Lab10-NP and Reduction

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2018.

* If there is any problem, please contact TA Jiahao Fan.

- * Name:Juncheng Wan Student ID:516021910620 Email: 578177149@qq.com
- 1. PARTITION: Given a finite set A and a size $s(a) \in \mathbb{Z}$ for each $a \in A$, is there a subset $A' \subseteq A$ such that $\sum_{a \in A'} s(a) = \sum_{a \in A A'} s(a)$?

SUBSET SUM: Given a finite set A, a size $s(a) \in \mathbb{Z}$ for each $a \in A$ and an integer B, is there a subset $A' \subseteq A$ such that $\sum_{a \in A'} s(a) = B$?

KNAPSACK: Given a finite set A, a size $s(a) \in \mathbb{Z}$ and a value $v(a) \in \mathbb{Z}$ for each $a \in A$ and integers B and K, is there a subset $A' \subseteq A$ such that $\sum_{a \in A'} s(a) \leq B$ and $\sum_{a \in A'} v(a) \geq K$?

(a) Prove $PARTITION \leq_p SUBSET SUM$.

Proof. Assume that there is an instance of *PARTITION* $A' \subseteq A$. First, calculate the the whole size of A:

$$s(A) = \sum_{a \in A} s(a) \tag{1}$$

This will take O(|A|) time. To make use of the black box of SUBSET SUM, input A and $\frac{1}{2}s(A)$ to the black box.

I think that:

A' satisfies $\sum_{a \in A'} s(a) = \sum_{a \in A - A'} s(a)$ iff the black box of SUBSET SUM finds a subset A'' satisfies $\sum_{a \in A''} s(a) = \frac{1}{2} s(A)$.

"\(\sim \):" If there is a subset $A'' \subseteq A$ such that $\sum_{a \in A''} s(a) = \frac{1}{2} s(A)$, then A' = A'' as $\sum_{a \in A'} s(a) = \sum_{a \in A - A'} s(a) = \frac{1}{2} s(A)$.

"\improces:" If A' satisfies $\sum_{a \in A'} s(a) = \sum_{a \in A - A'} s(a)$, because $A' \cap (A - A') = \emptyset$ and $A' \cup (A - A') = A$, $\sum_{a \in A'} s(a) = \sum_{a \in A - A'} s(a) = \frac{1}{2} \sum_{a \in A} s(a) = \frac{1}{2} s(A)$. Therefore, there is a subset A'' satisfies $\sum_{a \in A''} s(a) = \frac{1}{2} s(A)$.

(b) Prove $SUBSET\ SUM \leq_p KNAPSACK$.

Proof. Assume that there is an instance of SUBSET SUM $A' \subseteq A$. For each element $a \in A$, add a new property "value" where v(a) = s(a). This will cost O(|A|) time.

To make use of the black box of KNAPSACK, input A and set K = B. I think that:

A' satisfies $\sum_{a \in A'} s(a) = B$ iff the black box of KNAPSACK finds a subset A'' satisfies $\sum_{a \in A''} s(a) \leq B$ and $\sum_{a \in A''} v(a) \geq K$.

"\(\infty\): "If there is a subset $A' \subseteq A$ such that $\sum_{a \in A'} s(a) \leq B$ and $\sum_{a \in A'} v(a) \geq K$, then A' satisfies that $\sum_{a \in A'} s(a) = B$. Because $B \geq \sum_{a \in A'} v(a) \geq K$ and K = B.

"\improx:" Because K = B and v(a) = s(a), there is at least one subset A'' = A' can satisfy $\sum_{a \in A''} s(a) \leq B$ and $\sum_{a \in A''} v(a) \geq K$.

2. 3SAT: Given a set U of variables, a collection C of clauses over U such that each clause $c \in C$ has |c| = 3, is there a satisfying truth assignment for C?

CLIQUE: Given a graph G = (V, E) and a positive integer $K \leq |V|$, is there a subset $V' \subseteq V$ with $|V'| \geq K$ such that every two vertices in V' are joined by an edge in E?

Prove $3SAT \leq_p CLIQUE$.

Proof. Assume that there is a instance Φ of 3SAT with N variables and K clauses. I construct a graph G with the following laws:

- (a) Each variable in each clause is a vertice. If two clauses have the same variable (i.e. x_1 is in $c_1 = (x_1, \bar{x}_2, x_3)$ and $c_2(\bar{x}_1, x_2, x_3)$), these two vertices should not be the same.
- (b) Connect all the vertices with edges except the vertice and the "complement" of the vertice (i.e x_1 and \bar{x}_1). Besides, disconnect the vertices in the same clause.

To make use of the black box of CLIQUE, input G and K. I think that:

The 3-SAT Φ is satisfied iff the black box of *CLIQUE* finds a clique with input G and K.

"\(\iff\): " If the black box of CLIQUE finds K vertices that is a clique, then assign the corresponding variable the value (i.e if x_1 is choosen, assign x_1 1; if $\bar{x_1}$ is choosen, assign x_1 0).

