Теория и реализация языков программирования. Задание 9: преобразование контекстно-свободных языков

Сергей Володин, 272 гр.

задано 2013.10.30

Упражнение 1

Упражнение 2

N-автомат $M=(\Sigma,\Gamma,Q,q_0,Z_0,\delta,\varnothing)$. $G=(N,\Sigma,P,S)$ — построена по алгоритму. Докажем, что $L(G)\subseteq L(M)$. Будем рассматривать только левые выводы.

- $1. \ \forall w \colon S \overset{\text{\tiny левый}}{\underset{\text{\tiny вывод}}{\Rightarrow^*}} w, \ w \in (\Sigma \cup N)^*, \ w \notin \Sigma^* \hookrightarrow w = u[r_0Y_1r_1][r_1Y_2r_2]...[r_{n-1}Y_nr_n], \ u \in \Sigma^*, \ r_i \in Q, \ Y_i \in \Gamma \ \ \text{доказывается}$ индукцией по длине левого вывода из свойств добавленных правил (слева всегда, возможно, нетерминалы, затем, возможно, терминалы. $[qZp] \to ...[...Yp]$, поэтому соседние состояния, отделенные скобками совпадают: ...r][r...).
- $2. \ P(k) \stackrel{\text{\tiny def}}{=} \left[\forall n \, \forall w \colon S \stackrel{\text{\tiny левый вывод}}{\underset{k \text{ improp}}{\Rightarrow}} w \equiv u[r_0Y_1r_1]...[r_{n-1}Y_nr_n] \hookrightarrow (q_0,u,Z_0) \vdash^* (r_0,\varepsilon,Y_1...Y_n) \right]$
 - (a) n=1. Из определения P могут быть только правила $S \to [q_0 Z_0 p]$, и $(q_0, \varepsilon, Z_0) \equiv (q_0, \varepsilon, Z_0) \Rightarrow P(1)$
 - (b) Пусть P(k). Рассмотрим левый вывод длины k+1: $S \Rightarrow^* y \equiv u[r_0Y_1r_1][r_1Y_2r_2]...[r_{n-1}Y_nr_n]$. Пусть начальная часть этого вывода длины k имеет вид $S \Rightarrow^* x \equiv u_l[s_0Z_1s_1][s_1Z_2s_2]...[s_{m-1}Z_ms_m]$. На последнем, k+1-м шаге был раскрыт первый нетерминал $[s_0Z_1s_1] \to z \equiv u_r[t_0W_1t_1][t_1W_2t_2]...[t_{l-1}W_lt_l].$

Тогда
$$y = \underbrace{u_l}_{\text{префикс } x} \underbrace{u_r[t_0W_1t_1][t_1W_2t_2]...[t_{l-1}W_lt_l]}_{z} \underbrace{[s_1Z_2s_2]...[s_{m-1}Z_ms_m]}_{\text{суффикс } x}.$$
Отсюда $W_1...W_lZ_2...Z_m = Y_1...Y_n, \ u = u_lu_r, \ t_0 = r_0.$

 $P(k)\Rightarrow (q_0,u_l,Z_0)\vdash^* (s_0,arepsilon,Z_1...Z_m)$. Применено правило $[s_0Z_1s_1]\to z\Rightarrow (s_0,u_r,Z_1)\vdash (t_0,arepsilon,W_1...W_l)$. Тогда $(q_0, u, Z_0) \equiv (q_0, u_l u_r, Z_0) \vdash^* (s_0, u_r, Z_1...Z_m) \vdash (t_0, \varepsilon, W_1...W_l Z_2...Z_m) \equiv (r_0, \varepsilon, Y_1...Y_n).$

3. Пусть
$$w \in L(G) \Rightarrow \exists k \colon S \overset{\text{девый вывод}}{\Rightarrow} w \in \Sigma^* \overset{P(n)}{\Rightarrow} (q_0, w, Z_0) \vdash^* (q_0, \varepsilon, \varepsilon) \Rightarrow w \in L(M)$$

Упражнение 3

Упражнение 4

Задача 1

$$L \stackrel{\text{def}}{=} \{xcy | x, y \in \{a, b\}^*, x \neq y^R\} \subset \Sigma^*, \ \Sigma \stackrel{\text{def}}{=} \{a, b, c\}.$$

1. Определим МП-автомат $\mathcal{A}\stackrel{\text{\tiny def}}{=} (\Sigma, \Gamma, Q, q_0, Z, \delta, F)$, допускающий по принимающему состоянию:

- 3. Определим $U \colon \{a,b\} \to \{A,B\} \colon U(a) = A, \ U(b) = B.$ Определим $U_r \colon \{a,b\}^* \to \{a,b,A,B\}^* \colon U_r(w) = \begin{cases} \varepsilon, & w = \varepsilon \\ w_1...w_{n-1}U(w_n), & w = w_1...w_n, \ \forall i \in \overline{1,n} \hookrightarrow w_i \in \{a,b\} \end{cases}$ заменяет последний символ на заглавный.
- 4. Докажем, что $L \subseteq L(\mathcal{A})$:
 - (a) Пусть $w \in \{a, b\}^*$. Докажем, что $(q_0, w, Z) \vdash^* (q_0, \varepsilon, U_r(w^R)Z)$ индукцией по |w|:

$$P(n) \stackrel{\text{\tiny def}}{=} \left[\forall w \in \{a, b\}^* \colon |w| = n \hookrightarrow (q_0, w, Z) \vdash^* (q_0, \varepsilon, U_r(w^R)Z) \right]$$

