Review III of Chapter 4: Linear Mapping

illusion

Especially made for smy

School of Mathematical Science

XMU

Thursday 26th December, 2024

Outline

- Before we start
- 2 Review of §4.6 Invariant Subspace
- Jordan Canonical Form
- 4 Some Chapter 3 problems
- 5 Properties of Linear Transformation
- 6 Matrices and Linear Mapping
- Basis Extension Method

U 为线性空间 V 的子空间, $\varphi \in \mathcal{L}(V)$, 那么

$$\varphi(\varphi^{-1}(U)) = U \cap \operatorname{Im} \varphi, \varphi^{-1}(\varphi(U)) = U + \operatorname{Ker} \varphi.$$

(illusion) Discussion Session 4 Thursday 26th December, 2024

Practice to review

例1: 设 $\varphi, \psi \in \mathcal{L}(V)$, U 是 V 的子空间,满足 $\operatorname{Im} \varphi = \operatorname{Im} \psi$,则

 $\mathsf{A}.\ \varphi = \psi$

 $\mathsf{B}. \operatorname{Ker} \varphi = \operatorname{Ker} \psi$

C. 若 $\varphi(U) \subseteq U$, 则 $\psi(U) \subseteq U$

D. φ, ψ 在 V 的任意基下的矩阵相抵

例2: 设 U 是 V 的子空间, $\varphi \in \mathcal{L}(V)$,记 $\varphi^{-1}(U) = \{\alpha \in V \mid \varphi(\alpha) \in U\}$,则

A. $\dim \varphi^{-1}(U) = \dim U$

 $\mathsf{B.}\,\dim\varphi^{-1}(U)\leq\dim U$

 $\mathsf{C}. \dim \varphi^{-1}(U) \ge \dim U$

D. $\dim \varphi^{-1}(U)$ 和 $\dim U$ 没有关系

例3:设 V_1,V_2,W 都是 n 维线性空间 V 的子空间,若 $V_1\subseteq V_2$ 且 $V_1\oplus W=V_2\oplus W$,则(选填"必"、"未必")有 $V_1=V_2$ 。

例4: 设 V_1, V_2, W 是 n 维线性空间 V 的非平凡子空间,且 $V = V_1 \oplus V_2, W$ $\cap V_1 = \{\mathbf{0}\}, W \cap V_2 = \{\mathbf{0}\}.$ 求 $(W + V_1) \cap (W + V_2)$ 的基和维数。

Practice to review

例:设

$$V = \{ A \in F^{3 \times 3} \mid A^{\top} = A \}, \quad U = \{ A \in F^{3 \times 3} \mid A^{\top} = -A \},$$

$$W = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \middle| a, b, c \in F \right\}.$$

- (1) 分别写出 V,U 和 W 的基;
- (2) 证明:存在 $\varphi \in \mathcal{L}(V,U)$,使得 $\mathrm{Ker} \varphi = W$ 。
- (3) 设 $\varphi\in\mathcal{L}(F^{3 imes3}),\ \varphi(A)=A^{\top}$,求证:存在 $F^{3 imes3}$ 的一组基,使得 φ 在这组基下的表示矩阵为 $\begin{bmatrix}E_6&O\\O&-E_3\end{bmatrix}$.

5/30

- 导出变换的维数公式: 设 $\varphi \in \mathcal{L}(V,U), V_1 \subset V, U_1 \subset U$
 - (1) $\dim \varphi(V_1) + \dim(\operatorname{Ker} \varphi \cap V_1) = \dim V_1 \rightsquigarrow \varphi|_{V_1}$
 - (2) $\dim(U_1 \cap \operatorname{Im}\varphi) + \dim \operatorname{Ker}\varphi = \dim \varphi^{-1}(U_1) \rightsquigarrow \varphi|_{\varphi^{-1}(U_1)}$
- 设 $\varphi \in \mathcal{L}(V,U)$ 非零非可逆,则 $\operatorname{Im}\varphi$, $\operatorname{Ker}\varphi$ 为非平凡 φ -子空间
- \rightsquigarrow 若 $\mathcal{O} \neq \varphi \in \mathcal{L}(V,U)$ 只有平凡 φ —子空间,则 φ 可逆,反之不成立
- 设 $\varphi, \psi \in \mathcal{L}(V, U)$, 且 $\varphi \psi = \psi \varphi$, 则 $\operatorname{Ker} \varphi, \operatorname{Im} \varphi$ 均为 ψ —子空间
- $\rightsquigarrow \varphi \psi + \psi \varphi = \emptyset$ 上述结论也成立

