Taxonomy of Trusted Execution Environment Technologies

Yifan Wu

Department of Computing Imperial College London 10/05/2022

Introduction

Background Information

Metrics

Evaluation

Conclusion

Introduction

Background Information

Metrics

Evaluation

Conclusion

Definitions

- Trusted: cannot be compromised in any way
- Trusted Execution Environment (TEE)
 confidentiality and integrity of the execution are guaranteed
- Trusted Computing Base (TCB)
 TEE is based on TCB
- Enclave

 TEE implementation
- Trusted World/Normal World
 consists of only trusted/untrusted HW/SW components

Security Requirements

- Confidentiality(aka Secrecy/Privacy): no secrets can be revealed
- Integrity: cannot be modified without detection
- Authenticity: check TEE's "identity" before transferring data
- Availability(Optional): e.g, Denial of Service attacks

Core Mechanisms

Hardware-based Isolation

- hardware-based access control
 e.g. invalid instruction exception on RISC-V
- physical resource partition
 e.g. cache partitioning for side-channel attacks
- secure resource sharing
 i.e. clear data on a context switch, HW and SW co-design

Problems of Hardware-based isolation

- assuming that privileged SW (OS, hypervisor) is trusted
- not true; can be compromised by exploiting vulnerabilities in these SW

Cryptography

- complement of hardware-based isolation
- create a trusted channel (C&I) from an untrusted medium
- requirements: secret keys/source of randomness
- applications: encryption/digital signature/authorized certificate/key exchange algorithm

Cryptography applications in TEE

- Secure Boot: from an on-chip secret to TCB
- Data Encryption: data flows from Trusted World to Normal World
- Integrity Check: data flows back from Normal World to Trusted World
- Attestation: for TEE's authenticity

Introduction

Background Information

Metrics

Evaluation

Conclusion

Metrics

Functionality(Security) Metrics

Performance Metrics

Functionality Metrics

The first classification:

- bottom layer: TCB
 - Unverified Lines of Code in the TCB (ULoC): possible vulnerabilities
- medium layer: *internal states* of TEE
 - C&I of data on DRAM
 - C&I of data related to I/O
 - Secure interrupts
 - Resistance of side-channel attacks
- top layer: TEE as a service provider
 - Attestation support

Functionality Metrics

The second classification:

Resistance of direct/indirect attacks

- direct attacks: physical attacks on DRAM/bus
- indirect attacks: side-channel attacks

Performance Metrics

- Management Overhead
 - container creation latency
 - context switch overhead
- Scalability Limitations
 - concurrency
 - parallelism
 - o storage overhead: metadata
 - o performance degradation on huge workloads
- External Access Overhead
 - calling external functions
 - accessing DRAM or peripherals

Introduction

Background Information

Metrics

Evaluation

Conclusion

Evaulation

- Classical Models
 - Process
 - Virtual Machine
- Intel SGX
- ARM TrustZone
- RISC-V
 - Sanctum
 - Keystone
 - PENGLAI Enclave

Process

TEE		Func	ctional	lity					Per	forn	nano	ce		
TEE	ULoC	DRAM	Α	Creation	CS	C	P	S	Н	EF	Access			
	•		•	•	'				•					
Process	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Functionality

- if the OS is trusted, C&I of DRAM/peripherals can be guaranteed
- otherwise, OS can directly access DRAM and I/O
- do not support secure intr/side-channel attacks due to lack of HW support
- ULoC: no TCB

Process

TEE		Func	ctional	lity					Per	forn	nano	ce		
TEE	ULoC	DRAM	I/O	Intr	SC	Α	Creation	CS	C	P	S	Н	EF	Access
	•	•	•	•	•				•	'	'	•		
Process	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Performance

- creation: loading ELF to memory
- context switch: changing the privilege level, processor state pollution
- scalability: only limited by available resources
- external function calls: system calls
- accessing DRAM/peripherals: MMU&TLB/system calls

Virtual Machine

TEE		Func	ctional	lity					Per	forn	nanc	ce		
TEE	ULoC	DRAM	I/O	Intr	SC	Α	Creation	CS	С	P	S	Н	EF	Access
VM	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Functionality

need to trust the hypervisor

Performance

- context switch & external function calls: another level of abstraction
- accessing DRAM: 2-stage address translation

Intel SGX

TEE		Func	ctiona	lity					Per	forn	nano	ce		
TEE	ULoC	DRAM	I/O	Intr	SC	A	Creation	CS	C	P	S	Н	EF	Access
Intel SGX	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Functionality

