全國高級中等學校 111 學年度商業類學生技藝競賽 【程式設計】職種【術科】正式試題卷

選手證號碼: 姓名:

題目	題目內容		
A1	民國年		
A2	閏年		
В	壞的遙控器		
С	數字翻轉		
D	不重複隨機亂數產生器		
Е	重複隨機亂數統計		
F	字元刪除		
G	編碼		
Н	分組反轉字串		
Ι	字元出現次數		
J	質數		
K	質因數		
L	二進制 bit 為 1		
M	格雷碼		
N	進步獎		
О	硬幣		
P	二元樹		
Q	二元樹資訊		

(程式執行限制時間: 1 秒,為原則。)

Problem A1 民國年

請寫一支程式,將輸入的西元年份轉換成民國年份。

Input File Format

輸入一列,包含一個正整數西元年份N, $1912 \le N \le 65535$ 。

Output Format

輸出轉換後的民國年份。

Sample Input 1

1912

Sample Output 1

1

Sample Input 2

2022

Sample Output 2

111

Sample Input 3

2021

Sample Output 3

Problem A2 閏年(0結束)

西元年份除以4不可整除,爲平年。a normal year。

西元年份除以4可整除,且除以100不可整除,爲閏年。a leap year。

西元年份除以100可整除,且除以400不可整除,爲平年。a normal year。

西元年份除以400可整除,爲閏年。a leap year。

以下爲舉例説明:除了不是400的倍數的100的倍數以外,四的倍數的年份均爲閏年,閏年這年會多一天(2月29日)。任何能以4整除的年份都是閏年:例如1980年、1984年、1988年、1992年及1996年都是閏年。

不過,仍必須將一個小錯誤列入考量。西曆規定能以 100 (例如1900 年) 整除的年份,同時也要能以 400 整除,才算是閏年。

下列年份不是閏年:1700、1800、1900、2100、2200、2300、2500、2600。 原因是這些年份能以 100 整除,但無法以 400 整除。

下列年份爲閏年:1600、2000、2400。

閏年,請輸出「a leap year」,否則請輸出「a normal year」

Input File Format

輸入的每一列有一個正整數y,代表西元年。輸入的最後一列有一個0,代表輸入的結束,這個數字0請勿做任何處理。

Output Format

對於所輸入的每個y,要各別輸出一列。若 y 是閏年,請於該行輸出「a leap year」,否則請輸出「a normal year」。

Sample Input 1

1992

1991

1700

2400

0

Sample Output 1

- a leap year
- a normal year
- a normal year
- a leap year

Problem B 壞的遙控器

壞的遙控器上所有按鍵全壞了,只剩下「下一個頻道」按鍵可以用。 目前電視有 200 個頻道,編號爲 $0\sim199$ 。給現在正在看的頻道,請問 使用者得按幾次「下一個頻道」,使用者才能切換到新的頻道。

Input File Format

每筆輸入檔案包含一列,包含有兩個整數 $0 \le a,b \le 199$,分別代表現在正在看的頻道及要切換到新的頻道。

Output Format

輸出需按「下一個頻道」按鍵的次數。

Sample Input 1

5 11

Sample Output 1

6

Sample Input 2

199 2

Sample Output 2

3

修正爲3

Problem C 翻轉數字

輸入正整數,並將其數字由左到右的次序全部翻轉。

Input File Format

輸入一列,包含一個正整數N, $1 \le N \le 2^{31}$ 。

Output Format

輸出翻轉過後的數字。前面有 ()的話應消除。

Sample Input 1

123456

Sample Output 1

654321

Sample Input 2

12345

Sample Output 2

54321

Sample Input 3

230400

Sample Output 3

4032

提示:前面有 ()的話應消除。

Problem D 不重複隨機亂數產生器

產生N個1到1000之間的隨機亂數 $R(N \le 100, 1 \le R \le 1000)$,對於其中重複的數字,只保留一個,把相同的數字去掉。然後再把這些不同的數字從小到大排序。

Input File Format

每筆輸入檔案包含二列,第1列爲1個正整數N,表示亂數的個數。第2行有N個1到1000之間的隨機亂數,用空格隔開的正整數。

Output Format

對於其中重複的數字,只保留一個,把相同的數字去掉。計算不重複隨機亂數的個數,同時再把這些不同的數字從小到大排序輸出。

Sample Input 1

11 20 40 32 67 40 20 89 300 404 13 13

提示: 20 40 32 67 <u>40 20</u> 89 300 404 13 <u>13</u>, <u>40 20</u> 和<u>13</u>為重複的數字。

