Теоретические основы численных методов. Теорема Фавара

Шокуров А.В.

2 апреля 2025 г.

Оптимальные константы

Согласно теореме Джексона существует набор констант $C_r = C'$, не зависящих от n, M и f, для которых выполнены неравенства

$$\varepsilon(f,\mathcal{T}_{2n-1}) < \textbf{C}_r \cdot \textbf{M}/\textbf{n}^r, \ \ f \in \textbf{W}^r(\textbf{M}).$$

Определение (Оптимальные константы)

Набор констант C_r называется оптимальным, если:

ullet для любых $n \geq 1, \ r \geq 1, \ f \in W^r(M), \ M > 0$ для констант C_r выполнено неравенство

$$\varepsilon(\!f,\mathcal{T}_{2n-1}) < \mathbf{C_r} \cdot \mathbf{M}/\mathbf{n^r}, \ \ f \in \mathbf{W^r}(\mathbf{M}),$$

② если $0 < c < C_r$ для некоторого $r \ge 1$, то $\forall n \ge 1 \ \forall M > 0 \ \exists f \in W^r(M) \ | \ \varepsilon(f, \mathcal{T}_{2n-1}) > cM/n^r.$

Для набора $C_r = C^r$ из теоремы Джексона следует выполнение условия (1) определения. Кроме того, очевидно, $\lim C^r = \infty$.

Определение

Пусть f_0 — периодическая функция на прямой с периодом 2π , имеющая конечное число точек разрыва только первого рода и всюду $f_0(x)=\frac{1}{2}(f(x+0)+f(x-0))$, и такая, что ее интеграл по периоду равен нулю. r-кратным периодическим интегралом функции f_0 называется последовательность 2π -периодических функций f_r , такая что

- $\forall s=1, \ldots, r \int_{0}^{2\pi} f_s(t) dt = 0.$
- $\forall s = 2, \ldots, r f'_s(t) = f_{s-1}(t).$
- $f_1(t+0) = f_0(t+0) u f_1(t-0) = f_0(t-0).$

Теорема

r-кратные периодические интегралы задаются однозначно функцией f_0 .

Доказательство.

Докажем существование и единственность по индукции. При ${\it r}=0$ определена функция ${\it f}_0$ по условию теоремы.

Пусть определены функции f_m при всех $0 \leq m \leq r$, являющиеся m-периодическими интегралами функции f_0 . Положим

$$f(t)=\int\limits_0^t f_r(t)\,dt$$
, $C=\int\limits_0^{2\pi}f(t)\,dt$ и $f_{r+1}(t)=f(t)+rac{\mathcal{C}}{2\pi}$. Заметим, что функция f_{r+1} является искомым $(r+1)$ -кратным интегралом функции $f_0(x)$.

Пусть имеется другая такая функция g(x). Тогда f'(x)=g'(x). Следовательно, $(f_{r+1}(x)-g(x))'=0$. Поэтому $g(x)=f_{r+1}(x)+\mathcal{C}$. Тогда из условия 1 определения периодического интеграла следует, что $\mathcal{C}=0$.

Функция Бернулли

Определение (Функция Бернулли)

Пусть $r \geq 1$. r-й функций Бернулли называется функция

$$B_r(t) = \sum_{k=1}^{\infty} \frac{\cos(kt - \pi r/2)}{k^r}.$$

При r=1 ряд Бернулли определяет ряд Фурье 2π -периодической функции

$$\varphi(t) = \begin{cases} \frac{\pi - t}{2}, & 0 < t < 2\pi \\ 0, & t = 0, \ t = 2\pi \end{cases}.$$

Теорема

Функция $B_{r+1}(t)$ является r-периодическим интегралом функции $B_1(t)$.

Доказательство.

Проверим равенство $\varphi(t) = B_1(t)$. Достаточно вычислить коэффициенты разложения Фурье функции $\varphi(t)$. Имеем

$$a_{k} = \frac{1}{\pi} \int_{0}^{2\pi} \frac{\pi - t}{2} \cdot \cos kt \, dt = \frac{1}{k\pi} \int_{0}^{2\pi} \frac{\pi - t}{2} \, d\sin kt$$

$$= \frac{\pi - t}{2k\pi} \cdot \sin kt \Big|_{0}^{2\pi} + \frac{1}{2k\pi} \int_{0}^{2\pi} \sin kt \, dt = 0,$$

$$b_{k} = \frac{1}{\pi} \int_{0}^{2\pi} \frac{\pi - t}{2} \cdot \sin kt \, dt = \frac{1}{k\pi} \int_{0}^{2\pi} \frac{t - \pi}{2} \, d\cos kt$$

$$= \frac{t - \pi}{2k\pi} \cdot \cos kt \Big|_{0}^{2\pi} - \frac{1}{2k\pi} \int_{0}^{2\pi} \cos kt \, dt = \frac{1}{k}.$$

Равенства $B_{s+1}' = B_s$ следуют из формулы дифференцирования рядов Фурье.

