Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

"НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО"

Факультет Программной инженерии и компьютерной техники							
v <u>* </u>							
Направление подготовки (специальность) Системное и прикладное ПО							
ОТЧЕТ							
Лабораторная работа №3							
по предмету «Параллельные вычисления»							
Тема проекта: «Распараллеливание циклов с помощью технологии OpenMP».							
Обучающийся <u>Ткаченко В.В.</u> <u>Р4114</u> (номер группы)							
Преподаватель <u>Жданов А. Д.</u> (Фамилия И.О.)							

Содержание

Описание решаемой задачи	3
Краткая характеристика «железа»	4
Листинг программы lab3.c	6
Результаты экспериментов	9
Сравнение schedule	11
Reiron	17

Описание решаемой задачи

Вариант: (576)

Map: 6 | 5

Merge: 1

Sort: 6

1. Добавить во все for-циклы (кроме цикла в функции main, указывающего количество экспериментов) в программе из ЛР №1 следующую директиву OpenMP: "#pragma omp parallel for default(none) private(...) shared(...)". Наличие параметра default(none) является обязательным.

2. Проверить все for-циклы на внутренние зависимости по данным между итерациями. Если зависимости обнаружились, использовать для защиты критических секций директиву "#pragma omp critical" или "#pragma omp atomic" (если операция атомарна), или параметр reduction (предпочтительнее) или вообще отказаться от распараллеливания цикла (свой выбор необходимо обосновать).

3. Убедиться, что получившаяся программа обладает свойством прямой совместимости с компиляторами, не поддерживающими OpenMP (для проверки этого можно скомпилировать программу без опции "–fopenmp", в результате не должно быть сообщений об ошибках, а программа должна корректно работать).

4. Использовать функцию SetNumThreads для изменения числа потоков. В отчете указать максимальное количество потоков.

5. Провести эксперименты, замеряя параллельное ускорение. Привести сравнение графиков параллельного ускорения с ЛР №1 и ЛР №2.

6. Провести эксперименты, добавив параметр "schedule" и варьируя в экспериментах тип расписания. Исследование нужно провести для всех

возможных расписаний: static, dynamic, guided. С 4 вариантами chunck_size равными: единице, меньше чем число потоков, равному числу потоков и больше чем число потоков. Привести сравнение параллельного ускорения при различных расписаниях с результатами п.4.

- 7. Определить какой тип расписания на машине при использовании "schedule" "default". 91
- 8. Выбрать из рассмотренных в п.4 и п.5 наилучший вариант при различных N. Сформулировать условия, при которых наилучшие результаты получились бы при использовании других типов расписания.
- 9. Найти вычислительную сложность алгоритма до и после распараллеливания, сравнить полученные результаты.
- 10. Для иллюстрации τογο, ЧТО программа действительно распараллелилась, привести график загрузки процессора (ядер) от времени выполнении программы при N = N1 лучшего варианта ДЛЯ распараллеливания. Для получения графика можно как написать скрипт так и просто сделать скриншот диспетчера задач, указав на скриншоте моменты начала и окончания эксперимента (в отчёте нужно привести текст скрипта или название использованного диспетчера). Недостаточно привести однократное моментальное измерение загрузки утилитой htop, т.к. требуется привести график изменения загрузки за всё время выполнения программы.
 - 11. Написать отчёт о проделанной работе.
 - 12. Подготовиться к устным вопросам на защите.

Краткая характеристика «железа»

Имя ОС: Майкрософт Windows 10 Pro

Версия: 10.0.19045 Сборка 19045

Изготовитель: LENOVO

Модель: 20BE009ART

Тип: Компьютер на базе х64

SKU системы: LENOVO_MT_20BE

Процессор: Intel(R) Core(TM) i7-4710MQ

Версия BIOS: LENOVO GMET85WW (2.33), 30.05.2018

Beрсия SMBIOS: 2.7

Версия встроенного контроллера: 1.14

Режим BIOS: Устаревший

gcc version: 11.3.0 (Ubuntu 11.3.0-1ubuntu1~22.04)

