Θεμελιώδη Θέματα Επιστήμης Υπολογιστών

 Σ HMMY – Σ EM Φ E EM Π

3η ενότητα:

Υπολογισιμότητα και Πολυπλοκότητα

Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής

Κεντρικό ζήτημα της επιστήμης υπολογιστών

Τι μπορεί να μηχανοποιηθεί και μάλιστα αποδοτικά;

Ποια προβλήματα μπορούμε να λύσουμε με υπολογιστή και πόσο καλά;

Ποια ερωτήματα μπορούν να απαντηθούν με υπολογιστή;

- Θα φύγουμε ποτέ από το Μνημόνιο;
- Υπάρχει Θεός;
- Η πρόταση «αυτή η πρόταση είναι ψευδής» είναι αληθής;
- Ο αριθμός 2⁴³¹¹²⁶⁰⁹ 1 είναι πρώτος;

Ποια ερωτήματα μπορούν να απαντηθούν με υπολογιστή;

Προϋποθέσεις:

- Τα δεδομένα εισόδου και εξόδου μπορούν να κωδικοποιηθούν με σύμβολα
- Υπάρχει αυστηρά καθορισμένη σχέση μεταξύ τους

```
Παράδειγμα: εύρεση ΜΚΔ (gcd)
```

Είσοδος: (65, 26) Έξοδος: 13

Είσοδος: (91, 33) Έξοδος: 1

Υπολογιστικά προβλήματα

Τυπικά περιγράφονται με διμελείς σχέσεις (απεικονίσεις) μεταξύ συμβολοσειρών

Άλλα παραδείγματα:

- Αναγνώριση πρώτων αριθμών
 - $\Box 2^{43112609} 1 \rightarrow \text{«val»}$
 - □ 129 → «óχι»
- Συντομότερα μονοπάτια
 - □ (({a,b},3), ({a,c},2), ({b,d},1), ({c,d},5), ({c,e},1), ({d,e},1), a, d) → (a,c,e,d) $\acute{\eta}$ (a,b,d)

Υπολογιστικά προβλήματα

Τυπικά περιγράφονται με διμελείς σχέσεις (απεικονίσεις) μεταξύ συμβολοσειρών.

Άλλα παραδείγματα:

- Αναγνώριση πρώτων αριθμών
 - $\Box 2^{43112609} 1 \rightarrow \text{«val»}$
 - 129 → «óχι»
- Συντομότερα μονοπάτια
 - □ (({a,b},3), ({a,c},2), ({b,d},1), ({c,d},5), ({c,e},1), ({d,e},1), a, d) → (a,c,e,d) $\acute{\eta}$ (a,b,d)

Υπολογιστικά προβλήματα (συν.)

Εμφανίζονται σε:

- Internet (δρομολόγηση, συμφόρηση, θεωρία παιγνίων, ανάθεση πόρων, αναζήτηση)
- Βιολογία (αναδίπλωση πρωτεϊνών, γονιδίωμα, εξέλιξη)
- Κρυπτογραφία (ασφάλεια, μυστικότητα, ηλεκτρονικές υπογραφές, ψηφοφορίες)

Αποτελέσματα - σταθμοί

- Gödel (1931), Church(1936), Turing
 (1936): δεν μπορούν να επιλυθούν όλα τα υπολογιστικά προβλήματα με υπολογιστή
 - Πρόβλημα Τερματισμού (Halting Problem)
- Cook (1971), Karp (1972):
 από αυτά που επιλύονται, πολλά δεν μπορούν να επιλυθούν καλά
 - Πρόβλημα Περιοδεύοντος Πωλητή (Traveling Salesperson Problem, TSP)

Υπολογισιμότητα -Πολυπλοκότητα

- Υπολογισιμότητα (Computability): ποιά
 υπολογιστικά προβλήματα μπορούμε να λύσουμε;
- Υπολογιστική πολυπλοκότητα (Computational Complexity): πόσο καλά μπορούμε να τα λύσουμε;
 - ως προς το χρόνο
 - ως προς το χώρο/μνήμη
 - ως προς την κατανάλωση ενέργειας
 - □ ως προς bandwidth
 - **...**

