

PUBLICATION NO. 980599

**1995
1996**
UNIVERSAL TIMER/COUNTERS

RACAL-DANA

RACAL-DANA INSTRUMENTS INC.

4 Goodyear Street, P.O. Box C-19541, Irvine, CA 92713
Telephone: 714/859-8999, TWX: 910-595-1136, TLX: 67-8341

RACAL-DANA INSTRUMENTS LTD.

Hardley Industrial Estate, Hythe, Southampton, Hampshire, SO4 6ZH, England
Telephone: (0703) 843265, FAX: (0703) 848919, TLX: 47600

RACAL-DANA INSTRUMENTS S.A.

18 Avenue Dutarte, 78150 Le Chesnay, France
Telephone: (1) 3-955-8888, TLX: 697 215

RACAL-DANA INSTRUMENTS GmbH.

Hermannstrasse 29, D-6078 Neu Isenburg, Federal Republic of Germany
Telephone: 06102-2861/2, TLX: 412896

RACAL-DANA INSTRUMENTS ITALIA srl.

Via Medenate 84/A, 20138 Milano MI, Italy
Telephone: (02) 5062767, (02) 5052686, (02) 503444, TLX: 315697

RACAL

PUBLICATION DATE: DECEMBER 1988

FOR YOUR SAFETY

Before undertaking any maintenance procedure, whether it be a specific troubleshooting or maintenance procedure described herein or an exploratory procedure aimed at determining whether there has been a malfunction, read the applicable section of this manual and note carefully the **WARNING** and **CAUTION** notices contained therein.

The equipment described in this manual contains voltage hazardous to human life and safety and which is capable of inflicting personal injury. The cautionary and warning notes are included in this manual to alert operator and maintenance personnel to the electrical hazards and thus prevent personal injury and damage to equipment.

- -- If this instrument is to be powered from the AC line (mains) through an autotransformer (such as a Variac or equivalent) ensure that the common connector is connected to the neutral (earthed pole) of the power supply.

Before operating the unit ensure that the protective conductor (green wire) is connected to the ground (earth) protective conductor of the power outlet. Do not defeat the protective feature of the third protective conductor in the power cord by using a two conductor extension cord or a three-prong/two-prong adaptor.

Maintenance and calibration procedures contained in this manual sometimes call for operation of the unit with power applied and protective covers removed. Read the procedures carefully and heed Warnings to avoid "live" circuit points to ensure your personal safety.

Before operating this instrument:

1. Ensure that the instrument is configured to operate on the voltage available at the power source. See Installation Section.
2. Ensure that the proper fuse is in place in the instrument for the power source on which the instrument is to be operated.
3. Ensure that all other devices connected to or in proximity to this instrument are properly grounded or connected to the protective third-wire earth ground.

If at any time the instrument:

- Fails to operate satisfactorily
- Shows visible damage
- Has been stored under unfavorable conditions
- Has sustained stress

It should not be used until its performance has been checked by qualified personnel.

AMENDMENT

to the 1995/6 and 1995/6-02M Instruction Manuals
Part numbers 980599 and 980607

June 14, 1989

This Amendment adds the Rubidium Frequency Standard, Option 04R, part number 404469.

Drawings included in this amendment:

- 404469 – Assembly, Rubidium Standard
- 404565 – Module Assembly, Rubidium Oscillator
- 401858 – PCB Assy., Rubidium Oscillator Power Supply
- 431858 – Schematic, Rubidium Oscillator Power Supply

Calibration Procedure on following page.

Option O4R Calibration Procedure

- 1) Connect equipment as shown in Figure 1.1

Figure 1.1

Counter Input/Control Settings

- a) Select FREQ A
 - b) Select AC coupling, Input A
 - c) Select 50 ohms impedance, Input A
 - d) Set gate time of 100Sec
- 2) Allow sufficient time for equipment to stabilize

Note

Option O4R requires 4 minutes stabilization to obtain the following frequency accuracy: $\pm 1 \times 10^{-9}$ of the final frequency(calibrated frequency), or the frequency before turn off, (if turn off was within 24 hours). The frequency will typically be within $\pm 2 \times 10^{-11}$ of the final frequency after 1 hour. If the unit was not recently calibrated, the maximum frequency offset after one hour of operation would be: $\pm 2 \times 10^{-11}$ warmup accuracy, $\pm 2 \times 10^{-11}$ retrace. This assumes the last calibration was at the same ambient temperature.

- 3) Locate Option O4R frequency adjust access hole.

Note

The frequency of Option O4R may be adjusted over a range of approximately $\pm 2 \times 10^{-9}$ by means of a 10 turn potentiometer accessible through the frequency adjust access hole.

- 4) Using a small screwdriver, slowly adjust the potentiometer while watching the counter display. Adjust the unit's output to the External Frequency Reference Standard $\pm 5 \times 10^{-11}$ Hz.

SCAFFOLD

3 REPLACE EXISTING HARDWARE
WITH HARDWARE NOTED TO
ATTACH MFG PLATE(ITEM "G")

 USE FAN MOUNTING SCREWS TO

(ITEM #5) TO FAN HOUSING.

401730 AND RETURN TO STOCK

RACAL-DANA Instruments Inc.	
4 GOODYEAR IRVINE, CALIFORNIA 92714	
DOCUMENT TITLE	
OSC., RUBIDIUM STAND.	
OPTION 04 R	
SIZE	CODE/IDENT NO.
D	21793
SCALE IND.	CONTAMENTS
1/4	404469
1/4	SHEET
1	1
5	5
10	10
20	20
40	40
80	80
160	160
320	320
640	640
1280	1280
2560	2560
5120	5120
10240	10240
20480	20480
40960	40960
81920	81920
163840	163840
327680	327680
655360	655360
1310720	1310720
2621440	2621440
5242880	5242880
10485760	10485760
20971520	20971520
41943040	41943040
83886080	83886080
167772160	167772160
335544320	335544320
671088640	671088640
1342177280	1342177280
2684354560	2684354560
5368709120	5368709120
10737418240	10737418240
21474836480	21474836480
42949672960	42949672960
85899345920	85899345920
171798691840	171798691840
343597383680	343597383680
687194767360	687194767360
1374389534720	1374389534720
2748779069440	2748779069440
5497558138880	5497558138880
10995116277760	10995116277760
21990232555520	21990232555520
43980465111040	43980465111040
87960930222080	87960930222080
175921860444160	175921860444160
351843720888320	351843720888320
703687441776640	703687441776640
1407374883553280	1407374883553280
2814749767106560	2814749767106560
5629499534213120	5629499534213120
11258999068426240	11258999068426240
22517998136852480	22517998136852480
45035996273704960	45035996273704960
90071992547409920	90071992547409920
180143985094819840	180143985094819840
360287970189639680	360287970189639680
720575940379279360	720575940379279360
1441151880798588720	1441151880798588720
2882303761597177440	2882303761597177440
5764607523194354880	5764607523194354880
1152921504638870960	1152921504638870960
2305843009277741920	2305843009277741920
4611686018555483840	4611686018555483840
9223372036110967680	9223372036110967680
18446744072221935360	18446744072221935360
36893488144443870720	36893488144443870720
73786976288887741440	73786976288887741440
147573952577775482880	147573952577775482880
295147905155550965760	295147905155550965760
590295810311101931520	590295810311101931520
1180591620622203863040	1180591620622203863040
2361183241244407726080	2361183241244407726080
4722366482488815452160	4722366482488815452160
9444732964977630904320	9444732964977630904320
18889465929955261808640	18889465929955261808640
37778931859910523617280	37778931859910523617280
75557863719821047234560	75557863719821047234560
151115727439642094681120	151115727439642094681120
302231454879284189362240	302231454879284189362240
604462909758568378724480	604462909758568378724480
120892581951713675744880	120892581951713675744880
241785163903427351489760	241785163903427351489760
483570327806854702979520	483570327806854702979520
967140655613709405959040	967140655613709405959040
1934281311227418811918080	1934281311227418811918080
3868562622454837623836160	3868562622454837623836160
7737125244909675247672320	7737125244909675247672320
1547425048919350495344640	1547425048919350495344640
3094850097838700987689280	3094850097838700987689280
6189700195677401975378560	6189700195677401975378560
1237940039135480395155120	1237940039135480395155120
2475880078270960790310240	2475880078270960790310240
4951760156541921580620480	4951760156541921580620480
9903520313083843161240960	9903520313083843161240960
1980704062616768632248960	1980704062616768632248960
3961408125233537264497920	3961408125233537264497920
7922816250467074528995840	7922816250467074528995840
15845632508934149057991680	15845632508934149057991680
31691265017868298115983360	31691265017868298115983360
63382530035736596231966720	63382530035736596231966720
12676506071467319246393440	12676506071467319246393440
25353012142934638492786880	25353012142934638492786880
50706024285869276985573760	50706024285869276985573760
10141204857173855397114880	10141204857173855397114880
20282409714347710794229760	20282409714347710794229760
40564819428695421588459520	40564819428695421588459520
81129638857390843176919040	81129638857390843176919040
16225927771478168635383520	16225927771478168635383520
32451855542956337270767040	32451855542956337270767040
64903711085912664541534080	64903711085912664541534080
12980742217182532908306800	12980742217182532908306800
25961484434365065816613600	25961484434365065816613600
51922968868730131633227200	51922968868730131633227200
103845937737460263266454400	103845937737460263266454400
207691875474920526532908800	207691875474920526532908800
415383750949841053065817600	415383750949841053065817600
830767501899682106131635200	830767501899682106131635200
1661535003799364212263270400	1661535003799364212263270400
3323070007598728424526540800	3323070007598728424526540800
6646140015197456849053081600	6646140015197456849053081600
13292280030394913698106163200	13292280030394913698106163200
265845600607898273962123266400	265845600607898273962123266400
531691201215796547924246532800	531691201215796547924246532800
106338240243159309584893065600	106338240243159309584893065600
212676480486318619169786131200	212676480486318619169786131200
425352960972637238339572262400	425352960972637238339572262400
850705921945274476679144524800	850705921945274476679144524800
1701411843890548953358285049600	1701411843890548953358285049600
3402823687781097906716570099200	3402823687781097906716570099200
6805647375562195813433140198400	6805647375562195813433140198400
1361129475112391626866280396800	1361129475112391626866280396800
2722258950224783253732560793600	2722258950224783253732560793600
5444517900449566507465121587200	5444517900449566507465121587200
10889035800891133014930243754400	10889035800891133014930243754400
21778071601782266029860487508800	21778071601782266029860487508800
43556143203564532059720975017600	43556143203564532059720975017600
87112286407129064119441950035200	87112286407129064119441950035200
174224572814258128238839000070400	174224572814258128238839000070400
348449145628516256477678000140800	348449145628516256477678000140800
696898291257032512955356000281600	696898291257032512955356000281600
139379658251406525910672000563200	139379658251406525910672000563200
278759316502813051821344001126400	278759316502813051821344001126400
557518633005626103642688002252800	557518633005626103642688002252800
111503726601125220728576004505600	111503726601125220728576004505600
223007453202254441457152009011200	223007453202254441457152009011200
446014906404508882914304001802400	446014906404508882914304001802400
892029812808017775828608003604800	892029812808017775828608003604800
1784059625616035551657216007209600	1784059625616035551657216007209600
35681192512320711033144320014419200	35681192512320711033144320014419200
71362385024641422066288640028838400	71362385024641422066288640028838400
14272477004928284413257720057676800	14272477004928284413257720057676800
285449540098565688265154400115353600	285449540098565688265154400115353600
570899080197131376530308800230707200	570899080197131376530308800230707200
114179816038262655310617600461414400	114179816038262655310617600461414400
228359632076525310621235200922828800	228359632076525310621235200922828800
456719264153050621242470400184561600	456719264153050621242470400184561600
913438528306101242484940800369123200	913438528306101242484940800369123200
182687705661202484496981600738246400	182687705661202484496981600738246400
365375411322404968993963200147649200	365375411322404968993963200147649200
730750822644809937987926400295298400	730750822644809937987926400295298400
146150164528961987597585200590596800	146150164528961987597585200590596800
2923003290579239751951704001181193600	2923003290579239751951704001181193600
5846006581158479503903408002362387200	5846006581158479503903408002362387200
1169201316316959007806816004724774400	1169201316316959007806816004724774400
2338402632633918015613632009449548800	2338402632633918015613632009449548800
4676805265267836031227264001889909600	4676805265267836031227264001889909600
9353610530535672062454528003779819200	9353610530535672062454528003779819200
18707221061071344124909056007559638400	18707221061071344124909056007559638400
374144421221426882498181120015119276800	374144421221426882498181120015119276800
748288842442853764996362240030238553600	748288842442853764996362240030238553600
149657768488570752999274480060477071200	149657768488570752999274480060477071200
299315536977141505998548960012095404400	299315536977141505998548960012095404400
59863107395428301199709792002418808800	59863107395428301199709792002418808800
119726214790856602399419584004837617600	119726214790856602399419584004837617600
239452429581713204798839168009675355200	239452429581713204798839168009675355200
478904859163426409597678336001935070400	478904859163426409597678336001935070400
957809718326852819195356672003870140800	957809718326852819195356672003870140800
1915619436653705638390713344007740281600	1915619436653705638390713344007740281600
38312388733074112767814266880015480563200	38312388733074112767814266880015480563200
76624777466148225535628533760030961126400	76624777466148225535628533760030961126400
15324955493229445107125666720061922252800	15324955493229445107125666720061922252800
30649910986458890214251333440012384451600	30649910986458890214251333440012384451600
61299821972917780428502666880024768903200	61299821972917780428502666880024768903200
122599643945835560857005333440049537806400	122599643945835560857005333440049537806400
245199287891671121714010666880099075612800	245199287891671121714010666880099075612800
4903985757833422434280213334400198151235600	4903985757833422434280213334400198151235600
9807971515666844868560426668800396302471200	9807971515666844868560426668800396302471200
19615943031333689737120853334400792604852400	19615943031333689737120853334400792604852400
39231886062667379474241706668800158520910400	39231886062667379474241706668800158520910400
78463772125334758948483413334400317041820800	78463772125334758948483413334400317041820800
15692754425067551788966826668800634083641600	1569275442506755178896682