- i. $n=0 \Rightarrow |w|=0 \Rightarrow w=\varepsilon$. Тогда $U_r(w^R)\equiv \varepsilon$, и $(q_0,w,Z)\equiv (q_0,\varepsilon,Z)\equiv (q_0,\varepsilon,U_r(w^R)Z)\Rightarrow P(0)$.
- іі. $n=1\Rightarrow w=\sigma\in\Sigma$. Рассмотрим переходы из (q_0,σ,Z) . В стек будет добавлен $U_r(\sigma)\Rightarrow (q_0,w,Z)\equiv (q_0,\sigma,Z)\vdash (q_0,\varepsilon,U_r(\sigma)Z)\equiv (q_0,\varepsilon,U_r(w^R)Z)\Rightarrow P(1)$.
- ііі. Фиксируем $n \geqslant 1$, пусть $\underline{P(n)}$. Пусть $w \in \{a,b\}^*, |w| = n+1$. Тогда $w = w_0 \sigma, |w_0| = n > 0$. $P(n) \Rightarrow (q_0, w_0, Z) \vdash^* (q_0, \overline{\varepsilon}, U_r(w_0^R)Z)$. Тогда $(q_0, w, Z) \equiv (q_0, w_0 \sigma, Z) \vdash^* (q_0, \sigma, U_r(w_0^R)Z)$. \triangleleft переходы из $(q_0, \sigma, U(w_0^R)Z)$. На верхушке стека $\gamma \in \{a, b, A, B\}$ первый символ $U_r(w_0^R)$, входной символ $\sigma \in \{a, b\}$. Во всех случаях он будет добавлен в стек (см. определение δ), значит, $(q_0, \sigma, U_r(w_0^R)Z) \vdash (q_0, \varepsilon, \sigma U_r(w_0^R)Z) \stackrel{|w_0| > 0}{=} (q_0, \varepsilon, U_r(w^R)Z) \Rightarrow P(n+1)$.
- (b) Из определения δ имеем $(q_0, cw, \gamma) \vdash^* (q_1, w, \gamma), |\gamma| > 0, \gamma \neq Z$.
- (c) Докажем $(q_1, x, xZ) \vdash^* (q_1, \varepsilon, Z)$ индукцией по |x|: $P(n) \stackrel{\text{def}}{=} \left[\forall x \in \{a, b\}^* \colon |x| = n \hookrightarrow (q_1, x, xZ) \vdash^* (q_1, \varepsilon, Z) \right]$
 - і. $n=0 \Rightarrow |x|=0 \Rightarrow x=\varepsilon$. Тогда $(q_1,x,xZ)\equiv (q_1,\varepsilon,Z)\Rightarrow P(0)$
 - іі. Фиксируем $n \geqslant 0$. Пусть $\underline{P(n)}$. Пусть $x \in \{a,b\}^*: |x| = n+1 \Rightarrow x = x_0\sigma, |x_0| = n \stackrel{P(n)}{\Rightarrow} (q_1,x_0,x_0Z) \vdash^* (q_1,\varepsilon,Z)$. Тогда $(q_1,x,xZ) \equiv (q_1,x_0\overline{\sigma},x_0\sigma Z) \vdash^* (q_1,\sigma,\sigma Z)$. Входной символ совпадает с символом на верхушке стека, из определения δ получаем, что символ будет удален из стека: $(q_1,\sigma,\sigma Z) \vdash (q_1,\varepsilon,Z) \Rightarrow P(n)$.
- (d) Пусть $\sigma_1, \sigma_2 \in \{a, b\}, \ \sigma_1 \neq \sigma_2$. Тогда $(q_1, \sigma_1, U_r(\sigma_2)\gamma) \vdash (q_2, \varepsilon, \sigma_2\gamma)$ и $(q_1, \sigma_1, \sigma_2\gamma) \vdash (q_2, \varepsilon, \sigma_2\gamma)$ из определения δ .
- (e) Пусть $x \in \{a,b\}^*$, $\gamma \in \{a,b\}$. Тогда $(q_2,x,\gamma\kappa) \vdash^* (q_2,\varepsilon,\gamma\kappa)$ доказывается очевидно по индукции (переходы из q_2 в q_2 определены для всех символов a,b на входе и в стеке и не изменяют стек).
- (f) Пусть $\sigma \in \{a, b\}$. Тогда $(q_1, \sigma, U_r(\sigma)\gamma) \vdash (q_3, \varepsilon, \gamma)$ из определения δ .
- (g) Пусть $\sigma \in \{a,b\}$. Тогда $(q_3,\sigma,Z) \vdash (q_4,\varepsilon,Z)$ из определения δ
- (h) Пусть $x \in \{a,b\}^*$. Тогда $(q_4,x,Z) \vdash^* (q_4,\varepsilon,Z)$ доказывается очевидно по индукции (из q_4 есть переходы в q_4 по a и b при Z на верхушке стека)
- (i) Из определения δ имеем $(q_0, c, Z) \vdash (q_3, \varepsilon, Z)$.
- (j) Пусть $\underline{w \in L} \Rightarrow w = xcy, x \neq y^R; x, y \in \{a, b\}^*. \ x \neq y^R \Leftrightarrow x^R \neq y.$ Выделим максимальную по длине общую часть τ длины i у слов x^R и y: $x^R = \tau x_1, y = \tau y_1, \ x_1 \neq y_1.$ Тогда $x = x_1^R \tau^R, w = xcy = x_1^R \tau^R c \tau y_1.$
