# Enhancing the Interpretability of Cardiovascular Disease Classifiers using Born-Again Tree

Luís Guilherme S. N. A. Magalhães

**Eduardo Corrêa Gonçalves** 

Escola Nacional de Ciências Estatísticas (ENCE/IBGE)

**KDMile 2024** 

## **Outline**

Introdução

**Trabalhos Relacionados** 

**Born-Again Tree Ensembles** 

**Experimentos** 

**Conclusões e Trabalhos Futuros** 

# Introdução (1/2)

- Objetivo do trabalho:
  - Avaliar o algoritmo Born-Again
     Tree Ensembles (BA) na
     classificação do risco de doenças
     cardiovasculares.
- O que é BA ? (Vidal e Schiffer, 2020)
  - Algoritmo que transforma ...
    - ... uma Random Forest
    - ... em uma única Árvore de Decisão com o mesmo poder preditivo.



# Introdução (2/2)

- O que são doenças cardiovasculares (DCV) ?
  - Termo geral para condições que afetam o coração ou vasos sanguíneos.
  - Principal causa de morte no mundo, de acordo com a Organização Pan-Americana de Saúde (OPAS).
  - Taxa de Prevalência de DCV no Brasil em 2021 (Oliveira et al., 2024) :
    - 7,6% para homens
    - 6,3% para mulheres
    - Taxa de mortalidade por 100 mil habitantes = 348,5.

<sup>\*</sup> Oliveira et al. Estatística Cardiovascular – Brasil. Arq. Bras. Cadiol., 121 (2): 1–131, 2024.

# **Trabalhos Relacionados (1/2)**

- Previsão de DCV <u>Abordagem 1</u>: Métodos Baseados em Escores e Equações
  - Fáceis de serem usados e interpretados.
  - Muito difundidos na área médica.
  - Ex.: Calculadora de Risco Cardiovascular da OPAS.



## **Trabalhos Relacionados (2/2)**

- Previsão de DCV <u>Abordagem 2</u>:
   Mineração de Dados / Aprendizado de Máquina
  - Um grande número combinações de fatores podem estar envolvidos no desenvolvimento de DCV.
  - Por isso, redes neurais e ensembles têm sido empregados prever o risco de DCV.
    - Vantagem: acurácia alta.
    - Desvantagem: modelos caixa-preta.
  - Neste trabalho, empregaremos o BA para:
    - Produzir um modelo interpretável, com a mesma acurácia de uma Random Forest.

## Born-Again Tree Ensembles (BA) (1/3)

#### Como funciona o BA?

- As regras geradas por uma árvore de decisão (AD) dividem o espaço de atributos em diferentes regiões.
- Exemplo: AD p/ classificar risco alto para DCV em função da taxa de colesterol e consumo de cigarros.





Regiões do espaço de atributos definidas pela AD

# Born-Again Tree Ensembles (BA) (2/3)

- Como funciona o BA?
  - O BA processa as regiões definidas por cada árvore de uma RF para transformar a RF em uma única AD.
    - Ela é chamada de árvore born-again.
    - Possui o mesmo desempenho preditivo da RF.
  - O BA é o primeiro algoritmo exato para transformar uma RF em uma única AD:
    - Com o mesmo poder preditivo.
    - E fiel ao modelo RF em todo o seu espaço de atributos.

## Born-Again Tree Ensembles (BA) (3/3)

- Como funciona o BA?
  - Exemplo: RF com 3 árvores e 2 atributos (x<sub>1</sub> e x<sub>2</sub>)



## Base de Dados (1/2)

### STULONG/ENTRY

- 1.417 pacientes europeus, sexo masculino, acima de 35 anos
  - Dados pessoais
  - Hábitos gerais
  - Exames físicos e laboratoriais.
- Classificados por especialistas em 3 grupos de risco para DCV:
  - baixo (grupo 0) sem fator de risco, sem DCV
  - médio (grupo 1) com fator(es) de risco, mas não têm DCV
  - alto (grupo 2) alguma DCV já identificada

