LFTC

Miguel de Campos Rodrigues Moret Abigail Sayury Nakashima

October 22, 2025

Contents

1 Aula 02

1.1 Descreva as linguagens denotadas pelas ER's abaixo sobre o alfabeto $\Sigma = \{0, 1\}$.

$a - 0|10^*$

A linguagem é composta por cadeias que contêm apenas o símbolo 0 ou que iniciam com 1 seguido de qualquer quantidade (inclusive zero) de 0's.

$b - (0|1)0^*$

A linguagem é composta por cadeias que iniciam com 0 ou com 1 e são seguidos por qualquer quantidade (inclusive zero) de 0's.

$c - (0011)^*$

A linguagem é composta por cadeias compostas por qualquer quantidade (inclusive zero) da substring "0011".

$\mathbf{d} - (0|1)^* \mathbf{1} (0|1)^*$

A linguagem é composta por cadeias que contem pelo menos um 1.

e - 0*11*0

A linguagem é composta por cadeias que iniciam com qualquer quantidade (inclusive zero) de 0's, segiodos por pelo menos um 1, finalizando com um único símbolo 0.

f - 0(0|1)*0

A linguagem é composta por cadeias que iniciam e terminam com 0.

$\mathbf{g} - (\epsilon + \mathbf{0})(\epsilon | \mathbf{1})$

A linguagem é composta por 4 cadeias diferentes: uma cadeia sem símbolos ("vazia"), uma cadeia composta por um único 0, uma cadeia composta por um único 1 e uma cadeia composta por um 0 seguido por um 1.

h - (000*|1)*

A linguagem é composta por cadeias que não contêm 0's sozinhos (eles estão sempre em grupos de 2+).

$\mathbf{i} - (0^*|0^*11(1|00^*11)^*)(\epsilon|00^*)$

A linguagem de todas as cadeias em que cada bloco de 1's tem comprimento pelo menos 2.

- 1.2 Sobre o $\Sigma = \{a, b\}$, defina expressoes regulares que representam as linguagens cujas sentencas estao descritas a seguir
 - Possuem comprimento maior ou igual a 3; $(a|b)(a|b)(a|b)(a|b)^*$
 - Possuem comprimento menor ou igual a 3; $(a|b|\epsilon)(a|b|\epsilon)(a|b|\epsilon)$
 - Possuem comprimento diferente a 3; $((a|b|\epsilon)(a|b|\epsilon))|((a|b)(a|b)(a|b)(a|b)(a|b)^*)$
 - Possuem comprimento par; $((a|b)(a|b))^*$
 - Possuem comprimento impar; $(a|b)((a|b)(a|b))^*$
- 1.3 Fazer o conjunto de exercícios da seção 3.1 do livro do HOPCROFT, páginas 96 e 97.
- 1.3.1 Escreva expressões regulares correspondentes às seguintes linguagens:
 - a) O conjunto de strings sobre o alfabeto $\{a, b, c\}$ que contém pelo menos um a e um b. ((a|b|c)*a(a|b|c)*b(a|b|c)*)|((a|b|c)*b(a|b|c)*a(a|b|c)*).

 - c) O conjunto de strings 0's e 1's com no máximo um par de 1's consecutivos. $(0|10)^*(\epsilon|(11))(0|01)^*$

1.3.2 Escreva expressões regulares correspondentes às seguintes linguagens:

- a) O conjunto de todos os strings de 0's e 1's tais que todo par de 0's adjacentes aparece antes de qualquer par de 1's adjacentes. (1*(01)*)*(00)*(0*(10)*)*(11)*(1*(01)*)*
- **b)** O conjunto de strings 0's e 1's cujo número de 0's é divisível por 5. (1*01*01*01*01*0)(1*01*01*01*01*0)*

1.3.3 Escreva expressões regulares correspondentes às seguintes linguagens:

- a) O conjunto de todos os strings 0's e 1's que não contêm 101 como um substring. $(0^*|1^*)(0^*|1^*)(0^*00(1^*)|0^*)^*$
- b) O conjunto de todos os strings com um número igual de 0's e 1's, tais que nenhum prefixo tenha dois 0's a mais que os 1's, nem dois 1's a mais que os 0's. (01|10|0011|1100|1001|0110)*
- c) O conjunto de strings de 0's e 1'scujo número de 0's é divisível por 5 e cujo número de 1's é par. ((11)*0(11)*0(11)*0(11)*0(11)*0(11)*0(11)*0(11)*0(11)*0(11)*0)*

1.3.4 Forneça descrições em português das linguagens correspondedentes às seguintes expressões regulares:

- a) $(1 + \epsilon)(00^*)^*0^*$. Linguagem de todas as cadeias com $\Sigma = \{0, 1\}$ que são ou vazias, ou contém somente zeros, ou possuem um único 1 seguido por múltiplos (ou nenhum) 0's.
- b) $(0^*1^*)^*000(0+1)^*$. Linguagem de todas as cadeias com $\Sigma = \{0,1\}$ que contêm "000" como substring.
- c) $(0+10)^*1^*$. Linguagem de todas as cadeias com $\Sigma = \{0,1\}$ que contêm pares 11 somente no final da cadeia.

1.3.5 No Exemplo 3.1, destacamos que \emptyset é uma das duas linguagens cujo fechammento é finito. Qual é a outra?

A outra linguagem é ϵ , que contém apenas a cadeia vazia.