 - i. Пусть $|x_1| > 0$. $(q_0, w, Z) \equiv (q_0, x_1^R \tau^R c \tau y_1, Z) \stackrel{4a}{\underset{|x_1|>0}{\vdash}^*} (q_0, c \tau y_1, U_r(\tau x_1) Z) \stackrel{4b}{\vdash} (q_1, \tau y_1, U_r(\tau x_1) Z) \stackrel{|x_1|>0}{\equiv}$
 - $\equiv (q_1, \tau y_1, \tau U_r(x_1)Z) \stackrel{4c}{\vdash^*} (q_1, y_1, U_r(x_1)Z).$
 - А. Пусть $|y_1| > 0$, $x_1[1] \neq y_1[1]$. Обозначим $y_1 = y^1...y^l$, $\forall i \in \overline{1,l} \hookrightarrow y^i \in \{a,b\}^*$ Тогда $(q_1,y_1,U_r(x_1)Z) \equiv (q_1,y^1...y^l,U_r(x_1)Z) \stackrel{4d}{\vdash} (q_2,y^2...y^l,U_r(x_1)Z) \stackrel{4e}{\vdash} (q_2,\varepsilon,U_r(x_1)Z)$. $q_2 \in F \Rightarrow \underline{w \in L(\mathcal{A})}$.
 - В. Пусть $|y_1| = 0$. Тогда $w = x_1^R \tau^R c \tau y_1 \equiv x_1^R \tau^R c \tau \Rightarrow (q_0, w, Z) \equiv (q_0, x_1^R \tau^R c \tau, Z) \stackrel{4a}{\underset{|x_1|>0}{\vdash}} (q_0, c \tau, \tau U_r(x_1) Z) \stackrel{4b}{\underset{|x_1|>0}{\vdash}} (q_1, \tau, \tau U_r(x_1) Z) \stackrel{4e}{\overset{4e}{\vdash}} (q_1, \varepsilon, U_r(x_1) Z). q_1 \in F \Rightarrow w \in L(\mathcal{A})$
 - іі. Пусть $|x_1|=0$. Тогда $w=\tau^R c \tau y_1,\ y_1\in\{a,b\}^*$. $x^R \neq y\Rightarrow \tau\neq \tau y_1\Rightarrow |y_1|>0\Rightarrow y_1=\varkappa \varPsi,\ \varkappa\in\{a,b\}$
 - $\begin{array}{l} \text{A. } |\tau|>0 \Rightarrow \tau=\tau_{0}\sigma,\, \sigma\in\{a,b\}. \ \text{Получаем} \ (q_{0},w,Z)\equiv (q_{0},\tau^{R}c\tau y_{1},Z) \overset{4a}{\underset{|\tau|>0}{\vdash}} (q_{0},c\tau y_{1},U_{r}(\tau)Z) \overset{4b}{\underset{|\tau|>0}{\vdash}} (q_{1},\tau y_{1},U_{r}(\tau)Z) \equiv \\ (q_{1},\tau_{0}\sigma y_{1},\tau_{0}U_{r}(\sigma)Z) \overset{4c}{\overset{4c}{\vdash}} (q_{1},\sigma y_{1},U_{r}(\sigma)Z) \overset{4f}{\overset{4f}{\vdash}} (q_{3},y_{1},Z) \equiv (q_{3},\varkappa\varPsi,Z) \overset{4g}{\overset{4g}{\vdash}} (q_{4},\varPsi,Z) \overset{4h}{\overset{4e}{\vdash}} (q_{4},\varepsilon,Z). \ q_{4}\in F \Rightarrow w\in L(\mathcal{A}) \end{array}$
 - B. $|\tau| = 0 \Rightarrow w = x_1^R \tau^R c \tau y_1 \equiv c y_1 \Rightarrow (q_0, w, Z) \equiv (q_0, c y_1, Z) \stackrel{4i}{\vdash} (q_3, y_1, Z) \equiv (q_3, \varkappa \Psi, Z) \stackrel{4g}{\vdash} (q_4, \Psi, Z) \stackrel{4h}{\vdash} (q_4, \varepsilon, Z).$ $q_4 \in F \Rightarrow \underline{w} \in L(\mathcal{A})$
- 5. Докажем, что $L(\mathcal{A}) \subseteq L$. Пусть $w \in L(\mathcal{A}) \Rightarrow (q_0, w, Z) \vdash^* (q, \varepsilon, \gamma), q \in F$:
 - (а) $q=q_1$. В q_1 прочитываются a,b. Переходы в q_1 есть только из q_0 по c. В q_0 прочитываются символы a,b. Значит, $w=xcy,\ x,y\in\{a,b\}^*$. Если $x=\varepsilon$, то был совершен переход $q_0\overset{c,Z/Z}{\longrightarrow}q_3$ противоречие. Автомат детерминированный, поэтому цепочка конфигураций при выводе w имеет вид $(q_0,w,Z)\equiv (q_0,xcy,Z)\overset{4a}{\models}(q_0,cy,U_r(x^R)Z)\overset{4b}{\models}(x|>0)$ $(q_1,y,U_r(x^R)Z)$. Выделим максимальную общую часть от начала для слов x^R и y: $x^R=\tau x_1,\ y=\tau y_1,\ x_1\neq y_1$. і. $|\tau|=0,|x_1|=0\Rightarrow |x|=0$ противоречие
 - іі. $|\tau|>0, |x_1|=0\Rightarrow \tau=\tau_0\sigma,\, \sigma\in\{a,b\}.$ $\boxed{=}(q_1,\tau_0\sigma y_1,\tau_0U_r(\sigma)Z)\overset{4c}{\vdash^*}(q_1,\sigma y_1,U_r(\sigma)Z)\overset{4f}{\vdash}(q_3,...)-$ <u>противоречие,</u> из q_3 нет переходов в q_1 .

