Cavallaro, Jeffery Math 221b Homework #7

- 1). Suppose we have an extension of fields $F \subseteq E \subseteq L \subseteq K$ and let $G = \operatorname{Aut}(K/F)$ with subgroups $I \leq J \leq H \leq G$.
 - a). Show that $G = \operatorname{Aut}(K/F)$ is actually a group under composition of functions.

Assume $\varphi_1, \varphi_2 \in G$ and $\alpha \in F$.

By definition, φ_1 and φ_2 fix F, so $\varphi_1(\alpha) = \alpha$ and $\varphi_2(\alpha) = \alpha$.

$$(\varphi_1\varphi_2)(\alpha) = \varphi_1(\varphi_2(\alpha)) = \varphi_1(\alpha) = \alpha$$

Thus, $\varphi_1\varphi_2$ fixes F and so $\varphi_1\varphi_2 \in G$.

Therefore G is closed under the operation.

Function composition is associative.

Assume $\varphi \in G$ and $\alpha \in F$:

$$\iota_K(\alpha) = \alpha$$

Thus i_K fixes F and so $\iota_K \in G$. But also:

$$\iota_k \varphi = \varphi \iota_k = \varphi$$

Therefore G has identity ι_K .

Assume $\varphi \in G$ and $\alpha \in F$.

By definition, φ fixes F, so $\varphi(\alpha) = \alpha$.

But φ is bijective, so φ^{-1} exists and:

$$\varphi^{-1}(\alpha) = \varphi^{-1}(\varphi(\alpha)) = (\varphi^{-1}\varphi)(\alpha) = \iota_K(\alpha) = \alpha$$

Thus, φ^{-1} fixes F and so $\varphi^{-1} \in G$.

Therefore G is closed under inverses.

Therefore G is a group under the operation of function composition.

b). Show that G(L) is actually a subgroup of G.

Assume $\alpha \in L$.

$$\iota_L(\alpha) = \alpha$$

Thus ι_L fixes L and so $\iota_L \in G(L)$.

$$G(L) \neq \emptyset$$

Assume $\varphi \in G(L)$ and $\alpha \in F$.

But since $F\subseteq L$ we have $\alpha\in L$ also and since φ fixes L:

$$\varphi(\alpha) = \alpha$$

Thus, φ fixes F and so $\varphi \in G$.

$$\therefore G(L) \subseteq G$$

Assume $\varphi_1, \varphi_2 \in G(L)$ and assume $\alpha \in L$.

By definition, φ_1 and φ_2 fix L, so $\varphi_1(\alpha) = \alpha$ and $\varphi_2(\alpha) = \alpha$.

Also, φ_2 is bijective so φ_2^{-1} exists.

$$(\varphi_1 \varphi_2^{-1})(\alpha) = \varphi_1(\varphi_2^{-1}(\alpha))$$

$$= \varphi_1(\varphi_2^{-1}(\varphi_2(\alpha)))$$

$$= \varphi_1((\varphi_2^{-1}\varphi_2)(\alpha)))$$

$$= \varphi_1(\iota_L(\alpha))$$

$$= \varphi_1(\alpha)$$

$$= \alpha$$

Thus $\varphi_1\varphi^{-1}$ fixes L and so $\varphi_1\varphi^{-1} \in G(L)$.

Therefore, by the subgroup test, $G(L) \leq G(F)$.

c). Prove the inclusions $G(L) \leq G(E)$ and $F(H) \subseteq F(J)$

From the previous problem we already know that $G(L), G(E) \leq G$, and so it suffices to show inclusion:

Assume $\varphi \in G(L)$

$$\forall \, \alpha \in L, \varphi(\alpha) = \alpha$$
 Since $E \subseteq L, \forall \, \alpha \in E, \varphi(\alpha) = \alpha$
$$\varphi \in G(E)$$

$$\therefore G(L) \leq G(E)$$

Assume $\alpha \in F(H)$

$$\begin{array}{l} \forall\,\varphi\in H, \varphi(\alpha)=\alpha\\ \text{Since } J\subseteq H, \forall\,\varphi\in J, \varphi(\alpha)=\alpha\\ \text{So } \alpha\in F(J) \end{array}$$

$$\therefore F(H) \subseteq F(J)$$

d). Prove the inclusions $H \leq G(F(H))$ and $L \subseteq F(G(L))$

From the previous problem we already know that $H,G(F(H)) \leq G$, and so it suffices to show inclusion:

Assume $\varphi \in H$.

