VE281

Data Structures and Algorithms

Hashing; Bloom Filters;

Announcement

- Written Assignment 2 released
 - Due by 5:40 pm on Oct. 18

Outline

- Universal Hashing
- Hash Table Size and Rehashing
- Applications of Hash Table
- Bloom Filters

Advantage of Universal Hashing

• For <u>separate chaining</u>, we can guarantee that all operations run in O(1) time <u>for every</u> data set S.

• Note:

- 1. Hash function h chosen uniformly at random from the family H.
- 2. Runtime is the expected runtime over all random choices of h.
- 3. Assumes |S| = O(n). \Leftrightarrow load factor $L = \frac{|S|}{n} = O(1)$
- 4. Assumes O(1) time to evaluate hash function.

Proof

- Will analyze an unsuccessful search.
 - Other operations are similar or even faster.
- So: Let S be the set of data in the hash table. Consider search for $x \notin S$.

 List length is a random variable, depending on hash function h.
- Runtime = O(1) + O(List length in A[h(x)])

Computing hash function

Traverse linked list

• To get the **expected** runtime, we only need to get the **expected** list length in A[h(x)].

Proof (cont.)

- Let T = List length in A[h(x)].
 - T is a random variable, depending on h.
- For $y \in S$ (so $y \neq x$), define $z_y = \begin{cases} 1 & \text{if } h(y) = h(x) \\ 0 & \text{otherwise} \end{cases}$ • z_y is a random variable, depending on h.
- Then, $T = \sum_{y \in S} z_y$
 - Because length T = #items in the same bucket
- Therefore, $E[T] = \sum_{y \in S} E[z_y]$
- Note: $E[z_y] = 0 \cdot \Pr(z_y = 0) + 1 \cdot \Pr(z_y = 1)$ = $\Pr(z_y = 1) = \Pr(h(y) = h(x))$

Proof (cont.)

- $E[T] = \sum_{y \in S} E[z_y]$, with $E[z_y] = \Pr(h(y) = h(x))$
- By the definition of universal family of hash function,

$$E[z_y] = \Pr(h(y) = h(x)) \le \frac{1}{n}$$

• Therefore,

$$E[T] \le \sum_{v \in S} \frac{1}{n} = \frac{|S|}{n} = L = O(1)$$

• Since the expected list length E[T] is O(1) and Runtime = O(1) + O(T), the expected runtime is O(1).

Outline

- Universal Hashing
- Hash Table Size and Rehashing
- Applications of Hash Table
- Bloom Filters

Determine Hash Table Size

- First, given **performance** requirements, determine the maximum permissible **load factor**.
- Example: we want to design a hash table based on linear probing so that on average
 - An unsuccessful search requires no more than 13 compares.
 - A **successful** search requires no more than 10 compares.

$$U(L) = \frac{1}{2} \left[1 + \left(\frac{1}{1 - L} \right)^2 \right] \le 13 \implies L \le \frac{4}{5}$$
$$S(L) = \frac{1}{2} \left[1 + \frac{1}{1 - L} \right] \le 10 \implies L \le \frac{18}{19}$$

Determine Hash Table Size

• For a fixed table size, estimate maximum number of items that will be inserted.

- Example: no more than 1000 items.
 - For load factor $L = \frac{|S|}{n} \le \frac{4}{5}$, table size $n \ge \frac{5}{4} \cdot 1000 = 1250$
 - Pick n as a **prime** number. For example, n = 1259.

However, sometimes there is no limit on the number of items to be inserted.

Rehashing

Motivation

- With more items inserted, the load factor increases. At some point, it will exceed the threshold (4/5 in the previous example) determined by the performance requirement.
- For the separate chaining scheme, the hash table becomes inefficient when load factor *L* is too high.
 - If the size of the hash table is fixed, search performance deteriorates with more items inserted.
- Even worse, for the open addressing scheme, when the hash table becomes full, we **cannot** insert a new item.

Rehashing

- To solve these problems, we need to **rehash**:
 - Create a <u>larger</u> table, scan the current table, and then insert items into new table using the new hash function.
 - <u>Note</u>: The order is from the beginning to the end of the current table. Not original insertion order.
- We can approximately double the size of the current table.
- <u>Observation</u>: The single operation of rehashing is timeconsuming. However, it does not occur frequently.
 - How should we justify the time complexity of rehashing?

Amortized Analysis

- Amortized analysis: A method of analyzing algorithms that considers the entire sequence of operations of the program.
 - The idea is that while certain operations may be costly, they don't occur frequently; the less costly operations are much more than the costly ones in the long run.
 - Therefore, the cost of those expensive operations is **averaged** over a sequence of operations.
 - In contrast, our previous complexity analysis only considers a single operation, e.g., insert, find, etc.

Amortized Analysis of Rehashing

- Suppose the threshold of the load factor is 0.5. We will double the table size after reaching the threshold.
- Suppose we start from an empty hash table of size 2M.
- Assume O(1) operation to insert up to M items.
 - Total cost of inserting the first M items: O(M)
- For the (M + 1)-th item, create a new hash table of size 4M.
 - Cost: *O*(1)
- Rehash all M items into the new table. Cost: O(M)
- Insert new item. Cost: O(1)

Total cost for inserting M + 1 items is 20(M) + 20(1) = 0(M).

Amortized Analysis of Rehashing

Total cost for inserting M + 1 items is O(M).

- The average cost to insert M + 1 items is O(1).
 - Rehashing cost is **amortized** over individual inserts.

