Che	mical Kinetics Multiple Choice Quantum Choice Quan			
	[MHT-CET 2008] [MHT-CET 2008] [MHT-CET 2008] After how many seconds will the concentration of the reactant in a first order $re_{act_{lr_p}}$ After how many seconds will the concentration of the reactant in a first order $re_{act_{lr_p}}$ (a) 10	9.		
	LEGITOR CO.			
	After how many seconds will the 1.155 × 10 ⁻³ s ⁻¹ d) 10			
1.	to the fall of			
	a) out			
and rate equation?				
2.	Which is a correct integrated rate by $k = \frac{-2.303}{t} \log \frac{a - x}{a}$			
		10-		
	a) $k = -\frac{2.303}{t} \log \frac{a}{a - x}$ d) All are integrated rate equations			
	a) An are $x = 0$ and $x = 0$			
2	c) $-d(a-x) = k dt$ For which order reaction, the unit of rate constant is time ⁻¹ ? Second order d) Third order			
3.		11-		
	[MHT-CET 2011]			
4.	In a multistep reaction, the overall rate of reaction is equal to the			
2.) and alarmost step			
	c) average rate of various steps			
	[MHT-CET 2014]			
5.	Rate law for the reaction $A + B \rightarrow \text{product is rate} = k [A]^2 [B]$. What is the rate constant			
	if the rate of reaction at a given temperature is 0.22 Ms^{-1} , when [A] = 1M and [B] = 0.25 M			
	a) $3.52 \text{ M}^{-2}\text{s}^{-1}$ b) $0.88 \text{ M}^{-2}\text{s}^{-1}$ c) $1.136 \text{ M}^{-2}\text{s}^{-1}$ d) $0.05 \text{ M}^{-2}\text{s}^{-1}$	12.		
[MHT-CET 2016]				
6.	The reaction takes place in two steps as			
	i) $NO_2Cl_{(g)} \xrightarrow{K_1} NO_{2(g)} + Cl_{(g)}$ ii) $NO_2Cl_{(g)} + Cl_{(g)} \xrightarrow{K_2} NO_{2(g)} + Cl_{2(g)}$			
	Identify the reaction intermediate.	13		
	a) $NO_2Cl_{(g)}$ b) $NO_{2(g)}$ c) $Cl_{2(g)}$ d) $Cl_{(g)}$			
7.	Average of reaction, $2SO_{2(g)} + O_{2(g)} \rightarrow 2 SO_{3(g)}$ is written as	14		
	a) $\frac{\Delta[SO_2]}{\Delta t}$ b) $-\frac{\Delta[O_2]}{\Delta t}$ c) $\frac{1}{2}\frac{\Delta[SO_2]}{\Delta t}$ d) $\frac{\Delta[SO_3]}{\Delta t}$	1		

 Δt

ii) $2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$

b) NO_(g) is intermediate d) $O_{2(g)}$ is intermediate

[MHT-CET 2018]

A certain reaction occurs in two steps as

i) $2SO_{2(g)} + 2NO_{2(g)} \rightarrow 2SO_{3(g)} + 2NO_{(g)}$

In the reaction,

a) NO_{2(g)} is intermediate

c) NO(g) is catalyst

8.

 Δt

For

foll

a)

c)

Fo

th a) c) F

ai

0

Γ

12.

13.

14.

15.

16.

DWIFT - CET 2019]

For the elementary reaction $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$, identify the correct among the following relations:

a)
$$\frac{+d|SO_{3(g)}|}{dt} = \frac{-2d|O_{2(g)}|}{dt}$$

b)
$$\frac{+d[SO_{2(g)}]}{dt} = \frac{-d[O_{2(g)}]}{dt}$$

c)
$$\frac{+1}{2} \frac{d[SO_{3(g)}]}{dt} = \frac{d[SO_{2(g)}]}{dt}$$

d)
$$\frac{-d[SO_{2(g)}]}{dt} = \frac{-d[SO_{2(g)}]}{dt}$$

For a chemical reaction rate law is, rate = $k [A]^2 [B]$. If [A] is doubled at constant [B], the rate of reaction.

