PCT/JP 2004/016077

日本国特許庁 JAPAN PATENT OFFICE 22.10.2004

REC'D 1 1 NOV 2004

WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年10月29日

出 願 番 号 Application Number:

特願2003-368714

[ST. 10/C]:

[JP2003-368714]

出 願 人
Applicant(s):

. 住友電気工業株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年10月13日

特許庁長官 Commissioner, Japan Patent Office 1) 11

特許願 【書類名】 103I0236 【整理番号】 平成15年10月29日 【提出日】 特許庁長官 殿 【あて先】 CO4B 35/58 102 【国際特許分類】 CO4B 35/52 CO4B 35/56 【発明者】 兵庫県伊丹市昆陽北一丁目1番1号 住友電気工業株式会社伊丹 【住所又は居所】 製作所内 上野 友之 【氏名】 【発明者】 兵庫県伊丹市昆陽北一丁目1番1号 住友電気工業株式会社伊丹 【住所又は居所】 製作所内 吉村 雅司 【氏名】

【特許出願人】

000002130 【識別番号】

住友電気工業株式会社 【氏名又は名称】

【代理人】

100116713 【識別番号】

【弁理士】

酒井 正己 【氏名又は名称】

【選任した代理人】

【識別番号】 100078994

【弁理士】

小松 秀岳 【氏名又は名称】

【選任した代理人】

100094709 【識別番号】

【弁理士】

加々美 紀雄 【氏名又は名称】

【選任した代理人】

【識別番号】 100117145

【弁理士】

小松 純 【氏名又は名称】

【手数料の表示】

【予納台帳番号】 165251 21,000円 【納付金額】

【提出物件の目録】

特許請求の範囲 1 【物件名】

明細書 1 【物件名】 要約書 1 【物件名】 【包括委任状番号】 0107279

【書類名】特許請求の範囲

【請求項1】

平均結晶粒径が 3 μ m以下の、炭素を主成分とする相とセラミックス相(但し、炭素を 除く)とからなることを特徴とするセラミックス複合材料。

【請求項2】

上記炭素を主成分とする相の含有量が2~98wt%であることを特徴とする請求項1 記載のセラミックス複合材料。

【請求項3】

研磨後表面のオープンポア率が1%以下であることを特徴とする請求項1又は2記載の セラミックス複合材料。

【請求項4】

セラミックス相がAl, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo、Wの 窒化物、炭化物、酸化物、複合窒化物、複合炭化物、複合酸化物、炭窒化物、酸窒化物、 炭窒酸化物及び炭酸化物よりなる群から選ばれる少なくとも1種により構成されることを 特徴とする請求項1~3のいずれかに記載のセラミックス複合材料。

【請求項5】

平均粒径が 3 μ m以下の、セラミックス粉末(但し、炭素粉末を除く)と炭素粉末との 混合粉末を成形し、得られた成形体を非酸化性雰囲気中で、焼結温度800~1500℃ 、焼結圧力200MPa以上で焼結することを特徴とする、平均結晶粒径3μm以下の、 炭素を主成分とする相とセラミックス相とからなるセラミックス複合材料の製造方法。

【請求項6】

前記セラミックス粉末が、Al, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, M o、Wの窒化物、炭化物、酸化物、複合窒化物、複合炭化物、複合酸化物、炭窒化物、酸 窒化物、炭窒酸化物及び炭酸化物よりなる群から選ばれる少なくとも1種であることを特 徴とする請求項5記載の平均結晶粒径3μm以下の、炭素を主成分とする相とセラミック ス相とからなるセラミックス複合材料の製造方法。

【請求項7】

混合粉末が更にAl,Si,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,Wから 選ばれる少なくとも1種の金属を含むことを特徴とする請求項5または6記載の平均結晶 粒径 3 μ m以下の、炭素を主成分とする相と、セラミックス相とからなるセラミックス複 合材料の製造方法。

【魯類名】明細書

【発明の名称】セラミックス複合材料およびその製造方法

【技術分野】

[0001]

