The finite base property for some relation algebras subreducts

Daniel Rogozin

1 The Relation Algebras Background

We describe the basic definitions and results about relation algebras [8] [16].

Definition 1.

- 1. A relation algebra is an algebra $\mathcal{R} = \langle R, 0, 1, \wedge, \vee, \neg, ;, \check{\ }, \mathbf{1} \rangle$ such that $\langle R, 0, 1, \wedge, \vee, \neg \rangle$ is a Boolean algebra and the following equations hold, for each $a, b, c \in R$:
 - (a) a;(b;c) = (a;b);c
 - $(b) \ (a \lor b); c = (a; c) \lor (b; c)$
 - (c) a; 1 = a
 - (d) $a^{\smile} = a$
 - (e) $(a \lor b)^{\smile} = a^{\smile} \lor b^{\smile}$
 - $(f) (a;b)^{\smile} = b^{\smile}; a^{\smile}$
 - $(g) \ a^{\smile}; (\neg(a;b)) \leqslant \neg b$

where $a \leq b$ iff $a \wedge b = a$ iff $a \vee b = b$. **RA** denotes the class of all relation algebras.

- 2. A proper relation algebra is an algebra $\mathcal{R} = \langle R, 0, 1, \wedge, \vee, \neg, ;, \check{\,\,\,\,}, \mathbf{1} \rangle$ such that $R \subseteq \mathcal{P}(W)$, where W is an equivalence relation; $0 = \emptyset$; 1 = W; \wedge , \vee , \neg are set-theoretic intersection, union, and complement respectively; \vdots is relation composition, $\check{\,\,\,\,}$ is relation converse, $\mathbf{1}$ is a diagonal relation restricted to W, that is:
 - (a) $a; b = \{\langle x, z \rangle \mid \exists y \langle x, y \rangle \in a \& \langle y, z \rangle \in b\}$
 - (b) $a^{\smile} = \{\langle x, y \rangle \mid \langle y, x \rangle \in a\}$
 - (c) $\mathbf{1} = \{\langle x, y \rangle \mid x = y\}$

The class of all proper relation algebras is denoted as \mathbf{PRA} . Rs is the class of all relation set algebras, proper relation algebra with a diagonal subrelation as an identity. \mathbf{RRA} is the class of all representable relation algebras, that is, the closure of \mathbf{PRA} under isomorphic copies. That is, $\mathbf{RRA} = \mathbf{IPRA}$.

Note that the (quasi)equational theories of those classes coincide, that is

$$IPRA = RRA = SPRs$$

Moreover, **RRA** is a variety, but it cannot be defined by any set of first-order formulas [19] []. One may express residuals in every $\mathcal{R} \in \mathbf{RA}$ as follows, for every $a, b \in \mathcal{R}$:

- 1. $a \setminus b = \neg(a \smile; \neg b)$
- 2. $a/b = \neg(\neg a; b)$

Those residuals have the following interpretation in $\mathcal{R} \in \mathbf{PRA}$ (as well as in \mathbf{RRA}), for every $a, b \in \mathcal{R}$:

- 1. $a \setminus b = \{ \langle x, y \rangle \mid \forall z (z, x) \in a \Rightarrow (z, y) \in b \}$
- 2. $a/b = \{\langle x, y \rangle \mid \forall z (y, z) \in b \Rightarrow (x, z) \in a\}$

One may illustrate composition and residuals in PRA and RRA via the following triangles:

Given a subset of definable operations in $\mathbf{R}\mathbf{A}$ τ , we denote the class of subalgebras of the τ -reducts by $\mathbf{R}(\tau)$. The algebras containing to this class are defined as restrictions of elements belonging to $\mathbf{R}\mathbf{s}$ to operations of τ . By $\mathbf{Q}(\tau)$ we mean a quasivariety generated by $R(\tau)$. As in [11], we put $\mathbf{Q}(\tau)$ as the closure of $\mathbf{R}(\tau)$ under subalgebras and products assuming that $\mathbf{R}(\tau)$ is already closed under ultraproducts.

2 The Finite Base Property

We recall the underlying definitions according to [8, Section 19]

Definition 2. Let \mathbf{K} be a class of algebras of a signature Ω , \mathbf{K} has the finite algebra property, if if any first-order Ω -sentence that is true in all finite algebras in \mathbf{K} is true in every algebra in \mathbf{K} .

