BAB IV

HASIL DAN PEMBAHASAN

4.1 Implementasi

Implementasi dan pengujian pada bab ini bertujuan untuk mengetahui tahapan implementasi pada prototype sistem yang dibuat. Tahapan ini dilakukan setelah analisis dan perancangan sistem selesai dilakukan. setelah pembangunan sistem selesai dilakukan implementasi sistem yang terdiri dari implementasi perangkat keras, implementasi perangkat lunak dan implementasi basis data dan pengujian

4.1.1 Implementasi Perangkat Keras

Implementasi perangkat keras merupakan perangkat keras yang digunakan untuk mengimplementasikan sistem yang dibuat. Perangkat ini berupa web hosting yang disewakan ke jasa hosting dengan spesifikasi yang ditampilkan pada tabel 4.1 berikut.

Tabel 4.1 Spesifikasi Perangkat Keras Implementasi Sistem

No	Perangkat Keras	Spesifikasi
1.	SSD Storage	10 GB
2.	CPU / Processor	4.4 GHz
3.	RAM	8 GB
4.	VGA	1.8 GHz

4.1.2 Implementasi Perangkat Lunak

Berikut ini adalah implementasi perangkat lunak yang digunakan dalam pembangunan sistem yang dibuat ditampilkan pada tabel 4.2 berikut.

Tabel 4.2 Spesifikasi Perangkat Lunak Implementasi Sistem

No	Perangkat Lunak	Spesifikasi
1	OS	Ubuntu Server Versi 18
2	Mysql	5.0.67
3	Apache	2.4.34
4	РНР	8.1

4.1.3 Implementasi User Interfaces

User interface yang ada diimplementasikan adalah hasil rancangan dari mockup yang sudah dibuat sebelumnya. User interface yang ada dalam aplikasi ini meluputi halaman login, halaman registrasi, halaman dashboard, halaman file storage, dan halaman upload file. Berikut ini adalah penjelasan masing-masing halaman pada aplikasi.

1. Halaman Login

Halaman login adalah halaman pertama kali muncul ketika aplikasi diakses. Halaman ini bertujuan untuk memberikan keamanan pada aplikasi agar tidak diakses oleh user yang tidak memiliki hak akses. Dalam melakukan akses ke sistem, pengguna perlu memasukan alamat email yang terdaftar dan memasukan password yang valid. Proses validasi yang bekerja pada bagian ini akan menentukan apakah email yang dimasukan terdaftar di sistem atau tidak. Jika email terdaftar dalam sistem, maka user akan diarahkan ke halaman dashboard sistem. Adapun tampilan dari implementasi halaman ini ditunjukan pada gambar 4.1 berikut ini.

Gambar 4.1 Halaman Login

Halaman login adalah halaman awal yang ditampilkan pada saat membuka halaman admin (*backend*) halaman berfungsi untuk admin atau mitra untuk masuk kedalam aplikas web. Pada bagian tersebut terdapat beberapa bagian yaitu inputan email dan password. Pada sisi sebelah kanan terdapat bagian tombol registrasi yang berguna untuk user membuat akun baru.

2. Halaman Registrasi

Halaman kedua adalah halaman registrasi, yang berguna untuk user baru melakukan pendaftaran pada aplikasi. Adapun implementasi halaman registrasi pada sistem yang dibuat ditunjukan oleh gambar 4.2. Pada halaman ini terdapat beberapa inputan yang perlu diisi oleh user baru, yaitu nama pengguna, email, password, dan komfirmasi password. Setelah pengguna mengisi semua kebutuhan data yang diperlukan, selanjutnya pengguna tinggal klik tombol "registrasi" untuk menyelesaikan alur pendaftaran ke akun.

Gambar 4.2 Halaman Registrasi

3. Halaman File Storage

Halaman file storage berguna untuk menampilkan semua file yang sudah diupload ke cloud. Pada halaman file storage ini, ada dua bagian utama, yaitu *upload file* dan *list file*. Upload file berfungsi untuk

menampilkan halaman upload file. Sedangkan pada *list file* atau daftar file berfungsi menampilkan semua file-file yang sudah diupload ke *cloud*. Pada bagian list file terdapat bagian filename yang menunjukan nama dari file, bagian email yang menunjukan siapa yang melakukan proses upload, bagian tombol download untuk melakukan proses download dan bagian tombol delete untuk menghapus file. Adapun hasil dari implementasi halaman *file storage* ditunjukan pada Gambar 4.3 dibawah ini.

