

CSE5014 CRYPTOGRAPHY AND NETWORK SECURITY

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room413, CoE South Tower

Email: wangqi@sustech.edu.cn

PRGs

■ A *PRG* is an efficient, deterministic algorithm that expands a *short*, *uniform seed* into a *longer*, *pseudorandom* output Let *G* be a deterministic, poly-time algorithm that is *expanding*, i.e., |G(x)| = p(|x|) > |x|.

• For all efficient distinguishers A, there is a negligible function ϵ such that

$$|\operatorname{Pr}_{x \leftarrow U_n}[A(G(x)) = 1] - \operatorname{Pr}_{y \leftarrow U_{p(n)}}[A(y) = 1]| \le \epsilon(n)$$

No efficient A can distinguish whether it is given G(x) (for uniform x) or a uniform string y!

Pseudo one-time pad

Pseudo one-time pad

Theorem 3.3 If G is a pseudorandom generator (PRG), then the pseudo one-time pad (pseudo-OTP) Π is EAV-secure (i.e., computationally secure)

CPA-security

■ Fix Π, A

Define a randomized experiment $PrivKCPA_{A,\Pi}(n)$:

- 1. $k \leftarrow Gen(1^n)$
- 2. $A(1^n)$ interacts with an encryption oracle $Enc_k(\cdot)$, and then outputs m_0, m_1 of the same length
- 3. $b \leftarrow \{0,1\}$, $c \leftarrow Enc_k(m_b)$, give c to A
- 4. A can continue to interact with $Enc_k(\cdot)$
- 5. A outputs b'; A succeeds if b=b', and experiment evaluates to 1 in this case

CPA-security

Fix Π, A

Define a randomized experiment $PrivKCPA_{A,\Pi}(n)$:

- 1. $k \leftarrow Gen(1^n)$
- 2. $A(1^n)$ interacts with an encryption oracle $Enc_k(\cdot)$, and then outputs m_0, m_1 of the same length
- 3. $b \leftarrow \{0,1\}$, $c \leftarrow Enc_k(m_b)$, give c to A
- 4. A can continue to interact with $Enc_k(\cdot)$
- 5. A outputs b'; A succeeds if b = b', and experiment evaluates to 1 in this case

Definition 4.1 Π is secure against chosen-plaintext attacks (CPA-secure) if for all PPT attackers A, there is a negligible function ϵ such that

$$\Pr[PrivKCPA_{A,\Pi}(n)=1] \leq 1/2 + \epsilon(n)$$

The number of functions in $Func_n$ is $2^{n \cdot 2^n}$

- The number of functions in $Func_n$ is $2^{n \cdot 2^n}$
- $\P\{F_k\}_{k\in\{0,1\}^n}$ is a subset of $Func_n$
 - The number of functions in $\{F_k\}_{k\in\{0,1\}^n}$ is at most 2^n

- The number of functions in $Func_n$ is $2^{n \cdot 2^n}$
- lacksquare $\{F_k\}_{k\in\{0,1\}^n}$ is a subset of $Func_n$
 - The number of functions in $\{F_k\}_{k\in\{0,1\}^n}$ is at most 2^n

Definition 4.2 F is a *pseudorandom function* if F_k , for uniform $k \in \{0,1\}^n$ is indistinguishable from a uniform function $f \in Func_n$ Formally, for all poly-time distinguishers D:

$$\left| \mathsf{Pr}_{k \leftarrow \{0,1\}^n} [D^{F_k(\cdot)}(1^n) = 1] - \mathsf{Pr}_{f \leftarrow Func_n} [D^{f(\cdot)}(1^n) = 1] \right| \leq \epsilon(n)$$

 $f \in Func_n$ chosen uniformly at random

World 0

??

(poly-time)

World 1

 $k \in \{0,1\}^n$ chosen uniformly at random

Pseudorandom permutations (PRPs)

• Let $f \in Func_n$

Pseudorandom permutations (PRPs)

- Let $f \in Func_n$ f is a permutation if it is a bijection
 - This means that the inverse f^{-1} exists

Pseudorandom permutations (PRPs)

- Let $f \in Func_n$ f is a permutation if it is a bijection
 - This means that the inverse f^{-1} exists
- Let $Perm_n \subset Func_n$ be the set of permutations
 - What is $|Perm_n|$?

