1.5 Proving the "BAC–CAB" rule for three-dimensional vectors:

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{A} \times \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$$

$$= \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_y C_z - B_z C_y & B_z C_x - B_x C_z & B_x C_y - B_y C_x \end{vmatrix}$$

where the x component is

$$A_y(B_xC_y - B_yC_x) - A_z(B_zC_x - B_xC_z)$$

From the "BAC-CAB" rule,

$$\mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B}) = \mathbf{B}(A_x C_x + A_y C_y + A_z C_z) - \mathbf{C}(A_x B_x + A_y B_y + A_z B_z)$$

where x component simplifies to

$$B_x(A_xC_x + A_yC_y + A_zC_z) - C_x(A_xB_x + A_yB_y + A_zB_z) = A_y(B_xC_y - B_yC_x) - A_z(B_zC_x - B_xC_z)$$

So,

$$[\mathbf{A} \times (\mathbf{B} \times \mathbf{C})]_x = [\mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})]_x$$

and similary for the y and z components. Therefore, the "BAC–CAB" rule holds true.

1.11 (a) Finding gradient of $f(x, y, z) = x^2 + y^3 + z^4$:

$$\nabla f = \frac{\partial f}{\partial x}\hat{\mathbf{x}} + \frac{\partial f}{\partial y}\hat{\mathbf{y}} + \frac{\partial f}{\partial z}\hat{\mathbf{z}}$$
$$= 2x\hat{\mathbf{x}} + 3y^2\hat{\mathbf{y}} + 4z^3\hat{\mathbf{z}}$$

(b) Gradient of $f(x, y, z) = x^2 y^3 z^4$:

$$\nabla f = 2xy^3z^4\hat{\mathbf{x}} + 3x^2y^2z^4\hat{\mathbf{y}} + 4x^2y^3z^3\hat{\mathbf{z}}$$

(c) Gradient of $f(x, y, z) = e^x \sin(y) \ln(z)$:

$$\nabla f = e^x \hat{\mathbf{x}} + e^x \cos(y) \ln(z) \hat{\mathbf{y}} + \frac{e^x \sin(y)}{z} \hat{\mathbf{z}}$$

1.13 Given the seperation vector

$$\mathbf{z} = (x - x')\hat{\mathbf{x}} + (y - y')\hat{\mathbf{y}} + (z - z')\hat{\mathbf{z}}$$
 and $\mathbf{z} = \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}$

(a) Show that $\nabla(z^2) = 2z$:

$$z^2 = (x - x')^2 + (y - y')^2 + (z - z')^2$$

and each component of the gradient is

$$\begin{split} &\frac{\partial}{\partial x} \left(\mathbf{z}^2 \right) = 2(x - x') \\ &\frac{\partial}{\partial y} \left(\mathbf{z}^2 \right) = 2(y - y') \\ &\frac{\partial}{\partial z} \left(\mathbf{z}^2 \right) = 2(z - z') \end{split}$$

SO

$$\nabla(z^2) = 2z$$

(b) Show $\nabla(1/z) = -\hat{z}/z^2$:

$$\frac{1}{z} = [(x - x')^2 + (y - y')^2 + (z - z')^2]^{-1/2} = [()]^{-1/2}$$

looking at the x component of the gradient (using chain rule),

$$\frac{\partial}{\partial x} \left(\frac{1}{\imath} \right) = -\frac{1}{2} [(\)]^{-3/2} \cdot 2(x - x')$$
$$= -\frac{(x - x')}{\imath^3}$$

and similarly for the y and z components:

$$\nabla \left(\frac{1}{\imath}\right) = \frac{\partial}{\partial x} \left(\frac{1}{\imath}\right) \hat{\mathbf{x}} + \frac{\partial}{\partial y} \left(\frac{1}{\imath}\right) \hat{\mathbf{y}} + \frac{\partial}{\partial z} \left(\frac{1}{\imath}\right) \hat{\mathbf{z}}$$
$$= -\frac{1}{\imath^3} [(x - x') \hat{\mathbf{x}} + (y - y') \hat{\mathbf{y}} + (z - z') \hat{\mathbf{z}}] = -\frac{\imath}{\imath^3}$$