Gambar 4.3 Halaman File Storage

Halaman tersebut terdapat dua tombol, yaitu download dan delete. Pada saat user mengklik tombol download, maka sistem akan menampilkan password untuk diisi oleh pengguna (gambar 4.4). Jika password yang diinput oleh pengguna salah, maka proses download file tidak bisa dilakukan. Sebaliknya, jika password yang dimasukan oleh pengguna benar. Maka sistem menjalankan proses download file.

Gambar 4.4 Input Password untuk download file

Proses yang sama juga dilakukan pada saat user melakukan penghapus data. Dimana data yang akan dihapus harus diverifikasi dengan sebuah password (Gambar 4.5). Jika password yang diinput oleh pengguna benar, maka proses penghapusan data password bisa dilakukan.

Gambar 4.5 Proses Hapus Data

4. Halaman Upload File

Halaman upload file pada sistem ini diimplementasikan seperti pada gambar 4.6 berikut ini.

Gambar 4.6 Halaman Upload File

Halaman upload file digunakan sebagai user untuk mengupload file ke cloud storage. Pada bagian ini terdapat komponen upload file, password, tombol upload dan return. Dalam melakukan upload file, user diminta mengklik bagian upload file dan memilih file mana yang akan diupload. Setelah itu, pengguna diminta untuk mengisi password sesuai dengan password user kemudian mengklik tombol upload untuk menjalankan proses upload. Setelah proses upload selesai, maka file akan tersimpan ke cloud storage (pada penelitian ini menggunakan Amazon S3) seperti yang ditunjukan pada gambar 4.7 berikut ini.

Gambar 4.7 Hasil upload file di Amazon S3

Setiap file yang di upload akan diberikan format baru berupa .env sebagai penanda bahwa file sudah dilakukan proses enkripsi dan kompresi dengan algoritma AES dan LZW. Penambahan proses ini memberikan keamanan kepada file agar tidak bisa dibuka oleh user lain. Jika user lain

mencoba membuka file tersebut, maka muncul *alert* dari komputer seperti gambar 4.8 dibawah.

Gambar 4.8 Notifikasi Sistem Error

4.1.4 Implementasi Algoritma AES dan LZW

Impelmentasi algoritma AES dan LZW pada sistem enkripsi *file* di PT. Generasi Muda Indonesia Utama adalah sebagai berikut.

4.1.4.1 Proses Enkripsi dengan Algoritma AES

Dalam algoritma AES, melakukan proses dekripsi perlu dilakukan beberapa proses transformasi diantaranya sBox, InvSubByte, InvShiftRow, InvMixColumn dan AddRoundKey. Berikut ini adalah coding-coding yang digunakan untuk melakukan proses enkripsi dengan algoritma AES.

a. Sbox

S-Box pada algoritma AES memiliki nilai baku yang telah ditetapkan dalam bentuk array 16 x 16 berupa angka hexadecimal, berikut ini adalah coding untuk S-Box.

```
0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0),
        array(0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,
0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15),
        array(0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,
0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75),
        array(0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A,
                                                             0xA0,
0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84),
        array(0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF),
        array(0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33,
                                                             0x85.
0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8),
        array(0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2),
        array(0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17,
0xC4, 0xA7, 0x7E, 0x<mark>3D, 0x64</mark>, <mark>0x5D, 0</mark>x19, 0x73),
        array(0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88,
0x46, 0xEE, 0xB8, <mark>0x14, 0xDE, 0</mark>x5<mark>E, 0x0</mark>B, 0xDB),
        array(0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24,
                                                             0x5C,
0xC2, 0xD3, 0xAC, 0x<mark>62, 0x9</mark>1, <mark>0x95, 0</mark>xE4, 0x79),
        array(0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E,
                                                             0xA9,
0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08),
        array(0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4,
0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A),
        array(0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6,
                                                             0x0E,
0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E),
        array(0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E,
0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF),
        array(0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68,
0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16)
    );
```

