

ASTROCHEMISTRY

Brett A. McGuire (NRAO)

Sixteenth Synthesis Imaging Workshop 16-23 May 2018

HISTORY AND CONTEXT

AS • TRO • CHEM • IS • TRY

/ astrō'keməstrē /

(n) the study of molecules in space - where they are, how they got there, and what they are doing

Afterglow Light Pattern 375,000 yrs. Inflation Quantum Fluctuations

Big Bang H, He

HISTORY AND CONTEXT

FUNDAMENTAL DRIVING QUESTION OF ASTROCHEMISTRY

How do you make a cat from H and He?

HISTORY AND CONTEXT

AS • TRO • CHEM • IS • TRY

/ astro'keməstrē /

(n) the study of molecules in space - where they are, how they got there, and what they are doing

HISTORY AND CONTEXT

AS • TRO • CHEM • IS • TRY

/ astrō'keməstrē /

(n) the study of molecules in space - where they are, how they got there, and what they are doing

WHY DO I CARE?

WHY SHOULD YOU CARE?

HL Tau

Brogan, ALMA et al. (2015 *ApJL* 808, L3)

TW Hydrae

Andrews et al. (2018 *ApJL* 820, L40)

Elias 2-27

Pérez et al. (2016 *Science* 353, 6307)

Do these gaps correspond to snow lines?
How much H₂O is available for these planets?
What's the C/O ratio?
Can you tell me where a planet formed?
Did it move?

WHAT CAN ASTROCHEMISTRY DO FOR YOU?

We can tell you why that SiO emission in your source is probably a good tracer of a shock

We can tell you whether that comet you observed was probably formed in a very cold environment, and maybe even where in the disk

We can tell you whether that CH₃OH maser you're observing is collisionally or radiatively pumped

What Can Astrochemistry Do For You?

Question

"Where can I find a table of molecules and what they trace?"

Answer

Hopefully nowhere

What astrochemistry can provide is the ability to draw contextualized conclusions on physical conditions and evolutionary history of an observed source based on the synthesis of laboratory, observational, and modeling studies

LABORATORY ASTROPHYSICS

ASTROCHEMISTRY

ASTROCHEMICAL MODELING

Chemical Reactions, Kinetics, Thermodynamics

Species and Reactions of Interest

Temperatures and Electronic Spectral Vibrational Spectral Spectral

Environments and Speciles

Chemical Inventories Abundances

Temperatures, bensities

LABORATORY ASTROPHYSICS

ASTROCHEMISTRY

ASTROCHEMICAL MODELING

and Electronic Spectra

LABORATORY SPECTROSCOPY

Rotational 'Microwave' Spectroscopy

<2000 GHz; Permanent Dipole Moment Req'd

(Ro-)Vibrational Spectroscopy

- (Far-)Infrared; Permanent Dipole Moment Not Req'd
- Each vibrational level also has rotational transitions

Electronic (Rovibronic) Spectroscopy

- UV-Visible; Permanent Dipole Moment Not Req'd
- Each electronic level also has vibrational <u>and</u> rotational transitions

LABORATORY SPECTROSCOPY

Rotational 'Microwave' Spectroscopy

• <2000 GHz; Permanent Dipole Moment Req'd

(Ro-)Vibrational Spectroscopy

- (Far-)Infrared; Permanent Dipole Moment Not Req'd
- Each vibrational level also has rotational transitions

Electronic (Rovibronic) Spectroscopy

- UV-Visible; Permanent Dipole Moment Not Req'd
- Each electronic level also has vibrational <u>and</u> rotational transitions

$$\nu = 2B(J+1)$$

$$B = \frac{h}{8\pi^2 cI}$$

$$I = \mu r^2$$

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

$$\nu = 2B(J+1)$$

$$B = \frac{h}{8\pi^2 cI}$$

$$I = \mu r^2$$

$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

To first order, the rotational frequencies of a molecule are determined exclusively by its structure.

To ∞-order, no two molecules can share the same rotational spectrum. A rotational spectrum is a unique molecular fingerprint.

