

Science and Engineering Ethics

Week 1: Why Is Science and Engineering Ethics Now?

A Hypothetical Case

You are an engineer for a company that has received a contract regarding a structural design for a high-rise building. This building will be constructed in the central part of the capital of Country A. According to the building codes of Country A, you need only consider the effect of perpendicular winds, which blow perpendicularly on each side of the building. Your team has created a design that would fully satisfy the requisite standards, and the owner is pleased with such design.

Hypothetical Case Study

When the construction is about to commence, you, who returned to your home country, discover that an enormous typhoon is slated to occur in areas surrounding Country A of a magnitude that only takes place once every 1000 years. Therefore, you calculate the maximum wind speed of this large typhoon that could potentially hit the building. As a result, you noticed that there would be no problem in the case of the perpendicular winds, however, it is possible that the building would collapse if the wind were to impact the building at an oblique angle. (The effects of quartering winds were not taken into consideration when the design was made.)

Hypothetical Case Study

- You report your findings to your boss and attempt to convince him to change the structural design of the building. However, your boss does not listen to you based on the assertion that "our design has satisfied the laws and regulations of Country A, and there is no need to change the design to prepare for the probability of something that might occur only once every 1000 years."
- What would you do if you were the engineer?

Yanosuke Hirai (1902-1986)

"Matsunaga Yasuzaemon (migi) to tomoni" by <u>Zsefvgyj</u> is licensed under <u>CC BY-SA 3.0</u> https://commons.wikimedia.org/wiki/File:Matsunaga_Yasuzaemon_(migi)_to_tomoni.jpg

Important Balance of Values

- Social Contribution
- Advancement of expertise
- Organizational development
- Loyalty
- Facts
- Environment

- Schedule
- Information transparency
- Compliance
- Integrity
- Cost
- Technological innovation

The Safety, Health, and Well-being of the Public

Four Levels of Science and Engineering Ethics

Levels	Objectives	
Meta	Nature of science/engineering	
Macro	Relationship between science/technology and society	
Meso	Organizational and institutional issues relating to science/ engineering practice and to scientists/engineers and organization	
Micro	Conducts of Individuals (i.e., scientists and engineers) and organizations	

Dates of Drastic Changes in Science and Technology in Relation to Society

- December 2, 1942
- September 11, 2001
- June 13, 2010
- March 11, 2011

December 2, 1942

Control of nuclear chain reaction

September 11, 2001 terrorist attacks in the United States

June 13, 2010 Japan's Hayabusa Asteroid Probe comes back to Earth

March 11, 2011 Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Plant accident

The World in Transition Because of the Advancement of Science and Technology

In this era, science and technology has tremendously broad, large and profound on human society.

This is an era in which decisions made by specialists and organizations involved in science and technology can have enormous influence on **society and the environment.**

The **responsibilities and ethics** of engineers are being questioned.

Fudano's Principles for Ethical Issues

In making ethical decisions, enlarge your frame of reference and relativize your thoughts in terms of:

Space

Relationship

- January 1: Big Bang
- September 9: Birth of the solar system
- September 14: Formation of the Earth
- September 25: Birth of life
- December 31 at 10:30 p.m.: Emergence of humanity
- December 31 at 11:59:56p.m.: Greek philosophy
- December 31 at 11:59:59
 p.m.: Birth of modern science

20 Great Achievements by Engineers during the 20th Century

- Electrification
- **Automobiles**
- **Airplanes**
- Water supply and distribution
- **Electronics**
- Radio and television

- Telephones
- 10. Air-conditioning and refrigeration
- 11. Highways
- 12. Spacecraft
- 13. The Internet
- 14. Imaging technology
- Agricultural mechanization 15. Household appliances

- 16. Medical and health technologies
- 17. Petroleum and petrochemical technologies
- 18. Laser and fiber optics
- 19. Nuclear technology
- 20. High-performance materials

Earth's city lights as viewed from space

Can humanity fully utilize the advancements of science and technology?

There have been many important human achievements over the last 100 years (a blip of only 0.25 seconds on the compressed cosmic calendar).

What will the future bring?

