

CR-128933

STUDY OF OXYGEN GAS PRODUCTION PHENOMENON
DURING STAND AND DISCHARGE IN
SILVER-ZINC BATTERIES
FINAL REPORT

(NASA-CR-128933) STUDY OF OXYGEN GAS
PRODUCTION PHENOMENON DURING STAND AND
DISCHARGE IN SILVER-ZINC BATTERIES Final
Report (Eagle-Picher Industries, Inc.,
Joplin, Mo.) 94 p HC \$6.75 CSCL 10C

N73-24087

Unclassified
G3/03 04164

EAGLE-PICHER INDUSTRIES, INC.

STUDY OF OXYGEN GAS PRODUCTION PHENOMENON
DURING STAND AND DISCHARGE IN
SILVER-ZINC BATTERIES
FINAL REPORT

Contract No. NAS9-12032
2 May 1973

EAGLE-PICHER INDUSTRIES, INC.
Electronics Division
Couples Department
Joplin, Missouri

1.0 INTRODUCTION

In order to establish the effects of a number of cell process and performance variables upon the oxygen evolution rate of silver/silver oxide cathode, the subject contract was initiated. The goal has been to establish by prediction and measurement the conditions which would result in the production of a minimum of oxygen.

Realizing that such a study would be evolutionary in nature, five (5) tasks were designated as follows:

Task I

- (a) Design and fabrication of two pilot test cells to be used for electrode testing, measurement of gas volume and rate generated and sampling of the gas for analysis.
- (b) Assembly of constant temperature equipment.

Task II

- (a) Determination of the sensitivity and accuracy of the test cell using sheet nickel test electrodes by varying the currents to generate gas at known rates.
- (b) Fabrication of additional cells of the final design.

Task III

Determination of total volumes and rates of generation by cathodes of standard production procedures under the following test conditions:

- (a) During at least 14 days activated stand period at 90°F, followed by discharge rate of C/40 (10 amp for full cell or 1 amp/plate).
- (b) Discharge at C/40 following standard "soak" period at 90°F.

Task IV

Set up a sequential test plan to determine the effect of the following factors on production positives (after production drying as applied to dry stand of these positives).

<u>Factors</u>	<u>Levels</u>
(a) Temperature	90°F, 140°F
(b) Vacuum	Atmospheric pressure, 0.5 psia
(c) Time	10 days
(d) Flush with He at 140°F for one hour followed by N ₂ cooling to R.T.	w/o treatment, w/treatment

Task V

Set up a series of positive formation cells in which formation process factors can be controlled. Set up sequential test plans to determine the effects of factors associated with the formation of the positive plate and the effect on gas quantity and evolution rate.

Discussion and data in this report is presented sequentially according to task number.

1.1 EXPERIMENTAL DESIGN AND DATA ANALYSIS PROCEDURE

This section will be devoted to a general treatment of the basis for the design for the various runs after the completion of those that were part of Tasks I, II and III. These initial tasks consisted of runs that were replicated as closely as possible. With the beginning of Task IV and V, the problem was the determination of the effect of variables on the performance of the positive plates. It was anticipated that Task V would ultimately estimate the effect of up to about twenty (20) variables while Task IV was much less (8 variables). The number of determinations (plate runs) to evaluate all main variable effects and all interactions without any replicates with each variable at two levels (-,+) is 2^N where N is the number of variables. It is evident that a means of reducing the number of runs and still permit the evaluation of important effects is required. The approach to be outlined herein is a result of several years development from a study of O. L. Davies, "Design and Analysis of Industrial Experiments"; N. R. Draper and H. Smith, "Applied Regression Analysis"; much assistance from Dr. Leroy Folks, Department of Statistics, Oklahoma State University, Stillwater, Oklahoma; Statistics Department, Sandia Corporation, Albuquerque, New Mexico and many others.

Some nomenclature and procedures are used that may require definitions. A type of variable used consists of two levels. These levels are a comparison of conditions comprising the variable such as temperature with one level at 140°F versus another level at 100°F or a stand time variable with one level being no stand time and the other a two week stand time. The two levels can then be designated as + or +1 for one of the levels and -, -1 or 0 for the other level. Also used is lower case alphabetic (a,b,etc.) for one level and a blank for the other level. A balanced (equal number of + and -) full factorial single replicated design will include all possible combinations of the two level variables.

Two methods of representing this design for three (3) variables (factors) are shown in Figures 1.1-1 and 1.1-2. Each box in the first figure and each row in the second figure represent corresponding trial combinations. The symbol "(1)" means that all levels are at the minus, i.e. -1,-1,-1. Each column in the second arrangement corresponds to each individual variable. Each box in Figure 1.1-1 and each row in Figure 1.1-2 would have a numerical response value from which the effect of these variables and their interactions can be estimated. In general, the number of trials for a full factorial is 2^N where N is the number of variables. For a full factorial, each variable and appropriate interaction (AB, AC, BC and ABC) corresponds to a column and its designation follows the row order as shown in the second figure arrangement. The columns designated A, B, AB, etc. are used in the estimation or calculation of the effect of each. The sign designation of the levels of the 3 variables, A, B, and C are determined, by convention, by the first column ((1), a, b, ab, etc.). For example the designation "a" sets the level of variable A at the + level while variables B and C are at the - level. The signs under each interaction column are then fully defined by the variable levels since if variables A and B are both at the - level then the interaction must be at the + level. An additional column, not shown, is understood as being available: the response for each trial ((1), a, b, etc.). Each then may be thought of as a vector in a matrix. The correlation coefficient between these columns or vectors is important.

The correlation coefficient, R, is calculated for the A and B vectors by:
 $(\Sigma = \text{sum})$

$$R(AB) = \left[\frac{\Sigma(AB) - (\Sigma A)(\Sigma B)/N}{(\Sigma(A^2) - (\Sigma A)(\Sigma A)/N)(\Sigma(B^2) - (\Sigma B)(\Sigma B)/N)} \right]^{1/2}$$

An attribute of a full factorial is that all correlation coefficients between all variables and all interactions are equal to zero. The matrix A to ABC or in any size problem, the matrix without the response is termed the X matrix (controlled or independent variable matrix) since these variables are or should be subject to independent control. The

response is termed the dependent variable vector or Y vector. This "plus and minus" variable, although it may be quantitative in nature is really qualitative since it can be used to describe and evaluate, say two types of raw materials in a process (one type = +, the other -). This variable can be considered quantitative with the assumption that the change from the plus level to the minus level will be linear.

A true quantitative variable may be entered into the matrix by using the actual numerical value used in each test as an additional X or independent vector. In order to code this variable so its range will be -1 to +1, computer routines can be called to determine the maximum value and the minimum value, assign a +1 and -1 to these and prorate all values between these two extremes. The vector thus will contain values comparable to the rest of the X matrix but will have the same distribution as the original values. Several advantages come from coding such as the magnitude of the numbers are about the same over the matrix, and predicting responses can be simpler since the range of all the vectors are the same (+1 to -1).

A modification of the qualitative (+,-) variable is termed "Dummy Variable" by Draper and Smith, "Applied Regression Analysis", p. 140, et seq. This type has been utilized in the analysis. Dummy variables may be used to compare more than two qualitative variables by multiple regression, to be discussed shortly. Figure 1.1-3 illustrates the structure of the Dummy variable vectors. Dummy Variable No. 1 compares Qualitative variable condition A with B while Variable 2 compares condition A with C. Thus, if both B and C are compared with A, then B can be compared with C. Thus (N-1) dummy variables can define N qualitative variables. It is obvious that these can not be used in a balanced factorial design since these can not be used in interactions with each other but can interact with other variables.

If the trials could be always designed to follow a full balanced factorial the interpretation would be simple. It may be seen from Figure 1.1-2 that the sum of the corresponding responses for negative and positive within each vector automatically result in cancelling of all other vector effects. So to evaluate the effect (- to +), each is found by obtaining the following difference in mean response:

	<u>Resp. for:</u>	<u>Resp. for:</u>
Eff. of A	= $(a+ab+ac+abc)/4$	- $((1)+b+c+bc)/4$
Eff. of B	= $(b+ab+bc+abc)/4$	- $((1)+a+c+ac)/4$
Eff. of C	= $(c+ac+bc+abc)/4$	- $((1)+a+b+ab)/4$

Other procedures for estimating the variable effects for a full factorial design are a Yates and multiple regression analyses. Yates analysis (O. L. Davies, "Design and Analysis of Industrial Experiments") is limited to balanced design but multiple regression is not so limited and is the method used in this work. Each trial may be represented as a linear equation:

$$b_{11} \text{ Var 1} + b_{12} \text{ Var 2} + b_{13} \text{ Var 3} ----- = Y_1$$

$$b_{21} \text{ Var 1} + b_{22} \text{ Var 2} + b_{23} \text{ Var 3} ----- = Y_2$$

By solving these equations for the coefficients, by the least square calculation a general regression equation may be determined:

$$K + a_1 \text{ Var 1} + a_2 \text{ Var 2} + a_3 \text{ Var 3} ----- = \hat{y}$$

Where \hat{y} is the predicted response from the regression equation determined. The least square analysis determines the constant and coefficients so that sum of the residuals squared is a minimum. A residual is the difference between the observed response (y) and the predicted response (\hat{y}) for an

observation. To illustrate the analysis for a full and fractional factorial with built up responses so the actual can be readily compared with that determined by regression, refer to Figure 1.1-4 and Figure 1.1-5. It should be noted that a close parallel exists between observing if a causative variable creates a "trend" in the response and using regression for analysis. A good "trend", as shown graphically between a causative variable and a response, would be revealed by the regression when the model "predicts" the original data values closely, i.e., the residuals would be relatively small and the SSQ for error as well. Thus, if there were no error and only one causative variable, the graphed curve would fit the points precisely and the regression model would show a "zero" residual SSQ (error). The total SSQ obtained from the responses is thus allocated completely to the one causative X variable. If the causative variable had not caused the response to change over its range and assuming no error, the SSQ would also have been zero and of course the residual SSQ would like-wise be zero. Carrying this line of reasoning on to more than one causative variable and interactions between these, is the job of multiple regression. Graphing the effects is out of the question. Solving the equations defining the design (Y_1 , Y_2 , etc.) above allocates the SSQ to each variable's (vector) coefficient in the model and the "unaccounted" is left as residual SSQ (error). Obviously, any variable not included in the model will have its SSQ left in the "error" SSQ value. Therefore, the analysis consists of selecting as large a model as possible with the number of variable coefficients less than $(N-1)$, where N is the number of trials. The two computer programs for multiple regression used here "throw-out" variables or vectors which closely correlate other independent variables, and when the amount of SSQ's allocated to a variable is sufficiently small as compared to the residual SSQ. When the number of potential vectors are larger than the program can accomodate, making a preliminary set of

correlation coefficients can often show some high (near 1. or -1.) values and these can be dropped. The use of correlation coefficients will also identify "confounded" vectors in a "partial" factorial design. If a variable is included or added to a design based on full factorial in place of an interaction, this new variable and the interaction will be confounded. By "adding" is meant that each level (+ or -) assigned to the interaction is used for the new variable. The "effect" will obviously be the sum of the original interaction effect plus that due to the added (confounded) variable. Confounding is the price paid for reducing the number of tests.

In the actual analysis of real data, a type of internal coding of the X or controlled variable matrix is used to create the +1 to -1 range. If the variable is quantitative, say, as sintered weight of the plate, the maximum and minimum values are found which will ultimately be used to code each term from +1 (max.) to -1 (min.). This was discussed on page 5. For variables already assigned +1 and -1 (qualitative or 2 level quantitative variables), before the maximum - minimum coding is applied, 2. is added to each so the range is 1 to 3 corresponding to +1 and -1. Next, all interactions are formed by taking the corresponding product for each pair desired. The maximum-minimum coding is then applied to each vector (variables and interactions) so the entire X matrix has each coded to +1 and -1 and the interaction products obey the sign convention ($-1 \times -1 = +1$, $-1 \times +1 = -1$, $+1 \times +1 = +1$). by using the maximum-minimum coding after the quantizing adjustment (adding 2) above, the product of the two minimum levels results in a -1 code in the interaction and two maximum levels results in a +1 interaction level. It is thus possible to evaluate the interactive direction and effect from the regression coefficient. The effect observed by taking the mean of the factorial predictions is the same regards of the type of coding that is used.

To illustrate the coding and the proficiency of analysing data by multiple regression, several "cases" have been built up before hand using

various criteria. Figures No. 1.1-4 through -7 show the ability of the regular regression program to analyse data and predict under various conditions. These show the buildup of the responses and the actual solution by multiple regression.

To translate the above to what was done in the actual tests, the initial set in Task V used a fractional factorial design with 16 trials with five qualitative (-1,+1) variables and two quantitative plate variables. Additional variables were sequentially added by testing another set of 16 plates controlled at some, as yet, untested variable level (-1 or +1) with a duplication of the original five + two variable design superimposed. The opposing level of the new variable was always that used in the preceding formations. The original five + two variables were not always duplicated; however, the entries in the matrix were made to correspond to the actual experimental conditions. Also, the two quantitative variables were recomputed to evaluate per cent pick-up(oxygen) rather than oxygen weight. Also, the per cent pick-up was treated as a dependent variable, disregarding the gas volumes, versus the X matrix; obviously without per cent pick-up. If a plate was lost inadvertently, no attempt was made to replace the test since it was thought that sufficient conditions were covered to evaluate the effect. Multiple regression analysis is deemed to be the indicated procedure for data analysis.

1.2 OXYGEN LIBERATION MECHANISMS

A theoretical discussion of possible mechanisms whereby the oxygen gassing rate may be influenced should prove pertinent to the interpretation of the data obtained. Table 1.2-1 is a listing of most probable or most often mentioned mechanisms and reactions that are involved in production or steps leading to production of oxygen gas. Table 1.2-2 is a listing of pertinent available thermodynamic values. The data analysis discussions will allude to which mechanisms might be most likely to be operative under the give circumstances.

The general classes of mechanisms are:

1. Spontaneous decomposition, particulary of the higher oxides, of stoichiometric or non-stoichiometric compounds present in the plate whether as a principal component or as an impurity. The oxygen should be present as a chemically bound species before appearing as a free gas. Reactions listed appling in this case, would be of the type of reaction numbers 1, 8, 10, 13, 14 and 15. The most probable of these are the AgO compounds (8 and 10). The actual presence of Ag_2O_3 (13, 14 and 15) as a discrete compound is suspect.
2. Oxygen that is adsorbed on the surface of the active material would be displaced or dissolved by electrolyte. Oxygen trapped in the oxide layer or crystal lattice would be released on discharge when the active material trapping it, is altered. This oxygen is chemical unbound and is present due to structural restraint and Von der Waal forces.

Other than the obvious release of the gas through electrolyte or discharge, this oxygen could play a partial role in retardation of the spontaneous decomposition rate by presenting, in effect, an oxygen partial pressure greater than that otherwise expected.

3. Solubility of silver oxide compounds in the potassium hydroxide electrolyte may produce species capable of reaction or decomposition in solution. Reaction Numbers 2, 3, 4, 5, 6, 7, 11, 12 and 16 are representative of this phase.

The solubility products produced from any source of silver oxides has been indicated, by other researchers, as being equivalent or nearly so to that for the Ag_2O species alone. The solubility has been indicated as increasing with increasing concentration of potassium hydroxide.

A decomposition by the effect of light for the solvated silver oxides has also been found.

4. Electrochemical reactions, including the presence of voltage in excess of the oxygen overpotential, can result in the formation of oxygen gas. A distinction is made between "electrochemical" and "chemical" reactions. Electrochemical reaction takes place when cathode and anode sites are distinguished with a free (metallic conduction) transfer of electrons between these along with ionic transfer through an electrolyte. An internal electrochemical reaction, of the type of reaction Number 9, could occur in the positive plate with AgO acting as the cathode and unformed Ag as the anode.

5. Reactions that would be likely only during discharge would be represented by reaction Numbers 5, 6, and 7. The oxygen ions represented would have a very low probability of existence under ordinary conditions. Under discharge some form of ionic oxygen transport is necessary and the probability of a reaction of this type is greatly enhanced.

2.0 FACTUAL DATA AND DISCUSSION

2.1 & 2.2 Task I ended with the construction of test cells which allowed for the collection of gas in a calibrated cylinder by displacement of liquid. Three (3) series of runs were made using nickel sheet electrodes which could be caused to generate gas by electrolysis of water in the electrolyte at known rates. The oxygen equivalent was calculated to be 4.02 ml per ampere-minute corrected for local laboratory conditions (26°C and .963 atm).

Calibration data was taken at two rates, .050 amps and .0015 amps. These rates are equivalent to 12.04 ml/hour and 0.378 ml/hour respectively. The volume calibration factor for the collection tube was found to be .323 ml per cm of length. Data for high rate (0.05 amps) for 15 minute time periods were found to be as follows:

<u>Sequence</u>	<u>ml/hour</u>
1	9.69
2	9.82
3	10.85
4	10.47
5	8.59
6	<u>9.04</u>

mean = 9.743 ml/hour

Sample Sigma = 0.847

% of Theoretical = 80.9

Refinements of this basic design included a constant stream of bubbling oxygen to keep the bulk electrolyte saturated at all times,

thereby preventing sample loss to the liquid. Also a shield of "Pellon" was built into the test cell around the test plate to prevent sweeping away of O_2 by bulk current. The final configuration of the test cell is shown by Figure 2.1-1. (Certain construction details are omitted for clarity).

2.3 Task III

Early plots of gas evolution indicated that discharge production might be an exponential, while the open circuit is linear. It was decided to use a fifth degree polynomial equation model to define the gas volume vs. time curve rather than an exponential model. The program for the non-linear exponential regression uses an iteration procedure and frequently the program would diverge. A prediction value for 140 hours for the open circuit gas and a value for 50 hours for discharge gas were decided as responses for the gases produced. The "untreated" (as is) production plates developed a mean and sample sigma of 26.7 cc/hour and 11.76, respectively, for O.C. gas and 12.2 cc/hour and 3.45, respectively, for the discharge gas.

2.4 Task IV

2.4.1 Task IV - Data

Gas analysis, via gas chromatography, has shown that the gas produced by both open circuit and discharge conditions is strictly oxygen. Hydrogen was suspected during the earlier phase of gas analysis but this was resolved when argon carrier gas was substituted for helium. The argon provided better resolution and showed no hydrogen peaks. Nitrogen that was occasionally found is certainly due to air contamination.

The variables studied in this task are listed in Table No. 2.4-1 (1 to 8 inclusive) while 9 through 27 are interactions making up the regression models used in analysing the effect of the variables on the gassing. Table No. 2.4-2A shows the column designations and Table 2.4-2B lists all Task IV data. Table No.'s 2.4-3, 2.4-4 and 2.4-5 show the regressions used to evaluate the effect of the variables in Task IV (Table No. 2.4-1). Also Tables 2.4-6,-7 & -8 show the original data, the prediction of these data using the model shown, the residuals, and standard error of the predicted value. These models were selected by successive deletion from the original complete model until all student "t" values for each variable was > 1 .

The analytical procedure for evaluation, discussed in paragraph 1.1, of the variable effects is:

- 1) Build a matrix of the complete 2^8 factorial starting with all positive levels (1-8) and changing each variable successively to -1 to create 256 predictions.
- 2) Using the models of Tables 2.4-3, 2.4-4 and 2.4-5, compute the 256 corresponding predictions.
- 3) An analysis is made of each full factorial set of predictions by computing the mean, etc. of all predictions for all positive levels (X1) and negative levels (X2) for each variable and interaction (Var. 1, etc.) disregarding all other variables successively.

Comparing X1 values minus the X2 value yields the variable effect (+1 to -1) successively for each variable. The differences obtained in this manner are listed in Table 2.4-12 (Summary of Effects) by variable and the type of gas. The levels preceding the difference number are the minimum gas levels.

4) Tables 2.4-9, 2.4-10 and 2.4-11 represent the minimum ("A" designator) and maximum ("B" designator) gassing combinations of variables for open circuit, discharge and combined gas respectively. The level columns are in variable number order. The number of each combination is the sequence number in the matrix and the MIN (or MAX) number is the predicted value of the combination.

2.4.2 Task IV - Discussion

Table numbers 2.4-9, 2.4-10, 2.4-11 and 2.4-12 serve as comparisons and means to evaluate the effects of the variables on the three (3) responses.

VARIABLE NO. 1 ~ Temperature (+) = 140°F; (-) = 75°F (RT)

O/C (-) 34.104; Disc. (-) 63.029; Comb (-) 92.335

This variable compares plate treatment at room temperature versus treatment at 140°F. The minimum gassing level is definitely the lower temperature treatment for all cases.

This is consistent with the view that a stabilization of the oxides has been obtained through production procedures. Higher temperatures would tend to promote a more rapid decomposition of the higher oxides and this could in turn weaken the more stable organization of the oxide crystals or layers. If the oxide layers or crystals are expanded or disorganize in the

process this would lend more impetus to the formation of active sites for the discharge gassing mechanism as well as allow more surface area exposed to the electrolyte for open circuit gassing.

Interaction Variable 9 (Var.1)(Var.2) suggests these two variables act in the same manner and with a limiting effect. The resultant interaction of the two shows a lessened effect on reduction of gassing than if the two variables acted independently. Interaction Variable 12 (Var.1)(Var.5) shows an additive effect of the combination. This could tend to indicate that the higher temperature involved in Var. 5 was the primary effect of the variable in lieu of the inert gas treatment. Interaction Variables 10 (Var.1)(Var.3) and 13 (Var.1)(Var.6) are also involved but these are discussed under the Var. 3, Var. 6 section.

VARIABLE NO. 2-Pressure (+)=0.5ATM; (-)=1.0ATM O/C(-)28.714;

Disc. (-) 14.918; Comb. (-) 29.971

The effect of pressure is examined in this variable by comparing reduced pressure treatment of one-half atmosphere with room pressure. Minimum gassing was obtained with the less severe treatment of one atmosphere.

The probable causes would be similar to those outlined under Var. 1 as reduction in pressure would have a similar effect as higher temperatures. Lowering pressure would tend to effectively reduce oxygen partial pressure and promote decomposition of the higher oxides disrupting whatever

stabilization processes had occurred with similar effects as Var. 1. The reduced pressure would also draw out at an increased rate any trapped or occluded oxygen that might be present, further reducing effective oxygen partial pressure. A major effect from this line is questionable.

Interaction Variable 16 (Var.2)(Var.4) indicates an additive effect of the two variables in combination. This is most likely due to the inverse effect of longer time at reduced pressure causing more gassing. In view of interaction Variable 9 (discussed under Variable 1) Variable 16 indicates a limiting rate dependent on time for the mechanism producing the increased gassing. While increased time allows the mechanism to continue in effect, possibly increasing with time, the mechanism has a limit since Variable 9 is a decrease from the sum of the individual variables effects that would be the direct cause of the mechanism.

Interaction Variable 17 (Var.2)(Var.5) shows a lessened effect for the combination of the two variables. This, again, indicates Var. 5's main effect lies in the temperature difference imposed.

VARIABLE NO. 4 - TIME

(+) = 10 days; (-) = 1 day; O/C (-) 66.229; Disc (-) 40.068;
Comb (-) 114.648

The time of treatment of 1 day produces the minimum gassing effect. The nature of the magnitude of this independent variable is somewhat puzzling. The longer time might be thought to allow

rearrangement of the oxide layers or crystals to more stable species, yet this does not seem to be the case. Longer time, obviously, would result in a larger total amount of simple decomposition products formed compared with the shorter time at similar conditions. Apparently, this is the determinant factor in this variable.

Interaction Variable 16 is discussed under its companion variable and Variables 19 and 23 are discussed under Variables 3 and 6.

VARIABLE NO. 5 - INERT GAS TREATMENT

(+) = He flushed at 140°F for 1 hour and cooled to room temperature with N₂; (-) = No treatment; O/C (-) 10.148; Disc (-) 9.176; Comb (-) 17.409

This variable was included to determine if gasses trapped in the plate on formation had an effect on oxygen production. The major effect would have been the removal of unbound or loose bound oxygen effectively reducing oxygen partial pressure for the decomposition of the oxides. In quantity, this effect is, apparently, the least significant of those examined. The minimum gassing level is that of no treatment. The effect that is found is believed to be-primarily that of the higher temperature applied concurrently to the inert gas flushing.

Interaction variables are discussed under the companion variables.

VARIABLES NO. 3 AND NO. 6 - COMPARISON OF PRODUCTION LOTS

Number 3 (+) = Lot 25; (-) = Lot 24; (0) = Lot 1
0/C (-) 42.325; Disc. (-) 44.491; Comb (-) 92.444

Number 6 (+) = Lot 1; (-) = Lot 24; (0) = Lot 25
0/C (-) 4.398; Disc. (-) 8.383; Comb (-) 13.619

These two variables compare differences in production lots, through the use of dummy variables. These two variables work in conjunction to determine the lot numbers of a given test.

The major fact determined from this portion of the analysis is that there is indeed a difference from lot to lot of production plates.

Of the lots used, the lot designated "25" appears responsible for increased gassing compared to the other two lots which are not significantly different, though Lot 24 appears as the minimum gassing lot in the main effects. In the MIN gas analysis Lot 1 appears in the majority of combinations, although Lot 24 is present especially for open circuit and to a lesser degree, for combined gas.

Somewhat of a peculiarity is found in Interaction Variable 10 (Var.1)(Var.3). A very large effect with temperature on the plates of Lot 25. The indication is that for Lot 25, the high temperature treatment promotes less gassing in opposition to the expected increase in gassing. Inspection of the MAX levels of gassing strongly support this anomaly. In those instances that Lot 25 is listed in the MAX gas level, the temperature is invariably the lower (room temperature) while in all other cases it is the expected higher temperature (140°F).

The apparent magnitude of this effect is much greater than for any interaction or main effect. A possible explanation would be a particularly large proportion of easily decomposed oxides in Lot 25 as compared to the other two lots. The higher temperature would then dispose of these oxides to a greater degree before the start of the tests.

Variable 13. (Var.1)(Var.6) has the expected direction and is additive indicating that the lower gas mechanism for Lots 1 and 24 are similar or identical and that the lower temperature enhances the lower gas rate in combination with Lot 24. This is further indication that Lots 1 and 24 are quite similar in respect to their gassing. Variable 14 (Var.5)(Var.6) has effects very similar to, but to a much lesser degree than, Variable 13. This is to be expected if Variable 5's main effect is the incidental high temperature.

Interaction Variables 19 (Var.3)(Var.4) and 23 (Var.4)(Var.6) offer another contrast between the lots. Variable 19 is additive as might be expected if Lot 25 is more concentrated in the higher oxides. Variable 23, on the other hand, is less by the interaction than for the sum of the individual main effects.

VARIABLE NO. 8 - OXYGEN PERCENT PICKUP (+)high (-) low
O/C 0, Disch (+) 31.099; Comb. 0

Oxygen percent pickup has significant effect only for discharge gassing. This would seem particularly reasonable if the mechanism for gassing during discharge involved reduction of the lower

valence silver ions by oxygen ions in the transport process.

The higher percent oxygen pickup, the lower gas level, would indicate a higher percentage of high valence silver and conversely a lower proportion of monovalent silver.

2.4.3 TASK IV SUMMARY

From the data obtained from production plates just discussed, it is apparent that no further treatment above production procedures is necessary and, indeed, is very undesirable. Increased temperature or reduced pressure contribute to increasing the volume of gassing in both open circuit and discharge conditions. Flushing the plates with inert gas is at best valueless and at worst detrimental to the gassing of the plates. The shortest possible stand time is apparently the lowest gas producing level. The sintered weight of the plate is not critical to gas production but the highest percent oxygen pickup is most desirable. Not only does the higher pickup reduce gassing on discharge but, obviously, increases the capacity available in the plates.

A variation was found among the production lots examined. However, only three lots were involved and two of those appeared to correspond very closely in their responses.

2.5 TASK V

2.5.1 Task V - Data

The variables studied for Task V are indicated in Table 2.5-1.

Table 2.5-2A shows the column designations while Table 2.5-2B lists all Task V data.

Tables 2.5-3,-4 and -5 show the regression models used for open circuit, discharge, and combined gas respectively. The criteria for developing the regression model involved deleting all interaction variables having a greater than .999 correlation with any other variable. The "complete" regression model was prepared and refined by backward deletion by successive removal of the lowest "t" value of the coefficients made until the lowest value was one. The full factorial was prepared using these "best" models to predict the full factorial. The variable analysis was then the same as that used in Task IV.

Tables 2.5-9,-10 and -11 show the maximum and minimum level combinations as was explained in 2.4.1. In the case of Task V, however, not all main effects are interactive and the non-interactive effects (indicated by zeros in their respective columns) are not included in the prediction. To include these in the prediction, it is necessary to sum (by sign) the non-interactive variables effects from Table 2.5-12.

2.5.2 Task V - Discussion

The variables are discussed individually with a brief suggestion as to the causitive effect involved. (As this approach was not designed to investigate mechanisms or structures, the causitive discussion should be interpreted only as possibilities).

Variable #1 - Rinse Rate

(+) = low rate (-) = high rate o/c (+) 3.42, Disc. (+) 0.78
Comb. (+) 2.60

In all three cases the (+) or low rate of rinse is the minimum gassing level. The lower rinse rate would dissolve less oxide in the process of rinse than the higher rate. The lower oxides would be the most easily dissolved. If the oxides are arranged in a manner that the higher, more easily decomposed oxides are toward the centers of oxide layers or crystals, then the removal of the surface oxides would expose the subsurface oxides to a faster rate of decomposition. The surface oxide layer could act as a barrier to the loss of oxygen produced by decomposition of oxides beneath it effectively increasing the partial pressure of oxygen inside the oxide crystal, thereby slowing the rate of decomposition. The most effective surface layer would probably be formed during formation and reformation of a "new" surface layer through decomposition of higher oxides to lower oxides. would not be as effective.

Variable #2 - Rinse Temperature

(+) = 110-114°F, (-) = 75°F, O/C (-) 2.09, Disc. (+) 3.51
Comb. (+) 2.34

Open circuit gassing is minimal at the lower temperature, probably for a similar reason as discussed in Var. 1. Discharge gassing however, is minimum at the higher rinse temperature. The discharge gas mechanism may depend a great deal on active sites or areas where reaction is more favorable. Crystal protrusions or irregularities would be the most likely sites for this type of

activity and higher temperature rinse would be responsible for a greater degree of elimination of those areas through solubility.

Another approach would be the greater degree of elimination of the more soluble Ag^+ containing oxides. The most likely mechanism for gassing during discharge (Rxn #5) would be dependent upon Ag^+ concentration or availability.

Variable # 3 - Rinse Time

(+) = 4 hours, (-) = 15 minutes, O/C (-) 3.93; Disch. (-) 4.98
Comb. (-) 5.85

The shorter rinse time of 15 minutes is the definite choice for minimum gassing. The long rinse time probably reduces the protective oxide layer (as discussed under Var. 1.) to such an extent that simple decomposition is the determinant factor and the other, possible beneficial effects are over-ridden.

Variable #4 - Drying Temperature

(+) = 140°F ; (-) = 100°F ; O/C (+) 4.78; Disch. (-) 8.98; Comb. (-) 3.68

The drying temperature presents the largest variable difference encountered between open circuit and discharge gassing. The level effects are in direct opposition in minimum gassing.

The higher temperature would cause a greater amount of decomposition, particularly among the higher oxides. The more easily decomposed species would be reduced to silver or a more stable oxide. A relatively substantial effect could be made on the crystal or oxide layers' physical structure by the decomposition and resultant rearrangement.

The open circuit gassing, due primarily to simple decomposition, would be effectively lowered by the higher temperature drying.

The most readily decomposable species would have already undergone substantial decomposition prior to the open circuit stand and less active material would, therefore, be present.

