### PARTICIPACION MODAL

### Articulo 29.- Análisis Dinámico Modal Espectral

Cualquier estructura puede ser diseñada usando los resultados de los análisis dinámicos por combinacion modal espectral según lo especificado en este numeral

# - 29.1 Modos de Vibración

- 29.1.1 Los modos de vibración pueden determinarse por un procedimiento de análisis que considere apropiadamente las características de rigidez y la distribución de las masas.
- -29.1.2 En cada direccion se consideran aquellos modos de vibracion cuya suma de masas efectivas sea por lo menos el 90% de la masa total, pero se toma en cuenta por lo menos los tres primeros modos predominantes en la direccion de análisis.

| PERIODO NATURAL |           |  |  |  |  |  |  |
|-----------------|-----------|--|--|--|--|--|--|
| $T_X =$         | 0.823 seg |  |  |  |  |  |  |
| $T_Y =$         | 0.794 seg |  |  |  |  |  |  |
| $T_{RZ} =$      | 0.693 seg |  |  |  |  |  |  |

|       | MODAL RESULTS (MODAL PARTICIPATING MASS RATIOS) |               |        |       |       |           |           |           |       |        |       |           |           |           |
|-------|-------------------------------------------------|---------------|--------|-------|-------|-----------|-----------|-----------|-------|--------|-------|-----------|-----------|-----------|
| Case  | Mode                                            | Period<br>sec | UX     | UY    | UZ    | Sum<br>UX | Sum<br>UY | Sum<br>UZ | RX    | RY     | RZ    | Sum<br>RX | Sum<br>RY | Sum<br>RZ |
| Modal | 1                                               | 0.823         | 0.682  | 0.062 | 0.000 | 0.682     | 0.062     | 0.000     | 0.023 | 0.255  | 0.016 | 0.023     | 0.255     | 0.016     |
| Modal | 2                                               | 0.794         | 0.047  | 0.668 | 0.000 | 0.729     | 0.730     | 0.000     | 0.252 | 0.020  | 0.043 | 0.275     | 0.275     | 0.059     |
| Modal | 3                                               | 0.693         | 0.031  | 0.025 | 0.000 | 0.760     | 0.755     | 0.000     | 0.011 | 0.006  | 0.754 | 0.285     | 0.281     | 0.813     |
| Modal | 4                                               | 0.221         | 0.138  | 0.011 | 0.000 | 0.897     | 0.766     | 0.000     | 0.034 | 0.420  | 0.003 | 0.319     | 0.701     | 0.817     |
| Modal | 5                                               | 0.217         | 0.000  | 0.056 | 0.000 | 0.898     | 0.822     | 0.000     | 0.168 | 0.001  | 0.068 | 0.487     | 0.701     | 0.885     |
| Modal | 6                                               | 0.204         | 0.016  | 0.080 | 0.000 | 0.913     | 0.902     | 0.000     | 0.238 | 0.050  | 0.041 | 0.725     | 0.751     | 0.926     |
| Modal | 7                                               | 0.110         | 0.001  | 0.002 | 0.000 | 0.914     | 0.904     | 0.000     | 0.006 | 0.002  | 0.037 | 0.731     | 0.753     | 0.963     |
| Modal | 8                                               | 0.103         | 0.046  | 0.002 | 0.000 | 0.960     | 0.906     | 0.000     | 0.004 | 0.114  | 0.002 | 0.735     | 0.867     | 0.965     |
| Modal | 9                                               | 0.092         | 0.0024 | 0.049 | 0.000 | 0.962     | 0.9553    | 0.000     | 0.122 | 0.0063 | 0.001 | 0.8574    | 0.873     | 0.9659    |
| Modal | 10                                              | 0.070         | 0.004  | 0.001 | 0.000 | 0.966     | 0.956     | 0.000     | 0.002 | 0.014  | 0.010 | 0.860     | 0.887     | 0.976     |
| Modal | 11                                              | 0.063         | 0.012  | 0.000 | 0.000 | 0.978     | 0.956     | 0.000     | 0.000 | 0.041  | 0.007 | 0.860     | 0.928     | 0.983     |
| Modal | 12                                              | 0.054         | 0.000  | 0.018 | 0.000 | 0.978     | 0.974     | 0.000     | 0.058 | 0.000  | 0.000 | 0.917     | 0.928     | 0.983     |
|       |                                                 |               |        |       |       |           |           |           |       |        |       |           |           |           |
|       |                                                 |               |        |       |       |           |           |           |       |        |       |           |           |           |
|       |                                                 |               |        |       |       |           |           |           |       |        |       |           |           |           |
|       |                                                 |               |        |       |       |           |           |           |       |        |       |           |           |           |
|       |                                                 |               |        |       |       |           |           |           |       |        |       |           |           |           |
|       |                                                 |               |        |       |       |           |           |           |       |        |       |           |           |           |
|       |                                                 |               |        |       |       |           |           |           |       |        |       |           |           |           |
|       |                                                 |               |        |       |       |           |           |           |       |        |       |           |           |           |

### PESO SISMICO

# Artículo 26.- Estimación del Peso (P)

El peso (P) se calcula adicionando a la carga permanente y total de la edifi cación un porcentaje de la carga viva o sobrecarga que se determina de la siguiente manera:

- a) En edificaciones de las categorías A y B, se toma el 50% de la carga viva.
- b) En edificaciones de la categoría C, se toma el 25% de la carga viva.
- c) En depósitos, se toma el 80% del peso total que es posible almacenar.
- d) En azoteas y techos en general se toma el 25% de la carga viva.
- e) En estructuras de tanques, silos y estructuras similares se considera el 100% de la carga que puede contener.

|         | STRUCTURE RESULTS (STORY FORCES) |          |           |       |       |        |          |          |                |  |  |
|---------|----------------------------------|----------|-----------|-------|-------|--------|----------|----------|----------------|--|--|
| Ctom    | Load Case/Combo                  | Location | Р         | VX    | VY    | Т      | MX       | MY       | Peso por Nivel |  |  |
| Story   | Load Case/Combo                  | Location | tonf      | tonf  | tonf  | tonf-m | tonf-m   | tonf-m   | tonf           |  |  |
| Story10 | PESO SÍSMICO                     | Bottom   | 11.7701   | 0.000 | 0.000 | 0.000  | 74.81    | -48.28   | 11.770         |  |  |
| Story9  | PESO SÍSMICO                     | Bottom   | 75.2134   | 0.000 | 0.000 | 0.000  | 784.81   | -292.12  | 63.443         |  |  |
| Story8  | PESO SÍSMICO                     | Bottom   | 259.0012  | 0.000 | 0.000 | 0.000  | 2385.41  | -994.70  | 183.788        |  |  |
| Story7  | PESO SÍSMICO                     | Bottom   | 453.1897  | 0.000 | 0.000 | 0.000  | 4086.76  | -1736.81 | 194.189        |  |  |
| Story6  | PESO SÍSMICO                     | Bottom   | 647.8748  | 0.000 | 0.000 | 0.000  | 5802.89  | -2480.36 | 194.685        |  |  |
| Story5  | PESO SÍSMICO                     | Bottom   | 842.5599  | 0.000 | 0.000 | 0.000  | 7519.01  | -3223.92 | 194.685        |  |  |
| Story4  | PESO SÍSMICO                     | Bottom   | 1036.7925 | 0.000 | 0.000 | 0.000  | 9220.74  | -3966.19 | 194.233        |  |  |
| Story3  | PESO SÍSMICO                     | Bottom   | 1231.5216 | 0.000 | 0.000 | 0.000  | 10937.24 | -4709.92 | 194.729        |  |  |
| Story2  | PESO SÍSMICO                     | Bottom   | 1426.2507 | 0.000 | 0.000 | 0.000  | 12653.74 | -5453.64 | 194.729        |  |  |
| Story1  | PESO SÍSMICO                     | Bottom   | 1646.9254 | 0.000 | 0.000 | 0.000  | 14586.64 | -6297.16 | 220.675        |  |  |
|         |                                  |          |           |       |       |        |          |          |                |  |  |
|         |                                  |          |           |       |       |        |          |          |                |  |  |

PESO TOTAL DE LA EDIFICACIÓN (P) = 1646.93 tonf

| IRREGULARIDADES EN ALTURA                  |       |   |  |  |  |  |
|--------------------------------------------|-------|---|--|--|--|--|
| Irregularidades de Masa o Peso             | [0.9] | 1 |  |  |  |  |
| Irregularidad de Geometría Vertical        | [0.9] | 1 |  |  |  |  |
| Discontinuidad en los sistemas resistentes | [0.9] | 1 |  |  |  |  |
| Discontinuidad Extrema en sistemas resist. | [0.6] | 1 |  |  |  |  |
| IRREGULARIDADES EN A                       | 1     |   |  |  |  |  |

| IRREGULARIDADES EN PLANTA                 |        |   |  |  |  |  |  |
|-------------------------------------------|--------|---|--|--|--|--|--|
| Esquinas entrantes (Cumplir ambas direc.) | [0.9]  | 1 |  |  |  |  |  |
| Discontinuidad en Diafragma               | [0.85] | 1 |  |  |  |  |  |
| Sistemas No Paralelos                     | [0.8]  | 1 |  |  |  |  |  |
| IRREGULARIDADES EN                        | 1      |   |  |  |  |  |  |

#### FUERZA CORTANTE BASAL ESTATICA

### Articulo 28.- Análisis Estático o de Fuerzas Estáticas Equivalente

#### 28.1. Generalidades

- 28.1.1. Este método representa las solicitaciones sísmicas mediante un conjunto de fuerzas actuando en el centro de masas de cada nivel de la edificacion.
- 28.1.2. Pueden analizarse mediante este procedimiento todas las estructuras regulares o irregulares ubicadas en la zona sísmica 1. En las otras zonas sísmicas puede emprearse este procedimiento para las estructuras clasificadas como regulares, según el artículo 19, de no más de 30m de altura, y para las estructuras de muros portantes de concreto armado y albañileria armada o confinada de no más de 15m de altura, aun cuando sean irregulares.