本発明は、各種構造部材や切削工具、摺動部材、モールド型材料等に使用される高耐摩 耗・低摩擦のセラミック材料として、室温から中低温領域で優れた機械的特性を有するセ ラミックス複合材料及びその製造方法に関する。

【背景技術】

[0002]

従来、窒化ケイ素等のセラミックス材料にC等の固体潤滑性粒子を分散させ、摩擦係数 や比摩耗量を改善した材料が知られている。

例えば、特許文献 1 には窒化ケイ素と窒化チタンならびに 0.5~20 w t %のグラフ ァイト,カーボンの複合材料により、摩擦特性や耐摩耗特性に優れた材料が報告されてい る。しかし、特許文献1に記載の条件で粉末の焼結を試みた結果、SEMを用いて200 0倍で観察を行ったところオープンポア率が3%以上と大きく直径20μm以上のポアが 多数観察され、型として使用することは不可能であることが判明した。

[0.003]

また、特許文献2にはアルミナ、およびジルコニアの粉末に耐酸化性合金としてC、C r, Mo, W, Al, Ti, Niを05~6wt%含有する高靭性材料が報告されている が、Cの含有量が0. $1\sim0$. 2 w t %と少なく、型としての潤滑性に欠ける。

[0004]

そして、特許文献3には炭化ケイ素に粒径5μm以上の炭素を2~50wt%添加した 材料が耐摩耗性に優れると報告されており、特許文献4には炭化チタンマトリックス中に 平均結晶粒径 $3\sim6~\mu$ mのグラファイトを $3\sim3~0~w$ t %分散した材料が報告されている 。しかし、炭素の平均結晶粒径が3μm以上と大きく、所望の形状に加工した際に表面粗 さが粒径の影響を受け、平均面粗さ10 nm以下の鏡面形状を得ることが困難である。

[0005]

さらに、特許文献 5 には非酸化物系セラミックスにグラファイト, BNを分散させ境界 層に鉄の化合物(酸化物,ケイ化物等)を介在させた材料が報告されているが、鉄を含有 するために酸化による劣化や、高温での安定性に欠ける等、型材としての使用には適さな 130

[0006]

【特許文献1】特開2003-34580号公報

【特許文献2】特開昭60-100646号公報

【特許文献3】特開平09-87029号公報

【特許文献4】特開平05-301773号公報

【特許文献5】特開平10-231174号公報

【発明の開示】

【発明が解決しようとする課題】

[0007]

本発明は、上記の事情に鑑み、室温から中高温域で優れた機械的特性を有する他、ガラ ス,樹脂,セラミックス等との高い離型性を有するセラミックス複合材料及びその製造方 法を提供するものである。

【課題を解決するための手段】

[0008]

本発明者等は、検討を重ねた結果、炭素を主成分とする相を含有するセラミックス複合 材料において、該セラミックス複合材料の平均結晶粒径を3μm以下とすることにより上 記課題を解決することができることを見いだして本発明を完成したものである。

すなわち、本発明は次の構成を有する。

[0009]

- (1) 平均結晶粒径が3μm以下の、炭素を主成分とする相とセラミックス相(但し、炭素を除く)とからなることを特徴とするセラミックス複合材料。
- (2) 上記炭素を主成分とする相の含有量が2~98wt%であることを特徴とする上記
- (1) のセラミックス複合材料。
- (3) 研磨後表面のオープンポア率が1%以下であることを特徴とする上記(1)、(2) のセラミックス複合材料。
- (4) セラミックス相がAl, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo、Wの窒化物、炭化物、酸化物、複合窒化物、複合炭化物、複合酸化物、炭窒化物、酸窒化物、炭窒酸化物及び炭酸化物よりなる群から選ばれる少なくとも1種により構成されることを特徴とする上記(1)~(3)のセラミックス複合材料。
- (5) 平均粒径が3μm以下の、セラミックス粉末(但し、炭素粉末を除く)と炭素粉末との混合粉末を成形し、得られた成形体を非酸化性雰囲気中で、焼結温度800~1500、焼結圧力200MPa以上で焼結することを特徴とする、平均結晶粒径3μm以下の、炭素を主成分とする相とセラミックス相とからなるセラミックス複合材料の製造方法
- (6) 前記セラミックス粉末が、A1, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo、Wの窒化物、炭化物、酸化物、複合窒化物、複合炭化物、複合酸化物、炭窒化物、酸窒化物、炭窒酸化物及び炭酸化物よりなる群から選ばれる少なくとも1種であることを特徴とする請求項5記載の平均結晶粒径3μm以下の、炭素を主成分とする相とセラミックス相とからなるセラミックス複合材料の製造方法。
- (7) 混合粉末が更にAl, Si, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W から選ばれる少なくとも1種の金属を含むことを特徴とする上記(5)、(6)の平均結晶粒径 3μ m以下の炭素を主成分とする相と、セラミックス相とからなるセラミックス複合材料の製造方法。

