uc3m

Final Project – Mortality Rates Prediction

Time Series Analysis

Asier Gil Sedano

Index

1.	Ove	Overview		
2.		iilable data		
3.		nctional form identification by Box-Jenkins procedure		
	3.1.	Mortality rate q ₆₇ ARIMA estimation		
	3.2.	Mortality rate q ₆₈ ARIMA estimation	6	
	3.3.	Mortality rate q ₆₉ ARIMA estimation	9	
	3.4.	Mortality rate q ₇₀ ARIMA estimation	12	
	3.5.	Mortality rate q ₇₁ ARIMA estimation	15	
	3.6.	Mortality rate q ₇₂ ARIMA estimation	18	
	3.7.	Mortality rate q ₇₃ ARIMA estimation	21	
	3.8.	Mortality rate q ₇₄ ARIMA estimation	24	
	3.9.	Mortality rate q ₇₅ ARIMA estimation	27	
4.	Nex	xt period qx prediction by bootstrap	30	
5.	Мо	rtality prediction, cost and economic capital summary	31	
6.	Fur	ther periods mortality rates prediction	32	
7.	Anr	nex – Diagnosis Results	1	

Acronyms

ARIMA – Autoregressive integrated moving average

ACF - Autocorrelation Factors

PACF - Partial Autocorrelation Factors

VaR – Value at risk

TVaR – Tail value at risk

BP test – Breusch Pagan test

LB test – Ljung-Box test

ADF test – Augmented Dickey Fuller test

KPSS test –Kwiatkowski–Phillips–Schmidt–Shin test

AICc – Akaike Information Criterion

BIC - Bayesian Information Criterion

1. Overview

In this Project, an insurance company risk for the next year is going to be calculated by the estimation of the mortality rates of the policyholders. The objective of the model is to properly evaluate the premium risk (the risk of having more claims than expected) so the economic capital can be estimated.

The insurance company to be modelled is composed by the following number of policies:

Age	Policies
67	902
68	659
69	1471
70	978
71	675
72	850
73	882
74	1035
75	995

The historical mortality rates of the policyholders age is available since 1935 up to 2021.

The project has four main parts:

- 1. Mortality rates time series ARIMA functional form estimation by Box-Jenkins procedure
- 2. Estimation and diagnosis of the ARIMA model
- 3. One year period mortality rate prediction
- 4. Cost estimation and economic capital calculation

With this model, the expected cost will be evaluated together with the VaR₉₉ (maximum expected cost in the 99% of the cases, or which is the same, maximum expected cost in 1 out 100 years) and TVaR₉₉ (expected cost if the cost surpasses the VaR₉₉). This way the worst-case scenarios will be quantified, and the company solvency capital requirement will be determined.

2. Available data

The following mortality time series are available for which we need to predict the 2022 value.

3. Functional form identification by Box-Jenkins procedure

According to previous studies, Lee and Carter model (1992), the log-mortality rates are ARIMA processes. Therefore, for all time series, the log-qx have been calculated. Additionally, it has been checked that the time series are not stationary (see the code lines 93 to 117) so directly the analysis will be performed on the differentiated time series. The diagnosis and all the test are coded in lines 155 to 274.

3.1. Mortality rate q₆₇ ARIMA estimation

The ADF (Augmented Dickey-Fuller), PP (Phillips Perron) and KPSS (Kwiatkowski-Phillips-Schmidt-Shin) tests have been performed showing the following results for the I(0) and I(1) time series.

I(0)	p.value	stationary 0.05
ADF	0.75961	FALSE
PP	0.31752	FALSE
KPSS	0.01000	FALSE

I(1)	p.value	stationary 0.05
ADF	0.04017	TRUE
PP	0.01000	TRUE
KPSS	0.10000	TRUE

It is checked that all the test show the differentiated time series to be stationary for the significance level of 0.05.

For the log-mortality rates of the age 67, the differentiated time series visualization and its ACF and PACF are shown:

According to Box-Jenkins procedure, the time series appears to be an ARIMA of orders:

- (0,1,0)
- (1,0,1)
- (0,1,1)
- (1,1,1)

According to the ACF and PACF the most reliable form is (0,1,0). In any case all mentioned will be tested to confirm. All the results of the diagnosis for the time series up to an order (2,1,2) are summarized in the annex.

The ARIMA(0,1,1) proves to be the best fitting model with the following results:

time_series	q_67 _log
ARIMA	(0,1,1)
AICc	-381.44546
BIC	-374.37510
AR1	0.00000
AR1_H0_inf	#N/A
AR1_H0_sup	#N/A
AR1_H0	#N/A
AR2	0.00000
AR2_H0_inf	#N/A
AR2_H0_sup	#N/A
AR2_H0	#N/A
MA1	-0.20214
MA1_H0_inf	-0.47090
MA1_H0_sup	-0.00162
MA1_H0	REJECTED
MA2	0.00000
MA2_H0_inf	#N/A
MA2_H0_sup	#N/A
MA2_H0	#N/A
drift	-0.01151
drift_H0_inf	-0.01593
drift_H0_sup	-0.00749
drift_H0	REJECTED
Normality_CVM_pvalue	0.57427
Normality_AD_pvalue	0.46396
Normality_JB_pvalue	0.00015
Incorrelation_LB	0.26379
Homocedasticity_BP_B	0.99784
Zero_mean	0.98219

All the diagnosis has been properly tested so the AR parameter and the constant are significant, the residuals are normal, uncorrelated, constant in variance and have zero mean.

3.2. Mortality rate q₆₈ ARIMA estimation

The following stationary test have been performed.

I(0)	p.value	stationary 0.05
ADF	0.69155	FALSE
PP	0.41466	FALSE
KPSS	0.01000	FALSE

I(1)	p.value	stationary 0.05
ADF	0.01523	TRUE
PP	0.01000	TRUE
KPSS	0.10000	TRUE

The differentiated time series visualization and its ACF and PACF are shown:

- (0,1,0)
- (1,0,1)
- (0,1,1)
- (1,1,1)

The ARIMA(0,1,1) proves to be the best fitting model with the following results:

time_series	q_68 _log
ARIMA	(0,1,1)
AICc	-384.38390
BIC	-377.31354
AR1	0.00000
AR1_H0_inf	#N/A
AR1_H0_sup	#N/A
AR1_H0	#N/A
AR2	0.00000
AR2_H0_inf	#N/A
AR2_H0_sup	#N/A
AR2_H0	#N/A
MA1	-0.19205
MA1_H0_inf	-0.43452
MA1_H0_sup	-0.00261
MA1_H0	REJECTED
MA2	0.00000
MA2_H0_inf	#N/A
MA2_H0_sup	#N/A
MA2_H0	#N/A
drift	-0.01188
drift_H0_inf	-0.01601
drift_H0_sup	-0.00751
drift_H0	REJECTED
Normality_CVM_pvalue	0.43926
Normality_AD_pvalue	0.36454
Normality_JB_pvalue	0.00000
Incorrelation_LB	0.49218
Homocedasticity_BP_B	0.58348
Zero_mean	0.98894

All the diagnosis has been properly tested so the AR parameter and the constant are significant, the residuals are normal, uncorrelated, constant in variance and have zero mean.

