

Chapter 5

Digital transmission through the AWGN channel

— by Prof. XIAOFENG LI SICE, UESTC

Ch5 Digital transmission through the AWGN channels

Section 5.1-5.4: 5.3, 5.7

Section 5.5: 5.8

Section 5.6: 5.9, 5.10, 5.18, 5.34, 5.43, 5.47, 5.54

Introduction

In this chapter, we focus on how to transmit digital info signals with waveforms.

The topics include:

- Geometric representation of sig waveforms;
- Diff types of waveforms for digital transmissions;
- Optimal reception;
- Performance evaluation on the AWGN channel
- Comparison of the methods.

- Introduction
- Geometric rep. of the sig waveforms
- Pulse amplitude modulation
- 2-d signal waveforms
- M-d signal waveforms
- Opt. reception for the sig. In AWGN
- Optimal receivers and probs of err

1. Review of the Vectors and Vector Space

Concepts:

- length and direction
- Coordinates

$$\mathbf{v} = (v_x, v_y)$$

- vector addition,
- distance calculation
- inner products
- axes or basis vectors
- Geometric representation
- Algebraic representation, $\mathbf{v} = v_x \times \mathbf{i} + v_v \times \mathbf{j}$

Dimensions: 2-space, 3-space, N-space

1. Review of the Vectors and Vector Space

Let $B = \{\mathbf{e}_1, ..., \mathbf{e}_N\}$ be an orthonormal basis for a N dimensional **vector space** R^N .

If ${\bf v}$ is any vector in the space, then it can be written uniquely in the form

$$\mathbf{v} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + \dots + a_N \mathbf{e}_N$$

 $a_1,...,a_N$ are called the coordinates of **v**.

$$\mathbf{v} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{bmatrix}$$

1. Review of the Vectors and Vector Space

With the dot product (or inner product), denotes as `'', a

coordinate is calculated by following,

$$a_i = \mathbf{v} \cdot \mathbf{e_i}$$

Because,

$$\mathbf{v} \cdot \mathbf{e_i} = (a_1 \mathbf{e_1} + a_2 \mathbf{e_2} + \dots + a_N \mathbf{e_N}) \cdot \mathbf{e_i}$$

$$= a_1 (\mathbf{e_1} \cdot \mathbf{e_i}) + a_2 (\mathbf{e_2} \cdot \mathbf{e_i}) + \dots + a_i (\mathbf{e_i} \cdot \mathbf{e_i}) + \dots + a_N (\mathbf{e_N} \cdot \mathbf{e_i})$$

$$= a_1 \times 0 + a_2 \times 0 + \dots + a_i \times 0$$

$$= a_i$$

$$= a_i$$

orthonormal basis

1. Review of the Vectors and Vector Space

With coordinates, we have,

- 1. The inner product
- 2. The norm
- 3. The distance

$$\mathbf{v} \cdot \mathbf{u} = \sum_{i=1}^{N} v_i u_i$$

$$\|\mathbf{v}\| = \sqrt{\sum_{i=1}^{N} v_i^2}$$

$$d = \|\mathbf{v} - \mathbf{u}\| = \sqrt{\sum_{i=1}^{N} (v_i - u_i)^2}$$

Now think of an signal waveform as a vector (or element) in a space.The space is called signal space.

Axes (bases) are waveforms,
 Ψ₁(t), Ψ₂(t)

Say, two rect-pulses

Now think of an signal waveform as a vector (or element) in a space.The space is called signal space.

Questions:

- For new pulses, what are s1(t), s2(t) and s(t)?
- For $\sin 2\pi f_c t$ and $\cos 2\pi f_c t$, what are the signals?
- Are the basis signals orthonormal?

Now think of an signal waveform as a vector (or element) in a space.The space is called signal space.

Let $\mathbf{s}, \mathbf{s}_1, \mathbf{s}_2$ denote $s(t), s_1(t), s_2(t)$, and define the inner product of \mathbf{s}_1 and \mathbf{s}_2 as

$$\mathbf{s}_1 \cdot \mathbf{s}_2 = \int_{-\infty}^{\infty} s_1(t) s_2(t) dt$$

Now think of an signal waveform as a vector (or element) in a space.The space is called signal space.

Let $\mathbf{S}, \mathbf{S}_1, \mathbf{S}_2$ denote $s(t), s_1(t), s_2(t)$, and define the inner product of \mathbf{S}_1 and \mathbf{S}_2 as

$$\mathbf{s}_1 \cdot \mathbf{s}_2 = \int_{-\infty}^{\infty} s_1(t) s_2(t) dt$$

The coordinates of signal $s_m(t)$ can be calculated by,

$$S_{mi} = \mathbf{s}_m \cdot \mathbf{\psi}_i = \int_{-\infty}^{\infty} S_m(t) \psi_i(t) dt$$
 for all $i = 1, 2, ...N$.

Now think of an signal waveform as a vector (or element) in a space.The space is called signal space.

Let $\mathbf{s}, \mathbf{s}_1, \mathbf{s}_2$ denote $s(t), s_1(t), s_2(t)$, and define the inner product of \mathbf{s}_1 and \mathbf{s}_2 as

$$\mathbf{s}_1 \cdot \mathbf{s}_2 = \int_{-\infty}^{\infty} s_1(t) s_2(t) dt$$

Physical meaning by,

$$\mathbf{s}_1 \cdot \mathbf{s}_1 = \int_{-\infty}^{\infty} s_1(t) s_1(t) dt$$
$$= Energy$$

2. Now think of an signal waveform as a vector (or element) in a space. The space is called **signal space**.

Suppose the orthonormal basis is $\Psi_1,...,\Psi_N$, which is equivalent to $\psi_1(t),...,\psi_N(t)$.

With coordinates, we have,

- 1) The signal $\mathbf{s}_{m} = \sum_{i=1}^{N} s_{mi} \mathbf{\Psi_{i}}$ 2) The energy $E_{s} = \|\mathbf{s}_{m}\|^{2} = \sum_{i=1}^{N} s_{mi}^{2}$ 3) The rms $\|\mathbf{s}_{m}\| = \sqrt{\sum_{i=1}^{N} s_{mi}^{2}}$

$$\mathbf{v} = a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + \dots + a_N \mathbf{e}_N$$

$$\mathbf{v} \cdot \mathbf{u} = \sum_{i=1}^N v_i u_i$$

$$\|\mathbf{v}\| = \sqrt{\sum_{i=1}^N v_i^2}$$

$$d = \|\mathbf{v} - \mathbf{u}\| = \sqrt{\sum_{i=1}^N (v_i - u_i)^2}$$

4) The distance
$$d = \|\mathbf{s}_m - \mathbf{s}_k\| = \sqrt{\sum_{i=1}^{N} (s_{mi} - s_{ki})^2}$$

3. Given M signals $s_1(t),...,s_M(t)$, what is the SPACE for them? Note SPACE is specified by basis signals.

Q: how to find the basis $\Psi_1,...,\Psi_N$ based on $S_1,...,S_M$? What is N and M?

A: We employ the **Gram-Schmidt Procedure**.

See p283

4. Examples of Gram-Schmidt Procedure

Example 5.1.1

Example 5.1.2