文档**仅供学习交流使用**,内容可能存在疏漏、错误或个人 解偏差,请以课本和老师讲解为准。如果你觉得它对你有 助,我们会非常开心!<u>预</u>祝大家考试顺利!

行列机总 够完成预定功能和性能要求的可执行的计算机程序为 以使程序正常执行所需要的数据为基础,以描述与程 、维护和使用有关文档为指南,从而方便相关涉众理 用与维护的人工制品。

- 》 构成和特点 种成产 组程序(指令序列)、文档(图文材料)和数据(程序处理的信息)三部分组成。 特点:**复杂性**,规度大,逻辑复杂。**一数性** 需遵循内外 物统一的接口和规范。**易变性** 需求和环境易变,导致软件 经常需要变更。**不可见性** 软件的运行逻辑是无形的、不可 直接观察的。
- 空性两多次。 這接观察的。 1 欽件的分类 系统软件、负责控制和协调计算机硬件,为其他软件提供基础运行环境。例如:操作系统、数据居常理系统、驱动程序。 破运行环境。例如:操作系统、数据居常理系统,吸动程序。 软件、Web 应用、游戏等。 文撑软件(江泉软件)介于系统软件和应用软件之间,辅助 软件的开发、维护和运行。例如:编译器、集成开发环境(IDE)。 能处入式软件:指与硬件设备深度耦合的,用于控制特定硬件 2 多的软件系统。
- 软件:指与硬件设备深度耦合的,用于控制特定硬 软件系统。 全软件:用于保护计算机系统和数据安全的软件 生存周期(概念/阶段)
- 列生存周期(概念/阶段) 指软件从最初构思、开发、运行、维护直到最终被淘
- , 1945(17,7148;19/19/10、7F及、24(17、理好具到取终被淘 を个生命过程。 予段: (1) 定义时期(软件计划、需求分析); ② 开发 (设计、编码、测试); ③ 使用和维护时期。

- 想:从更偏向于用户和市场的角度,用8个维度米许质量。 质量。 :性能、特征、可靠性、符合性、耐用性、适用性、 感知质量。
- 、 感知质量。 いい、 つ率は、符合性、耐用性、透用性、 ン/EC25010 (所量因素 思想: 目前較新的到际标准, 定义了8 个主要质量特性。 性・功能性、性能效率、兼容性、易用性、可靠性、安 、可维护性、可移植性。 派置・対応性、可移植性。 派置・対応性、

其效性 500 打效件开发的全过程进行一系列的计划、评审和测试活 完顿的和发现缺陷,以确保最终产品符合质量标准。它 1提 过程控制。

- 方法 即定质量标准,为编程设计测试等活动设立需要遵守的规范。 伙件评审。组织人员对需求、设计、代码等产物进行检查, 时代码连查。设计评审。 饮件测试。通过技行程序来发现缺陷,包含单元、集成、系 &、验收等多种测试活动。 养态分析:在不运行代码的情况下,使用工具分析其结构和 连细、发现潜在问题。 记码重用,通过复用高质量、经过测试的代码来降低引入新 在经重用,通过复用高质量、经过测试的代码来降低引入新

- 演化)。 有限的成本和时间内,创造出"足够好"的、能满足

3. 不足而心的 软件充刻。 软件无效的转换性 作开发从单轴的作场式。个体编程,发展到如今的大规模、 批量协作开发,从平均。 数一条列回题。 数一条列回题。 数件危机的表现和根源 数件危机的表现和根源。 数件危机的表现和根源

用户对交付软件不满意、软件质量不可靠、项目超预 用户对交付软件不满意、软件质量不可靠、项目超预

- 發音性半角,如 Visual Studio, Eclipse。 数件过程基础(概念和模型) 软件过程基础(概念和模型) 软件过程骤念,为构建高质量软件而实施的一系列活动、任 多和步骤的集合。它规定了在软件生命周期中要做什么、由 准做、需要人公资惠、如何促近质量等, 统件过程模型概念。一种开发策略,为软件开发过程提供了 一套范式(则模板)。它为如何安排需求、设计、实现、则 过等基本活动提供了指导。

