723 Appendix S1

Figure S1. The study site. The background is a 5m digital elevation model, stars indicate the locations of soil temperature and moisture probes, dots indicate the location of 2022 botany plots, and the shaded areas indicate the year that the CRP seeding application was conducted. Probe locations were chosen to represent the range of topographic complexity while also allowing for the comparison of the effect of management.

Figure S2. Species prevalence. Prevalence (number of 0.1m² plots in which a species was encountered) for each plant species encountered across the study site for native species (a) and introduced species (b).

Figure S3: Model convergence diagnostics. The potential scale reduction factor (PSRF) measures the convergence among chains, and being closer 1.0 is ideal. The vertical red dashed line lies at 1.001, a sensible target for most values to fall under. Effective sample size (ESS) measures autocorrelation between successive iterations within each chain, and higher values are better. Ideally ESS matches the number of posterior samples (indicated by the vertical red dashed line), but that is not fully necessary. Betas are the parameters for environmental filters, gammas are the parameters for the traits, and omegas are the parameters for the species associations.

Figure S4: R² values from the Joint Species Distribution Model for each species or species group.

Figure S5. Western wheatgrass and cheatgrass interactions, compared to other species. This is using abundance data on the X axes to estimate the occurrence of a given species. Western wheatgrass and cheatgrass had strong effects on each others' occurrence, compared to other species. This was consistent with field observations. Abbreviations are defined in Table S1.

Table S1: All species encountered. Many species were encountered outside of the 0.1 m2 quadrats used for the JSDM. Therefore these species were not assigned to groups, but were still used in the diversity calculations. Nomenclature follows the United States Department of Agriculture's Plant Database (https://plants.usda.gov).

							Pure Live
			Group				Seed
amily	Genus	Specific epithet	Code	Group Name	CRP Mix	origin	(kg/ha)
Asteraceae	Gutierrezia	sarothrae	GUSA	Gutierrezia sarothrae	no	native	
steraceae	Ericameria	nauseosa	ERNA	Ericameria nauseosa	no	native	
steraceae	Heterotheca	villosa	HEVI	Heterotheca villosa	no	native	
steraceae	Helianthus	annuus	HEAN	Helianthus annuus	no	native	
steraceae	Stephanomeria	pauciflora	FORB	Native Forbs	no	native	
steraceae	cf Aster	d_081_herb_05	FORB	Native Forbs	no	native	
steraceae	Antennaria	sp.	ANSP	Antennaria sp	no	native	
steraceae	Artemisia	arbuscula	ARAR	Artemisia arbuscula	no	native	
Chenopodiaceae	Atriplex	canescens	ATCA	Atriplex canescens	yes	native	0.2676
Chenopodiaceae	Chenopodium	berlandieri	FORB	Native Forbs	no	native	
Malvaceae	Sphaerelcea	coccinea	SPCO	Sphaerelcea coccinea	no	native	
apaveraceae	Argemone	cf <i>hispida</i>	ARHI	Argemone cf hispida	no	native	
oaceae	Bouteloua	curtipendula	BOCU	Bouteloua curtipendula	yes	native	0.6244

