

FRA532 : Mobile Robot Lecture 3 Mobile Robot Controller

Kitti Thamrongaphichartkul

Institute of Field Robotics King Mongkut's University of Technology Thonburi Bangkok, Thailand

แผนการสอน

					LAB / HW			
Week	Date	Lecture	Topic	Module	Assign	Due	Instructor	หมายเหต
1	16-Jan-2025	1	Introduction to Mobile Robot (Motivation)		·		Aj.Nook	
2	23 Jan 2025	2	Kinematics of Mobile Robot		LAB 1		Aj.Nook	
3	30-Jan-2025	OU 3	Mobile Robot Control		▼		Aj.Nook	
4	6-Feb-2025	4	30 ปี ฟิโบ้		•	_	Aj.Nook	
5	13-Feb-2025	5	State Estimator		▼		Aj.Nook	
6	20-Feb-2025		EXAM 1		•	•		
7	27-Feb-2025	6	MAP (Slam, Localization)		LAB 2	LAB 1	Aj.Nook	
8	4-March-2025	7	EXAM 1 / Hackathon Exam (24 Hour)		•		Aj.Nook	Project : Proposal
9	13-March-2025	8	Introduction to motion planning and discrete planning		•		Aj.Tee	, ,
10	20-March-2025	9	Configuration space and sampling-based motion planning		•		Aj.Tee	
11	27-March-2025	10	Motion plannings used in self driving cars		•		Aj.Tee	
12	3-April-2025		EXAM 2		•	•		
13	10-April-2025	11	Project : Update 1		•	•	Aj.Nook	
14	18-April 2025	12	Special Topic I		•	•	Aj.Nook / Dummy	
15	24-April 2025	13	EXAM 2 / CBS + Nav2		▼	•	Aj.Nook / Dummy	
16	1 May 2025	14	Special Topic III		▼	•	Aj.Nook / Dummy	
17	8 May 2025	15	Project : Update 2		▼	•	Aj.Nook	
18	15 May 2025	-	-		•	•		
19	22 May 2025	-	-		•	•		
20	29 May 2025	16	Project : Demo		▼	•	Aj.Nook	
	-							

Link: https://github.com/kittinook/MobileRobotics2025/tree/main

Agenda

- Mobile Robot Framework
- Pure Pursuit Algorithm
- Potential Field
- Virtual Force Field

Mobile Robot Framework

Sensors & Perception Module

- Camera
- Lidar
- Ultrasonic
- Contact
- Encoder

The Planning Module

- Mission Planner: what is the overall goal of the vehicle? (Global Planner: Path)
- Behavioral Planner: what rules should the vehicle follow in different situations? (State Machine / Behavior Trees)
- Local Planner: what is the optimal trajectory from position to a goal? (Path tracking)

The Control Module

- How do we track a given trajectory?
- How do we correct for actuation errors?

Pure Pursuit Algorithm

Pure Pursuit : Assumptions

- Vehicle is given a sequence of 2D positions, i.e. waypoints, to follow
- Vehicle knows where the given waypoints are in the vehicle's frame of reference
 - Underlying assumptions that the vehicle can localize itself
- Goal is to follow these waypoints

Pure Pursuit : Geometric Equation

$$r = |y| + d$$

$$d^{2} + x^{2} = r^{2}$$

$$(r - |y|)^{2} + x^{2} = r^{2}$$

$$r^{2} + y^{2} - 2r|y| + x^{2} = r^{2}$$

$$r^{2} + L^{2} - 2r|y| = r^{2}$$

$$r=rac{L^2}{2|u|}$$

Pure Pursuit : How do we get steering angle?

$$r = \frac{L^2}{2|y|}$$

Curvature is the inverse of radius

Steering angle should be

Proportional to the curvature of
the arc

$$\gamma = \frac{1}{r} = \frac{2|y|}{L^2}$$

Look like P-Control

Now that we know how to find the arc to a given waypoint, how to we pick a current waypoint from a list of waypoints?

A waypoint

- 1. Pick the waypoint that is closest to the vehicle
- 2. Go up to the waypoint until you get to one that is one lookahead distance away from the car
- 3. Use that as the current waypoint

A waypoint

What if there's no waypoints exactly L away from the car?

