Unidad 1: Lógica Proposicional

Lógica (IA1.1)

Tecnicatura Universitaria en Inteligencia Artificial

Branco Blunda

${\rm \acute{I}ndice}$

1.	Introducción	2
	1.1. ¿Qué es la lógica?	2
2.	Lógica Proposicional2.1. Proposiciones2.2. Operadores Booleanos2.3. Tablas de Verdad	3
3.	Implicaciones Lógicas	4
4.	Deducción Natural	4
5 .	Equivalencias Lógicas	6
6.	Leyes de la Lógica	7
7.	Principio de Dualidad	8

1. Introducción

1.1. ¿Qué es la lógica?

La lógica se ocupa de evaluar argumentos, distinguir los buenos de los malos, y se centra en los conceptos de *verdad* y *probabilidad* (o demostrabilidad). Se considera un modelo matemático del pensamiento deductivo y busca formalizar y analizar el razonamiento. En Ciencias de la Computación, ayuda a desarrollar lenguajes para modelar situaciones y razonar formalmente sobre ellas.

Definición 1.1. Un razonamiento es una lista de proposiciones (oraciones que pueden ser verdaderas o falsas). La última proposición es la conclusión, y las anteriores son las premisas.

Un razonamiento puede cumplir la definición pero ser malo (premisas no relacionadas con la conclusión) o parecer razonable pero ser inválido.

Definición 1.2. Un razonamiento es **deductivamente válido** si y sólo si es imposible que las premisas sean ciertas y la conclusión falsa.

Ejemplo 1.1 (Razonamiento Válido con Conclusión Falsa).

**Las naranjas son frutas o instrumentos musicales (Premisa 1)

- Las naranjas no son frutas (Premisa 2)
- ∴ Las naranjas son instrumentos musicales (Conclusión)

Este razonamiento es válido porque si ambas premisas fueran ciertas, la conclusión debería ser cierta. Como sabemos que la conclusión es falsa y el razonamiento es válido, podemos concluir que al menos una de las premisas debe ser falsa.

El objetivo del curso es distinguir formalmente razonamientos válidos de los inválidos.

2. Lógica Proposicional

Definición 2.1. La **lógica proposicional** es un sistema formal para el estudio de los razonamientos.

Necesita un alfabeto:

- Variables proposicionales: p, q, r, \dots
- Operadores lógicos: \land (y), \lor (o), \neg (no), \rightarrow (implica), \leftrightarrow (si y solo si).
- Símbolos auxiliares: (,)

2.1. Proposiciones

Definición 2.2. Las **proposiciones** (o enunciados) son oraciones a las que se les puede asignar un valor de verdad: Verdadero (1) o Falso (0).

Ejemplo 2.1. • .En esta clase hay 45 alumnos.es una proposición.

- Rosario es la capital de Santa Fe.. es una proposición.
- "Hacé la tarea inmediatamente" no es una proposición (imperativa).

Oraciones interrogativas, exclamativas e imperativas no suelen ser proposiciones.

Definición 2.3. ■ Contingencia: Proposición cuyo valor de verdad depende del contexto. (Ej: .^{En} esta clase hay 45 alumnos").

- Tautología (T₀): Proposición que siempre es verdadera. (Ej: .^{En} este aula hay 45 personas, o no").
- Contradicción (F₀): Proposición que siempre es falsa. (Ej: .^{En} este aula hay 45 personas, y además la cantidad de personas es par").

Definición 2.4. Una proposición es **primitiva** si no puede subdividirse en proposiciones más simples. Se denotan con letras: p, q, r, \ldots

2.2. Operadores Booleanos

Las proposiciones primitivas se combinan usando operadores lógicos (booleanos). Sean $p \neq q$ proposiciones:

■ Conjunción (\land): $p \land q$ ("p y q"). Verdadera solo si $p \lor q$ son verdaderas.

p	q	$p \wedge q$
1	1	1
1	0	0
0	1	0
0	0	0

■ Disyunción (\vee): $p \vee q$ ("p o q"). Verdadera si al menos una (p o q) es verdadera.

p	q	$p \lor q$
1	1	1
1	0	1
0	1	1
0	0	0

■ Negación (¬): ¬p ("no p"). Verdadera si p es falsa, y falsa si p es verdadera.

p	$\neg p$
1	0
0	1

- Implicación (→): $p \to q$ ("p implica q", "si p, entonces q"). Falsa solo si p es verdadera y q es falsa. p es la hipótesis, q es la conclusión.
 - Formas alternativas: "p es suficiente para q", "q es necesario para p".

