Übungsblatt LA 10

Computational and Data Science FS2024

Lösungen

Mathematik 2

Lernziele:

- Sie kennen die Begriffe Bild, Kern, algebraische und geometrische Vielfachheit, ähnliche Matrix, Diagonalisierbarkeit einer Matrix und deren wichtigste Eigenschaften.
- Sie können Bild und Kern einer linearen Abbildung berechnen.
- Sie können bestimmen, ob eine Matrix diagonalisierbar ist oder nicht und die Diagonalmatrix angeben.

1. Aussagen über Bild und Kern

Gegeben sei eine mxn Matrix.

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Es gilt: $ker(A) \neq \emptyset$.	X	
b) Für m = 2 und n = 3 gilt: ker(A) ≠ {0}.	Х	
c) Für m = 3 und n = 2 gilt: ker(A) ≠ {0}.		X
d) Für n = m und A regulär gilt: ker(A) ≠ {0}.		X
e) Für n = m und A singulär gilt: ker(A) ≠ {0}.	X	
f) Für m = 3 und n = 4 gilt: $dim(ker(A)) + dim(img(A)) = 7$.		Χ

2. Bild und Kern berechnen

Berechnen Sie jeweils Bild und Kern der gegebenen Matrix.

a)
$$\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$$

b)
$$\begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$$

c)
$$\begin{pmatrix} 0 & -3 & 2 \\ 3 & 0 & -1 \\ -2 & 1 & 0 \end{pmatrix}$$

f) $\begin{pmatrix} -2 & 1 \\ 4 & -2 \end{pmatrix}$

$$\mathsf{d})\begin{pmatrix} -2 & 4 & 8 \\ 1 & -2 & -4 \end{pmatrix} \qquad \qquad \mathsf{e})\begin{pmatrix} -2 & 4 & 8 \\ 1 & -2 & 0 \end{pmatrix}$$

$$e)\begin{pmatrix} -2 & 4 & 8 \\ 1 & -2 & 0 \end{pmatrix}$$

$$f)\begin{pmatrix} -2 & 1 \\ -2 & 1 \\ 4 & -2 \\ 8 & 0 \end{pmatrix}$$

Wir betrachten die Matrix

$$A = \left[\begin{array}{cc} 2 & 3 \\ 4 & 5 \end{array} \right].$$

Offensichtlich ist A quadratisch und es gilt

$$\det(A) = 2 \cdot 5 - 4 \cdot 3 = 10 - 12 = -2 \neq 0.$$

Demnach ist A regulär und es gilt

$$\ker(A) = \{0\} \quad \text{und} \quad \operatorname{img}(A) = \mathbb{R}^2.$$

b)

Wir erzeugen mit dem Gauß-Jordan-Verfahren reduzierte Stufenform (aus A ergeben sich die Vektoren im Kern, aus A^T das Bild von A):

$$A: \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & \frac{3}{2} \end{bmatrix}$$

$$A^T: \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \begin{bmatrix} 1 \end{bmatrix} & 2 \\ 1 & 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \begin{bmatrix} 1 \end{bmatrix} & 2 \\ 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \begin{bmatrix} 1 \end{bmatrix} & 2 \end{bmatrix}$$

ker(A) enthält alle die Vektoren, die folgende Gleichung erfüllen:

$$1 \cdot x + \frac{3}{2} \cdot y = 0 \ \Rightarrow \ x = -\frac{3}{2} \cdot y$$

$$\underline{\underline{\ker(A)}} = \left\{ \left[\begin{array}{c} -\frac{3}{2} \, y \\ y \end{array} \right] \in \mathbb{R}^2 \right\} = \operatorname{span} \left\{ \left[\begin{array}{c} -\frac{3}{2} \\ 1 \end{array} \right] \right\} = \operatorname{span} \left\{ \left[\begin{array}{c} 3 \\ -2 \end{array} \right] \right\}$$

Für das Bild von A ergibt sich

$$img(A) = span\left\{ \left[\begin{array}{c} 1 \\ 2 \end{array} \right] \right\}$$

c)

$$A: \begin{bmatrix} 0 & -3 & 2 \\ 3 & 0 & -1 \\ -2 & 1 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -\frac{1}{2} & 0 \\ 0 & 3 & -2 \\ 3 & 0 & -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -\frac{1}{2} & 0 \\ 0 & 3 & -2 \\ 0 & \frac{3}{2} & -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -\frac{1}{2} & [1] & -\frac{1}{2} & 0 \\ 0 & [1] & -\frac{2}{3} \\ 0 & 3 & -2 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} [1] & 0 & -\frac{1}{3} \\ 0 & [1] & -\frac{2}{3} \\ 0 & 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 0 & -\frac{1}{3} \\ 0 & [1] & -\frac{2}{3} \end{bmatrix}.$$

Für die Vektoren im Kern von A gilt

$$0 \cdot x + 1 \cdot y - \frac{2}{3} \cdot z = 0 \quad \Rightarrow \quad y = \frac{2}{3} \cdot z$$

$$1 \cdot x + 0 \cdot y - \frac{1}{3} \cdot z = 0 \implies x = \frac{1}{3} \cdot z$$

$$\underline{\underline{\ker(A)}} = \left\{ \begin{bmatrix} \frac{1}{3} z \\ \frac{2}{3} z \\ z \end{bmatrix} \in \mathbb{R}^3 \right\} = \operatorname{span} \left\{ \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ 1 \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\}$$

Für das Bild von A ergibt sich

$$\underline{\underline{\operatorname{img}(A)}} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ -\frac{1}{3} \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -\frac{2}{3} \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ -2 \end{bmatrix} \right\}$$

$$A: \begin{bmatrix} -2 & 4 & 8 \\ 1 & -2 & -4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 & 1 & -2 & -4 \\ 2 & -4 & -8 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & -2 & -4 \\ 0 & 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & -2 & -4 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A^{T}: \begin{bmatrix} -2 & 1 \\ 4 & -2 \\ 8 & -4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 \\ 4 & -2 \\ 8 & -4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [2] & -1 \\ 4 & -2 \\ 8 & -4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [2] & -1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & -\frac{1}{2} \end{bmatrix}.$$

