

MD4224 High Brightness

Foteini Asvesta, Hannes Bartosik, Alex Huschauer, Myrsini Kaitatzi, Haroon Rafique (BE-ABP)

haroon.rafique@cern.ch

02.04.19

Table of Contents

Introduction MD Setup MD Analysis

haroon.rafique@cern.ch

MD Results Summary Conclusion

Introduction

MD Setup MD Analys MD Results
Summary
Conclusion

Motivation

- ► **Motivation:** Investigate possible effects of space charge for injection setup in the PS.
- ► MD4224: Static tune scan investigating integer resonance in each plane separately.
- ► Beam: MD4224_LHC_BCMS25_2018_PSB_PN2 MD4224_48b_BCMS
- ► Tune Spread: 0.2/0.24

Introduction
MD Setup
MD Analysis

haroon.rafique@cern.ch

MD Results Summary Conclusion

MD4224 Parameters

Parameter	Value
Intensity N_p $[10^{10}]$	≈72.5
Normalised horizontal RMS emittance ϵ_x^n [mm mrad]	1.2
Normalised vertical RMS emittance ϵ_y^n [mm mrad]	1
Bunch length $\sigma_t[ns]$	140
Momentum spread $\frac{\Delta p}{p}$ [10 ⁻³]	0.87
Horizontal maximum tune spread $\Delta Q_{x,\mathrm{max}}$	0.2
Vertical maximum tune spread $\Delta Q_{y,\mathrm{max}}$	0.24
Harmonic number h	9
RF voltage $V_{rf}~[\mathrm{kV}]$	21.2
Horizontal chromaticity Q_x'	0.77
Vertical chromaticity Q_y'	-2.85
Kinetic energy of the stored beam $[\mathrm{GeV}]$	1.4
Relativistic β	0.916
Relativistic γ	2.4921
Synchrotron Frequency [Hz]	634

Tune Scan

Working Points: Operational (6.21, 6.24)

Horizontal scan (6.07-6.21, 6.24). Vertical scan (6.21, 6.10-6.24).

MD4224: High Brightness

- ► Orbit corrected @ nominal WP, no degredation at lower Qx (orbit variation due to incorrect setting of PR.DHZ01 details later).
- ► Transverse feedback used in the horizontal plane (set to individual shot tune).
- ► Accessible tune limits restricted by RMs current of low energy quadrupoles (LEQs) which must be monitored to stay under the limit of 6 Amps (current depends on whole super cycle).
- ▶ WS only available for same plane as scan (wire stuck in other plane).
- ► Clone of operational low-chroma BCMS cycle, with pole face windings (PFW) and skew quadrupoles used for chromaticity and coupling correction respectively.
- ► Tune measurement chirp active at 190 ms for all measurements: gives losses at flat bottom and coupling resonance.
- \blacktriangleright Only the first \approx 20 ms (c170 c190) was important for these measurements.

Cycle

3 Basic Periods, 1.4 GeV injection flat-top.

Injection @ 170 ms. Internal dump @ 1300 ms.

Cycle

Wirescanner Measurements

@ 172, 175, or 185 ms

Transverse Feedback

H Scan: Set in Matlab script - small constant offset

Negligible as losses are a few %.

Tomo

MD Setup
MD Analysis

haroon.rafique@cern.ch

MD Results
Summary
Conclusion

Analysis

- ▶ Classical formula and single $\frac{dp}{p}$ value used for $\epsilon_{x,y}$ calculation
- ▶ Emittance calculated with σ and second moment: $\epsilon_{x,y} = \beta \gamma \frac{\sigma^2}{\beta(s)}$ and $\epsilon_{x,y} = \beta \gamma \frac{\mu'^2}{\beta(s)}$.
- Optics changes taken into account at different tunes.
- \blacktriangleright ± 40 mm used for wire scanner $\epsilon_{x,y}$ calculation
- ► Losses calculated between 170 1285 ms

