CS 183: Fundamentals of Machine Learning

Lectures by Yaron Singer Notes by Maggie Wang

Harvard University, Spring 2020

Course textbook:

 ${\it Understanding\ Machine\ Learning:\ From\ Theory\ to\ Algorithms\ by\ Shai\ Shalev-Shwartz\ and\ Shai\ Ben-David.}$

Contents

Lecture 1: Prelude - 1/30	2
The Statistical Learning Framework	2
Empirical Risk Minimization	
Overfitting	2
Empirical Risk Minimization with Inductive Bias	2
Finite hypothesis classes	2
Lecture 2: PAC Learnability - 2/6	3
PAC learnability	3
The Bayes Optimal Predictor	3
Agnostic PAC learnability	3
1. Removing the realizability assumption	45 65 65 4
2. Handle feature labeled in multiple ways	
3. Beyond binary classification	4
Generalized loss functions	4
Learning via uniform convergence	4
Finite classes are agnostic PAC learnable	4
The bias-complexity trade-off	Ę
The no-free-lunch theorem	Ę
Error decomposition	ŀ
Lecture 3: The VC-Dimension - 2/13	6
Infinite-size classes can be learnable	6
The VC-dimension	6
Examples	6
Threshold functions	6
Intervals	6
Axis aligned rectangles	6
Lecture 4: Learning with Convex Objectives -	
2/20	7

Lecture 1: Prelude - 1/30

The Statistical Learning Framework

Learner's input:

- **Domain set**: Set \mathcal{X} that we wish to label. Represented by a vector of features. Domain points: instances, \mathcal{X} : instance space.
- Label set: Set \mathcal{Y} of possible labels
- Training data: $S = ((x_1, y_1) \dots (x_m, y_m))$, finite sequence of pairs in $\mathcal{X} \times \mathcal{Y}$. Training examples / training set.
- The learner's output: prediction rule, $h: \mathcal{X} \to \mathcal{Y}$. Predictor, hypothesis, classifier.
- A simple data-generation model: each pair in the training data S is generated by sampling a point x_i according to \mathcal{D} (probability distribution over \mathcal{X} by \mathcal{D}) and then labeling it by f.
- Measure of success: error of a prediction rule, $h: \mathcal{X} \to \mathcal{Y}$ is the probability of randomly choosing an ex. x for which $h(x) \neq f(x)$:

$$L_{\mathcal{D},f}(h) = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq f(x)] = \mathcal{D}(\{x : h(x) \neq f(x)\})$$

Generalization error, the risk, the true error of h.

Empirical Risk Minimization

Training error / empirical error / empirical risk - error the classifier incurs over the training sample:

$$L_S(h) = \frac{|\{i \in [m] : h(x_i) \neq y_i\}|}{m}$$

Empirical Risk Minimization (ERM): coming up with a predictor h that minimizes $L_S(h)$.

Overfitting

Overfitting: h fits training data "too well"

$$h_S(x) = \begin{cases} y_i & \text{if } \exists i \in [m] \text{ s.t. } x_i = x \\ 0 & \text{otherwise.} \end{cases}$$

Empirical Risk Minimization with Inductive Bias

Apply ERM over a restricted search space (hypothesis class \mathcal{H}), thus biasing it towards a particular set of predictors. Such restrictions are called an **inductive bias** - ideally based on prior knowledge of problem.

$$\operatorname{ERM}_{\mathcal{H}}(S) \in \operatorname*{arg\,min}_{h \in \mathcal{H}} L_s(h)$$

Tradeoff - more restricted hypothesis class better protects from overfitting but causes stronger inductive bias.

Finite hypothesis classes

If \mathcal{H} is a finite class then $ERM_{\mathcal{H}}$ will not overfit, provided it is based on a sufficiently large training sample.

Let h_S denote a result of applying ERM_H to S,

$$h_S \in \operatorname*{arg\,min}_{h \in \mathcal{H}} L_S(h)$$

Definition 2.1: The Realizability Assumption

There exists $h^* \in \mathcal{H}$ s.t. $L_{(\mathcal{D},f)}(h^*) = 0$.

