

DNA MeTase gene:



FIGURE 1

FIGURE 2





FIGURE 3A



FIGURE 3B



FIGURE 4

**Day 3**

**Post treatment**



**Day 5**

**Post treatment**



**Day 7**

**Post treatment**



FIGURE 5



FIGURE 6



FIGURE 7



FIGURE 8



FIGURE 9A

FIGURE 9B







FIGURE 10A



FIGURE 10B



FIGURE 11

**Figure 12**

**p16 reactivation in T24 cells by 5-aza-deoxycytidine treatment**



T24 cells were plated and treated for three days with varying concentrations of 5aza-dC. The p16 protein was immunoprecipitated from celllysates and a Western analysis was performed.

**Figure 13**

**Synergistic reactivation of p16 in T24 cells by treatment with antisense to DNA methyltransferase (MG88) and 5-aza-deoxycytidine.**



T24 cells were plated and transfected with either MG88 or MG208 and treated with varying concentrations of 5-aza-dC every day for three days. The p16 protein was immunoprecipitated from cell lysates and a Western analysis was performed.

**Figure 14**

**Synergistic reactivation of p16 in T24 cells by treatment with antisense to DNA methyltransferase (MG98)and 5-aza-deoxycytidine.**



T24 cells were plated and transfected with either MG98 or MG207 and treated with varying concentrations of 5-aza-dC every day for three days. The p16 protein was immunoprecipitated from cell lysates and a Western analysis was performed.

**Figure 15**

**Synergistic reactivation of p16 in T24 cells by treatment with low dose antisense to DNA methyltransferase (MG88) and 5-aza-deoxycytidine.**



T24 cells were plated and transfected with either MG88 or MG 208 and treated with varying concentrations of 5-aza-dC every day for three days. The p16 protein was immunoprecipitated from cell lysates and a Western analysis was performed.

Synergistic Inhibition of T24 Cell Growth by treatment with antisense to DNA methyltransferase (MG98) and 5-aza-dC.



FIGURE 16

Synergistic Inhibition of Cell Growth by Treatment with MG 98 and 5-Aza-deoxycytidine



FIGURE 17

**Synergistic Inhibition of A549 cell growth by treatment with antisense to DNA methyltransferase (MG98) and 5-aza-dC.**



FIGURE 18

*In vivo* Synergistic Antitumor Activity of Antisense to Human DNA Methyltransferase (MG98) Combined with a Small Molecule in Human Colon Cancer Model Colo 205.



FIGURE 19

Combination of MG98 and 5-aza-deoxycytosine on growth  
of Colo205 tumors in nude mice



FIGURE 20A

*In vivo* Synergistic Antitumor Activity of Antisense to Human DNA Methyltransferase (MG98) Combined with 5-aza-2-deoxycytidine in Human Colon Cancer Model Colo 205.



**Fig. 7 . Antitumor activity of combination of MG98 and 5-aza-2-deoxycytidine.** Groups are: Saline control, MG98 (0.5 mg/kg/day), 5-aza-2-deoxycytidine (0.1 mg/kg/day), MG98 (0.5 mg/kg/day) and 5-aza-2-deoxycytidine (0.1 mg/kg/day). Groups consisted of six animals each. Error bars represent SEM. Group MG98/5-aza-dC was statistically different ( $p<0.05$ ) from both saline treated group and from 5-aza-dC treated group. Group MG98 was not significantly different than saline control group.

# Schedule Independent Inhibition of Cell Cycle Progression by Combination of DNA MeTase Antisense inhibitor (MG88) and DNA MeTase Small Molecule Inhibitor (5-aza-dC).

Schedule A: DNA MeTase Antisense Inhibitor (MG88) followed by Small Molecule Inhibitor (5-aza-dC)



Schedule B: Small Molecule Inhibitor (5-aza-dC) followed by DNA MeTase Antisense Inhibitor (MG88)



FIGURE 21

Figure 22





Lipofectin

Mismatch Control

TS Antisense (25nM)

5-FU (500nM)

5-FU (500nM) +  
Mismatch (25nM)

5-FU (500nM) +  
TS Antisense (25nM)

Figure 23

# Cell cycle analysis of cells treated with TS antisense oligo (25nM) and 5-FU (5 $\mu$ M)



FIGURE 24A  
Effect of TS antisense oligo on cell cycle distribution in vitro. Treatment with 5-FU (5 $\mu$ M) for 24 h resulted in a significant increase in the G2/M population in all cell lines. Treatment with TS antisense oligo (25nM) for 24 h resulted in a significant decrease in the G2/M population in all cell lines except MG2605.

Cell number after treatment with TS antisense oligo  
(25nM) and 5-FU (5uM)



FIGURE 24B

# Synergistic Induction of p21WAF1/CIP by Combination of HDAC Antisense and TSA



FIGURE 25.