《芯动力——硬件加速设计方法》作业答案解析

● "中国大学 MOOC"平台选课主页

https://www.icourse163.org/course/SWJTU-1207492806

● 课程相关资料下载网址 www.dizhixiong.cn

● 如果 VerilogHDL 基础较薄弱,建议课前在 B 站学习《从电路设计的角度入门 VerilogHDL》:

https://www.bilibili.com/video/BV1PS4y1s7XW/?spm_id_from=333.999.0.0&vd_source=11e1c053bd139ab5a2798c3f31d057df

如果期望继续深入静态时序分析,可在B站学习《数字集成电路静态时序分析》

https://www.bilibili.com/video/BV1if4y1p7Dq/?spm_id_from=333.999.0.0&vd_source=11e1c053bd139ab5a2798c3f31d057df

欢迎关注 B 站"讲芯片的邸老师"

第二章 VerilogHDL 作业题:

1. 是否会产生 latch

哪种写法会产生 latch?

答: a,c 会产生 latch

写法 a,c 中当变量 d 处于某一种 case 时变量 a 或 c 的状态不能同时更新,总有一个变量会保持前一个状态,从而产生 latch

2. 锁存器比寄存器省面积,但为什么在数字芯片设计中通常使用寄存器?

答: 锁存器不利于静态时序分析, 且会导致毛刺传播

```
3
      (20分) module DDFornet(rst,clk,a,b,c,data_out);
                input rst,c1k;
                input a,b,c;
                output data_out;
                reg data_out;
                reg data_temp;
                always @(posedge clk or negedge rst)
                if(!rst)
                  data temp<=1'b0;
                e1se
                  data_temp<=a&b&data_out;
                always @(*)
                   data_out=data_temp|c;
                endmodule
                问题:请画出代码对应的电路结构
```

答:

这个题目考察的要点是,要理解 DFF 的电路结构,理解时序逻辑和组合逻辑的描述方法,理解 DFF 存在反馈路径

第三章 电路结构设计作业题

1. 异步 FIFO, 若深度为 8 时,如何设置指针来保证在跨时钟域传播时,尽可能 地消除亚稳态,请写出具体的指针数值;若深度不是 2 次幂时,则采用何种方 法如何设置其读写指针。

答: 0_000, 0_001, 0_011, 0_010, 0_110, 0_111, 0_101, 0_100
1_100,1_101,1_111,1_110,1_010,1_011,1_000
对于任意深度为偶数 N 的 FIFO, 我们可以在对称轴(在除去 MSB 位的情况下, 011 和 111 是对称的, 010 和 110 是对称的)上下取 N/2 个格雷码
比如: 深度为 6 的 FIFO, 读写指针就可设置为 0_000, 0_001, 0_011, (去掉 0_010, 0_110) 0_111, 0_101, 0_100

也可以回答如下文字:

在非2次幂深度情况下,格雷码已经不再适用,此时的解决方法通常有:

- 1) 若深度为偶数,可采用最接近的2次幂的格雷码编码,在此基础上修改;
- 2) 深度为一般数值时,可自行设计一种逻辑电路,或者查找表,实现指针每次只跳变一次的功能;
- 3) 以上方法通常在设计层面较为复杂,若无特定需求,可将 FIFO 深度设置为 2 次幂, 浪费一些存储空间, 来化简控制电路的复杂度。
- 2. 系统时钟 12M(source clock), 分频出来 8K 和 1M 的时钟(generated clock)。

请问这种情况下,数据从 12M 到 8K 传输和 8K 到 12M 间传输是跨时钟域吗?为什么?

答:不是,他们来自同一个时钟源,相位和倍数是可控的,所以不属于跨时钟域。

跨时钟域是指时钟来自两个不同的时钟源,相互之间的相位和倍数关系彼此 不可控制

3. 若写时钟 50MHz,读时钟 40MHz,如果不丢失地将 10 万个数据送入读时钟域下游节点,则 FIFO 深度应设置为多少?

答: 将 10 万个数据送入 fifo 需要的时间为 10 万/50Mhz=2ms

在极端的背靠背情况下,两个突发传输持续发生,中间的盈余数据需要 fifo 缓存,这就是其最小深度在 2ms 内送出数据 40Mhz*2ms=8 万,所以在读写都是相同位宽的情况下,fifo 的最小深度为 2 万

4.请画出异步复位、同步释放的电路结构

答:

第四章 逻辑综合作业题

1.

请根据下图将design、cell、net、pin、port、reference、clock等填入图1所示的电路框图中。

答: 1.port 2.design 3.net 4.clk 5.pin 6.reference 7.cell

2.