【発明の効果】

[0010]

本発明のセラミックス複合材料は、耐摩耗性、低摩擦性に優れると共に、ガラス、樹脂 、セラミックスに対する高い離型性を有するという効果を奏する。

【発明を実施するための最良の形態】

[0011]

本発明は平均結晶粒径 3μ m以下の、炭素を主成分とする相とセラミックス相とからなることを特徴とするセラミックス複合材料である。このセラミックス複合材料の内、炭素を主成分とする相がガラス、樹脂、セラミックス等と高い離型性を示す。セラミックス複合材料の相の平均結晶粒径が 3μ mを超える場合は、所望の形状に加工した際に平均面粗さが大きく鏡面形状を得ることが出来ない。

[0012]

また、本発明における炭素とは構成物質が炭素からなるものであればよく、例えば、グラファイト(C),グラッシーカーボン(G C),ダイヤモンド,カーボンナノチューブ (CNT),フラーレン(C60)等から適宜選択することができる。炭素の含有量は $2\sim9.8~{\rm w}~{\rm t}~{\rm w}$ %であることが望ましく、この含有量より少ない場合は離型性が低下するため好ましくなく、この含有量より多い場合は焼結しないため同様に好ましくない。この炭素の含有量は $3.0~{\rm w}~{\rm t}~{\rm w}$ であることが好ましく、 $4.0~{\rm t}~{\rm w}$ であることが特に好ましい。炭素含有量がこの数値範囲にあれば、ガラス,樹脂,セラミックス等との離型性が一層向上する。

[0013]

本発明のセラミックス複合材料におけるセラミックス相は、A1,Si,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,Wの窒化物、炭化物及び酸化物よりなる群から選ばれる少なくとも1種によって形成されることが望ましい。また、セラミックス相は上記金属の複合窒化物、複合炭化物、複合酸化物であってもよく、また上記金属の炭窒化物、酸窒化物、炭窒酸化物、炭酸化物であってもよい。セラミックス相は成形される相手材によ

[0014]

本発明のセラミックス複合材料は、平均粒径 3μ m以下の、A 1, S i, T i, Z r, H f, V, N b, T a, C r, M o, W o 空化物、炭化物及び酸化物の少なくとも 1 種類のセラミックス粉末と炭素粉末との混合粉末を成形し、得られた成形体を非酸化性雰囲気中で、焼結温度 $800 \sim 1500$ ℃、焼結圧力 200 M P a 以上で焼結することによって得られる。非酸化性雰囲気としては、真空雰囲気又は H_2 、N 2 、A r 等の不活性ガス雰囲気を選択することができるが、真空雰囲気が好ましい。また、上記混合粉末は更にA 1, S i, T i, Z r, H f, V, N b, T a, C r, M o, W o から選ばれる少なくとも 1 種の金属を含んでいてもよい。これらの金属は混合粉末中の炭素と反応して炭化物を形成するか、又は、非酸化性雰囲気が N_2 であれば、 N_2 と反応して窒化物を形成する。また、一部は混合中にメカノケミカル反応により炭化物か窒化物等を形成する場合もある。

[0015]

