12. Rekonstrukcija slik

Biomedicinske slikovne tehnologije

Pregled vsebine

- Tomografsko slikanje
- Načini zajema in rekonstrukcije slik
- Analitična rekonstrukcija
 - Projekcija in sinogram
 - Povratna projekcija
 - Filtrirane povratne projekcije (CBP)
 - Teorem o projekcijski rezini
- Iterativna rekonstrukcija
 - Algebraična rekonstrukcija (ART)
 - Verjetnostna rekonstrukcija (EM in OSEM)

Tomografsko slikanje

> Slikanje po rezinah: beseda tomografija izvira iz grških besed tomo (rezina) in graphos (slika)

Biomedicinske slikovne tehnologije

sliko subjekta

Transmisijska in emisijska tomografija

Matematični principi rekonstrukcije so enaki za različne slikovne tehnike

Transmisija (CT)

→ želimo rekonstruirati sliko linearnega atenuacijskega koeficienta tkiv

Emisija (SPECT, PET)

→ želimo rekonstruirati sliko aktivnosti in porazdelitve radiofarmaka v telesu

Način zajema podatkov

- → manjša občutljivost skenerja
- → enostavna rekonstrukcija

- → višja občutljivost skenerja
- → zahtevnejša rekonstrukcija

Načini rekonstrukcije slik

- → prerazporeditev 3D linij odziva (rebinning) v povezavi z 2D rekonstrukcijo ohranja občutljivost sistema
- → čas rekonstrukcije pa je krajši v primerjavi z dejansko 3D rekonstrukcijo

Postopki rekonstrukcije slik

- → enostavna in računsko nezahtevna
- → le za sisteme z obročem detektorjev
- → črtasti artefakti pri omejenem št. projekcij

- → kompleksni in računsko zelo zahtevni
- → za poljubne geometrijske detektorjev
- → lahko modeliramo lastnosti zajema

Analitična rekonstrukcija

Kratka zgodovina:

- 1917: J.Radon predlaga matematično rešitev problema rekonstrukcije slike iz množice projekcij → direktna in inverzna Radonova preslikava
- 1963: A.M.Cormack uporabi Radonovo preslikavo za rekonstrukcijo radiografskih slik

Rekonstrukcija iz projekcij

osnovna ideja:

Projekcija pri transmiji in emisiji

Mnogi medicinski slikovni sistemi zajemajo integralne meritve vzdolž linij odziva, ki tvorijo projekcije

→ merimo <u>integralno</u> število oddanih parov γ

- Projekcija je običajno stožčasta (fanbeam) ali pravokotna
 - → pravokotne projekcije lahko pretvorimo v stožščaste in obratno

Matematični model projekcije

Integral vzdolž linije odziva:

$$L(l,\theta) = \{(x,y) \mid x\cos\theta + y\sin\theta = l\}$$

z zasukanimi koordinatami (*l,s*)

$$x(s) = l\cos\theta - s\sin\theta$$

$$y(s) = l\sin\theta + s\cos\theta$$

Enačba, ki opisuje nastanek projekcije

$$g(l,\theta) = \int_{-\infty}^{\infty} f(x(s), y(s)) ds$$

- \rightarrow za poljuben kot θ imenujemo $g(l,\theta)$ radiografska ali Radonova preslikava slike f(x,y)
- Projekcije lahko analitično zapišemo kot 2D integral v x-y ravnini z uporabo 1D delta funkcije

$$g(l,\theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, \delta(x \cos \theta + y \sin \theta - l) \, dx dy$$

Radonova in radiografska preslikava

- **Radonova preslikava:** za n-dimenzionalni objekt je Radonova preslikava integral preko množice vseh k=n-1 dimenzionalnih hiperravnin, ki potekajo skozi objekt
 - \rightarrow za n=2, k=1 so hiperravnine linijski integrali
 - \rightarrow za n=3, k=2 so hiperravnine 2D ravnine
- Radiografska preslikava: za n-dimenzionalni objekt predstavlja vse k=1 dimenzionalne hiperravnine oz. linijske integrale, ki potekajo skozi objekt
 - → v 2D sta Radonova in radiografska preslikavi enakovredni, v višjih dimenzijah pa ne nujno