Finally, substituting the unit vector $\hat{\boldsymbol{z}} = \boldsymbol{z}/z$ gives us

$$\nabla \left(\frac{1}{2}\right) = -\frac{\hat{z}}{2}$$

(c) The general formula for $\nabla(z^n)$:

$$\nabla(\mathbf{z}^n) = n\mathbf{z}^{n-1} \cdot \nabla(\mathbf{z})$$

where

$$\nabla(\mathbf{z}) = \frac{\partial}{\partial x}(\mathbf{z})\hat{\mathbf{x}} + \frac{\partial}{\partial y}(\mathbf{z})\hat{\mathbf{y}} + \frac{\partial}{\partial z}(\mathbf{z})\hat{\mathbf{z}}$$

$$= \frac{1}{2}[(\)]^{-1/2} \cdot 2(x - x')\hat{\mathbf{x}} + \dots \quad \text{[similar to part (b)]}$$

$$= \frac{\mathbf{z}}{\mathbf{z}} = \hat{\mathbf{z}}$$

So the general formula is

$$\nabla(\mathbf{z}^n) = n\mathbf{z}^{n-1}\mathbf{\hat{z}}$$

1.15 (a) Calculating divergence of $\mathbf{v}_a = x^2 \mathbf{\hat{x}} + 3xz^2 \mathbf{\hat{y}} - 2xz\mathbf{\hat{z}}$:

$$\nabla \cdot \mathbf{v}_a = \frac{\partial v_{ax}}{\partial x} + \frac{\partial v_{ay}}{\partial y} + \frac{\partial v_{az}}{\partial z}$$
$$= 2x + 0 - 2x = 0$$

(b)
$$\mathbf{v}_b = xy\hat{\mathbf{x}} + 2yz\hat{\mathbf{y}} + 3zx\hat{\mathbf{z}}$$
:

$$\nabla \cdot \mathbf{v}_b = y + 2z + 3x$$

(c)
$$\mathbf{v}_c = y^2 \hat{\mathbf{x}} + (2xy + z^2)\hat{\mathbf{y}} + 2yz\hat{\mathbf{z}}$$
:

$$\nabla \cdot \mathbf{v}_c = 0 + 2x + 2y = 2(x+y)$$

Figure 1.16: The vector field $\mathbf{v} = \frac{\hat{\mathbf{r}}}{r^2}$

1.16 Given

$$r = \sqrt{x^2 + y^2 + z^2}$$
 and $\hat{\mathbf{r}} = \frac{\mathbf{r}}{r} = \frac{x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}}{\sqrt{x^2 + y^2 + z^2}}$

where $\mathbf{r} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$ is the position vector. The vector functions is

$$v = \frac{\mathbf{\hat{r}}}{r^2} = \frac{\mathbf{r}}{r^3}$$

where the components are

$$v_x = \frac{x}{r^3}$$
, $v_y = \frac{y}{r^3}$, and $v_z = \frac{z}{r^3}$

Looking at the x component of the divergence,

$$[\nabla \cdot \mathbf{v}]_x = \frac{\partial v_x}{\partial x}$$

$$= \frac{\partial}{\partial x} \left(\frac{x}{r^3}\right)$$

$$= \frac{\partial}{\partial x} \left(\frac{x}{(x^2 + y^2 + z^2)^{3/2}}\right) \text{ using chain rule...}$$

$$= \frac{1}{(x^2 + y^2 + z^2)^{3/2}} - \frac{3x^2}{(x^2 + y^2 + z^2)^{5/2}}$$

$$= \frac{1}{r^3} - \frac{3x^2}{r^5}$$

therefore, the divergence of \mathbf{v} is

$$\nabla \cdot \mathbf{v} = \left(\frac{1}{r^3} - \frac{3x^2}{r^5}\right) + \left(\frac{1}{r^3} - \frac{3y^2}{r^5}\right) + \left(\frac{1}{r^3} - \frac{3z^2}{r^5}\right)$$
$$= \frac{3}{r^3} - 3\frac{x^2 + y^2 + z^2}{r^5}$$
$$= \frac{3}{r^3} - 3\frac{r^2}{r^5} = 0$$

The divergence is zero everywhere except at the origin where r = 0 because division by r^3 tells us that the divergence is infinite at the origin.

