EECS 495: Randomized Algorithms Metric Embeddings

Lecture 11

Reading: Text: Vazirani, Chapter 21

Started with min-cut, saw max-cut last lecture, now for another important cut problem, sparsest cut. We use this prob-lem to demonstrate embedding techniques in randomized approximation algorithms.

Multi-commodity flow/sparest cut

Problem: Multi-commodity flow.

Given

- graph G = (V, E)
- capacities $c: E \to \Re^+$
- commodities $\{1,\ldots,k\}$ with
 - demands dem(i)
 - source/sink pairs (s_i, t_i)

Find

• max throughput f^* s.t. for each commodity, $f^* \times \text{dem}(i)$ flow can be routed simultaneously

Note: Given cut (S, \bar{S}) , let

- c(S) be total capacity of $e \in \delta(S)$

Fact: $f^* \leq \min_{S \subseteq V} \frac{c(S)}{\operatorname{dem}(S)}$ (one direction of min-cut/max-flow thm).

Def: The *sparsity* of a cut (S, \bar{S}) is $\frac{c(S)}{\text{dem}(S)}$.

Problem: Sparest cut. Given above setup, find cut S with minimum sparsity.

Note: Unlike single-commodity, bound is not tight!

Example: $K_{3,2}$, unit capacity, unit demand between each pair of non-adjacent vertices.

- sparsest cut: remove a node on lhs, sparsity is 1
- flow: can only route all lhs demands by sending 1/2 on each edge, but this saturates edges, so rhs can't route demand.

LP Formulation

Primal

Let $\mathcal{P}_i = \{q_i^i\}$ be paths from s_i to t_i .

max
$$f$$

$$s.t. \qquad \sum_{j}^{f} f_{j}^{i} \ge f \cdot \text{dem}(i), \ 1 \le i \le k$$

$$\sum_{q_{j}^{i}: e \in q_{j}^{i}} f_{j}^{i} \le c_{e}, \ e \in E$$

• dem(S) be total demand separated by where f_j^i is flow from commodity i on path q_i^i .

Dual

$$\min \sum_{e \in E} c_e d_e$$

$$s.t. \sum_{e \in q_j^i} d_e \ge l_i$$

$$\sum_{i=1}^k l_i \cdot \text{dem}(i) \ge 1$$

where d_e is "distance" of edge e.

 $\begin{bmatrix} Don't & actually & need & exponential & LP, \\ and/or & can & use & separation & oracle & that \\ looks & at & shortest & path & from & s_i & to & t_i. \end{bmatrix}$

Fact: There is an optimal soln. in which the d_e form a metric and second ineq. is tight.

Def: A metric space is a pair (V, d) where $d: V \times V \to \Re^+$ s.t.

- $d(x,y) = 0 \leftrightarrow x = y$
- symmetry: d(x, y) = d(y, x)
- triangle inequality: $d(x,y) + d(y,z) \ge d(x,z)$

Proof: If not, can massage it to one:

- if for some $u, v, w, d_{uv} + d_{vw} < d_{uw}$, can set $d_{uw} = d_{uv} + d_{vw}$ without changing shortest path length, so still feasible
- set $l_i = d(s_i, t_i)$ where $d(\cdot)$ is dist. according to metric d_e
- if second ineq. isn't tight, scale all d_e to make it tight

Hence optimal throughput f^* equals

$$\min_{\text{metric } d} \frac{\sum_{e} c_e d_e}{\sum_{i} \text{dem}(i) d(s_i, t_i)}.$$

Idea: Cuts are metrics too!

[To find sparest cut, write optimal metric] in terms of cut metrics and hope it suggests a good one.

Cut packings

Def: A cut-packing is a function $y: 2^V \to \Re^+$ assigning value y_S to cut (S, \bar{S}) s.t. for each edge e, the amount of cut e "feels" is at most d_e :

$$\sum_{S:e\in\delta(S)} y_S \le d_e$$

- exact if $\sum_{S:e\in\delta(S)} y_S = d_e$
- β -approximate for $\beta \geq 1$ if $\frac{d_e}{\beta} \geq \sum_{S:e \in \delta(S)} y_S \leq d_e$

Claim: Given a β -approx. cut packing for (V, d), let S^* be the sparsest cut among those with $y_S > 0$. Then sparsity of this cut is at most $\beta \cdot f^*$.

 $\begin{bmatrix} Hence & if we can find \beta-approximate & cut \\ packings & we can get \beta-approximations & to \\ sparsest & cut. \end{bmatrix}$

Proof: Let y be a β -approx. cut packing. Then

$$f^* = \frac{\sum_{e} c_e d_e}{\sum_{i} \operatorname{dem}(i) d(s_i, t_i)}$$

$$\geq \frac{\sum_{e} c_e \sum_{S: e \in \delta(S)} y_S}{\sum_{i} \operatorname{dem}(i) \sum_{S: (s_i, t_i) \in \delta(S)} \beta y_S}$$

$$= \frac{\sum_{S} c(S) y_S}{\beta \sum_{S} \operatorname{dem}(S) y_S}$$

$$\geq \frac{1}{\beta} \left(\frac{c(S^*)}{\operatorname{dem}(S^*)}\right)$$

(recall ratio of sums at least min ratio).