Table 1.1 - Technical Specifications (Cont'd)

Accuracy:	$(\pm \text{ Accuracy of } F_C/F_C) \pm (\text{Accuracy of } F_B)/F_B$
Where F_C and F_B are the frequencies of input signals C and B, respectively.	
TOTALIZE A BY B	
(Totalize B by A available via Special Function 21)	
Range:	0 to 100 MHz
Start/Stop:	Input B or manual via Special Function 61
LSD Displayed:	1 Count
Resolution:	LSD
Accuracy:	Same as Resolution
PHASE A RELATIVE TO B	
(Phase B relative to A available via Special Function 21)	
Range:	0 to 360°
Minimum Signal:	150 mV p-p using Auto-Trigger function 25 mV rms Manual Trigger settings
LSD Displayed:	Continuous monitoring of measurement provides optimum resolution based on Period and Time Interval Resolution
Resolution:	$\pm \text{LSD} \pm \frac{\text{TI Resolution}}{\text{PERIOD A}} \times 360^\circ$
Accuracy:	$\pm \text{LSD} \pm \frac{\text{TI Accuracy}}{\text{PERIOD A}} \times 360^\circ$
GATE TIME	
Range:	200 ns to 100 sec
LSD Displayed:	3 Digit Display

Table 1.1 - Technical Specifications (Cont'd)

LSD Displayed:	$\frac{\text{Ratio}}{F_A \times \text{Gate Time}}$
Where F_A is the higher frequency, connected to the numerator input	
Resolution:	$\frac{\pm \text{LSD} \pm T_B \times \text{Ratio}}{\text{Gate Time}}$
Where T_B is the denominator trigger error on lower frequency Input B	
Accuracy:	Same as Resolution
Ratio C/B (hardware) (Ratio C/A is available via Special Function 21)	
Range:	
Input C	40 MHz to 1.3 GHz
Input B	0 to 100 MHz
LSD Displayed:	$\frac{\text{Ratio}}{F_C \times \text{Gate Time}} \times 64$
Where F_C is Input C frequency.	
Resolution:	$\frac{\pm \text{LSD} \pm T_B \times \text{Ratio}}{\text{Gate Time}}$
Where T_B is denominator trigger error on lower frequency Input B	
Accuracy:	Same as Resolution
Ratio C/B (software)	
Range:	
Input C:	40 MHz to 1.3 GHz
Input B:	0 to 200 MHz

Table 1.1 - Technical Specifications (Cont'd)

LSD Displayed:	$\frac{1 \text{ ns} \times \text{Slew Rate (to 3 digits)}}{\text{Transition Time}}$
Resolution:	$\pm \left[\frac{(\text{Stop Trig Level}-\text{Start Trig Level}) + 10 \text{ mV}}{0.9 \times (\text{Transition Time}-\text{Transition Time Resolution})} \right] - \text{Slew}$
Accuracy:	$\pm \left[\frac{(\text{Stop Trig Level}-\text{Start Trig Level}) + 20 \text{ mV}}{0.9 \times (\text{Transition Time}-\text{Transition Time Accuracy})} \right] - \text{Slew}$
The magnitude of the slew rate is displayed on the 7-segment display readout. Negative values are obtained on selecting slope \.	
FREQUENCY RATIO MEASUREMENT	
Ratio A/B (software) (Ratio B/A is available via Special Function 21)	
Range:	
Input A	0 to 200 MHz
Input B	0 to 200 MHz
Accuracy:	$\pm (\text{Accuracy of } F_A)/F_A \pm (\text{Accuracy of } F_B)/F_B$
Where F_A and F_B are the frequencies of input signals A and B, respectively.	
Ratio A/B (hardware)	
Range:	
Input A	0 to 100 MHz
Input B	0 to 100 MHz

Table 1.1 - Technical Specifications (Cont'd)

LSD Displayed:	Same as Time Interval Specification
Resolution:	• Same as Time Interval Specification
Accuracy:	Same as Time Interval Specification with Trigger Level Timing Error* computed at 10% and 90% trigger points
PULSE WIDTH	
Range:	5 ns to 33 ms (10^7 s for manually set trigger levels)
LSD Displayed:	Same as Time Interval Specification
Resolution:	Same as Time Interval Specification
Accuracy:	Same as Time Interval Specification with Trigger Level Timing Error* computed at 50% trigger points
DUTY CYCLE	
Range:	0.01% to 99.99%
Frequency Range:	30 Hz to 100 MHz (to DC for manually set trigger levels)
LSD Displayed:	0.01% or 1 ns/period x 100% (whichever is greater)
Resolution:	<u>Pulse Width Resolution</u> x 100% Period
Accuracy:	\pm LSD \pm $\left(\frac{\text{Pulse Width Accuracy}}{\text{Period}} \right) \times 100\%$
SLEW RATE	
Range:	10V/s to 2×10^9 V/s
Transition Time Range:	5 ns to 30 ms
Minimum Pulse Height:	250 mV p-p

** Refer to Definitions, 'Trigger Level Timing Error'

Table 1.1 - Technical Specifications (Cont'd)

PERIOD MEASUREMENT	
Range:	5 ns to 1.0×10^7 s
LSD Displayed:	(1 ns/Gate Time) X Period
Resolution:	$\pm (1 \times \text{LSD}) \pm 1.4 \times (\text{Trigger Error}^*/\text{Gate Time}) \times \text{Period}$
Accuracy:	$\pm \text{Resolution} \pm \text{Time Base Error} \times \text{Period}$
TIME INTERVAL MEASUREMENT	
Input Configuration:	
Separate:	Input A start/Input B stop Input B start/Input A stop (through Special Function 21 or GPIB)
Common:	Input A or Input B start and stop
Range:	-3 ns to 1.0×10^7 sec
LSD Displayed:	1 ns (100 ps using Average mode)
Resolution:	$\pm (1 \times \text{LSD}) \pm (\text{Start Trigger Error}^*) \pm (\text{Stop Trigger Error}^*)$
Accuracy:	$\pm (\text{Resolution}) \pm (\text{Time Base Error}) \times \text{TI} \pm (\text{Trigger Level Timing Error}^{**})$ $\pm 2\text{ns}$
Time Interval Delay:	Programmable 200 ns to 100 s
Delay Resolution:	$\geq 1 \text{ mSec}, 0.1\%$ $< 1 \text{ mSec}, 0.1 \mu\text{s}$
Delay Accuracy:	Same as Delay Resolution
RISE/FALL TIME	
Range:	5 ns to 25 ms
Minimum Pulse Height:	250 mV p-p
Minimum Pulse Width:	15 ns at signal peaks

* Refer to Definitions, Trigger Error

** Refer to Definitions, Trigger Level Timing Error

Table 1.1 - Technical Specifications (Cont'd)

Impedance:	10 kilohms shunted by ≤ 35 pF
Damage Level:	$\pm 20V$ (DC + AC peak)
Triggering	
Trigger Levels:	TTL or zero-crossing, selectable via special function or through GPIB interface
Trigger Slope:	+ or -, selectable via special function or GPI
FREQUENCY MEASUREMENT	
Inputs A & B	
Range:	
Input A: (B selectable through Special Function 21 or GPIB)	0 to 200 MHz
LSD Displayed:	(1 ns/Gate Time) X Frequency (i.e., 9 digits in one second)
Resolution:	$\pm(1 \times \text{LSD}) \pm 1.4 \times (\text{Trigger Error}^*/\text{Gate Time}) \times \text{Frequency}$
Accuracy:	$\pm \text{Resolution} \pm \text{Time Base Error} \times \text{Frequency}$
Gate Time:	
Range:	Selectable from 200 ns to 100 sec.
Resolution:	$\geq 1 \text{ ms}, 0.1\%$ $< 1 \text{ ms}, 0.1 \mu\text{s}$
Input C (1996 only)	
Range:	40 MHz to 1.3 GHz
LSD Displayed:	(1 ns/Gate Time) X Frequency
Resolution:	(LSD)
Accuracy:	$\pm \text{Resolution} \pm \text{Time Base Error} \times \text{Frequency}$

* Refer to Definitions, Trigger Error

Table 1.1 - Technical Specifications (Cont'd)

Coupling:	AC or DC, independently selectable
Impedance:	
High, Separate and Common	1 megohm shunted by 40 pF (nominal)
50 Ohm	50 ohms nominal
Damage Level:	
1 megohm input impedance	X1: 260V (DC + AC rms) DC to 2 kHz $5 \times 10^5/f$ V, 2 kHz - 100 kHz 5V rms, 100 kHz - 200 MHz
--	X10,X50: 260V (DC + AC rms) DC to 20 kHz $5 \times 10^6/f$ V, 20 kHz to 100 kHz 50V rms, 100 kHz to 200 MHz
50 ohm input impedance	5V rms (DC to 200 MHz)
Input C	
Frequency Range:	40 MHz to 1.3 GHz
Sensitivity, Sine Wave:	10 mV rms to 1.0 GHz 100 mV rms to 1.3 GHz
Dynamic Range:	40 dB to 1 GHz 20 dB to 1.3 GHz
Impedance:	50 ohms nominal, AC-coupled
VSWR	2:1 at 1 GHz
Maximum Operating Input:	1V rms
Maximum Input: (without damage)	7V rms (fuse-protected)
Input D (Gate Control Input)	
Sensitivity, Pulse:	300 mV p-p; 50 ns min. width with 150 mV overdrive

Table 1.1 - Technical Specifications (Cont'd)

Filter:	Independently selectable Input A and Input B; 100 kHz, nominal. Greater than 20 db attenuation from 10-200 MHz.
Note: The Filter and Hysteresis functions may be combined to increase noise immunity.	
Dynamic Range (X1):	75 mV to 10V p-p to 25 MHz 75 mV to 5V p-p to 100 MHz 150 mV to 2.5V p-p to 200 MHz
Signal Operating Range (X1):	-5V DC to +5V DC
Crosstalk at 100 MHz:	500 mV rms*
*Sine wave into either input will not trigger the other input.	
Triggering:	
Trigger Level Ranges:	5, 50, 250V peak (X1, X10, X50)
Trigger Level:	Adjustable to $\pm 100\%$ of input voltage range with a resolution of 0.2% of input range (10 mV on X1). Level is displayed on front panel.
Trigger Slope:	+ or -, selectable with digital hysteresis compensation.
Trigger Level Setting Accuracy ($25^{\circ}\text{C} \pm 1^{\circ}\text{C}$) (X1 range)	$\pm 1\%$ of trigger level ± 10 mV
Trigger Level Temperature Coefficient (X1 range)	$\pm .5$ mV/ $^{\circ}\text{C}$
Auto-Trigger	
Frequency Range:	DC and 30 Hz to 100 MHz (AC or DC Coupled), usable to 200 MHz
Minimum Amplitude:	150 mV p-p
Accuracy of Trigger Level Readout:	Same as "Read Amplitude Peak" accuracy
Response Time:	650 ms typical 1s maximum
Note: The Auto-Trigger function is independent of the input-signal duty cycle.	

