MULTIMI MASURABILE JORDAN

1) INEL DE MULTIMI, MASURA POZITIVA PE UN INEL DE MULTIMI

Definitia 1. Fie $X \neq \emptyset$. O multime nevida de parti $\mathcal{F} \subseteq \wp(X)$ se numeste inel de multimi daca are urmatoarele proprietati:

- a) $A_1, A_2 \in \mathcal{F} \Rightarrow A_1 \cup A_2 \in \mathcal{F}$
- b) $A_1, A_2 \in \mathcal{F} \Rightarrow A_1 \setminus A_2 \in \mathcal{F}$.

Observatie. Daca $\mathcal{F} \subseteq \wp(X)$ este inel de multimi, atunci sunt adevarate urmatoarele afirmatii:

- a) $\varnothing \in \mathcal{F}$
- b) $A_1, A_2 \in \mathcal{F} \Rightarrow A_1 \cap A_2 \in \mathcal{F}$.

Definitia 2. Fie $\mathcal{F} \subseteq \wp(X)$ un inel de multimi. Se numeste masura pozitiva pe \mathcal{F} o functie $\mu: \mathcal{F} \to [0, +\infty]$ care are urmatoarele proprietati:

- a) $\mu(\varnothing) = 0$
- b) $\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2) \ \forall A_1, A_2 \in \mathcal{F} \ cu \ A_1 \cap A_2 = \emptyset$.

Observatie. Fie $\mu: \mathcal{F} \to [0, +\infty]$ o masura pozitiva. Atunci:

- a) $A_1, A_2 \in \mathcal{F}, A_1 \subseteq A_2 \Rightarrow \mu(A_1) \leq \mu(A_2)$
- b) $\mu(A_1 \cup A_2) \le \mu(A_1) + \mu(A_2) \ \forall A_1, A_2 \in \mathcal{F}$
- c) $A_1, A_2 \in \mathcal{F}, A_1 \subseteq A_2, \mu\left(A_1\right) < +\infty \Rightarrow \mu\left(A_2 \setminus A_1\right) = \mu\left(A_2\right) \mu\left(A_1\right)$
- d) $\mu(A_1 \cup A_2) + \mu(A_1 \cap A_2) = \mu(A_1) + \mu(A_2) \ \forall A_1, A_2 \in \mathcal{F}.$

2) INTERVALE MARGINITE n-DIMENSIONALE, MULTIMI ELEMENTARE in \mathbb{R}^n

Pentru orice interval marginit $J \subseteq \mathbb{R}$ notam $l(J) \in \mathbb{R}$ lungimea acestuia.

Definitia 3. Multimea $I \subseteq \mathbb{R}^n$ se numeste interval marginit n-dimensional daca exista o familie finita $\{I_1, I_2, ..., I_n\}$ de intervale marginite din \mathbb{R} astfel incat $I = I_1 \times I_2 \times \times I_n$.

Definitia 4. Fie $I = I_1 \times I_2 \times \times I_n$ un interval marginit n-dimensional. Numarul real $v(I) = l(I_1) \cdot l(I_2) \cdot \cdots \cdot l(I_n)$ se numeste volumul lui I.

Definitia~5.O multime $E\subseteq\mathbb{R}^n$ se numeste elementara daca exista o familie finita $\{I_1, I_2, ..., I_p\}$ de intervale marginite n-dimensionale astfel incat $E = I_1 \cup$ $I_2 \cup ... \cup I_p$.

Notatie. $\mathcal{L} \stackrel{not}{=} \{ E \subseteq \mathbb{R}^n | E \text{ multime elementara} \} \subseteq \wp(\mathbb{R}^n)$

Propozitia 1. Fie $E \in \mathcal{L}$. Atunci $\exists I_1, I_2, ..., I_k \subseteq \mathbb{R}^n$ intervale marginite n-

dimensionale astfel incat $E = I_1 \cup I_2 \cup ... \cup I_k$ si $I_i \cap I_j = \emptyset \ \forall i \neq j \in \{1, 2, ..., k\}$. Definitia 6. Fie $E \in \mathcal{L}$ astfel ca $E = I_1 \cup I_2 \cup ... \cup I_k$ cu $I_j \subseteq \mathbb{R}^n$ interval

marginit n-dimensional $\forall j \in \{1, 2, ..., k\}$ si $\stackrel{0}{I_i} \cap \stackrel{0}{I_j} = \varnothing \ \forall i \neq j \in \{1, 2, ..., k\}.$

Numarul real $v(E) = \sum_{j=1}^{k} v(I_j)$ se numeste volumul multimii elementare E.

