WHAT IS CLAIMED IS:

J			
2	1	l .	A blend comprising:
3			a first PHA,and
4			a second PHA, the second PHA being different from the first PHA and
5	t	olende	d with the first PHA;
6			wherein an amount of the first PHA in the blend is greater than an amount of
7	ť	he sec	ond PHA in the blend, a stiffness of the blend is less than a stiffness of the first
8	F	PHA, a	and when the first PHA and the second PHA are blended, and the blend is
9	n	nolded	d, the blend has a deformation angle tolerance of at least about 5°.
10			
11	2	2.	The blend of claim 1, wherein the blend has a deformation angle tolerance of
12	at least a	about 1	15°.
13			
14	3	3.	The blend of claim 1, wherein the blend has a deformation angle tolerance of
15	at least a	about 3	30°.
16 .			
17	4	1.	The blend of claim 1, wherein the blend has a deformation angle tolerance of
18	at least a	about 6	60°.
19			
20	5	5.	The blend of claim 1, wherein the blend has a deformation angle tolerance of
21	at least a	about 9	90°.
22			
23	6	5.	The blend of claim 1, wherein the blend has a deformation angle tolerance of
24	at least a	about 1	120°.
25			
26	7	7.	The blend of claim 1, wherein the blend has a stiffness of at most about 250
27	Mpa.		
28			
29	8	3.	The blend of claim 1, wherein the first PHA and the second PHA are both
30	homopo	lymers	S.

31		
32	9.	The blend of claim 1, wherein the first PHA is a homopolymer and the second
33	PHA is a cop	olymer having a first comonomer and a second comonomer, the first
34	comonomer l	peing different from the second comonomer.
35		
36	10.	The blend of claim 9, wherein the homopolymer is poly(3-hydroxybutyrate).
37		
38	11.	The blend of claim 10, wherein the first comonomer is 3-hydroxybutyrate.
39		
40	12.	The blend of claim 11, wherein the second comonomer is selected from 4-
41	hydroxybutyi	rate, 3-hydroxypropionate, 4-hydroxyvalerate, 6-hyroxyhexanoate, 3-
42	hydroxyhexa	noate, 3-hydroxyoctanoate, 3-hydroxydecanoate, 3-hydroxydodecanoate, or 3-
43	hydroxydode	cenoate.
44		
45	13.	The blend of claim 1, wherein the first PHA is a copolymer having a
46	comonomer 1	1-A and a comonomer 1-B and the second PHA is a copolymer having a
47	comonomer 2	2-A and a comonomer 2-B.
48		
49	14.	The blend of claim 13, wherein comonomer 1-A and comonomer 2-A are the
50	same comono	omer.
51		
52	15.	The blend of claim 14, wherein comonomer 1-A and comonomer 2-A are both
53	3-hydroxybu	tyrate.
54		
55	16.	The blend of claim 15, wherein each of comonomer 1-B and comonomer 2-B
56	is, independe	ntly, 3-hydroxyvalerate, 4-hydroxybutyrate, 3-hydroxyhexanoate, 3-
57	hydroxyoctar	noate, 3-hydroxypropionate, 4-hydroxyvalerate, 6-hydroxyhexanoate, 3-
58	hydroxydecar	noate, 3-hydroxydodecanoate, or 3-hydroxydodecenoate.

60	17.	The blend of claim 13, wherein the first PHA copolymer and the second PHA
61	copolymer a	re the same copolymer, wherein the ratio of comonomer 1-A:comonomer 1-B is
62	different from	m the ratio of comonomer 2-A:comonomer 2-B.
63		
64	18.	The blend of claim 17, wherein comonomer 1-A and comonomer 2-A are both
65	3-hydroxybu	atyrate.
66		
67	19.	The blend of claim 18, wherein comonomer 1-B and comonomer 2-B are both
68	4-hydroxybu	tyrate, 3-hydroxyhexanoate, or 3-hydroxyoctanoate, 3-hydroxypropionate, 6-
69	hydroxyhexa	anoate, 3-hydroxydecanoate, 3-hydroxydodecanoate, or 3-hydroxydodecenoate.
70		
71	20.	The blend of claim 15, wherein the first PHA copolymer contains at most
72	about 99 per	cent by weight of comonomer 1-B.
73		
74	21.	The blend of claim 15, wherein the first PHA copolymer contains at most
75	about 50 per	cent by weight of comonomer 1-B.
76		
77	22.	The blend of claim 15, wherein the first PHA copolymer contains at most
78	about 15 per	cent by weight of comonomer 1-B.
79		
80	23.	The blend of claim 15, wherein the first PHA copolymer contains at most
81	about 7 perc	ent by weight of comonomer 1-B.
82		
83	24.	The blend of claim 15, wherein the first PHA copolymer contains at most
84	about 1 perc	ent by weight of comonomer 1-B.
85		
86	25.	The blend of claim 15, wherein the second PHA copolymer contains at most
87	about 99 per	cent by weight of comonomer 2-B.
88		
89	26.	The blend of claim 15, wherein the second PHA copolymer contains at most
90	about 50 per	cent by weight of comonomer 2-B.

