Thapa_iaf603_final_project.ipynb and Sanga_iaf603_final_project.ipynb

```
import os # operating system
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
import matplotlib.pyplot as plt # standard graphics
import seaborn as sns # fancier graphics
from scipy import stats
from sklearn import preprocessing
from functools import reduce
import sqlite3
from google.colab import files
uploaded = files.upload()
     Choose Files No file chosen
                                     Upload widget is only available when the cell has been executed in
    the current browser session. Please rerun this cell to enable.
     Saving AR HS 2020 cgv to AR HS 2020 cgv
#bnb = pd.read_csv("Downloads/AB_US_2020.csv", sep=",",low_memory=False)
#bnb
#bnb = pd.read csv('AB US 2020.csv',sep=",",low memory=False)
#bnb
import io
bnb = pd.read csv(io.BytesIO(uploaded['AB US 2020.csv']))
bnb
 С⇒
```

/usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py:2718: Dtinteractivity=interactivity, compiler=compiler, result=result)

	id	name	host_id	host_name	neighbourhood_group	ne
0	38585	Charming Victorian home - twin beds + breakfast	165529	Evelyne	NaN	
1	80905	French Chic Loft	427027	Celeste	NaN	
2	108061	Walk to stores/parks/downtown. Fenced yard/Pet	320564	Lisa	NaN	
3	155305	Cottage! BonPaul + Sharky's Hostel	746673	BonPaul	NaN	
4	160594	Historic Grove Park	769252	Elizabeth	NaN	
22602	25 45506143	DC Hidden In Plain "Site"	25973146	Marci	NaN	Ch Q

bnb.dtypes

id	int64
name	object
host id	int64
host name	object
neighbourhood_group	object
neighbourhood	object
latitude	float64
longitude	float64
room_type	object
price	int64
minimum_nights	int64
number_of_reviews	int64
last_review	object
reviews_per_month	float64
calculated_host_listings_count	int64
availability_365	int64
city	object
dtype: object	

bnb.head()

		id	name	host_id	host_name	neighbourhood_group	neighbourh
	0	38585	Charming Victorian home - twin beds + breakfast	165529	Evelyne	NaN	28
	1	80905	French Chic Loft	427027	Celeste	NaN	28
	2	108061	Walk to stores/parks/downtown. Fenced yard/Pet	320564	Lisa	NaN	28
	3	155305	Cottage! BonPaul + Sharky's Hostel	746673	BonPaul	NaN	28
b.t	ai	1()					

bnb

	id	name	host_id	host_name	neighbourhood_group	neighbourh
226025	45506143	DC Hidden In Plain "Site"	25973146	Marci	NaN	Downto Chinatown, Po Quarters, Mc Ver
226026	45511428	DC 3 BR w/ screen porch 3 blck to metro w/ par	231133074	Thomas	NaN	Brookla Brentwc Lang
226027	45514685	Charming Penthouse Apt w/ Rooftop Terrace in L	33758935	Bassem	NaN	Shaw, Lo _! Ci
226028	45516412	Adams Morgan/Nat'l Zoo 1 BR Apt #32	23193071	Michael	NaN	Kalora Heights, Ada Morgan, La Heiç
226029	45517735	Beautiful large one- bedroom w/ washer and dryer	17789858	Adam	NaN	Edgewc Bloomingd Truxton Cir Ecking

bnb.shape

(226030, 17)

bnb.describe()

	id	host_id	latitude	longitude	price	minimum_1
count	2.260300e+05	2.260300e+05	226030.000000	226030.000000	226030.000000	2.2603
mean	2.547176e+07	9.352385e+07	35.662829	-103.220662	219.716529	4.5254
std	1.317814e+07	9.827422e+07	6.849855	26.222091	570.353609	2.1033
min	1.090000e+02	2.300000e+01	18.920990	-159.714900	0.000000	1.0000
25%	1.515890e+07	1.399275e+07	32.761783	-118.598115	75.000000	1.0000
50%	2.590916e+07	5.138266e+07	37.261125	-97.817200	121.000000	2.0000
75%	3.772624e+07	1.497179e+08	40.724038	-76.919322	201.000000	7.0000
max	4.556085e+07	3.679176e+08	47.734620	-70.995950	24999.000000	1.0000

bnb.isnull().sum()

```
id
                                         0
name
                                        28
host_id
                                         0
host name
                                        33
neighbourhood group
                                    115845
neighbourhood
                                         0
latitude
                                         0
                                         0
longitude
                                         0
room_type
                                         0
price
minimum nights
                                         0
number of reviews
                                         0
                                     48602
last review
reviews_per_month
                                     48602
calculated_host_listings_count
                                         0
                                         0
availability 365
city
                                         0
dtype: int64
```

```
miss = bnb.isna().sum()
miss /= bnb.shape[0]
miss *=100
miss = miss.to_frame().rename(columns={0:'Precentage Of Missing Values'})
miss
```

