CSE 158 Midterm Review

Exam Logistics

Time: Nov 6th;

Practice Exam: online.

Exam Topics

- Linear regression
 - Regression diagnostics
 - Regularization
 - Model selection
- Classification
 - Regression vs classification
 - Linear classification
 - 1. Naive Bayes
 - 2. Logistic regression
 - 3. Support vector machines (SVM)
 - Determine the best classifier
 - Evaluating classifiers
- Dimensionality reduction
 - Principal Component Analysis (PCA)
 - Clustering
 - K-means Clustering -- (Greedy)
 - Hierarchical clustering
 - Connected components
 - Graph cuts
 - Clique percolation
- Recommender System
 - Jaccard similarity
 - Cosine similarity
 - Pearson Correlation
 - Rating prediction
 - Latent-factor models

Lecture 1

- Learning approaches to Model Data:
 - **Supervised learning**: process of trying to infer from **labeled data** the underlying function that produced the labels associated with the data (**features**)
 - Infer function: f(data) → labels.
 - Ex: Movie: user and movie features as data; star rating as label.
 - Model relationships between input and output.
 - Given input, output variables can be <u>predicted</u> accurately.
 - **Unsupervised learning** approaches find patterns/relationships/structure in data, but are not optimized to solve a particular predictive task
 - Finds the patterns/relationships/structure in data.
 - NOT optimized to predict
- Movie recommendation Model:
 - Solution 1: Design a system based on prior knowledge:
 - Cons: depend on assumptions, cannot adapt to new data
 - Pros: requires no data.
 - Ex: if () case 1; else case 2.
 - USL
 - Solution 2: Identify similarity between wall posts and synopses:
 - Cons: depend on *assumptions* about how users relate to items, not be adaptable.
 - Pros: Require non-labeled data
 - USL
 - Solution 3: Identify attributes that are associated with positive ratings
 - Cons: requires a (large) dataset of labeled movies
 - Pros: Optimizes a measure we care; easy to adapt to new data
 - SL
- Regression (Simple supervised learning approach)
 - Linear Regression:
 - (matrix of features as data) * theta = (vector of outputs as label)
 - $X * \theta = y \rightarrow \theta = (X^TX)^{-1}X^Ty$
 - Example:
 - Real-valued features: preferences toward certain beers vary with age. (rating = θ_0 + θ_1 * age)

Lecture 2

- Linear Regression Continued:
 - Model is always linear in Parameter θ, regardless arbitrary combinations of features.
 - Ex1 ~ real valued features:

Rating =
$$\theta_0 + \theta_1 \times ABV + \theta_2 \times ABV^2 + \theta_3 \exp(ABV) + \theta_4 \sin(ABV)$$

- Ex2 ~ categorical features:
 - One Hot encoding

- To capture n possible categories, we only need (n 1) dimensions.
- Ex3 ~ modelling temporal data:
 - Θ_0 + Θ_1 sin(alpha + month * 30) is NOT a linear model
 - Apply piecewise functions:

rating =
$$\theta_0 + \theta_1 \times \delta(\text{is Feb}) + \theta_2 \times \delta(\text{is Mar}) + \theta_3 \times \delta(\text{is Apr}) \cdots$$

1 if it's Feb, 0
otherwise

- Regression Diagnostics
 - MSE: measure precision
 - Mean:

$$- \frac{1}{N} \sum_{i=1}^{N} (yi)$$

- Variance:

$$- \frac{1}{N} \sum_{i=1}^{N} (yi - \overline{Y})^2$$

- MSE

$$- \frac{1}{N} \sum_{i=1}^{N} (yi - Xi * \theta)^{2}$$

- Proportional to the variance of the data
- Reason to use MSE:

- Small error, small penalty; Huge error, larger penalty.
- Assumption: distribution of error (Gaosiam? distribution)
- Coefficient of determination ⇒ R²
 - Note: if always predict average, MSE = VARi
 - R² statistic
 - Fraction of variance Unexplained (FVU)
 - Measures how fit the regression line is
 - $R^2 = 1 FVU(f) = 1 MSE(f) / var(Y)$
 - Trivial predictor
 - If $R^2 \rightarrow 0$, it means the feature is **NOT** linearly significant to the dependent variable;
 - Perfect predictor
 - otherwise, $R^2 \rightarrow 1$ the feature **is** linearly significant to the dependent variable
- MSE can always = $0 (R^2 = 1)$ by throwing enough random features
- MSE & R² are used to evaluate how precise the model is.
- A good model is one that generalize to new data.

Overfitting

- Definition
 - If a model performs well on training data but does not predict precisely, then this model is overfitting.
- Occam's Razor
 - θ is the hypothesis
 - The complexity of θ increases as the dimensions grow
 - Simple
 - Type 1: Has few non-zero parameters
 - $\|\theta_1\| = \Sigma \theta$ is small;
 - Type 2: theta is almost uniform
 - $||\theta_2|| = \Sigma \theta^2$ is small;
 - Complex
 - Few features are significantly more relevant than others
 - Favor simple model over the complex

- Regularization

A process of trade-off between the complexity and MSE (accuracy)

$$\arg\min_{\theta} = \frac{1}{N} \|y - X\theta\|_2^2 + \lambda \|\theta\|_2^2$$

- Theorems:
 - Lamba increases, training error increases (simpler model)
 - Validation/test error at least the training error (infinitely large)

- Validation/test error usually have "sweet spot"/

- Optimizing the model: Gradient descent
 - Initialize θ at random
 - While Not Converge: $\theta := \theta \alpha f'(\theta)$
- Model selection
 - lowest training error: MSE is zero, choose high polynomial
 - lowest test error: Cheating, can't use test set multiple times.
 - Three → validation set (lambda)
 - Tune any model parameters that are not directly optimized.
- Sets
 - Training Set: optimize the model's parameters
 - Test Set: how well it performs on unseen data
 - Validation Set: **tune** any model parameters that are not directly optimized. To choose amongst models.
- Week 1 Core Ideas:
 - Regression can be cast in terms of **maximizing a likelihood**.
 - Gradient descent for model optimization
 - Regularization: trade off complexity and accuracy on test
 - Regularization pipeline.

Classification

The prediction about binary or categorical variables.

- Linear classifiers:

$$y_i = \begin{cases} 1 & \text{if } X_i \cdot \theta > 0 \\ 0 & \text{otherwise} \end{cases}$$

- Naive Bayes:

- Classify according to which probability is greater than 0.5
 - p(label|data) ~ p(-label|data)
- Simplifying **Assumption**: conditionally independent.
 - P(feat, feat, label) = P(feat, label) * P(feat, label)
 - Can be done with counting
- Posterior = prior * likelihood / evidence.
 P(label | features) = P(label) P(features | label) / P(features)
- Ex: amazon's children's book. Assumption is false.
- Pro/Cons:
 - Simple to compute; Efficient to train
 - Double counting if assumption is false.

- Logistic Regression:

- Traditional linear/probabilistic model: **double counting**, because all parameters sum together.
 - Ex: Height = weight * theta1 + shoe_size * theta2.
- Convert a real-valued expression into a probability:
 - Sigmoid functions: $f(t) = 1 / (1 + e^{-t})$

- Map X_i * theta into 0 1.
- X_i * theta \rightarrow large if Y positive; \rightarrow small if Y negative.

- Optimize:

$$L_{\theta}(y|X) = \prod_{y_i=1} p_{\theta}(y_i|X_i) \prod_{y_i=0} (1 - p_{\theta}(y_i|X_i))$$

- Take logarithm to convert multiplication into addition.
- **Subtract** regularizer
- Compute Gradient
- Solve using gradient ascent

Generalize:

- Compute binary classifier for each class.
- If inconsistent, choose highest confidence

Disadvantage:

- Don't optimize misclassification error
- Every instance influences the model.
- More expensive to train.

