Otimização de Hiperparâmetros

Que bom que vocês chegaram até aqui :) Espero que a jornada de evolução do curso esteja sendo positiva!

No tópico de hoje, falaremos sobre otimização de hiperparâmetros! Mas, antes, que tal darmos uma relembrada?

. . .

O que são hiperparâmetros?

Para a aula de hoje, vamos pegar uma regressão ElasticNet como exemplo:

```
from sklearn.linear_model import ElasticNet
```

E vamos, também, utilizar um dataset de exemplo:

```
from sklearn.datasets import fetch_california_housing
import numpy as np

dataset = fetch_california_housing()
dataset_features = dataset["data"]
target = dataset["target"]
feature_names = dataset["feature_names"]
target_name = dataset["target_names"]

dataset = pd.DataFrame(
    np.hstack((dataset_features, target.reshape(-1, 1))),
    columns=np.hstack((feature_names, target_name)),
)
dataset.head()
```

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedHouseVal
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23	4.526
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	3.585

2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	3.521
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	3.413
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	3.422

Primeiras 5 linhas do california housing dataset

Agora, vamos separar nossos dados em treino e teste e fitar o modelo

```
dataset = fetch_california_housing()
dataset_features = dataset["data"]
target = dataset["target"]
feature_names = dataset["feature_names"]
target_name = dataset["target_names"]

dataset = pd.DataFrame(
    np.hstack((dataset_features, target.reshape(-1, 1))),
    columns=np.hstack((feature_names, target_name)),
)
dataset.head()
```

Agora, vamos separar nossos dados em treino e teste e fitar o modelo

```
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean squared error
sc features = StandardScaler()
sc target = StandardScaler()
X train, X test, y train, y test = train test split(
    dataset[feature names], dataset[target_name], random_state=42
X train = sc features.fit transform(X train)
X test = sc features.transform(X test)
y train = sc target.fit transform(y train.values.reshape(-1, 1))
y test = sc target.transform(y test.values.reshape(-1, 1))
def execute train and compute metric (
   params={},
   X train=X train,
   X test=X test,
    y train=y train,
   y test=y test,
   metric func=mean squared error,
):
   model = ElasticNet(random state=42, **params)
   model.fit(X train, y train)
    metric result = metric func(
        sc target.inverse transform(y test),
        sc target.inverse transform(model.predict(X test)),
```

```
return metric_result

metric_result = execute_train_and_compute_metric()
metric_result
```

Obtemos o valor de 1.1165348335795664!

Perceba que *execute_train_and_compute_metric* é uma função e que será utilizada em vários momentos aqui

Agora, como vimos em aulas passadas, podemos acessar os parâmetros **aprendidos** pelo modelo:

```
model_trainded = ElasticNet(random_state=42)
model_trainded.fit(X_train, y_train)
coefs = pd.DataFrame(
    sc_features.inverse_transform(model_trainded.coef_),
    columns=["Coefficients"],
    index=feature_names,
)
intercept = pd.DataFrame(
    model_trainded.intercept_, columns=["Coefficients"], index=
["Intercept"]
)
pd.concat([coefs, intercept])
```

1:

Coefficients

Medinc	4.117799e+00
HouseAge	2.859599e+01
AveRooms	5.435598e+00
AveBedrms	1.096881e+00
Population	1.427497e+03
AveOccup	3.106660e+00
Latitude	3.564672e+01

Longitude -1.195837e+02

Intercept 5.835789e-17

Como podemos ver, esses coeficientes foram **aprendidos** pelo modelo. Chamamos isso de **parâmetros** do modelo. Contudo se olharmos as variáveis da classe *ElasticNet*, temos o seguinte:

```
- alpha : float, default = 1.0
```

Constant that multiplies the penalty terms. Defaults to 1.0. See the notes for the exact mathematical meaning of this parameter. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class: `LinearRegression` object. For numerical reasons, using ``alpha = 0`` with the ``Lasso`` object is not advised. Given this, you should use the :class: `LinearRegression` object.

```
- l1_ratio : float, default=0.5
```

The ElasticNet mixing parameter, with `` $0 \le 1_{\text{ratio}} \le 1$ ``. For `` $1_{\text{ratio}} = 0$ `` the penalty is an L2 penalty. ``For $1_{\text{ratio}} = 1$ `` it is an L1 penalty. For `` $0 < 1_{\text{ratio}} < 1$ ``, the penalty is a combination of L1 and L2.