Υπολογισιμότητα: το Πρόβλημα Τερματισμού

Πρόβλημα Τερματισμού (Halting Problem):

Δίνεται πρόγραμμα και είσοδος. Σταματάει το πρόγραμμα για αυτή την είσοδο (ή "τρέχει" επ' άπειρον);

Μια ισοδύναμη παραλλαγή είναι:

Δίνεται πρόγραμμα χωρίς είσοδο. Σταματάει;

Πρόβλημα Τερματισμού: μια ειδική περίπτωση

Έστω το πρόγραμμα

```
while x!=1 do
   if (x is even) then x=x/2 else x=3*x+1
```

Πρόβλημα του Collatz (Ulam):

Δίνεται φυσικός αριθμός x. Σταματάει το παραπάνω πρόγραμμα για είσοδο x;

■ Παράδειγμα: 7 -> 22 -> 11 -> 34 -> 17 -> 52 -> 26 -> 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1

Πρόβλημα Τερματισμού: μια ειδική περίπτωση (συν.)

```
while x!=1 do
if (x is even) then x=x/2 else x=3*x+1
```

- Εικασία Collatz: το πρόγραμμα σταματάει για κάθε φυσικό αριθμό x.
- Δεν γνωρίζουμε αν ισχύει η εικασία (ανοικτό ερώτημα)
 ούτε γνωρίζουμε αν το πρόβλημα Collatz είναι επιλύσιμο από υπολογιστή (αν δηλαδή μπορεί να υπάρχει πρόγραμμα που για είσοδο x να αποφαίνεται αν το πρόγραμμα Collatz σταματάει ή όχι).

Πρόβλημα Τερματισμού (Halting Problem):

Δίνεται πρόγραμμα και είσοδος. Σταματάει το πρόγραμμα για αυτή την είσοδο (ή "τρέχει" επ' άπειρον);

 Θεώρημα. Το πρόβλημα τερματισμού είναι μη επιλύσιμο. Δηλαδή, δεν υπάρχει πρόγραμμα που να απαντάει σε αυτή την ερώτηση.

Απόδειξη (α' τρόπος, με διαγωνιοποίηση):

- Έστω μια απαρίθμηση των προγραμμάτων Π₀, Π₁, ...
- Εστω ότι υπάρχει πρόγραμμα Τ, ώστε για κάθε Π_j, k , $T(\Pi_j, k) = "yes" αν <math>\Pi_j(k)$ σταματάει, "no" αλλιώς.
- Τότε υπάρχει και πρόγραμμα D που με είσοδο οποιοδήποτε k κάνει το αντίθετο από το Π_k(k), δηλ. αν το Π_k(k) σταματάει το D(k) "τρέχει" επ' άπειρον, και αν το Π_k(k) "τρέχει" επ' άπειρον το D(k) σταματάει:
 - D(k): if $T(\Pi_k, k)$ ="yes" then loop for ever else stop

```
Απόδειξη (α' τρόπος, συν.): έστω ότι το D είναι το \Pi_n
\Pi_n(k): \text{ if } T(\Pi_k, k) = \text{"yes" then loop for ever}
\text{else stop}
```

- Τι κάνει το Π_n(n);
 - □ Av T(Π_n,n)="yes" (δηλ. Π_n(n) σταματάει) τότε Π_n(n) τρέχει επ' άπειρον!
 - □ Av T(Π_n ,n))="no" (δηλ. Π_n (n) τρέχει επ' άπειρον) τότε Π_n (n) σταματάει!!
- ΑΤΟΠΟ: η μόνη υπόθεση που κάναμε είναι η ύπαρξη του προγράμματος Τ, άρα τέτοιο πρόγραμμα δεν μπορεί να υπάρχει!

