PATENT SPECIFICATION

(11) 1 538 822

(21) Application No. 50911/77 (22) Fil (31) Convention Application No. 2656468

(22) Filed 7 Dec. 1977

(32) Filed 14 Dec. 1976 in

(33) Federal Republic of Germany (DE)

(44) Complete Specification published 24 Jan. 1979

(51) INT CL2 C07D 277/82 A61K 31/425

(52) Index at acceptance

C2C 1390 139X 213 220 226 22Y 247 256 25X 25Y 270 281 292 29Y 30Y 311 313 31Y 332 337 342 34Y 364 365 366 367 368 36Y 601 628 62X 658 65X 694 KK KM KN

(54) NEW N-(BENZTHIAZOL-2-YL)-OXAMIC ACID DERIVATIVES AND THE PREPARATION THEREOF

(71) We, BOEHRINGER MANNHEIM G.M.B.II., of Mannheim-Waldhof, Federal Republic of Germany, a Body Corporate organised under the laws of the Federal Republic of Germany, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

The present invention is concerned with new N - (benzthiazol - 2 - yl) - oxamic acid derivatives and with the preparation thereof.

The new N - (benzthiazol - 2 - yl) - oxamic

The new N - (benzthiazol - 2 - yl) - oxamic

15 acid derivatives according to the present invention are compounds of the general formula:—

$$\begin{array}{c} R_2 \\ R_3 \\ R_4 \end{array} \begin{array}{c} N_{\text{NH}} - C - C - O - X \\ \end{array}$$
 (I)

wherein R₁, R₂, R₃ and R₄, which can be the same or different, are hydrogen or halogen atoms, hydroxyl or nitro groups, phenyl radicals, straight-chained or branched lower alkyl or alkoxy radicals or trifluoromethyl radicals or R₂ and R₃ can together also represent a methylenedioxy radical and X is a hydrogen atom or a lower alkyl radical, with the proviso that when X is an ethyl radical, R₁, R₂, R₃ and R₄ cannot all be hydrogen atoms; and the pharmacologically acceptable salts of those compounds in which X is a hydrogen atom.

The lower alkyl and lower alkoxy radicals in the case of substituents R₁, R₂, R₃, R₄ and X are radicals containing up to 6 and preferably up to 4 carbon atoms. In the particular case of X, the lower alkyl radical is preferably an ethyl radical. The lower, straight-chained or branched alkyl radicals of the substituents R₁, R₂, R₃ and R₄ are preferably methyl, 40 ethyl, n - propyl, isopropyl or tert. - butyl

radicals.

The halogen atom is fluorine, chlorine or bromine, chlorine being preferred.

We have found that the new compounds of general formula (I) according to the present invention display, when administered parenterally and also orally, an outstanding anti-allergic action, which can be demonstrated pharmacologically in the passive cutaneous anaphylactic (PCA test) in vivo in rats. The inhibition potency of these new compounds can also be convincingly demonstrated in vitro by antigen-induced mast cell degranulation.

The unsubstituted representative of compounds of general formula (I), namely, ethyl N - (benzthiazol - 2 - yl) - oxamate, is known from the literature (cf. P. A. Petjunin, Zh. Obshch. Khim., 34(1), 28—32/1964). However, no therapeutic use of effectiveness is mentioned for this ethyl ester, mention only being made of its use as an intermediate for the preparation of N - (benzthiazol - 2 - yl) - oxamic acid hydrazide, which is an antituberculosis agent.

Therefore, the new compounds of general formula (I) according to the present invention are also valuable intermediates for the synthesis of pharmaceutically useful compounds, for example, new N - (benzthiazol - 2 - yl) - oxamic acid hydrazides with an antituberculosis action.

The new compounds according to the present invention can be prepared, for example, by reacting a 2 - aminothiazole compound of the general formula:—

wherein R₁, R₂, R₃ and R₄ have the same meanings as above, with an oxalic acid derivative of the general formula:—

⁻50

55

66

65

0.0

70

. .

75

wherein X has the same meaning as above and Y is a lower alkoxy radical or a halogen atom, or with a salt of such an oxalic acid derivative, the resulting oxamic acid derivative of general formula (I), in which X is a hydrogen atom or a lower alkyl radical, or a salt thereof as intermediate can, if desired, be converted into another compound of general formula (I) by known methods of esterification or saponification, whereas free carboxylic acids of general formula (I), in which X is a hydrogen atom, can, in a special variant of the process, also be obtained thermolytically 15 from the tert. - butyl ester.

Furthermore, it is possible to convert oxamates of general formula (I), wherein R₁, R₂, R₃ or R₄ are hydroxyl groups or alkoxy radicals, into one another by etherification or ether splitting, whereby, at the same time, a transesterification or saponification can take place in the course of this reaction.

Some of the 2 - aminobenzthiazoles of general formula (II) used as starting material are new and can be prepared by ring closure reactions known from the literature, preferably by one of the following methods:

a) by the Hugershoff reaction: in which a thiourea of the general formula:

wherein R₁, R₂, R₃ and R₄ have the same meanings as above, is cyclised with dehydrogenation with bromine in an appropriate solvent, for example chloroform, with the formation of a compound (II); or

b) by the Kaufmann method: in which an aniline derivative of the general

wherein R₁, R₂, R₃ and R₄ have the same meanings as above, is thiocyanated in the o-position and, possibly without isolation of the intermediate thiocyano compound of the

wherein R₁, R₂, R₃ and R₄ have the same meanings as above, cyclised to give a 2 - aminobenzthiazole of general formula (II).