The discharge gassing mechanism, however, is presumed to be highly dependent upon the concentration of Ag^+ ions or their ability to undergo reduction by the oxygen ion transport species, available only during discharge. If the higher valence silver, Ag^{++} or Ag^{+++} , have undergone decomposition the probable products would be elemental silver or the Ag^+ species. The silver, would in turn, most likely be oxidized in an internal couple with the higher oxides remaining to produce Ag^+ . The net effect would be an increase in Ag^+ ions to react during discharge. Also possible in influence is a lattice expansion due to heat expansion and/or decomposition. Such an effect could produce more active sites for Ag^+ reduction or surface area for solubility.

Variable #5 - Drying Time

(+) = 42.5 hrs; (-) = 18.5 hrs.; o/c (+) 3.22; Disc. (-) 3.14
Comb. (-) 3.14

The relationship of drying time is very similar to drying temperature (Var.4) and for probably similar reasons. The effect of drying temperature would be a rate that is time dependent and increased drying time would enhance the effect.

Variable #6 - Charge Current

(+) = 2.3 amps; (-) = 3.5 amps; O/C (+) 0.58; Disc. (+) 10.24;
Comb. (+) 12.03

The lower oxide (Ag_2O) has been shown, by other researchers, to be thickest at low current densities, decreasing until around 0.25 mA/cm^2 where it begins to increase logarithmically. Lower current densities should promote larger crystal size of Ag_2O in particular. This would also imply a more regular and uniform crystal growth producing a more stabilized system. Reduction in potential surface area for the decomposition process or solubility could be expected. Higher lattice energies would be more probable. Nucleation sites for the formation of AgO would be more favorable. Production of Ag_2O_3 would be less likely by passing the decomposition of this species and the resultant weakening of crystal structure. A better formed geometry of oxides at low current densities could be responsible, in part, for the pronounced effect on discharge gassing over open circuit. This would be due to a reduction in active sites or conditions available for the oxidation of oxygen species formed during discharge.

Variable #7 - Percent Overcharge (Ampere-Hours)

(+) = 175%; (-) = 125%; O/C (+) 4.40; Disc. (-) 1.35; Comb. NI

This variable examines the amount of charge above the theoretical amount necessary to promote all the material to the AgO state.

The 175% overcharge should promote more complete conversion to the higher oxide levels. This could result in a stabilization of

of crystal structure by eliminating unoxidized silver or incomplete oxidation that would result in defects in the lattice. Stabilization should decrease decomposition and, therefore, open circuit gassing. A greater amount of interstitial oxygen (whether O_2 or O) should be introduced in the oxide layers by the greater overcharge and this could also decrease decomposition by raising the effective oxygen partial pressure.

Discharge gassing is favorable to the lower overcharge. This could be due simply to the increase in the amount of oxygen available or to the expanded oxide layers affording more probability of Ag^+ reduction on discharge.

Variable #8 - Discharge Current

(+)=5.75 amps; (-)=3.8 amps; O/C (+) 4.78; Disc. NI: Comb. (+) 3.91 At higher current densities on discharge the lower oxide portions and irregular crystal structures offering a higher resistance than the higher oxides would develop a higher potential and be discharged in a proportionately greater amount such that, on recharging, more stable structures are formed in their place. Discharge would, in general, be to a greater depth level at the higher current densities allowing a shifting of crystal or oxide layer structure to a position of less stress on recharging.

Variable #9 - Discharge Time

(+)=4.5 hours; (-)= 3.0 hrs; O/C(+2.06; Disc.(-) 7.84; Comb.(-)6.03 The open circuit results could probably be explained in a similar manner as proposed under Variable #8. The longer time of discharge

would be related in effect to higher current densities.

The longer time is, however, definitely detrimental to the discharge gassing. This could be due, in part, to a swelling of the crystal or oxide layer structure as the conversion to the higher oxides progresses. This could give a somewhat wider field for the oxygen ion species to react with Ag^+ ion. The shorter discharge time could also be conducive to leaving a greater portion of Ag^+ species in an active state for discharge.

Variable #10 - Double Charge

(+)=with; (-)=without; O/C (-)3.93; Disc. (+) 3.38; Comb. NI

This variable refers to the application of a high current density "booster" charge during the last hour of formation. If the mechanism presumed for discharge gassing is the primary reaction, then this result would indicate that the double charge would be instrumental in promoting a larger amount of the higher oxides. These oxides would be more prone to decomposition on open circuit and reduce the percentage of Ag^+ ions available on discharge. This process is suspected of providing a greater amount of chemically unbound oxygen dispersed in the plates.

Variable #11 - Formation Temperature

(+)=75°F; (-)=57°F; O/C(+)5.16; Disc. (-) 1.72; Comb. (+) 3.86

The higher oxides should form most readily at lower formation temperatures. This would be due in part to the higher solubility of oxygen in the electrolyte at low temperatures as well as reducing the rate of decompostion of the oxides as they are formed. This would be in agreement with the results obtained for this variable as open circuit is minimum gassing level at the higher temperature (where fewer easily decomposed oxides are formed) and is minimum gassing at the low temperature for discharge (where fewer Ag^+ ions will remain).

Variable #12 - Wash Water

(+) tap water; (-) deionized water; O/C (-)10.18; Disc. (-) 2.02
Comb. (-) 12.83

Deionized wash water contributes greatly to reduced gassing in the positive plates. The most obvious possibility for this effect is the presence of impurities in tap water that could act as catalyst or in some manner contribute to the production of oxygen gas.

Variable #13 - KOH Concentration

(+)=30%; (-)=20%,40%; O/C NI; Disc. NI; Comb. NI

This variable is a dummy variable working in conjunction with Variable 19 and will be discussed under that variable.

Variable #14 - Counter Electrodes

(+)=Ni; (-)=Ag; O/C(+)3.62; Disc. NI; Comb. NI

The use of nickel counter electrodes leads to minimum gassing for open circuit stand. The silver counter electrodes used were the sintered plates which are quite porous. The nickel electrodes were sheet metal and non-porous.

Variable #15 - Addition of K_2CO_3

(+)=0.1%; (-)=4%; O/C (-)5.37; Disc. (-) 3.73; Comb. (-)10.18

Potassium carbonate might prevent the formation of higher oxides to some degree. Stabilization of the oxides, particularly through complex formation, is also quite possible. The former would help open circuit gassing while the latter would be applicable to both open circuit and discharge gassing reduction.

Variable #16 - Sintered Weight

(+)=high; (-)=low; O/C NI; Disc. NI; Comb.NI

Sintered weight effects were not incorporated into the gassing analysis model. This indicates that the sintered weight has no appreciable effect or that a high correlation exists between it and another variable that is entered in the model.

Variable #17 - Percent Oxygen Pickup

(+)=high; (-)=low; O/C (-)21.21; Disc. (-) 8.91; Comb. (-)33.20

It would be reasonable to expect the rate of decomposition especially to be concentration dependent. The high percent pickup level would contain a higher concentration of the most easily decomposed oxide and therefore produce a higher rate of gas. This effect is large enough to expect that the decomposition which would be continuous, to play a major role during discharge

also. Discharge would also be higher gassing for high pickup since a greater amount of oxygen is present to be discharged.

Variable #18 - Dry Stand Time

(+)=13 days; (-) 1.2 days; O/C (+)15.57; Disch (+)12.06
Comb. (+) 27.18

The longer stand time is the minimum gas level in all cases.

The longer time would permit decomposition of the most active oxides to proceed to a greater extent before gas measurement is initiated. The longer time would also permit greater rearrangement of the internal structure and oxide layers to a state of equilibrium.

Variable #19 - KOH Concentration

(+)=40%; (-)=20%,30%; O/C(-)24.23; Disc. (-) 31.74; Comb.(-) 54.42

This dummy variable operates in conjunction with Variable #13 in comparing three concentrations of potassium hydroxide used during formation. The 40% concentration produces a large amount of gassing in comparison to the lower concentrations.

The more popular view toward the mechanism of oxide formation involves a high dependence on the presence of hydroxyl ions. The promotion to higher valence oxides, particularly on the surface, by the larger hydroxide concentrations could lead to the results obtained. The open circuit gassing would depend on the availability of the oxide to decomposition as well as the oxide concentration. The discharge gassing would be increased by the presence of the active Ag^+ sites left by the open circuit

decomposition products and resultant structures. The higher solubility of the silver oxides in stronger basic solutions could also play a role in the increased gassing.

Variable #20 - Formation Discharge

(+)=without; (-)=with; O/C(-) 19.09; Disc. (+)0.12; Comb. (-)20.92

This variable compares formations that have no discharge routine included versus those that include some form of discharge process and reforming. The result indicates that low gassing involves the inclusion of a discharge routine. The discharge gassing favored no discharge only slightly. The discharge routine assists in promoting a more stable final crystal or oxide in layer formation. The nucleation of the AgO species should be assisted to the extent that on reformation the crystals should be more uniform.

2.5.3 Task V - Summary

The minimum gassing combination of variables as derived from the data presented is listed in Table 2.5-12. The variables that were consistent for both open circuit and discharge gassing, by interpretation, were variables 1, 2, 5, 6, 8, 12, 14, 15, 17, 18, 19 and 20. Variables 13 and 16 were not included in the analysis model and the remainder presented opposing effects for open circuit versus discharge gassing. Of these variables, Var. Number 4 (drying temperature) was the most difficult to resolve. The (-) level was attributed "best" chiefly to its overall effect. The "best" level column of Table 2.5-12 represents, essentially, the level each variable should be, for minimum total gassing under the experimental conditions and measurements. If it is desired to repress gassing for the particular phase of open circuit (or discharge) to the maximum, it would be necessary to alter some variable levels.

The percent oxygen pickup was investigated concurrently with the gassing data. The maximum percent oxygen pickup is the level of interest as this is the criterion of plate capacity. The levels conducive to maximum pickup are designated in Table 2.5-15. Variables 1, 3, 4, 5, 9, 11, 13, 15, 16 and 20 correspond to the minimum gassing levels while Variables 10, 17 and 18 were not included in the analysis model. The remaining variables were in opposition to those desired for minimum gas by varying degree.

2.6 TASK VI - RECOMMENDATIONS FOR VERIFICATION OF WORK

The purpose of this additional task is to verify the results obtained in the previous tasks in the reduction of oxygen gassing. The comparison is to be made between twenty (20) cells of the standard positive plate manufacture and twenty (20) cells plus forty (40) positive plates manufactured utilizing the oxygen reducing techniques.

The following tasks and techniques are proposed to accomplish Task VI:

1. Twenty (20) cells are to be constructed utilizing production methods now in use.
2. The production procedure of the positive plates will be altered to approximate as closely as possible the minimum gas procedure as indicated by the column headed "best-level" on Table 2.5-12. Some items may vary somewhat such as in the formation of plates for Task V; a series connection was used to assure equal and known current for each plate during formation. The quantity of plates and the time scheduled for the formation of Task VI plates precludes this technique and a parallel configuration will be used with the calculated current for each plate being equal to that specified in the series connection. The cells utilizing these plates will be constructed identically to those of the plates produced in the standard method. The plates, and thereby the cells, will be identified by lot such that any variance in performance by lot may be observed. Twenty (20) cells and forty (40) positive plates will be manufactured using low oxygen techniques.

3. Five (5) cells of part (1), five (5) cells of part (2) and ten (10) positive plates of part (2) will be stored and tested under conditions as close as possible to those imposed on the experimental plates of Tasks VI and V. The plates will be tested in an identical manner as described for Tasks VI and V. The gas from the cells will be collected via the cell fill screw hole by displacement of water in a burette (see diagram). Gas samples will be taken daily and analyzed by gas chromatography during both open circuit stand and discharge. Results of previous tests have verified that only oxygen will be generated by the positive plates, however, gas samples from the cells will be rich in hydrogen from the negative plates. This will require calibration and development of techniques of the gas chromatography to reproducably and reliably determine the respective amounts of hydrogen and oxygen evolved by the cells.
4. The remaining cells and plates will be stored under the specified conditions for 11 ± 1 weeks at room temperature followed by three (3) months storage under specified conditions at $40 \pm 5^{\circ}\text{F}$.
5. After the storage period the cells will be allowed to come to room temperature and then activated, including a seventy-two (72) hour soak period.
6. The cells will be placed on open circuit stand for 10 ± 1 days at room temperature and all gas evolved will be collected and analyzed as in part (3).

7. On completion of part (6), the cells will be placed in a cold box at $40 \pm 5^{\circ}\text{F}$ while maintaining gas collection. After equilibrium is reached, the cells will be discharged at ten (10) amperes to an end voltage of 1.0 volts. The time when 1.41 volts is reached will be recorded. Gas collection and analysis will be continued for a minimum of four (4) hours after removal of load.

8. After the storage time of part (4), the positive plates will be tested on discharge in a manner equivalent to the plate tests of Tasks VI and V except that the test chambers and the plates will be cooled to $40 \pm 5^{\circ}\text{F}$ in a cooling bath.

Fifteen (15) plates will be discharged at the C/41.5 rate and fifteen (15) at the C/16 rate. All to the end voltage of 1.0 volt. Gas collection and analysis, as in the cell tests, will be performed.

GAS COLLECTION AND ANALYSIS SOURCE APPARATUS

FIGURE 1.1-1

"Two-Way" Table Arrangement of a Full Factorial Design.
Each box (b,a,etc.) is a trial.

		A-		A+	
		B-	B+	B-	B+
C-		- - - or -1 -1 -1 or 0 0 0 or (1)	- + - or -1 +1 -1 or 0 1 0 or b	+ - - or +1 -1 -1 or 1 0 0 or a	+ + - or +1 +1 -1 or 1 1 0 or ab
		- - + or -1 -1 +1 or 0 0 1 or c	- + + or -1 +1 +1 or 0 1 1 or bc	+ - + or +1 -1 +1 or 1 0 1 or ac	+ + + or +1 +1 +1 or 1 1 1 or abc

FIGURE 1.1-2

Standard Arrangement for Full Factorial Design

	A	B	AB	C	AC	BC	ABC
(1)	-1	-1	+1	-1	+1	+1	-1
a	+1	-1	-1	-1	-1	+1	+1
b	-1	+1	-1	-1	+1	-1	+1
ab	+1	+1	+1	-1	-1	-1	-1
c	-1	-1	+1	+1	-1	-1	+1
ac	+1	-1	-1	+1	+1	-1	-1
bc	-1	+1	-1	+1	-1	+1	-1
abc	+1	+1	+1	+1	+1	+1	+1

FIGURE 1.1-3

DUMMY VARIABLES

<u>DUMMY</u>			<u>Variable Operating</u>
<u>Trial</u>	<u>Var. 1</u>	<u>Var. 2</u>	
1	-1	-1	A
2	-1	-1	A
3	-1	-1	A
4	+1	-1	B
5	+1	-1	B
6	+1	-1	B
7	-1	+1	C
8	-1	+1	C
9	-1	+1	C

FIGURE 1.1-4-a. Complete Balanced Factorial Example - Davies code

Built-up Responses.

Main effects only - no interactions

Var. A= 1.67(-1 to +1)

Var. B= 1.67(-1 to +1)

Var. C= -3.33 (-1 to +1)

TRIAL	BUILD-UP	RESPONSES
(1)	115. + 0.0	115.00
a	115. + 1.67	116.67
b	115. + 1.67	116.67
ab	115.+1.67+1.67	118.34
c	115. - 3.33	111.67
ac	115.+1.67-3.33	113.67
bc	115.+1.67-3.33	113.34
abc	115.+1.67+1.67-3.33	115.01

RESULTS OF ANALYSIS IN FIGURE 1.1-4-b -

Print-out shows original matrix entered, averages and standard deviation of each vector in order(8 is response), all combinations of correlation coefficients, the regression model or equation and the predicted (y) responses. Since these responses are for a full factorial, the analysis can proceed by summing according to sign, obtain means and the differences: (Figure 1.1-4-c).

Var. 1 = A = 1.67 (-1 to +1)

Var. 2 = B = 1.67 "

Var. 3 = C = -3.33 "

Var. 4 to 7 all insignificant

The regression coefficients are half the total effect since the coefficients are from 0 to ± 1 .

Figure 1.1-4-b

Regression Solution - Davies Code - Main Effects Only - No Interactions

NASA EXAMPLE - FULL FACTORIAL REGRESSION SOLUTION - DAVIES CODE

CONTROL CARD USED FOR THIS REGRESSION

3 3 0 5 0 0.000 0.000 0 0 20100 00 0 0000 0 0

TRANSFORMATIONS SPECIFIED FOR THIS REGRESSION

1 3 7 0 6 4 1 2 6 5 1 3 6 6 2 3 6 7 1 6

RAW DATA LISTING

OBS NO VARIABLES IN NUMERICAL ORDER

1	-1.000	-1.000	-1.000	1.000	1.000	1.000	-1.000	115.000
2	1.000	-1.000	-1.000	-1.000	-1.000	1.000	1.000	116.670
3	-1.000	1.000	-1.000	-1.000	1.000	-1.000	1.000	116.670
4	1.000	1.000	-1.000	1.000	-1.000	-1.000	-1.000	118.340
5	-1.000	-1.000	1.000	1.000	-1.000	-1.000	1.000	111.670
6	1.000	-1.000	1.000	-1.000	1.000	-1.000	-1.000	113.340
7	-1.000	1.000	1.000	-1.000	-1.000	1.000	-1.000	113.340
8	1.000	1.000	1.000	1.000	1.000	1.000	1.000	115.010

AVERAGES

VAR(1)= 0.0000, VAR(2)= 0.0000, VAR(3)= 0.0000, VAR(4)= 0.0000,
VAR(5)= 0.0000, VAR(6)= 0.0000, VAR(7)= 0.0000, VAR(8)= 115.0049

STANDARD DEVIATIONS

VAR(1)= 1.0690, VAR(2)= 1.0690, VAR(3)= 1.0690, VAR(4)= 1.0690,
VAR(5)= 1.0690, VAR(6)= 1.0690, VAR(7)= 1.0690, VAR(8)= 2.1340

SIMPLE CORRELATION COEFFICIENTS

FOR ANOVA, TOTAL SUM OF SQUARES= 33.3908

STEP NUMBER 4 ENTER VARIABLE G

STANDARD ERROR OF ESTIMATE= 0.13877

RESIDUAL SSQ(BY ADDN OF VAR. SSQ)= 0.577734E-01

MULTIPLE CORRELATION COEFFICIENT = 0.99913

GOODNESS OF FIT, F(4, 3)= 432.6840

CONSTANT TERM= 115.004974

VAR.	COEFF	STD DEV(COEF)	T VALUE	BETA COEFF	COEF(E)	VAR.SSQ(E)
1	0.834999	0.0490	17.0130	0.4037	0.834999E 00	0.557778E 01
2	0.835001	0.0490	17.0130	0.4037	0.835001E 00	0.5577781E 01
3	-1.664987	0.0490	-33.9339	-0.3149	-0.166498E 01	0.221774E 02
6	-0.000001	0.0490	-0.0000	-0.0000	-0.190734E-05	0.291033E-10

PREDICTION PART OF PROGRAM

PREDICTIONS FROM LAST MODEL IN REGRESSION

OBS NO.	PREDICTION	ACTUAL(IF KNOWN)	DIFFERENCE
1	114.99992	115.00001	-0.00009
2	116.66992	116.67001	-0.00009
3	116.66993	116.67001	-0.00007
4	118.33993	118.34001	-0.00007
5	111.66996	111.67001	-0.00004
6	113.33996	113.34001	-0.00004
7	113.33995	113.34001	-0.00006
8	115.00994	115.01000	-0.00006

FIGURE 1.1-4-c

NASA EXAMPLE FULL FACTORIAL DAVIES CODE

Calculation of Main Effects

VARIABLE NO. 1	X1 MEAN= 115.837, MEAN SQ1= 4.629, SIG1= 2.151, X2 MEAN= 114.169, MEAN SQ2= 4.622, SIG2= 2.150 POS. GR.NO.= 4.00 NEG. GR. NO.= 4.00 F= 1.001 X1-X2= 1.668
VARIABLE NO. 2	X1 MEAN= 115.837, MEAN SQ1= 4.632, SIG1= 2.152, X2 MEAN= 114.169, MEAN SQ2= 4.622, SIG2= 2.150 POS. GR.NO.= 4.00 NEG. GR. NO.= 4.00 F= 1.001 X1-X2= 1.668
VARIABLE NO. 3	X1 MEAN= 113.337, MEAN SQ1= 1.854, SIG1= 1.361, X2 MEAN= 116.669, MEAN SQ2= 1.853, SIG2= 1.361 POS. GR.NO.= 4.00 NEG. GR. NO.= 4.00 F= 1.000 X1-X2= -3.331
VARIABLE NO. 4	X1 MEAN= 115.003, MEAN SQ1= 7.411, SIG1= 2.722, X2 MEAN= 115.003, MEAN SQ2= 3.698, SIG2= 1.923 POS. GR.NO.= 4.00 NEG. GR. NO.= 4.00 F= 2.003 X1-X2= -0.000
VARIABLE NO. 5	X1 MEAN= 115.003, MEAN SQ1= 1.849, SIG1= 1.359, X2 MEAN= 115.003, MEAN SQ2= 9.258, SIG2= 3.042 POS. GR.NO.= 4.00 NEG. GR. NO.= 4.00 F= 5.007 X1-X2= -0.000
VARIABLE NO. 6	X1 MEAN= 115.002, MEAN SQ1= 1.845, SIG1= 1.358, X2 MEAN= 115.004, MEAN SQ2= 9.262, SIG2= 3.043 POS. GR.NO.= 4.00 NEG. GR. NO.= 4.00 F= 5.019 X1-X2= -0.001
VARIABLE NO. 7	X1 MEAN= 115.003, MEAN SQ1= 5.553, SIG1= 2.356, X2 MEAN= 115.003, MEAN SQ2= 5.557, SIG2= 2.357 POS. GR.NO.= 4.00 NEG. GR. NO.= 4.00 F= 1.000 X1-X2= -0.000

Figure 1.1-5-a

Regression with same buildup as Figure 1.1-4-a,
Full Factorial except solved with the regular code
in place of Davies Code

NASA EXAMPLE FULL FACTORIAL CODED - REG.

CONTROL CARD USED FOR THIS REGRESSION

3 3 0 0 1 0.000 0.000 0 0 21010 00 0 0010 0 0

TRANSFORMATIONS SPECIFIED FOR THIS REGRESSION

1 3 7 0 8 1 1 1 3 2 2 1 3 3 3 1 6 4 1 2 6 5 1 3 6 6 2 3 6 7 6 1

CONSTANT CARDS USED IN THIS REGRESSION

2.000

CODING MAX., VARIABLES IN NUMERICAL ORDER

3.000 3.000 3.000 9.000 9.000 9.000 27.000

CODING MIN., VARIABLES IN NUMERICAL ORDER

1.000 1.000 1.000 1.000 1.000 1.000 1.000

CODED DATA LISTING

OBS NO. VARIABLES IN NUMERICAL ORDER

1	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	115.000
2	1.000	-1.000	-1.000	-0.500	-0.500	-1.000	-0.346	116.670
3	-1.000	1.000	-1.000	-0.500	-1.000	-0.500	-0.346	116.670
4	1.000	1.000	-1.000	1.000	-0.500	-0.500	-0.346	118.340
5	-1.000	-1.000	1.000	-1.000	-0.500	-0.500	-0.346	111.670
6	1.000	-1.000	1.000	-0.500	1.000	-0.500	-0.346	113.340
7	-1.000	1.000	1.000	-0.500	-0.500	1.000	-0.346	113.340
8	1.000	1.000	1.000	1.000	1.000	1.000	0.999	115.010

AVERAGES

VAR(1)= 0.0000, VAR(2)= 0.0000, VAR(3)= 0.0000, VAR(4)= -0.2500,

VAR(5)= -0.2500, VAR(6)= -0.2500, VAR(7)= -0.4615, VAR(8)= 115.0049

STANDARD DEVIATIONS

VAR(1)= 1.0690, VAR(2)= 1.0690, VAR(3)= 1.0690, VAR(4)= 0.8017,

VAR(5)= 0.8017, VAR(6)= 0.8017, VAR(7)= 0.6422, VAR(8)= 2.1340

SIMPLE CORRELATION COEFFICIENTS

VAR(1, 1)= 1.000000, VAR(1, 2)= 0.000000, VAR(1, 3)= 0.000000, VAR(1, 4)= 0.606667,
VAR(1, 5)= 0.666667, VAR(1, 6)= 0.000000, VAR(1, 7)= 0.512147, VAR(1, 8)= 0.403712
VAR(2, 2)= 1.000000, VAR(2, 3)= 0.000000, VAR(2, 4)= 0.666667, VAR(2, 5)= 0.000000,
VAR(2, 6)= 0.666667, VAR(2, 7)= 0.512147, VAR(2, 8)= 0.403713
VAR(3, 3)= 1.000000, VAR(3, 4)= 0.000000, VAR(3, 5)= 0.666667, VAR(3, 6)= 0.666667,
VAR(3, 7)= 0.512147, VAR(3, 8)= -0.314971
VAR(4, 4)= 1.000000, VAR(4, 5)= 0.444444, VAR(4, 6)= 0.444444, VAR(4, 7)= 0.763221,
VAR(4, 8)= 0.544951
VAR(5, 5)= 1.000000, VAR(5, 6)= 0.444444, VAR(5, 7)= 0.763221, VAR(5, 8)= -0.270336
VAR(6, 6)= 1.000000, VAR(6, 7)= 0.763221, VAR(6, 8)= -0.270336
VAR(7, 7)= 1.000000, VAR(7, 8)= 0.001232

FOR ANOVA, TOTAL SUM OF SQUARES= 33.3903

STEP NUMBER 6 ENTER VARIABLE 5

STANDARD ERROR OF ESTIMATE= 0.24037

RESIDUAL SSQ(BY ADDN OF VAR. SSQ)= 0.577791E-01

MULTIPLE CORRELATION COEFFICIENT = 0.99913

GOODNESS OF FIT, F(6, 1)= 36.1507

CONSTANT TERM= 115.004791

VAR.	COEFF	STD DEV(COEF)	T VALUE	BETA COEFF	COEF(E)	VAR.SSQ(E)
1	0.334582	0.2963	2.8115	0.4035	0.834582E 00	0.456742E 00
2	0.334979	0.1900	4.3930	0.4037	0.334979E 00	0.111550E 01
3	-1.665025	0.1900	-3.7618	-0.3149	-0.166502E 01	0.443569E 01
4	0.000757	0.4560	0.0016	0.0002	0.757789E-03	0.150511E-06
5	0.000790	0.4560	0.0017	0.0002	0.790291E-03	0.173490E-06
7	-0.001161	0.4940	-0.0023	-0.0003	-0.116174E-02	0.319448E-06

PREDICTION PART OF PROGRAM

PREDICTIONS FROM LAST MODEL IN REGRESSION

OBS NO.	PREDICTION	ACTUAL(IF KNOWN)	DIFFERENCE
1	114.99983	115.00001	-0.00018
2	116.66960	116.67001	-0.00041
3	116.66999	116.67001	-0.00001
4	118.34016	118.34001	0.00015
5	111.66998	111.67001	-0.00003
6	113.34017	113.34001	0.00016
7	113.33979	113.34001	-0.00021
8	115.00065	115.01000	-0.00035

A EXAMPLE FULL FACTORIAL CODED - REG. Calculation of Main Effect corresponding to Figure 1.1-4-c
 This yields same results

TABLE NO. 1 MEAN SQ1= 4.00 NEG. GR. NO. = 4.629, SIG1= 4.00 F= 2.151, X2 MEAN= 114.169, MEAN SQ2= 4.622, SIG2= 2.150
 POS. GR. NO. = 115.837, MEAN SQ1= 4.00 NEG. GR. NO. = 4.629, SIG1= 4.00 F= 1.001 X1-X2= 1.668

VARIABLE NO. 2 MEAN SQ1= 4.00 NEG. GR. NO. = 4.632, SIG1= 4.00 F= 2.152, X2 MEAN= 114.169, MEAN SQ2= 4.622, SIG2= 2.150
 POS. GR. NO. = 115.837, MEAN SQ1= 4.00 NEG. GR. NO. = 4.632, SIG1= 4.00 F= 1.001 X1-X2= 1.668

VARIABLE NO. 3 MEAN SQ1= 4.00 NEG. GR. NO. = 1.854, SIG1= 4.00 F= 1.361, X2 MEAN= 116.669, MEAN SQ2= 1.853, SIG2= 1.361
 POS. GR. NO. = 113.337, MEAN SQ1= 4.00 NEG. GR. NO. = 1.854, SIG1= 4.00 F= 1.000 X1-X2= -3.331

VARIABLE NO. 4 MEAN SQ1= 4.00 NEG. GR. NO. = 7.411, SIG1= 4.00 F= 2.722, X2 MEAN= 115.003, MEAN SQ2= 3.698, SIG2= 1.023
 POS. GR. NO. = 115.003, MEAN SQ1= 4.00 NEG. GR. NO. = 7.411, SIG1= 4.00 F= 2.003 X1-X2= -0.000

VARIABLE NO. 5 MEAN SQ1= 4.00 NEG. GR. NO. = 1.849, SIG1= 4.00 F= 1.359, X2 MEAN= 115.003, MEAN SQ2= 9.258, SIG2= 3.042
 POS. GR. NO. = 115.003, MEAN SQ1= 4.00 NEG. GR. NO. = 1.849, SIG1= 4.00 F= 5.007 X1-X2= -0.000

VARIABLE NO. 6 MEAN SQ1= 4.00 NEG. GR. NO. = 1.845, SIG1= 4.00 F= 1.358, X2 MEAN= 115.004, MEAN SQ2= 9.262, SIG2= 3.043
 POS. GR. NO. = 115.002, MEAN SQ1= 4.00 NEG. GR. NO. = 1.845, SIG1= 4.00 F= 5.019 X1-X2= -0.001

VARIABLE NO. 7 MEAN SQ1= 4.00 NEG. GR. NO. = 5.553, SIG1= 4.00 F= 2.356, X2 MEAN= 115.003, MEAN SQ2= 5.557, SIG2= 2.357
 POS. GR. NO. = 115.003, MEAN SQ1= 4.00 NEG. GR. NO. = 5.553, SIG1= 4.00 F= 1.000 X1-X2= -0.000

Figure 1.1-6-a

Factorial Buildup with 2 Interactions Solved with the
Regular Code

<u>VAR.</u>	<u>TRIAL</u>	<u>BUILD UP</u>	<u>RESPONSE</u>
	(1)	115. + 0.0 + (0.0)*	115.00
1	a	115. + 1.67 + (0.0)	116.67
2	b	115. + 1.67 + (0.50)	117.17
4	ab	115. + 1.67 + 1.67 - (0.50)	117.84
3	c	115. - 3.33 - (0.50)	111.17
5	ac	115. + 1.67 - 3.33 + (0.50)	113.84
6	bc	115. + 1.67 - 3.33 + (0.0)	113.34
7	abc	115. + 1.67 + 1.67 - 3.33 -(0.50) - (0.50)	115.01

* Numbers in () are interaction contribution: ab = -.50, ac = +.50
Numbers clear are main effect contributions.

RESULTS IN FIGURE 1.1-5-b and -c

Printout information is the same as the previous examples and show the correct estimate of the main effects and interactions. Note should be made that the "b" response has an interactive contribution ($-1 \times -1 = +1$ for ac = 0.50)

Figure No. 1.1-6-b

NASA EXAMPLE FULL FACTORIAL CODED - REG. W/ INT.

