# ESM 204 HW4: A Climate Change Model

Cameryn Brock and Allison Hacker

5/22/2020

#### 1. Plots

## a) Temperature over time



#### b) Consumption over time

```
# economic activity retained function
econ_fun <- function(temp, B = 0.05){
    econ = exp(-B*temp^2)
    }

econ_time <- temp_time %>%
    mutate(econ = econ_fun(temp = temp))

# total consumption function
consum_fun <- function(econ, g = 0.01, t){
    consum = econ*exp(g*t)
    }

consum_time <- econ_time %>%
    mutate(consum = consum_fun(t = year, econ = econ))
```



# c) Undiscounted utility over time

```
# society utility function
utility_fun <- function(C, n = 0.5){
  utility = ((C^(1-n))/(1-n))
  }

utility_time <- consum_time %>%
  mutate(utility = utility_fun(C = consum))
```



### 2. Analysis

#### a) Discounted Utility

```
# discount rate function
disc_{fun} \leftarrow function(y = 0.005, n = 0.5, g = 0.01){
 disc = y + n*g
}
# T = 4.4
disc_4.4 <- years %>%
  mutate(temp = temp_fun(t = year, T = 4.4),
         econ = econ_fun(temp = temp),
         consum = consum_fun(t = year, econ = econ),
         utility = utility_fun(C = consum),
         disc_utility = utility/((1 + disc_fun())^year))
# NPV under T = 4.4
npv_4.4 <- sum(disc_4.4$disc_utility)</pre>
npv_4.4
## [1] 198.6612
# T = 0
disc_0 <- years %>%
  mutate(temp = temp_fun(t = year, T = 0),
         econ = econ_fun(temp = temp),
         consum = consum_fun(t = year, econ = econ),
         utility = utility_fun(C = consum),
         disc_utility = utility/((1 + disc_fun())^year))
# NPV under T = 0
npv_0 <- sum(disc_0$disc_utility)</pre>
npv_0
## [1] 255.2734
# percent loss in PV from climate change (T = 4.4)
L <- ((npv_0 - npv_4.4)/npv_0)*100
```

## [1] 22.17709

The present value utility with climate change (T = 4.4) is **198.66**. The present value utility without climate change is **255.27**. The percent loss in present value utility from claimate change (L) is **22.18%**.

#### b) Sensitivity Analyses

```
T = 4.84
sens_T <- years %>%
  mutate(temp = temp_fun(t = year, T = 4.84),
         econ = econ_fun(temp = temp),
         consum = consum_fun(t = year, econ = econ),
         utility = utility_fun(C = consum),
         disc_utility = utility/((1 + disc_fun())^year))
npv_sens_T <- sum(sens_T$disc_utility)</pre>
L_sens_T \leftarrow ((npv_0 - npv_sens_T)/npv_0)*100
L_sens_T
## [1] 25.79679
# change in L
L_sens_T - L # (difference)
## [1] 3.619695
((L_sens_T - L) / L) * 100 # (percent change)
## [1] 16.32178
Increasing T by 10% results in an increase in the percent loss in present value utility (L) by 3.62, or 16.32%.
g = 0.011
sens_g <- years %>%
  mutate(temp = temp_fun(t = year, T = 4.4),
         econ = econ_fun(temp = temp),
         consum = consum_fun(t = year, econ = econ, g = 0.011),
         utility = utility_fun(C = consum),
         disc_utility = utility/((1 + disc_fun(g = 0.011))^year))
npv_sens_g <- sum(sens_g$disc_utility)</pre>
L_sens_g <- ((npv_0 - npv_sens_g)/npv_0)*100
L_sens_g
```

```
## [1] 22.14822
```

```
# change in L
L_sens_g - L # (difference)
```

```
## [1] -0.02887278
((L_sens_g - L) / L) * 100 # (percent change)
```

## [1] -0.1301919

Increasing g by 10% results in a decrease in the percent loss in present value utility (L) by 0.03, or 0.13%.