焼結温度が800℃未満の場合は、焼結反応が促進されずにセラミックス複合材料を得ることが困難となる。また、1500℃を超える場合は、焼結反応が促進され過ぎて粒径が粗大化し機械的特性が低下する。焼結温度は1000~1400℃が特に好適である。更に、焼結圧力が200MPa未満の場合は、焼結反応が促進されずにセラミックス複合材料を得ることができない。好適な圧力は、500MPa以上である。

[0016]

次に実施例を挙げて本発明を詳細に説明する。

実施例において用いた測定方法は次の通りである。

(1) 粉末の平均粒径の測定

TEM (透過電子顕微鏡:日立製 H-9000UHRIII) を用いた。

TEMで得られた画像の任意のエリア内から、無作為に100個の粉末粒子を抜き取り 、粒径を測定して、その平均を平均粉末粒径とした。

(2) 平均結晶粒径の測定

TEM (透過電子顕微鏡:日立製 H-9000UHRIII) を用いた。

TEMで得られた画像の任意の場所において、粒子50個分を通る直線を引き、その長さを粒子数で割ることにより粒子径を求めた。この作業を任意の場所5個所で行い、その平均を平均結晶粒子径とした。

(3) オープンポア率の測定

水銀ポロシメータ(島津製作所製 9420)を用いた。

ポアに水銀を圧入し、圧入された水銀の容積から細孔容積、細孔径を計算する。

(4) 曲げ強度の測定

万能材料試験機(インストロン製 5585)を用いた。

3点曲げ試験のデータを [JIS R 1601] に準じて計算する。

【実施例1】

[0017]

市販の平均粒径 0.5μ mの Si_3N_4 粉末に、焼結助剤として 2.5wt %の Y_2O_3 粉末と 1wt %の Al_2O_3 粉末を加え、更に平均粒径 1μ mの金属 Zr 粉末を 20wt %、平均粒径 5μ mのグラファイト粉末を 40wt %添加した粉末を 0.1MPa の窒素雰囲気中において、 Si_3N_4 製ボールを用いたボールミル装置により加速度 10G で混合を行った。

[0018]

得られた二次複合粒子粉末をXRDにて定性分析を行ったところ、Si3N4, ZrN, ZrCN、ZrCDびCのピークを確認することができた。また、この二次複合粒子粉末を透過電子顕微鏡で観察した結果、平均粒径は 3μ m以下であった。

[0019]

次に上記のようにして得られた二次複合粒子粉末を用いて、表1に示す条件で真空雰囲 気中で焼結してセラミックス複合材料を得た。この際の温度測定は、ダイス表面の温度を 二色温度計で測定した。

[0020]

【表1】

焼結時に採用した温度・圧力条件					
焼結温度	焼結圧力				
800°C	200MPa				
1150°C	500MPa				
1500°C	1000MPa				
1700°C*	5000MPa				

*:比較例

[0021]

得られたセラミックス複合材料に対して研削、ラッピング処理を施した後、透過型電子 顕微鏡を用いて各セラミックス複合材料につき任意の10箇所について平均結晶粒径の測 定を実施した。また、水銀ポロシメーターを用いてオープンポア率の測定を実施した。以 上の結果を表2に示す。

[0022]

【表2】

			焼結圧力(MPa)								
	Ì	20	0	500		100	1000		00		
		平均結晶 粒径 (μm)	オープン ポア卒 (%)	平均結晶 粒径 (μm)	オープン ポア率 (%)	平均結晶 粒径 (µm)	オープン ポア率 (%)	平均結晶 粒径 (μm)	オープン ポア率 (%)		
т			0.7%	1.8	0.6	1.4	0.4	1	0.3		
##X -	800	2.1	0.5%	2.1	0.4	1.7	0.2	1.2	0.2		
無結温度 (°C)	1150	2.4			0.2	2	0.1	1.4	0.1		
雑や	1500	2.8	0.4%	2.4				5.5	1.9		
- FEX	1700*	8.5	3.2%	6.9	2.7	5.7	2.1	J.0.0	1		

*:比較例

[0023]

