RC - Report

Introduction

For acceleration purposes and for avoiding dependencies, the geo_dist function was chosen to be synthesized. By translating the geo_dist (new) function, the parallelism of the hardware platform ensures a better performance.

This function was tested against 10 million inputs, and the following times were obtained:

```
xilinx@pynq:~/RoutingKit$ ./test_geo_dist
running time of old geo distance for 10000000 tests : 45157694 musec
running time of new geo distance for 10000000 tests : 31343527 musec
```

This means that a single calculation takes 3 us.

Vivado HLS

The cpp function was taken and translated into HDL language using Vivado HLS. The following report was obtained after synthetization:

Summary Name	BRAM 18KI	SP48F	FF	LUT	URAM
DSP	-	5	-	-	-
Expression	-	-	0	95	
FIFO	-	-	-	-	-
Instance	20	10	15990	17670	-
Memory	-	-	-	-	-
Multiplexer	-	-%	-	71	-
Register	- 1	-	423	-	-
Total	20	15	16413	17836	0
Available	280	220	106400	53200	0
Utilization (%)	7	6	15	33	0

The implementation was check with a testbench, from which we got the following results for random inputs:

Vivado

After synthesizing the IP, the geo_dist function was linked to the Zynq Processing system as shown below:

The following reports were obtained:

Timing		Setup
Worst Negative Slack (WNS):	0.524 ns	
Total Negative Slack (TNS):	0 ns	
Number of Failing Endpoints:	0	
Total Number of Endpoints:	13777	
Implemented Timing Report		

From Vivado the bitstream was generated and translated (along with the hardware description file) to the Pynq-Z2 board.

Jupyter

We tested the IP using the Jupyter interface as follows:

```
from pynq import Overlay
from datetime import datetime
import struct
overlay = Overlay('/home/xilinx/pynq/overlays/project_aces/design_1.bit')
geo dist ip = overlay.geo dist 0
lat a addr = 0 \times 10
lon a addr = 0x18
lat_b_addr = 0x20
lon b addr = 0 \times 28
result addr = 0x30
geo_dist_ip.write(lat_a_addr, 30)
geo dist ip.write(lon a addr, 30)
geo dist ip.write(lat b addr, 32)
geo dist ip.write(lon b addr, 32)
result = struct.unpack('f', struct.pack('I', geo_dist_ip.read(result_addr)))[0]
print(result)
```

Conclusions

After translating the geo_dist function into the FPGA logic, the best latency is 0.96 us, which represents an acceleration of ~3x compared to the software version. For the worst-case scenario, the latency is 3.19 us, almost the same as the software one.

The results are better for the synthesized version, as seen in the reports.