Reg. No		

B.Tech/M.Tech(Integrated) DEGREE EXAMINATION, NOVEMBER 2023

Third Semester

21MAB209T - TRANSFORMS AND COMPUTATIONAL TECHNIQUES

(For the candidates admitted during the academic year 2022-2023 onwards)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

ii. Pa	rt - B and Part - C should be answered in	answer booklet.			
Time	e: 3 Hours		Max.	Mark	s: 75
	PART - A (20 × 1 Answer all Q		Marl	cs BL	СО
1.	 Which of the following is not true with r (A) f(x) is piecewise continuous (C) f(x) has an infinite number of maxima and minima in any one 	respect to the Fourier Series (B) $f(x)$ has at at most a finite number of discontinuities within the period (D) $f(x)$ is a single-valued and finite in any interval		1	1
2.	period The Fourier Transform of the derivatives (A) $F\{f'(x)\} = -isF(s)$ (C) $F\{f'(x)\} = is^2F(s)$	s is given by: (B) $F\{f'(x)\} = sF(s)$ (D) $F\{f'(x)\} = is^4F(s)$	1	1	2
3.	How many initial and boundary condition (A) One (C) Three	ons are required to solve $u_t = lpha^2 u_{xx}$ (B) Two (D) Four	1	2	3
4.	The error in the Simpson's $\frac{1}{3}$ -rule is of to (A) h^3 (C) h^2	he order (B) h^4 (D) h	1	1	4
5.	The given PDE $z_{xx} - z_{yy} = 0$ is (A) Hyperbolic (C) Parabolic	(B) Elliptic (D) Deterministic	1	2	5
6.	Which one of the following function is to (A) $ Cosx $ (C) $1 + x^3$	neither even nor odd? (B) xSinx (D) x ⁴	1	2	1
7.	Let $F(s)$ is the Fourier Transform of $f(s)$ (A) $\int_{-\infty}^{\infty} f(x)^2 dx = \int_{-\infty}^{\infty} f(s) ds$ (C) $\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} \frac{f(s)}{2} / ds$	x), then Parseval Identity is (B) $\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{\infty} f(s)ds$ (D) $\int_{-\infty}^{\infty} f(x) ^2 dx = \int_{-\infty}^{\infty} f(s) ^2 ds$	1	1	2
8.	Solve the PDE $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} + 2 \frac{\partial^2 z}{\partial x \partial y} = 0$ (A) $z = \phi_1(y - x) + \phi_2(y - 2x)$	(B) $z = \phi_1(y-x) + \phi_2(y-x)^2$ (D) $z = x^2\phi_1(y-x) + x\phi_2(y-x)$	1	2	3
9.	(C) $z = \phi_1(y - x) + x\phi_2(y - x)$ Which of the following methods is used (A) Runge-Kutta Method (C) Crank-Nicholson Method	Ito solve an ordinary differential equation (B) Bender - Schmidt Method (D) Simpson $\frac{3}{8}$ Method	1	1	4

PART - B $(4 \times 10 = 40 \text{ Marks})$ Answer any 4 Questions			Marks	BL	CO
	(C) $0 < \alpha \le 1$ (D) -1	$< lpha \le rac{1}{2}$ $< lpha \le 1$	1	1	5
	$(D^2 - a^2 D^{'2}) = x$ $(A) \frac{x^2}{6}$ $(C) \frac{x^3}{36}$ $(B) \frac{x^3}{6}$ (D) Ax	+B			
19.	Find the Particular Integral of	, 	1	1	3
18.	If $f(x)$ is a periodic function of T, then $f(T+x)$ is (A) $nf(x)$ (B) $f(x)$ (C) $f(x/n)$ (D) $f(x)$	•	1	1	1
17.	The Z transform of 1 is: (A) $\frac{z+1}{z-1}$ (B) z (C) z^2 (D) $\frac{z}{z-1}$	-	1	2	3
10.	If a function is even in $(-\pi, \pi)$, the value of b_n in Fo. (A) 0 (B) $-\iota$ (C) 1 (D) 1-		1	2	
	equation (C) Parabolic partial differential (D) Splential equation equ	iptic partial differential equation nerical partial differential nation	1	1	5
	(C) Both (i) and (ii) are correct (D) Bo	finding y over a wider range of ly (ii) is correct th (i) and (ii) are incorrect	1	1	4
	(C) $F(\frac{z}{a})$ (D) $F(\frac{z}{a})$	$(z+a^{-n})$ $(a\frac{z}{n})$	1	1	3
	2. The error in the trapezoidal rule is of the order (A) h^3 (B) h^2 (C) h^4 (D) h^5		1	1	4
11	$A(x,y) rac{\partial^2 z}{\partial x^2} + B(x,y) rac{\partial^2 z}{\partial x \partial y} + C(x,y) rac{\partial^2 z}{\partial y^2} + F(x,y)$	$(z, z, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}) = 0$ is elliptic $z^2 - 4AC > 0$	1	2	5
	(C) Weddle's Method (D) Co	unge-Kutta Method rank-Nicholson Method	1	1	5

21.	Evaluate $\int_0^6 \frac{dx}{1+x^2}$ taking step length $h=1$ by using (i) Trapezoidal rule (ii) Simpson's $\frac{1}{3}$ rule (iii) Simpson's $\frac{3}{8}$ rule	10	≥ 1	.4
22.	Find the Fourier Series of $f(x) = x^2$ in $(0, 2l)$.	10	1	1
23.	A uniform string is stretched and fastened to two points l apart. Motion is started by displacing the string into the form of the curve $y = kx(l-x)$ and then releasing it from this position at time $t = 0$. Find the displacement of the point of the string at a distance x from one end at time t .	10	1	3
24.	Use the Convolution Theorem of the Fourier Transform to find $F^{-1}(\frac{1}{6+5is-s^2})$	10	1	2
25.	Using Modified Euler's method, find an appropriate value of y when $x = 0.3$, given that $\frac{dy}{dx} = x + y$ and $y = 1$ when $x = 0$.	10	1.	4
26.	Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ in $0 < x < 5, t \ge 0$ given that $u(x,0) = 20, u(0,t) = 0, u(5,t) = 100$. Compute u for the time-step with $h=1$ by Crank-Nicholson method.	10	1	5
	PART - C (1 × 15 = 15 Marks) Answer any 1 Questions	Mark	s BL	CO
27.	A uniform bar of length l through which heat flows is insulated at its sides. The ends are kept at zero temperature. If the initial temperature at the interior point of the bar is given by $kSin^3(\frac{\pi x}{l})$ for $0 < x < l$, find the temperature distribution in the bar after time t.	15	3	3
28.	For the $Z-Transform$, Deduce the identity $Z(n^p)=-z\frac{d}{dz}Z(n^{p-1})$, and hence find the $Z(n^3)$.	15	4	2

* * * * *

•