Teoría de la integral y de la medida Hoja n⁰ 2 (Medidas, conjuntos medibles)

- 1. Demostrar que en la definición de medida exterior de Lebesgue, se puede suponer que los intervalos del recubrimiento son abiertos o bien son cerrados
- 2. En \mathbb{R} , consideramos la medida de Lebesgue. Demuestra que:
 - a) Todo conjunto nulo es medible.
 - b) Todo intervalo es medible.
 - c) Si A es medible y $A\Delta B$ es nulo, entonces B es medible y tiene la misma medida que A. Recordatorio: $A\Delta B = (A \setminus B) \cup (B \setminus A)$, diferencia simétrica de A y B.
- 3. Sea $X = \{a, b, c, d\}$. Comprobar que la familia de conjuntos

$$\mathcal{A} = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}, \{a,b,c,d\}\}\}$$

es una σ - álgebra en X.

4. Sea $X = \{a, b, c, d\}$. Construir la σ - álgebra generada por

$$\mathcal{E} = \{\{a\}\}\$$
y por $\mathcal{E} = \{\{a\}, \{b\}\}\$

5. Probar que la σ -álgebra generada por los borelianos en \mathbb{R} coincide con la σ -álgebra generada por cada una de las siguientes familias de conjuntos:

$$S_1 := \{ [a, b] : a, b \in \mathbb{R}, a < b \},$$

 $S_2 := \{ [a, b) : a, b \in \mathbb{R}, a < b \},$
 $S_3 := \{ (-\infty, b] : b \in \mathbb{R} \}.$

- 6. Sea $g: X \to Y$. Sea \mathcal{A} una σ álgebra en X. Probar que $\mathcal{B} = \{E \subset Y: g^{-1}(E) \in \mathcal{A}\}$ es una σ álgebra en Y.
- 7. Sea $g: X \to Y$. Sea \mathcal{A} una σ álgebra en Y. Probar que $\mathcal{B} = \{g^{-1}(E) : E \in \mathcal{A}\}$ es una σ -álgebra en X
- 8. Determinar la σ álgebra engendrada por la colección de los subconjuntos finitos de un conjunto X no-numerable
- 9. Se dice que $\mathcal{A} \subset \mathcal{P}(X)$ es una **álgebra** si cumple: i) $X \in \mathcal{A}$; ii) la unión **finita** de elementos de \mathcal{A} está en \mathcal{A} , y iii) \mathcal{A} es cerrada por complementos. Probar que una álgebra \mathcal{A} en X es una σ álgebra si y solo si es cerrada para las uniones numerables crecientes, (es decir si $E_i \in \mathcal{A}$, $E_1 \subset E_2 \subset \ldots$, entonces $\bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$)
- 10. Probar que la unión de una sucesión creciente de álgebras $A_1 \subset A_2 \subset ...$ es un álgebra. Pero dar ejemplos de que:
 - la unión de dos álgebras puede no ser una álgebra, y
 - la unión de una sucesión $A_1 \subset A_2 \subset ...$ de σ -álgebras puede no ser una σ álgebra.
- 11. ¿Existe alguna σ -álgebra infinita que tenga sólo una cantidad numerable de miembros?
- 12. Sea (X, \mathcal{A}, μ) un espacio de medida. Si $E, F \in \mathcal{A}$, comprobar que

$$\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$$

- 13. Sea (X, \mathcal{A}, μ) un espacio de medida. Para $E \in \mathcal{A}$ fijo, definimos $\mu_E(A) = \mu(A \cap E)$. Probar que μ_E es una medida sobre \mathcal{A} .
- 14. Sea (X, \mathcal{A}, μ) un espacio de medida. Se definen las operaciones de conjuntos líminf $E_j := \bigcup_n \bigcap_{j \geq n} E_j$; lím sup $E_j := \bigcap_n \bigcup_{j \geq n} E_j$. Sean $E_j \in \mathcal{M}$, $j \geq 1$. Probar que si $\mu(\cup E_j) < \infty$:

$$\mu(\liminf E_j) \le \liminf \mu(E_j)$$

 $\mu(\limsup E_j) \ge \limsup \mu(E_j)$

En particular si $\mu(X) < \infty$ entonces:

- a) $\mu(\liminf E_i) \leq \liminf \mu(E_i) \leq \limsup \mu(E_i) \leq \mu(\limsup E_i)$
- b) Si existe lím E_j , entonces $\mu(\lim E_j) = \lim \mu(E_j)$
- 15. Sea X un conjunto infinito numerable. Consideremos la σ álgebra $\mathcal{A}=\mathcal{P}(X)$. Definimos para $A\in\mathcal{A}$

$$\mu(A) = \left\{ \begin{array}{ll} 0 & \text{si } A \text{ es finito,} \\ \infty & \text{si } A \text{ es infinito.} \end{array} \right.$$

- a) Probar que μ es finitamente aditiva, pero no numerablemente aditiva.
- b) Probar que $X = \lim_{n \to \infty} A_n$, para cierta sucesión creciente de conjuntos $\{A_n\}$, tales que $\mu(A_n) = 0 \quad \forall n \in \mathbb{N}$.
- 16. Sea $X = \{a_1, a_2, a_3\}$, sea $\mathcal{A} = \mathcal{P}(X)$. Sea μ una medida que verifica $\mu(a_1) = \mu(a_2) = \mu(a_3) = \frac{1}{3}$. Consideremos la sucesión de conjuntos

$$A_n = \{a_1, a_2\}$$
 si n es par $A_n = \{a_3\}$ si n es impar

Probar que $\mu(\liminf A_n) < \liminf \mu(A_n) < \limsup \mu(A_n) < \mu(\limsup A_n)$.

- 17. Sean $\{A_n\}$ conjuntos medibles tales que $\sum_{n=1}^{n=\infty} \mu(A_n) < \infty$. Demostrar que cada elemento x pertenece a un número finito de A_n para c.t.x. (Dicho de otra manera el conjunto de los puntos x que pertenecen a infinitos de los A_n , es decir, lím sup A_n , mide cero.)
- 18. Sea $(X_1, \mathcal{A}_1, \mu_1)$ un espacio de medida completo, es decir, tal que todos los subconjuntos de un conjunto medible de **medida cero** también son medibles.. Sea $g: X_1 \to X_2$ una aplicación, $\mathcal{A}_2 = \{A \subset X_2 : g^{-1}(A) \in \mathcal{A}_1\}, \quad \mu_2(A) = \mu_1(g^{-1}(A)).$ Comprobar que $(X_2, \mathcal{A}_2, \mu_2)$ es un espacio de medida completo. **NOTA:** μ_2 se le denomina medida inducida en X_2 por la aplicación g.