This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C07K 3/00, 13/00, C07H 21/00 C12P 21/06, 21/02, 21/04 C12N 15/00	A1	(11) International Publication Number: WO 92/14748 (43) International Publication Date: 3 September 1992 (03.09.92)
(21) International Application Number: PCT/US (22) International Filing Date: 20 February 1992 ((30) Priority data:		(75) Inventors/Applicants (for US only) - TERMAN Bruce Is
657,236 22 February 1991 (22.02.9) (60) Parent Application or Grant (63) Related by Continuation) (16	(74) Agent: GORDON, Alan, M.; American Cyanamid Company, 1937 West Main Street, P.O. Box 60, Stamford, CT 06904 (US).
US 657,23 Filed on 22 February 1991 (2 (71) Applicant (for all designated States except US): A CAN CYANAMID COMPANY [US/US]; 193 Main Street, P.O. Box 60, Stamford, CT 06904 (1)		patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GR (Europ
		Published With international search report.

(54) Title: IDENTIFICATION OF A NOVEL HUMAN RECEPTOR TYROSINE KINASE GENE

(57) Abstract

A DNA sequence encoding a novel human growth factor receptor referred to as a type III receptor tyrosine kinase is described. The amino acid sequence of the receptor is also described. The receptor has a sequence which is similar to that of the kinase domains of known type III receptor tyrosine kinases, but which is unique in its kinase insert domain sequence. The receptor binds specifically to the vascular endothelial cell growth factor.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT:	Austria	FI	Finland	МІ	Mali
AU	Amtralia	FR	France	MN	Mongolia
HB	Burthalus	GA	Cuhon	MR	Mauritania
BE	Belgium	GB	United Kingdom	MW	Malawi
BF	Burkina Faso	GN	Guinca	NL.	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	IE	Incland	RO	Romania
CA	Canada	IT	Italy	RU	Russian Federation
CF	Central African Republic	JP	Japan	SD	Sudan
CC	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of korea	SN	Scnegal
CI	Côte d'Ivoire	KR	Republic of Korea	รบ	Soviet Union
CM	Camerous	LI	l iuchtenstein	TD	Chad
C?	Czeholowakia	Lh	Sri Lanka	TC	Tugo
DE	Cigration	LU	Luxembourg	US	United States of America
DK	Denmark	MC	Monaco		
••••		140	44 4		

1

5

IDENTIFICATION OF A NOVEL HUMAN RECEPTOR TYROSINE KINASE GENE

10

15

20

. .

35

FIELD OF THE INVENTION

This invention relates to the DNA sequence encoding a novel human growth factor receptor which is a type III receptor tyrosine kinase. The receptor is referred to as Kinase insert Domain containing Receptor (KDR) and binds specifically to the growth factor vascular endothelial cell growth factor (VEGF). This invention also relates to the amino acid sequence of the receptor.

BACKGROUND OF THE INVENTION

regulate normal cell growth and development through interaction with cell surface receptors. The receptors for a number of growth factors are referred to as tyrosine kinases; that is, binding of growth factor to the receptor stimulates an increased phosphorylation of tyrosine amino acids within the receptor; this is turn leads to cellular activation (Bibliography 1).

There is increasing evidence that genetic alterati ns aff cting the expression of receptor tyrosin kinases (RTK) can contribute to the altered cell gr wth associated with cancer. This c nclusi n is

- 2 -

supported by the frequent identification of RTK as products of the oncogenes for many of the acutely transforming retroviruses (e.g., 2,3,4) and the overexpression of RTK in certain cancers (5). The identification of a novel RTK may lead to a better understanding of cell growth under both normal and transforming circumstances.

5

10

15

20

25

30

35

The amino acid sequence in the catalytic domain of all tyrosine kinases has been conserved (6). Detailed analysis of the amino acid sequences within the catalytic and noncatalytic domains of RTK indicates the existence of distinct structural subtypes. One group of RTK (designated type III) includes the ckit proto-oncogene and the receptors for platelet derived growth factor (PDGF) and colony stimulating factor-1 (CSF-1).

The most unusual feature of this subtype is that its catalytic (kinase) domain is interrupted by a long insertion sequence of 12-102 amino acids (the kinase insert domain) The two peptides constituting the kinase domain are conserved between the receptors, while the sequence of the kinase insert domain is unique for each receptor.

Several approaches have been tried in order to identify novel RTK, including low-stringency screening of cDNA libraries with previously characterized DNA probes (7). More recently, a technique has been developed that is capable of greatly facilitating the identification of novel genes for which some sequence data are known. The polymerase chain reaction (PCR) has been used to identify novel members of several gene families including those of guanine nucle tide regulatory pr teins (8) and protein ph sphatases (9). PCR has b en us d to identify n vel tyrosine kinase genes (10), though the primers used in

10

15

20

25

30

35

that study were designed from DNA segments contained in all tyrosine kinases, rather than being specifically directed against RTK. It is a continuing goal to identify receptors for growth factors.

The elucidation of the growth factors, as well as their receptors, involved in regulating endothelial cell function is critical for the understanding of how new blood vessels are formed (angiogenesis). Angiogenesis plays a significant role in both normal and pathological events such as embryogenesis, progression of ocular diseases, and wound healing (11). In particular, angiogenesis is an important process for the growth of tumors (11). Angiogenesis is a complex process involving endothelial cell proliferation, migration, and tissue infiltration. These events are stimulated by growth factors which either (i) act directly on endothelial cells (12,13), or (ii) act indirectly by inducing host cells to release specific endothelial cell growth factors (11). One member of the first group is vascular endothelial cell growth factor (VEGF), also known as vascular permeability factor (14-16). Besides its angiogenic activity, VEGF displays the physiological function of increasing the permeability of capillary vessels to different macromolecules (14).

SUMMARY OF THE INVENTION

The present invention relates to novel DNA segments which together comrpise a gene which encodes type III RTK. The type III RTK encoded by the gene is designated the <u>KDR</u> protein (which stands for Kinase ins rt Domain containing Rec ptor). The <u>KDR</u> prot in binds specifically to the growth factor VEGF (vascular end the lial cell growth factor).

- 4 -

The DNA segments are identified and isolated through the use of PCR technology. The overall strategy is summarized as follows:

PCR is used to amplify the DNA segments corresponding to the kinase insert domains of type III receptor tyrosine kinase genes in an endothelial cell library designated HL10246 (Clontech Laboratories, Inc., Palo Alto, CA). Degenerate oligonucleotide primers are designed which are complementary to conserved tyrosine kinase domains flanking the kinase insert domains of known type III receptor tyrosine kinases. These primers are used in the PCR procedure. DNA probes, designed from the DNA sequence of the PCR product, are then used to identify cDNA clones of the receptor gene from the original cDNA library.

In particular, the present invention relates to specific oligonucleotides which, when used as primers for PCR, allow for the amplification of DNA segments corresponding to the kinase insert domains of type III RTK genes.

In a principal embodiment, the present invention is directed to three overlapping DNA segments (designated BTIII081.8, BTIII129.5 and BTIV169) which comprise the entire coding region of this novel gene, namely, 4,068 nucleotides extending to the 3' end.

These DNA segments are isolated from a human endothelial cell cDNA library and together comprise the gene coding for a novel type III receptor tyrosine kinase. The human gene containing these DNA segments is referred to hereinafter as KDR (which stands for Kinase insert Domain containing Receptor) or, alternatively, as kdp (which stands for Kinase insert Domain containing Protein). The us of th term KDR is intended to includ any DNA segments which form th

5

10

15

20

25

10

15

20

25

30

35

human gene which encodes the novel type III RTK of this application.

The DNA segments embodied in this invention are isolated from human sources. The present invention comprises DNA segments, and methods for using these DNA segments, which allow for the identification of a closely related gene in mouse DNA. The methods developed in this invention can be readily used by those skilled in the art for the identification and isolation of closely-related homologues in other species. Therefore, the present invention also embodies all DNA segments from species other than human which encode proteins having substantially the same amino acid sequence as that encoded by the kdp gene.

The present invention further relates to methods developed for the detection of mRNA's produced as a result of transcription of the sense strands of the DNA segments of this invention. Messenger RNA prepared from bovine endothelial cells are used in developing these methods. The ability to detect mRNA for a novel RTK may ultimately have medical benefit, especially in light of recent observations that the mRNA for certain RTKs are overexpressed in some cancers (5).

The methods developed in the present invention for detecting mRNA expressed by the kdp gene can be readily used by those of ordinary skill in the art for the detection of mRNA species related to the kdp gene in any cell type and from any species. For this reason, the present invention embodies all mRNA segments which are the result of transcription of the kdp gene.

The present invention relates to methods f r xpression of the r ceptor pr tein, for exampl , in CMT-3 cells of m nkey kidney rigin. The rec ptor

- 6 -

protein, portions thereof, and mutated forms of the receptor protein may be expressed in many other cells by those skilled in the art using methods similar to those described in this application. For this reason, the present invention embodies all proteins encoded by the human <u>KDR</u> gene and proteins encoded by related genes found in other species.

methods for studying the interaction of VEGF to the expressed KDR protein. Recent work in the literature (17) indicates that VEGF is one member of a family of related proteins, and the interaction of growth factors similar to VEGF with the KDR protein can readily be studied by those skilled in the art using methods similar to those described in this application. These methods can readily be modified to study the interaction of candidate pharmaceuticals with the KDR protein towards the goal of developing an antagonist or agonist of VEGF action. For this reason, the present invention embodies methods for studying the interaction of VEGF and VEGF-related growth factors with the KDR protein.

BRIEF DESCRIPTION OF THE DRAWINGS

25

5

10

15

20

Figure 1 depicts a schematic representation of three receptor tyrosine kinase subclasses (6). KI is kinase insert domain; PTK is kinase domain; cys is cysteine rich region.

30

35

Figure 2 depicts the two sets of primers used for PCR (SEQ ID No: 1 and 2). The nucleotide sequences in appropriate regions of the four known type III r ceptor tyr sine kinase cDNAs are aligned and degenerate olig nucleotide primers are designed based upon the consensus sequences.

10

15

20

25

30

35

Figure 3 depicts the amplification of the kinase insert domains using PCR. DNA segments encoding the kinase insert domains of type III receptor tyrosine kinases are amplified by PCR. A sample (5 μ l) is run on a 1.0% agarose gel which is stained with ethidium bromide. DNA size standards (123 bp ladder; Bethesda Research Laboratories, Bethesda, MD) are run as well.

Figure 4 depicts the DNA sequence of the two PCR products (Panel A: 363 bp segment derived from the 420 bp product (SEQ ID NO: 3); Panel B: 251 bp product (SEQ ID NO: 4)). The two products are purified by agarose gel electrophoresis, digested with Sall and EcoRI, and cloned into the plasmid vector pBlueScribe(+) (Strategene; San Diego, CA). The 420 bp PCR product is digested to 363 bp during this procedure. The DNA sequences for the primers used in the amplification are underlined.

Figure 5A depicts a computer assisted comparison of the DNA sequence for the 363 bp DNA segment derived from the 420 bp PCR product with the sequence of a DNA segment of the PDGF receptor (SEQ ID NO: 5) (18). A region of strong homology between the 363 bp segment derived from the 420 bp PCR product and the PDGF receptor is contained in a box. Figure 5B depicts a computer assisted comparison of the DNA sequence for the 251 bp PCR product with the sequence of a DNA segment of the FGF receptor (SEQ ID NO: 6) (7).

Figure 6 depicts the strategy used for sequencing the insert portions of clones BTIII081.8 and BTIII129.5 and BTIV169. The sequencing reaction uses either synthetic oligonucleotides (represented by boxes at the start f an arr w), or the M13 universal primer (no box) to initiat the raction. In some cases, portions of th se DNA s gments are is lated using the

10

15

20

25

30

35

restriction enzymes indicated in the figure, and subcloned back into the plasmid vector pUC118, so that the M13 universal primer can be used. The position of the stop codon in BTIII129.5 is indicated. The coding portions of these DNA segments are shown at the bottom of the figure. The relative positions of the 1) membrane spanning portion, 2) kinase domains, and 3) kinase insert domain are indicated. The position of these structural features within the KDR derived DNA segments is compared in relation to their position in the PDGF-receptor ("PDGF-R").

Figure 7 depicts the DNA and predicted amino acid sequence of KDR, plus the stop codon (nucleotides 1-4071 of SEQ ID NO. 7). The sequence of the DNA segment amplified by PCR is underlined (nucleotides 2749-3105 of SEQ ID NO. 7). Cysteine residues in the putative extracellular domain are circled. Potential N-linked glycosylation sites are indicated by an asterisk. The putative membrane spanning region is enclosed in a box (nucleotides 2293-2367 of SEQ ID NO. 7).

Figure 8 depicts a hydropathy plot of the predicted amino acid sequence for the KDR protein.

Figure 9 depicts a comparison of the predicted amino acid sequence in the putative intracellular portion of the <u>KDR</u> protein to the <u>ckit</u> proto-oncogene (SEQ ID No: 8) (3), the CSF-1 receptor (SEQ ID NO: 9) (4), and the PDGF receptor (SEQ ID NO: 10) (18). Exact matches are indicated by an asterisk. Gaps are introduced to achieve maximum alignment. The putative ATP recognition site is indicated by three asterisks.

Figur 10 depicts th identification f kdp rec ptor mRNA by Northern bl t analysis. Five micrograms f bovine a rtic end thelial cell polyA+ RNA

are used. A nick-translated [32P] CTP-labelled <u>EcoRI/Bam</u>HI DNA segment (nucleotides 1510-2417 of SEQ ID NO. 7) is used as a probe. Autoradiography is for 36 hours.

5

Figure 11 depicts the kdp gene in human and mouse DNA by Southern blot analysis. A nick translated [32P]CTP-labelled EcoRI/BamHI DNA segment (nucleotides 1510-2417 of SEQ ID NO. 7) is used as the probe. The probe is hybridized to Southern blots containing EcoRI digested DNA from human (lane 1), mouse (lane 2), and human-mouse hybrid cells (19) (lanes 3 and 4). The DNA used in lane 3 lacks the kdp locus, while DNA used in lane 4 contains the kdp locus.

15

10

Figure 12 depicts a Western blot analysis of CMT-3 cells which express the <u>KDR</u> protein. Cells are transfected with either the pcDNAltkpASP vector alone (lane 1) or with that vector modified to contain the <u>KDR</u> gene (lane 2). 2 x 10⁵ cells and 1 microgram of DNA are used for each transfection. Forty-eight hours later, Western blot analysis is performed on the samples using the anti-<u>KDR</u>.PS23 polyclonal antibody at a dilution of 1:1000. Detection of reacting proteins is performed using an ECL system (Amersham, Chicago, IL).

25

20

Figure 13 depicts the results of [125] VEGF binding to CMT-3 cells which express the KDR protein. Cells are transfected with either the vector alone (bars 1 and 2) or with the vector containing the KDR gene (bars 3 and 4). Forty-eight hours later, the samples are washed with phosphate buffered saline (PBS), and incubated with serum-free media containing 50 pm [125] VEGF (specific activity equal to 4,000 cpm per fmol), f r 90 minutes. Nonradioactive VEGF, 5 nM, is added to some samples (bars 2 and 4) to defin

specific binding sites. The samples are washed with ice cold PBS, and the cells are transferred to gamma-counting tubes using 0.1% lubrol.

Figure 14 depicts the results of affinity cross-linking of [125] VEGF to CMT-3 cells which express the KDR protein. CMT-3 cells are transfected with either the vector alone (lane 1) or with the vector containing the KDR gene (lane 2). Forty-eight hours later, the cells are washed in PBS, and serum free media containing 200 pM [125] VEGF is added. After 90 minutes at room termperature, an affinity cross-linker disuccinimidyl suberate, 0.5 mM, is added for 15 minutes. The samples are then prepared for SDS-PAGE autoradiography.

15

20

25

30

35

10

5

DETAILED DESCRIPTION OF THE INVENTION

The strategy used to discover the DNA segments for the novel type III RTK gene begins with the design of two degenerate oligonucleotide primers based upon their homology to specific regions of the kinase domains of known RTK genes (Fig. 2) (3,4,7,18). In one embodiment, the polymerase chain reaction is then used to amplify DNA segments from a human endothelial cell cDNA library (designated HL 10246). The cDNA products from this step are each cloned into a plasmid vector designated pBlueScribe+ (Strategene, San Diego, CA) and sequenced. Oligonucleotide probes are designed from potentially interesting sequences in order to screen the cDNA library for more full length clones of the novel cDNA.

The strategy just described provides several novel lements: 1) th DNA sequences of the oligonucle tid primers used during PCR; 2) the DNA sequence f the products generat d by th polymerase chain

reaction; and 3) the DNA sequence of the final cloned DNA segments. Each of these elements of the invention described in this application will now be discussed in detail.

5

Figure 2 shows the rationale for choosing the oligonucleotide primers used in the PCR. The primers are designed to allow for the PCR amplification of the kinase insert domain of type III RTK genes. In order to design the primers, the DNA sequences of known type III RTK genes are aligned in specific regions of their catalytic domains, and a consensus sequence is chosen. The regions of the catalytic domains chosen in designing the primers flank the kinase insert domains of the receptor genes.

15

10

Primer 1 (SEQ ID No: 1) is designed from a region of the kinase domain 5' to the kinase insert domain, and consists of a mixture of four different 21mers. Primer 2 (SEQ ID NO: 2) is designed from a region of the kinase domain 3' to the kinase insert domain, and consists of a mixture of sixteen different 29mers with one inosine, indicated in SEQ ID NO: 2 by "N".

20

25

<u>Sal</u>I and <u>Eco</u>RI restriction sites are included at the 5' end of primers 1 and 2, respectively, to facilitate the subcloning of the amplified PCR products into plasmid vectors. Those skilled in the art may use other restriction sites; other minor modifications in the protocol above permits the design of primers without the inclusion of restriction sites.

30

35

The selection of these specific primers constitutes a novel approach towards identifying novel type III RTK genes. It had previously been shown (10) that primers d signed from DNA sequences c mmon to all tyrosine kinases allows for the identification of novel proteins. The pr s nt inventi n is the first t

5

10

15

20

25

30

35

- 12 -

contemplate the use of PCR to specifically target type III RTK.

The protocol used for PCR is as follows: Human endothelial cell cDNA (designated HL10246) is denatured by boiling and submitted to 30 cycles of PCR using 1 nmol of both primers in a final volume of 100 μ l. The timing is 1.5 minutes at 92°C, 2 minutes at 50°C, and 2 minutes at 74°C. DNA from 5μ l of sample is separated on a 1% agarose gel and stained with ethidium bromide.