Como podemos ver, alpha e li_ratio são **parâmetros da classe** e recebem os valores 1.0 e 0.5 como *default*. Logo, o que acontece se alterarmos esse valores?

```
metric_result = execute_train_and_compute_metric(
    params={"alpha": 10.0, "l1_ratio": 0.3}
)
metric result
```

Obteremos o valor de 1.3232694135654075. Em outras palavras, podemos ver que ao alterar os valores, o nosso resultado muda! Acontece que alpha e ll_ratio são

parâmetros que **não** são aprendidos pelo modelo, mas que influenciam o resultado do treinamento. Damos a eles o nome de **hiperparâmetros**.

Logo, a pergunta a pergunta a ser feita seria a seguinte:

Ora, então como que eu encontro os **melhores** hiperparâmetros para o problema que eu estou enfrentando?

Felizmente, existem métodos que nos ajudam nisso:)

GridSearch

A primeira técnica é meio direta:

```
- Como em muitos casos o número de parâmetros tem um domínio contínuo, podemos determinar *um subconjunto* para testarmos
```

- Iteramos sobre todo esse subconjunto através de uma validação cruzada (para evitar overfitting) e escolhemos o melhor com base na métrica resultante

Esse método é conhecido como GridSearch

```
from sklearn.model selection import GridSearchCV
tuned parameters = [{"alpha": [0.3, 1.0, 5.0, 10.0], "l1 ratio":
[0.0, 0.3, 0.5, 1.0]
score = "r2"
print(f"# Tuning hyper-parameters for {score}" )
print()
clf = GridSearchCV(ElasticNet(random state=42), tuned parameters,
scoring=score)
clf.fit(X train, y train)
print("Best parameters set found on development set:")
print(clf.best params )
print()
print("Grid scores on development set:")
print()
means = clf.cv results ["mean test score"]
stds = clf.cv results ["std test score"]
for mean, std, params in zip(means, stds,
clf.cv results ["params"]):
    print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params))
print()
```

```
# Tuning hyper-parameters for r2
Best parameters set found on development set:
{'alpha': 0.3, 'll ratio': 0.0}
Grid scores on development set:
0.515 (+/-0.008) for {'alpha': 0.3, 'l1 ratio': 0.0}
0.457 (+/-0.007) for {'alpha': 0.3,
                                    'll ratio': 0.3}
0.428 (+/-0.006) for {'alpha': 0.3,
                                    'l1 ratio': 0.5}
0.384 (+/-0.005) for {'alpha': 0.3, 'l1 ratio': 1.0}
0.394 (+/-0.006) for {'alpha': 1.0,
                                    'll ratio': 0.0}
0.262 (+/-0.003) for {'alpha': 1.0, 'l1 ratio': 0.3}
0.157 (+/-0.005) for {'alpha': 1.0,
                                    'l1 ratio': 0.5}
-0.001 (+/-0.001) for {'alpha': 1.0, 'l1 ratio': 1.0}
0.160 (+/-0.003) for {'alpha': 5.0, 'll ratio': 0.0}
-0.001 (+/-0.001) for {'alpha': 5.0, 'l1 ratio': 0.3}
-0.001 (+/-0.001) for {'alpha': 5.0,
                                     'l1 ratio': 0.5}
-0.001 (+/-0.001) for {'alpha': 5.0, 'l1 ratio': 1.0}
0.091 (+/-0.001) for {'alpha': 10.0, 'l1 ratio': 0.0}
-0.001 (+/-0.001) for {'alpha': 10.0, 'l1 ratio': 0.3}
-0.001 (+/-0.001) for {'alpha': 10.0, 'l1 ratio': 0.5}
-0.001 (+/-0.001) for {'alpha': 10.0, 'l1 ratio': 1.0}
CPU times: user 6.88 s, sys: 52.4 ms, total: 6.94 s
Wall time: 1.76 s
```

