Mathematical Finance Solution 11

Solution 11-1

a) Fix $Q \in \mathbb{P}_{\sigma}$ and introduce

$$\mathcal{Z}_t := \{ Z \mid Z \text{ is density process with respect to } Q \text{ of some } R \in \mathbb{P}_{\sigma} \text{ with } R = Q \text{ on } \mathcal{F}_t \}$$

to obtain, as in the European case,

$$\overline{V}_t = \operatorname{ess sup} \left\{ E_Q[U_\tau Z_\tau \,|\, \mathcal{F}_t] = \Gamma(Z,\tau) \,|\, \tau \in \mathcal{T}_{t,T}, \, Z \in \mathcal{Z}_t \right\}.$$

Moreover, the collection $\{\Gamma(Z,\tau) \mid \tau \in \mathcal{T}_{t,T}, Z \in \mathcal{Z}_t\}$ is directed upward. Indeed, for $\Gamma(Z^i,\tau^i)$, i=1,2, the set $A:=\{\Gamma_t(Z^1,\tau^1) \geq \Gamma_t(Z^2,\tau^2)\} \in \mathcal{F}_t$. We deduce from Exercise 10-1 a) that $Z:=Z^11_A+Z^21_{A^c}$ is in \mathcal{Z}_t , and that $\tau:=\tau^11_A+\tau^21_{A^c}\in \mathcal{T}_{t,T}$. Moreover, by plugging in, we obtain that

$$\max \left(\Gamma_t(Z^1, \tau^1), \Gamma_t(Z^2, \tau^2)\right) = \Gamma_t(Z, \tau),$$

which proves the claim about directedness. As a consequence, we can write

$$\overline{V}_t = \underset{Z \in \mathcal{Z}_t}{\text{ess sup}} \Gamma(Z, \tau) = \uparrow \lim_{n \to \infty} E_Q \left[U_{\tau^n} Z_{\tau^n}^n \, \middle| \, \mathcal{F}_t \right]$$

(i.e. the limit is increasing) for some sequence $(Z^n, \tau^n) \in \mathcal{Z}_t \times \mathcal{T}_{t,T} \subseteq \mathcal{Z}_s \times \mathcal{T}_{s,T}$ for any $s \leq t$. Hence, by monotone convergence, we obtain

$$E_{Q}\left[\overline{V}_{t} \mid \mathcal{F}_{s}\right] = \lim_{n \to \infty} E_{Q}\left[U_{\tau^{n}}Z_{\tau^{n}}^{n} \mid \mathcal{F}_{s}\right] \leq \underset{Z \in \mathcal{Z}_{s, \tau} \in \mathcal{T}_{s, \tau}}{\text{ess sup}} E_{Q}\left[U_{\tau}Z_{\tau} \mid \mathcal{F}_{s}\right] = \overline{V}_{s}.$$

Thus we have that \overline{V} satisfies the Q-supermartingale property. To see that \overline{V} is Q-integrable, use the supermartingale property for s=0 and that \mathcal{F}_0 is trivial to obtain that

$$E_Q[\overline{V}_t] \le E_Q[\overline{V}_0] = \overline{V}_0 = \sup_{Q \in \mathbb{P}_{\sigma, \tau} \in \mathcal{T}_{0, T}} E_Q[U_{\tau}] < \infty.$$

Adaptedness is clear. As $Q \in \mathbb{P}_{\sigma}$ was arbitrary, we obtain the desired result.

b) Let $V' \geq U$ be an RCLL adapted process which is a Q-supermartingale for each $Q \in \mathbb{P}_{\sigma}$. Then for any $\tau \in \mathcal{T}_{t,T}$ and any $Q \in \mathbb{P}_{\sigma}$, we have by the stopping theorem that

$$V_t' \ge E_Q[V_\tau' | \mathcal{F}_t] \ge E_Q[U_\tau | \mathcal{F}_t].$$

Taking ess $\sup_{Z \in \mathcal{Z}_t, \tau \in \mathcal{T}_{t,T}}$ in the above inequality yields that $V'_t \geq \overline{V}_t$ P-a.s., for each $t \geq 0$, hence $V' \geq \overline{V}_t$ as both V', \overline{V}_t have RCLL paths.

