Introduction to Machine Learning Applications

Spring 2023

Deep learning

Minor Gordon

gordom6@rpi.edu

Deep Learning

- Neural networks are universal function approximators.
- Deep learning combines large neural network architectures along with innovative training algorithms (Convolutions, RNN, GANS, Autoencoders, etc.) along with (typically) large datasets to build predictive models
- Because of size of data and complexities of operations dedicated hardware (GPU) is often required

Performance vs Sample Size

Traditional Supervised Learning

• Traditional pattern recognition models work with hand crafted features and relatively simple trainable classifiers.

Limitations

- Very tedious and costly to develop hand-crafted features
- The hand-crafted features are usually highly dependent on one application.

Deep Learning

• Deep learning has a **built-in automatic multi-stage feature learning process** that learns rich hierarchical representations (i.e., features).

Deep Learning

- Image
 Pixel → Edge → Texture → Motif → Part → Object
- Text
 Character → Word → Word-group → Clause → Sentence → Story

• Each module in Deep Learning transforms its input representation into a higher-level one, in a way similar to human cortex.

Many different types of neural networks, with types based on type of problem

Source: http://www.asimovinstitute.org/neural-network-zoo/

Supervised Convolutional Neural Network

Why Convolutional Neural Networks?

A CNN is a deep, feed-forward artificial neural network that has successfully been applied to analyzing visual imagery.

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - o 1.2 M train
 - 100k test.

Convolutional Networks

Image processing

• Sentence Classification

Deep Convolutional Network (DCN)

Convolutional Neural Networks

- Output: Binary, Multinomial, Continuous, Count
- Input: fixed size, can use padding to make all images same size.
- Architecture: Choice is ad hoc
 - requires experimentation.
- Optimization: Backward propagation
 - hyper parameters for very deep model can be estimated properly only if you have billions of images.
 - Use an architecture and trained hyper parameters from other papers (Imagenet or Microsoft/Google APIs etc)

Input Image

Input an Image to a Neural Network

Number of Parameters

480000*480000 + 480000 + 1 = approximately 230 Billion !!!480000*1000 + 1000 + 1 = approximately 480 million !!!

Convolutional Layers

Filter

$$\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{array}\right)$$

Convoluted Image

• Inspired by the neurophysiological experiments conducted by Hubel and Wiesel 1962.

Convolutional Layers

• What is a convolution?

Number of Parameters for one feature map = 4

Number of Parameters for 100 feature map = 4*100

Convolution Layer – The Kernel

1 _{×1}	1 _{×0}	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Kernel/Filter, K = 1 0 1 0 1 0 1 0 1 0 1

Convolution operation on a MxNx3 image

Convolution operation

- The objective of the Convolution Operation is to extract the high-level features such as edges, from the input image.
- ConvNets need not be limited to only one Convolutional Layer.
- Conventionally, the first ConvLayer is responsible for capturing low-level features such as edges, color, gradient orientation, etc.
- With added layers, the architecture adapts to high-level features as well.

Lower Level to More Complex Features

 In Convolutional neural networks, hidden units are only connected to local receptive field.

Pooling

- Max pooling: reports the maximum output within a rectangular neighborhood.
- Average pooling: reports the average output of a rectangular neighborhood.

1	3	5	3
4	2	3	1
3	1	1	3
0	1	0	4

Input Matrix

MaxPool with 2X2 filter with stride of 2

4	5
3	4

Output Matrix

Pooling layer

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

- Max Pooling returns the maximum
 value from the portion of the image covered
 by the Kernel.
- Average Pooling returns the average of all the values from the portion of the image covered by the Kernel.

Pooling example

Convolutional Neural Network

Batch normalization

- Main goal is to increase the stability of a neural network.
- This technique normalizes the output of a previous activation layer by subtracting the batch mean and dividing by the batch standard deviation.
- We can use higher learning rates because batch normalization makes sure that there's no activation that's gone really high or really low.
- Reduces overfitting
 - By using this approach, we can avoid dropout, and thus avoid losing information.

Pretrained Models and Transfer Learning

Pretrained Models – Key to a Quick Start

• Possible to take already trained models and retrain the last layer to do something specific, even if the model has been trained on something general.

The Inception Model:
Deep Convolutional
Neural Network
Capable of identifying
1,000 object classes
trained from 100K
images.

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

https://github.com/tensorflow/models

Pretrained Models - Reusing Last Layer

 Let's say you need to identify Star Wars
 Characters to detect for Copyright violations.

Or detect logos in NBA games

https://github.com/IISourcell/tensorflow_image_classifier

Transfer Learning

• Transfer learning is a machine learning method where a model developed for a task is reused as the starting point for a model on a second task.

Pre-trained Model Approach

- 1. Select Source Model
- 2. Reuse Model.
- 3. Tune Model (Maybe retrain last layers)