Exercice 1: (5 points)

Réaliser un algorithme permettant de calculer et afficher le plus petit entier naturel n pour lequel $2^n > 1073741824$.

Correction

n prend la valeur 0

tant que $2^n \le 1073741824$ faire

n prend la valeur n+1

fin tant que

Afficher n

Exercice 2: (5 points)

- 1. Calculer la dérivée f'(x) de la fonction $f(x) = \frac{4}{3}x^3 + 10x^2 + 24x + 100$
- 2. Décomposer f'(x) en un produit de facteurs de degré 1 et étudier son signe.
- 3. Montrer que la suite (u_n) définie pour tout entier naturel par $u_n = \frac{4}{3}n^3 + 10n^2 + 24n + 100$ est strictement croissante.

Correction

- 1. $f'(x) = 4x^2 + 20x + 24$ (1 pt)
- 2. f'(x) = 4(x+3)(x+2), en effet, $\Delta = 16$, $x_1 = \frac{-20-4}{8} = -3$, $x_2 = \frac{-20+4}{8} = -2$. (2 pts) f'(x) > 0 sur $|-\infty; -3[\cup] 2; +\infty[$, f'(x) < 0 sur |-3; -2[.(1 pt)
- 3. La fonction f est strictement croissante sur l'intervalle $[0; +\infty[$ donc la suite $(u_n = f(n))$ est strictement croissante. (1 pt)

Exercice 3: (7 points)

- **1.** Soit (u_n) une suite arithmétique telle que $u_3 = 2$ et $u_6 = 13$. Calculer la forme explicite de la suite (u_n) ainsi que u_{15} .
- 2. Calculer le 5ème terme de la suite géométrique de premier terme $v_0 = 3$ et de raison $\frac{1}{\sqrt{3}}$.
- 3. Démontrer que la suite(w_n) définie pour tout entier n par $w_n = 11(9)^n$ est géométrique et donner sa raison et son premier terme.
- 4. Démontrer que la suite (x_n) défine pour tout entier n > 0 par $x_n = \frac{1}{n^2}$ n'est ni arithmétique ni géométrique.

Correction

- 1. $u_6 u_3 = 11 = 3r \text{ d'où } r = \frac{11}{3}, u_n = u_3 + (n-3)r = 2 + (n-3)\frac{11}{3} \text{ (1 pt)}$ $u_{15} = 2 + (15-3)\frac{11}{3} = 2 + \frac{12 \times 11}{3} = 46 \text{ (1 pt)}$
- 2. $v_4 = v_0(\frac{1}{\sqrt{3}})^{(4-0)} = 3(\frac{1}{3})^2 = \frac{1}{3}$. (1 pt)
- 3. $w_{n+1} = 11(9)^{n+1} = 11(9)^n \times 9 = w_n \times 9$. (1 pt) La suite est bien géométrique de raison 9 et de premier terme $w_0 = 11$. (1 pt)
- 4. $x_1 = 1$, $x_2 = \frac{1}{4} = x_1 \frac{3}{4} = x_1 \times \frac{1}{4}$. $x_3 = \frac{1}{9} \neq -\frac{1}{2} = x_2 \frac{3}{4}$ et $x_3 \neq \frac{1}{16} = x_2 \times \frac{1}{4}$. Ainsi, (u_n) n'est ni arithmétique ni géométrique. (2 pts)

Exercice 4: (3 points)

Soit (u_n) la suite définie par récurrence par $u_0 = 3$ et pour tout entier n par $u_{n+1} = 2u_n + 5$. On admet que pour tout entier naturel n, $u_n > 0$.

- 1. Démontrer que le suite (u_n) est strictement croissante.
- 2. Trouver une forme explicite pour la suite (u_n) . On pourra introduire la suite auxiliaire $v_n = u_n + 5$.
- 1. $u_{n+1} u_n = u_n + 5 > 0$ pour tout entier naturel. (u_n) est donc strictement croissante. (1 pt)
- 2. $v_{n+1} = u_{n+1} + 5 = 2u_n + 5 + 5 = 2u_n + 10 = 2(u_n + 5) = 2v_n$. La suite (v_n) est géométrique de raison 2 et de premier terme $v_0 = u_0 + 5 = 8$. D'où $v_n = 8 \times 2^n$ et $u_n = 8 \times 2^n 5$. (2 pts)