Sample Output 1

8

13 20 32 40 67 89 300 404

Sample Input 2

3

2 2 2

Sample Output 2

1

Problem E 重複隨機亂數統計

產生N個1到1000之間的隨機亂數 $R(N \le 100, 1 \le R \le 1000)$,現在需要統計這些隨機亂數各自出現的次數,正整數按照從小到大的順序輸出統計結果。

Input File Format

每筆輸入檔案包含二列,第1列爲1個整數N,表示亂數的個數。第2列有N個1到1000之間的隨機亂數,用空格隔開的正整數。

Output Format

每組輸出包含m列 (m爲N個正整數中不相同數的個數),按照正整數(隨機亂數)從小到大的順序輸出。每列輸出兩個整數,分別是正整數(隨機亂數)和該數出現的次數,用空格隔開正整數和次數。

Sample Input 1

11

20 40 32 67 40 20 89 300 404 13 13

Sample Output 1

13 2

20 2

32 1

40 2

67 1

89 1

300 1

404 1

Sample Input 2

4

2 2 2 1

Sample Output 2

1 1

Problem F 字元刪除

輸入兩個字元字串(爲大小寫的英文字母),從第一字元字串中刪 除第二個字元字串中所有的字元。

輸入: 第一字元字串="They are students",第二個字元字串="aeiou"輸出: "Thy r stdnts"

Input File Format

輸入二列字元字串。字元字串長度<102

Output Format

輸出,從第一字元字串中刪除第二個字元字串中所有的字元。

Sample Input 1

They are students aeiou

Sample Output 1

Thy r stdnts

Sample Input 2

They are students

Sample Output 2

Thy ar studnts

Sample Input 3

They are students t

Sample Output 3

They are sudens

Problem G 編碼

運行長度編碼(英語:run-length encoding,縮寫RLE),又稱行程長度編碼或變動長度編碼法,是一種無失真資料壓縮技術,基於「使用變動長度的碼來取代連續重複出現的原始資料」來實現壓縮。

舉例來說,一組資料串"AAAABBBCCDEEEE",由4個A、3個B、2個C、1個D、4個E組成,經過變動長度編碼法可將資料壓縮爲A4B3C2D1E4(由14個單位轉成10個單位)。

其優點在於將重複性高的資料量壓縮成小單位;然而,其缺點在於—若該資料出現頻率不高,可能導致壓縮結果資料量比原始資料大,例如:原始資料"ABCDE",壓縮結果爲"A1B1C1D1E1"(由5個單位轉成10個單位)。

例如,字串"AABBBBDAA"將被編碼為"A2B4D1A2"。在此問題中,我們感興趣的是解碼(Decoding),使用上述過程編碼的字串。

Input File Format

輸入的第一行是整數N(N < 50),它代表測試數量。接下來N行,每行一個字串,代表使用運行長度編碼後的字串。該字串僅包含字母[A-Z]和數字[0-9]。不會有不合理的輸入。

Output Format

對於每種情況,輸出測試編號,然後輸出解碼後的字符串。解碼後的字符串的長度<200,並且只會包含大寫字母。

Sample Input 1

Sample Output 1

4 A4B3C2D1E4 A1B1C1D1E1 A2B4D1A2 A12

AAAABBBCCDEEEE ABCDE AABBBBDAA AAAAAAAAAAA

Sample Input 2

Sample Output 2

3 A1B1C1D1 G102G1L1E1 Y1A1H102

ABCD GOOGLE YAHOO

Problem H 分組反轉字串

請分組反轉字串,考慮下列字串:

"EFUIEHVOAUCQWNCNWVBNXDAHCBWBGIWX"本字串長度為32,如果我們把該字串分成8個群組及長度為4, "EFUI EHVO AUCQ WNCN WVBN XDAH CBWB GIWX",對每個群組內的字串(4個字元)分別由左到右的次序做反轉"IUFE OVHE QCUA NCNW NBVW HADX BWBC XWIG",會得到另一個新字串:

"IUFEOVHEQCUANCNWNBVWHADXBWBCXWIG"

給定群組數目及字串,請分組反轉字串。提示:

- * 要知道這字串有幾個字。
- * 它要分成幾組。
- * 每一組字把它由左到右的次序反轉(倒序輸出)。

Input File Format

輸入最多有101列,每列有一個整數G(G < 10)表示群組個數,接著會有一個字串,其長度一定是G的整數倍。字串長度不會大於100,字符串僅包含英文字母。若讀入一列僅包含整數0則表示輸入結束。