Observatie. a) Orice interval marginit n-dimnesional $I \subset \mathbb{R}^n$ este multime elementara in \mathbb{R}^n .

- b) $\emptyset \in \mathcal{L}$ si $v(\emptyset) = 0$.
- c) $E \in \mathcal{L} \Rightarrow \overset{0}{E}, \overline{E} \in \mathcal{L} \text{ si } v(E) = v\left(\overset{0}{E}\right) = v\left(\overline{E}\right).$

3) MASURA EXTERIOARA JORDAN, MA-SURA INTERIOARA JORDAN

Definitia~6. Fie $A\subset\mathbb{R}^n$ o multime marginita. Numarul real $\mu^*\left(A\right)=\inf_{E\in\mathcal{L},A\subset E}v\left(E\right)$ se numeste masura exterioara Jordan a multimii A.

Observatie. a) $\mu^*(E) = v(E) \ \forall E \in \mathcal{L}$.

b) $\mu^*(\emptyset) = 0$.

Propozitia 2. Fie $A_1,A_2\subset\mathbb{R}^n$ doua multimi marginite. Sunt adevarate urmatoarele afirmatii:

- i) $A_1 \subset A_2 \Rightarrow \mu^* (A_1) \leq \mu^* (A_2)$.
- ii) $\mu^* (A_1 \cup A_2) \le \mu^* (A_1) + \mu^* (A_2)$.

Definitia7. O multime marginita $A\subset \mathbb{R}^n$ este multime de masura Jordan nula daca $\mu^*\left(A\right)=0.$

Notatie. $J_0 \stackrel{not}{=} \{A \subset \mathbb{R}^n | A \text{ } m \text{ } \text{arg } inita, \mu^* \left(A\right) = 0\}$

Observatie. $A \in J_0 \Leftrightarrow \forall \varepsilon > 0 \exists E_{\varepsilon} \in \mathbb{R}^n$ multime elementara astfel incat $A \subset E_{\varepsilon}$ si $v(E_{\varepsilon}) < \varepsilon$.

Exemple. a) Orice multime finita din \mathbb{R}^n este multime de masura Jordan nula.

b) Fie $f:[a,b]\to\mathbb{R}$ o functie integrabila Riemann. Atunci $G_f=\{(x,f(x))|x\in[a,b]\}\subset\mathbb{R}^2$ este multime de masura Jordan nula.

Propozitia~3.~O multime marginita $A \subset \mathbb{R}^n$ este de masura Jordan nula daca si numai daca $\forall \varepsilon > 0, \exists I_1.I_2,....,I_p \subset \mathbb{R}^n$ o familie finita de intervale marginite

n-dimensionale astfel in cat $A \subset I_1 \cup I_2 \cup ... \cup I_p$ si $\sum_{i=1}^p v\left(I_i\right) < \varepsilon$.

Definitia 8. Fie $A \subset \mathbb{R}^n$ o multime marginita. Numarul real $\mu_*(A) = \sup_{E \in \mathcal{L}, E \subset A} v(E)$ se numeste masura interioara Jordan a multimii A.

Observatie. a) $\mu_*(E) = v(E) \ \forall E \in \mathcal{L}$.

b) $\mu_*(\emptyset) = 0$.

Propozitia 4. Sunt adevarate urmatoarele afirmatii:

- i) $\mu_*(A) \leq \mu^*(A)$ oricare ar fi $A \subset \mathbb{R}^n$ multime marginita.
- ii) Daca $A_1 \subset A_2$ sunt doua multimi marginite din \mathbb{R}^n , atunci $\mu_*(A_1) \leq \mu_*(A_2)$.

Definitia 9. O multime marginita $A \subset \mathbb{R}^n$ se numeste multime masurabila Jordan daca $\mu_*(A) = \mu^*(A)$.