Let *F* be a length-preserving, keyed function

- Let F be a length-preserving, keyed function
- F is a keyed permutation if
 - $-F_k$ is a permutation for every k
 - $-F_k^{-1}$ is *efficiently computable* (where $F_k^{-1}(F_k(x)) = x$)

- Let F be a length-preserving, keyed function
- F is a keyed permutation if
 - $-F_k$ is a permutation for every k
 - $-F_k^{-1}$ is efficiently computable (where $F_k^{-1}(F_k(x)) = x$)
- **Definition 4.3** F is a *pseudorandom permutation* if F_k , for uniform key $k \in \{0,1\}^n$, is indistinguishable from a uniform permutation $f \in Perm_n$

- Let F be a length-preserving, keyed function
- F is a keyed permutation if
 - $-F_k$ is a permutation for every k
 - $-F_k^{-1}$ is *efficiently computable* (where $F_k^{-1}(F_k(x)) = x$)
- **Definition 4.3** F is a *pseudorandom permutation* if F_k , for uniform key $k \in \{0,1\}^n$, is indistinguishable from a uniform permutation $f \in Perm_n$
- For large enough n, a random permutation is indistinguishable from a random function.
 - In practice, PRPs are also good PRFs

PRFs vs. PRGs

- PRF F immediately implies a PRG G:
 - Define $G(k) = F_k(0...0)|F_k(0...1)$
 - I.e., $G(k) = F_k(\langle 0 \rangle) |F_k(\langle 1 \rangle)| F_k(\langle 2 \rangle)| \dots$, where $\langle i \rangle$ denotes the *n*-bit encoding of *i*

PRFs vs. PRGs

- PRF F immediately implies a PRG G:
 - Define $G(k) = F_k(0...0)|F_k(0...1)$
 - I.e., $G(k) = F_k(\langle 0 \rangle) |F_k(\langle 1 \rangle)| F_k(\langle 2 \rangle)| \dots$, where $\langle i \rangle$ denotes the *n*-bit encoding of *i*
- PRF can be viewed as a PRG with random access to exponentially long output
 - The function F_k can be viewed as the $n2^n$ -bit string $F_k(0...0)|...|F_k(1...1)$

Do PRFs/PRPs exist?

- They are a stronger primitive than PRGs
 - though can be built from PRGs

Do PRFs/PRPs exist?

- They are a stronger primitive than PRGs
 - though can be built from PRGs

Theorem (Goldreich, Goldwasser, Micali 1984)
If the PRG Axiom is true, then there exist PRFs.

How to Construct Random Functions

ODED GOLDREICH, SHAFI GOLDWASSER, AND SILVIO MICALI

Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract. A constructive theory of randomness for functions, based on computational complexity, is developed, and a pseudorandom function generator is presented. This generator is a deterministic polynomial-time algorithm that transforms pairs (g, r), where g is any one-way function and r is a random k-bit string, to polynomial-time computable functions f_r : $\{1, \ldots, 2^k\} \rightarrow \{1, \ldots, 2^k\}$. These f_r 's cannot be distinguished from random functions by any probabilistic polynomial-time algorithm that asks and receives the value of a function at arguments of its choice. The result has applications in cryptography, random constructions, and complexity theory.

Categories and Subject Descriptors: F.0 [Theory of Computation]: General; F.1.1 [Computation by Abstract Devices]: Models of Computation—computability theory; G.0 [Mathematics of Computing]: General; G.3 [Mathematics of Computing]: Probability and Statistics—probabilistic algorithms; random number generation

General Terms: Algorithms, Security, Theory

Additional Key Words and Phrases: Cryptography, one-way functions, prediction problems, randomness

I have set up on a Manchester computer a small programme using only 1000 units of storage, whereby the machine supplied with one sixteen figure number replies with another within two seconds. I would defy anyone to learn from these replies sufficient about the programme to be able to predict any replies to untried values.