By definition, φ fixes everything in ${\cal F}({\cal H}).$

So, by definition, $\varphi \in G(F(H))$.

$$\therefore H \leq G(F(H))$$

Now, assume $\alpha \in L$.

By definition, α is fixed by everything in G(L).

So, by definition, $\alpha \in F(G(L))$.

$$\therefore L \subseteq F(G(L))$$

e). Prove that G(L) and F(H) are closed.

From (d), we already know that $G(L) \subseteq G(F(G(L)))$.

Assume $\varphi \in G(F(G(L)))$.

 φ fixes everything in F(G(L)).

But also from (d), $L \subseteq F(G(L))$.

So φ fixes everything in L.

Thus, by definition, $\varphi \in G(L)$.

$$\therefore G(L) = G(F(G(L)))$$
 and so $G(L)$ is closed.

From (d), we already know that $F(H) \subseteq F(G(F(H)))$.

Assume $\alpha \in F(G(F(H)))$.

 α is fixed by everything in G(F(H)).

But also from (d), $H \subseteq G(F(H))$.

So α is fixed by everything in H.

Thus, by definition, $\alpha \in F(H)$.

$$\therefore F(H) = F(G(F(H)))$$
 and so $F(H)$ is closed.

- 2). Suppose we have an extension of fields $F\subseteq L\subseteq K$ and let $G=\operatorname{Aut}(K/F)$ with subgroups $1\leq H\leq G$:
 - a). Show that L is stable $\implies G(L) \trianglelefteq G$

Assume L is stable.

Assume $\varphi \in G(L)$.

Assume $\alpha \in L$.

 φ fixes L and so $\varphi(\alpha) = \alpha$.

Now, assume $\psi \in G$.

Since ψ is bijective and L is stable, $\exists \beta \in L$ such that $\psi(\beta) = \alpha$ and $\psi^{-1}(\alpha) = \beta$.

Also, since $\beta \in L, \varphi$ also fixes β and so $\varphi(\beta) = \beta$

$$(\psi\varphi\psi^{-1})(\alpha)=\psi(\varphi(\psi^{-1}(\alpha)))=\psi(\varphi(\beta))=\psi(\beta)=\alpha$$
 Thus, $\psi\varphi\psi^{-1}\in G(L)$.

$$\therefore G(L) \leq G.$$

b). Show that $H \subseteq G \implies F(H)$ is stable.

Assume $H \triangleleft G$.

Assume $\varphi \in H$.

Assume $\psi \in G$.

Since $H \subseteq G$, we have $\psi^{-1}\varphi\psi \in H$.

Now, assume $\alpha \in F(H)$

 α is fixed by H and $\psi^{-1}\varphi\psi\in H$, so $(\psi^{-1}\varphi\psi)(\alpha)=\alpha$.

$$(\varphi\psi)(\alpha) = \psi(\alpha)$$

$$\varphi(\psi(\alpha)) = \psi(\alpha)$$

So $\psi(\alpha)$ is fixed by φ and thus $\psi(\alpha) \in F(H)$.

Therefore F(H) is stable.

- 3). Suppose K/\mathbb{Q} is a quadratic extension ($[K:\mathbb{Q}]=2$):
 - a). Show that $K = \mathbb{Q}(\sqrt{d})$ for some squarefree integer $d \neq 1$.
 - b). Show that K/\mathbb{Q} is Galois with $\operatorname{Gal}(K/Q) \cong \mathbb{Z}/2\mathbb{Z}$.

Assume $\alpha \in K$ such that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 2$. The minimum polynomial is given by:

$$m_{\alpha,\mathbb{O}}(x) = x^2 + bx + c$$

for some $b,c\in\mathbb{Q}.$ The roots for this polynomial are found as follows:

$$x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

If $\sqrt{b^2-4c}\in\mathbb{Q}$ then $[K:\mathbb{Q}]=1$, so assume not.

