

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 1 3 SEP 2000

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same pame as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

19 JUL 2000

Mohoney

.

An Executive Agency of the Department of Trade and Industry

The tents Form 1/77 **Patent** 15JUL99 E48 Office P01/7700 0.00 - 9916529.2 (Rule 16) The Patent Office Request for grant of à pa (See the notes on the back of this form. You Cardiff Road get an explanatory leaflet from the Patent help you fill in this form) Newport Gwent NP9 1RH Your reference P022260GB Patent application number 9916529.2 (The Patent Office will fill in this part) Full name, address and postcode of the or of **CHIRON SpA** each applicant (underline all surnames) Via Fiorentina 1 53100 Siena ITALY 07157811001 Patents ADP number (if you know it) If the applicant is a corporate body, give the **ITALY** country/state of its incorporation Title of the invention ANTIGENIC PEPTIDES Name of your agent (if you have one) Carpmaels & Ransford "Address for service" in the United Kingdom 43 Bloomsbury Square to which all correspondence should be sent London (including the postcode) WC1A 2RA Patents ADP number (if you know it) 83001 Date of filing Priority application number If you are declaring priority from one or more Country (day / month / year) (if you know it) earlier patent applications, give the country and the date of filing of the or of each of these

earlier applications and (if you know it) the or each application number

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing (day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if:

any applicant named in part 3 is not an inventor, or

there is an inventor who is not named as an

applicant, or any named applicant is a corporate body c)

See note (d))

ь)

Yes

Patents Form 1/77

 Enter the number of sheets for any of the following items you are filing with this form.
 Do not count copies of the same document

Continuation sheets of this form

Description

156

Claim(s)

1

Abstract

Drawing(s)

 If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

Any other documents (please specify)

I/We request the grant of a patent on the basis of this application.

Signature

Carpagels & Ransford

Date

14th July 1999

 Name and daytime telephone number of person to contact in the United Kingdom

Huw G Hallybone

0171 242 8692

Warning

11.

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

ANTIGENIC PEPTIDES

This invention relates to antigenic peptide sequences from the bacteria Neisseria meningitidis.

BACKGROUND

10

15

Neisseria meningitidis is a non-motile, gram negative diplococci that are pathogenic in humans.

- Based on the organism's capsular polysaccharide, 12 serogroups of N.meningitidis have been identified. Group A is the pathogen most often implicated in epidemic disease in sub-Saharan Africa. Serogroups B and C are responsible for the vast majority of cases in the United States and in most developed countries. Serogroups W135 and Y are responsible for the rest of the cases in the United States and developed countries.
 - The meningococcal vaccine currently in use is a tetravalent polysaccharide vaccine composed of serogroups A, C, Y and W135. Meningococcus B remains a problem, however. The polysaccharide approach cannot be used because the menB capsular polysaccharide is a polymer of α(2-8)-linked N-acetyl neuraminic acid that is also present in mammalian tissue. One approach to a menB vaccine uses mixtures of outer membrane proteins (OMPs) To overcome the antigenic variability, multivalent vaccines containing up to nine different porins have been constructed [eg. Poolman JT (1992) Development of a meningococcal vaccine. Infect. Agents Dis. 4:13-28]. Additional proteins to be used in outer membrane vaccines have been the opa and opc proteins, but none of these approaches have been able to overcome the antigenic variability [eg. Ala'Aldeen & Borriello (1996) The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine 14(1):49-53].

THE INVENTION

The invention provides fragments of the proteins disclosed in International patent application PCT/IB99/00103 [Annex 1], wherein the fragments comprise at least one antigenic determinant.

Thus, if the length of any particular protein sequence disclosed in PCT/IB99/00103 is x amino acids (see Table II), the present invention provides fragments of at most x-1 amino acids of that protein. The fragment may be shorter than this (eg. x-2, x-3, x-4, ...), and is preferably 100 amino

acids or less (eg. 90 amino acids, 80 amino acids etc.). The fragment may be as short as 3 amino acids, but is preferably longer (eg. up to 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 35, 40, 50, 75, or 100 amino acids).

Preferred fragments comprise the meningococcal peptide sequences disclosed in Table I, or sub-sequences thereof. The fragments may be longer than those given in Table I eg. where a fragment in Table I runs from amino acid residue p to residue q of a protein, the invention also relates to fragments from residue (p-1), (p-2), or (p-3) to residue (q+1), (q+2), or (q+3).

5

10

The invention also provides polypeptides that are homologous (ie. have sequence identity) to these fragments. Depending on the particular fragment, the degree of sequence identity is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more). These homologous polypeptides include mutants and allelic variants of the fragments. Identity between the two sequences is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1.

15 The invention also provides proteins comprising one or more of the above-defined fragments.

The invention is subject to the proviso that it does not include within its scope proteins comprising any of the 45 protein sequences disclosed in PCT/IB99/00103 (ie. the even SEQ IDs: 2, 4, 6, 8, 10, ..., 86, 88, 90 of Annex 1).

The proteins of the invention can, of course, be prepared by various means (eg. recombinant expression, purification from cell-culture, chemical synthesis etc.) and in various forms (eg. native, C-terminal and/or N-terminal fusions etc.). They are preferably prepared in substantially pure form (ie. substantially free from other Neisserial or host cell proteins). Short proteins are preferably produced using chemical peptide synthesis.

According to a further aspect, the invention provides antibodies which recognise the fragments of the invention, with the proviso that the invention does not include within its scope antibodies which recognise one of 45 complete protein sequences in Annex I. The antibodies may be polyclonal or, preferably, monoclonal, and may be produced by any suitable means.

The invention also provides proteins comprising peptide sequences recognised by these antibodies. These peptide sequences will, of course, include fragments of the meningococcal proteins in Annex I, but will also include peptides that mimic the antigenic structure of the meningococcal peptides when bound to immunoglobulin.

According to a further aspect, the invention provides nucleic acid encoding the fragments and proteins of the invention, with the proviso that the invention does not include within its scope nucleic acid encoding one of the 45 protein sequences in Annex 1.

In addition, the invention provides nucleic acid comprising sequences homologous (ie. having sequence identity) to these sequences. Furthermore, the invention provides nucleic acid which can hybridise to these sequences, preferably under "high stringency" conditions (eg. 65°C in a 0.1xSSC, 0.5% SDS solution).

10

15

25

It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes).

Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.). In addition, the term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.

According to a further aspect, the invention provides vectors comprising nucleotide sequences of the invention (eg. expression vectors) and host cells transformed with such vectors.

According to a further aspect, the invention provides compositions comprising protein, antibody, and/or nucleic acid according to the invention. These compositions may be suitable as vaccines, for instance, or as diagnostic reagents, or as immunogenic compositions.

The invention also provides nucleic acid, protein, or antibody according to the invention for use as medicaments (eg. as vaccines or as immunogenic compositions) or as diagnostic reagents. It also provides the use of nucleic acid, protein, or antibody according to the invention in the manufacture of: (i) a medicament for treating or preventing infection due to Neisserial bacteria; (ii) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised

against Neisserial bacteria; and/or (iii) a reagent which can raise antibodies against Neisserial bacteria. Said Neisserial bacteria may be any species or strain (such as *N.gonorrhoeae*) but are preferably *N.meningitidis*, especially strain A or strain B.

The invention also provides a method of treating a patient, comprising administering to the patient a therapeutically effective amount of nucleic acid, protein, and/or antibody according to the invention.

According to further aspects, the invention provides various processes.

A process for producing proteins of the invention is provided, comprising the step of culturing a host cell according to the invention under conditions which induce protein expression.

A process for producing protein or nucleic acid of the invention is provided, wherein the protein or nucleic acid is synthesised in part or in whole using chemical means.

A process for detecting polynucleotides of the invention is provided, comprising the steps of: (a) contacting a nucleic probe according to the invention with a biological sample under hybridizing conditions to form duplexes; and (b) detecting said duplexes.

A process for detecting proteins of the invention is provided, comprising the steps of: (a) contacting an antibody according to the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complexes; and (b) detecting said complexes.

A summary of standard techniques and procedures which may be employed in order to perform the invention (eg. to utilise the disclosed sequences for vaccination or diagnostic purposes) follows. This summary is not a limitation on the invention but, rather, gives examples that may be used, but are not required.

<u>General</u>

20

25

5

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature eg. Sambrook Molecular Cloning; A Laboratory Manual, Second Edition (1989); DNA Cloning, Volumes I and ii (D.N Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed, 1984); Nucleic Acid

Hybridization (B.D. Hames & S.J. Higgins eds. 1984); Transcription and Translation (B.D. Hames & S.J. Higgins eds. 1984); Animal Cell Culture (R.I. Freshney ed. 1986); Immobilized Cells and Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide to Molecular Cloning (1984); the Methods in Enzymology series (Academic Press, Inc.), especially volumes 154 & 155; Gene Transfer Vectors for Mammalian Cells (J.H. Miller and M.P. Calos eds. 1987, Cold Spring Harbor Laboratory); Mayer and Walker, eds. (1987), Immunochemical Methods in Cell and Molecular Biology (Academic Press, London); Scopes, (1987) Protein Purification: Principles and Practice, Second Edition (Springer-Verlag, N.Y.), and Handbook of Experimental Immunology, Volumes 1-IV (D.M. Weir and C. C. Blackwell eds 1986).

10 Standard abbreviations for nucleotides and amino acids are used in this specification.

All publications, patents, and patent applications cited herein are incorporated in full by reference.

Definitions

5

25

A composition containing X is "substantially free of" Y when at least 85% by weight of the total X+Y in the composition is X. Preferably, X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.

The term "comprising" means "including" as well as "consisting" eg. a composition "comprising" X may consist exclusively of X or may include something additional to X, such as X+Y.

20 The term "antigenic determinant" includes B-cell epitopes and T-cell epitopes.

The term "heterologous" refers to two biological components that are not found together in nature. The components may be host cells, genes, or regulatory regions, such as promoters. Although the heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene. Another example is where a meningococcal sequence is heterologous to a mouse host cell. A further examples would be two epitopes from the same or different proteins which have been assembled in a single protein in an arrangement not found in nature.

An "origin of replication" is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector. The origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own control. An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.

Expression systems

The meningococcal nucleotide sequences can be expressed in a variety of different expression systems; for example those used with mammalian cells, baculoviruses, plants, bacteria, and yeast.

i. Mammalian Systems

15

20

Mammalian expression systems are known in the art. A mammalian promoter is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiating region, which is usually placed proximal to the 5' end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element, usually located within 100 to 200 bp upstream of the TATA box. An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation [Sambrook et al. (1989) "Expression of Cloned Genes in Mammalian Cells." In Molecular Cloning: A Laboratory Manual, 2nd ed.].

Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particularly useful promoter sequences. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallotheionein gene, also provide

useful promoter sequences. Expression may be either constitutive or regulated (inducible), depending on the promoter can be induced with glucocorticoid in hormone-responsive cells.

5

10

15

20

25

30

The presence of an enhancer element (enhancer), combined with the promoter elements described above, will usually increase expression levels. An enhancer is a regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the normal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the promoter [Maniatis et al. (1987) Science 236:1237; Alberts et al. (1989) Molecular Biology of the Cell, 2nd ed.]. Enhancer elements derived from viruses may be particularly useful, because they usually have a broader host range. Examples include the SV40 early gene enhancer [Dijkema et al (1985) EMBO J. 4:761] and the enhancer/promoters derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus [Gorman et al. (1982b) Proc. Natl. Acad. Sci. 79:6777] and from human cytomegalovirus [Boshart et al. (1985) Cell 41:521]. Additionally, some enhancers are regulatable and become active only in the presence of an inducer, such as a hormone or metal ion [Sassone-Corsi and Borelli (1986) Trends Genet. 2:215; Maniatis et al. (1987) Science 236:1237].

A DNA molecule may be expressed intracellularly in mammalian cells. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in mammalian cells. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The adenovirus triparite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells.

Usually, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. The 3' terminus of the mature mRNA is formed by site-specific post-transcriptional cleavage and polyadenylation [Birnstiel et al. (1985) Cell 41:349; Proudfoot and Whitelaw (1988) "Termination and 3' end processing of eukaryotic RNA. In Transcription and splicing (ed. B.D. Hames and D.M. Glover); Proudfoot (1989) Trends Biochem. Sci. 14:105]. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminater/polyadenylation signals include those derived from SV40 [Sambrook et al (1989) "Expression of cloned genes in cultured mammalian cells." In Molecular Cloning: A Laboratory Manual].

5

10

15

20

25

30

Usually, the above described components, comprising a promoter, polyadenylation signal, and transcription termination sequence are put together into expression constructs. Enhancers, introns with functional splice donor and acceptor sites, and leader sequences may also be included in an expression construct, if desired. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as mammalian cells or bacteria. Mammalian replication systems include those derived from animal viruses, which require trans-acting factors to replicate. For example, plasmids containing the replication systems of papovaviruses, such as SV40 [Gluzman (1981) Cell 23:175] or polyomavirus, replicate to extremely high copy number in the presence of the appropriate viral T antigen. Additional examples of mammalian replicons include those derived from bovine papillomavirus and Epstein-Barr virus. Additionally, the replicon may have two replicaton systems, thus allowing it to be maintained, for example, in mammalian cells for expression and in a prokaryotic host for cloning and amplification. Examples of such mammalian-bacteria shuttle vectors include pMT2 [Kaufman et al. (1989) Mol. Cell. Biol. 9:946] and pHEBO [Shimizu et al. (1986) Mol. Cell. Biol. 6:1074].

The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microiniection of the DNA into nuclei.

5

10

15

20

25

30

Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (eg. Hep G2), and a number of other cell lines.

ii. Baculovirus Systems

The polynucleotide encoding the protein can also be inserted into a suitable insect expression vector, and is operably linked to the control elements within that vector. Vector construction employs techniques which are known in the art. Generally, the components of the expression system include a transfer vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus genome, and a convenient restriction site for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence homologous to the baculovirus-specific fragment in the transfer vector (this allows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.

After inserting the DNA sequence encoding the protein into the transfer vector, the vector and the wild type viral genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine. The packaged recombinant virus is expressed and recombinant plaques are identified and purified. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, *inter alia*, Invitrogen, San Diego CA ("MaxBac" kit). These techniques are generally known to those skilled in the art and fully described in Summers and Smith, *Texas Agricultural Experiment Station Bulletin No. 1555* (1987) (hereinafter "Summers and Smith").

Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector). This construct may contain a single gene and operably linked regulatory elements; multiple genes, each with its owned set of operably linked regulatory elements; or multiple genes, regulated by the same set of regulatory elements. Intermediate transplacement constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as a bacterium. The replicon

will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.

Currently, the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373. Many other vectors, known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers, *Virology* (1989) 17:31.

The plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) Ann. Rev. Microbiol., 42:177) and a prokaryotic ampicillin-resistance (amp) gene and origin of replication for selection and propagation in E. coli.

10

15

20

Baculovirus transfer vectors usually contain a baculovirus promoter. A baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (5' to 3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A baculovirus transfer vector may also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regulated or constitutive.

Structural genes, abundantly transcribed at late times in a viral infection cycle, provide particularly useful promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein, Friesen et al., (1986) "The Regulation of Baculovirus Gene Expression," in: *The Molecular Biology of Baculoviruses* (ed. Walter Doerfler); EPO Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), *J. Gen. Virol.* 69:765.

DNA encoding suitable signal sequences can be derived from genes for secreted insect or baculovirus proteins, such as the baculovirus polyhedrin gene (Carbonell et al. (1988) Gene, 73:409). Alternatively, since the signals for mammalian cell posttranslational modifications (such as signal peptide cleavage, proteolytic cleavage, and phosphorylation) appear to be recognized by insect cells, and the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells, leaders of non-insect

è

5

10

15

20

25

origin, such as those derived from genes encoding human α-interferon, Maeda et al., (1985), Nature 315:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), Molec. Cell. Biol. 8:3129; human IL-2, Smith et al., (1985) Proc. Nat'l Acad. Sci. USA, 82:8404; mouse IL-3, (Miyajima et al., (1987) Gene 58:273; and human glucocerebrosidase, Martin et al. (1988) DNA, 7:99, can also be used to provide for secretion in insects.

A recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequences, it can be secreted. Good intracellular expression of nonfused foreign proteins usually requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature protein by *in vitro* incubation with cyanogen bromide.

Alternatively, recombinant polyproteins or proteins which are not naturally secreted can be secreted from the insect cell by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the translocation of the protein into the endoplasmic reticulum.

After insertion of the DNA sequence and/or the gene encoding the expression product precursor of the protein, an insect cell host is co-transformed with the heterologous DNA of the transfer vector and the genomic DNA of wild type baculovirus — usually by co-transfection. The promoter and transcription termination sequence of the construct will usually comprise a 2-5kb section of the baculovirus genome. Methods for introducing heterologous DNA into the desired site in the baculovirus virus are known in the art. (See Summers and Smith supra; Ju et al. (1987); Smith et al., Mol. Cell. Biol. (1983) 3:2156; and Luckow and Summers (1989)). For example, the insertion can be into a gene such as the polyhedrin gene, by homologous double crossover recombination; insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. Miller et al., (1989), Bioessays 4:91. The DNA sequence, when cloned in place of the polyhedrin gene in the expression vector, is flanked both 5' and 3' by polyhedrin-specific sequences and is positioned downstream of the polyhedrin promoter.

The newly formed baculovirus expression vector is subsequently packaged into an infectious recombinant baculovirus. Homologous recombination occurs at low frequency (between about 1% and about 5%); thus, the majority of the virus produced after cotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses. An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished. The polyhedrin protein, which is produced by the native virus, is produced at very high levels in the nuclei of infected cells at late times after viral infection. Accumulated polyhedrin protein forms occlusion bodies that also contain embedded particles. These occlusion bodies, up to 15 µm in size, are highly refractile, giving them a bright shiny appearance that is readily visualized under the light microscope. Cells infected with recombinant viruses lack occlusion bodies. To distinguish recombinant virus from wild-type virus, the transfection supernatant is plaqued onto a monolayer of insect cells by techniques known to those skilled in the art. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus) or absence (indicative of recombinant virus) of occlusion bodies. "Current Protocols in Microbiology" Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers and Smith, supra; Miller et al. (1989).

5

10

15

20

25

30

Recombinant baculovirus expression vectors have been developed for infection into several insect cells. For example, recombinant baculoviruses have been developed for, inter alia: Aedes aegypti, Autographa californica, Bombyx mori, Drosophila melanogaster, Spodoptera frugiperda, and Trichoplusia ni (WO 89/046699; Carbonell et al., (1985) J. Virol. 56:153; Wright (1986) Nature 321:718; Smith et al., (1983) Mol. Cell. Biol. 3:2156; and see generally, Fraser, et al. (1989) In Vitro Cell. Dev. Biol. 25:225).

Cells and cell culture media are commercially available for both direct and fusion expression of heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, eg. Summers and Smith supra.

The modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host. Where the expression product gene is under inducible control, the host may be grown to high density, and expression induced. Alternatively, where expression is constitutive, the product will be continuously expressed into the medium and the nutrient medium must be continuously circulated, while removing the product of interest and augmenting depleted nutrients. The product may be purified

by such techniques as chromatography, eg. HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient centrifugation; solvent extraction, or the like. As appropriate, the product may be further purified, as required, so as to remove substantially any insect proteins which are also secreted in the medium or result from lysis of insect cells, so as to provide a product which is at least substantially free of host debris, eg. proteins, lipids and polysaccharides.

In order to obtain protein expression, recombinant host cells derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, based upon what is known in the art.

٠ #

iii. Plant Systems

5

10

15

20

25

30

There are many plant cell culture and whole plant genetic expression systems known in the art. Exemplary plant cellular genetic expression systems include those described in patents, such as: US 5,693,506; US 5,659,122; and US 5,608,143. Additional examples of genetic expression in plant cell culture has been described by Zenk, *Phytochemistry* 30:3861-3863 (1991). Descriptions of plant protein signal peptides may be found in addition to the references described above in Vaulcombe et al., *Mol. Gen. Genet.* 209:33-40 (1987); Chandler et al., *Plant Molecular Biology* 3:407-418 (1984); Rogers, *J. Biol. Chem.* 260:3731-3738 (1985); Rothstein et al., *Gene* 55:353-356 (1987); Whittier et al., Nucleic Acids Research 15:2515-2535 (1987); Wirsel et al., *Molecular Microbiology* 3:3-14 (1989); Yu et al., *Gene* 122:247-253 (1992). A description of the regulation of plant gene expression by the phytohormone, gibberellic acid and secreted enzymes induced by gibberellic acid can be found in R.L. Jones and J. MacMillin, Gibberellins: in: *Advanced Plant Physiology*,. Malcolm B. Wilkins, ed., 1984 Pitman Publishing Limited, London, pp. 21-52. References that describe other metabolically-regulated genes: Sheen, *Plant Cell*, 2:1027-1038(1990); Maas et al., *EMBO J.* 9:3447-3452 (1990); Benkel and Hickey, *Proc. Natl. Acad. Sci.* 84:1337-1339 (1987)

Typically, using techniques known in the art, a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants. The expression cassette is inserted into a desired expression vector with companion sequences upstream and downstream from the expression cassette suitable for expression in a plant host.

The companion sequences will be of plasmid or viral origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to the desired plant host. The basic bacterial/plant vector construct will preferably provide a broad host range prokaryote replication origin; a prokaryote selectable marker; and, for Agrobacterium transformations, T DNA sequences for Agrobacterium-mediated transfer to plant chromosomes. Where the heterologous gene is not readily amenable to detection, the construct will preferably also have a selectable marker gene suitable for determining if a plant cell has been transformed. A general review of suitable markers, for example for the members of the grass family, is found in Wilmink and Dons, 1993, *Plant Mol. Biol. Reptr.*, 11(2):165-185.

5

20

25

30

Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance toward antibiotics such as ampicillin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.

The nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest. Usually, there will be only one expression cassette, although two or more are feasible. The recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant 5' untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the 5' and 3' ends of the cassette allow for easy insertion into a pre-existing vector.

A heterologous coding sequence may be for any protein relating to the present invention. The sequence encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually lack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most part, the transcriptional initiation region will be for a gene which is expressed and translocated during germination, by employing the signal peptide which provides for translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested.

Typically secretion in seeds are across the aleurone or scutellar epithelium layer into the endosperm of the seed. While it is not required that the protein be secreted from the cells in which the protein is produced, this facilitates the isolation and purification of the recombinant

Since the ultimate expression of the desired gene product will be in a eucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host's splicosome machinery. If so, site-directed mutagenesis of the "intron" region may be conducted to prevent losing a portion of the genetic message as a false intron code, Reed and Maniatis, Cell 41:95-105, 1985.

protein.

10 The vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, Mol. Gen. Genet, 202:179-185, 1985. The genetic material may also be transferred into the plant cell by using polyethylene glycol, Krens, et al., Nature, 296, 72-74, 1982. Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., Nature, 327, 70-73, 1987 and Knudsen and Muller, 1991, Planta, 185:330-336 teaching particle bombardment of barley endosperm to create transgenic barley. Yet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., Proc. Natl. Acad. Sci. USA, 79, 1859-1863, 1982.

The vector may also be introduced into the plant cells by electroporation. (Fromm et al., *Proc. Natl Acad. Sci. USA* 82:5824, 1985). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.

All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, cotton, fruit and other trees, legumes and vegetables. Some suitable plants include, for example, species from the genera Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum,

Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersion, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Hererocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura.

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Shoots and roots normally develop simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.

In some plant cell culture systems, the desired protein of the invention may be excreted or alternatively, the protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected. Alternatively, the embryos and embryoless-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will be adjusted through routine methods to optimize expression and recovery of heterologous protein.

25 iv. Bacterial Systems

5

10

15

20

. 30

Bacterial expression techniques are known in the art. A bacterial promoter is any DNA sequence capable of binding bacterial RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A bacterial promoter may also have a second domain called an

operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may bind the operator and thereby inhibit transcription of a specific gene. Constitutive expression may occur in the absence of negative regulatory elements, such as the operator. In addition, positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5') to the RNA polymerase binding sequence. An example of a gene activator protein is the catabolite activator protein (CAP), which helps initiate transcription of the lac operon in Escherichia coli (E. coli) [Raibaud et al. (1984) Annu. Rev. Genet. 18:173]. Regulated expression may therefore be either positive or negative, thereby either enhancing or reducing transcription.

5

10

15

20

25

30

Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose (lac) [Chang et al. (1977) Nature 198:1056], and maltose. Additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (trp) [Goeddel et al. (1980) Nuc. Acids Res. 8:4057; Yelverton et al. (1981) Nucl. Acids Res. 9:731; US patent 4,738,921; EP-A-0036776 and EP-A-0121775]. The g-laotamase (bla) promoter system [Weissmann (1981) "The cloning of interferon and other mistakes." In Interferon 3 (ed. I. Gresser)], bacteriophage lambda PL [Shimatake et al. (1981) Nature 292:128] and T5 [US patent 4,689,406] promoter systems also provide useful promoter sequences.

In addition, synthetic promoters which do not occur in nature also function as bacterial promoters. For example, transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter [US patent 4,551,433]. For example, the tac promoter is a hybrid trp-lac promoter comprised of both trp promoter and lac operon sequences that is regulated by the lac repressor [Amann et al. (1983) Gene 25:167; de Boer et al. (1983) Proc. Natl. Acad. Sci. 80:21]. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. A naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes. The bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system [Studier et al. (1986) J. Mol. Biol. 189:113; Tabor et al. (1985) Proc Natl. Acad. Sci. 82:1074]. In addition, a

hybrid promoter can also be comprised of a bacteriophage promoter and an *E. coli* operator region (EPO-A-0 267 851).

In addition to a functioning promoter sequence, an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes. In E. coli, the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon [Shine et al. (1975) Nature 254:34]. The SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3' and of E. coli 16S rRNA [Steitz et al. (1979) "Genetic signals and nucleotide sequences in messenger RNA." In Biological Regulation and Development: Gene Expression (ed. R.F. Goldberger)]. To express eukaryotic genes and prokaryotic genes with weak ribosome-binding site [Sambrook et al. (1989) "Expression of cloned genes in Escherichia coli." In Molecular Cloning: A Laboratory Manual].

5

10

15

20

25

30

A DNA molecule may be expressed intracellularly. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide or by either *in vivo* on *in vitro* incubation with a bacterial methionine N-terminal peptidase (EPO-A-0 219 237).

Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the bacteriophage lambda cell gene can be linked at the 5' terminus of a foreign gene and expressed in bacteria. The resulting fusion protein preferably retains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene [Nagai et al. (1984) Nature 309:810]. Fusion proteins can also be made with sequences from the lacZ [Jia et al. (1987) Gene 60:197], trpE [Allen et al. (1987) J. Biotechnol. 5:93; Makoff et al. (1989) J. Gen. Microbiol. 135:11], and Chey [EP-A-0 324 647] genes. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg.

ubiquitin specific processing-protease) to cleave the ubiquitin from the foreign protein. Through this method, native foreign protein can be isolated [Miller et al. (1989) Bio/Technology 7:698].

Alternatively, foreign proteins can also be secreted from the cell by creating chimeric DNA molecules that encode a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria [US patent 4,336,336]. The signal sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). Preferably there are processing sites, which can be cleaved either *in vivo* or *in vitro* encoded between the signal peptide fragment and the foreign gene.

5

10

15

20

25

30

DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the *E. coli* outer membrane protein gene (*ompA*) [Masui *et al.* (1983), in: Experimental Manipulation of Gene Expression; Ghrayeb *et al.* (1984) EMBO J. 3:2437] and the *E. coli* alkaline phosphatase signal sequence (*phoA*) [Oka *et al.* (1985) *Proc. Natl. Acad. Sci.* 82:7212]. As an additional example, the signal sequence of the alpha-amylase gene from various Bacillus strains can be used to secrete heterologous proteins from *B. subtilis* [Palva *et al.* (1982) *Proc. Natl. Acad. Sci. USA 79*:5582; EP-A-0 244 042].

Usually, transcription termination sequences recognized by bacteria are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription. Examples include transcription termination sequences derived from genes with strong promoters, such as the *trp* gene in *E. coli* as well as other biosynthetic genes.

Usually, the above described components, comprising a promoter, signal sequence (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as bacteria. The replicon will have a replication system, thus allowing it to be maintained in a

prokaryotic host either for expression or for cloning and amplification. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host.

5

10

15

20

25

30

Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various Bacillus strains integrate into the Bacillus chromosome (EP-A- 0 127 328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed. Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin (neomycin), and tetracycline [Davies et al. (1978) Annu. Rev. Microbiol. 32:469]. Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.

Alternatively, some of the above described components can be put together in transformation vectors. Transformation vectors are usually comprised of a selectable market that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extra-chromosomal replicons or integrating vectors, have been developed for transformation into many bacteria. For example, expression vectors have been developed for, inter alia, the following bacteria: Bacillus subtilis [Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541], Escherichia coli [Shimatake et al. (1981) Nature 292:128; Amann et al. (1985) Gene 40:183; Studier et al. (1986) J. Mol. Biol. 189:113; EP-A-0 036 776, EP-A-0 136 829 and EP-A-0 136 907], Streptococcus cremoris [Powell et al. (1988) Appl. Environ. Microbiol. 54:655];

Streptococcus lividans [Powell et al. (1988) Appl. Environ. Microbiol. 54:655], Streptomyces lividans [US patent 4,745,056].

Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with CaCl₂ or other agents, such as divalent cations and DMSO. DNA can also be introduced into bacterial cells by electroporation. Transformation procedures usually vary with the bacterial species to be transformed. See eg. [Masson et al. (1989) FEMS Microbiol. Lett. 60:273; Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541, Bacillus], [Miller et al. (1988) Proc. Natl. Acad. Sci. 85:856; Wang et al. (1990) J. Bacteriol. 172:949, Campylobacter], [Cohen et al. (1973) Proc. Natl. Acad. Sci. 69:2110; Dower et al. (1988) Nucleic Acids Res. 16:6127; Kushner (1978) "An improved method for transformation of Escherichia coli with ColE1-derived plasmids. In Genetic Engineering: Proceedings of the International Symposium on Genetic Engineering (eds. H.W. Boyer and S. Nicosia); Mandel et al. (1970) J. Mol. Biol. 53:159; Taketo (1988) Biochim. Biophys. Acta 949:318; Escherichia], [Chassy et al. (1987) FEMS Microbiol. Lett. 44:173 Lactobacillus]; [Fiedler et al. (1988) Anal. Biochem 170:38, Pseudomonas]; [Augustin et al. (1990) FEMS Microbiol. Lett. 66:203, Staphylococcus], [Barany et al. (1980) J. Bacteriol. 144:698; Harlander (1987) "Transformation of Streptococcus lactis by electroporation, in: Streptococcal Genetics (ed. J. Ferretti and R. Curtiss III); Perry et al. (1981) Infect. Immun. 32:1295; Powell et al. (1988) Appl. Environ. Microbiol. 54:655; Somkuti et al. (1987) Proc. 4th Evr. Cong. Biotechnology 1:412, Streptococcus].

v. Yeast Expression

5

10

15

20

25

30

Yeast expression systems are also known to one of ordinary skill in the art. A yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the "TATA Box") and a transcription initiation site. A yeast promoter may also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene. The UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence of a UAS. Regulated expression may be either positive or negative, thereby either enhancing or reducing transcription.

Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences. Examples include alcohol dehydrogenase (ADH) (EP-A-0 284 044), enclase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO-A-0 329 203). The yeast *PHO5* gene, encoding acid phosphatase, also provides useful promoter sequences [Myanohara *et al.* (1983) *Proc. Natl. Acad. Sci. USA 80*:1].

In addition, synthetic promoters which do not occur in nature also function as yeast promoters. For example, UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (US Patent Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the ADH2, GAL4, GAL10, OR PHO5 genes, combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EP-A-0 164 556). Furthermore, a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, inter alia, [Cohen et al. (1980) Proc. Natl. Acad. Sci. USA 77:1078; Henikoff et al. (1981) Nature 283:835; Hollenberg et al. (1981) Curr. Topics Microbiol. Immunol. 96:119; Hollenberg et al. (1979) "The Expression of Bacterial Antibiotic Resistance Genes in the Yeast Saccharomyces cerevisiae," in: Plasmids of Medical, Environmental and Commercial Importance (eds. K.N. Timmis and A. Puhler); Mercerau-Puigalon et al. (1980) Gene 11:163; Panthier et al. (1980) Curr. Genet. 2:109;].

10

15

20

25

A DNA molecule may be expressed intracellularly in yeast. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

Fusion proteins provide an alternative for yeast expression systems, as well as in mammalian, baculovirus, and bacterial expression systems. Usually, a DNA sequence encoding the N-terminal portion of an endogenous yeast protein, or other stable protein, is fused to the 5' end of

heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the yeast or human superoxide dismutase (SOD) gene, can be linked at the 5' terminus of a foreign gene and expressed in yeast. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See eg. EP-A-0 196 056. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg. ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein. Through this method, therefore, native foreign protein can be isolated (eg. WO88/024066).

5

10

20

25

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.

DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the yeast invertase gene (EP-A-0 012 873; JPO. 62,096,086) and the A-factor gene (US patent 4,588,684). Alternatively, leaders of non-yeast origin, such as an interferon leader, exist that also provide for secretion in yeast (EP-A-0 060 057).

A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a "pre" signal sequence, and a "pro" region. The types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (US Patents 4,546,083 and 4,870,008; EP-A-0 324 274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (eg. see WO 89/02463.)

Usually, transcription termination sequences recognized by yeast are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the

polypeptide encoded by the DNA. Examples of transcription terminator sequence and other veast-recognized termination sequences, such as those coding for glycolytic enzymes.

Usually, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The replicon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification. Examples of such yeast-bacteria shuttle vectors include YEp24 [Botstein et al. (1979) Gene 8:17-24], pCl/1 [Brake et al. (1984) Proc. Natl. Acad. Sci. USA 81:4642-4646], and YRp17 [Stinchcomb et al. (1982) J. Mol. Biol. 158:157]. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See eg. Brake et al., supra.

5

10

15

20

25

30

Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome [Orr-Weaver et al. (1983) Methods in Enzymol. 101:228-245]. An integrating vector may be directed to a specific locus in yeast by selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver et al., supra. One or more expression construct may integrate, possibly affecting levels of recombinant protein produced [Rine et al. (1983) Proc. Natl. Acad. Sci. USA 80:6750]. The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or two segments homologous to adjacent segments in the chromosome and flanking the expression construct in the vector, which can result in the stable integration of only the expression construct.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed. Selectable markers

may include biosynthetic genes that can be expressed in the yeast host, such as ADE2, HIS4, LEU2, TRP1, and ALG7, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively. In addition, a suitable selectable marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal. For example, the presence of CUP1 allows yeast to grow in the presence of copper ions [Butt et al. (1987) Microbiol, Rev. 51:351].

5

25

30

Alternatively, some of the above described components can be put together into transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or developed into an integrating vector, as described above.

10 Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, have been developed for transformation into many yeasts. For example, expression vectors have been developed for, inter alia, the following yeasts: Candida albicans [Kurtz, et al. (1986) Mol. Cell. Biol. 6:142], Candida maltosa [Kunze, et al. (1985) J. Basic Microbiol. 25:141]. Hansenula polymorpha [Gleeson, et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. 15 Gen. Genet. 202:302], Kluyveromyces fragilis [Das, et al. (1984) J. Bacteriol. 158:1165], Kluyveromyces lactis [De Louvencourt et al. (1983) J. Bacteriol. 154:737; Van den Berg et al. (1990) Bio/Technology 8:135], Pichia guillerimondii [Kunze et al. (1985) J. Basic Microbiol. 25:141], Pichia pastoris [Cregg, et al. (1985) Mol. Cell. Biol. 5:3376; US Patent Nos. 4,837,148 and 4,929,555], Saccharomyces cerevisiae [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 20 75:1929; Ito et al. (1983) J. Bacteriol. 153:163], Schizosaccharomyces pombe [Beach and Nurse (1981) Nature 300:706], and Yarrowia lipolytica [Davidow, et al. (1985) Curr. Genet. 10:380471 Gaillardin, et al. (1985) Curr. Genet. 10:49].

Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. Transformation procedures usually vary with the yeast species to be transformed. See eg. [Kurtz et al. (1986) Mol. Cell. Biol. 6:142; Kunze et al. (1985) J. Basic Microbiol. 25:141; Candida]; [Gleeson et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302; Hansenula]; [Das et al. (1984) J. Bacteriol. 158:1165; De Louvencourt et al. (1983) J. Bacteriol. 154:1165; Van den Berg et al. (1990) Bio/Technology 8:135; Kluyveromyces]; [Cregg et al. (1985) Mol. Cell. Biol. 5:3376; Kunze et al. (1985) J. Basic Microbiol. 25:141; US Patent Nos. 4,837,148 and 4,929,555; Pichia]; [Hinnen et al. (1978) Proc.

Natl. Acad. Sci. USA 75;1929; Ito et al. (1983) J. Bacteriol. 153:163 Saccharomyces]; [Beach and Nurse (1981) Nature 300:706; Schizosaccharomyces]; [Davidow et al. (1985) Curr. Genet. 10:39; Gaillardin et al. (1985) Curr. Genet. 10:49; Yarrowia].

Antibodies

15

20

25

As used herein, the term "antibody" refers to a polypeptide or group of polypeptides composed of at least one antibody combining site. An "antibody combining site" is the three-dimensional binding space with an internal surface shape and charge distribution complementary to the features of an epitope of an antigen, which allows a binding of the antibody with the antigen. "Antibody" includes, for example, vertebrate antibodies, hybrid antibodies, chimeric antibodies, humanised antibodies, altered antibodies, univalent antibodies, Fab proteins, and single domain antibodies.

Antibodies against the proteins of the invention are useful for affinity chromatography, immunoassays, and distinguishing/identifying meningococcal proteins.

Antibodies to the proteins of the invention, both polyclonal and monoclonal, may be prepared by conventional methods. In general, the protein is first used to immunize a suitable animal, preferably a mouse, rat, rabbit or goat. Rabbits and goats are preferred for the preparation of polyclonal sera due to the volume of serum obtainable, and the availability of labeled anti-rabbit and anti-goat antibodies. Immunization is generally performed by mixing or emulsifying the protein in saline, preferably in an adjuvant such as Freund's complete adjuvant, and injecting the mixture or emulsion parenterally (generally subcutaneously or intramuscularly). A dose of 50-200 µg/injection is typically sufficient. Immunization is generally boosted 2-6 weeks later with one or more injections of the protein in saline, preferably using Freund's incomplete adjuvant. One may alternatively generate antibodies by in vitro immunization using methods known in the art, which for the purposes of this invention is considered equivalent to *in vivo* immunization. Polyclonal antisera is obtained by bleeding the immunized animal into a glass or plastic container, incubating the blood at 25°C for one hour, followed by incubating at 4°C for 2-18 hours. The serum is recovered by centrifugation (eg. 1,000g for 10 minutes). About 20-50 ml per bleed may be obtained from rabbits.

Monoclonal antibodies are prepared using the standard method of Kohler & Milstein [Nature 30 (1975) 256:495-96], or a modification thereof. Typically, a mouse or rat is immunized as

described above. However, rather than bleeding the animal to extract serum, the spleen (and optionally several large lymph nodes) is removed and dissociated into single cells. If desired, the spleen cells may be screened (after removal of nonspecifically adherent cells) by applying a cell suspension to a plate or well coated with the protein antigen. B-cells expressing membrane-bound immunoglobulin specific for the antigen bind to the plate, and are not rinsed away with the rest of the suspension. Resulting B-cells, or all dissociated spleen cells, are then induced to fuse with myeloma cells to form hybridomas, and are cultured in a selective medium (eg. hypoxanthine, aminopterin, thymidine medium, "HAT"). The resulting hybridomas are plated by limiting dilution, and are assayed for the production of antibodies which bind specifically to the immunizing antigen (and which do not bind to unrelated antigens). The selected MAb-secreting hybridomas are then cultured either in vitro (eg. in tissue culture bottles or hollow fiber reactors), or in vivo (as ascites in mice).

5

10

15

20

25

If desired, the antibodies (whether polyclonal or monoclonal) may be labeled using conventional techniques. Suitable labels include fluorophores, chromophores, radioactive atoms (particularly ³²P and ¹²⁵I), electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horseradish peroxidase is usually detected by its ability to convert 3,3',5,5'-tetramethylbenzidine (TMB) to a blue pigment, quantifiable with a spectrophotometer. "Specific binding partner" refers to a protein capable of binding a ligand molecule with high specificity, as for example in the case of an antigen and a monoclonal antibody specific therefor. Other specific binding partners include biotin and avidin or streptavidin, IgG and protein A, and the numerous receptor-ligand couples known in the art. It should be understood that the above description is not meant to categorize the various labels into distinct classes, as the same label may serve in several different modes. For example, ¹²⁵I may serve as a radioactive label or as an electron-dense reagent. HRP may serve as enzyme or as antigen for a MAb. Further, one may combine various labels for desired effect. For example, MAbs and avidin also require labels in the practice of this invention: thus, one might label a MAb with biotin, and detect its presence with avidin labeled with 125 I, or with an anti-biotin MAb labeled with HRP. Other permutations and possibilities will be readily apparent to those of ordinary skill in the art, and are considered as equivalents within the scope of the invention.

Pharmaceutical Compositions

20

25

30

Pharmaceutical compositions can comprise either polypeptides, antibodies, or nucleic acid of the invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.

The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature. The precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgement of the clinician.

For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).

Pharmaceutically acceptable carriers in therapeutic compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.

Delivery Methods

5

15

20

25

Once formulated, the compositions of the invention can be administered directly to the subject.

The subjects to be treated can be animals; in particular, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Vaccines

Vaccines according to the invention may either be prophylactic (ie. to prevent infection) or therapeutic (ie. to treat disease after infection).

Such vaccines comprise immunising antigen(s), immunogen(s), polypeptide(s), protein(s) or nucleic acid, usually in combination with "pharmaceutically acceptable carriers," which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as oil droplets or liposomes), and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents ("adjuvants"). Furthermore, the antigen or immunogen may be conjugated to a bacterial toxoid, such as a toxoid from diphtheria, tetanus, cholera, *H. pylori*, etc. pathogens.

5

10

15

20

30

Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: (1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59™ (WO 90/14837; Chapter 10 in Vaccine design: the subunit and adjuvant approach, eds. Powell & Newman, Plenum Press 1995), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) RibiTM adjuvant system (RAS), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (DetoxTM); (3) saponin adjuvants, such as StimulonTM (Cambridge Bioscience, Worcester, MA) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (5) cytokines, such as interleukins (eg. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (eg. gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc; and (6) other substances that act as immunostimulating agents to enhance the effectiveness of the composition. Alum and MF59™ are preferred.

As mentioned above, muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP),

N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.

The immunogenic compositions (eg. the immunising antigen/immunogen/polypeptide/protein/nucleic acid, pharmaceutically acceptable carrier, and adjuvant) typically will contain diluents, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles.

ف

5

10

Typically, the immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. The preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect, as discussed above under pharmaceutically acceptable carriers.

Immunogenic compositions used as vaccines comprise an immunologically effective amount of the antigenic or immunogenic polypeptides, as well as any other of the above-mentioned components, as needed. By "immunologically effective amount", it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (eg. nonhuman primate, primate, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.

The immunogenic compositions are conventionally administered parenterally, eg. by injection, either subcutaneously, intramuscularly, or transdermally/transcutaneously (eg. WO98/20734). Additional formulations suitable for other modes of administration include oral and pulmonary formulations, suppositories, and transdermal applications. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents.

As an alternative to protein-based vaccines, DNA vaccination may be employed [eg. Robinson & Torres (1997) Seminars in Immunology 9:271-283; Donnelly et al. (1997) Annu Rev Immunol 15:617-648; see later herein].

Gene Delivery Vehicles

Gene therapy vehicles for delivery of constructs including a coding sequence of a therapeutic of the invention, to be delivered to the mammal for expression in the mammal, can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches in in vivo or ex vivo modality. Expression of such coding sequence can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence in vivo can be either constitutive or regulated.

The invention includes gene delivery vehicles capable of expressing the contemplated nucleic acid sequences. The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adenoviral, adeno-associated viral (AAV), herpes viral, or alphavirus vector. The viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parvovirus, picornavirus, poxvirus, or togavirus viral vector. See generally, Jolly (1994) Cancer Gene Therapy 1:51-64; Kimura (1994) Human Gene Therapy 5:845-852; Connelly (1995) Human Gene Therapy 6:185-193; and Kaplitt (1994) Nature Genetics 6:148-153.

5

10

15

20

25

30

Retroviral vectors are well known in the art and we contemplate that any retroviral gene therapy vector is employable in the invention, including B, C and D type retroviruses, xenotropic retroviruses (for example, NZB-X1, NZB-X2 and NZB9-1 (see O'Neill (1985) J. Virol. 53:160) polytropic retroviruses eg. MCF and MCF-MLV (see Kelly (1983) J. Virol. 45:291), spumaviruses and lentiviruses. See RNA Tumor Viruses, Second Edition, Cold Spring Harbor Laboratory, 1985.

Portions of the retroviral gene therapy vector may be derived from different retroviruses. For example, retrovector LTRs may be derived from a Murine Sarcoma Virus, a tRNA binding site from a Rous Sarcoma Virus, a packaging signal from a Murine Leukemia Virus, and an origin of second strand synthesis from an Avian Leukosis Virus.

These recombinant retroviral vectors may be used to generate transduction competent retroviral vector particles by introducing them into appropriate packaging cell lines (see US patent 5,591,624). Retrovirus vectors can be constructed for site-specific integration into host cell DNA by incorporation of a chimeric integrase enzyme into the retroviral particle (see WO96/37626). It is preferable that the recombinant viral vector is a replication defective recombinant virus.

Packaging cell lines suitable for use with the above-described retrovirus vectors are well known in the art, are readily prepared (see WO95/30763 and WO92/05266), and can be used to create producer cell lines (also termed vector cell lines or "VCLs") for the production of recombinant vector particles. Preferably, the packaging cell lines are made from human parent cells (eg. HT1080 cells) or mink parent cell lines, which eliminates inactivation in human serum.

Preferred retroviruses for the construction of retroviral gene therapy vectors include Avian Leukosis Virus, Bovine Leukemia, Virus, Murine Leukemia Virus, Mink-Cell Focus-Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis Virus and Rous Sarcoma Virus. Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley and Rowe (1976) J

Virol 19:19-25), Abelson (ATCC No. VR-999), Friend (ATCC No. VR-245), Graffi, Gross (ATCC Nol VR-590), Kirsten, Harvey Sarcoma Virus and Rauscher (ATCC No. VR-998) and Moloney Murine Leukemia Virus (ATCC No. VR-190). Such retroviruses may be obtained from depositories or collections such as the American Type Culture Collection ("ATCC") in Rockville, Maryland or isolated from known sources using commonly available techniques.

5

10

15

20

25

30

Exemplary known retroviral gene therapy vectors employable in this invention include those described in patent applications GB2200651, EP0415731, EP0345242, EP0334301, WO89/02468; WO89/05349, WO89/09271, WO90/02806, WO90/07936, WO94/03622, WO93/25698, WO93/25234, WO93/11230, WO93/10218, WO91/02805, WO91/02825, WO95/07994, US 5,219,740, US 4,405,712, US 4,861,719, US 4,980,289, US 4,777,127, US 5,591,624. See also Vile (1993) Cancer Res 53:3860-3864; Vile (1993) Cancer Res 53:962-967; Ram (1993) Cancer Res 53 (1993) 83-88; Takamiya (1992) J Neurosci Res 33:493-503; Baba (1993) J Neurosurg 79:729-735; Mann (1983) Cell 33:153; Cane (1984) Proc Natl Acad Sci 81:6349; and Miller (1990) Human Gene Therapy 1.

Human adenoviral gene therapy vectors are also known in the art and employable in this invention. See, for example, Berkner (1988) Biotechniques 6:616 and Rosenfeld (1991) Science 252:431, and WO93/07283, WO93/06223, and WO93/07282. Exemplary known adenoviral gene therapy vectors employable in this invention include those described in the above referenced documents and in WO94/12649, WO93/03769, WO93/19191, WO94/28938, WO95/11984, WO95/00655, WO95/27071, WO95/29993, WO95/34671, WO96/05320, WO94/08026, WO94/11506, WO93/06223, WO94/24299, WO95/14102, WO95/24297, WO95/02697, WO94/28152, WO94/24299, WO95/09241, WO95/25807, WO95/05835, WO94/18922 and WO95/09654. Alternatively, administration of DNA linked to killed adenovirus as described in Curiel (1992) Hum. Gene Ther. 3:147-154 may be employed. The gene delivery vehicles of the invention also include adenovirus associated virus (AAV) vectors. Leading and preferred examples of such vectors for use in this invention are the AAV-2 based vectors disclosed in Srivastava, WO93/09239. Most preferred AAV vectors comprise the two AAV inverted terminal repeats in which the native D-sequences are modified by substitution of nucleotides, such that at least 5 native nucleotides and up to 18 native nucleotides, preferably at least 10 native nucleotides up to 18 native nucleotides, most preferably 10 native nucleotides are retained and the remaining nucleotides of the D-sequence are deleted or replaced with non-native nucleotides. The native D-sequences of the AAV inverted terminal repeats are sequences of 20 consecutive

nucleotides in each AAV inverted terminal repeat (ie. there is one sequence at each end) which are not involved in HP formation. The non-native replacement nucleotide may be any nucleotide other than the nucleotide found in the native D-sequence in the same position. Other employable exemplary AAV vectors are pWP-19, pWN-1, both of which are disclosed in Nahreini (1993) Gene 124:257-262. Another example of such an AAV vector is psub201 (see Samulski (1987) J. Virol. 61:3096). Another exemplary AAV vector is the Double-D ITR vector. Construction of the Double-D ITR vector is disclosed in US Patent 5,478,745. Still other vectors are those disclosed in Carter US Patent 4,797,368 and Muzyczka US Patent 5,139,941, Chartejee US Patent 5,474,935, and Kotin WO94/288157. Yet a further example of an AAV vector employable in this invention is SSV9AFABTKneo, which contains the AFP enhancer and albumin promoter and directs expression predominantly in the liver. Its structure and construction are disclosed in Su (1996) Human Gene Therapy 7:463-470. Additional AAV gene therapy vectors are described in US 5,354,678, US 5,173,414, US 5,139,941, and US 5,252,479.

10

15

20

25

30

The gene therapy vectors of the invention also include herpes vectors. Leading and preferred examples are herpes simplex virus vectors containing a sequence encoding a thymidine kinase polypeptide such as those disclosed in US 5,288,641 and EP0176170 (Roizman). Additional exemplary herpes simplex virus vectors include HFEM/ICP6-LacZ disclosed in WO95/04139 (Wistar Institute), pHSVlac described in Geller (1988) Science 241:1667-1669 and in WO90/09441 and WO92/07945, HSV Us3::pgC-lacZ described in Fink (1992) Human Gene Therapy 3:11-19 and HSV 7134, 2 RH 105 and GAL4 described in EP 0453242 (Breakefield), and those deposited with the ATCC as accession numbers ATCC VR-977 and ATCC VR-260.

Also contemplated are alpha virus gene therapy vectors that can be employed in this invention.

Preferred alpha virus vectors are Sindbis viruses vectors. Togaviruses, Semliki Forest virus (ATCC VR-67; ATCC VR-1247), Middleberg virus (ATCC VR-370), Ross River virus (ATCC VR-373; ATCC VR-1246), Venezuelan equine encephalitis virus (ATCC VR923; ATCC VR-1250; ATCC VR-1249; ATCC VR-532), and those described in US patents 5,091,309, 5,217,879, and WO92/10578. More particularly, those alpha virus vectors described in US Serial No. 08/405,627, filed March 15, 1995,WO94/21792, WO92/10578, WO95/07994, US 5,091,309 and US 5,217,879 are employable. Such alpha viruses may be obtained from depositories or collections such as the ATCC in Rockville, Maryland or isolated from known sources using commonly available techniques. Preferably, alphavirus vectors with reduced cytotoxicity are used (see USSN 08/679640).

5

10

15

20

25

30

DNA vector systems such as eukaryotic layered expression systems are also useful for expressing the nucleic acids of the invention. See WO95/07994 for a detailed description of eukaryotic layered expression systems. Preferably, the eukaryotic layered expression systems of the invention are derived from alphavirus vectors and most preferably from Sindbis viral vectors.

Other viral vectors suitable for use in the present invention include those derived from poliovirus, for example ATCC VR-58 and those described in Evans, Nature 339 (1989) 385 and Sabin (1973) J. Biol. Standardization 1:115; rhinovirus, for example ATCC VR-1110 and those described in Arnold (1990) J Cell Biochem L401; pox viruses such as canary pox virus or vaccinia virus, for example ATCC VR-111 and ATCC VR-2010 and those described in Fisher-Hoch (1989) Proc Natl Acad Sci 86:317; Flexner (1989) Ann NY Acad Sci 569:86, Flexner (1990) Vaccine 8:17; in US 4,603,112 and US 4,769,330 and WO89/01973; SV40 virus, for example ATCC VR-305 and those described in Mulligan (1979) Nature 277:108 and Madzak (1992) J Gen Virol 73:1533; influenza virus, for example ATCC VR-797 and recombinant influenza viruses made employing reverse genetics techniques as described in US 5,166,057 and in Enami (1990) Proc Natl Acad Sci 87:3802-3805; Enami & Palese (1991) J Virol 65:2711-2713 and Luytjes (1989) Cell 59:110, (see also McMichael (1983) NEJ Med 309:13, and Yap (1978) Nature 273:238 and Nature (1979) 277:108); human immunodeficiency virus as described in EP-0386882 and in Buchschacher (1992) J. Virol. 66:2731; measles virus, for example ATCC VR-67 and VR-1247 and those described in EP-0440219; Aura virus, for example ATCC VR-368; Bebaru virus, for example ATCC VR-600 and ATCC VR-1240; Cabassou virus, for example ATCC VR-922; Chikungunya virus, for example ATCC VR-64 and ATCC VR-1241; Fort Morgan Virus, for example ATCC VR-924; Getah virus, for example ATCC VR-369 and ATCC VR-1243; Kyzylagach virus, for example ATCC VR-927; Mayaro virus, for example ATCC VR-66; Mucambo virus, for example ATCC VR-580 and ATCC VR-1244; Ndumu virus, for example ATCC VR-371; Pixuna virus, for example ATCC VR-372 and ATCC VR-1245; Tonate virus, for example ATCC VR-925; Triniti virus, for example ATCC VR-469; Una virus, for example ATCC VR-374; Whataroa virus, for example ATCC VR-926; Y-62-33 virus, for example ATCC VR-375; O'Nyong virus, Eastern encephalitis virus, for example ATCC VR-65 and ATCC VR-1242; Western encephalitis virus, for example ATCC VR-70, ATCC VR-1251, ATCC VR-622 and ATCC VR-1252; and coronavirus, for example ATCC VR-740 and those described in Hamre (1966) Proc Soc Exp Biol Med 121:190.

Delivery of the compositions of this invention into cells is not limited to the above mentioned viral vectors. Other delivery methods and media may be employed such as, for example, nucleic

acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example see US Serial No. 08/366,787, filed December 30, 1994 and Curiel (1992) Hum Gene Ther 3:147-154 ligand linked DNA, for example see Wu (1989) J Biol Chem 264:16985-16987, eucaryotic cell delivery vehicles cells, for example see US Serial No.08/240,030, filed May 9, 1994, and US Serial No. 08/404,796, deposition of photopolymerized hydrogel materials, hand-held gene transfer particle gun, as described in US Patent 5,149,655, ionizing radiation as described in US5,206,152 and in WO92/11033, nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip (1994) Mol Cell Biol 14:2411-2418 and in Woffendin (1994) Proc Natl Acad Sci 91:1581-1585.

5

. 10

15

20

25

30

Particle mediated gene transfer may be employed, for example see US Serial No. 60/023,867. Briefly, the sequence can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, as described in Wu & Wu (1987) *J. Biol. Chem.* 262:4429-4432, insulin as described in Hucked (1990) *Biochem Pharmacol* 40:253-263, galactose as described in Plank (1992) *Bioconjugate Chem* 3:533-539, lactose or transferrin.

Naked DNA may also be employed. Exemplary naked DNA introduction methods are described in WO 90/11092 and US 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm.

Liposomes that can act as gene delivery vehicles are described in US 5,422,120, WO95/13796, WO94/23697, WO91/14445 and EP-524,968. As described in USSN. 60/023,867, on non-viral delivery, the nucleic acid sequences encoding a polypeptide can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then be incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, insulin, galactose, lactose, or transferrin. Other delivery systems include the use of liposomes to encapsulate DNA comprising the gene under the control of a variety of tissue-specific or

ubiquitously-active promoters. Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin et al (1994) Proc. Natl. Acad. Sci. USA 91(24):11581-11585. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun, as described in US 5,149,655; use of ionizing radiation for activating transferred gene, as described in US 5,206,152 and WO92/11033

Exemplary liposome and polycationic gene delivery vehicles are those described in US 5,422,120 and 4,762,915; in WO 95/13796; WO94/23697; and WO91/14445; in EP-0524968; and in Stryer, Biochemistry, pages 236-240 (1975) W.H. Freeman, San Francisco; Szoka (1980) Biochem Biophys Acta 600:1; Bayer (1979) Biochem Biophys Acta 550:464; Rivnay (1987) Meth Enzymol 149:119; Wang (1987) Proc Natl Acad Sci 84:7851; Plant (1989) Anal Biochem 176:420.

A polynucleotide composition can comprises therapeutically effective amount of a gene therapy vehicle, as the term is defined above. For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

Delivery Methods

5

10

25

Once formulated, the polynucleotide compositions of the invention can be administered (1) directly to the subject; (2) delivered ex vivo, to cells derived from the subject; or (3) in vitro for expression of recombinant proteins. The subjects to be treated can be mammals or birds. Also, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and described in eg. WO93/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoetic, lymph cells, macrophages, dendritic cells, or tumor cells.

Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei, all well known in the art.

10 Polynucleotide and polypeptide pharmaceutical compositions

In addition to the pharmaceutically acceptable carriers and salts described above, the following additional agents can be used with polynucleotide and/or polypeptide compositions.

A.Polypeptides

15

20

One example are polypeptides which include, without limitation: asioloorosomucoid (ASOR); transferrin; asialoglycoproteins; antibodies; antibody fragments; ferritin; interleukins; interferons, granulocyte, macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin. Viral antigens, such as envelope proteins, can also be used. Also, proteins from other invasive organisms, such as the 17 amino acid peptide from the circumsporozoite protein of plasmodium falciparum known as RII.

B.Hormones, Vitamins, etc.

Other groups that can be included are, for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.

C.Polyalkylenes, Polysaccharides, etc.

Also, polyalkylene glycol can be included with the desired polynucleotides/polypeptides. In a preferred embodiment, the polyalkylene glycol is polyethlylene glycol. In addition, mono-, di-,

or polysaccharides can be included. In a preferred embodiment of this aspect, the polysaccharide is dextran or DEAE-dextran. Also, chitosan and poly(lactide-co-glycolide)

D.Lipids, and Liposomes

15

The desired polynucleotide/polypeptide can also be encapsulated in lipids or packaged in liposomes prior to delivery to the subject or to cells derived therefrom.

Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed polynucleotide to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid. For a review of the use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight (1991) *Biochim. Biophys. Acta.* 1097:1-17; Straubinger (1983) *Meth. Enzymol.* 101:512-527.

Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner (1987) *Proc. Natl. Acad. Sci. USA* 84:7413-7416); mRNA (Malone (1989) *Proc. Natl. Acad. Sci. USA* 86:6077-6081); and purified transcription factors (Debs (1990) *J. Biol. Chem.* 265:10189-10192), in functional form.

Cationic liposomes readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, NY. (See, also, Felgner supra). Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boerhinger). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, eg. Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; WO90/11092 for description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.

Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids

(Birmingham, AL), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting

materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.

The liposomes can comprise multilammelar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art. See eg. Straubinger (1983) Meth. Immunol. 101:512-527; Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; Papahadjopoulos (1975) Biochim. Biophys. Acta 394:483; Wilson (1979) Cell 17:77); Deamer & Bangham (1976) Biochim. Biophys. Acta 443:629; Ostro (1977) Biochem. Biophys. Res. Commun. 76:836; Fraley (1979) Proc. Natl. Acad. Sci. USA 76:3348); Enoch & Strittmatter (1979) Proc. Natl. Acad. Sci. USA 76:145; Fraley (1980) J. Biol. Chem. (1980) 255:10431; Szoka & Papahadjopoulos (1978) Proc. Natl. Acad. Sci. USA 75:145; and Schaefer-Ridder (1982) Science 215:166.

E.Lipoproteins

5

10

15

In addition, lipoproteins can be included with the polynucleotide/polypeptide to be delivered. Examples of lipoproteins to be utilized include: chylomicrons, HDL, IDL, LDL, and VLDL. Mutants, fragments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with the polynucleotide to be delivered, no other targeting ligand is included in the composition.

- Naturally occurring lipoproteins comprise a lipid and a protein portion. The protein portion are known as apoproteins. At the present, apoproteins A, B, C, D, and E have been isolated and identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV; CI, CII, CIII.
- A lipoprotein can comprise more than one apoprotein. For example, naturally occurring chylomicrons comprises of A, B, C, and E, over time these lipoproteins lose A and acquire C and E apoproteins. VLDL comprises A, B, C, and E apoproteins, LDL comprises apoprotein B; and HDL comprises apoproteins A, C, and E.

