

Status: 02.06.2020

3.7 Dry Etching

3.7.1	Introduc	Introduction		
3.7.2	Chemistry			
	3.7.2.1	Overview		
	3.7.2.2	Control of Selectivity		
	3.7.2.3	Control of Anisotropy		
3.7.3	Process and Equipment			
	3.7.3.1	"Pure" Chemical Etching		
	3.7.3.2	Plasma Etching		
	3.7.3.3	Reactive Ion Etching		
	3.7.3.4	Ion Beam Etching		
	3.7.3.5	Photoresist Stripping		
3.7.4	Process	Examples		
	3.7.4.1	Overview: Trench/Gate/Via/Interconnect Etching		
	3.7.4.2	Dry Etching of Metals		
	3.7.4.3	ILD Etching - porous ULK		

3.7.1 Introduction

Dry etching techniques are those that use plasmas to drive chemical reactions and/or employ energetic ion beams to remove material.

Goal: Pattern transfer from mask to layer

Dry etching methods:

Glow discharge methods

- Dry physical etching (Sputter etching, ion etching)
- Plasma assisted etching
 - Dry chemical etching (Plasma etching)
 - Reactive ion etching (RIE)

Ion beam methods

- Ion milling
- · Reactive ion beam etching
- · Chemical assisted ion milling

<u>Common materials to dry etch:</u> Si, SiO₂, Si₃N₄, Al, W, Ti, TiN, TiSi₂, Photoresist

Difficult materials to dry etch: Cu, Al₂O₃, Fe, Ni, Co, LiNbO₃ ...

Degree of Anisotropy:

$$A_f = 1 - \frac{l}{h_f} = 1 - \frac{R_1 t}{R_v t} = 1 - \frac{R_1}{R_v}$$

For isotropic etching: $R_I = R_v$ and $A_f = 0$

For completely anisotropic etching: $R_I = 0$ and $A_f = 1$

Comparison of dry etching methods

Technique	Mechanism	Etching particles	Pressure [Pa]	Directional behavior
Barrel Etching	chemical	reactive radicals	100	isotropic
Plasma Etching (PE)	phys. & chem.	reactive radicals, weakly ion assisted	10 - 100	isotropic with anisotropic component
Reactive Ion Etching (RIE)	phys. & chem.	reactive radicals, strongly ion assisted	1 - 10	anisotropic with isotropic component
Reactive Ion Beam Etching (RIBE)	phys. & chem.	reactive ions	≤ 0.01	anisotropic with isotropic component
Sputter Etching	physical	inert ions	1 - 10	anisotropic
Ion Beam Etching (IBE)	physical	inert ions	≤ 0.01	anisotropic

3.7.2 Chemistry

3.7.2.1 Overview

	Typical or representative plasma etch gases for films used in IC fabrication					
Material	Etchant	Comments				
Polysilicon	SF ₆ , CF ₄	Isotropic or near isotropic (significant undercutting); poor or no selectivity over				
	CF ₄ /H ₂ , CHF ₃	SiO_2 .				
	CF_4/O_2	Very anisotropic; nonselective over SiO ₂ .				
	HBr, Cl ₂ , Cl ₄ /HBr/O ₂	Isotropic; more selective over SiO ₂ .				
		Very anisotropic; most selective over SiO ₂ .				
Single-	same etchants as					
crystal Si	Polysilicon					
SiO ₂	SF ₆ , NF ₃ , CF ₄ /O ₂ , CF ₄	Can be near isotropic (significant undercutting); anisotiopy can be improved				
PSG		with higher ion energy and lawer pressure; poor or no selectivity over Si.				
BPSG	CF_4/H_2 , CHF_3/O_2 ,	Very anisotropic; selective over Si.				
	C_2F_6 , C_3F_8					
	CHF ₃ /C ₄ F ₈ /CO	Anisotropic;selective over Si ₃ N ₄ .				
Si ₃ N₄	CF_4/O_2	Isotropic; selective over SiO ₂ but not over Si.				
	CF ₄ /H ₂	Very anisotropic; selective over Si but not over SiO ₂ .				
	CHF ₃ /O ₂ , CH ₂ F ₂	Very anisotropic; selective over Si and SiO_2 .				
A1	Cl ₂	Near isotropic (significant undercutting).				
	Cl ₂ /CHCl ₃ , Cl ₂ /N ₂	Very anisotropic; BCI3 often added to scavenge oxygen.				
Tungsten	CF ₄ , SF ₆	High etch rate; nonselective:over SiO ₂ .				
(W)	C1 ₂	Selective over SiO ₂ .				
Ti	Cl ₂ , Cl ₂ /CHCI ₃ , CF ₄					
TiN	Cl ₂ , Cl ₂ /CHCI ₃ , CF ₄					
TiSi ₂	Cl ₂ , Cl ₂ /CHCl ₃ , CF ₄ /O ₂					
Photoresist	O_2	Very selective over other films.				

