Title: Clustering: Good, Tal, and Spectral

L10: Spectral Clustering

Jeff M. Phillips

February 10, 2020

12-means (12-mediod Les to choose to?

Telboul technique 2. Z-mediod: minemezo Cost (X. () = 1x1 xex d(x, \$\phi_{\text{c}}(x)) st. CcX Lapply to more general X, d

Graphs

Graphs

Mathematically: G = (V, E) where

$$V = \{a, b, c, d, e, f, g\}$$
 and

 $E = \{ \{a,b\}, \{a,c\}, \{a,d\}, \{b,d\}, \{c,d\}, \{c,e\}, \{e,f\}, \{e,g\}, \{f,g\}, \{f,h\} \}.$

Graphs

Mathematically: G = (V, E) where

$$V = \{a, b, c, d, e, f, g\}$$
 and

$$E = \Big\{ \{a,b\}, \{a,c\}, \{a,d\}, \{b,d\}, \{c,d\}, \{c,e\}, \{e,f\}, \{e,g\}, \{f,g\}, \{f,h\} \Big\}.$$

Matrix-Style: As a matrix with 1 if there is an edge, and 0 otherwise. (For a directed graph, it may not be symmetric).

$$G = \begin{pmatrix} a & b & c & \textcircled{\textcircled{d}} & e & f & (\mathring{g}) & h \\ \hline a & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ b & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline c & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ d & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ f & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ \hline c & h & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Normalize (3+ # edges with at Vo \ (S) = least lendpoint Vol(5)=6 Vol(T) = 5 vol (5') = 10 Vol (T') = 1 N(0+(5,T) = (v+(5, T) (v+(5, T) Val (S) T (T) 10V N(of(5',T') = -1 - 1.1

degree

Unnormalized Laplacian Matrix

Unnormalized Laplacian Matrix

Unnormalized Laplacian Matrix

Affinite Matrix V sertex set X data set similarity S: XxX =stc s (a,b) = (o,1] == s(b, 9)

normalized Laplacian

$$L = I - D^{-1/2}AD^{-1/2} = D^{-1/2}$$

$$\begin{pmatrix} 1 & -0.408 & -0.333 & -0.333 & 0 & 0 & 0 & 0 \\ -0.408 & 1 & 0 & -0.408 & 0 & 0 & 0 & 0 \\ -0.333 & 0 & 1 & -0.333 & -0.333 & 0 & 0 & 0 \\ -0.333 & -0.408 & -0.333 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -0.333 & 0 & 1 & -0.333 & -0.408 & 0 \\ 0 & 0 & 0 & 0 & -0.333 & 1 & -0.408 & -0.577 \\ 0 & 0 & 0 & 0 & -0.408 & -0.408 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -0.577 & 0 & 1 \\ \end{pmatrix}$$

eigenvectors of \boldsymbol{L}

eigenvectors of \boldsymbol{L}

λ	0	0 .12 5	0.724	1.00	1.33	1.42	1.66	1.73
\overline{V}	39	0.38	09	0.00	0.71	0.26	32	0.16
	32	0.36	27	0.50	0.00	51	0.38	18
	39	0.18	0.36	61	0.00	0.03	0.47	29
	39	0.38	09	0.00	71	0.26	32	0.16
	39	28	0.48	0.00	0.00	57	0.31	0.33
	39	48 /	29	0.00	0.00	0.05	31	65
	31	36	0.27	0.50	0.00	0.51	0.38	18
	22	32	61	35	0.00	07	0.27	0.51
		1/						

