Coronal Seismology ASTR 598

Laurel Farris

Spring 2016

Coronal seismology

Technique and motivation

Elusive coronal properties:

- magnetic field strength, \vec{B}
- \bullet density, ρ
- Alfvén velocity, V_A

Solution: coronal seismology

- 1. Observe disturbances
- 2. Measure properties
- 3. Identify the wave or mode
- 4. Extract coronal parameters Motivation:
 - Coronal heating
 - Space weather prediction

Magnetohydrodynamics (MHD)

Theory

Model:

- Straight flux tube in uniform magnetic field.
- Frozen-in plasma is compressive and elastic.
- Characteristic wave speeds are determined by ρ , T, P, and \vec{B}

1. Magnetoacoustic
$$C_s = \sqrt{\frac{\gamma P}{\rho}}$$

- (a) Fast $k_{A_0} < C_{fast} < C_{A_e}$
- (b) Slow $C_{T_0} < C_{slow} < C_{s_0}$
- 2. Alfvén $V_A = \frac{B}{\sqrt{\mu_0 \rho}}$

Dispersion diagram

Phase speed $(v_{ph} = \frac{\omega}{k})$ as function of ka

Research Topics

- 1. Kink oscillations
- 2. Sausage oscillations
- 3. Acoustic oscillations
- 4. Propagating acoustic waves
- 5. Propagating fast waves
- 6. Torsional (Alfvén) modes

Fast standing oscillations

Kinks vs. Sausages

Kink

- loop spatial displacement
- Asymmetric
- No intensity change
- $k\sigma \ll 1$, or $\sigma \ll \lambda$
- Derive magnetic field!
- Period $P=rac{2L}{V_A}\sqrt{rac{1+
 ho_e/
 ho_o}{2}}$ where $\lambda=2L$ (L is the loop length). Typically, $L\approx 60-600$ Mm in the corona.

Sausage

- No loop spatial displacement
- Symmetric
- Intensity change
 → density change

Standing oscillations vs. propagating waves

- In loops, propagating waves damp before reaching opposite footpoint.
- Velocity and intensity are 90° out of phase for standing oscillations, and are in phase for propagating acoustic waves.
- Frequencies less than the cutoff are standing oscillations, waves with frequency greater than the cutoff propagate into the chromosphere.

Torsional modes

aka. Alfvén wave

Properties:

- m=0 (Axisymmetric, or azimuthally symmetric)
- transverse (shear) perturbations
- Parallel to \vec{B}
- Driving force: magnetic tensioin
- incompressible
- velocity: $v_A = \frac{B}{\mu_o \rho}$; $\sim 1000 \text{ km s}^{-1}$ in the corona

How to observe:

- Only get Doppler shifts from long-period waves (> a few minutes).
- Measure additional (i.e. non-thermal) broadening of coronal emission lines; indirect way to observe short-period waves.
- Spatial variation in Doppler shift for long periods.
 Gyrosynchrotron emission in radio regime.

Effects of twisting:

Coupling of various MHD modes

Examples from the literature

A. K. Srivastava and B. N. Dwivedi

- Observed bright point (BP) with EIS on HINODE
- HeII 256 Å (TR and low corona)
- FeXV 195 Å (Upper corona)
- Leakage of acoustic oscillations in the inner corona

Examples from the literature

Authors

What observed and how, values measured, other parameters derived, mode identified, etc.

Examples from the literature

Authors

What observed and how, values measured, other parameters derived, mode identified, etc.

Important Properties

	period	decay time	velocity
kink osc	2–20 m	value	value
sausage osc	value	value	value
acoustic osc	20 m	5–30 m	$200 \; { m km \; s^{-1}}$
acoustic waves	value	value	$<\!150~{ m km}~{ m s}^{-1}$
fast waves	value	value	$>\!150~{ m km~s^{-1}}$
torsional modes	10 m	value	$1000 \; { m km \; s^{-1}}$

Research AIA/SDO

Fe XII, XXIV 193 Å July 2012 11–12 pm

Cross-correlations

[Cross-correlation example goes here.]

Cross-correlation

Timelag

Future work

Other questions:

- What is the excitation mechanism for the observed disturbances?
- How are they damped, and what determines the timescales?

My future work:

- Download data in other wavelengths (i.e. coronal heights).
- Download data from other instruments, e.g. the Extreme Ultraviolet Variability Experiment (EVE) on SDO.
- Characterize other bright points in coronal hole, quiet sun, and active regions.

Acknowledgements

Advisor: James McAteer

Extra slides here