УДК 62-50:519.49

В.М. Григорьев

СОВМЕСТНОСТЬ И ЭКВИВАЛЕНТНОСТЬ ЛИНЕЙНЫХ НЕСТАЦИОНАРНЫХ СИСТЕМ УПРАВЛЕНИЯ

Актуальность темы. Вопросы анализа совместности и эквивалентности систем входят в число задач математической теории систем, с необходимостью возникающих при анализе объектов управления и синтезе систем управления.

Анализ последних исследований. В рамках операторного подхода к решению задач анализа и синтеза линейные нестационарные системы или объеты управления представляются либо в виде Ах = Ви, либо а виде х = Вz, Аz = u, где А и В -операторные матрицы, u - вход, y - выход, z - неизмеряемые выходы. В работе [1] получены условия эквивалентности представлений системы для каждого из двух способов в отдельности. Однако не изучены вопросы эквивалентности представления одной системы в двух различных формах. В работе [1] получены также достаточные условия совместности систем в виде полноты ранга матрицы А.

Постановка задачи. Получить необходимые и достаточные условия совместности и эквивалентности линейных нестационарных систем управления, выраженные в терминах рангов и взаимной простоты матриц над некоммутативным кольцом линейных нестационарных дифференциальных операторов.

Обоснование полученных результатов. В качестве модели линейной нестационарной системы управления (ЛНСУ) будем использовать систему линейных нестационарных дифференциальных уравнений, записаную в операторной фоме

$$A_{l}x = B_{l}u$$

(1)

где $A_i \in R^n \times^n$, $B_i \in R^n \times^m$, $u \in X^m$. Здесь R – кольцо линейных нестационарных дифференциальных операторов с коэффициентами из произвольного поля функций Q, замкнутого относительно дифференцирования, X - пространстве сигналов, состоящее из

бесконечнодифференцируемых, за исключением конечного числа точек, функций [2].

Исследуем условия совместности системы (1), то есть найдём, какие ограничения должны выполняться для матриц A_l и B_l , чтобы при $\forall u \in X^m$ система имела решение $x \in X^n$.

Лемма. Множество пар (x, u), удовлетворяющих систему (1) не изменится, если её умножить слева на произвольную обратимую над R матрицу $U \in \mathbb{R}^{n \times n}$.

Доказательство. Если A_i $x_1 = B_i u_1$, где $x_1 \in X^n$, $u_1 \in X^m$, то для $U \in R^n \times^n$ $A_2 x_1 = B_2 u_1$, где $A_2 = U A_i$, $B_2 = U B_i$. Пусть $U^{-1} \in R^n \times^n$ и $A_2 x_2 = B_2 u_2$, где $x_2 \in X^n$, $u_2 \in X^m$. Умножая последнее равенство слева на U^{-1} , получим $A_i x_2 = B_i u_2$. Ч.Т.Д.

Теорема 1. Для совместности системы (1) необходимо и достаточно, чтобы ранг матрицы A_i был равен рангу расширенной матрицы $|A_i|$ B_i .

Доказательство. Приведём матрицу в (1) к верхней правой ступенчатой (ВПС) матрице [3] $A_2 = UA_I$, где U, $U^{-1} \in \mathbb{R}^n \times^n$. Умножим систему (1) слева на матрицу U

$$A_2 x = B_2 u ,$$
(2)

где $A_2 = UA_1$, $B_2 = UB_1$. Согласно Лемме, такие действия не изменят множества пар (x, u), удовлетворяющих систему (1). Не изменятся и ранги (rk) матриц A_1 и $|A_1|$ B_1 , причём ранг матрицы A_1 равен числу ненулевых строк в матрице A_2 [3].

Необходимость. Умножим слева матрицу $C = |A_i| B_i|$ на обратимую над R матрицу $T \in R^n \times^n$, приводящую C к ВПС-матрице C_2 . Если rk C = I, то число ненулевых строк в матрице C_2 равно I, а значит, ранг матрицы TA_i , а следовательно и A_i , не может привышать I. Пусть rk $A_i < rk$ $|A_i|$ $B_i|$, но система совместна. Тогда B(2) число ненулевых строк в матрице B_2 больше, чем у матри-

цы A_2 . Следовательно, имеет место соотношение $\sum_{j=1}^m b_{k+1,j} u_j = 0$, I = 1, 2... I-k, где $(u_1, u_2... u_m) = u^T$, k = rk A_I , из которого следует, что и должно быть решением некоторой однородной системы,

т.е. не может быть произвольным. Противоречие. Следовательно, $rk A_l = rk |A_l B_l|$.

