Rectangular Coordinate System

Jonathan R. Bacolod

Sauyo High School

Rectangular Coordinate System:

Rectangular Coordinate System:

 also called Cartesian Plane, named after Rene Descartes

Rectangular Coordinate System:

- also called Cartesian Plane, named after Rene Descartes
- is a system for graphing number pairs

Rectangular Coordinate System:

- also called Cartesian Plane, named after Rene Descartes
- is a system for graphing number pairs
- constructed by drawing two perpendicular lines which divide the plane into four regions

 Origin: the point of intersection of the two perpendicular lines

- Origin: the point of intersection of the two perpendicular lines
- Coordinate Axes: the two perpendicular lines

- Origin: the point of intersection of the two perpendicular lines
- Coordinate Axes: the two perpendicular lines
 - X-Axis: the horizontal line

- Origin: the point of intersection of the two perpendicular lines
- Coordinate Axes: the two perpendicular lines
 - X-Axis: the horizontal line
 - Y-Axis: the vertical line

- Origin: the point of intersection of the two perpendicular lines
- Coordinate Axes: the two perpendicular lines
 - X-Axis: the horizontal line
 - Y-Axis: the vertical line
- Quadrants: the four regions that divide the plane

 Coordinates: the ordered pair of real numbers that corresponds to each point in the plane

- Coordinates: the ordered pair of real numbers that corresponds to each point in the plane
 - X-Coordinate or Abscissa: the first number of the ordered pair

- Coordinates: the ordered pair of real numbers that corresponds to each point in the plane
 - X-Coordinate or Abscissa: the first number of the ordered pair
 - Y-Coordinate or Ordinate: the second number of the ordered pair

What are the Parts of the Rectangular Coordinate System?

What are the Parts of the Rectangular Coordinate System?

- 1. A(4,5)
- **2**. *B*(7, −6)

- 3. C(-8,4)
- 4. D(-7, -7)

- 1. A(4,5)
- 2. B(7, -6)

- 3. C(-8,4)
- 4. D(-7, -7)

- 1. A(4,5)
- **2**. *B*(7, −6)

- 3. C(-8,4)
- 4. D(-7, -7)

- 1. A(4,5)
- 2. B(7, -6)

- 3. C(-8,4)
- 4. D(-7, -7)

- 1. A(4,5)
- 2. B(7, -6)

- 3. C(-8,4)
- 4. D(-7, -7)

- 1. A(4,5)
- 2. B(7, -6)

- 3. C(-8,4)
- 4. D(-7, -7)

Plot each point.

1. A(4,5)

3. C(-8,4)

2. B(7, -6)

4. D(-7, -7)

Plot each point.

1. A(4,5)

3. C(-8,4)

2. B(7, -6)

4. D(-7, -7)

Plot each point.

1. A(4,5)

3. C(-8,4)

2. B(7, -6)

4. D(-7, -7)

State the coordinates of each point.

1. E

State the coordinates of each point.

1. *E*(2,

State the coordinates of each point.

1. *E*(2,6)

- 1. *E*(2,6)
- 2. F

- 1. E(2,6)
- 2. *F*(5,

- 1. E(2,6)
- 2. F(5, -8)

State the coordinates of each point.

1. *E*(2,6)

3. G

2. F(5, -8)

State the coordinates of each point.

- 1. *E*(2,6)
- 2. F(5, -8)

3. G(-4,

State the coordinates of each point.

- 1. *E*(2,6)
- 2. F(5, -8)

3. G(-4,5)

State the coordinates of each point.

E(2,6)
F(5, -8)

- 3. G(-4,5)
 - . H

State the coordinates of each point.

E(2,6)
F(5, -8)

- 3. G(-4,5)

- 1. *E*(2,6) 2. *F*(5, -8)

1.
$$I(0, -5)$$

State the quadrant or axis that each point lies in.

1. I(0, -5)

1.
$$I(0, -5)$$

1.
$$I(0, -5)$$
 $y - axis$

- 1. I(0, -5) y axis
- 2. J(3,5)

- 1. I(0, -5) y axis
- 2. J(3,5)

- 1. I(0, -5) y axis
- 2. J(3,5)

- 1. I(0, -5) y axis
- 2. J(3,5) QI

- 1. I(0, -5) y axis
- 2. J(3,5) QI
- 3. K(0,2)

- 1. I(0, -5) y axis
- 2. J(3,5) QI
- 3. K(0,2)

- 1. I(0, -5) y axis
- 2. J(3,5) QI
- 3. K(0,2)

- 1. I(0, -5) y axis
- 2. J(3,5) QI
- 3. K(0,2) y axis

- 1. I(0, -5) y axis
- 2. J(3,5) QI
- 3. K(0,2) y axis
- **4**. *L*(4, −5)