- Support Vector Machine

- A classifier that minimizes misclassification (more expensive to train)
- Idea:
 - The margin to be as wide as possible
 - Penalizing the points on the wrong side
- Soft-margin formulation:

$$rg \min_{ heta, lpha_i
eq i} rac{1}{2} \| heta\|_2^2 + \zeta = \xi_i$$
 such that $\forall_i y_i (heta \cdot X_i - lpha) \geq 1 - \xi_i$

Summary

- Above classifiers make decisions by associating weights with features.
- Naive bayes:
 - Probabilistic model (fits p(label|data))
 - Simple to compute just by counting
 - ++ Easiest to implement, most efficient to "train"
 - ++ If we have a process that generates feature that are independent given the label, it's a very sensible idea
 - -- Otherwise it suffers from a "double-counting" issue

- Logistic Regression

- Fixes the "double counting" problem present in naïve Bayes
- Logistic regressors don't optimize the number of "mistakes"
- No special attention is paid to the "difficult" instances every instance influences the model
- But "easy" instances can affect the model (and in a bad way!)
 - -- More expensive to train

- SVMs

Non-probabilistic: optimizes the classification error rather than the likelihood

- minimizing the misclassification error
- -- more expensive to train

Lecture 4

Evaluate Classifiers

- **Imbalanced** data: Assign additional weight to negative instance if far fewer positive examples than negative ones.
 - TP, TN, F₁ score.
- Mistake are more **costly in one direction**: False positives are nuisances but false negative are disastrous. E.g. 宁可错误检查一千个平民包,不可放过一个炸弹
 - F_{beta} score.
 - Trade-off between precision and recall
- Most confident predictions: recommender; only care the top ranking results.
 - Precision@k.

- Definitions:

- General Formula: (True/False | Predicted as positive or negative)

		Label	
		true	false
Prediction	true	true positive	false positive
	false	false negative	true negative

- Classification Accuracy
 - (TP + TN) / All
- Error Rate
 - (FP + FN) / ALL
- True Positive Rate =
 - true positives / # labeled positive
 - TP / (TP + FN)
- True Negative Rate
 - true negative / # labeled negative
 - TN / (TN + FP)
- Balanced Error Rate
 - $\frac{1}{2}$ (FPR + FNR) = 1 $\frac{1}{2}$ (TPR + TNR)
- Optimize a balanced error measure:

$$L_{\theta}(y|X) = \prod_{y_i=1} p_{\theta}(y_i|X_i) \prod_{y_i=0} (1 - p_{\theta}(y_i|X_i))$$

$$\ell_{\theta}(y/X) = \underbrace{\sum_{y_i=1}^{l} \log \sigma(X_i, \theta)}_{\text{y_i=0}} + \underbrace{\sum_{y_i=0}^{l} (1 - \sigma(X_i, \theta))}_{\text{FP}}$$

$$\text{adjust} \quad \underbrace{\int_{y_i=1}^{l} \sum_{y_i=1}^{l} \log \sigma(x_i, \theta)}_{\text{y_i=0}} + \underbrace{\int_{y_i=0}^{l} \sum_{y_i=0}^{l} (1 - \sigma(X_i, \theta))}_{\text{FP}}$$

- Ranking

- Classifiers associate **score** with prediction
- The predicted labels don't matter
- Positively labeled points tend to be at higher ranks than negative ones
- Sort predicted labels by their confidence

- Precision

- In the documents retrieved, how many of them are relevant

$$precision = \frac{|\{relevant\ documents\} \cap \{retrieved\ documents\}|}{|\{retrieved\ documents\}|}$$

"fraction of retrieved documents that are relevant"

- Precision@k: budget of k retrieved documents

Recall

In all the relevant documents, how many of them are retrieved.

