Literature Report

Bootstrapping pay-as-you-go data integration systems

Anish Das Sarma†
Stanford University
California, USA
anish@cs.stanford.edu

Xin Dong[†]
AT&T Labs–Research
New Jersey, USA
Iunadong@research.att.com

Alon Halevy
Google Inc.
California, USA
halevy@google.com

SIGMOD '08: Proceedings of the 2008 ACM SIGMOD international conference on Management of data June 2008

Zihao Li, 2020.07.19

Problem description

• Many application contexts involve multiple data sources (e.g., the web, personal information management, enterprise intranets), how to integrate those data automatically?

EXAMPLE 1. Consider two source schemas both describing people:

- S1(name, hPhone, hAddr, oPhone, oAddr)
- S2(name, phone, address)

Clustering the attributes of S1 and S2:

Which mediate schema is perfect?

```
M1({name}, {phone, hP, oP}, {address, hA, oA})
M2({name}, {phone, hP}, {oP}, {address, oA}, {hA})
M3({name}, {phone, hP}, {oP}, {address, hA}, {oA})
M4({name}, {phone, oP}, {hP}, {address, oA}, {hA})
M5({name}, {phone}, {hP}, {oP}, {address}, {hA}, {oA})
```

Problem description

```
EXAMPLE 2. Consider an instance of S1 with a tuple:
S1: (name, hPhone, hAddr, oPhone, oAddr)
('Alice', '123-4567', '123, A Ave.', '765-4321', '456, B Ave.')
and a query:
```

SELECT name, phone, address FROM People

Which answer is perfect?

```
A1: ('Alice', '123-4567', '123, A Ave.')
A2: ('Alice', '765-4321', '456, B Ave.')
A3: ('Alice', '765-4321', '123, A Ave.')
A4: ('Alice', '123-4567', '456, B Ave.')
```

Motivation

Introducing the notion of *probabilistic schema mappings* which provides a foundation for answering queries in a data integration system with uncertainty about semi-automatically created mappings.

Integration:

Possible Mapping	Probability	
{(name, name), (hP, hPP), (oP, oP), (hA, hAA), (oA, oA)}	0.64	
{(name, name), (hP, hPP), (oP, oP), (oA, hAA), (hA, oA)}	0.16	
{(name, name), (oP, hPP), (hP, oP), (hA, hAA), (oA, oA)}	0.16	
{(name, name), (oP, hPP), (hP, oP), (oA, hAA), (hA, oA)}	0.04	

Query – Answer:

Answer	Probability
('Alice', '123-4567', '123, A Ave.')	0.34
('Alice', '765-4321', '456, B Ave.')	0.34
('Alice', '765-4321', '123, A Ave.')	0.16
('Alice', '123-4567', '456, B Ave.')	0.16

Architecture of our automatic-setup data integration system

Step 1. Construct a probabilistic mediated schema (Preparing the original data source and get the probability distribution).

Step 2. Find best probabilistic schema mappings (Integration based on probability).

Step 3. Create a single mediated schema to expose to the user (Query Answering based on probability)

Definition

The distribution of original probabilistic mediated schema from multi-data source

DEFINITION 3.1 (PROBABILISTIC MEDIATED SCHEMA). Let $\{S_1, \ldots, S_n\}$ be a set of schemas. A probabilistic mediated schema (p-med-schema) for $\{S_1, \ldots, S_n\}$ is a set

$$\mathbf{M} = \{(M_1, Pr(M_1)), \dots, (M_l, Pr(M_l))\}\$$

where

- for each $i \in [1, l]$, M_i is a mediated schema for S_1, \ldots, S_n , and for each $i, j \in [1, l]$, $i \neq j$, M_i and M_j correspond to different clusterings of the source attributes;
- $Pr(M_i) \in (0,1]$, and $\Sigma_{i=1}^l Pr(M_i) = 1$.

