MAGS: Learning LLMS

By: Pulkith, Pragya, Stanley, Shailesh

Humans vs LLMs

- ♦ Lack of Agency
 - Figure, Tesla, etc...
- Lack of True Understanding, Reasoning, Novelty
 - > ???
- Lack of Memory, Learning, and World Model
 - > Our Goal

Motivation & Problem

Memory and Learning

- LLMs cannot learn and remember
 - > Test-time emulation with context windows is not viable
 - Quadratic scaling
 - Attention decay and ephemeral context
 - Stateless session
 - Retrieval Augmented Generation (RAG) can add information
 - But rigid, one way static transfer of knowledge
 - Cannot reconcile new or conflicting information permanently

Motivation & Problem

SoTA / Literature

- CAMELOT, MIT+IBM
 - Added Memory Blocks To Remember Information
 - Fixed Memory Size, Overwrites Past Memory, No relationships between memory, No reconciliation
- Continual Learning
 - Catastrophic Forgetting, Expensive, Very Slow, not optimal
 - ➤ Google Titans (RMTs): Updates Attention loses fine details, and slow + 2M token max
- ❖ AriGraph
 - Adding Dynamic Graph-Based RAG
 - LLM has no representation of memory, only adds information (no updating+consolidating), no importance of different episodes, memory not connection across episodes

Motivation & Problem

Technical Approach

M

A

G

S

Memory

Episodic and Semantic
Memory Blocks (RAG)
along with Long-term vs
Working Memory
Supports separation of
general knowledge,
experience, and
importance.

Augmented

Compatible with any vanilla frozen LLM.
Fine-tuned for engram+recall steps, so LLM can interact with memory. LLM can query knowledge before answering and store novel experiences and learnings.

Graph

Liquid Knowledge
Graphs, that can
add+remove nodes,
change edge weights,
consolidate and forget
knowledge. Replicates
human Hebbian
Plasticity, Neurogenesis,
and Synaptic Pruning.

Scaling

Allows for context scaling limited by memory constraints rather than attention decay. Similar time inference. Chat History is part of Working memory, so agents are more modular.

Technical Approach

Structure

Knowledge broken down into Long-Term (important info), and Working Memory (chat history). Memory is moved from Working to Long-Term based on usage, 'surprise', or importance.

Engram

Updates nodes and edge weights based on query importance. Can add or update information.

Recall

Anchor Nodes selected from query, BFS over decaying edge weights. SCCs consolidated. Can also query for connection between nodes.

Validation

Custom game with nonsensical rules (so mode cannot reason). LLM can store newfound experiences, rule changes, surprising things, general game rules, etc...

Mathematical Formulation - GRPO

Let $\pi_{\phi}(a|s)$ be the policy with parameters ϕ and $\pi_{\phi_{\text{old}}}(a|s)$ be the policy before the update. Define the probability ratio:

$$r_t(\phi) = rac{\pi_\phi(a_t|s_t)}{\pi_{\phi_{
m old}}(a_t|s_t)}.$$

Let A_t be the advantage estimate at time t and define the group-relative advantage as:

$$\hat{A}_t^{\text{GRPO}} = A_t - \frac{1}{|\mathcal{G}(t)|} \sum_{t' \in \mathcal{G}(t)} A_{t'},$$

where $\mathcal{G}(t)$ is the set of experiences in the group corresponding to time t. Then the GRPO objective is:

$$L^{\text{GRPO}}(\phi) = \mathbb{E}_t \left[\min \left(r_t(\phi) \, \hat{A}_t^{\text{GRPO}}, \text{ clip} \left(r_t(\phi), \, 1 - \epsilon, \, 1 + \epsilon \right) \, \hat{A}_t^{\text{GRPO}} \right) \right],$$

where ϵ is a hyperparameter that limits the extent of policy updates.

Mathematical Formulation - MAGS

$$\begin{split} \min_{\theta,\phi,\psi} \mathcal{L} &= \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\ell \Big(f_{\theta} \Big(x, g_{\phi} \big(M(x;\psi) \big) \Big), y \Big) \right] \\ &- \lambda \, \mathbb{E}_{x\sim\mathcal{D}} \left[R \Big(M(x;\psi), g_{\phi} \big(M(x;\psi) \big) \Big) \right] \\ &+ \mu \, \mathcal{L}_{\text{graph}} \Big(M(x;\psi) \Big) + \nu \, \mathcal{R}(\theta,\phi,\psi). \end{split}$$

We define our objective as a composite loss that jointly optimizes the language model's prediction accuracy, memory retrieval/reinforcement, and dynamic graph structure regularization. Let:

- θ denote the parameters of the underlying LLM.
- ϕ denote the parameters governing the memory retrieval and update module.
- ψ denote the parameters controlling the dynamic graph (i.e., Liquid Knowledge Graph) structure.
- $\mathcal{D} = \{(x,y)\}$ be the dataset of input-output pairs.
- $M(x;\psi)$ be the memory representation extracted from input x (including both episodic and semantic components).
- $g_{\phi}(M(x;\psi))$ be the memory retrieval function that selects relevant memory nodes.
- $f_{\theta}(\cdot)$ be the generative function of the LLM augmented with the retrieved memory.
- $\ell(\cdot, \cdot)$ be a standard prediction loss (e.g., cross-entropy).

1. Prediction Loss Term:

$$\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\ell\Big(f_{\theta}\Big(x,g_{\phi}\big(M(x;\psi)\big)\Big),y\Big)\right]$$

ensures that the model's predictions are accurate given the input and the augmented memory.

2. Memory Reward Term:

$$-\lambda \mathbb{E}_{x \sim \mathcal{D}} \left[R \Big(M(x; \psi), g_{\phi} \big(M(x; \psi) \big) \Big) \right]$$

where $R(\cdot)$ is a reinforcement signal (e.g., derived from Group Relative Policy Optimization) that rewards effective memory recall and engram updates. The hyperparameter λ balances its influence.

3. Graph Regularization Term:

$$\mu \mathcal{L}_{\mathrm{graph}} \Big(M(x; \psi) \Big)$$

is a penalty term (which may include terms for edge density, conflict resolution, and pruning cost) to maintain an efficient, sparse, and interpretable Liquid Knowledge Graph. The hyperparameter μ regulates its strength.

4. Regularization Term:

$$\nu \mathcal{R}(\theta, \phi, \psi)$$

is a composite regularization term (including, for example, L_2 norms, memory capacity constraints, and complexity penalties) that ensures the overall system remains computationally feasible and stable. The hyperparameter ν controls its weight.

60%

Adherence

Results

30%

Improvement in game performance over base models

Current State

- Significant Speed & Efficiency Gains: Switched to GRPO via Unsloth, drastically improving RL model training speed (from ~31 hours to 3-7 hours) and memory efficiency (~15GB max).
- Improved Model Training Results: Successfully trained larger models (3B, 4B) on an expanded dataset, achieving significantly better performance for the memory agent's actions (~60% adherence).
- Key Integration Milestone Achieved: Integrated the trained model with the basic graph system for the first time, enabling preliminary end-to-end testing of the MAGS prototype.
- Initial Game Performance Demonstrated: Obtained first results showing the prototype provides a measurable performance improvement (~30%) over base models in the test game.
- Future Architecture Confirmed: Decision to split into separate recall/engram models with a router is reaffirmed and planned for the next phase based on prior experiments.
- Persistent Workflow Challenges: Still encountering significant workflow issues with Colab Free Tier instability (disconnections, download problems), despite faster training when sessions are stable.