The Impact of Feedback Processes on Population III Star Formation

Eli Visbal (University of Toledo)

Collaborators: Greg Bryan (Columbia University), Zoltan Haiman (Columbia University)

Motivation

- Hydrodynamical cosmological simulations
 - Detailed treatment of physical processes
 - Computationally expensive (millions of CPU-hours)
 - Restricted in volume & redshift range
 - Free parameters
 - Pop III/Pop II IMF
 - Critical metallicity for Pop III
- Alternative, faster approach is complementary

Renaissance Simulations; O'Shea et al (2015)

Semi-analytic Model of First Stars/Galaxies

Visbal et al. (2018, 2020). See also: Trenti et al. (2009), Agarwal et al. (2012), Crosby et al. (2013), Griffen (2016), Magg et al. (2018)

- Based on cosmological N-body simulations (Springel et al. 2001)
- Merger trees and 3D positions (Behroozi et al. 2013)
- Analytic prescriptions for Pop III and metal enriched star formation
- Feedback processes
 - H₂ photo-dissociation from Lyman-Werner radiation
 - Metals spread via supernova winds (internal + external enrichment)
 - Ionization of IGM
 - Baryon-dark matter streaming velocity (Tseliakhovich & Hirata 2010)
- Computationally efficient

3D Feedback

- New grid-based method
 - Halos distributed on cubic grid
 - Lyman-Werner feedback, external metal-enrichment, reionization computed efficiently with FFTs
 - Impacts which halos produce Pop III/metal enriched stars

Halos Hosting Pop III or metalenriched star formation

Metal-enriched intergalactic medium

Ionized fraction of intergalactic medium

Pop III/Metal-enriched SFRD

- Explore SFRD through model parameter space
- Rapid transition to metalenriched SF dominating
- Persistent Pop III SF to lower redshifts
- External metal enrichment/reionization important for Pop III at $z \lesssim 15$

Average of 10 realizations of 3 Mpc box

External Metal Enrichment

- Simple model for metal bubbles
 - v = 60 km/s
 - $R_{max} = 150 h^{-1} ckpc$
 - f_{bub}: parameter to vary size
 - Z_{crit}: Critical metallicity for PopIII → metal-enriched transition
- Pop III SFRD may continue to z<6, depends strongly on metal bubble properties

Impact of Reionization

- Ionization → suppression of star formation in low-mass halos (e.g., Shapiro et al. 1994, Dijkstra et al. 2004, Sobacchi & Mesinger 2013)
- Pop III SFRD density relatively unchanged by $f_{\it esc}$

Impact of Reionization

Ionizing photon escape fraction 3x lower

- Total Pop III SF the same, but in different halos
- Pop III in more massive halos dominant at lower redshifts

Supernovae Feedback

Summary and Conclusions

- New semi-analytic model of the first stars/galaxies
 - N-body backbone: merger trees and 3D positions
 - Grid-based method for metal bubbles, ionization bubbles, Lyman-Werner feedback
- Results
 - Pop III SF likely to extend to z<6, can be quenched by external metal enrichment
 - Reionization + metal bubbles important at z<15
 - Pop III star formation transitions from minihalos to atomic cooling halos or larger over cosmic time
 - SNae feedback impacts Pop III → metal-enriched transition
- Future applications
 - Stellar archaeology, BH remnants, Pair-instability SNae with JWST, 21cm observations
- Postdoctoral Position at the University of Toledo: high-z universe, first stars, SMBHs, galaxy intensity mapping. Ad will appear on AAS job register next week!

Streaming Velocity

Star Formation

- Minimum halo mass for Pop III SF set by Lyman-Werner feedback, baryon-DM streaming, ionization state of IGM
- Metal-enriched star formation t_{delay} after Pop III
- Star formation efficiency calibrated with high-z galaxy LFs

$$M_{\min} = \min \left(M_{\rm H2}, M_{\rm a} \right),\,$$

$$M_{\rm H2} = M_{\rm cool}(v_{\rm bc}, z) \times (1 + 6.96[4\pi J_{\rm LW,21}]^{0.47})$$

Fialkov et al. (2013)

Model Parameters

Parameter	Description	Fiducial Value	Range
$f_{ m III}$	Pop III star formation efficiency	0.001	0.0001 - 0.005
$f_{ m II}$	Metal-enriched star formation efficiency	0.05	_
$\eta_{ m II}$	LW/Ionizing photons per baryon of metal-enriched stars	4000	_
$\eta_{ m III}$	LW/Ionizing photons per baryon of Pop III stars	65000	_
$t_{ m delay}$	Delay in subsequent star formation due to Pop III SNe $$	$10^7~{ m yr}$	$10^7 \mathrm{yr} - 5 \times 10^7 \mathrm{yr}$
$Z_{ m crit}$	Critical metallicity for externally metal-enriched halos	$3 imes 10^{-4}~Z_{\odot}$	$10^{-6}~Z_{\odot}-10^{-2}~Z_{\odot}$
$M_{ m min,met}$	Critical mass for externally metal-enriched halos	$2 imes 10^5~M_{\odot}$	$2 \times 10^5 \ M_{\odot} - 10^6 \ M_{\odot}$
$M_{ m ion}$	Ionization feedback mass	$1.5 \times 10^8 \left(\frac{1+z}{11}\right)^{-3/2} M_{\odot}$	${\rm Fiducial} - 3.3 \times {\rm Fiducial}$
$f_{ m esc,II}$	Ionizing escape fraction in metal-enriched halos (Section 3.3)	0.1	0.0 - 0.1
$f_{ m esc,III}$	Ionizing escape fraction in Pop III halos (Section 3.3)	0.5	0.0 - 0.5
$v_{ m bc}$	Streaming velocity at recombination	$30~\mathrm{km~s}^{-1}~(1\sigma)$	$0 - 90 \text{ km s}^{-1} (0 - 3\sigma)$
$f_{ m bub}$	Metal bubble size scaling factor (Section 3.4)	1	0 - 5
$M_{ m min}$	Minimum halo mass for Pop III star formation	see Eqns. 1-3	_