ііі.
$$|\tau| \ge 0, |x_1| > 0$$
. Тогда $= (q_1, \tau y_1, \tau U_r(x_1) Z) \stackrel{4c}{\vdash^*} (q_1, y_1, U_r(x_1) Z) = 1$.

а. $|y_1| = 0 \Rightarrow = 1 (q_1, \varepsilon, U_r(x_1))$. Тогда $w = \underbrace{x_1^R \tau^R}_x c \underbrace{\tau y_1^R}_y, x^R = \tau x_1 \neq \tau = y \Rightarrow \underline{w \in L}$.

b.
$$|y_1| > 0$$
. Тогда $x_1[1] \neq y_1[1]$, и $=$ 1 $(q_1, y_1, U_r(x_1)Z) \overset{4d}{\underset{x_1[1] \neq y_1[1]}{\vdash}} (q_3, ...) - \underline{\text{противоречие}}$, из q_3 нет переходов в q_1 .

- (b) $q = q_2$. В q_2 есть переходы только из q_1 , в q_2 прочитываются a, b. $5a \Rightarrow w = xcy, |x| \neq 0, x, y \in \{a, b\}^*$. При переходе в q_2 прочитывается символ, поэтому |y| > 0. Аналогично 5a выделим общую часть $x^R = \tau x_1, y = \tau y_1$. Аналогично 5a(|x|>0) получаем $(q_0,w,Z)\vdash^* (q_1,\tau y_1,U_r(\tau x_1)Z)$. Рассмотрим случаи:
 - і. $|\tau| = 0, |x_1| = 0 \Rightarrow |x| = 0$ противоречие
 - іі. $|\tau|>0, |x_1|=0 \Rightarrow \tau=\tau_0\sigma, \, \sigma\in\{a,b\}.$ $\boxed{=}(q_1,\tau_0\sigma y_1,\tau_0U_r(\sigma)Z)\overset{4c}{\vdash^*}(q_1,\sigma y_1,U_r(\sigma)Z)\overset{4f}{\vdash}(q_3,\ldots)$ противоречие, из q_3
 - ііі. $|\tau|\geqslant 0, |x_1|>0$. Тогда $\boxed{=}(q_1,\tau y_1,\tau U_r(x_1)Z)\overset{4c}{\vdash^*}(q_1,y_1,U_r(x_1)Z)\boxed{=_1}$. а. $|y_1|=0\Rightarrow\boxed{=_1}(q_1,\varepsilon,U_r(x_1))$. В 5a было показано, что автомат остановится в q_1 противоречие.

 - b. $|y_1|>0$. Тогда $x_1[1]\neq y_1[1]$. Обозначим $x_1=\sigma_1x_1^0,\ y_1=\sigma_2y_1^0,\$ и $\boxed{=_1}(q_1,\sigma_1y_1^0,U_r(\sigma_2x_1^0)Z)$ $\stackrel{4a}{\vdash}_{x_1[1]\neq y_1[1]}$ $(q_3, y_1^0, U_r(x_1^0)Z) \stackrel{4e}{\vdash^*} (q_3, \varepsilon, U_r(x_1^0)Z)$ (последние переходы возможны только при $x_1^0 \neq \varepsilon$). Получаем $x_1 \neq y_1 \Rightarrow x^R \neq y \Rightarrow \underline{w} \in \underline{L}$.
- (c) $q=q_4$. В q_4 прочитываются a,b; в q_4 есть переходы только из $q_3 \stackrel{a,Z/Z}{\longrightarrow} q_4$, в q_3 есть переходы только из $p \in \{q_0,q_1\}$. Рассмотрим случаи:
 - і. $p=q_0$. Если в q_0 были прочитаны символы из $\{a,b\}$, то на верхушке стека не $Z\Rightarrow$ переход в q_3 не мог быть совершен. Получаем, что $w=cy,\,y\in\{a,b\}^*$. Но при переходе в q_4 из q_3 прочитывается хотя бы один символ, поэтому $|y| > 0 \Rightarrow \underline{w \in L}$
 - іі. $p=q_1.\ 5b\Rightarrow w=xcy,\ |x|>0,\ x,y\in\{a,b\}^*.$ Аналогично 5b разобьем $x^R=\tau x_1,\ y=\tau y_1,$ рассмотрим случаи:
 - А. $|\tau| = 0, |x_1| = 0 \Rightarrow |x| = 0$ противоречие
 - В. $|\tau| > 0, |x_1| = 0 \Rightarrow \tau = \tau_0 \sigma, \sigma \in \{a,b\}$. Аналогочино 5b получим $(q_0, w, Z) \vdash^* (q_1, \tau_0 \sigma y_1, \tau_0 U_r(\sigma) Z) \vdash^{4c}$ $(q_1, \sigma y_1, U_r(\sigma)Z) \overset{4f}{\vdash} (q_3, y_1, Z)$. При переходе из q_3 в q_4 был прочитан символ, поэтому $|y_1| > 0$. Имеем $x^R \equiv \tau x_1 \equiv \tau \underset{|y_1| > 0}{\neq} \tau y_1 \equiv y \Rightarrow \underline{w \in L}$.
 - C. $|\tau| \ge 0, |x_1| > 0.$
 - а. $|y_1| = 0$. В 5a было показано, что автомат остановится в q_1 противоречие.
 - b. $|y_1| > 0$. В 5b было показано, что автомат остановится в q_2 противоречие.