Απόδειξη (β' τρόπος, έμμεση διαγωνιοποίηση):

- Έστω ότι υπάρχει πρόγραμμα Τ, ώστε για κάθε Π,x,
 Τ(Π,x) = "yes" αν Π(x) σταματάει, "no" αλλιώς.
- Τότε υπάρχει και πρόγραμμα D που με είσοδο οποιοδήποτε Π κάνει το αντίθετο από το Π(Π), δηλ. αν το Π(Π) σταματάει το D(Π) "τρέχει" επ' άπειρον, και αν το Π(Π) "τρέχει" επ' άπειρον το D(Π) σταματάει:

```
D(Π): if T(Π,Π)="yes" then loop for ever else stop
```

```
Απόδειξη (β' τρόπος, συν.):

D(D): if T(D,D)="yes" then loop for ever else stop
```

- Τι κάνει το D(D);
 - □ Av T(D,D) = "yes" (δηλ. D(D) σταματάει) τότε D(D) τρέχει επ' άπειρον!
 - \Box Av T(D,D) = "no" (δηλ. D(D) τρέχει επ' άπειρον) τότε D(D) σταματάει!!
- ΑΤΟΠΟ: η μόνη υπόθεση που κάναμε είναι η ύπαρξη του προγράμματος Τ, άρα τέτοιο πρόγραμμα δεν μπορεί να υπάρχει!

Πολυπλοκότητα υπολογιστικών προβλημάτων

- Για τα προβλήματα που επιλύονται (solvable, computable, decidable) μας ενδιαφέρει το πόσο καλά μπορεί να γίνει αυτό, δηλαδή πόσο γρήγορα, ή με πόση μνήμη, ή με πόσους επεξεργαστές (παραλληλία), ή με πόση κατανάλωση ενέργειας (sensor networks), κ.λπ.
- Αυτό λέγεται (υπολογιστική) πολυπλοκότητα.

Τι είναι πολυπλοκότητα;

- To 101101011101 είναι πιο πολύπλοκο από το 010101010101
- Τα θηλαστικά είναι πιο πολύπλοκα από τους ιούς.
- Το σκάκι είναι πιο πολύπλοκο από την τρίλιζα.
- Οι επικαλύψεις του Escher είναι πιο πολύπλοκες από τα πλακάκια του μπάνιου.
- Οι πρώτοι αριθμοί είναι πιο πολύπλοκοι από τους περιττούς.

ним

Τι είναι υπολογιστική πολυπλοκότητα;

- Η δυσκολία του να υπολογίσουμε τη λύση σε ένα πρόβλημα.
- Επιπλέον, ένας τρόπος για να εκφράσουμε μαθηματικά τη διαίσθησή μας ότι οι πρώτοι αριθμοί είναι πιο πολύπλοκοι από τους περιττούς.
- Το πρόβλημα «Δίνεται χ. Είναι πρώτος;» είναι υπολογιστικά πιο δύσκολο από το πρόβλημα «Δίνεται χ. Είναι περιττός;»

Η πρόκληση: σύγχρονα δίκτυα και συστήματα

- Πολύπλοκα, πολλές (ετερογενείς) συνιστώσες που αλληλεπιδρούν.
- Διακίνηση τεράστιου όγκου πληροφορίας.
- Ανάγκη για άμεση επεξεργασία δεδομένων και λήψη αποφάσεων.

 Ανάγκη για ταχύτατη επίλυση υπολογιστικών προβλημάτων μεγάλης κλίμακας.

Καθορισμός πολυπλοκότητας υπολογιστικών προβλημάτων

- Αλγόριθμοι: παρέχουν άνω φράγματα
 - □ ταξινόμηση (με bubblesort): O(n²)
- Αποδείξεις δυσκολίας: παρέχουν κάτω φράγματα
 - \square ταξινόμηση με συγκρίσεις: $\Omega(n \log n)$
 - ΝΡ-πληρότητα: ισχυρή ένδειξη απουσίας αποδοτικού αλγορίθμου

million dollar question! (Clay Institute millennium problems)

Πολυπλοκότητα αλγορίθμου

 Μέτρηση του κόστους του σαν συνάρτηση των υπολογιστικών πόρων που απαιτούνται σε σχέση με το μέγεθος της (αναπαράστασης της) εισόδου:

```
cost_A(n) = max {κόστος αλγορ. Α για είσοδο x} για όλες τις εισόδους χ μήκους n
```