This assumption implies that with probability 1 over random samples, S, where the instances are sampled according to D and are labeled by f, we have $L_S(h^*) = 0$.

The i.i.d. assumption: $S \sim \mathcal{D}^m$, where m is the size of S, and \mathcal{D}^m denotes the probability over m-tuples induced by applying \mathcal{D} to pick each element of the tuple independently of the other members of the tuple.

 δ is probability of getting a non-representative sample, and $(1 - \delta)$ is the confidence parameter of our prediction.

 ϵ is the accuracy parameter. Event $L_{(\mathcal{D},f)}(h_S) > \epsilon$ is failure of the learner, while if $L_{(\mathcal{D},f)}(h_S) \leq \epsilon$ the output of the algorithm is an approximately correct predictor.

Corollary 2.3:

Let \mathcal{H} be a finite hypothesis class. Let $\delta \in (0,1)$ and $\epsilon > 0$ and let m be an integer that satisfies $m \geq \frac{\log(|\mathcal{H}|\delta)}{\epsilon}$.

Then, for any labeling function, f, and for any distribution, \mathcal{D} , for which the realizability assumption holds (that is, for some $h \in \mathcal{H}, L_{(\mathcal{D},f)}(h) = 0$) with probability of at least $1 - \delta$ over the choice of an i.i.d. sample S of size m, we have that for every ERM hypothesis, h_S , it holds that

$$L_{(\mathcal{D},f)}(h_S) \le \epsilon$$

For a sufficiently large m, the ERM_{\mathcal{H}} rule over a finite hypothesis will be *probably* (with confidence $1-\delta$) approximately (up to an error of ϵ) correct.

Proof:

Let $S|_x = (x_1, \ldots, x_m)$ be the instances of the training set.

We would like to upper bound $\mathcal{D}^m(S|_x:L_{(\mathcal{D},f)}(h_S)>\epsilon)$.

Set of "bad" hypotheses: $\mathcal{H}_B = \{h \in \mathcal{H} : L_{(\mathcal{D},f)}(h) > \epsilon\}.$

Set of misleading examples: $M = \{S|_x : \exists h \in \mathcal{H}_B, L_S(h) = 0\}.$

For every $S|_x \in M$, there is a "bad" hypothesis, $h \in \mathcal{H}_B$ that looks like a "good" hypothesis on $S|_x$.

The event $L_{(\mathcal{D},f)}(h_S) > \epsilon$ can only happen if our sample is in the set of misleading samples, M:

$${S|_x: L_{(\mathcal{D},f)}(h_S) > \epsilon} \subseteq M$$

We can rewrite M as $M = \bigcup_{h \in \mathcal{H}_B} \{S|_x : L_S(h) = 0\}$. $\mathcal{D}^m(\{S|_x : L_{(\mathcal{D},f)}(h_S) > \epsilon\}) \leq \mathcal{D}^m(M) = \mathcal{D}^m(\bigcup_{h \in \mathcal{H}_B} \{S|_x : L_S(h) = 0\})$

Upper bound right-hand side using union bound.

Lemma 2.2: Union Bound

For any two sets A, B and a distribution \mathcal{D} we have

$$\mathcal{D}(A \cup B) \le \mathcal{D}(A) + \mathcal{D}(B)$$

$$\mathcal{D}^{m}(\{S|_{x}: L_{(\mathcal{D},f)}(h_{S}) > \epsilon) \leq \sum_{h \in \mathcal{H}_{B}} \mathcal{D}^{m}(\{S|_{x}: L_{S}(h) = 0\})$$

$$\mathcal{D}^{m}(\{S|_{x}: L_{S}(h) = 0\}) = \mathcal{D}^{m}(\{S|_{x}: \forall i, h(x_{i}) = f(x_{i})\})$$

$$= \prod_{i=1}^{m} \mathcal{D}(\{x_{i}: h(x_{i}) = f(x_{i})\})$$

For each individual sampling of an element of the training set,

$$\mathcal{D}(\{x_i : h(x_i) = y_i\}) = 1 - L_{(\mathcal{D}, f)}(h) \le 1 - \epsilon$$

