CO 250: Introduction to Optimization

Module 2: Linear Programs (Extreme Points)

© University of Waterloo 1/

Extreme Points

Consider the following convex set:

Question

How might we formally describe the "extreme points"?

©University of Waterloo 2/3

Towards a Definition of Extreme Points

Definition

Point $x \in \Re^n$ is properly contained in the line segment L if

- $x \in L$ and
- x is distinct from the endpoints of L.

 \bar{x} is not contained in L.

©University of Waterloo 3/

Towards a Definition of Extreme Points

Definition

Point $x \in \Re^n$ is properly contained in the line segment L if

- $x \in L$ and
- x is distinct from the endpoints of L.

 \bar{x} is contained in L,

but NOT properly.

©University of Waterloo 4/3

Towards a Definition of Extreme Points

Definition

Point $x \in \Re^n$ is properly contained in the line segment L if

- $x \in L$ and
- x is distinct from the endpoints of L.

 \bar{x} is PROPERLY contained in L.

Definition

Let S be a convex set and $\bar{x} \in S$.

It follows that \bar{x} is NOT an extreme point if there exists a line segment $L \subseteq S$ where L properly contains \bar{x} .

©University of Waterloo 5/

Extreme Points - Examples

Definition

Let S be a convex set and $\bar{x} \in S$. It follows that \bar{x} is NOT an extreme point if there exists a line segment $L \subseteq S$ where L properly contains \bar{x} .

©University of Waterloo 6/3

Extreme Points - Examples

Definition

Let S be a convex set and $\bar{x} \in S$. It follows that \bar{x} is NOT an extreme point if there exists a line segment $L \subseteq S$ where L properly contains \bar{x} .

©University of Waterloo 7/3

Extreme Points - Examples

Definition

Let S be a convex set and $\bar{x} \in S$. It follows that \bar{x} is NOT an extreme point if there exists a line segment $L \subseteq S$ where L properly contains \bar{x} .

©University of Waterloo 8/

What are the extreme points in the following figure?

©University of Waterloo 9/

What are the extreme points in the following figure?

©University of Waterloo

What are the extreme points in the following figure?

Remark

A convex set may have an infinite number of extreme points.

©University of Waterloo

What are the extreme points in the following figure?

Remark

A convex set may have NO extreme points.

©University of Waterloo

This Lecture

Goals:

- 1. Characterize the extreme points in a polyhedra.
- 2. Characterize an extreme point for LP in Standard Equality Form.
- 3. Gain a geometric understanding of the Simplex algorithm.

©University of Waterloo 13/3

$$P = \left\{ x : \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} \quad \begin{array}{c} (1) \\ (2) \\ 2 \end{array} \right\}$$

What do the extreme points $f=(1,2)^{\top}$ and $g=(2,1)^{\top}$ have in common?

Each satisfy n=2 "independent" constraints with equality!

Definition

Let $P = \{x : Ax \leq b\}$ be a polyhedron and let $x \in P$.

- A constraint is tight for x if it is satisfied with equality, and
- the set of all tight constraints is denoted $\bar{A}x \leq \bar{b}$.

$$P = \left\{ x : \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} \quad \begin{array}{c} (1) \\ (2) \\ (3) \end{array} \right\}$$

Consider f:

It follows that (1) and (3) are tight. $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} x \leq \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

$$. \underbrace{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}}_{\bar{I}} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \end{pmatrix}}_{\bar{I}}$$

Definition

Let $P = \{x : Ax \leq b\}$ be a polyhedron and let $x \in P$.