$$recall = \frac{|\{relevant\ documents\} \cap \{retrieved\ documents\}|}{|\{relevant\ documents\}|}$$

"fraction of relevant documents that were retrieved"

- Recall@k: budget of k retrieved documents

- Precision & Recall Relationship

- Harmonic mean of Precision and recall:

$$F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

- Beta: low \rightarrow precision more important; high \rightarrow recall more important

$$F_{\beta} = (1 + \beta^2) \cdot \frac{\text{precision} \cdot \text{recall}}{\beta^2 \text{precision} + \text{recall}}$$

- Increase with budget:

Lecture 5

Dimension Reduction:

- Low dimensional representation of high dimensional data.
- Data lies (approximately on some low-dimensional space:
- Data can be compressed.
- Ratings for movies:
 - A1: Sparse vector including all movies
 - Very high dimensional (overfitting)
 - Missing Values
 - Can't add new movies efficiently (re-train the model every new addition)
 - Redundancy
 - A2: Describe preferences using **low-dimensional vector**
- Represent the complete text of a document
 - A1: Sparse vector counting all words
 - Incredibly high-dimensional data
 - Cost of storage and manipulation
 - Redundant encoding
 - Many dimensions devote to "long tail"
 - A2: A low-dimensional vector describing the **topics** in the document
- Connections in social network
 - A1: adjacency matrix
 - Large
 - Fine-grained: can't encode which nodes are familiar
 - A2: represent each node/user in communities
 - Only describe the relationships with vector[# of communities]

Unsupervised Learning:

- Not predictive task, but these techniques are important for future task.
- Describe the data set.

- Principal Component Analysis

- **Select** a few important features
- Compress the data by ignoring meaningless components
- General Idea:
 - M: number of features; N: number of observations.
 - Signal: $X \sim R^{M \times N} \rightarrow$ Compressed signal $Y' \sim R^{K \times N}$, where M > K. And the process to recover from its compressed version: $f(Y') \sim = X$

 Keep the dimensions with HIGHEST variance, and discard the dimensions with the lowest variance; Maximize the amount of "randomness" that gets preserved when compressing data.

Example:

- Map 2-D data into 1-D.

- Find Important Dimensions: new basis for the data
 - Most variance is along x₀
 - Most leftover variance (not explained by x₀) is along x₁
 - Most leftover variance (not explained by x_0, x_1) is along x_2
 - Etc
 - **Input**: $X \sim \mathbb{R}^{M \times N}$; Basis: $\mathbb{R}^{M \times M}$. Such that X is rotated.

- **Objective**: find φ such that **least information** is lost during the process.
- Math:
 - Complete reconstruction: $X = \phi_1 y_1 + \phi_2 y_2 + ... + \phi_M y_M = \sum \phi_j y_j \text{ from } j = 1 \text{ to M}$
 - Approximate reconstruction:
 Delete some data and only keep the first k dimensions:
 X ~ Σφ_i y _i (i from 1 to k) + Σφ_i b _i (j from k + 1 to n, b as a constant).

Minimize the MSE:

$$\min_{\varphi,b} \frac{1}{N} \sum_{y} \left\| \sum_{j=1}^{K} \varphi_{j} y_{j} + \sum_{j=K+1}^{M} \varphi_{j} b_{j} - \varphi^{T} y \right\|_{2}^{2}$$

- Simplifying:

$$\min_{\varphi,b} \frac{1}{N} \sum_{y} \left\| \sum_{j=K+1}^{M} \varphi_{j}(y_{j} - b_{j}) \right\|_{2}^{2}$$

- Expand by the rule: $||x||_2^2 = x^Tx$.

