Assignment 1: Deep N-grams

Welcome to the first graded assignment of course 3. In this assignment you will explore Recurrent Neural Networks RNN .

In this notebook you will apply the following steps:

- · Convert a line of text into a tensor
- · Create a tensorflow dataset
- Define a GRU model using TensorFlow
- Train the model using TensorFlow
- · Compute the accuracy of your model using the perplexity
- · Generate text using your own model

Before getting started take some time to read the following tips:

TIPS FOR SUCCESSFUL GRADING OF YOUR ASSIGNMENT:

- All cells are frozen except for the ones where you need to submit your solutions.
- You can add new cells to experiment but these will be omitted by the grader, so don't rely
 on newly created cells to host your solution code, use the provided places for this.
- You can add the comment # grade-up-to-here in any graded cell to signal the grader that it
 must only evaluate up to that point. This is helpful if you want to check if you are on the
 right track even if you are not done with the whole assignment. Be sure to remember to
 delete the comment afterwards!
- To submit your notebook, save it and then click on the blue submit button at the beginning of the page.

Table of Contents

- Overview
- 1 Data Preprocessing Overview
 - 1.1 Loading in the Data
 - 1.2 Create the vocabulary
 - 1.3 Convert a Line to Tensor
 - Exercise 1 line_to_tensor
 - 1.4 Prepare your data for training and testing
 - 1.5 Tensorflow dataset
 - 1.6 Create the input and the output for your model
 - Exercise 2 data_generator
 - 1.7 Create the training dataset
- 2 Defining the GRU Language Model (GRULM)
 - Exercise 3 GRULM
- 3 Training
 - Exercise 4 train model
- 4 Evaluation
 - 4.1 Evaluating using the Deep Nets
 - Exercise 5 log_perplexity
- <u>5 Generating Language with your Own Model</u>

- Optional Exercise 6 GenerativeModel (Not graded)
- · On statistical methods

Overview

In this lab, you'll delve into the world of text generation using Recurrent Neural Networks (RNNs). Your primary objective is to predict the next set of characters based on the preceding ones. This seemingly straightforward task holds immense practicality in applications like predictive text and creative writing.

The journey unfolds as follows:

- Data Preprocessing: You'll start by converting lines of text into numerical tensors, making them machine-readable.
- Dataset Creation: Next, you'll create a TensorFlow dataset, which will serve as the backbone for supplying data to your model.
- Neural Network Training: Your model will be trained to predict the next set of characters, specifying the desired output length.
- Character Embeddings: Character embeddings will be employed to represent each character as a vector, a fundamental technique in natural language processing.
- GRU Model: Your model utilizes a Gated Recurrent Unit (GRU) to process character embeddings and make sequential predictions. The following figure gives you a summary of what you are about to implement.

 Prediction Process: The model's predictions are achieved through a linear layer and logsoftmax computation.

This overview sets the stage for your exploration of text generation. Get ready to unravel the secrets of language and embark on a journey into the realm of creative writing and predictive text generation.

And as usual let's start by importing all the required libraries.

```
In [1]: import os
    import traceback
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

import numpy as np
    import random as rnd

import tensorflow as tf
    from tensorflow.keras import layers
    from tensorflow.keras.layers import Input

from termcolor import colored

# set random seed
    rnd.seed(32)
```

In [2]: import w1_unittest

1 - Data Preprocessing Overview

In this section, you will prepare the data for training your model. The data preparation involves the following steps:

- Dataset Import: Begin by importing the dataset. Each sentence is structured as one line in the dataset. To ensure consistency, remove any extra spaces from these lines using the strip function.
- Data Storage: Store each cleaned line in a list. This list will serve as the foundational dataset for your text generation task.
- Character-Level Processing: Since the goal is character generation, it's essential to process the text at the character level, not the word level. This involves converting each individual character into a numerical representation. To achieve this:
 - Use the <u>tf.strings.unicode_split</u> (https://www.tensorflow.org/api_docs/python/tf/strings/unicode_split) function to split each sentence into its constituent characters.
 - Utilize <u>tf.keras.layers.StringLookup</u> (<u>https://www.tensorflow.org/api_docs/python/tf/keras/layers/StringLookup)</u> to map these characters to integer values. This transformation lays the foundation for character-based modeling.

 TensorFlow Dataset Creation: Create a TensorFlow dataset capable of producing data in batches. Each batch will consist of batch_size sentences, with each sentence containing a maximum of max_length characters. This organized dataset is essential for training your character generation model.

These preprocessing steps ensure that your dataset is meticulously prepared for the characterbased text generation task, allowing you to work seamlessly with the Shakespearean corpus data.

4 4 I andina in the Data

Number of lines: 125097

Let's examine a few lines from the corpus. Pay close attention to the structure and style employed by Shakespeare in this excerpt. Observe that character names are written in uppercase, and each line commences with a capital letter. Your task in this exercise is to construct a generative model capable of emulating this particular structural style.

```
In [8]: print("\n".join(lines[506:514]))
```

```
BENVOLIO Here were the servants of your adversary, And yours, close fighting ere I did approach:
I drew to part them: in the instant came
The fiery Tybalt, with his sword prepared,
Which, as he breathed defiance to my ears,
He swung about his head and cut the winds,
Who nothing hurt withal hiss'd him in scorn:
While we were interchanging thrusts and blows,
```

1.2 - Create the vocabulary

In the following code cell, you will create the vocabulary for text processing. The vocabulary is a crucial component for understanding and processing text data. Here's what the code does:

 Concatenate all the lines in our dataset into a single continuous text, separated by line breaks.