Достаточность. Пусть $rk A_i = rk |A_i B_i| = r$. Распишем r-ю строку уравнения (2), которая будет первой ненулевой строкой

снизу: $\sum_{i=0}^{n-s} a_{r,s+i} x_{s+i} = \sum_{i=0}^{m} b_{r,i} u_i$, где s \geq r – номер первого ненулевого

элемента в r-й строке матрицы A_2 . Фиксируя для x_{s+1} , x_{s+2} ... x_n , u_1 , u_2 ... u_m произвольные элементы из X, получаем уравнение

$$a_{r,s}x_s = -\sum_{i=1}^{n-s} a_{r,s+i}x_{s+i} + \sum_{i=1}^{m} b_{r,i}u_i,$$
 (3)

которое согласно [2], всегда имеет решение в X. Рассматривая (r-1)-ю строку системы (2), имеем

$$a_{r-1,s}x_s = -\sum_{i=1}^{n-l} a_{r-1,l+i}x_{l+i} + \sum_{i=1}^{m} b_{r-1,i}u_i,$$
 (4)

где $I \ge r-1$ – номер первого ненулевого элемента в (r-1) –й строке матрицы A_2 . Взяв в (4) для x_{l+1} , x_{l+2} ... x_{s-1} произвольные элементы из X, а для x_s , x_{s+1} ... x_n , u_1 , u_2 ... u_m функции из уравнения (3), найдём, используя [2], решение x_l . Продолжая процесс до первой строки включительно, получим решения x_k , x_{k+1} ... x_{l-1} , где k – номер первого ненулевого элемента в первой строке A_2 . Для x_1 , x_2 ... x_{k-1} , возьмём любые функци из X. Ч.Т.Д.

В качестве моделей ЛНСУ рассмотрим также последовательное соединение двух систем:

$$x = B_r z, A_r z = u, (5)$$

где $x \in X^n$, $u \in X^m$, $B_r \in R^n \times^m$, $A_r \in R^m \times^m$.

Следствие. Если в системе (1) rk $A_l = n$ (соответственно в (5) rk $A_r = m$), то она совместна при произвольной матрице B_l (B_r).

Исследуем эквивалентность систем (1) и (5), определяемую следующим образом.

Определение 1. Зафиксируем в X^m произвольную вектор-функцию и. Системы (1) и (5), эквивалентны, если:

1) Для любого решения х уравнения (1) во втором уравнении системы (5) найдётся такое решение z, что $x = B_r z$.

2) Для любого решения z второго уравнения в (5), система (1) имеет решение $x = B_r z$.

Перед доказательством теоремы об эквивалентности приведём ряд сведений из теории матриц над кольцом линейных нестационарных дифференциальных операторов R, касающихся канонических форм и общих делителей.

Канонические формы. Пусть $C \in \mathbb{R}^{n \times n}$ и rk C = n. Приведём С к ВПС-матрице D = UC, где U - элементарная строчная матрица. Матрица U обратима, следовательно rk D = n. Отсюда D- есть верхнетреугольная матрица с ненулевыми диагональными элементами. Рассмотрим в D элемент $d_{2,2}$. Если $d(d_{2,2}) \le$ $d(d_{1,2})$, то применим левый алгоритм деления: $d_{1,2} = cd_{2,2} + l$, c, l $\in R$, $d(I) < d(d_{2,2})$. Здесь d(.) – степень дифференциальгого оператора. Вычтем из первой строки вторую, умноженную слева на с. Рассмотрим элемент $d_{2,2}$. Если $d(d_{3,3}) \leq d(d_{2,3})$ и/или $d(d_{3,3}) \leq$ $d(d_{1,3})$, то используя левый алгоритм деления: $d_{1,3} = c_1 d_{3,3} + l_1$, $d_{2,3} = c_2 d_{3,3} + l_2$, c_i , $l_i \in R$, $d(l_i) < d(d_{3,3})$, i=1, 2. Вычтем из первой и/или второй строки третью строку, умноженую на c_1 и c_2 соответственно. Продолжая этот процесс вплоть до элемента $d_{n,n}$ включительно, получим матрицу, у которой степень (i, i)-го элемента выше степени (j, i)-го элемента, j<i, i=2...n. Применяя вторую строчную операцию, сделаем диагональные элементы матрицы моническими операторами у которых коэффициенты при старших степенях оператора дифференцирования равны единице. Полученную матрицу обозначим как F. Причём F = VD, где V, $V^{-1} \in \mathbb{R}^{n \times n}$. В целом F = LC, где L = VU, L, $L^{-1} \in \mathbb{R}^{n \times n}$.

