

Abel-konkurransen 1995–96

FINALE — FASIT

Oppgave 1

- a) Hvis $t = a^2 + b^2$ så er $2t = (a+b)^2 + (a-b)^2$ og er dermed lykkelig.

Oppgave 2

- a) La s være lengden av en side i trekanten. Da er trekantens areal $\frac{1}{2}s \cdot PQ + \frac{1}{2}s \cdot PR + \frac{1}{2}s \cdot PS = \frac{1}{2}s \cdot (PQ + PR + PS)$. Det følger at $PQ + PR + PS = 2 \cdot \text{Areal}/s$ og dermed er uavhengig av P.
- b) Setningen om periferivinkler gir at $\angle ADC = \angle ABC$ og dermed $\angle ADC = \angle ACB$. Det følger at trekantene AEC og ACD er formlike, og dermed er AC/AD = AE/AC. Dette gir at $AE \cdot AD = AC^2$ som er uavhengig av plasseringen av E.

Oppgave 3

- a) La S være summen av alle de 1997 tallene, la S_1 være summen av de 97 minste tallene, og la S_2 være summen av de 1900 øvrige. Siden $S_1 > 0$ må S_1 inneholde minst ett positivt tall. Dermed må alle tallene i S_2 også være positive, og det følger at $S = S_1 + S_2 > 0$.
- b) Siden det er 91 elever og 3 klasser, må det i en av klassene være minst 31 elever, og blant disse finnes minst 16 som er av samme kjønn. Siden det til elever av samme kjønn kan være gitt høyst 5 forskjellige poengsummer, må samme poengsum ha vært gitt minst 4 av disse 16.

Oppgave 4

Polynomet p(x) - b har x = a som et nullpunkt, og dermed x - a som en faktor. Tilsvarende blir x - b en faktor i p(x) - a. Hvis x er et heltall slik at p(x) = x må derfor $\frac{x-b}{x-a}$ og $\frac{x-a}{x-b}$ begge være heltall. Disse brøkene har produkt 1, og siden $a \neq b$ må derfor begge være lik -1. Dette gir $x = \frac{1}{2}(a + b)$ som eneste mulighet.