Complexity Theory

Henrik Tscherny

19. November 2021

Inhaltsverzeichnis

1	Defi	nitionen 1	l
	1.1	Entscheidbarkeit und Erkennbarkeit	
	1.2	Enumerator (Aufzähler)	
2	Arte	en von TM's	3
	2.1	einseitig begrenzte einband TM	3
	2.2	k-Band TM	3
	2.3	Oracle TM	ļ
3	Red	uktionen 4	ļ
	3.1	Turing-Reduktionen	ļ
	3.2	Many-one-Reduktion (mapping Reduction)	5
4	Satz	Satz von Rice 7	
5	Rek	ekursion 8	
6	Zeit	komplexität)
	6.1	Landau-Symbole)
1	D	efinitionen	
_	D		

1.1 Entscheidbarkeit und Erkennbarkeit

- ullet Sei M eine TM mit dem Eingabealphabet Σ
- Sei $L(M) := \{ w \in \Sigma^* | Makzeptiertw \}$

- Ein Sprache L ist **erkennbar** gdw. es eine TM gibt welche diese Sprache erkennt (L = L(M))
- Außerdem ist eine Sprache **erkennbar** gdw. es einen Enumerator E mit G(E) = L
- Ist eine Sprache **erkennbar**, dann existiert ein Enumerator E für L welcher jedes Wort in L nur genau einmal ausgibt
- Eine Sprache L ist **entscheidbar** gdw. sie erkennbar ist und die TM auf jedem Input hält
- Eine Sprache L ist **erkennbar** gdw. es einen Enumerator E gibt welcher die Wörter in aufsteigender Länge aufzählt
- Eine Sprache L ist **co-semi-entscheidbar** gdw. \bar{L} semi-entscheidbar ist
- Ist L semi-entscheidbar und co-semi-entscheidbar, so ist L entscheidbar Beweis:
 - Sei TM_L eine TM welche L erkennt
 - Sei $TM_{\bar{L}}$ eine TM welche \bar{L} erkennt
 - Simuliere TM_L und $TM_{\bar{L}}$
 - eine von beiden muss halten, da L semi-entscheidbar und co-semientscheidbar ist
 - somit kann $w \in L$ entschieden werden
- Es gibt Probleme Welche weder semi- npch co-semi-entscheidbar sind z.B. TM Äquivalenz (Beweis siehe Many-One-Reduktionen)

Note: Erkennbar = semi-entscheidbar

1.2 Enumerator (Aufzähler)

Eine Multi-Band TM M mit:

- M hat ein write-only output Band, auf dem der Head nur nach Links laufen kann
- M hat ein # Symbol welches die Wörter auf dem Output Band trennt
- Die von **M erzeugte Sprache** sei die Sprache aller Wörter welche irgendwann auf dem Output Band zwischen Zwei # auftauchen
- M startet auf einem leeren Band

2 Arten von TM's

2.1 einseitig begrenzte einband TM

Definition

- $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
- Q: Zustandsmenge
- Σ: Eingabealphabet (ohne _)
- : Γ : Bandalphabet mit $\Sigma \cup \{_\} \subseteq \Gamma$
- δ : Übergangsfunktion mit $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$
- q_0 : Startzustand
- q_{accept} : akzeptierender Endzustand mit $q_{accept} \in Q$
- q_{reject} : ablehnender Endzustand mit $q_{reject} \in Q, q_{accept} \neq q_{reject}$

2.2 k-Band TM

Definition

- $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
- $\delta: O \times \Gamma^k \to O \times \Gamma^k \times \{L, R, N\}^k$

Äquivalenzbeweis

- Sei M eine k-Band TM und S eine TM welche M simuliert
- Schreibe den Inhalt der k Bänder von M hintereinander jeweils getrennt durch ein Trennzeichen (#)
- Die Head-Positionen von M werden durch spezielle Zeichen in S dargestellt (x)

2.3 Oracle TM

Definition

- besitzt ein spezielles Oracle Band
- hat spezielle Zustände $q_{?}, q_{ves}, q_{no}$
- Wenn die OTM q_2 erreicht, springt diese zu q_{yes} oder q_{no} , je nachdem ob der Inhalt des Oracle Bandes in O ist
- O kann ein beliebig schweres Problem sein, sogar unentscheidbar
- Das Oracle zu benutzen benötigt lediglich einen Schritt
- Ein Oracle zu Komplementieren hat keine Auswirkung

3 Reduktionen

3.1 Turing-Reduktionen

Definition

ein Problem P ist **Turing reduzierbar** auf ein Problem Q ($P \le_T Q$), wenn P durch eine OTM M^Q mit Oracle Q entschieden werden kann Turing-Reduktion kann genutzt werden, um Unentscheidbarkeit zu beweisen **Ist P unentscheidbar und P** $\le_T Q$ dann ist Q unentscheidbar Beweis mittels Kontrapositiv:

- Nehme an $P \leq_T Q$ mit Q ist entscheidbar
- Man kann die benötigte OTM als normale TM konstruieren, so dass gilt P $\leq_T Q$
- daraus folgt das P entscheidbar ist

Note: Ist Q semi-entscheidbar und $P \leq_T Q$, dann kann oder kann P nicht semi-entscheidbar sein

Beispiel-Reduktion

Reduzieren des ϵ -Halteproblems auf das Halteproblem (Hält eine TM M auf einem leeren Inputband ?)

