Welcome to the CoGrammar Datasets and DataFrames

The session will start shortly...

Questions? Drop them in the chat. We'll have dedicated moderators answering questions.

Data Science Session Housekeeping

- The use of disrespectful language is prohibited in the questions, this is a supportive, learning environment for all - please engage accordingly.
 (Fundamental British Values: Mutual Respect and Tolerance)
- No question is daft or silly ask them!
- There are **Q&A sessions** midway and at the end of the session, should you wish to ask any follow-up questions. Moderators are going to be answering questions as the session progresses as well.
- If you have any questions outside of this lecture, or that are not answered during this lecture, please do submit these for upcoming Academic Sessions. You can submit these questions here: Questions

Data Science Session Housekeeping cont.

- For all non-academic questions, please submit a query:
 www.hyperiondev.com/support
- Report a safeguarding incident:
 www.hyperiondev.com/safeguardreporting
- We would love your feedback on lectures: Feedback on Lectures

Skills Bootcamp 8-Week Progression Overview

Fulfil 4 Criteria to Graduation

Criterion 1: Initial Requirements

Timeframe: First 2 Weeks
Guided Learning Hours (GLH):
Minimum of 15 hours
Task Completion: First four tasks

Due Date: 24 March 2024

Criterion 2: Mid-Course Progress

60 Guided Learning Hours

Data Science - **13 tasks** Software Engineering - **13 tasks** Web Development - **13 tasks**

Due Date: 28 April 2024

Skills Bootcamp Progression Overview

Criterion 3: Course Progress

Completion: All mandatory tasks, including Build Your Brand and resubmissions by study period end Interview Invitation: Within 4 weeks post-course Guided Learning Hours: Minimum of 112 hours by support end date (10.5 hours average, each week)

Criterion 4: Demonstrating Employability

Final Job or Apprenticeship
Outcome: Document within 12
weeks post-graduation
Relevance: Progression to
employment or related
opportunity

Learning objectives

Learn how to **read** and **manipulate data** with **Pandas**

- Python packages for data science: NumPy and Pandas
- Datasets & DataFrames
- Read data from different sources, select specific columns and rows in a DataFrame
- Apply built-in DataFrame methods, grouping operations
- ❖ Jupyter Notebook

Python packages for data science

NumPy

Python packages for data science: NumPy

NumPy - stands for Numerical Python

\$ pip install numpy

- Python arrays differ from lists
 - ➤ Elements of same datatype
 - Can handle arithmetic operations
 - > Preferred for larger chunks of data
 - > Requires proper modules to perform operations on them
- Array oriented programming, NumPy has smaller memory consumption, better runtime, and ease of data manipulation

Using NumPy

import numpy as np

```
import numpy as np
#Define a list
distances = [1, 13.1, 26.2, 100]
print(type(distances))
print(distances)
#Output: <class 'list'>
#Output: [1, 13.1, 26.2, 100]
#Convert to numpy array
numpy_dist = np.array(distances)
print(type(numpy dist))
print(numpy_dist)
#Output: <class 'numpy.ndarray'>
#Output: [ 1. 13.1 26.2 100. ]
```


Using NumPy

```
import numpy as np
#Define a list
distances = [1, 13.1, 26.2, 100]
#Convert to numpy array
numpy dist = np.array(distances)
#Convert distances in miles to km
#Using numpy scalar multiplication
conversion = numpy dist * 1.60934
print(conversion)
#Output: [1.60934, 21.082354, 42.164708, 160.934]
```

```
#Using core Python
#Define a list
distances = [1, 13.1, 26.2, 100]
#Define an empty array to store km distances
conversion = []
for x in distances:
    conversion.append(x*1.60934)
print(conversion)
```


Python packages for data science

Pandas

Pandas

Pandas, built on NumPy, is a Python module that contains high-level data structures and tools designed for fast and easy data analysis.

\$ pip install pandas

import pandas as pd

- Fundamental pandas data structures
 - > Series (1-dimensional labelled array, can hold any data type)
 - ➤ DataFrame (2-dimensional)
 - Panel (pandas -> panel data)

	Name	
0	Asha	
1	Ben	
2	Candice	
3	Derek	
4	Miriam	
5	Seth	
6	Zara	

	Name	Age	Marks
0	Asha	12	96
1	Ben	12	92
2	Candice	13	94
3	Derek	12	96
4	Miriam	12	95
5	Seth	13	93
6	Zara	12	95

				DC	В	Atten	ding
		Gen	der	Dieta	ary	Location	on _
	1	Name)	Age		Marks	
0		Asha		12		96	
1		Ben		12		92	
2	С	andic	е	13		94	
3	[Derek	(12		96	<u> </u>
4	N	1irian	n	12		95	[<u></u>
5		Seth		13		93	
6		Zara		12		95	

Datasets

Datasets

- A dataset is a structured collection of information relevant to a specific investigation or project
- In data science, they provide the raw material for analysis and modeling. Understanding different dataset formats ensures you can work with data from various sources (databases, online repositories, etc.).
- With the help of Pandas DataFrames, we can effortlessly manipulate data to suit our needs.

