

planetmath.org

Math for the people, by the people.

topology via converging nets

Canonical name TopologyViaConvergingNets

Date of creation 2013-03-22 17:14:27 Last modified on 2013-03-22 17:14:27

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 10

Author CWoo (3771) Entry type Definition Classification msc 54A20 Given a topological space X, one can define the concept of convergence of a sequence, and more generally, the convergence of a net. Conversely, given a set X, a class of nets, and a suitable definition of "convergence" of a net, we can topologize X. The procedure is done as follows:

Let C be the class of all pairs of the form (x, y) where x is a net in X and y is an element of X. For any subset U of X with $y \in U$, we say that a net x converges to y with respect to U if x is eventually in U. We denote this by $x \to_U y$. Let

$$\mathcal{T} := \{ U \subseteq X \mid (x, y) \in C \text{ and } y \in U \text{ imply } x \to_U y \}.$$

Then \mathcal{T} is a topology on X.

Proof. Clearly $x \to_X y$ for any pair $(x,y) \in C$. In addition, $x \to_{\varnothing} y$ is vacuously true. For any $U, V \in \mathcal{T}$, we want to show that $W := U \cap V \in \mathcal{T}$. Since x is eventually in U and V, there are $i, j \in D$ (where D is the domain of x), such that $x_r \in U$ and $x_s \in V$ for all $r \geq i$ and $s \geq j$. Since D is directed, there is a $k \in D$ such that $k \geq i$ and $k \geq j$. It is clear that $x_k \in W$ and that any $t \geq k$ we have that $x_t \in W$ as well. Next, if U_α are sets in \mathcal{T} , we want to show their union $U := \bigcup \{U_\alpha\}$ is also in \mathcal{T} . If y is a point in U then y is a point in some U_α . Since $(x,y) \in C$ with x is eventually in U_α , we have that x is eventually in U as well.

Remark. The above can be generalized. In fact, if the class of pairs (x, y) satisfies some "axioms" that are commonly found as properties of convergence, then X can be topologized. Specifically, let X be a set and C again be the class of all pairs (x, y) as described above. A subclass C of C is called a *convergence class* if the following conditions are satisfied

- 1. x is a constant net with value $y \in X$, then $(x, y) \in \mathcal{C}$
- 2. $(x,y) \in \mathcal{C}$ implies $(z,y) \in \mathcal{C}$ for any subnet z of x
- 3. if every subnet z of a net x has a subnet t with $(t,y) \in \mathcal{C}$, then $(x,y) \in \mathcal{C}$
- 4. suppose $(x, y) \in \mathcal{C}$ with D = dom(x), and for each $i \in D$, we have that $(z_i, x_i) \in \mathcal{C}$, with $D_i = \text{dom}(z_i)$. Then $(z, x) \in \mathcal{C}$, where z is the net whose domain is $D \times F$ with $F := \prod \{D_i \mid i \in D\}$, given by z(i, f) = (i, f(i)).

If $(x,y) \in \mathcal{C}$, we write $x \to y$ or $\lim_D x = y$. The last condition can then be visualized as

which is reminiscent of Cantor's diagonal argument.

Now, for any subset A of X, we define A^c to be the subset of X consisting of all points $y \in X$ such that there is a net x in A with $x \to y$. It can be shown that c is a closure operator, which induces a topology $\mathcal{T}_{\mathcal{C}}$ on X. Furthermore, under this induced topology, the notion of converging nets (as defined by the topology) is exactly the same as the notion of convergence described by the convergence class \mathcal{C} .

In addition, it may be shown that there is a one-to-one correspondence between the topologies and the convergence classes on the set X. The correspondence is order reversing in the sense that if $\mathcal{C}_1 \subseteq \mathcal{C}_2$ as convergent classes, then $\mathcal{T}_{\mathcal{C}_2} \subseteq \mathcal{T}_{\mathcal{C}_1}$ as topologies.