1 AnoShift - Out-Of-Distribution Anomaly Detection Benchmark - Table 1

- Train data: files $[year]_subset.parquet$ with $year \in \{2006, 2007, 2008, 2009, 2010\}$
- IID data: files $[year]_subset_valid.parquet$ with $year \in \{2006, 2007, 2008, 2009, 2010\}$
- NEAR data: files [year]_subset.parquet with $year \in \{2011, 2012, 2013\}$
- FAR data: files $[year]_subset.parquet$ with $year \in \{2014, 2015\}$
- Scripts for reproducing the results are available in '/baselines_OOD_setup'

Table 1: Performance evolution over time for unsupervised methods: IID vs NEAR vs FAR. We report beside the ROC-AUC metric, also the PR-AUC for inliers and PR-AUC for outliers. With bold are the best results per split.

Coc-SVM [10] (train 5%) 76.86 ± 0.06 71.43 ± 0.29 49.57 ± 0.09 IsoForest [7] 86.09 ± 0.54 75.26 ± 4.66 27.16 ± 1.69 ECOD [6] 84.76 44.87 49.19 LOF [2] 91.50 ± 0.88 79.29 ± 3.33 34.96 ± 0.14 SO-GAAL [8] 50.48 ± 1.13 54.55 ± 3.92 49.35 ± 0.51 deepSVDD [9] 92.67 ± 0.44 87.00 ± 1.80 34.53 ± 1.62 LUNAR [4] (train 5%) 11.00 ± 0.25 28.19 ± 0.09 IsoForest [7] 83.66 ± 2.14 52.26 ± 1.18 22.45 ± 0.52 BECD [6] 84.47 22.98 13.78 COPOD [5] 84.47 22.98 13.78 COPOD [5] 84.47 22.98 13.78 COPOD [5] 84.61 ± 0.05 52.48 ± 4.56 10.15 ± 0.10 SO-GAAL [8] 68.52 ± 3.64 43.52 ± 11.62 10.68 ± 24.5 DEST [3] for anomalies 73.76 ± 0.09 26.16 ± 0.15 8.51 ± 0.01 ECOD [6] 84.47 22.98 13.78 COPOD [5] 84.61 ± 0.09 26.16 ± 0.15 8.51 ± 0.01 ECOD [6] 84.47 22.98 13.78 COPOD [5] 84.61 ± 0.09 26.16 ± 0.15 8.51 ± 0.01 ECOD [6] 84.67 22.98 13.78 DOC-SVM [10] (train 5%) 78.91 ± 1.69 29.36 ± 2.58 9.33 ± 0.11 InternalContrastiveLearning [11] 76.96 ± 2.12 27.28 ± 0.59 8.81 ± 0.05 ECOD [6] 78.37 74.48 85.90 COPOD [5] 78.37 74.48 85.90 COPOD [6] 78.38 60.99 92.34 ± 1.26 81.99 ± 0	Type	Unsupervised Baselines	IID	NEAR	FAR
SoForest [7] 86.09 ± 0.54 75.26 ± 4.66 27.16 ± 1.69			ROC-AUC (%) ↑		
COF 2 91.50 ± 0.88 79.29 ± 3.33 34.96 ± 0.14		OC-SVM [10] (train 5%)	76.86 ± 0.06	71.43 ± 0.29	49.57 ± 0.09
COF 2 91.50 ± 0.88 79.29 ± 3.33 34.96 ± 0.14	cal	IsoForest [7]	86.09 ± 0.54	75.26 ± 4.66	27.16 ± 1.69
COF 2 91.50 ± 0.88 79.29 ± 3.33 34.96 ± 0.14	SSİ	ECOD [6]	84.76	44.87	49.19
COF 2 91.50 ± 0.88 79.29 ± 3.33 34.96 ± 0.14	Cla	COPOD [5]		54.24	50.42
Cocord	_	LOF [2]	91.50 ± 0.88	79.29 ± 3.33	34.96 ± 0.14