- ULoC: SGX SDK by Intel
- C&I of data on DRAM: Memory Encryption Engine (MEE)
 - between Last-Level Cache (LLC) and DRAM
 - encrypting data before writing to DRAM
 - integrity check: record hash value of each memory block's content, check when loading to LLC
 replay attacks: counter-based Merkle Tree design
- attestation support

Intel SGX

TEE		Func	ctional	lity					Per	forn	nano	ce		
TEE	ULoC	DRAM	I/O	Intr	SC	A	Creation	CS	C	P	S	Н	EF	Access
Intel SGX	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Performance

- creation: calculating the enclave's hash value when creating it
- huge workload: total size of active enclaves (with metadata) is only 128MiB,
 frequent switch in/out
- access DRAM: encryption/decryption per interaction with DRAM
- storage: 25% on DRAM and $\frac{1}{2^{15}}$ on-chip of protected region
- external function call: dedicated instruction; proxy functions from SGX SDK

ARM TrustZone

TEE		Func	ctional	lity					Peri	forn	nano	ce		
TEE	ULoC	DRAM	I/O	Intr	SC	A	Creation	CS	C	P	S	Н	EF	Access
TrustZone	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Functionality

- ULoC: complexity of SW stack
- C&I of DRAM: on-chip trusted storage
- secure interrupt & I/O: hardware-based access control (General Interrupt Controller and AXI)
- do not support attestation by default

ARM TrustZone

TEE		Func	ctional	ity					Peri	orn	nanc	ce		
TEE	ULoC	DRAM	I/O	Intr	SC	Α	Creation	CS	C	P	S	Н	EF	Access
TrustZone	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Performance

- storage overhead: on-chip trusted SRAM of several hundred bytes
- external function calls: 7 processor states, many processor state changes
- context switch: should bypass the secure monitor
- access DRAM: do not need to encrypt/decrypt based on on-chip storage

RISC-V

- open-source Instruction Architecture Set with Extensions
- open-source CPU implementations
- more flexible than SGX/TrustZone, involves HW modifications

Sanctum

TEE		Func	ctional	lity					Peri	orn	nanc	ce		
IEE	ULoC	DRAM	I/O	Intr	SC	Α	Creation	CS	C	P	S	Н	EF	Access
Sanctum	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Simulating SGX Enclaves on RISC-V

Functionality

- ULoC: a lightweight and unverified secure monitor
- C&I of DRAM: trusted off-chip HW thus suffers from physical attacks
- cache timing side-channel attacks: flushing per-core cache on a context switch (secure resource sharing)

Performance

- context switch: flushing per-core cache on a context switch
- not sensitive to huge workloads

Keystone

TEE		Fund	ctional	lity					Per	forn	nano	ce		
TEE	ULoC	DRAM	I/O	Intr	SC	A	Creation	CS	C	P	S	Н	EF	Access
•	•	•	•	•		'			'		•	•		•
Keystone	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Functionality

- ULoC: a huge TCB including the secure monitor, the runtime per enclave and the enclave app
- C&I of DRAM: a huge on-chip storage of 2MiB used exclusively by an enclave
- partial support for secure interrupts
- cache side-channel attacks: cache partitioning (physical resource partitioning)

PENGLAI Enclave

TEE		Func	ctional	ity					Peri	orn	nano	ce		
TEE	ULoC DRAM I/O Intr SC A						Creation	CS	C	P	S	Н	EF	Access
PENGLAI	•	•	•	•	•	•	•	•	•	•	•	•	•	•

- Host Page Table: reduce memory access checks
- Mountable Merkle Tree: support workloads up to 512GiB with minimal storage overheads
- fork-style fast enclave creation while supports attestation
- cache side-channel attacks: cache line locking, special-purpose instructions, increases the overhead of context switches

Introduction

Background Information

Metrics

Evaluation

Conclusion

Table 3.1: Taxonomy Table of TEE Technologies

TEE		Func	ctional	lity					Per	forn	nano	ce		
IEE	ULoC	DRAM	I/O	Intr	SC	A	Creation	CS	C	P	S	Н	EF	Access
Process	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VM	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Intel SGX	•	•	•	•	•	•	•	•	•	•	•	•	•	•
TrustZone	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Sanctum	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Keystone	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PENGLAI	•	•	•	•	•	•	•	•	•	•	•	•	•	•

DRAM

- on-chip RAM (cost: on-chip storage)
- data encryption & integrity check (cost: access latency)
- secure I/O or interrupts: requires special hardware architecture
- side-channel attacks: physical resource partitioning or secure resource sharing (cost: context switch latency)
- Attestation (cost: creation latency)
- ULoC&context switch&external function calls: complexity of the SW stacks

Q & A

Thank you for listening!