Введение в сети хранения данных

Методы подключения дискового пространства

- Прямое подключение к хранилищу DAS
- Сетевая система хранения NAS
- Сеть хранения данных SAN

DAS

DAS (Direct Attached Storage) — решение, когда устройство для хранения данных подключено непосредственно к серверу, либо к рабочей станции. Устройства хранения могут быть подключены по одному из интерфейсов: SCSI, FC или SAS.

В случае этой архитектуры отсутствует централизованное управления ресурсами и возможность разделить ресурсы между серверами.

NAS

- NAS (англ. network attached storage) сетевая система хранения данных.
- используют сетевые протоколы для доступа к файлам (такие как NFS или SMB/CIFS)
- хранилище является удалённым и компьютер запрашивает файл вместо того, чтобы запрашивать блок данных с диска.

SAN

- •Storage Area Network (SAN) это высокоскоростная коммутируемая сеть передачи данных, объединяющая серверы, рабочие станции, дисковые хранилища и ленточные библиотеки.
 - •Для обмена данными чаще всего используется протокол Fibre Channel.
- Fibre Channel оптимизирован для быстрой гарантированной передачи сообщений и позволяет передавать информацию на расстояние от нескольких метров до сотен километров.

DAS

NAS

SAN

Приложение

Файловая система

Дисковое хранилище Приложение

Ethernet файловый ввод вывод

Файловая система

Дисковое хранилище Приложение

Файловая система

Fibre channel блочный ввод вывод

Дисковое хранилище

SAN

Storage Area Network

- Доступ к устройствам (RAW)
- Децентрализация
- Поставщики и потребители объединены сетью
- Возможность использования одного устройства несколькими потребителями

Консолидация серверов и систем хранения

Эффективное управление ёмкостью

- Эффективное использование объема
- Меньше устройств проще управлять

Высокая Доступность

Компоненты SAN

• Коммутаторы

Fibre Channel

- Маршрутизаторы, мосты й шлюзы
- Устройства хранения Disk array (target)
- Серверы Host (initiator)
- Среда передачи

Server

Router

Disk System

Тип сети SAN

Физические интерфейсы:

- Ethernet
- FibreChannel

Протоколы:

- ATA over Ethernet
- iSCSI (Internet Small Computer Systems Interface)
- FC
- iFCP (Internet Fibre Channel Protocol)
- FCIP (Fibre Channel over TCP/IP)

Что такое сеть хранения данных Fibre Channel?

- Сеть хранения данных, использующая для обмена данными протокол Fibre Channel (FC)
- Поддерживает скорость передачи данных до 16 Гбит/с
- Обеспечивает передачу данных без сброса пакетов
- Обеспечивает высокую масштабируемость
 - Теоретическая возможность размещения примерно 15 миллионов устройств

данных

OSI vs FC stack

Layer	Title	Fibre Channel	
7	Application		
6	Presentation	SCSI-3, IPI, HIPPI, IP, VI, AE, AV, IPI, ATM, FICON,	
5	Session		
4	Transport	FC-4 Protocol Interface ULP	
3	Network	FC-3 Encryption Authentication	
2	Data Link	FC2 Framing Flow Control Class of Service	
		FC – 1 Encoding Link Control	
1	Physical	FC-0 Physical	

Сетевая модель Fibre Channel

Сетевая модель Fibre Channel

- FC-0 Описывает среду передачи, трансиверы, коннекторы и типы используемых кабелей.
- FC-1 Описывает процесс 8b/10b Кодирования (каждые 8 бит данных кодируются в 10-битовый символ (Transmission Character)), специальные символы и контроль ошибок.
- FC-2 Описывает сигнальные протоколы. На этом уровне происходит разбиение потока данных на кадры и сборка кадров. Определяет правила передачи данных между двумя портами, классы обслуживания
- FC-3 Определяет такие особенности, как: расщепление потока данных (striping), шифрования, компрессия, избыточность
- FC-4 Предоставляет возможность переноса других протоколов (SCSI, ATM, IP, HIPPI FDDI, Token Ring, AV, VI, IBM SBCCS и многих других.)

