Mathematical Preliminaries

1. Sets

usually designated by enumeration of its elements between braces such as $\{2,4,6,8\}$ or denoted by $\{x\mid P(x)\}$, for example $\{n\mid n \text{ is even and } 1< n<9\}$

a set with a single element is called a singleton

subset $B\subset A$ proper subset $B\subset A$ and $B\neq A$ empty set is denoted by \varnothing , such as $\{a\mid a\neq a\}$

union $A \cup B$ intersection $A \cap B$

complement $\sim A$ and $A \sim B \equiv \{a \mid a \in A \text{ and } a \notin B\}$

 ${f universal\ set}$ In any application of set theory there is an underlying universal set X whose subsets are the objects of study

Cartesian product $A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$ It is the set of ordered pairs (a,b)for example $A^n = \{(a_1,a_2,...,a_n) \mid a_i \in A\}$

1.1 Equivalence Relations

A **relation** on A is a comparison test between members of ordered pairs of elements of A denoted by $a \triangleright b$

An **equivalence relation** on A is a relation that has the following properties:

$$a
hd a \ orall a \in A \ ext{(reflexivity)}$$
 $a
hd b \Rightarrow b
hd a \ a,b \in A \ ext{(symmetry)}$ $a
hd b, b
hd c \Rightarrow a
hd c \ a,b,c \in A \ ext{(transivity)}$

equivalence class $[\![a]\!]=\{b\in A\mid b\triangleright a\}$

If ho is an equivalence relation on A and $a,b\in A$,then either $[\![a]\!]\cap [\![b]\!]=\varnothing$ or $[\![a]\!]=[\![b]\!]$

partition of a set B_{α} are disjoint and $\bigcup_{\alpha} B_{\alpha} = A$ quotient set A/\bowtie is the collection of all equivalence classes of A clearly,it is a partition of A

2. Maps

$$\begin{array}{l} \text{map } f: X \longrightarrow Y \text{ or } X \stackrel{f}{\longrightarrow} Y \\ \text{and } y = f(x) \text{ or } x \mapsto f(x) \text{ or } x \stackrel{f}{\mapsto} y \end{array}$$

the set X is called the **domain**, and Y the **codomain**

A map whose codomain is the set of real numbers $\mathbb R$ or the set of complex numbers $\mathbb C$ is commonly called a **function**.

identity map
$$\mathrm{id}_{\mathrm{A}}(a)=a\quad \forall a\in A$$
 graph of a map $\varGamma_f=\{(a,f(a))\mid a\in A\}\subset A imes B$

If A is a subset of X, we call $f(A)=\{f(x)\mid x\in A\}$ the **image** of A. Similarly, if $B\subset f(X)$, we call $f^{-1}(B)=\{x\in X\mid f(x)\in B\}$ the **preimage**. The subset f(X) of the codomain of a map f is called the **range** of f. **composition** h(x)=g(f(x)) or $h=g\circ f$

injective or one-to-one $f(x_1)=f(x_2)$ implies that $x_1=x_2$ surjective or onto f(X)=Y

bijective or one-to-one correspondence a map that is both injective and surjective inverse of a map $f^{-1}(y)=x,\,f$ is a bijection from X onto Y

define an equivalence relation \bowtie on X by saying $x_1\bowtie x_2$ if $f(x_1)=f(x_2)$, then there is a map $\tilde{f}:X/\bowtie\longrightarrow Y$,called **quotient map**, given by $\tilde{f}[\![x]\!]=f(x)$, which is bijective

binary operation $f: X \times X \longrightarrow X$

3. Metric Spaces

A **metric space** is a set X together with a real-valued function $d:X imes X\longrightarrow \mathbb{R}$ such that

$$d(x,y) \geq 0 \quad orall x,y, ext{ and } d(x,y)=0 ext{ iff } x=y$$

$$d(x,y)=d(y,x) \quad ext{(symmetry)}$$

$$d(x,y) \leq d(x,z)+d(z,y) \quad ext{(the triangle inequality)}$$

sequence $s:\mathbb{N}\longrightarrow X$, X is a metric space

the sequence $\{x_n\}_{n=1}^\infty$ converges to x if there exists $N\in\mathbb{N}$ such that $\forall\epsilon\in\mathbb{R}^+,\quad d(x_n,x)<\epsilon$ whenever n>N

write it ${
m lim}_{n o\infty}d(x_n,x)=0$ or simply $x_n o x$

Cauchy sequence $\lim_{m,n o\infty}d(x_m,x_n)=0$

complete metric space every Cauchy sequence converges

4. Cardinality

If two sets are in one-to-one correspondence, they are said to have the same **cardinality**. A is said to be **countably infinite** if there exists a bijection between A and \mathbb{N} . Sets that are neither finite nor countably infinite are said to be **uncountable**.

5. Mathematical Induction

 S_n is true for every positive integer provided the following two conditions hold:

- 1. S_1 is true.
- 2. If S_m is true for some given positive integerm,then S_{m+1} is also true.