Learning From Data Lecture 10: Mixture of Gaussians & EM

Yang Li yangli@sz.tsinghua.edu.cn

11/29/2019

Today's Lecture

Unsupervised Learning (Part II)

- ► Mixture of Gaussians
- ▶ The EM Algorithm
- ► Factor Analysis

Review: k-means clustering

Given input data $\{x^{(1)}, \ldots, x^{(m)}\}$, $x^{(i)} \in \mathbb{R}^d$, **k-means clustering** partition the input into $k \leq m$ sets C_1, \ldots, C_k to minimize the within-cluster sum of squares (WCSS).

$$\underset{C}{\operatorname{argmin}} \sum_{j=1}^{k} \sum_{x \in C_j} \|x - \mu_j\|^2$$

Lloyd's Algorithm (1957,1982)

Let $c^{(i)} \in \{1, \dots, k\}$ be the cluster label for $x^{(i)}$

```
Initialize cluster centroids \mu_1, \dots \mu_k \in R^n randomly Repeat until convergence {
	For every i,
	c^{(i)} := \operatorname{argmin}_j \|x^{(i)} - \mu_j\|^2 \quad \leftarrow \text{ assign } x^{(i)} \text{ to the cluster}
	with the closest centroid
	For each j
	\mu_j := \frac{\sum_{i=1}^m \mathbf{1}\{c^{(i)} = j\}x^{(i)}}{\sum_{i=1}^m \mathbf{1}\{c^{(i)} = j\}} \quad \leftarrow \text{ update centroid}
}
```

Mixture of Gaussians

A "soft" version of k-means clustering.

Clustering results of iris dataset using mixture of Gaussians

Mixture models

Model-based clustering

A **mixture model** assumes data are generated by the following process:

1. Sample $z^{(i)} \in \{1, \dots, k\}$ and $z^{(i)} \sim \text{Multinomial}(\phi)$

$$p(z^{(i)} = j) = \phi_j$$
 for all j

 $z^{(i)}$ are called **latent variables**.

2. Sample observables $x^{(i)}$ from some distribution $p(x^{(i)}, z^{(i)})$:

$$p(x^{(i)}, z^{(i)}) = p(x^{(i)}|z^{(i)})p(z^{(i)})$$

Examples:

- Unsupervised handwriting recognition is a mixture with 10 Bernoulli distributions
- Financial return estimation uses a mixture of 2 Gaussians for normal situation and crisis time distribution

Mixture of Gaussians

Mixture of Gaussians Model:

$$z^{(i)} \sim \mathsf{Multinomial}(\phi)$$

 $x^{(i)}|z^{(i)} = j \sim \mathcal{N}(\mu_j, \Sigma_j)$

How to learn ϕ_j, μ_j and Σ_j for all j?

 $z^{(i)}$ is known: (supervised) use maximum likelihood estimation (quadratic discriminant analysis).

$$\phi_{j} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{1} \{ z^{(i)} = j \}, \quad \mu_{j} = \frac{\sum_{i=1}^{m} \mathbf{1} \{ z^{(i)} = j \} x^{(i)}}{\sum_{i=1}^{m} \mathbf{1} \{ z^{(i)} = j \}}$$

$$\Sigma_{j} = \frac{\sum_{i=1}^{m} \mathbf{1} \{ z^{(i)} = j \} (x^{(i)} - \mu_{j}) (x^{(i)} - \mu_{j})^{T}}{\sum_{i=1}^{m} \mathbf{1} \{ z^{(i)} = j \}}$$

 $z^{(i)}$ is unknown: (unsupervised) use **expectation maximization**

The EM Algorithm

The EM algorithm is an iterative method for maximum likelihood estimation when the model depends on **latent (unobserved)** variables.

Log-likelihood of data:

$$I(\theta) = \sum_{i=1}^{m} \log p(x^{(i)}; \theta) = \sum_{i=1}^{m} \log \sum_{z^{(i)}=1}^{k} p(x^{(i)}, z^{(i)}; \theta)$$

Main idea: iterate over two steps:

- Expectation (E) step : guess z⁽ⁱ⁾
- Maximization (M) step : update θ via maximum likelihood estimation based on guessed $z^{(i)}$'s

Generalized EM Algorithm

Listing 1: Generalized EM Algorithm

```
Initialize \theta
Repeat untill convergence {
    (E-step) For each i , set
    Q_i(z^{(i)}) := p(z^{(i)}|x^{(i)};\theta) \leftarrow \text{Soft assignment:}
    posterior distribution z|x under \theta
    (M-step) Set
    \theta := \underset{\theta}{\operatorname{argmax}} \sum_i \sum_{z^{(i)}} Q_i(z^{(i)}) \log \frac{p(x^{(i)},z^{(i)};\theta)}{Q_i(z^{(i)})}    (*)
    \leftarrow \text{Update parameter } \theta
```

We will show...