ROTATIONAL SPECTROSCOPY Direct Absorption

Direct Absorption

ROTATIONAL SPECTROSCOPY CP-FTMW

ROTATIONAL SPECTROSCOPY CP-FTMW

DELIVERABLE PROCESS

Measure 10¹ - 10⁴ lines

$$\nu = 2B(J+1)$$

Determine the rotational constants to high accuracy

Use those constants to predict other unmeasured lines and construct a 'complete' spectrum

ROTATIONAL SPECTROSCOPY DATABASES

$$\nu = 2B(J+1)$$

Constant	Ref. (24)	This work ^{1,2}	Global ^{1,3}
A (MHz)	5655.2654(72)	5655.26522(59)	5655.26519(59)
B (MHz)	1546.875864(66)	1546.875836(63)	1546.875822(54)
C (MHz)	1214.40399(10)	1214.404061(48)	1214.404047(40)
Δ_J (kHz)	0.0456(15)	0.045629(284)	0.04555(235)
Δ_{JK} (kHz)	0.9381(56)	0.93328(241)	0.93304(234)
Δ_K (kHz)	0.50(38)	0.272(64)	0.272(64)
δ_J (kHz)	0.01095(41)	0.011106(163)	0.011094(157)
δ_K (kHz)	0.628(53)	0.6136(73)	0.6141(72)
$\chi_{aa}(N)$ (MHz)	-4.23738(36)	-4.23797(89)	-4.23749(45)
$\chi_{bb}(N)$ (MHz)	2.2886(11)	2.28907(118)	2.28871(65)
Number of Measurements	78	146	175
σ (MHz)	0.00524	0.00130	0.00123
weighted average	0.709	0.622	0.628

McGuire et al. 2018 Science 359, 202

ROTATIONAL SPECTROSCOPY DATABASES

Transition Filter	Transitions matching your filter settings:							
*	(double-click column header for primary sort, single-	click subsequent columns for secon	ndary sorting. Single	clicks will revers	se sort order of a	already select	ed columns.))
e.g. CO*2-1* or *oxide*	Transition △	Description	Rest Freq.	Sky Frequency	Upper-state	Lovas Inte	Sij µ²	C:
✓ Include description	I-C5H J=35/2-33/2, Ω=3/2, F=17-16, I=f	2,4-Pentadiynylidyne	84.108238				401.709 D ²	_
	I-C5H J=35/2-33/2, Ω=3/2, F=18-17, I=f	2,4-Pentadiynylidyne	84.108398	84.108480	71.861 K	4.7	425.314 D ²	Of
Frequency Filters	I-C5H J=35/2-33/2, Ω=3/2, F=17-16, I=e	2,4-Pentadiynylidyne	84.110087	84.110168	71.862 K		401.692 D ²	-
ALMA Band	I-C5H J=35/2-33/2, Ω=3/2, F=18-17, I=e	2,4-Pentadiynylidyne	84.110244	84.110325	71.862 K		425.395 D ²	Of
^	C4H v7 = 1 J=17/2-15/2, Ω =1/2, l=f	1,3-Butadiynyl radical	84.123003	84.123085	211.671 K	2.1	12.771 D ²	Of
	CH3CH2CN v=0 11(0,11)-10(1,10)	Ethyl Cyanide	84.151838	84.151919	28.102 K	0.1	10.328 D ²	Of
1 2 3 4 5 6 7 8 9 1	0 CH3OH v t=1 11(10,1)-11(11,0)	Methanol	84.158571	84.158652	1066.119 K		1.459 D ²	Of
el = (ell)	U-84163	UNIDENTIFIED	84.163000	84.163081		0.06		Of
Sky Frequency (GHz)	30SiO v=1 2-1	Silicon Monoxide	84.164253	84.164334	1753.828 K		19.441 D ²	Of
0	c-H13CCCH 2(1,2)-1(0,1)	Cyclopropenylidene	84.185621	84.185703	6.331 K	0.13	17.24 D ²	Of
41.1.1.1.1.1.1.1.1.1	0-04213	UNIDENTIFIED	84.215000	84.215081		0.08		Of
Min 31.3 Max 950	CH3CN v8=1 J =36-36, K =3-1	Methyl Cyanide	84.271390	84.271472	1139.034 K		0.122 D ²	Of
The state of the s	SO2 v=0 32(5.27)-31(6.26)	Sulfur dioxide	84.320876	84.320958	549.36 K	0.1	13.463 D ²	Of

.. Lovas Inte... Sij µ2 Cata...