#### n = 0.55

```
sens_n <- years %>%
  mutate(temp = temp_fun(t = year, T = 4.4),
         econ = econ_fun(temp = temp),
         consum = consum_fun(t = year, econ = econ),
         utility = utility_fun(C = consum, n = 0.55),
         disc_utility = utility/((1 + disc_fun(n = 0.55))^year))
npv_sens_n <- sum(sens_n$disc_utility)</pre>
L_{sens_n} \leftarrow ((npv_0 - npv_{sens_n})/npv_0)*100
L_sens_n
## [1] 17.66265
# change in L
L_sens_n - L # (difference)
## [1] -4.514441
((L_sens_n - L) / L) * 100 # (percent change)
## [1] -20.35633
Increasing n by 10% results in a decrease in the percent loss in present value utility (L) by 4.51, or 20.36%.
B = 0.055
sens_b <- years %>%
  mutate(temp = temp_fun(t = year, T = 4.4),
         econ = econ_fun(temp = temp, B = 0.055),
         consum = consum_fun(t = year, econ = econ),
         utility = utility_fun(C = consum),
         disc_utility = utility/((1 + disc_fun())^year))
npv_sens_b <- sum(sens_b$disc_utility)</pre>
L_sens_b \leftarrow ((npv_0 - npv_sens_b)/npv_0)*100
L_sens_b
## [1] 23.93861
# change in L
L_sens_b - L # (difference)
## [1] 1.761522
((L_sens_b - L) / L) * 100 # (percent change)
## [1] 7.942983
```

Increasing B by 10% results in an increase in the percent loss in present value utility (L) by 1.76, or 7.94%.

#### c) Fraction of Consumption

$$\begin{split} U(C_{4.4}) &= \frac{((1-\theta)*C_0)^{1-n}}{1-n} \\ U(C_{4.4}) &= (1-\theta)^{1-n}*\frac{C_0^{1-n}}{1-n} \\ U(C_{4.4}) &= (1-\theta)^{1-n}*U(C_0) \\ (1-\theta)^{1-n} &= \frac{U(C_{4.4})}{U(C_0)} \end{split}$$

Assuming n = 0.5,

$$\begin{split} 1 - \theta &= (\frac{U(C_{4.4})}{U(C_0)})^2 \\ \theta &= - (\frac{U(C_{4.4})}{U(C_0)})^2 + 1 \end{split}$$

```
# Without discounting

U_4.4 <- sum(disc_4.4$utility)

U_0 <- sum(disc_0$utility)

theta = -(U_4.4/U_0)^2+1
theta</pre>
```

## [1] 0.5073385

```
# With discounting

U_4.4_disc <- sum(disc_4.4$disc_utility)

U_0_disc <- sum(disc_0$disc_utility)

theta_disc = -(U_4.4_disc/U_0_disc)^2+1
theta_disc</pre>
```

## [1] 0.3943595

Without considering discounting, theta\* = 0.507. With discounting, theta\* = 0.394.

#### d) Expected Theta under Uncertainty

```
\# T = 2 (prob = 0.2)
d_2 <- years %>%
  mutate(temp = temp_fun(t = year, T = 2),
         econ = econ_fun(temp = temp),
         consum = consum_fun(t = year, econ = econ),
         utility = utility_fun(C = consum),
         disc_utility = utility/((1 + disc_fun())^year))
U_2 <- sum(d_2$utility) # Without discounting
U_2_disc <- sum(d_2$disc_utility) # With discounting
# T = 4 (prob = 0.5)
d_4 <- years %>%
  mutate(temp = temp_fun(t = year, T = 4),
         econ = econ_fun(temp = temp),
         consum = consum_fun(t = year, econ = econ),
         utility = utility_fun(C = consum),
         disc_utility = utility/((1 + disc_fun())^year))
U_4 <- sum(d_4$utility) # Without discounting
U_4_disc <- sum(d_4$disc_utility) # With discounting
\# T = 6 \text{ (prob } = 0.3)
d_6 <- years %>%
  mutate(temp = temp_fun(t = year, T = 6),
         econ = econ_fun(temp = temp),
         consum = consum_fun(t = year, econ = econ),
         utility = utility_fun(C = consum),
         disc_utility = utility/((1 + disc_fun())^year))
U_6 <- sum(d_6$utility) # Without discounting
U_6_disc <- sum(d_6$disc_utility) # With discounting
# expected theta
U_{exp} \leftarrow U_{2*0.2} + U_{4*0.5} + U_{6*0.3}
theta_exp <- -(U_exp/U_0)^2+1
theta_exp # without discounting
## [1] 0.4852977
U_exp_disc <- U_2_disc*0.2 + U_4_disc*0.5 + U_6_disc*0.3
theta_exp_disc <- -(U_exp_disc/U_0)^2+1
theta_exp_disc # with discounting
```

## [1] 0.9151047

Without considering discounting, the expected theta\* = 0.485. With discounting, theta\* = 0.915.