The amino acid of these apoproteins are known and are described in, for example, Breslow (1985) Annu Rev. Biochem 54:699; Law (1986) Adv. Exp Med. Biol. 151:162; Chen (1986) J Biol Chem

5

261:12918; Kane (1980) Proc Natl Acad Sci USA 77:2465; and Utermann (1984) Hum Genet 65:232.

Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phospholipids. The composition of the lipids varies in naturally occurring lipoproteins. For example, chylomicrons comprise mainly triglycerides. A more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in *Meth. Enzymol.* 128 (1986). The composition of the lipids are chosen to aid in conformation of the apoprotein for receptor binding activity. The composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding molecule.

Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in *Meth. Enzymol. (supra)*; Pitas (1980) *J. Biochem.* 255:5454-5460 and Mahey (1979) *J Clin. Invest* 64:743-750. Lipoproteins can also be produced by *in vitro* or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for example, Atkinson (1986) *Annu Rev Biophys Chem* 15:403 and Radding (1958) *Biochim Biophys Acta* 30: 443. Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Techniologies, Inc., Stoughton, Massachusetts, USA. Further description of lipoproteins can be found in Zuckermann *et al.* PCT/US97/14465.

F.Polycationic Agents

20

Polycationic agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide/polypeptide to be delivered.

Polycationic agents, typically, exhibit a net positive charge at physiological relevant pH and are capable of neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have both in vitro, ex vivo, and in vivo applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously,

25 etc.

The following are examples of useful polypeptides as polycationic agents: polylysine, polyarginine, polyornithine, and protamine. Other examples include histones, protamines, human serum albumin, DNA binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and

therefore may be useful as nucleic aid condensing agents. Briefly, transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1, Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.

Organic polycationic agents include: spermine, spermidine, and purtrescine.

The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents.

Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polybrene. LipofectinTM, and lipofectAMINETM are monomers that form polycationic complexes when combined with polynucleotides/polypeptides.

Immunodiagnostic Assays

10

15

20

Meningogoccal antigens of the invention can be used in immunoassays to detect antibody levels (or, conversely, anti-meningococcal antibodies can be used to detect antigen levels). Immunoassays based on well defined, recombinant antigens can be developed to replace invasive diagnostics methods. Antibodies to meningococcal proteins within biological samples, including for example, blood or serum samples, can be detected. Design of the immunoassays is subject to a great deal of variation, and a variety of these are known in the art. Protocols for the immunoassay may be based, for example, upon competition, or direct reaction, or sandwich type assays. Protocols may also, for example, use solid supports, or may be by immunoprecipitation. Most assays involve the use of labeled antibody or polypeptide; the labels may be, for example, fluorescent, chemiluminescent, radioactive, or dye molecules. Assays which amplify the signals from the probe are also known; examples of which are assays which utilize biotin and avidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays.

Kits suitable for immunodiagnosis and containing the appropriate labeled reagents are constructed by packaging the appropriate materials, including the compositions of the invention, in suitable containers, along with the remaining reagents and materials (for example, suitable buffers, salt solutions, etc.) required for the conduct of the assay, as well as suitable set of assay instructions.

Nucleic Acid Hybridisation

5

10

15

20

25

"Hybridization" refers to the association of two nucleic acid sequences to one another by hydrogen bonding. Typically, one sequence will be fixed to a solid support and the other will be free in solution. Then, the two sequences will be placed in contact with one another under conditions that favor hydrogen bonding. Factors that affect this bonding include: the type and volume of solvent; reaction temperature; time of hybridization; agitation; agents to block the non-specific attachment of the liquid phase sequence to the solid support (Denhardt's reagent or BLOTTO); concentration of the sequences; use of compounds to increase the rate of association of sequences (dextran sulfate or polyethylene glycol); and the stringency of the washing conditions following hybridization. See Sambrook *et al.* [supra] Volume 2, chapter 9, pages 9.47 to 9.57.

"Stringency" refers to conditions in a hybridization reaction that favor association of very similar sequences over sequences that differ. For example, the combination of temperature and salt concentration should be chosen that is approximately 120 to 200°C below the calculated Tm of the hybrid under study. The temperature and salt conditions can often be determined empirically in preliminary experiments in which samples of genomic DNA immobilized on filters are hybridized to the sequence of interest and then washed under conditions of different stringencies. See Sambrook *et al.* at page 9.50.

Variables to consider when performing, for example, a Southern blot are (1) the complexity of the DNA being blotted and (2) the homology between the probe and the sequences being detected. The total amount of the fragment(s) to be studied can vary a magnitude of 10, from 0.1 to 1μg for a plasmid or phage digest to 10⁻⁹ to 10⁻⁸ g for a single copy gene in a highly complex eukaryotic genome. For lower complexity polynucleotides, substantially shorter blotting, hybridization, and exposure times, a smaller amount of starting polynucleotides, and lower specific activity of probes can be used. For example, a single-copy yeast gene can be detected with an exposure time of only 1 hour starting with 1 μg of yeast DNA, blotting for two hours, and hybridizing for 4-8 hours with a probe of 10⁸ cpm/μg. For a single-copy mammalian gene a conservative approach would start with 10 μg of DNA, blot overnight, and hybridize overnight in the presence of 10% dextran sulfate using a probe of greater than 10⁸ cpm/μg, resulting in an exposure time of ~24 hours.

Several factors can affect the melting temperature (Tm) of a DNA-DNA hybrid between the probe and the fragment of interest, and consequently, the appropriate conditions for hybridization and washing. In many cases the probe is not 100% homologous to the fragment. Other commonly encountered variables include the length and total G+C content of the hybridizing sequences and the ionic strength and formamide content of the hybridization buffer. The effects of all of these factors can be approximated by a single equation:

5

20

25

$$Tm = 81 + 16.6(log_{10}Ci) + 0.4[\%(G + C)] - 0.6(\%formamide) - 600/n - 1.5(\%mismatch).$$

where Ci is the salt concentration (monovalent ions) and n is the length of the hybrid in base pairs (slightly modified from Meinkoth & Wahl (1984) Anal. Biochem. 138: 267-284).

In designing a hybridization experiment, some factors affecting nucleic acid hybridization can be conveniently altered. The temperature of the hybridization and washes and the salt concentration during the washes are the simplest to adjust. As the temperature of the hybridization increases (ie. stringency), it becomes less likely for hybridization to occur between strands that are nonhomologous, and as a result, background decreases. If the radiolabeled probe is not completely homologous with the immobilized fragment (as is frequently the case in gene family and interspecies hybridization experiments), the hybridization temperature must be reduced, and background will increase. The temperature of the washes affects the intensity of the hybridizing band and the degree of background in a similar manner. The stringency of the washes is also increased with decreasing salt concentrations.

In general, convenient hybridization temperatures in the presence of 50% formamide are 42°C for a probe with is 95% to 100% homologous to the target fragment, 37°C for 90% to 95% homology, and 32°C for 85% to 90% homology. For lower homologies, formamide content should be lowered and temperature adjusted accordingly, using the equation above. If the homology between the probe and the target fragment are not known, the simplest approach is to start with both hybridization and wash conditions which are nonstringent. If non-specific bands or high background are observed after autoradiography, the filter can be washed at high stringency and reexposed. If the time required for exposure makes this approach impractical, several hybridization and/or washing stringencies should be tested in parallel.

5

10

15

20

25

Nucleic Acid Probe Assays

Methods such as PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes according to the invention can determine the presence of cDNA or mRNA. A probe is said to "hybridize" with a sequence of the invention if it can form a duplex or double stranded complex, which is stable enough to be detected.

The nucleic acid probes will hybridize to the meningococcal nucleotide sequences of the invention (including both sense and antisense strands). Though many different nucleotide sequences will encode the amino acid sequence, the native meningococcal sequence is preferred because it is the actual sequence present in cells. mRNA represents a coding sequence and so a probe should be complementary to the coding sequence; single-stranded cDNA is complementary to mRNA, and so a cDNA probe should be complementary to the non-coding sequence.

The probe sequence need not be identical to the meningococcal sequence (or its complement) — some variation in the sequence and length can lead to increased assay sensitivity if the nucleic acid probe can form a duplex with target nucleotides, which can be detected. Also, the nucleic acid probe can include additional nucleotides to stabilize the formed duplex. Additional meningococcal sequence may also be helpful as a label to detect the formed duplex. For example, a non-complementary nucleotide sequence may be attached to the 5' end of the probe, with the remainder of the probe sequence being complementary to a meningococcal sequence. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the a meningococcal sequence in order to hybridize therewith and thereby form a duplex which can be detected.

The exact length and sequence of the probe will depend on the hybridization conditions, such as temperature, salt condition and the like. For example, for diagnostic applications, depending on the complexity of the analyte sequence, the nucleic acid probe typically contains at least 10-20 nucleotides, preferably 15-25, and more preferably at least 30 nucleotides, although it may be shorter than this. Short primers generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.

Probes may be produced by synthetic procedures, such as the triester method of Matteucci et al. [J. Am. Chem. Soc. (1981) 103:3185], or according to Urdea et al. [Proc. Natl. Acad. Sci. USA (1983) 80: 7461], or using commercially available automated oligonucleotide synthesizers.

The chemical nature of the probe can be selected according to preference. For certain applications, DNA or RNA are appropriate. For other applications, modifications may be incorporated eg. backbone modifications, such as phosphorothioates or methylphosphonates, can be used to increase in vivo half-life, alter RNA affinity, increase nuclease resistance etc. [eg. see Agrawal & Iyer (1995) Curr Opin Biotechnol 6:12-19; Agrawal (1996) TIBTECH 14:376-387]; analogues such as peptide nucleic acids may also be used [eg. see Corey (1997) TIBTECH 15:224-229; Buchardt et al. (1993) TIBTECH 11:384-386].

5

10

15

20

25

Alternatively, the polymerase chain reaction (PCR) is another well-known means for detecting small amounts of target nucleic acids. The assay is described in: Mullis et al. [Meth. Enzymol. (1987) 155: 335-350]; US patents 4,683,195 and 4,683,202. Two "primer" nucleotides hybridize with the target nucleic acids and are used to prime the reaction. The primers can comprise sequence that does not hybridize to the sequence of the amplification target (or its complement) to aid with duplex stability or, for example, to incorporate a convenient restriction site. Typically, such sequence will flank the desired meningococcal sequence.

A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a threshold amount of target nucleic acids are generated by the polymerase, they can be detected by more traditional methods, such as Southern blots. When using the Southern blot method, the labelled probe will hybridize to the meningococcal sequence (or its complement).

Also, mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook et al [supra]. mRNA, or cDNA generated from mRNA using a polymerase enzyme, can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labelled probe and then washed to remove any unhybridized probe. Next, the duplexes containing the labeled probe are detected. Typically, the probe is labelled with a radioactive moiety.

EXAMPLES OF PREFERRED FRAGMENTS

The protein sequences disclosed in PCT/IB99/00103 have been subjected to computer analysis to predict antigenic peptide fragments within the full-length proteins. Three algorithms have been used in this analysis:

- AMPHI This program has been used to predict T-cell epitopes [Gao et al. (1989) J. Immunol. 143:3007; Roberts et al. (1996) AIDS Res Hum Retrovir 12:593; Quakyi et al. (1992) Scand J Immunol suppl.11:9] and is available in the Protean package of DNASTAR, Inc. (1228 South Park Street, Madison, Wisconsin 53715 USA).
 - ANTIGENIC INDEX as disclosed by Jameson & Wolf (1988) The antigenic index: a novel algorithm for predicting antigenic determinants. CABIOS, 4:181:186
 - HYDROPHILICITY as disclosed by Hopp & Woods (1981) Prediction of protein antigenic determinants from amino acid sequences. PNAS, 78:3824-3828

Table I indicates preferred fragments of the proteins disclosed in Annex I. The three algorithms often identify the same fragments (eg. ORF100 – the fragment from residue 98 to residue 109, and the fragments from residue 111 to residue 121). Such multiply-identified fragments are particularly preferred. The algorithms often identify overlapping fragments (eg. ORF100 – AMPHI identifies residues 143-152, and Antigenic Index identified residues 148-157). The invention explicitly includes fragments resulting from a combination of these overlapping fragments (eg. the fragment from residue 143 to residue 157, in the case of ORF100). Fragments separated by a single amino acid are also often identified (eg. ORF48-1 hydrophilicity 334-342 and 344-349). The invention also includes fragments spanning the two extremes of such "adjacent" fragments (eg. 334-349 for ORF48-1).

TABLE I - 1769 fragments of the proteins disclosed in Annex I.

Key:

0

15

25 - SEQ ID 1 of the present application is amino acids 6 to 14 of ORF38-1 disclosed in Annex I, etc.

SEQ ID	ORF (Annex I)	Algorithm	Amino acids
1.	38-1	AMPHI	6-14
2.	38-1	AMPHI	57-59
3.	38-1	AMPHI	67-76

4.	38-1	АМРНІ	92-100
5.	38-1	АМРНІ .	127-137
6.	38-1	АМРНІ	149-166
7.	38-1	АМРНІ	210-215
8.	38-1	АМРНІ	231-236
9.	38-1	АМРНІ	270-272
10.	38-1	АМРНІ	303-320
11.	38-1	Antigenic Index	16-34
12.	38-1	Antigenic Index	37-42
13.	38-1	Antigenic Index	46-64
14.	38-1	Antigenic Index	72-91
15.	38-1	Antigenic Index	94-112
16.	38-1	Antigenic Index	114-117
17.	38-1	Antigenic Index	124-136
18.	38-1	Antigenic Index	143-146
19.	38-1	Antigenic Index	148-160
20.	38-1	Antigenic Index	167-195
21.	38-1	Antigenic Index	201-216
22.	38-1	Antigenic Index	218-240
23.	38-1	Antigenic Index	244-252
24.	38-1	Antigenic Index	257-278
25.	38-1	Antigenic Index	282-290
26.	38-1	Antigenic Index	308-314
27.	38-1	Hydrophilicity	21-34
28.	38-1	Hydrophilicity	37-42
29.	38-1	Hydrophilicity	47-55
30.	38-1	Hydrophilicity	57-61
31.	38-1	Hydrophilicity	72-74
32.	38-1	Hydrophilicity	76-78
33.	38-1	Hydrophilicity	82-91
34.	38-1	Hydrophilicity	94-101
35.	38-1	Hydrophilicity	108-112
36.	38-1	Hydrophilicity	126-136
37.	38-1	Hydrophilicity	143-146
38.	38-1	Hydrophilicity	148-160
39.	38-1	Hydrophilicity	167-195
40.	38-1	Hydrophilicity	221-223
41.	38-1	Hydrophilicity	226-236
42.	38-1	Hydrophilicity	244-250
43.	38-1	Hydrophilicity	257-274

44.	38-1	Hydrophilicity	282-286
45.	38-1	Hydrophilicity	311-314
46.	38a	AMPHI	6-14
47.	38a	AMPHI	57-59
48.	38a	AMPHI	67-76
49.	38a	AMPHI	92-100
50.	38a	AMPHI	127-137
51.	38a	AMPHI	149-166
52.	38a	AMPHI	210-215
53.	38a	AMPHI	223-225
54.	38a	AMPHI	231-236
55.	38a	AMPHI	270-272
56.	38a	AMPHI	303-320
57.	38a	Antigenic Index	16-34
58.	38a	Antigenic Index	37-42
59.	38a	Antigenic Index	46-64
60.	38a	Antigenic Index	72-91
61.	38a	Antigenic Index	94-112
62.	38a	Antigenic Index	114-117
63.	38a	Antigenic Index	124-136
64.	38a	Antigenic Index	143-146
65.	38a	Antigenic Index	148-160
66.	38a	Antigenic Index	165-195
67.	38a	Antigenic Index	201-216
68.	38a	Antigenic Index	218-240
69.	38a	Antigenic Index	244-252
70.	38a	Antigenic Index	257-278
71.	38a	Antigenic Index	282-290
72.	38a	Antigenic Index	308-314
73.	38a	Hydrophilicity	21-34
74.	38a	Hydrophilicity	37-42
75.	38a	Hydrophilicity	47-55
76.	38a	Hydrophilicity	57-61
77.	38a	Hydrophilicity	72-74
78.	38a	Hydrophilicity	76-78
79.	38a	Hydrophilicity	82-91
80.	38a	Hydrophilicity	94-101
81.	38a	Hydrophilicity	108-112
82.	38a	Hydrophilicity	126-136
83.	38a	Hydrophilicity	143-146
			<u></u>

84.	38a	Hydrophilicity	148-160
85.	38a	Hydrophilicity	165-195
86.	38a	Hydrophilicity	221-223
87.	38a	Hydrophilicity	226-236
88.	38a	Hydrophilicity	244-250
89.	38a	Hydrophilicity	257-273
90.	38a	Hydrophilicity	282-286
91.	38a	Hydrophilicity	311-314
92.	39-1	АМРНІ	6-13
93.	39-1	AMPHI	21-24
94.	39-1	АМРНІ	37-40
95.	39-1	АМРНІ	60-75
96.	39-1	АМРНІ	118-122
97.	39-1	АМРНІ	134-139
98.	39-1	AMPHI	165-183
99.	39-1	АМРНІ	192-195
100.	39-1	АМРНІ	233-241
101.	39-1	AMPHI	247-267
102.	39-1	AMPHI	273-275
103.	39-1	AMPHI	299-308
104.	39-1	AMPHI	310-319
105.	39-1	АМРНІ	322-330
106.	39-1	АМРНІ	338-347
107.	39-1	АМРНІ	358-364
108.	39-1	АМРНІ	366-368
109.	39-1	АМРНІ	376-378
110.	39-1	АМРНІ	385-392 .
111.	39-1	АМРНІ	413-416
112.	39-1	АМРНІ	421-424
113.	39-1	AMPHI	429-438
114.	39-1	AMPHI	445-454
115.	39-1	АМРНІ	456-458
116.	39-1	AMPHI	498-500
117.	39-1	АМРНІ	512-519
118.	39-1	АМРНІ	576-587
119.	39-1	АМРНІ	589-600
120.	39-1	АМРНІ	650-652
121.	39-1	АМРНІ	670-674
122.	39-1	Antigenic Index	26-32
123.	39-1	Antigenic Index	35-45

124.	39-1	Antigenic Index	54-69
125.	39-1	Antigenic Index	79-84
126.	39-1	Antigenic Index	88-96
127.	39-1	Antigenic Index	105-110
128.	39-1	Antigenic Index	117-124
129.	39-1	Antigenic Index	152-154
130.	39-1	Antigenic Index	190-192
131.	39-1	Antigenic Index	222-231
132.	39-1	Antigenic Index	246-265
133.	39-1	Antigenic Index	292-295
134.	39-1	Antigenic Index	318-335
135.	39-1	Antigenic Index	353-362
136.	39-1	Antigenic Index	370-372
137.	39-1	Antigenic Index	402-404
138.	39-1	Antigenic Index	406-408
139.	39-1	Antigenic Index	419-421
140.	39-1	Antigenic Index	446-449
141.	39-1	Antigenic Index	453-460
142.	39-1	Antigenic Index	465-469
143.	39-1	Antigenic Index	476-487
144.	39-1	Antigenic Index	491-499
145.	39-1	Antigenic Index	505-514
146.	39-1	Antigenic Index	522-536
147.	39-1	Antigenic Index	557-567
148.	39-1	Antigenic Index	569-575
149.	39-1	Antigenic Index	577-580
150.	39-1	Antigenic Index	593-599
151.	39-1	Antigenic Index	603-619
152.	39-1	Antigenic Index	626-628
153.	39-1	Antigenic Index	634-637
154.	39-1	Antigenic Index	639-647
155.	39-1	Antigenic Index	655-658
156.	39-1	Antigenic Index	672-674
157.	39-1	Antigenic Index	677-686
158.	39-1	Antigenic Index	688-691
159.	39-1	Antigenic Index	693-699
160.	39-1	Antigenic Index	707-710
161.	39-1	Hydrophilicity	28-32
162.	39-1	Hydrophilicity	38-44
163.	39-1	Hydrophilicity	54-69

164.	39-1	Hydrophilicity	80-83
165.	39-1	Hydrophilicity	89-96
166.	39-1	Hydrophilicity	117-119
167.	39-1	Hydrophilicity	121-123
168.	39-1	Hydrophilicity	152-154
169.	39-1	Hydrophilicity	224-231
170.	39-1	Hydrophilicity	247-265
171.	39-1	Hydrophilicity	318-332
172.	39-1	Hydrophilicity	357-361
173.	39-1	Hydrophilicity	402-404
174.	39-1	Hydrophilicity	406-408
175.	39-1	Hydrophilicity	446-449
176.	39-1	Hydrophilicity	454-459
177.	39-1	Hydrophilicity	465-469
178.	39-1	Hydrophilicity	476-487
179.	39-1	Hydrophilicity	491-499
180.	39-1	Hydrophilicity	506-514
181.	39-1	Hydrophilicity	525-535
182.	39-1	Hydrophilicity	560-567
183.	39-1	Hydrophilicity	573-575
184.	. 39-1	Hydrophilicity	577-580
185.	39-1	Hydrophilicity	594-596
186.	39-1	Hydrophilicity	605-607
187.	39-1	Hydrophilicity	611-619
188.	39-1	Hydrophilicity	634-637
189.	39-1	Hydrophilicity	639-647
190.	39-1	Hydrophilicity	672-674
191.	39-1	Hydrophilicity	677-686
192	39-1	Hydrophilicity	688-690
193.	39-1	Hydrophilicity	693-695
194.	39a	AMPHI	6-13
195.	39a	AMPHI	21-24
196.	39a	AMPHI	37-40
197.	39a	АМРНІ	60-75
198.	39a	АМРНІ	118-122
199.	39a	AMPHI	134-139
200.	39a	AMPHI	165-183
201.	39a	АМРНІ	192-195
202.	39a	AMPHI	233-241
203.	39a	AMPHI	247-267

204.	39a	AMPHI	273-275
	<u> </u>		299-308
205.	39a	AMPHI	310-319
206.	39a	AMPHI	
207.	39a	AMPHI	322-330
208.	39a	АМРНІ	338-347
209.	39a	AMPHI	358-364
210.	39a	АМРНІ	366-368
211.	39a	АМРНІ	376-378
212.	39a	AMPHI	385-392
213.	39a	АМРНІ	413-416
214.	39a	АМРНІ	421-424
215.	39a	АМРНІ	429-438
216.	39a	АМРНІ	445-454
217.	39a	AMPHI	456-458
218:	39a	АМРНІ	498-500
219.	39a	АМРНІ	512-520
220.	39a	АМРНІ	576-587
221.	39a	АМРНІ	589-600
222.	39a	АМРНІ	650-652
223.	39a	АМРНІ	670-674
224.	39a	Antigenic Index	26-32
225.	39a	Antigenic Index	35-45
226.	39a	Antigenic Index	54-69
227.	39a	Antigenic Index	79-84
228.	39a	Antigenic Index	89-96
229.	39a	Antigenic Index	103-110
230.	39a	Antigenic Index	117-124
231.	39a	Antigenic Index	152-154
232.	39a	Antigenic Index	190-192
233.	39a	Antigenic Index	222-231
234.	39a	Antigenic Index	246-265
235.	39a	Antigenic Index	292-295
236.	39a	Antigenic Index	318-335
237.	39a	Antigenic Index	353-362
238.	39a	Antigenic Index	370-372
239.	39a	Antigenic Index	402-404
240.	39a	Antigenic Index	406-408
241.	39a	Antigenic Index	419-421
242.	39a	Antigenic Index	446-449
243.	39a	Antigenic Index	453-460
	<u> </u>		<u> </u>

244.	39a	Antigenic Index	465-469
245.	39a	Antigenic Index	476-487
246.	39a	Antigenic Index	491-499
247.	39a	Antigenic Index	505-514
248.	39a	Antigenic Index	529-535
249.	39a	Antigenic Index	557-567
250.	39a	Antigenic Index	569-575
251.	39a	Antigenic Index	577-580
252.	39a	Antigenic Index	593-599
253.	39a	Antigenic Index	603-619
254.	39a	Antigenic Index	626-628
255.	39a	Antigenic Index	634-637
256.	39a	Antigenic Index	639-647
257.	39a .	Antigenic Index	655-658
258.	39a	Antigenic Index	672-674
259.	39a .	Antigenic Index	677-686
260.	39a	Antigenic Index	688-691
261.	39a	Antigenic Index	693-699
262.	39a	Antigenic Index	707-710
263.	39a	Hydrophilicity	28-32
264.	39a	Hydrophilicity	38-44
265.	39a	Hydrophilicity	54-69
266.	39a	Hydrophilicity	80-83
267.	39a	Hydrophilicity	89-95
268.	39a	Hydrophilicity	105-108
269.	39a	Hydrophilicity	117-119
270.	39a	Hydrophilicity	121-123 .
271.	39a	Hydrophilicity	152-154
272.	39a	Hydrophilicity	224-231
273.	39a	Hydrophilicity	247-265
274.	39a	Hydrophilicity	318-332
275.	39a	Hydrophilicity	357-361
276.	39a	Hydrophilicity	402-404
277.	39a	Hydrophilicity	406-408
278.	39a	Hydrophilicity	446-449
279.	39a	Hydrophilicity	454-459
280.	39a	Hydrophilicity	465-469
281.	39a	Hydrophilicity	476-487
	20-	Hydrophilicity	491-499
282.	39a	riyaropinincity	421-433

284.	39a	Hydrophilicity	529-535
285.	39a	Hydrophilicity	560-567
286.	39a	Hydrophilicity	573-575
287.	39a	Hydrophilicity	577-580
288.	39a	Hydrophilicity	594-596
289.	39a	Hydrophilicity	605-607
290.	39a	Hydrophilicity	611-619
291.	39a	Hydrophilicity	634-637
292.	39a	Hydrophilicity	639-647
293.	39a	Hydrophilicity	672-674
294.	39a	Hydrophilicity	677-686
295.	39a	Hydrophilicity	688-690
296.	39a	Hydrophilicity	693-695
297.	40-1	АМРНІ	6-14
298.	40-1	АМРНІ	16-19
299.	40-1	АМРНІ	22-27
300.	40-1	АМРНІ	30-33
301.	40-1	АМРНІ	41-44
302.	40-1	АМРНІ	62-68
303.	40-1	АМРНІ	129-139
304.	40-1	АМРНІ	161-165
305.	40-1	АМРНІ	181-191
306.	40-1	АМРНІ	199-202
307.	40-1	АМРНІ	215-220
308.	40-1	АМРНІ	237-249
309.	40-1	АМРНІ	298-302
310.	40-1	AMPHI	313-318
311.	40-1	AMPHI	335-342
312.	40-1	АМРНІ	376-383
313.	40-1	AMPHI	399-402
314.	40-1	AMPHI	426-428
315.	40-1	AMPHI	430-433
316.	40-1	АМРНІ	435-437
317.	40-1	АМРНІ	479-482
318.	40-1	AMPHI	491-511
319.	40-1	AMPHI .	523-525
320.	40-1	АМРНІ	560-563
321.	40-1	Antigenic Index	21-32
322.	40-1	Antigenic Index	49-61
323.	40-1	Antigenic Index	64-66
	<u>. l</u>	· · · · · · · · · · · · · · · · · · ·	L

324.	40-1	Antigenic Index	74-92
325.	40-1	Antigenic Index	98-123
326.	40-1	Antigenic Index	129-135
327.	40-1	Antigenic Index	138-176
328.	40-1	Antigenic Index	193-195
329.	40-1	Antigenic Index	199-219
330.	40-1	Antigenic Index	226-240
331.	40-1	Antigenic Index	242-245
332.	40-1	Antigenic Index	251-257
333.	40-1	Antigenic Index	261-276
334.	40-1	Antigenic Index	279-306
335.	40-1	Antigenic Index	308-346
336.	40-1	Antigenic Index	352-367
337.	40-1	Antigenic Index	375-378
338.	40-1	Antigenic Index	384-406
339.	40-1	Antigenic Index	408-420
340.	40-1	Antigenic Index	423-426
341.	40-1	Antigenic Index	428-438
342.	40-1	Antigenic Index	453-459
343.	40-1	Antigenic Index	462-481
344.	40-1	Antigenic Index	485-494
345.	40-1	Antigenic Index	506-518
346.	40-1	Antigenic Index	535-539
347.	40-1	Antigenic Index	544-552
348.	40-1	Antigenic Index	559-566
349.	40-1	Antigenic Index	571-582
350.	40-1	Hydrophilicity	21-32
351.	40-1	Hydrophilicity	51-61
352.	40-1	Hydrophilicity	64-66
353.	40-1	Hydrophilicity	75-92
354.	40-1	Hydrophilicity	100-122
355.	40-1	Hydrophilicity	129-135
356.	40-1	Hydrophilicity	140-145
357.	40-1	Hydrophilicity	149-152
358.	40-1	Hydrophilicity	157-161
359.	40-1	Hydrophilicity	163-175
360.	40-1	Hydrophilicity	199-201
361.	40-1	Hydrophilicity	203-219
362.	40-1	Hydrophilicity	227-240
363.	40-1	Hydrophilicity	251-257

	•		
364.	40-1	Hydrophilicity	261-276
365.	40-1	Hydrophilicity	279-306
366.	40-1	Hydrophilicity	308-318
367.	40-1	Hydrophilicity	320-328
368.	40-1	Hydrophilicity	334-341
369.	40-1	Hydrophilicity	354-356
370.	40-1	Hydrophilicity	359-366
371.	40-1	Hydrophilicity	392-398
372.	40-1	Hydrophilicity	400-405
373.	40-1	Hydrophilicity	410-420
374.	40-1	Hydrophilicity	429-438
375.	40-1	Hydrophilicity	463-467
376.	40-1	Hydrophilicity	471-480
377.	40-1	Hydrophilicity	487-493
378.	40-1	Hydrophilicity	506-518
379.	40-1	Hydrophilicity	547-552
380.	40-1	Hydrophilicity	575-579
381.	40a	AMPHI	6-10
382.	40a	AMPHI	19-27
383.	40a	AMPHI ·	30-33
384.	40a	AMPH1	41-44
385.	40a	АМРНІ	61-72
386.	40a	AMPHI	78-81
387.	40a	AMPHI	92-94
388.	40a	АМРНІ	128-130
389.	40a	АМРНІ	132-134
390.	40a	AMPHI	161-165
391.	40a	AMPHI	181-193
392.	40a	AMPHI	197-199
393.	40a	AMPHI	204-211
394.	40a	AMPHI	213-218
395.	40a	AMPHI	227-229
396.	40a	AMPHI	237-249
397.	40a	АМРНІ	298-302
398.	40a	АМРНІ	313-318
399.	40a	AMPHI	335-342
400.	40a	AMPHI	376-383
401.	40a	AMPHI	399-402
402.	40a	AMPHI	426-428
403.	40a	AMPHI	435-437

404.	40a	АМРНІ	475-483
405.	40a	AMPHI	492-512
	40a	AMPHI	524-526
406.		AMPHI	561-564
407.	40a		21-34
408.	40a	Antigenic Index	
409.	40a	Antigenic Index	50-64
410.	40a	Antigenic Index	75-83
411.	40a .	Antigenic Index	88-97
412.	40a	Antigenic Index	105-122
413.	40a	Antigenic Index	129-134
414.	40a	Antigenic Index	140-176
415.	40a	Antigenic Index	190-207
416.	40a	Antigenic Index	211-217
417.	40a	Antigenic Index	224-240
418.	40a	Antigenic Index	242-245
419.	40a	Antigenic Index	250-255
420.	40a	Antigenic Index	260-276
421.	40a	Antigenic Index	279-306
422.	40a	Antigenic Index	308-346
423.	40a	Antigenic Index	352-367
424.	40a	Antigenic Index	375-378
425.	40a	Antigenic Index	384-406
426.	40a	Antigenic Index	408-420
427.	40a	Antigenic Index	423-438
428.	40a	Antigenic Index	453-468
429.	40a	Antigenic Index	471-481
430.	40a	Antigenic Index	487-493
431.	40a	Antigenic Index	507-519
432.	40a	Antigenic-Index	536-540
433.	40a	Antigenic Index	545-553
434.	40a	Antigenic Index	560-567
435.	40a	Antigenic Index	572-583
436.	40a	Hydrophilicity	21-34
437.	40a	Hydrophilicity	50-64
438.	40a	Hydrophilicity	75-83
439.	40a	Hydrophilicity	88-96
440.	40a	Hydrophilicity	105-121
441.	40a	Hydrophilicity	129-134
442.	40a	Hydrophilicity	140-145
443.	40a	Hydrophilicity	148-155
		7	

444.	40a	Hydrophilicity	157-161
445.	40a	Hydrophilicity	163-175
446.	40a	Hydrophilicity	196-202
447.	40a	Hydrophilicity	211-217
448.	40a	Hydrophilicity	225-230
449.	40a	Hydrophilicity	232-240
450.	40a	Hydrophilicity	253-255
451.	40a	Hydrophilicity	261-276
452.	40a	Hydrophilicity	279-306
453.	40a	Hydrophilicity	308-318
454.	40a	Hydrophilicity	320-328
455.	40a	Hydrophilicity	334-341
456.	40a	Hydrophilicity .	354-356
457.	40a	Hydrophilicity	359-366
458.	40a	Hydrophilicity	392-398
459.	40a	Hydrophilicity	400-405
460.	40a	Hydrophilicity	410-420
461.	40a	Hydrophilicity	428-438
462.	40a	Hydrophilicity	462-468
463.	40a	Hydrophilicity	472-481
464.	40a	Hydrophilicity	489-493
465.	40a	Hydrophilicity	507-519
466.	40a	Hydrophilicity	548-553
467.	40a	Hydrophilicity	576-580
468.	41-1	AMPHI	30-36
469.	41-1	AMPHI	93-98
470.	41-1	AMPHI	111-122
471.	41-1	AMPHI.	126-129
472.	41-1	AMPHI	136-143
473.	41-1	- AMPHI	145-150
474.	41-1	AMPHI	156-158
475.	41-1	АМРНІ	186-195
476.	41-1	AMPHI	201-208
477.	41-1	AMPHI	213-223
478.	41-1	АМРНІ	236-247
479.	41-1	АМРНІ	250-255
480.	41-1	AMPHI	273-282
481.	41-1	AMPHI	303-309
482.	41-1	AMPHI	311-314
483.	41-1	AMPHI	329-338

	·	T	
484.	41-1	АМРНІ	344-362
485.	. 41-1	AMPHI	372-377
486.	41-1	AMPHI	385-392
487.	41-1	AMPHI	409-412
488.	41-1	AMPHI	419-426
489.	41-1	AMPHI	458-463
490.	41-1	АМРНІ	470-474
491.	41-1	AMPHI	486-489
492.	41-1	АМРНІ	512-518
493.	41-1	АМРНІ	527-551
494.	41-1	АМРНІ	564-579
495.	41-1	АМРНІ	593-597
496.	41-1	Antigenic Index	13-22
497.	41-1	Antigenic Index	30-38
498.	41-1	Antigenic Index	43-55
499.	41-1	Antigenic Index	73-75
500.	41-1	Antigenic Index	87-89
501.	41-1	Antigenic Index	105-112
502.	41-1	Antigenic Index	114-124
503.	41-1	Antigenic Index	136-141
504.	41-1	Antigenic Index	147-153
505.	41-1	Antigenic Index	163-166
506.	41-1	Antigenic Index	174-184
507.	41-1	Antigenic Index	195-207
508.	41-1	Antigenic Index	226-236
509.	41-1.	Antigenic Index	244-246
510.	41-1	Antigenic Index	249-265
511.	41-1	Antigenic Index	281-287
512.	41-1	Antigenic Index	294-313
513.	41-1	Antigenic Index	317-342
514.	41-1	Antigenic Index	350-375
515.	41-1	Antigenic Index	379-386
516.	41-1	Antigenic Index	390-396
517.	41-1	Antigenic Index	413-422
518.	41-1	Antigenic Index	425-430
519.	41-1	Antigenic Index	436-440
520.	41-1	Antigenic Index	446-465
521.	41-1	Antigenic Index	468-495
522.	41-1	Antigenic Index	498-518
523.	41-1	Antigenic Index	520-522

524. 41-1 Antigenic Index 525-542 525. 41-1 Antigenic Index 547-558 526. 41-1 Antigenic Index 565-590 527. 41-1 Antigenic Index 608-619 528. 41-1 Hydrophilicity 14-21 530. 41-1 Hydrophilicity 30-33 531. 41-1 Hydrophilicity 45-55 532. 41-1 Hydrophilicity 106-111 534. 41-1 Hydrophilicity 114-120 535. 41-1 Hydrophilicity 112-124 536. 41-1 Hydrophilicity 136-141 537. 41-1 Hydrophilicity 177-184 538. 41-1 Hydrophilicity 177-184 539. 41-1 Hydrophilicity 195-207 540. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 299-297 <t< th=""><th></th><th></th><th></th><th></th></t<>				
526. 41-1 Antigenic Index 565-590 527. 41-1 Antigenic Index 595-602 528. 41-1 Antigenic Index 608-619 529. 41-1 Hydrophilicity 14-21 530. 41-1 Hydrophilicity 30-33 531. 41-1 Hydrophilicity 87-89 532. 41-1 Hydrophilicity 106-111 534. 41-1 Hydrophilicity 114-120 535. 41-1 Hydrophilicity 136-141 537. 41-1 Hydrophilicity 148-150 538. 41-1 Hydrophilicity 177-184 539. 41-1 Hydrophilicity 195-207 540. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 249-265 542. 41-1 Hydrophilicity 294-297 544. 41-1 Hydrophilicity 299-313 545. 41-1 Hydrophilicity 317-321 <tr< td=""><td>524.</td><td>41-1</td><td>Antigenic Index</td><td>525-542</td></tr<>	524.	41-1	Antigenic Index	525-542
527. 41-1 Antigenic Index 595-602 528. 41-1 Antigenic Index 608-619 529. 41-1 Hydrophilicity 14-21 530. 41-1 Hydrophilicity 30-33 531. 41-1 Hydrophilicity 45-55 532. 41-1 Hydrophilicity 106-111 533. 41-1 Hydrophilicity 114-120 534. 41-1 Hydrophilicity 136-141 535. 41-1 Hydrophilicity 136-141 537. 41-1 Hydrophilicity 148-150 538. 41-1 Hydrophilicity 177-184 539. 41-1 Hydrophilicity 195-207 540. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 249-265 542. 41-1 Hydrophilicity 294-297 544. 41-1 Hydrophilicity 299-313 545. 41-1 Hydrophilicity 317-321	525.	41-1	Antigenic Index	547-558
528. 41-1 Antigenic Index 608-619 529. 41-1 Hydrophilicity 14-21 530. 41-1 Hydrophilicity 30-33 531. 41-1 Hydrophilicity 45-55 532. 41-1 Hydrophilicity 106-111 534. 41-1 Hydrophilicity 114-120 535. 41-1 Hydrophilicity 122-124 536. 41-1 Hydrophilicity 136-141 537. 41-1 Hydrophilicity 177-184 539. 41-1 Hydrophilicity 195-207 540. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 226-234 542. 41-1 Hydrophilicity 229-297 543. 41-1 Hydrophilicity 317-321	526.	41-1	Antigenic Index	565-590
529. 41-1 Hydrophilicity 14-21 530. 41-1 Hydrophilicity 30-33 531. 41-1 Hydrophilicity 45-55 532. 41-1 Hydrophilicity 106-111 533. 41-1 Hydrophilicity 114-120 534. 41-1 Hydrophilicity 112-124 535. 41-1 Hydrophilicity 136-141 537. 41-1 Hydrophilicity 148-150 538. 41-1 Hydrophilicity 177-184 539. 41-1 Hydrophilicity 195-207 540. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 249-265 542. 41-1 Hydrophilicity 285-287 543. 41-1 Hydrophilicity 294-297 544. 41-1 Hydrophilicity 299-313 545. 41-1 Hydrophilicity 317-321 546. 41-1 Hydrophilicity 323-342	527.	41-1	Antigenic Index	595-602
530. 41-1 Hydrophilicity 30-33 531. 41-1 Hydrophilicity 45-55 532. 41-1 Hydrophilicity 106-111 533. 41-1 Hydrophilicity 114-120 534. 41-1 Hydrophilicity 114-120 535. 41-1 Hydrophilicity 122-124 536. 41-1 Hydrophilicity 136-141 537. 41-1 Hydrophilicity 177-184 539. 41-1 Hydrophilicity 177-184 539. 41-1 Hydrophilicity 195-207 540. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 249-265 542. 41-1 Hydrophilicity 285-287 543. 41-1 Hydrophilicity 299-313 544. 41-1 Hydrophilicity 317-321 546. 41-1 Hydrophilicity 323-342 547. 41-1 Hydrophilicity 350-371	528.	41-1	Antigenic Index	608-619
531. 41-1 Hydrophilicity 45-55 532. 41-1 Hydrophilicity 87-89 533. 41-1 Hydrophilicity 106-111 534. 41-1 Hydrophilicity 114-120 535. 41-1 Hydrophilicity 122-124 536. 41-1 Hydrophilicity 136-141 537. 41-1 Hydrophilicity 177-184 538. 41-1 Hydrophilicity 195-207 540. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 228-265 542. 41-1 Hydrophilicity 285-287 543. 41-1 Hydrophilicity 299-313 544. 41-1 Hydrophilicity 299-313 545. 41-1 Hydrophilicity 317-321 546. 41-1 Hydrophilicity 323-342 547. 41-1 Hydrophilicity 379-386 549. 41-1 Hydrophilicity 417-422	529.	41-1	Hydrophilicity	14-21
532. 41-1 Hydrophilicity 87-89 533. 41-1 Hydrophilicity 106-111 534. 41-1 Hydrophilicity 114-120 535. 41-1 Hydrophilicity 122-124 536. 41-1 Hydrophilicity 136-141 537. 41-1 Hydrophilicity 148-150 538. 41-1 Hydrophilicity 177-184 539. 41-1 Hydrophilicity 195-207 540. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 249-265 542. 41-1 Hydrophilicity 285-287 543. 41-1 Hydrophilicity 299-313 544. 41-1 Hydrophilicity 317-321 545. 41-1 Hydrophilicity 323-342 547. 41-1 Hydrophilicity 379-386 549. 41-1 Hydrophilicity 417-422 550. 41-1 Hydrophilicity 425-427 <t< td=""><td>530.</td><td>41-1</td><td>Hydrophilicity</td><td>30-33</td></t<>	530.	41-1	Hydrophilicity	30-33
533. 41-1 Hydrophilicity 106-111 534. 41-1 Hydrophilicity 114-120 535. 41-1 Hydrophilicity 136-141 536. 41-1 Hydrophilicity 148-150 537. 41-1 Hydrophilicity 177-184 539. 41-1 Hydrophilicity 195-207 540. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 249-265 542. 41-1 Hydrophilicity 285-287 543. 41-1 Hydrophilicity 299-297 544. 41-1 Hydrophilicity 299-313 545. 41-1 Hydrophilicity 317-321 546. 41-1 Hydrophilicity 323-342 547. 41-1 Hydrophilicity 350-371 548. 41-1 Hydrophilicity 379-386 549. 41-1 Hydrophilicity 425-427 550. 41-1 Hydrophilicity 442-449	531.	41-1	Hydrophilicity	45-55
534. 41-1 Hydrophilicity 114-120 535. 41-1 Hydrophilicity 122-124 536. 41-1 Hydrophilicity 136-141 537. 41-1 Hydrophilicity 148-150 538. 41-1 Hydrophilicity 177-184 539. 41-1 Hydrophilicity 226-234 540. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 249-265 542. 41-1 Hydrophilicity 294-297 543. 41-1 Hydrophilicity 299-313 545. 41-1 Hydrophilicity 317-321 546. 41-1 Hydrophilicity 323-342 547. 41-1 Hydrophilicity 350-371 548. 41-1 Hydrophilicity 379-386 549. 41-1 Hydrophilicity 425-427 550. 41-1 Hydrophilicity 447-449 552. 41-1 Hydrophilicity 468-475	532.	41-1	Hydrophilicity	87-89
535. 41-1 Hydrophilicity 122-124 536. 41-1 Hydrophilicity 136-141 537. 41-1 Hydrophilicity 148-150 538. 41-1 Hydrophilicity 177-184 539. 41-1 Hydrophilicity 226-234 540. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 249-265 542. 41-1 Hydrophilicity 294-297 543. 41-1 Hydrophilicity 299-313 544. 41-1 Hydrophilicity 317-321 545. 41-1 Hydrophilicity 323-342 547. 41-1 Hydrophilicity 350-371 548. 41-1 Hydrophilicity 379-386 549. 41-1 Hydrophilicity 417-422 550. 41-1 Hydrophilicity 425-427 551. 41-1 Hydrophilicity 447-449 552. 41-1 Hydrophilicity 468-475	533.	41-1	Hydrophilicity	106-111
536. 41-1 Hydrophilicity 136-141 537. 41-1 Hydrophilicity 148-150 538. 41-1 Hydrophilicity 177-184 539. 41-1 Hydrophilicity 226-234 540. 41-1 Hydrophilicity 249-265 541. 41-1 Hydrophilicity 285-287 542. 41-1 Hydrophilicity 294-297 543. 41-1 Hydrophilicity 299-313 544. 41-1 Hydrophilicity 317-321 545. 41-1 Hydrophilicity 323-342 547. 41-1 Hydrophilicity 350-371 548. 41-1 Hydrophilicity 379-386 549. 41-1 Hydrophilicity 417-422 550. 41-1 Hydrophilicity 425-427 551. 41-1 Hydrophilicity 447-449 552. 41-1 Hydrophilicity 468-475 554. 41-1 Hydrophilicity 468-475	534.	41-1	Hydrophilicity	114-120
537. 41-1 Hydrophilicity 148-150 538. 41-1 Hydrophilicity 177-184 539. 41-1 Hydrophilicity 195-207 540. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 249-265 542. 41-1 Hydrophilicity 298-287 543. 41-1 Hydrophilicity 299-313 544. 41-1 Hydrophilicity 317-321 545. 41-1 Hydrophilicity 323-342 547. 41-1 Hydrophilicity 350-371 548. 41-1 Hydrophilicity 379-386 549. 41-1 Hydrophilicity 417-422 550. 41-1 Hydrophilicity 425-427 551. 41-1 Hydrophilicity 447-449 552. 41-1 Hydrophilicity 459-462 553. 41-1 Hydrophilicity 479-482 555. 41-1 Hydrophilicity 484-491	-535.	41-1	Hydrophilicity	122-124
538. 41-1 Hydrophilicity 177-184 539. 41-1 Hydrophilicity 195-207 540. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 249-265 542. 41-1 Hydrophilicity 298-287 543. 41-1 Hydrophilicity 299-313 544. 41-1 Hydrophilicity 317-321 545. 41-1 Hydrophilicity 323-342 546. 41-1 Hydrophilicity 350-371 548. 41-1 Hydrophilicity 379-386 549. 41-1 Hydrophilicity 417-422 550. 41-1 Hydrophilicity 425-427 551. 41-1 Hydrophilicity 447-449 552. 41-1 Hydrophilicity 459-462 553. 41-1 Hydrophilicity 468-475 554. 41-1 Hydrophilicity 499-518 555. 41-1 Hydrophilicity 520-522	536.	41-1	Hydrophilicity	136-141
539. 41-1 Hydrophilicity 195-207 540. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 249-265 542. 41-1 Hydrophilicity 285-287 543. 41-1 Hydrophilicity 299-313 544. 41-1 Hydrophilicity 317-321 545. 41-1 Hydrophilicity 323-342 547. 41-1 Hydrophilicity 350-371 548. 41-1 Hydrophilicity 379-386 549. 41-1 Hydrophilicity 417-422 550. 41-1 Hydrophilicity 425-427 551. 41-1 Hydrophilicity 447-449 552. 41-1 Hydrophilicity 459-462 553. 41-1 Hydrophilicity 468-475 554. 41-1 Hydrophilicity 484-491 555. 41-1 Hydrophilicity 499-518 557. 41-1 Hydrophilicity 526-542	537.	41-1	Hydrophilicity	148-150
540. 41-1 Hydrophilicity 226-234 541. 41-1 Hydrophilicity 249-265 542. 41-1 Hydrophilicity 285-287 543. 41-1 Hydrophilicity 294-297 544. 41-1 Hydrophilicity 317-321 545. 41-1 Hydrophilicity 323-342 546. 41-1 Hydrophilicity 350-371 548. 41-1 Hydrophilicity 379-386 549. 41-1 Hydrophilicity 417-422 550. 41-1 Hydrophilicity 425-427 551. 41-1 Hydrophilicity 447-449 552. 41-1 Hydrophilicity 459-462 553. 41-1 Hydrophilicity 468-475 554. 41-1 Hydrophilicity 484-491 555. 41-1 Hydrophilicity 499-518 557. 41-1 Hydrophilicity 520-522 558. 41-1 Hydrophilicity 526-542	538.	41-1	Hydrophilicity	177-184
541. 41-1 Hydrophilicity 249-265 542. 41-1 Hydrophilicity 285-287 543. 41-1 Hydrophilicity 294-297 544. 41-1 Hydrophilicity 299-313 545. 41-1 Hydrophilicity 317-321 546. 41-1 Hydrophilicity 323-342 547. 41-1 Hydrophilicity 379-386 549. 41-1 Hydrophilicity 417-422 550. 41-1 Hydrophilicity 425-427 551. 41-1 Hydrophilicity 447-449 552. 41-1 Hydrophilicity 459-462 553. 41-1 Hydrophilicity 468-475 554. 41-1 Hydrophilicity 479-482 555. 41-1 Hydrophilicity 499-518 557. 41-1 Hydrophilicity 520-522 558. 41-1 Hydrophilicity 526-542 559. 41-1 Hydrophilicity 568-590	539.	41-1	Hydrophilicity	195-207
542. 41-1 Hydrophilicity 285-287 543. 41-1 Hydrophilicity 294-297 544. 41-1 Hydrophilicity 299-313 545. 41-1 Hydrophilicity 317-321 546. 41-1 Hydrophilicity 323-342 547. 41-1 Hydrophilicity 350-371 548. 41-1 Hydrophilicity 417-422 550. 41-1 Hydrophilicity 425-427 551. 41-1 Hydrophilicity 447-449 552. 41-1 Hydrophilicity 459-462 553. 41-1 Hydrophilicity 468-475 554. 41-1 Hydrophilicity 479-482 555. 41-1 Hydrophilicity 484-491 556. 41-1 Hydrophilicity 520-522 558. 41-1 Hydrophilicity 526-542 559. 41-1 Hydrophilicity 568-590 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619 <td>540.</td> <td>41-1</td> <td>Hydrophilicity</td> <td>226-234</td>	540.	41-1	Hydrophilicity	226-234
543. 41-1 Hydrophilicity 294-297 544. 41-1 Hydrophilicity 299-313 545. 41-1 Hydrophilicity 317-321 546. 41-1 Hydrophilicity 323-342 547. 41-1 Hydrophilicity 350-371 548. 41-1 Hydrophilicity 379-386 549. 41-1 Hydrophilicity 417-422 550. 41-1 Hydrophilicity 425-427 551. 41-1 Hydrophilicity 447-449 552. 41-1 Hydrophilicity 468-475 553. 41-1 Hydrophilicity 479-482 555. 41-1 Hydrophilicity 484-491 556. 41-1 Hydrophilicity 499-518 557. 41-1 Hydrophilicity 526-542 559. 41-1 Hydrophilicity 550-558 560. 41-1 Hydrophilicity 568-590 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619 <td>541.</td> <td>41-1</td> <td>Hydrophilicity</td> <td>249-265</td>	541.	41-1	Hydrophilicity	249-265
544. 41-1 Hydrophilicity 299-313 545. 41-1 Hydrophilicity 317-321 546. 41-1 Hydrophilicity 323-342 547. 41-1 Hydrophilicity 350-371 548. 41-1 Hydrophilicity 379-386 549. 41-1 Hydrophilicity 417-422 550. 41-1 Hydrophilicity 425-427 551. 41-1 Hydrophilicity 447-449 552. 41-1 Hydrophilicity 468-475 553. 41-1 Hydrophilicity 479-482 554. 41-1 Hydrophilicity 484-491 555. 41-1 Hydrophilicity 499-518 557. 41-1 Hydrophilicity 520-522 558. 41-1 Hydrophilicity 526-542 559. 41-1 Hydrophilicity 568-590 560. 41-1 Hydrophilicity 568-590 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619 <td>542.</td> <td>41-1</td> <td>Hydrophilicity</td> <td>285-287</td>	542.	41-1	Hydrophilicity	285-287
545. 41-1 Hydrophilicity 317-321 546. 41-1 Hydrophilicity 323-342 547. 41-1 Hydrophilicity 350-371 548. 41-1 Hydrophilicity 379-386 549. 41-1 Hydrophilicity 417-422 550. 41-1 Hydrophilicity 425-427 551. 41-1 Hydrophilicity 447-449 552. 41-1 Hydrophilicity 459-462 553. 41-1 Hydrophilicity 468-475 554. 41-1 Hydrophilicity 479-482 555. 41-1 Hydrophilicity 484-491 556. 41-1 Hydrophilicity 520-522 558. 41-1 Hydrophilicity 526-542 559. 41-1 Hydrophilicity 550-558 560. 41-1 Hydrophilicity 568-590 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619	543.	41-1	Hydrophilicity	294-297 "
546. 41-1 Hydrophilicity 323-342 547. 41-1 Hydrophilicity 350-371 548. 41-1 Hydrophilicity 379-386 549. 41-1 Hydrophilicity 417-422 550. 41-1 Hydrophilicity 425-427 551. 41-1 Hydrophilicity 447-449 552. 41-1 Hydrophilicity 459-462 553. 41-1 Hydrophilicity 468-475 554. 41-1 Hydrophilicity 484-491 555. 41-1 Hydrophilicity 499-518 557. 41-1 Hydrophilicity 520-522 558. 41-1 Hydrophilicity 526-542 559. 41-1 Hydrophilicity 550-558 560. 41-1 Hydrophilicity 568-590 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619	544.	41-1	Hydrophilicity	299-313
547. 41-1 Hydrophilicity 350-371 548. 41-1 Hydrophilicity 379-386 549. 41-1 Hydrophilicity 417-422 550. 41-1 Hydrophilicity 425-427 551. 41-1 Hydrophilicity 447-449 552. 41-1 Hydrophilicity 459-462 553. 41-1 Hydrophilicity 468-475 554. 41-1 Hydrophilicity 479-482 555. 41-1 Hydrophilicity 484-491 556. 41-1 Hydrophilicity 520-518 557. 41-1 Hydrophilicity 526-542 559. 41-1 Hydrophilicity 550-558 560. 41-1 Hydrophilicity 568-590 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619	545.	41-1	Hydrophilicity	317-321
548. 41-1 Hydrophilicity 379-386 549. 41-1 Hydrophilicity 417-422 550. 41-1 Hydrophilicity 425-427 551. 41-1 Hydrophilicity 447-449 552. 41-1 Hydrophilicity 459-462 553. 41-1 Hydrophilicity 468-475 554. 41-1 Hydrophilicity 479-482 555. 41-1 Hydrophilicity 484-491 556. 41-1 Hydrophilicity 520-518 557. 41-1 Hydrophilicity 526-542 559. 41-1 Hydrophilicity 550-558 560. 41-1 Hydrophilicity 568-590 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619	546.	41-1	Hydrophilicity	323-342
549. 41-1 Hydrophilicity 417-422 550. 41-1 Hydrophilicity 425-427 551. 41-1 Hydrophilicity 447-449 552. 41-1 Hydrophilicity 459-462 553. 41-1 Hydrophilicity 468-475 554. 41-1 Hydrophilicity 479-482 555. 41-1 Hydrophilicity 484-491 556. 41-1 Hydrophilicity 499-518 557. 41-1 Hydrophilicity 520-522 558. 41-1 Hydrophilicity 526-542 559. 41-1 Hydrophilicity 550-558 560. 41-1 Hydrophilicity 595-598 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619	547.	41-1 .	Hydrophilicity	350-371
550. 41-1 Hydrophilicity 425-427 551. 41-1 Hydrophilicity 447-449 552. 41-1 Hydrophilicity 459-462 553. 41-1 Hydrophilicity 468-475 554. 41-1 Hydrophilicity 479-482 555. 41-1 Hydrophilicity 484-491 556. 41-1 Hydrophilicity 520-518 557. 41-1 Hydrophilicity 526-542 558. 41-1 Hydrophilicity 550-558 560. 41-1 Hydrophilicity 568-590 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619	548.	41-1	Hydrophilicity	379-386
551. 41-1 Hydrophilicity 447-449 552. 41-1 Hydrophilicity 459-462 553. 41-1 Hydrophilicity 468-475 554. 41-1 Hydrophilicity 479-482 555. 41-1 Hydrophilicity 484-491 556. 41-1 Hydrophilicity 520-518 557. 41-1 Hydrophilicity 520-522 558. 41-1 Hydrophilicity 550-558 560. 41-1 Hydrophilicity 568-590 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619	549.	41-1	Hydrophilicity	417-422
552. 41-1 Hydrophilicity 459-462 553. 41-1 Hydrophilicity 468-475 554. 41-1 Hydrophilicity 479-482 555. 41-1 Hydrophilicity 484-491 556. 41-1 Hydrophilicity 520-518 557. 41-1 Hydrophilicity 520-522 558. 41-1 Hydrophilicity 550-558 560. 41-1 Hydrophilicity 568-590 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619	550.	41-1		425-427
553. 41-1 Hydrophilicity 468-475 554. 41-1 Hydrophilicity 479-482 555. 41-1 Hydrophilicity 484-491 556. 41-1 Hydrophilicity 499-518 557. 41-1 Hydrophilicity 520-522 558. 41-1 Hydrophilicity 526-542 559. 41-1 Hydrophilicity 550-558 560. 41-1 Hydrophilicity 568-590 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619	l	41-1	<u> </u>	447-449
554. 41-1 Hydrophilicity 479-482 555. 41-1 Hydrophilicity 484-491 556. 41-1 Hydrophilicity 499-518 557. 41-1 Hydrophilicity 520-522 558. 41-1 Hydrophilicity 526-542 559. 41-1 Hydrophilicity 550-558 560. 41-1 Hydrophilicity 568-590 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619	552.	41-1	Hydrophilicity	459-462
555. 41-1 Hydrophilicity 484-491 556. 41-1 Hydrophilicity 499-518 557. 41-1 Hydrophilicity 520-522 558. 41-1 Hydrophilicity 526-542 559. 41-1 Hydrophilicity 550-558 560. 41-1 Hydrophilicity 568-590 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619	553.	41-1	Hydrophilicity	468-475
556. 41-1 Hydrophilicity 499-518 557. 41-1 Hydrophilicity 520-522 558. 41-1 Hydrophilicity 526-542 559. 41-1 Hydrophilicity 550-558 560. 41-1 Hydrophilicity 568-590 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619	554.	41-1	Hydrophilicity	479-482
557. 41-1 Hydrophilicity 520-522 558. 41-1 Hydrophilicity 526-542 559. 41-1 Hydrophilicity 550-558 560. 41-1 Hydrophilicity 568-590 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619	555.	41-1	Hydrophilicity	484-491
558. 41-1 Hydrophilicity 526-542 559. 41-1 Hydrophilicity 550-558 560. 41-1 Hydrophilicity 568-590 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619	556.	41-1	Hydrophilicity	499-518
559. 41-1 Hydrophilicity 550-558 560. 41-1 Hydrophilicity 568-590 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619	557.	41-1	Hydrophilicity	520-522
560. 41-1 Hydrophilicity 568-590 561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619	558.	41-1	Hydrophilicity	526-542
561. 41-1 Hydrophilicity 595-598 562. 41-1 Hydrophilicity 617-619	559.	41-1	Hydrophilicity	550-558
562. 41-1 Hydrophilicity 617-619	560.	41-1	Hydrophilicity	568-590
	561.	41-1	Hydrophilicity	595-598
	562.	41-1	Hydrophilicity	617-619
563. 41a AMPHI 6-12	563.	41a	AMPHI	6-12

564.	41a	АМРНІ	32-34
565.	41a	АМРНІ	69-74
566.	41a	АМРНІ	86-98
567.	41a	АМРНІ	111-119
568.	41a	АМРНІ	121-126
569.	41a	АМРНІ	132-134
570.	41a ·	АМРНІ .	155-160
571.	41a	АМРНІ	162-171
572.	41a	АМРНІ	177-184
573.	41a	АМРНІ	189-199
574.	41a	АМРНІ	212-223
575.	4la	АМРНІ	226-231
576.	41a	AMPHI	249-258
577.	41a	АМРНІ	287-290
578.	41a	АМРНІ	305-314
579.	41a	АМРНІ.	320-338
580.	41a	АМРНІ	348-353
581.	41a	АМРНІ	361-368
582.	41a	АМРНІ	385-388
583.	41a	АМРНІ	395-402
584.	41a	АМРНІ	434-439
585.	41a	АМРНІ	446-450
586.	41a	АМРНІ	462-467
587.	41a	АМРНІ	470-475
588.	41a	АМРНІ	488-494
589.	41a	АМРНІ	503-525
590.	41a	АМРНІ	540-555
591.	41a	АМРНІ	569-573
592 .	41a	AMPH	578-594
593.	41a	Antigenic Index	10-13
594.	41a	Antigenic Index	19-31
595.	41a	Antigenic Index	48-50
596.	41a	Antigenic Index	63-65
597.	41a	Antigenic Index	82-101
598.	41a	Antigenic Index	112-117
599.	41a	Antigenic Index	123-129
600.	41a	Antigenic Index	139-142
601.	41a	Antigenic Index	150-160
602.	41a	Antigenic Index	171-183
603.	41a	Antigenic Index	202-212
			

