INTRODUCTION TO CATEGORY THEORY

 $A = \{1, 2\}$

A and B are sets (collections of unique objects)
Items in a set are called *elements*

 $B = \{3, 4\}$

You might ask: what can I do with elements of a set?

... also remember that a ≤ a for every element a of a set

Thus $1 \le 1$, $2 \le 2$ and

Interpret this as:

WE HAVE TWO SETS A AND B.

WE KNOW WHICH ELEMENTS ARE SMALLER THAN OR EQUAL TO WHICH OTHER ELEMENTS

$$A = 1 \longrightarrow 2$$

$$B = 1.4 \longrightarrow 2.2$$

Emotions = { depressed, sad, curious, satisfied, happy} Remember: I CAN COMPARE TWO ELEMENTS A≤B IF I PREFER B TO A sad ≤ sad, curious ≤ curious A≤B 如果 B 比 A 好 and so on happy Can ask questions like: satisfied curious What is the largest element smaller than $\{x,y,z\}$? What is the smallest element larger than {a,b,c}? sad MEET OF {CURIOUS, SATISFIED} = SAD JOIN OF {CURIOUS, SATISFIED} = HAPPY depressed

EXAMPLE #1

Preorder A $1 \longrightarrow 2$

Find nearest neighbor in preorder B

Preorder B $1.4 \longrightarrow 2.2$

Find nearest neighbor in preorder A

Preorder A $1 \longrightarrow 2$

Preorder B $1.4 \longrightarrow 2.2$

Find nearest neighbor in preorder B

Find nearest neighbor in preorder A

$$l(1) = 1.4$$

$$r(1.4) = 1$$

$$l(2) = 2.2$$

$$l(1) = 1.4$$
 $r(1.4) = 1$
 $l(2) = 2.2$ $r(2.2) = 2$

Preorder A

Find nearest neighbor in preorder B

Preorder B

Find nearest neighbor in preorder A

$$l(1) = 1.4$$

$$l(2) = 2.2$$
 $r(2.2) = 2$

$$l(1) = 1.4$$
 $r(1.4) = 1$

$$r(2.2)=2$$

l and r are inverses of each other

$$r(l(x)) = x$$

$$l(r(y)) = y$$

Preorder A
$$1 \longrightarrow 2$$

Find nearest neighbor in preorder B

Preorder B
$$1.8 \longrightarrow 2.2$$

Find nearest neighbor in preorder A

Find nearest neighbor in preorder B

Find nearest neighbor in preorder A

$$l(1) = 1.8$$

$$r(1.8) = 2$$

$$l(2) = ?$$
 $r(2.2) = 2$

Note that the function r is not invertible here

$$l(1) = 1.8$$
 $r(1.8) = 2$
 $l(2) = 1.8$ $r(2.2) = 2$

$$r(1.8) = 2$$
$$r(2.2) = 2$$

$$\begin{array}{ccc}
1 & \longrightarrow 2 \\
\downarrow & & \uparrow \\
1.8 & \longrightarrow 2.2
\end{array}$$

$$l(1) = 1.8$$
 $r(1.8) = 2$

$$r(1.8)=2$$

$$l(2) = 2.2$$

$$f(2) = 2.2$$
 $r(2.2) = 2$

WHICH ONE IS A BETTER CHOICE\$

$$l(1) = 1.8$$
 $r(1.8) = 2$ $l(2) = 1.8$ $r(2.2) = 2$

$$r(1.8) = 2$$
$$r(2.2) = 2$$

$$\begin{array}{c} 1 \longrightarrow 2 \\ \downarrow \\ 1.8 \longrightarrow 2.2 \end{array}$$

$$l(1) = 1.8$$

$$f(2) = 2.2$$

$$r(1.8)=2$$

$$r(2.2)=2$$

WHICH ONE IS A BETTER CHOICE\$

FUNCTIONS L AND R SHOULD PRESERVE SOMETHING FROM ISOMORPHIC MAPS

$$l(1) = 1.8$$
 $r(1.8) = 2$ $l(2) = 1.8$ $r(2.2) = 2$

$$1 \longrightarrow 2$$

$$\downarrow () r \uparrow$$

$$1.8 \longrightarrow 2.2$$

$$l(1) = 1.8 r(1.8) = 2$$

$$l(2) = 2.2 r(2.2) = 2$$

WHICH ONE IS

A BETTER

CHOICE?

