Package 'MLSurvival'

June 26, 2019

Title Mac	hine Learning for Survival Analysis
Version 0	.1.0
Author p	erson(``Che", ``Ngufor", , ``Ngufor.Che@mayo.edu", role = c(``aut", ``cre"))
Maintaine	er Che Ngufor < Ngufor.Che@mayo.edu>
Description	n Machine learning methods for survival analysis.
_	R (>= 3.1.2)
care rang gbm glm: kern xgbo	er, , net, lab,
License (SPL(>=3)
LazyData	true
NeedsCon	npilation no
RoxygenN	
R topic	es documented:
d g g n c F F F t t	enormalize etResults.ci etResults.ci2 //LSurvival ormalize pt.thresh erformance.measures redictSurvProb_Cox redictSurvProb_ranger SF
1	TimPlot

2 denormalize

COX

Function to implement proportional hazard model

Description

Train the Cox model. Optionally, the regularize \cos can also be trained based on the implementation in glmnet Utils.

Usage

```
COX(form, dat, trControl = NULL)
```

Arguments

form survival formula dat data frame

trControl list of control parameters:

maxit: number of iterations in glmnet
 regularize: train regularize cox?
 nfolds: number of folds in glmnet

4. lambda : numeric vector of lambda values in glmnet5. alpha : numeric vector of alpha values in cva.glmnet

Value

returns a list with items:

model: object of class coxphform: survival formula

denormalize

Denormalized data

Description

Take the ouput of normalize and convert back to original scale.

Usage

denormalize(normalized, min, max)

Arguments

min minimum value of each variable in the original data. This value is stored as an

attribute of normalize

max maximum value of each variable in the original data. This value is stored as an

attribute of normalize

Value

Original un-normalized data

getResults.ci 3

getResults.ci	get Summary Results
0002000000000	601 Stilliter y 1105tills

Description

Takes a table of performance metrics, such as cross-validation results and compute summaries (mean and confidence interval) ready for publication.

Usage

```
getResults.ci(tab, alpha = 0.05)
```

Arguments

tab table with performance results

alpha confidence level

Value

data frame with summaries (confidence interavals are represented in brackets)

getResults.ci2 get Summary Results 2

Description

Takes a table of performance metrics, such as cross-validation results and compute summaries (mean and confidence interval) ready for publication.

Usage

```
getResults.ci2(tab, alpha = 0.05, groups = c("model", "status"), stats = c("PCC", "AUC", "sensitivity", "specificity", "G.mean", "BER", "Pos Pred Value"))
```

Arguments

tab table with performance results

alpha confidence level

groups variable in tab to group by

Value

data frame with summaries (confidence interavals are represented in brackets)

MLSurvival

MLSurvival <i>MLSurvival</i>

Description

Train and evelaute machine learning survival and classification models for time to event data

Usage

```
MLSurvival(form, dat, method, predict.times, trControl, parallel = FALSE, dummy.vars = TRUE, mc.cores = 2, seed = 123, ...)
```

Arguments

form survival formula
dat data frame

method character verctor of machine learning algorithms. Implemented algorithms

glm logistic regression
 glmnet elastic net

3. gbm gradient boosting machine

4. ranger random forest

5. svmRadial support vector machine with radial basis kernel

6. xgbTree extreem boosting machine

predict.times numeric vector containing the survival prediction times trControl list of control parameters for caret and the ranger models

parallel run cross-validation in parallel?

dummy.vars create dummy variables/model.matrix

mc.cores number of cores seed random seed

... further arguments passed to caret or other methods.

Value

returns a list with items:

- · model: trained survival model
- perf: performance of models at each survival prediction time: PCC, AUC, sensitivity, specificity, g-mean etc.
- perf.ave: average of perf with confidence intervals

normalize 5

normalize Normalize data

Description

Normalize data to (0,1)

Usage

normalize(x)

Arguments

x data frame

Value

Normalized data with attributes min and max representing the min and max of each variable in x

opt.thresh

Optimal Threshold

Description

 $Compute \ the \ optimal \ classification \ threshold \ based \ on \ the \ optimal. thresholds \ function \ in \ the \ Presence. Absence \ package$

Usage

```
opt.thresh(prob, obs, opt.methods = 9)
```

Arguments

prob predicted probabilities
obs binary (0-1) ground truth

opt.methods optimal threshold method. See Presence. Absence package

Value

optimal threshold

6 predictSurvProb_Cox

Description

Compute several performance metrics

Usage

Performance.measures(pred, obs, threshold = NULL)

Arguments

pred predicted probabilities
obs binary (0-1) ground truth
threshold optimal threshold.

Value

A data frame with performance metrics.