	Precentage Of Missing Values
id	0.000000
name	0.012388
host_id	0.000000
host_name	0.014600
neighbourhood_group	51.252046
neighbourhood	0.000000
latitude	0.000000
longitude	0.000000
room_type	0.000000
price	0.000000
minimum_nights	0.000000
number_of_reviews	0.000000
last raview	21 502455
<pre>to_drop = ['id',</pre>	•
<pre>bnb.drop(to_drop, inplace = True</pre>	e, axis = 1)

	name	neighbourhood	latitude	longitude	room_type	price	minim
0	Charming Victorian home - twin beds + breakfast	28804	35.65146	-82.62792	Private room	60	
1	French Chic Loft	28801	35.59779	-82.55540	Entire home/apt	470	
2	Walk to stores/parks/downtown. Fenced yard/Pet	28801	35.60670	-82.55563	Entire home/apt	75	
3	Cottage! BonPaul + Sharky's Hostel	28806	35.57864	-82.59578	Entire home/apt	90	
4	Historic Grove Park	28801	35.61442	-82.54127	Private room	125	

bnb.head()

```
28
    name
     neighbourhood
                                             0
     latitude
                                             0
                                             0
     longitude
                                             0
     room_type
                                             0
    price
    minimum nights
                                             0
     number_of_reviews
                                             0
     reviews_per_month
                                         48602
     calculated host listings count
                                             0
                                             0
     availability 365
     city
                                             0
     dtype: int64
bnb['reviews per month'].fillna(bnb['reviews per month'].mean(),inplace=True)
bnb.dropna(inplace=True)
bnb.shape
     (226002, 12)
bnb.isnull().sum()
                                         0
    name
    neighbourhood
                                         0
     latitude
                                         0
                                         0
     longitude
    room type
                                         0
                                         0
    price
    minimum nights
                                         0
    number_of_reviews
                                         0
     reviews per month
                                         0
     calculated host listings count
                                         0
     availability 365
                                         0
                                         0
     city
     dtype: int64
bnb.dtypes
                                          object
    name
    neighbourhood
                                          object
     latitude
                                         float64
     longitude
                                         float64
    room type
                                          object
     price
                                           int64
    minimum nights
                                           int64
    number of reviews
                                           int64
     reviews per month
                                         float64
     calculated_host_listings_count
                                           int64
```

int64

availability 365

```
Final Project_Sanga_Thapa.ipynb - Colaboratory
                                            object
     city
     dtype: object
bnb.price.value_counts()
     100
              5825
     150
              5721
     75
              4710
     50
              4401
     80
              3906
     1236
                 1
     1364
                 1
     1620
                 1
     1876
                 1
     2047
                 1
     Name: price, Length: 1975, dtype: int64
index = bnb[(bnb['price'] >= 10000)|(bnb['price'] <= 10)].index
bnb.drop(index, inplace=True)
bnb['price'].describe()
               225645.000000
     count
                  208.506473
     mean
                  403.825272
     std
     min
                   11.000000
     25%
                   75.000000
     50%
                  121.000000
     75%
                  200.000000
```

```
9999.000000
max
Name: price, dtype: float64
```

```
# checking the skewness
print(bnb['latitude'].skew())
bnb['latitude'].describe()
# Box plot
plt.boxplot(bnb['latitude'])
plt.show()
# Identifying outliers for price
print(bnb['latitude'].quantile(0.10))
```

print(bnb['latitude'].quantile(0.90))

```
-0.7446626923779746
     45
     40
     35
print(bnb['latitude'].quantile(0.50))
print(bnb['latitude'].quantile(0.95))
    37.26332
    45.140235999999994
                            1
bnb['latitude'] = np.where(bnb['latitude'] > 45, 37, bnb['latitude'])
# checking the skewness
print(bnb['longitude'].skew())
bnb['longitude'].describe()
                                    # skewness for price is -0.4866482922764107
# Box plot
plt.boxplot(bnb['longitude'])
plt.show()
# Identifying outliers for price
print(bnb['longitude'].quantile(0.10))
print(bnb['longitude'].quantile(0.90))
    -0.5062768759703664
      -80
     -100
     -120
     -140
     -160
    -123.018948
    -73.94145
print(bnb['longitude'].quantile(0.50))
print(bnb['longitude'].quantile(0.95))
    -97.81409000000001
    -73.876804
```

```
# checking the skewness
print(bnb['price'].skew())
bnb['price'].describe()
# Box plot
plt.boxplot(bnb['price'])
plt.show()
# Identifying outliers for price
print(bnb['price'].quantile(0.10))
print(bnb['price'].quantile(0.90))
    12.15337506589865
     10000
      8000
      6000
      4000
      2000
        0
    50.0
    375.0
print(bnb['price'].quantile(0.50))
print(bnb['price'].quantile(0.95))
    121.0
    597.0
bnb['price'] = np.where(bnb['price'] > 597, 121, bnb['price'])
# checking the skewness
print(bnb['minimum nights'].skew())
bnb['minimum nights'].describe()
                                         # skewness for price is 1.5996741660233658
# Box plot
plt.boxplot(bnb['minimum_nights'])
plt.show()
# Identifying outliers for price
```

