Zadania z Analizy Matematycznej I.1- seria IX

7 stycznia 2014

Zadanie 1. Obliczyć sumę szeregu

$$\sum_{n=0}^{\infty} (n+1)z^n, \text{ dla } |z| < 1.$$

Zadanie 2. Znaleźć iloczyn Cauchy'ego następujących szeregów:

- a) $A = \sum_{n=1}^{\infty} \frac{2^n}{n!}$, $B = \sum_{n=1}^{\infty} \frac{1}{2^n n!}$;
- b) $A = \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$, $B = \sum_{n=1}^{\infty} \frac{1}{3^n}$;
- c) $A = \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n}}{(n!)^2}, B = A, x \in \mathbb{R}.$

W podpunktach a) i b) obliczyć sumy otrzymanych szeregów.

Zadanie 3. Wykazać, że szereg $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2}{n+1} \left(1 + \frac{1}{2} + \ldots + \frac{1}{n}\right)$ jest iloczynem Cauchy'ego szeregu $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$ przez siebie i znaleźć jego sumę.

Zadanie 4. Udowodnić, że iloczyn Cauchy'ego dwóch szeregów o wyrazach dodatnich, z których co najmniej jeden jest rozbieżny, jest zawsze szeregiem rozbieżnym.

Zadanie 5. Zbadać zbieżność iloczynu Cauchy'ego szeregu $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}}$ przez siebie.