Example

Make use of the fact that DP(x) provides a linear approximation of B(Z), when Z is close

to X.

Consider ZES++ Such that Z is close tox

$$\Rightarrow$$
 $Z = X + \Delta X$, where $\Delta x \rightarrow 0$

f(z) = f(x) + Df(x)(z-x)Good: Show that => DR(x) would be our derivative as Z -3 X $Z = X + \Delta X$ $= \left(X_{15} \left(\underline{Z} + X X X X X \right) X_{15} \right)$ log det (Z) = $\log \det \left(X^{2} \left(Z + X^{12} \Delta X X^{2} \right) X^{2} \right)$ $= \log \left(\det X^{12} \right) \left(\det \left(Z + X^{12} \Delta X X^{2} \right) X^{2} \right)$ = 109 [(get x,15) (get (I+ x,5)) (get x,5)] = 109 [det x 2. det x 2. det (I+ x 1/2 Dxx 1/2)] $= \log 96 + x + \log 96 + (z + x, \nabla x x_{1/5})$ I + X /2 X X = This has eigenvalue decomposition

N., 72, --, 20 are the eigenvalue of X LX X eigenvalus of (I+A) = 1+ eigenvalus (A) 14 y; is1, w on the Esternation of

7 /4 ys is 121, who are the Esternopes of = "[(+yi) $2(2) = 2(x) + \log(\pi(1+\lambda_i))$ $= \sharp(x) + \sum_{i=1}^{n} \lg(i+\lambda_i)$ Since Dx -> 0 => x/2 Dx x/2 -> 0 if of the O ← j, / × ← × A ← 109(1+a) 2 a for a very Smell $x \leftarrow z$ nodu $\int_{z_{i}}^{\infty} z_{i} = \sum_{j=1}^{N} z_{j}$ when $z \rightarrow x$ $\varphi(z) = \varphi(x) + \frac{\zeta}{\zeta}, \lambda; \quad as \ Z \rightarrow x$ Gilennopro of X DX X Z elsemolus of A = tr (A) = f(x) + f(x)tr(ABC) = tr(CAB)

$$\frac{d}{dx} = \frac{d}{dx} + \frac{d}{dx} \left(\frac{d}{dx} \frac{d}{dx} \right) = \frac{d}{dx} + \frac{d}{dx} \left(\frac{d}{dx} \frac{d}{dx} \frac{d}{dx} \right) = \frac{d}{dx} + \frac{d}{dx} \left(\frac{d}{dx} \frac{d}{dx} \frac{d}{dx} \frac{d}{dx} \right) = \frac{d}{dx} + \frac{d}{dx} \left(\frac{d}{dx} \frac{dx}{dx} \frac{d}{dx} \frac{d}{dx} \frac{d}{dx} \frac{d}{dx} \frac{d}{dx} \frac{d}{dx} \frac{d$$

Chain rule

The applies in higher dimensions also.

Scalar: h(u) = g(g(u)) h'(u) = g'(g(u)) g'(u)The second of the secon

= D&(AXX) - A

79(x) = A778(Ax4b)

Directional desirative of a function.
Let f: Rn → R , x ∈ Rn
Directional derivative along a rector $v \in \mathbb{R}^n$ is defined as follows:
detind as follows: 2(t) = 2(x+tv): R-IR
$\frac{1}{x} = \frac{1}{x} = \frac{1}$
$\xi'(t) = D\xi(x+ty) \cdot D(x+ty)$
~ (NJ+X) F =
Directional derivative of $f(x)$ in the direction V is defined as $f'(0) = \nabla f(x)^T V$
sect of change = 0
1 ? ~ \\ \tag{8,(n)}
Algorithms for unconstrained Optimization 4- R - R , Somt

Class Notes Page 5

min & (a)

min &(x) Assure the winimum value is attained by f(x). Défine $b_{x} = min f(x)$ An optimization algorithm is an iterative method that produces a Sequence of points x", x", __, & don't talt done 2(x(v)) → p* as K → ∞ In the can when arginin f(x) is unique (= xx) or New se tat sport all all and Suppose 7(.) is continuous \$(x(x)) -> \$(xx) = b Question: When to terminate the algorithm? may be; & (x(x)) - px & E for & Snoll => terminate Sue do not know by a not prooficel solution.

Search Direction -based Iterative Optimization Algorithms

PSuedo Code

Initialize: X(0) & your

 $K \leftarrow \mathcal{O}$

while Stopping criterian not soxistied
(w) (w) (w)
$X \leftarrow X + f(x)$
X ~ X+1
$\overline{90}$
ten E IR -> 8tep size > (learning rate in stochastic
ophinisetien metine
\\ \P_=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Ax -> Search direction at time &
x(le) => /terate
Main Challenge, OHour to bick IX
Main challenge: OHow to pick to g
@ How to fick to
·