Debugging and Profiling Lab

Carlos Rosales, Kent Milfeld and Yaakoub Y. El Kharma carlos@tacc.utexas.edu

Setup

- Login to Ranger:
 - ssh -X username@ranger.tacc.utexas.edu
- Make sure you can export graphics to your laptop screen:
 - xclock

If you do not see a clock, contact an instructor

- cd
- tar xvf ~train00/dbg_prof_2010.tar

- cd dbg prof 2010
- 1s

Overview

labs you should REALLY do

optional labs

DDT Lab

mpiP Lab

IPM Lab

Tau Lab

PerfExpert Lab

DEBUGGING LAB

Finding a deadlock with DDT

- In this example we will use DDT to debug a code that deadlocks.
- Compile the deadlock example:

```
% cd debug
```

% mpicc -g -O0 ./deadlock.c

Load the DDT module:

% module load ddt

Start up DDT:

% ddt ./a.out

Configure DDT: Welcome

When you see the welcome screen below click the button that says "Run and Debug a Program".

Configure DDT: Job Submision

Don't click submit yet! We need to configure:

- General Options
- Queue Submission Parameters
- Processor and thread number
- Advanced Options

Click on Options -> Change

Configure DDT: Options

- Choose the correct version of MPI
 - mvapich 1
 - mvapich 2
 - openMPI
- Leave the default MPI (mvapich 1)
- Leave Debugger on the Automatic setting

Configure DDT: Queue Parameters

- Choose the "development" queue
- Set the Wall Clock Limit to 10 minutes (H:MM:SS)
- Set your project code for this training class use 20100408HPC
- Click OK and double check that you have selected 16 CPUs / 1 thread in the main Job Submission window.

Configure DDT: Memory Checks

- Open the
 Advanced tab.
- Enable Memory
 Debugging
 (bottom left
 check box)
- Open the Memory Debug Settings

Configure DDT: Memory Options

- Change the Heap Debugging option from the default
 Runtime to Low
- Even the option None provides some memory checking
- Leave Heap and Advanced unchecked

DDT: Job Queuing

Add any necessary arguments to the program (none for the example) Click the Submit button. A new window will open:

The job is submitted to the specified queue.

An automatically refreshing job status window appears.

The debug session will begin when the job starts.

DDT: The debug session

DDT: Program Hangs

The output we expect does not appear in the Stdout window.

No active communication between procs.

Stop execution to analyze the program status (top left).

DDT: Stacks

On the bottom left window select the Stacks view.

All processors seem to be stuck on a MPI_Send().

DDT: Message Queues

Go to View -> Message Queues

There are uncompleted Send messages everywhere!

You can double-check that all communications are in the "Unexpected queue" (select on top right)

This is characteristic of a deadlock.

Find the source of the deadlock in the code.

