Simulation of a double degenerate (WDWD) binary system with FLASH

Ian Padilla-Gay

MSc. Theoretical Physics, Lund University, Sweden <u>ia6400pa-s@student.lu.se</u>

Supervisors:

Prof. Dr. Enrico Ramirez-Ruiz (UCSC & Niels Bohr Institute) and PhD. Phillip Macias (UCSC)

Goals of the project

- 1. Simulate the Roche lobe overflow of a double degenerate binary system (WDWD) in 2D using the grid-based FLASH code.
- Compare our results with particle-based simulations in the literature.

White Dwarfs

- ★ End point of stellar evolution for most stars.
- ★ Supported by electron-degeneracy pressure.

$$P_{deg} \propto \rho^{5/3}$$

* This pressure prevents the gravitational collapse of WDs bellow the Chandrasekhar mass limit (~ $1.44\,M_{\odot}$)

- ★ Earth-sized and almost as massive as the Sun.
- ★ One of the densest forms of matter.
 We are surrounded by ~ 10¹⁰ of them in the Milky Way.

Double degenerate (DD) systems

The study of DD binaries is crucial

Because:

- 1. At least two phases of mass transfer: good tests for binary evolution theories.
- 2. If a WD accretes matter from companion, a type 1a Supernova may occur, whose explosion mechanism is still under debate.
- 3. Low frequency gravitational waves.
- 4. Sources of super-soft X-rays if nuclear burning ignited.

The FLASH simulation

1. Initializing simulation

- Primary and secondary WD initially at hydrodynamical equilibrium.
 Very well described by spherical polytropes of n = 1.5.
- Solutions mapped into the x-y plane. Hydrodynamical equations not solved along the z-direction.

• To prevent FLASH from refining uninteresting regions, we replace fractions of primary and secondary with a constant density (boundary condition).

(lan P.)

1D initial condition for a polytrope (secondary WD)

Simulation domain

• Binary separation is such that secondary completely fills its Roche lobe.

Eggleton's
$$\frac{R_L}{a} = \frac{0.49q^{\frac{2}{3}}}{0.60q^{2/3} + \log(1 + q^{\frac{1}{3}})} \qquad q = \frac{M_2}{M_1}$$

$$R_L = R_2$$

(lan P.)

2. Evolving simulation

- The choice of (co-rotating) frame and the presence of companion affect the hydrostatic configuration: Let them relax!
- After many dynamical time scales (350 s), we stop the relaxation routine.
- Gravitational field accounts for point-mass-, coriolis- and centrifugal forces.
- Temperatures are computed using the ideal-gas equation of state.

3. Results

Conclusions

- 1. This simulation is a first step towards:
 - A. Investigating the mass transfer of a DD binary.
 - B. Studying the distribution of total angular momentum between the orbit and the spins of primary and secondary WD.
 - C. Exploring direct impact and disk formation scenarios.
 - D. Understanding the orbital evolution of the binary (controlled by GW emission) which leads to a merger and a possible explosive disruption.

Future work

- A. Add chemical composition to WDs.
- B. Explore parameter space to determine which binaries are prone to a thermonuclear explosion just prior to merger.

References and acknowledgments

- J. Guillochon, M. Dan, E. Ramirez-Ruiz & S. Rosswog, 2009, arXiv:0911.0416.
- 2. W.P. Hawley, T. Athanassiadou, F.X. Timmes, 2012, arXiv:1209.3749.
- 3. M. Dan, S. Rosswog, J. Guillochon, E. Ramirez-Ruiz, 2012, arXiv:1201.2406.
- 4. The software used in this work was in part developed by the DOE NNSA-ASC OASCR Flash Center at the University of Chicago.
- 5. Special thanks to P. Macias and R. Navarrete at UCSC.