Demo 00 Multiclass 0000 _ab o

Day 4: Linear Classifiers Summer STEM: Machine Learning

Department of Electrical and Computer Engineering NYU Tandon School of Engineering Brooklyn, New York

June 24, 2020

Outline

Review • 00000000000

- 1 Leftovers from Day 3
- 2 Regularizatio
- 3 Non-linear Optimizatio
- 4 Logistic Regression
- 5 Lab: Diagnosing Breast Cance
- 6 Multiclass Classificaito
- 7 Lab: Iris Datase

Review

00000000000

- We have been using straight lines to fit our data. But it doesn't work well every time
- Some data have more complex relation that cannot be fitted well using a straight line

■ Can we use some other model to fit this data?

- Can we use a polynomial to fit our data?
- Polynomial: A sum of different powers of a variable

■ Examples:
$$y = x^2 + 2$$
, $y = 5x^3 - 3x^2 + 4$

Review

00000000000

- Polynomials of x: $\hat{y} = w_0 + w_1x + w_2x^2 + w_3x^3 + \cdots + w_Mx^M$
- M is called the order of the polynomial.
- The process of fitting a polynomial is similar to linearly fitting multivariate data.

Review

00000000000

■ Rewrite in matrix-vector form

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \approx \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^M \\ 1 & x_2 & x_2^2 & \cdots & x_2^M \\ \vdots & & \ddots & & \vdots \\ 1 & x_N & x_N^2 & \cdots & x_N^M \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_M \end{bmatrix}$$

■ This can still be written as

$$Y \approx X \mathbf{w}$$

- Loss $J(\mathbf{w}) = \frac{1}{N} \|Y X\mathbf{w}\|^2$
- The i-th row of the design matrix X is simply a transformed feature $\phi(x_i) = (1, x_i, x_i^2, \cdots, x_i^M)$

■ Original design matrix:
$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{bmatrix}$$
■ Design matrix after feature transfo

■ Design matrix after feature transformation:

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^M \\ 1 & x_2 & x_2^2 & \cdots & x_2^M \\ \vdots & & \ddots & & \vdots \\ 1 & x_N & x_N^2 & \cdots & x_N^M \end{bmatrix}$$

■ For the polynomial fitting, we just added columns of features that are powers of the original feature

Linear Regression

■ Model
$$\hat{y} = \mathbf{w}^T \phi(\mathbf{x})$$

■ Loss
$$J(\mathbf{w}) = \frac{1}{N} \|Y - X\mathbf{w}\|^2$$

■ Find **w** that minimizes $L(\mathbf{w})$

Overfitting

000000000000

- We learned how to fit our data using polynomials of different order
- With a higher model order, we can fit the data with increasing accuracy
- As you increase the model order, at certain point it is possible find a model that fits your data perfectly (ie. zero error)
- What could be the problem?

 Review
 Regularization
 Opt
 Logistic
 Demo
 Multiclass
 Lab

 00000000000000
 00000
 000000000000000
 00
 00000
 0

Overfitting

■ Which of these model do you think is the best? Why?

Overfitting

0000000000000

- The problem is that we are only fitting our model using data that is given
- Data usually contains noise
- When a model becomes too complex, it will start to fit the noise in the data
- What happens if we apply our model to predict some data that the model has never seen before? It will not work well.
- This is called over-fitting

Overfitting

- Split the data set into a train set and a test set
- Train set will be used to train the model
- The test set will not be seen by the model during the training process
- Use test set to evaluate the model when a model is trained

■ With the training and test sets shown, which one do you think is the better model now?

Train and Test Error

- Plot of train error and test error for different model order
- Initially both train and test error go down as model order increase

■ But at a certain point, test error start to increase because of overfitting

Outline

- 1 Leftovers from Day 3
- 2 Regularization
- 3 Non-linear Optimizatio
- 4 Logistic Regression
- 5 Lab: Diagnosing Breast Cance
- 6 Multiclass Classificaitor
- 7 Lab: Iris Datase

How can we prevent overfitting without knowing the model order before-hand?