World Wide Name (WWN)

- 64 bit IEEE structured address
- Vendor specific bit variables
- 2 X Port WWN Used to preserve identity of a node if its FC-2 or FC-3 layer address is changed

Target example:

1 X Node WWN (assigned to the node)

4 X Port WWN (port derivatives of Node WWN)

Initiator example:

1 X Node WWN

Port Node World Wide Name = 0x50060b000024a149
Port Port World Wide Name = 0x50060b000024a148

Уникальный адрес устройства

Каждое устройство имеет уникальный 8-байтовый адрес, называемый NWWN (Node World Wide Name), состоящий из нескольких компонент:

Fibre Channel WWN

- WWN может использоваться для
 - Зонирования для описания членства портов устройств в зонах.
 - Маскирования LUN для определения доступности хостам LUN на системе хранения
- WWN не используется для адресации и доставки фрейма внутри фабрики

Collecting port WWN (RHEL)

Verifying LUN presentation (RHEL)

fdisk -l

If no new LUNS detected, use:

echo "- - -" > /sys/class/scsi_host/hostX/scan where X is HBA number checked earlier and try again with fdisk -1

```
[root@WB227 ~] # echo "- - -" > /sys/class/scsi host/host0/scan
[root@WB227 ~]# echo "- - -" > /sys/class/scsi host/host1/scan
[root@WB227 ~]# fdisk -1
Disk /dev/cciss/c0d0: 73.3 GB, 73372631040 bytes
255 heads, 63 sectors/track, 8920 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
           Device Boot
                            Start
                                                   Blocks
                                          End
                                                           Id System
 /dev/cciss/cOdOp1
                               1
                                           13
                                                   104391
                                                           83 Linux
 dev/cciss/c0d0p2
                                         8920
                               14
                                                 71545477+ 8e Linux LVM
Disk /dev/sda: 1073 MB, 1073741824 bytes
34 heads, 61 sectors/track, 1011 cylinders
Units = cylinders of 2074 * 512 = 1061888 bytes
```

Fibre Channel

- Fibre Channel или FC высокоскоростной интерфейс передачи данных, используемый для взаимодействия рабочих станций, мейнфреймов, суперкомпьютеров и систем хранения данных.
- Топология: Порты устройств могут быть подключены
 - напрямую друг к другу (point-to-point) FC-P2P
 - в управляемую петлю (arbitrated loop) FC-AL
 - публичная петля (public loop)
 - частная петля (private loop)
 - в коммутируемую сеть, называемую «тканью» (англ. fabric. Часто на сленге просто «фабрика») FC_SW
- Можно различать топологию по двум критериям
 - есть ли цикл
 - есть ли комутатор

loop	fabric	topology
yes	no	private (arbitrated) loop
yes	yes	public loop
no	no	direct point-to-point
no	yes	switched point-to-point (*)

прямое подключение (point-to-point) FC-P2P

+дешего +монопольное использование канала - комутация только двух устройств

управляемая петля (arbitrated loop) FC-AL

Частная петля (Private loop)

Публичная петля (Public loop)

коммутируемая сеть, «ткань» («фабрика») FC SW

Fibre Channel port types

- In the event that the recently connected port is NOT an Nx-port Link Service frames are exchanged to determine the operating parameters of the device at the other end of the link.

Логические типы портов

• Порты узлов:

- N_Port (Node port), порт устройства с поддержкой топологии «Точка-Точка».
- NL_Port (Node Loop port), порт устройства с поддержкой топологии «Ткань» (Fabric).
- Порты коммутатора/маршрутизатора (только для топологии FC-SW):
 - F_Port (Fabric port), порт ткани. Используется для подключения портов типа N Port к коммутатору.
 - FL_Port (Fabric Loop port), порт ткани с поддержкой петли. Используется для подключения портов типа NL_Port к коммутатору.
 - E_Port (Expansion port), порт расширения. Используется для соединения коммутаторов. Может быть соединён только с портом типа E_Port.
 - G_port (Generic port)

