Federal State Autonomous Educational Institution of Higher Education "NATIONAL RESEARCH UNIVERSITY "HIGH SCHOOL OF ECONOMICS"

Faculty of Software Engineering

HW №1

duration_3

MATHEMATICAL STATISTICS

Completed by:

Student group 197, software
engineering
Yanal Yahya

Full Name

NOTE: ALL OPERSTIONS WAS CALCULATED FIRSTLY IN THIS EXCEL FILE

	22 24
--	-------

a)

as an input we have only this data and we need to calculate the 90% confidence interval for the medium duration. Because of the distribution of the trait is normal and unknown variance, so we can use this confidence interval for medium with confidence level $(1-\alpha)$:

$$\bar{X} - t_{n-1,\frac{\alpha}{2}} \frac{\widehat{\sigma}}{\sqrt{n}} < \mu < \bar{X} + t_{n-1,\frac{\alpha}{2}} \frac{\widehat{\sigma}}{\sqrt{n}}$$

As we know in this case calculate \bar{X} and $\hat{\sigma}$ is easy, and we can do it using these formals:

$$\bar{X} = \frac{X_1 + X_{2^+} \cdots + x_n}{n}$$

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=0}^{n} (X_i - \bar{X})^2$$

And it was calculated in excel file, and the results are:

$$\bar{X} = 26.31818$$

$$\hat{\sigma} = 17.80686$$

And the value of $t_{n-1,\frac{\alpha}{2}}$ we can get it from Student's t-distribution table or using Excel:

$$t_{21,0.05} = 1.721$$

As a result, we get all the unknown variables, which are necessary to get the interval, so let's compensate variables into inequality:

$$26.31818 - 1.721 \frac{17.80686}{\sqrt{22}} < \mu < 26.31818 + 1.721 \frac{17.80686}{\sqrt{22}}$$

Answer: $19.78452 < \mu < 32.85185$

- b) For plotting a quantile-quantile plot we do these 4 steps:
 - 1. We estimate the parameters of the normal distribution for the sample:

$$\bar{X}$$
 and $\hat{\sigma}^2$

We already have its values.

2. Calculating sample order quantiles $\frac{1}{n+1}$, $\frac{2}{n+1}$, ..., $\frac{n}{n+1}$ These will just be ascending order of base data X_1 , ..., X_n

$$\widehat{Q}\left(\frac{1}{n+1}\right) = X_1, \dots, \widehat{Q}\left(\frac{n}{n+1}\right) = X_n$$

3. calculate the quantiles of the normal distribution with the parameters

$$\mu = \bar{X} \text{ and } \sigma^2 = \hat{\sigma}^2$$

$$Q\left(\frac{1}{n+1}\right) = \bar{X} + \hat{\sigma}\Phi^{-1}\left(\frac{1}{n+1}\right), \dots, Q\left(\frac{n}{n+1}\right) = \bar{X} + \hat{\sigma}\Phi^{-1}\left(\frac{n}{n+1}\right),$$

4. build a graph in axes (Q, \widehat{Q}) - for sample from the normal distribution should be $Q(p) \approx \widehat{Q}(p)$ (the graph is built along the bisector of the angle formed by the axes).

By applying all these steps and putting results into a table we get:

		_			_
№	р	$\widehat{Q}(p)$	$\Phi^{-1}(p)$,	Q(p)	$\widehat{Q}(p)$
1	0.0434783	9	-1.711675	-4.161388	9
2	0.0869565	15	-1.359737	2.1055228	15
3	0.1304348	16	-1.124338	6.2972435	16
4	0.173913	16	-0.938814	9.6008427	16
5	0.2173913	17	-0.781034	12.410419	17
6	0.2608696	19	-0.640667	14.909913	19
7	0.3043478	20	-0.511936	17.202203	20
8	0.3478261	20	-0.391196	19.352203	20
9	0.3913043	21	-0.275921	21.404893	21
10	0.4347826	22	-0.164211	23.394103	22
11	0.4782609	22	-0.054519	25.347371	22
12	0.5217391	22	0.0545189	27.288993	22
13	0.5652174	23	0.1642108	29.242261	23
14	0.6086957	24	0.2759211	31.231471	24
15	0.6521739	24	0.3911963	33.28416	24
16	0.6956522	24	0.5119362	35.434161	24
17	0.7391304	24	0.6406669	37.72645	24
18	0.7826087	25	0.7810338	40.225945	25
19	0.826087	25	0.9388143	43.035521	25
20	0.8695652	41	1.1243382	46.33912	41
21	0.9130435	56	1.3597374	50.530841	56
22	0.9565217	94	1.7116753	56.797752	94

And using Excel we can plot a Q-Q plot for the last two columns, so we get:

We can see in our Q-Q plot above that the data values tend to deviate from the 45-degree line, especially on the tail ends, which could be an indication that the data set is not normally distributed.

c) For this purpose a C# script was written, you can take a look on it by going through this <u>link</u>, and to see the result of this script, you can go through this <u>link</u>.

This script gives 1000 averages of 1000 re-selections, each containing 22 random selections from the random sample.

And in Excel file, these 1000 averages were ascending sorted, then was found:

$$\hat{Q}(\alpha/2) = \hat{Q}(0.1/2) = \hat{Q}(0.05)$$

= number located on the 50th place after sorting = 21

$$\hat{Q}(1 - \alpha/2) = \hat{Q}(1 - 0.1/2) = \hat{Q}(0.95)$$

= number located on the 950th place after sorting = 32.45455

 \Rightarrow

We can note that, finding confidence interval for medium duration using this method gives more accurate interval then the method in the first bunk.

d) Using Excel and these 1000 averages we can build this histogram, so we get:

Actually, it's closer to exponential distribution, and by taking bigger sample it will become close to normal distribution.