- ▶ Solving (\star) is equivalent to $\operatorname{argmax}_{\theta} I(\theta)$ → Equation (\star) is a (tight) lower bound on log-likelihood $I(\theta)$
- This algorithm converges.

Proof of Correctness: E-step

Define

$$J(Q, \theta) = \sum_{i} \sum_{z^{(i)}} Q_{i}(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \theta)}{Q_{i}(z^{(i)})}$$

Proposition 1

- 1. $J(Q, \theta)$ is a lower bound on log-likelihood $I(\theta)$
- 2. This lower bound is tight when $Q_i(z^{(i)}) = p(z^{(i)}|x^{(i)};\theta)$

(Hint: use Jensen's inequality)

Jensen's Inequality

Theorem 1

Let f be a **convex** function, and let X be a random variable. Then

$$\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])$$
Jensen's inequality for convex function
$$f(a) = E[f(x)] \geq f(E[x])$$

$$f(b) = a = E[x]$$

Remarks

- 1. Let f be a **concave** function, then $\mathbb{E}[f(X)] \leq f(E[X])$
- 2. When f(X) is a constant function, $\mathbb{E}[f(X)] = f(\mathbb{E}[X])$

Proof of Convergence

Proposition 2

EM always monotonically improves the log likelihood, i.e. Let $\theta^{(t)}$ be the parameter value in the t-th iteration

$$I(\theta^{(t)}) \leq I(\theta^{(t+1)})$$

EM for mixture of Gaussians

Gaussian Mixture Model

$$z^{(i)} \sim \mathsf{Multinomial}(\phi)$$
 $x^{(i)}|z^{(i)} \sim \mathcal{N}(\mu_j, \Sigma_j)$

Learn parameters μ, Σ, ϕ

E-Step:
$$w_j^{(i)} = Q_i(z^{(i)} = j) = p(z^{(i)} = j|x^{(i)}; \phi, \mu, \Sigma)$$

M-Step: Maximize
$$\sum_{i=1}^{m} \sum_{z^{(i)}} Q_i(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \phi, \mu, \Sigma)}{Q_i(z^{(i)})}$$
 with

respect to ϕ , μ and Σ

Expectation Maximization for Gaussian Mixtures

Listing 2: EM for Gaussian Mixtures

```
Repeat untill convergence {
(E-step) For each i, j, set
                     w_i^{(i)} := p(z^{(i)} = j | x^{(i)}; \phi, \mu, \Sigma)
(M-step) Update parameters: assume \phi_i = \mathbb{E}[w_i]
                    \phi_j := \frac{1}{m} \sum_{i=1}^m w_j^{(i)}
                    \mu_{j} := \frac{\sum_{i=1}^{m} w_{j}^{(i)} x^{(i)}}{\sum_{i=1}^{m} w_{j}^{(i)}}
\Sigma_{j} := \frac{\sum_{i=1}^{m} w_{j}^{(i)} (x^{(i)} - \mu_{j}) (x^{(i)} - \mu_{j})^{T}}{\sum_{i=1}^{m} w_{i}^{(i)}}
}
```

Illustration of EM steps

Comparison with k-means clustering

Listing 2: EM Algorithm

```
Repeat untill convergence { Repeat untill convergence { (E-step) For each i, j, (w_j^{(i)} := p(z^{(i)} = j | x^{(i)}; \phi, \mu, \Sigma) (M-step) Update parameters: \phi_j := \frac{1}{m} \sum_{i=1}^m w_j^{(i)}  \mu_j := \frac{\sum_{i=1}^m w_j^{(i)} x_j}{\sum_{i=1}^m w_j^{(i)}}  \Sigma_j := \frac{\sum_{i=1}^m w_j^{(i)} (x^{(i)} - \mu_j)(x^{(i)} - \mu_j)^\mathsf{T}}{\sum_{i=1}^m w_j^{(i)}}  }
```

Listing 3: (Llyod's) k-means Alg.

```
Repeat untill convergence { (E-step) For every i, c^{(i)} := \underset{j}{\operatorname{argmin}} ||x^{(i)} - \mu_j||^2 (M-step) Update centroids: For each j \mu_j := \frac{\mathbf{1}\{c^{(i)} = j\}x^{(i)}}{\sum_{i=1}^m \mathbf{1}\{c^{(i)} = j\}} }
```

Similar to k-means, Gaussian mixtures are also subject to local minimums.