■ **Regularization**: methods to prevent overfitting

- **Regularization**: methods to prevent overfitting
 - We just covered regularization by model order selection

- **Regularization**: methods to prevent overfitting
 - We just covered regularization by model order selection
- Is there another way? Talk among your classmates.

- **Regularization**: methods to prevent overfitting
 - We just covered regularization by model order selection
- Is there another way? Talk among your classmates.
 - Solution: We can change our cost function.

Weight Based Regularization

- Looking back at the polynomial overfitting
- Notice that weight-size increases with overfitting

New Cost Function

$$J(\mathbf{w}) = \frac{1}{N} \|Y - X\mathbf{w}\|^2 + \lambda \|\mathbf{w}\|^2$$

- Penalize complexity by simultaneously minimizing weight values.
- We call λ a **hyper-parameter**
 - \blacksquare λ determines relative importance

Table 1.2	Table of the coefficients \mathbf{w}^* for $M=9$ polynomials with various values for the regularization parameter λ . Note that $\ln \lambda = -\infty$ corresponds to a model with no regularization, i.e., to the graph at the bottom right in Figure 1.4. We see that, as the value of λ increases, the typical magnitude of the coefficients gets smaller.	$\begin{array}{c} w_0^{\star} \\ w_1^{\star} \\ w_2^{\star} \\ w_3^{\star} \\ w_5^{\star} \\ w_6^{\star} \\ w_7^{\star} \\ w_8^{\star} \\ w_9^{\star} \end{array}$	$\begin{array}{c} \ln \lambda = -\infty \\ 0.35 \\ 232.37 \\ -5321.83 \\ 48568.31 \\ -231639.30 \\ 640042.26 \\ -1061800.52 \\ 1042400.18 \\ -557682.99 \\ 125201.43 \end{array}$	$\begin{array}{c} \ln \lambda = -18 \\ \hline 0.35 \\ 4.74 \\ -0.77 \\ -31.97 \\ -3.89 \\ 55.28 \\ 41.32 \\ -45.95 \\ -91.53 \\ 72.68 \end{array}$	$\begin{array}{c} \ln \lambda = 0 \\ \hline 0.13 \\ -0.05 \\ -0.06 \\ -0.05 \\ -0.03 \\ -0.02 \\ -0.01 \\ -0.00 \\ 0.00 \\ 0.01 \end{array}$	
-----------	--	--	---	--	--	--

Tuning Hyper-parameters

- Motivation: never determine a hyper-parameter based on training data
- **Hyper-Parameter**: a parameter of the algorithm that is not a model-parameter solved for in optimization.
 - **E**x: λ weight regularization value vs. model weights (**w**)
- Solution: split dataset into three
 - Training set: to compute the model-parameters (w)
 - Validation set: to tune hyper-parameters (λ)
 - **Test set**: to compute the performance of the algorithm (MSE)

Outline

- 1 Leftovers from Day 3
- 2 Regularization
- 3 Non-linear Optimization
- 4 Logistic Regression
- 5 Lab: Diagnosing Breast Cance
- 6 Multiclass Classificaitor
- 7 Lab: Iris Datase

Motivation

- Cannot rely on closed form solutions
 - Computation efficiency: operations like inverting a matrix is not efficient
 - For more complex problems such as neural networks, a closed-form solution is not always available
- Need an optimization technique to find an optimal solution
 - Machine learning practitioners use **gradient**-based methods

Gradient Descent Algorithm

■ Update Rule $\begin{aligned} & \textit{Repeat} \big\{ \\ & \mathbf{w}_{\textit{new}} = \mathbf{w} - \alpha \nabla_{\mathbf{w}} J \\ & \big\} \\ & \alpha \text{ is the learning rate} \end{aligned}$

General Loss Function Contours

- Most loss function contours are not perfectly parabolic
- Our goal is to find a solution that is very close to global minimum by the right choice of hyper-parameters

Understanding Learning Rate

Correct learning rate

Some Animations

■ Demonstrate gradient descent animation

Importance of Feature Normalization (Optional)

