CIR2 CNB2

Séries entières Résumé de cours

Soit $(a_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathbb{C} . Pour tout complexe z, on définit une série $[a_nz^n]_{n\in\mathbb{N}}$.

- Pour quelles valeurs de z cette série converge-t-elle ?
- Sous réserve de convergence, quelles sont les propriétés de la fonction $z \to \sum_{n=0}^{\infty} a_n z^n$?

On peut ainsi considérer $\left[a_n z^n\right]_{n\in\mathbb{N}}$ comme une série numérique (z fixé) ou comme une série de fonctions.

I/ Convergence

1. Exemples

$\left[z^{n}\right]_{n\in\mathbb{N}}$	$\left[\frac{z^n}{n!}\right]_{n\in\mathbb{N}}$	$\left[\frac{z^n}{n(n+1)}\right]_{n\in\mathbb{N}^*}$	$\left[\frac{z^n}{n}\right]_{n\in\mathbb{N}^*}$	$\left[n^n z^n\right]_{n\in\mathbb{N}^*}$
$\sum_{n=0}^{\infty} z^n =$	$\sum_{n=0}^{\infty} \frac{z^n}{n!} =$			

2. Lemme d'Abel (version simplifiée)

Soient $\left[a_n z^n\right]_{n\in\mathbb{N}}$ une série entière et z_0 un complexe.

Si la <u>série</u> $\left[a_n z_0^n\right]_{n\in\mathbb{N}}$ converge,

alors, pour tout complexe z tel que $|z| < |z_0|$, la <u>série</u> $[a_n z^n]_{n \in \mathbb{N}}$ converge absolument.

3. Rayon de convergence

Soit $\left[a_n z^n\right]_{n\in\mathbb{N}}$ une série entière.

Il existe $R \in \mathbb{R} \cup \{\infty\}$ tel que $\begin{cases} \text{si } |z| < R, \text{ la série} \left[a_n z^n\right]_{n \in \mathbb{N}} \text{ converge absolument} \\ \text{si } |z| > R, \text{ la série} \left[a_n z^n\right]_{n \in \mathbb{N}} \text{ diverge} \end{cases}$

R est appelé rayon de convergence de la série entière.

 $D(0,R) = \{z \in \mathbb{C}/|z| < R\}$ est appelé disque de convergence de la série entière.

4. Règle de D'Alembert

Soit $\left[a_n z^n\right]_{n\in\mathbb{N}}$ une série entière telle que $\forall n\in\mathbb{N}\,/\,a_n\neq 0$.

- Si la suite $\left| \frac{a_{n+1}}{a_n} \right|$ a une limite ℓ strictement positive quand $n \to \infty$ alors le rayon de convergence est $R = \frac{1}{\ell}$
- Si la suite $\left| \frac{a_{n+1}}{a_n} \right|$ a une limite nulle quand $n \to \infty$ alors le rayon de convergence est $R = +\infty$
- Si la suite $\left| \frac{a_{n+1}}{a_n} \right|$ tend vers $+\infty$ quand $n \to \infty$ alors le rayon de convergence est R = 0
- Si la suite $\left| \frac{a_{n+1}}{a_n} \right|$ n'a pas de limite quand $n \to \infty$ la règle de D'Alembert ne s'applique pas.

II/ Opérations algébriques

Soient deux séries entières $\left[a_nz^n\right]_{n\in\mathbb{N}}$, de rayon de convergence R_1 et $\left[b_nz^n\right]_{n\in\mathbb{N}}$, de rayon de convergence R_2 .

Pour
$$|z| < R_1$$
, on note $S(z) = \sum_{n=0}^{\infty} a_n z^n$ et pour $|z| < R_2$, $T(z) = \sum_{n=0}^{\infty} b_n z^n$

1. Substitution $z \rightarrow -z$

Le RdC de
$$\left[\left(-1 \right)^n a_n z^n \right]_{n \in \mathbb{N}}$$
 est égal à R_1 et pour $|z| < R_1$, $\sum_{n=0}^{\infty} \left(-1 \right)^n a_n z^n = S\left(-z \right)$

2. Combinaisons linéaires

Pour tout $\lambda \in \mathbb{C}^*$, le RdC de $\left[\left(\lambda a_n + b_n\right)z^n\right]_{n \in \mathbb{N}}$ est supérieur ou égal à inf $\left(R_1, R_2\right)$

et pour
$$|z| < \inf(R_1, R_2)$$
, $\sum_{n=0}^{\infty} (\lambda a_n + b_n) z^n = \lambda S(z) + T(z)$

3. Homothétie

Pour tout $\lambda \in \mathbb{C}^*$, le RdC de $\left[\lambda^n a_n z^n\right]_{n \in \mathbb{N}}$ est égal à $\frac{R_1}{|\lambda|}$,

et pour
$$|z| < \frac{R_1}{|\lambda|}$$
, $\sum_{n=0}^{\infty} \lambda^n a_n z^n = \sum_{n=0}^{\infty} a_n (\lambda z)^n = S(\lambda z)$

4. Puissance

Pour tout $k \in \mathbb{N}$, le RdC de $\left[a_n \ z^{kn}\right]_{n \in \mathbb{N}}$ est égal à $\sqrt[k]{R_1} = R_1^{\sqrt{k}}$,

et pour
$$|z| < \sqrt[k]{R_1}$$
, $\sum_{n=0}^{\infty} a_n z^{kn} = \sum_{n=0}^{\infty} a_n (z^k)^n = S(z^k)$

5. Produit (de Cauchy)

Pour tout $n \in \mathbb{N}$, on pose $c_n = \sum_{k=0}^{n} a_k b_{n-k}$

Alors le RdC de $\left[c_n z^n\right]_{n\in\mathbb{N}}$ est supérieur ou égal à inf $\left(R_1, R_2\right)$

et pour
$$|z| < \inf(R_1, R_2)$$
, $\sum_{n=0}^{\infty} c_n z^n = S(z)T(z)$

6. Inverse

Soient une série entière $\left[a_n z^n\right]_{n\in\mathbb{N}}$, de rayon de convergence <u>non nul</u>.

