

Outline

- > Introduction
- Overview of Dataset for Different Types of Brain Tumors
- Data Preprocessing
- Modeling, Prediction and Evaluation
 - > SVM, KNN and Naïve Bayes
 - ANN with Parameters Exploratory
- Summary and Discussion

Introduction

- Challenge in Brain Cancer Diagnosis
 - Breaking through the blood-brain barrier
 - The challenges of surgical removal
 - The efficiency and accuracy of brain cancer diagnosis by doctors
- Application of Machine Learning in Brain Cancer Diagnosis
 - Assist a neuro-oncologist in diagnosing brain tumors
 - Increase the efficiency and accuracy of brain cancer diagnosis

Brain Cancer Types

Overview of Dataset for 3 Types of Brain Tumors

512 X 512 JPG file

https://www.kaggle.com/sartajbhuvaji/brain-tumor-classification-mri

Data Preprocessing

- Resize --- (128 X 128)
- Transform to array from image
- Normalization---(/255.0)

- rotation_range=20,
- width_shift_range=0.2,
- height_shift_range=0.2,
- zoom_range=0.2,
- horizontal_flip=True
- Data reshape from 3D to 2D

reshaped image vector

142

3-channel matrix pixel image

Modeling, Prediction and Evaluation

Modeling, Prediction and Evaluation -- SVM

clf = SVC(kernel="poly")

Classific	atio	n Report:			
		precision	recall	f1-score	support
	0	0.81	0.72	0.76	71
	1	0.90	0.98	0.94	174
	2	0.67	0.69	0.68	153
	3	0.82	0.77	0.80	176
accur	acy			0.81	574
macro	avg	0.80	0.79	0.79	574
weighted	avg	0.81	0.81	0.80	574

Modeling, Prediction and Evaluation -- KNN

clf = KNeighborsClassifier(n_neighbors=4)

C	Classification Report:								
		precision			f1-score	support			
		0	0.75	0.77	0.76	71			
		1	0.85	0.97	0.91	174			
		2	0.82	0.67	0.73	153			
		3	0.85	0.86	0.86	176			
	accur	acy			0.83	574			
	macro	avg	0.82	0.82	0.81	574			
weighted avg 0		0.83	0.83	0.83	574				

Modeling, Prediction and Evaluation -- Naïve Bayes

clf = GaussianNB()

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Classific	atio	n Report:			
	precision		recall	f1-score	support
	0	0.57	0.49	0.53	71
	1	0.79	0.83	0.81	174
	2	0.35	0.11	0.17	153
	3	0.58	0.93	0.72	176
accur	acy			0.63	574
macro	avg	0.58	0.59	0.56	574
weighted	avg	0.58	0.63	0.58	574

Modeling, Prediction and Evaluation -- ANN

ANN optimum model discovery

- 1. Hidden layers and nodes (20,20)/ (500,500) /(20,20,20,20)
- 2. Iteration numbers 500/ 2000
- 3. Activation "sigmoid"/ "relu"
- 4. Early-stopping
- 5. Solver

Adam/SGD/RMSprop/Adagra/Adadelta/Adamax

Optimizers

Method	Update equation
	$g_t = \nabla_{\theta_t} J(\theta_t)$
SGD	$\Delta \theta_t = -\eta \cdot g_t$
	$\theta_t = \theta_t + \Delta \theta_t$
Momentum	$\Delta\theta_t = -\gamma \ v_{t-1} - \eta g_t$
NAG	$\Delta\theta_t = -\gamma \ v_{t-1} - \eta \nabla_{\theta} J(\theta - \gamma v_{t-1})$
Adagrad	$\Delta heta_t = -rac{\eta}{\sqrt{G_t + \epsilon}} \odot g_t \ RMS[\Delta heta]_{t-1}$
Adadelta	$\Delta heta_t = -rac{ ilde{RMS}[\Delta heta]_{t-1}}{RMS[g]_t} g_t$
RMSprop	$\Delta \theta_t = -\frac{\eta^{1-2}}{\sqrt{E[g^2]_t + \epsilon}} g_t$
Adam	$\Delta \theta_t = -\frac{\sqrt{\eta^2}}{\sqrt{\Omega}} + \hat{m}_t$

Source: Sebastian Ruder

Source: Alec Radford

Experiments Design and Results for ANN with Different Parameters

ANN	Layers & Nodes	Iteration	Activation	Early- stopping	Solver	Accuracy (%)
01	(20, 20)	500	"sigmoid"	False	Adam	84.5
02	(20, 20)	500	"relu"	False	Adam	79.4
03	(20, 20)	500	"sigmoid", "relu"	False	Adam	82.1
04	(500, 500)	500	"sigmoid"	True	Adam	85.2
05	(20, 20, 20, 20)	500	"sigmoid"	False	Adam	80.8
06	(20, 20)	2000	"sigmoid"	False	Adam	82.2
07	(20,20)	500	"sigmoid"	False	SGD	81.2
08	(20, 20)	500	"sigmoid"	False	RMSprop	84.8
09	(20, 20)	500	"sigmoid"	False	Adagrad	81.0
10	(20, 20)	500	"sigmoid"	False	Adadelta	78.6
11	(20,20)	500	"sigmoid"	False	Adamax	73.3
ANN	(500, 500, 20)	500	"sigmoid"	False	RMSprop	87.5

epoch

epoch

Modeling, Prediction and Evaluation - ANN

Hidden layers and Nodes: (500,500,20)/ Iteration: 500/ Activation: "sigmoid"/ Solver: RMSpro (Ir=0.001)