- Identify and collect the unique characters that make up the text. This forms the basis of our vocabulary.
- To enhance the vocabulary, introduce two special characters:
 - [UNK]: This character represents any unknown or unrecognized characters in the text.
 - "" (empty character): This character is used for padding sequences when necessary.
- The code concludes with the display of statistics, showing the total count of unique characters in the vocabulary and providing a visual representation of the complete character set.

```
In [9]: text = "\n".join(lines)
# The unique characters in the file
vocab = sorted(set(text))
vocab.insert(0,"[UNK]") # Add a special character for any unknown
vocab.insert(1,"") # Add the empty character for padding.

print(f'{len(vocab)} unique characters')
print(" ".join(vocab))

82 unique characters
[UNK]
        ! $ & ' ( ) , - . 0 1 2 3 4 5 6 7 8 9 : ; ? A B C D E F G H I J K L M N O
P Q R S T U V W X Y Z [ ] a b c d e f g h i j k l m n o p q r s t u v w x y
z |
```

1.3 - Convert a Line to Tensor

Now that you have your list of lines, you will convert each character in that list to a number using the order given by your vocabulary. You can use tf.strings.unicode_split (https://www.tensorflow.org/api_docs/python/tf/strings/unicode_split) to split the text into characters.

```
In [10]: line = "Hello world!"
    chars = tf.strings.unicode_split(line, input_encoding='UTF-8')
    print(chars)

tf.Tensor([b'H' b'e' b'l' b'l' b'o' b' ' b'w' b'o' b'r' b'l' b'd' b'!'], sha
    pe=(12,), dtype=string)
```

Using your vocabulary, you can convert the characters given by unicode_split into numbers. The number will be the index of the character in the given vocabulary.

Tensorflow has a function tf.keras.layers.StringLookup

(https://www.tensorflow.org/api_docs/python/tf/keras/layers/StringLookup) that does this efficiently for list of characters. Note that the output object is of type tf.Tensor. Here is the result of applying the StringLookup function to the characters of "Hello world"

```
In [12]: ids = tf.keras.layers.StringLookup(vocabulary=list(vocab), mask_token=None)(che print(ids)
```

tf.Tensor([34 59 66 66 69 4 77 69 72 66 58 5], shape=(12,), dtype=int64)

Exercise 1 - line_to_tensor

Instructions: Write a function that takes in a single line and transforms each character into its unicode integer. This returns a list of integers, which we'll refer to as a tensor.

```
In [13]: # GRADED FUNCTION: Line_to_tensor
def line_to_tensor(line, vocab):
    """
    Converts a line of text into a tensor of integer values representing chara
    Args:
        line (str): A single line of text.
        vocab (list): A list containing the vocabulary of unique characters.

Returns:
        tf.Tensor(dtype=int64): A tensor containing integers (unicode values)
    """

### START CODE HERE ###

# Split the input line into individual characters
    chars = tf.strings.unicode_split(line, input_encoding='UTF-8')
    # Map characters to their respective integer values using StringLookup
    ids = tf.keras.layers.StringLookup(vocabulary=list(vocab), mask_token=None

### END CODE HERE ###

return ids
```

```
In [14]: # Test your function
    tmp_ids = line_to_tensor('abc xyz', vocab)
    print(f"Result: {tmp_ids}")
    print(f"Output type: {type(tmp_ids)}")
```

Result: [55 56 57 4 78 79 80]
Output type: <class 'tensorflow.python.framework.ops.EagerTensor'>

Expected output

Result: [55 56 57 4 78 79 80]
Output type: <class 'tensorflow.python.framework.ops.EagerTensor'>

```
In [15]: # UNIT TEST
w1_unittest.test_line_to_tensor(line_to_tensor)
```

All test passed!

You will also need a function that produces text given a numeric tensor. This function will be useful for inspection when you use your model to generate new text, because you will be able to see words rather than lists of numbers. The function will use the inverse Lookup function tf.keras.layers.StringLookup with invert=True in its parameters.

Use the function for decoding the tensor produced by "Hello world!"

```
In [17]: text_from_ids(ids, vocab).numpy()
```

Out[17]: b'Hello world!'

1.4 - Prepare your data for training and testing

As usual, you will need some data for training your model, and some data for testing its performance. So, we will use 124097 lines for training and 1000 lines for testing.

```
In [18]: train_lines = lines[:-1000] # Leave the rest for training
    eval_lines = lines[-1000:] # Create a holdout validation set

print(f"Number of training lines: {len(train_lines)}")
    print(f"Number of validation lines: {len(eval_lines)}")
```

Number of training lines: 124097 Number of validation lines: 1000

1.5 - TensorFlow dataset

Most of the time in Natural Language Processing, and AI in general you use batches when training your models. Here, you will build a dataset that takes in some text and returns a batch of text fragments (Not necessarly full sentences) that you will use for training.

The generator will produce text fragments encoded as numeric tensors of a desired length

Once you create the dataset, you can iterate on it like this:

```
data_generator.take(1)
```

This generator returns the data in a format that you could directly use in your model when computing the feed-forward of your algorithm. This batch dataset generator returns batches of data in an endless way.

So, let's check how the different parts work with a corpus composed of 2 lines. Then, you will use these parts to create the first graded function of this notebook.