Using $1 - \epsilon \le e^{-\epsilon}$, for every $h \in \mathcal{H}_B$,

$$\mathcal{D}^{m}(\{S|_{x}: L_{S}(h)=0\}) \leq (1-\epsilon)^{m} \leq e^{-\epsilon m}$$

We conclude that

$$\mathcal{D}^{m}(\{S|_{x}: L_{(\mathcal{D},f)}(h_{S}) > \epsilon\}) \leq |\mathcal{H}_{B}|^{-\epsilon m} \leq |\mathcal{H}|e^{-\epsilon m}$$

Lecture 2: PAC Learnability - 2/6

PAC learnability

A hypothesis class \mathcal{H} is **PAC learnable** if there exists a function $m_{\mathcal{H}}:(0,1)^2\to\mathbb{N}$ and a learning algorithm with the following property: For every $\epsilon,\delta\in(0,1)$, for every distribution \mathcal{D} over \mathcal{X} , and for every labeling function $f:\mathcal{X}\to\{0,1\}$, if the realizability assumption holds w.r.t. $\mathcal{H},\mathcal{D},f$, then when running the learning algorithm on $m\geq m_{\mathcal{H}}(\epsilon,\delta)$ i.i.d. examples generated by \mathcal{D} and labeled by f, the algorithm returns a hypothesis h s.t. w.p. of at least $1-\delta$ (over the choice of the examples), $L_{(\mathcal{D},f)}(h)\leq\epsilon$.

$$\mathcal{P}[L_{(\mathcal{D},f)}(h) > \epsilon] < \delta \iff \mathcal{P}[L_{(\mathcal{D},f)}(h) < \epsilon] > 1 - \delta$$

 ϵ : accuracy parameter, determines how far the output classifier can be from the optimal one ("approximately correct").

 δ : confidence parameter, how likely the classifier is to meet the accuracy requirement ("probably").

 $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ determines the **sample complexity** of learning \mathcal{H} . Function of ϵ and δ , and depends on properties of \mathcal{H} .

Minimal function: for any ϵ, δ , $m_{\mathcal{H}}(\epsilon, \delta)$ is the minimal integer that satisfies the requirements of PAC learning with accuracy ϵ and confidence δ .

Corollary 3.2: Every finite hypothesis class is PAC learnable with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \le \left\lceil \frac{\log(|\mathcal{H}|/\delta)}{\epsilon} \right\rceil$$

Later, we'll see that what determines PAC learnability of a class is not its finiteness but its VC dimension.

The Bayes Optimal Predictor

Given any probability distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$, the best label predicting function from \mathcal{X} to $\{0,1\}$ will be

$$f_{\mathcal{D}}(x) = \begin{cases} 1 & \text{if } \mathbb{P}[y=1|x] \ge 1/2\\ 0 & \text{otherwise} \end{cases}$$

For every probability distribution \mathcal{D} , the Bayes optimal predictor f_D is optimal, in the sense that no other classifier, $g: \mathcal{X} \to \{0, 1\}$, has a lower error. For every classifier $g, L_{\mathcal{D}}(f_{\mathcal{D}}) \leq L_{\mathcal{D}}(g)$.

Since we do not know \mathcal{D} , we cannot utilize this optimal predictor $f_{\mathcal{D}}$.

Agnostic PAC learnability

Generalization on 1. removing the realizability assumption (diff goal), 2. handle feature labeled in multiple ways, 3. generalized loss functions.

1. Removing the realizability assumption

$$L_{\mathcal{D}}(h) \le \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \epsilon$$

With agnostic PAC learning, learner can still declare success if its error is not much larger than the best error achievable by a predictor from the class \mathcal{H} .

2. Handle feature labeled in multiple ways

Relax realizability assumption by replacing target labeling function w data-labels generating distribution. \mathcal{D} is a joint probability distribution over $\mathcal{X} \times \mathcal{Y}$. Marginal distribution \mathcal{D}_x and conditional distribution $\mathcal{D}((x,y)|x)$. Allows for two papayas that share the same color and hardness to belong to different taste categories.

