CSC 311: Introduction to Machine Learning

Lecture 6 - Neural Networks II

Amanjit Singh Kainth

University of Toronto, Summer 2025

Outline

Back-Propagation

2 Autodiff

Back-Propagation

- Back-Propagation
- 2 Autodiff

Learning Weights in a Neural Network

- Goal is to learn weights in a multi-layer neural network using gradient descent.
- Weight space for a multi-layer neural net: one set of weights for each unit in every layer of the network
- Define a loss $\mathcal L$ and compute the gradient of the cost $\mathrm{d}\mathcal J/\mathrm{d}\mathbf w$, the average loss over all the training examples.
- Let's look at how we can calculate $\mathrm{d}\mathcal{L}/\mathrm{d}\mathbf{w}$, and then generalize this method to any directed acyclic graph (DAG).

Example: Two-Layer Neural Network

Figure 1: Two-Layer Neural Network

Computations for Two-Layer Neural Network

A neural network computes a composition of functions.

$$\begin{split} z_1^{(1)} &= w_{10}^{(1)} \cdot 1 + w_{11}^{(1)} \cdot x_1 + w_{12}^{(1)} \cdot x_2 \\ h_1 &= \sigma(z_1^{(1)}) \\ z_1^{(2)} &= w_{10}^{(2)} \cdot 1 + w_{11}^{(2)} \cdot h_1 + w_{12}^{(2)} \cdot h_2 \\ y_1 &= z_1^{(2)} \\ z_2^{(1)} &= \\ h_2 &= \\ z_2^{(2)} &= \\ y_2 &= \\ L &= \frac{1}{2} \left((y_1 - t_1)^2 + (y_2 - t_2)^2 \right) \end{split}$$

Simplified Example: Logistic Least Squares

$$z = wx + b$$
$$y = \sigma(z)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Computation Graph

- The nodes represent the inputs and computed quantities.
- The edges represent which nodes are computed directly as a function of which other nodes.

Uni-variate Chain Rule

Let
$$z=f(y)$$
 and $y=g(x)$ be uni-variate functions. Then $z=f(g(x))$.

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}y} \ \frac{\mathrm{d}y}{\mathrm{d}x}$$

Univariate Chain Rule

How you would have done it in calculus class

$$\mathcal{L} = \frac{1}{2}(\sigma(wx+b)-t)^{2}$$

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial}{\partial w} \left[\frac{1}{2}(\sigma(wx+b)-t)^{2} \right]$$

$$= \frac{1}{2} \frac{\partial}{\partial w} (\sigma(wx+b)-t)^{2}$$

$$= (\sigma(wx+b)-t) \frac{\partial}{\partial w} (\sigma(wx+b)-t)$$

$$= (\sigma(wx+b)-t) \frac{\partial}{\partial w} (\sigma(wx+b)-t)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b) \frac{\partial}{\partial w} (wx+b)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b) x$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial}{\partial b} \left[\frac{1}{2}(\sigma(wx+b)-t)^{2} \right]$$

$$= \frac{1}{2} \frac{\partial}{\partial b} (\sigma(wx+b)-t)^{2}$$

$$= (\sigma(wx+b)-t) \frac{\partial}{\partial b} (\sigma(wx+b)-t)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b) \frac{\partial}{\partial b} (wx+b)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b)$$

$$= (\sigma(wx+b)-t) \sigma'(wx+b)$$

What are the disadvantages of this approach?

Logistic Least Squares: Gradient for \boldsymbol{w}

Computing the gradient for w:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial w} &= \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial w} \\ &= \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial w} \\ &= (y - t) \ \sigma'(z) \ x \\ &= (\sigma(wx + b) - t) \sigma'(wx + b) x \end{split}$$

$$z = wx + b$$
$$y = \sigma(z)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Logistic Least Squares: Gradient for \boldsymbol{b}

Computing the gradient for b:

$$\frac{\partial \mathcal{L}}{\partial b} = \\ = \\ = \\ =$$

$$z = wx + b$$
$$y = \sigma(z)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Logistic Least Squares: Gradient for \boldsymbol{b}