Sinogram 2D slike

- Množico projekcij 2D slike $g(l,\theta)$ lahko predstavimo kot 2D sliko oz. sinogram $s(l,\theta)$
 - ightarrow vrstica v sinogramu predstavlja projekcijo oz. integralne meritve vzdolž vzporednih linij odziva za določen kot heta

- → točka na objektu se preslika v sinusno krivuljo v sinogramu
- \rightarrow iz sinograma lahko rekonstruiramo sliko f(x,y)
- $\rightarrow g(l, \theta)$ predstavlja vrednosti na površini cilindra
- \rightarrow velja simetrija $g(l, \theta)=g(-l, \theta+\pi)$

Realna slika in sinogram

- Sinogram je superpozicija sinusnih krivulj!
 - → svetle točke v sliki se preslikajo v svetle sinusne krivulje in nasprotno

Rekonstrukcija: inverzni problem

S slikovnim sistemom zajamemo projekcije, ki jih združimo v sinogram

$$g(l,\theta) = \int_{-\infty}^{\infty} f(x(s), y(s)) ds$$

Enačba, ki opisuje nastanek slike

ightharpoonup Inverzni problem: poišči f(x, y) pri danem $s(l, \theta)$!

Povratna projekcija

Backprojection

- ightharpoonup Osnovna ideja: za vsak θ izvedi operacijo, ki je nasprotna oz. inverzna radiografski preslikavi in seštej slike
 - → če pri 2D-1D projekciji vzdolž linij integriramo oz. seštevamo sivine slike, v nasprotnem lahko zapisujemo sivine projekcije v sliko vzdolž linije

Biomedicinske slikovne tehnologije prof. dr. Boštjan Likar, doc. dr. Miran Bürmen, as. dr. Žiga Špiclin

1. letnik 2. stopnje Elektrotehnika – Biomedicinska tehnika

Povratna projekcija ne deluje!

Rekonstrukcija s povratno projekcijo

Povratna radiografska projekcija je prostorsko nespremenljiv slikovni sistem, glajen s funkcijo h(x,y)=1/r

$$f(x,y) \Longrightarrow h(x,y) = \frac{1}{r} \Longrightarrow b(x,y)$$

- ▶ 1/r je krožno simetričen nizko-pasovni filter, zato so povratno
 projicirane slike precej zglajene in zato neuporabne za diagnostiko
- → glajenje lahko odpravimo s filtriranjem projekcij ali slike z visoko-prepustnim filtrom:
 - 1.filtriranje projekcij in povratna projekcija
 - 2.povratna projekcija in filtriranje slike

Convolution backprojection (CBP)

1. Izračunamo 1D konvolucijo med projekcijo $g(l,\theta)$ in filtrom h(x,y), in sicer vzdolž l, tako da uvedemo novo spremenljivko

$$\left[g(l,\theta)*h(l)\right]_{l=x\cos\theta+y\sin\theta} = \int_{-\infty}^{\infty} g(l,\theta) g(x\cos\theta + y\sin\theta - l) dl$$

- 2. Nato povratno projiciramo filtrirane projekcije in
- 3. seštejemo povratne projekcije

$$f(x, y) \approx b(x, y) = \int_0^{\pi} \left[g(l, \theta) * h(l) \right]_{l = x \cos \theta + y \sin \theta} d\theta$$

Biomedicinske slikovne tehnologije

Convolution backprojection (CBP)

Convolution backprojection (CBP)

ightharpoonup Visoko-prepustni filter h(l) najlažje okarakteriziramo v frekvenčnem prostoru z uporabo Fourierove transformacije (FT)

$$H(\lambda_x, \lambda_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) e^{-j2\pi(x\lambda_x + y\lambda_y)} dxdy$$

$$h(x, y) = \mathbf{F}_{2D}^{-1} \left\{ \frac{1}{q} \right\} = \frac{1}{r}$$

 \rightarrow filter h(l)=1/r je v frekvenčnem prostoru 1D prerez inverznega 2D stožca