- a) increases by a factor of 4
- b) increases by a factor of 3
- c) increases by a factor of 8
- d) increases by a factor of 2

For the elementary reaction, 3 $H_{2(g)} + N_{2(g)} \rightarrow 2 NH_{3(g)}$ identify the correct relation among the following relations.

a)
$$\frac{-3}{2} \frac{d[H_{2(g)}]}{dt} = \frac{d[NH_{3(g)}]}{dt}$$

b)
$$\frac{d[H_{3(g)}]}{dt} = \frac{-1}{3} \frac{d[H_{2(g)}]}{dt}$$

c)
$$\frac{-2}{3} \frac{d[H_{2(g)}]}{dt} = \frac{d[NH_{3(g)}]}{dt}$$

d)
$$\frac{-d[H_{2(g)}]}{dt} = \frac{d[NH_{3(g)}]}{dt}$$

12. Consider the reaction $2A + 2B \rightarrow C + 2D$. If concentration of A is doubled at constant [B], rate increases by a factor 4. If concentration of B is doubled at constant [A] the rate is doubled. Rate law of the reaction is

- a) rate = $k [A]^2 [B]$
- b) rate = $k [A] [B]^2$ c) rate = $k [A]^2 [B]^2$ d) rate = k [A] [B]

If the rate of reaction is expressed as, $-\frac{1}{3}\frac{d[A]}{dt} = -\frac{1}{2}\frac{d[B]}{dt} = \frac{d[C]}{dt}$, the reaction is

- a) $2A + 2B \rightarrow C$
- b) $2B \rightarrow 3A + C$
- c) $2B + C \rightarrow 3A$
- d) $3A \rightarrow 2B + C$

¹⁴. $A \rightarrow B$ is first order reaction with rate equal to 6.6×10^{-5} M s⁻¹. When [A] is 0.6 M, rate constant of the reaction is

- a) 9 × 10-5 s-1
- b) $9 \times 10^{-4} \text{ s}^{-1}$
- c) $1.1 \times 10^{-4} \text{ s}^{-1}$ d) $1.1 \times 10^{-5} \text{ s}^{-1}$

[MHT-CET 2020]

In the reaction $N_2 + 3H_2 \longrightarrow 2NH_3$, the rate of disappearance of H_2 is 0.02 M/s. The rate of appearance of NH3 is

- a) 0.0133 M/s
- b) 0.004 M/s
- c) 0.032 M/s
- d) 0.023 M/s

The rate law for the reaction $2NO_{(g)} + O_{2(g)} \longrightarrow 2NO_{2(g)}$ is rate = k [NO]² [O₂], then which among the following statements is correct?

- a) The reaction is first order in O2, first order in NO and second order overall.
- b) The reaction is second order in NO, zero order in O₂ and second order overall.
- The reaction is second order in NO, first order in O2 and third order overall.
- d) The reaction is zero order overall.