### 28.2. Fuerza Cortante en la Base

- 28.2.1. La fuerza cortante total en la base de la estructura, correspondiente a la direccion considerada, se determina por la siguiente expresion

$$V = \frac{Z \ U \ C \ S}{R} P_{sismico}$$

| Z: Factor de zona                                                           | [ZONA 4]      | Tabla 01 (E.030) | 0.45 |  |  |  |  |
|-----------------------------------------------------------------------------|---------------|------------------|------|--|--|--|--|
| U: Factor de uso o importancia                                              | [CATEGORÍA C] | Tabla 05 (E.030) | 1.00 |  |  |  |  |
| S: Factor de amplificación del suelo                                        | [S2]          | Tabla 03 (E.030) | 1.05 |  |  |  |  |
| T <sub>P</sub> : Periodo que define la plataforma del factor C (seg)        | [S2]          | Tabla 04 (E.030) | 0.60 |  |  |  |  |
| T <sub>L</sub> : Periodo que define el inicio de la zona del factor C (seg) | [S2]          | Tabla 04 (E.030) | 2.00 |  |  |  |  |
| P: Peso Total de la Edificación (Tonf)                                      |               |                  |      |  |  |  |  |

|           | T <sub>X</sub> : Periodo natural en la dirección X (seg)                          |                         |             |  |  |  |  |  |  |
|-----------|-----------------------------------------------------------------------------------|-------------------------|-------------|--|--|--|--|--|--|
| ×-×       | C <sub>X</sub> : Factor de amplificación sísmica en X                             | Art. 14 (E.030)         | 1.823       |  |  |  |  |  |  |
| Z         | R <sub>o</sub> : Coeficiente básico de reducción de fuerzas sísmicas Muros estruc | Tabla 07 (E.030)        | 6.000       |  |  |  |  |  |  |
| DIRECCIÓN | l <sub>ax</sub> : irregularidad en altura (verificar Piso Blando, Piso débil )    | Tabla 08 (E.030)        | 1.000       |  |  |  |  |  |  |
| SEC       | l <sub>px</sub> : irregularidad en planta (verificar Torsión)                     | Tabla 09 (E.030)        | 1.000       |  |  |  |  |  |  |
|           | R <sub>X</sub> : Coeficiente de reducción sísmico en X                            | Art. 22 (E.030)         | 6.000       |  |  |  |  |  |  |
|           | $C_X/R_X = 0.30 > 0.11$                                                           | •                       | Cumple      |  |  |  |  |  |  |
|           | VX: Fuerza cortante en la ba                                                      | se en la dirección X -X | 236.38 tonf |  |  |  |  |  |  |

|            | T <sub>Y</sub> : Periodo natural en la dirección Y (seg)                       |                         |             |  |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------|-------------------------|-------------|--|--|--|--|--|--|
| <b>}</b> - | C <sub>Y</sub> : Factor de amplificación sísmica en Y                          | Art. 14 (E.030)         | 1.889       |  |  |  |  |  |  |
| N N        | R₀: Coeficiente básico de reducción de fuerzas sísmicas Muros estruct          | Tabla 07 (E.030)        | 6.000       |  |  |  |  |  |  |
| DIRECCIÓN  | l <sub>aY</sub> : irregularidad en altura (verificar Piso Blando, Piso débil ) | Tabla 08 (E.030)        | 1.000       |  |  |  |  |  |  |
| SEC        | I <sub>pY</sub> : irregularidad en planta (verificar Torsión)                  | Tabla 09 (E.030)        | 1.000       |  |  |  |  |  |  |
|            | R <sub>Y</sub> : Coeficiente de reducción sísmico en Y                         | Art. 22 (E.030)         | 6.000       |  |  |  |  |  |  |
|            | $C_{Y}/R_{Y} = 0.31 > 0.11$                                                    |                         | Cumple      |  |  |  |  |  |  |
|            | VY: Fuerza cortante en la bas                                                  | e en la dirección Y - Y | 245.02 tonf |  |  |  |  |  |  |

# MÉTODOS DE CÁLCULO Y DISTRIBUCIÓN DE FUERZAS EN CSI ETABS

# AUTO LATERAL LOAD USER COEFFICIENT

\* Para T menor o igual a 0.5 segundos : K =

\* Para T mayor a 0.5 segundos : K = (0.75 + 0.5T) < 2.0

| DIRECCIÓN X - X                                               |         |  |  |  |  |  |
|---------------------------------------------------------------|---------|--|--|--|--|--|
| K: Exponente relacionado con el período fundamental           | 1.162   |  |  |  |  |  |
| C: Base Shear Coeficient = ZUSC <sub>x</sub> / R <sub>x</sub> | 0.14353 |  |  |  |  |  |

| DIRECCIÓN Y - Y                                               |         |  |  |  |  |  |
|---------------------------------------------------------------|---------|--|--|--|--|--|
| K: Exponente relacionado con el período fundamental           | 1.147   |  |  |  |  |  |
| C: Base Shear Coeficient = ZUSC <sub>Y</sub> / R <sub>Y</sub> | 0.14877 |  |  |  |  |  |

Dimensiones en planta: x = 24.65 m

y = 5.10 m

# **AUTO LATERAL LOAD USER LOADS**

E.030 - Art. 28.5 Para estructuras con diafragma rígido. (a) Para la dirección de análisis, la excentricidad accidental en cada nivel (ei) será 0.05 la dimensión del edificio en la dirección perpendicular a la dirección de análisis.

|         | DIRECCIÓN X - X                   |                                    |                                               |        |                                            |                             |                                                 |  |  |  |  |
|---------|-----------------------------------|------------------------------------|-----------------------------------------------|--------|--------------------------------------------|-----------------------------|-------------------------------------------------|--|--|--|--|
| Techo   | Altura Acum.<br>(h <sub>i</sub> ) | Peso por Piso<br>(P <sub>i</sub> ) | P <sub>i</sub> (h <sub>i</sub> ) <sup>k</sup> | alfa   | Fuerza actuante en el CM (F <sub>i</sub> ) | Excentricidad<br>Accidental | Momento Torsor<br>Accidental (Mt <sub>i</sub> ) |  |  |  |  |
| Story10 | 27.60                             | 11.7701                            | 483.7                                         | 0.0089 | 2.10936                                    | 1.2325                      | 2.599789                                        |  |  |  |  |
| Story9  | 26.10                             | 63.4433                            | 3236.8                                        | 0.0597 | 14.11375                                   | 1.2325                      | 17.395200                                       |  |  |  |  |
| Story8  | 23.40                             | 183.7878                           | 9982.0                                        | 0.1841 | 43.52619                                   | 1.2325                      | 53.646023                                       |  |  |  |  |
| Story7  | 20.70                             | 194.1885                           | 9413.3                                        | 0.1736 | 41.04619                                   | 1.2325                      | 50.589432                                       |  |  |  |  |
| Story6  | 18.00                             | 194.6851                           | 8209.8                                        | 0.1514 | 35.79838                                   | 1.2325                      | 44.121504                                       |  |  |  |  |
| Story5  | 15.30                             | 194.6851                           | 6978.3                                        | 0.1287 | 30.42862                                   | 1.2325                      | 37.503278                                       |  |  |  |  |
| Story4  | 12.6                              | 194.2326                           | 5731.3                                        | 0.1057 | 24.99123                                   | 1.2325                      | 30.801690                                       |  |  |  |  |
| Story3  | 9.9                               | 194.7291                           | 4516.6                                        | 0.0833 | 19.69428                                   | 1.2325                      | 24.273197                                       |  |  |  |  |
| Story2  | 7.2                               | 194.7291                           | 3284.8                                        | 0.0606 | 14.32311                                   | 1.2325                      | 17.653235                                       |  |  |  |  |
| Story1  | 4.5                               | 220.6747                           | 2374.0                                        | 0.0438 | 10.35171                                   | 1.2325                      | 12.758480                                       |  |  |  |  |
|         | 0                                 | 0                                  | 0.0                                           | 0.0000 | 0.00000                                    | 1.2325                      | 0.000000                                        |  |  |  |  |
| SUM     | <br> ATORIA                       | 1646.9254                          | 54210.7                                       | 1.0000 | 236.38282                                  |                             | 291.341829                                      |  |  |  |  |

