ACM TEMPLATE

Orz

Last build at October 9, 2012

Contents

1	To 1	Do Lis	5																							č
2	注意	事项																								4
3		串处理	-1.1-																							5
	3.1	*AC自																								
		3.1.1 3.1.2	指针非指																							
	3.2	后缀数																								
		3.2.1	DC3																							7
		3.2.2	DA.																							
	3.3	后缀三																								
	3.4	3.3.1 KMP	例题																							
	$\frac{3.4}{3.5}$	e-KMI																								
	3.6	*Mana																								
	3.7	*字符	串最小	表	示法	<u></u>			 				 	 		 										 18
4	数学	•																								19
4	奴子 4.1	· 模线性	方程组	目																						
	4.2	扩展G																								
	4.3	矩阵							 				 	 		 										 19
	4.4	康拓展																								
	4.5			•					 	•		 •	 	 	•	 				•		•	 •		•	
	$4.6 \\ 4.7$	爬山法 线性筛																								
	4.8	其它公																								
		4.8.1	正多																							
		4.8.2	求和																							
			几何																							
		4.8.4	小公	I(• •				 	٠		 •	 	 	٠	 	•			٠		•	 ٠		•	 20
5	数据	结构																								27
5	5.1	*Splay																								27
5		*Splay *动态	对						 				 	 		 										 $\frac{27}{33}$
5	5.1 5.2	*Splay *动态t 5.2.1	d 维护	点札	又				 				 	 		 										 27 33 33
5	5.1	*Splay *动态	对 维护 化线	点机	又 †	 		· ·	 		 	 	 	 		 		· ·	 		 		 	 		 27 33 33 36
5	5.1 5.2 5.3	*Splay *动态标 5.2.1 可持久	对 维护 化线 E式版	点木 没杯	又 †	 		 	 		 	 	 	 		 		 	 		 		 	 		 27 33 33 36
5	5.1 5.2 5.3 5.4	*Splay *动态林 5.2.1 可持久 treap』 树链剖 5.5.1	对 维线规 化式 分 点 权	点材	又 † .	· · · · · · · · · · · · · · · · · · ·			 		· · · · · · · ·	 	 	 		 			· · · · · · · · · · · · · · · · · · ·		· · · · · · · ·		 	· · · · · · · · · ·		 27 33 33 36 39 41 41
5	5.1 5.2 5.3 5.4	*Splay *动态标 5.2.1 可持久 treap』 树链剖	对 维护 化线 E 式 版 分	点材	又 † .	· · · · · · · · · · · · · · · · · · ·			 		· · · · · · · ·	 	 	 		 			· · · · · · · · · · · · · · · · · · ·		· · · · · · · ·		 	· · · · · · · · · ·		 27 33 33 36 39 41 41
	5.1 5.2 5.3 5.4	*Splay *动态材 5.2.1 可持久 treap』 树链剖 5.5.1 5.5.2	对 维线规 化式 分 点 权	点材	又 † .	· · · · · · · · · · · · · · · · · · ·			 		· · · · · · · ·	 	 	 		 			· · · · · · · · · · · · · · · · · · ·		· · · · · · · ·		 	· · · · · · · · · ·		 27 33 33 36 39 41 41
	5.1 5.2 5.3 5.4 5.5	*Splay *动态标 5.2.1 可持久 treap① 树链剖 5.5.1 5.5.2	对 维化式分点边 版护线版 权权	点材	· · · · · · · · · · · · · · · · · · ·								 	 		 				· · · · · · · · · · · · · · · · · · ·			 			 27 33 33 36 39 41 41 46 50
	5.1 5.2 5.3 5.4 5.5 图论 6.1 6.2	*Splay *动态材 5.2.1 可持知 好链的 5.5.1 5.5.2 SAP匹 费用	对维化式分点边 版三一护线版 权权 版	点材	· · · · · · · · · · · · · · · · · · ·									 		 										 27 33 36 39 41 40 40 50 51
	5.1 5.2 5.3 5.4 5.5 图论 6.1 6.2 6.3	*Splay *动态 5.2.1 可相位 5.5.1 5.5.2 SAP ME SAP ME ME ME ME ME ME ME ME ME ME ME ME ME	对维化三分点边 版三匹护线版 权权 版配	点材	. 双																					 277 333 360 399 411 440 500 511 555
	5.1 5.2 5.3 5.4 5.5 图论 6.1 6.2 6.3 6.4	*Splay *动态 5.2.1 可持 好 5.5.1 5.5.2 SAP 严 第 *二條 *二條 *二條 *二條 *二條 *二條 *二條 *二條 *二條 *二條	对 维化三分点边 版三匹平护线版 权权 版配图	点材料	. 双寸	·····································																				 27 33 36 39 41 40 50 51 55 55
	5.1 5.2 5.3 5.4 5.5 图论 6.1 6.2 6.3	*Splay * 3.2.1 5.2.1 村 5.5.1 5.5.2 SAP用般维延 SAP服修 * 强	对 维化三分点边 版三匹平护线版 权权 版配图	点材	双																					 27 33 36 39 41 41 46 50 51 55 55 58
6	5.1 5.2 5.3 5.4 5.5 6.1 6.2 6.3 6.4 6.5 6.6	*Splay * 3.2.1 5.2.1 好 5.5.1 5.5.2 SAP用般维联 KM	对维化式分点边 版三匹平护线版 权权 版配图	点材	双																					 27 33 36 39 41 46 50 51 53 58 59
	5.1 5.2 5.3 5.4 5.5 图论 6.1 6.2 6.3 6.4 6.5 6.6	*Splayk * 5.2.1 * 5.5.2 * 5.5.2 * 5.5.2 * SAP用般维联	对维化式分点边 版三匹平 护线版 权权 版配图	点材	. 双寸	·····································																				 27 33 36 39 41 41 46 50 51 53 55 58 59
6	5.1 5.2 5.3 5.4 5.5 6.1 6.2 6.3 6.4 6.5 6.6	*Splayk	对维化式分点边 版三匹平 数护线版 权权 版配图	点材料	双†	·····································																				 27 33 36 39 41 41 46 50 51 53 55 58 62 62
6	5.1 5.2 5.3 5.4 5.5 图论 6.1 6.2 6.3 6.4 6.5 6.6	*Splayk * 5.2.1 * 5.5.2 * 5.5.2 * 5.5.2 * SAP用般维联	对维化式分点边 版三匹平 护线版 权权 版配图	点极	双†	·····································																				 27 33 36 39 41 41 46 50 51 53 55 58 59 62 62 62
6	5.1 5.2 5.3 5.4 5.5 图论 6.1 6.2 6.3 6.4 6.5 6.6	*Splayk 5.2.1 女 5.2.1 女 5.5.2 S费一*强K 何 本.1.1 阿本 .1.1 阿本 .1.1	对维化式分点边 版三匹平 数 Point	点数 帮的 定义	・又寸 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· · · · · · · · · · · · · · · · · · ·																				 27 33 33 36 39 41 41 40 50 51 53 55 58 62 62 62 62 62
6	5.1 5.2 5.3 5.4 5.5 图论 6.1 6.2 6.3 6.4 6.5 6.6	*Splayk 5.2.1 女子 5.5.2 S费一*强K 几基7.1.2 CAP用般维联 何本1.1.2 7.1.3 7.1.4	对维化式分点边 版三匹P 数PLi距距一种线版 权权 版配图 如 me离离	点数 带的 定义两点	・又寸 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・																					27 33 33 36 39 41 41 40 50 51 55 55 62 62 62 62 62 62
6	5.1 5.2 5.3 5.4 5.5 图论 6.1 6.2 6.3 6.4 6.5 6.6	*Splayk 5.2.1 女子 5.5.2 S费一*强K	对维化式分点边 版三匹P 数PLi距距面,维线版 权权 版配图 如nine离离积	点数 带的 定义两点多	- 又寸 - - - - -																					27 33 33 36 41 40 50 51 55 58 59 62 62 62 62 62 63
6	5.1 5.2 5.3 5.4 5.5 图论 6.1 6.2 6.3 6.4 6.5 6.6	*Splayk 5.2.1 大型 5.5.5 S费一*强K 几基7.1.2 S费一*强K 几基7.1.3 7.1.4 7.1.5 7.1.6	对维化式分点边 版三匹P 数PLI距距面判外维化式分点边 版配面 数PLIne距面判的线版 权权 版配图	点没 带的 定义两点多约	・又寸 ・・・・・・・・・・																					27 33 33 36 41 41 46 50 51 55 55 55 62 62 62 62 63 63
6	5.1 5.2 5.3 5.4 5.5 图论 6.1 6.2 6.3 6.4 6.5 6.6	*Splayk 5.2.1 大型 5.5.5 S费一*强K 几基7.1.2 S费一*强K 几基7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.7 7.1.6 7.1.7 7.1.7 7.1.6 7.1.7	对维化式分点边 版三匹P 数PLi距距面,维线版 权权 版配图 如nine离离积	点没 带的 定义两点多约点	・又寸 ・ ・ ・ ・ ・		· · · · · · · · · · · · · · · · · · ·																			277 333 366 399 411 440 500 511 555 558 622 622 622 623 633 633
6	5.1 5.2 5.3 5.4 5.5 图论 6.1 6.2 6.3 6.4 6.5 6.6 计算	*Splayk 5.2.1 大型 5.5.5 S费一*强K 几基7.1.2 Fapa 5.5.5 SAP用般组联 何本1.1.2 7.1.3 7.1.4 7.1.5 6.7.1.7	对维化式分点边 版三匹P 数PLI距距面判求外维化式分点边 版配面 数Point 离离积断解	点段 带的 定义两点多约点	· 又才 · · · · · · · · · · · · · · · · · ·		离段、交最																			277 333 36 39 41 41 40 50 51 55 55 55 62 62 62 62 63 63 63 63

	7.4	半平面交	67
	7.5	凸包	67
	7.6	直线与凸包求交点	
	7.7	三维凸包	
	7.8	旋转卡壳	
		7.8.1 单个凸包	
		7.8.2 两个凸包	73
		7.8.3 外接矩形	74
	7.9	三角形内点个数	
		7.9.1 无三点共线	
		$t = t \cdot $	
		7.9.2 有三点共线且点有类别之分	10
0	抽曲	à	=0
8	搜索	Dancing Links	78
	8.1	Dancing Links	78
	44.47		
9	杂物		81
	9.1	高精度数	81
	9.2	整数外挂	81
	9.3	Java	82
	0.0	9.3.1 优先队列	
		9.3.2 Map	
		9.3.3 sort	82
	9.4	hashmap	

1 To Do List

测试DC3模板。。 所有带*的内容。。。 可以从原来的模板里面继承一些好东西过来。 set,map,multiset等的搞基用法,以及注意事项。

2 注意事项

```
106数量级慎用后缀数组
```

TLE的时候要冷静哟。。

7k+的图计数(Wc2012的communication)

思考的时候结合具体步骤来的话 会体会到一些不同的东西

```
C++与G++是很不一样的。。。
```

map套字符串是很慢的。。。

栈会被记录内存。。。

浮点数最短路要注意取≤来判断更新。。。

注意 long long

不要相信.size()

重复利用数组时 小心数组范围

先构思代码框架 每当实际拍马框架变化时 停手 重新思考

有时候四边形不等式也是帮得上忙的 dp 优化是可以水的

结构体里面带数组会非常慢,有时候 BFS 把数组压成数字会快很多。

结果是 sizeof(a[0]),如果传数组指针然后要清空的话不要用 sizeof。

sqrt 某些时候会出现 sqrt(-0.00)的问题。

将code::blocks的默认终端改成gnome-terminal

1 | gnome-terminal -t \$TITLE -x

3 字符串处理

3.1 *AC自动机

3.1.1 指针

```
const int CHAR=26;
   const int TOTLEN=500000;
   const int MAXLEN=1000000;
4
   struct Vertex
5
6
        Vertex *fail,*next[CHAR];
7
        Vertex(){}
8
        Vertex(bool flag)//为什么要这样写?
9
10
            fail=0;
            memset(next,0,sizeof(next));
11
12
        }
   };
13
14
   int size;
   Vertex vertex[TOTLEN+1];
15
   void init()
16
17
   {
18
        vertex[0] = Vertex(0);
19
        size=1;
20
   }
21
   void add(Vertex *pos,int cha)
22
   {
23
        vertex[size] = Vertex(0);
24
        pos -> next[cha] = & vertex[size++];
25
   }
26
   void add(vector<int> s)
27
   {
28
        int l=s.size();
29
        Vertex *pos=&vertex[0];
30
        for (int i=0; i<1; i++)
31
        {
32
            if (pos->next[s[i]] == NULL)
33
                 add(pos,s[i]);
34
            pos=pos->next[s[i]];
35
        }
   }
36
37
   void bfs()
38
39
        queue < Vertex *> que;
40
        Vertex *u=&vertex[0];
41
        for (int i=0; i<CHAR; i++)
42
            if (u->next[i]!=NULL)
43
44
                 que.push(u->next[i]);
45
                 u->next[i]->fail=u;
46
            }
47
            else
48
                 u->next[i]=u;
49
        u->fail=NULL;
50
        while (!que.empty())
51
52
            u=que.front();
53
            que.pop();
54
            for (int i=0; i<CHAR; i++)</pre>
                 if (u->next[i]!=NULL)
55
56
57
                     que.push(u->next[i]);
```

```
58
                     u->next[i]->fail=u->fail->next[i];
                 }
59
60
                 else
61
                     u->next[i]=u->fail->next[i];
62
        }
63 }
   3.1.2 非指针
   struct Trie
1
2
   {
3
        int next[50][10],fail[50];
4
        bool end[50];
5
        int L,root;
6
7
        int newNode()
8
            for (int i = 0; i < 10; i++)
9
10
                 next[L][i] = -1;
11
            end[L] = false;
12
            return L++;
        }
13
14
15
        void Init()
16
17
            L = 0;
18
            root = newNode();
19
        }
20
21
        void Insert(char s[])
22
23
            int now = root;
24
            for (int i = 0; s[i] != 0; i++)
25
26
                 if (next[now][s[i]-'0'] == -1)
27
                     next[now][s[i]-'0'] = newNode();
                 now = next[now][s[i]-'0'];
28
29
30
            end[now] = true;
        }
31
32
33
        void Build()
34
35
            queue < int > Q;
36
            for (int i = 0; i < 10; i++)
37
                 if (next[root][i] == -1)
38
                     next[root][i] = root;
39
                 else
40
                 {
41
                     fail[next[root][i]] = root;
42
                     Q.push(next[root][i]);
43
                 }
44
            while (!Q.empty())
45
            {
46
                 int now = Q.front();
47
                 Q.pop();
                 end[now] |= end[fail[now]];
48
                 for (int i = 0; i < 10; i++)
49
50
                     if (next[now][i] == -1)
                          next[now][i] = next[fail[now]][i];
51
52
                     else
53
                     {
                          fail[next[now][i]] = next[fail[now]][i];
54
55
                          Q.push(next[now][i]);
```

```
}
56
57
58
       }
59 };
        后缀数组
   3.2
   3.2.1 DC3
   所有下标都是0 n-1, height[0]无意义。
  |//所有相关数组都要开三倍
   const int maxn = 300010;
   # define F(x) ((x)/3+((x)%3==1?0:tb))
3
   # define G(x) ((x)<tb?(x)*3+1:((x)-tb)*3+2)
   int wa[maxn * 3], wb[maxn * 3], wv[maxn * 3], ws[maxn * 3];
   int c0(int *r, int a, int b)
7
   {
       return r[a] == r[b] && r[a + 1] == r[b + 1] && r[a + 2] == r[b + 2];
8
9
   }
10
   int c12(int k, int *r, int a, int b)
11
12
       if (k == 2) return r[a] < r[b] \mid | r[a] == r[b] && c12(1, r, a + 1, b +
           1);
13
       else return r[a] < r[b] \mid | r[a] == r[b] \&\& wv[a + 1] < wv[b + 1];
14
15
   void sort(int *r, int *a, int *b, int n, int m)
16
17
       int i;
18
       for (i = 0; i < n; i++) wv[i] = r[a[i]];
19
       for (i = 0; i < m; i++) ws[i] = 0;
20
       for (i = 0; i < n; i++) ws[wv[i]]++;
21
       for (i = 1; i < m; i++) ws[i] += ws[i - 1];
22
       for (i = n - 1; i \ge 0; i--) b[--ws[wv[i]]] = a[i];
23
       return;
24
   }
25
   void dc3(int *r, int *sa, int n, int m)
26
       int i, j, *rn = r + n, *san = sa + n, ta = 0, tb = (n + 1) / 3, tbc = 0,
27
            p;
28
       r[n] = r[n + 1] = 0;
29
       for (i = 0; i < n; i++) if (i % 3 != 0) wa[tbc++] = i;
30
       sort(r + 2, wa, wb, tbc, m);
31
       sort(r + 1, wb, wa, tbc, m);
32
       sort(r, wa, wb, tbc, m);
       for (p = 1, rn[F(wb[0])] = 0, i = 1; i < tbc; i++)
33
34
           rn[F(wb[i])] = c0(r, wb[i - 1], wb[i]) ? p - 1 : p++;
35
       if (p < tbc) dc3(rn, san, tbc, p);
36
       else for (i = 0; i < tbc; i++) san[rn[i]] = i;
37
       for (i = 0; i < tbc; i++) if (san[i] < tb) wb[ta++] = san[i] * 3;
38
       if (n \% 3 == 1) wb[ta++] = n - 1;
39
       sort(r, wb, wa, ta, m);
40
       for (i = 0; i < tbc; i++) wv[wb[i] = G(san[i])] = i;
41
       for (i = 0, j = 0, p = 0; i < ta && j < tbc; p++)
           sa[p] = c12(wb[j] % 3, r, wa[i], wb[j]) ? wa[i++] : wb[j++];
42
43
       for (; i < ta; p++) sa[p] = wa[i++];
44
       for (; j < tbc; p++) sa[p] = wb[j++];
45
   //str和sa也要三倍
46
47
   void da(int str[], int sa[], int rank[], int height[], int n, int m)
48
   {
49
       for (int i = n; i < n * 3; i++)
50
           str[i] = 0;
51
       dc3 (str , sa , n + 1 , m);
       int i, j, k;
52
```

```
for (i = 0; i < n; i++)
53
54
55
            sa[i] = sa[i + 1];
56
            rank[sa[i]] = i;
57
       }
       for (i = 0, j = 0, k = 0; i < n; height[rank[i ++]] = k)
58
59
            if (rank[i] > 0)
60
                for (k ? k-- : 0 , j = sa[rank[i] - 1]; i + k < n && j + k < n
                   &&
61
                         str[i + k] == str[j + k]; k ++);
62 }
```

3.2.2 DA

这份似乎就没啥要注意的了。

```
1 | const int maxn = 200010;
2
   int wx[maxn], wy[maxn], *x, *y, wss[maxn], wv[maxn];
3
4
   bool cmp(int *r,int n,int a,int b,int l)
5
6
        return a+1 < n \&\& b+1 < n \&\& r[a] == r[b] \&\&r[a+1] == r[b+1];
7
8
   void da(int str[],int sa[],int rank[],int height[],int n,int m)
9
   {
10
        int *s = str;
11
        int *x=wx, *y=wy, *t, p;
12
        int i,j;
13
       for(i=0; i<m; i++)wss[i]=0;
        for(i=0; i<n; i++)wss[x[i]=s[i]]++;
14
       for(i=1; i < m; i++) wss[i]+=wss[i-1];
15
16
       for(i=n-1; i>=0; i--)sa[--wss[x[i]]]=i;
17
        for (j=1,p=1; p < n && j < n; j*=2,m=p)
18
19
            for (i=n-j, p=0; i < n; i++) y[p++]=i;
20
            for (i=0; i< n; i++) if (sa[i]-j>=0) y [p++]=sa[i]-j;
            for(i=0; i<n; i++)wv[i]=x[y[i]];
21
22
            for(i=0; i<m; i++)wss[i]=0;
            for(i=0; i<n; i++)wss[wv[i]]++;
23
24
            for(i=1; i<m; i++)wss[i]+=wss[i-1];
25
            for(i=n-1; i>=0; i--)sa[--wss[wv[i]]]=y[i];
26
            for(t=x,x=y,y=t,p=1,i=1,x[sa[0]]=0; i<n; i++)
27
                 x[sa[i]] = cmp(y,n,sa[i-1],sa[i],j)?p-1:p++;
28
       for(int i=0; i<n; i++) rank[sa[i]]=i;</pre>
29
30
        for(int i=0,j=0,k=0; i<n; height[rank[i++]]=k)</pre>
31
            if(rank[i]>0)
32
                 for (k?k--:0, j=sa[rank[i]-1]; i+k < n && j+k < n && str[i+k]==str
                    [j+k]; k++);
33 | }
```