c) " $J \geq \overline{V}$ ": By definition, $J \geq U$, and for any $Q \in \mathbb{P}$, we have

$$J_k \ge \operatorname{ess \, sup}_{R \in \mathbb{P}} E_R[J_{k+1} \, | \, \mathcal{F}_k] \ge E_Q[J_{k+1} \, | \, \mathcal{F}_k].$$

Hence J satisfies the Q-supermartingale property for all $Q \in \mathbb{P}$. Using the Q-supermartingale property, we obtain for any k that for any $\tau \in \mathcal{T}_{k,T}^d$ and any $Q \in \mathbb{P}$,

$$J_k \geq E_O[J_\tau | \mathcal{F}_k] \geq E_O[U_\tau | \mathcal{F}_k]$$

(remember, we are in a discrete-time setting). Thus, by taking ess $\sup_{Q\in\mathbb{P},\tau\in\mathcal{T}_{k,T}^d}$ we obtain that $J\geq\overline{V}$. $\underline{"J\leq\overline{V}"}$: We use a backward induction argument. Observe that $J_T=U_T=\overline{V}_T$. Assume that $J_{k+1}\leq\overline{V}_{k+1}$. Then, we get for each $Q\in\mathbb{P}$ from the Q-supermartingale property of \overline{V} that

$$E_Q[J_{k+1} \mid \mathcal{F}_k] \le E_Q[\overline{V}_{k+1} \mid \mathcal{F}_k] \le \overline{V}_k.$$

Since $Q \in \mathbb{P}$ was arbitrary, we obtain that

$$\operatorname{ess\,sup}_{Q\in\mathbb{P}} E_Q[J_{k+1} \,|\, \mathcal{F}_k] \le \overline{V}_k.$$

Therefore, as $U_k \leq \overline{V}_k$, we obtain that

$$J_k \leq \max\left(U_k, \overline{V}_k\right) = \overline{V}_k$$
.

By induction, we obtain that $J \leq \overline{V}$.

Solution 11-2

a) First observe that since $t \in \mathcal{T}_{t,T}$, we always have $\widetilde{V}^{Eu} \leq \widetilde{V}^{Am}$. The key idea for the other inequality is the following: S is a Q^* -martingale and the call payoff function $x \mapsto (x - K)^+$ is convex, and a convex function applied to a martingale gives a submartingale, which grows in average and hence one does not want to exercise it earlier. Let us prove this rigorously. First, observe that as \widetilde{B} is increasing, we have for any $s \leq t$ that

$$\frac{\widetilde{U}_t}{\widetilde{B}_t} = \left(S_t - \frac{\widetilde{K}}{\widetilde{B}_t}\right)^+ \ge \left(S_t - \frac{\widetilde{K}}{\widetilde{B}_s}\right)^+.$$

Therefore, as $x \mapsto (x - K)^+$ is convex, we have by Jensen's inequality and the fact that S is a Q^* -martingale that

$$E_{Q^*}\left[\frac{\widetilde{U}_t}{\widetilde{B}_t} \middle| \mathcal{F}_s\right] \ge E_{Q^*}\left[\left(S_t - \frac{\widetilde{K}}{\widetilde{B}_s}\right)^+ \middle| \mathcal{F}_s\right] \ge \left(S_s - \frac{\widetilde{K}}{\widetilde{B}_s}\right)^+ = \frac{\widetilde{U}_s}{\widetilde{B}_s}.$$

So $\frac{\tilde{U}}{\tilde{B}}$ satisfies the submartingale property under Q^* . As it is clearly adapted and integrable under Q^* , we conclude that $\frac{\tilde{U}}{\tilde{B}}$ is a Q^* -submartingale. Now, fix any $t \in [0,T]$. Applying the stopping theorem, we obtain for any $\tau \in \mathcal{T}_{t,T}$ from the submartingale property that

$$E_{Q^*}\left[\frac{\widetilde{U}_T}{\widetilde{B}_T}\,\middle|\,\mathcal{F}_t\right] = E_{Q^*}\left[E_{Q^*}\left[\frac{\widetilde{U}_T}{\widetilde{B}_T}\,\middle|\,\mathcal{F}_\tau\right]\,\middle|\,\mathcal{F}_t\right] \geq E_{Q^*}\left[\frac{\widetilde{U}_T}{\widetilde{B}_\tau}\,\middle|\,\mathcal{F}_t\right].$$