 $L_{\mathcal{D}}(h) = \mathbb{P}_{(x,y) \sim \mathcal{D}}[h(x) \neq y] = \mathcal{D}(\{(x,y) : h(x) \neq y\}).$

Redefine true error of prediction rule
$$h$$
 to be

3. Beyond binary classification

Multiclass classification

Regression

Generalized loss functions

Loss functions: given any set \mathcal{H} and some domain Z let l be any function from $\mathcal{H} \times Z$ to the set of nonnegative real numbers, l: $\mathcal{H} \times Z \to \mathbb{R}_+$. For prediction problems $Z = \mathcal{X} \times \mathcal{Y}$.

Risk function: expected loss of a classifier, $h \in \mathcal{H}$, w.r.t. a probability distribution \mathcal{D} over Z,

$$L_{\mathcal{D}(h)} = \mathbb{E}_{z \sim \mathcal{D}}[l(h, z)]$$

We consider the expectation of the loss of h over objects z picked randomly according to $\mathcal{D}.$

Empirical risk: expected loss over a given sample $S = (z_1, \ldots, z_m) \in \mathbb{Z}^m$,

$$L_S(h) = \frac{1}{m} \sum_{i=1}^{m} l(h, z_i).$$

0-1 loss: r.v. z ranges over the set of pairs $\mathcal{X} \times \mathcal{Y}$ and

$$l_{0-1}(h,(x,y)) = \begin{cases} 0 & \text{if } h(x) = y\\ 1 & \text{if } h(x) \neq y \end{cases}$$

Square loss: r.v. z ranges over the set of pairs $\mathcal{X} \times \mathcal{Y}$ and

$$l_{sq}(h,(x,y)) = (h(x) - y)^2$$

Def 3.4: Agnostic PAC learnability for general loss fns

A hypothesis class \mathcal{H} is agnostic PAC learnable w.r.t. a set Z and a loss function $l: \mathcal{H} \times Z \to \mathbb{R}_+$, if there exists a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm with the following property: For every $\epsilon, \delta \in (0,1)$ and for every distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, when running the learning algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} , the algorithm returns a hypothesis $h \in \mathcal{H}$ s.t., w.p. of at least $1 - \delta$ (over the choice of the m training examples),

$$L_{\mathcal{D}}(h) \le \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \epsilon,$$

where $L_{\mathcal{D}}(h) = \mathbb{E}_{z \sim \mathcal{D}}[l(h, z)].$

Learning via uniform convergence

We need that uniformly over all hypotheses in the hypothesis class, the empirical risk will be close to the true risk.

Def 4.1: ϵ -representative sample

A training set S is called ϵ -representative (w.r.t. domain Z, hypothesis class \mathcal{H} , loss function l, and distribution \mathcal{D}) if

$$\forall h \in \mathcal{H}, |L_S(h) - L_D(h)| \leq \epsilon.$$

Lemma 4.2:

Assume that a training set S is $\frac{\epsilon}{2}$ -representative (w.r.t. domain Z, hypothesis class \mathcal{H} , loss function l, and distribution \mathcal{D}). Then, any output of $\mathrm{ERM}_{\mathcal{H}(S)}$, namely, any $h_S \in \arg\min_{h \in \mathcal{H}} L_S(h)$, satisfies

$$L_{\mathcal{D}}(h_S) \le \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$$

Proof. For every $h \in \mathcal{H}$,

$$L_{\mathcal{D}}(h_S) \le L_S(h_S) + \frac{\epsilon}{2} \le L_S(h) + \frac{\epsilon}{2} \le L_{\mathcal{D}}(h) + \frac{\epsilon}{2} + \frac{\epsilon}{2} = L_{\mathcal{D}}(h) + \epsilon$$

Follows from assumption that S is $\frac{\epsilon}{2}$ -representative and the second inequality holds since h_S is an ERM predictor.