3.3 后缀三兄弟

```
1 #include <cstdio>
  #include <cstring>
^2
3
   #include <algorithm>
4
  using namespace std;
5
  const int CHAR = 26;
  const int MAXN = 100000;
7
   struct SAM_Node
8
9
       SAM_Node *fa,*next[CHAR];
10
       int len;
```

```
11
        int id, pos;
12
        SAM_Node() {}
13
        SAM_Node(int _len)
14
15
             fa = 0;
16
             len = _len;
17
             memset(next,0,sizeof(next));
        }
18
19
   };
20
   SAM_Node SAM_node[MAXN * 2], *SAM_root, *SAM_last;
21
   int SAM_size;
22
   SAM_Node *newSAM_Node(int len)
23
24
        SAM_node[SAM_size] = SAM_Node(len);
25
        SAM_node[SAM_size].id=SAM_size;
26
        return &SAM_node[SAM_size++];
27
28
   SAM_Node *newSAM_Node(SAM_Node *p)
29
   {
30
        SAM_node[SAM_size] = *p;
31
        SAM_node[SAM_size].id=SAM_size;
32
        return &SAM_node[SAM_size++];
33
   }
34
   void SAM_init()
35
   {
36
        SAM_size = 0;
37
        SAM_root = SAM_last = newSAM_Node(0);
38
        SAM_node[0].pos=0;
39
40
   void SAM_add(int x,int len)
41
42
        SAM_Node *p = SAM_last, *np = newSAM_Node(p->len + 1);
43
        np->pos=len;
44
        SAM_last = np;
45
        for (; p \&\& !p - next[x]; p = p - fa)
46
             p->next[x] = np;
47
        if (!p)
48
        {
49
             np->fa = SAM_root;
50
             return ;
51
        }
52
        SAM_Node *q = p->next[x];
53
        if (q\rightarrow len == p\rightarrow len + 1)
54
        {
55
             np \rightarrow fa = q;
56
             return ;
57
58
        SAM_Node *nq = newSAM_Node(q);
59
        nq \rightarrow len = p \rightarrow len + 1;
60
        q \rightarrow fa = nq;
61
        np \rightarrow fa = nq;
62
        for (; p \&\& p - next[x] == q; p = p - fa)
63
             p \rightarrow next[x] = nq;
64
65
   void SAM_build(char *s)
66
67
        SAM_init();
68
        int l = strlen(s);
69
        for (int i = 0; i < 1; i++)
70
             SAM_add(s[i] - 'a',i+1);
71
   }
72
   |SAM_Node * SAM_add(SAM_Node *p, int x, int len)
```

```
74 | {
 75
         SAM_Node *np = newSAM_Node(p->len + 1);
 76
         np->pos = len;
77
         SAM_last = np;
78
         for (; p \&\& !p->next[x]; p = p->fa)
79
             p - next[x] = np;
80
         if (!p)
81
         {
 82
             np->fa = SAM_root;
83
             return np;
84
         }
85
         SAM_Node *q = p->next[x];
86
         if (q->len == p->len + 1)
87
         {
88
             np \rightarrow fa = q;
89
             return np;
         }
90
         SAM_Node *nq = newSAM_Node(q);
91
92
         nq \rightarrow len = p \rightarrow len + 1;
93
         q \rightarrow fa = nq;
94
         np \rightarrow fa = nq;
95
         for (; p && p->next[x] == q; p = p->fa)
96
             p->next[x] = nq;
97
         return np;
    }
98
99
    void SAM_build(char *s)//多串建立 注意 SAM_init()的调用
100
101
         int 1 = strlen(s);
102
         SAM_Node *p = SAM_root;
103
         for (int i = 0; i < 1; i++)
104
105
             if (!p->next[s[i] - 'a'] || !(p->next[s[i] - 'a']->len == i + 1))
106
                  p=SAM_add(p,s[i] - 'a', i + 1);
107
             else
108
                  p = p->next[s[i] - 'a'];
109
         }
110
    }
111
112
    struct ST_Node
113
114
         ST_Node *next[CHAR],*fa;
115
         int len, pos;
116
    }ST_node[MAXN*2],*ST_root;
    int Sufpos[MAXN];
117
118
    void ST_add(int u,int v,int chr,int len)
119
120
         ST_node[u].next[chr]=&ST_node[v];
121
         ST_node[v].len=len;
122
123
    void init(int n)
124
125
         for (int i=0;i<n;i++)
126
127
             ST_node[i].pos=-1;
128
             ST_node[i].fa=0;
129
             memset(ST_node[i].next,0,sizeof(ST_node[i].next));
130
         }
131
         ST_node[0].pos=0;
132
         ST_root=&ST_node[0];
133
134
    void ST_build(char *s)
135
    {
136
         int n=strlen(s);
```

```
137
         reverse(s,s+n);
138
         SAM_build(s);
139
         init(SAM_size);
140
         for (int i=1;i<SAM_size;i++)</pre>
141
142
             ST_add(SAM_node[i].fa->id,SAM_node[i].id,s[SAM_node[i].pos-SAM_node[
                 i].fa->len-1]-'a',SAM_node[i].len-SAM_node[i].fa->len);
143
             if (SAM_node[i].pos == SAM_node[i].len)
144
             {
145
                 Sufpos[n-SAM_node[i].pos+1]=i;
146
                 ST_node[i].pos=n-SAM_node[i].pos+1;
147
             }
        }
148
149
    }
150
151
    int rank[MAXN],sa[MAXN+1];
152
    int height[MAXN];
153
    int L;
154
    void ST_dfs(ST_Node *p)
155
    {
156
         if (p->pos!=-1)
157
             sa[L++]=p->pos;
158
        for (int i=0;i<CHAR;i++)</pre>
159
             if (p->next[i])
160
                 ST_dfs(p->next[i]);
161
    }
162
    char s[MAXN+1];
163
    int main()
164
    {
165
         gets(s);
166
        ST_build(s);
167
        L=0;
168
        ST_dfs(ST_root);
169
         int n=strlen(s);
170
        for (int i=0; i<n; i++)
171
             sa[i] = sa[i+1] - 1;
172
        for (int i=0; i<n; i++)
173
             rank[sa[i]]=i;
174
        reverse(s,s+n);
         for (int i=0,j=0,k=0; i<n; height[rank[i++]]=k)</pre>
175
176
             if (rank[i])
177
                 for (k?k--:0,j=sa[rank[i]-1]; s[i+k]==s[j+k]; k++);
178 }
    3.3.1 例题
 1 #include <iostream>
   #include <algorithm>
 ^2
 3
   #include <cstdio>
 4
    #include <cstring>
 5
    using namespace std;
 6
 7
    const int CHAR = 26;
    const int MAXN = 100000;
 8
 Q
 10
    struct SAM_Node
 11
    {
12
         SAM_Node *fa,*next[CHAR];
13
         int len;
 14
         int id;
 15
         int mat[9];
 16
         SAM_Node() {}
        SAM_Node(int _len)
 17
 18
```

```
19
            fa = 0;
20
            len = _len;
21
            memset(mat,0,sizeof(mat));
22
            memset(next,0,sizeof(next));
23
        }
24 | };
   SAM_Node SAM_node[MAXN*2], *SAM_root, *SAM_last;
26
   int SAM_size;
27
   SAM_Node *newSAM_Node(int len)
28
29
        SAM_node[SAM_size] = SAM_Node(len);
30
        SAM_node[SAM_size].id = SAM_size;
31
        return &SAM_node[SAM_size++];
32
33
   SAM_Node *newSAM_Node(SAM_Node *p)
34
35
        SAM_node[SAM_size] = *p;
36
        SAM_node[SAM_size].id = SAM_size;
37
        return &SAM_node[SAM_size++];
38
   }
39
   void SAM_init()
40
   {
41
        SAM_size = 0;
        SAM_root = SAM_last = newSAM_Node(0);
42
   }
43
44
   void SAM_add(int x,int len)
45
   {
46
        SAM_Node *p = SAM_last,*np = newSAM_Node(p->len+1);
47
        SAM_last = np;
48
        for (; p&&!p->next[x]; p=p->fa)
49
            p - next[x] = np;
50
        if (!p)
51
        {
            np->fa = SAM_root;
52
53
            return;
54
        }
55
        SAM_Node *q = p->next[x];
56
        if (q->len == p->len+1)
57
58
            np \rightarrow fa = q;
59
            return;
60
        }
61
        SAM_Node *nq = newSAM_Node(q);
62
        nq \rightarrow len = p \rightarrow len + 1;
63
        q \rightarrow fa = nq;
64
        np \rightarrow fa = nq;
65
        for (; p\&\&p->next[x] == q; p = p->fa)
66
            p->next[x] = nq;
67
68
   int getid(char ch)
69
   {
70
        return ch-'a';
71
   }
72
   void SAM_build(char *s)
73
74
        SAM_init();
75
        int l = strlen(s);
76
        for (int i = 0; i < 1; i++)
77
            SAM_add(getid(s[i]),i+1);
78 }
79
   char s[10][MAXN+1];
80 | int ans;
81 | int head[MAXN*2];
```

```
82
    struct Edge
83
84
         int to, next;
85
    } edge[MAXN*2];
86
    int M;
87
    int n;
88
    void add_edge(int u,int v)
89
90
         edge[M].to=v;
91
         edge[M].next=head[u];
92
         head[u]=M++;
93
    }
94
    void dfs(int u)
95
    {
96
         for (int i=head[u]; i!=-1; i=edge[i].next)
97
98
             int v=edge[i].to;
99
             dfs(v);
100
             for (int j=0; j< n-1; j++)
101
                  SAM_node[u].mat[j]=max(SAM_node[v].mat[j],SAM_node[u].mat[j]);
102
         }
103
         int tmp=SAM_node[u].len;
104
         for (int i=0; i<n-1; i++)
105
             tmp=min(tmp,SAM_node[u].mat[i]);
106
         ans=max(ans,tmp);
107
    }
108
    int main()
109
    {
110
         while (scanf("%s",s[n])!=EOF)
111
112
             n++;
113
         int L=strlen(s[0]);
114
         ans=M=0;
115
         SAM_build(s[0]);
116
         for (int j=1; j < n; j++)
117
118
             int l=strlen(s[j]),len=0;
119
             SAM_Node *p=SAM_root;
120
             for (int i=0; i<1; i++)
121
122
                  if (p->next[getid(s[j][i])])
123
                  {
124
                      p=p->next[getid(s[j][i])];
125
                      p->mat[j-1]=max(p->mat[j-1],++len);
                  }
126
127
                  else
128
129
                      while (p && !p->next[getid(s[j][i])])
130
                           p=p->fa;
                      if (!p)
131
132
                      {
133
                           p=SAM_root;
134
                           len=0;
135
                      }
136
                      else
137
                      {
138
                           len=p->len+1;
139
                           p=p->next[getid(s[j][i])];
140
141
                      p->mat[j-1]=max(p->mat[j-1],len);
                 }
142
143
             }
        }
144
```

```
145
        memset(head, -1,4*SAM_size);
        for (int i=1; i<SAM_size; i++)</pre>
146
147
             add_edge(SAM_node[i].fa->id,i);
148
        dfs(0);
149
        printf("%d\n",ans);
150
        return 0;
151 }
      LCS2
 1 | #include <iostream >
   #include <algorithm>
   #include <cstdio>
   #include <cstring>
 5
   using namespace std;
 7
    const int CHAR = 26;
    const int MAXN = 100000;
 8
 9
 10
   struct SAM_Node
 11
12
        SAM_Node *fa,*next[CHAR];
13
        int len;
        int id;
14
 15
        int mat[9];
16
        SAM_Node() {}
17
        SAM_Node(int _len)
 18
 19
             fa = 0;
 20
            len = _len;
21
            memset(mat,0,sizeof(mat));
22
             memset(next,0,sizeof(next));
23
        }
    };
24
25
    SAM_Node SAM_node[MAXN*2],*SAM_root,*SAM_last;
   int SAM_size;
27
   SAM_Node *newSAM_Node(int len)
28
29
        SAM_node[SAM_size] = SAM_Node(len);
30
        SAM_node[SAM_size].id = SAM_size;
31
        return &SAM_node[SAM_size++];
32
    }
33
   SAM_Node *newSAM_Node(SAM_Node *p)
34
35
        SAM_node[SAM_size] = *p;
36
        SAM_node[SAM_size].id = SAM_size;
37
        return &SAM_node[SAM_size++];
38
39
    void SAM_init()
40
    {
41
        SAM_size = 0;
42
        SAM_root = SAM_last = newSAM_Node(0);
43
    }
44
    void SAM_add(int x,int len)
45
46
        SAM_Node *p = SAM_last,*np = newSAM_Node(p->len+1);
47
        SAM_last = np;
48
        for (; p&&!p->next[x]; p=p->fa)
49
            p->next[x] = np;
50
        if (!p)
51
        {
52
            np->fa = SAM_root;
53
             return;
```

```
54
55
         SAM_Node *q = p->next[x];
56
         if (q->len == p->len+1)
57
58
             np \rightarrow fa = q;
59
              return;
60
         }
         SAM_Node *nq = newSAM_Node(q);
61
62
         nq \rightarrow len = p \rightarrow len + 1;
63
         q \rightarrow fa = nq;
64
         np \rightarrow fa = nq;
65
         for (; p\&\&p->next[x] == q; p = p->fa)
66
             p - next[x] = nq;
67
68
    int getid(char ch)
69
70
         return ch-'a';
71
72
    void SAM_build(char *s)
73
    {
74
         SAM_init();
75
         int l = strlen(s);
76
         for (int i = 0; i < 1; i++)
77
              SAM_add(getid(s[i]),i+1);
 78
79
    char s[MAXN+1];
80 | int ans;
    int head[MAXN*2];
81
82 | struct Edge
83
84
         int to, next;
    } edge[MAXN*2];
85
86
    int M;
87
    int n;
88
    void add_edge(int u,int v)
89
    {
90
         edge[M].to=v;
91
         edge[M].next=head[u];
92
         head[u]=M++;
    }
93
94
    void dfs(int u)
95
96
         for (int i=head[u]; i!=-1; i=edge[i].next)
97
         {
98
              int v=edge[i].to;
99
              /*for (int j=0; j < n; j++)
100
                  SAM_node[v].mat[j] = max(SAM_node[v].mat[j], SAM_node[u].mat[j]);*/
101
              dfs(v);
102
              for (int j=0; j < n; j++)
103
                  SAM_node[u].mat[j] = max(SAM_node[v].mat[j],SAM_node[u].mat[j]);
104
         }
105
         int tmp=SAM_node[u].len;
106
         for (int i=0; i<n; i++)
107
              tmp=min(tmp,SAM_node[u].mat[i]);
108
         ans=max(ans,tmp);
109
    }
    int main()
110
111
    {
112
         //freopen("in.txt", "r", stdin);
113
         //freopen("out.txt","w",stdout);
         n=0;
114
115
         gets(s);
116
         SAM_build(s);
```

```
117
         while (gets(s))
118
119
             int l=strlen(s),len=0;
120
             SAM_Node *p=SAM_root;
121
             for (int i=0; i<1; i++)
122
123
                  if (p->next[getid(s[i])])
124
125
                      p=p->next[getid(s[i])];
126
                      p->mat[n]=max(p->mat[n],++len);
127
                  }
128
                  else
129
                  {
                      while (p && !p->next[getid(s[i])])
130
131
                           p=p->fa;
                      if (!p)
132
133
                       {
134
                           p=SAM_root;
135
                           len=0;
136
                      }
137
                      else
138
                      {
139
                           len=p->len+1;
140
                           p=p->next[getid(s[i])];
                      }
141
142
                      p->mat[n]=max(p->mat[n],len);
143
144
                  //printf("%d %d %d\n",i,len,p->id);
             }
145
146
             n++;
147
         }
148
         memset(head, -1,4*SAM_size);
149
         for (int i=1; i<SAM_size; i++)</pre>
150
             add_edge(SAM_node[i].fa->id,i);
151
         dfs(0);
152
         printf("%d\n",ans);
153
         return 0;
154 }
```

3.4 KMP

求A[0..i]的一个后缀最多能匹配B的前缀多长。 先对B进行自匹配然后与A匹配。 KMP[i]就是对应答案,p[i]+1是B[0...一个后缀最多能匹配B的前缀多长。

```
1 //自匹配过程
2
   int j;
   p [0] = j = -1;
4
   for ( int i = 1; i < lb; i++)
5
6
       while (j \ge 0 \&\& b[j + 1] != b[i]) j = p[j];
7
       if (b[j + 1] == b[i]) j ++;
8
       p[i] = j;
   }
9
   //下面是匹配过程
10
11
   j = -1;
12
   for ( int i = 0; i < la; i++)
13
14
       while (j \ge 0 \&\& b[j + 1] != a[i]) j = p[j];
       if (b[j + 1] == a[i]) j ++;
15
       KMP[i] = j + 1;
16
17
  |}
```

3.5 e-KMP

求A[i..len-1]和B的最长公共前缀有多长。 先对B进行自匹配然后与A匹配。 eKMP[i]就是对应答案。p[i]是B[i..len-1]和B的最长公共前缀有多长。

```
1 //自匹配过程
   int j = 0;
3
   while (j < lb \&\& b[j] == b[j + 1])
4
       j++;
5
   p[0] = 1b, p[1] = j;
6
   int k = 1;
7
   for (int i = 2; i < lb; i++)
8
9
        int Len = k + p[k] - 1, L = p[i - k];
10
        if (L < Len - i + 1)
11
            p[i] = L;
12
        else
13
        {
14
            j = max(0, Len - i + 1);
15
            while (i + j < lb \&\& b[i + j] == b[j])
16
                j++;
17
            p[i] = j, k = i;
18
       }
  }
19
   //下面是匹配过程
20
21
  |j = 0;
   while (j < la && j < lb && a[j] == b[j])
23
       j++;
   eKMP[0] = j;
24
25
   k = 0;
26
   for (int i = 1; i < la; i++)
27
28
        int Len = k + eKMP[k] - 1, L = p[i - k];
29
        if (L < Len - i + 1)
30
            eKMP[i] = L;
31
        else
32
        {
33
            j = max(0, Len - i + 1);
34
            while (i + j < la && j < lb && a[i + j] == b[j])
35
                j++;
36
            eKMP[i] = j, k = i;
37
       }
38 }
```

3.6 *Manacher

待整理

```
char s[1000],a[3000];
   int p[3000],len,l,pnow,pid,res,resid;
3
4
   int main()
5
   {
6
       while (scanf("%s",s) != EOF)
7
            len = strlen(s);
8
9
            1 = 0;
10
            a[1++] = '.';
11
            a[1++] = ',';
12
            for (int i = 0; i < len; i++)
13
            {
                a[l++] = s[i];
14
                a[1++] = ',';
15
            }
16
```

```
17
            pnow = 0;
18
            res = 0;
19
            for (int i = 1; i < 1; i++)
20
            {
21
                 if (pnow > i)
22
                     p[i] = min(p[2*pid-i],pnow-i);
23
                 else
24
                     p[i] = 1;
                 for (;a[i-p[i]] == a[i+p[i]];p[i]++);
25
26
                 if (i+p[i] > pnow)
27
28
                     pnow = i+p[i];
29
                     pid = i;
                 }
30
31
                 if (p[i] > res)
32
33
                     res = p[i];
34
                     resid = i;
35
                 }
36
            }
37
            for (int i = resid-res+2;i < resid+res-1;i += 2)</pre>
38
                 printf("%c",a[i]);
39
            printf("\n");
40
        }
41
        return 0;
42 }
```