Für die Vektoren im Kern von A gilt

$$1 \cdot x - 2 \cdot y - 4 \cdot z = 0 \implies x = 2 \cdot y + 4 \cdot z.$$

Daraus erhalten wir

$$\underline{\underline{\ker(A)}} = \left\{ \begin{bmatrix} 2y + 4z \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \right\} = \underline{\operatorname{span}} \left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Für das Bild von A ergibt sich

$$\underline{\underline{\operatorname{img}}(A)} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 2 \\ -1 \end{bmatrix} \right\}$$

e)

$$A: \begin{bmatrix} -2 & 4 & 8 \\ 1 & -2 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 & 1 & -2 & 0 \\ 2 & -4 & -8 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & -2 & 0 \\ 0 & 0 & -8 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 & -2 & 0 \\ 0 & 0 & [1] \end{bmatrix}$$

$$A^{T}: \begin{bmatrix} -2 & 1 \\ 4 & -2 \\ 8 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 \\ 4 & -2 \\ 8 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [2] & -1 \\ 4 & -2 \\ 8 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [2] & -1 \\ 0 & 0 \\ 0 & 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -\frac{1}{2} \\ 0 & [1] \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 0 \\ 0 & [1] \end{bmatrix}$$

Für die Vektoren im Kern von A gilt

$$0 \cdot x + 0 \cdot y + 1 \cdot z = 0 \implies z = 0$$

$$1 \cdot x - 2 \cdot y - 0 \cdot z = 0 \quad \Rightarrow \quad x = 2 \cdot y + 0 \cdot 0 = 2 \cdot y$$

$$\underline{\underline{\ker(A)}} = \left\{ \begin{bmatrix} 2y \\ y \\ 0 \end{bmatrix} \in \mathbb{R}^3 \right\} = \operatorname{span} \left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \right\}$$

Für das Bild von A ergibt sich

$$\underline{\underline{\mathrm{img}(A)}} = \mathrm{span} \left\{ \left[\begin{array}{c} 1 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 1 \end{array} \right] \right\} = \underline{\mathbb{R}^2}$$

f)

$$A: \begin{bmatrix} -2 & 1 \\ 4 & -2 \\ 8 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 \\ 4 & -2 \\ 8 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [2] & -1 \\ 4 & -2 \\ 8 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} [2] & -1 \\ 0 & 0 \\ 0 & 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -\frac{1}{2} \\ 0 & [1] \end{bmatrix} \Leftrightarrow \begin{bmatrix} [1] & 0 \\ 0 & [1] \end{bmatrix}$$

$$A^{T}: \begin{bmatrix} -2 & 4 & 8 \\ 1 & -2 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 2 & -4 & -8 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 0 & -8 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 0 & [1] \end{bmatrix}$$

Für die Vektoren im Kern von A gilt

$$0 \cdot x + 1 \cdot y = 0 \ \Rightarrow \ y = 0$$

$$1 \cdot x + 0 \cdot y = 0 \implies x = 0$$

$$\ker(A) = \{0\}$$

Für das Bild von A ergibt sich

$$\operatorname{img}(A) = \operatorname{span}\left\{ \begin{bmatrix} 1\\-2\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

3. Aussagen über 2 Matrizen in 3D

Gegeben seien die beiden Matrizen

$$A = \begin{pmatrix} 0 & 2 & -1 \\ -2 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix} \text{ und } B = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Es gilt: $img(A) = \mathbb{R}^3$.		Χ
b) Es gilt: $ker(A^{12}) \neq \{0\}$.	Χ	
c) Es gilt: B ist orthogonal.		Χ
d) Es gilt: $tr(2A + \sqrt{2}B) = 0$.	Χ	
e) Die Spaltenvektoren von B sind linear unabhängig.	Χ	
f) Es gilt: $ker(B^3) = ker(B)$.	X	

4. Eigenwerte

A sei eine nxn Matrix. Was lässt sich über die reellen Eigenwerte von A aussagen, falls gilt:

- a) $A = -A^T$
- b) $A^{-1} = A^T$
- c) $A = B^T B$, B sei eine mxn Matrix.

a)

Es gelten die Umformungen

$$\lambda \langle \boldsymbol{v}, \boldsymbol{v} \rangle = \langle \lambda \boldsymbol{v}, \boldsymbol{v} \rangle = \langle A \boldsymbol{v}, \boldsymbol{v} \rangle = \langle \boldsymbol{v}, A^T \boldsymbol{v} \rangle = \langle \boldsymbol{v}, -A \boldsymbol{v} \rangle$$
$$= \langle \boldsymbol{v}, -\lambda \boldsymbol{v} \rangle = -\lambda \langle \boldsymbol{v}, -\lambda \boldsymbol{v} \rangle.$$

Diese Gleichungskette ist nur für $\lambda = 0$ richtig.

b)

Hier liegt eine orthogonale Matrix vor mit den bekannten Eigenschaften $A^{-1} = A^T$ und damit $A^T A = E$. Daraus ermitteln wir

$$\lambda^{2}\langle \boldsymbol{v}, \boldsymbol{v} \rangle = \langle \lambda \boldsymbol{v}, \lambda \boldsymbol{v} \rangle = \langle A \boldsymbol{v}, A \boldsymbol{v} \rangle = \langle A^{T} A \boldsymbol{v}, \boldsymbol{v} \rangle = \langle \boldsymbol{v}, \boldsymbol{v} \rangle.$$

4

Diese Gleichungskette ist für $\lambda = 0$ und $\lambda = 1$ gültig.

c) Wir erhalten mit einem entsprechenden Ansatz die Umformungen

$$\lambda \langle \mathbf{v}, \mathbf{v} \rangle = \langle \lambda \mathbf{v}, \mathbf{v} \rangle = \langle A \mathbf{v}, \mathbf{v} \rangle = \langle B^T B \mathbf{v}, \mathbf{v} \rangle = \langle B \mathbf{v}, B \mathbf{v} \rangle \ge 0.$$

Daraus resultiert $\lambda \geq 0$.

Als konkretes Zahlenbeispiel haben wir

$$A = B^T B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 4 \\ 4 & 5 \end{pmatrix}.$$

Das charakteristische Polynom von A lautet

$$P(\lambda) = \lambda^2 - 11\lambda + 14.$$

Daraus ergeben sich wie erwartet die positiven Eigenwerte

$$\lambda_{1,2} = \frac{1}{2} \left(11 \pm \sqrt{65} \right) > 0.$$

5. Diagonalmatrizen

Gegeben seien die folgenden Matrizen:

$$A_1 = \begin{pmatrix} 1 & 5 & 7 \\ 0 & 4 & 3 \\ 0 & 0 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}, A_3 = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

- a) Bestimmen Sie die Eigenvektoren und zugehörigen Eigenräume obiger Matrizen.
- b) Welche der Matrizen sind ähnlich zu einer Diagonalmatrix?
- a) Die Matrix A_1 ist eine Dreiecksmatrix, damit stehen die Eigenwerte auf der Hauptdiagonalen. Wir haben den doppelten Eigenwert $\lambda_{1,2} = 1$ und $\lambda_3 = 4$.

