Music Store Data Analysis Project using SQL

Project Overview

The Music Store Data Analysis Project aims to explore and analyze data from a music store database using SQL queries. This project addresses various problems ranging from identifying top employees and customers to determining popular music genres and high-revenue cities. The analysis is divided into three levels of difficulty: easy, intermediate, and advanced. Each level tackles different aspects of the data to provide valuable insights into the music store's operations and customer preferences.

Dataset Description

The dataset consists of several tables related to the music store's operations, including:

- **employee:** Details about employees, including their job titles and levels.
- invoice: Information about invoices, including billing details and total amounts.
- **customer:** Customer information such as names and email addresses.
- **invoice line:** Details of each item included in an invoice.
- track: Information about individual tracks, including genre and album details.
- album: Album details including the artist.
- artist: Information about artists.
- genre: Genre information for tracks

The project is divided into three categories of problems - easy, intermediate, and advanced - each addressing different aspects of the data.

Easy Problems and Solutions:

Q1)Who is the senior most employee based on job title?

SELECT*FROM employee

ORDER BY levels DESC

LIMIT 1

Result: This query retrieves the senior-most employee by ordering the employees based on their levels in descending order and selecting the top entry.

Q2)Which countries have the most Invoices?

SELECT COUNT(*) AS c, billing_country

FROM invoice

GROUP BY billing country

ORDER BY c DESC

	c bigint	billing_country character varying (30)
1	131	USA
2	76	Canada
3	61	Brazil
4	50	France
5	41	Germany
6	30	Czech Republic

Result: This query counts the number of invoices per country, groups the results by country, and orders them in descending order of invoice count.

Q3)What are top 3 values of total invoice?

SELECT total FROM invoice

ORDER BY total DESC

LIMIT 3

<u>Result:</u> This query retrieves the top 3 highest invoice totals by ordering the invoices in descending order of the total amount.

Q4)Which city has the best customers? We would like to throw a promotional Music Festival in the city we made the most money. Write a query that returns one city that has the highest sum of invoice totals. Return both the city name & sum of all invoice totals.

SELECT SUM(total) AS total_invoice ,billing_city

FROM invoice

GROUP BY billing city

ORDER BY total_invoice DESC

total_invoice double precision	billing_city character varying (30)
273.24000000000007	Prague
169.29	Mountain View
166.32	London
158.4	Berlin
151.47	Paris
129.69	São Paulo

^{***} Here **Prague** city is the best customer.

Result: This query calculates the sum of all invoice totals for each city, groups the results by city, and orders them by the total invoice amount in descending order.

Q5)Who is the best customer? The customer who has spent the most money will be declared the best customer. Write a query that returns the person who has spent the most money.

SELECT customer.customer_id,customer.first_name,customer.last_name,SUM(invoice.total) AS total

FROM customer

JOIN invoice ON customer.customer_id=invoice.customer_id

GROUP BY customer.customer_id

ORDER BY total DESC

limit 1;

customer_id [PK] integer	first_name character	last_name character	total double precision
5	R	Madhav	144.54000000000002

^{***} R Madhav is the best customer.

<u>Result:</u> This query identifies the customer who has spent the most money by summing the invoice totals for each customer, grouping by customer ID, and ordering by the total spent in descending order.

Intermediate Problems and Solutions:

Q1)Write query to return the email, first name, last name, & Genre of all Rock Music listeners. Return your list ordered alphabetically by email starting with A.

SELECT DISTINCT email, first_name, last_name

FROM customer

JOIN invoice ON customer.customer_id= invoice.customer_id

JOIN invoice_line ON invoice.invoice_id=invoice_line.invoice_id

WHERE track_id IN(SELECT track_id FROM track

JOIN genre ON track.genre_id=genre.genre_id

WHERE genre.name LIKE 'Rock'

)

ORDER BY email ASC

email character varying (50)	first_name character	•	last_name character	•
aaronmitchell@yahoo.ca	Aaron		Mitchell	
alero@uol.com.br	Alexandre		Rocha	
astrid.gruber@apple.at	Astrid		Gruber	
bjorn.hansen@yahoo.no	Bjørn		Hansen	
camille.bernard@yahoo.fr	Camille		Bernard	
daan_peeters@apple.be	Daan		Peeters	
diego.gutierrez@yahoo.ar	Diego		Gutiérrez	
dmiller@compact.com	Dan		MAILLAN	

Result: This query retrieves distinct customer emails, first names, and last names for those who have purchased Rock music tracks, ordered alphabetically by email.

Q2)Let's invite the artists who have written the most rock music in our dataset. Write a query that returns the Artist name and total track count of the top 10 rock bands.

SELECT artist_id,artist_name,COUNT(artist.artist_id) AS no_of_song

FROM track

JOIN album ON track.album_id=album.album_id

JOIN artist ON artist.artist_id=album.artist_id

JOIN genre ON genre.genre_id=track.genre_id

WHERE genre.name='Rock'

GROUP BY artist.artist_id

ORDER BY no_of_song DESC

LIMIT 10

artist_id [PK] character varying (50)	name character varying (120)	/	no_of_song bigint
22	Led Zeppelin		114
150	U2		112
58	Deep Purple		92
90	Iron Maiden		81
118	Pearl Jam		54
152	Van Halen		52
51	Queen		45

<u>Result:</u> This query identifies the top 10 artists who have the most Rock tracks by counting the number of Rock tracks each artist has, grouping by artist ID, and ordering by the track count in descending order.

