

Authors

Student ID	Name	
IT16009400	Brayan Benett A.S	
IT16026544	Vinushanth K	
IT16034396	Sam Abisherk R	
IT16073399	Ranjitha L	

Supervisor : Mr. Amila Nuwan Senarathne

Co Supervisor : Mr. Kavinga Yapa Abeywardena

Introduction

- What are the information that matters?
- Importance of Mobile phones in day today life.
- Kaspersky Labs Statistics.
- Why android?

Global mobile OS market share in sales to end users from 1st quarter 2009 to 2nd quarter 2018 by www.statista.com

Research Components.

- Accidental Data Leakage Prevention
- Rogue Access point Detector
- Secure Bluetooth
- Secure Wi-Fi Direct

Accidental Data Leakage Prevention.

- What is a data leakage?
- How does it affects an Organization?
- How does it affects an Individual?
- What is an accidental Data leakage?

Existing Security Measures

- Detecting Data semantic: A data leakage prevention approach.
 - > Term Frequency-Inverse Document Frequency (TF-IDF) for text mining.
 - > Separate details into predefined topics.
 - ➤ Secrecy Level.
- Automatic detection of sensitive attribute.
 - > Suppress the data by data mining.
 - Query analysis.
- Sensitive data leakage detection in pre-installed applications of custom Android firmware.
 - > APK extractor
 - > APK analyzer
 - > Path matcher

Proposed Solution.

- Data Leakage prevention in the Keyboard Level.
- Detect sensitive data with the help of Machine Learning.
- Alert the user for possible leakage of sensitive data.

Rogue Access Point

- What is a Legitimate/Genuine Access Point?
- What is a Rogue Access Point ?
- Who Implements a RAP?
- What are the threats?

Fig. 2. Illustration of normal scenarios and evil twin scenarios. (a) Normal AP scenario; (b) evil twin AP scenario.

Existing Security measures.

- Hidden Markov Model.
 - Detection in end hosts.
 - Training the model
 - Monitor for Sample packets.

- Statistical Techniques.
 - No authorized access list required.
 - Best for those who travel most. Uses Trained Mean Matching (TMM) and Hop Differentiating Technique (HDT).

- CETAD : Detecting Evil Twin Access Point Attacks in Wireless Hotspots
 - Client end Evil Twin Access point Detector.
 - Compares the legitimate and Rogue AP's
 - Focuses mainly on data parameters to detect Rogue AP's

Research Gap

- Methods implemented already.
- No efficiency.
- No Android mobile platform accompanied detection of RAP.

Objectives

- Inbuilt RAP detector for mobile phones.
- At the point of connection.
- Validate details with help of machine learning.

Secure Bluetooth

What is Bluetooth?

- Exchange data between fixed and mobile devices over short distances using radio waves.
- Bluetooth is a strong, simple and cost-efficient technology
- Developed by Bluetooth Special Interest Group (SIG).
- Available in mobile phones, laptops, Speakers/Earphones, Personal Digital Assistant.
- Bluetooth versions 1, 1.1, 1.2, 2.0, 2.1, 3.0, 4.0, 4.1, 4.2, and 5

How Bluetooth works?

- Using short-range wireless exchange of communication between attached two gadgets together.
- Uses Frequency Hopping Spread Spectrum (FHSS)

Currently Available Security Measures

Protocol stacks defines the connectivity between devices according to the standards.

What are the vulnerabilities common to all Bluetooth versions?

Link keys are stored improperly.	Link keys can be read or modified by an attacker if they are not securely stored and protected via access controls.		
Strengths of the pseudo-random number generators (PRNG) are not known.	The Random Number Generator (RNG) may produce static or periodic numbers that may reduce the effectiveness of the security mechanisms. Bluetooth implementations should use strong PRNGs based on NIST standards.		
Encryption key length is negotiable.	The v3.0 and earlier specifications allow devices to negotiate encryption keys as small as one byte. Bluetooth LE requires a minimum key size of seven bytes. NIST strongly recommends using the full 128-bit key strength for both BR/EDR (E0) and LE (AES-CCM).		
No user authentication exists.	Only device authentication is provided by the specification. Application-level security, including user authentication, can be added via overlay by the application developer.		
End-to-end security is not performed.	Only individual links are encrypted and authenticated. Data is decrypted at intermediate points. End-to-end security on top of the Bluetooth stack can be provided by use of additional security controls.		
Security services are limited.	Audit, non-repudiation, and other services are not part of the standard. If needed, these services can be incorporated in an overlay fashion by the application developer.		
Discoverable and/or connectable devices are prone to attack.	Any device that must go into discoverable or connectable mode to pair or connect should only do so for a minimal amount of time. A device should not be in discoverable or connectable mode all the time.		

What are the Threats related to Bluetooth?

- Threats common to wireless connectivity
 - Eavesdropping
 - Denial of service
 - Impersonation
 - Man-in-the-middle
- Specific threats for Bluetooth connectivity
 - Bluesnarfing Any unauthorized access
 - Bluebugging Let them listen
 - Bluejacking Sends fake messages
 - Location tracking Discover the location
 - Key management Discovering the unit key

Proposed Mitigation Techniques

- Implanting a firewall in Bluetooth
 - Collect data set about malware files.
 - Defining machine learning algorithms.

- Monitor the incoming traffic for malicious files
- Alerting the user for Malicious connections and files.
- Securing outgoing files.
- Validating Bluetooth Devices.
 - Defining the Bluetooth Addresses.
- Maintaining the logs for all the activities done through Bluetooth channels.

Secure Wi-Fi Direct

- What is Wi-Fi Direct?
 - Communication between two devices to transfer file.
 - Works with Peer to Peer technology.

• How Wi-Fi direct establish connection with devices?

- Currently available security measures?
 - SAS(Short Authentication String)
 - WPA 2 (Wi-Fi Protected Access)

- How Wi-Fi direct affects in security of a mobile phone?
 - Accepts any kinds of files without any verification.
 - Two way transaction is possible without any restrictions.

- What we propose to implement in order to secure wi-fi direct
 - Implementing firewall. (behavior style ML)
 - Implement write block.
 - User accessible logs.

Pre-requirements

- Machine with Linux or Mac (64-bit environment): In order to compile Android
- Sandbox: It needs to be precaution to safeguard the running system from malwares as we have to work with malwares to get data set.
- Machine Running Windows 7 or latest: To run an emulator
- Android Emulator: To check for the capabilities and every build should be checked.
- Mobile Phone with Android OS: To check the customized ROM
- Network Simulator: In order to create fake access points.

Common objectives

- Ease of use
 - System level architecture to improvise user experiance.
- Minimal use of available resources.
 - New implementations must use minimal amount of resources.
- Analyzation of data
 - Use of available malware signature and behaviour for optimal data set.
- Knowledge acquisition
 - Giving the user full knowledge on the end product.
- Out of the box experience.
- Decrease the requirement of 3rd party apps.

Machine Learning Architecture.

- Collect Finalized Data Set.
- Preprocess.
- Use of multiple ML algorithms.
 - K-Nearest Neighbors
 - SVM
 - Naïve Bayes
 - Learning vector Quantization
- Result analysis.

	Current Mobiles with Android OS	Secure Mobile OS
Data Leakage Prevention Mechanism		✓
Bluetooth Connectivity	✓	✓
Bluetooth Logs		✓
Bluetooth Firewall		✓
Wireless Connection	✓	✓
Rogue Access point detector		✓
Wi-Fi Direct Logs		✓
Wi-Fi Direct Firewall		✓
Outgoing data manager		✓

Q&A

Thank You