РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

дисциплина: Сетевые технологии

Студент: Бансимба Клодели Дьегра

Студ. билет № 1032215651

Группа: НПИбд-02-22

МОСКВА

2024 г.

Цель работы

Изучить принципы технологий Ethernet и Fast Ethernet и практически освоить методики оценки работоспособности сети, построенной на базе технологии Fast Ethernet.

Задание

Оценить работоспособность 100-мегабитной сети Fast Ethernet в соответствии с первой и второй моделями.

Конфигурации сети приведены в табл. 1. Топология сети представлена на рис. 1.

Таблица 1

Nº	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6
	100BASE-TX,96	100BASE-TX,92	100BASE-TX,80	100BASE-TX,5	100BASE-TX,97	100BASE-TX,97
1.	М	М	М	M	М	м
	100BASE-TX,95	100BASE-TX,85	100BASE-TX,85	100BASE-TX,90	100BASE-TX,90	100BASE-TX,98
2.	М	M	M	M	M	М
	100BASE-TX,60	100BASE-TX,95	100BASE-TX,10	100BASE-TX,5	100BASE-TX,90	100BASE-TX,100
3.	М	M	M	M	M	М
	100BASE-TX,70	100BASE-TX,65	100BASE-TX,10	100BASE-TX,4	100BASE-TX,90	100BASE-TX,80
4.	М	М	М	M	M	М
	100BASE-TX,60	100BASE-TX,95	100BASE-TX,10	100BASE-TX,15	100BASE-TX,90	100BASE-TX,100
5.	М	М	М	M	М	м
	100BASE-TX,70	100BASE-TX,98	100BASE-TX,10	100BASE-TX,9	100BASE-TX,70	100BASE-TX,100
6.	М	М	М	м	М	м

Рисунок 1. Топология сети

Выполнение лабораторной работы

1. Оценим работоспособность сети в соответствии с первой моделью.

Для этого нам необходимо посчитать диаметр домена коллизий и сравнить его с предельно допустимым значением для нашей конфигурации сети.

Наша сеть состоит из терминалов с интерфейсами ТХ, а также из двух повторителей класса II, следовательно предельно допустимый диаметр домена коллизий равен 205м (из таблицы, приведенной в лабораторной работе).

Выбираем максимальные значения разделенных повторителем сегментов и суммируем их. В табл. 2 приведены необходимые расчеты (желтым выделены значения, сумму которых ищем; красным отмечены <u>не</u> работоспособные конфигурации сети, а зеленым соответственно работоспособные).

Tuonuuu 2	Таблииа	2
-----------	---------	---

Nº	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6	Диаметр домена коллизий
1.	96	92	80	5	97	97	198
2.	95	85	85	90	90	98	283
3.	60	95	10	5	90	100	200
4.	70	65	10	4	90	80	170
5.	60	95	10	15	90	100	210
6.	70	98	10	9	70	100	207

Работоспособными являются сети с конфигурациями в вариантах 1, 3 и 4.

2. Оценим работоспособность сети в соответствии со второй моделью.

Для этого нам надо вычислить время двойного оборота, поскольку диаметр домена коллизий и количество сегментов в нём ограничены временем двойного оборота, необходимым для правильной работы механизма обнаружения и разрешения коллизий.

Время двойного оборота рассчитывается для наихудшего пути между двумя узлами домена коллизий. Расчёт выполняется путём суммирования временных задержек в сегментах, повторителях и терминалах. Для вычисления времени двойного оборота нужно умножить длину сегмента на величину удельного времени двойного оборота соответствующего сегмента (в нашем случае мы берем значение для витой пары категории 5: 1,112 би/м). Определив времена двойного оборота для всех сегментов наихудшего пути, к ним нужно прибавить задержку, вносимую парой оконечных узлов и повторителями. Для учёта непредвиденных задержек к полученному результату рекомендуется добавить ещё 4 битовых интервала (би) и сравнить результат с числом 512. Если полученный результат не превышает 512 би, то сеть считается работоспособной.

В табл. 3 фиолетовым отмечены те сегменты, которые в сумме дают наихудший путь между двумя узлами домена коллизий.

В табл. 4 приведены расчеты удельного времени двойного оборота для нужных нам сегментов, также в ней представлена колонка времени двойного оборота для наихудшего пути (сумма временных задержек в сегментах, повторителях и терминалах) и колонка с учетом 4 запасных бит в случае непредвиденных коллизий.

Пример: для первого варианта время двойного оборота для наихудшего пути равно 106,752 + 5,56 + 107,864 + 100 + 92 + 92 = 504,176

Таблица 3

Компонент пути	Время двойного оборота, би
Пара терминалов с интерфейсами TX	100
Сегмент на витой паре категории 5 (100 м)	111,2
Сегмент на витой паре категории 5 (100 м)	111,2
Сегмент на витой паре категории 5 (5 м)	5,56
Повторитель класса II	92
Повторитель класса II	92

Таблица 4

Nº	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6
1.	96	92	80	5	97	97
2.	95	85	85	90	90	98
3.	60	95	10	5	90	100
4.	70	65	10	4	90	80
5.	60	95	10	15	90	100
6.	70	98	10	9	70	100

Таблица 5

Nº	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6	Время двойного оборота для наихудшего пути	+ запасные биты
1.	106,752			5,56		107,864	504,176	508,176
2.	105,64			100,08		108,976	598,696	602,696
3.		105,64		5,56		111,2	506,4	510,4
4.					100,08	88,96	381,04	385,04
5.		105,64		16,68		111,2	517,52	521,52
6.		108,976		10,008		111,2	514,184	518,184

<u>Работоспособные сети под номерами 1, 3 и 4, так как их время двойного оборота для</u> наихудшего пути не превышает 512 битовых интервалов.

Выводы

В процессе выполнения данной лабораторной работы я изучила принципы технологий Ethernet и Fast Ethernet, а также освоила методики оценки работоспособности сети, построенной на базе технологии Fast Ethernet.