Table 1.1 - Technical Specifications

GENERAL DESCRIPTION	
<p>The 1995/1996 system universal counter utilizes a microprocessor-controlled multiple register data acquisition IC for counting and timing to 200 MHz (1.3 GHz on the 1996 with Input C). The counter provides the following measurement functions: frequency, frequency ratio, period, 1-ns resolution time interval, automatic pulse parameters (including duty cycle and slew rate), phase, and totalize. Time interval averaging is available via software-derived functions.</p>	
<p>The frequency range on Inputs A and B is 0 to 200 MHz; 40 MHz to 1.3 GHz on Input C using an additional board. Trigger levels on Inputs A and B can be set manually via the front panel keypad or via auto-trigger with 50% trigger points. The DC offset component of the input signal may be tracked by auto-triggering in between readings in the manual mode (peak tracking). Use of a timing error correction (TEC) technique permits measurements with 9-digit resolution in one second and a single-shot time-interval resolution to 1 ns.</p>	
<p>The counter is housed in a 3.5" high X 19" wide full-rack X 19" deep standard corporate enclosure. Total weight does not exceed 22 lbs (10 kg). Unit is adaptable to rack or bench top use.</p>	
INPUT CHARACTERISTICS	
Inputs A and B	
Channel Input:	Start/stop channels for each input provide common measurements for Input A and Input B.
Frequency Range:	
DC Coupled	0 to 200 MHz
AC Coupled	20 Hz to 200 MHz
Sensitivity, Sine Wave:	25 mV rms to 100 MHz 50 mV rms to 200 MHz
Sensitivity, Pulse (Frequency Mode):	150 mV p-p; 2.5 ns min. width with 75 mV overdrive.
Sensitivity, Pulse (T.I. Mode):	75 mV p-p; 5 ns min. width with 35 mV overdrive.
Hysteresis:	Sensitivity reduces by X 4 (nominally). Dynamic range bandwidth limited to approximately 50 MHz.

SECTION 1

GENERAL INFORMATION

1.1 INTRODUCTION

1.1.1 This Instruction Manual provides information for installing, operating, and servicing of Racal-Dana's Universal Systems Counters Models 1995/1996. The designations 1995/1996 are used throughout this manual. Figure 1.1 shows the 1996. Both the 1995/1996 offer universal counter functions using Inputs A and B. The 1996 also provides high-frequency Input C for frequency measurements to 1.3 GHz. Input D, located on the rear panel, provides for external arming and gating. All personnel using the 1995/1996 are encouraged to thoroughly read this manual before operating or servicing either instrument.

1.2 SUMMARY

1.2.1 This manual is organized into eight sections:

SECTION 1. General Information: published specifications, safety considerations, product support, general description, and options.

SECTION 2. Installation & Preparation for Use: unpacking and initial inspection, reshipment, setup, field installation of options, power connections, storage and ventilation.

SECTION 3. Local Operation: bench operation, including general operating information, panel descriptions, and measurement procedures.

SECTION 4. System Operation: GPIB system operation.

SECTION 5. Theory of Operation: general theory of operation.

SECTION 6. Maintenance: Performance tests and basic calibration information for the 1995/1996.

SECTION 7. Drawings: assembly and schematic drawings.

SECTION 8. Parts List: replaceable parts and assemblies.

1.3 SPECIFICATIONS

1.3.1 Table 1.1 lists the 1995/1996 specifications. They specify the performance standards to which either instrument should be tested during necessary calibration and servicing.

Figure 1.1 - Models 1995/1996 Universal Timer/Counter (1996 Shown)

LIST OF TABLES (Cont'd)

<u>Table</u>	<u>Title</u>	<u>Page</u>
6.10	Total A by B Performance Test	6-12
6.11	Ratio A/B Performance Test.....	6-13
6.12	Ratio C/B Performance Test.....	6-14
6.13	Rise Time Performance Test.....	6-15
6.14	Fall Time A Performance Test	6-16
6.15	Positive Pulse Width Performance Test.....	6-17
6.16	Negative Pulse Width Performance Test	6-18
6.17	Phase A rel B Performance Test.....	6-19
6.18	Duty Cycle A Performance Test.....	6-20
6.19	Slew Rate A Performance Test.....	6-21
8.1	List of Suppliers	8-2

LIST OF TABLES

<u>Table</u>	<u>Title</u>	<u>Page</u>
1.1	Technical Specifications	1-2
3.1	Front-Panel Controls, Indicators, and Connectors	3-4
3.2	Rear-Panel Controls and Connectors	3-14
3.3	Frequency Measurement	3-16
3.4	Period Measurement	3-17
3.5	Time Interval Measurement.....	3-18
3.6	Total A by B Measurement	3-19
3.7	Manual Totalize Measurement	3-20
3.8	Ratio A/B and C/B Measurements	3-21
3.9	Positive/Negative Pulse Width Measurements	3-22
3.10	Rise A/Fall A Measurements.....	3-23
3.11	Phase A rel B Measurement.....	3-24
3.12	Duty A Measurement	3-25
3.13	Slēw A Measurement	3-26
3.14	Special Functions (SFs).....	3-33
3.15	Error Codes	3-35
3.16	Non-Vol Memory Locations	3-37
4.1	IEEE-488-1978 Standard Interface Subset Capability	4-4
4.2	1995/1996 GPIB Addresses and Talk/Listen Codes.....	4-9
4.3	Addressed and Universal Commands	4-12
4.4	Measurement and "One-Time" Output Formats	4-16
4.5	Basic 23-Byte Output Format	4-18
4.6	Alpha Header Output Codes	4-19
4.7	High Speed Data (ASCII) Output.....	4-20
4.8	Status Byte Format.....	4-21
4.9	Valid Terminators	4-22
4.10	-Counter Initialize Code	4-22
4.11	Numerical Input Format.....	4-23
4.12	Measurement Function Codes	4-24
4.13	Predefined (Forced) Front-Panel Settings	4-27
4.14	Valid Channels for External Arming/Gating	4-28
4.15	Math Codes	4-29
4.16	Memory Codes	4-29
4.17	Statistics Codes.....	4-30
4.18	Gate/Delay Codes.....	4-31
4.19	Input Control Codes	4-32
4.20	Arming Codes	4-33
4.21	Learn Codes	4-33
4.22	Measurement Mode Codes	4-33
4.23	Miscellaneous Codes	4-34
4.24	Calibration Codes	4-36
4.25	GPIB Error Messages and Codes	4-37
5.1	Signal Lines and Functions.....	5-5
6.1	Required Test Equipment for Performance Tests	6-2
6.2	Self Test	6-3
6.3	Input A Sensitivity Performance Test, I	6-4
6.4	Input A Sensitivity Performance Test, II	6-5
6.5	Input B Sensitivity Performance Test, I.....	6-6
6.6	Input B Sensitivity Performance Test, II	6-7
6.7	Input C Sensitivity Performance Test (1996)	6-8
6.8	Period A Performance Test	6-9
6.9	Time Interval A→B Performance Test.....	6-10

LIST OF ILLUSTRATIONS

<u>Figure</u>	<u>Title</u>	<u>Page</u>
1.1	Models 1995/1996 Universal Timer/Counter (1996 Shown)	viii
2.1	Fixed-Mount Angle-Bracket Detail	2-2
2.2	Rear Corner Foot, Side Panel, and Handle Detail	2-4
2.3	Loading the Alignment Blocks.....	2-5
2.4A/B	Slide-Mount and Bracket Assembly	2-7
2.5	Rear End Slide-Mount Rack Dimensions	2-9
2.6	Slide-Mount and Instrument Assembly (with inset)	2-11
2.7	Rear-Panel Input (Option 01) Installation	2-14
2.8	Option 04E Installation.....	2-15
2.9	AC Line Voltage Selection.....	2-17
3.1	Trigger Level Setting	3-27
4.1	GPIB Connector (Rear Panel)	4-1
4.2	Interface Signal Pin Assignments	4-2
4.3	Handshake Sequence	4-6
4.4	Handshake Flow Chart	4-7
5.1	Simplified Overall Block Diagram	5-4
5.2	Simplified Block Diagram for Channel A/B.....	5-8
5.3	Input Switch Circuitry for AC/DC and Attenuator	5-9
5.4	Start/Stop Buffer Amplifier Stage	5-10
5.5	Level Shifting and Hysteresis Control	5-12
5.6	Simplified Schematic for the START DAC	5-13
5.7	Simplified Schematic for the Auto-Trigger Start Circuitry	5-15
5.8	Simplified Block Diagram for Channel C (1996)	5-16
5.9	Simplified Diagram for the Measurement Logic Block	5-19
5.10	Simplified Schematic for the Synchronization Circuitry.....	5-19
5.11	Simplified Diagram of the TEC Interpolator.....	5-21
5.12	Simplified Schematic for the Display Board	5-23
5.13	Simplified Schematic for the Microprocessor Block	5-27
5.14	Simplified Diagram for the External Arming/Gating Block	5-30
5.15	Simplified Schematic for the Internal Gate Timer.....	5-32
5.16	Simplified Diagram for the External Frequency Multiplier Block.....	5-33
5.17	Input Circuit and Pulse Generator	5-34
5.18	Phase-Locked Loop-Controlled Oscillator.....	5-35
5.19	External Reference Detector	5-36
5.20	Simplified Block Diagram for Channel D.....	5-37
5.21	Simplified Diagram for the GPIB Block	5-38
6.1	Internal Reference Adjustment Setup	6-24

TABLE OF CONTENTS (Cont'd)

<u>Section</u>	<u>Title</u>	<u>Page</u>
4	SYSTEM OPERATION	4-1
4.1	General Purpose Interface Bus	4-1
4.1.1	Introduction	4-1
4.2	GPIB Description	4-2
4.2.3	GPIB Handshake	4-5
4.3	GPIB Address Assignment	4-8
4.4	Interface Message Repertoire and Response	4-11
4.4.1	Introduction	4-11
4.4.2	Listen and Talk Address Commands	4-11
4.4.3	Addressed and Universal Commands	4-11
4.5	GPIB Operating Modes	4-14
4.5.1	Introduction	4-14
4.5.2	Talk-Only Mode	4-14
4.5.3	Addressed Mode	4-15
4.6	Output Message Format (Talker)	4-15
4.6.1	Introduction	4-15
4.7	Service Request (SRQ) Status Byte	4-20
4.7.1	Introduction	4-20
4.8	Input Commands (Listener)	4-21
4.8.1	Introduction	4-21
4.8.2	Device-Dependent Commands	4-22
4.9	GPIB Errors	4-37
5	THEORY OF OPERATION	5-1
5.1	Introduction	5-1
5.2	Functional Blocks	5-1
5.2.2	Overall Functional Operation	5-2
5.3	Theory of Operation by Block	5-5
5.3.1	Introduction	5-5
5.3.2	- Channel A/B Block	5-7
5.3.3	Channel C Block	5-15
5.3.4	Measurement Logic Block	5-17
5.3.5	Display/Keyboard Block	5-21
5.3.6	Microprocessor Block	5-24
5.3.7	Power Supply Block	5-28
5.3.8	External Arming/Gating Block	5-28
5.3.9	Internal Gate Timer Block	5-30
5.3.10	External Reference Multiplier Block	5-32
5.3.11	Channel D Block	5-36
5.3.12	GPIB Block	5-37
6	MAINTENANCE	6-1
6.1	Performance Tests	6-1
6.2	Required Equipment for Performance Tests	6-1
6.3	Performance Test Procedures	6-3
6.4	Calibration	6-22
6.5	Required Equipment for Calibration	6-22
6.6	Calibration Procedure	6-22
6.7	Verification Procedure	6-23
6.8	Internal Reference Adjustment	6-23
6.8.3	Reference Oscillator Frequency Check	6-24
6.8.4	Adjustment Procedure	6-24
7	DRAWINGS	7-1
8	PARTS LIST	8-1

