Reasonable Agda Is Correct Haskell:

WRITING VERIFIED HASKELL USING AGDA2HS

Jesper Cockx, Orestis Melkonian, Lucas Escot, James Chapman, Ulf Norell

SIMILAR SUBSTANCES

Coq'aine

SIMILAR SUBSTANCES

Coq'aine

Lean

MOTIVATION: ISSUES WITH CURRENT PROGRAM EXTRACTORS

MAlonzo covers the entirety of Agda, but produces unreadable code:


```
insert : Nat \rightarrow Tree \rightarrow Tree insert x Leaf = Node x Leaf Leaf insert x (Node y l r) = case compare x y of \lambda where (LT _) \rightarrow Node y (insert x l) r (EQ _) \rightarrow Node y l r (GT _) \rightarrow Node y l (insert x r) {-# COMPILE GHC insert #-}
```


MOTIVATION: ISSUES WITH CURRENT PROGRAM EXTRACTORS

Coq extracts more reabable code, but still does not readily support typeclasses:


```
Class Monoid (a : Set) :=
  { mempty : a
  : mappend : a -> a -> a }.
Instance MonoidNat : Monoid nat :=
  \{ \text{ memptv} := 0 \}
  : mappend i i := i + i }.
Fixpoint sumMon {a} `{Monoid a}
  (xs : list a) : a :=
  match xs with
  | [] => memptv
  x :: xs => mappend x (sumMon xs)
  end.
```

```
data Monoid a = Build Monoid a (a -> a -> a)
mempty :: (Monoid a1) -> a1
mempty = ...
mappend :: (Monoid a1) -> a1 -> a1 -> a1
mappend = ...
monoidNat :: Monoid Nat
monoidNat = Build Monoid O add
sumMon :: (Monoid a1) -> (List a1) -> a1
sumMon h xs = case xs of {
 ([]) -> mempty h;
  (:) x xs0 -> mappend h x (sumMon h xs0)}
```

GOALS

- 1. Writing Haskell-like Agda (no need to cover the whole source language)
- 2. Verify your program using Agda's dependent types

GOALS

- 1. Writing Haskell-like Agda (no need to cover the whole source language)
- 2. Verify your program using Agda's dependent types

New point in the design space, enabled by:

- Agda's dependent type system
- Agda's support for *erasure*
- + allows for intrinsic verification!

Tree example (extrinsic version)


```
data Tree: Set where
  Leaf : Tree
  Node : Nat \rightarrow Tree \rightarrow Tree \rightarrow Tree
{-# COMPILE AGDA2HS Tree #-}
insert : Nat \rightarrow Tree \rightarrow Tree
insert x \mid eaf = Node x \mid eaf \mid eaf
insert x (Node v l r) =
  case compare x y of \lambda where
    (LT ) \rightarrow Node v (insert x l) r
    (EQ) \rightarrow Node \ v \ l \ r
    (GT ) \rightarrow Node y l (insert x r)
{-# COMPILE AGDA2HS insert #-}
```



```
data Tree = Leaf
            Node Natural Tree Tree
insert :: Natural -> Tree -> Tree
insert x leaf = Node x leaf leaf
insert x (Node v l r)
  = case compare x y of
        LT -> Node y (insert x l) r
        EO -> Node v l r
        GT -> Node v l (insert x r)
```

Tree example (extrinsic proofs)

```
@0 \le \le : Nat \rightarrow Tree \rightarrow Nat \rightarrow Set
l < Leaf < u = l < u
l \leq \text{Node } x t^l t^r \leq u = (l \leq t^l \leq x) \times (x \leq t^r \leq u)
@0 insert-correct : \forall \{t \ x \ l \ u\} \rightarrow l \le t \le u
   \rightarrow l \le x \rightarrow x \le u \rightarrow l \le \text{insert } x \ t \le u
insert-correct {Leaf} l \le x \ x \le u = l \le x, x \le u
insert-correct {Node v t^l t^r} {x} (IH^l, IH^r) l \le x x \le u
   with compare x y
... | LT x \le y = \text{insert-correct } IH^l \ l \le x \ x \le y, IH^r
... | EQ refl = IH^1, IH^r
... | GT y \le x = IH^1, insert-correct IH^r y \le x x \le u
```

