Exercício 9 - INF 280 Werikson Alves - ES96708 13/02/2022

Problema do Exercício 3

(Baseado em Hillier Lieberman, pág. 93)

Edmundo adora bifes e batatas. Assim, decidiu entrar em uma dieta regular usando somente esses alimentos (além de alguns líquidos e suplementos vitamínicos) em todas as suas refeições. Ele percebe que essa não é a dieta mais saudável e, portanto, quer certificar-se de que se alimenta das quantidades certas desses dois tipos de alimentos, a fim de atender a determinados requisitos nutricionais. Ele obteve as seguintes informações nutricionais e de custo: Cada porção de bife custa R\$ 4,00 e tem 5g de carboidrato, 20g de proteína e 15g de gordura. Cada porção de batatas custa R\$ 2,00 e tem 15g de carboidrato, 5g de proteína e 2g de gordura. Essa refeição precisa conter pelo menos 50g de carboidrato e 40g de proteína, e no máximo 60g de gordura.

Considerando o problema e a solução ótima obtida no Exercício 8, resolva:

- a) Frente a novas demandas nutricionais, Edmundo agora precisa atender os requisitos mínimos de Vitamina B3 (Niacina). Cada porção de bife e de batatas contêm 4.28 mg e 1 mg de Niacina, respectivamente, e a dieta requer uma quantidade mínima de 12 mg dessa vitamina. Verifique se a solução atual satisfaz a nova restrição imposta.
- b) Depois de dois meses de acompanhamento, a nutricionista de Edmundo percebe que terá que aumentar a ingestão mínima de Niacina para 20 mg. Use o Simplex Dual para obter a nova solução a partir do quadro ótimo obtido no Exercício #8.
- c) Descreva e critique a nova solução obtida.

Solução

Solução do exercicio #8

		T	Varia	vel que sa	í: x3				
Base	x1	x2	х3	x4	x5	b	Divisão:	0,800	0,133
-z	4,000	2,000	0,000	0,000	0,000	0,000	Variave	el que ent	ra: x2
x3	-5,000	-15,000	1,000	0,000	0,000	-50,000	x3=-50	x1=0	
x4	-20,000	-5,000	0,000	1,000	0,000	-40,000	x4=-40	x2=0	z=0
x5	15,000	2,000	0,000	0,000	1,000	60,000	x5=60		

		T	Variave	el que sa	aí: x4				
Base	x1	x2	х3	x4	x5	b	Divisão:	0,182	0,400
-z	3,333	0,000	0,133	0,000	0,000	-6,667	Variavel	que en	tra: x1
x2	0,333	1,000	-0,067	0,000	0,000	3,333	x2=3,333	x1=0	
x4	-18,333	0,000	-0,333	1,000	0,000	-23,333	x4=-23,333	x3=0	z=6,667
x5	14,333	0,000	0,133	0,000	1,000	53,333	x5=53,333		

		Т							
Base	x1	x2	х3	x4	x5	b			
-z	0,000	0,000	0,073	0,182	0,000	-10,909	Soluçã	o viavel e	e otima
x2	0,000	1,000	-0,073	0,018	0,000	2,909	x2=2,909	x3=0	
x1	1,000	0,000	0,018	-0,055	0,000	1,273	x1=1,273	x4=0	z=10,909
x5	0,000	0,000	-0,127	0,782	1,000	35,091	x5=35,091		

Figura 1: Solução ótima pelo método dual simplex para o exercício #8.

Solução do item a)

Considerando a nova restrição temos o seguinte novo problema:

Partindo da solução apresentada e substituindo os valores da solução ótima na nova restrição, obtemos $4.28 \cdot 1.273 + 1 \cdot 2.909 = 8.357$. Portanto, por este valor ser menor que o valor mínimo solicitado, podemos concluir que a solução não satisfaz a nova restrição imposta.

Solução do item b)

Após aumentar a quantidade mínima de Niacina para 20 mg e atualizar o problema, acrescenta-se a restrição ao quadro da solução ótima encontrada anteriormente. Nela, é possível observar que ao acrescentar essa linha temos duas células que deveriam estar zeradas, conforme mostrado na Figura 2. Logo, devemos iniciar a solução zerando-as, para em seguida alterar o coeficiente de x6, de acordo com as Figura 3.

$$Minimizar: Custo = 4x1 + 2x2$$

 $sujeito a:$
 $Carb)$ $5x1 + 15x2 >= 50$
 $Prot)$ $20x1 + 5x2 >= 40$
 $Gord)$ $15x1 + 2x2 <= 60$
 $ViB3)$ $4.28x1 + 1x2 >= 20$

		Tableau 4: Adição de restrição (x6)							
	Base	x1	x2	х3	x4	x 5	х6	b	
L1	-z	0,000	0,000	0,073	0,182	0,000	0,000	-10,909	
L2	x2	0,000	1,000	-0,073	0,018	0,000	0,000	2,909	
L3	x1	1,000	0,000	0,018	-0,055	0,000	0,000	1,273	
L4	x5	0,000	0,000	-0,127	0,782	1,000	0,000	35,091	
L5	x6	4,280	1,000	0,000	0,000	0,000	-1,000	20,000	

Figura 2: Adicionando a restrição.