•			
604.	41a	Antigenic Index	220-222
605.	41a	Antigenic Index	225-241
606.	41a	Antigenic Index	257-263
607.	41a	Antigenic Index	270-289
608.	41a	Antigenic Index	293-318
609.	41a	Antigenic Index	326-351
610.	41a	Antigenic Index	355-362
611.	41a	Antigenic Index	366-372
612.	41a	Antigenic Index	389-398
613.	41a	Antigenic Index	401-406
614.	41a	Antigenic Index	412-416
615.	41a	Antigenic Index	422-441
616.	41a	Antigenic Index	444-446
617.	41a	Antigenic Index	451-471
618.	41a	Antigenic Index	475-494
619.	41a	Antigenic Index	496-498
620.	41a	Antigenic Index	501-518
621.	41a	Antigenic Index	523-534
622.	41a	Antigenic Index	540-566
623.	41a	Antigenic Index	571-578
624.	41a	Antigenic Index	582-595
625.	41a	Hydrophilicity	21-31
626.	41a	Hydrophilicity	63-65
627.	41a	Hydrophilicity	83-96
628.	41a	Hydrophilicity	98-100
629.	41a	Hydrophilicity	112-117
630.	41a	Hydrophilicity	124-126
631.	41a	Hydrophilicity	153-160
632.	41a	Hydrophilicity	171-183
633.	41a	Hydrophilicity	202-210
634.	41a	Hydrophilicity	220-222
635.	41a	Hydrophilicity	225-241
636.	41a	Hydrophilicity	261-263
637.	41a	Hydrophilicity	270-273
638.	41a	Hydrophilicity	275-289
639.	41a	Hydrophilicity	293-297
640.	41a	Hydrophilicity	299-318
641.	41a	Hydrophilicity	326-347
642.	41a	Hydrophilicity	355-362
643.	41a	Hydrophilicity	. 393-398
1 0 10.	1		

644.	41a	Hydrophilicity	401 402
645.			401-403
	41a	Hydrophilicity	423-425
646.	4la	Hydrophilicity	435-438
647.	41a	Hydrophilicity	454-458
648.	41a	Hydrophilicity	460-471
649.	41a	Hydrophilicity	475-494
650.	41a	Hydrophilicity	496-498
651.	41a	Hydrophilicity	502-518
652.	41a	Hydrophilicity	527-534
653.	41a	Hydrophilicity	544-566
654.	41a	Hydrophilicity	571-574
655.	41a	Hydrophilicity	593-595
656.	44-1	АМРНІ	57-60 ·
657.	44-1	АМРНІ	76-79
658.	44-1	Antigenic Index	22-34
659.	44-1	Antigenic Index	38-46
660.	44-1	Antigenic Index	50-55
661.	44-1	Antigenic Index	64-70
662.	44-1	Antigenic Index	72-80
663.	44-1	Antigenic Index	83-89
664.	44-1	Antigenic Index	96-106
665.	44-1	Antigenic Index	110-124
666.	44-1	Hydrophilicity	22-34
667.	44-1	Hydrophilicity	40-46
668.	44-1	Hydrophilicity	64-69
669.	44-1	Hydrophilicity	73-80
670.	44-1	Hydrophilicity	84-89
671.	44-1	Hydrophilicity	97-106
672.	44-1	Hydrophilicity	120-124
673.	44a	АМРНІ	57-60
674.	44a	AMPHI	76-79
675.	44a	Antigenic Index	23-34
676.	44a	Antigenic Index	38-46
677.	44a	Antigenic Index	50-55
678.	44a	Antigenic Index	64-70
679.	44a	Antigenic Index	72-80
680.	44a	Antigenic Index	83-89
681.	44a	Antigenic Index	96-106
682.	44a	Antigenic Index	110-124
683.	44a	Hydrophilicity	28-34
	<u> </u>	1 - 7	

684.	44a	Hydrophilicity	40-46
685.	44a	Hydrophilicity	64-69
686.	44a	Hydrophilicity	73-80
687.	44a	Hydrophilicity	84-89
688.	44a	Hydrophilicity	97-106
689.	44a	Hydrophilicity	120-124
690.	49-1	АМРНІ	16-21
691.	49-1	АМРНІ	44-48
692.	49-1	AMPHI ,	56-61
693.	49-1	АМРНІ	92-97
694.	49-1	АМРНІ	118-127
695.	. 49-1	АМРНІ	130-149
696.	49-1	AMPHI	156-178
697.	49-1	АМРНІ	235-240
698.	49-1	АМРНІ	253-264
699.	49-1	АМРНІ	268-271
700.	49-1	AMPHI	278-285
701.	49-1	АМРНІ	287-292
702.	49-1	АМРНІ	298-300
703.	49-1	АМРНІ	328-337
704.	49-1	AMPHI	343-350
705.	49-1	АМРНІ	355-365
706.	49-1	АМРНІ	378-389
707.	49-1	АМРНІ	422-424
708.	49-1	AMPHI	442-450
709.	49-1	АМРНІ	464-481
710.	49-1	AMPHI	486-496
711.	49-1	AMPHI	514-521
712.	49-1	АМРНІ	548-551
713.	49-1	AMPHI	553-557
714.	49-1	АМРНІ	562-568
715.	49-1	AMPHI	573-575
716.	49-1	АМРНІ	588-590
717.	49-1	АМРН1	603-605
718.	49-1	АМРНІ	614-618
719.	49-1	Antigenic Index	15-21
720.	49-1	Antigenic Index	26-43
721.	49-1	Antigenic Index	50-59
722.	49-1	Antigenic Index	61-75
723.	49-1	Antigenic Index	79-87

724.	49-1	Antigenic Index	98-108
725.	49-1	Antigenic Index	110-120
726.	49-1	Antigenic Index	122-139
727.	49-1	Antigenic Index	147-164
728.	49-1	Antigenic Index	171-179
729.	49-1	Antigenic Index	185-197
730.	49-1	Antigenic Index	214-216
731.	49-1	Antigenic Index	229-231
732.	49-1	Antigenic Index	248-266
733.	49-1	Antigenic Index	278-283
734.	49-1	Antigenic Index	289-295
735.	49-1	Antigenic Index	316-326
736.	49-1	Antigenic Index	337-349
737.	49-1	Antigenic Index	368-378
738.	49-1	Antigenic Index	386-388
739.	49-1 .	Antigenic Index	390-410
740.	49-1	Antigenic Index	412-414
741.	49-1	Antigenic Index	423-429
742.	49-1	Antigenic Index	438-454
743.	49-1	Antigenic Index	462-475
744.	49-1	Antigenic Index	482-500
745.	49-1	Antigenic Index	503-509
746.	49-1	Antigenic Index	521-528
747.	49-1	Antigenic Index	540-562
748.	49-1	Antigenic Index	572-579
749.	49-1	Antigenic Index	590-606
750.	49-1	Antigenic Index	610-612
751.	49-1	Antigenic Index	617-619
752	49-1	Antigenic Index	626-634
753.	49-1	Antigenic Index	637-640
754.	49-1	Hydrophilicity	18-21
755.	49-1	Hydrophilicity	26-29
756.	49-1	Hydrophilicity	31-43
757.	49-1	Hydrophilicity	51-57
758.	49-1	Hydrophilicity	64-68
759.	49-1	Hydrophilicity	79-87
760.	49-1	Hydrophilicity	98-107
761.	49-1	Hydrophilicity	122-125
762.	49-1	Hydrophilicity	147-164
763.	49-1	Hydrophilicity	172-175

764.	49-1	Hydrophilicity	187-197
765.	49-1	Hydrophilicity	229-231
766.	49-1	Hydrophilicity	256-262
767.	49-1	Hydrophilicity	264-266
768.	49-1	Hydrophilicity	278-283
769.	49-1	Hydrophilicity	290-292
770.	49-1	Hydrophilicity	319-326
771.	49-1	Hydrophilicity	337-349
772.	49-1	Hydrophilicity	368-376
773.	49-1	Hydrophilicity	386-388
774.	49-1	Hydrophilicity	390-410
775.	49-1	Hydrophilicity	412-414
776.	49-1	Hydrophilicity	423-429
777.	49-1	Hydrophilicity	441-451
778.	49-1	Hydrophilicity	466-472
779.	49-1	Hydrophilicity	484-490
780.	49-1	Hydrophilicity	492-494
781.	49-1	Hydrophilicity	496-498
782.	49-1	Hydrophilicity	522-528
783.	49-1	Hydrophilicity	543-562
784.	49-1	Hydrophilicity	591-606
785.	49-1	Hydrophilicity	617-619
786.	49-1	Hydrophilicity	626-632
787.	49-1	Hydrophilicity	637-640
788.	49a	АМРНІ	55-61
789.	49a	АМРНІ	92-97
790.	49a	АМРНІ	118-127
791.	49a	АМРНІ	129-135
792.	49a	АМРНІ	137-145
793.	49a	АМРНІ	156-178
794.	49a	AMPHI .	198-200
795.	49a	АМРНІ	235-240
796.	49a	AMPHI	252-264
797.	49a	AMPHI	277-285
798.	49a	AMPHI .	287-292
799.	49a	АМРНІ	298-300
800.	49a	AMPHI	321-326
801.	49a	АМРНІ	328-337
802.	49a	АМРНІ	343-350
803.	49a	AMPHI	355-365

804.	·49a	АМРНІ	378-389
805.	49a	АМРНІ	392-397
806.	49a	АМРНІ	415-424
807.	49a	АМРНІ	453-456
808.	49a	АМРНІ	471-480
809.	49a	АМРНІ	486-504
810.	49a	АМРНІ	514-519
811.	49a	АМРНІ .	527-534
812.	49a	АМРНІ	551-554
813.	49a	АМРНІ	561-568
814.	49a	АМРНІ	600-605
815.	49a	АМРНІ	612-616
816.	49a	АМРНІ	628-633
817.	49a	АМРНІ	636-641
818.	49a	АМРНІ	654-660
819.	49a	АМРНІ	669-691
820.	49a	АМРНІ	706-721
821.	49a	АМРНІ	735-739
822.	49a	АМРНІ	744-760
823.	49a	Antigenic Index	4-23
824.	49a	Antigenic Index	27-43
825.	49a	Antigenic Index	51-62
826.	49a	Antigenic Index	64-68
827.	49a	Antigenic Index	72-75
828.	49a	Antigenic Index	79-87
829.	49a	Antigenic Index	98-108
830.	49a	Antigenic Index	110-120
831.	49a	Antigenic Index	124-139
832.	49a	Antigenic Index	147-164
833.	49a	Antigenic Index	176-179
834.	49a	Antigenic Index	185-197
835.	49a	Antigenic Index	214-216
836.	49a	Antigenic Index	229-231
837.	49a	Antigenic Index	248-267
838.	49a	Antigenic Index	278-283
839.	49a	Antigenic Index	289-295
840.	49a	Antigenic Index	305-308
841.	49a	Antigenic Index	316-326
842.	49a	Antigenic Index	337-349
843.	49a	Antigenic Index	368-378
			

844.	49a	Antigenic Index	386-388
845.	49a	Antigenic Index	391-407
846.	49a	Antigenic Index	423-429
847.	49a	Antigenic Index	436-455
848.	49a	Antigenic Index	459-484
849.	49a	Antigenic Index	492-517
850.	49a	Antigenic Index	521-528
851.	49a	Antigenic Index	532-539
852.	49a	Antigenic Index	555-564
853.	49a	Antigenic Index	567-572
854.	49a	Antigenic Index	578-582
855.	49a	Antigenic Index	588-607
856.	49a	Antigenic Index	610-612
857.	49a	Antigenic Index	617-637
858.	49a	Antigenic Index	641-660
859.	49a	Antigenic Index	662-664
860.	49a	Antigenic Index	667-684
861.	49a	Antigenic Index	689-700
862.	49a	Antigenic Index	706-732
863.	49a	Antigenic Index	737-744
864.	49a	Antigenic Index	748-761
865.	49a	Hydrophilicity	4-23
866.	49a	Hydrophilicity	31-43
867.	49a	Hydrophilicity	51-53
868.	49a	Hydrophilicity	55-57
869.	49a	Hydrophilicity	64-68
870.	49a	Hydrophilicity	79-87
871.	49a .	Hydrophilicity	98-106
872.	49a	Hydrophilicity	114-120
873.	49a	Hydrophilicity	130-139
874.	49a	Hydrophilicity	147-164
875.	49a	Hydrophilicity	187-197
876.	49a	Hydrophilicity	229-231
877.	49a	Hydrophilicity	249-262
878.	49a	Hydrophilicity	264-266
879.	49a	Hydrophilicity	278-283
880.	49a	Hydrophilicity	290-292
881.	.49a	Hydrophilicity	319-326
882.	49a	Hydrophilicity	337-349
883.	49a	Hydrophilicity	368-376
		1 7	

884.	49a	Hydrophilicity	386-388
885.	49a	Hydrophilicity	391-407
886.	49a	Hydrophilicity	427-429
887.	49a	Hydrophilicity	436-439
888.	49a	Hydrophilicity	441-455
889.	49a	Hydrophilicity	459-463
890.	49a	Hydrophilicity	465-484
891.	49a	Hydrophilicity	492-513
892.	49a	Hydrophilicity	521-528
893.	49a	Hydrophilicity	559-564
894.	49a	Hydrophilicity	567-569
895.	49a	Hydrophilicity	589-591
896.	49a	Hydrophilicity	601-604
897.	49a	Hydrophilicity	620-624
898.	49a	Hydrophilicity	626-637
899.	49a	Hydrophilicity	641-660
900.	49a	Hydrophilicity	662-664
901.	49a	Hydrophilicity	668-684
902.	49a	Hydrophilicity	693-700
903.	49a	Hydrophilicity	710-732
904.	49a	Hydrophilicity	737-740
905.	49a	Hydrophilicity	759-761
906.	51-1	АМРНІ	15-21
907.	51-1	АМРНІ	40-54
908.	51-1	AMPHI	75-86
909.	51-1	АМРНІ	108-110
910.	51-1	АМРНІ	112-124
911.	51-1	АМРНІ	141-148
912.	51-1	AMPHI	184-189
913.	51-1	АМРНІ	211-216
914.	51-1	Antigenic Index	58-65
915.	51-1	Antigenic Index	123-127
916.	51-1	Antigenic Index	132-137
917.	51-1	Antigenic Index	149-153
918.	51-1	Antigenic Index	165-177
919.	51-1	Antigenic Index	198-204
920.	51-1	Antigenic Index	222-231
921.	51-1	Hydrophilicity	60-65
922.	51-1	Hydrophilicity	123-127
923.	51-1	Hydrophilicity	132-135

924.	51-1	Hydrophilicity	165-174
925.	51-1	Hydrophilicity	200-203
926.	51-1	Hydrophilicity	222-227
927.	5la	АМРНІ	15-21
928.	51a	АМРНІ	40-54
929.	5la	AMPHI	75-86
930.	51a	AMPHI	108-110
931.	51a	AMPHI	112-124
932.	51a	AMPHI	141-148
933.	51a	AMPHI	184-189
934.	51a	AMPHI	211-216
935.	51a	Hydrophilicity	60-65
936.	51a	Hydrophilicity -	123-127
937.	51a	Hydrophilicity	132-135
938.	51a	Hydrophilicity	165-174
939.	51a	Hydrophilicity	200-203
940.	51a	Hydrophilicity	222-227
941.	52-1	АМРНІ	48-50
942.	52-1	АМРНІ	64-73
943.	52-1	Antigenic Index	19-26
944.	52-1	Antigenic Index	30-35
945.	52-1	Antigenic Index	42-52
946.	52-1	Antigenic Index	57-86
947.	52-1	Hydrophilicity	22-26
948.	52-1	Hydrophilicity	30-35
949.	52-1	Hydrophilicity	42-52
950.	52-1	Hydrophilicity	57-71
951.	52-1	Hydrophilicity	78-86
952.	69-1	AMPHI	25-27
953.	69-1	AMPHI	46-66
954.	69-1	Antigenic Index	32-41
955.	69-1	Antigenic Index	43-45
956.	69-1	Antigenic Index	71-78
957.	69-1	Hydrophilicity	32-38
958. ·	69-1	Hydrophilicity	71-78
959.	69a	AMPHI	25-27
960.	69a	AMPHI	46-66
961.	69a	Antigenic Index	32-41
962.	69a	Antigenic Index	43-46
963.	69a	Antigenic Index	71-78
L			

964.	69a	Hydrophilicity	32-38
965.	69a	Hydrophilicity	71-78
966.	77-1	AMPHI	12-16
967.	77-1	AMPHI	23-33
968.	77-1	АМРНІ	35-42
969.	77-1	AMPHI	51-57
970.	77-1	АМРНІ	67-70
971.	77-1	AMPHI	73-79
972.	77-1	AMPHI	122-124
973.	77-1	AMPHI	130-134
974.	77-1	AMPHI	165-178
975.	77-1	AMPHI	191-211
976.	77-1	Antigenic Index	22-31
977.	77-1	Antigenic Index	34-44
978.	77-1	Antigenic Index	80-94
979.	77-1	Antigenic Index	101-104
980.	77-1	Antigenic Index	155-158
981.	77-1	Antigenic Index	167-181
982.	77-1	Hydrophilicity	22-28
983.	77-1	Hydrophilicity	38-44
984.	77-1	Hydrophilicity	80-92
985.	77-1	Hydrophilicity	171-178
986.	77a	AMPHI	8-15
987.	77a	АМРНІ	24-30
988.	77a	АМРНІ	40-43
989.	77a	AMPHI	46-52
990.	77a	АМРНІ	95-97
991.	77a	AMPHI	103-107
992.	77a	AMPHI	114-125
993.	77a	AMPHI	144-151
994.	77a	АМРНІ	154-156
995.	77a	AMPHI .	166-184
996.	77a	Antigenic Index	7-17
997.	77a	Antigenic Index	53-67
998.	77a	Antigenic Index	74-77
999.	77a	Antigenic Index	128-131
1000.	77a	Antigenic Index	140-154
1001.	77a	Hydrophilicity	11-17
1002.	77a	Hydrophilicity	53-65
1003.	77a	Hydrophilicity	141-151

1004.	81-1	АМРНІ	30-40
1005.	81-1	AMPHI	54-56
1006.	81-1	AMPHI	60-63
1007.	81-1	АМРНІ	76-93
1008.	81-1	AMPH1	96-101
1009.	81-1	АМРНІ	104-406
1010.	81-1	AMPHI	118-126
1011.	81-1	AMPHI	190-205
1012.	81-1	АМРНІ	230-233
1013.	81-1	АМРНІ	239-242
1014.	81-1	АМРНІ	256-258
1015.	81-1	АМРНІ	264-284
1016.	81-1	АМРНІ	290-297
1017.	81-1	AMPHI	317-326
1018.	81-1	АМРНІ	388-396
1019.	81-1	АМРНІ	403-414
1020.	81-1	AMPHI	458-463
1021.	81-1	AMPH1	476-480
1022.	81-1	Antigenic Index	1-4
1023.	81-1	Antigenic Index	35-38
1024.	81-1	Antigenic Index	86-89
1025.	81-1	Antigenic Index	95-98
1026.	81-1	Antigenic Index	100-103
1027.	81-1	Antigenic Index	128-136
1028.	81-1	Antigenic Index	154-174
1029.	81-1	Antigenic Index	197-211
1030.	81-1	Antigenic Index	220-226
1031.	81-1	Antigenic Index	232-240
1032.	81-1	Antigenic Index	244-249
1033.	81-1	Antigenic Index	251-253
1034.	81-1	Antigenic Index	255-258
1035.	81-1	Antigenic Index	276-290
1036.	81-1	Antigenic Index	292-301
1037.	81-1	Antigenic Index	307-312
1038.	81-1	Antigenic Index	318-323
1039.	81-1	Antigenic Index	334-345
1040.	81-1	Antigenic Index	352-358
1041.	81-1	Antigenic Index	364-372
1042.	81-1	Antigenic Index	376-384
1043.	81-1	Antigenic Index	387-401
L		I	<u> </u>

1044.	81-1	Antigenic Index	409-417
1045.	81-1	Antigenic Index	423-444
1046.	81-1	Antigenic Index	452-459
1047.	81-1	Antigenic Index	486-488
1048.	81-1	Antigenic Index	490-499
1049.	81-1	Antigenic Index	507-520
1050.	81-1	Hydrophilicity	1-4
1051.	81-1	Hydrophilicity	35-38
1052.	81-1	Hydrophilicity	95-98
1053.	81-1	Hydrophilicity	128-136
1054.	81-1	Hydrophilicity	154-164
1055.	81-1	Hydrophilicity	166-172
1056.	81-1	Hydrophilicity	202-209
1057.	81-1	Hydrophilicity	220-226
1058.	81-1	Hydrophilicity	234-238
1059.	81-1	Hydrophilicity	245-249
1060.	81-1	Hydrophilicity	251-253
1061.	81-1	Hydrophilicity	284-287
1062.	81-1	Hydrophilicity	292-299
1063.	81-1	Hydrophilicity	307-312
1064.	81-1	Hydrophilicity	321-323
1065.	81-1	Hydrophilicity	338-345
1066.	81-1	Hydrophilicity	366-368
1067.	81-1	Hydrophilicity	378-384
1068.	81-1	Hydrophilicity	387-401
1069.	81-1	Hydrophilicity	409-415
1070.	81-1	Hydrophilicity	453-459
1071.	81-1	Hydrophilicity	493-499
1072.	81-1	Hydrophilicity	507-509
1073.	81-1	Hydrophilicity	512-518
1074.	82a	АМРНІ	36-40
1075.	82a	АМРНІ	95-111
1076.	82a	АМРНІ	117-132
1077.	82a	AMPHI	135-137
1078.	82a	АМРНІ	160-174
1079.	82a	АМРНІ	183-187
1080.	82a	Antigenic Index	2-8
1081.	82a	Antigenic Index	56-60
1082.	82a	Antigenic Index	90-97
1083.	82a	Antigenic Index	104-111

_			
1084.	82a	Antigenic Index	114-137
1085.	82a	Antigenic Index	141-151
1086.	82a	Antigenic Index	170-175
1087.	82a	Antigenic Index	180-188
1088.	82a	Antigenic Index	194-201
1089.	82a	Antigenic Index	206-209
1090.	82a	Antigenic Index	216-218
1091.	82a	Hydrophilicity	2-8
1092.	82a	Hydrophilicity	56-60
1093.	82a	Hydrophilicity	90-97
1094.	82a	Hydrophilicity	105-108
1095.	82a	Hydrophilicity	120-128
1096.	82a	Hydrophilicity	130-134
1097.	82a	Hydrophilicity	141-151
1098.	82a	Hydrophilicity	170-175
1099.	82a	Hydrophilicity	186-188
1100.	82a	Hydrophilicity	195-201
1101.	82a	Hydrophilicity	206-209
1102.	112-1	AMPHI	6-8
1103.	112-1	AMPHI	12-34
1104.	112-1	AMPHI	45-53
1105.	112-1	AMPHI	63-65
1106.	112-1	AMPHI	70-82
1107.	112-1	AMPHI	84-86
1108.	112-1	AMPHI	107-109
1109.	112-1	AMPHI	116-123
1110.	112-1	АМРНІ	183-186
1111.	112-1	AMPHI .	244-246
1112.	112-1	АМРНІ	248-258
1113.	112-1	AMPHI	280-282
1114.	112-1	AMPHI	302-313
1115.	112-1	Antigenic Index	35-44
1116.	112-1	Antigenic Index	57-61
1117.	112-1	Antigenic Index	81-84
1118.	112-1	Antigenic Index	91-98
1119.	112-1	Antigenic Index	125-133
1120.	112-1	Antigenic Index	140-147
1121.	112-1	Antigenic Index	149-159
1122.	112-1	Antigenic Index	161-165
1123.	112-1	Antigenic Index	174-190

Son Ed H
OFF
Algorithm

•	See to he	OFF	-76-	0 . 0 . 1
			Algorithm	Amino Aeids
	1124.	112-1	Antigenic Index	192-200
	1125.	112-1	Antigenic Index	202-216
۲	1126.*	112-1	Antigenic Index	218-224
	1127.	112-1	Antigenic Index	228-232
	1128.	112-1	Antigenic Index	239-244
	1129.	112-1	Antigenic Index	255-263
	1130.	112-1	Antigenic Index	290-300
	1131.	112-1	Hydrophilicity	38-40
	1132.	112-1	Hydrophilicity	57-61
	1133.	112-1	Hydrophilicity	92-98
	1134.	112-1	Hydrophilicity	125-133
	1135.	112-1	Hydrophilicity	141-143
	1136.	112-1	Hydrophilicity	150-159
Ì	1137.	112-1	Hydrophilicity	161-164
	1138.	112-1	Hydrophilicity	175-190
	1139.	112-1	Hydrophilicity	203-216
	1140.	112-1	Hydrophilicity	218-224
	1141.	112-1	Hydrophilicity	228-232
	1142.	112-1	Hydrophilicity	239-244
	1143.	112-1	Hydrophilicity	259-261
	1144.	112-1	Hydrophilicity	293-297
	1145.	112a	АМРНІ	6-8
	1146.	112a	АМРНІ	12-34
	1147.	112a	АМРНІ	47-54
	1148.	112a	АМРНІ	63-65
	1149.	112a	АМРНІ	69-72
	1150.	112a	АМРНІ	84-86
	1151.	112a	АМРНІ	89-91
1	1152.	1-12a	AMPHI	107-109
	1153.	112a	АМРНІ	116-123
	1154.	112a	АМРНІ	183-186
L	1155.	112a	АМРНІ	244-246 ·
	1156.	112a	АМРНІ	248-258
	1157.	112a · ·	АМРНІ	280-282
	1158.	1 12a	AMPHI	302-310
	1159.	1 12a	AMPHI	321-336
	1160.	112a	Antigenic Index	35-44
	1161.	112a	Antigenic Index	57-61
	1162.	1 12a	Antigenic Index	81-84
ſ	1163.	1 12a	Antigenic Index	91-98

1164.	112a	Antigenic Index	125-133
1165.	112a	Antigenic Index	140-147
1166.	112a	Antigenic Index	150-158
1167.	112a	Antigenic Index	161-164
1168.	112a	Antigenic Index	174-190
1169.	112a	Antigenic Index	194-200
1170.	112a	Antigenic Index	202-216
1171.	112a	Antigenic Index	218-220
1172.	112a	Antigenic Index	222-224
1173.	112a	Antigenic Index	228-232
1174.	112a	Antigenic Index	239-244
1175.	112a	Antigenic Index	256-263
1176.	112a	Antigenic Index	290-301
1177.	112a	Antigenic Index	351-356
1178.	112a	Hydrophilicity	38-40
1179.	112a	Hydrophilicity	57-61
1180.	112a	Hydrophilicity	93-98
1181.	112a	Hydrophilicity	125-133
1182.	112a	Hydrophilicity	141-143
1183.	112a	Hydrophilicity	150-155
1184.	112a	Hydrophilicity	161-164
1185.	112a	Hydrophilicity	175-190
1186.	112a	Hydrophilicity	203-216
1187.	112a	Hydrophilicity	218-220
1188.	112a	Hydrophilicity	222-224
1189.	112a	Hydrophilicity	228-232
1190.	112a	Hydrophilicity	239-244
1191.	112a	Hydrophilicity	259-261
1192.	112a	Hydrophilicity	293-297
1193.	112a	Hydrophilicity	351-356.
1194.	114-1	АМРНІ	45-54
1195.	114-1	AMPHI	154-160
1196.	114-1	AMPHI	182-190
1197.	114-1	AMPHI	224-226
1198.	114-1	AMPHI	229-233
1199.	114-1	AMPHI	285-287
1200.	114-1	AMPHI	303-310
1201.	114-1	АМРНІ	321-332
1202.	114-1	АМРНІ	392-398
1203.	114-1	AMPHI	413-416
			<u></u>

		•	
1204.	114-1	AMPHI	450-452
1205.	114-1	AMPHI	477-487
1206.	114-1	АМРНІ	506-509
1207.	114-1	АМРНІ	525-529
1208.	114-1	АМРНІ	565-567
1209.	114-1	AMPHI	614-621
1210.	114-1	АМРНІ	631-635
1211.	114-1	AMPHI	770-774
1212.	114-1	АМРНІ	810-813
1213.	114-1	АМРНІ	847-849
1214.	114-1	AMPHI	851-853
1215.	114-1	АМРНІ	875-879
1216.	114-1	АМРНІ	951-956
1217.	114-1	АМРНІ	975-980
1218.	114-1	АМРНІ	1034-1036
1219.	114-1	AMPHI	1048-1051
1220.	114-1	AMPHI	1073-1081
1221.	114-1	AMPHI	1086-1090
1222.	114-1	AMPHI	1095-1102
1223.	114-1 .	АМРНІ	1111-1115
1224.	114-1	АМРНІ	1163-1167
1225.	114-1	AMPHI	1242-1245
1226.	114-1	АМРНІ	1275-1281
1227.	114-1	АМРНІ	1312-1317
1228.	114-1	АМРНІ	1338-1347
1229.	114-1	AMPHI	1349-1355
1230.	114-1	AMPHI	1357-1360
1231.	114-1	AMPHI	1362-1365
1232.	114-1	АМРНІ	1376-1398
1233.	114-1	AMPHI	1418-1421
1234.	114-1	AMPHI	1425-1429
1235.	114-1	AMPHI	1468-1473
1236.	114-1	АМРНІ	1476-1485
1237.	114-1	АМРНІ	. 1495-1515
1238.	114-1	АМРНІ	1518-1526
1239.	114-1	АМРНІ	1546-1555
1240.	114-1	AMPHI	1557-1559
1241.	114-1	АМРНЈ	1580-1583
1242.	114-1	АМРНІ	1585-1597
1243.	114-1	AMPHI	1604-1606

1244.	114-1	AMPHI	1613-1624
1245.	114-1	АМРНІ	1626-1630
1246.	114-1	АМРНІ	1638-1644
1247.	114-1	АМРНІ	1655-1660
1248.	114-1	АМРНІ	1662-1664
1249.	114-1	АМРНІ	1672-1674
1250.	114-1	АМРНІ	1677-1679
1251.	114-1	АМРНІ	1691-1694
1252.	114-1	AMPHI	1713-1716
1253.	114-1	АМРНІ	1719-1729
1254.	114-1	АМРНІ	1735-1738
1255.	114-1	АМРНІ	1753-1757
1256.	114-1	AMPHI	1772-1778
1257.	114-1	АМРНІ	1790-1792
1258.	114-1	AMPHI .	1817-1826
1259.	114-1	AMPHI	1828-1832
1260.	114-1	AMPHI	1840-1851
1261.	114-1	АМРНІ .	1854-1856
1262.	114-1	АМРНІ	1871-1881
1263.	114-1	АМРНІ	1883-1896
1264.	114-1	АМРНІ	1922-1927
1265.	114-1	АМРНІ	1934-1946
1266.	114-1	АМРНІ	1950-1955
1267.	114-1	АМРНІ	1957-1964
1268.	114-1	Antigenic Index	1-6
1269.	114-1	Antigenic Index	10-16
1270.	114-1	Antigenic Index	23-37
1271.	114-1	Antigenic Index	41-55
1272.	114-1	Antigenic Index	75-85
1273.	114-1	Antigenic Index	91-97
1274.	114-1	Antigenic Index	102-140
1275.	114-1	Antigenic Index	147-156
1276.	114-1	Antigenic Index	161-168
1277.	114-1	Antigenic Index	172-174
1278.	114-1	Antigenic Index	181-189
1279.	114-1	Antigenic Index	196-203
1280.	114-1	Antigenic Index	208-213
1281.	114-1	Antigenic Index	220-229
1282.	114-1	Antigenic Index	242-248
1283.	114-1	Antigenic Index	251-266

1284.	114-1	Antigenic Index	268-276
1285.	114-1	Antigenic Index	295-307
1286.	114-1	Antigenic Index	309-312
1287.	114-1	Antigenic Index	318-340
1288.	114-1	Antigenic Index	345-351
1289.	114-1	Antigenic Index	357-366
1290.	114-1	Antigenic Index	371-381
1291.	114-1	Antigenic Index	385-392
1292.	114-1	Antigenic Index	404-417
1293.	114-1	Antigenic Index	419-432
1294.	114-1	Antigenic Index	440-456
1295.	114-1	Antigenic Index	464-468
1296.	114-1	Antigenic Index	473-480
1297.	114-1	Antigenic Index	482-488
1298.	114-1	Antigenic Index	496-511
1299.	114-1	Antigenic Index	515-530
1300. ·	114-1	Antigenic Index	535-549
1301.	114-1	Antigenic Index	555-560
1302.	114-1	Antigenic Index	564-582
1303.	114-1	Antigenic Index	588-596
1304.	114-1	Antigenic Index	602-615
1305.	114-1	Antigenic Index	617-620
1306.	. 114-1	Antigenic Index	622-624
1307.	114-1	Antigenic Index	628-632
1308.	114-1	Antigenic Index	637-640
1309.	114-1	Antigenic Index	647-654
1310.	114-1	Antigenic Index	660-666
1311.	114-1	Antigenic Index	668-688
1312.	114-1	Antigenic Index	696-725
1313.	114-1	Antigenic Index	730-733
1314.	114-1	Antigenic Index	738-755
1315.	114-1	Antigenic Index	760-766
1316.	114-1	Antigenic Index	779-783
1317.	114-1	Antigenic Index	786-799
1318.	114-1	Antigenic Index	807-809
1319.	114-1	Antigenic Index	811-819
1320.	114-1	Antigenic Index	831-839
1321.	114-1 .	Antigenic Index	845-857
1322.	114-1	Antigenic Index	860-862
1323.	114-1	Antigenic Index	864-868

1324.	114-1	Antigenic Index	872-879
1325.	114-1	Antigenic Index	883-891
1326.	114-1	Antigenic Index	893-903
1327.	114-1	Antigenic Index	908-916
1328.	114-1	Antigenic Index	919-936
1329.	114-1	Antigenic Index	941-947
1330.	114-1	Antigenic Index	950-956
1331.	114-1	Antigenic Index	959-976
1332.	114-1	Antigenic Index	979-991
1333.	114-1	Antigenic Index	993-1000
1334.	114-1	Antigenic Index	1007-1022
1335.	114-1	Antigenic Index	1041-1053
1336.	114-1	Antigenic Index	1062-1068
1337.	114-1	Antigenic Index	1075-1108
1338.	114-1	Antigenic Index	1115-1121
1339.	114-1	Antigenic Index	1126-1145
1340.	114-1	Antigenic Index	1148-1152
1341.	114-1	Antigenic Index	1156-1178
1342.	114-1	Antigenic Index	. 1195-1206
1343.	114-1	Antigenic Index	1208-1212
1344.	114-1	Antigenic Index	1217-1243
1345.	114-1	Antigenic Index	1246-1263
1346.	114-1	Antigenic Index	1271-1282
1347.	114-1	Antigenic Index	1284-1288
1348.	114-1	Antigenic Index	1292-1295
1349.	114-1	Antigenic Index	1299-1307
1350.	114-1	Antigenic Index	1318-1328
1351.	114-1	Antigenic Index	1330-1340
1352.	114-1	Antigenic Index	1344-1359
1353.	114-1	Antigenic Index	1367-1384
1354.	114-1	Antigenic Index	1395-1399
1355.	114-1	Antigenic Index	1405-1417
1356.	114-1	Antigenic Index	1445-1449
1357.	114-1	Antigenic Index	1491-1510
1358.	114-1	Antigenic Index	1526-1529
1359.	114-1	Antigenic Index	1532-1548
1360.	114-1	Antigenic Index	1552-1556
1361.	114-1	Antigenic Index	1560-1562
1362.	114-1	Antigenic Index	1573-1583
1363.	114-1	Antigenic Index	1594-1611

1364.	114-1	Antigenic Index	1627-1635
1365.	114-1	Antigenic Index	1643-1645
1366.	114-1	Antigenic Index	1647-1665
1367.	114-1	Antigenic Index	1680-1686
1368.	114-1	Antigenic Index	1700-1722
1369.	114-1	Antigenic Index	1700-1722
1370.	114-1	Antigenic Index	1739-1746
1370.	114-1	Antigenic Index Antigenic Index	1752-1757
1371.	114-1	Antigenic Index Antigenic Index	
1372.	114-1		1780-1783
	114-1	Antigenic Index	1791-1795
1374.		Antigenic Index	1804-1808
1375.	114-1	Antigenic Index	1829-1835
1376.	114-1	Antigenic Index	1841-1859
1377.	114-1	Antigenic Index	1867-1886
1378.	114-1	Antigenic Index	1897-1903
1379.	114-1	Antigenic Index	1908-1912
1380.	114-1	Antigenic Index	1917-1922
1381.	114-1	Antigenic Index	1926-1934
1382.	114-1	Antigenic Index	1938-1945
1383.	114-1	Antigenic Index	1947-1957
1384.	114-1	Antigenic Index	1961-1968
1385.	114-1	Antigenic Index	1974-1978
1386.	114-1	Hydrophilicity	4-6
1387.	114-1	Hydrophilicity	12-15
1388.	114-1	Hydrophilicity	23-34
1389.	114-1	Hydrophilicity	43-55
1390.	114-1	Hydrophilicity	76-85
1391.	114-1	Hydrophilicity	104-110
1392.	114-1	Hydrophilicity	118-123
1393.	114-1	Hydrophilicity	127-132
1394.	114-1	Hydrophilicity	147-154
1395.	114-1	Hydrophilicity	163-167
1396.	114-1	Hydrophilicity	185-187
1397.	114-1	Hydrophilicity	197-203
1398.	. 114-1	Hydrophilicity	208-211
1399.	114-1	Hydrophilicity	221-227
1400.	114-1	Hydrophilicity	243-245
1401.	114-1	Hydrophilicity	253-261
1402.	114-1	Hydrophilicity	263-266
1403.	114-1	Hydrophilicity	270-272

1404.	114-1	Hydrophilicity	295-301
1405.	114-1	Hydrophilicity	309-312
1406.	114-1	Hydrophilicity	320-328
1407.	114-1	Hydrophilicity	332-337
1408.	114-1	Hydrophilicity	345-351
1409.	114-1	Hydrophilicity	360-366
1410.	114-1	Hydrophilicity	371-378
1411.	114-1	Hydrophilicity	387-392
1412.	114-1	Hydrophilicity	404-415
1413.	114-1	Hydrophilicity	419-432
1414.	114-1	Hydrophilicity	441-450
1415.	114-1	Hydrophilicity	452-456
1416.	114-1	Hydrophilicity	473-480
1417.	114-1	Hydrophilicity	482-485
1418.	114-1	Hydrophilicity	496-500
1419.	114-1	Hydrophilicity	504-509
1420.	114-1	Hydrophilicity	515-520
1421.	114-1	Hydrophilicity	536-549
1422.	114-1	Hydrophilicity	555-560
1423.	114-1	Hydrophilicity	565-568
1424.	114-1	Hydrophilicity	570-579
1425.	114-1	Hydrophilicity	589-594
1426.	114-1	Hydrophilicity	602-604
1427.	114-1	Hydrophilicity	609-615
1428.	114-1	Hydrophilicity	617-620
1429.	114-1	Hydrophilicity	660-666
1430.	114-1	Hydrophilicity	668-680
1431.	114-1	Hydrophilicity	684-686
1432.	114-1	Hydrophilicity	699-708
1433.	114-1	Hydrophilicity	715-725
1434.	114-1	Hydrophilicity	730-733
1435.	114-1	Hydrophilicity	738-744
1436.	114-1	Hydrophilicity	746-754
1437.	114-1	Hydrophilicity	760-766
1438.	114-1	Hydrophilicity	789-793
1439.	114-1	Hydrophilicity	816-818
1440.	114-1	Hydrophilicity.	831-836
1441.	114-1	Hydrophilicity	845-857
1442.	114-1	Hydrophilicity	860-862
1443.	114-1	Hydrophilicity	864-866

1444.	114-1	Hydrophilicity	873-879
1445.	114-1	Hydrophilicity	883-885
1446.	114-1	Hydrophilicity	887-889
1447.	114-1	Hydrophilicity	896-899
1448.	114-1	Hydrophilicity	908-916
1449.	114-1	Hydrophilicity	919-932
1450.	114-1	Hydrophilicity	941-947
1451.	114-1	Hydrophilicity	962-975
1452.	114-1	Hydrophilicity	979-989
1453.	114-1	Hydrophilicity	993-1000
1454.	114-1	Hydrophilicity	1007-1022
1455.	114-1	Hydrophilicity	1041-1043
1456.	114-1	Hydrophilicity	1045-1053
1457.	114-1	Hydrophilicity	1062-1068
1458.	114-1	Hydrophilicity	1075-1078
1459.	114-1	Hydrophilicity	1080-1087
1460.	114-1	Hydrophilicity	1089-1104
1461.	114-1	Hydrophilicity	1115-1121
1462.	114-1	Hydrophilicity	1126-1141
1463.	114-1	Hydrophilicity	1143-1145
1464.	114-1	Hydrophilicity	1148-1151
1465.	114-1	Hydrophilicity	1157-1178
1466.	114-1	Hydrophilicity	1197-1203
1467.	114-1	Hydrophilicity	1217-1243
1468.	114-1	Hydrophilicity	1246-1263
1469.	114-1	Hydrophilicity	1271-1273
1470.	114-1	Hydrophilicity	1275-1277
1471.	114-1	Hydrophilicity	1284-1288
1472.	114-1	Hydrophilicity	1299-1307
1473.	114-1	Hydrophilicity	1318-1326
1474.	114-1	Hydrophilicity	1334-1340
1475.	114-1	Hydrophilicity	1350-1355
1476.	114-1	Hydrophilicity	1357-1359
1477.	114-1	Hydrophilicity	1367-1384
1478.	114-1	Hydrophilicity	1407-1417
1479.	114-1	Hydrophilicity	1491-1510
1480.	114-1	Hydrophilicity	1534-1540
1481.	. 114-1	Hydrophilicity	1576-1583
1482.	114-1	Hydrophilicity	1595-1607
1483.	114-1	Hydrophilicity	1629-1635

1484.	114-1	Hydrophilicity	1643-1645
1485.	114-1	Hydrophilicity	1649-1665
1486.	114-1	Hydrophilicity	1682-1686
1487.	114-1	Hydrophilicity	1704-1722
1488.	114-1	Hydrophilicity	1724-1726
1489.	114-1	Hydrophilicity	1740-1746
1490.	114-1	Hydrophilicity	1804-1806
1491.	114-1	Hydrophilicity	1829-1835
1492.	114-1	Hydrophilicity	1842-1855
1493.	114-1	Hydrophilicity	1876-1879
1494.	114-1	Hydrophilicity	1898-1900
1495.	114-1	Hydrophilicity	1910-1912
1496.	114-1	Hydrophilicity	1920-1922
1497.	114-1	Hydrophilicity	1928-1930
1498.	114-1	Hydrophilicity	1938-1940
1499.	114-1	Hydrophilicity	1948-1954
1500.	114-1	Hydrophilicity	1962-1967
1501.	114a	АМРНІ	45-54
1502.	114a	АМРНІ	154-160
1503.	114a	АМРНІ	182-190
1504.	114a	АМРНІ	224-226
1505.	114a	АМРНІ	229-233
1506.	114a	АМРНІ	285-287
1507.	114a	АМРНІ	303-310
1508.	114a	АМРНІ	321-332
1509.	l 14a	АМРНІ	348-350
1510.	114a	AMPHI	392-398
1511.	114a	АМРНІ	414-416
1512.	114a	AMPHI	478-486
1513.	114a	AMPHI	506-509
1514.	114a	AMPHI	525-529
1515.	114a	AMPHI	565-567
1516.	114a	АМРНІ	614-621
1517.	114a	AMPHI	631-635
1518.	114a	АМРНІ	770-774
1519.	114a	AMPHI	811-813
1520.	114a	АМРНІ	847-849
1521.	114a	AMPHI	851-853
1522.	· 114a	AMPHI	875-879
1523.	114a	AMPHI .	951-959
<u></u>	<u> </u>		

1524.	114a	АМРНІ	975-981
1525.	114a	AMPHI	1034-1036
1526.	114a	AMPHI	1048-1051
1527.	114a	AMPHI .	1073-1081
1528.	114a	АМРНІ	1086-1090
1529.	114a	АМРНІ	1095-1102
1530.	114a	- AMPHI	1111-1115
1531.	114a	АМРНІ	1163-1166
1532.	114a	АМРНІ	1275-1281
1533.	114a	АМРНІ	1312-1317
1534.	114a	AMPHI	1338-1347
1535.	114a	AMPHI	1349-1355
1536.	114a	AMPHI	1357-1365
1537.	114a	AMPHI	1376-1398
1538.	114a	AMPHI	1418-1420
1539.	114a	AMPHI	1455-1460
1540.	114a	АМРНІ	1472-1484
1541.	114a	AMPHI	1497-1505
1542.	114a	АМРНЈ	1507-1512
1543.	114a	Antigenic Index	1-6
1544.	114a	Antigenic Index	10-16
1545.	114a	Antigenic Index	23-37
1546.	114a	Antigenic Index	41-55
1547.	114a	Antigenic Index	75-85
1548.	114a	Antigenic Index	91-97
1549.	114a	Antigenic Index	102-137
1550.	114a	Antigenic Index	147-156
1551.	114a	Antigenic Index	161-168
1552.	114a	Antigenie Index	172-174
1553.	114a	Antigenic Index	181-189
1554.	114a	Antigenic Index	196-203
1555.	114a	Antigenic Index	208-213
1556.	114a	Antigenic Index	220-229
1557.	114a	Antigenic Index	242-248
1558.	114a	Antigenic Index	251-266
1559.	114a	Antigenic Index	268-276
1560.	114a	Antigenic Index	295-307
1561.	114a	Antigenic Index	309-312
1562.	114a	Antigenic Index	318-340
1563.	114a	Antigenic Index	345-352

1564.	114a	Antigenic Index	357-366
1565.	114a ·	Antigenic Index	371-381
1566.	114a	Antigenic Index	385-392
1567.	114a	Antigenic Index	404-427
1568.	114a	Antigenic Index	429-434
1569.	114a	Antigenic Index	440-456
1570.	114a	Antigenic Index	465-468
1571.	114a	Antigenic Index	473-494
1572.	114a	Antigenic Index	496-510
1573.	114a	Antigenic Index	515-530
1574.	114a	Antigenic Index	535-549
1575.	114a	Antigenic Index	555-560
1576.	114a	Antigenic Index	564-578
1577.	114a	Antigenic Index	588-596
1578.	114a	Antigenic Index	602-615
1579.	114a	Antigenic Index	617-620
1580.	114a	Antigenic Index	622-624
1581.	114a	Antigenic Index	628-632
1582.	114a	Antigenic Index	637-640
1583.	114a	Antigenic Index	647-654
1584.	114a	Antigenic Index	660-666
1585.	114a	Antigenic Index	668-688
1586.	114a	Antigenic Index	697-725
1587.	114a	Antigenic Index	730-733
1588.	114a	Antigenic Index	738-755
1589.	114a	Antigenic Index	760-766
1590.	114a	Antigenic Index	779-783
1591.	114a	Antigenic Index	786-799
1592.	114a	-Antigenic Index	806-809
1593.	114a	Antigenic Index	811-819
1594.	114a	Antigenic Index	831-839
1595.	114a	Antigenic Index	845-857
1596.	114a	Antigenic Index	860-862
1597.	114a	Antigenic Index	864-868
1598.	114a	Antigenic Index	872-879
1599.	114a	Antigenic Index	883-891
1600.	114a	Antigenic Index	893-902
1601.	114a	Antigenic Index	908-916
1602.	114a	Antigenic Index	923-936
1603.	114a	Antigenic Index	941-947
	<u> </u>	,	

			
1604.	114a	Antigenic Index	950-956
1605.	114a	Antigenic Index	959-976
1606.	114a	Antigenic Index	979-989
1607.	114a	Antigenic Index	· 993-1000
1608.	114a	Antigenic Index	1007-1022
1609.	114a	Antigenic Index	1041-1053
1610.	114a	Antigenic Index	1062-1068
1611.	114a	Antigenic Index	1075-1108
1612.	114a	Antigenic Index	1115-1121
1613.	114a	Antigenic Index	1126-1145
1614.	114a	Antigenic Index	1148-1152
1615.	114a	Antigenic Index	1157-1176
1616.	114a	Antigenic Index	1195-1206
1617.	114a	Antigenic Index	1208-1212
1618.	114a	Antigenic Index	1224-1243
1619.	114a	Antigenic Index	1247-1263
1620.	114a	Antigenic Index	1271-1282
1621.	114a	Antigenic Index	1284-1288
1622.	114a	Antigenic Index	1292-1295
1623.	114a	Antigenic Index	1299-1307
1624.	114a	Antigenic Index	1318-1328
1625.	114a	Antigenic Index	1330-1340
1626.	114a	Antigenic Index	1344-1359
1627.	114a	Antigenic Index	1367-1384
1628.	1,14a	Antigenic Index	1396-1399
1629.	114a	Antigenic Index	1405-1417
1630.	114a	Antigenic Index	1434-1436
1631.	114a	Antigenic Index	1449-1451
1632.	1 1 4 a	Antigenic Index	1468-1487
1633.	114a	Antigenic Index	1498-1503
1634.	114a	Antigenic Index	1509-1515
1635.	114a	Antigenic Index	1525-1532
1636.	1 1 4a	Hydrophilicity	4-6
1637.	114a	Hydrophilicity ·	12-15
1638.	1 14a	Hydrophilicity	23-34
1639.	1 14a	Hydrophilicity	43-55
1640.	1 14a	Hydrophilicity	75-85 ·
1641.	1 14a	Hydrophilicity	104-110
1642.	1 14a	Hydrophilicity	118-123
1643.	1 14a	Hydrophilicity	127-132

1644.	114a	Hydrophilicity.	147-154
1645.	114a	Hydrophilicity	163-167
1646.	114a	Hydrophilicity	185-187
1647.	114a	Hydrophilicity	197-203
1648.	114a	Hydrophilicity	208-211
1649.	114a	Hydrophilicity	221-227
1650.	114a	Hydrophilicity	243-245
1651.	114a	Hydrophilicity	253-261
1652.	114a	Hydrophilicity	263-266
1653.	114a	Hydrophilicity	270-272
1654.	114a	Hydrophilicity	295-301
1655.	114a	Hydrophilicity	309-312
1656.	114a	Hydrophilicity	320-328
1657.	114a	Hydrophilicity	332-337
1658.	114a	Hydrophilicity	345-351
1659.	114a	Hydrophilicity	360-366
1660.	114a	Hydrophilicity	371-378
1661.	114a	Hydrophilicity	387-392
1662.	114a	Hydrophilicity	404-417
1663.	114a	Hydrophilicity	421-423
1664.	114a	Hydrophilicity	425-427
1665.	114a	Hydrophilicity	442-456
1666.	114a	Hydrophilicity	473-488
1667.	114a	Hydrophilicity	499-509
1668.	114a	Hydrophilicity	515-520
1669.	114a	Hydrophilicity	536-549
1670.	114a	Hydrophilicity	555-560
1671.	114a	Hydrophilicity	565-568
1672.	114a	Hydrophilicity	570-578
1673.	l l 4a	Hydrophilicity	589-594
1674.	114a	Hydrophilicity	602-604
1675.	114a	Hydrophilicity	609-615
1676.	114a	Hydrophilicity	617-620
1677.	114a	Hydrophilicity	660-665
1678.	114a	Hydrophilicity	668-680
1679.	114a	Hydrophilicity .	684-686
1680.	114a	Hydrophilicity	699-708
1681.	114a	Hydrophilicity	715-725
1682.	114a	Hydrophilicity	730-733
1683.	114a	Hydrophilicity	738-744

1685. 114a Hydrophilicity 760 1686. 114a Hydrophilicity 789 1687. 114a Hydrophilicity 810 1688. 114a Hydrophilicity 831 1689. 114a Hydrophilicity 845 1690. 114a Hydrophilicity 860 1691. 114a Hydrophilicity 873 1692. 114a Hydrophilicity 883 1693. 114a Hydrophilicity 887 1694. 114a Hydrophilicity 896 1695. 114a Hydrophilicity 908 1696. 114a Hydrophilicity 923 1698. 114a Hydrophilicity 941 1699. 114a Hydrophilicity 961 1700. 114a Hydrophilicity 979 1701. 114a Hydrophilicity 993	6-754 0-766 9-793 6-818 1-836 5-857 0-862 1-866 3-879 3-885 7-889 6-899 3-916 3-932 -947 -975
1686. 114a Hydrophilicity 789 1687. 114a Hydrophilicity 816 1688. 114a Hydrophilicity 831 1689. 114a Hydrophilicity 845 1690. 114a Hydrophilicity 866 1691. 114a Hydrophilicity 873 1692. 114a Hydrophilicity 883 1693. 114a Hydrophilicity 887 1694. 114a Hydrophilicity 896 1695. 114a Hydrophilicity 908 1696. 114a Hydrophilicity 923 1698. 114a Hydrophilicity 941 1699. 114a Hydrophilicity 961 1700. 114a Hydrophilicity 979 1701. 114a Hydrophilicity 993	9-793 6-818 1-836 5-857 0-862 1-866 3-879 3-885 7-889 6-899 3-916 3-932 947
1687. 114a Hydrophilicity 816 1688. 114a Hydrophilicity 831 1689. 114a Hydrophilicity 845 1690. 114a Hydrophilicity 866 1691. 114a Hydrophilicity 873 1692. 114a Hydrophilicity 883 1693. 114a Hydrophilicity 887 1695. 114a Hydrophilicity 896 1696. 114a Hydrophilicity 908 1697. 114a Hydrophilicity 941 1699. 114a Hydrophilicity 941 1699. 114a Hydrophilicity 961 1700. 114a Hydrophilicity 979 1701. 114a Hydrophilicity 993	6-818 1-836 5-857 0-862 1-866 3-879 3-885 7-889 6-899 3-916 3-932 -947
1688. 114a Hydrophilicity 831 1689. 114a Hydrophilicity 845 1690. 114a Hydrophilicity 866 1691. 114a Hydrophilicity 873 1692. 114a Hydrophilicity 883 1693. 114a Hydrophilicity 887 1694. 114a Hydrophilicity 896 1695. 114a Hydrophilicity 908 1696. 114a Hydrophilicity 923 1697. 114a Hydrophilicity 941 1699. 114a Hydrophilicity 961 1700. 114a Hydrophilicity 979 1701. 114a Hydrophilicity 993	1-836 5-857 0-862 4-866 3-879 3-885 7-889 5-899 3-916 3-932 947
1689. 114a Hydrophilicity 845 1690. 114a Hydrophilicity 860 1691. 114a Hydrophilicity 864 1692. 114a Hydrophilicity 873 1693. 114a Hydrophilicity 887 1694. 114a Hydrophilicity 887 1695. 114a Hydrophilicity 908 1696. 114a Hydrophilicity 908 1697. 114a Hydrophilicity 941 1699. 114a Hydrophilicity 961 1700. 114a Hydrophilicity 979 1701. 114a Hydrophilicity 993	5-857 0-862 1-866 3-879 3-885 7-889 6-899 3-916 3-932 -947
1690. 114a Hydrophilicity 860 1691. 114a Hydrophilicity 864 1692. 114a Hydrophilicity 873 1693. 114a Hydrophilicity 883 1694. 114a Hydrophilicity 896 1695. 114a Hydrophilicity 908 1696. 114a Hydrophilicity 923 1697. 114a Hydrophilicity 941 1699. 114a Hydrophilicity 961 1700. 114a Hydrophilicity 979 1701. 114a Hydrophilicity 993	0-862 1-866 3-879 3-885 7-889 5-899 3-916 3-932 -947
1691. 114a Hydrophilicity 864 1692. 114a Hydrophilicity 873 1693. 114a Hydrophilicity 883 1694. 114a Hydrophilicity 887 1695. 114a Hydrophilicity 908 1696. 114a Hydrophilicity 923 1697. 114a Hydrophilicity 941 1699. 114a Hydrophilicity 961 1700. 114a Hydrophilicity 979 1701. 114a Hydrophilicity 993	1-866 3-879 3-885 7-889 5-899 3-916 3-932 947
1692. 114a Hydrophilicity 873 1693. 114a Hydrophilicity 883 1694. 114a Hydrophilicity 887 1695. 114a Hydrophilicity 896 1696. 114a Hydrophilicity 908 1697. 114a Hydrophilicity 923 1698. 114a Hydrophilicity 941 1699. 114a Hydrophilicity 961 1700. 114a Hydrophilicity 979 1701. 114a Hydrophilicity 993	3-879 3-885 7-889 5-899 3-916 3-932 -947
1693. 114a Hydrophilicity 883 1694. 114a Hydrophilicity 887 1695. 114a Hydrophilicity 896 1696. 114a Hydrophilicity 908 1697. 114a Hydrophilicity 923 1698. 114a Hydrophilicity 941 1699. 114a Hydrophilicity 961 1700. 114a Hydrophilicity 979 1701. 114a Hydrophilicity 993	3-885 7-889 5-899 3-916 3-932 947
1694. 114a Hydrophilicity 887 1695. 114a Hydrophilicity 896 1696. 114a Hydrophilicity 908 1697. 114a Hydrophilicity 923 1698. 114a Hydrophilicity 941 1699. 114a Hydrophilicity 961 1700. 114a Hydrophilicity 979 1701. 114a Hydrophilicity 993	7-889 5-899 3-916 3-932 -947
1695. 114a Hydrophilicity 896 1696. 114a Hydrophilicity 908 1697. 114a Hydrophilicity 923 1698. 114a Hydrophilicity 941 1699. 114a Hydrophilicity 961 1700. 114a Hydrophilicity 979 1701. 114a Hydrophilicity 993	6-899 3-916 3-932 -947 -975
1696. 114a Hydrophilicity 908 1697. 114a Hydrophilicity 923 1698. 114a Hydrophilicity 941 1699. 114a Hydrophilicity 961 1700. 114a Hydrophilicity 979 1701. 114a Hydrophilicity 993	3-916 3-932 -947 -975
1697. 114a Hydrophilicity 923 1698. 114a Hydrophilicity 941 1699. 114a Hydrophilicity 961 1700. 114a Hydrophilicity 979 1701. 114a Hydrophilicity 993	-932 -947 -975
1698. 114a Hydrophilicity 941 1699. 114a Hydrophilicity 961 1700. 114a Hydrophilicity 979 1701. 114a Hydrophilicity 993	-947 -975
1699. 114a Hydrophilicity 961 1700. 114a Hydrophilicity 979 1701. 114a Hydrophilicity 993	-975
1700. 114a Hydrophilicity 979 1701. 114a Hydrophilicity 993	
1701. 114a Hydrophilicity 993.	-989
	-1000
1702. 114a Hydrophilicity 100	7-1022
1703. 114a Hydrophilicity 104	1-1043
1704. 114a Hydrophilicity 104:	5-1053
1705. 114a Hydrophilicity 1062	2-1068
1706. 114a Hydrophilicity 107:	5-1078
1707. 114a Hydrophilicity 1086	0-1087
1708. 114a Hydrophilicity 1089	9-1104
1709. 114a Hydrophilicity 1115	5-1121
1710. 114a Hydrophilicity 1126	6-1141
1711. 114a Hydrophilicity 1143	3-1145
1712. 1 14a Hydrophilicity 1148	8-1151
1713. 114a Hydrophilicity 1158	3-1171
1714. 114a Hydrophilicity 1197	7-1203
1715. 114a Hydrophilicity 1224	1-1243
1716. 114a Hydrophilicity 1251	-1263
1717. 114a Hydrophilicity 1271	-1273
1718. 114a Hydrophilicity 1275	i-1277
1719. 114a Hydrophilicity 1284	-1288
	-1307
1721. 114a Hydrophilicity 1318	-1326
	-1340
	-1359

1724.	114a	Hydrophilicity	1367-1384
1725.	114a	Hydrophilicity	1407-1417
1726.	114a	Hydrophilicity	1449-1451
1727.	114a	Hydrophilicity	1469-1482
1728.	114a	Hydrophilicity	1484-1486
1729.	114a	Hydrophilicity	1498-1503
1730.	114a	Hydrophilicity	1510-1512
1731.	114a	Hydrophilicity	1527-1532
1732.	124-1	AMPHI	37-43
1733.	124-1	AMPHI	94-96
1734.	124-1	AMPHI	113-115
1735.	124-1	Antigenic Index	20-26
1736.	124-1	Antigenic Index	38-43
1737.	124-1	Antigenic Index	52-55
1738.	124-1	Antigenic Index	62-70
1739.	124-1	Antigenic Index	88-97
1740.	124-1	Antigenic Index	104-114
1741.	124-1	Antigenic Index	123-135
1742.	124-1	Antigenic Index	146-155
1743.	124-1	Hydrophilicity	20-26
1744.	124-1	Hydrophilicity	41-43
1745.	124-1	Hydrophilicity	52-55
1746.	124-1	Hydrophilicity	63-69
1747.	124-1	Hydrophilicity	91-94
1748.	124-1	Hydrophilicity	104-114
1749.	124-1	Hydrophilicity	123-135
1750.	124-1	Hydrophilicity	146-155
1751.	124a	AMPHI	19-21
1752.	124a	АМРНІ	23-29
1753.	124a	АМРНІ	37-43
1754.	124a	AMPHI	94-96
1755.	124a	Antigenic Index	38-43
1756.	124a	Antigenic Index	52-55
1757.	124a	Antigenic Index	62-70
1758.	124a	Antigenic Index	77-80
1759.	124a	Antigenic Index	90-96
1760.	124a	Antigenic Index	105-115
	124a	Antigenic Index	120-135
1 1761		1	
1761. 1762.	124a	Antigenic Index	145-153

1764.	124a	Hydrophilicity	52-55
1765.	124a	Hydrophilicity	63-69
1766.	124a	Hydrophilicity	91-95
1767.	124a	Hydrophilicity	108-115
1768.	124a	Hydrophilicity	120-135
1769.	124a	Hydrophilicity	146-153

It will be understood that the invention is described above by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention.