Do PRFs/PRPs exist?

- They are a stronger primitive than PRGs
 - though can be built from PRGs

In practice, block ciphers are used

Block ciphers

Block ciphers are practical constructions of pseudorandom permutations (PRPs)

Block ciphers

Block ciphers are practical constructions of pseudorandom permutations (PRPs)

$$F: \{0,1\}^n \times \{0,1\}^m \rightarrow \{0,1\}^m$$
 $-n =$ "key length"
 $-m =$ "block length"

Block ciphers

Block ciphers are practical constructions of pseudorandom permutations (PRPs)

$$F: \{0,1\}^n \times \{0,1\}^m \rightarrow \{0,1\}^m$$
 $-n =$ "key length"
 $-m =$ "block length"

Hard to distinguish F_k from uniform $f \in Perm_m$

AES

- Advanced encryption standard (AES)
 - Standardized by NIST in 2000 based on a public, worldwide competation lasting over 3 years
 - Block length = 128 bits
 - Key length = 128, 192 or 256 bits

AES

- Advanced encryption standard (AES)
 - Standardized by NIST in 2000 based on a public, worldwide competation lasting over 3 years
 - Block length = 128 bits
 - Key length = 128, 192 or 256 bits

- Will discuss details later in the course
 - Rijndael named after Vincent Rijmen and Joan Daemen

■ 1972: NIST (then NBS) called for encryption standard proposals

1976: IBM responsed: "Lucifer"

NSA tweaked Lucifer to get *Data Encryption Standard* (DES) and approved it

The key length is "short": 56 bits

By late 90's, most commercial applications used 3DES: three applications of DES with independent keys

It had been used as a standard for encryption until 2000. DES was subject to exhaustive key search attacks.

■ 1997: NIST issued call for new ciphers (use for \geq 30 years, protect \geq 100 years)

1998: 15 candidates accepted in June

1999: 5 of them were shortlisted in August

2000: Rijndael was selected as the AES in October (Daeman, Rijmen)

2001: issued as FIPS PUB 197 standard in November

■ 1997: NIST issued call for new ciphers (use for \geq 30 years, protect \geq 100 years)

1998: 15 candidates accepted in June

1999: 5 of them were shortlisted in August

2000: *Rijndael* was selected as the *AES* in October (Daeman, Rijmen)

2001: issued as FIPS PUB 197 standard in November

■ 1997: NIST issued call for new ciphers (use for \geq 30 years, protect \geq 100 years)

1998: 15 candidates accepted in June

1999: 5 of them were shortlisted in August

2000: *Rijndael* was selected as the *AES* in October (Daeman, Rijmen)

2001: issued as FIPS PUB 197 standard in November

Block length: 128 bits, key length: 128/192/256 bits

Stronger and faster than 3DES

Efficient in both software and hardware

Simple in design, suitable for smard cards (memory requirement)

Let *F* be a length-preserving, keyed function

Let *F* be a length-preserving, keyed function

 $Gen(1^n)$: choose a uniform key $k \in \{0,1\}^n$

Let F be a length-preserving, keyed function

```
Gen(1^n): choose a uniform key k \in \{0,1\}^n
```

```
Enc_k(m), for |m|=|k|
```

- Choose uniform $r \in \{0,1\}^n$ (nonce/initialization vector)
- Output ciphertext $\langle r, F_k(r) \oplus m \rangle$

Let F be a length-preserving, keyed function

```
Gen(1<sup>n</sup>): choose a uniform key k \in \{0,1\}^n

Enc<sub>k</sub>(m), for |m| = |k|

- Choose uniform r \in \{0,1\}^n (nonce/ initialization vector)

- Output ciphertext \langle r, F_k(r) \oplus m \rangle
```

```
Dec_k(c_1, c_2): output c_2 \oplus F_k(c_1)
```


Let F be a length-preserving, keyed function

```
Gen(1^n): choose a uniform key k \in \{0,1\}^n
```

$$Enc_k(m)$$
, for $|m| = |k|$

- Choose uniform $r \in \{0,1\}^n$ (nonce/initialization vector)
- Output ciphertext $\langle r, F_k(r) \oplus m \rangle$

$$Dec_k(c_1, c_2)$$
: output $c_2 \oplus F_k(c_1)$

Correctness is immediate

CPA-secure encryption

CPA-secure encryption

Theorem 5.1 If F is a pseudorandom function, then this scheme is CPA-secure.