Figure 3 shows the results of the PCR amplification. Two DNA products, with sizes 251 bp (SEQ ID NO: 4) and 420 bp, are visible when a sample of the reaction is electrophoresed on a 1.0% agarose gel and stained with ethidium bromide. The sizes of the two products are within the range expected for type III RTK genes (products derived from the FGF and PDGF receptor genes, which have the smallest and largest known kinase insert domains, would be 230 and 510 bp, respectively (20, 21).

The DNA from four continguous lanes with sizes ranging from 200 to 600 bp is electrophoresed onto DEAE filter paper, eluted from the paper with salt, and ethanol precipitated. The samples are incubated with 5 units of EcoRI and SalI. The restriction enzymes digest the 420 bp DNA segment to a 363 bp DNA segment (SEQ ID NO: 3), due to the presence of an EcoRI site within the 420 bp DNA segment (nucleotide 2749, SEQ ID NO. 7). The restriction enzyme digested PCR products are then subcloned into the plasmid vector pBlueScribe(+). The recombinant clones are analyzed by sequencing using the dideoxy-m th d (22) using a United States Biochemical (Cleveland, Ohio) Sequenase Version 2.0 s qu ncing kit. Figur 4 shows the DNA s quences for the 251 bp PCR

10

15

20

25

30

35

product and the 363 bp DNA segment derived from the 420 bp PCR product.

Computer assisted comparison of the DNA sequence for the 363 bp segment of the 420 bp PCR product to databases of known DNA sequences reveals that the sequence is novel, because it shares strong sequence identity with the flanking catalytic domain of known type III RTK genes, but not their kinase insert domains. Figure 5A compares the DNA sequence for the 363 DNA segment with that for the PDGF receptor gene (SEQ ID No: 5). Similar results are obtained using other type III RTK genes.

DNA sequencing of the 251 bp PCR product reveals a novel sequence containing both primers used for the amplification, but the sequence shows little homology to known tyrosine kinases. This is depicted in Figure 5B, which compares the DNA sequence for the 251 bp DNA segment with that for the FGF receptor (SEQ ID NO: 6). For this reason, further analysis of Product 1 is not pursued.

The protocols used during the PCR do not allow for amplification of the kinase insert domains of known receptor tyrosine kinases in the endothelial cell library used because of the low copy number of the message present in the library. There have been many studies on the effect of FGF on endothelial cell function (23,24) although there is evidence that the expression of the FGF receptor is developmentally regulated (7) and it is likely that the library used contains little or no cDNA for the FGF receptor.

An oligonucleotide probe, designed from the DNA sequence of the 363 bp segment, is synthesized (using an ABI 380 DNA Synthesizer) in order to screen the human endothelial cell cDNA library (HL10246) for the is lation of more full length cl nes containing th

5

10

15

20

25

30

35

363 bp DNA segment. The probe sequence is chosen from the region of the 363 bp DNA segment which shares little sequence homology with known RTK.

The screening of the endothelial cell cDNA library is conducted as follows: Lambda gtll phage, 106, are adsorbed to E. coli LE392 for 15 minutes at 37°C prior to plating onto agar plates at a density of 5×10^5 phage per plate. After allowing the phage plaques to develop at 37°C, plaque lifts are made using nitrocellulose filters, denatured in 0.4 N NaCl for 1 minute, and neutralized in 0.5 M Tris.HCl, pH 7.3, plus 1.5 M NaCl. The filters are washed with 2 x standard saline citrate (SSC) and then baked for 1.5 hour in a vacuum oven at 80°C. The filters are probed with an $[^{32}P]$ ATP end labeled synthetic oligonucleotide, 5' -TTTCCCTTGACGGAATCGTGCCCCTTTGGT-3', which is the reverse complement of a DNA sequence contained in the PCR amplified product (Fig. 3). Hybridization is performed at 50°C in 5 x SSPE (167 mM NaCl, 10 mM sodium phosphate, pH 7.4, 1 mM EDTA), 2.5 x Denhardts, 0.5% sodium dodecyl sulfate (SDS), 100 μ g/ml salmon sperm DNA. The filters are washed twice, 20 minutes per wash, with 2 x SSC plus 0.1% SDS at room temperature, followed by washing twice at 50°C with 0.1 X SSC plus 0.1% SDS; 20 minutes per wash. Positive clones are identified, picked and plaque purified.

Forty-five positive clones are obtained. Three of these positive clones are plaque purified and their phage DNA isolated. Digestion of the DNA with <u>EcoRI</u> and electrophoresis in agarose indicates that one clone, designated BTIII081.8, contains the largest insert, and subsequent analysis indicates that the DNA ins rt of this clon verlaps that of the ins rts contained in other two purified clones (designated BTIII079.11 and BTIII079.47A).

10

15

20

25

30

35

Digestion of the purified phage DNA of the clone designated BTIII081.8 with EcoRI results in DNA segments of 250 bp, 600 bp, and 1000 bp. Each of these three products is subcloned into the plasmid vector pUCl18 and sequenced (Figure 6 shows the strategy used for sequencing). The orientation of the three fragments is determined by subcloning from the insert a BglII/BglII fragment into pUCl18 and sequencing across the EcoRI junctions using a synthetic oligonucleotide to prime the sequencing reaction.

A restriction map is determined for each fragment (Figure 6). Various restriction site pieces are removed from the plasmids and recloned into pUCl18 so that sequencing the resulting plasmids with the universal primer allows for sequencing most of the entire original fragments in both directions. Three oligonucleotide primers are required to sequence the entire cDNA in both directions. For the purposes of this application, this insert contains nucleotides numbered 1510-3406 (SEQ ID NO. 7).

A [³²P]CTP-labelled, nick-translated

ECORI-BamHI DNA segment derived from clone BTIII081.8

(nucleotides 1510-2417 of SEQ ID NO. 7) is used as a probe to rescreen the original endothelial cell cDNA library for more 5' full length DNA segments of the gene from which the insert portion of BTIII081.8 is derived. The protocols used to isolate the overlapping clones are identical to that used to isolate BTIII081.8.

A synthetic oligonucleotide probe is designed with 29 nucleotides corresponding to part of the DNA sequence of the insert portion of the clone BTIII081.8 (nucl otides 3297-3325 of SEQ ID NO. 7) in order to rescr en the original endothelial c ll cDNA library for mor full 3' length DNA segments of the gene from which

5

10

15

20

25

30

35

- 16 -

the insert portion of BTIII081.8 is derived. The protocols used to isolate the overlapping clones are identical to that used to isolate BTIII081.8. Several positive clones for each of the 5' and 3' ends are identified and plague purified.

One of the clones is designated BTIII200.2. The DNA from BTIII200.2 contains a 3.4 kb insert as determined by EcoRI digestion of the isolated phage DNA. EcoRI digestion of BTIII200.2 results in three DNA fragments. One of thse fragments (2.5 kb) is cloned into pUCl19 and is designated BTIV006. The clone BTIV006 contains nucleotides numbered 7-2482. As described below, BTIV006 plus nucleotides 1-6 is designated BTIV169. DNA sequencing of the 2.5 kb DNA insert (BTIV169) indicates that it overlaps over one thousand nucleotides of the DNA sequence of the insert portion of the clone BTIII081.8 (Figure 6) at the 5' end.

A second clone isolated from the cDNA library is designated BTIII129.5. The DNA from BTIII129.5 contains a 2.2 kb insert as determined by EcoRI digestion of the isolated phage DNA. DNA sequencing of the 2.2 kb DNA insert indicates that it overlaps over five hundred nucleotides of the DNA sequence of the insert portion of the clone BTIII081.8 (Figure 6). The clone BTIII129.5 contains nucleotides numbered 2848-4236 (SEQ ID NO. 7). The DNA sequence for BTIII129.5 contains the stop codon TAA, defining the position of the 3' end of an open reading frame for the novel gene. Except for the first six nucleotides of the gene which are discussed below, these three clones define a gene encoding a growth factor receptor. These three clones defin a 4,062 nucleotid sequ nce of the open r ading frame of the gene xtending to the 3' end, foll wed by a 168 nucleotide n n-coding regi n (SEQ ID

10

15

20

25

30

35

7

NO. 7). A sample of a lambda gtll phage harboring the clone BTIII081.8 has been deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852, U.S.A., and has been assigned ATCC accession number 40,931. A sample of a lambda gtll phage harboring the clone BTIII129.5 has been deposited with the American Type Culture Collection and has been assigned ATCC accession number 40,975. For reasons discussed below, a sample of the clone BTIV006 was not deposited.

The aforementioned DNA segments (BTIII081.8, BTIII129.5, and BTIII200.2 (or BTIV006) encode 4062 nucleotides of the coding portion of a novel gene. The cDNA clones are incomplete in that a transcription initiation coding for methionine is missing. After the isolation of these clones, Matthews et al. (25) reported the cloning of a gene homologue of KDR in mouse, which was referred to as Flk-1. Analysis of the nucleic acid and amino acid sequence of Flk-1 indicated that the addition of six nucleotides to the 5' end of the isolated KDR clones would provide for a complete coding region.

To achieve this, an <u>Eco</u>RI-<u>Bam</u>HI restriction fragment of BTIV200.2 is cloned into the plasmid pBlueScript KS (Strategene, La Jolla, CA). The 5' end of the inserted DNA is blunt ended with Klenow polymerase and Mung Bean nuclease. Next, the synthetic oligonucleotide TCGACGCGCG ATG GAG (SEQ ID NO. 11) is cloned into this vector. The oligonucleotide contains the sequence ATG GAG in frame with the downstream DNA insert. These nucleotides (ATG GAG) encode the amino acids methionine and glutamic acid, the first two amino acids enc ded by the <u>KDR</u> gen. The resulting plasmid vector is designated BTIV140. This plasmid is purified on a CsCl gradient.

5

10

15

20

25

30

35

- 18 -

The purified plasmid is designated BTIV169. The insert of BTIV169 contains nucleotides 1-2400 (SEQ ID NO. 7) of the <u>KDR</u> gene. A sample of the plasmid pBlueScript KS which contains the clone BTIV169 has been deposited with the American Type Culture Collection and has been assigned ATCC accession number 75200.

Thus, together the clones BTIII081.8, BTIII129.5 and BTIV169 comprise the entire open reading frame of 4,068 nucleotides for the novel <u>KDR</u> gene. As will be discussed below, the <u>KDR</u> gene expresses the novel <u>KDR</u> receptor which binds specifically to the growth factor VEGF.

DNA sequencing of BTIII081.8, BTIII129.5 and BTIV169 (SEQ ID NO. 7) shows that the newly isolated gene is similar to, but distinct from, previously identified type III RTK. The predicted amino acid sequence (SEQ ID NO. 7) contains several structural features which demonstrate that the novel gene is a type III RTK. These structural features are summarized as follows:

- 1) A hydropathy plot of the predicted amino acid sequence indicates a single membrane spanning region (see Figure 8). This is characteristic of a type III RTK (Figure 7).
- 2) The putative amino-terminal 762 amino acid portion of the receptor has structural features of extracellular receptor ligand binding domains (1), including regularly spaced cysteines and 18 potential N-linked glycosylation sites (Figure 7).
- 3) The predicted amino acid sequence of the carboxy-terminal 530 amino acid portion contains an ATP-binding sit at lysine 868, 22 amino acids downstream from the consensus ATP recognition sequence Gly-X-Gly-X-X-Gly (26) (Figure 8).

- 4) Within the kinase domain there is a 55-60% identical match in amino acid sequence to three other type III receptor tyrosine kinases: ckit
 proto-oncogene (SEQ ID NO: 8), CSF-1 (SEQ ID NO: 9) and PDGF (SEQ ID NO: 10) (Figure 9).
- 5) The predicted kinase domain contains a kinase insert domain of approximately 71 amino acids. As indicated in Figure 9, this portion of the amino acid sequence shares little sequence homology with other type III RTK.

The endothelial cell library can be further screened to isolate the 5' untranslated region and genomic clones can be generated so as to isolate the promoter region for the KDR gene.

In addition to the DNA sequence described for the KDR gene (SEQ ID NO. 7), the present invention further comprises DNA sequences which, by virtue of the redundancy of the genetic code, are biologically equivalent to the sequences which encode for the receptor, that is, these other DNA sequences are characterized by nucleotide sequences which differ from those set forth herein, but which encode a receptor having the same amino acid sequences as those encoded by the DNA sequences set forth herein.

In particular, the invention contemplates those DNA sequences which are sufficiently duplicative of the sequence of SEQ ID NO. 7 so as to permit hybridization therewith under standard high stringency Southern hybridization conditions, such as those described in Sambrook et al. (27), as well as the biologically active proteins produced thereby.

This invention also comprises DNA sequences which encode amino acid sequences which differ from thos of the novel receptor, but which are the biological quivalent to those d scribed for the

10

5

15

20

25

30

5

10

15

20

25

30

35

- 20 -

receptor. Such amino acid sequences may be said to be biologically equivalent to those of the receptor if their sequences differ only by minor deletions from or conservative substitutions to the receptor sequence, such that the tertiary configurations of the sequences are essentially unchanged from those of the receptor.

For example, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, as well as changes based on similarities of residues in their hydropathic index, can also be expected to produce a biologically equivalent product. Nucleotide changes which result in alteration of the N-terminal or C-terminal portions of the protein molecule would also not be expected to alter the activity of the protein. It may also be desirable to eliminate one or more of the cysteines present in the sequence, as the presence of cysteines may result in the undesirable formation of multimers when the protein is produced recombinantly, thereby complicating the purification and crystallization processes. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products. Therefore, where the terms "KDR gene" or "KDR protein" are used in either the specification or the claims, each will be understood to encompass all such modifications and variati ns which r sult in the producti n of a bi 1 gically equivalent protein.

10

. 15

20

25

30

35

In addition to the full length gene and protein, the invention encompasses biologically active fragments of each. By "biologically active" is meant a protein fragment which qualitatively retains the receptor activity of the larger KDR protein, or, in the case of a nucleotide sequence, which encodes such a protein fragment. It also refers, for purposes of antibody production, to fragments which are capable of eliciting production of antibodies capable of binding to the receptor protein.

To determine the size of the mRNA transcribed from the kdp gene, Northern blot hybridization experiments are carried out using an EcoRI/BamHI DNA segment (nucleotides 1510-2417, SEQ ID NO. 7) as a hybridization probe. The DNA used for the probe does not contain any portion of the putative kinase domain, and shares little sequence homology to other tyrosine kinases. The Northern blot analysis (Figure 10) shows that a 7 kb band is visualized in cytoplasmic poly(A)+ RNA of ABAE bovine aortic endothelial cells. This transcript differs in size from previously reported transcripts for known type III RTK (7,18).

The isolated cDNA is significant for several reasons. The cDNA encodes a novel type III receptor tyrosine kinase. The homology between the sequence of this cDNA and that of other receptors, as well as structural properties implied by the predicted amino acid sequence confirm the relationship. Receptors for growth factors should have tremendous utility in drug development as they face the outside of the cell and thus are among the best targets for drugs. In addition, the cellular levels of some receptors, in particular the n u prot -onc gene, increas during some cancers. This has been taken advantage of in designing diagnostic tests f r these cancers.

- 22 -

Southern analysis demonstrates that the kdp gene is present in mouse as well as human DNA. Mouse and human (Hela cell) DNA, 15 μg of each, are digested with 10 units of EcoRI and electrophoresed on a 0.7% agarose gel. The DNA is transferred onto nitrocellulose. The filter is hybridized to a [32P]CTP-labelled cDNA probe made by nick translating an EcoRI/BamHI fragment from the 5' end of the kdp cDNA (nucleotides 1510-2417, SEQ ID NO. 7). Hybridization is conducted at 30°C in 5 X SSPE, 50% formamide, 0.1% SDS, plus 150 $\mu g/ml$ salmon sperm DNA. The DNA probe hybridizes to Southern blots containing EcoRI digested DNA. After 48 hours, the filter is washed at room temperature in 2 X SSC plus 0.1% SDS for 20 minutes, followed by two 20 minute washes at 40°C with 0.1 X SSC plus 0.1% SDS. Autoradiography is then performed for 48 hours. As shown in Figure 11, radioactively labelled DNA is present in both human and mouse samples. This indicates that the kdp gene is present in both species.

An experiment is conducted to ascertain the genetic locus of kdp on human chromosomes.

