Cheat Sheet Algebra

Grundstrukturen

n-stellige Verknüpfung Sind A_1, \ldots, A_n, B Mengen, dann nennt man eine Abbildung $\circ: A_1 \times \cdots \times A_n \to B$ eine n-stellige Verknüpfung auf B. $\circ A^n \to A$ nennt man eine n-stellige Verknüpfung auf A.

Einfache algebraische Strukur bezeichnet ein Paar $S = (A, (f_i)_{i \in I})$. Dabei heisst die Menge A Grundmenge von S. $(f_i)_{i \in I}$ ist eine endliche Familie von Verknüpfungen auf diese Grundmenge.

Zusammengesetze algebraische Struktur bezeichnete die verallgemeinerte einfache algebraische Struktur. Sie ist ein Tupel $S = (A_1, \ldots, A_n, (f_i)_{i \in I})$. Sie besteht aus endlich vielen Grundmengen (A_1, \ldots, A_n) und einer endlichen Familie von von Vernupfungen, so dass es für alle $i \in I$ natürliche Zahlen p, m und Grundmengen A_r, A_s, A_k gibt mit:

$$f_i: A_r^p \times A_s^m \to A_k$$

Signatur von S $(f_i)_{i \in I}$ heisst Signatur von S.

Für zweiwertige (binäre) Verknüpfunge o werden folgende Begriffe verwendet:

Assoziativitat: wenn $\forall a, b, c \in A(A \circ (b \circ c) = (a \circ b) \circ c)$

Kommutativität: wenn $\forall a, b \in A(A \circ b = b \circ a)$

Neutralität

Ein Element $e_i \in A$ ist:

linksneutral bezüglich o falls $\forall a \in A(e_i \circ a = a)$

linksneutral bezüglich o falls $\forall a \in A(a \circ e_1 = a)$

neutral bezüglich o falls $\forall a \in A(e_i \circ a = a \circ e_i = a)$

Wenn es ein neutrales Element gibt, kann es kein zweites neutrales Element geben.

Halbgruppen, Gruppen und Monoide

Eine Struktur (G, \circ) bestehend aus einer Menge Gund einer Verknüpfung $\circ: G \times G \to G$ heisst:

wenn die Verknüpfung assoziativ ist Halbgruppe

Monoid wenn zusätzlich ein neutrales Element $e \in G$

wenn zusätzlich ein für jedes $q \in G$ ein in-Gruppe

verses Element q^{-1} existient

Kommutative Gruppe wenn die Gruppe zusätzlich kommutativ ist. Für inverse Elemente gilt: $(a^{-1})^{-1} = a$. (Das inverse vom inversen ist das element selbst)

• In Halbgruppen kann gekürzt werden $(a \cdot x = b \cdot x \Rightarrow a = b)$

Beispiele für Halbgruppen, Gruppen und kommutative Gruppen

Halbgruppen $(\mathbb{N},+),(\mathbb{Z},-)$ Monoid $(\mathbb{N} \cup 0, +)$ Gruppe $(\mathbb{O},*)$ Kommutative Gruppe $(\mathbb{Z}, +)$

Unterstrukturen

Sei (A, \circ) eine Struktur und $U \subset A$. U heisst abgeschlossen falls gilt:

$$\forall a, b \in U (a \circ b \in U)$$

Je nach übergeordneter Struktur handelt es sich um Unterhalbgruppen, Untermonoide oder Untergruppen.

Regeln

• Ist (G, \circ) eine Halbgruppe und seien $(U_i)_{i \in I}$ Unter..., dann ist $\bigcap_{i \in I} U_i$ ebenfalls eine Unter....

Jede (Halb-) Gruppe besitzt eine kleinste Unter(halb)gruppe und jeder Monoid besitzt einen kleinsten Untermonoid, die eine gegebene Teilmenge der (Halb-) Gruppe bzw. des Monoids enthalten.

Morphismen

Homomorphismus

Ein (Halb-) Gruppenhomomorphismus ist die Abbildung $f: G \to G'$ einer Struktur (G, \circ) in eine andere Struktur (G', \sim) , so dass für alle $a, b \in G$ gilt:

$$f(a \circ b) = f(a) \sim f(b)$$

Beim Monoidhomomorphismus wird zusätzliche das neutrale Element von (G, \circ) auf das neutrale Element von (G', \circ) abgebildet.

Monomorphismus bezeichnet injektive (d. h. jedes $a \in G$ wird auf ein anderes $b \in G'$ abgebildet) Homomorphismen.

Epimorphismus bezeichnet surjektive (d. h. durch die Abbildung wird jedes $b \in G'$ erreicht) Homomorphismen

Isomorphismus bezeichnet Homomorphismen die sowohl injektiv als auch bijektiv sind.