Principal switch

——Upstream link

Principal switch

----Downstream link

S Subordinate switch

Структура и заголовок FC фрейма

Fibre Channel адресация (для FC-SW)

bits 23 16 15 08 07 00

Domain	Area	Port	*

FC-SW Domain id of the Switch Port number on Vendor specific the switch entry*

FC-AL Domain id of Port number on AL-PA of the NL the Switch the switch port

24 bit FC_ID address field

* Vendor specific field FC-SW

Switch vendor	<i>Port</i> field entry
Brocade	00
McData	13

R_CTL	Destination Address (D_ID)		
CS_CTL	Source Address (S_ID)		
TYPE	Frame Control (F_CTL)		
SEQ_ID	DF_CTL	SEQ_CNT	
OX_ID		RX_ID	
Parameter (Relative Offset)			

Frame Header

Fibre Channel terminology

Frame

Used to carry ULP data in the payload

Sequence

- Single direction only
- May consist of only one frame
- Equates directly to SCSI Information Unit

Exchange

- Bi-directional
- Equates to SCSI Read or SCSI Write
- Contains multiple sequences

Обмен, последовательности и кадр на примере SCSI операции запись

Class of Service

- Indicates frame delivery importance to transport layer
- Most widespread CoS is Class 3
- Most fabric switches and HBA's support CoS 2 and 3
- Disk arrays tend to support Class3 only

Class of service	Fibre Channel description
Class 1	 Dedicated connection In-order delivery, acknowledge first frame only No flow control after first frame of connection
Class 2	 Connectionless Frame switched Out-of-order delivery possible Acknowledge each frame Buffer-to-buffer and end-to-end flow control for all frames
Class 3	 Frame switched Out-of-order delivery possible No acknowledgments Buffer-to-buffer frame control for all frames
Class 4	Connection orientedVirtual circuitIn-order delivery
Class 5	True Isynchronous – no longer used
Class 6	Connection orientedMulticast service
Class F	 Connectionless and acknowledged (similar to Class 2) Used by switches for fabric related traffic Out-of-order delivery possible Fabric may reject frames if not delivered within ED_TOV

FC контроль передачи

N_Port transmits
Data Frame to
disk target.
Decrements
F_Port buffer
credit count by
one.

F_Port clears occupied buffer. Sends R_RDY to transmitting N_Port to increment buffer count.

F_Port sends
Data Frame on
to link and
decrements
target N_Port
buffer credit
count by one.

N_Port receives Data Frame and sends R_RDY to transmitting F_Port to increment it's buffer count.

R RDY ACK

Transmission complete for Class of Service 3. Class 2 requires target N_Port to send ACK frame in response... Class 2 frame transmission complete:

- Buffer to Buffer Flow Control AND
- End to End Flow Control

FCP write I/O (class 2)

FSPF in practice

NOTE: the Brocade default link cost **Link Descriptor** metric value for 2,4,8,10 and 16 Gbps Owning Domain ID: x'01' is 500 Domain ID: 1 Output Port Index: x'08' Domain ID of Neighbor: x'03' Neighbor Port Index: x'0A' mm mm mm Link Cost: 500 Port: 8 Domain ID: 3 Port: 10 ~~ ~~ ~~ ~~ **Link Descriptor** Owning Domain ID: x'03' Output Port Index: x'0A' Port: 5 Domain ID of Neighbor: x'01' **Link Descriptor** Neighbor Port Index: x'08' Owning Domain ID: x'05' Link Cost: 500 Output Port Index: x'0A' **Link Descriptor** Domain ID of Neighbor: x'03' Owning Domain ID: x'03' Neighbor Port Index: x'05' Output Port Index: x'05' Link Cost: 500 Domain ID: 5 Domain ID of Neighbor: x'05' Neighbor Port Index: x'0A' Link Cost: 500

Port: 10

Port Based Routing

The choice of routing path is based only on the incoming port and the destination domain.

Equal cost routes – exchange-based routing

- Equal cost routes are considered for routing on a 'per exchange' basis.
- Switch routing handler examines frame header and selects ISL based on OX_ID/RX_ID.
- All frames within a specific exchange are routed across the same ISL, preserving In Order Delivery (IOD).
- Frame delivery still takes place using D_ID.
- Brocade's 4, 8, 10, 16 Gbps ASICS can use the FSPF protocol, port-based routing or Exchange-based routing.
- Exchanged-base routing is Brocade's factory default setting.