b. Invsub

Coding dibawah ini merupakan invers dari nilai s-box untuk menampilkan nilai dalam bentuk array.

```
array(0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB),
       array(0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D,
0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E),
       array(0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2,
0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25),
       array(0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92),
       array(0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA,
0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84),
       array(0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A,
0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06),
        array(0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
0xC1, 0xAF, 0xBD, 0x03, <mark>0x01, 0x1</mark>3, 0x8A, 0x6B),
       array(0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA,
0x97, 0xF2, 0xCF, <mark>0xCE</mark>, 0xF0, 0xB4, 0xE6, 0x73),
        array(0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85,
0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E),
       array(0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
0x6F, 0xB7, 0x62, 0x<mark>0E, 0xAA, 0x18, 0</mark>xBE, 0x1B),
       array(0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20,
0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4),
       array(0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31,
0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F),
        array(0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF),
       array(0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0,
0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61),
       array(0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26,
0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D)
   );
```

Dalam melakukan proses invers sub byte untuk algoritma AES ditunjukan pada coding berikut ini.

```
}
return $state;
}
```

c. InvShiftRow

Pada tahap ini data yang dihasilkan pada tahap sebelumnya (*SubBytes*) digeser ke kiri sesuai dengan coding di bawah ini.

```
function ShiftRow($data) {
    $state = array();
    for($i=0; $i<4; $i++) {
        for($j=0; $j<$this->Nb; $j++) {
            $state[$i][$j] = $data[$i][($j+$i)%4];
        }
    }
    return $state;
}
```

d. MixColumns

Fungsi selanjutnya adalah fungsi mixcolums, dalam fungsi ini terdapat empat kriteria yang menjadi syarat, yaitu:

- Jika *msb* data berawalan dengan 1 maka di *left shift* dan *xor* tetap
- Jika *msb* data berawalan dengan 0 maka di *left shift* tapi *xor* dihilangkan.
- Tetapan untuk pengali 02 yaitu disubtitusi menjadi "xor 1B"
- Karena 03 (11) merupakan 10 *xor* 01 maka akan dipecah menjadi pengali 02 (yang berarti juga akan disubtitusi menjadi *xor* 1B) dan 01

Berikut ini adalah coding dalam melakukan mixcolums pada algoritma AES.

```
function MixColumns($data) {
    $state = array();
    for ($i=0; $i < $this->Nb; $i++) {
        $state[0][$i] = $this->mult(0x02,$data[0][$i]) ^
```

4.1.4.2 Proses Kompresi dengan LZW

Setelah berhasil dienkripsi maka hasil output binary nya akan dikompress menggunakan LZW.


```
function lzw compress($string) {
      // compression
      $dictionary = array flip(range("\0", "\xFF"));
      $word = "";
      $codes = array();
      for ($i=0; $i <= strlen($string); $i++) {
            x = substr(string, i, 1);
            if (strlen($x) && isset($dictionary[$word . $x])) {
                  $word .= $x;
            } elseif ($i) {
                  $codes[] = $dictionary[$word];
                  $dictionary[$word . $x] = count($dictionary);
                  \$word = \$x;
      // convert codes to binary string
      $dictionary count = 256;
      $bits = 8; // ceil(log($dictionary count, 2))
      $return = "";
      sest = 0;
      $rest_length = 0;
      foreach ($codes as $code) {
            $rest = ($rest << $bits) + $code;</pre>
            $rest_length += $bits;
            $dictionary_count++;
            if ($dictionary_count >> $bits) {
                  $bits++;
            }
```


4.1.4.3 Proses Dekompresi dengan LZW

Untuk melakuken dekripsi pertama-tama file akan dikonversi dulu ke binary kemudian dilakukan proses dekompresi dengan algoritma LZW.

```
function lzw_decompress($binary) {
      // convert binary string to codes
      $dictionary_count = 256;
      $bits = 8; // ceil(log($dictionary count, 2))
      $codes = array();
      srest = 0;
      $rest length = 0;
      for (\$i=0; \$i < strlen(\$binary); \$i++) {
            $rest = ($rest << 8) + ord($binary[$i]);</pre>
            $rest length += 8;
            if ($rest_length >= $bits) {
                   $rest length -= $bits;
                   $codes[] = $rest >> $rest length;
                   $rest &= (1 << $rest length) - 1;
                   $dictionary_count++;
                   if ($dictionary count >> $bits) {
                         $bits++;
            }
      // decompression
      $dictionary = range("\0", "\xFF");
      $return = "";
      foreach ($codes as $i => $code) {
            $element = $dictionary[$code];
            if (!isset($element)) {
                   $element = $word . $word[0];
            $return .= $element;
            if ($i) {
                   $dictionary[] = $word . $element[0];
            $word = $element;
        turn $return/versi
```

