Matrix VI

REA1121

Mathematics for programming

Outline

- Roadmap
- Eigenvalues and eigenvectors
- Diagonalization of matrices
- Exercises

ROADMAP

Roadmap

EIGENVALUES AND EIGENVECTORS

Suppose
$$A = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix}$$
, then $A^{100} = ?$

Suppose
$$A = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix}$$
, then $A^{100} = ?$

$$A = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 0.7 & 0.45 \\ 0.3 & 0.55 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 0.65 & 0.525 \\ 0.35 & 0.475 \end{bmatrix}$$

$$\vdots$$

$$A^{100} \approx \begin{bmatrix} 0.6 & 0.6 \\ 0.4 & 0.4 \end{bmatrix}$$

$$A = \begin{bmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{bmatrix}$$

There exist two vectors x_1 , x_2 and two scalers λ_1 , λ_2 such that $Ax_1 = \lambda_1 x_1$ and $Ax_2 = \lambda_2 x_2$.

$$\lambda_1 = 1, \boldsymbol{x}_1 = \begin{bmatrix} 0.6 \\ 0.4 \end{bmatrix}$$

$$\lambda_1 = \frac{1}{2}, x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix}
0.8 \\
0.2
\end{bmatrix} = x_1 + (0.2)x_2 = \begin{bmatrix}
0.6 \\
0.4
\end{bmatrix} + \begin{bmatrix}
0.2 \\
-0.2
\end{bmatrix}$$

$$A \begin{bmatrix} 0.8 \\
0.2
\end{bmatrix} = Ax_1 + A(0.2)x_2 = x_1 + \frac{1}{2}(0.2)x_2$$

$$= \begin{bmatrix} 0.6 \\
0.4
\end{bmatrix} + \begin{bmatrix} 0.1 \\ -0.1
\end{bmatrix} = \begin{bmatrix} 0.7 \\
0.3
\end{bmatrix}$$

$$A^{99} \begin{bmatrix} 0.8 \\
0.2
\end{bmatrix} = x_1 + \left(\frac{1}{2}\right)^{99} (0.2)x_2 = \begin{bmatrix} 0.6 \\
0.4
\end{bmatrix} + \begin{bmatrix} small \\ vector \end{bmatrix}$$

$$\begin{bmatrix}
0.3 \\
0.7
\end{bmatrix} = x_1 - (0.3)x_2 = \begin{bmatrix}
0.6 \\
0.4
\end{bmatrix} - \begin{bmatrix}
0.3 \\
-0.3
\end{bmatrix}$$

$$A \begin{bmatrix} 0.3 \\
0.7
\end{bmatrix} = Ax_1 - A(0.3)x_2 = x_1 - \frac{1}{2}(0.3)x_2$$

$$= \begin{bmatrix} 0.6 \\
0.4
\end{bmatrix} - \begin{bmatrix} 0.15 \\
-0.15
\end{bmatrix} = \begin{bmatrix} 0.45 \\
0.55
\end{bmatrix}$$

$$A^{99} \begin{bmatrix} 0.3 \\
0.7
\end{bmatrix} = x_1 + \left(\frac{1}{2}\right)^{99} (0.3)x_2 = \begin{bmatrix} 0.6 \\
0.4
\end{bmatrix} + \begin{bmatrix} small \\ vector \end{bmatrix}$$

Eigenvalue and eigenvector

$$Ax = \lambda x$$

- The number λ is an *eigenvalue* of A.
- The vector x is an *eigenvector* of A.
- x is in the same direction as Ax.
- An eigenvalue of 0 means the eigenvector \boldsymbol{x} is in the nullspace.
- If A is the identity matrix, every vector has Ax = x. All vectors are eigenvectors of I. All eigenvalues $\lambda = 1$.

$$P = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$$
 has eigenvalues $\lambda = 1$ and $\lambda = 0$.

- Suppose x is an eigenvector of P, then we have $Px = \lambda x$.
- Substitute into the linear equation, we may get two eigenvectors

$$\mathbf{x}_1 = [1,1]^T, \mathbf{x}_2 = [1,-1]^T$$

$$P = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$$
 has eigenvalues $\lambda = 1$ and $\lambda = 0$.