3.3. Mortality rate q₆₉ ARIMA estimation

The following stationary test have been performed.

I(O)	p.value	stationary 0.05
ADF	0.56396	FALSE
PP	0.42881	FALSE
KPSS	0.01000	FALSE

I(1)	p.value	stationary 0.05
ADF	0.01857	TRUE
PP	0.01000	TRUE
KPSS	0.10000	TRUE

The differentiated time series visualization and its ACF and PACF are shown:

- (0,1,0)
- (1,0,1)
- (0,1,1)
- (1,1,1)

The ARIMA(0,1,1) proves to be the best fitting model with the following results:

time_series	q_69 _log
ARIMA	(0,1,1)
AICc	-398.27097
BIC	-391.20061
AR1	0.00000
AR1_H0_inf	#N/A
AR1_H0_sup	#N/A
AR1_H0	#N/A
AR2	0.00000
AR2_H0_inf	#N/A
AR2_H0_sup	#N/A
AR2_H0	#N/A
MA1	-0.23209
MA1_H0_inf	-0.49352
MA1_H0_sup	-0.01913
MA1_H0	REJECTED
MA2	0.00000
MA2_H0_inf	#N/A
MA2_H0_sup	#N/A
MA2_H0	#N/A
drift	-0.01226
drift_H0_inf	-0.01577
drift_H0_sup	-0.00824
drift_H0	REJECTED
Normality_CVM_pvalue	0.76858
Normality_AD_pvalue	0.87554
Normality_JB_pvalue	0.57133
Incorrelation_LB	0.31720
Homocedasticity_BP_B	0.12939
Zero_mean	0.99118

All the diagnosis has been properly tested so the AR parameter and the constant are significant, the residuals are normal, uncorrelated, constant in variance and have zero mean.

3.4. Mortality rate q₇₀ ARIMA estimation

The following stationary test have been performed.

I(0)	p.value	stationary 0.05
ADF	0.81072	FALSE
PP	0.61122	FALSE
KPSS	0.01000	FALSE

I(1)	p.value	stationary 0.05
ADF	0.01000	TRUE
PP	0.01000	TRUE
KPSS	0.10000	TRUE

The differentiated time series visualization and its ACF and PACF are shown:

- (0,1,0)
- (1,0,1)
- (0,1,1)
- (1,1,1)

The ARIMA(0,1,1) proves to be the best fitting model with the following results:

time_series	q_70 _log
ARIMA	(0,1,1)
AICc	-400.18847
BIC	-393.11811
AR1	0.00000
AR1_H0_inf	#N/A
AR1_H0_sup	#N/A
AR1_H0	#N/A
AR2	0.00000
AR2_H0_inf	#N/A
AR2_H0_sup	#N/A
AR2_H0	#N/A
MA1	-0.35757
MA1_H0_inf	-0.62077
MA1_H0_sup	-0.16846
MA1_H0	REJECTED
MA2	0.00000
MA2_H0_inf	#N/A
MA2_H0_sup	#N/A
MA2_H0	#N/A
drift	-0.01247
drift_H0_inf	-0.01534
drift_H0_sup	-0.00937
drift_H0	REJECTED
Normality_CVM_pvalue	0.92672
Normality_AD_pvalue	0.91772
Normality_JB_pvalue	0.46602
Incorrelation_LB	0.15678
Homocedasticity_BP_B	0.41163
Zero_mean	0.99543

All the diagnosis has been properly tested so the AR parameter and the constant are significant, the residuals are normal, uncorrelated, constant in variance and have zero mean.

3.5. Mortality rate q₇₁ ARIMA estimation

The following stationary test have been performed.

I(0)	p.value	stationary 0.05
ADF	0.46113	FALSE
PP	0.25084	FALSE
KPSS	0.01000	FALSE

I(1)	p.value	stationary 0.05
ADF	0.0100	TRUE
PP	0.0100	TRUE
KPSS	0.1000	TRUE

The differentiated time series visualization and its ACF and PACF are shown:

- (0,1,0)
- (1,0,1)
- (0,1,1)
- (1,1,1)

The ARIMA(0,1,1) proves to be the best fitting model with the following results:

time_series	q_71 _log
ARIMA	(0,1,1)
AICc	-396.24571
BIC	-389.17535
AR1	0.00000
AR1_H0_inf	#N/A
AR1_H0_sup	#N/A
AR1_H0	#N/A
AR2	0.00000
AR2_H0_inf	#N/A
AR2_H0_sup	#N/A
AR2_H0	#N/A
MA1	-0.24286
MA1_H0_inf	-0.52452
MA1_H0_sup	-0.03119
MA1_H0	REJECTED
MA2	0.00000
MA2_H0_inf	#N/A
MA2_H0_sup	#N/A
MA2_H0	#N/A
drift	-0.01253
drift_H0_inf	-0.01614
drift_H0_sup	-0.00871
drift_H0	REJECTED
Normality_CVM_pvalue	0.96312
Normality_AD_pvalue	0.95826
Normality_JB_pvalue	0.52026
Incorrelation_LB	0.89443
Homocedasticity_BP_B	0.86741
Zero_mean	0.99405

All the diagnosis has been properly tested so the AR parameter and the constant are significant, the residuals are normal, uncorrelated, constant in variance and have zero mean.

3.6. Mortality rate q₇₂ ARIMA estimation

The following stationary test have been performed.

