

Luís Paulo Reis

Ipreis@fe.up.pt

Director/Researcher LIACC
Associate Professor at FEUP/DEI

Armando Sousa

asousa@fe.up.pt

Researcher INESC-TEC
Assistant Professor at FEUP/DEEC

Also, a very special Thank You to: **Prof. Nuno Lau, IEETA, U. Aveiro**

Background

Localization – Where am I?

- Mapping My (dynamic?) surroundings
- Navigation How do I get where I want to go?
- TREND: SLAM
 - Simultaneous Localization and Mapping

- Mapping is the process of building an internal estimate of the metric map of the environment
- What should be represented?
 - Each cell is occupied or unoccupied
 - Each cell has a continuous value (high-occupied, low unoccupied)
 - Probability that each cell is occupied P(H) and probability that each cell is unoccupied P(~H)

$$0 <= P(H) <= 1$$

$$1-P(H) = P(\sim H)$$

- Mapping is the process of building an internal estimate of the metric map of the environment
- What should be represented?
 - Each cell is occupied or unoccupied
 - Each cell has a continuous value (high-occupied, low unoccupied)
 - Probability that each cell is occupied P(H) and probability that each cell is unoccupied P(~H)

$$0 <= P(H) <= 1$$

$$1-P(H) = P(\sim H)$$

Conditional probabilities

- We want to determine P(H|s)
 - Probability cell is occupied given a certain measure s
- Let's start by determining P(s|H)
 - Probability of getting measure s if there is H is occupied
 - In general P(H|s) is not equal to P(s|H)
 - This is the sensor model

Conditional probabilities

- We want to determine P(H|s)
- From Bayes' Rule:

$$P(H | s) = \frac{P(s | H).P(H)}{P(s | H)P(H) + P(s | \sim H)P(\sim H)}$$

- P(s|H) and P(s|~H) are known from the sensor model
- P(H) and P(~H) are unconditional probabilities or prior probabilities
 - If no information is available P(H)=P(~H)=0.5 can be assumed

Updating with the Bayes' rule

– How to fuse the computed probabilities with new sensor readings?

$$P(H \mid S_n) = \frac{P(S_n \mid H).P(H \mid S_{n-1})}{P(S_n \mid H)P(H \mid S_{n-1}) + P(S_n \mid H)P(H \mid S_{n-1})}$$

- This is the recursive version of the update formula
- Each time a new observation is made it can be employed to update the occupancy grid

Dempster-Schafer Theory

- Belief functions instead of probabilities
 - Measure belief mass
 - Each sensor contributes with a belief mass of 1.0
 - Can distribute the mass to a set of propositions
- Set of propositions is the Frame of Discernement (FOD)
 - In the case of occupancy grid FOD={Occupied, Empty}
 - It may include non exclusive propositions
 - A sensor reading may be considered as ambiguous

Dempster-Schafer Belief function properties

- Bel(X) measures the likelihood that previous evidence supports X
- $Bel({}) = 0$
- Bel (set of all subsets of FOD) = 1
- In the case of the occupancy grid:

```
Bel = m({Occupied}), m({Empty}), m(dontknow)
dontknow={Occupied,Empty}
```

Belief function for sonar

- Region that supports evidence of having an obstacle
 - m(occupied)=evidence
 - m(empty)=0
 - m(dontknow)=1-evidence
- Region that supports evidence of being empty
 - m(occupied)=0
 - m(empty)=evidence
 - m(dontknow)=1-evidence
- The main difference from probabilities is that uncertainties in the reading count as belief mass for dontknow

Rule of combination

- Bel₁ = m(occupied)=0.4, m(empty)=0, m(dontknow)=0.6
- $Bel_2 = m(occupied)=0.6$, m(empty)=0, m(dontknow)=0.4

- $Bel_3 = m(occupied) = 0.76$, m(empty) = 0.0, m(dontknow) = 0.16

Rule of combination

- $Bel_1 = m(occupied)=0.4$, m(empty)=0, m(dontknow)=0.6
- $Bel_2 = m(occupied)=0.0$, m(empty)=0.6, m(dontknow)=0.4

Rule of combination

Bel

- As m({}) must be 0, a normalization is needed
- Bel₃ = m(occupied)=0,16/(1-0,24)=0,21 m(empty)=0,36/(1-0,24)=0,47m(dontknow)=0,24/(1-0,24)=0,32

Rule of combination

$$m(C_k) = \frac{\sum_{A_i \cap B_j = C_k; C_k \neq \{\}} m(A_i) m(B_j)}{1 - \sum_{A_i \cap B_j = \{\}} m(A_i) m(B_j)}$$

It must be repeated for every subset of the orthogonal sum

Additional Sources

Luís Paulo Reis

<u>lpreis@fe.up.pt</u>

Director/Researcher LIACC
Associate Professor at FEUP/DEI

Armando Sousa

asousa@fe.up.pt

Researcher INESC-TEC
Assistant Professor at FEUP/DEEC

Also, a very special Thank You to: **Prof. Nuno Lau, IEETA, U. Aveiro**