Query – Answer pairs based on probability

The probability of each mapping schema

DEFINITION 3.2 (PROBABILISTIC MAPPING). Let S be a source schema and M be a mediated schema. A probabilistic schema mapping (p-mapping) between S and M is a set

$$pM = \{(m_1, Pr(m_1)), \dots, (m_l, Pr(m_l))\}$$

such that

- for each $i \in [1, l]$, m_i is a schema mapping between S and M, and for every $i, j \in [1, l], i \neq j \Rightarrow m_i \neq m_j$;
- $Pr(m_i) \in (0,1]$, and $\Sigma_{i=1}^l Pr(m_i) = 1$.

DEFINITION 3.3 (QUERY ANSWER). Let S be a source schema and $\mathbf{M} = \{(M_1, Pr(M_1)), \dots, (M_l, Pr(M_l))\}$ be a p-med-schema. Let $\mathbf{pM} = \{pM(M_1), \dots, pM(M_l)\}$ be a set of p-mappings where $pM(M_i)$ is the p-mapping between S and M_i . Let D be an instance of S and Q be a query.

Let t be a tuple. Let $Pr(t|M_i)$, $i \in [1, l]$, be the probability of t in the answer of Q with respect to M_i and $pM(M_i)$. Let $p = \sum_{i=1}^{l} Pr(t|M_i) * Pr(M_i)$. If p > 0, then we say (t, p) is a by-table answer with respect to \mathbf{M} and \mathbf{pM} .

We denote all by-table answers by $Q_{\mathbf{M},\mathbf{pM}}(D)$.

Mediate schema generation – Creating a single mediate schema

Step 1. delete noise data (rare data) based on threshold;

Step2. graph generation. Nodes are attributes and edges are the similarity of connecting notes, isolated notes were deleted (similarity is small than threshold);

Step3. Combine nodes based on uncertain edges;

Nodes similarity: Jaro-Winkler Similarity

0: **Input**: Source schemas S_1, \ldots, S_n . **Output**: A set of possible mediated schemas.

- 1: Compute $A = \{a_1, \ldots, a_m\}$, the set of all source attributes;
- 2: **for each** $(j \in [1, m])$

Compute frequency $f(a_j) = \frac{|\{i \in [1,n] | a_j \in S_i\}|}{n}$;

- 3: Set $A = \{a_j | j \in [1, m], f(a_j) \ge \theta\}$; //\theta is a threshold
- 4: Construct a weighted graph G(V, E), where (1) V = A, and (2) for each $a_j, a_k \in A$, $s(a_j, a_k) \ge \tau \epsilon$, there is an edge (a_j, a_k) with weight $s(a_j, a_k)$;
- 5: Mark all edges with weight less than $\tau + \epsilon$ as uncertain;
- 6: for each (uncertain edge $e = (a_1, a_2) \in E$)

Remove e from E if (1) a_1 and a_2 are connected by a path with only certain edges, or (2) there exists $a_3 \in V$, such that a_2 and a_3 are connected by a path with only certain edges and there is an uncertain edge (a_1, a_3) ;

7: for each (subset of uncertain edges)

Omit the edges in the subset and compute a mediated schema where each connected component in the graph corresponds to an attribute in the schema;

8: return distinct mediated schemas.

Algorithm 1: Generate all possible mediated schemas.

Mediate schema generation – Creating a p-med-schema

The calculation of the probability of mediated schemas (let frequency as probability):

```
0: Input: Possible mediated schemas M<sub>1</sub>,..., M<sub>l</sub> and source schemas S<sub>1</sub>,..., S<sub>n</sub>.
Output: Pr(M<sub>1</sub>),..., Pr(M<sub>l</sub>).
1: for each (i ∈ [1, l])

Count the number of source schemas that are consistent with M<sub>i</sub>, denoted as c<sub>i</sub>;
2: for each (i ∈ [1, l]) Set Pr(M<sub>i</sub>) = c<sub>i</sub>/∑ l<sub>i=1</sub> c<sub>i</sub>.
```

Algorithm 2: Assign probabilities to possible mediated schemas.

Figure 3: The p-med-schema for a set of bibliography sources. Each oval in the graph represents an attribute in the mediated schemas. The p-med-schema contains two possible schemas, the first containing attributes in regions A and B1, and the second containing attributes in regions A and B2. They have probabilities 0.703 and 0.297 respectively.