關的軟件过程模型。 布模型 思想,基于确定性假设、严格线性的、阶段化的开发, 阶段完全结束后才能进入下一阶段。 、阶段严结顺序、文档驱动,阶段清晰,像瀑布一样不

- 畢性和女童性要本級高的项目。 型模型 思想: 先快速构建一个可运行的原型给用户看,通过不 集反馈来明确需求,最终再开发正式系统。2 种策略 策略原型仪用于需求探索和验证,最终系统从头开发, 不被採留、适加策略原型烃过不断完善和扩展,逐步 为最终系统) "先做再说",用户参与废高。 需求模糊、需要反整证的探索性项目。 最模型海布、展型进化) 思想: "各数件按功能模块化,每次只开发和交付一个或 模块(增量),像搭积末一样逐步构建整个系统。 分批次交换,风险分散。 "需求成清晰,可划批次实现的项目。 (概求较清晰,可划批次实现的项目。 (概求较清晰,可划批次实现的项目。 (概求较清晰,可划批次实现的项目。

- 模型(瀑布的缩小与循环) 想:将整个开发过程划分为多次短周期的"小瀑布", 代都完整地经历需求、设计、编码、测试,并交付-

- 行。 点:风险驱动,每一圈都包含计划、风险分析、开发与评估。 用: 大型、复杂、高风险的项目。 演化模型

- 加、人主、支承、両/N陸町/VIII。 漢化模型、先开发——个简化的核心系统、然后根据用户反馈 断需求、使其逐步演化和完善。 病心、先生长、再变壮、强调系统对变化的适应能力。 统一:先生性期字整定义需求、需要系统持续演进的项目。 统一:拉程模型。 心思想:一个重量级的、综合性的过程框架,其特点是用 形型动、以架构为中心、迭代和谐量。 原道、综合全面、92律性强、发音和角色定义严格。 粉化大量起槽的数件项目和团队。

- 以下立程模型的选择 软件过程模型选择示例 例 1 儒来明确,开发一个需求非常明确,几乎不会变更 企业内部信息管理系统,可以选择瀑布模型,按部就班 进行。
- 地进行。

 示例 2 (需求模糊): 开发一个全新的、连客户自己都想不清 完例 2 (需求模糊): 开发一个全新的、连客户自己都很不清 走具体功能的'创新社交 App', 可以选择原型模型,先做出 一 一 可交互的样子来收集反馈。 (2) 适用性

- 系统化管理与持续演进)。(4) 数件过程键的选择键议 ●如果周末在前期就已非常明确、稳定不变 → 瀑布模型。 ●如果周力研末措述不清、需要通过原型未探索和验证 → 原型模型、迭代模型、螺旋模型。 如果项目及隐含、不确定性大、难以在早期制定详细计划 →

- 1.面向对象开发方法 (1)面向对象开发方法的概念和思想 少对象(Object)系 祭基本单位。代表一个客观事物,包含属性 (静态特征)和操作(动态行为)。 类(Dass)对象的模板/蓝图。是具有相同属性和操作的对象 的集合。 •封袋(Encapsulation)隐藏内部细节。将对象的属性和操作捆 纲成一个独立的单元。

- 本語 (Actor) 与应用程序或系统进行交互的用户、组织或外部系统。用一个小人表示。
 ●用例(Use Case):用例就是外部可见的系统功能、对系统提供的服务进行描述。用幅限表示。
 ●系统边界、系统边界是指系统与系统之间的界限。用方形容器:系统会系统。

种。		
关系	符号	解释
包含	< <include></include>	一个用例的执行必须包含另一个用例 的功能。箭头从基础用例指向被包含用 例。(登录指向下订单)
扩展	< <extend></extend>	一个用例的功能可以扩展(增加)另一个 用例。箭头从扩展用例指向 基础用例。 (用优惠券指向支付)
泛化		"是一种"的关系,类似继承。箭头从子 类(研究生)指向父类(学生)。

