Matematika

1. előadás | Halmazok, relációk. Descartes-szorzat.

Dr. Veres Antal

Magyar Agrár- és Élettudományi Egyetem Matematika és Természettudományi Alapok Intézet

HALMAZOK, RELÁCIÓK, DESCARTES-SZORZAT 1/14. NAIV HALMAZELMÉLET

Georg Cantor (1845–1918)

- német matematikus,
- a halmazelmélet megalapítója,
- halmazok számossága.

Axióma. Halmaz fogalma. Halmaz elemének lenni.

- Dolgok összessége. Bármely dologról eldönthető, hogy az hozzátartozik-e a halmazhoz, vagy sem.
- ▶ Ha az a dolog hozzátarozik az A halmazhoz, akkor azt mondjuk, hogy a eleme az A halmaznak, jelölése: $a \in A$.

HALMAZOK, RELÁCIÓK, DESCARTES-SZORZAT 2/14. HALMAZOK MEGADÁSA

A korlátlan halmazképzés. Legyen P egy tulajdonság, ekkor létezik a P tulajdonságú dolgok halmaza:

$$\{x \mid P(x)\}.$$

Russel-féle antióma (1905). Nevezzük az A halmazt tartalmazkodónak, ha $A \in A$. Legyen H a nem tartalmazkodó halmazok halmaza, azaz

$$H := \{A \mid A \notin A\}.$$

Ha $H \in H$, akkor $H \notin H$. Ha $H \notin H$, akkor $H \in H$.

Ellentmondás. 💈

HALMAZOK, RELÁCIÓK, DESCARTES-SZORZAT 3/14. HALMAZOK MEGADÁSA

Halmazképzés kiválasztás alapján. Legyen A halmaz, P(x) egy olyan tulajdonság, amely A minden elemére eldönthető, hogy teljesül-e. Ekkor az A halmaz P tulajdonságú elemeinek összessége is halmaz:

$$\{x \in A \mid P(x)\}\ \text{vagy}\ \{x \in A : P(x)\}.$$

Megjegyzés.

- 1. Az összes halmazok halmaza ekkor nem létezik.
- 2. Nem létezik olyan A halmaz, amelyre $A \in A$.

HALMAZOK, RELÁCIÓK, DESCARTES-SZORZAT 4/14. HALMAZOK TULAJDONSÁGAI

Definíció. Két halmazt egyenlőnek tekintünk, ha ugyanazok az elemei. Jelölése: A = B.

Definíció. Azt a halmazt, amelyiknek nincs eleme üres halmaznak nevezzük. Jele: $\emptyset := \{\}$.

Definíció. Ha az A halmaz minden eleme a B halmaznak is eleme, akkor azt mondjuk, hogy az A halmaz részhalmaza a B halmaznak. Jelölés: $A \subset B$.

Definíció. Legyen $A \subset B$. Ha $\exists b \in B : b \notin A$, akkor azt mondjuk, hogy A valódi részhalmaza a B halmaznak. Jelölés: $A \subsetneq B$.

Állítás. Ha $A \subset B$ és $B \subset A$, akkor A = B.

Bizonyítás. Tfh. $A \neq B$. Ekkor létezik olyan $a \in A$, hogy $a \notin B$, de $A \subset B$.

HALMAZOK, RELÁCIÓK, DESCARTES-SZORZAT 5/14. HALMAZELMÉLETI MŰVELETEK

Definíció. Legyen A, B halmaz. Ekkor bármely x dologra

- 1. $x \in A \cup B$ pontosan akkor, ha $x \in A$ vagy $x \in B$,
- 2. $x \in A \cap B$ pontosan akkor, ha $x \in A$ és $x \in B$,
- 3. $x \in B \setminus A$ pontosan akkor, ha $x \in B$ és $x \notin A$.

Definíció. Legyen U egy (univerzális) halmaz, $A \subset U$. Ekkor az $U \setminus A$ halmazt az A halmazU halmazra vonatkozó komplementerének nevezzük. Jele: $\mathcal{C}_U A$.

Megjegyzés. Amennyiben az univerzális halmaz egyértelmű, akkor az A halmaz komplementerére használhatjuk az \overline{A} jelölést.

HALMAZOK, RELÁCIÓK, DESCARTES-SZORZAT 6/14. HALMAZELMÉLETI MŰVELETEK

Példa. Végezzük el az alábbi halmazelméleti műveleteket:

$$(\{2,3,7,11\} \cup \{2,3,9\}) \cap \{3,5\} \,.$$

Tétel. Az unió és metszet kommutatív, asszociatív és disztributív műveletek, azaz tetszőleges $A,B,C\subset U$ halmazok esetén

$$A \cup B = B \cup A \quad \text{és} \quad A \cap B = B \cap A,$$

$$(A \cup B) \cup C = A \cup (B \cup C) \quad \text{és} \quad (A \cap B) \cap C = A \cap (B \cap C),$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \quad \text{és}$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

illetve

$$A \cup \overline{A} = U$$
, $A \cap \overline{A} = \emptyset$ és $\overline{\overline{A}} = A$.

HALMAZOK, RELÁCIÓK, DESCARTES-SZORZAT 7/14. DE MORGAN-AZONOSSÁGOK, HATVÁNYHALMAZ

Tétel (de Morgan-azonosságok). Bármely $A,B\subset U$ halmaz esetén

$$\overline{A \cup B} = \overline{A} \cap \overline{B}, \quad \overline{A \cap B} = \overline{A} \cup \overline{B}.$$

Definíció. Az A halmaz összes részhalmazából álló halmazt az A hatványhalmazának nevezzük. Jele: $\mathcal{P}(A)$.

Megjegyzés.