Try

设 $\mathcal{O} \neq \varphi, \psi \in \mathcal{L}(V)$, dim V = 2n + 1 $(n \in \mathbb{N}^*)$, 若 $\varphi \psi + \psi \varphi = \mathcal{O}$, 求证: 既有非平凡的 ψ -子空间,也有非平凡的 φ -子空间。

设 $\varphi \in \mathcal{L}(V)$ 且 U 为 φ - 子空间,取 U 的一组基为 ξ_1, \cdots, ξ_r ,扩为 V 的一 组基 $\xi_1,\cdots,\xi_r,\xi_{r+1},\cdots,\xi_n$,由于 $\varphi(U)\subseteq U$,这说明

$$\begin{cases} \varphi(\xi_1) = a_{11}\xi_1 + \dots + a_{r1}\xi_r + 0 \cdot \xi_{r+1} + \dots + 0 \cdot \xi_n \\ \dots \\ \varphi(\xi_r) = a_{1r}\xi_1 + \dots + a_{rr}\xi_r + 0 \cdot \xi_{r+1} + \dots + 0 \cdot \xi_n \\ \varphi(\xi_{r+1}) = b_{1,r+1}\xi_1 + \dots + b_{r,r+1}\xi_r + c_{r+1,r+1}\xi_{r+1} + \dots + c_{n,r+1}\xi_n \\ \dots \\ \varphi(\xi_n) = b_{1n}\xi_1 + \dots + b_{rn}\xi_r + c_{r+1,n}\xi_{r+1} + \dots + c_{nn}\xi_n \end{cases}$$
 Let $A = (a_{ij})_{r \times r}, B = (b_{i,j+r})_{r \times n-r}, C = (c_{i+r,j+r})_{n-r \times n-r}$

(illusion) Discussion Session 4

就有

$$\varphi(\xi_1, \dots, \xi_r, \xi_{r+1}, \dots, \xi_n) = (\xi_1, \dots, \xi_r, \xi_{r+1}, \dots, \xi_n) \begin{bmatrix} A & B \\ O & C \end{bmatrix}$$
(1)

调换基的位置有

$$\varphi(\xi_{r+1},\cdots,\xi_n,\xi_1,\cdots,\xi_r) = (\xi_{r+1},\cdots,\xi_n,\xi_1,\cdots,\xi_r) \begin{bmatrix} C & O \\ B & A \end{bmatrix}$$
 (2)

Q: 当基的位置调换为 $\xi_{r+1},\cdots,\xi_{r+s},\xi_1,\cdots,\xi_r,\xi_{r+s+1},\cdots,\xi_n$,其中 s< n-r,你能对 C,B 适当分块写出在这组基下的表示矩阵吗?

可以使用三类相似初等变换: $E(i,j)AE(i,j), \ E(i(c))AE(i(c^{-1})), \ E(i,j(c))$ AE(i,j(-c)).

Examples

Example

(Multiple Choice) 设 $\varphi \in \mathcal{L}(V)$ 有非平凡的 φ —子空间,则必定存在 V 的某个基,使得 φ 在这组基下的矩阵为

A.
$$\begin{bmatrix} O & A \\ B & C \end{bmatrix}$$

C. $\begin{bmatrix} A & O & O & B \\ O & C & D & O \\ O & E & F & O \\ G & O & O & H \end{bmatrix}$

Hint: 考虑调换基的顺序

Examples

Example

(Multiple Choice) 设 $\varphi \in \mathcal{L}(\mathbf{R}^2)$ 定义为 $\varphi : X \mapsto AX$,若 φ 有非平凡 φ —子空 间.则A不可能为