Применим предыдущую теорему к функции $\mathcal{B}_2(t)$ для $t \in [0,2\pi).$ Имеем

$$\mathcal{B}_2(t)=\int\limits_0^trac{\pi-t}{2}\,dt-rac{\mathcal{C}}{2\pi}=rac{\pi}{2}t-rac{t^2}{4}-rac{\mathcal{C}}{2\pi},$$

где

$$C = \int_{0}^{\pi} \left(\frac{\pi}{2} t - \frac{t^{2}}{4} \right) dt = \frac{\pi t^{2}}{4} - \frac{t^{3}}{12} \Big|_{0}^{2\pi} = \frac{\pi^{3}}{3}.$$

Поэтому для $t \in [0,2\pi)$ выполняется

$${\it B}_2(t) = rac{\pi}{2} t - rac{t^2}{4} - rac{\pi^2}{6}.$$

Следовательно,
$$B_2(0) = -\frac{\pi^2}{6}$$
.

С другой стороны,

$$B_2(t) = \sum_{k=1}^{\infty} \frac{\cos(kt - \pi)}{k^2} = -\sum_{k=1}^{\infty} \frac{\cos kt}{k^2}.$$

Поэтому

$$B_2(0) = -\sum_{k=1}^{\infty} \frac{1}{k^2}.$$

Следовательно,

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.$$

Имеем

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} + \sum_{k=1}^{\infty} \frac{1}{(2k)^2} = \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} + \frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k^2}$$

Поэтому

$$\frac{3}{4} \sum_{k=1}^{\infty} \frac{1}{k^2} = \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2}$$

Следовательно,

$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = \frac{3}{4} \cdot \frac{\pi^2}{6} = \frac{\pi^2}{8}.$$
 (1)

Теорема Фавара

Теорема (Фавар)

Пусть

$$K_r = \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{m(r+1)}}{(2m+1)^{r+1}}, \ r \ge 1.$$

Тогда для любых $f \in W^r(M)$ и $n \geq 1$ справедливо неравенство

$$\varepsilon(f, T_{2n-1}) \leq K_r M/n^r, \ r \geq 1, \ n \geq 1,$$

причем для любых $r\geq 1$, $n\geq 1$ найдется функция $f_{nr}\in W^r(M)$, для которой $\varepsilon(f_{nr},T_{2n-1})\leq K_rM/n^r.$

Следовательно, набор констант K_r из теоремы Фавара оптимален. Из определения констант Фавара и соотношения (1)

$$0 < K_r \le \frac{4}{\pi} \sum_{r=1}^{\infty} \frac{1}{(2m+1)^2} = \frac{4}{\pi} \cdot \frac{3}{4} \cdot \frac{\pi^2}{6} = \frac{\pi}{2}.$$

Поэтому константы K_r ограничены в совокупности.

Лемма

Лемма 1. Пусть $n \geq 1$ — натуральное и $2\pi/n$ -периодическая функция $f: \mathbb{R} \to \mathbb{R}$ суммируема на каждом конечном отрезке. Тогда для любого $1 \leq k \leq n-1$:

$$\int_{-\pi}^{\pi} f(t) \cos kt dt = \int_{-\pi}^{\pi} f(t) \sin kt dt = 0.$$

Если интеграл от f(t) по периоду 2π равен 0, то для любого тригонометрического многочлена $T \in \mathcal{T}_{2n-1}$ имеем:

$$\int_{-\pi}^{\pi} f(t)T(t)dt = 0.$$

Доказательство леммы

Доказательство.

В силу $2\pi/n$ -периодичности функции f выполняются равенства

$$J_{k} = \int_{-\pi}^{\pi} f(t)e^{ikt} dt = \int_{-\pi}^{\pi} f\left(t + \frac{2\pi}{n}\right)e^{ikt} dt = \int_{-\pi - \frac{2\pi}{n}}^{\pi - \frac{2\pi}{n}} f(x)e^{ik\left(x - \frac{2\pi}{n}\right)} dx$$
$$= e^{-\frac{2ik\pi}{n}} \int_{-\pi}^{\pi} f(x)e^{ikx} dx = e^{-\frac{2ik\pi}{n}} J_{k}.$$

Поскольку
$$1 \le k \le n-1$$
, то выполняется равенство $J_k = 0$.

Лемма об интерполяции

Лемма (О тригонометрической интерполяции)

Лемма 2.

- ① Пусть $t_0, \ldots, t_{n-1} \in (0,\pi)$ попарно различные точки и $b_0, \ldots, b_{n-1} \in \mathbb{R}$ произвольные числа. Тогда существует единственный четный тригонометрический многочлен
 - $T(t)=\sum\limits_{k=0}^{n-1}lpha_k\cos kt,\;lpha_k\in\mathbb{R}$, для которого $T(t_j)=b_j$ при $0\leq j\leq n-1.$
- ② Пусть $\tau_1, \ldots, \tau_{n-1} \in (0,\pi)$ попарно различные точки и $d_1, \ldots, d_{n-1} \in \mathbb{R}$ произвольные числа. Тогда существует единственный нечетный тригонометрический многочлен

$$T(t) = \sum\limits_{k=1}^{n} eta_k \sin kt, \; eta_k \in \mathbb{R}$$
, для которого $T(au_j) = d_j$ при $1 < j < n-1$.