120

91		
92	27.	The blend of claim 15, wherein the second PHA copolymer contains at most
93	about 35 perc	cent by weight of comonomer 2-B.
94		
95	28.	The blend of claim 15, wherein the second PHA copolymer contains at most
96	about 15 perc	cent by weight of comonomer 2-B.
97		
98	29.	The blend of claim 15, wherein the second PHA copolymer contains at most
99	about 5 perce	ent by weight of comonomer 2-B.
100		
101	30.	The blend of claim 1, wherein the blend comprises at least about 90 % by
102	weight of the	first PHA.
103		
104	31.	The blend of claim 1, wherein the blend comprises at least about 70 % by
105	weight of the	first PHA.
106		
107	32.	The blend of claim 1, wherein the blend comprises at least about 51 % by
108	weight of the	first PHA.
109		
110	33.	The blend of claim 30, wherein the blend comprises at most about 49 % by
1 11	weight of the	second PHA.
112		
113	34.	The blend of claim 30, wherein the blend comprises at most about 30 % by
114	weight of the	second PHA.
115		
116	35.	The blend of claim 30, wherein the blend comprises at most about 10 % by
117	weight of the	second PHA.
118		
119	36.	The blend of claim 1, wherein the first PHA has a first molecular weight and

the second PHA has a second molecular weight, wherein the first molecular weight is from

121	about 10,000 Daltons to about 1,600,000 Daltons and second molecular weight is from about		
122	10,000 Daltons to about 1,600,000 Daltons.		
123			
24	37.	The blend of claim 36, wherein the first molecular weight is from about	
25	200,000 Dali	tons to about 650,000 Daltons and second molecular weight is from about	
26	200,000 Dali	tons to about 650,000 Daltons.	
27			
28	38.	The blend of claim 36, wherein one PHA has a molecular weight that is at	
129	most about 2	00,000 Daltons, and the other PHA has molecular weight that is at most about	
30	1,000,000 Da	altons.	
31			
32	39.	The blend of claim 36, wherein the first molecular weight is at most about	
33	750,000 Dali	tons and second molecular weight are both at most about 750,000 Daltons.	
34			
35	40.	The blend of claim 36, wherein one PHA has a molecular weight that is about	
36	ten times gre	ater than the molecular weight of the other PHA.	
37			
38	41.	The blend of claim 36, wherein one PHA has a molecular weight that is about	
39	six times gre	ater than the molecular weight of the other PHA.	
40			
41	42.	The blend of claim 36, wherein one PHA has a molecular weight that is about	
42	three times g	reater than the molecular weight of the other PHA.	
43			
44	43.	The blend of claim 36, wherein one PHA has a molecular weight that is about	
45	the same as t	he molecular weight of the other PHA.	
46			
47	. 44.	The blend of claim 1, wherein the first PHA has a first glass transition	
48	temperature	and the second PHA has a second glass transition temperature, wherein the	
49	difference be	etween the first and second glass transition temperatures is at least about 1°C.	
50			