As $\tau \in \mathcal{T}_{t,T}$ was arbitrary, we obtain that

$$E_{Q^*}\left[\frac{\widetilde{U}_T}{\widetilde{B}_T}\bigg|\mathcal{F}_t\right] \ge \operatorname*{ess\ sup}_{ au\in\mathcal{T}_{t,T}} E_{Q^*}\left[\frac{\widetilde{U}_\tau}{\widetilde{B}_\tau}\bigg|\mathcal{F}_t\right].$$

Therefore, we conclude that

$$\widetilde{V}_t^{Eu} = \widetilde{B}_t \, E_{Q^*} \bigg[\frac{\widetilde{U}_T}{\widetilde{B}_T} \, \bigg| \, \mathcal{F}_t \bigg] \geq \widetilde{B}_t \, \operatorname*{ess \, sup}_{\tau \in \mathcal{T}_{t,T}} E_{Q^*} \bigg[\frac{\widetilde{U}_\tau}{\widetilde{B}_\tau} \, \bigg| \, \mathcal{F}_t \bigg] = \widetilde{V}_t^{Am}.$$

Thus, we have $\widetilde{V}^{Eu} = \widetilde{V}^{Am}$.

b) Denote by Q the unique ELMM (and by q its corresponding parameter). Using the recursion of exercise 9-2, we have

$$\widetilde{V}^{Am}(k,\widetilde{S}_{k}) = \max\left((\widetilde{K} - \widetilde{S}_{k})^{+}, (1+r)^{-1}q\widetilde{V}^{Am}(k+1,\widetilde{S}_{k}(1+u)) + (1+r)^{-1}(1-q)\widetilde{V}^{Am}(k+1,\widetilde{S}_{k}(1+d)) \right).$$

Let us denote $x = S_0$ and assume that $\widetilde{K} - x > 0$, otherwise the intrinsic value at time zero vanishes and so selling at time zero is never interesting. (Only if d < 0 the payoff can become positive, otherwise it remains always 0.) The investor keeps the put in the portfolio during the first time-step, i.e. he does not sell it at time 0, if

$$\widetilde{K} - x < (1+r)^{-1} q \widetilde{V}^{Am} (1, x(1+u)) + (1+r)^{-1} (1-q) \widetilde{V}^{Am} (1, x(1+d)).$$

c) This case arises, for example, when $\widetilde{K} \geq (1+u)^T S_0$ and r > 0. Then

$$\widetilde{V}_0^{Am} = \sup_{\tau} E_Q \Big[\frac{(\widetilde{K} - \widetilde{S}_\tau)^+}{\widetilde{B}_\tau} \Big] = \sup_{\tau} E_Q \Big[\frac{(\widetilde{K} - \widetilde{S}_\tau)}{\widetilde{B}_\tau} \Big] = \sup_{\tau} E_Q \Big[\frac{\widetilde{K}}{(1+r)^\tau} \Big] - E_Q[S_\tau] = \sup_{\tau} E_Q \Big[\frac{\widetilde{K}}{(1+r)^\tau} \Big] - S_0,$$

so $\tau^* \equiv 0$ is optimal and $\widetilde{V}_0^{Am} = \widetilde{K} - S_0$, whereas the European call is given by

$$\widetilde{V}_0^{Eu} = E_Q \left[\frac{(\widetilde{K} - \widetilde{S}_T)^+}{\widetilde{B}_T} \right] = E_Q \left[\frac{\widetilde{K}}{(1+r)^T} \right] - S_0.$$

Thus $\widetilde{V}_0^{Am} > \widetilde{V}_0^{Eu}$.

Solution 11-3

In the following calculation, we use the fact that

i)
$$X \sim \mathcal{N}(0, \sigma^2)$$
 if and only if $M_X(t) = E[e^{tX}] = \exp\left(\frac{1}{2}\sigma^2t^2\right)$.

ii)
$$X \sim \text{Poi}(\lambda)$$
 if and only if $M_X(t) = E[e^{tX}] = \exp((e^t - 1)\lambda)$.