Классы гладких функций. Формула обращения

Определение

$$W'_*(M) = \{ f \in C'[S^1] \mid ||f^{(r)}|| \le M \}.$$

Теорема

- $[W_*^r(M)] = W^r(M).$

Лемма (Формула обращения)

Лемма 3. Пусть $f \in W^r_*(M)$. Тогда

$$f(t) = \frac{1}{2\pi} \int_{0}^{2\pi} f(\tau) d\tau + \frac{1}{\pi} \int_{0}^{2\pi} B_r(t-\tau) f^{(r)}(\tau) d\tau.$$

Доказательство формулы обращения

Формула обращения.

Достаточно доказать для r=1. Имеем

$$\frac{1}{2\pi} \int_{0}^{2\pi} f(\tau) d\tau + \frac{1}{\pi} \int_{0}^{2\pi} B_{1}(t - \tau) f'(\tau) d\tau = \frac{1}{2\pi} \int_{0}^{2\pi} f(\tau) d\tau + \frac{1}{\pi} \int_{0}^{t} B_{1}(t - \tau) f'(\tau) d\tau + \frac{1}{\pi} \int_{t}^{t} B_{1}(t - \tau + 2\pi) f'(\tau) d\tau = \frac{1}{2\pi} \int_{0}^{2\pi} f(\tau) d\tau + \frac{1}{\pi} \int_{0}^{t} \frac{\pi - t + \tau}{2} f'(\tau) d\tau + \frac{1}{\pi} \int_{t}^{2\pi} \frac{\tau - t - \pi}{2} f'(\tau) d\tau = \frac{1}{2\pi} \int_{0}^{2\pi} f(\tau) d\tau + \frac{1}{\pi} \int_{0}^{2\pi} \frac{\tau - t}{2} f'(\tau) d\tau + \frac{1}{2\pi} \int_{0}^{2\pi} f(\tau) d\tau + \frac{1}{2\pi} \int_{0}^{2\pi} \tau f'(\tau) d\tau + f(t) = f(t)$$

Представление фунции Бернулли в виде ряда Фурье

Лемма

Лемма 4. Коэффициенты Фурье для функции Бернулли $B_r(t)$ выражаются формулой

$$\mu_{r,n}+i
u_{r,n}=rac{1}{\pi}\int_{-\infty}^{\infty}B_{r}(t)e^{int}dt=rac{i^{r}}{n^{r}},\quad n>0$$

и

$$\mu_{r,0} + i
u_{r,0} = rac{1}{\pi} \int^{\pi} B_r(t) dt = 0.$$

Свойства функции Бернулли

Лемма

Лемма 5.

- lacktriangledown При r>2 функция $B_r(t)$ дифференцируема всюду на $\mathbb R$ и $B_r'(t)=B_{r-1}(t).$
- ② При r=2 функция $B_2(t)$ дифференцируема при $t \neq 2k\pi$ и $B_2'(t)=B_1(t)$ для таких точек t. В точках $t=2k\pi$ существуют односторонние производные и выполняется равенство $B_2'(2k\pi\pm0)=B_1(2k\pi\pm0)$.

Нули погрешности аппроксимации

Определим тригонометрические многочлены $T_{n,r}(t)$. Пусть $n \ge 1$ и $t_i = (2j + 1)\pi/(2n)$ — все нули функции $\cos nt$ на интервале $(0,\pi)$, а $\tau_k=k\pi/n$ — все нули функции $\sin nt$ на интервале $(0,\pi)$. Для четного $r \geq 2$ пусть $T_{n,r}(t) \in \mathcal{T}_{2n-1}$ тригонометрический многочлен, для которого $T_{n,r}(t_i) = B_r(t_i)$, где $B_r(t) - r$ -я функция Бернулли. Для нечетного r > 2 пусть $T_{n,r}(t) \in \mathcal{T}_{2n-1}$ — тригонометрический многочлен, для которого $T_{n,r}(au_k) = B_r(au_k)$, где $B_r(t) - r$ -я функция Бернулли. Согласно лемме о тригонометрической интерполяции функции $T_{n,r}$ определены однозначно.

Лемма (О нулях тригонометрической интерполяции)

Лемма 6. Разность $\Delta(t)=\Delta_{n,r}(t)=B_r(t)-T_{n,r}(t)$ обращается в нуль на интервале $(0,\pi)$ при $n\geq 1$ и четном r только в точках $t_{\it j}$, а при нечетном r только в точках $\tau_{\it k}$. При n=1 и нечетном r корней на $(0,\pi)$ нет. Все корни являются простыми.

Доказательство теоремы Фавара. Проверим сначала выполнение условий (а) определения оптимальных констант. Согласно формуле обращения выполняется равенство

$$f(t) = \frac{a}{2} + \frac{1}{\pi} \cdot \int_{0}^{2\pi} B_r(t-\tau) f^{(r)}(\tau) d\tau.$$

Пусть $T \in \mathcal{T}_{2n-1}$ произвольный тригонометрический многочлен степени < n. Тогда

$$\Lambda(T)(t) = \frac{1}{\pi} \cdot \int_{0}^{\infty} T(t-\tau) f^{(r)}(\tau) d\tau$$

также является тригонометрическим многочленом степени < n.