(3)类图 ●访问修饰符

+ public, - private, # protected, ~ package ●类之间的关系

种类	关系		记忆
泛化	最强		继承关系,子类指向 父类
实现	强	 (虚线空心三角)	类实现接口/抽象类, 实现类指向接口
组合	强	◆──> (实心菱形指向整体)	不可分割,生命周期相同(车和引擎)
聚合	中		可分割,生命周期不同(班级和学生)
关联	中	——> (实箭头指向被 拥有者)	普通成员变量关系 (学生和课程)
依赖	最弱	< (虚线箭头指向 被使用者)	临时使用,如方法参 数 (人开车)

●基本组件 组件	符号	解释说明
状态	方框	对象在其生命周期中的一种状况或条件。框内写状态名,如"待支付"。
初始状态	•	起点。一个图中只能有一个,表示对象 刚被创建时的状态。
最终状态	•	终点。一个图中可以有多个,表示对象 生命周期的结束。
转移	>	状态之间切换,由一个事件触发。

●转移线上标注的文字格式为:事件[守卫条件]/动作。示例:确认付款[金额>0]/更新库存()。条件和动作可以不写

消息类	型	
类型	UML 符号	解释
同步	(实线实心箭头)	A 调用 B,必须等 B 处理完 返回后 A 才能继续
异步	> (实线空心箭头)	A 调用 B, 不等待 B 返回, A 立即继续自己工作
返回	< (虚线空心箭头)	从同步消息的调用方返回。
自调用	自己指自己	对象调用自己的方法。

●交互片段
alt 多选。。类似if-else,框内用虚线分隔不同条件的流程。
opt可选。类似if. 框内的交互可能发生,也可能不发生。loop.
《游水、框内的交互会重复执行多次。

***	1 IT	
组件	符号	解释说明
对象	[:类名]	和时序图一样,一个对象实例。
链接		连接两个对象的实线,表示它们之间 存在某种关系
消息	1:do ()	附着在链接上,表示一次通信。这是 与时序图最大的不同。

●消息的语法 时间的先后顺序是通过消息编号来体现的,而不是通过垂直 位置。编号桥式,[序号]:[消息名()顺序流 使用数字表示。 1,2,3。+投表了交互的主读性 後養流 使用小数点表示。 取果消息 2 引发了一个子调用,那么这个子调用的序号就是 2.1 下一个子调用就是 2.2 例2 : 2 processOrder) 内部配置 7.1: checkStock) 和 2.2 deductPayment(), 方向 在消息旁边 或者下商画—个小箭头—2.头指铜消息的传递方向。

		大> 术佰明泪思的传递万问。
(7)活动图	(和流程图	(表像)
组件	符号	解释说明
动作/ 活动		流程中的一个步骤。一个圆角矩形, 里面写着具体要做的事,比如"用户登录"。
起始	•	流程的开始。实心圆。
终止		流程的结束。同心圆。
控制流	>	执行顺序。连接各个动作的箭头。
判定	♦	做决策,类似 if-else,每个出口线上要标注条件,如[Yes]。
合并	♦	汇合路径。个路径重新合并成一条。 多个入口,一个出口。
分叉	Ⅰ (粗黑线	并行处理。将一个流程拆分成多个可以同时进行的活动。
汇合	■ (粗黑线	八一 7川性。
泳道	方框框住	划分职责。将活动按负责的角色或部 门进行分组。
(8)组件图		
组件	符号	解释说明

组件	符号	解释说明
组件模块		物理构建块。一个带图标的方框。
提供接口	-0	该组件对外提供的服务或功能。
需求接口	<u> </u>	该组件需要依赖的外部服务或功能。
依赖关系	<	一个组件(箭头起点)的编译或运行需要另一个组件(箭头终点)。
组装连接	-(O-	将一个组件的"需求接口"和另一个组件的"提供接口"连接起来。
9)部署图		
组件	符号	解释说明
节点	体)	核心元素。一个物理硬件设备或软件执行环境。
构件	(文档图标)	软件的物理产物,是实际被部署的东西。 它被画在节点内部。
通信路径		连接两个节点的实线,表示它们之间的 网络连接。可以在线上写明协议。
依赖关系	<	一个构件对另一个构件的依赖关系。