Four Levels of Science and Engineering Ethics

Levels	Objectives	
Meta	Nature of science/engineering	
Macro	Relationship between science/technology and society	
Meso	Organizational and institutional issues relating to science/ engineering practice and to scientists/engineers and organization	
Micro	Conducts of Individuals (i.e., scientists and engineers) and organizations	

21st Century Engineers and Ethics

Global standards of engineering competencies Engineers with internationally acceptable competencies Local training and global practice

- International agreement between bodies responsible for accrediting engineering degree programs to mutually recognize the substantial equivalence of engineering Washington Accord (1989)
- International mutual approval of engineering qualification
 CPD (Continuing Professional Development: training for continuing professional development for specialists)

Engineering in a Fast-changing World

Engineering responsibilities will be expanded, the quantity of information will sharply increase, and opportunities for engineers will spread throughout the world.

A new image of engineering is emerging.

There is a need to reform engineering education.

Necessity of Internationally Available Engineers

International mutual approval of a substantial equivalent for engineering education

- Washington Accord (with a central focus on English-speaking countries, 1989)
- The "Eug Ing" European Federation of National Engineering Associations (1993)
- Quality assurance for trade in services (WTO) (1995)
- APEC Engineer (creation of system for 1995 through 1997)
- International strategies of ABET (evaluation of engineer education programs outside the US)

IEA: Required Qualifications and Abilities for Graduates of Engineering Departments

- 1. Knowledge of engineering
- 2. Problem analysis
- 3. Designing and developing of solutions
- 4. Investigation
- 5. Use of the newest tools
- 6. Engineers and society

- 7. Environment and sustainability
- 8. Ethics
- Individual activities and teamwork
- 10. Communication
- 11. Project management and finance
- 12. Continuing education and lifelong learning

6. Engineers and society

7. Environment and sustainability

8. Ethics

- Evaluate problems regarding society, health and safety, law, and culture arising from engineering activities and responsibilities for the best results using inferences based on associated knowledge.
- Apply fundamental ethical principles, observe ethical developments as a specialist, carry out relevant responsibilities, and comply with the proper codes of behavior for engineers.
- Apply fundamental ethical principles, observe ethical developments as a specialist, carry out relevant responsibilities, and comply with the proper codes of behavior for engineers.

Four Levels of Science and Engineering Ethics

Levels	Objectives	
Meta	Nature of science/engineering	
Macro	Relationship between science/technology and society	
Meso	Organizational and institutional issues relating to science/ engineering practice and to scientists/engineers and organization	
Micro	Conducts of Individuals (i.e., scientists and engineers) and organizations	

piling data fabrication scandal

Micro Level: Recent Incidents in Japan (Individuals and Organizations Involved in Science and Technology)

1995 1995	Tokyo Subway Sarin attack Sodium leak at the Monju fast-breeder reactor	2004 Falsification of data by Kansai Electric Power Co.
1999	JCO Tokaimura criticality accident	2005 Falsification of drainage data by JFE Steel
2000	Concealed knowledge of recalls at Mitsubishi	Corporation
	Motors	2005 JR Fukuchiyama line train derailment accident
2001	Yukijirushi food label replacement scandal	2005 Falsified quake-resistance data for
2002	TEPCO (Hitachi) issue	condominium designs
2004	Scandal of concealment of recalls by	2005 Paloma gas water heater accident
	Mitsubishi Fuso Truck and Bus Corporation	2006-7 Electric power company concealment
2004	Pipe rupture accident in the secondary system	scandal
	of Unit 3 of the Mihama Power Station	2011 Fukushima Daiichi Nuclear Power Station accident
		2015 Asahi Kasei Construction Materials Corporation

Two Aspects of Ethics

	Aspirational Ethics	Preventive Ethics
Aspect	Want to do/should be done	Ought not to
Goal	Good decision making and good work	Prevent what should not be done
Direction	Contribution to well-being	Avoiding harms and protect safety and health
Orientation	Extroversion-oriented	Introversion-oriented
Effect	Encouraging/Inspiring	Withering

NAE Grand Challenges for Engineering

Advance Personalized Learning

Make Solar Energy Economical

Enhance Virtual Reality

Reverse-Engineer the Brain

Engineer Better Medicines

Advance Health Informatics

Restore and Improve Urban Infrastructure

NAE Grand Challenges for Engineering

Secure Cyberspace

Provide Access to Clean Water

Provide Energy from Fusion

Prevent Nuclear Terror

Manage the Nitrogen Cycle

Develop Carbon Sequestration Methods

Engineer the Tools of Scientific Discovery