- A constraint is tight for x if it is satisfied with equality, and
- the set of all tight constraints is denoted $\bar{A}x \leq \bar{b}$.

$$P = \left\{ x : \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} \quad \begin{array}{c} (1) \\ (2) \\ (3) \end{array} \right\}$$

Consider g:

It follows that (1) and (2) are tight. $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} x \leq \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

$$. \underbrace{\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}}_{\bar{I}} x \le \underbrace{\begin{pmatrix} 3 \\ 2 \end{pmatrix}}_{\bar{I}}$$

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

$$P = \left\{ x : \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} \quad \begin{array}{c} (1) \\ (2) \\ 2 \end{array} \right\}$$

Consider f:

 $\bar{A}=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ so, since $rank(\bar{A})=2$, f is an extreme point.

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

$$P = \left\{ x : \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} \quad \begin{array}{c} (1) \\ (2) \\ (3) \end{array} \right\}$$

Consider g:

 $\bar{A}=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ so, since $rank(\bar{A})=2$, g is an extreme point.

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

$$P = \left\{ x : \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} x \le \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} \quad \begin{array}{c} (1) \\ (2) \\ 2 \end{array} \right\}$$

Consider h:

 $ar{A} = \begin{pmatrix} 1 & 0 \end{pmatrix}$ so, since $rank(ar{A}) < 2$, h is NOT an extreme point.

Is the following true? NO!

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If \bar{A} has n rows then \bar{x} is an extreme point.
- 2. If \bar{A} has < n rows then \bar{x} is NOT an extreme point.

$$ar{A}=egin{pmatrix} 1 & 1 \ -1 & -1 \end{pmatrix}$$
 has $n=2$ rows, but $egin{pmatrix} 0 \ 0 \end{pmatrix}$ is NOT extreme.

© University of Waterloo 20 /

Let $P=\{x\in\Re^n:Ax\leq b\}$ be a polyhedron and let $\bar x\in P.$

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Let's prove part (1).

©University of Waterloo 21 / 37

Remark

Let $a,b,c\in\Re$, and suppose

$$a = \frac{1}{2}b + \frac{1}{2}c \qquad \text{and} \qquad b \leq a, \ c \leq a.$$

It follows that a = b = c.

Proof

$$a = \frac{1}{2} \underbrace{b}_{\leq a} + \frac{1}{2} \underbrace{c}_{\leq a} \leq \frac{1}{2}a + \frac{1}{2}a = a.$$

Thus, equality holds throughout \Rightarrow b=a and c=a.

Remark

Let $a,b,c\in\Re$, and let λ where $0<\lambda<1$. Suppose

$$a = \lambda b + (1 - \lambda)c$$
 and $b \le a, c \le a$.

It follows that a = b = c.

Exercise

Prove the previous remark.

Remark

Let $a,b,c\in\Re^{n}$, and let λ where $0<\lambda<1.$ Suppose

$$a = \lambda b + (1 - \lambda)c \qquad \text{ and } \qquad b \le a, \ c \le a.$$

It follows that a = b = c.

Exercise

Prove the previous remark.

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.

Proof

Suppose \bar{x} is not an extreme point.

 \bar{x} is properly contained in a line segment with endpoints $x^{(1)}, x^{(2)} \in P.$

$$\bar{x}\neq x^{(1)}, x^{(2)}\in P \text{ and for some } \lambda \text{, } 0<\lambda<1 \text{, } \bar{x}=\lambda x^{(1)}+(1-\lambda)x^{(2)}.$$

$$\bar{b} = \bar{A}\bar{x} = \bar{A}\left(\lambda x^{(1)} + (1-\lambda)x^{(2)}\right) = \lambda \bar{A}x^{(1)} + (1-\lambda)\bar{A}x^{(2)}.$$

 $\bar{A}x^{(1)} \leq \bar{b} \text{ and } \bar{A}x^{(2)} \leq \bar{b}.$

Our remark implies that $\bar{b} = \bar{A}x^{(1)} = \bar{A}x^{(2)}$.

However, since $rank(\bar{A}) = n$, $x^{(1)} = x^{(2)}$. This is a contradiction.

©University of Waterloo 25 /

Let $P = \{x \in \Re^n : Ax \leq b\}$ be a polyhedron and let $\bar{x} \in P$.