请根据下图回答:

- (1)在逻辑综合中,加哪几条关于延时或时间的约束,能使DC对logicl进行逻辑综合?
- (2) 在逻辑综合中,加哪几条关于延时或时间的约束,能使DC对logic2进行逻辑综合?
- (3)在逻辑综合中,加哪几条关于延时或时间的约束,能使DC对logic3进行逻辑综合?

答案:

考察要点: 理解 STA 关于 timing path 的划分要求, 理解 STA 对时序路径的约

- 束。不一定把指令写出来(不需要背指令),大概意思对就可以了
- 1、input delay、时钟周期(虚拟时钟)
- 2、时钟周期
- 3、(1) input delay、output delay、时钟周期(虚拟时钟),输出 port 的 load 或者 (2) input delay、output delay,加上 set_max_delay 约束组合逻辑,以及输 出 port 的 load

请根据下图回答问题

- (1) 如何书写TCL指令,查看design当中有没有一个port叫做CLK?
- (2) 如何书写TCL指令,查看design当中所有的port
- (3) 如何书写TCL指令,得到所有方向是input的port
- (4) 请写出图中reference name?
- (5) 请写出图中instance name?

答: 1.get_ports CLK

2.get_ports *

3.get_ports * -f "direction=in"

4.encoder inv regfile

5.U1 U2 U3 U4

第五章 静态时序分析作业题

1.

- (1)[10分]请问对于flop2,其建立时间裕量为多少?
- (2)[10分]请问对于flop2,其保持时间裕里为多少?
- 1.T=10 Tcapture=0.6,Tlaunch=0.2,Tck2q=0.65,Tdp=0.35

Tsetup<0.6+10-0.2-0.65-0.35=9.4 余量: 9.4-0.45=8.95

2.Tcapture=0.6,Tlaunch=0.2,Tck2q=0.25,Tdp=0.15

Thold<0.2+0.25+0.15-0.6=0 余量: 0-0.1=-0.1

2.

如果把上述电路整体看为一个触发器,请回答如下问题

- (1)[20分]该电路的有效建立时间和保持时间是多少?请写出计算过程。
- A. Tsetup = 4 ns, Thold = 1 ns
- B. Tsetup = 3 ns, Thold = 0 ns
- C. Tsetup = 3 ns, Thold = 1ns
- D. Tsetup = 2 ns, Thold = 0 ns
- (2) [20分]该电路的最高时钟频率为多少?请写出计算过程。
- A. 250 MHz
- B. 80 MHz
- C. 125 MHz
- D. 166.7 MHz
- (3) [10分]该电路的功能与下列哪个触发器相似?[B]
- A. D flip flop with enable
- B. T flip flop
- C. JK flip flop
- D. SR flip flop
- (4) [10分]对于一个同步电路,以下哪个公式可以用于计算最高工作频率?
- A. Max Freq = 1/(Tprop_delay + Tsu + Thold)
- B. Max Freq = 1/(Tprop_delay + Tsu + Tco + Thold)
- C. Max Freq = 1/(Tsu + Tco + Thold + Tclock_skew)
- D. Max Freq = 1/(Tprop_delay + Tsu + Tco + Tclock_skew)
- E. Max Freq = 1/(Tprop_delay + Tsu + Thold + Tco + Tclock_skew)
 - 1. 答: setup=2+2-1=3ns; hold=2-2+1=1ns
 - 2. T>2+4+2=8ns, f=125M
 - 3. B
 - 4. D

3.

Please reference the following for the next group of questions

Startpoint: fifo_rd_pd_reg_16_

(rising edge-triggered flip-flop clocked by my_clock)

Endpoint: we_bank_0_reg_2_

(rising edge-triggered flip-flop clocked by my_clock)

