

TEMA VII: DIAGONALIZACIÓN DE MATRICES

ÁLGEBRA

Grado en Ingeniería Informática. Escuela Superior de Ingeniería

> Alejandro Pérez Peña Departamento de Matemáticas

> > Curso 2015-2016

Contenido

- Autovalores y autovectores propios
- 2 Matriz diagonalizable. Diagonalización de una matriz
- 3 Diagonalización de matrices simétricas por semejanza ortogonal

Introducción

Definición

Diremos que dos matrices A y B de orden n, es decir, cuadradas son seme**jantes** cuando existe una matriz P de orden n regular, es decir, $|P| \neq 0$, tal que

$$B = P^{-1}AP$$

Introducción

utovalores y autovectores propios álculo de autovalores: polinomio característico álculo de autovectores

Definición

Diremos que dos matrices A y B de orden n, es decir, cuadradas son **semejantes** cuando existe una matriz P de orden n regular, es decir, $|P| \neq 0$, tal que

$$B = P^{-1}AP$$

Nuestro objetivo ahora es, dada una matriz cuadrada A encontrar, si es posible, una matriz diagonal, D que sea semejante a la matriz A. Es lo que se conoce como el **problema de la diagonalización**

Definición

Diremos que dos matrices A y B de orden n, es decir, cuadradas son seme**jantes** cuando existe una matriz P de orden n regular, es decir, $|P| \neq 0$, tal que

Introducción

$$\boldsymbol{B} = \boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P}$$

Definición

Se dice que una matriz A, matriz cuadrada de orden n es diagonalizable si es semejante a una matriz diagonal D. Es decir, si existen una matriz regular P v una matriz diagonal D tales que

$$A = P^{-1}DP$$

Toda matriz diagonal, D, es diagonalizable basta con considerar P = I.

Definición

Se dice que una matriz A, matriz cuadrada de orden n es diagonalizable si es semejante a una matriz diagonal D. Es decir, si existen una matriz regular P y una matriz diagonal D tales que

Introducción

$$A = P^{-1}DP$$

Toda matriz diagonal, D, es diagonalizable basta con considerar P = I.

Definición

Se dice que un endomorfismo $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ es diagonalizable si existe una base B_a de \mathbb{R}^n respecto a la cual al matriz asociada a f, $M(f; B_a; B_a)$, es una matriz diagonal.

Autovalores y autovectores propios

Matriz diagonalizable. Diagonalización de una matriz Diagonalización de matrices simétricas por semejanza ortogonal

Introducción

La preguntas que vamos a resolver en este tema son las siguentes:

- ¿Como saber si una matriz dada A es diagonalizable?
- ¿Como calcular las matrices P y D?

Autovalores y autovectores propios

Diagonalización de matrices simétricas por semejanza ortogonal Definición de autovalor y autovector

Definición

Sea f: $\mathbb{R}^n \longrightarrow \mathbb{R}^n$ un endomorfismo sobe el cuerpo de los números reales \mathbb{R} .:

1 Se dice que el escalar $\lambda \in \mathbb{R}$ es un valor propio o autovalor del **endomorfismo** f si existe un vector (matiz columna) no nulo, $\vec{v} \in \mathbb{R}^n$ tal que

$$f(\vec{\nu}) = \lambda \vec{\nu}$$

Dado un autovalor se dice que el vector v

no nulo es un autovector o **vector propio del endomorfismo** f cuando existe un escalar $\lambda \in \mathbb{R}$ tal que

$$f(\vec{\nu}) = \lambda \vec{\nu}$$

Autovalores y autovectores propios

Cálculo de autovalores: polinomio característico

Diagonalización de matrices simétricas por semejanza ortogonal Definición de autovalor y autovector

Definición

Sea f: $\mathbb{R}^n \longrightarrow \mathbb{R}^n$ un endomorfismo sobe el cuerpo de los números reales \mathbb{R} .:

• Se dice que el escalar $\lambda \in \mathbb{R}$ es un valor propio o autovalor del **endomorfismo** f si existe un vector (matiz columna) no nulo, $\vec{v} \in \mathbb{R}^n$ tal que

$$f(\vec{\nu}) = \lambda \vec{\nu}$$

② Dado un autovalor se dice que el vector v no nulo es un autovector o **vector propio del endomorfismo** f cuando existe un escalar $\lambda \in \mathbb{R}$ tal que

$$f(\vec{\nu}) = \lambda \vec{\nu}$$

Si A es la matriz asociada a f respecto de alguna base B de \mathbb{R}^n y \vec{v} es un autovector de f, también se dice que \vec{v} es un autovector de A. Lo mismo ocurre con los autovectores.

