Convergence de la statistique χ^2 .

Exercice1

Une urne contient des boules numérotées de 1 à d. la proportion des boules de numéro i est p_i , avec $p_i > 0$.

On note P le vecteur de composantes $p_i: i=1,\ldots d$. On tire n boules avec remise. Soient Y_n le numéro tiré au n-iéme tirage . X_n le vecteur aléatoire de composantes $X_n(i)=1_{\{Y_n=i\}}$. Soit $S_n(i)$

Le nombre de boules de numéro i tirées en n tirages et $\,\mathcal{S}_n$ le vecteur aléatoire de de composantes $S_n(i)$ pour $i = 1, \ldots, d$.

1. Vérifier que $X_n(i) \sim B(p_i)$, $S_n(i) \sim B(n, p_i)$. (ce qui implique que :

$$E(X_n(i)) = p_i$$
, $var(X_n(i)) = p_i(1-p_i)$, $E(S_n(i)) = np_i \text{ et } var(S_n(i)) = np_i(1-p_i)$.

2. vérifier que l'espérance du vecteur X_n est P et que sa matrice de variance covariance est

$$D - PP' \ \text{où} \ D = diag(\ p_i). \ \text{C'est-\`a-dire} \ D = \begin{pmatrix} p_1 & \cdots \\ \vdots & \ddots & \vdots \\ & \cdots & p_d \end{pmatrix}$$

- 3. Soit $\Sigma_n = \sqrt{n}(\frac{S_n}{n} P)$ utiliser le théorème de la limite centrale vectorielle pour vérifier que : $\Sigma_n \xrightarrow{En \ loi} G = N_d \ (0, D - PP').$
- 4. Soit $T_n = n \sum_{i=1}^n (\frac{S_n(i)}{n} p_i)^2 / p_i$

Nous voulons montrer que $T_n \xrightarrow{En \ loi} \chi^2(d-1)$ pour cela soit Z le vecteur aléatoire de composantes

$$G(i)/\sqrt{p_i}$$
 $i=1,\ldots,d$. Soit $Z=egin{pmatrix} G(1)/\sqrt{p_1} \ \\ G(d)/\sqrt{p_d} \end{pmatrix} T_n$

a) Vérifier que
$$Z=MG$$
 avec $M=\begin{pmatrix} 1/\sqrt{p_1} & \cdots & & \\ \vdots & \ddots & \vdots & \\ & \cdots & 1/\sqrt{p_d} \end{pmatrix}$ et $G=\begin{pmatrix} G(1) \\ G(i) \end{pmatrix}$.

b) Soit
$$v_d = \begin{pmatrix} \sqrt{p_1} \\ \sqrt{p_d} \end{pmatrix}$$

-Vérifier que $\Gamma_Z=M\Gamma_GM'=MDM'-MPP'M'$. -Vérifier que $MDM'=I_d$, $MPP'M'=v_dv_d'$ en déduire que $\Gamma_Z=I_d-v_dv_d'$.

5. soit
$$Z_n = \begin{pmatrix} \Sigma_n(1)/\sqrt{p_1} \\ \\ \Sigma_n(d)/\sqrt{p_d} \end{pmatrix}$$
.

a) vérifier que
$$T_n = \sum_{i=1}^d \left[\sqrt{n} \ \left(\frac{S_n(i)}{n} - p_i \right) / p_i \right]^2 . = \sum_{i=1}^d \left[\sum_n(i) / \sqrt{p_1} \right]^2 = f(Z_n) = \|Z_n\|^2$$

où
$$f(x) = \sum_{i=1}^{n} x_i^2$$
.

- c) Vérifier que $Z_n = M\Sigma_n$ et utiliser 3. 4a) pour montrer que $Z_n \xrightarrow{En \ loi} Z$ en déduisant que : $\|Z_n\|^2 \xrightarrow{En \ loi} \|Z\|^2 \text{ soit } T_n \xrightarrow{En \ loi} \|Z\|^2 \,.$
- d) Soit V $une\ d\times d$ matrice orthogonale réelle dont la dernière ligne est $\ v_d$ -donner la loi du vecteur aléatoire VZ.

