微分方程数值解 项目作业 2

凌子恒 信息与计算科学 3200102551 2023 年 4 月 24 日

原理分析

利用 Jacobi 迭代法,迭代格式为 $x \leftarrow (1-w)x + wD^{-1}(L+U)x + wD^{-1}b$ 。 由理论作业结果,取 $w=\frac{2}{3}$ 。 由于矩阵是稀疏矩阵,只需存每行非零列标号和数值,使迭代一次复杂度降至 O(n)。 对于 Neumann 边值,由于矩阵奇异,将其中一条式子替换为在 0 处函数值为 0。

代码解释

定义 solution 类存放结果。

solution 类有两个构造函数,分别对应是否给定初值。

构造函数参数分别为二阶导数,边值,段数,迭代次数,精度要求,restriction 模式,interpolation 模式,cycles 模式,估计解(可选), v_1 (可选), v_2 (可选)。

其中边值函数返回类型为 unique ptr<function value> 或 unique ptr<derivative value>。

实现中,对于 (b),(c),(d) 的选项均以同一类的派生类形式给出,在构造函数中选择对应的模式。 V_{cycle} 和 FMG 的 v_1,v_2 均可设置,默认为 2。

(a)

代码见 1D.h 和 main.cpp,输出见 1.out,包含了 $e^{\sin x}$, $\sin(\pi x)$, $\frac{1}{x+1}$ 的测试。以 $e^{\sin x}$ 为例解释。以下是 Dirichlet 边值结果

n	32	64	128	256
000	43	46	48	50
001	16	15	15	15
010	41	44	46	48
011	14	13	13	12
100	45	48	50	53
101	19	19	18	18
110	42	45	47	50
111	15	14	14	14

其中左侧数字分别为是否为 injection, quadratic, FMG。右侧数字是迭代至 $\epsilon < 10^{-8}$ 所需次数。可以注意到, full_weighting, quadratic, FMG 效果较好。

接下来的表格为迭代 15 次后的误差表。可以注意到 15 次后已远小于 FD method 的系统误差 (error)。 随后是混合边值的结果,不重复叙述。

经过测试,对 $\epsilon > 2.2 \times 10^{-16}$,均给出了结果。

(b)

二维情况的代码见 2D.h。这里仅给出线性插值,不支持二次插值。

测速代码见 main2.cpp,输出见 2.out。运行作业 1 代码 n=64,运行时间 36299621000,而本代码在 $\epsilon=10^{-8}, n=256$ 下仅用时 837094500,n=64 时用时 29686500,速度超过千倍。

(c)

main.cpp 中将两个类统一作为特化的 IVP<1> 和 IVP<2> 的基类,实现了模板类。