

UNIVERSIDADE FEDERAL DE UBERLÂNDIA

Faculdade de Engenharia Elétrica
Prof. Wellington Maycon Santos Bernardes
Av. João Naves de Ávila, 2121, Bloco 3N – Bairro Santa Mônica, Uberlândia-MG, CEP 38400-902
Telefone: (34) 3239-4731 – wmsbernardes@ufu.br – https://bit.ly/2C9KICg
EXPERIMENTAL DE CIRCUITOS ELÉTRICOS II

AULA: ANÁLISE DE ONDAS NÃO SENOIDAIS – LÂMPADAS (CARGAS NÃO LINEARES) – PARTE I

1 - Objetivo

Verificar experimentalmente os conceitos teóricos de sinais não senoidais, obtendo os coeficientes da série de Fourier pelo método analítico e usando uma rotina computacional (como Matlab, Python). Aqui também é investigada a determinação do valor eficazes (*rms*) da tensão e corrente, bem como as potências associadas das formas de onda não senoidais.

2 - Montagem

ATENÇÃO: ADOTANDO OS PROCEDIMENTOS DE SEGURANÇA, VERIFIQUE SE SE A BANCADA ESTÁ DESLIGADA E SE HÁ ALGUM CURTO-CIRCUITO NA MONTAGEM, AUMENTANDO A TENSÃO DA FONTE PASSO A PASSO.

Realize a seguinte montagem indicada na Figura 1, usando como parâmetros **R = 10,0 Ω.** Empregue os medidores de tensão e de corrente digitais (*Kron Mult-K Série 2*). Ajuste TL = 0000 (3ø com Neutro – Carga Desequilibrada). **R** é a resistência do reostato com valor medido por meio de ohmímetro. Anote esse valor.

NO QUADRO-NEGRO

Figura 1 – Método do voltímetro (digital)

Aplique uma tensão de fase $V_f = V_{an} = 100 \text{ V (de 10 em 10)}$. Enquanto aumenta a tensão, cheque se a corrente não extrapola os limites dos equipamentos. As lâmpadas a *led* ou fluorescente compacta normalmente acende após certo valor de tensão.

3 – Procedimento Experimental

(a) Anote o valor da tensão e corrente que circula em cada uma das lâmpadas (consideradas como cargas não lineares).

Tensão – Valor Teórico [V]	Tensão Medida [V]	Corrente Medida [A]
10,0		
20,0		
30,0		
40,0		
50,0		

60,0	
70,0	
80,0 90,0	
90,0	
100,0	

- (b) Informe os valores de tensão, corrente e potências encontradas no medidor *Kron* (na tensão máxima) para cada uma das lâmpadas.
- (c) Utilizando um multímetro true rms, meça o valor eficaz da tensão aplicada às cargas.
- (d) Neste momento será empregado o osciloscópio de canal não isolado. Após conferência do professor, conecte SOMENTE a garra em 10x, não GND risco de curtocircuito para coleta de sinal. Salve a forma de onda (vetor $v \times t$ arquivo de imagem e tabela numérica) para extrair a corrente que circula na lâmpada. Ela é obtida pelos valores de tensão sobre resistor R dividido por aproximadamente 10 ohms.
- (e) Anote os valores de Distorção Harmônica (DHT) de tensão e corrente (linhas 1, 2 e/ou 3, a depender da configuração do *Kron*).

4 - Análise e discussão

- (a) Obtenha, analiticamente, a série de Fourier da corrente que alimenta as lâmpadas.
- (b) Com o resultado do item anterior, calcule o valor eficaz e compare com a indicação dos amperímetros.
- (c) Usando alguma rotina computacional, obtenha o espectro harmônico da corrente e compare o resultado obtido com o item (a). Se necessário, aplique um filtro para frequências acima de 720 Hz. Neste caso, qual é a ordem harmônica de interesse neste relatório?
- (d) Pesquise sobre DHT, sua relação com essa aula e possíveis problemas causados em um circuito elétrico. Qual é o valor máximo admissível em uma instalação elétrica?