■ Helps improve the performance of gradient based optimization

Outline

- 1 Leftovers from Day 3
- 2 Regularization
- 3 Non-linear Optimization
- 4 Logistic Regression
- 5 Lab: Diagnosing Breast Cance
- 6 Multiclass Classificaitor
- 7 Lab: Iris Datase

Classification Vs. Regression

Figure: https://www.pinterest.com/pin/672232681855858622/?lp=1.104

Classification

Given the dataset (x_i, y_i) for i = 1, 2, ..., N, find a function f(x)(model) so that it can predict the label \hat{y} for some input x, even if it is not in the dataset, i.e. $\hat{y} = f(x)$.

■ Positive : y = 1

■ Negative : y = 0

Classification via regression

■ Proposal: train a model to fit the data with linear regression (potentially with polynomial features)!

- Proposal: train a model to fit the data with linear regression (potentially with polynomial features)!
- What could be the problem?

Sigmoid Function

- Recall from linear regression $z = w_0 + w_1 x$
- By applying the sigmoid function to z, we enforce

$$0 \le \hat{y} \le 1$$

$$\hat{y} = sigmoid(z) = \frac{1}{1 + e^{-z}}$$

Classification Loss Function

- Cannot use the same cost function that we used for linear regression
 - MSE of a logistic function has many local minima

■ Use
$$\frac{1}{N}\sum_{i=1}^{N}\left[-ylog(\hat{y})-(1-y)log(1-\hat{y})\right]$$

- This loss function is called binary cross entropy loss
- This loss function has only one minimum

Decision Boundary

■ Evaluation metric :

$$Accuracy = \frac{Number of correct prediction}{Total number of prediction}$$

Decision Boundary

■ Evaluation metric :

$$Accuracy = \frac{Number of correct prediction}{Total number of prediction}$$

■ What is the accuracy in this example ?

■ Evaluation metric :

$$Accuracy = \frac{Number \ of \ correct \ prediction}{Total \ number \ of \ prediction} = \frac{17}{20} = 0.85 = 85\%$$

Classifier

■ How to deal with uncertainty?

Logistic

Classifier

- How to deal with uncertainty?
 - $\hat{y} = f(x)$ should be between 0 and 1.

Classifier

- How to deal with uncertainty?
 - $\hat{y} = f(x)$ should be between 0 and 1.
- \blacksquare If \hat{y} is close to 0, the data is probably negative
- \blacksquare If \hat{y} is close to 1, the data is probably positive
- If \hat{y} is around 0.5, we are not sure.

Classifier

Types of Errors in Classification

- Correct predictions:
 - True Positive (TP) : Predict $\hat{y} = 1$ when y = 1
 - True Negative (TN) : Predict $\hat{y} = 0$ when y = 0
- Two types of errors:
 - False Positive/ False Alarm (FP): $\hat{y} = 1$ when y = 0
 - False Negative/ Missed Detection (FN): $\hat{y} = 0$ when y = 1

Example

- How many True Positive (TP) are there ?
- How many True Negative (TN) are there ?
- How many False Positive (FP) are there ?
- How many False Negative (FN) are there ?

Performance metrics for a classifier

- Accuracy of a classifier:
 - (TP + TF)/(TP+FP+TN+FN) (percentage of correct classification)
- Why accuracy alone is not a good measure for assessing the model

Multiclass

Performance metrics for a classifier

- Accuracy of a classifier:
 - (TP + TF)/(TP+FP+TN+FN) (percentage of correct classification)
- Why accuracy alone is not a good measure for assessing the model
 - There might be an overwhelming proportion of one class over another (unbalanced classes)
 - Example: A rare disease occurs 1 in ten thousand people
 - A test that classifies everyone as free of the disease can achieve 99.999% accuracy when tested with people drawn randomly from the entire population

Other metrics

Review

Some other metrics

- Sensitivity/Recall/TPR = TP/(TP+FN) (How many positives are detected among all positive?)
- Precision = TP/(TP+FP) (How many detected positives are actually positive?)
- Specificity/TNR = TN/(TN+FP) (How many negatives are detected among all negatives?)