Der zu $\lambda_{1,2} = 1$ gehörige Eigenraum ist Kern $(A_1 - \lambda_{1,2}E)$. Es gilt also wieder das homogene Gleichungssystem mit der Koeffizientenmatrix

$$(A_1 - \lambda_{1,2}E) = \begin{pmatrix} 0 & 5 & 7 \\ 0 & 3 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

zu lösen. Gauss-Schritte sind nicht nötig. Die 1. Variable ist frei wählbar, also lautet der Lösungs- bzw. der Eigenraum von $\lambda_{1,2}=1$

$$\mathbb{L}_{1,2} = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}.$$

Damit gilt dim $\mathbb{L}_{1,2} = 1$. Weiter ist

$$(A_1 - \lambda_3 E) = \begin{pmatrix} -3 & 5 & 7 \\ 0 & 0 & 3 \\ 0 & 0 & -3 \end{pmatrix}$$

zu lösen. Hier liegt die Lösung

$$\mathbb{L}_3 = \operatorname{Span} \left\{ \begin{pmatrix} 5 \\ 3 \\ 0 \end{pmatrix} \right\}$$

vor, also stimmt die algebraische Vielfachheit mit der geometrischen überein. Es gilt dim $\mathbb{L}_3 = 1$.

Das charakteristische Polynom zu A_2 lautet

$$\det(A_2 - \lambda E) = \begin{vmatrix} 1 - \lambda & 0 & -1 \\ 1 & 2 - \lambda & 1 \\ 2 & 2 & 3 - \lambda \end{vmatrix} = (1 - \lambda)(2 - \lambda)(3 - \lambda) \stackrel{!}{=} 0.$$

Die einfachen Eigenwerte sind $\lambda_1 = 1$, $\lambda_2 = 2$ und $\lambda_3 = 3$.

Die Koeffizientenmatrizen der zugehörigen homogenen Gleichungssysteme $(A_2 - \lambda_i E)x = 0$, i = 1, 2, 3, liefern folgende Eigenräume:

$$\begin{pmatrix} 0 & 0 & -1 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{pmatrix} \implies \mathbb{L}_1 = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\},\,$$

$$\begin{pmatrix} -1 & 0 & -1 \\ 1 & 0 & 1 \\ 2 & 2 & 1 \end{pmatrix} \implies \mathbb{L}_2 = \operatorname{Span} \left\{ \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix} \right\},\,$$

$$\begin{pmatrix} -2 & 0 & -1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{pmatrix} \implies \mathbb{L}_3 = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} \right\}.$$

Damit stimmen algebraische und geometrische Vielfachheiten überein, und es gilt $\mathbb{L}_i = 1$ für i = 1, 2, 3.

Das charakteristische Polynom zu A_3 lautet

$$\begin{vmatrix} 2-\lambda & 1 & 1 \\ 1 & 2-\lambda & 1 \\ 0 & 0 & 1-\lambda \end{vmatrix} = (1-\lambda)[(2-\lambda)^2 - 1] = (1-\lambda)^2(3-\lambda) \stackrel{!}{=} 0.$$

Die Koeffizientenmatrizen der zugehörigen homogenen Gleichungssysteme $(A_3 - \lambda_{1,2}E)x = 0$ bzw. $(A_3 - \lambda_3 E)x = 0$ liefern folgende Eigenräume:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \implies \mathbb{L}_{1,2} = Span \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\},$$

also sind auch dim $\mathbb{L}_{1,2} = 2$, bzw.

$$\begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & -2 \end{pmatrix} \implies \mathbb{L}_3 = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\},\,$$

und dim $\mathbb{L}_3 = 1$.

b)

Die Matrizen A_2 und A_3 sind ähnlich zu einer Diagonalmatrix, da bei diesen jeweils die algebraischen und geometrischen Vielfachheiten übereinstimmen. Dagegen ist A_1 nicht diagonalisierbar.

6. Diagonalmatrix

Überprüfen Sie, dass $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ und $\vec{v}_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$ Eigenvektoren der Matrix

 $A = \begin{pmatrix} -5 & 8 & 8 \\ -3 & 5 & 3 \\ -1 & 3 & 4 \end{pmatrix}$ sind und bestimmen Sie die dazugehörigen Eigenwerte. Finden Sie eine Matrix C, so dass $C^{-1}AC$ eine Diagonalmatrix ist und berechnen Sie A^n für alle $n \in \mathbb{N}$.

Es gilt

$$A\vec{v}_{1} = \begin{pmatrix} -5 & 8 & 8 \\ -3 & 5 & 3 \\ -1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 3 \end{pmatrix} = 3\vec{v}_{1}$$

$$A\vec{v}_{2} = \begin{pmatrix} -5 & 8 & 8 \\ -3 & 5 & 3 \\ -1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix} = -\vec{v}_{2}$$

$$A\vec{v}_{3} = \begin{pmatrix} -5 & 8 & 8 \\ -3 & 5 & 3 \\ -1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \\ 2 \end{pmatrix} = 2\vec{v}_{3}.$$

Die zu den Vektoren \vec{v}_1 , \vec{v}_2 und \vec{v}_3 gehörenden Eigenwerte sind $\lambda_1=3,\ \lambda_2=-1$ und $\lambda_3=2.$

Für die Matrix $C = (\vec{v}_1 \vec{v}_2 \vec{v}_3)$ ist $C^{-1}AC$ eine Diagonalmatrix,

$$D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = C^{-1}AC \text{ mit } C = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}.$$

Wir berechnen C^{-1} mit Hilfe des Gaußverfahrens:

$$(C|E) = \begin{pmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & 0 & 1 & 0 \\ 1 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & 0 & 1 & 0 \\ 0 & -2 & 1 & | & -1 & 0 & 1 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & 2 & | & 1 & -2 & 0 \\ 0 & 1 & -1 & | & 0 & 1 & 0 \\ 0 & 0 & -1 & | & -1 & 2 & 1 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & 0 & | & -1 & 2 & 2 \\ 0 & 1 & 0 & | & 1 & -1 & -1 \\ 0 & 0 & 1 & | & 1 & -2 & -1 \end{pmatrix} = (E|C^{-1})$$

