Success Test Series

Level: Easy

Class: Xth Sub: Maths II (Circle) Marks: 20 Time: 1 hrs

Q 1. A) Select the appropriate alternative.

3

- i) What is the measure of angle inscribed in semicircle arc?
 - A) 180°

B) 90°

C) 100°

- D) 50°
- ii) Which of the following are cyclic quadrilateral?
 - A) Rectangle and square
- B) Square and rhombus
- C) Parallelogram and rhombus
- D) Kite and trapezium
- iii) If two circles are touching internally, how many common tangents of them can be drawn?
 - A) One

B) Two

C) One and only one

D) Only two

Q 1. B) Solve the following questions.

3

i) In figure, $m\angle AOD = 70^{\circ}$, $m(arc BC) = 60^{\circ}$, Then find m(arc AD)

ii)

In adjoining figure, arc $AC \cong arc BD$ then find prove that chord $AB \cong chord CD$.

iii. \square MRPN is cyclic, $\angle R = (5x-13)^\circ$, $\angle N = (4x+4)^\circ$. Find measures of $\angle R$ and $\angle N$.

Q 2. A) Complete the following activities. (any two)

i) If secants containing chords AB and Chord CD of a circle intersect outside the circle in point E, then prove that $AE \times EB = CE \times ED$.

Sol:

In △ ADE and △CBE

$$\angle AED \cong \boxed{\angle}$$

 $\angle AED \cong \boxed{\angle}$ (Common angle)

$$\angle$$
 DAE \cong \angle BCE

.....()

$$\therefore \quad \Delta \text{ ADE } \sim \boxed{\Delta}$$

..... (AA test)

$$\therefore \frac{AE}{?} = \frac{?}{EB}$$

)

$$\therefore$$
 = CE × ED.

In fig, seg PQ is a tangent segment. ii) Line PRS is secant. If PR = 5, RS = 7.8Then find PQ.

Sol:

now

$$= PR + RS \qquad \dots (P - R - S)$$

$$PS = 7.8 + RS$$
 ($P - R - S$

 $PQ^2 = PR \times |$ (tangent secant segment theorem)

$$\therefore$$
 = 8 units

= 8 units(taking square root of both sides)

iii) In fig, M is the centre of circle and seg KL is a tangent segment. If MK = 12, KL = $6\sqrt{3}$ then find a) radius of the circle.

b) Measure of \angle K and \angle M.

Sol:

MK = 12, KL = $6\sqrt{3}$ (given)

$$\angle$$
 MLK =

..... (tangent theorem)

In right angled \triangle MLK,

$$KL = \frac{\sqrt{3}}{2}$$
 (given)

$$\therefore$$
 $\angle M =$

.....(by converse of $30^{\circ} - 60^{\circ} - 90^{\circ}$ theorem)

and
$$\angle$$
 = 30°

$$\therefore \Delta MLK \text{ is } 30^{\circ} - 60^{\circ} - 90^{\circ}$$

$$ML = r = \frac{1}{2}$$
 = 6 units(opposite side of 30°)

Q 2. B) Solve the following questions. (Any two)

i) in fig , m (arc APC) = 60° , m \angle BAC = 80° then find a) \angle ABC b) m(arc BQC)

6

ii) prove that, opposite angles of cyclic quadrilateral are supplementary.

In fig , A is external point of circle with centre $\ 0$. AB & AC are tangents drawn from A, BA $\ \bot$ CA. Then show that $\ \square$ BACO is a square.

Q 3. Solve the following questions. (Any one)

- i) In fig three congruent circles with centers A, B and C with radius 5 cm each, touch each other in points
 D, E and F respectively. Then
 - a) What is the perimeter of Δ ABC ?
 - b) What is the length of side DE of Δ DEF ?

ii)

In fig, two circles intersect each other at points

S and R respectively. Their common tangents
the circle at points P and Q. then prove that

$$\angle PSQ + \angle PRQ = 180^{\circ}$$