Computing the gradient for *b*:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial b} &= \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial b} \\ &= \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial b} \\ &= (y - t) \ \sigma'(z) \ 1 \\ &= (\sigma(wx + b) - t)\sigma'(wx + b) 1 \end{split}$$

$$z = wx + b$$
$$y = \sigma(z)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Comparing Gradient Computations for w and b

Computing the gradient for w: Computing the gradient for b:

$$\frac{\partial \mathcal{L}}{\partial w} \qquad \qquad \frac{\partial \mathcal{L}}{\partial b} \\
= \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial w} \qquad \qquad = \frac{\partial \mathcal{L}}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial b} \\
= (y - t) \sigma'(z) x \qquad \qquad = (y - t) \sigma'(z) 1$$

$$z = wx + b$$
$$y = \sigma(z)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Structured Way of Computing Gradients

Computing the gradients:

$$\frac{\partial \mathcal{L}}{\partial y} = (y - t)$$
$$\frac{\partial \mathcal{L}}{\partial z} = \frac{\partial \mathcal{L}}{\partial y} \sigma'(z)$$

$$\frac{\partial \mathcal{L}}{\partial w} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z} \frac{\mathrm{d}z}{\mathrm{d}w} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z} x \qquad \qquad \frac{\partial \mathcal{L}}{\partial b} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z} \frac{\mathrm{d}z}{\mathrm{d}b} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}z} 1$$

$$z = wx + b$$
$$y = \sigma(z)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Error Signal Notation

- · Let \overline{y} denote the derivative $\mathrm{d}\mathcal{L}/\mathrm{d}y$, called the **error signal**.
- Error signals are just values our program is computing (rather than a mathematical operation).

Computing the loss:

$$z = wx + b$$
$$y = \sigma(z)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Computing the derivatives:

$$\overline{y} = (y - t)$$
 $\overline{z} = \overline{y} \sigma'(z)$
 $\overline{w} = \overline{z} x$
 $\overline{b} = \overline{z}$

Computation Graph has a Fan-Out > 1

L_2 -Regularized Regression

$$z = wx + b$$

$$y = \sigma(z)$$

$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

$$\mathcal{R} = \frac{1}{2}w^{2}$$

$$\mathcal{L}_{reg} = \mathcal{L} + \lambda \mathcal{R}$$

Computation Graph has a Fan-Out > 1

Softmax Regression

$$z_{\ell} = \sum_{j} w_{\ell j} x_{j} + b_{\ell}$$
$$y_{k} = \frac{e^{z_{k}}}{\sum_{\ell} e^{z_{\ell}}}$$
$$\mathcal{L} = -\sum_{k} t_{k} \log y_{k}$$

Multi-variate Chain Rule

Suppose we have functions f(x,y), x(t), and y(t).

$$\frac{\mathrm{d}}{\mathrm{d}t}f(x(t),y(t)) = \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}$$

Example:

$$f(x,y) = y + e^{xy}$$

$$x(t) = \cos t$$

$$df = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

$$y(t) = t^2$$

$$= (ye^{xy}) \cdot (-\sin t) + (1 + xe^{xy}) \cdot 2t$$

Multi-variate Chain Rule

In the context of back-propagation:

In our notation:

$$\bar{t} = \overline{x} \, \frac{\mathrm{d}x}{\mathrm{d}t} + \overline{y} \, \frac{\mathrm{d}y}{\mathrm{d}t}$$

Full Backpropagation Algorithm:

Let v_1, \ldots, v_N be a **topological ordering** of the computation graph (i.e. parents come before children.)

 v_N denotes the variable for which we're trying to compute gradients.

• forward pass:

For
$$i=1,\ldots,N$$
, Compute v_i as a function of Parents (v_i) .

