BPL_TEST2_Batch - demo

```
In [1]: run -i BPL_TEST2_Batch_explore.py
```

Windows - run FMU pre-compiled JModelica 2.14

Model for the process has been setup. Key commands:

- par() change of parameters and initial values
- init()change initial values only
- simu()- simulate and plot- newplot()- make a new plot
- show()show plot from previous simulation
- disp() display parameters and initial values from the last simulation
- describe() describe culture, broth, parameters, variables with values/units

Note that both disp() and describe() takes values from the last simulation and the command process_diagram() brings up the main configuration

Brief information about a command by help(), eg help(simu)
Key system information is listed with the command system_info()

```
In [2]: %matplotlib inline
  plt.rcParams['figure.figsize'] = [25/2.54, 20/2.54]
```

```
In [3]: process_diagram()
```

No processDiagram.png file in the FMU, but try the file on disk.

disp('bioreactor', mode='long')

```
In [4]: # Simulation with default values of the process
newplot(plotType='TimeSeries')
simu()
```



```
In [5]: # Simulation were initial value of biomass VX_0 is varied
newplot(plotType='TimeSeries')
for value in [1.0, 0.7, 1.3]: init(VX_start=value); simu(5)

# Restore default value of VX_0
init(VX_start=1.0)
```



```
In [6]: # Simulation were initial value of substrate VS_start is varied
newplot(plotType='TimeSeries')
for value in [10, 7, 13]: init(VS_start=value); simu(5)

# Restore default value of VS_start
init(VS_start=10)
```



```
In []: # Simulation where metabolism is changed after 3 hours
    newplot(plotType='TimeSeries')
    simu(3)
    par(Y=0.4, qSmax=1.0/(0.4/0.5)); simu(2, 'cont')

# Restore default value of Y and qSmax
    par(Y=0.5, qSmax=1.0)

In []: disp('culture')

In []: describe('mu')

In []: describe('MSL')

In []: system_info()
```