A.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

B.
$$\begin{bmatrix} 0 & -2 \\ 1 & -2 \end{bmatrix}$$

C.
$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

B.
$$\begin{bmatrix} 0 & -2 \\ 1 & -2 \end{bmatrix}$$
 C. $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ D. $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$

Hint: 二维空间的非平凡不变子空间必定为一维的. 即特征子空间

设 $\varphi \in \mathcal{L}(V)$ V_1, V_2 为 φ — 子空间且满足 $V = V_1 \oplus V_2$,取 V_1 的一组基为 ξ_1, \cdots, ξ_r , V_2 的一组基为 ξ_{r+1}, \cdots, ξ_n ,拼成 V 的一组基 $\xi_1, \cdots, \xi_r, \xi_{r+1}, \cdots, \xi_n$,那么就有

$$\varphi(\xi_1, \dots, \xi_r, \xi_{r+1}, \dots, \xi_n) = (\xi_1, \dots, \xi_r, \xi_{r+1}, \dots, \xi_n) \begin{bmatrix} A & O \\ O & B \end{bmatrix}$$
(3)

反之,若成立 (3) 式,那么存在 $V_1=\langle \xi_1,\cdots,\xi_r\rangle,\ V_2=\langle \xi_{r+1},\cdots,\xi_n\rangle$ 为 φ —子空间且满足 $V=V_1\oplus V_2$ 。

Try

若 $\varphi\in\mathcal{L}(V)$ 在一组基下的矩阵为 $\boldsymbol{J}(1,2)=\begin{bmatrix}1&1\\0&1\end{bmatrix}$,那么 V 能否分解为两个非平凡 $\varphi-$ 子空间的直和呢?

11/30

(illusion) Discussion Session 4 Thursday 26th December, 2024

Examples

Example

证明: 若 $\varphi \in \mathcal{L}(V)$ 在一组基下的矩阵为

$$\boldsymbol{J}(\lambda,n) = \begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & 0 & 0 \\ 0 & 0 & \lambda & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda \end{bmatrix}$$

那么 V 不能分解为两个非平凡 φ -子空间的直和。

Note: 如何求所有的 φ —子空间?

Problems to solve in Chapter 5-7

- 几何语言: 是否存在 V 的一组基使得 φ 在这组基下的表示矩阵形状比较简单? (上三角矩阵? 对角矩阵? 分块对角阵?)
- 代数语言: 一个给定矩阵在相似关系下的最简代表元是什么? 有没有相似标准型? (Schur, Frobenius, Jordan)
- 相似关系下的全系不变量是什么? (Chapter 6 中的特征值,特征多项式, 极小多项式也都只是必要条件,有没有充要条件?)
- 任何一个线性空间都可以分解为一维子空间的直和,这是平凡的,但当直和分解出的子空间带有性质时就有意义了。能不能将空间分解为若干 φ -子空间的直和? 进一步,若干不可再分的 φ -子空间的直和? (空间第一,第二分解定理,准素分解和循环分解)

A brief introduction to Jordan Canonical Form

例: 设 $\dim V = n$, $\varphi \in \operatorname{End}_F(V)$, 且 $\varphi^3 - 2\varphi^2 + \varphi = \mathscr{O}$. 证明:

- (1) $V = \operatorname{Im} \varphi \oplus \operatorname{Ker} \varphi$;
- (2) 存在 V 的一组基 ξ_1, \ldots, ξ_n 使得

$$\varphi(\xi_1,\ldots,\xi_n)=(\xi_1,\ldots,\xi_n)\begin{pmatrix} A & O \\ O & O \end{pmatrix},$$

其中 A 为一个 r 阶可逆方阵, $\dim \operatorname{Im} \varphi = r$.