Expand...

$$\frac{1}{N} \leq \frac{1}{N} \leq \frac{$$

 Delete some dimensions, rotate data, and then rotate back, how much information did I lost:

$$\min_{\varphi, b} \frac{1}{N} \sum_{y} \sum_{j=K+1}^{M} (y_j - b_j)^2$$

- Minimize MSE: constant b_j = mean value of y_j ; then the equation equals to the **variance** in the discarded dimensions.
- If we want to optimally (in terms of MSE) project some data into a low dimensional space, we choose the projection by taking the eigenvectors corresponding to the largest eigenvalues of the covariance matrix.
- Codes:
 - pca = PCA(n_components=5); pca.fit(X);
 - Pca.components:
 - eigenvector, rotation matrix;
 - New basis for the data.
 - PSI.

- E.g.: Each **row** represents the **single question** you should ask to preserve the most information.
- Example: Denoise images.

- Summary:

- Low-dimensional representation that best compress or "summarizes" our data
- Keep dimensions with the **highest variance**, and discard dimensions with lower variance. Capture the aspects of the data that are hardest to predict.

- Clustering - K means

- Idea:
 - For highly clustered data, PCA doesn't work.
 - Input: matrix of features
 - Choose K centroids(C) and cluster assignment (Y)
 - Output: list of cluster "centroids" that minimizes reconstruction error.

Optimize:

- $\min_{c, v} \Sigma_i || X_i C_{vi} ||_2^2$, NP Hard Problem.
- Approximation: Greedy algorithm.
 - Random Initialization
 - Assign each X_i to its nearest centroid
 - Update each centroid to be the mean of assigned points.
 - Repeat
- **Converge:** each iteration reduces the reconstruction error. And solution is finite.

- Clustering - Hierarchical

- A representation that encodes that points have some features in common, but not the others.
- Algorithm:
 - Hierarchical clustering: gradually fusing clusters whose points are closest together.

- Model Selection: how to choose K in K-means.
 - Method 1: "compressing" our data
 - Choose however many dimensions we can afford to obtain a given file size/compression ratio.
 - Keep adding dimensions until adding more no longer decreases the reconstruction error.
 - Method 2: generating potentially useful features for some other predictive task.
 - Choose however many dimensions results in best **prediction performance on** held out data.

- Community Detection - Graphs

- Clustering: group sets of points based on **features**.
- Community Detection: group sets of points based on connectivity. [adjacency matrix].
- Community:
 - Connected Components: connected members
 - Minimum Cut: few edges between communities
 - Clique Percolation: cliquishness [mutual connect]
 - Network Modularity: dense inside, few edges outside
- Method 1: Connected Components:
 - Sets of nodes which are reachable from each other
 - Not useful for real graphs: a giant component containing almost all nodes

- Method 2: **Graph Cut:**

- Cut the network into two partitions such that # of edges crossed by the cut is minimal.
 - Just cut the graph with empty set.
- Ratio cut: a cut that favors large communities over small one.

- Encourage to have equal size.
- But still end up in the same previous solution.
- **Normalized Cut**: rather than counting all nodes equally, we give more weight to "influential", **high degree** nodes.

- E.g.: Karate Club Graph
- E.g. computer visions: partition image into different parts.

- Social Communities:

- Disjoint communities
- Overlapping communities: groups with some intersection
- Nested communities: one group within each other

Method 3: Clique percolation:

- Clique: a fully connected graph.
- Algorithm based on high degrees of mutual connectivity. [Cliquishness]
- Measure density among graphs.
- Code:
 - Given a clique size k
 - Initialize every k-clique as its own community
 - While (two communities have a (k 1) clique in common:
 - Merge I and J into a single community

Method 4: Network Modularity:

 Define probabilistic model and evaluate the likelihood of observing a certain set of communities compared to some null model.