Some of the thioureas of general formula (IV) required as intermediates are also new and can be prepared by methods known from the literature from the above-mentioned aniline derivatives of general formula (V), as described hereinafter in the Examples (see also Org. Synth. Coll. Vol. III, 735/1955).

The reaction of compounds of genera formula (II) with oxalic acid ester halides or general formula (III), especially oxalic acid ethyl ester chloride, takes place in aprotic solvents, such as methylene chloride, pyridine, chloroform or carbon tetrachloride, at ambient temperature (Method A). The reaction of 2amino compounds of general formula (II) with oxalic acid dialkyl esters, such as diethyl oxalate and ethyl tert. - butyl oxalate, preferably takes place without the use of a solvent under reflux or at a temperature of up to about 150°C. (Method B). When using ethyl tert. - butyl oxalate, the oxamic acid derivatives are obtained directly since, according to Method B, 2 - methylprop - 1 - ene is thermolytically split off under the reaction conditions.

A conversion of substituents R1, R2, R3, R4 and X which is possibly to be carried out subsequently to the condensation can be carried out according to known methods. Thus, for example, a compound of general formula (I), in which R, is, for example, a hydroxyl group, can be converted into an alkoxy group by means of appropriate alkylation agents. On the other hand, alkoxy radicals can be converted into hydroxyl groups by conventional methods. Furthermore, carboxylic acid esters of general formula (I) (X=alkyl) can be saponified to the corresponding free carboxylic acids (X=hydrogen) with the use of mineral acids or of alkali metal hydroxides in a polar solvent, such as water, methanol, ethanol, dioxan or acetone. The saponification is advantageously carried out with the use of a strong base, such as sodium or potassium hydroxide, in a mixture of methanol and water at ambient temperature or at a moderately elevated temperature. On the other hand, however, the carboxylic acids can be esterified in conventional manner or esters with a particular radical X can be converted into esters with a different radical X by transesterification. The esterification of the 100 carboxylic acids is preferably carried out in the presence of an acidic catalyst, for example hydrogen chloride, sulphuric acid or p -

65

75

80

85

90

toluenesulphonic acid, or of a strongly acidic ion exchange resin. Transesterifications, on the other hand, require the addition of a small amount of a basic substance, for example of an alkali metal or alkaline earth metal hydroxide or of an alkali metal alcoholate.

For the preparation of salts with pharmacologically acceptable organic or inorganic
bases, for example sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonium hydroxide, methylglucamine, morpholine
or ethanolamine, the carboxylic acids can be
reacted with appropriate bases. Mixtures of
the carboxylic acids with an appropriate alkali
metal carbonate or bicarbonate can also be
used.

For the preparation of pharmaceutical compositions, at least one compound of general formula (I) is mixed in the usual manner with appropriate pharmaceutical carriers or diluents, and optionally with aroma, flavouring and colouring materials and formed, for example, into tablets or dragees, or, with the addition of appropriate adjuvants, suspended or dissolved in water or an oil, for example olive oil.

The compounds of general formula (I) can be administered orally or parenterally in liquid or solid form. As injection medium, it is preferable to use water which contains the stabilising agents, solubilising agents and/or buffers usual for injection solutions. Additives of this type include, for example, tartrate or borate buffers, ethanol, dimethyl sulphoxide, complex forming agents (such as ethylenediamine - tetraacetic acid), high molecular weight polymers (such as liquid polyethylene oxide) for viscosity regulation or polyethylene derivatives of sorbitan anhydrides.

Solid carrier materials which can be used include, for example, starch, lactose, mannitol, methyl cellulose, talc, highly dispersed silicic acid, high molecular weight fatty acids (such as stearic acid), gelatine, agar-agar, calcium phosphate, magnesium stearate, animal and vegetable fats and solid high molecular weight polymers (such as polyethylene glycols). Compositions suitable for oral administration can, if desired, contain flavouring and/or sweetening materials. For external use, the compounds of general formula (I) can also be used in the form of powders and salves; for this purpose, they are mixed, for example, with powdered, physiologically acceptable diluents or with conventional salve bases.

The following Examples are given for the purpose of illustrating the present invention. The structures of the compounds referred to in these Examples was verified by CHN analyses and IR, UV, NMR and mass spectra. Of the total analyses, in the individual Examples characteristic individual determinations of physical data are given.

Example 1

Ethyl N - (4 - methoxybenzthiazol - 2 yi) - oxamate.

Method A:

18.02 g. (0.1 mol) 2 - Amino - 4 - methoxybenzthiazole are dissolved in 250 ml. methylene chloride, with the addition of 16.1 ml. pyridine, and mixed within the course of 15 minutes, at a temperature of 8—10°C., with a solution of 15.01 g. (12.3 ml.; 0.11 mol) oxalic acid ethyl ester chloride in 30 ml. methylene chloride. The reaction mixture is subsequently further stirred for 20 minutes at 10°C., the precipitate formed is then filtered off and the filtrate is evaporated in a vacuum. The evaporation residue is then stirred with approximately 0.5N hydrochloric acid and the solid material filtered off with suction. It is then washed with dilute hydrochloric acid and water, dried (crude yield 27.8 g.; m.p. 173-174°C.) and recrystallised from nitromethane. There are obtained 24.8 g. ethyl N - (4 - methoxybenzthiazol - 2 - yl) - oxamate. Yield 88.47% of theory. The structure is verified by CHN analysis, IR, UV, NMR and mass spectra (M.W. 280).