I(0)	p.value	stationary 0.05
ADF	0.65098	FALSE
PP	0.43575	FALSE
KPSS	0.01000	FALSE

I(1)	p.value	stationary 0.05
ADF	0.01000	TRUE
PP	0.01000	TRUE
KPSS	0.10000	TRUE

The differentiated time series visualization and its ACF and PACF are shown:

- (0,1,0)
- (1,0,1)
- (0,1,1)
- (1,1,1)

The ARIMA(0,1,1) proves to be the best fitting model with the following results:

time_series	q_72 _log
ARIMA	(0,1,1)
AICc	-388.78772
BIC	-381.71737
AR1	0.00000
AR1_H0_inf	#N/A
AR1_H0_sup	#N/A
AR1_H0	#N/A
AR2	0.00000
AR2_H0_inf	#N/A
AR2_H0_sup	#N/A
AR2_H0	#N/A
MA1	-0.25911
MA1_H0_inf	-0.49469
MA1_H0_sup	-0.04240
MA1_H0	REJECTED
MA2	0.00000
MA2_H0_inf	#N/A
MA2_H0_sup	#N/A
MA2_H0	#N/A
drift	-0.01255
drift_H0_inf	-0.01657
drift_H0_sup	-0.00857
drift_H0	REJECTED
Normality_CVM_pvalue	0.78017
Normality_AD_pvalue	0.65034
Normality_JB_pvalue	0.22729
Incorrelation_LB	0.31635
Homocedasticity_BP_B	0.07697
Zero_mean	0.99740

All the diagnosis has been properly tested so the AR parameter and the constant are significant, the residuals are normal, uncorrelated, constant in variance and have zero mean.

3.7. Mortality rate q₇₃ ARIMA estimation

The following stationary test have been performed.

I(0)	p.value	stationary 0.05
ADF	0.58792	FALSE
PP	0.20170	FALSE
KPSS	0.01000	FALSE

I(1)	p.value	stationary 0.05
ADF	0.01000	TRUE
PP	0.01000	TRUE
KPSS	0.10000	TRUE

The differentiated time series visualization and its ACF and PACF are shown:

Time

- (0,1,0)
- (1,0,1)
- (0,1,1)
- (1,1,1)
- (2,1,1)
- (2,1,0)
- (2,1,1)

The ARIMA(0,1,1) proves to be the best fitting model with the following results:

time_series	q_73 _log
ARIMA	(0,1,1)
AICc	-396.23492
BIC	-389.16456
AR1	0.00000
AR1_H0_inf	#N/A
AR1_H0_sup	#N/A
AR1_H0	#N/A
AR2	0.00000
AR2_H0_inf	#N/A
AR2_H0_sup	#N/A
AR2_H0	#N/A
MA1	-0.39198
MA1_H0_inf	-0.63862
MA1_H0_sup	-0.19727
MA1_H0	REJECTED
MA2	0.00000
MA2_H0_inf	#N/A
MA2_H0_sup	#N/A
MA2_H0	#N/A
drift	-0.01236
drift_H0_inf	-0.01530
drift_H0_sup	-0.00935
drift_H0	REJECTED
Normality_CVM_pvalue	0.99178
Normality_AD_pvalue	0.98878
Normality_JB_pvalue	0.99511
Incorrelation_LB	0.28037
Homocedasticity_BP_B	0.33750
Zero_mean	0.97290

All the diagnosis has been properly tested so the AR parameter and the constant are significant, the residuals are normal, uncorrelated, constant in variance and have zero mean.

3.8. Mortality rate q₇₄ ARIMA estimation

The following stationary test have been performed.

I(0)	p.value	stationary 0.05
ADF	0.50764	FALSE
PP	0.02272	TRUE
KPSS	0.01	FALSE

I(1)	p.value	stationary 0.05
ADF	0.01731	TRUE
PP	0.01	TRUE
KPSS	0.1	TRUE

The differentiated time series visualization and its ACF and PACF are shown:

- (0,1,0)
- (1,0,1)
- (0,1,1)
- (1,1,1)
- (2,1,1)
- (2,1,0)
- (2,1,1)

In this case both the ARIMA(0,1,1) and (2,1,0) prove to be a good fit and provide good results in the diagnosis. In any case, since all the other time series are clearly an ARIMA(0,1,1) and the process will probably be the same, the ARIMA(0,1,1) has been selected for modelling.

time_series	q_74 _log	q_74 _log
ARIMA	(0,1,1)	(2,1,0)
AICc	-391.65912	-391.95475
BIC	-384.58876	-382.63119
AR1	0.00000	-0.38687
AR1_H0_inf	#N/A	-0.58247
AR1_H0_sup	#N/A	-0.18588
AR1_H0	#N/A	REJECTED
AR2	0.00000	-0.27679
AR2_H0_inf	#N/A	-0.48076
AR2_H0_sup	#N/A	-0.08426
AR2_H0	#N/A	REJECTED
MA1	-0.41636	0.00000
MA1_H0_inf	-0.66639	#N/A
MA1_H0_sup	-0.23485	#N/A
MA1_H0	REJECTED	#N/A
MA2	0.00000	0.00000
MA2_H0_inf	#N/A	#N/A
MA2_H0_sup	#N/A	#N/A
MA2_H0	#N/A	#N/A
drift	-0.01212	-0.01206
drift_H0_inf	-0.01504	-0.01014
drift_H0_sup	-0.00925	-0.00405
drift_H0	REJECTED	REJECTED
Normality_CVM_pvalue	0.65720	0.71482
Normality_AD_pvalue	0.72732	0.76951
Normality_JB_pvalue	0.32767	0.33890
Incorrelation_LB	0.79649	0.96575
Homocedasticity_BP_B	0.62931	0.35359
Zero_mean	0.92790	0.95073

All the diagnosis has been properly tested so the AR parameter and the constant are significant, the residuals are normal, uncorrelated, constant in variance and have zero mean.

3.9. Mortality rate q₇₅ ARIMA estimation

The following stationary test have been performed.

I(0)	p.value	stationary 0.05
ADF	0.49425145	FALSE
PP	0.02324218	TRUE
KPSS	0.01	FALSE

I(1)	p.value	stationary 0.05
ADF	0.02318762	TRUE
PP	0.01	TRUE
KPSS	0.1	TRUE

The differentiated time series visualization and its ACF and PACF are shown:

- (0,1,0)
- (1,0,1)
- (0,1,1)
- (1,1,1)
- (2,1,1)
- (2,1,0)
- (2,1,1)

The ARIMA(0,1,1) proves to be the best fitting model with the following results:

time_series	q_73 _log
ARIMA	(0,1,1)
AICc	-396.23492
BIC	-389.16456
AR1	0.00000
AR1_H0_inf	#N/A
AR1_H0_sup	#N/A
AR1_H0	#N/A
AR2	0.00000
AR2_H0_inf	#N/A
AR2_H0_sup	#N/A
AR2_H0	#N/A
MA1	-0.39198
MA1_H0_inf	-0.63862
MA1_H0_sup	-0.19727
MA1_H0	REJECTED
MA2	0.00000
MA2_H0_inf	#N/A
MA2_H0_sup	#N/A
MA2_H0	#N/A
drift	-0.01236
drift_H0_inf	-0.01530
drift_H0_sup	-0.00935
drift_H0	REJECTED
Normality_CVM_pvalue	0.99178
Normality_AD_pvalue	0.98878
Normality_JB_pvalue	0.99511
Incorrelation_LB	0.28037
Homocedasticity_BP_B	0.33750
Zero_mean	0.97290

All the diagnosis has been properly tested so the AR parameter and the constant are significant, the residuals are normal, uncorrelated, constant in variance and have zero mean.

