Calcul statistique sur les composantes magnétiques avec le package ArMag

Dufresne Philippe

2020-06-22

Introduction

This package is an extraction of the functions of the calculation software on magnetic components developed at the Rennes Archaeomagnetism Laboratory, hosted at the Geosciences-Rennes laboratory.

Installing ArMag

ArMag will run in Windows, Mac OS X or Linux. To install ArMAg you first need to install R. I would also recommend installing Rstudio as a nice desktop environment for using R. Once in R you can type:

```
# install.packages('ArMag')
```

at the R command prompt to install ArMag. If you then type:

library(ArMag)

Installing ArMag via GitHub

```
'/private/var/folders/ms/3r6m3pqn4jq1hk94t646qdd00000gn/T/Rtmplfwoyd/
remotes7af451385dc9/chrono35-ArMag-933685d/DESCRIPTION'
#>
 preparing 'ArMag':
#>
   checking DESCRIPTION meta-information ...

✓ checking DESCRIPTION meta-information

#>
   checking for LF line-endings in source and make files and shell scripts
#>

    checking for empty or unneeded directories

#>
- building 'ArMag_0.0.1.0001.tar.gz'
#>
#>
library("ArMag") #,
lib.loc="/Library/Frameworks/R.framework/Versions/3.5/Resources/library")
```

it will load in all the ArMag functions.

Loading Rennes' AM file

You need two functions, the first one reads the information, corresponding to the headers of each sample, the second one reads the measurements of each sample.

```
file.AM <- "../examples/14039C.AMP"

mes <- NULL

mes.info <- read.AM.info (file.AM)

mes <- read.AM.mesures(file.AM)
```

Empty file generation

Function used before making the measurements. Warning, this function overwrites the existing file

```
file.AM <- "../examples/test.txt"
list.ech <- c("1T", "17T", "35T", "47T", "50T", "59T", "83T", "87T", "89T",
"94T", "100T", "102T", "103T" )
genere.AMD(file.AM, list.ech)</pre>
```

Plot of NRN values

A simple, R command allows to select the steps with the value 0, corresponding to step 0N0

```
select <- NULL
# select$I <- mes$I[mes$step.value== 0]
# select$D <- mes$I[mes$step.value== 0]
select <- mes[mes$step.value== 0,]
lambert(select, inc.lim = c(0,90))</pre>
```


mcFadden statistic on NRN value

Example of the calculation of the mcFadden statistic on the selected samples

Extraction of measurements corresponding to a sample using its name

```
mes.ech <- NULL
mes.ech <- extract.mesures.specimen.name("10P1", mes)</pre>
```

Zijderveld plot

```
par(pty="s") # force une figure carré

zijderveld1(mes.ech$X, mes.ech$Y, mes.ech$Z)

par(mfrow = c(1,2), pty="m", cex.lab = 0.5, cex.axis = 0.6) # separated into 2
  columns and restored a maximum size figure

# cex.lab set the text size of the steps

zijderveld1(mes.ech, legend.pos = "topright")

zijderveld2(mes.ech, pt.names = NULL)
```


Plot the schmitt-Lambert projection

Each function using different parameters

lambert.XYZ.specimen(mes.ech)

remove anisotropîe step

```
mes.ech.ssAni<-remove.step(mes.ech)
#> [1] "550Z+" "550Z-" "550X+" "550X-" "550Y+" "550Y-" "550ZB"
lambert.ID.specimen(mes.ech.ssAni)
```


demagnetizing and partial component

```
mes.sel2 <- extract.mesures.specimen.name("1P1", mes)</pre>
mes.sel3 <- extract.mesures.specimen.name("16P1", mes)</pre>
demag(mes.sel2, step.J0 = NULL)
demag(mes, step.J0 = 0, pt.col = rainbow(length(mes.info$name)))
demag(rbind(mes.sel2, mes.sel3), normalize = TRUE)
partial.component(mes.sel2$X, mes.sel2$Y, mes.sel2$Z)
             Χ
                                    Z
                                             Ι
                                                       DF
                                                                    Sl
#>
                          Υ
                                                                            MAD
#> 1 0.2726137 -0.02949615 0.9616713 74.08537 -6.175245 1 0.03145648 34.52748
#>
          DANG
#> 1 0.5730495
```


Synthetic view of a sample

The zijderveld1.T1T2 and zijderveld2.T1T2 functions remove the anisotropy steps by default

```
par(mfrow = c(2, 2), cex.lab = 0.7, cex.axis = .7, cex = 0.7, cex.main = 1, cex.sub = 0.1,
```

```
mai = c(0.5, 0.5, 0.7, 0.3), oma = c(0, 1, 1, 1))#, pty = "s" )

zijderveld1.T1T2(mes.sel2)

#> [1] "550Z+" "550Z-" "550X+" "550X-" "550Y+" "550Y-" "550ZB"

zijderveld2.T1T2(mes.sel2)

#> [1] "550Z+" "550Z-" "550X+" "550X-" "550Y+" "550Y-" "550ZB"

# removal of anisotropy steps

mes.sel2 <- remove.step(mes.sel2, verbose = FALSE)

lambert(mes.sel2, inc.lim = c(0, 90))

demag(mes.sel2, step.J0 = NULL)</pre>
```