print(bnb['minimum_nights'].quantile(0.10))
print(bnb['minimum nights'].quantile(0.90))

```
475.0210421471036
```



```
print(bnb['minimum_nights'].quantile(0.50))
print(bnb['minimum_nights'].quantile(0.95))
2.0
```

bnb['minimum_nights'] = np.where(bnb['minimum_nights'] > 30, 2, bnb['minimum_nights'];
bnb.describe()

	latitude	longitude	price	minimum_nights	number_of_reviews
count	225645.000000	225645.000000	225645.00000	225645.000000	225645.000000
mean	35.134465	-104.528139	146.87959	7.099763	34.537331
std	6.333456	25.258623	104.46235	10.262867	63.626603
min	18.920990	-159.714900	11.00000	1.000000	0.000000
25%	32.761780	-118.598890	75.00000	1.000000	1.000000
50%	37.000000	-97.814090	121.00000	2.000000	8.000000
75%	40.690100	-80.119560	184.00000	5.000000	39.000000
max	44.999970	-73.880010	597.00000	30.000000	966.000000

```
# checking the skewness
print(bnb['number_of_reviews'].skew())
bnb['number_of_reviews'].describe()  # skewness for price is 3.2033875173642374
# Box plot
plt.boxplot(bnb['number_of_reviews'])
plt.show()
# Identifying outliers for price
print(bnb['number_of_reviews'].quantile(0.10))
print(bnb['number_of_reviews'].quantile(0.90))  # outliers for price is 1.0, 122.0
```


0.0 103.0

print(bnb['number_of_reviews'].quantile(0.50))
print(bnb['number_of_reviews'].quantile(0.95))

8.0 161.0

bnb['number_of_reviews'] = np.where(bnb['number_of_reviews'] > 161, 8, bnb['number_of_bnb.describe()

	latitude	longitude	price	minimum_nights	number_of_reviews
count	225645.000000	225645.000000	225645.00000	225645.000000	225645.000000
mean	35.134465	-104.528139	146.87959	7.099763	22.423852
std	6.333456	25.258623	104.46235	10.262867	33.883824
min	18.920990	-159.714900	11.00000	1.000000	0.000000
25%	32.761780	-118.598890	75.00000	1.000000	1.000000
50%	37.000000	-97.814090	121.00000	2.000000	8.000000
75%	40.690100	-80.119560	184.00000	5.000000	29.000000
max	44.999970	-73.880010	597.00000	30.000000	161.000000

```
# checking the skewness
print(bnb['reviews_per_month'].skew())
bnb['reviews_per_month'].describe()  # skewness for price is 2.3179279392801484
# Box plot
plt.boxplot(bnb['reviews_per_month'])
plt.show()
# Identifying outliers for price
print(bnb['reviews_per_month'].quantile(0.10))
print(bnb['reviews_per_month'].quantile(0.90))
```


0.1099999999999999

3.26

```
print(bnb['reviews_per_month'].quantile(0.50))
print(bnb['reviews_per_month'].quantile(0.95))
```

1.37

4.41

bnb['reviews_per_month'] = np.where(bnb['reviews_per_month'] > 4.41, 1.37, bnb['review
bnb.describe()

	latitude	longitude	price	minimum_nights	number_of_reviews
count	225645.000000	225645.000000	225645.00000	225645.000000	225645.000000
mean	35.134465	-104.528139	146.87959	7.099763	22.423852
std	6.333456	25.258623	104.46235	10.262867	33.883824
min	18.920990	-159.714900	11.00000	1.000000	0.000000
25%	32.761780	-118.598890	75.00000	1.000000	1.000000
50%	37.000000	-97.814090	121.00000	2.000000	8.000000
75%	40.690100	-80.119560	184.00000	5.000000	29.000000
max	44.999970	-73.880010	597.00000	30.000000	161.000000

```
# checking the skewness
print(bnb['calculated_host_listings_count'].skew())
bnb['calculated_host_listings_count'].describe()
# Box plot
plt.boxplot(bnb['calculated_host_listings_count'])
plt.show()
# Identifying outliers for price
print(bnb['calculated host listings count'].quantile(0.10))
https://colab.research.google.com/drive/loqqUxWBZm6oNpkG7LPpY_NdsGvxkYKm2#scrollTo=w5Er7UlQbiZa&printMode=true
```

print(bnb['calculated_host_listings_count'].quantile(0.90))

