## Selected topics of lattice gauge theory

CHRISTIAN HÖLBLING, LUKAS VARNHORST Sheet 8 in WiSe 19/20



https://moodle.uni-wuppertal.de/course/view.php?id=18653

## 1. Temporal gauge

- a) Write a routine that transforms an arbitrary 2d U(1) gauge configuration  $U_{\mu}(\vec{n})$  into a new gauge configuration  $U'_{\mu}(\vec{n})$  that is in the temporal gauge. The temporal gauge is the gauge where all gauge links in the temporal direction have the value 1 except for the links that start out from one time slice.
- b) Repeat the simulation of the theory from exercise sheet 7 task 1b) and apply the routine you have written in a) before measuring your observables. Verify that the distribution of your observables are unchanged by the transformation.

## **2.** Configuration with topological charge Q = 1

In the lecture you have seen how to construct a gauge configuration that has  $Q = N_s$  where  $N_s$  is the spatial extend of the lattice and

$$Q = \frac{1}{2\pi} \Im \mathfrak{m} \left[ \sum_{\vec{n} \in \Lambda} \log P_{xt}(\vec{n}) \right]. \tag{1}$$

a) Construct a gauge configuration that has Q = 1.

*Hint:* If you work in the temporal gauge, use the fact that in that gauge the temporal links originating from one time slice need not to be 1.

- b) Implement a routine that constructs this gauge configuration. Verify numerical it has Q = 1.
- c) Multiply your Q = 1 configuration link by link to a arbitrary configuration. Observe how Q changes.