Thirty-eight cell hybrids from 18 unrelated human cell lines and four mouse cell lines are examined (19). A DNA probe hybridizes to Southern blots which contain EcoRI digested DNA from the human-mouse hybrids (using the procedure and DNA probe for human and mouse tissue described in relation to Figure 11). Table I sets forth the results of the segregation of kdp with human chromosomes in EcoRI digested human-mouse somatic cell hybrid DNA:

5

10

15

20

25

- 23 -

Table I

of Hybrids of Hybrids Chromosome						scordant Bybrids	#
1 4 19 8 4 34 2 8 18 5 6 30 3 11 12 3 9 34 10 4 14 24 0 0 0 0 5 7 14 7 10 45 6 7 19 7 5 32 7 11 14 3 8 31 8 8 11 6 13 50 15 9 3 20 10 4 38 10 12 9 2 14 43 11 9 13 4 11 41 12 9 10 5 14 50 13 7 18 7 6 34 20 14 11 8 3 16 50 15 9 15 5 8 35	5	Chromosome					& Discordancy
2 8 18 5 6 30 3 11 12 3 9 34 10 4 14 24 0 0 0 0 5 7 14 7 10 45 6 7 19 7 5 32 7 11 14 3 8 31 8 8 11 6 13 50 15 9 3 20 10 4 38 10 12 9 2 14 43 11 9 13 4 11 41 12 9 10 5 14 50 13 7 18 7 6 34 20 14 11 8 3 16 50 15 9 15 5 8 35			4-4-4		 		<u> </u>
3 11 12 3 9 34 10 4 14 24 0 0 0 0 5 7 14 7 10 45 6 7 19 7 5 32 7 11 14 3 8 31 8 8 11 6 13 50 15 9 3 20 10 4 38 10 12 9 2 14 43 11 9 13 4 11 41 12 9 10 5 14 50 13 7 18 7 6 34 20 14 11 8 3 16 50 15 9 15 5 8 35		1	4	19	8	4	34
10		2	8	18	5	6	30
5 7 14 7 10 45 6 7 19 7 5 32 7 11 14 3 8 31 8 8 11 6 13 50 15 9 3 20 10 4 38 10 12 9 2 14 43 11 9 13 4 11 41 12 9 10 5 14 50 13 7 18 7 6 34 20 14 11 8 3 16 50 15 9 15 5 8 35		3	11	12	3	9	34
6 7 19 7 5 32 7 11 14 3 8 31 8 8 11 6 13 50 15 9 3 20 10 4 38 10 12 9 2 14 43 11 9 13 4 11 41 12 9 10 5 14 50 13 7 18 7 6 34 20 14 11 8 3 16 50 15 9 15 5 8 35	10	4	14	24	0	0	0 .
7 11 14 3 8 31 8 8 11 6 13 50 15 9 3 20 10 4 38 10 12 9 2 14 43 11 9 13 4 11 41 12 9 10 5 14 50 13 7 18 7 6 34 20 14 11 8 3 16 50 15 9 15 5 8 35		5	7	14	7	10	45
8 8 11 6 13 50 15 9 3 20 10 4 38 10 12 9 2 14 43 11 9 13 4 11 41 12 9 10 5 14 50 13 7 18 7 6 34 20 14 11 8 3 16 50 15 9 15 5 8 35		6	7	19	7	5	32
15 9 3 20 10 4 38 10 12 9 2 14 43 11 9 13 4 11 41 12 9 10 5 14 50 13 7 18 7 6 34 20 14 11 8 3 16 50 15 9 15 5 8 35		7	.11	14	3	8	31
10 12 9 2 14 43 11 9 13 4 11 41 12 9 10 5 14 50 13 7 18 7 6 34 20 14 11 8 3 16 50 15 9 15 5 8 35		8	8	11	6	13	50
11 9 13 4 11 41 12 9 10 5 14 50 13 7 18 7 6 34 20 14 11 8 3 16 50 15 9 15 5 8 35	15	9	3	20	10	4	38
12 9 10 5 14 50 13 7 18 7 6 34 20 14 11 8 3 16 50 15 9 15 5 8 35		10	12	9	2	14	43
13 7 18 7 6 34 20 14 11 8 3 16 50 15 9 15 5 8 35		11	9	13	4	11	41
20 14 11 8 3 16 50 15 9 15 5 8 35		12	9	10	5	14	50
15 9 15 5 8 35		13	7	18	7	6	34
	20	14	11	8	3	16	50
16 7 19 7 5 32		15	9	15	5	8	35
,		16	7	19	7	5	32
17 12 7 2 16 49		17	12	7	2	16	49
18 11 14 3 10 34		18	11	14	3	10	34
25 19 7 18 7 6 34	25	19	7	18	7	6	34
20 9 10 5 14 50		20	9	10	5	14	50
21 11 9 3 15 47		21	11	9	3	15	47
22 3 16 10 7 47		22	3	16	10	7	47
X 8 10 3 8 38		X	8	10	3	8	38

The scoring is determined by the presence(+) or absence (-) of human bands in the hybrids on Southern blots prepared in a similar t those sh wn in Figure 11. The scoring is compared to the presence of human chromosomes in each hybrid. A 0%

30

5

10

15

20

25

30

35

discordancy indicates a matched segregation of the DNA probe with a chromosome. Three fragments, approximately 6.5 kb, 3.1 kb, and 0.7 kb in size are detected in digests of human DNA (Figure 11), and in all hybrids which had retained human chromosome 4 (Table I). All other chromosomes are excluded in at least 11 discordant hybrids (Table I). The results of Figure 11 and Table I demonstrate that the genetic locus of kdp is on human chromosome 4.

It is noteworthy that both the <u>ckit</u> (3) and the type A PDGF (28) receptor genes map to human chromosome 4. The finding that the genetic locus of kdp is on human chromosome 4 provides further evidence that the novel receptor of this invention is a type III receptor tyrosine kinase.

The next step after identifying the entire coding portion of the kdp gene is to express the receptor protein encoded by that gene. The receptor protein is then utilized so as to identify the growth factor which binds specifically to the receptor.

The receptor protein is expressed using established recombinant DNA methods. Suitable host organisms include bacteria, viruses, yeast, insect or mammalian cell lines, as well as other conventional organisms. For example, CMT-3 monkey kidney cells are transected with a vector containing the complete coding region of the KDR gene.

The complete coding portion of the <u>KDR</u> gene is assembled by sequentially cloning into pUCl19 three DNA fragments derived from BTIII081.8, BTIII129.5, and BTIV169. First, a <u>SmaI-EcoRI</u> fragment of clone BTIII129.5 (nucleotides 3152-4236, SEQ ID NO. 7) is blunt ended with Klenow polym rase and introduced into a <u>SmaI</u> sit in pUCl19. Next, a <u>BamHI-SmaI</u> fragment of clone BTIII081.8 (nucleotides 2418-3151, SEQ ID NO. 7)

is introduced at a <u>BamHI-SmaI</u> site. Finally, a <u>SalI-BamHI</u> fragment of clone BTIV169 (nucleotides 1-2417, SEQ ID NO. 7) is introduced at a <u>SalI-BamHI</u> site. Part of the cloning site of pUC119 is contained in the <u>SalI-BamHI</u> fragment, 5' to the <u>KDR</u> gene. In order to clone the complete coding portion into an expression vector, the assembled DNA (in pUC119) is digested with <u>SalI</u> and <u>Aspl18</u> and recloned into the eukaryotic expression vector pcDNAltkpASP.

10

5

This vector is a modification of the vector pcDNAl (Invitrogen; San Diego, CA). Specifically, the ampicillin resistance gene is cloned from pBR322 into pcDNAl. A small SV40 T splice and the SV40 polyadeny-lation signal are then removed and are replaced with a Herpes Simplex Virus-1 polyadenylation signal. Finally, a cytomegalovirus intermediate early splice is inserted 5' to the cloning site to yield pcDNAltkpASP.

15

Transfection of CMT-3 cells is done using DEAE-dextran. Forty-eight hours after transfection, expression of the novel receptor is monitored using Western blot analysis as follows.

20

An antibody is used to assay the expressed receptor protein. The predicted amino acid sequence of the receptor is used to generate peptide-derived antibodies to the receptor by conventional techniques. The presence of the novel receptor protein is confirmed by Western blot hybridization.

25

30

Specifically, a synthetic peptide with 13 residues is synthesized based on the 12 residues corresponding to amino acids 986-997 of the putative amino acid sequence of the <u>KDR</u> protein (SEQ ID NO. 7), with a cysteine residue linked to the lysine (amino acid 997). The cyst in facilitates c upling of the peptide to a macromol cul which functions as a carrier for the peptid. For example, the peptide is coupled

5

10

15

20

25

30

35

- 26 -

to keyhole limpet haemocyanin (KLH) using m-maleimido-benzoyl-N-hydroxysuccinimide ester. Other conventional carriers may be used such as human and bovine serum albumins, myoglobins, β -galactosidase, penicillinase and bacterial toxoids, as well as synthetic molecules such as multi-poly-DL-alanyl-poly-L-lysine and poly-L-lysine.

Rabbits are immunized with the peptide-KLH conjugate to raise polyclonal antibodies. After different periods of time, serum is collected from the rabbits. The IgG fraction of the serum is then purified using a protein A Sepharose column (Pharmacia LKB, Uppsala, Sweden) to obtain the antibody which is designated anti-KDR.PS23.

A sample of the expressed KDR protein is subjected to SDS-PAGE using a 7% acrylamide gel under standard conditions. The protein band is then transferred on to nitrocellulose paper for Western blot analysis and the anti-KDR.PS23 antibody is added at a dilution of 1:1,000 to allow the antibody to react with the protein present. A second antibody, goat anti-rabbit antibody to rabbit IgG, which binds to anti-KDR.PS23, is then added. The detection of proteins which react with the antibodies is performed by autoradiography of bands using an ECL system (Amersham, Chicago, IL). The results are depicted in Figure 12.

Figure 12 shows that a 190 kD protein is present in the cells transfected with the vector containing the <u>KDR</u> gene, but is absent in cells transfected with vector alone. The size of this protein is consistent with it being encoded by the <u>KDR</u> gen , in that the pr dicted amino acid sequ nc for the unglycosylated <u>KDR</u> protein is 156 kD, and that s quence contains 18 putative extrac llular glycosylation sites

10

15

20

25

30

35

**

which would account for the balance of the size seen in the 190 kD band.

The expressed receptor is then used to identify the growth factor which interacts with the receptor. In order to test the hypothesis that the KDR protein is a receptor for VEGF, radioligand binding studies are performed. VEGF (provided by D. Gospodarowicz) is radiolabelled with 125I. Cells are transfected with either the vector pcDNAltkpASP alone (bars 1 and 2 of Figure 13) or with the vector containing the KDR gene (bars 3 and 4). Forty-eight hours later, the transfected cell samples are washed with PBS and then incubated for 90 minutes with serum-free media containing 50 pM [125] VEGF (specific activity equal to 4,000 cpm per fmol). Excess nonradioactive VEGF, 5 nM, is added to some samples (bars 2 and 4) to define specific binding sites. The samples are washed with ice cold PBS, and the cells are transferred to gamma-counting tubes using a detergent, 0.1% lubrol.

The results of the radioligand binding studies are depicted in Figure 13. Figure 13 shows that CMT-3 cells transfected with vector containing the KDR gene contain specific binding sites for [\$^{125}I]VEGF (compare bars 3 and 4), while cells transfected with vector alone do not (compare bars 1 and 2).

Further evidence that the <u>KDR</u> gene encodes a receptor for VEGF is demonstrated by affinity cross-linking studies (Figure 14). Figure 14 depicts the results of affinity cross-linking of [125]VEGF to CMT-3 cells which express the <u>KDR</u> protein. CMT-3 cells are transfected with either the pcDNAltkpASP vector al n (lane 1 of Figure 14) or with the vector containing th <u>KDR</u> gene (lane 2). F rty-eight hours later, the cells are washed in PBS, and serum free

5

10

15

20

25

30

35

- 28 -

media containing 200 pM [125I]VEGF is added. After 90 minutes at room temperature, an affinity cross-linker disuccinimidyl suberate (Pierce Biochemicals, Rockford, IL), 0.5mM, is added for 15 minutes. The samples are then subjected to SDS-PAGE autoradiography.

Three protein bands are seen in SDS-PAGE autoradiograms from samples of CMT-3 cells transfected with the KDR gene and cross-linked to [\$^{125}I\$]VEGF (lane 1). The size of band 1 (235 kD) is consistent with it being the 190 kD protein seen by Western blot analysis (Figure 12), because a 45 kD [\$^{125}I\$] VEGF dimer plus 190 kD would migrate in a manner identical to band 1. The origin of band 2 is not clear, but may represent an altered glycosylation form of band 1. Band 3 (22.5 kD) is most likely VEGF itself, and can be seen faintly in cells transfected with vector alone (lane 2).

The novel KDR gene of this invention is significant for several reasons. Studies of the cellular mechanisms by which receptors function in signal transduction have led in the past to a better understanding of how cells grow in both normal and diseased states. Receptor tyrosine kinases, in particular, have received a great deal of attention because of the observation that a number of RTK are the cellular counterparts for viral oncogenes, implying a direct correlation between changes in the expression of RTK and cancer. In view of this, it is likely that pharmaceuticals targeted at RTK will inhibit the changes in cell growth associated with cancer. In additon, it is likely that monitoring the levels of expression of RTK will prove valuable in diagnosing the onset of cancer.

Th described cDNA is isolated from a human endothelial cell library. Endothelial cells participate in angiogenesis, the formation f new blood

10

15

20

25

30

35

capillaries. Previous work directed towards identifying the growth factors which regulate angiogenesis have primarily focused upon FGF (13), although recent evidence has indicated that other growth factors may be involved as well (12,15,29). This evidence consists of the observations that: 1) FGF does not contain a signal sequence (24) and thus may not be secreted from cells in a manner consistent with the tight regulation of angiogenesis, and 2) endothelial cells synthesize FGF and yet are normally resting (15). Our discovery, then, of a novel growth factor receptor may ultimately clarify these inconsistencies and lead to a better understanding of endothelial cell function.

The teachings of this invention can be readily used by those skilled the art for the purpose of testing pharmaceuticals targeted at the <u>KDR</u> protein. Two examples of approaches which can be used for this purpose are now given.

First, the methods described in this invention for studying the interaction of VEGF with KDR protein can be used to test for pharmaceuticals which will antagonize that interaction. For these studies, cells expressing the KDR protein are incubated with [125]VEGF, together with a candidate pharmaceutical. Inhibition of radioligand binding is tested for; significant inhibition indicates the candidate is an antagonist. Permanent expression of the KDR protein in a cell type such as NIH3T3 cells would make these studies less laborious. This can be easily achieved by those skilled in the art using the described methods.

Second, using the teachings of this invention, those skilled in the art can study structural properties of the <u>KDR</u> protein involved in receptor function. This structural information can

- 30 -

then be used to more rationally design pharmaceuticals which inhibit that function. Mutagenesis of the <u>KDR</u> gene by well established protocols is one approach, crystallization of the receptor binding site is another.

: •

Bibliography

- 1. Yarden Y., and A. Ullrich, <u>Ann. Rev.</u> <u>Biochem.</u>, <u>57</u>, 433-478 (1988).
- 5 2. Bargmann, C., et al., <u>Nature</u>, <u>319</u>, 226-230 (1986).
 - 3. Yarden, Y., et al., <u>FMBO J.</u>, <u>6</u>, 3341-3351 (1987).
 - 4. Coussens, L., et al., Nature, 320,
- 10 277-280 (1986).
 - 5. Slamon, D., et al., <u>Science</u>, <u>244</u>, 707-712 (1989).
 - 6. Ullrich, A. and Schlessinger, J., Cell, 61, 203-212 (1990).
- 7. Ruta, M., et al., <u>Oncogene</u>, <u>3</u>, 9-15 (1988).
 - 8. Strathmann, M., et al., <u>Proc. Natl. Acad.</u> <u>Sci., 86</u>, 8698-8702 (1989).
 - 9. Streuli, M., et al., Proc. Natl. Acad.
- 20 <u>Sci., 86</u>, 8698-8702 (1989).
 - 10. Wilkes, A.F., <u>Proc. Natl. Acad. Sci.,</u> 86, 1603-1607 (1989).
 - 11. Folkman, J., and Klagsbrun, M., <u>Science</u>, <u>235</u>, 442-445 (1987).
- 25 12. Ishikawa, F., et al., <u>Nature</u>, <u>338</u>, 557-562 (1989).
 - 13. Baird, A., and Bohlen, P., in <u>Peptide</u>

 <u>Growth Factors and Their Receptors</u>, pages 369-418

 (Spron, M.B., and Roberts, A.B., eds. 1990).
- 30 14. Senger, D.R., et al., <u>Science</u>, <u>219</u>, 983-985 (1983).
 - 15. Gospodarowicz, D., et al., <u>Proc. Natl,</u> <u>Acad. Sci.</u>, <u>86</u>, 7311-7315 (1989).
- 16. Leung, D.W., et al., <u>Science</u>, <u>246</u>, 35 1306-1309 (1989).

- 32 -

17. Maglione, D., et al., <u>Proc. Natl. Acad.</u>
<u>Sci.</u>, <u>88</u>, 9267-9271 (1991).

18. Gronwald, R., et al., <u>Proc. Natl. Acad.</u> <u>Sci., 85</u>, 3435-3439 (1988).

5 19. Shows, T., et al., <u>Somat. Del. Mol. Gen.</u>, 10, 315-318 (1984).

> 20. Rainer, G., et al., <u>Proc. Natl. Acad.</u> <u>Sci., 85</u>, 3435-3439 (1988).

21. Lee, P. L., et al., <u>Science</u>, <u>245</u>, 57-60 (1989).

22. Sanger, F., et al., <u>Proc. Natl. Acad.</u> <u>Sci., 74</u>, 5463-5467 (1977).

23. Folkman, J., <u>Cancer Res.</u>, <u>46</u>, 467-473 (1986).

24. Burgess, W. and Maciag, T., <u>Ann. Rev.</u> <u>Biochem.</u>, <u>58</u>, 575-606 (1989).

> 25. Matthews, W., et al., <u>Proc. Natl. Acad.</u> <u>Sci.</u>, <u>88</u>, 9026-9030 (1991).

26. Hannink, M. and Donoghue, D., <u>Proc. Natl.</u>
<u>Acad. Sci.</u>, 82, 7894-7898 (1985).

27. Sambrook, J., et al., <u>Molecule Cloning:</u>
A <u>Laboratory Manual</u>, 2nd ed., Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, N.Y. (1989).

28. Matsui, T., et al., <u>Science</u>, <u>243</u>, 800-804 (1989).

29. Conn, G., et al., <u>Proc. Natl. Acad. Sci.</u>, 87, 2628-2632 (1990).

20

25

- 33 -

SEQUENCE LISTING

- 5 (i) APPLICANT: Terman, Bruce I
 Carrion, Miguel E
 - (ii) TITLE OF INVENTION: Identification of a Novel Human Growth Factor Receptor

10 (iii) NUMBER OF SEQUENCES: 14

- (iv) CORRESPONDENCE ADDRESS:
- 15 (A) ADDRESSEE: Alan M. Gordon
 American Cyanamid Company
 - (B) STREET: 1937 West Main Street, P.O. Box 60

20 (C) CITY: Stamford

- (D) STATE: Connecticut
- (E) COUNTRY: USA

(F) ZIP: 06904

(v) COMPUTER READABLE FORM:

30 (A) MEDIUM TYPE: Floppy disk

(B) COMPUTER: IBM PC AT

(C) OPERATING SYSTEM: MS-DOS

35

	(D) SOFTWARE: ASCII from IBM DW 4
	(vi) CURRENT APPLICATION DATA:
5	(A) APPLICATION NUMBER:
	(B) FILING DATE:
10	(C) CLASSIFICATION:
	(vii) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: 07/657,236
15	(B) FILING DATE: February 22, 1991
	(viii) ATTORNEY/AGENT INFORMATION:
20	(A) NAME: Gordon, Alan M.
	(B) REGISTRATION NUMBER: 30,637
	(C) REFERENCE/DOCKET NUMBER: 31,298-01
25	(ix) TELECOMMUNICATION INFORMATION:
	(A) TELEPHONE: 203 321 2719
30	(B) TELEFAX: 203 321 2971
	(C) TELEX:
	(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

35

	(A) LENGTH: 27 base pairs
5	(B) TYPE: nucleic acid
•	(C) STRANDEDNESSS: single
	(D) TOPOLOGY: linear
10	(ii) MOLECULE TYPE: DNA (genomic)
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
15	GTCGAC AAY CTG TTG GGR GCC TGC AAC 27
	(2) INFORMATION FOR SEQ ID NO: 2:
20	(i) SEQUENCE CHARACTERISTICS:
•	(A) LENGTH: 35 base pairs
	(B) TYPE: nucleic acid
25	(C) STRANDEDNESSS: single
	(D) TOPOLOGY: linear
30	(ii) MOLECULE TYPE: DNA (genomic)
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
	GAATTC AG CAC KTT NCT RGC YGC CAG GTC TGY GTC 35

2) INFORMATION	FOR	SEQ	ID	NO:	3:
----------------	-----	-----	----	-----	----

(i)	SEQUENCE	CHARACTERISTICS:
-----	----------	------------------

5 (A) LENGTH: 363 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESSS: single

(C) STRANDEDRESSS. BING.

