BD NoSQL

BDDA UT7 Laurent/Rubén

UT 7 BD NoSQL

Definición y características

CAP

Motivos elección NoSQL

Tipos de BD NoSQL

Definición

Las bases de datos **NoSQL** (Not Only SQL) son sistemas de gestión de bases de datos diseñados para manejar grandes volúmenes de información de manera flexible, escalable y distribuida, sin requerir una estructura rígida como en las bases de datos relacionales.

Las bases de datos NoSQL nacen de la necesidad de:

- Simplicidad en los diseños
- Escalado horizontal
- Mayor control en la disponibilidad

Características

Modelo de datos flexible:

- No requieren una estructura fija de esquemas.
- Pueden almacenar datos en distintos formatos como documentos JSON, clave-valor, columnas o grafos.

Alta escalabilidad:

- Diseñadas para manejar grandes cantidades de datos distribuidos en múltiples servidores.
- Soportan escalabilidad horizontal (añadir más servidores en lugar de mejorar uno solo).

Rendimiento optimizado:

- Diseñadas para consultas rápidas y eficientes, sin necesidad de hacer JOINs como en SQL.
- Optimizadas para casos de uso específicos, como lecturas rápidas o escrituras masivas.

Características

Alta disponibilidad y tolerancia a fallos:

- Implementan replicación de datos y particionamiento para evitar pérdida de información.
- Funcionan en arquitecturas distribuidas con múltiples nodos.

Consistencia flexible (Teorema CAP, Consistencia, Disponibilidad y Particionado, o BASE):

- Dependiendo del tipo de NoSQL, pueden priorizar disponibilidad, consistencia o tolerancia a particiones.
 - a. MongoDB, por ejemplo, sacrifica disponibilidad
 - b. Cassandra, por ejemplo, sacrifica consistencia.
- Algunas bases de datos NoSQL sacrifican consistencia a cambio de rendimiento y escalabilidad.

Optimización para Big Data y aplicaciones web:

 Se utilizan en entornos como redes sociales, comercio electrónico, análisis en tiempo real y almacenamiento de datos en la nube.

CAP

- Consistencia todos los nodos ven los mismos datos al mismo tiempo
- Disponibilidad (Availability) garantiza que cada petición recibe una respuesta acerca de si tuvo éxito o no
- Tolerancia a la partición (Partition) el sistema continúa funcionando a pesar de la pérdida de mensajes

ACID VS BASE

- En el mundo relacional estamos familiarizados con las transacciones ACID, que garantizar la consistencia y estabilidad de las operaciones pero requieren lockings sofisticados:
 - a. ACID = Atomicidad, Consistencia, (Isolation) aislamiento y Durabilidad
- Las BBDD NoSQL siguen el modelo.
 - a. BASE:
 - Basic availability: el almacén funciona la mayoría del tiempo incluso ante fallos gracias al almacenamiento distribuido y replicado
 - Soft-sate: los almacenes no tienen porque ser consistentes ni sus réplicas en todo momento.
 - 1. El programador puede verificar esa consistencia.
 - iii. Eventual consistency: la consistencia se da eventualmente
- BASE es una alternativa flexible a ACID para aquellos almacenes de datos que no requieren un adherencia estricta a las transacciones

Comparación SQL - NoSQL

Característica	SQL	NoSQL			
Estructura	Tablas, filas y columnas	Clave-valor, documentos, grafos, columnas anchas.			
Esquema	Estricto y definido	Flexible y dinámico Horizontal (más servidores)			
Escalabilidad	Vertical				
Consistencia	Alta (ACID)	Variable (CAP)			
Uso ideal	Aplicaciones transaccionales	Big Data, apps en tiempo real			

CAP EJEMPLOS

Razones para escoger NoSQL

- Analítica
- Gran cantidad de escrituras, análisis en bloque
- Escalabilidad
- Tan fácil como añadir un nuevo nodo a la red, bajo coste.
- Redundancia
- Están diseñadas teniendo en cuenta la redundancia
- Rápido desarrollo
- Al ser schema-less o schema on-read son más flexibles que schema on-write
- Flexibilidad en el almacenamiento de datos
- Almacenan todo tipo de datos: texto, imágenes, BLOBs
- Gran rendimiento en consultas sobre datos que no implican relaciones jerárquicas
- Gran rendimiento sobre BBDD desnormalizadas.
- Tamaño
- El tamaño del esquema de datos es demasiado grande
- Muchos datos temporales fuera de almacén principal

POLITÉCNICO ESTELLA

- Redes sociales
- Comercio electrónico y marketplaces
- Big data y análisis en tiempo real
- Internet de las cosas
- Sistemas de recomendaciones (Youtube, spotify...)
- Videojuegos y aplicaciones multijugador
- Blockchain y criptomonedas

- BD Clave-Valor
- Base de datos de documentos
- Base de datos de columnas anchas
- Base de datos de grafos

Clave-Valor

 Las bases de datos clave-valor son un tipo de base de datos NoSQL que almacenan datos en un formato simple de clave y valor, similar a un diccionario o un mapa hash. Son ideales para aplicaciones que requieren accesos rápidos y eficientes a la información. Ej Redis

Documentos

- Las bases de datos de documentos son un tipo de base de datos NoSQL que almacenan datos en formatos estructurados como JSON, BSON o XML, lo que permite manejar información de manera más flexible que las bases de datos relacionales. Son ideales para aplicaciones que requieren escalabilidad, rendimiento y facilidad de modificación del esquema. Ej MongoDB
- https://aws.amazon.com/es/nosql/document/

Columnas anchas

 Las bases de datos de columnas anchas son un tipo de base de datos NoSQL diseñadas para almacenar y consultar grandes volúmenes de datos distribuidos en múltiples servidores. Se basan en un modelo de almacenamiento orientado a columnas en lugar de filas, lo que permite realizar consultas analíticas eficientes sobre conjuntos de datos masivos. Ej Cassandra

Row-oriented												
			ID		Name	Grade	GF	PA				
			001		John	Senior	4.0	00				
			002		Karen	Freshman	3.6	67				
			00	3	Bill	Junior	3.3	33				
Column-oriented												
	Name	П	ID 001		Grade	ID		GPA		ID		
	John	0			Senior	001		4.00	J	001		
	Karen	0	02		Freshman	002		3.67		002		
	Bill	003			Junior	003		3.33		003		

Grafos

Las bases de datos de grafos son un tipo de base de datos NoSQL diseñadas para manejar y almacenar datos altamente conectados. Utilizan la teoría de grafos para representar relaciones y entidades. En este modelo, los datos se almacenan como nodos (entidades) y aristas (relaciones), lo que permite modelar relaciones complejas de manera eficiente. Son especialmente útiles cuando las relaciones entre los datos son tan importantes como los datos mismos. Ej Neo4j

Algunas web con información

- https://phoenixnap.com/kb/nosql-database-types
- https://www.acens.com/comunicacion/wp-content/images/2014/02/bbdd-nosql-wp-acens.pdf
- https://ocw.unican.es/pluginfile.php/2444/course/section/2483/Tema%201.%20NoSQL%20in troduccio%CC%81n.pdf (Presentación Universidad de Cantabria)

Elementos fundamentales BD NoSQL