FUNCTIONS L AND R SHOULD PRESERVE SOMETHING FROM ISOMORPHIC MAPS

 $L(X) \leq Y$ \Leftrightarrow $X \leq R(Y)$

$$l(1) = 1.8$$

$$\underline{l(2) = 1.8}$$

$$r(1.8) = 2$$
$$r(2.2) = 2$$

$$2 \le g(1.8) \Leftrightarrow f(2) \le 1.8$$

$$\begin{array}{ccc}
1 \longrightarrow 2 \\
\downarrow & & \uparrow \\
1.8 \longrightarrow 2.2
\end{array}$$

$$l(1) = 1.8$$

$$l(2) = 2.2$$

$$r(1.8)=2$$

$$r(2.2) = 2$$

 $2 \le g(1.8)$ but $f(2) \le 1.8$?

WHICH ONE IS

A BETTER

CHOICE?

FUNCTIONS L AND R SHOULD PRESERVE SOMETHING FROM ISOMORPHIC MAPS

Aims to minimize disagreement

DEFINITION

Given preorders P and Q

Preorder P

Preorder Q

DEFINITION

Given preorders P and Q

DEFINITION

Given preorders P and Q

$$x \le r(y) \Leftrightarrow \ell(x) \le y$$

for all $x \in \mathcal{P}$, $y \in \mathcal{Q}$

DEFINITION

Given preorders P and Q

$$x \le r(y) \Leftrightarrow \ell(x) \le y$$

for all $x \in \mathcal{P}$, $y \in \mathcal{Q}$

DEFINITION

Given preorders P and Q

$$x \le r(y) \Leftrightarrow \ell(x) \le y$$

for all $x \in \mathcal{P}$, $y \in \mathcal{Q}$

DEFINITION

Given preorders P and Q

$$x \le r(y) \Leftrightarrow \ell(x) \le y$$

for all $x \in P$, $y \in Q$

DEFINITION

Given preorders P and Q

$$x \le r(y) \Leftrightarrow \ell(x) \le y$$
for all $x \in \mathcal{P}, y \in \mathcal{Q}$

 $neutral \leq g(開心) \Leftrightarrow f(neutral) \leq 開心$

Obvious for all other terms:

 $sad \leq g(難過) \Leftrightarrow f(sad) \leq 難過$

... and so on

f: left adjoint g: right adjoint

 $g(開心) \leq ecstatic \Leftrightarrow 開心 \leq f(ecstatic)$

Obvious for all other terms:

 $g(難過) \leq sad \Leftrightarrow 難過 \leq f(sad)$

... and so on

f: right adjoint

g: left adjoint

Language

Abstract concept: all possible subsets of

Define \leq : $a \leq b$ if a is subset of b

Define \leq : $a \leq b$ if a implies b

Define \leq : $a \leq b$ if a implies b

Define \leq : $a \leq b$ if a is subset of b

Pragmatic means the speaker wants to be correct and as possible
Quantity
Quality

Listening

Speaking

Listening

Speaking

Listening → Right adjoint

Speaking → Left adjoint

VISUAL EXPLANATION OF GALOIS CONNECTION

Right adjoint

Left adjoint

RECTANGLES DO NOT INTERSECT

RECTANGLE_{LEFT-ADJOINT}
CONTAINED BY
RECTANGLE_{RIGHT-ADJOINT}

No longer true: $x \le r(y) \Leftrightarrow l(x) \le y$

RECTANGLES INTERSECT

Is this a Galois connection?

