x in X	
	x in X

Thm

Lem 2

if f: X to Y is a homotopy equiv., then $f_*: \pi_1(X, x)$ to $\pi_1(Y, f(x))$ is an iso

 $\begin{tabular}{ll} $ \underline{Lem \ 1} $ & if \ \phi : G \ to \ G' \ and \ \psi : G' \ to \ G'' \ are \ maps \\ & s.t. \ \psi \circ \phi \ is \ bijective \end{tabular}$

let h : $X \times [0, 1]$ to Y be a homotopy set $f_0(s) = h(s, 0)$, $f_0(s) = h(s, 1)$,

 $\alpha(t) = h(0, t)$ [starting pt at time t]

then φ is injective and ψ is surjective

then we have $f_{1, *} = \check{\alpha} \circ f_{0, *} : \pi_{1}(X, x) \text{ to } \pi_{1}(Y, f_{1}(x))$

here, α is a path in Y and $\check{\alpha}([\gamma]) = [\alpha'] * [\gamma] * [\alpha]$ thus $\check{\alpha}$ is an <u>automorphism</u> of $\pi_1(Y, f_1(x))$

Pf of Thm from Lem's

have g : Y to X s.t. $g \circ f$ is homotopic to id_X $f \circ g$ is homotopic to id_Y

now look at $(f \circ g \circ f)_* = f_* \circ g_* \circ f_*$: $\pi_1(X, x)$ to $\pi_1(Y, f_1(x))$

by lem 2, $g_{-}^{*} \circ f_{-}^{*} = (g \circ f)_{-}^{*} = \breve{\alpha}_{-}^{*} X \circ id_{-}^{*} \{X, *\}$ $= \breve{\alpha}_{-}^{*} X$ $f_{-}^{*} \circ g_{-}^{*} = (f \circ g)_{-}^{*} = \breve{\alpha}_{-}^{*} Y \circ id_{-}^{*} \{Y, *\}$ $= \breve{\alpha}_{-}^{*} Y$

for some paths α_X , α_Y in X, Y, respectively

so, by lem 1, f_* is both injective and surjective i.e., f * is bijective □

to finish off, some more discussion of retracts: recall that

- a function-theoretic <u>retract</u> is
 a map r with a right inverse
- a <u>retract</u> of a space X onto a subspace A is
 a map r : X to A s.t. r(a) = a for all a in A
 here, r ∘ i = id_A, where i : A to X is inclusion

<u>Df</u> a deformation retract of X onto A is a homotopy h : $X \times [0, 1]$ to X s.t. $h(-, 0) = id_X$ h(-, 1) has image A, $h(-, t)|_A = id_A$ for all t

sometimes we also say that A is, itself, the <u>deformation retract</u> of X [how does this relate to homotopy equivalences?]

if h is a deformation retract of X onto A,
r: X to A is given by r(x) = h(x, 1),
i: A to X is the inclusion,
then r and i form a homotopy equiv.

Pf $r \circ i = id_A$ h is a homotopy from id_X to $i \circ r$

Let $X = R^2 - \{(0, 0)\}$ and $A = S^1$ here r is radial projection the point: can choose h so that, at any t, the map h(-, t) restricts to id_{S^1} so a deformation retract is just a special kind of homotopy equivalence

(Munkres §68–69) next: Seifert–van Kampen first: more group theory

<u>Df</u> for any set X, let

$$X^{\pm} = X cup \{x^{-1}\} \mid x in X\}$$

where x^{-1} is just a formal symbol indexed by x

- a (signed) word in X is a finite sequence of elts of X^+
- a word is <u>reduced</u> iff no consecutive elts look like "x, x^{-1}" or "x^{-1}, x"

an <u>elementary reduction</u> in a word w is the operation of deleting such consec elts from w

a <u>reduction</u> of w is a reduced[!] word obtained from w by successive elementary reductions

 \underline{Ex} let $X = \{g, h, k\}$ and [from Terry Tao]

 $w = g^{-1}k^{-1}gk k^{-1} g^{-1}h^{-1}gh k$

elementary reductions give g^{-1}k^{-1}h^{-1}ghk

<u>Thm</u> every word in X has a unique reduction

<u>Pf</u> existence: words have finite <u>length</u>

uniqueness: induct on the length |w|

Claim Implies Thm

if w is empty, then done
else let w to u_1 to u_2 to ... to u_m
w to v_1 to v_2 to ... to v_n
be two chains of elementary reductions
with u m and v n reduced

if u_1 = v_1, then u_m = v_n by the inductive hyp.

because |u_1| = |v_1| < |w|
otherwise, let w" be a reduction of w'
then w" is also a reduction of both u_1 and v_1
so u_m = w" = v_n, again by the inductive hyp.

<u>Claim</u> either u_1 = v_1
or there is a word w' obtained from both
by a single elementary reduction

Df let v|w denote concatenation of v and w the free group generated by X is

Pf of Claim either the elementary reductions from w to u_1, v_1 overlap or they do not: check each case separately

F_X = {reduced words in X}

under the group law $v \cdot w = reduction(v|w)$ we call this <u>concatenation</u> as well, and drop the •

associativity:
reduct(reduct(u v) w)
= reduct(u v w)
= reduct(u reduct(v w))

[what is the id elt?] id_{F_X} = empty word [inverses should be clear]

Universal Property of Free Groups

for any group G, there is a bijection

{set-theoretic maps X to G} = {hom.'s F_X to G}

f : X to G goes to ϕ_f : F_X to G def by $\phi_f(x1^e1, x2^e2, ...) = f(x1)^e1^*f(x2)^e2^*...)$

[F_X is the "freest", or "most universal", way to build a group from an <u>arbitrary</u> set X]

if X is finite, and we only care about n = |X|, then we write F_n in place of F_X

 $\underline{\mathsf{Ex}}$ F_1 is a copy of Z

Groups via Generators and Relations

<u>Df</u> for any S sub G, the subgroup of G generated by S is both:

- the image of the hom. F_S to G corresponding to the inclusion of S
- the unique minimal subgroup of G containing S

if it is G, then we say S is generating set for G in this case, the map

F_S to G

is surjective [but usually F_S is much much larger] [how to measure the shrinkage?]

recall: the \underline{kernel} of a homomorphism $\phi\colon G$ to K is

$$ker(\phi) = \{g \text{ in } G \mid \phi(g) = e_K\}$$

Fact a subgroup H sub G is a kernel iff H is <u>normal</u>: i.e., gHg^{-1} = H for all g

[where $gHg^{-1} = \{ghg^{-1} \mid h \text{ in } H\}$]

<u>Df</u> for any R sub G and generating set S:

R is a set of relations for G wrt S iff ker(F_S to G) is the minimal normal subgroup of G containing R

in this case, we write $G = \langle S \mid R \rangle$ and say G is gen'd by S modulo the relations R

Ex up to iso, a unique group of size 2:

$$G = \{e, s\}$$
 s.t. $e^*e = s^*s = e$
 $s^*e = e^*s = s$
 $S = \{s\}$ generates G

F_S to G sends powers of s to powers of s $ker(F_S to G) = \{even powers of s\}$ altogether, $G = \langle s | s^2 \rangle$