Because for each variable x and \bar{x} , there is no edge between them in G, the property that a variable x can only be assigned 1 or 0 is satisfied.

It is also obvious that the maximal number of vertices is a cluque is K. Because one vertice can only connect with the vertices of other clauses and there is only K clauses. Therefore, if G(V,E) and the black box of CLIQUE finds a subset $V' \subseteq V$ with $|V'| \ge K$, then |V'| = K and each clause has exact one vertice choosen. Because each clause has exact one vertice choosen, each clause is satisfied.

" \Longrightarrow :" If the 3-SAT Φ is satisfied with an assign C, it means that at least one variable of each clause is satisfied. Just choose all the vertices in the clauses and in the assign C as V'. Because in the assign C there is not coexist of x and \bar{x} , at least one vertice in each clause is in C, and according to the construction of G each vertice x can have an edge with the other vertices in V' and not in the same clause of x, there should be a clique of size $\geq K$ (in fact = K).

3. ZERO-ONE INTEGER PROGRAMMING: Given an integer $m \times n$ matrix A and an integer m-vector b, is there an integer n-vector x with elements in the set $\{0,1\}$ such that $Ax \leq b$. Prove ZERO-ONE INTEGER PROGRAMMING is NP-complete. (Hint: Reduce from 3SAT)

Proof. First I give my method of proving, then I use the hint to reduce from 3SAT. Abbreviate ZERO-ONE INTEGER PROGRAMMING **ZOIP**, ZERO-ONE EQUATION **ZOE**. I prove that **ZOIP** is NP-complete in the following steps.

- (a) **ZOIP** is NP problem.
 - Given a vector x, just calculate Ax (time complexity O(mn)) and compare whether Ax < b (time complexity O(n)). The total time complexity of certifier is O(mn) (polynomial).
- (b) Subset Sum \leq_p ZOE.

Assume that there are n natural numbers $W = \{w_1, w_2, \dots, w_n\}$ and an integer T. To make use of the black box of \mathbf{ZOE} , I construct a zero-one matrix $A_{t \times n}$. Transform each w_i to b_i as the binary code of w_i and get $B = \{b_1, b_2, \dots, b_n\}$. Find the largest element b_i in B and set $t = |b_i|$. For the rest of element in B, set the length to t by adding 0 in the front of the binary code. Set \mathbf{c} the binary code of T and make it a column vector. Therefore, input A and \mathbf{c} to the black box of \mathbf{ZOE} . If the black box of \mathbf{ZOE} finds a zero-one vector \mathbf{x} such that $A\mathbf{x} = \mathbf{c}$, select the element w_i in W according to \mathbf{x} (if $x_i = 1$, select w_i and if $x_i = 0$, don't select w_i). It is obvious that \mathbf{Subset} \mathbf{Sum} has a solution iff \mathbf{ZOE} has a solution.

(c) **ZOE** is NP-complete.

Because **Subset Sum** is NP-complete (proved in the class **Subset Sum** \leq_p) **3-SAT**, **ZOE** is NP-complete.

(d) $ZOE \leq_p ZOLP$

Assume that there is a matrix $A_{n \times m}$ and a column vector $\mathbf{b} = (b_1, b_2, \dots, b_n)$. **ZOE** wants to find if there is a column vector \mathbf{x} such that $A\mathbf{x} = \mathbf{b}$.

We have the following relationship:

$$A\mathbf{x} = \mathbf{b} \Longleftrightarrow \begin{pmatrix} A & 0 \\ 0 & -A \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{x} \end{pmatrix} \le \begin{pmatrix} \mathbf{b} \\ -\mathbf{b} \end{pmatrix}$$
 (2)

Set:

$$\hat{A} = \begin{pmatrix} A & 0 \\ 0 & -A \end{pmatrix} \quad \mathbf{c} = \begin{pmatrix} \mathbf{b} \\ -\mathbf{b} \end{pmatrix} \tag{3}$$

To make use of the black box of **ZOLP**, input \hat{A} and **c**. Because **ZOE** is NP-complete, **ZOLP** is NP-complete.

In addition to the above proof, I use the hint to prove that **3SAT** \leq_p **ZOIP**:

Assume that there is a instance of **3SAT** with n variables and m clauses. Construct $\mathbf{x} = (x_1, x_2, \dots, x_n, \bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)^T$. Construct $A_{m \times 2n}$ by the laws:

- (a) if variable x_j appears in clause i, set $a_{i,j} = 1$;
- (b) if variable \bar{x}_j appears in clause i, set $a_{i,n+j} = 1$;
- (c) set the rest of A 0.

Set $\mathbf{b} = (1, 1, \dots, 1)^T$. By using the above equation (2) and (3), we input \hat{A} and \mathbf{c} to the black box of ZOIP.

It is obvious that this construction can promise that the instance of **3SAT** has a satisfiable assignment iff the black box of **ZOIP** outputs a solution.

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.