TABLE II

The present invention does not include within its scope proteins comprising any of the 45 protein sequences disclosed in Annex I. As stated above, if the length of any particular protein sequence disclosed in PCT/IB99/00103 is x amino acids, the antigenic fragment of the present invention has at most x-I amino acids of that protein. For each of the 45 protein sequences given in Annex 1, the value of x is given in the following table:

SEQ ID NO:	x	SEQ ID NO:	x	SEQ ID NO:	x	SEQ ID NO:	X
2	245	26	571	50	185	74	150
4	591	28	710	52	166	76	255
6	592	30	710	54	326	78	255
8	164	32	62	56	356	80	172
10	321	34	86	. 58	284	82	242
12	321	36	92	60	1978	84	242
14	124	38	103	62	1532	86	183
16	124	40	85	64	593	88	155
18	173	42	78	66	129	90	153
20	640	. 44	78	68	319		
. 22	761	46	219	70	619	1	
24	111	. 48	212	72	595	1	

ANNEX I

COPY OF

INTERNATIONAL PATENT APPLICATION

PCT/IB99/00103

MENINGOCOCCAL ANTIGENS

This invention relates to antigens from the bacterium Neisserla meningitidis.

BACKGROUND

the pharynx, causing meningitis and, occasionally, septicaemia in the absence of meningitis. It is Neisseria meningiitdis is a non-motile, gram negative diplocaccus human pathogen. It colonises closely related to N. gonorrhoeae, although one feature that clearly differentiates meningococcus from gonococcus is the presence of a polysaccharide capsule that is present in all pathogenic N.meningitidis causes both endemic and epidemic disease. In the United States the attack rate is Schuchat et al (1997) Bacterial Meningitis in the United States in 1995. N Engl J Med 337(14):970-976). In developing countries, endemic disease rates are much higher and during epidemics incidence rates can reach 500 cases per 100,000 persons per year. Mortality is meningitidis is the major cause of hacterial meningitis at all ages in the United States (Schuchat 0.6-1 per 100,000 persons per year, and it can be much greater during outbreaks (see Lieberman extremely high, at 10-20% in the United States, and much higher in developing countries. Following the introduction of the conjugate vaccine against Haemophilus Influentae, N. et al. (1996) Safety and Immunogenicity of a Serograups AIC Neisserta meningitidis Oligosaccharide-Protein Conjugate Vaccine in Young Children. JAMA 275(19):1499-1503; ~ 9

efficacious in adolescents and adults, it induces a poor immune response and short duration of Africa. Serogroups B and C are responsible for the vast majohity of cases in the United States and in most developed countries. Serogroups W135 and Y are responsible for the rest of the cases in the United States and developed countries. The meningochecal vaccine currently in use is a tetravalent polysaccharide vaccine composed of serogroups A, C, Y and W135. Although protection, and cannot be used in infants [eg. Morbidity and Mortality weekly report, Vol.46, No. RR-5 (1997)]. This is because polysaccharides are T-cell independent antigens that induce a weak Based on the organism's capsular polysaccharide, 12 serogroups of N. meningitidis have been identified. Group A is the pathogen most often implicated in epidemic disease in sub-Saharan 22 2

PCTAB99/00103

immune response that cannot be boosted by repeated immunization. Following the success of the

devetoped and are at the final stage of clinical testing (Zollinger WD "New and Improved Lieberman et al (1996) supra; Costantino et al (1992) Development and phase I clinical testing vaccination against H.influenzae, conjugate vaccines against serogroups A and C have been Vaccines Agains1 Meningococcal Disease" in: New Generation Vaccines, supra, pp. 469-488;

polysaccharide approach cannot be used because the menB capsular polysaccharide is a polymer approximately 50% of total meningitis in the United States, Europe, and South America. The Meningococcus B remains a problem, however. This serotype currently is responsible for of a conjugate vaccine against meningococcus A and C. Vaccine 10:691-698).

of a(2-8)-linked N-acetyl neuraminic acid that is also present in mammalian tissue. This results therefore undestrable. In order to avoid induction of autoimmunity and to induce a protective in tolerance to the antigen; indeed, if an immune response were elicited, it would be anti-self, and immune response, the capsular polysaccharide has. for instance, been chemically modified substituting the N-acetyl groups with N-propionyl groups, leaving the specific antigenicity unaltered (Romero & Outschoorn (1994) Current status of Meningococcal group B vaccine candidates: capsular or non-capsular? Clin Microbiol Rev 7(4):559-575). 2 2

antigenic variability (eg. Ala Aldeen & Borriello (1996) The meningococcal transferrin-binding proteins I and 2 are both surface exposed and generate bactericidal antibodies capable of killing have been the opa and ope proteins, but none of these approaches have been able to overcome the Alternative approaches to menB vaccines have used complex mixtures of outer membrane proteins (OMPs), containing either the OMPs alone, or OMPs enriched in porins, or deleted of the class 4 OMPs that are believed to induce antibodies that block bactericidal activity. This approach produces vaccines that are not well characterized. They are able to protect against the homologous strain, but are not effective at large where there are many antigenic variants of the outer membrane proteins. To overcome the antigenic variability, multivalent vaccines containing up to nine different porins have been constructed (eg. Poolman JT (1992) Development of a meningococcal vaccine. Infect. Agents Dis. 4:13-28). Additional proteins to be used in outer membrane vaccines homologous and heterologous strains. Vaccine 14(1):49-53). 23 ຂ

A certain amount of sequence data is available for meningococcal and gonococcal genes and proteins (eg. EP.A-0467714, WO96/29412), but this is by no means complete. The provision of

8

÷

PCT//899/00103

further sequences could provide an opportunity to identify secreted or surface-exposed proteins that are presumed largets for the immune system and which are not antigenically variable. For instance, some of the identified proteins could be components of efficacious vaccines against meningococcus B, some could be components of vaccines against all meningococcal serotypes, and others could be components of vaccines against all meningococcal serotypes,

THE INVENTION

The invention provides proteins comprising the N.meningitidis amino acid sequences disclosed in the examples.

It also provides proteins comprising sequences homologous (ie. having sequence identity) to the N. mening litidis amino acid sequences disclosed in the examples. Depending on the particular sequence. The degree of sequence identity is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 90%, 90%, 90% or more). These homologous proteins include mutants and allelie variants of the sequences disclosed in the examples. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence. Identity between proteins is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1.

~

≘

The invention further provides proteins comprising fragments of the *N. meningitidis* amino acid sequences disclosed in the examples. The fragments should comprise at least *n* consecutive amino acids from the sequences and, depending on the particular sequence, *n* is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20 or more). Preferably the fragments comprise an epitope from the sequence.

The proteins of the invention can, of course, he prepared by various means (eg. recombinant expression, purification from cell culture, chemical synthesis etc.) and in various forms (eg. native, fusions etc.). They are preferably prepared in substantially pure form (ie. substantially free from other N.meningitidis or host cell proteins)

22

According to a further aspect, the invention provides antibodies which bind to these proteins. These may be polyclonal or monoclonal and may be produced by any suitable means.

PCT//B99/00103

According to a further aspect, the invention provides nucleic acid comprising the N.meninglitalis nucleotide sequences disclosed in the examples. In addition, the invention provides nucleic acid comprising sequences homologous (ie. having sequence identity) to the N.meninglitalis nucleatide sequences disclosed in the examples.

Furthermore, the invention provides nucleic acid which can hybridise to the N. meningtitalis nucleic acid disclosed in the examples, preferably under "high stringency" conditions (eg. 65°C in a 0.1xSC, 0.5% SDS solution).

Nucleic acid comprising fragments of these sequences are also provided. These should comprise at least n consecutive nucleotides from the N. meningitidis sequences and, depending on the particular sequence, n is 10 or more (eg. 12, 14, 15, 18, 20, 25, 30, 35, 40 or more).

2

According to a further aspect, the invention provides nucleic acid encoding the proteins and protein fragments of the invention.

It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes).

15 Nucleic acid according to the invehition can, of course, be prepared in many ways (eg. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).

In addition, the term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.

20 According to a further aspect, the jinvention provides vectors comprising nucleotide sequences of the invention (eg. expression vectors) and host cells transformed with such vectors.

According to a further aspect, the invention provides compositions comprising protein, antibody, and/or nucleic acid according to the invention. These compositions may be suitable as vaccines, for instance, or as diagnostic reagents, or as immunogenic compositions.

PCT//899/00103

The invention also provides nucteic acid, protein, or antibody according to the invention for use as medicaments (eg. as vaccines) or as diagnostic reagents. It also provides the use of nucleic acid, protein, or antibody according to the invention in the manufacture of: (i) a medicament for treating or preventing infection due to Neisserial bacteria; (ii) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria; and/or (iii) a reagent which can raise antibodies against Neisserial bacteria may be any species or strain (such as N.gonorrhoeae) but are preferably N.meningtitidis, especially strain A. strain B or strain C.

The invention also provides a method of treating a patient, comprising administering to the patient

10 a therapeutically effective amount of nucleic acid, protein and/or antihody according to the invention.

According to further aspects, the invention provides various processes.

A process for producing proteins of the invention is provided, comprising the step of culturing a host cell according to the invention under conditions which induce protein expression.

15 A process for producing protein or nucleic acid of the invention is provided, wherein the protein or nucleic acid is synthesised in part or in whole using chemical means. A process for detecting polynucleotides of the invention is provided, comprising the steps of: (a) contacting a nucleic probe according to the invention with a biological sample under hybridizing conditions to form duplexes: and (h) detecting said duplexes.

20 A process for detecting proteins of the invention is provided, comprising the steps of: (a) contacting an antibody according to the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complexes: and (b) detecting said complexes.

Unlike the sequences disclosed in PCT/1898/01665, the sequences disclosed in the present application are believed not to have any significant homologs in N.gonarrhoeae. Accordingly, the sequences of the present invention also find use in the preparation of reagents for distinguishing between N.menlogitidis and N.gonarrhoeae

÷

PCT//B99/00103

A summary of standard techniques and procedures which may be employed in order to perform the invention (eg. to utilise the disclosed sequences for vaccination or diagnostic purposes) follows. This summary is not a limitation on the invention hut, rather, gives examples that may be used, but are not required.

General

S

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature eg. Sambrook Malecular Cloning: A Laboratory Manual, Second Edition (1989), DNA Cloning. Folumes I and

- 10 II (D.N Glover ed. 1983); Oligonucleoilde Synthesis (M.J. Gait ed., 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds. 1984); Transcription and Translation (B.D. Hames & S.J. Higgins eds. 1984); Animal Cell Culture (R.I. Freshney ed. 1986); Immobilized Cells and Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide to Molecular Cloning (1984); the Methods in Enzymology series (Academic Press, Inc.), especially volumes 154 & 155; Gene 15 Transfer Vectors for Mammalian Cells (J.H. Miller and M.P. Calos eds. 1987, Cold Spring Harbor Laboratory); Mayer and Walker, eds. (1987), Immunochemical Methods in Cell and Molecular Blology (Academic Press, London); Scopes, (1987) Protein Purification: Principles and Practice, Second Edition (Springer-Verlag, N.Y.), and Handbook of Experimental Immunology, Falumes 1-11; (D.M. Weir and C. C. Blackwell eds 1986).
- 20 Standard abhreviations for nucleotides and amino acids are used in this specification.

All publications, patents, and patent applications cited herein are incorporated in full by reference In particular, the contents of UK patent applications 9800760.2, 9819015.0 and 9822143.5 are incorporated herein.

Definitions

25 A composition containing X is "substantially free of" Y when at least 85% by weight of the total X+Y in the composition is X. Preferably, X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.

PCT//899/00103

The term "comprising" means "including" as well as "consisting" eg. a composition "comprising" X may consist exclusively of X or may include something additional to X, such as X+Y. The term "heterologous" refers to two biological components that are not found together in nature. The components may be host cells, genes, or regulatory regions, such as promoters. Although the heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene. Another example is where a Neisserial sequence is heterologous to a mouse host cell. A further examples would be two epitopes from the same or different proteins which have been assembled in a single protein in an arrangement not found in nature.

not moragin of replication" is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector. The origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own control. An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.

A "mutant" sequence is defined as DNA, RNA or amino acid sequence differing from but having sequence; identity with the native or disclosed sequence. Depending on the particular sequence, the degree of sequence identity between the native or disclosed sequence and the mutant sequence is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more, calculated using the Smith-Waterman algorithm as described above). As used herein, an "alletic variant" of a nucleic acid molecule, or region, for which nucleic acid sequence is provided herein is a nucleic acid molecule, or region, that occurs essentially at the same locus in the genome of another or second isolate, and that, due to natural variation caused by, for example, mutation or recombination, has a similar but not identical nucleic acid sequence. A coding region allelic variant typically encodes a protein having similar activity to that of the protein encoded by the gene to which it is being compared. An altelic variant can also comprise an alteration in the 5' or 3' untranslated regions of the gene, such as in regulatory control regions (eg. see US, patent 5.753.235).

23

8

æ

.

Expression erstems

The Neisserial nucleotide sequences can be expressed in a variety of different expression systems; for example those used with manipulation cells, baculoviruses, plants, hacteria, and yeast.

i. Mammalian Systems

S Mammalian expression systems are known in the art. A mammalian promoter is any DNA sequence capable of binding marhmalian RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiating region, which is usually placed proximal to the 5' end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element, usually located within 100 to 200 bp upstream of the TATA box. An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation [Sambrook et al. (1989) "Expression of Cloned Genes in Mammalian Cells." In Molecular Cloning: A Laboratory Manual, 2nd ed.].

Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particularly useful promoter, sequences. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallotheionein gene, also provide useful promoter sequences. Expression may be either constitutive or regulated (inducible), depending on the promoter can be induced with glucocorticoid in hormone-responsive cells.

2

The presence of an enhancer element (enhancer), combined with the promoter elements described above, will usually increase expression levels. An enhancer is a regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the aprmal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the promoter [Maniatis et al. (1987) Science 236:1237; Alberts et al. (1989) Molecular Biology of the Cell, 2nd ed.]. Enhancer elements derived from viruses may be particularly useful, because they usually have a broader host

23

8

ģ

PCT//B99/00103

range. Examples include the SV40 early gene enhancer [Dijkdma et al (1985) EMBO J. 4:761] and the enhancer/promoters derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus [Gorman et al. (1982h) Proc. Nall. Acad. Sci. 79:6777] and from human cytomegalovirus [Boshart et al. (1985) Cell 41:521], Additionally, some enhancers are regulatable and become active only in the presence of an inducer, such as a hormone or metal ioh (Sassone-Corsi and Borrelli (1986) Trends Genet. 2:215; Maniatis et al. (1987) Science 236:12\$7].

A DNA motecute may be expressed intracellularly in mammalien cells. A promoter sequence may be hinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the Ndirectly linked with the DNA molecule, in which case the first ampo acid at the N-terminus of the recom-

terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide. 9

that provides for secretion of the foreign protein in mammalian cells. Preferably, there are Alternatively, foreign proteins can also be secreted from the fell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment processing sites encoded between the leader fragment and the foreign gene that can be cleaved

either in vivo or in virro. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The adenovirus triparite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells. 2

Usually, transcription termination and polyadenylation sequences recognized by mammalian cells

Sci. 14:105]. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminater/polyadenylation signals include those derived from SV40 [Sambrook et al () 989) "Expression of cloned genes in are regulatory regions located 3' to the translation stop codor, and thus, together with the promoter elements, flank the coding sequence. The 3' terminus of the mature mRNA is formed by sitespecific post-transcriptional cleavage and polyadenylation (Birnstiel et al. (1985) Cell 41:349; Proudfoot and Whitelaw (1988) "Termination and 3" end processing of eukaryotic RNA. In Transcription and splicing (ed. B.D. Hames and D.M. Glover); Proudfoot (1989) Trends Blochem. cultured mammalian cells." In Molecular Cloning: A Labdratory Manual). 2 ຂ

PCT/1899/00103

expression construct, if desired. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as viruses, which require trans-acting factors to replicate. For example, plasmids containing the replication systems of papovaviruses, such as SV40 [Gluzman (1981) Cell 23:175] or ranscription termination sequence are put together into expression constructs. Enhancers, introns with functional splice donor and acceptor sites, and leader sequences may also be included in an mammalian cells or bacteria. Mammalian reptication systems include those derived from animal Usually, the above described components, comprising a promoter, polyadenylation signal, and polyomavirus, replicate to extremely high copy number in the presence of the appropriate viral

in a prokaryotic host for cloning and amplification. Examples of such mammalian-bacteria shuttle vectors include pMT2 [Kaufman et al. (1989) Mal. Cell. Biol. 9:946] and pHEBO [Shimizu et al. papillomavirus and Epstein-Barr virus. Additionally, the replicon may have two replicaton systems, thus allowing it to be maintained, for example, in mammalian cells for expression and T antigen. Additional examples of mammalian replicons include those derived from bovit 2

(1986) Mal. Cell. Biol. 6:1074]. ~ The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polyhrene mediated iransfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in

liposomes, and direct microinjection of the DNA into nuclei. 2

but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (eg. Hep G2), and a Mammalian cell lines avaitable as hosts for expression are known in the art and include many, immortalized cell lines available from the American Type Culture Collection (ATCC), including number of other cell lines.

i. Baculovirus Systems

23

and is operably linked to the control elements within that vector. Vector construction employs techniques The polynuclectide encoding the protein can also be inserted into a suitable insect expression vector, which are known in the art. Generally, the components of the expression system include a transfer

vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus genome, and a

۶

convenient restriction site for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence homologous to the baculovirus-specific fragment in the transfer vector (this allows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.

After inserting the DNA sequence encoding the protein into the transfer vector, the vector and the wild type viral genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine. The packaged recombinant virus is expressed and recombinant plaques are identified and purified. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, *tinter alla*, Invitrogen, San Diego CA ("MaxBac" kit). These techniques are generally known to those skilled in the art and fully described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987) (hereinafter "Summers and Smith.").

2

Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector). This construct may contain a single gene and operably linked regulatory elements; multiple genes, each with its owned set of operably linked regulatory elements; or multiple genes, regulated by the same set of regulatory elements. Intermediate transplacement constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as a bacterium. The replicon will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.

2

2

Currently, the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373. Many other vectors, known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers. Vivology (1989) 17:31.

23

The plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) *Ann. Rev. Atterohiol.*, 42:177) and a prokaryotic ampicillin-resistance (amp) gene and origin of replication for selection and propagation in E. coll.

-12-

PCT//899/00103

Baculovirus transfer vectors usually contain a baculovirus promoter. A baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (3' to 3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A baculovirus transfer vector may also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regulaçed or constitutive.

Structural genes, abundantly transcribed at late times in a viral infection cycle, provide particularly useful promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein. Friesen et al., (1986) "The Regulation of Baculovirus Gene Expression," in:

The Molecular Biology of Baculoviruses (ed. Watter Doerfler); EPO Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), J. Gen. Virol. 69:765.

DNA encoding suitable signal sequences can be derived from genes for secreted insect or 15 baculovirus proteins, such as the baculovirus polyhedrin gene (Carbonell et al. (1988) Gene, 73:409). Alternatively, since the signals for mammalian cell posttranslational modifications (such as signal peptide cleavage, proteolytic cleavage, and phosphorylation) appear to be recognized by insect cells, and the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells, leaders of non-insect origin, such as those derived from genes encoding human a-interferon, Maeda et al., (1985). Nature 315:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), Motec. Cell. Blol. 8:3129; human iL-2, Smith et al., (1983) Proc. Nat1 Acad. Sci. USA, 82:8404; mouse IL-3, (Miyajima et al., (1987) Gene 58:273; and human glucocerebrosidase, Martin et al., (1988) DNA, 7:99, can also be used to provide for secretion in insects.

A recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequences, it can be secreted. Good intracellular expression of nonfused foreign proteins usually requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature protein by *in vitro* incubation with

23

30 cyanogen bromide.

PCT///899/00103

comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic Alternatively, recombinant polyproteins or proteins which are not naturally secreted can be secreted from the insect cell by creating chimeric DNA motecules that encode a fusion protein amino acids which direct the translocation of the protein intolithe endoplasmic reticulum.

gene in the expression vector, is flanked both 5' and 3' by pdlyhedrin-specific sequences and is and transcription termination sequence of the construct will ysually comprise a 2-5kb section of baculovirus virus are known in the art. (See Summers and Snith supra; Ju et al. (1987); Smith et al., Mol. Cell. Biol. (1983) 3:2156; and Luckow and Summers (1989)). For example, the insertion can be into a gene such as the polyhedrin gene, by homologous double crossover recombination; Miller et al., (1989), Bioessays 4:91. The DNA sequence, when cloned in place of the polyhedrin of the protein, an insect cell host is co-transformed with the heterologous DNA of the transfer the haculovirus genome. Methods for introducing heterologous DNA into the desired site in the insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. vector and the genomic DNA of wild type baculovirus - usually by co-transfection. The promoter After insertion of the DNA sequence and/or the gene encoding the expression product precursor positioned downstream of the polyhedrin promoter.

2

2

recombinant virus from wild-type virus, the transfection supernatant is plaqued onto a monolayer of insect cells by techniques known to those skilled in the att. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus) or absence (indicative bodies that also contain embedded particles. These occlusion bodies, up to 15 µm in size, are microscope. Cells infected with recombinant viruses lack occlusion hodies. To distinguish The newly formed baculovirus expression vector is subsequently packaged into an infectious recombinant baculovirus. Homologous recombination occurs at low frequency (between about 1% and about 5%); thus, the majority of the virus produced after dotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses. An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished. The polyhedrin protein, which is produced by the native virus, is produced at very high levels in the nuclei of infected cells at late times after viral infection. Accumulated polyhedrin protein forms occlusion highly refractile, giving them a bright shiny appearance that is readily visualized under the light

23

20

÷

PCT//899/00103

of recombinant virus) of occlusion hodies. "Current Protocols in Microbiology" Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers and Smith, supra; Miller et al. (1989).

, Autographa californica, Bombyx mori, Orosnphila melanogaster, Spodoptera frugiperda. and Frichoplusia nt (WO 89/046699; Carbonell et al., (1985) J. Virol. 56:153; Wright (1986) Nature 321:718, Smith et al., (1983) Mal. Cell. Bial. 3:2156; and see generally, Fraser, et al. (1989) In Recombinant baculovirus expression vectors have been developed for infection into several insect cells. For example, recombinant baculoviruses have been developed for, inter alta: Aedes aegypti Filro Cell. Dev. Biol. 25:225). Cells and cell,culture media are commercially available for both direct and fusion expression of heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, eg. Summers and Smith supra. 2

centrifugation; solvent extraction, or the like. As appropriate, the product may be further purified, as nutrient medium must be continuously circulated, while removing the product of interest and HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient required, so as to remove substantially any insect proteins which are also secreted in the medium or result from lysis of insect cells, so as to provide a product which is at least substantially free of host The modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host. Where the expression product gene is under inducible control, the host may be grown to high density, and expression induced. Alternatively, where expression is constitutive, the product will be continuously expressed into the medium and the augmenting depleted nutrients. The product may be punified by such techniques as chromatography, eg. debris, eg. proteins, lipids and polysaccharides. 2 ឧ

In order to obtain protein expression, recombinant host celts derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence.

These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, hased upon what is known in the art. 23

iii. Plant Systems

2

There are many plant cell culture and whole plant genetic expression systems known in the art. Exemplary plant cellular genetic expression systems include those described in patents, such as:

US 5,693,506; US 5,659,122: and US 5,608,143. Additional examples of genetic expression in plant cell culture has been described by Zenk, Phytochemistry 30:3861-3863 (1991). Descriptions of plant protein signal peptides may be found in addition to the references described above in Vaulcombe et al., Mol. Gen. Genet. 209:33-40 (1987); Chandler et al., Plant Molecular Biology 3:407-418 (1984); Rogers, J. Biol. Chem. 260:3731-3738 (1985); Rothstein et al., Gene 55:353-356 (1987); Whittier et al., Nucleic Acids Research 15:2515-2535 (1987); Wirsel et al., Molecular Microbiology 3:3-14 (1989); Yu et al., Gene 122:247-253 (1992). A description of the regulation of plant gene expression by the phytohormone, gibberellic acid and secreted enzymes induced by gibberellic acid can be found in R.L. Jones and J. MacMillin, Gibberellins: in: Advanced Plant Physiology. Malcolm B. Wilkins, ed., 1984 Pitman Publishing Limited, London, pp. 21-52. References that describe other metabolically-regulated genes: Sheen, Plant Cell, 2:1027-1038(1990); Mass et al., EMBO J. 9:3447-3452 (1990); Benkel and Hickey, Proc. Natl. Acad. Sci. 84:1337-1339 (1987)

⊆

The expression cassette is inserted into a desired expression vector with companion sequences companion sequences will be of plasmid or viral origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to host range prokaryote replication origin; a prokaryote selectable marker; and, for Agrobacterium Typically, using techniques known in the art, a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants. upstream and downstream from the expression cassette suitable for expression in a plant host. The the desired plant host. The basic bacterial/plant vector construct will preferably provide a broad transformations, T DNA sequences for Agrobacterium-mediated transfer to plant chromosomes. Where the heterologous gene is not readily amenable to detection, the construct will preferably also have a selectable marker gene suitable for determining if a plant cell has been transformed. A general review of suitable markers, for example for the members of the grass family, is found in Wilmink and Dons, 1993. Plant Mal. Binl. Reptr., 11(2):165-185. 23 ~ 2

Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance

3

<u>.</u>

PCT//899/00103

loward antibiotics such as ampication or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.

The nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest. Usually, there will be only one expression cassette, although two of more are feasible. The recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant S untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the S and 3' ends of the cassette allow for easy insertion into a pre-

A heterologous coding sequence may be for any protein relating to the present invention. The sequence encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually tack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most part, the transcriptional initiation region will be for a gene which is expressed and translocated during germination, by employing the signal peptide which provides for translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested.

Typically secretion in seeds are across the aleurone or scutellar epithelium layer into the endosperm of the seed. While it is not required that the protein be secreted from the cells in which

Since the ultimate expression of the desired gene product will be in a eucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host's splicosome machinery. If so, site-directed mutagenesis of the "intron"

the protein is produced, this facilifates the isolation and punification of the recombinant protein.

25 region may be conducted to prevent tosing a portion of the genetic message as a false Intron code, Reed and Maniatis, Cell 41:95-105, 1985.

The vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, Mol. Gen. Gener, 202:179-185, 1985. The genetic material may also be transferred into the plant cell by using polyethylene glycol, Krens, et al.,

-/-

PCTARGORN

Nature, 296, 72-74, 1982. Another method of introduction of nucleic acid segments is high velocity hallistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein. et al., Nature, 327, 70-73, 1987 and Knudsen and Muller, 1991, Planta, 185:330-336 teaching particle bombardment of barley endosperm to create transgenic barley. Vet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., Proc. Natl. Acad. Sci. USA. 79, 1859-1863, 1982.

The vector may also be introduced into the plant cells by electroporation. (Fromm et al., Proc. Natl Acad. Sci. USA 82:5824, 1985). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.

9

All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, cotton, fruit and other trees, legumes and vegetables. Some suitable plants include, for example, species from the genera Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Gerantium, Manihat, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersion, Nicotiana, Solanum, Petinifa, Digitalis, Majorana, Cichorium, Penicum, Penniseum, Ranunculus, Senecio, Salpiglassis, Cucumis, Browaalia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura.

20

~

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantagebus to add glutamic acid and proline 30 to the medium, especially for such species as corn and alfalfa. Shoots and roots normally develop

9

PC1/1899/00103

simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.

In some plant cell culture systems, the desired protein of the invention may be excreted or alternatively, the protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected. Alternatively, the embryos and embryoless-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will

iv. Bacterial Systems

be adjusted through mutine methods to optimize expression and recovery of heterologous protein.

achieved by a gene activator protein hinding sequence, which, if present is usually proximal (5') Bacterial expression techniques are known in the art. A bacterial promoter is any DNA sequence a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation site. A bacterial promoter may also have a second domain called an operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may hind the operator and thereby inhibit transcription of a specific gene. Constitutive expression may occur in the absence of negative regulatory elements, such as the operator. In addition, positive regulation may be to the RNA polymerase binding sequence. An example of a gene activator protein is the catabolite capable of binding bacterial RNA polymerase and initiating the downstream (3') transcription of region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation activator protein (CAP), which helps initiate transcription of the lac operon in Escherichia coli (E. ~ 2 22

Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes. such as

coli) [Raibaud et al. (1984) Annu. Rev. Genet. 18:173]. Regulated expression may therefore he

either positive or negative, thereby either enhancing or reducing transcription.

30 galactose, lactose (Iac) [Chang et al. (1977) Nature 198:1056], and maltose. Additional examples

÷

PCT//ROB/MO1/03

include promoter sequences derived from biosynthetic enzymes such as tryptophan (trp) [Goeddel et al. (1980) Nuc. Acids Res. 8:4037; Yelverton et al. (1981) Nucl. Acids Res. 9:731; US patent 4,738.921; EP-A-0036776 and EP-A-0121775]. The g-laotamase (blo) promoter system [Weissmann (1981) *The cloning of interferon and other mistakes.* In Interferon 3 (ed. 1. Gresser)]. bacteriophage fambda PL [Shimatake et al. (1981) Nature 292:128] and T5 [US patent 4,689.406] promoter systems also provide useful promoter sequences.

In addition, synthetic promoters which do not occur in nature also function as bacterial promoters. For example, transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter [US patent 4,551,433]. For example, the tac promoter is a hybrid trp-lac promoter comprised of hoth trp promoter and lac operon sequences that is regulated by the lac repressor [Amann et al. (1983) Gene 23:167; de Boer et al. (1983) Proc. Matl. Acad. Sci. 80:21]. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. A naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes. The bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system [Studier et al. (1986) J. Mol. Biol. 189:113; Tahor et al. (1985) Proc Natl. Acad. Sci. 82:1074]. In addition, a hybrid promoter can also be comprised of a bacteriophage promoter and an E. coli operator region (EPO-A-0 267 851).

~

2

2

In addition to a functioning promoter sequence, an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes. In E. coll, the ribosome binding site is called the Shinc-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon (Shine et al. (1975) Nature 234:34]. The SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3' and of E. coli 16S rRNA (Steitz et al. (1979) "Genetic signals and nucleotide sequences in messenger RNA." In Biological Regulation and Development: Gene Expression (ed. R.F. Goldberger)]. To express eukaryotic genes and prokaryotic genes with weak ribosome-binding site [Sambrook et al. (1989) "Expression of cloned genes in Escherichia coli." In Molecular Cloning: A Laboratory Manual].

25

. .

A DNA molecule may be expressed intracellularly. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide or by either in vivo on in vitro incubation with a bacifinal methionine N-terminal peptidase (EPO-A-0 219 237).

S' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the bacteriophage lambda cell gene can be linked at Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the the S' terminus of a foreign gene add expressed in bacteria. The resulting fusion protein preferably relains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene [Nagai et al. (1984) Nature 309:810]. Fusion proteins can also be made with processing-protease) to cleave the piquitin from the foreign protein. Through this method, native sequences from the lac2 [Jis et al] (1987) Gene 60:197], 179E [Allen et al. (1987) J. Biotechnol. 5:93; Makoff et al. (1989) J. Gen Microbiol. 133:11], and Chey [EP-A-f) 324 647] genes. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg. ubiquitin specific foreign protein can he isolated [Miller et al. (1989) Bio/Technology 7:698]. 2 2

Alternatively, foreign proteins can also be secreted from the cell by creating chimeric DNA motecules that croode a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria [US patent 4,336,336]. The signal sequence fragment usually encodes a signal peptide comprised of hydrophobic armino acids which direct the secretion of the protein from the cell. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-regative bacteria). Preferably there are processing sites, which can be cleaved either in who or in vitro encoded between the signal peptide fragment and the foreign gene.

DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the E. coll outer membrane protein gene (ompA) [Masui et al. (1983), in: Experimental

30 Manipulation of Gene Expression; Chrayeb et al. (1984) EMBO J. 3:2437] and the E. coli alkaline

__

PCT//B99/00103

phosphatase signal sequence (phoA) [Oka et al. (1983) Prod. Natl. Acad. Sct. 82:7212]. As an additional example, the signal sequence of the alpha-amylase gene from various Bacillus strains can be used to secrete heterologous proteins from B. subtilis [Falva et al. (1982) Proc. Natl. Acad. Set. USA 19:5582; EP-A-0 244 042].

- Usually, transcription termination sequences recognized by bacteria are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures hat aid in terminating transcription.
 - 10 Examples include transcription termination sequences derived from genes with strong promoters, such as the *trp* gene in *E. colt* as well as other biosynthetic genes.

Usually, the above described components, comprising a prohoter, signal sequence (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an 15 extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as bacteria. The replicon will have a replication system, thus allowing it to be maintained in a prokaryotic host either for expression or for cloning and amplification. In addition, a replicon may be either a high or low copy number plasmid. A high copy rumber plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host preferably at least about 20 plasmids. Either a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host.

Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various Bacillus strains integrate into the Bacillus chromosome (EP-A- 0 127 328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.

23

,13

PC1/1899/0010

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed. Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin; chloramphenicol, crythromycin, kanamycin (neomycin), and tetracycline [Davies et al. (1978) Annu. Rev. Microbiol. 32:469]. Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.

Alternatively, some of the above described components can be put together in transformation vectors. Transformation vectors are usually comprised of a selectable market that is either maintained in a replicon or developed into an integrating vector, as described above.

- 10 Expression and transformation vectors, either extra-chromosomal replicons or integrating vectors, have been developed for transformation into many bacteria. For example, expression vectors have been developed for, inter alia, the following bacteria: Bacillus subtilis [Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541], Escherichia coli [Shimatake et al. (1981) Nature 292:128; Amann et al. (1985) Gene 40:183; Studier et al. (1986) J. Mol. Biol. 189:113; EP-A-0 036 776, EP-A-0 136 829 and EP-A-0 136 907],
- 5 (1986) J. Mol. Blol. 189:113; EP-A-0 036 776, EP-A-0 136 829 and EP-A-0 136 907], Streptococcus cremoris [Powell et al. (1988) Appl. Environ. Microbiol. 34:655]; Streptococcus lividans [Powell et al. (1988) Appl. Environ. Microbiol. 54:655], Streptomyces lividans [US patent 4.745.0561

Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with CaCl, or other agents, such as divalent cations and DMSO. DNA can also be introduced into bacterial cells by electroporation.

Transformation procedures usually vary with the bacterial species to be transformed. See eg. [Masson et al. (1989) FEMS Microbiol. Lett. 60:273; Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541, Bacillus]. [Miller et al.

- (1988) Proc. Nail. Acad. Sci. 85:856, Wang et al. (1990) J. Bacteriol. 172:949, Campylobacter], [Cohen et al. (1973) Proc. Nail. Acad. Sci. 69:2110; Dower et al. (1988) Nicleic Acids Res. 16:6127; Kushner (1978) "An improved method for transformation of Escherichia coli with ColEl-derived plasmids. In Genetic Engineering: Proceedings of the International Symposium on Genetic Engineering (eds. H.W. Boyer and S. Nicosia); Mandel et al. (1970) J. Mol. Biol.
- 30 53:159; Taketo (1988) Biochim. Biophys. Acta 949:318; Escherichia], [Chassy et al. (1987) FEH/S

₽

Microbiol. Lett. 44:173 Lactobacillus]; [Fiedler et al. (1988) Anal. Blochem 170:38, Pseudomonas]: [Augustin et al. (1990) FEMS Microbiol. Lett. 66:203, Staphylococcus], [Barany et al. (1980) J. Bacteriol. 144:698; Harlander (1987) "Transformation of Streptococcus lactis by electroporation, in: Streptococcal Genetics (ed. J. Ferretti and R. Curtiss III); Perry et al. (1981) Infect. Immun. 32:1295; Powell et al. (1988) Appl. Environ. Microbiol. 54:655; Somkuti et al. (1987) Proc. 4th Evr. Cong. Biotechnology 1:412, Streptococcus].

v. Yeast Expression

2

Yeast expression systems are also known to one of ordinary skill in the art. A yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initialing the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the "TATA Box") and a transcription initiation site. A yeast promoter may also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene. The UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence of a UAS. Regulated expression may he either positive or negative, thereby either enhancing or reducing transcription.

 \simeq

Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences. Examples include alcohol dehydrogenase (ADH) (EP-A-0 284 044), enolase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO-A-0 329 203). The yeast PHO5 gene, encoding acid phosphatase, also provides useful promoter sequences [Myanohara et al. (1983) Proc. Natl. Acad. Sci. USA 80:1].

2

125 In addition, synthetic promoters which do not occur in nature also function as yeast promoters.

For example, UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (US Patent Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the ADH2, GAL4, GALIR,

.74.

OR PHOS genes, combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EP-A-0 64 556). Furthermore, a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, tnter alla, [Cohen et al. (1980) Proc. Natl. Acad. Sci. USA 77:1078; Henikoff et al. (1981) Nature 283:835; Hollenberg et al. (1981) Curr. Topics Microbiol. Immundl. 96:119; Hollenberg et al. (1979) The Expression of Bacterial Antibiotic Resistance Genes in the Yeast Saccharomyces cerevisiae,* in: Plasmids of Medical, Environmental and Commercial Importance (eds. K.N. Timmis and A. Puhler); Mercerau-Puigalon et al. (1980) Gene 11: (63; Panthier et al. (1980) Curr. Genet. 2:109;].

10 A DNA molecule may be expressed intracellularly in yeast. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incuhation with cyanogen bromide.

Paculovirus, and bacterial expression systems. Usually, a DNA sequence encoding the N-terminal portion of an endogenous yeas protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the yeast or human superoxide dismutase (SOD) gene, can be linked at the 5' terminus of a foreign gene and expressed in yeast. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See eg. EP-A-0 196 036. Another example is a upiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably tetains a site for a processing enzyme (eg. ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein. Through this method, therefore, native foreign protein qan be isolated (eg. WO88/024066).

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can he cleaved either in vivo or in

vitro. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.

DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the yeast invertase gene (EP-A-0 012 873; JPO. 62,096,086) and the A-factor gene (US patent 4,588,684). Alternatively, leaders of non-yeast origin, such as an interferon leader, exist that also provide for secretion in yeast (EP-A-0 060 057).

.

A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a "pre" signal sequence, and a "pro" region. The types of alpha-factor fragments that can be employed include the full-tength pre-pre alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (US Patents 4,546,083 and 4,870,008; EP-A-0 324 274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (eg. see WO 89/02463.)

오

- 15 Usually, transcription termination sequences recognized by yeast are regulatory regions located
 3' to the translation stop codon, and thus together with the promoter flank the coding sequence.

 These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator sequence and other yeast-recognized termination sequences, such as those coding for glycolytic cyzymes.
- 20 Usually, the above described components, comprising a plomoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The replicon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification. Examples of such yeast-bacteria shuttle vectors include YEp24 [Botatein et al. (1979] Gene 8:17-24], pcl/1 [Brake et al. (1984) Proc. Natl. Acad. Sci USA 81:4642-4646], and YRp [7 [Stinchcomb et al. (1982) J. Mol. Biol. 158:157]. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and

23

-56-

PCT/899/0010

usually about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See eg. Brake et al., supro.

- Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome [Orr-Weaver et al. (1983) Methods
- selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver et al., supra. One or more expression construct may integrate, possibly affecting levels of recombinant protein produced [Rine et al. (1983) Proc. Natl. Acad. Scl. USA 80:6750]. The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or two segments homologous to adjacent segments in the chromosome and flanking the expression-construct in the vector, which can result in the stable
- Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed. Selectable markers may

2

integration of only the expression construct.

- no allow for the selection of yeast strains that have been transformed. Selectable markers may include biosynthetic genes that can be expressed in the yeast host, such as ADE2, HIS4, LEU2, TRP1, and ALG7, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively. In addition, a suitable selectable marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal. For example, the presence of CUP1 allows yeast to grow in the presence of copper ions [Butt et al. (1987) Microbiol, Rev. 51:351].
- Alternatively, some of the above described components can be put together into transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or developed into an integrating vector, as described above.

PCT/1899/00103

Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, have been developed for transformation into many yeasts. For example, expression vectors have been developed for, Inter alla, the following yeasts:Candida albicans [Kurtz, et al. (1986) Mol. Cell. Biol. 6:142], Candida maitosa [Kunzc, et al. (1985) J. Basic Microbiol. 25:141], Hansenula polymorpha [Gleeson, et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302], Kluyveromyces fragilis [Das, et al. (1984) J. Bacteriol. 158:1165], Kluyveromyces lactis [De Louvencourt et al. (1983) J. Bacteriol. 154:737; Van den Berg et al. (1990) Bio/Technology 8:135], Pichia guillerimondii [Kunze et al. (1985) J. Basic Microbiol. 25:141], Pichia pastoris [Cregg, et al. (1985) Mol. Cell. Biol. 5:3376; US Patent Nos. 4,837,148 and 4,929,555], Saccharomyces cerevisiae [Hinnen et al. (1978) Proc. Nail. Acad. Sci. USA 75:1929; Ito et al. (1983) J. Bacteriol. 153:163], Schizosaccharomyces pombe [Beach and Nurse (1981) Nature 300:706], and Yarrowia lipolytica [Davidow, et al. (1985) Curr. Genet. 10:380471 Gaillardin, et al. (1985) Curr. Genet. 10:380471

<u>_</u>

Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations.

Transformation procedures usually vary with the yeast species to be transformed. See eg. [Kurtz et al. (1986) Mol. Cell. Biol. 6:142; Kunze et al. (1985) J. Basic Microbiol. 23:141; Candida]; [Glesson et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302; Hansenula]; [Das et al. (1984) J. Bacteriol. 158:1165; De Louvencourt et al. (1983) J. Bacteriol. 154:1165; Van den Berg et al. (1990) Bio/Technology 8:135; Kluyveromyces]; [Cregg et al. (1985) Mol. Cell. Biol. 5:3376; Kunze et al. (1985) J. Basic Microbiol. 23:141; US Patent Nos. 4,837,148 and 4,929,555; Pichia]; [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75;1929; Ito et al. (1983) J. Bacteriol. 153:163 Saccharomyces]; [Beach and Nurse (1981) Mature 310:706; Schizosaccharomyces]; [Davidow et al. (1985) Curr. Genet. 10:39; Gaitlardin et al. (1985) Curr. Genet. 10:49; Yarrowia].

Antibodies

As used herein, the term "antibody" refers to a polypeptide or group of polypeptides composed of at least one antibody combining site. An "antibody combining site" is the three-dimensional binding space with an internal surface shape and charge distribution complementary to the features of an epitope of an antigen, which allows a binding of the antibody with the antigen, "Antibody"

2

-28-

PCT//839/00103

includes, for example, vertebrate antibodies, hybrid antibodies, chimeric antibodies, humanised antibodies, altered antibodies, upivalent antibodies. Fab proteins, and single domain antibodies.

Antibodies against the proteins of the invention are useful for affinity chromatography, immunoassays, and distinguishipg/identifying Neisserial proteins.

- preferably a mouse, rat, rabbit or goat. Rabbits and goats are preferred for the preparation of and anti-goat antibodies. Immuhization is generally performed by mixing or emulsifying the protein in saline, preferably in an adjuvant such as Freund's complete adjuvant, and injecting the polyclonal sera due to the volume of serum obtainable, and the availability of labeled anti-rabbit mixture or emulsion parenterally (generally subcutaneousty or intramuscularly). A dose of 50-200 μβ/injection is typically sufficient. Immunization is generally boosted 2-6 weeks later with one or more injections of the protein in saline, preferably using Freund's incomplete adjuvant. One Antibodies to the proteins of the invention, both polyclonal and monoclonal, may be prepared by conventional methods. In genefal, the protein is first used to immunize a suitable animal, may alternatively generate antibodies by in vitro immunization using methods known in the art, which for the purposes of this invention is considered equivalent to In vivo immunization. Polycional antisera is obtained by bleeding the immunized animal into a glass or plastic container, incubating the blood at 25°C fog one hour, followed by incubating at 4°C for 2-18 hours. The serum is recovered by centrifugațion (eg. 1,000g for 10 minutes). About 20-50 ml per bleed may be obtained from rabbits. 2 ≃
- Monoclonal antibodies are prepared using the standard method of Kohler & Milstein [Nature (1975) 256:495-96], or a modification thereof. Typically, a mouse or rat is immunized as described above. However, rather than bleeding the animal to extract serum, the spleen (and optionally several large lymph nodes) is removed and dissociated into single cells. If desired, the spleen cells may be screened (after removal of nonspecifically adherent cells) by applying a cell suspension to a plate or well coated with the protein antigen. B-cells expressing membrane-bound immunoglobulin specific for the antigen bind to the plate, and are not rinsed away with the rest of the suspension. Resulting B-cells, or all dissociated spleen cells, are then induced to fuse with myeloma cells to form hybridomas, and are cultured in a selective medium (eg. hypoxanthine, aminopterin, thymidine medium, "HAT"). The resulting hybridomas are plated by limiting
- 30 dilution, and are assayed for the production of antibodies which bind specifically to the

-29-

2

immunizing antigen (and which do not bind to unrelated antigens). The selected MAb-secreting hybridomas are then cultured either *in vitro* (eg. in tissue culture bottles or hollow fiber reactors), or *in vivo* (as ascites in mice).

If desired, the antibodies (whether polyclonal or monoclonal) may be labeled using conventional techniques. Suitable labels include fluorophores, chromophores, radioactive atoms (particularly ¹³P and ¹²P), electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horseradish peroxidase is usually detected by its ability to convert 3,3,5,5-tetramethylbenzidine (TMB) to a blue pigment, quantifiable with a spectrophotometer. "Specific binding partner" refers to a protein capable of binding a ligand molecule

with high specificity, as for example in the case of an antiger, and a monoclonal antibody specific therefor. Other specific binding partners include biotin and avidin or streptavidin, IgG and protein A, and the numerous receptor-ligand couples known in the art. It should be understood that the above description is not meant to categorize the various labels into distinct classes, as the same label may serve in several different modes. For example, ¹²³I may serve as a radioactive label or as an electron-dense reagent. HRP may serve as enzyme or as antigen for a MAb. Further, one may combine various labels for desired effect. For example, MAbs and avidin also require labels in the practice of this invention: thus, one might label a MAb with biotin, and detect its presence with avidin labeled with ¹²³I, or with an anti-biotin MAb labeled with HRP. Other permutations and possibilities will be readily apparent to those of ordinary skill in the art, and are considered as equivalents within the scope of the instant is invention.

Pharmaceutical Compositions

Pharmaceutical compositions can comprise either polypeptides, antibodies, or nucleic acid of the invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.

25 The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature. The precise effective amount for a subject will depend upon the 30 subject's size and health, the nature and extent of the condition, and the therapeuties or

-30

PC1//899/00103

combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgement of the clinician.

For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 5.005 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to a pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual.

10 receiving the composition, and which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as 15 hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).

Pharmaceutically acceptable carriers in therapeutic compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents pH buffering substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.

25 Delivery Methods

Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals; in particular, human subjects can be treated.

.3.

PCT/1899/00103

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramiscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Vaccines

Vaccines according to the invention may either be prophylactic (te. to prevent infection) or therapeutic (te. to treat disease after infection).

Such vaccines comprise immunising antigen(s), immunogen(s), polypeptide(s), protein(s) or nucleic acid, usually in combination with "pharmaceutically acceptable carriers," which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid, amino acid copolymers, lipid aggregates (such as oil droplets or liposomes), and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents ("adjuvants"). Furthermore, the antigen or immunogen may be conjugated to a bacterial toxoid, such as a toxoid from diphtheria, tetanus, cholera, H. pylori, etc. pathogens.

Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to:

(1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59TM (WO 90/14837; Chapter 10 in Vaccine design: the subunit and adjuvant approach, eds. Powell & Newman, Plenum Press 1995), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) RibiTM adjuvant system (RAS), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2%

25

2

2

.

PCT//B99/00103

Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (Detox¹⁷⁾; (3) saponin adjuvants, such as Stimulon¹⁴ (Cambridge Bioscience, Worcester, MA) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (3) cythkines, such as interleukins (eg. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (eg. gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc, and (6) other substances that act as immunostimulating agents to enhance the effectiveness of the composition. Alum and MF59¹⁷⁴ are preferred.

10 As mentioned above, muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threenyl-D-isoglutamine (Inr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylathine (MTP-PE), etc.

The immunogenic compositions (eg. the immunising antigen/immunogen/polypeptide/protein/ nucleic acid, pharmaceutically acceptable carrier, and adjuvant) typically will contain dituents, such as water, saline, glycerof, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles.

2

Typically, the immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may a suspension. Suspensions solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may a suspension. Suspensions for enhanced adjuvant effect, as discussed above under pharmaceutically acceptable carriers.

Immunogenic compositions used as vaccines comprise an immunologically effective amount of the antigenic or immunogenic polypeptides, as well as any other of the above-mentioned components, as needed. By "immunologically effective amount", it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (eg. nonhuman primate, primate, primate, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment

-33-

DOT RESOURTED

of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.

The immunogenic compositions are conventionally administdred parenterally, e.g. by injection, either subcutaneously, intramuscularly, or transdermally/transcutaneously (e.g. WO98/20734).

Additional formulations suitable for other modes of administration include oral and pulmonary formulations, suppositories, and transdermal applications. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents.

As an alternative to protein-based vaccines, DNA vaccination may be employed [ag. Robinson 0.2. Torres (1997) Seminars in Immunology 9:271-283; Donnelly et al. (1997) Annu Rev Immunol 15:617-648; see later herein].

Gene Delivery Vehicles

Gene therapy vehicles for delivery of constructs including a chding sequence of a therapeutic of the invention, to be delivered to the mammal for expression in the mammal, can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches in In vivo or ex vivo modality. Expression of such coding sequence can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence in vivo can be either constitutive or regulated.

2

The invention includes gene delivery vehicles capable of expressing the contemplated nucleic acid sequences. The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adenoviral, adeno-associated viral (AAV), herpes viral, or alphavirus vector. The viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, pricomavirus, poxvirus, or togavirus viral vector. See generally, Jolly (1994) Cancer Gene Therapy 1:51-64; Kimura (1994) Human Gene Therapy 5:845-852; Connelly (1995) Human Gene Therapy 6:185-193; and Kaplitt (1994) Manure Genetics 6:148-153.

Retroviral vectors are well known in the art and we contemplate that any retroviral gene therapy vector is employable in the invention, including B, C and D type retroviruses, xenotropic retrovinuses (for example, NZB-XI, NZB-XZ and NZB9-I (see ONeill (1985).). [71rol. 53:160) polytropic retroviruses

77

PCT/1899/00103

eg. MCF and MCF-MLV (see Kelly (1983) J. Virol. 45.291), spumaviruses and lentiviruses. See RNA Tumor Viruses, Second Edition, Cold Spring Harbor Laboratory, 1985.

Portions of the retroviral gene therapy vector may be derived from different retroviruses. For example, retrovector LTRs may be derived from a Murine Sarcoma Virus, a tRNA binding site from a Rous Sarcoma Virus, a packaging signal from a Murine Leukemia Virus, and an origin of second strand synthesis from an Avian Leukosis Virus.

These recombinant retroviral vectors may be used to generate transduction competent retroviral vector particles by introducing them into appropriate packaging cell lines (see US paten 5,591,624). Retrovirus vectors can be constructed for site-specific integration into host cell DNA

10 by incorporation of a chimeric integrase enzyme into the retroviral particle (see WO96/37626).
It is preferable that the recombinant viral vector is a replication defective recombinant virus.

Packaging cell lines suitable for use with the above-described retrovirus vectors are well known in the art, are readily prepared (see WO95/30763 and WO92/05266), and can be used to create producer cell lines (also termed vector cell lines or "VCLs") for the production of recombinant vector particles. Preferably, the packaging cell lines are made from human parent cells (eg. HT1080 cells) or mink parent cell lines, which eliminates inactivation in human serum.

~

Preferred retroviruses for the construction of retroviral gene therapy vectors include Avian Leukosis Virus, Bovine Leukemia, Virus, Murine Leukemia Virus, Mink-Cell Focus-Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis Virus and Rous Sarcoma Virus. Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley and Rowe (1976) J Virol 19:19-25), Abelson (ATCC No. VR-999), Friend (ATCC No. VR-245), Graffi, Gross (ATCC Nol VR-590), Kirsten, Harvey Sarcoma Virus and Rauscher (ATCC No. VR-998) and Moloney Murine Leukemia Virus (ATCC No. VR-190). Such retroviruses may be obtained from

2

25 Maryland or isolated from known sources using commonly available techniques.

depositories or collections such as the American Type Culture Collection ("ATCC") in Rockville,

Exemplary known retroviral gene therapy vectors employable in this invention include those described in patent applications GB2200651, EP0415731, EP0345242, EP0334301, WO89/02468; WO89/05349, WO89/09271, WO90/02806, WO90/07936, WO94/03622, WO93/25698,

PCT/1899/00103

W093/25234, W093/11230, W093/10218, W091/02805, W091/02825, W095/07994, US 5.219,740, US 4,405,712, US 4,861,719, US 4,980,289, US 4,777,127, US 5,591,624. See also Vile (1993) Cancer Res 53:3860-3864; Vile (1993) Cancer Res 53:962-967; Ram (1993) Cancer Res 53 (1993) 83-88; Takamiya (1992) J Neurosci Res 33:493-503; Baba (1993) J Neurosurg 79:729-735; Mann (1983) Cell 33:153; Cane (1984) Proc Nail Acad Sci 81:6349; and Miller (1990) Human Gene Therapy 1.

Human adenoviral gene therapy vectors are also known in the art and employable in this invention. See, for example, Berkner (1988) Biotechniques 6:616 and Rosenfeld (1991) Science 252:431, and WO93/07283, WO93/06223, and WO93/07282. Exemplary known adenoviral gene therapy vectors employable in this invention include those described in the above referenced WO95/00655, WO95/27071, WO95/29993, WO95/34671, WO96/05320, WO94/08026, WO94/28152, WO94/24299, WO95/09241, WO95/25807, WO95/05835, WO94/18922 and WO95/09654. Alternatively, administration of DNA linked to killed adenovirus as described in invention also include adenovirus associated virus (AAV) vectors. Leading and preferred examples of such vectors for use in this invention are the AAV-2 based vectors disclosed in documenis and in W094/12649, W093/03769, W093/19191, W094/28938, W095/11984, Curiel (1992) Hum. Gene Ther. 3:147-154 may be employed. The gene delivery vehicles of the repeals in which the native D-sequences are modified by substitution of nucleotides, such that at least 5 native nucleotides and up to 18 native nucleotides, preferably at least 10 native nucleotides WO94/11506, WO93/06223, WO94/24299, WO95/14102, WO95/24297, WO95/02697, Srivastava, WO93/09239. Most preferred AAV vectors comprise the two AAV inverted terminal up to 18 native nucleotides, most preferably 10 native nucleotides are retained and the remaining nucleotides of the D-sequence are deleted or replaced with non-native nucleotides. The native D-sequences of the AAV inverted terminal repeats are sequences of 20 consecutive nucleotides in each AAV inverted terminal repeat (1e. there is one sequence at each end) which are not involved in HP formation. The non-native replacement nucleotide may be any nucleotide other exemplary AAV vectors are pWP-19, pWN-1, both of which are disclosed in Nahreini (1993) Gene 124:257-262. Another example of such an AAV vector is psub201 (see Samulski (1987) J. than the nucleotide found in the native D-sequence in the same position. Other employable Viral. 61:3096). Another exemplary AAV vector is the Double-D ITR vector. Construction of the Double-D 17R vector is disclosed in US Patent 5,478,745. Still other vectors are those disclosed

2

23

~

PCT//899/00103

5,474,935, and Kotin WO94/288 57. Yet a further example of an AAV vector employable in this invention is SSV9AFABTKneo, which contains the AFP enhancer and albumin promoter and directs expression predominantly in the liver. Its structure and construction are disclosed in Su in Carter US Patent 4,797,368 and Muzyczka US Patent 5,139,941, Chartejce US Patent (1996) Human Gene Therapy 7:463-470. Additional AAV gene therapy vectors are described in US 5,354,678, US 5,173,414, U\$ 5,139,941, and US 5,252;479.

examples are herpes simplex virys vectors containing a sequence encoding a thymidine kinase exemplary herpes simplex virus pectors include HFEM/ICP6-LacZ disclosed in WO95/04139 (Wistar Institute), pHSVIac described in Geller (1988) Science 241:1667-1669 and in The gene therapy vectors of the linvention also include herpes vectors. Leading and preferred polypeptide such as those disclosed in US-5,288,641 and EP0176170 (Roizman). Additional WO90/09441 and WO92/079454HSV Us3::pgC-lacZ described in Fink (1992) Human Gene Therapy 3:11-19 and HSV 7134, 2 RH 105 and GAL4 described in EP 0453242 (Breakefield), and those deposited with the ATCC as accession numbers ATCC VR-977 and ATCC VR-260. 2

Also contemplated are alpha virus gene therapy vectors that can be employed in this invention. Preferred alpha virus vectors are S¦ndbis viruses vectors. Togaviruses, Semliki Forest virus (ATCC VR-67; ATCC VR-1247), Middicherg virus (ATCC VR-370), Ross River virus (ATCC VR-373; VR-1249; ATCC VR-532), and those described in US patents 5,091,309, 5,217,879, and ilied March 15, 1995, WO94/21794, WO92/10578, WO95/07994, US 5,091,309 and US 5,217,879 are employable. Such alpha viruses may be obtained from depositories or collections such as the ATCC VR-1246), Venezuelan equine encephalitis virus (ATCC VR923; ATCC VR-1250; ATCC ATCC in Rockville, Maryland or isolated from known sources using commonly available WO92/10578. More particularly, those alpha virus vectors described in US Serial No. 08/405,627, techniques. Preferably, alphavirys vectors with reduced cytotoxicity are used (see USSN ~ 2 23 DNA vector systems such as cukatyotic layered expression systems are also useful for expressing the nucleic acids of the inventiod. See WO95/07994 for a detailed description of eukaryotic layered expression systems. Preferably, the cukaryotic layered expression systems of the invention are derived from alphavirus vectols and most preferably from Sindbis viral vectors.

S

Other viral vectors suitable for use in the present invention include those derived from poliovirus, for J Cell Biochem L401; pox viruses such as canary pox virus or vaccinia virus, for example ATCC VR-111 and ATCC VR-2010 and those described in Fisher-Hoch (1989) Proc Nail Acad Sci 86:317; Flexner (1989) Ann NY Acad Sci 569:86, Flexner (1990) Valcine 8:17; in US 4,603,112 and US 4,769,330 and WO89/01973; SV40 virus, for example ATCC VR-305 and those described in Mulligan (1979) Noture 277:108 and Madzak (1992) J Gen Virol 73:1533; influenza virus, for example ATCC VR-797 and recombinant influenza viruses made employing referse genetics techniques as described in US 5,166,057 and in Enami (1990) Proc Natl Acad Sci 87.3802-3805; Enami & Palese (1991) J Virol 65:2711-2713 and Luytjes (1989) Cell 59:110, (see also McMichael (1983) NEJ Med 309:13, and Yap (1978) Nature 273:238 and Nature (1979) 277:108), human immunodeficiency virus as described in EP-0386882 and in Buchschacher (1992) J. Virol. 66:2731; measles virus, for example ATCC VR-67 and VR-1247 and those described in EP-0440219; Aura virus, for example ATCC VR-368; Bebaru virus, for example ATCC VR-600 and ATCC VR-1240, Cabassoul virus, for example ATCC VR-922; Chikungunya virus, for example ATCC VR-64 and ATCC VR-|1241; Fort Morgan Virus, for example ATCC VR-924; Getah virus, for example ATCC VR-369 and ATCC VR-1243; Kyzyłagach virus, for example ATCC VR-927; Mayaro virus, for example ATCC VR 46; Musambo virus, for example ATCC VR-580 and ATCC VR-1244; Ndumu virus, for example ATC VR-371; Pixuma virus, for example ATCC VR-372 and ATCC VR-1245; Tonate vinus, for example ATCC VR-925; Triniti virus, for example ATCC VR-469, Una virus, for example ATCC VR-314; Whataroa virus, for example ATCC VR-926; Y-62-33 virus, for example ATCC VR-375; ONyong virus, Eastern encephalitis virus, for example ATCC VR-65 and ATCC VR-1242; Western encephalitis virus, for example ATCC VR-70, example ATCC VR-58 and those described in Evans, Nature 33b (1989) 385 and Sabin (1973) J. Biol. Standardization 1:115; thinovirus, for example ATCC VR-1110 and those described in Amold (1990)

2

~

2

Delivery of the compositions of this invention into cells is nol limited to the above mentioned viral vectors. Other delivery methods and media may be employed such as, for example, nucleic acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example see US Serial No. 08/366,787, filed December 3b, 1994 and Curlet (1992) Hum Gene Ther 3:147-154 ligand linked DNA, for example see Wu (1989) J Biol Chem 264:16985-16987, eucaryotic cell delivery vehicles cells, for example see US Serial No.08/240,030, filed May 9, 1994, and US Serial No. 08/404,796, deposition of photopolymerized hydrogel materials,

8

90

hand-held gene transfer particle gun, as described in US Patent 5,149,655, ionizing radiation as described in US\$,206,132 and in WO92/11033, nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip (1994) *Mol Cell Biol* 14:2411-2418 and in Woffendin (1994) *Proc Natl Acad Sci* 91:1581-1585.