a) First, observe that Z>0 and $Z_0=1$. In order to prove that Z defines an equivalent martingale measure, we have to verify that Z and ZS are martingales. For that purpose, fix any $0 \le s \le t < \infty$. Using that W is independent of N, that both W_t-W_s and N_t-N_s are independent of \mathcal{F}_s with $W_t-W_s\stackrel{(d)}{=}W_{t-s}$ and $N_t-N_s\stackrel{(d)}{=}N_{t-s}$, we obtain that

$$E\left[\frac{Z_t}{Z_s} \mid \mathcal{F}_s\right] = E\left[\exp\left(\beta\sigma W_{t-s} - \frac{1}{2}\beta^2\sigma^2(t-s)\right)\right] E\left[\exp\left(\ln\frac{\widetilde{\lambda}}{\lambda} N_{t-s}^{\lambda} + (\lambda - \widetilde{\lambda})(t-s)\right)\right]$$

Due to i) the first factor equals to 1, and due to ii), as $N_{t-s} \sim \text{Poi}(\lambda(t-s))$, the second factor equals 1, too. Thus

$$E\left[\frac{Z_t}{Z_s} \,\middle|\, \mathcal{F}_s\right] = 1,$$

which shows that Z is a martingale. Next, we show that ZS is a martingale. For that purpose, fix any $0 \le s \le t < \infty$. Using that W is independent of N, that both $W_t - W_s$ and $N_t - N_s$ are independent of \mathcal{F}_s with $W_t - W_s \stackrel{(d)}{=} W_{t-s}$ and $N_t - N_s \stackrel{(d)}{=} N_{t-s}$, we obtain that

$$E\left[\frac{Z_t S_t}{Z_s S_s} \middle| \mathcal{F}_s\right] = E\left[\exp\left((\beta + 1)\sigma W_{t-s} - \frac{1}{2}(\beta + 1)^2 \sigma^2(t-s)\right)\right] E\left[\exp\left((\ln \frac{\widetilde{\lambda}}{\lambda} + a) N_{t-s}^{\lambda}\right)\right] R(t,s),$$

where R(t, s) is a deterministic function defined by

$$R(t,s) := \exp\Big(-\frac{1}{2}\beta^2\sigma^2(t-s) + \frac{1}{2}(\beta+1)^2\sigma^2(t-s) + (\lambda-\widetilde{\lambda})(t-s)\Big) = \exp\Big(\Big(1-e^a\frac{\widetilde{\lambda}}{\lambda}\Big)\lambda(t-s)\Big),$$

where for the last equality we used the definition of β . The first factor equals to 1 due to i) and the second factor equals to $\frac{1}{R(t,s)}$ due to ii), as as $N_{t-s} \sim \operatorname{Poi}(\lambda(t-s))$. Thus, we see that

$$E\left[\frac{Z_t S_t}{Z_s S_s} \,\middle|\, \mathcal{F}_s\right] = 1,$$

which proves that ZS is a martingale.

b) Clearly, $\pi_s(H) \leq S_0$, as the constant strategy $\vartheta \equiv 1 \in \Theta_{adm}$ and

$$S_0 + \int_0^T 1 \, dS_t = S_T \ge (S_T - K)^+.$$

According to Theorem 9.4 of the lecture, the superreplication price for any $H \in L^0_+(\mathcal{F}_T)$ is given by

$$\pi_s(H) = \sup_{Q \in \mathbb{P}_\sigma} E_Q[H].$$

We point out, that as $S \geq 0$, S is an local martingale under a measure Q if and only if S is a σ -martingale under Q (and hence we can focus on local martingale measures). Consider now the density process Z_t defining an equivalent martingale measures $Q^{\tilde{\lambda}}$ for every $\tilde{\lambda} > 0$

$$Z_t = \frac{dQ^{\widetilde{\lambda}}}{dP}\Big|_{\mathcal{F}_t} = \exp\left(\beta\sigma W_t + \ln\left(\frac{\widetilde{\lambda}}{\lambda}\right)N_t^{\lambda} - \frac{1}{2}\beta^2\sigma^2t + (\lambda - \widetilde{\lambda})t\right),\,$$

where β is given by

$$\beta = -\widetilde{\lambda} \frac{e^a - 1}{\sigma^2} - \frac{1}{2}.$$

Due to **a**), we know that $Q^{\tilde{\lambda}} \in \mathbb{P}$ for each $\tilde{\lambda} > 0$. By Girsanov or by calculating the moment generating function $E_{Q^{\tilde{\lambda}}}[e^{uX_t}] = E_P[e^{uX_t}Z_t]$ for $u \in \mathbb{R}$, where $X_t = \sigma W_t + aN_t^{\lambda}$, we find that S_t under $Q^{\tilde{\lambda}}$ is given by