- (現开发方法: 1000) · 以 以 突倒 + 时 序图 坡捷开发方法 符建念: 10世念: 10世念: 12重灵活性。 石思想: 快速技代: 快速反馈, 快速修改、增量交付。 石寒部: 整为零、小步快跑, 并追求简洁 (尽最大可能减 无必要的工作)。
- (2)思想和原则 ●四大价值观(思想): 个体与互动胜于过程与工具;可运行的 软件胜于面面俱到的文档, 客户合作胜于合同谈判,响应

- ₩、M/I/I/T 及財日 组织团队(通常 5-9 人) 负责在每个评算中交付可任的软件。
 3个核心工件:产品特办列表——一动态的、按优先级非序的。
 3个核心工件:产品特办列表——一动态的、按优先级非序的
 在一次冲刺中,开发团队承诺要完成的任务清单,产品增量。
 5个核心事件:冲刺,接心事件,一个2-4 周的固定时间金.
 5个核心事件:冲刺,接心事件,一个2-4 周的固定时间。
 5个核心事件:冲刺,接心事件,一个2-4 周的固定时间金.
 下色器增量。一旦启动,冲刺的面积等亦为别会变变,冲刺计划会议。在冲刺开始时召开,从产品布污利的全设。在中刺开始时召开,从产品市场利的全场管理。
 10 第一个选择本次中刺更完全,并则使力计划。
 10 第一个时间,10 第一个中间,10 第一个中间,10 第一个中间,10 第一位,10 第一 (東京本) トーナイミョル・カリ・リリーの以及へ及具化性負担 展示本次沖削的成果(可工作的软件)。 **冲刺回原会议** 評审会议之后,团队内部反思和总结本次冲刺的工作流 讨论如何改进。 が17DD (測试驱动) 开发方法
- 功能编写一个自动化的测试用例,然后才编写足以让该测试通过的功能保码。 ●开接节奏(红-绿-重物循环)、红-写一个失败的测试。因为 等是少的代码让测试通过。目标是尽快让测试条变操,这个 的探不追求代码的完美。 一种发行。现实证明,所以这个新型,就过理应运行失败(红色)。 等量少的代码让测试通过。目标是尽快让测试条变操,这个 的探不追求代码的完美。更有 在所有测试都通过的通程下 优化知道理代码(如消除重复、提高可读性),并确保优化 后所有测试依据通过。 上等优点、驱动出简洁可用、高质量的代码。代码拥有很高 的灵活性知能过生。能快速响应变化。提供了一个可靠的安全阅 证开发者看更气随时重构和优化。

- 1 需求工程報法
 (1) 需求工程概念
 (2) 第次工程概念
 (3) 第次工程概念
 (4) 第次工程概念
 (5) 第七五程念
 (5) 第七五程念
 (6) 第七五程念
 (7) 第七五程念
 (7) 第七五程念
 (7) 第七五程念
 (8) 第七五程念
 (8) 第七五程念
 (8) 第七五程念
 (9) 第七五程念
 (1) 第七五

- 3. 需来建模与分析(() 需求建模与分析(() 需求建模与分析(的典型方法 () 需求建模与分析的典型方法 a. 面向主体的建模((以) + 框架为例,了解即可) 移收心思想。关注为什么((Why))。通过对不同参与者的目标 和互相依赖关系进行建模、来性解离求的浓层动机。 全参与者:指的是系统中的人或组织,分为两种: 主体

- - 第7 医关头目外压。 八十五年 及内部实现细节。 ●基于 UML 的需求建模 (三视图法)。这是用 UML 进行需求分析和设计的核心思路,即从三个不同的视角来观察和构建系

- **(□) "東東勢的結婚和内容
 **(●) "爾夫森勢的結婚和内容
 **(●) "◆(◆)

- 软件体系结构模式的描述方法 三大基本要素: 上下文 (Context): 描述问题发生的环境和 译者: 问题 (Problem). 描述在该环境下需要解决的目标 经课上个经济验证的 、基本妥系: **上 ト X** (Context): 細述问 浸。**问题** (Problem): 描述在该环境下需 的挑战。**解决方案** (Solution): 描述一 方案,包括其元素、关系和拓拓扑结构。 即略件体系结构模式及其转点。重点