S Particle mediated gene transfer may be employed, for example see US Serial No. 60/023,867.

Briefly, the sequence can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, as described in Wu & Wu (1987) J. Biol. Cher 262:4429-4432, insulin as described in Hucked (1990) Biochem Pharmacol 40:253-263, galactose

262:4429-4412, insulin as described in Hucked (1990) Blochem Pharmacol 40:253-263, galactose as described in Plank (1992) Bloconjugate Chem 3:533-539, lactose or transferrin.

Naked DNA may also be employed. Exemplary naked DNA introduction methods are described in WO 90/11092 and US 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm.

Liposomes that can act as gene delivery vehicles are described in US 5,422,120, WO95/13796, WO94/23697, WO91/1444S and EP-524,968. As described in USSN. 60/023,867, on non-viral delivery, the nucleic acid sequences encoding a polypeptide can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then be incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like

2

ATCC VR-1251, ATCC VR-622 and ATCC VR-1252; and colonavirus, for example ATCC VR-740

and those described in Hamre (1966) Proc Soc Exp Biol Med 1 pt. 190.

23

encapsulate DNA comprising the gene under the control of a variety of tissue-specific or ubiquitously-active promoters. Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin et al (1994) Proc. Natl. Acad. Sci. USA 91(24):11581-11585. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for

insulin, galactose, lactose, or transferrin. Other delivery systems include the use of liposomes to

polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid,

÷

PCT//899/00103

example, use of hand-held gene transfer particle gun, as described in US 5,149,655; use of ionizing radiation for activating transferred gene, as described in US 5,206,152 and WO92/11033

Exemplary liposome and polycationic gene delivery vehicles are those described in US 5,422,120 and 4,762,915; in WO 95/13796; WO94/23697; and WO91/14445; in EP-0524968; and in Stryer, Biochemistry, pages 236-240 (1975) W.H. Freeman, San Francisco; Szoka (1980) Biochem Blophys Acta 600:1; Bayer (1979) Biochem Blophys Acta 550:464; Rivnay (1987) Meth Errymol 149:119; Wang (1987) Proc Natl Acad Sci 84:7851; Plant (1989) Anal Biochem 176:420.

A polynucleotide composition can comprises therapeutically effective amount of a gene therapy vehicle, as the term is defined above. For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

2

Delivery Methods

Once formulated, the polynucleotide compositions of the invention can be administered (1) directly to the subject; (2) delivered ex vivo, to cells derived from the subject; or (3) in vitro for expression of recombinant proteins. The subjects to be treated can be mammals or birds. Also, human subjects can be treated.

~

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the intersitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

20

Methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and described in eg. WO93/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoetic, lymph cells, macrophages, dendritic cells, or tumor cells.

23.

Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate

÷

PCT/B99/00103

precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in lipospmes, and direct microinjection of the DNA into nuclei, all well known in the art.

Polynucleotide and polypeptide pharmaceutical compositions

5 In addition to the pharmaceutically acceptable carriers and salts described above, the following additional agents can be used with polynucleotide and/or polypeptide compositions.

A.Polypeptides

One example are polypeptides which include, without limitation: asioloorosomucoid (ASOR); transferrin; asialoglycoproteins; antibodies; antibody fragments; ferritin; interfeukins; interferons,

granulocyte, macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin. Viral antigens, such as envelope proteins, can also be used. Also, proteins from other invasive organisms, such as the 17 amino acid peptide from the circumsporozoite protein of plasmodium falciparum known as R1I.

15 B.Hormones, Vitamins, etc.

Other groups that can be included are, for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.

C.Polvaikvienes. Polvsaccharides. etc.

Also, polyalkylene glycol can be included with the desired polynucleotides/polypeptides. In a preferred embodiment, the polyalkylene glycol is polyethlylene glycol. In addition, mono-, di-, or polysaccharides can be included. In a preferred embodiment of this aspect, the polysaccharide is dextran or DEAE-dextran. Also, chilosan and poly(lactide-co-glycolide)

D.Lipids. and Liposomes

The desired polynucleotide/polypeptide can also be encapsulated in lipids or packaged in 125 liposomes prior to delivery to the subject or to cells derived therefrom.

Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed polynucleotide to lipid preparation can vary but will generally be around 1:1 (rhg DNA:micromoles lipid), or more of lipid. For a review of the

SOL THOUGH AND

use of liposomes as carriers for delivery of nucleic acids, sec. Hug and Sleight (1991) Blochim. Blophys. Acta. 1097:1-17; Straubinger (1983) Meth. Enzymol 101:512-527. Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner (1987) Proc. Natl. Acad. Sci. USA 84:7413-7416); mRNA (Malone (1989) Proc. Natl. Acad. Sci. USA 86:6077-6081); and purified transcription factors (Debs (1990) J. Biol. Chem. 265:10189- [0192), in functional form.

Cationic liposomes are readily available. For example, NI1-2,3-diotey/oxy/propyl}-N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipdfeetin, from GIBCO BRL, Grand Island, NY. (See, also, Felgner supra). Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boerhinger). Other eationic liposomes can be prepared from readily available materials using techniques well known in the art. See, eg. Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; WO90/11092 for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.

2

Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, AL), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, diplecylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPC), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios.

Methods for making liposomes using these materials are well known in the art.

The liposomes can comprise multilammelar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art. See eg. Straublinger (1983) Meth. Immunol. 101:512-527; Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; Papahadjopoulos (1975) Biochim. Biophys. Acia 394:483; Wilson (1979) Cell 17:77; Deamér & Bangham (1976) Biochim. Biophys. Acia 443:529; Ostro (1977) Biochem. Biophys. Res. Commun. 76:836; Fraley (1979) Proc. Natl. Acad. Sci. USA 76:1348); Enoch & Strittmatter (1979) Proc. Natl. Acad. Sci. USA 76:145; Fraley (1980) J. Biol. Chem. (1980) 255:10431; Szoka & Papahadjopoulos (1978) Proc. Natl. Acad. Sci. USA 75:145; and Schaefer-Ridder (1982) Science 215:166.

22

42-

PCTAB99/00103

E.Lipoproteins

In addition, lipoproteins can be included with the polynucleotide/polypeptide to be delivered. Examples of lipoproteins to be utilized include: chylomicrons, HDL, IDL, LDL, and VLDL. Mutants, fragments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with the polynucleotide to be delivered, no other targeting ligand is included in the composition.

Naturally occurring lipoproteins comprise a lipid and a protein portion. The protein portion are known as apoproteins. At the present, apoproteins A, B, C, D, and E have been isolated an identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV, CI, CII, CIII.

A lipoprotein can comprise more than one apoprotein. For example, naturally occurring chylomicrons comprises of A, B, C, and E, over time these lipoproteins lose A and acquire C and E apoproteins. UDL comprises A, B, C, and E apoproteins, LDL comprises apoprotein B; and

15 HDL comprises apoproteins A, C, and E.

The amino acid of these apoproteins are known and are described in, for example, Breslow (1983) Annu Rev. Biochem 54:699; Law (1986) Adv. Exp Med. Biol. 151:162; Chen (1986) J Biol Chem 261:12918; Kane (1980) Proc Natl Acad Sci USA 77:2465; and Utermann (1984) Hum Genet 65:232.

Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phospholipids. The composition of the lipids varies in naturally occurring lipoproteins. For example, chylomicrons comprise mainly triglycerides. A more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in Meth. Enzymol. 128 (1986). The composition of the lipids are chosen to aid in conformation of the apoprotein for receptor binding activity. The composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding motecute.

Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in Meth. Ensymol. (supra); Pitas (1980) J. Biochem. 255:5454-5460 and Mahey (1979) J Clin. Invest 64:743-750. Lipoproteins can also be produced by in vitro or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for

÷

PCT//899/00103

example, Atkinson (1986) Annu Rev Blophys Chem 15:403 and Radding (1958) Blochim Blophys Acia 30: 443. Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Techniologies, Inc., Stoughton, Massachusetts, USA. Further description of lipoproteins can be found in Zuckermann et al. PCT/US97/14465.

E.Polycationic Agents

Polycationic agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide/polypeptide to be delivered.

Polycationic agents, typically, exhibit a net positive charge at physiological relevant pH and are capable of neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have both in vitro, ex vivo, and in vivo applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously, etc.

2

The following are examples of useful polypeptides as polycationic agents: polylysine, polyarginine, polyomithine, and protamine. Other examples include histones, protamines, human serum albumin. DNA binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and therefore may be useful as nucleic aid condensing agents. Briefly, transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1, Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.

~

Organic polycationic agents include: spermine, spermidine, and purtrescine.

20 The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents. Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polyhrene. Lipofectinta, and lipofectAMINEra are monomers that form polycationic complexes when combined with polynucleotides/polypeptides.

53

‡

PCT///899/00103

Immunodiagnostic Assays

Neisserial antigens of the invertion can be used in immunoassays to detect antibody levels (or, conversely, anti-Neisserial antibodies can be used to detect antigen levels). Immunoassays based on well defined, recombinant artigens can be developed to replace invasive diagnostics methods.

S Antibodies to Neisserial proteins within biological samples, including for example, blood or serum samples, can be detected. Design of the immunoassays is subject to a great deal of variation, and a variety of these are known in the art. Protocols for the immunoassay may be based, for example, upon competition, or direct reaction, or sandwich type assays. Protocols may also, for example, use solid supports, or may be by immunoprecipitation. Most assays involve the use of labeled antibody or polypeptide; the labels may be, for example, fluorescent, chemiluminescent, radioactive, or dye molecules. Assays which amplify the signals from the probe are also known; examples of which are assays which utilize biotin and avidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays.

Kits suitable for immunodiagnosis and containing the appropriate labeled reagents are constructed by packaging the appropriate materials, including the compositions of the invention, in suitable containers, along with the remaining reagents and materials (for example, suitable buffers, salt solutions, etc.) required for the qonduct of the assay, as well as suitable set of assay instructions.

2

Viieleic Acid Hybridisation

"Hybridization" refers to the association of two nucleic acid sequences to one another by hydrogen bonding. Typically, one sequence will be fixed to a solid support and the other will be free in solution. Then, the two sequences will be placed in contact with one another under conditions that favor hydrogen bonding. Factors that affect this bonding include: the type and volume of solvent; reaction temperature, time of hybridization, agitation; agints to block the non-specific attachment of the liquid phase sequence to the solid support (Denhardfs reagent or BLOTTO); concentration of the sequences; use of compounds to increase the rate of association of sequences (dextran sulfate or polyethylene glycol); and the stringency of the washing conditions following hybridization. See Sambrook et al. [supra] Volume 2, chapter 9, pages 9.47 to 9.57.

"Stringency" refers to conditions in a hybridization reaction that favor association of very similar sequences over sequences that differ. For example, the combination of temperature and salt concentration should be chosen that is approximately 120 to 200°C below the calculated Tm of

8

.45-

PCT//B99/00103

the hybrid under study. The temperature and salt conditions ean often be determined empirically in preliminary experiments in which samples of genomic DNA immobilized on filters are hybridized to the sequence of interest and then washed under conditions of different stringencies. See Sambrook et al. at page 9.50.

Variables to consider when performing, for example, a Southern blot are (1) the complexity of the DNA being blotted and (2) the homology between the probe and the sequences being detected.

The total amount of the fragment(s) to be studied can vary a magnitude of 10, from 0.1 to lug for a plasmid or phage digest to 10° to 10° g for a single copy gene in a highly complex cukaryotic genome. For lower complexity polynucleotides, substantially shorter blotting, hybridization, and exposure times, a smaller amount of starting polynucleotides, and lower specific activity of probes can be used. For example, a single-copy yeast gene can be detected with an exposure time of only 1 hour starting with 1 µg of yeast DNA, blotting for two hours and hybridizing for 4-8 hours with a probe of 10° cpm/µg. For a single-copy mammalian gene a conservative approach would start with 10 µg of DNA, blot overnight, and hybridize overnight in the presence of 10% dextran sulfate using a probe of greater than 10° cpm/µg, resulting in an exposure time of ~24 hours.

Several factors can affect the melting temperature (Tm) of a DNA-DNA hybrid between the probe and the fragment of interest, and consequently, the appropriate conditions for hybridization and washing. In many cases the probe is not 100% homologous to the fragment. Other commonly encountered variables include the length and total G+C contept of the hybridizing sequences and the ionic strength and formamide content of the hybridization buffer. The effects of all of these factors can be approximated by a single equation:

2

Tm= 81 + 16.6(log₁₀Ci) + 0.4[%(G + C)]-0.6(%formam|de) - 600/n-1.5(%mismatch).

where Ci is the salt concentration (monovalent ions) and n is the length of the hybrid in base pairs (slightly modified from Meinkoth & Wahl (1984) Anal. Biochem. 138: 267-284).

25 In designing a hybridization experiment, some factors affecting nucleic acid hybridization can be conveniently altered. The temperature of the hybridization and washes and the salt concentration during the washes are the simplest to adjust. As the temperature of the hybridization increases (ie... stringency), it becomes less likely for hybridization to occur between strands that are

46.

PCT/1899/00103

nonhomologous, and as a result, background decreases. If the radiolabeled probe is not completely homologous with the immobilized fragment (as is frequently the case in gene family and interspecies hybridization experiments), the hybridization temperature must be reduced, and background will increase. The temperature of the washes affects the intensity of the hybridizing band and the degree of background in a similar manner. The stringency of the washes is also

in general, convenient hybridization temperatures in the presence of 50% formamide are 42°C for a probe with is 95% to 100% homologous to the target fragment, 37°C for 90% to 95% homology, and 32°C for 85% to 90% homology. For lower homologies, formamide content should be

increased with decreasing salt concentrations.

10 lowered and temperature adjusted accordingly, using the equation above. If the homology between the probe and the target fragment are not known, the simplest approach is to start with both hybridization and wash conditions which are nonstringent. If non-specific bands or high background are observed after autoradiography, the filter can be washed at high stringency and reexposed. If the time required for exposure makes this approach impractical, several hybridization is and/or washing stringencies should be tested in parallel.

Nucleic Acid Probe Assays

Methods such as PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes according to the invention can determine the presence of cDNA or mRNA. A probe is said to "hybridize" with a sequence of the invention if it can form a duplex or double stranded

20 complex, which is stable enough to be detected.

The nucleic acid probes will hybridize to the Neisserial nucleotide sequences of the invention (including both sense and antisense strands). Though many different nucleotide sequences will encode the amino acid sequence, the native Neisserial sequence is preferred because it is the actual sequence present in cells. mRNA represents a coding sequence and so a probe should be complementary to the coding sequence; single-stranded cDNA is complementary to mRNA, and so a cDNA probe should be complementary to the complementary to the non-coding sequence.

23

The probe sequence need not be identical to the Neisserial sequence (or its complement) — some variation in the sequence and length can lead to increased assay sensitivity if the nucleic acid probe can form a duplex with target nucleotides, which can be detected. Also, the nucleic acid

-47.

PCT/IRGG/MAIN?

probe can include additional nucleotides to stabilize the formed duplex. Additional Neisserial sequence may also be helpful as a label to detect the formed duplex. For example, a non-complementary nucleotide sequence may be attached to the 5' end of the probe, with the remainder of the probe sequence being complementary to a Neisserial sequence. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the a Neisserial sequence in order to hybridize therewith and thereby form a duplex which can be detected.

The exact length and sequence of the probe will depend on the hybridization conditions, such as temperature, salt condition and the like. For example, for diagnostic applications, depending on the complexity of the analyte sequence, the nucleic acid probe typically contains at least 10-20 nucleotides, preferably 15-25, and more preferably at least 30 nucleotides, although it may be shorter than this. Short primers generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.

2

Probes may be produced by synthetic procedures, such as the triester method of Matteucci et al. 15 [J. Am. Chem. Soc. (1981) 103:3185], or according to Urdea et al. [Proc. Natl. Acad. Sci. USA (1983) 80: 7461], or using commercially available automated oligonucleotide synthesizers.

The chemical nature of the probe can be selected according to preference. For certain applications, DNA or RNA are appropriate. For other applications, modifications may be incorporated eg. DNA or RNA are appropriate. For other applications, modifications may be incorporated eg. backbone modifications, such as phosphorothioates or methylphosphonates, can be used to increase in vivo half-life, alter RNA affinity, increase nuclease resistance etc. [eg. see Agrawal & lyer (1995) Curr Opin Biotechnol 6:12-19; Agrawal (1996) 71BTECH 14:376-387]; analogues such as peptide nucleic acids may also be used [eg. see Corey (1997) 71BTECH 15:224-229; Buchardl et al. (1993) 71BTECH 11:384-386].

2

Alternatively, the polymerase chain reaction (PCR) is another well-known means for detecting small amounts of target nucleic acids. The assay is described in: Mullis et al. [Meth. Enzymol. (1987) 155: 335-350]; US patents 4,683,195 and 4,683,202. Two "primer" nucleotides hybridize with the target nucleic acids and are used to prime the reaction. The primers can comprise sequence that does not hybridize to the sequence of the amplification target (or its complement)

South Park Street, Madison, Wischnsin 53715 USA).

ž

PCTABS940103

to aid with duplex stability or, for exampte, to incorporate a convenient restriction site. Typically, such sequence will flank the desired Neisserial sequence.

A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a threshold amount of target nucleic acids are generated by the polymerase, they can be detected by more traditional methods, such as Southern blots. When using the Southern blot method, the labelled probe will hybridize to the Neisserial sequence (or its complement).

Also, mRNA or cDNA can be dejected by traditional blotting techniques described in Sambrook et al [supra]. mRNA, or cDNA generated from mRNA using a polymerase enzyme, can be purified and separated using gel ejectrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labelled probe and then washed to remove any unhybridized probe. Next, the duplexes containing the labeled probe are detected. Typically, the probe is jabelled with a radioactive moiety.

BRIEF DESCRIPTION OF THE DRAWINGS

15 Figures 1-7 show biochemical data and sequence analysis pertaining to Examples 1, 2, 3, 7, 13, 16 and 19, respectively, with ORFs 40, 38, 44, 32, 114, 41 and 124... M1 and M2 are molecular weight markers. Arrows indicate the position of the main recombinant product or, in Western blots, the position of the main N. meningitidis immunoreactive band. TP indicates N. meningitidis total protein extract; OMV indigates N. meningitidis outer membrane vesicle preparation. In bactericidal assay results: a diamond (0) shows preimmune data; a triangle (0) shows GST control data; a circle (0) shows data with recombinant N. meningitidis protein. Computer analyses show a hydrophilicity plot (upper), an antigenic index plot (middle), and an AMPHI analysis (lower). The AMPHI program has been used to predict T-cell epitopes (Gao et al. (1999) J. Immunol. 141:3007; Roberts et al. (1996) AIDS Res Hum Retrovir 12:593; Quakyi et al. (1992)

-64

PCT/BOOMDIO

EXAMPLES

The examples describe nucleic acid sequences which have beek identified in N. meningitidis, along with their putative translation products. Not all of the nucleic acid sequences are complete ie, they encode less than the full-length wild-type protein. It is believed at present that none of the DNA sequences described herein have significant homologs in N. gonorrhoeae.

The examples are generally in the following format:

- a nucleotide sequence which has been identified in Nimeninglitidis (strain B)
- the putative translation product of this sequence
- a computer analysis of the translation product based on database comparisons
- 10. a corresponding gene and protein sequence identified in N.meningitidis (strain A)
- a description of the characteristics of the proteins which indicates that they might be suitably antigenic
- results of biochemical analysis (expression, purification, ELISA, FACS etc.)

The examples typically include details of sequence homology between species and strains.

Proteins that are similar in sequence are generally similar in both structure and function, and the homology often indicates a common evolutionary origin. Comparison with sequences of proteins of known function is widely used as a guide for the assignment of putative protein function to a new sequence and has proved particularly useful in whole-genome analyses.

Sequence comparisons were performed at NCBI (http://www.ncbi.nlm.nih.gov) using the algorithms BLAST, BLASTA, BLASTP, tBLASTA, BLASTA, & tBLASTX [eg. see also Altschul et al. (1997) Gapped BLAST and PSI-BLAST: a rew generation of protein database search programs. Nucleic Acids Research 25:2289-3402]. Searches were performed against the following databases: non-redundant GenBank+EMBL+DDBJ-PDB sequences and non-redundant GenBank CDS translations+PDB+SwissProt+SPupdate+PtR sequences.

Dots within nucleotide sequences (eg. position 288 in Example 12) represent nucleotides which have been arbitrarily introduced in order to maintain a reading frame. In the same way, double-underlined nucleotides were removed. Lower case letters (eg. position 589 in Example 12) represent ambiguilies which arose during alignment of inderpendent sequencing reactions (some

-\$0

PCT/1899/00103

of the nucleotide sequences in the examples are derived from combining the results of two or more experiments).

Nucleotide sequences were scanned in all six reading frames to predict the presence of hydrophobic domains using an algorithm based on the statistical studies of Esposti et al. [Critical sealuation of the hydropathy of membrane proteins (1990) Eur. J Biochem 190:207-219]. These domains represent potential transmembrane regions or hydrophobic leader sequences.

Open reading frames were predicted from fragmented nucleotide sequences using the program ORFFINDER (NCBI).

Underlined amino acid sequences indicate possible transmembrane domains or leader sequences in the ORFs, as predicted by the PSORT algorithm (http://www.psort.nibb.ac.jp). Functional domains were also predicted using the MOTIFS program (GCG Wisconsin & PROSITE).

Various tests can be used to assess the *In vivo* immunogenicity of the proteins identified in the examples. For example, the proteins can be expressed recombinantly and used to screen patient sera by immunoblot. A positive reaction between the protein and patient serum indicates that the 15 patient has previously mounted an immune response to the protein in question *te*, the protein is an immunogen. This method can also be used to identify immunodominant proteins.

The recombinant protein can also be conveniently used to prepare antibodies eg. in a mouse. These can be used for direct confirmation that a protein is located on the cell-surface. Labelled antibody (eg. fluorescent labelling for FACS) can be incubated with intact bacteria and the

20 presence of label on the bacterial surface confirms the location of the protein.

In particular, the following methods (A) to (S) were used to express, purify and biochemically characterise the proteins of the invention:

A) Chromosomal DNA preparation

N.meninglildis strain 2996 was grown to exponential phase in 100ml of GC medium, harvested by centrifugation, and resuspended in 5ml buffer (20% Sucrose, 50mM Tris-HCI, 50mM EDTA, pH8). After 10 minutes incubation on ice, the bacteria were lysed by adding 10ml lysis solution (50mM NaCl, 1% Na-Sarkosyl, 50µg/ml Proteinase K), and the suspension was incubated at 37°C

.

PCT/899/00103

for 2 hours. Two phenol extractions (equilibrated to pH 8) and one ChCl./isoamylalcohol (24:1) extraction were performed. DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes ethanol, and was collected by centrifugation. The pellet was washed once with 70% ethanol and redissolved in 4ml buffer (10mM Tris-HCl, 1mM EDTA, pH 8). The DNA concentration was measured by reading the OD at 260 nm.

B) Oligonucleotide design

Synthetic oligonucleotide primers were designed on the basis of the coding sequence of each ORF, using (a) the meningococcus B sequence when available, or (b) the gonococcus/meningococcus A sequence, adapted to the codon preference usage of meningococcus as necessary. Any predicted signal peptides were omitted, by deducing the 5'-end amplification primer sequence immediately downstream from the predicted leader sequence.

2

The 5' primers included two restriction enzyme recognition sites (BamHI-Ndet, BamHI-Nhet, or EcoRI-Nhet, depending on the gene's own restriction pattern); the 3' primers included a Xhol restriction site. This procedure was established in order to direct the cloning of each amplification product (corresponding to each ORF) into two different expression systems: pGEX-KG (using either BamHI-Xhol or EcoRI-Xhol), and pET21b+ (using either Ndet-Xhol or Nhet-Xhol).

2

5'-end primer tail: CGCGGATCCCATATG (BamHI-Ndel)

CGCGGATCCGCTAGC (BamHI-Nhel)

CCGGAATICTAGCTAGC (EcoRI-Whel)

3'-end primer tail: CCCGCTCGAG (Xho!)

2

As well as containing the restriction enzyme recognition sequences, the primers included nucleotides which hybridised to the sequence to be amplified. The number of hybridizing nucleotides depended on the melting temperature of the whole primer, and was determined for each primer using the formulae:

25 T_m = 4 (G+C)+ 2 (A+T)

(tail excluded)

Ta= 64.9 + 0.41 (% GC) - 600/N (whole primer)

-52-

PCT/B99/00103

The average melting temperature of the selected oligos were 65-70°C for the whole oligo and 50-55°C for the hybridising region alone.

Table I shows the forward and reverse primers used for each amplification. Oligos were synthesized by a Perkin Elmer 394 DNA/RNA Synthesizer, cluted from the columns in 2ml NH-OH, and deprotected by 5 hours incubation at 56°C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were then centrifuged and the pellets resuspended in either 100µl or ml of water. OD₂₀₀ was determined using a Perkin Elmer Lambda Bio spectrophotometer and the concentration was determined and adjusted to 2-10pmol/µl.

C) Amplification

10 The standard PCR protocol was as follows: 50-200ng of genomic DNA were used as a template in the presence of 20-40μM of each oligo, 400-800μM dNTPs solution, 1x PCR buffer (including L.5mM MgCl₃), 2.5 units 72q1 DNA polymerase (using Perkin-Elmer AmpliTaQ, GIBCO Platinum, Pwo DNA polymerase, or Tahara Shuzo Taq polymerase).

In some cases, PCR was optim sed by the addition of 10µ1 DMSO or 50µ1 2M betaine.

After a hot start (adding the polymerase during a preliminary 3 minute incubation of the whole mix at 95°C), each sample underwent a double-step amplification: the first 5 cycles were performed using as the hybridization temperature the one of the oligos excluding the restriction enzymes tail, followed by 30 cycles performed according to the hybridization temperature of the whole length oligos. The cycles were followed by a final 10 minute extension step at 72°C.

20 The standard cycles were as follows:

	Denaturation	Hybridisation	Elongation
First & suples	30 seconds	30 seconds	30-60 seconds
531262	95°C	S0-55°C	72°C
I act 30 cualae	30 seconds	30 seconds	30-60 seconds
רמאו את הארוכא	2,56	05-70°C	72°C

The elongation time varied according to the length of the ORF to be amplified.

-53-

PCTABB90

The amplifications were performed using either a 9600 or a 2400 Perkin Elmer GeneAmp PCR System. To check the results, 1/10 of the amplification volume was loaded onto a 1-1.5% agamse gel and the size of each amplified fragment compared with a DNA molecular weight marker.

The amplified DNA was either loaded directly on a 1% agarose gel or first precipitated with ethanol and resuspended in a suitable volume to be loaded on a 1% agarose gel. The DNA fragment corresponding to the right size band was then eluted and purified from gel, using the Qiagen Gel Extraction Kit, following the instructions of the manufacturer. The final volume of the DNA fragment was 30µl or 50µl of either water or 10mM Tris, pH 8.5.

D) Digestion of PCR fragments

- 10 The purified DNA corresponding to the amplified fragment was split into 2 aliquots and double-digested with:
- Ndel/Xhol or Nhel/Xhol for cloning into pET-2 b+ and further expression of the protein as a C-terminus His-tag fusion
- BamHIXHol or EcoRUXhol for cloning into pGEX-KG and further expression of the protein as N-terminus GST fusion.

2

- EcoRI/Pst1, EcoRI/Sal1, SalI/Pst1 for cloning into pGex-His and further expression of the protein as N-terminus His-tag fusion

Each purified DNA fragment was incubated (37°C for 3 hours to overnight) with 20 units of each restriction enzyme (New England Biolabs) in a either 30 or 40µl final volume in the presence of the appropriate buffer. The digestion product was then purified using the QIAquick PCR purification kit, following the manufacturer's instructions, and cluted in a final volume of 30 or 50µl of either water or 10mM Tris-HCl, pH 8.5. The final DNA concentration was determined by 1% agarose gel electrophoresis in the presence of titrated molecular weight marker.

2

E) Digestion of the closing vectors (pET228, pGEX-KG, pTRC-His A, and pGex-His)

25 10μg plasmid was double-digested with 50 units of each restriction enzyme in 200μl reaction volume in the presence of appropriate buffer by overnight incubation at 37°C. After loading the

-54-

PCT//899/00103

whole digestion on a 1% agarose gel, the band corresponding to the digested vector was purified from the gel using the Qiagen QIAquick Gel Extraction Kit and the DNA was eluted in $50\mu I$ of 10mM Tris-HCI, pH 8.5. The DNA concentration was evaluated by measuring OD_{240} of the sample, and adjusted to $50\mu g/\mu I$. $1\mu I$ of plasmid was used for each cloning procedure.

5 The vector pGEX-His is a modified pGEX-2T vector carrying a region encoding six histidine residues upstream to the thrombin cleavage site and containing the multiple cloning site of the vector pTRC99 (Pharmacia).

F) Cloning

The fragments corresponding to each ORF, previously digested and purified, were ligated in both pET22b and pGEX-KG. In a final volume of 20µl, a molar ratio of 3:1 fragment/vector was ligated using 0.5µl of NEB T4 DNA ligase (400 units/µl), in the presence of the buffer supplied by the manufacturer. The reaction was incubated at room temperature for 3 hours. In some experiments, ligation was performed using the Boehringer "Rapid Ligation Kit", following the manufacturer's instructions.

- 13 In order to introduce the recombinant plasmid in a suitable strain, 100µl E. coll DHS competent cells were incubated with the ligase reaction solution for 40 minutes on ice, then at 37°C for 3 minutes, then, after adding 800µl LB broth, again at 37°C for 20 minutes. The cells were then centrifuged at maximum speed in an Eppendorf microfuge and resuspended in approximately 200µl of the supernatant. The suspension was then plated on LB ampicillin (100mg/ml).
- 20 The screening of the recombinant clones was performed by growing 5 randomly-chosen colonies overnight at 37°C in either 2ml (pGEX or pTC clones) or 5ml (pET clones) LB broth + 100µg/ml ampicillin. The cells were then pelletted and the DNA extracted using the Qiagen QlAprep Spin Miniprep Kit, following the manufacturer's instructions, to a final volume of 30µl. 5µl of each individual miniprep (approximately 1g) were digested with either NdellXhol or BamHIXhol and 25 the whole digestion loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in
- the whole digestion loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (IKb DNA Ladder, GIBCO). The screening of the positive clones was made on the base of the correct insert size.

-55-

PCT//899/00103

G) Expression

Each ORF cloned into the expression vector was transformed into the strain suitable for expression of the recombinant protein product. 1µ1 of each construct was used to transform 30µ1 of E.coli BL21 (pGEX vector), E.coli TOP 10 (pTRC vector) or E.coli BL21-DE3 (pET vector), as described above. In the case of the pGEX-His vector, the same E.coli strain (W3110) was used for initial cloning and expression. Single recombinant colonies were inoculated into 2ml LB+Amp (100µg/ml), incubated at 37°C overnight, then diluted 1:30 in 20ml of LB+Amp (100µg/ml) in 100ml flasks, making sure that the ODwa ranged between 0.1 and 0.15. The flasks were incubated at 30°C into gyratory water bath shakers until OD indicated exponential growth suitable for induction of expression (0.4-0.8 OD for pET and pTRC vectors, 0.8-1 OD for pGEX and pGEX-His vectors). For the pET, pTRC and pGEX-His vectors, the protein expression was induced by addition of 1mM IPTG, whereas in the case of pGEX system the final concentration of IPTG was 0.2mM. After 3 hours incubation at 30°C, the final concentration of the sample was received by OD. In order to check expression, 1ml of each sample was removed, centrifuged in a microfuge, the pellet resuspended in PBS, and analysed by 12% SDS-PAGE with Coomassie Blue staining. The whole sample was centrifuged at 6000g and the pellet resuspended in PBS for further use.

H) GST-fusion proteins large-scale purification.

20

~

A single colony was grown overnight at 37°C on LB+Amp agar plate. The bacteria were inoculated into 20ml of LB+Amp liquid culture in a water bath shaker and grown overnight. Bacteria were diluted 1:30 into 600ml of fresh medium and allowed to grow at the optimal temperature (20-37°C) to OD₃₉ 0.8-1. Protein expression was induced with 0.2mM IPTG followed by three hours incubation. The culture was centrifuged at 8000rpm at 4°C. The supermatant was discarded and the bacterial pellet was resuspended in 7.5ml cold PBS. The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed twice and centrifuged again. The supermatant was collected and mixed with 150µl Glutatione-Sephanose 4B resin (Pharmacia) (previously washed with PBS) and incubated at room temperature for 30 minutes. The sample was centrifuged at 700g for 5 minutes at 4°C. The resin was washed twice with 10ml cold PBS to 10 minutes, resuspended in 1ml cold PBS, and loaded on a disposable column. The resin was washed twice with 2ml cold PBS until the flow-through reached OD_{2m} of 0.02-0.06. The GST-fusion protein was eluted by addition of 700µl cold Glutathione clution buffer

23

2

-\$\$-

PCT//B99/00103

(10mM reduced glutathione, 50mM Tris-HCI) and fractions collected until the OD₁₂₉ was 0.1. 21µl of each fraction were loaded on a 12% SDS gel using either Biorad SDS-PAGE Molecular weight standard broad range (M1) (200, 116.25, 97.4, 66.2, 45, 31, 21.5, 14.4, 6.5 kDa) or Amersham Rainbow Marker (M2) (220, 66, 46, 30, 21.5, 14.3 kDa) as standards. As the MW of GST is 26kDa, this value must be added to the MW of each GST-fusion protein.

l) His-fusion solubility analysis

To analyse the solubility of the His-fusion expression products, pellets of 3ml cultures were resuspended in buffer M1 [500µl PBS pH 7.2]. 25µl lysozyme (10mg/ml) was added and the bacteria were incubated for 15 min at 4°C. The pellets were sonicated for 30 sec at 40W using a 10 Branson sonifier B-15, frozen and thawed twice and then separated again into pellet and supermatant by a centrifugation step. The supermatant was collected and the pellet was resuspended in buffer M2 [8M urea, 0.5M NaCl, 20mM imidazole and 0.1M NaH, PO₄] and incubated for 3 to 4 hours at 4°C. After centrifugation, the supermatant was collected and the pellet was resuspended in buffer M3 [6M guanidinium-HCl, 0.5M NaCl, 20mM imidazole and 0.1M 15 NaH,PO₄] overnight at 4°C. The supermatants from all steps were analysed by SDS-PAGE.

J) His-fusion large-scale purification.

A single colony was grown overlight at 37°C on a LB + Amp agar plate. The bacteria were inoculated into 20ml of LB+Amp liquid culture and incubated overnight in a water bath shaker. Bacteria were diluted 1:30 into 600ml fresh medium and allowed to grow at the optimal 20 temperature (20-37°C) to OD₅₀ 0,6-0.8. Protein expression was induced by addition of 1mM IPTG and the culture further incubated for three hours. The culture was centrifuged at 8000rpm at 4°C, the supernatant was discarded and the bacterial pellet was resuspended in 7.5ml of either (i) cold buffer A (300mM NaCt, 50mM phosphate buffer, 10mM imidazole, pH 8) for soluble proteins or (ii) buffer B (urea 8M, 10mM Trit-HCt, 100mM phosphate buffer, pH 8.8) for insoluble proteins.

25 The cells were disrupted by sonidation on ice for 30 sec at 40W using a Branson sonifier B-15, fozen and thawed two times and centrifuged again.

PCT//899/00103

For insoluble proteins, the supernatant was stored at -20°C, while the pellets were resuspended in 2ml buffer C (6M guanidine hydrochloride, 100mM phosphate buffer (10mM Tris-HCI, pH 7.5) and treated in a homogenizer for 10 cycles. The product was centrifuged at |3000rpm for 40 minutes. Supernatants were collected and mixed with 150µl Ni*-resin (Pharmacia) (previously washed with either buffer A or buffer B, as appropriate) and incubated at room temperature with gentle washed twice with 10ml buffer A or B for 10 minutes, resulpended in 1ml buffer A or B and loaded on a disposable column. The resin was washed at either (i) 4°C with 2ml cold buffer A or agitation for 30 minutes. The sample was centrifuged at 700g for 5 minutes at 4°C. The resin was (ii) room temperature with 2ml buffer B, until the flow-through reached OD1m of 0.02-0.06.

phosphate buffer, pH 6.3) until the flow-through reached the Q.D. of 0.02-0.06. The His-fusion protein was eluted by addition of 700µl of either (i) cold elution buffer A (300mM NaCl, 50mM The resin was washed with either (i) 2ml cold 20mM imidazole buffer (300mM NaCl, 50mM phosphate buffer, 20mM imidazole, pH 8) or (ii) buffer D (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, 250mM imidazole, pH 8) or (ii) elution buffer B (urea 8M, 10mM Tris-HCI, 100mM phosphate buffer, pH 4.5) and fractions collected until the O.D.m was 0.1. 21 µl of each fraction were loaded on a 12% SDS get. 2

K) His-fusion proteins renaturation

2

0.5M arginine, 30mM phosphate buffer, 5mM reduced glutathione, 0.5mM oxidised glutathione, using dialysis buffer I (10% glycerol, 0.5M arginine, 50ml/ phosphate buffer, 5mM reduced glutathione, 0.5mM oxidised glutathione, 2M urea, pH 8.8) and dialysed against the same buffer at 4°C for 12-14 hours. The protein was further dialysed agaipst dialysis buffer II (10% glycerol, 10% glycerol was added to the denatured proteins. The projeins were then diluted to 20µg/ml pH 8.8) for 12-14 hours at 4°C. Protein concentration was evaluated using the formula; 2

2

Protein (mg/ml) = (1.55 x OD2m) - (0|76 x OD2m)

L) His-fusion large-seale purification 23

900ml of bacterial cultures were induced and the fusion proteins were obtained soluble in buffer M I, M2 or M3 using the procedure described above. The crude extract of the bacteria was loaded

PCT/1899/00103

column with the same buffer. The specific protein was eluted with the corresponding buffer After each run the columns were sanitized by washing with at least two column volumes of 0.5 onto a Ni-NTA superflow column (Qiagen) equilibrated with buffer M I, M2 or M3 depending on the solubilization buffer of the fusion proteins. Unbound material was eluted by washing the containing 500mM imidazole and dialysed against the corresponding buffer without imidazole. M sodium hydroxide and reequilibrated hefore the next use.

M) Mice immunisations

44, CDI mice were immunised with Al(OH), as adjuvant on days 1, 21 and 42, and immun 20µg of each purified protein were used to immunise mice intraperitoneally. In the case of OR

using Freund's adjuvant, rather than Al(OH), and the same immunisation protocol was used, CD1 mice were immunised with Freund's adjuvant, but the immune response was measured on response was monitored in samples taken on day 56. For ORF 40, CD1 mice were immunised except that the immune response was measured on day 42, rather than 56. Similarly, for ORF 38, 2

N) ELISA assay (sera analysis) ~

The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swah and inoculated into 7ml of Mueller-Hinton Broth (Difco) containing 0.25% Glucose. Bacterial growth was monitored every 30 minutes by following ODers. The bacteria were let to grow until the OD supernalant was discarded and bacteria were washed once with PBS, resuspended in PBS reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10000rpm. The

plate and incubated overnight at 4°C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200µl of saturation buffer (2.7% Polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37°C. Wells were washed three times with PBT. 200µl of diluted sera (Dilution buffer. 1% BSA, 0.1% Tween-20, 0.1% NaN, in PBS) were added to each well and the plates incubated for 90 minutes at 37°C. Wells were washed three times with PBT. 100µl of HRP-conjugated rabbit anti-mouse (Dako) serum X

overnight at 4°C with stirring. 100µl bacterial cells were added to each well of a 96 well Greiner

containing 0.025% formaldehyde, and incubated for 2 hours at room temperature and then

diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37°C. Wells were washed three times with PBT buffer. 100µl of substrate buffer for HRP (25ml of citrate buffer pH5, 10mg of O-phenitdiamine and 10µl of H,O) were added to each well and the plates were left at room temperature for 20 minutes. 100µl H,SO, was added to each well and OD_{xxx} was followed. The ELISA was considered positive when OD_{xxx} was 2.5 times the respective pre-immune sera.

O) FACScan bacteria Binding Assay procedure.

2

glucose. Bacterial growth was monitored every 30 minutes by following ODs. The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8ml each Myeller-Hinton Broth (Difco) containing 0.25% at 4000rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA, 0.4% NaNs) and centrifuged for 5 minutes at 4000 rpm. Cells were resuspended in blocking plate. 100µl of diluted (1.200) sera (in blocking buffer) were added to each well and plates incubated for 2 hours at 4°C. Cells were centrifuged for 5 minutes at 4000rpm, the supernatant sspirated and cells washed by addition of 200 μ l/well of blocking buffer in each well. 100μ l of R-Phicoerytrin conjugated F(ab), goat anti-mouse, diluted 1:100, was added to each well and plates incubated for I hour at 4°C. Cells were spun down by centrifugation at 4000pm for 5 minutes and buffer to reach ODs. of 0.07. 100 pt bacterial cells were added to each well of a Costar 96 well washed by addition of 200µI/well of blocking buffer. The supernatant was aspirated and cells resuspended in 200µl/well of PBS, 0.25% formaldehyde. Samples were transferred to FACScan lubes and read. The condition for FACScan setting were: FL1 on, FL2 and FL3 off; FSC-H Ihreshold:92; FSC PMT Voltage: E 02; SSC PMT: 474; Amp. Gains 7.1; FL-2 PMT: 539; compensation values: 0.

~

2

P) OMV preparations

23

Bacteria were grown overnight on 5 GC plates, harvested with a loop and resuspended in 10 ml 20mM Tris-HCI. Heat inactivation was performed at 56°C for 30 minutes and the bacteria disrupted by sonication for 10 minutes on ice (50% duty cycle, 50% output). Unbroken cells were removed by

ģ

PCT//B99/00103

centrifugation at 5000g for 10 minutes and the total cell envelope fraction recovered by centrifugation at 50000g at 4°C for 75 minutes. To extract cytoplasmic membrane proteins from the crude outer membranes, the whole fraction was resuspended in 2% sarkosyl (Sigma) and incubated at room temperature for 20 minutes. The suspension was centrifuged at 10000g for 10 minutes to remove aggregates, and the supernatant further ultracentrifuged at 50000g for 75 minutes to pellet the outer membranes. The outer membranes were resuspended in 10mM Tris-HCI, pH8 and the protein concentration measured by the Bio-Rad Protein assay, using BSA as a standard.

Q) Whole Extracts preparation

Bacteria were grown overnight on a GC plate, harvested with a loop and resuspended in 1 ml of 10 20mM Tris-HCI. Heat inactivation was performed at 56°C for 30 minutes.

R) Western blotting

Purified proteins (500ng/lane), puter membrane vesicles (5µg) and total cell extracts (25µg) derived from MenB strain 2996 were loaded on 15% SDS-PAGE and transferred to a nitrocellulose membrane. The transfer was performed for 2 hours at 150mA at 4°C, in transferring 15 buffer (0.3 % Tris base, 1.44 % glycine, 20% methanol). The membrane was saturated by overnight incubation at 4°C in saturation buffer (10% skimmed milk, 0.1% Triton X100 in PBS). The membrane was washed twice with washing buffer (3% skimmed milk, 0.1% Triton X100 in PBS) and incubated for 2 hours at 37°C with mice sera diluted 1:2000 dilution of horseradish peroxidase labelled anti-mouse lg. The membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Opji-4CN Substrate Kii (Bio-Rad). The reaction was stopped by

S) Bactericidal assay

MC38 strain was grown overnight at 37°C on chocolate agar plates. 5-7 colonies were collected
and used to inoculate 7ml Muel cr-Hinton broth. The suspension was incubated at 37°C on a
nutator and let to grow until OD_{kan} was 0.5-0.8. The culture was aliquoted into sterile 1.5ml
Eppendorf tubes and centrifuged for 20 minutes at maximum speed in a microfuge. The pellet was

-61-

PCT/899/00103

washed once in Gey's buffer (Gibco) and resuspended in the same buffer to an OD₄₂₀ of 0.5, diluted 1:20000 in Gey's buffer and stored at 25°C.

30µl of Gey's buffer/1% BSA was added to each well of a 96-well tissue culture plate. 25µl of diluted mice sera (1:100 in Gey's buffer/0.2% BSA) were added to each well and the plate incubated at 4°C. 25µl of the previously described bacterial suspension were added to each well. 25µl of either heat-inactivated (56°C waterbath for 30 minutes) or normal baby rabbit complement were added to each well. Immediately after the addition of the baby rabbit complement, 22µl of each sample/well were plated on Mueller-Hinton agar plates (time 0). The 96-well plate was incubated for 1 hour at 37°C with rotation and then 22µl of each sample/well were plated on Mueller-Hinton agar plates (time 0).

S

Table II gives a summary of the cloning, expression and purification results.

0 and time 1 hour were counted.

2

Example 1

The following partial DNA sequence was identified in N. mehingtitidis <SEQ ID 1>;

ACGTTGATTT ACGAAAACAA CGAAGTTAAA AAACGGCACA CCAGTGTTGG AACATCACAA SACGNACGGC GTTACCGATG CGCTGGCTGG CCGATACGC GCTTCCGATA A AAAAGACCTC ACAGATCTGA GCGCAAACGG CAATAAAGTC gacaccacgg ttcatctgaa cggtattggt tcga<u>ctttga</u> gctgaatacc ggagggrcca caaacgtaac caacsacaac acgagaaaaa acgtgcggca agcgttaaag acgtkttaaa STACTA GACAACCTGA ANATCAAACA TTTGCGAAAG AAACEGCTGG ATCGGTGGGA AGACTTCTGT TATTAAAGAA AAAGAC. CGGTACAACA GCTT ANGACAACG ANATCACCY CANGCCGC ANCTICACY ACTCGCTGAN ANCTGANANA TINTCGTTIN GCGACACCAN AGGCTTGAAT GACACCACGG TTCATCTGAA GCTGAATACC GGAGCGACCA AACATTAAAG GCGTTAAACC TACGACACAG GCAGTATATT TGTGGAAAGC 2 2 23

30 This corresponds to the amino acid sequence <SEQ ID 2; Ok F40>;

1 ..TLLFATVQAS ANGEGEGE VLDPYGRTVA VLIVNSDREG TGEREKVEEN 51 SDRAVFREK GYLTAREITA KAGDELKIKG MCTMFTEEK KOLIGLESVG 101 FERLESFANG MYNTISOFK GLAFAKTAG TRGGTYNELA GIGSTLIDTL 151 LATGATHYT RONYDDEEK RAASVROULA AGMÜNESVE GTLASOSVDF 201 VRIVOTVEEL SADTKTITVN VESKONGKKT EVRIGAKTSV IKEKD...

2

Further work revealed the complete DNA sequence <SEQ 1 3>:

ATGCCTGGGT	TCCGCAACCG	TCAGGCAAGT	151 GCTARCANTG ANGAGCANGA AGANGATTTA TATTTAGACC CCGTACAACG
AGTGCCCTCA	CGTCGTATCC GAGCTCACAC GCAACCACAC CAAACGCGCC TCCGCAACCG	TTGCANCGGT	TATTTAGACC
CATTTGGAAT	GCAACCACAC	ACACTGTTGT	AGAAGATTTA
TATACCCCAT	GAGCTCACAC	CGTATTGGCG	AAGAGCAAGA
ATGAACAAA	CGTCGTATCC	TGAAGACCCC	GCTAACAATG
-	21	101	151

\$

GGTCAAACAG AGTAAAGATG ATCAAGGCAA AACGTCAATC CCGAGCAAGG GAAAGATGGA ACCCGTCCGC ATTACCAATG TTGAGCGTGG ATGGGGACGC AAAGAAGTGA TTGATGCAGI TGTAACCTT TATCGITING CGCANACGG TCATCTGAAC CTCGCTGAAA GTGGAAAGCA AAGGCGAGAA CAGGCACAAA CGATGCCCTA CCCCGCAGTT GGCTTGAATT GACTTCTGTT AGGACAACAA ACCCCATCGG CTACTCCAGT CGAGAAAAA GGTAAAGACA **PGCGACTGTA** TANATGTCGG CAATGTTTCG ACTTCGATGA GGGGATGTTA ACATTANAGG AGTGACTGCA FGRANACARC ACCETTACAT AATTTGGATT CGTTGATTTC CAAGAGTATG AACGCTGGG ACGAACGGCG GGCAGCAAGA CGATACGCTG TTACCGATGA GCTGGCTGGA GAAGTTAAAA GTTGGTTACT GCGAAGGCTT GGTTGGAGAA CAAGTTTGAA AAGGTACAAC ATGTATGATG TCATCAGCGG AACATTAATG CGACATCGCC CGGGGGGGGA CGTTAAAGAG GGCACGGCTT CGACTTTGAC C AACGACAACG T CGTATTAAAC G CAAGAAAACC GAAGAAAGC GAAGACGGTAA G ACAGACGAAG PCGGGCANAG CTTCCGATAA AGCGCAGATA TGAAACCGTC ATTGAATGTC GCCTGCCC GATTATCAAA GTAMAMATAT TCGCTCGGCG CCCCATCTGT AAACAAGGCT GTCAAGCTGA CATCACTGTT AGCTGCAAAA 1601 1651 1701 1751 1251 1251 1301 1351 1501 1551 320 2 2 2 8

This corresponds to the amino acid sequence <SEQ ID 4; ORF40-1>:

1 HHKIYAIIGH SALAHAWUVUS ELTRHHTKRA SATWKTAVLA TLLIFATUQAS

51 ANNEGEEDL LIDDOQRVA LILWSDKEG ELEKKKVER BORATHREK

101 GULTHERETT KAGDNLKING NGTHFTSLK ROLTOLTSVG TEKLESFRANG

131 HKYNITSOTK GLAFAKTAG THGDTHYLLA GLAGATTHYT

201 HDWYTDDEKK RAASVKOVLA AGWHIKGVKP GTTASDNUDF VRTYDTVELL

231 SANTTYTWY USKONGAKT PRYTAAKTY GENGENGSS

301 TOEGEGLYA KKYTDAVNKA GWHKTTTAM GGTGADKKE TYTSGTHVYF

331 ASGKOTTATY SKODGANITY HYDWAVGAAL HYNDQANGSG HIDSKAVAGS

401 SGKVISGHVS PSKGNOETT HINGRHIEI TRHGKNIDIA TSHTPOFSSV

415 SLGARADAPT LYDODALANG SGKKNRKRY THVARDEVK GOTTHVALAK

501 GYARULHNEI DBYDGANARG TAQALATAGL VGALLGKSH MIGGGTYRG

531 EAGTAIGYSS ISDGGHWIIK GTASGNSGH FGASASVGYQ W**

Further work identified the corresponding gene in strain A of N. meningtitals < SEQ 1D 5 >:

	•					
	-	ATGAACAAA	TATACCGCAT	1 ATGAACAAA TATACCGCAT CATTTGGAAT AGTGCCCTCA ATGCCTGNGT	AGTGCCCTCA	ATGCCTGNGT
	5	ししてはないししし	CACCACACAC		000000440	
	;		2000		נאארפרפר	I COCCANCO
;	ទ	TGRAGACCGC	CGTATTGGCG	TGAAGACCGC CGTATTGGCG ACACTGTTGT TTGCAACGGT TCAGGCGAAT	TIGCAACGGT	TCAGGGGAAT
S	151	GCTACCGATG	AAGATGAAGA	GCTACCENTG ANGATGANGA AGAAGAGTTA GAATCCGTAC AACGCTCTGT	GAATCCGTAC	AACGCTCTGT
	201	CGTAGGGAGC	ATTCAAGCCA	CGTAGGGAGC ATTCAAGCCA GTATGGAAGG CAGCGGCGAA TTGGAAACGA	CAGCGGCGAA	TTGGAACGA
	251	TATCATTATC	AATGACTAAC	TATCATTATC AATGACTAAC GACAGCAAGG AATTTGTAGA CCCATACATA	AATTTGTAGA	CCCATACATA
	. 301	GTAGTTACCC	TCAMAGCCGG	GTAGTTACCC TCAAAGCCGG CGACAACCTG AAAATCAAAC AAAACACCAA	AAAATCAAAC	AAAACACCAA
;	351	TGAMACACC	AATGCCAGTA	TGAMAGACC ANTECCAGIN GCTICACCIN CICGCIGNAN ANAGACTICA	CTCGCTGAAA	AAAGACCTCA
×	9		CAATGTTGAN	CAGGCCIGAT CARIGITGAN ACTGABARIT TAICGTTICG CGCBBBCCC	TATCGTTTGG	CGCAAACGCC
	451		ACATCATAAG	AAGAAAGICA ACAICAIAAG CGACACCAAA GGCIIGAAII ICGGGAAAGA	GGCTTGAATT	TCGCGAAAGA
	201	AACGGCTGGG	ACGAACGGCG	AACGGCIGGG ACGAACGCG ACACCACGGI ICAICIGAAC GGIAICGGIT	TCATCTGAAC	GGTATCGGTT
	551		CGATACGCTT	CGACTITIGAC CGATACGCIT GCGGGITCIT CIGCIICICA CGITGAIGCG	CTGCTTCTCA	CGTTGATGC
	603	GGTAACCNAA	GTACACATTA	GGTAACCNAA GTACACATTA CACTCGTGCA GCAAGTATTA AGGATGTTT	GCAAGTATTA	AGGATGTGT

Ġ

PCT/1899/00103

***************************************	200000000000000000000000000000000000000	2112112022	AMBALANCES	TOTAL PROPERTY	1001101101	1901910017	TOTAL		ALCACIONA	TOTAL CANAL	GARAGATGGA	ACCOUNT ACC	TTCAGCGT				TGGACGGCAA	CTGGTTCAGG	CACTTATEGE	ACGCCGCAAA	CATTTCGGTG	
GAATGCGGGT IGGAATATTA AGGGTGTTAAA ANNOGGGG AGGAAAAAAAAA	TGTCGATTIC GTCCGCACTT ACGACACAGT CONSTICUTO	CGNAACAAC GACKGTTAAT GTGGBAACCA	Tractoral carterer	GTTGGTTACT GGTAAAGGCA AAGGCGAGA	GCGAAGGCTT AGTGACTGCA AAAGAAGTGA	GGTTGGAGAA TGAAAACAAC BACTGCTAAT CGTCAAAAAAAAAAAAAAAAAAAAAAAAAA	CAGGCACAA	TGCGACTGTA ACTABAGATG ATCABCCOS	TARATGE CENTERCOTA ANCORONA	CCAAAGGGGT TGCAGGTTGT	CCGAGCAAGG GAAGATGGA	AACATTAATG CCGGCAACAA CATCGAGATT	ACTTCGATGG CGCCGCAGTT	TAAGCGTGG				AAGCGATTGC AACCGCAGGT	TCGCCGCGG CACTTATCGC		ITGGATTATC AAAGGCACGG CTTCCGGCAA TTCGCGCGC CATTTCGTG	
AGGGTGTTBA	GTCCGCACTT	GACAGTTAAT	Tracteren	GGTAAAGGCA	AGTGACTGCA	TGAAACAAC	ACCUTTACAT	TGCGACTGTA	TAAATGTCGG	CAGCGGTTGG AATTTGGATT	CGGGCAAAG TCATCAGCGG CAATGTTTCG	CCGGCAACAA	ACTTCGATGG	TGGGCCCACT	CGCGTTGAAT GTCGCAGCA AGGATGCCAA	GANGGGGATG				CGGCTACTCC	CTTCCGGCAA	CAGTGGTAA
TGGAATATTA	TGTCGATTTC		GANGTTAAAA			GGTTGGAGAA	STCARGCTGA CAAGTTTGAA	AAGGTACAAC			TCATCAGCGG	AACATTAATG		recreece cessecasa	GTCGGCAGCA	ATGTCGCCC GGGCGTTAAA	AAAGGCGTGG CGCAAAACTT	GGCATCGCCC	CGGCAAGAGT	GTTACGCCAT	AAAGGCACGG	CTTCCGCATC TGTCGGTAT CAGTGGTAA
GAATGCGGGT	AATCAGAAAA	AGCGCAGATA	CAAGAGAACC	AAGACGGTAA	ACAGACGAAG	AAACAAGGCT	GTCAAGCTGA	GCTAGTGGTA	CATCACTGTT	AGCTGCAAAA	TCGGGCAAAG	TGAMCCGTC	GTAAAAATAT	TCGCTCGCCG	CGCGTTGAAT	ATGTCGCCC	AAAGGCGTGG	CCCCCTCCN	CGTATCTGCC	GGCGAAGCCG	TTGGATTATC	CTTCCGCATC
651	101	151	801	851	106	951	1001	1051	1101	1151	1201	1251	1301	1351	1401	1451	1501	1881	1601	1691	1701	1751

2

This encodes a protein having amino acid sequence <SEQ ID 6; ORF40a>;

2

LLEATVOAN	SKEFVDPYT	EKT.S PORMS	GSSASHVDA	RIYOTVEFL	KGKGENGSS	VISCINVIE	LDSKAVAGS	SKAPOTSSV	GDVTNOVOT	MATGGGTVB	
MINITALIWN SALMAXVAVS ELTRHHTKRA SATVKTAVLA TLLFATVOAN	ATDEDEEERL ESVORSVVGS IQASMEGSGE LETISLSHIN DSKEFVDDVI	VILKAGDNL KIKONINENI NASSFIYSLK KOLIGLINGX TEKLARIANA	KXVNIISOTK GLNEAKETAG TNGDTTVHLN GIGSTLTOTL AGSSASHVDA	GNXSTHYTRA ASIKDVLNAG WHINGUNXGE TIGOSENVDF VRIYDIVEFL	SADTATTIVE VESKONGERT EVELGARISV INERDGELVT GEGEGENGS	TORGEGIVTA KEVIDAVNKA GWRMKTITAN GOTGOADKFE TVTSCTNVTF	ASGRETTATY SKDDGGHITY MYDVNVGDAL HVNOLONSGW HLDSKAVAGS	SCRVISCAVS PSKCAMDETV MINAGNNIEI SANGKNIDIA TSKAPOTSSV	SLGAGADAPT LSVDDEGALM VGSKDAMKPV RITNVAPGVK KGDVTNVKOT.	KGVAGNIRNA IDNVDGNARA GIAGAIATAG LVGAYLPGKS MARICGITYD	GEACYAIGYS SISDGGHHII RGTASGNSRG HFGASASVGY ON-
ELTRNHTKRA	IOASMEGSGE	NASSETYSLK	THEOTTVHLN	WNINGVIXES	EVKIGAKTSV	GWRAKTTTAN	MYDVNVGDAL	MINAGNNIEI	VGSKDANKPV	GIADAIATAG	KGTASGNSRG
SALHAXVAVS	ESVQRSVVGS	KIKONTNENT	GLNFAKETAG	ASIKDVLNAG	VESKDNGKRT	KEVIDAVNKA	SKDDQGHITV	PSKGRMDETV	LSVDDEGALN	1 DNVDGNARA	SISDCCHAIL
MNKIYRIIWN	ATDEDEEERL	WTLKAGDNL	KXVNIISDTK	GNXSTHYTRA	SADTXTTTVN	TDEGEGLATA	ASGRETTATV	SGRVISGNVS	SLGAGADAPT	KGVAQNLNNR	GEAGYAIGYS
-	22	101	151	201	251	301	351	•	151	105	551
25				;	2				;	35	

The originally-identified partial strain B sequence (ORF40) shows 65.7% identity over a 254aa overlap with ORF40a:

30 ORTVA 11:1	GT :: ENTWAS 120	140 HLNGIG 11111 HLNGIG 190	200 NVDFV
10 20 30 ILLFATVQASANGERGEEDLYLDPYORTVA IIIIIIIII::II:IIII : IIIII ILLFATYQANATOEDEZEELESVQNSY- 50	70 80 FAREITKRAGDNLKIKON 1	120 130 1 SDYGLMFAKETAGTNGDTTVH 	180 190 VLNAGWIKGVKPGTTASD
10 20 30 TILFATVQASANQEEGEELYLDFVORTVA [1][1][1][1][1][1][1][1][1][1][1][1][1][40 50 60 70 80 VLIVNSDREGTGERENVEEN-SDMAVYFNEKGULARRITXRAGDNLKIKOMGT ::::	90 100 110 MFTIGLKROLTDITS/GTEKLSFANGHYPHISOTKGLAFAKETAGTNGDTTVHLAGIG \$111111111111111111111111111111111111	130 160 170 180 190 200 STLDELLATGATINVTHORYI DDEKKRAASVKDVLMAGMNIKGVRGTTASDWYDFY
orf40.pep orf40a	orffO.pep orffOa	orf40.pep orf40a	orf10.pep
9	45		

-65- CCDTHYXQLKCVAQHLEHRIDHVDGHRRAGIAQAIA	480 490 500 510 520 530 540 550 560 570 580 590 VQAYLPEKSMAAIGCCTYRGLAGAAIGYSSISGCHWIRGTASGHYRGHFGASASVGYQ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	orf 10-1. pep wx 11 orf 10a wx Computer analysis of these amino acid sequences gave the following results:	e. Ivpe b surface librils locus of H.Influenzae tily in 251 aa overlap:	TLIFATVQASANGEGGEDLYLDPVQRTVAVLIVBSGXXXXXXXXXBSBAVFFREK 60 TLIFATVQA-A EE LDPV RT VL +SG TLLFATVQA-A EE LDPV RT VL +SG TLIFATVQANATDEDEELDPVVRTAPVLSFHSGREGTEREVTE-BSHGIFDNK 95 GYLFAREITXRGGNLKIKQH	ITSDTKGLMFAKETACTHGDTTVHLAGIGSTLTDTLAHTGAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		(U41852) haf gene product (Haemophilus influenzael Length = 2353 3 (67.7 bits), Empect = 1.5e-116, Sum P(11) = 1.5e-116 = 33/36 (918), Positives = 34/36 (941) 6 VAVSELTRHYTRASATVATATLERTVQANĀT 51 7 VVSELTRHYTRASATVETAVLATLERTVQANĀT 7 VVVSELTRHYTRASATVETAVLATLERTVQANĀT 7 VVVSELTRHYTRASATVETAVLATLERTVGANĀT 7 VVVSELTRHYTRASATVETAVĀT 7 VVVSELTRHYTRASATVETAVLATLERTVGANĀT 7 VVVSELTRHYTRASATVETAVĀT 7 VVVSELTRHYTRASATVETAVLATLERTVGANĀT 7 VVVSELTRHYTRASATVETAVLATLERTVGANĀT 7 VVVSELTRHYTRASATVETAVLATLERTVGANĀT 7 VVVSELTRHYTRASATVETAVLATLERTVGANĀT 7 VVVSETATVETAVLATLERTVGANĀT 7 VVVVSETATVETAVLATLERTVGANĀT 7 VVVSETATVETAVLATLERTVGANĀT 7 VVVSETAVLATLERTVGANĀT 7 VVVSETATVETAVLATLERTVGANĀT 7 VVVVSETATVETAVLATLERTVGANĀT 7 VVVSETAVLATLERTVGANĀT 7 VVVSETAVLATLATVĀT 7 VVVSETAVLATLERTVGANĀT 7 VVVSETAVLATLATVĀT 7 VVVSETAVLATVĀT 7 VVVSETAVLATVĀT 7 VVVSETAVLATVĀT 7 VVVSETAV 7 V	= 1.5e-116, Sum P(11) = 1.5e-116 vea = 36/38 (941) ASSETYSLKKDLTGGINV 138 ASSETYSLKKDLT 1, +V ASSETYSLKKDLTDTSV 140	- 1.5e-116, Sum P(11) - 1.5e-116 Lvcs - 25/29 1041) FKGLWTAKET 166 FKGLWTAKET 167
GSKDANKPVRJTNVAPG	480 4 540 SAU GONT PERSHAIGGGT VOAT PERSHAIGGGT VOAT PERSHAIGGGT SAU	.pop 9% 11 9% alysis of these amino acid se	Homology with Hsf projein encoded by the type b surface fibrils (accession number U41852) ORF40 and Hsf projein show 54% aa identily in 251 aa overlap:		115 ITSDTKGLNFARETAGTNGDTTVHLAGIGSTLIDTLI 1150 GL AK G+ VHLMG+ STL D+ 1156 ITSDAMGLKLAKTGNGRVHLAGLDSTLPDAVT 1175 VKDVLAAGHNIKGVRPGTTASDAVDTVRTYOTVELLA VKDVLAAGHNIKG K++VD V T+ VET++ 210 VKDVLAAGHNIKGARTAGGRVESVDLVSAYMAVETIT	orlio 235 gantsvikekd 245 ktsvikekd Hsf 270 tpktsvikekd 260 ORF40a also shows homology to Hsf:		161 (71.2 bits), E-pect = 1.5e-116, Sum P(1) 101 = 12.738 (841), Positives = 35/38 (941) 101 VILKAGDHIKKQNTBENINASSTTYSLKKOLIGGINV **TIKAGDHLKIKQNT*E**THASSTYSLKKOLI 1.4V 101 ITIKAGDHLKIKQNT*E**THASSTYSLKKOLI 1.5V	110 (40.7 bits), E:pect = 1.50-116, Suites = 21/29 (721), Positives = 25/29 (8) 138 VTEKLSFGANGKKVNISDTKGLNTAKET 166 V+KLS G NG KVNI SDTKGLNTAKE+ 1419 VSDKLSLGTNGNKVNITSDTKGLNTARDS 1467
or f 40a	orf40-1.p	orf10-1.5 orf10a Computer analy	Homology with Hsf protein (accession number U41852) ORF40 and Hsf protein sho	Orf40 1 Haf 41 Orf40 61 Haf 96	. OZÉGO 11 HSC 12 OCEGO 11	orf40 2: Hsf 2: ORF40a also sl	gill66683 (U4 Score = 153 (Identities = Query: 16 V Sbjet: 17 V	Score = 163 Identities Query: 103 Sbjct: 103	Score - 110 Identities Query: 130 Sbjet: 1431
	'n	2	2	70	30	35	40	\$ 8	\$

-66-

Score - 05 (37.6 bits), Espect - 1.50-116, Sum P(11) - 1.50-116 Identities - 10/32 (561), Positives - 20/32 (621)

Query: 169 TWGDTTVHLMGIGSTLTDTLAGSSASHVDAGH 200 T D +HLNG1 STLTDTL S A+ GH Sbjct: 1469 TGDDANIHLMGIASTLTDTLLMSGATTNLGGH 1500

ب

Score = 92 (40.7 bits), Empect = 1.5e-116, Sum P(11) = 1.5e-116

[O Identities = 16/19 (844), Positives = 19/19 (1001)

Quefy: 206 Raasikdylaachnikgvk 224 Raas-Kdylaachn-+Gyk Sbjet: 1509 Raasvkdylaaghvyrgsw 1527

Sbjet: 1509 RAASVKDVLAAGWNAGUK 1527 Score = 90 (19.8 bits), E:pect = 1.5e-116, Sun P(11) = 1.5e-116 Identities = 17/28 (60h), Positives = 20/28 (71h)

~

Guery: 226 STIGOSENVDFVRTYDTVEFLSADTITT 253 S Q ER+DEV TYDTV+F* D TT Sbjet: 1530 SANHQVENIDEVATYDTVDFVSGOKDTI 1557

2

Based on homology with Hsf, it was predicted that this protein from N.meninglitdis, and its epitopes, could be useful antigens for vaccines or diagnostics.