10

30

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

AGG ACG AAG AAT GAA TTT GGA AAC CTG TCC ACT TAC CTG 36

AGG ACG AAG AGA AAT GAA TTT GTC CCC TAC AAG ACC 72

AAA GGG GCA CGA TTC CGT CAA GGG AAA GAC TAC GTT 108

GGA GCA ATC CCT GTG GAT CTG AAA CGG CGC TTG GAC 144

25 ACG CAT CAC CAG TAG CCA GAG CTC AGC CAG CTC TGG 180

ATT TGT GGA GGA GAA GTC CCT CAG TGA TGT AGA AGA 216

AGA GGA AGC TCC TGA AGA TCT GTA TAA GGA CTT CCT 252

GAC CTT GGA GCA TCT CAT CTG TTA CAG TTT CCA AGT 288

GGC TAA GGG CAT GGA GTT CTT GGC ATC GCG AAA GTG 324

35 TAT CCA CAG AGA CCT GGC AGC CAG GAA CGT GCT GAA 360

WO 92/14748

115.

- 37 -

	2.62
TTC	363

5	(2) INFORMATION FOR SEQ ID NO: 4:												
-	(i) SEQUENCE CHARACTERISTICS:												
	(A) LENGTH: 251 base pairs												
10	(B) TYPE: nucleic acid												
	(C) STRANDEDNESSS: single												
15	(D) TOPOLOGY: linear												
	(ii) MOLECULE TYPE: DNA (genomic)												
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:												
20	GTC GAC AAT CTG TTG GGG GCC TGC ACC ATC CCA ACA												
	TCC TGC TGC TCT ACA ACT ATT TTT ATG ACC GGA GGA												
25	GGA TCT ACT TGA TTC TAG AGT ATG CCC CCC GCG GAG CTC TAC AAG GAG CTG CAG AAG AGC TGC ACA TTT GAC												
	GAG CAG CGA ACA GCC ACG ATC ATG GAG GAG TTG GCA	144											
30	GAT GCT CTA ATG TAC TGC CGT GGG AAG AAG GTG ATT												
	CAC AGA GAC CTG GCA GCC AGC AAC GTG CTG AAT TC												

35 (2) INFORMATION FOR SEQ ID NO: 5:

- 38 -

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 510 base pairs	
5	(B) TYPE: nucleic acid	
	(C) STRANDEDNESSS: single	
10	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(ix) FEATURE:	
15	(A) NAME/KEY: PDGF Receptor DNA	
	(B) LOCATION: Internal sequence	
20	(x) PUBLICATION INFORMATION:	
	(A) AUTHORS: Gronwald, R., et al.	
25	(B) JOURNAL: Proc. Natl. Acad. Sci.	
25	(C) VOLUME: 85	
	(D) PAGES: 3435-3439	
30	(E) DATE: 1988	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
	AND OTH THE GEG COT GOA COA AAG GAG GAC CAT CTA	36

	TAT	CAT	CTA	TAT	CAT	CAC	TGA	GTA	CTG	CCG	CTA	CGG	72
	AGA	CCT	GGT	GGA	CTA	CCT	GCA	CCG	CAA	CAA	ACA	CAC	108
5	CTT	CCT	GCA	GCA	CCA	CTC	CGA	CAA	GCG	CCG	ccc	GCC	144
	CAG	CGC	GGA	GCT	CTA	CAG	CAA	TGC	TCT	GCC	CGT	TGG	180
10	GCT	ccc	CCT	GCC	CAG	CCA	TGT	GTC	CTT	GAC	CGG	GGG	216
	AGA	GCG	ACG	GTG	GCT	ACA	TGG	ACA	TGA	GCA	AGG	ACG	252
	AGT	CGG	TGG	ACT	ATG	TGC	CCA	TGC	TGG	ACA	TGA	AAG	288
15	GAG	ACG	TCA	AAT	AGC	AGA	CAT	CGA	GTC	CTC	CAA	CTA	324
	CAT	GGC	ccc	TTA	CGA	TAA	CTA	CGT	TCC	CTC	TGC	ccc	360
20	TGA	GAG	GAC	CTG	CCG	AGC	AAC	TTT	GAT	CAA	CGA	GTC	396
	TCC	AGT	GCT	AAG	CTA	CAT	GGA	CCT	CGT	GGG	CTT	CAG	432
	CTA	CCA	GGT	GGC	CAA	TGG	CAT	GGA	GTT	CTG	GCC	TCC	468
25	AAG	AAC	TGC	GTC	CAC	AGA	GAC	CTG	GCG	GCT	AGG	AAC	504
	GTC	CTT											510

- 30 (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 255 bas pairs

- 40 -

	(B) TYPE: nucleic acid	
	(C) STRANDEDNESSS: single	
5	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(ix) FEATURE:	
10	(A) NAME/KEY: FGF Receptor DNA	
	(B) LOCATION: Internal sequence	
15	(x) PUBLICATION INFORMATION:	
	(A) AUTHORS: Ruta, M., et al.	
20	(B) JOURNAL: Oncogene	
20	(C) VOLUME: 3	
	(D) PAGES: 9-15	
25	(E) DATE: 1988	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
30	AAC CTG CTG GGG GCC TGC ACG CAG GAT GGT CCC TTG	36
	TAT GTC ATC GTG GAG TAT GCC TCC AAG GGC AAC CTG	72
	CGG GAG TAC CTG CAG ACC CGG AGG CCC CCA GGG CTG	108
15	GAA TAC TGC TAT AAC CCC AGC CAC AAC CCA GAG GAG	144

- 41 -

	CAG CTC TCC TCC AAG GAC CTG GTG TCC TGC GCC TAC	180
	CAG GAG GCC CGA GGC ATG GAG TAT CTG GCC TCC AAG	216
5	AAG TGC ATA CAC CGA GAC CTG GCA GCC AGG AAT GTC	252
	CTG	255
10	(2) INFORMATION FOR SEQ ID NO: 7:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 4236 base pairs	
15	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
25	ATG GAG AGC AAG GTG CTG CTG GCC GTC GCC CTG	33
	Met Glu Ser Lys Val Leu Leu Ala Val Ala Leu 1 5 10	
	TGG CTC TGC GTG GAG ACC CGG GCC GCC TCT GTG GGT	69
30	Trp Leu Cys Val Glu Thr Arg Ala Ala Ser Val Gly 15 20	
	TTG CCT AGT GTT TCT CTT GAT CTG CCC AGG CTC AGC	105
	Leu Pro Ser Val Ser Leu Asp Leu Pro Arg Leu Ser	
35	25 30 35	

- 42 -

	ATA	CAA	AAA	GAC	ATA	CTT	ACA	ATT	AAG	GCT	AAT	ACA	141
	Ile	Gln	Lys	Asp	Ile	Leu	Thr	Ile	Lys	Ala	Asn	Thr	
					40					45			
5	ACT	CTT	CAA	ATT	ACT	TGC	AGG	GGA	CAG	AGG	GAC	TTG	177
	Thr	Leu	Gln	Ile	Thr	Cys	Arg	Gly	Gln	Arg	Asp	Leu	
			50					55					
		TGG											213
10	Asp	Trp	Leu	Trp	Pro	Asn	Asn	Gln	Ser	Gly	Ser	Glu	•
	60					65					70		
		AGG											249
	Gln	Arg	Val	Glu	Val	Thr	Glu	Cys	Ser	Asp	Gly	Leu	
15				75					80				
		TGT											285
	Phe	Cys	Lys	Thr	Leu	Thr		Pro	Lys	Val	Ile		
		85					90					95	
20													
		GAC											321
-	Asn	Asp	Thr	Gly		Tyr	Lys	Cys	Phe		Arg	Glu	
					100					105			
									6 00	m	cmm	~ 3.3	357
25		GAC											357
	Thr	Asp		Ala	ser	Val	TIE		ARI	Tyr	VAI	GIII	
			110					115					
				m.cm	003		3 MM	COTT	mem	COO	እርጥ	GAC	393
		TAC											393
30	_	Tyr	Arg	ser	PIO		TIE	AIa	Ser	val	130	web	
	120					125					130		
				ama	ama	ma -	2 mm	3 / 400	C3.C	220	222	77 C	429
		CAT											467
	Gln	His	GŢĀ		val	TYL	TTE	THE		ASII	пåв	upij	
35				135					140				

	AAA	ACT	GTG	GTG	ATT	CCA	TGT	CTC	GGG	TCC	ATT	TCA	465
	Lys	Thr	Val	Val	Ile	Pro	Сув	Leu	Gly	Ser	Ile	Ser	
		145					150					155	
5	AAT	CTC	AAC	GTG	TCA	CTT	TGT	GCA	AGA	TAC	CCA	GAA	501
	Asn	Leu	Asn	Val	Ser	Leu	Cys	Ala	Arg	Tyr	Pro	Glu	
					160					165			
	AAG	AGA	TTT	GTT	CCT	GAT	GGT	AAC	AGA	ATT	TCC	TGG	537
10	Lys	Arg	Phe	Val	Pro	Asp	Gly	Asn	Arg	Ile	Ser	Trp	
			170					175					
	GAC	AGC	AAG	AAG	GGC	TTT	ACT	ATT	ccc	AGC	TAC	ATG	573
	Asp	Ser	Lys	Lys	Gly	Phe	Thr	Ile	Pro	Ser	Tyr	Met	
15	180					185					190		
	ATC	AGC	TAT	GCT	GGC	ATG	GTC	TTC	TGT	GAA	GCA	AAA	609
	Ile	Ser	Tyr	Ala	Gly	Met	Val	Phe	Cys	Glu	Ala	Lys	
				195					200				
20													
	ATT	AAT	GAT	GAA	AGT	TAC	CAG	TCT	ATT	ATG	TAC	ATA	645
	Ile	Asn	Asp	Glu	Ser	Tyr	Gln	Ser	Ile	Met	Tyr	Ile	
		205					210					215	
25	GTT	GTC	GTT	GTA	GGG	TAT	AGG	ATT	TAT	GAT	GTG	GTT	681
	Val	Val	Val	Val	Gly	Tyr	Arg	Ile	Tyr	Asp	Val	Val	
					220					225			
	CTG	AGT	CCG	TCT	CAT	GGA	ATT	GAA	CTA	TCT	GTT	GGA	717
30	Leu	Ser	Pro	Ser	His	Gly	Ile	Glu	Leu	Ser	Val	Gly	
			230					235					
	GAA	AAG	CTT	GTC	TTA	AAT	TGT	ACA	GCA	AGA	ACT	GAA	753
	Glu	Lys	Leu	Val	Leu	Asn	Cys	Thr	Ala	Arg	Thr	Glu	
35	240				•	245					250		

- 44 -

	CTA	LAA	GTG	GGG	era :	GAC	TTC	AAC	TGO	GA1	A TAC	CCT	789
	Leu	Asn	Val	. Gly	7 Ile	ası	Phe	a Ası	Tr	Gli	Ty:	r Pro	
				255	5				260)			
5	TCT	TCG	AAG	CAI	CAG	CAI	AAG	AAA	CII	GTA	AAC	CGA	825
	Ser	Ser	Lya	His	Gln	His	Lys	Lys	Leu	Val	Asr	Arg	
		265				•	270	١				275	
	CAC	⊘ ⊞3	222	እሮር	CAC		ccc	አርባ	CAC	λπс	2 2 2 C	AAA	861
10												Lys	
10	veh	Dea	пãо	1111	280		GIJ	Jer	GIU	285	_	n, n, o	
					200					203			
	TTT	TTG	AGC	ACC	TTA	ACT	ATA	GAT	GGT	GTA	ACC	CGG	897
	Phe	Leu	Ser	Thr	Leu	Thr	Ile	Asp	Gly	Val	Thr	Arg	
15			290					295					
	AGT	GAC	CAA	GGA	TTG	TAC	ACC	TGT	GCA	GCA	TCC	AGT	933
	Ser	Asp	Gln	Gly	Leu	Tyr	Thr	Cys	Ala	Ala	Ser	Ser	
	300					305					310		
20													
											GTC		969
	Gly	Leu	Met		Lys	Lys	Asn	Ser		Phe	Val	Arg	
				315					320				
25	CMC	C) III	CNA	222	COM	(ISISI)	CITATO	COTT	ינואלאנו	CCI	AGT	GGC	1005
23											Ser		1003
	AGT	325	GIU	n) o	110	rne	330	niu		ury		335	
		323					550						
	ATG	GAA	TCT	CTG	GTG	GAA	GCC	ACG	GTG	GGG	GAG	CGT	1041
30	Met	Glu	Ser	Leu	Val	Glu	Ala	Thr	Val	Gly	Glu	Arg	
					340					345			
							•						
	GTC	AGA	ATC	CCT	GCG	AAG	TAC	CTT	GGT	TAC	CCA	CCC	1077
	Val	Arg	Ile	Pr	Ala	Lys	Tyr	Leu	Gly	Tyr	Pro	Pro	
35			350					355					

18.

	CCA	GAA	ATA	AAA	TGG	TAT	AAA	AAT	GGA	ATA	CCC	CTT	1113
	Pro	Glu	Ile	Lys	Trp	Tyr	Lys	Asn	Gly	Ile	Pro	Leu	
	360					365					370		
5	GAG	TCC	AAT	CAC	ACA	ATT	AAA	GCG	GGG	CAT	GTA	CTG	1149
	Glu	Ser	Asn	His	Thr	Ile	Lys	Ala	Gly	His	Val	Leu	
				375					380				
	ACG	ATT	ATG	GAA	GTG	AGT	GAA	AGA	GAC	ACA	GGA	AAT	1185
10	Thr	Ile	Met	Glu	Val	Ser	Glu	Arg	Asp	Thr	Gly	Asn	
		385					390					395	
	TAC	ACT	GŢC	ATC	CTT	ACC	AAT	CCC	ATT	TCA	AAG	GAG	1221
	Tyr	Thr	Val	Ile	Leu	Thr	Asn	Pro	Ile	Ser	Lys	Glu	
15					400					405			
	AAG	CAG	AGC	CAT	GTG	GTC	TCT	CTG	GTT	GTG	TAT	GTC	1257
	Lys	Gln	Ser	His	Val	Val	Ser	Leu	Val	Val	Tyr	Val	
			410					415					
20													
	CCA	CCC	CAG	ATT	GGT	GAG	AAA	TCT	CTA	ATC	TCT	CCT	1293
•	Pro	Pro	Gln	Ile	Gly	Glu	Lys	Ser	Leu	Ile	Ser	Pro	
	420					425					430		
25	GTG	GAT	TCC	TAC	CAG	TAC	GGC	ACC	ACT	CAA	ACG	CTG	1329
	Val	Asp	Ser	Tyr	Gln	Tyr	Gly	Thr	Thr	Gln	Thr	Leu	
				435					440				
		TGT											1365
30	Thr	Cys	Thr	Val	Tyr	Ala		Pro	Pro	Pro	His		
		445					450					455	
		CAC											1401
	Ile	His	Trp	Tyr	_	Gln	Leu	Glu	Glu		Cys	Ala	
35					460					465			

- 46 -

	AAC	GAG	CCC	AGC	CAA	GCI	GTC	TCA	GTG	ACA	AAC	CCA	1437
	Asn	Glu	Pro	Ser	Gln	Ala	Val	Ser	Val	Thr	Asn	Pro	
			470					475	;				
5	TAC	CCT	TGT	GAA	GAA	TGG	AGA	AGT	GTG	GAG	GAC	TTC	1473
	Tyr	Pro	Сув	Glu	Glu	Trp	Arg	Ser	Val	Glu	Asp	Phe	
	480					485					490		
													1509
10	Gln	Gly	Gly		Lys	Ile	Glu	Val			Asn	Gln	
				495					500				
				3 mm	<i>~</i>	663		120	222	a com	CM3	እርጥ	1545
													1545
	Pne		ren	Ile	GIU	GIĀ		ASII	гЛя	THE	Val	515	
15		505					510					313	
	3.00	~ mm	CMM	እጥ ሶ	CAA	ccc	GCZ	እልጥ	GTG.	тса	CCT	ጥ ገር	1581
				Ile									
	THE	Der	V U.Z.	110	520					525			
20													
	TAC	AAA	TGT	GAA	GCG	GTC	AAC	AAA	GTC	GGG	AGA	GGA	1617
٠				Glu									
	•		- 530					535					
25	GAG	AGG	GTG	ATC	TCC	TTC	CAC	GTG	ACC	AGG	GGT	CCT	1653
	Glu	Arg	Val	Ile	Ser	Phe	His	Val	Thr	Arg	Gly	Pro	
	540					545					550		
												GAG	1689
30	Glu	Ile	Thr	Leu	Gln	Pro	Asp	Met	Gln	Pro	Thr	Glu	
				5 55					560				
				GTG									1725
	Gln		Ser	Val	Ser	Leu		Сув	Thr	Ala	Asp		
35		565					570					575	

?!