- Null model: edges are equally likely between any pair of nodes, regardless of community structure. [random model].
- **Deviate**: how much does a propose community deviate from null.
- Modularity:
 - E_{kk} = fraction of edges in community k
 = # edges within community k / # edges
 - A_k = # edge endpoints in community k / # edge endpoints
 = Fraction that we would expect if randomly allocated.

$$e_{kk} = \frac{\text{\# edges with both endpoints in community } k}{\text{\# edges}}$$
 $a_k = \frac{\text{\# edge endpoints in community } k}{\text{\# edge endpoints}}$
 $Q = \sum_{k=1}^K (e_{kk} - a_k^2)$

$$-\frac{1}{2} \leq Q < 1$$
 Far fewer edges in communities than we would expect at random Far more edges in communities than we would expect at random

Algorithm: greedy algorithm.

Lecture 6

- Recommender System: model people's preferences, opinions, behavior
 - Discover new content
 - Find the content we were already looking for
 - Discover which things go together
 - Personalize user experiences in response to user feedback
 - Identify things we like
- Issues with linear predictors:
 - Everyone recommend the same movie
 - Don't model interaction between user and movie
 - F = <user predictor> + <movie predictor>, but they are not independent.
- Recommender: model the **relationships** between people and items.
 - Collaborative filtering: similarity
 - Latent factor model: low dimensional space
- Collaborative filtering:
 - Estimate similarity between two users → Items they purchased
 - Estimate similarity between two items → users who purchased them
 - Unsupervised learning:
 - Find item i user likes (high rating)
 - Then recommend items similar to i.
 - Definition: represent users and items in matrix

tly...
$$R = \left(\begin{array}{ccc} 1 & 0 & \cdots & 1 \\ 0 & 0 & & 1 \\ \vdots & & \ddots & \vdots \\ 1 & 0 & \cdots & 1 \end{array}\right) \quad \text{users}$$

- I_{ii} = items purchased by user u; U_i = users who purchased item i.
- $I_u = \{ i \mid R_{ui} = 1 \}; U_i = \{ u \mid R_{ui} = 1 \}$
- Method 0: Euclidean distance
 - Between two items:

-
$$|U_i \setminus U_i| + |U_i \setminus U_i| = ||R_i - R_i||$$

Method 1: Jaccard Similarity

- Normalize the euclidean distance in some sense.
- Jaccard(U_i , U_i) = $|U_i \cap U_i| / |U_i \cup U_i|$
- Range:
 - 1 = two users purchased exactly the same items;
 - 0 = two users purchased completely disjoint sets of items.

Method 2: Cosine Similarity

- cosΘ = A * B / ||A|| ||B|| → |U_i ∩ U_i| / |U_i| * |U_i|
- Work for arbitrary **vectors**, can have negative values.
- Range:
 - 1 (theta = 0): rated by the same users, they all agree
 - -1 (theta = 180): rated by the same users. Completely disagree
 - 0: rated by different sets of users.

Cosine similarity (between users):
$$\operatorname{Sim}(u,v) = \frac{\sum_{i \in I_u \cap I_v} R_{u,i} R_{v,i}}{\sqrt{\sum_{i \in I_u \cap I_v} R_{u,i}^2 \sum_{i \in I_u \cap I_v} R_{v,i}^2}} > \frac{\operatorname{A.D.}}{\operatorname{Model}}$$

- Method 3: Pearson correlation

- Numerical ratings (rather than thumbs up/thumbs down)
- Don't want one-star to be the same as five-star
- Idea: normalize first two real-valued vectors by subtracting their average.

$$\operatorname{Sim}(u,v) = \frac{\sum_{i \in I_u \cap I_v} (R_{u,i} + \overline{R_u}) (R_{v,i} + \overline{R_v})}{\sqrt{\sum_{i \in I_u \cap I_v} (R_{u,i} + \overline{R_u})^2 \sum_{i \in I_u \cap I_v} (R_{v,i} + \overline{R_v})^2}}$$

- In practice:

- Normalize ratings:
 - r(u, i) = 1/z sum (sim(i, j) r_{ui} ; More similar, more weight.
 - z = sum sim (i, j)
- Pro/Cons:
 - Built useful tools out of nothing but rating data.
 - One user purchase one item changes the rankings of every other item that was purchased by at least one user in common.
 - No use for new users and new items.
 - Won't encourage diverse results.

