Билет 11

Подпоследовательность. Предел подпоследовательности сходящейся последовательности

Определение подпоследовательности

Если a_n — последовательность, а m_n — строго возрастающая последовательность из \mathbb{N} , то последовательность $b_n = a_{m_n}$ называется подпоследовательностью a_n и обозначается a_{m_n}

 c_n — подпоследовательность $b_n \wedge b_n$ — подпоследовательность $a_n \Rightarrow c_n$ — подпоследовательность a_n

Лемма

 a_{m_n} — подпоследовательность $a_n \Rightarrow (\forall n \in \mathbb{N}) \ m_n \geq n$

Доказательство

 a_{m_n} — подпоследовательность $a_n \Rightarrow m_n$ — строго возрастающая последовательность из \mathbb{N} :

Индукция: $P(n) = (m_n \ge n)$

- 1. $m_1 \in \mathbb{N} \Rightarrow m_1 \geq 1 \Rightarrow P(1)$
- 2. $P(n) \Rightarrow P(n+1)$

 m_n — строго возрастающая:

$$m_{n+1} > m_n \wedge m_n, m_{n+1} \in \mathbb{N} \Rightarrow m_{n+1} \ge m_n + 1$$

Πο P(n):

$$m_n \ge n \Rightarrow m_{n+1} \ge m_n + 1 \ge n + 1 \Rightarrow P(n+1) \square$$
.

Теорема

 a_{m_n} — подпоследовательность a_n

$$a_n \to g \Rightarrow a_{m_n} \to g$$

Доказательство

$$a_n \to g \Rightarrow \forall \varepsilon > 0 \ \exists k : (\forall n > k) \ |a_n - g| < \varepsilon \land m_n \ge n \Rightarrow |a_{m_n} - g| < \varepsilon \square.$$