	mical Kinetics The rate law for the reaction $A + B + C \rightarrow Product$ is expressed as Rate = $k A ^2 B ^2 B ^2$ The rate law for the reaction? c) 2 the rate of	che For the
	Ninetics Product is exp	29. rate law
Che	The rate law for the reaction $A + B + C \rightarrow Product$ The rate law for the reaction $A + B + C \rightarrow Product$ C) 2 What is the overall order of the reaction C b) 1 The rate law for the reaction C The rate law for the rate	29. rate
17.	The rate law for the read of the read c) 2	di
	The rate law is: What is the overall order of the concentration of reaction $b_{\text{rec}_{\Omega_{R_{c}}}}$ If concentration of reactant 'A' is increased by 10 times, the rate of reaction $b_{\text{rec}_{\Omega_{R_{c}}}}$ If concentration of reactant 'A' is increased by 10 times, the rate of reaction $b_{\text{rec}_{\Omega_{R_{c}}}}$ If concentration of reactant 'A' is increased by 10 times, the rate of reaction $b_{\text{rec}_{\Omega_{R_{c}}}}$ If concentration of reactant 'A' is increased by 10 times, the rate of reaction $b_{\text{rec}_{\Omega_{R_{c}}}}$ If concentration of reactant 'A' is increased by 10 times, the rate of reaction $b_{\text{rec}_{\Omega_{R_{c}}}}$ If concentration of reactant 'A' is increased by 10 times, the rate of reaction $b_{\text{rec}_{\Omega_{R_{c}}}}$	a) 20
	what is the overall b) 1 a) 3 If concentration of reactant 'A' is increased by 10 times, the rate of reaction b_{e_r} $o_{n_{loc}}$ If concentration of reactant 'A' is increased by 10 times, the rate of reaction b_{e_r} $o_{n_{loc}}$ If concentration of reactant 'A' is increased by 10 times, the rate of reaction b_{e_r} $o_{n_{loc}}$ If concentration of reactant 'A' is increased by 10 times, the rate of reaction b_{e_r} $o_{n_{loc}}$	
18.	If concentration of the order of reaction (c) 3	
	100 times. What is the law is $r = k [NOBr]^2$	The rat
	a) 2 $2 \text{ NO(g)} + \text{Br}_2(g)$ and of NOBr is $2.00 \times 10^{-3} \text{M}_{\odot}$	30. concen
19.	100 times. What is the order of c) 3 a) 2 For the reaction $2NOBr_{(g)} \rightarrow 2 NO_{(g)} + Br_{2(g)}$, rate law is $r = k [NOBr]^2$. For the reaction $2NOBr_{(g)} \rightarrow 2 NO_{(g)} + Br_{2(g)}$, rate law is $r = k [NOBr]^2$. For the reaction $2NOBr_{(g)} \rightarrow 2 NO_{(g)} + Br_{2(g)}$, what is $r = k [NOBr]^2$.	-
	a) 2 For the reaction $2NOBr_{(g)} \rightarrow 2NO_{(g)} + Br_{2(g)}$, rate law 2.00 × 10 ⁻³ M, what is 1.62 M ⁻¹ s ⁻¹ and concentration of NOBr is 2.00 × 10 ⁻³ M, what is 1.62 M ⁻¹ s ⁻¹ and concentration of NOBr is 2.00 × 10 ⁻³ M, what is 1.62 M ⁻¹ s ⁻¹ and concentration of NOBr is 2.00 × 10 ⁻³ M, what is 1.00 × 10 ⁻³ M.	a) dec
	1 of 648 × 10 W S W 4.05 × 10 W	
	a) $2.46 \times 10^{-6} \text{ M s}^{-1}$ b) $5.24 \times 10^{-6} \text{ M s}^{-1}$ c) $5.24 \times 10^{-6} \text{ M s}^{-1}$ b) $5.24 \times 10^{-6} \text{ M s}^{-1}$ c) $5.24 \times 10^{-6} \text{ M s}^{-1}$	Forar
20.	In the reaction $2SO_2 + O_2 \rightarrow 2SO_3$ with	31-
	of disappearance of O_2 is $O_2 = 10^{-4} \text{ M/s}$ c) $2.0 \times 10^{-4} \text{ M/s}$ d) $6.0 \times 10^{-4} \text{ M/s}$	a) dec
	a) 1.0×10^{-4} M/s b) 4.0×10^{-1} W/s change in concentration of production	a) des
21.	a) 1.0×10^{-4} M/s b) 4.0×10^{-1} M/s b) 4.0×10^{-1} What is the average rate of reaction when the change in concentration of product	
	0.05 M in 20 seconds ?	12 For the
	a) 40 M/s b) 0.03 M/s	32. FOI die
22.	In the reaction $A + B_2 \longrightarrow AB + B$, the rate of reaction is directly proportional to the	
	concentration of A and independent of the concentration of B ₂ . What is the rate law	d[
	expression ?	a)
	a) rate = $k[A]$ b) rate = $k[B_2]$ c) rate = $k[A][B_2]$ d) rate = $k[A]^2[B_2]$	
23.	The rate for a reaction is $r_1 = k[A]^a[B]^b$. If the concentration of A is doubled and that if	c) <u>d[</u>
	B is halved, the new rate is r_2 . Then what is the ratio of r_2/r_1 ?	C)
	1	
	α α α α	33. Instan
24.	The reaction $2NO_2Cl_{(g)} \longrightarrow 2NO_{2(g)} + Cl_{(g)}$ takes place in true stone as	in Sta
	i) $NO_2Cl_{(g)} \longrightarrow NO_{2(g)} + Cl_{(g)}$ ii) $NO_2Cl_{(g)} + Cl_{(g)} \longrightarrow NO_{2(g)} + Cl_{2(g)}$	a) x
	Identify the reaction intermediate. ii) $NO_2Cl_{(g)} + Cl_{(g)} \longrightarrow NO_{2(g)} + Cl_{2(g)}$	34. For t
	a) NO	.07
25.	III the reaction 200	140
	In the reaction $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$, the rate of disappearance of $SO_{2(g)}$	Wha
	1.28 × 10 ⁻⁵ M/s. What is the rate of appearance of SO ₃ : a) 2.56 × 10 ⁻⁵ M/s b) 1.25 × 10 ⁻⁵ M/s	
26.	a) 2.56×10^{-5} M/s b) 1.25×10^{-5} M/s c) 0.64×10^{-5} M/s d) 0.32×10^{-5} M/s 2.6×10^{-4} M/s d) 0.32×10^{-5} M/s	a) c
20.	In a reaction $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$, if the rate of disappearance of $N_{2(g)}$ in M/s is	a) -
	191/5, the rate of dia 3(g), If the rate of 1:	
	a) 8.6×10^{-4} M/s b) 5.2×10^{-4} M/s is	()
27.	9 2.6 \times 10-4 M/s	
	Calculate rate constant of reasons of reasons and rest order kinetics : 2 N. O.	35. Wha
	is 1.5×10^{-6} mol L ⁻¹ s ⁻¹ mol L ⁻¹ s ⁻¹ eaction if concentration	2.
	Calculate rate constant of reaction if concentration of $N_2O_2 \rightarrow 4NO_2 + O_2$ is 1.5×10^{-6} mol L^{-1} s ⁻¹ . a) 2.5×10^{-5} s ⁻¹ b) 3.0×10^{-5} s ⁻¹ c) 1.5×10^{-5} s ⁻¹ b) 2.0×10^{-5} s ⁻¹ when the concentration of N_2O_2 increases $4NO_2(g) + O_2$ and $4NO_2(g) + O_2$ are selection.	3x ~
28.	Lancid	36, a) 0
	when the concentration; $2N_2O_{5(g)} \rightarrow 4N_2O_{5(g)} \rightarrow 4N_2O_{5(g$	Wha
	Consider the reaction; $2N_2O_{5(g)}$ c) 1.5×10^{-5} s ⁻¹ b) 2.0×10^{-5} s ⁻¹ when the concentration of NO_2 increases to 5.2×10^{-3} M in 100 sec. 2	2A.
	b) 7.6×10^{-4} M is the rate of	a) 4
	11/5	()
Tarin.	c) $5 \times 10^{-4} \text{ M/s}$ d) $1.3 \times 10^{-5} \text{ M/s}$	

