Data Mining (BGU) Prof. Mark Last

Lecture No. 4 – Decision Tree Learning I

Classification and Prediction

- Overview of Decision Tree Learning
- Avoiding Overfitting

Classification vs. Prediction

- Classification
 - predicts categorical class labels (discrete or nominal)
 - Default predicted class: *majority voting*
 - Optional: class probability estimation
- Prediction / Regression
 - models continuous-valued functions, i.e., predicts unknown or missing values
 - Default prediction: expected value
 - Optional: confidence interval

Data Mining (BGU) Prof. Mark Last

Examples of typical classification / prediction tasks

- Typical classification tasks
 - Credit approval: approve / deny
 - Target marketing: will buy / will not buy
 - Medical diagnosis: Hepatitis B / Hepatitis C
 - Fraud detection: lawful transaction / fraudulent transaction
- Typical prediction / regression tasks
 - Weather forecast: predict tomorrow's temperature
 - Stock trading: predict stock's price tomorrow

March 18, 2019 Lecture No. 4

Classification—A Two-Step Process

- Model construction / induction
 - Record labeling
 - Building a training set
 - Inducing the model(s)
- Model usage
 - Comparing to the *default (majority) rule*
 - Measuring the accuracy rate <u>over time</u>

March 18, 2019 Lecture No. 4

Model Evaluation and Selection

- Evaluation metrics: How can we measure accuracy? Other metrics to consider?
- Use test set of class-labeled tuples instead of training set when assessing accuracy
 - The model should generalize beyond the training instances
- Use validation set to tune model parameters
 - Common splits: 50:20:30 or 40:20:40

k-Fold Cross Validation

Process (1): Model Construction

What is the accuracy of this model on the training data?

Classification Algorithms

> Classifier (Model)

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

Training

Target (class)

attribute

IF rank = 'professor' OR years > 6THEN tenured = 'yes'

Lecture No. 4 March 18, 2019

Process (2): Using the Model in Prediction

March 18, 2019

Lecture No. 4

Classification—Accuracy Estimation

- Estimate accuracy of the model
 - The known label is compared to the predicted label
 - Training Accuracy Rate = $1 Err_{Tr}$
 - The percentage of *training set* samples that are correctly classified by the model
 - Testing Accuracy Rate = $1 Err_{Test}$
 - The percentage of *test set* samples that are correctly classified by the model
 - Test set is independent of training set, otherwise overfitting will occur
- If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

Data Mining (BGU) Prof. Mark Last

Confidence Interval for an Error Rate

■ Test error Err_{Test} is an *estimate* of the true error rate Err_{True} on the entire population How to

estimate the

true

accuracy

rate?

- Err_{Test} is governed by Binomial distribution approximated by Normal when $n \ge 30$
 - Assumption: *n* test samples are drawn randomlindependently from the entire population
- With the probability 1 α , the true error rate Err_{True} lies in the *confidence interval*

$$[Err_{Test} - z_{\alpha} \sqrt{\frac{Err_{Test}(1 - Err_{Test})}{n}}; Err_{Test} + z_{\alpha} \sqrt{\frac{Err_{Test}(1 - Err_{Test})}{n}}]$$

March 18, 2019 Lecture No. 4

Error	n	alpha	z_alpha	min.	max.
0.200	30	0.010	2.576	0.0119	0.3881
0.200	30	0.050	1.960	0.0569	0.3431
0.200	30	0.100	1.645	0.0799	0.3201

10

Difference between Classifiers

Estimated difference between error rates

$$\hat{d} = Err_{Test1} - Err_{Test2}$$

- d^{\wedge} is governed by Binomial distribution approximated by Normal when $n_1, n_2 \ge 30$
- With the probability 1α , the true difference d lies in the *confidence interval*

$$\hat{d} \pm z_{\alpha} \sqrt{\frac{Err_{Test1}(1 - Err_{Test1})}{n_1} + \frac{Err_{Test2}(1 - Err_{Test2})}{n_2}}$$

Difference between Classifiers – Example (Error1 vs. Error 2)

Error1	n1	Error2	n2	d	alpha	z_alpha	min.	max.
0.200	30	0.400	40	0.20	0.010	2.326	-0.048	0.448
0.200	30	0.400	40	0.20	0.050	1.645	0.025	0.375
0.200	30	0.400	40	0.20	0.100	1.282	0.064	0.336

Lecture No. 5 – Decision Tree Learning

- Classification and Prediction
- Overview of Decision Tree Learning

Avoiding Overfitting

Data Mining (BGU) Prof. Mark Last

Decision Tree Structure Main Components

- *Nodes* tests of some attribute
- *Branch* one of possible values for the attribute
- *Leaves* (terminal nodes) classifications
- Path (from the tree root to a leaf) conjunction of attribute tests

