НИУ ИТМО ФПИиКТ

Информатика

Лабораторная работа №6

Работа с системой компьютерной вёрстки ТЕХ

Вариант: 22,год-1972,выпуск 2 — материал не найден — вариант 1991, выпуск 2.

Выполнил: Раевский Григорий Романович

Группа: Р3121

Преподаватель: Болдырева Елена Александровна

 $=\pm\frac{3}{5}$, т. е. либо $\sin^2 x = \frac{1}{5}$, либо $\sin^2 x = \frac{4}{5}$. То и другое противоречит равенству $\sin x = \frac{5\sqrt{2}}{8}$.

Вариант 8.

1. $\pi n/3$, $n \in \mathbb{Z}$. **2**. ± 6 . **3**. $[1;5) \cup (10;\infty)$. **4**. 1:6. Указание. Пусть S — площадь параллелограмма ABCD. Тогда $S_{KBL} = \frac{1}{3}S_{ABL} = \frac{1}{24}S$, a $S_{BLM} = \frac{1}{4}S$.

5. 5 < a < 7. Указание. Квадратное уравнение $ax^2 + bx + c = 0$ имеет два положительных корня тогда и только тогда, когда

$$\begin{cases} ac > 0, \\ b^2 - 4ac > 0, \\ ab < 0. \end{cases}$$

Вариант 9

Имеют.

2. $(-\infty; -5/4] \cup (-1/4)$.

3. 6/23. Указание. Пусть $\alpha = \angle ACK$. Тогда $\angle AKO = \frac{\pi}{2} - 2\alpha$, и по теореме сину

$$\cos rac{AK}{\sin lpha} = rac{AC}{\sin \left(rac{\pi}{2} - 2lpha
ight)},$$
 откуда $10\sin^2 lpha +$

 $23\sin\alpha-5=0,$ т. е. $\sin\alpha=\frac{1}{5}.$ Кроме того, $AK=AQ\tan2\alpha=BO\tan2\alpha=BM\tan^22\alpha$

4. a = 8, b = 56, c = 392. Указание. По условию b = aq, $c = aq^2$, где a и q – натуральные числа. Из делимости чисел $2240 = 2^6 \cdot 5 \cdot 7$ и 4312 = $2^3 \cdot 7^2 \cdot 11$ на b и c следует, что q может приниматься одно из трех значений 2, 7 или 14.

5. 7/4, 1/4. Указание. Пользуясь соотношением $A\sin\alpha + B\cos\beta = \sqrt{A^2 + B^2} \cdot \sin\alpha + \phi$, убедитесь в том, что левая часть уравнения не больше $\sqrt{2}$ при любых x, причем она равна $\sqrt{2}$ только при $\operatorname{ctg} 2\pi x = 1.$

6. a=-1; a=2. Указание. Поскольку $3-2\sqrt{2}=$ $\frac{1}{3+2\sqrt{2}}$ вместе с решением $(x_0;y_0)$ системе удовлетворяет также решение $(x_0; -y_0)$. Если решение единственно, то $y_0 = 0$.

Вариант 10

1. $\frac{\pi}{3}(6x \pm 1), k \in \mathbb{Z}$.

2. $(2; (7+\sqrt{17})/4)$. **3**. 2:5. **4**. 2,1 Kr.

5. 8. Указание. Высота h пирамиды находится из равенства $V\frac{1}{3}rS$, где V – объем пирамиды, S – полная поверхность пирамиды, а r – радиус вписанного шара.

Вариант 11

1. $\frac{\pi}{12}(12k \pm 5), k \in \mathbb{Z}$.

2. $(0; \log_2 3)$.

3. $[-1; 2] \cup [3; 4]$.

4. 90 $\sqrt{3}$. Указание. Пусть $AO=x,\,DO=y$ (рис. 9), поскольку $\frac{BC}{AD}=\frac{OC}{AO}=\frac{OB}{DO}=\frac{1}{2},$

Puc. 9.

получим BC = 8, $OC = \frac{1}{2}x$, $OB = \frac{1}{2}y$. Далее,

 $AC + BD = \frac{3}{2}(x + y) = 36$. Кроме того, из треугольника DEO, где $EO \perp DE$, имеем $OE^2 =$

=
$$OD^2-DE^2$$
. Но $OE=\frac{\sqrt{3}}{2}x,\,DE=16-AE==16-\frac{1}{2}x.$ Поэтому $\frac{3}{4}x^2=y^2-(16-\frac{1}{2}x)^2.$

Остальное ясно.

5. $(0; \frac{1}{54})$. Указание. Поскольку функция a = $f(x) = 2x^3 + x^2 - x - 1$ возрастает, димо найти решения системы

$$\begin{cases} 12x^3 - 7x > 6f(x) + 1, \\ x > 0; \end{cases}$$

а затем множество положительных значений aпри этих значениях x.

Физика

Физический факультет

1. $h = gt_1t_2(4t + t_1 + t_2)/(2(t_1 + t_2))$.

2.
$$\omega_{\min} \le \omega \le \omega_{\max}$$
, paramondo $\omega_{\min} = \sqrt{\frac{g}{R}} \frac{\sin \alpha - \mu \cos \alpha}{(\cos \alpha + \mu \sin \alpha) \sin \alpha)}$,

$$\cos \alpha = \frac{R-h}{R}$$

$$\omega_{\rm max} = \sqrt{\frac{g}{R}} \frac{\sin \alpha + \mu \cos \alpha}{(\cos \alpha - \mu \sin \alpha) \sin \alpha},$$

$$\sin \alpha = \frac{\sqrt{(2R-h)/h}}{R}$$

(α - угол между радиусом, соединяющим шайбу с центром сферы, и вертикалью).

3.
$$V_{\text{погр}}/V_{\text{доски}} = 5/8$$
.
4. $\delta x_{\text{max}} = \frac{mg}{k} + \sqrt{(\frac{mg}{k})^2 + \frac{2m^2gH}{k(M+m)}}$,

причем колебания происходят около нового положения равновесия с координатой $x_0 = (M +$ m)g/k.

5.
$$H = \frac{p_0}{\rho_0 g} (\frac{L}{2d} - 1) + \frac{L(\rho - \rho_0)}{2\rho_0} - d.$$

6. $A = \nu R(T_3 - T_4)(T_2T_4 - 2T_3T_4 + T_3T_1)/(2T_3T_4).$

7. $I = \varepsilon I_0(\varepsilon + RI_0) = 0, 1 \text{ A}.$

8. $z_n = 2\pi^2 Emn^2/(eB^2) > 0, n = 1, 2, 3, ...$

Случайная таблица:

Формула 1	Формула 2	Формула 3	Формула 4
$c = \sqrt{a^2 + b^2}$	$\sin^2 x + \cos^2 x = 1$	$\lim_{x \to \infty} \frac{1}{x} = 0$	$ax^2 + bx + c = 0$
$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$	$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$	$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$	$S = v_0 t + \frac{at^2}{2}$