p	q	$p \rightarrow q$
1	1	1
1	0	0
0	1	1
0	0	1

Implicancias Asociadas a $p \rightarrow q$:

- Recíproca: $q \to p$
- Inversa: $\neg p \rightarrow \neg q$
- Contrarrecíproca: $\neg q \to \neg p$ (Se probará que es lógicamente equivalente a $p \to q$).
- Bicondicional (\leftrightarrow): $p \leftrightarrow q$ ("p si y solo si q"). Verdadera solo si p y q tienen el mismo valor de verdad.
 - Formas alternativas: "p es necesario y suficiente para q".

p	q	$p \leftrightarrow q$
1	1	1
1	0	0
0	1	0
0	0	1

2.3. Tablas de Verdad

Para construir la tabla de verdad de una expresión e:

- 1. Agregar una columna por cada variable proposicional en e.
- 2. Agregar 2^n filas para todas las combinaciones de verdad posibles (n = número de variables).
- 3. Agregar una columna por cada subexpresión de e, hasta llegar a e.
- 4. Completar los valores de verdad usando las tablas de los operadores.

Ejemplo 2.2 (Tabla para $(p \land q) \rightarrow (r \lor p)$).

p	q	r	$p \wedge q$	$r \vee p$	$(p \land q) \to (r \lor p)$
1	1	1	1	1	1
1	1	0	1	1	1
1	0	1	0	1	1
1	0	0	0	1	1
0	1	1	0	1	1
0	1	0	0	0	1
0	0	1	0	1	1
0	0	0	0	0	1

La expresión es una tautología (T_0) .

3. Implicaciones Lógicas

Definición 3.1. Decimos que p **implica lógicamente** a q (y escribimos $p \implies q$) si la proposición $p \rightarrow q$ es una tautología. Usamos $p \not \implies q$ si $p \rightarrow q$ no es tautología.

Ejemplo 3.1 (Modus Ponens). $p \wedge (p \rightarrow q) \implies q$. Se verifica con tabla de verdad que $(p \wedge (p \rightarrow q)) \rightarrow q$ es T_0 .

Definición 3.2. Un contraejemplo para una implicación (que muestra que no es lógica) es una asignación de valores de verdad a las variables tal que todas las premisas son verdaderas (1) y la conclusión es falsa (0).

Definición 3.3. Un razonamiento con premisas P_0, P_1, \ldots, P_n y conclusión C se representa como $(P_0 \wedge P_1 \wedge \ldots \wedge P_n) \rightarrow C$. Es válido si $(P_0 \wedge \ldots \wedge P_n) \implies C$, es decir, si la implicación es una tautología.

4. Deducción Natural

Definición 4.1. La deducción natural busca capturar cómo se razona naturalmente, usando reglas de inferencia. Para cada operador lógico, hay reglas para introducirlo y eliminarlo.

Cada regla se basa en una implicación lógica:

• Trivial (t): $p \implies p$

$$\frac{p}{\therefore p}$$

■ Introducción \wedge (i_{\wedge}) : $(p \wedge q) \implies p \wedge q$ (Premisas p,q)

$$\frac{p \quad q}{\therefore p \land q}$$

• Eliminación \land (e_{\land}) : $(p \land q) \implies p$, $(p \land q) \implies q$

$$\frac{p \wedge q}{\therefore p} \qquad \frac{p \wedge q}{\therefore q}$$

■ Introducción \rightarrow (i_{\rightarrow}) : $(p \rightarrow q) \implies (p \rightarrow q)$ (Supone p, deriva q)

$$\frac{[p]\dots q}{\therefore p \to q}$$

(Donde [p] indica una suposición temporal)

