Seja f(x, y) uma função de duas variáveis, $P_0 = (x_0, y_0)$ um ponto do domínio de $f \in \vec{u}$ um vetor não nulo do plano xy.

Denote por L a reta que passa por P_0 e tem a direção de \vec{u} :

$$P_0 + t\vec{u}, \quad t \in \mathbb{R}.$$

A derivada direcional de f em P_0 na direção de \vec{u} , denotada por

$$\frac{\partial f}{\partial \vec{u}}(P_0),$$

é a taxa de variação de f em P_0 na direção de \vec{u} .

Seja C a curva de equação $z=f(P_0+t\vec{u}),\ t\in\mathbb{R}.$

Geometricamente, $\frac{\partial f}{\partial \vec{u}}(P_0)$ representa a inclinação da reta tangente à curva C no ponto $(x_0, y_0, f(x_0, y_0))$.

Em outras palavras, a **derivada direcional** de f(x, y) no ponto P_0 e na direção do vetor \vec{u} é definida por

$$\frac{\partial f}{\partial \vec{u}}(P_0) = \lim_{t \to 0} \frac{f(P_0 + t\vec{u}) - f(P_0)}{t ||\vec{u}||},$$

se esse limite existir.

Em particular,

- a derivada parcial $\frac{\partial f}{\partial x}(P_0)$ é a derivada direcional de f(x,y) no ponto P_0 e na direção do vetor (1,0);
- a derivada parcial $\frac{\partial f}{\partial y}(P_0)$ é a derivada direcional de f(x,y) no ponto P_0 e na direção do vetor (0,1).

Teorema 1: Se z = f(x, y) é diferenciável em $P_0 = (x_0, y_0)$, então

$$\frac{\partial f}{\partial \vec{u}}(P_0) = \nabla f(P_0) \cdot \frac{\vec{u}}{\|\vec{u}\|},$$

ou seja, a derivada direcional de f em P_0 na direção de \vec{u} é o produto escalar entre o gradiente da função f no ponto P_0 e o vetor unitário $\vec{u}/\|\vec{u}\|$.

Demonstração: Desde que f é diferenciável em P_0 , temos

$$\lim_{t \to 0} \frac{f(P_0 + t\vec{u}) - f(P_0) - \nabla f(P_0) \cdot (t\vec{u})}{t \|\vec{u}\|} = 0.$$

De forma equivalente,

$$\lim_{t \to 0} \left| \frac{f(P_0 + t\vec{u}) - f(P_0)}{t ||\vec{u}||} - \frac{\nabla f(P_0) \cdot \vec{u}}{||\vec{u}||} \right| = 0.$$

Mas isto implica que

$$\lim_{t\to 0} \frac{f(P_0 + t\vec{u}) - f(P_0)}{t\|\vec{u}\|} = \nabla f(P_0) \cdot \frac{\vec{u}}{\|\vec{u}\|}.$$

Seja f(x, y, z) uma função de três variáveis, $P_0 = (x_0, y_0, z_0)$ um ponto do domínio de f e \vec{u} um vetor não nulo do espaço \mathbb{R}^3 .

Denote por L a reta que passa por P_0 e tem a direção de \vec{u} :

$$P_0 + t\vec{u}, \quad t \in \mathbb{R}.$$

A derivada direcional de f(x, y, z) no ponto P_0 e na direção do vetor \vec{u} é definida por

$$\frac{\partial f}{\partial \vec{u}}(P_0) = \lim_{t \to 0} \frac{f(P_0 + t\vec{u}) - f(P_0)}{t \|\vec{u}\|},$$

se esse limite existir.

Versão tridimensional do **Teorema 1**:

Teorema 2: Se f(x, y, z) é diferenciável em $P_0 = (x_0, y_0, z_0)$, então

$$\frac{\partial f}{\partial \vec{u}}(P_0) = \nabla f(P_0) \cdot \frac{\vec{u}}{\|\vec{u}\|},$$

ou seja, a derivada direcional de f em P_0 na direção de \vec{u} é o produto escalar entre o gradiente da função f no ponto P_0 e o vetor unitário $\vec{u}/\|\vec{u}\|$.

Exemplo 1: Determine a taxa de variação de $f(x, y, z) = xyz + e^{2x+y}$ no ponto $P_0 = (-1, 2, 1)$ e na direção do vetor $\vec{u} = (1, 1, \sqrt{2})$.

Resolução: O gradiente da função f é

$$\nabla f(x,y,z) = (yz + 2e^{2x+y}, xz + e^{2x+y}, xy).$$

Como f é diferenciável em $P_0 = (-1, 2, 1)$, segue que

$$\frac{\partial f}{\partial \vec{u}}(-1,2,1) = \nabla f(-1,2,1) \cdot \frac{\vec{u}}{\|\vec{u}\|}$$

$$= (4,0,-2) \cdot \frac{(1,1,\sqrt{2})}{2}$$

$$= 2 - \sqrt{2}.$$

Teorema 3: Seja f uma função diferenciável em P_0 tal que

$$\nabla f(P_0) \neq \mathbf{0}$$
.

Então, o valor **máximo** de $\frac{\partial f}{\partial \vec{u}}(P_0)$ ocorre quando \vec{u} tem a direção e o sentido do vetor $\nabla f(P_0)$, sendo $\|\nabla f(P_0)\|$ o valor máximo.

Demonstração: Sabemos que

$$\frac{\partial f}{\partial \vec{u}}(P_0) = \nabla f(P_0) \cdot \frac{\vec{u}}{\|\vec{u}\|}$$

$$= \|\nabla f(P_0)\| \left\| \frac{\vec{u}}{\|\vec{u}\|} \right\| \cos \theta$$

$$= \|\nabla f(P_0)\| \cos \theta,$$

em que θ é o ângulo entre $\nabla f(P_0)$ e \vec{u} . Logo, $\frac{\partial f}{\partial \vec{u}}(P_0)$ assume seu valor máximo quando $\cos \theta = 1$, ou seja, $\theta = 0$. Assim, \vec{u} tem a direção e o sentido de $\nabla f(P_0)$. Ainda mais, seu valor máximo é $\|\nabla f(P_0)\|$.

Exemplo 2: Seja $f(x,y) = 2 + x^2 + y^2/4$. Encontre a direção segundo a qual f(x,y) cresce mais rapidamente no ponto (1,2) e determine a taxa máxima de crescimento de f em (1,2).

Resolução: O gradiente de f é

$$\nabla f(x,y) = (2x,y/2).$$

Em (1,2),

$$\nabla f(1,2) = (2,1).$$

Este vetor define a direção segundo a qual f(x, y) aumenta mais rapidamente em (1, 2).

A taxa de aumento de f em (1,2) é

$$\|\nabla f(1,2)\| = \|(2,1)\| = \sqrt{5}.$$

Geometricamente:

Se um ponto se move no plano xy passando por P_0 e na direção de $\nabla f(1,2)$, o ponto correspondente o gráfico descreve uma curva C de máximo aclive no parabolóide.

Similarmente ao Teorema 3,

Teorema 4: Seja f uma função diferenciável em P_0 tal que

$$\nabla f(P_0) \neq \mathbf{0}$$
.

Então, o valor **mínimo** de $\frac{\partial f}{\partial \vec{u}}(P_0)$ ocorre quando \vec{u} tem a direção e o sentido de $-\nabla f(P_0)$, sendo $-\|\nabla f(P_0)\|$ o valor mínimo.