1.18 Curl of vector functions from Problem 1.15: (a) $\mathbf{v}_a = x^2 \hat{\mathbf{x}} + 3xz^2 \hat{\mathbf{y}} - 2xz\hat{\mathbf{z}}$:

$$\nabla \times \mathbf{v}_a = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 & 3xz^2 & -2xz \end{vmatrix}$$
$$= \hat{\mathbf{x}}(0 - 6xz) - \hat{\mathbf{y}}(-2z - 0) + \hat{\mathbf{z}}(3z^2 - 0)$$
$$= -6xz\hat{\mathbf{x}} + 2z\hat{\mathbf{y}} + 3z^2\hat{\mathbf{z}}$$

(b) $\mathbf{v}_b = xy\hat{\mathbf{x}} + 2yz\hat{\mathbf{y}} + 3zx\hat{\mathbf{z}}$:

$$\nabla \times \mathbf{v}_b = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xy & 2yz & 3zx \end{vmatrix}$$
$$= \hat{\mathbf{x}}(0 - 2y) - \hat{\mathbf{y}}(3z - 0) + \hat{\mathbf{z}}(0 - x)$$
$$= -2y\hat{\mathbf{x}} - 3z\hat{\mathbf{y}} - x\hat{\mathbf{z}}$$

(c)
$$\mathbf{v}_c = y^2 \hat{\mathbf{x}} + (2xy + z^2)\hat{\mathbf{y}} + 2yz\hat{\mathbf{z}}$$
:

$$\nabla \times \mathbf{v}_c = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 & 2xy + z^2 & 2yz \end{vmatrix}$$
$$= \hat{\mathbf{x}}(2z - 2z) - \hat{\mathbf{y}}(0 - 0) + \hat{\mathbf{z}}(2y - 2y)$$
$$= 0$$

1.32 Given $T = x^2 + 4xy + 2yz^3$,

$$\frac{\partial T}{\partial x} = 2x + 4y$$
, $\frac{\partial T}{\partial y} = 4x + 2z^3$, and $\frac{\partial T}{\partial z} = 6yz^2$

therefore

$$\nabla T = \hat{\mathbf{x}}(2x+4y) + \hat{\mathbf{y}}(4x+2z^3) + \hat{\mathbf{z}}(6yz^2)$$

Checking the fundamental theorem for gradients using the points $a = (0,0,0) \rightarrow b = (1,1,1)$:

$$\int_{a}^{b} \nabla T \cdot d\mathbf{l} = T(b) - T(a) = 1^{2} + 4(1)(1) + 2(1)(1)^{3} - 0 = 7$$

For the three paths:

(a) $a \to (1,0,0) \to (1,1,0) \to b$;

(i) $a \to (1,0,0)$:

$$x: 0 \to 1; \quad y = z = dy = dz = 0; \quad d\mathbf{l} = dx \,\hat{\mathbf{x}}; \quad \nabla T \cdot d\mathbf{l} = 2x \, dx$$

and

$$\int_{a}^{c} \nabla T \cdot d\mathbf{l} = \int_{0}^{1} 2x \, dx = 1$$

(ii) $(1,0,0) \rightarrow (1,1,0)$:

$$y: 0 \to 1; \quad x = 1, \quad z = dx = dz = 0; \quad d\mathbf{l} = dy \,\hat{\mathbf{y}}; \quad \nabla T \cdot d\mathbf{l} = 4 \,dy$$

and

$$\int_{0}^{d} \nabla T \cdot d\mathbf{l} = \int_{0}^{1} 4 \, dy = 4$$

(iii) $(1, 1, 0) \to b$:

$$z: 0 \to 1$$
; $x = y = 1$, $dx = dy = 0$; $d\mathbf{l} = dz \hat{\mathbf{z}}$; $\nabla T \cdot d\mathbf{l} = 6z^2 dz$

and

$$\int_{d}^{b} \nabla T \cdot d\mathbf{l} = \int_{0}^{1} 6z^{2} dz = 2$$

therefore

$$\int_{a}^{b} \nabla T \cdot d\mathbf{l} = 1 + 4 + 2 = 7$$

(b) $a \to (0,0,1) \to (0,1,1) \to b$;