|         |                                   |                                    | ı                                             | DIRECCIÓN Y | ′-Y                                        |                             |                                                 |
|---------|-----------------------------------|------------------------------------|-----------------------------------------------|-------------|--------------------------------------------|-----------------------------|-------------------------------------------------|
| Techo   | Altura Acum.<br>(h <sub>i</sub> ) | Peso por Piso<br>(P <sub>i</sub> ) | P <sub>i</sub> (h <sub>i</sub> ) <sup>k</sup> | alfa        | Fuerza actuante en el CM (F <sub>i</sub> ) | Excentricidad<br>Accidental | Momento Torsor<br>Accidental (Mt <sub>i</sub> ) |
| Story10 | 27.60                             | 11.7701                            | 466.8                                         | 0.00928     | 2.27393                                    | 0.255                       | 0.579853                                        |
| Story9  | 26.10                             | 63.4433                            | 3047.7                                        | 0.06060     | 14.84775                                   | 0.255                       | 3.786176                                        |
| Story8  | 23.40                             | 183.7878                           | 9255.2                                        | 0.18402     | 45.08901                                   | 0.255                       | 11.497699                                       |
| Story7  | 20.70                             | 194.1885                           | 8720.9                                        | 0.17340     | 42.48605                                   | 0.255                       | 10.833943                                       |
| Story6  | 18.00                             | 194.6851                           | 7605.7                                        | 0.15123     | 37.05278                                   | 0.255                       | 9.448459                                        |
| Story5  | 15.30                             | 194.6851                           | 6464.8                                        | 0.12854     | 31.49486                                   | 0.255                       | 8.031190                                        |
| Story4  | 12.6                              | 194.2326                           | 5309.8                                        | 0.10558     | 25.86781                                   | 0.255                       | 6.596292                                        |
| Story3  | 9.9                               | 194.7291                           | 4184.2                                        | 0.08320     | 20.38431                                   | 0.255                       | 5.197999                                        |
| Story2  | 7.2                               | 194.7291                           | 3043.1                                        | 0.06051     | 14.82495                                   | 0.255                       | 3.780363                                        |
| Story1  | 4.5                               | 220.6747                           | 2195.3                                        | 0.04365     | 10.69499                                   | 0.255                       | 2.727222                                        |
| ·       | 0                                 | 0                                  | 0.0                                           | 0.00000     | 0.00000                                    | 0.255                       | 0.000000                                        |
|         |                                   |                                    |                                               |             |                                            |                             |                                                 |
| SUM     | IATORIA                           | 1646.9254                          | 50293.5                                       | 1.000       | 245.01645                                  |                             | 62.479195                                       |

# ANÁLISIS SÍSMICO MODAL ESPECTRAL

Para las direcciones horizontales de análisis se elabora un espectro de pseudo aceleraciones dada por la siguiente fórmula RNE E.030:

| PARÁMETROS DE ANÁLISIS                                 | VALOR                   | Factor de A | Amplificación "C"                            |                                |
|--------------------------------------------------------|-------------------------|-------------|----------------------------------------------|--------------------------------|
| Z: Factor de zona                                      | Tabla 01 (E.030)        | 0.45        |                                              |                                |
| U : Factor de uso o importancia                        | Tabla 03 (E.030)        | 1.00        |                                              |                                |
| S: Factor de suelo                                     | Tabla 04 (E.030)        | 1.05        | $T < T_p$                                    | C = 2.5                        |
| T <sub>P</sub> : Período corto (s)                     | Tabla 04 (E.030)        | 0.60        | T - T - T                                    | $C = T_p$                      |
| T <sub>L</sub> : Período Largo (s)                     | Tabla 05 (E.030)        | 2.00        | $T_p < T < T_L$                              | $c = \left(\frac{T}{T}\right)$ |
| R <sub>X</sub> : Coeficiente de reducción sísmico en X |                         | 6.00        | ]                                            | $T_n T_L$                      |
| R <sub>Y</sub> : Coeficiente de reducción sísmico en Y | 6.00                    | $T > T_L$   | $C = 2.5 \left( \frac{T_p T_L}{T^2} \right)$ |                                |
| FACTOR = (ZUS                                          | 0.7725                  |             | ` ,                                          |                                |
| FACTOR = (ZUS                                          | S/R)g - DIRECCION Y - Y | 0.7725      |                                              |                                |

|       | SISMO          | DIRECCIÓN         | 1 X - X                   | SISMO DIRECCIÓN Y - Y |                   |                           |
|-------|----------------|-------------------|---------------------------|-----------------------|-------------------|---------------------------|
| T     | C <sub>X</sub> | Sa <sub>x-x</sub> | <b>S</b> <sub>a</sub> (g) | C <sub>Y</sub>        | Sa <sub>Y-Y</sub> | <b>S</b> <sub>a</sub> (g) |
| 0.00  | 2.500          | 1.93134           | 0.1969                    | 2.500                 | 1.931             | 0.1969                    |
| 0.01  | 2.500          | 1.93134           | 0.1969                    | 2.500                 | 1.931             | 0.1969                    |
| 0.03  | 2.500          | 1.93134           | 0.1969                    | 2.500                 | 1.931             | 0.1969                    |
| 0.05  | 2.500          | 1.93134           | 0.1969                    | 2.500                 | 1.931             | 0.1969                    |
| 0.08  | 2.500          | 1.93134           | 0.1969                    | 2.500                 | 1.931             | 0.1969                    |
| 0.10  | 2.500          | 1.93134           | 0.1969                    | 2.500                 | 1.931             | 0.1969                    |
| 0.20  | 2.500          | 1.93134           | 0.1969                    | 2.500                 | 1.931             | 0.1969                    |
| 0.30  | 2.500          | 1.93134           | 0.1969                    | 2.500                 | 1.931             | 0.1969                    |
| 0.40  | 2.500          | 1.93134           | 0.1969                    | 2.500                 | 1.931             | 0.1969                    |
| 0.50  | 2.500          | 1.93134           | 0.1969                    | 2.500                 | 1.931             | 0.1969                    |
| 0.60  | 2.500          | 1.93134           | 0.1969                    | 2.500                 | 1.931             | 0.1969                    |
| 0.70  | 2.143          | 1.65544           | 0.1688                    | 2.143                 | 1.655             | 0.1688                    |
| 0.80  | 1.875          | 1.44851           | 0.1477                    | 1.875                 | 1.449             | 0.1477                    |
| 0.90  | 1.667          | 1.28756           | 0.1313                    | 1.667                 | 1.288             | 0.1313                    |
| 1.00  | 1.500          | 1.15881           | 0.1181                    | 1.500                 | 1.159             | 0.1181                    |
| 1.25  | 1.200          | 0.92705           | 0.0945                    | 1.200                 | 0.927             | 0.0945                    |
| 1.50  | 1.000          | 0.77254           | 0.0788                    | 1.000                 | 0.773             | 0.0788                    |
| 1.75  | 0.857          | 0.66218           | 0.0675                    | 0.857                 | 0.662             | 0.0675                    |
| 2.00  | 0.750          | 0.57940           | 0.0591                    | 0.750                 | 0.579             | 0.0591                    |
| 2.25  | 0.593          | 0.45780           | 0.0467                    | 0.593                 | 0.458             | 0.0467                    |
| 2.50  | 0.480          | 0.37082           | 0.0378                    | 0.480                 | 0.371             | 0.0378                    |
| 2.75  | 0.397          | 0.30646           | 0.0312                    | 0.397                 | 0.306             | 0.0312                    |
| 3.00  | 0.333          | 0.25751           | 0.0263                    | 0.333                 | 0.258             | 0.0263                    |
| 3.25  | 0.284          | 0.21942           | 0.0224                    | 0.284                 | 0.219             | 0.0224                    |
| 3.75  | 0.213          | 0.16481           | 0.0168                    | 0.213                 | 0.165             | 0.0168                    |
| 4.00  | 0.188          | 0.14485           | 0.0148                    | 0.188                 | 0.145             | 0.0148                    |
| 5.00  | 0.120          | 0.09270           | 0.0095                    | 0.120                 | 0.093             | 0.0095                    |
| 6.00  | 0.083          | 0.06438           | 0.0066                    | 0.083                 | 0.064             | 0.0066                    |
| 7.00  | 0.061          | 0.04730           | 0.0048                    | 0.061                 | 0.047             | 0.0048                    |
| 8.00  | 0.047          | 0.03621           | 0.0037                    | 0.047                 | 0.036             | 0.0037                    |
| 9.00  | 0.037          | 0.02861           | 0.0029                    | 0.037                 | 0.029             | 0.0029                    |
| 10.00 | 0.030          | 0.02318           | 0.0024                    | 0.030                 | 0.023             | 0.0024                    |

### ESPECTRO DE PSEUDO - ACELERACIONES X-X



### ESPECTRO DE PSEUDO - ACELERACIONES Y-Y



#### IRREGULARIDADES X-X

### Revision de las Hipotesis del Análisis

Con los resultados de los Análisis se revisan los factores de irregularidades aplicados. En base a estos se verifica si los valores de *R* se mantienen o son modificados. En caso de haberse empleado el procedimiento de análisis estático se verifica lo señalado en el caso numeral 28.1.