ORP40-1 (61kDa) was cloned in pET and pGex vectors and expressed in E.coll, as described

above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure IA shows the results of affinity purification of the His-fusion protein, and Figure IB shows the results of expression of the GST-fusion in *E.coli*. Purified His-fusion protein was used to immunise mice, whose sera were used for FACS analysis (Figure 1C), a bactericidal assay (Figure 1D), and ELISA (positive result). These experiments confirm that ORF40-1 is a surface-exposed

30 protein, and that it is a useful immunogen.

Figure 1E shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF40-1.

Example 2

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 7>

1 ATGITACOT TGACTGCLIT AGCCCTATIC ACCECCTCE CTTEGGECGE
11 TTCCGCCG ACANTICCG ACTCTGCCCC ACAGCCCAA GACAGCGG
11 TTCCCCCCC ACAACCCCGA AGCCCTCAA CGCATCCCTC
131 GGCTATCCT CAATACCCA AACCCCGAA CGCATCCCC TTACGATT
201 GGCTATCCT CAACCTTCA CAAACTGGG CGTAAAACC GTTTACGATT
201 GGCTATCCT CAACCTTCA CAAACTGGG CGTAAAACC GTTTACAAA
301 CCGCAGCGC TATTACAGG AATATTCAA AACGTTAAA
302 CCTGCCGGCA CTTGTTCG GCCGAAACCCTCA ACGCTACAA
303 CCGCCAGCA CTTGTTCGA GCCGAACCCC CGCCAAGCC TTGACAAAT
401 TGAACGAAAT CGCCCCCAC ATGGTATAC ACCCAAACC
451 AAAGAAAGTG CCAATGGAACCCGC CGCCAAACC
452 AAAGAAAAGTG CCAATGGAACCCGC CGCCAAACC
453 AAAGAAAAGTG CCAATGGAACCCGC CGCCAAACC
454 AAAGAAAAGTG CCAATGGAACCCCCAAACCC
455 AAAGAAAAGTG CCAATGGAACCCCCAAACCC
456 AAAGAAAACTT CC.

35

\$

431 AMMEANING CCANTENNECT TC..
This corresponds to the amino acid sequence <SEQ ID 8; ORF38>:

8

MERLTALAVC TALALGACSP ONSDSAPOAK EGAVSAADTE GASVTVKTAR GDVOIPONPE RIAVYDLGML DTLSKLGVKT GLSVDKNRLP ILLEFFKTTK PAGTLEEPDY ETLAAKNEQL IIIGSRAAKA FDKLREIAPT IXXTADTANL

KESAKEASTL AQIP.. 1 101 151

Further work revealed the complete nucleotide sequence <SEQ ID 9>;

~

GGTTTGTCCG AACGACAAAA ACCCTTACAA TTTGACAAA T TEACTGCTTT AGCGTATGG ACGGCCCTGG CI SG CANANTICGG ACTGGCCCG ACAGGCCAA, GA FG ACANACGGA AGCGGTGG TTACGGTCAA, AN COMMANGGGA ANACCGGAA, GGGATGGCG C GACACTTGA GCAAACTGGG GGTGAAAACG A CGGCTGCCG TATTTAGAGG ANTATTCAA AN CTTGTTGG GCGGGATAC GAACGCTCA ATCATCATCG GCAGCGCC CGCCAAGGC TGACTGCTTT / CAAAATTCCG / ACAAACCGAA C ATGTACGTT
GTGTCGCCG
TTTCCGCCGC
GGCGACGTTC
GGGTATGCTC
TCGATAANAA
CCTGCCGGCA
CCTGCCGGCA

2

TCTTCGGCAA TCTTTTGAAG GATTTTGGTC attaagaag Gaaaatccc Aagaggtca FGGCGGCTG CGCCAACCTC ACAACCGCTT CGCGCCGACC ATGGAATGA CCGCCGATAC CCAAAGAGGG CATCGACGCG CTGGCGGAAA GCCGACAAGC TGAAGGCGGA AATGGACGG TCTTCACGCT GAATGCAAGC AAACAGGTTG GGTAAGGGCA AAGGTTTGGT ACCTGAAAGA **GCCATCGGCG** GACGTGTTGG ATAATCCGCT GGTTGCCGAA TTCCGCCCC TTCCCGCTGT C TCAGCCTATC AGCTTTGAAT CCGAAGCGCG TACCTCGTTC IGCCGCACAA TTGTCCTTGA GGANAAAGG ACAGGTCGTG GGTGGCGCG AAGAGCTGCT AGATGTCGGC GACATCGGCG ACCGCAGCTC A AACGGCGGCA AGCTGCACAAA G AAAGAAAGTG ACAGGGGGAA GCAGCCACGG CCGCGAAAC GCCGCCGAAA TAACGCGGCA

2

2

This corresponds to the amino acid sequence <SEQ ID 10; ORF38-1>;

HIRLTALAVC TALALGACSP QNSDSAPQAK COAVSAAQTE GASTYKTAR GDVQIPQHPE KIAVYDLGAL DTLSKLGVYT GLSVDKNRLE TLEETEKTTK PAGLLEEDU TTLANKKOL LIIGSRAAKA FOKLAELAPT IEHTADTANL KESAKERIDA LAQIFGKORE AOKLAELDA STEARKTAAQ GKKKLUVLLY MGGKKSAFTG SSRLGGELLK DIGVPAVDES IKRGSHQDV SFEYKEKNP D#LFVLDRSA AIGZEGQAAK DVLDNFLVAE TTAWKKGOVY YLVPETYLLAG GGAQELLHAS KQYADAFNAA K* 201 201 201 201 201 201

8

Computer analysis of this amino acid sequence reveals a putative prokaryotic membrane

lipoprotein lipid attachment site (underlined) 33

Further work identified the corresponding gene in strain A of N.meningitidis <SEQ 1D 11>;

. ACCGCCTCG CTTTGGGCGC C ACAAGCCAAA GAACAGGCGG G TTACCGTCAA AACGGGGGGC GGTTTGTCCG AACGACAAAA ACGCTTACAA AAACCCCGAA CGTATCGCCG GCAAACTGGG (TATTTAGAGG) TGACTGCTTT AGCGTATGC CAAAATTCCG ACTCTGCCCC GGCGTGTCCG ATGTIAGGT TEACIGCTT A
GTGTIGGGG CANATTCG N
TTCGGGGG ACANTCGAN OF
GGGANTGTC ANATACCGCN
GGGANTGCT GACACCTGN
TCGATAMAN CGGCTGCCG T \$

TTTGACAAAT CGCCAACCTC TCTTCGGCAA CTTTTGAAG A GCAAACTGGG CGTGAAAACC GG
G TATTAAAGG AATATTCAA AA
A GCCGGATTAC GAAACGCTCA AC
G GCAGCGGGG AGCCAAGGG
C ATCGAATGA CGCCGATAC
G TATCGAATGA CGCCGATAC
G TATCGACGC CTGCCGAAA
TG C IGAAGGCGA AATCAACGG TC A GGCAAAGGCA AGGGTTTGGT GA C CTTCGGCCG TCTTCACGAC TG G TTCCGGCTGT TGACGAAGCC AT AAAGAAAGTG CCAAAGAGCG AAAGGCGGAA GCCGACAAGC CCGCGAAAAC TGCCGCGCAA CCTGCGGAA CTTTGTTGA ACCGCAGCTC ATCATCATCG TGAACGAAAT CGCGCGACC AACGGGGCA AGATGTCCGC GACATCGGCG GCTGCACAAA

45

S

ACAACCGCT7 ACCTGAAAGA GCCATCGGCG GGTTGCCGAA GACGTGTTGA A GCAGCCACGG 1 GACTGGCTGT 1 GGCGGCGAAA 0

The originally-identified partial strain B sequence (ORF38) shows 95.2% identity over a 165aa PCT//B99/00103 HIALTALAUC TALALGAĞSP GRSDSABGAK KGAVSAAGSE GVSUTVKTAR GDVQ1PQRER RIAVYDLGAL DTLSKLGVKT GLSVORNALP ILLEFEKTIK PAGITERBUY ETANTRÜQI IIGSRAKK FDKLAEIAPT IEHTADTAKL KESAKERIDA LAQIFGKÇAR ADKIKARIDA SFRAMTAAG GKGKLVILV HGÖKNSARTƏ SSALGGRÜPK DIGYPAVDEA IKGGSHGQPI SFFYKEKNY DWLFVLDRSA AIGEKGAĞAK DVLAHPLVAR ITANKKGOV ILVPETYLLAA GGAQELLANS KQVADARÇA K** TACCTIGITC CTGAAACTTA TITGGCAGCC GAATGCAAGC AAACAGGTTG CCGACGCTTT This encodes a protein having amino acid sequence <SEQ ID 12; ORF38a>: GGAMANAGG ACAAGTCGTT GGTGGCGGG AAGAGCTACT TAACGCGGCA AAATAA overlap with ORF38a: 851 901 951 orf30.pep orf38a

2

The complete strain B sequence (ORF3k-1) and ORF38a show 98.4% identity in 321 as overlap: riavydlgkldt.Skå.Gvktgl.Svdkrlpyleetfrttrpagtlfedyetlnavkpgl i i i gsaara foklinė i apt i entaotarike sakeri dalagi fgekaradakleae i da SFEYLKERNPDØLFV¦DRSAAIGEEGQAAKOVLRNPLVAETTAWKKCOVVYLVPETYLAA spraktarggkokg¦vilvhogkmsa popssrlog#lhkdigvpavdra i kegshgqpi riavy dlohlotlskløvktgi svoknrlpy leet ekt tkpagt leedy et laay kpgl Sfeaaktaaqgkgkglyilvnggrasafgpssrlggvlhkdigvpavdeatkegshgqpi 92 130 | 140 150 160 IIIGSRAAKAFDKLHEJAPTIXXTADTANLKESAKE-ASTLAQIP 80 220 8 210 80 20 RIAVYDEGNEDTESKE 2 8 orf38a.pep orf38a.pep orf38s.pep orf18a.pep orf38a.pep orf38.pep orf18.pep orf38a.pep orf38-1 orf38-1 orf38a orf38-1 orf38-1 orf38-1 orf38a 2 ឧ 22 2 35 \$ \$ 8 S

	-	
	-69-	PCT/0899/00103
	of (38-1 GGAQELĻNASKQVADAFNAAK	
	Computer analysis of these sequences revealed the following:	20:
	Homology with a lipoprotein (lipo) of C. lelunl (accession number X82427)	number X82427)
	ORF38 and lipo show 38% as identity in 96 as overlap:	
S	Or (18: 40 EGASVTVKTARGDVQIPQNPERLAYVDLGMLDILS\LGWKTGLS-VDRNLPYLEZYFKY 98 EG S VK + G+ + F+ + DLG-LDT L + ++ V LP + FK Llpo: 51 EGDSFLVKDSLGENKTPRAPSKVVILDLGILDTFD\LKHDKVAGVPAKNLEWFVLQQFRN 110	LGVRTGLS-VDRNILPYLEZYPRT 98 L + ++ V
2	Orfig: 99 TRPAGILFEPDYETLMNYRPQLIIIGSRAMKAFDK, G + 0+E +NA KP LIII R +K +DKF Lipo: 111 KPSVGCVQOVDFRINALKPDLIIIGGROSKFYDK	134
	Based on this analysis, it was predicted that this protein from N.meningilidis, and its epitopes, could be useful antigens for vaccines or diagnostics.	rom N.meningiildis, and its epitopes,
	ORF38-1 (32kDa) was cloned in pET and pGex vectors and expressed in E.coll. as described	nd expressed in E.coll. as described
2	above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure	were analyzed by SDS-PAGE. Figure
	2A shows the results of affinity purification of the His-fusion protein, and Figure 2B shows the	on protein, and Figure 2B shows the
	results of expression of the GST-fusion in E.coli. Purfited His-fusion protein was used to	ied His-fusion protein was used to
	immunise mice, whose sera were used for Westem blot analysis (Figure 2C) and FACS analysis	lysis (Figure 2C) and FACS analysis
۶	(Figure 2D). These experiments confirm that ORF38-1 is a surface-exposed protein, and that it is	surface-exposed protein, and that it is
₹	B usciui immunogen.	
	Figure 2E shows plots of hydrophilicity, antigenic index and AMPHI regions for ORF38-1.	ind AMPHI regions for ORF38-1.
	Example 3	
	The following N. meningitidis DNA sequence was identified <seq 13="" id="">:</seq>	d <\$EQ ID 13>:
23	1 ATGAAGTTC TGACCACGG AATCCTGTCT TCOG 51 TATGGCTGC GCCGCTGGCA GGACAACC CACT	TOCCANTOS COCTCAGGAG CACTGTTGCA MANANACCG
8	ACAMORGO GTCGACCA ATACCTTOC CGTGCAMG GTCTGATT TGGACAATC AGGCAMGA AGGCGCTAT GTTTGGGTA TCCTACGGCA ACAGCGCTAT STTGGTA TTCAAGGGA GTTACACA GTTA	
	ds to the amino acid seque	ORF44>:

PCT//B99/00103

Further work identified the corresponding gene in strain A of N. meningitidis <SEQ ID 15>;

٠.	A MINAMALITY TOACCACCE MATECTISTET TEGGCAATEG CGCTCAGCAG	TOACCACCGC	MICCIGICE	TCCCCATCG	CGCTCAGCAG
5	TATEGETECT GETECEGER CGARCARCE CACCGTTGC ANAMARCES	GCTGCCGGCA	CGAACAACCC	CACCGTTGCC	AAAAAAACCG
101	TCAGCTACGT CTGCCAGCAA GGTAAAAAAG TCAAAGTAAC CTACGGCTTT	CTGCCAGCAA	GGTAAAAAG	TCAAAGTAAC	CTACGGCTTT
151	AACAAACAGG	GCCTGACCAC	ATACGCTTCC	GCCGTCATCA	AACAAACAGG GCCTGACCAC ATACGCTTCC GCCGTCATCA ACGGCAAACG
201	TGTGCAAATG	CCTGTCAATT	TGTGCAAATG CCTGTCAATT TGGACAAATC CGACAATGTG GAAACATTCT	CGACAATGTG	GAAACATTCT
251	ACGGCAAAGA	AGGCGCTTAT	GTTTTGGGTA	CCGGCGTGAT	ACGGCAAAGA AGGCGGTTAT GTTTTGGGTA CCGGCGTGAT GGATGGCAAA
301		AACAGCCTAT	TATGATTACC	GCACCTGACA	ACCAAATCGT
351		TGTTCCCCAC	GTTAA		

This encodes a protein having amino acid sequence <SEQ ID 16; ORF44a>;

2

.1 MKLLTTAILS SAIALSSHAA AAGTHNPTVA KKTVSVUCOG GKKVKTVGF 51 KKGGLTTTAS AVINGKRVQH PVNLDKSDNV ETFYGKEGGY VLGTGVHDGK 101 SYRKQPIHIT APDHQIVFKD CSPR*

The strain B sequence (ORF44) shows 99.2% identity over a 124aa overlap with ORF44a:

 ≌	orff4.pep	10 20 30 60 HKELTTAILSSAIALSSHAAAAGTDNPTVAKKTVSTVCQQGKKVKVYTVGFHKQGLTTVAS	20 SSMAAAAGTDI	30 APTVAKKTVS	30 40 IVAKKTVSYVCQQGKKVI	SO KVTYGFNKQG	60 LTTYAS
20	or£468		SSHAAAAGTNI 20 20	HIIIIIII VPTVAKKTVS 30	11111111 rvcqqqrrv 40	111111111 KVTYGENKOG 50	111111 111111 60
	orf44.pep	70 80 100 110 120 AVINGENOMENTALDKSDAVETFTGKEGGYPLGTGWDGKSYRKQPIMITAPDWQIVFKD	80 KSDNVETETGE	90 KEGGYVLGTG	100 VHDGKSYRK	110 DPINITAPDNO	120 31VFKD
52	orf44a	- AVINGRAQUEVILDESCHUETFIGEGGVVGTGVHDGKSYRRQEIHITAPDINGIVEND - AVINGRAQUEVILDESCHUETFIGEGGVVGTGVHDGKSYRRQEIHITAPDINGIVEND - 10	KSDNVETFYG BO	(EGGYVLGTG	MDGKSYRK 100		11.11.1 120 120
•	orf44.pep	CSPRX					

Computer analysis gave the following results: 유

CSPRX

016448

Homology with the LecA adhesin of Eikenella carrodens (accession number D78153)

ORF44 and LecA protein show 45% as identity in 91 as overlap:

Off44 33 TVSTVCQQGKKYKYTYGFHKQGLTTYASAVINGKRVQHPVNLDKSDHVETFTGKEGGYVL 92 +V+YVCQQG+++ V Y FN G+ T A +H +++P NL SDNV-T + GY L L-CA 135 SVAYVCQQGRLEVVYRFHSAGVPTSAELRVNHAMLRLPYHLSASDHVDTVF-SANGYRL 193 Orf44 93 GTGVMOGKSYRKQPIMITAPDHQIVFKDCSP 123 T MD +YR Q I++AR+ Q+++KDCSP 194 TTNAMDSANYRSQDIIVSAPNGQMLYKDCSP 224 Leck 35

Based on homology with the adhesin, it was predicted that this protein from N. meninglitdis, and its epitopes, could be useful antigens for vaccines or diagnostics. \$

ORF44-1 (11.2kDa) was cloned in pET and pGex vectors and expressed in E.coll, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 3A shows the results of affinity purification of the His-fusion protein, and Figure 3B shows the results of expression of the GST-fusion in E.coli. Purified His-fusion protein was used to

45

Computer analysis of this amino acid sequence predicted the leader peptide shown underlined.

HKLLITAILS SAIALSSHAA AAGTDHPTVA KRTVSTVCOQ GKKVKMTGP NRQGLITTAS AVINGKRVQH PVNLDKSDKV ETFYGKEGGT VLGTGVHDGK STRKQPINII APDVQIVFRO GSPR*

- 2 5

33

÷

PCTAB99/00103

.

immunise mice, whose sera were used for ELISA, which gave positive results, and for a bactericidal assay (Figure 3C). These experiments confirm that ORF44-1 is a surface-exposed protein, and that it is a useful immunogen.

Figure 3D shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF44-1.

Example 4

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 17>

AGGCAGGGT GGCATCGTA CGTATGGCAA TACCAGGTT TAATGGCGG GGCCAAACAG ACTGAACTG CAGGAAGGC CGTGGTCAC	
GGCACCGAT TCANANCEAC CCTITCCGGA GCCGACATAC AGCAGGGGT GGGTAAANA GCCGACGACGG ATGCGANAT ATTCCTANA GCCATCGTA ANCCGATCCA ANCCGANGA ANGCTGGAT CCANCTGCAC CCTATGCGAA ANGCAGCGG GANCGCATGA CGC TCCGGGGGC TATATGCCAG ACATCCCCAA AGGTACTC ANACGGAT TGANAGCG TATATGCCG ACATCCCAA AGGTACTC ANACGGAT TGANAGCG TGCCAAACA GCGGAATAT CCTATGTGA ACACTTCAG ACGTCAACA GACCAATAT CAGCCAATA AGGTAATAG AGGTAACT TATAGGGGGG CGATTGCGC TGGCCGTAAG AGGTAACA TGAGCGGAG CGGAGGCCCA ATANACGCA TGGCCGTAAG AGGTAACT TATAGGGGGG GAACGGCCC ATANACGCA TGGCCGTTAC CTGGTCACC TATAGGGGGG GAACGGGC ATANACGCA TAGACGTAC CTGGTCACC TATAGGGGGGG GAACTGGAA TANANCGAC TGGCCGCGC CCCAACCGAT GACCATTGGA TTANACGAG TGGCCGCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
CCTTCCGGA ATGCGAAAT AAGCTGGAAT CCGGTTGAA AGCTGACGC AAACCGAAA ACAGCTTCAG ACGCAAATG ATANCGGAC CGTATTGGGA	
GGCACCGAT TCAAACCAC GGGTAAAA GCCGGGCG A ACCGGTACAA ACCGGAGAA AAGCAGGCG GAGCGGCA TCAAGGGCG GAGTGCTA ACTGCCCA AGGAACTT AACCGAATT CCTATTGAA AACCAAGG CGAACCGCA FAACCGAG CGAACCGCA AACCGAG CGAACCGCA TAACCGAG CGAACCGCA A	;
GGCACCGANT TCANANCAC CCTTTCCGA GCCGACATA AGCAGGGG GGTTGANAN GCCGAGGCO AGGGGAANT TATCCTANAN GGCATCGTTA ACCGCATCCA ACCCGAGC AGGGGAANT CCANATCGACA AACAGGCG GAACGGCAG CACGGTTGAN ACCTGAAC CTATACGCAG AAAGAGCG GAACTGCTA AGCTGACC TCCGGGGGC TATATCGCG ACATCCCAN AGGAACTC ANANCGANA TCGANAGGG GCCTANAGG CCGANTATC CTTATCTGAN ACAGCTTCAG AGGGAACAGG CCGANTATC CTTATCTGAN ACAGCTTCAG AGGGAAGAG GAACCAAGGA CAGGTCCAT ACGACANATG GACTATANA CAGGAAGGC TATCCGGAC GGAGCCGCA ATTANGGCAC TGGCCGTTAC CTGGTCAAC CGCAACCGAT GAGGCCGCAC CTATAGGGA TTANNAGGHG TGGCCGCGC	
101 101 101 101 201 201 201 301 401 401 401	•
	i

This corresponds to the amino acid sequence <SEQ ID 18; ORF49>;

~

GTEFKTILSG ADIQAGVGEK ARADAKIILK GIVNRIOTEE KLESHSTVHO	KOAGSGSTVE TLKLPSFEGP ALPKLIAPGG YIADIPKGNL KTEIEKLAKO	101 PEYATLKOLO TVKDVNWNOV QLAYDKHDIK OEGLIGAGAA TXALAVTUVT	
ARADAKIILK GIVI	ALPKLIAPGG YIA	PLAYDKWDYK OEG	
ADIQAGVGEK A	TLKLPSFEGP /	TVKDVNWNQV (CCACTCAVIC TYDVARATOR
GTEFKTTLSG	KOAGSGSTVE	PEYATLKOLO	CONCRETATION
-	2	. 101	151
;	97		

Further work revealed the complete nucleotide sequence <SEQ ID 19>;

	GGGGGGCT TGGGGGGGT AMGCTGGC AMACGGCG TCAGGGCG GACTGGAAC TCAAGGACG GACTGGAAC TATAAACAG AAGGCTAAC GGTACGGG GTCACCTCAG ACGTGGGC GTCACCTCAG	GTACACCT CANGACTO GCCAAGCA GTECCGTC CTACCGCAG CGTACCAC GAACAMITT AGGATAAG AGTGATCA CCAATGCGG CATGCCAC TGATTAATA	GCATGGAGA GCATAGAGA AAGGGAAGT TGGCGAAACC ACAGGGCAAA GCGTTGAGTA
25 51 102 103 104 104 104 104 104 104 104 104 104 104	35 501 651 651 701 701	40 601 601 851 901	45 1051 1051 1101 1101 1201 1201

	ACATATACA CATAMAAAA 10 8cid seque	1 MOLLAAZGIN GROLNVOKST RFIGINVOKS RYSKRELMEF KLPVAVIAGT 51 ARTRGOUTY LEGTERING SADALOANGI EKRALAAKI LKRIVARIQT 100 ERKLESHSTV DUKAGSGST VETLARPER GALARIAND GGITAOTPEG 151 MLNTEIRKLA KOPETATLAQ LGTYKOPURH GVOLATOKNO YKREGITAA	ANTILATY YSCACTCAN LGLACAAAA TDAFASLAS GHIGHTLREL GRSSTYRICH AVNIACYAN KIGASALHVY RIAMAGSAA LINTAVNGGS LKONLERILL AALVATAGE HIAMKINA LACCAAAAN KOKOOGAIG AAVESLIGET WKDAAKIIA KAKLAAGAVA ALSKGDVSTA ANAANAVEN	431 LSGWAACAS AGAREFEE TRPLGLPHFY SPSCEHKLPH FFONRHYNGK 401 LINTRNGNY YFSVGKINSF VKSTKSHISG VSYGWTLAVS PHOYLKEASH 531 HDFRNSHQNK AYAZHISGTL VGESVGGSLC LTRACFEVSB TISKSKSPFK 601 DSKLIGGLG GSGWAAGVEK TITIGHIKDI DKFISANIKK *	Computer analysis predicts a transmembrane domain and also indicates that ORF49 has no significant amino acid homology with known proteins. A corresponding ORF from N.meningitidis strain A was, however, identified:	ORF49 shows 86.1% identity over a 173aa overlap with an ORF (ORF49a) from strain A of N. meningitidis:	GTERNITAGEDORGGERNADMETILK	40 50 60 70 80 90 90 90 90 90 90 9	100 120 130 140 150 130 140 170 130 140 140 140 140 140 140 140 140 140 14	160 170 SGAGTGAVLGLKRVAAATDAAF 11111111111111111111111111111111111
s 0	This corre	S	20	25	Computer significant stain A we	ORF49 show meningitidis:	35 orf49.	40 orf49.	45 or 149. pep or 149a 50	orf49.pep orf49.

P. D. T. IROGERATOR	220 230 240 250 260 270	ORF49-1 and ORF49a show 83.2% identity in 457 as overlap:	Orf490.pep XQLLARECHRHRELDVQKSRRFIGIRVGKSNYSKQELNETKLPVRVAQXAATRSGRDTV 	Orf49a.pep LEGTEFFTLAGADIQAGVEKARVDAKILKGITARIGSEKLETHSTVWGKQAGRGST 	OF (49a.pop IETLALPSFESPPPRISAPGGYIVDIPKGNIKT FIEKISKOPETAYLKOLGVARNINTH :	off49a.pep OVGLAYDR#DYKQEGLTGAGAAIIALAVTVŸSGLGTGAVLGLAGAXAATDAAFASLAS 	Off49e.dep Qasvbfinhkddvgktlkelgbsstvrilvyaar adyadkigasalxhysdkqbirhlt 	OF [192.pep VALAHAGSAALIHTAVAGGSLKDXLEANILAALVOTAHGLAASHIKQLOQHYIVHKIAHA 	Orf49s.pep IAGCAAAANKGKCQDGAIGAAVGIIVGEALHGGPPDIIAREREQILAYSKLYAGTVS	Orf490.pep GVVGGDVRAAAHAEVAVKHQLSDXEGREFDKEHTACKQHXPQLCRKHTVKKTQHVAD :: :	of (490.pep krlaasia) ctdisrstechtirkohlidsrslassverglickodevklesksttoad	or(49-1 SUSCEMILPHATEGRANDINGRITHTRAGHYPTSUGKTHESTURSTHISGUSUGUTHUS The complete length ORF49a nucleotide sequence <seq (d="" 21=""> is;</seq>	1 INTECANETEC TEGERADAGA MEGENTECERE ANGELEGAGT TEGATETECA \$1 ANAMACECEC CETTINING GENTENEGT MEGINAGE ANTRICIGA 101 ANAMEGAMET GANGENALE ANATTECETE TECEĞETECT COCCUMNIT 111 GENGECHECE GITLEGECTE GENTALEGTE CTECHAGETA CCENTICAN 201 ANCENCETE GEGEGETECE MENTENAGE GANAMAGECE	131 GTGTGATGC GAAATTATC CTCAAGGCA TTGTGAACGG TATCCAGTCG 101 GAAGAAAAT TAGAAACCA CTCAACGTA TGGCLGAAAC AGGCGGACG 131 CGGCAGCAT TGCAAACGC TAAACTGCC CAGCTTCGAA AGGCCTATTC 401 GGCCAAATT GTCGGACCC GGGGGATATA TGGTGACAT TCCGAAAGGC 431 AATCTGAAAA GGAAATGGA AAAGGTGCC AAAAAGGCCA AATATGCCAA	TCTGAAACAG CTCCAAGTAG CGAAAACAT CAACGGAAT TTGCTTAGGA CAGAGGGC TACAAACAGG AGGGTTAAC GGGGGGTTA TCGAATGGC CGTTAGCGTG GTCAACTCAG CGGAAGCGTA TTGGAATTAA AGGGTGGAC CGCCGCGCACA CATGGCCTA TTGGAATTAA AGGGTGGAC CGCCGCCGCA	GGCGNIGTOS GCNAACCCT GAAGACTE GCCAAACA AANTCIGGIG GTTGCGGCG CTACCGCAGG CGTAGCCGA CTGGGCACT GARCANTGC GACGARAGA ANGTON GTCAACCTA CCANTGCGG CAGGCCGAG GATATAAA CGGCGGCAC CTGAAAGAA NTCTGGAAG GATATCTT TCANTACGC GCTGGAGA GAGCCCAGTA AANTGAAACA
ı			~	9	2.	2	2	23	۶	3	35		40	45	80.	55

-74-

PCT//899/00103

	1051	CACTACATAG	CACTACATAG TCCACAAGAT	TGCCCATGCC ATAGCGGGCT	ATAGCGGGCT	GTCCGCCACC
	101	GGCGGCGAAT	GGCGCGAAT AAGGGCAAGT	GTCAGGATGG	GTCAGGATGG TGCGATAGGT GCGGCTGTGG	GCGCTGTGG
	1151	GCGAGATAGT	CGGGGGAGGCT	TTGACAAACG	GCAAAAATCC	TGACACTITO
•	1201	ACACCTAAAG	ICAGCTAAAG AACGCGAACA	GATTTTGGCA	TACAGCAAAC	1661166666
~	1251	TACGGTAAGC	PACGGTANGE GGTGTGGTCG	GCGCCCATGT	AAATGCGGCG	
	1301	CTGAGGTAGC	TGAGGTAGC GGTGAAAAT	AATCAGCTTA	GCGACNAAGA GGGTAGAGAA	GGGTAGAGAA
	1351	TTTGATAACG	AAATGACTGC	ATGCGCCAAA	CAGANTANTC CTCAACTGTG	CTCAACTGTG
	1401	CAGAAAAAT	ACTGTAAAA	ACTATCAAAA		MANGACTTG
•	1451	CTGCTTCGAT	TCCAATATGT	ACGGATATAT	CCCGTAGTAC	TGAATGTAGA
2	1501	ACAATCAGAA	AACAACATTT	GATCGATAGT	AGAAGCCTTC	
	1551	GGAAGCAGGT	CTAATTGGTA	AAGATGATGA	ATGGTATAAA	
	1601	AATCTTACAC	CCAAGCAGAT	TTGGCTTTAC	AGTCTTATCA	
	1651	GCTGCTAAAT	CTTGGCTTCA	ATCGGCCAAT	ACAAAGCCTT	TATCCGAATG
:	170	GATGTCCGAC	CAAGGTTATA	CACTTATTIC	AGGAGTTAAT	CCTAGATTCA
2	1751	TTCCAATACC	AAGAGGGTTT	GTANACAM	ATACACCTAT	TACTAATGTC
	1801	MATACCCGG	AAGGCATCAG	TTTCGATACA	AACCTAHAAA	GACATCTGGC
	1881	AAATGCTGAT	GGTTTTAGTC	AAGAACAGGG	AAGAACAGGG CATTAAAGGA	
	1901	GCACCAATHT	TATGGCAGAA		GAGGAGGANG	NGTAAAATCT
•	1951	GAAACCCANA	CTGATATTGA		AGGCATTACC CGAATTAAAT	ATGAGATTCC
07	2001	TACACTAGAC	AGGACAGGTA	AACCTGATGG	TGGATTTAAG	
	2051	GTATAAAAC	TGTTTATAAT	CCTANANAT	TTTHMBATCA	TAAAATACTT
	2101	CAAATGGCTC		TTCACAAGGA	TATTCANAG	CCTCTAAAAT
	2151	TGCTCAAAAT	GAAAGAACTA	AATCAATATC	GGAAAGAAAA	AATGTCATTC
,	2201	MITCTCAGA	AACCTTTGAC	GGAATCAAAT	TTAGANKHTA	TWTWGATGTA
7	2251	AATACAGGAA	AATACAGGAA GAATTACAAA	CATTCACCCA	GAATAATTTA	<

This encodes a protein having amino acid sequence <SEQ ID 22>;

	-	XQLLAEEGIH	KHELDVQKSR	RFIGIRVGXS	XOLLAEEGIH KHELDVQKSR RTIGIKVGXS NYSKHELHET KLPVRVVAOX	KLPVRVVAOX
	٠ د	AATRSGWOTV	LEGTEPRITL	AGADIQAGVX	AATRSGWOTV LEGTEPRITL AGADIQAGVX EKARVDAKII LKGIVNRIOS	LKGIVHRIOS
;		ECKLETHSTV	WOKGAGRGST	IETLKLPSTE	EEKLETHSTV WOKQAGRGST IETLKLPSTE SPTPPKLSAP GGYIVDIPKG	GGYIVDIPKG
8	151	HLKTEIEKLS	KOPETAYLKO	LOVAKNINNR	NLATEIEKLS KOPEYAYLKO LQVAKNINWN QVQLAYDAND YKQEGLTEAG	YKOEGLTEAG
	. 201	AAIIALAVTV	VTSGAGTGAV	LGLWGAXAAA	AAIIALAVTV VTSGAGTGAV LGLAGAXAAA TDAAFASLAS QASVSFINNK	OASVSFINNK
	251	GDVGKTLKEL	GRESTVKNLV	VAAATAGVAD	GDVGNTLKEL GRSSTVKNLV VAAATAGVAD KIGASALKNV SDKQWINNLT	SDKOWINNLT
	301	VNLANAGSAA	LINTAVNGGS	LKDXLEANIL	VNLANAGSAA LINTAVNGGS LKDXLEANIL AALVNTAHGE AASKIKOLDO	AASKIKOLDO
;	351	BYIVHKIAHA	INGCARARAN	XGKCQDGA1G	HYIVHKIAHA IAGCARARAN KEKCODGAIG AAVGEIVGEA LINGKAPDTL	LTINGKNPDTL
35	1	TAKEREQILA	YSKLVAGTVS	GVVCGDVKAA	TAKERECILA YSKLVAGTVS GVVCGDVNAA ANAAEVAVKN NOLSDXEGRE	NOLSDXEGRE
	15)	FDNEMTACAK	ONXPOLCRION	TVKKYGNVAD	FONENTACAK GNYPOLCRKN TVKKYGNVAD KRLAASIAIC TDISRSTECR	TOISRSTECK
	501	TIRKOHLIDS	RSLHSSPEAG	LIGKDOEWYK	TIRKOHLIDS RSLHSSWEAG LICKDOEFYK LESKSYTOAD LALOSYHLNT	LALOSYBLWT
	\$51	AAKSWLQSGN	TRPLSEWMSD	QCYTLISGVN	RAKSWLOSGN TRPLSERMSD QCYTLISGVN PRFIPIPRGF VKQNTPITNV	VKCHTPITHV
:	. 60	KYPEGISPDE	NLXRHLANAD	GPSQEQGIKG	KYPEGISFDT NIXHILANAD GPSQEQGIKG AHNRINXHAE LUSRGGKVKS	LHSRGGKVKS
0	651	ETXTDIEGIT	RIXXEIPTLO	RIGKPDGGFK	CIXIDIEGIT RINYEIPTLD RIGHPEGER EISSIRTVYN PKKRYDDRIL	PKKFXDDKIL
	107	OMAQXAXSOG	YSKASKIAQN	ERTKS I SERK	YSKASKIAQN ERTKSISERK NVIOFSETFO GIKFRXYXDV	GIKFRXYXDV
	151	WTGRITHIRP E.	L			

Based on the presence of a putative transmembrane domain, it is predicted that these proteins from N.meninglitdis, and their epitopes, could be useful antigens for vaccines or diagnostics.

Example 5

45

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 23>

GCCGTAGTCA CCGTAGTCC TCATTCCGAT AAGSGARAG CCTTTGTCCA CCCAACGCAT TGGCTGCTGA TTTTCTGCC TTCGCCATAT TTGTCGCCA TGTTCCAATC TACATTCGCA GGARAG GARAG GGARAG G
GGATGGITG INGGITIGGG GATTICTICG GCCGTAGTCA CCGTAGTCC ANGTATAACC CAAGGCTTG TCTTCGCCTT TCATTCCGAT AAGGGATAG ANGTITGGG GGATATGAT ECCGCTTT TGGTGCCTA ITTTCTGC ATTGCCCTG GGATTCTGAT TGCCGCTTT TGGTGCTTA ITTTCTGC TTCCGTTTT TCAACTTCC GTTGAGGGC TTGGCGATAT TGTTCGCCA AGGCCATTG TTTCGGATGC AGGTGCCTA TGTTCCAATG TACATTGCAA
GGATGGTG TAGGTTGCG GATTCTTGC G MGTATAACC CAAGGCTTG TCTTCGCCTT T NCGCTTGG GGATTCTGT TGCCGCTTT T TCCCGTTT TCAACTTCG GTTGAGGC T TCCCGTTT TCAACTTGC ACCTGAGGC T NGCCATTC TTTCGAATG ACCTCCTTT G
TAGGTTTGCG CAAGGCTTTG GGATTCTCAT TCAACTCCG TTCGATGC CACCACCACT
GGGATGGTTG TAGGTTTGCG GATTCTTGC GCCGTAGTCA CCGTAGTCCC ANGTATAACC CAAGGCTTTG TCTTCGCCTT TCATTCCGAT AAGGGATATG ACGCTTTGGT CGGTATAGC GTCTTGGGAA CCTTTGTCCA CCCAACGCAT ATCTGCTGC GASTTCTCA TGCCGCTTT TGGTGCTTA TTTTCTGCC ATCTGCGTTT TCAACTTCC GCTTGAGGGC TTGGGCGTAT TGTTCGGCCA ACGCGTTTC TTTCGATTC ACGCCCTA TGTTCCAATC TAGATTCGCA CCCACCACA CACACCACT ACCACCAGTT GCATAG
201 201 201 201 301

8

-75-

DCT/100

-92-

This corresponds to the amino acid sequence <SEQ ID 24; ORF50>;

1 ..RIVVOLRISC AVVIVVPBIT OGFVFAFRSD KGYDALVGIA VLGFVHPTH 31 <u>iclriliaas Wllifil</u>sef Stsrirasay Lsanaisfig Scllfostfa 01 pttapplepv a*

Computer analysis predicts two transmembrane domains and also indicates that ORF50 has no significant amino acid homology with known proteins.

Based on the presence of a putative transmembrane domain, it is predicted that this protein from *N.meningtitdis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 6

The following partial DNA sequence was identified in N. meningtitidis <SEQ ID 25>

	-	AAGITIGACI IIACCIGGIT IATICCGGGG GIBBICEBBI BOCGCOCCER	TIACCTGGTT	TATTCCGGCG	GTABTCLABT	800000000000000000000000000000000000000
	5	CTTTTTCBB	TIPOTOTO THE THE BUILD PROPERTY OF THE PARTY AND THE PARTY OF THE PART		1	שריפריפפו
			95155175	1991997191	GLACTG	TITGCGCTGA
	101	TACGCCTCT	TTACGCCTCT GTTTTTCCAA GIGGIGATGG ACAAGGTGCT CCTACATCC	GTGGTGATGG	ACAAGGTGCT	CCTACATOCC
	151	GGATTCTCTA	GGATTCTCTA CTTTGGATGT GGTGTGTGTGTGTGTGTGTGTGTGTGTGTG	COTOTOCOTO		
~	201	GTTTGAGATT	GTTGAGATT GTGTTGGGG CTTTGGGG CC:110110 1001GGGG			120101001
				3475751175	SIATCIONT	GCACATACGA
	152	CTTCACGTAT	CTICACGIAT TGATGIGGAA TIGGGCGCGC GTTTGTTCCG GCAICTGCT	116666666	GTTTGTTCCG	GCATCTGCTT
	301	TCCCTGCCTT	CCCTGCCTT TATCCTATTT CGAGCACAGA CGAGTGGGTG ATACGGTGG	CGAGCACAGA	CGAGTGGGTG	ATACCCCC
	351	TCGGGTGCGG	CGGGGGGG GAATTGGAG ACATTGGAG ACATTGGAG	RESTTUCES		200000000000000000000000000000000000000
	•			50000	777577777	2575547155
;	6	1680110661	FGACTTCGGT GTTGGATTTG GCGTTTTCGT TTATCTTTCT GGCGGTGATG	CCGTTTTCGT	TEATCTITCE	GGCGGTGATG
07	151	TGGTATTACA	IGGIATIACA GCICCACICI GACTIGGGIG GIATIGGGIT PERFO	GACTTGGGTG	GTATTCCTTT	
					1170011110	
				>		
	1451					
	1601					• • • • • • • • • • • • • • • • • • • •
			ATTTGCGC	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	ATTTGCGC
	1551	CAACCGGACG	CAACCGGACG GIGCIGATIA TCGCCCACCG ICTGTCCACT GTTAAAACCG	TCGCCCACCG	TCTGTCCACT	CTTABABCCC
25	1601	CACACACAT	CATTRICESTO	40000		
1		1	CHARLES OF TACCGGGAACA	2775777	CONTRICTA	AGCGGGAACA
	1651	CAGCAGGAAT	CAGCAGGAAT TGCTGGCGAA CG AACGGA TATTACCGCT ATCTGTATGA	CG NACGGA	TATTACCGCT	ATCTGTATGA
	1701	TTTACAGAAC GGGTAG	GGGTAG			

This corresponds to the amino acid sequence <SEQ ID 26; ORF39>;

Mokvluhr Jarlfahll FSE I Flavh	(GRIVEAGT
KFDETBEIDA VIKYRRLEFE VLVVSVVLOL FALITPLFFO VVNORVLVHR GESTLOVVSV ALLVVSLFEI VLGGLRTYLE AHTSRIDVI LGARLERHL. SLPLSFFERR RVGDTVARVR ELEGIRHELI GGALTSVLDL AFSFIFLAVN WYSSTLIHV VLASL	OKGRIVĒAGT QOELLANXNG YTRILYDLQN G*
VLVVSVVLOL E VLGGLRTTLF A ELEQIRNFLT G	VLIIAHRLST V 5*
VIKYRRLFFE ALLUVSLFEI RVGDTVARVR VLASL	TYRILYDLON
KPOFTHEIRA VIKYRRLFFE VLVVSVVLQL FALITDLFFO VYMDRVLWHR GFSTLDVVSV ALLVVSLFEI VLGGLRTILF AHTTSRIDVE LGARLFRHLL SLPLSTFERR RVGTVARVR ELEGIRNFLI GQALTSVLDL AFSFIFLAVN HYSSTLTHV VLASL	QQELLANXNG YTRYLYDLQN G*
51 201 151	501 551
	35

Further work revealed the complete nucleotide sequence <SEQ 1D 27>;

- 2 5		ATGTCTATGG TATCCGCACC GCTCCCCGC CTTTCCGCCC TCATCATCT CGCCCATAC CACGGCATTG CCGCCAATCC TGCCGATATA CACATGAAT TTTGTACTC CGCACAGAGC GATTTAAATG AAAGGCAATG GCGGTAGGC	GCTCCCCGCC CCGCCAATCC CATTTAAATG	CTTTCCGCCC TGCCGATATA AAACGCAATG	TCATCATCCT CAGCATGAAT GCTGTTAGCC
. 201	- •	GCCANTCTT TGGGATTGAN GGCANAGGTA GTCGGCGAGC CTATTANGG TTTGGTTTG GCGATTTAC CGCATTGGT ATGGTGTAN GACGGCANCG	GGCAAAGGTA CCGCATTGGT	STCCGCCAGC ATGGTGTGAT	CTATTAMACG
5 2 2		ATTOCAGATI TGGTTAGGAA TATOTGGGG GTATTGGTT TTGGGGATT TTGTAACAGA TATTGGGGA TAGTGATT GGTTGGTTG GGGGGTTGG TATTGGGCA TATTGGGGA TATTGATTA GGTTGGTTGT GGGGGGTTA	TAGECTOCC AACTGATATT TITGACTITA	GENERALICE GENERALICE GETTGETTCC CCTGGTTTAT	CCCGATTTTG TTGCCGAATT CGCGCTTCGG TCCGGCGCTA
4 51 5 01	ATCANATACC GCAGCTGTTT	ATCABATACE GEGGETTETT TITTGABLE TEGTGGGGT CGGTGGTGT GCAGETETT GEAGGAGTA CGCCTCTGTT TITCCABAGG GTGATGGACA	TTTTGAAGTA	TTGGTGGTGT	CGCTGGTGTT

_			
<u>~</u>	951 601 701 701 71 801 801 801	AGGTGCTGGT ACATGGG TTGTTGGTG TGTCGCT TGTTGGGGA TCTGGTT GTGGGTGATA GGTGGC GTGACCGGT CAGGCGC CTTGACCGGT CAGGCGC	SA TTCTCANCT TGGATGTGGT 3TT TGAGATTGT TTGGGGGATT TT CACGTATTGA TGTGGAATTG TGC GGTGCGGTAN TGGATGGA TGG GGTGGGGGAT TGG GTGGGGTGGGG
2	· ਜਜ.		£8255
5	1151 1201 1251 1301 1351	TCAGCTGAT TCAGAAGHG CGCTGGTAA TTGAGAGAAGHG GAAGCTCTC CGACAGGGG GGAGGATT CCAGCAGGG GGAAGGGC CGACGAGAA CCGGGGGAA ATAACAGAA	GTGACGGTGG CGACGTTGTG GCTGACGGTG GGCAGCTGA CGGCGCTGT TATCCGTTTG GGGATTTCG TGGCGCTTT TGCGTCTTG CATTTGGCTT
50	1451 1501 1551 . 1601 1651	TTTGCAGG TGGACG CTGTATG TTTGGCC	AT TEACOTOC GOATCGGC TC GGGTCGGC AAATCCACAC AC CGAGCAGG ACGCTTTC TC CT CCTGGTGGC TCGGCGCA TC CTGGCGTGTTC TC CTGGTGGC TGGGCGCAC
22	1701 1751 1801 1801 1801 1901		GC CGCTGGAACG CATTATCGAA TT ATTATGGAAC CATCACAAGG GC CGCTTGTCG GGCGGACAGC AA TCACCATC GGCGGACAGC AA TAGAAACG
30	1951 2001 2051 2051 2101	ATGCAGGCCA TTTGCGCCAA GTCCACTOTT AAAACGGCAG TTGTGGAAGC GGGAACAAG TACCGCTATC TGTATGATGT	AN COGNEGATO PROCESSANCE AN ECONOCION PROCESSANCE AN ECONOCION CONTRACO COCACCOTO AN ECONOCION TOCCATICATA ANGOCANGA ANG CANGANITIC TOCCATICATA THE ACAGANICAC TAGCCANGCC GAACGGATAT THE ACAGANGGGG TAG
35	This correspond	S to the amino acid sequi HEIVEAPLE LSALIILANY ARSIGLANY VROPIKELAN IODUTHYS VROPIKELAN IKTRLEEV LVYSVLOLE	HOTANINA DE SECO PER HOTANINA DE REPUEBLANT ALBALVECO DENHELLANT SECULLUNA MANULUNA ALTREPERON VANDULUNA
40	201 251 301 351 401	11	A HTTSRIDVEL G OALTSVLDLA T RLADKFARNA G FRVTKLAVVG S GQVAAPVIRL
45	451 861 661 661 67 67	LMAPTENASS HLALPDINGS LGTGGGGGG KSTLIKLVPN VLGEVULANS SIRBNIALTD VVGEGGGLS GGÖRGRIALS MOAICANRTV LITAHRLSYV YRTLTDLQMG •	B ITERHOFRY KNOCRLINGO R LYVEGGRYY VOCRDLAIAN TO TCHPLERIIE ARKLGAREY A RALIHPRIL IFDEATSALO V KTAHRITAHD KORIVEACTO
	Computer analys Homology with a ORF39 shows 10	Computer analysis of this amino acid s Homology with a predicted ORF from ORF 39 shows 100% identity over a 16 meningtidis:	Computer analysis of this amino acid sequence gave the following results: <u>Homology with a predicted ORF from <i>M.meningitidis</i> (strain A)</u> ORF39 shows 100% identity over a 165aa overlap with an ORF (ORF39a) from strain A of <i>N.</i>
\$\$	or £39, pep		10 20 30 KFDFTWF1PAV1KYRRL <u>prevlyosvuld</u>

110 120 130 140 150	-77-	Vasrasvicslaktortpetipaviktralpetulvvsvvici. 130 140 150 150	40 60 50 60 70 80 80 90 11 11 11 11 11 11 11 11 11 11 11 11 11	100 110 120 150 150 150 150 150 150 150 150 150 15	160 170 180 210 210 180 210 190 210 190 210 190 210 190 210 210 210 210 210 210 210 210 210 21	iity in 710 sa overlap:	msivsaplpalsaliilahykgiaanpadiqm <mark>erctsa</mark> gsdlætqællaakslglkaky 	PRODGEM FILAKT BÖGGENAQELIQDLYTRKSAVLSFARESHR 	TSGRLILVASRASVLGSLAKFOFT#F1PAVIØRRLFFEVLVVSVVLQLFALITPLFFQV 	VADRVIJVHRGESTLDVVSVALLVVSLFEIVLGCLATYLFAHTTSRIDVELGARLFRHLLS 	LPLSYFEHRRVGDTVARVRELEGIRNFLTGQALTSVLDLAFSFIFLAVMRYTSSTLFWVV 	Laglpayafysafispilktaladktarnoktarnokjsflvesitavgtvklamavepqhtokwd 	MOLAAYWASGRATKKANYGQOGYQLIQKAYWATUIGAKUYIGSKLYVGQLIAFWLS 111111111111111111111111111111111111	CONTRACTOR OF THE CONTRACTOR O	raelrrqusvelqervilarsi rdytaltotgæleri i Erarcagahefinelpegygt 	vvgeqgaglagariaiaralitnprilip)eatsaldyeseraimqmmqaicahrtv
		=	Pep 17	2	.pep	RF39-1 and ORF39a show 99.4% ider	Dep	l.pep	1.pep	ded:	Dep	d	ğ. ğ.	1.pep	-1.pep	ded.

