Markov Chains

Lucas Ondel

April 6, 2022

Contents

1	Weighted Finite State Machine					
2	Sen	niring	2			
3	Finite State Machine					
4	4 FSM operations					
	4.1	Renormalization	3			
	4.2	Union	3			
	4.3	Concatenation	3			
	1.1	Roversal	4			

1 Weighted Finite State Machine

2 Semiring

A semiring $K = (\mathbb{K}, +_K, \times_K, 0_K, 1_K)$ is a set \mathbb{K} equipped with a commutative binary operation $+_K$ (called "addition") with identity element 0_K and an associative binary operation \times_K (called "multiplication") with identity element 1_K that distributes over +.

Here are commonly used semirings:

name	\mathbb{K}	$x +_K y$	$x \times_K y$	0_K	1_K
log-semiring	\mathbb{R}	$\ln(e^x + e^y)$	x + y	$-\infty$	0
tropical-semiring	\mathbb{R}	$\max(x, y)$	x + y	$-\infty$	0
concat-semiring	sets of strings	alternation	concatenation	{}	{ "" }

3 Finite State Machine

We define a Finite State Machine (FSM) \mathcal{M} by the tuple $\mathcal{M} = (Q, \Sigma, K, L, \boldsymbol{\alpha}, \mathbf{T}, \boldsymbol{\omega}, \boldsymbol{\lambda})$ where:

- $Q = \{1, \dots, d\}$ is the set of states (with cardinality d) identified as integers
- Σ is the set of symbols
- K is FSM's weights semiring
- L is the FSM's labels semiring defined over a subset of Σ^*
- $\alpha \in K^d$ is a vector such that α_i is the initial weight of the state $i \in Q$
- $\mathbf{T} \in K^{d \times d}$ is a matrix such that T_{ij} is the transition weight from the state $i \in Q$ to the state $j \in Q$
- $\omega \in K^d$ is a vector such that ω_i is the final weight of the state $i \in Q$
- $\lambda \in L^d$ is a vector of symbol such that λ_i is the symbol of the state $i \in Q$

4 FSM operations

We describe here some operations over FSMs that have the same weights and labels semiring K and L. We write \mathcal{M}_m the FSM defined as

$$\mathcal{M}_m = (Q_m, \Sigma, K, L, \boldsymbol{\alpha}_m, \mathbf{T}_m, \boldsymbol{\omega}_m, \boldsymbol{\lambda}_m); \tag{1}$$

 \mathcal{M}' is defined similarly. Finally, we write Π_m (respectively Π') the set of all strings and their associated weight generated by the FSM \mathcal{M} (respectively \mathcal{M}').

4.1 Renormalization

4.2 Union

The union of two FSMs $\mathcal{M}' = \mathcal{M}_1 \cup \mathcal{M}_2$ gives a FSM such that $\Pi' = \Pi_1 \cup \Pi_2$. \mathcal{M}' can be obtained with the following construction:

$$Q' = \{1, \dots, d_1, d_1 + 1, \dots, d_1 + d_2\}$$
(2)

$$\alpha' = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} \tag{3}$$

$$\mathbf{T}' = \begin{bmatrix} \mathbf{T}_1 & \\ & \mathbf{T}_2 \end{bmatrix} \tag{4}$$

$$\omega' = \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix} \tag{5}$$

$$\lambda' = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \tag{6}$$

4.3 Concatenation

The concatenation of two FSMs $\mathcal{M}' = \operatorname{concat}(M_1, \mathcal{M}_2)$ gives a FSM such that $\Pi' = \{\pi_1 \pi_2 : \pi_1 \in \Pi_1, \pi_2 \in \Pi_2, \mathcal{M}'\}$ can be obtained with the following construction:

$$Q' = \{1, \dots, d_1, d_1 + 1, \dots, d_1 + d_2\}$$
(7)

$$\alpha' = \begin{bmatrix} \alpha_1 \\ 0_K \alpha_2 \end{bmatrix} \tag{8}$$

$$\mathbf{T}' = \begin{bmatrix} \mathbf{T}_1 & \\ & \mathbf{T}_2 \end{bmatrix} \tag{9}$$

$$\boldsymbol{\omega}' = \begin{bmatrix} 0_K \boldsymbol{\omega}_1 \\ \boldsymbol{\omega}_2 \end{bmatrix} \tag{10}$$

$$\lambda' = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \tag{11}$$

Reversal 4.4

The reversal (denoted \top) of a FSM \mathcal{M} yields a FSM $\mathcal{M}' = \mathcal{M}^{\top}$ such that $\Pi' = \{ \overleftarrow{\pi} : \pi \in \Pi \}$ where $\overleftarrow{\pi}$ is the reversed of π .

$$Q' = Q \tag{12}$$

$$\alpha' = \omega \tag{13}$$

$$\mathbf{T}' = \mathbf{T}^{\top} \tag{14}$$

$$\omega' = \alpha$$
 (15)
 $\lambda' = \lambda$ (16)

$$\lambda' = \lambda \tag{16}$$