Method B:

18.02 g. (0.1 mol) 2 - Amino - 4 - methoxybenzthiazole are heated under reflux for 4 hours in 135 ml. diethyl oxalate. The reaction mixture is then hot filtered, cooled and the precipitate thereby obtained filtered off with suction, washed with cold ethanol and recrystallised from nitromethane. There are thus obtained 18.1 g. (64.6% of theory) ethyl N - (4 - methoxybenzthiazol - 2 - yl) - oxamate; m.p. 175°C. The IR spectrum shows that the product obtained is identical with that obtained according to Method A (interalia carbonyl bands at 1705 cm⁻¹ (5.87 u) and 1740 cm⁻¹ (5.75 u)).

a) 5 g. (0.0178 mol) of the ethyl ester obtained according to Example 1 are suspended in 150 ml. water and mixed within the course of 45 minutes, at ambient temperature, with 17.8 ml. 1N aqueous sodium hydroxide solution. After stirring for 2 hours, the reaction mixture is filtered and the desired sodium salt obtained as a crude product by freeze drying. Thereafter, the salt is taken up in 100 ml. water, again filtered and the desired acid liberated by the addition of 2N hydrochloric acid. After drying, there are obtained 3.05 g. (68% of theory) of N - (4 - methoxybenzthiazol - 2 - yl) - oxamic acid; m.p. 223—225°C.

- - -

120

741

1.2 g. of the acid obtained according to Example 2a) are suspended in 100 mL water and neutralised with 4.75 ml. 1N aqueous sodium hydroxide solution. The clear solution thus obtained is then freeze dried. There is obtained 1.21 g. sodium N - (4 methoxybenzthiazol - 2 - yl) - oxamate with a water content of 8% by weight; m.p. 255-256°C. (decomp.).

Method B:

5 g. (0.0277 mol) 2 - Amino - 4 - methoxy benzthiazole are heated for 2 hours at 150°C. with 24.13 g. ethyl tert. - butyl oxalate. After cooling, the reaction mixture is diluted with diethyl ether and suction filtered. The solid product is then washed with diethyl ether to give 6.17 g. of a compound melting at 221— 223°C. which, according, inter alia, to the IR spectrum, is identical with the N - (4 methoxybenzthiazol - 2 - yl) - oxamic acid prepared according to Example 2, Method A. Yield 88.3% of theory; mass spectrum found M.W. 252.

Example 3 25 Ethyl N - (6 - methoxybenzthiazol - 2 - yl) oxamate.

18 g. (0.1 mol) 2 - Amino - 6 - methoxy benzthiazole are reacted with 15.01 g. (0.11 mol) oxalic acid ethyl ester chloride in 280 ml. methylene chloride in the presence of 16 ml. pyridine in the manner described in Example 1, Method A. The precipitate obtained is filtered off with suction and washed with dilute hydrochloric acid and water. After recrystallisation from ethyl acetate, there are obtained 9.1 g. of substance melting at 193-194°C. The first filtrate is evaporated in a vacuum, the residue is stirred with diethyl ether and the solid product is filtered off with suction. It is washed with dilute hydrochloric acid and water and subsequently recrystallised from ethyl acetate, with the addition of active charcoal. There are obtained a further 11.7 g. of compound with a melting point of 192°C. 45 The total yield of the desired ethyl N - (6 methoxybenzthiazol - 2 - yl) - oxamate is thus 20.8 g. (74.20% of theory). IR Spectrum: 1730 cm⁻¹ (5.78 μ), 1710 cm⁻¹ (5.84 μ) for the carbonyl bands; 3270 cm⁻¹ (3.06 μ) for the 50 NH band. Mass spectrum: M.W. 280.

Example 4 N - (6 - Methoxybenzthiazol - 2 - yl) oxamic acid.

According to Example 2, Method A, 5 g 55 (0.0178 mol) of the ethyl oxamate obtained according to Example 3 are suspended in 150 ml. water and, after the addition of 17.8 ml. 1N aqueous sodium hydroxide solution, saponified by stirring for 2 hours at ambient temperature. The reaction mixture is filtered and the sodium salt of N - (6 -

--- .. . **:

isolated by freeze drying. Yield 4.1 (84.01% of theory); m.p. >300°C. 2 g. of this sodium salt are dissolved in 50 ml. water and the clear solution obtained acidified with 2N hydrochloric acid to a pH value of 2. The yellow precipitate obtained is filtered off with suction, then washed with water and dried in a vacuum at 50°C. There are obtained 1.4 g. of the free N - (6 - methoxybenzthiazol - 2 - yl) - oxamic acid; m.p. 227-228°C. The structure was determined inter alia by the nuclear resonance spectrum. Mass Spectrum: found M.W. 252.

Example 5 Ethyl N - (6 - ethoxybenzthiazol - 2 - yl) oxamate.

According to Example 1, Method A, 5.8 g. (0.03 mol) 2 - amino - 6 - ethoxybenzthiazo. and 4.5 g. (0.033 mol) oxalic acid ethyl ester chloride in 85 ml. methylene chloride are reacted within the course of 1 hour, with the addition of 4.83 ml. pyridine. There are obtained 6.7 g. (76% of theory) ethyl N - (6 - ethoxybenzthiazol - 2 - yl) - oxamate, which melts at 183—184°C. after recrys:allisation from nitromethane. Mass Spectrum: found M.W. 294. Thin layer chromatogram: chloroform: methanol 9:1.

