Probability and Random Process (SWE3026)

Discrete Random Variables

JinYeong Bak
jy.bak@skku.edu
College of Computing, SKKU

H. Pishro-Nik, "Introduction to probability, statistics, and random processes", available at https://www.probabilitycourse.com, Kappa Research LLC, 2014.

Families of discrete random variable

Bernoulli RVs:

Example. Flip a coin {H,T}. Take an exam {Pass, Fail}.

$$X \sim Bernoulli(p)$$

PMF:

$$P_X(x) = egin{cases} p & ext{for } x=1 \ 1-p & ext{for } x=0 \end{cases} ext{ Range}(X) = \{0,1\}.$$

$$P_X(0) = 1 - p, \quad P_X(1) = p.$$

Geometric RVs:

$$X \sim Geometric(p)$$

$$R_X = \operatorname{Range}(X) = \{1, 2, 3, \cdots\}$$

Random experiment: consider a coin with P(H)=p. Toss the coin repeatedly until the first heads is observed.

X= The total number of coin tosses

 $X \sim Geometric(p)$

Definition. A random variable X is said to be a geometric random variable with parameter p , shown as $X\sim Geometric(p)$, if

$$R_X=\{1,2,3,\cdots\}=\mathbb{N},$$

$$P_X(k) = p(1-p)^{k-1}, \qquad k = 1, 2, 3, ...$$

Definition. A random variable X is said to be a binomial random variable with parameters n and p (P(H)=p), shown as $X \sim Binomial(n,p)$, if

$$R_X = \{0, 1, 2, ..., n\}$$
 $P_X(k) = inom{n}{k} p^k (1-p)^{n-k}, \qquad k = 0, 1, 2, \cdots, n$

Remember:

$$X=k \Rightarrow egin{array}{cccc} k & ext{Heads } (H) & & & & \\ n & ext{times} & & & & & \\ n & ext{times} & & & & & \\ \end{array}$$

$$harpoonup HH \dots HTT \dots T$$
 k Heads $n-k$ Tails $\longrightarrow p^k (1-p)^{n-k}$

If n = 1, then Binomial(1, p) = Binomial(p).

Lemma. If $X_1,X_2,...,X_n$ are independent Bernoulli(p) random variable, then the random variable X define by $X=X_1+X_2+...+X_n,$ is a Binomial(n,p)RV.

distribution.

Pascal Distribution (Negative Binomial):

Example. You flip a coin until you observe m heads.

X: total number of coin toss

$$R_X = \{m, m+1, m+2, \cdots\}.$$

Find PMF.

- $A = \{X = k\}, \text{ or } A = B \cap C,$
- B is the event that we observe m-1 heads in the first k-1 trials.
- C is the event that we observe a heads in the kth (the last) trial.

$$P(A) = P_X(k) = P(X = k)$$

$$P(A) = P(B \cap C) = P(B)P(C)$$
, B and C are independent events.

$$P(C) = P(H) = p$$

Using binomial formula, Binomial(n = k - 1, p)

$$P(B) = \binom{k-1}{m-1} p^{m-1} (1-p)^{\left((k-1)-(m-1)\right)} = \binom{k-1}{m-1} p^{m-1} (1-p)^{k-m}.$$

$$P(A) = P(B \cap C) = P(B)P(C) = {k-1 \choose m-1} p^m (1-p)^{k-m}.$$

Definition. A random variable X is said to be a Pascal random variable with parameters m and p (P(H)=p), shown as $X\sim Pascal(m,p)$, if

$$P_X(k) = {k-1 \choose m-1} p^m (1-p)^{k-m} \qquad k=m,m+1,m+2,...$$

Where 0 .

Hypergeometric Distribution:

Example. You have a bag that contains b blue marbles and r red marbles. You choose $k \leq b+r$ marbles at random (without replacement).

X: The number of blue marbles in your sample

$$P_X(x) = P(ext{you observe } x ext{ blue marbles}) = rac{|A|}{|S|} = rac{inom{b}{x}inom{r}{k-x}}{inom{b+r}{k}}.$$

Poisson Random Variable:

Poisson RVs are used to model

- Arrival of customers at a service facility
- Arrival of information request at a server

Counting the occurrence of certain events in an interval of time or space.

Arrival of customers in an interval:

 λ : the average number of arrivals in that interval

X : the total number of customers = X_1, X_2, \cdots, X_n

$$X \sim Binomial(n, p = \frac{\lambda}{n})$$

$$P(X=k)=P_X(k)=inom{n}{k}p^k(1-p)^{n-k}=inom{n}{k}(rac{\lambda}{n})^k(1-rac{\lambda}{n})^{n-k}.$$

Thus,

$$\lim_{n o\infty}P_X(k)=rac{e^{-\lambda}\lambda^k}{k!}.$$

Definition. A random variable X is said to be a Poisson random variable with

parameter λ , shown as $X \sim Poisson(\lambda)$, if

$$R_X = \{0, 1, 2, 3, \cdots\},\$$

$$P_X(k) = rac{e^{-\lambda} \lambda^k}{k!}, \qquad k = 0, 1, 2, 3, ...$$

Example. The number of emails that I get in a weekday can be modeled by a Poisson distribution with an average of 0.2 emails per minute.

- a) What is the probability that I get no emails in an interval of length 5 minutes?
- b) What is the probability that I get more than 3 emails in an interval of length 10 minutes?

Definition. A random variable X is said to be a Uniform random variable,

shown as $X \sim Uniform(R_X)$, if

$$R_X = \{x_1, x_2, x_3, \cdots\},$$

$$P_X(x_i) = rac{1}{|R_X|}.$$

Definition. The cumulative distribution function (CDF) of random variable \boldsymbol{X} is defined as

$$F_X(x) = P(X \leq x), ext{ for all } x \in \mathbb{R}.$$

Example. Toss a coin twice, let X be the number of observed heads. Find the CDF of X.

If X is a discrete random variable with range $R_X=\{x_1,x_2,x_3,...\},$ such that $x_1 < x_2 < x_3 < \cdots$.

Theorem. Let X be a discrete random variable with range

$$R_X = \{x_1, x_2, x_3, ...\}.$$

a)
$$F_X(-\infty)=P(Y<-\infty)=0,\;\;F_X(+\infty)=1$$

b)
$$y \ge x \Rightarrow F_X(y) \ge F_X(x)$$

c)
$$x_i \in R_X$$
, $F_X(x_i) - F_X(x_i - \epsilon) = P_X(x_i)$, For $\epsilon > 0$ small enough.

d)
$$x_i \leq x < x_{i+1} \Rightarrow F_X(x) = F_X(x_i)$$
.

For all $a \leq b$, we have

$$P(a < X \le b) = F_X(b) - F_X(a)$$
.

Proof:

$$P(a < X \le b) = P(X \le b) - P(X \le a),$$
 $P(X \le b) = P(X \le a) + P(a < X \le b),$
 $F_X(b)$ $F_X(a)$

$$F_X(a) = P(X \le a) = P(X < a) + P(X = a),$$
 $\Rightarrow P(X < a) = F_X(a) - P(X = a).$

Example. Let X be a discrete random variable with range $R_X = \{1, 2, 3, ...\}$. Suppose the PMF of X is given by

$$P_X(k) = rac{1}{2^k} ext{ for } k = 1, 2, 3, ...$$

- a) Find and plot the CDF of $X,\ F_X(x).$
- b) Find $P(1 < X \le 3)$.