3.7.2.2 Control of Selectivity

Dependence of etch rates of Si and SiO_2 in CF_4 plasmas on the content of O_2 and H_2

<u>Adding H</u>₂ drastically lowers Si etch rate by formation of stable HF $H^+ + F + e^- \rightarrow HF$

However, etch rate of SiO_2 remains longer constant Allows SiO_2/Si etch selectivity to be increased tremendously

Addition of O₂:

Even with plasma the etch rate is slow (insufficient F concentration)

Adding O₂ to the plasma can increase F concentration

$$0 + CF_3 \rightarrow COF_2 + F$$
 then $0+COF_2 \rightarrow CO_2 + 2F$

and consumes CF_x --> **Etch rate of Si** increases faster than of SiO_2

Concentration of F increases further because recombination of CF_x and F becomes increasingly unlikely.

Also: Less adsorption of C on Si because CF_{\star} is not sufficiently available

Etch rate decreases at higher O_2 concentrations: Dilution of F conc. with overly abundant O_2

Similar trend is for SiO₂

Etch rate is higher for Si

Si/SiO₂ selectivity is good

Isotropic etching

3.7.2.3 Control of Anisotropy

Formation of Sidewall Passivating Films

- •Formation of nonvolatile fluorocarbons that deposit on the surfaces (Polymerization)
- The deposit can only be removed by physical collisions with incident ions
- •Fluorocarbon films deposits on all surfaces, but the ion velocity is nearly vertical. As a result, as the etching proceeds there is little ion bombardment of the sidewalls and the fluorocarbon film accumulates
- Adding hydrogen encourages the formation of the fluorocarbon films because hydrogen scavenge fluorine, creating a carbon-rich plasma (same thing happened when C₂F₆ is used instead of CF₄)
- Less accumulation is observed on SiO₂ than Si surfaces
- Tradeoff between

Si/SiO2 selectivity and Anisotropy

Source: Lecture Advanced Topics in Fabrication and Microengineering, John Hopkins University, Baltimore

Controlling Polymerization

- Higher F/C-ratio leads to more etching
- Lower F/C-ratio leads to more polymerization
- Can be determined by the gas used
- Adding H₂ consumes F
 - leads to polymerization
- Adding O₂ consumes C
 - leads to etching

J.W.Coburn, H.F.Winters, J. Vac. Sci. Technol. 16 (1979) 391.

3.7.3 Processes and Equipment

3.7.3.1 "Pure" Chemical Etching

Barrel Reactor

- Plasma and substrate separated
- Chemical etch by reactive radicals (only neutrals reach the wafers)
- Very selective
- Isotropic
- · Many wafers in a batch
- Application: Stripping resist in oxygen plasma

Downstream Reactor

- Generation of long-living reactive molecules/atoms in RF (13.56 MHz) or MW (2.45 GHz) plasma separated from the wafer
- Kink suppresses radiation, no damage
- Soft process

/Schumicki, S.115/

3.7.3.2 Plasma Etching

Parallel Plate (Planar) Reactor

- Substrate in the plasma
- Low throughput
- PE mode: Wafer, anode & reactor grounded (large electrode)
 - Cathode HF driven (small electrode)
- Prevalent chemical etching by neutral radicals
- Low-energy ion bombardment at wafer (plasma potential $V_p \sim 10 \text{ eV}$)