	TCT	ACG	TTT	GAG	AAC	CTC	ACA	TGG	TAC	AAG	CTT	GGC	1761
	Ser	Thr	Phe	Glu	Asn	Leu	Thr	Trp	Tyr	Lys	Leu	Gly	
					580					585			
					•								
5	CCA	CAG	CCT	CTG	CCA	ATC	CAT	GTG	GGA	GAG	TTG	CCC	1797
	Pro	Gln	Pro	Leu	Pro	Ile	His	Val	Gly	Glu	Leu	Pro	
			590					595					
	ACA	CCT	GTT	TGC	AAG	AAC	TTG	GAT	ACT	CTT	TGG	AAA	1833
10	Thr	Pro	Val	Cys	Lys	Asn	Leu	Asp	Thr	Leu	Trp	Lys	
	600					605					610		
	TTG	AAT	GCC	ACC	ATG	TTC	TCT	AAT	AGC	ACA	AAT	GAC	1869
	Leu	Asn	Ala	Thr	Met	Phe	Ser	Asn	Ser	Thr	Asn	Asp	
15				615					620				
	ATT	TTG	ATC	ATG	GAG	CTT	AAG	AAT	GCA	TCC	TTG	CAG	1905
	Ile	Leu	Ile	Met	Glu	Leu	Lys	Asn	Ala	Ser	Leu	Gln	
		625					630					635	
20													
	GAC	CAA	GGA	GAC	TAT	GTC	TGC	CTT	GCT	CAA	GAC	AGG	1941
•	Asp	Gln	Gly	Asp	Tyr	Val	Сув	Leu	Ala	Gln	Asp	Arg	
					640					645			
25	AAG	ACC	AAG	AAA	AGA	CAT	TGC	GTG	GTC	AGG	CAG	CTC	1977
	Lys	Thr	Lys	Lys	Arg	His	Cys	Val	Val	Arg	Gln	Leu	
			650					655					
	ACA	GTC	CTA	GAG	CGT	GTG	GCA	CCC	ACG	ATC	ACA	GGA	2013
30	Thr	Val	Leu	Glu	Arg	Val	Ala	Pro	Thr	Ile	Thr	Gly	
	660					665					670		
	AAC	CTG	GAG	AAT	CAG	ACG	ACA	AGT	ATT	GGG	GAA	AGC	2049
	Asn	Leu	Glu	Asn	Gln	Thr	Thr	s r	Ile	Gly	Glu	Ser	
35				675					680				

- 48 -

	ATC	GAA	GTC	TCA	TGC	ACG	GCA	TCT	GGG	AAT	ccc	CCT	2085
	Ile	Glu	Val	Ser	Сув	Thr	Ala	Ser	Gly	Asn	Pro	Pro	
		685					690					695	
								•					
5	CCA	CAG	ATC	ATG	TGG	TTT	AAA	GAT	AAT	GAG	ACC	CTT	2121
	Pro	Gln	Ile	Met	Trp	Phe	Lys	Asp	Asn	Glu	Thr	Leu	
					700					705			
													2157
10	Val	Glu	_	Ser	Gly	Ile	Val			Asp	Gly	Asn	
			710					715					
								6 50			43.4	63.6	0100
												GAC	2193
	•	Asn	Leu	unr	TTE	•	Arg	val	Arg	гÃе		Asp	
15	720					725					730		
	<i>a</i>		OMA.	ma 🗸	3.00	mcc	CAC	CCN	mcc.	አረመ	C.DIII	C-TT-TT-	2229
						Cys							2223
	GIU	GIY	Den	735	TIIT	Cys	GTII	VIG	740	Der	Val	Dea	
20				735					740				
20	GGC	ጥርጥ	GCA	AAA	GTG	GAG	GCA	TTT	TTC	АТА	ATA	GAA	2265
						Glu							
	017	745		-1-			750					755	
25	GGT	GCC	CAG	GAA	AAG	ACG	AAC	TTG	GAA	ATC	ATT	ATT	2301
	Gly	Ala	Gln	Glu	Lys	Thr	Asn	Leu	Glu	Ile	Ile	Ile	
	-				760					765			
	CTA	GTA	GGC	ACG	ACG	GTG	ATT	GCC	ATG	TTC	TTC	TGG	2337
30	Leu	Val	Gly	Thr	Thr	Val	Ile	Ala	Met	Phe	Phe	Trp	
			770					775					
		٠											
	CTA	CTT	CTT	GTC	ATC	ATC	CTA	GGG	ACC	GTT	AAG	CGG	2373
	Leu	Leu	Leu	Val	Ile	Ile	Leu	Gly	Thr	Val	Lys	Arg	
35	780					785					790		

	GCC	AAT	GGA	GGG	GAA	CTG	AAG	ACA	GGC	TAC	TTG	TCC	2409
	Ala	Asn	Gly	Gly	Glu	Leu	Lys	Thr	Gly	Tyr	Leu	Ser	
				795					800				
5	ATC	GTC	ATG	GAT	CCA	GAT	GAA	CTC	CCA	TTG	GAT	GAA	2445
	Ile	Val	Met	Asp	Pro	qaA	Glu	Leu	Pro	Leu	Asp	Glu	
		805					810					815	
	CAT	TGT	GAA	CGA	CTG	CCT	TAT	GAT	GCC	AGC	AAA	TGG	2481
10	His	Cys	Glu	Arg	Leu	Pro	Tyr	qaA	Ala	Ser	Lys	Trp	
					820					825			
													•
	GAA	TTC	CCC	AGA	GAC	CGG	CTG	AAC	CTA	GGT	AAG	CCT	2517
	Glu	Phe	Pro	Arg	Asp	Arg	Leu	Asn	Leu	Gly	Lys	Pro	
15			830					835					
	CTT	GGC	CGT	GGT	GCC	TTT	GGC	CAA	GAG	ATT	GAA	GCA	2553
	Leu	Gly	Arg	Gly	Ala	Phe	Gly	Gln	Glu	Ile	Glu	Ala	
	840					845					850		
20													
													2589
	Asp	Ala	Phe	_	Ile	Asp	Lys	Thr	Ala	Thr	Cys	Arg	
				855					860				
25								AAA			-		2625
	Thr		Ala	Val	Lys	Met		Lys	Glu	Gly	Ala		
		865					870					875	
												AAG	2661
30	His	Ser	Glu		_	Ala	Leu	Met	Ser		Leu	Lys	
					880					885			
								CAT					2697
.=	Ile			His	Ile	Gly	His	His	Leu	Asn	Val	Val	
15			890					895					

- 50 -

	AAC	CTT	CTA	GGI	GCC	TGI	ACC	: AAG	CCA	GGA	GGG	CCA	2733
	Asn	Leu	Leu	Gly	Ala	Cys	Thr	Lys	Pro	Gly	Gly	Pro	
	900)				905	;				910	ı	
5	CTC	ATG	GTG	ATT	GTG	GAA	TTC	TGC	AAA	TTI	GGA	AAC	2769
	Leu	Met	Val	Ile	Val	Glu	Phe	Cys	Lys	Phe	Gly	Asn	
				915					920				
	CTG	TCC	ACT	TAC	CTG	AGG	AGC	AAG	AGA	AAT	GAA	TTT	2805
10	Leu	Ser	Thr	Tyr	Leu	Arg	Ser	Lys	Arg	Asn	Glu	Phe	ė
		925					930					935	
													2841
	Val	Pro	Tyr	Lys	Thr	Lys	Gly	Ala	Arg		Arg	Gln	
15					940					945			
													2877
	Gly	Lys	_	Tyr	Val	GIY	ATS		PTO	vaı	Авр	ren	
20			950					955					
20	333	000	ccc	mmc	GNC	AGC.	አሞሮ	እሮሮ	እርጥ	AGC	CAG	AGC	2913
					Asp								2713
	960	nrg	ALG	Deu	nop	965				-	970	-	
	300												
25	TCA	GCC	AGC	TCT	GGA	TTT	GTG	GAG	GAG	AAG	TCC	CTC	2949
					Gly								
				975	_				980				
	AGT	GAT	GTA	GAA	GAA	GAG	GAA	GCT	CCT	GAA	GAT	CTG	2985
30	Ser	Asp	Val	Glu	Glu	Glu	Glu	Ala	Pro	Glu	Asp	Leu	
		985					990					995	
	TAT	AAG	GAC	TTC	CTG	ACC	TTG	GAG	CAT	CTC	ATC	TGT	3021
	Tyr	Lys	Asp	Phe	Leu	Thr	Leu	Glu	His	Leu	Ile	Cys	
35					1000	1				1005			

	TAC	C AGO	TTC	CAA	GTC	GCI	AAC	GGG	TATO	GA	G TT	C TTG	3057
	Туз	s Sez	: Phe	Gln	Va]	. Ala	Lys	Gly	Met	: Glı	ı Ph	e Leu	
			101	L O				101	L 5				
5	GC	TCG	CGA	AAG	TGI	ATC	CAC	AGG	GAC	CTO	GC(G GCA	3093
	Ala	Ser	Arg	Lys	Сув	Ile	His	Arg	Asp	Leu	a Ala	Ala	
	102	0				102	5 .				103	30	
	CGA	AAT	ATC	CTC	TTA	TCG	GAG	AAG	AAC	GTG	GTT	AAA '	3129
10	Arg	Asn	Ile	Leu	Leu	Ser	Glu	Lys	Asn	Val	. Val	Lys	
				103	5				104	0			
	ATC	TGT	GAC	TTT	GGC	TTG	GCC	CGG	GAT	ATT	TAT	' AAA '	3165
	Ile	Cys	Asp	Phe	Gly	Leu	Ala	Arg	Asp	Ile	Туг	Lys	
15		104	5				105	0				1055	;
	GAT	CCA	GAT	TAT	GTC	AGA	AAA	GGA	GAT	GCT	CGC	CTC	3201
	Asp	Pro	Asp	Tyr	Val	Arg	Lys	Gly	Asp	Ala	Arg	Leu	
					106	D				106	5		
20													
	CCT	TTG	AAA	TGG	ATG	GCC	CCA	GAA	ACA	ATT	TTT	GAC	3237
	Pro	Leu	Lys	Trp	Met	Ala	Pro	Glu	Thr	Ile	Phe	Asp	
			1076)				107	5				
25	AGA	GTG	TAC	ACA	ATC	CAG	AGT	GAC	GTC	TGG	TCT	TTT	3273
•	Arg	Val	Tyr	Thr	Ile	Gln	Ser	Asp	Val	Trp	Ser	Phe	
	108	ס				1085	;				109	0	
	GGT	GTT	TTG	CTG	TGG	GAA	ATA	TTT	TCC	TTA	GGT	GCT	3309
0	Gly	Val	Leu	Leu	Trp	Glu	Ile	Phe	Ser	Leu	Gly	Ala	
				1095	;				1100)			
	TCT	CCA	TAT	CCT	GGG	GTA	AAG	ATT	GAT	GAA	GAA	TTT	3345
	Ser	Pro	Tyr	Pro	Gly	Val	Lys	Ile	Asp	Glu	Glu	Phe	
5		1105	;				1110)				1115	

- 52 -

	TGT	AGG	CGA	TTG	AAA	GAA	GGA	ACT	AGA	ATG	AGG	GCC	3381
	Cys	Arg	Arg	Leu	Lys	Glu	Gly	Thr	Arg	Met	Arg	Ala	
					112	0				112	5		
5													3417
	Pro	Asp	Tyr	Thr	Thr	Pro	Glu	Met	Tyr	Gln	Thr	Met	
			113	כ				113	5				
													. 450
													3453
10		Asp	Cys	Trp	His			Pro	Ser	Gln	_		
	1140	0				1145	5				1150)	
	3.00		max.	636	mme	CITIC	CAA	CATT	באנות	GGA	ልልጥ	CTC	3489
		Phe											
15	THE	Pne	Ser	115		VGI	GIU		1160				
19				TTU	,								
	TTG	CAA	GCT	AAT	GCT	CAG	CAG	GAT	GGC	AAA	GAC	TAC	3525
•		Gln											
		1165					1170					1175	
20													
	ATT	GTT	CTT	CCG	ATA	TCA	GAG	ACT	TTG	AGC	ATG	GAA	3561
	Ile	Val	Leu	Pro	Ile	Ser	Glu	Thr	Leu	Ser	Met	Glu	
					1180)				1185	5		
25													3597
	Glu	Asp	Ser	Gly	Leu	Ser	Leu	Pro	Thr	Ser	Pro	Val	
			1190)				1195	5				
													0.500
													3633
30	Ser	Сув	Met	Glu	Glu			Val	Cys	Asp			
	1200)				1205	,				1210	1	
								663	1 ma	3.CM	03.0	mam	2660
	-	CAT											3669
	Ph	His	Tyr			Thr	ATS	GIĀ			GID	TÄL	
35				1215	•				1220	1			

	CTG	CAG	AAC	AGT	AAG	CGA	AAG	AGC	CGG	CCI	GTG	AGT	3705
	Leu	Gln	Asn	Ser	Lys	Arg	Lys	Ser	Arg	Pro	Val	Ser	
		122	5				123	0				1235	5
5	GTA	AAA	ACA	TTT	GAA	GAT	ATC	CCG	TTA	GAA	GAA	CCA	3741
	Val	Lys	Thr	Phe	Glu	Asp	Ile	Pro	Leu	Glu	Glu	Pro	
					124	0				124	5		
													3777
10	Glu	Val			Ile	Pro	Asp	Asp	Asn	Gln	Thr	Asp	
			1250)				125	5				
												ACT	3813
			Met	Val	Leu			Glu	Glu	Leu	_		
15	1260)				1269	5				127	0	
												GGT	3849
	ren	GIU	Asp			rås	Leu	ser			Phe	Gly	
20				1275)				1280)			
	CCA	እጥር	GTG.	CCC) CC	***	200	200	CAC	mem.	CMC	003	3885
			Val										3885
	Gry	1285		110	261	Dys	1290	•	GIU	Ser	Val	1295	
												1233	
25	TCT	GAA	GGC	TCA	AAC	CAG	ACA	AGC	GGC	TAC	CAG	TCC	3921
			Gly										
			_		1300				-	1305			
	GGA	TAT	CAC	TCC	GAT	GAC	ACA	GAC	ACC	ACC	GTG	TAC	3957
30	Gly	Tyr	His	Ser	Asp	qaA	Thr	Asp	Thr	Thr	Val	Tyr	
			1310					1315	;				
	TCC	AGT	GAG	GAA	GCA	GAA	CTT	TTA	AAG	CTG	ATA	GAG	3993
	Ser	s r	Glu	Glu .	Ala	Glu	Leu	Leu	Lys	Leu	Il	Glu	
35	1320					1325					1330		

	ATT GGA GTG CAA ACC GGT AGC ACA GCC CAG ATT CTC	4029
	1335 1340	
5	CAG CCT GAC ACG GGG ACC ACA CTG AGC TCT CCT CCT Gln Pro Asp Thr Gly Thr Thr Leu Ser Ser Pro Pro 1345	4065
10	GTT TAAAAGGAAG CATCCACACC CCAACTCCCG GACATCACAT Val 1356	4108
	GAGAGGTCTG CTCAGATTTT GAAGTGTTGT TCTTTCCACC	4148
15	AGCAGGAAGT AGCCGCATTT GATTTTCATT TCGACAACAG	4188
	AAAAAGGACC TCGGACTGCA GGGAGCCAGC TCTTCTAGGC	4228
	mmcmca.cc 4236	
20	TTGTGACC	
20	(2) INFORMATION FOR SEQ ID NO: 8:	
20	TIGIGACC	
20 25	(2) INFORMATION FOR SEQ ID NO: 8:	
	(2) INFORMATION FOR SEQ ID NO: 8: (i) SEQUENCE CHARACTERISTICS:	
25	(2) INFORMATION FOR SEQ ID NO: 8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 433 amino acids	
	(2) INFORMATION FOR SEQ ID NO: 8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 433 amino acids (B) TYPE: amino acid	
25	(2) INFORMATION FOR SEQ ID NO: 8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 433 amino acids (B) TYPE: amino acid (C) STRANDEDNESSS:	

	(A) NAME/KEY: <u>ckit</u> proto-oncogene receptor
5	(B) LOCATION: Amino acids 543-975
	(x) PUBLICATION INFORMATION:
	(A) AUTHORS: Yarden, Y., et al.
10	(B) JOURNAL: EMBO J.
	(C) VOLUME: 6
15	(D) PAGES: 3341-3351
13	(E) DATE: 1987
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:
20	Leu Thr Tyr Lys Tyr Leu Gln Lys Pro Met Tyr Glu Val Gln
	543 545 550 555
	Trp Lys Val Val Glu Glu Ile Asn Gly Asn Asn Tyr Val Tyr 560 565 570
25	
	Ile Asp Pro Thr Gln Leu Pro Tyr Asp His Lys Trp Glu Phe 575 580
	Pro Arg Asn Arg Leu Ser Phe Gly Lys Thr Leu Gly Ala Gly
30	585 590 595
	Ala Phe Gly Lys Val Val Ala Glu Thr Ala Tyr Gly Leu Ile
	600 605 610
35	Lys Ser Asp Ala Ala Met Thr Val Ala Val Lys Met Leu Lys

- 56 -

			615					620					625	
	Pro	Ser	Ala	His 630	Leu	Thr	Glu	Arg	Glu 635	Ala	Leu	Met	Ser	Glu 640
5	Leu	Lys	Val	Leu	Ser 645	Tyr	Leu	Gly	Asn	His 650	Met	Asn	Ile	Val
10	Asn 655	Leu	Leu	Gly	Ala	Cys 660	Thr	Ile	Gly	Gly	Pro 665	Thr	Leu	Val
	Ile	Thr 670	Glu	Tyr	Cys	Cys	Tyr 675	Gly	Asp	Leu	Leu	Asn 680	Phe	Leu
15	Arg	Arg	Lys 685	Arg	Asp	Ser	Phe	Ile 690	Cys	Ser	Lys	Gln	Glu 695	Asp
	His	Ala	Glu	Ala 700	Ala	Leu	Tyr	Lys	Asn 705	Leu	Leu	His	Ser	Lys 710
20	Glu	Ser	Ser	Сув	Ser 715	Asp	Ser	Thr	Asn	Glu 720	Tyr	Met	Asp	Met
25	Lys 725	Pro	Gly	Val	Ser	Tyr 730	Val	Val	Pro	Thr	Lys 735	Ala	Asp	Lys
	Arg	Arg 740	Ser	Val	Arg	Ile			Tyr		Glu	Ar g 750	Asp	Val
30	Thr	Pro	Ala 755	Ile	Met	Glu	Asp	Asp 760	Glu	Leu	Ala	Leu	Asp 765	Leu
	Glu	Asp	Leu	Leu 770	Ser	Phe	s r	Tyr	Gln 775	Val	Lys	Gly	Met	Ala 780

	Phe	Leu	Ala	Ser	Lys 785		Сув	Ile	His	Arg 790	_	Leu	Ala	Ala
5	Ar g 795		Ile	Leu	Leu	Thr 800	His	Gly	Arg	Ile	Thr 805	-	Ile	Cys
	Asp	Phe 810		Leu	Ala	Arg	Asp 815	Ile	Lys	Asn	Asp	Ser 820	Asn	Tyr
10	Val	Val	Lys 825	Gly	Asn	Ala	Arg	Leu 830	Pro	Val	Lys	Val	Met 835	Ala
15	Pro	Glu	Ser	Ile 840	Phe	Asn	Сув	Val	Tyr 845	Thr	Glu	Glu	Ser	Asp
15	Val	Trp	Ser	Tyr	Gly 855	Ile	Phe	Leu	Trp	Glu 860	Leu	Phe	Ser	Leu
20	Gly 865	Ser	Ser	Pro	Tyr	Pro 870	Gly	Met	Pro	Val	Lys 875	Ser	Lys	Phe
	Tyr	Lys 880	Met	Ile	Lys	Gļu	Gly 885	Phe	Arg	Met	Leu	Ser 890	Pro	Glu
25	His	Ala	Pro 895	Ala	Glu	Met	Tyr	Asp 900	Ile	Met	Lys	Thr	Cys 905	Trp
20	Asp	Ala	Asp	Pro 910	Leu	Lys	Arg	Pro	Thr 915	Phe	Lys	Gln	Ile	Val 920
30	Gln	Leu	Ile	Glu 92	_	Gln	Ile	Ser	Glu 93	Ser 0	Thr	Asn	His	Ile
35	Tyr 935	Ser	Asn	Leu		Asn 940	Cys	s r	Pro .	Asn .	Arg 945	Gln	Lys	Pro

