Έστω $w = \arccos 2$, τότε $\cos w = 2$, και έτσι

$$\frac{e^{iw} + e^{-iw}}{2} = 2,$$

οπότε προχύπτει η εξίσωση δευτέρου βαθμού

$$(e^{iw})^2 - 4e^{iw} + 1 = 0,$$

η οποία έχει τις λύσεις

$$e^{iw} = 2 \pm \sqrt{3}$$

Λαμβάνοντας λογαρίθμους και στα δύο μέλη της τελευταίας, έχουμε

$$w = -i\log\left(2 \pm \sqrt{3}\right).$$

Επειδή ${\rm Arg}(2+\sqrt{3})={\rm Arg}(2-\sqrt{3})=0,$ με τη βοήθεια της τελευταίας και της (10.2.9), ευρίσκουμε

$$w = -i \ln \left(2 \pm \sqrt{3}\right) + 2k\pi, \ k \in \mathbb{Z}.$$

Το \pm εκφράζει τους δύο κλάδους της τετραγωνικής ρίζας στην πρώτη των (10.2.16), ενώ το k εκφράζει την τάξη του κλάδου του μιγαδικού λογαρίθμου.

Εναλλακτικά, από την πρώτη των (10.2.16), για z=2, λαμβάνουμε

$$\arccos 2 = -i \log \left(2 + i(-3)^{\frac{1}{2}} \right),$$

οπότε επανευρίσκουμε το αποτέλεσμα του πρώτου τρόπου, αφού $(-3)^{\frac{1}{2}}=\pm i\sqrt{3}.$

 \triangle

10.3 Ειδικά υποσύνολα του μιγαδικού επιπέδου

Στην παράγραφο αυτή διαχρίνουμε ορισμένα ειδικά, σημαντικά και χρηστικά υποσύνολα του $\mathbb C$, τα οποία προσδιορίζονται από αλγεβρικές και μετρικές ιδιότητες του $\mathbb C$. Τα σύνολα αυτά χρησιμοποιούνται ως πεδία ορισμού μιγαδικών συναρτήσεων και συμβάλλουν καθοριστικά στη μελέτη της έννοιας του ορίου, της συνέχειας και της ολομορφίας των μιγαδικών συναρτήσεων.

Έστω $z_0 \in \mathbb{C}$ και $\epsilon > 0$. Το σύνολο

$$D_{\epsilon}(z_0) = \{ z \in \mathbb{C} : |z - z_0| < \epsilon \}$$

ονομάζεται ανοικτός δίσκος με κέντρο το z_0 και ακτίνα ϵ , ενώ το σύνολο

$$\overline{D}_{\epsilon}(z_0) = \{ z \in \mathbb{C} : |z - z_0| \le \epsilon \}$$

ονομάζεται κλείστος δίσκος με κέντρο το z_0 και ακτίνα ϵ .

Έστω $A\subseteq\mathbb{C}$. Ένα σημείο $z_0\in A$ ονομάζεται $\epsilon\sigma\omega$ τ $\epsilon\rho$ ικό σημείο του A αν υπάρχει ένας ανοικτός δίσκος $D_\epsilon(z_0)$, ο οποίος περιέχεται στο A.

Ορισμός 10.3.1 Ένα υποσύνολο A του $\mathbb C$ ονομάζεται aνοικτό όταν κάθε σημείο του είναι εσωτερικό, δηλαδή όταν για κάθε $z \in A$ υπάρχει ένα $\epsilon_z > 0$ με $D_{\epsilon_z}(z) \subseteq A$.

Παραδείγματα ανοικτών συνόλων.

Τα σύνολα που ορίζονται από τις ανισότητες

- (1) $|z-z_0|<\epsilon$ (ανοικτός δίσκος)
- (2) 2 < |z| < 3 (δαχτύλιος)
- (3) |z i| > 4 (εξωτερικό κύκλου)
- (4) Im(z) < 0 (κάτω ημιεπίπεδο)
- (5) -2 < Re(z) < 2 (λωρίδα)

είναι ανοικτά σύνολα.

 \triangle

Ένα $A\subseteq\mathbb{C}$ ονομάζεται πολυγωνικά συνεκτικό αν κάθε δύο σημεία του συνδέονται με μία πολυγωνική γραμμή (δηλαδή ένωση διαδοχικών ευθυγράμμων τμημάτων), η οποία ανήκει στο A.

Παραδείγματα.