TABLE OF CONTENTS

<u>Section</u>	<u>Title</u>	<u>Page</u>
1	GENERAL INFORMATION	1-1
1.1	Introduction	1-1
1.2	Summary	1-1
1.3	Specifications	1-1
1.4	Safety	1-17
1.5	Product Support	1-17
1.6	General Description	1-17
1.6.2	Special Functions	1-17
1.6.3	GPIB Interface	1-17
1.6.4	Models 1995/1996-02M	1-17
1.7	Options	1-17
2	INSTALLATION & PREPARATION FOR USE	2-1
2.1	Introduction	2-1
2.2	Unpacking and Inspection	2-1
2.3	Reshipment Instructions	2-1
2.4	Bench Operation	2-1
2.5	Equipment Rack Installation	2-1
2.5.2	Fixed-Mount Option 60 Installation	2-1
2.5.3	Slide-Mount Option 65 Installation	2-3
2.6	Miscellaneous Option Installation	2-12
2.6.1	Rear-Panel Input Option 01	2-12
2.6.2	High-Stability Oven Oscillator Option 04E	2-15
2.7	Power Connections	2-16
2.7.2	Line Voltage Selection	2-16
2.7.3	Power Cord and Grounding	2-17
2.8	Storage and Temperature	2-18
2.9	Functional Check	2-18
2.9.1	Introduction	2-18
3	LOCAL OPERATION	3-1
3.1	Introduction	3-1
3.2	General Operating Information	3-1
3.2.2	Power-On and Self Test	3-1
3.2.3	Home State	3-1
3.2.4	Main Display	3-2
3.2.5	Keyboard Organization	3-2
3.3	Panel Descriptions	3-3
3.3.1	Front Panel Features	3-3
3.3.2	Rear Panel Features	3-14
3.4	Operating Procedures	3-15
3.4.1	Measurement Functions	3-15
3.4.2	Trigger Level Setting	3-27
3.4.3	Gate Time and Resolution	3-29
3.4.4	Delay Mode	3-29
3.4.5	Arming/Gating Selection	3-30
3.4.6	Math Function (R-X)Y/Z	3-30
3.4.7	Statistical Functions/(n) Samples	3-31
3.4.8	Special Functions	3-32
3.4.9	Error Codes	3-35

AMENDMENT
SLIDE RACK-MOUNT KIT INSTALLATION INSTRUCTIONS
NOVEMBER, 1987

In recent slide rack-mount kits, the front and rear rack-brackets are the same size and each has only one screw slot. Otherwise, the installation procedure remains as described in the manual.

AMENDMENT

RACAL-DANA MODEL 1995/6, PUBLICATION NO. 980599

RACAL-DANA MODEL 1995/6-02M, PUBLICATION NO. 980607

February 3, 1989

1. Add to Table 7.1 - List of Supplies

FSC : 34649
NAME : Intel
Santa Clara, CA

2. Correct Motherboard Parts List (401725 & 401725-02M)
FSC and Mfg. P/N for U28.

FSC : 34649
MFG. P/N : 8254-2

6. Page 8-7, 404389 Channel C Parts List:

Ref(erence) Desig(nator)s R9 and R11:

- a. Change Racal-Dana P/N to "R-20-5786".
- b. Change resistor value to "270 ohm".
- c. Change Manu(facturers) P/N to "MCR18-270-5PCT".

7. Page 8-16, 401725 Motherboard Parts List:

Add R52 and R53, Racal-Dana P/N 000511,

RES, CARBON, 510 ohm, 5%, 1/4 W,

FSC: 81349 MFG. P/N: RC07GF511J

8. Page 8-37, 404386, Oscillator Assembly Parts List:

Ref(erence) Desig(nator) "J4" should be "J14".

9. Page 8-38, 401822, Doubler Parts List:

Ref(erence) Desig(nator) "58" should be "68".

AMENDMENT

Racal-Dana Model 1995/1996
Instruction Manual
Publication No. 980599
January 5, 1989

1. Add the following subassemblies to the Drawings section:
 - a. Insert Change Page 7-48, 404293, Bottom Cover Assembly.
 - b. Insert Change Page 7-49, 404183, Rack Slide Kit.
2. Add the following Parts Lists for the above two assemblies:
 - a. Insert Change Page 8-39, 404293, Bottom Cover Assembly.
 - b. Insert Change Page 8-40, 404183, Rack Slide Kit.
3. Page 7-9. Schematic, Channel C (Zone D4-6):
 - a. Change "L2" to "R9".
 - b. Change "L3" to "R11".
 - c. Change "L4" to "R15".
4. Page 8-5, 404332 Chassis Parts List:
 - a. Ref(erence) Desig(nator) "9" should be "4".
 - b. Ref(erence) Desig(nator) "12":
Change Racal-Dana and Manu(facturers) P/N to "454762".
 - c. Ref(erence) Desig(nator) "14":
Change Racal-Dana and Manu(facturers) P/N to "454765".
5. Page 8-6, 404389 Channel C Parts List:
Ref(erence) Desig(nator) C23:
 - a. Change Racal-Dana P/N to "R-21-1788".
 - b. Change Manu(facturers) P/N to "VJL206A120JF".

AMENDMENT TO
1995/6 INSTRUCTION MANUAL
PUBLICATION NO. 980599

April 28, 1989

1. Page 8-18, Correct manufacturers part number for U12.
Should be: SN74LS148N

401858 PCB ASSY,+RU OSC PWR SUPPLY

REF DESIG	RACAL-DANA P/N	DESCRIPTION	FGC	MANUFACTURER'S P/N
IC1	1110225	CAP, AL. ELECT., 2200 UF, 50V	105397	ISME50T222M18X40LL
IC2	1110225	CAP, AL. ELECT., 2200 UF, 50V	105397	ISME50T222M18X40LL
IC3	1110126	CAP, TANTA, 6.8UF, 35V, 20 PERCENT	105397	IT355F685M035AS
IC4	1110143	CAP, TANTA, 1 UF, 35V, 20 PERCENT	105397	IT355A105M035AS
ICR1	210004	DIODE, SILICON	181349	1N4004
ICR2	210004	DIODE, SILICON	181349	1N4004
ICR3	210004	DIODE, SILICON	181349	1N4004
ICR4	210004	DIODE, SILICON	181349	1N4004
ICR5	210004	DIODE, SILICON	181349	1N4004
ICR6	210004	DIODE, SILICON	181349	1N4004
J21	601218	CONNECTOR, PWR, PLUG, 6-PIN	100779	9-350258-1
R1	1000241	RES, CARBON, 240 OHM, 5 PERCENT, 1/4W	181349	RC07GF241J
R2	1001275	RES, CARBON, 3.3K, 1/2W, SPCT	181349	RC20GF332J
R3	1040260	PCT, CERMET, 1K, 20PCT	173138	72XW1K
T1	300106	TRANSFORMER, 24V, 2A	195075	L050-1-524
U1	230982	IC, LINEAR, 338 REGULATOR	27014	LM338K
(9)4	610777	CABLE TIE	116956	08-432
(11)1	411858	PCB, RUBIDIUM OSC P.S.(UNLOADED)	21793	411858
(12)1	600796	HEATSINK, TESTER, T03-T056	153894	42561
(13)1	600842	INSULATOR, MICA	191833	4653
(14)A/R	1500009	TUBING, SHRINK, .12 ID, BLK	129005	RNF-100-1-1/8
(16)4	610533	NUT, PRESS, 6-32, SPLINE (4REQ'D)	146384	KF2-632
(17)2	610899	TIE, CABLE, SELF-LOCKING, 1/16X2	158730	TY-232M
(19)2	615058	SCREW, PPH, 6-32 X .312	---	---
(20)2	615059	SCREW, PPH, 6-32 X .375	---	---
(21)4	617115	WASHER, FLAT, #6 (4 REQ'D)	-	-
(22)4	617128	WASHER, LOCK, #6, LIGHT SERIES	-	-
(23)A/R	920469	THERMAL JOINT COMPOUND	13103	250
(24)1	920804	LABEL, HIGH VOLTAGE	21793	920804

404565 MODULE ASSY, RU OSC

REF DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	MANUFACTURER'S P/N
P23	600379	RECEPTACLE, 3-PIN	27264	1625-3R
{1}1	455185	HEAT SINK, RUBIDIUM OSC.	21793	455185
{2}2	455186	COVER, RUBIDIUM OSC. HOUSING (2 REQ'D)	21793	455186
{3}2	455188	SIDE PLATE, OSC. HOUSING (2 REQ'D)	21793	455188
{5}A/R	500002	TUBING, SHRINK, .187 ID	8C945	M23053/5-105-0
{6}A/R	500064	TUBING, SHRINK, .093 ID, BLK	29005	RNF-100-1-3/32
{7}A/R	500254	CABLE, COAXIAL, 50 OHM	92194	91788
{9}A/R	520111	WIRE, TEFLON STRANDED, 20G,	-	-
{10}A/R	520333	WIRE, TEFLON STRANED, 20GA, BRN	-	-
{11}A/R	520444	WIRE, TEFLON COATED, STRANDED, 20GA, YEL	-	-
{12}A/R	520555	WIRE, TEFLON STRANED, 20 GA, GRN	---	---
{15}3	600381	TERMINAL PIN, FEMALE, .062 (3 REQ'D)	27264	02-06-1855
{17}4	610777	CABLE TIE	16956	08-432
{19}1	611052	KEY, POLARIZING, PLUG	00779	87077-1
{20}2	611053	TERMINAL, CRIMP	00779	530553-2
{21}1	611056	CONNECTOR, CABLE, 5-PIN	21793	611056
{22}1	611178	TIE WRAP, SCREW MOUNT	06915	W1TS-18MR
{24}2	615047	SCREW, PPH, 4-40 X .625 (2 REQ'D)	-	-
{26}4	615541	SCREW, PFH, 4-40X.250	-	-
{27}8	615543	SCREW, PFH, 4-40X.375	-	-
{29}4	615705	SCREW, PFL, 4-40 X .500 (4 REQ'D)	-	-
{31}2	617102	WASHER, FLAT, #4, LIGHT SERIES	-	-
{33}6	617127	WASHER, LOCK, #4, LIGHT SERIES	-	-
{35}A/R	920469	THERMAL JOINT COMPOUND	13103	250
{37}1	921090	RUBIDIUM OSCILLATOR	155761	FRS-814-102-1

404469 OSC., RUBIDIUM STAND, OPTION 04R

REF DESIG	TRACAL-DANA P/N	DESCRIPTION	FSC	MANUFACTURER'S P/N
J23	1600545	PLUG, 3 PIN	127264	1625-3P-1
P21	501216	CONNECTOR, PWR, HOUSING, 5 PIN	100779	1-35-0241-9
{1}1	401858	PCB ASSY, RUBIDIUM OSC. P.S.	121793	401858
{3}1	404565	MODULE ASSY, RUBIDIUM OSCILLATOR	121793	404565
{5}1	455187	MOUNTING BRACKET, RUBIDIUM OSC.	121793	455187
{6}1	455189	MOUNTING PLATE, POWER SUPPLY	121793	455189
{8}A/R	500002	TUBING, SHRINK, .187 ID	18C945	M23053/5-105-0
{9}A/R	1500133	CABLE, SHIELDED, 22GA, 3 COND.	170903	8771
{11}A/R	1520111	WIRE, TEFILON STRANDED, 20G,	-	-
{12}A/R	1520333	WIRE, TEFILON STRANDED, 20GA, BRN	-	-
{13}A/R	1520444	WIRE, TEFILON COATED, STRANDED, 20GA, YEL	-	-
{14}A/R	1520555	WIRE, TEFILON STRANDED, 20 GA, GRN	---	---
{16}3	600380	TERMINAL PIN, MALE, .062 (3 REQ'D)	127264	1854
{19}5	601212	TERMINAL, CRIMP, 18-26	100779	641294-1
{21}3	1601696	WIRE SPLICE, 22-18GA (3 REQ'D)	153387	1558
{23}4	1610777	CABLE TIE	16956	08-432
{25}4	1615045	SCREW, PPH, 4-40X.437	-	-
{28}4	1615556	SCREW, PFH, 6-32 X .250	---	---
{30}6	1616252	SCREW, PPH, SEMS ASSY, 4-40X.312	178189	63-040545-25
{32}4	1617102	WASHER, FLAT, #4, LIGHT SERIES	-	-
{34}4	1617127	WASHER, LOCK, #4, LIGHT SERIES	-	-