- 58 -

Val Val Asp His Ser Val Arg Ile Asn Ser Val Gly Ser Thr 960 955 950 Ala Ser Ser Ser Gln Pro Leu Leu Val His Asp Asp Val 975 970 965 5 (2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 437 amino acids (B) TYPE: amino acid (C) STRANDEDNESSS: 15 linear (D) TOPOLOGY: (ii) MOLECULE TYPE: peptide 20 (ix) FEATURE: (A) NAME/KEY: CSF-1 receptor (B) LOCATION: Amino acids 536-972 25 (x) PUBLICATION INFORMATION: (A) AUTHORS: Coussens, L., et al. 30 (B) JOURNAL: Nature (C) VOLUME: 320

277-280

(D) PAGES:

35

(E) DATE: 1986

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:
	Leu Leu Tyr Lys Tyr Lys Gln Lys Pro Lys Tyr Gln Val Arg 536 540 545
10	Trp Lys Ile Ile Glu Ser Tyr Glu Gly Asn Ser Tyr Thr Phe 550 560
15	Ile Asp Pro Thr Gln Leu Pro Tyr Asn Glu Lys Trp Glu Phe 565 570 575
	Pro Arg Asn Asn Leu Gln Phe Gly Lys Thr Leu Gly Ala Gly 580 585 590
20	Ala Phe Gly Lys Val Val Glu Ala Thr Ala Phe Gly Leu Gly 595 600 605
	Lys Glu Asp Ala Val Leu Lys Val Ala Val Lys Met Leu Lys 610 615
25	Ser Thr Ala His Ala Asp Glu Lys Glu Ala Leu Met Ser Glu 620 625 630
30	Leu Lys Ile Met Ser His Leu Gly Gln His Glu Asn Ile Val 635 640 645
	Asn Leu Leu Gly Ala Cys Thr His Gly Gly Pro Val Leu Val 650 655 660
35	Ile Thr Glu Tyr Cys Cys Tyr Gly Asp Leu Leu Asn Phe Leu 665 670 675

- 60 -

	Arg	Arg	Lys	: Ala	680		. Met	. Leu	ı Gly	Pro 685		Leu	Ser	Pro
5	Gly 690		Asp	Pro	Glu	695	_	y Val	. Asp	Tyr	Tys		Ile	His
	Leu	Glu 705	_	Lys	Tyr	Val	Arg 710		Asp	Ser	Gly	Phe 715		Ser
10	Gln	Gly	Val 720	_	Thr	Tyr	Val	Glu 725	Met	Arg	Pro	Val	Ser 730	Thr
	Ser	Ser	Asn	Asp 735	Ser	Phe	Ser	Glu	Gln 740	Asp	Leu	Asp	Lys	Glu 745
15	Asp	Gly	Arg	Pro	Leu 750	Glu	Leu	Arg	Asp	Leu 755	Leu	His	Phe	Ser
20	Ser 760	Gln	Val	Ala	Gln	Gly 765	Met	Ala	Phe	Leu	Ala 770	Ser	Lys	Asn
	Сув	Ile 775	His	Arg	Asp	Val	Ala 780	Ala	Arg	A sn	Val	Leu 785	Leu	Thr
25	Asn	Gly	His 790	Val	Ala	Lys	Ile	Gly 795	Asp	Phe	Gly	Leu	Ala 800	Arg
	Asp	Ile	Met	Asn 805	Asp	Ser	Asn	Tyr	Ile 810	Val	Lys	Gly	Asn	Ala 815
30	Arg	Leu	Pro		Lys 820	Trp	Met	Ala		Glu 825	Ser	Ile	Phe	Asp
35	Cys 830	Val	Tyr	Thr	Val	Gln 835	Ser	Asp	Val		Ser 840	Tyr	Gly	Ile

- 62 -

	(B) TYPE: amino acid
5	(C) STRANDEDNESSS:
5	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
10	(ix) FEATURE:
	(A) NAME/KEY: PDGF receptor
15	(B) LOCATION: Amino acids 522-1087
	(x) PUBLICATION INFORMATION:
	(A) AUTHORS: Gronwald, R., et al.
20 .	(B) JOURNAL: Proc. Natl. Acad. Sci.
	(C) VOLUME: 85
25	(D) PAGES: 3435-3439
	(E) DATE: 1988
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:
30	Met Leu Trp Gln Lys Lys Pro Arg Tyr Glu Ile Arg Trp Lys 522 525 530 53
	Val Ile Glu Ser Val Ser Ser Asp Gly His Glu Tyr Ile Ty: 540 545

		Va.	l Asj	p Pro	o Vai	l Glr	ı Lei	ı Pro	Туз	: Asr	Ser	Th	r Tr	o Gli	ı Leu
•		55					555		_	_		560			
. ·	5	Pro	565		Glr	n Lev	val	. Leu 570		' Arg	Thr	' Lei	1 Gly 575	7 Sei	Gly
		Ala	Phe	580		ı Val	Val	Glu	Ala 585		Ala	His	Gly	590	Ser
	10	His	Ser	Gln	Ala 595		Met	Lys	Val	Ala 600	Val	Lys	Met	Leu	Lys 605
	15	Ser	·Thr	Ala	Arg	Ser 610	Ser	Glu	Lys	Gln	Ser 615	Leu	Met	Ser	Glu
		Leu 620		Ile	Met	Ser	His 625	Leu	Gly	Pro	His	Leu 630	Asn	Val	Val
	20	Asn	Leu 635	Leu	Gly	Ala	Cys	Thr 640	Lys	Gly	Gly	Pro	Ile 645	Tyr	Ile
		Ile	Thr	Glu 650	Tyr	Cys	Arg	Tyr	Gly 655	Asp	Leu	Val	Asp	Tyr 660	Leu
	25	His	Arg	Asn	Lys 665	His	Thr	Phe		Gln 670	Arg	His	Ser	Asn	Lys 675
	30	His	Cys	Pro	Pro	Ser 680	Ala	Glu	Leu		Ser . 685	Asn	Ala	Leu	Pro
•		Val 690	Gly	Phe	Ser		Pro 695	Ser 1	His :	Leu .		Leu 700	Thr	Gly	Glu
	35		Asp 705	Gly	Gly	Tyr 1		Asp 1 710	Met :	Ser 1	Lys 1		Glu /	Ser	Ile

- 64 -

	As	р Ту	r Va 72		o Me	t Le	u As	p Me 72	_	s Gly	/ As <u>l</u>) Ile	730	s Tyr
5	Al	a As	p Il	e Gl:		r Pro	Se:	r Ty	740		Pro	Туг	Asp	745
	Ту	r Va	l Pr	o Sei	r Ala 750		Glu	ı Ar	y Thr	Tyr 755	_	Ala	Thr	Leu
10	Ile 760		n Asj	o Sei	r Pro	765		ı Sei	r Tyr	Thr	Asp		Val	Gly
	Phe	77!		c Glr	ı Val	l Ala	Asn 780		Met	Asp	Phe	Leu 785	Ala	Ser
15	Lys	: Ası	790		. His	arg	yeb	Leu 795	Ala	Ala	Arg	Asn	V al 800	Leu
20	Ile	Cys	Glu	Gly 805		Leu	Val	Lys	Ile 810	Cys	Asp	Phe	Gly	Phe 815
	Ala	Arg	yab	Ile	Met 820		Asp	Ser	Asn	Tyr 825	Ile	Ser	Lys	Gly
25	Ser 830	Thr	Tyr	Leu	Pro	Leu 835	Lys	Trp	Met		Pro 840	Glu	Ser	Ile
30	Phe	Asn 845	Ser	Leu	Tyr		Thr 850	Leu	Ser	Asp '		Trp . 855	Ser	Phe
	Gly	Ile	Leu 860	Leu	Trp	Glu		Phe 865	Thr	Leu (Gly (_	Thr :	Pro
35	Tyr	Pro	Glu	Leu 875	Pro	Met .	Asn		Gln :	Phe T	Tyr 1	Asn A		Ile 885

- 66 -

	Gly Cys Pro Gly Pro Leu Ala Glu Ala Glu Asp Ser Phe Leu 1055 1060 1065
5	Glu Gln Pro Gln Asp Ser Gly Cys Pro Gly Pro Leu Ala Glu 1070 1075 1080
	Ala Glu Asp Ser Phe Leu 1085
10	(2) INFORMATION FOR SEQ ID NO: 11:
	(i) SEQUENCE CHARACTERISTICS:
15	(A) LENGTH: 16 base pairs
	(B) TYPE: nucleic acid
20	(C) STRANDEDNESS: single
20	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:
	TCGACGCGCG ATG GAG 16
30	

5

10

20

25

We claim:

- 1. An isolated DNA sequence encoding the Kinase insert Domain containing Receptor.
- 2. The DNA sequence of Claim 1 wherein said sequence is a human gene.
- 3. An isolated DNA sequence comprising a DNA sequence capable of hybridizing with a DNA sequence encoding the amino acid sequence of Figure 7.
- 4. A method for the production of a growth factor receptor which comprises transforming a host cell with the DNA sequence of Claim 3 and culturing the host cell under conditions which result in expression of the gene by an expression vector.
- 5. The method of Claim 4 wherein the host cell is a bacteria, virus, yeast, insect or mammalian cell line.
 - 6. The method of Claim 5 wherein the host cell is a COS-1 cell, NIH3T3 fibroblast or CMT-3 monkey kidney cell.
 - 7. The method of Claim 5 where the expression vector is pcDNAltkpASP expression vector.
 - 8. A lambda gtll phage harboring the clone BTIII081.8 (ATCC accession number 40,931) or the clone BTIII129.5 (ATCC Accession number 40,975).
 - 9. A plasmid pBlueScript KS which contains the clone BTIV169 (ATCC accession number 75200).
 - 10. An isolated growth factor receptor designated the Kinase insert Domain containing Receptor.
 - 11. The receptor of Claim 10 comprising the amino acid sequence of Figure 7.
 - 12. The reptor f Claim 10 encoded by an isolated DNA s quance c mprising a DNA sequenc capabl

35

30

- 68 -

of hybridizing with a DNA sequence encoding the amino acid sequence of Figure 7.

- 13. A biologically active protein fragment which retains the receptor activity of the receptor of Claim 10.
- 14. An isolated DNA sequence encoding a biologically active protein fragment which retains the receptor activity of an isolated growth factor receptor designated the Kinase insert Domain containing Receptor.
- 15. An oligonucleotide primer consisting of an oligonucleotide primer having 21 bases and having a sequence depicted for Primer 1 in Figure 2.
- 16. An oligonucleotide primer consisting of an oligonucleotide primer having 29 bases and having a sequence depicted for Primer 2 in Figure 2.
- 17. The 363 base pair product having the sequence depicted in Figure 4, or a biological equivalent of said sequence.

20

5

10

15

25

30

FIG. 1

SUBSTITUTE SHEET

FIG. 2

AAC CTG TTG GGG GCC TGC ACC T A T A T A A C G	GTCGAC AAC CTG TTG GGG GCC TGC AAC T A		CAC AGA GAC CTG GCG GCT AGG AAC GTG CT T GA C A T A C G G A GC C T C C C T C	CAC AGA GAC CTG GCC GCT AGI AAC GTG CT C T C GAATTC AG CAC GTT ICT AGC CGC CAG GTC TCT
PDGF CKIT CSF FGF	PRIMER 1	PRIMER 2	PDGF ck1t CSF FGF	CONSENSUS PRIMER 2

FIG. 3

SUBSTITUTE SHEET

7

```
-04505404-5
OOOHOHD &OHH
O
A H H A G A H C C H C
A A H H G C C H H G
- 4-- U-U 4 U U U
O \land \land \land \land O \land \vdash \vdash \circ \land |O|
4 + 0 0 0 0 0 0 + 0 4 4 +
ACUCUAUFUUUA
040000441010
-440000004FFF
44400-0-5055
ひをひじしし じじりない
ADOHOOOOHOAA
A P H H A P C C C P C
DOVACACACA
CHCHGGGHOHO
CHCHGGGHOHO
ひくしいり くじじー くじ
40-0--040-04
OO \rightarrow OO \bigcirc OO \bigcirc OO
```

FIG. 44

ソトトとソトンマ ひょうりゅうしょ **U-UD-U** 44466644 0--400-6 4 CO A A CO − PAGGAACI **ひ ♥ む ∪ ひ ⊢ じ ♥** 0 P C P - C C C 9 C P C C C P C 0 - 4 - C C -|C **⊢∪⊢ ∀ ∀** ∪ ∪ **∀** 0 C + D C C - C C **AUDUUAAU** A | 0 0 0 0 F A **∪|-∪∪∢∪∪** A A B C C B A

FIG. 4B

10v 20v 30v 40v 50v 50v 100v 100v ACCTGTGGGGGGCCTGCAAAAGGAGACCTGCAACAACAACAACAACAACAACAACAACAACAACAACAA	TGC T GGA ACCTG TACCTG GCAA A TGCAAATTTGGAAACCTGTCCACTTACCTGAGGAGGAGGAGGAAGA	140v 150v GCCGCCGCCCAGCGC		v 190v 200v 210v 220v 230v 240v 250v 250v 260v 260v 270v 270v 250v 250v 250v 270v 270v 250v 250v 250v 250v 250v 250v 250v 25	TGGATCTGAAACGGCGCTTGGACAGCATCACCAGTAGCCAGAGCTC—TGGATTTGTGG-AGGAGAAGTCCCTCAGTGATGTAGAAGAAGA 120^ 130^ 140^ 150^ 150^ 150^ 150^ 150^ 150^ 170^ 170^ 100^ 100^ 100^ 100^ 100^ 10	v 290v 300v 310v 320v 330v 330v 340v 350v 350v 370v 210° 66ACATGAAAGGAGGACGTCAAATAGCAGACATCGAGTCCTCCAACTACATGGCCCCTTACGATAACTACGTTCCCTCTGCCCCTGAGGAGGACGTGCCGAG	AT-TA	390v 400v 410v 450v 420 42	GGACTICCIGACCT	30v 490v 500v 510 TCCACAGAGACCTGGCGGCTAGGAACGTGCT	TCCACAGAGACCTGGC GC AGGAACGTGCT GTGTATCCACAGAGACCTGGCAGGAACGTGCT 320^ 330^ 340^
PDGF	360 lbp	PDGF	360 bp	POGF	360 bp	PDGF	360 bp	PDGF	360 bp	PDGF	360 bp
);;;;;;-)ui::;;;	iu.E	Shee	Ī			

TTATGACCGGAGGAGGATCTACTTGAT ---AGACCCGGAGGCCCCCAGGGCTGGAATACTGCTATAACCCCAGCCACAACCCAGAGGAGCAGCTCTCCTCCAAGGACCTGGTGTCCT AACCTGCTGGGGGCCTGCACGCAGGATGGTCCCTTGTATGTCATCGTGGAGTATGCCTCCAAGGGCAACCTGCGGGAGTACCTGC TCTAGAGTATGCCCCCCGGGGGGTCTACAAGGAGCTGCAGAAGAGCTGCACATTTGACGAGCAGCGGGAACAGCCACGATCATGG GGA----GGCCCGAGGCATGGAGTATCTGGCCTCCAAGAAGTGCATACACCGAGACCTGGCAGCCAGGAATGTCCTG -CTCTA-30 퉏 덩 220 40 AATCTGTTGGGGGCCTGCACCATCCCAACATCCT 230 bp 230 bp 230 bp FGF 1 FG F

FIG.5B

SUBSTITUTE SHEET

						8/28	;				
))	CGG Arg>		ATA Ile>	160	ACT TGC AGG Thr Cys Arg>		CAA Gln>	270	ATT Ile>		ACT Thr>
	ACC		AGC	16	TGC		GAG Glu		ACA Thr	320	CGG GAA Arg Glu
ţ	GAG Glu	100	CTC		ACT	210	AGT Ser		CTC	(.)	
ţ	Leu Cys Val	1(CCC AGG CTC Pro Arg Leu		ATT Ile		GGC Gly	260	ACA Thr		TAC Tyr
40 + +	Cys		CCC Pro	150	CAA Gln		AGT Ser	.,	AAG Lys	o; *	TTC
	Leu		CTG		CTT	200	CAG Gln		CTC TTC TGT AAG ACA Leu Phe Cys Lys Thr	310	TAC AAG TGC TTC Tyr Lys Cys Phe
ניט ניט		90 *	GAT		ACT Thr	*	RR	20 *	TTC		AAG Lys
ָּטָ עַרָּיָלָ	Ala Leu		TCT CTT Ser Leu	140	AAT ACA Asn Thr		AAT Asn	250	CTC		TAC Tyr
				*		190 *	TGG CCC AAT Trp Pro Asn		GGC G1y	300	GCC
נידר	Val	80	GTT Val		GCT Ala	1	TGG Trp		GAT Asp		GGA
j			AGT	130	AAG Lys		CTT	240	AGC		ACT Thr
20 *			CCT Pro	÷	ATT Ile		TGG Trp		GAG TGC Glu Cys	290	AAT GAC Asn Asp
CTC		02 *	GGT TTG Gly Leu		ACA Thr	180	GAC Asp		GAG Glu	*	AAT Asn
	<i>-</i>	•	GGT G1y		CTT Leu		TTG	230	ACT Thr		GGA G1y
10 * AGC AAG	Ser Lys		GTG Val	120	GAC ATA Asp Ile		GAC TTG	•	GAG GTG ACT Glu Val Thr	280	GTG ATC Val Ile
S S S S S S S S S S S S S S S S S S S	Ser		TCT		GAC	170	agg Arg		GAG Glu	28	GTG Val
פאט		60	GCC Ala		AAA		GGA CAG AGG Gly Gln Arg	0.*	AGG GTG Arg Val		CCA AAA Pro Lys
ATG	Met		GCC Ala	110	CAA Gln		GGA Gly	220	AGG Arg		CCA AAA G. 7A Pro Lys
				•							74
							٠				<u>ල</u>