In order to get a dataset generator that produces batches of fragments from the corpus, you first need to convert the whole text into a single line, and then transform it into a single big tensor. This is only possible if your data fits completely into memory, but that is the case here.

```
In [19]: all_ids = line_to_tensor("\n".join(["Hello world!", "Generative AI"]), vocab)
all_ids
```

```
Out[19]: <tf.Tensor: shape=(26,), dtype=int64, numpy=
array([34, 59, 66, 66, 69, 4, 77, 69, 72, 66, 58, 5, 3, 33, 59, 68, 59,
72, 55, 74, 63, 76, 59, 4, 27, 35])>
```

Create a dataset out of a tensor like input. This initial dataset will dispatch numbers in packages of a specified length. For example, you can use it for getting the 10 first encoded characters of your dataset. To make it easier to read, we can use the <code>text_from_ids</code> function.

```
In [20]: ids_dataset = tf.data.Dataset.from_tensor_slices(all_ids)
print([text_from_ids([ids], vocab).numpy() for ids in ids_dataset.take(10)])
[b'H', b'e', b'l', b'o', b' ', b'w', b'o', b'r', b'l']
```

But we can configure this dataset to produce batches of the same size each time. We could use this functionality to produce text fragments of a desired size (seq_length + 1). We will explain later why you need an extra character into the sequence.

```
In [21]: seq_length = 10
    data_generator = ids_dataset.batch(seq_length + 1, drop_remainder=True)
```

You can verify that the data generator produces encoded fragments of text of the desired length. For example, let's ask the generator to produce 2 batches of data using the function data_generator.take(2)

```
In [22]: for seq in data_generator.take(2):
    print(seq)

tf.Tensor([34 59 66 66 69 4 77 69 72 66 58], shape=(11,), dtype=int64)
    tf.Tensor([ 5 3 33 59 68 59 72 55 74 63 76], shape=(11,), dtype=int64)
```

But as usual, it is easier to understand if you print it in human readable characters using the 'text' from ids' function.

```
i = 1
for seq in data_generator.take(2):
    print(f"{i}. {text_from_ids(seq, vocab).numpy()}")
    i = i + 1
```

- b'Hello world'
- 2. b'!\nGenerativ'

1.6 - Create the input and the output for your model

In this task you have to predict the next character in a sequence. The following function creates 2 tensors, each with a length of seq_length out of the input sequence of lenght $seq_length + 1$. The first one contains the first seq_length elements and the second one contains the last seq_length elements. For example, if you split the sequence ['H', 'e', '1', '0'], you will obtain the sequences ['H', 'e', '1', '1'] and ['e', '1', '1'].

Look the result using the following sequence of characters

The first sequence will be the input and the second sequence will be the expected output

Now, put all this together into a function to create your batch dataset generator

Exercise 2 - data_generator

Instructions: Create a batch dataset from the input text. Here are some things you will need.

- Join all the input lines into a single string. When you have a big dataset, you would better use a flow from directory or any other kind of generator.
- Transform your input text into numeric tensors
- Create a TensorFlow DataSet from your numeric tensors: Just feed the numeric tensors into the function <u>tf.data.Dataset.from_tensor_slices</u>
 (https://www.tensorflow.org/api_docs/python/tf/data/Dataset#from_tensor_slices)
- Make the dataset produce batches of data that will form a single sample each time. This
 is, make the dataset produce a sequence of seq_length + 1, rather than single
 numbers at each time. You can do it using the batch function of the already created
 dataset. You must specify the length of the produced sequences (seq_length + 1). So,
 the sequence length produced by the dataset will seq_length + 1. It must have that
 extra element since you will get the input and the output sequences out of the same

- element. drop_remainder=True will drop the sequences that do not have the required length. This could happen each time that the dataset reaches the end of the input sequence.
- Use the split_input_target to split each element produced by the dataset into the mentioned input and output sequences. The input will have the first seq_length elements, and the output will have the last seq_length. So, after this step, the dataset generator will produce batches of pairs (input, output) sequences.
- Create the final dataset, using dataset_xy as the starting point. You will configure this
 dataset to shuffle the data during the generation of the data with the specified
 BUFFER_SIZE. For performance reasons, you would like that tensorflow pre-process the
 data in parallel with training. That is called prefetching
 (https://www.tensorflow.org/guide/data_performance#prefetching), and it will be configured
 for you.

```
In [27]:
         # GRADED FUNCTION: create_batch_dataset
         def create_batch_dataset(lines, vocab, seq_length=100, batch_size=64):
             Creates a batch dataset from a list of text lines.
                 lines (list): A list of strings with the input data, one line per row.
                 vocab (list): A list containing the vocabulary.
                 seq_length (int): The desired length of each sample.
                 batch size (int): The batch size.
             Returns:
                 tf.data.Dataset: A batch dataset generator.
             # Buffer size to shuffle the dataset
             # (TF data is designed to work with possibly infinite sequences,
             # so it doesn't attempt to shuffle the entire sequence in memory. Instead,
             # it maintains a buffer in which it shuffles elements).
             BUFFER_SIZE = 10000
             # For simplicity, just join all lines into a single line
             single_line_data = "\n".join(lines)
             ### START CODE HERE ###
             # Convert your data into a tensor using the given vocab
             all_ids = line_to_tensor(single_line_data, vocab)
             # Create a TensorFlow dataset from the data tensor
             ids_dataset = tf.data.Dataset.from_tensor_slices(all_ids)
             # Create a batch dataset
             data_generator = ids_dataset.batch(seq_length + 1, drop_remainder=True)
             # Map each input sample using the split_input_target function
             dataset_xy = data_generator.map(split_input_target)
             # Assemble the final dataset with shuffling, batching, and prefetching
             dataset = (
                 dataset_xy
                 .shuffle(BUFFER_SIZE)
                 .batch(batch_size, drop_remainder=True)
                 .prefetch(tf.data.experimental.AUTOTUNE)
                 )
             ### END CODE HERE ###
             return dataset
```

```
In [28]: # test your function
    tf.random.set_seed(1)
    dataset = create_batch_dataset(train_lines[1:100], vocab, seq_length=16, batch
    print("Prints the elements into a single batch. The batch contains 2 elements:
    for input_example, target_example in dataset.take(1):
        print("\n\033[94mInput0\t:", text_from_ids(input_example[0], vocab).numpy(
        print("\n\033[93mTarget0\t:", text_from_ids(target_example[0], vocab).nump
        print("\n\033[94mInput1\t:", text_from_ids(input_example[1], vocab).nump
        print("\n\033[93mTarget1\t:", text_from_ids(target_example[1], vocab).nump
        Prints the elements into a single batch. The batch contains 2 elements:
        Input0 : b'and sight distra'
```

```
Input0 : b'and sight distra'
Target0 : b'nd sight distrac'
Input1 : b'when in his fair'
Target1 : b'hen in his fair '
```

