CAPSTONE PROJECT

POWER SYSTEM FAULT DETECTION AND CLASSIFICATION

Presented By:

1.Donthireddy Sai Preethi - Mohan Babu University – CSE

OUTLINE

- Problem Statement
- Proposed System/Solution
- System Development Approach
- Algorithm & Deployment
- Result
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

The Challenge:

Design a machine learning model to detect and classify different types of faults in a power distribution system. Using electrical measurement data (e.g., voltage and current phasors), the model should be able to distinguish between normal operating conditions and various fault conditions (such as line-to-ground, line-to-line, or three-phase faults). The objective is to enable rapid and accurate fault identification, which is crucial for maintaining power grid stability and reliability.

PROPOSED SOLUTION

- The project aims to develop a machine learning model to detect and classify power system faults (e.g., short circuit, line-to-ground faults) using real-time power signal data. The solution includes:
- Data Collection: Using labeled datasets simulating various types of faults in electrical networks.
- Preprocessing: Normalization, noise reduction, and feature extraction from current and voltage signals.
- Model Training: Applying classification algorithms to learn fault signatures.
- Deployment: Hosting the model on IBM Cloud for scalable real-time predictions via a REST API or web interface.

SYSTEM APPROACH

The "System Approach" section outlines the overall strategy and methodology for developing and implementing the power fault detection. Here's a suggested structure for this section:

1. System requirements

- Platform: IBM Cloud
- Tools Used: IBM Watson Studio, IBM Cloud Object Storage
- Languages: Python

2. Library required to build the model

- Libraries: scikit-learn, pandas, NumPy, matplotlib
- Dataset: NSL-KDD / synthetic fault datasets (using Kaggle or simulated data)
- Model Type: Supervised learning (e.g., Decision Trees, Random Forest, SVM)

ALGORITHM & DEPLOYMENT

Algorithm Selection:

Random Forest Classifier - chosen for its robustness and ability to handle multi-class fault classification.

Inputs:

Voltage, current; temperatures; power; fault id; wind speed; weather condition; Maintenance Status; Component Health; Duration of Faults; Down time; fault type labels; fault location;

Training:

Data split into training and test sets; cross-validation applied

Deployment:

Preparing an online deployment space in IBM cloud and deploying it.

	Rank ↑	Name	Algorithm	Specialization	Accuracy (Optimized) Cross Validation	Enhancements	Build time
*	1	Pipeline 9	Batched Tree Ensemble Classifier (Random Forest Classifier)	INCR	0.409	HPO-1 FE HPO-2 BATCH	00:00:50
	2	Pipeline 8	• Random Forest Classifier		0.409	HPO-1 FE HPO-2	00:00:47
	3	Pipeline 4	O Snap Logistic Regression		0.393	HPO-1 FE HPO-2	00:00:34
	4	Pipeline 3	O Snap Logistic Regression		0.393	HPO-1 FE	00:00:30

deploy1 ● Deployed Onlin	deplo	by1	Deployed	Online
--------------------------	-------	-----	----------	--------

API reference

Test

Enter input data

Text

JSON

Enter data manually or use a CSV file to populate the spreadsheet. Max file size is 50 MB.

Download CSV template **丛**

Browse local files ↗

Search in space ↗

 lea	ra	II ×	

	.ible)	Wind Speed (km/h) (double)	Weather Condition (other)	Maintenance Status (other)	Component Health (other)	Duration of Fault (hrs) (double)	Down time (hrs) (double)
1		20	Clear	Scheduled	Normal	2	1
2							
3							
4							

1 row, 12 columns

Predict

CONCLUSION

- The ML model effectively classifies different power system faults in real time.
- IBM Cloud provided a scalable and reliable environment for hosting and serving the model.
- The approach reduced fault detection time significantly compared to manual/legacy systems.
- Limitations include reliance on simulated data and lack of real-time sensor inputs.

FUTURE SCOPE

- Incorporate real-time IoT sensor data from smart grids.
- Expand to include predictive maintenance for transformers and circuit breakers.
- Use deep learning models (e.g., LSTM, CNN) for waveform analysis.
- Integrate with edge devices for fault detection at the grid periphery.

REFERENCES

- NSL-KDD Dataset Kaggle
- Scikit-learn Documentation
- IBM Watson Studio & Cloud Docs
- Videos on power fault classification using ML

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Donthireddy Sai Preethi

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 19, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/4ab1c079-a646-4dda-84e9-630dc9c46fd4

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Donthireddy Sai Preethi

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 19, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/1af0c780-3e73-4bcc-bd33-553c40d6e206

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Donthireddy Sai Preethi

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 25 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