If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

Proof

Since $rank(\bar{A}) < n$, there exists a vector d such that $\bar{A}d = 0$.

Pick a small $\epsilon > 0$.

$$x^{(1)} = \bar{x} + \epsilon d$$

$$x^{(2)} = \bar{x} - \epsilon d$$

It suffices to prove the following:

- (a) \bar{x} is properly contained in the line segment between $x^{(1)}$ and $x^{(2)}$.
- (b) $x^{(1)}, x^{(2)} \in P$.

© University of Waterloo

Proof

Since $rank(\bar{A}) < n$, there exists a vector d such that $\bar{A}d = 0$.

Pick a small $\epsilon > 0$. Let $x^{(1)} = \bar{x} + \epsilon d$ and $x^{(2)} = \bar{x} - \epsilon d$.

(a) \bar{x} is properly contained in the line segment between $x^{(1)}$ and $x^{(2)}$.

Why?

$$\frac{1}{2}x^{(1)} + \frac{1}{2}x^{(2)} = \frac{1}{2}(\bar{x} + \epsilon d) + \frac{1}{2}(\bar{x} - \epsilon d) = \bar{x}.$$

©University of Waterloo 27/3ï

Proof

Since $rank(\bar{A}) < n$, there exists a vector d such that $\bar{A}d = \mathbf{0}$.

Pick a small $\epsilon > 0$. Let $x^{(1)} = \bar{x} + \epsilon d$ and $x^{(2)} = \bar{x} - \epsilon d$.

- (a) \bar{x} is properly contained in the line segment between $x^{(1)}$ and $x^{(2)}$.
- (b) $x^{(1)}, x^{(2)} \in P$. (It is sufficient to show this for $x^{(1)}$ only.)

Consider tight constraints $\bar{A}x \leq \bar{b}$.

$$\bar{A}x^{(1)} = \bar{A}(\bar{x} + \epsilon d) = \underbrace{\bar{A}\bar{x}}_{\bar{b}} + \epsilon \underbrace{\bar{A}d}_{\mathbf{0}} = \bar{b}.$$

Consider non-tight constraint $a^{\top}x \leq \beta$.

$$a^{\top}x^{(1)} = a^{\top}(\bar{x} + \epsilon d) = \underbrace{a^{\top}\bar{x}}_{<\beta} + \epsilon \underbrace{a^{\top}d}_{=??} < \beta$$

for a small enough $\epsilon!$

Consider

$$P = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\} \qquad \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} \text{ is a basic solution}$$

Question

Is $(2,4,0)^{\top}$ an extreme point?

Let's use our theorem to find an answer.

Theorem

Let $P = \{x \in \Re^n : Ax \le b\}$ be a polyhedron and let $\bar{x} \in P$.

- 1. If $rank(\bar{A}) = n$, then \bar{x} is an extreme point.
- 2. If $rank(\bar{A}) < n$, then \bar{x} is NOT an extreme point.

We need to rewrite the constraints in P so they are all in the form " \leq ".

©University of Waterloo 29/3

Consider

$$P = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \right\} \qquad \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} \text{ is a basic solution}$$

Question

Is $(2,4,0)^{\top}$ an extreme point?

We need to rewrite the constraints in P so they are all in the form " \leq ".

$$P = \{x : Ax < b\}$$
, where

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ \hline -1 & 0 & 1 \\ 0 & -1 & -3 \\ \hline -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 2 \\ \frac{4}{-2} \\ \hline -4 \\ \hline 0 \\ 0 \\ 0 \end{pmatrix}$$

©University of Waterloo 30 /

For $P = \{x : Ax \leq b\}$, where

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ \hline -1 & 0 & 1 \\ 0 & -1 & -3 \\ \hline -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} , b = \begin{pmatrix} 2 \\ 4 \\ \hline -2 \\ -4 \\ \hline 0 \\ 0 \\ 0 \end{pmatrix}$$

and $(2,4,0)^{\top}$, we have

$$\bar{A} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ \hline -1 & 0 & 1 \\ 0 & -1 & -3 \\ \hline 0 & 0 & -1 \end{pmatrix}$$

Since $rank(\bar{A})=3$, we know that $(2,4,0)^{\top}$ is an extreme point! This is no accident...