Παράδειγμα: time-cost_{MS}(n) <= c n logn
 (MS = MergeSort, c κάποια σταθερά)

Πολυπλοκότητα αλγορίθμου: απλοποιήσεις

- Συχνά θεωρούμε ως μέγεθος της εισόδου το πλήθος των δεδομένων μόνο (αγνοώντας το μέγεθός τους σε bits).
 Αυτό δεν δημιουργεί πρόβλημα εφ'όσον ο αλγόριθμος δεν περιέχει πράξεις ή διαδικασίες που να κοστίζουν εκθετικά ως προς το μέγεθος των δεδομένων σε bits.
- Επίσης θεωρούμε ότι κάθε στοιχειώδης αριθμητική πράξη (πρόσθεση, πολ/σμός, σύγκριση) έχει κόστος 1 βήματος. Αυτό λέγεται αριθμητική πολυπλοκότητα (arithmetic complexity) και είναι συνήθως αρκετά ακριβής μέτρηση. Η ανάλυση πολυπλοκότητας σε πλήθος πράξεων ψηφίων λέγεται bit complexity.

Πολυπλοκότητα προβλήματος

 Είναι η πολυπλοκότητα του βέλτιστου αλγορίθμου που λύνει το πρόβλημα.

```
cost_{\Pi}(n) = min \{cost_{A}(n)\}
για όλους τους αλγορίθμους
Α που επιλύουν το Π
```

- Παράδειγμα: time-cost_{SORT}(n) <= c n logn [= O(n log n)]
 (SORT = πρόβλημα ταξινόμησης)
- Για να δείξουμε βελτιστότητα αλγορίθμου χρειάζεται και απόδειξη αντίστοιχου κάτω φράγματος.

Πολυπλοκότητα ταξινόμησης: κάτω φράγμα

Οποιοσδήποτε αλγόριθμος ταξινόμησης *n* αριθμών χρειάζεται Ω(*n* log*n*) συγκρίσεις:

- Είσοδος (x₁, x₂, . . . , x_n)
- Αρχικά n! περιπτώσεις:

$$X_1 < X_2 < X_3 < \ldots < X_n$$

 $X_2 < X_1 < X_3 < \ldots < X_n$
 $X_3 < X_1 < X_2 < \ldots < X_n$

- Σε κάθε σύγκριση το πλήθος περιπτώσεων υποδιπλ/ται (στην καλύτερη περίπτωση)
- Πλήθος συγκρίσεων: ≥ log(n!) ≥ (n logn)/4

Πολυπλοκότητα ταξινόμησης: κάτω φράγμα [χ, <? χ,]

Πολυπλοκότητα ταξινόμησης: κάτω φράνμα

Πολυπλοκότητα ταξινόμησης: κάτω

P = ? NP

- Τι είναι πιο εύκολο; Να βρείτε τις λύσεις των ασκήσεων ή να τις αντιγράψετε;
- Πόσο πιο δύσκολο είναι να βρούμε κάποια λύση από το να την επαληθεύσουμε;
- Αυτό είναι ουσιαστικά το P =? NP πρόβλημα, που αποτελεί το πιο σημαντικό ανοικτό πρόβλημα της Θεωρητικής Πληροφορικής σήμερα.

Στο http://www.claymath.org προσφέρονται 1εκ. δολάρια για τη λύση του!