For the reaction $2A + B \longrightarrow 3C + D$, which among the following is NOT the correct and law expression? rate law expression?

a)
$$-\frac{d[A]}{2dt}$$

b)
$$-\frac{d[B]}{dt}$$

c)
$$\frac{d[D]}{dt}$$

$$d) = \frac{d[C]}{3dt}$$

[MHT-CET 2021]

The rate law for a reaction between reactants A, B and C is $r = k [A] [B] [C]^2$. If concentration of C is doubled then new rate of reaction

a) decreases by $\frac{1}{2}$ b) increases 4 times c) increases 2 times d) increases 8 times

For a reaction $r = k[A]^2$ [B], if concentration of A is doubled then rate of reaction

a) decreases by $\frac{1}{2}$ b) increases by 2 c) increases by 4 d) decreases by 4

th |

Itela; B. h

dis

AN

For the reaction $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$, what is relation between $\frac{d[N_2]}{dt}$ and $\frac{d[NH_3]}{dt}$?

a)
$$\frac{d[NH_3]}{dt} = \frac{1}{2} \frac{d[N_2]}{dt}$$

b)
$$3 \frac{d[NH_3]}{dt} = \frac{d[N_2]}{dt}$$

c)
$$\frac{d[NH_3]}{dt} = 2 \frac{d[N_2]}{dt}$$

d)
$$\frac{d[NH_3]}{dt} = \frac{d[N_2]}{dt}$$

Instantaneous rate of a reaction is $-\frac{1}{2}\frac{d[x]}{dt} = -\frac{d[y]}{dt} = \frac{1}{2}\frac{d[z]}{dt}$, identify the reaction.