- Pick the next best one (closest to L away)
- What should be the value of L in your curvature calculation in this case?

A waypoint

What if there's no waypoints exactly L away from the car?

- Interpolate between the two waypoints that sandwich the distance L
 - What should be the value of L in your curvature calculation in this case?

A waypoint

Each time we have a new pose of the car, we could:

- 1. Find the current waypoint
- 2.Actuate towards that waypoint with calculated steering angle
- 3.Localize to find the new pose, repeat

Pure Pursuit: Tuning

- The parameter **L** (lookahead distance) is a parameter of pure pursuit.
- Smaller **L** leads to more aggressive maneuvering to track tighter arc, and the tighter arcs might be against dynamical limits of the car.

• Larger **L** leads to smoother trajectory but larger tracking errors, might lead to close calls with obstacles.

Small Look Ahead

Large Look Ahead

Pure Pursuit: Note

- Tuning L will change the behavior of pure pursuit the most.
- The waypoints are a sequence of positions, and could also have a velocity component at positions.
- Pure pursuit doesn't take dynamics into account, thus it might produce dynamically infeasible arcs

Attractive / Repulsive Potential Field

The General Idea

- Both the bowl and the spring analogies are ways of storing potential energy
- The robot moves to a lower energy configuration
- A potential function is a function $U: \Re^m \to \Re$
- Energy is minimized by following the negative gradient of the potential energy function:

$$\nabla U(q) = DU(q)^T = \left[\frac{\partial U}{\partial q_1}(q), \dots, \frac{\partial U}{\partial q_m}(q)\right]^T$$

- We can now think of a vector field over the space of all q's ...
 - at every point in time, the robot looks at the vector at the point and goes in that direction

Attractive / Repulsive Potential Field

$$U(q) = U_{att}(q) + U_{rep}(q)$$

 $U_{att}(q)$ is the "attractive" potential --- move to the goal

 $U_{rep}(q)$ is the "repulsive" potential --- avoid obstacles

Artificial Potential Field Methods: Attractive Potential

Conical Potential

$$U(q) = \zeta d(q, q_{\text{goal}}).$$

$$\nabla U(q) = \frac{\zeta}{d(q, q_{\text{goal}})} (q - q_{\text{goal}}).$$

Quadratic Potential

$$U_{\text{att}}(q) = \frac{1}{2} \zeta d^2(q, q_{\text{goal}}),$$

$$F_{\text{att}}(q) = \nabla U_{\text{att}}(q) = \nabla \left(\frac{1}{2}\zeta d^2(q, q_{\text{goal}})\right),$$

$$= \frac{1}{2}\zeta \nabla d^2(q, q_{\text{goal}}),$$

$$= \zeta(q - q_{\text{goal}}),$$

Artificial Potential Field Methods: Repulsive Potential

$$U_{\text{rep}}(q) = \begin{cases} \frac{1}{2} \eta (\frac{1}{D(q)} - \frac{1}{Q^*})^2, & D(q) \le Q^*, \\ 0, & D(q) > Q^*, \end{cases}$$

whose gradient is

$$\nabla U_{\text{rep}}(q) = \begin{cases} \eta \left(\frac{1}{Q^*} - \frac{1}{D(q)} \right) \frac{1}{D^2(q)} \nabla D(q), & D(q) \le Q^*, \\ 0, & D(q) > Q^*, \end{cases}$$

Artificial Potential Field Methods: Total Potential Function

Artificial Potential Field Methods: Total Potential Function

Virtual Force Field

Avoiding Obstacles with VFF

- Use VFF to make the robot go
- forward avoiding obstacles

New concepts:

- Laser processing
- Control at joint level
- Testing

Avoiding Obstacles with VFF: The Computation Graph

Avoiding Obstacles with VFF: Control Logic

Summary

- Mobile Robot Framework
- Pure Pursuit Algorithm
- Potential Field
- Virtual Force Field

Reference

- [1] F1TENTH Autonomous Racing, Pure Pursuit, Hongrui Zheng, Houssam Abbas, Matthew O'Kelly and the F1TENTH Team
- [2] A Concise Introduction to Robot Programming with ROS2 Code Repository
- [3] Robotic Motion Planning: Potential Functions, Robotics Institute 16-735, Howie Choset

Q&A

A Cradle of Future Leaders in Robotics