■ Eliminación \rightarrow $(e_{\rightarrow}, \text{ Modus Ponens})$: $((p \rightarrow q) \land p) \implies q$

$$\frac{p \to q \quad p}{\therefore q}$$

■ Introducción \vee (i_{\vee}) : $p \implies p \vee q, q \implies p \vee q$

$$\frac{p}{\therefore p \vee q} \qquad \frac{q}{\therefore p \vee q}$$

■ Eliminación \vee (e_{\vee} , Prueba por Casos): $((p \vee q) \wedge (p \to r) \wedge (q \to r)) \implies r$

$$\frac{p \vee q \quad p \to r \quad q \to r}{ \therefore r}$$

■ Introducción ¬ (i_\neg) : $(p \to F_0) \implies \neg p$ (Si suponer p lleva a contradicción, entonces $\neg p$)

$$\frac{p \to F_0}{\cdot \neg n}$$

■ Eliminación ¬ (e_\neg) : ¬¬ $p \implies p$ (Doble negación)

$$\frac{\neg \neg p}{\therefore p}$$

■ Introducción F_0 (i_{F0}) : $(p \land \neg p) \implies F_0$

$$\frac{p \neg p}{\therefore F_0}$$

■ Eliminación F_0 (e_{F0}): $F_0 \implies p$ (Principio de explosión)

$$\frac{F_0}{\therefore p}$$

■ Tercero Excluído (TND): (Regla adicional)

$$\overline{\therefore p \vee \neg p}$$

Una demostración se construye partiendo de premisas y aplicando reglas para llegar a la conclusión deseada.

Ejemplo 4.1 (Demostración de Modus Tollens (MT)). *Premisas:* $p \rightarrow q$, $\neg q$. *Conclusión:* $\neg p$.

- 1. $p \rightarrow q$ (Premisa)
- 2. $\neg q$ (Premisa)
- 3. p (Hipótesis para i_{\rightarrow})
- 4. $q(e_{\rightarrow}(1), (3))$
- 5. F_0 $(i_{F0}$ (4), (2))
- 6. $p \to F_0 \ (i_{\to} \ (3-5))$
- 7. $\neg p \ (i_{\neg} \ (6))$

Ejemplo 4.2 (Demostración de Silogismo Hipotético (SH)). Premisas: $p \to q, q \to r$. Conclusión: $p \to r$.

- 1. $p \rightarrow q$ (Premisa)
- 2. $q \rightarrow r$ (Premisa)
- 3. p (Hipótesis para $i \rightarrow$)
- 4. $q(e_{\rightarrow}(1), (3))$
- 5. $r(e_{\rightarrow}(2), (4))$
- 6. $p \to r \ (i_{\to} \ (3-5))$

Ejemplo 4.3 (Demostración de Silogismo Disyuntivo (SD)). Premisas: $p \lor q$, $\neg p$. Conclusión: q.

- 1. $p \lor q$ (Premisa)
- 2. $\neg p$ (Premisa)
- 3. p (Hipótesis para $i \rightarrow$)
- 4. F_0 $(i_{F0}$ (3), (2))
- 5. $q(e_{F0}(4))$
- 6. $p \to q \ (i_{\to} \ (3-5))$
- 7. q (Hipótesis para i_{\rightarrow})
- 8. $q \rightarrow q \ (i_{\rightarrow} \ (7-7))$
- 9. $q(e_{\vee}(1), (6), (8))$

(La otra versión, $\frac{p \lor q \quad \neg q}{\therefore p}$, es análoga).

5. Equivalencias Lógicas

Definición 5.1. Dos proposiciones e_1 y e_2 son **lógicamente equivalentes** $(e_1 \Leftrightarrow e_2)$ si $e_1 \leftrightarrow e_2$ es una tautología. Esto significa que e_1 es V syss e_2 es V (y e_1 es F syss e_2 es F).

Ejemplo 5.1 (Implicación y Contrarrecíproca). $p \to q \Leftrightarrow \neg q \to \neg p$. Se verifica mediante tabla de verdad.

Observación 5.1. Se puede probar $p \Leftrightarrow q$ probando las dos implicaciones lógicas: $p \implies q$ y $q \implies p$. Se pueden usar las reglas de deducción natural para esto.

Ejemplo 5.2 (Doble Negación). $\neg \neg p \Leftrightarrow p$.

- $Prueba\ de\ \neg\neg p\implies p:1)\ \neg\neg p\ (Premisa);\ 2)\ p\ (e_{\neg}\ (1)).$
- Prueba de $p \implies \neg \neg p$: 1) p (Premisa); 2) $\neg p$ (Hipótesis); 3) F_0 (i_{F0} (1), (2)); 4) $\neg p \rightarrow F_0$ (i_{\to} (2-3)); 5) $\neg \neg p$ (i_{\to} (4)).

Observación 5.2. Equivalencias útiles para eliminar operadores:

- $p \to q \Leftrightarrow \neg p \lor q$
- $\bullet \ p \leftrightarrow q \Leftrightarrow (p \to q) \land (q \to p)$

Esto permite representar cualquier proposición usando solo $\{\land,\lor,\lnot\}$.

