- 1. Please choose 2 projects from the following open-source software projects in the list below and write a (very) brief report for each project. Your report must explain what is the purpose of the project, its architectural patterns/styles, as well as 3 quality attribute scenarios. The quality attributes must be aligned with the quality attribute advocated/promoted by project developers/maintainers. Please include in your report references to the sources where the relevant information can be found.
- Audacity [https://www.audacityteam.org/]
- gpsd [https://qpsd.qitlab.io/qpsd/]
- matplotlib [<u>https://matplotlib.org/</u>]
- Selenium WebDriver [https://www.selenium.dev/]
- Zotonic [https://zotonic.com/]
- 2. Please choose 2 projects from the following open-source software projects in the list below and write a (very) brief report for each project. Your report must explain what is the purpose of the project, its architectural patterns/styles, as well as 3 quality attribute scenarios. The quality attributes must be aligned with the quality attribute advocated/promoted by project developers/maintainers. Please include in your report references to the sources where the relevant information can be found.
- Jitsi [https://jitsi.org/]
- Joomla [https://www.joomla.org/]
- Kill Bill [https://killbill.io/]
- ONOS [https://opennetworking.org/onos/]
- Yesod [https://www.yesodweb.com/]

Architectural patterns/styles

Matplotlib มีรูปแบบ สถาปัตยกรรมที่ใช้จะแบ่ง Layer เป็น 3 Layer หลักๆคือ

Backend Layer, Artist Layer, Scripting Layer

Backend Layer — เป็น Layer ที่จัดการงานต่างๆทั้งหมดผ่านการสื่อสารกับชุดเครื่องมือ เช่น <u>wxPython</u> หรือภาษาที่ใช้วาดภาพเช่น <u>PostScript</u> กล่าวคือ เป็น Layer ที่เกี่ยวกับการวาด รูป โดยจะมีคลาสหลักๆ 3 คลาสคือ

- FigureCanvas ใช้ในการร่างโครงที่จะวาด ตัวอย่าง into.matplotlib.backend bases.FigureCanvasBase
- Renderer ใช้วาดสิ่งที่เราจะวาดขึ้นมา

ตัวอย่าง Figure Canvas. matplotlib.backend bases. Renderer Base

Event — ใช้ในการรับ input จากผู้ใช้

ตัวอย่าง clicks.matplotlib.backend bases.Event

Artist Layer — เป็น Layer ที่ผู้ใช้จะสามารถควบคุม-ปรับแต่งภาพว่า จะให้ออกมาในรูปแบบ ไหน มีลักษณะแบบใดบ้าง ออกมาเป็น Object เช่น ชื่อ, ป้ายกำกับ,เส้น,จุด ,ฯลฯ

โดยจะแบ่งชนิดของ Object เป็น 2 แบบ หลักๆ คือ

• Primitive:

Line2D, Rectangle, Circle, text.

• Composite:

Axis, Axes, Tick, and figure.

Scripting Layer — เป็น Layer ที่มีความซับซ้อนน้อยที่สุดโดยจะเป็นเพียงแค่การเขียน สคริปต์ ซึ่งเป็นคำสั่งสำหรับการสร้างกราฟิกและพล็อตที่รวดเร็วและง่ายดาย

ตัวอย่าง matplotlib.pyplot

Quality Attribute Scenarios (QAS)

Interoperability

Portion of Scenario	Possible Values
Source	User
Stimulus	การใช้งานร่วมกับภาษา Python
Artifact	ระบบ
Environment	Integration
Response	สามารถใช้งานร่วมกันได้
Response Measure	ผลลัพธ์ในการใช้งานร่วมกัน (สำเร็จ,ลัมเหลว)

Scalability

Portion of Scenario	Possible Values
Source	ข้อมูลที่ป้อนเข้ามา
Stimulus	ปริมาณข้อมูลที่มีมาก
Artifact	ทรัพยากร Ram
Environment	Overload Mode
Response	ทำให้เกิดการใช้งานของทรัพยากร RAM น้อยที่สุด และ ไม่ใช้เกินความจำเป็นในการรันกราฟต่างๆ
Response Measure	วัดระดับการใช้งานพื้นที่ของทรัพยากร RAM, ปั่ม กระทบกับระบบอื่นๆ