1.0 37.0

```
print(bnb['calculated_host_listings_count'].quantile(0.50))
print(bnb['calculated_host_listings_count'].quantile(0.95))
2.0
90.0
```

	latitude	longitude	price	minimum_nights	number_of_reviews
count	225645.000000	225645.000000	225645.00000	225645.000000	225645.000000
mean	35.134465	-104.528139	146.87959	7.099763	22.423852
std	6.333456	25.258623	104.46235	10.262867	33.883824
min	18.920990	-159.714900	11.00000	1.000000	0.000000
25%	32.761780	-118.598890	75.00000	1.000000	1.000000
50%	37.000000	-97.814090	121.00000	2.000000	8.000000
75%	40.690100	-80.119560	184.00000	5.000000	29.000000
max	44.999970	-73.880010	597.00000	30.000000	161.000000

```
# checking the skewness
print(bnb['availability_365'].skew())
bnb['availability_365'].describe()  # skewness for price is 0.24268434096714664
# Box plot
plt.boxplot(bnb['availability_365'])
```

```
plt.show()
# Identifying outliers for price
print(bnb['availability_365'].quantile(0.10))
print(bnb['availability_365'].quantile(0.90))
```


0.0 361.0

print(bnb['availability_365'].quantile(0.50))
print(bnb['availability_365'].quantile(0.95))

140.0 365.0

bnb.describe()

	latitude	longitude	price	minimum_nights	number_of_reviews
count	225645.000000	225645.000000	225645.00000	225645.000000	225645.000000
mean	35.134465	-104.528139	146.87959	7.099763	22.423852
std	6.333456	25.258623	104.46235	10.262867	33.883824
min	18.920990	-159.714900	11.00000	1.000000	0.000000
25%	32.761780	-118.598890	75.00000	1.000000	1.000000
50%	37.000000	-97.814090	121.00000	2.000000	8.000000
75%	40.690100	-80.119560	184.00000	5.000000	29.000000
max	44.999970	-73.880010	597.00000	30.000000	161.000000

```
bnb_db = "bnb.db"
conn = sqlite3.connect(bnb_db)
cursor = conn.cursor()
```

```
cursor.execute("DROP TABLE IF EXISTS BNB")
try:
    cursor.execute('''
      CREATE TABLE BNB
      (name
              TEXT DEFAULT NULL,
      neighbourhood
                      TEXT
                             DEFAULT NULL,
      latitude
                   FLOAT
                           DEFAULT 0,
      longitude
                    FLOAT
                            DEFAULT 0,
      room type TEXT DEFAULT NULL,
            INTEGER DEFAULT 0,
      price
      minimum nights INTEGER DEFAULT 0,
      number_of_reviews
                        INTEGER DEFAULT 0,
      reviews per month FLOAT DEFAULT 0,
      calculated host listings count INTEGER DEFAULT 0,
      availability 365 INTEGER DEFAULT 0,
      city
             TEXT
                   DEFAULT NULL
       );''')
    print("BNB Table created successfully")
except Exception as e:
    print(str(e))
    print('BNB Table creation failed!!!')
finally:
    conn.close()
    BNB Table created successfully
conn = sqlite3.connect(bnb db)
cursor = conn.cursor()
try:
  bnb.to sql("BNB",conn,if exists="append",index=False)
  print("Insertion Successful")
except Exception as e:
  print(e)
  print("Insertion Failed!!!")
finally:
  conn.close()
```

Insertion Successful

```
conn = sqlite3.connect(bnb_db)
cursor = conn.cursor()
cursor.execute("SELECT COUNT(*) FROM BNB;")
outs = cursor.fetchall()
for out in outs:
    print(out)

    (225645,)

#Is there any relationship between latitude and price?
conn = sqlite3.connect(bnb_db)
df = pd.read_sql_query('''SELECT latitude, price FROM BNB;''', conn)
df
```

	latitude	price
0	35.651460	60
1	35.597790	470
2	35.606700	75
3	35.578640	90
4	35.614420	125
225640	38.903880	104
225641	38.920820	151
225642	38.911170	240
225643	38.926630	60
225644	38.911569	79