.78

PCT/IB99/00103

orf39a

orf39-1.pep orf39a

The complete length ORF39a nucleotide sequence <SEQ ID 29> is:

	-	ATGTCTATCG	TATOCCACO			
		CGCCCATTAC	_	CORCEANTO	11100000	CALCATOL
2	101	TTTGTACTTC	_	GATTANATE	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Checklena
	151	GCCANATCTT		CCC AND CCTA	ישיניניניניניניניניניניניניניניניניניני	Color Parce
	201	TTTGGCTATG		CCCATTGG	STOCKEL AGE	CINITAAACG
	251	ATTTATT	_	61000000	CTC LC LTC.	משרפפראטרר
	301	ATACAGGATT	TAACTACGAA	TARGECTOR	GTBTTCTCT	************
	351	TTCTAACAGA	TATTCGGGCA	AACTGATATT	6677677767	ינ
	101	TATTGGGCAG	-	TTTGACTTTA	CCTGGTTTAT	1000000
	481	ATCANATACC	GCCGGTTGTT	TTTTGAAGTA	TTGGTGGTGT	CGGGGGGGT
	105	GCAGCTGTTT	GCGCTGATTA	CGCCTCTGT1	TTCCAAGTG	GTGATGGACA
;	551	AGGTGCTGGT	ACATCGGGGA	TTCTCTACTT	TGGATGTGGT	GTCGGTGGCT
20	109	TTGTTGGTGG	TGTCGCTGTT	TCACATTGTG	1166666611	TGCGGACGTA
	651	TCTGTTTGCA	CATACGACTT	CACGTATTGA	TGTGGAATTG	6666666611
	101	TGTTCCGGCA	TCTGCTTTCC	CTGCCTTTAT	CCTATTCGA	GCACAGAGGA
	151	GTGGGTGATA	CGGTGGCTCG	GCTGCGGGAA	TTGGAGCAGA	TTCGCAATT
	108	CTIGACCGGT	CAGGGGGTGA	CTTCGGTGTT	GGATTTGGCG	TTTCGTTA
52	951	TCTTTCTGGC	GGTGATGTGG	TATTACAGCT	CCACTCTGAC	TTGGGTGGTA
	901	TEGETTEGT	TGCCTGCCTA	TGCGTTTTGG	TCGGCATTTA	TCAGTCCGAT
	186	ACTGCGGACG	CGTCTGAACG	ATAAGTTCGC	GCCCAATGCA	GACAACCAGT
	1001	CGTTTTTAGT	AGAAAGCATC	ACTGCGGTGG	GTACGGTAAA	GGCGATGGCG
:	1051	GTGGAGCCGC	AGATGACGCA	GCGTTGGGAC	AATCAGTTGG	CGGCTTATGT
2	1101	GGCTTCGGGA	TTTCGGGTAA	CGAAGTTGGC	GGTGGTCGCC	CAGCAGGGG
	1151	TGCAGCTGAT	TCAGAAGCTG	GTGACGGTGG	CGACGTTGTG	GATTGGCGCA
	1201	CGGCTGGTAA	TTGAGAGCAA	GCTGACGGTG	GGGCAGCTGA	TTGCGTTTAA
	1251	TATGCTCTCG	GGACAGGTGG	CGGCGCCTGT	TATCCGTTTG	GCGCAGTTGT
;	1301	GGCAGGATTT	_	GGGATITCGG	TGGCGCGTTT	GGGGGATATT
ç	1381	CTGAATGCGC	_	TCCCTCTTCG	CATTTGGCTT	TGCCCGATAT
	1401	CCGGGGGGGAG	_	AACATGTCGA	TTTCCCCTAT	AAGGCGGACG
	1481	GCAGGCTGAT	•	TTGMCCTGC	GGATTCGGGC	GGGGGAAGTG
	1501	CTCCCCATTC	-	GGGGTCGGC	AAATCCACAC	TCACCAAATT
•	1551	GGTGCAGCGT	-	CGCCCCAGGG	ACCCGTGTTG	GTGGACGCCA
₽	1601	ACGATITIGGC	•	CCTGCTTGGC	TGCGGGGGCA	GGTCGCCGTG
	1651	GTCTTGCAGG	-	GCTCAACCGC	AGCATACGCG	ACAATATCGC
	101	GCTCACGGAT	ACGGGTATGC	CGCTGGAACG	CATTATCGAA	GCAGCCAAAC
	1751	166666666	ACACGAGTTT	ATTATGGAGC	TGCCGGAAGG	CTACGGCACC
	1601	GTGGTGGGCG	AACAAGGGC	CGGCTTGTCG	GGCGGACAGC	GGCAGCGTAT
ç	1651	TGCGATTGCC	CGCGCGTTAA	TCACCAATCC	GCGCATTCTG	ATTTTGATG
	1901	AAGCCACCAG	CCCCCTGGAT	TATGAAAGTG	AACGAGCGAT	TATGCAGAAC
	1951	ATGCAGGCCA	TTTGCGCCAA	CCGGACGGTG	CTGATTATCG	CCCACCGTCT
	2001	GTCCACTGT	AMACGGCAC	ACCGGATCAT	TGCCATGGAT	AAAGGCAGGA
	2051	TTGTGGAAGC	GGGAACACAG	CAGGAATTGC	TGGCGAAGCC	GAACGGATAT
ž	2101	TACCGCTATC	TGTATGATTT	ACAGAACGGG	TAG	

1

This encodes a protein having amino acid sequence <SEQ ID 30>;

KETGWLLA	SGEHAOYL	TWEEPAV	FSTLDWSVA	SYFEHRE	STITUTE	/GTVKAMA	ATLUIGA
FCTSAQS OU	HFILAKT DG	VLGSLAK FD	KVLVHRG FS	LFRHLLS LP	IFLAVER YY	SFLVES! TAN	VOLIONI VE
AANPADI QHE	PALVWCD DGN	KLILVAS RAS	TPLFFQV VMD	SRIDVEL GAR	ISVLDLA FSF	DKFARNA DNO	TKLAVVG DOG
HSIVSAPLPA LSALIILAHY HGIAANPADI QHEFCTSAQS DLNETQHLLA	PIKRLAH ATL	IGDLITHKSA VLSFAEFSNR YSGKLILVAS RASVLGSLAK FOFTWFIPAV	IKYRRIFFEY LVSVVLQLF ALITPLFFOV VMDKVLVHRG	LLVVSLFEIV LGGLRTYLFA HTTSRIDVEL GARLFRHILS LPLSYFFHRE	IRNFLIG QAL	LASLPAYAFW SAFISPILRT RENDKFARNA DROSFLVEST TAVETURALA	VEPONTORNO NGLAAYVASG FRVTKLAVVG OOGVOLIOKL VTVATIMICA
SAPLPA LSA	GLKAKY VROI	TTNKSA VLSI	RLFFEV LVV	SLFEIV LGG	VARVRE LEG	PAYAFF SAF	MTORNO NOL
1 HSIV		101 101		201 EEM		301 LASI	
	•				•		

23

PCT//B99/00103

KSTLTELVOR LYPRAGGRY, VOGHOLALAR PARLERGYGY SIRDWIALTD IGHPLERIIE AAKLAGAHEF INELPEGYOT GGORQRIAIA RALITHPRIL IEDENTSALD YESERAIHON KADGRLILQD LNERIRAGEV LIIAHRESTV KTAHRIIAMD KGRIVEAGTO QELLAKPNGY Agenodrogy GOVAAPVIRL **ITFEHVDFRY** HLALPDINGE I KSTLTKLVQR I SIRDNIALTD I RLVIESKLTV (LNAPTENASS HLGIVGRSGSG) VLQENVLLNR S VVGEOGAGLS MOAICANRTY YRYLYDLQNG 401 501 501 601 601 601 601

ORF39a is homologous to a cytolysin from A.pleuropneumoniae:

2

SPIP26760[RTIB_ACTPL RIX-1 TOXIN DETERMINANT B (TOXIN RIX-1 SECRETION ATP-BRINDING PROTEIN) (ARX-18) (HLV-18) (CLT-SIR 18) (CLT-SIR) (ARX-18) (ARX-Identities . 472/690 (681), Positives - 510/690 (771), Gaps - 3/690 (01)

YHGIAANPADIQHEFCISAQSDLAETQ#XXXXXXXXXXXVVRQPIRRLAMATLPALVBC 79 YHNIAVNPEELKHKFOLEGKG-LOLTAWLLAAKSLELKAKQVKKAIORLAFIALPALVMR 18 LPALVW V++ I RLA - 1:1 TH IA NP +++R+F Query: 20 Sbjct: 20

DDGNHFILAKTDGGGEHAQYLIQDLTTNKSAVLSFAEFSHRYSGKLILVASRASVLGSLA 139 +DG HFILK D C +YLI DL T+ +L AEF + Y GKLILVASRAS++G LA EDGKHFILKIDN--EAKKYLIFDLETHNPRILEQAEFESLYGGKLILVASRASIYGKKA 136 Sbjct: 79 Query: 80

2

REDETHFIPAVIKYRRXXXXXXXXXXXXXXXITELFEQVVHDKVLVHRGEXXXXXX 199 TPLFFQVVMDKVLVHRGF KFDFTWF1PAV1KYR+ Query: 140

25

8

Sbjct: 137 KFOTTWFIPAVIKYRKIFIETLIVSIFLQIFALITPLFTQVVMDKVLVHRGFSTLAVITV 196 FEIVL GLRTY-FRH-TSRIDVELGARLFRHLA-LP-SYFE-RRVGDTVARVR SDJCt: 197 ALAIVVLFIVLAGLRTIFFAHSTSRIDVELGARLFRHLALPISFEHRRVGDTVARVR 256 200 XXXXXXXFEIVLGGLATYLFAHTTSRIDVELGARLFRHLLSLPLSYFEHRRVGDTVARVR 259 Query:

elegirnfliggalisvldlafsfitlavmyysstltwylaslpayafbspirgbilr 319 El-Qirnfliggalisyldl fsfif avmyys IT V+L Slp y #S fispilr Query: 260

Sbjet: 257 ELOQIRMTLTGGALTSVLDLMFSFIFFAVMTYSPKLTLV1LGSLPFYMG#SIFISPILR 316 Query: 320 TALNOKFARNAONOSFLVESITAVGTVKAMAVEPONTORNONQLAAVVASGFRVTKLAVV 379

33

RL++KFAR ADMOSFLVES+TA+ T+KA+AV POHT WD QLA+YV++CFRVT LA + 5bjct: 317 ARLDEKFARGADWOSFLVESYTAINTIKALAVTPQHTHYWDKQLASYVSAGFRVTILATI 316 GOGGYO 10K+V V TL#+GA LVI L++GQLIAFWISGQV APVIRLAQL#QDFQQ 136 Sbjct: 377 GOGGYQFIQKYWWYITL#LGAHLVISGDLSIGQLIAFFWISGQVIAPVIRLAQL#QDFQQ (36 Duely: 380 GOGCVQLIQKLVTVATLWIGARLVIESKLTVGQLIAFWKLSGQVAAPVIRLAQLEQDTQQ 439

\$

VGISY RLGD-LN-FTE+ LALP-11-G-11F ++ FRYK D +1L D+RL 1+ CE SDJct: 437 VGISYTRLGDVLASPTESYQGKLALPEIKGDDIFRNIRFRYKPDAFYILNDVHLSIQQGE 496 Query: 440 VGISVARLGDILMAPTENASSHLALPDIRGEITTEHVDFRYRADGRLILQDLMLRIRAGE 499

QU@FY: 500 VLCIVGRSGSGKSTLTKLVQRLYVPAQGRVLVDGKDLALAAPARLRQVGVYQENVLLM 559 V*GIVGRSGSGKSTLTKL*QR 7+P G*VL*DG+DLALA P #LRRQVGVVLQ+HVLLM Sbjct: 497 VigivGRSGSGKSTLTKLIQRFYIPENGQVLIDGHDLALADPHWLRQVGVVLQDRVLH 556 Query: 560 asiadnialtotgapleriieraklagahefihelpegygatagggaggggriai 619 RSIRDNIAL D GMP+E+I+ AAKLAGAHEFI EL EGY T+VGEQGAGLSGGQRQRIAI

S

23

Jugey: 620 aralithprilifdeatsaldyeseraimonhqaicanrtyliiahrlstyktahriiam 679 SDÍCL: 617 ARALVHPRILIFDEATSALDYESEHIIHANHGICKGRTVIIIAHRLSTVKNADRIIVM 676 IC RTV+IIAHRLSTVK A RII M ARAL+ HP+ILIFDEATSALDYESE IM+KH

Sbjet: 557 RSIRBNIALADPGMPMEKIVHAAKLAGAHEFISELREGYHTIVGEQGAGLSGGQRQRIAI 616

DKGRIVEAGTQQELLAKPHGYYRYLYDLQN 709 Query: 680

8

+KG+1VE G +ELLA PNG Y YL+ LQ+ Sbjet: 677 EKGQIVEQGKHKELLADPHGLYHYLHQLQS 706

ఇ

PCT//899/00103

Homology with the HIVB sevendain secretion ATP-binding protein of Hoemophilus actinomycetemcomitans (accession number X53955)

ORF39 and HlyB protein show 71% and 69% amino acid identiry in 167 and 55 overlap at the N-

and C-terminal regions, respectively.

137 KEDTHEFIPAVIKYRKIFFETLIVSIELQIFALITPLFFOVMDKVLVHRGFSTLAVITV 196 8 1 REDETHELPAVIKYRRXXKXXXXXXXXXXXXITPLFQVVNDKVLVHRGFXXXXXXX Itplegvadkylnege KFDFT#FIPAVIKTR+ H1y8 or (39

61 XXXXXXXEEIVLGGLATY PRAHTISRIDVELGARLFRHILSLPLSYFEHRAVGDTVARVR 120 FEI+LGGLATYFFAH-FSRIOVELGARLFARLL-LP-8FFE ARVGOTVARVR 197 ALAIVVLFEIILGGLATYFFAHSFSRIDVELGARLFRHLLALPISFFEARRVGOTVARVR 256 Or (39 H1yB

9

121 ELEGIRAFLIGGALISYLDIARSTIFLAVMTYSSTLTWVVLASLIC 167 EL-QIANTLIGGALIS+LDL FSFIF AVMTYS 17 VVL SL C 257 ELDQIANTLIGGALISILDELFSFIFFAVMTYSPKILTLVVLGSLPC 303 Or (39

HlyB

2

2

=

220 IC HRTVLIIAHRLSTVK A RII HDKG 1+E G GELL + G T TL+ LO 631 ICQHRIVLIIAHRLSTVKJADRIIVMDKGEIICQGKHQELLKDEKGLYSTLHQLG 703 166 ICAHRIVLIIAHRISTVK AHRIIAMDKGRIVEAGTQQELLANXNGYYRYLYDLO Or (39 #1yB

Based on this analysis, it is predicted that this protein from N.meningtitdis, and its epitopes, could be useful antigens for vaccines or diaghostics.

Example 7

23

The following partial DNA sequence has identified in N.meninglitdis <SEQ ID 31>

ATGANATACT TGATCGGGG CGCCTTACTC GCAGTGGCAG CCGCGGGAT CTAGGCTGAAA ACAGGCTGAAA ACAGGCTGAAA ACAGGCTGA CGGAGCGGG CGACAAAGA GGCAGAGATT GACGGGTTGA ACGCCCANAR SGACGCCGAN ATCAGA... 5

8

This corresponds to the amino acid sequence <SEQ ID 32; ORF52>:

MYTLIRTALL AVARAGIYAC OPOSERAVOV KAENSLTAMR LAVADKQAEI DGLMAQXDAE IR..

Further work revealed the complete nubleotide sequence <SEQ 1D 33>.

CGCCTTACTC GCAGTCGCAG CCGCCGCAT CCGAAGCCGC ACTGCAAGTC AAGGTTGAAA TTAGCCGTCG CCGACAAACA GGCAGAGATT CGACGCCGAA ATCAGACAAC GCGAAGCCGA ATGAATACT TGATCCCCAC O CTACGCCTGC CAACGCCAT O ACAGCCTGAC CGCTATGCGC TGACGCCAAAT CAGACTGAAA GACTACCGAAT CAGAATTGAAA GACTACCGAAT CAGAATTGAAA GACTACCGAAT 201222

33

GGATACACGG CGACGCGGAA GTGCCGGAGC TGGAAAATG A

\$

- 5

This corresponds to the amino acid sequence <SEQ ID 34; ORF52-1>;

OPGSEAAVQV KAENSLTAMR LAVADKOAE! DYRWIHGDAE VPELEK* MEYLIRTALL AVAAAGIYAC DGLWAGIDAE IRQREAELIK

Computer analysis of this amino acid sequence predicts a phokaryotic membrane lipoprotein lipid PCTAB99/00103 ÷ attachment site (underlined)

ORFS2-1 (7kDa) was cloned in the pGex vectors and expressed in E.coll, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 4A shows the results of affinity purification of the GST-fusion. Figure 4B shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF52-1.

Based on this analysis, it is predicted that this protein from N. meningitidis, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 8

The following DNA sequence was identified in N.meningilidis <SEQ ID 35> 2

NIGOTANCG GANATACT CECATCAGC AMECÁTECTE TIGITANE ICIANTAC ELETÍSCATA UCEGITAGO CANANCISTO COTECTOSTO TOCAMAT TIGICAMATO COCCOCCA COTTOCOTA COCCOCTO CANANT TIGICAMATO COCCOCCA GEOGETICO ACCOCTOC CANGOSTO ACCONTACO COCCOCCO CANGOSTO ACCONTACO COCCOCTO CANGOSTO CANGOSTO ACCONTACO CANGOSTO CANG ~

This corresponds to the amino acid sequence <SEQ ID 36 ORFS6>;

MVIGILLASS KHALVITLL NPVFHASSCV SRXA,FRKIC CSALAKFAKL FIVSLGAACL AAFAFDHAPT GASGALPIVT APVA,FRRPAS AA*

Further work revealed the complete nucleotide sequence SEQ ID 37>; 2 222222 22

This corresponds to the amino acid sequence <SEQ ID 38 ORF56-1>;

haciglavep lavjgillas srpapelill lapoțhassc vsrraisnki Ccsalakeak letvslgaac laafafdhap tgasģalptv tapvaieapa Saa* - 2 5 8

Computer analysis of this amino acid sequence predicts a leader peptide (underlined) and suggests that ORF56 might be a membrane or periplasmic protein. Based on this analysis, it is predicted that this protein from N. meningtitidis, and its epitopes, could be useful antigens for vaccines or diagnostics. 33

١

PCT/899/00103

-85

Example 9

The following partial DNA sequence was identified in N.meningliidis <SEQ ID 39>

ATGITCAGIA ITTINANIGI GITICITCAI IGIATICIGG CITGIGIAGI CITCGOTGAG ACGCCIACIN INTITIGAIN CCITGICITI ITTICITIN IGIALGITIC INTOTIGCE GITITINAGA ITTICITITIC ITTITICITIN GACAGAGITI CALTCGGGT (CCCAGGTG GAGIGCAM) GCCITGAGCC ITTGGCTCAC IGGCTCACG CCACITGIGC INTICIGCG CCTCAGCCTC 201121

This corresponds to the amino acid sequence <SEQ ID 40; ORF63>:

M<u>FSTLAVELH CILACVYSGE TPTIFGILAL FYLLYLSYLA VFKIFFBFFL</u> DRVSLRSPRL ECKHHDPLAH HLTATSAILP PQPPG...

2

į

Computer analysis of this amino acid sequence predicts a transmemhrane region.

Based on this analysis, it is predicted that this protein from N. meningitidis, and its epitopes, could be useful antigens for vaccines or diagnostics

Example 10

2

The following partial DNA sequence was identified in N.meningitidis <SEQ 1D 41>

OTSCOGACGI GETTGETTT TIGGITGENG COTTGANAT ACCCGTGTT GCTTTGGATT GCGGALATOT TGCTGTACCG GTTGTTGGGC GGGGGGANA TGGAATGGG CTGTTGCCT GTGCGGCGTA TGACGGATTG TTGCGGGTA TGGAATGGT GTGGCGTTGG GTGGCGGTGA TTGGGCATA CCTGATGATT GAANGTGANA ANANGGANG MINITGA - 2 5 5 5

ຊ

This corresponds to the amino acid sequence <SEQ ID 42; ORF69>;

..VRTHIVFHLO RLKYPILLET ADMILYBLIG GAZIECGRCP VPPHTDWGHF LPa<u>mgt</u>ysab vavibatlet esekngn?•

Computer analysis of this amino acid sequence predicts a transmembrane region.

23

A corresponding ORF from strain A of N. meningitidis was also identified:

Homology with a predicted QRF from N.meningitidis (strain A)

ORF69 shows 96.2% identity over a 78aa overlap with an ORF (ORF69a) from strain A of N. meningitidis:

70 79 VAVIWAYLMIFSEKHGRYX orf69.pep orf69.pep orf 69a 2 33

÷

PCT//899/00103

VAVIMATEMIESERNGRYX 70 orf69a

The ORF69a nucleotide sequence <SEQ ID 43> is:

S

GFGCGANGT GETGETTH TIGGTTGCAG CGTTTGAAAT ACCCGTTGT GCTTTGTATT GCGGAIATGC TGCTGTACC GTTGTTGGGG GGGGGGAAA TGGATAGGG GCGTGGCCT TGATGGGGGT TGAGGGATTG GCAGCAITTT TGGCGANGA TGGGAAGGG GGGGGTTGG GTGGGCGTGA TTTGGGGATA CCTGATGATT GAAAGTGAAA AAAAGGAAG ATATTGA

This encodes a protein having amino acid sequence <SEQ 1D 44>; 2

VRTBLVFBLQ ALKYPLLLCI ADMLLYRLLG GAEIECGRCP VPPHTD#QHF LPTHGTVAAW VAVIWAYLMI ESEKNGRY*

Based on this analysis, it is predicted that this protein from N. meningitidis, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 11

~

The following DNA sequence was identified in N.meningitidis <SEQ ID 45>

THISTOGGG GGGCHATCA GATGCCGTTG GCTCAAATGG
TATICTGATC ANTICATTC TGTTGGCGCT CAACATCAC
CATGGGAGG CGGCAATTCA ATGGACACT TCCTGTGGG
CATGGGTCC GCAAATTCA ACCATAGGA ACGTGGATA
GATGCTTAA GGGCTTTAA GGACCGATTA
GATGCTAACTCAATTCAACACTTAA GGACCATTCA TCENTTGGT CGGCACATC ATGTACCG TGCTTACTT
CCCTTCCTGT TCGCTGGG GCGTCCGAT CCTACGATC
CGCAACCG GCCTTGCT GCGTTGGT TGCGCGTC
CGAACTACCTAC ATGCCTTAC TGCGTTGGT
CATGTACAG GATGCTTAC TGCGTTGGT
TATGTCGGG GGGCTATCA GATCCCTTG GCTCAATGG
TATGTGATC AATGCGATC TGTTCGGCCT CAACATCATC ATTACCGTCT CGCACGTGGC GCGCGGCTAT ACGGCGCGCT CAACACTGCC GAACAATACG GCAGGCTGAC ACTGAACCCC CTGCTTGCCG TO GCGCGGCTAT A ATGITICAAA ATTITGATIT CTGCCCATA
GATGTTCACG
CGCGCAACTT
GGCCGGCTGT
GCTGACTCCG
CAAACTACGG
CCCATCCTGC
GCAAATATTCG
GAAATATTCG GCTGCCCTCC ACTGGGGAGA TCCTACTGCT STGCGGMTGc 51 151 151 151 251 251 461 461 461 661 661 2 23 ಜ್ಞ

This corresponds to the amino acid sequence <SEQ ID 46; ORF77>;

GACGGCATAA

HIQMIDLOUE LLAVLEVLES ITVSHVANGI TARYMGONTA EQUGELTLAP LPHIDLYGTI IVPLITIMIT PELFGWARR! PIOSANERRAR RLAMRCYAAS GPLSHLAMAV LMGVYLVLIP IVGGATQHFE AQMANYGILI NAILERALNII PILPWOGGIF IDTFLSAKTS QAFRKIEPTG FWIILLLMLI XVIGAFIAPI XAXRDCXCAD VRLTGFQTA. 1 101 151 201 201 35

Further work revealed the complete nucleotide sequence <SEQ ID 47>;

1 ATETTICAM ATTITICATIT GGGCGTGTT CTGCTTGCG TCCTGCCGTT

S GCTGCTCTC ATTACCGTC GACAGTGG GCGCGCTAT ACGCCGCT

ACTGGGGAGA CANCACTGC GACAGATGG GCGCGCTAT ACGCCGCCT

S CTGCCCCATA TCGATTGGT GGGCACAATC ACGTACCG TGCTTACTT

GATGTTCAG CCTTCCTGT TCGGCTGGG GGGTCCGAT CCTATCATT

CGGCAACTG CGCATTACG GATGGTTGT GCGCTGGGT

GGCCGCTTC TATACG GATGGTTGT TCGGGGGG TGGTTTGT

GCCCGCTTG TATACGG GGGCGTATC GATGGGGGG

CCAACTACGG TATTCTGATC AATGCGATT TTTTTGGGGCG

CAAACTACGG TATTCTGATC AATGCGATT TGTTCGCGCT CACAACACAC \$ 42

Computer analysis of this amino acit sequence reveals a putative leader sequence and several MFORFDLOVE LLAVLEVLIS ITVREVARGY TARVEGHTA EQIGRITLAP LEPIDENGTI IVELITIMIT PELFCRARPI PIOSRHERNP RLAWFCYAAS GLENELANDA LAVCVIVLTE VYGGATQHEP AGNANYGILI HAILEALII PILENDGGIT IDFFLAAKTS OAFMKIEPYG TWITLLIMIT GYLGAFIAPI VRLVIAFYQH FV* CCENTCTIC CTIGGGACG CGCANTITC ATCGACACT TCTGICGGC GAMANTATICG CAAGCGTTC GCAAAATCGA ACTTATGG ACGTGATTA TCCAAATTA CTAATATGG ACGTGATTA TCCACGATTA GTGCGGTTAA TCCACGATTA GTGCGGTGG TGATTGGGTT TGTGCACATG TTCGTGTGA A corresponding ORF from strain A of N. meninglildis was also identified: This corresponds to the amino acid spauence <SEQ ID 48; ORF77-1>; fransmembrane domains. 2 5 5 5 5 5 5 5 75555 **~** 2

Homology with a predicted ORF from N. meningitidia (strain A)

ORF77 shows 96.5% identity over a \$73aa overlap with an ORF (ORF77a) from strain A of N. 70 90 110 1.1.0 1.2.0 1. 190 210 220 210 220 TWIILLLMLTXVLGARIAPIXRRDCXCADVRLTGRQTAX 55 9 200 MPQHPDLGVFLLAVL(2 130 190 orf77.pep orf77.pep orf77.pep orf77.pep orf77. orf77a orf730 meningitidis: 2 2 23 8 33

ORF77-1 and ORF77a show 96.8% identity in 185 as overlap: \$

orflla

orf77-1.pep orf77-1.pep orf77a 45

	-85-
orf77a	IVPLITCHETPTEGBARPIPIDSRNFRNPRLAFFCVANSGPLSHLAMAULGCVULVLTP 40 80 90
orf77-1.pep orf770	130 140 180 180 180 180 180 180 180 180 180 18
orf77-1.pep orf77a	190 200 210 TWIILLUATOVACAPIABIVALVIATVORFVX HII HIHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHH
A partial ORF7	partial ORF77a nucleotide sequence <seq 49="" id=""> was identified:</seq>
251 251 251 251 251 251	CAGGGGGTA CTGGGGTGAC MCACTGGGG CTGAMCCCCC TGCCCATAT CGATTGGTC GCTTACTTTG ATGTTAGGC CGTTCCTGTT CATTGGATTG GGGGACTGC CTATCGATTG GGGGGTGGC GGCGGTCG GGGGGTGT GATTCTGGGG GGTTTTGGTG GTGACTCGT ATGTGGGTGG GGTTTTGGTG GTGACTCGT ATGTGGGTGA
351 401 451 501 551 This encodes 8	331 GTNGCGCTC ALGINGANC CONTCREC TISGRAGGG GROATTTCA 401 TCGACACCTT CCTGTCGGC NATANTGG ANGOGTTCG CANANTCGAN 451 CTTATGGA COTGATAT CCNGCTGCT ANGCTBACG GGGTTTGGG 501 TGGGTNTAFT GCACCGATTG TGCACTGGT GATGGGTTT GTGGAGATGT 531 TGGTGA TGGTGA TGGT
1 51 101 151 151	1 . BGYTANYWGD KTAEOYGRLY LHPEPHIOLY GTITVPLATL METPELFGRA 51 RPIPIDSRRY RHPERANKCY AASGELSHLA MAYDLWGVLY LIPPYGGAYO 101 HELACHANYY LIPALIALL MILEILEWDG GTITOFFLSA KASGAFRKIE 151 PYGYBIIXLL HLYGULGAXI APIVQLVIAF VQHEV* BREED On this smallwik il is predicted that this entating from W meetinglidte and its emilanes could
be useful antige	be useful antigens for vaccines or diagnostics. Framnle 12
The following	The following partial DNA sequence was identified in N. meningitidis <seq 51="" id=""></seq>
\$ 101 101 122 203	TITCACGITA CATCATCCST CAMPGGGGG CTTGCTTCC TCGTTTGTA CAGGTTTTTT CAACCTCGGC AMGGCGGT ACGCTATAT CCCTCAAMAT GCCGGCGC GCCTTACGAAC ATCGGCGGAC TGGTCTCCCT CAGCCAGCTT
45 to 35 to	GCANCTAK COTCATCAN GCROGOCA TANGLACEN ANACTGCTG TTGATTCTG COCAGCTGG TITTATTT GCTANGLOCA COCAGCGGT GGGGANTG COCAGCTCC CACTGAGCA ANACCGAA ACATCANG CCGCGGCAT CAACGCCAA NTGGAGCG ANANGCGG CCTTTGGGTG ANGNANAN ACAGGGGTG CANTGGGCG GAANGGTGC CCGCACAT.
This correspond	This corresponds to the amino acid sequence <seq 12="" 52;="" id="" orfi="">:</seq>
-	HALISRYIIR QHAVHAVYAL LAFLALYSFF EILYETGNIG KGSYGIWEHL

PCT//B99/00103

- 51 GYTALKWPAR AYELPPLAVE IGGLYSISQE AAGSELTYIK ASGNSTKKLE 101 <u>Liesqygefir Aiatyalgew Vaptisqkae</u> Nikaaaingk istghtglwe 151 kennsvinvr Emledh...

Further work revealed further partial nucleotide sequence <SEQ ID 53>:

~	-	ATGAACCTGA	TTTCACGTTA	ATGAACCIGA TITCACGITA CATCAICAC FARATGAGG FEATGAGG	CANATOGGG	*********
	:					100000
	7	TIACGCGCTC		CITECCITCC ICCCTITGIA CAGCITTITI GAAAICCIGI	CAGCTTTTTT	GAMTCCTGT
•	≓	ACGANACCGG		CANCUTCGC ANAGGCAGTT ACGCCATATG GGAAATGCTG	ACGCCATATG	GGAAATGCTG
	151	gGCTACACCG		252225222	SCCCCCCCC CCTACGAAC	TGATTCCCCT
4 ,	201	CCCCGTCCTT	ATCGGCGGAC	TGGTCTCCCT	TGGTCTCCCT CAGCCAGCTT	GCCGCGGCA
2	251	GCGAACTGAC		CGTCATCARA GCCAGCGGCA TGAGCACCAA AAAGCTGCTG	TGAGCACCAA	MARCTGCTG
	30	TTGATTCTGT		CGCAGTTCGG TTTTAITITT GCTATTGCCA CCGTCGCGCT	CCTATTGCCA	CCGTCGCGCT
	351	CGGCGAATGG		GTTGCGCCCA CACTGAGCCA ANANGCCGAN ANCATCANAG	AAAAGCCGAA	AACATCAAAG
	104	CCCCCCCAT		CANGGCANA ATCAGCACCG GCANTACCGG	GCANTACCGG	CCTTTGGCTG
	451	AAAGAAAAA	ACAGCETKAT	NAAGAAAAA ACAGCETKAT CAATGIGGGG GAAAIGIIGC	GAMATGITGC	CCGACCATAC
	. 501	601111666	ATCAAAATT	GCTTTTGGGC ATCAMATTT GGGCGCGCAA CGATAMAAC	CGATAAAAC	GAATTGGCAG
	551	AGGCAGTGGA	AGCCGATTCC	AGGCAGTGGA AGCCGATTCC GCCGTTTTGA ACAGCGACGG CAGTTGGCAG	ACAGCGACGG	CAGTIGGCAG
	60	TTGARARACA	TCCGCCGCAG	TCCGCCGCAG CACGCTTGGC GAAGACAAAG	GAAGACAAAG	TCGAGGTCTC
	651	TATTGCGGCT		GARGALASCT GGCCGATTTC CGTCAAACGC AACCTGATGG	CGTCAAACGC	AACCTGATGG
;	107	ACCTATTGCT		CGTCAAACCC GACCAAATGT CCGTCGGCGA ACTGACCACC	CCGTCGCCGA	ACTGACCACC
20	751	TACATCCGCC	ACCTCCAAAA	ACCTCCAAAA CAACAGCCAA AACACCCGAA	AACACCCGAA	TCTACGCCAT
	801	CGCATGGTGG	CGCAAATTGG	TTTACCCCCC	TTTACCCCGC CGCAGCCTGG	GTGATGCCGC
	851	TCGTCGCCTT	TGCCTTTACC	TGCCTTTACC CCGCAAACCA CCCGCCAGGG	CCCGCCACGG	CAATATGGGC
	901	TTAMAACTCT	TCGGCGGCAT	TCGGCGCAT CTGTsTCGGA TTGCTGTTCC	TTGCTGTTCC	ACCTIGCCGG
	951	ACGGCTCTTT	GGGTTTACCA	ACGGCTCTTT GGGTTTACCA GCCAACTCGG	:	
			!			

25 This corresponds to the amino acid sequence <SEQ ID 54; ORF112-1>;

-	돼	HLISRYIIR	OHAVMAVYAL	LAFLALYSFF	EILYETGNIG	KGSYGIVEML
ร	اق	YTALKHPAR	AYELIPLAVL	IGGLVSLSQL	AAGSELTVIK	ASGMSTKKLL
101		ITSOFGFIF	AIATVALGER	LILSQFGFIF AIATVALGES VAPTLSQKAE HIKAAAINGK ISTGNTGLWI	HIKAAAINGK	ISTGNTGLWL
151		EKNSXINVR	EMLPDHTLLG	KEKNSXINVR EMLPDHTLIG IKIHARNDKN ELAEAVEADS AVLNSDGSWO	ELAEAVEADS	AVLNSDGSWO
102		KNIRRSTLG	EDKVEVSIAA	LKNIRRSTLG EDKVEVSIAA-EEBNPISVKA HLHDVLLVKP DQNSVGELTT	HLMOVLLVKP	DONSVGELTT
151		IRHLONNSO	NTRIYAIAGH	YIRHLONNSQ NTRIYAIAWW RKLVYPAAAW VMALVAFAFT POTTRHGNMG	VHALVAPAFT	POTTRHGNMG
301		KLFGGICXG	LKLFGGICKG LLFHLAGRLF GFTSQL	GFTSQL		1
	ì					

8

Computer analysis of this amino acid sequence predicts two transmembrane domains.

A corresponding ORF from strain A of N. meningitidis was also identified:

Homology with a predicted ORF from N.meningliidis (strain A) 33

ORF112 shows 96.4% identity over a 166aa overlap with an ORF (ORF112a) from strain A of N meningitidis:

60 TTALIONPAR 111111 11 TTALIOXXAR	120 [ATVALGEW 	
SYGIWEMEG SYGIWEMEG SYGIWEMEG SYGIWEMEG	110 LSQFGF1FA: 	
10 50 10 80 80 80 80 80 80 80 80 80 80 80 80 80	100 1111111111111111111111111111111111	160
30 NFLALYSFFE 11111111111111111111111111111111111	90 IGSELTVIKA 1111:1111 IGSELXVIKA 90	150
20 HAVMAVYALLI MAVMAVYALLI	80 GGLVSLSQLAJ 1111 11111 GGLVGXSQLAJ	140
10 50 80 80 80 80 80 80 80 80 80 80 80 80 80	70 80 100 110 120 AYELPLAVLIGGLYSLSQLARGSELTYIKASGMSTKKLLILSQFGFIFAIATVALGEW	130
orfll2.pep orfll2a	orf112.pep orf112s	
6	45	20

¢

Blaeaveadsavlhsdgsbolmirrstlgedkvevbiaalexnpisvrrnlmdvllvkp 230 vaptlsqkaenikaaingkistghtglhlkerusvinvrehlpdh 160 130 200 2 190 orf112.pep orf1128 orf1124

S

A partial ORF112a nucleotide sequence <SEQ ID 55> was identified:

CAAATGGCGG TTATGGCGG1 AAAGGCAGTT A CATCATCCGT CTTGCCTTCC 1 CAACCTCGGC ATGAACCTGA TTACGCGCTC ACGAAACCGG

2

TGATGCCCCT GCCGCCGGCA AAAGCTGCTG GGAAATGNT(TGAGCACCAA GCTATTGCCA GCCTACGAAC CAGCCAGCTT CCCTCAAAAT GNCCGCCCGC ATGGGGGAC TGGTCTCTNT CGTCATCAAA GCCAGGGGA TTTTATTT CCCAGTTCGG CGCCGTCCTT A GCGAACTGAN TTGATTCTGT GGNTACACCG

OCGTCGCGCT AACATCAAAG CAGTTGGCAG TCGAGGTCTC CCTTTGGCTG CCGACCATAC GAACTGGCAG AACCTGATGG ACTGACCACC TCTACGCCA1 GTGATGGCGC AAAAGCCGAA CAACGCAAA ATCAGTACCG GCAATACCGG CGATAAAAC GAAGACAAAG CGCAGCCTGG TTGCTGTTCC CGTCANACGC CCGTCGGCGA AACACCCGAA CCCGCCACGG GAAATGTTGC ACAGCGACGG CGGCATCCCG CACTGAGCCA ACAGCATTAT CAATGTGCGC GGCCCGCAA **GCCGTTTTGA** TCCGCCGCAG CACGCTTGCC GAAGAAANT GGCCGATTTC GACCANATGE ACCTCCAAAN NNACAGCCAA CGCAAATTGG TTTACCCCGC CCCCAAACCA CTGTCTCGGA NGGTTTACCA GCCAACTCTA ACCTACCATA GCCTTCGCCT GTTGCGCCCA AGCCGATTCC ATTAMANTET CGTCAAACCC **TGCCTTTACC** TCGGCGGCAT CGGCGATGG CCGCGGCAT AAAGAAAA CCTGCTGGC AGGCAGTGGA TTGAAAAAC TACATCCGCC A CGCATGGTGC TCGTCGCCTT TTAAAANTCT NCGGCTCTTC N TATTGCGGCT \$1 101 101 101 101 201 301 401 401 401 401 401 401 401 401 401 701 701 701 701 701 701

ន

2

This encodes a protein having amino acid sequence <SEQ ID 56>;

CGCAAACAGG AAAAACGCTA A

8

MHLISTATIR QHAVMAVYAL LAFLALYSEF ELLYSTGHLG KGSYGIFBEN GYTALGKAR ATELMELAYL IGGIYSKSQU AGGSELXYIK ASGMSTKKLL LILSGGGIFF ALMYALGEW VAPTISGNE HYRAALROK ISTGHUK KEKNSIINNE ZHLEDHTLLG IKITARNDYN ELARAYRADS AVLASDGSW LKNIRSTIG EDNYEVSIAA EKNPISYKR NIADYLLVNP DQMSYGELTT YIRHCAKSQ HTRITALAWW KALYTPALAW WALVARAFT PQTTRHGHNG LKNTGGGLGG LLFHLAGRIF KTSQLYGIP PTLKGALPTI AFALLAVWEL

33

ORF112s and ORF112-1 show 96.3% identity in 326 as overlap:

mnlisry i i romavmavy alla flaly spfe i ly etgnlokgsygi fem koytal kwar ayelmplavligglysxsolaagselxvikasghstkkllilsofgfifaiatvalgew vaptlsgraenikaaingkistghtglwlkeknsiinyrehlpdhtligikirarndkn elaeaveadsavlasdgs#qlknirrstlgedkvevsiaaeexwpisvkanladvllvkp dom svgelttt i rhlqxxsqxtriya i ambrilvt paamvmalva faft pottrighyg orf112a.pep orfilla.pep orfll2a.pep orf1128.pep orfll2a.pep orf112-1 prf112-1 orf112-1 orf112-1 4 S 55

PCT//899/00103 Lagrlfy ft solygi pp flygalpt i a fallavwli nygekry ŝ DOMSVGELTTYIRE orf1128.pep orf112-1 orf112-1 S

Based on this analysis, it is predicted that this protein from N. meningitidis, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 13

2

The following partial DNA sequence was identified in N. meninglitidis <SEQ 1D 57>

AAAGGTAAC AGGCAGGCAG CGACCTTGC GCCAAACTCA TGGTTTCCCT GAGTATGGTA AMTCAGCAC CTAAAAACCA TGCCCCTTG GTGAATATCC ACCGCTA.TA CGCATTTGAT TGGACGGGG TTGAGCCACA ACCGTA.TA CGCATTGAT
ANGGGGAGT GTTAAACAAC GACGGTACA ATAATCGGT
GGCAGTGCGC AATGATTT GAACGAGGTA CGCGGTACG GAACGAGGTA CGCGGTACGG GCGGTCAAAA GGCCGACGTG GGCAAAGACG **CCTTTAAAAA** CCGTAGrAGC GCCGGTTTCI GTGCAGGTAG TGATACTGCC GCACTGGGCG CCAATGAAAA AGGCGTAGGC GECGAAATCA CATTACCETT AATGGGGGG GCCCCANATC GCACATTGGA YTACACCGG CTACCAACT CARCGCATC GTRACCGTAG GC
ATTATTGCCA ACCCCAACGG CATTACCGTT AA
TOTOGGTGG GGGATCTTAA CARCGGGG GG
TGCACTGA AGGATCTAA GGGGTAAG GGGATCAAG GGAACTAAG GCGAACGATGA AGGAACAAG GCGAACAAGA TAGATAAAG GCGAACAAGA YA CAGCCAGGC A TACCACCGAC ATCCTT AAA CCAACACTGG GGCAGCGGGT ACGAAACGA CTATTGCCCT GTATGTACGC CGACAGGATC ACACTGATTG GTCTAA TTTGCAGGG AAATTvemGG TTACGCCAGC TANACTTG GCAGTAGCG AAACTGCCAA AGALAGTAGA GCAGGTCGTT ANACTCCGAN 1 TTGCCTGCCC TGTGGTCANA GTCCAGTTGC Acceptor \simeq 2 23

This corresponds to the amino acid sequence <SEQ ID 58; ORF114>;

8

ANAETANSOG KGKGAGSUS VELKTSGDLC GKLKTILKTL VCSLVSLSKY
LPAROTITD KSARKNGOV ILKTWTGAPL VNIGTRUGRG LSHRKXARD
TÜRKGAKHN DINHRPÜVK GRADLILERY RETASKLNGI VYGGGKADV
TÜRKRGITV NGGFRÜVG GILTGAPOI GKGALTGFD VYKAHWTVXA
AGWUDKGGAX ITGVLAKAVA LQOKXXGGKL AVSTGPGKVD ISSGEISAGT
AAGTKFTIAL UTALGGHTA DSITLIANEK GVGV* 201101 201212 33

Further work revealed the complete nubleotide sequence <SEQ ID 59>;

AAACAGGCAG GCACCTAAAA CTTGGTGAAT GETTANTGEC GCCGCCTTTA GTGCGCCCCA ANTCGGCAAA CCCTGAGTAT ATACGCAGT AACAATAATC AAAAGGCCGA TGACCGTAGG GGTACGCGG1 CTGGTGCCCC C CATTATCTTT AGTAMAAGC AAATTACCAC CGACAAATCA CAACGACCGT TTTTGAACGA TCTTTGGTTT CAAGGCACAT GGGCAAAGGT CAGGGGACCT CGACTACACC AGGCTAAAA CTGAMACTT CTTGGTT CCAACAGCCA MAACCAACA CGGATTGAGC CAGTGTTAAA GCCCAATTGA CATCGTTACC TTAACTACCG GCCGANCTS
GCCGANCTS
TTCTGTTCA
CCCTTANAC
GCCCATGCCC
GGTATCCTT
CGAATGGACS
AACAAAGGGS GCCAACCCCA TGGGGGCATC TGCAGGATT TGGAATGATA TGCTTTGCAG CAMAGGCAGT AACTCAACGS GEATTCGGT CCAGTTCGGT CTCAAAACCA GGTATTGCCT ACCAGCAGGT CCAGGGGT CCAGGGT CCAGGT C TGATGTTGAC A CGTTTGTGGT C ACGGCTAGCA A CGTGATTATT GACGGTGCAC 1 AGCAGCAGGT 1 CTCGTGCAGT 1 ATCCAAACTC AAAATGTCGG 51 101 101 101 201 301 301 401 401 401 401 601 \$ 4 S

								_						_												_	-	-											_					•			-												_			
PCT/1899/00103																																																														
PCTAB																												•	•																																	•
L	J	TCAGTGCAGG	AAAAGGCGTA	TGATTGTGAC	שרו פררפענפ	CONTRACTOR	1175544475		1000000000	AGTATTCAGA	ATTAGGGGAAT	ACGCACCAT	ATCCARCCAG	TATCCCTTA	TGGCAGACGA	AATCTGTATG	TTTGTCTGCC	CCGCCACCAG	GCTCGCTGA	GCACATTCAG	ACGCAGCCAA	GACGGCCTTC	CGGTAATGCC	TCAATGCAGG	ATCACTTCAT	GCTTGGTGAC	TCABAACAA	AAAAGCGGG	TACCAAGCTG	GGGTAACGCT	ACCGGCAGCC	GGTGGCTAAC	ACAACACCAC	CTAGTCAAGC	GGAAGATAAT	CAGGTAGCGG	ACCGACCTGA	AGGAAATGCA	SCANIAICE SCANIAICE	ACAGCCGGTA	COMMECCETA	TI CAMCILCAN	AAAAAAAA	CONCLETCIO	AMARCCCAR	ALTOACTICA		CAUALICAGA	CARGOTTON	CGCCACTCGA	CCCTCAGGCA	TGGACAAAAC	ANATCATCAG	CCAGCCCCG	CAACATCGAA	CCCTGGTTGC	AAGCACGAGT	AGGCAAGAGC	TCCCCTCGT	CICCAAGGIA	AGGTGTAGGC	TTGTGMCCG
·		GAAA	AZGA	3						9	8	1				2000	AAGA			MTCT	CTGA		CCAA	GATG	CANT	110	Yee	TGCC	3	CAGC		کو	200	2300	Ę	GAAG	CAT	3			14141		9119	3	5 5						_	-	5000	TARG	8	5						
		AGCGGGGAAA CCTTGATACT	TTGCC	GCCAAGCAAT					410	CAAGGAGGCC	CCAAC	GATTATCCA	CACCG	TACCTCCG	CTTGC	TACTO	TTGAT	GCCCATATTA	TGTGGAGGCA	CGGGT	ACCINA	TATCGTTTCA	TATTG	AAGGCC	CATA	ACGGTATTCA	CACAT	CGTCCATGCC	GCATAG	CAACACGAGC	TCTXX	CCAAC	CANAT	CGGTA	CCANA	AATAT	CAGTG	3 5			ACTIONATED		3	1			2000			CATGC	MATCA	TACTG		CCTCA		GGTAN	AGGCA	GCATCAAGGT	AAATTGCCTG	0001941010	ACATTCAGGC	CTCANAGGCA
-68-		AGATTACGCC CGACTATTGC	ATCACACTGA	ACTCGAAGGG	200000000000000000000000000000000000000		PACATATA		BACTANTOTO	GTACCGTCAT	TCCAGCAAAG	AGATGTTACC	ATGCCAAAGA	GCTTCAACAG	CGGCAAGCAG	CCAATCTGAA	AATTTGAATG	GGATAACGCT	AAGACATGGG	CGTACCAACT	GCTTCGCAAT	TGCAGGGCAA	CATGTATCCT	CCTGACAGCC	TGAAAGCAGA	GTTGCCGGCA	CAACGGAAAA	AAAACCTTAA	CGGGCATTGA	TCTTAATGCA	CACACCGTCA	CTGCCTTCTG	GCGCTATTCC	ACCTTACTGC	ACCGTTTCGA	CGGACGGCTG	CCAACCGCAT	116161161	911471711	ALL LANGACO	ALLAANSICA		AACAGCAGA1	בראונינים פר	CAACAAGGAA	ATCAGGGTT	ACCOURAGE STATE	ACGCATAAC	TACGACAAAG	GGTAAGTATT	GTGCATCCGA	ACTGATATTG	AACCAAAGGT	CCCGCGACCA	ATAACGCTTC	TGCCCCTGCA	TGCCAGAAGA	CGCTTTATCG	GAACGAAACC	9179967119	000010000	GAAAATTATC
		CTCAGAAAGT GGTACGAAAC	CCCCGACAGC	ATGCCGGCAC					TTGAGAGCAA	GCCGACGGCC	CGTATACAGT	TTACCGGGGC	GCCGTAATAG	TTCTTTGGAA	GTATCAAGGG	GCCANACTA	TAAAGATCTG	ATTTGAAATC	ACTGCCTCAA	TACCAATCTG	GCAATATTCA	ACCACCGCAT	TGCAGACGGT	GTCACAATAC	AAAGGCCGTC	TATTACGTTG	GCAATTCAAT	GCCGACTTAA			GATGCCTACG	AAACGACAAA	CACTCAATGC	GCTGCAATCA	CAATTGGAGT			PUCCUCANANA CONTRACT	CICCIONAL COLUMN	SCHORANCES	ופורפרנארו				TICHAGCCA1				_									Τ.		TATOUR COLOR		
•				TECTORANA										GCAMACCGCT	AACGGAGGCA								ATGCTGTTTC		ATCGGTTGGT		_									GCCGAATIAA		CONTRACTOR			_			COCCIONANA						-	TGATGCACGT A		_	-			GGGTGAAGAG (
		751 801	921	106	1001	1001	1011	1151	1201	1251	1301	1321	1601	1651	1901	1881	1091	1691	1701	1751	1801	1881	1901	1951	2001	2051	2101	2151	2201	1522	2301	2351	2401	2451	2501	1603	1007	1016		280	1007		2961	1001		1016		-		-	3351		3151			-	1691			_		

CCGCGGGG CGGTACGT CGCACGGGG CGGTACGT CGTGTCGAAA GCGAAGGCG A AAGAACTGA TGGCTTACTA A TACAGAATTA ATATAGCGA A AACGGACAA CCGGTATCTG TGGCAGAAC CAGCTTCGAA TCGTCGACAT AAACAGCCCG CTACTACCGT TTGTATAGCC CAAAGCGTTG AACCCACAAC TACAATTAAA GTATTTACAG ATAAGTCAGG ACTACATACC CAGTAAAAGG AAACTAA CCTGCACATG A CCGANATCGA ANAGETGGCC N.

G CTCCANGTAG CGANANCGT C.

A TANTGGGCC TATANCGAG N.

G TACCATAT CCANCGGCA C.

G GGCGTGTAG COCCTTCAG N.

C CGCCACAACG ACACGAGCA C. ACAAGGAAAA TAGCCGACTC AGGATGCTGC TCCATAGGCC 1 TTTAGCCTCC GTTGCCAAAC GGCACTCAAC AGGTATTATG CAGATTGTCA AGATATTGCC GAAAAGCATA CCCTAGTGAA AAGCATCAAC GATCGGTACA NAACCGCTGC . TACCAATCTC CCACGATTAT GCGGATTGGT CAGGGATGCG CCGCAGGATA GCAGCGTGGC CAATGCGAAA CAGCTCCGCT AAANTCAAAA CAACCTTCAG CGCTTTGCCT GGGTGTGTTA G GGGCAATTGG CGCAGCAGTT G GGCAGAAACC CTGCTACACT C GTAGTTTCTT C TGTCGATGTA G TCTGAAACAG TGGCTTACGA GCACCAGTGA GCCGAATGCG GATGACTAAT GGTTTATGCT GCAGGTTGGA TAGCTATCAG CACCTGCATG ACTCAGGCTG CCGAAGCGGG GCAGCGATTG ATCCATCATC AACCGMCTG GCACTGGAAA AMATATAGG CGATATACAC GCAGACTGGC TGGGAAGCGC ACTGCCATGC GCATGTTCTT CAGGTGCAC 1 CAGAGCCGGT G GATACGGCGC A GCCGCAGCTG C TTCTACAGCG A AAGCAGCTGT A AAGGATCTCG G GCANGGTANG A AACCTTGGAG TGGTATCAAT A ATGCCGCATT A AATTTTGACA G CGACAAAACC G CAGCAGGTGC G TAGTACTACT CTGGCTTTGA TGAATACTGC AGCAATATCC 9 2 ຂ 22 33 \$ 8

PCT//899/00103

This corresponds to the amino acid sequence <SEQ ID 60; ORF114-1>:

\$

S

S

8

101 101 201 301	LKTTLKTLVC IQTPNGRGLS TASKLNGIVT DGALTGFDVR STGPQKVDYA GVRNGTLEA	LKTLATICS SLVSLSKYLP IOTPKCKIS RNYTOTOVO TASKLMGIVT VGGQKADVII DGALIGFDVR QGTLTVGAAG GVGKVDYR SGEISAGTAA GVGAKTLER AKQLITTSSG	AHAQITTDKS MKGAVLNNDR ANDNGITVNG WNDKGGADYT GTKPTIALDT	ALLANGURU KANASSYSYS HKGAVLHUDA PENGQOVIL HKGAVLHUDA HNPETVYKGS ANPHGITVHG GGTKNVGRGI WHOKGGADYT GVLARAVALQ GTKPTIALDT AALGGHYADS RIENSGRIAT TADGTEASPT	THE STATE OF THE S
	AAGIFISHGG NLVIESKTNV MTRITGADUT NGGSIKGGKQ ASIHLKSDNA AAKGNIQLRN DFTGHNTLTA		ETGEDISLRN ADGRTVIKEA AVIDAKDTAH AKTTKLNTPG TASKOHGVEA TTALGGNIVS	ACTOEDISLAN GAVVQHAGSA ACTORTVIKZA SIGTGTTVYS AVIDAKDTAN IERGKPISLE ARTTKIATA OLLYVIGKOL TASKÖMGVEA GSLAMTPATIL TTALGGNIVS OGLHAVSADG KKRLKADNTN ITSSSGDITL	
	CSTHNTHLNA ESTHNTHLNA GVLALNANYS GAPSAQVSSL NNSFSNYFPT AFYIQAINKE		ORENTLADU ADLKNIAVIA ORENTLAD ADVAHRILSI QTADNTILRA GAINLTAGTA NIEAGSGTLT IERANTSAH EAKGNIRLYT GETDLRGSKI ORARLINGKS KELEQOIAGL VKGKKEKGKE ILQAKLSAGN	KSGALNIHSD TGSQIWQNDK LVKRGNINWS TDLSIKTGGK TAGKNLVVAT KKSSPKSKLI	RALSIENTKL LPSANKLVAN TVSTKTLEDN LLLSAKGGNA TKGKLNIEAV PTLQEEBORL ISGSDITASK

•	_	•																				
)																						
	1951	1901	1851	1001	1751	197	1631	1001	1551	1001	151		1221	1	102	2	151	101	1001	:		
•	ECGQPTTTIK	NRSVFT1SPN	QESKNIGAVN	TOAREAGAGI	SHIRNGITGP	NEDSTPINAX	GRWPATLEDA	KIKTTESODY	NUGGREATRE	KDLGTSOTAK	AAAAGTAATT	QVQLAYDKWD	SETPENLIAP	EKARADAKII	MISKNELNET	ANTTRINAPA	DATTFLKTKG	RLTGRTGVS	KLNLHAAGVL			
			TRINIANSTT	ATGAVTVGHA	IVITSYGVYA	KHOPOKPDKT	_	VARQUARALA	-	QIVTSALTAG						-		I HAMAALDDAR	L PKAADSEAAA			
	TTY PVKGN.	VVSSPVSHTP	RYTPHROTGO	WEAPVGALSK	AGWTAPLIGT	VIEKLIOGIN	LINGSVAALM	GCVSGLVQGK	TAVNGGSLKD	ALNONGADIA	TAMOTAALAS	ATVIITA	NUNTELEKLA	EEKLETNSTV	AATRSGWDTV	LQLLAEEGIH	C FTSTRDHLIM	IIIGASEIKA	ILIDGITDQY		-91-	
			PVSAGEEHVL	AKAAKQAIPT	AGKLA I STCH	PAHAAGAATN	GGDVNTAANA	CKDGAIGAAV	MEGNAALGAL	QLMSKVRTEL	LYSQAAVSII	LTTGTGATAA	KOPEYAYLKO	POKOAGRGST	LEGIEFKIIL	KHELDVQXSA	PAPVELTANG	PSGS I DI KAH	EIGKPTYKSH			
	677.61	GOVERNMENT	EGHFHRDIAN	OTVKELDGLL	AMPSGCTVHV	PODKOAA IWI	TYHNAAVABY	GEIAYDZWI'			MNKGDVGKAL	GGVAASGSST	KOPEYAYLKO LQVAKNVNWN			RFIGIKVGKS		SDIVLEAGON	EIGKPTYKSH. YDKAALNKPS			

PCT/1889/00103

5

ᅜ

Computer analysis of this amino acid sequence predicts a transmembrane region and also gives the following results:

Hamolagy with a predicted ORF from N. meningliidis (strain A)

ORF114 shows 91.9% identity over a 284aa overlap with an ORF (ORF114a) from strain A of N. meningitidis:

SS	50	45	`	35	25 30
orf114.pep	orfll4.pep orfll4a	orf114.pep orf114a	orf114.pep	orfild.pep	orf114.pap
I XAD	230 240 250 270 280 280 GIXXGIXLAVSTGPQRVDYASGEISAGTAAGTRPTIALDTAALGGMTADSITLIANIKGV II II IIIIIIIIIIIIIIIIIIIIIIIIIIIII	170 180 190 200 210 220 GGFNYGRGILTTGAPQIGKDGALTGEDVVKAHWTVXAAGMUDKGGAXYTGVLARAVALQ HIHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	110 120 140 150 160 HKGAPLHHDRHNRFEVKGSAQLILMEVRGTASKLHGIVTVGGGKADVIIAHPHGITVHG HIHHIHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	SO 60 90 100 SLYSLSHULDAHAQITTDKSAFKHQQVVILKTHTGAFLVNIGTPNGKGLISHNRXYAFDVD	10 20 30 40. AVÄETÄNSÖÖRGKÖÄGÄSSYSYSLÆTSGÖLGGKLÄTTLÆTLÆC . HIHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

60	×	50	45 40	35 36	2 2			•
		.		5	20	. TO	ω . ⊣	
							he com	
2901 2901 2951 2901	2451 2501 2551 2551 2601 2651 2701	2101 2151 2201 2251 2301 2301 2301	1601 1651 1701 1751 1801 1851 1951 1951 2001	1101 1151 1201 1251 1251 1301 1351 1401 1401 1501 1501	601 701 751 751 801 851 901 951 1001	101 151 201 251 361 351 401 401 501 501	or£114a omplete l	
TCTGGTTACA AAAACTTGGT AACAACTCAT CCAAAAAATCC	GCTGAGAGCG GCGGCAACAT GCCGAATTAA CACATTAACC GCATCAAAAC GCATCGCATA	GGAAMACAAC CGGTGGTAAT CATTGAACAT GAGTCTACCC CAACEAAGTA AGATTTGGCA GGTGTATTGG	TTCATACAGG GCCAGCATCC TAAAACCCTC AAGGTACCAAA GCAGCCAAAA GCGCTCTCGAA ATGCTGTTC GACTTTACCG ATCGGTGGT CTTCAGGAGA	ATTGGTTATT TGCAGAATAA AATTTGGTGA TAATCTGTCG CGGCAGTTC AATACCCGTA TGCCAGTGCT GCAAACCGCT AACAACGGTA TAACAACGGTA TAACAACGGTA	GACGGTGCAG AGCAGCAGT CTCGTGCAGT TCTACCGGTC TACCGGTAGTG GCGGTATGTA GGCGTCAAAA TTCGTCAGGC GCACCGAAGC	GCAGTTCGGT CTCAAAACCA GGRATTHCHN ACCARCAGGT ATCCAAACTC TGATGTTGAC CGTTTCTGGT ACGGCTAGCA CGTGATTATT AAAATGTCGG	GVKNAGT engih ORFII Atgaataaag GGTTGCAGTA	
GGAGNAACAG TGTCGCCACC TCAGCAATTA AAAGAATTGG		GCAATTCA GCCGACTT TCATTCCG ATAATACGA GATGCCTAC AAACGACAA CABTCAATC	TAMBATE ATTIBAM ACTECTE TACEATE GCANTATT ACCACGE TGCAGACG GTCACAAT AMAGGCCG TATTACGT		TGACAGGI TGGAATGI TGCTTTGC CTCAGAAA GGTACGAA GGTACGACA ATGCCGGC ATGCCGGC CGCATTGA TTCACCGA	TTCTGTT CCCTTAM RNCHITH CGTTATC CGTATCG CGAATGG AACAAAG CAAAGGC AACTCAAC GCCAACCC TCGGGGC TCGGGGC	TIEMAKOLIYTS 310 310 114a nucleotic GGGGAAATG	
							orf114a GVRNAGTLEAAROLIYTSSGRIENSGRIATTADGTEASPTTLXI 310 310 310 The complete length ORF114a nucleotide sequence <seq 61="" id=""> is: 1 ATGARTANAG GTTTACATGG CATTACTTT AGTANANAG ACM 51 GGTTGGAGTA GCGGANATGG COALGAGGA ACM</seq>	9
		CAMATTGCG				THE CAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	IATTADGTEASPT 310 210 e <seq 61="" agtaaaagc<="" id="" rt="" td=""><td></td></seq>	
ACAGCCGGTA CGAAGCCGTA NHGNNCTCAA AAAAAAAAGCT		TCAAAAACAA TAAAAACAGGGG TACHAAGCTG GGGTAACGCT ANCGGCTAAC GGTGGCTAAC				T TTGCGCAAN T CCCTGAGTAT T CCCTGAGTAT T CCCTGAGTAT A GCACCTAAA C CTTGGTGAAT T ATACGCAGT T ANCATAATC C AAAAGGCGA C AAAAGGCGA C AAAAGGCGA A ATTCGCTAT A AGTTCGCTAT A AGTTCGCCTAT A AGTTCGCTAT A AGTTCGCCTAT A A AGTTCGCCTAT A AGTTCCTAT A A	GVINIAGTLEJAKOLI YTESGRI ENSGRI ATTADOTRAS PTTLKI ETTEKGAKOTFI BKGG 100 310 350 360 1 ORF 14a nucleolide sequence <seq 6 ="" d="" =""> is: ANTANAG GTTACKTCG CATTATCTTT AGTANANGE ACAGCACCAT TGOAGTA GCCGAMATTG CTATATCTTT AGTANANGE ACAGCACCAT</seq>	
						~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	AXGTF18HGG	PCT/Reamon

PCTABBS100103						
		GGC TGGACANAAC GGC TGGACANAAC ATG CCACCCCCAG CGG CACATCGAA CGG CACATCGAA CAC AGGTAGAGGG GGT AGGTAGAGGG GGT GCGCGTCGT GGT GCGCGTCGT GGT GCGCGTCGT GGT GTGCGCGTCGT GGT GTGCGCGTCGT GGT GTGCGCGTCGT GGC AGGTGAACGGGGGGGGGGGGGGGGGGGGGGGGGGGG		SEQ ID 62>: ROAGSSYSYS LITSCOLGGE ANCHACOVIL RIPICABLYN BINKFLYKGS AQLILHEYNG GERKWORD I TIGAPOLG GYLGWYOND GERCGOLLAY ALCGRANDS ITLLAKEGY ANGTERSP TAXIFTENG GAYQURGSR PHYTULAGH TQAGSSYTS SYKODTLGE	SIE TSTVASHIRL NOL HINYDEDISA FRI RTESGRILLIQ NOC HYSLLANGHA NOC HYSLLANGHA NOC HYSLLANGHA NOC HYSLANGHA NOC HYSLA	
-93-	ATT CCAN CONTRACT CON	MCGATATTE TACREGAGE CENCCANGET ANAGGGGG CENCCANC CTÚATATA ATCACCETE AGGAGGGG ATCACCATE GATANGTA TGCCAGANGA AGGATCA GGCTTATIC GCAICAGG GANGGGGG GANGCGG GAGGGGGG GANGCGG GCGGGGGGG ANAGGGG GCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	TANA CGIN CGIN CGIN CGIN CGIN CGIN CGIN CGIN	This encodes a protein having amino acid sequence <seq 62="" id="">: 1 NOWGLBRIIF SKRHSTWAN AETANSGEK KQAGSSYBYS I. 51 LATTLATLYC SLYSLSHXXX XXXQITTOBS APROXOVTI. K 101 IQTPHREGIS HNRTQEVO NKGAVLANDR NHRELVNGS A. 151 TASKLAGIYY VGGGKNOVII ANPAGITUS GGTRAVGKG I. 201 DGALIGTOWR GCTLYGAG WHINKGADYT GYLARAVALO G. 251 STGPQKVDYA SGEISAGTAA GTRESGENAT TANGGRAFAT Y. 251 STGPQKYDYA SGEISAGTAA GTRESGENAT TANGGRAFAT Y. 251 AKGTRISHGG RIESKGLLYI ETGEDIXLER GAYQURGSR P. 251 MAGTRISHGG RIESKGLLYI ETGEDIXLER GAYQURGSR P. 261 WLYLESTTSWG RIESKGLLYI ETGEDIXLER GAYQURGSR P.</seq>	NTEARTH ISGGPISLE ATTWATER INVERSED. TASKMETER GILGHYTATH TTACGUIVS DCLEAVSAGG REALGHYTA REGGLINES ADDRILWHT ITSSCODIT, ADDRILWHT ITSSCODIT, ADDRILWHT ITSSCODIT, ISSUERIES KOSGLINES BATANTAGTA LVEGRIAMS GILHLAGTA LVEGRIAMS ITPANISMET TOLSTRAGG	
		CETTETH ANY TITLICAGE ANY TITLICAGE ANY CECCLACORY TITLICAGE ANY CECCLACORY TITLICAGE ANY CECCLACORY TITLICAGE ANY ANAMACICE COC ANAMACICE COCA ANAMACICE COCA ANAMACICE COCA ANAMACICE COCA ANAMACICE COCA COCA ANAMACICE COCA COCA COCA COCA COCA COCA COCA CO	•	B amino acid sec skrafarman art skrafarman art slyslskxx xxx slyslskxx xxx slyslskx xxx slyslskx art skrafase are arcislsky skrafas arcislsky skrafas arcislsky skrafas arcislsky skrafas arcislsky skrafas arcislsky skrafas		
	CGCNTAAAG GCTTCTATA AGCCAAGAA TTCCGCACA AACTGAACC GGGGGCTGCT AGCCCACTA CGTTGACCG	GCATAGACA GCATAGACA AAAAGACA TCGACTGAC GCTAATACCA GGTGAATACCA GGTGAATACCA AATTACATA CGCCCAAATT CCGAATTCAA	NGCCGGACG NGCCTRATC TCCGANGGC NGTNTCCTA CCGCTCGACC GCGCCGGACA ACGATCAG CCACAGGAC ACGATGCAG ACGATGCAG ACGATGCAG ACGATGCAG ACGATGCAG ACAGATGCAG ANANTGGGC CAACCTGAC CAACCTCCAAC CAACCTCAAC CAACCTCCAAC CAACCTCAACCTCCAAC CAACCTCCAACCTCAAC CAACCTCAACCTCAAC CAACCTCAACCTCAACCTCAAC CAACCTCAAC	B Protein having H NOKGLERITE L LYTTLKTLVC L LYTTLKTLVC L LYTTLKTLVC L LYTTLKTLVC L LYTTLKTLVC TASKLUCIY STGPQKVDIA GVRNACTLEA AXGTFISHGC HAVIESRTVV	NTRIJAENYT NNGNIKGKG ASIHLKSDNA AAKGHOLNA DFTGHTLTA GKORNSINGK CETRHTHLAA GVLAKNARYS AELKPLAGEL GAXSAQVSSEL	NUBFBNITXT AFICOLINE KLALRAGOL RLTGRIGVSI DATTFLXTKG ANTRENARA NYSKNELMET KRANDAKII SPTPPKLSAR
	2951 3001 3101 3101 3101 3251 3301 3301 3301 3301 3301	1950 1950 1950 1950 1950 1950 1950 1950	600 601 601 601 601 601 601 601 601 601	This encodes a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	451 551 551 651 651 701 701 701 851	851 1001 1101 1101 1101 1201 1201 1201 1301
<u></u>	· •	20 22 23	30 23	35	45	98

