

2019117/8576

DATA ENSAIO: 07/11/2019 DATA EMISSÃO: 07/11/2019

01| CONTRATANTE

Razão Social:	Fundação Médica Assistencial ao Trabalhador Rural de Luiz Alves
CNPJ:	85.122.083/0001-44
Endereço:	Rua Professor Simão Hess nº 203, Luiz Alves - Luiz Alves/SC - CEP: 89115-000

02| EQUIPAMENTO AVALIADO

Procedimento Avaliado:	Controle de	e Qualidade	Sala:		Sala Raio X
Equipamento:	MARCA	MODELO	Nº S	ÉRIE	PATRIMÔNIO
	CDK	DIAFIX	10050	03/80	-

03| PADRÕES UTILIZADOS

Analisador:	X2 Base Unit		
	MARCA	MODELO	Nº SÉRIE
	RaySafe	8251010-6	228517
Sensor Externo:	X2 R/F Sensor		
	MARCA	MODELO	Nº SÉRIE
	RaySafe	8251010-6	231609
	Rastreabilidade:	LABPROSAUD-C160-18, LABPROSAUD-C161-18	

04| METODOLOGIA

Os ensaios foram realizados baseando-se no procedimento de ensaio interno Nº PE-001 Revisão 001.

OBSERVAÇÃO:

A incerteza expandida de medição relatada e declarada como a incerteza padrão de medição multiplicada pelo fator de abrangência k =2, o qual para uma distribuição t com graus de liberdade efetivos (veff = infinito), corresponde a uma probabilidade de abrangência de aproximadamente 95%. A incerteza de medição foi determinada de acordo com a publicação EA-4/02.

Este relatório só deve ser reproduzido por completo. A reprodução em partes só é permitida mediante autorização por escrito da Safety Soluções em Radioproteção. Os resultados apresentados neste relatório de ensaio referem-se exclusivamente aos corpos de prova (equipamentos) avaliados, nas condições especificadas. Este relatório atente os requisitos estabelecidos pela norma NBR ISO/IEC 17025.

2019117/8576

DATA ENSAIO: 07/11/2019 DATA EMISSÃO: 07/11/2019

A | ABSORÇÃO PRODUZIDA PELA MESA OU PORTA CHASSI

Periodicidade: Teste de aceitação ou após reparos.

Tolerância: ≤ 1,2 mmAl à 100 kVp. Nível de Suspensão: > 1,5 mmAl à 100 kVp.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

Não Aplicável.

B | EXATIDÃO DO INDICADOR DA DISTÂNCIA FOCO-RECEPTOR

Periodicidade: Teste de aceitação ou após reparos.

Tolerância: ≤ 5%.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

Valor medido (cm): 100,5 Valor indicado(cm): 100,0

Resultado (C / NC): Conforme

C | VALORES REPRESENTATIVOS DE DOSE

Periodicidade: Teste de aceitação, bienal ou após reparos.

Tolerância: vide tabela abaixo

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

5			Técnica u	tilizada		Dose Medida			Nível de Referência	Resultado
Exames		Tensão [kVp]	Corrente [mA]	Tempo [ms]	DFF [cm]	DEP [mGy]	k	U95	DEP(mGy)	C / NC
Coluna lombar	AP	70,0	200	250,0	77	1,623	2,0	1,8	10,0	С
Columa lombal	LAT	85,0	200	250,0	70	3,591	2,0	1,8	30,0	С
Abdômen	AP	75,0	200	250,0	77	2,240	2,0	1,8	10,0	С
Pelve	AP	75,0	200	250,0	80	2,027	2,0	1,8	10,0	С
Bacia	AP	75,0	200	250,0	80	2,027	2,0	1,8	10,0	С
Tórax	PA	80,0	320	50,0	157	0,158	2,0	1,8	0,4	С
TOTAX	LAT	87,0	320	66,0	148	0,279	2,0	1,8	1,4	С
Coluna Torácica	AP	75,0	200	200,0	77	1,816	2,0	1,8	7,0	С
Coluna Toracica	LAT	85,0	320	66,0	70	1,386	2,0	1,8	20,0	С
Crânio	AP	60,0	200	250,0	81	1,046	2,0	1,8	5,0	С
Cranio	LAT	60,0	200	200,0	85	0,762	2,0	1,8	3,0	С

