

Tipo	Símbolo y relaciones básicas	Curva de transferencia	Resistencia y capacitancia de entrada	
JFET (canal n)	$I_G = 0 \text{ A}, I_D = I_S$ $G \qquad \qquad I_{DSS}$ V_P $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2$	$V_{P} = \frac{V_{P}}{2} = 0.3 V_{P} = 0$ V_{GS}	$R_i > 100 \mathrm{M}\Omega$ C_i : $(1 - 10) \mathrm{pF}$	
MOSFET tipo empobrecimiento (canal n)	$I_{G} = 0 \text{ A}, I_{D} = I_{S}$ $G \qquad \qquad D$ I_{DSS} V_{P} $I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}}\right)^{2}$	V_P V_{GS} V_{GS}	$R_i > 10^{10} \Omega$ C_i : (1 - 10) pF	
MOSFET tipo enriquecimiento (canal n)	$I_G = 0 \text{ A}, I_D = I_S$ $G \qquad \qquad D$ V_T $I_{D(\text{encendido})}$ $V_{GS(\text{encendido})}$ $V_{GS(\text{encendido})}$ $V_{GS(\text{encendido})}$ $V = \frac{I_{D(\text{encendido})}}{(V_{GS(\text{encendido})} - V_{GS(\text{Th})})^2}$	$I_{D(\text{encendido})}$ $I_{D(\text{encendido})}$ $V_{GS(\text{Th})}$ $V_{GS(\text{encendido})}$ V_{GS}	$R_i > 10^{10} \Omega$ C_i : (1 - 10) pt	
MESFET tipo empobrecimiento (canal n)	$I_G = 0 \text{ A}, I_D = I_S$ $G \longrightarrow S$ $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2$ $I_G = 0 \text{ A}, I_D = I_S$	I_{DSS} I_{DSS} $-\frac{I_{DSS}}{2}$ $-\frac{I_{DSS}}{4}$ V_{P} V_{P} V_{P} $0.3 V_{P}$ 0 V_{GS}	$R_i > 10^{12} \Omega$ C_i : $(1 - 5) \text{ pF}$	
Termin Patricip 18 and day	$G = k (V_{GS} - V_{GS} (Th))^{2}$ $k = \frac{I_{D(\text{encendido})}}{(V_{GS(\text{encendido})} - V_{GS} (Th))^{2}}$	I_D $I_{D(\text{encendido})}$ $V_{GS(\text{Th})}$ $V_{GS(\text{encendido})}$	$R_i > 10^{12} \Omega$ C_i : $(1 - 5) \text{ pF}$	

TABLA 7.1 Configuraciones de polarización con FET.

1136 STATE 2:03	TABLA 7.1 Configuraciones de polarización con FET.			
March 12	Configuración	Ecuaciones pertinentes	Solución gráfica	
Tipo Polarización fija del JFET	Configuration V_{DD} R_D R_D	$V_{GS_Q} = -V_{GG}$ $V_{DS} = V_{DD} - I_D R_S$	Punto Q V _G	
Autopolarización del JFET	R_G R_S	$V_{GS} = -I_D R_S$ $V_{DS} = V_{DD} - I_D (R_D + R_S)$	Punto Q $V_{P_1V_{GS}} 0 \qquad V_{GS}$	
Polarización por medio de divisor le voltaje del JFET	R_1 R_D R_D	$V_{G} = \frac{R_{2}V_{DD}}{R_{1} + R_{2}}$ $V_{GS} = V_{G} - I_{D}R_{S}$ $V_{DS} = V_{DD} - I_{D}(R_{D} + R_{S})$	$\begin{array}{c c} I_D \\ I_{DSS} \\ \hline V_P & 0 & V_G & V_{GS} \\ \hline \end{array}$	
JFET en compuerta común	$\begin{cases} V_{DD} \\ R_D \end{cases}$ $\begin{cases} R_S \\ -V_{SS} \end{cases}$	$V_{GS} = V_{SS} - I_D R_S$ $V_{DS} = V_{DD} + V_{SS} - I_D (R_D + R_S)$	Punto Q $V_{P} = \begin{bmatrix} I_{DSS} \\ V_{SS} \\ \hline V_{P} \end{bmatrix}$	
$ JFET \\ (R_D = 0 \Omega) $	V _{DD} R _D	$V_{GS} = -I_D R_S$ $V_D = V_{DD}$ $V_S = I_D R_S$ $V_{DS} = V_{DD} - I_S R_S$	Punto Q $V_{P} V_{CS} = 0$	
Caso especial con JFET $(V_{GS_Q} = 0 \text{ V})$	$V_{GG} \stackrel{QV_{DD}}{=} V_{GG}$	$V_{GS_Q} = 0 \text{ V}$ $I_{D_Q} = I_{DSS}$	Punto Q $V_{CS_Q} = 0$ $V_P \qquad 0 \qquad V$	
Polarización fija del MOSFET tipo empobrecimiento (y MESFET)	R_G R_S	$V_{GS_Q} = +V_{GG}$ $V_{DS} = V_{DD} - I_D R_S$	I_{DSS} Punto Q $V_{P} = 0 V_{GG}$	
Polarización por medio de divisor de voltaje del MOSFET tipo empobrecimiento (y MESFET)	$ \begin{array}{c c} R_1 & R_D \\ R_2 & R_S \end{array} $	$V_{G} = \frac{R_{2}V_{DD}}{R_{1} + R_{2}}$ $V_{GS} = V_{G} - I_{S}R_{S}$ $V_{DS} = V_{DD} - I_{D}(R_{D} + R_{S})$	· ·	
Configuración de realimentación del MOSFET tipo enriquecimiento (y MESFET)	$\begin{bmatrix} V_{DD} \\ R_G \\ R_D \end{bmatrix}$	$V_{GS} = V_{DS}$ $V_{GS} = V_{DD} - I_D R_D$	$I_{D(\text{encendiklo})} - Punto Q$ $0 V_{GS(Th)} V_{Q}$	
Polarización por medio de divisor de voltaje del MOSFET tipo enriquecimiento (y MESFET)	R_1 R_2 R_3	$V_G = \frac{R_2 V_{DD}}{R_1 + R_2}$ $V_{GS} = V_G - I_D R_S$	$ \frac{V_G}{R_S} \mid I_D \\ Punto Q \\ 0 V_{GS(Th)} $	