4.1.4.4 Proses Dekripsi dengan AES

Untuk proses deskripsi pada algoritma AES sendiri secara coding diimplementasikan sebagai berikut.

SUNAN GUNUNG DJATI

```
function decrypt($input) {
    $data = str_split($input);
    $state = array();
    $count = 0;
    $this->pos_w = (($this->Nr+1)*4);
    $modulo = 0;
```

```
for($i=0; $i<4; $i++){
            for($j=0; $j<4; $j++) {
                $this->state[$i][$j] = ord($data[$count]);
                $count++;
           }
       }
       // AddRoundKey #1
        \frac{\phi_w}{\phi_w} = (\frac{\phi_w}{\phi_w}) - 4;
        for($i=0; $i<4; $i++){
           $x = 0;
            for($j= $this->pos_w; $j < (($this->Nr+1)*4); $j++) {
                y = x++;
                $this->state[$i][$y]
                                     = $this->state[$i][$y]
$this->w[$i][$j];
        }
       for ($i=0; $i<$this->Nr-1; $i++) {
            $this->state = $this->InvShiftRow($this->state);
            $this->state = $this->InvSubByte($this->state);
                       BANDUNG
            $this->pos_w = ($this->pos_w)- $this->Nb;
            $this->state = $this->AddRoundKey($this->state);
            $this->state = $this->InvMixColumns($this->state);
       }
       $this->state = $this->InvShiftRow($this->state);
       $this->state = $this->InvSubByte($this->state);
       \theta = (\theta - \phi) - \theta
       $this->state = $this->AddRoundKey($this->state);
```

```
$plain = "";
foreach($this->state as $state) {
    foreach($state as $data) {
          $plain .= chr($data);
     }
}
return $plain;
}
```

4.2 Pengujian

4.2.1 Pengujian Black box

Pengujian aplikas<mark>i ini menggun</mark>akan metode *black box*. Pengujian *black box* berfokus pada persyaratan fungsional perangkat lunak.

4.2.2 Pengujian Algoritma

Tahap pengujian hasil enkripsi dan dekripsi pada file dengan menggunakan kriptografi AES (Advanced Encryption Standard) dan algoritma LZW (Lempel-Ziv-Welch) untuk kompresi dan dekompresi. Diantara pengujian yang dilakukan adalah sebagai berikut :

1. Pengujian performa algoritma AES untuk enksripsi dan dekripsi

Pengujian performa untuk algoritma AES-128 pada proses enkripsi dan dekripsi *file*.

a. Equivalent Class Partitioning

Pada skenario pengujian ini data masukan berupa file dengan ukuran file dan ekstensi yang berbeda-beda.