 $0.122 D^2$ 0.1 13.463 D2 Offline

4.7 401.709 D2 Offline 4.7 425.314 D² Offline 401.692 D2 Offline 425.395 D2 Offline 2.1 12.771 D² Offline 0.1 10.328 D²

Offline

Offline

Offline

Offline

Offline Offline Offline

LABORATORY ASTROPHYSICS

ASTROCHEMISTRY

ASTROCHEMICAL MODELING

INTERSTELLAR DETECTIONS

INTERSTELLAR DETECTIONS

INTERSTELLAR DETECTIONS

NGC 6334I Common Species methoxymethanol (ALMA Obs) (Lab Freqs.) (Lab Freqs.) 80 60 20 280900 281000 281100 281200 281300 Frequency (MHz) 80 60 왕 원 40 20 281600 281700 281800 281900 282000 Frequency (MHz)

McGuire et al. 2017 ApJL 851, L46

What Has Been Glossed Over/Ignored?

How do we predict the relative intensities of the lines in observations?

Intrinsic Line Strength
Excitation Temperature (T_{ex})
Background Continuum
Beam Size vs Source Size
Linewidth
Excitation Conditions (Radiation/Density)
Optical Depth

INTERSTELLAR DETECTIONS

2 Atoms	3 Atoms	4 Atoms	5 Atoms	6 Atoms	7 Atoms	8 Atoms	9 Atoms
H ₂ SiS AIF CS AICI HF C ₂ HD CH FeO CH+ O ₂ CN CF+ CO SiH CO+ PO CP AIO SiC OH+ HCI CN- KCI SH+	C ₂ H AINC A C ₂ O SiNC C C ₂ S HCP C CH ₂ CCP C HCN AIOH C HCO H ₂ O+ I HCO+ H ₂ CI+ I HCS+ KCN I HOC+ FeCN I H ₂ O HO ₂ I H ₂ S TiO ₂	C-C ₃ H H ₂ CS /-C ₃ H H ₃ O+ C ₃ N C-SiC ₃ C ₃ O CH ₃ C ₃ S C ₃ N- C ₂ H ₂ PH ₃ NH ₃ HCNO HCCN HOCN HCNH+ HSCN HNCO H ₂ O ₂ HNCS C ₃ H+ HOCO+ HMgNC H ₂ CO HCCO	C ₅ C ₄ H C ₄ Si <i>I</i> -C ₃ H ₂ <i>c</i> -C ₃ H ₂ H ₂ CCN CH ₄ HC ₃ N HC ₂ NC HCOOH H ₂ CNH H ₂ C ₂ O H ₂ NCN	C ₅ H /-H ₂ C ₄ C ₃ H ₄ CH ₃ CN CH ₃ NC CH ₃ NC CH ₃ SH HC ₃ NH ⁺ HC ₂ CHO NH ₂ CHO C ₅ N /-HC ₄ H /-HC ₄ N	C ₆ H CH ₂ CHCN CH ₃ C ₂ H HC ₅ N CH ₃ CHO CH ₃ NH ₂ c-C ₂ H ₄ O H ₂ CCHOH C ₆ H- CH ₃ NCO HC ₅ O	CH ₃ C ₃ N HC(O)OCH ₃ CH ₃ COOH C ₇ H C ₆ H ₂ CH ₂ OHCHO <i>I</i> -HC ₆ H CH ₂ CHCHO CH ₂ CCHCN H ₂ NCH ₂ CN CH ₃ CHNH CH ₃ SiH ₃	CH ₃ C ₄ H CH ₃ CH ₂ CN (CH ₃) ₂ O CH ₃ CH ₂ OH HC ₇ N C ₈ H CH ₃ C(O)NH ₂ C ₈ H- C ₃ H ₆ CH ₃ CH ₂ SH CH ₃ NHCHO
NH SH NO HCI+		1200 11000 120N	HNC ₃ SiH ₄	c-H ₂ C ₃ O H ₂ CCNH		10 Atoms	11 Atoms
NS TiO NaCl ArH+ OH N ₂ PN NO+ SO NS+ SO+	MgNC NCO N ₂ H+ HSC N ₂ O HCS NaCN OCS SO ₂ c-SiC ₂ CO ₂		H ₂ COH+ C ₄ H- HC(O)CN HNCNH CH ₃ O NH ₄ +	C ₅ N ⁻ HNCHCN SiH ₃ CN		CH ₃ C ₅ N (CH ₃) ₂ CO (CH ₂ OH) ₂ CH ₃ CH ₂ CHO CH ₃ CHCH ₂ O CH ₃ OCH ₂ OH	HC ₉ N CH ₃ C ₆ H C ₂ H ₅ OCHO CH ₃ OC(O)CH ₃
SiN SiO				202 Individual		12 Atoms	>12 Atoms
	NH ₂ H ₃ +			Speci	es	c-C ₆ H ₆ C ₂ H ₅ OCH ₃ n-C ₃ H ₇ CN i-C ₃ H ₇ CN	c-C ₆ H ₅ CN C ₆₀ C ₆₀ ⁺ C ₇₀