Diagonalización de matrices simétricas por semejanza ortogonal Definición de autovalor y autovector

Ejemplo

Consideremos la aplicación lineal $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ que a cada vector $(x_1, x_2) \in \mathbb{R}^2$ le hace corresponder el vector $f(x_1, x_2) = (y_1, y_2)$ dado por

$$\left(\begin{array}{c} y_1 \\ y_2 \end{array}\right) = \left(\begin{array}{cc} 1 & -4 \\ 2 & 7 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

Entonces 5 es un autovalor de f y ademas $\vec{v} = (1, -1)$ es un autovector asociado al autovalor 5, es decir

$$\left(\begin{array}{cc} 1 & -4 \\ 2 & 7 \end{array}\right) \left(\begin{array}{c} 1 \\ -1 \end{array}\right) = 5 \left(\begin{array}{c} 1 \\ -1 \end{array}\right)$$

esto es f(1,-1) = 5(1,-1)

Propiedades de los autovalores y autovectores

Propiedades

Sea $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ un endomorfismo:

- A todo autovector $\vec{v} \in \mathbb{R}^n$, $\vec{v} \neq \vec{0}$, del endomorfismo f le corresponde un <u>único autovalor</u> $\lambda \in \mathbb{R}$ que se llama el **autovalor asociado** a \vec{v} .
- El conjunto formado por todos los autovectores correspondientes al autovalor $\lambda \in \mathbb{R}$ se representa por $V(\lambda)$ y es un subespacio vectorial de \mathbb{R}^n , que se llama el **subespacio propio asociado al autovalor** λ .

$$V_{\lambda} = \{ \vec{\nu} \in \mathbb{R}^n \, | \, f(\vec{\nu}) = \lambda \vec{\nu} \}$$

Diagonalización de matrices simétricas por semejanza ortogonal Definición de autovalor y autovector

Propiedades

Sea $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ un endomorfismo:

• Si $\lambda_1, \lambda_2, \dots, \lambda_n$ son autovalores del endomorfismo f distintos entre si y tomamos los autovectores

$$\vec{v}_1 \in V(\lambda_1), \vec{v}_2 \in V(\lambda_2), \dots, \vec{v}_p \in V(\lambda_p)$$

se verifica que los vectores $(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p)$ son linealmente independientes. Es decir, si juntamos autovectores asociados a autovalores distintos, obtenemos un conjunto de autovectores linealmente independientes.

Veamos en este apartado como calcular los autovalores y autovectores de un endomorfismo, partiendo de la matriz A asociada al endomorfismo:

Cálculo de Autovalores

Observar que si λ es un autovalor del endomorfismo f ocurre que $f(\vec{v}) = \lambda \vec{v}$. Si llamamos X a la matriz columna de las coordenadas del vector \vec{v} en la base dada del endomorfismo y A a la matriz del endomorfismo en dicha base entonces podemos escribir que

$$AX = \lambda X \Rightarrow AX = \lambda IX \Rightarrow (A - \lambda I)X = \mathbf{0}$$

Cálculo de Autovalores

Observar que si λ es un autovalor del endomorfismo f ocurre que $f(\vec{v}) = \lambda \vec{v}$. Si llamamos X a la matriz columna de las coordenadas del vector \vec{v} en la base dada del endomorfismo y A a la matriz del endomorfismo en dicha base entonces podemos escribir que

$$AX = \lambda X \Rightarrow AX = \lambda IX \Rightarrow (A - \lambda I)X = \mathbf{0}$$

por tanto λ es un autovalor si y sólo si es solución del sistema lineal homogéneo

$$(A - \lambda I)X = \mathbf{0}$$

distinta de la trivial ($X \neq 0$).

Cálculo de Autovalores

Observar que si λ es un autovalor del endomorfismo f ocurre que $f(\vec{v}) = \lambda \vec{v}$. Si llamamos X a la matriz columna de las coordenadas del vector \vec{v} en la base dada del endomorfismo y A a la matriz del endomorfismo en dicha base entonces podemos escribir que

$$AX = \lambda X \, \Rightarrow \, AX = \lambda IX \, \Rightarrow \, (A - \lambda I)X = \mathbf{0}$$

por tanto λ es un autovalor si y sólo si es solución del sistema lineal homogéneo

$$(A - \lambda I)X = \mathbf{0}$$

distinta de la trivial ($X \neq 0$). Esto ocurre cuando el sistema de n ecuaciones con n incógnitas v_1, v_2, \dots, v_n es compatible indeterminado por tanto, según el teorema de Rouche-Frobenius tenemos

$$\det(A - \lambda I) = \mathbf{0}$$

Introducción Autovalores y autovectores propios Cálculo de autovalores: polinomio característico Cálculo de autovectores

Cálculo de autovalores: polinomio característico

Definición (Polinomio Característico)

A la expresión

$$p_A(\lambda) = \det(A - \lambda I) = |A - \lambda I|$$

se le llama **polinomio o ecuación característico** de la matriz A. Los autovalores de f serán precisamente las raíces de dicho polinomio. En particular se tiene que el número máximo de autovalores de A es el orden de la matriz $\mathfrak n$

Ejemplo

Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ el endomorfismo que tiene como matriz asociada respecto a la base canónica a la matriz

$$A = \left(\begin{array}{rrr} 1 & 2 & 0 \\ -1 & 3 & 1 \\ 0 & 1 & 1 \end{array}\right)$$

El polinomio característico de A es

Diagonalización de matrices simétricas por semejanza ortogonal

$$p_A(\lambda) = \left| \begin{array}{ccc} 1 - \lambda & 2 & 0 \\ -1 & 3 - \lambda & 1 \\ 0 & 1 & 1 - \lambda \end{array} \right| (1 - \lambda)[(1 - \lambda)(3 - \lambda) + 1] = (1 - \lambda)(\lambda - 2)^2 = 0$$

Por tanto los autovalores de f serán: $\lambda_1 = 1$, $\lambda_2 = 2$.