Performance

Portion of Scenario	Possible Values
Source	User,ข้อมูล
Stimulus	ปริมาณข้อมูลที่มีมาก,คำสั่งใช้งานจากผู้ใช้
Artifact	ปริมาณข้อมูลที่จะทำเป็นกราฟ, ทรัพยากร Ramที่
	รองรับข้อมูลกราฟ,การประมวลผลของระบบ,เวลาที่ใช้
Environment	Normal Mode, Overload Mode
Response	ระบบสามารถประมวลผลได้อย่างมีประสิทธิภาพ
Response Measure	วัดการทำงาน Latency, ปริมาณ/จำนวนงานที่ผ่าน
	เข้าระบบได้, ความเหลื่อมของเวลา

Ref:

<u>Data Visualization with Python — Matplotlib Architecture | by Vin Busquet | DataDrivenInvestor</u>

<u>Architecture of matplotlib. Matplotlib is python library used for... | by Keerti Prajapati | Medium</u>

<u>plt.xxx(), or ax.xxx(), That Is The Question In Matplotlib | by Jun | Towards Data Science</u>

<u>Matplotlib - Wikipedia</u>

Architectural patterns/styles

Audacity มีรูปแบบ สถาปัตยกรรมที่ใช้แบ่งเป็น Layer โดยจะมีหลักๆ ก็คือ

1. wxWidgets GUI Library

เป็นส่วนที่ใช้ในการติดต่อกับผู้ใช้งาน

2. ShuttleGui Layer

เป็นส่วนที่เอาไว้เป็นตัวกลางการติดต่อระหว่าง Library wxWidgets กับ ตัวของ Audacity และยังมีส่วนช่วยในการลดบรรทัดของกล่องโต้ตอบ

3. PortAudio Library: Recording and Playback

เป็น Library เสียงที่ให้ Audacity สามารถเล่นและบันทึกเสียงแบบข้ามแพลตฟอร์ม (Mac, Linux และ Windows)

4. BlockFiles

เป็นส่วนที่มีการแบ่งไฟล์เสียงที่มากและยาวออกเป็น BlockFiles จำนวนมาก ซึ่งแต่ละ ไฟล์อาจมีขนาดประมาณ 1 MB ซึ่งไฟล์จะเป็นนามสกุล .XML เพื่อที่จะทำให้เกิดการใช้ ทรัพยากรของ Ram น้อยที่สุด เมื่อมีการเพิ่ม ,แก้ไข หรือ ตัดออก

5. Scripting

เป็นส่วนที่มีไว้รองรับการเขียน Scripting ของตัว Audacity ที่รองรับได้หลายภาษา

Quality Attribute Scenarios (QAS)

Usability

Portion of Scenario	Possible Values
Source	End user
Stimulus	เรียนรู้การใช้งาน
Artifact	หน้าข้อมูลที่จะทำ, GUI
Environment	Runtime
Response	สามารถเรียนรู้ได้รวดเร็ว
Response Measure	วัดระดับความพึงพอใจของผู้ใช้, ความเร็วในการเรียนรู้
	การใช้งานของผู้ใช้

Scalability

Portion of Scenario	Possible Values
Source	ข้อมูล
Stimulus	ปริมาณข้อมูลที่มีมาก
Artifact	ทรัพยากร Ram
Environment	Runtime, Overload Mode
Response	ทำให้เกิดการใช้งานของทรัพยากร RAM น้อยที่สุด
	และ ไม่ใช้เกินความจำเป็น
Response Measure	วัดระดับการใช้งานพื้นที่ของทรัพยากร RAM

Performance

Portion of Scenario	Possible Values
Source	User ,ข้อมูล
Stimulus	ปริมาณข้อมูลที่มีมาก
Artifact	ปริมาณข้อมูลที่จะทำ, ทรัพยากร Ram
Environment	Runtime, Overload Mode
Response	ทำให้ผู้ใช้ใช้ได้งานได้อย่างมีประสิทธิภาพ
Response Measure	วัดการทำงาน Latency, deadline, ปริมาณ/จำนวน งานที่ผ่านเข้าระบบได้, ความเหลือมของเวลา

Ref:

The Architecture of Open Source Applications: Audacity (aosabook.org)

<u>ArchitecturalDesign - Audacity Wiki (audacityteam.org)</u>

Jitsi

Jitsi มีรูปแบบสถาปัตยกรรมที่ใช้คือ แบบ Client-Server โดยจะมี

Jitsi Meet

เป็นหน้าเว็บไซต์ ทำงานกับ WebRTC ผ่าน JavaScript โดยเรียกใช้ Jitsi Videobridge เป็นโมดูลที่ทำเรื่องคุณภาพของภาพ, การสเกล video conferences. โดยตัวเว็บไซต์ใช้ React และ React Native ในการทำ

JVB (Jitsi Videobridge)

- เป็นตัวรับสตรีมวีดิโอจากผู้สนทนาทุกคน จาก WebRTC มาตัว server

Jicofo (Jitsi Conference Focus)

 เป็นโมดูลของ server-side ที่รับการทำงานจาก Jitsi Meet เพื่อจัดการเรื่อง sessions ต่างๆ ทำหน้าที่เหมือน load balancer ระหว่างผู้สนทนากับ Jitsi Videobridge

jigasi (Jitsi Gateway to SIP)

- โมดูลฝั่ง server-side ที่ทำงานเกี่ยวกับ SIP เพื่อใช้บน Jitsi Meet

jibri (Jitsi Broadcasting Infrastructure)

 เป็นเครื่องมือสำหรับการทำ Video Recording หรือ Streaming Video ที่รับมา จาก Jitsi Meet ในรูปแบบ virtual framebuffer โดยโมดูลนี้จะคอย Capture ภาพและเสียง จากนั้นไป Encode ด้วย ffmpeg ให้อีกที

Quality Attribute Scenarios (QAS)

Interoperability

Portion of Scenario	Possible Values
Source	User
Stimulus	การใช้งานร่วมกับภาษา Java, Video Streaming ออกไปที่ Youtube,การนำมาทำเป็น Self-Hosting ที่ Desktop Browsers กับ Mobile Browsers (windows, iOS,Linux,Android)
Artifact	ระบบ
Environment	Integration
Response	สามารถใช้งานร่วมกันได้
Response Measure	ผลลัพธ์ในการใช้งานร่วมกัน (สำเร็จ,ล้มเหลว)

Availability

Portion of Scenario	Possible Values
Source	เกิดจากภายใน, ภายนอกระบบ
Stimulus	เกิดจากหลุด, ข้ามการทำงาน, พัง, ค้าง,
	ไม่ตอบสนอง
Artifact	การประมวลผลของระบบ, ระบบเครือข่าย, อุปกรณ์
	เก็บข้อมูล
Environment	Normal Mode, Overload Mode, Degrade mode,
	Fall back
Response	บันทึกข้อมูล , แจ้งเหตุการณ์ไปยังผู้เกี่ยวข้อง, ทำ
	การปิด/ยุติ้การทำงานที่ผิด ตามที่ได้มีการกำหนดไว้,
	หูยุดการทำงานของระบบ ตามเวลาที่กำหนดโดย
	ขึ้นอยู่กับความรุนแรงของปัญหาที่เกิด
Response Measure	วัดเวลาที่ระบบจะกลับมาใช้งานได้ปกติ หรือ เวลาที่
	ใช้ในการซ่อมแซม

Modifiability

Portion of Scenario	Possible Values
Source	End user, develop, system admin
Stimulus	ต้องการเพิ่ม / ลบ / แก้ไข / เปลี่ยนฟังก์ชั่น-ฟีเจอร์
Artifact	GUI, Desktop Browsers กับ Mobile Browsers
	(windows, iOS,Linux ,Android)
Environment	Run time, Compile time, Design time, Build time
Response	กำหนดจุดที่เปลี่ยนใน Architecture , เปลี่ยนโดยไม่
	มีผลกระทบกับฟังก์ชั่นและระบบอื่นๆ, ตรวจสอบการ
	เปลี่ยน, การนำไปใช้งาน
Response Measure	ค่าใช้จ่าย(Cost), เวลา

Ref:

Architecture | Jitsi Meet

<u>Understanding the Architecture and Components of Jitsi Meet - Meetrix.IO</u>