$$S_t = S_0 \exp\left(\sigma W_t^{Q^{\widetilde{\lambda}}} + aN_t^{\widetilde{\lambda}} - \frac{\sigma^2 t}{2} - \widetilde{\lambda}(e^a - 1)t\right),\,$$

where $W_t^Q = W_t - \sigma \beta t$ is a $Q^{\widetilde{\lambda}}$ -Brownian motion and $N_t^{\widetilde{\lambda}} := N_t^{\lambda}$ an independent $Q^{\widetilde{\lambda}}$ -Poisson process with intensity $\widetilde{\lambda}$. Let us now calculate the call price under $Q^{\widetilde{\lambda}}$: it is

$$E_{Q^{\tilde{\lambda}}}[(S_T - K)^+] = E_{Q^{\tilde{\lambda}}}[S_T 1_{\{S_T > K\}}] - K E_{Q^{\tilde{\lambda}}}[1_{\{S_T > K\}}] =: J_1^{\tilde{\lambda}} - J_2^{\tilde{\lambda}}.$$

For $J_2^{\widetilde{\lambda}}$, as W^Q is independent of $N_T^{\widetilde{\lambda}}$ under $Q^{\widetilde{\lambda}}$, we have

$$\begin{split} J_2^{\widetilde{\lambda}} &= K E_{Q^{\widetilde{\lambda}}} \left[\mathbf{1}_{\{S_0 \exp(\sigma W_T^Q + a N_T^{\widetilde{\lambda}} - \frac{\sigma^2 T}{2} - \widetilde{\lambda}(e^a - 1)T) > K\}} \right] \\ &= K E_{Q^{\widetilde{\lambda}}} \left[E_{Q^{\widetilde{\lambda}}} \left[\mathbf{1}_{\{S_0 \exp(\sigma w + a N_T^{\widetilde{\lambda}} - \frac{\sigma^2 T}{2} - \widetilde{\lambda}(e^a - 1)T) > K\}} \right] \Big|_{W_T^Q = w} \right] \\ &= K E_{Q^{\widetilde{\lambda}}} \left[Q^{\widetilde{\lambda}} \left[a N_T^{\widetilde{\lambda}} > \ln \frac{K}{S_0} - \sigma w + \frac{\sigma^2 T}{2} + \widetilde{\lambda}(e^a - 1)T \right] \Big|_{W_T^Q = w} \right]. \end{split}$$

Denote by $D_{\widetilde{\lambda}T}(x)$ the $\operatorname{Poi}(\widetilde{\lambda}T)$ -distribution function, i.e. $\nu[X \leq x]$ for $X \sim \operatorname{Poi}(\widetilde{\lambda}T)$ under a probability measure ν . Then, for a > 0, we see that

$$J_2^{\widetilde{\lambda}} = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi T}} e^{-\frac{w^2}{2T}} \left(1 - D_{\widetilde{\lambda}T} \left(c(w) + \alpha \widetilde{\lambda}T \right) \right) dw,$$

with

$$c(w) := \frac{\ln \frac{K}{S_0} - \sigma w + \frac{\sigma^2 T}{2}}{a}, \qquad \alpha := \frac{e^a - 1}{a}. \tag{1}$$

Define by $\widehat{D}_{\widetilde{\lambda}T}(x) = \nu[X < x]$ for an $X \sim \operatorname{Poi}(\widetilde{\lambda}T)$ under a probability measure ν . For a < 0, we have

$$J_2^{\widetilde{\lambda}} = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi T}} e^{-\frac{w^2}{2T}} \, \widehat{D}_{\widetilde{\lambda}T} (c(w) + \alpha \widetilde{\lambda}T) \, dw,$$

with c(w), α as in (1). Thus, using dominated convergence and the hint, we obtain that $J_2^{\widetilde{\lambda}}$ tends to 0 as $\widetilde{\lambda} \to \infty$. In order to calculate $J_1^{\widetilde{\lambda}}$, we introduce a probability measure $\widetilde{Q}^{\widetilde{\lambda}}$ defined by

$$\widetilde{Z}_t := \frac{d\widetilde{Q}^{\widetilde{\lambda}}}{dQ^{\widetilde{\lambda}}}\Big|_{\mathcal{F}_t} = \exp\left(\sigma W_t^Q + aN_t^{\widetilde{\lambda}} - \frac{\sigma^2 t}{2} - \widetilde{\lambda}(e^a - 1)t\right).$$

