

- The remainder value is added to the data to be sent as an error control code.
- The remainder zero in receiver side means that error-free transmission.
- Common polynomials used for CRC: 13-bits, 17-bits, 33-bits
 The number of undetectable errors is almost zero
- Commonly used polynomials in CRC technique:
- x¹²+x¹¹+x³+x+1 x¹⁶+x¹⁵+x²+1 x¹⁶+x¹²+x⁵+1

- $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$

Example: Data Sent: 100100, polynom: $x^3 + x^2 + 1$, CRC = ?

Checksum

• The sender divides the data into N-bits parts (usually 16 bits are used).

- The parts are collected using the first complementary arithmetic.
 - In this way, a total value of only N bits is obtained
- · Calculate two's complement using summed value
 - The calculated value is added to the end of the information to be sent.
- The checksum detects all of the odd errors and most of the even numbers.
 - However, if one or more bits in a part are 0 when they are 1, but there is a 0 when 1 in another part, the error will not be understood because there will be no difference in this column sum.

• $R_1=B_1\oplus B_3\oplus B_5\oplus B_7\oplus B_9\oplus B_{11}$

- R₂=B₂\theta B₃\theta B₆\theta B₇\theta B₁₀\theta B₁₁ R₃=B₄\theta B₅\theta B₆\theta B₇ R₄=B₈\theta B₉\theta B₁₀\theta B₁₁

2	0	0	1	0	2. bit error
3	0	0	1		3. bit error
4	0	1	0	0	4. bit error
5	0		0	1	5. bit error
6	0	1	1	0	bit error
7	0	1	1	1	7. bit error
8	1	0	0	0	8. bit error
9	1	0	0	1	9. bit error
10	1	0	1	0	10. bit error
11	1	0	1	1	11. bit error

B ₁₁	\mathbf{B}_{10}	\mathbf{B}_{9}	$\mathbf{B_8}$	\mathbf{B}_7	\mathbf{B}_{6}	\mathbf{B}_{5}	\mathbf{B}_4	\mathbf{B}_3	\mathbf{B}_2	\mathbf{B}_1
\mathbf{D}_7	D_6	D ₅	R ₄	D ₄	D_3	D_2	R ₃	D_1	R ₂	R ₁

