Fixed Point Iteration:

Compare figures

The method known as fixed point iteration (also call x = g(x) method) can be a useful way to get a root f(x) = 0. This method is also basis for some important theory to use the method, we rearrange f(x) into an equivalent form x = g(x), which is usually can be done in several ways.

Observe that if f(r) = 0, where r is a root of f(x), it follows that

r = g(r), r is said to be a fixed for the function g. The iterative form

$$x_{n+1} = g(x_n)$$
 $n = 0,1,2,3,...$

Definition: A fixed point of a function g(x) is a real number P such that P = g(P). GGeometrically, the fixed points of a function y = g(x) are the points of intersection y = g(x) and y = x.

Theorem: Assume that g is a continuous function and that $\{p_n\}_{n=0}^{\infty}$ is a sequence generated by fixed point iteration.

If
$$\lim_{n\to\infty} p_n = P$$

then $\lim_{n\to\infty} p_{n+1} = P$, then P is a fixed point of $g(x)$.

Convergent

Divergent

Example:

$$f(x) = x^2 - 2x - 3 = 0$$

f(x) is easy to factor to show roots at x=-1 and x=3.

> factor
$$(x^2-2x-3)$$
;
 $(x+1)(x-3)$

We pretend that we don't know this.

Suppose we rearrange to give this equivalent form:

$$x = g_1(x) = \sqrt{2x + 3}$$

If we start with an initial value x=4 and iterate with the fixed point algorithm, successive values of x are

$$x_0 = 4$$
,
 $x_1 = \sqrt{11} = 3.31662$,
 $x_2 = \sqrt{9.63325} = 3.10375$,
 $x_3 = \sqrt{9.20750} = 3.03439$,
 $x_4 = \sqrt{9.06877} = 3.01144$,
 $x_5 = \sqrt{9.02288} = 3.00381$

and it appears that the values are converging on the root at x=3.

Other Rearrangements

Another rearrangement of f(x) is

$$x = g_2(x) = \frac{3}{(x-2)}$$

Let us start the iteration again with $x_0=4$, Successive values then are

$$x_0 = 4$$
,
 $x_1 = 1.5$,
 $x_2 = -6$,
 $x_3 = -0.375$,
 $x_4 = -1.263158$,
 $x_5 = -0.919355$
 $x_6 = -1.022762$
 $x_7 = -0.990876$
 $x_5 = -1.00305$

And it seems that we now converge to the other root, at x=-1.

Consider third rearrangement

$$x = g_3(x) = \frac{(x^2 - 3)}{2}$$

Let us start the iteration again with $x_0=4$, Successive values then are

$$x_0 = 4,$$

 $x_1 = 6.5,$
 $x_2 = 19.625,$
 $x_3 = 191.070$

and the iterates are obviously diverging. (WHY?)

Convergence

If g'(x) > 1 then the iteration $x_{n+1} = g(x_n)$ produces a sequence that diverges away from x.

Order of Convergence

The fixed point method <u>converges at a linear rate</u>; it is said to be linearly convergent, meaning that <u>the error at each successive iteration is a constant fraction of the previous error.</u>

$$x = g_1(x) = \sqrt{2x+3}$$

Iteration	X _r	Absolute
		Relative Error
0	4.00000	*
1	3.31662	0.170845
2	3.10375	0.064183
3	3.03439	0.022347
4	3.01144	0.007563
5	3.00381	0.002534

Algorithm for Fixed Point Iteration

To determine a root of f(x) = 0, given a value x_0 reasonably close to the root.

Rearrange the equation to an equivalent form x = g(x).

Repeat

Set
$$x_1 = x_0$$

Set
$$x_1 = g(x_1)$$

Until
$$|x_1 - x_0| < TOLERANCE$$
 or $|f(x_1)| < TOLERANCE$

Note: The method <u>may converge</u> to a root different from the expected one, or it may diverge. Different rearrangements will converge at different rates.

MATLAB M-File (Fixed Point)

```
function [k,x,err,P] = fixedpoint(g,x0,tol,maxit)
%Input - g is the iteration function
        - x0 is the initial guess for the fixed-point
        - tol is the tolerance
%
        - maxit is the maximum number of iterations
%Output- k is the number of iterations
        - x is the approximation to the fixed-point
%
<mark>%</mark>
        - err is the error in the approximation
P(1) = x0:
for k=2:maxit
     P(k)=g(P(k-1));
     err=abs(P(k)-P(k-1));
     relerr=err/(abs(P(k))+eps);
     x=P(k);
  X = [k,x]
     if (err<tol) | (relerr<tol),break;end
end
if k==maxit
  disp('maximum number of iterations exceeded')
end
```

Example:

$$f(x) = x^2 - 2x - 3 = 0$$

Suppose we rearrange to give this equivalent form:

$$x = g_1(x) = \sqrt{2x+3}$$

If we start with an initial value x=4 and iterate with the fixed point algorithm, successive values of x are

```
>> g=inline('sqrt(2*x+3)')
\mathbf{g} =
  Inline function:
  g(x) = sqrt(2*x+3)
>> fixedpoint(g,4,0.00001,20)
\mathbf{X} =
  2.0000 3.3166
  3.0000 3.1037
  4.0000 3.0344
  5.0000 3.0114
  6.0000 3.0038
  7.0000 3.0013
  8.0000 3.0004
  9.0000 3.0001
 10.0000 3.0000
 11.0000 3.0000
 12.0000 3.0000
ans = 3.00
                x = g_3(x) = \frac{(x^2 - 3)}{2}
>> g=inline('(x^2-3)/2')
\mathbf{g} =
  Inline function:
  g(x) = (x^2-3)/2
>> fixedpoint(g,4,0.00001,20)
\mathbf{X} =
  2,0000 6,5000
  3.0000 19.6250
  4.0000 191.0703
```