Data Mining (BGU) Prof. Mark Last

Decision Tree Learning

Appropriate Problems + Student Example

- Instances are described by a *fixed* set of attributes
 - Example: Gender, Place of Birth, and Test Grade
- Each predicting attribute takes a *small* number of disjoint possible values
 - Example: Place of Birth (Israel vs. Abroad)
- The target function has *discrete* output values (each value = class / concept)
 - Example: GPA (Low, Medium, High)
- Disjunctive rules are required
 - Example:
 - If (Test < 600) Then GPA = Low
 - If (Test \geq 600) Then GPA = Medium or High
- The training data may contain *errors* (noise)
- The training data may contain *missing attribute values*

March 18, 2019 Lecture No. 4

Prof. Mark Last

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm e.g., ID3)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

March 18, 2019 Lecture No. 4

Data Mining (BGU) Prof. Mark Last

Detailed Example: Student Admission

Historical (Training) Data:

							ציון		ממוצע
ת"ז	שם פרטי	שם משפחה	מגדר	תאריך לידה	מקום לידה	שנת קבלה	פסיכומטרי	שנת סיום	ציונים
					Place of	Admission	Test	Graduation	
ID	First Name	Last Name	Gender	Date of Birth	Birth	Year	Grade	Year	GPA
543406619	David	Cohen	M	18/12/1979	USA	2002	730	2006	93.5
951984264	Ophir	Levy	M	11/07/1980	Israel	2002	680	2006	87.5
683168092	Sharon	Grosman	F	19/05/1981	Israel	2002	640	2006	94.3
100900927	Diana	Liberman	F	11/02/1980	Russia	2002	585	2006	85.8
516120403	Anat	Klein	F	03/02/1982	Israel	2002	570	2006	78.7

New (Scoring) Data:

Pre-processing: Removing Irrelevant Features

Remained features (attributes)

- Gender
- Place of Birth
- •Test Grade

Predicted attribute: GPA

The problem: find the best (most accurate) model predicting GPA

Try 1:

Predict GPA Using a Linear Fit

Predictive attribute: Test Grade

More Pre-processing Goal: reduce the number of

Goal: reduce the number of values Discretize to three intervals Generalize to two values Discretize to three intervals (Israel vs. Diaspora) Low 0-79 Medium 80-89 High 90-100 ממוצע מקום לידה מגדר ציון פסיכומטרי שם פרטי שם משפחה ציונים 🏻 Place of Gender **Birth Test Grade GPA First Name Last Name** David Cohen M Over 700 High Diaspora Ophir M 600-700 Medium Israel Levv F 60 700 Sharon Israel High Grosman Medium Diana Diaspo<u>ra</u> 0-600 Liberman Klein 0-600 Low Anat What is the Use: ut **Target**

accuracy of the majority rule?

Try 2: Predict GPA Using a *Tree* Predictive attribute: Test Grade

Prediction = Medium or Low (50%/50%)

Klein

Low

Anat

Medium Ophir Levy Sharon Grosman High

Prediction = High Is it a better or Medium model than the (50%/50%) majority rule?

= High

Average accuracy: 0.4*50% + 0.4*50% + 0.2*100% = 60%

(33%/33%/33%)

Try 2: Predict GPA Using a *Tree*

Predictive attribute: Gender

March 18, 2019 Lecture No. 4

Average accuracy: 0.4*50% + 0.6*33% = 40%

Try 2: Predict GPA Using a *Tree* Predictive attribute: Place of Birth

How to choose the best tree?

Sharon

0.4*50% +

0.4*50% +

0.2*100% = 60%

Anat

Klein

Training accuracy:

0.4*50% + 0.6*33%

= 40%

Training accuracy:

0.6*33% + 0.4*50% =

40%

March 18, 2019

Grosman

High

Lecture No. 4

ID3: Use

Information

Gain

24

Data Mining (BGU)

Prof. Mark Last

Attribute Selection Measure in ID3: Information Gain

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_{ij} estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D: $Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$
- Information (conditional entropy) needed (after using A to split D into v partitions) to classify D: $Info_A(D) = \sum_{i=1}^{v} \frac{|D_j|}{|D|} \times I(D_j)$
- Information gained (mutual information) by branching on attribute A $Gain(A) = Info(D) Info_{\Lambda}(D)$

Student Admission Example

Expected information (entropy) needed to classify a tuple in *D*:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

Number of classes (*m*): 3

The classes:

- •Low (one example)
- •**Medium** (two examples)
 - •**High** (two examples)

Low		
Low	1	
р	0.200	
-logp	2.322	4
Medium	2	
р	0.400	
-logp	1.322	
		4
High	2	
р	0.400	
-logp	1.322	
Total	5	
р	1.00	
Entropy	1.522	