Следовательно,

Тогда

Рассмотрим разность

 $|f(t) - \frac{a}{2} - \Lambda(T)(t)| \leq \frac{1}{\pi} \cdot \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| \cdot |f^{(r)}(\tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| \cdot |f^{(r)}(\tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| \cdot |f^{(r)}(\tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| \cdot |f^{(r)}(\tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| \cdot |f^{(r)}(\tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| \cdot |f^{(r)}(\tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| \cdot |f^{(r)}(\tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| \cdot |f^{(r)}(\tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| \cdot |f^{(r)}(\tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| \cdot |f^{(r)}(\tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| \cdot |f^{(r)}(\tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| \cdot |f^{(r)}(\tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| \cdot |f^{(r)}(\tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| \cdot |f^{(r)}(\tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau) - T(t - \tau)| d\tau \leq \frac{1}{2\pi} \int_{-\tau}^{2\pi} |B_r(t - \tau$

 $\frac{M}{\pi} \cdot \int |B_r(z) - T(z)| dz.$

 $\varepsilon(f, \mathcal{T}_{2n-1}) \leq \frac{M}{\pi} \cdot \inf_{T \in \mathcal{T}_{2n-1}} \int_{2}^{2n} |B_r(z) - T(z)| dz.$

 $f(t) - \frac{a}{2} - \Lambda(T)(t) = \frac{1}{\pi} \cdot \int_{\Omega}^{2\pi} (B_r(t-\tau) - T(t-\tau))f^{(r)}(\tau)d\tau.$

Достаточно проверить неравенство

$$\inf_{T\in\mathcal{T}_{2n-1}}\int_{0}^{2\pi}|B_{r}(z)-T(z)|dz\leq\pi K_{r}n^{-r}.$$

Для этого достаточно проверить, что , например,

$$\int_{0}^{2\pi} |B_r(z) - T_{n,r}(z)| dz \leq \pi K_r n^{-r}.$$

Согласно лемме 6 все корни разности $B_r(t)-T_{n,r}(t)$ на интервале $(0,\pi)$ простые и совпадают с простыми корнями функции $\cos nt$ при четном r и с корнями $\sin nt$ при нечетном r.

Поэтому знаки функций $B_r(t)-T_{n,r}(t)$ и $\cos nt$ при четном r и, соответственно, $\sin nt$ при нечетном r, либо всюду совпадают, либо всюду противоположны. Поэтому при четном r выполнено равенство

$$\int_{-\pi}^{\pi} |B_r(z) - T_{n,r}(z)| dz = 2 \int_{0}^{\pi} |B_r(z) - T_{n,r}(z)| dz =$$

$$2\int_{0}^{\pi} (B_{r}(z) - T_{n,r}(z))\operatorname{sign}\Delta(z)dz = \pm 2\int_{0}^{\pi} (B_{r}(z) - T_{n,r}(z))\operatorname{sign}\cos nzdz = 2\left|\int_{0}^{\pi} (B_{r}(z) - T_{n,r}(z))\operatorname{sign}\cos nzdz\right| = \left|\int_{0}^{\pi} (B_{r}(z) - T_{n,r}(z))\operatorname{sign}\cos nzdz\right| = 0$$

$$\left| \int_{-\pi}^{\pi} B_r(z) \operatorname{sign} \cos nz dz \right|,$$

где в последнем равенстве использована лемма 1.

Аналогично для нечетного r

$$\int_{-\pi}^{\pi} |B_r(z) - T_{n,r}(z)| dz = \left| \int_{-\pi}^{\pi} B_r(z) \operatorname{sign} \sin nz dz \right|.$$

Теперь воспользуемся обобщенным равенством Парсеваля в $L_2[-\pi,\pi]$:

$$\frac{1}{\pi}\int_{-\pi}^{\pi}f(t)g(t)dt=\frac{\alpha_0\cdot a_0}{2}+\sum_{k=1}^{\infty}(\alpha_k\cdot a_k+\beta_k\cdot b_k),$$

где α_k, β_k и a_k, b_k — коэффициенты Фурье функций f(t) и g(t), соответственно.

Для функций Бернулли коэффициенты Фурье вычислены в лемме 4. Для функций sign cos nt и sign sin nt соответствующие ряды Фурье определяется формулами

sign cos
$$nt = \frac{4}{\pi} \sum_{k=0}^{\infty} (-1)^k \frac{\cos(2k+1)nt}{2k+1}$$

И

$$\operatorname{sign} \sin nt = \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\sin(2k+1)nt}{2k+1}.$$

Подставляя полученные коэффициенты в равенство Парсеваля,

получим при четном
$$r=2\nu$$

$$\frac{1}{2}\int_{-\pi^2\nu}^{\pi}B_{2\nu}(z)\mathrm{sign}\cos nz dz=(-1)^{\nu}\frac{4}{2\pi^2\nu}\sum_{r=2\nu}^{\infty}\frac{(-1)^{k}}{(2k+1)^{2\nu+1}}=\frac{(-1)^{\nu}\mathit{K}_r}{r^{\nu}}$$

и нечетном $r = 2\nu + 1$

Следовательно,

$$\frac{1}{\pi} \int\limits_{-\pi}^{\pi} \mathbf{B}_{2\nu}(\mathbf{z}) \mathrm{sign} \cos \mathbf{n} \mathbf{z} d\mathbf{z} = (-1)^{\nu} \frac{4}{\pi \mathbf{n}^{2\nu}} \sum_{\mathbf{k}=0}^{\infty} \frac{(-1)^{\mathbf{k}}}{(2\mathbf{k}+1)^{2\nu+1}} = \frac{(-1)^{\nu} \mathbf{K_r}}{\mathbf{n}^{\mathbf{r}}},$$

 $\frac{1}{\pi} \int_{-\pi}^{\pi} B_{2\nu+1}(z) \operatorname{sign} \sin nz dz = (-1)^{\nu} \frac{4}{\pi n^{2\nu+1}} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^{2\nu+2}} = \frac{(-1)^{\nu} K_r}{n^r}$

 $\frac{1}{\pi}\int |B_r(z)-T_{n,r}(z)|dz=K_rn^{-r}.$ Утверждение (а) теоремы Фавара доказано.

