

MAT1320 LINEAR ALGEBRA EXERCISES XI-XIV

	1911	
	Name Surname:	Group No:
	Student No:	Duration:
	Department:	Date:
Ī	Lecturer: Dr. Mustafa SARI	Signature:

- 1. Let $V = \mathbb{R}^2$ and $A = \{(1,0), (0,1)\}, B = \{(2,0), (1,3)\}, C =$ $\{(1,-3),(2,4)\}$ be subsets of V. The vector $v=(8,6)\in V$ can be written as the linear combination of
 - a) Only A
- b) A and B
- c) Only C

- d) B and C
- (e) A, B and C

3. Let $M_{n\times n}$ denote the vector space of all $n\times n$ real matrices. Consider the subset

$$W = \left\{ \left[\begin{array}{cc} a & b \\ c & 0 \end{array} \right] \in M_{2 \times 2} \mid a+b+c = 0 \text{ where } a,b,c \in \mathbb{R} \right\}$$

Which of the following statements are always true?

- I. The set W is a subspace of $M_{2\times 2}$.
- $\text{II. } B = \left\{ \left[\begin{array}{cc} 1 & 0 \\ -1 & 0 \end{array} \right], \ \left[\begin{array}{cc} 2 & 0 \\ -2 & 0 \end{array} \right] \right\} \text{ forms a basis for } W.$
- III. $\dim(W) = 2$.
 - a) Only I
- b) Only II
- c) Only III

- d) I and II
- e) I and III

- 2. Let $S = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid y = x + z, \text{ where } x, y, z \in \mathbb{R} \right\}$ be the subspace of \mathbb{R}^3 . What is the dimension of S?
- c) 3
- d) 4
- e) None of them

- 4. (C points) For what value(s) of t, the set $\{(1,0,2),(0,t,1),(t^2,0,2)\}$ forms a basis for \mathbb{R}^3 ?

 - a) $t \in \mathbb{R} \{0, 1\}$ b) $t \in \mathbb{R} \{0, -1\}$
- d) $t \in \{-1, 0, 1\}$
- e) $t \in \mathbb{R} \{-1, 0, 1\}$

5. Which of the following matrices is the transition matrix $[M]_S^T$ from basis S to basis T of \mathbb{R}^2 where

$$S = \{(-3,2), (4,-2)\}, T = \{(-1,2), (2,-2)\}$$
?

- a) $\begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix}$ b) $\begin{bmatrix} -1 & -2 \\ -2 & 3 \end{bmatrix}$ c) $\begin{bmatrix} -1 & 2 \\ -2 & -3 \end{bmatrix}$

6. Let $S = \{(1,0,1), (1,1,0), (0,0,1)\}$ and $T = \{w_1, w_2, w_3\}$ be ordered bases for \mathbb{R}^3 . Suppose that the transition matrix from T to S is $[M]_T^S = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$.

Which of the following is T?

- a) $\{(3,2,0),(2,1,0),(3,1,2)\}$
- b) $\{(1,0,1),(2,1,3),(3,0,1)\}$
- c) $\{(1,1,1),(1,1,3),(3,3,1)\}$
- d) $\{(1,2,1),(1,1,2),(2,2,1)\}$
- e) $\{(2,0,2),(1,3,0),(3,0,1)\}$

- $\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 3 \\ 0 & 0 & 2 \end{bmatrix}$. Which of the following can be the eigenvector associated with the largest eigenvalue of the matrix A?
- a) $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ b) $\begin{bmatrix} 5\\2\\3 \end{bmatrix}$ c) $\begin{bmatrix} 15\\6\\1 \end{bmatrix}$

- 8. If $\lambda = 1$ is one of the eigenvalues of the matrix A = 1which of the following might be another
- b) 3

9. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If ad - bc = 5 and a + d = 6, which of the following is the characteristic polynomial of A?

a)
$$p(\lambda) = \lambda^2 - 6\lambda + 5$$

b)
$$p(\lambda) = 3\lambda^2 - 4\lambda + 6$$

c)
$$p(\lambda) = \lambda^2 - 5\lambda + 6$$

d)
$$p(\lambda) = 2\lambda^2 - 3\lambda + 6$$

e)
$$p(\lambda) = \lambda^2 + 5\lambda - 6$$

10. Let B be an invertible matrix with an appropriate size and $A = \begin{bmatrix} -1 & 2 \\ 3 & 3 \end{bmatrix}$. If the equation $A^{-1}B^2 = A^3B$ holds, what is B? (Hint: Cayley-Hamilton theorem can be used.)

a)
$$16A + 24I_5$$

a)
$$16A + 24I_2$$
 b) $32A + 34I_2$

c)
$$44A + 117I_2$$

d)
$$76A + 184I_2$$
 e) $96A + 196I_2$

e)
$$96A + 196A$$