Example 6 Ethyl N - (5 - methoxybenzthiazol - 2 - yl) oxamate.

Analogously to Example 1, Method A, 18.02 g. (0.1 mol) 2 - amino - 5 - methoxybenzthiazole are reacted with 15.01 g. (0.11 95 mol) oxalic acid ethyl ester chloride, with the addition of 16.1 ml pyridine, in 280 ml. methylene chloride during a total reaction time of 35 minutes at 10°C. Subsequently. the product formed is filtered off with suction, washed with 2N hydrochloric acid and water and the crude product (26.4 g.; 94.2% of theory; m.p. 165—166°C.) recrystallised from nitromethane. There are obtained 22.9 g. (81.7% of theory) ethyl N - (5 - methoxybenzthiazol - 2 - yl) - oxamate; m.p. 168—169°C. The molecular weight was found to be 280. IR: 1738 cm⁻¹ (5.77 μ), 1698 cm⁻¹ (5.89 μ) for carbonyl bands, 3265 cm⁻¹ 110 (3.06μ) for the NH band.

Example 7 N - (5 - Methoxybenzthiazol - 2 - yl) oxamic acid and the sodium salt thereof.

5 g. (0.0178 mol) of the ester described in 115 Example 6 are, according to Example 2a) and b), Method A, suspended in 150 ml water and saponified by the addition of 17.8 ml. aqueous sodium hydroxide solution within the course of 2 hours at ambient temperature. After filtration, the aqueous solution methoxybenzthiazol - 2 - yl) - oxamic acid sodium N - (5 - methoxybenzthiazol - 2 - yl) -

manner described in Examples 8a)—d):_

THE PROPERTY OF

4.45 g. (0.02 mol) of the 2 - aminobenz-

1 - (5 - tert. - butyl - 2 - methoxyphenyl) - 3 - benzoylthiourea is obtained from 2 - amino - 4 - tert. - butylanisole, ammonium thiocyanate and benzoyl chloride in almost quantitative crude yield: m.p. 160-162°C.

b) 1 - (5 - tert. - Butyl - 2 - methoxyphenyl) - thiourea is obtained by the alkaline debenzoylation of the benzoylthiourea described in Example 10a) with dilute aqueous sodium hydroxide solution or methanolic sodium methylate solution in 75% yield, referred to the anisole derivative used; m.p.

166---167°C.

c) By means of the Hugershoff reaction, according to Example 8c), there are obtained from 4.76 g. (0.02 mol) of the phenylmenurea prepared according to Example 9b) with 3.27 g. (0.0204 mol) bromine in 40 ml. chloroform, 4.1 g. (86.86% of theory) 2 -

amino - 7 - tert. - butyl - 4 - methoxybenz-

thiazole; m.p. 225-226°C.

d) Analogously to Example 1 Method A, 3.54 g. (0.015 mol) of the 2 - aminobenzthiazole prepared according to Example 10e) are reacted with 2.25 g. oxalic acid ethyl ester chloride in 45 ml. methylene chloride and 2.4 ml. pyridine. After recrystallisation of the crude product obtained from ethanol, there are obtained 3.5 g. (69.44% of theory) ethyl N - (7 - tert. - butyl - 4 - methoxybenzthiazol - 2 - yl) - oxamate; m.p. 181—182°C Mass spectrum: molecular weight found

336. UV (methanol): 308 m_μ log ε 4.04.

35 Example 11 Ethyl N - (4,7 - dimethoxybenzthiazol - 2 yl) - oxamate.

The preparation takes place according to the procedure described in Example 8a)—d): a) 1 - (2,5 - Dimethoxyphenyl) - 3 benzoylthiourea is obtained from 2,5 - dimethoxyaniline, benzoyl chloride ammonium thiocyanate (mole ratio 1:1:1) in

acetone. The crude product, obtained in practically quantitative yield, has a melting point of 140-144°C.

b) 1 - (2,5 - Dimethoxyphenyl) - thiourea is prepared from the crude product obtained according to Example 11a) by treatment with methanolic sodium methylate solution. From

15.1 g. (0.1 mol) 2,5 - dimethoxyaniline there are obtained 13.12 g. (61.9% of theory) of the desired thiourea; m.p. 160-162°C.

c) By the Hugershoff ring closure, from 55 12 g. (0.056 mol) of the thiourea prepared according to Example 11b), there are obtained, with bromine in chloroform, 9.41 g. (79.54% of theory) 2 - amino - 4,7 - dimethoxybenzthiazole; m.p. 210-213°C.

d) 7 g. (0.03 mol) of the aminobenzthiazole prepared according to Example 11c) are reacted with 4.78 ml. oxalic acid ethyl ester chloride in 100 ml. methylene chloride and 6:3 ml. pyridine. There are obtained

7.55 g. (81.1% of theory) ethyl N - (4,7 dimethoxybenzthiazol - 2 - yl) - oxamate; m.p. 223-225°C.

Mass spectrum: molecular weight found:

UV (methanol) λ_{max} : 308 m μ log ϵ 4.01.