4. Next period qx prediction by bootstrap

Even if all the diagnosis checks are correct and the null hypothesis of the residuals to be white noise cannot be rejected, bootstrap will be used for the estimation instead of the gaussian method since it is more versatile and considers the uncertainties of the ARIMA parameters estimation as well as model specification uncertainty.

The bootstrap prediction algorithm is coded in lines 409 to 449.

The results of the estimation distribution and the 2021 value (marked with the vertical line in blue) are shown in the following graph:

5. Mortality prediction, cost and economic capital summary

The predictions shown in the previous part are used for the computation of the cost and the economic capital required to cover that cost. The calculation is coded in lines 480 to 538.

The following table summarizes all the data predicted. The expected qx and the marginal standar deviation as well as the VaR_{99} and $TVaR_{99}$ for the cost by age groups.

Age	qx_current	qx_expected	qx_expected_sd	qx_VaR99	qx_TVaR99	n_policies	cost_expected	cost_sd	cost_VaR99	cost_TVaR99	economic_capital
67	0.01455	0.01433	0.00036	0.01536	0.01542	902	2,972,509	825,705	5,060,000	5,512,539	2,087,492
68	0.01543	0.01521	0.00038	0.01704	0.01711	659	2,306,376	723,342	4,140,000	4,557,033	1,833,624
69	0.01648	0.01631	0.00038	0.01739	0.01744	1471	5,518,827	1,122,437	8,280,000	8,842,602	2,761,173
70	0.01803	0.01781	0.00041	0.01888	0.01892	978	4,010,229	951,867	6,440,000	6,963,739	2,429,771
71	0.01974	0.01946	0.00046	0.02073	0.02077	675	3,025,271	827,874	5,060,000	5,539,776	2,034,730
72	0.02134	0.02111	0.00052	0.02253	0.02256	850	4,128,424	968,228	6,440,000	6,962,181	2,311,576
73	0.02343	0.02315	0.00053	0.02443	0.02448	882	4,697,543	1,036,329	7,360,000	7,874,576	2,662,457
74	0.02524	0.02526	0.00061	0.02697	0.02704	1035	6,016,671	1,165,096	8,970,000	9,535,517	2,953,329
75	0.02831	0.02809	0.00070	0.03048	0.03057	995	6,416,471	1,207,581	9,430,000	9,996,869	3,013,529

Additionally, the following summary table is provided with the aggregated model considering all the policies globally and running all together.

cost_total_expected	cost_total_sd	cost_total_VaR99	cost_total_TVaR99	total_economic_capital
39,091,145	2,980,131	46,230,000	47,374,907	7,138,855

The total cost distribution is as follows:

Histogram of total aggregated cost

6. Further periods mortality rates prediction

Additionally, further mortality rates estimation predictions are provided for a time horizon greater than one period up to year 2050. The following graphs show these predictions for the ages previously studied with the estimated models. The prediction is performed by the same bootstrap technique used for the one period prediction.

