III. Ciągi liczbowe.

1. Definicja ciągu liczbowego.

Definicja 1.1.

 $Ciqgiem\ liczbowym\ nazywamy\ funkcję\ a:N\to R\ odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez <math>\{a_n\}$. Używamy zapisu

$$a_n = a(n)$$
.

Ciąg $\{a_n\}$ można też zapisywać w postaci

$$a_1, a_2, a_3, ..., a_n, ...$$

Liczbę a_n nazywamy n-tym wyrazem ciągu $\{a_n\}$.

Przykłady określania ciągów liczbowych:.

• wzorem, np.

$$a_n = 3^n$$
, $b_n = \sqrt{n-1} - \sqrt{n}$, $c_n = 1 + 2^2 + 3^3 + \dots + n^n$;

• rekurencyjnie, np.

$$a_1 = 3$$
, $a_{n+1} = a_n + 2$ ciąg arytmetyczny,

$$b_1 = 1$$
, $b_{n+1} = 3b_n$ ciąg geometryczny;

• opisowo, np.

 a_n - n-ta liczba pierwsza.

Przykłady ciągów liczbowych:.

- ciąg liczb parzystych dodatnich $a_n = 2n$;
- ciąg liczb nieparzystych dodatnich $a_n = 2n 1$;
- \bullet ciąg arytmetyczny $a_n = p + (n-1)d$ (p pierwszy wyraz ciągu, d różnica ciągu);
- ciąg geometyczny $a_n = pq^{n-1}$ (p pierwszy wyraz ciągu, q iloraz ciągu);
- ciąg stały $a_n = c$ (c dowolna liczba);
- $\bullet \ a_n = \left(1 + \frac{1}{n}\right)^n;$
- $-1, +1, -1, +1, ..., (-1)^n$;
- $1, \sqrt{2}, \sqrt[3]{3}, \sqrt[4]{4}, ..., \sqrt[n]{n}$.

2. Monotoniczność i ograniczoność ciągu liczbowego.

Definicja 2.1.

Mówimy, że ciąg $\{a_n\}$ jest:

 \bullet rosnący, jeżeli dla każdego $n \in N$

$$a_n < a_{n+1}$$

 \bullet niemalejący, jeżeli dla każdego $n \in N$

$$a_n \le a_{n+1}$$

 \bullet malejący, jeżeli dla każdego $n \in N$

$$a_n > a_{n+1}$$

 \bullet nierosnący, jeżeli dla każdego $n \in N$

$$a_n \ge a_{n+1}$$
.

Ciągi rosnące, niemalejące, malejące i nierosnące nazywamy ciągami monotonicznymi. Można mówić o ciągach monotonicznych od pewnego miejsca tj. pewnego numeru $n_0 \in N$.

Uwaga.

Monotoniczność dowolnego ciągu $\{a_n\}$ można ustalić badając znak różnicy

$$a_{n+1}-a_n$$

a ciągu $\{b_n\}$ o wyrazach dodatnich porównując iloraz

$$\frac{b_{n+1}}{b_n}$$

z liczbą 1.

Przykład.

Sprawdzimy, że ciąg $a_n=n^2-n$ jest rosnący. Otrzymujemy $a_{n+1}-a_n=(n+1)^2-(n+1)-(n^2-n)=n^2+2n+1-n-1-n^2+n=2n>0$ dla wszystkich $n\in N$. Zatem $a_n< a_{n+1}$ dla $n\in N$.

Przykład.

Sprawdzimy, że ciąg $b_n=\frac{n!}{n^n}$ jest malejący. Ponieważ $b_n>0$ dla wszystkich $n\in N$ badamy iloraz $\frac{b_{n+1}}{b_n}$. Otrzymujemy

$$\frac{b_{n+1}}{b_n} = \frac{(n+1)!}{(n+1)^{(n+1)}} \cdot \frac{n^n}{n!} = \left(\frac{n}{n+1}\right)^n < 1,$$

dla wszystkich $n \in N$. Zatem $b_{n+1} < b_n$ dla $n \in N$.

Definicja 2.2.

Ciąg $\{a_n\}$ nazywamy ograniczonym, jeżeli istnieją takie liczby m_1 i m_2 , że dla wszystkich $n \in N$

$$m_1 \le a_n \le m_2$$

lub równoważnie, jeżeli istnieje taka liczba M>0, że dla wszystkich $n\in N$

$$|a_n| \leq M$$
.

3. Granica ciągu liczbowego.

Definicja 3.1.

Liczbę g nazywamy granicą ciągu $\{a_n\}$, jeżeli dla dowolnego $\epsilon>0$ można dobrać taką liczbę $n_0\in N$, że dla każdego $n>n_0$ zachodzi nierówność

$$|a_n - g| < \epsilon,$$

zapisywana równoważnie w postaci

$$q - \epsilon < a_n < q + \epsilon$$
.

