Отчёт о выполнении

семестрового проекта

«Оросительная система на основе микроконтроллера ESP32-WROOM-32U и вспомогательных компонентов с использованием языка программирования C++*

Выполнил: студент гр. Б04-207 А. А. Шелковникова студент гр. Б04-208 П. А. Алябушев

Содержание

Tov	Гехническое задание																								
	2.1 Описание																								
2.1	Описа	ание																				 			
2.2	Реали																								
	2.2.1	Ma	акет	ная																		 			
	2.2.2	Φ_{I}	РИЕ	еска	R																	 			
	2.2.3	Te	хнич	еск	ая																	 			
	2.2.4																								
2.3	Резул	ьтал	ъ р	абот	ъ																	 			

1 Введение

Постановка задачи: В силу недостаточного контроля со стороны человека многие растения страдают из-за неподходящих условий содержания.

Тропические растения, такие как, например, орхидеи, особенно чувствительны к показателям влажности. И хотя широко продаваемые представители этого семейства являются гибридными и более привычными к квартирным условиям, проблема, тем не менее, не исчезает. Достаточный уровень влажности - 50-80% - должен поддерживаться около корней и, более того, изменяться в зависимости от времени суток.

В данной работе предлагается решение проблемы с контролем такого аспекта, как влажность среды. Мы предлагаем автоматизацию пополнения запаса воды в горшке цветка и возможность удаленного контроля полива.

В работе используются: датчик влажности и температуры DHT11, плата ESP32-WROOM-32U, насос 9V.

2 Техническое задание

2.1 Описание

Рис. 1: Пример горшка для растения

Оросительная система состоит из двух горшков. В первом - верхнем - находятся корни растения, а в его дне проделаны отверстия для стекания воды при поливе сверху и воздухоснабжении корневой системы. Первый горшок расположен во втором, большего размера, не достигая его дна. В больший горшок наливается вода, которая, испаряясь, будет обеспечивать необходимый уровень влажности внутри системы горшков - т.е. около корней. На стенке большего сосуда будет расположен датчик влажности, от показаний которого будет зависит включение подачи воды по шлангу в горшок.

Оросительная система должна поддерживать следующий функционал:

- 1. снятие показаний влажности и температуры;
- 2. подача воды в горшок в зависимости от текущих влажности, температуры и времени суток;
- 3. беспроводную передачу данных о // и о совершенном поливе;
- 4. беспроводное управление поливом;

2.2 Реализация

2.2.1 Макетная

добавить схему

Горшок с датчиком. В большем проделаны два отверстия для проводов. Через одно проходят провода от датчика к плате, а через второе проведен провод от источника воды (бутыли), в которой находится водяной насос.

Для отверстия со шлангом может понадобиться резиновое уплотнительное кольцо https://aliexpress.ru/popular/%D1%80%D0%B5%D0%B7%D0%B8%D0%BD%D0%BE%D0%B2%D0%BE%D0%B5-%D1%83%D0%BF%D0%BB%D0%BE%D1%82%D0%BD%D0%BB%D1%82%D0%BB%D1%8C%D0%BE%D0%B5-%D0%BA%D0%BE%D0%BB%D1%8C%D1%86%D0%BE-%D0%B4%D0%BB%D1%8F-%D0%BE%D1%82%D0%B5%D1%80%D1%81%D1%82%D0%B8%D0%B9.html.

Датчик влажности может быть выведен из строя, если будут присутствовать газы, содержащие диоксид серы, пары соляной кислоты. Высокая концентрация паров этанола приведёт к полному повреждению чувствительного слоя датчика (информация с https://developer.alexanderklimov.ru/arduino/sensors/dht.php).

2.2.2 Физическая

Понадобится эмпирически полученная калибровочная прямая, которая позволит определять, как быстро и на сколько изменяется влажность в горшке в зависимости от объема поданной воды.

Кроме того, измеряемое с помощью датчика значение влажности можешь иметь погрешность. Необходимо определить, насколько снимаемые показатели отличаются от реальных.