-comparer $\|\nabla Z\|^2$ et $\|Z\|^2$ en déduire que $T_n \xrightarrow{En \ loi} \chi^2(d-1)$. qui est le résultat cherché.

On a démontré ainsi le théorème suivant :

Théorème : Soit $\{X_1, \ldots, X_n\}$ un échantillon d'une loi P à valeurs dans $\{1, \ldots, I\}$.

Posons $p_i = P(\{i\})$ et $N_n(i) = \sum_{j=1}^n 1_{(X_j=i)}$ Alors :

$$T_n = \sum_{i=1}^{I} \left(\frac{N_n(i) - np_i}{\sqrt{np_i}} \right)^2 \xrightarrow{En \ loi} \chi^2(I - 1)$$

Exercice2

Définition : Soient P et Q deux lois à valeurs dans $\{1, \ldots, I\}$. Posons $p_i = P(\{i\})$ et $q_i = Q(\{i\})$.

La quantité $\chi^2(P,Q) = \sum_{i=1}^n \frac{(p_i - q_i)^2}{p_i}$ est appelée distance de χ^2 entre P et Q.

On considère deux n-échantillons $\{X_1, \ldots, X_n\}$ et $\{Y_1, \ldots, Y_n\}$ des lois de deux variables aléatoires X et Y à valeurs dans $\{1, \ldots, I\}$ et $\{1, \ldots, J\}$ respectivement.

La loi empirique du couple (X,Y) est donnée par : $\hat{P}_n(i,j) = N_n(i,j)/n$

où $N_n(i,j) = \sum_{k=1,l=1}^n \mathbb{1}_{(X_k=i,Y_l=j)}$. On veut tester l'indépendance de X et Y.

Si elles sont indépendantes. la loi du couple est le produit des lois marginales.

 $\mathsf{Donc}\, H_0\colon "P_{i,j} = P_i P_j. \ \ 1 \leq i \ \leq I \ \ et \ \ 1 \leq j \leq J \\ " \ \ \mathsf{contre} \quad \ H_1\colon \ \mathsf{il} \ \mathsf{existe} \ (\mathsf{i},\mathsf{j}) \ \mathsf{tel} \ \mathsf{que}\colon P_{\mathsf{i},\mathsf{j}} \neq P_{\mathsf{i}} P_{\mathsf{j}} \ . \ \mathsf{avec}$

 $P_i = \sum_{j=1}^n P_{i,j}$ $etP_j = \sum_{i=1}^n P_{i,j}$ Sous H_0 la loi empirique s'écrit $\overline{P}_n(i,j) = N_n(i,.)N_n(.,j)/n^2$.

Utiliser le théorème ci -dessus pour montrer que :

 $\chi^2(\hat{P}_n, \overline{P}_n)$ converge vers $\chi^2((I-1)(J-1))$ sous H_0 et $+\infty$ sous H_1 .

Déduire de ce résultat le test d'indépendance de χ^2 , qui est le suivant :

On rejette H_0 si $\chi^2(\widehat{P}_n, \overline{P}_n) \ge \chi^2_{(I-1)(J-1),\alpha}$ quantile d'ordre $1 - \alpha$ de la loi $\chi^2((I-1)(J-1))$.

Exercice3

Un utilisant le tableaux contingence :

- 1. Vérifier que $N_n(i,j) = n_{ij}$ et que $\overline{P}_n(i,j) = n_{i.}n_{.j}/n^2$, et $t_{ij} = n$ $\overline{P}_n(i,j)$.
- 2. En déduire que $\chi^2(\widehat{P}_n, \overline{P}_n) = \sum_{i,j}^{I \times J} (n_{ij} t_{ij})^2 / t_{ij}$. et en déduire le résultat du cours.