Nun gilt $A = CDC^{-1}$ und $A^n = (CDC^{-1})^n = CD^nC^{-1}$, also

$$A^{n} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3^{n} & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} \begin{pmatrix} -1 & 2 & 2 \\ 1 & -1 & -1 \\ 1 & -2 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 3^{n} & 2(-1)^{n} & 0 \\ 0 & (-1)^{n} & -2^{n} \\ 3^{n} & 0 & 2^{n} \end{pmatrix} \begin{pmatrix} -1 & 2 & 2 \\ 1 & -1 & -1 \\ 1 & -2 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} -3^{n} + 2(-1)^{n} & 2 \cdot 3^{n} + 2 \cdot (-1)^{n+1} & 2 \cdot 3^{n} + 2 \cdot (-1)^{n+1} \\ (-1)^{n} - 2^{n} & (-1)^{n+1} + 2^{n+1} & (-1)^{n+1} + 2^{n} \\ -3^{n} + 2^{n} & 2 \cdot 3^{n} - 2^{n+1} & 2 \cdot 3^{n} - 2^{n} \end{pmatrix}.$$

Übungsblatt LA 10

Computational and Data Science BSc FS 2023

Lösungen

Analysis und Lineare Algebra 2

1. Aussagen über die Metrik

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) In jedem reellen Vektorraum kann genau eine Metrik definiert werden.	0	•
b) Die <i>Metrik</i> in einem <i>reellen Vektorraum</i> legt in diesem <i>Raum</i> alle <i>Längen</i> , <i>Flächen</i> , <i>Volumen</i> bzw. <i>Masse</i> fest.	•	0
c) Die <i>Metrik</i> in einem <i>reellen Vektorraum</i> legt in diesem <i>Raum</i> alle <i>Winkel</i> fest.	•	0
d) Zwei <i>Vektoren</i> in einem <i>reellen Vektorraum</i> haben bezüglich jeder <i>Metrik</i> die gleiche <i>Länge</i> .	0	•
e) Die <i>Metrik</i> in einem <i>reellen Vektorraum</i> kann durch Angabe einer <i>Basis</i> mit zugehöriger Gram- <i>Matrix</i> definiert werden.	•	0
f) Zu jedem <i>Skalar-Produkt</i> können unendlich viele <i>Metriken</i> definiert werden.	0	•

2. Geometrie von zwei Vektoren bezüglich verschiedenen Metriken in 2D

Wir betrachten in \mathbb{R}^2 die Vektoren

$$\mathbf{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \quad \text{und} \quad \mathbf{w} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}. \tag{1}$$

Wir berechnen jeweils das Skalar-Produkt, die $L\ddot{a}ngen$, den Winkel und die $Fl\ddot{a}che$ des aufgespannten Parallelogramms der Vektoren **v** und **w** bezüglich der angegebenen Metrik.

a) Wir betrachten die Metrik

$$g = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1 \implies \det(g) = 1 > 0.$$
 (2)

Dies ist die Metrik des positiv definiten Gram-Riemann-Skalar-Produkts. Wir berechnen

$$\langle \mathbf{v}, \mathbf{v} \rangle = \mathbf{v}^T \cdot g \cdot \mathbf{v} = \mathbf{v}^T \cdot \mathbb{1} \cdot \mathbf{v} = \mathbf{v}^T \cdot \mathbf{v} = \begin{bmatrix} 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = 13$$
 (3)

$$\langle \mathbf{w}, \mathbf{w} \rangle = \mathbf{w}^T \cdot g \cdot \mathbf{w} = \mathbf{w}^T \cdot \mathbb{1} \cdot \mathbf{w} = \mathbf{w}^T \cdot \mathbf{w} = \begin{bmatrix} -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 3 \end{bmatrix} = 13$$
 (4)

$$\underline{\langle \mathbf{v}, \mathbf{w} \rangle} = \mathbf{v}^T \cdot g \cdot \mathbf{w} = \mathbf{v}^T \cdot \mathbb{1} \cdot \mathbf{w} = \mathbf{v}^T \cdot \mathbf{w} = \begin{bmatrix} 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \underline{0}$$
 (5)

und die Gram-Matrix

$$G = \begin{bmatrix} \langle \mathbf{v}, \mathbf{v} \rangle & \langle \mathbf{v}, \mathbf{w} \rangle \\ \langle \mathbf{w}, \mathbf{v} \rangle & \langle \mathbf{w}, \mathbf{w} \rangle \end{bmatrix} = \begin{bmatrix} 13 & 0 \\ 0 & 13 \end{bmatrix}.$$
 (6)

Daraus erhalten wir die Längen der Vektoren v und w

$$|\mathbf{v}| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} = \underline{\sqrt{13}} \tag{7}$$

$$|\mathbf{w}| = \sqrt{\langle \mathbf{w}, \mathbf{w} \rangle} = \underline{\sqrt{13}} \tag{8}$$

sowie den Winkel

$$\underline{\underline{\angle}(\mathbf{v}; \mathbf{w})} = \arccos\left(\frac{\langle \mathbf{v}, \mathbf{w} \rangle}{|\mathbf{v}| \cdot |\mathbf{w}|}\right) = \arccos\left(\frac{0}{\sqrt{13} \cdot \sqrt{13}}\right) = \arccos(0) = \frac{\pi}{2}.$$
 (9)

Die Fläche des aufgespannten Parallelogramms der Vektoren \mathbf{v} und \mathbf{w} ist

$$\underline{\underline{A}} = \sqrt{\det(G)} = \sqrt{13 \cdot 13 - 0 \cdot 0} = \sqrt{13^2} = \underline{13}.$$
(10)

b) Wir betrachten die *Metrik*

$$g = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \implies \det(g) = 1 \cdot 2 - 0 \cdot 0 = 2 > 0. \tag{11}$$

Demnach ist g positiv definit. Wir berechnen die Skalar-Produkte

$$\langle \mathbf{v}, \mathbf{v} \rangle = \mathbf{v}^T \cdot g \cdot \mathbf{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}^T \cdot \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix} = 17 \tag{12}$$

$$\langle \mathbf{w}, \mathbf{w} \rangle = \mathbf{w}^T \cdot g \cdot \mathbf{w} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}^T \cdot \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 6 \end{bmatrix} = 22$$
 (13)

$$\underline{\langle \mathbf{v}, \mathbf{w} \rangle} = \mathbf{v}^T \cdot g \cdot \mathbf{w} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}^T \cdot \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 6 \end{bmatrix} = \underline{6}$$
 (14)

und die Gram-Matrix

$$G = \begin{bmatrix} \langle \mathbf{v}, \mathbf{v} \rangle & \langle \mathbf{v}, \mathbf{w} \rangle \\ \langle \mathbf{w}, \mathbf{v} \rangle & \langle \mathbf{w}, \mathbf{w} \rangle \end{bmatrix} = \begin{bmatrix} 17 & 6 \\ 6 & 22 \end{bmatrix}.$$
 (15)