Exact cut packings means all cuts with non-zero weight are sparest cuts.

Question: How small can β be in general?

Metric Embeddings

Idea: To find good cut packing, embed arbitrary metric into "simple" metric without too

much distortion, then cut-pack simple metric.

l_1 metrics and their packing

Def: A norm on a vector space \Re^m is a function $||\cdot||: \Re^m \to \Re^+$ s.t. for any $x, y \in \Re^m$ and $\lambda \in \Re$,

- $||x|| = 0 \leftrightarrow x = 0$
- $||\lambda x|| = |\lambda| \cdot ||x||$
- $||x + y|| \le ||x|| + ||y||$

Def: For $p \ge 1$, the l_p -norm is

$$||x||_p = \left(\sum_{k=1}^m |x_k|^p\right)^{1/p}$$

Def: The associated metric is defined by $d_{l_p}(x,y) = ||x-y||_p$.

 $\begin{bmatrix} l_2 \ is \ what \ you \ think \ of \ as \ Euclidian \ distance; \ l_1 \ is \ grid \ distance \ in \ 2-d. \ Here \ we \\ only \ care \ about \ l_1. \end{bmatrix}$

Def: A β -distortion l_1 -embedding for metric (V, d) is a mapping $\sigma : V \to \Re^m$ for some m such that for all $u, v \in V$,

$$\frac{1}{\beta}d(u,v) \le ||\sigma(u) - \sigma(v)||_1 \le d(u,v).$$

Claim: Given β -distortion l_1 embedding σ with dimension m, can construct β -approximate cut packing y with at most mn non-zero y_S .

Proof: If m = 1, suppose vertices mapped to $u_1 \leq \ldots \leq u_n$. Define

$$y_{1,\dots,t} = u_{t+1} - u_t.$$

Then

$$\sum_{S:(i,j)\in\delta(S)} y_S = \sum_{t=i}^{j-1} y_{1,\dots,t} = u_t - u_s.$$

If m > 1, do this in each dimension, get mn cuts, l_1 norm additive, so works.

[[Other direction true too.]]

Embedding into l_1

Idea: Use distances to sets:

- Pick S_1, \ldots, S_m
- Define $\sigma_i(u) = \min_{t \in S_i} d(u, t)/m$
- No stretch since for dim. i and edge (u, v),

$$d(u, t_u) \le d(u, t_v) \le d(v, t_v) + d(u, v).$$

Question: How to choose S_i for to not overshrink?

Idea: Choose randomly!

Algorithm: For $1 \le i \le \log n$, let S_i include each $t \in V$ with prob. $1/2^i$.

Claim: $O(\log n)$ -distortion embedding.

Let B(t,r) be ball of radius r around t. Bound d(u,v):

- Let $r_1 \ge r_2 \ge 0$
- Suppose $S_i \cap B(u, r_1) = \emptyset$ and $(S_i \cap B(v, r_2) \neq \emptyset)$
- Then $|\sigma_i(u) \sigma_i(v)| \ge (r_1 r_2)/l$

Claim: Let A and B be disjoint subsets s.t. $|A| < 2^i$ and $|B| \ge 2^{i-1}$. Then $\Pr[(S_i \cap A = \emptyset) \land (S_i \cap B \ne \emptyset)] \ge c$ for some constant c.

Proof: Sets disjoint so independent, easy to calculate.

Let ρ_i be min radius s.t. both $B(u, \rho_i)$ and $B(v, \rho_i)$ have at least 2^i points.

- Suppose ρ_i limited by u
- Suppose $\rho_i < d(u, v)/2$
- $A = B^{o}(u, \rho_{i}), B = B(v, \rho_{i-1})$
- Then S_i contributes $c(\rho_i \rho_{i-1})/l$ to i'th coordinate in expectation
- Summing over coordinates up to $\rho_i = d(u, v)/2$ gives result for (u, v)

Get for all edges whp by running $\log n$ times and using Chernoff, hence dimension of embedding is $O(\log^2 n)$.

Really only wanted to make sure the k demand pairs not overshrunk. Can save by only selecting subsets of vertices that are source/sink pairs and re-running above analysis to conclude demand pairs not overshrunk. Gives a (log k)-approx.

Also gives approx. multi-commodity max-flow/min-cut, i.e., sparsity at most $O(\log k)$ times throughput.

Improved to $O(\sqrt{\log n})$ with SDPs by Arora, Rao, Vazirani in 2004 and via a faster algorithm using "expander flows" by Arora, Hazan, and Kale.