Покажем, что полученная верхнетреугольная матрица F определена единственым образом. Доказательство производится аналогично стационарному случаю [4]. Пусть $_1$ $F = L_1$ C и $_2$ $F = L_2$ C, где $_i$ F получены из матрицы C указанным выше способом и L_i , L_i - 1 \in $R^n \times ^n$, i = 1, 2. Тогда: $_1$ $F = T^{1,2}$ $_2$ F , $_2$ F = $T^{2,1}$ $_1$ F, где $T^{1,2}$ = L_1L_2 - 1 , $T^{2,1}$ = L_2L_1 - 1 . $T^{1,2}$, $T^{2,1}$, $T^{2,1}$, $T^{2,1}$, $T^{2,1}$ = $T^{2,1}$ $T^{2,1}$.

Так как $_1$ F и $_2$ F веерхнетреугольная матрица, то такими же будут и матрицы $\mathsf{T}^{1,2}$ и $\mathsf{T}^{2,1}$. Рассмотрим в $_1$ F и $_2$ F диагональные элементы: $_1$ $\mathsf{f}_{j,j}=(\mathsf{t}^{1,2})_{j,j}$ $_2$ $\mathsf{f}_{j,j}$, $_2$ $\mathsf{f}_{j,j}=(\mathsf{t}^{2,1})_{j,j}$ $_1$ $\mathsf{f}_{j,j}$, j=1,2...n. Отсюда

 $d(\ _1\ f_{j,j})=d(\ _2\ f_{j,j})$ и $d((t^{1,2})_{j,j})=d((t^{2,1})_{j,j})$, а так как $\ _1\ f_{j,j},\ _2\ f_{j,j}$ – монические операторы, то $(t^{1,2})_{j,j}=(t^{2,1})_{j,j}=1$ и $\ _1\ f_{j,j}=\ _2\ f_{j,j}$, j=1, 2...n. Возьмём $\ _1\ F$ второй столбец. Так как $(t^{1,2})_{1,1}=1$, то $\ _1\ f_{1,2}=\ _2\ f_{1,2}+(t^{1,2})_{1,2}\ _2\ f_{2,2}$. Пусть $(t^{1,2})_{1,2}\neq 0$. По построению $\ _2\ F$ $d(\ _2\ f_{1,2})< d(\ _2\ f_{2,2})$. Следовательно $d(\ _1\ f_{1,2})\geq d(\ _2\ f_{2,2})$. Однако $\ _1\ f_{2,2}=\ _2\ f_{2,2}$, тогда $d(\ _1\ f_{1,2})\geq d(\ _1\ f_{2,2})$, что противоречит структуре матрицы $\ _1\ F$. Отсюда $(t^{1,2})_{1,2}=0$ и $\ _1\ f_{1,2}=\ _2\ f_{1,2}$. Перейдём в к третьему столбцу. Учитывая, что $(t^{1,2})_{1,2}=0$, $(t^{1,2})_{2,2}=(t^{1,2})_{3,3}=1$, имеем $\ _1\ f_{1,3}=\ _2\ f_{1,3}+(t^{1,2})_{1,3}$ $\ _2\ f_{3,3}$. Пусть $(t^{1,2})_{1,3}\neq 0$. Так как $d(\ _2\ f_{1,3})< d(\ _2\ f_{3,3})$, то $d(\ _1\ f_{1,3})\geq d(\ _2\ f_{3,3})$, но $\ _1\ f_{3,3}=\ _2\ f_{3,3}$. Противоречие. Следовательно $(t^{1,2})_{1,3}=0$ и $\ _1\ f_{1,3}=\ _2\ f_{2,3}$. Рассуждая аналогично для последующих столбцов, доказываем, что $\ _1\ F=\ _2\ F$.

Доказанная единственность матрицы F позволяет назвать F верхней правой канонической формой (ВПКФ) матрицы C. Используя элементарные строчные операции, аналогичным образом определим левую нижнюю каноническую форму (НЛКФ) матрицы C.