- 数据分析: 次数据分析: 次数据分析: 次数据分析: 次据分析: 次数据分析: 亦于 河坡東式(Publish- Subscribe)。 核心思想: 发布者发布 6.3 等于中心,订阅者只接收自己感兴趣的消息,发布者订阅者之间与不知道对方的存在。 完全解耦。 传息: 极度耦合,扩展性强,非常适合于异步、事件驱动的系统。
-) 軟件体系结构设计任务 系统分解。於心任务是将整个系统分解成更小可管理的模块或组件。分解时需要考虑,如何将质量属性、似安全性、 快速的合理地分配给不同模块。必须遵循设计约束(如模块 间的数据隔离)。可以基于成熟的体系结构模式未进行分解。 满足关键需求与权衡、体系结构设计必须由最重要的质量 需求(如高可性、低延迟,来驱动,并对这些可能相互冲突的需求进行权衡与决策。) 沙甘凝和旧程
- 1) 过程和归档 设计过程: 一个典型的体系结构设计流程包含以下步骤 理解需求,从业务角度出发,理解项目的商业目标。并从需 速度编出对体系结构有决定性影响的关键服置需求。创建 成选择方案,基于关键需求、设计一个新的体系结构方案。 或选择一个各适的,已有的体系结构模式。分析与评审。对 设计方案进行任和审查,确保它能满足线键需求。这种与 与沟通。将最终确定的体系结构设计方案清晰地记录目号 的描述社会和规则。
- 府賴發傳提的体系结构设订力素清劑地以來担合 非另解,資訊 : 己确定的体系结构将作为后续开发、测试和系统 的指导蓝图。 (文档) (文档) 体系结构文档至关重要,其主要作用是 5分部沟通的工具。作为新成员培训和学习的资料。 系统分析、构建和维护的基础。
- 数件并编词设计 概念 核心目标。将概要设计的抽象蓝图,转化为具体、可实现的 软件内部现格说明,是编码前的最后设计阶段。 生妻任务,那种设计,明确一个具体加度处于自的大 交互来实现的。类设计,定义类的属性方法以及类之间的关 交互来实现的。类设计,使又类的属性方法以及类之间的方式),用例设计,确定需要持个化存储的数据结构和访问方式),用例设计 核心思想:关注一个具体用例的实现过程,详细描述系统中 生要产出;详细的顺序图。它清晰地展示了为实现一个用例, 消息在不同对象之间的传递顺序。) 和给案例数据

- 5 通用財表分配模式(GRASP)

 核冷心问题 类设计旨在中宫'一个职责(如创建一个订单、 计算总价) 应该分配给哪个对象来完成? "GRASP 就是一套 解决心行问题的指导原则。 解决心 GRASP 模式 "**信息专家** 谁拥有信息,谁就负责处理这 些信息。这是最基本、最核心的职责分配原则。**创建者** 果对家 A 聚合或包含对象 另,举篇则是 另所需的初始化数 核事件(如用户点击按钮) 将工作分配验证。 按事件(如用户点击按钮) 将工作分配验证维。而**为聚、依** 报,那么就由 A 来负责创建 B。**控制器**。负责接收和协调系 数定 这指挥"作用,通常用于连接"则和后端逻辑。而**为聚、依** 种权长度(高内聚),同时让类与类之间的依赖尽可能地弱(低
- 对修改关闭(即增加新功能通
- (: 丁英对家必须可以无疑地曾换其义英对 可错误。 明: 客户端不应被迫依赖它用不到的接口 导小而专)。
- 环产生任何错误。 口隔离原则: 客户端不应被迫依赖它用不到的接口口离贫财得小而专)。 赖倒置原则: 高层模块不应依赖底层模块, 两者都应 抽象(接口)。细节应依赖于抽象,而不是反过来。 铸化
- (1914年) 以思想: 在已有类图的基础上, 进一步审查和完善类的关 属性和方法, 使其设计更合理、更具体, 为编码做好准

- 效查(CRUD)操作。 **确定持久化数据** 识别出系统中的实体类,这些 需要被永久保存的。**选择存储方式**,根据需求选择 如关系型数据库(MoSOL)NOSOL 数据库(Reds) 等。**设计数据操作** 定义对这些持久化数据的增、