Z_i , Z_o , y A_v para varias configuraciones de FET.			
Configuración	Z_{l}	Z_0	$A_{v} = \frac{V_{o}}{V_{t}}$
Polarización fija (JFET o D-MOSFET) $V_{i} \stackrel{C_{1}}{\rightleftharpoons} V_{GG}$ $V_{i} \stackrel{C_{1}}{\rightleftharpoons} V_{GG}$	$V_o = \boxed{R_G}$	Mediana (2 k Ω) $= R_D \ r_d \ _{(r_d = 10 R_D)}$ $\cong R_D \ _{(r_d = 10 R_D)}$	Mediana (-10) $= \boxed{-g_m(r_d R_D)}$ $\cong \boxed{-g_m R_D}$ $r_{e^{-10}R_M}$
Autopolarización con R_S con capacitor de puenteo (JFET o D-MOSFET)	. 4	ans 180 th cate elemination	e Para su um resis
$V_{i} \stackrel{C_{1}}{\longrightarrow} R_{G} \stackrel{C_{2}}{\longrightarrow} C_{S}$	Alta (10 M Ω) $= \boxed{R_G}$	Mediana $(2 k\Omega)$ $= R_D \ r_d \ _{r_d \ge 10 R_D}$ $\cong R_D \ _{r_d \ge 10 R_D}$	Mediana (-10) $= \left[-g_m(r_d R_D) \right]$ $\cong \left[-g_m R_D \right]^{r_s \ge 10 R_D}$
Autopolarización con R_S sin capacitor de puenteo (JFET o D-MOSFET)	Liverance apert of a serious control of the control	Carlos Anna como cono	Baja (-2)
$V_{i} \stackrel{C_{1}}{\longrightarrow} R_{G}$ $R_{G} \stackrel{C_{2}}{\longrightarrow} R_{S}$	$= [R_G]$	$= \frac{\left[1 + g_m R_S + \frac{R_S}{r_d}\right] R_D}{\left[1 + g_m R_S + \frac{R_S}{r_d} + \frac{R_D}{r_d}\right]}$ $= R_D$ $r_d \ge 10 R_D \text{ or } r_d = \infty \Omega$	$= \frac{g_m R_D}{1 + g_m R_S + \frac{R_D + R_S}{r_d}}$ $\approx \frac{g_m R_D}{1 + g_m R_S}$ $[r_s \ge 10/R_S]$
Polarización con divisor de voltaje (JFET o D-MOSFET) R_1 R_D C_1 R_1 R_D C_2 R_S R_S R_S R_S R_S	Alta (10 M Ω) $= R_1 \ R_2$	Mediana (2 k Ω) $= R_D \ r_d \ _{(r_d \ge 10 R_D)}$	Mediana (-10) $= \left[-g_m(r_d \ R_D) \right]$ $\cong \left[-g_m R_D \right]_{(r_d \ge 10 R_D)}$
Ť Ť Ť		S 37 M k C	14 05