Пусть матрица С обратима над R. Обратная к F матрица $E \in \mathbb{R}^{n \times m}$ будет верхнетреугольной. Отсюда $e_{i,i}f_{i,i}=1$ и $d(e_{i,i})=d(f_{i,i})=0$, i=1,2...n, а так как $f_{i,i}$ - монические операторы, то $e_{i,i}=1$. По построению, структура матрицы F такова, что $d(f_{j,i}) < d(f_{i,i})$, i=2,3...n, j < i. Отсюда $F = I_n$. L является элементарной строчной матрицей. Следовательно, такой же будет и матрица $C = L^{-1}$. Приводя матрицу C к НЛКФ, можно показать, что C является элементарной столбцовой матрицей. Следовательно, доказано, что такие свойства матриц над R как элементарность по строкам, столбцам и обратимость над R являются эквивалентными понятиями.

Наибольшие общие делители. Необратимая над R матрица $C_i \in R^n \times^n$ ($C_r \in R^m \times^m$) называется левым (правым) наибольшим общим делителем (ЛНОД) (соответсвенно ПНОД) матриц $A_i \in R^n \times^n$, $B_i \in R^n \times^m$ ($A_r \in R^m \times^m$, $B_r \in R^n \times^m$), если C_i (C_r) является общим левым (правым) делителем A_i и B_i (A_r и B_r):

$$A_{l} = C_{l} A_{l}^{\alpha}, B_{l} = C_{l} B_{l}^{\alpha} (A_{l}^{\alpha} \in \mathbb{R}^{n \times n}, B_{l}^{\alpha} \in \mathbb{R}^{n \times m})$$

$$((A_{r} = A_{r}^{\alpha} C_{r}, B_{r} = B_{r}^{\alpha} C_{r}) (A_{r}^{\alpha} \in \mathbb{R}^{m \times m}, B_{r}^{\alpha} \in \mathbb{R}^{n \times m})),$$

$$(6)$$

а все общие левые (правые) делители A_l^{α} и B_l^{α} (A_r^{α} и B_r^{α}) обратимы над R. A_I и B_I (A_r и B_r) взаимно просты слева (справа), если все их левые (правые) делители обратимы над R.

Предложение 1. Матрицы A_l и B_l (A_r и B_r) взаимно просты слева (справа) тогда и только тогда, когда существуют такие матрицы $Z \in \mathbb{R}^{n \times n}$ $Y \in \mathbb{R}^{m \times n}$ ($Z \in \mathbb{R}^{m \times m}$, $Y \in \mathbb{R}^{m \times n}$), что

$$A_1Z + B_1Y = I_n \qquad (ZA_r + Y B_r = I_m) \tag{7}$$

Достаточность. Пусть выполнено соотношение (7) и матрицы A_i и B_i имеют общий делитель C_i . Тогда в (7) $A_iZ + B_iY = I_n = C_iD$, где $D = A_i^{\alpha}Z + B_i^{\alpha}Y$. Отсюда следует обратимость делителя C_i .

Для правого случая доказательство аналогично.

Необходимость. Пусть A_i и B_i взаимно посты слева. Воспользовавшись следствием из [3], имеем

$$|A_1 B_1|U = |D 0^n \times^m | \tag{8}$$

где U, U⁻¹ \in R^(n+m) \times ^(n+m). Умножим (8) справа на U⁻¹. С учётом обозначений U⁻¹ = $\begin{vmatrix} A_l^{\alpha} & B_l^{\alpha} \\ * & * \end{vmatrix}$ получим A_l = D A_l^{α} , B_l = D B_l^{α} . По опре-

делению $D^{-1} \in \mathbb{R}^{n \times n}$. Обозначая $U = \begin{vmatrix} Z_1 & * \\ Y_1 & * \end{vmatrix}$ из (8) получим $A_i Z_1 + B_i Y_1 = D$. Умножая справа последнее соотношение на D^{-1} , приходим к равенству (7).

Правый аналог предложения доказывается подобным образом путём приведения матрицы $\left| rac{A_r}{B_r}
ight|$ к ВПС-матрице $\left| rac{D}{0^{nxm}}
ight|$.

Укажем способ нахождения наибольших общих делителей.

Предложение 2. Рассмотрим матрицу $E = |A_l|B_l|$ ($E = \begin{vmatrix} A_r \\ B_r \end{vmatrix}$). Используя следствие из [3], имеем

$$EU = |C_1 O^n \times^m| \quad (UE = \begin{vmatrix} C_r \\ O^{nxm} \end{vmatrix}), \tag{9}$$

где U, U⁻¹ \in R^{(n+m) \times (n+m)}, C_I \in R^{n \times n} (C_r \in R^{m \times m}). Тогда матрица C_I (C_r) в (9) является ЛНОД (ПНОД) матриц A_I и B_I (A_r и B_r).