- Lastnosti:
 - singularnost pri frekvenci $\rho = 0$
 - ojačuje visoke frekvence, zato je občutljiv na šum

Convolution backprojection (CBP)

- Z oknenjem filtra zadušimo visoko-frekvenčne signale oz. šum
- Hanning okno:
 - mejna frekvenca P_C

$$W(\rho) = \begin{cases} \frac{1}{2} \left(1 + \cos\left(\frac{\rho\pi}{\rho_C}\right) \right) & |\rho| \le \rho_C \\ 0 & \text{sicer} \end{cases}$$

Convolution backprojection (CBP)

- Uveljavljen postopek rekonstrukcije za CT in tehnike v nuklearni medicini
 - Zelo hiter in robusten z malo nastavljivimi parametri
- Če je v projekcijah prisoten Gaussov šum, potem je ta postopek optimalen v smislu najmanjše srednje kvadratne napake rekonstruirane slike
- Ključni elementi postopka, ki jih bomo analizirali:
 - vzorčenje projekcij v radialni smeri Δl in po kotu $\Delta \theta$
 - vpliv šuma in oknjenja na rekonstrukcijo slik

Radialno vzorčenje

- Odziv detektorjev v radialni smeri ni pasovno omejen, zato ima sinogram zelo zapleten vzorec vzorčenja → vzorčna funkcija je pravokotne oblike za kvadratne detektorje
- Po Nyquistovem teoremu lahko izberemo $\Delta l = \text{FWHM} / 2$
- Število vzorcev v radialni osi moramo določiti tako, da prekrijemo željen FOV (field-of-view) z izbiro $n_L = {\rm FOV} / \Delta l$
 - V mnogih primerih je vzorčenje v radialni osi določeno s konstrukcijo skenerja, vsi drugi parametri (npr. ločljivost sistema in velikost slikovnih elementov) pa so določeni z Δl

Vpliv vzorčenja po kotu

- Nezadostna gostota vzorcev po kotu vodi do izrazitih zvezdastih artefaktov (Nyquistov teorem!)
- Pri rekonstrukciji s postopkom CBP je računska zahtevnost sorazmerna s številom vzorcev po kotu

Vpliv vzorčenja po kotu

Število projekcij vpliva na ločljivost rekonstruirane slike

40/240

→ kaliber za testiranje ločljivosti tomografskega slikovnega sistema

Vpliv šuma in Hanning okna

- Če je šum koreliran s slikovno informacijo je nujno potrebno oknjenje linearnega (ramp) filtra
 - → kompromis med končno stopnjo šuma in ločljivostjo

Vpliv šuma in Hanning okna

sinogram brez šuma

sinogram s šumom

- → z oknjenjem zadušimo šum
- → ampak tudi rekonstrukcijo drobnih struktur

Biomedicinske slikovne tehnologije prof. dr. Boštjan Likar, doc. dr. Miran Bürmen, as. dr. Žiga Špiclin

Teorem o projekcijski rezini

Projection-slice theorem

Osnovne povezave v tomografiji z uporabo Fourierove

Teorem o projekcijski rezini

Projection-slice theorem

Zapišemo 1D Fourierovo transformacijo projekcije

$$G(\rho,\theta) = \mathcal{F}_{1D}\{g(l,\theta)\} = \int_{-\infty}^{\infty} g(l,\theta) e^{-j2\pi\rho l} dl$$

in jo nadomestimo z analitičnim izrazom za projekcijo

$$G(\rho,\theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} ff(x,y) \delta(x\cos\theta + y\sin\theta - l) e^{-j2\pi\rho l} dx dy dl$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} ff(x,y) \int_{-\infty}^{\infty} \delta(x\cos\theta + y\sin\theta - l) e^{-j2\pi\rho l} dl dx dy$$