List of Suppliers

FSC	SUPPLIER
00779	AMP, INC. HARRISBURG, PA
05397	UNION CARBIDE CORP. (MATERIALS SYSTEMS DIV.) CLEVELAND, OHIO
06915	RICHCO PLASTIC CO. CHICAGO, IL.
13103	THERMALLOY, INC. DALLAS, TEXAS
16956	DENNISON MFG. CO. FRAMINGTON, MA.
21793	RACAL-DANA INSTRUMENTS INC. IRVINE, CA
27014	NATIONAL SEMI-CONDUCTOR CORP. SANTA CLARA, CA
27264	MOLEX PRODUCTS CO. DOWNERS GROVE, IL.
29005	STORM PRODUCTS CO. LOS ANGELES, CA.
46384	PENN ENG. & MFG. CORP DOYLESTOWN, PA.
53387	THREE (3) M CO. ST. PAUL, MINNESOTA
53894	AHAM, INC. RANCHO CALIFORNIA, CA.
55761	EFRATOM IRVINE, CA.
58730	THOMAS & BETTS CO. ELIZABETH, NJ.
70903	BELDEN CORP. CHICAGO, ILLINOIS
73138	BECKMAN INSTRUMENTS FULLERTON, CA.
78189	ILLINOIS TOOL WORKS, INC. (SHAKEPROOF DIV.) ELGIN, ILLINOIS
81349	MILITARY SPECIFICATION
8C945	ELECTRONIZED CHEMICAL CORP. BALTIMORE, MD. DIVISION OF 3M (FSC 53387)
91833	KEYSTONE ELECTRONICS CORP. NEW YORK, NY.
92194	ALPHA WIRE ELIZABETH, NEW JERSEY
95075	ENSIGN COIL CO. BURRIDGE, IL.

PRODUCTION DATE		DOCUMENT NO.	
SERIAL	DATE	REF	VER
C 21793	4-31-85	A	
NOTE: UNLESS OTHERWISE SPECIFIED			
1. DIODES ARE IN4004			

DETAIL A
SCALE:NONE

4
INSTALL ITEM 21 (FLAT WASHERS) 4 PLCS, 1 EACH BETWEEN ITEM 22 (LOCKWASHER) AND ITEM 10 (TRANSFORMER) AND 1 EACH BETWEEN ITEM 10 (TRANSFORMER) AND ITEM 11 (PCB).

3
CUT TRANSFORMER LEAD NO. 4 TO APPROX 1 INCH LG.
COVER END WITH SLEEVING, ITEM 14.

2
INSTALL PRESS NUTS ON CIRCUIT SIDE.

1.
REF. SCHEMATIC 431858.
NOTES UNLESS OTHERWISE SPECIFIED

PRINTED CIRCUIT BOARD		REVISION	
PCB ASSY, RU OSC PWR SUPPLY		431858	
PCB ASSY, RU OSC PWR SUPPLY		431858	
SUR	CORE PART NO.	REV	DATE
C	21793	1	03/27/94
SCALE	FULL	1	3

2. APPLY EVEN COATING OF THERMAL COMPOUND (ITEM # 35) TO BACK OF OSCILLATOR / 193 WAX

RAC-DANA INSTRUMENTS INC.	
4 GOODWEY HILL CALIFORNIA 92114	
TELEGRAMS -	
FAX: 714-871-1111	
MODULE ASSEMBLY RU D3C	
S/N	CONFIRMATION NO.
D	21793
SCALE OUT	
A	

PROPER LAIN NAME

5

IN THE NAME OF GOD, THE FATHER OF MIGHT,
THE WORD OF LIFE, AND THE HOLY GHOST,
I CHARGE YOU, IN THE PRESENCE OF GOD,
TO CALL ME BY MY PROPER LAIN NAME,
WHICH IS JOHN BAPTIST, OR BY ANY OTHER
NAME WHICH I HAVE CHOSEN.
IF YOU DO NOT CALL ME BY MY PROPER LAIN NAME,
I WILL NOT TALK WITH YOU, NOR WILL I
LISTEN TO YOU, NOR WILL I HEAR YOU;
BUT IF YOU CALL ME BY MY PROPER LAIN NAME,
I WILL TALK WITH YOU, AND LISTEN TO YOU,
AND HEAR YOU; AND I WILL ALSO
TELL YOU ALL THINGS WHICH YOU
WANT TO KNOW.

Table 3.9 - Positive/Negative Pulse Width Measurements

1. Turn power on.
2. Select either POS WIDTH A or NEG WIDTH A using FUNCTION keys 13.
3. Connect measurement signal to INPUT A 18.

NOTE:

All other controls are set automatically.

Table 3.8 - Ratio A/B and C/B Measurements

1. Turn power on.
2. Select RATIO A/B or RATIO C/B (1996 only) using FUNCTION keys 13.
3. Set AC/DC coupling 16C, input impedance 16E, and slope(s) 16D as required.
4. Select the X10 or X50 input attenuation 16F if desired. Attenuation setting is automatic in the Auto-Trigger mode.
5. Connect one signal to INPUT B 18 and the other to INPUT A 18 or INPUT C 19. The lower frequency signal should be connected to INPUT B.
6. If a specific gate time is desired, enter it (in seconds, using the exponential format for small values) using key sequence <value> SHIFT 15F STORE 15L GATE 15R. Skip step 7 if step 6 is being used to enter the gate time.
7. Use the RESOLUTION $\uparrow\downarrow$ keys 10 to select the required display resolution.
8. If RATIO A/B is selected, either set trigger levels A/B manually using key sequence <value> +/- 15C TRIG-LEVEL 16B, or select AUTO-TRIG A and B 16A. Check that Inputs A and B TRIG LEDs 16H flash. For RATIO C/B, trigger level for only INPUT B may be specified.
9. If a frequency below 100 kHz is to be measured in the presence of high frequency noise, select the filter 17B.
10. Set the input hysteresis 17F at low or high as required.
11. If external arming/gating is needed, connect the arming/gating signal and select the special function number. Enable special functions. Refer to Subsection 3.4.8 for special function numbers and procedures.
12. Select the Hold mode 12 for single-shot measurements. Press the RESET 11 while in Hold to trigger a new measurement.

Table 3.7 - Manual Totalize Measurement

1. Turn power on. Select TOTAL A by B using the FUNCTION keys 13.
 2. Set AC/DC coupling 16C, input impedance 16E, and slope 16D for Input A as required.
 3. Select the X10 or X50 input attenuation 16F if desired. Attenuation setting is automatic in the Auto-Trigger mode.
 4. Enter Special Function 61 using key sequence 61 SHIFT 15F STORE 15L and SF 15G. Enable special functions using key sequence SHIFT 15F SF 15G.
 5. Connect the measurement signal to INPUT A 18.
 6. Either set trigger level A manually using key sequence <value> +/- 15C TRIG-LEVEL 16B, or select AUTO-TRIG A 16A. Check that Input A TRIG LED 16H flashes.
 7. If a frequency below 100 kHz is to be measured in the presence of high-frequency noise, select the filter 17B.
 8. Set the input hysteresis 17F at low or high as required. The high setting may be used to filter low-frequency noise.
 9. Operate the HOLD key 12. Verify that the count stops. The displayed result is cumulative over successive measurement cycles. Use the RESET key 11 to clear the display. Check that the main display blanks before triggering new measurement cycles.

Table 3.6 - Total A by B Measurement

1. Turn power on.
2. Select TOTAL A by B using FUNCTION keys 13.
3. Set AC/DC coupling 16C, input impedance 16E, and slopes 16D as required.
4. Select the X10 or X50 input attenuation 16F if desired. Attenuation setting is automatic in the Auto-Trigger mode.

NOTE:

Input A slope selects the slope of the events to be totalized. The measurement period, however, starts on Input B slope and stops on the opposite slope.

5. Connect the signal to be totalized to INPUT A 18 and the control signal to INPUT B 18.
6. Either set the trigger levels A/B manually using key sequence <value>+/- 15C TRIG-LEVEL 16B, or select AUTO-TRIG A/B 16A. Check that Inputs A and B TRIG LEDs 16H flash.
7. If a frequency below 100 kHz is to be measured in the presence of high-frequency noise, select the filter 17B.
8. Set the input hysteresis 17F at low or high as required. The high setting may be used to filter low-frequency noise.
9. If internal delayed arming of the stop circuit is required, enter the delay into memory using key sequence <value>SHIFT 15F STORE 15L DELAY 15H. Enable the delay using key sequence SHIFT 15F DELAY 15H.
10. If external arming/gating is needed, connect the arming/gating signal and store the special function number. Enable special functions. Refer to Subsection 3.4.8 for special function numbers and procedures.
11. Select the Hold mode 12 if necessary. Press the RESET 11 while in Hold to trigger a new measurement.

Table 3.5 - Time Interval Measurement

1. Turn power on.
2. Select TI A → B using FUNCTION keys (13).
3. Set AC/DC coupling (16C), input impedance (16E), and slope (16D) for Inputs A/B as required. If the start and stop signals are from the same source, select COM A (17E).
4. Select the X10 or X50 input attenuation (16F) if desired. Attenuation setting is automatic in the Auto-Trigger mode.
5. Connect the start signal to INPUT A (18). If a separate source for the stop signal is used, connect the stop signal to INPUT B (18).
6. Either set the trigger levels A/B manually using key sequence <value> +/- (15C) TRIG-LEVEL (16B), or select AUTO-TRIG A/B (16A). Check that Inputs A and B TRIG LEDs (16H) flash.
7. Set the input hysteresis (17F) at low or high as required.
8. If internal delayed arming of the stop circuit is required, enter the delay into memory using key sequence <value> SHIFT (15F) STORE (15L) DELAY (15H). Enable the delay using key sequence SHIFT (15F) DELAY (15H).
9. If external arming/gating is needed, connect the arming/gating signal and store the special function number. Enable special functions. Refer to Subsection 3.4.8 for special function numbers and procedures.
10. Select the Hold mode (12) for single-shot measurements. Press the RESET (11) while in Hold to trigger a new measurement.

Table 3.4 - Period Measurement

Table 3.3 - Frequency Measurement

1. Turn power on.
2. Select FREQ A or FREQ C (1996 only) using FUNCTION keys 13.
3. If FREQ A is selected, set the AC/DC coupling 16C and input impedance 16E as required.
4. Select the X10 or X50 input attenuation 16F if desired. Attenuation setting is automatic in the Auto-Trigger mode.
5. Connect the measurement signal to INPUT A (DC to 200 MHz) 18 or INPUT C (40 MHz to 1.3 GHz) 19.
6. If a specific gate time is desired, enter it (in seconds, using the exponential format for small values) using key sequence <value>SHIFT 15F STORE 15L GATE 15R. Skip step 7 if step 6 is being used to enter the gate time.
7. Use the RESOLUTION ↑↓ keys 10 to select the required display resolution and gate time if step 6 was not used.
8. If FREQ A is selected, either set the trigger level manually using key sequence <value>+/- 15C TRIG-LEVEL (A) 16B, or select AUTO-TRIG (A) 16A. Check that Input A TRIG LED 16H flashes.
9. If a frequency below 100 kHz is to be measured in the presence of high frequency noise, select the FILTER 17B.
10. Set the input hysteresis 17F at low or high as required. The high setting may be used to filter low-frequency noise.
11. If external arming/gating is needed, connect the arming/gating signal and select the special function number. Enable special functions. Refer to Subsection 3.4.8 for special function numbers and procedures.
12. Select the Hold mode 12 for single-shot measurements. Press the RESET 11 while in Hold to trigger a new measurement.