Доказательство. Обозначим

$$U^{-1} = \begin{vmatrix} A_l^{\alpha} & B_l^{\alpha} \\ W & V \end{vmatrix} \qquad (U^{-1} = \begin{vmatrix} A_r^{\alpha} & W \\ B_r^{\alpha} & V \end{vmatrix})$$

$$(10)$$

$$U = \begin{vmatrix} Z & -B_r^{\beta} \\ Y & A_r^{\beta} \end{vmatrix} \qquad (U = \begin{vmatrix} Z & Y \\ -B_l^{\beta} & A_l^{\beta} \end{vmatrix})$$

$$(11)$$

Используя (9), имеем $A_lZ + B_lY = C_l$ ($ZA_r + YB_r = C_r$). Умножая (9) справа (слева) на U^{-1} , получим

$$A_{l} = C_{l} A_{l}^{\alpha}, B_{l} = C_{l} B_{l}^{\alpha}$$

$$(A_{r} = A_{r}^{\alpha} C_{r}, B_{r} = B_{r}^{\alpha} C_{r})$$

$$(12)$$

Так как, U⁻¹U = I_{n+m} (UU⁻¹ = I_{n+m}), то A_l^{α} Z + B_l^{α} Y = I_n (Z A_r^{α} + Y B_r^{α} = I_m). Согласно предложению 1, это означает, что A_l^{α} и B_l^{α} (A_r^{α} и B_r^{α}) взаимно просты слева (справа). Из (12) следует, что С_I (С_r)–ЛНОД (ПНОД) матриц A_I и B_I (A_r и B_r). Ч.Т.Д.

Теорема 2. Системы (1) и (5) эквивалентны тогда и только тогда, когда матрицы А_і и В_і взаимно просты слева и выполнено соотношение

$$A_{l}B_{r} = B_{l}A_{r} . (13)$$

Необходимость. Пусть $C_i \in \mathbb{R}^{n \times n}$ - ЛНОД матриц A_i **и** B_i . Тогда $A_i = C_i A_i^{\alpha}$, $B_i = C_i B_i^{\alpha}$, где A_i^{α} **и** B_i^{α} - взаимно просты слева. Так как $K_i = K_i$ гк $K_$

$$A_i^{\alpha} x = B_i^{\alpha} u, C_i y = 0^{n}. \tag{14}$$

Следовательно, левому общему делителю соответствует подсистема без входа. Возьмём в X^m произвольный ненулевой элемент z. Вычислим в (5) $x = B_r z$, $u = A_r z$. По определению 1 функции x и и должны удовлетворять уравнению (1). Подставляя x и u в (14), получаем

$$y = Mz, (15)$$

где

$$M = B_i^{\alpha} A_r - A_i^{\alpha} B_r.$$
 (16)

При $M \neq 0^n \times^m z$ должен удовлетворять уравнению (15), где у, согласно (14), есть решение уравнения $C_i y = 0^n$, что противоречит произвольности z. Следовательно $M = 0^n \times^m$. Тогда $y = 0^n$, т.е. уравнение $C_i y = 0^n$ имеет в X лишь тривиальное решение.

Обозначим ВПКФ матрицы C_l как C. Если \exists i: $d(c_{i,i})>0$, i=1, 2...n, то уравнение $C_y = 0^n$ имеет нетривиальные решения, которые, согласно лемме, совпадают с решениями уравнения $C_l y = 0^n$. Отсюда $c_{i,i} = 1$ и $C = I_n$. Следовательно A_l и B_l взаимно просты слева и $A_l = A_l^\alpha$ и $B_l = B_l^\alpha$. Из (16) имеем равенство (13).

Достаточность. Приведём матрицу | A_l B_l к ВПС-матрице. Так как A_l и B_l взаимно просты слева, то согласно предложению 2, $\exists U \in R^{(n+m) \times (n+m)} : |A_l B_l|U = |I_n 0^{nxm}|, U^{-1} \in R^{(n+m) \times (n+m)}$. Из (13), с учётом обозначений (10) и (11), имеем, что

$$\mathsf{B}_{\mathsf{r}} = B_{\mathsf{r}}^{\beta} \mathsf{T} \, \mathsf{v} \, \mathsf{A}_{\mathsf{r}} = A_{\mathsf{r}}^{\beta} \mathsf{T} \tag{17}$$

для некоторой матрицы $T \in \mathbb{R}^{m \times m}$. Так как $rk A_r = m$, то из лемы в [3] следует, что $rk A_r^\beta = rk T = m$.