- (α) Τα ανοικτά σύνολα των παραπάνω περιπτώσεων (1)-(5) είναι και πολυγωνικά συνεκτικά.
- (β) Το ανοικτό σύνολο $A=\{z\in\mathbb{C}: \mathrm{Im}(z)\neq 1\}$ δεν είναι πολυγωνικά συνεκτικό.

 \triangle

Ένα μη κενό, ανοικτό και πολυγωνικά συνεκτικό $\Omega\subseteq\mathbb{C}$ ονομάζεται πεδίο ή τόπος.

Έστω $A\subseteq\mathbb{C}$. Ένα σημείο $z_0\in\mathbb{C}$ ονομάζεται συνοριακό σημείο του A αν κάθε ανοικτός δίσκος με κέντρο το z_0 περιέχει τουλάχιστον ένα σημείο του A και τουλάχιστον ένα σημείο που δεν ανήκει στο A. Το σύνολο ∂A των συνοριακών σημείων του A ονομάζεται σύνορο του A.

Παραδείγματα.

- (1) $A = \{ z \in \mathbb{C} : |z z_0| < \epsilon \}, \quad \partial A = \{ z \in \mathbb{C} : |z z_0| = \epsilon \}$
- (2) $A = \{z \in \mathbb{C} : 2 < |z| < 3\}, \quad \partial A = \{z \in \mathbb{C} : |z| = 2 \text{ xai } |z| = 3\}$
- (3) $A = \{z \in \mathbb{C} : |z i| > 4\}, \quad \partial A = \{z \in \mathbb{C} : |z i| = 4\}$
- (4) $A = \{ z \in \mathbb{C} : \text{Im}(z) < 0 \}, \quad \partial A = \{ z \in \mathbb{C} : \text{Im}(z) = 0 \}$
- (5) $A = \{z \in \mathbb{C} : -2 < \text{Re}(z) < 2\}, \quad \partial A = \{z \in \mathbb{C} : \text{Re}(z) = -2 \text{ man } \text{Re}(z) = 2\}.$

 \triangle

Ένα $K\subseteq\mathbb{C}$ ονομάζεται κλειστό όταν περιέχει το σύνορό του ∂K , που ισοδυναμεί με το ότι το συμπλήρωμά του $\mathbb{C}\setminus K$ είναι ανοικτό. Επί παραδείγματι, ο κλειστός δίσκος $\overline{D}_{\epsilon}(z_0)=\{z\in\mathbb{C}:|z-z_0|\leq\epsilon\}$ είναι κλειστό σύνολο, αφού περιέχει το σύνορό του $\partial\overline{D}_{\epsilon}(z_0)=\{z\in\mathbb{C}:|z-z_0|=\epsilon\}.$

Ένα $B\subseteq\mathbb{C}$ ονομάζεται φραγμένο όταν το σύνολο $\{|z|:z\in B\}$ είναι φραγμένο υποσύνολο του \mathbb{R} , δηλαδή όταν υπάρχει M>0 έτσι ώστε να ισχύει ότι $|z|\leq M$, για κάθε $z\in B$.

Παραδείγματα. Από τα ανοικτά σύνολα των περιπτώσεων (1)-(5) του πρώτου παραδείγματος, φραγμένα είναι μόνο ο ανοικτός δίσκος και ο δακτύλιος.

Δ

10.4 Όρια μιγαδικών συναρτήσεων

Για τον ορισμό του ορίου μιας μιγαδικής συνάρτησης χρειαζόμαστε την έννοια του σημείου συσσώρευσης του πεδίου ορισμού της, η οποία εξασφαλίζει τη μοναδικότητα του ορίου.

Έστω $A\subseteq\mathbb{C}$. Ένα $z_0\in\mathbb{C}$ ονομάζεται σημείο συσσώρευσης του συνόλου A όταν κάθε ανοικτός δίσκος $D_\epsilon(z_0)$ περιέχει ένα (τουλάχιστον) σημείο του A διαφορετικό από το z_0 , δηλαδή όταν για κάθε $\epsilon>0$ υπάρχει $z\in A$ με $z\neq z_0$ και $|z-z_0|<\epsilon$ ή ισοδύναμα $0<|z-z_0|<\epsilon$. Εξάλλου, ένα σημείο z_0 του A, το οποίο δεν είναι σημείο συσσώρευσης του A, ονομάζεται μεμονωμένο σημείο του A.

