

Universität Ulm

Abgabe: Bis Dienstag, 28.06.2022, 14:00 Uhr

Dr. Gerhard Baur Lars von der Heide Sommersemester 2022 Punktzahl: 17

Übungen Analysis 1 für Informatiker und Ingenieure: Blatt 10

Aufgabe 1: (2+2)

a) In §2 des 3. Kapitels haben wir um die Ableitung der Exponentialfunktion zu bestimmen ohne Beweis benutzt, dass

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Zeige diesen Grenzwert nun mithilfe der Taylorreihe von e^x aus der Vorlesung!

b) In der Vorlesung wurde die Darstellung $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ hergeleitet. Neben dieser Darstellung gilt auch die Folgende:

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n$$

Zeige, dass diese Darstellung stimmt, berechne also den Grenzwert auf der rechten Seite. Hinweis: In diesem Kontext darf n auch als kontinuierliche Variable aufgefasst werden (also wie eine reelle Zahl behandelt werden)

Aufgabe 2: (3+3+2+2)

- a) Wir betrachten die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = \sin(x)$.
 - (i) Berechne mithilfe des Satzes von Taylor $\sin\left(\frac{1}{10}\right)$ bis auf einen Fehler von 10^{-4} genau.
 - (ii) Lässt sich, wie bei der Exponentialfunktion, die Funktion $f(x) = \sin(x)$ auch als unendliche Reihe schreiben? Begründe und gib im positiven Falle die resultierende Reihe an.
- b) Wir betrachten nun die Funktion $f: [-1, \infty) \to \mathbb{R}_0^+$ mit $f(x) = \sqrt{1+x}$.
 - (i) Bestimme das dritte Taylorpolynom von f mit Entwicklungspunkt a=0.
 - (ii) Zeige die Restgliedabschätzung $|R_3(x)| < \frac{1}{4} \cdot 10^{-3}$ für $|x| < \frac{1}{5}$.

Aufgabe 3: (3) Zeige, dass $f(x) = \sum_{k=0}^{n} c_k x^k$ sich darstellen lässt als $f(x) = \sum_{k=0}^{n} b_k (x-a)^k$ wobei $b_k = \sum_{l=k}^{n} \binom{l}{k} c_l a^{l-k}$. Bemerkung: Man hat also erreicht, dass man f als Polynom in (x-a) schreibt.