#### **IRREGULARIDADES**

#### Articulo 20.- Factores de Irregularidades

- 20.1. El factor I<sub>a</sub> se determina como el menor de los valores de la Tabla N°8 correspondiente a las irregularidades estructurales existentes en altura en las dos direcciones
- 20.2. El factor In se determina como el menor de la Tabla N°9 correspondiente a las irregularidades estructurales existentes en altura en las dos direcciones
- 20.3. Si al aplicar las Tablas N° 8 y 9 se obtuvieron valores distintos de los factores I<sub>a</sub> o I<sub>p</sub> para las dos direcciones de Analisis, se toma para cada factor el menor valor entre los obtenidos para las dos direcciones

| IRREGULARIDADES EN ALTURA X-X                    |        |   |  |  |  |  |  |  |  |
|--------------------------------------------------|--------|---|--|--|--|--|--|--|--|
| Irregularidades de Masa o Peso                   | [0.9]  | 1 |  |  |  |  |  |  |  |
| Irregularidad de Geometría Vertical              | [0.9]  | 1 |  |  |  |  |  |  |  |
| Discontinuidad en los sistemas resistentes       | [0.9]  | 1 |  |  |  |  |  |  |  |
| Discontinuidad Ext. en los sistemas resistentes  | [0.6]  | 1 |  |  |  |  |  |  |  |
| Irregularidad de Rigidez (Piso Blando)           | [0.75] | 1 |  |  |  |  |  |  |  |
| Irregularidad de Rigidez Extrema                 | [0.50] | 1 |  |  |  |  |  |  |  |
| Irregularidad de Resistencia (Piso Débil)        | 1      |   |  |  |  |  |  |  |  |
| Irregularidad de Extrema Resistencia             | 1      |   |  |  |  |  |  |  |  |
| IRREGULARIDAD EN ALTURA FINAL I <sub>a</sub> X-X | 1      |   |  |  |  |  |  |  |  |

### Irregularidad de Rigidez - Piso Blando

Existe irregularidad de rigidez cuando, en cualquiera de las direcciones de análisis, en un entrepiso la rigidez lateral es menor que 70% de la rigidez lateral del entrepiso inmediato superior, o es menor que el 80% de la rigidez lateral promedio de los tres niveles superiores adyacentes. La rigideces lateral pueden calcularse como la razón entre la fuerza cortante del entrepiso y el correspondiente desplazamiento relativo en el centro de masas, ambos evaludados para la misma condicion de carga.

$$K_i < 0.70K_{i+1}$$
  $K_i < 0.80 \frac{K_{i+1} + K_{i+2} + K_{i+3}}{3}$   $I_a = 0.75$ 

### Irregulariadad Extrema de Rigidez (Ver Tabla N°10)

Existe irregularidad extrema de rigidez cuando, en cualquiera de las direcciones de análisis, en un entrepiso la rigidez lateral es menor que 60% de la rigidez lateral del entrepiso inmediato superior, o es menor que el 70% de la rigidez lateral promedio de los tres niveles superiores adyacentes. La rigidez lateral pueden calcularse como la razon entre la fuerza cortante del entrepiso y el corresponiendte desplazamiento relativo en el centro de masas, ambos evaluados para la misma condicion de carga.

$$K_i < 0.60 K_{i+1} \qquad \qquad K_i < 0.70 \frac{K_{i+1} + K_{i+2} + K_{i+3}}{3} \qquad \qquad I_a = 0.50$$

|                                   | PISC    | BLANDO EN DIRE  | CCIÓN X-X |             |                   |                            |                           |                           |                          |
|-----------------------------------|---------|-----------------|-----------|-------------|-------------------|----------------------------|---------------------------|---------------------------|--------------------------|
| STRUCTURE OTHER (STORY STIFFNESS) |         |                 |           |             |                   | Rig                        | gidez                     | Extrema                   | Rigidez                  |
| Case/Combo                        | Story   | Elevation (m)   | Location  | Stiffness X | 0.7K <sub>i</sub> | 70% K <sub>(i+1)</sub>     | 80% (K <sub>prom</sub> )  | 60% K <sub>(i+1)</sub>    | 70% (K <sub>prom</sub> ) |
| Case/Collibo                      | Story   | Elevation (III) | Location  | tonf/m      | tonf/m            | 7 0 /0 fX <sub>(i+1)</sub> | 00 /6 (R <sub>prom)</sub> | 00 /6 fX <sub>(i+1)</sub> | 70 /6 (Reprom)           |
| ESPECTRAL X                       | Story10 | 27.60           | Тор       | 1336.94     | 935.86            | No aplica                  | No aplica                 | No aplica                 | No aplica                |
| ESPECTRAL X                       | Story9  | 26.10           | Тор       | 4538.93     | 3177.25           | Regular                    | No aplica                 | Regular                   | No aplica                |
| ESPECTRAL X                       | Story8  | 23.40           | Тор       | 12612.31    | 8828.62           | Regular                    | No aplica                 | Regular                   | No aplica                |
| ESPECTRAL X                       | Story7  | 20.70           | Тор       | 18058.92    | 12641.24          | Regular                    | Regular                   | Regular                   | Regular                  |
| ESPECTRAL X                       | Story6  | 18.00           | Тор       | 21837.42    | 15286.19          | Regular                    | Regular                   | Regular                   | Regular                  |
| ESPECTRAL X                       | Story5  | 15.30           | Тор       | 24931.13    | 17451.79          | Regular                    | Regular                   | Regular                   | Regular                  |
| ESPECTRAL X                       | Story4  | 12.60           | Тор       | 28625.23    | 20037.66          | Regular                    | Regular                   | Regular                   | Regular                  |
| ESPECTRAL X                       | Story3  | 9.90            | Тор       | 33594.38    | 23516.07          | Regular                    | Regular                   | Regular                   | Regular                  |
| ESPECTRAL X                       | Story2  | 7.20            | Тор       | 39308.79    | 27516.15          | Regular                    | Regular                   | Regular                   | Regular                  |
| ESPECTRAL X                       | Story1  | 4.50            | Тор       | 48824.41    | 34177.09          | Regular                    | Regular                   | Regular                   | Regular                  |
| ESPECTRAL X                       | Base    | 0.00            | Тор       | 0.00        | 0.00              |                            |                           |                           |                          |
|                                   |         |                 |           |             |                   |                            |                           |                           |                          |
|                                   |         |                 | _         |             |                   |                            |                           |                           |                          |

### Irregularidad de Resistencia - Piso Débil

Existe irregularidad de resistencia cuando, en cualquiera de las direcciones de análisis, la resistencia de un entrepiso frente a fuerzas cortantes es inferior a 80% de la resistencia del entrepiso inmediato superior.

$$V_n < 0.80V_{n+1}$$
  $I_a = 0.75$ 

### Irregularidad Extrema de Resistencia - Piso Débil

Existe irregularidad extrema de resistencia cuando, en cualquiera de las direcciones de análisis, la resistencia de un entrepiso frente a fuerzas cortantes es inferior a 65% de la resistencia del entrepiso inmediato superior.

$$V_n < 0.65V_{n+1}$$
  $I_a = 0.50$ 

|             | PISO DÉBIL EN DIRECCIÓN X-X    |           |          |          |  |             |             |  |
|-------------|--------------------------------|-----------|----------|----------|--|-------------|-------------|--|
|             | STRUCTURE OTHER (STORY SHEARS) |           |          |          |  |             |             |  |
| Case/Combo  | Story                          | Elevation | Location | VX       |  | Resistencia | Resistencia |  |
| Case/Combo  | Story                          | (m)       | Location | tonf     |  | 80%         | 65%         |  |
| ESPECTRAL X | Story10                        | 27.60     | Bottom   | 1.7336   |  | No aplica   | No aplica   |  |
| ESPECTRAL X | Story9                         | 26.10     | Bottom   | 11.1749  |  | Regular     | Regular     |  |
| ESPECTRAL X | Story8                         | 23.40     | Bottom   | 34.11    |  | Regular     | Regular     |  |
| ESPECTRAL X | Story7                         | 20.70     | Bottom   | 53.768   |  | Regular     | Regular     |  |
| ESPECTRAL X | Story6                         | 18.00     | Bottom   | 69.7044  |  | Regular     | Regular     |  |
| ESPECTRAL X | Story5                         | 15.30     | Bottom   | 82.8323  |  | Regular     | Regular     |  |
| ESPECTRAL X | Story4                         | 12.60     | Bottom   | 93.7187  |  | Regular     | Regular     |  |
| ESPECTRAL X | Story3                         | 9.90      | Bottom   | 102.5263 |  | Regular     | Regular     |  |
| ESPECTRAL X | Story2                         | 7.20      | Bottom   | 109.0794 |  | Regular     | Regular     |  |
| ESPECTRAL X | Story1                         | 4.50      | Bottom   | 113.1166 |  | Regular     | Regular     |  |
| ESPECTRAL X | Base                           | 0.00      | Bottom   | 0        |  |             |             |  |
|             |                                |           |          |          |  |             |             |  |
|             |                                |           |          |          |  |             |             |  |

| IRREGULARIDADES EN PLANTA X-X   |                          |   |  |  |  |  |  |  |
|---------------------------------|--------------------------|---|--|--|--|--|--|--|
| Esquinas entrantes              | [0.9]                    | 1 |  |  |  |  |  |  |
| Discontinuidad en Diafragma     | [0.85]                   | 1 |  |  |  |  |  |  |
| Sistemas No Paralelos           | [0.8]                    | 1 |  |  |  |  |  |  |
| Irregularidad Torsional         | [0.75]                   | 1 |  |  |  |  |  |  |
| Irregularidad Torsional Extrema | 1                        |   |  |  |  |  |  |  |
| IRREGULARIDAD EN PLANTA FI      | VAL I <sub>P</sub> X-X = | 1 |  |  |  |  |  |  |

#### Irregularidad Torsional

Existe irregularidad torsional cuando, en cualquiera de las direcciones de análisis, el máximo desplazamiento relativo de entrepiso en un extremo del edificio (\$\Delta\_{max}\$) en esa dirección, calculado encluyendo excentricidad accidental, es mayor que 1.3 veces el desplazamiento relativo promedio de los tres extremos del mismo entrepiso para la misma condicion de carga (\$\Delta\_{prom}\$).

