Common Graph Classes

1. Empty (E_n)

$$\begin{split} V(E_n) &= \{1, \dots, n\} \\ E(E_n) &= \emptyset \\ |V(E_n)| &= n \\ |E(E_n)| &= 0 \\ E_n \text{ is connected } \iff n = 1 \end{split}$$

Examples

The null graph is represented by E_0 .

2. Path (P_n)

$$V(P_n) = \{1, \dots, n\}$$

$$E(P_n) = \{\{1, 2\}, \{2, 3\}, \dots, \{n - 1, n\}\}$$

$$|V(P_n)| = n$$

$$|E(P_n)| = n - 1$$

$$P_n \text{ is connected}$$

$$diam(P_n) = n - 1$$

Examples

3. Cycle (C_n)

$$\begin{split} V(C_n) &= \{1, \dots, n\} \\ E(C_n) &= \{\{1, 2\}, \{2, 3\}, \dots, \{n-1, n\}, \{n, 1\}\} \\ |V(C_n)| &= n \geq 3 \\ |E(C_n)| &= n \geq 3 \\ C_n \text{ is connected} \\ \operatorname{diam}(P_n) &= \left\lfloor \frac{n}{2} \right\rfloor \end{split}$$

Examples

4. Complete (K_n)

$$V(K_n) = \{1, \dots, n\}$$

$$E(K_n) = \mathcal{P}_2(V(K_n))$$

$$|V(K_n)| = n$$

$$|E(K_n)| = \binom{n}{2} = \frac{n(n-1)}{2}$$

$$K_n \text{ is connected}$$

$$\operatorname{diam}(P_n) = 1 \iff G = K_n$$

Examples

 K_9

5. Petersen Graph (PG)

$$|V(PG)| = 10$$

$$|E(PG)| = 10$$

PG is connected

The vertices represents the 2-subsets of a 5 element set and the edges indicate disjoint sets.

6. Cube Graph (Q_n)

$$|V(PG)| = 2^n$$

$$|E(PG)| = n2^n$$

 Q_n is connected

The vertices represents the bit strings of length \boldsymbol{n} and the edges indicate a one bit difference.

Examples