Tree example (intrinsic version)


```
data Tree (@0 l u : Nat) : Set where
  Leaf : (@0 pf: l \le u) \rightarrow \text{Tree } l u
   Node : (x : Nat) \rightarrow Tree \ l \ x \rightarrow Tree \ x \ u \rightarrow Tree \ l \ u
{-# COMPILE AGDA2HS Tree #-}
insert : \{@0 \ l \ u : \text{Nat}\}\ (x : \text{Nat}) \rightarrow \text{Tree}\ l \ u
  \rightarrow @0 (l \le x) \rightarrow @0 (x \le u) \rightarrow Tree l u
insert x (Leaf ) l \le x x \le u =
   Node x (Leaf l \le x) (Leaf x \le u)
insert x (Node v l r) l \le x x \le u =
   case compare x y of \lambda where
     (LT x \le y) \longrightarrow Node y (insert x l l \le x x \le y) r
     (EQ x = v) \rightarrow Node v l r
     (GT \ v \le x) \longrightarrow Node \ v \ l \ (insert \ x \ r \ v \le x \ x \le u)
{-# COMPILE AGDA2HS insert #-}
```

```
data Tree = Leaf
           Node Natural Tree Tree
insert :: Natural -> Tree -> Tree
insert x leaf = Node x leaf leaf
insert x (Node y l r)
  = case compare x v of
        LT -> Node y (insert x l) r
        EQ -> Node x l r
        GT -> Node v l (insert x r)
```

• Export lowercase type variables to feel like home (i.e. variable *a b c ··· :* Set):

$$id: a \to a$$
$$id x = x$$

• Export lowercase type variables to feel like home (i.e. variable *a b c ··· :* Set):

$$id: a \to a$$
$$id x = x$$

• Match Agda built-ins to Haskell built-ins:

```
e.g. Agda.Builtin.Nat \leftrightarrow Numeric.Natural
```

• Export lowercase type variables to feel like home (i.e. variable $a\ b\ c \cdots : Set$):

```
id: a \to aid x = x
```

· Match Agda built-ins to Haskell built-ins:

```
e.g. Agda.Builtin.Nat \leftrightarrow Numeric.Natural
```

• If not available in Agda, define them:

```
infix -2 if_then_else_

if_then_else_: Bool \rightarrow a \rightarrow a \rightarrow a

if False then x else y = y

if True then x else y = x
```

• Export lowercase type variables to feel like home (i.e. variable a b c ··· : Set):

```
id: a \to aid x = x
```

· Match Agda built-ins to Haskell built-ins:

```
e.g. Agda.Builtin.Nat \leftrightarrow Numeric.Natural
```

• If not available in Agda, define them:

```
infix -2 if_then_else_

if_then_else_: Bool \rightarrow a \rightarrow a \rightarrow a

if False then x else y = y

if True then x else y = x
```

REMEMBER

We want to cover as many Haskell features as possible, not Agda features.

Prelude

Port Haskell's Prelude, staying faithful to the original functionality.

PRELUDE

Port Haskell's Prelude, staying faithful to the original functionality.


```
error : (@0 \ i : \bot) \rightarrow String \rightarrow a

error ()

head : (xs : List \ a) \ \{@0 \ \_ : NonEmpty \ xs\} \rightarrow a

head (x :: \ \_) = x

head [] \ \{p\} = error \ i \ "empty \ list"

where @0 \ i : \bot

i = case \ p \ of \ \lambda ()

{-# COMPILE AGDA2HS head #-}
```



```
head :: [a] -> a
head (x : _) = x
head [] = error "empty list"
```

PRELUDE

Port Haskell's Prelude, staying faithful to the original functionality.


```
error : (@0 \ i : \bot) \rightarrow String \rightarrow a

error ()

head : (xs : List \ a) \ \{@0 \ \_ : NonEmpty \ xs\} \rightarrow a

head (x :: \_) = x

head [] \ \{p\} = error \ i \ "empty \ list"

where @0 \ i : \bot

i = case \ p \ of \ \lambda ()

{-# COMPILE AGDA2HS head #-}
```



```
head :: [a] -> a
head (x : _) = x
head [] = error "empty list"
```

Don't forget

On the Haskell side, we can feed head arbitrary input!

Typeclasses

Correspondence with Agda's instance arguments.

class definitions \sim record types instance declarations \sim record values constraints \sim instance arguments

Typeclasses: class definitions \sim record types


```
record Monoid (a : Set) : Set where
  field
    mempty : a
    mappend : a \rightarrow a \rightarrow a
    @0 left-identity : mappend mempty x = x
    @0 right-identity : mappend x mempty \equiv x
    @0 associativity : mappend (mappend x y) z
                      = mappend x (mappend yz)
open Monoid {{...}} public
{-# COMPILE AGDA2HS Monoid class #-}
```


class Monoid a where

mempty :: a

mappend :: a -> a -> a

Typeclasses: instance declarations \sim record values

instance

```
MonoidNat : Monoid Nat

MonoidNat = \lambda where

.mempty \rightarrow 0

.mappend ij \rightarrow i+j

.left-identity \rightarrow \cdots

.right-identity \rightarrow \cdots

.associativity \rightarrow \cdots

{-# COMPILE AGDA2HS MonoidNat #-}
```



```
instance Monoid Nat where
  mempty = 0
  mappend i j = i + j
```