- 1. Bármely A halmaz esetén $\emptyset \subset A$, így $\emptyset \in \mathcal{P}(A)$.
- 2. Nem létezik üres hatványhalmaz.

 $\mathsf{Megjegyz\acute{e}s}$. Az n elemű halmaznak 2^n darab részhalmaza van.

Számhalmazok.

A természetes, egész és racionális számok halmazát ismertnek tekintjük a rajtuk értelmezett műveletekkel. A

- ▶ a természetes számok halmazának jele: $\mathbb{N} := \{1, 2, 3, \ldots\},\$
- \blacktriangleright az egész halmazának jele: $\mathbb{Z} := \{0, 1, -1, 2, -2, \ldots\},$
- a racionális számok halmazának jele:

$$\mathbb{Q} := \left\{ \frac{k}{n} \mid k, n \in \mathbb{Z}, \ n \neq 0, \ \text{l.n.k.o.}(k, n) = 1 \right\}.$$

Megjegyzés. Nem létezik olyan p racionális szám, amelyre $p^2 = 2$.

HALMAZOK, RELÁCIÓK, DESCARTES-SZORZAT 9/14. RENDEZETT PÁROK

Definíció. Legyen a, b két objektum. A belőlük alkotott rendezett pár:

$$(a,b) := \{\{a\}, \{a,b\}\}.$$

Az a objektumot a rendezett pár első komponensének, a b objektumot a rendezett pár második komponensének nevezzük.

Megjegyzés. Számos egyéb megközelítés létezik a rendezett pár definiálására, például:

$$(a,b) := \{\{a,1\},\{b,2\}\}.$$

Állítás. Az (a,b) és (c,d) rendezett pár pontosan akkor egyenlő, ha a=c és b=d.

HALMAZOK, RELÁCIÓK, DESCARTES-SZORZAT 10/14. RELÁCIÓK

Definíció. A ϱ halmazt relációnak nevezzük, ha minden eleme rendezett pár.

Megjegyzés. A szakirodalomban elfogadott és gyakran használt jelölés az $(a,b) \in \varrho$ helyett az $a \varrho b$.

A reláció - mint kapcsolatot kifejező eszköz - szemléltetéseként gondoljunk arra, hogy

$$(Piroska, Zoltán) \in \emptyset$$

jelölés helyett inkább használjuk azt, hogy

HALMAZOK, RELÁCIÓK, DESCARTES-SZORZAT 11/14. RELÁCIÓK TULAJDONSÁGAI

Definíció. Legyen ϱ reláció. Azon a elemek halmazát, amelyre $(a,b) \in \varrho$, a ϱ reláció értelmezési tarományának nevezzük. Jele: D_{ϱ} . Röviden:

$$D_{\varrho} := \{ a \mid (a, b) \in \varrho \}.$$

Definíció. Legyen ϱ reláció. Azon b elemek halmazát, amelyre $(a,b) \in \varrho$, a ϱ reláció értékkészletének nevezzük. Jele: R_{ϱ} . Röviden:

$$R_{\varrho} := \{ b \mid (a, b) \in \varrho \}.$$

Definíció. A ϱ reláció inverzén azt a ϱ^{-1} szimbólummal jelölt relációt értjük, amely azon (a,b) elemekből áll, amelyekre $(b,a) \in \varrho$, azaz

$$\varrho^{-1} := \{(a,b) \mid (b,a) \in \varrho\}.$$

HALMAZOK, RELÁCIÓK, DESCARTES-SZORZAT 12/14. RELÁCIÓK TULAJDONSÁGAI

Definíció. A τ reláció
t ϱ reláció leszűkítésének, ϑ relációt pedig bővítésének nevezzük, ha

$$\tau \subset \varrho \subset \vartheta$$
.

Legyen $A \subset D_{\rho}$.

Definíció. A ϱ reláció A halmazra való leszűkítése

$$\varrho_{|A} := \{(a,b) \in \varrho \mid a \in A\}.$$

Feladat. Legyen $\rho := \{(1,3), (-2,-5), (3,3), (-4,2), (1,0), (3,-5)\}.$ Adjuk meg

- 1. ρ értelmezési tartományát és értékkészletét,
- 2. a ρ^{-1} relációt,
- 3. ρ -nak egy kiterjesztését.

HALMAZOK, RELÁCIÓK, DESCARTES-SZORZAT 13/14. DESCARTES-SZORZAT

 ${\bf Definíció}.$ Legyen $A,\ B$ nem üreshalmaz. Az A és Bhalmaz Descartes-féle szorzatán azt a halmazt értjük, amely az összes olyan rendezett párból áll, amely első komponense Ahalmazból, második komponense Bhalmazból van, azaz

$$A \times B := \{(a, b) \mid a \in A, b \in B\}.$$

Feladat. Ábrázoljuk a $\{n \in \mathbb{N} \mid 2 \le n \le 4\} \times \{n \in \mathbb{N} \mid 1 \le n \le 4\}$ Descartes-féle szorzatot.

HALMAZOK, RELÁCIÓK, DESCARTES-SZORZAT 14/14. DESCARTES-SZORZAT

Állítás. A ϱ halmaz pontosan akkor reláció, ha léteznek olyan A és B halmazok, amelyekre $\varrho \subset A \times B$.

Megjegyzés. A ϱ relációhoz mindig megadható olyan A és B halmaz, amelyre $\varrho \subset A \times B$. Ilyenkor azt mondjuk, hogy a ϱ reláció az A és B halmazhoz kötötten adható meg.

Megjegyzés. A ϱ reláció legszűkebben mindig a D_{ϱ} és R_{ϱ} halmazokhoz kötötten adható meg, de általában $\varrho \neq D_{\varrho} \times R_{\varrho}$.

