Math 501 Homework (§3.6 Properly Divergent Sequences)

Problem 1. Prove that $x_n = \sqrt{n^2 - n - 1}$ is properly divergent.

Solution. Let's first prove, by induction, that ultimately, $x_n \ge n - 1$. The **base step** is clear at n = 2. For the induction step, assume the claim is true for a given n, and hence

$$x_n = \sqrt{n^2 - n - 1} \ge n - 1$$

$$x_n^2 = n^2 - n - 1 \ge n^2 - 2n + 1$$

$$x_n^2 + 2n \ge n^2 + 1$$

Squaring the subsequent term x_{n+1}^2 we get

=
$$(n+1)^2 - (n+1) - 1$$

= $n^2 + 2n - n - 1$
= $x_n^2 + 2n$
 $\ge n^2 + 1$ (from above)

In other words $x_{n+1} \ge \sqrt{n^2 + 1}$ which is > (n+1) - 1. Therefore $x_n \ge n - 1$ for $n \ge 2$.

By offsetting n and letting $y_n := (n-1)$ we have that $\lim(y_n) = +\infty$. Since $x_n \ge y_n$, $\lim(x_n) = +\infty$. I.e., $\sqrt{n^2 - n - 1}$ is properly divergent. \square