Daraus erhalten wir die Längen der Vektoren v und w

$$|\mathbf{v}| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} = \sqrt{17} \tag{16}$$

$$|\mathbf{w}| = \sqrt{\langle \mathbf{w}, \mathbf{w} \rangle} = \underline{\sqrt{22}} \tag{17}$$

sowie den Winkel

$$\underline{\angle(\mathbf{v}; \mathbf{w})} = \arccos\left(\frac{\langle \mathbf{v}, \mathbf{w} \rangle}{|\mathbf{v}| \cdot |\mathbf{w}|}\right) = \arccos\left(\frac{6}{\sqrt{17} \cdot \sqrt{22}}\right) \approx \underline{0.400 \,\pi}. \tag{18}$$

Die Fläche des aufgespannten Parallelogramms der Vektoren \mathbf{v} und \mathbf{w} ist

$$\underline{A} = \sqrt{\det(G)} = \sqrt{17 \cdot 22 - 6 \cdot 6} = \sqrt{338} . \tag{19}$$

c) Wir betrachten die Metrik

$$g = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \Rightarrow \det(g) = 2 \cdot 2 - 0 \cdot 0 = 4 > 0.$$
 (20)

Demnach ist g positiv definit. Wir berechnen die Skalar-Produkte

$$\langle \mathbf{v}, \mathbf{v} \rangle = \mathbf{v}^T \cdot g \cdot \mathbf{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}^T \cdot \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} 6 \\ 4 \end{bmatrix} = 26$$
 (21)

$$\langle \mathbf{w}, \mathbf{w} \rangle = \mathbf{w}^T \cdot g \cdot \mathbf{w} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}^T \cdot \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} -4 \\ 6 \end{bmatrix} = 26$$
 (22)

$$\underline{\langle \mathbf{v}, \mathbf{w} \rangle} = \mathbf{v}^T \cdot g \cdot \mathbf{w} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}^T \cdot \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} -4 \\ 6 \end{bmatrix} = \underline{0}$$
(23)

und die Gram-Matrix

$$G = \begin{bmatrix} \langle \mathbf{v}, \mathbf{v} \rangle & \langle \mathbf{v}, \mathbf{w} \rangle \\ \langle \mathbf{w}, \mathbf{v} \rangle & \langle \mathbf{w}, \mathbf{w} \rangle \end{bmatrix} = \begin{bmatrix} 26 & 0 \\ 0 & 26 \end{bmatrix}.$$
 (24)

Daraus erhalten wir die Längen der Vektoren v und w

$$|\mathbf{v}| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} = \underline{\sqrt{26}} \tag{25}$$

$$|\mathbf{w}| = \sqrt{\langle \mathbf{w}, \mathbf{w} \rangle} = \underline{\sqrt{26}} \tag{26}$$

sowie den Winkel

$$\underline{\underline{\angle}(\mathbf{v}; \mathbf{w})} = \arccos\left(\frac{\langle \mathbf{v}, \mathbf{w} \rangle}{|\mathbf{v}| \cdot |\mathbf{w}|}\right) = \arccos\left(\frac{0}{\sqrt{26} \cdot \sqrt{26}}\right) = \arccos(0) = \frac{\pi}{\underline{2}}.$$
 (27)

Die Fläche des aufgespannten Parallelogramms der Vektoren \mathbf{v} und \mathbf{w} ist

$$\underline{\underline{A}} = \sqrt{\det(G)} = \sqrt{16 \cdot 26 - 0 \cdot 0} = \sqrt{26^2} = \underline{26}.$$
 (28)

d) Wir betrachten die Metrik

$$g = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \implies \det(g) = 0 \cdot 0 - 1 \cdot 1 = -1 < 0.$$
 (29)

Demnach ist g nicht positiv definit. Wir berechnen die Skalar-Produkte

$$\langle \mathbf{v}, \mathbf{v} \rangle = \mathbf{v}^T \cdot g \cdot \mathbf{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}^T \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 3 \end{bmatrix} = 12$$
 (30)

$$\langle \mathbf{w}, \mathbf{w} \rangle = \mathbf{w}^T \cdot g \cdot \mathbf{w} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}^T \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ -2 \end{bmatrix} = -12$$
 (31)

$$\underline{\langle \mathbf{v}, \mathbf{w} \rangle} = \mathbf{v}^T \cdot g \cdot \mathbf{w} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}^T \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \underline{5}$$
 (32)

und die Gram-Matrix

$$G = \begin{bmatrix} \langle \mathbf{v}, \mathbf{v} \rangle & \langle \mathbf{v}, \mathbf{w} \rangle \\ \langle \mathbf{w}, \mathbf{v} \rangle & \langle \mathbf{w}, \mathbf{w} \rangle \end{bmatrix} = \begin{bmatrix} 12 & 5 \\ 5 & -12 \end{bmatrix}.$$
 (33)

Daraus erhalten wir die $L\ddot{a}ngen$ der Vektoren \mathbf{v} und \mathbf{w}

$$|\mathbf{v}| = \sqrt{|\langle \mathbf{v}, \mathbf{v} \rangle|} = \sqrt{|12|} = \underline{\sqrt{12}} \tag{34}$$

$$|\mathbf{w}| = \sqrt{|\langle \mathbf{w}, \mathbf{w} \rangle|} = \sqrt{|-12|} = \underline{\sqrt{12}} :$$
(35)

Weil g nicht positiv definit ist, ist der Winkel zwischen \mathbf{v} und \mathbf{w} $\underline{\text{nicht definiert}}$. Die Fläche des aufgespannten Parallelogramms der Vektoren \mathbf{v} und \mathbf{w} ist

$$\underline{\underline{A}} = \sqrt{|\det(G)|} = \sqrt{|12 \cdot (-12) - 5 \cdot 5|} = \sqrt{|-169|} = \sqrt{169} = \underline{13}.$$
 (36)

e) Wir betrachten die Metrik

$$g = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} \implies \det(g) = 0 \cdot 0 - 2 \cdot 2 = -4 < 0. \tag{37}$$

