

- Login
- Open Python
- wait for further instruction

Class Structure

- Last week explanation
- Introduce algorithm complexity
- Reveal this weeks questions

5/12/2019 Rankings

1	€ 695	toxekgfx	79	25
2		ktissan	55	21
3		593368	21	3
4		Parneet_J14	3	1
4		Bhagya_K	3	1
4		DeronB	3	1
4		Sohban_M	3	1
4		Aj	3	1
4		10deep_	3	1
4		dhanush2003	3	1
4		Amsan5941	3	1
4		sajeenth 19	3	1

Pseudo Code for J2 Shifty Sum

- Take inputs (number and shift value)
- 2. Create counter = 0
- 3. Create result variable to store the answer result = 0
- 4. Loop from 0 to shift value+1 (Since we want to shift n by k amounts)
 - a. result += (number * 10° counter) ($12^{*}10^{\circ}$) + ($12^{*}10^{\circ}$) + ($12^{*}10^{\circ}$) ...

Print out result

Remember: that the range(n) function starts at 0, and goes to n-1

(For example range(5) = 0,1,2,3,4)

Pseudo Code for S2 Pretty Average Primes

- 1. Create a function to find if a number is prime or not.
 - a. Loops from 2-√number
- 2. Loop through from 0 to T: (T represents each integer)
 - a. Check if number is prime and if (2*T)-number is prime
 - i. Store both numbers in a list
 - ii. Break loop
- 3. Print out all the numbers

Prime efficient algorithm

```
import math

def test_prime(n):
    for i in range(2,round(math.sqrt(n))):
        if n % i == 0:
            return False
    return True
```

- In this method we only check numbers from 2 to sqrt(n)
- Remember to copy this code down and implement it into yours!

Algorithm Complexity

The time complexity of a program is the amount of time it takes to run for all inputs

The space complexity of a program is the amount of space in takes in bytes

Why does this matter?

- We are given a time and space limit of all our programs.
- If we exceed the limit we will fail the problem

Time Complexity

 If a program requires the same amount of time to run on all inputs, then the program has a constant time complexity.

```
e.g)
    first_number = int(input())
    second_number = int(input())
    print(first_number+second_number)
```

Time Complexity

 If the amount of time of a algorithm increases with the increase of input value then it has a <u>linear time complexity</u>.

```
e.g)

n = int(input())
for i in range(n):
    print(i)
```

time complexity can be represented by O(n)

Exercise

Find the time complexity of this program:

```
n = int(input())
for i in range(n):
   for x in range(n):
```

Quadratic time complexity

 The running time of a nested loop is proportional to the square of n

Therefore the time complexity is n²

Exercise

Find the time complexity of this program:

```
import math

def test_prime(n):
    for i in range(2,round(math.sqrt(n))):
        if n % i == 0:
            return False
    return True
```

Comparing Big O Functions

This weeks problems

Grade 11's:

Grade 12's:

2016 J3 - Hidden Palindrome

2017 S1 - Sum Game

2012 J4 - Big Bang Secrets

2017 S2 - High Tide, Low Tide

*move on to the next problem one only after finishing the first problem

For beginner programmers go to learnpython.org and try doing 'Hello World' tutorial