. Def $(C, \alpha_1, -\alpha_n) \in M_{g,n}$ A C-local system U on $U:=C-f\alpha_1-\alpha_n$; is of geometric origin if $\overline{f}:Y\longrightarrow U$ smooth projective.

(U is a subgraphed C summand

Thm 1.24: $T_{gn} \xrightarrow{T} M_{g,n}$, with (g,n) hyperbolic [g > 2, or g = 1, n > 0, or g = 0, n > 2] $= \frac{1}{2} \text{ countrable union } W \text{ of shirt complex analytic subsets of } T_{g,n} \text{ such that for } (C, z_1 -, z_n) \in M_{gn} - \pi(W)$ $= \frac{1}{2} \text{ countrable union } W \text{ of shirt complex analytic subsets of } T_{g,n} \text{ such that for } (C, z_1 -, z_n) \in M_{gn} - \pi(W)$ $= \frac{1}{2} \text{ countrable union } W \text{ of shirt complex analytic subsets of } T_{g,n} \text{ such that } \text{ for } (C, z_1 -, z_n) \in M_{gn} - \pi(W)$

"anolytically very general"

 $\begin{array}{c} \text{CVHS}: \ \times \ \text{complex connected manifold}. \\ & \text{. A CVHS on } \ \times \ \text{is} \ \left(\ V = \bigoplus V^{P,Q}, \ 0 \right) \quad \in ^{26} - C \ \text{vector bundle}, \ 0 \quad \text{a flat connection satisfying Giffliss} \\ & \text{brown we waltry}: \ 0 (V^{P,Q}) \subset A^{10}(V^{P,Q}) \bigoplus A^{0,1}(V^{P,Q}) \bigoplus A^{10}(V^{P^{-1},QH}) \bigoplus A^{0,1}(V^{P^{+1},QH}) \\ & (\Longrightarrow (\ E = (V,5) \ \text{hdom}. \) (F^{P} = \bigoplus V^{P,S},5), \quad \nabla F^{P} \subset \Omega^{1} \otimes F^{P-1} \\ & \text{kon } 0 \otimes Q_{S} \\ & \text{and similarly} \quad \widehat{F}^{Q} := \bigoplus V^{P,S} \ \text{anti-holonorythic}, \quad \nabla F^{Q} \subset F^{Q^{-1}} \otimes \Omega^{1}_{S}) \end{array}$

• A polarization on $(V=\oplus V^{pq}, D)$ is $\psi: V\otimes V \longrightarrow \mathbb{T}$ hermitian 0. Flat marking $\bigoplus V^{p,q}$ and such that $(H)^p \psi > 0$ on $V^{p,q}$

[Ex: f: Y -> X emosth projecture; W = Rif 7 polarizable 2/VHS => Ve polarizable 1/VHS;

any subquotient is a direct summand and is a polarizable CVHS.]

Suppose now $X \subseteq \overline{X} \supset Z$ anoth algebraic log pair.

Some divisor

Del (Doligne consonial extension)

(E,V) flat helom. vector burdle on X with unipotent monod at s.

It's Deligne consonical extension $(\overline{E}, \overline{\nabla}; \overline{E} \to \overline{E} \otimes \Sigma'(\log Z))$ is the unique $vb \in \overline{E}$ on \overline{X} with logarithmic connation along Z equipped with an $iso(\overline{E}, \overline{\nabla})_{i} = (\overline{E}, \overline{V})_{i}$ characterized by the property that its nextidues along Z are nilpotent.

Prop: $\times \subset \overline{\times} > Z$ smooth elg. log peux.

H ample line bundle on \overline{X}

(E, F°, V) polarizable CVHS, (E, T) Deligne externon.

Then:

```
1/ W:= Ker V is semi-simple - Schmid/IR + Deligne 87
          2/ W = P L; &W; , whose the L; s one perouse non isomorphic inveducible C-loc. Syst. on X, W; vedor gree.
                                 Each il; underlier a poler. CVHS, each W; cossier a polarized CHS, unique up to shifting and grading, and compruith
                                      (V. (Deligne 87)
                3/ c (E)=0 (total chess (Lans) (Esnault-Vietnung)
                4) F' extend to (E, F, T) sahsfying biffiths have. (Schmid nighter orbit theorem)
                  5/ The Higgs burdle ( gri E, O) is H-plyslade of degree O (Simpon 40 for convex)
                                                                                                                   \left[ \overline{\nabla} F^{\rho} \subset F^{\rho-1} \otimes \mathcal{L}'(\log Z) \right] => 0:= q_{\lambda} [7:q_{\lambda}] [7:q_{\lambda}] \longrightarrow q_{\lambda} [\rho^{-1} \otimes \mathcal{L}'(\log Z)] \otimes_{\chi} - \lim_{n \to \infty} [7:q_{\lambda}] => 0:= q_{\lambda} [7:q_{\lambda}] => q_{\lambda} 
Bop: (Co-1.3.9) (E, F, T) at above.
                                                                               E somistable (=> the CVHS is unitary.
```

Proof. This is due to Griffiths (comethine formula).

Let i max. $/ F' \vec{E} (= g_1 \vec{E})$ non -bivish.

Claim: if $0; \neq 0$ then $\deg F' \vec{E} > 0$ (hence \vec{E} not semisfacility).

[Indeed: $(\bigoplus g_2 \vec{E}, \vec{E}, 0) \rightarrow > (\bigoplus g_1 \vec{E}/\bigoplus g_2 \vec{E}, \vec{D}) = (g_2 \vec{E}, \vec{E}, 0)$ so $\deg g_1 \vec{E} > 0$ as $(\bigoplus g_2 \vec{E}, \vec{D})$ somisable.

If $\deg g_1 \vec{E} = 0$ then $(g_1 \vec{E}, 0)$ direct summand by polystability. Ruled out by $0; \neq 0$.]

So 0; = 0 and $F' \vec{E}$ is unitary direct summand. Iterate.

Paced Replacing ($\mathcal{E}, z_+ \to z_n$) with or analytic general cause, E, V) is a SVHS By 1.3.6, E is some stable. So by pop. (E, V) is numbery.

Proof of 1.2.5 For $K \subset C$ # field and $g: \Pi_{J}(U) \longrightarrow GL_{n}(O_{K})$ with so image $M_{g,n} \supset T_{g}:= \{\{C',g_{k},z_{n}\}/V\} \otimes G$ on U' is a GVHS of

Claim, To chick closed analytic subset $T_p' \subset T_{g,n}$ Otherwise: for an analytic v.g. point $(C, \chi_{j-1}, \chi_{m})$ $V_{g,i}$ C VHS.

By $\{.2.8, V_{g,i}, unitary\}$ But then $g: \Gamma \longrightarrow GL_m(Q_k) \longrightarrow TT$ $GL_m(G)$ is unitary, to finite. Contradict to g has so inage.

Take W= U T' D