

CONTENTS

인공지능의 역사

AI - ML - DL

02-1 인공지능이란?

02-2 머신러닝(Machine Learning) 이란?

02-3 딥러닝(Deep Learning) 이란?

01 인공지능의 역사

인공지능, 머신러닝, 딥러닝의 역사

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

인공지능의 시작

기계 지능의 개념에 관한 독창적인 논문들

매컬러(Warren McCulloch)

- 신경 행동에서 내재적 사고의 논리적 계산

튜링(Alan Turing)

- 기계와 지능의 계산

리클라이더(J.C.R. Licklider)

- 인간과 컴퓨터의 공생

인공지능의 시작

앨런 매티슨 튜링

- 수학자, 암호학자, 논리학자
- 튜링기계
- 튜링테스트
- 튜링상
- 컴퓨터 과학(Computer Science)의 아버지

인공지능의 겨울 (Al Winter)

- 크게 1974-1980년 그리고 1987-1993년 시기를 말함.
- 1970-75: 국방위 연구및 프로젝트 기관의 실망과 비판 DARPA's
 (Defense Advanced Research Projects Agency) frustration
- 1980s 동시에 머신러닝이 등장하기 시작함.

머신러닝의 시작

1959년, <u>아서 사무엘</u>은 기계 학습을 "기계가 일일이 코드로 명시하지 않은 동작을 데이터로부터 학습하여 실행할 수 있도록 하는 알고리즘을 개발하는 연구 분야"라고 정의하였다.

Arthur Samuel plays checkers with an IBM 704 computer in Poughkeepsie, New York

인공지능의 역사

머신러닝/딥러닝의 역사 (1980s - 2010s)

- 1979 스탠포드 대학의 학생들은 자체적으로 방의 장애물을 탐색 할 수있는 "스탠포드 카트"를 발명
- 1985 Terry Sejnowski는 아기가
 말하는것과 같은 방식으로 단어 발음을
 배우는 NetTalk를 발명
- 1997 IBM의 Deep Blue가 체스에서 세계 챔피언을 이김

머신러닝/딥러닝의 역사 (1980s - 2010s)

- 2006 Geoffrey Hinton은 컴퓨터가 이미지와 비디오의 대상과 텍스트를 볼 수있게 해주는 새로운 알고리즘을 설명하기 위해 "Deep Learning"이라는 용어를 사용.
- 2010 Microsoft MSFT + 0 % Kinect는
 초당 30 회의 속도로 20 개의 인간
 기능을 추적 할 수 있으므로 사람들은
 동작 및 동작을 통해 컴퓨터와 상호
 작용을 함.
- 2011 IBM의 Watson은 Jeopardy에서
 인간을 이김.

02 AI - ML - DL 인공지능-머신러닝-딥러닝

AI - ML - DL

Artificial Intelligence

인공지능

사고나 학습등 인간이 가진 지적 능력을 컴퓨터를 통해 구현하는 기술

Machine Learning

머신러닝

컴퓨터가 스스로 학습하여 인공지능의 성능을 향상 시키는 기술 방법

Deep Learning

딥러닝

인간의 뉴런과 비슷한 인공신경망 방식으로 정보를 처리

인공지능에는 어떤것들이 있나?

- 자연어처리 (NLP Natural language processing)
- *머신러닝 (Machine Learning)
- 로보틱 (Robotics) 스마트 자동차(무인 자동차), 스마트 팩토리, 스마트 홈...
- 비전 (Vision) 컴퓨터 비전(Image recognition)
- Speech speech to text, text to speech, translation

인공지능의 종류 - 약/강 (바로 이전과는 다른 의미로 정의)

약 인공지능(Weak AI)

- 유사표현 : 협소적 Narrow 인공지능
- 인간의 구현을 목적으로 하는 것이 아니며 기존의 인간 지능으로만 가능하던 작업의 일부를 컴퓨터로 수행하게 만드는 것
 - 정해진 틀에서 특정 업무만 수행
 - 예측과 관리가 수월
- 현재까지 인간이 만들어낸 거의 대부분(전부?)의 인공지능은 약 인공지능

인공지능의 종류 - 약/강

약 인종지능(Weak AI)의 예

• 자동 주차관리 시스템, 얼굴인식 출입 시스템

출처 : alibaba.com

인공지능의 종류 - 약/강

강 인공지능(Strong Al)

- 유사표현: 범용 인공지능, 인공 의식
- 인간의 지성 전체를 컴퓨터의 정보처리능력으로 구현했거나 구현하는 것을 목적으로 한 시스템
- 인간처럼 이성적/감성적으로 사고하고 판단하는 시스템
 - 규칙성을 벗어나 능동적으로 학습 가능

인공지능의 종류 - 약/강

<u>강 인공지능(Strong AI) 예?</u>

• 로봇 강아지는 감정이 있을까?