Let $b=\frac{p}{q}$ and $c=\frac{h}{k}$ where $p,q,h,k\in\mathbb{Z}$ and $q,k\neq 0$:

$$x = \frac{-\frac{p}{q} \pm \sqrt{\left(\frac{p}{q}\right)^2 - \frac{4h}{k}}}{2}$$

$$= -\frac{p}{2q} \pm \frac{1}{2} \sqrt{\frac{p^2k - 4qh}{q^2k}}$$

$$= -\frac{p}{2q} \pm \frac{1}{2q^2k} \sqrt{q^2k(p^2k - 4qh)}$$

Note that $q^2k(p^2k-4qh)\in\mathbb{Z}$, so factor out any perfect square part, calling it n^2 , and whatever squarefree integer is left call it d:

$$x = -\frac{p}{2q} \pm \frac{1}{2q^2k}\sqrt{n^2d} = -\frac{p}{2q} \pm \frac{n}{2q^2k}\sqrt{d}$$

Now let $r=-rac{p}{2q}\in\mathbb{Q}$ and $s=rac{n}{2q^2k}\in\mathbb{Q}$:

$$x = r \pm s\sqrt{d}$$

And so
$$K = \mathbb{Q}(\sqrt{d})$$

Now assume $\varphi \in G(\mathbb{Q})$

Since φ is a ring homomorphism that fixes \mathbb{Q} :

$$\varphi(x) = \phi(r \pm s\sqrt{d}) = \phi(r) \pm \phi(s\sqrt{d}) = r \pm \phi(s)\phi(\sqrt{d}) = r \pm s\phi(\sqrt{d})$$

And so φ is completely determined by what it does to \sqrt{d} .

Thus, there are only two \mathbb{Q} -automorphisms:

a). id

b).
$$\sqrt{d} \mapsto -\sqrt{d}$$

In other words, the identity and a two-cycle.

Therefore, $\operatorname{Aut}(\mathbb{Q}(\sqrt{d})/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z}$

Also note that since φ only moves $r + s\sqrt{d}$ where $s \neq 0$:

$$F(G(\mathbb{Q})) = \mathbb{Q}$$

Therefore $Q(\sqrt{d})/\mathbb{Q}$ is Galois.

4). Show that $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is Galois over \mathbb{Q} with Galois group $\mathrm{Gal}(\sqrt{2+\sqrt{2}}/\mathbb{Q})=\mathbb{Z}/4\mathbb{Z}$.

We can determine the minimum polynomial as follows:

$$x = \sqrt{2 + \sqrt{2}}
 x^2 = 2 + \sqrt{2}
 x^2 - 2 = \sqrt{2}
 x^4 - 4x^2 + 4 = 2
 x^4 - 4x^2 + 2 = 0$$

Let $f(x)=x^4-4x^2+2$. By Eisenstein (p=2), f(x) is irreducible over $\mathbb Q$ and is thus the minimum polynomial for $\mathbb Q(\sqrt{2+\sqrt{2}})$. Now, using the quadratic formula twice, we get the four roots for f(x):

$$r_1 = \sqrt{2 + \sqrt{2}}$$

$$r_2 = -\sqrt{2 + \sqrt{2}}$$

$$r_3 = \sqrt{2 - \sqrt{2}}$$

$$r_4 = -\sqrt{2 - \sqrt{2}}$$

Note that:

$$\left(\sqrt{2+\sqrt{2}}\right)^2 = 2+\sqrt{2}$$

and so
$$\sqrt{2} = -2 + \left(\sqrt{2 + \sqrt{2}}\right)^2 \in \mathbb{Q}(\sqrt{2 + \sqrt{2}}).$$

Furthermore, note that:

$$r_1 r_3 = \left(\sqrt{2 + \sqrt{2}}\right) \left(\sqrt{2 - \sqrt{2}}\right) = \sqrt{2}$$

Thus:

$$\sqrt{2-\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2+\sqrt{2}}} \in \mathbb{Q}(\sqrt{2+\sqrt{2}})$$

This means that all four of the roots are in $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ and thus $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is the splitting field for f(x) over \mathbb{Q} .