Este criterio sólo se aplica en edificios con diafragmas rígidos y sólo si el máximo desplazamiento reltivo de entrepiso es mayor que 50% del desplazamiento permisible indicado en la Tabla N°11

$$\Delta_{max} > 1.30 \Delta_{promedio} \qquad \frac{\Delta_{m\acute{a}x}}{\Delta_{prom}} > 1.30 \qquad \Delta_{i} > 50\% \Delta_{limite} \qquad \Delta_{prom} = \frac{\Delta_{L} + \Delta_{R}}{2} \qquad \Delta_{L} = \frac{\Delta_{L-1} + \Delta_{L-2}}{2} \\ \Delta_{R} = \frac{\Delta_{R-1} + \Delta_{R-2}}{2} \qquad I_{p} = 0.75$$

#### Irregularidad Torsional Extrema

Existe irregulariadd torsional extrema cuando, en cualquiera de las direcciones de análisis, el máximo desplazamiento relativo de entrepiso en un extremo del edificio (\$\Delta\_{max}\$) en esa dirección, calculado incluyendo excentricidad accidental, es mayor que 1.5 veces el desplazamiento relativo promedio de los extremos del mismo entrepiso para la misma condicion de carga (\$\Delta\_{prom}\$).

Este criterio sólo se aplica en edificios con diafragmas rígidos y sólo si el máximo desplazamiento reltivo de entrepiso es mayor que 50% del desplazamiento permisible indicado en la Tabla N°11

$$\Delta_{max} > 1.50 \Delta_{promedio} \qquad \frac{\Delta_{m\acute{a}x}}{\Delta_{prom}} > 1.50 \qquad \Delta_{i} > 50\% \Delta_{limite} \qquad \Delta_{prom} = \frac{\Delta_{L} + \Delta_{R}}{2} \qquad \Delta_{L} = \frac{\Delta_{L-1} + \Delta_{L-2}}{2} \\ \Delta_{R} = \frac{\Delta_{R-1} + \Delta_{R-2}}{2} \qquad I_{p} = 0.60$$

|         | TORS            |            |              |           |       |             |             |
|---------|-----------------|------------|--------------|-----------|-------|-------------|-------------|
| JOII    | N - DISPLACEMEN | TORSIÓN    | Ext. Torsión |           |       |             |             |
| Story   | Case/Combo      | Item       | Max Drift    | Avg Drift | Ratio | ratio > 1.3 | ratio > 1.5 |
| Story10 | DERIVA X        | Diaph D1 X | 0.00399      | 0.00389   | 1.025 | REGULAR     | REGULAR     |
| Story9  | DERIVA X        | Diaph D1 X | 0.00406      | 0.003862  | 1.050 | REGULAR     | REGULAR     |
| Story8  | DERIVA X        | Diaph D1 X | 0.00484      | 0.004298  | 1.127 | REGULAR     | REGULAR     |
| Story7  | DERIVA X        | Diaph D1 X | 0.00554      | 0.004802  | 1.155 | REGULAR     | REGULAR     |
| Story6  | DERIVA X        | Diaph D1 X | 0.00613      | 0.005251  | 1.168 | REGULAR     | REGULAR     |
| Story5  | DERIVA X        | Diaph D1 X | 0.00651      | 0.005538  | 1.175 | REGULAR     | REGULAR     |
| Story4  | DERIVA X        | Diaph D1 X | 0.00654      | 0.005536  | 1.180 | REGULAR     | REGULAR     |
| Story3  | DERIVA X        | Diaph D1 X | 0.00625      | 0.005275  | 1.185 | REGULAR     | REGULAR     |
| Story2  | DERIVA X        | Diaph D1 X | 0.00550      | 0.004625  | 1.189 | REGULAR     | REGULAR     |
| Story1  | DERIVA X        | Diaph D1 X | 0.00269      | 0.002317  | 1.163 | REGULAR     | REGULAR     |
|         |                 |            |              |           |       |             |             |
|         |                 |            |              |           |       |             |             |

#### Irregularidad por esquina entrante

$$L_{esquina(x)} > 0.20 \cdot L_x \circ L_{esquina(y)} > 0.20 \cdot L_y$$

| Story  | L <sub>X (mayor)</sub> | L <sub>esq (menor)</sub> | 0.20·L <sub>X</sub> | Estructura |
|--------|------------------------|--------------------------|---------------------|------------|
| Story6 | 10.00                  | 0.00                     | 2.00                | Regular    |
| Story5 | 10.00                  | 0.00                     | 2.00                | Regular    |
| Story4 | 10.00                  | 0.00                     | 2.00                | Regular    |
| Story3 | 10.00                  | 0.00                     | 2.00                | Regular    |
| Story2 | 10.00                  | 0.00                     | 2.00                | Regular    |
| Story1 | 10.00                  | 0.00                     | 2.00                | Regular    |

### Irregularidad por discontinuidad de diafragma No presenta

$$A_{abertura} > 0.50 \cdot A_i \circ S_{resistente} < 0.25 \cdot S_{\'{a}rea\ bruta}$$

| $\mathbf{A}_{i} (m^2)$ | $0.50 \cdot A_i (m^2)$ | <b>A</b> <sub>abertura</sub> (m <sup>2</sup> ) | Estructura |
|------------------------|------------------------|------------------------------------------------|------------|
|                        |                        |                                                |            |

| <b>S</b> <sub>i</sub> (m <sup>2</sup> ) | <b>0.50·S</b> <sub>i</sub> (m <sup>2</sup> ) | <b>A</b> <sub>abertura</sub> (m <sup>2</sup> ) | Estructura |
|-----------------------------------------|----------------------------------------------|------------------------------------------------|------------|
|                                         |                                              |                                                |            |

# Irregularidad de Masa ó Peso

 $W_i > 1.5(W_{i+1}; W_{i-1})$ 

En la dirección "X" e "Y":

| Story  | M <sub>i</sub> | Wi      | 1.5·W <sub>i+1</sub> | Estructura | Wi        | 1.5·W <sub>i-1</sub> | Estructura |
|--------|----------------|---------|----------------------|------------|-----------|----------------------|------------|
| Story  | tonf           | tonf    | tonf                 | Estructura | tonf      | tonf                 | Estructura |
| Story6 | 1710.61        | 1710.61 |                      |            | 1710.61   | 2735.2584            |            |
| Story5 | 1823.51        | 1823.51 | 2565.91              |            | 1823.5056 | 2735.2584            | Regular    |
| Story4 | 1823.51        | 1823.51 | 2735.26              | Regular    | 1823.5056 | 2735.2584            | Regular    |
| Story3 | 1823.51        | 1823.51 | 2735.26              | Regular    | 1823.5056 | 2735.2584            | Regular    |
| Story2 | 1823.51        | 1823.51 | 2735.26              | Regular    | 1823.5056 | 2735.2584            | Regular    |
| Story1 | 1823.51        | 1823.51 | 2735.26              | Regular    | 1823.5056 |                      |            |

Irregularidad Geométrica Vertical

NOTA: En el proyecto, todos los sistemas resistentes son continuos con su eje, por lo tanto no se aplica esta irregularidad.

En la dirección "X":

| Story  | Li    | L <sub>i+1</sub> | 1.3·L <sub>i+1</sub> | Estructura  | L <sub>i-1</sub> | 1.3·L <sub>i-1</sub> | Estructura  |
|--------|-------|------------------|----------------------|-------------|------------------|----------------------|-------------|
| Otory  | m     | m                | m                    | Latituctura | m                | m                    | Latituctura |
| Story6 | 5.25  |                  |                      |             | 10.00            | 13.00                | Regular     |
| Story5 | 10.00 | 5.25             | 6.83                 |             | 10.00            | 13.00                | Regular     |
| Story4 | 10.00 | 10.00            | 13.00                | Regular     | 10.00            | 13.00                | Regular     |
| Story3 | 10.00 | 10.00            | 13.00                | Regular     | 10.00            | 13.00                | Regular     |
| Story2 | 10.00 | 10.00            | 13.00                | Regular     | 10.00            | 13.00                | Regular     |
| Story1 | 10.00 | 10.00            | 13.00                | Regular     |                  |                      |             |

#### IRREGULARIDADES FINALES Y-Y

#### Revision de las Hipotesis del Análisis

Con los resultados de los Análisis se revisan los factores de irregularidades aplicados. En base a estos se verifica si los valores de *R* se mantienen o son modificados. En caso de haberse empleado el procedimiento de análisis estático se verifica lo señalado en el caso numeral 28.1.

### **IRREGULARIDADES**

#### Articulo 20.- Factores de Irregularidades

- 20.1. El factor I<sub>a</sub> se determina como el menor de los valores de la Tabla N°8 correspondiente a las irregularidades estructurales existentes en altura en las dos direcciones
- 20.2. El factor Io se determina como el menor de la Tabla N°9 correspondiente a las irregularidades estructurales existentes en altura en las dos direcciones
- 20.3. Si al aplicar las Tablas N° 8 y 9 se obtuvieron valores distintos de los factores I<sub>a</sub> o I<sub>p</sub> para las dos direcciones de Analisis, se toma para cada factor el menor valor entre los obtenidos para las dos direcciones

| IRREGULARIDADES EN ALTURA Y-Y                   |        |   |  |  |  |  |  |
|-------------------------------------------------|--------|---|--|--|--|--|--|
| Irregularidades de Masa o Peso                  | [0.9]  | 1 |  |  |  |  |  |
| Irregularidad de Geometría Vertical             | [0.9]  | 1 |  |  |  |  |  |
| Discontinuidad en los sistemas resistentes      | [0.9]  | 1 |  |  |  |  |  |
| Discontinuidad Ext. en los sistemas resistentes | [0.6]  | 1 |  |  |  |  |  |
| Irregularidad de Rigidez (Piso Blando)          | [0.75] | 1 |  |  |  |  |  |
| Irregularidad de Rigidez Extrema                | [0.50] | 1 |  |  |  |  |  |
| Irregularidad de Resistencia (Piso Débil)       | [0.75] | 1 |  |  |  |  |  |
| Irregularidad de Extrema Resistencia            | [0.50] | 1 |  |  |  |  |  |
| IRREGULARIDAD EN ALTURA FII                     | 1      |   |  |  |  |  |  |