Лемма

Лемма 7. Пусть $\varphi_r(t)-r$ -кратные периодические интегралы функции $\varphi_0(t)=\mathrm{sign}\sin t$. Тогда

- **1** (a) $\varphi_r \in W^r(1)$, $\pi pu \ r \geq 1$,
- $oldsymbol{Q}$ Функции $arphi_{
 m r}(t)$ имеют следующие представления в виде рядов Фурье

$$\varphi_r(t) = \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\sin((2k+1)t - \pi r/2)}{(2k+1)^{r+1}}.$$

- ullet (б) $\| arphi_r \| = K_r$, где K_r константы Фавара,
- ullet (в) $|arphi_r(\pi/2)| = \|arphi_r\|$, для четного $r \geq 2$ и $|arphi_r(0)| = \|arphi_r\|$, для нечетного r > 1.

Доказательство неулучшаемости констант

Покажем теперь, что константы Фавара неулучшаемы.

Рассмотрим функции $f_{n,r}(t)=rac{M}{n^r}arphi_r(nt)$. Покажем, что для этих функций наименее уклоняющимся многочленом в \mathcal{T}_{2n-1} является нулевой многочлен.

Из леммы 7 следует, что эти функции лежат в классе $W^r(M)$. Согласно этой же лемме многочлены $\varphi_r(t)$ могут быть разложены в ряд Фурье

$$\varphi_{r}(t) = \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\sin((2k+1)t - \pi r/2)}{(2k+1)^{r+1}}.$$

Неулучшаемость констант в теореме Фавара

Пусть $r=2\nu$ четное. Рассмотрим точки $\xi_k=(2k+1)\pi/(2n)$. Вычислим значения функции $f_{n,r}$ в этих точках, используя разложение в ряд Фурье. Получим

$$f_{n,r}(\xi_k) = \frac{M}{n^r} \varphi_r \left(\frac{(2k+1)\pi}{2} \right) = \frac{4M}{\pi n^r} \sum_{m=0}^{\infty} \frac{\sin[(2m+1)(2k+1)\pi/2 - \pi\nu]}{(2m+1)^{r+1}} = \frac{1}{2\pi n^r} \frac{\sin[(2m+1)\pi/2 - \pi\nu]}{($$

$$\frac{4M(-1)^{\nu+k}}{\pi n^r} \sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+1)^{r+1}} = (-1)^{\nu+k} \frac{M}{n^r} K_r = (-1)^{\nu+k} \|f_{nr}\|,$$

т.е. точки $-\pi < \xi_{-n} < \ldots < \xi_{n-1} < \pi$ образуют альтернанс порядка 2n для функции $f_{n,r}$. Следовательно, по теореме Чебышева нулевой многочлен наименее уклоняется от $f_{r,n}$ и неравенство Фавара превращается в этом случае в равенство.

Неулучшаемость констант в теореме Фейера

Пусть теперь $r=2\nu+1$ нечетное. Рассмотрим точки $\zeta_k=k\pi/n$. Вычислим значения функции $f_{n,r}$ в этих точках, используя разложение в ряд Фурье. Получим

$$f_{n,r}(\zeta_k) = \frac{M}{n^r} \varphi_r(k\pi) = \frac{4M\pi}{n^r} \sum_{m=0}^{\infty} \frac{\sin[(2m+1)(2k+1)\pi/2 - \pi\nu - \pi/2]}{(2m+1)^{r+1}} =$$

$$\frac{4M(-1)^{\nu+k+1}}{\pi n^r} \sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+1)^{r+1}} = (-1)^{\nu+k+1} \frac{M}{n^r} K_r = (-1)^{\nu+k+1} ||f_{nr}||,$$

т.е. точки $-\pi < \zeta_{-n} < \ldots < \zeta_{n-1} < \pi$ образуют альтернанс порядка 2n для функции $f_{n,r}$. Следовательно, по теореме Чебышева нулевой многочлен наименее уклоняется от $f_{r,n}$ и неравенство Фавара превращается в этом случае в равенство.

Оптимальность констант Фавара доказана.