3.7 *字符串最小表示法

```
int Gao(char a[], int len)
2
3
     int i = 0, j = 1, k = 0;
4
     while (i < len && j < len && k < len)
5
6
        int cmp = a[(j+k)\%len]-a[(i+k)\%len];
7
        if (cmp == 0)
8
          k++;
9
        else
10
11
          if (cmp > 0)
12
            j += k+1;
13
          else
14
            i += k+1;
15
          if (i == j) j++;
16
          k = 0;
        }
17
     }
18
19
     return min(i,j);
20 | \}
```

4 数学

4.1 模线性方程组

```
1 //有更新
2
   |int m[10],a[10];//模数m 余数a
   |bool solve(int &m0,int &a0,int m,int a)//模线性方程组
4
   {
5
        int y,x;
6
        int g=ex_gcd(m0,m,x,y);
7
        if (abs(a-a0)%g) return 0;
       x*=(a-a0)/g;
8
9
       x\%=m/g;
10
        a0 = (x*m0+a0);
11
       m0*=m/g;
12
        a0\%=m0;
13
        if (a0<0) a0+=m0;
14
        return 1;
15
   }
16
   int MLES()
17
   {
18
        bool flag=1;
19
        int m0=1, a0=0;
20
        for (int i=0; i<n; i++)
21
            if (!solve(m0,a0,m[i],a[i]))
22
23
                 flag=0;
24
                 break;
25
            }
26
        if (flag)
27
            return a0;
28
        else
29
            return -1;
30
        扩展GCD
   4.2
   求ax+by=gcd(a,b)的一组解
1
   long long ex_gcd(long long a,long long b,long long &x,long long &y)
2
   {
3
        if (b)
4
        {
            long long ret = ex_gcd(b,a\%b,x,y), tmp = x;
5
6
            x = y;
7
            y = tmp-(a/b)*y;
8
            return ret;
        }
9
        else
10
11
        {
12
            x = 1;
13
            y = 0;
14
            return a;
        }
15
  }
16
        矩阵
   4.3
```

乘法的时候将B数组转置一下然后 $C[i][j] = \sum A[i][k] \times B[j][k]$ 会有奇效。

```
1 struct Matrix
2 {
3    int a[52][52];
4    Matrix operator * (const Matrix &b)const
```

```
{
5
6
            Matrix res;
7
            for (int i = 0; i < 52; i++)
8
                for (int j = 0; j < 52; j++)
9
                {
10
                     res.a[i][j] = 0;
                     for (int k = 0; k < 52; k++)
11
                         res.a[i][j] += a[i][k] * b.a[k][j];
12
13
                }
14
            return res;
15
       }
16
       Matrix operator ^ (int y)const
17
18
            Matrix res, x;
19
            for (int i = 0; i < 52; i++)
20
            {
21
                for (int j = 0; j < 52; j++)
22
                     res.a[i][j] = 0, x.a[i][j] = a[i][j];
23
                res.a[i][i] = 1;
24
            }
25
            for (; y; y >>= 1, x = x * x)
26
                if (y & 1)
27
                    res = res * x;
28
            return res;
29
       }
30 | };
```

4.4 康拓展开

```
const int PermSize = 12;
   int factory[PermSize] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880,
       3628800, 39916800};
3
   int Cantor(int a[])
4
   {
5
        int i, j, counted;
6
        int result = 0;
7
       for (i = 0; i < PermSize; ++i)
8
9
            counted = 0;
10
            for (j = i + 1; j < PermSize; ++j)
                if (a[i] > a[j])
11
                    ++counted;
12
13
            result = result + counted * factory[PermSize - i - 1];
14
       }
15
       return result;
16
   }
17
   bool h[13];
18
19
20
   void UnCantor(int x, int res[])
21
   {
22
        int i, j, l, t;
23
       for (i = 1; i \le 12; i++)
24
           h[i] = false;
25
       for (i = 1; i <= 12; i++)
26
27
            t = x / factory[12 - i];
28
            x -= t * factory[12 - i];
29
            for (j = 1, l = 0; l \le t; j++)
30
                if (!h[j])1++;
31
            j--;
            h[j] = true;
32
```

```
33
            res[i - 1] = j;
34
        }
35 | }
       \mathbf{FFT}
   4.5
1 | const double PI= acos(-1.0);
   struct vir
3
   {
4
      double re,im; //实部和虚部
5
      vir(double a=0, double b=0)
6
7
        re=a;
8
        im=b;
9
10
     vir operator +(const vir &b)
11
     {return vir(re+b.re,im+b.im);}
12
     vir operator -(const vir &b)
13
     {return vir(re-b.re, im-b.im);}
14
     vir operator *(const vir &b)
15
      {return vir(re*b.re-im*b.im , re*b.im+im*b.re);}
16
   };
   vir x1[200005],x2[200005];
17
18
   void change(vir *x,int len,int loglen)
19
      int i,j,k,t;
20
21
      for(i=0;i<len;i++)
22
23
        t=i;
24
        for(j=k=0; j<loglen; j++,t>>=1)
25
          k = (k << 1) | (t & 1);
26
        if(k<i)
27
28
        // printf("%d %d\n",k,i);
29
          vir wt=x[k];
30
          x[k]=x[i];
31
          x[i]=wt;
32
        }
33
     }
34
35
   void fft(vir *x,int len,int loglen)
36
37
      int i,j,t,s,e;
38
      change(x,len,loglen);
39
40
      for(i=0;i<loglen;i++,t<<=1)
41
42
        s=0;
43
        e=s+t;
44
        while(s<len)
45
46
          vir a,b,wo(cos(PI/t),sin(PI/t)),wn(1,0);
47
          for(j=s;j<s+t;j++)
48
          {
49
            a=x[j];
50
            b=x[j+t]*wn;
51
            x[j]=a+b;
52
            x[j+t]=a-b;
53
            wn = wn * wo;
          }
54
55
          s=e+t;
56
          e=s+t;
        }
57
      }
58
```

```
59
60
    void dit_fft(vir *x,int len,int loglen)
61
    {
62
       int i,j,s,e,t=1<<loglen;
63
       for(i=0;i<loglen;i++)</pre>
64
65
         t>>=1;
66
         s=0;
67
         e=s+t;
68
         while(s<len)
69
70
           vir a,b,wn(1,0),wo(cos(PI/t),-sin(PI/t));
71
           for(j=s;j<s+t;j++)
 72
 73
              a=x[j]+x[j+t];
 74
              b=(x[j]-x[j+t])*wn;
 75
              x[j]=a;
 76
              x[j+t]=b;
77
              wn = wn * wo;
 78
           }
 79
           s=e+t;
80
           e=s+t;
81
         }
       }
 82
83
       change(x,len,loglen);
 84
       for(i=0;i<len;i++)
85
         x[i].re/=len;
    }
 86
87
    int main()
88
89
       char a[100005],b[100005];
90
       int i,len1,len2,len,loglen;
91
       int t, over;
92
       while (scanf("%s%s",a,b)!=EOF)
93
94
         len1=strlen(a) <<1;</pre>
95
         len2=strlen(b) <<1;</pre>
96
         len=1; loglen=0;
97
         while(len<len1)
98
99
           len < <=1;
                      loglen++;
100
         }
101
         while(len<len2)
102
103
           len < <=1; loglen ++;</pre>
104
         }
105
         for(i=0;a[i];i++)
106
           x1[i].re=a[i]-'0';
107
108
           x1[i].im=0;
109
         }
110
         for(;i<len;i++)
111
           x1[i].re=x1[i].im=0;
112
         for(i=0;b[i];i++)
113
114
           x2[i].re=b[i]-'0';
115
           x2[i].im=0;
116
         }
117
         for(;i<len;i++)</pre>
118
           x2[i].re=x2[i].im=0;
119
         fft(x1,len,loglen);
120
         fft(x2,len,loglen);
121
         for(i=0;i<len;i++)
```

```
122
           x1[i] = x1[i]*x2[i];
123
         dit_fft(x1,len,loglen);
124
         for(i=(len1+len2)/2-2, over=len=0; i>=0; i--)
125
126
           t=(int)(x1[i].re+over+0.5);
127
           a[len++] = t%10;
128
           over = t/10;
129
         }
130
         while(over)
131
132
           a[len++] = over %10;
133
           over/=10;
         }
134
135
         for (len --; len >= 0 & & ! a [len]; len --);
136
           if(len<0)
137
           putchar('0');
138
           else
139
              for(;len>=0;len--)
                putchar(a[len]+'0');
140
141
         putchar('\n');
142
      }
143
      return 0;
144 }
```

4.6 爬山法计算器

注意灵活运用。

双目运算符在calc()中,左结合单目运算符在P()中,右结合单目运算符在calc_exp中。(但是还没遇到过。。)

```
1 | #include <iostream >
2 | #include <cstdio>
3 | #include <cstring>
   #include <algorithm>
   #include <string>
5
   using namespace std;
6
7
8
   char s[100000];
9
   int n, cur;
   const string OP = "+-*";
10
11
12
   char next_char()
13
   {
14
        if (cur >= n) return EOF;
15
        return s[cur];
16
   }
17
18
   int get_priority(char ch)
19
20
        if (ch == '*') return 2;
21
       return 1;
22
   }
23
   int P();
24
25
26
   int calc(int a, char op, int b)
27
   {
28
        if (op == '+')
29
            return a+b;
30
        if (op == '-')
31
            return a-b;
32
        if (op == '*')
33
            return a*b;
34 | }
```

```
35
36
   int calc_exp(int p)
37
   {
38
        int a = P();
39
        while ((OP.find(next_char()) != OP.npos) && (get_priority(next_char())
           >= p))
40
        {
41
            char op = next_char();
42
            cur++;
43
            a = calc(a,op,calc_exp(get_priority(op)+1));
44
        }
45
        return a;
   }
46
47
48
   int totvar,m,var[26],varid[26];
49
   int P()
50
51
   {
52
        if (next_char() == '-')
53
        {
54
            cur++;
55
            return -P();
56
        }
        else if (next_char() == '+')
57
58
59
            cur++;
60
            return P();
61
        }
62
        else if (next_char() == '(')
63
64
            cur++;
65
            int res = calc_exp(0);
66
            cur++;
67
            return res;
        }
68
69
        else
70
        {
71
            cur++;
            //cout << "getvar at " << cur << ' ' << var[varid[s[cur]-'a']] <<
72
                endl;
            return var[varid[s[cur-1]-'a']];
73
74
        }
   }
75
76
77
   int id[26], minid;
78
79
   int main()
80
   {
81
        while (true)
82
83
            scanf("%d%d",&totvar,&var[0]);
84
            if (totvar == 0 && var[0] == 0)
                                                 break;
85
            for (int i = 1; i < totvar; i++)
                 scanf("%d",&var[i]);
86
87
            scanf("%d",&m);
88
            scanf("%s",s);
            for (int i = 0; i < 26; i++)
89
90
                 id[i] = -1;
91
            minid = 0;
92
            n = strlen(s);
93
            for (int i = 0; i < n; i++)
                 if (s[i] >= 'a' && s[i] <= 'z')
94
                 {
95
```

```
96
                       if (id[s[i]-'a'] == -1)
97
98
                           id[s[i]-'a'] = minid;
99
                           minid++;
100
                       }
                       s[i] = 'a'+id[s[i]-'a'];
101
102
103
             for (int i = 0; i < totvar; i++)
                  varid[i] = i;
104
105
             int res = 0;
106
             do
107
             {
108
                  cur = 0;
109
                  int tmp = calc_exp(0);
                  if (tmp == m)
110
111
                  {
112
                       res++;
113
                       break;
114
                  }
115
             }
116
             while (next_permutation(varid, varid+totvar));
117
             //puts(s);
118
             if (res > 0)
                  puts("YES");
119
120
             else
121
                  puts("NO");
122
         }
123
       return 0;
124 | }
```

4.7 线性筛

我弱逼。

```
void getprime()
1
2
   {
3
        tot = 0;
4
       memset(isprime, true, sizeof(isprime));
       for (int i = 2; i \le 40000000; i++)
5
6
7
     if (isprime[i] == true)
8
9
          tot++;
10
          prime[tot] = i;
11
12
     for (int j = 1; j <= tot && i*prime[j] <= 40000000; j++)
13
14
          isprime[i*prime[j]] = false;
15
          if (i%prime[j] == 0) break;
16
17
       }
18 }
```

4.8 其它公式

4.8.1 正多面体顶点着色

```
正四面体: N = \frac{(n^4+11\times n^2)}{24} 正六面体: N = \frac{(n^8+17\times n^4+6\times n^2)}{24} 正八面体: N = \frac{(n^6+3\times n^4+12\times n^3+8\times n^2)}{24} 正十二面体: N = \frac{(n^{20}+15\times n^{10}+20\times n^8+24\times n^4)}{60}
```

正二十面体:
$$N = \frac{(n^{12}+15\times n^6+44\times n^4)}{60}$$

4.8.2 求和公式

$$\begin{array}{l} \sum k = \frac{n\times(n+1)}{2} \\ \sum 2k-1 = n^2 \\ \sum k^2 = \frac{n\times(n+1)\times(2n+1)}{6} \\ \sum (2k-1)^2 = \frac{n\times(4n^2-1)}{3} \\ \sum k^3 = (\frac{n\times(n+1)}{2})^2 \\ \sum (2k-1)^3 = n^2 \times (2n^2-1) \\ \sum k^4 = \frac{n\times(n+1)\times(2n+1)\times(3n^2+3n-1)}{30} \\ \sum k^5 = \frac{n^2\times(n+1)^2\times(2n^2+2n-1)}{12} \\ \sum k \times (k+1) = \frac{n\times(n+1)\times(n+2)}{3} \\ \sum k \times (k+1) \times (k+2) = \frac{n\times(n+1)\times(n+2)\times(n+3)}{4} \\ \sum k \times (k+1) \times (k+2) \times (k+3) = \frac{n\times(n+1)\times(n+2)\times(n+3)\times(n+4)}{5} \end{array}$$

4.8.3 几何公式

球扇形:

全面积: $T=\pi r(2h+r_0)$, h为球冠高, r_0 为球冠底面半径体积: $V=\frac{2\pi r^2h}{3}$

4.8.4 小公式

Pick 公式: $A=E\times 0.5+I-1$ (A是多边形面积,E是边界上的整点,I是多边形内部的整点) 海伦公式: $S=\sqrt{p(p-a)(p-b)(p-c)}$,其中 $p=\frac{(a+b+c)}{2}$,abc为三角形的三条边长求 $\binom{n}{b}$ 中素因子P的个数:

- 1. 把n转化为P进制,并记它每个位上的和为S1
- 2. 把n-k, k做同样的处理, 得到S2, S3

则 $\binom{n}{k}$ 中素因子P的个数: $\frac{S2+S3-S1}{P-1}$

枚举长为n含k个1的01串:

5 数据结构

5.1 *Splay

```
持续学习中。
```

注意节点的size值不一定是真实的值!如果有需要需要特别维护!

- 1. 旋转和Splay操作
- 2. rank操作
- 3. insert操作(。。很多题目都有)
- 4. del操作(郁闷的出纳员)
- 5. 由数组建立Splay
- 6. 前驱后继(营业额统计)

```
7. Pushdown Pushup的位置
      8. *。。。暂时想不起了
   节点定义。。
1 \mid const int MaxN = 50003;
2
3
   struct Node
4
5
        int size, key;
6
7
        Node *c[2];
8
        Node *p;
9 | } mem[MaxN], *cur, *nil;
   无内存池的几个初始化函数。
1 Node *newNode(int v, Node *p)
2
3
        cur -> c[0] = cur -> c[1] = nil, cur -> p = p;
4
        cur -> size = 1;
5
        cur \rightarrow key = v;
6
        return cur++;
   }
7
8
   void Init()
9
10
   {
11
        cur = mem;
12
        nil = newNode(0, cur);
13
        nil->size = 0;
14 | }
   带内存池的几个函数。
1 | int emp[MaxN], totemp;
3
   Node *newNode(int v, Node *p)
4
        cur = mem + emp[--totemp];
5
6
        cur \rightarrow c[0] = cur \rightarrow c[1] = nil, cur \rightarrow p = p;
7
        cur \rightarrow size = 1;
8
        cur \rightarrow key = v;
9
        return cur;
10
   }
11
```

```
12 | void Init()
13
   {
14
        for (int i = 0; i < MaxN; ++i)</pre>
15
            emp[i] = i;
16
        totemp = MaxN;
17
        cur = mem + emp[--totemp];
        nil = newNode(0, cur);
18
19
        nil \rightarrow size = 0;
   }
20
21
22
   void Recycle(Node *p)
23
   {
24
        if (p == nil)
                        return;
25
        Recycle(p->c[0]), Recycle(p->c[1]);
26
        emp[totemp++] = p - mem;
27 | }
   基本的Splay框架。维护序列用。
   一切下标从0开始。
  struct SplayTree
1
2
3
        Node *root;
4
        void Init()
5
6
            root = nil;
7
        }
8
        void Pushup(Node *x)
9
10
            if (x == nil) return;
            Pushdown(x); Pushdown(x->c[0]); Pushdown(x->c[1]);
11
12
            x->size = x->c[0]->size + x->c[1]->size + 1;
13
        }
14
        void Pushdown(Node *x)
15
16
            if (x == nil)
                              return;
17
            //do something
        }
18
19
        void Rotate(Node *x, int f)
20
21
            if (x == nil)
                            return;
22
            Node *y = x->p;
            y - c[f ^ 1] = x - c[f], x - p = y - p;
23
            if (x->c[f] != nil)
24
25
                 x \rightarrow c[f] \rightarrow p = y;
26
            if (y->p != nil)
27
                 y->p->c[y->p->c[1] == y] = x;
28
            x - c[f] = y, y - p = x;
29
            Pushup(y);
30
        }
31
        void Splay(Node *x, Node *f)
32
33
            while (x->p != f)
34
35
                 Node *y = x->p;
36
                 if (y->p == f)
37
                     Rotate(x, x == y \rightarrow c[0]);
38
                 else
39
                 {
40
                     int fd = y->p->c[0] == y;
                     if (y->c[fd] == x)
41
42
                          Rotate(x, fd ^ 1), Rotate(x, fd);
43
                      else
```

```
44
                           Rotate(y, fd), Rotate(x, fd);
45
                  }
46
             }
47
             Pushup(x);
48
             if (f == nil)
49
                  root = x;
         }
50
51
         void Select(int k, Node *f)
52
53
             Node *x = root;
54
             Pushdown(x);
55
             int tmp;
56
             while ((tmp = x->c[0]->size) != k)
57
             {
                  if (k < tmp)
58
                                    x = x -> c[0];
59
                  else
60
                      x = x - c[1], k -= tmp + 1;
61
                  Pushdown(x);
62
63
             Splay(x, f);
64
         }
         void Select(int 1, int r)
65
66
         {
             Select(1, nil), Select(r + 2, root);
67
68
69
         Node *Make_tree(int a[], int 1, int r, Node *p)
70
71
             if (1 > r) return nil;
72
             int mid = 1 + r >> 1;
 73
             Node *x = newNode(a[mid], p);
74
             x \rightarrow c[0] = Make_tree(a, l, mid - 1, x);
 75
             x \rightarrow c[1] = Make_tree(a, mid + 1, r, x);
 76
             Pushup(x);
77
             return x;
78
         }
79
         void Insert(int pos, int a[], int n)
80
81
             Select(pos, nil), Select(pos + 1, root);
             root -> c[1] -> c[0] = Make_tree(a, 0, n - 1, root -> c[1]);
82
83
             Splay(root->c[1]->c[0], nil);
84
         }
85
         void Insert(int v)
 86
87
             Node *x = root, *y = nil;
 88
             while (x != nil)
             {
89
90
                  y = x;
91
                  y->size++;
92
                  x = x -> c[v >= x -> key];
93
94
             y \rightarrow c[v >= y \rightarrow key] = x = newNode(v, y);
95
             Splay(x, nil);
96
         }
         void Remove(int 1, int r)
97
98
         {
             Select(1, r);
99
             //Recycle(root->c[1]->c[0]);
100
101
             root -> c[1] -> c[0] = nil;
102
             Splay(root->c[1], nil);
103
         }
104 | };
    例题: 旋转区间赋值求和求最大子序列。
```