Example 12

Ethyl N - (5,6 - dimethoxybenzthiazol - 2 yl) - oxamate.

a) According to Example 8a) and b), from 100 g. 3,4 - dimethoxyaniline (0.65 mol), 94.2 g. benzoyl chloride (0.67 mol) and 49.7 g. ammonium thiocyanate in 620 ml. acetone, there are obtained 113.6 g. (83.31% of theory) 1 - (3,4 - dimethoxyphenyl) thiourea which, after recrystallisation from ethanol, melts at 228-230°C.

b) By means of the Hugershoff methodescribed in Example 8c), ring closure takes place with 106.13 g. (0.5 mol) of the thiourea prepared according to Example 12a) in 89.1% yield (93.7 g. after recrystallisation from ethanol), with the formation of 2 - amino -5,6 - dimethoxybenzthiazole; m.p. 220-

221°C.

c) According to the procedure described in Example 1, Method A, 6.3 g. (0.03 mol) of the aminobenzthiazole prepared according to Example 12b) are reacted with 4.3 ml. oxalic acid ethyl ester chloride in 100 ml. methylene chloride and 5.6 ml. pyridine to give 7.14 g. (76.7% of theory) ethyl N - (5,6 - dimethoxybenzthiazol - 2 - yl) - oxamate; m.p. 190-191°C. after recrystallisation from ethanol.

Mass spectrum: molecular weight found

10

H

UV (methanol): λ_{max}: 331 mμ log ε 4.09.

Example 13 Ethyl N - (4,6 - dimethoxybenzthiazol - 2 yl) - oxamate.

In a manner analogous to that described in Example 11 for the 4,7 - dimethoxy derivative and in Example 12 for the 5,6 - dimethoxy derivative, there is obtained, starting from 2,4 - dimethoxyaniline, ethyl N - (4,6 dimethoxybenzthiazol - 2 - yl) - oxamate.

Example 14 Ethyl N - (6 - methoxy - 5,7 - dimethylbenzthiazol - 2 - yl) - oxamate.

The working conditions described in Example 8a)—d) are employed:

a) 1 - (4 - Methoxy - 3,5 - dimethylphenyl) - 3 - benzoylthiourez is obtained in practically quantitative yield from 4 - amino -2,6 - dimethylanisole, ammonium thiocyanate and benzoyl chloride; m.p. of the crude product moistened with acetone: 118-120°C.

b) 1 - (4 - Methoxy - 3,5 - dimethylphenyl) - thiourea is obtained by debenzoylating the compound obtained according to Example 14a). Yield 81.35% of theory; m.p. 216-217°C

	•		
7	1,53	38,822	7
	c) 2 - Amino - 6 - methoxy - 5,7 - dimethylbenzthiazole is obtained by the Hugershoff ring closure of the thiourea	Example 17 Ethyl N - (4 - methylbenzthiazol - 2 - yl) -	
5	obtained according to Example 14b) (e.g. batch size 8 g.=0.038 mol) in 65% yield; m.p. 191—193°C. d) From 4.7 g. (0.0225 mol) of the aminobenzthiazole prepared according to	a) Analogously to Example 8a) and b), using ammonium thiocyanate and benzoyl chloride, there is prepared 1 - (2 - methylphenyl) - thiourea; m.p. 158—159°C.	70
10	example 14c), there are obtained, by reaction with 3.2 ml. (0.0286 mol) oxalic acid ethyl ester chloride in 75 ml. methylene chloride and 4.1 ml. pyridine, 6.45 g. (93% of theory)	b) According to Example 8c), with the use of the Hugershoff reaction, there is prepared from the thiourea of Example 17a) (16.6 g.=0.1 mol), 2 - amino - 4 - methylbenzthiazole; yield 12.5 g. (76.21% of	. 75
15	ethyl N - (6 - methoxy - 5,7 - dimethylbenz- thiazol - 2 - yl) - oxamate; m.p. 150—160°C. Mass spectrum: molecular weight found 308. UV spectrum: λ _{max} : 327 mμ log ε 4.09.	theory); m.p. 136—137°C. c) According to Example 1, Method A, there are prepared from 4.9 g. (0.03 mol) of the aminobenzthiazole of Example 17b) by reaction with 4.5 g. (0.033 mol) oxalic acid	80
20	Example 15 Ethyl N - (4 - methoxy - 5,7 - dimethylbenz- thiazol - 2 - yl) - oxamate. a) Analogously to the procedure described in Example 8a) and b), there are obtained	chloride and 4.8 ml. pyridine and usual working up, 7.4 g. (93.7% of theory) ethyl N - (4 - methylbenzthiazol - 2 - yl) - oxamate; m.p. 191—192°C. After recrystallisation from	85
25	from 7.56 g. (0.05 mol) 2 - amino - 4,6 - dimethylanisole, benzoyl chloride and ammonium thiocyanate, without character sation of the N - benzoyl intermediate, 8.1 g. 1 - (2 - methoxy - 3,5 - dimethylphenyl) -	ethyl acetate, the melting point does not change. IR: 5.74 and 5.86 (carbonyl). Mass spectrum: molecular weight 264. IV (methanol): λ_{max} : 309 mu log e 4.10.	⁻ 90
30	thiourea; yield 77% of theory; m.p. 141—142°C. b) 7.36 g. (0.035 mol) of the substituted thiourea prepared according to Example 15a) is reacted, analogously to Example 8c), with bromine in chloroform to give 2 - amino -	Example 18 Ethyl N - (5,6 - dimethylbenzthiazol - 2 - yl) - oxamate. 17.8 g. (0.1 niol) commercially available 2 - amino - 5,6 - dimethylbenzthiazole is reacted, according to Example 1, Method A, with 15 according to Example 1, Method A,	95
35	4 - methoxy - 5,7 - dimethylbenzthiazole; yield 97.3% of theory (7.1 g.); m.p. 164—166°C. c) 4.16 g. (0.02 mol) of the aminobenz-	chloride in 250 ml. methylene chloride and 16.1 ml. pyridine. There are obtained 23.3 g. (94.6% of theory) ethyl N - (5.6 - dimethylene)	100
40	thiazole prepared according to Example 15b) are reacted, according to Example 1, Method A, with 2.99 g. oxalic acid ethyl ester chloride (0.022 mol) in 60 ml. methylene chloride and 3.2 ml. pyridine. After recrystallisation from ethanol, there are obtained 5.0 g. (81.16% of	157°C. After recrystallisation from ethanol, the compound melts at 156.5—157°C. Mass spectrum: molecular weight found 278. UV spectrum: λ _{max} (methanol) 316 ma	105
45	143—144°C. Mass spectrum: molecular weight found	log e 4.12. IR: 1740 cm ⁻¹ (5.75 μ), 1705 cm ⁻¹ (5.87 μ). Example 19	110
50	308. UV spectrum: λ_{max} : 308 m $_{\mu}$ log $_{\theta}$ 4.10. The nuclear resonance spectrum (DDMSO) confirms the structure of the product.	Ethyl N - (4 - chlorobenzthiazol - 2 - yl) - oxamate. 18.4 g. (0.1 mol) commercially available 2 - amino - 4 - chlorobenzthiazole is reacted, according to Example 1, Method A, with	
55	Example 16 Ethyl N - (benzthiazol - 2 - yl) - oxamate. 4.5 g. (0.03 mol) of commercially available 2 - aminobenzthiazole is reacted, according to the procedure of Example 1, Method A, with	chloride in 280 ml. methylene chloride and 16.1 ml. pyridine. There are obtained 23.3 g. (82.04% of theory) analytically pure ethyl N.	115
60	4.5 g. oxalic acid ethyl ester chloride. There are obtained 6.6 g. (88% of theory) ethyl N - (benzthiazol - 2 - yl) - oxamate; m.p. 187—188°C., after recrystallisation from ethanol. P. A. Petjunin describes this sub-	(4 - chlorobenzthiazol - 2 - yl) - oxamate; m.p. 238—239°C. Recrystallisation from ethoxy - ethanol does not change the melting point. Mass spectrum: molecular weight found	120
	stance as a chemical intermediate with a melting point of 183—184.5°C. (Zh. Obshch. "Khim 34 28—34 (1964)		125