P-mapping generation — computing weighted correspondences

p_(i, j) is the correspondence of source
attribute i and the mediated schema attribute j:

DEFINITION 5.1 (CONSISTENT P-MAPPING). A p-mapping pM is consistent with a weighted correspondence $C_{i,j}$ between a pair of source and target attributes if the sum of the probabilities of all mappings $m \in pM$ containing correspondence (i, j) equals $p_{i,j}$; that is,

$$p_{i,j} = \sum_{m \in pM, (i,j) \in m} \Pr(m).$$

A p-mapping is consistent with a set of weighted correspondences \mathbf{C} if it is consistent with each weighted correspondence $C \in \mathbf{C}$.

THEOREM 5.2. Let C be a set of weighted correspondences between a source schema $S(a_1, \ldots, a_m)$ and a mediated schema $M(A_1, \ldots, A_n)$.

- There exists a consistent p-mapping with respect to \mathbf{C} if and only if (1) for every $i \in [1, m]$, $\sum_{j=1}^{n} p_{i,j} \leq 1$ and (2) for every $j \in [1, n]$, $\sum_{i=1}^{m} p_{i,j} \leq 1$.
- Let

$$M' = \max\{\max_{i}\{\sum_{j=1}^{n} p_{i,j}\}, \max_{j}\{\sum_{i=1}^{m} p_{i,j}\}\}.$$

Then, for each $i \in [1, m]$, $\sum_{j=1}^{n} \frac{p_{i,j}}{M'} \leq 1$ and for each $j \in [1, n]$, $\sum_{i=1}^{m} \frac{p_{i,j}}{M'} \leq 1$.

Based on Theorem 5.2, we normalize the weighted correspondences we generated as described previously by dividing them by M'; that is,

$$p'_{i,j} = \frac{p_{i,j}}{M'}.$$

P-mapping generation — Generating p-mappings

Based on the correspondence of each attribute pairwise (i, j), then how to realize the assignment (mapping) of each attribute from source data to intermediate mediate?

Maximum cross entropy:

Given the possible mappings m_1, \ldots, m_l , we assign probabilities p_1, \ldots, p_l to m_1, \ldots, m_l by solving the following constraint optimization problem (OPT):

maximize
$$\sum_{k=1}^{l} -p_k * \log p_k$$
 subject to:

- 1. $\forall k \in [1, l], 0 \le p_k \le 1$,
- 2. $\sum_{k=1}^{l} p_k = 1$, and
- 3. $\forall i, j : \sum_{k \in [1,l], (i,j) \in m_k} p_k = p_{i,j}$.

Using Knitro (software) to solve the entropy maximization problem in p-mapping construction.

P-mediated-schema consolidation

Combine the multi mediate schema to create a integrated schema T:

```
0: Input: Mediated schemas M<sub>1</sub>,..., M<sub>l</sub>.
Output: A consolidated single mediated schema T.
1: Set T = M<sub>1</sub>.
2: for (i = 2,...,l) modify T as follows:
3: for each (attribute A' in M<sub>i</sub>)
4: for each (attribute A in T)
5: Divide A into A ∩ A' and A - A';
6: return T.
```

Algorithm 3: Consolidate a p-med-schema.

EXAMPLE 6.1. Consider a p-med-schema $M = \{M_1, M_2\}$, where M_1 contains three attributes $\{a_1, a_2, a_3\}$, $\{a_4\}$, and $\{a_5, a_6\}$, and M_2 contains two attributes $\{a_2, a_3, a_4\}$ and $\{a_1, a_5, a_6\}$. The target schema T would then contain four attributes: $\{a_1\}$, $\{a_2, a_3\}$, $\{a_4\}$, and $\{a_5, a_6\}$.

Experiments

Experiment dataset: tables from five domain:

Table 1: Number of tables in each domain and keywords that identify the domain. Each domain contains 50 to 800 data sources.