# Irregularidad de Rigidez - Piso Blando

Existe irregularidad de rigidez cuando, en cualquiera de las direcciones de análisis, en un entrepiso la rigidez lateral es menor que 70% de la rigidez lateral del entrepiso inmediato superior, o es menor que el 80% de la rigidez lateral promedio de los tres niveles superiores adyacentes. La rigideces lateral pueden calcularse como la razón entre la fuerza cortante del entrepiso y el correspondiente desplazamiento relativo en el centro de masas, ambos evaludados para la misma condicion de carga.

$$K_i < 0.70 \\ K_{i+1} \qquad \qquad K_i < 0.80 \\ \frac{K_{i+1} + K_{i+2} + K_{i+3}}{3} \qquad \qquad I_a = 0.75$$

### Irregulariadad Extrema de Rigidez (Ver Tabla N°10)

Existe irregularidad extrema de rigidez cuando, en cualquiera de las direcciones de análisis, en un entrepiso la rigidez lateral es menor que 60% de la rigidez lateral del entrepiso inmediato superior, o es menor que el 70% de la rigidez lateral promedio de los tres niveles superiores adyacentes. La rigidez lateral pueden calcularse como la razon entre la fuerza cortante del entrepiso y el corresponiendte desplazamiento relativo en el centro de masas, ambos evaluados para la misma condicion de carga.

$$K_i < 0.60 K_{i+1} \qquad \qquad K_i < 0.70 \frac{K_{i+1} + K_{i+2} + K_{i+3}}{3} \qquad \qquad I_a = 0.50$$

|                                   | PISO BLANDO EN DIRECCIÓN Y-Y |                 |          |             |                   |                        |                            |                        |                          |
|-----------------------------------|------------------------------|-----------------|----------|-------------|-------------------|------------------------|----------------------------|------------------------|--------------------------|
| STRUCTURE OTHER (STORY STIFFNESS) |                              |                 |          |             |                   |                        | jidez                      | Extrema                | Rigidez                  |
| Case/Combo                        | Story                        | Elevation (m)   | Location | Stiffness Y | 0.7K <sub>i</sub> | 70% K <sub>(i+1)</sub> | 80% (K <sub>prom</sub> )   | 60% K <sub>(i+1)</sub> | 70% (K <sub>prom</sub> ) |
| Case/Combo                        | Story                        | Elevation (III) | Location | tonf/m      | tonf/m            | 7 0 /0 ft(i+1)         | 00 /6 (R <sub>prom</sub> ) | 00 /0 R(i+1)           | 70 /6 (Riprom)           |
| ESPECTRAL Y                       | Story10                      | 27.60           | Тор      | 1523.36     | 1066.3492         | No aplica              | No aplica                  | No aplica              | No aplica                |
| ESPECTRAL Y                       | Story9                       | 26.10           | Top      | 4986.53     | 3490.5738         | Regular                | No aplica                  | Regular                | No aplica                |
| ESPECTRAL Y                       | Story8                       | 23.40           | Top      | 14316.68    | 10021.6767        | Regular                | No aplica                  | Regular                | No aplica                |
| ESPECTRAL Y                       | Story7                       | 20.70           | Top      | 20927.75    | 14649.4271        | Regular                | Regular                    | Regular                | Regular                  |
| ESPECTRAL Y                       | Story6                       | 18.00           | Top      | 25606.34    | 17924.4394        | Regular                | Regular                    | Regular                | Regular                  |
| ESPECTRAL Y                       | Story5                       | 15.30           | Top      | 29816.24    | 20871.3708        | Regular                | Regular                    | Regular                | Regular                  |
| ESPECTRAL Y                       | Story4                       | 12.60           | Top      | 34644.45    | 24251.1136        | Regular                | Regular                    | Regular                | Regular                  |
| ESPECTRAL Y                       | Story3                       | 9.90            | Top      | 41362.62    | 28953.8361        | Regular                | Regular                    | Regular                | Regular                  |
| ESPECTRAL Y                       | Story2                       | 7.20            | Top      | 48431.62    | 33902.1326        | Regular                | Regular                    | Regular                | Regular                  |
| ESPECTRAL Y                       | Story1                       | 4.50            | Top      | 62364.40    | 43655.08          | Regular                | Regular                    | Regular                | Regular                  |
| ESPECTRAL Y                       | Base                         | 0.00            | Тор      | 0.00        | 0                 |                        |                            |                        |                          |
|                                   |                              |                 |          |             |                   |                        |                            |                        |                          |
|                                   |                              |                 |          |             |                   |                        |                            |                        |                          |

### Irregularidad de Resistencia - Piso Débil

Existe irregularidad de resistencia cuando, en cualquiera de las direcciones de análisis, la resistencia de un entrepiso frente a fuerzas cortantes es inferior a 80% de la resistencia del entrepiso inmediato superior.

$$V_n < 0.80V_{n+1} I_a = 0.75$$

### Irregularidad Extrema de Resistencia - Piso Débil

Existe irregularidad extrema de resistencia cuando, en cualquiera de las direcciones de análisis, la resistencia de un entrepiso frente a fuerzas cortantes es inferior a 65% de la resistencia del entrepiso inmediato superior.

$$V_n < 0.65V_{n+1}$$
  $I_a = 0.50$ 

|                                | PISO DÉBIL EN DIRECCIÓN Y-Y |           |          |        |  |             |             |
|--------------------------------|-----------------------------|-----------|----------|--------|--|-------------|-------------|
| STRUCTURE OTHER (STORY SHEARS) |                             |           |          |        |  |             | Extrema     |
| Case/Combo                     | Story                       | Elevation | Location | VY     |  | Resistencia | Resistencia |
| Case/Collino                   | Story                       | (m)       | Location | tonf   |  | 80%         | 65%         |
| ESPECTRAL Y                    | Story10                     | 27.6      | Bottom   | 1.85   |  | No aplica   | No aplica   |
| ESPECTRAL Y                    | Story9                      | 26.1      | Bottom   | 11.28  |  | Regular     | Regular     |
| ESPECTRAL Y                    | Story8                      | 23.4      | Bottom   | 34.53  |  | Regular     | Regular     |
| ESPECTRAL Y                    | Story7                      | 20.7      | Bottom   | 54.84  |  | Regular     | Regular     |
| ESPECTRAL Y                    | Story6                      | 18        | Bottom   | 71.63  |  | Regular     | Regular     |
| ESPECTRAL Y                    | Story5                      | 15.3      | Bottom   | 85.51  |  | Regular     | Regular     |
| ESPECTRAL Y                    | Story4                      | 12.6      | Bottom   | 96.88  |  | Regular     | Regular     |
| ESPECTRAL Y                    | Story3                      | 9.9       | Bottom   | 105.77 |  | Regular     | Regular     |
| ESPECTRAL Y                    | Story2                      | 7.2       | Bottom   | 112.12 |  | Regular     | Regular     |
| ESPECTRAL Y                    | Story1                      | 4.5       | Bottom   | 115.81 |  | Regular     | Regular     |
| ESPECTRAL Y                    | Base                        | 0         | Bottom   | 0.00   |  |             |             |
|                                |                             |           |          |        |  |             |             |
|                                |                             |           |          |        |  |             |             |

| IRREGULARIDADES EN PLANTA Y-Y   |                          |   |  |  |  |  |
|---------------------------------|--------------------------|---|--|--|--|--|
| Esquinas entrantes              | [0.9]                    | 1 |  |  |  |  |
| Discontinuidad en Diafragma     | [0.85]                   | 1 |  |  |  |  |
| Sistemas No Paralelos           | [0.8]                    | 1 |  |  |  |  |
| Irregularidad Torsional         | [0.75]                   | 1 |  |  |  |  |
| Irregularidad Torsional Extrema | [0.6]                    | 1 |  |  |  |  |
| IRREGULARIDAD EN PLANTA FII     | VAL I <sub>P</sub> Y-Y = | 1 |  |  |  |  |

### Irregularidad Torsional

Existe irregularidad torsional cuando, en cualquiera de las direcciones de análisis, el máximo desplazamiento relativo de entrepiso en un extremo del edificio (\$\Delta\_{max}\$) en esa dirección, calculado encluyendo excentricidad accidental, es mayor que 1.3 veces el desplazamiento relativo promedio de los tres extremos del mismo entrepiso para la misma condicion de carga (\$\Delta\_{prom}\$).

Este criterio sólo se aplica en edificios con diafragmas rígidos y sólo si el máximo desplazamiento reltivo de entrepiso es mayor que 50% del desplazamiento permisible indicado en la Tabla N°11

$$\Delta_{max} > 1.30 \Delta_{promedio}$$
  $I_p = 0.75$ 

#### Irregularidad Torsional Extrema

Existe irregulariadd torsional extrema cuando, en cualquiera de las direcciones de análisis, el máximo desplazamiento relativo de entrepiso en un extremo del edificio (\$\Delta\_{max}\$) en esa dirección, calculado incluyendo excentricidad accidental, es mayor que 1.5 veces el desplazamiento relativo promedio de los extremos del mismo entrepiso para la misma condicion de carga (\$\Delta\_{prom}\$).

