Datasets:

- <u>Pothole-600</u> Limited sample size. Already has segmentation masks which are helpful.
 Photos are taken from top down with no indication of a consistent frame of reference
- <u>Cracks-and-Potholes</u> Large sample size (>2000) Has segmentation masks for the road, potholes, and cracks. Photos are taken in a consistent way which streamlines pre-processing. Road also has its own mask which means more accurate estimates can be made as to pothole dimensions. This dataset looks the best currently for models.
- RDD2022 Very large sample size from multiple countries. No segmentation masks, only YOLO style boxes around potholes. If I need more data samples or want to improve accuracy, I can look into generating masks for this set and merging them with Cracks-and-Potholes. Photos are also taken in a consistent manner (smartphone mounted to car).

Goals:

Develop a model that can be applied to cameras in vehicles which can detect a pothole and flag potholes that have a high hazard risk if driven over. Ideally this data would be crowdsourced in the cloud such that other cars on the road would be alerted of a dangerous pothole at a specific GPS location.

Approaches:

Several ways of detecting potholes via image segmentation:

- YOLO algorithm (Faster than RCNN but outputs bounding boxes vs. segmentation masks. Can be combined with <u>FCN to output seg masks</u>)
- RCNN (Slower but directly outputs seg masks and can be combined with GrabCut for increased accuracy)
- Depth analysis
 - Convert potholes to top down view
- Pothole positioning

0

- Otsu thresholding
 - May be able to generate image segmentation masks on RDD2022 using this algorithm

Plan:

- Train dataset to detect pothole + boundaries
 - Looking at using area/depth estimation method detailed <u>here</u> to obtain dimensions of pothole
- Model is fed pictures that may/may not have pothole
- Model outputs image mask of pothole
- Take output mask and get the percentage of the photo the pothole occupies

- Generate statistics on training data set to create different classification groups. Ex: Medium size group would be median percentage ± 1 std deviation, etc.
 - Size would have small, medium, large groups
 - Depth would have small, medium, and high risk group as depth correlates to more danger for the vehicle and its passengers

References:

- https://www.researchgate.net/publication/354248434 Potholes Detection Using Deep Learning and Area Estimation Using Image Processing
- https://pyimagesearch.com/2020/09/28/image-segmentation-with-mask-r-cnn-grabcut-an-d-opency/
- https://www.diva-portal.org/smash/get/diva2:1421305/FULLTEXT01.pdf
- https://blog.roboflow.com/guide-to-yolo-models/
- https://www.researchgate.net/publication/363668453 RDD2022 A multi-national image dataset for automatic Road Damage Detection
- https://biankatpas.github.io/Cracks-and-Potholes-in-Road-Images-Dataset/
- https://sites.google.com/view/pothole-600/dataset
- https://academic.oup.com/tse/article/4/4/tdac026/6835624#382221514
- https://file.techscience.com/ueditor/files/cmc/TSP_CMC_27840/TSP_C
 MC_27840.pdf
- https://towardsdatascience.com/inverse-projection-transformation-c866ccedef1c
- https://pyimagesearch.com/2020/07/27/opencv-grabcut-foreground-segmentation-and-extraction/
- https://www.researchgate.net/publication/228529426 A novel approach to the calcula tion of pothole-induced contact forces in MDOF vehicle models
- https://www.section.io/engineering-education/introduction-to-yolo-algorithm-for-object-det-ection/#:~:text=YOLO%20is%20an%20algorithm%20that,%2C%20parking%20meters%2C%20and%20animals.
- https://www.iriet.net/archives/V9/i4/IRJET-V9I4338.pdf
- https://www.mdpi.com/2079-9292/11/12/1882
- https://learnopencv.com/otsu-thresholding-with-opencv/

Figure 2. The characteristics of automated pothole-detection methods.

Table 1. The strengths and weaknesses of automated pothole-detection methods.

Methods	Strengths	Weaknesses
Vision-based method	It is more cost-effective than the 3D reconstruction-based method It is suitable for determining the number and approximate shape of potholes	It has limitations in measuring information such as volume and depth of potholes It is affected by lighting and shadow condition
Vibration-based method	It is the most cost-effective among the three methods It requires small storage Real-time data processing can be applied	It has limitations in providing the exact shape of potholes It is affected by the sensor and vehicle applied in the data-acquisition process
3D reconstruction- based method	It measures the shape of potholes most accurately among the three methods	It is the most expensive among the three methods

Fig. 3: Proposed methodology for reconstruction of a pothole.

https://arxiv.org/pdf/2012.10802.pdf

Json Label Format:

{"file_name":741369,"dataset":"Cracks-and-Potholes","pothole":1,"size":0,"depth":1,"pos-left":0, "pos-cleft":0,"pos-mid":0,"pos-cright":0,}

File name: first 6 digits of file name

Dataset: name of dataset the image is from

Pothole: Whether there's a pothole or not (1=pothole, 0 = no pothole)

Size: Size of pothole (0=Small, 1=Medium, 2=Large)
Depth: Depth of pothole (0=Small, 1=Medium, 2=Large)

Pos-left: pothole in left (0= not there, 1 = present)

Pos-cleft: pothole in cleft (0= not there, 1 = present)

Pos-middle:pothole in middle (0= not there, 1 = present)

Pos-cright:pothole in cright (0= not there, 1 = present)

pos-right:pothole in right (0= not there, 1 = present)

If not sure leave entry as "null"

Convert Image masks to polygon for use in coco json format

https://github.com/cocodataset/cocoapi/issues/131