Under $\widetilde{Q}^{\widetilde{\lambda}}$, S is given by

$$S_t = S_0 \exp\left(\sigma W_t^{\widetilde{Q}\widetilde{\lambda}} + aN_t^{e^a\widetilde{\lambda}} + \frac{\sigma^2 t}{2} - \widetilde{\lambda}(e^a - 1)t\right),\,$$

where $W_t^{\widetilde{Q}^{\widetilde{\lambda}}}=W_t-\sigma t$ is a $\widetilde{Q}^{\widetilde{\lambda}}$ -Brownian motion and $N^{e^a\widetilde{\lambda}}:=N^\lambda$ is an independent $\widetilde{Q}^{\widetilde{\lambda}}$ -Poisson process with intensity $e^a\widetilde{\lambda}$. Indeed, this can be seen by calculating the moment generating function $E_{\widetilde{Q}^{\widetilde{\lambda}}}[e^{u\widetilde{X}_t}]=E_{Q^{\widetilde{\lambda}}}[e^{u\widetilde{X}_t}\widetilde{Z}_t]$ for $u\in\mathbb{R}$, where $\widetilde{X}_t=\sigma W_t^{\widetilde{Q}^{\widetilde{\lambda}}}+aN_t^{e^a\widetilde{\lambda}}+\frac{\sigma^2 t}{2}-\widetilde{\lambda}(e^a-1)t$, or by observing that \widetilde{Z} has the same structure as Z (with $\widetilde{\widetilde{\lambda}}:=\widetilde{\lambda}e^a$ and $\beta=1$) and then use the above calculation to conclude.

Then we have for $J_1^{\widetilde{\lambda}}$

$$\begin{split} J_1^{\widetilde{\lambda}} &= S_0 E_{\widetilde{Q}\widetilde{\lambda}} \big[1_{\{S_T > K\}} \big] \\ &= S_0 E_{\widetilde{Q}\widetilde{\lambda}} \left[E_{\widetilde{Q}\widetilde{\lambda}} \left[1_{\{S_0 \exp(\sigma W_T^{\widetilde{Q}\widetilde{\lambda}} + a N_T^{e^a \widetilde{\lambda}} + \frac{\sigma^2 T}{2} - \widetilde{\lambda} (e^a - 1)T) > K\}} \right] \Big|_{W_T^{\widetilde{Q}} = w} \right] \\ &= S_0 E_{\widetilde{Q}\widetilde{\lambda}} \left[\widetilde{Q}^{\widetilde{\lambda}} \left[a N_T^{e^a \widetilde{\lambda}} > \ln \frac{K}{S_0} - \sigma w - \frac{\sigma^2 T}{2} + e^a \widetilde{\lambda} \frac{e^a - 1}{e^a} T \right] \Big|_{W_T^{\widetilde{Q}} = w} \right]. \end{split}$$

Thus, for a > 0, we see that

$$J_1^{\widetilde{\lambda}} = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi T}} e^{-\frac{w^2}{2T}} \left(1 - D_{e^a \widetilde{\lambda} T} \left(c(w) + \alpha \widetilde{\lambda} T \right) \right) dw,$$

with

$$c(w) := \frac{\ln \frac{K}{S_0} - \sigma w - \frac{\sigma^2 T}{2}}{a}, \qquad \alpha := \frac{e^a - 1}{ae^a}.$$
 (2)

For a < 0, we have

$$J_1^{\widetilde{\lambda}} = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi T}} e^{-\frac{w^2}{2T}} \, \widehat{D}_{e^a \widetilde{\lambda} T} \big(c(w) + \alpha \widetilde{\lambda} T \big) \, dw,$$

with c(w), α as in (2). Using again the hint and dominated convergence, $J_1^{\tilde{\lambda}}$ tends to S_0 as $\tilde{\lambda} \to \infty$. Thus

$$\pi_s((S_T - K)^+) \ge \lim_{\widetilde{\lambda} \to \infty} E_{Q^{\widetilde{\lambda}}}[(S_T - K)^+] = S_0,$$

which implies that $\pi_s((S_T - K)^+) = S_0$.