		Tableau 5: L'5 = L5 - L2							
	Base	x1	x2	х3	x4	x 5	х6	b	
L1	-z	0,000	0,000	0,073	0,182	0,000	0,000	-10,909	
L2	x2	0,000	1,000	-0,073	0,018	0,000	0,000	2,909	
L3	x1	1,000	0,000	0,018	-0,055	0,000	0,000	1,273	
L4	x5	0,000	0,000	-0,127	0,782	1,000	0,000	35,091	
L5	x6	4,280	0,000	0,073	-0,018	0,000	-1,000	17,091	

		Tableau 6: L'5 = L5 - 4,28L3							
	Base	x1	x2	х3	x4	x5	х6	b	
L1	-z	0,000	0,000	0,073	0,182	0,000	0,000	-10,909	
L2	x2	0,000	1,000	-0,073	0,018	0,000	0,000	2,909	
L3	x1	1,000	0,000	0,018	-0,055	0,000	0,000	1,273	
L4	x 5	0,000	0,000	-0,127	0,782	1,000	0,000	35,091	
L5	x6	0,000	0,000	-0,005	0,215	0,000	-1,000	11,644	

		Tableau 7: L'5 = L5 / (-1)							
	Base	x1	x2	х3	x4	x5	x6	b	
L1	-z	0,000	0,000	0,073	0,182	0,000	0,000	-10,909	
L2	x2	0,000	1,000	-0,073	0,018	0,000	0,000	2,909	
L3	x1	1,000	0,000	0,018	-0,055	0,000	0,000	1,273	
L4	x5	0,000	0,000	-0,127	0,782	1,000	0,000	35,091	
L5	x6	0,000	0,000	0,005	-0,215	0,000	1,000	-11,644	

Figura 3: Zerando as células referentes as variáveis que estão na base e alterando o coeficiente de x6.

Feito isto, o novo problema está pronto para ser resolvido normalmente. Dessa forma, como ha um valor negativo na solução básica do Tableau 7, Figura 3 devemos executar o método dual simplex para resolver, conforme mostrado nas Figuras 4, 5 e 6.

Variavel que saí: x6 Divisão: 0,845 Variavel que entra: x4

		Tableau 7: Dual-simplex							
	Base	x1	x2	х3	x4	x 5	x6	b	
L1	-z	0,000	0,000	0,073	0,182	0,000	0,000	-10,909	
L2	x2	0,000	1,000	-0,073	0,018	0,000	0,000	2,909	
L3	x1	1,000	0,000	0,018	-0,055	0,000	0,000	1,273	
L4	x5	0,000	0,000	-0,127	0,782	1,000	0,000	35,091	
L5	x6	0,000	0,000	0,005	-0,215	0,000	1,000	-11,644	

Figura 4: 1ª operação do método.

		Tableau 8: Dual-simplex							
	Base	x1	x2	х3	x4	x5	х6	b	
L1 = L1-0,182*L5	-z	0,000	0,000	0,077	0,000	0,000	0,845	-20,743	
L2 = L2-0,018*L5	x2	0,000	1,000	-0,072	0,000	0,000	0,084	1,926	
L3 = L3+0,055*L5	x1	1,000	0,000	0,017	0,000	0,000	-0,253	4,223	
L4 = L4-0,782*L5	x5	0,000	0,000	-0,109	0,000	1,000	3,632	-7,196	
L5	x4	0,000	0,000	-0,024	1,000	0,000	-4,645	54,088	

Variavel que sa	aí: x5						
Divisão:	0,000						
Variavel que en	Variavel que entra: x3						

Figura 5: 2ª operação do método.

		Tableau 8: Dual-simplex							
	Base	x1	x2	х3	x4	x5	х6	b	
L1 = L1-0,077*L4	-z	0,000	0,000	0,000	0,000	0,708	3,416	-25,839	
L2 = L2+0,072*L4	x2	0,000	1,000	0,000	0,000	-0,665	-2,329	6,708	
L3 = L3-0,017*L4	x1	1,000	0,000	0,000	0,000	0,155	0,311	3,106	
L4	х3	0,000	0,000	1,000	0,000	-9,193	-33,385	66,149	
L5 = L5+0,024*L4	x4	0,000	0,000	0,000	1,000	-0,217	-5,435	55,652	

Solução viavel e otima							
x2=6,708	x5=0						
x1=3,106	X3-0	z=25,839					
x3=66,149	x6=0	2=25,639					
x4=55,652	X6=0						

Figura 6: Solução ótima encontrada.

Solução do item c)

Na solução ótima obtida, observa-se que o preço mínimo gasto por Eduardo, em sua dieta, vai aumentar 136.86%, ou seja, o preço de bifes e batatas que respeita as restrições mais que dobrou (\$ 25.84). Além disto, a base foi alterada obtendo uma nova solução, sendo esta P(3.106, 6.708).

Outras informações que podemos obter é que serão necessários comprar 3.11 bifes e 6.72 batata, logo 4 e 7 unidades, respectivamente, de cada. Como isto a quantidade de gordura e vitamina B3 ingeridas serão exatamente 60g e 20mg. Já a quantidade de carboidratos e proteínas estão sendo consumidas em excesso de 66.15g e 55.65g, respectivamente.