Notes:

- 你能说明 $\operatorname{Im}\varphi = \operatorname{Ker}(\varphi \operatorname{id}_V)^2$ 吗?
- 其实 (1) 可以改写为 $V = \operatorname{Ker} \varphi \oplus \operatorname{Ker} (\varphi \operatorname{id}_V)^2$,能直接证明吗?
- Hint: $(\varphi id_V)^2 (\varphi 2id_V)\varphi = id_V \rightsquigarrow$ 同构意义下创造单位阵打洞!
- (Chapter 5) Generally, if we have $f,g\in F[x], f(\varphi)g(\varphi)=\mathscr{O}, \gcd(f,g)=1$, then

$$V = \operatorname{Ker} f(\varphi) \oplus \operatorname{Ker} g(\varphi), \operatorname{Im} f(\varphi) = \operatorname{Ker} g(\varphi).$$

(illusion) Discussion Session 4 Thursday 26th December, 2024 14/30

A brief introduction to Jordan Canonical Form

由于 $\varphi(\operatorname{Im}\varphi)=\operatorname{Im}\varphi^2\subseteq\operatorname{Im}\varphi$,所以 $\operatorname{Im}\varphi$ 为 φ -子空间,即 $\varphi|_{\operatorname{Im}\varphi}$ 仍然为 $\operatorname{Im}\varphi$ 上的线性变换。在上例中,我们知道 $(\varphi-\operatorname{id}_V)^2|_{\operatorname{Im}\varphi}=\mathscr{O}$ 。令 $\psi=\varphi-\operatorname{id}_V$,则存在 $\operatorname{Im}\varphi$ 的一组基 ξ_1,\cdots,ξ_r 使得

$$\psi(\xi_1,\dots,\xi_r) = (\xi_1,\dots,\xi_r) \operatorname{diag}\{J(0,2),\dots,J(0,2),J(0,1),\dots,J(0,1)\}.$$

这其实说明

$$\varphi(\xi_1,\dots,\xi_r) = (\xi_1,\dots,\xi_r) \operatorname{diag}\{J(1,2),\dots,J(1,2),J(1,1),\dots,J(1,1)\}.$$

将 ξ_1,\cdots,ξ_r 扩为 V 的一组基 ξ_1,\cdots,ξ_n ,则 φ 在这组基下的矩阵为

$$\operatorname{diag}\{J(1,2),\cdots,J(1,2),J(1,1),\cdots,J(1,1),J(0,1),\cdots,J(0,1)\}.$$

记上述分块对角矩阵为 φ 在 F 上的 Jordan 标准型。

Figure out P that satisfies $P^{-1}AP = J$

例: 验证
$$A = \begin{pmatrix} 2 & 1 & -1 & -1 \\ -1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \sim J = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- 能求出可逆矩阵 P 满足 $P^{-1}AP = J$ 吗?
- ullet 将结论转化为几何语言,也就是 F^4 上的线性变换 $\varphi \dots$

(illusion) Discussion Session 4 Thursday 26th December, 2024 16/30

Quickly Review

What we have:

•
$$\varphi^2 = \mathscr{O} \Leftrightarrow \varphi \iff \operatorname{diag}\{J(0,2), \cdots, J(0,2), 0, \cdots, 0\} \Leftrightarrow V = \operatorname{Ker} \varphi^2$$

•
$$\varphi^2 = \varphi \Leftrightarrow \varphi \iff \begin{bmatrix} E_r & O \\ O & O \end{bmatrix} \Leftrightarrow V = \operatorname{Ker} \varphi \oplus \operatorname{Ker} (\varphi - \operatorname{id}_V)$$

- $(\varphi \mathrm{id}_V)^2 \varphi = \mathscr{O} \Leftrightarrow \varphi \iff \mathrm{diag}\{J(1,2), \cdots, J(1,2), 1, \cdots, 1, 0, \cdots, 0\}$
- $\bullet \ \varphi^n = \mathscr{O}, \varphi^{n-1} \neq \mathscr{O} \Leftrightarrow \varphi \leftrightsquigarrow \mathbf{J}(0,n)$
- (HW-4) $\varphi^m = \mathscr{O}, \varphi^{m-1} \neq \mathscr{O}, \dim \operatorname{Im} \varphi = n-1 \Leftrightarrow \varphi \leftrightsquigarrow J(0,n)$

Try

$$\varphi^2 = 2\varphi \Leftrightarrow \varphi \iff \begin{bmatrix} 2E_r & O \\ O & O \end{bmatrix}?$$