Σημείωση. Είναι σαφές ότι για ένα ανοιχτό $A\subseteq\mathbb{C}$ όλα τα σημεία του $A\cup\partial A$ είναι σημεία συσσώρευσης του A.

Ορισμός 10.4.1 Εστω $f:A\subseteq\mathbb{C}\to\mathbb{C}$ μιγαδιχή συνάρτηση με πεδίο ορισμού το A και $z_0\in\mathbb{C}$ σημείο συσσώρευσης του A. Λέμε ότι η συνάρτηση f έχει ως όριο το μιγαδιχό

αριθμό ℓ (ή συγκλίνει προς το μιγαδικό αριθμό ℓ), καθώς το z τείνει στο z_0 , τότε και μόνο τότε όταν για κάθε $\epsilon>0$, υπάρχει $\delta=\delta(\epsilon)>0$ έτσι ώστε

για κάθε
$$z \in A$$
 με $0 < |z - z_0| < \delta \Rightarrow |f(z) - \ell| < \epsilon$.

Αν το z_0 είναι μεμονωμένο σημείο του A (οπότε $z_0 \in A$) ως όριο της f, καθώς το z τείνει στο z_0 , ορίζεται η τιμή $f(z_0)$.

Το όριο της f στο z_0 , όταν υπάρχει, είναι μοναδικό και συμβολίζεται με

$$\ell = \lim_{z \to z_0} f(z).$$

Παρατηρήσεις.

- (i) Για τον ορισμό της έννοιας του ορίου, δεν απαιτείται το z_0 να ανήκει στο σύνολο A ούτε να ορίζεται η τιμή $f(z_0)$.
- (ii) Στις περιπτώσεις πραγματικών συναρτήσεων, ένας πραγματικός αριθμός x_0 προσεγγίζεται από δύο συγκεκριμένες κατευθύνσεις $(x>x_0)$ και $x< x_0$). Όμως, στις μιγαδικές συναρτήσεις, η προσέγγιση $z\to z_0$ επιτρέπεται κατά οποιονδήποτε δυνατό τρόπο, π.χ. κατά μήκος μιας καμπύλης που διέρχεται από το z_0 .

 \triangle

Παράδειγμα 10.4.1 Εξετάστε, αν υπάρχει, το όριο $\lim_{z \to i} \frac{z^4-1}{z-i}$.

Λύση. Από την

$$\frac{z^4 - 1}{z - i} = \frac{(z^2 - 1)(z^2 + 1)}{z - i} = (z^2 - 1)(z + i), \ z \neq i,$$

έχουμε

$$\lim_{z \to i} \frac{z^4 - 1}{z - i} = \lim_{z \to i} (z^2 - 1)(z + i) = -4i.$$

 \triangle

Παράδειγμα 10.4.2 Εξετάστε, αν υπάρχει, το όριο $\lim_{z \to 0} \frac{z}{\overline{z}}.$

 ${f \Lambda}$ ύση. Θεωρούμε τη συνάρτηση $f(z)=rac{z}{\overline{z}},\;z
eq0,$ και προσεγγίζουμε το σημείο 0

(i) κατά μήκος του θετικού πραγματικού ημιάξονα, δηλαδή θεωρούμε ότι $z=x+i0,\ x\to 0^+,$ οπότε έχουμε

$$\lim_{x \to 0^+} f(x+i0) = \lim_{x \to 0^+} \frac{x+i0}{x+i0} = \lim_{x \to 0^+} \frac{x}{x} = 1.$$

(ii) κατά μήκος του θετικού φανταστικού ημιάξονα, δηλαδή θεωρούμε ότι $z=0+iy,\;y\to 0^+,$ οπότε

$$\lim_{y \to 0^+} f(0+iy) = \lim_{y \to 0^+} \frac{0+iy}{0+iy} = \lim_{y \to 0^+} \frac{iy}{-iy} = -1.$$

Οι δύο προηγούμενες προσεγγίσεις οδηγούν σε διαφορετικά όρια που σημαίνει ότι δεν υπάρχει το ζητούμενο $\lim_{z\to 0} f(z)$.

