Київський національний університет ім.Т.Шевченка

ФІЗИЧНИЙ ФАКУЛЬТЕТ

ВИЗНАЧЕННЯ ДОВЖИНИ ХВИЛІ ЗА ДОПОМОГОЮ БІПРИЗМИ ФРЕНЕЛЯ

Автор: Холоімов Валерій

1 Вступна частина

Мета роботи: засвоїти інтерференційний метод вимірювання довжини хвилі за допомогою біпризми Френеля.

Прилади: оптична лава, джерело світла (ртутна лампа або газовий лазер), конденсор, щілинна діафрагма, світлофільтри, біпризма Френеля, окулярний мікрометр, теодоліт.

Теоретичні відомості

Як відомо, два незалежних джерела світла майже завжди некогерентні. Тому одержати інтерференцію від них практично неможливо. Проте можна здійснити багато схем дослідів, в яких когерентні джерела створюються шляхом розділення світла від основного джерела на два пучки. Існує багато приладів, які дозволяють спостерігати інтерференцію хвиль у таких пучках. Була запропонована реалізація інтерференції за допомогою білінзи Бійє, дзеркал Ллойда, біпризми Френеля.

У роботі ми зупинимося на інтерференційній схемі з біпризмою Френеля. Біпризма являє собою дві призми з малими заломлюючими кутами (близько 30'), накладеними одна на одну Пучок світла, який падає від щілини S, після заломлення в біпризмі розділіться на два пучки, що перекриваються. При цьому пучки поширюються так, начебто вони виходять з двох різних зображень щілини S_1 та S_2 . Оскільки джерела S_1 та S_2 когерентні, то в просторі за біпризмою можна спостерігати інтерференційну картину, локалізовану в усій області перекривання пучків. На рис.1 промені S_1C_1 та S_2C_2 обмежують область, де має місце перекривання пучків, а тому й інтерференція. Дійсно, промінь S_1C_1 -граничній для променів, які проходять через верхню половину біпризми. Те ж саме стосується променя S_2C_2 . Інтерференційна картина має вигляд світлих та темних смуг. Знайдемо зв'язок між характеристиками біпризми, умовами досліду, та властивостями інтерференційної картини. Нехай показник заломлення біпризми Френеля -n, заломлюючий кут - α , відстань від джерела до біпризми – l, довжина хвилі - λ . Знайдемо число інтерференційних смуг N та відстань між темними або світлими смугами. У певному наближенні (кут α малий) можна вважати, що джерело S та його уявні зображення розташовані в одній площині. Промінь від джерела, що нормально падає на верхню грань біпризми, відхиляється під кутом ϕ до нормалі к вихідної верхньої грані. Між кутами ϕ та α існує співвідношення:

$$nsin\alpha = sin\phi$$

З рис.2 можна знайти $\phi = \beta + \alpha$ Оскільки $a \approx 0$, маємо:

$$n\alpha = \beta + \alpha, \beta = \alpha(n-1)$$

Врешті, відстань між двома уявними джерелами:

$$d = 2h = 2ltq(\beta) = 2l\alpha(n-1)$$

Різниця ходу для деякої точки M:

$$\Delta = d \frac{x}{L+l} = \frac{2l(n-1)\alpha x}{L+l}$$

де — відстань від точки до точки — основи перпендикуляра, опущеного на екран із середини відстані d між джерелами S_1 та $S_2.4$ Для світлої інтерференційної смуги

виконується умова $\Delta = k\lambda$, де k – порядок інтерференції. Відстань між двома сусідніми смугами (ширина смуги) дорівнює:

$$\Delta X = \frac{\lambda(L+l)}{2l(n-1)\alpha}$$

З рис.З видно, що максимальна область перекривання пучків визначається відстанню між точками М і М':

$$MM' = 2X_{max} = \frac{Ld}{2l}$$

Число смуг, які можна спостерігати на екрані, буде таке:

$$N = \frac{MM'}{\Delta X} = \frac{Ld}{2l\Delta X} = \frac{4lL(n-1)^2\alpha^2}{(l+L)\lambda}$$

Порядок виконання роботи

Для визначення ΔX та відстані між уявними джерелами S_1 та S_2 використовують окулярний мікрометр і теодоліт.

До початку виканання вимірювання необхідно правильно встановити всі прилади.