-94-

PCT/1899/00103

1401 QVQLAVDRUD YKQEGITEAG AAIIALAYTV VTSGAGTGAV LGLHGAXAAA 1451 TDAAFASLAS QASVSFIRNK GDVGKTLKEL GRSSTVKNLV VAAITAGVAD 1501 KIGASALXHV SDKQWINNLT VHLANKGQCR TD*

ORFI14-1 and ORF114a show 89.8% identity in 1564 as overlap

~	orfll4s.pep orfll4-1 orfll4s.pep	HWIGLHAIIFSKRESTHVAVAZTANSGCKCROAGSSYSVSLETSGDLCCKLKTTLFLVC 	
o 51	orfil4-1 orfil4a.pep orfil4-1		"
20	orfilde.pep orfild-1 orfilde.pep	GGFRNVGRGILTIGAPQIGKDGALTGFDVRQGILTYGAAGWRDKGGADYTGVLARAVALQ [7 .
22	orfilda.pep	uniquarian'sicpondiasceisactaactketaldtaalcchyadsitlianekgy Gyknagtleaakgliutsscrienscriatadcteasptylkiettekgakgtfishco 	
30	orf1140.pep orf114-1	RIESKGLLVIETGEDIXLANGAVVQNAGSRPATTVLNAGHNLVIESKTWVNAKGSKNLS 	
35	orfll4a.pep orfll4-1	ACGRTIINDATIQAGSSVYSSTKGDTXLGENTRIDARNTVLSNGSIGSAAVIEAKDTAN - - - - - - - - - - - -	
9	orf114a.pap orf114-1	IESGRPISLETSFVABNIBLANGNIKGKGLALLADDRITAŘTTNIATPGKLYVHTGKOL -	
:	orfilda.pep orfild-1	Ninydkolsaasihlksdhaahitotsktltaskomqveaclinyththighein 	
\$	orfil4a.pep orfil4-1	aakghiolantklaaakalettaloghivedglhavsadghysllanghadftghhilti 	
20	orf114a.pep orf114-1	KADVXAGSVGKGRLKADNTNITSSSGDITLVAXXGIQLGGGKGANSINGKHISIKANGGN 	
. 8	orfilia.pep orfili-1	adloklavhreggalatisdralstentklesthyterhaquerytlovdatarhest 	
. 09	offil4.pep offil4-1 offil4a.pep	XGSQIRQHDKLPBANKLYANCYLAKNANYSQIADNTLRAGAINLTAGTALVTRGHINUS 11111111111111111111111111111111111	

		•	••	•	•			`.	
j.	2			5		v			
brf114-1	orflida.pep	orf114-1	orfll4s.pep	orf114-1	orfll4a.pep	011114-1	orfiles.pep	orf114-1	
EIGKETYKSHTDKAALAKPSRLTGRTGVSIHAAALDDRRIIIGASEIKAPSGSIDIKAH	eigkptykshydkaalukpsbltgrtgvsihaaaalddariiigaseikapsgsidikah	AOGLISGITIVEVESGEVENATABVENTHYNSVEIGSSSIZISSVSITGIROVETNEOTAL	YLQAKLSAQNIDLISAGGIRISGSDITASKKLKIHAAGVLPKAADSEAAAILIDGITDQY	OKAAELAGKSKELEGOIAGLKKSSPKSKLIPTLGEERDRLAFYIGAIKKEVKGKKPKGRE	OKXXLHOKSKILEOOTAOLKKSSXKSKLIPTLGEERDRLAFYIQAIHKTVKGKKPKGKE	GAPSAQVSSLEAKGHIRLYTGETDLRGSKITAGKHLVVATTKGKLHIEAVNHSFSNYFPT	GAXSAOVSSLEAKGNIRLVTGXTDLRGSKITAGKKLVVATTKGKLNIEAVNNSFSHYFXT	TVSTKTLEDNAELKPLAGRLNIEAGSGTLTIEPANRISAHTDLSIKTGGKLLLSAKGGNA	-95-

K

orfll4a.pep

orf114-1 orf114s.pep orf114-1

orf114-1

ä

25

orflid-l
orflide.pep
orflide.pep
orflide.pep

Homology with pspA putative secreted protein of N.meninglitidis (accession number AF030941)
ORF114 and pspA protein show 36% as identity in 302as overlap:

S

SS

LTASKDHGVZAGXXXXXXXXXXXSGNLHIQAAKGNIQLRNTKL-NAAKALETTALO 625	YVÕIHTNBSXXXX		Query: 570	
GHIYYHTKKOLHLAYDKOLSAASIHLKSDNAAHITGTSKT 569 G +Y G + + D L+ AA GRIYGSRVAYEADTLLMR6STYNGETKAAY 562	GRIYGSRVAVE			66
433 IAEHVTVLSHGSIGSAAVIDAKOTAHISSGKRISLETSTVASMIRLHNGHIRGGKQLALL 514 +T + G + + + IA OT + + + + + S R 454 AGRTLIFSTOGRIKHTRIIQAGDTVSLTAAQIDMTVSGKIQSGHRTGLHGRNGITHRGLI 513	PARDTAHIESGRPLS PA DT + + + + PAGDTVSLTAAQIDM	S IAEMUTULSHGSIGSAAVIE +T + G + + +I+ 4 AGRTLIFSTGGRLKNTRIIQ		55
XMLSAGGRTTIHDATIQAGSSVYSSTKGDTXLGENTAI 454 -+\$ ++ ND + A V S + D G+ AGKDVSLQAKSGLDHGGILTAARDV-SVSLHDDFAGKRDIE 451		9 GHILVESKTHUHARGS G +S +HN G+ CRSLHIHARGS		50
TAALGGWYADSITLIAXEKQVGVKHAGTLEAAK-QLIVTSSGRIENSGRIATTAAGGTEAS 339 TA LGGWYAD ITLI+ 4 + H G + AA + +++ G++ HSG I +A+ TALLGGWYADKITLISTONGAVIRHKGHIFAATGGVTLSADGKLSNSGSIDAA 351 PTILXIETTEKGAXGIFISNGGRIESKGLLVIETGEDIXLANGAVVQHNGSRPATTVLHA 399 PT + + + + G I S V++ + I + G + GS + + EIIIAAGTVD	VGYKNAGTLEAAK- G +AA G ++N G + AA GAVIRHKGRIFAATG KGGRIESKGLLVIET G I S V++	280 TAALGGYYADSITLIAXEKG TA LGGYYAD ITL: • d 299 TATLGGYYADKITLISTONGJ 339 PTTLXITTEKGAXGTFISK 4	Query: 280 Sbjct: 299 Query: 339 Sbjct: 352	45
RGGADYTGYLARAYALQGKYQGKYLAVSTGPQKYDYASGEISAGTAGTKPTIALO 279 ADYT +1-RA + GK++ V +G K+D+ +A + PT-A+D TSDADYTRILBRAASINAGYWGKDYKYVGGKYKLDFQGBLAKTASAPSSSDSYTFTYALD 298	TOGRNEAVASGEMETOF	4 KGGADYTGYLARAVALQGKI ADYT +L+RA + + - 9 TSDADYTRILSRAASINAGV	Query: 224 Sbjct: 239	40
QKADVIIANENGITYNGGG HWGRGILTIGAPQIGKDGALTGFDVRQGTLTYGAAGWND 223 ++A-N++A-NP-GI VNGGG H LT G P + +G LTGEDV G + +G G D KRALEVVAMESGIRVNGGG-INAASVTLTSGVPVL-NNGHLTGFDVSSGKVVIGGKGL-D 238	H LT G P LT GAPQUIA		Query: 164 Sbjct: 181	35
QFDVDNKGAVLHNORNNPFILVKGSAQLILHEV-RG7A9KLHGIVTVGG 163 QFDVD KG +LHN R+H HP L +G A++I+H+ S LHG + VGG QFDVDXKGVTLHMSRSHTQFQLGGR1QGHPHLARGZARVIVMQIDSSNPSLLHGTIEVGG 180	ATHARBOTABOTOL		Query: 116 Sbjct: 121	30
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			Query: 56 Sbjct: 61	
NHRGLHRIIFSKKHSTNYNNASTANSOGKGKONGGSVSVSLKTSGDXXXXXXXXX 55 NDK +++1F+KK 5 H-ANAE + GK Q + SV + +5 HNKRCYKVIFNKRSCHM/NEMVHRDGKSHQDSEMASVRVTGMAGVSSARAAFGFRHAA 60	VAETANSOGRGRQAGSSYSYSLK VAE + GK Q + SV + VAENVIRDGKSRQDSEAASVRYTGAA	NINGLHRIIFSKRISTWADAE: NIK +++IF+KK S H+ADAE NIKRCYKVIINKKRSCHMADAE!	Query: 1 Sbjct: 1	25
secreted protein (Neisseria meningitidia) Length :t = 3e-66 :sitives = 314/663 (461), Gape = 76/663 (111)		gi[2623238 (AF03094]) putative - 2273 Score - 261 bita (659), Expe Identities - 203/663 (301), F	gi 26232 = 2273 Score = Identit	20
	••	PSPA: 317 NG 318 ORF I 14a is also homologous to pspA	PSPA: ORFI14a is ali	15
ASGEISAGTAAGTRPTIALDTAALGGWYADSITLIANE 279 *A		224 MAAGMAMASTGPQKYD GK + V +G K+D 257 GVBGKDVKVVSGKNKLD: 280 KG 281	oztli4:	10
KOGALTGTDVVKAHTTYXAAGNDKGGAXYTGYLARAVALQG 223 +G LTGTDV + G D A YT +L+RA + NHCHLTGTDV85GKVVIGGKGL-GT5DADTTRILSAAAEINA 236			• ••	<u>~</u>
GNPTUVKC\$AQLILHEV-RGTASKLEGIVTVGGGKARVVVANESGIRVKGG 189 NP + +G A++1+N++ S LKG + VGG++A+V++ANP+GI VKGG NP + +G A++1+N++ S LKG + VGG+AA+V++ANP+GI VKGG 188	A++I+N++ S	115RPTVVKG NP + +G 139 QTQLGGWIQGNPHLARGI	Orfild:	<u> </u>
PCT/1899/00103	-96-			

		PCT//BS9x00103
	SPJCT: 963 IAARERLDIGARZIEHRRAALLSSSGDLHIGSALWGSROVGGAHTSLHHRSAAIESS	619
~	Query: 626 GNI 628 GNI Sbjct: 620 GNI 622	
02	Score = 37.5 bits (85), Empect = 0.53 Identities = 87/432 (204), Positives = 159/432 (364), Gaps = 62/432 (144)	12 (141)
~	Query: 239 LQGKLQGKNLAVSTGPQKVDYASGELSAGTAAGTKFTIALDTAALGGHYADSITLIAXEK 298 LQG LQGKN+ + G + +G I A A K + + S T + + Sbjct: 1023 LQGDLQGKNIFAAAGSDITHTGSJGAENALLK4ASHNIESRSEIRSHQME 1072	JAXEK 298 + ISNQHE 1072
2	Query: 299 GVGVRNAGILEAANQLIVISGRIENSGRIATHADGTEASPILILIERGANG-TF 355 V+N G + N L +G + + I TN E T + G T Sbjet: 1073 GGSVRNIGRY-AGIKITGRQNGSVLLDAGNHIVLT#SELTNGSEDGGTV 1120	G T 120
2	Query: 356 ISWGGRIESKCLLVIETGEDIXLRMGAVQNNGSRATTYLANGHNLVIESKT 408 ++ GG I	T 408
22	QUery: 409 HVHNAKGSXHLSAGGRTTIHDATIQAGS8	IABNYT 460 KNQNG 1234
30	OUGEY: 461 VLSHGSIGSAAVIEAEDTAHIESGKPLSLETSTVAKHIRLHNGHIKGGKQLALLADDNIT 520 +G++++ + + + + + + + + + + + + + + + +	LADDNIT 520 A+ N SAEMNK 1292
×	Query: \$21 ARTHLATPG-NLYPHYGROLNLAVDROUSAASIHÜKSDHAANITGTBRTUTA K+ + + G + + K + + G + + S + S H	MTLTA 572 7++ 157155 1352
3	Overy: \$73 SK-DMGVEAGXXXXXXXXXXXGALBIQAARG	TALGG 626 G VQTVG 1412
40	Query: 627 NIVSDGLHAVSA 638 + ++A++A Sbjct: 1413 KSKMSBVHAMAA 1424	•

PCY/899/00103

8

Amino acids 1-1423 of ORF114-1 were cloned in the pG₄x vector and expressed in *E.coli*, as described above. GST-fusion expression was visible using \$DS-PAGE, and Figure 5 shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF114-1.

Based on these results, including the homology with the putative secreted protein of N.meningliidis and on the presence of a transmembrane domain, it is predicted that this protein from N.meningliidis, and its epitopes, could be useful antigens for vaccines or diagnostics.

50 Example 14

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 63>

25 ⇆ 5 Orfill6: J61 TIRSGGDTTLKGVQLIGKGIQADTRNLHIESVQDTETYQSKQQHGNVQVTVGYGFSASGS 420 I SGGDT +KG QL GKG+ +LHIES+QDT ++ KQ+N + QVTVGYGFS GS P#PA: 1587 AIESGGDTVIKGGQLKGKGVGVTAESLHIESLQDTAVFKGKQENVSAQVTVGYGFSVGGS 1646 Orf116; Orf116: 301 0xf116: PspA: PepA: Orf116: 126 PspA: PspA: orf116: 421 YROSKVKADHASVTGQSGIYAGEDGYQIKVRDHTDLKGGIITSSQSAEDKGKNLFQTATL 480 Y +SK +D+ASV QSGI+AG DGY+I+V T L G + S DK KNL +T+ + 1647 YHRSKSSDYASVNEQSGIFAGGDGYRINVNGKTGLVGAAVVSD---ADKSKNLLKTSEI 1703 : 301 QDGSEOSKWKSSGWNAGVRKKIGHGIREGITAXXXXXXXXXXXXTHRHTHYGSTTGKT 360 Q E+S+NK5+G+NAGV I GI FG TA T +R++H+GS +T 3527 QTHQENSENKSAGFNAGVAIAINKGISFGFTAGANYGKGYGNGDETAYRNSHIGSKDSQT 1586 241 EOKRHYTEAAASQIIGKGQTTLAATGSGEQSHINITGSDVIGHAGTXLIADHHIRLQSAX 300 Z + T+ +1 G G++L A+G+G+ S I ITGSDV G GT L A+N +++++A+ 1467 ESRIKGTQVQEGKITGGGKVSLTASGAGKDSRITITGSDVYGGKGTRLKAENAVQIEAAR 1528 1415 KHSRYMAMAANALHKGVDSGVALTHAARHPKKAAGQG------ISVSVTYGEQKNTS 1466 1295 SGLMGSGGIGFTAGSKKDTQTNRSETVBHTESVVGSLNGNTLISAGKHYTOTGSTISBPQ 1354 1355 GDVGISSGKISIDAAQNRTSQESKQVTEQKGVTVALSVPVVVHVAQAVDAVKAVQTVGKS 1414 E81 KNKRYXXXXXXXXXXXXQSTQATQQMQQFA--PSSSAGQGQNYNQSBSISVSIXYGEQKSRN 240
KN RV + + + A P +AGQG ISVS+ YGEQK+ + ş

epitopes, could be useful antigens for vaccines or diagnostics. Based on homology with pspA, it is predicted that this protein from N.meningiildia, and its ಠ

PapA:

1911310

DIQNH+ + G+ G F 1704 WHYDIQNHASAAASALGLSGGF 1725

481 TASDIQNHSRYEGRSFGIGGSF 502 DIQNH+ + G+ G F

Example 15

35 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 65>

352	301	251	201	151	101	2	-
GGCTATACCG	ATGAGAATCC	GCGAAGTTGA	GCATCCGAM	AGTGGTGGTG	CGGCGGTCAA	CGCACCGTAT	COLLEGE WISSISSIES FAISTING SESSION OF THE STATE OF THE S
GGCTATACCG ACCAAAGCGT CATAICCCTT ATCGGAATGA	ATGAGAATCC GCAGGCAGAT ATGCGTTGGG TGGACAAAGG TTCCCAAGAC	GCGARGTTGA AANACGCGAA GGCAGAAAAA TCAGCAGCCA AGAAGCGGCA	GCATCCGAMA GAMATGGCGT TGGCCGACAA ATATGCCGAA GCCCTCAAGC	AGTGGTGGTG CTGTGGTGGG TGCGAATGTA GATTGGAACA ATAGGCAGCT	CGGCGGTCAA CGCACTGGGC GGTGCGGCCA TCGGCTATGC AACTGGTGGT	CGCACCGTAT TTGGACAAAG CGGGGGAAAA CCTCGGTCCG GCGGGCAAAG	0071700700
CATATCCCTT	ATCCCTTGGG	GGCAGAAAAA	TEECCGACAA	TGCGMTGTA	GTGCGGCCA	CGGCGGAMAA	CALACIGOCO
ATCGGAATGA	TGGACAAAGG	TCAGCAGCCA	ATATGCCGNA	GATTGGAACA	TCGGCTATGC	CCTCGGTCCG	いっこうらいこうしころ
	TTCCCAAGAC	AGAAGCGGCA	CCCTCAAGC	ATAGGCAGCT	AACTGGTGGT	GCGGGCAAAG	CLICCLICC

This corresponds to the amino acid sequence <SEQ ID 66; ORF118>

\$

Computer analysis of this amino acid sequence reveals two putative transmembrane domains.

he useful antigens for vaccines or diagnostics. Based on this analysis, it is predicted that this protein from N.meninglildis, and its epitopes, could

ö

		_									
\$\$	50	\$	40		30	25	20	15	-	ω	
ATATCCCGTA GTACTGAATG TAGAACATC TAGTAGAAGG CTTCATTCAT CTTGGGAAGC ATGAATGGTA TAAATTATIC AGCAAATCTT TTACAGTCTT ATCATTTCAA TACTGCTGCT	AMGAGGTGTG MGCGGTGAA MACGAMATGA AMATACTGTA CGATTGCAAT		GARCAGGTA CANCTGGGGT ACGACANATG TANCCGGAGC CGGAGCAGG ATTATTCCGG GCGAGCGGGG GAGCCGGAGC GCACTGGGG GCGAACGGA GACCGGATGG CCTGGCTGGG GCAACCGAT GCGCGATTG CCTGGCTACA ACAGCAGA CANAGGCAIT ATCGGTACA ACAGCAGG TGAAAAATC GATGGTTGCG GGACAAAATC GGTGCTATC GGACAAAATC GGTGCTATC GACAAAATC GGTGCTATC TCACCAATT	Further work revealed the complete nucleotide sequence <seq 69="" id="">: 1 Argchatha Athitchar recentation ecocechan ecorocotoc 51 Tanagache ecorocott economics according to the complete of the</seq>	201 BILAALWYA MGEASKIRO LOOHYITHKI MANAGAALHWANN GGSLKONLEA 201 BILAALWYA MGEASKIRO LOOHYITHKI MWAIGCANA AMKKKKOODG 231 AIGANGEIV GEALTHGKNY DYLYAKEREO ILAYSKLYAG TVEGVVGGDV 301 MAAMMAEVA VKNYQUSDK*	1OCRLKSSQTY RRHLLCKYTY RFFIYCPKAC VAEDTPYACY LXOLQVTKDV 51 RBHQVXLAYD KBDYKQEGLT GAGAAIIALA VTVYTAGAGA GAALGLHGAA 101 AAATDAAÇAS LASQAŞVSLI HNKGHIGHTL KELGRSSTVK HLMVAVATAG	This corresponds to the amino acid sequence <seq 68;="" id="" orf41="">:</seq>	GTAGCEGACA AMATCGTTCE TYCKECKTIG LICCULTUGE GTAGCEGACA AMATCGTTCE TYCKECKTIG CANTOCGGG TOATCATTANTAC CGCTOTCACC GGCGCACGC TYCACACACA AMATCCTTG CGCCTTTGCT GAATACTTGC CATCGACAGA AMATCANACAG TYCGTTGAG ACTACATTAC CACCAGAATT	ACTGGANCE AGTIAVALT GEOGRAFIA TOCCCTGGCT AGGCTTANCE GGACCQGGAG CAGCGGATTAT TOCCCTGGCT TACTGCGGG CGCGGAGCC GGACCCCAC TOGGCTTAAA GCAGCGCAN CCGATCCCCC ATTCGCCTCG CTGCCCAGCC ACCGCTCATC ASCARCAMA GCAATATCGG TAGCACCCTG GCAGAACAG CACCCTGAACAACAG GCAATATCGG TAGCACCCTG GCAGAACAG CACCCTGAACAACAG	N.meningilid AGACGGCATT AGERGCGTGC	-100- Example 16

PCT/BB9/00103	CGACCAAGG TATACACITA TACCAGAGG GTTTGTAAAA COGGAAGG GTTTGTAAA TGAYGGTT AGCAAAAC ATTTTAGG AGACTAAA GAAAGTGAA TTGAAGGCAT AGAGGAAAA GTAAAACTG	GTTTA AAATG AAAGA ACCTT AATTA ORF4		AAAAA AALYA KANG YAARE EASINGTO YYRE EISTYOADA GVYRE FIPPRGFYK JKGAH HITHINAELA GGREI SSIKTYVINK	ansmembrane domain, and homology	ORF (ORF418) from strain A of N.	0 50 60 69 TLXQQOVTKOVWRNQVXLAYOKEDKQZGL 1 1 1 1 1 1 1 1 1	110 120 129 DAARASLAGGASVSLINNKGHIGHT	170 180 180 DKQWIRHLTVWLARAGSAALIWTAV 	230 240 249 ITTHKINHAIAGCAAAANKKKOOD HHHHHHHHIHHHHH IVUKKINHAIAGCAAAANKKKOOD 190 200 210
-101-	CCTITATICES ANTGENTED TANTICENS TEATLCENS CONTROLL TOTALANTIC MANAGERY TOCCHANTE AGGREGATA NECCENCES GROCGENAN ATCTEAMIC ANATATGAG TECTACACT	AMATE CAGA GGAA GGAA	HOVBIOIPYI LERCVBAEDT PYACTLAGIÇ VTROȚIENQU OEGLIGAGAA, IIALAVIVVY AGAGGALG LEGAĀANATD SYSLHHRGH GOPLAKELGR SSTVRILMY VARGÝVBDI; KQPIHHLTVN LANAGSAALI NTAVRGESK DELEĞBILAN RERDIPILA KEREDILANS KLUACTUGEN VGONDALANI	METTACANON BPOLCARITY KIYON BY WENTACANON BROCKARITY KIYON BECISTORY KRILANADGE SONG OTDIECITAL KYEIPLDAR GENDANASOGIS KASKIAQHER TESII GRITHIRPE*	Computer analysis of this amino acid sequence predicts a transmembrane domain, and homology with an ORF from <i>N.menIngitidis</i> (strain A) was also found.	ORF41 shows 92.8% identity over a 279aa overlap with an ORF (ORF41a) from strain A of N. meningtitdis:	10 20 30 4 Yrhelickytyrfptycpaacyaedfpyac	10 80 129 129 129 129 129 129 129 129 129 129	130 140 150 160 199 199 LAELGRSSTVRALHVAVATAGYADKIGASALRNYGDKOWINKLIVVKLANAGSAALINTAV	190 200 210 220 220 210 240 240 240 8651KDNILAALVYTARGEAASKIRQDEQNYTTHKIABALAGCAAAANKGKOOD
	1251 1301 1301 1401 1451 1501 1501	1601 1651 1701 1751 1801 1851 This correspond	1 51 101 151 151 251	251 251 251 251 251 251 251 251 251 251	Computer analy with an ORF fro	ORF41 shows 9 meningilidis:	orf41.pep orf41a	orf41.pep orf41a	orf41.pep orf418	orf41.pep orf41a
	v ı	9	20 13	23		8	35	6	\$	55 50

PCT//899/00103 ||||||||| | AVKNHOLSDKEGREFDWEMFACAKQHXPOLCRKHTVKKYQHVADKRLAASIAICTDISRS | AVKNHOLSDKEGREFDWEMFACAKQHXPOLCRKHTVKKYQHVADKRLAASIAICTDISRS | 310 | 320 | 330 A MACANAGE TTATECGAA
T TCAGGASTA ATCCTAGAT
A AAATACACT ATACTAATG
G GGATTAAAG GAGCCATAA
C ACGAGGAGA NGWGTAAAT
C ACGAATTAA ATACTAATT
GTGCAATTA AGAAATTC
A WTTTHWGAT ATACAAATA
A TTTTHWGAT ATACAAATA
G GATATCAA AGCCTCAAA
A TTTT TCTCAACTG
ATAAAGACT
ACTGAATGTA
TCATTCATCT
AATTATCACG
CATTTGAATA
TTTATCCGAA
TTTATCCGAA
ACCTAGATA
ATTACTAATG 1 LLKOLQVAKN INFNQVOLAY DREDYKOEGL TEAGAALIAL AYTVYTSGAG
13 TGAVLGLWGA XAAATDAAFA SLASQASVSF INHKGDVGKT LEELGRSSTV
01 KALVANAATA GYARKIGAAB LKWYSDKOH: NHLTVHLAHA GSAALINTAV
13 INGSCEKKEKE AHLAALVYT AHGEAASKIK OLDQHITUHE NAALAGGAA
01 AAANKGKCOD GAIGAAVGEI VGEALTHGENE POTLTAKERE OILLAYSHLVA
13 GYSGYVGGD VNAANAARVA ANCHQLSDX EGREFDHENT ACAKQHXPOL
01 CRKHYVKOT WYDARALAAS IAICTOISSS TEGETTRROPH LIDBESHISS
13 MEAGLIKKOD EVETLESKY TOADLALGY HLHTAAKSEL OSGHYRPISE
14 MANDGOGTILI SGVHPRIPI PRGFVKRHYP INHKYPBGGI SFOTHLKHL
15 ANADGESQCO GIKGAHHRTH KHARLHSRGG KVHSETKTDI EGITHIKYEI ATCACAACA CACCACGGTG ACAAATTCGG ACACATGA TACCGCTTT TACCGCTTT CAGTTGGATC CTGTGCGGTC GTGCGGCTC CTGTGCGCTC ATCAGGTGCA ACCGAAGCAG AGGCGCAGGA CAACCGATGC This encodes a protein having the partial amino acid sequence <SEQ ID 72>: T AGGGAAAAG NTGAACTGGA AT G ACTACAAAG GGGGGCCTT AG G GCGTTACGS GGGGCGCG CA T AAACGTGG NCGGCGCG CA A GCGAGGTT C GCATGGTT AT C CTGAAAGAG TGGCGAAAG C GGTAACGG GCGTAGCG AG G TGAAGGATA GGGTAGCG AG G GGGGGGCG GACTGATTA TA TAMATCAAA CCATAGGGG GGTGCGATAG CGGCAAAAT CATACAGCAA GTAAATGCGG TAGCGACNAA AACAGGATAN AACCCCTAGT GTAGAACCCT GAATGGTATA ACAGCCTTATA ACAGGACAGG TAAACCTGAT GGTGGATTTA ACTGTTATA ATCCTAAAA KTTTHNGAT TCANATGCT GMTCACAAG GATATTCAAA AACTANATTC ACGAGGAGGA GAAGGCATTA CCCGAATTAA ACGGATCAA ATTTAGAHNH AACATTCACC CAGAATAA A partial ORF41a nucleotide sequence <SEQ 1D 71> is: GCATGCGCCA A CAATCGGGCA A TACACTTATT T TTGTAAACA A GTACGGATAT A AACTAAATTC CAGATTTTGG TANAGATGAT ATTTGGCTTT AGTITCGATA -105 GETTGETTA GACAGATGG AG GETTGETTA GACAGATGG AG GETGGGGGGT TATGGGATT A AGCATTGGC TATTGGGAT A AGAGCATG TOCACAAGC CT AMANCTGG TGGTGCGG CGCTTGGGA CTGATGGG G CGCTAGCA ACCAAGAG AG GGTAATAA AGCCAAGA AG GGCGGGGG ATAAGGGA G GGCGGGGGG ATAAGGGGA G GGCGGGGA G 310 320 AVKNNQLSDKK orf41.pep orfela orfila 8 **e** ~ 2 23 음. 33 45 \$ 8 \$

ġ

PC1/1899/00103

501 PTLOATGRPD GGFKEISSIK TYTHPKXFXD DKILQHAQXA X5QGY8RASK -551 IAQUERTKSI SERKHVIQES ETFDGIKFRX YXDVNTGRIT NIHPE*

8,1

60	55	SO	\$ 5	¥	30	25	20	<u> </u>	"	
orf41a.pep orf41-1	orf41a.pep	orf41a.pep	orf41a.pep	orf41a.pep	orf41a.pep	orfela.pep	orf(le.pep	orf4le.pep	orf41a.pep	ORF41s and ORF4
\$20 \$30 \$40 \$50 \$70 \$SIKTVYNPKKFXDDKILGHAGXAKSGGYSKASKIAGNERTKSISERKNVIGFSITFDGI	460 470 480 500 510 500 510 500 510 500 510 500 510 500 510 500 510 500 510 500 510 500 510 500 510 500 510 500 510 500 510 500 510 500 510 500 510 500 510 500 510 51	PLSEWSDOGYTLISGVHPRFIPIPRGFYKONTFITHVKTFEGISFDTHLKHLANDGF	350 360 370 380 LIDSRSLHSSWEAGLIGKODEWYKLFSKSTTQADLALGSYHLHTAAK LIIJIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIH	280 290 300 320 330 320 330 1500000000000000000000000000000000	230 230 240. 250 260 270 9621VGEALTHERAPDILAKEAGOLLAYSKUVAGEVSGEVGHAALAKEVAPKNO 111111111111111111111111111111111111	160 170 180 200 210 210 DXLEANTLAALVNTAHGEAASKIKQLDQHYIVHKIAHAIAGCAAAAANKGKCQDGAIGAA I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	100 110 120 130 140 150 SSTYKHLYVAAATAGVADKIGASALKHVSDKQWIHHLTVHLAHAGSAALHYTAVHGGSLK IIIIII::II:IIIIIIIIIII IIIIIIIIIIIIII	40 50 60 70 80 90 IIALAYTYYTSGAGTGAYLGLAGAXAATDAAFASLASQASYSFINKGDYGKTLKELGR IIIIIIII: : : : : : : : : : :	10 20 30 YLKGLQVAKNIHHNQVQLAYDRWDYRQEGLTEAGAA HHHHH!:::::HHHHH!!!!!!!!!!!!!!!!!!!!!	ORF41a and ORF41-1 show 94.8% identity in 595 aa overlap:

45 1	35	25	15	5	u	
This corresponds to the amino acid sequence <seq 76;="" id="" orf51-1="">:</seq>	1 ATGCAMGAMA TANTOCAME TATOGTTTT GTTGCTGCCG CAMPACTGCA 51 CGGAMTACA GGCATGGGT TECCANGCT CGGTACAMCC GCATTGGCTT 101 TANCATGCC ATTGTCTAG GTTGTTGCCT TGGTGCATA ACCAMACG GTTTTTGCCA 151 TAMTCAGCC TGTTGGTTCT ATGCAGCAM AACAAMAGG GTTTTTGCCA 201 AGAGNTGT TATATTAM ANACCTAMA ATTGCTTGCT ATCGCACGC 251 TCGTTGCGA CATTTTGGG GTGAAGTTGC TTTTGATACT CCAGTGTCT 101 TGGTGCTTT TACTGATGG ANCCAMAMA TATTCAAGTA GTTGCCANTA 351 TATTTAMAM GTTATCGAA AUCAAMAMA TATTCAAGTA GTGCCAMTA 401 ATAGAATAT GTGTCTCCA ATGCAAMAMA TATTCAAGTA CGGCGTTCA 451 ACCAMTGCCA TGTCTCCCA ATTGTATATA TTTTTGCTAT CTTTTGGGA 501 AMATAMAMA CGTATCGTA ATTGCTAMA TATTCAAGTA GCGAMACAG 501 AMATAMAMA CGTATCGTA ATTGCTAMACACA TCTATTGCTAT TTTTTGCATT 651 GTATGTTGA ATTCGTTTTA GGCATAGAGT TATTCAATTAG 601 AGTGAATAGT GTTTAATATT TATTGTTTA TTTGTATAT TTTTTTTAAAA 701 TGTAMTTT TATTGTTTA TTTGGTATTGG CTCTGAAMAT CGGCCATTCG 751 GGTTTAATCA AACCTTAAA	This corresponds to the amino acid sequence <seq 74;="" id="" orf51="">: 1 HATITLY IN HOLLMUCAKA KNIQVVARHK RHYLFGFLXX IIGGSTHAMS 51 FILLIFILES TERMINITY SHACYLLAKI VOITHLADOY WILMKSEYKL 101 FILLSYLSYI GLIVGINLY KISHYTRUL IFIVILYLAL KIGHSGLIKL 151 Further work revealed the complete nucleotide sequence <seq 75="" id="">:</seq></seq>	1 ATGCANAGEA ADARTATICA TTATTCTGTE NATGGTATT TANATGTATG \$1 TGCANAGEA ANANATATIC ANGTACTAGE CANTANTAGE ATATTGTTE 101 TITTGGGTT TYTGGSSE-SE ATCANCGGG GTTCANCCAN TGCCATGTCT 151 CCCATATTGT TANATATTTT GCTTANGGAN ACCAMANTA ANANTGGTAT 201 CGTANANCAN AGCANCTATT GCTTATTAN ATANGGATAN ATATGGTTAT 201 ATATGCTAMG MANCCAGTAT TGGTTATTAN ATANGGATAN ATACGGTTTA 301 ATATTCTAG TGTCCGTATT GTCTGTTATT GAATTCTATG TTGGANTTCG 351 GTTANGGACT ANGATTAGC CANATTTTTT TANAATGTTA ATTTTATTG 401 ETTTATTGGT ATTTGGCLCGG ANAATCGGGC ALECGGGTTT ANLCAMACTT 451 TAN	Based on this analysis, it is predicted that this protein from N.meningilidis, and its epitopes, could be useful antigens for vaccines or diagnostics. Example 17 The following DNA sequence was identified in N.meningilidis <seq 73="" id=""></seq>	S80 S90 OTEALS. Deep KERXYEDWITGRITHERPEX HILLIHILLIHILLIHILLIHILLIHILLIHIHIT OTEAL-1 KERSTEDWITGRITHERPEX 610 620 Amino acids 25-619 of ORF41-1 we're amplified as described above. Figure 6 shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF41-1.	-104- PCT/1899/00103

;

51 LMSLLVICSN NRKGFWGEIV YYLKTYRILA IGSWGSILG VKLLILDVS 101 WILLLAMIIT LYTSWGILH VCAKANNIQV NANOMNYL GFLAGIIGGS 151 TNAMSPILLI FLISETENEN RIVESSMLCY LLAKTVQIYN IROQYWLLHK 201 SETGLIFLES VLSVIGLYGG RLRRRRISPN FFRELIFTYL LVLAKKIGHS 251 GLIKL*	Computer analysis of this amino acid sequence reveals three putative transmembrane domains. A corresponding ORF from strain A of <i>N. meningtildis</i> was also identified:	Homology with a predicted ORF from <i>N.meningtitats</i> (strain A) ORF51 shows 96,7% identity over a 150sa overtan with an ORF (ORF51s) from strain A of N	meningitidis:	0: (5).pep	00 50 60 70 80 90 00 00 11.0 00 00 00 00 00 00 00 00 00 00 00 00 0	110	ORF51-1 and ORF51a show 99.2% identity in 255 as overlap:	off51a.pep MOLIMOSIVFVAAAILAGITCAGFPMLGTTALA TAPLSKTVALVALPSLLASLVLCSN 	offile.pop hekgehorivyllatyklalgsvygsligvkijlipvsblillalitysvkgila 	OF(516.PGP VCAKARNIQVVARHIRHVTEGTLAGITGGGTNA)SPILLIFILSETERKRAIAKSBULCY 	off31a.pep LLAKIVQITMLROQY#LLAKSEVGLIFLESVLSV[GLTVGIRLATKISPRFRNLIFIUL	orf51e.pep LVLALKIGYSGLIKLX	The complete length ORF518 nucleotide sequence <seq 77="" d=""> is:</seq>
	Сотри А соп	Omol RF51	ening	• •		• •	RFSI	• •			• •	• •	, S

Based on this analysis, it is predicted that this protein from N. maningitidis, and its epitopes, could PCT/1899/00103 The following partial DNA sequence was identified in N.meningitidis <SEQ ID 79> 1 ATGAGACATA TGAMANTAA ANATATITA CHAGNATHA TAGITITACA
11 TARRECCTEG ATAGINATEA ATATAGEGIT EGGETATET GETTETCAAN
12 TAGATITATE TGCGETANAT
13 TARRATET TGCGAMANAAAA CANAMANAAAA ANATATATG TETTATAGCC
10 GATTECTATT ATTATAGGA TGGTATTCA TATAGGATG ATAMANAAA
13 AMITTATAA ATTAGAGAT CANATANGG ACAMANTA ATCCTCGATT
14 AMITTATAA ATTAGAGAT CANATANGG ACAMANTA ATCCTCGATT
15 AGATTAGGA TAMAACCAA TGATAGATGA ATAMATGATA ATGATGAAA
15 TGGATTAGG TAMATAMAG ATATGATGA ATATGATAA
15 TGGATTAGA TATTGATGA GTGCATCTG ATGTTANAA TAMACCATA
16 AMACACCTAA TATTGATGTA GTGCATCTG ATGTTANAA TAMATCATA 11 INTITIANT GINTOTICAN MICHAMAN TITTUANTA GITGCANTA
12 ACANGGAN TOTICITITY GESTITITIES CAGGATAT CEGCOSTICA
13 ACANGGAN TOTICCON INTITIANTA CHITTECTA CEGLALGA
16 GANTAMAN CONTICCON ANCARCAN TOTATGATA CONTICOLA
17 ANTIGITA ANTANATAS CHAGAGAC AGINTIGOTA CTITTICAN
18 ANTIGITA ANTANATAS CHAGAGAC AGINTIGOTA TITTIGAN
19 AGITAMINA GITTANATAS TITALIGOTE GINTIGOTE TANTIGAN
11 GINTANITI INTIGITITÀ TIGGIANAS CEGCANTES
11 GETTANITA ANCIETANA
12 GETTANITA CEGCANTAS TCCAGTGTCT CTGTCAATGG ATGAGACATA TGAMATACA AMATTATTA CTAGTATTIA TAGTTTACA
TATAGCCTIG ATAGTAATTA ATATAGTA TGGTATTIT GTETTCTAT
TGATTITIT TGCGTTTIG TTITTTGCAA AGGTCCTTCT TGGTGATAAT
TATATATTIT TAGAMAMA CAMATAACA AMATTATTGC
GATTCCTAT ATATAGGA TGGTAATTCA TATAGGTAG ATAMATAAA
AMTTTATAA ATTTGAGCAT CAMATAAAG AACAMATAAA HQEINGSIVF VAAAILMGIT GKGFPMLGTT ALAFIMPLSK VVALVALPSL LASLLVLCSH HKKGFWQZIV TTLKTYKILA IGSVGSILG VKILLILEPES WLLLLAMILT LYYSVBGILA VCAKAKNIQV VANNRWYLF GFLAGIIGGS TRANSPILLI FLESTENKH REAKSSHICT LLAKIVQI'H LRQO'WLLKK SETGLIFLLS VLSVIGLYVG IRLATKISPN FFKMLIFIYUL LVLALKIGVS GLIKT. actegectea taaracaca teatagtrat artriteite atgactcaar Tggatatget arattaarag ataatcatag atatggegg gtaattagag Aaacacetta tattgatgta gttgcatctg atgitaaraa taaatccata HRRHKLQHYL LVFIVLHIAL IVINIVECYF VELEDFERFL FFANVELAVN LLFLEKNIKN KLLFLLDISI IIWWIHISH INKFYKFEH OIKEONISSI TCVIKPBDSY HYVDSNGYA KLKDHRYGR VIRZIPYIDV VASDVRNKSI RLSLVCGIHS YAPCANFIKF VR.. Further work revealed the complete nucleotide sequence <SEQ ID 81>; This corresponds to the amino acid sequence <SEQ ID 80; ORF82>: This encodes a protein having amino acid sequence <SEQ ID 78>: AGAITAAGCT IGGITIGIGG TAITCATTCA TAIGCICCAT TAIAAAITT GICAGG.. TTGTATTATT CATTATTAN ANACCTATAN CATTTGGG GTGAAGTTGC TACTGATGGC AATCATTACA be useful antigens for vaccines or diagnostics. - 2 <u>2 2</u> 201 2251 3301 351 451 451 451 701 701 701 Example 18 ຂ ~ **\$** 2 2 25 2

. • • Ņ 5 Computer analysis of this amino acid sequence reveals a predicted leader peptide This corresponds to the amino acid sequence <SEQ ID 82; ORF82-1>; 20 50 50 501 501 551 601 701 REHARMONAT TATATHINT INIMIACAL ATTALLES TS.

WHENEMAR ATTALLES INMALIFIED MELENARIES TACONISCI TORREBOLY AND METATORISCI MENALIES TACONICCI TORREBOLY METATORISCI MENALIES TACONICCI TORREBOLY METATORISCI MENALIES TACONICCI TORREBOLY METATORISCI TINIALICAL ALGORIZATION METATORISCI TATATORISCI TA AGATIAACCI TGGTTTGTGG TATICATTCA TATGCTCCAT GTGCCAATTI TATAAAATTI GCAAAAAAAC CTGTTAAAAT TTATTTTAT AATCAACCIC AAGGAGATT TATAAAATAG GTAATATTIG AAATTAATGA TGGAAAACAA AGTIGTTACT TGTTAGATAA GTATAAAACA TTTTTCTTA TTGAAAACAG TGTTTGTATC GTATTAATAT ATTTATATTT AAAATTTAAT TTGCTTTAT ATAGGACTTA CTTCAATAGG TTGGAATAG -107-PCT/1899/00103

A corresponding ORF from strain A of N.meningitidis was also identified

ᇙ Homology with a predicted ORF from N. meningitidis (strain A)

meningitidis: ORF82 shows 97.1% identity over a 172aa overlap with an ORF (ORF82a) from strain A of N.

	30		25	20
02 £ 8 2 B	orf82.pep	orf82a	orf82.pep	orf82.pep
	130 140 150 160 170 RTXDHHRYGRVIAETPY IDVVASDVRHRSIRLSLVCGIHSYAPÇANFI KFYR		TO SO SO STATE TO SO SO STATE TO STATE	10 20 30 HRHHKIONYLLVETULHIALIVINIVEGYEVELFDFFAFLFFANVELAVNLLELEKNIKN HH HIHI I I I I I I I I I I I I I I I
111111111111 TPYIDVVASDVI	140 140 TPY I DANSON	ATHISHINIKE	VIRISHINIKE	20 VLHIALIVINI 1111:111111 VLHITLIVINI 20
NKSIRLSLVC 150	NNKSIRLSLVC	90 PKFERQIKEQN	7KFEHO1KEON	00 11111111111111111111111111111111111
11111111111111111111111111111111111111	160 GIHSYAPCANI	ISSITGVIKP	100 ISSITGVIKPI	EVELLEVALE 111111111111111111111111111111111111
HIH:: FIXFAKKPVKI 170	170 FIKFVR	NSGAAAAASGH	110	TVANTTLIEUN 111111111111111111111111111111111111
180		120 120	120	8 2 2 8

ORF82a and ORF82-1 show 99.2% identity in 242 as overlap:

50		í	\$		40		
orf82-1	orf82a.pep	07182-1	orf82a.pep	01(82-1	orf82a.pep	orf82-1	orf820.pep
NGPGGDF1DHV1FEINDGHKSLYLLDKYKTFFLIGHSVCIVL11LYLKFHLLLTRTYFHE	HQPQGDFIDAVIFEINDCKKSLYLLDKYKTFFLIENSVCIVLIILYLKFNLLLYRTYFNE	RLKDHHRYGRVIRETPYIDVVASDVKHKSIRLSLVCGIHSYAPCAHFIKFAKKPYKIYFY	KLKDNHRYGRVIRETPYIDVVASDVKNKSIRLSLVCGIHSYAPCANFIKTAKKPVKIYFY	WING THE STATE OF	KLLFLLPISIIIWWIHISMINIRFYKFEHQIKEQNISSITGVIKPHDSYHYYYDSNGYA	HINGHATTAATATAANA SALAA SALAA KASANINA ATATATATANA TAATAANAN MAHANINA HINGHATANAN MAHANAN HINGHATANAN MAHANAN HINGHATANAN MAHANAN MAHA	nyinyahttaliathtialnisalsalsalsalsaliatitihtaltalanttanaltri

2. 6 z ర 25 20 ⇆ 5 This corresponds to the amino acid sequence <SEQ ID 86; ORF124>; be useful antigens for vaccines or diagnostics. Based on this analysis, it is predicted that this protein from N. meningitidis, and its epitopes, could The following partial DNA sequence was identified in N.meningitidis <SEQ ID 85> Example 19 This encodes a protein having amino beid sequence <SEQ (D 84>: The complete length ORF82a nucleofide sequence <SEQ ID 83> is: orf82a.pep 51 101 151 201 251 301 301 351 401 451 501 151 151 151 201 51 1 201 51 1 51 101 151 201 251 301 351 451 551 551 551 REHKKNAMY, LPTIVENTE LITILIZHFR LLLTRTFFRE LE.

RESLUCIHS YAPCAMETE AKKEVRIJFY NOPOCOEIDM VITEHDOKK LALLUKKENDK MYTEHDOKK LALLUKKENDK MYTEHDOKK LALLUKKEN VITEHDOKK LALLUKKEN LALUKKEN LALLUKKEN LALLUKKEN LALUKKEN L .TPNSYTYLPS TGGFGRÅGAT INAAGGGGH AFSTTLISVA EGAVVELGAV
RAKNYNATA <u>CITYYLŠKOI FDFLFIE</u>RFQ TADFRLYFRQ SHADSVRLDF
IFKSFRACOF GFARIVJSRQ QOGLALVALH LYDDRLGLRX CRLVALHVRH
SQARADKRON GHRLPVÅRQQ FHEINSRPPD ASR* ATATTIAMA GCTTCCCCC CTGCCAGTTC CAGTTCGCGC GCATAGTTTT
GAGCCGACAA CAGCAGGCT TGCGCCTTCT CGCCCTCCAT CTTGTCGATG
ACCCCTGCA GCTTCCCAAA TGCCGACTTG TAGCCTTGAT GGTGCGACAA
GCCAAGCCC CTGCCGACAA GCCGACTAAT GGCAATCGGT TGCCAGTAAT
TGGCCAGCAG TTTCACGAGA TTCATTCTCG ACCTCTGAC GCTTCACGCT ACCCCEMACA GEGRALOGY CTTGCCGTTT ITCGGCGGAY TCGGGCGTAC GEGRACATCANTCAG CAGCCGGGGT CGGCATCACT GCCTTTTCGA CAGCCTGGGT GGGATTGAGAGCT GCACTTTAGA GAGCCGAGA GAGCCGAGA GAGCCGAGA GAGCCGAGA GAGCCGAGA GAGCCGAGA TGCAATTITA CGGTCTGAG TAAGGACAIT TTGAATTICAG ACGGCTGACT TCAATTITCAG ACGGCTGACT TCCGCCTGIA TITTCGCCAA AGCCATGCCG ACAGCGTGCG CCTTGACTTC 5 = 5 -80 PCT/1899/00103

-109-	Computer analysis of this amino acid sequence predicts a transmembrane domain.	Further work revealed the complete nucleolide sequence <\$EQ ID 87>;	ATRACTICCT TITCACAME CTRANITICS GTAGGEAGG AGAGTICAGA GCCGTGAGA CCAAAGCCGT CAATGCAACC TITTACGAG TITTAGATAA GACATTITTA GACAAAACC CGTGCGCCTT GACTTAGATAA TITTAGATT CGGCGGTGC	231 TOGGGGGAN AGITITISAG CANCANGIA: AGGGCTICG: CCTTGTCGG 301 CTCCATCTTG TGATGAGG CACTGTGGTT CGANANGC GACTTGTAG 331 CTTGATGGG GALACAGGC AGCCGTGG CGACAÁGGG GATANTGGA 401 ATCGGTGGC AGITATTGG CAGCTTTC AGGAGATTCA TCTCGACCT 451 CCTGACGCTT GACGCTGA	This corresponds to the amino acid sequence <seq 88;="" id="" orf124-1="">:</seq>	1 MTAFSTILIS VAEGAVUELO AVRAKAVARA M <u>CIFTUSK DIFDELFIFR</u> 51 FOTADFRLEF RGSHADSVRL DFIFFSFRAC GFOFFAITLS ROGGELRIVA 101 LHIVODRLEL RKCRLVALAV RHSGARADKR DKGNALPVIR QOFHEIHSRP 151 PDASR* A corresponding ORF from strain A of N. meningliidis was also identified:	Homology with a predicted ORF from N.meningliidis (strain A)	ORF124 shows 87.5% identity over a 152aa overlap with an ORF (ORF124a) from strain A of N. meningtitals:	10 20 30 50 60 60 0124.pep TPMSVTVLPSEGGEGRIGATINAGGGGGTAREITJISVAEGAVVELGAVRAKAVRATAA	70 80 90 110 110 120 120 010 0110 120 01124.pep CIFTVLSKDIPELFIREQTADFRALVFRQSHADSTRACFFRACCOFFRATVLSRQ 111111111111111111111111111111111111	130 150 150 150 150 150 150 150 150 150 15	orf124.pep ASRX	: orf124a VX	ORF124a and ORF124-1 show 89.5% identity in 152 as overlap:	or(124-1.pep WTAFSTTLISVARGAVVELGAVRANAANHATAAGIFVLSKOIPDIFIFEROTADFRLFF	OF 11240 HTAESTTLISVAEGALVELQAVHAKAVHTTAAGIETULSKOIFOFLEFREGTADERLEF	orf124-1.pep rqshadsvrldfiffster Corphaivlsroqoglalvalhivddallrrchlanu	OF £1.248 ROSHADGVRLDF FFFFRFRFRFRFRFRFRFRFRFRFRFRFRFRFRFRFR
			•	9		<u>~</u>		2	23	20	33	\$			\$			8

6

PCT//899/00103

The complete length ORF124a nucleotide sequence <SEQ ID 89> is:

1 MTGACCGCCT TITICGACAMC CTRANITICE GYAGCCGAGG GCGCCTTGT
31 AGACTGCAAAGC CCANAGCCGT CANTACAAC GCGCCTGCA
101 TITITACGGT CTGAATAMG GACATTTTCG ATTACCTTT TATTTCCGT
111 TITOAGAGG CTGACTTCGG CTGGTTTTT CGCCAAGGC NTGCCGACGGCG TGGTTTTTT CGCCAAGGC NTGCCGACGGCG TGGTTTTTT CGCCAAGGC TTGCACGGC TGGTTCCAGT
231 TGGGGGCGT GATTTTGAGC CAGAAAACA AGGCTTGCAGG
301 CTTCATTTTC TCANTACGC GCTCCTGCT GCAAAAGC GATGATGAGG
311 CTTGATTTCT TCANTACGC GCTCCTGCT GCAAAAGC GATGATGAGG
311 CTTGATTGCG CAACCGCC AAACCGTGC CGACAAGCG GATGATGGAG
311 CTGATGGTGC GATGATTCGC CAGCAGTTTC AGGAATTCA TTCTGGACCT
311 CTGACGGTTGC AGTAATTCGC CAGCAGTTTC AGGAATTCA TTCTGGACCT

2

This encodes a protein having amino acid sequence <SEQ ID 90>:

2

1 HTAFSTILIS VAEGALVELG AVANKAVNTT AACIETVLSK DIFDELEIRR 51 FOTADERLEF ROSHAGGWL DETESSERE LEGEAGVELS ROGOGLELVA 101 LHFLADERLL RESSLVALAV RHROTRADKS DOGHRLPVIR QOFHZIHSRP 151 POV-

ຊ

ORF124-1 was amplified as described above. Figure 7 shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF124-1.

Based on this analysis, it is predicted that this protein from N.meningitidis, and its epitopes, could be useful antigens for vaccines or diagnostics.

23

It will be appreciated that the invention has been described by means of example only, and that modifications may be made whilst remaining within the spirit and scope of the invention.

TABLE I - PCR primers

ORF	Primer	Sequence	Restriction sites
ORF 38	Forward	CGC <u>GGATCCCATATG</u> -TCGCGGCGAAAATTCCGA	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -TTTTGCCGCGTTAAAAGC	Xhol
ORF 40	Forward	CGC <u>GGATCCCATATG</u> -ACCGTGAAGACCGCC	BamHI-NdeI
	Reverse	CCC <u>GCTCGAG</u> -CCACTGATAACCGACAGA	Xhol
ORF 41	Forward	CGC <u>GGATCCCATATG</u> -TATTTGANACAGCTCCAAG	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -TTCTGGGTGAATGTTA	Xhol
ORF 44	Forward	GC <u>GGATCCCATATG</u> -GGCACGGACAACCCC	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -ACGTGGGGAACAGTCT	Xhol
ORF 51	Forward	GC <u>GGATCCCATATG</u> -AAAAATATTCAAGTAGTTGC	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -AAGTTTGATTAAACCCG	Xhol
ORF 52	Forward	CGG <u>GGATCCCATATG</u> -TGCCAACCGCAATCCG	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -TTTTTCCAGCTCCGGCA	Xhol
ORF 56	Forward	GC <u>GGATCCCATATG</u> -GTTATCGGAATATTACTCG	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -GGCTGCAGAAGCTGG	Xhol
ORF 69	Forward	CGC <u>GGATCCCATATG</u> -CGGACGTGGTTGGTTTT	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -ATATCTTCCGTTTTTTCAC	Xhol
ORF 82	Forward	CGC <u>GGATCCGCTAGC</u> -GTANATTATATTATTATAGAA	BamHI-Nhci
	Reverse	CCCG <u>CTCGAG</u> -TTCCAACTCATGAAGTA	Xhol
ORF 114	Forward	CGC <u>GGATCCCATATG</u> -AATAAAGGTTTACATCGCAT	BamHI-NheI
	Reverse	CCCG <u>CTCGA</u> G-AATCGCTGCACCGGCT	XhoI
ORF 124	Forward	CGC <u>GGATGCCATATG</u> -ACTGCCTTTTCGACA	BamHI-Nhel
	Reverse	CCCG <u>CTCGAG</u> -GCGTGAAGCGTCAGGA	Xhol

-112-

PCT/B99/00103

TABLE II - Cloning, expression and purification

orf 24	orf 114	orf82	or 69	orf 26	orf 52	orf 51	orf 44	orf41	orf 40	orf 38	ORF
+	+	+	+	+	+	+	+	+	+	+	PCR/cloning
P. d.	n.d.	n.d.	n.d	n.d.	n.d.	n.d.	•	n.d.	+	•	His-fusion expression
n.d.	+	n.d.	n.d.	n.d.	•	n.d.	+	n.d.	+	+	GST-fusion
	GST-fusion			Markent - Con	CST fuelon		His-fusion	101601	His-maion	His Audion	Purification

-113-

CLAIMS

- A protein comprising an amino acid sequence selected from the group consisting of SEQ IDs 2, 4, and 6.
- 2. A nucleic acid molecule which encodes a protein according to claim 1.
- 3. A nucleic acid molecule according to claim 2, comprising a nucleotide sequence selected from the group consisting of SEQ IDs 1, 3, and 5.
- 4. A protein comprising an amino acid sequence selected from the group consisting of SEQ IDs 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, and 90.
- 10 5. A protein having 50% or greater sequence identity to a protein according to claim 4.
- 6. A protein comprising a fragment of an amino acid sequence selected from the group consisting of SEQ IDs 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, and 90.
- 7. An antibody which binds to a protein according to any one of claims 4 to 6.
- 15 8. A nucleic acid molecule which encodes a protein according to any one of claims 4 to 6.
- 9. A nucleic acid molecule according to claim 8, comprising a nucleotide sequence selected from the group consisting of SEQ IDs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, and 89.
- 20 10. A nucleic acid molecule comprising a fragment of a nucleotide sequence selected from the group consisting of SEQ IDs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, and 89.
- 11. A nucleic acid molecule comprising a nucleotide sequence complementary to a nucleic acid molecule according to any one of claims 8 to 10.

-14

PCT//899/00103

- 12. A nucleic acid molecule comprising a nucleotide sequences having 50% or greater sequence identity to a nucleic acid molecule according to any one of claims 8 to 11.
- 13. A nucleic acid molecule which can hybridise to a nucleic acid molecule according to any one of claims 8 to 12 under high stringency conditions.
- 14. A composition comprising a protein, a nucleic seid molecule, or an antibody according to any preceding claim.
- A composition according to claim 14 being a vaccine composition or a diagnom composition.
- 16. A composition according to claim 14 or claim 15 for use as a pharmaceutical.
- 10 17. The use of a composition according to claim 14 in the manufacture of a medicament for the treatment or prevention of infection due to Neisserial hacteria, particularly Neisseria meningitidis.

ABSTRACT

The invention provides proteins from Neisseria meninglildis (strains A & B), including amino acid sequences, the corresponding nucleotide sequences, expression data, and serological data. The proteins are useful antigens for vaccines, immunogenic compositions, and/or diagnostics.

CLAIMS

- 1. A fragment of a protein disclosed in Annex 1, wherein the fragments comprise at least one antigenic determinant.
- 2. The fragment of claim 1, having a length of 100 amino acids or less.
- 5 3. The fragment of claim 1 or claim 2, having a length of 3 amino acids or greater.
 - 4. The fragment of any preceding claim, having an amino acid sequence disclosed in Table I.
 - 5. A polypeptide having 50% or greater sequence identity to the fragment of any preceding claim.
 - 6. A protein comprising one or more fragment of claim 1, claim 2 or claim 3, with the proviso that the protein is not one of the 45 complete protein sequences disclosed in Annex 1.
 - 7. An antibody which recognises the fragment according to any one of claims 1 to 4.
 - 8. A protein comprising a peptide sequence, wherein the peptide sequence is recognised by an antibody according to claim 7.
- 9. Nucleic acid encoding the fragment of claim 1, claim 2 or claim 3, the polypeptide of claim
 15 5, or the protein of claim 8.
 - 10. A composition comprising the fragment of claim 1, claim 2 or claim 3, the polypeptide of claim 5, the protein of claim 8, the antibody of claim 7, and/or the nucleic acid of claim 9, wherein the composition is a vaccine, a diagnostic reagent, or an immunogenic composition.
 - 11. The composition of claim 10 for use as a medicament
- 20 12. The use of the fragment of claim 1, claim 2 or claim 3, the polypeptide of claim 5, the protein of claim 8, the antibody of claim 7, and/or the nucleic acid of claim 9, in the manufacture of (i) a medicament for treating or preventing infection due to Neisserial bacteria (ii) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria and/or (iii) a reagent which can raise antibodies against Neisserial bacteria.
 - 13. A method of treating a patient, comprising administering to the patient a therapeutically effective amount of a composition according to claim 10.