На правах рукописи

Рязанов Даниил Александрович

Бигармонические аттракторы внутренних волн

01.02.05 — Механика жидкости газа и плазмы

Автореферат

диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в ИСП им. В.П. Иванникова РАН

к.ф.-м.н.

Научный руководитель:	к. фм. н. Сибгатуллин Ильяс Наилевич стар- ший научный сотрудник, института океаноло- гии РАН
Официальные оппоненты:	д.т.н., доцент Петров Петр Петрович, профессор кафедры математического обеспечения ЭВМ факультета вычислительной математики и кибернетики Нижегородского государственного университета им. Н.И.Лобачевского (г. Нижний Новгород)
	д.т.н., доцент Петров Петр Петрович, профессор кафедры математического обеспечения ЭВМ факультета вычислительной математики и кибернетики Нижегородского государственного университета им. Н.И.Лобачевского (г. Нижний Новгород)
Ведущая организация:	Институт вычислительной математики и математической геофизики СО РАН (г. Новосибирск)
диссертационного совета Д (2021 г. в 11:00 часов на заседании 002.024.01, созданного на базе ИПМ им. , Москва, Миусская пл., д.4
С диссертацией можно озна М.В. Келдыша РАН http://	комиться в библиотеке и на сайте ИПМ им. keldysh.ru
Автореферат разослан «	_» 2021 г.
Учёный секретарь лиссерта	ынонного совета

М.А. Корнилина

Общая характеристика работы

Актуальность работы.

Внутренние волны из-за особенностей своего распространения имеют возможность фокусироваться. Многократное отрежение от наклонных поверхностей, которые явялются частью рельефа морского дна, ведет к накоплению кинетической энергии и интенсификации движения стратифицированной жидкости. Такое явления называется волновым аттрактором. Волновые аттракторы в океанах из-за значительных запасов кинетической энергии должны влиять на необратимое перемешивание стратифицированной жидкости, седиментацию примесей, поведение живых организмов.

Волновые структуры, называемые волновыми аттракторами, в явном виде воспроизводятся на лабораторных установках, но их моделирование в условиях приближенных к природным имеет ряд значительных сложностей. Прежде всего из-за перехода к турбулентному режиму, большого количества источников внешних возмущений (вместо одного при лабораторных условиях), сложной геометрии морского дна и нелинейный профиль солености. Эти особенности течения в условиях приближенных к реальным может исказить четкую структуру волнового аттрактора, наблюдаемую в лабораторных условиях.

В этой работе рассматривается периодичекое воздействие на стратифицированную жидкость с двумя частотами, которые соотвествуют двум различным конфигурациям волновых аттракторов. Выясняется возможность существования аттракторов при бигармоническом воздействии на стратифицированную жидкость и способы взаимодействия внутренних волн различных частот.

Решение задач моделирования аттракторов внутренних волн в условиях сложных геометриях, порождаемых источниками возмущения различной частоты и амплитуды поможет описать течения, возникающие в результате многократных отражений внутренних волн от рельефа дна океана. Результаты моделирования позволят дать первичную оценку влияния аттракторов на перемешивание в стратифицированной жидкости,

на процессы седиментации различных веществ, на эрозию конструкций и рельефа в областях повышенной интенсивности движения жидкости, на паттерны поведения различных форм жизни в условиях сосуществования с аттрактором внутренних волн. Результаты работы представляют собой интерес для приложений в океанологии, экологии, биологии, астрофизики и вращающихся технических систем.

Цель работы – изучение явления бигармонического аттрактора, которое возникает при воздействии на стратифицированную жидкость двухчастотным волнопродуктором. С этой целбю были посталены следующие задачи **задачи**:

- Нахождение интервала частот внешних воздействий, при которых возникает аттрактор внутренних волн.
- Реализация численных экспериментов с помощью двух подходов: спектрально-элементного и конечно-объемного.
- Разработка новой программы для моделирования аттракторов внутренних волн на основе квазигидродинамического подхода.
 - Верификация результатов численного моделирования.
- Описание особенностей волновых режимов при бигармоническом воздействии и значительно отличающихся частотах воздействия и малых амплитудах.
- Описание особенностей волновых режимов при бигармоническом воздействии, близких частотах воздействия и малых амплитудах.
- Описание особенностей нелинейных волновых режимов при бигармоническом воздействии и близких частотах воздействия.
- Сравнение динамики средней кинетической энергии и пульсации кинетической энергии для монохроматического режима и различных бигармонических режимов.

Методы решения поставленных задач

Для решения поставленых задач были использованы методы математического моделирования механики сплшных сред, такие как метод спектральных элементов и метд конечного объема. Для предсказания формы аттрактора внутренних волн использовался метод трассировки

лучей. Для анализа данных использовался метод построения частотновременных диаграмм при помощи быстрого преобразования Фурье.

Научная новизна работы выражается в конкретных реузьтатах:

- 1. Получены аналитические выражения для границ частотного интервала существования аттракторов внутренних волн.
- 2. Получена геометрия течения, которая возникает в трапециевидном резервуаре, наполненном стратифицированной жидкостью при воздействии на жидкость внешними возмущениями с двумя различными частотами.
- 3. Проведён анализ результатов моделирования аттрактора внутренних волн при бигармоническом воздействии, полученных с помощью метода спектральных элементов. Для различных комбинаций возмущающих частот построен спектр, частотно-временная диаграмма и зависимость средней кинетической энергии от времени.
- 4. Реализован квазигидродинамический подход на базе метода конечного элемента. Проведено сопоставление результатов моделирования методов конечных объемов и методом спектральных элементов.