AE [1] for anomalies 81.00 ± 0.22 44.06 ± 0.57 19.96 ± 0.21 LUNAR [4] (train 5%) 85.75 ± 1.95 49.03 ± 2.57 28.19 ± 0.90 BERT [3] for anomalies 84.86 ± 2.14 52.26 ± 1.18 22.45 ± 0.52 BERT [3] for anomalies 84.86 ± 2.14 52.26 ± 1.18 22.45 ± 0.52 BERT [3] for anomalies 84.54 ± 0.07 86.05 ± 0.25 28.15 ± 0.06 OC-SVM [10] (train 5%) 70.84 ± 0.13 41.38 ± 0.29 15.12 ± 0.04 IsoForest [7] 83.68 ± 3.47 57.06 ± 10.27 9.16 ± 0.18 ECOD [6] 84.47 22.98 13.78 COPOD [5] 84.11 ± 0.96 52.48 ± 4.56 10.15 ± 0.10 SO-GAAL [8] 68.55 ± 5.36 43.52 ± 11.62 10.68 ± 2.42 deepSVDD [9] 82.62 ± 0.52 71.71 ± 4.85 10.02 ± 0.22 AE [1] for anomalies 73.76 ± 0.09 26.16 ± 0.15 8.51 ± 0.01 InternalContrastiveLearning [11] 76.96 ± 2.12 27.28 ± 0.59 8.81 ± 0.05 BERT [3] for anomalies 74.61 ± 0.13 58.94 ± 0.69 8.22 ± 0.02 OC-SVM [10] (train 5%) 74.61 ± 0.13 58.94 ± 0.69 8.22 ± 0.02 PR-AUC outliers (%) ↑ OC-SVM [10] (train 5%) 81.46 ± 2.52 87.13 ± 2.08 78.33 ± 1.41 ECOD [6] 78.37 74.48 85.90 COPOD [5] 78.19 77.99 85.98 LOF [2] 83.86 ± 0.98 92.34 ± 1.26 81.99 ± 0.05 SO-GAAL [8] 70.38 ± 0.28 87.71 ± 0.74 92.67 ± 0.13 deepSVDD [9] 92.65 ± 0.64 94.15 ± 1.05 82.25 ± 0.48 AE [1] for anomalies 78.99 ± 0.28 72.97 ± 0.38 75.71 ± 0.05 AE [1] for anomalies 78.99 ± 0.28 72.97 ± 0.38 75.71 ± 0.05 AE [1] for anomalies 78.99 ± 0.28 72.97 ± 0.38 75.71 ± 0.05 AE [1] for anomalies 78.99 ± 0.28 72.97 ± 0.38 75.71 ± 0.05 AE [1] for anomalies 78.99 ± 0.28 72.97 ± 0.38 75.71 ± 0.05 AE [1] for anomalies 78.99 ± 0.28 72.97 ± 0.38 75.71 ± 0.05 AE [1] for anomalies 78.99 ± 0.28 72.97 ± 0.38 75.71 ± 0.05 AE [1] for anomalies 78.90 ± 0.28 72.97 ± 0.38 75.71 ± 0.05 AE [1] for anomalies 78.90 ± 0.28 72.97 ± 0.38 75.71 ± 0.05 AE [1] for anomalies 78.90 ± 0.28 72.97 ± 0.38 7		SO-GAAL [8]	50.48 ± 1.13	54.55 ± 3.92	49.35 ± 0.51
InternalContrastiveLearning [11] 84.86 \pm 2.14 52.26 \pm 1.18 22.45 \pm 0.52 BERT [3] for anomalies 84.54 \pm 0.07 86.05 \pm 0.25 28.15 \pm 0.06 PR-AUC inliers (%) \rackford		deepSVDD [9]	92.67 ± 0.44	87.00 ± 1.80	34.53 ± 1.62
InternalContrastiveLearning [11] 84.86 \pm 2.14 52.26 \pm 1.18 22.45 \pm 0.52 BERT [3] for anomalies 84.54 \pm 0.07 86.05 \pm 0.25 28.15 \pm 0.06 PR-AUC inliers (%) \rackford	ф	AE [1] for anomalies	81.00 ± 0.22	44.06 ± 0.57	19.96 ± 0.21
InternalContrastiveLearning [11] 84.86 \pm 2.14 52.26 \pm 1.18 22.45 \pm 0.52 BERT [3] for anomalies 84.54 \pm 0.07 86.05 \pm 0.25 28.15 \pm 0.06 PR-AUC inliers (%) \rackford	Ğ	LUNAR [4] (train 5%)	85.75 ± 1.95	49.03 ± 2.57	28.19 ± 0.90