370	TCT CCA	AAC AAA Asn Lys	480 * AAC GTG TCA Asn Val Ser	530 * ATT TCC TGG Ile Ser Trp	590 * GCT GGC ATG Ala Gly Met	640 * ATG TAC ATA Met Tyr Ile
360	CAA GAT TAC AGA GIn Asp Tyr Arg	0 420 * AC ATT ACT GAG yr Ile Thr Glu	470 * * TCA AAT CTC AAC Ser Asn Leu Asn	520 * GAT GGT AAC AGA ATT Asp Gly Asn Arg Ile	580 * C ATC AGC TAT t lle Ser Tyr	630 * TAC CAG TCT ATT Tyr Gln Ser Ile
350	GTC TAT GTT Val Tyr Val	00 4 GGA GTC GTG T Gly Val Val T	460 * GGG TCC ATT Gly Ser Ile	510 * TTT GTT CCT Phe Val Pro	570 * CCC AGC TAC ATG Pro Ser Tyr Met	620 * GAT GAA AGT Asp Glu Ser
340	GTC ATT TAT Val ile Tyr	390 * AGT GAC CAA CAT Ser Asp Gln His	450 * T CCA TGT CTC e Pro Cys Leu	500 * A GAA AAG AGA O Glu Lys Arg	560 C TTT ACT ATT y Phe Thr Ile	610 GAA GCA AAA ATT AAT Glu Ala Lys Ile Asn
330	GAC TTG GCC TCG Asp Leu Ala Ser	380 AGCT TCT GTT AC	440 ACT GTG GTG ATT Thr Val Val Ile	490 * GCA AGA TAC CCA Ala Arg Tyr Pro	550 AGC AAG AAG GGC Ser Lys Lys Gly	600 * TTC TGT GAA GC B Phe Cys Glu Al

SUBSTITUTE SHEET

KE V

			10/28		
700 * GGA ATT Gly 11e>	CTA Leu>	810 * AAG Lys>	TTT of Phe>	ACC Thr>	70 * GTC Val>
70 664 61y	GAA G1u	CAT H1s		TAC	970 * AGG GTC Arg Val.
CAT	750 * ACT Thr	CAG G.l.n	aag Lys	.0 * TTG Leu	GTC
690 * CCG TCT Pro Ser	aga Arg	800 * AAG CAT Lys H1s	ATG Met	910 * GGA TTG	TTT Phe
	GCA		850 * AGT GAG Ser Glu	CAA Gln	960 * ACA Thr
AGT	740 * ACA] Thr	rcg		GAC	AGC
CTG	740 * AAT TGT ACA ASn Cys Thr	790 * CCT TCT Pro Ser	GGG G1.y	900 * AGT Ser	* AAC AGC Asn Ser
680 * GTG GTT Val Val		79 CCT Pro	TCT	ACC CGG Thr Arg	950 * AAG AAG Iys Lys
GTG	730 * GTC TTA Val Leu	TAC	840 * CAG Gln	ACC	AAG Lys
GAT Asp		780 * TGG GAA Trp Glu	AAA ACC Lys Thr	890 * GGT GTA Gly Val	ACC
670 * ATT TAT Ile Tyr	CTT		AAA Lys	e Gat GGT Asp. Gly	10 * ATG Met
6 ATT Ile	AAG Lys	AAC Asn	830 * CTA Leu	GAT	940 * CTG ATG A
AGG	720 * GAA Glu	TTC	CGA GAC Arg Asp	880 * ACT ATA Thr Ile	666 G1y
TAT Tyr	GGA G1y	770 * GAC ASP		880 ACT A	AGT Ser
660 * 666 61y	GTT Val	ATT	820 * GTA AAC	TTA	930 * rcc Ser
GTT GTA Val Val	710 + TCT Ser	50 * GTG GGG ATT Val Gly Ile	82 GTA Val	ACC Thr	GCA GCA
GTT Val	710 * GAA CTA TCT Glu Leu Ser	760 * T GTG n Val	CTT Leu	870 AGC Ser	GCA
650 * GTC Val	GAA G1u	76 AAT ASn	AAA CTT Lys Leu	TTG	920 TGT G
					26
					છ

	GAA GCC Glu Ala>	1080	CCC CCA Pro Pro>		AAA Lys>	11/2	rac Iyr	۰,	TCT Ser>		GTC CCA CCC CAG ATT GGT GAG AAA TCT CTA ATC TCT CCT GTG Val Pro Pro Gln Ile Gly Glu Lys Ser Leu Ile Ser Pro Vals
	CTG GTG GAA GCC Leu Val Glu Ala		CCA CCC CCA Pro Pro Pro	1130	CAC ACA ATT His Thr Ile	3	AAT Asn	1240	GTC TCT Val Ser		CCT
1020	GTG Val		CCA	11	ACA		GGA Gly		GTG	1290	TCT
	CTG GTG Leu Val	1070	TAC Tyr		CAC H1s	1180	ACA		CAT H13	~	ATC Ile
	TCT Ser	10	CTT GGT TAC Leu Gly Tyr	٥,	AAT Asn		GAC	1230	AGC		CTA
1010	GAA Glu		CTT	1120	TCC AAT Ser Asn		AGA	₹	CAG Gln	1280	TCT Ser
10	GGC ATG GAA Gly Met Glu	Q *	TAC Tyr		CCC CTT GAG Pro Leu Glu	1170	GTG AGT GAA AGA GAC ACA GGA Val Ser Glu Arg Asp Thr Gly		TCA AAG GAG AAG CAG AGC Ser Lys Glu Lys Gln Ser	12	AAA
	GGC	1060	AAG TAC Lys Tyr		CTT	-	AGT	1220	GAG Glu		GAG Glu
0(*	AGT		GCG	1110	CCC		GTG Val	12	AAG Lys	0 *	GGT Gly
1000	GGA AGT Gly Ser		CGT GTC AGA ATC CCT GCG AAG TAC Arg Val Arg Ile Pro Ala Lys Tyr		GGA ATA CCC Gly ile Pro	1160			TCA	1270	ATT
	TTT Phe	1050	ATC Ile		GGA Gly	11	ATG GAA Met Glu	0 *			CAG Gln
	GCT TTT Ala Phe	~	aga Arg	1100			ATT 11e	1210	ACC AAT CCC ATT Thr Asn Pro Ile		CCC
990 *	GTT Val		GTC	11	AAA Lys	0*	ACG		AAT Asn	1260	CCA
	TTT Phe	1040	CGT Arg		TAT	1150	CTG ACG Leu Thr		ACC	+	GTC
	CAT GAA AAA CCT His Glu Lys Pro	10	GAG Glu	0 *				1200			TAT
980	aaa Lys		GGG Gly	1090	AAA TGG Lys Trp		CAT GTA His Val	7	GTC ATC CTT Val Ile Leu	50 *	GTG
O1	GAA Glu	9 *	GTG Val		ATA Ile	1140	666 61y		GTC Val	1250	GTT GTG
	CAT H1s	1030	ACG GTG Thr Val		GAA ATA Glu Ile	₽	GCG GGG Ala Gly	1190	ACT		CTG
								11			7.0
											_

1330 1340 1350	CAA ACG CTG ACA TGT ACG GTC TAT GCC ATT GIn Thr Leu Thr Cys Thr Val Tyr Ala Ile>	1380 1390 140 <u>0</u>	TGG TAT TGG CAG TTG GAG GAA GAG TGC GCC AAC Trp Tyr Trp Gln Leu Glu Glu Glu Cys Ala Asn>	1440 1450	AAC CCA TAC CCT TGT GAA GAA TGG AGA ASN Pro Tyr Pro Cys Glu Glu Trp Arg>	1490 1500 1510	AAT AAA ATT GAA GTT AAT AAA AAT CAA TTT A Asn Lys Ile Glu Val Asn Lys Asn Gln Phe>	1540 1550 1560 ACT GTA AGT ACC CTT GTT ATC CAA GCG GCA Thr Val Ser Thr Leu Val Ile Gln Ala Ala>	1600 * GCG GTC AAC AAA Ala Val Asn Lys
1300 1310 1320	GAT TCC TAC CAG TAC GGC ACC ACT CAA Asp Ser Tyr Gln Tyr Gly Thr Thr Gln	1360 1370	CCT CCC CCG CAT CAC ATC CAC TGG TAT TGG Pro Pro Pro His His Ile His Trp Tyr Trp	1410 1420 1430	GAG CCC AGC CAA GCT GTC TCA GTG ACA Glu Pro Ser Gln Ala Val Ser Val Thr	1460 1470 1480 * * *	AGT GTG GAG GAC TTC CAG GGA GGA AAT Ser Val Glu Asp Phe Gln Gly Gly Asn	1520 1530 1540 * * * GCT CTA ATT GAA GGA AAA AAC AAA ACT G	1570 1580 1590 * * * AAT GTG TCA GCT TTG TAC AAA TGT GAA 7E Asn Val Ser Ala Leu Tyr Lys Cys Glu

F16. 7E

	^		•		•	13/	28				
	GAC Asp>		AGA TCT Arg Ser>	30	* CAT His>		TTG Leu>	1890	AAG Lys>		AAG Lys>
1670	TTG CAA CCT Leu Gln Pro		GCA GAC AGA Ala Asp Arg	1780	CTG CCA ATC CAT Leu Pro Ile His				GAG CTT AAG	1940	TGC CTT GCT CAA GAC AGG AAG Cys Leu Ala Gln Asp Arg Lys
ī	CAA Gln	20	GCA GAC Ala Asp		CCA	1830	CTT TGG Leu Trp		GAG Glu	13	GAC
		1720			CTG	•	CTT	1880	ATG Met		CAA
60	ACT		ACT Thr	1770	CCT Pro		ACT	18	TTG ATC ATG Leu Ile Met	0° *	GCT Ala
1660	GGT CCT GAA ATT ACT Gly Pro Glu Ile Thr		TCT TTG TGG TGC ACT Ser Leu Trp Cys Thr	• •	AAG CTT GGC CCA CAG CCT Lys Leu Gly Pro Gln Pro	1820	AAC TTG GAT Asn Leu Asp		TTG Leu	1930	CTT GCT Leu Ala
	GAA G1u	1710	TGG Trp		CCA	ì	CCC ACA CCT GTT TGC AAG AAC TTG GAT Pro Thr Pro Val Cys Lys Asn Leu Asp	0/	GAC ATT Asp Ile		TGC Cys
	CCT		TTG	1760	AAG CTT GGC Lys Leu Gly		AAC	1870	GAC		CAG GAC CAA GGA GAC TAT GTC Gln Asp Gln Gly Asp Tyr Val
1650	GGT G1y		TCT	H	CTT	10	AAG		AAT Asn	1920	TAT Tyr
	AGG	1700	AGC GTG Ser Val			1810	TGC			1-1	GAC
	ACC	+	AGC	\$0	TGG TAC Trp Tyr		GTT Val	1860	AAT AGC Asn Ser		GGA Gly
1640	TTC CAC GTG Phe His Val		GAG Glu	1750			CCT	*	AAT Asn	1910	CAA Gln
.	TTC CAC GTG Phe His Val	06	gag cag Glu Gln		CTC ACA Leu Thr	1800 *	ACA Thr		TCT	Ä	GAC Asp
	-	1690			•	•	CCC	1850	TTC Phe		CAG
1630	TCC		ACT	1740 *	GAG AAC Glu Asn		TTG	H		00	TCC TTG Ser Leu
16	ATC		Pro			1790	GAG Glu		ACC ATG Thr Met	1900	TCC
	AGG GTG Arg Val	1680 *	CAG Gln		TTT Phe	÷-	GTG GGA GAG Val Gly Glu	4 0	GCC		GCA Ala
	AGG		ATG	1730	ACG		GTG Val	1840 * *	AAT Asn	*	AAT Asn
				H						•	7.F

				111/		
	GCA Ala>	2050 * AGC ATC	AAA Lys>	2150 2160 % * TTG AAG GAT GGG AAC CGG Leu Lys Asp Gly Asn Arg>	2210 * TAC ACC TGC CAG Tyr Thr Cys Gln>	2230 2240 2250 2260 * CTT GGC TGT GCA AAA GTG GAG GCA TTT TTC ATA ATA GAA GGT Leu Gly Cys Ala Lys Val Glu Ala Phe Phe Tle Tlo Clin Clin Clin Clin Clin Clin Clin Clin
	GrG	20 AGC Ser	TTT Phe	AAC Asn	2210 * :C TGC r Cys	GAA
90	GAG CGT GTG Glu Arg Val	GGG GAA Gly Glu	2070 2080 2090 2100 * * * * ACG GCA TCT GGG AAT CCC CCT CCA CAG ATC ATG TGG Thr Ala Ser Gly Asn Pro Pro Pro Gln Ile Met Trp	GGG G1y	2210 TAC ACC TGC TYE THE CYS	50 * ATA
1990	GAG	GGG G1y	ATG Met	2150 * G GAT S ASP		2260 * ATA A'
	CTA	2040 * ATT Ile	ATC Ile	21 AAG Lys	00 * CTC Leu	TTC
	GTC CTA Val Leu	2040 * ACA AGT ATT Thr Ser Ile	2090 * A CAG o Gln	TTG	2200 * GGC CTC Gly Leu	TTT
1980	CAT TGC GTG GTC AGG CAG CTC ACA His Cys Val Val Arg Gln Leu Thr	ACA Thr	2C CCA Pro	7. 3.1		2250 * GCA
*	CTC	2030 * AAT CAG ACG Asn Gln Thr	CCT	21.40 * ATT G	GAC GAA Asp Glu	2 GAG G1.u
	CAG G1n	2.0 CAG G1.n	30 * CCC Pro	GGC G1y	2190 * GAG GJ u	GTG Val
1970	AGG Arg		2080 * AAT CO	TCA	AAG Lys	2240 * A AAA a Lys
16	GTC Val	2020 CTG GAG Leu Glu	666 61 y	2130 * GAC ASP	AGG	22 GCA Ala
	GTG Val	2020 * CTG G	TCT Ser	GAA Glu	2180 * A GTG 9 Val	TGT
1960 *	TGC	AAC	2070 * GCA Ala	GTA Val	2180 * CGC AGA GTG Arg Arg Val	0 * GGC G1y
196	CAT	GGA	ACG Thr	20 * CTT Leu	CGC	2230 * CTT G
	AGA Arg	2010 * ACA Thr	TGC	21 ACC Thr	0 * ATC Ile	
	AAA Lys	2010 * ACG ATC ACA Thr Ile Thr	2060 * C TCA 1 Ser	GAG Glu	2170 * : ACT ATC	AGT.
1950	AAG Lys	ACG Thr	2060 A GAA GTC TCA TGC Glu Val Ser Cys	0 ** AAT Asn	CTC	2220 * TGC Cys
<u>r-1</u>	ACC AAG AAA AGA Thr Lys Lys Arg	2000 * CCC Pro	GAA Glu	2110 ** GAT AAT ASP ASD	* AAC CTC Asn Leu	2220 * GCA TGC AGT GTT Ala Cys Ser Val
		Ñ				92

اي م	J	., <u>\$</u>		4	15/28	_ 4		., ^		. ^
20 * ATT Ile>		GCC Ala>	2430	GAA Glu>		GAA Glu>		66C 61y>	, 0	ACA Thr>
2320 * GTG A		CGG Arg	•	GAT Asp	2480	AAA TGG Lys Trp		TTT Phe	2590	AGG ACA Arg Thr
232 ACG ACG GTG Thr Thr Val	2370	AAG		CCA	2,	AAA Lys	<u>.</u> و	GCC Ala		TGC
ACG Thr		GTT	2420	ATG GAT Met Asp		AGC	2530	GGT GCC Gly Ala		ACT Thr
2290 2300 2310 23 * TTG GAA ATC ATT ATT CTA GTA GGC ACG ACG GTG Leu Glu Ile Ile Ile Leu Val Gly Thr Thr Val		- P	2	ATG Met	70 *	GAT GCC Asp Ala		GGC CGT Gly Arg	2580	ACA GCA ACT Thr Ala Thr
GTA	2360	TGG CTA CTT CTT GTC ATC CTA GGG Trp Leu Leu Leu Val Ile Ile Leu Gly		GTC	2470				•	ACA Thr
CTA	2	CTA	2410	TCC ATC Ser Ile		TAT Tyr	2520	CTT Leu	•	AAG Lys
2300 * T ATT e Ile		ATC Ile	24			CCT Pro	•••	AAG CCT Lys Pro	2570	ATT GAC Ile Asp
2 ATT 11e	2350	ATC		TTG	2460	CTG			25	ATT Ile
0 2. * Gaa ATC ATT	23	GTC		TAC TTG Tyr Leu		GAA CGA CTG Glu Arg Leu	2510	CTA GGT Leu Gly		GGA G1y
2290 * TG GAA		CTT CTT GTC Leu Leu Val	2400	GGC G1y			25	CTA	0 *	TTT Phe
		CTT	••	AAG ACA GGC Lys Thr Gly	2450	TGT Cys		AAC Asn	2560	GCC TTT Ala Phe
ACG AAC The Asn	2340	TGG CTA Trp Leu			. 7	GAA CAT TGT Glu His Cys	0 *	CGG CTG Arg Leu		GAT Asp
		: :	390	CTG		GAA Glu	2500	CGG Arg		GCA Ala
2280 * CAG GAA AAG Gln Glu Lys		TTC	23	GAA Glu	0 *	TTG GAT Leu Asp			2550	GAA Glu
GAA G1u	2330	TTC		GGG G1y	2440	TTG		CCC AGA Pro Arg		ATT
	2	GCC ATG TTC TTC Ala Met Phe Phe	80 *	AAT GGA GGG GAA Asn Gly Gly Glu		CTC CCA TTG GAT Leu Pro Leu Asp	2490	TTC CCC AGA GAC Phe Pro Arg Asp		GAG Glu
2270 * GCC Ala		GCC	2380	AAT Asn		CTC	~	TTC Phe	2540	CAA Gln
8									25	7.H
										. 7

