Vector Databases and ANN algorithm

Keyword search

vs Semantic search

smartphones

exact term matching

synonyms and other similar/related terms

[&]quot;Top smartphones on the market..."

[&]quot;Smartphone industry struggles..."

[&]quot;Using a cell phone in Spain..."

[&]quot;Mobile device usage on the rise..."

Images

Documents

Audio

Images Vector representation **Documents** Dense vectors **Transform into** embedding Audio

Images Vector Vector representation representation ····] **Documents** Query [•••] Dense vectors **Transform into** Transform into embedding embedding Audio

Images Vector **Nearest neighbor** Vector representation representation [...] **Documents** Query Dense vectors Transform into **Transform into** embedding embedding **Audio** Results

K Nearest Neighbour

Exhaustive, brute-force approach

- Measure distance from query and all other vectors
- Sort distances
- Return top K results

Performance

Number of dimension-1000

Number of vectors-millions

Typical query latency -seconds

Trade off accuracy for performance

Approximate Nearest Neighbour

- Preprocess data into efficient index
- Speed up search using index

Approximate Nearest Neighbour

- Tree-based algorithm (ANNOY)
- Locality sensitive hashing
- Product Quantization
- Inverted File Index
- Proximity Graph (Hierarchical Navigable Small World)

Navigable Small World

- Six degrees of separation
- Hungarian novelist Karinthy Frigyes 1929

- Better communication tech and travel
- Migrations and increasing connectivity
- "Shrinking" modern world

Navigable Small World

- every node can be reached with small number of hops from any other node
- Build a graph
- Every node has M connection to closest nodes (proximity list, "friend list")
- Random entry node
- Greedy search, move to closest node
- Stop condition, no closer node in friend list

smartphone Computer	elephant
mathematics statistics	tiger lion

- Can get stuck in local minimum
- Polylogarithmic complexity, not performant at scale
 - Searches for multiple nodes, multiple times

Hierarchical NSW

- Multi-layered graph
 - Base layer has all nodes (dense), more connections
 - Higher layer have fewer nodes (sparse) and fewer connections

 Search starts in top layer descending towards bottom layers

Performance

- Ensures consistent, reliable performance
- Query time increases logarithmically
- Typical query latency -milliseconds