Mohit Deshpande

- 1. Introduction to Statistics
- 2. Mean and Standard Deviation
- 3. Linear Regression
- 4. Correlation Coefficient

Introduction to Statistics

Statistics

branch of mathematics that deals with collection, cleaning, and analysis of data

Introduction to Statistics

Descriptive Statistics

Central Tendency

Data distribution's central value

Also called mean, average, expected value

Dispersion

Data distribution's spread

Also called variance

Inferential Statistics

Population: group of all of the items or events we're studying.

Usually impractical or impossible to get data.

Example: height of humans

Sample: subset of the population selected via a defined method.

Much easier to obtain!

Example: measure 100 humans

1. Introduction to Statistics

- Mean and Standard Deviation
- **Linear Regression**
- **Correlation Coefficient**

Mean and Standard Deviation

Mean

- Also called average or expected value
- If our dataset is $x_1, x_2, ..., x_n$, then the mean is denoted by
 - \circ μ_x for population mean
 - \circ \overline{x} for sample mean

Standard Deviation

- Measures the spread or dispersion of the data
- If our dataset is $x_1, x_2, ..., x_n$, then the standard deviation is denoted by
 - $\circ \quad \sigma_{_{\! X}} \text{ for population standard deviation }$
 - \circ s_x for sample standard deviation
- Variance denoted
 - \circ σ_{x}^{2} for population variance
 - s_x² for sample variance

Variance

• Variance: the "average" of the squared differences of the data from the mean

List of Symbols

	Population	Sample
Mean	μ_{x}	X
Standard Deviation	σ_{x}	S _x
Variance	σ_{x}^{2}	S _x ²

- 1. Introduction to Statistics
- 2. Mean and Standard Deviation
- 3. Linear Regression
- 4. Correlation Coefficient

Linear Regression

Linear Regression

- Given our data, what is the slope and y-intercept of the line that "best" represents the trend of the data
- Use this line-of-best-fit to make predictions

Least Squares Linear Regression

- Pick a line such that the sum of the squared vertical differences is minimal
- Falls under field of mathematical optimization problems
- Closed-form exact solution exists

$$m = \frac{(x_1 - \bar{x})(y_1 - \bar{y}) + (x_2 - \bar{x})(y_2 - \bar{y}) + \dots + (x_n - \bar{x})(y_n - \bar{y})}{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}$$

$$= \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$b = \bar{y} - m\bar{x}$$

- 1. Introduction to Statistics
- 2. Mean and Standard Deviation
- 3. Linear Regression
- 4. Correlation Coefficient

Correlation Coefficient

Correlation Coefficient

- Measure of strength and linearity of the line-of-best-fit
- Pearson Correlation Coefficient (PCC) denoted by r
 - r > 0 means X correlates positively with Y; r < 0 means X correlates negatively with Y
 - $|\mathbf{r}| \approx 0$ means there is a weak correlation; $|\mathbf{r}| \approx 1$ means there is a strong correlation

ALWAYS PLOT YOUR DATA!

Source: https://en.wikipedia.org/wiki/File:Anscombe%27s_quartet_3.svg

CORRELATION DOES NOT IMPLY CAUSATION!

- 1. Introduction to Statistics
- 2. Mean and Standard Deviation
- 3. Linear Regression
- 4. Correlation Coefficient