Regression example, Full Factorial with
interactions solved by Regular Code

CONTROL CARD USED FOR THIS REGRESSION

J 3 0 3 1 0.000 0.000 0 0 21010 00 0 0010 0 0

TRANSFORMATIONS SPECIFIED FOR THIS REGRESSION

C 1 3 3 0 8 1 1 1 3 2 2 1 3 3 1 6 4 1 2 0 5 1 3 6 6 2 3 6 7 0 1

CONSTANT CARDS USED IN THIS REGRESSION

2.000

CODING MAX., VARIABLES IN NUMERICAL ORDER

C 3.000 3.000 3.000 3.000 9.000 9.000 9.000 27.000

CODING MIN., VARIABLES IN NUMERICAL ORDER

C 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

G CODED DATA LISTING

O OBS NO. VARIABLES IN NUMERICAL ORDER

1	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	-1.000	115.000
2	1.000	-1.000	-1.000	-0.500	-0.500	-1.000	-0.346	116.670
3	-1.000	1.000	-1.000	-0.500	-1.000	-0.500	-0.346	117.170
4	1.000	1.000	-1.000	1.000	-0.500	-0.500	-0.346	117.840
5	-1.000	-1.000	1.000	-1.000	-0.500	-0.500	-0.346	111.170
6	1.000	-1.000	1.000	-0.500	1.000	-0.500	-0.346	113.840
7	-1.000	1.000	1.000	-0.500	-0.500	1.000	-0.346	113.340
8	1.000	1.000	1.000	1.000	1.000	1.000	0.000	115.010

G AVERAGES

VAR(1)= 0.0000, VAR(2)= 0.0000, VAR(3)= 0.0000, VAR(4)= -0.2500,
VAR(5)= -0.2500, VAR(6)= -0.2500, VAR(7)= -0.4615, VAR(8)= 115.0049

G STANDARD DEVIATIONS

VAR(1)= 1.0890, VAR(2)= 1.0690, VAR(3)= 1.0690, VAR(4)= 0.8017,
VAR(5)= 0.8017, VAR(6)= 0.8017, VAR(7)= 0.6622, VAR(8)= 2.2155

G SIMPLE CORRELATION COEFFICIENTS

VAR(1, 1)= 1.000000, VAR(1, 2)= 0.000000, VAR(1, 3)= 0.000000, VAR(1, 4)= 0.666667,	VAR(1, 5)= 0.666667, VAR(1, 6)= 0.000000, VAR(1, 7)= 0.512147, VAR(1, 8)= 0.402933
VAR(2, 2)= 1.000000, VAR(2, 3)= 0.000000, VAR(2, 4)= 0.666667, VAR(2, 5)= 0.000000,	VAR(2, 6)= 0.666667, VAR(2, 7)= 0.512147, VAR(2, 8)= 0.402910
VAR(3, 3)= 1.000000, VAR(3, 4)= -0.000000, VAR(3, 5)= 0.000000, VAR(3, 6)= 0.666667,	VAR(3, 7)= 0.512147, VAR(3, 8)= -0.303400
VAR(4, 4)= 1.000000, VAR(4, 5)= 0.444444, VAR(4, 6)= 0.444444, VAR(4, 7)= 0.762221,	VAR(4, 8)= 0.497004
VAR(5, 5)= 1.000000, VAR(5, 6)= 0.444444, VAR(5, 7)= -0.762221, VAR(5, 8)= -0.226780	
VAR(6, 6)= 1.000000, VAR(6, 7)= 0.762221, VAR(6, 8)= -0.266991	
VAR(7, 7)= 1.000000, VAR(7, 8)= 0.001227	

G FOR ANOVA, TOTAL SUM OF SQUARES=

34.3506

G STEP NUMBER 6 ENTER VARIABLE 7

G STANDARD ERROR OF ESTIMATE= 0.16236

G RESIDUAL SSQ(BY ADDN OF VAR. SSQ)= 0.265262E-01

G MULTIPLE CORRELATION COEFFICIENT = 0.99961

G GOODNESS OF FIT, F(6, 1)= 215.7177

G CONSTANT TERM= 115.00432

VAR.	COEFF	STD DEV(COEF)	T VALUE	BETA COEFF	COEF(E)	VAR.SSQ(E)
1	0.634737	0.2011	3.1502	0.4027	0.834737E 00	0.456912E 00
2	1.334977	0.1287	10.3680	0.6441	0.133497E 01	0.335146E 01
3	-2.165024	0.1287	-16.8145	-1.0446	-0.216502E 01	0.749972E 01
4	-0.999592	0.3090	-5.2345	-0.3617	-0.999552E 00	0.277531E 00
5	1.000475	0.3090	3.2375	0.3620	0.100047E 01	0.276043E 00
6	-0.000649	0.3347	-0.0019	-0.0001	-0.649640E-03	0.990901E-07

PREDICTION PART OF PROGRAM

PREDICTIONS FROM LAST MODEL IN REGRESSION

OBS NO.	PREDICTION	ACTUAL(IF KNOWN)	DIFFERENCE
1	114.99986	115.00001	-0.00015
2	116.66972	116.67001	-0.00029
3	117.16996	117.17001	-0.00004
4	117.34005	117.34001	0.00004
5	111.16995	111.17001	-0.00006
6	113.34007	113.34001	0.00006
7	113.33984	113.34001	-0.00016
8	115.00981	115.01000	-0.00019

Figure 1.1-6-c

NASA EXAMPLE FULL FACTORIAL CODED - REG. W/ INT.

Effects for Example in Figure 1.1-6-a

VARIABLE NO.	1	X1 MEAN= 115.839, MEAN SQ1= 3.123, SIG1= 1.767, X2 MEAN= 114.169, MEAN SQ2= 6.461, SIG2= 2.542	POS. GR.NO.= 4.00 NEG. GR. NO.= 4.00 F= 2.068 X1-X2= 1.670
VARIABLE NO.	2	X1 MEAN= 115.839, MEAN SQ1= 4.235, SIG1= 2.058, X2 MEAN= 114.169, MEAN SQ2= 5.349, SIG2= 2.312	POS. GR.NO.= 4.00 NEG. GR. NO.= 4.00 F= 1.263 X1-X2= 1.670
VARIABLE NO.	3	X1 MEAN= 113.339, MEAN SQ1= 2.584, SIG1= 1.607, X2 MEAN= 116.660, MEAN SQ2= 1.467, SIG2= 1.211	POS. GR.NO.= 4.00 NEG. GR. NO.= 4.00 F= 1.761 X1-X2= -3.329
VARIABLE NO.	4	X1 MEAN= 114.754, MEAN SQ1= 7.493, SIG1= 2.738, X2 MEAN= 115.254, MEAN SQ2= 3.777, SIG2= 1.043	POS. GR.NO.= 4.00 NEG. GR. NO.= 4.00 F= 1.984 X1-X2= -0.499
VARIABLE NO.	5	X1 MEAN= 115.254, MEAN SQ1= 1.929, SIG1= 1.389, X2 MEAN= 114.754, MEAN SQ2= 9.345, SIG2= 3.057	POS. GR.NO.= 4.00 NEG. GR. NO.= 4.00 F= 4.843 X1-X2= 0.500
VARIABLE NO.	6	X1 MEAN= 115.004, MEAN SQ1= 1.847, SIG1= 1.359, X2 MEAN= 115.004, MEAN SQ2= 9.596, SIG2= 3.097	POS. GR.NO.= 4.00 NEG. GR. NO.= 4.00 F= 5.193 X1-X2= -0.000
VARIABLE NO.	7	X1 MEAN= 115.004, MEAN SQ1= 7.383, SIG1= 2.718, X2 MEAN= 115.004, MEAN SQ2= 4.056, SIG2= 2.014	POS. GR.NO.= 4.00 NEG. GR. NO.= 4.00 F= 1.821 X1-X2= -0.000

FIGURE 1.1 - 7-a Fractional Factorial -
 Built-up Example, Including Quant. Var.
 With one observation omitted - using Regular Code

TRIAL	BUILD-UP	RESPONSES	
(1), -1.	115. +0.0+0.0	115.00	
a, +.8	115.+1.67+.9	117.57	
b, +1.	115.+1.67+1.	117.67	
OMMITTED	ab, ?	115.+1.67+1.67+.2	118.54 OMITTED
	bc, .6	115.+1.67-3.33+.8	114.14
	c, -.4	115.-3.33+.3	111.97
	ac, +.4	115.+1.67-3.33+.7	114.03
	abc, -.2	115.+1.67+1.67-3.33+.4	115.40

RESULTS OF ANALYSIS IN FIGURE 1.1 - 7 - b

The print-out shows the original coded matrix in which Var. 1=A, Var. 2=B. Var. 3=C. Var. 4= Quant. Var., Var. 5=Interaction of Ax B. To unbalance the matrix to show this effect the (ab) trial was omitted from the original data matrix, although its value is shown in the table, above. Again, the averages and standard deviations are listed and the step-wise regression steps, including the last model which is used in the further analysis. The (ab) trial matrix was added to the deck for the print-out under predictions, next, to show the value of the equation derived. The last print-out shows the results of the complete predicted factorial means and differences for the effect of each variable. X1 is the positive mean and X2 is the negative mean. As it shows the value of the quantitative variable (4) is 1. from -1. to +1., which, from the table is correct. The interaction is insignificant, which is also correct, since none was put in.

FIGURE 1.1 - 7 - b Fractional Factorial Regression Analysis

CODED DATA LISTING

OBS NO. - VARIABLES IN NUMERICAL ORDER

1	-1.000	-1.000	-1.000	-1.000	-1.000	115.000
2	1.000	-1.000	-1.000	0.800	-0.500	117.570
3	-1.000	1.000	-1.000	1.000	-0.500	117.670
4	-1.000	1.000	1.000	0.600	-0.500	114.140
5	-1.000	-1.000	1.000	-0.400	-1.000	111.970
6	1.000	-1.000	1.000	0.399	-0.500	114.030
7	1.000	1.000	1.000	-0.200	1.000	115.400

AVERAGES
 VAR(1)= -0.1428, VAR(2)= -0.1428, VAR(3)= 0.1428, VAR(4)= 0.1714,
 VAR(5)= -0.4285, VAR(6)= 115.1113

STANDARD DEVIATIONS

VAR(1)= 1.0690, VAR(2)= 1.0690, VAR(3)= 1.0690, VAR(4)= 0.7250,
 VAR(5)= 0.6725, VAR(6)= 2.0289

SIMPLE CORRELATION COEFFICIENTS

VAR(1, 1)= 1.000000, VAR(1, 2)= -0.166666, VAR(1, 3)= 0.166666, VAR(1, 4)= 0.208876,
 VAR(1, 5)= 0.596039, VAR(1, 6)= 0.255979
 VAR(2, 2)= 1.000000, VAR(2, 3)= 0.166666, VAR(2, 4)= 0.580891, VAR(2, 5)= 0.596039,
 VAR(2, 6)= 0.288252
 VAR(3, 3)= 1.000000, VAR(3, 4)= -0.122868, VAR(3, 5)= 0.531133, VAR(3, 6)= -0.753882
 VAR(4, 4)= 1.000000, VAR(4, 5)= 0.107410, VAR(4, 6)= 0.546097
 VAR(5, 5)= 1.000000, VAR(5, 6)= 0.251500

FOR ANOVA, TOTAL SUM OF SQUARES= 24.7004

STEP NUMBER 5 ENTER VARIABLE 2

STANDARD ERROR OF ESTIMATE= 0.13053

VAR(2) SSQ= 0.1171, RESIDUAL SSQ, BY ADDN OF VAR. SSQ= 0.0325911

MULTIPLE CORRELATION COEFFICIENT= 0.99934

GOODNESS OF FIT, F(5, 1)= 151.3775

CONSTANT TERM= 115.503006

VAR	COEFF	STD DEV COEFF	T VALUE	BETA COEFF	COEFF
1	0.827025	0.4079	2.0270	0.4357	0.827025E 00
2	0.829010	0.4372	1.8957	0.4367	0.329010E 00
3	-1.666478	0.0744	-22.3885	-0.3780	-0.166647E 01
4	0.505164	0.3126	1.6155	0.1805	0.505164E 00
5	0.008412	0.7676	0.0109	0.0027	0.841294E-02

PREDICTIONS FROM LAST MODEL IN REGRESSION

OBS NO.	PREDICTION	ACTUAL(IF KNOWN)	DIFFERENCE
1	114.99983	115.00001	-0.00012
2	117.56758	117.57000	-0.00262
3	117.67240	117.67001	0.00239
4	118.53030	118.54000	-0.00920
5	114.13737	114.14001	-0.00263
6	111.96997	111.97000	-0.00003
7	114.03234	114.03001	0.00235
8	115.39990	115.40000	-0.00010

FIGURE 1.1 - 7 - c

VARIABLE NO. 1	X1 MEAN= 116.332, MEAN SQ1= 3.985, SIG1= 1.996, X2 MEAN= 114.669, MEAN SQ2= 3.983, SIG2= 1.995	POS. GR. NO.= 16.00 NEG. GR. NO.= 16.00 F= 1.000 X1-X2= 1.662
VARIABLE NO. 2	X1 MEAN= 116.333, MEAN SQ1= 3.986, SIG1= 1.996, X2 MEAN= 114.667, MEAN SQ2= 3.976, SIG2= 1.994	POS. GR. NO.= 16.00 NEG. GR. NO.= 16.00 F= 1.002 X1-X2= 1.666
VARIABLE NO. 3	X1 MEAN= 113.834, MEAN SQ1= 1.759, SIG1= 1.326, X2 MEAN= 117.167, MEAN SQ2= 1.759, SIG2= 1.326	POS. GR. NO.= 16.00 NEG. GR. NO.= 16.00 F= 1.000 X1-X2= -3.332
VARIABLE NO. 4	X1 MEAN= 116.005, MEAN SQ1= 4.449, SIG1= 2.109, X2 MEAN= 114.995, MEAN SQ2= 4.446, SIG2= 2.108	POS. GR. NO.= 16.00 NEG. GR. NO.= 16.00 F= 1.000 X1-X2= 1.010
VARIABLE NO. 5	X1 MEAN= 115.502, MEAN SQ1= 6.197, SIG1= 2.489, X2 MEAN= 115.498, MEAN SQ2= 3.245, SIG2= 1.801	POS. GR. NO.= 16.00 NEG. GR. NO.= 16.00 F= 1.909 X1-X2= 0.004

TABLE NO. 1.2-1

POSSIBLE REACTIONS AND FREE ENERGIES

 ΔF

1.	$\text{Ag}_2\text{O}_{(c)} = 2\text{Ag}_{(c)} + 1/2\text{O}_2(g)$	2.586
2.	$\text{Ag}_2\text{O}_{(c)} = \text{AgO}_{(aq)} + \text{Ag}^+_{(aq)}$	15.53
3.	$\text{Ag}_2\text{O}_{(c)} + \text{H}_2\text{O}_{(c)} = \text{Ag}(\text{OH})^-_{2(aq)} + \text{Ag}^+_{(aq)}$	20.64
4.	$2\text{Ag}_2\text{O}_{(c)} + 2\text{H}_2\text{O}_{(c)} = \text{Ag}_3\text{O}(\text{OH})^-_{2(aq)} + \text{Ag}^+_{(aq)}$	----
5.	$2\text{Ag}^+_{(aq)} + \text{O}^=_{(aq)} = 2\text{Ag}_{(c)} + 1/2\text{O}_2(g)$	----
6.	$2\text{Ag}^+_{(aq)} = 2\text{O}^-_{(aq)} = 2\text{Ag}_{(c)} + \text{O}_2(g)$	----
7.	$\text{Ag}^+_{(aq)} + \text{O}_2^-_{(aq)} = \text{Ag}_{(c)} + \text{O}_2(g)$	-31.43
8.	$\text{AgO}_{(c)} + 1/2\text{Ag}_2\text{O}_{(c)} + 1/4\text{O}_2(g)$	-3.89
9.	$\text{AgO}_{(c)} + \text{Ag}_{(c)} = \text{Ag}_2\text{O}_{(c)}$	-5.186
10.	$\text{AgO}_{(c)} = \text{Ag}_{(c)} + 1/2\text{O}_2(g)$	-2.6
11.	$\text{AgO}_{(c)} + \text{H}_2\text{O}_{(c)} = 1/2\text{Ag}(\text{OH})^-_{4(aq)} + 1/2\text{Ag}^+_{(aq)}$	----
12.	$\text{AgO}_{(c)} + \text{OH}^-_{(aq)} = \text{Ag}^+_{(c)} + \text{HO}^-_{2(aq)}$	20.385
13.	$\text{Ag}_2\text{O}_3(c) = 2\text{Ag}_{(c)} + 3/2\text{O}_2(g)$	-20.8
14.	$\text{Ag}_2\text{O}_{(c)} = \text{Ag}_2\text{O}_{(c)} + \text{O}_2(g)$	-23.386
15.	$\text{Ag}_2\text{O}_3(c) = 2\text{AgO}_{(c)} + 1/2\text{O}_2(g)$	-15.6
16.	$\text{Ag}_2\text{O}_{(c)} = 2\text{AgO}^+_{(aq)} + 1/2\text{O}_2^-(aq)$	52.1

TABLE NO. 1.2-2

THERMODYNAMIC DATA

	ΔH°	ΔF°	ΔS°
Ag (c)	0	0	10.206
Ag ⁺ (aq)	25.31	18.430	17.67
Ag ⁺⁺ (aq)		64.1	
AgO ⁺ (aq)		53.9	
AgO ⁻ (aq)		- 5.49	
Ag ₂ O (c)	- 7.306	- 2.586	29.09
AgO (c)	- 6.0	- 2.769	2.6 3.463
Ag ₂ O ₃ (c)		20.8	
Ag ₂ CO ₃ (c)	-120.97	-104.48	40.0
O ₂ (³ P ₂) (g)	59.159	54.994	38.469
O ₂ (g)	0	0	49.003
O ₂ (aq)	-3.8		
OH ⁻ (aq)		8.53	
OH ⁻ (aq)	-54.957	-37.595	- 2.52
H ₂ O (liq)	-68.317	-56.690	16.716
H ₂ O ₂ (aq)	-45.68	-31.470	
HO ₂ ⁻ (aq)		-15.610	
HO ₂ (aq)		3.0	
O ₂ (aq)		13.0	
K ₂ CO ₃ (c)	-273.93	-255.5	(33.6)
K ⁺ (aq)	-60.04	-67.46	24.5
K ₂ O (c)	-86.4	-76.2	(20.8)
K ₂ O ₂ (c)	-118	-100.1	(19.4)
KOH (aq)	-115.0	-105.061	22.0
AgOH (c)		-22.0	
Ag(OH) ₂ (aq)		-57.07	

FIGURE NO. 2.1-1

DIAGRAMMATIC SKETCH OF SETUP

E

TABLE NO. 2.4-1

VARIABLE DESIGNATION AND INTERACTIONS
TASK IV

<u>VARIABLE</u>	<u>DESCRIPTION</u>	<u>(+)</u> LEVEL	<u>(-)</u> LEVEL	<u>COMMENT</u>
1	Temperature	140°F	Room Temp. (75°F)	
2	Vacuum Treatment	0.5 Atm.	1. Atm	
3	Lot Comparison	Lot 25	Lot 1, Lot 24	Dummy Var.
4	Time of Treatment	10 days	1 day	
5	Helium Flushing Treatment	He flush for 1 hr. No treatment at 140°F and cooled by N ₂ gas		
6	Lot Comparison	Lot I	Lot 24, Lot 25	Dummy Var.
7	Plate Sintered Weight			
8	Percent Oxygen Pickup			

VARIABLE NO. INTERACTION VARS.

9	01/02
10	01/03
11	01/04
12	01/05
13	01/06
14	05/06
15	02/03
16	02/04
17	02/05
18	02/06
19	03/04
20	03/05
21	03/06
22	04/05
23	04/06
24	08
25	09
26	08 + 09

TABLE NO. 2.4-2A

Column Designation for Table No. 2.4-2B
(See Table No. 1 for Variable Designation)

<u>Column</u>	<u>Variable or Description</u>
1	Obs. Number (First row of each)
2	Var. 1
3	Var. 2
4	Var. 3
5	Var. 4
6	Var. 5
7	Var. 6
8	Var. 7
9	Formed Weight
10	Oxygen Weight
11	Var. 8
12 (next row)	O.C. Gas at 140 Hours (Var. 37)
13	Discharge Gas at 50 Hours (Var. 38)
14	Combined OC + Dis.

TABLE NO. 2B - Task 4 Production Plate Data
See Table 2A for Column Designation

NO.	1	75.00	-1.00	-1.00	1.00	-1.00	-1.00	125.40	139.40	16.00	14.05
NO.	2	15.62	19.64	35.26							
NO.	3	75.00	-1.00	-1.00	1.00	-1.00	-1.00	122.80	138.80	16.00	14.12
NO.	4	31.63	20.82	52.45							
NO.	5	75.00	-1.00	-1.00	1.00	1.00	-1.00	122.70	138.70	16.00	14.13
NO.	6	13.63	20.13	33.76							
NO.	7	75.00	-1.00	-1.00	10.00	-1.00	-1.00	126.30	142.30	16.00	13.70
NO.	8	19.84	23.99	42.83							
NO.	9	75.00	-1.00	-1.00	10.00	-1.00	-1.00	125.00	141.00	16.00	13.85
NO.	10	23.99	19.97	43.96							
NO.	11	75.00	-1.00	-1.00	10.00	1.00	-1.00	122.80	138.80	16.00	14.12
NO.	12	43.16	32.95	76.11							
NO.	13	75.00	-1.00	-1.00	10.00	1.00	-1.00	121.00	137.00	16.00	14.35
NO.	14	43.55	26.57	70.12							
NO.	15	75.00	1.00	1.00	1.00	-1.00	0.00	124.70	140.70	16.00	13.89
NO.	16	29.06	32.12	61.18							
NO.	17	75.00	1.00	1.00	1.00	1.00	0.00	122.40	138.40	16.00	14.17
NO.	18	38.72	40.89	79.61							
NO.	19	75.00	1.00	1.00	10.00	-1.00	0.00	123.40	139.40	16.00	14.05
NO.	20	168.68	166.83	335.51							
NO.	21	75.00	1.00	1.00	10.00	1.00	0.00	124.70	141.10	16.40	14.24
NO.	22	164.42	146.69	311.11							
NO.	23	140.00	-1.00	1.00	10.00	-1.00	0.00	123.90	139.90	16.00	13.99
NO.	24	40.09	26.01	66.10							
NO.	25	140.00	-1.00	1.00	10.00	1.00	0.00	122.30	138.30	16.00	14.18
NO.	26	43.80	26.89	70.69							
NO.	27	140.00	-1.00	1.00	1.00	-1.00	-1.00	123.10	139.10	16.00	14.08
NO.	28	45.82	38.45	84.27							
NO.	29	140.00	1.00	-1.00	1.00	-1.00	-1.00	125.30	141.30	16.00	13.82
NO.	30	40.13	62.19	102.32							
NO.	31	140.00	1.00	-1.00	1.00	1.00	-1.00	123.00	139.00	16.00	14.10
NO.	32	12.48	47.41	66.89							
NO.	33	140.00	1.00	-1.00	10.00	-1.00	-1.00	126.00	142.10	16.10	13.82
NO.	34	181.79	188.24	370.03							
NO.	35	140.00	1.00	-1.00	10.00	1.00	-1.00	123.60	139.70	16.10	14.11
NO.	36	154.42	145.07	299.49							
NO.	37	140.00	1.00	-1.00	10.00	1.00	-1.00	123.30	139.30	16.00	14.06
NO.	38	170.93	181.23	352.16							
NO.	39	140.00	-1.00	1.00	1.00	-1.00	0.00	122.80	138.80	16.00	14.12
NO.	40	30.43	25.58	56.01							

TABLE NO. 2B (Continued)

TABLE 2.4-3
REGRESSION MODEL FOR OPEN CIRCUIT

RSQR X	B COEF	SE(B)	T	ANALYSIS OF Y 1
0.9738	96.9338	23.7992	4.07	
0.9599	21.2630	17.1301	1.24	
0.9736	101.0452	29.5567	3.41	
0.9454	-20.7829	16.6182	-1.25	
0.9719	-54.0811	26.9861	-2.00	
0.9859	-191.6491	43.7243	-4.38	
0.9123	22.1138	16.5610	1.33	
0.9711	63.8533	26.8567	2.37	
0.8999	27.0528	15.4963	1.74	
0.7999	79.2879	12.0122	6.60	
0.8884	-39.0183	14.1583	-2.75	
0.9257	31.8845	21.8348	1.46	
0.9242	-44.9422	18.0742	-2.48	

CONSTANT MULT F DF1 DF2 RSQR* RES.SSQ/DF2 *SQUARED CORRELATION COEFF.
100.86480 14.98 13 26 0.882 468.46038
RESIDUAL SSQ(BY DIFF.)= 0.1264842E 05, TOTAL SSQ= 0.1074169E 06
CORRELATION COEF.=0.9392

STANT= 100.86480

TABLE 2.4-4
REGRESSION MODEL FOR DISCHARGE

RSQR X	B COEF	SE(B)	T	ANALYSIS OF Y 2
0.9754	112.4221	24.6855	4.55	
0.9667	158.8044	26.4375	6.00	
0.8454	-20.4433	10.2560	-1.99	
0.9361	-57.0657	15.4462	-3.69	
0.4366	-15.5498	10.7612	-1.44	
0.8976	-43.5068	14.2010	-3.06	
0.9845	-273.1170	41.9045	-6.51	
0.8593	32.2938	13.1422	2.45	
0.9716	122.5154	27.2124	4.50	
0.8668	80.9554	14.8042	5.46	
0.8563	-22.5296	12.5464	-1.79	

CONSTANT MULT F DF1 DF2 RSQR* RES.SSQ/DF2 *SQUARED CORRELATION COEFF.
102.11839 21.86 11 28 0.895 473.60046
RESIDUAL SSQ(BY DIFF.)= 0.1373441E 05, TOTAL SSQ= 0.1317060E 06
CORRELATION COEF.=0.9464

STANT= 102.11839

TABLE 2.4-5
REGRESSION MODEL FOR COMBINED GAS

RSQR X	B COEF	SE(B)	T	ANALYSIS OF Y 3
0.9677	242.4094	42.4157	5.71	
0.9628	292.5802	49.2274	5.94	
0.9368	-94.3503	30.5543	-3.08	
0.8728	-70.3815	25.0718	-2.80	
0.9829	-492.7156	78.5784	-6.27	
0.9710	170.6142	53.0351	3.21	
0.8460	68.5105	24.7270	2.77	
0.7982	151.4534	23.6728	6.39	
0.8473	-51.1008	23.9549	-2.13	
0.7461	-36.8038	19.5393	-1.88	

CONSTANT MULT F DF1 DF2 RSQR* RES.SSQ/DF2 *SQUARED CORRELATION COEFF.
193.34356 21.65 10 29 0.881 1835.01294
RESIDUAL SSQ(BY DIFF.)= 0.5505038E 05, TOTAL SSQ= 0.4661178E 06
CORRELATION COEF.=0.9390

STANT= 193.34356

TABLE 2.4-6
PREDICTIONS BASED ON ORIGINAL DATA (OPEN CIRCUIT)

RESIDUALS AND PREDICTIONS

OBS	Y(OBS)	Y(PRED)	RESIDUAL	S.E.(Y)	NORM. DEV.	RESIDUALS	SSOS
1	15.6200	7.8993	7.7206	8.8915	0.356	59.6083756	
2	31.6300	7.8993	23.7306	8.8915	1.096	622.7519545	
3	13.6300	17.7122	-4.0822	9.3093	-0.188	639.4163835	
4	18.8400	34.3260	-15.4860	8.8334	-0.715	879.2336442	
5	23.9900	34.3260	-10.3360	8.8334	-0.477	986.0672621	
6	43.1600	44.1388	-0.9788	8.8658	-0.045	987.0253922	
7	43.5500	44.1388	-0.5888	8.8658	-0.027	987.3720719	
8	29.0600	47.1265	-18.0665	14.5700	-0.834	1313.7724642	
9	38.7200	31.4463	7.2736	15.1033	0.336	1366.6777377	
10	168.6800	168.9901	-0.3101	15.1036	-0.014	1366.7736849	
11	164.4200	153.3099	11.1100	14.5701	0.513	1690.2072787	
12	40.0900	28.2227	11.8672	15.4514	0.548	1631.0395536	
13	43.8000	65.2564	-21.4564	15.0544	-0.991	2091.4179754	
14	45.8200	47.4202	-1.6002	13.0362	-0.073	2093.9785223	
15	40.1300	47.4202	-7.2902	13.0362	-0.336	2147.1254940	
16	19.4800	31.9025	-12.4225	14.8960	-0.573	2301.4458065	
17	181.7900	172.2811	9.5088	14.8959	0.439	2391.8632879	
18	158.4200	156.7635	-2.3435	13.0369	-0.108	2397.3540871	
19	170.9300	156.7635	14.1664	13.0369	0.654	2598.0439519	
20	30.4300	4.7934	25.6365	15.0547	1.184	3255.2768611	
21	25.7750	41.8271	-16.0521	15.4514	-0.741	3512.9482479	
22	35.4600	35.9242	-0.4642	11.7640	-0.021	3513.1635808	
23	64.6700	47.1694	17.5005	9.1320	0.808	3819.4336004	
24	68.2600	47.1694	19.0905	9.1320	0.882	4183.8838005	
25	42.3000	57.6856	-15.3856	13.8981	-0.710	4420.6015758	
26	139.6000	136.7196	2.8803	11.7496	0.133	4428.8974723	
27	176.9000	136.7196	40.1803	11.7496	1.856	6043.3584117	
28	43.7200	31.2502	12.4697	14.7640	0.576	6198.8525524	
29	37.8200	18.6145	19.2054	14.9206	0.887	6567.6992321	
30	41.5700	35.9242	5.6457	11.7640	0.260	6599.5732555	
31	46.4900	98.2039	-51.7139	17.4791	-2.389	9273.9082298	
32	52.1000	47.1694	4.9305	9.1320	0.227	9298.2187767	
33	58.0000	73.6047	-15.6047	11.4495	-0.720	9541.7265892	
34	63.1000	73.6047	-10.5047	11.4495	-0.485	9652.0761947	
35	28.8200	55.5318	-26.7118	14.7643	-1.234	10365.5996322	
36	145.3900	136.7196	8.6703	11.7496	0.400	10440.7734603	
37	47.7100	63.9725	-16.2625	11.3045	-0.751	10705.2441673	
38	64.8100	63.9725	0.8374	11.3045	0.038	10705.9453392	
39	58.7200	29.0965	29.6234	13.8982	1.368	11583.4941673	
40	48.4100	72.7927	-24.3827	15.9970	-1.126	12178.0097885	

TABLE 2.4-7
PREDICTIONS BASED ON ORIGINAL DATA (DISCHARGE)

RESIDUALS AND PREDICTIONS

OBS	Y(OBS)	Y(PRED)	RESIDUAL	S.E.(Y)	NORM. DEV.	RESIDUALS	SSOS
1	19.6430	13.0095	6.6334	10.9851	0.304	44.0030137	
2	20.8230	9.9524	10.8705	11.0791	0.499	162.1710819	
3	20.1340	21.2428	-1.1088	11.5578	-0.050	163.4006351	
4	23.9880	36.6940	-12.7060	13.2013	-0.583	324.8435066	
5	19.9740	30.3614	-10.3874	10.9700	-0.477	432.7423102	
6	32.9490	31.1141	1.8348	10.2727	0.084	436.1089485	
7	26.5670	21.7508	4.8161	13.2726	0.221	459.3045662	
8	32.1150	55.1673	-23.0523	13.9764	-1.059	990.7131364	
9	40.8910	32.8143	8.0766	14.3705	0.371	1055.9448270	
10	168.8300	158.5201	8.3098	14.1767	0.381	1124.9982943	
11	146.6900	140.0393	6.6506	13.6955	0.305	1169.2299833	
12	26.0080	17.7148	8.2931	14.4174	0.381	1238.0063505	
13	26.8910	41.3620	-14.4710	13.8580	-0.664	1447.4165067	
14	38.4480	47.3085	-8.8605	12.5737	-0.407	1525.9252963	
15	62.1940	58.2995	3.8944	11.7810	0.178	1541.0915560	
16	47.4150	56.0631	-8.6481	12.2740	-0.397	1615.8815946	
17	188.2400	168.0489	20.1911	12.9284	0.927	2023.5620150	
18	145.0700	165.3725	-20.3025	11.5201	-0.932	2435.7553768	
19	181.2300	167.4550	13.7749	11.5374	0.632	2625.5053768	
20	25.5790	2.7766	22.8023	13.6535	1.047	3145.4511775	
21	22.5520	39.1466	-16.5946	15.0267	-0.762	3420.8330135	
22	14.2100	17.6985	-3.4885	9.1108	-0.160	3433.0029354	
23	65.4000	53.8362	11.5637	9.6114	0.531	3566.7226629	
24	67.2800	48.4515	18.8285	8.7857	0.865	3921.2348699	
25	7.0700	37.2006	-30.1306	9.9680	-1.384	4829.0908336	
26	171.6800	159.5096	12.1703	12.7544	0.559	4977.2080211	
27	195.3300	145.8753	49.4546	11.4308	2.272	7422.9668102	
28	16.2900	-11.9694	28.2594	9.3641	1.298	8221.5605697	
29	25.3100	29.1877	-3.8777	10.0341	-0.178	8236.5976791	
30	22.6800	20.8292	1.8507	8.8727	0.085	8240.0215072	
31	60.3800	108.8079	-48.4279	15.8491	-2.225	10585.2832260	
32	58.8300	44.7284	14.1015	9.1064	0.647	10784.1367454	
33	77.6100	91.7320	-14.1220	9.8633	-0.648	10983.5683822	
34	80.3300	88.9432	-8.6132	10.5430	-0.395	11057.7539291	
35	10.9100	25.1522	-14.2422	12.0682	-0.654	11260.5937728	
36	142.5000	146.6255	-4.1255	11.3047	-0.189	11277.6133041	
37	45.0500	60.5458	-15.4958	10.6435	-0.712	11517.7344017	
38	52.3000	67.6339	-15.3339	11.7860	-0.704	11752.8633041	
39	23.5500	-12.4971	36.0471	13.3112	1.656	13052.2578353	
40	14.9500	29.3463	-14.3963	9.4479	-0.661	13259.5136947	

