

Vishay Semiconductors

Optocoupler, Phototransistor Output (Dual, Quad Channel)

FEATURES

- Current transfer ratio at I_F = 10 mA
- Isolation test voltage, 5300 V_{RMS}
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

RoHS

AGENCY APPROVALS

- UL1577, file no. E52744 system code H, double protection
- CSA 93751
- BSI IEC 60950; IEC 60065
- DIN EN 60747-5-2 (VDE 0884) available with option 1
- FIMKO

DESCRIPTION

The ILD1, ILD2, ILD5, ILQ1, ILQ2, ILQ5 are optically coupled isolated pairs employing GaAs infrared LEDs and silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the drive while maintaining a high degree of electrical isolation between input and output.

The ILD1, ILD2, ILD5, ILQ1, ILQ2, ILQ5 are especially designed for driving medium-speed logic and can be used to eliminate troublesome ground loop and noise problems. Also these couplers can be used to replace relays and transformers in many digital interface applications such as CTR modulation.

The ILD1, ILD2, ILD5 has two isolated channels in a single DIP package and the ILQ1, ILQ2, ILQ5 has four isolated channels per package.

ILD1, ILD2, ILD5, ILQ1, ILQ2, ILQ5

Vishay Semiconductors

AGENCY CERTIFIED/PACKAGE	DUAL CHANNEL			QUAD CHANNEL					
AGENCY CERTIFIED/PACKAGE	CTR (%)								
VDE, UL, CSA, BSI, FIMKO	20 to 300	0 100 to 500 50 to 400 20 to 300 100 to 5				50 to 400			
DIP-8	ILD1-X001	ILD2-X001	ILD5-X001	-	-	-			
DIP-8, 400 mil, option 6	=	ILD2-X016	-	-	-	-			
SMD-8, option 7	-	ILD2-X017	-	-	-	-			
SMD-8, option 9	ILD1-X019T	-	=	-	-	-			
DIP-16	-	-	-	-	ILQ2-X001	-			
DIP-16, 400 mil, option 6	=	=	=	-	ILQ2-X016	-			
SMD-16, option 7	=	=	=	-	ILQ2-X017T (1)	-			

Notes

- · Additional options may be possible, please contact sales office.
- (1) Also available in tubes; do not put T on end.

PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT	
INPUT			1			
Reverse voltage			V_{R}	6	V	
Forward current			I _F	60	mA	
Surge current			I _{FSM}	2.5	Α	
Power dissipation			P _{diss}	100	mW	
Derate linearly from 25 °C				1.3	mW/°C	
OUTPUT			1			
		ILD1	V _{CEO}	50	V	
		ILQ1	V _{CEO}	50	V	
O-IIt		ILD2	V _{CEO}	70	V	
Collector emitter reverse voltage		ILQ2	V _{CEO}	70	V	
		ILD5	V_{CEO}	70	V	
		ILQ5	V_{CEO}	70	V	
Outline to a second			I _C	50	mA	
Collector current	t < 1 ms		I _C	400	mA	
Power dissipation			P _{diss}	200	mW	
Derate lineary from 25 °C				2.6	mW/°C	
COUPLER	·					
Isolation test voltage between emitter and detector			V _{ISO}	5300	V_{RMS}	
Creepage distance				≥ 7	mm	
Clearance distance				≥ 7	mm	
la eletica manietama	V _{IO} = 500 V, T _{amb} = 25 °C		R _{IO}	≥ 10 ¹²	0	
Isolation resistance	V _{IO} = 500 V, T _{amb} = 100 °C		R _{IO}	≥ 10 ¹¹	Ω	
Package power dissipation			P _{tot}	250	mW	
Derate linearly from 25 °C				3.3	mW/°C	
Storage temperature			T _{stg}	- 40 to + 150	°C	
Operating temperature			T _{amb}	- 40 to + 100	°C	
Junction temperature			Tj	100	°C	
Soldering temperature (2)	2 mm from case bottom		T _{sld}	260	°C	

Notes

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
 implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
 maximum ratings for extended periods of the time can adversely affect reliability.
- (1) Refer to reflow profile for soldering conditions for surface mounted devices (SMD). Refer to wave profile for soldering conditions for throught hole devices (DIP).

