Exercícios retirados do livro: BOYCE, William E.; DIPRIMA, Richard C. Equações diferenciais elementares e problemas de valores de contorno. Oitava edição. 2006

Aula 1

Informações sobre o curso

Aula 2

Introdução e Modelagem

Seção 1.3 pág 14

- Determine a ordem da equação e diga se ela é linear ou não.
 - (a) $t^2 \frac{d^2 y}{dt^2} + t \frac{dy}{dt} + 2y = sent$
 - (b) $(1+y^2)\frac{d^2y}{dt^2} + t\frac{dy}{dt} + y = e^t$
 - (c) $y^{(4)} + y^{(3)} + y'' + y' + y = 1$
 - (d) $y' + ty^2 = 0$
 - (e) y'' + sen(t+y) = sent
- 2. Verifique que cada função dada é solução da equação diferencial
 - (a) y'' y = 0, $y(t) = e^t$;
 - (b) $ty' y = t^2$, $y(t) = 3t + t^2$;
 - (c) $t^2y'' + 5ty' + 4y = 0$, t > 0, $y_1(t) = t^{-2}$ e $y_2(t) = t^{-2}lnt$
- 3. Determine os valores de r para os quais a equação diferencial y'-2y=0 tem uma solução da forma $y=e^{rt}$.
- 4. Determine os valores de r para os quais a equação diferencial $t^2y''+4ty'+2y=0$ tem uma solução da forma $y=t^r$.

Aula 3

Equações lineares 1^a ordem:

Método dos fatores integrantes; Comportamento das soluções.

Seção 2.1 pág 23

- 1. Encontre a solução geral da equação diferencial dada e a use-a para determinar o comportamento das soluções quando $t\to\infty$.
 - (a) $y' + 3y = t + e^{-2t}$ $(y = ce^{-3t} + (t/3) (1/9) + e^{-2t})$
 - (b) $y' 2y = t^2 e^{2t}$ $(y = ce^{2t} + t^2 e^{2t}/3)$
 - (c) ty' + 2y = sent, t > 0 $(y = (c tcost + sent)/t^2)$
 - (d) $y' + 2ty = 2te^{-t^2}$, t > 0 $(y = t^2e^{-t^2} + ce^{-t^2})$
 - (e) $ty' y = t^2 e^{-t}, t > 0$ $(y = -te^{-t} + ct)$

- 2. Encontre solução do problema de valor inicial dado.
 - (a) $y' y = 2te^{2t}$, y(0) = 1 $(y = 3e^t + 2(t-1)e^{2t})$
 - (b) $y' + 2y = te^{-2t}$, y(1) = 0 $(y = (t^2 1)e^{-2t/2})$
 - (c) $ty' + 2y = t^2 t + 1$, $y(1) = \frac{1}{2}$, t > 0 (y = $(3t^4 4t^3 + 6t^2 + 1)/12t^2$)
 - (d) $y' + \frac{2}{t}y = \frac{cost}{t^2}$, $y(\pi) = 0$, t > 0 $(y = (sent)/t^2)$
 - (e) $y' 2y = e^{2t}$, y(0) = 2 $(y = (t+2)e^{2t})$
 - (f) $ty' + 2y = sent, y\left(\frac{\pi}{2}\right) = 1, t > 0$ $(y = t^{-2}((\pi^2/4) 1)^{-1} + t + sent)$
 - (g) $t^3y' + 4t^2y = e^{-t}$, y(-1) = 0, t < 0 (y =
 - (h) ty' + (t+1)y = t, y(ln2) = 1, t > 0 (y = $-(t-12e^{-t})/t$)
- 3. Considere o problema de valor inicial

$$\begin{cases} y' + \frac{1}{2}y = 2cost, \\ y(0) = -1. \end{cases}$$

Encontre as coordenadas do primeiro ponto de máximo local da solução para t > 0.

Precisa do auxílio de um programa para achar efetivamente o valor de t.

4. Considere o problema de valor inicial

$$\begin{cases} y' + \frac{1}{2}y = -t, \\ y(0) = -1. \end{cases}$$

Encontre as coordenadas do primeiro ponto crítico da solução para t>0 e verifique se ele é máximo ou mínimo local. $_{(t=-2ln(4/5)>0)}$

5. Considere o problema de valor inicial

$$\begin{cases} y' + \frac{2}{3}y = 1 - \frac{1}{2}t, \\ y(0) = y_0. \end{cases}$$

Encontre o valor de y_0 para o qual a solução encosta no eixo t mas não atravessa.

6. Encontre o valor de y_0 para o qual a solução do problema de valor inicial

$$\begin{cases} y' - y = 1 + 3sent, \\ y(0) = y_0. \end{cases}$$

permanece finita quando $t \to \infty$. $(y_0 = -5/2)$

7. Considere o problema de valor inicial

$$\begin{cases} y' - \frac{3}{2}y = 3t + 2e^t, \\ y(0) = y_0. \end{cases}$$

Encontre o valor de y_0 que separa as soluções que crescem positivamente quando $t \to \infty$ das que crescem em módulo com sinal negativo. Como a solução correspondente a esse valor crítico de y_0 se comporta quando $t \to \infty$? $_{(y_0 = -16/3)}$

8. Mostre que, se a e λ são constantes positivas e se b é qualquer número real, então toda a solução da equação

$$y' + ay = be^{-\lambda t}$$

tem a propriedade que $y \to 0$ quando $t \to \infty$.