Note

The key may be as long as the message

But the same key can be used to safely encrypt multiple messages

Security?

■ **Theorem 5.1** If *F* is a pseudorandom function, then this scheme is *CPA-secure*.

Proof by reduction Let Π denote the scheme

Security?

■ **Theorem 5.1** If *F* is a pseudorandom function, then this scheme is *CPA-secure*.

Proof by reduction Let Π denote the scheme

Security?

■ **Theorem 5.1** If *F* is a pseudorandom function, then this scheme is *CPA-secure*.

Proof by reduction Let Π denote the scheme

Let $\mu(n) = \Pr[PrivCPA_{Adv,\Pi}(n) = 1]$ Let q(n) be a bound on the number of encryption queries made by attacker

Let $\mu(n) = \Pr[PrivCPA_{Adv,\Pi}(n) = 1]$ Let q(n) be a bound on the number of encryption queries made by attacker

If $f = F_k$ for uniform k, then the view of Adv is exactly as in $PrivCPA_{Adv,\Pi}(n)$

$$\Rightarrow$$

$$\Pr_{k \leftarrow \{0,1\}^n}[D^{F_k(\cdot)} = 1] = \Pr[PrivCPA_{Adv,\Pi}(n) = 1] = \mu(n)$$

- If f is uniform, there are two subcases
 - $-r^*$ was used for some other ciphertext (call this event Repeat)
 - $-r^*$ was not used for some other ciphertext

- If f is uniform, there are two subcases
 - $-r^*$ was used for some other ciphertext (call this event Repeat)
 - $-r^*$ was not used for some other ciphertext
- $\mathsf{Pr}_f[D^{f(\cdot)}=1] \leq \mathsf{Pr}_f[D^{f(\cdot)}=1|\neg Repeat] + \mathsf{Pr}[Repeat]$
 - $-\Pr[Repeat] \le q(n)/2^n$
 - $-\Pr_f[D^{f(\cdot)}=1|\neg Repeat]=1/2$

- If f is uniform, there are two subcases
 - $-r^*$ was used for some other ciphertext (call this event Repeat)
 - $-r^*$ was not used for some other ciphertext
- ho $\Pr_f[D^{f(\cdot)} = 1] \le \Pr_f[D^{f(\cdot)} = 1 | \neg Repeat] + \Pr[Repeat]$
 - $-\Pr[Repeat] \le q(n)/2^n$
 - $-\Pr_f[D^{f(\cdot)}=1|\neg Repeat]=1/2$
- Since F is pseudorandom

$$\Rightarrow |\mu(n) - \Pr_f[D^{f(\cdot)} = 1]| \le \epsilon(n)$$

- If f is uniform, there are two subcases
 - $-r^*$ was used for some other ciphertext (call this event Repeat)
 - $-r^*$ was not used for some other ciphertext
- ho $\Pr_f[D^{f(\cdot)}=1] \leq \Pr_f[D^{f(\cdot)}=1|\neg Repeat] + \Pr[Repeat]$
 - $-\Pr[Repeat] \le q(n)/2^n$
 - $-\Pr_f[D^{f(\cdot)}=1|\neg Repeat]=1/2$
- Since F is pseudorandom

$$\Rightarrow |\mu(n) - \Pr_f[D^{f(\cdot)} = 1]| \le \epsilon(n)$$

$$\Rightarrow \mu(n) \leq \Pr_f[D^{f(\cdot)} = 1] + \epsilon(n) \leq 1/2 + q(n)/2^n + \epsilon(n)$$