Poaceae	Panicum	virgatum	PAVI	Panicum virgatum	yes	native	0.1784
				Schizachyrium			
Poaceae	Schizachyrium	scoparium	SCSC	scoparium	yes	native	0.3568
Poaceae	Nassella	viridula	NAVI	Nassella viridula	yes	native	0.7136
Poaceae	Pascopyrum	smithii	PASM	Pascopyrum smithii	yes	native	1.784
Poaceae	Bouteloua	gracilis	BOGR	Bouteloua gracilis	yes	native	0.1784
Poaceae	Elymus	elymoides	ELEL	Elymus elymoides	no	native	
Solanaceae	Solanum	triflorum	FORB	Native Forbs	no	native	
Nyctaginaceae	Mirabilis	sp	FORB	Native Forbs	no	native	
	Rhizomatous						
unknown	perennial forb	d_141_herb_09	FORB	Native Forbs	no	native	
				Introduced			
Asteraceae	Scorzonera	laciniata	LACT	Cichorioideae	no	introduced	
				Introduced			
Asteraceae	Taraxacum	officinale	LACT	Cichorioideae	no	introduced	
				Introduced			
Asteraceae	Tragopogon	dubious	LACT	Cichorioideae	no	introduced	
Asteraceae	Cirsium	arvense	CIAR	Cirsium arvense	no	introduced	
Asteraceae	Onopordium	acanthium	ONAC	Onopordium acanthium	no	introduced	
Asteraceae	Lactuca	serriola	LASE	Lactuca serriola	no	introduced	
				Introduced			
Brassicaceae	Sisymbrium	altissimum	BRAS	Brassicaceae	no	introduced	
				Introduced			
Brassicaceae	Descurainia	sophia	BRAS	Brassicaceae	no	introduced	
Chenopodiaceae	Salsola	tragus	SATR	Salsola tragus	no	introduced	
Chenopodiaceae	Bassia	scoparia	BASC	Bassia scoparia	no	introduced	
Convolvulaceae	Convolvulus	arvensis	COAR	Convolvulus arvensis	no	introduced	
Fabaceae	Medicago	sativa	MESA	Medicago sativa	yes	introduced	0.3568
Fabaceae	Melilotus	officinale	MEOF	Melilotus officinale	no	introduced	
Poaceae	Bromus	tectorum	BROM	Introduced Annual	no	introduced	

				Bromus		
Poaceae	Secale	cereale	SECE	Secale cereale	no	introduced
Poaceae	Bromus	inermis	BRIN	Bromus inermis	no	introduced
				Introduced Annual		
Poaceae	Bromus	secalinus	BROM	Bromus	no	introduced
Poaceae	Agropyron	cristatum	AGCR	Agropyron cristatum	no	introduced
Zygophyllaceae	Tribulus	terrestris	TRTE	Tribulus terrestris	no	introduced

764 Table S2: R packages used in the analysis.

Package	Purpose	Citation
sf	Spatial vector data	Pebesma 2018
	management	
terra	Raster data	Hijmans 2023a
	management	
raster	Raster data	Hijmans 2023b
	management	
vegan	Diversity and NMDS	Oksanen et al 2022
SPEI	Calculating SPEI	Beguería and Vicente-Serrano
		2023
microclima	Calculating air	Mosedale et al 2023
	temperature	
NicheMapR	Calculating air	Kearney 2022
	temperature	

topmodel	Calculating TWI	Buytaert 2022
tidyverse	Data wrangling	Wickham et al 2019
lubridate	Date wrangling	Grolemond and Wickham 2011
vroom	Data wrangling	Hester et al 2023
Hmsc	Joint species distribution	Tikhonov et al 2023
	modeling	
gghmsc	Visualization	Mahood et al 2024
snow	parallelization	Tierney et al 2021
fields	spatial process models	Nychka et al 2021
ggpubr	visualization	Kassambara 2023
ggcorrplot	visualization	Kassambara 2022
ggthemes	visualization	Arnold 2021
ggtext	visualization	Wilke 2021
ggrepel	visualization	Slowikowski 2023
ggmcmc	visualization	Fernandez i Marin 2016
geomtextpath	visualization	Cameron and van den Brand
		2022

Table S3. Species included in the CRP mix.

Common Name	Scientific Name	Pure Live Seed Applied	Origin
		(kg/ha)	
Western wheatgrass	Pascopyrum smithii	1.784	native

Green needlegrass	Nassela viridula	0.7136	native
Sideoats gramma	Bouteloua curtipendula	0.6244	native
Alfalfa	Medicago sativa	0.3568	introduced
Little bluestem	Schizachyrium scoparium	0.3568	native
Fourwing Saltbush	Atriplex canescens	0.2676	native
Blue gramma	Bouteloua gracilis	0.1784	native
Switchgrass	Panicum virgatum	0.1784	native