Demnach ist g nicht positiv definit. Wir berechnen die Skalar-Produkte

$$\langle \mathbf{v}, \mathbf{v} \rangle = \mathbf{v}^T \cdot g \cdot \mathbf{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}^T \cdot \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 6 \end{bmatrix} = 24$$
 (38)

$$\langle \mathbf{w}, \mathbf{w} \rangle = \mathbf{w}^T \cdot g \cdot \mathbf{w} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}^T \cdot \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 6 \\ -4 \end{bmatrix} = -24$$
 (39)

$$\underline{\langle \mathbf{v}, \mathbf{w} \rangle} = \mathbf{v}^T \cdot g \cdot \mathbf{w} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}^T \cdot \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} 6 \\ -4 \end{bmatrix} = \underline{10}$$
 (40)

und die Gram-Matrix

$$G = \begin{bmatrix} \langle \mathbf{v}, \mathbf{v} \rangle & \langle \mathbf{v}, \mathbf{w} \rangle \\ \langle \mathbf{w}, \mathbf{v} \rangle & \langle \mathbf{w}, \mathbf{w} \rangle \end{bmatrix} = \begin{bmatrix} 24 & 10 \\ 10 & -24 \end{bmatrix}. \tag{41}$$

Daraus erhalten wir die Längen der Vektoren v und w

$$|\mathbf{v}| = \sqrt{|\langle \mathbf{v}, \mathbf{v} \rangle|} = \sqrt{|24|} = \underline{\sqrt{24}} \tag{42}$$

$$|\mathbf{w}| = \sqrt{|\langle \mathbf{w}, \mathbf{w} \rangle|} = \sqrt{|-24|} = \sqrt{24} : \tag{43}$$

Weil g nicht positiv definit ist, ist der Winkel zwischen \mathbf{v} und \mathbf{w} $\underline{\text{nicht definiert}}$. Die Fläche des aufgespannten Parallelogramms der Vektoren \mathbf{v} und \mathbf{w} ist

$$\underline{A} = \sqrt{|\det(G)|} = \sqrt{|24 \cdot (-24) - 10 \cdot 10|} = \sqrt{|-676|} = \sqrt{676} = \underline{26}.$$
 (44)

f) Wir betrachten die Metrik

$$g = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \Rightarrow \det(g) = 2 \cdot 2 - 1 \cdot 1 = 3 > 0.$$
 (45)

Demnach ist g positiv definit. Wir berechnen die Skalar-Produkte

$$\langle \mathbf{v}, \mathbf{v} \rangle = \mathbf{v}^T \cdot g \cdot \mathbf{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}^T \cdot \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} 8 \\ 7 \end{bmatrix} = 38$$
 (46)

$$\langle \mathbf{w}, \mathbf{w} \rangle = \mathbf{w}^T \cdot g \cdot \mathbf{w} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}^T \cdot \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 4 \end{bmatrix} = 14 \tag{47}$$

$$\underline{\langle \mathbf{v}, \mathbf{w} \rangle} = \mathbf{v}^T \cdot g \cdot \mathbf{w} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}^T \cdot \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 4 \end{bmatrix} = \underline{5}$$
 (48)

und die Gram-Matrix

$$G = \begin{bmatrix} \langle \mathbf{v}, \mathbf{v} \rangle & \langle \mathbf{v}, \mathbf{w} \rangle \\ \langle \mathbf{w}, \mathbf{v} \rangle & \langle \mathbf{w}, \mathbf{w} \rangle \end{bmatrix} = \begin{bmatrix} 38 & 5 \\ 5 & 14 \end{bmatrix}. \tag{49}$$

Daraus erhalten wir die Längen der Vektoren v und w

$$|\mathbf{v}| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} = \underline{\sqrt{38}} \tag{50}$$

$$|\mathbf{w}| = \sqrt{\langle \mathbf{w}, \mathbf{w} \rangle} = \underline{\sqrt{14}} \tag{51}$$

sowie den Winkel

$$\underline{\underline{\angle}(\mathbf{v}; \mathbf{w})} = \arccos\left(\frac{\langle \mathbf{v}, \mathbf{w} \rangle}{|\mathbf{v}| \cdot |\mathbf{w}|}\right) = \arccos\left(\frac{5}{\sqrt{38} \cdot \sqrt{14}}\right) \approx \underline{0.430 \,\pi}. \tag{52}$$

Die Fläche des aufgespannten Parallelogramms der Vektoren \mathbf{v} und \mathbf{w} ist

$$\underline{\underline{A}} = \sqrt{\det(G)} = \sqrt{38 \cdot 14 - 5 \cdot 5} = \underline{\sqrt{507}}.$$
 (53)

3. Raum der harmonischen Schwingungen mit fester Frequenz

Sei T > 0 und $\omega = 2\pi/T$. Wir betrachten den Funktionenraum

$$V := \left\{ u : \mathbb{R} \to \mathbb{R} \mid u(t) = C \cdot \cos(\omega t) + S \cdot \sin(\omega t) \text{ mit } C, S \in \mathbb{R} \right\}$$
 (54)

mit Basis $B := \{ \mathbf{e}_{c} = \cos(\omega t), \mathbf{e}_{s} = \sin(\omega t) \}$ und dem L^{2} -Skalar-Produkt

$$\langle v, w \rangle := \frac{2}{T} \int_0^T v(t) \cdot w(t) \, \mathrm{d}t.$$
 (55)

a) Für alle $u, v \in V$ gibt es $u_c, u_s, v_c, v_s \in \mathbb{R}$ mit

$$u(t) = u_{\rm c} \cdot \cos(\omega t) + u_{\rm s} \cdot \sin(\omega t) \tag{56}$$

$$v(t) = v_{c} \cdot \cos(\omega t) + v_{s} \cdot \sin(\omega t). \tag{57}$$

Für jede Linearkombination von u und v mit beliebigen Koeffizienten $a, b \in \mathbb{R}$ gilt

$$w(t) = a \cdot u(t) + b \cdot v(t) = a \cdot \left(u_{c} \cdot \cos(\omega t) + u_{s} \cdot \sin(\omega t)\right) + b \cdot \left(v_{c} \cdot \cos(\omega t) + v_{s} \cdot \sin(\omega t)\right)$$

$$= a \cdot u_{c} \cdot \cos(\omega t) + a \cdot u_{s} \cdot \sin(\omega t) + b \cdot v_{c} \cdot \cos(\omega t) + b \cdot v_{s} \cdot \sin(\omega t)$$

$$= \underbrace{\left(a \cdot u_{c} + b \cdot v_{c}\right)}_{=:w_{c}} \cdot \cos(\omega t) + \underbrace{\left(a \cdot u_{s} + b \cdot v_{s}\right)}_{=:w_{s}} \cdot \sin(\omega t)$$

$$= w_{c} \cdot \cos(\omega t) + w_{s} \cdot \sin(\omega t) \in V.$$

$$(58)$$

Daraus folgt, dass V ein <u>reeller Vektorraum</u> ist.