55 MB 60 MB 65 MB 70 MB 75 MB 80 MB 85 MB 90 MB 95 MB 100 MB

Tabel 4.3 Table Test Ccase Equivalent Class Partitioning

Test Case	Ukuran File	Partisi yang di tes	Waktu Enkripsi	Waktu Dekripsi	Keluaran
1	5 MB	ukuran file < 5 MB	0,0171 sec	0,3532 sec	Berhasil Upload
2	10 MB	5 MB >= ukuran file < 10 MB	0,0334 sec	0,6972 sec	Berhasil Upload
3	15 MB	ukuran file < 15 MB	0,0495 sec	1,0415 sec	Berhasil Upload
4	20 MB	15 MB >= ukuran file < 20 MB	0,0651 sec	1,4040 sec	Berhasil Upload
5	25 MB	ukuran file < 25 MB	0,1025 sec	1,9918 sec	Berhasil Upload
6	30 MB	25 MB >= ukuran file < 30 MB	0,1250 sec	2,3232 sec	Berhasil Upload
7	35 MB	ukuran file < 35 MB	0,1463 sec	2,7604 sec	Berhasil Upload
8	40 MB	35 MB >= ukuran file < 40 MB	0,1667 sec	3,2304 sec	Berhasil Upload
9	45 MB	ukuran file < 45 MB	0,1821 sec	70,6772 sec	Berhasil Upload
10	50 MB	45 MB >= ukuran file < 50 MB	0,2049 sec	81,0777 sec	Berhasil Upload
11	55 MB	ukuran file < 55MB	0,2331 sec	101,0423 sec	Berhasil Upload
12	60 MB	55 MB >= ukuran file < 60 MB	0,2472 sec	111,9067 sec	Berhasil Upload
13	65 MB	ukuran file < 65 MB	0,2599 sec	127,4202 sec	Berhasil Upload
14	70 MB	65 MB >= ukuran file < 70 MB	0,2761 sec	146,0176 sec	Berhasil Upload
15	75 MB	ukuran file < 75 MB	0,3002 sec	158,1429 sec	Berhasil Upload
16	80 MB	75 MB >= ukuran file < 80 MB	0,3272 sec	178,3587 sec	Berhasil Upload
17	85 MB	ukuran file < 85 MB	0,3502 sec	186,8799 sec	Berhasil Upload
18	90 MB	85 MB >= ukuran file < 90 MB	0,3644 sec	Out of Memory	Gagal Upload
19	95 MB	ukuran file < 95 MB	0,3890 sec	217,2526 sec	Berhasil Upload

20	100 MB	95 MB >= ukuran file < 100 MB	0,4053 sec	Out of Memory	Gagal Upload
----	--------	----------------------------------	------------	---------------	-----------------

Dari table test case diatas dapat dilihat bahwa terdapat keluaran berhasil dan keluaran gagal. Diantara keluaran yang berhasil dikarenakan waktu enkripsi rata-rata lebih kecil dibanding waktu dekripsi, sedangkan diantara keluaran yang gagal dikarenakan waktu yang diperlukan untuk dekripsi rata-rata lebih besar dan bisa juga disebabkan oleh jaringan internet yang lambat.

b. Perhitungan Akurasi Algoritma AES

Gambar 4.9 Performa Enkripsi dan Dekripsi

Dari grafik diagram garis diatas, hasil performa file yang akan di uji dengan ukuran yang berbeda-beda mempengaruhi *running time* proses enkripsi dan dekripsi. Kecepatan jaringan internet dapat mempengaruhi hasil *running time* proses. Berdasarkan diagram garis tersebut, proses dekripsi membutuhkan waktu lebih lama di bandingkan waktu proses enkripsi, hal ini dikarenakan untuk proses dekripsi semakin besar *file size* yang di *download* maka akan semakin lama waktu yang dibutuhkan. Pada diagram tersebut dapat dilihat bahwa pengujian algoritma ini dibatasi dengan *file size* 100 *Megabytes*, hal ini dikarenakan sistem ini belum mampu diuji oleh data sebanyak 100 *Megabytes* lebih.

Dari hasil pengujian algoritma diatas diperoleh perhitungan akurasi sebagai berikut:

$$Akurasi = \frac{\textit{Jumlah Total Berhasih}}{\textit{Jumlah total berhasil+gagal}} X \ 100\%$$

Rumus 4. 1 Perhitungan Akurasi Algoritma AES

Pada rumus diatas jumlah total berhasil adalah jumlah total pengujian dari metode enkripsi, dekripsi, kompresi dan dekompresi semuanya berhasil, apabila ada salah satu yang gagal maka pengujian dinyatakan gagal.

Berikut ini merupakan perhitungan tingkat akurasi sistem ini :

$$= \frac{18}{20} X \, 100\% = 90\%$$

Jadi dapat disimpulkan bahwa tingkat akurasi metode AES-128 pada pengamanan *file Cloud Storage* adalah sebesar 90%.

