

Fig. 1

Fig. 2B

Fig. 3

Fig. 4

F19.5A

Fig.6C

F19.00

Fig. 7A

Fig. 78

Fig. 8

F14.9

Original Image

	2-D coordinates	4-D coordinates
Vertex 0	(x_0, y_0)	$(x_0, y_0, 0, 1)$
Vertex 1	$\begin{pmatrix} (x_0, y_0) \\ (x_1, y_1) \end{pmatrix}$	$(x_1, y_1, 0, 1) (x_2, y_2, 0, 1)$
Vertex 2	$(\mathbf{x}_2,\mathbf{y}_2)$	$(x_2, y_2, 0, 1)$
Vertex 3	(x3, y3)	$(x_3, y_3, 0, 1)$
The i th vertex	(x_2, y_2) (x_3, y_3) (x_1, y_1)	$(x_i, y_i, 0, 1)$
	1	(
	30	427-
		150

Fig. 10 A

TRANSLATE AWAY BY FOCAL LENGTH	900
V .	
ROTATE BY 02	902
ROTATE BY GY	904
POTATE BY OX	906
V	7
TRANSLATE TOWARDS BY FOCAL LENGTH	1908
V	1
DISTORT FOR PERSPECTIVE	910

Perspective Correction Transformations

1. Translate outwards:

$$T_a = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & f & 1 \end{bmatrix}$$

2. Three rotations:

$$\Theta_{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta_{x} & \sin \theta_{x} & 0 \\ 0 & -\sin \theta_{x} & \cos \theta_{x} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \Theta_{y} = \begin{bmatrix} \cos \theta_{y} & 0 & -\sin \theta_{y} & 0 \\ 0 & 1 & 0 & 0 \\ \sin \theta_{y} & 0 & \cos \theta_{y} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Theta_{z} = \begin{bmatrix} \cos \theta_{z} & \sin \theta_{z} & 0 & 0 \\ -\sin \theta_{z} & \cos \theta_{z} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3. Translate inwards:

$$T_b = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -f & 1 \end{bmatrix}$$

4. Effect of focal length on Perspective:

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Perspective Correction

Perspective Corrected Image Vertices given by:

$$\hat{p}_{i} = p_{i} T_{a} \Theta_{z} \Theta_{y} \Theta_{x} T_{b} P = [\hat{x}_{i}, \hat{y}_{i}, \hat{z}_{i}, \hat{w}_{i}]$$

But:

$$\widehat{w}_{t} = -\frac{x_{t}}{f}(-\sin\theta_{z}\sin\theta_{x} + \cos\theta_{z}\sin\theta_{y}\cos\theta_{y}) + \frac{y_{t}}{f}(\cos\theta_{z}\sin\theta_{x} + \sin\theta_{z}\sin\theta_{y}\cos\theta_{x}) + \cos\theta_{y}\cos\theta_{x}$$

and x_i ' and y_i ' from the perspective corrected image are given by:

$$x'_i = \frac{\widehat{x}_i}{\widehat{w}_i}$$
 and $y'_i = \frac{\widehat{y}_i}{\widehat{w}_i}$

Therefore we can write:

$$F_{x_i}(\theta_z, \theta_y, \theta_x, f) - x_i' = 0$$

Taking:

$$t = \begin{bmatrix} \theta_x & \theta_y & \theta_z & f \end{bmatrix}$$

We can write:

$$-\mathbf{F}(\mathbf{t}) = \begin{bmatrix} x_o - F_{x_0}(\theta_z, \theta_y, \theta_x, f) \\ y_o - F_{y_0}(\theta_z, \theta_y, \theta_x, f) \\ \vdots \\ x_i - F_{x_i}(\theta_z, \theta_y, \theta_x, f) \\ y_i - F_{y_i}(\theta_z, \theta_y, \theta_x, f) \end{bmatrix}$$

Newton's Method

By Newton's method of numerical computation, t is an estimate of the values

$$\begin{bmatrix} \theta_x & \theta_y & \theta_z & f \end{bmatrix}$$

then:

is a better estimate of the values.

Where J^{-1} is the matrix of partial derivatives:

$$J_{i,j} = \frac{\partial F_i}{\partial t_j} \qquad 164$$

Fig. 11

