				2.00					-
	1 2	ESIT I			CONTRACT OF	11000	40 - 4	6 E	
Reg. No.				7					

B.Tech / M.Tech (Integrated) DEGREE EXAMINATION, JULY 2023

First / Second Semester

21PYB101J - PHYSICS: ELECTROMAGNETIC THEORY, QUANTUM MECHANICS, WAVES AND OPTICS

(For the candidates admitted from the academic year 2021-2022 & 2022-2023)

Note: (i) (ii)		over	- A should be answered in to hall invigilator at the end - B and Part - C should be	of 40th minute.		t shoul	d be	han	ded
	: 3]	Hours				Max.	Ma	rks:	75
						Marks	BL	со	PO
				$20 \times 1 = 20 \text{M}$					
	5			ALL Questio	ns	1	1	1	2
	1.		wells third equation is	(D)	$C = 1.C = -\frac{4D}{4t}$				
			Curl B = - dE/dt	,	Curl E = - dB/dt				
		(C)	Curl B = - dB/dt	(D)	Curl E = - dM/dt				
	2	Diel	ectrics are			1	1	1	1
	۷.		Electric conductors	(B)	Materials that work under low				
		(A)	Electric conductors	(12)	voltages				
		(C)	Electric insulators	(D)	Hole conductors				
		(0)							
	3.	Stok	e's theorem uses which o	of the following	ng operation?	1	1	1	2
		(A)	Curl	(B)	Divergence				
		(C)	Gradient	(D)	Laplacian				
	4.	The	vector field whose curl is	zero is calle	d	1	2	1	-1
			rotational		irrotational				
		(C)	Solenoid	(D)	conservative				
	5.	The perm	relationship between neability is given by	magnetic	susceptibility and magnetic	1	2	2	1
		(A)	$\mu_{\rm r} = 1 + \chi$		$\mu_{\rm r} = 1$ - χ				
		(C)	$\mu_{\rm r} = \chi - 1$	(D)	$\chi = 1 + \mu_r$				
	6.	Ferr	rites are the modified stru	cture of		1	1	2	1
			Cobalt		Nickel				
		(C)	Iron	(D)	Gold				
	7.		gnetoresistance is the prop Magnetic moment	perty of a ma (B)	terial to change the value of Mobility	1	1	2	- 1
		(C)	Electrical resistance	(D)	Magnetism				
	8.	In a		e, S and S* b	blocks are rotated with respect to) 1	1	2	1
			60°		90°				

(D) 180°

14JF1/2,21PYB101J

(C) 120°

Page 1 of 3

9.	Del	proglie waves are characterized by	y a va	ariable quantity called	1	1	3	1
	(A)	Wave function		electron				
	(C)	photon	` '	phonon				
10.	In I	In Davisson and Germer's 'experiment target is used to study the						
		ection of electrons						
		nickel	(B)	lithium				
	(C)	calcium	(D)	iron				
11.	Cal	culate the de-Broglie wavelength	if the	e momentum is 'p'	1	1	3	1
	(A)	$\lambda = p/h$						
	(C)	$\lambda = hp$	(D)	$\lambda = hp^2$				
12.		scattering is involved in C	omp	ton scattering of X-rays	1	1	4	1
		Raman		Rayleigh				
	(C)	Elastic		Inelastic				
13.	The	Alternate bright and dark bands a	are ca	alled	1	1	4	1
		Interference		Diffraction				
	(C)	Polarization		Reflection				
14.	The is	source of light and the screen are	at fi	nite distances from the obstacle	1	1	4	1
		Fraunhoffer diffraction	(B)	Fresnel diffraction				
	(C)	Polarization	. ,	Scattering				
15.	The	phenomenon of diffraction can be	e und	derstood using	1	1	4	1
	(A)			Fraunhofer				
		Uncertainty principle	` /	Fresnel				
16.	A N	icol prism is made from C ₁	ystal	l.	1	1	4	1
		Calcite	-	Nickel				
	(C)	Cobalt	1 1	Zinc				
17.	The	average lifetime of carriers in the	exci	ted state is seconds	1	1	3	1
	(A)	10^{-2}	(B)	10-8				
	(C)	10-32		10-34				
18.	A pa	ir of mirrors placed on either sid	de of	the active medium is known as	1	1	5	1
	(A)	Pumping mechanism	(B)	Active medium				
	(C)	Directionality		Optical resonator				
19.	In th	e mode of the Carbon dio	xide	laser, the molecule ceases to be	1	1	5	1
	exact	tly linear as the atoms move perpe	endic	cular to the molecular axis.				
		1 11		asymmetric				
	(C)	bending	(D)	constant				
20.		width of multi mode optical fibe			1	1	5	1
	, ,			2000 MHz				
	(C)	50 MHz	(D)	5000 MHz				

	$PART - B (5 \times 8 = 40 Marks)$ Answer ALL Questions	Marks	BL	СО	PO
21. a.	Interpret the Gauss divergence theorem and Stokes theorem along with the equation.	8	4	1	2
	(OR)				
Ъ.	Explain the various polarization mechanisms in the dielectric material.	8	3	1	1
22. a.	Compare the Soft and Hard magnetic materials.	8	3	2	1
	(OR)				
b.	Illustrate the regular and inverse Spinel structure of ferrites with a neat diagram.	8	3	2	2
23. a.	Derive the Schrodinger time-independent wave equation.	8	3	3	4
	(OR)				
b.	Explain the experimental support of the existence of matter waves with a neat sketch using Davisson and Germer's diffraction setup.	8	3	3	1
24. a.	Describe the intensity distribution in the Fraunhofer diffraction pattern due to a double slit.	8	4	4	2
	(OD)				
b.	(OR) Explain the production and detection of circularly polarized light using a quarter wave plate.	8	3	4	2
25. a.	Describe the construction and working of the CO ₂ laser with the necessary diagrams.	8	3	5	3
	(OD)				
b.	OR) Define the numerical aperture and acceptance angle. Derive the expression for numerical aperture.	8	4	5	2
	$PART - C (1 \times 15 = 15 Marks)$	Marks	BL	CO	PO
	Answer ANY ONE Question				
26,	Interpret Maxwell's equation for electromagnetism from fundamental laws of electricity and magnetism.	15	4	1	2
27.	Describe the application of the Schrodinger wave equation to a particle enclosed in a one-dimensional potential box.	15	4	3	4

* * * * *