$ \begin{array}{ c c c c c } \hline \textbf{OC-SVM} [10] (train 5\%) & \hline & PR-AUC inliers (\%) \uparrow \\ \hline \textbf{IsoForest} [7] & 83.68 \pm 3.47 & 57.06 \pm 10.27 & 9.16 \pm 0.18 \\ \hline \textbf{ECOD} [6] & 84.47 & 22.98 & 13.78 \\ \hline \textbf{COPOD} [5] & 87.86 & 29.25 & 14.55 \\ \hline \textbf{LOF} [2] & 84.11 \pm 0.96 & 52.48 \pm 4.56 & 10.15 \pm 0.10 \\ \hline \textbf{SO-GAAL} [8] & 58.65 \pm 5.36 & 43.52 \pm 11.62 & 10.68 \pm 2.42 \\ \hline \textbf{deepSVDD} [9] & 82.62 \pm 0.52 & 71.71 \pm 4.85 & 10.02 \pm 0.22 \\ \hline \textbf{AE} [1] \textbf{ for anomalies} & 73.76 \pm 0.09 & 26.16 \pm 0.15 & 8.51 \pm 0.01 \\ \hline \textbf{LUNAR} [4] (train 5\%) & 78.91 \pm 1.69 & 29.36 \pm 2.58 & 9.33 \pm 0.11 \\ \hline \textbf{InternalContrastive Learning} [11] & 76.96 \pm 2.12 & 27.28 \pm 0.59 & 8.81 \pm 0.05 \\ \hline \textbf{BERT} [3] \textbf{ for anomalies} & 74.61 \pm 0.13 & 58.94 \pm 0.69 & 8.22 \pm 0.02 \\ \hline \hline \textbf{OC-SVM} [10] (train 5\%) & 67.94 \pm 0.21 & 85.70 \pm 0.16 & 87.27 \pm 0.02 \\ \hline \textbf{IsoForest} [7] & 81.46 \pm 2.52 & 87.13 \pm 2.08 & 78.33 \pm 1.41 \\ \hline \textbf{ECOD} [6] & 78.37 & 74.48 & 85.90 \\ \hline \textbf{COPOD} [5] & 83.86 \pm 0.98 & 92.34 \pm 1.26 & 81.99 \pm 0.05 \\ \hline \textbf{SO-GAAL} [8] & 70.38 \pm 0.28 & 87.71 \pm 0.74 & 92.67 \pm 0.13 \\ \hline \textbf{deepSVDD} [9] & 92.65 \pm 0.64 & 94.15 \pm 1.05 & 82.25 \pm 0.48 \\ \hline \textbf{AE} [1] \textbf{ for anomalies} & 78.99 \pm 0.28 & 72.97 \pm 0.38 & 75.71 \pm 0.05 \\ \hline \textbf{LUNAR} [4] (train 5\%) & 88.01 \pm 1.03 & 80.91 \pm 0.62 & 79.45 \pm 0.30 \\ \hline \textbf{InternalContrastive Learning} [11] & 89.08 \pm 0.87 & 81.93 \pm 0.39 & 77.55 \pm 0.50 \\ \hline \end{array}$			84.86 ± 2.14	52.26 ± 1.18	22.45 ± 0.52
CC-SVM [10] (train 5%) 70.84 ± 0.13 41.38 ± 0.29 15.12 ± 0.04 IsoForest [7] 83.68 ± 3.47 57.06 ± 10.27 9.16 ± 0.18 ECOD [6] 84.47 22.98 13.78 COPOD [5] 87.86 29.25 14.55 LOF [2] 84.11 ± 0.96 52.48 ± 4.56 10.15 ± 0.10 SO-GAAL [8] 58.65 ± 5.36 43.52 ± 11.62 10.68 ± 2.42 deepSVDD [9] 82.62 ± 0.52 71.71 ± 4.85 10.02 ± 0.22 AE [1] for anomalies 73.76 ± 0.09 26.16 ± 0.15 8.51 ± 0.01 InternalContrastiveLearning [11] 76.96 ± 2.12 27.28 ± 0.59 8.81 ± 0.05 BERT [3] for anomalies 74.61 ± 0.13 58.94 ± 0.69 8.22 ± 0.02 OC-SVM [10] (train 5%) 74.61 ± 0.13 58.94 ± 0.69 8.22 ± 0.02 FOR SUM [10] (train 5%) 67.94 ± 0.21 85.70 ± 0.16 87.27 ± 0.02 IsoForest [7] 81.46 ± 2.52 87.13 ± 2.08 78.33 ± 1.41 ECOD [6] 78.37 74.48 85.90 COPOD [5] 78.19 77.99 85.98 LOF [2] 83.86 ± 0.98 