a)
$$x - 2y \longrightarrow 2z$$
 b) $2x + y \longrightarrow 2z$ c) $2z + y \longrightarrow 2x$ d) $2x - 2y \longrightarrow z$

c)
$$2z + y \longrightarrow 2x$$

d)
$$2x - 2y \longrightarrow 2$$

For the reaction $2NO + Cl_2 \rightarrow 2NOCl$

What is the relation between $\frac{d[NO]}{dt}$ and $\frac{d[NOCl]}{dt}$?

a)
$$\frac{d[NO]}{dt} = 2 \frac{d[NOC1]}{dt}$$

b)
$$\frac{d[NO]}{dt} = \frac{d[NOCl]}{dt}$$

c)
$$\frac{1}{4} \frac{d[NO]}{dt} = \frac{d[NOCl]}{dt}$$

d)
$$4\frac{d[NO]}{dt} = \frac{d[NOC1]}{dt}$$

What is the rate of appearance of z in following reaction $3x \rightarrow 2y + z$, if rate of disappearance of x is 0.072 mol s⁻¹?

c) 0.024 mol s^{-1}

d) 0.096 mol s^{-1}

a) 0.072 mol s^{-1} b) 0.048 mol s^{-1} What is the rate of disappearance of B in following reaction,

 $^{2A+B} \rightarrow 3C$, if rate of appearance of C is 1.3×10^{-4} mol L⁻¹ s⁻¹?

a) $4.33 \times 10^{-5} \text{ mol L}^{-1} \text{ s}^{-1}$

b) $8.6 \times 10^{-5} \text{ mol L}^{-1} \text{ s}^{-1}$

c) $2.6 \times 10^{-4} \text{ mol L}^{-1} \text{ s}^{-1}$

d) $5.2 \times 10^{-5} \text{ mol L}^{-1} \text{ s}^{-1}$

[MHT-CET 2022]

The instantaneous rate for reaction 2A + B - C + 3D, is given by

a)
$$\frac{1}{3} \frac{d[D]}{dt}$$

b)
$$\frac{1}{2} \frac{d[A]}{dt}$$
 c) $\frac{d[A]}{dt}$

d)
$$\frac{d[B]}{dt}$$

Rate law equation for a reaction is r = k[x][y], rate of reaction doubles when

- a) conc. of x is doubled and conc. of y is kept constant
- b) conc. of both x and y is doubled
- conc. of x is kept constant and conc. of y is halved
- a conc. of y is doubled and conc. of x is halved

Identify the correct expression for rate of following reaction.

$$2N_2O_{5(g)} \longrightarrow 4NO_{2(g)} + O_{2(g)}$$

$$a) - \frac{d[NO_2]}{dt}$$

a)
$$-\frac{d[NO_2]}{dt}$$
 b) $-\frac{1}{2}\frac{d[N_2O_5]}{dt}$ c) $\frac{1}{2}\frac{d[N_2O_5]}{dt}$ d) $\frac{1}{4}\frac{d[O_2]}{dt}$

c)
$$\frac{1}{2} \frac{d[N_2 O_5]}{dt}$$

d)
$$\frac{1}{4} \frac{d[O_2]}{dt}$$

The rate law for a reaction between reactants A, B and C is r = k[A] [B] $[C]^2$. If concentration of A is halved, then rate of reaction

a) remains the same

b) increases 2 times

c) decreases $\frac{1}{2}$ times

d) increases $\frac{1}{2}$ times

For a reaction 2A + B \rightarrow 2C, rate of disappearance of A is 0.076 mol dm⁻³ s⁻¹. What is the rate of disappearance of B?

a) 0.076 mol dm⁻³ s⁻¹

b) $0.038 \text{ mol dm}^{-3} \text{ s}^{-1}$

c) 0.152 mol dm⁻³ s⁻¹

d) $0.114 \text{ mol dm}^{-3} \text{ s}^{-1}$

What is order of reaction if unit of rate constant is s-1?