RESIDUALS AND PREDICTIONS

OBS	Y(OBS)	Y(PRED)	RESIDUAL	S.E.(Y)	NORM. DEV	RESIDUALS	SSQS
1	35.2630	13.1193	22.1436	17.3074	0.516	490.3421028	
2	52.4530	13.1193	39.3336	17.3074	0.918	2037.4799833	
3	33.7640	21.8241	11.9398	17.5902	0.278	2180.0390691	
4	42.8280	72.2580	-29.4300	16.9922	-0.687	3046.1645574	
5	43.9640	72.2580	-28.2940	16.9922	-0.660	3846.7153377	
6	76.1090	80.9628	-4.8538	17.0569	-0.113	3870.2753963	
7	70.1170	80.9628	-10.8458	17.0569	-0.253	3987.9082098	
8	61.1750	94.7642	-33.5892	25.5718	-0.784	5116.1484489	
9	79.6110	86.6253	-7.0143	26.8038	-0.163	5165.3486461	
10	335.5100	307.0587	28.4512	26.8039	0.664	5974.8203258	
11	311.1099	298.9198	12.1901	25.5720	0.284	6123.4209098	
12	66.0980	50.9376	15.1603	26.7138	0.353	6353.2558708	
13	70.6910	93.9046	-23.2136	25.6298	-0.541	6892.1289176	
14	84.2680	110.1443	-25.8763	24.6079	-0.604	7561.7109508	
15	102.3240	110.1443	-7.8202	24.6079	-0.182	7622.8672008	
16	66.8950	67.7432	-0.8482	28.1858	-0.019	7623.5859508	
17	370.0300	357.3092	12.7208	28.1862	0.296	7785.4052848	
18	299.4899	314.9082	-15.4182	24.6081	-0.359	8023.1259880	
19	352.1600	314.9082	37.2518	24.6081	0.869	9410.8242416	
20	56.0090	26.6694	29.3395	25.6298	0.684	10271.6308860	
21	48.3270	69.6364	-21.3094	26.7137	-0.497	10725.7207298	
22	49.6700	51.1393	-1.4693	19.2589	-0.034	10727.8789329	
23	130.0700	95.7427	34.3272	17.4930	0.801	11906.2402610	
24	133.5400	95.7427	37.7972	17.4930	0.882	13334.8750228	
25	49.3700	75.0545	-25.6845	19.5985	-0.599	13994.5683822	
26	311.2800	283.5191	27.7609	22.2184	0.648	14765.2363548	
27	372.2300	283.5191	88.7109	22.2184	2.070	22634.8672409	
28	60.0099	-3.7933	63.8033	17.4765	1.489	26705.7383270	
29	63.1300	46.4268	16.7031	22.9520	0.389	26984.7305145	
30	64.2500	51.1393	13.1106	19.2589	0.306	27156.6172332	
31	106.8700	211.0094	-104.1394	30.3234	-2.431	38001.6485443	
32	110.9300	95.7427	15.1873	17.4930	0.354	38232.2969665	
33	135.6100	174.5906	-38.9806	19.3267	-0.909	39751.7813568	
34	143.4299	174.5906	-31.1606	19.3267	-0.727	40722.7657318	
35	39.7300	101.1708	-61.4408	22.6533	-1.434	44497.7344818	
36	287.8900	283.5191	4.3709	22.2184	0.102	44516.8360443	
37	92.7600	121.8589	-29.0989	20.6276	-0.679	45363.5782318	
38	117.1100	121.8589	-4.7489	20.6276	-0.110	45386.1250915	
39	82.2700	22.3228	59.9471	21.5680	1.399	48979.7813568	
40	63.3600	128.3615	-65.0015	27.6954	-1.517	53204.9766693	

TABLE 2.4-9A
MINIMUM GASSING COMBINATIONS (OPEN CIRCUIT)

NO. =	216., MIN. =	-22.50, LEV. =	-1 -1 -1 1 -1 1 -1 -1
NO. =	152., MIN. =	-22.50, LEV. =	-1 -1 -1 1 -1 1 -1 -1
NO. =	88., MIN. =	-22.50, LEV. =	-1 -1 -1 1 -1 1 -1 -1
NO. =	24., MIN. =	-22.50, LEV. =	-1 -1 -1 1 -1 1 -1 -1
NO. =	224., MIN. =	-10.67, LEV. =	-1 -1 -1 -1 -1 1 -1 -1
NO. =	160., MIN. =	-10.67, LEV. =	-1 -1 -1 -1 -1 1 1 -1
NO. =	96., MIN. =	-10.67, LEV. =	-1 -1 -1 -1 -1 1 -1 1
NO. =	32., MIN. =	-10.67, LEV. =	-1 -1 -1 -1 -1 1 1 1
NO. =	256., MIN. =	7.90, LEV. =	-1 -1 -1 -1 -1 -1 -1 -1
NO. =	192., MIN. =	7.90, LEV. =	-1 -1 -1 -1 -1 -1 -1 1
NO. =	128., MIN. =	7.90, LEV. =	-1 -1 -1 -1 -1 -1 -1 1
NO. =	64., MIN. =	7.90, LEV. =	-1 -1 -1 -1 -1 -1 -1 1
NO. =	238., MIN. =	9.58, LEV. =	-1 1 -1 -1 -1 -1 -1 -1
NO. =	174., MIN. =	9.58, LEV. =	-1 1 -1 -1 -1 1 -1 1 -1
NO. =	110., MIN. =	9.58, LEV. =	-1 1 -1 -1 1 -1 -1 1 -1
NO. =	46., MIN. =	9.58, LEV. =	-1 1 -1 -1 1 -1 -1 1 1
NO. =	200., MIN. =	9.62, LEV. =	-1 -1 -1 1 1 1 1 -1 -1
NO. =	136., MIN. =	9.62, LEV. =	-1 -1 -1 1 1 1 -1 1 -1
NO. =	72., MIN. =	9.62, LEV. =	-1 -1 -1 1 1 1 1 -1 1
NO. =	8., MIN. =	9.62, LEV. =	-1 -1 -1 1 1 1 1 1 1
NO. =	240., MIN. =	12.97, LEV. =	-1 -1 -1 -1 1 -1 -1 -1 -1
NO. =	176., MIN. =	12.97, LEV. =	-1 -1 -1 -1 -1 1 -1 1 -1
NO. =	112., MIN. =	12.97, LEV. =	-1 -1 -1 -1 -1 1 -1 -1 1
NO. =	48., MIN. =	12.97, LEV. =	-1 -1 -1 -1 -1 1 -1 1 1
NO. =	206., MIN. =	18.04, LEV. =	-1 1 -1 -1 1 1 1 -1 -1
NO. =	142., MIN. =	18.04, LEV. =	-1 1 -1 -1 1 1 1 1 -1
NO. =	78., MIN. =	18.04, LEV. =	-1 1 -1 -1 1 1 1 -1 1

TABLE 2.4-9B
MAXIMUM GASSING COMBINATIONS (OPEN CIRCUIT)

NO. =	242., MAX. =	310.01, LEV. =	-1 1 1 1 -1 -1 -1 -1
NO. =	178., MAX. =	310.01, LEV. =	-1 1 1 1 -1 -1 1 -1
NO. =	114., MAX. =	310.01, LEV. =	-1 1 1 1 -1 -1 -1 1
NO. =	50., MAX. =	310.01, LEV. =	-1 1 1 1 -1 -1 -1 1
NO. =	226., MAX. =	276.07, LEV. =	-1 1 1 1 1 -1 -1 -1
NO. =	162., MAX. =	276.07, LEV. =	-1 1 1 1 1 -1 1 -1
NO. =	98., MAX. =	276.07, LEV. =	-1 1 1 1 1 -1 -1 1
NO. =	34., MAX. =	276.07, LEV. =	-1 1 1 1 1 1 -1 1
NO. =	210., MAX. =	246.49, LEV. =	-1 1 1 1 1 -1 1 -1
NO. =	146., MAX. =	246.49, LEV. =	-1 1 1 1 1 -1 1 1
NO. =	82., MAX. =	246.49, LEV. =	-1 1 1 1 -1 1 -1 1
NO. =	18., MAX. =	246.49, LEV. =	-1 1 1 1 -1 1 1 1
NO. =	194., MAX. =	239.60, LEV. =	-1 1 1 1 1 1 1 -1
NO. =	130., MAX. =	239.60, LEV. =	-1 1 1 1 1 1 1 1
NO. =	66., MAX. =	239.60, LEV. =	-1 1 1 1 1 1 1 -1
NO. =	2., MAX. =	239.60, LEV. =	-1 1 1 1 1 1 1 1
NO. =	197., MAX. =	231.38, LEV. =	-1 1 -1 1 -1 1 -1 -1
NO. =	133., MAX. =	231.38, LEV. =	-1 1 -1 1 1 1 1 -1
NO. =	69., MAX. =	231.38, LEV. =	-1 1 -1 1 1 1 1 -1
NO. =	5., MAX. =	231.38, LEV. =	1 1 -1 1 1 1 1 1
NO. =	207., MAX. =	221.40, LEV. =	1 -1 -1 -1 1 1 1 -1
NO. =	143., MAX. =	221.40, LEV. =	1 -1 -1 -1 1 1 1 1
NO. =	79., MAX. =	221.40, LEV. =	1 -1 -1 -1 -1 1 1 1
NO. =	15., MAX. =	221.40, LEV. =	1 -1 -1 -1 -1 1 1 1
NO. =	213., MAX. =	216.15, LEV. =	1 1 -1 1 -1 1 -1 -1
NO. =	149., MAX. =	216.15, LEV. =	1 1 -1 1 1 -1 1 -1
NO. =	85., MAX. =	216.15, LEV. =	1 1 -1 1 1 -1 1 1

TABLE 2.4-10A
MINIMUM GASSING COMBINATIONS (DISCHARGE)

=	78.,	MIN. =	-66.82,	LEV. =	-1	1	-1	-1	1	1	-1	1
=	14.,	MIN. =	-66.82,	LEV. =	-1	1	-1	-1	1	1	1	1
=	88.,	MIN. =	-57.04,	LEV. =	-1	-1	-1	-1	1	1	-1	1
=	24.,	MIN. =	-57.04,	LEV. =	-1	-1	-1	-1	1	1	-1	1
=	96.,	MIN. =	-56.63,	LEV. =	-1	-1	-1	-1	1	1	-1	1
=	32.,	MIN. =	-56.63,	LEV. =	-1	-1	-1	-1	1	1	-1	1
=	72.,	MIN. =	-52.16,	LEV. =	-1	-1	-1	1	1	1	-1	1
=	8.,	MIN. =	-52.16,	LEV. =	-1	-1	-1	1	1	1	1	1
=	80.,	MIN. =	-51.75,	LEV. =	-1	-1	-1	-1	1	1	-1	1
=	16.,	MIN. =	-51.75,	LEV. =	-1	-1	-1	-1	1	1	-1	1
=	94.,	MIN. =	-49.17,	LEV. =	-1	1	-1	-1	1	1	-1	1
=	30.,	MIN. =	-49.17,	LEV. =	-1	1	-1	-1	1	1	-1	1
=	206.,	MIN. =	-35.72,	LEV. =	-1	1	-1	-1	1	1	-1	-1
=	142.,	MIN. =	-35.72,	LEV. =	-1	1	-1	-1	1	1	-1	-1
=	216.,	MIN. =	-25.94,	LEV. =	-1	-1	-1	1	-1	1	-1	-1
=	152.,	MIN. =	-25.94,	LEV. =	-1	-1	-1	1	-1	1	-1	-1
=	224.,	MIN. =	-25.53,	LEV. =	-1	-1	-1	-1	1	1	-1	-1
=	160.,	MIN. =	-25.53,	LEV. =	-1	-1	-1	-1	1	1	-1	-1
=	200.,	MIN. =	-21.06,	LEV. =	-1	-1	-1	1	1	1	-1	-1
=	136.,	MIN. =	-21.06,	LEV. =	-1	-1	-1	1	1	1	1	-1
=	208.,	MIN. =	-20.65,	LEV. =	-1	-1	-1	-1	1	1	-1	-1
=	144.,	MIN. =	-20.65,	LEV. =	-1	-1	-1	-1	1	1	1	-1
=	222.,	MIN. =	-18.07,	LEV. =	-1	1	-1	-1	1	1	-1	-1
=	158.,	MIN. =	-18.07,	LEV. =	-1	1	-1	-1	1	1	1	-1
=	110.,	MIN. =	-13.94,	LEV. =	-1	1	-1	-1	1	1	-1	1
=	46.,	MIN. =	-13.94,	LEV. =	-1	1	-1	-1	1	1	-1	1
=	120.,	MIN. =	-4.16,	LEV. =	-1	-1	-1	1	-1	-1	-1	1

TABLE 2.4-10B
MAXIMUM GASSING COMBINATIONS (DISCHARGE)

=	197.,	MAX. =	300.06,	LEV. =	1	1	-1	1	1	1	-1	-1
=	133.,	MAX. =	300.06,	LEV. =	1	1	-1	1	1	1	1	-1
=	242.,	MAX. =	296.39,	LEV. =	-1	1	1	1	-1	-1	-1	-1
=	178.,	MAX. =	296.39,	LEV. =	-1	1	1	1	-1	-1	1	-1
=	213.,	MAX. =	285.41,	LEV. =	1	1	-1	1	-1	1	-1	-1
=	149.,	MAX. =	285.41,	LEV. =	1	1	-1	1	-1	1	1	-1
=	226.,	MAX. =	278.74,	LEV. =	-1	1	1	1	1	-1	-1	-1
=	162.,	MAX. =	278.74,	LEV. =	-1	1	1	1	1	-1	1	-1
=	207.,	MAX. =	278.09,	LEV. =	1	-1	-1	-1	1	1	-1	-1
=	143.,	MAX. =	278.09,	LEV. =	1	-1	-1	-1	1	1	1	-1
=	199.,	MAX. =	277.68,	LEV. =	1	-1	-1	1	1	1	1	-1
=	135.,	MAX. =	277.68,	LEV. =	1	-1	-1	1	1	1	1	-1
=	69.,	MAX. =	268.96,	LEV. =	1	1	-1	1	1	1	-1	1
=	5.,	MAX. =	268.96,	LEV. =	1	1	-1	1	1	1	1	1
=	114.,	MAX. =	265.29,	LEV. =	-1	1	1	1	-1	-1	-1	1
=	50.,	MAX. =	265.29,	LEV. =	-1	1	1	1	-1	-1	1	1
=	85.,	MAX. =	254.31,	LEV. =	1	1	-1	1	-1	1	-1	1
=	211.,	MAX. =	254.31,	LEV. =	1	1	-1	1	-1	1	1	1
=	98.,	MAX. =	247.64,	LEV. =	-1	1	1	1	1	-1	-1	1
=	34.,	MAX. =	247.64,	LEV. =	-1	1	1	1	1	-1	1	1
=	79.,	MAX. =	246.99,	LEV. =	1	-1	-1	-1	1	1	-1	1
=	15.,	MAX. =	246.99,	LEV. =	1	-1	-1	-1	1	1	1	1
=	71.,	MAX. =	246.58,	LEV. =	1	-1	-1	1	1	1	-1	1
=	7.,	MAX. =	246.58,	LEV. =	1	-1	-1	1	1	1	1	1
=	210.,	MAX. =	243.52,	LEV. =	-1	1	1	1	-1	1	-1	-1
=	140.,	MAX. =	243.52,	LEV. =	-1	1	1	1	-1	1	1	-1
=	223.,	MAX. =	240.91,	LEV. =	1	-1	-1	-1	-1	1	-1	-1

TABLE 2.4-11A
MINIMUM GASSING COMBINATIONS (COMBINED GAS)

NO. =	224., MIN. =	-74.41, LEV. =	-1	-1	-1	-1	-1	1	-1	-1
NO. =	160., MIN. =	-74.41, LEV. =	-1	-1	-1	-1	-1	1	1	-1
NO. =	96., MIN. =	-74.41, LEV. =	-1	-1	-1	-1	-1	1	-1	1
NO. =	32., MIN. =	-74.41, LEV. =	-1	-1	-1	-1	-1	1	1	1
NO. =	222., MIN. =	-59.42, LEV. =	-1	1	-1	-1	-1	1	-1	-1
NO. =	158., MIN. =	-59.42, LEV. =	-1	1	-1	-1	-1	1	1	-1
NO. =	94., MIN. =	-59.42, LEV. =	-1	1	-1	-1	-1	1	-1	1
NO. =	30., MIN. =	-59.42, LEV. =	-1	1	-1	-1	-1	1	1	1
NO. =	216., MIN. =	-53.89, LEV. =	-1	-1	-1	1	1	1	-1	-1
NO. =	152., MIN. =	-53.89, LEV. =	-1	-1	-1	1	1	1	-1	-1
NO. =	88., MIN. =	-53.89, LEV. =	-1	-1	-1	1	1	-1	1	-1
NO. =	24., MIN. =	-53.89, LEV. =	-1	-1	-1	1	-1	1	1	1
NO. =	206., MIN. =	-33.31, LEV. =	-1	1	-1	-1	1	1	-1	-1
NO. =	142., MIN. =	-33.31, LEV. =	-1	1	-1	-1	1	1	1	-1
NO. =	78., MIN. =	-33.31, LEV. =	-1	1	-1	-1	1	1	-1	1
NO. =	14., MIN. =	-33.31, LEV. =	-1	1	-1	-1	1	1	1	1
NO. =	238., MIN. =	-14.28, LEV. =	-1	1	-1	-1	1	-1	-1	-1
NO. =	174., MIN. =	-14.28, LEV. =	-1	1	-1	-1	1	-1	1	-1
NO. =	110., MIN. =	-14.28, LEV. =	-1	1	-1	-1	1	-1	-1	1
NO. =	46., MIN. =	-14.28, LEV. =	-1	1	-1	-1	1	-1	1	1
NO. =	208., MIN. =	2.80, LEV. =	-1	-1	-1	-1	1	1	-1	-1
NO. =	144., MIN. =	2.80, LEV. =	-1	-1	-1	-1	1	1	1	-1
NO. =	80., MIN. =	2.80, LEV. =	-1	-1	-1	-1	1	1	-1	1
NO. =	16., MIN. =	2.80, LEV. =	-1	-1	-1	-1	1	1	1	1
NO. =	256., MIN. =	13.12, LEV. =	-1	-1	-1	-1	-1	-1	-1	-1
NO. =	192., MIN. =	13.12, LEV. =	-1	-1	-1	-1	-1	-1	-1	-1
NO. =	128., MIN. =	13.12, LEV. =	-1	-1	-1	-1	-1	-1	-1	-1

TABLE 2.4-11B
MAXIMUM GASSING COMBINATIONS (COMBINED GAS)

NO. =	242., MAX. =	575.69, LEV. =	-1	1	1	1	-1	-1	-1	-1
NO. =	178., MAX. =	575.69, LEV. =	-1	1	1	1	-1	-1	1	-1
NO. =	114., MAX. =	575.69, LEV. =	-1	1	1	1	-1	-1	-1	1
NO. =	50., MAX. =	575.69, LEV. =	-1	1	1	1	-1	-1	1	1
NO. =	226., MAX. =	533.29, LEV. =	-1	1	1	1	1	-1	1	-1
NO. =	162., MAX. =	533.29, LEV. =	-1	1	1	1	1	1	-1	1
NO. =	98., MAX. =	533.29, LEV. =	-1	1	1	1	1	-1	-1	1
NO. =	34., MAX. =	533.29, LEV. =	-1	1	1	1	1	-1	1	1
NO. =	197., MAX. =	527.47, LEV. =	1	1	-1	1	1	1	-1	-1
NO. =	133., MAX. =	527.47, LEV. =	1	1	-1	1	1	1	1	-1
NO. =	69., MAX. =	527.47, LEV. =	1	1	-1	1	1	1	-1	1
NO. =	5., MAX. =	527.47, LEV. =	1	1	-1	1	1	1	1	1
NO. =	213., MAX. =	501.35, LEV. =	1	1	-1	1	-1	1	-1	-1
NO. =	149., MAX. =	501.35, LEV. =	1	1	-1	1	-1	1	1	-1
NO. =	85., MAX. =	501.35, LEV. =	1	1	-1	1	-1	1	-1	1
NO. =	21., MAX. =	501.35, LEV. =	1	1	-1	1	-1	1	1	1
NO. =	199., MAX. =	482.51, LEV. =	1	-1	-1	1	1	1	-1	-1
NO. =	135., MAX. =	482.51, LEV. =	1	-1	-1	1	1	1	1	-1
NO. =	71., MAX. =	482.51, LEV. =	1	-1	-1	1	1	1	-1	1
NO. =	7., MAX. =	482.51, LEV. =	1	-1	-1	1	1	1	1	1
NO. =	194., MAX. =	477.46, LEV. =	-1	1	1	1	1	1	1	-1
NO. =	130., MAX. =	477.46, LEV. =	-1	1	1	1	1	1	1	-1
NO. =	66., MAX. =	477.46, LEV. =	-1	1	1	1	1	1	-1	1
NO. =	2., MAX. =	477.46, LEV. =	-1	1	1	1	1	1	1	1
NO. =	207., MAX. =	461.99, LEV. =	1	-1	-1	-1	1	1	-1	-1
NO. =	143., MAX. =	461.99, LEV. =	1	-1	-1	-1	1	1	1	-1
NO. =	79., MAX. =	461.99, LEV. =	1	-1	-1	-1	1	1	-1	1

TABLE NO. 2.4-12

SUMMARY OF EFFECTS
TASK IV
(MINIMUM DIRECTION SHOWN)

VAR. NO.	IDENTIFICATION	OC	DIS.	COMB.
1	Temperature: 140° = +1, RT = -1	-34.1	-63.0	-92.3
2	Vacuum: 15" = +1, ATM. Press. = -1	-28.7	-14.9	-30.0
3	Lot 24 (-1) vs. Lot 25 (+1)	-42.3	-44.5	-92.4
4	Days: 10 = +1, 1 = -1	-66.2	-40.1	-114.6
5	w/He 1 hour 140° , Cooling N_2 (+1), No Treatment (-1)	-10.1	-9.8	-17.4
6	Lot 24 (-1) vs. Lot IT (+1)	-4.4	-8.4	-13.6
7	Plate Sintered Wt., +1 = high, -1 = low	0.0	0.0	0.0
8	Oxygen Pick-up %: +1 = high, -1 = low	0.0	+31.1	0.0
9	Interaction Var.1 x Var.2	+27.0	+21.8	+35.2
10	Interaction Var.1 x Var.3	+95.8	+136.6	+246.4
11	Interaction Var.1 x Var.4	0.0	0.0	0.0
12	Interaction Var.1 x Var.5	-11.1	-16.1	0.0
13	Interaction Var.1 x Var.6	-31.9	-61.3	-85.3
14	Interaction Var.5 x Var.6	-13.5	0.0	-34.3
15	Interaction Var.2 x Var.3	0.0	0.0	0.0
16	Interaction Var.2 x Var.4	-39.6	-40.5	-75.7
17	Interaction Var.2 x Var.5	+19.5	+11.3	+25.6
18	Interaction Var.2 x Var.6	0.0	0.0	0.0
19	Interaction Var.3 x Var.4	-15.9	0.0	0.0
20	Interaction Var.3 x Var.5	0.0	0.0	0.0
21	Interaction Var.3 x Var.6	0.0	0.0	0.0
22	Interaction Var.4 x Var.5	0.0	0.0	0.0
23	Interaction Var.4 x Var.6	+22.5	0.0	+18.4

TABLE NO. 2.5-1

VARIABLE DESIGNATION AND INTERACTIONS

TASK V

VARIABLE NO.	DESCRIPTION	(+) LEVEL	(-) LEVEL	COMMENT
1	Rinse Rate	Low (1000cc/min)	High(2000cc/min)	16 plates in 2000 cc
2	Rinse Temperature	110-114°F	75°F	
3	Rinse Time	4 hours	15 minutes	
4	Drying Temperature	140°F	100°F	
5	Drying Time	42.5 Hrs.	18.5 Hrs.	
6	Charge Current	2.3 amps	3.5 amps	per plate
7	Percent Overcharge	175%	125%	Theoretical %
8	Formation Discharge Current	5.75 amps	3.8 amps	per plate
9	Formation Discharge Time	4.5 hours	3.0 hours	
10	Double (Booster) Charge	with	without	
11	Formation Temperature	75°F	57°F	
12	Wash Water	Tap	Deionized	
13	KOH Concentration	30%	20%,40%	Dummy Var. A
14	Formation Counterelectrodes	Ni	Ag	
15	Addition of K ₂ CO ₃	None(.1%)	4%	
16	Sintered Weight	High(127.22g)	Low(120.91g)	
17	Percent Oxygen Pickup	High(14.54%)	Low(11.94%)	
18	Dry Stand Time	13 Days	1-2 Days	
19	KOH Concentration	40%	20%,30%	Dummy Var. B
20	Formation Discharge Routine	None	Any current/time	

VARIABLE NO.	INTERACTION	VARIABLE NO.	INTERACTION	VARIABLE NO.	INTERACTION
21	05 / 12	31	04 / 12	41	01 / 02
22	01 / 08	32	05 / 11	42	01 / 03
23	01 / 09	33	09 / 11	43	02 / 04
24	01 / 11	34	04 / 09	44	04 / 20
25	02 / 05	35	01 / 07	45	03 / 18
26	02 / 06	36	04 / 19	46	03 / 05
27	03 / 11	37	05 / 07	47	03 / 07
28	03 / 12	38	03 / 09	48	03 / 20
29	03 / 19	39	04 / 08		
30	04 / 05	40	05 / 09		

TABLE NO. 2.5-2A

COLUMN DESIGNATIONS FOR TABLE NO. 2.5-2B

<u>COLUMN</u>	<u>VARIABLE OR DESCRIPTION</u>
1	Obs. Number (First row of each)
2	Var. 1
3	Var. 2
4	Var. 3
5	Var. 4
6	Var. 5
7	Var. 6
8	Var. 7
9	Var. 8
10	Var. 9
11	Var. 10
12	Var. 11
13	Var. 12
14	Var. 13
15	Var. 19
16	Var. 14
17	Var. 15
18	Var. 18
19	Var. 16
20	Formed Weight
21	Oxygen Weight
22	Var. 17
23	Capacity (ampere-hours)
24	Var. 20
25	Var. 20
26	Open Circuit Gas
27	Discharge Gas
28	Combined Gas

TABLE 2.5-2B
DATA FOR TASK 5

NO.	1	-1.00	-1.00	-1.00	-1.00	18.50	-1.00	-1.00	1.00	-1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	124.39	140.76	16.36
	14.24	54.00	-1.00	-1.00	45.02	18.52	63.54				
NO.	2	-1.00	-1.00	-1.00	1.00	42.50	-1.00	-1.00	1.00	-1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	124.12	140.26	16.13
	14.08	54.10	-1.00	-1.00	18.77	25.04	39.80				
NO.	3	-1.00	-1.00	1.00	-1.00	42.50	-1.00	-1.00	1.00	-1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	124.40	140.55	16.14
	14.05	54.40	-1.00	-1.00	58.64	12.29	70.93				
NO.	4	-1.00	-1.00	1.00	1.00	18.50	-1.00	-1.00	1.00	-1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	124.47	140.53	16.11
	14.01	54.10	-1.00	-1.00	32.44	22.52	54.95				
NO.	5	-1.00	1.00	-1.00	-1.00	42.50	-1.00	-1.00	1.00	-1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	121.38	137.25	15.87
	14.13	54.10	-1.00	-1.00	24.99	15.00	39.99				
NO.	6	-1.00	1.00	-1.00	1.00	18.50	-1.00	-1.00	1.00	-1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	124.65	140.80	16.14
	14.02	54.20	-1.00	-1.00	31.89	23.97	55.86				
NO.	7	-1.00	1.00	1.00	-1.00	18.50	-1.00	-1.00	1.00	-1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	125.14	141.43	16.28
	14.03	55.10	-1.00	-1.00	54.43	13.97	63.44				
NO.	8	-1.00	1.00	1.00	1.00	42.50	-1.00	-1.00	1.00	-1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	123.91	139.99	16.08
	14.05	54.70	-1.00	-1.00	35.96	19.92	55.88				
NO.	9	1.00	-1.00	-1.00	-1.00	18.50	-1.00	-1.00	1.00	-1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	124.99	141.44	16.44
	14.24	55.20	-1.00	-1.00	46.57	13.25	59.82				
NO.	10	1.00	-1.00	-1.00	1.00	42.50	-1.00	-1.00	1.00	-1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	121.02	136.82	15.79
	14.16	53.50	-1.00	-1.00	26.74	30.46	57.20				
NO.	11	1.00	-1.00	1.00	-1.00	42.50	-1.00	-1.00	1.00	-1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	126.82	143.39	16.56
	14.12	55.00	-1.00	-1.00	33.94	16.93	50.86				
NO.	12	1.00	-1.00	1.00	1.00	18.50	-1.00	-1.00	1.00	-1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	123.15	139.18	16.03
	14.10	54.30	-1.00	-1.00	29.40	19.82	49.22				
NO.	13	1.00	1.00	-1.00	-1.00	42.50	-1.00	-1.00	1.00	-1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	125.41	141.99	16.58
	14.30	55.70	-1.00	-1.00	18.47	12.39	30.86				
NO.	14	1.00	1.00	-1.00	1.00	18.50	-1.00	-1.00	1.00	-1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	123.10	139.38	16.27
	14.33	54.50	-1.00	-1.00	28.87	36.26	65.13				
NO.	15	1.00	1.00	1.00	-1.00	18.50	-1.00	-1.00	1.00	-1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	124.00	140.22	16.21
	14.16	54.60	-1.00	-1.00	28.07	23.87	51.94				
NO.	16	1.00	1.00	1.00	1.00	42.50	-1.00	-1.00	1.00	-1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	124.00	140.08	16.07
	14.04	54.50	-1.00	-1.00	27.74	16.42	44.16				
NO.	17	-1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	125.34	141.60	16.25
	14.03	54.30	-1.00	-1.00	20.55	9.35	29.90				
NO.	18	-1.00	-1.00	-1.00	1.00	72.00	1.00	-1.00	-1.00	1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	123.58	139.79	16.20
	14.20	53.50	-1.00	-1.00	34.99	30.63	65.62				
NO.	19	-1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	122.78	138.69	15.90
	14.04	53.00	-1.00	-1.00	20.01	11.09	31.09				
NO.	20	-1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	121.09	136.69	15.59
	13.97	52.30	-1.00	-1.00	28.58	8.61	37.19				
NO.	21	-1.00	1.00	-1.00	1.00	72.00	1.00	-1.00	-1.00	1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	123.79	140.08	16.28
	14.25	54.10	-1.00	-1.00	32.36	19.14	51.50				
NO.	22	-1.00	1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	123.34	139.89	16.54
	14.53	53.00	-1.00	-1.00	59.63	14.48	74.11				
NO.	23	-1.00	1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	126.06	142.36	16.29
	13.98	54.70	-1.00	-1.00	61.79	10.92	72.71				
NO.	24	-1.00	1.00	1.00	1.00	72.00	1.00	-1.00	-1.00	1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	123.49	139.50	16.01
	14.04	53.80	-1.00	-1.00	45.61	26.81	72.41				
NO.	25	1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	1.00	1.00	-1.00	1.00	1.00	1.00	-1.00	124.01	140.17	16.15
	14.11	53.70	-1.00	-1.00	26.11	7.55	33.66				

TABLE 2.5-2B (CONT.)