Introducción
Autovalores y autovectores propios
Cálculo de autovalores: polinomio característico
Cálculo de autovectores

Multiplicidad algebraica

Multiplicidad algebraica

Si λ_i es una raíz múltiple de la ecuación característica, con orden de multiplicidad k_i , se dice que λ_i es autovalor múltiple de f o de la matriz A y que su multiplicidad algebraica, m_λ es k_i . En el caso de que $k_i=1$ diremos que el autovalor λ_i es simple.

Introducción Autovalores y autovectores propios Cálculo de autovalores: polinomio característico

Multiplicidad algebraica

Diagonalización de matrices simétricas por semejanza ortogonal

Multiplicidad algebraica

Si λ_i es una raíz múltiple de la ecuación característica, con orden de multiplicidad k_i , se dice que λ_i es autovalor múltiple de f o de la matriz A y que su multiplicidad algebraica, m_λ es k_i . En el caso de que $k_i=1$ diremos que el autovalor λ_i es simple.

Ejemplo

En el ejemplo anterior tenemos que $\lambda_1=1$ es un autovalor simple, es decir de multiplicidad algebraica 1 y $\lambda_2=2$ es un autovalor de multiplicidad algebraica 2.

Multiplicidad algebraica

Si λ_i es una raíz múltiple de la ecuación característica, con orden de multiplicidad k_i , se dice que λ_i es autovalor múltiple de f o de la matriz A y que su multiplicidad algebraica, m_{λ} es k_i . En el caso de que $k_i = 1$ diremos que el autovalor λ_i es simple.

Teorema

Si A es una matriz cuadrada de orden n y $\lambda_1, \lambda_2, \ldots, \lambda_n$ son sus autovalores, entonces:

$$2 \operatorname{Tr}(A) = \lambda_1 + \lambda_2 + \cdots + \lambda_n$$

Cálculo de autovectores

Diagonalización de matrices simétricas por semejanza ortogonal

Sea

$$A = \left(\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{array} \right)$$

la matriz asociada al endomorfismo f en una base dada, sea λ_i es un autovalor de f, y sea

$$V(\lambda_i) = \{ \vec{v} \in \mathbb{R}^n \, | \, f(\vec{v}) = \lambda_i \vec{v} \}$$

el subespacio vectorial asociado formado por todos los autovectores asociados al autovalor λ_i

Diagonalización de matrices simétricas por semejanza ortogonal

Sea $\vec{v} \in \mathbb{R}^n$ un autovector de λ_i y sea X la matriz columna de sus coordenadas en la basa dada, entonces $f(\vec{v}) = \lambda_i \vec{v} v$

$$AX = \lambda_i X \, \Rightarrow \, AX = \lambda_i \mathrm{I}X \, \Rightarrow \, (A - \lambda_i \mathrm{I})X = 0$$

$$\begin{pmatrix} a_{11} - \lambda_i & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda_i & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda_i \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Cálculo de autovectores

Sea $\vec{v} \in \mathbb{R}^n$ un autovector de λ_i y sea X la matriz columna de sus coordenadas en la basa dada, entonces $f(\vec{v}) = \lambda_i \vec{v}$ y

$$AX = \lambda_i X \Rightarrow AX = \lambda_i IX \Rightarrow (A - \lambda_i I)X = \mathbf{0}$$

$$\begin{pmatrix} a_{11}-\lambda_i & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22}-\lambda_i & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn}-\lambda_i \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$(a_{11}-\lambda)x_1+ & a_{12}x_2+ & \dots + & a_{1n}x_n & = & 0 \\ a_{21}x_1+ & (a_{22}-\lambda)x_2+ & \dots + & a_{2n}x_n & = & 0 \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1}x_1+ & a_{n2}x_2+ & \dots + & (a_{nn}-\lambda)x_n & = & 0 \end{pmatrix}$$

que son las ecuaciones implícitas de $V(\lambda_i)$

Cálculo de autovectores

Diagonalización de matrices simétricas por semejanza ortogonal

Cálculo de Autovectores

Esto significa que las coordenadas del autovector v son solución del sistema homogéneo anterior de n ecuaciones con n incógnitas. Como $|A - \lambda I| = 0$, el sistema homogéneo admite soluciones distintas de la trivial y estas soluciones describen un subespacio vectorial de \mathbb{R}^n que es precisamente V_{λ} , es decir, el subespacio propio correspondiente al valor propio λ .

$$V_{\lambda} = \{ \vec{v} \in \mathbb{R}^n \, | \, f(\vec{v}) = \lambda_i \vec{v} \}$$

Cálculo de autovectores

Ejemplo

En el ejemplo anterior tendremos dos subespacios propios, V₁ y V₂, vamos a calcularlos:

$$x \in V_1 \Longleftrightarrow (A-I)X = 0 \Longleftrightarrow \left(\begin{array}{ccc} 1-1 & 2 & 0 \\ -1 & 3-1 & 1 \\ 0 & 1 & 1-1 \end{array} \right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right)$$

cuyas soluciones son $x_1 = x_3$, $x_2 = 0$ y de ahí que V_1 sea de la forma

$$\boxed{V_1 = \{(\alpha,0,\alpha): \, \alpha \in \mathbb{R}\}}$$

o lo que es lo mismo el subespacio engendrado por $\{(1,0,1)\}$.