例题: 旋转区向域直水和水取入ナアグリ。 注意打上懒标记后立即Pushup。Pushup(root-c[1]-c[0]),Pushup(root-c[1]),Pushup(root);

```
1
      void Pushup(Node *x)
 2
 3
         if (x == nil) return;
         Pushdown(x); Pushdown(x->c[0]); Pushdown(x->c[1]);
 4
 5
         x->size = x->c[0]->size+x->c[1]->size+1;
 6
 7
         x -> sum = x -> c[0] -> sum + x -> c[1] -> sum + x -> key;
         x -> lsum = max(x -> c[0] -> lsum, x -> c[0] -> sum + x -> key + max(0, x -> c[1] -> lsum));
 8
 9
         x->rsum = max(x->c[1]->rsum,x->c[1]->sum+x->key+max(0,x->c[0]->rsum));
10
         x-maxsum = max(max(x->c[0]->maxsum,x->c[1]->maxsum),x->key+max(0,x->c
             [0] - rsum) + max(0, x - c[1] - rsum);
11
      }
      void Pushdown(Node *x)
12
13
14
         if (x == nil) return;
         if (x->rev)
15
16
17
           x \rightarrow rev = 0;
           x -> c[0] -> rev ^= 1;
18
19
           x - c[1] - rev ^= 1;
20
           swap(x->c[0],x->c[1]);
21
22
           swap(x->lsum,x->rsum);
23
         }
24
         if (x->same)
25
         {
26
           x->same = false;
27
           x \rightarrow key = x \rightarrow lazy;
           x \rightarrow sum = x \rightarrow key*x \rightarrow size;
28
29
           x \rightarrow lsum = x \rightarrow rsum = x \rightarrow maxsum = max(x \rightarrow key,x \rightarrow sum);
           x -> c[0] -> same = true, x -> c[0] -> lazy = x -> key;
30
31
           x - c[1] - same = true, x - c[1] - same = x - key;
32
         }
      }
33
34
35
    int main()
36
    {
37
      int totcas;
38
      scanf("%d",&totcas);
39
      for (int cas = 1; cas <= totcas; cas++)</pre>
40
41
         Init();
42
         sp.Init();
43
         nil->lsum = nil->rsum = nil->maxsum = -Inf;
44
         sp.Insert(0);
45
         sp.Insert(0);
46
47
         int n,m;
48
         scanf("%d%d",&n,&m);
49
         for (int i = 0; i < n; i++)
50
           scanf("%d",&a[i]);
51
         sp.Insert(0,a,n);
52
         for (int i = 0; i < m; i++)
53
54
55
           int pos,tot,c;
56
           scanf("%s",buf);
57
           if (strcmp(buf, "MAKE-SAME") == 0)
58
           {
59
              scanf("%d%d%d",&pos,&tot,&c);
60
              sp.Select(pos-1,pos+tot-2);
61
              sp.root \rightarrow c[1] \rightarrow c[0] \rightarrow same = true;
```

```
62
            sp.root -> c[1] -> c[0] -> lazy = c;
63
            sp.Pushup(sp.root->c[1]), sp.Pushup(sp.root);
64
          else if (strcmp(buf,"INSERT") == 0)
65
66
67
            scanf("%d%d",&pos,&tot);
68
            for (int i = 0; i < tot; i++)
              scanf("%d",&a[i]);
69
70
            sp.Insert(pos,a,tot);
71
72
          else if (strcmp(buf,"DELETE") == 0)
73
          {
74
            scanf("%d%d",&pos,&tot);
75
            sp.Remove(pos-1,pos+tot-2);
          }
76
          else if (strcmp(buf, "REVERSE") == 0)
77
78
79
            scanf("%d%d",&pos,&tot);
80
            sp.Select(pos-1,pos+tot-2);
81
            sp.root->c[1]->c[0]->rev ^= 1;
82
            sp.Pushup(sp.root->c[1]), sp.Pushup(sp.root);
          }
83
          else if (strcmp(buf, "GET-SUM") == 0)
84
85
86
            scanf("%d%d",&pos,&tot);
87
            sp.Select(pos-1,pos+tot-2);
88
            printf("%d\n", sp.root->c[1]->c[0]->sum);
          }
89
          else if (strcmp(buf, "MAX-SUM") == 0)
90
91
92
            sp.Select(0,sp.root->size-3);
93
            printf("%d\n", sp.root->c[1]->c[0]->maxsum);
94
95
       }
96
     }
97
     return 0;
```

维护多个序列的时候,不需要建立很多Splay。只需要记录某个点在内存池中的绝对位置就可以了。需要操作它所在的序列时直接Splay到nil。此时Splay的root所在的Splay就是这个序列了。新建序列的时候需要多加入两个额外节点。如果某个Splay只有两个节点了需要及时回收。例题: Box(维护括号序列)

```
\\下面都是专用函数
1
2
        \\判断x在不在f里面
3
       bool Ancestor(Node *x, Node *f)
4
       {
5
            if (x == f) return true;
6
            while (x->p != nil)
7
            {
8
                if (x->p == f)
                                 return true;
9
                x = x -> p;
10
            }
11
            return false;
12
       }
       \\把Splay v插入到pos后面, pos=nil时新开一个序列
13
14
       void Insert(Node *pos, Node *v)
15
16
            int pl;
17
            if (pos == nil)
18
            {
19
                Init();
20
                Insert(0), Insert(0);
```

```
21
                 pl = 0;
22
             }
23
             else
24
             {
25
                 Splay(pos, nil);
26
                 pl = root -> c[0] -> size;
27
28
             Select(pl, nil), Select(pl + 1, root);
29
             root -> c[1] -> c[0] = v;
30
             v \rightarrow p = root \rightarrow c[1];
31
             Splay(v, nil);
32
        }
33
        \\把[1,r]转出来(这里记录的是绝对位置)
34
        void Select(Node *1, Node *r)
35
36
        Splay(1, nil);
37
             int pl = root->c[0]->size - 1;
38
             Splay(r, nil);
39
             int pr = root->c[0]->size - 1;
40
             Select(pl, pr);
41
        }
42
        \\分离[1,r]
43
        Node *Split(Node *1, Node *r)
44
45
             Select(1, r);
46
             Node *res = root->c[1]->c[0];
47
             root \rightarrow c[1] \rightarrow c[0] = res \rightarrow p = nil;
             Splay(root->c[1], nil);
48
49
             if (root->size == 2)
50
             {
51
                 Recycle(root);
52
                 Init();
53
             }
54
             return res;
55
        }
56
   int main(int argc, char const *argv[])
57
58
   {
        freopen("P.in", "r", stdin);
59
60
        bool first = true;
61
        while (scanf("%d", &n) != EOF)
62
             if (!first) puts("");
63
             first = false;
64
65
             Init();
66
             for (int i = 0; i < n; i++)
67
             {
68
                 \\建立独立的N个区间, 记录绝对位置
69
                 sp.Init();
70
                 sp.Insert(0), sp.Insert(0);
71
                 sp.Insert(0,i+1),sp.Insert(1,i+1);
72
                 sp.Select(0, 0), 1[i] = sp.root->c[1]->c[0];
73
                 sp.Select(1, 1), r[i] = sp.root->c[1]->c[0];
74
             }
75
             for (int i = 0; i < n; i++)
76
77
                 int f;
                 scanf("%d", &f);
78
79
                 if (f != 0)
80
                 {
                      \\把[1[i],r[i]]插入到1[f-1]后面
81
82
                      Node *pos = sp.Split(l[i], r[i]);
                      sp.Insert(l[f - 1], pos);
83
```

```
84
                  }
             }
85
             scanf("%d", &n);
86
             for (int i = 0; i < n; i++)
87
             {
88
89
                  scanf("%s", com);
90
                  if (com[0] == 'Q')
91
                  {
92
                      int pos;
93
                      scanf("%d", &pos);
                      \\求[1[pos-1],r[pos-1]]在哪个序列里面
94
95
                      sp.Splay(l[pos - 1], nil);
                      sp.Select(1, nil);
96
97
                      printf("%d\n", sp.root->key);
                  }
98
99
                  else
100
                  {
101
                      int u, v;
102
                      scanf("%d%d", &u, &v);
103
                      if (v == 0)
104
                          sp.Insert(nil, sp.Split(l[u-1], r[u-1]));
105
                      else
106
                      {
                          sp.Select(l[u-1],r[u-1]);
107
108
                          if (sp.Ancestor(l[v-1], sp.root->c[1]->c[0]) == false)
109
                               sp.Insert(l[v - 1], sp.Split(l[u-1], r[u-1]));
                      }
110
111
                 }
112
             }
        }
113
114
        return 0;
115 }
```

5.2 *动态树

5.2.1 维护点权

被注释的部分是具体题目用到的东西。 支持换根。 Cut操作还没写。

```
const int MaxN = 110000;
2
3
   struct Node
4
   {
5
         int size, key;
        bool rev;
6
7
8
    //
           bool same;
9
    //
           int lsum, rsum, sum, maxsum, sa;
10
11
        Node *c[2];
12
        Node *p;
13
    } mem[MaxN], *cur, *nil, *pos[MaxN];
14
15
    Node *newNode(int v, Node *p)
16
    {
17
         cur \rightarrow c[0] = cur \rightarrow c[1] = nil, cur \rightarrow p = p;
18
         cur -> size = 1;
19
         cur -> key = v;
20
         cur->rev = false;
21
22
           cur \rightarrow same = false;
```

```
23 //
            cur \rightarrow sa = 0;
24
    //
            cur -> lsum = cur -> rsum = cur -> maxsum = 0;
25
    //
            cur -> sum = v:
26
27
         return cur++;
    }
28
29
30
    void Init()
31
32
          cur = mem;
33
         nil = newNode(0, cur);
34
         nil \rightarrow size = 0;
    }
35
36
37
    struct SplayTree
38
39
         void Pushup(Node *x)
40
               if (x == nil)
41
                                     return;
42
               Pushdown(x); Pushdown(x->c[0]); Pushdown(x->c[1]);
43
               x - size = x - c[0] - size + x - c[1] - size + 1;
44
45
                  x -> sum = x -> c[0] -> sum + x -> c[1] -> sum + x -> key;
    //
46
                  x - lsum = max(x - c[0] - lsum, x - c[0] - sum + x - key + max(0, x - c[0] - lsum)
    //
         [1]->lsum));
47
    //
                  x - rsum = max(x - c[1] - rsum, x - c[1] - sum + x - key + max(0, x - c[1] - key)
         [0] \rightarrow rsum));
48
    //
                  x \rightarrow maxsum = max(max(x \rightarrow c[0] \rightarrow maxsum, x \rightarrow c[1] \rightarrow maxsum),
49
    //
                       x - key + max(0, x - c[0] - rsum) + max(0, x - c[1] - lsum));
50
51
         }
52
          void Pushdown(Node *x)
53
54
               if (x == nil)
                                     return;
               if (x->rev)
55
56
               {
57
                    x \rightarrow rev = 0;
58
                    x -> c[0] -> rev ^= 1;
                    x->c[1]->rev ^= 1;
59
60
                     swap(x->c[0], x->c[1]);
    //注意修改与位置有关的量
61
62
    //
                       swap(x \rightarrow lsum, x \rightarrow rsum);
63
               }
64
    //
65
                  if (x->same)
    //
66
67
    //
                       x \rightarrow same = false;
68
    //
                       x \rightarrow key = x \rightarrow sa;
69
    //
                       x \rightarrow sum = x \rightarrow sa * x \rightarrow size;
70
    //
                       x \rightarrow lsum = x \rightarrow rsum = x \rightarrow maxsum = max(0, x \rightarrow sum);
71
    //
                       if (x \rightarrow c[0] != nil)
72
    //
                             x \rightarrow c[0] \rightarrow same = true, x \rightarrow c[0] \rightarrow sa = x \rightarrow sa;
                       if (x \rightarrow c[1] != nil)
73
    //
    //
                             x - c[1] - same = true, x - c[1] - sa = x - sa;
74
75
    //
                  }
76
         }
         bool isRoot(Node *x)
77
78
79
               return (x == nil) || (x->p->c[0] != x && x->p->c[1] != x);
80
81
         void Rotate(Node *x, int f)
82
          {
83
               if (isRoot(x))
                                      return;
```

```
84
              Node *y = x->p;
              y \rightarrow c[f^{1}] = x \rightarrow c[f], x \rightarrow p = y \rightarrow p;
 85
 86
              if (x->c[f] != nil)
 87
                   x -> c[f] -> p = y;
              if (y != nil)
 88
 89
              {
 90
                   if (y == y->p->c[1])
91
                        y -> p -> c[1] = x;
 92
                   else if (y == y->p->c[0])
 93
                        y - p - c[0] = x;
94
95
              x -> c[f] = y, y -> p = x;
 96
              Pushup(y);
97
98
         void Splay(Node *x)
99
100
              static Node *stack[MaxN];
101
              int top = 0;
102
              stack[top++] = x;
103
              for (Node *y = x; !isRoot(y); y = y - p)
104
                   stack[top++] = y->p;
105
              while (top)
106
                   Pushdown(stack[--top]);
107
108
              while (!isRoot(x))
109
110
                   Node *y = x->p;
111
                   if (isRoot(y))
112
                        Rotate(x, x == y \rightarrow c[0]);
113
                   else
114
                   {
115
                        int fd = y->p->c[0] == y;
116
                        if (y->c[fd] == x)
117
                             Rotate(x, fd ^ 1), Rotate(x, fd);
118
                        else
119
                             Rotate(y, fd), Rotate(x, fd);
120
                   }
121
              }
122
              Pushup(x);
123
         Node *Access(Node *u)
124
125
126
              Node *v = nil;
127
              while (u != nil)
128
129
                   Splay(u);
130
                   v \rightarrow p = u;
131
                   u -> c[1] = v;
132
                   Pushup(u);
133
                   u = (v = u) -> p;
134
                   if (u == nil)
135
                        return v;
136
              }
137
         }
138
         Node *LCA(Node *u, Node *v)
139
140
              Access(u);
141
              return Access(v);
142
143
         Node *Link(Node *u, Node *v)
144
145
              Access(u);
146
              Splay(u);
```

```
147
              u \rightarrow rev = true;
              u \rightarrow p = v;
148
149
         }
150
         void ChangeRoot(Node *u)
151
152
              Access(u) -> rev ^= 1;
153
         }
154
         Node *GetRoute(Node *u, Node *v)
155
156
              ChangeRoot(u);
157
              return Access(v);
158
         }
159
    };
160
161
    int n, m;
162
    SplayTree sp;
163
164
     int main(int argc, char const *argv[])
165
    {
         while (scanf("%d", &n) != EOF)
166
167
168
              Init();
169
              for (int i = 0; i < n; i++)
170
171
                   int v;
172
                   scanf("%d", &v);
173
                   pos[i] = newNode(v, nil);
              }
174
175
              for (int i = 0; i < n - 1; i++)
176
177
                   int u, v;
                   scanf("%d%d", &u, &v);
178
                   u--, v--;
179
180
                   sp.Link(pos[u], pos[v]);
181
              }
182
183
    //
                 scanf("%d", &m);
184
    //
                 for (int i = 0; i < m; i++)
    //
185
186
    //
                     int typ, u, v, c;
187
    //
                     scanf("%d%d%d", \&typ, \&u, \&v);
    //
188
                     u--, v--;
189
                     if (typ == 1)
    //
190
                          printf("%d\n", sp.GetRoute(pos[u], pos[v]) \rightarrow maxsum);
    //
191
    //
                     else
192
    //
                     {
193
    //
                          scanf("%d", &c);
194
    //
                          Node *p = sp.GetRoute(pos[u], pos[v]);
195
    //
                          p \rightarrow same = true;
196
    //
                          p \rightarrow sa = c;
                     }
197
    //
198
    //
                }
199
         }
200
         return 0;
201
    }
```

5.3 可持久化线段树

区间第k小数,内存压缩版,POJ2014。

```
1 | #include <cstdio>
2 | #include <algorithm>
3 | using namespace std;
```

```
4
5
   const int MAXN=100000, MAXM=100000;
6
7
   struct node
8
   {
9
        node *1,*r;
10
        int sum;
   }tree[MAXN*4+MAXM*20];
11
12
13
   int N;
14
   node *newnode()
15
   {
16
        tree[N].l=tree[N].r=NULL;
17
        tree[N].sum=0;
18
        return &tree[N++];
19
   }
20
   node *newnode(node *x)
21
   {
22
        tree[N].l=x->1;
23
        tree[N].r=x->r;
24
        tree[N].sum=x->sum;
25
        return &tree[N++];
26 }
27
   node *build(int l,int r)
28
29
        node *x=newnode();
30
        if (1<r)
31
        {
32
            int mid=l+r>>1;
33
            x->l=build(1,mid);
34
            x->r=build(mid+1,r);
35
            x->sum=x->l->sum+x->r->sum;
        }
36
37
        else
38
            x -> sum = 0;
39
        return x;
40
   }
   node *update(node *x,int l,int r,int p,int v)
41
42
43
        if (1<r)
44
45
            int mid=l+r>>1;
46
            node *nx=newnode(x);
            if (p \le mid)
47
48
49
                 node *ret=update(x->1,1,mid,p,v);
50
                 nx -> l = ret;
            }
51
52
            else
53
            {
54
                 node *ret=update(x->r,mid+1,r,p,v);
55
                 nx->r=ret;
56
57
            nx -> sum = nx -> 1 -> sum + nx -> r -> sum;
58
            return nx;
        }
59
60
        else
61
62
            node *nx=newnode(x);
63
            nx \rightarrow sum += v;
64
            return nx;
65
        }
66 }
```

```
67
    int query(node *x1,node *x2,int l,int r,int k)
68
69
         if (1<r)
70
         {
71
             int mid=l+r>>1;
72
             int lsum=x2->l->sum-x1->l->sum;
 73
             if (lsum >= k)
74
                  return query(x1->1,x2->1,1,mid,k);
 75
             else
 76
                  return query(x1->r,x2->r,mid+1,r,k-lsum);
77
         }
78
         else
79
             return 1;
80
81
    char s[10];
    node *root[MAXM+1];
    int a[MAXN],b[MAXN];
83
84
    int init(int n)
85
    {
86
         for (int i=0;i<n;i++)</pre>
87
             b[i]=a[i];
88
         sort(b,b+n);
89
         int tn=unique(b,b+n)-b;
90
         for (int i=0; i < n; i++)
91
92
             int l=0, r=tn-1;
93
             while (1<r)
94
             {
95
                  int mid=l+r>>1;
96
                  if (b[mid]>=a[i])
97
                       r=mid;
98
                  else
99
                      l=mid+1;
100
             }
101
             a[i]=1;
102
         }
103
         return tn;
104
    }
105
    int main()
106
107
         int cas=1,n;
108
         while (scanf("%d",&n)!=EOF)
109
             printf("Case_\%d:\n",cas++);
110
111
             for (int i=0; i < n; i++)
                  scanf("%d",&a[i]);
112
113
             int tn=init(n);
114
             N = 0;
115
             root [0] = build (0, tn-1);
116
             for (int i=1;i<=n;i++)
117
                  root[i]=update(root[i-1],0,tn-1,a[i-1],1);
118
             int m;
119
             scanf("%d",&m);
120
             for (int i=0;i<m;i++)</pre>
121
             {
122
                  int s,t;
123
                  scanf("%d%d",&s,&t);
124
                  printf("%d\n", b[query(root[s-1],root[t],0,tn-1,t-s+2>>1)]);
125
             }
126
         }
127
         return 0;
128 }
```