On suppose ici que
$$a_0 = 0$$
 (c'est-à-dire $S(0) = 0$ soit $S(z) = \sum_{n=1}^{\infty} a_n z^n$)

On pose
$$u_0 = 1$$
, $u_1 = \text{coefficient de } z \text{ dans } 1 + \sum_{n=1}^{\infty} a_n z^n$, $u_2 = \text{coeff de } z^2 \text{ dans } 1 + \sum_{n=1}^{\infty} a_n z^n + \left(\sum_{n=1}^{\infty} a_n z^n\right)^2$,

...
$$u_k = \text{coeff de } z^k \text{ dans } 1 + \sum_{n=1}^{\infty} a_n z^n + \left(\sum_{n=1}^{\infty} a_n z^n\right)^2 + ... + \left(\sum_{n=1}^{\infty} a_n z^n\right)^k$$
.

Alors la série entière $\left[u_k \ z^k\right]_{k\in\mathbb{N}}$ a un rayon de convergence R non nul

et pour
$$|z| < R$$
, $\sum_{k=0}^{\infty} u_k z^k = \frac{1}{1 - S(z)}$.

On écrira
$$\sum_{k=0}^{\infty} \left(\sum_{n=0}^{\infty} a_n z^n \right)^k = \frac{1}{1 - \sum_{n=1}^{\infty} a_n z^n}$$

III/ Séries entières de variable réelle

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels. On étudie la série entière $[a_nx^n]_{n\in\mathbb{N}}$ pour $x\in\mathbb{R}$.

Soit R son rayon de convergence,]-R, +R[est l'intervalle (ouvert) de convergence.

On étudie les propriétés de la fonction S de]-R, +R[dans \mathbb{R} telle que $S(x) = \sum_{n=0}^{\infty} a_n x^n$

1. Continuité de la somme

La somme d'une série entière est continue dans l'intervalle de convergence

2. Intégration

La somme d'une série entière s'intègre terme à terme dans l'intervalle de convergence

$$\forall x \in \left] - R, + R \left[\int_{t=0}^{x} \left(\sum_{n=0}^{\infty} a_n t^n \right) dt \right] = \sum_{n=0}^{\infty} a_n \left(\int_{t=0}^{x} t^n dt \right) = \sum_{n=0}^{\infty} a_n \frac{x^{n+1}}{n+1} = \sum_{k=1}^{\infty} a_{k-1} \frac{x^k}{k}$$

Remarque : le rayon de convergence de la série $\left[a_n \frac{x^{n+1}}{n+1}\right]$ est le même que celui de $\left[a_n x^n\right]$

3. Dérivation

La somme d'une série entière se dérive terme à terme dans l'intervalle de convergence

sur]-R,+R[/
$$\sum_{n=0}^{\infty} a_n x^n$$
 a comme dérivée $\sum_{n=0}^{\infty} n a_n x^{n-1} = \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{k=0}^{\infty} (k+1) a_{k+1} x^k$

Remarque : le rayon de convergence de la série $\left[n a_n x^{n-1}\right]$ est le même que celui de $\left[a_n x^n\right]$

Corollaire : La somme d'une série entière est de classe C^{∞} dans l'intervalle de convergence.

4. Fonctions analytiques

Définition : Soit f une fonction de]-R,+R[dans \mathbb{R} .

f est analytique sur]-R, +R[si et seulement si

il existe une série entière de RdC $\geqslant R$ telle que $\forall x \in]-R, +R[/f(x) = \sum_{n=1}^{\infty} a_n x^n]$

Propriété : Si f est analytique sur]-R, +R[alors f est de classe C^{∞} dans]-R, +R[

et sa dérivée k-ième est
$$f^{(k)}(x) = \sum_{n=0}^{\infty} n(n-1)(n-2)...(n-k+1)a_n x^{n-k}$$
 pour $x \in]-R, +R[$.

En particulier $f^{(k)}(0) = k! a_k$, ce qui prouve en passant l'unicité de la série $[a_n x^n]$ (unicité du développement en série entière)

5. Développement de Taylor - Mac Laurin

Soit f une fonction de classe C^{∞} de]-a,+a[dans \mathbb{R} . On étudie la série $\left|\frac{f^{(n)}(0)}{n!}x^n\right|$:

- Le rayon de convergence R est-il strictement positif?
- Est-ce que $\forall x \in]-R, +R[/f(x)] = \sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$?

Développement en série de $f(x) = (1+x)^{\alpha}$

Soit α un réel quelconque fixé

La série $\sum_{n=1}^{\infty} \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!} x^n$ a un rayon de convergence 1 et, pour tout $x \in]-1,+1[$,

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!} x^{n} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \sum_{n=3}^{\infty} \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!} x^{n}$$

6. Théorème d'Abel (version simplifiée)

Soit $[a_n x^n]$ une série entière de rayon de convergence égal à1.

Si la série $[a_n]$ converge, alors la fonction $F: x \to \sum_{n=0}^{\infty} a_n x^n$ est continue sur [0,1]

et
$$\lim_{x \to 1^{-}} (F(x)) = \lim_{x \to 1^{-}} \left(\sum_{n=0}^{\infty} a_n x^n \right) = F(1) = \sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} \left(\lim_{x \to 1^{-}} a_n x^n \right)$$