(1) 工 方 法模式
一つ「新解集、
一つ「新解集、定义一へ创建対象的接口、但把具体创建哪种对象的工作、交给不同的子美去做、生活例子・汽车工厂。 泉厂体 (相象工厂) 鬼児を(地象工厂) 鬼鬼之 (現場) 東京 (現場) 東京 (東京 (東京) 東京 (東京) 東京

、 保证一个类在整个系统中只有一个实例, 一的访问点。生活例子: 班里的班长。一个 能有一个班长: 任何人提到"我们班班长", 优点: 节省系统资源,因为实例只有一个 里。**缺点:** 扩展性差; 对测试不友好, 容易

: 把单个对象(叶子)和对象的组合(树枝)用向 对待。生活例子。电脑里的文件夹。你可以对单个 进行等制操作。也可以对整个文件夹,梯枝, 件和不文件头,进行同样的复制操作。你操作的式 原集、简化了等户端代码,可以用统一的方式 较为复杂对象。**被点** 设计变得更抽象,可会牺 句话解释

i) 萎帕模式 **创资解学** 在不改变原有对象的基础上,动态地给它套上一 或多层。包装,来增加新功能。生活例子: 拍照用滤镜。你 —张原图(被袭饰对象),可以给它套上一个美白滤镜(装 看着),再套上一个复古滤镜(另一个接饰者),每一层都 加了新的效果,而且可以自由组合。**优点** 比继承灵活,可 在运行时动态地给对象增加或删除力能。**缺点**: 容易产生很 功能—的小类,增加系统的复杂性。

(6) 观察者模式 一句話解释。定义了一种一对多的依赖关系,当"被观察者"状态改变时,所有"观察者"都会自动收到通知。生活例子,徽信公众号和粉丝。公众号(被观察者)发布新文章,所有关注

它的粉丝(观察者们)都会收到推送通知。**优点**,实现了发布者和订阅者之间的解耦,双方不需要知道对方的具体细节。 **缺点**,如果观察者太多,通知过程可能会比较耗时。

的插座是英标的,插座转换 来。**优点**: 提高了类的复用 作。**缺点**: 会额外增加一些

- | 程序代码的双型多少 建壮性与高性能: 程序要稳定、不易崩溃, 并且运行效率高。 可读性与可维护性: 代码要像文章一样清晰易懂, 方便自己
- 1981年3月2年7年,代約要像又章一样清晰易懂,方便自己 他人日后修改和维护。 扩展性与可重用性 代码要容易增加新功能,并且其中的 线可以方便地在其他地方有度用。 测试性 代码要易于编写单元测试,以保证其正确性。

- 代码审查 於目标。通过系统化地审查解代码。来发现程序错误、安 漏洞和不规范之处。以提升软件质量和团队技术。 高方式、工程章。同行评审是是主要的方式。具体做 据结对编程(提即时的审查)正立的审查会议、经量化 非正立检查(如发一个合并请求 Merge Request 让同年 "工具审查"使用静态代码分析工具自动化地扫描和发 问题

- 注用的概念 と、对己有写好的代码进行重复使用以构建新的软件 中点:**优点** 使点:可能增加不可控的外部依赖,如果重用的代 是点:1、2000年

- ◆优点与缺点 **优别** 探雨下水管下外部依赖,如果重用的代理简洁。整建,可能增加不可经的外部依赖,如果重用的代码原量差。会引入风险。●重用原则,量重要是只重用高质量、经过充分评估的代码。●重用原则,量重要是只重用高质量、经过充分评估的代码。例重用代码的特点,好的可重用代码通常具有模块独立性强、接口情谢、另于扩展等特点。
 从重用代码的构度从外到大来划分的。
 ◆代码片段时间的构度从外到大来划分的。
 ◆代码片段时间的构度从外到大来划分的。
 ◆代码片段时间,构定最小),是什么,重用具体的函数、类等正式作,静态峰 代码在编译时报记整地复制并打包进最多的可执大学中。 优品 医看角性 经有效的重点 有便更新,就点,那番简单。以后,稻季的原文外中。 优品 医潜脉管 地流,程序状分,可使更加高的文件。 成品 配著的企业分析,对对应的库文件。 中国向对象的重用划制 经承任公利用的对象语言的一份库,向向对象的重用划制 经承任公利用的对象语言的一份生来实现代码的灵活复用,主要机制,继承任子类别的成员,多多《统一接不知象作为另一个对象的成员》、多《统一接不知意识。