Expected output

```
Prints the elements into a single batch. The batch contains 2 element s:

Input0 : b'and sight distra'

Target0 : b'nd sight distrac'

Input1 : b'when in his fair'

Target1 : b'hen in his fair '
```

```
In [29]: # UNIT TEST
w1_unittest.test_create_batch_dataset(create_batch_dataset)
```

All test passed!

1.7 - Create the training dataset

Now, you can generate your training dataset using the functions defined above. This will produce pairs of input/output tensors each time the batch generator creates an entry.

```
In [30]: # Batch size
         BATCH_SIZE = 64
```

dataset = create_batch_dataset(train_lines, vocab, seq_length=100, batch_size=

2 - Defining the GRU Language Model (GRULM)

Now that you have the input and output tensors, you will go ahead and initialize your model. You will be implementing the GRULM, gated recurrent unit model. To implement this model, you will be using TensorFlow . Instead of implementing the GRU from scratch (you saw this already in a lab), you will use the necessary methods from a built-in package. You can use the following packages when constructing the model:

- tf.keras.layers.Embedding: Initializes the embedding. In this case it is the size of the vocabulary by the dimension of the model. docs (https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding)
 - Embedding(vocab_size, embedding_dim).
 - vocab_size is the number of unique words in the given vocabulary.
 - embedding_dim is the number of elements in the word embedding (some choices for a word embedding size range from 150 to 300, for example).
- tf.keras.layers.GRU: TensorFlow GRU layer. docs (https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU)) Builds a traditional GRU of rnn units with dense internal transformations. You can read the paper here: https://arxiv.org/abs/1412.3555 (https://arxiv.org/abs/1412.3555)
 - units: Number of recurrent units in the layer. It must be set to rnn_units
 - return_sequences: It specifies if the model returns a sequence of predictions. Set it to True
 - return_state : It specifies if the model must return the last internal state along with the prediction. Set it to True
- tf.keras.layers.Dense : A dense layer. docs (https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense). You must set the following parameters:
 - units: Number of units in the layer. It must be set to vocab_size
 - activation: It must be set to log_softmax function as described in the next line.
- tf.nn.log_softmax : Log of the output probabilities. docs (https://www.tensorflow.org/api_docs/python/tf/nn/log_softmax)
 - You don't need to set any parameters, just set the activation parameter as activation=tf.nn.log softmax.

Exercise 3 - GRULM

Instructions: Implement the GRULM class below. You should be using all the methods explained above.

```
In [31]:
         # GRADED CLASS: GRULM
         class GRULM(tf.keras.Model):
             A GRU-based language model that maps from a tensor of tokens to activation
                 vocab_size (int, optional): Size of the vocabulary. Defaults to 256.
                 embedding_dim (int, optional): Depth of embedding. Defaults to 256.
                 rnn_units (int, optional): Number of units in the GRU cell. Defaults t
             Returns:
                 tf.keras.Model: A GRULM language model.
             def __init__(self, vocab_size=256, embedding_dim=256, rnn_units=128):
                 super().__init__(self)
                 ### START CODE HERE ###
                 # Create an embedding layer to map token indices to embedding vectors
                 self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
                 # Define a GRU (Gated Recurrent Unit) layer for sequence modeling
                 self.gru = tf.keras.layers.GRU(rnn_units, return_sequences=True, retur
                 # Apply a dense layer with log-softmax activation to predict next toke
                 self.dense = tf.keras.layers.Dense(vocab_size, activation=tf.nn.log_sd
                 ### END CODE HERE ###
             def call(self, inputs, states=None, return_state=False, training=False):
                 x = inputs
                 # Map input tokens to embedding vectors
                 x = self.embedding(x, training=training)
                 if states is None:
                     # Get initial state from the GRU layer
                     states = self.gru.get_initial_state(x)
                 x, states = self.gru(x, initial_state=states, training=training)
                 # Predict the next tokens and apply log-softmax activation
                 x = self.dense(x, training=training)
                 if return_state:
                     return x, states
                 else:
                     return x
```

Now, you can define a new GRULM model. You must set the <code>vocab_size</code> to 82; the size of the embedding <code>embedding_dim</code> to 256, and the number of units that will have you recurrent neural network <code>rnn</code> units to 512

```
In [32]: # Length of the vocabulary in StringLookup Layer
    vocab_size = 82

# The embedding dimension
    embedding_dim = 256

# RNN Layers
    rnn_units = 512

model = GRULM(
    vocab_size=vocab_size,
    embedding_dim=embedding_dim,
    rnn_units = rnn_units)
```