· backward pass:

For
$$i = N - 1, \dots, 1$$
,
$$\bar{v_i} = \sum_{j \in \mathsf{Children}(v_i)} \bar{v_j} \frac{\partial v_j}{\partial v_i}$$

Backpropagation for Regularized Logistic Least Squares

$$z = wx + b$$

$$y = \sigma(z)$$

$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

$$\mathcal{R} = \frac{1}{2}w^{2}$$

$$\mathcal{L}_{reg} = \mathcal{L} + \lambda \mathcal{R}$$

Backward pass:

$$\overline{\mathcal{L}}_{reg} = 1$$

$$\overline{\mathcal{R}} = \overline{\mathcal{L}}_{reg} \frac{d\mathcal{L}_{reg}}{d\mathcal{R}} \qquad \overline{z} = \overline{y} \frac{dy}{dz}$$

$$= \overline{\mathcal{L}}_{reg} \lambda \qquad = \overline{y} \sigma'(z)$$

$$\overline{\mathcal{L}} = \overline{\mathcal{L}}_{reg} \frac{d\mathcal{L}_{reg}}{d\mathcal{L}} \qquad \overline{w} = \overline{z} \frac{\partial z}{\partial w} + \overline{\mathcal{R}} \frac{d\mathcal{R}}{dw}$$

$$= \overline{\mathcal{L}}_{reg} \qquad = \overline{z} x + \overline{\mathcal{R}} w$$

$$\overline{y} = \overline{\mathcal{L}} \frac{d\mathcal{L}}{dy} \qquad \overline{b} = \overline{z} \frac{\partial z}{\partial b}$$

$$= \overline{\mathcal{L}} (y - t)$$

Backpropagation for Two-Layer Neural Network

Forward pass:

$$z_{i} = \sum_{j} w_{ij}^{(1)} x_{j} + b_{i}^{(1)}$$

$$h_{i} = \sigma(z_{i})$$

$$y_{k} = \sum_{i} w_{ki}^{(2)} h_{i} + b_{k}^{(2)}$$

$$\mathcal{L} = \frac{1}{2} \sum_{i} (y_{k} - t_{k})^{2}$$

Backward pass:

$$\overline{\mathcal{L}} = 1$$

$$\overline{y_k} = \overline{\mathcal{L}} (y_k - t_k)$$

$$\overline{w_{ki}^{(2)}} = \overline{y_k} h_i$$

$$\overline{b_k^{(2)}} = \overline{y_k}$$

$$\overline{h_i} = \sum_k \overline{y_k} w_{ki}^{(2)}$$

$$\overline{z_i} = \overline{h_i} \sigma'(z_i)$$

$$\overline{w_{ij}^{(1)}} = \overline{z_i} x_j$$

$$\overline{b_i^{(1)}} = \overline{z_i}$$

Backpropagation for Two-Layer Neural Network

In vectorized form:

Forward pass:

$$\mathbf{z} = \mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}$$
$$\mathbf{h} = \sigma(\mathbf{z})$$
$$\mathbf{y} = \mathbf{W}^{(2)}\mathbf{h} + \mathbf{b}^{(2)}$$
$$\mathcal{L} = \frac{1}{2}\|\mathbf{t} - \mathbf{y}\|^{2}$$

Backward pass:

$$\overline{\mathcal{L}} = 1$$

$$\overline{\mathbf{y}} = \overline{\mathcal{L}} (\mathbf{y} - \mathbf{t})$$

$$\overline{\mathbf{W}^{(2)}} = \overline{\mathbf{y}} \mathbf{h}^{\top}$$

$$\overline{\mathbf{b}^{(2)}} = \overline{\mathbf{y}}$$

$$\overline{\mathbf{h}} = \mathbf{W}^{(2) \top} \overline{\mathbf{y}}$$

$$\overline{\mathbf{z}} = \overline{\mathbf{h}} \circ \sigma'(\mathbf{z})$$

$$\overline{\mathbf{W}^{(1)}} = \overline{\mathbf{z}} \mathbf{x}^{\top}$$

$$\overline{\mathbf{b}^{(1)}} = \overline{\mathbf{z}}$$

Computational Cost

 Computational cost of forward pass: one add-multiply operation per weight

$$z_i = \sum_j w_{ij}^{(1)} x_j + b_i^{(1)}$$

 Computational cost of backward pass: two add-multiply operations per weight

$$\overline{w_{ki}^{(2)}} = \overline{y_k} h_i$$

$$\overline{h_i} = \sum_k \overline{y_k} w_{ki}^{(2)}$$

- · One backward pass is as expensive as two forward passes.
- For a multilayer perceptron, this means the cost is linear in the number of layers, quadratic in the number of units per layer.