Το πρόβλημα του Euler

Δίνεται γράφος. Υπάρχει τρόπος να περάσουμε από κάθε ακμή μια ακριβώς φορά;

Seven Bridges of Königsberg

Source:

http://physics.weber.edu/carroll/honors_images/BarbasiBridges.jpg

Επίλυση του προβλήματος Euler

Το πρόβλημα του Euler είναι ευεπίλυτο. Η απάντηση είναι 'ναι' αν και μόνο αν κάθε κόμβος ν έχει άρτιο # γειτόνων

Επίλυση του προβλήματος Euler

 Το πρόβλημα του Euler είναι ευεπίλυτο. Η απάντηση είναι 'ναι' αν και μόνο αν κάθε κόμβος ν έχει άρτιο # γειτόνων

Επίλυση του προβλήματος Euler

- Το πρόβλημα του Euler είναι ευεπίλυτο.
- Η απάντηση είναι 'ναι' ανν κάθε κόμβος ν έχει άρτιο # γειτόνων

- Για κάθε γράφο με η κόμβους αρκούν η² έλεγχοι: χρόνος πολυωνυμικός ως προς το μέγεθος της εισόδου.
- Τέτοια προβλήματα που η επίλυσή τους χρειάζεται χρόνο O(n), O(n²), O(n³) ... λέμε ότι ανήκουν στην κλάση P (polynomial time).

Το πρόβλημα του Hamilton

Δίνεται γράφος. Υπάρχει τρόπος να περάσουμε από κάθε κορυφή μια ακριβώς φορά;

Source: http://jwilson.coe.uga.edu/emat6680/yamaguchi/emat6690/essay1/qt.html

Το πρόβλημα του Hamilton

Δίνεται γράφος. Υπάρχει τρόπος να περάσουμε από κάθε κορυφή μια ακριβώς φορά;

Source: http://jwilson.coe.uga.edu/emat6680/yamaguchi/emat6690/essay1/gt.html

Πολυπλοκότητα προβλήματος Hamilton

- Το πρόβλημα του Hamilton είναι πιο δύσκολο (δυσεπίλυτο). Δεν γνωρίζουμε κανέναν γρήγορο αλγόριθμο γι' αυτό. Ο καλύτερος γνωστός αλγόριθμος δεν διαφέρει ουσιαστικά από το να δοκιμάσουμε όλους τους συνδυασμούς, που είναι πολλοί (n!). Αν όμως μας προτείνουν μια λύση, μπορούμε να την επαληθεύσουμε πολύ γρήγορα.
- Τέτοια προβλήματα που η επαλήθευση μιας λύσης τους (αν υπάρχει και μας δοθεί) χρειάζεται χρόνο O(n), O(n²), O(n³), ..., λέμε ότι ανήκουν στην κλάση NP (non-deterministic polynomial time).

ΝΡ-πλήρη προβλήματα

- Το πρόβλημα του Hamilton μπορεί να έχει γρήγορο αλγόριθμο. Δεν πιστεύουμε όμως ότι έχει (κανείς δεν έχει βρει ως τώρα). Ούτε όμως καταφέραμε να αποδείξουμε κάτι τέτοιο.
- Το μόνο που μπορούμε να δείξουμε είναι ότι μια πλειάδα από προβλήματα που μας ενδιαφέρουν είναι της ίδιας δυσκολίας με αυτό.
- Τα προβλήματα που είναι το ίδιο δύσκολα με το πρόβλημα του Hamilton τα λέμε NP-πλήρη (NPcomplete).

Κλάσεις πολυπλοκότητας

- P (πολυωνυμικός χρόνος): Το σύνολο των προβλημάτων που λύνονται σε πολυωνυμικό χρόνο.
 Θεωρούνται τα προβλήματα που μπορούμε να λύσουμε στην πράξη.
 - Το πρόβλημα του Euler ανήκει στο P
- ΝΡ (μη ντετερμινιστικός πολυωνυμικός χρόνος): Το σύνολο των προβλημάτων που μπορούμε να επαληθεύσουμε τη λύση τους (αν μας δοθεί) σε πολυωνυμικό χρόνο.
- ΝΡ-πλήρη: Το υποσύνολο των πιο δύσκολων προβλημάτων του ΝΡ για κανένα δεν έχει βρεθεί πολυωνυμικός αλγόριθμος. Αν οποιοδήποτε από αυτά τα προβλήματα ανήκει στο Ρ, τότε P=NP.
 - Το πρόβλημα του Hamilton είναι NP-πλήρες.