Factor Analysis: Example

How much do you identify yourself with the following traits?

1-- the least 9 -- the most

	1	2	3	4	5	6	7	8	9
talkative	0	\circ	0	0	\circ	\circ	0	0	0
distant	0	0	0	0	0	0	0	0	0
careless	0	\circ	0	0	\circ	\circ	0	0	0
hardwork	0	0	0	0	0	0	0	0	0
anxious	0	\circ	0	0	\circ	\circ	0	0	0
kind	0	0	0	0	0	0	0	0	0

Self-ratings on 32 Personality Traits

Factor Analysis: Example

Pairwise correlation plot of 32 variables from 240 participants

Factor Analysis Terminology

b observed random variables $x \in \mathbb{R}^n$

$$x = \mu + \Lambda z + \epsilon$$

- ▶ **factor** $z \in \mathbb{R}^k$ is the hidden (latent) construct that "causes" the observed variables
- ▶ **factor loadings** $\Lambda \in \mathbb{R}^{n \times k}$: the degree to which variable x_i is "caused" by the factors
- $\mu, \epsilon \in \mathbb{R}^n$ are the mean and error vectors

Matrix of factor loading Λ for personality test data

variable	factor 1	factor 2	factor 3	factor 4
distant	0.59	0.27	0	0
talkative	-0.50	-0.51	0	0.27
careless	0.46	-0.47	0.11	0.14
hardworking	-0.46	0.33	-0.14	0.35
kind	-0.488	0.222	0	0
:				

Factor Analysis: Example

Factor Analysis: Example

Visualize loading of the first two factors, rotated to align with axes

Factor Analysis Model

Observed variables: $x \in \mathbb{R}^n$ Latent variables: $z \in \mathbb{R}^k$ (k < n)The factor analysis model defines a joint distribution p(x, z) as

$$z \sim \mathcal{N}(0, I)$$

$$\epsilon \sim \mathcal{N}(0, \Psi)$$

$$x = \mu + \Lambda z + \epsilon$$

where $\Psi \in \mathbb{R}^{n \times n}$ is a diagonal matrix, $\epsilon, \mu \in \mathbb{R}^n$, $\Lambda \in \mathbb{R}^{n \times k}$

Given observations $x^{(i)},\dots,x^{(m)}$, how to fit the parameters μ,Λ,Ψ ?

The EM Algorithm

Rubin, D. and Thayer, D. (1982). *EM algorithms for ML factor analysis*. Psychometrika, 47(1):69-76.

Listing 4: EM for Factor Analysis

```
Initialize \mu, \Lambda, \Psi
Repeat untill convergence {
  (E-step) For each i, set
  Q_i(z^{(i)}) := p(z^{(i)}|x^{(i)}; \mu, \Lambda, \Psi) \leftarrow z is a continuous variable (M-step) Set
  \mu, \Lambda, \Psi := \operatorname*{argmax} \sum_{i=1}^m \int_{z^{(i)}} Q_i(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \mu, \Lambda, \Psi)}{Q_i(z^{(i)})} dz^{(i)} (*)
```

First, we need to write $p(z^{(i)}|x^{(i)})$ and $p(x^{(i)},z^{(i)})$ in terms of the model parameters.