225645 rows × 2 columns

```
df.plot.scatter('latitude', 'price')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f5c16166860>

#Is there any relationship between number of reviews and price?
conn = sqlite3.connect(bnb_db)
df = pd.read_sql_query('''SELECT number_of_reviews, price FROM BNB;''', conn)
df

	number_of_reviews	price
0	138	60
1	114	470
2	89	75
3	8	90
4	58	125
•••		
225640	0	104
225641	0	151
225642	0	240
225643	0	60
225644	0	79

225645 rows × 2 columns

df.plot.scatter('number of reviews','price')

<matplotlib.axes._subplots.AxesSubplot at 0x7f5c17534860>

```
#How do prices per night differ by room type?'
conn = sqlite3.connect(bnb_db)
df = pd.read_sql_query('''SELECT room_type, price FROM BNB;''', conn)
df
```

	room_type	price
0	Private room	60
1	Entire home/apt	470
2	Entire home/apt	75
3	Entire home/apt	90
4	Private room	125
225640	Entire home/apt	104
225641	Entire home/apt	151
225642	Entire home/apt	240
225643	Entire home/apt	60
225644	Entire home/apt	79

225645 rows × 2 columns

```
plt.figure(figsize=(15,10))
sns.boxplot(y = "room_type", x = "price", data = df, palette = 'pink')
plt.grid()
plt.show()
```



```
conn = sqlite3.connect(bnb_db)
df = pd.read_sql_query('''SELECT * FROM BNB;''', conn)
df
```

)	price	room_type	longitude	latitude	neighbourhood	name	
)	60	Private room	-82.627920	35.651460	28804	Charming Victorian home - twin beds + breakfast	0
)	470	Entire home/apt	-82.555400	35.597790	28801	French Chic Loft	1
-	_	Entire	00 555000	0= 000=00	22224	Walk to	_

#What is the maximum price per night?
conn = sqlite3.connect(bnb_db)
maxim = pd.read_sql_query('''SELECT MAX(price) FROM BNB;''', conn)
maxim

MAX(price) 0 597

DOWITIOWIT,

#What is the minimum price per night?
conn = sqlite3.connect(bnb_db)
minim = pd.read_sql_query('''SELECT MIN(price) FROM BNB;''', conn)
minim

MIN(price)

0 11

df.describe()

	latitude	longitude	price	minimum_nights	number_of_reviews
count	225645.000000	225645.000000	225645.00000	225645.000000	225645.000000
mean	35.134465	-104.528139	146.87959	7.099763	22.423852
std	6.333456	25.258623	104.46235	10.262867	33.883824
min	18.920990	-159.714900	11.00000	1.000000	0.000000
25%	32.761780	-118.598890	75.00000	1.000000	1.000000
50%	37.000000	-97.814090	121.00000	2.000000	8.000000
75%	40.690100	-80.119560	184.00000	5.000000	29.000000
max	44.999970	-73.880010	597.00000	30.000000	161.000000

plt.hist(df["price"], bins=30)
plt.show()

df.boxplot(column=["price"])

#Which regions offer listings with a minimum number of nights between 14 and 21 days?
conn = sqlite3.connect(bnb_db)
df = pd.read_sql_query('''SELECT DISTINCT(city) FROM BNB
WHERE minimum_nights BETWEEN 14 AND 21;''', conn)
df

	city
0	Asheville
1	Austin
2	Boston
3	Broward County
4	Cambridge
5	Chicago
6	Clark County
7	Columbus
8	Denver
9	Hawaii
10	Jersey City
11	Los Angeles
12	Nashville
13	New Orleans
14	New York City
15	Oakland
16	Pacific Grove
17	Portland
18	Rhode Island
19	Salem

