Übungsblatt 5

Abgabe: 20.11.2022

Codierungstheorie

Aufgabe 1. Wir betrachten den Körper $k = \mathbb{F}_8$, gegeben durch die Relation $\alpha^3 = \alpha + 1$. Bestimmen Sie eine Erzeugermatrix für den linearen $[6,3]_8$ -Code (über \mathbb{F}_8) mit Paritätsprüfmatrix

$$H = \begin{pmatrix} \alpha & \alpha + 1 & \alpha^2 & \alpha & \alpha + 1 & \alpha^2 \\ \alpha^2 & \alpha & \alpha & \alpha^2 & \alpha & \alpha \\ \alpha + 1 & \alpha^2 + \alpha & \alpha & \alpha^2 + \alpha + 1 & \alpha & \alpha + 1 \end{pmatrix}$$

und bestimmen Sie d(C).

Aufgabe 2. Bestimmen Sie eine Paritätsprüfmatrix für den linearen $[6,4]_{13}$ -Code mit Erzeugermatrix

$$G = \begin{pmatrix} 2 & 4 & 6 & 2 & 4 & 6 \\ 4 & 8 & 12 & 7 & 11 & 2 \\ 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 7 & 3 & 8 & 7 \end{pmatrix}$$

und bestimmen Sie d(C).

Aufgabe 3. Überprüfen Sie, ob die Polynome

$$G_1(X) = X^3 + 3X^2 + 4X + 1,$$
 $G_2(X) = X^3 + 4X^2 + 3X + 6$

Erzeugerpolynome zyklischer $[7,4]_7$ -Codes sind. Falls $G_1(X)$ oder $G_2(X)$ (oder beide) Erzeugerpolynom eines zyklischen $[7,4]_7$ -Codes ist, bestimmen Sie das zugehörige Paritätsprüfpolynom.

Aufgabe 4. Wir betrachten den Körper \mathbb{F}_8 , gegeben durch die Relation $\alpha^3 = \alpha + 1$. Überprüfen Sie, ob die Polynome

$$G_1(X) = X^4 + (\alpha^2 + \alpha) \cdot X^3 + \alpha^2 \cdot X^2 + (\alpha^2 + \alpha) \cdot X + 1,$$

 $G_2(X) = X^4 + (\alpha^2 + \alpha) \cdot X^2 + \alpha^2 \cdot X + 1$

Erzeugerpolynome zyklischer $[7,3]_8$ -Codes sind. Falls $G_1(X)$ oder $G_2(X)$ (oder beide) Erzeugerpolynom eines zyklischen $[7,3]_8$ -Codes ist, bestimmen Sie das zugehörige Paritätsprüfpolynom.