The finite base property is a version of the finite algebra property if \mathbf{K} is a class of representable algebras:

Definition 3. Let K be a class of representable algebras of a signature Ω

- 1. **K** has the finite base property if any first-order Ω -sentence that is true in every algebra in **K** having a representation over a finite base set is valid in **K**.
- 2. **K** has the finite algebra on finite base property if any finite algebra in **K** has a representation with finite base.
- 3. **K** has the finite algebra property for equations/quasi-identites if any equation/quasi-identity that is true in all finite algebras is true in every algebra in **K**. The finite base property for equations/quasi-identites is defined similarly.

The following statements were shown in [3]. This lemma connects finite base property with finite algebra on finite base and finite algebra properties as follows:

Lemma 1. Let **K** be a class of representable Ω -algebras:

- 1. If \mathbf{K} has the finite algebra property, then it has the finite algebra and the finite base properties for equations/quasi-identites.
- 2. The finite algebra on finite base and the finite algebra properties implies the finite base property for K. The same holds for equations/quasi-identities.
- 3. If any representation of an infinite algebra has an infinite base, then the finite base property implies the finite algebra one for K.
- 4. Suppose Ω is finite and any subalgebra of a representable algebra is representable on the same base. Then the finite base property implies the finite algebra on finite base property.

3 The Relation Residuated Semigroups Background

3.1 The underlying definitions and results

A relation structure (**RS**) is an arbitrary algebra of the signature $\Omega = \langle \cdot, \setminus, /, \leq \rangle$, where $\cdot, \setminus, /$ are binary function symbols and \leq is a binary relation symbol.

Definition 4. A residuated semigroup is an algebra $S = \langle S, \cdot, \leq, \setminus, / \rangle$ such that $\langle S, \cdot, \leq, \rangle$ is an ordered residuated semigroup and the following equivalences hold for each $a, b, c \in S$:

$$b \leqslant a \backslash c \Leftrightarrow a \cdot b \leqslant c \Leftrightarrow a \leqslant c/b$$

ORS is the class of all residuated semigroups.

Definition 5. Let A be a set of binary relations on some base set W such that $R = \bigcup A$ is transitive and $\{x,y \mid xRy\} = W$. A relation residuated semigroup is an algebra $\mathcal{A} = \langle A, ; , \backslash , /, \subseteq \rangle$ where for each $r,s \in A$

- 1. $r; s = \{\langle a, c \rangle \mid \exists b \in W \ (\langle a, b \rangle \in r \& \langle b, c \rangle \in s)\}$
- 2. $r \setminus s = \{ \langle a, c \rangle \mid \forall b \in W \ (\langle b, a \rangle \in r \Rightarrow \langle b, c \rangle \in s) \}$
- 3. $r/s = \{\langle a, c \rangle \mid \forall b \in W \ (\langle c, b \rangle \in s \Rightarrow \langle a, b \rangle \in r)\}$

Relation residuated semigroup are also called representable relativised relational structure (RRS)

Andréka and Mikulás proved the following representation theorem for **ORS** in [4] that implies relational completeness of the Lambek calculus, the logic of **ORS**:

Theorem 1. ORS = IRRS, where IRRS is a closure of RRS under isomorphic copies.

3.2 The finite base property for RRS

Definition 6. A relativised representation

Definition 7. The standard translation

TODO: take a look at relativised representations and loosely guarded fragments in general TODO: realise whether it makes sense to use the technique similar to [8, Theorem 19.13] used for weakly associative algebras.

Theorem 2. Let A be a finite residuated semigroup and $|A| < \omega$, then A has a finite relativised representation.

Theorem 3. Let A be a finite representable residuated semigroup, then A is isomorphic to representable residuated semigroup a domain of which is finite.

Proof. That might follow from the previous theorem, Theorem 1, and something else. \Box

Corollary 1. The Lambek calculus has the fmp and the universal theory of IRRS is NP-complete.

The hypothetical plan is the following one:

- 1. Define properly relativised representation for residuated semigroups, that should look like ternary Kripke frames for the basic Lambek calculus or arrow logic.
- 2. Define the standard translation to such first-order relation structures. TODO: take a look at loosely guarded fragment stuff.
- 3. Every finite residuated semigroup has a finite relativised representation.
- 4. If every Π_1 -statement φ of the language of residuated semigroups that is valid in every residuated semingroup is valid in algebra having a finite relativised representation (one may use here Theorem 1 somehow), then φ is valid in **ORS** as well as in **IRRS**.
- 5. Every finite residuated semigroup should have a finite relativised representation.
- 6. Construct a finitely based relation residuated semigroup from that (an analogue of complex algebra or smth like that). This item is the most non-trivial one.
- 7. As a corollary, the first-order universal first-order theory of IRRS should be decidable and (it seems so) NP-complete (that should follow from the results in [23]). The Lambek calculus is decidable that was shown syntactically via cut elimination and subformula property. Here we would have an alternative way of showing decidability for some substructural logics.