Diagonalización de matrices simétricas por semejanza ortogonal

Ejemplo

$$x \in V_2 \Longleftrightarrow (A-2I)X = 0 \Longleftrightarrow \left(\begin{array}{ccc} 1-2 & 2 & 0 \\ -1 & 3-2 & 1 \\ 0 & 1 & 1-2 \end{array} \right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right)$$

cuyas soluciones son $x_1 = 2x_2$, $x_3 = x_2$ y de ahí que V_2 sea de la forma

$$\boxed{V_2 = \{(2\alpha,\alpha,\alpha):\,\alpha \in \mathbb{R}\}}$$

o lo que es lo mismo el subespacio engendrado por $\{(2, 1, 1)\}$.

Multiplicidad geométrica

Definición (Multiplicidad geométrica)

Diagonalización de matrices simétricas por semejanza ortogonal

Si λ es un autovalor de una matriz A asociada al endomorfismo f, se llama multiplicidad geométrica de λ , denotada por d_{λ} , a la dimensión del subespacio V_{λ} , es decir, la dimensión del subespacio propio asociado al valor propio λ.

$$d_{\lambda} = \dim(V(\lambda)) = n - rg(A - \lambda I)$$

Multiplicidad geométrica

Definición (Multiplicidad geométrica)

Diagonalización de matrices simétricas por semejanza ortogonal

Si λ es un autovalor de una matriz A asociada al endomorfismo f, se llama multiplicidad geométrica de λ , denotada por d_{λ} , a la dimensión del subespacio V_{λ} , es decir, la dimensión del subespacio propio asociado al valor propio

$$d_{\lambda} = \dim(V(\lambda)) = n - rg(A - \lambda I)$$

Teorema

Puede probarse que si λ es un autovalor de una matriz A asociada al endomorfismo f, se verifica que

$$1 \leqslant d_{\lambda} \leqslant m_{\lambda}$$

es decir, la multiplicidad geométrica es un número comprendido entre uno y la multiplicidad algebraica.

Ejemplo

Consideremos la matriz

$$A = \left(\begin{array}{ccc} 2 & 2 & 3 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{array}\right)$$

su polinomio característico es

$$|A - \lambda I| = (2 - \lambda)^3$$

luego A tiene un único autovalor, $\lambda_1 = 2$, de multiplicidad algebraica 3. Veamos cuál es su multiplicidad geométrica es

$$d_{\lambda_1} = n - rg(A - \lambda I) = 3 - rg\begin{pmatrix} 0 & 2 & 3 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} = 3 - 2 = 1$$

Definición

Diremos que dos matrices A y B de orden n, es decir, cuadradas son **semejantes** cuando existe una matriz P de orden n regular, es decir, $|P| \neq 0$, tal que

$$B = P^{-1}AP$$

Definición

Diremos que dos matrices A y B de orden n, es decir, cuadradas son **semejantes** cuando existe una matriz P de orden n regular, es decir, $|P| \neq 0$, tal que

$$B = P^{-1}AP$$

Con ello, podemos afirma que si dos matrices son semejantes, entonces tienen el mismo polinomio característico.

Definición

Diremos que dos matrices A y B de orden n, es decir, cuadradas son **semejantes** cuando existe una matriz P de orden n regular, es decir, $|P| \neq 0$, tal que

$$B = P^{-1}AP$$

Con ello, podemos afirma que si dos matrices son semejantes, entonces tienen el mismo polinomio característico.

Definición

Se dice que una matriz A, matriz cuadrada de orden n es **diagonalizable** si es semejante a una matriz diagonal D. Es decir, si existen una matriz regular P y una matriz diagonal D tales que

$$A = P^{-1}DP$$

Caractericemos las matrices diagonalizables a través de sus autovalores y autovectores

Condiciones de Diagonalización

Caractericemos las matrices diagonalizables a través de sus autovalores y autovectores

Condiciones de Diagonalización

Sea A una matriz cuadrada de orden n. Entonces dicha matriz es diagonalizable si y sólo si se verifican las dos siguientes condiciones:

• El polinomio característico $|A-\lambda I|=0$ tenga todas sus raíces reales. Por tanto si todos los autovalores de A son tienen de multiplicidad $m_{\lambda_1}, m_{\lambda_2}, \ldots, m_{\lambda_p}$ entonces

$$m_{\lambda_1} + m_{\lambda_2} + \ldots + m_{\lambda_p} = n$$

• La multiplicidad algebraica de cada autovalor λ , m_{λ} , coincide con la multiplicidad geométrica, d_{λ} , es decir

$$\mathfrak{m}_{\lambda_{\mathfrak{i}}}=d_{\lambda_{\mathfrak{i}}}\ \forall \mathfrak{i}\in\mathbb{R}$$

Ejemplo

Sea $A \in M_3$

$$A = \left(\begin{array}{rrr} 1 & 2 & 0 \\ -1 & 3 & 1 \\ 0 & 1 & 1 \end{array}\right)$$

entonces tenemos que:

$$p_{\lambda} = |A - \lambda I| = (1 - \lambda)(\lambda - 2)^2$$

1 $\lambda = 1, 2 \in \mathbb{R}$, es decir, los autovalores son todos reales.

$$\mathbf{2} \quad d_{\lambda_1} = n - rg(A - I) = 3 - rg\begin{pmatrix} 0 & 2 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix} = 1$$

$$d_{\lambda_2} = n - rg(A - 2I) = 3 - rg\begin{pmatrix} -1 & 2 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix} = 1$$

Entonces la matriz A no es diagonalizable.