Uporabimo lastnost premika FT (shift theorem) in dobimo

$$G(\rho,\theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi\rho(x\cos\theta + y\sin\theta)} dxdy$$

kar je enako definiciji 2D Fourierove transformacije

$$F(\lambda_x, \lambda_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j2\pi(x\lambda_x + y\lambda_y)} dxdy$$

Teorem o projekcijski rezini

Projection-slice theorem

Če koordinate frekvenčnega prostora zapišemo z

$$\lambda_{x} = \rho \cos \theta, \ \lambda_{y} = \rho \sin \theta$$

potem pridemo do zelo pomembne zveze

$$G(\rho, \theta) = F(\rho \cos \theta, \rho \sin \theta)$$

ki prestavlja teorem o projekcijski rezini oz. tudi teorem o centralnem prerezu (central-section theorem)

Povratna projekcija

> Iz teorema o projekcijski rezini sledi, da povratno projekcijo dobimo z vstavljanjem 1D FT $G(\rho,\theta)$ v 2D FT slike $F(\lambda_x,\lambda_y)$

Teorem o povratni projekciji

- ➤ Definiramo 2D funkcijo $b_{\theta}(x, y) = g(l, \theta)$, ki jo dobimo s povratno projekcijo ene 1D projekcije pri kotu θ
- Povratna projekcija vseh 1D projekcij je dana z

$$b(x, y) = \int_0^{\pi} b_{\theta}(x, y) d\theta$$

2D FT nato izračunamo kot

$$B(\lambda_{x}, \lambda_{y}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} b_{\theta}(x, y) e^{-j2\pi(x\lambda_{x} + y\lambda_{y})} dxdy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(l, \theta) e^{-j2\pi(l\lambda_{x}\cos\theta + s\lambda_{y}\sin\theta)} dlds$$

$$= G(\rho, \theta) \delta(\sigma)$$

$$= F(\lambda_{x}, \lambda_{y}) \delta(\sigma)$$

Povratna projekcija s FT

Če uporabimo vse 1D projekcije, potem je 2D FT slike

$$B(\lambda_x, \lambda_y) = \int_0^{\pi} B_{\theta}(\lambda_x, \lambda_y) d\theta = \int_0^{\pi} F(\lambda_x, \lambda_y) \delta(\sigma) d\theta$$

kjer je $\sigma = \lambda_x \cos \theta + \lambda_y \sin \theta$ in $\delta(\sigma(\theta)) = \delta(\lambda_x \cos \theta + \lambda_y \sin \theta)$

Uporabimo zvezo

$$\delta(f(x)) = \sum_{i} \frac{\delta(x - x_i)}{|f'(x_i)|}$$

da dobimo

$$\delta(\sigma(\theta)) = \delta(\theta) / q, \ q^2 = \rho^2 + \sigma^2$$

Iz teorema o konvoluciji sledi

$$b(x, y) = f(x, y) * h(x, y), h(x, y) = F_{2D}^{-1} \{\frac{1}{q}\}$$

rabimo zvezo
$$\delta(f(x)) = \sum_{i} \frac{\delta(x - x_{i})}{|f'(x_{i})|}$$
 obimo
$$\delta(\sigma(\theta)) = \delta(\theta)/q, \ q^{2} = \rho^{2} + \sigma^{2}$$
 orema o konvoluciji sledi
$$h(x, y) = F_{2D}^{-1} \left\{ \frac{1}{q} \right\} = \frac{1}{r}$$

$$h(x, y) = F_{2D}^{-1} \left\{ \frac{1}{q} \right\} = \frac{1}{r}$$

Povratna projekcija s filtriranjem v 2D

Backprojection filtering (BPF)

Odpravimo glajenje pri povratni projekciji s filtriranjem

$$B(\lambda_x, \lambda_y) = F(\lambda_x, \lambda_y) / q \implies F(\lambda_x, \lambda_y) = q B(\lambda_x, \lambda_y)$$

