KTH

Problem till övning nr 3 den 29 mars, SF1610 Diskret matematik CINTE, vt2018

1. (E) Visa med ett induktionsbevis att

$$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

för varje naturligt tal $n \ge 1$.

- 2. (D) Visa genom induktion att $n^3 n$ är delbart med 6 för varje positivt heltal n. (Kan du också visa detta genom modulär aritmetik?)
- 3. (C) Den oändliga talföljden a_0, a_1, \ldots definieras rekursivt genom

$$a_n := 7a_{n-1} - 12a_{n-2},$$
 för $n = 2, 3, 4, \dots$

samt $a_0 := 2$ och $a_1 := 7$. Visa att $a_n = 3^n + 4^n$ för $n = 0, 1, 2, 3, \dots$

- 4. (E) Bestäm antalet element i mängden $\{1, 1, 1, 1, 1, 2, 2, 2, 2\}$.
- 5. (E) Betrakta mängderna

$$A = \{1, 2, 4, 8, 9, 11, 17\}, \qquad B = \{4, 5, 6, 8, 9\}, \qquad C = \{2, 4, 7, 9\}.$$

Bestäm

$$(A \cup B) \setminus (B \cap C)^{\sim}$$

där X^{\sim} betecknar komplementet till mängden X.

- 6. (E) Mängden $\{\emptyset, \{0\}, \{0, \emptyset\}\}$ har tre element och därmed åtta olika delmängder. Bestäm samtliga dessa delmängder.
- 7. (E) Låt

$$A = \{4, 5, 6\}, \quad B = \{5, 6, 9\}.$$

Skriv ned alla element i mängden $A \times B$. Hur många element finns det i $A \times B$?

- 8. (D) Bestäm om följande funktioner är injektiva, surjektiva eller t.o.m. bijektiva.
 - (a) $f: \mathcal{P}(A) \to \{0, 1, 2, ..., n\}, f(X) = |X|$ för $X \subseteq A$, där A är en mängd med n element.
 - (b) $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$, g(n, m) = (n + 2m, n + m).
- 9. (C) Låt f vara en funktion från A till B och låt g vara en funktion från B till C. Visa att om både f och g är bijektiva funktioner så är också sammansättningen $g \circ f$ en bijektiv funktion från A till C.
- 10. (C) Visa att unionen av två uppräkneligt oändliga mängder är en uppräkneligt oändlig mängd.
- 11. (B) Antag att mängderna A_1 , A_2 , A_3 , ... bildar en oändlig samling uppräkneligt oändliga mängder. Är unionen av sådana mängder en uppräkneligt oändlig mängd?

Svar

- 1. –
- 2. –
- 3. (Glöm inte att basfallet behöver täcka två termer!)
- 4. 2.
- $5. \{4, 9\}.$
- 6. \emptyset , $\{\emptyset\}$, $\{\{0\}\}$, $\{\{0,\emptyset\}\}$, $\{\emptyset,\{0,\emptyset\}\}$, $\{\{0\},\{0,\emptyset\}\}$, $\{\emptyset,\{0\}\}$, $\{\emptyset,\{\emptyset\}$, $\{\emptyset,\{\emptyset\}\}$, $\{\emptyset,\{\emptyset\}$,
- 7. $A \times B = \{(4,5), (4,6), (4,9), (5,5), (5,6), (5,9), (6,5), (6,6), (6,9)\}.$ 9 element.
- 8. (a) För $n \ge 2$ är f är surjektiv men inte injektiv. För n = 0, 1 så är den bijektiv.
 - (b) g är injektiv men inte surjektiv.
- 9. (Använd definitionerna!)
- 10. (Prova att varva elementen ett från den första mängden, ett från den andra mängden, ett från den första, ...)
- 11. Ja. Prova att skriva elementen i A_1, A_2, A_3, \ldots i en (oändlig) rektangel.