Notatii. 1) $J(\mathbb{R}^n) \stackrel{not}{=} \{A \subset \mathbb{R}^n | A \text{ multime masurabila Jordan} \}$

2) $\mu(A) \stackrel{not}{=} \mu_*(A) = \mu^*(A) \in \mathbb{R}$ masura Jordan a multimii A

Teorema 1. a) $J(\mathbb{R}^n) \subset \wp(\mathbb{R}^n)$ este inel de multimi.

b) Functia $\mu: J(\mathbb{R}^n) \to \mathbb{R}$ definita prin $\mu(A) = \mu_*(A) = \mu^*(A) \ \forall A \in J(\mathbb{R}^n)$ este masura pozitiva pe $J(\mathbb{R}^n)$.

Definitia 10. Masura $\mu: J(\mathbb{R}^n) \to \mathbb{R}_+$ se numeste masura Jordan in \mathbb{R}^n .

Teorema 2. a) $\mathcal{L} \subset J(\mathbb{R}^n)$ si $\mu(E) = v(E) \ \forall E \in \mathcal{L}$.

- b) $J_0 \subset J(\mathbb{R}^n)$.
- c) O multime marginita $A \subset \mathbb{R}^n$ este masurabila Jordan daca si numai daca FrA este masurabila Jordan si $\mu(FrA) = 0$.

- d) O multime marginita $A \subset \mathbb{R}^n$ este masurabila Jordan daca si numai daca $\forall \varepsilon > 0 \ \exists E, F \in \mathcal{L}$ astfel incat $E \subset A \subset F$ si $v(F) v(E) < \varepsilon$.
 - e) Daca $A \in J(\mathbb{R}^n)$, atunci $\overline{A}, \overset{0}{A} \in J(\mathbb{R}^n)$ si $\mu(A) = \mu(\overline{A}) = \mu(\overset{0}{A})$.

Definitia 11. a) O multime $E \subset \mathbb{R}^n$ se numeste convexa daca $\forall x, y \in E, \forall t \in [0, 1]$ avem ca $(1 - t) \cdot x + t \cdot y \in E$.

b) O multime $E \subset \mathbb{R}^n$ se numeste simpla in raport cu axa $Ox_j, 1 \leq j \leq n$ daca $\exists K \subset \mathbb{R}^{n-1}$ multime compacta, masurabila Jordan si doua functii continue $\varphi_1, \varphi_2 : K \to \mathbb{R}$ astfel incat

$$\{(x_1, x_2, ..., x_n) \in \mathbb{R}^n | \left(x_1, x_2, ..., \stackrel{\wedge}{x_j}, ..., x_n\right) \in K, \varphi_1\left(x_1, x_2, ..., \stackrel{\wedge}{x_j}, ..., x_n\right) \leq x_j \leq \varphi_2\left(x_1, x_2, ..., \stackrel{\wedge}{x_j}, ..., x_n\right) \right\}.$$

Teorema 3 (Proprietatile multimilor masurabile Jordan)

- a) $\forall E \in J(\mathbb{R}^n), \forall x \in \mathbb{R}^n \text{ si } \forall \alpha \in \mathbb{R}^* \text{ avem ca } E+x, \alpha E \in J(\mathbb{R}^n) \text{ si } \mu(E+x) = \mu(E), \mu(\alpha E) = \alpha^n \mu(E).$
 - b) Orice multime $E \subset \mathbb{R}^n$ marginita si convexa este masurabila Jordan.
- c) Orice multime $E \subset \mathbb{R}^n$ simpla in raport cu axa $Ox_j, 1 \leq j \leq n$ este masurabila Jordan.

Teorema de transport a multimilor masurabile Jordan. Fie $D = \overset{\circ}{D} \subset \mathbb{R}^n$ o multime deschisa, marginita si $\varphi : D \to \mathbb{R}^n$ o functie injectiva, de clasa C^1 cu det $J_{\varphi}(x) \neq 0 \ \forall x \in D$. Daca $E \subset \mathbb{R}^n$ este o multime masurabila Jordan cu $\overline{E} \subset D$, atunci $\varphi(E) \subset \mathbb{R}^n$ este multime masurabila Jordan.