

Universidad de Buenos Aires Facultad de Ingeniería

75.45 Taller de Desarrollo de Proyectos

Administración Inteligente de Zoológicos Carpeta Técnica

2º Cuatrimestre de 2009

Grupo 3

82935	Arribalzaga, Ignacio
84960	López, Esteban
85617	Converti, Mariano
85348	Cohen, Nicolás Martín
83677	Di Giacomo, Matías
84803	Herman, Roberto

Contenido

Entradas al Sistema	3
Sensor de Luz	
Sensor de Humedad / Temperatura	
Interface de Conexión	
Ejemplo de Programación en C#	6
Salidas del Sistema	7
Encendido/Apagado	

Entradas al Sistema

Sensor de Luz

Ph1127 – Precision Light Sensor

Mide niveles de luz perceptibles por humanos en lux, desde 1 lux hasta 1000 lux

Especificaciones

==	
Característica	Valor
Device Current Consumption	2 mA
Output Impedance	1K ohms
Bandwidth / Reaction Time	50 Hz
Minimum / Maximum Voltage	3.3VDC to 5.0VDC
Minimum Light Level	1 lux
Maximum Light Level @ 5V pwr supply	1000 lux
Error / Accuracy (Typical)	5%
Maximum Light Level @ 3.3V pwr supply	660 lux
Peak Sensitivity Wavelength @ 25°C	580nm

Costo x cantidad

Cantidad	Precio
1	U\$S 10.40
5	U\$S 10.10
10	U\$S 9.85
20	U\$S 9.65
40	U\$S 9.35

Sensor de Humedad / Temperatura

Ph1125 – Humidity / Temperature Sensor

- Mide humedad relativa de 10% a 95%, operando sobre una humedad relativa de 0% a 100%
- Mide temperatura ambiente de -40°C a +100°C, con un error típico de +- 0,75°C en el rango de 0°C a 100°C

Humedad Relativa

El sensor mide la humedad relativa del ambiente alrededor del sensor. La compensación de temperatura interna produce una salida lineal en el rango de 10% a 95% de humedad relativa. Valores fuera de este rango pueden usarse pero aumenta el error.

Fórmula

La fórmula para traducir el valor del sensor a humedad relativa es:

HR (%) = (SensorValue * 0.1906) - 40.2

Temperatura

El sensor también mide temperatura ambiente desde -40 a +100 °C. Este dispositivo es un preciso convertidor de temperatura a voltaje, produciendo un voltaje que es directamente proporcional a la temperatura.

Fórmula

La fórmula para traducir el valor del sensor a temperatura es:

Temperatura (°C) = (SensorValue * 0.22222) - 61.11

Especificaciones

Sensor de Humedad	
Current Consumption	3.6mA
Output Impedance	1K ohms
Accuracy	±2% RH @ 55% RH
Accuracy over 10% to 95% RH	±3% Typical, ±5% Maximum
Reaction Time for humidity	10 seconds
Minimum / Maximum Voltage	4.75VDC - 5.25VDC
Operating temperature range	-40C to 100C

Sensor de Temperatura	
Current Consumption	300uA
Output Impedance	1K ohms
Accuracy	1 Degree Celsius
Minimum/Maximum Voltage	4.75VDC - 5.25VDC
Range of Operation	-50C to 150C

Costo x cantidad

Cantidad	Precio
1	U\$S 47.15
5	U\$S 45.70
10	U\$S 44.75
20	U\$S 43.85
40	U\$S 42.40

Interface de Conexión

Ph1070 – PhidgetSBC(Single Board Computer) with integrated PhidgetInterfaceKit 8/8/8

Computadora

Computadora embebida corriendo Linux con librerías Java y C. Interface de configuración fácil de usar

Conexiones

- 4 puertos USB para conectar dispositivos PhidgetUSB y cámaras web
- Puerto Ethernet y un adaptador Wireless USB

InterfaceKit 8/8/8 integrada

- El PhidgetInterfaceKit 8/8/8 permite conectar sensores a cualquiera de sus 8 entradas analógicas, 8 entradas digitales y 8 salidas digitales

El PhidgetSBC puede controlarse remotamente a través de la red, usando las librerías de Phidget y alguno de los lenguajes de programación soportados, como C#

Especificaciones

Lapetineaciones	
Característica	Valor
CPU	Samsung S3C2410
Core	ARM920T
CPU Speed	266MHz
Nand size	64MB
SDRAM	64MB
Boot time	30 - 60 Seconds
Ethernet	10/100baseT
USB	4-Port Full Speed
Power Input	6-15VDC
Power Consumption	1.2 watt base /w Ethernet
Per additional USB device1	2.5 watt Max
Wireless USB Dongle	802.11b/g

Costo x cantidad

Cantidad	Precio
1	U\$S 249.70
5	U\$S 242.20
10	U\$S 237.20
20	U\$S 232.20
40	U\$S 224.70

Ejemplo de Programación en C#

[Previamente deben descargarse las librerías Phidget desde www.phidget.com]

```
using Phidgets;
using Phidgets. Events;
namespace PhidgetTest
{
       public partial class Form1: Form
               //The Phidget object declaration
               private InterfaceKit ifKit;
               public Form1()
                       InitializeComponent();
               //... Form1_Load and Form1_OnClosing here
       }
}
private void Form1 Load(object sender, EventArgs e)
       ifKit = new InterfaceKit();
       ifKit.open();
       ifKit.waitForAttachment(3000);
}
ifKit.SensorChange += new SensorChangeEventHandler(ifKit_SensorChange);
void ifKit SensorChange(object sender, SensorChangeEventArgs e)
{
       textBox1.Text = "Index " + e.Index + " Value: " + e.Value;
}
private void Form1_FormClosing(object sender, FormClosingEventArgs e)
{
       ifKit.SensorChange -= new SensorChangeEventHandler(ifKit_SensorChange);
       //run any events in the message queue
       Application.DoEvents();
       ifKit.close();
}
```

Salidas del Sistema

Encendido/Apagado

Ph3051 - Dual Relay Board

El Dual Relay Board permite salidas digitales para controlar grandes cargas y dispositivos como motores de CC o CA, electromagnetos, solenoides y lámparas incandescentes.

El dispositivo contiene 2 relés para controlar CA o CC. Los relés son Single Pole Double Throw (SPDT). Los relés pueden controlar hasta 240V CA a 10 Amp y 100V CC a 5 Amp.

Especificaciones

Característica	Value
Contact Resistance (max	0.1 ohms
Minimum Switching Current (Wetting Current)	100 mA @ 5 V DC
Maximum DC Switching Voltage	100 V DC
Maximum DC Switching Current	5 A
Maximum AC Switching Voltage	250 V AC
Maximum AC Switching Current	10 A
Minimum Switching Current (Wetting Current)	100 mA @ 5 V DC
Maximum Operating Speed (Contacts Per Minute)	20 cpm
Operate time	10 ms
Recommended Terminal Wire Size	12 - 24 AWG
Terminal Wire Strip Length	5 - 6mm (0.196" - 0.236")

Costo x cantidad

Cantidad	Precio
1	U\$S 17.90
5	U\$S 17.40
10	U\$S 17.05
20	U\$S 16.65
40	U\$S 16.15