- Postopek:
 - za vsak kot θ naredi povratno projekcijo $g(l,\theta)$ v polje slike b(x,y)
 - izračunaj 2D FT $B(\lambda_x, \lambda_y)$ in ga
 - pomnoži z 2D stožčastim filtrom $q = \sqrt{\lambda_x^2 + \lambda_y^2}$, da dobiš $F(\lambda_x, \lambda_y)$
 - izračunaj inverzno 2D FT, da dobiš f(x, y)

Biomedicinske slikovne tehnologije prof. dr. Boštjan Likar, doc. dr. Miran Bürmen, as. dr. Žiga Špiclin

Povratna projekcija s filtriranjem v 2D

Backprojection filtering (BPF)

- Nizko-pasovni filter $\frac{1}{r}$ ima zelo dolge repe, zato moramo povratno projekcijo izračunati na mnogo večjem polju kot je velikost ciljne slike
- Iz tega razloga je ta postopek računsko zelo zahteven
 - tipična CT slika ima velikost 512 x 512, ki jo moramo povečati vsaj za faktor 4 na 2048 x 2048 za filtriranje in še za faktor 2 na 4096 x 4096 za dodajanje ničel zaradi (ne)prekrivanja frekvenc
- Vrstni red lahko tudi zamenjamo!
 - filtriramo 1D signale in jih nato povratno projiciramo

Povratna projekcija s filtriranjem v 2D

Backprojection filtering (BPF)

Inverzno FT v polarnih koordinatah zapišemo kot

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\rho \cos \theta, \rho \sin \theta) e^{j2\pi\rho(x\cos\theta + y\sin\theta)} d\rho d\theta$$

ho je predznačena radialna komponenta

Iz teorema o projekcijski rezini sledi

$$f(x,y) = \int_0^{2\pi} \int_{-\infty}^{\infty} G(\rho,\theta) e^{j2\pi\rho(x\cos\theta + y\sin\theta)} d\rho d\theta$$

ker velja $g(l,\theta) = g(-l,\theta+\pi)$ lahko zapišemo

$$f(x,y) = \int_0^{\pi} \int_{-\infty}^{\infty} G(\rho,\theta) e^{j2\pi\rho(x\cos\theta + y\sin\theta)} |\rho| d\rho d\theta$$

Povratna projekcija s filtriranjem v 1D

Filtered backprojection (FBP)

Sliko $f(x,y) = \int_0^\pi \int_{-\infty}^\infty G(\rho,\theta) e^{j2\pi\rho(x\cos\theta+y\sin\theta)} |\rho| d\rho d\theta$ lahko izračunamo tako, da najprej ovrednotimo notranji integral z uvedbo nove spremenljivke

$$l = x\cos\theta + y\sin\theta$$

$$f(x,y) = \int_0^{\pi} \left[\int_{-\infty}^{\infty} |\rho| G(\rho,\theta) e^{j2\pi\rho l} d\rho \right] d\theta$$

Postopek je naslednji:

konvolucija!

- Izračunamo 1D FT projekcij $F_{l}\{g(l,\theta)\}=G(\rho,\theta)$ in jih
- ullet pomnožimo s filtrom |
 ho| in izračunamo inverzni 1D FT ter
- povratno projiciramo filtrirane projekcije, da dobimo sliko

$$g^*(l,\theta) = \int_{-\infty}^{\infty} |\rho| G(\rho,\theta) e^{j2\pi\rho l} d\rho \to f(x,y) = \int_{0}^{\pi} g^*(l,\theta) d\theta$$

Povratna projekcija s filtriranjem v 1D

Filtered backprojection (FBP)

(c) profil sinograma, (d) profil filtriranega sinograma

Povratna projekcija

originalne projekcije

Povratna projekcija

originalne projekcije

- Modelirajo poljubno geometrijo virov in detektorjev
- Omogočajo modeliranje statistike nastanka in zajema slike
 - lastnosti šuma
 - prenosna funkcija sistema
 - popravki atenuacije in sipanja

Modeliranje sistema

Zvezni model

$$w_i = \int_0^d f(s) e^{-\int_0^d \mu(\zeta) d\zeta} ds$$

Atenuacija

Diskretni model

$$w_i = \sum_j a_{ij} f_j \implies w_i = A F$$

MODELIRANJE PROCESA ZAJEMA IN DETEKCIJE

 $A = A_{SENS} \cdot A_{BLUR} \cdot A_{ATEN} \cdot A_{GEOM}$

 A_{SENS} učinkovitost detekcije posameznega para detektorjev

 A_{ATEN} atenuacijski koeficienti

 A_{BLUR} lokalni model funkcije razširitve točke (ločljivost!)

