

Lecture 10: Consistency of MLE, Covariance Matrices, and

课程 □ Unit 3 Methods of Estimation □ Multivariate Statistics

□ 7. Covariance in Real Life

7. Covariance in Real Life From The Big Bang Theory

Start of transcript. Skip to the end.

So remember this, when I tried to show this? I finally realized what was the problem that I

Hopefully, this will work today.

[VIDEO PLAYBACK]

Hey, Sheldon.

It's me.

I'm going--

下载视频文件

下载 SubRip (.srt) file

下载 Text (.txt) file

Sample Covariance

4/4 points (graded)

Let (X_1,Y_1) , (X_2,Y_2) ,..., $(X_n,Y_n) \stackrel{iid}{\sim} (X,Y)$ with $\mathbb{E}[X] = \mu_X$, $\mathbb{E}[Y] = \mu_Y$, and $\mathbb{E}[XY] = \mu_{XY}$. That is, each random variable pair (X_1,Y_1) has the same distribution as the random variable pair (X,Y), and the pairs are independent of one another.

Estimating the covariance between $m{X}$ and $m{Y}$ based on observed sequences is useful because non-zero covariance implies dependence between X and Y. In this problem, we study one way to obtain an unbiased estimator for Cov(X,Y).

Consider the following estimator for the covariance:

$$\widetilde{S}_{XY} = rac{1}{n} \Biggl(\sum_{i=1}^n \left(X_i - \overline{X}_n
ight) \left(Y_i - \overline{Y}_n
ight) \Biggr) \, ,$$

where \overline{X}_n and \overline{Y}_n denote the sample mean estimators of μ_X and μ_Y .

What is $\mathbb{E}\left[\frac{\sum_{i=1}^n X_i \sum_{i=1}^n Y_i}{n}\right]$? Provide an expression in terms of n, μ_X , μ_Y , and μ_{XY} .

(Enter $\mathbf{mu}_{\mathbf{XY}}$ for μ_{XY} , $\mathbf{mu}_{\mathbf{X}}$ for μ_{X} , and $\mathbf{mu}_{\mathbf{Y}}$ for μ_{Y} .)

$$\mathbb{E}\left[\frac{\sum_{i=1}^{n}X_{i}\sum_{i=1}^{n}Y_{i}}{n}\right] = \boxed{\text{mu}_{XY} + (\text{n-1})*\text{mu}_{X}*\text{mu}_{Y}} \quad \Box$$

Answer: (1/n)*(n*mu XY + n*(n-1)*mu X*mu Y)

What is $\mathbb{E}\left[\widetilde{S}_{XY}
ight]$? Provide an expression in terms of n, μ_{X} , μ_{Y} , and μ_{XY} .

(Enter $\mathbf{mu}_{-}\{\mathbf{XY}\}$ for μ_{XY} , $\mathbf{mu}_{-}\mathbf{X}$ for μ_{X} , and $\mathbf{mu}_{-}\mathbf{Y}$ for μ_{Y} .)

$$\mathbb{E}\left[\widetilde{\boldsymbol{S}}_{\boldsymbol{X}\boldsymbol{Y}}\right] = \qquad \text{(n-1)/n*(mu_{XY}-mu_X*mu_Y)} \qquad \qquad \square \text{ Answer: ((n-1)/n)*(mu_XY -mu_X*mu_Y)}$$

Is \widetilde{S}_{XY} an unbiased estimator of $\mathsf{Cov}\,(X,Y)$?

O Yes

● No □

If your answer to the above question is "Yes", then type "1" in the following box. Otherwise, find a scaling factor c such that

$$\widehat{S}_{XY} = c \cdot \widetilde{S}_{XY}$$

is an unbiased estimator of $\mathsf{Cov}\,(X,Y)$. Provide your answer in terms of n, μ_X , μ_Y , and μ_{XY} .

(Enter $\mathbf{mu}_{\mathbf{XY}}$ for μ_{XY} , $\mathbf{mu}_{\mathbf{X}}$ for μ_{X} , and $\mathbf{mu}_{\mathbf{Y}}$ for μ_{Y} .)

STANDARD NOTATION

Solution:

First,

$$egin{aligned} \mathbb{E}\left[rac{\sum_{i=1}^n X_i \sum_{i=1}^n Y_i}{n}
ight] &= rac{1}{n} \mathbb{E}\left[\sum_{i=1}^n X_i Y_i + \sum_{i=1}^n \sum_{i
eq j=1}^n X_i Y_j
ight] \ &= \left[\mu_{XY} + (n-1)\,\mu_X \mu_Y
ight], \end{aligned}$$

where we have used the property that X_i and Y_j are independent whenever i
eq j. Then,

$$\begin{split} \mathbb{E}\left[\widetilde{S}_{XY}\right] &= \frac{1}{n} \mathbb{E}\left[\sum_{i=1}^{n} \left(X_{i} - \overline{X}_{n}\right) \left(Y_{i} - \overline{Y}_{n}\right)\right] \\ &= \frac{1}{n} \mathbb{E}\left[\sum_{i=1}^{n} X_{i} Y_{i} - \frac{\sum_{i=1}^{n} X_{i}}{n} \sum_{j=1}^{n} Y_{i} - \frac{\sum_{i=1}^{n} Y_{i}}{n} \sum_{j=1}^{n} X_{i} + \frac{\sum_{i=1}^{n} X_{i} \sum_{j=1}^{n} Y_{i}}{n}\right] \\ &= \frac{1}{n} \mathbb{E}\left[\sum_{i=1}^{n} X_{i} Y_{i} - \frac{\sum_{i=1}^{n} X_{i} \sum_{j=1}^{n} Y_{i}}{n}\right]. \end{split}$$

Using the result in the first part of the problem, we get

$$egin{align} \mathbb{E}\left[\widetilde{S}_{XY}
ight] &= rac{1}{n}[n\mu_{XY} - \left(\mu_{XY} + \left(n-1
ight)\mu_{X}\mu_{Y}
ight)] \ &= rac{n-1}{n}[\mu_{XY} - \mu_{X}\mu_{Y}] \ &= rac{n-1}{n}\mathsf{Cov}\left(X,Y
ight). \end{split}$$

From the above, we can see that the estimator is biased because $\mathbb{E}\left[\widetilde{S}_{XY}
ight]
eq \mathsf{Cov}\left(X,Y
ight)$.

However, the bias can be fixed by multiplying \widetilde{S}_{XY} by $\frac{n}{n-1}$ to obtain the following unbiased estimator of $\mathsf{Cov}\left(X,Y\right)$:

$$\widehat{S}_{XY} = rac{1}{n-1} \Biggl[\sum_{i=1}^n \left(X_i - \overline{X}_n
ight) \left(Y_i - \overline{Y}_n
ight) \Biggr] \, .$$

提交	你已经尝试了3次(总共可以尝试4次)	
□ Answers are displayed within the problem		
讨论	<u> </u>	显示讨论
主题: Unit 3 Methods of Estimation:Lecture 10: Consistency of MLE, Covariance Matrices, and Multivariate Statistics / 7. Covariance in Real Life		

© 保留所有权利