Synthetic view

Arai - intensity plot

```
file.INT <- "../examples/INT_example.AMD"

mesINT <- NULL

mesINT <- read.AM.mesures(file.INT)

mesINT.info <- read.AM.info (file.INT)

mes.sel<- extract.mesures.specimen.name("40001B_11B1", mesINT)</pre>
```

```
# reference
# Coe 1978 : DOI: 10.1029/JB083iB04p01740
# Prévost et Al. 1985 DOI: 10.1029/JB090iB12p10417
par(pty="s", "xaxp")
relative = FALSE
verbose = TRUE
show.plot = TRUE
vol=10.8
TH = 60
aim.coef = 1E-10*1E6/vol #1E6
show.step.value = FALSE
R.mark = 'R' # Positive pTRM
V.mark = 'V' # Negative pTRM
P.mark = 'P' # pTRM check
L.mark = "L" # sLow cooling
Q.mark = "Q" # Quick cooling
pt.col = "blue"
loop.col = "forestgreen"
step.J0 = "20N0" # ou NULL
begin.step.value = 0
end.step.value = 700
par(pty="s", "xaxp")
arai(mes.sel, begin.step.value = 250, end.step.value = 700, aim.coef = 1E-10*1E6/vol)
```



```
#> [1] "Coef. Corr. lin. R= -0.999 pour 13 points"
\#> [2] " Sigmab ( Coe 1978) = 0.0123"
#> [3] "with lab field : 60 \muT => Fe= 56 \pm 0.737 \muT (Coe et Al. 1978)"
#> [4] "f = 87.62% (Coe et Al. 1978)"
\# [5] "q = 59.9"
\# > [6] "q = 0.899"
\# [7] "Crm = 7.216e-11 (Coe 1984)"
#> [8] "q (Prévost 85) = 64.1"
#> [9] "sigma (Prévost 85) = 0.0131"
#> [1] "Speed Rate with slow step: -0.6727 %"
#> [2] "Derive speed Rate with quick step: -0.1607 %"
#> [3] "Fe Lent= 56.4 \pm 0.742 \mu T"
#> $ARN
#>
                  Χ
                                Υ
                                               Z
                                                         Ι
                                                                                F
                                                                  D
#> 1 -3.226852e-10 -1.258333e-09 -1.208333e-09 -42.92797 255.6171 1.774147e-09
#> 2 -3.387500e-10 -1.218519e-09 -1.119444e-09 -41.51288 254.4640 1.688992e-09
#> 3 -2.662500e-10 -1.159722e-09 -9.905556e-10 -39.77652 257.0700 1.548239e-09
      -2.667593e-10 -1.056481e-09 -9.316204e-10 -40.52980 255.8291 1.433607e-09
```

#> 5 -2.757407e-10 -1.062963e-09 -8.903241e-10 -39.03350 255.4576 1.413719e-09

```
#> 6 -2.479630e-10 -9.574074e-10 -8.167130e-10 -39.54988 255.4798 1.282628e-09
#> 7 -2.236111e-10 -8.601389e-10 -7.302778e-10 -39.41027 255.4273 1.150281e-09
#> 8 -1.836574e-10 -6.969444e-10 -5.526852e-10 -37.48220 255.2371 9.082525e-10
#> 9 -1.493056e-10 -5.271759e-10 -4.332870e-10 -38.33688 254.1869 6.985301e-10
#> 10 -1.102778e-10 -4.035648e-10 -3.180556e-10 -37.24363 254.7165 5.255331e-10
#> 11 -8.549074e-11 -3.224537e-10 -2.481481e-10 -36.64417 255.1510 4.157674e-10
#> 12 -6.451852e-11 -2.784259e-10 -2.106481e-10 -36.39164 256.9533 3.550441e-10
#> 13 -3.353704e-11 -1.873611e-10 -1.361111e-10 -35.56850 259.8517 2.339982e-10
#> 14 -3.350000e-11 -1.134722e-10 -8.518519e-11 -35.75361 253.5520 1.457900e-10
#> 15 -1.508333e-11 -7.982407e-11 -5.046296e-11 -31.84792 259.2997 9.563420e-11
#> 16 -1.262500e-11 -8.928241e-12 -1.203704e-11 -37.89868 215.2675 1.959577e-11
#>
      step.value step.name
#> 1
              20
                         0
#> 2
             100
                         Α
#> 3
             200
                         В
#> 4
             250
                         C
#> 5
             275
                         D
#> 6
             300
                         Ε
                         F
#> 7
             325
#> 8
             350
                         G
#> 9
             375
                         Н
                         Ι
#> 10
             400
#> 11
             425
                         J
#> 12
             450
                         Κ
#> 13
             475
                         L
#> 14
             500
                         М
#> 15
             525
                         Ν
#> 16
             550
                         0
#>
```