INTERSTELLAR DETECTIONS

INTERSTELLAR DETECTIONS

DELIVERABLES

- Spatial distributions
- Excitation conditions
- Column densities

Friedel et al. 2008 ApJ 672, 962

Skouteris et al. 2018 ApJ 854, 135

Typical networks have 800+ species and ~10,000 reactions

Linnartz et al. 2015 Int. Rev. Phys. Chem. 34, 205

Destruction of x

(~)Rate of the reaction between **y** and **z** to form **x**

1 differential equation per molecule

McGuire et al. 2018 Science 359, 202

Garrod et al. 2008 ApJ 628, 283

Garrod et al. 2008 ApJ 628, 283

Provides ability to trace the complete and discrete history of any individual item

Can model complex physical issues like crystallinity and porosity of ices or the extremely complex effects of a cosmic ray impact

Rate Equations

Computationally inexpensive

'Easy' to implement new chemistry, physics, rapidly adapt model

Can model an arbitrarily long timescale by simply altering time step; time steps need not be linear

'Hard' to implement microscopic properties - ice structure, diffusion, environment-sensitive issues

Models the entire cloud - bulk gas and bulk surface

Monte Carlo

Computationally v. expensive

(Not so) 'easy' to implement new chemistry, physics, rapidly adapt model

Can model an arbitrarily long timescale by simply altering time step; time steps need not be linear

Get a 'complete' physical picture of the system. System is typically ~1 gas-grain interface

More physically 'realistic'

CHEMICAL MODELING - A FINAL NOTE

Astrochemical models are almost always completely incapable of correctly reproducing reality

BUT

They are still incredibly useful and important for:

Identifying gaps in our understanding of pertinent reactions, species, and physical processes

Suggesting reasonable explanations for observations, and necessary follow-up observational or laboratory tests

LABORATORY ASTROPHYSICS

ASTROCHEMISTRY

ASTROCHEMICAL MODELING

Chemical Reactions, Kinetics, Thermodynamics

Species and Reactions of Interest

Temperatures and Electronic Spectral Vibrational Spectral Spectral

Environments and Speciles

Chemical Inventories Abundances

Temperatures, bensities

Parting Thoughts

Astrochemistry seeks to understand the evolution of molecular complexity through cosmic time and its influence on the dynamical evolution of our universe.

Molecular lines aren't noise - they're invaluable information on the current conditions and evolutionary history of the source you're studying! Don't ignore them!

Molecules can be valuable probes/tracers of physical conditions, but only when interpreted in context. If in doubt, ask an astrochemist!