ILD1, ILD2, ILD5, ILQ1, ILQ2, ILQ5

Vishay Semiconductors

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)									
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT			
INPUT									
Forward voltage	I _F = 60 mA	V_{F}		1.25	1.65	V			
Reverse current	V _R = 6 V	I _R		0.01	10	μΑ			
Capacitance	V _R = 0 V, f = 1 MHz	Co		25		pF			
Thermal resistance, junction to lead		T _{thJL}		750		K/W			
OUTPUT									
Collector emitter capacitance	V _{CE} = 5 V, f = 1 MHz	C _{CE}		6.8		pF			
Collector emitter leakage current	V _{VCE} = 10 V	I _{CEO}		5	50	nA			
Saturation voltage, collector emitter	$I_C = 1 \text{ mA}, I_B = 20 \mu\text{A}$	V _{CESAT}		0.25	0.4	V			
DC forward current gain	$V_{CE} = 10 \text{ V}, I_{B} = 20 \mu A$	h _{FE}	200	650	1800				
DC forward current gain saturated	$V_{CE} = 0.4 \text{ V}, I_B = 20 \mu A$	h _{FEsat}	120	400	600				
Thermal resistance, junction to lead		R _{thjl}		500		K/W			
COUPLER									
Capacitance (input to output)	V _{IO} = 0 V, f = 1 MHz	C _{IO}		0.8		pF			

Note

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.

CURRENT TRAN	SFER RATIO (T _{amb} = 25	5 °C, unless	otherwise	specified)			
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
		ILD1	CTR _{CEsat}		75		%
		ILQ1	CTR _{CEsat}		75		%
	$I_F = 10$ mA, $V_{CE} = 0.4$ V	ILD2	CTR _{CEsat}		170		%
		ILQ2	CTR _{CEsat}		170		%
		ILD5	CTR _{CEsat}		100		%
I _C /I _F		ILQ5	CTR _{CEsat}		100		%
(collector emitter saturated)	I _F =10 mA, V _{CE} = 10 V	ILD1	CTR _{CE}	20	80	300	%
		ILQ1	CTR _{CE}	20	80	300	%
		ILD2	CTR _{CE}	100	200	500	%
		ILQ2	CTR _{CE}	100	200	500	%
		ILD5	CTR _{CE}	50	130	400	%
		ILQ5	CTR _{CE}	50	130	400	%

Vishay Semiconductors

SAFETY AND INSULATION RATINGS								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Isolation test voltage between emitter and detector		V _{ISO}	5300			V _{RMS}		
Isolation resistance	$V_{IO} = 500 \text{ V}, T_{amb} = 25 ^{\circ}\text{C}$	1012				Ω		
isolation resistance —	V _{IO} = 500 V, T _{amb} = 100 °C	- R _{IO}	10 ¹¹			1 22		
Climatic classification (according to IEC 68 part 1)				55/100/21				
Comparative tracking index		CTI	175					
Rated impulse voltage		V _{IOTM}			10	kV		
Maximum working voltage	Recurring peak voltage	V _{IORM}			890	V		
Forward current		I _{SI}			275	mA		
Power dissipation		P _{SO}			400	mW		
Safety temperature		T _{SI}			175	°C		
Creepage distance			7.0			mm		
Clearance distance			7.0			mm		
Insulation distance	per IEC 60950 2.10.5.1		0.4			mm		

Note

 According to DIN EN 60747-5-2 (VDE 0884) (see figure 2). These optocouplers are suitable for "safety electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

Fig. 1 - Derating Diagram

Fig. 2 - Test Pulse Diagram for Sample Test according to DIN EN 60747-5-2 (VDE 0884); IEC 60747-5-5

