Proyecto final: Atractores extraños

Alan García Zermeño Para el curso de Métodos numéricos

7/12/2022

Resumen

En este documento se introduce el concepto de *Atractor extraño* y se explican y muestran gráficamente distintas simulaciones de éstos calculadas en *C*. Se anexa también al final del documento el pseudocódigo para implementar el cálculo.

1. Atractores

En el campo matemático de los sistemas dinámicos, un atractor es un conjunto de estados hacia los que tiende a evolucionar un sistema para una amplia variedad de condiciones de partida del mismo.[1] Los sistemas dinámicos compuestos por dos o tres dimensiones pueden ser representados geométricamente. Estos pueden ser, desde un punto, un *set* finito de puntos, una curva, una variedad (*manifold*) o incluso complicados *sets* de puntos con estructura fractal llamados **atractores extraños**. Describir atractores de sistemas dinámicos caóticos ha sido uno de los principales logros de la teoría del caos.

Figura 1: Tipos de atractores.

Los atractores pueden ser **periódicos** o **caóticos**. Llamamos sistema dinámico caótico a un sistema en donde el conjunto de estados a los que tiende, es muy sensible a sus condiciones iniciales. Si un conjunto de puntos es periódico o caótico, pero el flujo en la vecindad se aleja del conjunto, éste no es un atractor, sino que se denomina **repulsor**.

Definimos matematicamente un atractor de la siguiente forma: Sea t el tiempo y f(t,...) una función que determina la dinámica de un sistema. Esto es que si a es un punto en un espacio de fases n-dimensional que representa el estado inicial del sistema f(0,a) = a, y para un valor positivo de t, f(t,a) es el resultado de la

evolución después de t unidades de tiempo. Por ejemplo, si el sistema describe la evolución de una partícula libre en una dimensión, entonces el espacio de fases es el plano \mathbb{R}^2 con coordenadas (x, v), donde x es la posición de la partícula, v es la velocidad, a = (x, v), y la evolución estará dada por:

$$f(t,(x,v)) = (x+tv,v)$$

Un atractor será un *subset A* del espacio de fases caracterizado por las siguientes tres condiciones:

- A es invariante (*foward*) bajo f(.): si a es un elemento de A, entonces va a estar representado por f(t,a) para todo t > 0.
- Existe un *vecindario* de *A*, llamado *cuenca de atracción* para *A* denotada por B(A), que consiste en todos los puntos *b* que componen a *A* en el límite donde $t \to \infty$.
- No existe un subconjunto propio y no vacío de A que tenga las dos primeras propiedades.

Ya que la *cuenca de atracción* contiene un *set* abierto que contiene a *A*, todo punto que está suficientemente cerca de *A* es atraído a *A*.[2]

2. Atractores extraños

Un atractor es llamado extraño si tiene estructura **fractal**. Esto es casi siempre el caso cuando las dinámicas de éste son caóticas.

Para que un sistema sea fractal tiene que cumplir con estas características:

- Autosimilaridad. La apariencia de representación geométrica no varía a ninguna escala, suelen ser figuras complejas en detalles ínfimos.
- Su dimensión fractal es mayor que su dimensión topológica.
- No son diferenciables en ningún punto.

Si un atractor extraño es **caótico**, muestra una dependencia sensible de las condiciones iniciales, entonces dos puntos iniciales alternativos arbitrariamente cercanos en el atractor, después de cualquiera de varios números de iteraciones, conducirán a puntos que están arbitrariamente separados (sujeto a los límites del atractor), y después de otra cantidad de iteraciones conducirá a puntos que están arbitrariamente cerca unos de otros.

Así, un sistema dinámico que genera un atractor caótico es localmente inestable pero globalmente estable: una vez que algunas secuencias han entrado en el atractor, los puntos cercanos divergen entre sí pero nunca se apartan del atractor.[3]

2.1. Atractor de Lorenz

El atractor extraño más famoso es el atractor de *Lorenz*, cuyo modelo dinámico fue derivado a partir del estudio de la convección de un fluido cuando pretendía generar un modelo para predecir el clima. El modelo es no lineal, aperiódico, tridimensional y determinista:

$$\frac{dx}{dt} = \sigma(y - x)$$
$$\frac{dy}{dt} = \rho x - y - xz$$
$$\frac{dz}{dt} = xy - \beta z$$

Donde σ , ρ , β son tres parámetros reales positivos. La derivación original puede ser descrita como una capa de líquido 2-dimensional calentado por abajo y enfriado por arriba y el movimiento de convección resultante es modelado por una ecuación diferencial parcial.