Outline

- Universal Hashing
- Hash Table Size and Rehashing
- Applications of Hash Table
- Bloom Filters

Application: De-Duplication

- Given: a stream of objects
 - Linear scan through a huge file
 - Or, objects arriving in real time
- Goal: remove duplicates (i.e., keep track of unique objects)
 - E.g., report unique visitors to website
 - Or, avoid duplicates in search result
- Solution: when new object x arrives,
 - Look x in hash table H
 - If not found, insert x into H

Application: 2-SUM Problem

- ullet Given: an unsorted array A of n integers. Target sum t.
- Goal: determine whether or not there are two numbers x and y in A with

$$x + y = t$$

- 1. <u>Naïve solution</u>: exhaustive search of pairs of number
 - Time: $\Theta(n^2)$
- 2. Better solution: 1) Sort A; 2) For each x in A, look for t x in A via binary search.
 - Time: $\Theta(n \log n)$
- 3. Best: 1) Insert elements of A into hash table H; 2) For each x in A, search for t x.
 - Time: $\Theta(n)$

Further Immediate Application

Spellchecker

Database

Hash Table

Summary

- Choice of the hash function.
- Collision resolution scheme.
- Hash table size and rehashing.
- Time complexity of hash table versus sorted array
 - insert(): O(1) versus O(n)
 - find(): O(1) versus $O(\log n)$
- When **NOT** to use hash?
 - Rank search: return the k-th largest item.
 - **Sort**: return the values in order.

Outline

- Universal Hashing
- Hash Table Size and Rehashing
- Applications of Hash Table
- Bloom Filters

Bloom Filter

- Invented by Burton Bloom in 1970
- Supports fast insert and find
- Comparison to hash tables:
 - Pros: more space efficient
 - Cons:
 - 1. Can't store an associated object
 - 2. No deletion (There are variations support deletion, but this operation is complicated)
 - 3. Small **false positive** probability: may say x has been inserted even if it hasn't been
 - But no false negative (x is inserted, but says not inserted)

Bloom Filter Applications

- When to use bloom filter?
 - If the false positive is not a concern, no deletion, and you look for space efficiency
- Original application: spell checker
 - 40 years ago, space is a big concern, it's OK to tolerate some error
- Canonical application: list of forbidden passwords
 - Don't care about the false positive issue
- Modern applications: network routers
 - Limited memory, need to be fast
 - Applications include keeping track of blocked IP address, keeping track of contents of caches, etc.

Bloom Filter Implementation: Components

- An array of *n* bits. Each bit 0 or 1
 - n = b|S|, where b is small real number. For example, b = 8 for 32-bit IP address (That's why it is space efficient)
- k hash functions $h_1, ..., h_k$, each mapping inside $\{0,1,...,n-1\}$.
 - *k* usually small.
 - ullet These k functions can be randomly chosen from a universal family of hash functions

Bloom Filter Insert

- Initially, the array is all-zero.
- Insert x: For i = 1, 2, ..., k, set $A[h_i(x)] = 1$
 - No matter whether the bit is 0 or 1 before

Example: n = 17, 3 hash functions

$$h_1(x) = 7, h_2(x) = 3, h_3(x) = 12$$

$$h_1(y) = 11, h_2(y) = 14, h_3(y) = 7$$

Bloom Filter Find

• Find x: return true if and only if $A[h_i(x)] = 1$, $\forall i = 1, ..., k$

Suppose
$$h_1(x) = 7$$
, $h_2(x) = 3$, $h_3(x) = 12$. Find x ? Yes!

Suppose
$$h_1(z) = 3$$
, $h_2(z) = 11$, $h_3(z) = 5$. Find z ? No!

- No false negative: if x was inserted, find(x) guaranteed to return true
- False positive possible: consider $h_1(w) = 11$, $h_2(w) = 12$, $h_3(w) = 7$ in the above example

Heuristic Analysis of Error Probability

- <u>Intuition</u>: should be a trade-off between space (array size) and false positive probability
 - Array size decreases, more reuse of bits, false positive probability increases
- Goal: analyze the false positive probability
- Setup: Insert data set S into the Bloom filter, use k hash functions, array has n bits
- <u>Assumption</u>: All *k* hash functions map keys uniformly random and these hash functions are independent

Probability of a Slot Being 1

- For an arbitrary slot j in the array, what's the probability that the slot is 1?
- Consider when slot j is 0
 - Happens when $h_i(x) \neq j$ for all i = 1, ..., k and $x \in S$
 - $\Pr(h_i(x) \neq j) = 1 \frac{1}{n}$
 - $\Pr(A[j] = 0) = \left(1 \frac{1}{n}\right)^{k|S|} \approx e^{-\frac{k|S|}{n}} = e^{-\frac{k}{b}}$
 - $b = \frac{n}{|S|}$ denotes # of bits per object
- $\Pr(A[j] = 1) \approx 1 e^{-\frac{k}{b}}$

False Positive Probability

- For x not in S, the false positive probability happens when all $A[h_i(x)] = 1$ for all i = 1, ..., k
 - The probability is $\epsilon \approx \left(1 e^{-\frac{k}{b}}\right)^k$
- For a fixed b, ϵ is minimized when $k = (\ln 2) \cdot b$
- The minimal error probability is $\epsilon \approx \left(\frac{1}{2}\right)^{\ln 2 \cdot b} \approx 0.6185^b$
 - Error probability decreases exponentially with b
- Example: b = 8, could choose k as 5 or 6. Min error probability $\approx 2\%$