Задачи

Задача 1. Доказать, что для произвольных $arphi_1,\ \dots,arphi_n\in\mathbb{R}$:

$$(a) \begin{vmatrix} 1 & \cos \varphi_1 & \cdots & \cos(n-1)\varphi_1 \\ 1 & \cos \varphi_2 & \cdots & \cos(n-1)\varphi_2 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \cos \varphi_n & \cdots & \cos(n-1)\varphi_n \end{vmatrix} = 2^{(n-1)^2} \prod_{1 \leq i \leq k} \sin \frac{\varphi_i + \varphi_k}{2} \cdot \sin \frac{\varphi_i - \varphi_k}{2},$$

$$2^{(n-1)^2} \prod_{1 \le i < k \le n} \sin \frac{\varphi_i + \varphi_k}{2} \cdot \sin \frac{\varphi_i - \varphi_k}{2}$$

при n > 1 и

$$(b) \begin{vmatrix} \sin \varphi_1 & \sin 2\varphi_1 & \cdots & \sin n\varphi_1 \\ \sin \varphi_2 & \sin 2\varphi_2 & \cdots & \sin n\varphi_2 \\ \vdots & \vdots & \ddots & \vdots \\ \sin \varphi_n & \sin 2\varphi_n & \cdots & \sin n\varphi_n \end{vmatrix} =$$

$$2^{n(n-1)} \prod_{i=1}^{n} \sin \varphi_{k} \prod_{i=1}^{n} \sin \frac{\varphi_{i} + \varphi_{k}}{2} \cdot \sin \frac{\varphi_{i} - \varphi_{k}}{2}.$$

Задачи

Указание к задаче 1. Воспользуйтесь тем, что $\cos nx$ и $\sin(n+1)x/\sin x$ — многочлены степени n относительно переменной $\cos x$. Найдите их старшие коэффициенты. Используйте определитель Вандермонда.)

Задача 2. Воспользуйтесь результатом предыдущего упражнения для вывода леммы 2.

Задача 3. Докажите лемму 6. Для этого рассмотрите процедуру дифференцирования функций $\Delta_{n,r}(t)=B_r(t)-T_{n,r}(t)$. Сколько раз можно дифференцировать эту функцию? Докажите, что при дифференцировании число нулей не изменится. Воспользуйтесь периодичностью функций. Рассмотрите отдельно случай четного r и случай нечетного r.

Постановка задачи интерполяции

Рассмотрим бесконечный компакт $D \subset \mathbb{C}$ и пространство непрерывных на нем функций C[D]. Пусть P_n — пространство полиномов степени меньшей n.

Определение

Определение 1. Фиксируем произвольные п точек $\mathbf{x}=(x_1,x_2,\ldots,x_n)$, где $x_i\in D$ и набор чисел $\mathbf{y}=(y_1,y_2,\ldots,y_n)$, где $y_i\in \mathbb{R}$. Интерполяционным полиномом для этих данных называется многочлен $p_{n-1}(\mathbf{x},\mathbf{y})\in P_n$ для которого $p_{n-1}(\mathbf{x},\mathbf{y})(x_k)=y_k$.

Существование интерполяции

Теорема

Теорема 1. Интерполяционный полином существует для любого набора узлов.

Существование интерполяции

Доказательство. Задача нахождения интерполяционного полинома эквивалентна задаче нахождения решения системы линейных уравнений

Определителем этой системы является определитель Вандермонда для узлов ${f x}$

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \cdots & \cdots & \cdots & \cdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{vmatrix}.$$

Поскольку все точки x_k различны, этот определитель не равен нулю \blacksquare .

Полиномы Лагранжа

Определение

Определение 2. Полиномами Лагранжа называются интерполяционные полиномы $I_{k,n}(\mathbf{x}) = p_{n-1}(\mathbf{x}, \mathbf{y}_k)$ для $\mathbf{y}_k = (\delta_{k,1}, \delta_{k,2}, \cdots, \delta_{k,n}).$

Имеет место равенство

$$I_{k,n}(\mathbf{x})(\mathbf{x}) = \prod_{i \neq k} \frac{\mathbf{x} - \mathbf{x}_i}{\mathbf{x}_k - \mathbf{x}_i}.$$

При фиксации узлов интерполяции ${\bf x}$ обозначение для интерполяционного полинома обычно сокращается

$$\rho_{n-1}(\mathbf{x},\mathbf{y}) = \rho_{n-1}(\mathbf{y})$$

и

$$I_{k,n}(\mathbf{x}) = I_{k,n}$$
.

Интерполяционный полином Лагранжа

Решение задачи интерполяции можно записать в виде

$$\rho_{n-1}(\mathbf{y}) = \sum_{k=1}^n y_k \cdot I_{k,n}.$$

Пусть задана функция $f \in C[D]$. Положим $\mathbf{y} = (f(\mathbf{x}_1), f(\mathbf{x}_2), \cdots, f(\mathbf{x}_n))$. Тогда полином $p_{n-1}(\mathbf{x}, f) = p_{n-1}(\mathbf{x}, \mathbf{y})$ называется интерполяционным полиномом функции f. Решение задачи интерполяции можно записать в виде

$$p(\mathbf{x},f)=\sum_{k=1}^{n}f(x_{k})\cdot I_{k,n}.$$

Полином Лагранжа

Определим операторы

$$\pi_{\mathbf{x}}^{(\nu)}: C[D] \to P_n$$

формулами

$$\pi_{\mathbf{x}}^{(\nu)}(f) = \sum_{k=1}^{n} f(\mathbf{x}_k) \cdot I_{k,n}^{(\nu)}.$$

Заметим, что оператор $\pi_{\mathbf{x}}^{(0)} = \pi_{\mathbf{x}}$ является проектором. Действительно, интерполяционным полиномом для интерполяционного полинома является сам интерполяционный полином.