151	45.	The blend of claim 44, wherein the difference between the first and second	
152	glass transitio	n temperatures is at least about 5°C.	
153			
154	46.	The blend of claim 44, wherein the difference between the first and second	
155	glass transitio	n temperatures is at least about 40°C.	
156			
157	47.	The blend of claim 44, wherein the difference between the first and second	
158	glass transitio	n temperatures is at least about 60°C.	
159			
160	48.	The blend of claim 1, wherein the first PHA has a first melt temperature and	
161	the second PH	IA has a second melt temperature, wherein the difference between the first and	
162	second melt to	emperatures is at least about 10°C.	
163			
164	49.	The blend of claim 48, wherein the difference between the first and second	
165	melt temperat	ures is at least about 50°C.	
166			
167	50.	The blend of claim 1, wherein the first PHA is a homopolymer and the second	
168	PHA is a copo	olymer having at least three comonomers, wherein each of the comonomers are	
169	different from	one another.	
170			
171	51.	The blend of claim 50, wherein the first PHA is poly(3-hydroxybutyric acid)	
172	and the second	d PHA is poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-	
173	hydroxyhexanoate) or poly(3-hydroxybutyrate -co-3-hydroxyhexanoate-co-3-		
174	hydroxyoctan	oate-co-3-hydroxydecanoate-co-3-hydroxydodecanoate-co-3-	
175	hydroxydodec	eenoate).	
176			
177	52.	The blend of claim 1, wherein the first PHA has a first Hansen solubility	
178	parameter and	the second PHA has a second Hansen solubility parameter, wherein the	
179	difference bet	ween the first and second Hansen solubility parameters is at least about 0.02	
180	J/mol.		
181			

182	53.	The blend of claim 52, wherein the difference between the first and second
183	Hansen solub	ility parameters is at least about 0.04 J/mol.
184		
185	54.	The blend of claim 52, wherein the difference between the first and second
186	Hansen solub	ility parameters is at least about 0.05 J/mol.
187		
188	55.	The blend of claim 52, wherein the difference between the first and second
189	Hansen solub	ility parameters is at least about 0.10 J/mol.
190		
191	56.	The blend of claim 1, wherein the blend is a miscible blend.
192		
193	57.	The blend of claim 1, wherein the blend is an immiscible blend.
194		
195	58.	The blend of claim 1, wherein the blend is a partially miscible blend.
196		
197	59.	A blend comprising:
198		a first PHA,and
199		a second PHA, the second PHA being different from the first PHA and
200	blende	ed with the first PHA;
201		wherein an amount of the first PHA in the blend is greater than an amount of
202	the se	cond PHA in the blend, a stiffness of the blend is less than a stiffness of the first
203	PHA,	and when the first PHA and the second PHA are blended, and the blend is
204	molde	ed the blend has a thermal deformation resistance temperature of at least about
205	80°C.	
206		
207	60.	The blend of claim 59, wherein the blend exhibits a thermal deformation
208	resistance ten	perature of at least about 85°C.
209		
210	61.	The blend of claim 59, wherein the blend exhibits a thermal deformation
211	resistance ten	nperature of at least about 90°C.
212		

213	62.	The blend of claim 59, wherein the blend exhibits a thermal deformation
214	resistance ten	nperature of at least about 100°C.
215		
216	62.	The blend of claim 59, wherein the blend exhibits a thermal deformation
217	resistance ten	nperature of at least about 120°C.
218		
219	63.	A blend comprising:
220		a first PHA,and
221		a second PHA, the second PHA being different from the first PHA and
222	blende	ed with the first PHA;
223		wherein an amount of the first PHA in the blend is greater than an amount of
224	the sec	cond PHA in the blend, a stiffness of the blend is less than a stiffness of the first
225	PHA,	and when the first PHA and the second PHA are blended, and the blend is
226	molde	ed, the blend has a thermal deformation resistance temperature of at least 80°C
227	and a	deformation angle tolerance of at least about 5°.
228		
229	64.	The blend of claim 1, wherein the blend has a first PHA copolymer having a
230	comonomer 1	-A and a comonomer 1-B blended with a second PHA copolymer having a
231	comonomer 2	2-A and a comonomer 2-B.
232		
233	65.	The blend of claim 64, wherein comonomer 1-A and comonomer 2-A are the
234	same comono	omer.
235		
236	66.	The blend of claim 65, wherein comonomer 1-A and comonomer 2-A are both
237	3-hydroxybut	yrate.
238		
239	67.	The blend of claim 66, wherein each of comonomer 1-B and comonomer 2-B
240	is, independer	ntly, 3-hydroxyvalerate, 4-hydroxybutyrate, 3-hydroxyhexanoate, 3-
241	hydroxyoctan	oate, 3-hydroxypropionate, 4-hydroxyvalerate, 6-hydroxyhexanoate, 3-
242	hydroxydecar	noate, 3-hydroxydodecanoate, or 3-hydroxydodecenoate.
243		