AI - ML - DL

AI관련 회사 외부투자

Forbes.com

2016년 기준

단위: \$billion

(1조1300억원)

출처: Capital IQ; Pitchbook; Dealogic; McKinsey Global Institute analysis

02

02-1 인공지능이란?

Data Mining, Data Science, Big Data

- 데이터 마이닝 통계적 규칙이나 패턴
- 데이터 과학 통계학,수학, 프로그래밍, 데이터

지도학습 (Supervised Learning)

- 회귀분석 (Regression)
- 분류 (Classification)

비지도학습(자율학습) (Unsupervised Learning)

- 군집화 (Clustering)
- 차원축소 (Dimensionality Reduction)

강화훈련 (Reinforcement Learning)

지도학습

- -회귀분석
- -분류

비지도학습 (자율학습)

- -군집화
- -차원축소

강화훈련

머신러닝과 지도학습

학습단계 : 문제와 정답을 이용하여 규칙을 파악

예측단계 : 새로운 문제에 규칙을 적용하여 답을 예측

By Tom Dietterich

출처 : times.postech.ac.kr/news/articleView.html?idxno=7746

지도학습 (Supervised Learning)

지도 학습(Supervised Learning)은 데이터에 대한 레이블(Label)-명시적인 정답-이 주어진상태에서 컴퓨터를 학습시키는 방법이다.

즉, [데이터(data), 레이블(label)] 형태로 학습을 진행하는 방법이다.

대표적으로 **분류(Classification)**와 **회귀(Regression)**가 있다.

분류 (Classification)

사과 사진과 오렌지 사진

(데이터) 오렌지색 40% 와 연두색 60% => (레이블) 사과 (데이터) 오렌지색 90% 와 연두색 10% => (레이블) 오렌지

바나나 사진은?

회귀 (Regression)

Small size = \$70,000

Large size = \$160,000

Medium size = \$120,000

위치, 학군, 방#, 층...

비지도학습 (Unsupervised Learning)

비지도 학습(Supervised Learning)은 데이터에 대한 레이블(Label)-명시적인 정답-이 안 주어진상태에서 컴퓨터를 학습시키는 방법이다.

비지도 학습은 데이터의 숨겨진(Hidden) 특징(Feature)이나 구조를 발견하는데 사용된다.

군집화(Clustering)가 가장 큰 예이다.

강화학습 (Reinforcement Learning)

행동심리학에서 영감을 받았으며, 어떤 환경 안에서 정의된 에이전트가 현재의 상태를 인식하여, 선택 가능한 행동들 중 보상을 최대화하는 행동 혹은 행동 순서를 선택하는 방법이다.

강화학습 (Reinforcement Learning)

딥러닝 (Deep Learning)

다층 신경망의 계산 (Computation of multi-layer neural network)

인공신경망

(Artificial Neural Network; ANN)

딥러닝의 예측 수준

MNIST 데이터 베이스 미국표준국
(NIST)

출처: 기계학습(오일석)

딥러닝의 예측 수준

예측이 틀린 23개의 데이터 확인

ر 3 ع	5 5 3 5	5 3 5	3 8	د 9 4 9	6 5	9 4	0 8	3 5	9 4
6 6	8 6	7 2	5 3	2 7	4 7 4	J 7	ا ک ع	7 2	7 4
1 6 1 6	1 6	6 5							
	예측집	사 예측	값 정	답			출처 : arxi	v.org/pdf/1	202.2745.p

KOREATECH 한국기술교육대학교

딥러닝 (Deep Learning) 3가지 성공요인

- 1. 비지도학습 방법을 이용한 전처리과정 (Pre-processing)
 - 군집화 -> 특히 함을 보이는 것들은 과감히 무시하는 알고리즘
- 2. **컨볼루셔널** 뉴럴 네트워크 (Convolutional Neural Network)
 - / before: 특징지도(feature map) 사람 / 학습 알고리즘
 - after: 특징지도 + 학습 포함시킨 알고리즘.
- 3. **리커런트** 뉴럴 네트워크 (Recurrent Neural Network)
 - 매 순간 인공신경망 구조를 쌓아올림.

Reference

https://www.datasciencecentral.com/profiles/blogs/artificial-intelligence-vs-machine-learning-vs-deep-learning

https://en.wikipedia.org/wiki/Arthur Samuel

https://www.forbes.com/sites/bernardmarr/2016/02/19/a-short-history-of-machine-learning-every-manager-should-rea

d/#2f803ca115e7

http://tobetong.com/?p=9393&ckattempt=1

https://www.alibaba.com/product-detail/ANPR-no-stop-hand-free-automatic 60612355438.html

http://news.chosun.com/site/data/html_dir/2011/08/10/2011081000126.html

비정형데이터분석_9회차_인공지능의 개념

https://dataconomy.com/2015/01/whats-the-difference-between-supervised-and-unsupervised-learning