- **b)** Wir zeigen, dass (55) ein *positiv definites Skalar-Produkt* auf V definiert. Dazu prüfen wir die drei *Axiome*.
 - **A1** Linearität: Für alle $u, v, w \in V$ und $a, b \in \mathbb{R}$ gilt

$$\underline{\langle u, a \cdot v + b \cdot w \rangle} = \frac{2}{T} \int_0^T u(t) \cdot (a \cdot v(t) + b \cdot w(t)) dt$$

$$= \frac{2}{T} \int_0^T (a \cdot u(t) \cdot v(t) + b \cdot u(t) \cdot w(t)) dt$$

$$= a \cdot \frac{2}{T} \int_0^T u(t) \cdot v(t) dt + b \cdot \frac{2}{T} \int_0^T u(t) \cdot w(t) dt$$

$$= a \cdot \langle u, v \rangle + b \cdot \langle u, w \rangle. \tag{59}$$

A2 Symmetrie: Für alle $v, w \in V$ gilt

$$\underline{\langle w, v \rangle} = \frac{2}{T} \int_0^T w(t) \cdot v(t) \, \mathrm{d}t = \frac{2}{T} \int_0^T v(t) \cdot w(t) \, \mathrm{d}t = \underline{\langle v, w \rangle}. \tag{60}$$

A3 Positiv Definitheit: Für alle $v \in V$ gilt

$$\underline{\langle v, v \rangle} = \frac{2}{T} \int_0^T v(t) \cdot v(t) \, \mathrm{d}t = \frac{2}{T} \int_0^T \underbrace{v^2(t)}_{\geq 0} \, \mathrm{d}t \geq \underline{0}. \tag{61}$$

Weil jedes Element $v \in V$ eine stetige Funktion ist, gilt auch

$$\underbrace{0 = \langle v, v \rangle}_{=} = \frac{2}{T} \int_{0}^{T} v^{2}(t) dt \iff \underbrace{v(t) \equiv 0.}_{=}$$
 (62)

c) Für die *Vektoren* in der *Basis B* gilt

$$\frac{\langle \mathbf{e}_{c}, \mathbf{e}_{c} \rangle}{\langle \mathbf{e}_{c}, \mathbf{e}_{c} \rangle} = \frac{2}{T} \int_{0}^{T} \cos(\omega t) \cdot \cos(\omega t) \, dt = \frac{2}{T} \int_{0}^{T} \cos^{2}(\omega t) \, dt = \frac{2}{T} \cdot \left[\frac{t}{2} + \frac{\sin(\omega t) \cdot \cos(\omega t)}{2\omega} \right]_{0}^{T}$$

$$= \frac{2}{T} \cdot \left(\frac{T}{2} + \frac{\sin(\omega T) \cdot \cos(\omega T)}{2\omega} - \frac{0}{2} - \frac{\sin(\omega \cdot 0) \cdot \cos(\omega \cdot 0)}{2\omega} \right)$$

$$= \frac{2}{T} \cdot \left(\frac{T}{2} + \frac{\sin(2\pi) \cdot \cos(2\pi)}{2\omega} - 0 - 0 \right) = \frac{2}{T} \cdot \left(\frac{T}{2} + 0 \right) = \frac{2}{T} \cdot \frac{T}{2} = \underline{1} \tag{63}$$

$$\frac{\langle \mathbf{e}_{s}, \mathbf{e}_{s} \rangle}{\langle \mathbf{e}_{s}, \mathbf{e}_{s} \rangle} = \frac{2}{T} \int_{0}^{T} \sin(\omega t) \cdot \sin(\omega t) \, dt = \frac{2}{T} \int_{0}^{T} \sin^{2}(\omega t) \, dt = \frac{2}{T} \cdot \left[\frac{t}{2} - \frac{\sin(\omega t) \cdot \cos(\omega t)}{2\omega} \right] \Big|_{0}^{T}$$

$$= \frac{2}{T} \cdot \left(\frac{T}{2} - \frac{\sin(\omega T) \cdot \cos(\omega T)}{2\omega} - \frac{0}{2} + \frac{\sin(\omega \cdot 0) \cdot \cos(\omega \cdot 0)}{2\omega} \right)$$

$$= \frac{2}{T} \cdot \left(\frac{T}{2} + \frac{\sin(2\pi) \cdot \cos(2\pi)}{2\omega} - 0 + 0 \right) = \frac{2}{T} \cdot \left(\frac{T}{2} + 0 \right) = \frac{2}{T} \cdot \frac{T}{2} = \underline{1} \qquad (64)$$

$$\underline{\langle \mathbf{e}_{s}, \mathbf{e}_{c} \rangle} = \frac{2}{T} \int_{0}^{T} \sin(\omega t) \cdot \cos(\omega t) \, dt = \frac{2}{T} \int_{0}^{T} \frac{1}{2} \cdot \sin(2\omega t) \, dt = \frac{1}{T} \cdot \left[\frac{-\cos(2\omega t)}{2\omega} \right] \Big|_{0}^{T}$$

$$= \frac{1}{2\omega T} \cdot \left(-\cos(2\omega T) + \cos(2\omega \cdot 0) \right) = \frac{1}{4\pi} \cdot \left(-\cos(4\pi) + \cos(0) \right) = \frac{1}{4\pi} \cdot (-1 + 1)$$

$$= \frac{1}{4\pi} \cdot 0 = \underline{0}. \qquad (65)$$

Daraus erhalten wir für die *Basis B* bezüglich des *Skalar-Produkts* (55) die *Metrik* bzw. GRAM-*Matrix*

$$\underline{\underline{g}} = G(\mathbf{e}_{c}; \mathbf{e}_{s}) = \begin{bmatrix} \langle \mathbf{e}_{c}, \mathbf{e}_{c} \rangle & \langle \mathbf{e}_{c}, \mathbf{e}_{s} \rangle \\ \langle \mathbf{e}_{s}, \mathbf{e}_{c} \rangle & \langle \mathbf{e}_{s}, \mathbf{e}_{s} \rangle \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \underline{\underline{1}}.$$
 (66)

d) Seien A, B > 0 und $\varphi, \eta \in [0, 2\pi]$. Wir betrachten die harmonischen Schwingungen

$$f(t) := A \cdot \sin(\omega t + \varphi) \quad \text{und} \quad g(t) := B \cdot \cos(\omega t + \eta).$$
 (67)