CAA Gln

	GCT CTC Ala Leu>	2700	AAC Asn>	50 * GAA TTC Glu Phe>	GTC Val>	ر 00 + در	Lys Gly Ala Arg Phe Arg Gln Gly Lys Asp Tyr Val Gly Ala> 2880 2890 2900 2910
	GCT		GTC Val		TTT	2860 *	GIY
2640	cga Arg		GTG GTC AAC	27 GTG Val	GAA GLU	L.L.	Val
N	CAT His	2690	AAT Asn	ATT Ile	2800 * AAT G	TAC	Tyr 2
	GAG Glu	26	CTC Leu	10 * GTG Val	AGA	2850 *	Asp
2630	AGT		CAT H1s	2720 2730 2740 27 * TGT ACC AAG CCA GGA GGG CCA CTC ATG GTG ATT GTG Cys Thr Lys Pro Gly Gly Pro Leu Met Val Ile Val	2760 2770 2780 2790 2800 TGC AAA TTT GGA AAC CTG TCC ACT TAC CTG AGG AGG AGG AGA AAT GAA TTT GTC CYS Lys Phe Gly Asn Leu Ser Thr Tyr Leu Arg Ser Lys Arg Asn Glu Phe Val.	10 2820 2830 2840 2850 2860	y Lys 2900
26	GGA GCA ACA CAC AGT Gly Ala Thr His Ser	0	AAG ATC CTC ATT CAT ATT GGT CAC Lys lle Leu lle His lle Gly His	CTC	2790 AGC Ser	999	G1y 29
	ACA Thr	2680	GGT G1y	CCA	AGG	2840 * T CAA	Gln
2620	GCA Ala		ATT Ile	2730 * GGG	CTG	28 CGT	Arg 0
	GGA G1y		CAT H1s	GGA G1y	2780 * T TAC F TYF	TTC	Phe A 2890
	GAA Glu	2670	* ATT Ile	CCA	ACT Thr	30 * CGA	Arg
	AAA GAA Lys Glu	(4	CTC	2720 * C AAG r Lys	TCC	2830 * GCA C	Ala
2610	TTG		ATC Ile	2. ACC Thr	70 CTG	999	Gly 2880
(1)	GTA GCA GTC AAA ATG TTG Val Ala Val Lys Met Leu	2660		TGT Cys	2770 * AAC C	AAA	Lys 2
	AAA Lys	56	GAA CTC	10 * GCC Ala	2760 TGC AAA TTT GGA Cys Lys Phe Gly	2820 * ACC	Thr
2600	GTC Val		GAA Glu	2710 * GGT GG	TTT	AAG	Tyr Lys Thr 2870
56	GCA Ala	0	* ATG TCT Met Ser	2710 CTT CTA GGT GCC Leu Leu Gly Ala	2760 * AAA Lys	TAC	Tyr 28
	GTA Val	2650	AT'G Met	CTT	TGC	2810 * CCC	Pro

ATC CCT GTG GAT CTG AAA CGG CGC TTG GAC AGC ATC ACC AGT AGC CAG AGC TCA

50 2960 2970	GCC AGC TCT GGA TTT GTG GAG GAG TCC CTC AGT GAT GTA GAA GAA GAG GAA Ala Ser Ser Gly Phe Val Glu Glu Lys Ser Leu Ser Asp Val Glu Glu Glu	SOU 3020 3000 3010 3020 ** GCT CCT GAA GAT CTG TAT AAG GAC TTC CTG ACC TTG GAG CAT CTC ATC TGT TAC Ala Pro Glu Asp Leu Tyr Lys Asp Phe Leu Thr Leu Glu His Leu Ile Cys Tyr>	3030 3040 3050 3060 3070 AGC TTC CAA GTG GCT AAG GGC ATG GAG TTC TTG GCA TCG CGA AAG TGT ATC CAC Ser Phe Gln Val Ala Lys Gly Met Glu Phe Leu Ala Ser Arg Lys Cys Ile His>	3120 3130 GAG AAG AAC GTG GTT AAA ATC Glu Lys Asn Val Val Lys Ile>	3170 AAA GAT CCA GAT TAT GTC AGA AAA Lys Asp Pro Asp Tyr Val Arg Lys>	3220 3230 3240 * * GCC CCA GAA ACA ATT TTT GAC AGA Ala Pro Glu Thr Ile Phe Asp Arg>
2940 2950	G GAG GAG AAG TCC CTC	2990 3000 * * T AAG GAC TTC CTG ACC r Lys Asp Phe Leu Thr	3030 3040 3050 3060 3060 AGC TTC CAA GTG GCT AAG GGC ATG GAG TTC TTG GCA Ser Phe Gln Val Ala Lys Gly Met Glu Phe Leu Ala	180 3120 3120 3120 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		TGG ATG Trp Met
2920 2930	Ser Ser Gly Phe Va	2980 * F CCT GAA GAT CTG TAT Pro Glu Asp Leu Tyr	3030 3040 * TTC CAA GTG GCT AAC Phe Gln Val Ala Lys	3090 GAC CTG GCG GCA CGA ASP Leu Ala Ala Arg	3140 3150 3160 TGT GAC TTT GGC TTG GCC CGG GAT ATT TAT Cys Asp Phe Gly Leu Ala Arg Asp Ile Tyr	3190 3210 3210 ** GGA GAT GCT CGC CTC CCT TTG AAA GJy Asp Ala Arg Leu Pro Leu I,ys
55	Ala	GCT	AGC	3080 * AGG Arg	TGT Cys	3190 4 GGA G 7J GJY A

GAT Asp

	△		18/2	8 - ^	_ ^
GAA Glu>	70 * CTG Leu>	ATC Ile>	3780 * AGT Ser	TTA Leu>	TCT Ser>
GAG GAA Glu Glu	3670 * TAT C	GAT	3780 * ACG GAC AGT S	3830 * C AAA r Lys	GCA TCT Ala Ser
3610 * GAG GAG Glu Glu	AGT CAG Ser Gln	720 * GAA G1u		3830 * AGA ACC AAA Arg Thr Lys	30 * GTG Val
		3 TTT Phe	3770 * GAC AAC CAG ASP ASN GIN		3880 * TCT G
ATG Met	3660 * ATC Ile	ACA Thr	37 AAC Asn	:0 * GAC ASP	GAG Glu
3590 3600 * CCT ACC TCA CCT GTT TCC TGT ATG Pro Thr Ser Pro Val Ser Cys Met	3660 ¢ GCA GGA ATC Ala Gly Ile	3710 * GTA AAA Val Lys		3820 * TTG GAA GAC Leu Glu Asp	3870 * AAA AGC AGG GAG TCT GTG Lys Ser Arg Glu Ser Val
3600 * TCC Ser	GCA		50 * GAT ASP		3870 * AGC Ser
GTT	3650 * C ACA n Thr	AGT	37(CA)	181Q * AAA ACT Lys Thr	3 AAA Lys
CCT	3650 * GAC AAC ACA ASP ASR Thr)0 * GTG Val	ATC	810 * AAA Lys	AGC
3590 * C TCA r Ser		3690 3700 * * CGA AAG AGC CGG CCT GTG Arg Lys Ser Arg Pro Val	GTA ATC (Val Ile E	CTG	3860 * GGA ATG GTG CCC AGC Gly Met Val Pro Ser
3 ACC Thr	3640 * CAT TAT His Tyr	CGG Arg	1750 * AAA Lys	GAG Glu	38 GTG Val
		AGC	GTA Val	3800 * A GAA r Glu	ATG
3580 t TCT CTG Ser Leu	AAA TTC Lys Phe	3690 * AAG Lys	GAA G1u	38 TCA Ser	00 * GGA G1y
		3680 3690 CAG AAC AGT AAG CGA AAG Gln Asn Ser Lys Arg Lys		GCC	3850 * GGT GGA Gly Gly
GGA CTC Gly Leu	3630 A GAC CCC Asp Pro	AAG Lys	37 GAA GAA Glu Glu	00 * CTT Leu	TTT Phe
	GAC	3680 * C AGT n Ser	GAA	3790 * GTT CTT Val Leu	TCT Ser
3570 TCT Ser	TGT Cys	36 AAC Asn	30 * TTA	ATG Met	840 * CCA Pro
3 GAT ASP	3620 * GTA Val	CAG G1n	3730 * CCG TTA Pro Leu	GGT ATG Gly Met	TCT
	E C				7

Σ
7
<u>ල</u>
L

				20/0.9	•		
<u>o</u> +	ACA Thr>		ATT Ile>	29/28	GGG ACC ACA Gly Thr Thr>		
3940	GAC		TAC TCC AGT GAG GAA GCA GAA CTT TTA AAG CTG ATA GAG ATT Tyr Ser Ser Glu Glu Ala Glu Leu Leu Lys Leu Ile Glu Ile	4	ACC Thr		
	TAT CAC TCC GAT Tyr His Ser Asp	3990	ATA Ile		666 61 y		
	TCC	• •	CTG	4040	CCT GAC ACG Pro Asp Thr		
3930	CAC		AAG Lys	4	GAC A sp		
. ,	TAT Tyr	3980	TTA		CCT Pro		
	GGA Gly	36	CTT	30	CAG		
3920 *	TCC		GAA Glu	4030	CTC		
χ,	CAG Gln	0*	GCA Ala		ATT Ile		
	TAC Tyr	3970	GAA Glu		CAG Gln		
<u>></u> ∗	66c 61 y		GAG Glu	4020	GCC Ala		
3910 *	CAG ACA AGC GGC TAC CAG TCC GIn Thr Ser Gly Tyr Gln Ser		AGT	•	GGT AGC ACA GCC CAG ATT CTC Gly Ser Thr Ala Gln Ile Leu	4070	TAA
	ACA Thr	3960	TCC		AGC	4(CCT GTT TAA
	CAG Gln	(-)	TAC	4010			CCT
3300 *	AAC Asn		GTG Val	4	CAA ACC Gln Thr	05 *	CCT
•	TCA	3950			CAA Gln	4060	TCT
	GGC TCA AAC Gly Ser Asn	36	GAC ACC ACC Asp Thr Thr	00	GGA GTG (CTG AGC TCT CCT
*	GAA Glu		GAC	4000	GGA G1y		CTG

21/28

SUBSTITUTE SHEET

22/28

7 GTVKRANGGELKTGYLSIVMDPDELPLDEHCERLPYDASKWEFPRDRLNLGK 3 L***YLQKPMYEVQWKVVEEINGNNYVYIDPTQ****H-*****N**SF** 6 LLY*YKQKPKYQVRWKIIESYEGNSYTFIDPTQ***NE-*****NN*QF** 2 MLWQKKPRYEIRWKVIESVSSDGHEYIYVDPVQ****-ST****OLV**R	* * * * PLGRGAFGQEIEADAFGIDKTATCRTVAVKMLKEGATHSEHRALMSELKILI T**A****KVVAET*Y*LI*SDAAM******PS*HLT*RE******V*S T**A****KVV**T***LG*EDAVLK*****ST*HAD*KE******MS T**A*****VV**T***LG*EDAVLK*****ST*HAD*KE*******MS	1 HIGHHLNVVNLLGACTKPGGPLMVIVEFCKFGNLSTYLRSKRNEFVPYKTKG 6 YL*N*M*I*********************************	3 ARFRQGKDYVGAIPVDLKRRLDSIT-SSQSSASSGFVEEKSLSDV 7 HAEA-A-L*KNLLHSKESSCS-DS*N-EYMDMKPGVSYVVPTKA 0 GQDPE*GVDYKN*HLEK*YVRRDSGF***GVDTYVEMRPVSTSS-NDSF*EQ 6 HCPPSAEL*SN*LP*GFSLPSHLNLTGESDGGYMDMSKDESIDYVPMLDMKG	7 EEEEAPEDLYKDFERDVTPAIMEDDELA*D**D*LSF*Y** 7 D-KRRSVRIGSYIERDVTPAIMEDDELA*D**D*LSF*Y** 8 DIKY*DIESPSYMAPYDNYVPSAPERTYRATLINDSPV-*SYTD*VGF*Y**	3 AKGMEFLASRKCIHRDLAARNILLSEKNVVKICDFGLARDIYKDPDYVRKGD
KDR 78 Ckit 54 CSF1 53 PDGF 52	<u>KDR</u> 83 ckit 59 CSF1 58 PDGF 57	KDR 89 ckit 64 CSF1 63 PDGF 62	KDR 94 ckit 69 CSF1 69 PDGF 67	KDR 98 ckit 73 CSF1 74 PDGF 72	<u>KDR</u> 1013
					9 8

	ckit CSF1 PDGF KDR 1 Ckit CSF1	777 762 779 1065 828 814 831	-**A**********************************
	KDR 1 ckit CSF1 PDGF	11117 880 862 883	RRLKEGTRMRAPDYTTPEMYQTMLDCWHGEPSQRPTFSELVEHLGNLLQANA KMI***F**LS*EHAPA***DI*KT**DAD*LK****KQIVQLIEKQISEST KLV*D*YQ*AQ*AFAPKNI*SI*QA**AL**TH****QQICSF*QEQAQEDR NAI*R*Y**AQ*AHASD*I*EI*QK**EEKFET**P**Q**LL*ER**GEGY
	KDR 1 Ckit CSF1 PDGF	1169 932 914 934	QQDGKDYIVLPISETLSMEEDSGLSLPTSPVSCMEEEEVCDPKFHYDNTAGI NHIYSNLANCSPNRQKPVVDHSVRINSVGSTASSSQPLLVHDDV RERDYTNLPSSSRSGG*GSSS*E*EEESSSEHLTCC*QGDIAQPLLQPNNYQ KKKYQQVDEEFLRSDHPAILR*QARF*GIHSLRSPLDTSSVLYTAVQPNESD
	KDR 1 CSF1	213	SQYLQNSKRKSRPVSVKTFEDIPLEEPEVKVIPDDNQTDSGMVLASEELKTL FC
	PDGF	$\boldsymbol{\omega}$	ND*IIPLPDPKPD*ADEGLPEGSPSLASSTLNEVNTSSTISCDSPL*LQEEP
	KDR 1 PDGF1	273 039	EDRTKLSPSFGGMVPSKSRESVASEGSNQTSGYQSGYHSDDTDTTVYSSEEA QQAEPEAQLEQPQDSGCPGPLAEA*DSFLEQPQD**CPGPLAEAEDSFL
G. 9B	KOR 1	1325	ELLKL1E1GVQTGSTAQ1LQPDTGTT1,SSPPV

IDENTIFICATION OF kdp mRNA

FIG. 10

IDENTIFICATION OF kdp GENE BY SOUTHERN ANALYSIS

1 2 3 4

FIG. 11

FIG. 12

SUBSTITUTE SHEET

28/28

BAND 1_ Band 2_			_200
			_97
			_69
			_46
Dina o			30
BAND 3_			_ 30 _ 21
	•	2	

FIG. 14

INTERNATIONAL SEARCH REPORT

International Application No. PCT/USS2/01300

I OLANGINA TION OF SITE ITOT MASTER III						
I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indigete all) ³ According to International Patent Classification (IPC) or to both National Classification and IPC						
IPC (S	According to intermisconia Patent Classification (IPC) or to both National Classification and IPC IPC (5): C07K 3/00, 13/00; C07H 21/00; C12P 21/06, 21/02, 21/04; C12H 15/00 US CL : 530/387; 536/27; 435/69.1, 70.1, 71.1, 320.1					
	DS SEAR					
<u></u>		Minimum Doc	umentation Searched 4			
Classifics	don System		Classification Symbols			
U.S	U.S. 530/387; 536/27; 435/69.1, 70.1, 71.1, 320.1					
			ed other than Minimum Documentati numents are included in the Fields Se			
	DIALOG 1 terms	: type III receptor tyros	sine kinase			
III. DOC	UMENTS (CONSIDERED TO BE RELEVANT 14				
Catagory*		n of Document, ¹⁸ with indication, where a	porcorists, of the relevant name 17	Relevant to Claim No. 18		
			Annual or one constant beautiful.	THE THE WORLD		
Y, P	Proc. Natl. Acad. Sci., Volume 88, Issued 1991, W. Mathewes et al., "A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit", pages 9026-9030, see entire document.					
Proc. Natl. Acad. Sci., Volume 86, Issued March 1989, A.F. Wilks, "Two putative protein-tyrosine kinases identified by applicatin of the polymerase chain reaction", pages 1603-1607, see entire document. K.P Oncogene, Volume 6, issued 1991, B.I. Terman et al., "Identification of a new endothelial cell growth factor receptor tyrosine kinase", pages 1677-1683, see entire document.						
Oncogene, volume 3, issued 1988, M. Ruta et al., "A novel protein tyrosine kinase gene whose expression is modulated during endothelial cell differentiation", pages 9-15, see entire document.						
"Special categories of cited documents: 16 "A" document defining the general state of the art which is not considered to be of perfocular relevance "E" serier document but published on or after the international filing date or which is cited to establish the publication date of another citation or other special research (see specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed filing date "Y" tater document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered novel or cannot be considered to involve an invention cannot be considered to invention cannot b						
13	MAY 19	92	1 9 MAY 1992 /			
		g Authority 1	Signature of Authorized Office	A		
ISA		- · · · · · · · · · · · · · · · · · · ·	Lorraine M. Spector. P	no for		

FURTHE	R INFORMATION CONTINUED FROM THE SECOND SHEET	
A Y	Oncogene, volume 5, issued 1990, M. Shibuya et al., "Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family", pages 519-524, see entire document.	1-17
Y	Proc. Natl. Acad. Sci., Volume 85, Issued May 1988, R.G.K. Gronwald et al., "Cloning and expression of a cDNA coding for the human platelet-derived growth factor receptor: Bvidence for more than one receptor class", pages 3435-3439, see entire document.	
	SERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE ¹	
		the following research:
	stonal search report has not been established in respect of certain claims under Article 17(2) (a) for im numbers _, because they relate to subject matter (1) not required to be searched by this Auth	
bre	n numbers , because they relate to parts of the international application that do not comply with th cribed requirements to such an extent that no meaningful international eserch can be carried out (1)	,
of F	n numbers , because they are dependent claims not drafted in accordance with the second and thir CT Rule 6.4(a).	d sentances
VI. Z O	SERVATIONS WHERE UNITY OF INVENTION IS LACKING ²	
This intern	stional Searching Authority found multiple inventions in this international application as follows	:
I. Clai subclas II. Cla 387.	ms 1-9 and 14-17, drawn to nucleic acids and expression thereone 27 and Class 435, subclass 69.1. Line 10-13, drawn to an isolated growth factor receptor. Class	f. Class 536, 530, subclass
	If required additional search fees were timely paid by the applicant, this international search report of me of the international application. (Telephone Practice)	
2. As o	rly some of the required additional search fees were timely paid by the applicant, this international of the international application for which fees were paid, specifically claims:	MANCH INDUIT COVERS
3. No A	equired additional search fees were timely paid by the applicant. Consequently, this international se ided to the invention first mentioned in the claims; it is covered by claim numbers:	erch report le
not Remark on		erch Authority did
	additional search feet were accompanied by applicant's protest. Rotest accompanied the payment of additional search feet.	,

International Apparatual Not. Perioda2201300					
M. DOC					
Catagory*	Citation of Document, 16 with indication, where appropriate, of the relevant passages 17	Relevant to Claim No.			
Y	Proc. Natl. Acad. Sci., Volume 86, Issued November 1989, M. Streuli et al., "A family of receptor-linked protein tyrosine phosphatases in humans and Drosophila", pages 8698-8702, see entire document.	1-14			
r	M.A. Innes et al., PCR Protocols, a guide to methods and applications, published 1990 by Academic Press (N.Y.), see page 10.	15, 16			
	:				
	·				

eg ere