Лабораторная работа №8. Модель конкуренции двух фирм

с/б 1032186063 | НФИбд-01-18

Доборщук Владимир Владимирович

Содержание

Цели и задачи	4
Теоретическая справка	5
Программная реализация	9
Подготовка к моделированию	9
Построение графиков для модели	10
Модель 1	10
Модель 2	11
Выводы	13

Лабор	аторная работа №8. Модель конкуренции двух фирм	3 апреля 2	2021
Спис	ок иллюстраций		
1	График роста оборотных средств для первого случая		11
2	График роста оборотных средств для второго случая		12

Цели и задачи

Цель: изучить модель конкуренции двух фирм, а также реализовать её программно.

Задачи:

- изучить теорию о модели конкуренции двух фирм
- программно реализовать графики модели для двух различных случаев

Теоретическая справка

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

N – число потребителей производимого продукта.

S – доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.

M – оборотные средства предприятия.

au – длительность производственного цикла.

p – рыночная цена товара.

 $ilde{p}$ – себестоимость продукта, то есть переменные издержки на производство единицы продукции.

 δ – доля оборотных средств, идущая на покрытие переменных издержек.

 κ – постоянные издержки, которые не зависят от количества выпускаемой продукции

Q(S/p) – функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q=q-k\frac{p}{S}=q\left(1-\frac{p}{p_{cr}}\right),$$

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при p = p_{cr} (критическая стоимость продукта) потребители отказываются от приобретения товара.

Величина $p_{cr}=Sq/k$. Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса в форме вышеуказанного уравнения является пороговой (то есть, Q(S/p) = 0 при $p \geq p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + Nq\left(1 - \frac{p}{p_{cr}}\right)p - \kappa$$

Уравнение для рыночной цены p представим в виде

$$\frac{dp}{dt} = \gamma \left(-\frac{M\delta}{\tau \tilde{p}} + Nq \left(1 - \frac{p}{p_{cr}} \right) \right)$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу.

Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ . При заданном M последнее уравнение описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае его можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\tilde{p}} + Nq\left(1 - \frac{p}{p_{cr}}\right) = 0$$

Из этого равенства следует, что равновесное значение цены p равно

$$p = p_{cr} \left(1 - \frac{M\delta}{\tau \tilde{p} N q} \right)$$

Второе уравнение с учетом значения p приобретает вид

$$\frac{dM}{dt} = M \frac{\delta}{\tau} \left(\frac{p_{cr}}{\tilde{p}} - 1 \right) - M^2 \left(\frac{\delta}{\tau \tilde{p}} \right)^2 \frac{p_{cr}}{Nq} - \kappa$$

Данное уравнение имеет два стационарных решения, соответствующих условию $\frac{dM}{dt}=0$:

$$\tilde{M}_{1,2}=\frac{1}{2}a\pm\sqrt{\frac{a^2}{4}-b}$$

где

$$a = Nq \left(1 - \frac{\tilde{p}}{p_{cr}}\right) \tilde{p} \frac{\tau}{\delta}, b = \kappa Nq \frac{\left(\tau \tilde{p}\right)^2}{p_{cr} \delta^2}.$$

Случай 1:

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

Случай 2:

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - (\frac{b}{c_1} + 0.0005) M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

Для обоих случаев:

N – число потребителей производимого продукта

au – длительность производственного цикла

p – рыночная цена товара

 \tilde{p} – себестоимость продукта, то есть переменные издержки на производство единицы продукции

q – максимальная потребность одного человека в продукте в единицу времени

$$heta=rac{t}{c_1}$$
 - безразмерное время $M_0^1=4.7, M_0^2=4.2, p_{cr}=11.1, N=32, q=1, au_1=17, au_2=27, ilde{p_1}=7.7, ilde{p_2}=5.5$

$$\begin{array}{l} 7.7, \tilde{p_2} = 5.5 \\ a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p_1^2} N q}, a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p_2^2} N q}, b = \frac{p_{cr}}{\tau_1^2 \tilde{p_1^2} \tau_2^2 \tilde{p_2^2} N q}, c_1 = \frac{p_{cr} - \tilde{p_1}}{\tau_1 \tilde{p_1}}, c_2 = \frac{p_{cr} - \tilde{p_2}}{\tau_2 \tilde{p_2}} \\ t = c_1 \theta \end{array}$$

Программная реализация

Подготовка к моделированию

Все данные соответствуют варианту $14 = (1032186063 \mod 70) + 1$.

Инициализация библиотек

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from math import sin
from scipy.misc import derivative

from jupyterthemes import jtplot
jtplot.style(context='notebook', fscale=1.2, gridlines='--')
```

Начальные данные и необходимые функции

```
1 p_cr = 11.1
2 \text{ tau1} = 17
3 p1 = 7.7
4 \text{ tau2} = 27
5 p2 = 5.5
6 N = 32
7 \, q = 1
9 a1 = p_{cr} / (tau1**2 * p1**2 * N * q)
10 a2 = p_{cr} / (tau2**2 * p2**2 * N * q)
11 b = p_{cr} / (tau1**2 * tau2**2 * p1**2 * p2**2 * N * q)
12 c1 = (p_cr - p1)/(tau1 * p1)
13 c2 = (p_cr - p2)/(tau2 * p2)
14
15 t0 = 0
16 \times 0 = [4.7, 4.2]
17 t = np.arange(t0, 30, 0.01)
```

Объявим необходимые функции, исходя из данной нам информации в теоретической справке.

```
def dx_f(x,t):
    dx1 = x[0] - (a1/c1)*x[0]**2 - (b/c1)*x[0]*x[1]
    dx2 = (c2/c1)*x[1] - (a2/c1)*x[1]**2 - (b/c1)*x[0]*x[1]
    return [dx1, dx2]

def dx_s(x,t):
    dx1 = x[0] - (a1/c1)*x[0]**2 - (b/c1 + 0.0005)*x[0]*x[1]
    dx2 = (c2/c1)*x[1] - (a2/c1)*x[1]**2 - (b/c1)*x[0]*x[1]
    return [dx1, dx2]
```

Заложим в переменные решения для наших СДУ с помощью функции odeint модуля scipy.integrate.

```
1 y1 = odeint(dx_f, x0, t)
2 y2 = odeint(dx_s, x0, t)
```

Построение графиков для модели

Модель 1

```
1 plt.plot(t, y1)
2 plt.ylabel('M, млн')
3 plt.xlabel('t')
4 plt.title('График ростаоборотныхсредствдляпервогослучая ')
5 plt.show()
```


Рис. 1: График роста оборотных средств для первого случая

Модель 2

```
1 plt.plot(t, y2)
2 plt.ylabel('M, млн')
3 plt.xlabel('t')
4 plt.title('График ростаоборотныхсредствдлявторогослучая ')
5 plt.show()
```


Рис. 2: График роста оборотных средств для второго случая

Выводы

Мы изучили теорию о модели конкуренции двух фирм, а также реализовали программно два случая этой модели с помощью Python.