```
#How many total listings are there for these cities with minimum number of nights betv
conn = sqlite3.connect(bnb_db)
df = pd.read_sql_query('''SELECT DISTINCT(city), COUNT(minimum_nights) as count FROM I
```

WHERE minimum_nights BETWEEN 14 AND 21

GROUP BY city

ORDER BY count DESC ; ''', conn)

df

	city	count
0	New York City	1660
1	Los Angeles	432
2	Hawaii	296
3	San Clara Country	223
4	Broward County	213
5	San Diego	169
6	Washington D.C.	162
7	San Mateo County	127
8	Oakland	122
9	Chicago	121
10	Jersey City	113
11	Austin	86
12	Clark County	85
13	Twin Cities MSA	60
14	Boston	48
15	Nashville	45
16	Rhode Island	41
17	Denver	36
18	San Francisco	25
19	Portland	23
20	Seattle	22
21	Santa Cruz County	19
22	Asheville	12
x = sns x.set_yt lt.rc('x x.set_x	re(1, figsize=(5) .barplot(x="coun- ticklabels(ax.ge- xtick',labelsize= label('Count(min- label('Cities',	t", y=" t_ytick =30) _nights

	city	availability_	365
0	Asheville		288
1	Asheville		298
2	Asheville		294
3	Asheville		207
4	Asheville		339

#What are the distinct cities whose number of days in a year greater than 180 days the conn = $sqlite3.connect(bnb_db)$

df2 = pd.read_sql_query('''SELECT DISTINCT city FROM BNB

WHERE availability_365 > 180;''', conn)

df2

		city	
	0	Asheville	
	1	Austin	
	2	Boston	
	3	Broward County	
	4	Cambridge	
	5	Chicago	
	6	Clark County	
g = s	ns.ca	heigh	<pre>ilability_365', y = 'city', data = df, t = 13, t = 0.8)</pre>

df

	city	COUNT(city)
0	New York City	45701
1	Los Angeles	31495
2	Hawaii	22410
3	San Diego	12299
4	Broward County	10847
5	Austin	10419
6	Clark County	8408
7	Washington D.C.	7346
8	San Clara Country	7075
9	San Francisco	7048
10	Seattle	6564
11	Twin Cities MSA	6448

```
plt.figure(1, figsize=(50, 28))
ax = sns.barplot(x="COUNT(city)", y="city", data=df)
ax.set_yticklabels(ax.get_yticklabels(),fontsize=30)
plt.rc('xtick',labelsize=30)
ax.set_xlabel('Count',fontsize=40)
ax.set_ylabel('Cities', fontsize=40)
```

```
Text(0, 0.5, 'Cities')
         New York City
         Los Angeles
            Hawaii
          San Diego
        Broward County
            Austin
        Washington D.C
       San Clara Country
         San Francisco
            Seattle
        Twin Cities MSA
         New Orleans
           Chicago
           Nashville
           Portland
            Denve
            Boston
           Oakland
       San Mateo County
          Jersey City
           Asheville
       Santa Cruz County
           Columbus
!apt update
!apt-get clean
!apt-get install openjdk-8-jdk-headless -qg > /dev/null
!wget -q https://www-us.apache.org/dist/spark/spark-2.4.7/spark-2.4.7-bin-hadoop2.7.tc
!tar xf spark-2.4.7-bin-hadoop2.7.tgz
!pip install -q findspark
     Get:1 http://security.ubuntu.com/ubuntu bionic-security InRelease [88.7 kB]
     Ign: 2 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86 64
     Get:3 https://cloud.r-project.org/bin/linux/ubuntu bionic-cran40/ InRelease [3,6]
     Get: 4 http://ppa.launchpad.net/c2d4u.team/c2d4u4.0+/ubuntu bionic InRelease [15.1]
     Ign:5 https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu
     Hit:6 https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86 64
     Hit:7 <a href="http://archive.ubuntu.com/ubuntu">http://archive.ubuntu.com/ubuntu</a> bionic InRelease
     Hit:8 https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu
     Get:9 http://archive.ubuntu.com/ubuntu bionic-updates InRelease [88.7 kB]
     Get:10 http://security.ubuntu.com/ubuntu bionic-security/universe amd64 Packages
     Get:11 <a href="http://ppa.launchpad.net/graphics-drivers/ppa/ubuntu">http://ppa.launchpad.net/graphics-drivers/ppa/ubuntu</a> bionic InRelease [21]
     Get:12 <a href="http://archive.ubuntu.com/ubuntu">http://archive.ubuntu.com/ubuntu</a> bionic-backports InRelease [74.6 kB]
     Get:15 <a href="http://ppa.launchpad.net/c2d4u.team/c2d4u4.0+/ubuntu">http://ppa.launchpad.net/c2d4u.team/c2d4u4.0+/ubuntu</a> bionic/main Sources
     Get:16 http://archive.ubuntu.com/ubuntu bionic-updates/universe amd64 Packages [
     Get:17 <a href="http://archive.ubuntu.com/ubuntu">http://archive.ubuntu.com/ubuntu</a> bionic-updates/main amd64 Packages [2,24]
     Get:18 http://ppa.launchpad.net/c2d4u.team/c2d4u4.0+/ubuntu bionic/main amd64 Pac
     Get:19 http://ppa.launchpad.net/graphics-drivers/ppa/ubuntu bionic/main amd64 Pac
     Fetched 8,650 kB in 3s (2,654 kB/s)
     Reading package lists... Done
     Building dependency tree
     Reading state information... Done
     15 packages can be upgraded. Run 'apt list --upgradable' to see them.
import os
os.environ["JAVA HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
os.environ["SPARK HOME"] = "/content/spark-2.4.7-bin-hadoop2.7"
import findspark
findspark.init()
```