Typeclasses: constraints \sim instance arguments


```
sumMon : \{\{ \text{Monoid } a \}\} \rightarrow \text{List } a \rightarrow a

sumMon [] = mempty

sumMon (x :: xs) = \text{mappend } x \text{ (sumMon } xs)

\{-\# \text{COMPILE AGDA2HS sumMon } \#-\}
```



```
sumMon :: Monoid a => [a] -> a
sumMon [] = mempty
sumMon (x : xs) = mappend x (sumMon xs)
```

Default methods & minimal complete definitions


```
record Show (a : Set) : Set where
  field show : a \rightarrow String
        showsPrec: Nat \rightarrow a \rightarrow ShowS
        showList: List a \rightarrow ShowS
record Show<sub>1</sub> (a : Set) : Set where
  field showsPrec: Nat \rightarrow a \rightarrow ShowS
  show x = \text{showsPrec } 0 x'''
  showList = defaultShowList (showsPrec 0)
record Show<sub>2</sub> (a : Set) : Set where
  field show : a \rightarrow String
  showsPrec x s = \text{show } x ++ s
  showList = defaultShowList (showsPrec 0)
open Show {{...}}
{-# COMPILE AGDA2HS Show class Show<sub>1</sub> Show<sub>2</sub> #-}
```

MINIMAL INSTANCE


```
instance
  ShowMaybe : \{\{\text{Show }a\}\} \rightarrow \text{Show (Maybe }a)
  ShowMaybe \{a = a\} = \text{record } \{\text{Show}_1 | s_1\}
     where
       s_1: Show<sub>1</sub> (Maybe a)
        s<sub>1</sub>.Show<sub>1</sub>.showsPrec n = \lambda where
          Nothing → showString "nothing"
          (Just x) \rightarrow showParen True
            (showString "just " \circ showsPrec 10 x)
```

{-# COMPILE AGDA2HS ShowMaybe #-}

AGDA2HS IN THE WILD

IOG's Cardano blockchain

- currently the 8^{th} largest by market cap
- smart contracts written in Plutus, based on System F^{μ}_{ω}
- · implemented in Haskell
- tested against Agda formalization

AGDA2HS IN THE WILD

IOG's Cardano blockchain

- currently the 8^{th} largest by market cap
- smart contracts written in Plutus, based on System F^{μ}_{ω}
- · implemented in Haskell
- tested against Agda formalization

IOG USE CASE: TYPE RENAMING & SUBSTITUTION


```
data Kind: Set where
  Star : Kind
  :=> : Kind \rightarrow Kind \rightarrow Kind
data Type (n : Set) : Set where
  TvVar : n \rightarrow \text{Type } n
  TvFun : Type n \to \text{Type } n \to \text{Type } n
  TyForall : Kind \rightarrow Type (Maybe n) \rightarrow Type n
  TyLam : Type (Maybe n) \rightarrow Type n
  TyApp : Type n \to \text{Type } n \to \text{Kind} \to \text{Type } n
ren : (n \rightarrow n') \rightarrow \text{Type } n \rightarrow \text{Type } n'
\operatorname{sub}:(n \to \operatorname{\mathsf{Type}} n') \to \operatorname{\mathsf{Type}} n \to \operatorname{\mathsf{Type}} n'
```

```
data Kind
  = Star
   Kind :=> Kind
data Type n
  = TvVar n
  | TyFun (Type n) (Type n)
  | TyForall Kind (Type (Maybe n))
  | TvLam (Tvpe (Mavbe n))
   TvApp (Type n) (Type n) Kind
ren :: (n -> n') -> Type n -> Type n'
sub :: (n -> Type n') -> Type n -> Type n'
```

IOG USE CASE: LAWS

ren is a functorial map on Type.

- ren-id: $(ty : \mathsf{Type}\ n) \longrightarrow \mathsf{ren}\ \mathsf{id}\ ty = ty$
- ren-comp: $(ty : \mathsf{Type}\ n)\ (\rho : n \to n')\ (\rho' : n' \to n'')$
 - \rightarrow ren $(\rho' \circ \rho)$ ty = ren ρ' (ren ρ ty)

IOG USE CASE: LAWS

ren is a functorial map on Type.

- ren-id: $(ty : \mathsf{Type}\ n) \to \mathsf{ren}\ \mathsf{id}\ ty = ty$
- ren-comp: $(ty: \mathsf{Type}\ n)\ (\rho: n \to n')\ (\rho': n' \to n'')$ $\to \mathsf{ren}\ (\rho' \circ \rho)\ ty = \mathsf{ren}\ \rho'(\mathsf{ren}\ \rho\ ty)$

sub is a monadic bind on Type.