Example 20

Ethyl N - (7 - chloro - 4 - methoxybenzthiazol - 2 - yl) - oxamate.

a) According to Example 8a), 157.6 g. (1 mol) 2 - methoxy - 5 - chloroaniline are reacted with 145.1 g. benzoyl chloride and 78.3 g. ammonium thiocyanate in 1000 ml. acetone. There is obtained 1 - (2 - methoxy -5 - chlorophenyl) - 3 - benzoylthiourea, which is further worked up as crude product.

b) The total still acetone moist N-benzoyl compound obtained according to Example 20a) is stirred into 2.8 litres 2N aqueous sodium hydroxide solution, heated under reflux for 10 minutes and hot filtered. The filtrate is subsequently cooled to 5°C. and the precipitate obtained is filtered off with suction, surred with aqueous sodium bicarbonate solution and, after filtering, the solid product washed with water. There are obtained 1 - (2 - methoxy - 5 - chlorophenyl) - thiourea; m.p. 125-130°C. Yield 182.5 g. (84.23% of theory, referred to the

chloroaniline used).

c) According to Example 8c), 108.4 g. of 25 the thiourea prepared according to Example 20b) is reacted according to the Hugershoff method. As the first precipitate, there are obtained 46.4 g. (43.2% of theory) 2 amino - 7 - chloro - 4 - methoxybenzthiazole; m.p. 200—203°C. From the mother liquor,

there can be obtained a further 30-40%, of the desired compound.

d) The 2 - aminobenzthiazole obtained according to Example 20c) is reacted in a 0.03 mol batch (6.44 g.) analogously to the procedure of Example 8d) or of Example 1, Method A. There is obtained ethyl N - (7 chloro - 4 - methoxybenzthiazol - 2 - yl) -

oxamate; m.p. 233-235°C, yield 70-80%. Mass spectrum: molecular weight found 314.

UV spectrum: λ_{max.} (methanol) 305 mμ

45 Example 21 Ethyl N - (5 - chloro - 4 - methoxybenzthiazol - 2 - yl) - oxamate.

a) 1 - (3 - Chloro - 2 - methoxyphenyl) thiourea is prepared analogously to Example 8a) and b), via the N - benzoyl compound; m.p. 116-119°C. Total yield 90.53%, of

b) 2 - Amino - 5 - chloro - 4 - methoxybenzthiazole is obtained in 83% yield from 55 the thiourea prepared according to Example 21a) by the Hugershoff method according to

Example 8c); m.p. 185-187°C.

c) 10.73 g. (0.05 mol) of the 2 - aminobenzthiazole of Example 21b) are reacted 60 with 7.5 g. (0.55 mol) oxalic acid ethyl exter chloride in 150 ml. methylene chloride and 8 ml. pyridine analogously to Example 8d) to give crude ethyl N - (5 - chloro - 4 --me-hoxybenzthiazol - 2 - yl) - oxamate which,

after recrystallisation from ethanol, gives 13 g. (82.8% of theory) pure ethyl N - (5 - chloro -4 - methoxybenzthiazol - 2 - yl) - oxamate; m.p. 186—187°C.

