Cryptanalysis

Discrete Log Based Systems

John Manferdelli JohnManferdelli@hotmail.com

© 2004-2020, John L. Manferdelli.

This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability for any purpose. This material is not guaranteed to be error free and is intended for instructional use only.

HMAC's concluded

- HMAC(K, text)= H((K⊕opad)||H((K⊕ipad)||text)))
- H is a cryptographic hash like SHA-256
- ipad, the inner pad: the byte 0x36 repeated B times where B is key size
- opad, the outer pad: the byte 0x5c repeated B times
- Verification requires knowledge of K.

Discrete log based public key systems

Discrete Log

- If b= a^x, then L_a(b)=x. L_a(y) is the discrete log function.
- If $g = b^x$, then $L_a(g) = xL_a(b)$. $L_a(b_1b_2) = L_a(b_1) + L_a(b_2)$
- Discrete Log Problem (DLP): Given p, prime, a: <a>=F_p*. B (mod p), a, unknown, find L_a(b).
- Computational Diffie Hellman Problem (CDHP): Given p, prime, $< a >= F_p^*$. $a^a \pmod{p}$, $a^b \pmod{p}$, find $a^{ab} \pmod{p}$.
- Theorem: CDHP \leq_P DLP. If the factorization of p-1 is known and f(p-1) is $O((\ln(p))^c)$ smooth then DLP and CDHP are equivalent.
- Conclusion: Exponentiation is a one-way trap-door function.

El Gamal cryptosystem

- Alice, the private keyholder, picks a large prime, p, where p-1 also has large prime divisors (say, p= 2rq+1) and a generator, g, for F_p^* . $<g>= F_p^*$. Alice also picks a random number, a (secret), and computes $A=g^a$ (mod p). Alice's public key is <A, g, p>.
- To send a message, m, Bob picks a random b (his secret) and computes B= gb (mod p). Bob transmits (B, mAb)= (B, C).
- Alice decodes the message by computing CB^{-a}=m.
- Without knowing a, an adversary has to solve the Computational Diffie Hellman Problem to get m.
- Note: b must be random and never reused!

El Gamal Example

- Alice chooses
 - p=919. g=7.
 - a=111, A= 7¹¹¹= 461 (mod 919).
 - Alice's Public key is <919, 7, 461>
- Bob wants to send m=45, picks b= 29.
 - $-B=7^{29}=788 \pmod{919}$, $461^{29}=902 \pmod{919}$,
 - $C= (45)(902) = 154 \pmod{919}$.
 - Bob transmits (788, 154).
- Alice computes (788)⁻¹¹¹ = 902⁻¹ (mod 919).
 - $(54)(902)+(-53)(919)=1.54=902^{-1} \pmod{919}$
 - Calculates m= (154) (54)=45 (mod 919).

El Gamal Signature

- $\langle g \rangle = \mathbb{Z}_q^*$. A picks a random as in encryption.
- Signing: Signer picks k: 1≤k≤p-2 with (k, p-1)= 1 and publishes g^k. k is secret.
- $Sig_{K}(M,k)=(t,d)$
 - $t = g^k \pmod{p}$
 - $d=(M-gt)k^{-1} \pmod{p-1}$
- $Ver_K(M,t,d)$ iff $g^{kt} t^d = g^M \pmod{p}$
- Notes: It's important that M is a hash otherwise there is an existential forgery attack. It's important that k be different for every message otherwise adversary can solve for key.

Timing

- Finding g takes about $O(lg(p)^3)$ operations, so does primality testing and raising g to the a power mod p.
- Encryption is also $O(lg(p)^3)$ and so is decryption.
- Note that key generation is cheap but for safety, p>w², where w is the "computational power" of the adversary.

Finding generators (Gauss)

• Find a generator, g, for F_p^* , $n=(p-1)=p_1^{e1}p_2^{e2}...p_k^{ek}$.

```
while () {
          choose a random g∈G
          for(i=1; i<=k; k++) {
               b= g<sup>n/pi</sup>
               if (b==1)
               break;
               }
               if (i>k)
               return g
}
```

• G has $\phi(n)$ generators. Using the lower bound for $\phi(n)$ the probability that g in line 2 is a generator is at least $1/(6 \ln \ln n)$

Attack on reused nonce

- Suppose Bob reuses b for two different messages m₁ and m₂.
- An adversary, Eve, can see $\langle B, C_1 \rangle$ and $\langle B, C_2 \rangle$ where $C_i = Bm_i$ (mod p).
- Suppose Eve discovers m₁.
- She can compute $m_2 = m_1 C_2 C_1^{-1}$ (mod p).
- Don't reuse b's!