- Definiere eine OTM wie folgt:
 - Input: Eine TM M und ein Wort w
 - Konstruiere eine TM M_w wie folgt:
 - 1. Lösche alles vom Inputtape und schreibe w darauf
 - 2. Bearbeite den Input wie M
 - Löse das ϵ -Halteproblem für M_w mit einem Oracle
 - Output: Ergebnis des ϵ -Halteproblem
- ⇒ Unentscheidbar

3.2 Many-one-Reduktion (mapping Reduction)

Definition

Eine Sprach P ist many-one-reduzierbar auf eine Sprache Q ($P \le_m Q$), wenn es eine totale berechenbare Funktion f gibt, so dass $f : \Sigma^* \to \Sigma^*$, so dass $\forall w \in \Sigma^* : w \in P \Leftrightarrow f(w) \in Q$

- Many-one-Reduktion **erhält (co-)semi-entscheidbarkeit** (anders als die Turing-Reduktion)
- $P \leq_m Q \Rightarrow P \leq_T Q$ Beweis:
 - Man erhält eine OTM mit Oracle Q, welches P erkennt wie folgt:
 - * Input $w \rightarrow berechne f(w)$
 - * Frage das Oracle und gebe das Ergebnis zurück (ja = akzeptieren, nein = verwerfen)
- gilt $P \leq_m Q$ und Q ist entscheidbar, dann ist P entscheidbar
- gilt P ≤_m Q und Q ist semi-entscheidbar, dann ist P semi-entscheidbar
 Beweis:
 - gegeben eine TM welche Q erkennt, man erhält eine TM welche P erkennt wie folgt:
 - * Auf dem Input w, berechne f(w)
 - * Simuliere die TM für Q und gebe das Ergebnis zurück

Beispiel-Reduktion Zwei TM's M und N sind äquivalent wenn sie die gleiche Sprache erkennen (L(M) = L(N))

TM Äquivalenz ist unentscheidbar: Beweis:

- definiere f, so dass $w \in \epsilon$ Halting gdw. $f(w) \in \ddot{A}$ quivalenz
- Sei M_a eine TM welche alle Inputs akzeptiert (hält auf jedem beliebigen w)
- Definiere für eine TM M eine TM M^* wie folgt:
 - Simuliere M auf ϵ
 - wenn M hält akzeptiere
- M^* akzeptiert also alle Inputs sofern, M auf ϵ hält
- M^* ist äquivalent zu M_a gdw. M auf ϵ hält
- $f(w) = \begin{cases} \langle M^*, M_a \rangle, & w = \langle M \rangle & \text{(valide Kodierung)} \\ \varepsilon, & \text{ungültige Kodierung} \\ \to M^* \text{ auf } M_a \text{ akzeptiert immer, da } M_a \text{ für für jeden beliebigen Input hält,} \\ \text{somit auch auf } \varepsilon \end{aligned}$

Äquivalenz von TMs ist weder semi- noch co-semi-entscheidbar Beweis:

- Wie gezeigt gilt ϵ -Halteproblem \leq_m Äquivalenz
- Da das ϵ -Halteproblem nicht co-semi-entscheidbar ist, ist Äquivalenz es auch nicht
- Jedoch kann man zeigen, dass nicht- ϵ -Halteproblem \leq_m Äquivalenz
 - Sei M_{\emptyset} eine TM welche alle Inputs ablehnt (Gegenteil zu M_a)
 - Äquivalenz zu M_a korrespondiert zu ϵ -halten
 - Äquivalenz zu M_{\emptyset} korrespondiert zu ϵ -nicht-halten
 - $f(w) = \begin{cases} \langle M^*, M_{\emptyset} \rangle, & w = \langle M \rangle & \text{(valide Kodierung)} \\ \langle M^*, M_{\emptyset} \rangle, & \text{ungültige Kodierung} \end{cases}$

4 Satz von Rice

Trivialität

- Sei P eine Menge von Sprachen
- Eine Sprache L hat die Eigenschaft P wenn $L \in P$
- P ist **nicht-trivial**, wenn es erkennbare Sprachen gibt welche P haben und solche die P nicht haben
 - → es muss Entscheidungsmöglichkeiten geben