Достоверность результатов

Достоверность полученных результатов гарантируется строгой математической постановкой, верификацией и валидацией разработанного алгоритма для решения поставленной задачи.

Практическая значимость

Ранее эксперименты по исследованию бигармонических аттракторов, как численные так и натурные, не проводились. Теоретически, бигармонический аттрактор представляет собой новую устойчивую структуру, которая образуется в стратифицированной жидкости при воздействии на нее периодическим двухчастотным возмущением.

Положения и выводы диссертационного исследования могут быть использованы для подбора параметров волнового аттрактора в лабораторных условиях или при численном моделировании. Среди возможных

приложений результатов работы — задачи моделирования аттракторов внутренних волн на сложных геометриях, задачи моделирования течений со сложным спектром частотных воздействий на стратифицированную жидкость. Работа является первым шагом к моделированию течений, возникающих в условиях, приближенных к реальным океаническим, что позволит выяснить форму и вид природных аттракторов внутренних волн. Комбинация методов конечного объёма и квазигидродинамических уравнений позволила добиться существенного улучшения в точности моделирования и дала инструмент к усложнению геометрии расчётной области. Разработанная программа может быть применена не только к задачам моделирования аттрактора, но и к другим задачам гидродинамики с дозвуковыми и трансзвуковыми скоростями.

На защиту выносятся следующие положения:

- Найдены аналитические выражения для границ диапазонов частот колебаний волнопродуктора, которые способны порождать аттракторы.
- Показано, что при значительном отличии частот внешних воздействий и малых амплитудах воздействий волновой режим представляет из себя совокупность независимо существующих волновых аттракторов.
- Показано, что при близких частотах внешних воздействий и малых амплитудах возникает режим с биениями, характерной особенностью которых является малая амплитуда пульсаций на убывающем склоне огибающей.
- Показано, что при близких частотах внешних воздействий и средних амплитудах возникают биения, на одном цикле которых успевает происходит переход к турбулентности через триадные резонансы, и реламинаризация.
- Обнаружено наличие фазового сдвига между биениями на волнопродукторе и биениями средней кинетической энергии во всем объеме.
- Разработана и верифицирована новая программа для моделирования аттракторов внутренних волн и в целом динамики стратифицированных сред.

Личный вклад автора

Исследования, результаты которых выносятся на защиту, были получены лично соискателем. Соискатель аналитически нашел диапазон частот внешнего воздействия при которых образуется аттрактор внутренних волн. Соискатель подобрал параметры эксперемента, провел расчеты и проанализировал полученные данные. Также принимал непосредственное участие в разработке реализации квазигидродинамического подхода на базе открытого программного комлекса ОрепFOAM. Научный руководитель И. Н. Сибгатуллин поставил первоначальную задачу и участввал в обсуждении результатов.

Аппробация работы

Материалы диссертации представлялись на различных конференциях, семинарах, как российсих так и международных:

- Открытая международная конференция ИСП РАН им. В.П.Иванникова. 5-6 декабря 2019 г, г. Москва Главное здание Российской академии наук (устный доклад).
- Международная конференция «Суперкомпьютерные технологии математического моделирования» (СКТеММ'19), 19-21 июня 2019, г. Москва (устный доклад).
- 13th OpenFOAM Workshop, Shanghai, China, Китай, 24-29 июня 2018 (устный доклад).
- XXIII международная конференция «Нелинейные задачи теории гидродинамической устойчивости и турбулентность». 25 февраля 4 марта 2018, Московская область, г. Звенигород (стендовый доклад).
- Рязанов Д.А. Открытая конференция ИСП РАН им. В.П. Иванникова. 30 ноября 1 декабря 2017 г. Москва главное здание Российской академии наук (стендовый доклад).

Публикации

По результатам диссертации опубликовано 12 научныйх работ, входящих в базы данных и системы цитирования РИНЦ, Scopus, Web of Science, 2 из них входят в Перечень рецензируемых научных изданий,

рекомендованных Высшей раттестационной комиссией. Зарегестрирована программа для ЭВМ.

Сутрктура и объем диссертации

Содержание работы

Работа состоит из введения где проведен обзор литературы, рассмотренны математические модели для изучения гравитационных и инерционных волн. Также рассматривается линеаризованная теория внутренних гравитационных волн и исследование волновых течений с помощью трассировки лучей.

Раздел с численным моделированием аттракторов внутренних гравитационных волн содержет в себе результаты моделирования аттракторов с помощью метода спектральных элементов и контрольного объе ма алгоритмами PISO и QHD на базе открытого программного продукта ОрепFOAM. Также в этом разделе обусловлен выбор частот для моделирования бигармонических колебаний, приведены результаты моделирования и анализ данных.

Наконец приведен заключитильный раздел с оновными выводами и список использованных источников.

Подписано в печать 12.01.2020. Формат 60x84/16. Усл. печ. л. 0,9. Тираж 60 экз. Заказ А-3. ИПМ им.М.В.Келдыша РАН. 125047, Москва, Миусская пл., 4