Domain	#Src	Keywords		
Movie	161	movie and year		
Car	817	make and model		
People	49	name, one of job and title, and one of organization, company and employer		
Course	647	one of <i>course</i> and <i>class</i> , one of <i>instructor</i> , <i>teacher</i> and <i>lecturer</i> , and one of <i>subject</i> , <i>department</i> and <i>title</i>		
Bib	649	author, title, year, and one of journal and conference		

Experiments

Mapping experiment, compared with manual results (golden standard)

Table 2: Precision, recall and F-measure of query answering of the UDI system compared with a manually created integration system. The results show that UDI obtained a high accuracy in query answering.

Domain	Precision	Recall	F-measure				
Golden standard							
People	1	.849	.918				
Bib	1	.852	.92				
Approximate golden standard							
Movie	.95	1	.924				
Car	1	.917	.957				
Course	.958	.984	.971				
People	1	1	1				
Bib	1	.955	.977				

The time to set up the system

Figure 7: System setup time for the Car domain. When the number of data sources was increased, the setup time increased linearly.

Conclusion

- Automatically set up a data integration application that obtains answers with high precision and recall;
- Time should be optimized in the future work;
- Human interaction or feedback should be considered in the integration process;

Reference

- Das Sarma A, Dong X, Halevy A. Bootstrapping pay-as-you-go data integration systems[C]//Proceedings of the 2008 ACM SIGMOD international conference on Management of data. 2008: 861-874.
- Jaro-Winkler distance Wikipedia.
 https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler distance
- Dong X L, Halevy A, Yu C. Data integration with uncertainty[J]. The VLDB Journal, 2009, 18(2): 469-500.
- Jeffery S R, Franklin M J, Halevy A Y. Pay-as-you-go user feedback for dataspace systems[C]//Proceedings of the 2008 ACM SIGMOD international conference on Management of data. 2008: 847-860.
- Franklin M, Halevy A, Maier D. From databases to dataspaces: a new abstraction for information management[J]. ACM Sigmod Record, 2005, 34(4): 27-33.

Thanks

Appendix

Jaro Similarity

The Jaro Similarity sim_j of two given strings s_1 and s_2 is

$$sim_j = \left\{egin{array}{ll} 0 & ext{if } m=0 \ rac{1}{3}\left(rac{m}{|s_1|} + rac{m}{|s_2|} + rac{m-t}{m}
ight) & ext{otherwise} \end{array}
ight.$$

Where:

- $|s_i|$ is the length of the string s_i ;
- *m* is the number of *matching characters* (see below);
- t is half the number of transpositions (see below).

Two characters from s_1 and s_2 respectively, are considered *matching* only if they are the same and not farther than $\left\lfloor \frac{\max(|s_1|,|s_2|)}{2} \right\rfloor - 1$

characters apart.

Each character of s_1 is compared with all its matching characters in s_2 . The number of matching (but different sequence order) characters divided by 2 defines the number of *transpositions*. For example, in comparing CRATE with TRACE, only 'R' 'A' 'E' are the matching characters, i.e. m=3. Although 'C', 'T' appear in both strings, they are farther apart than 1 (the result of $\lfloor \frac{5}{2} \rfloor - 1$). Therefore, t=0. In DwAyNE versus DuANE the matching letters are already in the same order D-A-N-E, so no transpositions are needed.

Appendix

Jaro-Winkler Similarity [edit]

Jaro-Winkler similarity uses a prefix scale p which gives more favorable ratings to strings that match from the beginning for a set prefix length ℓ . Given two strings s_1 and s_2 , their Jaro-Winkler similarity sim_w is:

$$sim_w = sim_j + \ell p(1-sim_j),$$

where:

- $ullet sim_j$ is the Jaro similarity for strings s_1 and s_2
- \bullet ℓ is the length of common prefix at the start of the string up to a maximum of four characters
- p is a constant scaling factor for how much the score is adjusted upwards for having common prefixes. p should not exceed 0.25, otherwise the similarity could become larger than 1. The standard value for this constant in Winkler's work is p=0.1

The Jaro-Winkler distance d_w is defined as $d_w = 1 - sim_w$.

Although often referred to as a *distance metric*, the Jaro–Winkler distance is not a metric in the mathematical sense of that term because it does not obey the triangle inequality. The Jaro–Winkler distance also does not satisfy the identity axiom $d(x, y) = 0 \leftrightarrow x = y$.