PART I:	Non-Riemannia	n Hypersquares

Math 256C: From Schemes to Machinations

Fall 2020

Lecture 1: 26 August

Professor Alexander Grothendieck

Abhishek Shivkumar

Tutorial

Here is where lecture content goes, generally a summary or transcription of what is being said or written. Here is a theorem:

Theorem 1.1.1: Kontsevich

The number N_d of rational plane curves of degree d passing through 3d-1 points in general position is given recursively by

$$N_d = \sum_{d_A + d_B = d} N_{d_A} N_{d_B} d_A^2 d_B \left(d_B \binom{3d - 4}{3d_A - 2} - d_A \binom{3d - 4}{3d_A - 1} \right)$$

The above result, is, of course, thoroughly unrelated to the following fact:

Lemma 1.1.2

In a k-free graph on n vertices, there are at most $\binom{k-1}{r}(\frac{n}{k-1})^r$ r-cliques.

Setting r=2 in the above, we recover the following result:

Corollary 1.1.3: Turan's Theorem

In a k-free graph on n vertices, there are at most $\frac{k-2}{k-1}\frac{n^2}{2}$ edges.

You can reference any theorem box if you add a reference tag (see the \LaTeX code at Corollary 1.1.3 for formatting, and see the style file for the reference prefixes for each theorem style).

Unnnumbered versions of all the theorem boxes exist:

Proposition: Hurwitz

hurwitz The group of orientation-preserving conformal automorphisms of a compact Riemann surface of genus g > 1 has order at most 84(g-1).

Proof: There is also a proof environment.

Here is a margin note: note that the above result was only obtained in the early 1990s, using ideas from theoretical physics.

Note that this upper bound can be mildly strengthened into a strict upper bound by considering the different cases for n modulo k-1. In particular, if r is the remainder when n is divided by k-1, then the upper bound on edges is

$$\frac{k-2}{k-1} \frac{n^2-r^2}{2} + \binom{r}{2}$$

and k-free graphs with precisely that many edges can be straightforwardly constructed.

References do not work for unnumbered theorems.