7. Annex – Diagnosis Results

See online

time_series ARIMA AICc	BIC AR1	AR1 H0 inf	AR1_H0_sup	AR1_H0	AR2	AR2 H0 inf	AR2 H0 sup	AR2_H0	MA1	MA1_H0_inf	MA1 H0 sup	MA1_H0	MA2	MA2 H0 inf	MA2_H0_sup	MA2 H0	drift	drift_H0_inf	drift H0 sup	drift_H0	Normality_CVM_pvalue	Normality_AD_pvalue	Normality_JB_pvalue	Uncorrelation_LB	Homocedasticity BP B	Zero_mean
q_67_log (0,1,0) -380.58	58 -375.81 0.00000	_	#N/A	#N/A	0.00000	#N/A	#N/A	#N/A	0.00000	#N/A	#N/A	#N/A	0.00000	#N/A	#N/A	#N/A	-0.01139	-0.01709	-0.00606	REJECTED	0.49746	0.44161	0.00000	0.02391	0.00008	0.98931
q_67_log (1,1,0) -381.09 q_67_log (0,1,1) -381.49	09 -374.02 -0.1749 45 -374.38 0.00000		0.02675 #N/A	NOT REJECTED #N/A	0.00000	#N/A #N/A	#N/A #N/A		0.00000	#N/A -0.47090	#N/A -0.00162	#N/A REJECTED	0.00000	#N/A #N/A	#N/A #N/A	#N/A #N/A	-0.01146 -0.01151	-0.01425 -0.01593	-0.00480 -0.00749	REJECTED REJECTED	0.56088 0.57427	0.45484 0.46396	0.00002 0.00015	0.20978 0.26379	0.98938 0.99784	0.99584 0.98219
q_67_log (0,1,1) -379.50			0.86011	NOT REJECTED	0.00000	#N/A	#N/A		0.43354	-1.00000	0.83752	NOT REJECTED	0.00000	#N/A	#N/A	#N/A	-0.01151	-0.01916	-0.01095	REJECTED	0.62170	0.50616	0.00015	0.25722	0.99721	0.95597
q_67_log (0,1,2) -379.4			#N/A	#N/A	0.00000	#N/A	#N/A		0.19789	-0.45100	-0.00224	REJECTED	-0.04904	-0.29601	0.18458	NOT REJECTED	-0.01159	-0.01540	-0.00733	REJECTED	0.61445	0.49997	0.00066	0.26129	0.99832	0.96287
q_67_log (1,1,2) -378.83 q_67_log (2,1,0) -379.23			0.89593	NOT REJECTED NOT REJECTED	0.00000 -0.06253	#N/A -0.29464	#N/A 0.13444		1.15596 0.00000	-1.22835 #N/A	0.82904 #N/A	NOT REJECTED #N/A	0.15597	-0.36341 #N/A	0.31213 #N/A	NOT REJECTED #N/A	-0.01201 -0.01151	-0.15535 -0.01357	-0.15183 -0.00477	REJECTED	0.46164 0.57239	0.32291 0.46474	0.00039	0.23130 0.24738	0.99949	0.58081 0.98336
q_67_log (2,1,1) -377.25			0.81369	NOT REJECTED	-0.00233	-0.34578	0.23821		0.40130	-1.00000	0.98959	NOT REJECTED	0.00000	#N/A	#N/A	#N/A	-0.01151	-0.01831	-0.01048	REJECTED	0.62345	0.50790	0.00028	0.25476	0.99689	0.95650
q_67_log (2,1,2) -381.24			1.22744	NOT REJECTED	-0.78431	-0.98270	0.69630		1.45530	-1.56451	1.00390	NOT REJECTED	0.99998	-0.84957	1.00000	NOT REJECTED	-0.01121	-0.02341	-0.01443	REJECTED	0.65442	0.55780	0.00358	0.22353	0.98783	0.99614
q_68_log (0,1,0) -384.29			#N/A 0.07750	#N/A NOT REJECTED	0.00000	#N/A #N/A	#N/A #N/A		0.00000	#N/A #N/A	#N/A #N/A	#N/A #N/A	0.00000	#N/A #N/A	#N/A #N/A	#N/A #N/A	-0.01179 -0.01183	-0.01719 -0.01500	-0.00655 -0.00580	REJECTED	0.33446	0.26487	0.00000	0.34223	0.00011	0.98939
q_68_log (0,1,1) -384.34		0.02000	#N/A	#N/A	0.00000	#N/A	#N/A		0.19205	-0.43452	-0.00261	REJECTED	0.00000	#N/A	#N/A	#N/A	-0.01188	-0.01601	-0.00380	REJECTED	0.43926	0.36454	0.00000	0.49218	0.58348	0.98894
q_68_log (1,1,1) -382.94			0.86942	NOT REJECTED	0.00000	#N/A	#N/A		0.50283	-1.00000	0.87481	NOT REJECTED	0.00000	#N/A	#N/A	#N/A	-0.01198	-0.02129	-0.01343	REJECTED	0.44613	0.36896	0.00000	0.56345	0.70464	0.95895
q_68_log (0,1,2) -383.91 q_68_log (1,1,2) -382.21			#N/A 0.87554	#N/A NOT REJECTED	0.00000	#N/A #N/A	#N/A #N/A		0.13732 0.19599	-0.38623 -1.12366	0.06931 0.77966	NOT REJECTED NOT REJECTED	-0.14985 -0.20653	-0.40776 -0.46335	0.08958	NOT REJECTED NOT REJECTED	-0.01200 -0.01195	-0.01546 -0.01245	-0.00810 -0.00484	REJECTED REJECTED	0.39323 0.36841	0.32978 0.32356	0.00000	0.64148 0.67643	0.81132 0.65711	0.95061 0.96668
q_68_log (1,1,2) -382.2. q_68_log (2,1,0) -384.6(0.87554	NOT REJECTED	-0.19024	#N/A -0.39378	#N/A -0.01334		0.19599	-1.123bb #N/A	0.77966 #N/A	#N/A	0.00000	-0.46335 #N/A	#N/A	#N/A	-0.01195	-0.01245	-0.00484	REJECTED	0.35841	0.32356	0.00000	0.67643	0.65/11	0.96668
q_68_log (2,1,1) -382.44	46 -370.94 -0.3614	-1.07685	0.80275	NOT REJECTED	-0.21514	-0.42342	0.11400		0.21207	-1.00000	0.97269	NOT REJECTED	0.00000	#N/A	#N/A	#N/A	-0.01189	-0.01164	-0.00324	REJECTED	0.32504	0.29345	0.00000	0.67675	0.70605	0.98613
q_68_log (2,1,2) -387.9i			1.20754	NOT REJECTED	-0.70200	-0.98253	0.61030		1.45150	-1.55342	1.10912	NOT REJECTED	1.00000	-0.78173	1.00000	NOT REJECTED	-0.01146	-0.02497	-0.01545 -0.00654	REJECTED	0.42159	0.38601	0.00000	0.86840	0.88659	0.93557
q_69_log (0,1,0) -396.33 q_69_log (1,1,0) -397.63			#N/A 0.01290	#N/A NOT REJECTED	0.00000	#N/A #N/A	#N/A #N/A		0.00000	#N/A #N/A	#N/A #N/A	#N/A #N/A	0.00000	#N/A #N/A	#N/A #N/A	#N/A #N/A	-0.01223 -0.01224	-0.01706 -0.01434	-0.00654	REJECTED	0.75219 0.74609	0.81030 0.85382	0.51871 0.58847	0.10170 0.21492	0.03674 0.11356	0.98900