 \triangle

Με παρόμοια διαδικασία επεξεργαζόμαστε και το ακόλουθο

 Π αράδειγμα 10.4.3 Εξετάστε, αν υπάρχει, το όριο $\lim_{z \to 0} rac{\mathrm{Re}(z)}{\mathrm{Im}(z)}.$

Λύση. Θεωρούμε τη συνάρτηση $f(z)=\frac{{
m Re}(z)}{{
m Im}(z)}, \ {
m Im}(z)\neq 0,$ και επιλέγουμε τις προσεγγίσεις του σημείου 0

(i) κατά μήκος της ημιευθείας $z=x+ix,\ x>0,$ οπότε λαμβάνουμε

$$\lim_{x \to 0^+} f(x+ix) = \lim_{x \to 0^+} \frac{\text{Re}(x+ix)}{\text{Im}(x+ix)} = \lim_{x \to 0^+} \frac{x}{x} = 1.$$

(ii) κατά μήκος του θετικού φανταστικού ημιάξονα, δηλαδή θεωρούμε ότι $z=0+iy,\;y\to 0^+,$ οπότε

$$\lim_{y \to 0^+} f(0+iy) = \lim_{y \to 0^+} \frac{\operatorname{Re}(0+iy)}{\operatorname{Im}(0+iy)} = \lim_{y \to 0^+} \frac{0}{y} = 0$$

και έτσι συμπεραίνουμε ότι δεν υπάρχει το ζητούμενο $\lim_{z\to 0} f(z)$.

 \triangle

Η συσχέτιση του ορίου μιας μιγαδικής συνάρτησης με τα όρια του πραγματικού και του φανταστικού μέρους της καταγράφεται στην ακόλουθη

Πρόταση 10.4.1 Έστω η μιγαδική συνάρτηση $f=u+iv:A\subseteq\mathbb{C}\to\mathbb{C}$ και $z_0=x_0+iy_0$ σημείο συσσώρευσης του A. Τότε, οι ακόλουθοι ισχυρισμοί είναι ισοδύναμοι

- 1. $\lim_{z\to z_0} f(z) = u_0 + iv_0$
- 2. $\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0$ kal $\lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0$.

Πρόταση 10.4.2 (Αλγεβρικές ιδιότητες ορίων)

Έστω $f,g:A\subseteq\mathbb{C}\to\mathbb{C}$ δύο μιγαδικές συναρτήσεις και z_0 ένα σημείο συσσώρευσης του A. Υποθέτουμε ότι υπάρχουν τα όρια $\lim_{z\to z_0}f(z)$ και $\lim_{z\to z_0}g(z)$. Τότε, υπάρχουν επίσης τα όρια

$$\lim_{z \to z_0} (f(z) + g(z)), \quad \lim_{z \to z_0} (\lambda f(z)), \quad \lim_{z \to z_0} (f(z)g(z)), \quad \lim_{z \to z_0} \frac{f(z)}{g(z)}$$

 $(\lambda \in \mathbb{C}$ και για το τελευταίο όριο υποθέτουμε ότι $\lim_{z \to z_0} g(z) \neq 0)$ και ισχύουν

$$\lim_{z \to z_0} (f(z) + g(z)) = \lim_{z \to z_0} f(z) + \lim_{z \to z_0} g(z),$$

$$\lim_{z \to z_0} (\lambda f(z)) = \lambda \lim_{z \to z_0} f(z),$$

$$\lim_{z \to z_0} (f(z)g(z)) = \left(\lim_{z \to z_0} f(z)\right) \left(\lim_{z \to z_0} g(z)\right),$$

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)}.$$

10.5 Συνεχείς μιγαδικές συναρτήσεις

Η συνέχεια μιγαδικών συναρτήσεων ορίζεται με τη βοήθεια της έννοιας του ορίου όπως ακολουθεί.

Ορισμός 10.5.1 Μία μιγαδική συνάρτηση $f:A\subseteq\mathbb{C}\to\mathbb{C}$, με πεδίο ορισμού το σύνολο A, ονομάζεται συνέχής σε ένα σημείο $z_0\in A$ όταν υπάρχει το $\lim_{z\to z_0}f(z)$ και ισχύει

$$\lim_{z \to z_0} f(z) = f(z_0).$$

Εξάλλου, η συνάρτηση f ονομάζεται συνεχής στο A όταν είναι συνεχής σε κάθε σημείο $z_0 \in A.$

Η συσχέτιση της συνέχειας μιας μιγαδικής συνάρτησης με τη συνέχεια του πραγματικού και του φανταστικού της μέρους καταγράφεται στο ακόλουθο

Θεώρημα 10.5.1 Μία μιγαδική συνάρτηση $f=u+iv:A\subseteq\mathbb{C}\to\mathbb{C}$ είναι συνεχής στο σημείο $z_0=x_0+iy_0\in\mathbb{C}$ τότε και μόνο τότε όταν οι πραγματικές συναρτήσεις u(x,y) και v(x,y) είναι συνεχείς στο σημείο $(x_0,y_0)\in\mathbb{R}^2$.