2.2.3 Техническая

1. Мини насос

Рис. 2: Пример мембранного мини-насоса

Необходимо подобрать и купить. Например:

- https://www.ozon.ru/category/vodosnabzhenie-dlya-dachi-36073/?from_global= true&sorting=price&text=%D0%BC%D0%B5%D0%BC%D0%B1%D1%80%D0%B0%D0%BD%D0%BD%D1%81%D0%BB*,D1%81
- https://aliexpress.ru/item/33062422870.html?algo_expid=e5b2ca67-bb16-4d78-b644-81algo_pvid=e5b2ca67-bb16-4d78-b644-819dca8f5ac1&btsid=0b8b15cb16084851413918717ed5sku_id=12000016585393215&ws_ab_test=searchweb0_0%2Csearchweb201602_%2Csearchweb20&af=1954_4090455&cn=2urus9ohqbkhchalldhgni8ilroxfkz3&cv=2&cv_source=default&dp=2urus9ohqbkhchalldhgni8ilroxfkz3&sub=42s9ohqbxcds8726ogpwl7opr9m2njym&utm_campaign=1954_4090455&utm_content=2&utm_medium=cpa&utm_source=aerkol&aff_fcid=8c2e13483b3646a49ccdf4bb931e60be-1709312195358-04460-_DecfbhB&aff_fsk=_DecfbhB&aff_platform=api-new-link-generate&sk=_DecfbhB&aff_trace_key=8c2e13483b3646a49ccdDecfbhB&terminal_id=b0e5d56fde834fec9d3359cf0c194952
- https://iarduino.ru/shop/Mehanika/membrannyy-nasos.html

Необходимо проверить наличие шланга и купить отдельно при необходимости.

Прямое подключение к Arduino может привести к выходу из строя микроконтроллера, поэтому необходимо использовать либо реле, либо полевой транзистор. Хор

2. Микроконтроллер Arduino Uno R3

Рис. 3: Микроконтроллер Arduino Uno R3

Ссылка на документацию https://docs.arduino.cc/hardware/uno-rev3/#suggested-libraries

3. Макетная плата

Рис. 4: Макетная плата

Понадобится, если не хотим все спаивать.

4. Интернет-модуль

- Родной Arduino https://docs.arduino.cc/hardware/ethernet-shield-rev2/, но дорогой.
- ESP8266 https://aliexpress.ru/item/32341788594.html?algo_expid=7e7ac9b9-5de7-4305 algo_pvid=7e7ac9b9-5de7-4305-aef3-fefb5798762a&btsid=0b8b036a16047743081324301e0dws_ab_test=searchweb0_0%2Csearchweb201602_%2Csearchweb201603_&af=1954_4090455&cn=2urus9pwr11b3y602eqwz8s0siwjoq59&cv=2&cv_source=default&dp=2urus9pwr11b3y602eqsub=42s9pwr12j4g4s2cf7tly0ztxtvamx6t&utm_campaign=1954_4090455&utm_content=

2&utm_medium=cpa&utm_source=aerkol&aff_fcid=5b9fa458df33472183bf693fa0e74535-1709DdfEw2N&aff_fsk=_DdfEw2N&aff_platform=api-new-link-generate&sk=_DdfEw2N&aff_trace_key=5b9fa458df33472183bf693fa0e74535-1709378317863-07690-_DdfEw2N&terminal_id=b0e5d56fde834fec9d3359cf0c194952&sku_id=57729469482

- ESP32
- 5. Датчик температуры и влажности DHT11

Рис. 5: Датчик температуры и влажности DHT11

6. Провода Проверить, хватает ли длины и количества.

2.2.4 Логическая

Подключение:

1. насоса к Arduino

https://3d-diy.ru/wiki/arduino-mechanics/miniatyurnyj-vodyanoj-nasos-pompa-rs-360sh/

- 2. датчика
 - несколько датчиков к одному АЦП https://www.instructables.com/ESP8266-with-Multiple-Analog-Sensors/
- 3. ESP
 - немного общих слов о моделях и прошивке https://habr.com/ru/articles/547330/
 - видео-гайд о прошивке ESP8266 через Arduini IDE https://habr.com/ru/articles/371853/
- 4. выход с ESP в интернет

https://www.instructables.com/Control-ESP8266-Over-the-Internet-from-Anywhere/

2.3	Результаты	работы

3 Выводы

В ходе работы были