8]

b) 2

c) 3

d) 0

Rate of a chemical reaction can be expressed in terms of

- a) rate of formation of products only.
- b) rate of consumption of reactant only.
- c) rate of consumption of catalyst.
- d) rate of consumption of reactant and formation of product.

If rate of reaction is given as $\frac{1}{3} \frac{d[x]}{dt} = -\frac{1}{2} \frac{d[y]}{dt} = -\frac{d[z]}{dt}$, the reaction can be represented as

a) $2y \rightarrow 3x + z$

b) $3x + 2y \rightarrow z$ c) $3x \rightarrow 2y + z$ d) $2y + z \rightarrow 3x$ Which among the following reactions is an example having overall order of reaction

a) $C_2H_5I_{(g)} \longrightarrow C_2H_{4(g)} + HI_{(g)}$

b) $2H_2O_{2(l)} \longrightarrow 2H_2O_{(l)} + O2_{(g)}$

c) $CH_3CHO_{(g)} \longrightarrow CH_{4(g)} + CO_{(g)}$

d) $NO_{2(g)} + CO_{(g)} \longrightarrow NO_{(g)} + CO_{2(g)}$

IMHT-CET 20171

Which among the following reactions is an example of pseudo first order reaction?

(s) a) Inversion of cane sugar

- b) Decomposition of H₂O₂
- Conversion of cyclopropane to propene d) Decomposition of N2O5

The rate constant for a first order reaction is 7.0×10^{-4} s⁻¹. If initial concentration of reactant is 0.080 M, what is the half-life of reaction?

- a) 00() s
- b) 79.2 s
- d) 10.10×10^{-4} s

[MHT-CET 2019]

The integrated rate equation for first order reaction, A → Product, is

a)
$$k = 2.303 \text{ t } \log_{10} \frac{[A]_0}{[A]_t}$$

b)
$$k = -\frac{1}{t} In \frac{[A]_t}{[A]_0}$$

$$k = \frac{2.303}{t} + \log_{10} \frac{[A]_0}{[A]_t}$$

d)
$$k = \frac{1}{t} In \frac{[A]_t}{[A]_0}$$

If the half-life period of a first order reaction is 200 minutes, the rate constant will be

a) $9.605 \times 10^{-2} \text{ min}^{-1}$

b) $3.465 \times 10^{-3} \text{ min}^{-1}$

c) $1.374 \times 10^{-3} \text{ min}^{-1}$

d) 288.6 min⁻¹

[MHT-CET 2020]

Half-life of first order reaction is 20 minutes. What is the time taken to reduce the

initial concentration of the reactant to $\frac{1}{10}$ th?

- a) 66.56 min
- b) 6.6 min
- c) 150 min
- d) 79.68 min

The half - life of a first order reaction is 6.0 hours. How long will it take for the concentration of reactant to decrease from 0.4 M to 0.12 M?

- a) 10.42 h
- b) 9.51 h
- c) 30.36 h
- d) 4.25 h

For the first order reaction A \rightarrow B, the rate constant is 0.25 s⁻¹, if the concentration of A is reduced to half, the value of rate constant will be

- a) $0.25 \, s^{-1}$
- b) 0.30 s^{-1}
- c) 2.25 s^{-1}
- d) 0.075 s^{-1}

The rate constant for first order reaction is 0.02232 min⁻¹. Calculate the time required for 75 % completion of the reaction.

- a) 62.12 min
- b) 38.31 min
- c) 48.12 min
- d) 12.77 min

For first order reaction the slope of the graph of log₁₀[A]_t Vs. time is equal to

a) k

b) -k

A first order reaction has rate constant 1×10^{-2} s⁻¹. What time will it take for 20 g of reactant to reduce to 5 g?

- a) 138.6 s
- b) 238.6 s
- c) 693.0 s
- d) 346.5 s

What is the value of rate constant of first order reaction, if it takes 15 minutes for consumption of 20% of reactants? $-1.1 \times 1.48 \times 10^{-2} \text{ min}^{-1} \text{ c}) 1.84 \times 10^{-2} \text{ min}^{-1} \text{ d}) 1.38 \times 10^{-2} \text{ min}^{-1}$