TE201416: SINYAL DAN SISTEM

Mifta Nur Farid miftanurfarid@lecturer.itk.ac.id

Teknik Elektro Institut Teknologi Kalimantan Balikpapan, Indonesia

Februari 26, 2020

Sinyal

V(x, y 1

■ Sinyal direpresentasikan secara matematis sebagai fungsi dari satu atau lebih variabel bebas

Gambar. 1: Sinyal suara, 1 variabel (tekanan suara terhadap waktu), one-dimensional

Gambar. 2: Gambar, 2 variabel (brightness terhadap sumbu vertikal dan horizontal),

[two-dimensional]

Sinyal waktu diskret dan kontinu

Institut Teknologi Kalimantar

- Sinyal waktu kontinu
 - Variabel bebasnya bernilai kontinu
 - \Box Dinotasikan dengan x(t)
 - □ t adalah variabel bebas
 - □ Jika ada 2 variabel bebas $\rightarrow x(t,s)$, dst.
- Sinyal waktu diskrit
 - □ Variabel bebasnya bernilai diskret
 - □ Dinotasikan dengan x[n]
 - □ n adalah variabel bebas dengan bilangan bulat (whe see)
 - □ Jika ada 2 variabel bebas $\rightarrow x[m, n]$, dst.

Gambar. 3: Representasi grafis dari sinyal waktu kontinu dan diskret

Gambar. 4: Grafik stock market index adalah contoh sinyal waktu diskret

Gambar. 5: Grafik profil kecepatan angin adalah contoh sinyal waktu kontinu

Sistem

- Sistem berfungsi untuk memproses sinyal
- Sistem linear / non-linear
- Sistem time-invariant / time-varying
- Fokus kita nantinya di linear time-invariant (LTI)

Gambar. 6: Terminologi sinyal dan sistem

Contoh sistem diskret

Gambar. 7: Market trend

Contoh sistem kontinu

8 of 11

Gambar. 8: Menghilangkan noise dari suara rekaman (gambar atas = suara dengan noise, gambar bawah = noise sudah dihilangkan)

Contoh sistem yang memproses sinyal multi-dimensional

Gambar. 10: Hasil pemrosesan menghilangkan awan

Interkoneksi antar sistem

■ Terkadang antara satu sistem dengan sistem lainnya saling terinterkoneksi

■ Interkoneksi antar sistem :

- 2. Paralel
- 3. Cascade (Bertingkat)
- 4. Feedback (Umpan-balik) \leftarrow akan menjadi topik utama dalam kuliah ini

Domain (ranah) dalam analisis dan representasi

- 1. Time-domain (ranah waktu)
 - $\Box x(t) \Leftrightarrow conb$
 - $\exists x[n] \leftarrow a_{n}$
- 2. Frequency-domain (ranah frekuensi)
 - Fourier transform
 - □ Laplace transform
 - \square \mathcal{Z} -Transform

Gambar. 11: Contoh sinyal ranah waktu (atas) dan ranah frekuensi (bawah)

intip.in/KultamVibrastik

GUEST LECTURE ONLINE Webinar

"Deep Learning for Speech Emotion Recognition: Combining Acoustic and Linguistic Information"

Bagus Tris Atmaja, S.T., M.T. (Ph.D cand.)
Information Science, Japan Advanced Institute of
Science and Technology, and Engineering
Physics Lecturer

Wednesday, March 3rd 2021 10.00-12.00 WIB Platform Zoom Meeting

Free Registration and E-Certificate

Registration Link: intip.in/KultamVibrastik

*disampaikan dengan Bahasa Indonesia

Contact Person: 082143340000 (Naomi)

of n flut