MUD (D)TLS profiles for loT devices

draft-reddy-opswg-mud-tls-03
March 2019

T. Reddy (McAfee)

D.Wing (Citrix)

B.Anderson (Cisco)

MUD (D)TLS Goal

The drafts proposes extending MUD to describe TLS interactions.

TLS handshake inspection

Malware TLS is different than legitimate software(1)

- SNI and SAN mismatch
- DGA pattern in SNI or SAN
- Offered/Selected Ciphersuites (ClientHello)
- Diversity of TLS extensions
- · Self-signed

Detect broken TLS

- Best-practice failure (RFC7525)
 - Expired certificates
 - Poor-quality cipher suites
- Re-use of same private key (2)
- Microsoft vulnerability to validate certificate (3)

^{(1) &}quot;Deciphering Malware's use of TLS (without Decryption)", https://arxiv.org/abs/1607.01639

^{(2) &}quot;Millions of IoT Devices Using Same Hard-Coded CRYPTO Keys", http://thehackernews.com/2015/11/iot-device-crypto-keys.html

^{(3) &}quot;Patch Critical Cryptographic Vulnerability in Microsoft Windows Clients and Servers", https://media.defense.gov/2020/Jan/14/2002234275/-1/-1/0/CSA-WINDOWS-10-CRYPT-LIB-20190114.PDF

Lack of certificate validation

 Samsung fridge failed to validate server certificate (see https://www.theregister.co.uk/2015/08/24/smart_fridge_security_fubar/)

Solution overview

- Benefits of MUD (D)TLS profiles for IoT devices include:
 - Ability to define policies for IoT devices that have diverse communication patterns
 - Robust against IoT devices learning new "skills" that change their communication patterns
 - Inadequate certificate validation by some IoT devices making them vulnerable to MiTM attacks

Observable (D)TLS profile parameters

- We profiled several IoT devices: Amazon Echo, Echo dot, Echo Show, Fire TV, Google Home Mini, Google Home and Kindle.
 - Observable (D)TLS profile parameters did not change after learning new skills. IoT devices have constrained TLS usage patterns.
 - (D)TLS profiles for IoT devices based on type, manufacturer and model is also different
- We also observed TLS profile parameters of thousands of malware flows.
- Growing trend of malware using TLS.

Malicious (D)TLS use can be blocked

Solution overview

- Extends MUD to model observable (D)TLS profile parameters
- Client (D)TLS profile is defined once for re-use. (D)TLS profile for specific destination (e.g., Firmware server).

```
module: reddy-opsawq-mud-tls-profile
  augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches:
    +--rw client-profile
       +--rw tls-profiles* [profile-name]
          +--rw profile-name
                                           string
          +--rw protocol-version?
                                           uint16
          +--rw supported versions*
                                           uint16
          +--rw grease extension?
                                           boolean
          +--rw encryption-algorithms*
                                           encryption-algorithm
          +--rw compression-methods*
                                           compression-method
          +--rw extension-types*
                                           extension-type
          +--rw acceptlist-ta-certs*
                                           ct:trust-anchor-cert-cms
          +--rw SPKI-pin-sets*
                                           SPKI-pin-set
          +--rw SPKI-hash-algorithm?
                                           iha:hash-algorithm-type
          +--rw psk-key-exchange-modes*
                                           psk-key-exchange-mode
          +--rw supported-groups*
                                           supported-group
          +--rw signature-algorithms*
                                           signature-algorithm
          +--rw client-public-keys
             +--rw key-exchange-algorithms*
                                                 key-exchange-algorithm
             +--rw client-public-key-lengths*
                                                 client-public-key-length
```

Cipher Suites

No. of Extensions offered

Malwares typically offer lesser number of extensions

Malwares offer different supported groups

Observable (D)TLS profile parameters

- Observed (D)TLS profile from several IoT devices and thousands of malware helped conclude intended (D)TLS use can be permitted and malicious (D)TLS can be blocked.
- Malware agents cannot mimic (D)TLS profiles of several IoT devices (type and model several manufacturers) and cannot keep up with the updates to (D)TLS profile.

TLS 1.3

- TLS 1.3 encrypts handshake but allowing inspection of several parameters:
 - List of cipher suites and extensions (e.g., supported versions, named groups, signature algorithms)
 - ServerHello chosen cipher
- Malware use of evasion techniques, such as ClientHello cipher suite randomization, can be detected.

TLS 1.3

- Full handshake inspection requires active participation in TLS 1.3:
 - Follow the behavior defined in Section 9.3 of RFC8446 to act as a compliant TLS proxy
 - TLS proxy for IT managed IoT devices
 - No need to inspect payload
 - Bypass acting as a proxy for connections destined to specific services due to privacy compliance requirements

draft-reddy-opsawg-mud-tls-03

- Comments and suggestions are welcome
- Collaboration to profile benign/malware flows on IoT devices