- If f is uniform, there are two subcases
 - $-r^*$ was used for some other ciphertext (call this event Repeat)
 - $-r^*$ was not used for some other ciphertext
- ho $\Pr_f[D^{f(\cdot)}=1] \leq \Pr_f[D^{f(\cdot)}=1|\neg Repeat] + \Pr[Repeat]$
 - $-\Pr[Repeat] \le q(n)/2^n$
 - $-\Pr_f[D^{f(\cdot)}=1|\neg Repeat]=1/2$
- Since F is pseudorandom

$$\Rightarrow |\mu(n) - \Pr_f[D^{f(\cdot)} = 1]| \le \epsilon(n)$$

$$\Rightarrow \mu(n) \leq \Pr_f[D^{f(\cdot)} = 1] + \epsilon(n) \leq 1/2 + q(n)/2^n + \epsilon(n)$$

Note: $q(n)/2^n + \epsilon(n) = \epsilon'(n)$ is negligible

Real-world security?

The security bound we proved is tight

Real-world security?

- The security bound we proved is tight
- What happens if a nonce r is ever reused?
- What is the probability that the nonce used in some challenge ciphertext is also used for some other ciphertext?
- What happens to the bound if the nonce is chosen non-uniformly?

CPA-secure encryption

We have shown a CPA-secure encryption scheme based on any block cipher/ PRF

$$- Enc_k(m) = \langle r, F_k(r) \oplus m \rangle$$

CPA-secure encryption

We have shown a CPA-secure encryption scheme based on any block cipher/ PRF

$$- Enc_k(m) = \langle r, F_k(r) \oplus m \rangle$$

- Drawbacks?
 - A 1-block plaintext results in a 2-block ciphertext
 - Only defined for encryption of n-bit messages

Encrypting long messages?

■ Recall that CPA-security ⇒ security for the encryption of multiple messages

Encrypting long messages?

- Recall that CPA-security ⇒ security for the encryption of multiple messages
- So, can encrypt the message m_1, \ldots, m_t as $Enc_k(m_1), Enc_k(m_2), \ldots, Enc_k(m_t)$
 - This is also *CPA-secure*!

Encrypting long messages?

- Recall that CPA-security ⇒ security for the encryption of multiple messages
- So, can encrypt the message m_1, \ldots, m_t as $Enc_k(m_1), Enc_k(m_2), \ldots, Enc_k(m_t)$
 - This is also *CPA-secure*!

Drawback

- The ciphertext is twice the length of the plaintext
 - Le., ciphertext expansion by a factor of two

Drawback

- The ciphertext is twice the length of the plaintext
 - Le., ciphertext expansion by a factor of two
- Can we do better?

Drawback

- The ciphertext is twice the length of the plaintext
 - Le., ciphertext expansion by a factor of two
- Can we do better?
- Modes of operation
 - Block-cipher modes of operation
 - Stream-cipher modes of operation

CTR (Counter) mode

■ $Enc_k(m_1, ..., m_t)$ // note: t is arbitrary

- Choose $ctr \leftarrow_R \{0, 1\}^n$, set $c_0 = ctr$ - For i = 1 to t:

- $c_i = m_i \oplus F_k(ctr + i)$ - Output $c_0, c_1, ..., c_t$

CTR (Counter) mode

- $Enc_k(m_1, ..., m_t)$ // note: t is arbitrary

 Choose $ctr \leftarrow_R \{0, 1\}^n$, set $c_0 = ctr$ For i = 1 to t:

 $c_i = m_i \oplus F_k(ctr + i)$ Output $c_0, c_1, ..., c_t$
- Decryption?

CTR (Counter) mode

- $Enc_k(m_1, ..., m_t)$ // note: t is arbitrary

 Choose $ctr \leftarrow_R \{0, 1\}^n$, set $c_0 = ctr$ For i = 1 to t:

 $c_i = m_i \oplus F_k(ctr + i)$ Output $c_0, c_1, ..., c_t$
- Decryption?

Ciphertext expansion is just 1 block

■ **Theorem 5.2** If *F* is a pseudorandom function, then CTR mode is *CPA-secure*.

■ **Theorem 5.2** If *F* is a pseudorandom function, then CTR mode is *CPA-secure*.