Θεώρημα 10.5.2 (Αλγεβρικές ιδιότητες συνεχών συναρτήσεων)

Έστω $f,g:A\subseteq\mathbb{C}\to\mathbb{C}$ δύο μιγαδικές συναρτήσεις με κοινό πεδίο ορισμού το υποσύνολο A του \mathbb{C} , οι οποίες είναι συνεχείς σε ένα σημείο $z_0\in A$. Τότε οι συναρτήσεις

$$f+g$$
, λf , fg και $\frac{f}{g}$

(οπου $\lambda \in \mathbb{C}$ και $g(z_0) \neq 0$) είναι συνεχείς στο z_0 .

Παραδείγματα.

- (1) Οι συναρτήσεις $Re(z), Im(z), |\overline{z}|$ είναι συνεχείς στο \mathbb{C} .
- (2) Η πολυωνυμική συνάρτηση

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0, \ a_i \in \mathbb{C}$$

είναι συνεχής στο \mathbb{C} .

(3) Η ρητή συνάρτηση

$$R(z) = \frac{P(z)}{Q(z)}, \ z \in \mathbb{C} : Q(z) \neq 0$$

είναι συνεχής στο πεδίο ορισμού της.

(4) Η συνάρτηση

$$f(z) = \begin{cases} 0, & z = 0\\ \frac{z}{\overline{z}}, & z \neq 0 \end{cases}$$

δεν είναι συνεχής στο z=0 διότι, όπως δείξαμε στο Παράδειγμα 10.4.2, δεν υπάρχει το $\lim_{z\to 0}f(z)$.

Θεώρημα 10.5.3 Έστω δύο μιγαδιχές συναρτήσεις $f:A\subseteq\mathbb{C}\to\mathbb{C}$ και $g:B\subseteq\mathbb{C}\to\mathbb{C}$ με τις ιδιότητες: $f(A)\subseteq B$, η f είναι συνεχής σε ένα σημείο $z_0\in A$ και η g είναι συνεχής στο σημείο $f(z_0)\in B$. Τότε, η σύνθεση $(g\circ f)(z)\equiv g(f(z)):A\subseteq\mathbb{C}\to\mathbb{C}$ είναι συνεχής στο z_0 .

Μία μιγαδιχή συνάρτηση $f:A\subseteq\mathbb{C}\to\mathbb{C}$ ονομάζεται φραγμένη στο A όταν το πεδίο τιμών f(A) αυτής είναι φραγμένο υποσύνολο του \mathbb{C} , δηλαδή όταν υπάρχει ένα M>0 έτσι ώστε να ισχύει

$$|f(z)| \le M, \ \forall z \in A.$$

Θεώρημα 10.5.4 Κάθε συνεχής μιγαδική συνάρτηση $f:A\subseteq\mathbb{C}\to\mathbb{C}$ με πεδίο ορισμού το κλειστό και φραγμένο υποσύνολο A του $\mathbb C$ είναι φραγμένη.

Θεώρημα 10.5.5 (Θεώρημα μεγίστης και ελαχίστης τιμής)

Έστω $f:A\subseteq\mathbb{C}\to\mathbb{C}$ συνεχής μιγαδική συνάρτηση με πεδίο ορισμού το κλειστό και φραγμένο υποσύνολο A του \mathbb{C} . Τότε, υπάρχουν σημεία z_ϵ και z_μ του A, έτσι ώστε να ισχύει

$$|f(z_{\epsilon})| \le |f(z)| \le |f(z_{\mu})|, \quad \forall z \in A.$$

10.6 Ασκήσεις

Άσκηση 10.6.1 Λύστε τις μιγαδικές εξισώσεις

- (i) $\text{Log}z = \frac{\pi}{2}i$
- (ii) $\text{Log}z = \frac{3\pi}{2}i$
- (iii) $e^z = \pi i$
- (iv) $\sin z = \cosh 4$
- (v) $\overline{e^{iz}} = e^{i\overline{z}}$
- (vi) $z^{\frac{1}{2}} = 1 + i$.