Задача 2

Задача 3

 $\Sigma \stackrel{\text{def}}{=} \{a,b\}, \ \Gamma \stackrel{\text{def}}{=} (N,\Sigma,P,S). \ N \stackrel{\text{def}}{=} \{A,B,C,D,E,F,G\} \ P : \}$

 $S \to A|B|C|E|AG$

 $A \to C|aABC|\varepsilon$

 $B \rightarrow bABa|aCbDaGb|\varepsilon$

 $C \to BaAbC|aGD|\varepsilon$

 $F \rightarrow aBaaCbA|aGE$

 $E \to A$

- 1. Удалим бесплодные символы (для упрощения):
 - (a) $V_0 \stackrel{\text{def}}{=} \{a, b\}$
 - (b) $V_1 = V_0 \cup \{A, B, C\} = \{a, b, A, B, C\}$
 - (c) $V_2 = V_1 \cup \{S, F, E\} = \{a, b, S, A, B, C, F, E\}$
 - (d) $V_3 = V_2 \cup \emptyset$

Тогда $V_3 \setminus \Sigma = \{S, A, B, C, F, E\}$. Удалим нетерминалы $N \setminus V_3 = \{D, G\}$ и правила, их содержащие: $N' \stackrel{\text{def}}{=} N \setminus V_3 = \{D, G\}$ ${S, A, B, C, F, E}, P'$:

$$\begin{array}{ll} S \rightarrow A|B|C|E|\mathcal{AG} & C \rightarrow BaAbC|a\mathcal{GD}|\varepsilon \\ A \rightarrow C|aABC|\varepsilon & F \rightarrow aBaaCbA|a\mathcal{GE} \\ B \rightarrow bABa|aCbDa\mathcal{Gb}|\varepsilon & E \rightarrow A \end{array}$$

- 2. Удалим недостижимые символы (для упрощения):
 - (a) $V_0 \stackrel{\text{def}}{=} \{S\}$
 - (b) $V_1 = V_0 \cup \{A, B, C, E\}$
 - (c) $V_2 = V_1 \cup \varnothing$

$$\begin{array}{ll} S \rightarrow A|B|C|E|\mathcal{A}G & C \rightarrow BaAbC|aG\mathcal{D}|\varepsilon \\ A \rightarrow C|aABC|\varepsilon & F \rightarrow \underline{aBaaCbA|aGE} \\ B \rightarrow bABa|aCbDaGb|\varepsilon & E \rightarrow A \end{array}$$

1,2. Имеем P'':

$$S \to A|B|C|E$$

$$A \to C|aABC|\varepsilon$$

$$B \to bABa|\varepsilon$$

$$C \to BaAbC|\varepsilon$$

$$E \to A$$

- 3. Удалим ε -правила:
 - (a) $A, B, C \varepsilon$ -порождающие.
 - (b) $S, E \varepsilon$ -порождающие $(S \to A, E \to A)$

Перепишем правила, содержащие ε -порождающие нетерминалы справа (2^k правил для каждого правила, содержащего k ε -порождающих нетерминалов). P''':

$$S \to A|B|C|E$$

$$A \to C|a|aC|aB|aBC|aA|aAC|aAB|aABC$$

$$C \to ab|abC|aAb|aAbC|Bab|BabC|BaAbC$$

$$E \to A$$

$$E \to A$$

Грамматика с такими правилами порождает язык $L(\Gamma) \setminus \{\varepsilon\}$.

- 4. Найдем цепные пары (множества пар соответствуют добавлениям на шагах алгоритма):
 - (a) (S,S), (A,A), (B,B), (C,C), (E,E)
 - (b) (S, A), (S, B), (S, C), (S, E); (A, C); (E, A)
 - (c) (S,C);(S,A);(E,C)
- 5. Выпишем новое множество правил P'''':

Цепная пара	Правила		
(S,S)	Ø		
(A,A)	$A \rightarrow a aC aB aBC aA aAC aAB aABC$		
(B,B)	$B \rightarrow ba bBa bAa bABa$		
(C,C)	$C \rightarrow ab abC aAb aAbC Bab BabC BaAbC$		
(E,E)	Ø		
(S,A)	$S \rightarrow a aC aB aBC aA aAC aAB aABC$		
(S,B)	$S \rightarrow ba bBa bAa bABa$		
(S,C)	$S \rightarrow ab abC aAb aAbC Bab BabC BaAbC$		
(S,E)	Ø		
(A,C)	$A \rightarrow ab abC aAb aAbC Bab BabC BaAbC$		
(E,A)	$E \rightarrow a aC aB aBC aA aAC aAB aABC$		
(S,C)	$S \rightarrow ab abC aAb aAbC Bab BabC BaAbC$		
(E,C)	$E \rightarrow ab abC aAb aAbC Bab BabC BaAbC$		

- 6. Нетерминалы A, B, C, E, S не являются бесплодными: $A \to a, B \to ba, C \to ab, E \to a, S \to ab$.
- 7. Удалим недостижимые:
 - (a) $V_0 \stackrel{\text{def}}{=} \{S\}$
 - (b) $V_1 \stackrel{\text{def}}{=} \{S, A, B, C\}$
 - (c) $V_2 = V_1$