Path Group: my_group

Path Type: max

Point	Cap	Trans	Incr	Path	
clock my_clock (rise edge)			0.0000	0.0000	
clock network delay (ideal)			0.0000	0.0000	
fifo_rd_pd_reg_16_/CK (p_SDFFHX4)		0.0000	0.0000	0.0000 r
fifo_rd_pd_reg_16_/Q (p_SDFFHX4)		0.0226	0.0542	0.1166	0.1166 f
obuf_U1904/Y (NAND3BX4)		0.0095	0.0643	0.0915	0.2082 f
obuf U1903/Y (INVX8)	0.0188	0.0450	0.0385	0.2467	r
obuf buf 1 add 524 U14/Y (NAND2X4)					0.2841 f
U7015/Y (OAI21X4)	0.0111	0.1008	0.0781	0.36221	•
U22745/Y (AOI21X4)	0.0054	0.0481	0.0294	0.3916	f
obuf_U9743/Y (OAI21X4)	0.0067	0.0772	0.0638	0.455	4 r
$obuf_buf_1_add_524_U57/Y\ (XNOR2X4)$	C	0.0098	0.1071	0.0769	0.5323 r
DP_OP_248_5346_8_U51/CO0 (AFCSHC	INX2)	0.0037	0.0970	0.1378	3 0.6702 r
obuf_U9662/Y (MX2X4)	0.0077	0.0382	0.0825	0.752	7 r
DP_OP_248_5346_8_U44/S (AFCSHCINE	X4)	0.0075	0.0462	0.1200	0.8726 f
obuf_U9746/Y (INVX6)	0.0174	0.0463	0.0394	0.9120	r
obuf_U1772/Y (NOR2X4)	0.0113	0.0554	0.0294	0.9414	4 f
U17999/Y (OA22X4)	0.0058	0.0398	0.1128	1.0542	f
obuf_U1852/Y (NOR2X4)	0.0116	0.0909	0.0686	1.1228	3 r
U26782/Y (INVX10)	0.0549	0.0558	0.0538	1.1765	f
U7011/Y (OA22X4)	0.0092	0.0465	0.0982	1.2747	f

U27252/Y (CLKNAND2X2)	0.005	0.0484	0.0402	1.3149 r
U24494/Y (XOR2X3)	0.0058	0.0531	0.0386	1.3536 f
obuf_U3105/Y (NOR2X4)	0.0056	0.0583	0.0497	1.4033 r
obuf_U3097/Y (NAND2X4)	0.0056	0.0341	0.0329	1.4362 f
obuf_U3094/Y (NOR2X4)	0.0053	0.0534	0.0421	1.4784 r
obuf_U1886/Y (AOI21X4)	0.0157	0.0607	0.0580	1.5364 f
obuf_U1861/Y (NOR3X4)	0.0101	0.1561	0.1036	1.6400 r
U24496/Y (INVX4)	0.0073	0.0442	0.0351	1.6751 f
obuf_U1760/Y (OR2X4)	0.0135	0.0378	0.0731	1.7481 f
obuf_U9462/Y (INVX12)	0.0325	0.0428	0.0358	1.7839 r
U17857/Y (OAI211X4)	0.0062	0.0992	0.0506	1.8345 f
U24495/Y (CLKINVX6)	0.0036	0.0334	0.0188	1.8533 r
we_bank_0_reg_2_/D (p_SDFFRHQX4)		0.033	0.000	0 1.8533 r
data arrival time			1.8533	
clock my_clock (rise edge)			1.8000	1.8000
clock network delay (ideal)			0.0000	1.8000
we_bank_0_reg_2_/CK (p_SDFFRH	QX4)		0.0000	
library setup time			-0.070	1.7299
data required time				1.7299
data required time				1.7299
data arrival time				.8533
slack (VIOLATED)				-0.1234

分]根据以下静态时序分析报告回答问题。

- (1) 这个报告是哪个EDA工具产生的?[2分]
- (2) 报告最右侧一列中的"f"和"r"表示什么含义?[2分]
- (3) 该报告描述的是建立时间还是保持时间?
- (4) 该电路能跑的最高时钟频率为多少?[4分]
- (5) 该报告是否能够求出保持时间?[4分]
- (6) 该报告的数据与芯片布局布线之后的数据是否相同?芯片布局布线阶段与DC综合阶段,在处理时钟网络时有何不同?[4分]

- 1.design compiler 或者 PT
- 2.f 表示数据下降翻转, r 表示数据上升翻转
- 3.建立时间
- 4.t=1.8533+0.0701=1.9234ns f=1/t=519.9MHZ
- 5.不能
- 6.不同, DC 时时钟网络是理想的,布局布线后时钟网络有延迟

第六章 作业题

- 1 (100分) 参考ASIC的设计流程,判断如下FPGA硬件开发的陈述是否正确。
 - 1. FPGA的开发代码不需要可综合。
 - 2. FPGA不需要进行静态时序分析。
 - 3. FPGA不需要做时序约束。
 - 4. FPGA不需要检查建立时间和保持时间。
 - 5. FPGA通常也会存在亚稳态的同步问题。
 - 6. FPGA硬件资源无限大。
 - 7. FPGA通常有很对IP核可以调用。
 - 8. PYNQ开发板中,Python程序运行在FPGA的PL部分。
 - 9. FPGA的bit文件可以在不同FPGA开发板之间随意迁移。
 - 10. FPGA完成bit文件下载后,需要使用片内逻辑分析仪来完成debug。
- 1.错 2.错 3.错 4.错 5.对 6.错 7.对 8.错(PS) 9.错(芯片不同,架构不同,引脚不同) 10.对;片内主要是虚拟逻辑分析仪,片外是真实的逻辑分析仪。