```
spark = SparkSession.builder.master("local[*]").getOrCreate()
spark
```

SparkSession - in-memory

SparkContext

Spark UI

Version v2.4.7 Master local[*]

AppName pyspark-shell

```
#Getting data ready for model
categorical_cols = ['room_type']
bnb2 = pd.get_dummies(bnb, columns = categorical_cols)
bnb2.head()
```

	name	neighbourhood	latitude	longitude	price	minimum_nights
0	Charming Victorian home - twin beds + breakfast	28804	35.65146	-82.62792	60	1
1	French Chic Loft	28801	35.59779	-82.55540	470	1
2	Walk to stores/parks/downtown. Fenced yard/Pet	28801	35.60670	-82.55563	75	30
3	Cottage! BonPaul + Sharky's Hostel	28806	35.57864	-82.59578	90	1
4	Historic Grove Park	28801	35.61442	-82.54127	125	30

```
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
bnb2['city'] = label_encoder.fit_transform(bnb2['city'])
bnb2.head()
```

bnb2.shape

		name	neighbourhood	latitude	longitude	price	minimum_nights
	0	Charming Victorian home - twin beds + breakfast	28804	35.65146	-82.62792	60	1
	1	French Chic Loft	28801	35.59779	-82.55540	470	1
		Walk to					
<pre>to_drop = ['name', 'neighbourhood'] bnb2.drop(to_drop, inplace = True, axis = 1) bnb2.head()</pre>							

		latitude	longitude	price	minimum_nights	number_of_reviews	reviews_per_mon
-	0	35.65146	-82.62792	60	1	138	1.
	1	35.59779	-82.55540	470	1	114	1.
	2	35.60670	-82.55563	75	30	89	0.
	3	35.57864	-82.59578	90	1	8	2.
	4	35.61442	-82.54127	125	30	58	0.

|-- room_type_Entire home/apt: long (nullable = true)
|-- room_type_Hotel room: long (nullable = true)
|-- room_type_Private room: long (nullable = true)
|-- room type Shared room: long (nullable = true)

-- availability_365: long (nullable = true)

-- city: long (nullable = true)

```
newdf = airbnb.drop("name", "neighbourhood")
newdf.show()
```

_	+		+		+	+
_	latitude	longitude	price	minimum_nights	number_of_reviews	re
	35.65146	-82.62791999999999	60	1	138	
	35.59779	-82.5554	470	1	114	
	35.6067	-82.55563000000001	75	30	89	
	35.57864	-82.59578	90	1	8	ĺ
	35.61442	-82.54127	125	30	58	ĺ
	35.618559999999999	-82.55275999999999	134	7	54	İ
	35.58345	-82.59713	48	1	137	İ
	35.59635	-82.50655	65	3	57	İ
	35.61929	-82.48114	71	28	8	İ
	35.55537	-82.53539	50	2	31	İ
	35.644529999999999	-82.52586	289	30	24	İ
	35.58217	-82.59997	78	4	8	İ
	35.49111	-82.48438	125	2	40	İ
	35.601820000000004	-82.56174	126	3	8	İ
	35.56118	-82.57784000000001	118	2	8	İ
	35.60371	-82.55621	85	2	8	İ
	35.61115	-82.54375999999999	50	30	130	İ
	35.60075	-82.5539	97	30	8	İ
	35.57318		!	2	8	i
	35.60418	-82.54964	:	30	69	İ
	· ·	: 		: 		

only showing top 20 rows

#counting rows

```
newdf.count()
        225645
   #counting columns
   len(newdf.columns)
        13
   from pyspark.ml.feature import VectorAssembler
   from pyspark.ml.regression import LinearRegression
   from pyspark.ml.evaluation import RegressionEvaluator
   train data,test data =newdf.randomSplit([0.8,0.2],seed=495)
   def create_and_score_linear_model(train_data,test_data,featurelist,target,metric="mse")
     #setup for PySpark workflow
     assembler = VectorAssembler(inputCols=featurelist, outputCol = 'Attributes')
     output = assembler.transform(train data)
     train = output.select("Attributes", target)
     outnut - accomblar transform/tast datal
https://colab.research.google.com/drive/1oqqUxWBZm6oNpkG7LPpY_NdsGvxkYKm2#scrollTo=w5Er7UlQbiZa&printMode=true
                                                                                             32/36
```

Number of models considered: 13