In [33]: # testing your model

```
try:
```

```
# Simulate inputs of length 100. This allows to compute the shape of all i
model.build(input_shape=(BATCH_SIZE, 100))
model.call(Input(shape=(100)))
model.summary()
```

except:

print("\033[91mError! \033[0mA problem occurred while building your model.
traceback.print_exc()

Model: "grulm"

Layer (type)	Output Shape	Param #
embedding (Embedding)	(None, 100, 256)	20992
gru (GRU)	[(None, 100, 512), (None, 512)]	1182720
dense (Dense)	(None, 100, 82)	42066

Total params: 1245778 (4.75 MB)
Trainable params: 1245778 (4.75 MB)
Non-trainable params: 0 (0.00 Byte)

Expected output

```
Model: "grulm"

Layer (type) Output Shape Param #

embedding (Embedding) (None, 100, 256) 20992
```

In [34]: # UNIT TEST
w1_unittest.test_GRULM(GRULM)

Test case 1: All tests passed! Test case 2: All tests passed!

Now, let's use the model for predicting the next character using the untrained model. At the begining the model will generate only gibberish.

In [35]: for input_example_batch, target_example_batch in dataset.take(1):
 print("Input: ", input_example_batch[0].numpy()) # Lets use only the first
 example_batch_predictions = model(tf.constant([input_example_batch[0].nump
 print("\n",example_batch_predictions.shape, "# (batch_size, sequence_lengt)

Input: [73 62 55 66 74 4 62 69 66 58 4 74 62 59 4 69 70 63 68 63 69 68 4 69 60 4 42 79 74 62 55 61 69 72 55 73 4 59 72 59 4 35 4 77 63 66 66 3 55 66 66 69 77 4 69 60 4 74 62 79 4 77 63 74 73 11 4 55 68 58 4 60 59 55 72 4 74 69 4 65 63 66 66 4 55 4 77 69 69 58 57 69 57 65 11 4 66 59 73 74]

(1, 100, 82) # (batch_size, sequence_length, vocab_size)

The output size is (1, 100, 82). We predicted only on the first sequence generated by the batch generator. 100 is the number of predicted characters. It has exactly the same length as the input. And there are 82 values for each predicted character. Each of these 82 real values are related to the logarithm likelihood of each character to be the next one in the sequence. The bigger the value, the higher the likelihood. As the network is not trained yet, all those values must be very similar and random. Just check the values for the last prediction on the sequence.

```
In [36]: example_batch_predictions[0][99].numpy()
Out[36]: array([-4.394292 , -4.40476 , -4.412511 , -4.3860574, -4.4002004,
                -4.406017 , -4.391721 , -4.412148 , -4.398938 , -4.409028 ,
                -4.4036393, -4.4032044, -4.412924 , -4.4294558, -4.4058275,
                -4.42735 , -4.4058037, -4.3803573, -4.400791 , -4.400802 ,
                -4.406753 , -4.3941684, -4.3932967, -4.4120283, -4.387955 ,
                -4.401387 , -4.409998 , -4.3959923, -4.3911653, -4.3927126,
                -4.418993 , -4.3965154, -4.4084926, -4.411369 , -4.3952107,
                -4.4010906, -4.3987713, -4.438392 , -4.395659 , -4.382313 ,
                -4.41321 , -4.3956714, -4.407373 , -4.4170127, -4.4092526,
                -4.3940024, -4.412472 , -4.4142866, -4.4282956, -4.4088607,
                -4.4279985, -4.412727 , -4.4195285, -4.4102244, -4.3989367,
                -4.4095216, -4.4144945, -4.3992176, -4.413693 , -4.400564 ,
                -4.4158244, -4.428811 , -4.41504 , -4.419681 , -4.416288 ,
                -4.4038076, -4.423907 , -4.413642 , -4.394232 , -4.419655 ,
                -4.4194393, -4.425377 , -4.40321 , -4.3787003, -4.411811 ,
                -4.386497 , -4.405401 , -4.3831735 , -4.40585 , -4.428001 ,
                -4.410224 , -4.4233975], dtype=float32)
```

And the simplest way to choose the next character is by getting the index of the element with the highest likelihood. So, for instance, the prediction for the last character would be:

```
In [37]: last_character = tf.math.argmax(example_batch_predictions[0][99])
    print(last_character.numpy())
```

73

And the prediction for the whole sequence would be:

```
In [38]: sampled_indices = tf.math.argmax(example_batch_predictions[0], axis=1)
    print(sampled_indices.numpy())
```

```
[21 27 71 12 73 41 6 75 75 48 72 77 6 6 41 75 4 3 28 28 3 14 18 75 65 41 29 29 73 6 71 6 14 14 23 36 41 41 73 44 41 73 41 41 22 75 8 28 25 12 12 75 5 41 75 74 41 29 6 6 41 41 22 77 3 17 54 41 50 48 41 29 65 41 73 41 73 75 54 5 1 75 8 12 41 41 41 75 75 48 29 14 45 5 54 54 12 70 21 73]
```

Those 100 numbers represent 100 predicted characters. However, humans cannot read this. So, let's print the input and output sequences using our text_from_ids function, to check what is going on.

```
In [39]: print("Input:\n", text_from_ids(input_example_batch[0], vocab))
print()
print("Next Char Predictions:\n", text_from_ids(sampled_indices, vocab))
```

Input:

tf.Tensor(b'shalt hold the opinion of Pythagoras ere I will\nallow of thy w its, and fear to kill a woodcock, lest', shape=(), dtype=string)

Next Char Predictions:

tf.Tensor(b"7Aq-s0\$uuVrw\$\$0u \nBB\n04ukOCCs\$q\$009J00sR0s008u'B;--u!OutOC\$\$0 08w\n3]0XVOCkOsOsu]!u'-000uuVC0S!]]-p7s", shape=(), dtype=string)

As expected, the untrained model just produces random text as response of the given input. It is also important to note that getting the index of the maximum score is not always the best choice. In the last part of the notebook you will see another way to do it.