Vishay Semiconductors

PARAMETER	RACTERISTICS (T _{amb} = 25 °C, un	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
NON-SATURATED	1201 GONDINON	TAIL	OTHIBOL	IVIII V.		Wirds	Oitii
		ILD1	I _F		20		mA
		ILQ1	I _F		20		mA
		ILD2	I _F		5		mA
Current	$V_{CE} = 5 \text{ V}, R_{L} = 75 \Omega, 50 \% \text{ of } V_{PP}$	ILQ2	I _F		5		mA
		ILD5	I _F		10		mA
		ILQ5	I _F		10		mA
		ILD1	t _D		0.8		μs
		ILQ1	t _D		0.8		μs
	., .,	ILD2	t _D		1.7		μs
Delay	V_{CE} = 5 V, R_L = 75 Ω , 50 % of V_{PP}	ILQ2	t _D		1.7		μs
		ILD5	t _D		1.7		μs
		ILQ5	t _D		1.7		μs
		ILD1	t _r		1.9		μs
		ILQ1	t _r		1.9		μs
D'a a l'acc	V 5V D 75 0 50 W 11V	ILD2	t _r		2.6		μs
Rise time	$V_{CE} = 5 \text{ V}, R_{L} = 75 \Omega, 50 \% \text{ of } V_{PP}$	ILQ2	t _r		2.6		μs
		ILD5	t _r		2.6		μs
		ILQ5	t _r		2.6		μs
	V_{CE} = 5 V, R_L = 75 Ω , 50 % of V_{PP}	ILD1	t _s		0.2		μs
		ILQ1	t _s		0.2		μs
Chamana		ILD2	ts		0.4		μs
Storage		ILQ2	t _s		0.4		μs
		ILD5	t _s		0.4		μs
		ILQ5	ts		0.4		μs
		ILD1	t _f		1.4		μs
		ILQ1	t _f		1.4		μs
Fall time	$V_{CE} = 5 \text{ V}, R_{L} = 75 \Omega, 50 \% \text{ of } V_{PP}$	ILD2	t _f		2.2		μs
raii iiiile	V _{CE} = 5 V, H _L = 75 Ω, 50 % OI V _{PP}	ILQ2	t _f		2.2		μs
		ILD5	t _f		2.2		μs
		ILQ5	t _f		2.2		μs
		ILD1	t _{PHL}		0.7		μs
		ILQ1	t _{PHL}		0.7		μs
Propagation H to L	$V_{CE} = 5 \text{ V}, R_{L} = 75 \Omega, 50 \% \text{ of } V_{PP}$	ILD2	t _{PHL}		1.2		μs
Propagation in to L	V _{CE} = 5 V, H _L = 75 Ω, 50 % OI V _{PP}	ILQ2	t_{PHL}		1.2		μs
		ILD5	t _{PHL}		1.1		μs
		ILQ5	t _{PHL}		1.1		μs
		ILD1	t _{PLH}		1.4		μs
		ILQ1	t _{PLH}		1.4		μs
Dropogation I to II	V - 5 V D - 75 O 50 0/ 64 V	ILD2	t _{PLH}		2.3		μs
Propagation L to H	$V_{CE} = 5 \text{ V}, R_{L} = 75 \Omega, 50 \% \text{ of } V_{PP}$	ILQ2	t _{PLH}		2.3		μs
		ILD5	t _{PLH}		2.5		μs
		ILQ5	t _{PLH}		2.5		μs