Output Format

請輸出分組反轉字串。

Sample Input 1

- 3 ABCEHSHSH
- 5 FAOETASINAHGRIONATWONOQAONARIO

0

提示:數字5,是指「分成五組」,不是「每五個字分成一組」。

Sample Output 1

CBASHEHSH

ATEOAFGHANISTANOIRAQONOWOIRANO

Sample Input 2

- 8 EFUIEHVOAUCQWNCNWVBNXDAHCBWBGIWX
- 8 TOBENUMBERONEWEMEETAGAINANDAGAINUNDERBLUEICPCSKY
- 5 ERURU
- 1 A
- 2 OF

0

Sample Output 2

IUFEOVHEQCUANCNWNBVWHADXBWBCXWIG UNEBOTNOREBMEEMEWENIAGATAGADNAEDNUNIIEULBRYKSCPC ERURU

A

OF

Problem I 字元出現次數

給你一列文字,請你找出各字元出現的次數。

Input File Format

每筆測試資料一列。每列最大長度爲1000。

Output Format

對每一列輸入,請輸出各字元的ASCII值及其出現的次數;請根據出現的次數由小到大輸出;如果有2個以上的字元有相同的次數,則ASCII值較大的先輸出。參考Sample Output。

	Sample Output 1
Sample Input 1	67 1
AAADDC	66 2
AAABBC	65 3

	Sample Output 2
Sample Input 2	49 1
122333	50 2
122333	51 3

	Sample Output 3
	99 1
	52 1
	50 1
Sample Input 3	66 2
AAADD -20422@@```	64 2
AAABBc32433@@```	96 3
	65 3
	51 3

題目保證每列字串中不含空白。

Problem J 質數

輸出給定兩個數字之間的所有質數。

Input File Format

輸入第一列,包含一個正整數N, $N \le 10$ 。在接下來的 N 列中,每列(組)的測試資料有兩個數字 m 和 n $(1 \le m \le n \le 10^9, n-m \le 10^5)$,中間由空格分隔。

Output Format

對每列(組)的測試資料,輸出所有質數 p 使得 $m \le p \le n$,每列爲一個質數數字,用空行分隔每列(組)的測試資料,參考Sample Output。

Sample Input 1

3

1 10

3 5

1000000 1000090

Sample Output 1

2

3

5

7

3

5

1000003

1000033

1000037

1000039

Problem K 質因數

寫一個程式算出一個正整數有多少個不同的質因數。例如:45=3*3*5, 所以45有2個質因數(3和5)。

Input File Format

每組測試資料一列。含有1個正整數 $N(1 < N \le 10^6)$ 。 若 N = 0 代表輸入結束。

Output Format

對每組測試資料輸出一列,N有多少個不同的質因數。輸出格式請參考Sample Output。

Sample Input 1

7

8

45

289384

930887

692778

636916

747794

238336

885387

760493

516650

641422

0

Sample Output 1

7 : 1

8 : 1

45 : 2

289384 : 3

930887 : 2

692778 : 5

636916 : 4 747794 : 3

238336 : 3

885387 : 2

000001 . 2

760493 : 2 516650 : 3

641422 : 3

Problem L 二進制bit爲1

計算 1 到 N 之間整數的二進制表示中,bit 爲 1 的數量。

Input File Format

輸入一列,包含一個正整數N, $1 \le N \le 10^{15}$ 。

Output Format

計算 1 到 N 之間整數的二進制表示中bit爲 1 的數量。提示:1...7的二進製表示爲 1 、10 、11 、100 、101 、110 、111 ,所以bit爲 1 的數量爲 12 。

提示:1...6的二進製表示為 $1 \times 10 \times 11 \times 100 \times 101 \times 110$,所以bit為1的數量為9。

Sample Input 1

7

Sample Output 1

12

Sample Input 2

6

Sample Output 2

9

Sample Input 3

5

Sample Output 3

Problem M 格雷碼

格雷碼(Gray Code)是一個數列集合,每個數使用二進位制來表示,假設使用n位元來表示每個數字,那麼任兩個數之間只有一個位元值不同。

例如: 生成4位元的格雷碼就是: 0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000

Gray Code的順序並不是唯一的,可以是上面的所形成的數列的任意一種。Gray Code是由貝爾實驗室的Frank Gray在1940年代提出的,用來在使用PCM(Pusle Code Modulation)方法傳送訊號時避免出錯,並於1953/3/17取得美國專利。如果要產生n位的格雷碼,那麼格雷碼的個數爲 2^n 個。