768 Table S4 life history traits of species used in the JSDM analysis.

species group	Mean height	introduced	perennial	woody	graminoi d	rhizomatous	Photosynthetic pathway
Invasive Annual Bromus	19	yes	no	no	yes	no	c3
Bassia scoparia	11	yes	no	no	no	no	c3
Salsola tragus	10	yes	no	no	no	no	c4
Pascopyrum smithii	22	no	yes	no	yes	yes	c3
Bouteloua curtipendula	24	no	yes	no	yes	no	c4
Medicago sativa	27.5	yes	yes	no	no	no	c3

Invasive annual Brassicaceae	21	yes	no	no	no	no	сЗ
Nasella viridulis	41.5	no	yes	no	yes	no	c4
Invasive Chicorioideae	10.5	yes	yes*	no	no	no	сЗ
Native Forbs	6	no	yes	no	no	no	c4
Cirsium arvense	12	yes	yes	no	no	yes	сЗ
Convolvulus arvensis	8.5	yes	yes	no	no	yes	сЗ
Panicum virgatum	27.5	no	yes	no	yes	no	c4
Schizachyrium scoparium	19	no	yes	no	yes	no	c4
Atriplex canescens	115	no	yes	yes	no	no	c4
Bouteloua gracilis	19	no	yes	no	yes	no	c4
Bromus inermis	33	yes	yes	no	yes	yes	сЗ
Secale cereale	38.5	yes	no	no	yes	no	сЗ

* two species (5 occurrences) are perennial/biennial, one species (1 occurrence) is annual/biennial

771 Table S5: Precipitation (mm) measured at the study site. Highest monthly values are bold.

772 Highest and lowest years are italicized and bold.

769

	Mean
Jan	6
Feb	8
Mar	
Apr	38
Mar	

Year	02	03	04	05	06	07	80	09	10	11	12	13	14	15	16	17	18	19	20	21	Mean
May	42	55	33	37	26	29	41	43	79	119	45	47	82	153	46	111	95	66	47	68	63
Jun	33	43	55	104	6	11	50	83	51	35	15	17	52	51	38	4	33	44	43	21	39
Jul	9	4	28	6	28	62	9	51	75	94	91	43	101	57	12	32	41	21	3	17	39
Aug	16	44	35	14	10	37	105	31	37	5	0	40	24	20	23	54	8	17	11	9	27
Sep	23	11	53	3	16	24	37	12	2	17	40	111	31	2	8	35	5	25	13	11	24
Oct	11	1	24	74	20	0	12	132	18	56	21	21	12	54	10	26	16	15	15	7	27
Nov	10	6	8	6	9	3	2	10	24	10	4	5	16	23	4	9	10	20	8	10	10
Dec	0	8	0	1	28	7	6	18	8	12	3	9	10	22	8	4	1	21	11	8	9
Sum	183	289	285	334	181	238	293	456	418	396	247	394	386	462	276	388	275	316	210	232	313

774

775 Supplementary References

776

777

778

- Jeffrey B. Arnold (2021). ggthemes: Extra Themes, Scales and Geoms for 'ggplot2'. R package version 4.2.4.
- 779 https://CRAN.R-project.org/package=ggthemes

780

- 781 Santiago Beguería and Sergio M. Vicente-Serrano (2023). SPEI: Calculation of the
- 782 Standardized Precipitation-Evapotranspiration Index. R package version 1.8.1.
- 783 <u>https://CRAN.R-project.org/package=SPEI</u>

784

- 785 Wouter Buytaert (2022). topmodel: Implementation of the Hydrological Model TOPMODEL in R.
- 786 R package version 0.7.5.
- 787 https://CRAN.R-project.org/package=topmodel