Vishay Semiconductors

PARAMETER	ARACTERISTICS (T _{amb} = 25 °C, un TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
SATURATED					<u> </u>		<u> </u>
		ILD1	IF		20		mA
		ILQ1	I _F		20		mA
Current	$V_{CE} = 0.4 \text{ V. B}_1 = 1 \text{ kO. V}_{CC} = 5 \text{ V.}$	ILD2	I _F		5		mA
	$V_{CE} = 0.4 \text{ V}, R_L = 1 \text{ k}\Omega, V_{CC} = 5 \text{ V}, V_{TH} = 1.5 \text{ V}$	ILQ2	IF		5		mA
		ILD5	I _F		10		mA
		ILQ5	l _F		10		mA
		ILD1	t _D		0.8		μs
		ILQ1	t _D		0.8		μs
D 1	$V_{CE} = 0.4 \text{ V. R}_{L} = 1 \text{ k}\Omega$. $V_{CC} = 5 \text{ V.}$	ILD2	t _D		1		μs
Delay	V_{CE} = 0.4 V, R_L = 1 k Ω , V_{CC} = 5 V, V_{TH} = 1.5 V	ILQ2	t _D		1		μs
		ILD5	t _D		1.7		μs
		ILQ5	t _D		1.7		μs
		ILD1	t _r		1.2		μs
		ILQ1	t _r		1.2		μs
D: ''	$V_{CE} = 0.4 \text{ V. R}_{L} = 1 \text{ k}\Omega$. $V_{CC} = 5 \text{ V.}$	ILD2	t _r		2		μs
Rise time	$V_{CE} = 0.4 \text{ V}, R_L = 1 \text{ k}\Omega, V_{CC} = 5 \text{ V},$ $V_{TH} = 1.5 \text{ V}$	ILQ2	t _r		2		μs
		ILD5	t _r		7		μs
		ILQ5	t _r		7		μs
		ILD1	ts		7.4		μs
		ILQ1	t _s		7.4		μs
•	$V_{CE} = 0.4 \text{ V. B}_1 = 1 \text{ kO. V}_{CC} = 5 \text{ V.}$	ILD2	t _s		5.4		μs
Storage	V_{CE} = 0.4 V, R_L = 1 k Ω , V_{CC} = 5 V, V_{TH} = 1.5 V	ILQ2	t _s		5.4		μs
		ILD5	t _s		4.6		μs
		ILQ5	t _s		4.6		μs
		ILD1	t _f		7.6		μs
		ILQ1	t _f		7.6		μs
E 11.00	$V_{CE} = 0.4 \text{ V. R}_{L} = 1 \text{ k}\Omega$. $V_{CC} = 5 \text{ V.}$	ILD2	t _f		13.5		μs
Fall time	V_{CE} = 0.4 V, R_L = 1 k Ω , V_{CC} = 5 V, V_{TH} = 1.5 V	ILQ2	t _f		13.5		μs
		ILD5	t _f		20		μs
		ILQ5	t _f		20		μs
		ILD1	t _{PHL}		1.6		μs
		ILQ1	t _{PHL}		1.6		μs
	$V_{CE} = 0.4 \text{ V. B}_1 = 1 \text{ k}\Omega$. $V_{CC} = 5 \text{ V.}$	ILD2	t _{PHL}		5.4		μs
Propagation H to L	V_{CE} = 0.4 V, R_L = 1 k Ω , V_{CC} = 5 V, V_{TH} = 1.5 V	ILQ2	t _{PHL}		5.4		μs
		ILD5	t _{PHL}		2.6		μs
		ILQ5	t _{PHL}		2.6		μs
		ILD1	t _{PLH}		8.6		μs
		ILQ1	t _{PLH}		8.6		μs
	$V_{CE} = 0.4 \text{ V. B}_{L} = 1 \text{ kO} \text{ V}_{CC} = 5 \text{ V}$	ILD2	t _{PLH}		7.4		μs
Propagation L to H	V_{CE} = 0.4 V, R_L = 1 k Ω , V_{CC} = 5 V, V_{TH} = 1.5 V	ILQ2	t _{PLH}		7.4		μs
		ILD5	t _{PLH}		7.2		μs
		ILQ5	t _{PLH}		7.2		μs

Vishay Semiconductors

COMMON MODE TRANSIENT IMMUNITY (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Common mode rejection, output high	$V_{CM} = 50 V_{P-P}, R_L = 1 k\Omega, I_F = 0 mA$	CM _H		5000		V/µs		
Common mode rejection, output low	$V_{CM} = 50 V_{P-P}, R_L = 1 k\Omega, I_F = 10 mA$	CML		5000		V/µs		
Common mode coupling capacitance		C _{CM}		0.01		pF		

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

Fig. 3 - Non-Saturated Switching Schematic

Fig. 4 - Non-Saturated Switching Timing

Fig. 5 - Saturated Switching Schematic

Fig. 6 - Saturated Switching Timing

iild1_04

Fig. 7 - Normalized Non-Saturated and Saturated CTR vs. LED Current

Fig. 8 - Normalized Non-Saturated and Saturated CTR vs. LED Current

Fig. 9 - Normalized Non-Saturated and Saturated CTR vs. LED Current

Fig. 10 - Normalized Non-Saturated and Saturated CTR vs. LED Current

Fig. 11 - Normalized Non-Saturated and Saturated CTR vs. LED Current

Fig. 12 - Collector Emitter Current vs. Temperature and LED Current

Vishay Semiconductors

Fig. 13 - Collector Emitter Leakage Current vs.Temperature

Fig. 14 - Propagation Delay vs. Collector Load Resistor

PACKAGE DIMENSIONS in millimeters

Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters

PACKAGE MARKING (example)

18450-9

0.435 (11.05)

Notes

- Only option 1 and 7 reflected in the package marking.
- The VDE logo is only marked on option 1 parts.
- Tape and reel suffix (T) is not part of the package marking.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000