2019117/8576

DATA ENSAIO: 07/11/2019 DATA EMISSÃO: 07/11/2019

EXATIDÃO E REPRODUTIBILIDADE

D I EXATIDÃO DO INDICADOR DA TENSÃO DO TUBO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 10%. Nível de Suspensão: > 20%

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

E | REPRODUTIBILIDADE DA TENSÃO DO TUBO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 5%. Nível de Suspensão: > 10%

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

F | EXATIDÃO DO TEMPO DE EXPOSIÇÃO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 10%. Nível de Suspensão: > 30%

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

G | REPRODUTIBILIDADE DO TEMPO DE EXPOSIÇÃO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 10%. Nível de Suspensão: > 20%

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

H | REPRODUTIBILIDADE DA TAXA DE KERMA NO AR

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 10%. Nível de Suspensão: > 20%

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

+55 (48) 3181-0368

contato@safetyrad.com.br | www.safetyrad.com.br

2019117/8576

DATA ENSAIO: 07/11/2019

DATA EMISSÃO: 07/11/2019

VALC	RES NOMI	NAIS				VALOR	ES MEI	DIDOS			
Tensão	Corrente	Tempo	ŀ	Kerma		Τe	empo		Ter	ısão	
[kVp]	[mA]	[ms]	Kerma			Tempo			Tensão		
. 1.1	. ,	,	[mGy]	k	U95	[ms]	k	U95	[kVp]	k	U95
			0,082	- 10	030	194,6	- 12	030	43,2	- 12	030
		200	0,082	2.0	1.0	194,5	2.0	1.0	43,9	2.0	1.6
		200	0,081	2,0	1,8	194,5	2,0	1,9	43,1	2,0	1,6
			0,081			194,6			43,7		
			0,082			119,5			43,4		
40	100	125	0,050	2,0	1,8	119,4	2,0	1,9	43,5	2,0	1,6
			0,050	2,0	.,0	119,5	,	.,5	43,9	2,0	.,0
			0,050			119,5			43,8		
			0,042			94,5			43,5		
		100	0,042	2,0	1,8	94,6	2,0	1,9	43,8	2,0	1,6
			0,042			94,7			43,2		
			0,042			94,7			43,6		
			0,195 0,195			244,7 244,8			54,1 54,2		
		250	0,195	2,0	1,8	244,8	2,0	1,9	53,5	2,0	1,6
			0,185			244,9			53,7		
			0,195			144,9			53,5		
			0,113			144,8			53,5		
50	100	150	0,116	2,0	1,8		144,9 2,0	2,0 1,9	54,0	2,0	1,6
			0,117			144,8			54,1		
			0,078			94,9			54,2		
		100	0,077	2,0	1,8	94,8	2,0	1,9	54,0	2,0	1,6
		100	0,076	2,0	1,0	94,8	2,0	1,5	53,7	2,0	1,0
			0,077			94,9			54,0		
			0,352			295,2			61,9		
		300	0,353	2,0	1,8	295,0	2,0	1,9	62,0	2,0	1,7
			0,343	, -	, ,	295,1	, ,	, -	61,1	, ,	,
			0,355			295,1			61,9		
			0,352			245,1			62,1		
60 100 250			0,298 0,299	2,0	1,8	245,1 245,2	2,0	1,9	62,1 62,3	2,0	1,6
			0,299			245,2			62,3		
			0,300			195,0			61,3		
			0,229			195,1			61,1		
		200	0,237	2,0	1,8	195,0	2,0	1,9	61,9	2,0	1,6
			0,229			195,0			61,1		
D	esvio Máxim	10		de Kerr	ma		mpo			são	
Repr	Reprodutibilidade (%)			5,5			0,2				
	Exatidão (%)			Aplicá	/el	5,4			1,8 8,9		
	Resultado Exatidão (C/NC)			Aplicá		5,4 Conforme			Conforme		
	do Reproduti	,		onforme			forme			orme	
· .ooartac			- 30			301			23111		