- 1. I(0, -5) y axis
- 2. J(3,5) QI
- 3. K(0,2) y axis
- 4. L(4, -5)

- 1. I(0, -5) y axis
- 2. J(3,5) QI
- 3. K(0,2) y axis
- 4. L(4, -5)

- 1. I(0,-5) y axis
- 2. J(3,5) QI
- 3. K(0,2) y axis
- 4. L(4, -5) QIV

- 1. I(0, -5) y axis 5. M(-3, 0)
- 2. J(3,5) QI
- 3. K(0,2) y axis
- 4. L(4, -5) QIV

- 1. I(0, -5) y axis 5. M(-3, 0)
- 2. J(3,5) QI
- 3. K(0,2) y axis
- 4. L(4, -5) QIV

- 1. I(0, -5) y axis 5. M(-3, 0)
- 2. J(3,5) QI
- 3. K(0,2) y axis
- 4. L(4, -5) QIV

- 1. I(0,-5) y axis 5. M(-3,0) x axis
- 2. J(3,5) QI
- 3. K(0,2) y axis
- 4. L(4, -5) QIV

1.
$$I(0, -5)$$
 $y - axis$

1.
$$I(0,-5)$$
 $y - axis$ 5. $M(-3,0)$ $x - axis$

6.
$$N(-5, 1)$$

3.
$$K(0,2)$$
 $y - axis$

4.
$$L(4, -5)$$
 QIV

- 1. I(0,-5) y axis 5. M(-3,0) x axis
- 2. J(3,5) QI 6. N(-5,1)
- 3. K(0,2) y axis
- 4. L(4, -5) QIV

- 1. I(0,-5) y axis 5. M(-3,0) x axis
- 2. J(3,5) QI 6. N(-5,1)
- 3. K(0,2) y axis
- 4. L(4, -5) QIV

1.
$$I(0, -5)$$
 $y - axis$

1.
$$I(0,-5)$$
 $y - axis$ 5. $M(-3,0)$ $x - axis$

6.
$$N(-5,1)$$
 QII

3.
$$K(0,2)$$
 $y - axis$

4.
$$L(4, -5)$$
 QIV

1.
$$I(0, -5)$$
 $y - axis$

5.
$$M(-3,0)$$
 $x - axis$

6.
$$N(-5,1)$$
 QII

3.
$$K(0,2)$$
 $y - axis$ 7. $O(1,0)$

7.
$$O(1,0)$$

4.
$$L(4, -5)$$
 QIV

State the quadrant or axis that each point lies in.

6. N(-5, 1) QII

- 1. I(0,-5) y axis 5. M(-3,0) x axis
- 2. J(3,5) QI
- 3. K(0,2) y axis 7. O(1,0)
- 4. L(4, -5) QIV

State the quadrant or axis that each point lies in.

6. N(-5, 1) QII

- 1. I(0,-5) y axis 5. M(-3,0) x axis
- 2. J(3,5) QI
- 3. K(0,2) y axis 7. O(1,0)
- 4. L(4, -5) QIV

1.
$$I(0, -5)$$
 $y - axis$

5.
$$M(-3,0)$$
 $x - axis$

6.
$$N(-5,1)$$
 QII

3.
$$K(0,2)$$
 $y - axis$ 7. $O(1,0)$ $x - axis$

7.
$$O(1,0) x - axis$$

4.
$$L(4, -5)$$
 QIV

1.
$$I(0, -5)$$
 $y - axis$

3.
$$K(0,2)$$
 $y - axis$

4.
$$L(4, -5)$$
 QIV

5.
$$M(-3,0)$$
 $x - axis$

6.
$$N(-5,1)$$
 QII

3.
$$K(0,2)$$
 $y - axis$ 7. $O(1,0)$ $x - axis$

8.
$$P(-3, -5)$$

- 1. I(0, -5) y axis 5. M(-3, 0) x axis
- 2. J(3,5) QI 6. N(-5,1) QII
- 3. K(0,2) y axis 7. O(1,0) x axis
- 4. L(4, -5) Q/V 8. P(-3, -5)

- 1. I(0,-5) y axis 5. M(-3,0) x axis
- 2. J(3,5) QI 6. N(-5,1) QII
- 3. K(0,2) y axis 7. O(1,0) x axis
- 4. L(4,-5) QIV 8. P(-3,-5)

1.
$$I(0, -5)$$
 $y - axis$

3.
$$K(0,2)$$
 $y - axis$

4.
$$L(4, -5)$$
 QIV

5.
$$M(-3,0)$$
 $x - axis$

6.
$$N(-5,1)$$
 QII

3.
$$K(0,2)$$
 $y - axis$ 7. $O(1,0)$ $x - axis$

8.
$$P(-3, -5)$$
 QIII

Thank you for watching.