更用 **次件故障**:运行时执行错误结果。**差异**: 错误(开发)->缺陷(产

- ●直接目标 **布后目标**
- E败的。 例(概念/构成/表示) 确定软件是否满足需求而设计的一组输入数据、
- 测试需求 → ② 制定测试计划 → ③ 设 执行测试 → ⑤ 评估与报告。
- 〔→(⑤) 评估与报告。 重点): 单元测试: 对软件中最 数或类) 进行测试: 通常由免费 测试: 在单元测试后,将多个规 例接口和协件是否正常。**系统测** 一个整体, 对照需求规格说明书。

回 侧重于系统或部件内部机制的测试,分为分支测试、路径测试、语句测试。**画出程序流程图:画出控制流图**,根据程序环形复杂度的计算公式:**求**

出程序路径集合中的**独立路径数目**;根据环形复杂度的计算 结果,源程序的基本路径集合中有多少条**独立路径**;**设计测** 结果 试用例

步骤: 给每条语句编号->根据代码逻辑画流程图->根据流程图简化为控制流图->公式计算->写路径->根据路径写测试

加岛 注:若判定点有复合条件 应按如左方式增加判定

(3)环复杂度计算: 法一:前提单入口单出口

图中 V(G)=10-8+2=4 法二:前提仅计算二分支判定节点 V(G)=P+1 P 为二分支节点数 图中二分支节点为 3、4、6

ath-1: 3 - 11 ath-2: 3 - 4 - 5 - 10 - 3 - 11		测试用例					
		输入数据		要当体科	預期結果		
ath-3: 3 - 4 - 6 - 7 - 10 - 3 - 11	編号	ilectedin	iTrpe	(KHIPPII		y	
ath-4: 3 - 4 - 6 - 9 - 10 - 3 - 11	test-l	0	0	path-1	- 0	0	
逻辑覆盖:	test-2	1	0	path-2	2	0	
	test-3	1	- 1	path-3	10	0	
语句覆盖(点覆盖):设计	test-4	1	2	path-4	20	::0 re	
语句覆盖(点覆盖) :设计 测试用例时应保证程序	+ <-	\h					

甲每一条可执行语句至少应执行一次 **判定覆盖(边覆盖):**保证每个判定的每个分支至少一次(只关注 整个表达式结果 |/r| **条件覆盖:**保证每个判定的每个条件都至少取真假各一次(如

等价类划分	沃 .把 1	自入等价类	有效等价类	无效等价类
所有可能输 据,即输入 分成若干互	入数域型	l期的类型及长 (①6位数字字符	②有非数字字符 ③少于6位数字字符 ④多于6位数字字符
クルターユ 交的子集, ダム*	称为	F份范围	⑤在1990~2049之 同	⑥小于1990 ⑦大于2049
边界值分析	凌 :在	1份范围	⑧在01~12之间	●等于00 億大于12 ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
范围的边界 行测试。某 输入长方体 宽 v、高 z。x	、y、z 的	測试数据 95June 20036 2001006 198912	期望结果 无效输输入 无效输输入 无效	覆盖的无效等价类 ② ③ ⑥
上界为 20, 2。给出健; 值分析的测	下界为 比性边界 试用例。	200401 200100 200113	无效输入 无效输入 无效输入	TO SO CONTRACTOR OF THE PARTY O