5.4 treap正式版

支持翻转。

```
1 | #include <cstdio>
   #include <cstdlib>
   #include <algorithm>
   using namespace std;
4
5
6
   const int MAXN = 100000;
7
   const int MAXM = 100000;
   const int inf = 0x7ffffffff;
8
9
   int a[MAXN];
10 | struct Treap
11
   {
12
        int N;
13
        Treap()
14
             N = 0;
15
16
             root = NULL;
17
        }
18
        void init()
19
        {
20
             N = 0;
21
             root = NULL;
22
        }
23
        struct Treap_Node
24
25
             Treap_Node *son[2];//left & right
26
             int value, fix;
27
             bool lazy;
28
             int size;
29
             Treap_Node() {}
30
             Treap_Node(int _value)
31
             {
32
                  son[0] = son[1] = NULL;
33
                  value = _value;
                  fix = rand() * rand();
34
35
                  lazy = 0;
36
                  size = 1;
37
             }
38
             int sonSize(bool flag)
39
             {
40
                  if (son[flag] == NULL)
41
                       return 0;
42
                  else
43
                      return son[flag]->size;
44
45
        } node[MAXN], *root, *pos[MAXN];
46
        void up(Treap_Node *p)
47
        {
48
             p \rightarrow size = p \rightarrow sonSize(0) + p \rightarrow sonSize(1) + 1;
49
        }
50
        void down(Treap_Node *p)
51
52
             if (!p->lazy)
                 return ;
53
54
             for (int i = 0; i < 2; i++)
55
                  if (p->son[i])
56
                      p \rightarrow son[i] \rightarrow lazy = !p \rightarrow son[i] \rightarrow lazy;
57
             swap(p->son[0], p->son[1]);
58
             p \rightarrow lazy = 0;
59
60
        Treap_Node *merge(Treap_Node *p, Treap_Node *q)
```

```
61
         {
62
             if (p == NULL)
63
                  return q;
64
             else if (q == NULL)
                  return p;
65
66
             if (p\rightarrow fix \leq q\rightarrow fix)
67
             {
68
                  down(p);
69
                  p->son[1] = merge(p->son[1], q);
70
                  up(p);
71
                  return p;
             }
72
73
             else
             {
74
 75
                  down(q);
76
                  q \rightarrow son[0] = merge(p, q \rightarrow son[0]);
 77
                  up(q);
 78
                  return q;
79
             }
80
         }
81
         pair<Treap_Node *, Treap_Node *> split(Treap_Node *p, int n)
82
83
             if (p == NULL)
                  return make_pair((Treap_Node *)NULL, (Treap_Node *)NULL);
 84
 85
             if (!n)
                  return make_pair((Treap_Node *)NULL, p);
 86
87
             if (n == p->size)
                  return make_pair(p, (Treap_Node *)NULL);
 88
 89
             down(p);
90
             if (p->sonSize(0) >= n)
91
             {
92
                  pair < Treap_Node *, Treap_Node *> ret = split(p->son[0], n);
93
                  p->son[0] = ret.second;
94
                  up(p);
95
                  return make_pair(ret.first, p);
96
             }
97
             else
98
             {
                  pair < Treap_Node *, Treap_Node *> ret = split(p->son[1], n - p->
99
                      sonSize(0) - 1);
100
                  p->son[1] = ret.first;
101
                  up(p);
102
                  return make_pair(p, ret.second);
             }
103
104
         }
105
         int smalls(Treap_Node *p,int value)
106
107
             if (p==NULL)
108
                  return 0;
109
             if (p->value <= value)</pre>
110
                  return 1+p->sonSize(0)+smalls(p->son[1], value);
111
112
                  return smalls(p->son[0], value);
         }
113
114
         void insert(int value)
115
116
             Treap_Node *p = &node[N++];
117
             *p = Treap_Node(value);
118
             pair < Treap_Node *, Treap_Node *> ret = split(root, smalls(root,
119
             root = merge(merge(ret.first, p), ret.second);
120
121
         void remove(int value)
```

```
122
123
             pair < Treap_Node *, Treap_Node *> ret = split(root, smalls(root,
                value) - 1);
124
             root = merge(ret.first, split(ret.second, 1).second);
125
        }
126
        Treap_Node *build(int s, int t)
127
128
             int idx = t + s >> 1;
129
             Treap_Node *p = &node[N++];
130
             *p = Treap_Node(a[idx]);
131
             pos[a[idx]] = p;
132
             if (idx > s)
133
                 p = merge(build(s, idx - 1), p);
134
             if (idx < t)
135
                 p = merge(p, build(idx + 1, t));
136
             up(p);
137
             return p;
138
        }
139
        void build(int n)
140
141
             root = build(0, n - 1);
        }
142
143
        void *reverse(int s, int t)
144
             pair < Treap_Node *, Treap_Node *> tmp1, tmp2;
145
146
             tmp1 = split(root, s - 1);
147
             tmp2 = split(tmp1.second, t - s + 1);
148
             tmp2.first->lazy = !tmp2.first->lazy;
149
             root = merge(tmp1.first, merge(tmp2.first, tmp2.second));
        }
150
151
    };
152
    Treap treap;
153
    int main()
154
    {
155
        treap.init();
156
        int n;
157
        scanf("%d", &n);
        for (int i = 0; i < n; i++)
158
             scanf("%d", &a[i]);
159
160
        treap.build(n);
161 | }
```

5.5 树链剖分

5.5.1 点权

```
1 #include <cstdio>
  #include <cstring>
  #include <cstdlib>
  #include <algorithm>
5
  using namespace std;
  const int MAX = 12000;
7
   const int LOG = 15;
   const int oo = 0x3f3f3f3f;
9
   struct Edge
10
   {
11
           int to, w, id;
12
           Edge* next;
   } memo[MAX << 1], *cur, *g[MAX], *pree[MAX], *solid[MAX], *valid[MAX];</pre>
13
  | int dp[MAX][LOG], pos[MAX], lst[MAX], dep[MAX], cnt[MAX], h[MAX], K, n;
15
   void init()
16
   {
       for (int i = 1; i <= n; i++)
17
```

```
18
        {
            g[i] = NULL;
19
20
            valid[i] = NULL;
21
            solid[i] = NULL;
22
            pree[i] = NULL;
23
        }
24
        for (int i = 0; i < LOG; i++)
25
26
            dp[1][i] = 1;
27
28
        cur = memo;
29
        K = 0;
30
   }
31
   void add(int u, int v, int w, int id)
32
33
        cur -> to = v;
34
        cur -> w = w;
        cur \rightarrow id = id;
35
36
        cur->next = g[u];
37
        g[u] = cur++;
38
   }
39
   void dfsLCA(int d, int u, int f)
40
   {
41
        dep[u] = d;
        dp[u][0] = f;
42
43
        cnt[u] = 1;
44
        for (int i = 1; i < LOG; i++)
45
46
            dp[u][i] = dp[dp[u][i - 1]][i - 1];
47
        }
48
        for (Edge* it = g[u]; it; it = it->next)
49
50
            int v = it -> to;
51
            if (v != f)
52
            {
53
                 pree[v] = it;
54
                 valid[it->id] = it;
55
                 dfsLCA(d + 1, v, u); //RE
                 cnt[u] += cnt[v];
56
                 if (solid[u] == NULL || cnt[solid[u]->to] < cnt[v])</pre>
57
58
59
                     solid[u] = it;
60
                 }
            }
61
62
        }
63
   }
64
   void dfsChain(int u, int head)
65
   {
66
        h[u] = head;
67
        if (solid[u])
68
        {
69
            lst[pos[u] = K++] = u;
70
            dfsChain(solid[u]->to, head);
71
        }
72
        else
73
        for (Edge* it = g[u]; it; it = it->next)
74
75
            int v = it -> to;
76
            if (it != solid[u] && v != dp[u][0])
77
            {
78
                 dfsChain(v, v);
79
            }
        }
80
```

```
81
82
    int getLCA(int u, int v)
83
    {
84
         if (dep[u] < dep[v])</pre>
85
             swap(u, v);
         for (int st = 1 << (LOG - 1), i = LOG - 1; i >= 0; i--, st >>= 1)
86
87
88
             if (st \le dep[u] - dep[v])
 89
             {
90
                 u = dp[u][i];
91
             }
92
         }
93
         if (u == v)
94
             return u;
95
         for (int i = LOG - 1; i >= 0; i--)
96
             if (dp[u][i] != dp[v][i])
97
98
             {
99
                 u = dp[u][i];
100
                  v = dp[v][i];
101
             }
102
         }
103
        return dp[u][0];
104
    }
105
    struct Node
106
    {
107
             int l, r, ma, mi;
108
             bool rev;
109
    \} seg[MAX << 2];
110
    void reverse(int k)
111
    {
112
         seg[k].mi *= -1;
113
         seg[k].ma *= -1;
114
         seg[k].rev ^= 1;
115
         swap(seg[k].mi, seg[k].ma);
116
117
    void pushdown(int k)
118
119
         if (seg[k].rev)
120
121
             reverse(k << 1);
122
             reverse(k << 1 | 1);
123
             seg[k].rev = false;
         }
124
125
126
    void update(int k)
127
         seg[k].mi = min(seg[k << 1].mi, seg[k << 1 | 1].mi);</pre>
128
129
         seg[k].ma = max(seg[k << 1].ma, seg[k << 1 | 1].ma);
130
131
    void init(int k, int l, int r)
132
133
         seg[k].1 = 1;
134
         seg[k].r = r;
135
         seg[k].rev = false;
136
         if (1 == r)
137
138
             seg[k].mi = seg[k].ma = solid[lst[1]]->w; //solid WA
139
             return;
140
141
         int mid = 1 + r >> 1;
         init(k << 1, 1, mid);</pre>
142
         init(k << 1 | 1, mid + 1, r);
143
```

```
144
         update(k);
145
146
    void update(int k, int id, int v)
147
148
         if (seg[k].l == seg[k].r)
149
150
             seg[k].mi = seg[k].ma = solid[lst[id]]->w = v;
151
             return;
         }
152
153
         pushdown(k);
154
         int mid = seg[k].l + seg[k].r >> 1;
155
         if (id <= mid)</pre>
156
             update(k << 1, id, v);
157
158
             update(k << 1 | 1, id, v);
159
         update(k);
160
161
    void reverse(int k, int l, int r)
162
    {
163
         if (seg[k].l > r || seg[k].r < 1)
164
             return;
165
         if (seg[k].l >= l \&\& seg[k].r <= r)
166
         {
167
             reverse(k);
168
             return;
169
         }
170
         pushdown(k);
171
         reverse(k << 1, 1, r);
172
         reverse(k << 1 | 1, 1, r);
173
         update(k);
174
175
    int read(int k, int l, int r)
176
177
         if (seg[k].l > r || seg[k].r < l)
178
             return -oo;
179
         if (seg[k].l >= l \&\& seg[k].r <= r)
180
             return seg[k].ma;
181
         pushdown(k);
182
         return max(read(k << 1, 1, r), read(k << 1 | 1, 1, r));
183
184
    void setEdge(int id, int v)
185
186
         Edge* it = valid[id];
187
         if (h[it->to] != it->to)
188
189
             update(1, pos[dp[it->to][0]], v);
190
        }
191
         else
192
         {
193
             it -> w = v;
194
         }
195
196
    void negateLCA(int t, int u)
197
198
         while (t != u)
199
200
             int tmp = h[u];
201
             if (dep[tmp] < dep[t])</pre>
202
                  tmp = t;
203
             if (h[u] == u)
204
             {
205
                  pree[u] \rightarrow w *= -1;
206
                  u = dp[u][0];
```

```
207
             }
208
             else
209
             {
210
                  reverse(1, pos[tmp], pos[dp[u][0]]);
211
                  u = tmp;
212
             }
213
        }
214
    }
215
    void negate(int u, int v)
216
217
         int t = getLCA(u, v);
218
         negateLCA(t, u);
219
         negateLCA(t, v);
220
    }
221
    int maxLCA(int t, int u)
222
    {
223
         int ret = -00;
224
         while (t != u)
225
226
             int tmp = h[u];
227
             if (dep[tmp] < dep[t])</pre>
228
                  tmp = t;
             if (h[u] == u)
229
230
             {
                  ret = max(ret, pree[u]->w);
231
232
                  u = dp[u][0];
233
             }
234
             else
235
             {
236
                  ret = max(ret, read(1, pos[tmp], pos[dp[u][0]]));
237
                  u = tmp;
238
             }
239
         }
240
        return ret;
241
    }
242
    int query(int u, int v)
243
    {
244
         int t = getLCA(u, v);
245
         return max(maxLCA(t, u), maxLCA(t, v));
246
    }
247
    int main()
248
    {
249
         int T;
250
         int u, v, w;
251
         char op[15];
         scanf("%d", &T);
252
         while (T--)
253
254
255
             scanf("%d", &n);
256
             init();
257
             for (int i = 1; i < n; i++)
258
259
                  scanf("%d%d%d", &u, &v, &w);
260
                  add(u, v, w, i);
                  add(v, u, w, i);
261
262
             }
263
             dfsLCA(0, 1, 1);
264
             dfsChain(1, 1);
265
             init(1, 0, K - 1);
266
             while (scanf("%s", op), op[0] != 'D')
267
             {
268
                  scanf("%d%d", &u, &v);
                  if (op[0] == 'C')
269
```

```
270
                  {
271
                      setEdge(u, v);
272
                  }
273
                  else if (op[0] == 'N')
274
                  {
275
                      negate(u, v);
276
                  }
277
                  else
278
                  {
279
                      printf("%d\n", query(u, v));
280
                  }
             }
281
        }
282
283
        return 0;
284 | }
    5.5.2 边权
 1
   |#include <cstdio>
 2
    #include <iostream>
 3
    #include <cstdlib>
   #include <algorithm>
 5 | #include <cmath>
    #include <cstring>
 7
    using namespace std;
    int n,m,sum,pos;
 9
    int head [50005],e;
 10
   int s[50005], from [50005];
   int fa[50005][20], deep[50005], num[50005];
   int solid [50005], p [50005], fp [50005];
13
    struct N
14
 15
      int l,r,mid;
 16
      int add, w;
 17
    }nod[50005*4];
 18
    struct M
 19
    {
20
      int v,next;
    }edge[100005];
22
    void addedge(int u,int v)
23
    {
24
      edge[e].v=v;
25
      edge[e].next=head[u];
26
      head[u]=e++;
27
28
      edge[e].v=u;
29
      edge[e].next=head[v];
30
      head[v]=e++;
31
32
    void LCA(int st,int f,int d)
33
    {
34
      deep[st]=d;
35
      fa[st][0]=f;
36
      num[st]=1;
37
      int i,v;
38
      for(i=1;i<20;i++)
39
         fa[st][i]=fa[fa[st][i-1]][i-1];
40
      for(i=head[st];i!=-1;i=edge[i].next)
41
      {
42
        v=edge[i].v;
43
         if(v!=f)
44
 45
           LCA(v,st,d+1);
 46
           num[st]+=num[v];
```

```
47
            if(solid[st] == -1 | | num[v] > num[solid[st]])
48
              solid[st]=v;
 49
         }
50
       }
51
    }
52
    void getpos(int st,int sp)
53
54
       from[st]=sp;
55
       if(solid[st]!=-1)
56
57
         p[st]=pos++;
58
         fp[p[st]]=st;
59
         getpos(solid[st],sp);
       }
60
61
       else
62
       {
63
         p[st]=pos++;
64
         fp[p[st]]=st;
65
         return;
66
       }
67
       int i, v;
68
       for(i=head[st];i!=-1;i=edge[i].next)
69
 70
         v=edge[i].v;
         if(v!=solid[st]&&v!=fa[st][0])
 71
 72
           getpos(v,v);
73
       }
    }
74
75
    int getLCA(int u,int v)
76
77
       if (deep[u] < deep[v])</pre>
 78
         swap(u,v);
 79
       int d=1 << 19, i;
80
       for(i=19;i>=0;i--)
81
82
         if (d<=deep[u]-deep[v])</pre>
83
           u=fa[u][i];
         d>>=1;
84
       }
85
       if(u==v)
86
87
         return u;
88
       for(i=19;i>=0;i--)
 89
         if(fa[u][i]!=fa[v][i])
90
91
           u=fa[u][i];
92
           v=fa[v][i];
93
94
       return fa[u][0];
95
96
    void init(int p,int l,int r)
97
    {
98
       nod[p].1=1;
99
       nod[p].r=r;
100
       nod[p].mid=(1+r)>>1;
101
       nod[p].add=0;
102
       if(l==r)
103
         nod[p].w=s[fp[1]];
104
       else
105
       {
106
         init(p<<1,1,nod[p].mid);</pre>
107
         init(p<<1|1,nod[p].mid+1,r);</pre>
108
109
   }
```

```
110
    void lazy(int p)
111
112
      if (nod[p].add!=0)
113
114
         nod[p<<1].add+=nod[p].add;
115
         nod[p<<1|1].add+=nod[p].add;
116
         nod[p].add=0;
117
      }
118
    }
119
    void update(int p,int l,int r,int v)
120
121
      if (nod[p].l==1&&nod[p].r==r)
122
123
         nod[p].add+=v;
124
         return;
125
      }
126
      lazy(p);
127
      if(nod[p].mid<1)</pre>
128
         update(p<<1|1,1,r,v);
129
      else if(nod[p].mid>=r)
130
         update(p<<1,1,r,v);
131
      else
132
      {
133
         update(p<<1,1,nod[p].mid,v);
134
         update(p<<1|1,nod[p].mid+1,r,v);
135
136
    }
137
    int read(int p,int l,int r)
138
139
      if (nod[p].l==1&&nod[p].r==r)
140
         return nod[p].w+nod[p].add;
141
      lazy(p);
142
      if(nod[p].mid<1)</pre>
143
         return read(p<<1|1,1,r);
144
      else if(nod[p].mid>=r)
145
         return read(p<<1,1,r);
146
    }
147
    void jump(int st,int ed,int val)
148
149
      while (deep[st] >= deep[ed])
150
151
         int tmp=from[st];
152
         if (deep[tmp] < deep[ed])</pre>
153
           tmp=ed;
         update(1,p[tmp],p[st],val);
154
155
         st=fa[tmp][0];
      }
156
157
158
    void change(int st,int ed,int val)
159
160
      int lca=getLCA(st,ed);
161
      jump(st,lca,val);
162
       jump(ed,lca,val);
163
      jump(lca,lca,-val);
164
    }
165
    int main()
166
167
      while (scanf("%d%d%d",&n,&m,&sum)==3)
168
      {
169
         int i;
170
         s[0]=0; pos=0; deep[0]=-1;
171
         memset(fa,0,sizeof(fa));
172
         for(i=1;i<=n;i++)
```

```
173
         {
174
           solid[i]=-1;
175
           scanf("%d",&s[i]);
176
         }
177
         memset(head, -1, sizeof(head));
178
179
         for(i=0;i<m;i++)
180
181
           int a,b;
182
           scanf("%d%d",&a,&b);
183
           addedge(a,b);
184
         }
185
         LCA(1,0,0);
186
         getpos(1,1);
         init(1,0,pos-1);
187
188
         for(i=0;i<sum;i++)</pre>
189
190
           char que [5];
191
           scanf("%s",que);
192
           if(que[0]!='Q')
193
194
              int a,b,c;
195
              scanf("%d%d%d",&a,&b,&c);
196
              if(que[0]=='D')
197
                c = -c;
198
              change(a,b,c);
           }
199
200
           else
201
           {
202
              int a;
203
              scanf("%d",&a);
204
             printf("%d\n",read(1,p[a],p[a]));
205
206
         }
207
      }
208
       return 0;
209
```