Def 4.3: Uniform Convergence

We say that a hypothesis class \mathcal{H} has the uniform convergence property (w.r.t. a domain Z and a loss function l) if there exists a function $m_{\mathcal{H}}^{\text{UC}}:(0,1)^2\to\mathbb{N}$ such that for every $\epsilon,\delta\in(0,1)$ and for every probability distribution \mathcal{D} over Z, if S is a sample of $m\geq m_{\mathcal{H}}^{\text{UC}}(\epsilon,\delta)$ examples drawn i.i.d. according to \mathcal{D} , then, w.p. of at least $1-\delta,S$ is ϵ -representative.

Corollary 4.4:

If a class \mathcal{H} has the uniform convergence property with a fraction $m_{\mathcal{H}}^{\text{UC}}$ then the class is agnostically PAC learnable with the sample complexity $m_{\mathcal{H}}(\epsilon, \delta) \leq m_{\mathcal{H}}^{\text{UC}}(\epsilon/2, \delta)$. Furthermore, in that case, the ERM_{\mathcal{H}} paradigm is a successful agnostic PAC learner for \mathcal{H} .

Finite classes are agnostic PAC learnable

Uniform convergence holds for a finite hypothesis class, so agnostic PAC learnable.

Step 1: Apply the union bound

Fix some ϵ, δ . We need to find a sample size m that guarantees that

$$\mathcal{D}^{m}(\{S: \forall h \in \mathcal{H}, |L_{S}(h) - L_{\mathcal{D}}(h)| \leq \epsilon\}) \geq 1 - \delta.$$

Equivalently,

$$\mathcal{D}^{m}(\{S: \exists h \in \mathcal{H}, |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) < \delta.$$

Writing

$$\{S: \exists h \in \mathcal{H}, |L_S(h) - L_{\mathcal{D}}(h)| > \epsilon\} = \bigcup_{h \in \mathcal{H}} \{S: |L_S(h) - L_{\mathcal{D}}(h) > \epsilon\},$$

and applying the union bound, we obtain (4.1)

$$\mathcal{D}^{m}(\{S: \exists h \in \mathcal{H}, |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) = \sum_{h \in \mathcal{H}} \mathcal{D}^{m}\{S: |L_{S}(h) - L_{\mathcal{D}}(h) > \epsilon\}.$$

Step 2: Employ a measure concentration inequality. Each summand of the RHS is small enough for a sufficiently large m.

Law of large numbers: when m goes to ∞ , empirical averages converge to their true expectation. However, only an asymptotic result. Measure concentration inequality, quantifies gap bywn empirical averages and their expected value:

Lemma 4.5: Hoeffding's Inequality

Let $\theta_1, \ldots, \theta_m$ be a sequence i.i.d. random variables and assume that for all i, $\mathcal{E}[\theta_i] = \mu$ and $\mathcal{P}[a \leq \theta_i \leq b] = 1$. Then, for any $\epsilon > 0$,

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}\theta_{i}-\mu\right|>\epsilon\right]\leq2\exp\left(-2m\epsilon^{2}/(b-a)^{2}\right)$$

Let θ_i be the r.v. $l(h, z_i)$. Since h is fixed and z_1, \ldots, z_m are sampled i.i.d., it follows that $\theta_1, \ldots, \theta_m$ are also i.i.d. r.v.s. Furthermore, $L_S(h) = \frac{1}{m} \sum_{i=1}^m l(h, z_i) = \frac{1}{m} \sum_{i=1}^m \theta_i$ and $L_D(h) = \mu$. Assume $l \in [0,1]$, so $\theta_i \in [0,1]$. We obtain

$$\mathcal{D}^m(\{S: |L_S(h)-L_{\mathcal{D}}(h)| > \epsilon\}) = \mathbb{P}[|\frac{1}{m}\sum_{i=1}^m \theta_i - \mu| > \epsilon] \leq 2\exp(-2m\epsilon^2) \text{Corollary 5.2:}$$
 Let \mathcal{X} be an infinite domain set and let \mathcal{H} be the set of all functions

Combining w eq (4.1) yields

$$\mathcal{D}^{m}(\{S: \exists h \in \mathcal{H}, |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) \leq \sum_{h \in \mathcal{H}} 2 \exp(-2m\epsilon^{2})$$
$$= 2|\mathcal{H}| \exp(-2m\epsilon^{2})$$