DSA

Alice

- -2^{159} <q< 2^{160} , $2^{511+64t}$ <p< $2^{512+64t}$, $1 \le t \le 8$, $q \mid p-1$
- Select primitive root x (mod p); compute: $g=x^{(p-1)/q}$ (mod p)
- Picks a random, 1cacq-1. A= g^a (mod p)
- Public Key: (p, q, g, A). Private Key: a.
- Signature Generation
 - Pick random k, r= (g^k (mod p)) (mod q). Note: k must be different for each signature.
 - $s= k^{-1}(h(M)+ar) \pmod{q}$. Signature is (r,s)
- Verification
 - $u = s^{-1}h(x) \pmod{q}, v = (rs^{-1}) \pmod{q}$
 - Is $g^u A^v = r \pmod{p}$?
- Advantages over straight El Gamal
 - Verification is more efficient (2 exponentiations rather than 3)
 - Exponent is 160 bits not 768

Baby Step Giant Step --- Shanks

- g^x=y (mod p).
- m ~ √p.
- Compute g^{mj} , $0 \le j < m$.
- Sort (j, g^{mj}) by second coordinate.
- Pick i at random, compute yg-i (mod p).
- If there is a match in the tables yg⁻ⁱ= g^{mj} (mod p).
- x= mj+i is the discrete log.

Baby Step Giant Step Example

- p=193. $\lfloor \sqrt{(p)} \rfloor$ =13. m= 14. a= 5. b=41.
- $2 \times 193 + (-77) \times 5 = 1$, $a^{-1} = 116$. $a^{-14} = 189 \pmod{193}$.

j	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a ^j	5	25	125	46	37	185	153	186	158	18	90	64	127	56
ba ^{-mj}	26	77	78	74	90	26	89	30	73	94	10	153	160	132

- So ba^{-(14x5)}= 90 = a^{11} (mod 193).
- Thus b= $a^{14x5+11}$ = a^{81} (mod 193).
- $L_5(41) = 193$.

Discrete log Pollard r

 $\bullet \quad \chi_{i+1} = f(\chi_i)$ - $f(x_i) = bx_i$, if $x_i \in S_1$. - $f(x_i) = x_i^2$, if $x_i \in S_2$. - $f(x_i) = ax_i$, if $x_i \in S_3$. • $x_i = a^{a[i]}b^{b[i]}$. - a[i] = a[i], if $x_i \in S_1$. - a[i] = 2a[i], if $x_i \in S_2$. - a[i] = a[i] + 1, if $x_i \in S_3$. - b[i] = b[i] + 1, if $x_i \in S_1$. - b[i] = 2b[i], if $x_i \in S_2$. - b[i] = b[i], if $x_i \in S_3$. • $x_{2i} = x_i \rightarrow a_{2i} - a_i = L_a(b)(b_{2i} - b_i)$

Pollard ρ example

• p=229, n=191, b=228, a=2. L₂(228)=110

i	$\mathbf{x_i}$	a _i	b _i
1	228	0	1
2	279	0	2
3	92	0	4
4	184	1	4
5	205	1	5
6	14	1	6
7	28	2	6
8	256	2	7
9	152	2	8
10	304	3	8
11	372	3	9
12	121	6	18
13	12	6	19
14	144	12	38

i	X _{2i}	a _{2i}	b _{2i}
1	279	0	2
2	184	1	4
3	14	1	6
4	256	2	7
5	304	3	8
6	121	6	38
7	144	12	152
8	235	48	154
9	72	48	118
10	14	96	119
11	256	97	120
12	304	98	51
13	121	5	104
14	144	10	163

• $x_{14} = x_{28}$, $(b_{14} - b_{28}) = 125 \pmod{191}$, $L_2(228) = 125^{-1} (a_{28} - a_{14}) = 110$.

Pohlig-Hellman

- $p-1 = \prod_{i} q_i^{r[i]}$.
- Solve $a^x = y \pmod{p}$ for x (mod $q_i^{r[i]}$) and use Chinese Remainder Theorem.
- $x = x_0 + x_1 q + x_2 q^2 + ... + x^{r[i]-1} q^{r[i]-1}$.
- $x (p-1)/q = x_0(p-1)/q + (p-1)(...)$
- So $b^{(p-1)/q} = a^{x[0](p-1)/q}$. Solve for x_0 .
- The put $g=ba^{-x[0]}$ and solve $g^{(p-1)/(q \times q)} = a^{x[1](p-1)/q}$.
- This costs $O(\sum_{i=1}^r e_i(\lg(n)+ \sqrt{q_i}))$.