Proof sketch:

The sequences $F_k(ctr_i + 1), \dots, F_k(ctr_i + t)$ used to encrypt the *i*-th message is pseudorandom

■ **Theorem 5.2** If *F* is a pseudorandom function, then CTR mode is *CPA-secure*.

Proof sketch:

The sequences $F_k(ctr_i + 1), \dots, F_k(ctr_i + t)$ used to encrypt the *i*-th message is pseudorandom

- Moreover, it is independent of every other such sequence unless $ctr_i + j = ctr_{i'} + j'$ for some i, j, i', j'
- Just need to bound the probability of that event

CBC (Cipher Block Chaining) mode

■ $Enc_k(m_1, \ldots, m_t)$ // note: t is arbitrary

- Choose $c_0 \leftarrow_R \{0,1\}^n$ (also called the IV)

- For i=1 to t:

- $c_i = F_k(m_i \oplus c_{i-1})$ - Output c_0, c_1, \ldots, c_t

CBC (Cipher Block Chaining) mode

- $Enc_k(m_1, ..., m_t)$ // note: t is arbitrary

 Choose $c_0 \leftarrow_R \{0, 1\}^n$ (also called the IV)

 For i = 1 to t:

 $c_i = F_k(m_i \oplus c_{i-1})$ Output $c_0, c_1, ..., c_t$
- Decryption?
 - Requires *F* to be *invertible*

CBC (Cipher Block Chaining) mode

- $Enc_k(m_1, \ldots, m_t)$ // note: t is arbitrary

 Choose $c_0 \leftarrow_R \{0,1\}^n$ (also called the IV)

 For i=1 to t:

 $c_i = F_k(m_i \oplus c_{i-1})$ Output c_0, c_1, \ldots, c_t
- Decryption?
 - Requires *F* to be *invertible*
- Ciphertext expansion is just 1 block

CBC mode

CBC mode

■ **Theorem 5.3** If *F* is a pseudorandom function, then CBC mode is *CPA-secure*.

CBC mode

■ **Theorem 5.3** If *F* is a pseudorandom function, then CBC mode is *CPA-secure*.

Proof is more complicated than for CTR mode

• $Enc_k(m_1,\ldots,m_t)=F_k(m_1),\ldots,F_k(m_t)$

- $Enc_k(m_1, \ldots, m_t) = F_k(m_1), \ldots, F_k(m_t)$
- Deterministic
 - Not CPA-secure!
 - Efficient: online computation

- $Enc_k(m_1, \ldots, m_t) = F_k(m_1), \ldots, F_k(m_t)$
- Deterministic
 - Not CPA-secure!
 - Efficient: online computation
- Can tell from the ciphertext whether $m_i = m_j$
 - Not even EAV-secure!

- $Enc_k(m_1, \ldots, m_t) = F_k(m_1), \ldots, F_k(m_t)$
- Deterministic
 - Not CPA-secure!
 - Efficient: online computation
- Can tell from the ciphertext whether $m_i = m_j$
 - Not even EAV-secure!

original

encrypted using ECB mode

- As we defined, PRGs are limited
 - They have fixed-length output
 - They produce output in "one shot"
- In practice, PRGs are based on stream ciphers
 - Can be viewed as producing an "infinite" stream of pseudorandom bits, on demand
 - More flexible, more efficient

Pair of efficient, deterministic algorithms (Init, GetBits)

- Pair of efficient, deterministic algorithms (Init, GetBits)
 - Init takes a seed s_0 (and optional IV), and outputs initial state st_0
 - GetBits takes the current state st and outputs a bit y along with updated state st'

- Pair of efficient, deterministic algorithms (Init, GetBits)
 - Init takes a seed s_0 (and optional IV), and outputs initial state st_0
 - GetBits takes the current state st and outputs a bit y along with updated state st'
 - In practice, y would be a block rather than a bit

Can use (Init, GetBits) to generate any desired number of output bits from an initial seed

- A *stream cipher* is *secure* (informally) if the output stream generated from a uniform seed is pseudorandom
 - I.e., regardless of how long the output stream is (so long as it is polynomial)

Next Lecture

stream cipher, CCA security ...