## Base de Dados (2/2)

## STULONG/ENTRY

 Foram selecionados 6 atributos frequentemente apontados como fatores de risco.

| Atributo          | Categorias                                             |  |  |  |
|-------------------|--------------------------------------------------------|--|--|--|
| Fumante           | não fumante; 1-4 cig/dia; 5-14; 15-20; ≥ 21            |  |  |  |
| Pressão Sanguínea | normal; normal/alta; alta                              |  |  |  |
| Colesterol        | desejável; limítrofe; alto                             |  |  |  |
| Educação          | fundamental; médio; especialização; superior           |  |  |  |
| Faixa Etária      | 35-39; 40-44; 45-49; ≥ 50                              |  |  |  |
| IMC               | baixo peso; normal; excesso de peso; obesidade mórbida |  |  |  |

### Classes desbalanceadas:

- baixo risco (grupo 0) 22% da base
- médio risco (grupo 1) 69%
- alto risco (grupo 2) 9%

## Resultados (1/6)

## Experimentos

- Comparação CART x RF x BA na base de dados STULONG
  - Exp. 1: desempenho preditivo (CART x RF e BA)
  - Exp. 2: comparação das ADs (CART x BA)

### Setup Experimental

- holdout com 90% treino e 10% teste.
- precisão, revocação e F1 (por classe).
- CART e RF: implementações da scikit-learn
  - Árvore c/ máx. de 8 nós-folha e 3 níveis
  - RF com 10 árvores.
- BA: implementação da página do projeto
  - recebe como entrada RF gerada pela scikit-learn e produz BA como saída

## Resultados (2/6)

(1) Desempenho preditivo por classe: CART x RF x BA

|                           | Precisão |         | Revocação |         | F1    |         |
|---------------------------|----------|---------|-----------|---------|-------|---------|
| Grupo de Risco            | CART     | RF e BA | CART      | RF e BA | CART  | RF e BA |
| baixo (classe 0)          | 0,685    | 0,711   | 0,850     | 0,960   | 0,759 | 0,817   |
| médio ( <b>classe 1</b> ) | 0,700    | 0,793   | 0,630     | 0,690   | 0,663 | 0,738   |
| alto (classe 2)           | 0,480    | 0,705   | 0,367     | 0,550   | 0,414 | 0,618   |

- BA e RF têm mesmo desempenho preditivo.
  - ... pois BA é representação diferente da mesma função de decisão da RF.
- BA e RF superam CART em todas as medidas nas 3 classes.
- F1 obtido p/ BA e RF é 20% ao do CART na classe minoritária (classe 2).

## Resultados (3/6)

- (2) Comparação das ADs Geradas (CART x BA)
  - AD do CART



## Resultados (4/6)

- (2) Comparação das ADs Geradas (CART x BA)
  - AD do CART



- 8 regras, apenas 2 envolvendo Classe 2 (risco alto)
- Uma delas é:
  - (Fuma ≤ 15cig/dia) & (Pressão = "alta") & (IMC ≥ "normal") → Risco "Alto"
- Nenhuma das regras cobre especificamente pacientes não fumantes.

## Resultados (5/6)

- (2) Comparação das ADs Geradas (CART x BA)
  - Árvore born-again



## Resultados (6/6)

(2) Comparação das ADs Geradas (CART x BA)



- "Fumante" continua na raiz.
- Uma regra para não fumante foi gerada:
  - (Fuma = "não") & (IMC > "normal") & (Pressão > "normal") & (idade < 45) & (Educação ≠ "superior") → Risco "Alto"</li>

## **Comentários Finais**

#### Resumo

- Na base de dados STULONG, a árvore born-again gerada pelo BA:
  - Obteve o mesmo poder preditivo da RF.
  - Produz classificações tão fáceis de interpretar quanto a calculadora de risco da OPAS.
  - Possui poder descritivo superior a AD produzida pelo CART.

#### Trabalhos Futuros

- Avaliar a eficiência do BA em bases de dados mais volumosas.
- Aplicar as regras geradas na entrada da calculadora de risco e comparar os resultados.



**Obrigado !!!!**