MATH 271.1: Statistical Methods

Supplementary Notes on Principal Components Analysis

Jakov Ivan S. Dumbrique

1 Linear Algebra Review

This section presents the concepts and theorems from Linear Algebra which we will use in this class.

1. Eigenvectors and Eigenvalues

Let ${\bf A}$ be an $n \times n$ matrix, and ${\bf x} \in \mathbb{R}^n$ a nonzero vector. If there exists a scalar value λ such that

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$
,

then we define λ as an eigenvalue of A, and the corresponding nonzero vector x is called an eigenvector of A.

To determine eigenvalues and eigenvectors, we solve the characteristic equation

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

The eigenvectors of A corresponding to λ are the nonzero solutions of

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$$

- 2. If c is a nonzero scalar and λ is an eigenvalue of an $n \times n$ matrix \mathbf{A} where \mathbf{x} is its corresponding eigenvector, then $c\lambda$ is an eigenvalue of the scaled matrix $c\mathbf{A}$, and \mathbf{x} is the eigenvector corresponding to the eigenvalue $c\lambda$.
- 3. Eigenvalues of Triangular Matrices

If ${\bf A}$ is an $n \times n$ triangular matrix, then its eigenvalues are the entries on its main diagonal.

4. Diagonalizable Matrix

An $n \times n$ matrix \mathbf{A} is diagonalizable when \mathbf{A} is similar to a diagonal matrix. That is, \mathbf{A} is diagonalizable when there exists an invertible matrix \mathbf{P} such that $\mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ is a diagonal matrix.

- 5. If A and B are similar $n \times n$ matrices, then they have the same eigenvalues.
- 6. Condition for Diagonalization

An $n \times n$ matrix ${\bf A}$ is diagonalizable if and only if it has n linearly independent eigenvectors.

7. Properties of Symmetric Matrices

If A is an $n \times n$ symmetric matrix, then

- (a) A is diagonalizable
- (b) All eigenvalues of A are real

- (c) If λ is an eigenvalue of $\mathbf A$ with multiplicity k, then λ has k linearly independent eigenvectors
- (d) If λ_1 and λ_2 are distinct eigenvalues of \mathbf{A} , then their corresponding eigenvectors \mathbf{x}_1 and \mathbf{x}_2 are orthogonal.
- 8. Orthogonal Matrix

A square matrix P is orthogonal when it is invertible and $P^{-1} = P^{T}$. In general, an $n \times m$ matrix Q is orthogonal if $Q^{T}Q = I$.

9. Orthogonally Diagonalizable Matrix

A matrix A is orthogonally diagonalizable when there exists an orthogonal matrix P such that $P^{-1}AP$ is a diagonal matrix.

10. Fundamental Theorem of Symmetric Matrices

Let ${\bf A}$ be an $n \times n$ matrix. Then ${\bf A}$ is orthogonally diagonalizable if and only if ${\bf A}$ is symmetric.

11. Diagonalizing a Square Matrix (Spectral Decomposition, Eigendecomposition) If A is a diagonalizable square matrix, then A can be expressed as

$$A = PDP^{-1}$$

where \mathbf{P} is an $n \times n$ matrix whose columns consist of n linearly independent eigenvectors of \mathbf{A} , and \mathbf{D} is a diagonal matrix with the corresponding eigenvalues of \mathbf{A} on its main diagonal.

The order of the eigenvectors used to form P will determine the order in which the eigenvalues appear on the main diagonal of D.

- 12. Positive Definite and Semidefinite Matrices
 - (a) A matrix A is positive definite if it is symmetric and $x^TAx > 0$ for all nonzero x.
 - (b) A matrix A is positive semidefinite if it is symmetric and $\mathbf{x}^T A \mathbf{x} \geq 0$ for all \mathbf{x} .
- 13. Eigenvalues of Positive Definite and Semidefinite Matrices

The eigenvalues of a positive definite matrix are all positive. The eigenvalues of a positive semidefinite matrix are all nonnegative.

14. Derivatives of Matrices

If $\mathbf{u} = u(\mathbf{x})$, $\mathbf{v} = v(\mathbf{x})$, and \mathbf{A} is not a function of \mathbf{x} , then the following properties hold true:

2

$$\text{(a)} \ \frac{\partial \left(\mathbf{u} \cdot \mathbf{A} \mathbf{v}\right)}{\partial \mathbf{x}} = \frac{\partial \left(\mathbf{u}^{\mathbf{T}} \mathbf{A} \mathbf{v}\right)}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{A} \mathbf{v} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \mathbf{A}^{\mathbf{T}} \mathbf{u}$$

(b)
$$\frac{\partial (\mathbf{u} \cdot \mathbf{v})}{\partial \mathbf{x}} = \frac{\partial (\mathbf{u}^T \mathbf{v})}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{v} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \mathbf{u}$$