Mając # możemy zdefiniować operację odwrotną:

Definicja 1.

$$b: T_p^*M \to T_pM$$
, taką, że $\alpha \in T_p^*M$, $\alpha = v_i dx^i$

to wtedy

$$T_pM \ni v \stackrel{def}{=} \alpha^{\flat} = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n g^{ij} v_j \frac{\partial}{\partial x^i}.$$

Jeżeli wprowadzimy oznaczenie: $v^i = \sum_{j=1}^n g^{ij}v_j$, to mamy

$$\alpha^{\flat} = \sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}}.$$

Przykład 1.

$$[g_{ij}] = \begin{bmatrix} 1 & r^2 & \\ & r^2 \sin^2 \theta \end{bmatrix}$$

$$v = a \frac{\partial}{\partial r} + b \frac{\partial}{\partial \theta} + c \frac{\partial}{\partial \varphi}, \quad \alpha = v^{\sharp} = \frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} g_{ij} v^j dx^i =$$

$$= \frac{1}{2} \left(g_{11} v^1 dx^1 + g_{12} v^2 dx^1 + g_{13} v^3 dx^1 \right) + \left(g_{21} v^1 dx^2 + g_{22} v^2 dx^2 + g_{23} v^3 dx^2 \right) +$$

$$+ \left(g_{31} v^1 dx^3 + g_{32} v^2 dx^3 + g_{33} v^3 dx^3 \right).$$

czyli mamy

$$\alpha = v^{\sharp} = 1 \cdot adr + r^2bd\theta + r^2\sin^2\theta cd\varphi.$$

 $Dostaliśmy \ z \ laboratorium \ wektor: \ v = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = ai_r + bi_\theta + ci_\varphi = a\frac{\partial}{\partial r} + b\frac{1}{r}\frac{\partial}{\partial \theta} + c\frac{1}{r\sin\theta}\frac{\partial}{\partial \varphi}. \ Chcemy \ ten$ wektorek podnieść.

$$\alpha = v^{\sharp} = (g) dr + \left(r^{2} \frac{b}{r}\right) d\theta + \left(r^{2} \sin^{2} \theta \frac{1}{r \sin \theta} c\right) d\varphi =$$

$$= adr + rbd\theta + r \sin \theta cd\varphi$$

Przykład 2. Niech $\alpha = adr + bd\theta + cd\varphi$. Chcemy zrobić wektorek v, który jest dokładnie tyle:

$$v = \alpha^{\flat} = (1 \cdot a) \frac{\partial}{\partial r} + \left(\frac{1}{r^2}b\right) \frac{\partial}{\partial \theta} + \left(\frac{1}{r^2 \sin^2 \theta}c\right) \frac{\partial}{\partial \varphi}.$$

Czyli ta nasza
$$\alpha^{\flat} = \begin{bmatrix} a \\ \frac{b}{r^2} \\ \frac{c}{r^2 \sin^2 \theta} \end{bmatrix}_{\frac{\partial}{\partial r}, \frac{\partial}{\partial \theta}, \frac{\partial}{\partial \varphi}} = a \frac{\partial}{\partial r} + \frac{b}{r} \cdot \frac{1}{r} \frac{\partial}{\partial \theta} + \frac{c}{r \sin \theta} \cdot \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi}.$$

Okazuje się, że
$$\alpha^{\flat} = \begin{bmatrix} b \\ \frac{b}{r} \\ \frac{c}{r \sin \theta} \end{bmatrix}_{i_r, i_{\theta}, i_{\theta}}$$

Definicja 2. $niech M = \mathbb{R}^3$,

$$\Lambda^{0}(M) \ni f \stackrel{d}{\to} df \in \Lambda^{1}(M) \stackrel{\flat}{\to} (df)^{\flat} \in T_{p}M$$

nazywamy gradientem funkcji $f: \nabla f \stackrel{def}{=} (df)^{\flat}$, gdzie $f: M \to \mathbb{R}^1$, $f - klasy C^k(M)$