6 图论

6.1 SAP四版

```
1 | const int MAXEDGE=20400;
2
   const int MAXN=400;
   const int inf=0x3fffffff;
3
4
   struct edges
5
   {
6
        int cap, to, next, flow;
   } edge[MAXEDGE+100];
7
8
   struct nodes
9
10
        int head, label, pre, cur;
   } node[MAXN+100];
11
12
   int L,N;
13
   int gap[MAXN+100];
   void init(int n)
15
16
       L=0;
17
       N=n;
18
        for (int i=0; i<N; i++)
19
            node[i].head=-1;
20
   }
21
   void add_edge(int x,int y,int z,int w)
22
   {
23
        edge[L].cap=z;
24
        edge[L].flow=0;
25
        edge[L].to=y;
26
        edge[L].next=node[x].head;
27
        node[x].head=L++;
28
        edge[L].cap=w;
29
        edge[L].flow=0;
30
        edge[L].to=x;
31
        edge[L].next=node[y].head;
32
        node[y].head=L++;
   }
33
34
   int maxflow(int s,int t)
35
   {
36
        memset(gap,0,sizeof(gap));
37
        gap[0]=N;
38
        int u,ans=0;
39
        for (int i=0; i<N; i++)</pre>
40
41
            node[i].cur=node[i].head;
42
            node[i].label=0;
43
        }
44
       u=s;
45
        node[u].pre=-1;
46
        while (node[s].label < N)
47
        {
48
            if (u==t)
49
            {
50
                 int min=inf;
51
                 for (int i=node[u].pre; i!=-1; i=node[edge[i^1].to].pre)
52
                     if (min>edge[i].cap-edge[i].flow)
53
                         min=edge[i].cap-edge[i].flow;
                 for (int i=node[u].pre; i!=-1; i=node[edge[i^1].to].pre)
54
55
                 {
56
                     edge[i].flow+=min;
57
                     edge[i^1].flow-=min;
                 }
58
59
                 u=s;
```

```
60
                 ans+=min;
61
                 continue;
62
            }
63
            bool flag=false;
64
            int v;
            for (int i=node[u].cur; i!=-1; i=edge[i].next)
65
66
67
                 v=edge[i].to;
68
                 if (edge[i].cap-edge[i].flow && node[v].label+1==node[u].label)
69
                 {
70
                     flag=true;
                     node[u].cur=node[v].pre=i;
71
72
                     break;
                 }
73
74
            }
75
            if (flag)
76
77
                 u = v;
78
                 continue;
79
            }
80
            node[u].cur=node[u].head;
81
            int min=N;
82
            for (int i=node[u].head; i!=-1; i=edge[i].next)
                 if (edge[i].cap-edge[i].flow && node[edge[i].to].label<min)</pre>
83
84
                     min=node[edge[i].to].label;
            gap[node[u].label]--;
85
86
            if (!gap[node[u].label]) return ans;
87
            node[u].label=min+1;
88
            gap[node[u].label]++;
89
            if (u!=s) u=edge[node[u].pre^1].to;
90
        }
91
        return ans;
92
        费用流三版
   6.2
   T了可以改成栈。
1 | const int MAXM=60000;
   const int MAXN=400;
3
   const int inf=0x3fffffff;
   int L,N;
   int K;
5
6
   struct edges
7
   {
        int to,next,cap,flow,cost;
9
   } edge[MAXM];
10
   struct nodes
11
12
        int dis, pre, head;
13
       bool visit;
14
   } node[MAXN];
15
   void init(int n)
16
   {
17
       N=n;
       L=0;
18
19
        for (int i=0; i<N; i++)
20
            node[i].head=-1;
21
22
   void add_edge(int x,int y,int cap,int cost)
23
24
        edge[L].to=y;
25
        edge[L].cap=cap;
26
        edge[L].cost=cost;
```

```
27
        edge[L].flow=0;
28
        edge[L].next=node[x].head;
29
        node[x].head=L++;
30
        edge[L].to=x;
31
        edge [L]. cap=0;
32
        edge[L].cost=-cost;
33
        edge[L].flow=0;
34
        edge[L].next=node[y].head;
35
        node[y].head=L++;
36
37
   bool spfa(int s,int t)
38
   {
39
        queue <int> q;
40
        for (int i=0; i<N; i++)
41
42
            node[i].dis=0x3fffffff;
43
            node[i].pre=-1;
44
            node[i].visit=0;
45
        }
46
        node[s].dis=0;
47
        node[s].visit=1;
48
        q.push(s);
49
        while (!q.empty())
50
51
            int u=q.front();
            node[u].visit=0;
52
            for (int i=node[u].head; i!=-1; i=edge[i].next)
53
54
55
                 int v=edge[i].to;
56
                 if (edge[i].cap>edge[i].flow &&
57
                          node[v].dis>node[u].dis+edge[i].cost)
                 {
58
59
                     node[v].dis=node[u].dis+edge[i].cost;
60
                     node[v].pre=i;
61
                     if (!node[v].visit)
62
                     {
63
                          node[v].visit=1;
64
                          q.push(v);
                     }
65
                 }
66
67
            }
68
            q.pop();
69
70
        if (node[t].pre==-1)
71
            return 0;
72
        else
73
            return 1;
74
75
   int mcmf(int s,int t,int &cost)
76
   {
77
        int flow=0;
78
        while (spfa(s,t))
79
80
            int max=inf;
            for (int i=node[t].pre; i!=-1; i=node[edge[i^1].to].pre)
81
82
83
                 if (max>edge[i].cap-edge[i].flow)
84
                     max = edge[i].cap - edge[i].flow;
85
86
            for (int i=node[t].pre; i!=-1; i=node[edge[i^1].to].pre)
87
            {
88
                 edge[i].flow+=max;
89
                 edge[i^1].flow-=max;
```

6.3 一般图匹配带花树

```
1 | const int MaxN = 222;
   int N;
3 | bool Graph[MaxN+1][MaxN+1];
  int Match[MaxN+1];
5 | bool InQueue [MaxN+1], InPath [MaxN+1], InBlossom [MaxN+1];
6 | int Head, Tail;
7
   int Queue[MaxN+1];
8
   int Start, Finish;
   int NewBase;
9
10
   int Father[MaxN+1], Base[MaxN+1];
11
   int Count;
12
   void CreateGraph()
13
   {
14
        int u, v;
15
       memset(Graph, false, sizeof(Graph));
        scanf("%d",&N);
16
        while (scanf("%d%d",&u,&v) != EOF)
17
18
            Graph[u][v] = Graph[v][u] = true;
19
   }
20
   void Push(int u)
21
   {
22
        Queue[Tail] = u;
23
        Tail++;
24
        InQueue[u] = true;
25
26
   int Pop()
27
   {
28
        int res = Queue[Head];
29
        Head++;
30
       return res;
31
   }
32
   int FindCommonAncestor(int u,int v)
33
34
       memset(InPath, false, sizeof(InPath));
35
        while (true)
36
        {
37
            u = Base[u];
38
            InPath[u] = true;
            if (u == Start) break;
39
40
            u = Father[Match[u]];
        }
41
42
        while (true)
43
44
            v = Base[v];
45
            if (InPath[v]) break;
46
            v = Father[Match[v]];
        }
47
48
        return v;
49
50
   void ResetTrace(int u)
51
   {
52
        int v;
53
        while (Base[u] != NewBase)
```

```
54
        {
55
             v = Match[u];
56
             InBlossom[Base[u]] = InBlossom[Base[v]] = true;
57
             u = Father[v];
58
             if (Base[u] != NewBase) Father[u] = v;
59
    }
60
61
    void BlossomContract(int u,int v)
62
63
        NewBase = FindCommonAncestor(u,v);
64
        memset(InBlossom, false, sizeof(InBlossom));
65
        ResetTrace(u);
66
        ResetTrace(v);
67
        if (Base[u] != NewBase) Father[u] = v;
68
        if (Base[v] != NewBase) Father[v] = u;
        for (int tu = 1; tu <= N; tu++)
69
             if (InBlossom[Base[tu]])
 70
 71
72
                 Base[tu] = NewBase;
73
                 if (!InQueue[tu]) Push(tu);
74
             }
75
    }
76
    void FindAugmentingPath()
77
 78
        memset(InQueue, false, sizeof(InQueue));
 79
        memset(Father, 0, size of (Father));
80
        for (int i = 1; i <= N; i++)
81
             Base[i] = i;
82
        Head = Tail = 1;
83
        Push(Start);
84
        Finish = 0;
        while (Head < Tail)
85
86
             int u = Pop();
87
88
             for (int v = 1; v \le N; v++)
89
                 if (Graph[u][v] && (Base[u] != Base[v]) && (Match[u] != v))
90
91
                      if ((v == Start) || ((Match[v] > 0) && (Father[Match[v]] >
                         0)))
92
                          BlossomContract(u,v);
                      else if (Father[v] == 0)
93
94
95
                          Father[v] = u;
96
                          if (Match[v] > 0)
97
                              Push(Match[v]);
98
                          else
99
100
                              Finish = v;
101
                              return;
102
                          }
103
                      }
104
                 }
105
        }
106
107
    void AugmentPath()
108
109
        int u, v, w;
110
        u = Finish;
111
        while (u > 0)
112
113
             v = Father[u];
             w = Match[v];
114
115
             Match[v] = u;
```

```
116
             Match[u] = v;
117
             u = w;
118
        }
119
120
    void Edmonds()
121
122
        memset(Match,0,sizeof(Match));
123
        for (int u = 1; u <= N; u++)
124
             if (Match[u] == 0)
125
             {
126
                 Start = u;
127
                 FindAugmentingPath();
128
                 if (Finish > 0) AugmentPath();
129
             }
130
    void PrintMatch()
131
132
133
        for (int u = 1; u \le N; u++)
134
             if (Match[u] > 0)
135
                 Count++;
136
        printf("%d\n",Count);
137
        for (int u = 1; u \le N; u++)
             if (u < Match[u])</pre>
138
139
                 printf("%du%d\n",u,Match[u]);
    }
140
141
    int main()
142
    {
143
        CreateGraph();
144
        Edmonds();
145
        PrintMatch();
146 | }
        *二维平面图的最大流
    待整理
 1 #include <iostream>
   #include <algorithm>
 3
   #include <cstdio>
```

```
#include <cstring>
4
  #include <vector>
5
6
   #include <cmath>
   #include <map>
7
8
   #include <queue>
   using namespace std;
10
11
  const int maxn = 100100;
   const int inf = 0x3f3f3f3f;
12
13
   struct Point
14
   {
15
       int x,y,id;
16
       double theta;
17
       Point() {}
18
       Point(int _x,int _y)
19
20
            x = x;
21
            y = _y;
22
       }
23
       Point(Point _s,Point _e,int _id)
24
25
            id = _id;
26
            x = _s.x-_e.x;
27
            y = _s.y-_e.y;
28
            theta = atan2(y,x);
```

```
29
30
        bool operator < (const Point &b)const
31
32
            return theta < b.theta;
33
        }
   };
34
35
36
   map < pair < int , int > , int > idmap;
37
   struct Edge
38
39
        int from, to, next, cap, near, mark;
40 | };
41
   Edge edge[maxn*2];
42 | int head[maxn],L;
43
   int cntd[maxn];
44
   void addedge(int u,int v,int cap)
45
   {
46
        cntd[u]++;
47
        cntd[v]++;
48
        idmap[make_pair(u,v)] = L;
49
        edge[L].from = u;
50
        edge[L].to = v;
51
        edge[L].cap = cap;
        edge[L].next = head[u];
52
53
        edge[L].mark = -1;
        head[u] = L++;
54
55
   }
56
   int rtp[maxn];
58
   Point p[maxn], tp[maxn];
59
   int n,m,S,T;
60
   int vid;
61
62
   struct Edge2
63
   {
64
        int to, next, dis;
65
   } edge2[maxn*2];
66
   int head2[maxn],L2;
67
68
   void addedge2(int u,int v,int dis)
69
   {
70
        edge2[L2].to = v;
71
        edge2[L2].dis = dis;
72
        edge2[L2].next = head2[u];
        head2[u] = L2++;
73
   }
74
75
76
   int dist[maxn];
77
   bool inq[maxn];
78
   int SPFA(int s,int t)
79
   {
80
        queue < int > Q;
81
        memset(inq,false,sizeof(inq));
82
       memset(dist,63,sizeof(dist));
83
        Q.push(s);
84
        dist[s] = 0;
85
        while (!Q.empty())
86
87
            int now = Q.front();
88
            Q.pop();
89
            for (int i = head2[now]; i != -1; i = edge2[i].next)
90
                 if (dist[edge2[i].to] > dist[now]+edge2[i].dis)
                 {
91
```

```
92
                      dist[edge2[i].to] = dist[now]+edge2[i].dis;
93
                      if (inq[edge2[i].to] == false)
94
                      {
95
                          inq[edge2[i].to] = true;
96
                          Q.push(edge2[i].to);
                      }
97
98
99
             inq[now] = false;
        }
100
101
        return dist[t];
102
    }
103
104
    int main()
105
    {
106
        int totcas;
107
        scanf("%d",&totcas);
108
        for (int cas = 1; cas <= totcas; cas++)
109
110
             idmap.clear();
111
             L = 0;
112
             scanf("%d%d",&n,&m);
113
             S = T = 0;
114
             for (int i = 0; i < n; i++)
115
116
                 head[i] = -1;
117
                 scanf("%d%d",&p[i].x,&p[i].y);
                 if (p[S].x > p[i].x)
118
119
                     S = i;
120
                 if (p[T].x < p[i].x)
121
                     T = i;
122
                 cntd[i] = 0;
123
             }
             //源汇中间加入一个特殊节点
124
125
             head[n] = -1;
126
             n ++;
127
             addedge(S,n-1,inf);
128
             addedge(n-1,S,inf);
129
             addedge(T,n-1,inf);
130
             addedge(n-1,T,inf);
131
132
             for (int i = 0; i < m; i++)
133
             {
134
                 int u, v, cap;
                 scanf("%d%d%d",&u,&v,&cap);
135
136
137
                 v--;
138
                 addedge(u,v,cap);
139
                 addedge(v,u,cap);
140
             }
141
142
             for (int i = 0; i < n; i++)
143
144
                 int tot = 0;
145
                 //源点汇点连到特殊点的方向需要特别考虑一下
146
                 if (i == S)
147
                      tp[tot++] = Point(Point(0,0), Point(-1,0), n-1);
148
                 else if (i == T)
149
                      tp[tot++] = Point(Point(0,0), Point(1,0), n-1);
150
                 else if (i == n-1)
151
152
                      tp[tot++] = Point(Point(0,0),Point(1,0),S);
153
                      tp[tot++] = Point(Point(0,0),Point(-1,0),T);
                 }
154
```

```
155
                 if (i < n-1)
156
157
                     for (int j = head[i]; j != -1; j = edge[j].next)
158
159
                          if (i == S && edge[j].to == n-1)
                                                               continue;
160
                          if (i == T && edge[j].to == n-1) continue;
161
                          tp[tot++] = Point(p[i],p[edge[j].to],edge[j].to);
                     }
162
                 }
163
164
                 sort(tp,tp+tot);
165
                 for (int j = 0; j < tot; j++)
166
                     rtp[tp[j].id] = j;
167
                 for (int j = head[i]; j != -1; j = edge[j].next)
168
                      edge[j].near = tp[(rtp[edge[j].to]+1)%tot].id;
169
             }
170
171
             vid = 0;
172
             for (int i = 0; i < L; i++)
173
                 if (edge[i].mark == -1)
174
                 {
175
                      int now = edge[i].from;
176
                     int eid = i;
                     int to = edge[i].to;
177
178
                     while (true)
179
180
                          edge[eid].mark = vid;
181
                          eid ^= 1;
182
                          now = to;
183
                          to = edge[eid].near;
184
                          eid = idmap[make_pair(now,to)];
185
186
                          if (now == edge[i].from)
                     }
187
188
                     vid++;
189
                 }
190
191
             L2 = 0;
192
             for (int i = 0; i < vid; i++)
193
                 head2[i] = -1;
             for (int i = 0; i < L; i++)
194
195
                 addedge2(edge[i].mark,edge[i^1].mark,edge[i].cap);
196
             printf("%d\n",SPFA(edge[0].mark,edge[1].mark));
197
        }
198
        return 0;
199 }
```

6.5 强联通

hehe那弱逼的版, 找个时间测一下。

```
1 | int dfsnum [5005];
2 | int low[5005];
3
  int stack [5005];
  int top;
5
  int ans;
6
  int an;
7
   int be [5005];
8
   int flag[5005];
9
   void dfs(int x)
10
  | {
11
     dfsnum[x] = low[x] = ans ++;
12
     stack[++top]=x;
```

```
13
     flag[x]=1;
14
     int i;
15
     for(i=0;i<q[x].size();i++)</pre>
16
17
        int y=q[x][i];
18
        int j;
19
        if(dfsnum[y]==-1)
20
21
          dfs(y);
22
          low[x]=min(low[x],low[y]);
23
24
        else if(flag[y]==1)
25
26
          low[x]=min(low[x],dfsnum[y]);
27
       }
28
     }
29
     if(dfsnum[x] == low[x])
30
31
        while(stack[top]!=x)
32
33
          flag[stack[top]]=0;
34
          be[stack[top]]=an;
35
          top--;
       }
36
37
        flag[x]=0;
38
       be [x] = an ++;
39
       top--;
     }
40
41 | }
   调用:
1 | memset(dfsnum, -1, sizeof(dfsnum));
2
   memset(flag,0,sizeof(flag));
3
  top=0;
4
  an=0;
5
  ans=0;
6 | int i;
   |for(i=1;i<=n;i++) (//2*对于) n2sat
7
8
9
     if(dfsnum[i]==-1)
10
     {
11
       dfs(i);
     }
12
13 }
   6.6
       KM
   还是hehe的版
   配合华华的KM看吧。
1 | int w[16][16];
2 | int 1[16];
3
  int r[16];
4
   int low[16];
5
   int n;
6
   int flag1[16];
7
   int flag[16];
  int f[16];
9 | int qw[16];
  const int INF=10000000;
10
11 | int ans;
```

```
12
   int dfs(int x)
13
      flag1[x]=1;
14
15
      int i;
16
      for(i=1;i<=n;i++)
17
18
        if(flag[i] == 0 & & w [x][i] == 1[x] + r[i])
19
20
          flag[i]=1;
21
          if(f[i] == 0 | | dfs(f[i]))
22
23
             f[i]=x;
24
             return 1;
          }
25
        }
26
27
        low[i]=min(low[i],w[x][i]-l[x]-r[i]);
28
   //(l[x]+r[i]-w[x][i最大匹配])
29
30
      return 0;
31
   }
32
   int km(void)
33
34
      memset(f,0,sizeof(f));
35
      memset(r,0,sizeof(r));
36
      int i;
37
      for(i=1;i<=n;i++)
38
39
        int j;
40
        int mi=INF;
41
        for(j=1;j<=n;j++)
42
43
          if(w[i][j]<mi)</pre>
44
            mi=w[i][j];
45
        }
46
        1[i]=mi;
47
   //赋值为边权最大值。。最大匹配 ()
48
49
      for(i=1;i<=n;i++)
50
51
        while(1)
52
53
          memset(flag,0,sizeof(flag));
54
          memset(flag1,0,sizeof(flag1));
55
          int j;
56
          for(j=1;j<=n;j++)
57
             low[j]=INF;
58
          if(dfs(i))
59
             break;
60
          int d=INF;
61
          for(j=1;j<=n;j++)
62
          {
63
             if(flag[j]==0)
64
65
               d=min(d,low[j]);
66
             }
67
          }
68
          for(j=1;j<=n;j++)
69
70
             if(flag1[j])
71
               1[j]+=d为最大匹配;(-)
72
             if(flag[j])
73
               r[j]-=d(为最大匹配);+
          }
74
```

```
}
}
75
76
77
      int sum=0;
      int j;
for(j=1;j<=n;j++)</pre>
78
79
80
81
       sum+=1[j];
sum+=r[j];
82
83
      }
84
      return sum;
85 }
```

7 计算几何

太乱了尼玛。。 浮点数千万不要直接比较大小,千万要加上EPS啊混蛋。

7.1 基本函数

7.1.1 Point定义

```
struct Point
2
3
       double x, y;
4
       Point() {}
5
       Point(double _x, double _y)
6
7
           x = _x, y = _y;
8
       }
9
       Point operator -(const Point &b)const
10
           return Point(x - b.x, y - b.y);
11
       }
12
13
       double operator *(const Point &b)const
14
15
           return x * b.y - y * b.x;
16
       }
17
       double operator &(const Point &b)const
18
19
           return x * b.x + y * b.y;
20
       }
21 | };
   7.1.2 Line定义
   struct Line
1
2
   {
3
       Point s, e;
4
       double k;
5
       Line() {}
6
       Line(Point _s, Point _e)
7
8
           s = _s, e = _e;
9
           k = atan2(e.y - s.y, e.x - s.x);
10
       }
11
       Point operator &(const Line &b)const
12
13
           Point res = s;
           //注意: 有些题目可能会有直线相交或者重合情况
14
           //可以把返回值改成pair<Point,int>来返回两直线的状态。
15
16
           double t = ((s - b.s) * (b.s - b.e)) / ((s - e) * (b.s - b.e));
           res.x += (e.x - s.x) * t;
17
           res.y += (e.y - s.y) * t;
18
19
           return res;
20
       }
21 | };
   7.1.3 距离: 两点距离
1 double dist2(Point a, Point b)
2
   {
3
       return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
4 | }
```