2 Aula 03 - Feito junto de Daniel Padua

The first light of the first light light of the first light of the fir

30)
$$G = (\{S, A\}, \{a, b, c\}, P, S), \text{ com}$$

 $P = \{S \to aS \mid bA \mid cS \mid \epsilon, A \to aA \mid bS \mid cA\}$
ER: $((a|c) * ((a|c) * b(a|c) * b)*)*$

31)
$$G = (\{S, A\}, \{a, b, c\}, P, S), \text{ com}$$

 $P = \{S \to aS \mid bS \mid cA \mid c, A \to aA \mid bA \mid cS \mid \epsilon\}$
ER: $[ab] * c([ab] * c[ab] * c) * [ab] *$

32)
$$G = (\{S, A, B, C\}, \{a, b, c\}, P, S), \text{ com } P = \{S \to aB \mid bS \mid cA, A \to aC \mid bA \mid cS \mid \epsilon, B \to aS \mid bB \mid cC, C \to aA \mid bC \mid cB\}$$

ER: (b*(ab*ab*)*cb*(ab*ab*)*) | (b*(ab*ab*)*ab*cb*(ab*ab*)*ab*)(c[(b*(ab*ab*)*cb*(ab*ab*)*) | (b*(ab*ab*)*ab*)*ab*)*ab*)(ab*ab*)*ab*)])*

33)
$$G = (\{S, A\}, \{a, b, c\}, P, S), \text{ com}$$

 $P = \{S \rightarrow aS \mid bS \mid cS \mid abcA, A \rightarrow \epsilon\}$
ER: $[ac] * abc[ac] *$

34)
$$G = (\{S, A, B, C, D\}, \{a, b, c\}, P, S), \text{ com}$$

 $P = \{S \rightarrow aS \mid bS \mid cS \mid aA \mid bB \mid cC, A \rightarrow aaS \mid aaD, B \rightarrow bbS \mid bbD, C \rightarrow ccS \mid ccD, D \rightarrow aD \mid bD \mid cD \mid \epsilon\}$
ER: $[ac] * (aaa \mid bbb \mid ccc)[ac] *$

35)
$$G = (\{S, A, B, C\}, \{a, b, c\}, P, S), \text{ com}$$

 $P = \{S \to A \mid B \mid C \mid \epsilon, A \to bB \mid CC \mid \epsilon, B \to aA \mid cC \mid \epsilon, C \to bB \mid cC \mid \epsilon\}$

ER:
$$(a(b|c) | b(a|c) | c(a|b))*$$

36)
$$G = (\{S\}, \{a, b, c\}, P, S), \text{ com } P = \{S \to bS \mid cS \mid \epsilon\}$$

ER: $(b|c|a(a|c)?)*$

37)
$$G = (\{S, A\}, \{a, b, c\}, P, S), \text{ com}$$

 $P = \{S \to aA \mid bS \mid cS \mid \epsilon, A \to aA \mid cS \mid \epsilon\}$
ER: $(b|c|a(b|a|c)?)*$

38)
$$G = (\{S, A\}, \{a, b, c\}, P, S), \text{ com}$$

 $P = \{S \rightarrow aA \mid bS \mid cS \mid \epsilon, A \rightarrow aA \mid bB \mid cS \mid \epsilon, B \rightarrow aA \mid bS \mid epsilon\}$

ER: (b|c|a(b|a|c)?)*

3 Aula 04

images/Aula04/4.png

images/Aula04/5.png

19

4 Aula 07

4.1 Exercício 5

1

Diagrama de Estados:

• q0 (estado inicial)

$$-0.25 \to q1|S = 0$$

$$-0.50 \rightarrow q2|S=0$$

$$-1.00 \rightarrow q0|S=1$$

• q1

$$-0.25 \rightarrow q2|S=0$$

$$-\ 0.50 \rightarrow q0|S=1$$

$$-1.00 \to q0|S = R$$

• q2

$$-0.25 \rightarrow q3|S=0$$

$$-0.50 \rightarrow q0|S=1$$

$$-1.00 \rightarrow q0|S = R$$

• q3

$$-\ 0.25 \rightarrow q0|S=1$$

$$-0.50 \to q0|S = R$$

$$-1.00 \to q0|S = R$$

4.2 Exercício 6

 $AF = (\{Parado, Subindo, Descendo\}, \{=, >, <\}, \{P, S, D\}, \delta, \gamma, q0)$

• Função de transição (δ):

Estado Atual	Condição	Próximo Estado Saída
q_0	requisitado = atual	$q_0 \mid S = Parar$
q_1	requisitado = atual	$q_0 \mid S = Parar$

- Função Saída (γ):

Estado Atual	Entrada	Saída
q_0	x	a
q_1	Subir	
Descendo	Descer	

Diagrama de Estados:

• q0 (estado inicial)

$$-x \rightarrow q1|S=a$$

• q1

$$-\lambda \rightarrow q0|S=b$$

4.3 Exercício 7

7

 $AF = (\{Parado, Subindo, Descendo\}, \{=, >, <\}, \{P, S, D\}, \delta, \gamma, q0)$

• Função de transição (δ) :

Estado Atual	Condição	Próximo Estado Saída
q_0	requisitado = atual	$q_0 \mid S = P$
q_0	requisitado > atual	$q_1 \mid S = S$
q_0	requisitado < atual	$q_2 \mid S = D$
q_1	requisitado = atual	$q_0 \mid S = P$
q_1	requisitado > atual	$q_1 \mid S = S$
q_2	requisitado = atual	$q_0 \mid S = P$
q_2	requisitado < atual	$q_2 \mid S = D$

• Função Saída (γ) :

Parado	Parar
Subindo	Subir
Descendo	Descer