+55 (48) 3181-0368

2019117/8576

DATA ENSAIO: 07/11/2019

DATA EMISSÃO: 07/11/2019

Foco [F	F/FG]	FOC	O GROSS	0) istância Fo	oco De	tector [[cm]		100	
VALC	DRES NOMI	NAIS				VALORI	ES ME	DIDOS				
Tensão	Corrente	Tempo	ŀ	Kerma		Те	empo			Ter	nsão	
[kVp]	[mA]	[ms]	Kerma			Tempo			Ter	ısão		
[6]	[u	[0]	[mGy]	k	U95	[ms]	k	U95	[k\	/p]	k	U95
			0,673			394,8				1,2		
		400	0,668	2,0	1.0	394,9	2.0	1.0	54	1,1	2.0	1.6
		400	0,662	2,0	1,8	394,9	2,0	1,9	54	1,0	2,0	1,6
			0,651			395,1			53	3,7		
			0,486			294,9			53	3,5		
55	200	300	0,488	2,0	1,8	295,0	2,0	1,9		3,5	2,0	1,6
55	200	300	0,483	2,0	1,0	295,0	2,0	1,5		3,6	2,0	1,0
			0,485			295,1				3,8		
			0,331			194,8				3,6		
		200	0,323	2,0	1,8	194,9	2,0	1,9		3,4	2,0	1,6
		200	0,318	2,0	1,0	195,0	2,0	1,5		3,3	2,0	1,0
			0,305			194,9				2,9		
			1,413			495,1				3,9		
		500	1,399	2,0	1,8	495,2	2,0	1,9		3,9	2,0	1,6
			1,402	, ,	, -	495,2	, -	, -		3,9		, ,
			1,403			495,3				3,9		
			0,700			245,1				3,9		
65	200	250	0,710	2,0	1,8	245,1	2,0	1,9		1,0	2,0	1,6
			0,709			245,1			63,9 63,9			,-
			0,703			245,1						
			0,279			95,1				3,8		
		100	0,279	2,0	1,8	95,1	2,0	1,9		3,8	2,0	1,6
			0,281			95,1				3,7		
			0,282			95,1				3,9		
			1,255 1,259			295,2				5,5		
		300	1,259	2,0	1,8	295,4 295,4	2,0	1,9		5,0 5,3	2,0	1,6
			1,240			295,4				5,7		
			0,807			195,3				5,6		
			0,816			195,3				5,2		
75	200	200	0,818	2,0	1,8	195,2	2,0	1,9		5,9	2,0	1,6
			0,807			195,3				5,0		
			0,405			95,3				5,5		
			0,399			95,3				5,1		
		100	0,400	2,0	1,8	95,3	2,0	1,9		5,7	2,0	1,6
			0,400		95,3				5,5			
D	esvio Máxim	10		de Kerr	ma		mpo				ısão	
	Reprodutibilidade (%)			7,9			0,1		1,3			
-	Exatidão (%)		Não	Aplicá	/el		4,9		2,5			
	Resultado Exatidão (C/NC)			Aplicá		4,9 Conforme			Conforme			
	do Reproduti			onforme			forme				orme	