7.1.4 距离: 点到线段距离

res: 点到线段最近点

```
double dist2(Point p1, Point p2, Point p)
2
3
       Point res;
4
       double a, b, t;
5
       a = p2.x - p1.x;
6
       b = p2.y - p1.y;
7
       t = ((p.x - p1.x) * a + (p.y - p1.y) * b) / (a * a + b * b);
       if (t >= 0 \&\& t <= 1)
8
9
10
           res.x = p1.x + a * t;
11
           res.y = p1.y + b * t;
       }
12
13
       else
14
       {
            if (dist2(p, p1) < dist2(p, p2))
15
16
                res = p1;
17
            else
18
                res = p2;
19
       }
20
       return dist2(p, res);
21 }
   7.1.5 面积: 多边形
   点按逆时针排序。
1
  double CalcArea(Point p[], int n)
2
       double res = 0;
3
4
       for (int i = 0; i < n; i++)
5
           res += (p[i] * p[(i + 1) % n]) / 2;
6
       return res;
7
  | }
   7.1.6 判断: 线段相交
1
  | bool inter(Line 11, Line 12)
2
   {
3
       return (max(11.s.x,11.e.x) >= min(12.s.x,12.e.x) &&
4
                \max(12.s.x,12.e.x) >= \min(11.s.x,11.e.x) &&
5
                \max(11.s.y, 11.e.y) >= \min(12.s.y, 12.e.y) &&
6
                \max(12.s.y, 12.e.y) >= \min(11.s.y, 11.e.y) &&
7
                ((12.s-11.s)*(11.e-11.s))*((12.e-11.s)*(11.e-11.s)) <= 0 \&\&
8
                ((11.s-12.s)*(12.e-12.s))*((11.e-12.s)*(12.e-12.s)) <= 0);
   }
9
   7.1.7 求解:点到线最近点
  Point NPT(Point P, Line L)
2
3
       Point result;
4
       double a, b, t;
       a = L.e.x - L.s.x;
5
6
       b = L.e.y - L.s.y;
7
       t = ((P.x - L.s.x) * a + (P.y - L.s.y) * b) / (a * a + b * b);
       //如果t小于0或者大于1,说明最近点在L.s和L.e这条线段之外
8
9
       result.x = L.s.x + a * t;
10
       result.y = L.s.y + b * t;
11
       return result;
12 | }
```

7.2 重心

```
Point CenterOfPolygon(Point poly[],int n)
1
2
3
       Point p, p0, p1, p2, p3;
4
       double m, m0;
5
       p1 = poly[0];
6
       p2 = poly[1];
7
       p.x = p.y = m = 0;
       for (int i = 2; i < n; i++)
8
9
10
     p3 = poly[i];
11
     p0.x = (p1.x + p2.x + p3.x) / 3.0;
12
     p0.y = (p1.y + p2.y + p3.y) / 3.0;
13
     m0 = p1.x * p2.y + p2.x * p3.y + p3.x * p1.y - p1.y * p2.x - p2.y * p3.x -
          p3.y * p1.x;
14
     if (cmp(m + m0, 0.0) == 0)
15
         m0 += eps;
16
     p.x = (m * p.x + m0 * p0.x) / (m + m0);
     p.y = (m * p.y + m0 * p0.y) / (m + m0);
17
18
     m = m + m0;
19
     p2 = p3;
20
       }
21
       return p;
22 | }
```

7.3 KD树

查找某个点距离最近的点,基本思想是每次分治把点分成两部分,建议按照坐标规模决定是垂直划分还是水平划分,查找时先往分到的那一部分查找,然后根据当前最优答案决定是否去另一个区间查找。

```
1 | bool Div[MaxN];
2
   |void BuildKD(int deep,int l, int r, Point p[])\\记得备份一下P
3
   {
4
       if (1 > r) return;
5
       int mid = 1 + r >> 1;
6
       int minX, minY, maxX, maxY;
7
       minX = min_element(p + 1, p + r + 1, cmpX) \rightarrow x;
8
       minY = min_element(p + 1, p + r + 1, cmpY) -> y;
9
       maxX = max_element(p + l, p + r + 1, cmpX) -> x;
10
       maxY = max_element(p + l, p + r + 1, cmpY) -> y;
11
       Div[mid] = (maxX - minX >= maxY - minY);
12
       nth_element(p + 1, p + mid, p + r + 1, Div[mid] ? cmpX : cmpY);
13
       BuildKD(1, mid - 1, p);
       BuildKD(mid + 1, r, p);
14
   }
15
16
17
  long long res;
18 | void Find(int 1, int r, Point a, Point p[]) \\查找
19
20
       if (1 > r) return;
       int mid = 1 + r >> 1;
21
22
       long long dist = dist2(a, p[mid]);
23
       if (dist > 0) //如果有重点不能这样判断
24
           res = min(res, dist);
25
       long long d = Div[mid] ? (a.x - p[mid].x) : (a.y - p[mid].y);
26
       int 11, 12, r1, r2;
       11 = 1, 12 = mid + 1;
27
       r1 = mid - 1, r2 = r;
28
29
       if (d > 0)
30
           swap(11, 12), swap(r1, r2);
31
       Find(11, r1, a, p);
32
       if (d * d < res)
33
           Find(12, r2, a, p);
34 | }
```

7.3.1 例题

查询一个点为中心的给定正方形内所有点并删除(2012金华网赛A)

```
1 | #include <iostream>
2 | #include <cstdio>
3 | #include <cstring>
4 | #include <algorithm>
  #include <cmath>
6
   #include <queue>
7
   using namespace std;
8
9
  const int MaxN = 100000;
10 struct Point
11
12
     int x,y,r;
13
     int id;
14
     bool del;
15 };
16
17
  int cmpTyp;
18 | bool cmp(const Point& a, const Point& b)
19
20
     if (cmpTyp == 0)
21
       return a.x < b.x;
22
     else
23
       return a.y < b.y;
24 }
25
26 | int cnt[MaxN];
27 | bool Div[MaxN];
   int minX[MaxN],minY[MaxN],maxX[MaxN],maxY[MaxN];
29
   void BuildKD(int 1,int r,Point p[])
30
  {
31
   if (l > r) return;
32
    int mid = 1+r>>1;
33
     cmpTyp = 0;
34
     minX[mid] = min_element(p+1,p+r+1,cmp)->x;
35
     maxX[mid] = max_element(p+1,p+r+1,cmp)->x;
     cmpTyp = 1;
36
37
     minY[mid] = min_element(p+1,p+r+1,cmp)->y;
38
     maxY[mid] = max_element(p+1,p+r+1,cmp)->y;
39
40
     cnt[mid] = r-l+1;
41
     cmpTyp = Div[mid] = (maxX[mid]-minX[mid] < maxY[mid]-minY[mid]);</pre>
42
     nth_element(p+l,p+mid,p+r+1,cmp);
43
     BuildKD(1,mid-1,p);
44
     BuildKD(mid+1,r,p);
   }
45
46
47
   queue < int > Q;
  int Find(int 1,int r,Point a,Point p[])
49
50
     if (1 > r) return 0;
     int mid = 1+r>>1;
51
52
     if (cnt[mid] == 0) return 0;
53
     if (maxX[mid] < a.x-a.r ||</pre>
54
55
         minX[mid] > a.x+a.r ||
56
         maxY[mid] < a.y-a.r ||</pre>
         minY[mid] > a.y+a.r)
57
58
       return 0;
59
```

```
60
      int totdel = 0;
61
62
      if (p[mid].del == false)
63
         if (abs(p[mid].x-a.x) \le a.r \&\& abs(p[mid].y-a.y) \le a.r)
64
           p[mid].del = true;
65
66
           Q.push(p[mid].id);
67
           totdel++;
         }
68
69
70
      totdel += Find(l,mid-1,a,p);
71
      totdel += Find(mid+1,r,a,p);
72
73
      cnt[mid] -= totdel;
74
75
      return totdel;
    }
76
 77
78
    Point p[MaxN],tp[MaxN];
79
    int n;
80
81
    int main()
82
83
      int cas = 1;
84
      while (true)
85
86
         scanf("%d",&n);
87
         if (n == 0) break;
 88
         for (int i = 0; i < n; i++)
89
90
91
           p[i].id = i;
92
           int tx, ty;
93
           scanf("%d%d%d",&tx,&ty,&p[i].r);
94
           p[i].x = tx-ty;
95
           p[i].y = tx+ty;
96
           p[i].del = false;
97
           tp[i] = p[i];
         }
98
99
         BuildKD(0,n-1,tp);
100
101
         printf("Case u#%d: \n", cas++);
102
103
         scanf("%d",&q);
104
         for (int i = 0; i < q; i++)
105
106
           int id;
           scanf("%d",&id);
107
108
           int res = 0;
           id--;
109
110
           Q.push(id);
111
           while (!Q.empty())
112
           {
113
             int now = Q.front();
114
             Q.pop();
115
             if (p[now].del == true) continue;
116
             p[now].del = true;
117
             res += Find(0,n-1,p[now],tp);
118
119
           printf("%d\n",res);
        }
120
121
      }
122
      return 0;
```

7.4 半平面交

```
直线左边代表有效区域。
```

```
bool HPIcmp(Line a, Line b)
1
2
   {
3
       if (fabs(a.k - b.k) > eps)
                                      return a.k < b.k;
4
       return ((a.s - b.s) * (b.e-b.s)) < 0;
   }
5
6
7
   Line Q[100];
8
   void HPI(Line line[], int n, Point res[], int &resn)
9
10
       int tot = n;
11
       sort(line, line + n, HPIcmp);
12
       tot = 1;
13
       for (int i = 1; i < n; i++)
            if (fabs(line[i].k - line[i - 1].k) > eps)
14
                line[tot++] = line[i];
15
16
       int head = 0, tail = 1;
17
       Q[0] = line[0];
18
       Q[1] = line[1];
19
       resn = 0;
20
       for (int i = 2; i < tot; i++)
21
22
            if (fabs((Q[tail].e-Q[tail].s) * (Q[tail - 1].e-Q[tail - 1].s)) <
               eps ||
23
                    fabs((Q[head].e-Q[head].s) * (Q[head + 1].e-Q[head + 1].s))
                        < eps)
24
                return;
            while (head < tail && (((Q[tail]&Q[tail - 1]) - line[i].s) * (line[i
25
               ].e-line[i].s)) > eps)
26
                tail--;
27
            while (head < tail && (((Q[head]&Q[head + 1]) - line[i].s) * (line[i])
               ].e-line[i].s)) > eps)
28
                head++;
29
            Q[++tail] = line[i];
30
       }
31
       while (head < tail && (((Q[tail]&Q[tail - 1]) - Q[head].s) * (Q[head].e-
           Q[head].s)) > eps)
32
            tail--;
33
       while (head < tail && (((Q[head]&Q[head + 1]) - Q[tail].s) * (Q[tail].e-
           Q[tail].s)) > eps)
34
            head++;
35
       if (tail <= head + 1) return;</pre>
36
        for (int i = head; i < tail; i++)
37
            res[resn++] = Q[i] & Q[i + 1];
38
       if (head < tail + 1)
            res[resn++] = Q[head] & Q[tail];
39
40 | }
```

7.5 凸包

得到的凸包按照逆时针方向排序。

```
1 bool GScmp(Point a, Point b)
2 {
3     if (fabs(a.x - b.x) < eps)
4         return a.y < b.y - eps;
5     return a.x < b.x - eps;
6 }
7</pre>
```

```
void GS(Point p[], int n, Point res[], int &resn)
8
9
   {
10
       resn = 0;
11
       int top = 0;
12
        sort(p, p + n, GScmp);
        for (int i = 0; i < n;)
13
            if (resn < 2 || (res[resn - 1] - res[resn - 2]) * (p[i] - res[resn -
14
                1]) > eps)
15
                res[resn++] = p[i++];
16
            else
17
                --resn;
        top = resn - 1;
18
19
        for (int i = n - 2; i \ge 0;)
20
            if (resn < top + 2 || (res[resn - 1] - res[resn - 2]) * (p[i] - res[
               resn - 1]) > eps)
                res[resn++] = p[i--];
21
22
            else
23
                --resn;
24
       resn--;
25
        if (resn < 3) resn = 0;
26 | }
```

7.6 直线与凸包求交点

复杂度 $O(\log n)$ 。 需要先预处理几个东西。

```
1 //二分[la,lb]这段区间那条边与line相交
2
   int Gao(int la,int lb,Line line)
3
   {
4
       if (la > lb)
5
           1b += n;
       int l = la,r = lb,mid;
6
7
       while (1 < r)
8
9
           mid = 1+r+1>>1;
10
           if (cmp((line.e-line.s)*(p[la]-line.s),0)*cmp((line.e-line.s)*(p[mid
               ]-line.s),0) >= 0)
11
               l = mid;
12
           else
13
               r = mid-1;
14
15
       return 1%n;
16
17
   //求1与凸包的交点
18
19
   //先调用Gettheta预处理出凸包每条边的斜率,然后处理成升序排列
20
   double theta[maxn];
21
22
   void Gettheta()
23
   {
24
       for (int i = 0; i < n; i++)
25
26
           Point v = p[(i+1)\%n]-p[i];
27
           theta[i] = atan2(v.y,v.x);
28
       }
29
       for (int i = 1; i < n; i++)
30
           if (theta[i-1] > theta[i]+eps)
31
                theta[i] += 2*pi;
32
   }
33
34 | double Calc(Line 1)
```

```
35 | {
36
       double tnow;
37
       Point v = l.e-l.s;
38
       tnow = atan2(v.y,v.x);
39
       if (cmp(tnow, theta[0]) < 0)
                                        tnow += 2*pi;
40
       int pl = lower_bound(theta, theta+n, tnow) - theta;
41
       tnow = atan2(-v.y,-v.x);
42
       if (cmp(tnow,theta[0]) < 0)
                                        tnow += 2*pi;
43
       int pr = lower_bound(theta, theta+n, tnow) - theta;
44
       //pl和pr是在1方向上距离最远的点对
45
       pl = pl%n;
46
       pr = pr%n;
47
48
       if (cmp(v*(p[pl]-l.s),0)*cmp(v*(p[pr]-l.s),0) >= 0)
49
            return 0.0;
50
51
       int xa = Gao(pl,pr,l);
52
       int xb = Gao(pr,pl,1);
53
54
       if (xa > xb)
                        swap(xa,xb);
       //与[xa,xa+1]和[xb,xb+1]这两条线段相交
55
56
57
       if (cmp(v*(p[xa+1]-p[xa]),0) == 0)
                                             return 0.0;
       if (cmp(v*(p[xb+1]-p[xb]),0) == 0)
58
                                             return 0.0;
59
       Point pa, pb;
60
61
       pa = Line(p[xa],p[xa+1])&1;
62
       pb = Line(p[xb], p[xb+1]) &1;
       //题目:求直线切凸包得到的两部分的面积
63
       double area0 = sum[xb]-sum[xa+1]+(pa*p[xa+1])/2.0+(p[xb]*pb)/2.0+(pb*pa)
64
           /2.0;
65
       double area1 = sum[xa+n]-sum[xb+1]+(pb*p[xb+1])/2.0+(p[xa]*pa)/2.0+(pa*
           pb)/2.0;
66
67
       return min(area0, area1);
68 }
   7.7 三维凸包
   暴力写法
1 #define eps 1e-7
   #define MAXV 505
3
4
   struct pt
5
   {
6
       double x, y, z;
7
       pt() {}
8
       pt(double _x, double _y, double _z): x(_x), y(_y), z(_z) {}
9
       pt operator - (const pt p1)
10
       {
11
            return pt(x - p1.x, y - p1.y, z - p1.z);
       }
12
13
       pt operator * (pt p)
14
15
            return pt(y*p.z-z*p.y, z*p.x-x*p.z, x*p.y-y*p.x);
16
       }
17
       double operator ^ (pt p)
18
19
            return x*p.x+y*p.y+z*p.z;
20
       }
21
   };
22 | struct _3DCH
```

```
23 | {
24
        struct fac
25
        {
26
            int a, b, c;
27
            bool ok;
28
        };
        int n;
29
30
        pt P[MAXV];
31
        int cnt;
32
        fac F[MAXV*8];
33
        int to[MAXV][MAXV];
34
        double vlen(pt a)
35
36
            return sqrt(a.x*a.x+a.y*a.y+a.z*a.z);
37
       }
38
        double area(pt a, pt b, pt c)
39
40
            return vlen((b-a)*(c-a));
41
        }
42
        double volume(pt a, pt b, pt c, pt d)
43
44
            return (b-a)*(c-a)^(d-a);
45
       }
46
        double ptof(pt &p, fac &f)
47
48
            pt m = P[f.b]-P[f.a], n = P[f.c]-P[f.a], t = p-P[f.a];
49
            return (m * n) ^ t;
50
        }
51
        void deal(int p, int a, int b)
52
53
            int f = to[a][b];
54
            fac add;
55
            if (F[f].ok)
56
            {
57
                if (ptof(P[p], F[f]) > eps)
58
                     dfs(p, f);
59
                else
60
                {
                     add.a = b, add.b = a, add.c = p, add.ok = 1;
61
                     to[p][b] = to[a][p] = to[b][a] = cnt;
62
63
                     F[cnt++] = add;
64
                }
            }
65
        }
66
67
        void dfs(int p, int cur)
68
69
            F[cur].ok = 0;
            deal(p, F[cur].b, F[cur].a);
70
71
            deal(p, F[cur].c, F[cur].b);
72
            deal(p, F[cur].a, F[cur].c);
73
        }
74
        bool same(int s, int t)
75
76
            pt &a = P[F[s].a], &b = P[F[s].b], &c = P[F[s].c];
77
            return fabs(volume(a, b, c, P[F[t].a])) < eps && fabs(volume(a, b, c
78
                     P[F[t].b])) < eps && fabs(volume(a, b, c, P[F[t].c])) < eps;
79
        }
80
        void construct()
81
82
            cnt = 0;
83
            if (n < 4)
84
                return;
```

```
85
             bool sb = 1;
86
             for (int i = 1; i < n; i++)
87
             {
                  if (vlen(P[0] - P[i]) > eps)
88
 89
                  {
90
                      swap(P[1], P[i]);
                      sb = 0;
91
92
                      break;
                  }
93
94
             }
95
             if (sb)return;
96
             sb = 1;
             for (int i = 2; i < n; i++)
97
98
                  if (vlen((P[0] - P[1]) * (P[1] - P[i])) > eps)
99
100
101
                      swap(P[2], P[i]);
102
                      sb = 0;
103
                      break;
104
                  }
105
             }
106
             if (sb)return;
107
             sb = 1;
             for (int i = 3; i < n; i++)
108
109
110
                  if (fabs((P[0] - P[1]) * (P[1] - P[2]) ^ (P[0] - P[i])) > eps)
111
                  {
112
                      swap(P[3], P[i]);
113
                      sb = 0;
114
                      break;
115
                  }
             }
116
117
             if (sb)return;
118
             fac add;
119
             for (int i = 0; i < 4; i++)
120
             {
121
                  add.a = (i+1)\%4, add.b = (i+2)\%4, add.c = (i+3)\%4, add.ok = 1;
122
                  if (ptof(P[i], add) > 0)
                      swap(add.b, add.c);
123
124
                  to[add.a][add.b] = to[add.b][add.c] = to[add.c][add.a] = cnt;
125
                 F[cnt++] = add;
126
             }
127
             for (int i = 4; i < n; i++)
128
             {
129
                  for (int j = 0; j < cnt; j++)
130
                  {
131
                      if (F[j].ok && ptof(P[i], F[j]) > eps)
132
133
                           dfs(i, j);
134
                           break;
135
                      }
136
                  }
137
             }
138
             int tmp = cnt;
139
             cnt = 0;
140
             for (int i = 0; i < tmp; i++)
141
             {
142
                  if (F[i].ok)
143
                  {
144
                      F[cnt++] = F[i];
145
                  }
146
             }
         }
147
```

```
//表面积
148
149
         double area()
150
         {
151
             double ret = 0.0;
152
             for (int i = 0; i < cnt; i++)
153
                 ret += area(P[F[i].a], P[F[i].b], P[F[i].c]);
154
155
             }
156
             return ret / 2.0;
157
        }
    //体积
158
159
        double volume()
160
161
             pt 0(0, 0, 0);
162
             double ret = 0.0;
163
             for (int i = 0; i < cnt; i++)
164
             {
165
                 ret += volume(0, P[F[i].a], P[F[i].b], P[F[i].c]);
166
             }
167
             return fabs(ret / 6.0);
168
        }
169
    //表面三角形数
170
         int facetCnt_tri()
171
         {
172
             return cnt;
173
        }
174
    //表面多边形数
175
         int facetCnt()
176
         {
177
             int ans = 0;
178
             for (int i = 0; i < cnt; i++)
179
             {
180
                 bool nb = 1;
181
                 for (int j = 0; j < i; j++)
182
183
                      if (same(i, j))
184
                      {
185
                          nb = 0;
186
                          break;
187
                      }
188
                 }
189
                 ans += nb;
190
             }
191
             return ans;
192
        }
193
194
        pt Fc[MAXV*8];
195
        double V[MAXV*8];
        pt Center()//重心
196
197
198
             pt 0(0,0,0);
199
             for (int i = 0; i < cnt; i++)
200
             {
201
                 Fc[i].x = (0.x+P[F[i].a].x+P[F[i].b].x+P[F[i].c].x)/4.0;
202
                 Fc[i].y = (0.y+P[F[i].a].y+P[F[i].b].y+P[F[i].c].y)/4.0;
203
                 Fc[i].z = (0.z+P[F[i].a].z+P[F[i].b].z+P[F[i].c].z)/4.0;
204
                 V[i] = volume(0,P[F[i].a],P[F[i].b],P[F[i].c]);
205
206
             pt res = Fc[0],tmp;
207
             double m = V[0];
             for (int i = 1; i < cnt; i++)
208
209
             {
210
                 if (fabs(m+V[i]) < eps)
```

```
211
                     V[i] += eps;
212
                 tmp.x = (m*res.x+V[i]*Fc[i].x)/(m+V[i]);
213
                 tmp.y = (m*res.y+V[i]*Fc[i].y)/(m+V[i]);
214
                 tmp.z = (m*res.z+V[i]*Fc[i].z)/(m+V[i]);
215
                 m += V[i];
216
                 res = tmp;
217
             }
218
             return res;
219
        }
220
    };
221
222
    _3DCH hull;
223
224
    int main()
225
226
        while (scanf("%d",&hull.n) != EOF)
227
228
             for (int i = 0; i < hull.n; i++)
229
                 scanf("%lf%lf",&hull.P[i].x,&hull.P[i].y,&hull.P[i].z);
230
             hull.construct();
231
        }
232
        return 0;
233 }
```