789	Allan Cameron and Teun van den Brand (2022). geomtextpath: Curved Text in 'ggplot2'. R
790	package version 0.1.1.
791	https://CRAN.R-project.org/package=geomtextpath
792	
793	Xavier Fernández i Marín (2016). ggmcmc: Analysis of MCMC Samples and Bayesian
794	Inference. Journal of Statistical Software, 70(9), 1-20
795	www.doi.org/10.18637/jss.v070.i09
796	
797	Garrett Grolemund, Hadley Wickham (2011). Dates and Times Made Easy with lubridate.
798	Journal of Statistical Software, 40(3), 1-25.
799	https://www.jstatsoft.org/v40/i03/
800	
801	Jim Hester, Hadley Wickham and Jennifer Bryan (2023). vroom: Read and Write Rectangular
802	Text Data Quickly. R package version 1.6.3.
803	https://CRAN.R-project.org/package=vroom
804	
805	Robert J. Hijmans (2023a). terra: Spatial Data Analysis. R package version 1.7-29.
806	https://CRAN.R-project.org/package=terra
807	
808	Robert J. Hijmans (2023b). raster: Geographic Data Analysis and Modeling. R package version
809	3.6-20.
810	https://CRAN.R-project.org/package=raster
811	
812	Alboukadel Kassambara (2022). ggcorrplot: Visualization of a Correlation Matrix using 'ggplot2'
813	R package
814	version 0.1.4. https://CRAN.R-project.org/package=ggcorrplot

815	
816	Alboukadel Kassambara (2023). ggpubr: 'ggplot2' Based Publication Ready Plots. R package
817	version 0.6.0.
818	https://CRAN.R-project.org/package=ggpubr
819	
820	Michael Kearney (2022). NicheMapR: R implementation of Niche Mapper software for
821	biophysical modelling. R package version 3.2.0.
822	https://github.com/mrke/NicheMapR
823	
824	Adam L. Mahood (2024). gghmsc: Make nice plots for working with Hmsc JSDMs. R package
825	version 0.1.2. https://github.com/admahood/gghmsc
826	
827	Jonathan Mosedale, Jonathan Bennie and James Duffy (2023). microclima: microclimate
828	modelling with R. R package version 0.1.0.
829	https://github.com/ilyamaclean/microclima
830	
831	Douglas Nychka, Reinhard Furrer, John Paige, Stephan Sain (2021). "fields: Tools for spatial
832	data." R package version 14.1.
833	https://github.com/dnychka/fieldsRPackage
834	
835	Jari Oksanen, Gavin L. Simpson, F. Guillaume Blanchet, Roeland Kindt, Pierre Legendre, Peter
836	R. Minchin, R.B. O'Hara, Peter Solymos, M. Henry H. Stevens, Eduard Szoecs, Helene
837	Wagner, Matt Barbour, Michael Bedward, Ben Bolker, Daniel Borcard, Gustavo Carvalho,
838	Michael Chirico, Miquel De Caceres, Sebastien Durand, Heloisa Beatriz Antoniazi Evangelista,
839	Rich FitzJohn, Michael Friendly, Brendan Furneaux, Geoffrey Hannigan, Mark O. Hill, Leo Lahti
840	Dan McGlinn, Marie-Helene Ouellette, Eduardo Ribeiro Cunha, Tyler Smith, Adrian Stier, Cajo

841 J.F. Ter Braak and James Weedon (2022). vegan: Community Ecology Package. R package 842 version 2.6-4. 843 https://CRAN.R-project.org/package=vegan 844 845 Pebesma, E., 2018. Simple Features for R: Standardized Support for Spatial Vector Data. The 846 R Journal 10 (1), 439-446, 847 https://doi.org/10.32614/RJ-2018-009 848 849 Kamil Slowikowski (2023). ggrepel: Automatically Position Non-Overlapping Text Labels with 850 'ggplot2'. R package version 0.9.3. 851 https://CRAN.R-project.org/package=ggrepel 852 853 Gleb Tikhonov, Otso Ovaskainen, Jari Oksanen, Melinda de Jonge, Oystein Opedal and Tad 854 Dallas (2023). Hmsc: Hierarchical Model of Species Communities. R package version 3.0-14. 855 https://www.helsinki.fi/en/researchgroups/statistical-ecology/software/hmsc 856 857 Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, 858 Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, 859 Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke, Woo K, Yutani H (2019). "Welcome to the 860 tidyverse." Journal of Open Source Software, 4(43), 1686. 861 https://doi.org/10.21105/joss.01686 862 863 Claus O. Wilke and Brenton M. Wiernik (2022), ggtext: Improved Text Rendering Support for 864 'ggplot2'. R package version 0.1.2. 865 https://CRAN.R-project.org/package=ggtext 866