2019117/8576

DATA ENSAIO: 07/11/2019

DATA EMISSÃO: 07/11/2019

Para	Foco [FI	F/FG]	FOC	O GROSS	0		Distância Fo	oco De	tector [cm]		100		
Tensio Corrents Empo [ms] Kerma [ms] Kerma [ms] Kerma [ms] Kerma Ms U95 U95 Ms U95 U95 Ms U95 U9	VALC	DRES NOMI	NAIS				VALOR	ES MEI	ES MEDIDOS					
Figure	Topoño	Corrento	Tomno	ŀ	Kerma		Tempo				Ter	nsão		
Mathematical Registry Mat				Kerma			Tempo			Ten	são			
Repulse Rep	[(()	[1117]	[1110]		k	U95		k	U95	[k∖	/p]	k	U95	
Part														
Reproductiolic Reproduction R			100		20	1.8		20	19			2.0	16	
Real			100		2,0	1,0		2,0	1,5			2,0	1,0	
Regulation Re														
Solition														
Part	80	320	66		2,0	1,8		2,0	1,9			2,0	1,6	
Part														
Part														
Part														
Paragraph Par			50		2,0	1,8		2,0	2,0			2,0	1,6	
Part														
Part														
90 320														
Parish			125		2,0	1,8		2,0	1,9			2,0	1,6	
90														
90 320 100 0,880 0,880 0,880 0,880 0,880 0,880 0,880 0,880 0,880 0,880 0,880 0,880 0,599 0,599 0,598 0,588 0,587 0,587 0,597 0,598 0,587 0,587 0,199 0,19														
100														
Note	90	320	100		2,0	1,8		2,0	1,9			2,0	1,6	
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline A & A &$												1		
$ \begin{array}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$														
100			66	0,593	2.0	10	61,7	2.0	1.0	84	,4	2.0	17	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			00	0,588	2,0	1,0	61,7	2,0	1,9	83	,9	2,0	1,7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0,587			61,7			84	,2			
100														
100			100		20	1.8		2 0	19			2.0	16	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			100		2,0	1,0		2,0	1,5			2,0	1,0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
Total Part P														
1,0 1,0	100	100 320 66			2,0	1,8		2,0	1,9			2,0	1,6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,		,					, i	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							61,7							
0,594 0,601 0,594 0,601 0,6														
Desvio Máximo Taxa de Kerma 45,1 99,8 Reprodutibilidade (%) 4,0 Tempo Tensão Exatidão (%) Não Aplicável 9,9 5,9 Resultado Exatidão (C/NC) Não Aplicável Conforme Conforme			50		2,0	1,8		2,0	1,9			2,0	1,6	
Desvio MáximoTaxa de KermaTempoTensãoReprodutibilidade (%)4,02,01,7Exatidão (%)Não Aplicável9,95,9Resultado Exatidão (C/NC)Não AplicávelConformeConforme				0,594						•				
Reprodutibilidade (%)4,02,01,7Exatidão (%)Não Aplicável9,95,9Resultado Exatidão (C/NC)Não AplicávelConformeConforme	D	esvio Máxim	0											
Exatidão (%) Não Aplicável 9,9 5,9 Resultado Exatidão (C/NC) Não Aplicável Conforme Conforme				Taxo										
Resultado Exatidão (C/NC) Não Aplicável Conforme Conforme		, ,		Não		/el								
		. , ,												
			, ,											

+55 (48) 3181-0368

DATA ENSAIO: 07/11/2019

DATA EMISSÃO: 07/11/2019

2019117/8576

I | REPRODUTIBILIDADE DO CONTROLE AUTOMÁTICO DE EXPOSIÇÃO (CAE)

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 10%. Nível de Suspensão: > 20%

Resolução Normativa Nº 002/DIVS/SES de18/05/2015, Tabela 1.

Resultado: Não possui CAE.

J | COMPENSAÇÃO DO CAE PARA DIFERENTES ESPESSURAS

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 20%. Nível de Suspensão: > 40%

Resolução Normativa Nº 002/DIVS/SES de18/05/2015, Tabela 1.

Resultado: Não possui CAE.

K | RENDIMENTO DO TUBO

Periodicidade: Teste de aceitação, anual ou após reparos

Tolerância $30 \le R (\mu Gy/mAs) \le 65$ à 1 m para 80 kV e filtração total de 2,5 mmAl.

Nível de Suspensão: R< 20μGy/mAs, R> 80 μGy/mAs.

Resolução Normativa Nº 002/DIVS/SES de18/05/2015, Tabela 1.

Tensão	o [kVp]	80	DFD [cm]	100	Gera	ador	Monofásico			
Valor	es Selecior	nados		Med	idas		Rendimento			
Corrente [mA]	Tempo [ms]	[mAs]	Kerma [mGy]	Tempo [ms]	Tensão CSR [kVp] [mmAl]		μGy/mAs			
100	400	40	0,981	395,5	78,50	-	24,5			
200	200	40	0,921	195,3	77,60	-	23,0			
200	100	20	0,461	95,2	76,50	-	23,1			
320	66	21	0,474	61,7	75,60	-	22,4			
	Valores Mínimo e Máximo									
	Resultado (C/NC)									

2019117/8576

DATA ENSAIO: 07/11/2019 DATA EMISSÃO: 07/11/2019

L | Camada Semi-redutora (CSR)

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: Tabela A da Resolução Normativa 002/DIVS/SES de18/05/2015.

Nível de Suspensão: 20% menor que os valores da tabela A. Resolução Normativa Nº 002/DIVS/SES de18/05/2015, Tabela 1.

