Linear Algebra Standards

How can	we solve systems of linear equations?
□ E1.	Systems as matrices. I can translate back and forth between a system of linear equations and the corresponding augmented matrix.
□ □ E2 .	Row reduction. I can put a matrix in reduced row echelon form.
□ □ E3.	Systems of linear equations. I can solve a system of linear equations.
□ □ E 4.	${f Homogeneous}$ systems. I can find a basis for the solution set of a homogeneous system of equations.
What is	a vector space?
□ □ V 1.	Vector space. I can determine if a set with given operations forms a vector space.
□ □ V2 .	Linear combinations . I can determine if a vector can be written as a linear combination of a given set of vectors.
□ □ V3.	Spanning sets. I can determine if a set of vectors spans a vector space.
□ □ V4.	Subspaces. I can determine if a subset of a vector space is a subspace or not.
What sti	ructure do vector spaces have?
□ □ S1.	Linear independence. I can determine if a set of vectors is linearly dependent or independent.
□ □ S2.	Basis verification. I can determine if a set of vectors is a basis of a vector space.
□ □ S3.	Basis construction. I can compute a basis for the subspace spanned by a given set of vectors.
□ □ S4.	Dimension . I can compute the dimension of a vector space.
How can	we understand linear maps algebraically?
□ □ A1.	Linear maps as matrices . I can write the matrix (with respect to the standard bases) corresponding to a linear transformation between Euclidean spaces.
$\square \square \mathbf{A2.}$	Linear map verification. I can determine if a map between vector spaces is linear or not.
□ □ A3.	$\textbf{Injectivity and surjectivity}. \ I \ can \ determine \ if \ a \ given \ linear \ map \ is \ injective \ and/or \ surjective.$
□ □ A4.	$\textbf{Kernel and Image}. \ I \ can \ compute \ the \ kernel \ and \ image \ of \ a \ linear \ map, \ including \ finding \ bases.$
What alg	gebraic structure do matrices have?
□ □ M1.	Matrix Multiplication. I can multiply matrices.
$\square \square \mathbf{M2.}$	Invertible Matrices. I can determine if a square matrix is invertible or not.
□ □ M3.	Matrix inverses. I can compute the inverse matrix of an invertible matrix.
How can	we understand linear maps geometrically?
□ □ G1 .	Determinants . I can compute the determinant of a square matrix.
□ G2 .	$\textbf{Eigenvalues}. \ I \ can \ find \ the \ eigenvalues \ of \ a \ square \ matrix, \ along \ with \ their \ algebraic \ multiplicities.$
□ □ G3.	Eigenvectors. I can find the eigenspace of a square matrix associated to a given eigenvalue.
□ G4.	Geometric multiplicity . I can compute the geometric multiplicity of an eigenvalue of a square matrix.