EM Derivations

It can be shown that, random vector $\begin{bmatrix} z \\ x \end{bmatrix} \sim \mathcal{N}(\mu_{zx}, \Sigma)$ where

$$\mu_{\rm xz} = \begin{bmatrix} 0 \\ \mu \end{bmatrix} \text{ and } \Sigma = \begin{bmatrix} I & \Lambda^T \\ \Lambda & \Lambda \Lambda^T + \Psi \end{bmatrix}$$

E-Step

The posterior distribution $z^{(i)}|x^{(i)} \sim \mathcal{N}\left(\mu_{z^{(i)}|x^{(i)}}, \Sigma_{z^{(i)}|x^{(i)}}\right)$

$$\begin{split} &\mu_{\mathbf{z}^{(i)}|\mathbf{x}^{(i)}} = \boldsymbol{\Lambda}^T (\boldsymbol{\Lambda} \boldsymbol{\Lambda}^T + \boldsymbol{\Psi})^{-1} (\mathbf{x}^{(i)} - \boldsymbol{\mu}) \\ &\Sigma_{\mathbf{z}^{(i)}|\mathbf{x}^{(i)}} = \boldsymbol{I} - \boldsymbol{\Lambda}^T (\boldsymbol{\Lambda} \boldsymbol{\Lambda}^T + \boldsymbol{\Psi})^{-1} \boldsymbol{\Lambda} \end{split}$$

$$\begin{aligned} Q_{i}(z^{(i)}) &= p(z^{(i)}|x^{(i)}; \mu, \Lambda, \Psi) \\ &= \frac{1}{\sqrt{(2\pi)^{k}|\Sigma_{z^{(i)}|x^{(i)}}|}} \exp\left(-\frac{1}{2}(z^{(i)} - \mu_{z^{(i)}|x^{(i)}})^{T} \Sigma_{z^{(i)}|x^{(i)}}^{-1}(z^{(i)} - \mu_{z^{(i)}|x^{(i)}})\right) \end{aligned}$$

EM Derivations

M-Step

$$\underset{\mu,\Lambda,\Psi}{\operatorname{argmax}} \sum_{i=1}^{m} \int_{z^{(i)}} Q_{i}(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \mu, \Lambda, \Psi)}{Q_{i}(z^{(i)})} dz^{(i)} \qquad (\star)$$

Note that

$$\begin{split} & \int_{z^{(i)}} Q_i(z^{(i)}) \log \frac{p(x^{(i)}, z^{(i)}; \mu, \Lambda, \Psi)}{Q_i(z^{(i)})} dz^{(i)} \\ & = \mathbb{E}_{z \sim Q_i} [\log p(x^{(i)}|z^{(i)}; \mu, \Lambda, \Psi) + \log p(z^{(i)}) - \log Q_i(z^{(i)})] \end{split}$$

 (\star) is equivalent to

$$\operatorname*{argmax}_{\mu,\Lambda,\Psi} \sum_{i=1}^{m} \mathbb{E}_{z^{(i)} \sim Q_{i}}[\log p(x^{(i)}|z^{(i)};\mu,\Lambda,\Psi)]$$

EM Derivations

M-Step (con't)

$$\underset{\mu,\Lambda,\Psi}{\operatorname{argmax}} \sum_{i=1}^{m} \mathbb{E}_{z^{(i)} \sim Q_{i}}[\log p(x^{(i)}|z^{(i)}; \mu, \Lambda, \Psi)] \quad (\star\star)$$

Since
$$x = \mu + \Lambda z + \epsilon$$
 and $\epsilon \sim \mathcal{N}(0, \Psi)$
$$x^{(i)}|z^{(i)} \sim \mathcal{N}(\mu + \Lambda z, \Psi)$$

$$\begin{split} & p(x^{(i)}|z^{(i)}; \mu, \Lambda, \Psi) \\ &= \frac{1}{(2\pi)^{n/2} |\Psi|^{1/2}} \exp\left(-\frac{1}{2}(x^{(i)} - \mu - \Lambda z^{(i)})^T \Psi^{-1}(x^{(i)} - \mu - \Lambda z^{(i)})\right) \end{split}$$

We can maximize $(\star\star)$ with respect to μ , Λ and Ψ

Factor Analysis Discussions

Comparison with Mixture of Gaussians

- ▶ Mixture of Gaussians assumes sufficient data and relative few response variables. i.e. when $n \approx m$ or n > m, Σ is singular
- ▶ Factor Analysis works when n > m by allowing model noise

Factor Analysis Discussions

Relationship to PCA

- Both PCA and factor analysis can find low dimensional latent subspace in data
- PCA is good for data reduction (reduce correlation among observed variables)
- ► Factor analysis is good for data exploration (find independent, common factors in observed variables)
- Factor analysis allows the noise to have an arbitrary diagonal covariance matrix, while PCA assumes the noise is spherical.

Additional readings

Zoubin Ghahramani and Geoffrey E. Hinton, The EM Algorithm for Mixtures of Factor Analyzers, 1997