Pohlig-Hellman example

- p=251. a= 71, b=210, $a = F_{251}^*$. n=250= 2 x 5³.
- $L_{71}(210)=1 \pmod{2}$.
- $x = x_0 + x_1 + x_2 + x_2 = x_0 + x_1 + x_2 = x_0 + x_1 = x_0 + x_2 = x_0 + x_1 = x_0 + x_2 = x_0 = x_0 + x_1 = x_0 = x_0 + x_1 = x_0 = x_0$
- So $a^{n/5} = 71^{20}$. $b^{n/5} = 210^{20} = 149$.
 - $x_0 = L_{20}(149) = 2.$
 - $x_1 = 4$
 - $x_2 = 2$
- $x= 2+ 4x5 + 2x25 = 72 \pmod{125}$
- Applying CRT: L₇₁(210)= 197.

Index Calculus

- $g^x=y \pmod{p}$. $B=(p_1, p_2, ..., p_k)$.
- Precompute
 - $g_{j}^{x} = p_{1}^{a} p_{2}^{a} \dots p_{k}^{a}$
 - $x_j = a_{1j} \log_g (p_1) + a_{2j} \log_g (p_2) + ... + a_{kj} \log_g (p_k)$
 - If you get enough of these, you can solve for the log_g(p_i)
- Solve
 - Pick s at random and compute y $g^s = p_1^c p_2^c \dots p_k^c$ then
 - $\log_g(y)$ +s = $c_1\log_g(p_1) + c_2\log_g(p_2) + ... + c_k\log_g(p_k)$
- This takes O(e (1+ln(p)ln(ln(p))) time.
- LaMacchia and Odlyzko used Gaussian integer index calculus variant to attack discrete log.

Index Calculus Example

- p=229. a=6. $\langle a \rangle = F_{229}^*$. n=228. b=13. S={2,3,5,7,11}.
- Step 1
 - 1. 6^{100} (mod 229)= 180= $2^2 \times 3^2 \times 5^1 \times 7^0 \times 11^0$.
 - 2. 6^{18} (mod 229)= 176= $2^4 \times 3^0 \times 5^0 \times 7^0 \times 11^1$.
 - 3. 6^{12} (mod 229)= $165= 2^0 \times 3^1 \times 5^1 \times 7^0 \times 11^1$.
 - 4. 6^{62} (mod 229)= 154= $2^1 \times 3^0 \times 5^0 \times 7^1 \times 11^1$.
 - 5. 6^{143} (mod 229)= 198= $2^1 \times 3^2 \times 5^0 \times 7^0 \times 11^1$.
 - 6. 6^{206} (mod 229)= 210= $2^1 \times 3^1 \times 5^1 \times 7^1 \times 11^0$.
- Taking L_a() of both sides, we get:
 - 1. $100= 2 L_a(2)+2L_a(3)+L_a(5) \pmod{228}$
 - 2. $18 = 4L_a(2) + L_a(11) \pmod{228}$
 - 3. $12 = L_a(3) + L_a(5) + L_a(11) \pmod{228}$
 - 4. $62 = L_a(2) + L_a(7) + L_a(11) \pmod{228}$
 - 5. $143=L_a(2)+2L_a(3)+L_a(11) \pmod{228}$
 - 6. $206 = L_a(2) + L_a(3) + L_a(5) + L_a(7) \pmod{228}$

Index Calculus example - continued

Review

- p=229. a=6. <a>= F₂₂₉*. n=228. Solving, we got:
- L_a(2)= 21 (mod 228)
- L_a(3)= 208 (mod 228)
- L_a(5) = 98 (mod 228)
- L_a(7)= 107 (mod 228)
- L_a(11)= 162 (mod 228)

Step 2:

- Recall b=13. Pick k=77
- 13 x 6⁷⁷= 147 = 3 x 7² (mod 229)
- L₆(13)= (L₆(3)+2L₆(7)-77)= 117 (mod 228)

Diffie Hellman key exchange

Alice

A1: s= min(p size), $N_a in \{0, ... 2^{256}-1\}$ s, N_a $(p,q,g), X=g^x,$ $Auth_B$ $x in \{0, ... 2^{256}-1\}$ B1: Choose (p,q,g), $x in \{0, ... 2^{256}-1\}$

A2: Check (p,q,g) X,
Auth_B, pick y in
$$\{0,...q-1\}$$

$$K = X^y$$

B2: Check Y, Auth_A

$$K = Y^x$$

DH key exchange example

- p=3547, g=2.
- Alice: a= 7.
- Bob: b=17.
- $A \rightarrow B_1$: $A=128 (=2^7)$, $Sign_A(SHA-2(128 | | r_1))$
- $B \rightarrow A_1$: B=3380(=2¹⁷), Sign_B(SHA-2(3380 | | r_2))
- $K = 128^{17} = 3380^7 = 362$.