No caso, vemos que a melhor combinação aqui foram alpha =0.3 e 11 ratio =0.0

```
metric_result = execute_train_and_compute_metric(
   params={"alpha": 0.3, "l1_ratio": 0.0}
)
metric_result
```

Obtemos o resultado de 0.6429909650973414:)

Lembrando que nossa métrica de referência foi MSE, conseguimos um modelo bem superior! Contudo, já podemos perceber alguns problemas:

- Formar uma lista de valores pode ser meio complicada, principalmente quando os valores podem variar de $-\infty$ a ∞
- A iteração pode ser custosa e levar algum tempo. No caso da ElasticNet só temos dois hiperparâmetros, mas pense no caso da RandomForest que tem os seguintes hiperparâmetros:

```
n_estimators=,
criterion=',
max_depth=,
min_samples_split=,
min_samples_leaf=,
min_weight_fraction_leaf=,
max_features=,
max_leaf_nodes=,
min_impurity_decrease=,
min_impurity_split=,
bootstrap=
```

Será que conseguimos fazer melhor?

RandomSearch

Uma outra forma de fazer a busca de hiperparâmetros seria definir uma distribuição e deixar a busca fazer amostras com base nessas distribuições.

```
from sklearn.model selection import RandomizedSearchCV
tuned parameters = [
    {"alpha": np.logspace(-2, 2, num=100), "l1 ratio":
np.logspace(-3, 0, num=100)}
1
score = "r2"
print(f"# Tuning hyper-parameters for {score}")
print()
clf = RandomizedSearchCV(
    ElasticNet(random state=42), tuned parameters, scoring=score,
random state=42
clf.fit(X train, y train)
print("Best parameters set found on development set:")
print(clf.best params )
print()
print("Grid scores on development set:")
```

```
print()
for mean, std, params in zip(means, stds,
clf.cv_results_["params"]):
    print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params))
print()
```

```
# Tuning hyper-parameters for r2
 Best parameters set found on development set:
 {'11 ratio': 0.1, 'alpha': 0.014508287784959394}
 Grid scores on development set:
 0.515 (+/-0.008) for {'ll_ratio': 0.13219411484660287, 'alpha': 8.111308307896872} 0.457 (+/-0.007) for {'ll_ratio': 0.06579332246575682, 'alpha': 0.02104904144512021} 0.428 (+/-0.006) for {'ll_ratio': 0.5336699231206312, 'alpha': 1.384886371393873}
 0.384 (+/-0.005) for {'l1_ratio': 0.572236765935022, 'alpha': 1.149756995397737}
 0.394 (+/-0.006) for {'l1_ratio': 0.010722672220103232, 'alpha': 2.0092330025650478}
 0.262 (+/-0.003) for {'ll_ratio': 0.093260334688322, 'alpha': 3.1992671377973845}
 0.157 (+/-0.005) for {'ll_ratio': 0.1, 'alpha': 0.014508287784959394}
 -0.001 (+/-0.001) for {'ll_ratio': 0.006135907273413176, 'alpha': 0.5994842503189411}
 0.160 (+/-0.003) for {'ll_ratio': 0.23101297000831603, 'alpha': 1.6681005372000592}
 -0.001 (+/-0.001) for {'ll_ratio': 0.004641588833612782, 'alpha': 22.570197196339215}
 CPU times: user 897 ms, sys: 22.9 ms, total: 920 ms
 Wall time: 241 ms
metric result = execute train and compute metric(
    params={"alpha": 0.1, "l1 ratio": 0.014508287784959394}
metric result
```

Conseguimos um resultado de 0.5742851327707377! Logo, um valor melhor do que o que o Gridsearch! Interessante, né? Mas qual o motivo disso?