7.8 旋转卡壳

"对踵"

7.8.1 单个凸包

```
1
   void solve(Point p[],int n)
2
3
        Point v;
4
        int cur = 1;
5
        for (int i = 0; i < n; i++)
6
7
            v = p[i]-p[(i+1)%n];
8
            while (v*(p[(cur+1)%n]-p[cur]) < 0)
9
                 cur = (cur+1)%n;
10
            //p[cur] -> p[i]
11
            //p[cur] \rightarrow p[i+1]
12
            //p[cur] -> (p[i],p[i+1])
13
       }
   }
14
```

7.8.2 两个凸包

注意初始点的选取、代码只是个示例。

有时候答案需要取solve(p0,n,p1,m)和solve(p1,m,p0,n)的最优值。

```
void solve(Point p0[],int n,Point p1[],int m)
2
   {
3
        Point v;
4
        int cur = 0;
        for (int i = 0; i < n; i++)
5
6
7
            v = p0[i]-p0[(i+1)%n];
8
            while (v*(p1[(cur+1)%m]-p1[cur]) < 0)
9
                 cur = (cur + 1) %m;
10
            //p1[cur] -> p0[i]
            //p1[cur] -> p0[i+1]
11
12
            //p1[cur] \rightarrow (p0[i], p0[i+1])
```

```
13 | }
14 |}
```

7.8.3 外接矩形

```
void solve()
1
2
3
        resa = resb = 1e100;
4
        double dis1,dis2;
5
        Point xp[4];
6
        Line 1[4];
7
        int a,b,c,d;
8
        int sa,sb,sc,sd;
9
        a = b = c = d = 0;
10
        sa = sb = sc = sd = 0;
11
        Point va, vb, vc, vd;
12
        for (a = 0; a < n; a++)
13
            va = Point(p[a],p[(a+1)%n]);
14
15
            vc = Point(-va.x,-va.y);
16
            vb = Point(-va.y,va.x);
17
            vd = Point(-vb.x,-vb.y);
18
            if (sb < sa)
19
            {
20
                 b = a;
21
                 sb = sa;
22
            }
23
            while (xmult(vb, Point(p[b], p[(b+1)%n])) < 0)
24
25
                 b = (b+1) \%n;
26
                 sb++;
27
            }
28
            if (sc < sb)
29
            {
30
                 c = b;
31
                 sc = sb;
32
            }
33
            while (xmult(vc, Point(p[c], p[(c+1)%n])) < 0)
34
            {
35
                 c = (c+1) \%n;
36
                 sc++;
            }
37
38
            if (sd < sc)
39
            {
40
                 d = c;
41
                 sd = sc;
42
            while (xmult(vd, Point(p[d], p[(d+1)%n])) < 0)
43
44
            {
45
                 d = (d+1) \%n;
46
                 sd++;
            }
47
48
49
            //卡在p[a],p[b],p[c],p[d上]
50
            sa++;
        }
51
   }
52
```

7.9 三角形内点个数

7.9.1 无三点共线

1 | Point p[1000], tp[2000], base;

```
3
   bool cmp(const Point &a, const Point &b)
4
   {
5
     return a.theta < b.theta;</pre>
6
   }
8
   int cnt[1000][1000];
   int cntleft[1000][1000];
9
10
   int n, m;
11
12
   int calc(int a, int b, int c)
13
   {
        Point p1 = p[b] - p[a], p2 = p[c] - p[a];
14
15
        if (atan2(p1.y, p1.x) > atan2(p2.y, p2.x))
16
            swap(b, c);
17
        if ((p[b] - p[a]) * (p[c] - p[a]) > 0)
18
            return cnt[a][c] - cnt[a][b] - 1;
19
        else
20
            return n - 3 - (cnt[a][c] - cnt[a][b] - 1);
21
   }
22
   int main(int argc, char const *argv[])
24
25
        int totcas;
26
        scanf("%d", &totcas);
27
        for (int cas = 1; cas <= totcas; ++cas)
28
29
            scanf("%d", &n);
30
            for (int i = 0; i < n; ++i)
31
32
                scanf("%lld%lld", &p[i].x, &p[i].y);
33
                p[i].id = i;
34
            }
35
            for (int i = 0; i < n; ++i)
36
            {
37
                m = 0;
38
                base = p[i];
39
                for (int j = 0; j < n; ++ j)
                    if (i != j)
40
41
                     {
42
                         tp[m] = p[j];
43
                         Point v = tp[m]-base;
44
                         tp[m++].theta = atan2(v.y,v.x);
                    }
45
46
                sort(tp, tp + m, cmp);
47
                for (int j = 0; j < m; ++j)
48
                     tp[m + j] = tp[j];
49
50
                //calc cnt
51
52
                for (int j = 0; j < m; ++j)
53
                     cnt[i][tp[j].id] = j;
54
                //calc cntleft
55
                for (int j = 0, k = 0, tot = 0; j < m; ++j)
56
57
                     while (k == j || (k < j + m && (tp[j] - base) * (tp[k] -
58
                        base) > 0))
59
                         k++, tot++;
60
                     cntleft[i][tp[j].id] = --tot;
61
                }
            }
62
63
```

```
64
            printf("Case \d:\n", cas);
65
            int q;
66
            scanf("%d", &q);
67
            for (int i = 0; i < q; ++i)
68
            {
69
                int x, y, z;
                scanf("%d%d%d", &x, &y, &z);
70
71
                if ((p[z] - p[x]) * (p[y] - p[x]) > 0)
72
                     swap(y, z);
73
                int res = cntleft[x][z] + cntleft[z][y] + cntleft[y][x];
74
                res += calc(x, y, z) + calc(y, z, x) + calc(z, x, y);
75
                res -= 2 * (n - 3);
                printf("%d\n", res);
76
77
            }
78
       }
79
       return 0;
80 }
   7.9.2 有三点共线且点有类别之分
  int n, n0, n1, m;
1
   Point p[3000], tp[3000], base;
3
4
   bool cmp(const Point &a, const Point &b)
5
6
        if ((a-base)*(b-base) == 0)
7
        {
8
            return (a-base).getMol() < (b-base).getMol();</pre>
9
       }
10
       return a.theta < b.theta;
11
   }
12
13
   int cnt[100][100];
   int cntleft[100][100];
14
15
16
   int calc(int a,int b,int c)
17
   {
18
        Point p1 = p[b]-p[a], p2 = p[c]-p[a];
19
        if (atan2(1.0*p1.y,1.0*p1.x) > atan2(1.0*p2.y,1.0*p2.x))
20
            swap(b,c);
21
        int res = cnt[a][c]-cnt[a][b];
22
        if ((p[b]-p[a])*(p[c]-p[a]) > 0)
23
            return res;
24
        else
25
            return n1-res;
26
   }
27
28
   int main()
29
   {
30
        int cas = 0;
31
       while (scanf("%d%d",&n0,&n1) != EOF)
32
33
            n = n1+n0;
34
            for (int i = 0; i < n; i++)
35
36
                scanf("%I64d%I64d",&p[i].x,&p[i].y);
37
                p[i].id = i;
            }
38
39
            for (int i = 0; i < n0; ++i)
40
41
                m = 0;
42
                base = p[i];
                for (int j = 0; j < n; ++ j)
43
                     if (i != j)
44
```

```
45
                      {
46
                           tp[m] = p[j];
47
                           Point v = tp[m]-base;
48
                           tp[m++].theta = atan2(1.0*v.y,1.0*v.x);
49
                      }
50
51
                  sort(tp, tp + m, cmp);
52
                  for (int j = 0; j < m; ++j)
                      tp[m + j] = tp[j];
53
54
55
                  for (int j = 0, tot = 0; j < m; ++j)
56
                      if (tp[j].id < n0)
57
                           cnt[i][tp[j].id] = tot;
58
59
                      else
60
                          tot++;
                  }
61
62
63
                 for (int j = 0, k = 0, tot = 0; j < m; ++j)
64
65
                      while (k == j \mid | (k < j + m && (tp[j] - base) * (tp[k] -
                         base) > 0))
66
67
                           if (tp[k].id >= n0)
68
                               tot++;
69
                          k++;
70
                      }
71
                      if (tp[j].id >= n0)
72
                           tot--;
73
                      else
74
                           cntleft[i][tp[j].id] = tot;
                  }
 75
             }
76
77
78
             int ans = 0;
79
             for (int i = 0; i < n0; i++)
80
                  for (int j = i+1; j < n0; j++)
81
                      for (int k = j+1; k < n0; k++)
82
83
                           int x = i, y = j, z = k;
84
85
                           if ((p[z] - p[x]) * (p[y] - p[x]) > 0)
86
                               swap(y, z);
87
                           int res = cntleft[x][z] + cntleft[z][y] + cntleft[y][x];
88
89
                           res += calc(x, y, z) + calc(y, z, x) + calc(z, x, y);
90
                           res -= 2 * n1;
91
92
93
                           //printf("%d %d %d %d\n",x,y,z,res);
94
95
                           if (res %2 == 1)
96
                               ans++;
97
                      }
             printf("Case_{\square}%d:_{\square}%d\n",++cas,ans);
98
99
100
        return 0;
101 | }
```

8 搜索

8.1 Dancing Links

仰慕罗神。

```
void remove1(int col)
1
2
3
        int i,j;
4
        L[R[col]]=L[col];
5
        R[L[col]]=R[col];
6
        for(i=D[col];i!=col;i=D[i])
7
             L[R[i]]=L[i];
8
9
            R[L[i]]=R[i];
10
        }
11
12
   void remove2(int col)
13
14
        int i,j;
        L[R[col]]=L[col];
15
16
        R[L[col]] = R[col];
17
        for(i=D[col];i!=col;i=D[i])
18
19
             for(j=R[i]; j!=i; j=R[j])
20
             {
21
                 U[D[j]]=U[j];
22
                 D[U[j]]=D[j];
23
                 --nk[C[j]];
24
            }
25
        }
26
27
   void resume1(int col)
28
29
        int i,j;
30
        for(i=U[col];i!=col;i=U[i])
31
            L[R[i]]=i;
32
33
            R[L[i]]=i;
34
        }
35
        L[R[col]]=col;
36
        R[L[col]]=col;
37
38
   void resume2(int col)
39
   {
40
        int i,j;
41
        for(i=U[col];i!=col;i=U[i])
42
43
             for(j=L[i]; j!=i; j=L[j])
44
45
                 ++nk[C[j]];
46
                 U[D[j]]=j;
47
                 D[U[j]]=j;
48
            }
49
        }
        L[R[col]]=col;
50
        R[L[col]]=col;
51
52
   }
53
   int h()
54
55
      bool vis[100];
56
      memset(vis,false,sizeof(vis));
57
      int i,j,k,res=0,mi,col;
```

```
58
       while(1)
59
60
         mi=inf:
61
         for(i=R[head];i!=head&&i<=2*n;i=R[i])</pre>
62
           if (mi>nk[i]&&!vis[i])
63
64
              mi=nk[i];
65
              col=i;
           }
66
67
         if (mi == inf)
68
           break;
69
         res++; vis[col]=true;
70
         for(j=D[col]; j!=col; j=D[j])
 71
           for(k=R[j];k!=j;k=R[k])
72
 73
              if(C[k]>2*n)
 74
                continue;
 75
              vis[C[k]]=true;
76
77
       }
78
       return res;
 79
    }
80
    bool DLX(int d,int deep)
81
       if(d+h()>deep) return false;
82
83
         if (R[head] == head | | R[head] > 2*n)
84
           return true;
 85
         if(d>=deep)
86
           return false;
87
         int col,ma=inf;
88
         int i,j;
         for(i=R[head];i!=head&&i<=2*n;i=R[i])</pre>
 89
90
              if(nk[i]<ma)</pre>
91
              {
92
                   col=i;
93
                  ma=nk[i];
94
              }
95
         remove1(col);
96
         for(i=D[col];i!=col;i=D[i])
97
98
              int flag=1;
99
              for(j=R[i];;j=R[j])
100
                   if(j==R[i]&&!flag)
101
102
                       break;
103
                  U[D[j]]=U[j];
104
                   D[U[j]]=D[j];
105
                   if(C[j]>2*n)
106
                       remove2(C[j]);
107
                   else
108
                       remove1(C[j]);
109
                   flag=0;
110
              }
111
              if(DLX(d+1,deep))
112
                return true;
113
              flag=1;
114
              for(j=L[i];;j=L[j])
115
116
                   if(j==L[i]&&!flag)
117
                       break;
118
                   if(C[j]>2*n)
119
                       resume2(C[j]);
120
                   else
```

```
121
                     resume1(C[j]);
122
                 U[D[j]]=j;
123
                 D[U[j]]=j;
124
                 flag=0;
125
             }
126
        }
127
        resume1(col);
128
        return false;
129 }
```

9 杂物

9.1 高精度数

支持乘以整数和加法。

```
1 struct BigInt
2
3
        const static int mod = 100000000;
4
        int a[600], len;
5
       BigInt (){}
       BigInt (int v)
6
7
8
            len = 0;
9
            do
10
            {
                a[len++] = v\%mod;
11
12
                v /= mod;
13
            }while(v);
       }
14
       BigInt operator *(const int& b) const
15
16
17
            BigInt res;
18
            res.len = len;
19
            for (int i = 0; i \le len; ++i)
                res.a[i] = 0;
20
21
            for (int i = 0; i < len; ++i)
22
23
                res.a[i] += a[i]*b;
24
                res.a[i+1] += res.a[i]/mod;
25
                res.a[i] %= mod;
26
            }
27
            if (res.a[len] > 0) res.len++;
28
            return res;
29
       }
30
       BigInt operator +(const BigInt& b) const
31
32
            BigInt res;
33
            res.len = max(len,b.len);
            for (int i = 0; i <= res.len; ++i)
34
35
                res.a[i] = 0;
36
            for (int i = 0; i < res.len; ++i)
37
            {
                res.a[i] += ((i < len)?a[i]:0)+((i < b.len)?b.a[i]:0);
38
39
                res.a[i+1] += res.a[i]/mod;
40
                res.a[i] %= mod;
41
42
            if (res.a[res.len] > 0) res.len++;
43
            return res;
44
       }
45
       void output()
46
47
            printf("%d",a[len-1]);
48
            for (int i = len-2; i >= 0; --i)
49
                printf("%08d",a[i]);
50
            printf("\n");
       }
51
52 | };
```

9.2 整数外挂

```
1 int wg;
```

```
char ch;
3
   bool ng;
5
   inline int readint()
6
7
       ch = getchar();
8
       while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
       if (ch == '-')
9
10
11
           ng = true;
12
            ch = getchar();
13
       }
14
       else
           ng = false;
15
16
       wg = ch - '0';
       ch = getchar();
17
       while (ch >= '0' && ch <= '9')
18
19
           wg = wg * 10 + ch - '0';
20
21
           ch = getchar();
22
23
       if (ng == true) wg = -wg;
24
       return wg;
25 | }
   9.3
       Java
   9.3.1 优先队列
   PriorityQueue queue = new PriorityQueue( 1, new Comparator()
2
3
       public int compare( Point a, Point b )
4
5
     if (a.x < b.x | | a.x == b.x && a.y < b.y)
6
         return -1;
7
     else if( a.x == b.x && a.y == b.y)
8
         return 0;
9
     else
10
         return 1;
11
       }
12 | });
   9.3.2 Map
1 | Map map = new HashMap();
   map.put("sa","dd");
3
   String str = map.get("sa").toString;
5 for(Object obj : map.keySet()){
6
       Object value = map.get(obj);
7 | }
   9.3.3 sort
1 static class cmp implements Comparator
2
3
       public int compare(Object o1,Object o2)
4
5
     BigInteger b1=(BigInteger)o1;
     BigInteger b2=(BigInteger)o2;
6
7
     return b1.compareTo(b2);
8
       }
9
   }
   public static void main(String[] args) throws IOException
```

```
12
        Scanner cin = new Scanner(System.in);
13
        int n;
14
        n=cin.nextInt();
        BigInteger[] seg = new BigInteger[n];
15
16
        for (int i=0;i<n;i++)
17
      seg[i]=cin.nextBigInteger();
18
        Arrays.sort(seg,new cmp());
19 | }
   9.4 hashmap
   struct hash_map
1
2
3
        const static int mod=10007;
4
        int head[mod];
5
        struct hash_tables
6
7
            int key;
8
            int val;
9
            int next;
10
        } ele[10007];
11
        int N;
12
        int getHash(int x)
13
14
            return x%mod;
15
        }
16
        void init()
17
            memset(head, 255, sizeof(head));
18
19
            N = 0;
20
        }
21
        void clear()
22
23
            for (int i = 0; i < N; i++)
24
                 head[getHash(ele[i].key)] = -1;
25
            N = O;
26
        }
27
        int fint(int x)
28
29
            for (int i=head[getHash(x)]; i!=-1; i=ele[i].next)
30
                 if (ele[i].key==x) return i;
31
            return -1;
        }
32
33
        void insert(int x)
34
35
            int tmp=getHash(x);
36
            ele[N].key=x;
37
            ele[N].val=0;
38
            ele[N].next=head[tmp];
39
            head[tmp]=N++;
40
        }
41
        int& operator [](int x)
42
43
            int tmp=fint(x);
44
            if (tmp==-1)
45
            {
46
                 insert(x);
47
                 return ele[N-1].val;
48
            }
49
            else
50
                 return ele[tmp].val;
        }
51
52
  };
```