関連が開	x	У	z	预期输出
Test Case 01	10	10	10	1000
Test Case 02	1	10	10	E8900(x)+于2)
Test Case 03	2	10	10	200
Test Case 04	3	10	10	300
Test Case 05	19	10	10	1900
Test Case 06	20	10	10	2000
Test Case 07	21	10	10	[RROR(x大于20)
Test Case 08	10	1	10	ERROR(y/\T2)
Test Case 09	10	2	10	200
Test Case 10	10	3	10	300
Test Case 11	10	19	10	1900
Test Case 12	10	20	10	2000
Test Case 13	10	21	10	ERROR(y大于20)
Test Case 14	10	10	1	ERROR(z/1/±2)
Test Case 15	10	10	2	200
Test Case 16	10	10	3	300
Test Case 17	10	10	19	1900
Test Case 18	10	10	20	2000
Test Case 19	10	10	21	ERROR(z大于20)

错误推测法:列出所有可能有的错误,靠直觉 判定表法、正交实验法、因果图法、功能图法

年都者和雖好同合。 维护概念和形式(概念、形式、类别、因素)

) 概念 软件交付使用后,为了修复缺陷、增强功能、提高性能或适 应变化的环境而对其进行修改的过程。其主要特点是长期性 复杂性、必要性。

- (2) 美別 ●纠错性維护: 修复在运行中发现的错误(改 Bug)。**适应性** 维护:为了适应介部环境(如操作系统升级、政策法规变化) 而立行的修弦、免害性维护:根据用户的新需求,增加新功能或改进现有功能、以提升用户满意度。**预防性维护:**为了提高软件未免可维护性和可靠性而主动进行的修改(如代码重构、优化文档)。(3) 形式
- 3) 形式 ●形式 (影响可维护性的内部因素):软件代码和设计的可理解 性。软件的可测试性。软件的可修改性。

- (2) 过生 ●问题跟踪与报告,分析问题并定位原因,设计并评审修改方 案。实施修改,进行回归测试并验证修复效果
- (3) 原则 ●在修改前,要充分理解和评估修改的影响范围。对重要的修改,应先评审修改方案再动手。修改后必须进行充分的回归测试。防止引入新的缺陷。
- 4) 策略 免反应性结护(被动式): 出现问题后再去修复。前摄性维护 (主动式): 在开发阶段就预先考虑和设计系统的可维护性, 从源头减少未来的维护成本。
- 5) 技术 ●**①面向缺陷的维护(DOM):**以发现和修复软件缺陷为主要目标、维护成本较高、适用于高可靠性软件**②面向功能的维护** 以此软件功能为王要目标、适用功 : **③软件再工程**:对已有的软件系统 过程重构 ②软件逆工程:
- 传述于米比源代码更高层次的推象形式,如设计量 敬捷方法中的可维护性保障。测试驱动开发(TDD) 集成提供了强大的安全网。在每个迭代周期中都进 构、及时消除"技术债务"。编写"恰到好处"的文档, 档过时。

- - 叫以现现。 其核心任务是在预定的进度、成本和质量要求下,开

- 核心方法 COCOMO 模型、クラインのでは、 核心方法 COCOMO 模型、や根据の目 美型(有机 嵌入式等)使用不同公式计算工作量。 け対し 差描述如何开展工作的详细文档、内容包括目标、 中項目の給管理概念、美別、方法) ・ 別発音形式を表示。
- |风险管理(概念、类别、方法) | |是开发过程中可能对项目造成损失或负面影响的
- 不确定因素。

 秦则 需求风险 (如:需求不清晰、频繁变更)。 人员风险 (如:按水风险 (如:技术入险 (如:技术方案不可行性能不达标)。 计划风险 (如 伯蘭过于乐观,计划不具体) 方法 (风险管理过程):主要分为风险评估 (识别、分析、排序) 和风险控制 (制定计划、化解、监控风险)。 软件项目质量保证管理内容,质量保证方法)
- . 软件项目质量保证(管理内容、质量保证方法) 管理内容: 质量管理不仅关注最终的产品质量(软件本身好 不好),也关注过程中的工作质量(开发过程规范不规范),因为后者是前者的保证。

制定质量计划 为项目设定明确的质量目标 技术评值:对需求、设计、代码等产物进行评 测试,通过测试活动发现并修复缺陷。检查开 划以通值了原定的开发流程和规范。缺陷限 有发现的缺陷,直至其被关闭。 量保证力

华为手机: 手机