Finally, if we choose

$$m \ge \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2}$$

then

$$\mathcal{D}^{m}(\{S: \exists h \in \mathcal{H}, |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) \leq \delta.$$

Corollary 4.6:

Let \mathcal{H} be a finite hypothesis class, let Z be a domain, and let l: $\mathcal{H} \times Z \to [0,1]$ be a loss function. Then, \mathcal{H} enjoys the uniform convergence property with sample complexity

$$m_{\mathcal{H}}^{UC}(\epsilon, \delta) \leq \left\lceil \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2} \right\rceil.$$

Furthermore, the class is agnostically PAC learnable using the ERM algorithm with sample complexity

$$m_{\mathcal{H}}(\epsilon, \delta) \le m_{\mathcal{H}}^{UC}(\epsilon/2, \delta) \le \left\lceil \frac{2 \log(2|\mathcal{H}|/\delta)}{\epsilon^2} \right\rceil.$$

The bias-complexity trade-off

The no-free-lunch theorem

We prove there is no universal learner-no learner can succeed on all learning tasks.

Theorem 5.1: No-free-lunch: Let A be any learning algorithm for the task of binary classification w.r.t. the 0-1 loss over a domain \mathcal{X} . Let m be any number smaller than $|\mathcal{X}|/2$, representing a training set size. Then, there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ s.t.:

- 1. There exists a fn $f: \mathcal{X} \to \{0,1\}$ with $L_{\mathcal{D}}(f) = 0$.
- 2. W.p. of at least 1/7 over the choice of $S \sim \mathcal{D}^m$ we have that $L_{\mathcal{D}}(A(S)) \geq 1/8.$

Proof. Let C be a subset of \mathcal{X} of size 2m. The intuition of the proof is that any learning algorithm that observes only half of the instances in C has no information on what should be the labels of the rest of the instances in C.

from \mathcal{X} to $\{0,1\}$. Then, \mathcal{H} is not PAC learnable.

Error decomposition

Let h_S be an ERM_{\mathcal{H}} hypothesis. Then,

$$L_{\mathcal{D}}(h_S) = \epsilon_{\text{app}} + \epsilon_{\text{est}}, \epsilon_{\text{app}} = \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h), \epsilon_{\text{est}} = L_{\mathcal{D}}(h_S) - \epsilon_{\text{app}}.$$

Approximation error: measures how much risk we have be we strict ourselves to a specific class - how much inductive bias we have The estimation error: difference between approx error and error achieved, results be empirical risk is only an estimate of the true risk

Bias-complexity tradeoff: more bias, overfitting. Less bias, underfitting.

Lecture 3: The VC-Dimension - 2/13

Infinite-size classes can be learnable

Lemma 6.1:

Let \mathcal{H} be the set of threshold functions over the real line, namely $\mathcal{H} = \{h_a : a \in \mathbb{R}\}$, where $h_a : \mathbb{R} \to \{0,1\}$ is a function s.t. $h_a(x) = \mathbb{1}_{[x < a]}$.

 \mathcal{H} is PAC learnable, using the ERM rule, with sample complexity of $m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \log(2/\delta)/\epsilon \rceil$.

Proof: Let a^* be a threshold s.t. $h^*(x) = \mathbb{1}_{[x < a^*]}$ achieves $L_{\mathcal{D}}(h^*) = 0$. Let \mathcal{D}_x be a marginal distribution over the domain \mathcal{X} and let $a_0 < a^* < a_1$ be s.t.

$$\mathbb{P}_{x \sim \mathcal{D}_x}[x \in (a_0, a^*)] = \mathbb{P}_{x \sim \mathcal{D}_x}[x \in (a^*, a_1)] = \epsilon.$$

Given S define $b_0 = \max\{x : (x,1) \in S\}$ and $b_1 = \min\{x : (x,0) \in S\}$. Let b_S be threshold corresponding to an ERM hypothesis, h_S , which implies b_S $in(b_0, b_1)$.