#> \$ATR

#>	X	Y	Z	I	D	F
#> 1	0.000000e+00	0.000000e+00	0.000000e+00	0.00000	0.00000	0.000000e+00
#> 2	1.754630e-11	-2.037037e-11	4.074074e-11	56.57861	-49.25959	4.881222e-11
#> 3	-4.629630e-14	6.944444e-12	1.362963e-10	87.08318	90.38197	1.364731e-10
#> 4	-2.592593e-12	2.129630e-11	2.174537e-10	84.36555	96.94098	2.185094e-10
#> 5	-1.388889e-11	3.240741e-11	2.994907e-10	83.28563	113.19859	3.015590e-10
#> 6	-1.277778e-11	-1.851852e-11	3.749537e-10	86.56609	235.39432	3.756281e-10
#> 7	-1.212963e-11	1.342593e-12	5.530556e-10	88.73592	173.68381	5.531902e-10
#> 8	6.064815e-12	3.148148e-12	7.760185e-10	89.49550	27.43310	7.760486e-10
#> 9	-2.856481e-11	4.027778e-12	1.019491e-09	88.37920	171.97393	1.019899e-09
#> 10	-1.601852e-11	-4.398148e-12	1.207870e-09	89.21208	195.35316	1.207985e-09
#> 11	-1.876852e-11	-8.379630e-12	1.340741e-09	89.12170	204.05945	1.340898e-09
#> 12	-3.409259e-11	-4.537037e-12	1.429167e-09	88.62143	187.58037	1.429580e-09
#> 13	-1.462963e-11	1.527778e-12	1.553704e-09	89.45759	174.03819	1.553773e-09
#> 14	-1.623148e-11	-1.439815e-11	1.626852e-09	89.23590	221.57465	1.626997e-09
#> 15	-2.579630e-11	-3.037037e-12	1.705093e-09	89.12725	186.71461	1.705290e-09
#> 16	-2.670833e-11	-1.193287e-11	1.827778e-09	89.08308	204.07435	1.828012e-09
<pre>#> step.value step.name</pre>						
#> 1	20	0				
#> 2	100	А				
#> 3	200	В				
#> 4	250	С				
#> 5	275	D				
#> 6	300	Е				
#> 7	325	F				
#> 8	350	G				
#> 9	375	Н				
#> 10	400	I				
#> 11	425	J				
#> 12	450	K				

```
#> 13
            475
#> 14
            500
                       M
#> 15
            525
                       Ν
#> 16
            550
                       0
#>
#> $ATP
                                         Z
                Χ
                             Υ
                                                  I
                                                            D
                                                                        F
#>
#> 1 -7.962963e-12 -1.527778e-11 1.560185e-10 83.69861 242.47093 1.569669e-10
#> 2 5.106481e-12 -7.824074e-12 4.057407e-10 88.68088 -56.86901 4.058483e-10
#> 3 -8.398148e-12 -9.861111e-12 1.260926e-09 89.41146 229.58085 1.260992e-09
#> 4 -2.220370e-11 -1.259259e-13 1.668981e-09 89.23778 180.32494 1.669129e-09
   step.value step.name
#> 1
           200
                       Ε
#> 2
           300
                       Ι
#> 3
           400
#> 4
           500
                       0
#>
#> $stat
          Fe
                 SigFe
                       FeL
                                  SigFeL
                                               rateL
                                                            rateQ
                                                                    sigmaCoe
#> 1 56.03441 0.7368077 56.41135 0.7417642 -0.006726996 -0.001606999 0.01228013
#>
            JTRM
                    fCoe78
                            qCoe78 g
                                                CrmMax qPrevost85
#> 1 1.790584e-09 0.8762355 59.88656 0.8986857 7.21559e-11 64.12476
  sigmaPrevost85
#>
#> 1 0.0131492
```

Sun azimuth

```
sun.azimuth (10, 11, 2019, 11, 19, seconde=0, 48, longmin=0, longsec=0, 45, latmin=0,
latsec=0)
#> [1] 221.8943
```

igrf13syn

This is a synthesis routine for the 13th generation IGRF as agreed in December 2019 by IAGA Working Group V-MOD. It is valid 1900.0 to 2025.0 inclusive. Values for dates from 1945.0 to 2015.0 inclusive are definitive, otherwise they are non-definitive. Reference:

Thébault, E., Finlay, C.C., Beggan, C.D. et al. International Geomagnetic Reference Field: the 12th generation. Earth Planet Sp 67, 79 (2015). https://doi.org/10.1186/s40623-015-0228-9

```
isv <- 1
date <- 2000
itype <- 1
alt <- 50
colat <- 90 - 45
elong <- 10
igrf13syn(isv=isv, date=date, itype=itype , alt=alt, colat= colat, elong=elong)
#> $x
#> [1] 8.357313
#>
#> $y
#> [1] 37.63232
#>
#> $z
#> [1] 31.11141
#>
#> $f
#> [1] 49.53742
#>
#> $type
#> [1] "Secular Variation"
#>
#> $dec
#> [1] 77.47906
```

```
#>
#> $inc
#> [1] 38.90556
#>
#> $hoz
#> [1] 38.54914
```