La variable x mide la tasa de convección, la variable y mide la variación horizontal de temperatura y z la vertical. Mientras que los parámetros σ , ρ y β son parámetros proporcionales al número de *Prandtl*, el número de *Rayleigh* y a ciertas dimensiones físicas de la capa misma.[4]

Se ha encontrado que este sistema de ecuaciones surge en modelos simplificados para láseres, generadores elétricos, motores de corriente directa, circuitos eléctricos, reacciones químicas entre otros.

A continuación mostramos imágenes del atractor de *Lorenz* calculado con el método numérico *Runge Kutta* de orden 4 cuyo pseudocódigo se anexa al final del documento. Primero mostramos el atractor con la posición inicial f(t = 0, x = 1, y = 2, z = 7) y con los parámetros $\sigma = 10$, $\rho = 28$, $\beta = 8/3$:

Figura 2: Atractor de *Lorenz* con $\sigma = 10$, $\rho = 28$, $\beta = 8/3$

Para probar la naturaleza caótica del atractor, simulamos su dinámica con las mismas condiciones especificadas anteriormente, pero ahora cambiamos el parámetro $\rho = 17$.

Figura 3: Atractor de *Lorenz* con $\sigma = 10$, $\rho = 17$, $\beta = 8/3$

Una vez que el atractor de *Lorenz* se dio a conocer en la comunidad científica, se abrió un campo de estudio nuevo y de mucho interés para científicos interesados en la búsqueda de nuevos atractores caóticos. A continuación mostramos una serie de algunos atractores caóticos extraños de interés simulados con el mismo método.

2.2. Atractor de Aizawa

El atractor de *Aizawa* consta del siguiente sistema no lineal de ecuaciones diferenciales:

$$\frac{dx}{dt} = x(z - \beta) - \delta y$$

$$\frac{dy}{dt} = y(z - \beta) - \delta x$$

$$\frac{dz}{dt} = \gamma + \alpha z - \frac{z^3}{3} - (x^2 + y^2)(1 + \varepsilon z) + \zeta z x^3$$

A continuación mostramos imágenes del atractor de *Aizawa*. Primero mostramos el atractor con la posición inicial f(t=0,x=1/10,y=1/10,z=2/25) y con los parámetros $\alpha=0.95,\ \beta=7/10,\ \gamma=3/5,\ \varepsilon=1/4,\ \delta=7/2,\ \zeta=1/10$:

Figura 4: Atractor de Aizawa con $\alpha=0.95,~\beta=7/10,~\gamma=3/5,~\varepsilon=1/4,~\delta=7/2,~\zeta=1/10$

Para probar la naturaleza caótica del atractor, simulamos su dinámica con las mismas condiciones especificadas, pero ahora cambiamos el parámetro $\alpha = 1/2$.

Figura 5: Atractor de *Aizawa* con $\alpha = 1/2$, $\beta = 7/10$, $\gamma = 3/5$, $\varepsilon = 1/4$, $\delta = 7/2$, $\zeta = 1/10$

2.3. Atractor de Rabinovich-Fabrikant

El atractor de Rabinovich-Fabrikant consta del siguiente sistema no lineal de ecuaciones diferenciales:

$$\frac{dx}{dt} = y(z + x^2 - 1) + \gamma x$$
$$\frac{dy}{dt} = x(3z - x^2 + 1) + \gamma y$$
$$\frac{dz}{dt} = -2z(\alpha + xy)$$

A continuación mostramos imágenes del atractor de *Rabinovich–Fabrikant*. Primero mostramos el atractor con la posición inicial f(t = 0, x = 1/10, y = -1/10, z = 1/10) y con los parámetros $\alpha = 1/10$, $\gamma = 1/20$:

Figura 6: Atractor de Rabinovich–Fabrikant con $\alpha = 1/10$, $\gamma = 1/20$

Para probar la naturaleza caótica del atractor, simulamos su dinámica con las mismas condiciones especificadas, pero ahora cambiamos el parámetro $\alpha = 0.14$.

Figura 7: Atractor de *Rabinovich–Fabrikant* con $\alpha = 0.14$, $\gamma = 1/20$

2.4. Atractor de Chen

Los atractores dinámicos caóticos también muestran su naturaleza caótica si cambiamos los parámetros iniciales, esto lo mostramos usando el atractor de *Chen*, que consta del siguiente sistema no lineal de ecuaciones diferenciales:

$$\frac{dx}{dt} = \alpha x - yz$$
$$\frac{dy}{dt} = \beta y + xz$$
$$\frac{dz}{dt} = \delta z + \frac{xy}{3}$$

A continuación mostramos imágenes del atractor de *Chen* para dos condiciones iniciales distintas. Con la línea azul graficamos f(t=0, x=5, y=10, z=10) y con la línea azul f(t=0, x=-7, y=-5, z=-10). Ambas con los mismos valores para los parámetros $\alpha=5, \ \beta=-10, \ \delta=-0.38$:

