

Arhitektura i Razvoj Inteligentnih Sustava

Tjedan 5: Čišćenje i priprema podataka

Creative Commons

- dijeliti umnožavati, distribuirati i javnosti priopćavati djelo
- prerađivati djelo

- imenovanje: morate priznati i označiti autorstvo djela na način kako je specificirao autor ili davatelj licence (ali ne način koji bi sugerirao da Vi ili Vaše korištenje njegova djela imate njegovu izravnu podršku).
- nekomercijalno: ovo djelo ne smijete koristiti u komercijalne svrhe.
- dijeli pod istim uvjetima: ako ovo djelo izmijenite, preoblikujete ili stvarate koristeći ga, preradu možete distribuirati samo pod licencom koja je ista ili slična ovoj.

U slučaju daljnjeg korištenja ili distribuiranja morate drugima jasno dati do znanja licencne uvjete ovog djela. Od svakog od gornjih uvjeta moguće je odstupiti, ako dobijete dopuštenje nositelja autorskog prava. Ništa u ovoj licenci ne narušava ili ograničava autorova moralna prava. Tekst licence preuzet je s http://creativecommons.org/

Osnovni postupci u pripremi podataka

- Glavni problemi s kojima se susrećemo
 - Podaci nedostaju NULL vrijednosti
 - Kategoričke vrijednosti
 - Višestruke instance
 - "Loša statistika"
 - Značajke s malo jedinstvenih vrijednosti
 - Niska varijanca značajke koji ne doprinose klasifikaciji
 - Značajke koje koreliraju
 - Skaliranje značajki
 - Disbalans klasa

NULL vrijednosti

- U vremenskim serijama
 - Backward i forward filling uzimanje prethodne vrijednosti u vremenskoj seriji ili slijedeće ako prethodne nema
- U klasičnim skupovima podataka
 - Medijan značajke
 - Aritmetička sredina značajke
- Uklanjamo iz skupa podataka
 - Ako su sve značajke instance NULL
 - Ako je značajka NULL u svim instancama

NULL vrijednosti

- Koliko nam je vrijedna određena značajka?
 - Popunjenost po instancama
 - <15% NULL vrijednosti ima smisla nadopunjavati s backward fill i forward fill strategijama
 - Sve više od 15% možda je bolje koristiti strategiju s medijanom ili aritmetičkom sredinom

Višestruke instance

- Potrebno je razumjeti statistiku skupa podataka
 - Ako je dupli zapis individualan, vjerojatno se radi o grešci uklonimo zapis
 - Ako postoje višestruki zapisi koji pripadaju određenoj klasi
 - Treba ocijeniti da li više instanci klase doprinosi utvrđivanju klasifikacije
 - Recimo kod algoritama za grupiranje (clustering) ima smisla zadržati sve instance
 - Kod ANN nema
- Treba poznavati i poslovnu semantiku podataka

Kategoričke vrijednosti

- Korištenjem *label encodera* pretvaramo ih u diskretne vrijednosti
 - Koje se mogu koristiti od raznih algoritama
 - Uglavnom skup N
 - Ne treba se bojati diskretizacije prostora značajki
 - Ne smijemo upasti u problem niske varijance
 - Recimo "spol": muški / ženski
- scikit-learn nudi takve enkodere recimo *LabelEncoder*

Značajke s "lošom statistikom"

- Niska varijanca
 - Premalo razlike između vrijednosti značajke svih instanci
 - Skaliranjem bi se ta razlika mogla pojačati?
 - Ne i za mali broj kategoričkih vrijednosti
 - Muško / žensko, dan / noć, da / ne i slično...
 - Možemo odbaciti značajke koje imaju recimo varijancu ispod 0.15
- Možemo provjeriti koliko jedinstvenih vrijednosti imamo u određenoj značajki
 - Odbacimo značajke koje imaju mali broj jedinstvenih vrijednosti

Korelacija

- Provjerimo da li postoji značajna korelacija između značajki
 - Ako značajke koreliraju postoji neka uzročno-posljedična veza između njih
 - Pitanje donje granice korelacije što smatramo kao dovoljno zavisne značajke
 - 1 = vrijednost značajki je jednaka za svaku instancu u relacijskoj algebri se to zove funkcijska zavisnost
 - Klasifikacija bi trebala imati dobru metriku i bez jedne od tih značajki
 - Niža varijanca postoji veća šansa da neke instance u dimenziji s višom varijancom bude drukčije klasificirana
 - Ako značajke uopće ne koreliraju?
 - Efekt se vidi u težinskim matricama ANN
 - Univarijatna vs. multivarijatna statistika