Nicht jeder Homomorphismus zwischen zwei Monoiden ist zwingend ein Monoidhomomorphismus. Beispiel:

$$f:(\mathbb{N},+)\to(\mathbb{N},\cdot)$$

$$f(0)=0$$

$$f(0+0)=f(0)\cdot f(0)=0$$

Aber das neutrale Element der Addition (1) wird nicht auf das neutralen Element der Multiplikation abgebildet.

Regeln

- 1. Sind $f:(G,\cdot)\to (G',\circ)$ und $h:(G',\sim)\to (G'',\bullet)$ Homomorphismen, dann ist auch $h \circ f: (G, \cdot) \to (G'', \bullet)$ ein entsprechender Homomorphismus.
- 2. Ist $f:(G,\sim)\to (G',\circ)$ ein Homomorphismus, dann ist das Bild $Im(f) \subset G'$ eine entsprechende Unterstruktur von $(G', \circ).$
- 3. Es sei $f: G \to G'$ ein Gruppenhomomorphismus zwischen den Gruppen (G, \sim) und (G', \circ) mit den neutralen Elementen eund e', dann gelten:
 - f(e) = e'
 - $\forall a \in G(f(a^{-1}) = f(a)^{-1})$
- 4. Ist $f:(G,\sim)\to (G',\circ)$ ein Gruppenhomomorphismus, dann $\operatorname{der} \operatorname{Kern} \ker(f) = \{ a \in G | f(a) = e' \}$

- 5. Ist $f:(G,\circ)\to (G',\sim)$ ein Gruppenhomomorphismus mit $ker(f) = \{e\}, dann ist f injektiv.$
- 6. Ist $f:(G,\sim)\to (G',\circ)$ ein Isomorphismus, dann ist auch $f^{-1}: (G', \circ) \to (G, \sim)$ ein Isomorphismus.

Bild (Im) Menge die durch eine Funktion erzeugt wird.

Kern Alle $q_n \in G$ die auf $e \in G'$ abgebildet werden. Wobei e das neutrale Element von G' ist.

Ringe und Körper

Eine Struktur (G, \sim, \circ) heisst Ring, wenn folgende Bedingungen erfüllt sind:

- 1. (G, \sim) ist eine kommutative Gruppe
- 2. (G, \circ) ist eine Halbgruppe
- 3. Es gilt das Distributivgesetz, d. h. für alle Elemente a, b, c des Ringes gelten:
 - $a \circ (b \sim c) = (a \circ b) \sim (a \circ c)$
 - $(a \sim b) \circ c = (a \circ c) \sim (b \circ c)$

Konventionen

- Wenn (R, \sim, \circ) ein Ring ist, dann bezeichnen wir das neutrale Element von (G, \sim) mit 0
- Falls vorhanden bezeichnen wir das neutrale Element von (G, \circ) mit 1.
- Das inverse Element von $g \in G$ bezüglich \sim bezeichnen wir
- Das inverse Element von $q \in G$ bezüglich o bezeichnen wir mit q^{-1} .

Typische Ringe

 $(\mathbb{Z},+,\cdot),(\mathbb{Q},+,\cdot)$ und $(\mathbb{Z},+,\cdot)$. Sowie der Nullring $(\{0\},+,\cdot)$

Potenz

Sei $(G, +, \cdot)$ ein Ring mit 1, dann ist die n-te Potenz von $g \in G$ definiert als:

$$r^0 := 1$$
$$r^{n+1} := r \cdot r^n$$

Rechenregeln in Ringen

Sei $G, +, \cdot$) ein Ring. Für alle Elemente $a, b \in R$ und alle Zahlen $n, k \in \mathbb{N}$ gelten folgende Identitäten:

- 1. $0 \cdot a = a \cdot 0 = 0$
- 2. $(-a) = (-1) \cdot a$
- 3. $-(a \cdot b) = (-a) \cdot b = a \cdot (-b)$
- 4. $(-a) \cdot (-b) = a \cdot b$
- 5. $0 = 1 \Rightarrow G = \{0\}$
- 6. $a^n \cdot a^k = a^{n+k}$
- 7. $a^{n \cdot k} = (r^n)^k$

Begriffe

rechter Nullteiler falls ein $a \in G \setminus \{0\}$ existiert, so dass $a \cdot b = 0$ linker Nullteiler falls ein $a \in G \setminus \{0\}$ existiert, so dass $b \cdot a = 0$ Nullteiler ist sowohl rechter, wie auch linker Nullteiler Die Verknüpfung \circ ist kommutativ und $0 \in G$ ist Integritätsring der einzige Nullteiler.

Körper falls $(G \setminus \{0\}, \circ)$ eine kommutative Gruppe ist.

In einem Integritätsring gilt stets: $1 \neq 0$.