4 Join-semilattice ordered semigroups

Definition 8. A join-semilattice ordered semigroup (**OS** $^{\vee}$) is an algebra $S = \langle S, \cdot, \vee \rangle$ such that $\langle S, \cdot \rangle$ is a semigroup, $\langle S, \vee \rangle$ is a join-semilattice and the following equations hold for each $a, b.c \in S$:

1.
$$a \cdot (b \vee c) = (a \cdot b) \vee (a \cdot c)$$

2.
$$(a \lor b) \cdot c = (a \cdot c) \lor (b \cdot c)$$

This class is clearly a variety since \mathbf{OS}^{\vee} has the equational definition so far as \vee is defined as an associative, idempotent, and commutative operation.

Let A be a set of binary relations on some base set W such that $R = \cup A$ is transitive and $\{x,y\,|\,xRy\} = W$ as in Definition 5. A relation join-semilattice ordered semigroup (\mathbf{ROS}^{\vee}) is an algebra of binary relations $\mathcal{A} = \langle A, |, \cup \rangle$ such that ; is a relation composition as above and \cup is the set-theoretic union.

Recall that a class of structures K is called finitely axiomatisable iff both K and its complement are closed ultraproducts and isomorphic copies.

It is known that the class of all representable join-semilattice ordered semigroups has no finite axiomatisation [1]. In other words,

Theorem 4. The equational and quasiequational theories of $R(;,\vee)$ is not finitely based.

Let us provide a proof of this fact using the rainbow technique [8] to show that the complement of **ROS**^{\(\nu\)} is not closed ultraproducts. This is (more or less) a standard way, see [14]. We note that representability is not decidable for finite relation algebras [7]. Moreover, representability is undecidable for lattice-ordered semigroups and ordered complemented semigroups [21].

First of all, we recall several definitions such as colourings. We define a sequence of relation algebras $\{\mathfrak{A}_n\}_{n<\omega}$ each of which belongs to **RA**. We need these algebras to show that their $\{;,\vee\}$ -reducts are not representable. That is, we are seeking to show that

Given $n < \omega$, the set of atoms $At(\mathfrak{A}_n)$ consists of the following elements:

- identity: 1, an atom with no colour
- greens: \mathbf{g}_i for $0 \leq i \leq 2^n$
- \bullet yellow: \mathbf{y}
- black: b
- whites: \mathbf{b}_{ij} for $0 \leq i \leq j \leq 2^n$
- reds: \mathbf{r}_i for $0 < i \leq 2^n$

We claim that every atom is self-converse $(a^{\smile} = a)$. Given $x, y, z \in \mathfrak{A}_n$, a triple (x, y, z) is an inconsistent triangle if

$$x \wedge (y; z) = y \wedge (z; x) = z \wedge (x; y) = 0$$

We define the set of inconsistent triangles explicitly as follows.

- $(\mathbf{g}_i, \mathbf{g}_i, \mathbf{g}_i)$ for $0 \leq i \leq 2^n$
- $(\mathbf{y}, \mathbf{y}, \mathbf{y})$ for $0 \le i \le 2^n$
- $(\mathbf{g}_i, \mathbf{g}_i, \mathbf{w}_{kj})$ for $0 \le i \le 2^n$ and $0 \le k \le j \le 2^n$
- $(\mathbf{r}_i, \mathbf{r}_j, \mathbf{r}_k)$ unless i + k = j or i + k = j or j + k = i
- $(\mathbf{g}_i, \mathbf{g}_{i+1}, \mathbf{r})$ unless j = 1
- $(\mathbf{g}_i, \mathbf{y}, \mathbf{w}_{jk})$ unless $i \in \{j, k\}$

 $(\mathbf{g}_i, \mathbf{g}_i, \mathbf{w}_{kj})$ stands for $\mathbf{g}_i \wedge (\mathbf{g}_i; \mathbf{w}_{kj}) = \mathbf{g}_i \wedge (z; \mathbf{g}_i) = \mathbf{w}_{kj} \wedge (\mathbf{g}_i; \mathbf{g}_i) = 0$, and so on.

Lemma 2. For each $n < \omega$, \mathfrak{A}_n does not belong **RRA**. The $(\vee,;)$ -reduct \mathfrak{S}_n of \mathfrak{A}_n is not representable as well. For each $n < \omega$, there is an equation valid in set algebras failing in \mathfrak{S}_n .