q_69_log (0,1,1) -398.2	27 -391.20 0.00000	#N/A	#N/A	#N/A	0.00000	#N/A	#N/A	#N/A -	0.23209	-0.49352	-0.01913	REJECTED	0.00000	#N/A	#N/A	#N/A	-0.01226	-0.01577	-0.00824	REJECTED	0.76858	0.87554	0.57133	0.31720	0.12939	0.99118
q_69_log (1,1,1) -396.20		-0.86266 #N/A	0.86611 #N/A	NOT REJECTED	0.00000	#N/A #N/A	#N/A #N/A		0.36184	-1.00000 -0.47639	0.79766	NOT REJECTED	0.00000	#N/A -0.31492	#N/A 0.18672	#N/A NOT REJECTED	-0.01228 -0.01228	-0.01773 -0.01595	-0.01059 -0.00858	REJECTED	0.76416 0.75592	0.86531 0.85690	0.56436	0.35443	0.30118	0.98258
q_69_log (0,1,2) -396.25 q_69_log (1,1,2) -396.05			#N/A 0.89053	#N/A NOT REJECTED	0.00000	#N/A #N/A	#N/A #N/A		1.18253	-0.47639	-0.01804 0.81244	NOT REJECTED	0.18253	-0.31492	0.18672	NOT REJECTED	-0.01228	-0.01595	-0.00858	REJECTED	0.75592	0.85690	0.55302	0.37578	0.36813	0.98290
q_69_log (2,1,0) -396.3		_	-0.00836	REJECTED	-0.10051	-0.33284	0.08359		0.00000	#N/A	#N/A	#N/A	0.00000	#N/A	#N/A	#N/A	-0.01226	-0.01279	-0.00539	REJECTED	0.73978	0.84634	0.50735	0.42580	0.44133	0.99247
q_69_log (2,1,1) -394.10			0.79930	NOT REJECTED	-0.07845	-0.37396	0.23155		0.12025	-1.00000	0.99998	NOT REJECTED	0.00000	#N/A	#N/A	#N/A	-0.01226	-0.01390	-0.00662	REJECTED	0.74525	0.84935	0.51885	0.42191	0.34922	0.98894
q_69_log (2,1,2) -393.83 q_70_log (0,1,0) -390.83	31 -380.15 1.26298 38 -386.11 0.00000		1.33652 #N/A	NOT REJECTED #N/A	-0.85322 0.00000	-0.99451 #N/A	0.78782 #N/A		1.42888	-1.54824 #N/A	1.62243 #N/A	NOT REJECTED #N/A	0.99999	-0.92915 #N/A	1.00000 #N/A	NOT REJECTED #N/A	-0.01224 -0.01243	-0.02489 -0.01750	-0.01619 -0.00745	REJECTED REJECTED	0.76546 0.86210	0.83393 0.93434	0.50544 0.61160	0.37986 0.00007	0.45862 0.00060	0.99374
	0.3344		-0.12959	REJECTED	0.00000	#N/A	#N/A		0.00000	#N/A	#N/A	#N/A	0.00000	#N/A	#N/A	#N/A	-0.01245	-0.01730	-0.00566	REJECTED	0.93385	0.96271	0.51841	0.10938	0.58374	0.99908
	19 -393.12 0.00000		#N/A	#N/A	0.00000	#N/A	#N/A		0.35757	-0.62077	-0.16846	REJECTED	0.00000	#N/A	#N/A	#N/A	-0.01247	-0.01534	-0.00937	REJECTED	0.92672	0.91772	0.46602	0.15678	0.41163	0.99543
q_70_log (1,1,1) -398.1 q_70_log (0,1,2) -398.3	17 -388.85 -0.1086 34 -389.02 0.00000		0.69004 #N/A	NOT REJECTED #N/A	0.00000	#N/A #N/A	#N/A #N/A		0.26838	-1.00000 -0.65865	0.41490 -0.18165	NOT REJECTED	0.00000	#N/A -0.18498	#N/A 0.30244	#N/A NOT REJECTED	-0.01247 -0.01245	-0.01434 -0.01566	-0.00799 -0.00903	REJECTED	0.96391	0.95743	0.49018 0.51629	0.19198 0.21388	0.45469	0.99684
4_10_108 (0/-/-/ 00010	19 -384.66 0.21134		0.90993	NOT REJECTED	0.00000	#N/A	#N/A		0.59636	-1.35680	0.66377	NOT REJECTED	0.15084	-0.45869	0.47895	NOT REJECTED	-0.01244	-0.01926	-0.01233	REJECTED	0.96986	0.97222	0.53932	0.20636	0.55265	0.99865
q_70_log (2,1,0) -399.34		_	-0.18186	REJECTED	-0.16842	-0.38109	0.01688		0.00000	#N/A	#N/A	#N/A	0.00000	#N/A	#N/A	#N/A	-0.01245	-0.01111	-0.00476	REJECTED	0.96117	0.95321	0.49859	0.23993	0.43609	0.99828
4_10_10 (-/-/-/	38 -389.36 -1.0182 21 -385.55 -1.1865		0.57721	NOT REJECTED	-0.41132 -0.59176	-0.59933 -0.96654	0.24723		0.66403	-1.00000 -1.22278	0.99999	NOT REJECTED	0.00000 0.21506	#N/A -0.69170	#N/A 0.99999	#N/A NOT REJECTED	-0.01242 -0.01240	-0.00828 -0.00771	-0.00192 -0.00093	REJECTED	0.86613 0.80190	0.82317	0.33700 0.15062	0.59589	0.89304 0.90078	0.98420
q_71_log (0,1,0) -394.5			#N/A	#N/A	0.00000	#N/A	#N/A		0.00000	#N/A	#N/A	#N/A	0.00000	#N/A	#N/A	#N/A	-0.01249	-0.01750	-0.00734	REJECTED	0.91293	0.91236	0.60818	0.55977	0.00001	0.98984
q_71_log (1,1,0) -394.9			0.04595	NOT REJECTED	0.00000	#N/A	#N/A		0.00000	#N/A	#N/A	#N/A	0.00000	#N/A	#N/A	#N/A	-0.01252	-0.01478	-0.00653	REJECTED	0.94389	0.94104	0.60701	0.77591	0.82362	0.99698
12 2 3 1 (17 7 7	25 -389.18 0.00000 33 -387.01 0.82400		#N/A 0.85686	#N/A NOT REJECTED	0.00000	#N/A #N/A	#N/A #N/A		0.24286	-0.52452 -1.00000	-0.03119 0.99261	REJECTED NOT REJECTED	0.00000	#N/A #N/A	#N/A #N/A	#N/A #N/A	-0.01253 -0.01232	-0.01614 -0.07107	-0.00871 -0.06883	REJECTED REJECTED	0.96312 0.89052	0.95826 0.91262	0.52026 0.22172	0.89443 0.85513	0.86741 0.82451	0.99405 0.86600
	77 -386.45 0.00000	_	#N/A	#N/A	0.00000	#N/A	#N/A #N/A		0.17253	-0.43037	0.02637	NOT REJECTED	-0.16825	-0.45435	#N/A 0.02620	NOT REJECTED	-0.01232	-0.07107	-0.00883	REJECTED	0.99061	0.91262	0.51777	0.96269	0.55108	0.88600
