Confidential Version 1.0

End-to-End Data Pipeline & Analysis for Brazilian E-Commerce

Data Science and AI

Confidential

Agenda

Challenges

Our Strategy

Solutions

How it works

Benefits

Business Problem Statement

The core principles are to build a complete, ETL data pipeline that ensures data quality, models data using a star schema, and enables insightful analysis like Customer Lifetime Value across categories and regions:

- 1. E-commerce companies generate large volumes of raw data.
- 2. Lack of unified, clean, and validated data hampers decision making.
- 3. Business users struggle with fragmented, untrustworthy insights.

Project Objectives

- Design and build an end-to-end data pipeline.
- Implement a star schema data warehouse
- 3 Ecommerce Design Overview
- Perform data quality checks and transformations.
- Analyze CLV across product categories and regions.

Tools & Technologies Used

- VS Code (IDE)
- Meltano (Tools)
- dbt(Transformations)
- Data Quality Testing
- GCP Big Query (Data Warehouse)
- Dagster (Orchestration)
- Python, SQL

The ETL Process Explained

Customer Lifetime Value (CLV)

Pipeline: ETL – Extract, Transform, and Load (Extract from)

VS Code Environment

Ingest Meltano (Tools)

SQL/Python

Big Query (GCP)

Data

ware
house

Data: CSV

Automatic Validation

Transformation
Dbt
Data Build Tool

Star

Data Orchestrator - Dagster Platform

Building a ELT Pipeline


```
Step 1: Set up your Meltano project

bash

☐ Copy ② Edit

meltano init my_csv_to_bq_project

cd my_csv_to_bq_project
```


Note: Delimiter, keys and data_overrides are optional.

Note: Make sure a GCP project for Meltano Ingestion & loading is created. Create an empty dataset in the GCP project in advance. Go to service accounts for the GCP project and create a JSON key for credentials_path. Keep the JSON key in the same project folder for easy reference.

Note: Do a quick manual check to ensure all rows of the 9 CSV files are successfully uploaded into BigQuery.

Dbt Staging

- The importance of staging
 - --> temporary view before transformation to final database
 - --- > 'prep station' for cleaning, organising or processing raw data without affecting the source or final system
- 7 Steps for the staging
- Staging structure created
 - -- > from raw files -- > staging view -- > 9 staging view files
 - **Staging Models**
 - -- > refer to each staging .sql file
 - **Perform Validation tests**
- 5 -- > embedded validation tests into schema (in dimensions & fact)

Transforming Raw E-Commerce Data into Strategic Insights

- ✓ Scalable transformation pipeline using dbt + BigQuery

 Modular SQL models with version control and in-warehouse execution
- ✓ Data cleaning and normalization in staging models
 Standardized timestamps, null handling, consistent naming
- Modeled business entities using scalable star schema
 Fact table joined with clean, filterable dimension tables
- Q Built-in tests and validations with dbt-tests & dbt-expectations Enforced data integrity: nulls, uniqueness, referential links
- Generated trusted, analytics-ready models (marts)
 Final curated models used directly by dashboards & direct analysis
- Powered BI Tools & automated dashboards in Looker Studio
 Empowers business teams with self-service analytics powered by clean data

Scalable Star Schema Optimized for BI Tools & Deep Analysis

- Designed a clear and performant star schema to support analytics
- Optimised for dynamic business considerations of an E-Commerce marketplace
- Central fact_orders table connects to dim_customers, dim_products, dim_dates, dim_payments, dim_reviews, dim_sellers, dim_categories
- Enables **fast filtering** by: Time period, Product category, City/state, Customer type, Sellers, Reviews

→ Outcome: Enables BI Tools like **Looker Studio** to compute accurate KPIs like on-time delivery, AOV, CLV.

Scalable Star Schema Optimized for BI Tools & Deep Analysis

"When the stars are aligned, every dashboard tells the full story — instantly."

Data Driven Dashboards — Driving Real-Time Business Decisions

E-Commerce Overview:

Business-wide operational health

Link:

https://lookerstudio.google.com/reporting /d4ae5458-656c-4df2-8329-34a251bea08e

- → Business KPIs
- → Growth Rate
- → Payment Behaviour
- → Fulfilment Health
- → Trending Categories
- → Geolocation Breakdown

Data Driven Dashboards — Driving **Real-Time** Business Decisions

Quality Customer 360:

Deep dive into customer behaviour and value

Link:

https://lookerstudio.google.com/reporting/6bc1d14d-ad4d-4c80-8fdb-4185c7009335

- → Geolocation Targeting
- → Churn Rate
- → Satisfaction Level
- → Lifetime Value
- → Delivery Performance
- → Growth
 Stimulant

Automated ELT Pipeline with Dagster

Objective: Automate transformation and validation of Brazilian E-Commerce data

Stack:

- Dagster Orchestration & scheduling
- dbt SQL-based data transformations
- **BigQuery** Cloud data warehouse
- dbt tests Data quality (nulls, uniqueness)

Pipeline Flow:

- 1. run_dbt_staging: Clean raw data into staging models
- 2. run_dbt_tests: Validate staging outputs via schema.yml
- 3. run_dbt_marts: Build analytics-ready star schema

Scheduling, Monitoring & Benefits

Daily Automation:

- Scheduled at 9:00 AM (SGT) via Dagster's ScheduleDefinition
- Dagster UI shows logs, lineage, and failure tracing

Failure Handling:

- Pipeline halts if any dbt test fails
- Logs show exact failed model and column

Key Benefits:

- Zero manual intervention after setup
- Fast issue visibility via Dagster UI
- Clean modular design, easy to extend or debug

Scheduling, Monitoring & Benefits

Data Analysis with Python

EDA or exploratory data analysis, using pandas:

One of the tables from BQ:

States, Customers, 4 ratios

Customer Lifetime Value (CLV), a business metric

- Estimates total revenue a customer will generate over 'a lifetime'
- A higher CLV value means more valuable over time

To Calculate CLV?

- \$100 / purchase
- 12 purchases / year
- 5-year lifespan

Customer Lifetime Value (CLV) is \$6,000 = revenue for the business

Data Visualization

... a Jupyter notebook demo

/	<pre>df.head() / 0.0s</pre>										
	state	total_customers	total_clv	avg_clv	max_clv	min_clv					
0	РВ	517	140441.490000000	271.646982592	4681.780000000	29.740000000					
1	RO	241	60349.150000000	250.411410788	2452.120000000	34.340000000					
2	AL	399	96907.670000000	242.876365915	2269.980000000	32.390000000					
3	AP	67	16262.800000000	242.728358209	1482.420000000	34.800000000					
4	PA	943	217369.800000000	230.508801697	4042.740000000	26.130000000					

<pre>df.describe() v 0.0s</pre>									
	total_customers	total_clv	avg_clv	max_clv	min_clv				
count	27.0	2.700000e+01	27.000000	27.000000	27.000000				
mean	3545.518519	5.898910e+05	203.813704	3922.470741	25.038889				
std	7964.860414	1.197894e+06	31.028133	2586.067883	7.742155				
min	45.0	1.006462e+04	148.690000	994.770000	9.590000				
25%	369.0	8.589804e+04	173.680000	2252.320000	19.345000				
50%	869.0	1.856102e+05	209.860000	3242.840000	25.430000				
75%	2611.5	4.822725e+05	224.250000	4668.845000	31.410000				
max	40208.0	5.978630e+06	271.650000	13664.080000	39.030000				

Our Communications!

Questions?

GitHub: https://github.com/fabel99/project2

Thank you!

