Sistemi Elettronici, Tecnologie e Misure 05QXVOA - 04QXVOA Appello del 20/2/2023

Nome:	
Cognome:	
Matricola:	

ATTENZIONE

- 1. Compilare subito questa pagina con nome, cognome e numero di matricola
- 2. Gli studenti del corso 05QXVOA (8 crediti, a.a. 2022/23) sono tenuti a rispondere solo ai primi quattro quesiti teorici a risposta multipla, gli studenti del corso 04QXVOA (10 crediti, a.a. 2021/22 e precedenti) sono tenuti a rispondere a tutti e sei i quesiti. Gli esercizi sono identici per i corsi 05QXVOA e 04QXVOA
- 3. Per i quesiti a risposta multipla, la risposta errata determina la sottrazione di un punteggio pari a metà del valore della risposta esatta
- 4. Riportare le risposte esatte dei quesiti a risposta multipla nella tabella posta all'inizio della relativa sezione
- 5. Le risposte ai vari quesiti vanno riportate **esclusivamente** nello spazio reso disponibile immediatamente dopo il quesito stesso
- 6. Si può fare uso di fogli di brutta bianchi resi disponibili a cura dello studente. La brutta non deve essere consegnata
- 7. Non si possono utilizzare libri, appunti o formulari

Domande a risposta multipla

	1	2	3	4	5	6
a						
b						
С						
d						

Domande 1.-4. per tutti gli studenti (05QXVOA e 04QXVOA)

- 1. Un amplificatore operazionale con guadagno in banda di 100 dB, prodotto banda-guadagno pari a 10MHz, resistenze d'ingresso e uscita trascurabili (cioè $R_{\rm in,d} \to \infty, R_{\rm in,cm} \to \infty, R_{\rm out} = 0$), è utilizzato in configurazione amplificatore di tensione non invertente con amplificazione di tensione $A_{\rm v}=4$. La banda dell'amplificatore di tensione è pari a:
 - (a) 2.5 MHz

- (b) 3.3 MHz (c) 10 MHz (d) 250 kHz
- 2. In un comparatore di soglia invertente con isteresi realizzato a partire da un amplificatore operazionale:
 - (a) è presente retroazione negativa
 - (b) è presente retroazione positiva
 - (c) è presente sia retroazione positiva, sia retroazione negativa
 - (d) non è presente alcuna rete di retroazione (circuito ad anello aperto)
- 3. Un amplificatore di transresistenza è ottenuto collegando in cascata un amplificatore di corrente descritto dai parametri $A_{i,1}$, $R_{in,1}$, $R_{out,1}$, (tutti finiti e non nulli) ed un amplificatore di transresistenza descritto dai parametri $R_{m,2}$, $R_{\rm in,2}$, finiti e non nulli e $R_{\rm out,2}=0$. La transresisrenza complessiva R_m della cascata dei due stadi è data da

 - (b) $A_{i,1}R_{m,2}\frac{R_{in,2}}{R_{in,2}+R_{out,1}}$
 - (c) $A_{i,1}R_{m,2} \frac{R_{\text{out},1}}{R_{\text{in},2} + R_{\text{out},1}}$
 - (d) $A_{i,1}R_{m,2}$
- 4. In uno stadio amplificatore MOS gate comune descritto dai parametri $A_{\rm v}$, $R_{\rm in}$ e $R_{\rm out}$
 - (a) $R_{\rm out}$ cresce al crescere di $g_{\rm m}$
 - (b) $R_{\rm out}$ decresce al crescere di $g_{\rm m}$
 - (c) $R_{\rm in}$ cresce al crescere di $g_{\rm m}$
 - (d) $R_{\rm in}$ decresce al crescere di $g_{\rm m}$

Domande 5.-6. per i soli studenti del corso 04QXVOA (10 crediti, frequenza a.a. 2021/22 o precedenti)

- 5. In un amplificatore invertente basato su operazionale ideale, il resistore che collega il morsetto invertente all'uscita è sostituito da un diodo, con anodo collegato al morsetto invertente e catodo collegato all'uscita. Per $v_{\rm in}>0$ il circuito che si ottiene si comporta come
 - (a) amplificatore esponenziale invertente
 - (b) integratore invertente
 - (c) amplificatore logaritmico invertente
 - (d) derivatore invertente
- 6. In un circuito contenente un solo diodo ideale, si è fatta l'ipotesi che il diodo sia ON. Sostituendo il diodo con un corto circuito, l'ipotesi sarà verificata se:
 - (a) $i_{\rm D} < 0$
 - (b) $i_{\rm D} > 0$
 - (c) $v_{\rm D} < 0$
 - (d) $v_{\rm D} > 0$

Esercizio n. 1

Con riferimento al cirucito in figura:

- 1. Verificare il funzionamento del transistore in regione di saturazione e determinare i parametri del modello di piccolo segnale
- 2. Disegnare il circuito equivalente di piccolo segnale dello stadio
- 3. In condizioni di piccolo segnale e assumendo che il condensatore C si comporti come un circuito aperto (condizione di bassa frequenza) calcolare l'amplificazione di tensione $A_V = v_{\rm out}/v_{\rm in}$, la resistenza di ingresso $R_{\rm in}$ e la resistenza di uscita $R_{\rm out}$
- 4. In condizioni di piccolo segnale e considerando il valore assegnato di C, determinare l'espressione del guadagno di tensione in frequenza $A_V(s)$ e disegnarne il diagramma di Bode in modulo e fase

Esercizio 2.

Nel circuito in figura $R_1 = \ldots = R_7 = R = 10 \text{ k}\Omega$. Determinare:

- 1. l'espressione delle tensioni $v_{\rm O1}, v_{\rm O2}$ e $v_{\rm OUT}$ in funzione degli ingressi v_1 e i_2 e delle resistenze $R_1 \dots R_7$;
- 2. l'espressione delle correnti i_{OP1} , i_{OP2} e i_{OP3} in funzione degli ingressi v_1 e i_2 e delle resistenze $R_1 \dots R_7$;
- 3. il valore massimo e minimo che può assumere l'uscita $v_{\rm OUT}$ in continua con generatori d'ingresso spenti, assumendo che tutti gli amplificatori presentino, da dati di targa, *input offset voltage (max.)* 5 mV, ed assumendo che i contributi delle correnti di polarizzazione e di *offset* in ingresso siano transcurabili.