

Distributed Computing

- Global Snapshot Algorithm

Dr. Rajendra Prasath

Indian Institute of Information Technology Sri City, Chittoor

> Distributed Computing?

How will you design a Distributed Algorithm?

Learn to Solve using Distributed Algorithms

Recap: Distributed Systems

A Distributed System:

- → A collection of independent systems that appears to its users as a single coherent system
- → A system in which hardware and software components of networked computers communicate and coordinate their activity only by passing messages
- A computing platform built with many computers that:
 - Operate concurrently
 - Are physically distributed (have their own failure modes)
 - → Are linked by a network
 - → Have independent clocks

3

Recap: Characteristics

- **→** Concurrent execution of processes:
 - → Non-determinism, Race Conditions, Synchronization, Deadlocks, and so on
- → No global clock
 - Coordination is done by message exchange
 - → No Single Global notion of the correct time
- → No global state

DC - Monsoon 2022 @ IIIT Sri City

- → No Process has a knowledge of the current global state of the system
- Units may fail independently
 - → Network Faults may isolate computers that are still running
 - System Failures may not be immediately known

Recap: Cuts - Distributed Computation

Recap

What did you learn so far?

- → Goals / Challenges in Message Passing systems
- Distributed Sorting
- → Space-Time diagram
- → Partial Ordering / Total Ordering
- → Causal Precedence Relation
 - → Happens Before
- → Concurrent Events
 - **→** How to define Concurrent Events
 - Logical vs Physical Concurrency
- Causal Ordering
- → Logical Clocks vs Physical Clocks

> About this Lecture

What do we learn today?

- This covers a model of distributed computations that every algorithm designer needs to know
 - Global States
 - Global Snapshot algorithm

Let us explore these topics → → →

Causal Ordering

- → The "causal ordering" model is based on Lamport's "happens before" relation
- A system that supports the causal ordering model satisfies the following property:

```
CO: For any two messages m_{ij} and m_{kj} if send(m_{ij}) \rightarrow send(m_{kj}), then receive(m_{ij}) \rightarrow receive(m_{kj})
```

- This property ensures that causally related messages destined to the same destination are delivered in an order that is consistent with their causality relation.
- Causally ordered delivery of messages implies FIFO message delivery. (Note that CO ⊂ FIFO ⊂ Non-FIFO.)
- Causal ordering model considerably simplifies the design of distributed algorithms because it provides a built-in synchronization.

A Close Look

- \rightarrow e \rightarrow e' \Rightarrow L(e) < L(e') but not vice versa
- → Example: event b and event e

Correction of Clocks

Vector Clocks

- Vector clocks allow causality to be captured
- → Rules of Vector Clocks:
 - \rightarrow A vector clock VC(a) is assigned to an event a
 - If VC(a) < VC(b) for events a and b, then event a is known to causally precede b
- **→** Each Process *P_i* maintains a vector *VC_i* with the following properties:
 - $ightharpoonup VC_i[i]$ is the number of events that have occurred so far at P_i that is, $VC_i[i]$ is the local logical clock at process P_i
 - If $VC_i[j]=k$ then P_i knows that k events have occurred at P_i . It is thus P_i 's knowledge of the local time at P_i

An Example

An illustrative example

Less than or equal:

- ⇒ $ts(a) \le ts(b)$ if $ts(a)[i] \le ts(b)[i]$ for all i(3,3,5) ≤ (3,4,5)
- → ts(e11) = (1, 0, 0) and ts(e22) = (2, 2, 0)This implies $e11 \square e22$

GLOBAL STATES IN A DISTRIBUTED SYSTEM

Partial / Total Ordering

A relation \leq is a total order on a set S (" \leq totally orders S") if the following properties hold:

- **1.** Reflexivity: $a \le a$ for all a in S
- **2.** Anti-Symmetry: $a \le b$ and $b \le a$ implies a = b
- **3.** Transitivity: $a \le b$ and $b \le c$ implies $a \le c$
- 4. Comparability (Trichotomy law): For any a,b in S, either $a \le b$ or $b \le a$.