92.34 ± 1.26 81.99 ± 0.05 SO-GAAL [8] 70.38 ± 0.28 87.71 ± 0.74 92.67 ± 0.13 deepSVDD [9] 92.65 ± 0.64 94.15 ± 1.05 82.25 ± 0.48 AE [1] for anomalies 78.99 ± 0.28 72.97 ± 0.38 75.71 ± 0.05 LUNAR [4] (train 5%) 88.01 ± 1.03 80.91 ± 0.62 79.45 ± 0.30 InternalContrastiveLearning [11] 89.08 ± 0.87 81.93 ± 0.39 77.55 ± 0.50 COPOD [5] 88.01 ± 1.03 80.91 ± 0.62 79.45 ± 0.30 InternalContrastiveLearning [11] 89.08 ± 0.87 81.93 ± 0.39 77.55 ± 0.50 COPOD [5] 78.19 77.55 ± 0.50 COPOD [5] 78.19 77.99 77.95 ± 0.30 COPOD [5] 78.19 77.99 77.99 77.55 ± 0.50 COPOD [5] 78.19 77.99 77.99 77.55 ± 0.50 COPOD [5] 78.19 77.99 77.99 77.55 ± 0.50 COPOD [5] 78.19 77.55 ± 0.50 COPOD [5] 78.19 77.99 77.55 ± 0.50 COPOD [5]		BERT [3] for anomalies	84.54 ± 0.07	86.05 ± 0.25	28.15 ± 0.06
Solution			PR-AUC inliers (%) ↑		
Solution		OC-SVM [10] (train 5%)	70.84 ± 0.13	41.38 ± 0.29	15.12 ± 0.04
SO-GAAL [8] 58.65 ± 5.36 43.52 ± 11.62 10.68 ± 2.42 deepSVDD [9] 82.62 ± 0.52 71.71 ± 4.85 10.02 ± 0.22 AE [1] for anomalies 73.76 ± 0.09 26.16 ± 0.15 8.51 ± 0.01 LUNAR [4] (train 5%) 78.91 ± 1.69 29.36 ± 2.58 9.33 ± 0.11 InternalContrastiveLearning [11] 76.96 ± 2.12 27.28 ± 0.59 8.81 ± 0.05 BERT [3] for anomalies 74.61 ± 0.13 58.94 ± 0.69 8.22 ± 0.02 OC-SVM [10] (train 5%) 67.94 ± 0.21 85.70 ± 0.16 87.27 ± 0.02 IsoForest [7] 81.46 ± 2.52 87.13 ± 2.08 78.33 ± 1.41 ECOD [6] 78.37 74.48 85.90 COPOD [5] 78.19 77.99 85.98 LOF [2] 83.86 ± 0.98 92.34 ± 1.26 81.99 ± 0.05 SO-GAAL [8] 70.38 ± 0.28 87.71 ± 0.74 92.67 ± 0.13 deepSVDD [9] 92.65 ± 0.64 94.15 ± 1.05 82.25 ± 0.48 AE [1] for anomalies 78.99 ± 0.28 72.97 ± 0.38 75.71 ± 0.05 LUNAR [4] (train 5%) 88.01 ± 1.03 80.91 ± 0.62 79.45 ± 0.30 InternalContrastiveLearning [11] 89.08 ± 0.87 81.93 ± 0.39 77.55 ± 0.50	cal		83.68 ± 3.47	57.06 ± 10.27	9.16 ± 0.18
SO-GAAL [8] 58.65 ± 5.36 43.52 ± 11.62 10.68 ± 2.42 deepSVDD [9] 82.62 ± 0.52 71.71 ± 4.85 10.02 ± 0.22 AE [1] for anomalies 73.76 ± 0.09 26.16 ± 0.15 8.51 ± 0.01 LUNAR [4] (train 5%) 78.91 ± 1.69 29.36 ± 2.58 9.33 ± 0.11 InternalContrastiveLearning [11] 76.96 ± 2.12 27.28 ± 0.59 8.81 ± 0.05 BERT [3] for anomalies 74.61 ± 0.13 58.94 ± 0.69 8.22 ± 0.02 OC-SVM [10] (train 5%) 67.94 ± 0.21 85.70 ± 0.16 87.27 ± 0.02 IsoForest [7] 81.46 ± 2.52 87.13 ± 2.08 78.33 ± 1.41 ECOD [6] 78.37 74.48 85.90 COPOD [5] 78.19 77.99 85.98 LOF [2] 83.86 ± 0.98 92.34 ± 1.26 81.99 ± 0.05 SO-GAAL [8] 70.38 ± 0.28 87.71 ± 0.74 92.67 ± 0.13 deepSVDD [9] 92.65 ± 0.64 94.15 ± 1.05 82.25 ± 0.48 AE [1] for anomalies 78.99 ± 0.28 72.97 ± 0.38 75.71 ± 0.05 LUNAR [4] (train 5%) 88.01 ± 1.03 80.91 ± 0.62 79.45 ± 0.30 InternalContrastiveLearning [11] 89.08 ± 0.87 81.93 ± 0.39 77.55 ± 0.50	SSİ	ECOD [6]	84.47	22.98	13.78
