2023 Spring VLSI DSP Homework Assignment #5

4108064101 杜冠廷

Part I. Data Flow Graph and mapping to hardware in the systolic array structure

Figure 1 Data Flow Graph

Part II. Determine the word length and the length of the integral part and the fractional part

To measure the error, we utilize the quantization error value (δ) to compute and evaluate the discrepancy in the difference between the floating-point R matrix and the fixed-point \hat{R} matrix, as shown in Eq(2-1).

$$\delta(R) = \frac{\sqrt{\sum (r_{ij} - \hat{r}_{ij})^2}}{\sqrt{\sum r_{ij}^2}}$$
 Eq(2-1)

Similarly, we measure the error between the floating-point Q matrix and the fixed-point \hat{Q} matrix like Eq(2-2).

$$\delta(Q) = \frac{\sqrt{\sum (q_{ij} - \hat{q}_{ij})^2}}{\sqrt{\sum q_{ij}^2}}$$
 Eq(2-2)

After evaluating the delta function using MATLAB, we can obtain the required variable values for each fixed-point operation, such that the delta of R matrix and Q

matrix do not exceed 0.01. The variable values are as follows:

Table 1 fixed-point operation variable value

	Signedness	Word length	Fraction length	Rounding Method
R(output)	signed	12	3	Nearest
Q(output)	signed	12	11	Nearest
R(computing)	signed	20	10	Nearest
Q(computing)	signed	20	18	Nearest
K	signed	22	21	Nearest

Part III. Implementation Result

a. Verilog simulation Result vs. Matlab fixed point simulation result

Figure 2 verilog simulation correction

> * r_data0[11:0]	0.0	0.0	-175.5	X	0.0	
> W r_data1[11:0]	0.0	0.0	-146.0	68.375	0.	0
> W r_data2[11:0]	0.0	0.0	-94.625	50.625	-36.0	0.0
> W r_data3[11:0]	0.0	0.0	114.0	57.875	-30.0	-92.875
> % q_data0[11:0]	0.0	0.0	0.119140625	-0.603515625	-0.4208984375	-0.66552734375
> W q_data1[11:0]	0.0	0.0	0.23193359375	-0.75146484375	0.0	0.470703125
> W q_data2[11:0]	0.0	0.0	-0.6103515625	-0.21533203125	0.00048828125	0.0
> W q_data3[11:0]	0.0	0.0	0.7470703125	0.15380859375	0.0	0.00048828125

Figure 3 verilog output wave

-175.5000	-146	-94.6250	114
0	68.3750	50.6250	57.8750
0	0	-36	-30
0	0	0	-92.8750

Figure 4 Matlab result of R

0.1191	0.8262	-0.4048	0.3721
-0.6035	-0.3384	-0.6958	0.1880
-0.4209	0.4014	-0.0503	-0.8105
-0.6655	0.2012	0.5898	0.4087

Figure 5 Matlab result of R

b. Timing diagram

Figure 6 System time diagram

- c. Clock cycles needed to complete one QR factorization
 From figure 6, we can get the system need 35 cycles to complete one QR factorization.
- d. The initiation interval of two successive QR factorizations

 Because the datas need to output from system, the initiation interval of two successive QR factorizations is 35 cycles.