Sufficient condition for $L_{\mathcal{D}}(h_S) \leq \epsilon$ is that both $b_0 \geq a_0$ and $b_1 \leq a_1$. In other words,

$$\mathbb{P}_{S \sim \mathbb{D}^m} [L_{\mathcal{D}}(h_S) > \epsilon] \leq \mathbb{P}_{S \sim \mathcal{D}^m} [b_0 < a_0 \cup b_1 > a_1]$$

$$\leq \mathbb{P}_{S \sim \mathcal{D}^m} [b_0 < a_0] + \mathbb{P}_{S \sim \mathcal{D}^m} [b_1 > a_1]$$

The event $b_0 < a_0$ happens iff all exs in S are not in (a_0, a^*) ,

$$\mathbb{P}_{S \sim \mathcal{D}^m}[b_0 < a_0] = \mathbb{P}_{S \sim \mathcal{D}^m}[\forall (x, y) \in S, x \notin (a_0, a^*)] = (1 - \epsilon)^m \le e^{-\epsilon m}.$$

The VC-dimension

Recall the No-Free-Lunch theorem: without restricting the hypothesis class, for any learning algorithm, an adversary can construct a distribituion for which the learning algorithm will perform poorly, while there is another learning algorithm that will succeed on the same distribution.

Def 6.2: Restriction of \mathcal{H} to C.

Let \mathcal{H} be a class of functions from $\mathcal{X}to\{0,1\}$ and let $C = \{c_1, \ldots, c_m\} \subset \mathcal{X}$. The restriction of \mathcal{H} to C is the set of fins from C to $\{0,1\}$ that can be derived from \mathcal{H} . That is,

$$\mathcal{H}_C = \{(h(c_1), \dots, h(c_m)) : h \in \mathcal{H}\}\$$

, where we represent each fn from C to $\{0,1\}$ as a vector in $\{0,1\}^{|C|}$. **Def 6.3: Shattering:** A hypothesis class \mathcal{H} shatters a finite set $C \subset \mathcal{X}$ if the restriction of \mathcal{H} to C is the set of all functions from C to $\{0,1\}$. That is, $|\mathcal{H}_C| = 2^{|C|}$.

Corollary 6.4: Let \mathcal{H} be a hypothesis class of fns from \mathcal{X} to $\{0,1\}$. Let m be a training set size. Assume that there exists a set $C \subset \mathcal{X}$ of size 2m that is shattered by \mathcal{H} . Then, for any learning algorithm, A, there exist a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ and a predictor $h \in \mathcal{H}$ s.t. $L_{\mathcal{D}}(h) = 0$ but w.p. of at least 1/7 over the choice of $S \sim \mathcal{D}^m$ we have that $L_{\mathcal{D}}(A(S)) \geq 1/8$.

Def. 6.5: VC-dimension: The VC-dimension of a hypothesis class \mathcal{H} , denoted by VCdim(\mathcal{H}), is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} . If \mathcal{H} can shatter sets of arbitrary large size we say that \mathcal{H} has infinite VC-dimension.

Theorem 6.6: Let \mathcal{H} be a class of infinite VC-dimension. Then, \mathcal{H} is not PAC learnable.

Since \mathcal{H} has an infinite VC-dimension, for any training set size m, there exists a shattered set of size 2m.

Converse is also true: A finite VC dimension guarantees learnability.

Examples

To show that $VCdim(\mathcal{H}) = d$ we need to show that 1. There exists a set C of size d that is shattered by \mathcal{H} . 2. Every set C of size d+1 is not shattered by \mathcal{H} .

$Threshold\ functions$

 $VCdim(\mathcal{H}) = 1$

Intervals

 $VCdim(\mathcal{H}) = 2$

Axis aligned rectangles

 $VCdim(\mathcal{H}) = 4$

If \mathcal{H} has finite VC-dim then \mathcal{H} has the uniform convergence property. Proof: Sauer's Lemma: If VC dim of $\mathcal{H} = d$, then $|\mathcal{H}_c| = O(|C|^d)$. If $|\mathcal{H}_C| = O(|C|^d)$, then uniform convergence holds. Lecture 4: Learning with Convex Objectives - 2/20