Calcul intégral et applications

Table des matières

1.	Intégrale de Lebesgue et intégrale de Riemann
2.	Théorèmes
	2.1. Convergence monotone (ou Beppo-Levi) · · · · · · · · · · · · · · · · · · ·
	2.2. Lemme de Fatou · · · · · · · · · · · · · · · · · · ·
	2.3. Convergence dominée · · · · · · · · · · · · · · · · · · ·
	2.4. Continuité et dérivabilité sous le signe intégral · · · · · · · · · · · · · · · · · · ·
	2.5. Fubini

1. Intégrale de Lebesgue et intégrale de Riemann

Théorème 1.1. Soit $a, b \in \mathbb{R}$ et $f :]a, b[\to \mathbb{R}$ une fonction. Alors f est **Lebesgue-intégrable** si et seulement si f est **localement Riemann-intégrable** et que son intégrale impropre est **absolument convergente** sur]a, b[. Dans ce cas

$$\int_{]a,b[} f(x) \, \mathrm{d}\lambda(x) = \int_a^b f(x) \, \mathrm{d}x.$$

2. Théorèmes

2.1. Convergence monotone (ou Beppo-Levi)

Théorème 2.1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions **mesurables positives**. Si $(f_n)_{n\in\mathbb{N}}$ est une suite **croissante**, alors $\lim_{n\to+\infty} f_n$ est mesurable positive et

$$\lim_{n \to +\infty} \int f_n \, \mathrm{d}\mu = \int_E \lim_{n \to +\infty} f_n \, \mathrm{d}\mu.$$

Corollaire 2.2. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables positives. Alors

$$\sum_{n=0}^{+\infty} \int_E f_n \, \mathrm{d}\mu = \int_E \sum_{n=0}^{+\infty} f_n \, \mathrm{d}\mu.$$

2.2. Lemme de Fatou

Théorème 2.3. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions **mesurables positives**. Alors

$$\liminf_{n \to +\infty} \int_E f_n \, \mathrm{d}\mu \ge \int_E \liminf_{n \to +\infty} f_n \, \mathrm{d}\mu.$$

Corollaire 2.4. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions **mesurables positives**. S'il existe une fonction positive g **intégrable** telle que pour tout $x\in E, \forall n\in\mathbb{N}, f_n(x)\leq g(x)$ alors

$$\limsup_{n \to +\infty} \int_{E} f_n \, \mathrm{d}\mu \le \int_{E} \limsup_{n \to +\infty} f_n \, \mathrm{d}\mu.$$

2.3. Convergence dominée

Théorème 2.5. Soit $(f_n)_{n\in\mathbb{N}}$ et f des fonctions **mesurables**. Si

- (1) pour μ -presque tout $x \in E$, $\lim_{n \to +\infty} f_n(x) = f(x)$,
- (2) il existe une fonction g **intégrable** avec pour μ -presque tout $x \in E, \forall n \in \mathbb{N}, |f_n(x)| \leq g(x),$

alors $\forall n \in \mathbb{N}$, f_n et f sont **intégrables** et

$$\lim_{n \to +\infty} \int f_n \, \mathrm{d}\mu = \int_E \lim_{n \to +\infty} f_n \, \mathrm{d}\mu.$$

Corollaire 2.6. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions **mesurables**. Si $\sum_{n=0}^{+\infty} f_E |f_n| d\mu$ est finie, alors $\sum_{n=0}^{+\infty} f_n$ est **définie** μ -presque partout et intégrable, et

$$\sum_{n=0}^{+\infty} \int_{E} f_n \, \mathrm{d}\mu = \int_{E} \sum_{n=0}^{+\infty} f_n \, \mathrm{d}\mu.$$

2.4. Continuité et dérivabilité sous le signe intégral

Théorème 2.7. Soit $f: E \times \mathbb{R} \to \overline{\mathbb{R}}$ une fonction et y_0 in \mathbb{R} . S'il existe une fonction g **intégrable** telle que

(1) pour tout $y \in \mathbb{R}$, $x \mapsto f(x, y)$ est **mesurable**,

- (2) pour μ -presque tout $x \in E, y \mapsto f(x, y)$ est **continue en** y_0 ,
- (3) pour μ -presque tout $x \in E$ et pour tout $y \in \mathbb{R}$, $|f(x,y)| \le g(x)$,

alors la fonction $y \mapsto \int_{\mathbb{R}} f(x, y) d\mu(x)$ est **définie sur** \mathbb{R} et **continue en** y_0 .

Théorème 2.8. Soit I un intervalle de \mathbb{R} , $f: E \times I \to \mathbb{R}$ une fonction. S'il existe une fonction g **intégrable** telle que

- (1) pour tout $y \in \mathbb{R}, x \mapsto f(x, y)$ est **intégrable**,
- (2) pour μ -presque tout $x \in E, y \mapsto f(x, y)$ est **dérivable sur** I,
- (3) pour μ -presque tout $x \in E$ et pour tout $y \in \mathbb{R}$, $|\partial_{\nu} f(x, y)| \le g(x)$,

alors la fonction $F: y \mapsto \int_E f(x,y) d\mu(x)$ est **définie** et **dérivable sur** I avec

$$\forall y \in I, F'(y) = \int_{F} \partial_{y} f(x, y) \, \mathrm{d}\mu(x).$$

2.5. Fubini

Théorème 2.9. Soit μ et ν deux mesures σ -finies, et $f: E \times F \to \overline{\mathbb{R}}_+$ une fonction **mesurable positive**. Alors

- (1) Les fonctions $x \mapsto \int_F f(x, y) d\nu(y)$ et $y \mapsto \int_F f(x, y) d\mu(x)$ sont **mesurables**,
- (2) on a l'égalité

$$\int_{E\times F} f(x,y) \,\mathrm{d}(\mu \otimes \nu)(x,y) = \int_E \int_F f(x,y) \,\mathrm{d}\nu(y) \,\mathrm{d}\mu(x) = \int_F \int_E f(x,y) \,\mathrm{d}\mu(x) \,\mathrm{d}\nu(y).$$

Théorème 2.10. Soit μ et ν deux mesures σ -finies, et $f: E \times F \to \mathbb{R}$ une fonction intégrable.

- (1) pour μ -presque tout $x \in E$, $y \mapsto f(x, y)$ et pour μ -presque tout $y \in F$, $x \mapsto f(x, y)$ sont **intégrables**,
- (2) Les fonctions $x \mapsto \int_E f(x, y) d\nu(y)$ et $y \mapsto \int_E f(x, y) d\mu(x)$ sont **intégrables**,
- (3) on a l'égalité

$$\int_{E\times F} f(x,y) \,\mathrm{d}(\mu \otimes \nu)(x,y) = \int_E \int_F f(x,y) \,\mathrm{d}\nu(y) \,\mathrm{d}\mu(x) = \int_F \int_E f(x,y) \,\mathrm{d}\mu(x) \,\mathrm{d}\nu(y).$$