

UNISONIC TECHNOLOGIES CO., LTD

UT60N03 **Power MOSFET**

30V, 60A N-CHANNEL LOGIC LEVEL MOSFET

DESCRIPTION

This device employs advanced MOSFET technology and features low gate charge while maintaining low on-resistance.

Optimized for switching applications, this device improves the overall efficiency of DC/DC converters and allows operation to higher switching frequencies.

FEATURES

- * $R_{DS(ON)}$ < 23m Ω @ V_{GS} =10V, I_D =30A
- * $R_{DS(ON)}$ < 30m Ω @ V_{GS} =4.5V, I_{D} =19A
- * Low Capacitance
- * Low Gate Charge
- * Fast Switching Capability
- * Avalanche Energy Specified

SYMBOL

ORDERING INFORMATION

Ordering	Dookogo	Pin Assignment			Dooking		
Lead Free	Halogen Free	Package	1	2	3	Packing	
UT60N03L-TA3-T	UT60N03G-TA3-T	TO-220	G	D	S	Tube	
UT60N03L-TM3-T	UT60N03G-TM3-T	TO-251	G	D	S	Tube	
UT60N03L-TN3-R	UT60N03G-TN3-R	TO-252	G	D	S	Tape Reel	
UT60N03L-TND-R	UT60N03G-TND-R	TO-252D	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

TO-220 TO-251 TO-252

MARKING

UT60N03 Power MOSFET

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	30	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Continuous Drain Current (V _{GS} =10V)		I _D	60	Α	
Power Dissipation	TO-220	P _D	60	W	
	TO-251/TO-252		45		
Derate above 25°C	TO-220		0.4	\\\\\°C	
	TO-251/TO-252		0.37	W/°C	
Junction Temperature		TJ	+150	°C	
Storage Temperature		T _{STG}	-55 ~ + 150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL RESISTANCES CHARACTERISTICS

PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient	TO-220	0	62.5	°C/W	
	TO-251/TO-252	θ _{JA}	100		
Junction to Case	TO-220	0	2.5	°C/W	
	TO-251/TO-252	θις	2.73		

■ ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
OFF CHARACTERISTICS	<u> </u>			l		<u>I</u>	
Drain-Source Breakdown Voltage		BV _{DSS}	V _{GS} =0V, I _D =250μA				٧
Drain-Source Leakage Current		I _{DSS}	V _{DS} =25V, V _{GS} =0V			1	μA
Gate-Source Leakage Current		I _{GSS}	V _{DS} =0V, V _{GS} =±20V			±100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	1		3	٧
Static Drain Course On Besisters		В	V _{GS} =10V, I _D =30A		14	23	m0
Static Drain-Source On-Resistance		R _{DS(ON)}	V _{GS} =4.5V, I _D =19A		24	30	mΩ
DYNAMIC PARAMETERS							
Input Capacitance		C_{ISS}	V _{DS} =15V, V _{GS} =0V, f=1MHz		900		pF
Output Capacitance		Coss			210		pF
Reverse Transfer Capacitance		C_{RSS}			90		pF
SWITCHING PARAMETERS							
Turn-ON Time		$t_{(ON)}$				90	ns
Turn-ON Delay Time		$t_{D(ON)}$			11		ns
Turn-ON Rise Time Turn-OFF Time Turn-OFF Delay Time Turn-OFF Fall-Time		t_{R}	V _{DD} =15V, I _D =7.9A, R _L =18Ω, V _{GS} =4.5V		49		ns
		$t_{(OFF)}$	VDD=13V, ID=7.9A, KL=1022, VGS=4.3V			83	ns
		$t_{D(OFF)}$			27		ns
		t _F			28		ns
Turn-ON Time		$t_{(ON)}$				48	ns
Turn-ON Delay Time		$t_{D(ON)}$			6		ns
Turn-ON Rise Time Turn-OFF Time		t_{R}	V_{DD} =15V, I_{D} =7.9A, R_{L} =18 Ω , V_{GS} =10V		26		ns
		$t_{(OFF)}$				120	ns
Turn-OFF Delay Time		$t_{D(OFF)}$			52		ns
Turn-OFF Fall-Time		t_{F}]		28		ns
Total Cate Charge	/	Q_{G}	V _{GS} =0V~5V,V _{DD} =15V,I _D =19A I _G =1.0mA		18	28	nC
Total Gate Charge	0V	Q G	V _{GS} =0V~10V,V _{DD} =15V,I _D =19A,I _G =1.0mA		9.6	14	IIC
Threshold Gate Charge		$Q_{G(TH)}$	V _{GS} =0V~1V,V _{DD} =15V,I _D =19A I _G =1.0mA		1.0	1.5	nC
		Q_GS	V _{DD} =15V, I _D =19A I _G =1.0mA		3.4		nC
		Q_GD	VDD		3.4		nC
SOURCE- DRAIN DIODE RATIN	NGS A	ND CHA	RACTERISTICS				
Drain-Source Diode Forward Voltage		e V _{SD}	I _{SD} =19A			1.25	V
			I _{SD} =10A			1.0	V
Reverse Recovery Time		t _{rr}	-I _{SD} =9A, dI _S /dt =100A/s,			58	ns
Reverse Recovery Charge		Q_{RR}				70	nC

UT60N03 Power MOSFET

■ TYPICAL CHARACTERISTICS

Switching Time Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.