Please check the examination details belo	ow before ente	ering your candidate	information			
Candidate surname		Other names				
Centre Number Candidate Nu	umber					
Pearson Edexcel Inter	nation	al Advan	ced Level			
A Level C	louds	出品				
Time: 1 hour 30 minutes	Paper reference	WMA	11/01			
Mathematics			- 10			
International Advanced Su	ubsidiar	y/Advanced	d Level			
Pure Mathematics P1						
You must have:	l Tables (Vel	llow) calculator	Total Marks			
Mathematical Formulae and Statistica	i iabies (iei	ilow), calculator	- 11			

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 11 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

 Turn over

- 1. The curve C has equation $y = \frac{1}{8}x^3 \frac{24}{\sqrt{x}} + 1$
 - (a) Find $\frac{dy}{dx}$, giving the answer in its simplest form.

(3)

The point P(4, -3) lies on C.

(b) Find the equation of the tangent to C at the point P. Write your answer in the form y = mx + c, where m and c are constants to be found.

(3)

2.	The point A has coordinates $(-1, 5)$ and the point B has coordinates $(4, 1)$.	
	The line l passes through the points A and B .	
	(a) Find the gradient of <i>l</i> .	(2)
	(b) Find an equation for l , giving your answer in the form $ax + by + c = 0$ where a , b and c are integers.	(2)
	The point M is the midpoint of AB .	
	The point C has coordinates $(5, k)$ where k is a constant.	
	Given that the distance from M to C is $\sqrt{13}$	
	(c) find the exact possible values of the constant k .	(4)

3.

Figure 1

Figure 1 shows a semicircle with centre O and radius 3 cm. XY is the diameter of this semicircle. The point Z is on the circumference such that angle XOZ = 1.3 radians. The shaded region enclosed by the chord XZ, the arc ZY and the diameter XY is a template for a badge.

Find, giving each answer to 3 significant figures,

(a) the length of the chord XZ,

(2)

(b) the perimeter of the template XZYX,

(4)

(c) the area of the template.

(4)

4. The point P(2, 3) lies on the curve with equation y = f(x). State the coordinates of the image of P under the transformation represented by the curve with equation

(a)
$$y = f(x+2)$$
 (1)

(b)
$$y = -f(x)$$
 (1)

(c)
$$2y = f(x)$$
 (1)

(d)
$$y = f(x) - 4$$
 (1)

5. A curve has equation y = f(x).

The point $P\left(4, \frac{32}{3}\right)$ lies on the curve.

Given that

- $\bullet \quad f''(x) = \frac{4}{\sqrt{x}} 3$
- f'(x) = 5 at P

find

(a) the equation of the tangent to the curve at P, writing your answer in the form y = mx + c, where m and c are constants to be found,

(2)

(b) f(x).

(8)

15

6.

Figure 2

Figure 2 shows a plot of the curve with equation $y = \sin \theta$, $0 \le \theta \le 360^{\circ}$

(a) State the coordinates of the minimum point on the curve with equation

$$y = 4\sin\theta, \quad 0 \leqslant \theta \leqslant 360^{\circ}$$
 (2)

A copy of Figure 2, called Diagram 1, is shown on the next page.

(b) On Diagram 1, sketch and label the curves

(i)
$$y = 1 + \sin \theta$$
, $0 \leqslant \theta \leqslant 360^{\circ}$

(ii)
$$y = \tan \theta$$
, $0 \leqslant \theta \leqslant 360^{\circ}$

(2)

(c) Hence find the number of solutions of the equation

(i)
$$\tan \theta = 1 + \sin \theta$$
 that lie in the region $0 \le \theta \le 2160^{\circ}$

(ii)
$$\tan \theta = 1 + \sin \theta$$
 that lie in the region $0 \leqslant \theta \leqslant 1980^{\circ}$

(3)

7	(0)	Find	naina	alaabra	011 #001	colutions	$\circ f$
/ •	(a)	ГШu,	using	aigeora,	all leal	solutions	ΟI

$$2x^3 + 3x^2 - 35x = 0$$

(3)

$$2(y-5)^6 + 3(y-5)^4 - 35(y-5)^2 = 0$$

(4)

19

8.	(Solutions based	entirely on	oranhical o	or numerical	methods	are not	accentable)
0.	(Doiniions buseu	Chillet City On	grupmeure	n numericai	memous	are noi	acceptable.

Given

$$f(x) = 2x^{\frac{5}{2}} - 40x + 8 \qquad x > 0$$

(a) solve the equation f'(x) = 0

(4)

(b) solve the equation f''(x) = 5

(3)

9. Given that

$$y = \frac{64x^6}{25}, \ x > 0$$

express each of the following in the form kx^n where k and n are constants.

(a) $y^{-\frac{1}{2}}$

(3)

(b) $(25y)^{\frac{2}{3}}$

(2)

10. Find the range of values of x for which

(a)
$$4(x-2) \leqslant 2x+1$$

(2)

(b)
$$(2x-3)(x+5) > 0$$

(3)

(c) **both**
$$4(x-2) \le 2x+1$$
 and $(2x-3)(x+5) > 0$

(1)

11.		$\frac{4}{\sqrt{x}} + 6x^{-3}, x > 0$	
Find $\int f(x) dx$, simp	lifying each term.		(5)

TOTAL FOR PAPER IS 75 MARKS