1 Exercices

Exercice 1.

Soit R un anneau. Lesquels des sous-ensembles suivants sont-ils des sous-anneaux ?

1.
$$\{A \in M_n(R) \mid a_{ij} = 0 \text{ si } i > j\} \subset M_n(R)$$
.

5.
$$\{a+b\sqrt{3} \mid a,b\in\mathbb{Z}\}\subset\mathbb{R}$$
.

2.
$$\{A \in M_n(R) \mid a_{ij} = 0 \text{ si } i \leq j\} \subset M_n(R)$$
.

6.
$$\left\{ \begin{pmatrix} a & b \\ a & b \end{pmatrix} \mid a, b \in \mathbb{Z} \right\} \subset M_2(\mathbb{Z}).$$

3.
$$\{A \in M_n(R) \mid a_{ij} = 0 \text{ si } i \neq j\} \subset M_n(R)$$
.

7.
$$\left\{ \begin{pmatrix} a & b \\ b & a+b \end{pmatrix} \mid a,b \in \mathbb{Z}/2\mathbb{Z} \right\} \subset M_2(\mathbb{Z}/2\mathbb{Z}).$$

4.
$$\{a + bi \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$$
.

Exercice 2.

Soit G un groupe fini non-trivial. Montrez que l'algèbre de groupe $\mathbb{Z}[G]$ contient des diviseurs de zéro.

Exercice 3.

Dans chacun des cas suivants, déterminez l'ensemble des homomorphismes d'anneaux $A \to B$.

1.
$$A = \mathbb{Z}$$
 et $B = \mathbb{Z}$.

6.
$$A = \mathbb{R}$$
 et $B = \mathbb{R}$.

2.
$$A = \mathbb{Z}$$
 et $B = \mathbb{Z}/n\mathbb{Z}$ où $n \in \mathbb{N}$.

7.
$$A = \mathbb{R}$$
 et $B = \mathbb{O}$.

3.
$$A = \mathbb{Z}/n\mathbb{Z}$$
 et $B = \mathbb{Z}$ où $n \in \mathbb{N}$.

8.
$$A = \mathbb{R}[t]$$
 et $B = \mathbb{R}$.

4.
$$A = \mathbb{Z}/n\mathbb{Z}$$
 et $B = \mathbb{Z}/m\mathbb{Z}$ où $m, n \in \mathbb{N}$.

9.
$$A = \mathbb{R}$$
 et $B = \mathbb{R}[t]$.

5. $A = \mathbb{Q}$ et $B = \mathbb{R}$.

Indication: Pour le point 6, montrez qu'un homomorphisme $f: \mathbb{R} \to \mathbb{R}$ envoie les réels positifs vers les réels positifs, et déduisez que f préserve l'ordre usuel sur les réels.

Exercice 4.

Montrez qu'il existe au plus 4 homomorphismes d'anneaux $\mathbb{Z}[S_3] \to \mathbb{Z}[\mathbb{Z}/2\mathbb{Z}]$.

Indication: Si $f: \mathbb{Z}[S_3] \to \mathbb{Z}[\mathbb{Z}/2\mathbb{Z}]$ est un homomorphisme, étudiez les images possibles de (123).

Exercice 5.

Soit $n \ge 1$ un entier et $(A, +, \cdot)$ un anneau tel que le groupe additif sous-jacent (A, +) est isomorphe au groupe $(\mathbb{Z}/n\mathbb{Z}, +)$. Fixons un élément $a \in A$ qui génère le groupe cyclique (A, +).

- 1. Montrez que A est un anneau commutatif.
- 2. Montrez que, connaissant l'élément $a^2 \in A$, il est possible de déterminer la valeur du produit $x \cdot y$ pour tous éléments $x, y \in A$.

- 3. Montrez que a est un élément inversible.
- 4. Montrez que $A \cong \mathbb{Z}/n\mathbb{Z}$ en tant qu'anneaux.

Exercice 6.

Soient A un anneau commutatif et $a \in A$. Montrez que l'application

$$f \colon A[t] \to A[t], \quad p(t) \mapsto p(t+a)$$

est un isomorphisme d'anneaux.

Exercice 7.

Notons $M(\mathbb{R}) \subset \{(a_{ij})_{i,j \in \mathbb{N}} \mid \forall i, j : a_{ij} \in \mathbb{R}\}$ l'ensemble des matrices infinies à coefficients réels qui vérifient la condition suivante : $(a_{ij}) \in M(\mathbb{R})$ si et seulement si le support de chaque ligne et de chaque colonne est fini, c'est-à-dire :

$$\forall i \; \exists m_i \; \text{tel que} \; a_{ij} = 0 \; \text{pour} \; j > m_i \; \text{ et } \; \forall j \; \exists n_j \; \text{tel que} \; a_{ij} = 0 \; \text{pour} \; i > n_j.$$

- 1. Montrez que l'addition et la multiplication usuelle de matrices induit une structure d'anneau sur $M(\mathbb{R})$.
- 2. Exhibez un élément de $M(\mathbb{R})$ qui est inversible à gauche, mais pas à droite.

Exercice 8.

Prouvez les affirmations suivantes.

- 1. Un anneau intègre et fini est un corps.
- 2. Un anneau A dans lequel $a = a^2$ pour tout $a \in A$, est commutatif.

2 Exercice supplémentaire

Cet exercice était l'exercice bonus de l'année 2021.

Exercice 9.

Soit k un corps. Considérons l'anneau des séries formelles k[[t]].

- 1. Montrez que $f(t) = \sum_{i=0}^{\infty} a_i t^i$ est un élément inversible de k[[t]] si et seulement si $a_0 \neq 0$. Indication: Construisez les inverses algorithmiquement. Le cas de f(t) = 1 t est instructif pour comprendre la preuve générale.
- 2. Montrer que le corps de fraction de k[[t]] est donné par les séries de Laurent

$$k((t)) := \left\{ \sum_{i=n}^{\infty} a_i t^i \mid a_i \in k, n \in \mathbb{Z} \right\}.$$

Indication: Vous n'avez pas besoin de prouvez que k(t) est un anneau commutatif intègre.