Q3) Return all the track names that have a song length longer than the average song length. Return the Name and Milliseconds for each track. Order by the song length with the longest songs listed first.

```
SELECT name,milliseconds

FROM track

WHERE milliseconds >(

SELECT AVG(milliseconds) AS avg_track_length

FROM track
)
```

ORDER BY milliseconds DESC

name character varying (150)	â millisecond integer
Occupation / Precipice	528
Through a Looking Glass	508
Greetings from Earth, Pt. 1	296
The Man With Nine Lives	295
Battlestar Galactica, Pt. 2	295
Battlestar Galactica, Pt. 1	295
Murder On the Rising Star	293

<u>Result:</u> This query retrieves track names and their lengths for tracks longer than the average track length, ordered by length in descending order.

Advanced Problems and Solutions:

Q1)Find how much amount spent by each customer on artists? Write a query to return customer name, artist name and total spent.

```
WITH best_selling_artist AS(

SELECT artist.artist_id AS artist_id,artist.name AS artist_name,

SUM(invoice_line.unit_price*invoice_line.quantity)AS total_sales

FROM invoice_line

JOIN track ON track.track_id=invoice_line.track_id

JOIN album ON album.album_id=track.album_id

JOIN artist ON artist.artist_id=album.artist_id

GROUP BY 1

ORDER BY 3 DESC

limit 1
```

SELECT c.customer_id,c.first_name,c.last_name,bsa.artist_name,

SUM(il.unit_price*il.quantity)AS amount_spent FROM invoice i

JOIN customer c ON c.customer_id=i.customer_id

JOIN invoice_line il ON il.invoice_id=i.invoice_id

JOIN track t ON t.track_id =iI.track_id

JOIN album alb ON alb.album id=t.album id

JOIN best_selling_artist bsa ON bsa.artist_id=alb.artist_id

GROUP BY 1,2,3,4

ORDER BY 5 DESC

)

customer_id integer	first_name character	last_name character	artist_name character varying (120)	amount_spent double precision
46	Hugh	O'Reilly	Queen	27.719999999999985
38	Niklas	Schröder	Queen	18.81
3	François	Tremblay	Queen	17.82
34	João	Fernandes	Queen	16.830000000000002
53	Phil	Hughes	Queen	11.88
41	Marc	Dubois	Queen	11.88
47	Lucas	Mancini	Queen	10.89
22	FIIIa	Cullium	Outen	10.00

<u>Result:</u> This query calculates the amount spent by each customer on the best-selling artist by summing the unit prices times quantities for each customer-artist pair, grouped by customer and artist.

Q2) We want to find out the most popular music Genre for each country. We determine the most popular genre as the genre with the highest amount of purchases. Write a query that returns each country along with the top Genre. For countries where the maximum number of purchases is shared return all Genres.

WITH popular_genre AS (

SELECT COUNT (invoice_line.quantity) AS purchase,customer.country,genre.name,genre_id, ROW_NUMBER() OVER (PARTITION BY customer.country ORDER BY COUNT (invoice_line.quantity)DESC) AS RowNo

FROM invoice_line

JOIN invoice ON invoice_invoice_id= invoice_line.invoice_id

JOIN customer ON customer.customer_id=invoice.customer_id

JOIN track ON track.track_id= invoice_line.track_id

JOIN genre ON genre.genre_id=track.genre_id

GROUP BY 2,3,4

```
ORDER BY 2 ASC, 1 DESC
)
```

SELECT * FROM popular_genre WHERE RowNo<=1

purchase bigint	country character varying (50)	name character varying (120)	genre_id character varying (50)	rowno bigint		
17	Argentina	Alternative & Punk	4	1		
34	Australia	Rock	1	1		
40	Austria	Rock	1	1		
26	Belgium	Rock	1	1		
205	Brazil	Rock	1	1		
333	Canada	Rock	1	1		
61	Chile	Rock	1	1		
143	Czech Republic	Rock	1	1		

Result: This query determines the most popular genre for each country by counting the number of purchases for each genre within each country, ordering by the count in descending order, and selecting the top genre per country.

Q3) Write a query that determines the customer that has spent the most on music for each country. Write a query that returns the country along with the top customer and how much they spent. For countries where the top amount spent is shared, provide all customers who spent this amount.

WITH customer_with_country AS(

SELECT customer.customer_id, first_name,last_name,billing_country,SUM(total) AS total_spending,ROW_NUMBER()OVER (PARTITION BY billing_country ORDER BY SUM(total)DESC)AS RowNo

FROM invoice

JOIN customer ON customer.customer_id=invoice.customer_id

GROUP BY 1,2,3,4

ORDER BY 4 ASC,5 DESC)

SELECT* FROM customer_with_country WHERE RowNo<=1

Result: This query identifies the top-spending customer in each country by summing their total invoice amounts, grouping by customer and country, ordering by the total spent in descending order, and selecting the top spender per country.

Conclusion

The Music Store Data Analysis Project demonstrates the power of SQL in extracting valuable insights from a relational database. By addressing a variety of problems at different difficulty levels, the project provides a comprehensive analysis of the music store's data, helping to identify key employees, top customers, popular music genres, and more. These insights can be used to make informed business decisions and strategize future marketing efforts.