maximum number of iterations exceeded

ans =

Example:

$$f(x) = x - \cos(x)$$

We shall consider three rearrangement of $x - \cos(x) = 0$

$$x = g_1(x) = \cos(x)$$

$$x = g_2(x) = x - \frac{x - \cos(x)}{2}$$

$$x = g_3(x) = x + \frac{x - \cos(x)}{2}$$

$$x = g_2(x) = x - \frac{x - \cos(x)}{2}$$

$$x = g_3(x) = x + \frac{x - \cos(x)}{2}$$

MATLAB Solution

$$x = g_1(x) = \cos(x)$$

```
>> g=inline('cos(x)')
\mathbf{g} =
  Inline function:
  g(x) = cos(x)
>> fixedpoint(g,1.0,0.00001,20)
X =
  2.0000 0.5403
  3.0000 0.8576
  4.0000 0.6543
  5.0000 0.7935
  6.0000 0.7014
  7.0000 0.7640
  8.0000 0.7221
  9.0000 0.7504
 10.0000 0.7314
 11.0000 0.7442
 12.0000 0.7356
 13.0000 0.7414
 14.0000 0.7375
 15.0000 0.7401
```

MATLAB Solution

$$x = g_2(x) = x - \frac{x - \cos(x)}{2}$$

```
>> g=inline('x-0.5*(x-cos(x))')
g =
    Inline function:
    g(x) = x-0.5*(x-cos(x))
>> fixedpoint(g,0.50,0.001,20)
X =
    2.0000    0.6888
    3.0000    0.7304
    4.0000    0.7377
    5.0000    0.7389
    6.0000    0.7390
```

MATLAB Solution

$$x = g_3(x) = x + \frac{x - \cos(x)}{2}$$

```
>> g=inline('x+0.5*(x-cos(x))')
\mathbf{g} =
  Inline function:
  g(x) = x + 0.5*(x - \cos(x))
>> fixedpoint(g,0.50,0.001,20)
X =
  2,0000 0,3112
  3.0000 -0.0092
  4.0000 -0.5137
  5.0000 -1.2061
  6.0000 -1.9874
  7.0000 -2.7788
  8.0000 -3.7008
  9.0000 -5.1273
 10.0000 -7.8925
 17,0000 -136,1280
 18.0000 -203.9387
 19.0000 -305.4254
 20,0000 -457,7528
maximum number of iterations exceeded
```

Example:

$$f(x) = 3x + \sin(x) - e^x$$

Iteration functions

$$g_1(x) = \frac{e^x - \sin(x)}{3}$$

$$g_2(x) = \log(3x + \sin(x))$$

$g_2(x) = \log(3x + \sin(x))$


```
g1=inline('(exp(x)-sin(x))/3')
g1 =
    Inline function:
    g1(x) = (exp(x)-sin(x))/3
>> fixedpoint(g1,0.5,0.0001,10)
X =
    2.0000    0.3898
    3.0000    0.3656
    4.0000    0.3613
    5.0000    0.3604
    7.0000    0.3604
```

```
>> g2=inline('log(3*x+sin(x))')
g2 =
Inline function:
g2(x) = log(3*x+sin(x))
```

>> fixedpoint(g2,0.5,0.0001,10)

```
X = 2.0000 0.6828

3.0000 0.9856

4.0000 1.3325

5.0000 1.6032

6.0000 1.7594

7.0000 1.8343

8.0000 1.8669

9.0000 1.8806

10.0000 1.8862
```

maximum number of iterations exceeded

If we choose $x_0=2.5$ for both cases

```
g1inline('(\exp(x)-\sin(x))/3')
g1 =
  Inline function:
   g1(x) = (\exp(x) - \sin(x))/3
>> fixedpoint(g1,2.5,0.0001,10)
X =
  2.0000 3.8613
  3.0000 16.0627
  4.0000 1.0e+006 *
           Inf
           NaN
```

maximum number of iterations exceeded

Method diverges. WHY?

```
>> g2=inline('log(3*x+sin(x))')
g2 =
    Inline function:
    g2(x) = log(3*x+sin(x))
>> fixedpoint(g2,2.5,0.0001,10)
X =
    2.0000    2.0917
    3.0000    1.9661
    4.0000    1.9200
    5.0000    1.9021
    6.0000    1.8949
    7.0000    1.8949
    7.0000    1.8908
    9.0000    1.8904
    10.0000    1.8902
```

Approximates to the second root shown in the figure

Fixed Point Iteration Program for x = g(x)

Enter expression $g(x)$:	3.83*x*(1->
Enter initial x:	0.2
Starting iteration number for display:	0
Ending iteration number for display:	15

	x = 3.83 * x * (1-x)
n	X
0	0.2
1	0.6128
2	0.9087676928
3	0.3175413678269552
<mark>4</mark>	0.8299948860994241
5	0.5404259268177138
6	0.9512408012087574
<mark>7</mark>	0.17764206161275328
8	0.5595069271099131
9	0.943937685147333
10	0.20268104043408505
11	0.6189335009625182
12	0.9033239695958989
13	0.3344730403542266
14	0.8525611621645335
15	0.4814334011541312