All frames within an exchange (OX_ID/RX_ID pair) are routed via the same ISL. In which case:

 $A \rightarrow 1$ uses TOP or BOTTOM ISL for each exchange

 $A \rightarrow 2$ uses TOP or BOTTOM ISL for each exchange

B → 1 uses TOP or BOTTOM ISL for each In Order Delivery is preserved within the exchange exchange and switches can more evenly share equal cost

ISL bandwidth aggregation

- Switch routing controller may use flow-based or exchange-based routing to aggregate the bandwidth across separate, equal cost links.
- Link failure causes fabric reconfiguration and topology rediscovery (rebuild LSD) is Masterless Trunking is not used
- Can more equally balance load by combining bandwidth of multiple, equal cost ISLs
- Ensures that frames arrive at the destination in Order
- Brocade Trunk
- Cisco Port Channel

Cisco virtual SANs (VSANs)

- Separate physical fabrics
- Over-provisioning ports on each island
- High number of switches to manage

Collapsed fabric with VSANs

Less over-provisioning required—lower \$\$

- Common redundant physical infrastructure
- Fewer switches to manage
- Move unused ports non-disruptively
- Addressing per VSAN
- Can overlap across FC backbone areas

Virtual Fabrics (Brocade)

- Can create up to eight logical switches, depending on the switch model.
- Initially, all ports belong to the default logical switch. When you create additional logical switches, they are empty and you must assign ports to those logical switches

Logical fabrics and ISLs

Logical fabric and ISL sharing

Another way to connect logical switches is using extended ISLs and base switches.

Fabric login sequence

Switch

Switch accepts fabric login. Issues 24bit Fabric Address to N_Port

Name Server accepts registration (other switches informed)

Switch accepts SCN registration request

SNS issues directory listing of all fabric Nx-PORTS in the new N_Port's zone

Log out accepted

N_Port issues FLOGI to the Fabric Login Service (0xFFFFFE)

Node

N_Port login in to Name Server (0xFFFFC) and registers 24bit address

Host registers for State Change Notification with the Fabric Controller (0xFFFFD)

N_Port requests fabric directory from Name Server

N_Port logs out of Name Server

N_Port login sequence

N_Port issues PLOGI to all 24bit fabric addresses in the directory list one after another. PLOGI frame includes CoS and WWN's and buffer credits.

Process Login: Establishes ULP roles and capabilities, e.g. SCSI Initiator in this case.

Well known addresses

- Well known addresses are all set within the reserved Domain_ID byte x'FF'.

x'FFFFF5' – Multicast Server x'FFFFF6' – Clock Synchronisation Server x'FFFFF7' – Key Distribution Server x'FFFFF8' – Alias Server x'FFFFF9' – QoS Facilitator (typically Class 4) x'FFFFFA' – Management Server x'FFFFFB' – Time Server x'FFFFFC' – Directory Server x'FFFFFD' – Fabric Controller

x'FFFFFE' – Fabric Login Server x'FFFFFF' – Broadcast Address

x'FFFC(01-EF)' – Domain controller (each switch) address used in S_ID and D_ID frame header fields for Class F traffic where (01-EF) is the Domain_ID of that switch. x'FFFFD' Required service in all fabrics

x'FFFFE' Required service in all fabrics

x'FFFFC'
Optional service

x'FFFFA'
Optional service
with Fabric Zone
Server as a subfunction

Fabric services

- Simple Name Service
- Fabric login
- Alias and multicasting (may not be implemented)
- State Change Notification
- Zoning

SNS: Port and Nodes attributes

- Port attributes
 - Native port address ID
 - Port name (World Wide Port Name / WWPN)
 - Class of service supported
 - FC-4 types
 - Port type
- Node attributes
 - Node name (World Wide Node Name / WWNN)
 - Device name