表 2 の結果より、焼結温度 8 0 0~1 5 0 0℃,焼結圧力 2 0 0~5 0 0 0 M P a の条 件を用いて得たセラミックス複合材料の平均結晶粒径は3μm以下であることが判明した 。焼結温度が1700℃になると粒成長が著しく促進されて平均結晶粒径が3μmより大 きくなり、セラミックス複合材料表面のラップ研磨面の面粗さが所望の精度を保つことが できなかった。

表2の結果より、上記焼結条件を用いた焼結体のオープンポア率は1%未満と良好であ ることが判明した。オープンポア率が1%より大きくなると、例えばガラス成形型として 使用した場合に、ガラスがポア部分に入り込み離型性や転写面に突起が発生する等の問題 が発生する。

【実施例2】

[0024]

市販の平均粒径 0.5μ mの Si_3N_4 粉末に、焼結助剤として 2.5wt %の Y_2O_3 粉末と 1wt %の Al_2O_3 粉末を加え、更に平均粒径 1μ mの金属 Zr 粉末を 2Owt %を加えた後に、平均粒径 5μ mのグラファイト粉末を表 3 に示す割合を加えて混合した粉末を、0.1MP aの窒素雰囲気中において、 Si_3N_4 製ポールを用いたボールミル装置により加速度 1OG で混合を行った。

【0025】 【表3】

試験No.	焼結粉末中に添加した グラファイト量(wt%)
2-1*	1
2-2	2
2-3	20
2-4	40
2-5	70
2-6	98
2-7*	99

*:比較例

[0026]

得られた二次複合粒子粉末をXRDにて定性分析を行ったところ、 Si_3N_4 , ZrN, ZrCN、ZrCDびCのピークを確認することができた。また、この二次複合粒子粉末を透過電子顕微鏡で観察した結果、平均粒径は 3μ m以下であった。

[0027]

次に前記二次複合粒子粉末を用いて、焼結温度1150℃/焼結圧力1000MPaの条件で真空雰囲気中で焼結してセラミックス複合材料を得た。温度測定は、ダイス表面の温度を二色温度計で測定した。

[0028]

得られたセラミックス複合材料に対して研削、ラッピング処理を施した後、平均結晶粒径,オープンポア率,曲げ強度評価を実施した。また、光学ガラスを型成形した際の転写精度と離型性を確認するために、Hellma社製Pyrexガラスを用いて評価を行った。評価方法は、 ϕ 20mmに切り出したのち表面ラップ研磨を施した本セラミックス複合材料で、 ϕ 18mmの上記Pyrexガラスを成形温度720℃,成形圧力10MPa条件で60秒プレスした。100回の成形試験を行い、成形後のPyrexガラスに欠け,割れ,くもりがなく、面粗さの転写精度が95%以上を良好とした。全数良好なら離型性100%と定義する。以上の結果を表4へ示す。

[0029]

【表4】

試験No.	グラファイト量 (wt%)	オープンポア率 (%)	平均粒径 (μm)	曲げ強度	Pyrexがうスの 離型性(%)
2-1*	1	2.3	4.7	1120	18
2-2	2	0.8	2.8	1100	59
2-3	20	0.3	2.1	918	97
2-4	40	0.2	1.7	717	100
2-5	70	0.3	1.9	414	100
2-6	98	0.9	2.6	112	91
2-7*	99	焼結せず	焼結せず	焼結せず	焼結せず

Pyrexがうえの:720℃/10MPaの加圧条件で、60secプレスした。

テスト回数n=100 離型性試験

[0030]

表4の結果より、グラファイト含有量2~98wt%のセラミックス複合材料の場合、 オープンポア率1%未満、平均結晶粒径3μm以下を満たした。更にРугехガラスと の離型性もグラファイト含有率20~98wt%では90%以上と非常に良好であり、含 有率2%でも離型性が60%に近く、型として十分使用できる結果が得られた。またグラ ファイト含有量1wt%の場合は、離型性が非常に悪化した。またグラファイト含有量9 0 w t %を超えると焼結が困難となり、含有量 9 8 w t %では数回に1回は焼結体を製造 できるが、含有量99wt%を超えると全く焼結体を得ることが不可能となる。