6. Leyes de la Lógica

Son equivalencias lógicas que se pueden usar para simplificar proposiciones o acortar pruebas. Se pueden probar usando tablas de verdad o deducción natural. (Sean p, q, r proposiciones, T_0 una tautología, F_0 una contradicción).

- Doble Negación: $\neg(\neg p) \Leftrightarrow p$
- Leyes de De Morgan:
 - $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$
 - $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$
- Leyes Conmutativas:
 - $p \wedge q \Leftrightarrow q \wedge p$
 - $p \lor q \Leftrightarrow q \lor p$
- Leyes Asociativas:
 - $\bullet \ (p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$
 - $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$
- Leyes Distributivas:
 - $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$
 - $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$
- Leyes Idempotentes:
 - $p \wedge p \Leftrightarrow p$
 - $p \lor p \Leftrightarrow p$
- Leyes del Neutro:
 - $p \wedge T_0 \Leftrightarrow p$
 - $p \vee F_0 \Leftrightarrow p$
- Leves Inversas:
 - $p \land \neg p \Leftrightarrow F_0$

- $p \lor \neg p \Leftrightarrow T_0$
- Leyes de Dominación:
 - $p \wedge F_0 \Leftrightarrow F_0$
 - $p \vee T_0 \Leftrightarrow T_0$
- Leyes de Absorción:
 - $p \land (p \lor q) \Leftrightarrow p$
 - $p \lor (p \land q) \Leftrightarrow p$
- Negación de Tautología/Contradicción:
 - $\neg T_0 \Leftrightarrow F_0$
 - $\bullet \neg F_0 \Leftrightarrow T_0$

Ejemplo 6.1 (Uso de Leyes). Probar $(p \lor q) \land \neg(\neg p \land q) \Leftrightarrow p$

$$(p \lor q) \land \neg(\neg p \land q) \Leftrightarrow (p \lor q) \land (\neg \neg p \lor \neg q) \qquad (De Morgan)$$

$$\Leftrightarrow (p \lor q) \land (p \lor \neg q) \qquad (Doble Negaci\'on)$$

$$\Leftrightarrow p \lor (q \land \neg q) \qquad (Distributiva)$$

$$\Leftrightarrow p \lor F_0 \qquad (Inversa)$$

$$\Leftrightarrow p \qquad (Neutro)$$

7. Principio de Dualidad

Definición 7.1. Si s es una proposición que solo usa los conectivos \land, \lor, \neg (o T/F), su **dual** s^d se obtiene reemplazando cada \land por \lor, \lor por \land , T_0 por F_0 , y F_0 por T_0 . (La negación no se altera). Nota: El PDF parece indicar que \neg no debe estar presente para la definición de dual tal como se usa en el teorema, y se enfoca en \land, \lor, T_0, F_0 . Revisar definición exacta si es crucial.

Ejemplo 7.1. •
$$s = p \lor q \lor T_0 \implies s^d = p \land q \land F_0$$

- $\bullet \ \ s = (p \lor q) \land (p \land F_0) \implies s^d = (p \land q) \lor (p \lor T_0)$
- Si s contiene \rightarrow o \leftrightarrow , no se puede obtener el dual directamente. Se debe encontrar una proposición equivalente a s que sí posea dual.

Teorema 7.1 (Principio de Dualidad). Sean s, t proposiciones como las descritas en la definición de dual. Si $s \Leftrightarrow t$, entonces $s^d \Leftrightarrow t^d$.

Ejemplo 7.2. La ley conmutativa $p \land q \Leftrightarrow q \land p$. Su dual es $p \lor q \Leftrightarrow q \lor p$, que es la otra ley conmutativa, también válida.

Observación 7.1. Como una equivalencia lógica $P \Leftrightarrow Q$ implica las implicaciones $P \Longrightarrow Q$ $y \ Q \Longrightarrow P$, cada ley de la lógica puede dar origen a dos reglas de inferencia: $\frac{P}{::Q} \ y \ \frac{Q}{::P}$. Por ejemplo, las leyes de De Morgan justifican reglas como:

$$\frac{\neg (p \wedge q)}{\therefore \neg p \vee \neg q} \qquad \frac{\neg p \vee \neg q}{\therefore \neg (p \wedge q)}$$

8

Esto permite usar las leyes de la lógica dentro de demostraciones por deducción natural.