Grafos, Dígrafos y Árboles

Alejandra Isola Joaquín Azcarate

1. Grafos

Conjunto de puntos o nodos unidos por arcos o aristas. Un grafo se describe con una terna (V,A,φ) siendo:

- \blacksquare V: Conjunto de vértices
- A: Conjunto de aristas
- $\varphi: A \to \mathcal{V} \subseteq \{x \in \mathcal{P}(V) : |x| \in \{1, 2\}\}$

1.1. Vértices

Vértices adyacentes v_i es adyacente a $v_j \iff \exists a_k \in A : \varphi(a_k) = \{v_i, v_j\}$

Vértices aislados v_k es aislado \iff $\nexists a_k \in A : v_k \in \varphi(a_k)$

Istom v es istmo \iff G es conexo \Rightarrow \Rightarrow $G' = (V - \{v\}, A, \varphi/_{V - \{v\}})$ no es conexo

1.2. Aristas

Aristas paralelas a_i es paralela a $a_j \iff \varphi(a_i) = \varphi(a_j)$

Aristas adyacentes a_i es adyacente a $a_j \iff \exists v_k \in V : v_k \in \varphi(a_i) \land v_k \in \varphi(a_j)$

Bucle o lazo a_k es un bucle $\iff |\varphi(a_k)| = 1$

Aristas incidentes a un vértice a_i y a_j son incidentes en el vértice $v \iff v \in \varphi(a_i) \land v \in \varphi(a_j)$

Grado o valencia de un vértice $g: V \to \mathbb{Z}$ $g(v_i) = \text{cantidad de aristas incidentes}$ Nota: Los bucles se cuentan doblemente

$$\sum_{i} g(v_i) = 2|A|$$

Puente a es puente $\iff G$ es conexo \Rightarrow $\Rightarrow G' = (V, A - \{a\}, \varphi/_{A - \{a\}})$ no es conexo

Conjunto desconectante Un conjunto de puentes

Conjunto de corte Mínimo conjunto desconectante

1.3. Grafos Particulares

Grafo simple No tiene aristas paralelas ni bucles

Grafo K-regular G es K-regular $\iff K \in \mathbb{N}_0 \land \forall v \in V : g(v) = K$

Grafo completo (K_n) $\forall v, w \in V, v \neq w, \exists a \in A : \varphi(a) = \{v, w\}$

Grafo bipartito $V = V_1 \bigcup V_2, \ V_1 \neq \phi$ $V_2 \neq \phi, \ V1 \bigcap V2 = \phi, \ \forall a_i \in A:$ $\varphi(a_i) = \{v_j, v_k\}, \ v_j \in V_1 \land v_k \in V2$

Subgrafos $G' = (V', A', \varphi') : V' \subseteq V, A' \subseteq A, \varphi' : A' \to \mathcal{V}'$

Componente conexa Son las clases de equivalencia de la relación $R: v_i R v_k \iff$ $\implies \exists$ un camino de v_i a $v_j \lor v_i = v_j$

- **Grafo Conexo** Un grafo con una única componente conexa
- Conectividad El menor número de istmos
- **Grafos planos** Grafo que se puede dibujar sin que se crucen aristas

1.4. Caminos y Ciclos

Camino Sucesión de aristas advacentes distintas

- Ciclo o circuito Camino cuyo vértice inicial conicide con el final
- Longitud Cantidad de aristas que componen un camino
- Camino simple Camino con todas sus aristas distintas
- Camino elemental Camino con todos sus vértices distintos
- **Camino euleriano** Camino que pasa por *todas* las aristas *una sola vez* CNyS:
 - Ser conexo
 - $\forall v_i : g(v_i) = 2k; k \in \mathbb{N}$ o a lo sumo dos vértices de grado impar
- **Ciclo euleriano** Ciclo que pasa por *todas* las aristas *una sola vez* CNyS:
 - Ser Conexo
 - $\forall v_i : g(v_i) = 2k$
- Camino/Ciclo hamiltoniano Camino/Ciclo que pasa por *todos* los vértices *una sola vez*

1.5. Representación Matricial

$$\begin{aligned} \textbf{Matriz de incidencia} & \ Mi^{|V|x|A|} \\ a_{ij} = \left\{ \begin{array}{ll} 1 & v_i \text{ es incidente a } a_j \\ 0 & v_i \text{ no es incidente a } a_j \end{array} \right. \end{aligned}$$

$$\begin{aligned} \textbf{Matriz de adyacencia} \ \ & Ma^{|V|x|V|} \\ a_{ij} = \left\{ \begin{array}{ll} 1 & v_i \text{ es adyacente a } v_j \\ 0 & v_i \text{ no es adyacente a } v_j \end{array} \right. \end{aligned}$$

