Ordinary differential equations

Introduction

Many scientific problems can be formulated in terms of a system of ordinary differential equations (ODE),

$$\mathbf{y}'(x) = \mathbf{f}(x, \mathbf{y}) , \tag{1}$$

with an initial condition

$$\mathbf{y}(x_0) = \mathbf{y}_0 \;, \tag{2}$$

where $\mathbf{y}' \equiv d\mathbf{y}/dx$, and the boldface variables \mathbf{y} and $\mathbf{f}(x,\mathbf{y})$ are generally understood as column-vectors.

Runge-Kutta methods

Runge-Kutta methods are one-step methods for numerical integration of ODE (1). The solution \mathbf{y} is advanced from the point x_0 to $x_1 = x_0 + h$ using a one-step formula

$$\mathbf{y}_1 = \mathbf{y}_0 + h\mathbf{k},\tag{3}$$

where \mathbf{y}_1 is the approximation to $\mathbf{y}(x_1)$, and \mathbf{k} is a cleverly chosen (vector) constant. The Runge-Kutta methods are distinguished by their order: a method has order p if it can integrate exactly an ODE where the solution is a polynomyal of order p. In other words, if the error of the method is $O(h^{p+1})$ for small h.

The first order Runge-Kutta method is the Euler's method,

$$\mathbf{k} = \mathbf{f}(x_0, \mathbf{y}_0) \,. \tag{4}$$

Second order Runge-Kutta methods advance the solution by an auxiliary evaluation of the derivative, e.g. the *mid-point method*,

$$\mathbf{k}_{0} = \mathbf{f}(x_{0}, \mathbf{y}_{0}),$$

$$\mathbf{k}_{1/2} = \mathbf{f}(x_{0} + \frac{1}{2}h, \mathbf{y}_{0} + \frac{1}{2}h\mathbf{k}_{0}),$$

$$\mathbf{k} = \mathbf{k}_{1/2},$$
(5)

or the two-point method,

$$\mathbf{k}_{0} = \mathbf{f}(x_{0}, \mathbf{y}_{0}),$$

$$\mathbf{k}_{1} = \mathbf{f}(x_{0} + h, \mathbf{y}_{0} + h\mathbf{k}_{0}),$$

$$\mathbf{k} = \frac{1}{2}(\mathbf{k}_{0} + \mathbf{k}_{1}).$$
(6)

These two methods can be combined into a third order method,

$$\mathbf{k} = \frac{1}{6}\mathbf{k}_0 + \frac{4}{6}\mathbf{k}_{1/2} + \frac{1}{6}\mathbf{k}_1 \ . \tag{7}$$

The most commont is the fourth-order method, which is called RK4 or simply the Runge-Kutta method,

$$\mathbf{k}_{0} = \mathbf{f}(x_{0}, \mathbf{y}_{0}),
\mathbf{k}_{1} = \mathbf{f}(x_{0} + \frac{1}{2}h, \mathbf{y}_{0} + \frac{1}{2}h\mathbf{k}_{0}),
\mathbf{k}_{2} = \mathbf{f}(x_{0} + \frac{1}{2}h, \mathbf{y}_{0} + \frac{1}{2}h\mathbf{k}_{1}),
\mathbf{k}_{3} = \mathbf{f}(x_{0} + h, \mathbf{y}_{0} + h\mathbf{k}_{2}),
\mathbf{k} = \frac{1}{6}(\mathbf{k}_{0} + 2\mathbf{k}_{1} + 2\mathbf{k}_{2} + \mathbf{k}_{3}).$$
(8)

Higher order Runge-Kutta methods have been devised, with the most famous being the Runge-Kutta-Fehlberg fourth/fifth order method, *RKF45*, implemented in the renowned rkf45 Fortran routine.

Multistep methods

Multistep methods try to use the information about the function gathered at the previous steps. They are generally not *self-starting* as there are no previous points at the start of the integration. The first step must be a one-step method, for example a Runge-Kutta step.