Для визначення довжини хвилі, яку пропускає світлофільтр, можна скористатися наступними формулами:

$$\Delta X = \frac{\lambda(L+l)}{d}$$

Звідси:

$$\lambda = \frac{d * \Delta X}{L + I}$$

Для визначення $\frac{d}{L+l}$ використовують теодоліт. З вимирів теодоліту:

$$\frac{d}{L+l=2tg\frac{\phi}{2}}\approx\phi$$

У цьому разі формулу длоя довжини хвилі можна записати наступним так:

$$\lambda = \phi \Delta X$$

Для визначення кута α можна скористатися формулою:

$$\alpha = \frac{\lambda(L+l)}{2l(n-1)\Delta X}$$

$$N = \frac{L(L+l)\phi}{2l\Delta X}$$

2 Практична частина

Отримані результати з теодоліту

Результати вимірів теодоліту						
Ψ1	Ψ2	ΔΨ	ΔΨ сер	ΔΨ сер рад		
338° 33'	338° 30'	3'				
338° 33'	338° 30'	3'				
338° 31'	338° 27' 30"	3' 30"	21.51	0.00005		
338° 31'	338° 28'	3'	3' 5"	0,00085		
338° 30'	338° 27' 30"	2' 30"				
338° 32'	338° 28' 30"	3' 30"				

Визначення середньої ширини смуги

I	Визна	чення середн	ньої ширини	смуги
N		X	ΔX	ΔХ сер
	0	30,25		
	2	32,12	0,935	
	3	33,07	0,95	
	5	35,05	0,99	
	7	37	0,975	0,96

Визначення довжини хвилі

Робоча формула:

$$\lambda = \psi \Delta X$$

Довжина хвилі						
ΔΧ		Ψ	λ			
	0,00096	0,00085	8,16E-07			

Визначення кута біпризми Френеля

Робоча формула:

$$\alpha = \frac{(L+l)\psi}{2l\Delta X}$$

Визначення кута біпризми						
L		1	n	Ψ	α	
	2,038	0,572	1,5	0,00085	0,002	

Визначення загальної кількості смуг

Робоча формула:

$$N = L\alpha = \frac{L(L+l)\psi}{2l\Delta X}$$

Визначення кількості смуг					
L		1	Ψ	ΔX	N
	2,038	0,572	0,00085	0,00096	41

2.1 Порівняння отриманих результатів з теоретичними даними

У ході лабораторної роботи, нами були отримані значення для величин, що ми можемо порівняти з теоретичними:

- 1. $\lambda = 8.16 \cdot 10^{-7} \text{ HM}$
- 2. N=41 загальна кількість смужок

Результат, отриманий нами при спостережені смужок в оптичний прилад дає наступні результати: N=53. Теоретичне відхилення отриманого нами результату: $\epsilon=\frac{53-41}{53}=22\%$ З теоретичних данних ми знаемо, що довжина світлової хвилі варіюється від приблизно 700 нм до 400 нм. Таким чином, отриманий нами результат не потрапляє у теоретичний проміжок. Знайдемо похибку вимірювання для довжини хвилі.

Похибку у роботі обчислюємо наступним чином:

- 1. Обчислюємо стандартну похибку за формулою $S_x = \sqrt{\frac{\sum\limits_{i=1}^n x_i x^2}{n(n-1)}}$
- 2. Обчислюємо випадкову похибку $\Delta x = t(\alpha, n) S_x, t(\alpha, n)$ коефіцієнт Стьюдента.
- 3. $\Delta x_{instr} = 10''$
- 4. $\Delta x = \sqrt{(\Delta x)^2 + (\Delta x_{instr})^2}$
- 5. $F = F_{ser} \pm \Delta F$

2.2 Отримані результати для фокусної відстані збиральної лінзи:

Довжина хвилі $\lambda=816\pm144$ нм Відносна похибка для довжини хвилі: $\epsilon=\frac{144}{816}=17\%$

3 Висновок

З урахуванням похибки, отриманий нами результат потрапляє у теоретичний проміжок значень для довжини хвилі. У роботі ми дослідили інтерференційну картину для біпризми Френеля, еспериментально визначили заломлюючий кут призми та довжину хвилі. Відносна похибка для довжини хвилі, а також теоретичне відхилення для довжини смужок знаходяться у межах 20%. Отримані відповідні значення:

- 1. $\lambda = 816 \pm 144$ нм
- 2. $\alpha = 0.002$