Ein kommutaiver Ring (G, \sim, \circ) mit $G \neq \{0\}$, ist genau dann ein Integritätsring, wenn für jedes $q \in G \setminus \{0\}$ die Abbildung $f_q:(G,\sim)\to(G,\sim)$ mit $f_q(x):=g\cdot x$ ein injektiver Gruppenhomomorphismus ist.

Ein Integritätsring (R, \sim, \circ) ist genau dann ein Körper, wenn alle Funktionen $f_q: G \to G$ mit $f_q(x) = r \cdot x$ mit $r \in G \setminus \{0\}$ surjektiv sind.

Folgerungen

- 1. Jeder endliche Integritätsring ist ein Körper.
- 2. Für $p \in \mathbb{N}$ gilt : $(\mathbb{Z}_{/p}, +, \cdot)$ ist ein Körper $\Leftrightarrow p$ ist eine Primzahl.

Ringhomomorphismus

Es seien die Ringe $(R, +, \cdot)$ und $(R', +', \cdot')$ gegeben. Ein Ringhomomorphismus $f:(R,+,\cdot)\to(R',+',\cdot')$ ist eine Abbildung $f: R \to R'$, die:

- 1. Ein Gruppenhomomorphismus $f:(R,+)\to (R',+')$ und
- 2. ein Halbgruppenhomomorphismus $f:(R,\cdot)\to(R',\cdot')$ ist.
- 3. Sind (R,\cdot) und (R',\cdot') Monoide, muss f ein Monoidhomomorphismus sein.

Vektorräume

Es sei K ein Körper, seine Elemente heissen Skalare. Sie sind mit k bezeichnet.

K-Vektorraum (K-VR) ist ein Tripel $(V, +, \cdot)$ mit:

- 1. (V, +) ist eine kommutative Gruppe (s. o.)
- 2. Es ist $\cdot: K \times V \to V$ und für alle Elemente $k_1, k_2 \in K$ und $v_1, v_2 \in V$ gelten:
 - a) $k_1 \cdot (k_2 \cdot v_1) = k_1 \cdot k_2 \cdot v_1$
 - b) $k_1 \cdot (v_1 + v_2) = k_1 \cdot v_1 + k_1 \cdot v_2$
 - c) $(k_1 + k_2) \cdot v_1 = k_1 \cdot v_1 + k_2 \cdot v_1$
 - d) Für die 1 von K gilt: $1 \cdot v_1 = v_1$

Elemente von V werden mit v bezeichnet.

- $\Rightarrow K$ selbst mit seiner Addition und Multiplikation ist ein K-VR
- \Rightarrow Der Körper $\mathbb C$ ist ein 2-dimensionaler VR über $\mathbb R$
- \Rightarrow Der Körper $\mathbb R$ ist ein ∞ -dimensionaler VR über $\mathbb O$
- \Rightarrow Die Menge $\mathbb{R} \times \mathbb{R}$ ist ein 2-dimensionaler \mathbb{R} -VR.

Rechenregeln

$$\begin{aligned} 0_K \cdot v &= 0_V = k \cdot 0_V \\ -k \cdot v &= -(k \cdot v) = k \cdot (-v) \\ k \cdot v &\Rightarrow (k = 0_K) \vee (v = 0_v) \end{aligned}$$

Untervektorraum

Ist V ein K-VR und $U \subset V$ ($U \neq \emptyset$) abgeschlossen unter den Verknüpfungen $\cdot, +,$ dann ist U ein Untervektorraum von V und somit auch ein K-VR.

Jede Gerade in \mathbb{R}^2 durch den Nullpunkt ist ein solcher 1-dimensionaler Untervektorraum.

Erzeugender Untervektorraum

$$\langle U \rangle := \left\{ \sum_{i=1}^{n} k_i \cdot v_i | (n \in \mathbb{N}) \wedge (k_1, \dots, k_n \in K) \wedge (v_1, \dots v_n \in V) \right\}$$

Beispiele:

- $\langle \emptyset \rangle = \{(0,0,0)\}$
- $\langle \{(1,0),(0,1)\} \rangle = \mathbb{R}^2$

Erzeugendensystem bezeichnet eine Menge U, wenn gilt $\langle U \rangle = V$ mit $U \subset V$

Lineare unabhängig (frei) ist eine Menge U wenn für alle paarweise verschiedenen Vektoren $v_1, \ldots, v_n \in U$ und für alle Skalare $k_1, \ldots k_n \in K$ stet gilt:

$$\sum_{i=0}^{n} k_i \cdot v_i \neq 0 \text{ oder } r_1, \dots, r_n = 0$$

Basis bezeichnet ein linear unabhängiges (freies) Erzeugendensystem (geschrieben als B).