Gemäss Additionstheoreme für Sinus und Cosinus gilt

$$f(t) = A \cdot \sin(\omega t + \varphi) = A \cdot \left(\sin(\omega t) \cdot \cos(\varphi) + \cos(\omega t) \cdot \sin(\varphi)\right)$$

$$= \underbrace{A \cdot \sin(\varphi)}_{=:f_{c}} \cdot \cos(\omega t) + \underbrace{A \cdot \cos(\varphi)}_{=:f_{s}} \cdot \sin(\omega t) = f_{c} \cdot \cos(\omega t) + f_{s} \cdot \sin(\omega t) \in V$$
(68)

$$g(t) = B \cdot \cos(\omega t + \eta) = B \cdot \left(\cos(\omega t) \cdot \cos(\eta) - \sin(\omega t) \cdot \sin(\eta)\right)$$

$$= \underbrace{B \cdot \cos(\eta)}_{=:g_{c}} \cdot \cos(\omega t) + \underbrace{\left(-B \cdot \sin(\eta)\right)}_{=:g_{s}} \cdot \sin(\omega t) = g_{c} \cdot \cos(\omega t) + g_{s} \cdot \sin(\omega t) \in V$$
 (69)

Die Funktionen können bezüglich der Basis B somit dargestellt werden durch die Komponenten

$$\mathbf{f} = \begin{bmatrix} f_{c} \\ f_{s} \end{bmatrix} = \begin{bmatrix} A \sin(\varphi) \\ A \cos(\varphi) \end{bmatrix} \quad \text{und} \quad \mathbf{g} = \begin{bmatrix} g_{c} \\ g_{s} \end{bmatrix} = \begin{bmatrix} B \cos(\eta) \\ -B \sin(\eta) \end{bmatrix}. \tag{70}$$

e) Berechnen Sie die Längen von f und g aus (67) bezüglich des Skalar-Produkts (55).

$$|\mathbf{f}| = \sqrt{\langle \mathbf{f}, \mathbf{f} \rangle} = \sqrt{\mathbf{f}^T \cdot g \cdot \mathbf{f}} = \sqrt{\mathbf{f}^T \cdot 1 \cdot \mathbf{f}} = \sqrt{\mathbf{f}^T \cdot \mathbf{f}} = \sqrt{\begin{bmatrix} A \sin(\varphi) \\ A \cos(\varphi) \end{bmatrix}^T \cdot \begin{bmatrix} A \sin(\varphi) \\ A \cos(\varphi) \end{bmatrix}}$$

$$= \sqrt{A \cdot \sin(\varphi) \cdot A \cdot \sin(\varphi) + A \cdot \cos(\varphi) \cdot A \cdot \cos(\varphi)} = \sqrt{A^2 \cdot \left(\sin^2(\varphi) + \cos^2(\varphi)\right)}$$

$$= \sqrt{A^2 \cdot 1} = \sqrt{A^2} = |A| = \underline{A}$$

$$(71)$$

$$|\mathbf{g}| = \sqrt{\langle \mathbf{g}, \mathbf{g} \rangle} = \sqrt{\mathbf{g}^T \cdot g \cdot \mathbf{g}} = \sqrt{\mathbf{g}^T \cdot 1 \cdot \mathbf{g}} = \sqrt{\mathbf{g}^T \cdot \mathbf{g}} = \sqrt{\begin{bmatrix} B \cos(\eta) \\ -B \sin(\eta) \end{bmatrix}^T \cdot \begin{bmatrix} B \cos(\eta) \\ -B \sin(\eta) \end{bmatrix}}$$

$$= \sqrt{B \cdot \cos(\eta) \cdot B \cdot \cos(\eta) - B \cdot \sin(\eta) \cdot (-B) \cdot \sin(\eta)} = \sqrt{B^2 \cdot (\cos^2(\eta) + \sin^2(\eta))}$$

$$= \sqrt{B^2 \cdot 1} = \sqrt{B^2} = |B| = \underline{B}. \tag{72}$$

f) Das Skalar-Produkt (55) von f und g aus (67) ist

$$\langle \mathbf{f}, \mathbf{g} \rangle = \mathbf{f}^T \cdot g \cdot \mathbf{g} = \mathbf{f}^T \cdot \mathbb{1} \cdot \mathbf{g} = \mathbf{f}^T \cdot \mathbf{g} = \begin{bmatrix} A \sin(\varphi) \\ A \cos(\varphi) \end{bmatrix}^T \cdot \begin{bmatrix} B \cos(\eta) \\ -B \sin(\eta) \end{bmatrix}$$

$$= A \cdot \sin(\varphi) \cdot B \cdot \cos(\eta) + A \cdot \cos(\varphi) \cdot (-B) \cdot \sin(\eta)$$

$$= AB \cdot \left(\sin(\varphi) \cdot \cos(\eta) - \cos(\varphi) \cdot \sin(\eta) \right) = AB \cdot \sin(\varphi - \eta). \tag{73}$$

Für den Winkel zwischen f und g aus (67) bezüglich des Skalar-Produkts (55) erhalten wir

$$\underline{\underline{\angle(\mathbf{f};\mathbf{g})}} = \arccos\left(\frac{\langle \mathbf{f},\mathbf{g}\rangle}{|\mathbf{f}|\cdot|\mathbf{g}|}\right) = \arccos\left(\frac{AB\cdot\sin(\varphi-\eta)}{A\cdot B}\right) = \arccos\left(\sin(\varphi-\eta)\right)$$
$$= \arccos\left(\cos(\pi/2-\varphi+\eta)\right) = \underline{\pi/2-\varphi+\eta}. \tag{74}$$

g) Mit Hilfe der CAUCHY-SCHWARZ-Ungleichung erhalten wir

$$\underline{\int_{0}^{T} f(t) \cdot g(t) \, dt} = \frac{T}{2} \cdot \langle \mathbf{f}, \mathbf{g} \rangle \le \frac{T}{2} \cdot |\mathbf{f}| \cdot |\mathbf{g}| \le \underline{\frac{T}{2} \cdot A \cdot B}.$$
(75)

h) Wir betrachten den Fall, dass

$$0 = \int_0^T f(t) \cdot g(t) \, dt = \frac{T}{2} \cdot \langle \mathbf{f}, \mathbf{g} \rangle = \frac{T}{2} \cdot AB \cdot \sin(\varphi - \eta) \qquad \left| \cdot \frac{T}{2AB} \right|$$
 (76)

$$\Leftrightarrow \qquad 0 = \sin(\varphi - \eta). \tag{77}$$

Daraus erhalten wir die Bedingung

$$\varphi - \eta = n \cdot \pi \quad \text{mit} \quad n \in \mathbb{Z}. \tag{78}$$