Удаляем $E. P^{(5)}$:

 $B \rightarrow ba|bBa|bAa|bABa$

 $C \rightarrow ab|abC|aAb|aAbC|Bab|BabC|BaAbC$

- 8. Приведем к нормальной форме Хомского. Добавим нетерминалы $A', B', A' \to a, B' \to b$. Заменим в правилах a на A', b на B'. Подчеркнем слова из нетерминалов длины 2 в правых частях правил, которые заменим на новые нетерминалы: $A \to a|A'C|A'B|\underline{A'BC}|A'A|\underline{A'AC}|A'AB|\underline{A'ABC}|A'BC|A'B'|\underline{A'B'C}|A'AB'|\underline{A'AB'C}|BA'B'|\underline{BA'B'C}|BA'\underline{AB'C}|BA'\underline$

 $B \rightarrow B'A'|\underline{B'B}A'|\underline{B'A}A'|\underline{B'A}\underline{BA'}$

 $C \rightarrow A'B'|\underline{A'B'}C|\underline{A'AB'}|\underline{A'A}\underline{B'C}|\underline{BA'}\underline{B'}|\underline{BA'}\underline{B'C}|\underline{BA'}\underline{AB'}\underline{C}$

 $S \to a|A'C|A'B|\underline{A'BC}|A'A|\underline{A'AC}|\underline{A'AB}|\underline{A'A}\underline{BC}|B'A'|\underline{B'B}\underline{A'}$

 $S \to \underline{B'A}A'|\underline{B'A}\underline{BA'}|A'B'|\underline{A'B'}\underline{C}|\underline{A'A}B'|\underline{A'A}\underline{B'C}|\underline{BA'}\underline{B'}|\underline{BA'}\underline{B'C}|\underline{BA'}\underline{AB'}\underline{C}$

 $A' \to a$

D/ 1

Заменим подчеркнутые слова на новые нетерминалы, получим

Ответ:

 $A \to a|A'C|A'B|X_0C|A'A|X_1C|X_1B|X_1X_2|A'B'|X_3C|X_1B'|X_1X_4|X_5B'|X_5X_4|X_9C$

 $B \to B'A'|X_7A'|X_8A'|X_8X_5$

 $C \to A'B'|X_3C|X_1B'|X_1X_4|X_5B'|X_5X_4|X_9C$

 $S \rightarrow a|A'C|A'B|X_0C|A'A|X_1C|X_1B|X_1X_2|B'A'|X_7A'|X_8A'|X_8X_5|A'B'|X_3C|X_1B'|X_1X_4|X_5B'|X_5X_4|X_9C|X_1B'|X_1X_2|X_1B'|X_1X_1X_2|X_1B'|X_1X_2|X_1B'|X_1X_2|X_1B'|X_1X_2|X_1B'|X_1X_2|X_1A'|X_1X_2|X_1A'|X_1X_1A'|X_1X_1A'|X_1X_1A'|X_1X_1A'|X_1X_1A'|X_1X_1A'|X_1X_1A'|X_$

$A' \to a$	$X_2 o BC$	$X_6 o AB'$
$B' \to b$	$X_3 o A'B'$	$X_7 o B'B$
$X_0 \to A'B$	$X_4 o B'C$	$X_8 o B'A$
$X_1 \to A'A$	$X_5 o BA'$	$X_9 ightarrow X_5 X_6$

Задача 4

Задача 5

 $\Sigma_2 \stackrel{\text{def}}{=} \{[1,[2],\; \overline{\Sigma}_2 \stackrel{\text{def}}{=} \{]_1,]_2\}. \; D_2 \stackrel{\text{def}}{=} \; \text{язык ПСП над } \Sigma \stackrel{\text{def}}{=} \Sigma_2 \cup \overline{\Sigma}_2. \; \Delta \stackrel{\text{def}}{=} \{a,b\}. \; \varphi \colon \Sigma^* \longrightarrow \Delta^*, \; \varphi([1) \stackrel{\text{def}}{=} a, \; \varphi([2] \stackrel{\text{def}}{=} b, \; \varphi([1]) \stackrel{\text{def}}{=} b, \; \varphi([2]) \stackrel{\text{def}}{=} b, \; \varphi([2]) \stackrel{\text{def}}{=} a. \; D$ оопределим φ до морфизма (см. решение упр. 2 из задания 3). $L \stackrel{\text{def}}{=} \varphi(D_2 \cap \Sigma^*) \equiv \varphi(D_2). \; L' \stackrel{\text{def}}{=} \{w \in \Delta^* \big| |w|_a = |w|_b\}.$