Lässt sich ein Vektor eines Untervektorraums aus anderen Vektoren desselben Untervektorraums erzeugen, dann ist der Untervektorraum nicht frei.

$$(v = \sum_{i=1}^{n} k_i \cdot v_i) \land (v, v_1, \dots, v_n \in U) \land (k_1, \dots, k_n \in K) \Leftrightarrow U \text{ ist nicht frei}$$

Jeder Vektor v aus V lässt sich aus jeder beliebigen Basis erzeugen:

$$v = \sum_{i=1}^{n} k_i \cdot b_i \Leftrightarrow B = \{b_1, \dots, b_n\}$$
ist eine Basis von V

Sätze, Axiome, Theoreme

- Ist A eine Menge und " \leq " eine Halbordnung auf A, so dass für jede total geordnete Teilmenge eine obere Schranke bezüglich < existiert, dann besitzt A maximale Elemente.
- Ist F eine Familie von Mengen mit der Eigenschaft, dass mit jeder Kette $U \subset \mathcal{F}$ die Beziehung $\cup U \in \mathcal{F}$ gilt, dann hat das Paar (\mathcal{F}, \subset) maximale Elemente.
- Ist V ein K-VR und ist $E \subset V$ ein Erzeugendensvstem und $F \subset V$ eine freie Teilmenge von V, dann gibt es eine Menge $U \subset V$ mit $X \cap F \neq \emptyset$, so dass $F \cup U$ eine Basis von V ist.
- Jeder Vektorraum hat eine Basis. Hat ein Vektorraum eine endliche Basis, dann ist iede weitere Basis dieses Vektorraums ebenfalls endlich und besitzt gleich viele Elemente.

Dimension

Die Dimension eines Vektorraums V über K ist $\dim_K(V) = |B|$. Beispiele:

- $\dim_{\mathbb{Q}}(\mathbb{R}) = \infty$
- $\dim_{\mathbb{Q}}(\mathbb{Q}) = 1$ (weil $\{1\} \subset \mathbb{Q}$ eine Basis von \mathbb{Q} ist)

Lineare Abbildungen und Matrizen

Sind W und V beides K-VR. Eine Abbildung $f: V \to W$ heisst K-linear oder K-VR Homomorphismus falls für alle Element $\lambda \in K$ und alle Vektoren $v, w \in V$ die Gleichungen:

$$f(v+w) = f(v) + f(w)$$
 $f(\lambda v) = \lambda f(v)$

erfüllt werden. Die Menge aller derartiger Abbildungen wird als $\operatorname{Hom}_{\mathcal{K}}(V,W)$ bezeichnet.

Für K-lineare Abbildungen gilt:

$$f(\sum_{i=1}^{n} \lambda_i \cdot v_i) = \sum_{i=1}^{n} \lambda_i \cdot f(v_i)$$

Beispiele:

- $f: \mathbb{R}^3 \to \mathbb{R}^2$ mit f((x, y, z)) := (y, z)
- $f: \mathbb{R}^2 \to \mathbb{R}^3$ mit f((x,y)) := (0,y,z)

Kern Für $f \in \text{Hom}_K(V, W)$ ist der Kern definiert als:

$$\ker(f) := \{ v \in V | f(v) = 0 \}$$

- Sind V und W zwei K-VR und $f, g \in \operatorname{Hom}_K(V, W)$, so dass f und q auf einer Basis von V dieselben Werte annehmen, dann gilt: f = q
- Sind V und W zwei K-VR und ist $B = \{b_1, \ldots, b_n\}$ eine Basis von V sowie $f: B \to W$ eine beliebige Funktion, dann lässt sich f eindeutig zu einer K-linearen Abbildung $f: V \to W$ fortsetzen.
- Zwei K-VR gleicher, endlicher Dimension sind stets isomorph zueinander. \Rightarrow Ist V ein endlich dimensionaler K-VR, dann gibt es eine Zahl $n \in \mathbb{N}$, so dass V isomorph zu K^n ist.
- Sind V und W zwei K-VR und ist $f \in \text{Hom}_K(V, W)$, dann ist $\ker(f)$ ein Untervektorraum von V und $\operatorname{im}(f)$ ein Untervektorraum von W.
- Sind V und W zwei K-VR endlicher Dimension und ist $f \in$ $\operatorname{Hom}_K(V,W)$, dann gilt:

$$\dim_K(\operatorname{im}(f)) + \dim_K(\ker(f)) = \dim_K(V) \tag{1}$$

- Sind V und W zwei K-VR endlicher und gleicher Dimension, dann sind für $f \in \text{Hom}_K(V, W)$ folgende Aussage äquivalent:
 - f ist ein Isomorphismus
 - f ist ein Epimorphismus
 - f ist ein Monomorphismus

Copyright © 2013 Constantin Lazari Revision: 1.0, Datum: 9. Juni 2013