0.2*2.322 + 0.4*1.322 + 0.4*1.322 = 1.522

Attribute:

Test Grade

Values:

- •0-600
- •600-700
- •Over 700

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

$$Gain(A) = Info(D) - Info_A(D)$$

$$Info(D) = 1.522$$

	Test			
	Grade			Total
	0-600	600-700	Over 700	
Low	1	0	0	1
р	0.500	0.000	0.000	
-logp	1.000	0.000	0.000	
Medium	1	1	0	2
р	0.500	0.500	0.000	
-logp	1.000	1.000	0.000	
High	0	1	1	2
р	0.000	0.500	1.000	
-logp	0.000	1.000	0.000	
Total	2	2	_ 1	5
р	0.40	0.40	0.20	1.00
Entropy	1.000	1.000	0.000	0.800
Gain				0.722

0.5*1.0 + 0.5*1.0 = 1.0 0.4*1.0 + 0.4*1.0 + 0.2*0.0 = 0.8

Attribute:

Gender

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times I(D_j)$$

$$Gain(A) = Info(D) - Info_A(D)$$

$$Info(D) = 1.522$$

	Gender		Total
	M	F	
Low	0	1	1
р	0.000	0.333	
-logp	0.000	1.585	
Medium	1	1	2
р	0.500	0.333	
-logp	1.000	1.585	
High	1	1	2
р	0.500	0.333	
-logp	1.000	1.585	
Total	2	3	5
р	0.40	0.60	1.00
Entropy	1.000	1.585	1.351
Gain			0.171

Attribute:

Place of Birth

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times I(D_j)$$

$$Gain(A) = Info(D) - Info_A(D)$$

$$Info(D) = 1.522$$

	Place of Birth		Total
	Israel	Abroad	
Low	1	0	1
р	0.333	0.000	
-logp	1.585	0.000	
Medium	1	1	2
р	0.333	0.500	
-logp	1.585	1.000	
High	1	1	2
р	0.333	0.500	
-logp	1.585	1.000	
Total	3	2	5
р	0.60	0.40	1.00
Entropy	1.585	1.000	1.351
Gain			0.171

- Gain ($Test\ Grade$) = 0.722
- Gain (Gender) = 0.171
- Gain ($Place\ of\ Birth$) = 0.171
- Selected attribute: Test Grade

Student Admission Example Complete Decision Tree

Training accuracy: 100%

Student Admission Example Classification with Decision Tree

Learning

- Classification and Prediction
- Overview of Decision Tree Learning
- Avoiding Overfitting

Overfitting

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Definition of overfitting
 - \blacksquare h hypothesis (e.g., decision tree) in a hypothesis space H
 - Training data: $error_{train}(h)$
 - Entire population D: $error_D(h)$
 - Hypothesis $h \in H$ overfits training data if there is an alternative hypothesis $h' \in H$ such that
 - $error_{train}(h) < error_{train}(h')$ and
 - $error_D(h) > error_D(h')$

Overfitting – Student Example

Tree1 (h'):

ID		First Name	Last Name	Expected GPA	Actual GPA	Error
	537793401	Boaz	Bazak	Medium	Medium	No
	808943728	Ophir	Levy	Medium	Medium	No
	537362102	Maria	Neuman	High	High	No

 $error_D(h') = 0\%$

$$error_{train}(h') = 40\%$$

$$error_{train}(h) < error_{train}(h')$$

 $error_{D}(h) > error_{D}(h')$

Tree2 (h):

ID		First Name	Last Name	Expected GPA	Actual GPA	Error
	537793401	Boaz	Bazak	Low	Medium	Yes
	808943728	Ophir	Levy	Medium	Medium	No
	537362102	Maria	Neuman	High	High	No

$$error_{D}(h) = 33\%$$

Which tree is better?

$$error_{train}(h) = 0\%$$

Overfitting in Decision Tree Learning

(Source: Mitchell, 1997)

Avoiding Overfitting

- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early —do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Avoiding Overfitting - Student

Example

"Fully grown" tree:

Prune two nodes:

Pruned tree:

Data Mining (BGU)

Prof. Mark Last

Approaches to Avoid Overfitting and Determine the Final Tree Size

- Separate training (2/3) and testing (1/3) sets
- Use cross validation, e.g., 10-fold cross validation
- Use all the data for training
 - but apply a statistical test (e.g., chi-square) to estimate whether expanding or pruning a node may improve the entire distribution
- Use minimum description length (MDL) principle
 - halting growth of the tree when the encoding is minimized

March 18, 2019 Lecture No. 4

Data Mining (BGU) Prof. Mark Last

Chi-Square Test

(based on Quinlan, Induction of Decision Trees, 1986)

Notation

- A splitting (branching) attribute (e.g., Test)
- v domain size of attribute A (3: 0-600, 600-700, 700+)
- C_i subset of records containing value i of attribute A (Test < 600: 2)
- c number of classes (3: low, medium, high)
- e_j number of records belonging to class j in the entire data set C (Low = 1, Medium = 2, High = 2)
- o_{ij} number of records belonging to class j in subset C_i (Test < 600, GPA = Low : 1)
- \bullet α significance level

March 18, 2019 Lecture No. 4

Data Mining (BGU) Prof. Mark Last

Chi-Square Test (cont.)