Acontece que na prática, o RandomSearch consegue obter resultados do que o GridSearch por motivos que ficam mais claros pela figura abaixo

Fonte: https://blog.usejournal.com/a-comparison-of-grid-search-and-randomized-search-using-scikit-learn-29823179bc85

Contudo, podemos perceber que nos dois casos, nós, cientistas de dados que introduzimos os parâmetros e os valores que julgamos mais relevantes. Será que conseguimos fazer algo mais informativo?

. . .

Busca Bayesiana

Quando falamos de busca **Bayesiana** de parâmetros, é como se tratassemos essa busca como um problema de regressão e utilizamos inferência bayesiana para fazer "chutes" sobre qual seria o conjunto de parâmetros ideais.

Entender Inferência Bayesiana é um tópico avançado e não cabe aqui. Quem tiver interesse, recomendo esse paper, aqui ou aqui.

Para exemplificar, vamos supor que queremos estimar o valor do <code>ll_ratio</code>. A medida que vamos iterando no nosso processo de busca, a Busca Bayesiana faz chutes direcionados, tentando encontrar um equilíbrio entre <code>Explorar</code> (<code>Exploration</code>), ou seja, explorar valores novos e nunca vistos antes e <code>Usufruir</code> (<code>Exploitation</code>), que seria utilizar os valores que resultem no <code>melhor modelo possível</code>

Na prática, acontece algo como exemplificado pela imagem abaixo. Além disso, para quem quiser entender mais, usaremos essa lib, que possui uma ótima documentação!

- Uma função para maximizar. Nesse caso, queremos treinar o modelo e avaliar o resultado. No caso, iremos usar o r quadrado.
- Nossos parâmetros de acordo com um range

Aplicando em código:

```
from sklearn.metrics import r2_score
from bayes_opt import BayesianOptimization

def elastic_eval(alpha, l1_ratio):
    params = {"alpha": alpha, "l1_ratio": l1_ratio}
    metric_result = execute_train_and_compute_metric(
        params=params, metric_func=r2_score
    )
    return metric_result

# Bounded region of parameter space
pbounds = {
    "alpha": (0.01, 2),
    "l1_ratio": (0.001, 1),
}

optimizer = BayesianOptimization(f=elastic_eval, pbounds=pbounds, random_state=42)
```

Uma vez definido o otimizador que iremos maximizar, temos dois parâmetros de interesse para passar:

- *n_iter*: Quantas iterações de otimização bayesiana queremos fazer. Quanto mais melhor, apesar de durar mais.
- *init_points*: Quantos passos de exploração aleatória queremos fazer. Aqui, quanto mais, maior a chance de encontrarmos os valores ótimos.

```
optimizer.maximize(
    init_points=25,
    n_iter=5,
)
```

	iter	target	alpha	11_ratio
	1	-3.878e-0	0.7553	0.9508
ĺ	2	-3.878e-0	1.467	0.5991
Ì	3	0.4742	0.3205	0.1568
ĺ	4	0.4771	0.1256	0.8663
ĺ	5	-3.878e-0	1.206	0.7084
Ì	6	0.5269	0.05096	0.9699
	7	0.1765	1.667	0.2131
1	-	1 1		1 1

8	0.4521	0.3718	0.1842
9	0.3072	0.6154	0.5252
10	0.296	0.8696	0.2919
11	0.2807	1.228	0.1404
12	0.3522	0.5914	0.367
13	-3.878e-0	0.9176	0.7854
14	0.388	0.4074	0.5147
15	0.3364	1.189	0.0474
16	0.2697	1.219	0.1714
17	0.4654	0.1395	0.9489
18	-3.878e-0	1.932	0.8086
19	0.4142	0.6162	0.09857
20	0.06283	1.372	0.4407
21	0.447	0.2529	0.4957
22	0.4985	0.07843	0.9094
23	0.3125	0.525	0.6629
24	0.3024	0.6303	0.5205
25	0.2848	1.098	0.1857
26	0.5928	0.01	0.001
27	0.5937	0.01	0.2288
28	0.5944	0.01	0.483
29	0.5941	0.01	0.3647
30	0.5932	0.01	0.0985

resultados do optimzer.maximize

```
optimizer.max
{'target': 0.5943533266706624,
'params': {'alpha': 0.01, '11_ratio': 0.4829975346695592}}
```