SO-GAAL [8] 58.65 ± 5.36 43.52 ± 11.62 10.68 ± 2.42 deepSVDD [9] 82.62 ± 0.52 71.71 ± 4.85 10.02 ± 0.22 AE [1] for anomalies 73.76 ± 0.09 26.16 ± 0.15 8.51 ± 0.01 LUNAR [4] (train 5%) 78.91 ± 1.69 29.36 ± 2.58 9.33 ± 0.11 InternalContrastiveLearning [11] 76.96 ± 2.12 27.28 ± 0.59 8.81 ± 0.05 BERT [3] for anomalies 74.61 ± 0.13 58.94 ± 0.69 8.22 ± 0.02 OC-SVM [10] (train 5%) 67.94 ± 0.21 85.70 ± 0.16 87.27 ± 0.02 IsoForest [7] 81.46 ± 2.52 87.13 ± 2.08 78.33 ± 1.41 ECOD [6] 78.37 74.48 85.90 COPOD [5] 78.19 77.99 85.98 LOF [2] 83.86 ± 0.98 92.34 ± 1.26 81.99 ± 0.05 SO-GAAL [8] 70.38 ± 0.28 87.71 ± 0.74 92.67 ± 0.13 deepSVDD [9] 92.65 ± 0.64 94.15 ± 1.05 82.25 ± 0.48 AE [1] for anomalies 78.99 ± 0.28 72.97 ± 0.38 75.71 ± 0.05 LUNAR [4] (train 5%) 88.01 ± 1.03 80.91 ± 0.62 79.45 ± 0.30 InternalContrastiveLearning [11] 89.08 ± 0.87 81.93 ± 0.39 77.55 ± 0.50	Ila	COPOD [5]	87.86	29.25	14.55
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	LOF [2]	84.11 ± 0.96	52.48 ± 4.56	10.15 ± 0.10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		SO-GAAL [8]	58.65 ± 5.36	43.52 ± 11.62	10.68 ± 2.42
InternalContrastiveLearning [11] $76.96 \pm 2.12 27.28 \pm 0.59 8.81 \pm 0.05 $ BERT [3] for anomalies $74.61 \pm 0.13 58.94 \pm 0.69 8.22 \pm 0.02 $ PR-AUC outliers (%) \(\gamma\) \(\frac{1}{2}\)		deepSVDD [9]	82.62 ± 0.52	71.71 ± 4.85	10.02 ± 0.22
InternalContrastiveLearning [11] $76.96 \pm 2.12 27.28 \pm 0.59 8.81 \pm 0.05 $ BERT [3] for anomalies $74.61 \pm 0.13 58.94 \pm 0.69 8.22 \pm 0.02 $ PR-AUC outliers (%) \(\gamma\) \(\frac{1}{2}\)	eр	AE [1] for anomalies	73.76 ± 0.09		8.51 ± 0.01
InternalContrastiveLearning [11] $76.96 \pm 2.12 27.28 \pm 0.59 8.81 \pm 0.05 $ BERT [3] for anomalies $74.61 \pm 0.13 58.94 \pm 0.69 8.22 \pm 0.02 $ PR-AUC outliers (%) \(\gamma\) \(\frac{1}{2}\)	De				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
OC-SVM [10] (train 5%) 67.94 ± 0.21 85.70 ± 0.16 87.27 ± 0.02 IsoForest [7] 81.46 ± 2.52 87.13 ± 2.08 78.33 ± 1.41 ECOD [6] 78.37 74.48 85.90 COPOD [5] 78.19 77.99 85.98 LOF [2] 83.86 ± 0.98 92.34 ± 1.26 81.99 ± 0.05 SO-GAAL [8] 70.38 ± 0.28 87.71 ± 0.74 92.67 ± 0.13 deepSVDD [9] 92.65 ± 0.64 94.15 ± 1.05 82.25 ± 0.48 AE [1] for anomalies 78.99 ± 0.28 72.97 ± 0.38 75.71 ± 0.05 LUNAR [4] (train 5%) 88.01 ± 1.03 80.91 ± 0.62 79.45 ± 0.30 InternalContrastiveLearning [11] 89.08 ± 0.87 81.93 ± 0.39 77.55 ± 0.50		BERT [3] for anomalies	74.61 ± 0.13	58.94 ± 0.69	8.22 ± 0.02