A two-step method

Given the previous point, $(x_{-1}, \mathbf{y}_{-1})$, in addition to the current point (x_0, \mathbf{y}_0) , the sought function \mathbf{y} can be approximated in the vicinity of the point x_0 as

$$\bar{\mathbf{y}}(x) = \mathbf{y}_0 + \mathbf{y}_0' \cdot (x - x_0) + \mathbf{c} \cdot (x - x_0)^2, \tag{9}$$

where $\mathbf{y}'_0 = \mathbf{f}(x_0, \mathbf{y}_0)$ and the coefficient \mathbf{c} is found from the condition $\mathbf{y}(x_{-1}) = \mathbf{y}_{-1}$,

$$\mathbf{c} = \frac{\mathbf{y}_{-1} - \mathbf{y}_0 + \mathbf{y}_0' \cdot (x_0 - x_{-1})}{(x_0 - x_{-1})^2}.$$
(10)

The value of the function at the next point, x_1 , can now be estimated as $\bar{\mathbf{y}}(x_1)$ from (9).

The error of this second-order two-step stepper can be estimated by a comparison with a first-order Euler's step, which is given by the linear part of (9). The difference $\|\mathbf{c}\|h^2$ between the two steppers can thus serve as the error estimate.

A three-step method

Including yet another point, (x_{-2}, y_{-2}) , allows to further increase the order of the approximationi (9),

$$\check{\mathbf{y}}(x) = \bar{\mathbf{y}}(x) + \mathbf{d} \cdot (x - x_0)^2 (x - x_{-1}). \tag{11}$$

The coefficient **d** can be found from the condition $\check{\mathbf{y}}(x_{-2}) = \mathbf{y}_{-2}$, which gives

$$\mathbf{d} = \frac{\mathbf{y}_{-2} - \bar{\mathbf{y}}(x_{-2})}{(x_{-2} - x_0)^2 (x_{-2} - x_{-1})}.$$
 (12)

The error estimate is now

$$\operatorname{err} \approx \|\dot{\mathbf{y}}(x+h) - \bar{\mathbf{y}}(x+h)\|. \tag{13}$$

Predictor-corrector methods

Predictor-corrector methods use extra iterations to improve the solution. For example, the two-point Runge-Kutta method (6) is as actually a predictor-corrector method, as it first calculates the *prediction* $\tilde{\mathbf{y}}_1$ for $\mathbf{y}(x_1)$,

$$\tilde{\mathbf{y}}_1 = \mathbf{y}_0 + h\mathbf{f}(x_0, \mathbf{y}_0) \,, \tag{14}$$

and then uses this prediction in a correction step,

$$\tilde{\tilde{\mathbf{y}}}_1 = \mathbf{y}_0 + h \frac{1}{2} \left(\mathbf{f}(x_0, \mathbf{y}_0) + \mathbf{f}(x_1, \tilde{\mathbf{y}}_1) \right)$$
(15)

Similarly, one can use the two-step approximation (9) as a predictor, and then improve it by one order with a correction step, namely

$$\bar{\bar{\mathbf{y}}}(x) = \bar{\mathbf{y}}(x) + \mathbf{d} \cdot (x - x_0)^2 (x - x_{-1}). \tag{16}$$

The coefficient **d** can be found from the condition $\bar{\mathbf{y}}'(x_1) = \bar{\mathbf{f}}_1$, where $\bar{\mathbf{f}}_1 = \mathbf{f}(x_1, \bar{\mathbf{y}}(x_1))$,

$$\mathbf{d} = \frac{\bar{\mathbf{f}}_1 - \mathbf{y}_0' - 2\mathbf{c} \cdot (x_1 - x_0)}{2(x_1 - x_0)(x_1 - x_{-1}) + (x_1 - x_0)^2}.$$
(17)

Equation (16) gives a better estimate, $\mathbf{y}_1 = \overline{\mathbf{y}}(x_1)$, of the function at the point x_1 .