遞歸生成碼,這種方法基於格雷碼有反射碼的性質,以下爲利用 遞歸的規則來構造:

1位格雷碼有兩個碼字

(n+1)位格雷碼中的前2n個碼字等於n位格雷碼的碼字,按順序書寫,加前綴0

(n+1)位格雷碼中的後2n個碼字等於n位格雷碼的碼字,按逆序書寫,加前綴1

n+1位格雷碼的集合 = n位格雷碼集合(順序)加前綴0+n位格雷碼集合(逆序)加前綴1

Input File Format

輸入一列,包含一個正整數N, $1 \le N \le 16$ 。

Output Format

輸出遞歸生成碼(基於格雷碼有反射碼的性質),格雷碼的 2n 列。

Sample Output 1 Sample Input 1 00 11 10

	Sample Output 2
	000
	001
Sample Input 2	011
3	010
3	110
	111
	101
	100

Sample Output 3

Sample Input 3

Sample Output 4

Problem N 進步獎

高中的課業,真的不是普通的重,小朋友和家長約好,只要成績有持續進步,就可以得到禮物。不過小朋友的成績會起起落落的,不符合家長的期待,於是小朋友想到一招,就是只挑幾次的成績給家長看,至少挑出來那幾張考卷的成績分數是一直增加的。不過,爲了避免挑選出來的考卷太少張,小朋友要從多張考卷中找出最多張成績分數遞增的考卷,你能幫小朋友完成這項工作嗎?

寫一個程式從一連串的整數序列中選出最長的嚴格遞增子序列(strictly increasing subsequence)。例如:在 1, 3, 2, 2, 4, 1 中最長的嚴格遞增子序列為 1, 3, 4 或者 1, 2, 4。

Input File Format

每筆輸入檔案包含二列,第1列爲1個正整數N,表示成績的個數。第2行有N個1到1000之間的成績分數,用空格隔開的正整數(成績分數)。

Output Format

請輸出小朋友成績分數,拿給家長看的成績分數進步最多有幾張,這些考卷成績分數必須符合後面的分數一定比前面的高這個條件。(不包括同分)

Sample Input 1

11

20 40 32 67 40 20 89 300 404 13 13

Sample Output 1

6

説明: 6-: 20 32 40 89 300 404

Sample Input 2

3

2 2 2

Sample Output 2

Problem O 硬幣

考慮一個由n個硬幣組成的貨幣系統。每個硬幣都有一個正整數值。您的任務是計算可以使用可用硬幣產生期望的金額x的不同有序方式,計算有幾種方法。

例如,如果硬幣是2,3,5並且想要的總和是9,則有3種方法:

- 2+2+5
- 3 + 3 + 3
- 2+2+2+3

例如,如果硬幣是2,3,5並且想要的總和是10,則有4種方法:

- 2+3+5
- 5 + 5
- 2+3+2+3
- 2+2+2+2+2

Input File Format

第一列輸入有兩個整數 n 和 x: 硬幣的數量和期望的金額。第二 列有 n 個不同的整數 c_1, c_2, \ldots, c_n : 每個硬幣的金額。 $1 \le n \le 100$, $1 \le x \le 10^6$, $1 \le c_i \le 10^6$, $1 \le i \le n$ 。

Output Format

Sample Input 1

3 10 2 3 5

輸出一個整數,用硬幣產生期望的金額 x 的不同有序方式,計算有幾種方法, $mod 10^9 + 7$ 的數。

Sample Output 1

3 9 2 3 5	3
Sample Input 2	Sample Output 2

Sample Input 3	Sample Output 3
3 6 2 3 5	2

Problem O2 硬幣2

考慮一個由 n 個硬幣組成的貨幣系統。每個硬幣都有一個正整數值。您的任務是計算可以使用可用硬幣產生期望的金額 x 的不同有序方式,計算有幾種方法。

例如,如果硬幣是2,3,5並且想要的總和是9,則有8種方法:

- 2+2+5
- 2+5+2
- 5+2+2
- 3 + 3 + 3
- 2+2+2+3
- 2+2+3+2
- \bullet 2 + 3 + 2 + 2
- 3+2+2+2

Input File Format

第一列輸入有兩個整數 n 和 x: 硬幣的數量和期望的金額。第二 列有 n 個不同的整數 c_1, c_2, \ldots, c_n : 每個硬幣的金額。 $1 \le n \le 100$, $1 \le x \le 10^6$, $1 \le c_i \le 10^6$, $1 \le i \le n$ 。