Como nosso target era o R2, podemos calcular para o MSE para podermos comparar com o RandomSearch :)

Obtendo um resultado de 0.5367590223471562. Logo, melhor que o RandomSearch , que era de 0.5742851327707377

Busca Informada

Além de Processos Gaussianos, existem outros algoritmos que fazem uso de técnicas bayesianas ou fazem usos de informações para encontrar o hiperparâmetro ótimo. Para isso, utilizaremos a lib hyperopt . Novamente, não entrarei nos detalhes algoritmicos sobre como ela funciona. Quem quiser, pode ver mais detalhes aqui; aqui; e para os algoritmos aqui para o TPE, aqui e aqui para Simmulated Annealing e aqui para uma comparação.

Diferente do que vimos anteriormente, aqui queremos uma função para **minimizar**. Então, podemos utilizar o MSE

Além disso, também precisamos escolher como nossa distribuição será montada, semelhante a como vimos nos casos anteriores. Contudo, aqui, precisamos usar a API definida pela própria biblioteca. Aqui você encontra um ótimo detalhe de como cada uma das distribuições são definidas.

```
from hyperopt import fmin, tpe, hp, Trials, anneal
# inspired code at references
space = {
    "alpha": hp.normal("alpha", 0, 0.01),
    "l1 ratio": hp.loguniform("l1 ratio", -7, 0),
# trials will contain logging information
trials = Trials()
n iter = 100
best = fmin(
   execute train and compute metric,
   space,
   algo=tpe.suggest,
   max evals=n iter,
    rstate=np.random.RandomState(42), # fixing random state for the
reproducibility
)
metric result = execute train and compute metric(
   best
metric result
```

Aqui, obtemos um resultado de 0.535658473709299 e, caso, quiséssemos testar outro algoritmo, é só alterar o seguinte trecho:

```
best = fmin(
    execute_train_and_compute_metric,
    space,
    algo=anneal.suggest,
    max_evals=n_iter,
    rstate=np.random.RandomState(42),  # fixing random state for the
reproducibility
)

metric_result = execute_train_and_compute_metric(
    best
)
metric result
```

Obtendo o resultado de 0.5356638444618915.

Podemos ver, então, que tanto os resultados obtidos pelo hyperopt quanto pelo bayes_opt foram extremamente similares. Isso se deve porquê os três casos que analisamos utlizam alguma informação sobre a rodada anterior para fazer um próximo chute! Legal, né? :)

Conclusão

Que bom que você chegou até aqui! :)

O processo de escolha de hiperparâmetros é algo extremamente poderoso e pode nos ajudar *muito* quando queremos otimizar alguma métrica de interesse!

Referências e para saber mais:

- https://scikitlearn.org/stable/auto_examples/model_selection/plot_grid_search_digits.html#s phx-glr-auto-examples-model-selection-plot-grid-search-digits-py
- https://scikit-learn.org/stable/modules/grid_search.html#tuning-the-hyper-parameters-of-an-estimator
- https://blog.usejournal.com/a-comparison-of-grid-search-and-randomized-search-using-scikit-learn-29823179bc85 https://www.kaggle.com/clair14/tutorial-bayesian-optimization

- https://nbviewer.jupyter.org/github/Yorko/mlcourse.ai/blob/master/jupyter_eng lish/tutorials/hyperparameters_tunning_ilya_larchenko.ipynb
- https://www.kaggle.com/fanvacoolt/tutorial-on-hyperopt