Определим функцию как любое из решений уравнения

$$Tz = -Wx + Vu, (18)$$

где x и u удовлетворяют систему (1). Запишем (1) совместно с (18):

$$\begin{vmatrix} 0^{nxm} & A_l \\ T & W \end{vmatrix} \begin{vmatrix} z \\ x \end{vmatrix} = \begin{vmatrix} B_l \\ V \end{vmatrix} u$$
(19)

Умножим это соотношение слева на U. Так как $UU^{\text{-}1} = I_{\text{n+m}}$, то из (10), (11) и (14) имеем

$$\begin{vmatrix} -B_r & I_n \\ A_r & 0^{mxn} \end{vmatrix} \begin{vmatrix} z \\ x \end{vmatrix} = \begin{vmatrix} 0^{nxm} \\ I_m \end{vmatrix} u$$
(20)

или $x=B_rz$, $A_rz=u$, т.е. имеет место пункт 1 определения 1.

Запишем систему (5) в виде (20). Умножим (20) слева на U⁻¹. Используя (10), (11) и (17), получаем соотношение (19). Отсюда $A_i x = B_i u$, где, согласно (20), $x = B_r z$. Таким образом, справедлив пункт 2 определения 1. Ч.Т.Д.

Выводы.

- 1) Пусть A_i и B_i взаимно посты слева. Тогда общая форма матриц в системах вида (5), эквивалентных системе (1), имеет вид (17).
- 2) Любая система (5) имеет эквивалентное представление в форме (1).
- 3) Система (1) имеет эквивалентную ей систему(5) тогда и только тогда, когда A_i и B_i взаимно посты слева.
- 4) Если A_r и B_r взаимно посты справа, то все системы $x = B_r Tz$, $A_r Tz = u$, $T \in R^m \times^m$, $rk \ T = m$ эквивалентны по x и u.

ЛИТЕРАТУРА

- 1. Ylinen. An algebraic theory for analysis and syntesis of time-varying linear differentials systems // Acta Politechnica Scandinavica: Math. and Comput. Ser. N 32. Helsinki, 1980. 62 p.
- 2. Григорьев В.М. Формальные передаточные функции для линейных нестационарных систем // Системные технологии. Региональный межвузовский сборник научных трудов. Выпуск 5 (28). Дніпропетровськ, 2004. С. 3-9.
- 3. Григорьев В.М. Ранги операторных матриц. // Системные технологии. Региональный межвузовский сборник научных трудов. Выпуск 5 (28). Дніпропетровськ, 2004. С. 15–19.
- 4. Лузин Н.Н. К изучению матричной теории дифференциальных уравнений // Автоматика и телемеханика. 1940. № 5. С. 4 – 66.

УДК 62-50:519.49

Григорьев В.М. Совместность и эквивалентность линейных нестационарных систем управления // Системные технологии. Региональный межвузовский сборник научных трудов. - Выпуск 2 (10). - Дніпропетровськ, 2003. - С. 104–112.

Получены необходимые и достаточные условия совместности и эквивалентности линейных нестационарных систем управления, выраженные в терминах рангов и взаимной простоты матриц над некоммутативным кольцом линейных нестационарных дифференциальных операторов

Библ. 4.

УДК 62-50:519.49

Григор'єв В.М. Сумістність та эквівалентність лінійних нестаціонарних систем керування // Системні технології. Регіональний міжвузівський збірник наукових праць. - Випуск 2 (10). - Дніпропетровськ, 2003. - С. 104-112.

Здобуті необходні та достатні умови сумістності та эквівалентності лінійних нестаціонарних систем керування, выражені в термінах рангів и вза€мної простоти матриць над некоммутативним кільцем лінійних нестаціонарних діфференціальних операторів Бібл. 4.

УДК 62-50:519.49

Grigor'yev V. M. Compatibility and equivalence of linear non-stationary control systems // System technologies. N 2(10). - Dnepropoetrovsk. 2003. - P.

The necessary and sufficient conditions compatibility and equivalence of linear non-stationary control systems expressed in the terms of ranks and mutual simplicity of matrixes above non-commutative ring of the linear non-stationary differential operators are received