Examen - MAG303

Les exercices sont indépendants. Tout matériel électronique est interdit.

Exercice 1 Mettre sous la forme donnée par le théorème de structure des groupes abéliens de type fini le groupe $\mathbb{Z}/900\mathbb{Z} \times \mathbb{Z}/540\mathbb{Z}$.

Exercice 2 Dans \mathbb{Z}^3 , on considère l'ensemble

$$B := \{ (\lambda + 4\mu, 2\lambda + 5\mu, 3\lambda + 6\mu) \in \mathbb{Z}^3 : \lambda, \mu \in \mathbb{Z}^2 \}.$$

- 1. Montrer que B est un sous-groupe abélien libre de \mathbb{Z}^3 et déterminer son rang.
- 2. Ecrire \mathbb{Z}^3/B sous la forme donnée par le théorème de structure.

Exercice 3 Soit $p \geq 2$ un nombre premier. Let but de cet exercice est d'étudier les sous-groupes transitifs de \mathfrak{S}_p . On dit qu'un sous-groupe de \mathfrak{S}_p est transitif si son action naturelle sur $\{1,\ldots,p\}$ est transitive.

- 1. Montrer que tout conjugué d'un sous-groupe transitif est transitif.
- 2. Montrer qu'un sous-groupe $H \subset \mathfrak{S}_p$ est transitif ssi il contient un p-cycle.
- 3. En posant $X := \mathbb{Z}/p\mathbb{Z}$, montrer que l'on peut identifier \mathfrak{S}_X à \mathfrak{S}_p .
- 4. On définit le groupe GA_1 comme

$$GA_1 := \left\{ \left(\begin{array}{cc} a & b \\ 0 & 1 \end{array} \right) a \in \mathbb{Z}/p\mathbb{Z}^{\times}, b \in \mathbb{Z}/p\mathbb{Z} \right\}.$$

Quel est l'ordre de GA_1 ? Est-ce un groupe abélien?

5. Montrer que l'application

$$\left(\left(\begin{array}{cc} a & b \\ 0 & 1 \end{array} \right), x \right) \in GA_1 \times (\mathbb{Z}/p\mathbb{Z}) \mapsto \left(\begin{array}{cc} a & b \\ 0 & 1 \end{array} \right) \cdot x = ax + b \in \mathbb{Z}/p\mathbb{Z}$$

définit une action de groupe fidèle et transitive de GA_1 sur $\mathbb{Z}/p\mathbb{Z}$. En déduire que GA_1 s'identifie naturellement à un sous-groupe transitif de \mathfrak{S}_p .

6. On note
$$\tau := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in GA_1$$
. Quelle est l'image de τ dans \mathfrak{S}_p ?

On dit qu'un groupe fini G est résoluble s'il existe une suite finie de sous-groupes distingués

$$1 \subset G_1 \subset G_2 \subset \cdots \subset G_n = G$$
,

telle que G_i/G_{i+1} est abélien. On note D(G) le groupe dérivé de G, i.e. sous-groupe engendré par les commutateurs $ghg^{-1}h^{-1}: D(G) := \langle ghg^{-1}h^{-1}|g,h \in G \rangle$, et $D^n(G) = D(D^{n-1}(G))$. On admettra que G est résoluble si et seulement s'il existe $n \geq 1$ tel que $D^n(G) = \{1\}$.

- 7. Montrer que tout sous-groupe d'un groupe résoluble est résoluble.
- 8. Pour quelles valeurs de n le groupe symétrique \mathfrak{S}_n est-il résoluble?
- 9. Montrer que GA_1 est résoluble.
- 10. Soit H un sous-groupe de GA_1 contenant τ . Montrer que tout conjugué de H dans \mathfrak{S}_p est résoluble et transitif.

On va démontrer la réciproque à la question 10. Soit H un sous-groupe résoluble transitif de \mathfrak{S}_p .

11. Montrer qu'il existe une suite finie de sous-groupes distingués

$$\{1\} \subsetneq H_1 \subset \cdots \subset H_n = H,$$

tels que pour tout i, H_i/H_{i+1} est cyclique d'ordre premier.

- 12. Montrer que H_1 agit transitivement sur \mathfrak{S}_p . (Indication: Par récurrence descendante, pour $1 \leq i \leq n-1$, on pourra comparer l'orbite de $a \in \mathbb{Z}/p\mathbb{Z}$ sous les actions de H_i et H_{i+1} .)
- 13. En déduire que $H_1 \simeq \mathbb{Z}/p\mathbb{Z}$.
- 14. Montrer que si $g \in \mathfrak{S}_p$ vérifie $g\tau g^{-1} \in GA_1$ alors $g \in GA_1$.
- 15. En déduire que H est conjugué à un sous-groupe de GA_1 qui contient τ .
- 16. A conjugaison près, combien y a-t-il de sous-groupes résolubles transitifs de \mathfrak{S}_p ?
- 17. Montrer qu'un élément non trivial d'un sous-groupe résoluble transitif de \mathfrak{S}_p possède au plus un point fixe.