- sub-id: $(t: \mathsf{Type}\ n) \to \mathsf{sub}\ \mathsf{TyVar}\ t = t$
- sub-var: $(x: n) (\sigma: n \rightarrow \mathsf{Type}\ n') \rightarrow \mathsf{sub}\ \sigma(\mathsf{TyVar}\ x) = \sigma\ x$
- sub-comp: $(ty: \mathsf{Type}\ n)\ (\sigma: n \to \mathsf{Type}\ n')\ (\sigma': n' \to \mathsf{Type}\ n'')$ $\to \mathsf{sub}\ (\mathsf{sub}\ \sigma' \circ \sigma)\ ty \equiv \mathsf{sub}\ \sigma'(\mathsf{sub}\ \sigma\ ty)$

 $go: Nat \rightarrow Nat$

go x = TODO

 $f: Nat \rightarrow Nat$ f x = go x

Output **X**

```
f :: Natural -> Natural
f x = go
  where
    go :: Natural
    go = TODO
```

CORRECTNESS

Is our translation **sound**?

- 1. Agda that typechecks produces valid Haskell
- 2. Translation preserves behaviour/semantics

CORRECTNESS

Is our translation **sound**?

- 1. Agda that typechecks produces valid Haskell
- 2. Translation preserves behaviour/semantics

No formal proof

Correctness

Is our translation **sound**?

- 1. Agda that typechecks produces valid Haskell
- 2. Translation preserves behaviour/semantics

No formal proof ...yet!

c.f. Cockx's NWO grant: A Trustworthy and Extensible Core Language for Agda

CORRECTNESS

Is our translation **sound**?

- 1. Agda that typechecks produces valid Haskell
- 2. Translation preserves behaviour/semantics

No formal proof ...yet!

c.f. Cockx's NWO grant: A Trustworthy and Extensible Core Language for Agda

- Trust the ported Prelude and defined primitives
- Ensure all dependent types appear under *erased* positions
 - enforced by the AGDA2HS backend
- Translation of each language construct has equivalent behaviour
 - · most cases blindingly obvious

NB: total functions + strong normalisation ⇒ evaluation order doesn't matter

Still many unsupported Haskell features:

- GADTs
- pattern guards, views
- 32-bit arithmetic
- Monadic code
- Infinite data
- Non-termination, general recursion

Still many unsupported Haskell features:

- GADTs \sim covered by dependent types \rightarrow identify subset
- pattern guards, views \sim use with-matching
- 32-bit arithmetic ∼ first add to Agda itself
- Monadic code ∼ still need to reverse desugaring
- Infinite data \sim coinductive types
- Non-termination, general recursion \sim partiality/general monad

Still many unsupported Haskell features:

- GADTs \sim covered by dependent types \rightarrow identify subset
- pattern guards, views \sim use with-matching
- 32-bit arithmetic ∼ first add to Agda itself
- Monadic code ∼ still need to reverse desugaring
- Infinite data ∼ coinductive types
- Non-termination, general recursion \sim partiality/general monad

Extra goodies:

- Generate runtime checks for decidable properties
- QuickCheck postulated properties
- HS2AGDA: inverse translation \Rightarrow streamline porting of **existing** libraries

Still many unsupported Haskell features:

- GADTs \sim covered by dependent types \rightarrow identify subset
- pattern guards, views \sim use with-matching
- 32-bit arithmetic ∼ first add to Agda itself
- Monadic code ∼ still need to reverse desugaring
- Infinite data ∼ coinductive types
- Non-termination, general recursion \sim partiality/general monad

Extra goodies:

- Generate runtime checks for decidable properties
- QuickCheck postulated properties
- HS2AGDA: inverse translation \Rightarrow streamline porting of **existing** libraries

More **applications** + **comparisons** with LiquidHaskell, hs-to-coq, etc..

AGDA2HS was developed during the last two Agda Implementors' Meetings

• biannual event where Agda users of all levels hack on Agda, its ecosystem, etc..

AIM XXXI in Edinburgh November 10-16, will include:

- talks
- code sprints
- EuroProofNet day dedicated to the topic of large formal libraries
- a hike along the Scottish seaside

'When the limestone of imperative programming is worn away, the granite of functional programming will be revealed underneath.'—Simon Peyton Jones

'When the limestone of imperative programming is worn away, the granite of functional programming will be revealed underneath.'—Simon Peyton Jones

'When the doors of perception are cleansed, every thing would appear to man as it is, dependent.'

—Agdus Huxley, paraphrasing William Blake