In this context the formula (9) serves as *predictor*, and (16) as *corrector*. The difference between the two gives an estimate of the error.

Step size control

Error estimate

The error δy of the integration step for a given method can be estimated e.g. by comparing the solutions for a full-step and two half-steps (the *Runge principle*),

$$\delta y \approx \frac{y_{\text{two_half_steps}} - y_{\text{full_step}}}{2^p - 1},\tag{18}$$

where p is the order of the algorithm used. It is better to pick formulas where the full-step and two half-step calculations share the evaluations of the function $\mathbf{f}(x, \mathbf{y})$.

Another possibility is to make the same step with two methods of different orders, the difference between the solutions providing an estimate of the error.

In a predictor-corrector method the correction itself can serve as the estimate of the error.

Table 1: Runge-Kutta mid-point stepper with error estimate.

Adaptive step size control

Let tolerance τ be the maximal accepted error consistent with the required absolute, δ , and relative, ϵ , accuracies to be achieved in the integration of an ODE,

$$\tau = \epsilon \|\mathbf{y}\| + \delta \,\,, \tag{19}$$

where $\|\mathbf{y}\|$ is the "norm" of the column-vector \mathbf{y} .

Suppose the inegration is done in n steps of size h_i such that $\sum_{i=1}^n h_i = b - a$. Under assumption that the errors at the integration steps are random and independent, the step tolerance τ_i for the step i has to scale as the square root of the step size,

$$\tau_i = \tau \sqrt{\frac{h_i}{b-a}}. (20)$$

Then, if the error e_i on the step i is less than the step tolerance, $e_i \leq \tau_i$, the total error E will be consistent with the total tolerance τ ,

$$E \approx \sqrt{\sum_{i=1}^{n} e_i^2} \le \sqrt{\sum_{i=1}^{n} \tau_i^2} = \tau \sqrt{\sum_{i=1}^{n} \frac{h_i}{b-a}} = \tau.$$
 (21)

In practice one uses the current values of the function ${\bf y}$ in the estimate of the tolerance,

$$\tau_i = (\epsilon \|\mathbf{y}_i\| + \delta) \sqrt{\frac{h_i}{b - a}}$$
(22)

The step is accepted if the error is smaller than tolerance. The next step-size can be estimated according to the empirical prescription

$$h_{\text{new}} = h_{\text{old}} \times \left(\frac{\tau}{e}\right)^{\text{Power}} \times \text{Safety},$$
 (23)

where Power ≈ 0.25 , Safety ≈ 0.95 . If the error e_i is larger than tolerance τ_i the step is rejected and a new step with the new step size (23) is attempted.

Table 2: An ODE driver with adaptive step size control.

```
#include <cmath>
#include <armadillo>
#include <vector>
using namespace arma;
void rkstep12 (
   const std::function < vec (double, vec) > & f,
   const double & x0, const vec & y0, const double & h,
   vec & y1, vec & dy);
int rkdrive (
        const std::function < vec (double, vec) > & f,
        std::vector<double>&xlist , std::vector<vec>&ylist ,
        double b, double h, double acc, double eps)
        int k=0, n=y list [0]. size ();
        double a=xlist[0];
        vec dy(n), y1(n);
         while (x list [k] < b)
                 double x=xlist[k];
                         y=y list[k];
                 vec
                 if(x+h>b) h=b-x;
                 rkstep12 (f,x,y,h,y1,dy);
                 double err=norm (dy, 2);
                 double normy=norm(y1,2);
                 double tol = (normy*eps+acc)*sqrt(h/(b-a));
                 if(tol>err){ // accept step and go on
                          xlist.push_back(x+h);
                          ylist.push_back(y1);
                 if (err > 0) h = h*pow(tol/err, 0.25)*0.95;
                 else h = 2*h;
                 }//end while
        return k;
}// end rkdrive
```