Description

Get predicted probabilities from the cox model for new data at different time points

Usage

```
predictSurvProb_Cox(object, newdata, times)
```

Arguments

object trained cox model. Output of train_Cox

newdata out of sample data times new time points

Value

predicted probabilities at eact time point in times

```
predictSurvProb_ranger Predict Ranger
```

Description

Get predicted probabilities from the ranger model for new data at different time points

Usage

```
predictSurvProb_ranger(object, newdata, times, ...)
```

Arguments

object trained ranger model. Output of train_ranger

newdata out of sample data times new time points

... further arguments passed to caret or other methods.

Value

predicted probabilities at eact time point in times

RSF: Random Survival Forest

Description

Train the random survival forest through the ranger package. The optimal RSF tuning parameters: min.node.size,mtry, and splitrule can be selected through grid search.

Usage

```
 \begin{array}{l} train\_RSF(form,\,dat,\,predict.times,\,trControl=NULL,\,seed=123,\\ parallel=FALSE,\,mc.cores=2,\,\ldots) \end{array}
```

Arguments

form

dat	data frame
${\it predict.times}$	survival prediction times
trControl	list of control parameters:
	1. ntrees: mumber of trees
	2. number: number of cross-validate

survival formula

number: number of cross-validations
 tuneLength: tuning paramer grid size
 importance: ranger variable importance

parallel run cross-validation in parallel? Uses mclapply which works only on linux

... further arguments passed to caret or other methods.

tuneLength same as tuneLength in the caret package

8 train.classifier

Value

returns a list with items:

• finalModel: final model trained on the complete data (dat) using optimal tuning paramters

• fitted: predictions on complete data (dat)

• threshold: optimal classification threshold

• resamples: cross-validation results: predictions on resampled data

• predict.times: survival prediction times

• bestTune: optimal tuning parameters

train.classifier

Predict Survival with classifcation methods

Description

Train machine learning classification models on time to event data using the caret package

Usage

```
\label{eq:classifier} \begin{array}{l} train\_classifier(form,\,dat,\,method="gbm",\,predict.times,\\ trControl=NULL,\,parallel=FALSE,\,mc.cores=2,\,seed=123,\\ \ldots) \end{array}
```

Arguments

form	survival formula
dat	data frame
method	classification algorithm. The following algorithms have been implemented.
	1. glm logistic regression
	2. glmnet elastic net
	3. gbm gradient boosting machine
	4. ranger random forest
	5. svmRadial support vector machine with radial basis kernel
	6. xgbTree extreme gradient boosting machine
${\it predict.} times$	survival prediction times
${ m trControl}$	control parameters for the caret train function. Set to NULL to use a default 5-fold cross-validation
parallel	run cross-validation in parallel? Uses mclapply which works only on linux
	further arguments passed to caret or other methods.
${\rm tune Length}$	same as tuneLength in the caret package

train.cox 9

Value

returns a list with items:

• finalModel: final model trained on the complete data (dat) using optimal tuning paramters

• fitted: predictions on complete data (dat)

• threshold: optimal classification threshold

• resamples: cross-validation results: predictions on resampled data

• predict.times: survival prediction times

· bestTune: optimal tuning parameters

· method: classification algorithm

train.cox

Cox proportional hazard model

Description

Train the Cox model through cross-validation and select the optimal survival classification threshold. A regularized Cox approach which performs feature selection is also implemeted. For regularize cox, the optimal set of variables is selected through cross-validation and used to train the final model on the complete data

Usage

```
train_cox(form, dat, predict.times, trControl = NULL, parallel = FALSE, mc.cores = 2, seed = 123, ...)
```

Arguments

Value

returns a list with items:

- finalModel: final model trained on the complete data (dat) using optimal tuning paramters
- fitted: predictions on complete data (dat)
- threshold: optimal classification threshold
- resamples: cross-validation results: predictions on resampled data
- predict.times: survival prediction times
- bestTune: optimal tuning parameters

VimPlot

 ${\rm VimPlot}$

Plot variable importance

Description

Plot variable importance

Usage

```
VimPlot(x, top = min(20, length(x\$importance)), ...)
```

Arguments

x data frame with variable importance

top number of variables to plot

Index

```
COX, 1
denormalize, 2
{
m getResults.ci, 3}
{\rm getResults.ci2,3}
MLSurvival, 4
normalize, 5
opt.thresh, 5
Performance.measures, 6
predictSurvProb\_Cox, 6
predictSurvProb_ranger, 7
RSF, 7
{\it train.classifier, 8}
train.cox, 9
train\_classifier (train.classifier), 8
train\_cox (train.cox), 9
{\rm train\_RSF}\,({\rm RSF}), {\color{red} 7}
VimPlot, 10
```