Chapter 3: Examples

Thm 1

设 $\dim V=n$, V_i $(i=1,\cdots,n)$ 为 V 的两两不同的非平凡子空间,求证:

$$(1) \exists \alpha \in V, \alpha \notin \bigcup_{i=1}^{2} V_{i}$$

(2)
$$\exists \beta \in V, \beta \notin \bigcup_{i=1}^{n} V_i$$

Notes:

Hint: Consider the vectors in the set

$$S = \{\xi_1 + j\xi_2 + j^2\xi_3 + \dots + j^{n-1}\xi_n \mid j = 1, 2, \dots\}$$

• (Chapter 4 Review C Ex.1) 设 $\varphi_1, \dots, \varphi_s \in \operatorname{End}_F(V)$ 非零,求证:存 $\alpha \in V$,使得 $\varphi_i(\alpha) \neq 0$ 均成立。

Chapter 3: Examples

Try

设 n 维空间 V 的两个子空间 V_1, V_2 的维数均为 m, 且 m < n, 求使得

$$V_1 \oplus U = V_2 \oplus U$$

的 U 的最大维数 k, 并构造 U.

Notes:

- 回顾补空间不唯一:设 W 是 V 的子空间,那么存在不同的子空间 L_1,L_2 满足 $V=W\oplus L_1=W\oplus L_2$
- 本题相当于已知补空间,找原空间的过程,扩基法不太适用了。

(illusion)

Descending and Ascending Chain of $\mathrm{Ker} \varphi,\ \mathrm{Im} \varphi$

Thm 2

设 $\dim V = n, \ \varphi \in \operatorname{End}_F(V)$, 则成立

- (1) $\operatorname{Ker}\varphi \subseteq \operatorname{Ker}\varphi^2 \subseteq \cdots \subseteq \operatorname{Ker}\varphi^m \subseteq \cdots$
- (2) $\rightsquigarrow \operatorname{Ker} \varphi^i = \operatorname{Ker} \varphi^j \Leftrightarrow \dim \operatorname{Ker} \varphi^i = \dim \operatorname{Ker} \varphi^j$
- (3) $\operatorname{Im}\varphi \supseteq \operatorname{Im}\varphi^2 \supseteq \cdots \supseteq \operatorname{Im}\varphi^m \supseteq \cdots$
- (4) $\rightsquigarrow \operatorname{Im} \varphi^i = \operatorname{Im} \varphi^j \Leftrightarrow \operatorname{dim} \operatorname{Im} \varphi^i = \operatorname{dim} \operatorname{Im} \varphi^j$
- (5) 存在 $s \in \mathbf{N}^*$, 对任意的 $p \in \mathbf{N}^*$ 有 $\operatorname{Ker} \varphi^s = \operatorname{Ker} \varphi^{s+1} = \cdots = \operatorname{Ker} \varphi^{s+p}$
- (6) 存在 $t \in \mathbf{N}^*$, 对任意的 $p \in \mathbf{N}^*$ 有 $\mathrm{Im} \varphi^t = \mathrm{Im} \varphi^{t+1} = \cdots = \mathrm{Im} \varphi^{t+p}$

Try

设 $\dim V = n, \ \varphi \in \operatorname{End}_F(V)$, 若存在 $m \in \mathbf{N}^*$ 使 $\varphi^m = \mathscr{O}$, 求证: $\varphi^n = \mathscr{O}$.

20 / 30

Fitting Lemma

Thm 3

设 dim $V = n, \varphi \in \text{End}_F(V)$,则成立

- (1) $\operatorname{Ker}\varphi^s = \operatorname{Ker}\varphi^{s+1} \Leftrightarrow \operatorname{Im}\varphi^s = \operatorname{Im}\varphi^{s+1} \Leftrightarrow V = \operatorname{Ker}\varphi^s \oplus \operatorname{Im}\varphi^s$
- (2) 存在幂零矩阵 B,可逆矩阵 C 和 V 的一组基 ξ_1, \dots, ξ_n 使得

$$\varphi(\xi_1, \dots, \xi_n) = (\xi_1, \dots, \xi_n) \begin{bmatrix} B & O \\ O & C \end{bmatrix}$$
 (4)

(3) 取 $V_1 = \bigcup_{i=1}^{+\infty} \operatorname{Ker} \varphi^i$, $V_2 = \bigcap_{i=1}^{+\infty} \operatorname{Im} \varphi^i$, 则 V_1, V_2 均为 φ —子空间,其中 $\varphi|_{V_1}$ 幂零, $\varphi|_{V_2}$ 可逆,且 $V = V_1 \oplus V_2$.