Ο χάρτης των κλάσεων (μέχρι τώρα)

Γιατί θέλουμε πολυωνυμικό χρόνο;

log <i>n</i>	n	n^2	2 ⁿ
3.322	10	100	1024
6.644	100	10000	1267650600228229401496703205376
9.966	1000	1000000	$(1267650600228229401496703205376)^{10}$

Ο ρυθμός αύξησης των εκθετικών συναρτήσεων είναι απαγορευτικός για μεγάλα στιγμιότυπα!

Γιατί θέλουμε πολυωνυμικό

χρόνο;

log <i>n</i>	n	n^2	2 ⁿ
3.322	10	100	1024
6.644	100	10000	12676
9.966	1000	1000000	(1267)

Ο ρυθμός αύξησης των εκθετικών συναρτήσεων είναι απαγορευτικός για μεγάλα στιγμιότυπα!

Αποδείξεις ΝΡ-πληρότητας

- Πρόβλημα Πλανόδιου Πωλητή (Traveling Salesperson Problem, TSP)
 - Δίνεται πλήρης γράφος με *n* κόμβους, οι αποστάσεις μεταξύ τους d(v_i,v_k) και ένας φυσικός αριθμός *D*.
 - Υπάρχει διαδρομή που να περνάε μία φορά από κάθε κόμβο με συνολικό κόστος <= D;

http://myprojectsdiary.blogspot.com/2005_03_01_archive.html

Αποδείξεις ΝΡ-πληρότητας: αναγωγές

- Δοθέντος ενός στιγμιοτύπου (εισόδου) του προβλήματος Hamilton μπορούμε να το αναγάγουμε σε στιγμιότυπο του προβλήματος TSP:
 - Μετατρέπουμε τον γράφο σε πλήρη.
 - Στις υπάρχουσες ακμές θέτουμε απόσταση 1, ενώ στις νέες θέτουμε απόσταση 2.
 - □ Θέτουμε *D*=*n*.

Αποδείξεις ΝΡ-πληρότητας: αναγωγές

- Είναι εύκολο να δούμε ότι η απάντηση για το αρχικό στιγμιότυπο (του προβλήματος Hamilton) είναι «ναι», δηλαδή υπάρχει κύκλος Hamilton στον αρχικό γράφο, αν και μόνο αν η απάντηση για το νέο στιγμιότυπο (του προβλήματος TSP) είναι «ναι», δηλαδή υπάρχει κύκλος κόστους η στον νέο γράφο.
- Επομένως είναι μάλλον απίθανο το TSP να λύνεται σε πολυωνυμικό χρόνο.

Άλλα ΝΡ-πλήρη προβλήματα

- Ικανοποιησιμότητα (Satisfiability)
 - Δίνεται προτασιακός τύπος Boole φ(x₁,...,x_n).
 Υπάρχει ανάθεση αληθοτιμών για τα x₁,...,x_n που να ικανοποιεί την φ;
- Διαμέριση (Partition)
 - Δίνονται ακέραιοι a₁,...,a_n. Μπορούν να χωριστούν σε δύο σύνολα με ίσα αθροίσματα;
- Πάρα πολλά άλλα προβλήματα.

Άλλα ΝΡ-πλήρη προβλήματα

Partition

- Δίνονται ακέραιοι a₁,...,a_n μπορούμε να τους διαμερίσουμε σε δύο σύνολα ίσου αθροίσματος;
- Παράδειγμα [Lance Fortnow, The Golden Ticket: P,
 NP, and the Search for the Impossible, 2013]

```
14175, 15055, 16616, 17495, 18072, 19390, 19731, 22161, 23320, 23717, 26343, 28725, 29127, 32257, 40020, 41867, 43155, 46298, 56734, 57176, 58306, 61848, 65825, 66042, 68634, 69189, 72936, 74287, 74537, 81942, 82027, 82623, 82802, 82988, 90467, 97042, 97507, 99564.
```

- Μπορείτε να βρείτε τη λύση;
- > Κάθε σύνολο θα πρέπει να έχει άθροισμα 1000000

Ενδιάμεση πολυπλοκότητα;