Table 3.2 - Rear-Panel Controls and Connectors (Con't)

Reference	Item	Function/Description
(8)	INPUT A Connector (Option 01)	Rear-panel Input A
(9)	INPUT B Connector (Option 01)	Rear-panel Input B
(10)	INPUT C Connector (Option 01) <u>NOTE:</u> Front-panel INPUTS A, B, and C are not connected when Option 01 is installed. Input is only via the rear-panel connectors	Rear-panel Input C
(11)	GPIB Connector	GPIB (IEEE-STD-488-1978) connector
(12)	Power Input Module:	Standard connector for the AC power supply
(12A)	AC Power Input Socket	
(12B)	Line Voltage Selector	Small printed circuit card inserted in module to select correct AC line voltage. The selected voltage (100, 120, 220, or 240 VAC) is visible through the small window
(12C)	Line Fuse	A glass cartridge Slow-Blow fuse. Line fuse ratings for available line voltages are shown on the upper-left of the rear-panel
(13)	OSC ADJ	Adjustment of the internal reference frequency standard

3.4 OPERATING PROCEDURES

3.4.1 Measurement Functions

3.4.1.1 Tables 3.3-3.13 with figures describe the basic bench functions of the 1995/1996.

NOTE:

Review as required Table 3.1, References 18 and 19, for use of Inputs A, B, and C, including Special Function 21 permitting interchange of Inputs A and B. See also Subsection 3.4.8 and Table 3.14 for special functions.

3.3.2 Rear-Panel Features

3.3.2.1 Refer to Table 3.2 and figure at top. They indicate and briefly describe the rear-panel controls and connectors.

Table 3.2 - Rear-Panel Controls and Connectors

The diagram shows the rear panel of a device with various controls and connectors. At the top left is a main power switch labeled '1'. Below it are two analog input jacks labeled '2' and '3'. In the center is an IEEE-STD-488 port labeled '4'. To the right of the port is an address switch labeled '5'. Below the address switch are four BNC connectors labeled '6', '7', '8', and '9'. A fuse holder labeled '10' is located between the address switch and the BNCs. Above the fuse holder is a small digital display labeled '11'. On the far right is a large grid of BNC connectors labeled '12A', '12B', '12C', and '13'. Below the grid is a digital control keypad. Various other controls like 'CAL LEVEL', 'START', 'STOP', 'OSC ADJ', and 'GATE OUT' are also visible.

Reference	Item	Function/Description
1	Main Power Switch	Enables Standby if the front panel POWER (ON/STBY) button is out (▲). This supplies power to the internal frequency standard (timebase). Also, switches counter ON/OFF if front-panel POWER (ON/STBY) button is in (■)
2	NOTE: Connectors 2 through 10 are BNCs	
2	START-CAL LEVEL Connector	Output: analog signal equivalent of the Start trigger level (for calibration only)
3	STOP-CAL LEVEL Connector	Output: analog signal equivalent of the Stop trigger level (for calibration only)
4	INPUT D Connector	Input: external arming/gating control signal
5	REF-OUT Connector	Output: 10 MHz internal reference
6	REF-IN Connector	Input: external reference frequency (1,5, or 10 MHz at 1V rms)
7	GATE OUT Connector	Output: negative-going TTL-compatible signal equivalent to the gate signal

Table 3.1 - Front-Panel Controls, Indicators, and Connectors (Con't)

Reference	Item	Function/Description
(19)	INPUT C (1996 only)	BNC connector high-frequency INPUT C (40 MHz-1.3 GHz range). INPUT C is used with INPUT B for Ratio C/B. Special Function 21 provides Ratio C/A capability. Protection against excessive signal levels (>5V rms) is provided by a fuse in the input socket

NOTE:

In the above table, LEDs shown in the "Item" column with an asterisk (*) are described in their lit condition. Certain LEDs are associated with toggle keys; their lit condition is specified.

Table 3.1 - Front-Panel Controls, Indicators, and Connectors (Con't)

RACAL-DANA 1990 SERIES UNIVERSAL SYSTEMS COUNTER

Reference	Item	Function/Description
17C	CHECK Key/LED	Verifies the proper operation of front-panel LEDs and executes internal self-tests. Pressing the CHECK key lights the CHECK LED immediately. However, the CHECK key must be held down about 3 seconds for all LEDs to light, all 8's to display, and the self-test functions to be executed. Release of the CHECK key extinguishes all LEDs and displays the word "TEST", indicating the unit is under self-test. When all self testing is completed the unit displays 5 MHz. Toggle the CHECK key to turn off the CHECK LED. Momentarily pressing the CHECK key will simply cause the counter to measure an internal 5 MHz test waveform
17D	DISPLAY Key/LEDs: TRIG * V MAX * V MIN * Vpp *	Scrolls through TRIG, V MAX, V MIN, and Vpp. Values are displayed in LEVEL A and LEVEL B Current trigger level Maximum peak voltage Minimum peak voltage Voltage peak-to-peak
17E	COM A Key / LED	Toggles Input A also to B. LED lit in COM A mode
17F	HYST Key/LED	Toggles the hysteresis level for Inputs A and B between a low (25 mVpp) and high (100 mVpp) setting. HYST LED lights in the higher setting
18	INPUT(s) A and B	BNC connectors for INPUT(s) A and B. INPUT A is used for all functions except Frequency C (1996 only). INPUT B is used with INPUT A for Time Interval, Ratio A/B, Totalize, and Phase measurements. INPUT B is used with INPUT C for Ratio C/B. Special Function 21 internally exchanges INPUTS A and B (providing, e.g., FREQ B, etc. measurement capability)

Table 3.1 - Front-Panel Controls, Indicators, and Connectors (Con't)

Reference	Item	Function/Description
(16D)]/\ Keys/LEDs*	Toggle between positive (]/) and negative (\/) trigger slopes of Inputs A and B. LED lit in positive slope
(16E)	50Ω/1MΩ Keys/LEDs*	Toggle between 50Ω and 1MΩ input impedance for Inputs A and B. LED lit in 50Ω mode
(16F)	ATTN (X1, X10, X50) Keys	Attenuation for Inputs A and B. The decimal point shifts in the LEVEL A and B displays, indicating attenuation range selected (X1=X.XX, X10=XX.X, and X50=XXX.)
(16G)	LEVEL A and B Displays	Indicate current trigger level (manual or auto-trigger). LEVEL A and LEVEL B also show TRIG (current trigger level), V MAX, V MIN, and Vpp when selected using the DISPLAY key (17D)
(16H)	TRIG LEDs/Inputs A and B	Flash to indicate input signal is triggering measurement circuits
(17)	INPUT CONTROL Keys/LEDs*	Control Input A and B signals <u>NOTE:</u> LEVEL ↑↓ keys have no LED indicators
(17A)	LEVEL ↑↓ Keys	Step manually-set trigger levels either up (↑) or down (↓) in increments of 0.01, 0.1, or 1 volts for the X1, X10, and X50 attenuation ranges, respectively. Use key sequence TRIG-LEVEL LEVEL ↑↓ TRIG-LEVEL
(17B)	FILTER Key/LED	Toggles a low-pass input filter (100 kHz cutoff frequency) for Inputs A and B. LED lights when filter is on. Special Functions 28 and 29 permit separate filter selection for Inputs A and B, respectively

Table 3.1 - Front-Panel Controls, Indicators, and Connectors (Cont'd)

RACAL-DANA 1990 SERIES UNIVERSAL SYSTEMS COUNTER

Reference	Item	Function/Description
(15P)	X/Y/Z Keys	Store and recall Math computation constants (X, Y and Z)
(15Q)	ADDR Key	Store and recall the counter's GPIB address. Address procedure is shown on rear panel (see Table 3.2) to the right of the GPIB connector
(15R)	(n) Key	Store and recall of (n) samples for statistics. Range of (n) is 2 to 9999
(15S)	GATE Key	Store and recall gate time
(16)	INPUT A and B Keys/LEDs	
(16A)	AUTO-TRIG Keys/LEDs*	Automatic trigger setting and tracking for Inputs A and B
(16B)	TRIG-LEVEL Keys/LEDs*	Manual trigger setting for Inputs A and B
(16C)	DC/AC Keys/LEDs*	Toggle between DC/AC input coupling for Inputs A and B. LED lit when DC-coupled

Table 3.1 - Front-Panel Controls, Indicators, and Connectors (Cont'd)

Reference	Item	Function/Description
(15E)	CE Key	Clears current display number and entry
(15F)	Shifted Key Functions: SHIFT Key/LED*	Enables any shifted key function. After pressing a shifted key function (except for STORE, RECALL, and MEMORY), counter immediately returns to its unshifted state with the SHIFT LED turning off
(15G)	SF Key/LED*	Enables all selected special functions (SHIFT SF). Also stores (<NN> SHIFT STORE SF) and recalls (SHIFT RECALL SF) special functions. See Subsection 3.4.8 for details
(15H)	DELAY Key/LED*	Enables a time-interval stop delay (SHIFT DELAY) in TI A→B. Also, stores (<value> SHIFT STORE DELAY) and recalls (SHIFT RECALL DELAY) a time-interval stop delay. Enabling a delay in a non-TI function produces an error message. Selecting a non-TI function when in delay disables DELAY and turns off the LED
(15I)	MEAN(n) Key/LED*	Enables calculation and display of the mean (average) of (n) samples. Pressing SHIFT MEAN(n) deselects the STD(n) key if enabled. Pressing RESET restarts the period of (n) samples
(15J)	STD (n) Key/LED*	Enables calculation and display of the standard deviation of (n) samples. Pressing SHIFT STD(n) deselects the MEAN(n) key if enabled. Pressing RESET restarts the period of (n) samples
(15K)	(R-X) Y/Z Math Key/LED*	Selection of Math computation mode
(15L)	STORE Key	Stores constants for math functions, gate time, time-interval delay, (n) samples, GPIB address and special functions. Used with MEMORY key to store complete measurement (i.e., machine) setups
(15M)	RECALL Key	Recalls constants for math functions, gate time, time-interval delay, (n) samples, GPIB address and special functions and calibration. Used with MEMORY key to recall complete measurement (i.e., machine) setups
(15N)	MEMORY Key	Store and recall complete measurement setups, memory locations 0 to 9, and calibration constants, locations 10 to 33 (see Table 3.16). Use the key sequence SHIFT STORE/RECALL MEMORY<N>. Attempted store or recall of an out-of-range number produces an error message

Table 3.1 – Front-Panel Controls, Indicators, and Connectors (Con't)

Table 3.1 - Front-Panel Controls, Indicators, and Connectors (Con't)