Определим числа
$$\lambda_n^{(
u)}=\max_{\mathbf{x}\in D}\sum_{k=1}^n|I_{k,n}^{(
u)}(\mathbf{x})|.$$
 При $u=0$ положим $\lambda_n^{(0)}=\lambda_n.$

Полиномы Лагранжа

Теорема

Теорема 2. Линейные операторы $\pi_{\mathbf{x}}^{(\nu)}$ непрерывны и выполняется равенство

$$\|\pi_{\mathbf{x}}^{(\nu)}\| = \lambda_{\mathbf{n}}^{(\nu)}.$$

Доказательство.

Доказательство. Выполнено неравенство

$$\|\pi_{\mathbf{x}}^{(\nu)}(f)\| = \left\| \sum_{k=1}^{n} f(\mathbf{x}_{k}) \cdot I_{k,n}^{(\nu)} \right\| \leq \sum_{k=1}^{n} |f(\mathbf{x}_{k})| \cdot \|I_{k,n}^{(\nu)}\|$$

$$\leq \|f\| \cdot \sum_{k=1}^{n} \|I_{k,n}^{(\nu)}\| = \|f\| \cdot \lambda_{n}^{(\nu)}.$$

Следовательно, оператор $\pi_{\mathbf{x}}^{(\nu)}$ непрерывен и $\|\pi_{\mathbf{x}}^{(\nu)}\| \leq \lambda_n^{(\nu)}$.

Полиномы Лагранжа

Докажем теперь, что $\|\pi_{\mathbf{x}}^{(\nu)}\| \geq \lambda_n^{(\nu)}$. Рассмотрим непрерывную функцию $\varphi(\mathbf{x}) = \sum\limits_{k=1}^n |I_{k,n}^{(\nu)}(\mathbf{x})|$. Поскольку множество D компактно,

существует элемент $x_* \in \mathcal{D}$, для которого $\varphi(x_*) = \lambda_n^{(\nu)}$. Построим теперь функцию $f_0 \in \mathcal{C}[\mathcal{D}]$, для которой выполняются соотношения $f_0(x_k) = \mathrm{sgn}(I_{n,k}(x_*))$ и $|f_0(x)| \leq 1$. Если $\mathcal{D} = \mathit{I}$, то функция f определяется кусочно-линейной интерполяцией по узлам x_k . Существование такой функции в общем случае следует, например, из теоремы Титце о продолжении. Тогда

$$\|\pi_{\mathbf{x}}^{(\nu)}\| \ge \|\pi_{\mathbf{x}}^{(\nu)}(f_0)\| = \max_{\mathbf{x} \in D} \|\sum_{k=1}^{n} f_0(\mathbf{x}_k) \cdot I_{k,n}^{(\nu)}(\mathbf{x})\| \ge$$

$$\|\sum_{k=1}^n f_0(x_k) \cdot I_{k,n}^{(\nu)}(x_*)\| = \sum_{k=1}^n |I_{k,n}^{(\nu)}(x_*)| = \lambda_n^{(\nu)}. \blacksquare$$

Константы Лебега

Определение

Определение 3. Числа $\lambda_n = \max_{\mathbf{x} \in \mathcal{D}} \sum_{k=1}^n |I_{k,n}(\mathbf{x})|$ называются константами Лебега.

Теорема

Теорема 3 (Неравенство Лебега). Для любой непрерывной на отрезке [a,b] функции f выполняется неравенство

$$||f - \pi_{\mathbf{x}}(f)|| \le (1 + \lambda_n) \cdot \varepsilon(f, \mathcal{P}_n).$$

Неравенство Лебега

Доказательство.

Пусть $q \in \mathcal{P}_n$ — произвольный элемент. Тогда, поскольку $\pi_{\mathbf{x}}$ проектор,

$$||f - \pi_{\mathbf{x}}(f)|| = ||f - q + q - \pi_{\mathbf{x}}(f)|| \le ||f - q|| + ||\pi_{\mathbf{x}}(q) - \pi_{\mathbf{x}}(f)|| =$$

$$||f - q|| + \lambda_{n} \cdot ||f - q|| = (1 + \lambda_{n}) \cdot ||f - q||.$$

Пусть теперь q_δ , такой полином из \mathcal{P}_n , для которого выполняется неравенство $\|f-q_\delta\|<arepsilon(f,\mathcal{P}_n)+\delta.$ Тогда

$$||f - \pi_{\mathbf{x}}(f)|| \le (1 + \lambda_n) \cdot ||f - q_{\delta}|| < (1 + \lambda_n) \cdot (\varepsilon(f, \mathcal{P}_n) + \delta).$$

Переходя в полученном неравенстве к пределу при $\delta o 0$, получим

$$||f - \pi_{\mathbf{x}}(f)|| \le (1 + \lambda_n) \cdot \varepsilon(f, \mathcal{P}_n).$$

Неравенство Лебега

Из неравенства Лебега получаем оценку

$$\varepsilon(f, \mathcal{P}_n) \leq ||f - \pi_{\mathbf{x}}(f)|| \leq (1 + \lambda_n) \cdot \varepsilon(f, \mathcal{P}_n).$$