10.	26	1.00	-1.00	-1.00	1.00	72.00	1.00	-1.00	-1.00	1.00	1.00
		1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	122.70	138.63	15.92
	14.07	53.20	-1.00	-1.00		58.39	27.50	65.89			
10.	27	1.00	-1.00	1.00	-1.00	72.00	1.00	-1.00	-1.00	1.00	1.00
		1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	126.07	142.48	16.40
	14.07	55.00	-1.00	-1.00		23.38	19.52	42.90			
10.	28	1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	122.71	138.58	15.86
	14.01	53.40	-1.00	-1.00		20.96	8.04	29.00			
10.	29	1.00	1.00	-1.00	1.00	72.00	1.00	-1.00	-1.00	1.00	1.00
		1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	122.29	138.18	15.89
	14.08	52.70	-1.00	-1.00		20.85	9.70	30.54			
10.	30	1.00	1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	124.08	139.84	15.76
	13.75	53.40	-1.00	-1.00		18.35	7.07	25.42			
10.	31	1.00	1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	124.89	140.90	16.00
	13.87	53.80	-1.00	-1.00		39.75	6.54	46.29			
10.	32	1.00	1.00	1.00	1.00	72.00	1.00	-1.00	-1.00	1.00	1.00
		1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	124.62	140.82	16.19
	14.07	54.10	-1.00	-1.00		22.91	17.11	40.02			
10.	33	1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	124.29	140.25	15.96
	13.90	52.50	-1.00	-1.00		20.87	5.20	26.06			
10.	34	1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	124.43	140.69	16.25
	14.14	53.70	-1.00	-1.00		12.14	13.85	25.99			
10.	35	1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	123.16	139.27	16.11
	14.17	53.20	-1.00	-1.00		48.74	10.88	59.62			
10.	36	1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	122.94	138.96	16.02
	14.12	53.30	-1.00	-1.00		20.08	8.58	28.65			
10.	37	1.00	1.00	-1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	122.66	138.73	16.06
	14.20	53.00	-1.00	-1.00		54.72	20.54	75.25			
10.	38	1.00	1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	124.41	140.83	16.42
	14.28	54.10	-1.00	-1.00		43.31	11.74	55.05			
10.	39	1.00	1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	125.04	141.39	16.34
	14.15	54.40	-1.00	-1.00		65.60	14.22	79.81			
10.	40	1.00	1.00	1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	123.48	139.48	15.99
	14.03	53.30	-1.00	-1.00		24.71	13.91	38.62			
10.	41	-1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	124.20	140.55	16.34
	14.25	54.00	-1.00	-1.00		40.26	16.04	56.29			
10.	42	-1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	124.11	140.44	16.32
	14.24	53.90	-1.00	-1.00		49.37	21.68	71.05			
10.	43	-1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	123.95	140.14	16.18
	14.14	53.50	-1.00	-1.00		41.42	11.03	52.45			
10.	44	-1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	124.07	140.28	16.21
	14.14	53.80	-1.00	-1.00		60.56	18.64	79.20			
10.	45	-1.00	1.00	-1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	123.33	139.41	16.07
	14.12	53.30	-1.00	-1.00		36.33	8.53	44.86			
10.	46	-1.00	1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	122.21	138.22	16.00
	14.20	53.00	-1.00	-1.00		64.76	23.36	88.11			
10.	47	-1.00	1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	122.77	138.74	15.97
	14.09	53.20	-1.00	-1.00		36.60	11.47	46.06			
10.	48	-1.00	1.00	1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	124.42	140.55	16.12
	14.03	53.70	-1.00	-1.00		24.54	15.67	40.20			
10.	49	-1.00	-1.00	-1.00	-1.00	18.50	-1.00	-1.00	1.00	-1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	122.77	138.95	16.17
	14.28	52.80	-1.00	-1.00		39.86	13.22	53.07			
10.	50	-1.00	-1.00	-1.00	1.00	42.50	-1.00	-1.00	1.00	-1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	124.12	140.44	16.31
	14.23	53.50	-1.00	-1.00		24.30	18.83	43.22			

TABLE 2.5-2B (CONT.)

NO.	51	-1.00	-1.00	1.00	-1.00	42.50	-1.00	-1.00	1.00	-1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	123.62	139.78	16.16
	14.16	53.00	-1.00	-1.00	30.92	14.65	45.56				
NO.	52	-1.00	-1.00	1.00	1.00	18.50	-1.00	-1.00	1.00	-1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	122.36	138.22	15.85
	14.05	52.40	-1.00	-1.00	34.08	17.84	51.91				
NO.	53	-1.00	1.00	-1.00	-1.00	42.50	-1.00	-1.00	1.00	-1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	124.04	140.34	16.30
	14.23	53.30	-1.00	-1.00	42.01	12.61	54.61				
NO.	54	-1.00	1.00	-1.00	1.00	18.50	-1.00	-1.00	1.00	-1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	123.57	139.70	16.12
	14.14	53.20	-1.00	-1.00	28.31	15.85	42.16				
NO.	55	-1.00	1.00	1.00	-1.00	18.50	-1.00	-1.00	1.00	-1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	124.63	140.92	16.23
	14.09	53.50	-1.00	-1.00	30.11	14.73	46.84				
NO.	56	-1.00	1.00	1.00	1.00	42.50	-1.00	-1.00	1.00	-1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	123.40	139.42	16.01
	14.06	53.00	-1.00	-1.00	22.73	23.35	46.08				
NO.	57	1.00	-1.00	-1.00	-1.00	18.50	-1.00	-1.00	1.00	-1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	122.93	139.06	16.13
	14.22	53.00	-1.00	-1.00	43.81	13.44	57.25				
NO.	58	1.00	-1.00	-1.00	1.00	42.50	-1.00	-1.00	1.00	-1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	121.40	137.31	15.91
	14.21	52.20	-1.00	-1.00	29.47	19.80	49.27				
NO.	59	1.00	-1.00	1.00	-1.00	42.50	-1.00	-1.00	1.00	-1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	125.11	141.50	16.39
	14.17	53.70	-1.00	-1.00	27.98	14.74	42.72				
NO.	60	1.00	-1.00	1.00	1.00	18.50	-1.00	-1.00	1.00	-1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	123.61	139.72	16.10
	14.11	53.10	-1.00	-1.00	25.32	16.48	41.80				
NO.	61	1.00	1.00	-1.00	-1.00	42.50	-1.00	-1.00	1.00	-1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	122.97	139.08	16.11
	14.19	52.50	-1.00	-1.00	73.71	16.59	90.30				
NO.	62	1.00	1.00	-1.00	1.00	18.50	-1.00	-1.00	1.00	-1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	124.37	140.66	16.28
	14.18	53.20	-1.00	-1.00	29.96	8.56	38.52				
NO.	63	1.00	1.00	1.00	-1.00	18.50	-1.00	-1.00	1.00	-1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	123.52	139.50	15.98
	14.01	52.90	-1.00	-1.00	37.39	9.48	46.87				
NO.	64	1.00	1.00	1.00	1.00	42.50	-1.00	-1.00	1.00	-1.00	1.00
		-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	122.56	138.45	15.88
	14.05	52.20	-1.00	-1.00	60.71	13.40	76.11				
NO.	65	-1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	122.37	138.41	16.03
	14.21	52.50	-1.00	-1.00	23.84	10.17	34.01				
NO.	66	-1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	124.45	140.84	16.39
	14.25	54.00	-1.00	-1.00	18.74	18.50	37.24				
NO.	67	-1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	122.62	138.67	16.04
	14.18	53.00	-1.00	-1.00	22.70	11.07	33.77				
NO.	68	-1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	124.42	140.78	16.36
	14.23	54.00	-1.00	-1.00	19.98	13.45	33.43				
NO.	69	-1.00	-1.00	-1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	123.02	139.21	16.19
	14.26	53.00	-1.00	-1.00	27.24	18.71	45.95				
NO.	70	-1.00	-1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	121.85	137.81	15.96
	14.20	52.60	-1.00	-1.00	18.67	16.76	35.43				
NO.	71	-1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	125.97	140.03	16.06
	14.02	54.00	-1.00	-1.00	22.55	10.65	33.20				
NO.	72	-1.00	-1.00	1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	124.80	141.13	16.32
	14.16	53.70	-1.00	-1.00	18.76	15.78	34.54				
NO.	73	1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	123.62	139.94	16.31
	14.30	53.40	-1.00	-1.00	29.97	10.29	40.26				
NO.	74	1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	123.53	139.82	16.28
	14.28	53.40	-1.00	-1.00	25.78	16.56	42.34				
NO.	75	1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	123.85	140.00	16.15
	14.12	53.30	-1.00	-1.00	32.25	13.09	45.34				

TABLE 2.5-2B (CONT.)

10.	76	1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	123.72	139.82	16.00
		14.09	53.20	-1.00	-1.00	22.50	10.97	33.47			
10.	77	1.00	-1.00	-1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	124.89	141.40	16.50
		14.30	54.10	-1.00	-1.00	19.41	11.02	30.43			
10.	78	1.00	-1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	123.76	140.00	16.24
		14.21	53.20	-1.00	-1.00	18.15	12.29	30.43			
10.	79	1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	125.86	142.36	16.50
		14.18	54.60	-1.00	-1.00	18.30	11.04	29.34			
10.	80	1.00	-1.00	1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	121.75	137.65	15.89
		14.16	52.40	-1.00	-1.00	28.37	16.64	45.01			
10.	81	1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	124.58	140.48	15.89
		13.81	52.00	-1.00	-1.00	21.72	12.94	34.66			
10.	82	1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	127.22	143.38	16.15
		13.72	52.80	-1.00	-1.00	22.82	17.20	40.02			
10.	83	1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	126.74	143.21	16.47
		14.04	54.10	-1.00	-1.00	18.08	13.61	31.68			
10.	84	1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	126.61	140.82	16.20
		14.08	53.40	-1.00	-1.00	17.18	8.17	25.34			
10.	85	1.00	-1.00	-1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	125.37	141.79	16.41
		14.17	53.40	-1.00	-1.00	21.25	16.68	37.93			
10.	86	1.00	-1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	125.65	141.53	15.88
		13.67	51.90	-1.00	-1.00	18.35	9.22	27.56			
10.	87	1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	126.33	142.28	15.95
		13.65	52.20	-1.00	-1.00	16.64	8.13	24.77			
10.	88	1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	125.19	141.06	15.87
		13.71	52.20	-1.00	-1.00	21.06	11.90	32.95			
10.	89	-1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	126.44	142.62	16.18
		13.83	53.10	-1.00	-1.00	20.43	7.15	27.57			
10.	90	-1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	126.48	142.70	16.21
		13.86	53.10	-1.00	-1.00	36.47	12.47	48.93			
10.	91	-1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	124.49	140.50	16.01
		13.92	52.90	-1.00	-1.00	25.06	9.85	34.91			
10.	92	-1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	126.73	143.23	16.49
		14.07	54.20	-1.00	-1.00	29.31	8.06	37.37			
10.	93	-1.00	-1.00	-1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	125.10	141.47	16.36
		14.16	53.60	-1.00	-1.00	24.77	14.55	39.31			
10.	94	-1.00	-1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	126.13	142.50	16.37
		14.03	53.60	-1.00	-1.00	22.10	8.56	30.65			
10.	95	-1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	125.94	142.26	16.31
		14.01	53.60	-1.00	-1.00	19.01	8.50	27.51			
10.	96	-1.00	-1.00	1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	125.08	140.88	15.79
		13.67	52.00	-1.00	-1.00	27.75	11.11	38.86			
10.	97	1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	124.95	141.59	16.64
		14.41	53.80	-1.00	-1.00	34.47	7.24	41.70			
10.	98	1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	124.73	141.38	16.64
		14.44	54.70	-1.00	-1.00	29.31	21.80	51.11			
10.	99	1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	123.98	140.28	16.30
		14.23	53.90	-1.00	-1.00	20.61	15.38	35.98			
10.	100	1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		-1.00	-1.00	1.00	-1.00	1.00	1.00	-1.00	127.16	143.03	16.77
		14.25	55.40	-1.00	-1.00	23.08	13.11	36.19			

TABLE 2.5-2B (CONT.)

NO. 101	1.00	-1.00	-1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	1.00	-1.00	-1.00	1.00	-1.00	-1.00	1.00	16.75
	16.35	54.50	-1.00	-1.00	35.69	17.21	52.90	126.15	142.90	
NO. 102	1.00	-1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	1.00	-1.00	-1.00	1.00	-1.00	-1.00	1.00	16.63
	14.40	54.70	-1.00	-1.00	23.99	13.14	37.13	125.03	141.67	
NO. 103	1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	1.00	-1.00	-1.00	1.00	-1.00	-1.00	1.00	16.52
	14.41	54.60	-1.00	-1.00	19.60	8.60	28.20	126.14	140.67	
NO. 104	1.00	-1.00	1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	1.00	-1.00	-1.00	1.00	-1.00	-1.00	1.00	16.49
	14.18	54.70	-1.00	-1.00	23.78	20.89	44.67	125.79	142.29	
NO. 105	-1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	1.00	-1.00	-1.00	1.00	-1.00	-1.00	1.00	16.58
	14.45	54.40	-1.00	-1.00	43.46	8.15	51.61	124.22	140.80	
NO. 106	-1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	1.00	-1.00	-1.00	1.00	-1.00	-1.00	1.00	16.75
	14.37	55.00	-1.00	-1.00	39.19	20.56	59.75	126.07	142.83	
NO. 107	-1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	1.00	-1.00	-1.00	1.00	-1.00	-1.00	1.00	16.56
	14.37	54.70	-1.00	-1.00	22.77	9.46	32.23	124.75	141.32	
NO. 108	-1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	1.00	-1.00	-1.00	1.00	-1.00	-1.00	1.00	16.66
	14.22	55.20	-1.00	-1.00	38.37	7.35	45.72	126.68	143.35	
NO. 109	-1.00	-1.00	-1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	1.00	-1.00	-1.00	1.00	-1.00	-1.00	1.00	16.67
	14.43	54.50	-1.00	-1.00	31.99	11.17	43.16	124.57	141.24	
NO. 110	-1.00	-1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	1.00	-1.00	-1.00	1.00	-1.00	-1.00	1.00	16.92
	14.44	55.40	-1.00	-1.00	32.06	8.31	40.37	126.64	143.56	
NO. 111	-1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	1.00	-1.00	-1.00	1.00	-1.00	-1.00	1.00	16.56
	14.24	54.70	-1.00	-1.00	22.87	6.99	29.86	125.81	142.38	
NO. 112	-1.00	-1.00	1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	1.00	-1.00	-1.00	1.00	-1.00	-1.00	1.00	16.34
	14.10	54.20	-1.00	-1.00	30.47	9.98	40.45	125.33	141.67	
NO. 113	-1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	15.85
	13.99	52.60	-1.00	-1.00	21.39	6.06	27.45	122.86	138.72	
NO. 114	-1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	15.90
	14.05	52.80	-1.00	-1.00	19.50	12.76	32.26	122.73	138.64	
NO. 115	-1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	15.81
	13.64	53.30	-1.00	-1.00	19.35	9.66	29.01	125.47	141.20	
NO. 116	-1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	16.03
	13.64	53.80	-1.00	-1.00	19.86	8.85	28.70	127.03	143.07	
NO. 117	-1.00	-1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	15.63
	13.75	52.00	-1.00	-1.00	15.15	7.79	22.94	123.18	138.82	
NO. 118	-1.00	-1.00	-1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	15.67
	13.72	52.40	-1.00	-1.00	23.29	11.60	34.88	123.67	139.34	
NO. 119	-1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	15.86
	13.74	53.40	-1.00	-1.00	21.73	9.58	31.31	124.85	140.71	
NO. 120	-1.00	-1.00	1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	15.51
	13.68	52.20	-1.00	-1.00	20.00	10.14	30.14	122.93	138.45	
NO. 121	1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	15.70
	13.73	52.20	-1.00	-1.00	22.17	12.05	34.22	123.89	139.60	
NO. 122	1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	16.39
	14.00	54.00	-1.00	-1.00	17.95	11.24	20.18	126.58	142.98	
NO. 123	1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	15.78
	13.60	53.40	-1.00	-1.00	18.74	12.59	31.32	125.50	141.28	
NO. 124	1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	15.58
	13.79	52.50	-1.00	-1.00	25.05	8.71	33.76	122.42	138.00	
NO. 125	1.00	-1.00	-1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	15.90
	13.98	52.90	-1.00	-1.00	21.07	10.00	31.07	123.19	139.09	
NO. 126	1.00	-1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	15.22
	13.52	51.20	-1.00	-1.00	16.77	6.08	22.84	122.10	137.33	

TABLE 2.5-2B (CONT.)

NO.	127	1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.00	139.42	15.41
	13.46	51.80	-1.00	-1.00	20.93	7.83	28.75				
NO.	128	1.00	-1.00	1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.00	139.64	15.63
	13.65	52.40	-1.00	-1.00	20.95	7.94	28.88				
NO.	129	-1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	123.95	140.06	16.11
	14.07	53.80	-1.00	-1.00	21.80	8.22	30.02				
NO.	130	-1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	123.17	139.02	15.84
	13.94	53.00	-1.00	-1.00	16.89	9.85	26.74				
NO.	131	-1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	122.85	138.70	15.86
	14.00	53.00	-1.00	-1.00	22.02	5.42	27.43				
NO.	132	-1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	123.87	139.88	16.00
	13.99	53.50	-1.00	-1.00	14.29	5.85	20.13				
NO.	133	-1.00	-1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	122.29	138.05	15.75
	13.97	53.00	-1.00	-1.00	14.51	5.23	19.74				
NO.	134	-1.00	-1.00	-1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	124.40	140.43	16.03
	13.95	53.60	-1.00	-1.00	14.70	5.29	19.99				
NO.	135	-1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	124.01	139.85	15.83
	13.83	53.20	-1.00	-1.00	13.69	4.20	17.88				
NO.	136	-1.00	-1.00	1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	121.88	137.59	15.71
	13.97	53.20	-1.00	-1.00	10.89	10.00	20.89				
NO.	137	1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	123.56	139.44	15.87
	13.92	53.00	-1.00	-1.00	15.40	4.36	19.76				
NO.	138	1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	124.11	140.19	16.07
	14.03	53.70	-1.00	-1.00	11.00	8.92	19.92				
NO.	139	1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	122.85	138.64	15.78
	13.93	52.90	-1.00	-1.00	11.31	4.37	15.68				
NO.	140	1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	124.77	140.86	16.09
	13.95	53.80	-1.00	-1.00	14.43	5.93	20.36				
NO.	141	1.00	-1.00	-1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	124.12	140.24	16.11
	14.06	53.30	-1.00	-1.00	14.57	5.52	20.09				
NO.	142	1.00	-1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	122.03	137.78	15.75
	13.99	52.90	-1.00	-1.00	13.77	4.76	18.52				
NO.	143	1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	123.10	138.88	15.77
	13.89	52.90	-1.00	-1.00	14.45	4.02	18.47				
NO.	144	1.00	-1.00	1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	123.96	139.85	15.88
	13.88	53.40	-1.00	-1.00	12.90	11.76	24.65				
NO.	145	1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	126.09	142.76	16.66
	14.20	54.30	-1.00	-1.00	42.25	29.97	72.22				
NO.	146	1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	123.10	139.48	16.37
	14.41	53.50	-1.00	-1.00	51.44	53.18	104.61				
NO.	147	1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	126.24	142.84	16.60
	14.21	55.00	-1.00	-1.00	63.12	46.95	110.07				
NO.	148	1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	126.17	142.83	16.65
	14.27	55.10	-1.00	-1.00	53.42	46.57	99.99				
NO.	149	1.00	-1.00	-1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	124.11	140.71	16.60
	14.48	54.30	-1.00	-1.00	51.32	42.72	94.04				
NO.	150	1.00	-1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	125.88	142.72	16.83
	14.46	55.10	-1.00	-1.00	39.66	48.73	88.38				
NO.	151	1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	-1.00	-1.00	123.52	139.92	16.39
	14.38	54.00	-1.00	-1.00	52.40	41.93	94.41				

TABLE 2.5-2B (CONT.)

NO. 152	1.00	-1.00	1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	-1.00	1.00	1.00	1.00	-1.00	124.42	140.78	16.36
	14.23	53.90	-1.00	-1.00	33.17	46.62	79.79			
NO. 153	-1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	-1.00	1.00	1.00	1.00	-1.00	125.47	142.10	16.62
	14.33	54.60	-1.00	-1.00	41.99	37.86	79.85			
NO. 154	-1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	-1.00	1.00	1.00	1.00	-1.00	125.58	142.42	16.84
	14.50	54.60	-1.00	-1.00	53.82	59.40	113.22			
NO. 155	-1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	-1.00	1.00	1.00	1.00	-1.00	126.24	142.91	16.66
	14.27	55.00	-1.00	-1.00	60.85	46.43	107.27			
NO. 156	-1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	-1.00	1.00	1.00	1.00	-1.00	125.35	141.85	16.49
	14.24	54.20	-1.00	-1.00	56.97	45.54	102.50			
NO. 157	-1.00	-1.00	-1.00	-1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	-1.00	1.00	1.00	1.00	-1.00	127.02	143.83	16.81
	14.30	54.90	-1.00	-1.00	47.85	35.60	83.45			
NO. 158	-1.00	-1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	-1.00	1.00	1.00	1.00	-1.00	126.55	143.49	16.94
	14.47	55.10	-1.00	-1.00	56.11	43.56	99.66			
NO. 159	-1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	-1.00	1.00	1.00	1.00	-1.00	124.70	141.16	16.45
	14.28	54.40	-1.00	-1.00	56.85	41.09	97.94			
NO. 160	-1.00	-1.00	1.00	1.00	42.50	1.00	-1.00	-1.00	1.00	1.00
	-1.00	-1.00	-1.00	1.00	1.00	1.00	-1.00	126.70	143.39	16.68
	14.24	54.90	-1.00	-1.00	40.31	50.22	90.52			
NO. 161	1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	-1.00	-1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	122.41	138.36	15.94
	14.12	53.70	-1.00	-1.00	35.37	12.95	48.31			
NO. 162	1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	-1.00	-1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.26	140.20	16.02
	13.96	54.40	-1.00	-1.00	9.80	11.03	20.83			
NO. 163	1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	-1.00	-1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	123.22	139.20	16.06
	14.13	54.10	-1.00	-1.00	17.28	5.52	22.79			
NO. 164	1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	-1.00	-1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	120.91	136.53	15.62
	14.02	53.00	-1.00	-1.00	13.71	7.66	21.37			
NO. 165	1.00	-1.00	-1.00	-1.00	42.50	1.00	-1.00	-1.00	-1.00	-1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	121.04	136.91	15.86
	14.22	53.20	-1.00	-1.00	19.51	7.35	26.86			
NO. 166	1.00	-1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	-1.00	-1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	123.61	139.56	15.95
	13.97	54.20	-1.00	-1.00	29.19	16.01	45.20			
NO. 167	1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	-1.00	-1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	121.61	137.35	15.73
	14.03	53.20	-1.00	-1.00	14.70	4.82	19.52			
NO. 168	1.00	-1.00	1.00	1.00	42.50	1.00	-1.00	-1.00	-1.00	-1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.79	140.93	16.14
	13.99	55.00	-1.00	-1.00	14.54	26.61	41.15			
NO. 169	-1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	-1.00	-1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	121.98	137.45	15.46
	13.75	52.30	-1.00	-1.00	38.79	17.06	55.84			
NO. 170	-1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	-1.00	-1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	121.35	136.61	15.25
	13.64	51.50	-1.00	-1.00	9.38	14.25	23.63			
NO. 171	-1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	-1.00	-1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	121.57	137.44	15.76
	14.05	53.20	-1.00	-1.00	12.84	5.26	18.09			
NO. 172	-1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	-1.00	-1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	123.31	139.12	15.80
	13.89	53.90	-1.00	-1.00	16.06	10.20	26.25			
NO. 173	-1.00	-1.00	-1.00	-1.00	42.50	1.00	-1.00	-1.00	-1.00	-1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	122.75	138.66	15.90
	14.04	53.30	-1.00	-1.00	19.21	5.83	25.04			
NO. 174	-1.00	-1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	-1.00	-1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	121.91	137.55	15.64
	13.91	53.10	-1.00	-1.00	11.36	10.08	21.44			
NO. 175	-1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	-1.00	-1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	123.65	139.66	16.00
	14.02	53.90	-1.00	-1.00	19.11	5.03	24.13			
NO. 176	1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	122.20	138.03	15.83
	14.04	53.20	-1.00	-1.00	15.57	4.84	20.40			

TABLE 2.5-2B (CONT.)

NO. 177	1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.99	141.06	16.07
	13.91	54.40	-1.00	-1.00	49.08	13.75	62.83			
NO. 178	1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.54	140.81	16.27
	14.14	54.50	-1.00	-1.00	17.75	5.02	22.77			
NO. 179	1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.42	140.23	15.80
	13.75	53.60	-1.00	-1.00	38.60	6.30	64.90			
NO. 180	1.00	-1.00	-1.00	-1.00	42.50	1.00	-1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.28	140.36	16.07
	14.00	54.00	-1.00	-1.00	18.96	5.58	24.54			
NO. 181	1.00	-1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	120.97	136.36	15.39
	13.80	52.90	-1.00	-1.00	17.26	7.57	24.83			
NO. 182	1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.02	139.95	15.92
	13.91	53.60	-1.00	-1.00	25.08	3.70	28.77			
NO. 183	1.00	-1.00	1.00	1.00	42.50	1.00	-1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	121.28	136.90	15.61
	13.97	53.00	-1.00	-1.00	26.40	8.43	34.83			
NO. 184	-1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.54	140.80	16.25
	14.13	54.60	-1.00	-1.00	17.59	5.19	22.77			
NO. 185	-1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.85	140.80	15.94
	13.82	54.00	-1.00	-1.00	19.47	13.56	33.02			
NO. 186	-1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	123.39	139.45	16.05
	14.10	54.00	-1.00	-1.00	21.69	4.45	26.13			
NO. 187	-1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	121.68	137.09	15.41
	13.73	52.90	-1.00	-1.00	13.79	5.16	18.95			
NO. 188	-1.00	-1.00	-1.00	-1.00	42.50	1.00	-1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	122.76	138.50	15.74
	13.89	53.20	-1.00	-1.00	22.88	7.38	30.25			
NO. 189	-1.00	-1.00	-1.00	1.00	18.50	1.00	-1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	123.92	139.83	15.90
	13.90	53.40	-1.00	-1.00	22.25	5.99	28.24			
NO. 190	-1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	121.53	137.20	15.66
	13.98	52.90	-1.00	-1.00	31.84	9.57	41.41			
NO. 191	-1.00	-1.00	1.00	1.00	42.50	1.00	-1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	123.06	139.06	16.00
	14.08	54.30	-1.00	-1.00	13.79	9.91	23.70			
NO. 192	1.00	-1.00	-1.00	-1.00	18.50	1.00	1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	123.95	140.05	16.09
	14.06	53.90	-1.00	-1.00	15.11	3.95	19.06			
NO. 193	1.00	-1.00	-1.00	1.00	42.50	1.00	1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	123.03	138.88	15.84
	13.96	53.20	-1.00	-1.00	11.27	12.62	23.88			
NO. 194	1.00	-1.00	1.00	-1.00	42.50	1.00	1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	123.67	139.47	15.79
	13.83	53.30	-1.00	-1.00	10.21	10.26	20.47			
NO. 195	1.00	-1.00	1.00	1.00	18.50	1.00	1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	123.05	138.84	15.79
	13.90	52.90	-1.00	-1.00	13.76	4.58	18.34			
NO. 196	1.00	-1.00	-1.00	1.00	18.50	1.00	1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	123.01	138.62	15.61
	13.75	52.20	-1.00	-1.00	23.69	7.28	30.97			
NO. 197	1.00	-1.00	1.00	-1.00	18.50	1.00	1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	123.85	139.73	15.87
	13.88	53.80	-1.00	-1.00	27.52	8.03	35.55			
NO. 198	1.00	-1.00	1.00	1.00	42.50	1.00	1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	123.21	138.80	15.58
	13.71	52.80	-1.00	-1.00	6.32	21.89	28.21			
NO. 199	-1.00	-1.00	-1.00	-1.00	18.50	1.00	1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.57	140.54	15.96
	13.87	53.60	-1.00	-1.00	23.19	5.61	28.79			
NO. 200	-1.00	-1.00	-1.00	1.00	42.50	1.00	1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.13	140.06	15.93
	13.89	53.30	-1.00	-1.00	22.49	14.92	37.41			
NO. 201	-1.00	-1.00	1.00	-1.00	42.50	1.00	1.00	-1.00	-1.00	1.00
	1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.32	140.00	15.68
	13.65	53.10	-1.00	-1.00	15.45	7.16	22.61			

TABLE 2.5-2B (CONT.)

