point is adjusted for symmetrical clipping, and the collector supply voltage is $V_{CC} = 20V$. Assume ideal characteristics with $V_{min} = 0$. Determine: i) Transformer turns ratio. ii) Peak collector current. iii) Quiescent operating point. iv) Collector-circuit efficiency. Explain the origin of crossover distortion. Describe the method to minimize this distortion.	6 Marks	L3	CO4	PO2					
(OR)											
10	a)	Derive an expression for bandwidth of a single stage tuned amplifier.	6 Marks	L3	CO4	PO2					
	b)	Write short notes on: i) Class S Power amplifier. ii) Heat sinks.	6 Marks	L1	CO4	PO1					

& & &