Clasificación _

Econometría

Clasificación desde la

Casos de Uso

- Los problemas de clasificación corresponden a un ejemplo de aprendizaje supervisado donde el vector objetivo responde a un atributo discreto.
- Existen muchos fenómenos cuya primera aproximación es mediante la binarización: ¿existe o no existe una condición?
- Esta aproximación toma forma de un ensayo de Bernoulli.

Modelo de Probabilidad Lineal

• **Primera aproximación:** utilizar una regresión lineal asumiendo que nuestra variable dependiente mide la probabilidad de suceso.

$$y = \beta_0 + \beta_1 \times dist100 + \varepsilon_i$$

 La interpretación de los coeficientes se hace en consideración a la probabilidad de ocurrencia del suceso.

Limitantes del Modelo de Probabilidad Lineal

- El modelo LPM presenta fallas en la estimación:
 - Los parámetros estimados pueden tomar valores mayor a uno y menos que cero.
 - Los errores no siguen una distribución normal.
 - o La forma funcional lineal restringe las no linealidades en los extremos de la muestra.

Regresión Logística

 La estimación de los coeficientes en la regresión logística se realiza mediante el método de máxima verosimilitud.

$$\log\left(\frac{\Pr(y)}{1-\Pr(y)}\right) = \beta_0 + \beta_1 \times \text{dist100} + \varepsilon_i$$

Bondad de Ajuste

- La bondad de ajuste en los modelos estimados se evalúa con las métricas de Log-Likelihood.
- Buscamos encontrar un máximo de verosimilitud en una función: Esto implica un problema de optimización argmin.
- Existen dos métricas de interés:
 - Log-Likelihood: La verosimilitud del modelo ajustado.
 - LL-Null: La verosimilitud del modelo sin regresores.

Interpretación de Coeficientes

- Importante: No debemos interpretar los coeficientes como lineales.
- En la regresión logística los coeficientes estimados corresponden a los logaritmos de las chances de ocurrencia en el cambio en una unidad de x.
- El problema con la interpretación de los coeficientes como log-odds es que no tiene sentido para nosotros.

De log-odds a probabilidad

- El objetivo es traducir de log-odds a una declaración probabilística. Así generamos una explicación intuitiva sobre el efecto de una variable en la probabilidad de ocurrencia.
- Esto lo podemos lograr con la función logística inversa:

$$\mathsf{logit}^{-1}(x) = \frac{\mathsf{exp}(x)}{1 + \mathsf{exp}(-x)}$$

$$\mathsf{Pr}(\mathsf{Cambio} \ \mathsf{de} \ \mathsf{Pozo} = 1|X) = \mathsf{log}\Big(\frac{\mathsf{exp}(\beta_0 + \beta_1)}{1 - \mathsf{exp}(\beta_0 + \beta_1)}\Big)$$

Efecto Diferencial

- Al convertir una combinación lineal de log-odds estamos obteniendo la probabilidad de un punto específico.
- Para evaluar la contribución de X en la probabilidad de ocurrencia, debemos hacer lo siguiente:
 - Obtener la probabilidad de ocurrencia en escenario 1: $Pr(y = 1 | dist 100 = 100) = logit^{-1}(\mathbf{X}_i \boldsymbol{\beta})$
 - Obtener la probabilidad de ocurrencia en escenario 2: $Pr(y = 1|dist100 = 200) = logit^{-1}(\mathbf{X}_i\beta)$
 - \circ Restar ambas probabilidades: Pr(y = 1|dist100 = 200) Pr(y = 1|dist100 = 200)

Punto equidistante

- Podemos inferir en qué puntaje de X nos encontraremos con el caso equiprobable.
- Esto se conoce como dosis letal media en la literatura bioestadística.

$$\mathbf{x}_1 = \frac{-\hat{eta}_0}{\hat{eta}_1}$$

Relación entre LPM y Logit

• Podemos tomar los log odds de un modelo logístico y dividirlos por cuatro para obtener un intervalo superior de la contribución de X en y cuando cambia en 1 unidad.

Clasificación desde Machine Learning

Métricas de Desempeño

- No podemos implementar métricas como el Promedio del Error Cuadrático, dado que el método de optimización es distinto.
- Los modelos predictivos de clasificación generan dos tipos de predicciones:
 - o Predicción de probabilidad continua entre los límites de 0 y 1.
 - o Predicción de clase, que establece cuál es la más adecuada para una observación.
- Por lo general nos centraremos en la probabilidad de clase para evaluar el desempeño de un modelo de clasificación.

Matriz de Confusión

- ¿Qué es? Cruce de información predicha y etiquetas reales en la muestra de validación.
- Permite observar la cantidad

	Categoría Verdadera	
Predicción	Verdadero	Falso
Positivo	VP: Verdadero positivo	FP: Falso positivo
Negativo	FN: Falso negativo	VN: Verdadero negativo

Accuracy, Precision, Recall

• Exactitud: Casos correctamente predichos del total de observaciones.

$$\mathsf{Exactitud} = \frac{\mathsf{VP} + \mathsf{VN}}{\mathsf{VP} + \mathsf{VN} + \mathsf{FP} + \mathsf{FN}}$$

Precision: Etiquetas correctas en las positivas.

$$Precision = \frac{VP}{VP + FP}$$

Recall: Verdaderos positivos entre los predichos del modelo

$$Recall = \frac{VP}{VP + FN}$$

Curva ROC

- Permite evaluar el rango de errores del modelo.
- Evalúa la relación entre falsos positivos y verdaderos positivos.
 - En el eje X va la tasa de Falsos Positivos (falsas alarmas).
 - o En el eje Y va la tasa de Verdaderos Positivos.

Validación Cruzada

Motivación

- Situación común: no existen suficientes observaciones como para generar un estadístico de prueba robusto.
- Solución: Iterar de forma sucesiva simulando el entrenamiento del modelo en múltiples muestras.
- Por cada muestra se estima una métrica de desempeño

K-Fold Cross Validation

Leave One Out Cross Validation

- Versión extrema de K-Fold Cross Validation.
- Generamos tantos modelos con (n-1) observaciones como observaciones existan en una muestra.

¿Y qué es mejor?

 Ambos métodos representan posiciones extremas. La elección repercute en el trueque Sesgo-Varianza del modelo.

Desempeño del modelo logístico (Puntaje F1) condicional a la cantidad de validaciones cruzadas

{desafío} Academia de talentos digitales

www.desafiolatam.com