Factoring

Δίνεται σύνθετος αριθμός Ν, βρείτε την παραγοντοποίησή του:

```
123018668453011775513049495838496272077285356959533479219732245215172640050726
365751874520219978646938995647494277406384592519255732630345373154826850791702
6122142913461670429214311602221240479274737794080665351419597459856902143413
=
3347807169895689878604416984821269081770479498371376856891
2431388982883793878002287614711652531743087737814467999489
x
3674604366679959042824463379962795263227915816434308764267
6032283815739666511279233373417143396810270092798736308917
```

Ενδιάμεση πολυπλοκότητα;

Factoring

- Δίνεται σύνθετος αριθμός Ν, βρείτε την παραγοντοποίησή του.
- > Ενώ το Primality ανήκει στην κλάση **P**, το Factoring μάλλον όχι.
- » Είναι στην **NP** (γιατί;), αλλά μάλλον όχι **NP**-complete.
- > Το κρυπτοσύστημα RSA, και πολλά άλλα βασίζονται στη δυσκολία του Factoring.

Γιατί ασχολούμαστε με την ΝΡ-πληρότητα;

- Γλιτώνουμε την απόλυση (...λέμε τώρα ⁽³⁾)
- Στροφή σε πιο ρεαλιστικές λύσεις: ειδικές περιπτώσεις, προσεγγιστική επίλυση

Χρήση προς όφελός μας (κρυπτογραφία, εκλογές)

Κατηγοριοποίηση προβλημάτων

Πώς ξέρουμε ότι δεν κάνουμε λάθος;

- Μήπως υπάρχει πιο «έξυπνος» τρόπος υπολογισμού;
- Αυστηρός ορισμός αλγορίθμων με χρήση υπολογιστικών μοντέλων: Alan Turing, Alonzo Church, Stephen Kleene, Emil Post, Andrey Μαrkov, κ.ά.
- Το πλέον «φυσικό» μοντέλο: Μηχανή Turing.

κεφαλή σύστημα ελέγχου (εσωτερική κατάσταση)

0

Θέση των Church-Turing

Κάθε αλγόριθμος μπορεί να περιγραφεί με τη βοήθεια μιας μηχανής Turing

Ισοδύναμη διατύπωση:

Όλα τα γνωστά και άγνωστα υπολογιστικά μοντέλα είναι μηχανιστικά ισοδύναμα

Δηλαδή, για κάθε ζευγάρι υπολογιστικών μοντέλων, μπορούμε με πρόγραμμα (compiler) να μεταφράζουμε αλγορίθμους από το ένα στο άλλο.

Είδη πολυπλοκότητας

- Χειρότερης περίπτωσης (worst case): με αυτήν ασχολούμαστε συνήθως.
- Μέσης περίπτωσης (average case): με βάση κατανομή πιθανότητας στιγμιοτύπων (instances) του προβλήματος. Συνήθως δύσκολο να οριστεί σωστά.
- Αποσβετική (amortized): εκφράζει την μέση αποδοτικότητα σε μια σειρά επαναλήψεων του αλγορίθμου.

Πολυπλοκότητα: ανοικτά ερωτήματα

- Εκτός από κάποιες ειδικές περιπτώσεις, για κανένα πρόβλημα δεν γνωρίζουμε πόσο γρήγορα μπορεί να λυθεί.
- Ακόμα και για τον πολλαπλασιασμό αριθμών δεν γνωρίζουμε τον ταχύτερο αλγόριθμο.
- Ο σχολικός τρόπος πολλαπλασιασμού αριθμών με η ψηφία χρειάζεται O(n²) βήματα.
- Με μέθοδο «διαίρει και κυρίευε» O(n^{log3}) ≈ O(n^{1.58})
 βήματα αρκούν [Karatsuba 1960, από ιδέα Gauss].
- Υπάρχουν ακόμα καλύτεροι αλγόριθμοι που χρειάζονται περίπου O(n logn) βήματα [Schönhage-Strassen 1971, Fürer 2007].
- Υπάρχει αλγόριθμος που χρειάζεται μόνο O(n) βήματα; Αυτό είναι ανοικτό ερώτημα.