	VAL	ORES NOMIN	IAIS		VALORES	MEDIDOS	
GERADOR	Tensão [kV]	Corrente [mA]	Tempo [ms]	Tensão [kV]	Tempo [ms]	Dose [mGy]	CSR [mmAl]
	80,0	320	100	75,6	94,9	0,704	3,4
	80,0	320	100	75,6	94,9	0,704	3,4
	80,0	320	100	76,0	94,9	0,712	3,4
	80,0	320	100	75,6	94,9	0,714	3,4
00	80,0	320	66	75,5	61,6	0,479	3,4
-ÁS	80,0	320	66	75,5	61,6	0,467	3,3
MONOFÁSICO	80,0	320	66	75,0	61,6	0,467	3,4
Θ M	80,0	320	66	75,0	61,6	0,467	3,3
	80,0	320	50	74,9	44,9	0,351	3,3
	80,0	320	50	75,2	45,0	0,352	3,3
	80,0	320	50	75,0	44,9	0,351	3,3
	80,0	320	50	74,9	44,9	0,349	3,3
		RESULTADO			Média	k	U95
		TILOULTADO		3,3	2,0	7,8	
	RES	SULTADO [C/	NC]			Conforme	

M | RESOLUÇÃO ESPACIAL

Periodicidade: Teste de aceitação, anual ou após reparos. Tolerância: ≥ 2,5 pl/mm. Nível de Suspensão: < 1,5pl/mm. Resolução Normativa Nº 002/DIVS/SES de18/05/2015, Tabela 1.

kVp	mAs	Corrente	Pro	tocolo de Lei	DFD (cm)	
50	10	100		-		100
Identifica	ıção do IP		no do IP m]	Resolução [pl/mm]	Resu	ltado
51	51915		x 24	3,6	Conf	orme
59	59910		24 x 30		Conf	orme
75	75527		x 43	3,6	Conf	orme

2019117/8576

DATA ENSAIO: 07/11/2019 DATA EMISSÃO: 07/11/2019

N | EXATIDÃO DO SISTEMA DE COLIMAÇÃO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 2% da distância foco-pele. Nível de Suspensão: > 4%. Resolução Normativa Nº 002/DIVS/SES de18/05/2015, Tabela 1.

LO	CAL	Esquerda [cm]	Direita [cm]	Acima [cm]	Abaixo [cm]	Resultado
MESA	NOMINAL	9	7	9	7	Conforme
MESA	MEDIDO	7,5	7	8	5	Comonne
MURAL	NOMINAL	9	7	9	7	Conforme
MUNAL	MEDIDO	7	5	9	7	Comonne

O I ALINHAMENTO DO EIXO CENTRAL DO FEIXE DE **RAIOS X**

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 3°. Nível de Suspensão: ≥ 5°.

LOCAL	Inclinação [graus]	Resultado
MESA	1,5	Conforme
MURAL	1,5	Conforme

P | ALINHAMENTO DE GRADE

Periodicidade: Teste de aceitação, semestral ou após reparos.

Tolerância: sem artefatos ou lâminas aparentes.

Nível de Suspensão: Não possuir grade.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

LOCAL	Resultado
MESA	Conforme
MURAL	Conforme

Q I CONTATO TELA FILME

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: Sem perda de uniformidade.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

Não Aplicável

+55 (48) 3181-0368

2019117/8576

DATA ENSAIO: 07/11/2019 DATA EMISSÃO: 07/11/2019

R | ARTEFATOS NA IMAGEM

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: Imagens sem artefatos.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

Resultado: Conforme

S | INTEGRIDADE DOS CHASSIS E CASSETES

Periodicidade: Teste de aceitação e anual. Tolerância: Chassi e cassetes íntegros.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

U | UNIFORMIDADE DA IMAGEM

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 10%. Nível de Suspensão: >20%.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

V | DIFERENÇA DE SENSIBILIDADE ENTRE AS PLACAS DE FÓSFORO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 20%.