Gambar 4.10 Waktu enkripsi dan dekripsi

Pada gambar 4.10 diatas menjelaskan waktu antara proses enkripsi dan dekripsi pada sistem ini dengan nilai rata-rata waktu proses enkripsi bernilai 80,3 detik (43%) dan rata-rata waktu proses dekripsi bernilai 93,43 detik (50%).

2. Pengujian performa algoritma LZW untuk compress dan decompress

a. Equivalent Class Partitioning

Pada skenario pengujian ini data masukan berupa file dengan ukuran file dan ekstensi yang berbeda-beda.

55 MB 60 MB 65 MB 70 MB 75 MB 80 MB 85 MB 90 MB 95 MB 100 MB

Tabel 4.4 Table Test Case Equivalent Class Partitioning

Test Case	Ukuran File	Partisi yang di tes	Waktu Kompresi	Waktu Dekompresi	Keluaran
1	5 MB	ukuran file < 5 MB	0,2876 sec	0,0424 sec	Berhasil Download
2	10 MB	5 MB >= ukuran file < 10 MB	0,5567 sec	0,6972 sec	Berhasil Download
3	15 MB	ukuran file < 15 MB	0,8438 sec	0,1270 sec	Berhasil Download
4	20 MB	15 MB >= ukuran file < 20 MB	1,1211 sec	0,1704 sec	Berhasil Download
5	25 MB	ukuran file < 25 MB	1,7894 sec	0,2568 sec	Berhasil Download
6	30 MB	25 MB >= ukuran file < 30 MB	2,0726 sec	0,3057 sec	Berhasil Download
7	35 MB	ukuran file < 35 MB	2,4656 sec	0,3573 sec	Berhasil Download
8	40 MB	35 MB >= ukuran file < 40 MB	2,8448 sec	0,4154 sec	Berhasil Download
9	45 MB	ukuran file < 45 MB	3,1536 sec	0,4860 sec	Berhasil Download
10	50 MB	45 MB >= ukuran file < 50 MB	3,4867 sec	0,5368 sec	Berhasil Download
11	55 MB	ukuran file < 55MB	3,9564 sec	0,6128 sec	Berhasil Download
12	60 MB	55 MB >= ukuran file < 60 MB	4,2829 sec	0,6505 sec	Berhasil Download
13	65 MB	ukuran file < 65 MB	4,5545 sec	0,6906 sec	Berhasil Download
14	70 MB	65 MB >= ukuran file < 70 MB	4,8645 sec	0,7608 sec	Berhasil Download
15	75 MB	ukuran file < 75 MB	5,2901 sec	0,8169 sec	Berhasil Download
16	80 MB	75 MB >= ukuran file < 80 MB	5,7223 sec	0,8814 sec	Berhasil Download
17	85 MB	ukuran file < 85 MB	6,0962 sec	2,3543 sec	Berhasil Download
18	90 MB	85 MB >= ukuran file < 90 MB	6,3641 sec	Out of Memory	Gagal Download

19	95 MB	ukuran file < 95 MB	6,7985 sec	1,0369 sec	Berhasil Download
20	100 MB	95 MB >= ukuran file < 100 MB	7,2481 sec	Out of Memory	Gagal Download

Dari table test case diatas dapat dilihat bahwa terdapat keluaran berhasil dan keluaran gagal. Diantara keluaran yang berhasil dikarenakan waktu dekompresi rata-rata lebih kecil dibanding waktu kompresi, sedangkan diantara keluaran yang gagal dikarenakan waktu yang diperlukan untuk dekompresi rata-rata lebih lama dan bisa juga disebabkan oleh jaringan internet yang lambat.

b. Perhitungan Akurasi Algortima LZW

Gambar 4.11 Performa Kompresi dan Dekompresi

Dari grafik diagram garis diatas, hasil performa file yang akan di uji dengan ukuran yang berbeda-beda mempengaruhi *running time* proses kompresi dan dekompresi. Kecepatan jaringan internet dapat mempengaruhi hasil *running time* proses.

Pada diagram diatas dapat dilihat bahwa pengujian algoritma ini dibatasi dengan *file size* 100 *Megabytes*, hal ini dikarenakan sistem ini belum mampu diuji oleh data sebanyak 100 *Megabytes* lebih.

