Continous Distrubutions

Name	f(x)	E(X)	Var(X)	$M_X(t)$
$X \sim \mathrm{U}(a,b)$	$\frac{1}{b-a}, \ a < x < b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{t(b-a)}$
$X \sim \Gamma(\alpha, \beta)$	$\frac{x^{\alpha - 1}e^{-\frac{x}{\beta}}}{\beta^{\alpha}\Gamma(\alpha)}, \ 0 < x < \infty$	$\alpha \beta$	$lphaeta^2$	$(1-\beta t)^{-\alpha}$
$X \sim \chi^2(r)$	$\frac{x^{\frac{r}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{r}{2}} \Gamma(\frac{r}{2})}, \ 0 < x < \infty$	r	2r	$(1-2t)^{-\frac{r}{2}}$
$X \sim \exp(\lambda)$	$\frac{1}{\lambda}e^{-\frac{x}{\lambda}}, \ 0 < x < \infty$	λ	λ^2	$(1 - \lambda t)^{-1}$
$X \sim \beta(a,b)$	$\frac{1}{\beta(a,b)}x^{a-1}(1-x)^{b-1}, \ 0 < x < 1$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$	∞
$X \sim N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, -\infty < x < \infty$	μ	σ^2	$e^{\mu t + \frac{1}{2}\sigma^2 t^2}$

Discrete Distrubutions

Name	f(x)	E(X)	Var(X)	$M_X(t)$
$X \sim b(n,p)$	$\binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, 2, \dots, n$	np	np(1-p)	$(1 - p + pe^t)^n$
$X \sim \operatorname{ber}(p)$	$p^{x}(1-p)^{1-x}, x = 0, 1$	p	p(1-p)	$1-p+pe^t$
$X \sim \operatorname{po}(\lambda)$	$\frac{\lambda^x e^{-\lambda}}{x!}, x = 0, 1, 2, \dots, \infty$	λ	λ	$e^{\lambda(e^t-1)}$
$X \sim G(p)$	$p(1-p)^{x-1}, x = 1, 2, \dots, \infty$	$\frac{q}{p}$	$\frac{q}{p^2}$	$\frac{p}{1 - (1 - p)e^t}$

By Mr. Sajad Ahmed