PRACTICE TEST: II FOURIER TRANSFORM

mihirpimparade@gmail.com Switch account

* Required

Email *

Your email

2 points

Given that $\int_{0}^{\infty} \frac{\sin t}{t} dt = \frac{\pi}{2} t hen$ Fourier sine transform $F_s(\lambda)$, $f(x) = \frac{1}{x}$, x > 0, is given by

a) π

- b) π
- c) $\frac{\pi}{4}$

 $d)\frac{\pi}{2}$

New Roll Number

Your answer

If the Fourier integral representation of f(x) is

 $\frac{1}{\pi} \int\limits_0^\infty \frac{\cos \lambda x + \cos[\lambda(\pi-x)]}{1-\lambda^2} d\lambda = \begin{cases} \sin x \,, & 0 < x < \pi \\ 0 \,, & x < 0 \, and \, x > \pi \end{cases} \quad \text{then value of the integral } \int\limits_0^\infty \frac{\cos \frac{\lambda \pi}{2}}{1-\lambda^2} d\lambda \text{ is } d\lambda = \int\limits_0^\infty \frac{\cos \lambda x + \cos[\lambda(\pi-x)]}{1-\lambda^2} d\lambda = \int\limits_0^\infty \frac{\cos \lambda x + \cos[\lambda(\pi-x)]$

- a) $\frac{\pi}{4}$ b) 1 c) 0
- d) $\frac{\pi}{2}$

Division *

Your answer

Untitled Question 2 points

. Find the Fourier Transform $F(\lambda)$ of $f(x) = \begin{cases} 1, & |x| < a \\ 0, & |x| > a \end{cases}$ is

- a) $\frac{2\sin\lambda a}{\lambda}$ b) $\frac{e^{-i\lambda a}}{\lambda}$ c) $\frac{e^{i\lambda a}}{\lambda}$ d) $\frac{2\cos\lambda a}{\lambda}$

2 points

The Fourier cosine transform $F_c(\lambda)$ of $f(x) = e^{-|x|} - \infty < x < \infty$ is a) $\frac{\lambda}{1+\lambda^2}$ b) $\frac{1}{1+\lambda^2}$ c) $\frac{1}{1-\lambda^2}$ d) $\frac{-1}{1+\lambda^2}$

The Fourier Transform $F(\lambda) \underbrace{\text{of f}(x)}_{0, x < 0} = \begin{cases} x^2, x > 0 \\ 0, x < 0 \end{cases}$ is

- a) $-\frac{2i}{\lambda^3}$ b) $\frac{1}{i\lambda^3}$ c) $\frac{2i}{\lambda^3}$
- d) $-\frac{1}{i\lambda^3}$

Name of the student *

Your answer

2 points

Given that $F_s(\lambda) = \int_0^\infty u^{m-1} sin\lambda u du = \frac{\Gamma(m)}{\lambda^m} sin\frac{\pi m}{2} is$,

Then the Fourier sine transform $F_s(\lambda)$ of $f(x) = x^2 x > 0$ is given by

- a) $-\frac{2}{\lambda^3}$ b) $\frac{2}{\lambda^3}$ c) $\frac{3}{\lambda^2}$ d) $-\frac{3}{\lambda^2}$

The Fourier Transform $F(\lambda)$ of $f(x) = e^{-|x|}$ is Given by

- a) $\frac{1}{1+\lambda^2}$ b) $\frac{1}{1-\lambda^2}$ c) $\frac{2}{1-\lambda^2}$ d) $\frac{2}{1+\lambda^2}$

2 points

.In the Fourier integral representation of

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\frac{e^{-i\lambda x} + 1}{1 - \lambda^2} \right) e^{i\lambda x} d\lambda = \begin{cases} \sin x, & 0 < x < \pi \\ 0, & x < 0 \text{ and } x > \pi \end{cases}, F(\lambda) \text{ is }$$

$$\frac{1+\lambda^2}{1-i\lambda}$$

b)
$$\frac{e^{-i\lambda}}{1-\lambda^2}$$

$$\frac{e^{-i\lambda}}{\mathsf{b})} \frac{e^{-i\lambda\pi}}{1-\lambda^2} \qquad \frac{\sin \lambda}{\mathsf{c})} \frac{\sin \lambda}{1-\lambda^2}$$

$$\frac{\sin \lambda}{1 - \lambda^2}$$

. The Fourier cosine transform $\frac{4}{\pi} \int_0^\infty \frac{1-\cos u}{u^2} \cos \lambda u du = \begin{cases} (1-\lambda), & 0 < \lambda < 1 \\ 0, & \lambda > 1 \end{cases}$ is,

then the value of the integral $\int_0^\infty \frac{\sin^2 z}{z^2}$ is

a) 1

b) $\frac{\pi}{2}$

c)0

 $d)\frac{\pi}{4}$

2 points

)For the Fourier sine integral representation

$$\frac{6}{\pi}\int_{0}^{\infty}\frac{\lambda sin\lambda x}{(1+\lambda^{2})(1+\lambda^{4})}d\lambda=e^{-x}-e^{-2x}, x>0, F_{s}(\lambda)is,$$

a)
$$\frac{(\lambda^2+1)(\lambda^2+4)}{3\lambda}$$

b)
$$\frac{\lambda}{(1+\lambda^2)(1+\lambda^4)}$$

c)
$$\frac{3\lambda}{(1+\lambda^2)(1+\lambda^4)}$$

a)
$$\frac{(\lambda^2+1)(\lambda^2+4)}{3\lambda}$$
 b) $\frac{\lambda}{(1+\lambda^2)(1+\lambda^4)}$ c) $\frac{3\lambda}{(1+\lambda^2)(1+\lambda^4)}$ d) $\frac{\lambda sin\lambda x}{(1+\lambda^2)(1+\lambda^4)}$

Submit Clear form

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Google Forms