Cálculo de P y D

Una vez establecidos los criterios de diagonalización ya estamos en condiciones de determinar P y D para que poder diagonalizar a la matriz A.

Una vez establecidos los criterios de diagonalización ya estamos en condiciones de determinar P y D para que poder diagonalizar a la matriz A. Sea A una matriz cuadrada de orden n y supongamos que es diagonalizable.

Esto significa que existe una matriz $P \in \mathcal{M}_n$, $|P| \neq 0$, tal que $P^{-1}AP = D$ siendo D una matriz diagonal de orden n:

$$\begin{pmatrix} \begin{smallmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{pmatrix}^{-1} \begin{pmatrix} \begin{smallmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} \begin{smallmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Una vez establecidos los criterios de diagonalización ya estamos en condiciones de determinar P y D para que poder diagonalizar a la matriz A. Sea A una matriz cuadrada de orden $\mathfrak n$ y supongamos que es diagonalizable. Esto significa que existe una matriz $P \in \mathcal M_{\mathfrak n}, |P| \neq 0$, tal que $P^{-1}AP = D$ siendo D una matriz diagonal de orden $\mathfrak n$:

$$\begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{pmatrix}^{-1} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \\ \vdots \\ \lambda$$

Sea A una matriz cuadrada de orden $\mathfrak n$ y supongamos que es diagonalizable. Esto significa que existe una matriz $P\in \mathcal M_{\mathfrak n}, |P|\neq 0$, tal que $P^{-1}AP=D$ siendo D una matriz diagonal de orden $\mathfrak n$:

$$\begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{pmatrix}^{-1} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ 0 \\ \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{pmatrix}$$

Igualando las columnas de la matriz resultante del producto del primer miembro con las del producto del segundo miembro obtenemos que:

$$\text{primera columna}: \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right) \left(\begin{array}{c} p_{11} \\ p_{21} \\ \vdots \\ p_{n1} \end{array} \right) = \lambda_1 \left(\begin{array}{c} p_{11} \\ p_{21} \\ \vdots \\ p_{n1} \end{array} \right)$$

$$\begin{aligned} & \text{primera columna}: \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} p_{11} \\ p_{21} \\ \vdots \\ p_{n1} \end{pmatrix} = \lambda_1 \begin{pmatrix} p_{11} \\ p_{21} \\ \vdots \\ p_{n1} \end{pmatrix} \\ & \text{segunda columna}: \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} p_{12} \\ p_{22} \\ \vdots \\ p_{n2} \end{pmatrix} = \lambda_2 \begin{pmatrix} p_{12} \\ p_{22} \\ \vdots \\ p_{n2} \end{pmatrix}$$

$$\begin{aligned} & \text{primera columna}: \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} p_{11} \\ p_{21} \\ \vdots \\ p_{n1} \end{pmatrix} = \lambda_1 \begin{pmatrix} p_{11} \\ p_{21} \\ \vdots \\ p_{n1} \end{pmatrix} \\ & \text{segunda columna}: \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} p_{12} \\ p_{22} \\ \vdots \\ p_{n2} \end{pmatrix} = \lambda_2 \begin{pmatrix} p_{12} \\ p_{22} \\ \vdots \\ p_{n2} \end{pmatrix} \\ & \text{n - esima columna}: \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} p_{1n} \\ p_{2n} \\ \vdots \\ p_{nn} \end{pmatrix} = \lambda_n \begin{pmatrix} p_{1n} \\ p_{2n} \\ \vdots \\ p_{nn} \end{pmatrix} \end{aligned}$$

$$\label{eq:n-esima} \text{n}-\text{esima columna}: \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right) \left(\begin{array}{c} p_{1n} \\ p_{2n} \\ \vdots \\ p_{nn} \end{array} \right) = \lambda_n \left(\begin{array}{c} p_{1n} \\ p_{2n} \\ \vdots \\ p_{nn} \end{array} \right)$$

A partir de aquí se deduce que $\lambda_1,\lambda_2,\dots,\lambda_n\in\mathbb{R}$ son autovalores de la matriz

A y que cada una de las columnas de la matriz P, $P_j = \begin{pmatrix} P_1 \\ p_{2j} \\ \vdots \\ p_{nj} \end{pmatrix}$, es un

autovector asociado al autovalor λ_j para todo $j=1,2,\ldots,n$.

A partir de aquí se deduce que $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R}$ son autovalores de la matriz

A y que cada una de las columnas de la matriz P, $P_j = \begin{pmatrix} r & r & r \\ p_{2j} & \vdots & \vdots \\ p_{nj} & \end{pmatrix}$, es un autovector asociado al autovalor λ_i para todo $j=1,2,\ldots,n$.

Eiemplo

Sea la matriz

$$A = \left(\begin{array}{ccc} 5 & 0 & -4 \\ 0 & 3 & 0 \\ 2 & 0 & -1 \end{array}\right)$$

Estudiar si A es diagonalizable. Y si lo es determinar las matrices P y D.