(i) $a \to (0, 0, 1)$:

$$z: 0 \to 1;$$
 $x = y = dx = dy = 0;$ $d\mathbf{l} = dz \,\hat{\mathbf{z}};$ $\nabla T \cdot d\mathbf{l} = 0$

and

$$\int_{a}^{c} \nabla T \cdot d\mathbf{l} = \int_{0}^{1} 0 = 0$$

(ii) $(0,0,1) \rightarrow (0,1,1)$:

$$z = 1$$
, $x = dx = dz = 0$; $d\mathbf{l} = dy \hat{\mathbf{y}}$; $\nabla T \cdot d\mathbf{l} = 2 dy$

and

$$\int_{c}^{d} \nabla T \cdot d\mathbf{l} = \int_{0}^{1} 2 \, dy = 2$$

(iii) $(0,1,1) \to b$:

$$z: 0 \to 1; \quad y = z = 1, \quad dy = dz = 0; \quad d\mathbf{l} = dx \,\hat{\mathbf{x}}; \quad \nabla T \cdot d\mathbf{l} = (2x + 4) \, dx$$

and

$$\int_{d}^{b} \nabla T \cdot d\mathbf{l} = \int_{0}^{1} (2x+4) \, dx = 5$$

therefore

$$\int_{a}^{b} \nabla T \cdot d\mathbf{l} = 0 + 2 + 5 = 7$$

(c) the parabolic path $z = x^2$; y = x:

$$dx = dy$$
, and $dz = 2x dx$; $dl = dx \hat{\mathbf{x}} + dx \hat{\mathbf{y}} + 2x dx \hat{\mathbf{z}}$

and

$$\nabla T \cdot d\mathbf{l} = (2x + 4y) dx + (4x + 2z^3) dx + (6yz^2) 2x dx$$
$$= 6x dx + (4x + 2x^6) dx + (12x^6) dx$$
$$= 10x dx + 14x^6 dx$$

therefore

$$\int_{a}^{b} \nabla T \cdot d\mathbf{l} = \int_{0}^{1} (10x + 14x^{6}) dx$$
$$= 5x^{2} + 2x^{7} \Big|_{0}^{1} = 7$$

1.33 Testing the divergence theorem: For the function

$$\mathbf{v} = (xy)\mathbf{\hat{x}} + (2yz)\mathbf{\hat{y}} + (3zx)\mathbf{\hat{z}}$$

the divergence is

$$\nabla \cdot \mathbf{v} = y + 2z + 3x$$

so the volume integral is

$$\int_{V} \mathbf{\nabla \cdot \mathbf{v}} \, d\tau = \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} (y + 2z + 3x) \, dx \, dy \, dz$$

$$= \int_{0}^{2} \int_{0}^{2} (2y + 4z + 6) \, dy \, dz$$

$$= \int_{0}^{2} (4 + 8z + 12) \, dz$$

$$= 8 + 16 + 24$$

$$\int_{V} \mathbf{\nabla \cdot \mathbf{v}} \, d\tau = 48$$

The surface integral is evaluated over the six faces of the cube:

 $\overline{(i)} \ x = 2, \, d\mathbf{A} = dy \, dz \, \hat{\mathbf{x}}, \, \mathbf{v} \cdot d\mathbf{A} = 2y \, dy \, dz;$

$$\int \mathbf{v} \cdot d\mathbf{A} = \int_0^2 \int_0^2 2y \, dy \, dz = 8$$

(ii) x = 0, $d\mathbf{A} = -dy dz \hat{\mathbf{x}}$, $\mathbf{v} \cdot d\mathbf{A} = 0$;

$$\int \mathbf{v} \cdot d\mathbf{A} = \int_0^2 \int_0^2 0 \, dy \, dz = 0$$

(iii) y = 2, $d\mathbf{A} = dx dz \hat{\mathbf{y}}$, $\mathbf{v} \cdot d\mathbf{A} = 4z dx dz$;