3 - Training

Now you are going to train your model. As usual, you have to define the cost function and the optimizer. You will use the following built-in functions provided by TensorFlow:

- tf.losses.SparseCategoricalCrossentropy()
 (https://www.tensorflow.org/api_docs/python/tf/keras/losses/SparseCategoricalCrossentropy
 The Sparce Categorical Cross Entropy loss. It is the loss function used for multiclass classification.
 - from_logits=True: This parameter informs the loss function that the output values generated by the model are not normalized like a probability distribution. This is our case, since our GRULM model uses a log_softmax activation rather than the softmax.
- tf.keras.optimizers.Adam
 tf/keras/optimizers/Adam): Use Adaptive Moment Estimation, a stochastic gradient descent method optimizer that works well in most of the cases. Set the learning_rate to 0.00125.

Exercise 4 - train_model

Instructions: Compile the GRULM model using a SparseCategoricalCrossentropy loss and the Adam optimizer

```
In [40]:
         # GRADED FUNCTION: Compile model
         def compile_model(model):
             0.0000
             Sets the loss and optimizer for the given model
             Args:
                 model (tf.keras.Model): The model to compile.
             Returns:
                 tf.keras.Model: The compiled model.
             ### START CODE HERE ###
             # Define the loss function. Use SparseCategoricalCrossentropy
             loss = tf.losses.SparseCategoricalCrossentropy(from_logits=True)
             # Define and Adam optimizer
             opt = tf.keras.optimizers.Adam(learning_rate=0.00125)
             # Compile the model using the parametrized Adam optimizer and the SparseCa
             model.compile(optimizer=opt, loss=loss)
             ### END CODE HERE ###
             return model
```

In [41]: ## UNIT TEST w1_unittest.test_compile_model(compile_model)

All test passed!

Now, train your model for 10 epochs. With GPU this should take about one minute. With CPU this could take several minutes.

```
In [42]: EPOCHS = 10

# Compile the model
model = compile_model(model)
# Fit the model
history = model.fit(dataset, epochs=EPOCHS)
```

```
Epoch 1/10
790/790 [============ ] - 12s 11ms/step - loss: 2.0145
Epoch 2/10
790/790 [========== ] - 9s 10ms/step - loss: 1.4798
Epoch 3/10
790/790 [========== ] - 9s 10ms/step - loss: 1.3790
Epoch 4/10
790/790 [========== ] - 9s 10ms/step - loss: 1.3326
Epoch 5/10
790/790 [============= ] - 9s 10ms/step - loss: 1.3032
Epoch 6/10
790/790 [============ ] - 9s 10ms/step - loss: 1.2819
Epoch 7/10
790/790 [=========== ] - 8s 9ms/step - loss: 1.2656
Epoch 8/10
790/790 [=========== ] - 9s 9ms/step - loss: 1.2518
Epoch 9/10
790/790 [============ ] - 9s 10ms/step - loss: 1.2406
Epoch 10/10
790/790 [============ ] - 9s 10ms/step - loss: 1.2310
```

You can uncomment the following cell to save the weights of your model. This allows you to use the model later.

```
In [43]: # If you want, you can save the final model. Here is deactivated.
#output_dir = './model/'
#
#try:
# shutil.rmtree(output_dir)
#except OSError as e:
# pass
#model.save_weights(output_dir)
```

The model was only trained for 10 epochs. We pretrained a model for 30 epochs, which can take about 5 minutes in a GPU.

4 - Evaluation

4.1 - Evaluating using the Deep Nets

Now that you have learned how to train a model, you will learn how to evaluate it. To evaluate language models, we usually use perplexity which is a measure of how well a probability model predicts a sample. Note that perplexity is defined as:

$$P(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1, \dots, w_{n-1})}}$$

As an implementation hack, you would usually take the log of that formula (to enable us to use the log probabilities we get as output of our RNN, convert exponents to products, and products into sums which makes computations less complicated and computationally more efficient).

$$\log P(W) = \log \left(\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1, \dots, w_{n-1})}} \right)$$

$$= \log \left(\prod_{i=1}^{N} \frac{1}{P(w_i|w_1, \dots, w_{n-1})} \right)^{\frac{1}{N}}$$

$$= \log \left(\prod_{i=1}^{N} P(w_i|w_1, \dots, w_{n-1}) \right)^{-\frac{1}{N}}$$

$$= -\frac{1}{N} \log \left(\prod_{i=1}^{N} P(w_i|w_1, \dots, w_{n-1}) \right)$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \log P(w_i|w_1, \dots, w_{n-1})$$

Exercise 5 - log_perplexity

Instructions: Write a program that will help evaluate your model. Implementation hack: your program takes in preds and target . preds is a tensor of log probabilities. You can use tf.one_hot_ (https://www.tensorflow.org/api_docs/python/tf/one_hot) to transform the target into the same dimension. You then multiply them and sum them. For the sake of simplicity, we suggest you use the NumPy functions sum (https://numpy.org/doc/stable/reference/generated/numpy.sum.html), mean