Some tensor of the contractive Learning [11] Since the contractive Learning [12] Since the contractive Learning [12] Since the contractiv			PR-AUC outliers (%) ↑		
LOF [2] 83.86 ± 0.98 92.34 ± 1.26 81.99 ± 0.05 SO-GAAL [8] 70.38 ± 0.28 87.71 ± 0.74 92.67 ± 0.13 deepSVDD [9] 92.65 ± 0.64 94.15 ± 1.05 82.25 ± 0.48 AE [1] for anomalies 78.99 ± 0.28 72.97 ± 0.38 75.71 ± 0.05 LUNAR [4] (train 5%) 88.01 ± 1.03 80.91 ± 0.62 79.45 ± 0.30 InternalContrastiveLearning [11] 89.08 ± 0.87 81.93 ± 0.39 77.55 ± 0.50		OC-SVM [10] (train 5%)	67.94 ± 0.21	85.70 ± 0.16	87.27 ± 0.02
LOF [2] 83.86 ± 0.98 92.34 ± 1.26 81.99 ± 0.05 SO-GAAL [8] 70.38 ± 0.28 87.71 ± 0.74 92.67 ± 0.13 deepSVDD [9] 92.65 ± 0.64 94.15 ± 1.05 82.25 ± 0.48 AE [1] for anomalies 78.99 ± 0.28 72.97 ± 0.38 75.71 ± 0.05 LUNAR [4] (train 5%) 88.01 ± 1.03 80.91 ± 0.62 79.45 ± 0.30 InternalContrastiveLearning [11] 89.08 ± 0.87 81.93 ± 0.39 77.55 ± 0.50	cal	IsoForest [7]	81.46 ± 2.52	87.13 ± 2.08	78.33 ± 1.41
LOF [2] 83.86 ± 0.98 92.34 ± 1.26 81.99 ± 0.05 SO-GAAL [8] 70.38 ± 0.28 87.71 ± 0.74 92.67 ± 0.13 deepSVDD [9] 92.65 ± 0.64 94.15 ± 1.05 82.25 ± 0.48 AE [1] for anomalies 78.99 ± 0.28 72.97 ± 0.38 75.71 ± 0.05 LUNAR [4] (train 5%) 88.01 ± 1.03 80.91 ± 0.62 79.45 ± 0.30 InternalContrastiveLearning [11] 89.08 ± 0.87 81.93 ± 0.39 77.55 ± 0.50	SSi	ECOD [6]	78.37	74.48	85.90
LOF [2] 83.86 ± 0.98 92.34 ± 1.26 81.99 ± 0.05 SO-GAAL [8] 70.38 ± 0.28 87.71 ± 0.74 92.67 ± 0.13 deepSVDD [9] 92.65 ± 0.64 94.15 ± 1.05 82.25 ± 0.48 AE [1] for anomalies 78.99 ± 0.28 72.97 ± 0.38 75.71 ± 0.05 LUNAR [4] (train 5%) 88.01 ± 1.03 80.91 ± 0.62 79.45 ± 0.30 InternalContrastiveLearning [11] 89.08 ± 0.87 81.93 ± 0.39 77.55 ± 0.50	Zla	COPOD [5]	78.19	77.99	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	LOF [2]	83.86 ± 0.98	92.34 ± 1.26	81.99 ± 0.05
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		SO-GAAL [8]	70.38 ± 0.28	87.71 ± 0.74	92.67 ± 0.13
InternalContrastiveLearning [11] 89.08 ± 0.87 81.93 ± 0.39 77.55 ± 0.50	Deep				
InternalContrastiveLearning [11] 89.08 ± 0.87 81.93 ± 0.39 77.55 ± 0.50					
InternalContrastiveLearning [11] 89.08 ± 0.87 81.93 ± 0.39 77.55 ± 0.50					
BERT [3] for anomalies 89.83 ± 0.07 95.96 ± 0.06 78.38 ± 0.02					