El problema de la diagonalización queda entonces estructurado de la siguiente forma:

Paso 1: Se calcula el polinomio característico $p(\lambda)$.

Paso 2: Descomponiendo el polinomio se calculan sus raíces. Si alguna de ellas es compleja, la matriz no será diagonalizable en \mathbb{R} . Tenemos de esta forma los autovalores y sus multiplicidades algebráicas.

Paso 3: Se calculan las multiplicidades geométricas de los autovalores $d_i = n - rg(A - \lambda_i I)$.

Paso 4: Se aplican los criterios de diagonalizabilidad. Si para algún \mathfrak{i} se tiene que $k_{\mathfrak{i}} \neq d_{\mathfrak{i}}$ entonces la matriz no es diagonalizable, y en caso contrario la matriz es diagonalizable y su matriz diagonal es la matriz cuya diagonal está formada por los autovalores repetidos cada uno según su multiplicidad algebraica.

Paso 5: Obtenemos unas bases de los subespacios propios V_{λ_i} , con lo que se determinan los autovectores de cada uno de los autovalores.

Paso 6: Las columnas de la matriz de paso P son las coordenadas de estos vectores propios y se cumple que $P^{-1}AP = D$.

El problema de la diagonalización queda entonces estructurado de la siguiente forma:

- **Paso 1:** Se calcula el polinomio característico $p(\lambda)$.
- **Paso 2:** Descomponiendo el polinomio se calculan sus raíces. Si alguna de ellas es compleja, la matriz no será diagonalizable en \mathbb{R} . Tenemos de esta forma los autovalores y sus multiplicidades algebráicas.
- **Paso 3:** Se calculan las multiplicidades geométricas de los autovalores d_i $n rg(A \lambda_i I)$.
- **Paso 4:** Se aplican los criterios de diagonalizabilidad. Si para algún \mathfrak{t} se tiene que $k_{\mathfrak{t}} \neq d_{\mathfrak{t}}$ entonces la matriz no es diagonalizable, y en caso contrario la matriz es diagonalizable y su matriz diagonal es la matriz cuya diagona está formada por los autovalores repetidos cada uno según su multiplicidad algebraica.
- **Paso 5:** Obtenemos unas bases de los subespacios propios V_{λ_i} , con lo que se determinan los autovectores de cada uno de los autovalores.
- **Paso 6:** Las columnas de la matriz de paso P son las coordenadas de estos vectores propios y se cumple que $P^{-1}AP = D$.

El problema de la diagonalización queda entonces estructurado de la siguiente forma:

- **Paso 1:** Se calcula el polinomio característico $p(\lambda)$.
- **Paso 2:** Descomponiendo el polinomio se calculan sus raíces. Si alguna de ellas es compleja, la matriz no será diagonalizable en \mathbb{R} . Tenemos de esta forma los autovalores y sus multiplicidades algebráicas.
- **Paso 3:** Se calculan las multiplicidades geométricas de los autovalores $d_i = n rq(A \lambda_i I)$.
- **Paso 4:** Se aplican los criterios de diagonalizabilidad. Si para algún \mathfrak{t} se tiene que $k_{\mathfrak{t}} \neq d_{\mathfrak{t}}$ entonces la matriz no es diagonalizable, y en caso contrario la matriz es diagonalizable y su matriz diagonal es la matriz cuya diagona está formada por los autovalores repetidos cada uno según su multiplicidad algebraica.
- **Paso 5:** Obtenemos unas bases de los subespacios propios V_{λ_i} , con lo que se determinan los autovectores de cada uno de los autovalores.
- **Paso 6:** Las columnas de la matriz de paso P son las coordenadas de estos vectores propios y se cumple que $P^{-1}AP = D$.

El problema de la diagonalización queda entonces estructurado de la siguiente forma:

Paso 1: Se calcula el polinomio característico $p(\lambda)$.

Paso 2: Descomponiendo el polinomio se calculan sus raíces. Si alguna de ellas es compleja, la matriz no será diagonalizable en \mathbb{R} . Tenemos de esta forma los autovalores y sus multiplicidades algebráicas.

Paso 3: Se calculan las multiplicidades geométricas de los autovalores $d_i = n - rq(A - \lambda_i I)$.

Paso 4: Se aplican los criterios de diagonalizabilidad. Si para algún i se tiene que $k_i \neq d_i$ entonces la matriz no es diagonalizable, y en caso contrario la matriz es diagonalizable y su matriz diagonal es la matriz cuya diagonal está formada por los autovalores repetidos cada uno según su multiplicidad algebraica.

Paso 5: Obtenemos unas bases de los subespacios propios V_{λ_i} , con lo que se determinan los autovectores de cada uno de los autovalores.

Paso 6: Las columnas de la matriz de paso P son las coordenadas de estos vectores propios y se cumple que $P^{-1}AP = D$.