- Latent Factor Models

- Simplest Possible Model:
 - $f(u, i) = \alpha$, $\alpha = mean of the data <math>\rightarrow MSE(f) = VAR(R)$
- Second Simplest Model:
 - $f(u, i) = a + \beta_{ii} + \beta_{ij}$
 - β, how much does this user tend to rate things above mean
 - B, how much does this item receive higher ratings than other.
 - Linear model:
 - (u, i) as one hot encoding
 - Theta = <alpha, beta,, beta, >
 - Doesn't personalize but return only global values.
 - Optimization:

$$\underset{\text{error}}{\arg\min_{\alpha,\beta}} \underbrace{\sum_{u,i} (\alpha + \beta_u + \beta_i - R_{u,i})^2}_{\text{error}} + \underbrace{\lambda \left[\sum_{u} \beta_u^2 + \sum_{i} \beta_i^2 \right]}_{\text{regularizer}}$$

- Jointly Convex
- Error: minimize; Regularizer: trade-off between complexity and simplicity.
- Iterative procedure:

$$\alpha = \frac{\sum_{u,i \in \text{train}} (R_{u,i} - (\beta_u + \beta_i))}{N_{\text{train}}}$$
$$\beta_u = \frac{\sum_{i \in I_u} R_{u,i} - (\alpha + \beta_i)}{\lambda + |I_u|}$$
$$\beta_i = \frac{\sum_{u \in U_i} R_{u,i} - (\alpha + \beta_u)}{\lambda + |U_i|}$$

- Issues
 - Still a function that treats user and items independently
 - Whether a movie good/bad; whether the user/movie generally rates above/below average.

Lecture 7

Latent Factor continued

- Dimensionality Reduction
 - The best rank-k approximation (in terms of MSE): take eigenvectors with the highest eigenvalues.

- Issue: missing ratings. The matrix is undefined.
- Approximate DR with Gradient Descent
 - Idea: offset (global average rating) + user/item bias + user/item vector

- R ~ k-d representation of each user * k-d representation of each item
- R $_{[U \times I]} \sim U$ $_{[each row as user]} * V^T$ $_{[each column as items]}$
- Optimization:

$$\arg\min_{\alpha,\beta,\gamma}\underbrace{\sum_{u,i}(\alpha+\beta_u+\beta_i+\gamma_u\cdot\gamma_i-R_{u,i})^2}_{\text{error}} + \lambda\underbrace{\left[\sum_u\beta_u^2+\sum_i\beta_i^2+\sum_i\|\gamma_i\|_2^2+\sum_u\|\gamma_u\|_2^2\right]}_{\text{regularizer}}$$

- Regularizer: push the multi-dimensional vector to zero.
- Issue:
 - not convex.
 - Local optimal.
- Still approximate the equation.
- Observation:
 - Model that uses features only → Model that completely ignores them

- One Class Recommendation

- Dimensionality reduction for **binary** prediction

Past Exams

Spring 15 CSE 190

http://cseweb.ucsd.edu/classes/fa18/cse158-a/files/midterm_cse190_sp15.pdf Solution:

http://cseweb.ucsd.edu/classes/fa15/cse190-a/slides/lecture10_annotated.pdf

Fall 15 CSE 190

http://cseweb.ucsd.edu/classes/fa18/cse158-a/files/midterm_cse190_fa15.pdf Solution:

http://cseweb.ucsd.edu/classes/wi17/cse158-a/slides/lecture10 annotated.pdf

Win 17 CSE 158

http://cseweb.ucsd.edu/classes/fa17/cse158-a/files/midterm_cse158_wi17.pdf Solution:

http://cseweb.ucsd.edu/classes/fa17/cse158-a/slides/midterm_review_annotated.pdf