Este criterio sólo se aplica en edificios con diafragmas rígidos y sólo si el máximo desplazamiento reltivo de entrepiso es mayor que 50% del desplazamiento permisible indicado en la Tabla N°11

$$\Delta_{max} > 1.50 \Delta_{promedio}$$
  $I_p = 0.60$ 

|         | TORSIÓN EN DIRECCIÓN Y-Y |            |              |           |       |             |             |  |  |
|---------|--------------------------|------------|--------------|-----------|-------|-------------|-------------|--|--|
| JOI     | N - DISPLACEME           | TORSIÓN    | Ext. Torsión |           |       |             |             |  |  |
| Story   | Case/Combo               | Item       | Max Drift    | Avg Drift | Ratio | ratio > 1.3 | ratio > 1.5 |  |  |
| Story10 | DERIVA Y                 | Diaph D1 Y | 0.00366      | 0.00364   | 1.005 | REGULAR     | REGULAR     |  |  |
| Story9  | DERIVA Y                 | Diaph D1 Y | 0.00379      | 0.00369   | 1.029 | REGULAR     | REGULAR     |  |  |
| Story8  | DERIVA Y                 | Diaph D1 Y | 0.00404      | 0.00387   | 1.043 | REGULAR     | REGULAR     |  |  |
| Story7  | DERIVA Y                 | Diaph D1 Y | 0.00444      | 0.00421   | 1.054 | REGULAR     | REGULAR     |  |  |
| Story6  | DERIVA Y                 | Diaph D1 Y | 0.00484      | 0.00455   | 1.063 | REGULAR     | REGULAR     |  |  |
| Story5  | DERIVA Y                 | Diaph D1 Y | 0.00510      | 0.00477   | 1.070 | REGULAR     | REGULAR     |  |  |
| Story4  | DERIVA Y                 | Diaph D1 Y | 0.00512      | 0.00475   | 1.077 | REGULAR     | REGULAR     |  |  |
| Story3  | DERIVA Y                 | Diaph D1 Y | 0.00486      | 0.00448   | 1.085 | REGULAR     | REGULAR     |  |  |
| Story2  | DERIVA Y                 | Diaph D1 Y | 0.00423      | 0.00386   | 1.096 | REGULAR     | REGULAR     |  |  |
| Story1  | DERIVA Y                 | Diaph D1 Y | 0.00206      | 0.00186   | 1.110 | REGULAR     | REGULAR     |  |  |
|         |                          |            |              |           |       |             |             |  |  |
|         |                          |            | ·            |           |       |             |             |  |  |

### Irregularidad por esquina entrante

$$L_{esquina(x)} > 0.20 \cdot L_x \circ L_{esquina(y)} > 0.20 \cdot L_y$$

| Story  | L <sub>Y (mayor)</sub> | L <sub>esq (menor)</sub> | 0.20·L <sub>Y</sub> | Estructura |
|--------|------------------------|--------------------------|---------------------|------------|
| Story6 | 10.00                  | 0.00                     | 2.00                | Regular    |
| Story5 | 10.00                  | 0.00                     | 2.00                | Regular    |
| Story4 | 10.00                  | 0.00                     | 2.00                | Regular    |
| Story3 | 10.00                  | 0.00                     | 2.00                | Regular    |
| Story2 | 10.00                  | 0.00                     | 2.00                | Regular    |
| Story1 | 10.00                  | 0.00                     | 2.00                | Regular    |

## Irregularidad por discontinuidad de diafragma No presenta

$$A_{abertura} > 0.50 \cdot A_i \circ S_{resistente} < 0.25 \cdot S_{área\ bruta}$$

| $\mathbf{A}_{i} (m^{2})$ | <b>0.50·A</b> <sub>i</sub> (m <sup>2</sup> ) | <b>A</b> <sub>abertura</sub> (m <sup>2</sup> ) | Estructura |
|--------------------------|----------------------------------------------|------------------------------------------------|------------|
|                          |                                              |                                                |            |

|         | STRUCTURE RESULTS (CENTERS OF MASS AND RIGIDITY) |           |           |        |       |            |            |        |       |        |        |
|---------|--------------------------------------------------|-----------|-----------|--------|-------|------------|------------|--------|-------|--------|--------|
| Story   | Diaphragm                                        | Mass X    | Mass Y    | XCM    | YCM   | Cum Mass X | Cum Mass Y | XCCM   | YCCM  | XCR    | YCR    |
|         |                                                  | tonf-s²/m | tonf-s²/m | m      | т     | tonf-s²/m  | tonf-s²/m  | m      | m     | m      | m      |
| Story10 | Diaph D1 X                                       | 31.608    | 31.608    | 18.822 | 7.778 | 31.608     | 31.608     | 18.822 | 7.778 | 17.727 | 10.793 |
| Story9  | Diaph D1 X                                       | 31.441    | 31.441    | 18.822 | 7.777 | 31.441     | 31.441     | 18.822 | 7.777 | 17.757 | 9.873  |
| Story8  | Diaph D1 X                                       | 31.441    | 31.441    | 18.822 | 7.777 | 31.441     | 31.441     | 18.822 | 7.777 | 17.789 | 9.077  |
| Story7  | Diaph D1 X                                       | 31.441    | 31.441    | 18.822 | 7.777 | 31.441     | 31.441     | 18.822 | 7.777 | 17.814 | 8.487  |
| Story6  | Diaph D1 X                                       | 31.441    | 31.441    | 18.822 | 7.777 | 31.441     | 31.441     | 18.822 | 7.777 | 17.833 | 8.049  |
| Story5  | Diaph D1 X                                       | 31.340    | 31.340    | 18.822 | 7.772 | 31.340     | 31.340     | 18.822 | 7.772 | 17.847 | 7.722  |
| Story4  | Diaph D1 X                                       | 31.256    | 31.256    | 18.822 | 7.768 | 31.256     | 31.256     | 18.822 | 7.768 | 17.857 | 7.476  |
| Story3  | Diaph D1 X                                       | 31.256    | 31.256    | 18.822 | 7.768 | 31.256     | 31.256     | 18.822 | 7.768 | 17.865 | 7.275  |
| Story2  | Diaph D1 X                                       | 31.256    | 31.256    | 18.822 | 7.768 | 31.256     | 31.256     | 18.822 | 7.768 | 17.872 | 7.100  |
| Story1  | Diaph D1 X                                       | 31.256    | 31.256    | 18.822 | 7.768 | 31.256     | 31.256     | 18.822 | 7.768 | 17.879 | 6.940  |
|         |                                                  |           |           |        |       |            |            |        |       |        |        |
|         |                                                  |           |           |        |       |            |            |        |       |        |        |

### VERIFICACIÓN (DISTORSIÓN DE ENTREPISO <0.007)

Se debe calcular los desplazamientos laterales de acuerdo a las indicaciones del Articulo 31.

#### ARTICULO 31- Determinacion de Desplazamientos Laterales

- 31.1. Para estructuras regulares, los desplazamientos laterales se calculan multiplicando por \$0.75R\$ los resultados obtenidos del análisis lineal y elástico con las solicitaciones sísmicas reducitas. Para estructuras irregulares, los desplazamientos laterales se calculan multiplicando por \$0.85R\$ los resultados obtenidos del anáñosos lienal elástico.
- 31.2. Para el cálculo de los desplazamientos laterales no se consideran los valores mínimos de \$C/R\$ indicados en el numero 28.2 ni el cortante mínimo en la base especificados en el numeral 29.4

### **ARTICULO 32- Desplazamientos Lateral Relativos Admisibles**

El máximo desplazamiento relativo de entrepiso, calculado según el articulo 31, no excede la fraccion de la altura de entrepiso (distorcion) que se indica en la Tabla N°11.

| Tabla N° 11<br>LIMITES PARA LA DISTORCION DEL ENTREPISO         |       |  |  |  |  |  |
|-----------------------------------------------------------------|-------|--|--|--|--|--|
| Material predominante                                           |       |  |  |  |  |  |
| Concreto Armado                                                 | 0.007 |  |  |  |  |  |
| Acero                                                           | 0.01  |  |  |  |  |  |
| Albañileria                                                     | 0.005 |  |  |  |  |  |
| Madera                                                          | 0.01  |  |  |  |  |  |
| Edificacion de concreto armado con muros de ductilidad limitada | 0.005 |  |  |  |  |  |

|         | SISMO DINÁMICO EN DIRECCIÓN X - X |           |           |          |         |  |  |  |  |  |
|---------|-----------------------------------|-----------|-----------|----------|---------|--|--|--|--|--|
|         | (STORY RESPONSE PLOT)             |           |           |          |         |  |  |  |  |  |
| Story   | Output Case                       | Elevación | Direction | Drift XX | MÁXIMO  |  |  |  |  |  |
| Otory   | Output Gase                       | Licvacion | Direction | Dilit XX | < 0.007 |  |  |  |  |  |
| Story10 | DERIVA X                          | 27.60     | X         | 0.00399  | CUMPLE  |  |  |  |  |  |
| Story9  | DERIVA X                          | 26.10     | X         | 0.00406  | CUMPLE  |  |  |  |  |  |
| Story8  | DERIVA X                          | 23.40     | Х         | 0.00484  | CUMPLE  |  |  |  |  |  |
| Story7  | DERIVA X                          | 20.70     | Х         | 0.00554  | CUMPLE  |  |  |  |  |  |
| Story6  | DERIVA X                          | 18.00     | Х         | 0.00613  | CUMPLE  |  |  |  |  |  |
| Story5  | DERIVA X                          | 15.30     | Х         | 0.00651  | CUMPLE  |  |  |  |  |  |
| Story4  | DERIVA X                          | 12.6      | Х         | 0.00654  | CUMPLE  |  |  |  |  |  |
| Story3  | DERIVA X                          | 9.9       | Х         | 0.00625  | CUMPLE  |  |  |  |  |  |
| Story2  | DERIVA X                          | 7.2       | X         | 0.00550  | CUMPLE  |  |  |  |  |  |
| Story1  | DERIVA X                          | 4.5       | X         | 0.002694 | CUMPLE  |  |  |  |  |  |
| Base    | DERIVA X                          | 0         | X         | 0        | CUMPLE  |  |  |  |  |  |
|         |                                   |           |           |          |         |  |  |  |  |  |
|         |                                   |           |           |          |         |  |  |  |  |  |
|         |                                   |           |           |          |         |  |  |  |  |  |
|         |                                   |           |           |          |         |  |  |  |  |  |
|         |                                   |           | ·         |          |         |  |  |  |  |  |
|         |                                   |           | ·         |          |         |  |  |  |  |  |
|         |                                   |           |           |          |         |  |  |  |  |  |