Name server detail - Brocade

nsshow

```
EdgeA1:admin> nsshow
Type Pid
                                                                      TTL(sec)
                                             NodeName
            C05
                    PortName
                2.3:10:00:00:00:c9:4d:33:9d:20:00:00:00:c9:4d:33:9d: na
     030400:
FC4s: FCP
NodeSvmb: [47] "Emulex 394757-B21 FV1.91A2 DV5-5.20A10 BL20-362"
Fabric Port Name: 20:04:00:05:1e:03:62:57
Permanent Port Name: 10:00:00:00:c9:4d:33:9d
Port Index: 4
Share Area: No
Device Shared in Other AD: No
Redirect: No.
     030500:
                2,3:10:00:00:00:c9:4d:24:dd;20:00:00:00:c9:4d:24:dd; na
FC4s: FCP
NodeSvmb: [47] "Emulex 394757-B21 FV1.91A2 DV5-5.20A10 BL20-363"
Fabric Port Name: 20:05:00:05:1e:03:62:57
Permanent Port Name: 10:00:00:00:c9:4d:24:dd
Port Index: 5
Share Area: No
Device Shared in Other AD: No
Redirect: No
                  3;50:06:0b:00:00:29:e5:aa;50:06:0b:00:00:29:e5:ab; na
     030600:
FC4s: FCP
Fabric Port Name: 20:06:00:05:1e:03:62:57
Permanent Port Name: 50:06:0b:00:00:29:e5:aa
Port Index: 6
Share Area: No
Device Shared in Other AD: No
Redirect: No
                  3;50:05:08:b3:00:90:f2:81;50:05:08:b3:00:90:f2:80; na
     030700:
FC4s: FCP
NodeSymb: [23] "HP StorageWorks MSA1000"
Fabric Port Name: 20:07:00:05:1e:03:62:57
Permanent Port Name: 50:05:08:b3:00:90:f2:81
Port Index: 7
Share Area: No
Device Shared in Other AD: No
Redirect: No
The Local Name Server has 4 entries }
```

Registered State Change Notification

Зонирование «ткани»

Типы Зон

Traffic Isolation (TI) Zones


```
zone --create -t objtype [-o optlist] name -p "portlist
zone --create -t ti Dom1_3_zone -p "1,0; 1,4; 3,0; 3,4"
zone --create -t ti Dom2_4_zone -p "2,0; 2,8; 4,0; 4,4;4,5"
```

Quality of Service (QoS) Zones

= High Priority

_____ = Medium Priority

= Low Priority

LSAN Zones

Fabric Segmentation

- What causes Fabric Segmentation?
 - Zone type mismatch
 - Zone content mismatch
 - Zone configuration mismatch
 - Duplicate Domain IDs

- Different 'Time Out Value' or other fabric parameters

SW-ILS

SW-ILS

Switches use SW-ILS (Switch Internal Link Services) and Class F frames to exchange fabric parameters, zoning and routing information and reconfiguration data for distributed fabric services

NOTE: Fabrics may segment if you make administrative changes to a single switch in a multi-switch fabric.

Различные топологии «ткани» («фабрики»)

«Одно-коммутаторная» структура Single-switch fabric

Древовидная или Каскадная структура Cascaded fabric

Кольцо Ring fabric

Решётка Meshed fabrics

Core-edge fabric

ISL oversubscription

3 to 1 ISL oversubscription

- Oversubscription A condition in which more devices might need to access a resource than that resource can fully support.
- Oversubscription ratios:
 - Host to ISL (1:1, 3:1, 7:1)
 - Edge switch to core switch (use trunks).
 - Storage to ISL (7:1, 15:1)

Device attachment points

Data Locality

- Data path includes one or more hops
- Potential for ISL oversubscription

- Design to keep data 'local'
- Minimises utilisation of ISLs
- Improves performance

Level 1 – Single connectivity fabric

- Level 1 provides maximum connectivity but does not provide fabric resiliency or redundancy
- Each switch has one path to other switches in the fabric. Each server and storage system has one path to the fabric

Level 2 – Single resilient fabric

- Level 2 provides fabric path redundancy by using:
 - Multiple ISLs between switches
 - Multiple paths to all switches in the fabric, or both
- Each server and storage system has one path to the fabric.

Level 3 – Single resilient fabric with multiple device paths

 Level 3 is the same as level 2 but also provides multiple server and storage system paths to the fabric to increase availability.

Level 4 – Multiple fabrics and device paths (NSPOF)

- Level 4 provides multiple data paths between servers and storage systems, but unlike level 3, the paths connect to physically separate fabrics.
- This level ensures the highest availability with no-single-point-of-failure (NSPOF) protection.