```
Final Project_Sanga_Thapa.ipynb - Colaboratory
                   CPU times: user 536 ms, sys: 86.1 ms, total: 622 ms
                   Wall time: 1min 40s
print(newdf.columns)
                   ['latitude', 'longitude', 'price', 'minimum_nights', 'number_of_reviews', 'reviews', 'reviews', 'minimum_nights', 'number_of_reviews', 'reviews', 'reviews', 'minimum_nights', 'number_of_reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'reviews', 'r
#Input all the features in one vector column
assembler = VectorAssembler(inputCols=['latitude', 'longitude',
                                                                                                                                                                  'minimum_nights', 'number_of_reviews', 'reviews
                                                                                                                                                                  'calculated_host_listings_count', 'availability
                                                                                                                                                                  'room_type_Hotel room', 'room_type_Private room
output = assembler.transform(newdf)
finalized_data = output.select("Attributes", "price")
finalized_data.show()
                   +----+
                                                               Attributes price
                   +----+
```

[35.65146,-82.627...] 60 [35.59779,-82.555...] 470 [35.6067,-82.5556...] 75 l [35.57864, -82.595...] 90 [35.61442,-82.541... 125 [35.6185599999999...] 134 [35.58345,-82.597...] 48 [35.59635,-82.506...] 65 [35.61929, -82.481... 71 [35.55537,-82.535...] 50 [35.6445299999999...] 289 [35.58217, -82.599...] 78 [35.49111,-82.484...] 125 [35.6018200000000...] 126 [35.56118,-82.577...] 118 [35.60371,-82.556...] 85 [35.61115,-82.543...] 50 [35.60075,-82.553...] 97 [35.57318,-82.599...] 74 [35.60418, -82.549...] 160 +----+ only showing top 20 rows

#Split training and testing data
train_data,test_data = finalized_data.randomSplit([0.8,0.2],seed=495)

regressor = LinearRegression(featuresCol = 'Attributes', labelCol = 'price')

```
regressor = regressor.fit(train_data)
#To predict the prices on testing set
pred = regressor.evaluate(test_data)
#Predict the model
pred.predictions.show()
```

only showing top 20 rows

Root Mean Square Error

print("RMSE: %.3f" % rmse)

rmse = eval.evaluate(pred.predictions)

+		++
Attributes	price	prediction
+		++
(12,[0,1,2,4,5,8]	99	163.2855487613581
(12,[0,1,2,4,5,8]	199	171.28023407473327
(12,[0,1,2,4,5,10	310	78.58337582836268
[18.92099,-155.68	50	94.1606881548987
[18.9295,-155.679	40	94.91765639266205
[18.9836100000000	75	118.23531521825899
[19.03121,-155.63	205	219.26797188654768
[19.0406899999999	135	211.76363083686633
[19.0442,-155.660	50	130.075640867225
[19.04692,-155.63	167	201.3710693505442
[19.04845,-155.65	89	200.8293780739411
[19.04956,-155.76	90	92.78564060687071
[19.05732,-155.60	82	180.71137660150225
[19.0589899999999	155	240.60488144541122
[19.05954,-155.61	199	237.99826558998427
[19.0607600000000	97	101.1611205403673
[19.06154,-155.76]	137	169.94230293208943
[19.06716,-155.61	95	178.01855925521227
[19.07684,-155.79	95	199.09471407527616
[19.0835799999999	45	199.1728660047325
+		++

#coefficient of the regression model
coeff = regressor.coefficients

#X and Y intercept
intr = regressor.intercept

print ("The coefficient of the model is : %a" %coeff)
print ("The Intercept of the model is : %f" %intr)

The coefficient of the model is : DenseVector([-0.5297, -0.2783, -1.036, -0.2101)
The Intercept of the model is : 127.580396

from pyspark.ml.evaluation import RegressionEvaluator
eval = RegressionEvaluator(labelCol="price", predictionCol="prediction", metricName="1")

```
# Mean Square Error
mse = eval.evaluate(pred.predictions, {eval.metricName: "mse"})
print("MSE: %.3f" % mse)

# Mean Absolute Error
mae = eval.evaluate(pred.predictions, {eval.metricName: "mae"})
print("MAE: %.3f" % mae)

# r2 - coefficient of determination
r2 = eval.evaluate(pred.predictions, {eval.metricName: "r2"})
print("r2: %.3f" %r2)

RMSE: 93.734
MSE: 93.734
MSE: 8786.093
MAE: 66.739
r2: 0.194
```