DataFrames

CoGrammar

DataFrames

- A DataFrame is the way the Pandas library in Python represents tabular data. It's like a powerful *spreadsheet* within your code.
- Rows: Each row represents a single observation or data point (e.g., a person, a product, a transaction).
- Columns: Each column represents a variable or feature (e.g., height, price, date). Data within a column usually shares the same data type (numbers, text, etc.).

Pandas DataFrame

Pandas DataFrame

The pandas' library documentation defines a DataFrame as a "twodimensional, size-mutable, with labelled rows and columns."

Anatomy of a DataFrame

Pandas DataFrame

- Pandas provides functions like pd.read_csv(), pd.read_excel(), pd.read_sql(), to bring your data directly into your coding environment as DataFrames.
- This is where you start turning your raw data into something easily workable.

```
import pandas as pd

# url = 'https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv'
# df = pd.read_csv(url)
from sklearn import datasets
iris = datasets.load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
```

Grammar

• df.head(), df.tail(): Peek at the top and bottom rows for initial understanding

```
df.head()
   0.0s
   sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) species
0
                  5.1
                                      3.5
                                                          1.4
                                                                             0.2
                  4.9
                                                          1.4
                                                                             0.2
                                      3.0
                  4.7
                                      3.2
                                                          1.3
                                                                             0.2
                                                                                         0
3
                  4.6
                                      3.1
                                                          1.5
                                                                             0.2
4
                  5.0
                                      3.6
                                                          1.4
                                                                             0.2
```


df.head(), df.tail(): Peek at the top and bottom rows for initial understanding

```
df.tail()
```

✓ 0.0s

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

df.shape: Tells you the dimensions (rows, columns) of your data.

```
df.shape

✓ 0.0s

(150, 5)
```


df.info(): Gives the data types of each column, and if columns have

missing values

```
df.info()
✓ 0.0s
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
    Column
                       Non-Null Count
                                       Dtype
    sepal length (cm) 150 non-null
                                       float64
    sepal width (cm) 150 non-null
                                       float64
    petal length (cm) 150 non-null
                                       float64
    petal width (cm) 150 non-null
                                       float64
    species
                  150 non-null
                                       int64
dtypes: float64(4), int64(1)
memory usage: 6.0 KB
```


df.describe(): Quick summary statistics for numerical columns.

df.describe()

✓ 0.0s

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333	1.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

- Selecting Columns: You often work with a subset of features.
- Using df[['column1', 'column2']] gets you only specific columns.

```
df.columns

√ 0.0s

Index(['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)',
       'petal width (cm)', 'species'],
      dtype='object')
   # Select specific columns
   df_selected = df[['species', 'petal length (cm)', 'petal width (cm)']]
✓ 0.0s
```


Filtering Rows: Focus on specific subsets meeting certain conditions, e.g., df[df['species'] == 'setosa']

```
# Filter by flower species
df_setosa = df[df['species'] == 'setosa']
```

✓ 0.0s

Creating New Columns: Derived features, e.g., calculating area from length and width.

```
# Create a new calculated column
df['petal area (cm^2)'] = df['petal length (cm)'] * df['petal width (cm)']

0.0s
```


Renaming/Dropping: Improve clarity or get rid of unneeded data.

Data manipulation gives you a highly customized DataFrame focused on your exact analysis needs.

- Selecting Columns: You often work with a subset of features.
- Using df[['column1', 'column2']] gets you only specific columns.

Built-in Methods

- Pandas offers a toolbox of functions for calculations:
 - > mean() Computes the mean for each column.
 - > min() Computes the minimum for each column.
 - > max() Computes the maximum for each column.
 - > std() Computes the standard deviation for each column.
 - > var() Computes the variance for each column.
 - > unique() Computes the number of unique values in each column.
- This is the start of understanding the characteristics of your data.

Grouping and Aggregation

df.groupby(): Divide your data based on categories in a column (e.g., group by species).

```
print(df['petal area (cm^2)'].mean())
   print(df['species'].nunique())
   print(df.groupby('species')['petal length (cm)'].std())
   0.0s
5.794066666666667
3
species
     0.173664
     0.469911
     0.551895
Name: petal length (cm), dtype: float64
```


Crouping and Aggregation

* .agg(): Apply calculations within each group (e.g., average length, maximum width).

	mean_petal_length	max_sepal_width
species		
0	1.462	4.4
1	4.260	3.4
2	5.552	3.8

Jupyter Notebook

- An interactive environment perfect for data science work. They let you combine code, the results of the code (output), and explanatory text (like in a scientific report).
- * This fosters clear data exploration and storytelling, all in one place

Installation

Running

\$ pip install jupyter

\$ jupyter notebook

\$ python -m notebook

:: Jupyter Notebook

Starting the Jupyter Notebook Server, default browser goes to the URL http://localhost:8888/tree

:: Jupyter Notebook

Creating, naming notebook, code, markdown

Next Lecture

Data visualisation

Data Visualisation

- There is a whole lecture dedicated to this, libraries like Matplotlib and Seaborn make visually exploring data easy.
- Plots (scatter plots, histograms, etc.) rapidly uncover relationships and distributions that are less clear from tables of numbers.

Some good examples are in the <u>Seaborn Gallery</u>.

Questions and Answers

Thank you for attending