Figura 8: Dos simulaciones con distintas posiciones iniciales del Atractor de *Chen* con $\alpha = 5$, $\beta = -10$, $\delta = -0.38$

2.5. Atractor de 4 alas

El atractor de 4 alas consta del siguiente sistema no lineal de ecuaciones diferenciales:

$$\frac{dx}{dt} = \alpha x + yz$$

$$\frac{dy}{dt} = \beta x + \gamma y - xz$$

$$\frac{dz}{dt} = -z - xy$$

A continuación mostramos imágenes del atractor de 4 alas. Primero mostramos el atractor con la posición inicial f(t = 0, x = 13/10, y = -1/5, z = 1/100) y con los parámetros $\alpha = 1/5$, $\gamma = -2/5$, $\beta = 1/100$:

Figura 9: Atractor de 4 alas con $\alpha = 1/5$, $\gamma = -2/5$, $\beta = 1/100$

2.6. Atractor de Three-Scroll UCS

El atractor de *Three-Scroll UCS* consta del siguiente sistema no lineal de ecuaciones diferenciales:

$$\frac{dx}{dt} = \alpha(y - x) + \delta xz$$
$$\frac{dy}{dt} = x(\beta - z) + \zeta y$$
$$\frac{dz}{dt} = \gamma z + xy - \varepsilon x^{2}$$

A continuación mostramos imágenes del atractor de *Three-Scroll UCS*. Primero mostramos el atractor con la posición inicial f(t=0,x=-0.29,y=-0.25,z=-0.59) y con los parámetros $\alpha=32.48,\ \beta=45.84,\ \gamma=1.18,\ \varepsilon=0.57,\ \delta=0.13,\ \zeta=14.7$:

Figura 10: Atractor de *Three-Scroll UCS* con α = 32.48, β = 45.84, γ = 1.18, ε = 0.57, δ = 0.13, ζ = 14.7

3. Anexo

Se añade un pseudocódigo para aplicar el método de *Runge Kutta* de orden 4 a un sistema de 3 ecuaciones como los explicados en el presente documento. En este, llamamos a tres funciones que representan cada una de las ecuaciones. La derivada de x es representada como dx(t, x, y, z), la de y como dy(t, x, y, z) y la de z como dz(t, x, y, z).

Require: El tamaño del paso h, el número de puntos a simular n y un valor inicial para x, y, z.

```
1: function RungeKutta4(n, h, x0, y0, z0)
          t \leftarrow 0
 2:
          x_0 \leftarrow x_0
 3:
          y_0 \leftarrow y_0
 4:
 5:
          z_0 \leftarrow z_0
          for i = 0 \rightarrow n - 1 do
 6:
               t \leftarrow t + h
 7:
               K_0 \leftarrow dx(t, x_i, y_i, z_i)
 8:
               L_0 \leftarrow dy(t, x_i, y_i, z_i)
 9:
               M_0 \leftarrow dz(t, x_i, y_i, z_i)
10:
               for j = 1 \rightarrow 2 do
11:
12:
                    K_i \leftarrow dx(t+h/2, x_i+hK_{i-1}/2, y_i+hL_{i-1}/2, z_i+hM_{i-1}/2)
13:
                    L_i \leftarrow dy(t + h/2, x_i + hK_{i-1}/2, y_i + hL_{i-1}/2, z_i + hM_{i-1}/2)
                    M_i \leftarrow dz(t + h/2, x_i + hK_{i-1}/2, y_i + hL_{i-1}/2, z_i + hM_{i-1}/2)
14:
               end for
15:
               K_3 \leftarrow dx(t+h, x_i+hK_{i-1}, y_i+hL_{i-1}, z_i+hM_{i-1})
16:
               L_3 \leftarrow dy(t+h, x_i+hK_{i-1}, y_i+hL_{i-1}, z_i+hM_{i-1})
17:
               M_3 \leftarrow dz(t+h, x_i+hK_{i-1}, y_i+hL_{i-1}, z_i+hM_{i-1})
18:
19:
               x_{i+1} = x_i + h(K_0 + 2K_1 + 2K_2 + K_3)/6
               y_{i+1} = y_i + h(L_0 + 2L_1 + 2L_2 + L_3)/6
20:
21:
               z_{i+1} = z_i + h(M_0 + 2M_1 + 2M_2 + M_3)/6
          end for
22:
          return x, y, z
23:
```

Referencias

- [1] Weisstein, Eric W. "Attractor". MathWorld. Retrieved 30 May 2021.
- [2] John Milnor (1985). "On the concept of attractor". Communications in Mathematical Physics. 99 (2): 177–195.
- [3] Grebogi Celso, Ott Edward, Yorke James A (1987). "Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics". Science. 238 (4827): 632–638.
- [4] Sprott, J. C. (1993). Strange attractors: Creating patterns in chaos (Vol. 9). New York, NJ, USA: M T Books.