Hints

```
In [44]:
         # GRADED FUNCTION: log perplexity
         def log_perplexity(preds, target):
             Function to calculate the log perplexity of a model.
                 preds (tf.Tensor): Predictions of a list of batches of tensors corresp
                 target (tf.Tensor): Actual list of batches of tensors corresponding to
             Returns:
                 float: The log perplexity of the model.
             PADDING_ID = 1
             ### START CODE HERE ###
             # Calculate log probabilities for predictions using one-hot encoding
             log_p = np.sum(preds * np.eye(preds.shape[-1])[target], axis= -1) # HINT:
             # Identify non-padding elements in the target
             non_pad = 1.0 - np.equal(target, PADDING_ID)
                                                                    # You should check i
             # Apply non-padding mask to log probabilities to exclude padding
             log_p = log_p * non_pad
                                                                  # Get rid of the paddi
             # Calculate the log perplexity by taking the sum of log probabilities and
             log_ppx = np.sum(log_p, axis=-1) / np.sum(non_pad, axis=-1) # Remember to
             # Compute the mean of log perplexity
             log_ppx = np.mean(log_ppx) # Compute the mean of the previous expression
             ### END CODE HERE ###
             return -log_ppx
```

In [45]: #UNIT TESTS w1_unittest.test_log_perplexity(log_perplexity)

All test passed!

Now load the provided pretrained model just to ensure that results are consistent for the upcoming parts of the notebook. You need to instantiate the GRULM model and then load the saved weights.

```
In [46]: # Load the pretrained model. This step is optional.
    vocab_size = len(vocab)
    embedding_dim = 256
    rnn_units = 512

model = GRULM(
    vocab_size=vocab_size,
    embedding_dim=embedding_dim,
    rnn_units = rnn_units)
    model.build(input_shape=(100, vocab_size))
    model.load_weights('./model/')
```

Now, you will use the 1000 lines of the corpus that were reserved at the begining of this notebook as test data. You will apply the same preprocessing as you did for the train dataset: get the numeric tensor from the input lines, and use the split input target to generate

the inputs and the expected outputs.

Second, you will predict the next characters for the whole dataset, and you will compute the perplexity for the expected outputs and the given predictions.

```
In [47]: #for line in eval_lines[1:3]:
    eval_text = "\n".join(eval_lines)
    eval_ids = line_to_tensor([eval_text], vocab)
    input_ids, target_ids = split_input_target(tf.squeeze(eval_ids, axis=0))

preds, status = model(tf.expand_dims(input_ids, 0), training=False, states=Nor

#Get the log perplexity
log_ppx = log_perplexity(preds, tf.expand_dims(target_ids, 0))
print(f'The log perplexity and perplexity of your model are {log_ppx} and {np.
```

The log perplexity and perplexity of your model are 1.2239635591264044 and 3.400639693684683 respectively

Expected Output: The log perplexity and perplexity of your model are around 1.22 and 3.40 respectively.

So, the log perplexity of the model is 1.22. It is not an easy to interpret metric, but it can be used to compare among models. The smaller the value the better the model.

5 - Generating Language with your Own Model

Your GRULM model demonstrates an impressive ability to predict the most likely characters in a sequence, based on log scores. However, it's important to acknowledge that this model, in its default form, is deterministic and can result in repetitive and monotonous outputs. For instance, it tends to provide the same answer to a question consistently.

To make your language model more dynamic and versatile, you can introduce an element of randomness into its predictions. This ensures that even if you feed the model in the same way each time, it will generate different sequences of text.

To achieve this desired behavior, you can employ a technique known as random sampling. When presented with an array of log scores for the N characters in your dictionary, you add an array of random numbers to this data. The extent of randomness introduced into the predictions is regulated by a parameter called "temperature". By comparing the random numbers to the original input scores, the model adapts its choices, offering diversity in its outputs.

This doesn't imply that the model produces entirely random results on each iteration. Rather, with each prediction, there is a probability associated with choosing a character other than the one with the highest score. This concept becomes more tangible when you explore the accompanying Python code.

Now, it's time to bring all the elements together for the exciting task of generating new text. The GenerativeModel class plays a pivotal role in this process, offering two essential functions:

- generate_one_step: This function is your go-to method for generating a single character at a time. It accepts two key inputs: an initial input sequence and a state that can be thought of as the ongoing context or memory of the model. The function delivers a single character prediction and an updated state, which can be used as the context for future predictions.
- 2. generate_n_chars: This function takes text generation to the next level. It orchestrates the iterative generation of a sequence of characters. At each iteration, generate_one_step is called with the last generated character and the most recent state. This dynamic approach ensures that the generated text evolves organically, building upon the context and characters produced in previous steps. Each character generated in this process is collected and stored in the result list, forming the final output text.

Optional Exercise 6 - GenerativeModel (Not graded)

Instructions: Implementing the One-Step Generator

In this task, you will create a function to generate a single character based on the input text, using the provided vocabulary and the trained model. Follow these steps to complete the generate one step function:

- 1. Start by transforming your input text into a tensor using the given vocab. This will convert the text into a format that the model can understand.
- 2. Utilize the trained model with the input_ids and the provided states to predict the next characters. Make sure to retrieve the updated states from this prediction because they are essential for the final output.
- 3. Since we are only interested in the next character prediction, keep only the result for the last character in the sequence.
- 4. Employ the temperature random sampling technique to convert the vector of scores into a single character prediction. For this step, you will use the predicted_logits obtained in the previous step and the temperature parameter of the model.