1.6. Isomorfismo

Dado $G_1 = (V_1, A_1, \varphi_1)$ y $G_2 = (V_2, A_2, \varphi_2)$ G_1 es isomorfo a $G_2 \iff$ $\iff \exists f: V_1 \to V_2 \land h: A_1 \to A_2$, ambas funciones biyectivas y $\forall a \in A_1: \varphi_2(h(a)) = f(\varphi_1(a))$

1.7. Teorema de Kuratowski

Un grafo es plano \iff no contiene ningún subgrafo isomorfo al $K_{3,3}$ o al K_5

2. Dígrafos

Conjunto de puntos o nodos unidos por arcos o aristas direccionadas

Un grafo se describe con una terna (V, A, δ) , siendo:

- \blacksquare V: Conjunto de vértices
- A: Conjunto de aristas
- $\delta: A \to VxV$

2.1. Aristas

Aristas paralelas a_i es paralela a $a_j \iff \delta(a_i) = \delta(a_j)$

Aristas antiparalelas a_i es antiparalela a a_j $\iff \delta(a_i) = (v_1, v_2) \Rightarrow \delta(a_j) = (v_2, v_1)$

Bucle o lazo a_k es un bucle $\iff \delta(a_k) = (v, v)$

Grado positivo (g^+) Cantidad de aristas que "entran" al vértice

Grado negativo (g^-) Cantidad de aristas que "salen" del vértice

Grado total (g) $g^+ + g^-$

Grado neto (g_N) $g^+ - g^-$

Pozo $g^{-}(v) = 0$

Fuente $g^+(v) = 0$

2.2. Grafo Asociado

Dado el dígrafo $(V,A,\delta),$ se define el grafo asociado $(V,A,\varphi)\;:\;$

 $\forall a_i \in A, \ \varphi(a_i) = \{Primero(\delta(a_i)), Segundo(\delta(a_i))\}\$

Dígrafos Particulares

Dígrafos conexo Aquel cuyo grafo asociado sea conexo

Dígrafos fuertemente conexo \forall de par vértices, ∃ un camino entre ellos

CAMINOS Y CICLOS

Se debe respetar el sentido de las aristas

Ciclo euleriano CNyS: $\forall v \in V : g^+(v) = g^-(v)$

Representación Matricial

Matriz de incidencia $Mi^{|V|x|A|}$

triz de incidencia
$$Mi^{(i)}|_{a_{ij}}$$

$$a_{ij} = \begin{cases} 1 & \exists v_x \in V : \delta(a_j) = (v_i, v_x) \\ -1 & \exists v_x \in V : \delta(a_j) = (v_x, v_i) \\ 0 & \text{si } v_i \text{ no es extremo de } a_j \end{cases}$$

$$\begin{aligned} \textbf{Matriz de adyacencia} \ \ & Ma^{|V|x|V|} \\ a_{ij} = \left\{ \begin{array}{ll} 1 & \exists a \in A \ : \ \delta(a) = (v_i, v_j) \\ 0 & \nexists a \in A \ : \ \delta(a) = (v_i, v_j) \end{array} \right. \end{aligned}$$

3. Árboles

Grafo conexo y sin ciclos

Un grafo donde existe un único camino simple entre todo par de vértices

- Todas las aristas son puente
- |V| = |A| + 1

Hoja g(v) = 1

Árbol Dirigido 3.1.

Antecesor v es antecesor de $w \iff$

 $\iff \exists !$ camino simple de v a w

Sucesor v es sucesor de $w \iff$

 $\iff w$ es antecesor de v

Padre v es padre de $w \iff \exists a_k : \delta(a_k) = (v, w)$

Hijo v es hijo de $w \iff w$ es padre de v

Hermanos v es hermano de $w \iff v$ y w tienen el mismo padre

Nivel Cantidad de padres tiene hasta llegar a la raiz

Altura Máximo nivel

3.2. ÁRBOLES PARTICULARES

 \mathcal{N} -ario $\forall v \in V : q^-(v) < \mathcal{N}$

 \mathcal{N} -ario regular $\forall v \in V : g(v) = 0 \lor g(v) = \mathcal{N}$

 \mathcal{N} -ario regular pleno o completo \mathcal{N} =ario regular donde todas las hojas se hallan en el mismo nivel

3.3. RECORRIDO DE ÁRBOLES

Orden previo o pre-orden Notación polaca

- 1. Nomrar la raiz
- 2. Recorre el sub-árbol izquierdo
- 3. Recorre el sub-árbol derecho

Orden simetrico o in-orden Notación usual o infija

- 1. Recorre el sub-árbol izquierdo
- 2. Nomrar la raiz
- 3. Recorre el sub-árbol derecho

Orden posterior o post-orden Notación polaca inversa

- 1. Recorre el sub-árbol izquierdo
- 2. Recorre el sub-árbol derecho
- 3. Nomrar la raiz