El problema de la diagonalización queda entonces estructurado de la siguiente forma:

- **Paso 1:** Se calcula el polinomio característico $p(\lambda)$.
- **Paso 2:** Descomponiendo el polinomio se calculan sus raíces. Si alguna de ellas es compleja, la matriz no será diagonalizable en \mathbb{R} . Tenemos de esta forma los autovalores y sus multiplicidades algebráicas.
- **Paso 3:** Se calculan las multiplicidades geométricas de los autovalores $d_i = n rg(A \lambda_i I)$.
- **Paso 4:** Se aplican los criterios de diagonalizabilidad. Si para algún i se tiene que $k_i \neq d_i$ entonces la matriz no es diagonalizable, y en caso contrario la matriz es diagonalizable y su matriz diagonal es la matriz cuya diagonal está formada por los autovalores repetidos cada uno según su multiplicidad algebraica.
- **Paso 5:** Obtenemos unas bases de los subespacios propios V_{λ_i} , con lo que se determinan los autovectores de cada uno de los autovalores.
- **Paso 6:** Las columnas de la matriz de paso P son las coordenadas de estos vectores propios y se cumple que $P^{-1}AP = D$.

El problema de la diagonalización queda entonces estructurado de la siguiente forma:

- **Paso 1:** Se calcula el polinomio característico $p(\lambda)$.
- **Paso 2:** Descomponiendo el polinomio se calculan sus raíces. Si alguna de ellas es compleja, la matriz no será diagonalizable en \mathbb{R} . Tenemos de esta forma los autovalores y sus multiplicidades algebráicas.
- **Paso 3:** Se calculan las multiplicidades geométricas de los autovalores $d_i = n rg(A \lambda_i I)$.
- **Paso 4:** Se aplican los criterios de diagonalizabilidad. Si para algún i se tiene que $k_i \neq d_i$ entonces la matriz no es diagonalizable, y en caso contrario la matriz es diagonalizable y su matriz diagonal es la matriz cuya diagonal está formada por los autovalores repetidos cada uno según su multiplicidad algebraica.
- **Paso 5:** Obtenemos unas bases de los subespacios propios V_{λ_i} , con lo que se determinan los autovectores de cada uno de los autovalores.
- **Paso 6:** Las columnas de la matriz de paso P son las coordenadas de estos vectores propios y se cumple que $P^{-1}AP = D$.

Ahora una vez contestadas las dos preguntas iniciales, veamos en este apartado la importancia de trabajar con matrices ortogonales y abordaremos la diagonalización de matrices simétricas por semejanza ortogonal.

Ahora una vez contestadas las dos preguntas iniciales, veamos en este apartado la importancia de trabajar con matrices ortogonales y abordaremos la diagonalización de matrices simétricas por semejanza ortogonal.

Sea $A\in \mathcal{M}_n$ una matriz simétrica cuadrada de orden n cuyos elementos son números reales. Se verifica que:

- Todos los autovalores de A son números reales.
- ② Si $\lambda_1 \neq \lambda_2$ son dos autovalores distintos de A, se cumple que los subespacios propios $V(\lambda_1)$ y $V(\lambda_2)$ son ortogonales, es decir, si \mathbf{v}_1 es un autovector cualquiera asociado al autovalor λ_1 y \mathbf{v}_2 es un autovector cualquiera asociado al autovalor λ_2 , \mathbf{v}_1 y \mathbf{v}_2 son perpendiculares, por tanto, su producto escalar vale cero.

Definición (Matriz ortogonal)

Una matriz cuadrada cuyos elementos sean números reales se dice que es ortogonal cuando su inversa coincide con su traspuesta, es decir

$$P$$
 es ortogonal \iff $P^{-1} = P^{t}$

Definición (Matriz ortogonal)

Una matriz cuadrada cuyos elementos sean números reales **se dice que es ortogonal** cuando su inversa coincide con su traspuesta, es decir

$$P$$
 es ortogonal $\iff P^{-1} = P^{t}$

Propiedades

Si una matriz es ortogonal, su determinante vale 1 o -1, ya que

$$P^{-1}P = P^{t}P = I_{n} \Longrightarrow |P^{t}P| = |I_{n}| = 1 \Longrightarrow |P|^{2} = 1$$

2 Los vectores columna de una matriz ortogonal P son vectores unitarios y ortogonales. Análogamente para los vectores fila.

Semejanza ortogonal

Definición (Matriz Semejante ortogonal)

Una matriz A se dice que **es semejante ortogonal** a una matriz B, cuando existe una matriz ortogonal P tal que

$$P^{t}AP = B$$
.

Como $P^{t} = P^{-1}$, la semejanza ortogonal se puede expresar por

$$P^{-1}AP = B$$

Semejanza ortogonal

Definición (Matriz Semejante ortogonal)

Una matriz A se dice que **es semejante ortogonal** a una matriz B, cuando existe una matriz ortogonal P tal que

$$P^{t}AP = B$$
.

Como $P^t = P^{-1}$, la semejanza ortogonal se puede expresar por

$$P^{-1}AP = B$$

Ejemplo

Las matrices $A=\left(\begin{array}{cc} 3 & 4 \\ 4 & -3 \end{array}\right)$ y $B=\left(\begin{array}{cc} 5 & 0 \\ 0 & -5 \end{array}\right)$ son ortogonalmente semejantes ya que existe $P=\left(\begin{array}{cc} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \end{array}\right)$ tal que $P^tAP=B$.