Dari hasil pengujian algoritma diatas diperoleh perhitungan akurasi sebagai berikut:

$$\textit{Akurasi} = \frac{\textit{Jumlah Total Berhasih}}{\textit{Jumlah total berhasil+gagal}} \textit{X} \; 100\%$$

Rumus 4. 2 Perhitungan Akurasi Algoritma LZW

Pada rumus diatas jumlah total berhasil adalah jumlah total pengujian dari metode enkripsi, dekripsi, kompresi dan dekompresi semuanya berhasil, apabila ada salah satu yang gagal maka pengujian dinyatakan gagal.

Berikut ini merupakan perhitungan tingkat akurasi sistem ini :

$$= \frac{18}{20} X 100\% = 90\%$$

Jadi dapat disimpulkan bahwa tingkat akurasi metode kompresi LZW pada pengamanan *file Cloud Storage* adalah sebesar 92%.

Gambar 4.12 Waktu kompresi dan dekompresi

Pada gambar 4.12 diatas menjelaskan waktu antara proses kompresi dan dekompresi pada sistem ini dengan nilai rata-rata waktu proses kompresi bernilai 73,7 detik (50%) dan rata-rata waktu proses dekompresi bernilain 11,12 detik (42%).

4.2.3 Rencana Pengujian

Rencana pengujian berguna sebagai landasan utama dalam melakukan pengujian sistem. Berikut ini adalah rencana pengujian sistem yang telah dibuat ditampilkan tabel 4.5 berikut.

Kelas Pengujian	Kelas Pengujian Butir Uji		Hasil Pengujian
Login	Inputan password	Black Box	Sukses
	Validasi inputan	Black Box	Sukses

Tabel 4.5 Rencana Pengujian Sistem

	Verifikasi password	Black Box	Sukses
Registrasi	Inputan registrasi	Black Box	Sukses
	Validasi inputan	Black Box	Sukses
	Verifikasi email	Black Box	Sukses
List File Upload	View file upload	Black Box	Sukses
	Download	Black Box	Sukses
	Hapus data	Black Box	Sukses
Proses Upload	Browse data dari PC	Black Box	Sukses
data	Verifikasi password	Black Box	Sukses
	Proses unggah file	Black Box	Sukses

Hasil pengujian keseluruhan fungsi-fungsi yang terdapat pada sistem yang dibuat di tampilkan pada tabel 4.6 berikut.

Tabel 4.6 Pengujian Fungsionalitas

ID	Testing	Page /	Test		Expected	Test
Testing	Status	Area	description	Step Testing	Result	Result
L-1	Positif	Halaman Login	Masuk ke akun	1. Aktor mengakses URL https://pimenvibritania.tech/login 2. Klik Navigasi "Login" 3. Sistem menampilkan halaman login 4. Memasukan email dan password 4. Klik "Masuk"	Sistem akan	TRUE
L-2	Negatif	Halaman Login	Jika email tidak terdaftar	1. Aktor mengakses URL book- https://pimenvibritania.tech/login 2. Sistem menampilkan halaman login 3. Memasukan email dan password 4. Klik "Masuk"	Sistem menampilka n notifikasi, email tidak terdaftar	TRUE
L-3	Negatif	Halaman Login	Jika password salah	1. Aktor mengakses URL https://pimenvibritania.tech/login 2. Sistem menampilkan halaman login 3. Memasukan email dan password 4. Klik "Masuk"		TRUE
R-1	Positif	Halaman Registrasi	Melakukan proses registrasi	https://pimenvibritania.tech/login 2. Sistem menampilkan halaman login 3. Aktor mengklik tombol "Register"	1. Sistem melakukan pengecekan email, Jika sudah terdaftar maka	TRUE

	registrasi 5. Aktor memasukan inputan registrasi dengan benar 7. Mengklik tombol "Daftar"	muncul notifikasi email sudah terdaftar	
--	---	--	--

Tabel 4.7 Pengujian Fungsionalitas (Lanjutan)