Skaliranje

- Zbog gradijentnih metoda optimizacije
 - Idealno, sve značajke slično skalirane
 - Standardno skaliranje

$$(v_i - \mu)/\sigma$$

- Od vrijednosti značajke u instanci i se oduzme aritmetička sredina značajke i ta se razlika podijeli sa standardnom devijacijom značajke
- Min-max skaliranje
 - Minimalna vrijednost značajke je 0
 - Maksimalna vrijednost značajke je 1
 - Sve ostale vrijednost skalirano popunjavaju taj prostor
- scikit-learn nudi klase za ova skaliranja
 - StandardScaler
 - MinMaxScaler

Disbalans klasa

- Broj instance jedne klase je značajnije veći od druge klase
 - Recimo 5% prema 95%
 - Podešavanje granica klase postaje problem
 - Često rezultira sa velikim FP (false-positive) ili FN (false-negative) vrijednostima
 - Posebni problem kod podržanog učenja (reinforcement)
- Rješenje je sintetički upsampling ili downsampling
 - Recimo SMOTE (synthetic minority oversampling)
 - python modul <u>imblearn</u>
 - Neki algoritmi imaju mogućnost definiranja težinske vrijednosti klase (class weight)
 - Ovo se može definirati u optimizatorima pytorcha, u kerasu i slično

Velike količine podataka i skalabilnost

- Osnova su *clusteri* za obradu podataka
 - Apache Spark i Flink
 - Mikro-batch naprama prava obrada toka podataka
 - Map / reduce koncept jedan čvor je master, ostali čvorovi workeri
 - Koncepti podijeli pa vladaj particioniranje
 - Horizontalno particioniranje
 - skup podataka se podijeli na više particija redova
 - Vertikalno particioniranje
 - skup podataka se podijeli na više atributa (značajki) koje imaju neke funkcijske zavisnosti

Odabir algoritama

- Vremenske serije
 - Nestrukturirano audio recimo, tekst, itd...
 - Ne želimo sparse podatke idealno bi trebalo biti manje od 15% praznih vrijednosti
 - Koristimo backward fill i forward fill za popunjavanje
 - Klasične metode
 - LSTM Long Short-Term Memory vrsta rekurzivne mreže
 - GRU Gated recurrent unit novija vrsta LSTM-a
 - klasični RNN
 - MLP
 - Konvolucijske neuronske mreže (CNN)

Podaci s labelama

- Tip labele
 - binarna klasifikacija ili instanca pripada klasi ili ne
 - klasifikacija s više klasa
- Klasifikatori s oštrim izlazima (crisp)
 - funkcija tranzicije igra bitnu ulogu
 - više klasa
 - svaka klasa ima svoj izlaz koji je binarnog tipa
- Klasifikatori sa softmax izlazima (vjerojatnost da ulaz pripada jednoj klasi)
 - uzima se klasa s najvišom vjerojatnošću
- Optimizatori: SGD, Adam

Podaci s kontinuiranom vrijednošću cilja

- Neuronske mreže kao regresori
 - Standardni podaci s kontinuiranim izlazima
 - Ne želimo iskriviti linearnu funkciju neurona uvođenjem tranzicijske funkcije
 - Optimizatori: MSELoss
- Standardni regresori
- Random forest, stabla odluke
- Algoritmi za grupiranje (clustering)
- SVM (support vector machine)

Nestrukturirani podaci

- Audio, video, slike
 - Imamo vremenske serije audio i video
 - Konvolucijske mreže (CNN)
 - Može i standardni višeslojni perceptron

Hibridni pristup

- Učenje strukturiranog ulaza s nestrukturiranim
 - Spojimo mreže i dodamo slojeve za izlaz
- Vremenska serija i standardni pristup
- Više različitih prostora značajki koje trebaju završiti jednom klasifikacijom
- Spoj binarnih labela i kontinuiranog cilja
- Posebne arhitekture koje se prilagođavaju podacima koje imamo
- Moduli
 - pytorch, keras, tensorflow, ...