WHICH ONES ARE GALOIS CONNECTIONS?

$$x \le r(y) \Leftrightarrow \ell(x) \le y$$

WHICH ONES ARE GALOIS CONNECTIONS?

$$x \le r(y) \Leftrightarrow \ell(x) \le y$$

WHICH ONES ARE GALOIS CONNECTIONS?

$$x \le r(y) \Leftrightarrow \ell(x) \le y$$

Rectangle_{left-adjoint} should share an edge with Rectangle_{right-adjoint} from the inside

LOOKING BACK AT EXAMPLE #1

LEFT ADJOINT THEN RIGHT ADJOINT OF AN ELEMENT

LEFT ADJOINT THEN RIGHT ADJOINT OF AN ELEMENT

Which one is the right adjoint of a Galois connection?

LEFT ADJOINT THEN RIGHT ADJOINT OF AN ELEMENT

RIGHT ADJOINT THEN LEFT ADJOINT OF AN ELEMENT

RIGHT ADJOINT THEN LEFT ADJOINT OF AN ELEMENT

$$l(r(y)) \leq y$$

LOOKING BACK AT EXAMPLES #1 AND #2

$$1 \le r(l(1))$$
$$l(r(2.2)) \le 2.2$$

$$neutral \leq g(f(neutral))$$

$$f(g(難過)) \leq 難過$$

$$x \le r(l(x))$$
 $l(r(y)) \le y$

g (join(難過, 生氣))

join(g(難過),g(生氣))

g (join(難過, 生氣))

join(g(難過),g(生氣))

g (join(難過, 生氣)) = join(g(難過), g(生氣))

g (join(難過, 生氣))

≠
join(g(難過), g(生氣))

SIMILARLY RIGHT ADJOINT PRESERVES MEETS

Meet(x, y) = wJoin(x, y) = z

Is this a monotone map?

Simply means that: If join of x and y is z then join of $\ell(x)$ and $\ell(y)$ is $\ell(z)$

Simply means that: If join of x and y is z then join of $\ell(x)$ and $\ell(y)$ is $\ell(z)$

This point can only get as small as I(z) while maintaining Galois connection

Therefore join of $\ell(x)$ and $\ell(y)$ is $\ell(z)$

RIGHT ADJOINT PRESERVES MEETS

Simply means that: If meet of x and y is z then meet of r(x) and r(y) is r(z)

RIGHT ADJOINT PRESERVES MEETS

Simply means that: If meet of x and y is z then meet of r(x) and r(y) is r(z)

This point can only get as large as r(w) while maintaining Galois connection

Therefore join of r(x) and r(y) is r(z)

CLOSURE

$$x \le r(l(x))$$

$$x \le l \text{ then } r(x)$$

$$x \le l; r(x)$$

$$l(r(y)) \le y$$

$$r \text{ then } l(y) \le y$$

$$r; l(y) \le y$$

$$l;r;l;r(x)=l;r(x)$$

APPLICATIONS

Abstract interpretation

Source: https://lara.epfl.ch/w/_media/sav17:lecturecise10.pdf

Syntax and semantics

Grammatical aspect of language

Semantic meaning of language

A statement can be syntactically correct but semantically meaningless. Eg.

Cow eats supremely

Semantics is left adjoint

Syntax is right adjoint

APPLICATIONS

Probability distribution

Cumulative distribution function

Left adjoint

 $F_X(x)$: $\mathbb{P}(X \leq x)$

Quantile function

Right adjoint

 $Q_X(p)$: inf{ $x \in \mathbb{R}$: p < F(x)}

Programming

Programming from Galois Connections

Shin-Cheng Mu^a, José Nuno Oliveira^b

^aInstitute of Information Science, Academia Sinica, Taiwan
^bHigh Assurance Software Lab / INESC TEC and Univ. Minho, Portugal

lead to specifications made of two parts: one defining a broad class of solutions (the *easy* part) and the other requesting one particular such solution, optimal in some sense (the *hard* part).

... analogous to ...

Pragmatic means the speaker wants to be correct and as specific as possible

Quantity Quality

THANK YOU