	TABLA 8.1 (Continuación)	
Configuración	Z_{l}	Z_o	$A_{\nu} = \frac{V_{\sigma}}{V_{t}}$
Computata común (JET o D-MOSFET) $V_1 \circ V_2 \circ V_3 \circ V_4 \circ V_5 \circ V_6$ $V_2 \circ V_6 \circ V_6 \circ V_6$	Baja (1 k Ω) $= R_{S} \ \left[\frac{r_{d} + R_{D}}{1 + g_{m}r_{d}} \right] $ $\approx R_{S} \ \frac{1}{g_{m}} \ _{\alpha_{s} \ge 10 P_{D}}$	Medium (2 k Ω) $= \begin{bmatrix} R_D \ r_d \end{bmatrix}$ $\cong \begin{bmatrix} R_D \end{bmatrix}_{\sigma_r = 00 r_c}$	Mediana (+10) $= \frac{g_m R_D + \frac{R_D}{r_d}}{1 + \frac{R_D}{r_d}}$ $\cong g_m R_D$ $G_{CP} = 0.020$
Seguidor de fuente (JET o D-MOSFET) $V_{i} \circ V_{o} = V_{o} \circ V_{o}$ $V_{i} \circ V_{o} \circ V_{o} \circ V_{o}$	Alta (10 M Ω) $= \boxed{R_G}$	Baja (100 k Ω) $= r_d \ R_S \ 1/g_m $ $\cong R_S \ 1/g_m \ _{C_p \ge 10 R_0}$	Baja (<1) $= \frac{g_m(r_d R_S)}{1 + g_m(r_d R_S)}$ $\approx \frac{g_m R_S}{1 + g_m R_S}$ $(r_{g_m} R_S)$
Polarización mediante realimentación del drenaje E-MOSFET V_{DD} R_F R_D C_2 V_O V_O V_O	Mediana (1 M Ω) $= \frac{R_F + r_d R_D}{1 + g_m (r_d R_D)}$ $\approx \frac{R_F}{1 + g_m R_D} \Big _{(r_d \ge 10 R_D)}$	Medium (2 k Ω) $= R_F r_d R_D$ $\cong R_D \qquad (R_f, r_f \approx 10R_0)$	Mediana (-10) $= \left[-g_m(R_F r_d R_D) \right]$ $\cong \left[-g_m R_D \right]_{(Z_F, r_g = 1 \otimes Z_D)}$
Polarización por divisor de voltaje E-MOSFET R_1 R_2 R_3 R_5 R_5	Mediana (1 M Ω) $= R_1 \ R_2$	Mediana (2 k Ω) $= R_D \ r_d \ _{(r_i \approx 10 R_D)}$ $\cong R_D$	Mediana (-10) $= \left[-g_m(r_d R_D) \right]$ $\cong \left[-g_m R_D \right]_{(r_d \ge 10 R_D)}$

in page of the start of the sta	TABLA 8.2		
Configuración	$A_{v_L} = V_o \ V_i$	Z_i	Z_o
V _{DD}	of the state of the state of	11 2000 11 .	20
R_D	$-g_m(R_D R_L)$	R_G	R_D
$\begin{array}{c c} R_{\text{sig}} & V_{I} \\ \downarrow & & Z_{I} \\ \downarrow & R_{G} \\ \downarrow & R_{S} \\ \downarrow & R_{S} \\ \downarrow & R_{S} \\ \downarrow & R_{L} $	$\operatorname{Con} r_d$:	communication of the control of the	
	$-g_m(R_D R_L r_d)$	R_G	$R_D \ r_d$
R_D	$\frac{-g_m(R_D R_L)}{1+g_mR_S}$	Constant RG	$\frac{R_D}{1 + g_m R_S}$
V_i Z_i R_G R_S R_C R_S	$\frac{-g_m(R_D \ R_L)}{1 + g_m R_S + \frac{R_D + R_S}{r_d}}$	R_G	$\cong \frac{R_D}{1 + g_m R_S}$
R_{Sig} V_{i} V_{i}	$-g_m(R_D R_L)$	$R_1 \parallel R_2$	R _D
V_{i} V_{i	$\operatorname{Con} r_d: \\ -g_m(R_D \ R_L \ r_d)$	$R_1 \ R_2$	$R_D \ r_d;$
$R_{\text{sig}} = V_{DD}$	$\frac{g_m(R_S R_L)}{1 + g_m(R_S R_L)}$	R_G	$R_S 1/g_m$
$V_{i} \longrightarrow Z_{i} \qquad R_{G} \qquad R_{S} \longrightarrow Z_{o} \qquad R_{L}$	$\operatorname{Con} r_d:$ $= \frac{g_m r_d(R_S \ R_L)}{r_d + R_D + g_m r_d(R_S \ R_L)}$	R_G	$\frac{R_S}{1 + \frac{g_m r_d R_S}{r_d + R_D}}$
$\begin{array}{c c} R_{\text{sig}} & V_i \\ \hline \end{array}$	$g_m(R_D R_L)$	$\frac{R_S}{1 + g_m R_S}$	R_D
$V_{i} \longrightarrow Z_{i} \qquad R_{S} \qquad V_{DD} \stackrel{R_{D}}{=} Z_{o} \qquad R_{L}$	$\operatorname{Con} r_d: \\ \cong g_m(R_D \ R_L)$	$Z_{i} = \frac{R_{S}}{1 + \frac{g_{m}r_{d}R_{S}}{r_{d} + R_{D} R_{L}}}$	$R_D \ r_d$

Mappile and this in 1997, the Quit important and applications of the contraction of the c

\$ 48 mg in 12 mg in 1