Úvod do dynamického programovania, proteomika

Askar Gafurov 7.10.2021

Proteomika

Proteín: sekvencia pozostáva z 20 rôznych aminokyselín

MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASE DLKKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECIIQVLQSKH PGDFGADAQGAMNKALELFRKDMASNYKELGFQG

Z bunky sme izolovali určitý proteín, chceme zistiť jeho sekvenciu.

Hmotnostná spektrometria (mass spectometry)

- Meria pomer hmostnosť/náboj molekúl vo vzorke
- Používa sa na identifikáciu proteínov
- Proteín nasekáme enzýmom trypsín (seká na [KR] {P}) na peptidy
- Meriame hmostnosť kúskov, porovnáme s databázou proteínov.
- Tandemová hmotnostná spektrometria (MS/MS) ďalej fragmentuje každý kúsok a dosiahne podrobnejšie spektrum, ktoré obsahuje viac informácie
- V niektorých prípadoch tak vieme sekvenciu proteínu určiť priamo z MS/MS, bez databázy proteínov

Tandemová hmotnostná spektrometria MS/MS

Štiepenie peptidu na prefixy a sufixy

zdroj: Bafna and Reinert

b-ióny: prefixy

y-ióny: sufixy

Tandemová hmotnostná spektrometria MS/MS

b-ions	924	778	663	534	405	292	145	88
	K	D	E	E	L	F	G	S
y-ions	141	262	391	520	633	780	837	924

zdroj: Bafna and Reinert

Sekvenovanie peptidov pomocou MS/MS

Vstup: celková hmotnosť peptidu M, hmotnosti aminokyselín $a[1],\ldots,a[20]$ (celé čísla), spektrum ako tabuľka $f[0],\ldots,f[M]$, ktorá hmotnosti určí skóre podľa signálu v okolí príslušného bodu grafu

Označenie:

Nech $x = x_1 \dots x_k$ je postupnosť aminokyselín

Nech $m(x) = \sum_{j=1}^{k} a[x_j]$ je hmotnosť x

Nech $\mathcal{M}_P(x) = \{m(x_1 \dots x_j) \mid j = 1, \dots, k\}$ sú hmotnosti prefixov x

Nech $\mathcal{M}_S(x) = \{m(x_j \dots x_k) \mid j = 1, \dots, k\}$ sú hmotnosti sufixov x

Problém 1: uvažujeme iba b-ióny (prefixy)

Výstup: postupnosť aminokyselín x taká, že m(x)=M a $\sum_{m\in\mathcal{M}_P(x)}f[m]$ je maximálna možná

Príklad

Uvažujme len 3 aminokyseliny X,Y,Z

$$M = 23, a[X] = 4, a[Y] = 6, a[Z] = 7$$

\overline{m}	4	6	7	11	12	17	18	19
f[m]	1	1	1	1	1	1	1	1

Hmotnosti prefixov $\mathcal{M}_P(XZYY) =$

$$\{m(), m(X), m(XZ), m(XZYY), m(XZYY)\} = \{0, 4, 11, 17, 23\}$$

Hmotnosti sufixov $\mathcal{M}_S(XZYY) =$

$$\{m(), m(Y), m(YY), m(ZYY), m(XZYY)\} = \{0, 6, 12, 19, 23\}$$

Skóre XZYY:
$$\sum_{m \in \mathcal{M}_P(ZYXX)} f[m] = 0 + 1 + 1 + 1 + 0 = 3$$

Skóre XZXXX:
$$\sum_{m \in \mathcal{M}_P(ZYZZZ)} f[m] = 0$$

$$f[0] + f[4] + f[11] + f[15] + f[19] + f[23] = 0 + 1 + 1 + 0 + 1 + 0 = 3$$

Sekvenovanie peptidov pomocou MS/MS

Problém 2: uvažujeme prefixy aj sufixy, sčítame ich skóre

Výstup: postupnosť aminokyselín x taká, že m(x)=M a

$$\sum_{m\in\mathcal{M}_P(x)}f[m]+\sum_{m\in\mathcal{M}_S(x)}f[m]$$
 je maximálna možná

Problém 3: uvažujeme prefixy aj sufixy, sčítame ich skóre, ale každú hmotnosť započítame najviac raz

Výstup: postupnosť aminokyselín x taká, že m(x)=M a

$$\sum_{m\in\mathcal{M}_P(x)\cup\mathcal{M}_S(x)}f[m]$$
 je maximálna možná

Príklad

$$M = 23, a[X] = 4, a[Y] = 6, a[Z] = 7$$

\overline{m}		_	-			-	_	_
f[m]	1	1	1	1	1	1	1	1

$$\mathcal{M}_P(XZYY) = \{0, 4, 11, 17, 23\}$$
 $\mathcal{M}_S(XZYY) = \{0, 6, 12, 19, 23\}$

$$\mathcal{M}_P(XZXXX) = \{0, 4, 11, 15, 19, 23\}$$

$$\mathcal{M}_S(XZXXX) = \{0, 4, 8, 12, 19, 23\}$$

Problém 2: $\sum_{m \in \mathcal{M}_P(x)} f[m] + \sum_{m \in \mathcal{M}_S(x)} f[m]$

Skóre XZYY:
$$0+1+1+1+0+0+1+1+1+0=6$$

Skóre XZXXX:
$$0+1+1+0+1+0+0+1+0+1+1+0=6$$

Problém 3: $\sum_{m \in \mathcal{M}_P(x) \cup \mathcal{M}_S(x)} f[m]$

XZYY:
$$\{0, 4, 6, 11, 12, 17, 19, 23\}$$
, $1 + 1 + 1 + 1 + 1 + 1 + 1 + 0 = 6$

$$XZXXX: \{0, 4, 8, 11, 12, 15, 19, 23\}, 1 + 0 + 1 + 1 + 0 + 1 + 0 = 4$$

Ekvivalencia problémov

Problém 2: maximalizujeme $\sum_{m \in \mathcal{M}_P(x)} f[m] + \sum_{m \in \mathcal{M}_S(x)} f[m]$

Iná formulácia: maximalizujeme $\sum_{m \in \mathcal{M}_p(x)} g[m]$

 $kde\ g[m] = f[m] + f[M-m]$

Ekvivalencia problémov

Problém 3: maximalizujeme $\sum_{m \in \mathcal{M}_P(x) \cup \mathcal{M}_S(x)} f[m]$

Iná formulácia: maximalizujeme $\sum_{m\in\mathcal{M}_p(x)\cup\mathcal{M}_S(x),m\leq M/2}h[m]$

$$\operatorname{kde} h[m] = \left\{ \begin{array}{ll} f[m] + f[M-m] & \operatorname{ak} m < M/2 \\ f[m] & \operatorname{ak} m = M/2 \end{array} \right.$$