

Machine Learning Fundamentals

Practical Machine Learning (with R)

UC Berkeley Spring 2016

Agenda

- Administrativa
 - Role Call
 - Missing data from class-list.xlsx
 - Images
 - Assignments due to github
 - Class Google Group (All joined)
- Expectations (Review)
- New Topics
 - R Meetup

REVIEW

GIT

- Pulled changes from class Git Hub repository as of last Wednesday
- Attempted/Completed 02-exercises.Rmd

- Added
- Committed
- Pushed to your Git Hub repository

R SKILLS

- You have tried
 - dplyr/tidyr and/or
 - data.table
- ⇒You know what %>% does and love it

- Comfortable plotting
 - Feature vs. response
 - Estimate vs. actual
 - Add lines and trend lines to plot

CONCEPTS

- Difference between
 - supervised and unsupervised models
 - Semi-supervised
 - Adaptive learning
- Difference between classification and regression
- Three components for ML algorithms ...

Expectations: Process

3 REQUIREMENT FOR ALGORITHM

- A method for evaluating how well the algorithm performs (ERRORS)
- A restricted class of function (MODEL)
- A process for proceeding through the restricted class of functions to identify the functions (SEARCH/OPTIMIZATION)

READING

- Chapters 3.2-3.7, skim 3.8 "Transformations"
 - Centering and scaling ?scale
 - Skewness: log, sqrt, inverse, box-cox
 E1071:skewness MASS::boxcox
 - Missing values
 - Remove
 - Impute
 - Feature/Predictor remove: irrelevance, p>n
 - Collinearty of Predictors: ?cor
 - PCA,
 - Iterative feature removal
 - Binning predictors (problems loss of precision)
 - Dummy variables
 - Loss of precision → increase in error

READING

Chapters 6.2 and 6.3

LINEAR REGRESSION MODEL

→ Abstract to multiple dimensions

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$$

$$\hat{y} = \beta_0 + \sum_{i=1}^p \beta_i x_i$$

Mathy-r!!!

LINEAR REGRESSION

You should be able to:

- Extract the coefficients
- Express the models as an equation
- Use the model to **predict** responses for new data

LINEAR REGRESSION

- train a linear regression model
- Interpret linear regression model
 - "stars" (significance), Estimate, Std.,
 Error, R-squared, Pr(>|t|)

```
Call:
lm(formula = FE ~ EngDispl, data = cars2010)
Residuals:
   Min 1Q Median 3Q Max
-14.486 -3.192 -0.365 2.671 27.215
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 50.5632 0.3985 126.89 <2e-16 ***
EngDispl -4.5209 0.1065 -42.46 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 4.624 on 1105 degrees of freedom
Multiple R-squared: 0.62, Adjusted R-squared: 0.6196
F-statistic: 1803 on 1 and 1105 DF, p-value: < 2.2e-16
```

LINEAR REGRESSION (PREDICTOR SIGNIFICANCE)

Linear regression t-statistic is the probability that the "true value" of the statistic falls outside the student t-distribution.

- Is expressed as a probability.
- Lower is "better" i.e. more significant

Think of it (loosely) as the probability of the coefficient being wrong. It's an estimate after-all.

INDICATION OF BAD MODEL FIT

These are signs of a bad model fit:

- No significant coefficients / predictors
- Many insignificant predictors
- Coefficients ... too large or too small
- ⇒ Low R-squared
- Skewed or non-zero centered residuals

ERRATA: LINEAR REGRESSION ERRORS

- Two different types of errors measured
 - For fitting models
 - For comparing models

Minimize square error loss (SSE) sum of squared errrors

$$argmin_{\beta}\left(\sum (\hat{y}-y)^2\right)$$

- choose Beta such that the sum of squared errors is minimized.
- Solved by Direct Solution or Numerical Optimization

LINEAR REGRESSION (INTUITION)

• Which is the more important variable?

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 51.3541 0.4593 111.814 < 2e-16 ***

EngDispl -3.7454 0.2507 -14.941 < 2e-16 ***

NumCyl -0.5880 0.1722 -3.414 0.000664 ***
```

- Coefficients ... multiply then sum
- Number Line (in units of the response)
 - Start at intercept
 - Multiple term by value of the variable
 - Move those number of units of y.

LINEAR REGRESSION (INTUITION)

Data is generated by an unknown stochastic process that the model creates the data, i.e. x's

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$$

- Deterministic : always produces the same answer
- Stochastic: non-deterministic, contains some element of randomness, but not entirely random.

LINEAR REGRESSION LIMITATIONS

Limitation	Solution
Linear Response Does not fit higher order functions or interactions	 Transform data Express in Model Formula
Insignificant Predictors Left in the Model	 Use model variant that does feature selection Use Recursive Feature Elimination (RFE) routines
Sensitive to inputs: Outliers give outsized influence on model fit	 Remove outliers Transform Predictors Use Robust Regression
Highly correlated predictors yield non-sensical models	Use RegularizationRFE
Comparatively not sensitive	• ???

TRANSFORMATIONS

- Centering and Scaling: scale*
- Resolve skewness: log, sqrt, inv
- Resolve outliers: spatial sign, PCA

Some algorithms require scaling Some are insensitive

Time consuming

Somewhat of an art

Genetic algorithms (GA)

Add complexity

Contribute to loss of interpretability

LOGISTIC REGRESSION

BACKGROUND

Categorical Modeling:

$$\widehat{y}_{cat} = f(\vec{x})$$

- Inputs
 - Categorical
 - Continuous variable can assume any value

Outputs:

How do we handle categories?

same as linear regression?

BACKGROUND

● Errors!

$$\widehat{y}^{cat} \neq y$$

• Problem ...

$$argmin_{\beta} \sum \begin{cases} 1 \mid \hat{y} \neq y \\ 0 \mid \hat{y} = y \end{cases}$$

FUNCTION ...

- Do the easiest thing first ...
 Start with 2 categories "binomial dist"
 - A | B
 - TRUE | FALSE
 - **0** | 1

"Looks Math-y"

Need a tool ...

(-Inf, Inf)

Outputs

[0,1]

$$f(x) = \frac{1}{1 + e^{-x}}$$

Logistic function

$$P(y) \sim \hat{y} = \frac{1}{1 + e^{-x}}$$

Now What

Proceed as we would with linear regression ... and look for β's

$$\hat{y} \sim \frac{1}{1 + e^{-x}}$$

$$\hat{y} \sim \frac{1}{1 + e^{-\beta_0 + \sum_{i=1}^p \beta_i x_i}}$$

Then solve as linear regression:

$$argmin_{\beta} \left(\sum (\hat{y} - y)^2 \right)$$

NOT DONE

How do you go from [0,1] back to our binomial categories?

- Choice is somewhat arbitrary
 - **P**=0.5
 - Calibrate response
- Often don't care ... you are interested in the probability anyway.

Worked Example: GermanCredit

APPENDIX