$$\int \mathbf{v} \cdot d\mathbf{A} = \int_0^2 \int_0^2 4z \, dx \, dz = 16$$

(iv) y = 0;

$$\int \mathbf{v} \cdot d\mathbf{A} = 0$$

(v) z = 2, $d\mathbf{A} = dx dy \hat{\mathbf{z}}$, $\mathbf{v} \cdot d\mathbf{A} = 6x dx dy$;

$$\int \mathbf{v} \cdot d\mathbf{A} = \int_0^2 \int_0^2 6x \, dx \, dy = 24$$

(vi) z = 0;

$$\int \mathbf{v} \cdot d\mathbf{A} = 0$$

So the total flux is

$$\oint_{S} \mathbf{v} \cdot d\mathbf{A} = 8 + 0 + 16 + 0 + 24 + 0 = 48$$

therefore, the divergence theorem is verified.

$$\int_{V} (\mathbf{\nabla \cdot v}) \, \mathrm{d}\tau = \oint_{S} \mathbf{v} \cdot \mathrm{d}\mathbf{A}$$

1.34 Testing Stokes' theorem for the function

$$\mathbf{v} = (xy)\mathbf{\hat{x}} + (2yz)\mathbf{\hat{y}} + (3zx)\mathbf{\hat{z}}$$

using the triangular shaded area bounded by the vertices O = (0,0,0), A = (0,2,0), and B = (0,0,2):

$$\nabla \times \mathbf{v} = (0 - 2y)\hat{\mathbf{x}} - (3z - 0)\hat{\mathbf{y}} + (0 - x)\hat{\mathbf{z}}$$
 and $d\mathbf{A} = dz dy \hat{\mathbf{x}}$
= $-2y\hat{\mathbf{x}} - 3z\hat{\mathbf{y}} - x\hat{\mathbf{z}}$

x=0 on this surface, and the limits of integration are $y:0\to 2$ and $z=0\to z=2-y$:

$$(\mathbf{\nabla} \times \mathbf{v}) \cdot d\mathbf{A} = -2y \, dz \, dy$$

Thus, the flux of the curl through the surface is

$$\int_{S} (\mathbf{\nabla} \times \mathbf{v}) \cdot d\mathbf{A} = \int_{0}^{2} \int_{0}^{2-y} -2y \, dz \, dy$$
$$= \int_{0}^{2} -2y(2-y) \, dy$$
$$= -2y^{2} + \frac{2}{3}y^{3} \Big|_{0}^{2} = -8/3$$

The line integral is evaluated over the three sides of the triangle:

(i) On the path OA: x = z = 0; $d\mathbf{l} = dy \hat{\mathbf{y}}$; $\mathbf{v} \cdot d\mathbf{l} = 2yz dy = 0$;

$$\int_{OA} \mathbf{v} \cdot \mathbf{dl} = 0$$

(ii) On the path AB: $x = 0, y = 2 - z; dy = -dz; d\mathbf{l} = -dz (\mathbf{\hat{y}} - \mathbf{\hat{z}}); \mathbf{v} \cdot d\mathbf{l} = -2yz dz = -2(2 - z)z dz = (2z^2 - 4z) dz;$

$$\int_{AB} \mathbf{v} \cdot d\mathbf{l} = \int_0^2 (2z^2 - 4z) \, dz = -8/3$$

(iii) On the path BO: x = y = 0; $d\mathbf{l} = dz \,\hat{\mathbf{z}}$; $\mathbf{v} \cdot d\mathbf{l} = 0$;

$$\int_{BO} \mathbf{v} \cdot d\mathbf{l} = 0$$

So, the circulation of \mathbf{v} around the triangle is

$$\oint \mathbf{v} \cdot \mathbf{dl} = 0 + -8/3 + 0 = -8/3$$

thus,

$$\int_{S} (\mathbf{\nabla} \times \mathbf{v}) \cdot d\mathbf{A} = \oint \mathbf{v} \cdot d\mathbf{l}$$