Output Format

輸出一個整數,用硬幣產生期望的金額 x 的不同有序方式,計算有幾種方法, $mod 10^9 + 7$ 的數。

Sample	Input	1
--------	-------	---

Sample Output 1

3 9

2 3 5

8

Sample Input 2

Sample Output 2

3 10

2 3 5

14

Sample Input 3

Sample Output 3

3 6

2 3 5

Problem P 二元樹

「二元樹」就是分兩盆的樹,每個節點可以有左小孩和右小孩,每個節點可以有零個、一個、兩個小孩。拜訪樹有幾種方式:前序(preorder):先拜訪根,再拜訪左子樹,最後拜訪右子樹=>根左右中序(inorder):先拜訪左子樹,再拜訪根,最後拜訪右子樹=>左根右後序(postorder):先拜訪左子樹,再拜訪右子樹,最後拜訪根=>左右根

這一題就是給你前序和中序,要你求出後序。

上面那棵二元樹,前序(preorder)拜訪: DBACEGF和中序(inorder)拜訪: ABCDEFG。

Input File Format

每筆測試資料一列。每列有2個字串,分別代表某一棵二元樹的前序拜訪及中序拜訪結果。2個字串都只包含大寫英文字母,而且不會有重複的字母出現。所以最大長度都不會超過26。。

Output Format

對每一列輸入,請輸出該二元樹後序拜訪的結果。

Sample Input 1

DBACEGF ABCDEFG BCAD CBAD

Sample Output 1

ACBFGED CDAB

Problem Q 二元樹資訊

「二元樹」就是分兩盆的樹,每個節點可以有左小孩和右小孩,每個節點可以有零個、一個、兩個小孩。寫一個程式,該程式讀取有根的二元樹T並爲T的每個節點u輸出以下資訊:節點編號 ID、節點父親、節點小孩數目(子節點個數)、節點深度、節點高度。

節點深度:從根往下並沿路標記深度,深度則是由父親的深度加一就可以得到自己的深度。節點高度:一直往下找(左小孩和右小孩都要找)然後比較最大的深度回傳。

給定的二元樹n個節點組成,每個節點都有一個從0到n-1的唯一ID。

Input File Format

輸入的第一列包含一個整數 $n, 1 \le n \le 25$,表示樹的節點數。以節點 0 爲根。每個節點都有一個從 0 到 n-1 的唯一 ID,依順序給定。在接下來的 n 行中,每個節點的格式按以下格式給出: id 左小孩節點ID 右小孩節點ID 如果節點沒有左(右)孩子,則左(右)以-1表示。

Output Format

按以下格式輸出每個節點的訊息:

節點id:parent = p, degree = deg, depth = dep, height = h, p 是其父節點的 ID。如果該節點沒有父節點,則輸出-1。deg、dep和h分別是節點的孩子數、深度和高度。參考Sample Output。

Sample Input 1

		Sample Output 1
9		r
0	1 4	node 0: parent = -1 , degree = 2, depth = 0, height = 3,
1	2 3	<pre>node 1: parent = 0, degree = 2, depth = 1, height = 1,</pre>
2	-1 -1	<pre>node 2: parent = 1, degree = 0, depth = 2, height = 0,</pre>
3	-1 -1	<pre>node 3: parent = 1, degree = 0, depth = 2, height = 0,</pre>
4	5 8	<pre>node 4: parent = 0, degree = 2, depth = 1, height = 2,</pre>
5	6 7	<pre>node 5: parent = 4, degree = 2, depth = 2, height = 1,</pre>
6	-1 -1	<pre>node 6: parent = 5, degree = 0, depth = 3, height = 0,</pre>
7	-1 -1	<pre>node 7: parent = 5, degree = 0, depth = 3, height = 0,</pre>
8	-1 -1	<pre>node 8: parent = 4, degree = 0, depth = 2, height = 0,</pre>

Sample Input 2

Sample Output 2

```
6
0 3 -1 node 0: parent = -1, degree = 1, depth = 0, height = 4,
1 -1 5 node 1: parent = 4, degree = 1, depth = 3, height = 1,
2 -1 -1 node 2: parent = 4, degree = 0, depth = 3, height = 0,
3 4 -1 node 3: parent = 0, degree = 1, depth = 1, height = 3,
4 2 1 node 4: parent = 3, degree = 2, depth = 2, height = 2,
5 -1 -1 node 5: parent = 1, degree = 0, depth = 4, height = 0,
```