First 3 properties \rightarrow the axioms of a partial ordering Adding Trichotomy law defines a total ordering $H=(H, \rightarrow)$

Global State

- → A collection of the local states of its components:
 - → The processes and the communication channels
- The state of a process is defined by the local contents of processor: registers, stacks, local memory
- → The state of channel depends the set of messages in transit in the channel
- An internal event changes only state of the process
- → A send event changes
 - state of the process that sends the message and
 - the state of the channel on which the message is sent.
- → Similarly a receive event changes
 - the state of the process that receives the message and
 - the state of the channel on which the message is received

Global State (contd)

Notations

- → LS_i^x denotes the state of p_i after occurrence of event e_i^x and before the event e_i^{x+1}
- \rightarrow LS_i^0 denotes the initial state of process p_i
- → LS_i^x is a result of the execution of all the events executed by process p_i till e_i^x
- **→** Let $send(m) \le LS_i^x$ denote the fact:

$$\exists y, 1 \leq y \leq x \text{ s.t } e_i^y = send(m)$$

→ Let rec(m) (not \leq) LS_i^x denote the fact:

 $\forall y, 1 \leq y \leq x \text{ s.t } e_i^y \text{ (not equal to) } rec(m)$

Global State (contd)

→ The global state of a distributed system is a collection of the local states of the processes and the channels.

A global state GS is defined as,

$$GS = \{\bigcup_{i} LS_{i}^{x_{i}}, \bigcup_{j,k} SC_{jk}^{y_{j},z_{k}}\}$$

- → For a global state to be meaningful, the states of all the components of the distributed system must be recorded at the same instant
- → Two important situations (Impossible !!):
 - local clocks at processes were perfectly synchronized
 - there were a global system clock that can be instantaneously read by the processes

A Consistent Global State

Basic idea:

- → A state should not violate causality an effect should not be present without its cause
- → A message cannot be received if it was not sent.
- → Such states are called consistent global states and are meaningful global states.
- → Inconsistent global states are not meaningful in the sense that a distributed system can never be in an inconsistent state

A Consistent Global State

Definition:

→ A global state is a consistent global state iff

$$\forall m_{ij} : send(m_{ij}) \nleq LS_i^{x_i} \Leftrightarrow m_{ij} \notin SC_{ij}^{x_i,y_j} \land rec(m_{ij}) \nleq LS_j^{y_j}$$

Where the global state is given by

$$GS = \{\bigcup_{i} LS_{i}^{x_{i}}, \bigcup_{i,k} SC_{ik}^{y_{i},z_{k}}\}$$

→ This implies that the channel state and process state must not include any message that process P_i sent after executing event

Consistent Global State - An Example

Space-Time Diagram

- \rightarrow GS₁={LS₁¹, LS₂³, LS₃³, LS₄²} is inconsistent
 - → The state of p₂ has recorded the receipt of m₁₂ however, the state of p₁ has not recorded its send
- \rightarrow GS₂={LS₁², LS₂⁴, LS₃⁴, LS₄²} is consistent
 - → All channels are empty except C₂₁ that contains m₂₁

Consistent Global State - Details

- → A global state GS1 = {LS₁¹, LS₂³, LS₃³, LS₄²} is inconsistent because
 - → the state of p₂ has recorded the receipt of message m₁₂
 - → The state of p₁ has not recorded its send
- → A global state GS2 consisting of local states GS2 = {LS₁², LS₂⁴, LS₃⁴, LS₄²} is consistent
 - \rightarrow all the channels are empty except C_{21} that contains message m_{21} .

Changes in Global State?

- The global state changes whenever an event happens
 - Process sends message
 - Process receives message
 - → Process performs a local event
- Moving from state to state obeys causality

An Example Scenario

- → There are two processes: P₁ and P₂
 - → Channel C₁₂ from P₁ to P₂
 - → Channel C₂₁ from P₂ to P₁

→ P₁ tells P₂ to change its state variable, X₂, from 1 to 4

→ P₂ receives message from P₁ to change its state variable, X₂ from 1 to 4

→ P₂ changes its state variable, X₂ from 1 to 4

Why do we need Global Shapshot?