q_71_log (1,1,2) -394.8			0.83759	NOT REJECTED	0.00000	#N/A	#N/A		0.40071	-1.11305	0.74434	NOT REJECTED	-0.28185	-0.54299	0.24129	NOT REJECTED	-0.01249	-0.01125	-0.00448	REJECTED	0.97972	0.97764	0.43475	0.99182	0.59747	0.98221
q_71_log (2,1,0) -396.79 q_71_log (2,1,1) -395.29	79 -387.46 -0.2063 25 -383.73 -0.5725		-0.00084 0.75240	REJECTED NOT REJECTED	-0.21314 -0.27901	-0.42549 -0.48245	-0.01763 0.07288		0.00000	#N/A -1.00000	#N/A 0.94913	#N/A NOT REJECTED	0.00000	#N/A #N/A	#N/A #N/A	#N/A #N/A	-0.01251 -0.01248	-0.01222 -0.01026	-0.00536 -0.00322	REJECTED	0.99614 0.98285	0.99604 0.98977	0.56820 0.51679	0.98856 0.99759	0.72322 0.72277	0.98531
	96 -379.29 -0.5558		1.08911	NOT REJECTED	-0.27301	-0.48243	0.59425		0.37147	-1.39799	1.23085	NOT REJECTED	0.06206	-0.88414	1.00000	NOT REJECTED	-0.01248	-0.01026	-0.00322	REJECTED	0.98683	0.99302	0.54628	0.99797	0.87057	0.97747
q_72_log (0,1,0) -386.13	12 -381.35 0.00000	#N/A	#N/A	#N/A	0.00000	#N/A	#N/A		0.00000	#N/A	#N/A	#N/A	0.00000	#N/A	#N/A	#N/A	-0.01253	-0.01806	-0.00727	REJECTED	0.88707	0.88787	0.22566	0.01297	0.00070	0.99060
q_72_log (1,1,0) -387.8: q_72_log (0,1,1) -388.7:			0.00053 #N/A	NOT REJECTED #N/A	0.00000	#N/A #N/A	#N/A #N/A		0.00000	#N/A -0.49469	#N/A -0.04240	#N/A REJECTED	0.00000	#N/A #N/A	#N/A #N/A	#N/A #N/A	-0.01256 -0.01255	-0.01436 -0.01657	-0.00613 -0.00857	REJECTED	0.78892 0.78017	0.69273 0.65034	0.21293 0.22729	0.19110 0.31635	0.26159	0.99763
q 72 log (1,1,1) -388.73			#N/A 0.84977	NOT REJECTED	0.00000	#N/A	#N/A		0.25911	-1.00000	0.71376	NOT REJECTED	0.00000	#N/A #N/A	#N/A #N/A	#N/A #N/A	-0.01255	-0.01657	-0.00857	REJECTED	0.70116	0.58521	0.19459	0.27714	0.07697	0.99740
q_72_log (0,1,2) -387.13			#N/A	#N/A	0.00000	#N/A	#N/A		0.23792	-0.48631	-0.02112	REJECTED	-0.08448	-0.34652	0.12260	NOT REJECTED	-0.01255	-0.01600	-0.00893	REJECTED	0.71637	0.59744	0.24115	0.29728	0.24144	0.99943
q_72_log (1,1,2) -385.23 q_72_log (2,1,0) -387.03	27 -373.75 -0.6305 01 -377.69 -0.2340	0.0000	0.89173 -0.02605	NOT REJECTED REJECTED	0.00000 -0.12722	#N/A -0.35946	#N/A 0.06783		0.39754	-1.24073 #N/A	0.76886 #N/A	NOT REJECTED #N/A	-0.24459 0.00000	-0.49915 #N/A	0.34902 #N/A	NOT REJECTED #N/A	-0.01254 -0.01254	-0.01151 -0.01289	-0.00408 -0.00540	REJECTED REJECTED	0.68815 0.79234	0.60641 0.69081	0.20487 0.27835	0.46288 0.33461	0.34092 0.47447	0.99480 0.99758
12 2 30 1 7 7 7 7	93 -373.41 -0.8508		0.77328	NOT REJECTED	-0.12722	-0.43569	0.06783		0.63393	-1.00000	#N/A 1.00000	NOT REJECTED	0.00000	#N/A	#N/A	#N/A #N/A	-0.01254	-0.01289	-0.00540	REJECTED	0.79234	0.65130	0.14938	0.49464	0.47447	0.99758
q_72_log (2,1,2) -382.93	97 -369.30 -0.5972	-1.32489	1.25415	NOT REJECTED	0.04356	-0.96942	0.65494		0.36563	-1.57786	1.16672	NOT REJECTED	-0.28510	-0.97169	1.00000	NOT REJECTED	-0.01254	-0.01141	-0.00449	REJECTED	0.67690	0.59179	0.20500	0.44260	0.69680	0.99595
	51 -381.75 0.00000 14 -386.07 -0.3114		#N/A -0.10436	#N/A REJECTED	0.00000	#N/A	#N/A		0.00000	#N/A	#N/A	#N/A	0.00000	#N/A	#N/A	#N/A	-0.01226 -0.01234	-0.01764	-0.00683 -0.00559	REJECTED	0.95971	0.97087	0.87771	0.01854	0.01838	0.99082
4_10_108 (4/4/0) 00012	14 -386.07 -0.3114 23 -389.16 0.00000		-0.10436 #N/A	#N/A	0.00000	#N/A #N/A	#N/A #N/A		0.39198	#N/A -0.63862	#N/A -0.19727	#N/A REJECTED	0.00000	#N/A #N/A	#N/A #N/A	#N/A #N/A	-0.01234	-0.01286 -0.01530	-0.00559	REJECTED	0.99466	0.98878	0.87999 0.99511	0.08052 0.28037	0.03291 0.33750	0.98623 0.97290
q_73_log (1,1,1) -394.05	05 -384.73 0.03195	-0.57611	0.68737	NOT REJECTED	0.00000	#N/A	#N/A	#N/A -	0.41704	-1.00000	0.23129	NOT REJECTED	0.00000	#N/A	#N/A	#N/A	-0.01236	-0.01569	-0.00979	REJECTED	0.99164	0.98748	0.99550	0.28942	0.20594	0.97216
q_73_log (0,1,2) -394.0			#N/A 0.89640	#N/A NOT REJECTED	0.00000	#N/A	#N/A		0.37911	-0.62467 -1.34943	-0.18533	REJECTED NOT REJECTED	-0.02294	-0.28292 -0.56420	0.21418	NOT REJECTED NOT REJECTED	-0.01236	-0.01528	-0.00954 -0.00469	REJECTED REJECTED	0.99192	0.98676	0.99559	0.29785	0.19702 0.03757	0.97176
q_73_log (1,1,2) -392.33 q_73_log (2,1,0) -395.53			-0.17113	REJECTED	-0.22711	#N/A -0.45009	#N/A -0.01886		0.23103 0.00000	-1.34943 #N/A	0.60167 #N/A	#N/A	-0.28854 0.00000	-0.56420 #N/A	0.43104 #N/A	#N/A	-0.01235 -0.01232	-0.01064 -0.01059	-0.00469	REJECTED	0.99051 0.97987	0.99018 0.98854	0.98194 0.96114	0.37856 0.47096	0.03757	0.97446 0.98382