Classification Report:									
			precision	recall	f1-score	support			
		0	0.82	0.83	0.82	75			
		1	0.95	0.95	0.95	154			
		2	0.82	0.82	0.82	168			
		3	0.89	0.89	0.89	177			
	accur	racy			0.87	574			
	macro	avg	0.87	0.87	0.87	574			
we	ighted	avg	0.87	0.87	0.87	574			

Modeling, Prediction and Evaluation - ANN

Summary and Discussion

- 1. Activation with "sigmoid" shows better performance and higher accuracy than activation with "relu" and "tanh".
- 2. Solver with RMSprop shows higher prediction accuracy with the brain cancer dataset.
- 3. With ANN model, the accuracy for prediction can reach to 87%, which is better than other models including KNN, SVM and Naïve Bayes.

Deep learning with skills of convolution and maxpool need to be tried to get the accuracy higher.....

References

- 1. Aldape, K., Brindle, K.M., Chesler, L. et al. Challenges to curing primary brain tumours. Nat Rev Clin Oncol 16, 509–520 (2019). https://doi.org/10.1038/s41571-019-0177-5
- 2. Cao, H., Erson-Omay, E.Z., Li, X. et al. A quantitative model based on clinically relevant MRI features differentiates lower grade gliomas and glioblastoma. Eur Radiol 30, 3073–3082 (2020). https://doi.org/10.1007/s00330-019-06632-8
- 3. Nadeem, M. W., Ghamdi, M., Hussain, M., Khan, M. A., Khan, K. M., Almotiri, S. H., & Butt, S. A. (2020). Brain Tumor Analysis Empowered with Deep Learning: A Review, Taxonomy, and Future Challenges. Brain sciences, 10(2), 118. https://doi.org/10.3390/brainsci10020118
- 4. Hollon, T.C., Pandian, B., Adapa, A.R. *et al.* Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. *Nat Med* **26**, 52–58 (2020). https://doi.org/10.1038/s41591-019-0715-9
- 5. Kingma, D.P., & Ba, J. (2015). Adam: A Method for Stochastic Optimization. CoRR, abs/1412.6980.
- 6. https://ml-cheatsheet.readthedocs.io/en/latest/index.html
- 7. https://ruder.io/optimizing-gradient-descent/index.html#adamax
- 8. https://miamineurosciencecenter.com/en/conditions/brain-tumors/types/
- 9. https://mlfromscratch.com/optimizers-explained/#/

Shameless Plug

Help us save the world (by improving public health)

Student Life | University News | Research & Learning | Politics & Society | COVID-19 Research

The Lab Behind GW's COVID **Testing Program**

A team of Milken Institute School of Public Health researchers, led by Professor Cindy Liu, ensure GW's COVID-19 testing provides rapid, consistent and accurate results.

team of GW researchers process thousands of COVID-19 tests a week as part of a new public health laboratory. led by Associate

Thank You

https://www.aitude.com/comparison-of-sigmoid-tanh-and-relu-activation-functions/

Sigmoid: not blowing up activation

Relu: not vanishing gradient

Modeling, Prediction and Evaluation - CNN

Modeling, Prediction and Evaluation - CNN

Classifica	tio	n Report:			
		precision	recall	f1-score	support
	0	0.97	0.89	0.93	71
	1	0.98	0.97	0.97	174
	2	0.92	0.94	0.93	153
	3	0.94	0.96	0.95	176
accura	су			0.95	574
macro a	vg	0.95	0.94	0.95	574
weighted a	vg	0.95	0.95	0.95	574

Modeling, Prediction and Evaluation - CNN


```
Epoch 9/50
72/72 [========================] - 339s 5s/step - loss: 0.2201 - accuracy: 0.9155
Epoch 10/50
72/72 [========================] - 315s 4s/step - loss: 0.1801 - accuracy: 0.9355
72/72 [========================= ] - 310s 4s/step - loss: 0.1710 - accuracy: 0.9434
72/72 [=========================] - 312s 4s/step - loss: 0.1416 - accuracy: 0.9490
Epoch 13/50
72/72 [==========================] - 318s 4s/step - loss: 0.1273 - accuracy: 0.9517
72/72 [=========================] - 315s 4s/step - loss: 0.1252 - accuracy: 0.9564
72/72 [=========================] - 306s 4s/step - loss: 0.1038 - accuracy: 0.9634
72/72 [=========================] - 305s 4s/step - loss: 0.0855 - accuracy: 0.9665
Epoch 17/50
72/72 [========================] - 323s 4s/step - loss: 0.0819 - accuracy: 0.9739
72/72 [========================] - 317s 4s/step - loss: 0.0722 - accuracy: 0.9778
72/72 [========================= ] - 455s 6s/step - loss: 0.0803 - accuracy: 0.9708
72/72 [=========================] - 391s 5s/step - loss: 0.0737 - accuracy: 0.9739
```