Corrections des exercices sur les fonctions affines

Exercice 1:

a) Une fonction est affine si elle est de la forme $x \mapsto ax + b$, où a et b sont deux nombres relatifs. Les fonctions f, g, h, i et k sont donc affines.

b) Une fonction est linéaire si elle est de la forme $x \mapsto ax$, où a est un nombre relatif. Les fonctions i et k sont donc linéaires.

c) Une fonction est constante si elle est de la forme $x \mapsto k$, où k est un nombre relatif. La fonction *g* est donc constante.

d) Une fonction n'est pas affine si elle n'est pas de la forme $x \mapsto ax + b$. La fonction *j* n'est donc pas affine.

En fait:

La fonction $f: x \mapsto -4x + 7$ est de la forme $x \mapsto ax + b$ avec a = -4 et b = 7: elle est donc affine, de coefficient de linéarité -4 et d'ordonnée à l'origine 7.

La fonction $g: x \mapsto -4$ est de la forme $x \mapsto k$ avec k = -4: elle est donc constante.

La fonction $h: x \mapsto 4-x$ est de la forme $x \mapsto ax+b$ avec a=-1 et b=4: elle est donc affine, de coefficient de linéarité -1 et d'ordonnée à l'origine 4.

La fonction $i: x \mapsto 4x$ est de la forme $x \mapsto ax$ avec a = 4: elle est donc linéaire, de coefficient de linéarité 4.

La fonction $k: x \mapsto \frac{x}{4}$ est de la forme $x \mapsto ax$ avec $a = \frac{1}{4}$: elle est donc linéaire, de coefficient de linéarité $\frac{1}{4}$.

Exercice 2:

$$f(0) = -2 \times 0$$

$$f(1) = -2 \times 1 + 1$$

$$f(-7) = -2 \times (-7) + 5$$

$$f(3.5) = -2 \times 3.5 + 5$$

$$f(0) = -2$$

$$f(0) = 5$$

$$f(1) = -2 \times 1 + 5$$
$$f(1) = -2 + 5$$

$$f(-7) = 14 + 5$$

 $f(-7) = 19$.

$$f(-7) = -2 \times (-7) + 5$$
 $f(3,5) = -2 \times 3, 5 + 5$
 $f(-7) = 14 + 5$ $f(3,5) = -7 + 5$
 $f(-7) = 19$. $f(3,5) = -2$.

Les images de 0; 1; -7 et 3,5 par la fonction f sont respectivement 5; 3; 19 et -2.

$$f(x) = 5$$

$$-2x + 5 = 5$$

$$2x = 5 - 5$$

$$-2x+5=3$$
$$2x=5-3$$

$$f(x)=1$$

-2x+5=1
2x=5-1

$$f(x) = 0$$
$$-2x + 5 = 0$$

$$2x = 0$$

x = 0.

$$x = \frac{2}{2}$$

$$x = \frac{4}{2}$$

$$x = \frac{5}{2}$$

Chacun des nombres 5 ; 3 ; 1 et 0 admet un unique antécédent par la fonction f : c'est respectivement 0 ; 1 ; 2 et

Exercice 3:

- 1) Le prix à payer en \in en fonction de x avec l'option tarif plein est modélisé par la fonction $p: x \mapsto 0.9x$. La fonction p est de la forme $x \mapsto ax$ avec a = 0.9: elle est donc linéaire, de coefficient de linéarité 0.9.
- 2) Le prix à payer en \in en fonction de x avec l'option abonné est modélisé par la fonction $a: x \mapsto 10 + 0, 5x$. La fonction a est de la forme $x \mapsto ax + b$ avec a = 0, 5 et b = 10: elle est donc affine, de coefficient de linéarité 0,5 et d'ordonnée à l'origine 10.

3) Tableau:

Nombre de livres empruntés	50	20	10
Prix payé au tarif plein	45	18	9
Prix payé au tarif abonné	35	20	15

4) a)
$$0.9x = 0.5x + 10$$

$$0.9x - 0.5x = 10$$

$$0.4x = 10$$

$$x = \frac{10}{0.4}$$

$$x = 25$$

L'équation admet une unique solution : c'est 25.

b) La solution trouvée (25) représente <u>le nombre de livres pour lequel les prix en tarif plein et en tarif abonné sont identiques.</u>