- P is singular (not invertible), so $\lambda = 0$ is an eigenvalue.
- P is symmetric, so its eigenvectors are perpendicular.

$$\mathbf{x}_1 = [1,1]^T, \mathbf{x}_2 = [1,-1]^T$$

$$R = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 has eigenvalues $\lambda = 1$ and $\lambda = -1$.

- Suppose x is an eigenvector of R, then we have $Rx = \lambda x$.
- Substitute into the linear equation, we may get two eigenvectors

$$\mathbf{x}_1 = [1,1]^T, \mathbf{x}_2 = [1,-1]^T$$

$$R = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 has eigenvalues $\lambda = 1$ and $\lambda = -1$.

- It can be found that R = 2P I (P in Example
 2) while P and R share the same eigenvectors.
- As $Px = \lambda x$, $2Px = 2\lambda x$, subtract Ix = x, we then have $(2P I)x = (2\lambda 1)x$
- Thus when a matrix is shifted by I, each λ is shifted by 1. No change in eigenvectors.

Try to find eigenvalues and eigenvectors of Q

$$Q = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

- Suppose x is an eigenvector of Q, then we have $Qx = \lambda x$, $(Q \lambda I)x = 0$.
- To find the eigenvalues, we let: $\det(Q \lambda I) = \det\left(\begin{bmatrix} 0 \lambda & -1 \\ 1 & 0 \lambda \end{bmatrix}\right) = \lambda^2 + 1 = 0, \lambda^2 = -1.$
- Thus Q has no real eigenvalues, λ is imaginary.

Try to find eigenvalues and eigenvectors of Q

$$Q = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

- $\lambda_1 = i, \lambda_2 = -i$
- Substitute λ into the equation $(Q \lambda I)x = \mathbf{0}$, we will find two eigenvectors

$$\mathbf{x}_1 = [i, 1]^T, \mathbf{x}_2 = [1, i]^T$$

Property of Matrix and eigenvectors

 Special properties of a matrix lead to special eigenvalues and eigenvectors.

P: projection matrix Projects to a line R: reflection matrix Reflects about a line Q: rotation matrix Rotates by 90 degrees

Computation of eigenvalue

- For small (e.g., 2-by-2) matrices, it is convenient to make use of determinants to compute eigenvalues.
- 1. Compute the determinant of $A \lambda I$.
- 2. Find the roots of this polynomial by solving $det(A \lambda I) = 0$.
- 3. For each eigenvalue λ , solve $(A \lambda I)x = 0$ to find an eigenvector x.

DIAGONALIZATION OF MATRICES

Diagonalization

Diagonalization Suppose the n by n matrix A has n linearly independent eigenvectors x_1, \dots, x_n . Put them into the columns of an eigenvector matrix S. Then $S^{-1}AS$ is the eigenvalue matrix Λ :

$$S^{-1}AS = \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

Diagonalization

- $AS = S\Lambda$
- $S^{-1}AS = \Lambda$
- $A = S\Lambda S^{-1}$
- The matrix S has an inverse, because its columns (the eigenvectors of A) were assumed to be linearly independent.
- Without *n* independent eigenvectors, we can't diagonalize.

$$A = \begin{bmatrix} 1 & 5 \\ 0 & 6 \end{bmatrix}$$
 has eigenvectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and eigenvalues $\lambda = 1$ and $\lambda = 6$.

$$\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 5 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix}$$

$$S^{-1} \qquad A \qquad S \qquad \Lambda$$

Power of $A: A^k = S\Lambda^k S^{-1}$

$$\begin{bmatrix} 1 & 5 \\ 0 & 6 \end{bmatrix}^k = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 6^k \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 6^k - 1 \\ 0 & 6^k \end{bmatrix}$$

Symmetric matrix

(**Spectral Theorem**) Every symmetric matrix has the factorization $A = Q\Lambda Q^T$ with real eigenvalues in Λ and orthonormal eigenvectors in S = Q:

Symmetric diagonalization

$$A = Q\Lambda Q^{-1} = Q\Lambda Q^T$$
 with $Q^{-1} = Q^T$

Find the eigenvalues and eigenvectors of

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}.$$

- The determinant of $A \lambda I = \begin{bmatrix} 1 \lambda & 2 \\ 2 & 4 \lambda \end{bmatrix}$ is $\lambda^2 5\lambda$.
- The eigenvalues are 0 and 5, and 0 + 5 = 1 + 4 (sum of the diagonal components, or the trace of A).
- Two eigenvectors are $[2 -1]^T$ and $[1 2]^T$, which are orthogonal (but not yet orthonormal) as A is symmetric.

•
$$Q = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$

•
$$Q^{-1}AQ = Q^{T}AQ =$$

$$\frac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix} = \Lambda$$

Orthogonal eigenvectors Eigenvectors of a real symmetric matrix (when they correspond to different λ 's) are always perpendicular.

Similar matrix

- When S is the eigenvector matrix, the diagonal matrix $S^{-1}AS = \Lambda$ is the eigenvalue matrix.
- Diagonalization is not possible for every A, as some matrices have too few eigenvectors.

Similar matrix

DEFINITION Let M be any invertible matrix. Then $B = M^{-1}AM$ is similar to A.

- If B is similar to A, then A is similar to B.
- If A is diagonalizable, M = S.

The projection matrix
$$A = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$$
 is similar to $\Lambda = S^{-1}AS = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Now choose $M = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$. The similar matrix $M^{-1}AM = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. Also choose $M = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. The similar matrix $M^{-1}AM = \begin{bmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{bmatrix}$.

- These matrices all have the same eigenvalues
 1 and 0.
- All 2×2 matrices with those eigenvalues 1 and 0 are similar to each other.
- The eigenvectors change with M, but the eigenvalues do not change.

EXERCISES

Computer the eigenvalues and eigenvectors of A and A^{-1} . Check the trace.

$$A = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix} \text{ and } A^{-1} = \begin{bmatrix} -\frac{1}{2} & 1 \\ \frac{1}{2} & 0 \end{bmatrix}$$

a) Factor these two matrices into $A = S\Lambda S^{-1}$:

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$
 and
$$A = \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}$$

b) If
$$A = S\Lambda S^{-1}$$
 then
$$A^{3} = (\)(\)(\)$$

$$A^{-1} = (\)(\)(\)$$

Find an orthogonal matrix Q that diagonalizes the symmetric matrix:

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{bmatrix}$$

Which of the six matrices are similar?

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

A has $\lambda_1 = 2$ and $\lambda_2 = -1$, with $x_1 = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ and $x_2 = \begin{bmatrix} 2 & -1 \end{bmatrix}^T$. The sum of eigenvalues $\lambda_1 + \lambda_2$ is equal to the trace of A. A^{-1} has its eigenvalues as the reciprocal of the eigenvalues of A. $\lambda_1 = \frac{1}{2}$ and $\lambda_2 = -1$, with the same eigenvectors. Again the sum of eigenvalues $\lambda_1 + \lambda_2$ is equal to the trace of A.

a)
$$A = S\Lambda S^{-1}$$

$$\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} \frac{3}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

b) If
$$A = S\Lambda S^{-1}$$
 then
$$A^{3} = S\Lambda^{3}S^{-1}$$
$$A^{-1} = S\Lambda^{-1}S^{-1}$$

The orthogonal matrix Q that diagonalizes the symmetric matrix:

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \end{bmatrix} \text{ is } Q = \frac{1}{3} \begin{bmatrix} 2 & 1 & 2 \\ 2 & -2 & -1 \\ -1 & -2 & 2 \end{bmatrix}$$

$$\begin{bmatrix}1&1\\0&0\end{bmatrix},\begin{bmatrix}0&0\\1&1\end{bmatrix},\begin{bmatrix}1&0\\1&0\end{bmatrix},\begin{bmatrix}0&1\\0&1\end{bmatrix}$$
 are similar. They all have eigenvalues 1 and 0.