Backpropagation

- The algorithm for efficiently computing gradients in neural nets.
- Gradient descent with gradients computed via backprop is used to train the overwhelming majority of neural nets today.
- We need to be careful with network initialization (should not set all weights = 0)
- Even optimization algorithms fancier than gradient descent (e.g. second-order methods) use backprop to compute the gradients.
- Despite its practical success, backprop is believed to be neurally implausible.

Autodiff

Auto-Differentiation

- Suppose we construct our networks out of a series of "primitive" operations (e.g., add, multiply) with specified routines for computing derivatives.
- Automatic-differentiation enables the creation of programs to perform backprop in a mechanical and automatic way.
- · Many autodiff libraries: PyTorch, Tensorflow, Jax, etc.
- While autodiff automates the backward pass for you, it's still important to know how things work under the hood.
- We'll learn the basics of how such libraries work under the hood and cover and walk through Autodidact (a simplified numpy-based autograd library)
- · https://github.com/mattjj/autodidact/tree/master

Starting simple

- · Autograd is *not* finite differences:
 - 1. Finite differences are expensive (need two function evaluations per element of the gradient)
 - 2. Has numerical errors that can propagate if used for gradient-based learning
- The goal of autograd is build a program that for any given function, calculates the gradient with respect to some subset of inputs (we can think of parameters of a model as inputs to a function)

Gradient computation

- · Let \overline{y} denote the derivative $\mathrm{d}\mathcal{L}/\mathrm{d}y$, called the **error signal**.
- Error signals are just values our program is computing (rather than a mathematical operation).

Computing the loss:

$$z = wx + b$$
$$y = \sigma(z)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

Computing the derivatives:

$$\overline{\mathcal{L}} = 1$$

$$\overline{y} = (y - t)$$

$$\overline{z} = \overline{y} \sigma'(z)$$

$$\overline{w} = \overline{z} x \qquad \overline{b} = \overline{z}$$

Reframing program into primitive operations

 We can always break up a program into a set of primitive operations or atomic units (rather than a mathematical operation).

Primitive Operations:

Original program:

$$z = wx + b$$
$$y = \sigma(z)$$
$$\mathcal{L} = \frac{1}{2}(y - t)^{2}$$

$$t_1 = wx$$

$$z = t_1 + b$$

$$t_3 = -z$$

$$t_4 = \exp(t_3)$$

$$t_5 = 1 + t_4$$

$$y = \frac{1}{t_5}$$

$$t_6 = y - t$$

$$t_7 = t_6^2$$

$$\mathcal{L} = t_7/2$$

Computation as a graph

Using computation graphs to trace computation

- The evaluation of any function can be represented as a computation graph over primitive operations.
- By traversing the graph in topological order we can represent the evaluation of the function.
- Each node is then annotated with a gradient operation with computes a local gradient with special routines.
- Enables us to do backprop mechanically.

Computing gradients

Discuss: how would you create a program for autodiff?

Using computation graphs to trace computation

- Autodiff systems build the computation graph to evaluate a function.
- They create wrappers around the original numpy functions that have, for each function, a gradient operator defined.
- e.g. Node class in tracer.py (https://github.com/mattjj/ autodidact/blob/master/autograd/tracer.py)
 represents a node using the following attributes:
 - value: the value computed on a given set of inputs
 - ► fun: the operation defining the node
 - ► args & kwargs: the arguments to pass into the op
 - ▶ parents, parent Node
- During the forward pass, the value is kept track of internally so that on the backward pass the gradient function of the corresponding node can be called.

Building computation graphs under the hood

• Autograd's system create primitive ops that simulate the desired mathematical operation but implicitly build a graph.