Sea A una matriz simétrica real de orden n, y sean $\lambda_1, \lambda_2, \ldots, \lambda_j$ sus autovalores con multiplicidades algebraicas m_1, m_2, \ldots, m_j , siendo $m_1 + m_2 + \cdots + m_j = n$. Siempre se verifica que para cada autovalor coinciden sus multiplicidades algebraica y geométrica, es decir,

$$\label{eq:dim} \boxed{\text{dim}(V_{\lambda_{\mathfrak{i}}}) = \mathfrak{m}_{\mathfrak{i}}, \quad \mathfrak{i} = 1, 2, \dots, \mathfrak{j}}$$

y por tanto, siempre va a ser diagonalizable. Siempre va a existir una matriz de paso P tal que $P^{-1}AP$ sea una matriz diagonal D cuyos elementos sean los autovalores de A.

Sea A una matriz simétrica real de orden n, y sean $\lambda_1, \lambda_2, \ldots, \lambda_j$ sus autovalores con multiplicidades algebraicas $\mathfrak{m}_1, \mathfrak{m}_2, \ldots, \mathfrak{m}_j$, siendo $\mathfrak{m}_1 + \mathfrak{m}_2 + \cdots + \mathfrak{m}_j = \mathfrak{n}$. Siempre se verifica que para cada autovalor coinciden sus multiplicidades algebraica y geométrica, es decir,

$$\text{dim}(V_{\lambda_{\mathfrak{i}}})=\mathfrak{m}_{\mathfrak{i}},\quad \mathfrak{i}=1,2,\ldots,\mathfrak{j}$$

y por tanto, siempre va a ser diagonalizable. Siempre va a existir una matriz de paso P tal que $P^{-1}AP$ sea una matriz diagonal D cuyos elementos sean los autovalores de A.

Las columnas de la matriz de paso son los autovectores de A y siempre podemos conseguir que esta matriz de paso sea ortogonal, ya que podemos obtener bases de los subespacios propios V_{λ_i} y por el procedimiento de Gram-Schmidt obtener a partir de ella bases ortonormales de dichos subespacios propios. Las columnas de la matriz P serán los autovectores unitarios y perpendiculares ya obtenidos.

Por tanto, podemos afirmar que:

Teorema

Toda matriz simétrica real, A, es semejante ortogonalmente a una matriz diagonal. Es decir, existe una matriz P ortogonal y una matriz D diagonal tales que

$$\mathsf{D} = \mathsf{P}^t \mathsf{A} \mathsf{P}$$

Por tanto, podemos afirmar que:

Teorema

Toda matriz simétrica real, A, es semejante ortogonalmente a una matriz diagonal. Es decir, existe una matriz P ortogonal y una matriz D diagonal tales que

$$\mathsf{D} = \mathsf{P}^{\mathsf{t}}\mathsf{A}\mathsf{P}$$

La diagonalización de una matriz real simétrica usando como matriz de paso una matriz ortogonal se denomina diagonalización por semejanza ortogonal.

Por tanto, podemos afirmar que:

Teorema

Toda matriz simétrica real, A, es semejante ortogonalmente a una matriz diagonal. Es decir, existe una matriz P ortogonal y una matriz D diagonal tales que

$$\mathsf{D} = \mathsf{P}^\mathsf{t} \mathsf{A} \mathsf{P}$$

La diagonalización de una matriz real simétrica usando como matriz de paso una matriz ortogonal se denomina diagonalización por semejanza ortogonal.

Ejemplo

Sea la matriz

$$A = \left(\begin{array}{ccc} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{array}\right)$$

Determinar la matriz ortogonal P y diagonal D tal que $D = P^{t}AP$.

Como aplicación de la diagonalización de una matriz vamos a calcular la potencia n-ésima de una matriz diagonalizable A.

Como aplicación de la diagonalización de una matriz vamos a calcular la potencia n-ésima de una matriz diagonalizable A. Si A es diagonalizable existe P inversible tal que $P^{-1}AP = D$ siendo D una matriz diagonal. Multiplicando por P por la izquierda y por P^{-1} por la derecha , obtenemos

$$A = PDP^{-1}$$

luego,

$$\textbf{A}^{\mathfrak{m}} = \textbf{A} \, \textbf{A} \, \cdots \textbf{A} = (\textbf{PDP}^{-1})(\textbf{PDP}^{-1}) \cdots (\textbf{PDP}^{-1}) = \textbf{PD}^{\mathfrak{m}} \textbf{P}^{-1}$$

$$\mbox{Si}\,\lambda_1,\lambda_2,\dots,\lambda_n\mbox{ son los autovalores de la matriz}\mbox{ A y } D = \left(\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{array}\right),$$

se cumple que

$$A^{\mathfrak{m}} = P \begin{pmatrix} \lambda_{1}^{\mathfrak{m}} & 0 & \dots & 0 \\ 0 & \lambda_{2}^{\mathfrak{m}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{\mathfrak{m}}^{\mathfrak{m}} \end{pmatrix} P^{-1}$$

Ejemplo

Dada la matriz A,

$$A = \left(\begin{array}{ccc} 5 & 0 & -4 \\ 0 & 3 & 0 \\ 2 & 0 & -1 \end{array}\right)$$

Determinar An

Otra aplicación útil de la diagonalización es el cálculo de la matriz inversa. Ya que si A es una matriz diagonalizable entonces se verifica que

$$A^{-1} = (PDP^{-1})^{-1} = PD^{-1}P^{-1}$$

siendo

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} \Rightarrow D^{-1} = \begin{pmatrix} 1/\lambda_1 & 0 & \dots & 0 \\ 0 & 1/\lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1/\lambda_n \end{pmatrix}$$