Андреев Артём Русланович

Группа: М32001

Практическая работа №2

Эмпирическая функция распределения Поведение в точке

Задание:

- 1. Выбрать параметры двух из трех распределений генеральной совокупности $X: X \sim U(a, b), X \sim Exp^u$ или $X \sim N(a, \sigma^2)$.
- 2. Выбрать такую точку t_0 , что $0.05 < F_X(t_0) < 0.95$. Вычислить $F_X(t_0)$.
- 3. Смоделировать $m=10^2$ выборок объема $n=10^4$ для каждого из двух выбранных распределений. Для каждой выборки построить $F_n(t_0)$ значение эмпирической функции распределения в точке t_0 оценку значения функции распределения в точке t_0 , то есть величины $F_X(t_0)$. Для каждого из распределений получите t_0 0 оценок величины t_0 0.
- 4. Значение функции распределения $F_X(t_0) = P(X \in (-\infty, t_0) = \Delta)$ является вероятностью события $A = \{X \in (-\infty, t_0)\}$. Значение эмпирической функции распределения $F_n(t_0)$ —оценка вероятности события $A = \{X \in (-\infty, t_0)\}$, то есть $k(\Delta)/n$ частота попадания значения случайной величины X в интервал Δ . Частота, полученная по серии независимых однотипных испытаний с двумя исходами A и A, является состоятельной, несмещенной, асимптотически нормальной оценкой вероятности события. Свойство асимптотической нормальности позволяет строить асимптотический доверительный интервал надежности γ . Фиксировать $\gamma > 0.9$ и построить по 100 асимптотических доверительных интервалов надежности γ для значения $F_X(t_0)$ каждого из выбранных распределений.
- 5. Построить 2 графика по оси х номер выборки, по оси у соответствующие левый и правый концы асимптотических доверительных интервалов и значение $F_X(t_0)$.
- 6. Найти количество δ_n асимптотических доверительных интервалов, в которые значение $F_X(t_0)$ не попало. Сравнить среднее количество δ_n для к =100 серий (mean(δ_n)) с величиной 1- γ (δ_n можно рассматривать как оценку величины 1- γ) для различных $\gamma = 0.9, 0.91, ..., 0.99$. Составить таблицу результатов.

Равномерное распределение:

$$a = 1$$

 $b = 7$

$$\gamma = 0.95$$

$$t_0 = 3.2$$

$$t_0 = 3.2$$

 $F_x(t_0) = 0.3667$

γ	1-γ	Среднее δ_n
0.90	0.10	10.23
0.91	0.09	9.29
0.92	0.08	7.52
0.93	0.07	7.21
0.94	0.06	6.33
0.95	0.05	4.7
0.96	0.04	3.89
0.97	0.03	2.95
0.98	0.02	1.88
0.99	0.01	1.02

Экспоненциальное распределение:

$$u = 3$$

 $\gamma = 0.95$

$$t_0 = 0.72$$

 $F_x(t_0) = 0.2134$

γ	1-γ	Среднее δ_n
0.90	0.10	9.99
0.91	0.09	9.48
0.92	0.08	7.48
0.93	0.07	7.03
0.94	0.06	6.09
0.95	0.05	4.85
0.96	0.04	4.15
0.97	0.03	3.01
0.98	0.02	1.72
0.99	0.01	1.08

Выводы по полученным данным:

В обоих распределениях с ростом γ (с убыванием $1-\gamma$) количество δ_n асимптотических доверительных интервалов, в которые значение $F_x(t_0)$ не попало, линейно уменьшается по

закону:
$$\frac{mean(\delta_n)}{100} \approx 1 - \gamma$$