 A_{GEOM} verjetnost, da foton na lokaciji j doseže detektor i

ALGEBRAIČNI

Algebraični postopek rekonstrukcije

(algebraic reconstruction technique - ART)

- Osnova je diskretni model $w_i = \sum_j a_{ij} f_j \implies w_i = A F$
- Ideja: rekonstruirana slika je optimalna v smislu najmanjše srednje-kvadratne napake za dani model sistema

$$\Psi(\hat{W}, AF) = \sum_{i} \left(AF - \hat{W} \right)^{2}$$

VERJETNOSTNI

Maximum likelihood (ML)

→ Bayesova formula

$$p(AF \mid \hat{W}) = \frac{p(\hat{W} \mid AF)p(AF)}{p(\hat{W})} \longrightarrow p(AF \mid \hat{W}) \approx p(\hat{W} \mid AF)$$

 \rightarrow Poissonova porazdelitev – verjetnost n fotonov, če jih pričakujemo w

$$p_{w}(n) = \frac{e^{-w}w^{n}}{n!}$$

→ Kriterijska funkcija

$$p(\hat{W} \mid AF^k) = \prod_i p(\hat{w}_i \mid [AF]_i)$$

VERJETNOSTNI

- Expectation maximization (EM)
 [Dempster1977, Lange1984, Shepp1982]
 - Intuitivna razlaga

 $\hat{w} \neq a_1 f_1 + a_2 f_2$

$$E(n_1) = \hat{w} \frac{a_1 f_1}{a_1 f_1 + a_2 f_2}$$

Korak EM rekonstrukcije

Porazdelimo enakomerno med oba vira

LASTNOSTI MLEM VS. FBP

- Neenakomerna konvergenca EM postopka
 - Visoke frekvence konvergirajo hitreje kot nizke frekvence

z naknadnim glajenjem

LASTNOSTI MLEM VS. FBP

- Koliko EM iteracij?
 - Manj iteracij → manjša ločljivost
 - Več iteracij → večja ločljivost, a dominanten vpliv visoko-frekvenčne informacije

EM z urejenimi podmnožicami projekcij

(ordered subsets EM - OSEM) [Hudson et al. 1994]

Biomedicinske slikovne tehnologije prof. dr. Boštjan Likar, doc. dr. Miran Bürmen, as. dr. Žiga Špiclin

Rekonstrukcija slik

POVZETEK LASTNOSTI

M Analitični FBP

- ✓ Enostavna in hitra izvedba (CST)
- ✓ Znane lastnosti, dela predvidljivo
- ➤ Le za sisteme z detektorji na obroču
- ➤ Ne modelirajo statistike zajema slike
- Črtasti artefakti (omejeno št. proj.)
- Kompromis šum-ločljivost (filtriranje)

Algebraični ART

- ✓ Omogočajo modeliranje lastnosti procesa zajema in detekcije (A)
- ✓ Poljubna razporeditev detektorjev
- ✓ Poznani postopki reševanja (LS)
- ➤ Ne modelirajo statistike zajema slike

Verjetnostni EM

- ✓ Modelirajo statistiko nastanka in zajema slike
- ✓ Poljubna razporeditev detektorjev
- ✓ Omogočajo modeliranje lastnosti procesa zajema in detekcije (A)
- ✓ Podpora apriori znanju (MAP)
- ✓ Hitrejša izvedba (OSEM, 6x)
- * Računsko zelo zahtevni
- ➤ Manj predvidljivi rezultati: vpliv šuma in konvergenca postopka