Exercise: think of tasks for which sensitivity, precision, or specificity is a better metric.

Demo

.00

- Lab: Diagnosing Breast Cancer

Lab: Diagnosing Breast Cancer

- We're going to use the breast cancer dataset to predict whether the patients' scans show a malignant tumour or a benign tumour.
- Let's try to find the best linear classifier using logistic regression.

Multiclass

Outline

- Multiclass Classification

Multiclass Classification

- Previous model: $f(\mathbf{x}) = \sigma(\mathbf{w}^T \phi(\mathbf{x}))$
- Representing Multiple Classes:
 - One-hot / 1-of-K vectors, ex : 4 Class
 - Class 1 : $\mathbf{y} = [1, 0, 0, 0]$
 - Class 2 : $\mathbf{y} = [0, 1, 0, 0]$
 - Class 3 : $\mathbf{y} = [0, 0, 1, 0]$
 - Class 4 : $\mathbf{y} = [0, 0, 0, 1]$

Multiclass Classification

- Previous model: $f(\mathbf{x}) = \sigma(\mathbf{w}^T \phi(\mathbf{x}))$
- Representing Multiple Classes:
 - One-hot / 1-of-K vectors, ex : 4 Class
 - Class 1 : $\mathbf{y} = [1, 0, 0, 0]$
 - Class 2 : $\mathbf{y} = [0, 1, 0, 0]$
 - Class 3 : $\mathbf{y} = [0, 0, 1, 0]$
 - Class 4 : $\mathbf{y} = [0, 0, 0, 1]$
- Multiple outputs: $f(\mathbf{x}) = \operatorname{softmax}(W^T \phi(\mathbf{x}))$
- Shape of $W^T \phi(\mathbf{x})$: $(K,1) = (K,D) \times (D,1)$
- lacksquare softmax(f z) $_k = rac{e^{z_k}}{\sum_j e^{z_j}}$

Multiclass Classificaiton

- Multiple outputs: $f(\mathbf{x}) = \text{softmax}(\mathbf{z})$ with $\mathbf{z} = W^T \phi(\mathbf{x})$
- \blacksquare softmax(\mathbf{z})_k = $\frac{e^{\mathbf{z}_k}}{\sum_j e^{\mathbf{z}_j}}$
- Softmax example: If $\mathbf{z} = \begin{bmatrix} -1 \\ 2 \\ 1 \\ -4 \end{bmatrix}$ then,

softmax(z) =
$$\begin{bmatrix} \frac{e^{-1}}{e^{-1} + e^{2} + e^{1} + e^{-4}} \\ \frac{e^{2}}{e^{-1} + e^{2} + e^{1} + e^{-4}} \\ \frac{e^{1}}{e^{-1} + e^{2} + e^{1} + e^{-4}} \end{bmatrix} \approx \begin{bmatrix} 0.035 \\ 0.704 \\ 0.259 \\ 0.002 \end{bmatrix}$$

Cross-entropy

- Multiple outputs: $\hat{\mathbf{y}}_{i} = \operatorname{softmax}(W^{T}\phi(\mathbf{x}_{i}))$
- Cross-Entropy: $J(W) = -\sum_{i=1}^{N} \sum_{k=1}^{K} \mathbf{y}_{ik} log(\mathbf{\hat{y}}_{ik})$
- Example : K = 4

If,
$$\mathbf{y}_i = [0,0,1,0]$$
 then, $\sum_{k=1}^{N} \mathbf{y}_{ik} log(\hat{\mathbf{y}}_{ik}) = log(\hat{\mathbf{y}}_{i3})$

Outline

- 1 Leftovers from Day 3
- 2 Regularization
- 3 Non-linear Optimizatio
- 4 Logistic Regression
- 5 Lab: Diagnosing Breast Cance
- 6 Multiclass Classificaitor
- 7 Lab: Iris Dataset