Note: (Chapter 6) 设 φ 的特征多项式 $f_{\varphi}(\lambda) = \lambda^k g(\lambda), g(0) \neq 0$,那么由准素分解定理 $V = \operatorname{Ker} \varphi^k \oplus \operatorname{Ker} g(\varphi).$

Thursday 26th December, 2024

Figure out the basis of $\mathcal{L}(V, U)$

Example

设 V 是 n 维线性空间, $0 \neq \alpha \in V$,记 $\mathcal{L}(V)\alpha = \{\varphi(\alpha) \mid \varphi \in \mathcal{L}(V)\}$,求证: $\mathcal{L}(V)\alpha = V$.

Try

设 V 是 n 维线性空间, $V^*=\mathcal{L}(V,F)$, V_1^* 和 V_2^* 是 V^* 的子空间。记:

$$W = \{ v \in V \mid f(v) = 0, \, \forall f \in V_1^* \cap V_2^* \};$$

$$W_i = \{v \in V \mid f(v) = 0, \forall f \in V_i^*\}, i = 1, 2.$$

证明: $W = W_1 + W_2$ 。

(illusion) Discussion Session 4

Treat them like Matrices

- \bullet dim V = n, dim U = m
- $V \cong F^n, U \cong F^m, \operatorname{Hom}_F(V, U) \cong F^{m \times n}$
- $\bullet \alpha \longleftrightarrow X, \beta \longleftrightarrow Y, \varphi \longleftrightarrow A$
- $V \leadsto \xi_1, \cdots, \xi_n, \ U \leadsto \eta_1, \cdots, \eta_m$

Easy to check:

- $\varphi[(\xi_1,\cdots,\xi_n)X] = [\varphi(\xi_1,\cdots,\xi_n)]X = (\eta_1,\cdots,\eta_m)(AX)$
- $\bullet \ \varphi(\alpha) = \beta \Leftrightarrow AX = Y$
- $\psi \in \operatorname{Hom}_F(U, W), \psi \iff B \Rightarrow \psi \varphi \iff BA$

(illusion)

Link Matrices to Linear Mapping

Example

设
$$\alpha_1=(1,0,1,1)', \alpha_2=(0,-1,1,2)', \alpha_3=(1,-1,3,3)', \alpha_4=(2,-2,5,6)';$$
 $\beta_1=(1,1,1,1)', \beta_2=(1,1,0,2)', \beta_3=(1,0,0,3)', \beta_4=(3,2,1,6)'.$ 问: 是否存在 F^4 上的线性变换 φ ,使得 $\varphi(\alpha_i)=\beta_i$ $(i=1,2,3,4)$? 并请说明理由。

Notes:

- 确定线性映射: 关注在基下的像/基下的表示矩阵
- 转化为矩阵语言 → 方程组是否有解 → r 的判定

Link Matrices to Linear Mapping

Example

设 $\varphi:V\to W$ 是有限维线性空间 V 和 W 之间的线性映射。求证下面叙述是等价的:

- (1) φ 是单射;
- (2) 对于任意的线性映射 $\psi_1,\psi_2:U\to V$, 若 $\varphi\psi_1=\varphi\psi_2$, 则必有 $\psi_1=\psi_2$;
- (3) 存在线性映射 $\psi:W\to V$,使得 $\psi\varphi=\mathrm{id}_V$ 。

Notes:

- 上述映射语言在同构意义下怎么转化为矩阵语言?
- 能给出满射相关的等价叙述吗? ~~ HW-5

 ψ 满 $\Leftrightarrow \varphi_1 \psi = \varphi_2 \psi$ 可推 $\varphi_1 = \varphi_2 \Leftrightarrow$ 存在 φ , $\psi \varphi = \mathrm{id}_W$

Link Matrices to Linear Mapping

Example

设 n 维线性空间 V 上的线性变换 φ 在 V 的任意一个基下的矩阵都相同,证 明: $\varphi = c \operatorname{id}_V$, 其中 $c \in F$ 。

Notes:

- (Recall Chapter 1) 与任意n阶方阵可交换的必定为标量阵
- (Corollary) 与A相似的矩阵只有自身 $\Rightarrow A = cE_n$

Basis Extension Method - II

Example

设 $\dim V = n, \ \varphi, \theta \in \operatorname{End}_F(V)$ 满足 $\dim \operatorname{Im} \varphi + \dim \operatorname{Im} \theta \leq n$. 证明:存在 V 的可逆线性变换 σ ,使得

$$\varphi\sigma\theta=\mathscr{O}.$$

An example in HW-3

Try

若存在 m, 使得 $\varphi^m = \mathscr{O}, \varphi^{m-1} \neq \mathscr{O}$, $\dim \operatorname{Im} \varphi = n-1$, 求证:

- (1) dim $\operatorname{Im}\varphi^m \geqslant n m$;
- (2) 取 $\alpha \notin \text{Ker}\varphi^{m-1}$, 则 $\alpha, \varphi(\alpha), \cdots, \varphi^{m-1}(\alpha)$ 线性无关;
- (3) 存在 V 的一组基 ξ_1, \dots, ξ_n 满足

$$\varphi(\xi_1, \dots, \xi_n) = (\xi_1, \dots, \xi_n) \begin{pmatrix} O & O \\ E_{n-1} & O \end{pmatrix}.$$

(4) 思考本题能不能用扩基的方法?

Projection Operator

Try

设 V_1, V_2 是线性空间 V 的子空间且 $V = V_1 \oplus V_2$ 。对 i = 1, 2,定义

$$\tau_i: V \to V_i, \quad \alpha_1 + \alpha_2 \mapsto \alpha_i;$$
 (5)

$$\sigma_1: V_1 \to V, \quad \alpha_1 \mapsto \alpha_1 + \mathbf{0};$$
 (6)

$$\sigma_2: V_2 \to V, \quad \alpha_2 \mapsto \mathbf{0} + \alpha_2.$$
 (7)

验证 τ_i , σ_i (i = 1, 2) 是线性映射且满足:

- (1) $\tau_j \sigma_i = \mathscr{O} \ (i \neq j);$
- (2) $\operatorname{Ker} \sigma_1 \tau_1 = \operatorname{Im} \sigma_2 \tau_2$;
- (3) $V = \operatorname{Im} \sigma_1 \tau_1 \oplus \operatorname{Im} \sigma_2 \tau_2$.

Projection Operator

Def 4

设 $V=V_1\oplus V_2\oplus\cdots\oplus V_m$,则 $v\in V$ 有唯一分解 $v=v_1+\cdots+v_m$,其中 $v_i\in V_i$ 。定义

$$\varphi_i: V \to V, \quad \varphi_i(v) = v_i \ (1 \le i \le m),$$

容易验证 φ_i 是 V 上的线性变换, 称为 V 到 V_i 上的投影变换。

•
$$\varphi_i^2 = \varphi_i$$
, $\varphi_i \varphi_j = 0 \ (i \neq j)$, $\mathrm{id}_V = \varphi_1 + \varphi_2 + \cdots + \varphi_m$;

•
$$\operatorname{Im} \varphi_i = V_i$$
, $\operatorname{Ker} \varphi_i = \bigoplus_{j \neq i} V_j$, $V = \operatorname{Im} \varphi_i \oplus \operatorname{Ker} \varphi_i = \bigoplus_{i=1} \operatorname{Im} \varphi_i$

Note: 若 $\varphi \in \operatorname{End}_F(V)$ 且 $\varphi^2 = \varphi$, φ 就是 $\operatorname{Im}\varphi$ 上的投影变换