NO.	202	-1.00	-1.00	1.00	1.00	18.50	1.00	1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	122.58	138.31	15.73
		13.91	52.90	-1.00	-1.00	14.80	3.99	18.79			
NO.	203	-1.00	-1.00	-1.00	-1.00	42.50	1.00	1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	122.30	137.93	15.63
		13.85	52.10	-1.00	-1.00	19.43	4.32	23.75			
NO.	204	-1.00	-1.00	-1.00	1.00	18.50	1.00	1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.26	140.21	15.94
		13.89	53.50	-1.00	-1.00	21.65	10.17	31.81			
NO.	205	-1.00	-1.00	1.00	-1.00	18.50	1.00	1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	121.34	136.90	15.55
		13.91	52.10	-1.00	-1.00	13.00	3.54	16.54			
NO.	206	-1.00	-1.00	1.00	1.00	42.50	1.00	1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.61	140.36	15.75
		13.68	53.30	-1.00	-1.00	7.33	17.91	25.24			
NO.	207	1.00	-1.00	-1.00	-1.00	18.50	-1.00	-1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00	122.78	138.58	15.79
		13.94	52.25	-1.00	-1.00	16.33	2.92	19.25			
NO.	208	1.00	-1.00	-1.00	1.00	42.50	-1.00	-1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00	124.55	140.56	16.01
		13.91	52.80	-1.00	-1.00	12.29	12.68	24.97			
NO.	209	1.00	-1.00	1.00	-1.00	42.50	-1.00	-1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00	121.22	136.85	15.62
		13.99	51.63	-1.00	-1.00	13.13	3.92	17.04			
NO.	210	1.00	-1.00	1.00	1.00	18.50	-1.00	-1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00	124.70	140.69	15.98
		13.88	53.23	-1.00	-1.00	9.34	4.42	13.75			
NO.	211	1.00	-1.00	-1.00	-1.00	42.50	-1.00	-1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00	126.06	142.39	16.32
		14.00	53.87	-1.00	-1.00	12.89	2.37	15.26			
NO.	212	1.00	-1.00	-1.00	1.00	18.50	-1.00	-1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00	124.06	140.04	15.97
		13.94	52.97	-1.00	-1.00	15.13	5.88	21.01			
NO.	213	1.00	-1.00	1.00	-1.00	18.50	-1.00	-1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00	121.43	137.06	15.63
		13.96	51.82	-1.00	-1.00	14.60	3.51	18.11			
NO.	214	1.00	-1.00	1.00	1.00	42.50	-1.00	-1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00	124.84	140.30	15.95
		13.83	53.55	-1.00	-1.00	8.04	13.74	21.78			
NO.	215	-1.00	-1.00	-1.00	-1.00	18.50	-1.00	-1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00	124.16	140.23	16.06
		14.01	52.83	-1.00	-1.00	9.66	2.19	11.85			
NO.	216	-1.00	-1.00	-1.00	1.00	42.50	-1.00	-1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00	122.71	138.54	15.82
		13.98	52.17	-1.00	-1.00	8.63	7.57	16.20			
NO.	217	-1.00	-1.00	1.00	-1.00	42.50	-1.00	-1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00	124.95	141.12	16.17
		14.00	53.58	-1.00	-1.00	10.92	2.50	13.42			
NO.	218	-1.00	-1.00	1.00	1.00	18.50	-1.00	-1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00	125.35	141.41	16.05
		13.86	53.53	-1.00	-1.00	11.45	4.66	16.11			
NO.	219	-1.00	-1.00	-1.00	-1.00	42.50	-1.00	-1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00	124.28	140.57	16.28
		14.19	53.30	-1.00	-1.00	27.54	2.29	29.82			
NO.	220	-1.00	-1.00	-1.00	1.00	18.50	-1.00	-1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00	123.54	139.51	15.96
		14.00	52.67	-1.00	-1.00	16.40	4.61	21.00			
NO.	221	-1.00	-1.00	1.00	-1.00	18.50	-1.00	-1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00	122.15	137.58	15.42
		13.69	51.45	-1.00	-1.00	12.77	3.57	16.34			
NO.	222	-1.00	-1.00	1.00	1.00	42.50	-1.00	-1.00	-1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00	124.48	140.32	15.83
		13.77	52.83	-1.00	-1.00	9.23	11.61	20.84			
NO.	223	1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	126.04	141.81	15.77
		13.53	51.25	-1.00	-1.00	14.86	2.71	17.56			
NO.	224	1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	125.24	140.73	15.48
		13.38	50.42	-1.00	-1.00	7.27	11.37	18.63			
NO.	225	1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	125.68	141.64	15.95
		13.73	50.58	-1.00	-1.00	11.95	2.43	14.37			
NO.	226	1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	1.00	-1.00	1.00
		1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	125.57	141.01	15.43
		13.30	50.42	-1.00	-1.00	9.38	3.89	13.27			

1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	121.08	136.38	15.29
13.71	50.42	-1.00	-1.00	14.47	2.17	16.63			
NO. 228									
1.00	-1.00	-1.00	1.00	18.50	1.00	-1.00	1.00	-1.00	1.00
1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.93	140.63	15.69
13.60	50.42	-1.00	-1.00	11.84	3.27	15.10			
NO. 229									
1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	1.00	-1.00	1.00
1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	127.19	142.87	15.68
13.32	51.13	-1.00	-1.00	14.06	2.37	16.43			
NO. 230									
1.00	-1.00	1.00	1.00	42.50	1.00	-1.00	1.00	-1.00	1.00
1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.54	139.93	15.39
13.37	50.42	-1.00	-1.00	9.49	16.05	25.54			
NO. 231									
-1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	1.00	-1.00	1.00
1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	125.15	140.59	15.44
13.35	50.75	-1.00	-1.00	14.86	3.20	18.06			
NO. 232									
-1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	1.00	-1.00	1.00
1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.87	140.16	15.28
13.25	50.77	-1.00	-1.00	9.74	16.15	25.38			
NO. 233									
-1.00	-1.00	1.00	-1.00	42.50	1.00	-1.00	1.00	-1.00	1.00
1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	122.30	137.51	15.20
13.48	50.74	-1.00	-1.00	14.38	2.54	16.92			
NO. 234									
-1.00	-1.00	1.00	1.00	18.50	1.00	-1.00	1.00	-1.00	1.00
1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	124.08	139.52	15.44
13.47	50.92	-1.00	-1.00	13.27	4.83	18.10			
NO. 235									
-1.00	-1.00	-1.00	-1.00	42.50	1.00	-1.00	1.00	-1.00	1.00
1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	125.30	141.00	15.70
13.55	50.85	-1.00	-1.00	13.49	3.59	17.08			
NO. 236									
-1.00	-1.00	-1.00	1.00	18.50	1.00	-1.00	1.00	-1.00	1.00
1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	126.49	142.35	15.85
13.55	50.58	-1.00	-1.00	11.59	5.68	17.27			
NO. 237									
-1.00	-1.00	1.00	-1.00	18.50	1.00	-1.00	1.00	-1.00	1.00
1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	125.01	140.61	15.59
13.50	50.42	-1.00	-1.00	15.42	2.88	18.29			
NO. 238									
-1.00	-1.00	1.00	1.00	42.50	1.00	-1.00	1.00	-1.00	1.00
1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	126.01	141.60	15.58
13.38	51.10	-1.00	-1.00	7.52	10.59	18.11			
NO. 239									
1.00	-1.00	-1.00	-1.00	18.50	1.00	-1.00	-1.00	-1.00	-1.00
1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	122.80	137.04	14.23
12.56	46.57	1.00	1.00	17.84	2.62	20.45			
NO. 240									
1.00	-1.00	-1.00	1.00	42.50	1.00	-1.00	-1.00	-1.00	-1.00
1.00	-1.00	-1.00	-1.00	1.00	1.00	-1.00	123.83	138.11	14.28
12.49	46.93	1.00	1.00	20.02	9.76	29.77			

11.54
TOT NO. OBS= 253

TABLE 2.5-3
REGRESSION MODEL FOR OPEN CIRCUIT

ANALYSIS OF Y 1, 1 DF EACH VAR.		B COEF	SE(B)	T	VAR. SSQ	B COEF - E FORMAT
X	RSQR X	4.8198	2.1093	2.2849	0.357519E 03	0.481983E 01
1	0.9391	-8.8674	2.6454	-3.3519	0.769351E 03	-0.886745E 01
3	0.9613	4.0566	2.9574	1.3716	0.128835E 03	0.405660E 01
5	0.8817	-6.2825	1.8420	-3.4106	0.796568E 03	-0.628252E 01
6	0.8702	1.9673	1.3051	1.5073	0.155587E 03	0.196730E 01
10	0.6199	-1.8121	1.3399	-1.3524	0.125247E 03	-0.181215E 01
14	0.3638	2.6862	1.2767	2.1039	0.303115E 03	0.268625E 01
17	0.8786	10.6041	4.3120	2.4591	0.414116E 03	0.106941E 02
18	0.6203	-7.7363	1.7483	-4.4538	0.135836E 04	-0.778685E 01
19	0.8356	7.8094	2.6363	2.9621	0.600844E 03	0.780946E 01
20	0.8625	9.5467	2.9706	3.2136	0.707189E 03	0.954676E 01
21	0.8618	5.1987	3.3275	1.5623	0.167142E 03	0.519870E 01
23	0.8730	-5.5957	1.9830	-2.8147	0.542517E 03	-0.559577E 01
24	0.9024	-3.0615	2.1314	-1.4363	0.141277E 03	-0.306154E 01
25	0.8712	-9.8875	4.3417	-2.2773	0.355130E 03	-0.983750E 01
26	0.8057	11.9793	2.8383	4.2206	0.121980E 04	0.119793E 02
27	0.9051	4.5407	2.1621	2.1001	0.302016E 03	0.454074E 01
28	0.8307	4.9796	2.0585	2.4190	0.400700E 03	0.497960E 01
29	0.9143	8.6125	4.5534	1.8914	0.244975E 03	0.861258E 01
32	0.8922	-6.6490	3.3233	-2.0007	0.274105E 03	-0.664904E 01
35	0.6477	-4.4074	2.3252	-1.8954	0.246010E 03	-0.440741E 01
38	0.8730	3.5318	1.9433	1.8174	0.226177E 03	0.353132E 01
39	0.4667	-4.7729	1.2812	-3.7253	0.950331E 03	-0.477295E 01

CONSTANT MULT F DF1 DF2 RSQR* RES.SSQ/DF2 * SQUARED CORRELATION COEF.
33.07999 19.13 23 229 0.657 68.47633
RESIDUAL SSQ(BY DIFF.)= 0.1568107E 05, TOTAL SSQ= 0.4581647E 05
CORRELATION COEF.=0.3110

TABLE 2.5-4
REGRESSION MODEL FOR DISCHARGE

ANALYSIS OF Y 2, 1 DF EACH VAR.		B COEF	SE(B)	T	VAR. SSQ	B COEF - E FORMAT
X	RSQR X	4.3962	1.0785	4.0763	0.190113E 03	0.439629E 01
2	0.9120	-4.1245	1.2575	-3.2798	0.123080E 03	-0.412452E 01
3	0.9714	-4.6027	2.2519	-2.0439	0.477908E 02	-0.460273E 01
5	0.9659	-5.1181	0.6500	-7.3731	0.709205E 05	-0.511815E 01
6	0.8260	-2.9218	1.5536	-1.8805	0.404637E 02	-0.292105E 01
7	0.9160	6.5855	1.2306	5.3514	0.327661E 03	0.658552E 01
9	0.9701	-1.6855	0.5202	-3.2397	0.120085E 03	-0.168557E 01
10	0.6004	4.1199	0.9183	4.4837	0.230021E 03	0.411906E 01
11	0.9431	1.8656	0.5439	3.3986	0.132159E 03	0.136562E 01
15	0.3667	1.4568	1.4680	3.0359	0.105452E 03	0.445684E 01
17	0.8250	-7.1580	1.1159	-6.4142	0.470727E 03	-0.715802E 01
18	0.8467	10.8989	1.3084	8.3296	0.793845E 03	0.108989E 02
19	0.8885	-7.8320	1.9588	-3.9982	0.182897E 03	-0.733205E 01
25	0.8943	3.1759	1.7626	1.8018	0.371450E 02	0.317594E 01
29	0.9050	8.6580	1.4723	5.8806	0.395664E 03	0.865209E 01
30	0.9048	2.0218	0.7520	2.6883	0.326922E 02	0.202183E 01
31	0.7976	-6.5115	1.4463	-4.5021	0.231908E 03	-0.651159E 01
33	0.9429	-3.5582	0.8442	-4.2144	0.203215E 03	-0.355823E 01
36	0.8929	6.7630	1.6630	4.0666	0.189211E 03	0.676302E 01
37	0.9333	4.5809	2.1355	2.1450	0.526449E 02	0.453095E 01
40	0.9288	4.7456	1.6860	2.8147	0.906465E 02	0.474563E 01
41	0.8002	-1.7357	0.9795	-1.7720	0.359274E 02	-0.173571E 01
42	0.7931	0.9513	0.6212	1.5313	0.268297E 02	0.951319E 00
43	0.9188	-2.7359	1.4742	-1.8558	0.394075E 02	-0.273598E 01
44	0.8390	-2.1586	1.3550	-1.5930	0.290360E 02	-0.215865E 01
45	0.9048	2.2580	1.7615	1.2813	0.188005E 02	0.225806E 01
46	0.9158	2.1905	1.6812	1.3029	0.194227E 02	0.219050E 01
47	0.9113	2.6141	1.8231	1.4338	0.235241E 02	0.261416E 01
48	0.8749	2.0386	1.5351	1.3279	0.201766E 02	0.203861E 01

CONSTANT MULT F DF1 DF2 RSQR* RES.SSQ/DF2 * SQUARED CORRELATION COEF.
25.56338 73.56 29 223 0.905 11.44140
RESIDUAL SSQ(BY DIFF.)= 0.2551434E 04, TOTAL SSQ= 0.2695986E 05
CORRELATION COEF.=0.9515

TABLE 2.5-5
REGRESSION MODEL FOR COMBINED GAS

ANALYSIS OF Y 3, 1 DF EACH VAR.

X	RSQR X	B COEF	SE(B)	T	VAR. SSQ	B COEF - E FORMAT
1	0.9675	7.3630	3.3855	2.1743	0.445062E 03	0.736301E 01
2	0.9221	5.3913	3.2881	1.6396	0.252968E 03	0.539139E 01
3	0.9565	-8.2681	2.9266	-2.8250	0.750986E 03	-0.826817E 01
5	0.9216	7.0117	4.2601	1.6458	0.254901E 03	0.701171E 01
6	0.9367	-11.3031	3.0929	-3.6544	0.125665E 04	-0.113031E 02
9	0.9677	10.6566	3.3972	3.1368	0.925900E 03	0.106566E 02
11	0.9701	5.5799	3.6376	1.5339	0.221397E 03	0.557991E 01
15	0.3830	5.0929	1.5949	3.1932	0.959448E 03	0.509299E 01
17	0.8804	16.5992	5.0939	3.2586	0.999161E 03	0.165992E 02
18	0.7764	-13.5905	2.6494	-5.1295	0.247588E 04	-0.135905E 02
19	0.8336	20.6982	3.0714	6.7390	0.427326E 04	0.206982E 02
20	0.8379	10.4592	3.2070	3.2613	0.100084E 04	0.104592E 02
21	0.8933	11.1654	4.4386	2.5155	0.595418E 03	0.111654E 02
22	0.8164	-3.9064	2.5535	-1.5297	0.220207E 03	-0.390644E 01
23	0.9368	-8.6734	3.2303	-2.6846	0.678155E 03	-0.867345E 01
24	0.9317	-4.7433	2.9884	-1.5872	0.237058E 03	-0.474339E 01
25	0.9160	-23.6970	6.3014	-3.7605	0.133067E 04	-0.236970E 02
26	0.9060	10.5712	4.7837	2.2093	0.459491E 03	0.105712E 02
27	0.9169	4.1601	2.7085	1.5358	0.221968E 03	0.416011E 01
28	0.8420	5.1968	2.4977	2.0806	0.407349E 03	0.519685E 01
29	0.9170	13.0281	5.4093	2.4084	0.545810E 03	0.130281E 02
30	0.8114	7.2093	2.9993	2.4036	0.543621E 03	0.720937E 01
31	0.8138	-3.5334	2.2486	-1.5713	0.232337E 03	-0.353340E 01
32	0.9323	-7.3229	4.9176	-1.5903	0.238122E 03	-0.732299E 01
33	0.9441	-6.6098	4.1931	-1.5763	0.233814E 03	-0.660981E 01

CONSTANT MULT F DF1 DF2 RSQR* RES.SSQ/DF2 * SQUARED CORRELATION COEF.
 52.34271 39.09 25 227 0.811 94.09547
 RESIDUAL SSQ(BY DIFF.)= 0.2135967E 05, TOTAL SSQ= 0.1133260E 06
 CORRELATION COEF.=0.9008

TABLE 2.5-6
PREDICTIONS BASED ON ORIGINAL DATA (OPEN CIRCUIT)

RESIDUALS AND PREDICTIONS

OBS	Y(OBS)	Y(PRED)	RESIDUAL	S _{SE} (Y)	NORM DEV	RESIDUALS	SSQS
49	0.0200	36.6964	-8.3235	2.4528	-1.005	69.2802894	
14	0.7700	28.3506	-13.5806	2.8077	-1.041	253.7168278	
35	6.6400	37.3193	20.7206	2.6192	-2.503	683.0615251	
4	4.4400	30.2265	-2.2134	2.6034	-0.267	687.9605947	
5	24.9900	33.8342	-8.8442	2.7268	-1.068	766.1805436	
6	31.8900	29.9983	1.8916	2.3625	0.228	769.7586686	
7	54.4800	40.2796	14.2003	2.5157	1.716	971.4093031	
8	35.9600	28.2293	7.7306	2.8421	0.934	1031.1721224	
9	46.5700	36.7036	9.8663	2.8844	1.192	1128.5170931	
10	26.7400	29.1036	-2.3636	2.8278	-0.285	1134.1037626	
11	33.9400	38.5212	-4.5812	2.5631	-0.553	1153.0918902	
12	29.4000	31.0268	-1.6268	2.5662	-0.198	1157.7389287	
13	18.4700	34.8550	-16.3850	2.8113	-1.980	1426.2070345	
14	28.8700	32.5419	-3.6719	2.6384	-0.443	1439.6918184	
15	26.0700	40.9716	-12.9016	2.5199	-1.559	1606.1425814	
16	27.7400	28.1850	-0.4450	2.7102	-0.053	1606.3405775	
17	20.5500	29.7450	-9.1950	1.6742	-1.111	1690.8885188	
18	34.9900	29.1687	5.8212	3.7642	0.703	1724.7758822	
19	20.0100	35.9623	-15.9523	2.9660	-1.927	1979.2541532	
20	28.5800	33.0442	-4.4642	2.9788	-0.539	1999.1835970	
21	22.2600	32.0781	-0.7181	3.5674	-0.086	1999.6992216	
22	59.6300	45.7188	13.9111	3.3116	1.881	2193.2202215	
23	61.7900	49.7328	12.0571	3.2786	1.457	2338.5932215	
24	45.6100	37.5284	8.0815	3.6758	0.976	2403.9062357	
25	26.1100	24.8130	1.2969	2.3141	0.156	2405.5878963	
26	38.3900	22.5002	15.8897	3.8461	1.920	2658.0708065	
27	23.3800	31.0772	-7.6972	3.5746	-0.930	2717.3188533	
28	20.9600	27.8081	-6.8481	2.9889	-0.827	2764.2153377	
29	20.8500	26.1795	-5.3294	3.6245	-0.644	2792.6186590	
30	18.3500	33.7706	-15.4206	3.3628	-1.863	3030.4135808	
31	39.7500	43.2879	-3.5379	3.2520	-0.427	3042.9306707	
32	22.9100	32.1999	-9.2899	3.4693	-1.122	3129.2338933	
33	20.8700	22.9225	-7.0525	2.1815	-0.852	3178.9721746	
34	12.1400	30.9410	-18.8010	6.401	-2.272	3532.4497127	
35	48.7400	33.5149	13.5902	6.401	1.642	3717.1435604	
36	20.6800	28.9283	-8.8483	7.429	-1.369	3795.4365301	
37	54.7200	43.2220	11.4979	7.7973	-0.389	3927.6396541	
38	43.3100	42.5524	0.3575	3.1013	-0.043	3927.7670955	
39	65.6000	45.8166	19.7833	3.0910	-2.390	4319.1484439	
40	24.7100	41.1083	-16.3983	5.5833	-1.981	4588.0546989	
41	40.2600	33.2770	6.9829	1.7679	-0.843	4636.8154430	
42	49.3700	34.2509	15.1190	6.3441	1.827	4865.3994255	
43	41.4200	37.4099	4.0100	8.8229	0.484	4881.4795055	
44	60.5600	31.6336	28.9263	6.6836	3.495	5718.2099742	
45	36.3300	45.0995	-8.7695	8.320	-1.059	5795.1142711	
46	64.7600	44.7478	20.0121	8.6666	-2.418	6155.6005972	
47	34.6000	47.8813	-13.2813	3.0830	-1.604	6271.9951335	
48	39.8600	43.5329	-19.0429	2.0902	-1.301	6732.81779411	
49	39.3900	34.7425	1.1174	2.9993	-0.300	6840.4795555	
50	34.6175	34.6175	-10.2275	2.9728	-1.235	6909.3486261	
51	30.9200	39.2187	-8.2987	3.0840	-1.002	6949.1972789	
52	34.0800	27.7673	6.3126	2.9033	0.762	6957.1259880	
53	42.0100	39.1940	2.8159	2.9354	0.340	6976.32227789	
54	28.3100	32.6913	-4.3813	2.570	-0.529	7032.3476696	
55	30.1100	37.5950	-7.4850	2.9239	-0.904	7068.6611442	
56	24.2200	27.7300	-6.0260	2.8300	-0.728	7074.8034020	
57	24.8100	41.3259	-8.8480	2.8285	-0.977	7149.2753420	
58	29.4700	37.5597	-8.0897	2.9288	-1.749	7349.9736461	
59	27.9800	42.4509	-14.4809	2.7921	-0.735	7387.0293083	
60	25.3200	31.4073	-6.0873	3.443	3.828	8390.6289329	
61	73.7100	42.0303	31.6796	3.8146	-0.745	8428.7265892	
62	29.9600	36.1324	-6.1724	2.9829	-0.316	8433.6015853	
63	37.3900	40.0121	-2.6221	3.0108	3.496	9272.6455579	
64	60.7100	31.7783	-24.6437	5.0891	-0.561	9294.2070579	
65	62.8400	32.4837	-8.6280	1.1295	-1.042	9368.6484642	
66	18.7400	27.3680	-3.1123	2.1766	-0.376	9378.3340072	
67	22.7000	25.8123	-2.9499	3.128	-0.356	9387.0351791	
68	19.9800	22.9299	-2.5425	2.0572	-0.307	9393.4980735	
69	27.2400	29.7825	-7.3830	1.5735	-0.892	9448.0078353	
70	18.6700	26.0530	-1.0831	2.0512	-0.130	9449.1797142	
71	22.5500	23.6331	-4.4582	2.2248	-0.538	9469.0547103	
72	18.7600	23.2182	-3.2421	2.0480	-0.391	9479.3644760	
73	22.9700	27.7800	0.6773	2.2871	-0.082	9480.0215072	
74	22.5200	22.5026	9.4582	1.9478	-1.142	9569.4785423	
75	19.2400	22.7917	-2.9499	2.2000	-0.387	9579.7500267	
76	19.4100	27.6713	-8.2613	2.2191	-0.998	9677.9980735	
77	18.1500	23.6266	-5.4766	2.0101	-0.661	9677.9902610	
78	18.3000	22.3717	-4.0717	2.078	-0.492	9679.5683822	
79	22.8700	27.7441	-7.6258	1.9873	-0.127	9752.7202729	
80	22.2200	22.7728	-1.0528	2.2764	-0.275	9753.8281478	
81	22.2200	22.5435	-4.0976	1.9227	-0.495	9759.0097885	
82	18.0800	17.775	-2.0052	1.884	-0.242	9779.8183822	
83	17.1800	19.1852	-1.5027	2.0676	-1.03	9808.6699485	
84	21.3500	19.2062	-0.8562	2.3987	-0.171	9810.6875267	
85	16.6400	18.0610	-1.4210	2.0916	-0.479	9826.4277610	
86	21.0600	17.0924	-3.9675	1.4916	-0.603	9851.3476741	
87	20.4300	25.4221	-4.9921	1.9514	-1.487	10002.8789329	
88	23.6700	24.1601	12.3098	1.9514	1.487	10004.8828392	
89	22.5000	23.6438	-1.4161	2.1126	0.171	10064.1074447	
90	22.93100	21.6141	7.6958	2.1062	0.930	10084.8484642	
91	24.4700	28.9582	-4.1882	1.9695	-0.506	10088.2344017	
92	22.1000	24.6665	-2.5665	1.3449	-0.310	10108.55666635	
93	19.0100	23.5180	-4.5080	2.0475	-0.544	10124.7812728	
94	27.7500	19.1927	8.5572	2.2672	1.034	10124.0156478	
95	23.4700	31.2707	3.1992	2.5825	0.386	10192.45820541	
96	22.93100	30.0637	-0.7537	2.6672	-0.091	10238.0801010	
97	20.6100	27.3553	-6.7453	2.3874	-0.815	10239.3437728	
98	23.0500	24.2044	-1.1244	2.8252	-0.135	10253.1523704	
99	23.6900	31.7139	-3.9760	2.6493	-0.480	10278.3125228	
100	23.9900	28.8026	-4.8126	2.5922	-0.581	10307.9922142	
101	19.6000	27.9474	-8.3474	2.6271	-1.008	10348.6054916	
102	23.7800	24.5634	-0.7834	2.3957	-0.094	10436.5664291	
103	23.4600	34.0811	9.3788	2.3778	1.133	10488.74461673	
104	39.1900	31.9664	7.2235	2.6202	-0.872	10556.1484642	
105	22.7700	30.9800	-8.2100	2.5764	-0.992	10697.6953392	
106	38.3700	26.4725	-1.8974	2.6413	-1.437	10708.2890853	
107	31.9900	35.2449	-3.2548	2.6375	-0.393	10708.4765892	
108	32.0600	31.6266	0.4333	2.3890	0.052	10708.4765892	
109	22.8700	29.0259	-6.1559	2.6614	-0.743	10763.6230697	
110	30.4700	26.3839	-4.0860	2.6515	0.493	10777.0390853	
111	21.3900	24.9335	-3.5435	2.4215	-0.428	10779.4453393	
112	19.5000	20.6903	-1.1903	2.7077	-0.143	10777.0390853	
113	19.3500	20.9015	-1.5515	2.3542	-0.187	10780.45547103	
114	19.8600	20.9135	-1.0535	2.2089	-0.127	10780.45547103	
115	15.1500	20.6447	-5.4947	2.3905	-0.664	10810.7461204	

TABLE 2.5-6 (CONT.)

18	23.2900	20.4151	2.8748	1.7867	0.347	10819.0097885
19	7.7100	7.1372	-0.72	0.290	1.7793147	10821.1015453
20	0.0000	18.8498	1.1501	2.2577	0.138	10843.9804557
21	2.7000	7.2432	4.8867	2.2854	0.590	10860.000267
22	7.3500	4.7845	3.1654	3.0492	0.393	10873.6836204
23	8.7400	5.0408	3.6991	3.6960	0.447	10903.3066835
24	5.0500	6.5868	8.4631	2.2953	1.022	10961.9472231
25	1.9700	6.9904	4.0795	2.2785	0.492	10974.7031917
26	16.7700	3.1983	3.5716	4.237	0.431	10990.3535385
27	20.9300	1.6276	4.6530	5.766	0.562	11057.8008041
28	20.9500	3.1111	7.8388	2.2805	0.947	11061.1816673
29	21.8300	20.2566	1.5433	3.395	0.186	11066.1719017
30	16.8300	14.4422	2.4477	2.4603	0.295	11078.6699485
31	22.0200	18.4345	3.5354	2.6730	0.427	11097.6133041
32	14.2900	18.4063	-4.1163	2.6863	0.497	11101.9511985
33	14.5100	17.0276	-2.5176	3.2773	-0.304	11106.7422142
34	14.7000	16.8891	-2.1891	5.099	-0.264	11139.8086166
35	13.6900	19.4404	-5.750	6.988	-0.694	11165.9297142
36	10.8900	15.9021	-5.0121	2.6871	-0.605	11168.7226829
37	15.4000	13.4522	1.9477	2.6986	0.235	11170.6894798
38	11.0000	9.5968	1.4031	2.6694	0.169	11171.7441673
39	11.3100	12.3375	-1.0275	2.2772	-0.124	11175.3513883
40	14.4300	12.5302	2.3115	5.022	0.229	11180.6933860
41	14.5700	12.2586	0.0101	2.6886	0.253	11185.1152572
42	13.7000	1.6685	0.0861	4.4661	0.010	11190.2617416
43	14.4500	1.3038	0.000	2.6995	0.003	11192.4570579
44	12.9000	9.5612	3.3337	2.2216	-0.529	11243.7851791
45	4.22500	4.6312	-4.3812	1.1445	0.433	11364.8301010
46	51.4400	46.1174	5.3225	3.1255	1.229	11381.5000267
47	63.1200	52.1178	11.0021	3.1930	0.493	11386.7246360
48	53.4200	49.3369	4.0830	3.1017	0.276	11422.5859603
49	51.3200	49.0340	2.2859	3.2065	-0.723	11422.5918197
50	39.6600	45.6485	-5.9885	3.1987	-0.009	11701.3125228
51	52.4900	52.5716	-0.0816	3.1151	-1.2017	11757.1484642
52	33.1700	49.8649	-16.6949	3.1255	1.003	11777.3379135
53	41.9900	49.4623	-7.4723	3.2132	0.543	11810.44233392
54	53.8200	49.3265	4.4934	3.1904	0.695	11840.1152572
55	60.9500	55.0959	5.7540	4.040	0.568	11844.9668235
56	56.9700	51.5229	5.4720	2.2884	0.266	11908.1933860
57	47.8500	50.0527	2.0206	1.2993	0.960	11914.7871322
58	56.1100	28.1584	-5.9515	3.1141	3.10	12060.7402610
59	56.3600	28.2821	2.5679	3.1867	-1.259	12099.2578353
60	4.03100	52.3911	-1.0811	2.4954	0.889	12263.3906517
61	35.3700	23.1832	1.3557	2.4815	-0.148	12264.9082298
62	19.8000	17.1575	1.2924	2.5032	-0.466	12279.7988510
63	17.2500	18.5124	0.8988	2.5079	-0.260	12284.44533392
64	13.7100	17.5688	2.6064	2.4591	1.60	12376.7285423
65	19.5100	21.6658	2.9998	2.5450	2.51	12405.0429916
66	29.1900	19.5833	2.6064	2.4911	0.624	12436.3027572
67	14.7000	20.1144	-5.4144	2.4193	0.061	12735.8867454
68	14.5400	15.0502	-0.5102	2.6096	2.259	12781.6621360
69	38.7900	20.0928	18.6971	2.7749	-0.613	12807.0293197
70	9.3800	14.4570	5.0770	2.5664	-0.608	12807.1972923
71	12.3400	17.8767	-5.0367	2.5476	-0.049	12848.0859603
72	16.0600	16.4714	-0.4114	2.4851	-0.114	12866.6308860
73	19.2100	20.1535	-0.9435	2.4209	-0.924	12867.3379135
74	11.3600	19.0115	-7.6515	2.5450	-0.101	12988.003942135
75	19.1100	19.9508	-8.40408	2.5053	-1.316	13794.02541235
76	15.5700	26.4634	-10.8934	2.3043	-0.435	13816.9980735
77	40.3800	26.6542	-28.42557	2.3992	-0.579	14187.3164291
78	17.7500	26.5429	19.7929	2.9952	-0.325	14210.48026392
79	38.5000	26.5563	19.2436	2.0951	-0.586	14234.4902610
80	18.9600	28.8147	-14.85547	2.8608	-0.587	14239.8515853
81	17.2600	22.1189	-14.85889	2.0888	-0.252	14296.9765892
82	25.3800	22.9911	2.0888	2.1096	0.921	14388.1152572
83	26.4000	18.7759	7.6240	2.0996	-1.153	14388.2968978
84	17.5900	13.1366	-9.5466	1.6704	-0.051	14388.5136947
85	19.4700	19.8964	-0.4264	1.6012	-0.056	14417.1640892
86	21.6900	22.1571	-4.4671	2.2186	-0.646	14417.5666635
87	13.7900	19.1426	-5.3526	1.7782	-0.075	14485.8711166
88	22.8800	22.8525	0.0274	1.7728	-0.003	14520.0922142
89	22.2500	22.8773	-6.6273	1.3914	-0.023	14544.6426048
90	31.9400	23.5746	8.2653	2.0226	0.998	14554.5761947
91	13.7900	19.6739	-5.8839	2.0359	-0.711	14565.0664291
92	15.1100	20.0244	-4.9144	1.5779	-0.593	14639.5136947
93	11.2700	14.4217	-3.1517	2.2991	-0.381	14676.8515853
94	10.2100	13.4491	-3.2391	2.0803	-0.391	14781.804954
95	13.7600	13.9567	-0.1967	2.3500	-0.023	14799.4341673
96	23.6900	15.0637	8.6262	2.209	0.042	14800.2461204
97	27.5200	16.1913	11.3286	3.0556	0.369	14812.9004204
98	6.3200	10.0117	-13.6917	3.0863	-0.446	14814.7402610
99	23.1900	22.8444	0.3455	1.5774	-0.041	14874.9863548
100	22.4900	22.2596	-4.2303	1.7048	-0.511	14881.5996322
101	19.4500	16.3177	-0.8667	1.9546	-0.104	14892.6484642
102	14.8000	18.3573	-3.35573	1.9714	-0.429	14926.7304954
103	19.4300	20.3153	-0.88553	1.7928	-0.106	14930.0570579
104	21.6500	21.6218	1.0281	1.6933	-0.124	14931.169485
105	13.0000	20.7618	-7.61618	1.8863	-0.937	14971.1572923
106	7.3300	14.1469	-6.8169	1.8145	-0.823	14982.5666291
107	16.3300	16.6611	-3.33111	2.4655	-0.040	15000.4511985
108	12.2900	16.6644	0.62555	2.4596	-0.075	15002.5840072
109	13.1300	12.2982	-0.8317	2.3571	-0.100	15002.6501829
110	9.3400	11.3608	-2.0208	2.4161	-0.244	15029.7288510
111	12.8900	14.8206	-1.93056	2.6666	-0.233	15047.7324485
112	14.6000	14.2850	0.84496	2.0373	-0.102	15091.0488510
113	20.0400	14.4325	-0.62233	2.3724	-0.075	15134.2851791
114	9.6600	17.1673	-7.50733	3.143	-0.907	15159.4492454
115	8.6300	12.1668	-1.5268	2.6239	-0.427	15163.0039291
116	10.9200	11.3807	-1.42607	2.6238	-0.176	15186.9311985
117	11.4500	11.1722	-2.02777	2.6236	-0.033	15187.7617416
118	27.5400	16.2644	1.12755	2.6491	-1.382	15208.2851791
119	18.4000	16.6869	1.0130	2.3443	-0.207	15210.3691635
120	12.7700	12.2074	0.95625	2.5495	-0.067	15213.4297142
121	9.2300	8.1176	1.123	2.4416	-0.134	15220.9414329
122	14.8600	19.8764	-5.0164	2.1670	-0.606	15233.1230697
123	7.2700	9.1558	-1.88558	2.5988	-0.227	15235.9961204
124	11.9500	18.8437	-4.8937	1.9268	-0.591	15236.1172103
125	9.3800	8.4796	0.9003	2.5173	1.08	15247.8359603
126	14.4700	19.0002	-4.5302	1.9907	-0.547	15265.5117416
127	14.8400	13.2838	-1.4438	2.4257	-0.174	15270.5117416
128	14.0600	15.8097	-1.7497	2.4115	-0.211	15271.1476517
129	9.4900	6.7489	2.7410	2.4390	-0.331	15280.8476791
130	14.8600	18.3503	-3.46903	2.1788	-0.421	15295.8191635
131	9.7400	8.0444	1.69555	2.6178	-0.204	15325.9609642
132	14.3800	14.7221	-0.34391	1.9778	-0.042	15336.5117416
133	13.2700	9.8465	3.4234	2.4120	-0.413	15343.5878666
134	14.4900	12.6944	-4.2044	1.8678	-0.508	15367.5117416
135	14.5900	12.6735	-1.2835	2.080	-0.155	15370.5117416
136	14.4200	12.2515	-1.4275	1.9106	-0.221	15371.1476517
137	7.5200	6.47261	0.7938	2.4275	-0.095	15372.8476791
138	17.8400	29.55226	-11.7126	2.5051	-1.415	15373.3261947
139	20.0200	24.1786	-4.1586	2.5020	-0.502	15374.8191635
140	22.3500	24.5350	-0.95950	2.4095	-0.070	15375.9609642
141	22.0400	24.6148	-2.5748	2.3467	-0.311	15376.5117416
142	39.7400	30.6947	9.0452	2.9171	1.093	15377.4062767
143	27.5900	26.8548	0.7351	2.5036	0.088	15378.9453342
144	22.4500	23.4703	6.9796	2.4889	-0.843	15379.6601829
145	19.7500	20.3531	-4.6031	2.3654	-0.556	15380.8476791
146	28.9100	22.4364	6.6735	2.523	0.339	15381.3261947
147	26.33200	23.5066	2.8133	2.4379	0.339	15382.8476791
148	26.0000	21.7752	4.2247	2.5617	0.510	153