WSL2

Листинг программы lab3.c

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <sys/time.h>
#include <omp.h>
#include <string.h>
int main(int argc, char *argv[])
    // int CHUNKSIZE;
    // const char *SCHEDULE;
    double e = exp(1.0);
    struct timeval T1, T2;
    long delta_ms, extra2;
    double min = 1;
    double max = 576;
    N = atoi(argv[1]);
    M = atoi(argv[2]);
    // SCHEDULE = argv[3];
    // if (strcmp(SCHEDULE, "static") == 0)
           schedule_type = omp_sched_static;
    // else if (strcmp(SCHEDULE, "dynamic") == 0)
    // else if (strcmp(SCHEDULE, "guided") == 0)
           schedule type = omp sched guided;
    // else if (strcmp(SCHEDULE, "auto") == 0)
           schedule_type = omp_sched_auto;
    // CHUNKSIZE = atoi(argv[4]);
#if defined( OPENMP)
    omp_set_dynamic(0);
    omp_set_num_threads(M);
    // omp_set_schedule(schedule_type, CHUNKSIZE);
#endif
    double *restrict M1 = (double *)malloc(N * sizeof(double));
```

```
double *restrict M2 = (double *)malloc(N / 2 * sizeof(double));
    double *restrict M2_copy = (double *)malloc(N / 2 * sizeof(double));
    unsigned int seed;
    unsigned int *restrict seed1 = &seed;
    unsigned int *restrict seed2 = &seed;
    gettimeofday(&T1, NULL);
    for (i = 0; i < 100; i++)
        double min_nonzero = INFINITY;
        double sum_sin = 0.0;
        for (j = 0; j < N; j++)
            // делим каждый член на е и считаем кубический корень
            M1[j] = ((double)rand_r(seed1) / (RAND_MAX)) * (max - min) + min;
        for (j = 0; j < N / 2; j++)
            M2[j] = ((double)rand_r(seed2) / (RAND_MAX)) * (max * 10 - max) +
#pragma omp parallel default(none) shared(M1, M2, M2_copy, i, min, max, e, N,
sum_sin, min_nonzero)
#pragma omp for
            for (j = 0; j < N; j++)
                M1[j] = cbrt(M1[j] / e);
#pragma omp for
            for (j = 0; j < N / 2; j++)
                M2\_copy[j] = M2[j];
#pragma omp for
            for (j = 1; j < N / 2; j++)
                if (j == 0)
                    M2[0] = log(fabs(tan(M2[0])));
                else
```

```
M2[j] = log(fabs(tan(M2[j] + M2_copy[j - 1])));
#pragma omp for
            for (j = 0; j < N / 2; j++)
                M2[j] = pow(M1[j], M2[j]);
#pragma omp single
                for (j = 0; j < N / 2 - 1 && M2[j] == 0; j++)
                min_nonzero = M2[j];
#pragma omp for reduction(+ : sum_sin)
            for (j = 0; j < N / 2; j++)
                if ((int)(M2[j] / min_nonzero) % 2 == 0)
                    sum_sin += sin(M2[j]);
    gettimeofday(&T2, NULL);
    delta_ms = 1000 * (T2.tv_sec - T1.tv_sec) + (T2.tv_usec - T1.tv_usec) / 1000;
    printf("%ld\n", delta_ms);
    free(M1);
    free(M2);
    free(M2_copy);
    return 0;
```

Результаты экспериментов

Ниже приведены результаты ЛР2, компилятор gcc (AMD Framevawe)

Приводится сравнение с параллельной программой с помощью Open MP без явно указанного расписания:

EE3 SCHEDULE									
ms	N	1	2	3	4	6	8	10	12
500	300000	2120	1216	928	1048	811	744	867	1062
1000	330000	2335	1341	1032	1239	917	861	998	1048
1500	360000	2518	1476	1115	1420	980	1235	990	1050
2000	390000	2766	1588	1211	1234	1053	944	1052	1061
2500	420000	2965	1707	1333	1219	1136	989	1132	1164
3000	450000	3173	1844	1422	1218	1237	1065	1215	1259
3500	480000	3381	1959	1501	1518	1299	1152	1287	1332
4000	510000	3622	2087	1608	1459	1380	1207	1380	1416
4500	540000	4218	2214	1739	1491	1473	1328	1449	1452
5000	570000	4389	2353	1812	1559	1536	1354	1529	1536
5500	600000	4288	2483	1920	1620	1631	1433	1787	1624
6000	630000	4467	2629	2027	1716	1710	1505	1967	1701
6500	660000	4746	2758	2305	1808	1788	1555	2444	1772

Наблюдается ускорение времени работы программы в среднем на 500мс во всех рассмотренных случаях, наилучший результат при использовании ОрепМР достигается при указании 8 потоков (процессор 4 ядерный). Дальнейшие эксперименты с разными расписаниями будут проводиться именно на 8 потоках.

Сравнение schedule

Тип расписания на машине по умолчанию определялся с помощью кода:

```
#include <stdio.h>
#include <omp.h>
int main()
    int chunk_size, schedule_type;
    enum omp_sched_t kind;
#pragma omp parallel
#pragma omp single
            omp_get_schedule(&kind, &chunk_size);
            switch (kind)
            case omp_sched_static:
                printf("Schedule type: static\n");
                break;
            case omp_sched_dynamic:
                printf("Schedule type: dynamic\n");
                break;
            case omp_sched_guided:
                printf("Schedule type: guided\n");
            case omp_sched_auto:
                printf("Schedule type: auto\n");
                break;
            default:
                printf("Unknown schedule type\n");
            printf("Chunk size: %d\n", chunk_size);
    return 0;
```

Были получены следующие результаты:

```
Schedule type: dynamic
Chunk size: 1
```

Сравнение static, guided, dynamic на одном графике:

Согласно графику, наилучшие результаты показывает расписание guided c chunk size = 8

Сравнение guided с различными chunk size:

Сравнение static с различными chunk size:

Сравнение dynamic с различными chunk size:

Скриншот диспетчера задач:

Дополнительное задание 1

Приведены графики времени выполнения и параллельного ускорения для значений N от 200 до 10000 с шагом 200

Время работы:

Параллельное ускорение:

□ Te	mperatures							
<u></u>	THM0	95.0 °C	36.0 °C	96.0 °C				
□ ■ Utilization								
<u></u>	System Memory	36.0 %	34.0 %	44.0 %				
🖣 🔲 Intel (Core i7 4710MQ							
□ ~ Vc	□ → Voltages							
	IA Offset	+0.000 V	+0.000 V	+0.000 V				
	GT Offset	+0.000 V	+0.000 V	+0.000 V				
	LLC/Ring Offset	+0.000 V	+0.000 V	+0.000 V				
	System Agent Offset	+0.000 V	+0.000 V	+0.000 V				
	VID (Max)	0.997 V	0.953 V	1.091 V				
□ 🕜 Te	mperatures							
	Package	95.0 °C	36.0 °C	98.0 °C				
	Cores (Max)	95.0 °C	36.0 °C	98.0 °C				
□ 🧆 👌 Pc	owers							
	Package	41.40 W	7.61 W	55.05 W				
	IA Cores	32.99 W	0.52 W	41.68 W				
	GT	0.08 W	0.00 W	49.12 W				
	Uncore	6.23 W	0.40 W	9.37 W				
	DRAM	2.10 W	1.33 W	43.58 W				
□ Ut	tilization							
	Processor	80.3 %	0.0 %	99.8 %				
- - C	□							
	Core #0	3163 MHz	1701 MHz	3485 MHz				
	Core #1	3064 MHz	1751 MHz	3477 MHz				
	Core #2	3064 MHz	1751 MHz	3472 MHz				
	Core #3	3064 MHz	1701 MHz	3485 MHz				
- KINC	CTON CV200C27A2A0C							

Вывод

По сравнению с автоматическим распараллеливанием и распараллеливанием с помощью AMD Framewave наблюдается прирост производительности.

Наилучшим показало себя расписание guided с размером chunk size равным количеству потоков 8. Количество потоков было определено при выполнении программы без явно заданного расписания.