Intensity

Horizontal Scan

Losses calculated between 170 - 1285 ms

Intensity

Vertical Scan

Losses calculated between 170 - 1285 ms

Orbit Deviation

Orbit Deviation

Source of orbit offset

Function on orbit corrector PR.DHZ01

Horizontal Scan: Horizontal Orbit

Large orbit deviation \approx 10 mm in 15 ms

Horizontal Scan: Vertical Orbit

Small orbit deviation < 1 mm

Vertical Scan: Horizontal Orbit

haroon.rafique@cern.ch

Small orbit deviation < 1 mm

Vertical Scan: Vertical Orbit

Small orbit deviation < 1 mm

Optics for Analysis: Generated with MAD-X

Horizontal scan: WS 65.H Q_y = 6.24 Vertical scan: WS 64.V Q_x = 6.21

Q_x	eta_x [m]	eta_x [m]	D_x [m]	Q_y	eta_x [m]	eta_x [m]	D_x [m]
6.07	18.25	12.32	4.34	6.10	11.66	25.14	2.63
6.08	18.86	12.29	4.17	6.11	11.70	24.63	2.62
6.09	19.35	12.27	4.02	6.12	11.74	24.22	2.61
6.10	19.75	12.24	3.90	6.13	11.79	23.89	2.59
6.11	20.09	12.21	3.80	6.14	11.83	23.61	2.58
6.12	20.39	12.18	3.71	6.15	11.87	23.38	2.57
6.13	20.64	12.15	3.64	6.16	11.91	23.19	2.55
6.14	20.86	12.12	3.59	6.17	11.95	23.02	2.30
6.15	21.05	12.09	3.51	6.18	11.99	22.88	2.53
6.16	21.22	12.07	3.45	6.19	12.03	22.76	2.51
6.17	21.37	12.04	3.40	6.20	12.07	22.65	2.50
6.18	21.51	12.01	3.35	6.21	12.12	22.55	2.49
6.19	21.64	11.98	3.31	6.22	12.17	22.47	2.47
6.20	21.75	11.96	3.27	6.23	12.20	22.39	2.46
6.21	21.86	11.93	3.23	6.24	12.24	22.32	2.45

Wire Scanner Fitting

Procedure similar to that found in Appendix B of: https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.20.081006

- ▶ 5 parameter Gaussian fit to find mean and σ .
- \blacktriangleright ± 6 σ cut to find slope.
- ► Remove slope.
- 3 parameter Gaussian fit to find centre.
- ► 2nd moment calculation.

Wire Scanner Fitting

Example of fitting procedure and end result:

Introduction MD Setup MD Analysis

haroon.rafique@cern.ch

MD Results
Summary

Horizontal Scan

Horizontal Scan Emittance

Vertical Scan

Vertical Scan Emittance

Introduction
MD Setup
MD Analysis

haroon.rafique@cern.ch

MD Results
Summary

Summary

► Clear emittance blowup close to the integer in both planes.

- ▶ Due to core crossing the integer, and corresponding tune spread reduction.
- ▶ No obvious dependency on WS measurement time implies very fast blowup.

Introduction MD Setup MD Analysis

haroon.rafique@cern.ch

MD Results
Summary
Conclusion

Conclusions

What did we do?

Took a high brightness PS beam close to the integer tune 6 in each plane respectively.

Why did we do it?

To see the impact of the integer resonance on the beam behaviour. These measurements provide a useful benchmarking tool to ascertain the reliability of our simulation models.

Conclusions

Why should you care?

This helps us understand limitations of the high brightness PS beam, provides an opportunity to investigate space charge mechanisms close to the integer, allows us to use simulations to better understand the real machine. By investigating the agreement between simulations and measurements we can improve our tools and models.

Acknowledgements

▶ MD Facilitation: PSB & PS Operators.

MD4224: High Brightness Logbook Entries

- **23.08.18 @ 14:58**
- **31.08.18 @ 13:51**
- ▶ 03.09.18 @ 10:21
- ▶ 04.09.18 @ 08:02
- **▶** 05.09.18 @ 08:21