Therefore K/F is a Galois extension.

f(x) is already depressed with p=-4, q=0, and r=2. Thus, the resolvant is:

$$h(x) = x^3 + 8x^2 + 8x = x(x^2 + 8x + 8)$$

with roots 0 and $-4 \pm 2\sqrt{2}$. We are only concerned about the non-rational part so:

$$\theta_1 = 0 = (r_1 + r_2)(r_3 + r_3) \in \mathbb{Q}$$

$$\theta_2 = \sqrt{2} = (r_1 + r_3)(r_2 + r_4) \notin \mathbb{Q}$$

$$\theta_2 = -\sqrt{2} = (r_1 + r_4)(r_2 + r_3) \notin \mathbb{Q}$$

So $\operatorname{Gal}(K/F)$ fixes θ_1 and thus $\operatorname{Gal}(K/F) \leq D_8$. Since the dimension of the extension is 4 it cannot be all of D_8 and so it is either $\mathbb{Z}/4\mathbb{Z}$ or V. But there are 4 distinct roots so we know that $\operatorname{Gal}(K/F)$ has a 4 cycle, as well as a two cycle for conjugation of the roots, so the non-cyclic V is out. Therefore, $\operatorname{Gal}(K/F) \cong \mathbb{Z}/4\mathbb{Z}$.

5). Suppose that K is the splitting field over $\mathbb Q$ of a cubic $f(x) \in \mathbb Q[x]$ such that $\operatorname{Gal}(K/\mathbb Q) \cong \mathbb Z/3\mathbb Z$. Prove that all the roots of f(x) are real.

We have the following extension:

Since $\mathbb{Z}/3\mathbb{Z}$ has no proper subgroups, there are no intermediate fields. Now, ABC that f(x) has two complex conjugate roots. This would require a subgroup of $\operatorname{Gal}(K/\mathbb{Q})$ of order two to cover conjugation of the complex roots, and thus an intermediate field of dimension 2, which is impossible because $2 \nmid 3$.

6

Thus, all of the roots of f(x) must be real.

6). Find the Galois group for the splitting field of $x^4 + 2$ over \mathbb{Q} .

By Eisenstein (p=2), x^4+2 is irreducible over $\mathbb Q$. It is also already depressed with p=q=0 and r=2. Thus, the corresponding resolvant cubic is:

$$x^3 - 8x = x(x^2 - 8)$$

which has the following roots:

$$\theta_1 = 0 = (r_1 + r_2)(r_3 + r_3) \in \mathbb{Q}$$

$$\theta_2 = \sqrt{8} = (r_1 + r_3)(r_2 + r_4) \notin \mathbb{Q}$$

$$\theta_2 = -\sqrt{8} = (r_1 + r_4)(r_2 + r_3) \notin \mathbb{Q}$$

So Gal(K/F) fixes θ_1 and thus $Gal(K/F) \leq D_8$

Consider $(34) \in D_8$:

$$(34)\theta_2 = (r_1 + r_4)(r_2 + r_3) = \theta_3$$

$$(34)\theta_3 = (r_1 + r_3)(r_2 + r_4) = \theta_2$$

Thus, $(34) \in Gal(K/F)$.

Now, consider $(1324) \in Gal(K/F)$:

$$(1324)\theta_2 = (r_3 + r_2)(r_4 + r_1) = \theta_3$$

$$(1324)\theta_3 = (r_3 + r_1)(r_4 + r_2) = \theta_2$$

Thus $(1324) \in \operatorname{Gal}(K/F)$.

Therefore, $Gal(K/F) = \langle (34), (1324) \rangle = D_8$.

7). Suppose K is an extension of $\mathbb Q$ such that $[K:\mathbb Q]=4$ and assume there are no proper non-trivial intermediate fields L with $\mathbb Q\subset L\subset K$. Show that K/Q is not Galois.

The lack of proper intermediate fields for a quartic indicates a missing field extension of dimension 2, corresponding to a missing Galois group of order 2 such as conjugation of complex roots. This occurs when the complex roots are not included in the field extension - i.e, the extension is $\mathbb{Q}(\sqrt[4]{d})$ and not the full $\mathbb{Q}(\sqrt[4]{d},i)$. Thus K is not a splitting field for the minimum polynomial of the extension, and therefore the extension is not Galois.