		BERT [3] for anomalies	89.83 ± 0.07	95.96 ± 0.06	78.38 ± 0.02

2 AnoShift - In-Distribution Anomaly Detection Benchmark - Table 2

- Train data: files [year]_subset.parquet with $year \in \{2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015\}$
- Test data: files $[year]_subset_valid.parquet$ with $year \in \{2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015\}$
- Scripts for reproducing the results are available in '/baselines_ID_setup' (set full_set=1)

Table 2: Performance in the ID setup. We report beside the ROC-AUC metric, also the PR-AUC for inliers and PR-AUC for outliers. With bold are the best results per split.

Type	Unsupervised Baselines	ROC-AUC (%) \uparrow	
	OC-SVM [10] (train 5%)	68.73 ± 6.09	
Classical	IsoForest [7] (train 5%)	81.27 ± 0.90	
	ECOD [6]	79.41	
	COPOD [5]	80.89	
	LOF [2]	87.61 ± 1.50	
	SO-GAAL [8]	49.90 ± 0.58	
	deepSVDD [9]	88.24 ± 0.58	
Deep	AE [1] for anomalies	64.08 ± 0.23	
De	LUNAR [4] (train 5%)	78.53 ± 0.21	
	InternalContrastiveLearning [11]	66.99 ± 3.59	
	BERT [3] for anomalies	79.62 ± 0.77	
		PR-AUC inliers (%) ↑	
	OC-SVM [10] (train 5%)	50.17 ± 4.67	
Classical	IsoForest [7] (train 5%)	68.46 ± 0.77	
	ECOD [6]	69.31	
Cla	COPOD [5]	73.17	
	LOF [2]	70.79 ± 1.86	
	SO-GAAL [8]	39.41 ± 9.75	
	deepSVDD [9]	76.59 ± 2.13	
Deep	AE [1] for anomalies	47.56 ± 0.17	
De	LUNAR [4] (train 5%)	63.31 ± 0.51	
	InternalContrastiveLearning [11]	50.82 ± 3.54	
	BERT [3] for anomalies	63.26 ± 0.59	
		PR-AUC outliers (%) ↑	
	OC-SVM [10] (train 5%)	74.67 ± 3.62	
cal	IsoForest [7] (train 5%)	85.47 ± 0.70	
Classical	ECOD [6]	80.73	
	COPOD [5]	81.47	
	LOF [2]	89.97 ± 1.09	
Deep	SO-GAAL [8]	79.89 ± 0.18	
	deepSVDD [9]	90.56 ± 0.77	
	AE [1] for anomalies	78.07 ± 0.05	
	LUNAR [4] (train 5%)	88.42 ± 0.14	
	InternalContrastiveLearning [11]	80.1 ± 9.63	
	BERT [3] for anomalies	84.77 ± 1.70	

3 AnoShift - In-Distribution Anomaly Detection Benchmark (years 2006-2010) - Table 3

- Train data: files [year]_subset.parquet with $year \in \{2006, 2007, 2008, 2009, 2010\}$
- Test data: files $[year]_subset_valid.parquet$ with $year \in \{2006, 2007, 2008, 2009, 2010\}$
- Scripts for reproducing the results are available in '/baselines_ID_setup' (set full_set=0)

Table 3: Performance in the ID setup (years corresponding to our original IID split). We report beside the ROC-AUC metric, also the PR-AUC for inliers and PR-AUC for outliers. With bold are the best results per split.