©University of Waterloo 31 /

Let $P = \{x \geq \mathbf{0} : Ax = b\}$ where rows of A are independent. The following are equivalent:

- 1. \bar{x} is an extreme point of P.
- 2. \bar{x} is a basic feasible solution of P.

Exercise

Prove the previous theorem.

The Simplex algorithm moves from extreme points to extreme points.

©University of Waterloo 32/3

Simplex - a Geometric Illustration

$$\max_{\text{s.t.}} \quad (2,3,0,0,0)x$$
 s.t.
$$x \in P_1$$

Solve using Simplex:

- Basis $B = \{3, 4, 5\}$, basic solution $(0, 0, 10, 6, 4)^{\top}$
- Basis $B = \{1, 4, 5\}$, basic solution $(5, 0, 0, 1, 9)^{\top}$
- Basis $B = \{1, 2, 5\}$, basic solution $(4, 2, 0, 0, 6)^{\top}$
- Basis $B = \{1, 2, 3\}$, basic solution $(1, 5, 3, 0, 0)^{\mathsf{T}}$: optimal
- Simplex visits extreme points of P_1 in order:

$$\begin{pmatrix} 0 \\ 0 \\ 10 \\ 6 \\ 4 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \\ 0 \\ 1 \\ 9 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \\ 0 \\ 0 \\ 6 \end{pmatrix}, \begin{pmatrix} 1 \\ 5 \\ 3 \\ 0 \\ 0 \end{pmatrix}.$$

However, we cannot draw a picture of this...

$$\max_{\text{s.t.}} \quad (2, 3, 0, 0, 0)x$$

$$\text{s.t.} \quad x \in P_1$$

$$P_1 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

is obtained by adding slack variables to

$$\max_{\mathbf{s.t.}} \quad (2,3)x$$

$$\mathbf{s.t.}$$

$$x \in P_2$$

$$P_2 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix} x \le \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

Remark

$$(0,0,10,6,4)^{\top}$$

 $(5,0,0,1,9)^{\top}$
 $(4,2,0,0,6)^{\top}$
 $(1,5,3,0,0)^{\top}$

extreme point of $P_1 \Rightarrow (0,0)^{\top}$ extreme point of $P_1 \Rightarrow (5,0)^{\top}$ extreme point of $P_1 \Rightarrow (4,2)^{\top}$ extreme point of $P_1 \Rightarrow (1,5)^{\top}$

extreme point of P_2 , extreme point of P_2 , extreme point of P_2 , extreme point of P_2 .

Simplex visits extreme points of P_2 in order:

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 5 \end{pmatrix}.$$

 $\max_{\text{s.t.}} \quad (2,3)x$ s.t. $x \in P_2$

$$P_2 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix} x \le \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

Simplex visits extreme points of P_2 in order: $\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 5 \end{pmatrix}$.

 $\max_{\mathsf{s.t.}} \quad (2,3)x$ $\mathsf{s.t.}$ $x \in P_2$

$$P_2 = \left\{ x \ge \mathbf{0} : \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix} x \le \begin{pmatrix} 10 \\ 6 \\ 4 \end{pmatrix} \right\}$$

Simplex visits extreme points of P_2 in order: $\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 5 \end{pmatrix}$.

Recap

- We defined extreme points of convex sets.
- We characterized extreme points in polyhedra.
- We saw that extreme points = basic solutions for problems in SEF.
- We showed that Simplex lets us moves from extreme point to extreme point.

©University of Waterloo 37 / 37