Computational Physics - Project 1

Johannes Scheller, Vincent Noculak Lukas Powalla 1. September 2015

Inhaltsverzeichnis

1	Introduction to Project 1	3
2	Rewrite the set of equations in matrix-form	3

1 Introduction to Project 1

In physics, we often have to deal with differential equations o second order, which can be generally written in the from

$$\frac{d^2y}{dx^{12}} + k^2(x)y = f(x) \quad , \tag{1}$$

where we call f the inhomgeneous term and $k^2(x)$ is a real function. A special case of these cases is Poisson's equation, which reads in the one-dimensional, spherical case

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d\Phi}{dr} \right) = -4\pi \rho \left(\vec{r} \right) \quad . \tag{2}$$

Doing some substitutions, we can write this in the following, more general form:

$$-u''(x) = f(x) \tag{3}$$

In this project, we try to solve eq.(3) numerical. Therefore, we have to discretize f and u''. We approximate u(x) as v_i , using a grid of n gridpoints $x_i = i \cdot h$. h is our

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 & \dots & \dots & 0 \\ -1 & 2 & -1 & 0 & \dots & \dots \\ 0 & -1 & 2 & -1 & 0 & \dots \\ & \dots & \dots & \dots & \dots \\ 0 & \dots & -1 & 2 & -1 \\ 0 & \dots & 0 & -1 & 2 \end{pmatrix}$$
(4)

2 Rewrite the set of equations in matrix-form