Reference	Item	Function/Description																												
(14)	FUNCTION LEDS:	Indicate selected function <table> <tr><td>FREQ C</td><td>RISE A</td></tr> <tr><td>FREQ A</td><td>FALL A</td></tr> <tr><td>PERIOD A</td><td>POS WIDTH A</td></tr> <tr><td>T.I. A→B</td><td>NEG WIDTH A</td></tr> <tr><td>TOTAL A by B</td><td>PHASE A rel B</td></tr> <tr><td>RATIO A/B</td><td>DUTY A</td></tr> <tr><td>RATIO C/B</td><td>SLEW A</td></tr> </table> <table> <tr><td>14A</td><td>14H</td></tr> <tr><td>14B</td><td>14I</td></tr> <tr><td>14C</td><td>14J</td></tr> <tr><td>14D</td><td>14K</td></tr> <tr><td>14E</td><td>14L</td></tr> <tr><td>14F</td><td>14M</td></tr> <tr><td>14G</td><td>14N</td></tr> </table>	FREQ C	RISE A	FREQ A	FALL A	PERIOD A	POS WIDTH A	T.I. A→B	NEG WIDTH A	TOTAL A by B	PHASE A rel B	RATIO A/B	DUTY A	RATIO C/B	SLEW A	14A	14H	14B	14I	14C	14J	14D	14K	14E	14L	14F	14M	14G	14N
FREQ C	RISE A																													
FREQ A	FALL A																													
PERIOD A	POS WIDTH A																													
T.I. A→B	NEG WIDTH A																													
TOTAL A by B	PHASE A rel B																													
RATIO A/B	DUTY A																													
RATIO C/B	SLEW A																													
14A	14H																													
14B	14I																													
14C	14J																													
14D	14K																													
14E	14L																													
14F	14M																													
14G	14N																													
(14A)	FREQ C*	Input C Frequency (1996 only)																												
(14B)	FREQ A*	Input A Frequency																												
(14C)	PERIOD A*	Input A Period																												
(14D)	TI A→B*	Time Interval (Input A for start, Input B for stop)																												
(14E)	TOTAL A by B*	Totalize (Input A events gated by Input B)																												
(14F)	RATIO A/B*	Ratio A/B (Ratio of Frequency A to Frequency B)																												
(14G)	RATIO C/B*	Ratio C/B (Ratio of Frequency C to Frequency B)																												
(14H)	RISE A*	Input A Rise Time (10% start, 90% stop trigger points)																												
(14I)	FALL A*	Input A Fall Time (90% start, 10% stop trigger points)																												
(14J)	POS WIDTH A*	Input A Positive Pulse-Width (50% trigger points)																												
(14K)	NEG WIDTH A*	Input A Negative Pulse-Width (50% trigger points)																												
(14L)	PHASE A rel B*	Phase difference (Input A relative to Input B)																												
(14M)	DUTY A*	Input A Duty Cycle																												
(14N)	SLEW A*	Input A Slew Rate (positive/negative, 20% to 80% trigger points)																												

Table 3.1 - Front-Panel Controls, Indicators, and Connectors (Con't)

Reference	Item	Function/Description
(11)	RESET/CONTINUE, LOCAL Key	<p>This key provides the following:</p> <p><u>RESET</u> Terminates the measurement in progress, clears the main display, and triggers a new measurement</p> <p><u>NOTE:</u> In HOLD mode, pressing this key triggers a new measurement cycle</p> <p><u>CONTINUE</u> Returns the counter to the measurement mode, triggers a new measurement cycle, after the display of recalled number or constant</p> <p><u>LOCAL</u> Returns the counter to front-panel control from remote control on the GPIB, provided local lock-out has not been set</p>
(12)	HOLD Key/LED	Toggles counter in and out of HOLD (single-shot measurement). LED lights in HOLD. In HOLD, the measurement in progress is completed and displayed. See NOTE under Reference (11). Special Function 61 causes the HOLD key to successively start and stop measurements for manual Totalize
(13)	FUNCTION Keys ($\uparrow \downarrow$)	Select in succession the counter's measurement function. The corresponding FUNCTION LED is lit. Function selection "wraps around" at both ends

Table 3.1 - Front-Panel Controls, Indicators, and Connectors (Con't)

Reference	Item	Function/Description
(4)	O/F LED*	Readout overflows the tenth digit of the display
(5)	GPIB LEDs:	Counter under remote control over the GPIB interface
(5A)	REM LED*	
(5B)	ADDR LED*	Counter is being addressed as either a talker or listener over the GPIB interface
(5C)	SRQ LED*	Counter has transmitted a service request over the GPIB interface
(6)	EXT ARM LED*	External arming is controlling the measurement start and stop points
(7)	EXT STD LED*	Counter is operating from an external frequency standard reference
(8)	GATE LED*	Measurement gate is operating, starting or stopping a measurement cycle
(9)	Display Units LEDs:	NOTE: Neither LED lights when a phase angle, ratio, totalize measurement, or a constant is displayed
(9A)	Hz LED*	
(9B)	S LED*	Units in Seconds for a time measurement
(10)	RESOLUTION Keys ($\uparrow\downarrow$)	Step the measurement period (i.e., gate time and also the resolution) either up (\uparrow) or down (\downarrow). This increases or decreases the number of digits displayed. In Recall Special Function mode, the lowest special function number is initially displayed. Use the RESOLUTION ($\uparrow\downarrow$) keys to scroll (with wrap-around) through special function numbers on display

Table 3.1 - Front-Panel Controls, Indicators, and Connectors

RACAL-DANA 1990 SERIES UNIVERSAL SYSTEMS COUNTER

Reference	Item	Function/Description
(1)	STBY Y LED*	In Standby. Rear-panel POWER switch is on, front-panel POWER (ON/STBY Y) button is out, and power is supplied only to the internal reference standard (timebase)
(2)	POWER (ON/STBY Y) Button	In ON position, power is supplied to the entire counter and the STBY LED is off
(3)	Measurement Display:	A 7-segment LED digital display. Uses engineering format with 10-digit mantissa, 1-digit exponent, and floating decimal point. The display shows one of the following depending on operational state: — measurement results — numbers for data entry — numbers for recall from constant or function stores — error messages NOTE: The exponent LED is blanked and should be considered zero during the following: a. phase measurement b. totalize measurement with less than ten digits c. numeric entries not involving an exponent
(3A)	Mantissa Display LEDs*	Display right-justified mantissa
(3B)	Mantissa Sign LED*	Negative display number
(3C)	Exponent Display LED*	One-digit exponent number
(3D)	Exponent Sign LED*	Negative exponent

3.3 PANEL DESCRIPTIONS

3.3.1 Front Panel Features

3.3.1.1 Refer to Table 3.1 and the front-panel figures. They show and describe front-pane controls, indicators, and connectors.

NOTE:

In the following table, LEDs shown in the "Item" column with an asterisk (*) are described in their lit condition. Certain LEDs are associated with toggle keys; their lit condition is specified.

- i. Separate inputs (i.e., Common A LED is off)
- j. Filter: off
- k. Hysteresis: 25 mV p-p (lower value)
- l. Sample(n) value: 100
- m. Input A and B trigger levels: Zero (relevant only if auto-trigger is not selected)
- n. Input Coupling: AC-coupled (Inputs A and B)

3.2.4 Main Display

3.2.4.1 Readings are displayed in engineering format with a 10-digit mantissa, 1-digit exponent, and floating decimal point. It is assumed that the reading is positive unless (1) the negative-sign LED to the left of the display is lit, or (2) a negative sign precedes the displayed mantissa. Keyboard entries are always right-justified. The largest displayed reading is 1.999.999999 with a +9 exponent; the smallest number is 1.000000000 with a -9 exponent. The 1-digit exponent range is -9 to +9.

3.2.4.2 The selected function and gate time determine the number of digits displayed. Generally, the longer the gate time, the more digits displayed. The RESOLUTION ($\uparrow\downarrow$) keys are used to either step the gate time up (to 100 seconds), increasing the number of digits displayed; or down (to 200 nanoseconds), decreasing the number of digits displayed.

3.2.4.3 LED indicators for units in Hz (hertz) and S (seconds) are located at the right of the exponent display. Units for some functions are implied. For example, phase angle measurements are in degrees. Seven LEDs (O/F, REM, ADDR, SRQ, EXT ARM, EXT STD, and GATE) are situated immediately below the display (see Table 3.1).

3.2.5 Keyboard Organization

3.2.5.1 The front panel of the 1995/1996 is arranged logically by function into color-coded keyboard/LED groups. Refer to the front-panel figures and Table 3.1 for location and description. Listed below (left to right) are the keyboard groups with their color coding indicated in parentheses:

- a. General Operating (gray)
- b. FUNCTION (yellow)
- c. INPUT C (1996 only-blue)
- d. DATA ENTRY (brown)
- e. INPUT A (blue)
- f. Input Control (gray)
- g. INPUT B (blue)

3.1 INTRODUCTION

3.1.1 This section contains information for operating the 1995/1996 as a bench instrument. It provides General Operating Information, Front and Rear Panel Descriptions, and Operating Procedures.

3.2 GENERAL OPERATING INFORMATION

3.2.1 If the counter is being used for the first time or at a new location, ensure that the voltage selector is set for the correct local AC supply before turning on the instrument. Refer to Subsection 2.7.2, as required, for details on line voltage selection.

3.2.2 Power-On and Self Test

3.2.2.1 Turn on the rear power switch, placing the counter in the Standby mode. The front-panel STBY LED should be lit if the red POWER-ON button is out (▲). In Standby, power is supplied to the instrument's frequency standard (timebase). This eliminates the need for warmup each time the 1995/1996 is turned on.

3.2.2.2 Depress the POWER-ON/OFF button to its ON (■) position. Power should now be supplied to the entire counter and the STBY LED should be off.

3.2.2.3 After powering-on, the 1995/1996 executes a programmed self-test of the major internal circuitry. This check verifies normal operation of the counter's microcomputer, counting circuitry, timebase, and ROM memory circuitry. Should a failure occur during this self-test, a numbered error is displayed.

3.2.3 Home State

3.2.3.1 After self-test, the counter reverts to a home state, ready for operation. The following home-state conditions are selected after "self-test":

- a. AUTO-TRIG A enabled; AUTO-TRIG B disabled
- b. Time Interval DELAY: 1 millisecond. (Verify using key sequence SHIFT RECALL DELAY)
- c. GATE Time: ten milliseconds. (Verify using key sequence SHIFT RECALL GATE)
- d. Math constants X, Y and Z: 0, 1 and 1, respectively. (The value for scale constant Z should never be zero.)
- e. FREQ A
- f. Slope A (positive); Slope B (negative)
- g. Attenuation: X1 (Input A); X50 (Input B)
- h. Input impedance: 1 MΩ

NOTE:

After power-on, the following home-state conditions exist: FREQ A, AUTO-TRIG A, X1, 1 MΩ, AC-coupling, Filter off, and COM A off.

- g. Verify that the main display shows 10.000000 ± 1 count E6 Hz; that both the GATE and Input A TRIG LEDs flash
- h. Select Input B using key sequence <21> SHIFT STORE SF SHIFT SF. Verify that the SF LED is lit
- i. Using the same coaxial test lead, connect the 10 MHz REF-OUT connector to Input B's connector
- j. -- Repeat step g for Input B
- k. Toggle the SF key using key sequence SHIFT SF. The SF LED should turn off
- l. Disconnect the test lead between the REF-OUT and Input B connectors
- m. If the counter is Model 1996, select FREQ C. Connect the test lead between the REF-OUT and Input C connectors
- n. Verify that the main display shows 10.000000 ± 1 count E6 Hz and that the GATE LED flashes

2.7.3.3 Use only AC power outlets having a protective ground for connection to the counter. DO NOT USE 2-core extension cords or 3-prong to 2-prong adapters that don't provide a protective ground connection. Connection of the power cord to the power outlet must be made in accordance with the following standard color code:

	<u>American</u>	<u>European</u>
Live	Black	Brown
Neutral	White	Blue
Ground (Earth)	Green	Green/Yellow

2.7.3.4 Also, all devices connected to or in proximity with the 1995/1996 must maintain the third-wire ground(earth) intact as set forth in current regulations.

2.8 STORAGE AND TEMPERATURE

2.8.1 The 1995/1996 can be stored at temperatures ranging from -40°C to +70°C at 75% relative humidity without adverse effects to PCBs or components. The counter must be brought within its specified operating range of 0°C to +50°C before power-on.

2.9 FUNCTIONAL CHECK

2.9.1 Introduction

2.9.1.1 The following test procedure confirms whether or not the 1995/1996 is performing correctly by checking most of the counter's circuitry. This procedure should be conducted when the 1995/1996 is first put into service and after shipment to a new location.

2.9.1.2 Now perform the following procedure:

- a. - Connect the 1995/1996 to a suitable AC power supply
- b. Turn on the rear-panel power switch. It should illuminate. Confirm that the front-panel POWER (ON/STBY) button is out (**I**) and the STBY LED lit
- c. Depress the front-panel POWER (ON/STBY) button to ON, supplying power to the entire counter. Verify that the STBY LED turns off
- d. Confirm that the instrument model number "1995" or "1996" is displayed for about two seconds, and then the main display blanks

NOTE:

Home-state conditions for the 1995/1996 are listed in Subsection 3.2.3. Refer as required.

