Docket Number: 10020738-1

CLAIMS

We Claim:

10

11

1 1. An optical switch, comprising: 2 a first waveguide; 3 sidewalls that form a trench, a first sidewall of the sidewalls including a 4 mirror wall at a location where the first sidewall impinges the first waveguide; 5 a second waveguide, the second waveguide being position so that light 6 from the first waveguide reflected by the mirror wall proceeds into the second 7 waveguide; and, 8 a heating system that forms a bubble within the trench, wherein volume 9 of the bubble is substantially less than total volume of the trench, so that

2. An optical switch as in claim 1 wherein the trench is longer than the
 bubble.

pressure within the bubble is not substantially increased by pressure exerted by

- 3. An optical switch as in claim 1 wherein the trench is deeper than the
 bubble.
- 4. An optical switch as in claim 1 wherein the heating system includes:
- 2 a heater; and,

sidewalls of the trench.

a pillar that extends from the heater up the first sidewall.

Agilent Technologies, Inc.

1

2

bubble.

8. An optical switch as in claim 6 wherein the trench is deeper than the

1	9. An optical switch as in claim 6 wherein the heating means includes:
2	a heater; and,
3	a pillar that extends from the heater along the trench.
1	10. An optical switch as in claim 6 wherein the heating system includes:
2	a first heater;
3	a first pillar that extends from the first heater up a first side of the trench;
4	a second heater; and,
5	a first pillar that extends from the second heater up a second side of the
6	trench.
1	11. A method for operating an optical switch, comprising:
2	filling a trench with index matching fluid so that light from a first
3	waveguide passes through the trench to a second waveguide; and,
4	forming a bubble within the index matching fluid so that light from the
5	first waveguide is reflected at the trench to a third waveguide; wherein the
6	bubble is formed by heat so that volume of the bubble is substantially less than
7	total volume of the trench, resulting in pressure within the bubble not being
8	substantially increased by pressure exerted by sidewalls of the trench.

1 12. A method switch as in claim 11 wherein the trench is longer than the 2 bubble.

- 1 13. A method as in claim 11 wherein the trench is deeper than the bubble.
- 1 14. A method as in claim 11 wherein forming the bubble includes
- 2 using a heater to produce the heat; and,
- 3 using a pillar to spread the heat over one side of the trench.
- 1 15. A method as in claim 11 wherein forming the bubble includes
- 2 using a first heater to produce heat at a first sidewall of the trench;
- 3 using a first pillar to spread the heat over the first sidewall of the trench;
- 4 using a second heater to produce heat on a second sidewall of the trench;
- 5 and,
- 6 using a second pillar to spread the heat over the second sidewall of the
- 7 trench.