0-1 14-1 Tema 2 Numeros Complejos 12 - 1 16 - 1 13-11 17-1 (as números complejos son expresiones formales de la forma: a + bi, donde a EIR, b EIR, i es u risnes que comple i2-1 Como ningin ni real al cradado es negativo. Este nimas es nuevo, es decir, no es real. (Er les complejos you no hoy positivos ni negativos) Sumas: (2+5i)+(3-ei) = (2+3)+(5-e)i = 5+(5-e)i Producto: (3+i) (1+i) - 3+i+3i+i2 - 2+4i Usames que 12-1 observación: Todo a EIR es comprejo ya que a a a + 0i (Así eos comprejos extinder a les reales.) A les expresiones de la forme bi = 0 + bi se les llene números imaginarios (puros). Está claro que todo nimero conclejo es some de u peol y de un inneginario (puro) a+bi=(a+0i)+(0+bi) (as representant) con la letter C C={a+bi/a,b612,i2=-19 Tenemos NCZCQCIRCC

lepresotación de C en a plano. Todo complejo a + bi quede determinado por el por (a.6) (os sexpresotanos como glecha) desde (0,0) hosta (a,b) 0+bi-bi (a,b) a+bi a=a+0; (a,0)(los reales son ahora flectos) Al dibujarlo como flectal domos otra representación r ∈ (0, &), d ∈ [0, 2π) (longitud) (ángels en rad) Expresiones · binamico - cartesianas, dados a, b EIR a+6i (a,b) & ejemplo dexpresiones de 1,-1, i, -2-2i, -3√3 +3:? · 121+00 (1,0) a=-1 r=1 -1.c. -1= e¹⁷⁷ · - 1 - - 1 + O; (-1,0)

Definitiones

2 = 0.46 (
$$\frac{1}{2}$$
 brimica)

2 = $\frac{1}{2}$ ($\frac{1}{2}$ brimica)

3 = $\frac{1}{2}$ ($\frac{1}{2}$ brimica)

4 = $\frac{1}{2}$ ($\frac{1}{2}$ brimica)

4 = $\frac{1}{2}$ ($\frac{1}{2}$ brimica)

5 = $\frac{1}{2}$ ($\frac{1}{2}$ brimica)

6 = $\frac{1}{2}$ brimical

6 = $\frac{1}{2}$ brimical

6 = $\frac{1}{2}$ brimical

6 = $\frac{1}{2}$ brimical

7 = $\frac{1}{2}$ brimical

7 = $\frac{1}{2}$ brimical

7 = $\frac{1}{2}$ brimical

8 = $\frac{1}{2}$ brimical

9 = $\frac{1}{2}$ brimical

10 = $\frac{1}{2}$ brimical

11 = $\frac{1}{2}$ brimical

12 = $\frac{1}{2}$ brimical

13 = $\frac{1}{2}$ brimical

14 = $\frac{1}{2}$ brimical

15 = $\frac{1}{2}$ brimical

16 = $\frac{1}{2}$ brimical

17 = $\frac{1}{2}$ brimical

18 = $\frac{1}{2}$ brimical

19 = $\frac{1}{2}$ brimical

19 = $\frac{1}{2}$ brimical

19 = $\frac{1}{2}$ brimical

10 = $\frac{1}{2}$ brimical

10 = $\frac{1}{2}$ brimical

10 = $\frac{1}{2}$ brimical

10 = $\frac{1}{2}$ brimical

11

$$\frac{1}{3} = \frac{1}{3+4i} = \frac{2}{(4+4i)(3+4i)} = \frac{2^{3}-4^{4}}{3^{3}-4^{4}} = \left(\frac{3}{23}\right) + \left(\frac{-4}{237}\right)^{\frac{1}{4}}i$$

$$\frac{2}{3} - \left(4i\right)^{\frac{1}{4}} = \frac{3^{3}-4^{4}}{2^{3}}i = \frac{3^{3}-4^{4}}{2^{3}}i$$

$$\frac{3}{4} - \left(4i\right)^{\frac{1}{4}} = \frac{3^{3}-4^{4}}{2^{3}}i$$

$$\frac{3}{4} - \left(\frac{3}{4}i\right) = \frac{3^{3}-4^{4}}{2^{3}}i$$

$$\frac{3}{4} - \left(\frac{3}4i\right) = \frac{3^{3}-4^{4}}{2^{3}}i$$

$$\frac{3}{4} - \left(\frac{3}4i\right) = \frac{3^{3}-4^{4}}{2^{3}}i$$

Geno conjects
$$[-A] = \{x \in \mathbb{R}/x^2 = -1\} = \emptyset$$

pose in t (cono conjects) $[-A] = \{x \in \mathbb{R}/x^2 = -1\} = \{-i, i\}$

(En \mathbb{R} , como conjects) $[-A] = \{x \in \mathbb{R}/x^2 = -1\} = \{-i, i\}$

(En \mathbb{R} , como conjects) $[-A] = \{x \in \mathbb{R}/x^2 = -1\} = \{-1, 2\}$ y como número \mathbb{R}^2 as an expertiso $[-V] = -2$.

Pos an t no reg positival ni negatival, así que reconos in conorio.

Regardo: $\sqrt[3]{1} = A$ on \mathbb{R} , pos signicios, así que reconos in conorio.

Por contra $\sqrt[3]{1} = A$ on \mathbb{R} , pos signicios, así que recono alices de A (la violed)

Por $\sqrt[3]{1} = A$ on $\sqrt[3]{1} = A$ on

a misma decomposición.

$$x^2 + ix + \lambda = (x - ix,)(x - ix,)$$
; $2x^2 + 2ix + 2 = 2(x - ix,)(x - ix,)$, $2x^2 + 2ix + 2 = 2(x - ix,)(x - ix,)$, $2x^2 + 2ix + 2 = 2(x - ix,)(x - ix,)$, $2x^2 + 2ix + 2 = 2(x - ix,)(x - ix,)$, $2x^2 + 2ix + 2 = 2(x - ix,)(x - ix,)$.

(cologies $p(x) \in A[x]$ (petinomic complete) $p(x) = 2x + 2x + 2x^2 + ... + 2x^$

Ar,
$$(re^{\frac{1}{2}})^{2} = 66 \implies r=2$$
 $y = 6\{0, \frac{7}{2}, \frac{7}{1}, \frac{2m}{2}\}$ co dex, $2e^{\frac{1}{2}}$, $2e^{\frac{1}{$