 $\begin{array}{l} \mathbf{Przykład} \ \mathbf{3.} \ f(r,\theta,\varphi): \mathbb{R}^3 \to \mathbb{R}^1, \\ df = \frac{\partial f}{\partial r} dr + \frac{\partial f}{\partial \theta} d\theta + \frac{\partial f}{\partial \varphi} d\varphi \end{array}$

$$(df)^{\flat} = 1 \frac{\partial f}{\partial r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial f}{\partial \theta} \frac{\partial}{\partial \theta} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial f}{\partial \varphi} \frac{\partial}{\partial \varphi} =$$

$$= \frac{\partial f}{\partial r} \frac{\partial}{\partial r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \frac{1}{r} \frac{\partial}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \varphi} \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi}.$$

Siła tego polega na tym, że jak dostaniemy na ulicy tensor metryczny, to przez 3 minuty w cieniu możemy obliczyć np. gradient funkcji:

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial r} \\ \frac{1}{r} \frac{\partial f}{\partial \theta} \\ \frac{1}{r \sin \theta} \frac{\partial f}{\partial \varphi} \end{bmatrix}.$$

Przykład 4. Dostaliśmy tensor metryczny i chcemy obliczyć $\nabla f(\xi, \eta, \delta)$, $\begin{bmatrix} \heartsuit \\ & \triangle \end{bmatrix}$.

$$\nabla f = \begin{bmatrix} \frac{1}{\sqrt{\bigtriangledown}} \frac{\partial f}{\partial \xi} \\ \frac{1}{\sqrt{\bigtriangleup}} \frac{\partial f}{\partial \eta} \\ \frac{1}{\sqrt{\square}} \frac{\partial f}{\partial \delta} \end{bmatrix}.$$

$$M = \mathbb{R}^{3}$$

$$f \to \Lambda^{0}(M) \qquad \dim \Lambda^{0}(M) = 1 \downarrow d$$

$$T_{p}M \overset{\flat}{\longleftrightarrow} \Lambda^{1}(M) \qquad \dim \Lambda^{1}(M) = 3 \downarrow d$$

$$\Lambda^{2}(M) \qquad \dim \Lambda^{2}(M) = 3 \downarrow d$$

$$\Lambda^{3}(M) \qquad \dim \Lambda^{3}(M) = 1.$$

Definicja 3. Niech M - rozmaitość, $\dim M = n$, $[g_{ij}]$ - tensor metryczny. Operację $\Lambda^L(M) \to \Lambda^{n-L}(M)$ nazywamy gwiazdką "*" Hodge'a i definiujemy następująco:

$$* \left(dx^{i_1} \wedge dx^{i_2} \wedge \ldots \wedge dx^{i_L} \right) = \frac{\sqrt{g}}{(n-L)!} g^{i_1 j_1} g^{i_2 j_2} g^{i_L j_L} \in_{j_1 j_2 \ldots j_L k_1 k_2 \ldots k_{n-L}} dx^{k_1} \wedge dx^{k_2} \wedge \ldots \wedge dx^{k_{n-1}},$$

 $gdzie \in_{i_1,...,i_n} = \{sgn(i_1,...,i_n) \ jeżeli \ i_m \neq i_p, \quad 0 \ w.p.p\}$

Przykład 5.
$$M=\mathbb{R}^3,\ [g_{ij}]=egin{bmatrix}1&&&&1\&&&1\end{bmatrix}$$

$$*(dx) = \frac{1}{(3-1)!} g^{1j_1} \in_{j_1 k_1 k_2} dx^{k_1} \wedge dx^{k_2} = \frac{1}{(3-1)!} g^{11} \in_{1k_1 k_2} dx^{k_1} \wedge dx^{k_2} =$$

$$= \frac{1}{(3-1)!} g^{11} \left[\in_{123} dx^2 \wedge dx^3 + \in_{132} dx^3 \wedge dx^2 \right] = \frac{1}{2} \left[1 \cdot dx^2 \wedge dx^3 - dx^3 \wedge dx^2 \right]$$

$$= dx^2 \wedge dx^3.$$

 $Czyli*(dx) = dy \wedge dz.$

$$* (dy) = *(dx^{2}) = \frac{1}{(3-1)!} g^{22} \in_{2k_{1}k_{2}} dx^{k_{1}} \wedge dx^{k_{2}} = \frac{1}{(3-1)!} \cdot g^{22} \left[\in_{213} dx^{1} \wedge dx^{3} + \in_{231} dx^{3} \wedge dx^{1} \right] = \frac{1}{(3-1)!} 1 \left[-dx^{1} \wedge dx^{2} + 1dx^{3} \wedge dx^{1} \right] = dx^{3} \wedge dx^{1}.$$