Mówimy, że ciąg $\{a_n\}$ jest zbieżny do granicy g, co zapisujemy

$$\lim_{n\to\infty} a_n = g.$$

Ciągi posiadające granicę nazywamy ciągami zbieżnymi.

Twierdzenie 3.2. (o jednoznaczności granicy)

Ciąg zbieżny nie może mieć dwóch różnych granic.

Przykłady 'ważnych' ciągów zbieżnych:

- $\lim_{n\to\infty} c = c$;
- $\lim_{n\to\infty}\frac{1}{n}=0$;
- $\lim_{n\to\infty} q^n = 0$ dla |q| < 1;
- $\lim_{n\to\infty} \sqrt[n]{a} = 1$ dla a > 0;
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$;
- $\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e \approx 2,718281$

Przykład.

(a) Wykażemy, że $\lim_{n\to\infty}\frac{n}{n+1}=1.$

Zgodnie z definicją należy pokazać, że

$$\forall \epsilon > 0 \ \exists n_0 \in N \ \forall N \ni n > n_0 \ |\frac{n}{n+1} - 1| < \epsilon.$$

Weźmy dowolny $\epsilon>0$. Nierówność epsilonową $|\frac{n}{n+1}-1|<\epsilon$ rozwiązujemy ze względu na n.

Otrzymujemy

$$\left|\frac{n}{n+1}-1\right|<\epsilon \iff n>\frac{1-\epsilon}{\epsilon}.$$

Zatem przyjmując $n_0 := \left[\frac{1-\epsilon}{\epsilon} + 1\right]$, gdzie symbol [x] oznacza część całkowitą z liczby x, otrzymamy, że dla wszystkich $n > n_0$ zachodzi nierówność

$$\left|\frac{n}{n+1} - 1\right| < \epsilon.$$

(b) Rozważmy ciąg $a_n = 2 \cdot (-1)^n$. Mamy $a_{2n} = 2$, $a_{2n-1} = -2$ dla $n \in N$. Przypuśćmy, że ciąg $\{a_n\}$ ma granicę g < 2. Wtedy przyjmując $\epsilon = \frac{2-g}{2}$ otrzymujemy, że żaden wyraz a_{2n} nie spełnia nierówności

$$|a_{2n} - g| < \epsilon,$$

czyli g nie może być granicą ciągu $\{a_n\}$. Podobnie pokazuje się, że granicą nie może być żadna liczba $g \geq 2$. Zatem granica ciągu $\{a_n\}$ nie istnieje.

4. Twierdzenia o ciągach zbieżnych.

Twierdzenie 4.1. (o jednoznaczności granicy)

Ciąg zbieżny nie może mieć dwóch różnych granic.

Twierdzenie 4.2.

Ciąg zbieżny jest ograniczony.

Twierdzenie 4.3.

Ciąg monotoniczny i ograniczony jest zbieżny.

Twierdzenie 4.4. (o arytmetyce granic)

Załóżmy, że ciągi $\{a_n\}$ i $\{b_n\}$ są zbieżne, tzn. $\lim_{n\to\infty}a_n=a$ i $\lim_{n\to\infty}b_n=b$. Wówczas

1.
$$\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n = a + b;$$

2.
$$\lim_{n\to\infty} (a_n - b_n) = \lim_{n\to\infty} a_n - \lim_{n\to\infty} b_n = a - b;$$

3.
$$\lim_{n\to\infty} (c \cdot a_n) = c \cdot \lim_{n\to\infty} a_n = c \cdot a;$$

4.
$$\lim_{n\to\infty} (a_n \cdot b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n = a \cdot b$$
;

5.
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n} = \frac{a}{b}$$
, o ile $b_n \neq 0$;

6.
$$\lim_{n\to\infty} (a_n)^p = (\lim_{n\to\infty} a_n)^p$$
, gdzie $p \in Z \setminus \{0\}$;

7.
$$\lim_{n\to\infty} \sqrt[k]{a_n} = \sqrt[k]{\lim_{n\to\infty} a_n}$$
, gdzie $k \in N \setminus \{0,1\}$.

W dwóch ostatnich wzorach zakłada się, że wyrażenia po obu stronach równości mają sens.

6

Przykład.

Obliczymy
$$\lim_{n\to\infty} \left(\sqrt[n]{n} \cdot \frac{n^4 + 5n - 1}{3n^4 - 2n^2} + \frac{4^n + 3^n}{8^n + 7^n} \right).$$

Twierdzenie 4.5. (o trzech ciągach)

Jeżeli ciągi $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ spełniają warunki:

- (i) $a_n \le b_n \le c_n$ dla $n \ge n_0$ (n_0 pewna liczba naturalna);
- (ii) $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = g$,

to $\lim_{n\to\infty} b_n = g$.

Przykład.

Obliczymy $\lim_{n\to\infty} \sqrt[n]{2^n + 3^n + 5^n}$.

Twierdzenie 4.6.