Checkpointing:

restart if the application fails

Collecting garbage:

remove objects that do not have any references

Detecting deadlocks:

can examine the current application state

Other debugging:

a little easier to work with than printf

CHANDY-LAMPORT'S GLOBAL SNAPSHOT RECORDING ALORITHM

System Model (Lamport and Chandy)

Problem: How to record a global shapshot (state for each process and each channel)? System Model (assumptions):

- → N Processes in the system
- → Communication channels are bidirectional between each ordered pair (p_i, p_i) : $p_i \rightarrow p_i$ and $p_i \rightarrow p_i$
- → Channels are FIFO: First In First Out
- → No Failures
- → All messages arrive intact and not duplicated

Requirements

- Snapshot should not interfere with normal application actions
- → It should not require application to stop sending messages
- **→** Each Process is able to record its own state:
 - Process State: Application-defined state or in the worst case
 - → Its heaps, registers, program counters, code and other related application interfaces
- Global state is collected in a distributed manner (no centralized approach)
- → Any Process may initiate the recording of a snapshot (there can be multiple shapshots, we focus on only one)

Initiating a snapshot

- \rightarrow Let's say process P_i initiates the snapshot
- → P_i records its own state and prepares a special marker message (distinct from application messages)
- → Send the marker message to all other processes (using N-1 outbound channels)
- Start recording all incoming messages from channels C_{ji} for j not equal to i

Propagating a snapshot

- For all processes P_i (including the initiator) consider a message on channel C_{kj}
- \rightarrow If P_j sees the marker message for the first time
 - \rightarrow P_j records own state and marks C_{kj} as empty
 - → Send the marker message to all other processes (using *N-1* outbound channels)
 - → Start recording all incoming messages from channels C_{lj} for l not equal to j or k
- → Otherwise
 - add all messages from inbound channels since we began recording their states

Terminating a snapshot

- → All processes have received a marker (and recorded their own state)
- → All processes have received a marker on all *N-1* incoming channels (and recorded their states)

→ Later, a central server can gather the partial state to build a global snapshot (Do we require this? - Not Really!!)

A Close Look of an Example

→ Initially all channels are empty!

- → Then, P₁ sends a marker message to P₂ and begins recording all messages on inbound channels
- → Meanwhile, P₂ sent a message to P₁

- → P₂ receives a marker message for the first time, so records its state
- → P₂ then sends a marker message to P₁

→ P₁ has already sent a marker message, so it records all messages it received on inbound channels to the appropriate channel's state

Causal Consistency

- Related to Lamport's clock partial ordering
- → An event is pre-snapshot if it occurs before the local snapshot on a process
- **→** Post-snapshot if afterwards
- → If an event A happens causally before an event B, and B is a pre-snapshot, then A is too

Summary

- **→** Global Snapshots
 - → Causal Precedence Relations
 - → Global State of a DS
 - → Chandy Lamport's Algorithm
 - Global Snapshot Recording Algorithm
 - **→** Initiating Snapshot
 - **→** Propagating Snapshots
 - **→** Terminating the Snapshot Algorithm
 - **→** Causal Consistency
 - → Many more to come up ... stay tuned in !!

Penalties

- Every Student is expected to strictly follow a fair Academic Code of Conduct to avoid penalties
- Penalties is heavy for those who involve in:
 - Copy and Pasting the code
 - ➤ Plagiarism (copied from your neighbor or friend in this case, both will get "0" marks for that specific take home assignments)
 - ▶ If the candidate is unable to explain his own solution, it would be considered as a "copied case"!!
 - Any other unfair means of completing the assignments

Help among Yourselves?

- Perspective Students (having CGPA above 8.5 and above)
- Promising Students (having CGPA above 6.5 and less than 8.5)
- Needy Students (having CGPA less than 6.5)
 - Can the above group help these students? (Your work will also be rewarded)
- You may grow a culture of collaborative learning by helping the needy students

How to reach me?

- → Please leave me an email: rajendra [DOT] prasath [AT] iiits [DOT] in
- → Visit my homepage @
 - https://www.iiits.ac.in/people/regularfaculty/dr-rajendra-prasath/

(OR)

→ http://rajendra.2power3.com

Assistance

- You may post your questions to me at any time
- You may meet me in person on available time or with an appointment
- You may ask for one-to-one meeting

Best Approach

You may leave me an email any time (email is the best way to reach me faster)

Questions It's Your Time