Mass spectrum: molecular weight found

IR spectrum: 1694 cm⁻¹ (5.90 μ) amide

Example 22 Ethyl N - (4 - chloro - 7 - methoxybenzthiazol - 2 - yl) - oxamate.

a) Analogously to the procedure rescribed in Example 8a)—c), there are synthesised the following intermediates:

1 - (2 - chloro - 5 - methoxyphenyl) 3 - benzoylthiourea; m.p. 159—161°C. yield practically quantitative.

1 - (2 - chloro - 5 - methoxyphenyl - thiourea m.p. 168—170°C.

yield 80.97% of theory

2 - amino - 4 - chloro - 7 - methoxybenzthiazole m.p. 266-267°C. yield 92.16% of theory.

b) According to the procedure described in Example 1, Method A, 6.44 g. (0.03 mol) 2 - amino - 4 - chloro - 7 - methoxybenzthiazole are reacted with 4.5 g. (0.033 mol) oxalic acid ethyl ester chloride in 85 ml. methylene chloride and 4.8 ml. pyridine. There are obtained 8.7 g. (92.16%, of theory) ethyl N - (4 - chloro - 7 - methoxybenzthiazol - 2 - yl) - oxamate; m.o. 266-267 C.

Mass spectrum: molecular weight found

UV spectrum: λ_{max} (methanol) 300 m μ IR spectrum: 5.78 u; 5.85 µ ester and amide carbonyl.

Example 23
Ethyl N - (4 - trifluoromethylbenzthiazol -2 - yl) - oxamate.

a) 2 - (Trifluoromethyl) - phenylthiourea is obtained, according to the procedure of Example 8a) and b), from 2 - trifluoromethylaniline in 81% yield; m.p. 158-160°C.

b) From the thiourea prepared according 110 to Example 23a), there is obtained, by oxidative ring closure according to Example 8c), 2 - amino - 4 - trifluoromethylbenzihiazole;

m.p. 149-151°C.

c) 4.36 g. (0.02 mol) 2 - amino - 4 - 115 trifluoromethylbenzthiazole according to Example 1, Method A, with 2.99 g. (0.022 mol) oxalic acid ethyl ester chloride. After recrystallisation from ethyl acetate, there are obtained 5.0 g. (78.6%, of 120 theory) ethyl N - (4 - trifluoromethylbenzthiazol - 2 - yl) - oxamate; m.p. 219-220 °C. Mass spectrum: molecular weight found

105

Ж

pared according to Example 1, Method A, are

70

75

with a copious amount of water, with a little

10

20

45

dissolved in 200 ml. chloroform, cooled to -20°C. and mixed within the course of 15 minutes with a solution of 10 g. (0.04 mol) boron tribromide in 50 ml. chloroform. Subsequently, the reaction mixture is allowed to warm up to ambient temperature. Then the same amount (3.78 ml.) of boron tribromide is added thereto at -10° C. and the reaction mixture subsequently stirred for 2 hours at ambient temperature. A further 0.01 mol boron tribromide completes the reaction. The reaction mixture is then mixed with methanol and the resultant precipitate filtered off with suction. There are obtained 5 g. of precipitate with a melting point of 205-212°C., which proves to be a mixture of the methyl ester with the ethyl ester of the desired oxamic acid, which mixture results by demethylation

and simultaneous partial transesterification. Mass spectrum: found 252 (methyl ester) 266 (ethyl ester).

Example .29

tert. - Butyl N - (6 - methoxybenzthiazol -2 - yl) - oxamate.

26 g. (0.15 moi) Ethyl tert. - butyl oxalate

(prepared according to the method of L. S. Carpino, J. Chem. Soc., 82, 2725/1960) in 100 ml. xylene are heated to 100°C. and mixed with 18 g. 2 - amino - 6 - methoxy-benzthiazole (0.1 mol). After stirring the reaction mixture for 8 hours at 100°C., it is cooled and filtered with suction. The residue is boiled with ethyl acetate and hot filtered. The precipitate obtained upon cooling is successively stirred with 2N hydrochloric acid and aqueous sodium carbonate solution. This residue is dissolved in methylene chloride, filtered and evaporated. The evaporation residue is triturated with diethyl ether and the resultant crystals filtered off with suction.

There are obtained 8.1 g. tert. - buiyl N - 6 - methoxybenzthiazol - 2 - yl) - oxamate; m.p. 230-232°C.

Example 30 Ethyl N - (6 - propoxybenzthiazol - 2 - yl) oxamate.

5 g. 2 - Amino - 6 - propoxyoenzthiazole are reacted with oxalic acid ethyl ester chloride in pyridine and methylene chloride in the manner described in Example 1, Method A. There are obtained 5.8 g. ethyl N - (6 propoxybenz:hiazol - 2 - yl) - oxamate (78% of theory); m.p. 143-145°C.

