

Motivation

Sentinel I/II

Landsat

ImageNet

Trained using contrastive learning or reconstruction learning.

Foundational Model

https://www.esa.int/ESA Multimedia/Missions/Sentinel-1/(sortBy)/view count/(result type)/images
https://eoimages.gsfc.nasa.gov/images/imagerecords/153000/153149/princecharles oli2 20240715 lrg.jpg
https://cs.stanford.edu/people/karpathy/cnnembed/

Goal

"Neural Plasticity-Inspired Foundation Model for Observing the Earth Crossing Modalities" - Zhitong Xiong et al. - 2024

- Foundational model for remote sensing
- Multimodal

DOFA stands for "Dynamic-One-For-All"

DOFA stands for "Dynamic-One-For-All"

1st base concept: **Hypernetwork**

Goal:

- "reduce computational overhead" and complexity
- Multimodality (also on unseen data)

DOFA stands for "Dynamic-One-For-All"

2nd base concept: **Distillation loss**

Goal:

- Accelerate training convergence
- Enhance overall performance

Combined with a reconstruction loss

→ Reproduce input data correctly + produce informed representations

Methodology

UMAP visualization

Classification with different classifiers

About the Dataset

- 550.000 labeled image patches from Sentinel-I and Sentinel-II
- 19 classes or 43 classes
- Split into train and test set by torchgeo repository

Dataset

- 550.000 labeled image patches from Sentinel-I and Sentinel-II
- 19 classes or 43 classes
- Split into train and test set by torchgeo repository

UMAP feature analysis

- UMAP transformation on DOFA features
- labelled with 19 classes

UMAP visualization of BigEarthNet features (One vs Rest labels) Urban fabric Industrial or commercial units Arable land Permanent crops 11 class class class class other other UMAP: n neighbors=15, min dist=0.1 Complex cultivation patterns Agriculture with a lot of natural vegetation **Pastures** Agro-forestry areas class class class class ____ other ____ other other UMAP: n neighbors=15, min dist=0.1 Broad-leaved forest Coniferous forest Mixed forest Natural grassland (sparsely vegetated) class class class othe other other UMAP: n neighbors=15, min dist=0.1 Moors, heathland Transitional woodland, shrub Beaches, dunes, sands Inland wetlands class class class class other other other UMAP: n neighbors=15, min dist=0.1 Coastal wetlands Inland waters Marine waters class class class UMAP: n neighbors=15, min dist=0.1 UMAP: n neighbors=15, min dist=0.1 UMAP: n neighbors=15, min dist=0.1

Classification results

Tests results on BigEarthNet using DOFA feature vectors and 19 classes:

	$F_{macro}^{2}\left(\% ight)$	$F_{micro}^{2}\left(\% ight)$	hamming loss	P_{macro} (%)	P_{micro} (%)
Random Forest	21.4	35.8	0.123	52	72
Linear Probing	22.9	35.3	0.124	49	70
MLP	34.5	47.8	0.113	58	71

Classification results

Key takeaway

- DOFA is able to produce meaningful features from the BigEarthNet
- DOFA has low performance for low-data-availability classes

References

- Zhitong Xiong, Yi Wang, Fahong Zhang, Adam J. Stewart, Jo¨elle Hanna, Damian Borth, Ioannis Papoutsis, Bertrand Le Saux, Gustau Camps-Valls, and Xiao Xiang Zhu. Neural plasticity-inspired multimodal foundation model for earth observation, 2024
- https://www.esa.int/ESA_Multimedia/Missions/Sentinel-1/(sortBy)/view_count/(result_type)/images
- https://eoimages.gsfc.nasa.gov/images/imagerecords/153000/153149/princecharles_oli2_20240715_lrg.jpg
- https://cs.stanford.edu/people/karpathy/cnnembed/
- Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim: A simple framework for masked modeling, 2022
- Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection for dimension reduction,