|         | SISMO DINÁMICO EN DIRECCIÓN Y-Y |           |           |          |         |  |  |  |  |  |
|---------|---------------------------------|-----------|-----------|----------|---------|--|--|--|--|--|
|         | (STORY RESPONSE PLOT)           |           |           |          |         |  |  |  |  |  |
| Story   | Output Case                     | Elevación | Direction | Drift YY | MÁXIMO  |  |  |  |  |  |
| Old. y  | Output Guoo                     | Liovacion | Direction | 5        | < 0.007 |  |  |  |  |  |
| Story10 | DERIVA Y                        | 27.60     | Υ         | 0.00366  | CUMPLE  |  |  |  |  |  |
| Story9  | DERIVA Y                        | 26.10     | Υ         | 0.00379  | CUMPLE  |  |  |  |  |  |
| Story8  | DERIVA Y                        | 23.40     | Υ         | 0.00404  | CUMPLE  |  |  |  |  |  |
| Story7  | DERIVA Y                        | 20.70     | Υ         | 0.00444  | CUMPLE  |  |  |  |  |  |
| Story6  | DERIVA Y                        | 18.00     | Υ         | 0.00484  | CUMPLE  |  |  |  |  |  |
| Story5  | DERIVA Y                        | 15.30     | Υ         | 0.00510  | CUMPLE  |  |  |  |  |  |
| Story4  | DERIVA Y                        | 12.60     | Υ         | 0.00512  | CUMPLE  |  |  |  |  |  |
| Story3  | DERIVA Y                        | 9.90      | Υ         | 0.00486  | CUMPLE  |  |  |  |  |  |
| Story2  | DERIVA Y                        | 7.20      | Υ         | 0.00423  | CUMPLE  |  |  |  |  |  |
| Story1  | DERIVA Y                        | 4.50      | Υ         | 0.00206  | CUMPLE  |  |  |  |  |  |
| Base    | DERIVA Y                        | 0.00      | Υ         | 0.00000  | CUMPLE  |  |  |  |  |  |
|         |                                 |           |           |          |         |  |  |  |  |  |
|         |                                 |           |           |          |         |  |  |  |  |  |
|         |                                 |           |           |          |         |  |  |  |  |  |
|         |                                 |           |           |          |         |  |  |  |  |  |
| _       |                                 |           |           |          |         |  |  |  |  |  |
|         |                                 |           |           |          |         |  |  |  |  |  |
|         |                                 |           |           |          |         |  |  |  |  |  |



#### VERIFICACION DEL SISTEMA ESTRUCTURAL

#### Articulo 16.- Sistemas Estructurales

#### - 16.1. Estructuras de Concreto armado

Todos los elementos de concreto armado que conforman el sistema estructural sismorresistente cumplen con lo previsto en la Norma Tecnica E.060 Concreto Armado del RNE.

- a) **Porticos**. **Por lo menos el 80**% de la fuerza cortante en la base actúa sobre las columnas de los pórticos. En caso se tengan muros estructurales, estos se diseñan para resistir una fracción de la acción sísmica total de acuerdo con su rígidez.
- b) Muros Estructurales Sistemas en el que la resistencia sísmica está dad predominantemente por muros estructurales sobre los que actúa *por lo menos el 70*% de la fuerza cortante en la base.
- c) **Dual** Las acciones sísmicas son resistidas por una combinacion de pórticos y muros estructurales. La fuerza cortante que toman los muros es *mayor que el 20%` y `menor que 70%* del cortante en la base del edificio.
- d) Edificaciones de Muros de Ductilidad Limitada (EMDL) Edificaciones que se caracterizan por tener un sistema estructural donde la resistencia sísmica y de cargas de gravedad está dada por muros de cocnreto armado de espesores reducidos, en lo que se prescinde de extremos confinados y el refuerzo vertical se dispone en una sola capa. Con este sistema se puede construir como *máximo ocho pisos*.

Se determina si el sistema es de Muros estructurales o Dual

| DIRECCIÓN X-X                             |               |  |  |  |
|-------------------------------------------|---------------|--|--|--|
| Section Cut ESPECTRAL X                   |               |  |  |  |
| Cortante en Muros (tonf)                  | 107.89        |  |  |  |
| Cortante en Columnas (tonf)               | 5.31          |  |  |  |
| TOTAL                                     | 113.20        |  |  |  |
|                                           |               |  |  |  |
| Cortante en Muros                         | 95.3%         |  |  |  |
| Cortante en Columnas                      | 4.7%          |  |  |  |
|                                           |               |  |  |  |
| Ro                                        | 6             |  |  |  |
| -                                         |               |  |  |  |
| DIRECCIÓN Y-Y                             |               |  |  |  |
| Section Cut ESPECTRAL Y                   |               |  |  |  |
| Cortante en Muros (tonf)                  | 109.67        |  |  |  |
| Cortante en Columnas (tonf)               | 6.18          |  |  |  |
| TOTAL                                     | 115.85        |  |  |  |
|                                           |               |  |  |  |
|                                           |               |  |  |  |
| Cortante en Muros                         | 94.7%         |  |  |  |
| Cortante en Muros<br>Cortante en Columnas | 94.7%<br>5.3% |  |  |  |
|                                           |               |  |  |  |

# VERIFICACIÓN (CORTANTE DE DISEÑO )

# 29.4. Fuerza Cortante Mínima

- 29.4.1. Para cada una de las direcciones consideradas en el análisis, la fuerza cortante en el primer entrepiso del edificio no puede ser menor que el 80% del valor calculado según el articulo 25 para estructuras regulares, ni menor que el 90% para estructurales irregulares.
- **29.4.2.** Si fuera necesario incrementar el cortante para cumplir los mínimos señalados, se escalan proporcionalmente todos los resultados obtenidos, excepto los desplazamientos.

| PARÁMETROS DE ANÁLISIS                                                      | VALOR   |
|-----------------------------------------------------------------------------|---------|
| Z: Factor de zona                                                           | 0.45    |
| U: Factor de uso o importancia                                              | 1.00    |
| S: Factor de amplificación del suelo                                        | 1.05    |
| T <sub>P</sub> : Periodo que define la plataforma del factor C (seg)        | 0.60    |
| T <sub>L</sub> : Periodo que define el inicio de la zona del factor C (seg) | 2.00    |
| P: Peso Total de la Edificación (Tonf)                                      | 1646.93 |

|               | T <sub>X</sub> : Periodo natural en la dirección X (seg) | 0.823                  |
|---------------|----------------------------------------------------------|------------------------|
|               | C <sub>X</sub> : Factor de amplificación sísmica en X    | 1.82                   |
|               | R₀: Coeficiente básico de reducción de fuerzas sísmicas  | 6.00                   |
| ×             | l <sub>ax</sub> : irregularidad en altura final          | 1.00                   |
| Z             | I <sub>px</sub> : irregularidad en planta final          | 1.00                   |
| Ç             | R <sub>X</sub> : Coeficiente de reducción sísmico en X   | 6.00                   |
| DIRECCIÓN X-X | EDIFICACIÓN: <b>REGULAR</b>                              | 80%                    |
|               | FUERZA CORTANTE ESTÁT                                    | TICA 236.38 tonf       |
|               | CORTANTE DE DISE                                         | EÑO 189.11 tonf        |
|               | FUERZA CORTANTE DINÁM                                    | ICA <b>113.12 tonf</b> |
|               | FACTOR DE ESCALAMIENTO                                   | X-X 1.672              |

|               | T <sub>Y</sub> : Periodo natural en la dirección Y (seg)             | 0.794       |
|---------------|----------------------------------------------------------------------|-------------|
|               | C <sub>Y</sub> : Factor de amplificación sísmica en Y                | 1.89        |
|               | R <sub>o</sub> : Coeficiente básico de reducción de fuerzas sísmicas | 6.00        |
| <u>}</u>      | l <sub>a</sub> y: irregularidad en altura final                      | 1.00        |
| Z             | I <sub>p</sub> y: irregularidad en planta final                      | 1.00        |
| S<br>S        | R <sub>Y</sub> : Coeficiente de reducción sísmico en Y               | 6.00        |
| DIRECCIÓN Y-Y | EDIFICACIÓN: <b>REGULAR</b>                                          | 80%         |
|               | FUERZA CORTANTE ESTÁTICA                                             | 245.02 tonf |
|               | CORTANTE DE DISEÑO                                                   | 196.01 tonf |
|               | FUERZA CORTANTE DINÁMICA                                             | 117.63 tonf |
|               | FACTOR DE ESCALAMIENTO Y-Y                                           | 1.666       |