TABLE 2.5-7
PREDICTIONS BASED ON ORIGINAL DATA (DISCHARGE)

RESIDUALS AND PREDICTIONS

OBS	Y(OBS)	Y(PRED)	RESIDUAL	S.E.(Y)	NORM DEV	RESIDUALS	SSQS
1	18.5200	17.6549	-0.8600	1.0974	0.254	0.7396929	2.8772425
2	18.5400	26.5020	-1.4620	1.1895	-0.432	16.1127205	16.1127205
3	22.2900	19.9280	-3.6380	1.1279	-1.075	20.7261095	20.7261095
4	22.5200	20.3721	-2.1478	1.2111	-0.34	24.8508453	24.8508453
5	15.0000	17.0309	-2.0309	1.4508	-0.600	25.4251938	25.4251938
6	23.9700	23.2121	-0.7578	1.4767	0.224	48.930709	48.930709
7	18.9700	18.8182	-0.8482	1.306	-1.433	56.3551560	56.3551560
8	18.9200	12.6444	-2.1247	1.0962	-1.182	72.366594	72.366594
9	13.2500	17.2514	-4.0014	1.0962	-1.182	88.7939149	88.7939149
10	30.4600	26.4069	-4.0530	1.1858	1.198	88.837314	88.837314
11	16.9300	16.7209	-0.2090	1.1197	0.061	98.873017	98.873017
12	19.8200	16.2483	-3.2823	1.2096	-0.422	99.4191286	99.4191286
13	12.3900	15.3125	-2.9225	1.4622	-0.864	298.9699103	298.9699103
14	36.2600	22.1337	-14.1262	1.4807	4.176	334.4543464	334.4543464
15	23.8700	17.9131	-5.9568	1.3827	1.761	359.5552375	359.5552375
16	16.4200	21.4300	-5.0100	1.3119	-1.481	360.1157845	360.1157845
17	9.3500	10.0987	-0.7487	0.9227	-0.221	375.4669197	375.4669197
18	30.6300	26.5863	-4.0436	1.4483	1.195	384.7189338	384.7189338
19	11.0900	8.2173	-2.8726	0.9304	0.849	386.2999274	386.2999274
20	8.6100	9.8673	-1.2573	1.2169	-0.371	386.3098152	386.3098152
21	19.1400	19.1362	-0.0037	1.7478	0.001	386.8165901	386.8165901
22	14.4800	14.5795	-0.0995	1.5431	-0.029	449.6704227	449.6704227
23	10.9200	11.6318	-0.7118	1.3550	-0.210	455.4464118	455.4464118
24	26.8100	18.8859	-7.9240	1.7035	2.342	458.5998543	458.5998543
25	7.5500	9.9664	-2.164	0.9402	0.714	471.6974494	471.6974494
26	27.5000	25.7242	-1.7758	1.4379	0.524	478.0410163	478.0410163
27	19.5200	15.9009	-3.6190	1.5520	1.069	523.4881606	523.4881606
28	8.0400	10.5586	-2.5186	1.2223	-0.744	530.7375522	530.7375522
29	9.7000	16.4414	-6.7414	1.7392	-1.993	543.2637956	543.2637956
30	7.0700	9.7624	-2.6924	1.4522	-0.796	543.7432878	543.7432878
31	6.5400	10.0792	-3.5392	1.3480	-1.046	574.8564469	574.8564469
32	1.0100	17.8024	-6.9294	1.6988	-0.204	610.0218520	610.0218520
33	5.2000	10.7779	-5.5779	0.8575	-1.649	619.1038435	619.1038435
34	13.8500	19.7800	-5.9300	1.1958	-1.753	634.0244157	634.0244157
35	13.8800	13.8936	-3.0136	0.8216	-0.890	707.6495378	707.6495378
36	8.5400	12.4427	-3.8527	1.2057	-1.141	713.2281510	713.2281510
37	20.5400	11.9594	-8.5805	1.3370	2.536	726.6625990	726.6625990
38	14.7400	13.1261	-1.3861	1.3766	-0.409	728.0139176	728.0139176
39	14.2200	12.5552	1.6647	1.2869	0.492	732.8912367	732.8912367
40	13.9100	14.8512	-0.9412	1.1283	-0.278	777.3179945	777.3179945
41	16.0400	12.3746	-3.6653	0.8057	1.083	803.4162614	803.4162614
42	21.6800	20.3175	-1.1624	0.972	0.343	805.9267592	805.9267592
43	14.0800	13.2384	-2.2084	0.8361	-0.652	808.082691664	808.082691664
44	18.6400	11.9746	-6.6653	1.1963	-1.970	884.3930678	884.3930678
45	8.5300	13.8307	-5.3007	1.3419	-1.567	890.9805924	890.9805924
46	23.3600	14.9629	-8.3970	1.3782	2.482	902.16801774	902.16801774
47	11.4700	13.5358	-2.0838	1.2867	-0.616	907.69267587	907.69267587
48	15.6700	16.0231	-0.3521	1.1320	-0.104	931.2070329	931.2070329
49	13.2200	12.7991	-0.4208	1.1005	0.124	963.1820089	963.1820089
50	18.8300	22.0565	-3.2265	1.1877	-0.953	964.7531752	964.7531752
51	14.5400	15.3034	-2.3135	1.2060	0.583	967.9742445	967.9742445
52	17.8400	15.5254	-2.0422	1.4515	-1.119	975.9606947	975.9606947
53	24.6100	22.0942	-2.4422	1.4663	-2.387	1019.8905045	1019.8905045
54	13.5500	12.6232	-0.4732	1.3808	0.311	1085.0993080	1085.0993080
55	14.7300	13.8778	-0.8521	1.3110	1.371	1093.6392118	1093.6392118
56	23.3500	17.6953	-5.6546	1.0927	0.370	1103.1918793	1103.1918793
57	13.4400	12.1865	-1.2534	1.1868	-0.530	1104.2822294	1104.2822294
58	19.8500	21.5947	-1.7947	1.1195	-0.833	1105.2441439	1105.2441439
59	14.7400	11.9191	-2.8208	1.2097	0.050	1106.9436063	1106.9436063
60	16.4900	16.3092	0.1707	1.2097	0.050	1124.16523470	1124.16523470
61	16.5900	9.9620	-6.6279	1.4513	1.059	1152.1088895	1152.1088895
62	8.5600	16.6351	-8.0751	1.4663	-2.387	1184.7448763	1184.7448763
63	9.4800	12.4108	-2.9308	1.3833	0.366	1188.61426111	1188.61426111
64	13.4000	16.4826	-3.0826	1.3122	0.111	1189.9357943	1189.9357943
65	10.1700	11.2142	-1.3442	0.7325	-0.308	1190.0778837	1190.0778837
66	18.5000	17.5191	-0.9808	0.7548	0.289	1192.9480009	1192.9480009
67	11.0700	12.3736	-1.3036	0.7811	-0.385	1197.8605990	1197.8605990
68	13.4500	9.2418	-4.2081	0.8221	1.244	1200.0492216	1200.0492216
69	18.4100	13.4700	-5.2399	0.7661	1.549	1202.1672391	1202.1672391
70	18.4600	11.0471	-7.1248	0.7400	1.588	1214.2238798	1214.2238798
71	10.6200	8.6828	-1.9671	0.7801	0.167	1217.8166532	1217.8166532
72	15.8000	16.3072	-0.5672	0.8263	0.248	1219.5967038	1219.5967038
73	10.4900	11.1229	-0.8399	0.5514	-0.193	1220.3762239	1220.3762239
74	16.3600	12.2207	-4.6607	0.7609	1.122	1235.8501005	1235.8501005
75	13.0900	12.7092	-0.3807	0.7636	0.088	1235.8837919	1235.8837919
76	10.9700	9.3191	-1.6508	0.8112	0.488	1235.9287473	1235.9287473
77	11.0200	13.2364	-2.2164	0.7743	0.655	1235.962626	1235.962626
78	12.2900	10.6810	-1.6089	0.7417	0.475	1235.9891630	1235.9891630
79	11.0400	9.7578	-1.2821	0.7911	0.379	1247.9827473	1247.9827473
80	16.6400	16.9124	-0.2724	0.8111	-0.080	1255.6928739	1255.6928739
81	12.9400	9.4677	-3.4722	0.8092	1.026	1271.9242447	1271.9242447
82	17.2000	15.3045	-1.8954	0.8814	0.560	1278.0449247	1278.0449247
83	13.6100	12.4510	-1.1589	0.7715	0.342	1278.0629911	1278.0629911
84	16.6800	9.2730	-1.1030	0.8115	0.326	1280.9323270	1280.9323270
85	16.6800	12.7663	-3.9136	0.7632	1.157	1285.0568881	1285.0568881
86	9.2200	8.8231	-0.3968	0.8803	0.117	1308.9162626	1308.9162626
87	8.1300	7.9460	-1.8139	0.9543	-0.054	1325.2370638	1325.2370638
88	11.9000	15.3777	-3.4777	0.9180	-0.288	1330.01904325	1330.01904325
89	7.4500	9.9275	-2.7775	0.8014	-0.821	1340.8046908	1340.8046908
90	12.4600	16.1708	-3.7008	0.8099	-0.094	1355.2277860	1355.2277860
91	9.8500	11.4522	-1.6122	0.8083	-0.476	1358.4924349	1358.4924349
92	8.0600	6.6847	-0.6287	0.8008	0.185	1362.0454443	1362.0454443
93	14.5500	13.0126	-1.4263	0.7631	0.421	1367.5805697	1367.5805697
94	8.5600	10.4644	-1.9044	0.7361	0.563	1377.7397494	1377.7397494
95	8.5000	8.6345	-0.1345	0.7818	0.039	1392.0497098	1392.0497098
96	11.1100	14.6553	-3.5453	0.9384	-0.048	1406.5390653	1406.5390653
97	7.0400	11.5159	-4.2759	0.7934	-1.264	1413.8042025	1413.8042025
98	21.8000	17.7824	-4.0175	0.8197	1.187	1427.9827473	1427.9827473
99	15.3800	13.1039	-2.2760	0.7697	0.672	1437.58264188	1437.58264188
100	13.1100	9.8592	-3.2507	0.8292	0.961	1443.0264188	1443.0264188
101	17.2100	13.4122	-3.7978	0.7862	1.122	1450.7131864	1450.7131864
102	13.1400	11.3331	-1.8068	0.8054	0.534	1457.5820931	1457.5820931
103	8.6600	10.5779	-1.9779	0.8551	-0.584	1463.0264188	1463.0264188
104	20.8900	16.9943	-3.8956	0.8138	-0.720	1470.9827473	1470.9827473
105	8.8500	12.0435	-3.8935	0.8116	-1.151	1477.1920931	1477.1920931
106	20.8900	17.9284	-2.6315	0.7884	-0.777	1481.9497098	1481.9497098
107	9.4600	13.0222	-3.5622	0.8301	-1.053	1486.5390653	1486.5390653
108	7.9300	10.2072	-1.8574	0.8195	0.549	1497.0175814	1497.0175814
109	11.1700	14.2425	-3.0725	0.8314	-0.908	1507.0131864	1507.0131864
110	8.3100	11.8663	-3.5563	0.8247	-1.051	1509.2245443	1509.2245443
111	6.9700	9.4260	-2.4380	0.7943	-0.720	1510.990638	1510.990638

TABLE 2,5-7-(CONT.)

124	8.7100	6.7677	1.9422	0.9857	0.574	1375.4273818
125	10.0000	10.6014	-0.6014	0.9444	0.17	1375.4273818
126	6.0800	6.7435	-0.7135	0.9826	0.210	1376.2985873
127	7.8300	5.7829	-0.20	1.0458	0.605	1380.4803328
128	7.9400	13.6497	-0.7097	0.9606	0.688	161.0903353
129	8.2200	5.4917	-0.7282	0.0123	0.806	1620.5330942
130	8.8500	11.1803	-0.3303	0.0123	0.343	1622.3030701
131	8.4200	6.4790	-0.0590	0.0674	0.313	1623.4273521
132	8.8500	3.1671	-0.6828	0.0674	0.793	1630.6223519
133	8.2300	4.9809	-0.2409	0.0268	0.071	1630.6804232
134	8.0000	7.1449	-0.8549	0.0488	0.548	1634.1210970
135	10.0000	10.4575	-0.4575	0.0815	0.135	1636.2312040
136	6.0360	4.5724	-0.2124	0.0339	0.062	1636.4404325
137	6.9200	11.0846	-1.1644	0.0121	0.639	1636.4855549
138	6.9300	6.7875	-0.4175	0.0580	0.714	1641.1701688
139	5.9300	3.5894	-2.3405	0.0705	0.691	1647.0146512
140	5.2500	7.1342	-1.6192	1.0458	0.478	1652.4926791
141	4.7600	4.6772	-0.0827	1.0278	0.024	1655.1145052
142	4.0200	3.5056	-0.5143	1.0664	0.152	1655.1213412
143	11.7600	10.6844	-1.0755	1.0715	0.317	1655.3857450
144	29.9700	37.8888	-7.9188	1.5101	2.341	1719.2507352
145	53.1800	51.2103	1.9696	1.4592	0.582	1723.1298856
146	46.9500	42.9845	3.9654	1.4780	1.172	1728.8545950
147	46.5700	46.6290	-0.0890	1.5281	0.026	1733.8623080
148	42.7200	46.6087	-2.1112	1.4764	0.624	1743.3198270
149	43.7300	45.0940	-3.6359	1.5508	0.074	1756.5400419
150	44.6600	40.4003	-5.2966	1.5514	0.452	1759.8796415
151	44.9300	53.8651	-2.2451	1.55015	1.41	1811.3720736
152	37.8600	38.4251	-0.5655	1.55099	0.167	1811.6914091
153	59.4000	51.9054	-4.9445	1.4837	2.215	1867.8590774
154	46.4300	42.6311	-7.7988	1.4837	1.123	1882.4777860
155	46.5400	45.9726	-4.7326	1.5247	1.414	1885.3562040
156	32.6000	38.9331	-1.7831	1.4747	1.414	1899.1010770
157	44.0000	44.9922	-1.5759	1.5011	0.572	1911.5842318
158	50.0000	53.0141	-3.1017	1.5348	0.465	1921.2053256
159	11.0700	53.9722	3.9777	1.5079	0.917	1937.0278353
160	15.5000	15.8234	-6.7934	1.0243	1.175	1960.0043973
161	15.5600	15.8700	-3.3500	1.0752	0.990	1971.2270536
162	7.6600	11.5601	-3.4001	1.0540	0.005	1982.7880887
163	7.3500	9.0958	-1.7458	1.0422	0.516	1985.8359408
164	16.0100	11.8723	-4.1376	0.9677	1.223	2002.9558130
165	4.9200	7.7170	-2.8970	1.0467	0.856	2111.3483915
166	26.6100	16.0373	10.5726	1.1280	3.125	2123.1303768
167	17.0600	8.0848	8.9751	1.0190	2.653	2203.6826233
168	14.2500	15.3999	-0.8499	1.0561	0.251	2204.407908
169	5.2600	18.0629	-2.8029	1.0341	0.828	2212.2612361
170	10.2000	13.0590	-3.001	1.0426	0.411	2212.5837674
171	12.0000	8.8723	-3.3500	1.0752	0.990	2229.5327215
172	5.8300	11.8717	-1.4019	1.0426	0.411	2229.8777010
173	10.0800	10.4534	-1.9663	1.0426	0.899	2229.9428768
174	5.0300	5.3255	-4.8587	0.8812	0.614	2229.1391658
175	13.7500	13.2679	-5.5689	0.9830	1.538	2229.4082008
176	5.0700	4.7889	-7.7839	0.9830	1.433	2229.6445369
177	13.0000	10.9128	-9.0101	0.9830	1.179	2229.1299919
178	5.0500	5.9010	-1.5759	0.9830	1.01	2229.1639519
179	5.0700	5.2020	-1.5759	0.9830	0.559	2229.3759463
180	13.5600	12.3610	-3.3869	0.9830	0.354	2229.6064458
181	4.4500	4.8369	-3.3869	0.9830	1.114	2232.6513729
182	5.1600	6.1566	-0.9966	0.8643	0.294	2232.6445369
183	7.3800	4.9910	-2.3999	0.8568	0.709	2232.3995197
184	5.5900	8.6431	-0.5531	0.8421	0.784	2232.43d9522
185	9.5700	3.6063	-1.5056	0.8555	1.763	2302.0029357
186	9.9100	4.4156	-1.5056	0.8563	1.740	2303.2812557
187	12.6200	15.0354	-4.4154	0.8280	0.006	2314.1152410
188	10.2800	4.8339	-4.8339	0.8280	1.714	2314.4082008
189	7.2200	5.2993	-1.00	0.9080	1.603	2314.5034468
190	8.0300	5.0994	-0.9080	0.9080	1.630	2314.5019580
191	21.0890	16.7165	-0.9080	0.9080	1.630	2314.6513729
192	14.6900	15.5314	-0.9080	0.9080	1.630	2314.6445369
193	2.3200	7.4490	-1.9500	1.7191	0.925	2314.1299919
194	10.1900	7.1945	-1.9754	1.9146	0.879	2314.4687557
195	3.9500	4.5379	-1.9979	1.9387	0.295	2405.4643611
196	17.9200	16.2414	-1.6685	1.5696	0.493	2408.2480535
197	2.9500	12.0370	-1.6685	1.2961	0.261	2409.0273494
198	12.6800	9.3207	-3.3592	1.3206	0.993	2420.3120183
199	3.9500	4.3225	-4.0252	1.3372	0.119	2420.4736394
200	6.4200	6.5152	-2.0952	1.3220	0.619	2424.8637762
201	2.3700	2.0248	-0.3451	1.3248	0.102	2424.9824285
202	5.8800	5.4514	-0.4285	1.2821	0.126	2425.1660223
203	3.3500	3.3932	-1.1637	1.3144	0.034	2425.1792058
204	1.3270	1.4168	-2.3231	1.3545	0.686	2430.5761775
205	7.9500	6.6613	-2.3713	1.3036	1.39	2430.4303873
206	9.9434	8.9173	-2.3713	1.3194	1.401	2430.2822332
207	2.5000	8.8961	-3.0432	1.3173	0.389	2430.0102232
208	4.6100	3.0319	-1.0	0.9080	1.392	2430.9355335
209	3.9100	10.6480	-1.0	0.9080	1.392	2430.9582198
210	1.3270	10.5603	-1.0	0.9080	1.392	2430.5141658
211	1.3270	10.4443	-1.0	0.9080	1.392	2430.4609432
212	2.6300	4.1466	-1.7166	0.8752	0.507	2432.2407293
213	9.8900	5.2242	-1.3342	0.9495	0.324	2432.4213933
214	3.6270	3.9534	-1.7834	0.9598	0.527	2432.9355335
215	2.3270	7.2088	-3.9388	0.7983	1.164	2470.1699285
216	2.3270	1.8857	-0.4842	0.9743	0.143	2501.6127946
217	3.2000	10.5324	-0.5175	0.9443	1.631	2501.6249402
218	16.1500	10.3304	-1.304	0.9449	0.038	2534.8183650
219	2.0400	2.7180	-0.1780	0.283	0.052	2534.8446160
220	5.2500	5.2588	-0.4226	0.727	1.26	2535.0332098
221	3.5200	3.8161	-0.2261	0.979	0.066	2535.0839900
222	5.6800	7.4479	-1.7679	0.8061	0.522	2536.2089900
223	2.6800	1.4518	-0.9261	0.772	0.274	2539.0703182
224	10.5900	9.9830	-0.6069	0.9591	1.79	2539.4384822
225	3.5634	-0.9439	-1.2298	1.1622	0.274	2540.3291073
226	4.6200	8.5301	-1.2298	1.2009	0.363	2543.1748113
227	4.6200	8.3548	-1.0152	1.3007	0.341	2543.8247313
228	5.0100	9.8103	-0.6069	0.9591	0.238	2543.8847313
229	4.6200	4.8035	-0.2459	0.9354	0.072	2543.6660513
230	5.2000	3.6842	-0.8842	0.956	0.261	2543.6215887
231	5.2000	10.9216	-1.3983	1.5522	0.413	2543.9687557
232	10.6500	10.0507	-0.5892	0.9414	1.74	2547.8911140
233	8.1200	4.3827	-0.7772	1.5093	0.229	2548.3095769
234	4.6200	4.0829	-0.6470	1.0511	0.191	2548.4642713
235	4.6200	4.3998	-1.2197	1.0710	0.378	2549.0034236
236	4.6200	4.6429	-0.2374	1.0514	0.070	2550.0307674
237	2.6300	2.7167	-0.1666	1.5749	0.049	2550.0739757
238	7.33900	8.2321	-0.8421	1.3669	0.248	2550.739757

TABLE 2.5-8
PREDICTIONS BASED ON ORIGINAL DATA (COMBINED GAS)

INDUALS AND PREDICTIONS

Y(OBS)	Y(PRED)	RESIDUAL	S.E.(Y)	NORM DEV	RESIDUALS	SSQS
63.5400	51.6851	-11.8548	3.5398	-1.222	140.5367740	
39.8099	55.1758	-15.3658	3.8410	-1.584	376.4562645	
70.9300	57.9559	-12.9740	3.8075	-1.337	544.9709486	
54.9599	50.0814	-4.8785	3.9610	0.502	568.7708754	
39.9900	51.2630	-11.2730	3.8385	-1.162	693.8529069	
55.8600	53.4222	-2.4377	4.0188	0.251	701.7956559	
68.4499	60.8227	-7.6272	3.9020	0.786	754.9704604	
55.8800	54.5184	-1.3615	3.7347	0.140	761.8243424	
59.8200	49.0388	10.7811	3.6009	1.111	878.0574967	
57.2000	53.6968	-3.5031	3.7536	0.361	890.3297133	
50.8699	56.2405	-5.3705	3.7442	-0.553	919.1722426	
49.2200	48.6765	0.5434	3.9518	0.056	919.4675309	
30.8600	50.2033	-19.3433	3.8413	-1.994	1293.6330595	
65.1300	54.7461	-10.3838	4.0479	1.070	1401.4572787	
51.9400	59.2483	-7.3083	3.9872	-0.753	1454.8696322	
44.1600	51.7913	-7.6313	3.7134	0.786	1513.1071805	
29.9000	40.6709	-10.7709	3.6997	-1.110	1629.1206088	
65.6200	58.6170	-7.0029	3.6976	0.721	1678.1623556	
31.0999	44.7995	-13.6895	3.4861	-1.411	1683.5654325	
37.1900	41.3580	-4.1680	3.9001	0.429	1882.9379911	
51.5000	51.2613	0.2386	4.6164	0.024	1882.9948763	
74.1100	62.2438	11.8661	4.5398	1.223	2023.8012728	
72.7100	61.7768	10.9331	4.0845	1.127	2134.3344783	
72.4199	52.6139	19.8059	4.5908	2.041	2535.6113348	
33.6600	34.2858	-0.6258	2.8215	-0.064	2536.0029354	
65.8900	49.5136	16.3763	4.9378	1.688	2804.1875066	
42.9000	48.3770	-5.4770	4.9523	-0.564	2834.1855535	
30.5499	34.4967	-5.4967	4.0023	-0.566	2864.3999080	
41.7977	-11.2477	4.5783	1.159		2990.9111394	
25.4200	44.8757	-19.4555	4.1954	-2.005	3369.4370183	
46.2900	53.0235	-6.7335	4.0998	-0.694	3414.7778377	
40.0200	45.6081	-5.5881	4.6333	-0.576	3446.0044002	
26.0699	38.3400	-12.2700	2.8860	-1.264	3596.5586004	
25.9900	50.8907	-24.9007	3.5477	-2.567	4216.6054821	
59.6200	50.0171	9.4482	3.5717	0.974	4305.1874036	
75.6599	38.8552	-9.7251	3.7881	-1.002	4400.4531183	
75.0500	60.9090	18.3505	3.6057	1.891	4737.2080211	
88.0800	43.5554	-3.3855	3.9369	-0.349	5117.29668864	
30.0200	51.1166	20.7033	3.9546	-2.134	5146.8095817	
56.9999	57.7662	-16.9562	4.8001	-1.748	5524.8427867	
71.0500	45.4356	-10.8644	2.9740	1.120	587.3623180	
52.4500	54.7859	16.2640	3.5272	1.676	587.3623180	
79.2000	52.4236	0.0263	3.5879	0.002	7281.2031383	
44.9600	58.5619	-13.7019	3.7825	3.903	7468.9453258	
88.1199	59.9596	28.1603	3.9563	2.903	8261.9492454	
45.0699	61.0625	-14.9925	3.9628	-1.545	8486.7246360	
40.2000	58.1637	-17.9537	4.8384	1.850	8809.0605097	
53.0799	47.5134	-5.5665	3.8666	0.573	8840.0449447	
43.2200	56.3541	-13.1341	4.0232	1.353	9012.5488510	
45.3699	54.3064	-8.7364	4.0039	0.900	9088.8750228	
51.9190	41.8053	10.1145	4.2196	1.042	9191.1797142	
54.6199	51.0216	3.5983	4.0736	0.370	9204.1269798	
42.1600	50.2630	-8.1030	4.1922	0.835	9269.7851791	
44.8400	52.1937	-7.3537	4.1680	0.759	9336.6738548	
46.0800	49.6595	-3.5794	4.0174	-0.369	9407.2226829	
57.2500	48.8505	8.3993	3.8577	0.865	9487.9199485	
49.2700	48.2531	-8.9831	4.0421	0.926	9682.6640892	
41.8000	52.7965	-13.9555	4.0233	1.438	9691.5426048	
38.5200	57.5488	-37.9495	4.0828	3.870	11101.2832260	
48.8700	52.2708	-14.4222	4.1904	1.488	11309.3027572	
74.1100	51.6836	-6.4026	3.9922	0.659	11353.2734603	
34.0100	39.8636	-10.7646	3.2883	0.603	11887.4765892	
37.2400	48.0046	-10.7646	3.5853	1.009	12001.6030392	
33.7700	37.3267	-13.5567	2.4932	0.366	12021.4922142	
45.9500	35.7727	-2.3427	2.4800	0.241	12026.9707298	
35.4200	43.6090	-5.2090	2.4230	0.546	12055.0508041	
34.5400	52.2032	-6.9013	3.9967	1.711	12117.6699485	
40.2600	38.4011	1.8588	3.3373	0.191	12117.1250228	
42.3400	45.7447	-3.4047	2.6279	-0.350	12117.7168235	
33.3400	33.8846	11.4553	2.4804	1.180	12249.9414329	
30.4300	31.3687	-2.1012	2.3608	0.216	12254.3554916	
30.4399	41.5903	-11.1603	2.4483	1.150	12378.9082298	
34.3400	38.2168	-7.7768	2.7119	0.802	12439.3867454	
45.0100	38.8546	-2.1744	2.4039	0.294	12444.2052572	
34.6600	22.2101	2.4498	2.5396	0.634	12482.0019760	
40.0200	38.6080	-1.4119	2.3373	0.191	12483.0019763	
31.6899	29.9231	-1.2331	2.6279	-0.350	12491.5136947	
25.3499	31.1971	-5.8471	2.3580	-0.602	12525.7011985	
37.9300	39.8394	-1.9094	2.4241	-0.196	12529.3457260	
27.5699	31.2974	-3.7274	2.9313	0.384	12543.2383079	
24.7700	24.7670	-0.0029	2.9258	0.000	12554.32383079	
32.9599	32.1384	-7.1784	2.7244	-0.018	12559.3867454	
27.5799	35.0711	-7.4911	2.6700	-0.772	12634.8691635	
48.9399	42.9323	5.9576	2.6890	0.614	12635.8242416	
30.4300	31.5149	-2.0907	2.6122	1.000	12639.3867454	
30.4399	38.8546	-10.6550	3.5666	0.376	12644.2052572	
34.6600	22.2101	2.4498	2.5396	0.634	12648.0019760	
30.0200	38.6080	-1.4119	2.3373	0.191	12648.0019763	
31.6899	29.9231	-1.2331	2.6279	-0.350	12649.5136947	
25.3499	31.1971	-5.8471	2.3580	-0.602	12525.7011985	
37.9300	39.8394	-1.9094	2.4241	-0.196	12529.3457260	
27.5699	31.2974	-3.7274	2.9313	0.384	12543.2383079	
24.7700	24.7670	-0.0029	2.9258	0.000	12554.32383079	
32.9599	32.1384	-7.1784	2.7244	-0.018	12559.3867454	
27.5799	35.0711	-7.4911	2.6700	-0.772	12634.8691635	
48.9399	42.9323	5.9576	2.6890	0.614	12635.8242416	
30.4300	31.5149	-2.0907	2.6122	1.000	12639.3867454	
30.4399	38.8546	-10.6550	3.5666	0.376	12644.2052572	
34.6600	22.2101	2.4498	2.5396	0.634	12648.0019760	
30.0200	38.6080	-1.4119	2.3373	0.191	12648.0019763	
31.6899	29.9231	-1.2331	2.6279	-0.350	12649.5136947	
25.3499	31.1971	-5.8471	2.3580	-0.602	12525.7011985	
37.9300	39.8394	-1.9094	2.4241	-0.196	12529.3457260	
27.5699	31.2974	-3.7274	2.9313	0.384	12543.2383079	
24.7700	24.7670	-0.0029	2.9258	0.000	12554.32383079	
32.9599	32.1384	-7.1784	2.7244	-0.018	12559.3867454	
27.5799	35.0711	-7.4911	2.6700	-0.772	12634.8691635	
48.9399	42.9323	5.9576	2.6890	0.614	12635.8242416	
30.4300	31.5149	-2.0907	2.6122	1.000	12639.3867454	
30.4399	38.8546	-10.6550	3.5666	0.376	12644.2052572	
34.6600	22.2101	2.4498	2.5396	0.634	12648.0019760	
30.0200	38.6080	-1.4119	2.3373	0.191	12648.0019763	
31.6899	29.9231	-1.2331	2.6279	-0.350	12649.5136947	
25.3499	31.1971	-5.8471	2.3580	-0.602	12525.7011985	
37.9300	39.8394	-1.9094	2.4241	-0.196	12529.3457260	
27.5699	31.2974	-3.7274	2.9313	0.384	12543.2383079	
24.7700	24.7670	-0.0029	2.9258	0.000	12554.32383079	
32.9599	32.1384	-7.1784	2.7244	-0.018	12559.3867454	
27.5799	35.0711	-7.4911	2.6700	-0.772	12634.8691635	
48.9399	42.9323	5.9576	2.6890	0.614	12635.8242416	
30.4300	31.5149	-2.0907	2.6122	1.000	12639.3867454	
30.4399	38.8546	-10.6550	3.5666	0.376	12644.2052572	
34.6600	22.2101	2.4498	2.5396	0.634	12648.0019760	
30.0200	38.6080	-1.4119	2.3373	0.191	12648.0019763	
31.6899	29.9231	-1.2331	2.6279	-0.350	12649.5136947	
25.3499	31.1971	-5.8471	2.3580	-0.602	12525.7011985	
37.9300	39.8394	-1.9094	2.4241	-0.196	12529.3457260	
27.5699	31.2974	-3.7274	2.9313	0.384	12543.2383079	
24.7700	24.7670	-0.0029	2.9258	0.000	12554.32383079	
32.9599	32.1384	-7.1784	2.7244	-0.018	12559.3867454	
27.5799	35.0711	-7.4911	2.6700	-0.772	12634.8691635	
48.9399	42.9323	5.9576	2.6890	0.614	12635.8242416	
30.4300	31.5149	-2.0907	2.6122	1.000	12639.3867454	
30.4399	38.8546	-10.6550	3.5666	0.376	12644.2052572	
34.6600	22.2101	2.4498	2.5396	0.634	12648.0019760	
30.0200	38.6080	-1.4119	2.3373	0.191	12648.0019763	

TABLE 2.5-8 (CONT.)