- 5. To transform the numeric prediction into a human-readable character, use the text_from_ids function. Be mindful that text_from_ids expects a list as its input, so you need to wrap the output of the temperature_random_sampling function in square brackets [...]. Don't forget to use self.vocab as the second parameter for character mapping.
- 6. Finally, return the predicted_chars, which will be a single character, and the states tensor obtained from step 2. These components are essential for maintaining the sequence and

```
In [51]: # UNGRADED CLASS: GenerativeModel
         class GenerativeModel(tf.keras.Model):
                  __init__(self, model, vocab, temperature=1.0):
                 A generative model for text generation.
                 Args:
                     model (tf.keras.Model): The underlying model for text generation.
                     vocab (list): A list containing the vocabulary of unique character
                     temperature (float, optional): A value to control the randomness of
                 super().__init__()
                 self.temperature = temperature
                 self.model = model
                 self.vocab = vocab
             @tf.function
             def generate_one_step(self, inputs, states=None):
                 Generate a single character and update the model state.
                     inputs (string): The input string to start with.
                     states (tf.Tensor): The state tensor.
                 Returns:
                     tf.Tensor, states: The predicted character and the current GRU sta
                 # Convert strings to token IDs.
                 ### START CODE HERE ###
                 # Transform the inputs into tensors
                 input_ids = line_to_tensor(inputs, self.vocab)
                 # Predict the sequence for the given input_ids. Use the states and ret
                 predicted_logits, states = self.model(input_ids, states=states, return
                 # Get only last element of the sequence
                 predicted_logits = predicted_logits[0, -1, :]
                 # Use the temperature_random_sampling to generate the next character.
                 predicted_ids = temperature_random_sampling(predicted_logits, self.tem
                 # Use the chars_from_ids to transform the code into the corresponding
                 predicted_chars = text_from_ids([predicted_ids], self.vocab)
                 ### END CODE HERE ###
                 # Return the characters and model state.
                 return tf.expand_dims(predicted_chars, 0), states
             def generate_n_chars(self, num_chars, prefix):
                 Generate a text sequence of a specified length, starting with a given
                 Args:
                     num_chars (int): The length of the output sequence.
                     prefix (string): The prefix of the sequence (also referred to as t
                 Returns:
                     str: The generated text sequence.
                 states = None
                 next char = tf.constant([prefix])
```

```
result = [next_char]
for n in range(num_chars):
    next_char, states = self.generate_one_step(next_char, states=state
    result.append(next_char)

return tf.strings.join(result)[0].numpy().decode('utf-8')
```

```
In [52]: # UNIT TEST
# Fix the seed to get replicable results for testing
tf.random.set_seed(272)
gen = GenerativeModel(model, vocab, temperature=0.5)

print(gen.generate_n_chars(32, " "), '\n\n' + '_'*80)
print(gen.generate_n_chars(32, "Dear"), '\n\n' + '_'*80)
print(gen.generate_n_chars(32, "KING"), '\n\n' + '_'*80)
```

hear he has a soldier. Here is a

Dear gold, if thou wilt endure the $\ensuremath{\mathrm{e}}$

KING OF THE SHREW
IV I beseech you,

Expected output

hear he has a soldier. Here is a

Dear gold, if thou wilt endure the $\ensuremath{\mathrm{e}}$

KING OF THE SHREW IV I beseech you,

In [53]: w1_unittest.test_GenerativeModel(GenerativeModel, model, vocab)

All test passed!

Now, generate a longer text. Let's check if it looks like Shakespeare fragment

```
tf.random.set seed(np.random.randint(1, 1000))
gen = GenerativeModel(model, vocab, temperature=0.8)
import time
start = time.time()
print(gen.generate_n_chars(1000, "ROMEO"), '\n\n' + '_'*80)
print('\nRun time:', time.time() - start)
ROMEO and LUCENTIO]
How now! who can snait for my child, I say!
I have saw them hence, to see fallen to me. Come,
Keep in fresh horse. What should I knew?
IAG0
        Sir, they be night:
And I thus dropp'd your souls
In delicate wonder of her swinged souls,
And from the plot thou sometimes the hopeful day
With rosemplation and his rage,
Than she in state withal, to burn my teeth.
Is't so? my sovereign,
I have told thee when I swore he that wouldst thou hear
In perfect ways of sack and best! Since love the bud been in his hat,
What kidoned unto a most sweet battle being in him,
And bid his head be fall'n in too early and flatterer
of his wife, not to be sad, if you had been be a brave
work, that offer the common pride of safety,
And all is hearted now of gracious innocency.
                You shall having offended to our pleasure.
GLOUCESTER
CASSIUS I pray you, sir.
PERICLES with QUINTUS, and Sir Thurio.'
              I dusw it black and friends.
PERICLES
                       O Cassius, be peopled with such straines.
KING RICHARD III
First Lord
                0n
```

Run time: 2.5608508586883545

In the generated text above, you can see that the model generates text that makes sense capturing dependencies between words and without any input. A simple n-gram model would have not been able to capture all of that in one sentence.

On statistical methods

Using a statistical method like the one you implemented in course 2 will not give you results that are as good as you saw here. Your model will not be able to encode information seen previously in the data set and as a result, the perplexity will increase. Remember from course 2 that the higher the perplexity, the worse your model is. Furthermore, statistical ngram models take up too much space and memory. As a result, they will be inefficient and too slow. Conversely, with deepnets, you can get a better perplexity. Note, learning about n-gram language models is still important and allows you to better understand deepnets.

