COMP 322 Written Assignment

1.1 Recursive Fibonacci

1.1. | Recursine Fibonacci Complexity.

			• •
	WORK (n)	fib(n)	n
	1	0	0
	1)	Í
	}	2	2
Monkck)= Morkck-1)+Wonkck-2)+1	5	3	3
• • • • • • • • • • • • • • • • • • • •	9	5	4
	15	8	5
	25	13	6
		1	

According to Binet's formula, we know fiblintl)

Bose case: Work(0)=1, 2fib(1)-1=2-1=1, so Work(0)=2fib(1)-1 Recureire coue: Assume n=0,1,2,3,..., k-1 holds true for Work (n)=2fiben+1)

we want to show that Work (k)=2-fib (k+1)-1.

We want to show that
$$VOONE(K) = 2fib(k+1) - 1$$
.

Proof: $2fib(k+1)-1 = 2fib(k+1-1) + 2f(k+1-2)-1$

$$= (2fib(k)-1)+(2fib(k-1)-1)+1$$

$$= Work((k-1)+Work(k-2)+1 = Work(k)$$
Thus proved that $Work(n) = 2fib(n+1)-1$

· Because memorization allows the vesuit of each call to fib recorded, when we call fiben) for the first time, we perform

fib(0), fib(1), ..., fib(n-1) only once, so we need to con fib for n times. Since each coulto fib how a total Work of 1.

it takes O(n) work to call fiben).

· Since fib(k1), fib(k2), ..., fib(km), kE Lo, Maxmemo) are already called, their results are recorded. So when we

coll fibin), n < MaxMemo, we can get the result from the previously recorded work, thus it only takes O(1) of Work.