Proof. See [14] to have a proof that $\mathfrak{A}_n \notin \mathbf{RRA}$.

We prove that \mathfrak{S}_n is not representable by contradiction. Suppose h is an isomorphism of \mathfrak{S}_n to a set relation of relations having similarity type $\{;,\vee\}$. Let 0 be a zero element of \mathfrak{A}_n .

TODO: define games and networks. Take a look at [?].

Lemma 3. Any non-trivial ultraproduct of $\{\mathfrak{A}_n\}_{n<\omega}$ is representable.

Lemma 4. TODO: one needs to realise when \exists has a winning strategy

4.1 The finite algebra on finite base for RJSOS (or its failure)

References

- [1] Hajnal Andréka. On the 'union-relation composition' reducts of relation algebras. In *Abstracts Amer. Math. Soc*, volume 10, page 174, 1989.
- [2] Hajnal Andréka. Representations of distributive lattice-ordered semigroups with binary relations. Algebra Universalis, 28(1):12–25, 1991.
- [3] Hajnal Andréka, Ian Hodkinson, and István Németi. Finite algebras of relations are representable on finite sets. *The Journal of Symbolic Logic*, 64(1):243–267, 1999.
- [4] Hajnal Andréka and Szabolcs Mikulás. Lambek calculus and its relational semantics: completeness and incompleteness. *Journal of Logic, Language and Information*, 3(1):1–37, 1994.
- [5] Hajnal Andréka and Szabolcs Mikulás. Axiomatizability of positive algebras of binary relations. *Algebra universalis*, 66(1-2):7, 2011.
- [6] Wojciech Buszkowski and Mirosława Kołowska-Gawiejnowicz. Representation of residuated semigroups in some algebras of relations (the method of canonical models). *Fundamenta Informaticae*, 31(1):1–12, 1997.
- [7] Robin Hirsch and Ian Hodkinson. Representability is not decidable for finite relation algebras. Transactions of the American Mathematical Society, 353(4):1403–1425, 2001.
- [8] Robin Hirsch and Ian Hodkinson. Relation algebras by games. Elsevier, 2002.
- [9] Robin Hirsch and Marcel Jackson. Undecidability of representability as binary relations. *The Journal of Symbolic Logic*, 77(4):1211–1244, 2012.
- [10] Robin Hirsch and Szabolcs Mikulás. Representable semilattice-ordered monoids. *Algebra Universalis*, 57(3):333–370, 2007.
- [11] Robin Hirsch and Szabolcs Mikulás. Positive fragments of relevance logic and algebras of binary relations. The Review of Symbolic Logic, 4(1):81–105, 2011.
- [12] Robin Hirsch and Szabolcs Mikulás. Ordered domain algebras. *Journal of Applied Logic*, 11(3):266–271, 2013.
- [13] Wilfrid Hodges et al. A shorter model theory. Cambridge university press, 1997.
- [14] Ian Hodkinson and Szabolcs Mikulás. Axiomatizability of reducts of algebras of relations. Algebra Universalis, 43(2-3):127–156, 2000.
- [15] Max Kanovich, Stepan Kuznetsov, and Andre Scedrov. L-models and r-models for lambek calculus enriched with additives and the multiplicative unit. In *International Workshop on Logic, Language, Information, and Computation*, pages 373–391. Springer, 2019.
- [16] Roger D Maddux. Relation algebras, volume 13. Elsevier Science Limited, 2006.
- [17] Anatolij Ivanovic Mal'Cev. *Algebraic systems*, volume 192. Springer Science & Business Media, 2012.
- [18] Szabolcs Mikulás. Lower semilattice-ordered residuated semigroups and substructural logics. Studia Logica, 103(3):453–478, 2015.

- [19] Donald Monk et al. On representable relation algebras. The Michigan mathematical journal, 11(3):207–210, 1964.
- [20] István Németi. Algebraization of quantifier logics, an introductory overview. Studia logica, $50(3\text{-}4)\text{:}485\text{-}569,\ 1991.$
- [21] Murray Neuzerling. Undecidability of representability for lattice-ordered semigroups and ordered complemented semigroups. *Algebra universalis*, 76(4):431–443, 2016.
- [22] Mati Pentus. Models for the lambek calculus. Annals of Pure and Applied Logic, 75(1-2):179–213, 1995.
- [23] Mati Pentus. Lambek calculus is np-complete. *Theoretical Computer Science*, 357(1-3):186–201, 2006.