Туре	Unsupervised Baselines	ROC-AUC (%)↑
Classical	OC-SVM [10] (train 5%)	76.86 ± 0.06
	IsoForest [7]	86.09 ± 0.54
	ECOD [6]	84.76
ひ	COPOD [5] LOF [2]	85.62 91.50 ± 0.88
	SO-GAAL [8]	50.48 ± 1.13
•	deepSVDD [9]	92.67 ± 0.44
Deep	AE [1] for anomalies	81.00 ± 0.22
Q	LUNAR [4] (train 5%)	85.75 ± 1.95
	InternalContrastiveLearning [11] BERT [3] for anomalies	84.86 ± 2.14 84.54 ± 0.07
	DEKT [5] for anomanes	
		PR-AUC inliers (%) ↑
	OC-SVM [10] (train 5%)	70.84 ± 0.13
Classical	IsoForest [7]	83.68 ± 3.47
SSi	ECOD [6]	84.47
Cla	COPOD [5]	87.86
	LOF [2]	84.11 ± 0.96
	SO-GAAL [8]	58.65 ± 5.36
	deepSVDD [9]	82.62 ± 0.52
Deep	AE [1] for anomalies	73.76 ± 0.09
Ŏ	LUNAR [4] (train 5%)	78.91 ± 1.69
	InternalContrastiveLearning [11]	76.96 ± 2.12
	BERT [3] for anomalies	74.61 ± 0.13
		PR-AUC outliers (%) ↑
	OC-SVM [10] (train 5%)	67.94 ± 0.21
Classical	IsoForest [7]	81.46 ± 2.52
SSİ	ECOD [6]	78.37
Cla	COPOD [5]	78.19
•	LOF [2]	83.86 ± 0.98
Deep	SO-GAAL [8]	70.38 ± 0.28
	deepSVDD [9]	92.65 ± 0.64
	AE [1] for anomalies	78.99 ± 0.28
	LUNAR [4] (train 5%)	88.01 ± 1.03
	InternalContrastiveLearning [11]	89.08 ± 0.87
	BERT [3] for anomalies	89.83 ± 0.07

References

[1] Charu C Aggarwal. An introduction to outlier analysis. In *Outlier analysis*, pages 1–34. Springer, 2017.

- [2] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. LOF: identifying density-based local outliers. In *SIGMOD International Conference on Management of Data*, 2000.
- [3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional transformers for language understanding. *NAACL*, 2019.
- [4] Adam Goodge, Bryan Hooi, See-Kiong Ng, and Wee Siong Ng. Lunar: Unifying local outlier detection methods via graph neural networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pages 6737–6745, 2022.
- [5] Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. Copod: copula-based outlier detection. In 2020 IEEE International Conference on Data Mining (ICDM), pages 1118–1123. IEEE, 2020.
- [6] Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, and George Chen. Ecod: Unsupervised outlier detection using empirical cumulative distribution functions. *IEEE Transactions on Knowledge and Data Engineering*, 2022.
- [7] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based anomaly detection. *ACM Trans. Knowl. Discov. Data*, 2012.
- [8] Yezheng Liu, Zhe Li, Chong Zhou, Yuanchun Jiang, Jianshan Sun, Meng Wang, and Xiangnan He. Generative adversarial active learning for unsupervised outlier detection. *IEEE Transactions on Knowledge and Data Engineering*, 32(8):1517–1528, 2019.
- [9] Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz, Lucas Deecke, Shoaib A. Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In *International Conference on Machine Learning ICML*, 2018.
- [10] Bernhard Schölkopf, Robert C. Williamson, Alexander J. Smola, John Shawe-Taylor, and John C. Platt. Support vector method for novelty detection. In *Advances in Neural Information Processing Systems*, *NIPS*, 1999.
- [11] Tom Shenkar and Lior Wolf. Anomaly detection for tabular data with internal contrastive learning. In *International Conference on Learning Representations*, 2021.