WHAT WE CLAIM IS:-

1. N - (Benzthiazol - 2 - yl) - oxamic acid derivatives of the general formula:-

wherein R1, R2, R3 and R4, which can be the same or different, are hydrogen or halogen atoms, hydroxyl or nitro groups, phenyl radicals, straight-chained or branched lower alkyl or alkoxy radicals or trifluoromethyl radicals or R, and R, together represent a methylenedioxy radical and X is a hydrogen atom or a lower alkyl radical, with the proviso that when X is an ethyl radical, R1, R2, R3 and R, cannot all be hydrogen atoms; and the physiologically acceptable salts of those compounds in which X is a hydrogen atom.

2. Ethyl N - (4 - methoxybenzthiazol - 2 yl) - oxamate.

3. N - (4 - Methoxybenzthiazol - 2 - yl) oxamic acid and the sodium salt thereof.

4. Ethyl N - (6 - methoxybenzthiazol - 7 yl) - oxamate.

5. N - (6 - Methoxybenzthiazel - 2 - yl) oxamic acid.

6. Ethyl (6 - ethoxybenzthiazol - 2 - yl) oxamate.

7. Ethyl N - (5 - methoxybenzthiazol - 2 yl) - oxamate. 8. N - (5 - Methoxybenzthiazol - 2 - yl) -

oxamic acid and the sodium salt thereof. 9. Ethyl N - (7 - isopropyl - 4 - methoxy-

benzthiazol - 2 - yl) - oxamate.

10. Ethyl N - (4 - methoxy - 7 - phenylbenzthiazol - 2 - yl) - oxamate.

11. Ethyl N - (7 - tert. - butyl - 4 methoxybenzthiazol - 2 - yl) - oxamate.

12. Ethyl N - (4,7 - dimethoxybenzthiazol -2 - yl) - oxamate. 13. Ethyl N - (5,6 - dimethoxybenzthiazol -

2 - yl) - oxamate. 14. Ethyl N - (4,6 - dimethoxybenzthiazol -2 - yl) - oxamate.

15. Ethyl N - (6 - methoxy - 5,7 - d'

methylbenzthiazol - 2 - yl) - oxamate. 16. Ethyl N - (4 - methoxy - 5,7 - di-

methylbenzthiazol - 2 - yl) - oxamate. 17. Ethyl N - (4 - methylbenzthiazol - 2 yl) - oxamate

18. Ethyl N - (5,6 - dimethylbenzthiazol -2 - yl) - oxamate.

19. Ethyl N - (4 - chlorobenzthiazol - 2 yl) - oxamate.

20. Ethyl N - (7 - chloro - 4 - methoxybenzthiazol - 2 - yl) - oxamate.

21. Ethyl N - (5 - chloro - 4 - methoxybenzthiazol - 2 - yl) - oxamate.

22. Ethyl N - (4 - chloro - 7 - methoxy-

benzthiazol - 2 - yl) - oxamate.

23. Ethyl N - (4 - trifluoromethylbenzthiazol - 2 - yl) - oxamate.

24. Ethyl N - (6 - nitrobenzthiazol - 2 yl) - oxamate.

25. Ethyl N - (4 - nitrobenzthiazol - 2 - 11 yl) - oxamate. 26. Ethyl N - (4 - methoxy - 6 - nitro-

benzthiazol - 2 - yl) - oxamate. 27. Ethyl N - (1,3 - dioxolo [4,5 - f]benzthiazol - 6 - yl) - oxamate.

12

5

Ç. 5.68

11

25

40

28. Methyl and ethyl N - (4 - hydroxybenzthiazol - 2 - yl) - oxamate.

29. tert. - Butyl N - (6 - methoxybenz-thiazol - 2 - yl) - oxamate.

30. Ethyl N - (6 - propoxybenzthiazel -

2 - yl) - oxamate.

31. Process for the preparation of N - (benzthiazol - 2 - yl) - oxamic acid derivatives of the general formula given in claim 1,

wherein a 2 - aminobenzthiazole compound of the general formula:—

in which R₁, R₂, R₃ and R₁ have the same meanings as in claim 1, is reacted with an oxalic acid derivative of the general formula:—

in which X has the same meaning as in claim 1 and Y is a halogen atom or a lower alkoxy radical, or with a salt thereof. 32. Process according to claim 31, wherein, subsequent to the condensation reaction, at least one of the substituents R₁, R₂, R₃, R₄ and X is converted into a different substituent R₁, R₂, R₃, R₄ and X.

33. Process according to claim 31 or 32, wherein, when the product obtained is a salt, it is converted into a pharmacologically acceptable salt.

34. Process for the preparation of N - (benzthiazol - 2 - yl) - oxamic acid derivatives according to claim 1, substantially as hereinbefore described and exemplified

hereinbefore described and exemplified.

35. N - (Benzthiazol - 2 - yl) - oxamic acid derivatives according to claim 1, whenever prepared by the process according to any of claims 31 to 34.

36. Pharmaceutical compositions, comprising at least one N - (benzthiazol - 2 - yl) - oxamic acid derivative according to claim 1, including ethyl N - (benzthiazol - 2 - yl) - oxamate, in admixture with a solid or liquid pharmaceutical diluent or carrier.

VENNER, SHIPLEY & CO., Chartered Patent Agents, Rugby Chambers, 2, Rugby Street, London, WCIN 3QU. Agents for the Applicants.

Printed for Her Majesty's Stationery Office, by the Courier Press, Learnington Spa. 1979
Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

		I