【実施例3】

[0031]

表 5 に示すように 4 0 w t % の平均粒径 0 . 5 μ mのセラミックス粉末(1)と、平均粒 径0.5μmの20wt%のセラミックス粉末(2)と、残部の平均粒径5μm以下のカー ボン粉末と、必要に応じて加える焼結助剤とを表5に示す組成で配合し、ボールミルを用 いて加速度10Gで混合し、混合粉末を得た。

[0032]

【表5】

試験No.	セラミックス粉末(1)	セラミックス粉末(2)	カーボン	焼結助剤
3-1	SiC	ZrCN	С	2.5wt%Y ₂ O ₃ +1wt%Al ₂ O ₃
3-2	Si ₃ N ₄	TiCN	GC	2.5wt%Y ₂ O ₃ +1wt%Al ₂ O ₃
3-3	AIN	CrN	С	0.6wt%Y ₂ O ₃
3-4	Al ₂ O ₃	MoO ₂	С	-
3-5	3Y-ZrO ₂ *	wc	GC	
3-6	SiC	VN	GC	2.5wt%Y ₂ O ₃ +1wt%Al ₂ O ₃
3-7	Si ₃ N ₄	TiCO	С	2.5wt%Y ₂ O ₃ +1wt%Al ₂ O ₃
3-8	スピネル	NbHfC	C ₆₀	0.6wt%Y ₂ O ₃
3-9	β-サイアロン	TaNbC	CNT	-
3-10	ムライト	TaNbN	Cブラック	-

*) 3Y-ZrO₂: 3wt%のY₂O₃で安定化したZrO₂

得られた二次複合粒子粉末を透過電子顕微鏡で観察した結果、平均結晶粒径は 3 μ m以 下であった。

[0034]

次に前記二次複合粒子粉末を用いて焼結温度1150℃/焼結圧力1000MPaの条 件で真空雰囲気中で焼結してセラミックス複合材料を製造した。この際の温度測定は、ダ イス表面の温度を二色温度計で測定した。

[0035]

得られたセラミックス複合材料について研削、ラッピング処理を施した後、オープンポ ア率、平均結晶粒径、曲げ強度評価を実施した。また、光学ガラスを型成形した際の転写 精度と離型性を確認するために、Hellma社製Pyrexガラスを用いて実施例2と 同様に100回の成形試験を行って離型性を評価した。以上の結果を表6へ示す。

[0036]

【表 6】

試験No.	オープンポア率 (%)	平均粒径 (μ m)	曲げ強度 (MPa)	Pyrexがうスの 離型性(%)*
3-1	0.3	1.4	433	100
3-2	0.2	1.7	720	100
3-3	0.4	1.8	428	100
3-4	0.5	2.3	287	100
3-5	0.2	1.6	686	100
3-6	0.2	1.6	728	100
3-7	0.3	1.7	720	100
3-8	0.4	1.7	402	100
3-9	0.4	2.2	416	100
3-10	0.2	1.7	337	100

*:720℃/10MPaの加圧条件DE,60secプレスする。

テスト回数n=100

【実施例4】

[0037]

表 7 に示すように平均粒径 0. - 5 μ mのセラミックス粉末を用いて、残部を平均粒径 5 μm以下のカーボン粉末とし、これに焼結助剤を必要に応じて加えて表7に示す組成で配 . 合し、ポールミル装置を用いて加速度10Gで混合し、混合粉末を得た。

[0038]

セラミックス粉末	ミと用いた焼結助剤	グラファイト量(wt%)					
セラミックス粉末	焼結助剤						
SiC	2.5wt%Y ₂ O ₃ +1wt%Al ₂ O ₃	1*					
Si ₃ N ₄	2.5wt%Y ₂ O ₃ +1wt%Al ₂ O ₃	2					
AIN	0.6wt%Y ₂ O ₃	10					
		20					
Al ₂ O ₃		40					
3Y-ZrO ₂	DV O で安定化したZrO。	70					
*) $3Y-ZrO_2$: $3wt900$	*) 3Y-ZrO2: 3wt%のY2O3で安定化したZrO2						
	·	98					

