Data assimilation using Adversarial Neural Networks to help determine COVID infection risks in enclosed spaces (CP110)

Final presentation

Supervisors: Dr. Boyang Chen

Dr. Claire Heaney

Prof. Christopher Pain

Shiqi Yin

Background

- COVID-19 spreads in the air
- Individuals in the classroom
- CFD model predicts too slow

Aim & Objective

- Make prediction using AAE
- Apply data assimilation to AAE and optimize the prediction results
- Predict the infection risk of the 27 individuals in the classroom

The dataset used in the project

Spatial data

- 720 .vtu files in time series
- One-hour period
- 7 fields: Tracer (CO₂ concentration level), Velocity (x, y, z axes), Humidity,
 Temperature, Viral load
- 192060 nodes per field

Sensor data

- Experimental data contains 3 fields.
 - Time range: 1/12/2021 13:00-14:00
- Observation data contains 7 fields.

Data Pre-processing

- Divide the dataset into training set (80%) and test set (20%)
- Apply Min Max Scaler to normalize the data to range [0, 1]
- Apply PCA to reduce the dimension of data to 150 dimensions and keep 90.2% of the Explained Variance

Architecture of DA-Pred-AAE

Autoencoder

Discriminator

Prediction algorithm

- The data at the first m-1 time levels need to be known to predict the value for time level m
- The initial guess of the last time level is set to the value at the penultimate time level
- the newly predicted value at time level m will be used to predict the value at time level m + 1

Data assimilation algorithm

- Do forward march first
- Apply backward march, replace the sensor data with observation data
- Start 40 iterations of forward and backward march until converge
- Apply relaxation (if dynamic relaxation method is selected)
- Do the last forward march

Pred-AAE results

Visualization results (at time = 215s, 1625s and 3305s)

Result for data assimilation

Visualization results (at time = 1800s, 2400s, 3200s and 3600s)

Result for viral load

- 27 individuals in the classroom
- The data of viral load is extracted using their coordinates in the classroom

Conclusion

- The created Pred-AAE and DA-Pred-AAE can predict good results.
- Forward and backward march can optimize the results of prediction.
- DA-Pred-AAE can predict the infection risks of individuals in the classroom
- Limitation of forward and backward march: sufficient observation data required.

End of the presentation

Thanks for listening