Misaligned HGOO-HGOO RX TTL

Rx-Tx beam	HG00-HG00
Plots	Regular and Total LPS [nm], DWS [rad]; Slopes [nm/rad], [rad/rad]
Longitudinal offset	10 mm

Misaligned Tophat-HGOO RX TTL

		Gaussian (ref.)
Rx-Tx beam	TH-HG00 (mode order 34)	
Plots	Regular and Total LPS [nm], DWS [rad]; Slopes [nm/rad], [rad/rad]	
Longitudinal offset	10 mm	

- How high: convergence with Alex's results
- How low: justifying 1st order shift expansion
- How fast: computation times up to 7th order tilt

ref. beam axis

SUMMARY: Higher order results

- 4th order tilt,4th order shift -> 7th order tilt,7th order shift
- Very broad convergence with Alex at 7th order

Tilt & Shift Orders	"Accuracy" Range [urad]
4 & 4	200
5 & 5	300
6 & 6	400
7 & 7	400

Higher order results

DWS

Higher order results

LPS Tot.

Higher order results

LPS Reg.

SUMMARY: Lower order shift (100 um offset)

Expansion orders:

- 1st shift, 3rd & 4th tilt
- 3rd or 4th shift, 3rd or 4th tilt
- 1st order shift likely sufficient

Lower Order Shift? 100 um offset

DWS

Lower Order Shift? 100 um offset

LPS Tot.

Lower Order Shift? 100 um offset

LPS Reg.

SUMMARY: Computation Times

Get signals in two main steps:

- 1. Update mode coefficients
- 2. Integrate

Tilt Order (shift order = 1)	Time [s]	"Accuracy" Range [urad]
3	3	200
4	5	200
5	8	300

Can reduce times by ~25%?

Speedup Structure tilt Mathematica strings 1 - a*b*j*K + b*j*K*x + (a*j*K*x)/R + (2*a*x)/w**2 + (a*b*j**2*K**2*x**2)/R + (2*a*b*j*K*x**2)/w**2 + (a*b*j*K*x)/R + (2*a*b*z)/w**2 - (a*b*j*K*x)/R + (2*a*b*z)/w**2 + (a*b*j*K*x)/w**2 $(b^*i^*K^*x^*z)/R - (2^*b^*x^*z)/w^{**2} - (a^*b^*i^{**2}*K^{**2}*x^{**2}*z)/R^{**2} - (4^*a^*b^*x^{**2}*z)/w^{**4} - (4^*a^*b^*i^{*}K^*x^{**2}*z)/(R^*w^{**2}) - (4^*a^*b^*x^{**2}*z)/w^{**4} - (4^*a^*b^*i^{*}K^*x^{**2}*z)/(R^*w^{**2}) - (4^*a^*b^*x^{**2}*z)/(R^*w^{**2})/(R^*w^{**2}) - (4^*a^*b^*x^{**2}*z)/(R^*w^{**2})/(R^*w^{**2}) - (4^*a^*b^*x^{**2}*z)/(R^*w^{**2})/(R^*w^{**2}) - (4^*a^*b^*x^{**2}*z)/(R^*w^{**2})/($ shift (4*a*b*p**2*z*Sqrt(Factorial(n)/Factorial(-2 + n)))/w**2 - (2*a*p*Sqrt(Factorial(n)/Factorial(-1 + n)))/w -(2*a*b*j*K*p*x*Sqrt(Factorial(n)/Factorial(-1 + n)))/w + (2*b*p*z*Sqrt(Factorial(n)/Factorial(-1 + n)))/w +[10,10](8*a*b*p*x*z*Sqrt(Factorial(n)/Factorial(-1 + n)))/w**3 + (4*a*b*j*K*p*x*z*Sqrt(Factorial(n)/Factorial(-1 + n)))/(R*w)p_order Python parse [['+1+-a*b*j*K+(a*b*j*K*z)/R+(2*a*b*z)/w**2', '+-(2*a*p*Sqrt(Factorial(n)/Factorial(n-1)))/w+(2*b*p*z*Sqrt(Factorial(n)/Factorial (n-1))/w', '+-(4*a*b*p**2*z*Sqrt(Factorial(n)/Factorial(n-2)))/w**2'], ['+b*j*K*x+(a*j*K*x)/R+(2*a*x)/w**2+-(b*j*K*x*z)/R+-(2*b*x)/R+(2*a*x)/w**2+-(b*j*K*x*z)/R+-(2*b*x)/R+(2*a*x)/w**2+-(b*j*K*x*z)/R+-(2*b*x)/R+(2*a*x)/w**2+-(b*j*K*x*z)/R+-(2*b*x)/R+(2*a*x)/w**2+-(b*j*K*x*z)/R+-(2*b*x)/w**2+-(b*j*K*x*z)/R+-(2*b*x)/w**2+-(b*j*K*x*z)/R+-(2*b*x)/w**2+-(b*j*K*x*z)/R+-(2*b*x)/w**2+-(b*j*K*x*z)/R+-(2*b*x)/w**2+-(b*j*K*x*z)/R+-(2*b*x)/w**2+-(b*j*K*x*z)/R+-(2*b*x)/w**2+-(b*j*K*x*z)/R+-(2*b*x)/w**2+-(b*j*K*x*z)/R+-(2*b*x)/w**2+-(b*j*K*x*z)/R+-(2*b*x)/w**2+-(b*j*K*x*z)/R+-(2*b*x)/w**2+-(b*j*K*x*z)/R+-(2*b*x)/w**2+-(b*j*K*x)/w**2+(b*j*K*x)/w**2+(b*j*K*x)/w**2+(b*j*K*x)/w**2+(b*j*K*x)/w**2+(b*j*K*x)/w**2+(b*j*K*x)/w**2+(b*j*K*x)/w**2+(b*j*K*x)/w**2+(b*j*K*x)/w**2+(b*j*K*x)/w**2+(b*j*K*x)/w**2+(b*j*K*x)/w**2+(b*j*K*x)/w**2+(b*j*K*x)/w**2+(b*j*K*x)/w**2+(b*j*K*x)/w**2+(b*j*K*x)/w**2+(b*j*K*x)/w**2+(b*j*K*x*z)/w**2', '+-(2*a*b*j*K*p*x*Sqrt(Factorial(n))/Factorial(n-1)))/<math>w*3+(4*a*b*j*x*z*Sqrt(Factorial(n))/Factorial(n-1)))/<math>w*3+(4*a*b*j*x*z*Sqrt(Factorial(n))/Factorial(n-1)))x order K*p*x*z*Sqrt(Factorial(n)/Factorial(n-1)))/(R*w)', ''], ['+(a*b*j**2*K**2*x**2)/R+(2*a*b*j*K*x**2)/w**2+-(a*b*j**2*K**2*x**2*z)/R **2+-(4*a*b*x**2*z)/w**4+-(4*a*b*j*K*x**2*z)/(R*w**2)', '', '']1 herm. poly. $\sum_{n,m} C_{n,m} u_{n,m} \Big(H_n(X+Y) \Big) = \sum_{n,m} \sum_{K=0}^n Y^K [\sqrt{\frac{2^K \binom{n}{K}}{K!}} p^K] C_{n,m} u_{n-K,m} \Big(H_{n-K}(X) \Big)$ [x order,p order] $X_{\pm}^{1}u_{n\pm 1,m} = \eta_{\pm}^{1}(2^{\mp 1})^{-1/2}\sqrt{\frac{(n\pm 1)!}{n!}}\exp(\mp i\psi(z)).$ *x*-coord. m Raw coefficients n

~[n,m]