 $Wiec*(dy) = dz \wedge dx.$

$$* (dz) = \frac{1}{(3-1)!} g^{33} \in_{3k_1k_2} dx^{k_1} \wedge dx^{k_2} = \frac{1}{2} g^{33} \left[\in_{321} dx^2 \wedge dx^1 + \in_{312} dx^1 \wedge dx^2 \right] = \frac{1}{2} 1 \left[-dx^2 \wedge dx^1 + dx^1 \wedge dx^2 \right].$$

 $Wiec*(dz) = dx \wedge dy$

$$\begin{aligned} \mathbf{Przykład} \ \mathbf{6.} \ M &= \mathbb{R}^3, (r,\theta,\varphi), [g_{ij}] = \begin{bmatrix} 1 & r^2 \\ & r^2 \sin^2 \theta \end{bmatrix}. \\ &* (dr) = r^2 \sin \varphi d\theta \wedge d\varphi \\ &* (d\theta) = r^2 \sin \theta \frac{1}{r^2} d\varphi \wedge dr \\ &* (d\varphi) = \frac{r^2 \sin \theta}{r^2 \sin^2 \theta} dr \wedge d\theta \end{aligned}$$

Pytanko jest takie: Chcemy zapytać co to jest $*(dx \wedge dy)$?

$$* (dx^{1} \wedge dx^{2}) = \frac{\sqrt{g}}{(3-2)!} g^{1j_{1}} g^{2j_{2}} \in_{j_{1}j_{2}k_{1}} dx^{k_{1}} =$$

$$= \frac{1}{(3-2)!} g^{11} g^{22} \in_{123} dx^{3}.$$

Wiec $*(dx \wedge dy) = dz$.

A np. $*(dx \wedge dz)$:

$$\begin{split} * & (dx \wedge dz) = \frac{1}{(3-2)!} \in_{132} dx^2 = -dy \\ * & (dr \wedge d\theta) = r^2 \sin \theta \cdot \frac{1}{1} \cdot \frac{1}{r^2} d\varphi \\ * & (dr \wedge d\varphi) = -r^2 \sin \theta \frac{1}{1} \frac{1}{r^2 \sin^2 \theta} d\theta \\ * & (dx \wedge dy \wedge dz) = \frac{\sqrt{g}}{(3-3)!} g^{1j_1} g^{2j_2} g^{3j_3} \in_{j_1 j_2 j_3} = \sqrt{g} g^{11} g^{22} g^{33} \in_{123} = 1 \\ * & (dr \wedge d\theta \wedge d\varphi) = r^2 \sin \theta \cdot \frac{1}{r^2} \cdot \frac{1}{r^2 \sin^2 \theta} = \frac{1}{r^2 \sin \theta}. \end{split}$$

Definicja 4. $M = \mathbb{R}^3$

 $niech \ v \in T_pM$, operację

$$rot(v) \stackrel{def}{=} (*(dv^{\sharp}))^{\flat}$$

nazywamy rotacją wektora v i oznaczamy rot $v \stackrel{ozn}{=} \nabla \times v$. Operację

$$div \ v \stackrel{def}{=} d \ (*v^{\sharp})$$

nazywamy dywergencją i oznaczamy div $v \stackrel{ozn}{=} \nabla \cdot v.$

Uwaga: rotacji nie możemy wprowadzić np. na M takim, że $\dim M = 4$, bo $*(\Lambda^2(M)) \to \Lambda^2(M)$

Pozakonkursowo: chcemy zrobić z funkcji funkcję:

$$f \stackrel{d}{\longrightarrow} df \in \Lambda^1(M) \longrightarrow \underset{\text{operator Laplace}}{*d*df}.$$