q_73_log (2,1,1) -393.2	27 -381.75 -0.4288	-1.19728	0.60163	NOT REJECTED	-0.24224	-0.49791	0.24226	NOT REJECTED	0.05041	-1.00000	0.89725	NOT REJECTED	0.00000	#N/A	#N/A	#N/A	-0.01232	-0.01031	-0.00416	REJECTED	0.97944	0.98750	0.96109	0.47306	0.03080	0.98603
q_73_log (2,1,2) -391.29 q_74_log (0.1.0) -381.69		-1.14035 #N/A	0.99555 #N/A	NOT REJECTED	-0.39013 0.00000	-0.92268 #N/A	0.40248 #N/A		0.12475	-1.44997 #N/A	0.84193 #N/A	NOT REJECTED #N/A	0.23830	-0.71856 #N/A	1.00000 #N/A	NOT REJECTED #N/A	-0.01231 -0.01206	-0.01077 -0.01767	-0.00413 -0.00681	REJECTED REJECTED	0.97618 0.70713	0.98843 0.68190	0.97507 0.31017	0.51361 0.21421	0.07415	0.99718
q_74_log (0,1,0) -381.64 q_74_log (1,1,0) -387.41			#N/A -0.08826	#N/A REJECTED	0.00000	#N/A #N/A	#N/A #N/A		0.00000	#N/A #N/A	#N/A #N/A	#N/A #N/A	0.00000	#N/A #N/A	#N/A #N/A	#N/A #N/A	-0.01206	-0.01767	-0.00681	REJECTED	0.70713	0.68190	0.31017	0.21421	0.00076	0.99127 0.97608
q_74_log (0,1,1) -391.6	66 -384.59 0.00000	#N/A	#N/A	#N/A	0.00000	#N/A	#N/A	#N/A -	0.41636	-0.66639	-0.23485	REJECTED	0.00000	#N/A	#N/A	#N/A	-0.01212	-0.01504	-0.00925	REJECTED	0.65720	0.72732	0.32767	0.79649	0.62931	0.92790
	55 -380.22 0.06504		0.68594	NOT REJECTED	0.00000	#N/A	#N/A		0.46505	-1.00000	0.14770	NOT REJECTED		#N/A	#N/A	#N/A	-0.01214		-0.00995	REJECTED	0.66198	0.72546	0.31815	0.80487	0.32083	0.92179
q_74_log (0,1,2) -389.69 q_74_log (1,1,2) -388.39			#N/A 0.89101	#N/A NOT REJECTED	0.00000	,	#N/A #N/A			-0.61425 -1.35388	-0.17937 0.60124	REJECTED NOT REJECTED		-0.33738 -0.58589	0.14799			-0.01501 -0.01024		REJECTED REJECTED	0.67654 0.76698	0.72690 0.80037	0.30700 0.33293	0.81999 0.89618	0.29340 0.22136	0.91629 0.92337
q_74_log (2,1,0) -391.9	95 -382.63 -0.3868	-0.58247	-0.18588	REJECTED	-0.27679	-0.48076	-0.08426	REJECTED	0.00000	#N/A	#N/A	#N/A	0.00000	#N/A	#N/A	#N/A	-0.01206	-0.01014	-0.00405	REJECTED	0.71482	0.76951	0.33890	0.96575	0.35359	0.95073
q_74_log (2,1,1) -389.70			0.53837	NOT REJECTED	-0.27636	-0.51798	0.19907		0.00154	-1.00000	0.76676	NOT REJECTED	0.00000	#N/A	#N/A	#N/A	-0.01206		-0.00404	REJECTED	0.71424	0.76904	0.33863	0.96560	0.16615	0.95059
q_74_log (2,1,2) -387.73 q_75_log (0,1,0) -377.20			0.95162 #N/A	NOT REJECTED #N/A	-0.38435 0.00000	-0.87614 #N/A	0.29758 #N/A		0.36933	-1.46514 #N/A	0.72321 #N/A	NOT REJECTED #N/A	0.26969	-0.66309 #N/A	0.99999 #N/A	NOT REJECTED #N/A	-0.01202 -0.01123	-0.01145 -0.01659	-0.00518 -0.00555	REJECTED REJECTED	0.62071 0.45032	0.70476 0.39994	0.31280 0.02111	0.98277 0.00048	0.40488 0.09746	0.96583 0.99162
q_75_log (1,1,0) -384.93			-0.12805	REJECTED	0.00000	#N/A	#N/A		0.00000	#N/A	#N/A	#N/A	0.00000	#N/A	#N/A	#N/A	-0.01127			REJECTED	0.45231	0.39269	0.00204	0.05496	0.27820	0.98095
q_75_log (0,1,1) -386.23			#N/A	#N/A	0.00000	#N/A	#N/A		0.36161	-0.60699	-0.15844	REJECTED	0.00000	#N/A	#N/A	#N/A	-0.01136			REJECTED	0.56783	0.49760	0.00366	0.17215	0.29746	0.94285
q_75_log (1,1,1) -384.10 q_75_log (0,1,2) -384.11			0.72233 #N/A	NOT REJECTED #N/A	0.00000	#N/A #N/A	#N/A #N/A		0.29575 0.38420	-1.00000 -0.64532	0.33913 -0.19570	NOT REJECTED	0.00000	#N/A -0.20622	#N/A 0.28316	#N/A NOT REJECTED	-0.01134 -0.01131	-0.01389 -0.01455	-0.00704 -0.00803	REJECTED	0.58878 0.60843	0.50966	0.00357 0.00360	0.16843 0.16372	0.16568 0.17499	0.95201 0.96208
q_/5_log (0,1,2) -384.1 q_75_log (1,1,2) -382.3:			#N/A 0.91780	#N/A NOT REJECTED	0.00000	#N/A #N/A	#N/A #N/A		0.38420	-0.64532	0.62469	NOT REJECTED	0.00000	-0.20622	0.28316	NOT REJECTED	-0.01131	-0.01455	-0.00803	REJECTED	0.63778	0.52449	0.00386	0.16372	0.17499	0.98367
q_75_log (2,1,0) -384.65	55 -375.32 -0.3789	-0.59038	-0.16731	REJECTED	-0.14899	-0.35687	0.04942	NOT REJECTED	0.00000	#N/A	#N/A	#N/A	0.00000	#N/A	#N/A	#N/A	-0.01131	-0.01067	-0.00395	REJECTED	0.65871	0.58805	0.00411	0.22837	0.09932	0.96471
q_75_log (2,1,1) -382.79					0.26256	-0.41469			0.99996	-1.00000	0.97776	NOT REJECTED		#N/A	#N/A	#N/A	-0.01188		-0.08696	REJECTED	0.43766	0.34606	0.00281	0.07754	0.79548	0.40327
q_75_log (2,1,2) -381.0	0.81069	-1.28802	1.09566	NOT REJECTED	0.10181	-0.84162	0.68226	NOT REJECTED -	1.22616	-1.46396	0.98124	NOT REJECTED	0.22617	-0.89493	0.99999	NOT REJECTED	-0.01181	-0.13581	-0.13314	REJECTED	0.48668	0.41060	0.00486	0.14644	0.60460	0.45251