Representing Meaning

By:
B.Senthil Kumar
Asst. Prof / CSE
Natural Language Processing

Slides from:

- * Speech and Language Processing, Jurafsky and Martin
- * Husni Al-Muhtaseb
- * Ching-Long Yeh
- * Heshaam Feili
- * Kathy McCoy

Agenda

- Introduction
- Computational Desiderata for Representations
- Meaning Structure of Language

Knowledge-Formalism Map

NLP Pipeline

Transition

- First we worked with words (morphology).
- Then we looked at syntax and grammar.
- Now we're moving on to meaning....

Meaning

- So far, we have focused on the structure of language not on what things *mean*.
- We have seen that words have different meaning, depending on the context in which they are used.
- Everyday language tasks that require some semantic processing:
 - Answering an essay question on an exam
 - Deciding what to order at a restaurant by reading a menu
 - Realizing that you've been misled

• . . .

Meaning

- Meaning representations representations that link linguistic forms to knowledge of the world
- We are going to cover:
 - What is the meaning of a word
 - How can we represent the meaning
 - What formalisms can be used

Meaning Representations

- Meaning representations
 - The meaning of linguistic utterances can be captured in formal structures
- Meaning representation languages
 - The frameworks that are used to specify the syntax and semantics of these representations
- Language tasks requiring some form of semantic processing
 - Answering an essay question on an exam
 - Deciding what to order at a restaurant by reading a menu
 - Learning to use a new piece of software by reading the manual
 - Following a recipe

Meaning Representations

- Semantic analysis
 - Take linguistic inputs and construct meaning representations that are made up of the *same kind stuff* that is used to represent this kind of everyday common sense knowledge of the world

Common Meaning Representations

First Order Predicate Calculus (FOPC):

 $\exists x,y \ Having(x) \land Haver(Speaker,x) \land HadThing(y,x) \land Car(y)$

Semantic Net:

Common Meaning Representations

Conceptual Dependency Diagram:

Car

↑ Poss-By

Speaker

Frame-based Representations:

Having

Haver: Speaker

HadThing: Car

Common Meaning Representations

- They all share a common foundation:
 - Meaning representation consists of structures composed of sets of symbols
 - These symbols structures correspond to objects, relations among objects, in some world being represented

What Can Serve as a Meaning Representation?

- Anything that serves the core practical purposes of a program that is doing semantic processing ...
 - Answer questions
 - What is the tallest building in the world?
 - Determining truth
 - *Is the blue block on the red block?*
 - Drawing inferences
 - If the blue block is on the red block and the red block is on the tallest building in the world, then
 - the blue block is on the tallest building in the world
- What are basic requirements of meaning representation?

- Considering the issue of why meaning representations are needed and what they should do for us
 - Verifiability
 - Unambiguous representations
 - Canonical form
 - Inference and variables
 - Expressiveness

- Verifiability
 - It must be possible to use the representation to determine the relationship between the meaning of a sentence and the world we know it.
 - The most straightforward way:
 - Compare, or match the representation of the meaning of an input against the representation in its **KB**, its store of information about its world.

(14.1) Does Maharani serve vegetarian food? *Serves (Maharani, VegetarianFood)*

- Unambiguous representations
 - Single linguistic input can legitimately have different meaning representations assigned to them.
 - (14.2) I wanna eat someplace that's close to ICSI.
 - Ordinary interpretation eat *at* nearby location
 - Godzilla's interpretation
 - Regardless of any ambiguity in the raw input, it is critical that a meaning representation language support representations that have a single unambiguous interpretation.
 - **Vagueness**, a concept closely related to ambiguity (14.3) *I want to eat Italian food.* (pasta? spaghetti? lasagna?)

- Canonical Form
 - Inputs that mean the same thing should have the same meaning representation
 - (14.4) Does Maharani have vegetarian food?
 - (14.5) Do they have vegetarian food at Maharani?
 - (14.6) Are vegetarian dishes served at Maharani?
 - (14.7) Does Maharani serve vegetarian fare?
 - Food, dish and fare all have various word senses and some of the senses are synonymous with one another
 - The process of choosing the right sense in context is called word sense disambiguation (WSD)

• If a system has the ability to choose that shared sense, then an identical meaning representation can be assigned to the phrases.

- Inference and Variables
 - (14.10) Can vegetarians eat at Maharani?
 - There is a common sense connection between what vegetarians eat and what vegetarian restaurants serve
 - This is a fact about the world and not fact about any particular kind of linguistic regularity
 - **Inference**: refer generically to a system's ability to draw valid conclusions based on the meaning representation of inputs and its store of background knowledge
 - *I'd like to find a restaurant where I can get vegetarian food*
 - Serves(x, VegetarianFood)

Expressiveness

- To be useful, a meaning representation scheme must be expressive enough to handle an extremely wide range of subject matter
- Ideal situation: having a single meaning representation language that could adequately represent the meaning of any sensible natural language utterance

Meaning Structure of Language

- Various methods by which human language convey meaning:
 - Form-meaning associations,
 - Word-order regularities,
 - Tense systems,
 - Conjunction and quantifiers, and
 - A fundamental predicate-argument structure
- The last one has great practical influence on the nature of meaning representation languages.

Meaning Structure of Language

- All human language have a form of <u>predicate-argument arrangement</u> at the core of their semantic structure
- This <u>predicate-argument structure</u> asserts
 - The specific relationships hold among the various concepts underlying the constituent words and phrases that make up sentences
- This <u>underlying structure</u> permits the creation of a single composite meaning representation from the meanings of the various parts of an input
- One of the most important jobs of a grammar is to help organize this predicate-argument structure

(14.12) I want Italian food.
 (14.13) I want to spend less than five dollars.
 (14.14) I want it to be close by here.

NP want NP
NP want Inf-VP
NP want NP Inf-VP

• The syntactic frames specify the number, position, and syntactic category of the arguments that are expected to accompany a verb

want in (14.12) specifies the following facts:

- # There are two arguments to this predicate.
- # Both arguments must be NPs.
- # The first argument is pre-verbal and plays the role of the subject.
- # The second argument is post-verbal and plays the role of the direct object.
- Two extensions of these frames into the semantic realm:
 - Semantic roles
 - Semantic restrictions on these roles

- Notion of semantic role
 - By looking at (14.12) through (14.14)
 - The pre-verbal argument plays the role of the entity doing the *wanting*, while
 - The post-verbal argument plays the role of concept that is *wanted*.
 - By noticing these regularities and labeling them accordingly, we can associate *the surface arguments of a verb* with a set of *discrete roles* in its underlying semantics
 - Verb subcategorization allows **linking** of arguments in the surface structure with the semantic roles
 - The study of roles associated with specific verbs and across classes of verbs is referred to as **thematic role** or **case role** analysis

- Notion of semantic restrictions
 - Only certain kinds, or *categories*, of concepts can play the role of wanter
 - *want* restricts the constituents appearing as first argument to, that can partake in a *wanting* role **selection restriction**
- Predicate-argument structures other than verbs:
 - (14.15) an Italian restaurant under fifteen dollars *Under(ItalianRestaurant*, \$15)
 - (14.16) Make a reservation for this evening for a table for two person at 8. *Reservation*(*Hearer*, *Today*, 8*PM*, 2)

- Useful meaning representation language must support:
 - Variable arity predicate-argument structures.
 - The semantic labeling of arguments to predicates.
 - The statement of semantic constraints on the fillers of argument roles.

References

Slides were adapted from:
 Speech and Language Processing, Jurafsky and Martin

