Homework 9: Due Wednesday April 20

You may use R to assist you in your solutions for questions marked with *.

1. * The following exam marks were obtained by students in a course: x represents the first semester mark and y the second semester mark.

X	54	47	69	87	65	73	83	81	72	74
у	61	22	55	78	45	75	56	66	59	70

Assuming these observations are from a bivariate normal population:

- (a) Estimate the regression lines $\mathbb{E}(Y|x)$ and $\mathbb{E}(X|y)$.
- (b) Plot the data and the fitted regression lines. (It is probably easiest to draw the lines by hand.)
- (c) Test the hypothesis $\rho = 0$.
- 2. Suppose that the independent normally distributed random variables Y_1, Y_2, Y_3, Y_4 have means given by $\mathbb{E}(Y_1) = \alpha + 2\beta$, $\mathbb{E}(Y_2) = 3\beta$, $\mathbb{E}(Y_3) = \alpha \beta$, $\mathbb{E}(Y_4) = 2\alpha + \beta$, and equal variances, denoted by σ^2 . The following observations are made:

$$y_1 = 4, y_2 = 4, y_3 = 5, y_4 = 3.$$

- (a) Express this in the form $\underline{y} = A\underline{\theta} + \underline{e}$, and hence estimate α , β and σ^2 using the method of least squares.
- (b) Find a 95% confidence interval for $\mathbb{E}(Y_1)$.
- 3. For a one-way anova with k groups and n observations in each group, and the parameterisation $y_{ij} = \mu + \alpha_i + e_{ij}$,
 - (a) In the general linear model setup, what is the design matrix A for all the parameters $\mu, \alpha_1, \ldots, \alpha_k$?
 - (b) Is the matrix A^TA full rank? If not, suggest a solution such that A^TA becomes full rank.
 - (c) Derive the form of the estimator for $\hat{\theta}$.
 - (d) What is the variance-covariance matrix for the parameter vector $\hat{\Theta}$.
- 4. For a quadratic regression with n observations $y_i = \alpha + \beta_1 x_i + \beta_2 x_i^2 + e_i$,
 - (a) In the general linear model setup, what is the design matrix A?
 - (b) Derive the form of the estimator for $\hat{\theta}$.
 - (c) What is the variance-covariance matrix for the parameter vector $\hat{\mathbb{Q}}$.
- 5. Problems from the book: 9.6.11, 9.6.14, 9.7.2.