244	68.	The blend of claim 67, wherein the first PHA copolymer has a first glass	
245	transition ten	apperature, a first melt temperature, and a first Hansen solubility parameter, and	
246	the second PHA copolymer has a second glass transition temperature, a second melt		
247	temperature, and a second Hansen solubility parameter.		
248			
249	69.	The blend of claim 68, wherein both the first glass transition temperature and	
250	the first melt	temperature are greater than and more positive than the second glass transition	
251	temperature a	and the second melt temperature.	
252			
253	70.	The blend of claim 69, wherein the blend exhibits a single glass transition	
254	temperature a	and a single melt temperature.	
255			
256	71.	The blend of claim 70, wherein the difference between the first Hansen	
257	solubility par	rameter and the second Hansen solubility parameter is at most about 0.04 J/mol.	
258			
259	72.	The blend of claim 70, wherein the difference between the first Hansen	
260	solubility par	rameter and the second Hansen solubility parameter is at least about 0.05 J/mol.	
261			
262	73.	The blend of claim 70, wherein the glass transition temperature of the blend is	
263	substantially	similar to the second glass transition temperature and the melt temperature of	
264	the blend is s	ubstantially similar to the first melt temperature.	
265			
266	74.	The blend of claim 66, wherein the blend has a stiffness of at most about 250	
267	Mpa.		
268			
269	75.	The blend of claim 64, wherein the first PHA has a first molecular weight and	
270	the second Pl	HA has a second molecular weight, wherein the first molecular weight is from	
271	about 10,000	Daltons to about 1,600,000 Daltons and second molecular weight is from about	
272	10,000 Dalto	ns to about 1,600,000 Daltons.	

274	76.	The blend of claim 75, wherein one PHA has a molecular weight that is at	
275	most about 2	00,000 Daltons, and the other PHA has molecular weight that is at most about	
276	1,000,000 Daltons.		
277			
278	77.	The blend of claim 64, wherein one PHA copolymer has a molecular weight	
279	that is at mos	t about 200,000 Daltons, and the other PHA copolymer has molecular weight	
280	that is at mos	t about 1,000,000 Daltons.	
281			
282	78.	The blend of claim 64, wherein comonomer 1-A and comonomer 2-A are the	
283	same comono	omer and the first PHA copolymer contains at most about 15 percent by weight	
284	of comonome	er 1-B and the second PHA copolymer contains at most about 50 percent of	
285	comonomer 2	2-B.	
286			
287	79.	An article comprising at least about 1 percent by weight of the PHA blend of	
288	claim 1.		
289			
290	80.	A adhesive blend comprising:	
291		a first PHA,and	
292		a second PHA, the second PHA being different from the first PHA and	
293	blend	ed with the first PHA;	
294		wherein an amount of the first PHA in the blend is greater than an amount of	
295	the se	cond PHA in the blend, a stiffness of the blend is less than a stiffness of the first	
296	PHA,		
297		the adhesive blend having a surface tack time value of at most about 15	
298	secon	ds,	
299		wherein, when exposed to a pressure of at most about 100 psig, the adhesive	
300	blend	can form a bond with a surface or itself, the bond having a peel bond strength	
301	of at 1	east about 10 Nm ⁻² .	
ลกว			

14074-014001 /

303	81.	The blend of claim 1, further comprising an additive selected from a starch,
304	thermoplastic	starch, a polybutylene succinate, a synthetic biodegradable resins, a polylactic
305	acid, a polygl	ycolic acid celullosic materials, a plant fiber, or a polyolefin.
306		
307	82.	A blend comprising:
308		a first PHA,and
309		a second PHA, the second PHA being different from the first PHA, wherein
310	the sec	cond PHA is a copolymer having at least three comonomers, wherein each of
311	the co	monomers is different from one another;
312		wherein an amount of the first PHA in the blend is greater than an amount of
313	the sec	cond PHA in the blend, a stiffness of the blend is less than a stiffness of the first
314	PHA a	and when the first PHA and the second PHA are blended, and the blend is
315	molde	d, the blend has a deformation angle tolerance of at least about 5°.