Mathematics 574 Homework

Read sections 2.1 and 2.2 in the text.

Here is some review of Math 142 that we will be using. Let f(x) be a from some open interval (a,b) containing 0. Then recall that f(x) has a **Taylor series**¹

$$f(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + \cdots$$

We now derive formulas for the coefficients x_n . To start with we will write f(x) as

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + \cdots$$

and first find a formula for a_0 .

- **1.** Let x = 0 if the formula for f(x) to show that $a_0 = f(0)$.
- **2.** We now take some derivatives of f(x). Show the following

$$f'(x) = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4 + 6a_6x^5 + \cdots$$

$$f''(x) = 2a_2 + 3 \cdot 2a_3x + 4 \cdot 3a_4x^2 + 5 \cdot 4a_5x^3 + 6 \cdot 5a_6x^5 + \cdots$$

$$f'''(x) = 3 \cdot 2a_3 + 4 \cdot 3 \cdot 2a_4x + 5 \cdot 4 \cdot 3a_5x^2 + 6 \cdot 5 \cdot 4a_6x^3 + \cdots$$

$$f^{(4)}(x) = 4 \cdot 3 \cdot 2a_4 + 5 \cdot 4 \cdot 3 \cdot 2a_5x + 6 \cdot 5 \cdot 4 \cdot 3a_6x^2 + \cdots$$

$$f^{(5)}(x) = 5 \cdot 4 \cdot 3 \cdot 2a_5 + 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2a_6x + \cdots$$

3. If we let x = 0 in the formula for f'(x) we get $f'(x) = a_1 + 0 = a_1$. Thus $a_1 = f'(x)$. If we let x = 0 in the formula for f''(x) we get

$$f''(x) = 2a_0 + 0 = 2a_2$$

and whence

$$a_2 = \frac{f''(0)}{2}$$

- (a) Let x = 0 in the formula for f'''(0) to get a formula for a_3 .
- (b) Let x = 0 in the formula for $f^{(4)}(x)$ to get a formula for a_4 .
- (c) Let x = 0 in the formula for $f^{(5)}(x)$ to get a formula for a_5 .
- **4.** After the last problem your can probably guess what this problem will be. Compute the *n*-th derivative $f^{(n)}(x)$ and let x=0 in this formula to show that

$$a_n = \frac{f^{(n)}(0)}{n!}.$$

Putting these pieces together we have

¹Not every function has a Taylor series. We will only get working with ones that do, so we will just assume all functions that come up do have power series.

Theorem 1. If the function f(x) has a Taylor series around x = 0, then

$$f(x) = \sum_{n=0}^{\infty} a_n x$$
 where $a_n = \frac{f^{(n)}(0)}{n!}$.

Here is an example. Let

$$f(x) = \frac{1}{1+x} = (1+x)^{-1}.$$

Then we have

$$f'(x) = -(1+x)^{-2}$$

$$f''(x) = (-1)(-2)(1+x)^{-3}$$

$$f'''(x) = (-1)(-2)(-3)(1+x)^{-4}$$

$$f^{(4)}(x) = (-1)(-2)(-3)(-4)(1+x)^{-5}$$

$$\vdots \qquad \vdots$$

$$f^{(n)} = (-1)(-2)(-3)\cdots(-n)(1+x)^{-n-1}$$

Thus

$$f^{(n)}(0) = (-1)(-2)(-3)\cdots(-n)(1+0)^{-n-1} = (-1)^n n!$$

and therefore

$$a_n = \frac{f^{(n)}(0)}{n!} = \frac{(-1)^n n!}{n!} = (-1)^n.$$

This gives

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + \cdots$$

5. Here is a generalization of this for you to do. Let α be any real number and set

$$f(x) = (1+x)^{\alpha}.$$

Then

$$f'(x) = \alpha(1+x)^{\alpha-1}$$

$$f''(x) = \alpha(\alpha-1)(1+x)^{\alpha-2}$$

$$f'''(x) = \alpha(\alpha-1)(\alpha-2)(1+x)^{\alpha-3}$$

$$f^{(4)}(x) = \alpha(\alpha-1)(\alpha-2)(\alpha-3)(1+x)^{\alpha-4}$$

$$f^{(5)}(x) = \alpha(\alpha-1)(\alpha-2)(\alpha-3)(\alpha-4)(1+x)^{\alpha-5}$$

$$\vdots \qquad \vdots$$

Use this start to get a formula for $f^{(n)}(x)$ and use it to find a formula for the coefficient a_n in the Taylor series of f(x).