Jeżeli $\lim_{n\to\infty} a_n = 0$ i ciąg b_n jest ograniczony, to

$$\lim_{n\to\infty} (a_n \cdot b_n) = 0.$$

Przykład.

Obliczymy $\lim_{n\to\infty} \frac{n\sin n}{n^2+1}$.

Twierdzenie 4.7.

Ciąg $e_n = \left(1 + \frac{1}{n}\right)^n$ jest rosnący i ograniczony z góry.

Wniosek 4.7.

Ciąg $e_n = \left(1 + \frac{1}{n}\right)^n$ jest zbieżny.

Definicja 4.8.

Granicę ciągu $\{e_n\}$ oznaczamy przez e, tj.

$$\lim n \to \infty \left(1 + \frac{1}{n}\right)^n = e.$$

5. Ciągi rozbieżne do nieskończoności.

Definicja 5.1.

Mówimy, że ciąg $\{a_n\}$ jest rozbieżny do nieskończoności, co zapisujemy

$$\lim_{n\to\infty} a_n = \infty,$$

jeżeli dla dowolnej liczby M można dobrać taką liczbę naturalną n_0 , że dla wszystkich $n>n_0$ zachodzi nierówność $a_n>M$.

Mówimy, że ciąg $\{a_n\}$ jest rozbieżny do minus nieskończoności, co zapisujemy

$$\lim_{n\to\infty} a_n = -\infty,$$

jeżeli dla dowolnej liczby M można dobrać taką liczbę naturalną n_0 , że dla wszystkich $n>n_0$ zachodzi nierówność $a_n< M$.

Jeżeli ciąg $\{a_n\}$ jest rozbieżny do $+\infty$ lub $-\infty$, to mówimy, że ciąg ten ma granicę niewłaściwą.

Przykład.

Pokażemy, że ciąg $a_n = n^3 + 2$ jest rozbieżny do $+\infty$. Weźmy dowolną liczbę M. Należy tak dobrać n_0 , aby dla $n > n_0$ zachodziła nierówność $n^3 + 2 > M$. Mamy $n^3 + 2 \ge n + 2 > M$ o ile n > M - 2. Wystarczy więc przyjąć $n_0 = [M-1]$.

Twierdzenie 5.2.

- 1. Jeżeli $a_n \to 0$ i $a_n > 0$, to $\frac{1}{a_n} \to +\infty$.
- 2. Jeżeli $a_n \to 0$ i $a_n < 0$, to $\frac{1}{a_n} \to -\infty$.
- 3. Jeżeli $a_n \to \pm \infty$ i $a_n > 0$, to $\frac{1}{a_n} \to 0$.
- 4. Jeżeli $a_n \to +\infty$ i $b_n \to b > 0$, to $a_n \cdot b_n \to +\infty$.
- 5. Jeżeli $a_n \to +\infty$ i $b_n \to b < 0$, to $a_n \cdot b_n \to -\infty$.
- 6. Jeżeli $a_n \to +\infty$ i $b_n \to +\infty$, to $a_n + b_n \to +\infty$.
- 7. Jeżeli $a_n \to +\infty$ i $\{b_n\}$ jest ograniczony, to $a_n + b_n \to +\infty$.

Uwaga.

Jeżeli $c_n = a_n \cdot b_n$ oraz $a_n \to 0$ i $b_n \to +\infty$, to bezpośrednio z takiej postaci ciągu c_n nie można nie wywnioskować na temat granicy tego ciągu. O ciągu $\{c_n\}$ mówimy, że jest ciągiem typu $0 \cdot \infty$ lub nieoznaczonością typu $0 \cdot \infty$.

Wyróżniamy następujące symbole nieoznaczone :

$$0 \cdot \infty, \quad \infty - \infty, \quad \frac{\infty}{\infty}, \quad \frac{0}{0}, \quad 0^0, \quad 1^\infty, \quad \infty^0.$$

Przykład.

Obliczymy $\lim_{n\to\infty} (\sqrt{n^2+n}-n)$.

Twierdzenie 5.3. (o dwóch ciągach)

Załóżmy, że ciągi $\{a_n\}$ i $\{b_n\}$ spełniają nierówność $a_n \leq b_n$ dla $n \geq n_0$, gdzie n_0 - pewna liczba naturalna.

- 1. Jeżeli $\lim_{n\to\infty} a_n = +\infty$, to $\lim_{n\to\infty} b_n = +\infty$.
- 2. Jeżeli $\lim_{n\to\infty} b_n = -\infty$, to $\lim_{n\to\infty} a_n = -\infty$.

Przykład.

Wykażemy, że
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}\right) = +\infty.$$

Twierdzenie 5.4.

Jeżeli
$$a_n > 0$$
 dla $n \in N$ i $\lim_{n \to \infty} a_n = +\infty$, to $\lim_{n \to \infty} \left(1 + \frac{1}{a_n}\right)^{a_n} = e$.

Przykład.

Obliczymy $\lim_{n\to\infty} \left(\frac{3n+1}{3n+4}\right)^n$.