9. Construa uma equação diferencial linear de primeira ordem cujas soluções têm limite 3 quando $t \to \infty$.

Aula 4

Equações não lineares 1ª ordem:

Método de equações separáveis.

Seção 2.2 pág 27

1. Resolva a equação diferencial dada

(a)
$$y' = \frac{x^2}{y}$$
 (3 $y^2 - 2x^3 = c, y \neq 0$)

(b)
$$y' = \frac{x^2}{y(1+x^3)}$$
 $(3y^2 - 2ln|1+x^3| = 3, x \neq -1, y \neq 0)$

(c)
$$y' + y^2 sen x = 0$$
 $(y^{-1} + cos x = c se y \neq 0 e y = 0 em todal parte)$

(d)
$$xy' = \sqrt{1 - y^2}$$
 $(y = sen(ln|x| + c) \text{ se } x \neq 0 \text{ e } |y| < 1;$
 $y = -1, y = 1)$

(e)
$$\frac{dy}{dx} = \frac{x - e^{-x}}{y + e^y}$$
 $(y^2 - x^2 + 2(e^y - e^{-x})) = c, y + e^y \neq 0)$

(f)
$$\frac{dy}{dx} = \frac{x^2}{1+y^2}$$
 (3y + y³ - x³ = c)

 Resolva o problema de valor inicial. Quando possível de a solução explícita e determine, aproximadamente, o intervalo no qual a solução está definida.

(a)
$$y' = (1-2x)y^2$$
, $y(0) = -\frac{1}{6}$ $(y = 1/(x^2 - x - 6))$

(b)
$$y' = \frac{1-2x}{y}$$
, $y(1) = -2$ $(y = -\sqrt{2x-2x^2+4})$

(c)
$$y' = 2x/(y+x^2y)$$
, $y(0) = -2$ $(y = -(2ln(1+x^2) + 4)^{1/2})$

(d)
$$y' = \frac{3x^2 - e^x}{2y - 5}$$
, $y(0) = 1$ $(y = 5/2 - \sqrt{x^3 - e^x + 13/4})$

3. Resolva o problema de valor incial

$$\begin{cases} y' = 2y^2 + xy^2, \\ y(0) = 1 \end{cases}$$

e determine onde a solução atinge seu valor mínimo. $(y = -1/(x^2/2 + 2x - 1); x = -2))$

4. Resolva o problema de valor incial

$$\begin{cases} y' = \frac{2\cos 2x}{3+2y}, \\ y(0) = -1 \end{cases}$$

e determine onde a solução atinge seu valor máximo.

$$(y = -3/2 + \sqrt{sen2x + 1/4}; x = \pi/4))$$

5. Resolva o problema de valor inicial

$$\begin{cases} y' = 2(1+x)(1+y^2), \\ y(0) = 0 \end{cases}$$

e determine onde a solução atinge seu valor mínimo.

$$(y = tg(x^2 + 2x); x = -1)$$

6. Considere o problema de valor inicial

$$\begin{cases} y' = \frac{ty(4-y)}{3}, \\ y(0) = y_0. \end{cases}$$

Determine como o comportamento da solução quando t aumenta depende do valor inicial y_0 .

 $(y\rightarrow 4 \text{ se } y_0>0; \ y=0 \text{ se } y_0=0; \ y\rightarrow -\infty \text{ se } y_0<0)$

Aula 5

Equações não lineares 1ª ordem:

Método de substituição.

Tipo 1, Homogênea, Bernoulli e Riccati.

1. Resolva a equação diferencial dada por meio de uma substituição apropriada.

(a)
$$y' = (x+y+1)^2$$

(b)
$$y' = \frac{1 - x - y}{x + y}$$

(c)
$$y' = tq^2(x+y)$$

(d)
$$y' = sen^2(x+y) - 1$$

2. Resolva o problema de valor inicial dado

(a)
$$y' = (-2x + y)^2 - 7$$
 $y(0) = 0$

(b)
$$y' = \frac{3x + 2y}{3x + 2y + 2}, y(-1) = -1$$

Substituição: pág 28 (Homogênea) 43 (Bernoulli)

1. Mostre que a equação dada é homogênea e resolva.

(a)
$$\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2} (arctg(y/x) - ln|x| = c)$$

(b)
$$\frac{dy}{dx} = \frac{x^2 + 3y^2}{2xy} (x^2 + y^2 - cx^3) = 0$$

(c)
$$\frac{dy}{dx} = \frac{4y - 3x}{2x - y} (y = -3x + |y - x| = c|y + 3x|^5)$$

$$\text{(d)}\ \frac{dy}{dx} = \frac{x+3y}{x-y} (y = -x \operatorname{e} 2x/(x+y) + \ln|x| = c)$$

(e)
$$\frac{dy}{dx} = \frac{x^2 - 3y^2}{2xy} (|x|^3 | x^2 - 5y^2 | = c)$$

2. As equações dadas são equações de Bernoulli, use substituição para resolve-las.

(a)
$$t^2y' + 2ty - y^3 = 0$$
, $t > 0$ $(y = \pm (5t/(2 + 5ct^5)^{1/2}))$

(b)
$$y' = ry - ky^2$$
, $r > 0$, $e^{-k} > 0$ ($y = r/(k + cre^{-rt})$)

(c)
$$y' = y - y^3$$
 $(y = \pm (1/(1ce^{-2t})^{1/2}))$

(d)
$$xy' + y = \frac{1}{y^2} (y = y^3 = 1 + cx^{-3})$$

(e)
$$y' = y(xy^3 - 1)$$
 $(y = y^{-3} = x + 1/3 + ce^{3x})$