- **Null Hypothesis**: attribute *A* is <u>irrelevant</u> to classifying the records in data set *C*
- Alternative Hypothesis: attribute A <u>affects</u> the class distribution in data set C
- Expected number of class j records in subset C_i :
- e_i actual number of records in class j

- $e'_{ij} = \frac{e_j}{\sum_{j=1}^{c} e_j} \sum_{j=1}^{c} o_{ij}$
- o_{ij} actual number of class j records in subset C_i

Statistic:

v - domain size of Ac - number of classes

$$\sum_{j=1}^{c} \sum_{i=1}^{v} \frac{(o_{ij} - e'_{ij})^{2}}{e'_{ij}} \sim \chi_{\alpha}^{2}((v-1)(c-1))$$

42

Chi-Square Test – Student Example

$$e'_{ij} = \frac{e_j}{\sum_{j=1}^{c} e_j} \sum_{j=1}^{c} o_{ij}$$

- Entire data set (before splitting): $e_{Low} = 1$, $e_{Medium} = 2$, $e_{High} = 2$
- Splitting by *Test*
 - Test < 600: Low = 1, Medium = 1 $\sum_{j=1}^{5} o_{ij} = 2$
 - $e'_{low} = (1/5)*2 = 0.4$, $e'_{medium} = (2/5)*2 = 0.8$. $e'_{high} = (2/5)*2 = 0.8$.
 - Test = 600-700: Medium = 1, High = 1 $\sum_{i=1}^{n} o_{ij} = 2$
 - $e'_{low} = (1/5)*2 = 0.4$, $e'_{medium} = (2/5)*2 = 0.8$. $e'_{high} = (2/5)*2 = 0.8$.
 - Test > 700: High = 1 $\sum_{i=1}^{c} o_{ij} = 1$
 - $e'_{low} = (1/5)*1 = 0.2$, $e'_{medium} = (2/5)*1 = 0.4$. $e'_{high} = (2/5)*1 = 0.4$.

Chi-Square Test – Student Example (cont.)

		Test Grade ((i)		Total	p_j
GPA (j)		0-600	600-700	Over 700		
Low	Actual	1	0	0	1	0.2
	Expected	0.4	0.4	0.2	1	
	Statistic	0.9	0.4	0.2	1.5	
Medium	Actual	1	1	0	2	0.4
	Expected	8.0	0.8	0.4	2	
	Statistic	0.05	0.05	0.4	0.5	
High	Actual	0	1	1	2	0.4
	Expected	0.8	0.8	0.4	2	
	Statistic	0.8	0.05	0.9	1.75	
Total		2	2	1	3.75	5

Statistic:
$$\sum_{j=1}^{c} \sum_{i=1}^{v} \frac{(o_{ij} - e'_{ij})^2}{e'_{ij}} = 3.75$$

$$\chi^2_{0.05}(4) = 9.49$$

$$\chi^2_{0.05}(4) = 9.49$$

Conclusion: do not split the node on *Test Grade*

Pessimistic Error Pruning (PEP)

- Uses training set to estimate error on new data
- Error estimate (relative frequency with continuity correction)
 - probability of error (apparent error rate)

$$q = \frac{N - n_C + 0.5}{N}$$

- where
 - N = # examples
 - n_C = #examples in majority class

Data Mining (BGU)

Pessimistic Error Pruning (cont.)

■ Error of a node *v* (if pruned)

 $q(v) = \frac{N_v - n_{C,v} + 0.5}{N_v}$

- where
 - $N_v = \text{\#examples at node } v$
 - $n_{C,v}$ = #examples in majority class at node v
- Error of a subtree T
 - Where
 - 1 = leaf node of sub-tree T

$$q(T) = \frac{\sum_{l \in leafs(T)} (N_l - n_{C,l} + 0.5)}{\sum_{l \in leafs(T)} N_l}$$

Prune if

$$q(v) \le q(T)$$

- Prunes in bottom-up fashion
 - fast
 - considered a weakness (on accuracy)

Example of Post-Pruning

Class = Yes	20			
Class = No	10			
Error = 10/30				

Training Error (Before splitting) = 10/30

Pessimistic error = q(v) = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting) $q(T) = (9 + 4 \times 0.5)/30 = 11/30$

46