Access Control: authentication and authorization

- Authentication is process of identifying a security principal. Here are some ways:
 - Login/password or smart card/pin (user)
 - Cryptographic Hash (program)
 - Ability to decrypt (channel)

Authentication

- When logging on to a computer you enter
 - user name and
 - password
- The first step is called identification. You announce who you are.
- The second step is called authentication. You prove that you are who you claim to be.
- To distinguish this type of 'authentication' from other interpretations, we may refer specifically to entity authentication: The process of verifying a claimed identity.

Authentication

```
Login: jlm
Password: ******
Welcome John Manferdelli
>
```

Problems with Passwords

- Authentication by password is widely accepted and not too difficult to implement.
- Managing password security can be quite expensive; obtaining a valid password is a common way of gaining unauthorised access to a computer system.
- Typical issues
 - how to get the password to the user,
 - forgotten passwords,
 - password guessing,
 - password spoofing,
 - compromise of the password file.

Guessing Passwords

- Exhaustive search (brute force): Try all possible combinations of valid symbols up to a certain length.
- Intelligent search: search through a restricted name space, e.g. passwords that are somehow associated with a user like name, names of friends and relatives, car brand, car registration number, phone number,..., or try passwords that are generally popular.
- Typical example for the second approach: dictionary attack trying all passwords from an on-line dictionary.
- You cannot prevent an attacker from accidentally guessing a valid password, but you can try to reduce the probability of a password compromise.

Password Salting

- To slow down dictionary attacks, a salt can be appended to the password before encryption and stored with the encrypted password.
 - If two users have the same password, they will now have different entries in the file of encrypted passwords.
 - Example: Unix uses a 12 bit salt.

Access Control Matrix

Capabilities:

- access rights are stored with the subject
- rows of the access control matrix
- Access Control Lists (ACLs)
 - access rights are stored with the object.
 - columns of the access control matrix.

	bill.doc	edit.exe	fun.com
Alice	-	{exec}	{exec,read}
Bob	{read,write}	{exec}	{exec,read,write}

Digital signatures

Slide from Dieter Gollmann

Digital Signatures

- A has a public verification key and a private signature key (\rightarrow public key cryptography).
- A uses her private key to compute her signature on document m.
- B uses a public verification key to check the signature on a document m he receives.
- This provides non-repudiation.
- Signature algorithm= hash+padding+private key operation

Bleichenbacher Attack on PKCS1

- Chosen-ciphertext attack.
- RSA PKCS #1 v1.5 : c = (00 || 02 || r || 0 || m)^e mod n
- Attacker can test if 16 MSBs of plaintext = '02'.
- Attack: to decrypt a given ciphertext C do:
 - Pick $r \in Z_n$.
 - Compute $C' = r^e \cdot C = (r \cdot PKCS1(M))^e$.
 - Send C' to oracle and use response.

Side-Channel Attacks

- Some attack vectors ...
 - Fault Attacks
 - Timing Attacks
 - Cache Attacks
 - Power Analysis
 - Electromagnetic Emissions
 - Acoustic Emissions

End

Berlekamp factorization

```
• f(x) = \prod_{i=1}^{t} f_i(x) over F_p, deg(f(x)) = n. f_i(x) irreducible.
                  F=\{f(x)\};
                   for(i=1; i<n;i++)
                        x^{iq} = \sum_{i=0}^{n-1} q_{ii} x^{j} \pmod{f(x)}, q_{ij} eF_{p}.
                   Find basis \langle v_1, ..., v_t \rangle of null space of (Q-I_n);
                  // w = w_0, ..., w_{n-1}. w(x) = w_0 + w_1 x + ... + w_{n-1} x^{n-1}
                   for(i=1; i \triangleleft t;i++) {
                         for (h(x) \varepsilon F, deg(h) > 1;) 
                               Compute (h(x), v_i(x)-a), a \varepsilon F_p;
                               Replace h(x) in F with these;
                   return (F);
    O(n^3+tpn^2), t= # irreducible factors. Can be reduced to O(n^3+t \lg(p)n^2).
```

Berlekamp factorization example

Factor x⁷-1 over GF(2).

- Adding and solving get:
 - 1
 - $x^4 + x^2 + x = x(x^3 + x + 1)$
 - $x^6+x^5+x^3=x^3(x^3+x^2+1)$
 - Dividing into x^7-1 , we get: (x+1)