Chladni Plate Inspired Benchmark

1 Introduction

Chladni plates produce beautiful patterns when excited by a vibrating source. These patterns result from 2D standing waves, visualized by pouring sand on the plate.

2 Mathematical Model

The 2D wave equation for the transverse displacement u(x,y,t) is given by:

$$\frac{\partial^2 u}{\partial t^2} + \gamma \frac{\partial u}{\partial t} = \nu^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + S(x, y, t), \tag{1}$$

where:

• γ : Damping constant,

- ν : Transverse wave speed,
- S(x, y, t): Driving force.

The driving force S(x, y, t) is initially modeled as:

$$S(x, y, t) = s_0 \,\delta\left(x - \frac{L}{2}\right) \,\delta\left(y - \frac{M}{2}\right) \,\cos(\omega t),\tag{2}$$

where δ is the Dirac delta function, s_0 is the source amplitude, and ω is the driving frequency.

2.1 Boundary and Initial Conditions

• Boundary Conditions (Neumann):

$$\frac{\partial u}{\partial n} = 0$$
 on all edges, (3)

which signifies zero normal slope (a "free edge" condition).

• Initial Conditions:

$$u(x, y, 0) = 0, \quad \frac{\partial u(x, y, 0)}{\partial t} = 0,$$
 (4)

meaning the plate starts from rest.

3 Solution Procedure

The solution involves the following steps:

3.1 Step 1: Eigenvalues and Eigenfunctions

For a rectangular plate of dimensions $L \times M$ and Neumann boundary conditions, the spatial eigenfunctions and eigenvalues satisfy:

$$\phi_{mn}(x,y) = \cos\left(\frac{m\pi x}{L}\right)\cos\left(\frac{n\pi y}{M}\right), \quad \lambda_{mn} = \nu^2 \left[\left(\frac{m\pi}{L}\right)^2 + \left(\frac{n\pi}{M}\right)^2\right]. \tag{5}$$

3.2 Step 2: Fourier Transform

Apply the (spatial) Fourier transform in x and y to convert spatial derivatives into algebraic expressions.

3.3 Step 3: Laplace Transform

Use the Laplace transform in time to handle the time derivatives. In the Laplace domain, one obtains:

$$s^2 \tilde{U} + \gamma s \tilde{U} + \lambda_{mn} \tilde{U} = \tilde{S}(s). \tag{6}$$

3.4 Step 4: Solve for \tilde{U}

$$\tilde{U}(s) = \frac{\tilde{S}(s)}{s^2 + \gamma s + \lambda_{mn}}. (7)$$

3.5 Step 5: Inverse Laplace Transform

Take the inverse Laplace transform to recover the time-domain solution for each mode.

3.6 Step 6: Inverse Fourier Transform

Reconstruct the solution in physical space:

$$u(x, y, t) = \sum_{m,n} \frac{\phi_{mn}(x, y) \, \tilde{S}(s)}{\|\phi_{mn}\|^2 \left(s^2 + \gamma s + \lambda_{mn}\right)}.$$
 (8)

4 Random Forcing Fields for Data-Driven Benchmarks

While a single delta-source at (L/2, M/2) is common in classical derivations, certain data-driven or machine-learning applications require *many different* forcing fields as input. For instance, in *operator learning* (where we train a model to map an input function S(x, y) to an output solution u(x, y, t)), a single δ -function forcing is insufficient to explore a broad range of boundary phenomena.

4.1 Definition of the Random Forcing

Instead of

$$S(x, y, t) = s_0 \delta(x - \frac{L}{2}) \delta(y - \frac{M}{2}) \cos(\omega t),$$

we generate a more general, random multi-mode forcing of the form

$$S_k(x, y, t) = \sum_{m=1}^{M_{\text{max}}} \sum_{n=1}^{N_{\text{max}}} \alpha_{mn}^{(k)} \cos\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi y}{M}\right) f(t), \tag{9}$$

where:

- $\alpha_{mn}^{(k)}$ are $randomly\ sampled$ coefficients for the k-th forcing realization,
- M_{max} , N_{max} specify how many modes we include,
- f(t) is some chosen time dependence (e.g., $\cos(\omega t)$ or a more complex function).

4.2 Motivation for Random Forcing

By introducing many different forcing patterns $S_k(x, y, t)$:

- We can generate training datasets for operator-learning or surrogate models, which learn a mapping $S(\cdot, \cdot) \mapsto u(\cdot, \cdot, t)$.
- This approach provides a broad set of input-output *examples*, better reflecting real-world scenarios where the driving force is not always localized at a single point.
- It allows us to explore how the plate responds to diverse spatial forcing fields, building a more generalizable model of the plate dynamics.