

# DENOISING DEPTH IMAGES USING RGB IMAGES

Vasu Eranki

## MOTIVATION







- > Commercial Depth Cameras suffer from multiple sources of noise which can severely degrade the image quality.
- > Having cleaner depth maps can help with downstream tasks such as Segmentation and Object Detection
- > The goal of this project is to leverage the information present in the RGB image to further denoise the depth map.

### LITERATURE SURVEY & NOVELTY

#### Computational Imaging Method [1]

- Same scene is taken at slightly different viewpoints, then using
- Uses the fact that noise isn't static, to remove noise from the depth image

#### **Leveraging Task Similarities [2]**

- Uses a depth estimator to create noisy-clean pairs which are then passed through a depth denoiser.
- Requires training both networks in parallel.

#### Leveraging Computational Imaging [1]



#### Leveraging Task Similarities [2]





# TECHNICAL METHODS

# **DATASET**







| Dataset               | Types of Images                         |
|-----------------------|-----------------------------------------|
| NYU Depth Dataset [3] | Microsoft Kinect – Noisy and Clean      |
| TransCG [4]           | Intel L515 – Noisy and<br>Refined Depth |

| Hardware                 | Туре                        |
|--------------------------|-----------------------------|
| Intel RealSense L515 [5] | LiDAR based Depth<br>Sensor |







## CREATING A COLOUR — NOISE FUNCTION

- ToF Sensors suffer from both distance dependent and intensity dependent noise.
- To mitigate the impact of this
- \*Averaging the sensor readings over multiple seconds
- Fixed distance of 0.5m
- Sensor readings captured with minimal external light

This experiment was repeatedly done over the course of 2 weeks, was subsequently then used to create a parametric noise model.



## MODEL ARCHITECTURE & TRAINING



Three loss functions were tried and their results will be discussed in the following slides:

- Mean Squared Error Loss, additional constraints were levied such as latent space sparsity constraints or an additional signal via a downstream task (Semantic Segmentation).
- Following Hyperparameters were used to prevent overfitting and to stabilise the training process
  - Learning Rate Scheduler. At each epoch the learning rate is reduced by 10%
  - ➤ Dropout of 50% on the Depth Channel
  - ► L2 Regularization of 10<sup>-4</sup>
- Total Number of trainable parameters = 2.6 Million, trained on the NYU Dataset for 10 Epochs and then in a zero-shot manner evaluated on the TransCG dataset.



# RESULTS

# USING OUR RGB INFORMATION TO ESTIMATE THE NOISE

#### Results of Noise

- ➤ Brighter colours like yellow, pink and light green tend to have more noise in their associated depth readings
- Noise isn't channel independent. There's a relationship between R,G and B.
- The source of this error is in the sensor design, since all physics based reflection models contradict our results.

#### Using this for training a NN

A Gaussian Mixture Model with 3 Components (R,G,B) was used to approximate the distribution of errors across colours.





# GENERATED OUTPUTS (NYU DEPTH DATASET [3])



# GENERATED OUTPUTS (TRANSCG DATASET [4])



# EXPERIMENTAL EVALUATION

| MAE and RMSE were calculated on the masked image (only valid pixels were used) |                                          | NYU Depth Dataset[2] |          | TransCG Dataset [3] |          |
|--------------------------------------------------------------------------------|------------------------------------------|----------------------|----------|---------------------|----------|
|                                                                                |                                          | MAE                  | RMSE     | MAE                 | RMSE     |
| Classical Computer Vision (Out of the Box Implementations)                     | Bilateral Filter                         | 16.41mm              | 37.62mm  | 41.03mm             | 84.90mm  |
|                                                                                | Anisotropic Diffusion based Filter       | 44.34mm              | 196.89mm | 49.24mm             | 169.32mm |
| CNN based<br>Method                                                            | Current SOTA [1]                         | 8.58mm               | 30.15mm  | 11.02mm             | 37.78mm  |
| Control Group                                                                  | MSE (w AWGN<br>Noise)                    | 16.74mm              | 36.30mm  | 31.01mm             | 42.12mm  |
| Proposed Architectures  Base Model was a UNet                                  | MSE                                      | 11.75mm              | 30.05mm  | 35.99mm             | 46.30mm  |
|                                                                                | MSE w<br>Representation<br>Loss          | 10.01mm              | 24.73mm  | 16.35mm             | 32.45mm  |
|                                                                                | MSE w training<br>on Downstream<br>Tasks | 1 <i>5</i> .31mm     | 34.21mm  | 37.81mm             | 49.05mm  |

## EXPERIMENTAL EVALUATION

| Models                    |                                                         | Inference Time                 |
|---------------------------|---------------------------------------------------------|--------------------------------|
| Classical Computer Vision | Bilateral Filter                                        | 22ms                           |
|                           | Anisotropic Diffusion based Filter                      | 0.64s                          |
| CNN Based Architecture    | Current SOTA [1]                                        | 16ms - On a T4 GPU (8GB RAM)   |
| Proposed Architecture     | UNet (MSE/ MSE w Representation Loss/ MSE w training on | 12.8ms — On a T4 GPU (8GB RAM) |
| Base Model was a UNet     | downstream tasks)                                       |                                |



# CONCLUSION AND FUTURE SCOPE

## CONCLUSION

- The colour offers some useful information on the noise in the depth map, and it can be approximated with a mixture of gaussians.
- The U-Net model trained on the MSE loss with an additional sparsity constraint is able to generalise well and can work in a zero-shot setting as well, making it device agnostic.
- Injecting colour based noise into a model helped it to learn, since each of the proposed model outperformed the model trained AWGN noise.

### **FUTURE SCOPE**

#### Ideas for future directions:

- Using diffusion models to denoise images since the training process is quite similar and recent literature [7]
- •Convex optimization based methods which focus on reducing the # of eigenvalues in the image. Such methods are interpretable, work in a zero-shot manner [6]
- Leverage embeddings to find a sparse representation of images, effectively denoising them.



# THANK YOU FOR YOUR TIME

# REFERENCES

- [1] Sterzentsenko, V., Saroglou, L., Chatzitofis, A., Thermos, S., Zioulis, N., Doumanoglou, A., Zarpalas, D. and Daras, P., 2019. Self-supervised deep depth denoising. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 1242-1251).
- [2] Fan, L., Li, Y., Jiang, C. and Wu, Y., 2022, May. Unsupervised Depth Completion and Denoising for RGB-D Sensors. In 2022 International Conference on Robotics and Automation (ICRA) (pp. 8734-8740). IEEE.
- [3] Silberman, N., Hoiem, D., Kohli, P. and Fergus, R., 2012. Indoor segmentation and support inference from rgbd images. In Computer Vision—ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V 12 (pp. 746-760). Springer Berlin Heidelberg.
- [4] Fang, H., Fang, H.S., Xu, S. and Lu, C., 2022. Transcg: A large-scale real-world dataset for transparent object depth completion and a grasping baseline. *IEEE Robotics and Automation Letters*, 7(3), pp.7383-7390.
- [5] https://www.intelrealsense.com/lidar-camera-I515/

# REFERENCES

[6]Gu, S., Zhang, L., Zuo, W. and Feng, X., 2014. Weighted nuclear norm minimization with application to image denoising. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 2862-2869).

[7] Yang, C., Liang, L. and Su, Z., 2023. Real-World Denoising via Diffusion Model. arXiv preprint arXiv:2305.04457.



# ADDITIONAL SLIDES

# CDF OF GENERATED GAUSSIAN MIXTURE MODEL