ID T:	Testing	Page /	Test	Step Testing	Expected	Test
Testing	Status	Area	description		Result	Result
		V			2. Jika	
		14			berhasil,	
		-			muncul	
					notifikasi	
					registrasi	
					berhasil dan	
		1			diarahkan ke	
					halaman	
					login	
				110	3. sistem	
				1111	mengirim	
					notifikasi	
			UNIVERS	TAS ISLAM NEGERI	registrasi ke	
	3.7 1.0		UNANL	IUNUNG DJATI	email	
R-2	Negatif	Halaman		1. Aktor mengakses URL	Muncul	TRUE
		Registrasi	dengan	https://pimenvibritania.tech/login		
			sudah	2. Sistem menampilkan halaman	email sudah terdaftar dan	
			terdaftar	login		
			terdartar	3. Aktor mengklik tombol	proses	
				"Register"	registrasi dihentikan	
				4. Sistem menampilkan halaman registrasi	umemikan	
				5. Aktor memasukan inputan		
				email yang sudah terdaftar		
				sebelumnya		
				6. Mengklik tombol "Daftar"		
R-3	Negatif		validasi	1. Aktor mengakses URL	1. Sistem	TRUE
		Registrasi	form	https://pimenvibritania.tech/login		
			registrasi	2. Sistem menampilkan halaman	n notifikasi	
			jika data	login	data yang	
			kosong	3. Aktor mengklik tombol	kosong.	
				"Register"	Pada setiap	

				registrasi 5. Aktor tidak memasukan data inputan registrasi 6. Mengklik tombol "Daftar"	komponen form akan berubah menjadi merah yang menunjukan data tersebut "required"	
R-4	Negatif	Halaman	validasi	<u> </u>	Muncul	TRUE
		Registrasi	format	https://pimenvibritania.tech/login	notifikasi	
			email dan	2. Sistem menampilkan halaman	untuk	
			nomor	login	memasukan	
			telepon	3. Aktor mengklik tombol	email yang	
				"Register"	benar	

Tabel 4.8 Pengujian Fungsionalitas (Lanjutan)

ID Testing	Testing Status	Page / Area	Test description	Step Testing	Expected Result	Test Result
				4. Sistem menampilkan halaman registrasi 5. Aktor memasukan email yang tidak sesuai format baku 6 Mengklik tombol "Daftar"		
F-1	Positif	List File Upload	View File upload	Actor membuka halaman file upload	Sistem menampilka n file yang diupload oleh user	TRUE
F-2	Positif	List File Upload	View File upload	Aktor berada dihalaman list file upload Aktor mengklik tombol "Download"	Sistem melakukan proses download file	TRUE
F-3	Positif	List File Upload	View File upload	Aktor berada dihalaman list file upload Aktor mengklik tombol "Hapus"	File yang dipilih dihapus dari sistem	TRUE
U-1	Positif	Upload Data	Proses upload Data	Aktor mengklik menu upload file Aktor mengklik tombol browse file Mengisi password Mengklik tombol upload	File diupload ke dalam cloud storage	TRUE
U-2	Negatif	Upload Data	Proses upload Data	Aktor mengklik menu upload file Aktor tidak mengklik tombol browse file Mengisi password Mengklik tombol upload	Muncul notifikasi untuk memilih file yang akan diupload	TRUE
U-3	Negatif	Upload Data	Proses upload	1. Aktor mengklik menu upload file	Muncul notifikasi	TRUE

Data	2. Aktor mengklik tombol browse file	password salah	
	3. Mengisi password yang salah 4. Mengklik tombol upload	Suran	

Tabel 4.6 sampai tabel 4.8 dilakukan pengujian fungsionalitas sistem yang dibuat. Pengujian ini bermaksud untuk mengecek apakah sistem berjalan dengan baik atau tidak. Dalam tabel tersebut terdapat kolom *test result* dengan nilai TRUE yang menandakan sistem berjalan dengan baik. Selain itu dalam tabel tersebut juga terdapat kolom *testing status* yang digunakan untuk mengetahui respon dari sistem ketika pengguna mengakses sistem tersebut, seperti nilai negatif untuk mengetahui respon sistem ketika pengguna melakukan kesalahan seperti memasukan password salah, email sudah terdaftar, email salah dan lain-lain, maka sistem akan memunculkan pesan error sesuai kesalahan pengguna. Sebaliknya nilai posistif untuk mengetahui respon sistem ketika pengguna tidak melakukan kesalah, maka sistem akan memunculkan pesan sukses.