Satz

Ist P eine **nicht-triviale** Eigenschaft einer erkennbaren Sprache, dann ist folgendes Problem unentscheidbar:

$$P - ness = \{\langle M \rangle | L(M) \in P\}$$

d.h. Die Frage ob eine TM eine nicht-triviale Eigenschaft, hat ist unentscheidbar

Beweis

Reduzieren auf ϵ -Halteproblem

- Sei $\emptyset \notin P$
- Sei M_L eine TM welche die Sprache L erkennt und L die Eigenschaft P hat $(L \in P)$
- Konstruiere für eine beliebige TM M eine TM M^* wie folgt für einen Input $w \in \Sigma^*$:
 - 1. Simuliere M mit leerem Input (ϵ)
 - 2. Hält M, dann simuliere M_L auf w
- Dadurch gilt $L(M^*)=L\in P$ wenn M auf ϵ hält, da (2) lediglich M_L auf w simuliert
- Sonnst gilt $L(M^*) = \emptyset \notin P$, da M^* in (1) festhängt
- Die Überprüfung ob $\langle M^* \rangle \in P$ würde das ϵ -Halteproblem entscheiden \Rightarrow Unentscheidbar

Anwendungen

Unter anderem kann für folgende Eigenschaften für eine beliebige TM M mit Rice gezeigt werden, das die Sprachen unentscheidbar sind:

- Leerheit
- Endlichkeit
- Entscheidbarkeit
- Regularität
- Kontextfreiheit
- Wortproblem

5 Rekursion

Eine **Quine** ist ein Programm, welches wenn gestartet, ohne zusätzlichen Input seinen eigenen Sourcecode ausgibt und dann hält

Ziel: Konstruieren einer TM SELF welche sich selbst als Encoding zurück gibt

- Es gibt eine berechenbare Funktion $q: \Sigma^* \to \Sigma^*$, so dass $\forall w \in \Sigma^*: q(w) = print(\langle M \rangle)$ Der Teil mit 'für jedes Wort' heißt einfach: ignoriere den Input (Input-unabhängig)
- Man kann eine TM P_w konstruieren, welche für jedes Wort den Tapeinhalt mit wersetzt
- q kann man jetzt berechnen, indem man eine TM nimmt, welche mit w als input P_w erzeugt und anschließend $\langle P_w \rangle$ ausgibt

Eine Quine kann in zwei Teile unterteilt werden:

- A: berechne den Sourcecode $\langle B \rangle$ eines Programms B
- B: nutze \(\begin{align*} B \rangle \text{ um folgendes zu printen:} \)
 Sourcecode \(\lambda \rangle \text{ welcher } \lambda \rangle \text{ berechnet und den Sourcecode } \lambda \rangle \text{ selbst} \)

A kann mit der zuvor konstruierten TM $P_{\langle B \rangle}$ implementiert werden B funktioniert wie folgt auf einem Input $\langle M \rangle$:

• berechne $q(\langle M \rangle)$

- konkatoniere die TM's gegeben durch $q(\langle M \rangle)$ und $\langle M \rangle$
- gebe die Kodierung dieser Konkatenation zurück

die TM SELF istnun eine TM konstruiert durch B auf dem Input $\langle B \rangle$

6 Zeitkomplexität

Definition

Sei M eine TM und f eine Funktion mit $f: \mathbb{N} \to \mathbb{R}^+$ M ist **f-time beschränkt**, wenn M auf jedem input $w \in \Sigma^*$ nach maximal f(|w|)Schritten hält

6.1 Landau-Symbole

Big-O

- Klassifiziert eine Funktion mit einer asymptotischen oberen Schranke
- $\bullet \ f(n) = O(g(n)) \Leftrightarrow \exists c > 0 \\ \exists n_0 \in \mathbb{N} \\ \forall n > n_0 \ : \ f(n) \leq c \cdot g(n)$
- es gibt also ein Punkt (n_0) ab dem die Funktion f dauerhaft kleiner gleich der Funktion g ist, selbst wenn g mit einer beliebigen Konstante (c) multipliziert wird

Note: für **small-o** sagt man auch f wird asymtotisch von g dominiert **Symboltabelle**:

Notation	$C = \lim_{n \to \infty} \frac{f(n)}{g(n)}$	Bedeutung
$f \in O(g)$	c < 0	$f \leq g$
$f \in \Omega(g)$	c > 0	$f \ge g$
$f \in \Theta(g)$	$0 < c < \infty$	f = g
$f \in o(g)$	c = 0	f < g
$f \in \omega(g)$	$c = \infty$	f > g