

Figure 51.12: Let C be the solid peach tetrahedron in \mathbb{R}^3 . The green plane H defined by $\varphi(z) = \langle z, u \rangle - c$ is a supporting hyperplane to C at a. The pink normal to H, namely the vector u, is also normal to C at a.

(x, f(x)). In this case there is an affine form φ (over \mathbb{R}^n) such that $f(y) \geq \varphi(y)$ for all $y \in \mathbb{R}^n$. We can pick φ given by $\varphi(y) = \langle y - x, u \rangle + f(x)$ for all $y \in \mathbb{R}^n$.

It is easy to see that $\partial f(x)$ is closed and convex. The set $\partial f(x)$ may be empty, or reduced to a single element. In $\partial f(x)$ consists of a single element it can be shown that f is finite near x, differentiable at x, and that $\partial f(x) = {\nabla f_x}$, the gradient of f at x.

Example 51.5. The ℓ^2 norm $f(x) = ||x||_2$ is subdifferentiable for all $x \in \mathbb{R}^n$, in fact differentiable for all $x \neq 0$. For x = 0, the set $\partial f(0)$ consists of all $u \in \mathbb{R}^n$ such that

$$||z||_2 \ge \langle z, u \rangle \quad \text{for all } z \in \mathbb{R}^n,$$

namely (by Cauchy–Schwarz), the Euclidean unit ball $\{u \in \mathbb{R}^n \mid ||u||_2 \leq 1\}$. See Figure 51.14.

Example 51.6. For the ℓ^{∞} norm if $f(x) = ||x||_{\infty}$, we leave it as an exercise to show that $\partial f(0)$ is the polyhedron

$$\partial f(0) = \operatorname{conv}\{\pm e_1, \dots, \pm e_n\}.$$

See Figure 51.15. One can also work out what is $\partial f(x)$ if $x \neq 0$, but this is more complicated; see Rockafellar [138], page 215.

Example 51.7. The following function is an example of a proper convex function which is not subdifferentiable everywhere:

$$f(x) = \begin{cases} -(1-|x|^2)^{1/2} & \text{if } |x| \le 1\\ +\infty & \text{otherwise.} \end{cases}$$