3.7.3.3 Reactive Ion Etching

Parallel Plate (Planar) Reactor

- Substrate in the plasma
- Low throughput
- RIE mode: Wafer HF driven

 (cathode, small electrode)
 Reactor & anode grounded
 (large electrode)
- Ion bombardment at wafer, physical component can be tuned from low to high by voltage (Cathode voltage V_o depends on RF power and external DC bias, 0.1 - 1 keV)
- RIE combines the benefits of chemical etching along with that of directional ion milling
- The combined etch results in a selectivity ratio between SiO₂ and Si of 35 compared with 10 in plasma only etching
- "RIE has become the choice for all advanced processes" (AMAT)

High Density Plasma (HDP) Reactors

High Density Plasma: ICP, TCP, DPS, MERIE, μW, MORIE, ECR
 Highly efficient transfer of electromagnetic energy into the plasma
 --> high density of reactive particles

Inductively Coupled Plasma (ICP) reactor

Goals: High plasma density

Separate control of physical and chemical etching

3.7.4 Process examples

3.7.4.1 Overview

A) Trench (Si): Cl₂/Ar/N₂ or Cl₂/HBr

 $Si + 4Cl \rightarrow SiCl_4$ (at T > - 40 °C) or

 $Si + 4Br \rightarrow SiBr_4$ (at T > +25 °C)

B) Gate (Poly Si, Silicide): Cl₂/Ar, Cl₂/SF₆ or Cl₂/O₂

 $Si + 4Cl \rightarrow SiCl_4$ (at T > - 40 °C)

e.g. Tungsten silicide WSix:

W + 6F \rightarrow WF₆ (at T > - 50 °C)

 $W + 6CI \rightarrow WCI_6$ (at T > +90 °C)!

C) Via (oxidic films): C_4F_8/H_2 (O₂) or $CHF_3/C_2F_6/Ar$

 $SiO_2 + 4F \rightarrow SiF_4 + O_2$ (at T > - 130 °C or

 $SiO_2 + 4F + 2C \rightarrow SiF_4 + 2CO$ at T > - 130 °C)

D) Interconnects (Al alloys): BCl₃/Cl₂/N₂

 $AI + 3CI \rightarrow AICI_3$ (at T > + 60 °C)

Source: "MNE 94" IBM, Siemens

Source: SI 3/98 Lam Research

Source: Etch Tech 4/96 Applied Materials

Source: Etch Tech 7/96 Applied Materials

3.7.4.2 Dry Etching of Metals

Al (Si, Cu) Alloy

 $AlCl_3$ is volatile above ~50 °C! Al films are initially covered by native Al_2O_3 , removal by ion bombardment CuCl is volatile only above 250 °C, desorption needs additional energy at surface

Process control:

- 1. Phase: Prevailing ion bombardment for oxide removal
- 2. Phase: Prevailing chemical etching by Cl or Br radicals (from HCl, HBr)
 - Anisotropy has to be achieved by side-wall passivation
 - → Polymerization is supported by addition of CH₄, CHCl₃, CHF₃
 - Soft ion bombardment to enable desorption of CuCl Problem: Selectivity to resist → Use DUV hardened resist or hard masks
- 3. Post-treatment: Immediate removal of CI containing masks and polymers by fluorine treatment and intensive rinsing in water to prevent subsequent corrosion

<u>TiW</u>: CF_4/O_2 (isotropic) or CF_4

Mo: $CF_4/CBrF_3$

 $\underline{\textbf{W}}$: CF₄/O₂; SF₆/Ar

3.7.4.3 ILD Etching: Porous ULK Dual Damascene patterning

Patterning Scheme for JSR LKD5109 140 nm wire/280 nm pitch

□ Dual Hard-mask, Partial Via First Approach in LKD 5109

- To reduce topography and
- To enable single layer resist

Source: LETI (ULISSE project)

Dual damascene LKD5109 140 nm wire/280 nm pitch

BARC and USG hard-mask opening

0.14µm via

0.16µm via

Line 2 lithography on via topology

0.34μm/0.14μm trench/via target

nch/via target trench/via target

SiC (bottom hard-mask) etching

0.36µm/0.16µm trench/via target

USG hard-mask and ULK etching

0.34µm/0.14µm trench/via target

SiC etching (top and embedded hard-masks)

0.34µm/0.14µm trench/via target

0.36µm/0.16µm

ULK (line + via) etching

Source: LETI (ULISSE project)