- 1. Докажем, что $L \subseteq L'$. Пусть $\underline{y \in L} \equiv \varphi(D_2)$. Тогда $\exists x \in D_2 \colon y = \varphi(x)$. $x \Pi C \Pi \Rightarrow \forall i \in \overline{1,2} \hookrightarrow |x|_{[i} = |x|_{]i}$. Сложим равенства, получим: $|x|_{[1} + |x|_{]2} = |x|_{]1} + |x|_{[2}$. Пусть $x = x_1...x_m$, $\forall i \in \overline{1,m} \hookrightarrow x_i \in \Sigma$. Тогда $y = \varphi(x) = \varphi(x_1)...\varphi(x_m) = y_1...y_m$, $\forall i \in \overline{1,m} \hookrightarrow y_i = \varphi(x_i) \in \Delta$. Но из определения φ имеем $[1,1]_2 \xrightarrow{\varphi} a$; $[1,1]_2 \xrightarrow{\varphi} b$. Тогда $|y|_a = |x|_{[1} + |x|_{]2} \equiv |x|_{]1} + |x|_{[2} = |y|_b \Rightarrow \underline{y \in L'}$
- 2. Докажем, что $L'\subseteq L$ индукцией по длине $y\in L'$: $P(n)\stackrel{\mathrm{def}}{=} \left[\forall y\in L'\colon |y|\leqslant n\hookrightarrow y\in L\right]$. Заметим, что $y\in L\Leftrightarrow y\in \varphi(D_2)\Leftrightarrow \varphi^{-1}(y)\cap D_2\neq\varnothing$. Поэтому будем искать прообраз слова y, принадлежащий D_2 .
 - (a) $n=0 \Rightarrow |y|=0 \Rightarrow y=\varepsilon \in L'$. Пусть $x\stackrel{\text{def}}{=} \varepsilon \in D_2$ (так как пустое слово ПСП). Тогда $y=\varepsilon \equiv \varphi(x) \Rightarrow y \in \varphi(D_2) \equiv L \Rightarrow P(0)$
 - (b) Фиксируем n>0. Пусть P(n-1). Пусть $y\in L'\colon |y|=n$. Поскольку |y|=n>0, и |y| четно (см. решение задачи 3 из задания 6), то $|y|\geqslant 2$. Рассмотрим первый и последний символы σ_l и σ_r слова $y\equiv \sigma_l y_1\sigma_r$:
 - і. $\sigma_l = a, \, \sigma_r = b$. Тогда $y = ay_1b$. $|y_1| = n 2 \leqslant n 1 \stackrel{P(n-1)}{\Rightarrow} \exists x_1 \in D_2 \colon \varphi(x_1) = y_1$. Определим $x = [{}_1x_1]_1$. $x_1 \in D_2 \Rightarrow x_1 \Pi C \Pi \Rightarrow x \Pi C \Pi$, так как получен из $\Pi C \Pi$ добавленим скобок типа 1 слева и справа $\Rightarrow x \in D_2$. Но $\varphi(x) \equiv \varphi([{}_1x_1]_1) = \varphi([{}_1)\varphi(x_1)\varphi(]_1) = ay_1b \equiv y$. Получаем $\varphi^{-1}(y) \cap D_2 \ni x \Rightarrow \varphi^{-1}(y) \cap D_2 \neq \varnothing$.
 - ії. $\sigma_l = b, \, \sigma_r = b$. Тогда $y = by_1a$. $|y_1| = n 2 \leqslant n 1 \overset{P(n-1)}{\Rightarrow} \exists x_1 \in D_2 \colon \varphi(x_1) = y_1$. Определим $x = [{}_2x_1]_2$. $x_1 \in D_2 \Rightarrow x_1 \Pi C \Pi \Rightarrow x \Pi C \Pi$, так как получен из $\Pi C \Pi$ добавленим скобок типа 2 слева и справа $\Rightarrow x \in D_2$. Но $\varphi(x) \equiv \varphi([{}_2x_1]_2) = \varphi([{}_2)\varphi(x_1)\varphi([{}_2) = by_1a \equiv y$. Получаем $\varphi^{-1}(y) \cap D_2 \ni x \Rightarrow \varphi^{-1}(y) \cap D_2 \neq \varnothing$.
 - ііі. $\sigma_l = \sigma_r$. Тогда $y = \sigma y_1 \sigma \in L'$. Воспользуемся утверждением в рамочке из решения задачи 3 задания 6:

$$y = \sigma y_1 \sigma \in L' \Rightarrow \exists y_l, y_r \colon y = y_l y_r, |y_l|, |y_r| \in \overline{1, |y| - 2}, y_l, y_r \in L'$$

 $\text{Ho } |y_l|, |y_r| \leqslant |y| - 2 = n - 2 \leqslant n - 1 \overset{P(n-1)}{\Rightarrow} \exists x_l, x_r \in D_2 \colon y_l = \varphi(x_l), y_r = \varphi(x_r). \text{ Определим } x \stackrel{\text{def}}{=} x_l x_r. \text{ Тогда } x \in D_2 \text{ (конкатенация } \Pi \subset \Pi \subset \Pi), \text{ и } \varphi(x) = \varphi(x_l x_r) = \varphi(x_l) \varphi(x_r) = y_l y_r = y \Rightarrow \varphi^{-1}(y) \cap D_2 \ni x \Rightarrow \varphi^{-1}(y) \cap D_2 \neq \varnothing$

<u>Ответ</u>: Верно, что $L = \{w | |w|_a = |w|_b\}.$

Задача 6

Автомат $\mathcal{A} = (\Sigma, \Gamma, Q, q_0, Z_0, \delta, \varnothing)$ из 7-го задания:

- 1. $\Sigma = \{a, b\}$
- $2. \Gamma = \{a, Z_0\}$
- 3. $Q = \{q_0, q_1\}$

- $a, Z_0/aZ_0$ a, a/aa
- $b, a/\varepsilon \ \varepsilon, Z_0/\varepsilon$

4. δ изображена справа

Определим грамматику $G = (N, \Sigma, P, S)$. $N = \{S\} \cup \{[qZp]|q, p \in Q, Z \in \Gamma\}$

