Calcolabilità e linguaggi formali Compito con soluzione2

Esercizio 1

(a) Dare una grammatica per ciascuno dei seguenti linguaggi:

 $L_1 = \{a^n b a^m b a^n | n, m > 0\};$

 $L_{2} = \{a^{n}ba^{m}ba^{k}|n, m, k > 0\};$ $L_{3} = \{a^{n}ba^{n+m}ba^{m}|n, m > 0\}$

- (b) Classificare le grammatiche date secondo la classificazione di Chomsky.
- (c) Dire se é possibile dare un automa finito per qualcuno dei linguaggi dati.

Esercizio 2

Enunciare e dimostrare il primo teorema di Rice.

Soluzione

Un insieme $I \subseteq N$ rispetta le funzioni se

$$x \in I \land \phi_x = \phi_y \Rightarrow y \in I.$$

Se un insieme I rispetta le funzioni allora anche \bar{I} rispetta le funzioni. Ricordiamo che, se una funzione totale $s: N \to N$ riduce l'insieme A all'insieme B:

$$x \in A \Leftrightarrow s(x) \in B$$
,

allora le proprietà negative di A si trasmettono a B, mentre le proprietà positive di B si trasmettono ad A.

Teorema. Sia $I \subseteq N$ che rispetta le funzioni. Allora valgono le seguenti condizioni:

- 1. I è decidibile sse $I = \emptyset$ oppure I = N.
- 2. Se $\{x: \phi_x = f_\emptyset\} \subseteq I$ allora I non è semidecidibile.
- 3. Se $\{x: \phi_x = f_\emptyset\} \subseteq \bar{I}$ allora \bar{I} non è semidecidibile.

Prova. (1) Se $I = \emptyset$ oppure I = N allora I è banalmente decidibile. Proviamo il viceversa. Supponiamo che $\emptyset \neq I \neq N$. Dall'ipotesi che I rispetta le funzioni, abbiamo due possibilità: $\{x:\phi_x=f_\emptyset\}\subseteq I$ oppure $\{x:\phi_x=f_\emptyset\}\subseteq \bar{I}$. Supponiamo, per esempio, che $\{x:\phi_x=f_\emptyset\}\subseteq I$ e scegliamo una costante $c\in \bar{I}$ (la costante c esiste perché \bar{I} è non vuoto). Allora definiamo:

$$f(x,y) = \text{if } x \in K \text{ then } \phi_c(y) \text{ else } \uparrow.$$

La funzione f è calcolabile. Possiamo quindi applicare il teorema del parametro ed ottenere una funzione calcolabile totale $s: N \to N$ tale che:

$$f(x,y) = \phi_{s(x)}(y).$$

Abbiamo

$$x \in K \Rightarrow \forall y(\phi_{s(x)}(y) = \phi_c(y)) \Rightarrow (\phi_{s(x)} = \phi_c) \Rightarrow s(x) \in \bar{I} \text{ (perché } c \in \bar{I} \text{ e } \bar{I} \text{ rispetta le funzioni)}.$$

$$x \notin K \Rightarrow \forall y(\phi_{s(x)}(y) = \uparrow) \Rightarrow (\phi_{s(x)} = f_{\emptyset}) \Rightarrow s(x) \in I \text{ (perché } \{x : \phi_x = f_{\emptyset}\} \subseteq I \text{ e } I \text{ rispetta le funzioni)}.$$

Quindi abbiamo ridotto K a \bar{I} . Ne segue che \bar{I} e I non sono decidibili. Siccome \bar{K} è ridotto a I. abbiamo che I non è semidecidibile, ricordando che nella riduzione le proprietà negative si trasmettono in avanti e quelle positive indietro. (2) e' già provato. In modo simile (scambiando $I \in \overline{I}$) si prova (3).

Esercizio 3

Definire un programma ricorsivo che calcola la seguente funzione f(x) = 5x se x = 0 e f(x) = 1 se $x \neq 0$. Si ha a disposizione sg, \overline{sg} ed il prodotto.

Soluzione

Definiamo f(0)=0 (perchè quando x=0 abbiamo che 5x=0) e f(x+1)=1. Allora $g\equiv 0$ e $h\equiv P_{2,1}^2;1$. In conclusion $f\equiv REC(g,h)$.

Esercizio 4

Si verifichi se l'insieme $I = \{x : \exists y, z(\phi_x(y) = z)\}$ e' decidibile oppure semidecidibile. Lo stesso per il complementare.

Soluzione

Un modo alternativo per definire $I: I = \{x : \phi_x \neq f_\emptyset\}$. I e' semidecidibile perché $x \in I$ sse P_x converge su almeno un input sse spazzando il piano Tempo×Inputs troviamo un punto di convergenza.

I non e' decidibile per il primo teorema di Rice: I rispetta le funzioni perché $\phi_x = \phi_y$ implica $\phi_x \neq f_\emptyset$ sse $\phi_y \neq f_\emptyset$. I e' non vuoto perche' contiene i programmi della funzione identica. \bar{I} e' non vuoto perche' contiene i programmi della funzione vuota. Allora per Rice1 I e' indecidibile e \bar{I} non e' semidecidibile.