22.8499	22.7062	0.1437	2.8790	0.014	13910.0527572
28.7599	19.8344	8.9205	2.9243	0.919	13989.6269748
28.8899	26.0282	2.8617	2.7975	0.295	13997.81644760
30.0200	25.9733	4.0466	2.9755	0.417	14014.1847798
26.7400	28.0161	-1.2761	3.0975	-0.131	14015.8164291
27.4399	23.1529	4.2870	3.1217	-0.441	14034.1933860
20.1399	24.7315	-4.5915	3.0004	-0.473	14055.2754135
19.7400	25.5891	-5.8491	2.9633	-0.602	14089.4863548
19.9900	23.6711	-3.6811	3.2043	-0.379	14103.0371322
17.8899	21.6802	-3.7902	3.0265	-0.390	14117.4023704
20.9900	27.2858	-6.3958	3.0830	-0.659	14159.3086166
19.7600	16.6572	3.1027	2.9964	-0.319	14167.9338204
19.9200	21.7665	-1.8665	3.1107	-0.190	14171.3418197
15.6800	14.8659	0.8140	3.0885	-0.083	14172.0039291
20.3600	16.8686	3.4913	3.0384	-0.359	14184.1914329
20.0900	17.7576	-2.3323	3.1085	-0.240	14189.6308860
18.5299	18.5352	-0.0052	2.9938	-0.000	14189.6308860
18.4700	18.6952	3.4013	2.9909	-0.250	14201.1992454
24.6599	18.6952	5.9647	3.0689	-0.14	14236.7773666
72.2200	86.2784	-14.0584	3.7850	-1.449	14434.160423
104.6199	95.3617	9.2582	3.8445	0.954	14520.1308860
110.0700	96.0580	14.0119	3.8521	1.444	14716.4629173
99.9900	94.6628	5.3271	3.7396	0.549	14744.8398666
94.0400	91.7519	2.2880	3.8334	0.235	14750.0742416
88.3899	89.4103	-1.0203	3.7494	-0.105	14751.125872
94.4199	95.0561	-0.6361	3.7710	-0.065	14751.5119541
79.7900	100.7066	-20.9165	3.8558	-2.156	15189.0254335
79.8500	89.4240	-9.5740	3.7713	-0.986	15280.6855735
113.2200	99.0989	14.1210	3.8777	1.455	15480.0879135
107.2799	99.4336	7.8463	3.8382	0.808	15541.6523704
102.5099	96.7985	5.7114	3.7394	0.588	15574.2715072
83.4500	92.0603	-8.6103	3.8875	-0.887	15648.4101829
99.8699	92.0531	7.6168	3.7473	-0.785	15706.4258079
97.9400	96.4474	1.4925	3.7228	-0.193	15708.6523704
90.5299	103.3749	-12.8449	3.8331	-1.324	15873.6426048
48.3199	31.0615	17.2584	2.1853	1.779	16171.4921673
20.8300	32.7735	-11.9435	3.1440	-1.231	16314.1426048
22.7999	29.2328	-6.4329	3.3948	-0.663	16355.5236603
21.3700	29.4568	-8.0868	2.2053	-0.833	16420.9219284
26.8600	31.6554	-4.7954	2.4197	-0.494	16443.9180221
45.2000	30.0970	15.1029	2.1325	1.556	16672.0156707
19.5200	28.7713	-9.2513	2.1902	-0.953	16757.6016082
41.1500	31.9885	9.1614	3.3189	0.944	16841.5312937
55.8499	24.9747	30.8752	1.9615	3.182	17794.8086471
23.6300	27.2972	-3.6672	2.2028	-0.378	17808.2539596
18.0999	26.9885	-8.8886	2.3071	-0.916	17887.2578659
26.2599	26.4898	-0.2298	2.0577	-0.023	17887.3086471
25.0400	28.0390	-2.9990	2.1930	-0.309	17896.3008346
21.4400	27.9524	-6.5124	1.9412	-0.671	17938.7109832
24.1399	27.2661	-3.1261	2.2105	-0.322	17948.4805221
20.4099	30.0368	-9.6268	2.1527	-0.992	18041.1562957
62.3000	32.0878	30.7421	2.3319	3.169	18985.2344207
22.7700	29.3827	-6.6127	2.4044	-0.681	19029.9609909
44.9000	28.0955	18.8044	2.2319	1.938	19383.5666520
24.5400	28.8598	-4.3198	2.4013	-0.445	19402.2266082
24.8300	27.9064	-3.0764	2.2610	-0.317	19411.6875457
28.7799	27.1151	1.6648	2.1519	1.171	19414.4570846
34.8300	31.5611	-3.1688	3.3035	0.326	19424.4361471
32.7799	29.8415	-7.0615	2.2246	-0.727	19474.3594284
33.0299	29.6523	3.3776	2.1006	-0.348	19485.76556784
18.1399	27.5296	-1.3896	2.3755	-0.143	19487.6953598
24.5118	24.5118	-5.5618	1.9509	-0.573	19518.6289520
30.2599	26.1045	4.1554	2.1431	-0.428	19535.8953846
28.2400	27.8444	0.3955	1.9352	0.040	19536.0508270
21.4100	26.7793	14.6306	2.1426	1.508	19750.1055145
23.7000	31.8177	-8.1177	2.5431	-0.836	19816.0303534
19.0600	30.3069	-11.2469	2.1569	-1.159	19942.4922409
20.4700	25.6812	8.7912	2.3153	-0.906	20019.7773971
18.3400	25.4970	-5.0270	2.4408	-0.518	20045.0469207
30.9700	27.9927	-9.6527	2.1571	-0.995	20138.2227020
35.5500	27.2120	3.7579	2.3409	0.387	20152.3438034
28.2100	26.8204	8.7295	2.1576	0.899	20226.5469207
28.7999	28.2915	-0.0815	2.3970	-0.008	20228.5508270
37.4100	30.5398	6.8701	2.1256	0.708	20233.5117645
22.6100	21.8384	0.7715	2.2338	0.079	20280.7109832
23.7500	25.5824	-7.9421	2.1576	-0.188	20347.7344207
31.8199	27.7634	4.0565	1.9311	-0.418	20364.1875457
16.5400	25.8258	-9.2858	2.0349	-0.957	20450.4141159
25.2400	26.6155	-1.3755	2.0861	-0.141	20452.3047409
19.2500	18.9180	0.3319	2.9139	0.034	20459.8594284
24.9700	22.2407	2.7292	3.0154	0.281	20460.1289520
17.0499	17.5712	-0.5212	3.0122	-0.053	20476.4883346
13.7599	17.8049	-4.0449	2.8899	-0.416	20490.5195770
15.2600	19.0061	3.7461	3.0697	-0.386	20491.8477096
21.0100	19.8588	1.1411	2.8808	-0.117	20494.8203659
19.1100	17.9430	0.1669	2.8718	0.017	20495.8203659
21.7800	20.0549	1.7250	2.9842	0.177	20538.5273899
11.8500	18.4612	-6.6112	2.9095	-0.681	20569.6406707
16.2000	21.7781	-5.5781	3.0152	-0.575	20578.8281784
13.4200	16.4512	-3.0312	3.0341	-0.312	20578.8477096
16.1100	16.2606	-0.1506	2.9133	0.015	20675.1406707
20.8299	20.0169	9.8130	1.2118	1.011	20678.2422332
21.0099	19.2487	1.7612	2.9106	0.181	20688.0312957
16.3400	13.2108	3.1291	2.9088	-0.322	20695.3633346
20.8400	17.9532	-2.8867	2.9643	-0.297	20696.9961471
17.5699	17.6015	-0.0315	3.0730	-0.003	20712.6523895
18.6399	19.4365	-0.7965	3.2165	-0.082	20713.9688034
14.3799	18.3369	-3.9569	3.2704	-0.407	20720.5156707
13.2700	14.4174	-1.1474	3.1279	0.118	20739.1250457
16.6399	19.1991	-2.5591	3.0724	-0.263	20746.308471
15.1099	19.4241	-4.3141	3.0724	-0.444	20753.1755270
16.4300	13.7492	2.6807	3.1249	-0.276	20800.4414596
25.5400	18.1823	7.3576	3.1579	0.758	20800.4766159
16.0600	17.8703	0.1896	2.5290	0.019	20831.1172332
29.8899	20.3544	-5.5355	2.7861	0.570	20832.9414596
16.9200	17.6846	-0.7646	4.4273	-0.078	20840.4063034
18.1000	19.2147	-1.1147	2.1975	0.114	20857.9180221
17.0800	19.8126	-2.7326	2.4653	-0.281	20865.1755270
17.2700	21.4395	-4.1695	2.1668	-0.429	20999.7773971
18.2999	18.6639	-0.3639	2.1840	-0.037	21024.9141159
18.1100	20.8044	-2.6944	2.3837	-0.277	21047.2852096
20.4599	22.0618	-11.6018	2.9511	1.196	21047.2305145
29.7799	34.7939	-5.0139	3.0250	-0.516	21104.4922721
28.1499	29.6902	-1.5402	3.0232	-0.158	21119.3164596
27.0499	31.5162	-4.4662	2.9494	-0.460	21120.5156707
44.3000	36.8187	7.4812	3.3682	0.771	21120.5156707
31.3899	32.5089	-1.1189	2.9298	-0.115	21120.5156707
37.7000	28.1852	9.5847	3.9541	-0.988	21120.5156707
26.4000	31.3193	-4.9193	3.0093	-0.507	21120.5156707
37.6000	30.5045	7.0954	3.0818	0.731	21120.5156707
31.4800	26.8311	4.6488	3.0585	0.479	21120.5156707
30.7300	25.8221	4.9078	2.9845	-0.505	21120.5156707
28.4700	32.5264	-4.0564	3.3078	-0.418	21120.5156707
29.1899	29.5715	-0.3815	2.9814	-0.039	21333.1523849
27.9099	24.7569	3.1530	2.9982	0.325	21343.0937957
21.5100	25.2702	-3.7602	3.2601	-0.387	21357.2305145

NO. =	3109.,	MIN. =	-11.29,	LEV. =
NO. =	3105.,	MIN. =	-10.12,	LEV. =
NO. =	3079.,	MIN. =	-9.02,	LEV. =
NO. =	3075.,	MIN. =	-7.85,	LEV. =
NO. =	3361.,	MIN. =	-7.02,	LEV. =
NO. =	3077.,	MIN. =	-5.89,	LEV. =
NO. =	3095.,	MIN. =	-4.82,	LEV. =
NO. =	3351.,	MIN. =	-4.76,	LEV. =
NO. =	3073.,	MIN. =	-4.72,	LEV. =
NO. =	3173.,	MIN. =	-4.63,	LEV. =
NO. =	3365.,	MIN. =	-4.66,	LEV. =
NO. =	3237.,	MIN. =	-4.13,	LEV. =
NO. =	3117.,	MIN. =	-4.13,	LEV. =
NO. =	3091.,	MIN. =	-3.65,	LEV. =
NO. =	3169.,	MIN. =	-3.51,	LEV. =
NO. =	3233.,	MIN. =	-2.96,	LEV. =
NO. =	3113.,	MIN. =	-2.96,	LEV. =
NO. =	3362.,	MIN. =	-2.66,	LEV. =
NO. =	3603.,	MIN. =	-2.54,	LEV. =
NO. =	3111.,	MIN. =	-2.45,	LEV. =
NO. =	3143.,	MIN. =	-2.41,	LEV. =
NO. =	3335.,	MIN. =	-2.40,	LEV. =
NO. =	3617.,	MIN. =	-2.36,	LEV. =
NO. =	3207.,	MIN. =	-1.86,	LEV. =
NO. =	3087.,	MIN. =	-1.86,	LEV. =
NO. =	3245.,	MIN. =	-1.74,	LEV. =
NO. =	3329.,	MIN. =	-1.62,	LEV. =
NO. =	3110.,	MIN. =	-1.33,	LEV. =
NO. =	3107.,	MIN. =	-1.28,	LEV. =
NO. =	3139.,	MIN. =	-1.24,	LEV. =
NO. =	2085.,	MIN. =	-1.00,	LEV. =
NO. =	3203.,	MIN. =	-0.69,	LEV. =
NO. =	3083.,	MIN. =	-0.69,	LEV. =
NO. =	3241.,	MIN. =	-0.57,	LEV. =
NO. =	3347.,	MIN. =	-0.55,	LEV. =
NO. =	3426.,	MIN. =	-0.46,	LEV. =
NO. =	3425.,	MIN. =	-0.41,	LEV. =
NO. =	3332.,	MIN. =	-0.40,	LEV. =
NO. =	3366.,	MIN. =	-0.30,	LEV. =
NO. =	3106.,	MIN. =	-0.16,	LEV. =
NO. =	3587.,	MIN. =	-0.10,	LEV. =
NO. =	3489.,	MIN. =	0.13,	LEV. =
NO. =	3369.,	MIN. =	0.13,	LEV. =
NO. =	2071.,	MIN. =	0.26,	LEV. =
NO. =	3215.,	MIN. =	0.51,	LEV. =
NO. =	3859.,	MIN. =	0.54,	LEV. =
NO. =	3141.,	MIN. =	0.72,	LEV. =
NO. =	3873.,	MIN. =	0.72,	LEV. =
NO. =	3333.,	MIN. =	0.73,	LEV. =
NO. =	3607.,	MIN. =	0.82,	LEV. =

TABLE 2.5-9B
MAXIMUM GASSING COMBINATIONS (OPEN CIRCUIT)

TABLE 2.5-10A
MINIMUM GASSING COMBINATIONS (DISCHARGE)

NO. = 2691., MAX.= 70.52, LEV.= 1 -1 1 1 1 0 1 0 1 0 -1 1 0 0 0 0 0 0 -1 1 -1
NO. = 2692., MAX.= 69.96, LEV.= -1 -1 1 1 1 0 1 0 1 0 -1 1 0 0 0 0 0 0 -1 1 -1
NO. = 2563., MAX.= 68.99, LEV.= 1 -1 1 1 1 0 1 0 1 0 -1 1 0 0 0 0 0 0 -1 1 -1
NO. = 2564., MAX.= 68.43, LEV.= -1 -1 1 1 1 0 1 0 1 0 -1 1 0 0 0 0 0 0 -1 1 -1
NO. = 2947., MAX.= 67.48, LEV.= 1 -1 1 1 1 0 1 0 1 0 -1 -1 0 0 0 0 0 0 -1 1 -1
NO. = 2948., MAX.= 66.93, LEV.= -1 -1 1 1 1 0 1 0 1 0 -1 -1 0 0 0 0 0 0 -1 1 -1
NO. = 2819., MAX.= 65.96, LEV.= 1 -1 1 1 1 0 1 0 1 0 -1 -1 0 0 0 0 0 0 -1 1 -1
NO. = 2723., MAX.= 65.57, LEV.= 1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2820., MAX.= 65.40, LEV.= -1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2724., MAX.= 65.01, LEV.= -1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2595., MAX.= 64.04, LEV.= 1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2627., MAX.= 63.80, LEV.= 1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 579., MAX.= 63.62, LEV.= 1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 1
NO. = 2696., MAX.= 63.61, LEV.= -1 -1 -1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2596., MAX.= 63.48, LEV.= -1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2628., MAX.= 63.25, LEV.= -1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2695., MAX.= 63.22, LEV.= 1 -1 -1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 580., MAX.= 63.07, LEV.= -1 -1 -1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 1
NO. = 2979., MAX.= 62.54, LEV.= 1 -1 1 1 1 0 1 0 -1 0 1 0 -1 -1 0 0 0 0 -1 1 -1
NO. = 2568., MAX.= 62.08, LEV.= -1 -1 -1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2690., MAX.= 62.03, LEV.= -1 1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2980., MAX.= 61.98, LEV.= -1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2567., MAX.= 61.69, LEV.= 1 -1 -1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2728., MAX.= 61.28, LEV.= -1 -1 -1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2851., MAX.= 61.01, LEV.= 1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2727., MAX.= 60.89, LEV.= 1 -1 -1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2689., MAX.= 60.85, LEV.= 1 1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2883., MAX.= 60.77, LEV.= 1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 835., MAX.= 60.59, LEV.= 1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 1
NO. = 2952., MAX.= 60.58, LEV.= -1 -1 -1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2562., MAX.= 60.50, LEV.= -1 1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2852., MAX.= 60.45, LEV.= -1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2884., MAX.= 60.21, LEV.= -1 -1 -1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2951., MAX.= 60.19, LEV.= 1 -1 -1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 836., MAX.= 60.03, LEV.= -1 -1 -1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 1
NO. = 2600., MAX.= 59.75, LEV.= -1 -1 -1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2179., MAX.= 59.59, LEV.= 1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2599., MAX.= 59.36, LEV.= 1 -1 -1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2561., MAX.= 59.33, LEV.= 1 1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2824., MAX.= 59.05, LEV.= -1 -1 -1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2180., MAX.= 59.03, LEV.= -1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2946., MAX.= 59.00, LEV.= -1 1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2659., MAX.= 58.86, LEV.= 1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2755., MAX.= 58.82, LEV.= 1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 611., MAX.= 58.68, LEV.= 1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 1
NO. = 2823., MAX.= 58.66, LEV.= 1 -1 -1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 707., MAX.= 58.64, LEV.= 1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 1
NO. = 2660., MAX.= 58.30, LEV.= -1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1
NO. = 2756., MAX.= 58.26, LEV.= -1 -1 1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 1
NO. = 2984., MAX.= 58.24, LEV.= -1 -1 -1 1 1 0 1 0 -1 0 1 0 -1 1 0 0 0 0 -1 1 -1

TABLE 2.5-11A
MINIMUM GASSING COMBINATIONS (COMBINED GAS)

1545.,	MIN.,	-7.41,	LEV.,	1	1	1	-1	1	1	0	1	1	0	1	-1	0	0	0	0	0	-1
1549.,	MIN.,	-6.22,	LEV.,	1	1	-1	-1	1	1	0	1	1	0	1	-1	0	0	0	0	0	-1
1673.,	MIN.,	-5.30,	LEV.,	1	1	1	-1	1	1	0	1	-1	0	1	-1	0	0	0	0	0	-1
1677.,	MIN.,	-4.61,	LEV.,	1	1	-1	-1	1	1	0	1	-1	0	1	-1	0	0	0	0	0	-1
1674.,	MIN.,	-3.21,	LEV.,	-1	1	1	-1	1	1	0	1	-1	0	1	-1	0	0	0	0	0	-1
1930.,	MIN.,	-3.20,	LEV.,	-1	1	1	-1	1	1	0	1	-1	0	-1	-1	0	0	0	0	0	-1
1678.,	MIN.,	-2.03,	LEV.,	-1	1	-1	-1	1	1	0	1	-1	0	-1	-1	0	0	0	0	0	-1
1948.,	MIN.,	-1.74,	LEV.,	-1	-1	1	-1	1	1	0	1	-1	0	-1	-1	0	0	0	0	0	-1
1609.,	MIN.,	-1.55,	LEV.,	1	1	1	-1	1	1	0	-1	1	0	1	-1	0	0	0	0	0	-1
1738.,	MIN.,	-1.26,	LEV.,	-1	1	1	-1	1	1	0	-1	1	0	1	-1	0	0	0	0	0	-1
1994.,	MIN.,	-1.25,	LEV.,	-1	1	1	-1	1	1	0	-1	1	0	-1	-1	0	0	0	0	0	-1
1929.,	MIN.,	-1.04,	LEV.,	1	1	1	-1	1	1	0	1	-1	0	-1	-1	0	0	0	0	0	-1
1577.,	MIN.,	-0.66,	LEV.,	1	1	1	-1	1	1	-1	0	1	1	0	1	-1	0	0	0	0	-1
1613.,	MIN.,	-0.36,	LEV.,	1	1	-1	-1	1	1	0	-1	1	0	1	-1	0	0	0	0	0	-1
1742.,	MIN.,	-0.07,	LEV.,	-1	1	-1	-1	1	1	0	-1	-1	0	1	-1	0	0	0	0	0	-1
1737.,	MIN.,	0.05,	LEV.,	1	1	1	-1	1	1	0	-1	-1	0	1	-1	0	0	0	0	0	-1
1940.,	MIN.,	0.08,	LEV.,	-1	-1	1	1	-1	1	0	1	-1	0	-1	-1	0	0	0	0	0	-1
2012.,	MIN.,	0.20,	LEV.,	-1	-1	1	-1	-1	1	0	-1	-1	0	-1	-1	0	0	0	0	0	-1
1947.,	MIN.,	0.40,	LEV.,	1	-1	1	-1	-1	1	0	1	-1	0	-1	-1	0	0	0	0	0	-1
1521.,	MIN.,	0.52,	LEV.,	1	1	-1	-1	1	1	-1	0	1	1	0	1	-1	0	0	0	0	-1
1705.,	MIN.,	0.94,	LEV.,	1	1	1	-1	1	1	-1	0	1	-1	0	1	-1	0	0	0	0	-1
1741.,	MIN.,	1.24,	LEV.,	1	1	-1	-1	1	1	0	-1	-1	0	1	-1	0	0	0	0	0	-1
1547.,	MIN.,	1.49,	LEV.,	1	-1	1	-1	1	1	0	1	1	0	1	-1	0	0	0	0	0	-1
1557.,	MIN.,	1.63,	LEV.,	1	1	1	1	1	1	0	1	1	0	1	-1	0	0	0	0	0	-1
1563.,	MIN.,	1.86,	LEV.,	1	-1	1	-1	-1	1	0	1	1	0	1	-1	0	0	0	0	0	-1
2004.,	MIN.,	2.04,	LEV.,	-1	-1	1	1	1	1	-1	0	1	-1	0	-1	-1	0	0	0	0	-1
1709.,	MIN.,	2.13,	LEV.,	1	1	-1	-1	1	1	-1	0	1	-1	0	1	-1	0	0	0	0	-1
1934.,	MIN.,	2.13,	LEV.,	-1	1	-1	-1	1	1	0	1	-1	0	-1	-1	0	0	0	0	0	-1
1939.,	MIN.,	2.24,	LEV.,	1	-1	1	1	-1	1	0	1	-1	0	-1	-1	0	0	0	0	0	-1
1531.,	MIN.,	2.67,	LEV.,	1	-1	-1	-1	1	1	0	1	1	0	1	-1	0	0	0	0	0	-1
1541.,	MIN.,	2.81,	LEV.,	1	1	-1	1	1	1	0	1	1	0	1	-1	0	0	0	0	0	-1
1567.,	MIN.,	3.04,	LEV.,	1	-1	-1	-1	-1	1	0	1	1	0	1	-1	0	0	0	0	0	-1
1675.,	MIN.,	3.10,	LEV.,	1	-1	1	1	-1	1	0	1	-1	0	1	-1	0	0	0	0	0	-1
1665.,	MIN.,	3.24,	LEV.,	1	1	1	1	1	1	0	1	-1	0	1	-1	0	0	0	0	0	-1
1601.,	MIN.,	3.47,	LEV.,	1	-1	1	-1	-1	1	0	1	-1	0	1	-1	0	0	0	0	0	-1
1706.,	MIN.,	3.53,	LEV.,	-1	1	1	-1	1	1	-1	0	1	-1	0	1	-1	0	0	0	0	-1
1962.,	MIN.,	3.54,	LEV.,	-1	1	1	-1	1	1	-1	0	1	-1	0	-1	-1	0	0	0	0	-1
1452.,	MIN.,	3.59,	LEV.,	-1	-1	-1	-1	-1	1	0	1	-1	0	-1	-1	0	0	0	0	0	-1
1555.,	MIN.,	3.70,	LEV.,	1	-1	1	1	-1	1	0	1	1	0	1	-1	0	0	0	0	0	-1
1540.,	MIN.,	3.84,	LEV.,	-1	1	1	-1	1	1	0	1	1	0	1	-1	0	0	0	0	0	-1
1801.,	MIN.,	3.95,	LEV.,	1	1	1	1	-1	1	0	1	1	0	-1	-1	0	0	0	0	0	-1
1993.,	MIN.,	4.09,	LEV.,	-1	1	-1	-1	1	1	0	-1	-1	0	-1	-1	0	0	0	0	0	-1
1679.,	MIN.,	4.28,	LEV.,	1	-1	-1	-1	1	1	0	1	1	0	1	-1	0	0	0	0	0	-1
1933.,	MIN.,	4.29,	LEV.,	1	1	-1	-1	1	1	0	1	1	0	1	-1	0	0	0	0	0	-1
1669.,	MIN.,	4.43,	LEV.,	1	1	-1	1	1	1	0	1	-1	0	1	-1	0	0	0	0	0	-1
1695.,	MIN.,	4.66,	LEV.,	1	-1	-1	-1	-1	1	0	1	-1	0	1	-1	0	0	0	0	0	-1
1710.,	MIN.,	4.71,	LEV.,	-1	1	-1	-1	-1	1	-1	0	1	-1	0	1	-1	0	0	0	0	-1
1993.,	MIN.,	4.81,	LEV.,	1	1	1	-1	1	1	0	-1	1	0	-1	-1	0	0	0	0	0	-1
1559.,	MIN.,	4.88,	LEV.,	1	-1	-1	-1	-1	1	0	1	1	0	1	-1	0	0	0	0	0	-1
1550.,	MIN.,	5.03,	LEV.,	-1	1	-1	-1	-1	1	0	1	1	0	1	-1	0	0	0	0	0	-1

TABLE 2.5-11B
MAXIMUM GASSING COMBINATIONS (COMBINED GAS)

TABLE NO. 2.5-12

MINIMUM GASSING LEVELS BY VARIABLE

VARIABLE NO.	OPEN CIRCUIT	DISCHARGE	COMBINED	"BEST" LEVEL
	Level (1X1-X21)	Level (1X1-X21)	Level (1X1-X21)	
1	+ (3.42)*	+ (0.78)*	+ (2.60)*	+
2	- (2.09)*	+ (3.51)*	+ (2.34)*	+
3	- (3.93)*	- (4.98)*	- (5.85)*	-
4	+ (4.78)*	- (8.98)*	- (3.68)*	-
5	+ (4.78)*	- (3.14)*	- (0.88)*	+
6	+ (0.58)*	+(10.24)*	+(12.03)*	+
7	+ (4.40)*	- (1.35)*	NI	+
8	+ (4.78)*	NI	+ (3.91)*	+
9	+ (2.06)*	- (7.84)*	- (6.03)*	-
10	- (3.93)	+ (3.38)	NI	-
11	+ (5.16)*	- (1.72)*	+ (3.86)*	+
12	-(10.18)*	- (2.02)*	-(12.83)*	-
13	NI	NI	NI	N/A
14	+ (3.62)	NI	NI	+
15	- (5.37)	- (3.73)	-(10.18)	-
16	NI	NI	NI	N/A
17	-(21.21)	- (8.91)	-(33.20)	-
18	+(15.57)	+(12.06)*	+(27.18)	+
19	-(24.23)*	-(31.74)*	-(54.42)*	-
20	-(19.09)	+ (0.12)*	-(20.92)	-
21	- (2.60)	0	- (5.58)	
22	0	0	+ (1.95)	
23	+ (2.80)	0	+ (4.34)	
24	+ (1.53)	0	+ (2.37)	
25	+ (4.94)	+ (3.92)	+ (11.85)	
26	- (5.99)	0	- (5.29)	
27	- (2.27)	0	- (2.08)	
28	- (2.49)	0	- (2.60)	
29	- (4.31)	- (1.59)	- (6.51)	
30	0	- (4.33)	- (3.60)	
31	0	- (1.01)	+ (1.77)	
32	+ (3.32)	0	+ (3.91)	
33	0	+ (3.26)	+ (3.30)	
34	0	+ (1.78)		
35	+ (2.20)	0		
36	0	- (3.38)		
37	0	- (2.29)	* Interactive	
38	- (1.77)	0		
39	+ (2.39)	0	NI Not In	
40		- (2.37)		
41		+ (0.48)	N/A Not Applicable	
42		- (0.48)		
43		+ (1.37)		
44		+ (1.08)		
45		- (1.13)		
46		- (1.10)		
47		- (1.31)		
48		- (1.02)		

TABLE 2.5-13A
MINIMUM PERCENT OXYGEN PICKUP COMBINATIONS

TABLE 2.5-13B
MAXIMUM PERCENT OXYGEN PICKUP COMBINATIONS

TABLE NO. 2.5-15
MAXIMUM PER-CENT OXYGEN PICKUP

<u>VARIABLE NO.</u>	<u>MAXIMUM LEVEL</u>
1	+ (0.093)
2	+ (0.003)
3	- (0.282)
4	- (0.163)
5	+ (0.060)
6	- (0.153)
7	- (0.075)
8	- (0.299)
9	- (0.171)
10	NI
11	- (0.004)
12	+ (0.076)
13	+ (0.260)
14	- (0.300)
15	- (0.212)
16	- (0.130)
17	NI
18	NI
19	+ (0.563)
20	- (1.520)