- 1. Добавим правила $S \to [q_0 Z_0 q_0] | [q_0 Z_0 q_1]$
- 2. Рассмотрим переходы из δ , добавим правила
 - $\text{(a)} \ \ \delta\ni q_0 \overset{a,Z_0/aZ_0}{\longrightarrow} q_0 \colon [q_0Z_0q_0] \to a[q_0aq_0][q_0Z_0q_0] \\ \big| a[q_0aq_1][q_1Z_0q_0], \ [q_0Z_0q_1] \to a[q_0aq_0][q_0Z_0q_1] \\ \big| a[q_0aq_1][q_1Z_0q_1] \\ \big| a[q_0aq_1][q_0aq_1][q_0aq_1] \\ \big| a[q_0aq_1][q_0aq_1][q_0aq_1][q_0aq_1] \\ \big| a[q_0aq_1][q_0aq_1][q_0aq_1][q_0aq_1][q_0aq_1] \\ \big| a[q_0aq_1][q_0aq_1][q_0aq_1][q_0aq_1][q_0aq_1][q_0aq_1][q_0aq_1] \\ \big| a[q_0aq_1][q_0$

 $\text{(b)} \ \ \delta\ni q_0\stackrel{a,a/aa}{\longrightarrow} q_0\colon [q_0aq_0]\to a[q_0aq_0][q_0aq_0]\big|a[q_0aq_1][q_1aq_0],\ [q_0aq_1]\to a[q_0aq_0][q_0aq_1]\big|a[q_0aq_1][q_1aq_1]$

(c) $\delta \ni q_0 \xrightarrow{b,a/\varepsilon} q_1 : [q_0 a q_1] \to b$

(d) $\delta \ni q_1 \stackrel{b,a/\varepsilon}{\longrightarrow} q_1 \colon [q_1 a q_1] \to b$

(e) $\delta \ni q_0 \stackrel{\varepsilon, Z_0/\varepsilon}{\longrightarrow} q_1 : [q_1 Z_0 q_1] \to \varepsilon$

3. Удалим бесплодные нетерминалы:

(a) $V_0 = \{a, b\}$

(b) $V_1 = V_0 \cup \{[q_0 a q_1], [q_1 a q_1], [q_1 Z_0 q_1]\}$

(c) $V_2 = V_1 \cup \{ [q_0 Z_0 q_1] \}$

(d) $V_3 = V_2 \cup \{S\}$

(e) $V_4 = V_3$.

Имеем правила $S \to [q_0 Z_0 q_1], [q_0 Z_0 q_1] \to a[q_0 a q_1][q_1 Z_0 q_1], [q_0 a q_1] \to a[q_0 a q_1][q_1 a q_1] | b, [q_1 a q_1] \to b, [q_1 Z_0 q_1] \to \varepsilon$

4. Удалим недостижимые нетерминалы:

(a) $V_0 = \{S\}$

(b) $V_1 = V_0 \cup \{[q_0 Z_0 q_1]\}$

(c) $V_2 = V_1 \cup \{[q_0 a q_1], [q_1 Z_0 q_1]\}$

(d) $V_3 = V_2 \cup \{ [q_1 a q_1] \}$

(e) $V_4 = V_3$

(все достижимы)

5. Переобозначим:

$$S \to \underbrace{[q_0 Z_0 q_1]}_A, \underbrace{[q_0 Z_0 q_1]}_A \to a \underbrace{[q_0 a q_1]}_B \underbrace{[q_1 Z_0 q_1]}_C, \underbrace{[q_0 a q_1]}_B \to a \underbrace{[q_0 a q_1]}_D \underbrace{[q_1 a q_1]}_D \Big| b, \underbrace{[q_1 a q_1]}_D \to b, \underbrace{[q_1 Z_0 q_1]}_C \to \varepsilon,$$

получим

$$S \to A, A \to aBC, B \to aBD|b, D \to b, C \to \varepsilon$$

6. Из D, C есть только правила $D \to b, C \to \varepsilon$, поэтому они раскрываются единственным образом. Уберем их, получим грамматику G', причем G' — однозначная $\Leftrightarrow G$ — однозначная:

$$S \to A, A \to aB, B \to aBb|b$$

Аналогично для $S \to A$ (раскрывается единственным образом). Получим G'': G'' — однозначная $\Leftrightarrow G'$ — однозначная:

$$S \to aB, B \to aBb|b$$

После примения правила $B \to b$ нельзя применить правило $B \to aBb$, и каждое применение $B \to aBb$ увеличивает количество символов a и b на 1. Поэтому количество его применений фиксировано для каждого $w \in L(G'')$. Отсюда получаем, что грамматика G'' — однозначная $\Rightarrow G'$ — однозначная $\Rightarrow G$ — однозначная.

Ответ:

$$1. \ \ G \colon S \to \underbrace{[q_0 Z_0 q_1]}_A, \underbrace{[q_0 Z_0 q_1]}_A \to a\underbrace{[q_0 a q_1]}_B, \underbrace{[q_1 Z_0 q_1]}_C, \underbrace{[q_0 a q_1]}_B \to a\underbrace{[q_0 a q_1]}_D, \underbrace{[q_1 a q_1]}_D \middle| b, \underbrace{[q_1 a q_1]}_D \to b, \underbrace{[q_1 Z_0 q_1]}_C \to e$$

2. После переобозначения $S \to A, A \to aBC, B \to aBD|b, D \to b, C \to \varepsilon$

3. G — однозначная.