UART(Universal Asynchronous Receiver Transmitter):

- ➤ UART is simple Half-duplex asynchronous serial protocol.
- Simple communication between two equivalent nodes.
- Any node can initiate communication.
- Since Half-duplex, two lanes of communication are completely independent.

Connections for UART:

- ➤ Speed of communication is measured in baud rate and pre-determined on both sides.
- ➤ A general rule of thumb is to use 9600 bauds for wired communication.
- ➤ UART implements error detection in form of parity bit.
- > Rxd, Txd pins in the Microcontroller are used to connect to the UART.

Format of Communication:

UART frame format

- ► UART frames consist of:
 - Start / stop bits
 - Data bits
 - Parity bit (optional)
- ► High voltage ("mark") = 1, low voltage ("space") = 0

I2C(Inter-Integrated Circuit):

- ➤ It is a 2-wire serial protocol with addressing capability.
- Multi-master and Multi-slave Architecture.
- Speeds upto 3.4 Mbps
- Uses bus Arbitration
- ➤ I2C consists of Open collector bus driver and Pullup Resistors.
- Transmitter/Receiver differs from Master/Slave
 - Master Initiates Transaction
 - Slave Respond
- > Transmitter sets data on SDA line
 - For Read Slave is Transmitter
 - For write Master is Transmitter

I2C Wiring:

➤ I2C has 2 lines SDA -Serial Data SCL- Serial Clock

I2C Data Transmission:

- > Transmission of data is 8-bits
 - Write- Master Transmits, Slave Acknowledge

- Read- Slave Transmits, Master Acknowledge
- Transmission continues until master create stop condition.

Serial Peripheral Interface(SPI):

- > SPI is a 4-wire serial bus.
- ➤ SPI supports Full-Duplex
- ➤ SPI supports 1 Master and multiple Slaves
- > Used for short distance communication
- > Communication is synchronized using clock signals

SPI Bus Wiring:

MOSI- Master Out Serial In

-Carries data from master to slave

MISO- Master In Serial out

-Carries data from slave to master

SS- Select Slave

- Unique line to select slave

SCLK-System clock produced by master to synchronize data transfer

Applications of SPI:

- ➤ Used in peripherals such as LCD, Sensors, Radios etc...
- ➤ Used in Micro-controllers to have serial communication with the peripherals.