*:比較例

99*

[0039]

得られた混合粉末を透過電子顕微鏡で観察した結果、平均結晶粒径は3μm以下であっ た。次にこの混合粉末を焼結温度1150℃/焼結圧力1000MPaの条件で、セラミ ックス粉末がSi₃N4、A1Nの場合はN2ガス雰囲気中で、また、セラミックス粉末が SiC、Al2O3、3Y-ZrO2 (3wt%のY2O3で安定化したZrO2) の場合はA rガス雰囲気中でそれぞれ焼結してセラミックス複合材料を得た。この際の温度測定は、 ダイス表面の温度を二色温度計で測定した。

[0040]

得られたセラミックス複合材料に研削,ラッピング処理を施した後、オープンポア率, 平均結晶粒径、曲げ強度評価を実施した。また、光学ガラスを型成形した際の転写精度と 離型性を確認するために、Hellma社製Pyrexガラスを用いて実施例2と同様に 100回の成形試験を行って離型性を評価した。以上の結果を表8に示す。

[0041]

					グラフ	ァイト含有量	£(%)			
才一	プンポア率		· <u> </u>	40	20	40	70	'90	98	99*
	(%)	1*	2	10			0.4	0.6	0.8	焼結せず
114	SIC	3.0	0.9	0.6	0.3	0.3		0.6	0.9	焼結せず
松木	Si ₃ N ₄	2.5	0.8	0.5	0.3	0.2	0.3		4	焼結せず
77	AIN	2.8	0.9	0.6	0.4	0.3	0.4	0.6	1	
3			0.9	0.7	0.5	0.3	0.4	0.5	0.8	焼結せず
セラミツ	Al ₂ O ₃	3.2				0.3	0.4	0.6	0.9	焼結せず
Ħ	3Y-ZrO2	3.1	0.9	0.6	0.4			l		*: 比較伤

				_,	グラファ	アイト含有る	量(%)			
স্	均粒径			10	20	40	70	90	98	99*
	(µm)	1*	2			2	2.1	2.4	2.8	焼結せず
#	SiC	4.8	2.8	2.6	2.3			2.4	2.9	焼結せず
粉末	SiaN4	5.1	3	2.7	2.5	2.1	2.2			焼結せず
27	AIN	5.6	3	2.8	2.6	2.3	2.3	2.7	3	
3			2.9	2.8	2.6	2.2	2.3	2.6	2.9	焼結せず
11/2	Al ₂ O ₃	5.5			2.5	2.1	2.2	2.3	2.7	焼結せす
4	3Y-ZrO2	5.2	2.8	2.7	2.5	1		1		*: 比較(

	T				グラファ	アイト含有量	1(%)			
	計強度	40		10	20	40	70	90	98	99*
	(MPa)	1*	2		592	469	285	162	101	焼結せず
₩	SiC	715	703·	654		660	383	198	106.	焼結せず
粉末	Si3N4	1030	1012	938	845			130	98	焼箱せず
77	AIN	415	409	383	352	288	193			挽結せず
1 5	Al2Oa	.620	610	568	516	412	256	152	100	<u> </u>
142			962	892	804	629	365	190	102	挽結せず
٦	3Y-ZrO2	. 980	302			· · · · ·	<u> </u>			*: 比較例

					グラフ	ァイト合有が	量(%)			
Pyr	exカラスの	1*		10	20	40	70	90	98	99*
離	型性(%)		2		96	100	100	94	89	焼結せず
₩	SIC	21	62	83		100	100	92	86	焼結せず
ス粉末	Si3N4	19	56	80	97			93	87	挽結せず
0	AIN	17	59	78	94	100	100			焼結せず
5=3	Al ₂ O ₃	12	51	72	90	100	100	89	82	
47	3Y-ZrO2	18	61	81	92	100	100	94	88	焼結せす
1 7	31-2102									*:比較

Pyrexがラスの : 720℃/10MPaの加圧条件で、60secプレスした。

テスト回数n=100 離型性試験

【実施例5】

[0042]