Легко доказывается следующая

Лемма

Лемма 8. Пусть переменные $a \le x \le b$ и $-1 \le s \le 1$ и узлы интерполяции $x_k \in I = [a,b]$ ($k=1,\ldots,n$) и $s_j \in I_0 = [-1,1]$ ($j=1,\ldots,n$) связаны линейными соотношениями

$$x = x(s) = \frac{b-a}{2} \cdot s + \frac{b+a}{2}.$$

Тогда выполняется равенство

$$\lambda_n^{(\nu)}(\mathbf{I}_0,\mathbf{s}) = (\mathbf{b} - \mathbf{a}/2)^{\nu} \cdot \lambda_n^{(\nu)}(\mathbf{I},\mathbf{x}).$$

Инвариантность констант Лебега

Из леммы следует инвариантность констант Лебега для линейных преобразований узлов. Найдем константы Лебега для равномерно распределенных узлов интерполяции. Достаточно рассмотреть отрезок [1,n] с узлами $x_k=k$. Полиномы Лагранжа имеют вид

$$I_{n,k}(x) = \prod_{\substack{j=1\\i\neq k}}^{n} \frac{x-j}{k-j}.$$

Оценки сверху и снизу констант Лебега

Лемма

Лемма 9. Выполняются соотношения

1.
$$\prod_{\substack{j=1\\j\neq k}}^{n} |k-j| = (k-1)! \cdot (n-k)!,$$
2. $k! \cdot (n-k)! \le (n-1)!, \ 1 \le k < n,$

3.
$$\prod_{i=1}^{m} \left(j - \frac{1}{2} \right) \ge \frac{m!}{2} \sqrt{m}, \ m \ge 1.$$

В следующей теореме утверждается, что константы Лебега растут экспоненциально от числа узлов интерполяции.

Теорема

Теорема 4. При n>1 константы Лебега удовлетворяют неравенству $2^{n-3}/\mathbf{n}^{3/2}<\lambda_n<2^{n-1}.$

Оценка снизу констант Лебега

Доказательство. Оценим константы Лебега снизу. Имеем

$$\lambda_n = \max_{1 \le x \le n} \sum_{k=1}^n \frac{1}{(k-1)!(n-k)!} \prod_{\substack{j=1 \ j \ne k}}^n |x-j|$$

$$\geq \sum_{k=1}^n \frac{1}{(k-1)!(n-k)!} \prod_{\substack{j=1 \ j \ne k}}^n \left| \frac{3}{2} - j \right|.$$

Согласно неравенству 3 леммы 2 получаем

$$\prod_{\substack{j=1\\j\neq k}}^{n} \left| \frac{3}{2} - j \right| = \frac{1}{|k - 3/2|} \prod_{j=1}^{n} \left| \frac{3}{2} - j \right| =$$

$$\frac{1}{2|k-3/2|} \prod_{i=1}^{n-1} \left| \frac{1}{2} - j \right| \ge \frac{(n-1)!}{4|k-3/2|\sqrt{n-1}} \ge \frac{(n-1)!}{4n\sqrt{n-1}}.$$

Оценка снизу констант Лебега

Поэтому

$$\lambda_n \ge \sum_{k=1}^n \frac{1}{(k-1)!(n-k)!} \prod_{\substack{j=1 \ j \ne k}}^n \left| \frac{3}{2} - j \right| \ge n$$

$$\frac{1}{4n\sqrt{n-1}} \sum_{i=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} = \frac{2^{n-1}}{4n\sqrt{n-1}} \ge 2^{n-3}/n^{3/2}.$$

Оценка сверху констант Лебега

Докажем справедливость оценки сверху для констант Лебега. Представим $x \in [1,n]$ в виде x=l+s, где $1 \le l \le n$ — целое число, а $|s| \le \frac{1}{2}$. Предположим также, что $s \ne 0$. Тогда

$$\prod_{\substack{j=1\\j\neq k}}^{n}|x-j| = \frac{1}{|x-k|}\prod_{j=1}^{n}|x-j| =$$

$$\frac{1}{|I-k+s|}\prod_{j=1}^{n}|I-j+s| = \frac{1}{|I-k+s|}\prod_{j=-(n-l)}^{l-1}|j+s| =$$

$$\frac{|s|}{|I-k+s|}\prod_{j=1}^{l-1}|j+s|\cdot\prod_{j=1}^{n-l}|j-s| \le \prod_{j=1}^{l-1}|j+s|\cdot\prod_{j=1}^{n-l}|j-s|.$$

Оценка сверху констант Лебега

При s>0 всегда l< n и, следовательно, выполнено неравенство

$$\prod_{j=1}^{n} |x-j| \le l!(n-l)! \le (n-1)!.$$

При ${\it s} < 0$ всегда $1 < {\it I}$ и, следовательно, выполнено неравенство

$$\prod_{\substack{j=1\\i\neq k}}^{n} |x-j| \le (l-1)!(n-l+1)! \le (n-1)!.$$

При s=0 это неравенство очевидно. Следовательно,

$$\lambda_n = \max_{1 \le x \le n} \sum_{k=1}^n \frac{1}{(k-1)!(n-k)!} \prod_{\substack{j=1 \ j \ne k}}^n |x-j| \le \sum_{k=1}^n \frac{(n-1)!}{(k-1)!(n-k)!} = 2^{n-1}.$$

48/48