Nível de Suspensão: >40%.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

Tensão Utilizada [kVp]: 50 Corrente-Tempo [mAs] Corrente Utilizada [mA]: 100 Dist. Foco Filme [cm]

Protocolo Utilizado:

+55 (48) 3181-0368

contato@safetyrad.com.br | www.safetyrad.com.br

100

2019117/8576

DATA ENSAIO: 07/11/2019

DATA EMISSÃO: 07/11/2019

IP	Tamanho	ROI	Sinal	Desv. Pad.	RSR	Artefato	Uniformidade [%]	Resultado Uniformidade	Resultado Integridade	Desvio Sensibilidade	Resultado Sensibilidade
		12h	2370	96	24,688	Conforme	2,746781116	Conforme	Conforme	80,9734876	Conforme
		3h	2301	94	24,479						
51915	18 x 24	С	2358	99	23,818						
		6h	2355	98	24,031						
		9h	2266	98	23,122						
52284 183		12h	2357	97	24,299	Conforme	1,950718686	Conforme	Conforme	83,7758112	Conforme
		3h	2292	96	23,875						
	18 x 24	С	2373	89	26,663						
		6h	2369	87	27,23						
		9h	2297	93	24,699						
59910 24		12h	2050	93	22,043		5,997798973		Conforme	85,815855	Conforme
	0.4 0.0	3h	2225	92	24,185	Conforme		Conforme			
	24 x 30	С	2231	95	23,484						
		6h	2131	99	21,525						
		9h 12h	2267 2070	97 101	23,371						
	24 x 30	3h	2227	101	20,495 21,833	Conforme	5,720531973	Conforme	Conforme	88,9006072	Conforme
61397		C	2235	99	22,576						
01031		6h	2162	98	22,061						
		9h	2284	99	23,071						
		12h	2000	101	19,802						$\overline{}$
	35 x 43	3h	2239	101	22,168	Conforme	11,27672789	Conforme	Conforme	92,5625967	Conforme
75528		С	2346	100	23,46						
		6h	2240	99	22,626						
		9h	2446	96	25,479						
	35 x 43	12h	2359	103	22,903	Conforme	7,474695043	Conforme	Conforme	96,1538462	Conforme
		3h	2139	105	20,371						
75527		С	2365	99	23,889						
		6h	2442	96	25,438						
		9h	2254	101	22,317						

DATA ENSAIO: 07/11/2019 DATA EMISSÃO: 07/11/2019

2019117/8576

W | DISTORÇÃO GEOMÉTRICA

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: ≤ 2%. Nível de Suspensão: >4%.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

Protocolo	kVp	mAs	Corrente	DFD (cm)		
	-	50	10	100	100	
Identificação do IP	Tamanho do IP (cm x cm)	Tamanho Nominal [cm]		Tamanho Medido [cm]		
51915	18 x 24	12		12		
59910	24 x 30	12		12		
75527 35 x 43		12		12		
Resultado					Conforme	

X | EFETIVIDADE DO CICLO DE APAGAMENTO

Periodicidade: Teste de aceitação, anual ou após reparos.

Tolerância: Ausência de imagem residual.

Resolução Normativa Nº002/DIVS/SES de 18/05/2015, Tabela 1.

Protocolo	kVp	mAs	Corrente	DFD (cm)		
	80	10	100	100		
Identificação do IP	Tamanho do IP (cm x cm)	Resultado				
59910	24 X 30	Conforme				

Y I PARECER TÉCNICO

Segundo a Resolução Normativa N° 002/DIVS/SES (ERRATA Publicada no DOE/SC N° 20.654 de 13/11/2017), todos os testes realizados apresentaram conformidade. Sendo assim o equipamento avaliado pode operar com legitima observação e cuidados no que se refere a radioproteção.

OBSERVAÇÕES:

- 1) A validade do relatório é de 1 ano, a partir da data do ensaio.
- 2) O Responsável deve manter o relatório arquivado e a disposição da autoridade sanitária local.

R. Soldado Abelardo Mendonça Sobrinho, 211, Sala 02, Carvalho, Itajai, SC, CEP 88307-620

2019117/8576

DATA ENSAIO: 07/11/2019

DATA EMISSÃO: 07/11/2019

Z | GRÁFICOS

O gráfico apresentou resposta positiva e de acordo com o comportamento esperado, característico de um equipamento monofásico.

A1 | FOTOS

RENAȚO D. PACIÊNCIA

ESPECIALISTA EM FÍSICA DO RADIODIAGNÓSTICO

+55 (48) 3181-0368

contato@safetyrad.com.br | www.safetyrad.com.br