市販の平均粒径 0. 5 μ mの S i C粉末に、焼結助剤として 2. 5 w t %の Y 2 O 3 粉 末と1wt%のAl2O3粉末を加え、更に平均粒径3μmの金属CrN粉末を2Owt %,平均粒径 5 μ mのグラファイト粉末を 4 0 w t %添加した粉末を 0. 1 M P a の窒素 雰囲気中において、SiC製ボールを用いたボールミル装置により加速度10Gで混合を 行った。

[0043]

得られた二次複合粒子粉末をXRDにて定性分析を行ったところ、SiC,CrN,C rCN,CrC及びCのピークを確認することができた。また、この二次複合粒子粉末を 透過電子顕微鏡で観察した結果、平均結晶粒径は3 μ m以下であった。

[0044]

次に前記二次複合粒子粉末を表 9 に示す条件で真空雰囲気中で焼結してセラミックス複 合材料を得た。焼結した。この際の温度測定は、ダイス表面の温度を二色温度計で測定し た。

[0045] 【表9】

焼結時に採用	焼結時に採用した温度・圧力条件					
<u></u> 焼結温度	焼結圧力					
400°C*	100MPa*					
600°C*	200MPa					
800°C	500MPa					
1150°C	1000MPa					
1500°C	5000MPa					
1700°C*	*:比較例					

[0046]

得られたセラミックス複合材料に研削、ラッピング処理を施した後、光学ガラスを型成 形した際の形状転写精度と離型性を確認するために、Hellma社製Pyrexガラス を用いて実施例2と同様に100回の成形試験を行って離型性を評価した。以上の結果を 表10に示す。表10中の%は良品率を表す。

[0047] 【表10】

Pyrexがうスの 離型性(%)		焼結圧力(MPa)				
		100*	200	500	1000	5000
焼結温度(°C)	400*	焼結せず	焼結せず	焼結せず	破損	破損
	600*	破損	破損	破損	37	61
	800	破損	86	91	99	100
	1150	15	89	94	100	100
	1500	14	93	91	100	100
	1700*	11	17	14	19	18

*:比較例

離型性試験

Pyrexがラスの : 720°C/10MPaの加圧条件で、60secプレスした。

テスト回数n=100

[0048]

表10の結果より、焼結温度800~1500℃,焼結圧力200MPa以上の条件を 用いて得た焼結体とPyrexガラスとの離型性は良好であることが判明した。しかし焼 結温度1700℃になると、粒成長が促進されて離型性が著しく低下する。また、焼結温 度600℃で焼結圧力1000MPa以上の場合は離型性を示すが、それ以下の焼結圧力 で得られたセラミックス複合材料を用いると、成形中の加圧力に型が耐えられず破損した 。そして焼結温度400℃となると焼結体を得ることが困難となった。

【産業上の利用可能性】

[0049]

本発明のセラミックス複合材料は優れた耐摩耗性、低摩擦性及びガラス、樹脂、セラミックス等との高い離型性を有するため、切削工具、摺動部材、モールド形材料としての利用性が高い。

【書類名】要約書

【要約】

切削工具、摺動部材、モールド型材料等に適した高耐摩耗・低摩擦のセラミッ 【課題】 ク材料を提供すること。

【解決手段】 平均結晶粒径 3 μ m以下の、炭素を主成分とする相とセラミックス相(但 し、炭素を除く)とからセラミックス複合材料を構成する。セラミックス相は、Al, S i, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo、Wの窒化物、炭化物、酸化物、複 合窒化物、複合炭化物、複合酸化物、炭窒化物、酸窒化物、炭窒酸化物及び炭酸化物より なる群から選ばれる少なくとも1種である。この複合材料は、原料粉末を焼結温度800 ~1500℃、焼結圧力200MPa以上で焼結することによって得られる。

【選択図】 なし

1/E ・ページ:

特願2003-368714

出願人履歷情報

識別番号

[000002130]

1. 変更年月日 [変更理由] 住 所 1990年 8月29日

新規登録

大阪府大阪市中央区北浜四丁目5番33号

住友電気工業株式会社 氏 名