Example graph for a small program

```
def logistic(z):
    return 1. /(1. + np.exp(-z))
# that is equivalent to:
def logistic2(z):
    return np.reciprocal(np.add(1, np.exp(np.negative(z))))
z = 1.5
y = logistic(z)
   node z
                              node t1
                                                         node t2
                                                                                   node t3
                                                                                                           node v
 value: 1.5
                           value: -1.5
                                                                               value: 1.223
                                                                                                       value: 0.818
                                                      value: 0.223
 function: None
                           function: negative
                                                      function: exp
                                                                               function: add
                                                                                                       function: reciprocal
 parents: II
                           parents: [z]
                                                      parents: [t1]
                                                                               parents: [t2]
                                                                                                       parents: [t3]
```

Vectorizing gradient operations

The Jacobian is a matrix of partial derivatives

$$\mathbf{J} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_m}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_n} \end{pmatrix}$$

- For a given node that computes $\mathbf{y}=f(\mathbf{x})$ we can write down the gradient of some downstream loss with respect to \mathbf{x} as: $\overline{x_j}=\sum_i \overline{y_i} \frac{\partial y_i}{\partial x_j}$
- \cdot This can be vectorized as $\overline{\mathbf{x}} = \overline{\mathbf{y}}^{\mathbf{T}}\mathbf{J}$
- \cdot As a column vector we obtain: $\overline{\mathbf{x}} = \mathbf{J}^{\mathbf{T}}\overline{\mathbf{y}}$

Vectorizing gradient operations

Matrix-vector product

$$\mathbf{z} = \mathbf{W}\mathbf{x} \qquad \mathbf{J} = \mathbf{W} \qquad \overline{\mathbf{x}} = \mathbf{W}^T\overline{\mathbf{z}}$$

· Elementwise operations

$$\mathbf{y} = \exp(\mathbf{z}) \; \mathbf{J} = \begin{pmatrix} \exp(z_1) & 0 & \cdots & 0 \\ 0 & \exp(z_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \exp(z_n) \end{pmatrix} \; \tilde{\mathbf{z}} = \exp(\mathbf{z}) \odot \bar{\mathbf{y}}$$

Vector-Jacobian Products

- Every primitive operation, y = f(x) in the autograd framework has a defined Vector Jacobian Product function.
- Each vjp is a function.
- · Input: (Output gradient \overline{y} , Arguments: x,y), Output: \overline{x}
- · defvjp (in core.py) is a routine for registering VJPs (a dict)

Putting it all together

- We can write down a computation graph for evaluating the loss function.
- Each node represents computation of an output as a function of the input.
- For each node, we can write down a local gradient operation for the loss with respect to the input; this can be expressed as a Vector-Jacobian product.
- Step 1: compute a forward pass to accumulate values in each node
- Step 2: run a backward pass to accumulate gradients at each node and pass the back to their parents recursively
- · Take a gradient step and repeat!

Backward pass

• Defined in core.py, g is the error signal for the end node (1 in our case).

```
def backward_pass(g, end_node):
    outgrads = {end node: g}
    for node in toposort(end_node):
        outgrad = outgrads.pop(node)
        fun, value, args, kwargs, argnums = node.recipe
        for argnum, parent in zip(argnums, node.parents):
            vjp = primitive_vjps[fun][argnum]
            parent grad = vjp(outgrad, value, *args, **kwargs)
            outgrads[parent] = add_outgrads(outgrads.get(parent), parent_grad)
    return outgrad
def add outgrads(prev q, q);
    if prev q is None:
        return a
    return prev_g + g
```

Backward pass

 grad (in differential_operators.py) is a wrapper around make_vjp which builds the computational graph and feeds it to backward_pass.

```
def make_vjp(fun, x):
    """Trace the computation to build the computation graph, and return
    a function which implements the backward pass."""
    start node = Node.new root()
    end_value, end_node = trace(start_node, fun, x)
    def vip(a):
        return backward_pass(g, end_node)
    return vjp, end_value
def grad(fun, argnum=0):
    def gradfun(*args, **kwargs):
        unary_fun = lambda x: fun(*subval(args, argnum, x), **kwargs)
        vjp, ans = make_vjp(unary_fun, args[argnum])
        return vjp(np.ones_like(ans))
    return gradfun
```

Recap

- Learned how to manually and programmatically build tools to calculate gradients in computational flow graphs.
- You have the knowledge to build your own neural network know and know exactly whats happening under the hood.
- In CSC413: You will have twelve weeks of learning about different kinds of neural networks, each of them can be thought of as a function with an underlying computational flow graph.
- Autograd is the backbone that enables us to take gradients with respect to all of them to learn via SGD!