

An Introduction To Structured Missingness

Chris Harbron, Roche

25th April 2022 | For Public Use

Structured Missingness

What Is Structured Missingness?

Structured Missingness as an Emerging Research Area - Grand Challenges

Characterising Structured Missingness

Acknowledgements

Alan Turing Institute	Structured Missingness Workshops Participants						
Robin Mitra	Athena Sheppard	Ginestra Bianconi	Ruben Sanchez-Garcia				
Ben MacArthur	Alejandro Frangi	Julia Brettschneider	Ruby Chang				
Chris Holmes	Alisha Davies	Luis Santos	Sara Johansson Fernstad				
	Aditi Shenvi	Marc De Kamps	Seppo Virtanen				
Roche	Ana Basiri Anower Hossain	Mark Gilthorpe Michael Barnes Maying Magliotach	Sorina Maciuca Stefanie Biedermann				
Niels Hagenbuch Arun Sujenthiran Brieuc Lehmann		Maxine Mackintosh Musa Abdulkareem	Stefanie Bienert Stephen Gardiner				
Sarah McGough Ryan Copping	David Leslie	Nina Deliu	Thomas Burnett				
	Deepak Parashar	Jack Noonan	Timothe Menard				
	Eleni-Rosalina Andrinopoulou	Nursen Aydin	Trevor Graham				
	Eda Ozyigit	Paolo Missier	Wenjuan Wang				
	Francisco Azuaje	Roy Ruddle	Xijin Chen				
	Ghita Berrada	Rebecca Ward	Xuan Vinh Doan				

What Is Structured Missingness?

Inevitable Consequence of Combining Multiple Datasets At Scale

Many more subtle effects can also occur

An Example of Structured Missingness - CGDB

The Clinico-Genomic Database links Flatiron electronic health records with Foundation Medicine (FMI) comprehensive genomic profiling for tens of thousands of cancer patients in the U.S.

An Example of Structured Missingness - CGDB

Block Missingness From Measuring Different Genes

Each patient usually receives 1 test.

Patients receive a variety of **different tests**Tests are ordered to target specific
treatment, prognosis, disease progression
goals, and most importantly haematological
vs solid tumours.

Tests also evolve over time
Tests can use different samples: solid tissue
or liquid biopsy

Of **596 unique genes** measured in the CGDB, only **30** are measured across all tests.

Here, genes are **block missing** by test type.

Measured genes by test (baitset).

An Example of Structured Missingness - CGDB

Block missingness from combining cancer specific information across dozens of cancer types

Each cancer type collects cancer-specific information, such as the **Gleason Score** for Prostate Cancer patients or **Stem Cell Transplant** for DLBCL patients

Here, variables are "block missing" by cancer type.

Is imputation appropriate when the missing value **doesn't exist** or have any meaning?

Why Is Structured Missingness Worth Considering?

It's inevitable & ubiquitous if we are combining datasets at scale

The structure may present additional **challenges** or additional **opportunities** compared to unstructured missing data

The missingness may contain information - i.e. be informative

The missingness may highlight **limitations** of the data e.g. underrepresentation

Grand Challenges For Structured Missingness

Defining and Characterising Structured Missingness

Exploring SM
Geometry and Visualisation

Prediction

Inference and Estimation

Causality

The Role of Imputation

Design Considerations

Benchmarking And Evaluation

Ethical Implications

Characterising Structured Missingness Multiple Dimensions

1	Relationship of missingness patterns to values	 MR: Missingness occurs independently MO: Missingness related to values of other variables MV: Missingness related to value of variable
2	Nature of relationship of missingness patterns to values	D: DeterministicP: Probabilistic
3	Relationship of missingness patterns to missingness patterns in other variables	 U: Unstructured SS: Strong Structure - (Deterministic) WS: Weak Structure - (Probabilistic)
4	Sub-characterisation by different patterns or structures of missingness	e.g.(B): Block Missing(S): Sequentially Missing
5	Does a missing value exists but is unobserved, or no value exists	 E: Value exists but was not observed N: Value doesn't exist for logical/biological reasons

Relationship of Missingness To Values In Data

Relationship of Missingness to Other Missingness in Data

	Unstructured	Structured			
		Strong		Weak	
MR	MR-U	MR- MR-SS(B)	SS MR-SS(S)	MR MR-WS(B)	-WS MR-WS(S)
MO - Prob	MOP-U	MOP-SS MOP-SS(B) MOP-SS(S)		MOP-WS MOP-WS(B) MOP-WS(S)	
MO - Det	MOD-U	MOD-SS MOD-SS(B) MOD-SS(S)		MOD-WS MOD-WS(B) MOD-WS(S)	
MV - Prob	MVP-U	MVP-SS MVP-WS MVP-SS(B) MVP-SS(S) MVP-WS(B) MVP-WS			
MV - Det	MVD-U	MVD-SS MVD-WS MVD-SS(B) MVD-WS(B) MVD-WS		D-WS MVD-WS(S)	

MR_U: Unstructured Missing Randomly

Simplest Case: $P(M_{ij} = 1) = k \ \forall i, j$

General Case: $P(M_{ij} = 1) = f(s(i), v(j))$

MR_SS(S): Sequential Strong Structure Missing Randomly

$$M_{ij} = max(M_{ik:k < j}, P_{ij})$$

MOD_SS(B):

Strong Block Structure Missing Deterministically Based On Other Variables

$$M_{ij} = f(X_{ik}) \ \forall j \in S, k \notin S$$

MR_WS(B): Weak Block Structure Missing Randomly

$$P(M_{ij}=1) = f(M_{i,-j})$$

MVD_WS(B): Weak Block Structure Deterministically On Variables' Values

$$P(M_{ij} = 1) = f(T_{ij}) \quad j \in S$$

Roche-Turing Partnership Projects in SM

Publications on Grand Challenges in & Characterising SM

Continue to Build an SM Community
Slack Channels & Future Events

Initial Project Theme Structured Missingness using CGDB as Motivation

Alan Turing Institute

Missing Data is a ubiquitous challenge across healthcare data, which compromises our ability to learn from data. This issue is exacerbated by structure in the missing

values.

To make the most of data resources we need new methods to handle structured missingness, tailored to the particular challenges of healthcare data.