- e. Provide a 50Ω coaxial test lead fitted with BNC connectors. This lead should be 60 cm to 1 m long
- f. Using the test lead, connect the 10 MHz REF-OUT connector (see Figure 3.2) on the rear panel to Input A's connector

- e. Pull the lever completely back to the right, snapping it closed
- f. Replace the fuse in its holder. Line voltage settings of 100 or 120V should have a 1A Slow-Blow fuse installed; settings of 220 or 240V should have a .5A Slow-Blow fuse installed.
- g. Slide the fuse cover completely to the right covering the voltage selector card and fuse. The correct line voltage designation should be visible through the window
- h. Connect the power cord to the counter again

Figure 2.9 - AC Line Voltage Selection

2.7.3 Power Cord and Grounding

2.7.3.1 The front panel and instrument case are grounded in accord with MIL-T-28800C protecting the user from possible injury due to shorted circuits.

NOTE

Both counters are designed to meet IEC Publication 348, "Safety Requirements for Electronic Apparatus for Class I Instruments."

2.7.3.2 A protective ground terminal, forming part of the rear-panel input socket, is provided. Both counters are supplied with a detachable 3-core power cord. Only this cord should be used.

2.6.2.2 Installation

- a. Disconnect the AC power cord at the rear panel
- b. Loosen, but don't remove, the two rear corner-feet by unfastening the four retaining screws (two per foot). Back the corner feet out approximately 5/8 inch. Slide the top cover toward the rear of the unit, then lift up and out to remove
- c. Remove the currently fitted standard 10 MHz oscillator assembly by:
 1. Removing the cable tie securing cables to P14/J14 and P13/J13
 2. Extracting the two screws and washers attaching the oscillator assembly to the rear panel via the two threaded standoffs
 3. Disconnecting the 5-pin connector cable (P14) from the motherboard at J14, then lifting the oscillator assembly out of the chassis
- d. Connect the 5-pin connector cable of the option oscillator assembly at J14 on the motherboard
- e. Replace the cable tie securing cable to P13/J13
- f. Secure the oscillator assembly to the rear panel using the two M3 x 8 screws, two flat washers, and two lock washers. The screws pass directly into the top of the oscillator assembly
- g. Replace the top cover; firmly secure the two rear corner-feet, completing the installation

2.7 POWER CONNECTIONS

2.7.1 Before operating the counter, verify that the AC voltage selector is correctly set for the local AC supply. The counter operates on 100, 120, 220, or 240 volts, 50 to 60 Hz. The present voltage range can be seen through the small window in the power input module on the rear panel.

2.7.2 Line Voltage Selection

2.7.2.1 The line voltage setting is easily changed by repositioning the small voltage selector card in its slot. Refer to Figure 2.9 and use the following procedure:

- a. Remove the power cord from the power input module
- b. Fully slide the transparent fuse cover to the left. This exposes the fuse and voltage selector card
- c. Pull the small lever marked FUSE PULL completely to the left. This ejects the fuse from its holder, permitting access to the selector card
- d. Remove the selector card, then reposition it in its slot so that the desired line voltage designation is visible. (Using a small pair of needle-nose pliers can be helpful in completing this step.)

2.6.2 High-Stability Oven Oscillator Option 04E

2.6.2.1 Refer to Figure 2.8 for this procedure. The installation package includes:

- a. Oscillator assembly (1) P/N 404386 for Option 04E
- b. #4 split lock washers (2) P/N 617127
- c. #4 flat washers (2) P/N 617102
- d. M3 x 8 screws (2) P/N 611067
- e. Cable tie (1) P/N 610777

Figure 2.8 – Option 04E Installation

(A) - Front Input Configuration

(B) - Option 01 PCB Installation

(C) - Rear Input Configuration

Figure 2.7-Rear-Panel Input (Option 01) Installation

- f. On the 1995, disconnect the 2-conductor (black & white, twisted-pair) 10 MHz internal frequency reference and 14-conductor twisted-wire power cables connecting the signal conditioner PCB and motherboard. This involves unplugging P8 from J8 (10 MHz cable) and P6 from J6 (power cable) on the signal conditioner board. In addition, on the 1996, unplug P7 from J7 on the signal conditioner board. This disconnects the other 2-conductor (black & white, twisted-pair) 10 MHz internal frequency reference cable. P17/J17, P18/J18 (1996), and P19/J19 can remain connected on the motherboard during this procedure. Set the free ends of the three disconnected cable assemblies safely aside for later reconnection.
- g. Slide the signal conditioner board towards the rear of the instrument; pull the board up and remove, setting it aside
- h. Remove the two black rear-hole plugs from J201 and J202 and place them on the front panel
- i. Place the Option 01 assembly board into the unit, center slot towards the rear. Connect P9A on the option board and J9 on the motherboard
- j. Fasten the option board securely to the motherboard using the existing four short standoffs and four self-locking screws
- k. Tip the instrument on its side. Insert and securely fasten the five supplied long metal standoffs to the motherboard using five self-locking screws, inserting them from the bottom of the unit through the motherboard
- l. Connect the rear-input option ribbon cable to the option board using plug P9B and socket J9B. Fold the cable halfway back towards the rear of the unit
- m. Reverse the signal conditioner board 180° (INPUT A and B connectors towards the rear panel) and hold the board in one hand. Connect the other end of the rear-input option cable to the bottom of the signal conditioner board using plug P9 and socket J9A
- n. Align INPUT A and B BNC connectors on the signal conditioner board with their corresponding rear-panel holes, then slide the board so that these connectors protrude through the holes
- o. Orient the signal conditioner board so that its five holes align with the five longer standoffs just fastened to the motherboard. Secure the signal conditioner board to these standoffs using the original five self-locking screws, inserting them through the top of the board
- p. Secure the BNC connectors for all rear-mounted inputs using their lock nuts.
- q. Reconnect the single black & white 10 MHz internal frequency reference (two on the 1996) and power cable assemblies to the signal conditioner board as before
- r. Replace the top and bottom covers; firmly secure the two rear corner-feet, completing the installation

2.5.3.8 The following assembly is required to lock the instrument into its normal operating position on the rack:

- a. Slide two self-anchoring #10-32 tinnerman nuts on the mounting-rail of the rack (each side). These nuts should be aligned with the angle-bracket slots. Omit the tinnerman nuts if the mounting-rail is tapped for #10-32 screws
- b. Slide the instrument fully into the rack until the angle brackets strike the slide-mount bracket screws. Secure the instrument in place using four phillips panhead #10-32 x 3/4 screws

2.6 MISCELLANEOUS OPTION INSTALLATION

2.6.1 Rear-Panel Input Option 01

2.6.1.1 Refer during this procedure to Figure 2.7A, B, and C as well as Option 01 Assy Drawing 404378 in Section 7. The installation package includes:

- a. Rear-Input Option Assy PCB (1)
- b. Rear-Input 72-conductor Cable Assy (1)
- c. Phillips panhead self-locking #6-32 X .312 screws (9)
- d. Metal blind-threaded #6 standoffs (5)

2.6.1.2 Complete the following steps:

- a. Loosen, but don't remove, the two rear corner-feet by unfastening the four retaining screws (two per foot). Back the corner feet out approximately 5/8 inch. This permits removal of the top and bottom covers
- b. Slide both the top and bottom covers toward the rear of the unit, then lift up and out to remove
- c. Turning counterclockwise, remove the lock nuts from the front-panel BNC connectors for INPUTs A and B (attached to the signal conditioner board) and INPUT C
- d. Remove the black rear-hole plug from J210 on the 1996. Remove INPUT C's BNC connector with its cable from the front panel and install in J210 on the rear panel of the 1996. Place the rear-hole plug for INPUT C on the front panel
- e. Remove the five self-locking screws from the top of the signal conditioner board. These screws fasten the signal conditioner PCB to the motherboard. Set these screws aside

*FOR INSTALLATION ON FULL-DEPTH INSTRUMENTS ONLY

Figure 2.6-Slide-Mount and Instrument Assembly (with inset)

NOTE

For 3-1/2 inch high instruments, position the rail access hole over the **top** alignment-block hole; for 5-1/4 inch high instruments, use the **bottom** hole.

- d. Insert a phillips panhead self-tapping #8-32 x 5/16 screw through the rail access hole and screw it to pull-up position in the alignment block. At the same time, position the flange-mount angle-bracket in its approximate final location in the side frame channels. Align the other alignment-block screw holes with their attachment holes in the instrument-rail. Insert phillips panhead self-tapping #8-32 x 5/16 screws in the alignment blocks and fasten to pull-up position. Repeat this procedure for the other rail
- e. -- Slide the handle/corner insert between the side frames and each angle bracket
- f. Align the handle/corner insert and angle-bracket holes with their retaining screw holes in the side frame
- g. Insert two phillips flathead #8-32 x 1/2 screws (some models use M4 x 12) through the handle/corner insert and angle-bracket combinations, then fasten firmly to the frame
- h. Securely fasten all self-tapping screws in the instrument-rail. The instrument should slide freely on the rails

Figure 2.5-Rear End Slide-Mount Rack Dimensions

2.5.3.7 Refer to Figure 2.6 (with inset). The assistance of a second person will be needed for the following slide-mount assembly-to-instrument installation.

- a. Extend the rails of the slide-mount assemblies to their maximum position. Insert a phillips panhead self-tapping #8-32 x 5/16 screw inward through the first mounting hole in the instrument-rail. Place an alignment (spacer) washer on the screw on the other side of the instrument-rail
- b. Screw the flange-mount angle-bracket to pull-up position on the instrument-rail. Check that the alignment washer remains between the angle bracket and instrument-rail. Repeat this procedure for the other instrument-rail
- c. With the help of a second person, position the instrument between the fully extended rails. For full-depth instruments, the rear alignment-block hole should be situated immediately behind the fourth attachment hole in the instrument-rail. For intermediate-depth instruments, the rear alignment-block hole should be located behind the third attachment hole

2.5.3.6 The assistance of a second person will be needed for the following instrument-rack assembly. Secure the slide-mount assembly in the designated area of the instrument rack using the procedure below.

NOTE

If the mounting-rail of the instrument rack is tapped for #10-32 screws, drill out two places for each bracket using a 1/4 inch diameter bit. Proceed with the assembly:

- a. Hold the front end of the slide-mount assembly behind the front mounting-rail of the rack, while the second person holds the rear end of the assembly
- b. Secure the front rack-bracket to the front mounting-rail using two phillips panhead #10-32 x 1/2 screws. Seat the front rack-bracket firmly against the mounting-rail before tightening these screws
-
- c. Install the other front rack-bracket on the front mounting-rail in the same manner
- d. Set the front dimension between the two slide-mount assemblies at 16 5/8 inches
- e. Adjust the length of the rear rack-brackets to touch the inside of the rear mounting-rail. Tighten the rear rack-bracket assembly screws
- f. The distance between the two slide-mount assemblies at the rear-bracket should be 16 5/8 inches. Should a filler plate be required to secure the slide-mount assembly to the rear rack mounting-rail at 16 5/8 inches, use the dimensions given in Figure 2.5 to determine filler-plate size

NOTE

The rear rack-bracket may require adjustment to accommodate the thickness of the filler plate.

- g. Secure the rear rack-bracket to the rear rack mounting-rail (or filler plate) using two phillips panhead #10-32 x 1/2 screws in each bracket
- h. The triple-rail slide-mount assemblies should move freely to their maximum extended positions. If not, remove any obstacle before installing the instrument

Figure 2.4A/B-Slide-Mount and Bracket Assembly

- d. Fully extend the slide-mount assembly. Position a rear rack-bracket (with two elongated mounting slots) on the rear of the assembly in the same way as the front rack-bracket. Align the mounting slot closest to the slotted flange with the rear rack-rail nail hole. Insert a slotted panhead #8-32 x 3/8 screw through the holes. Attach a washer, lock washer, and nut to the screw and secure the rear rack-bracket loosely to the slide-mount assembly
- e. Fully extend the slide-mount assembly. Position a rear rack-bracket (with two elongated mounting slots) on the rear of the assembly in the same way as the front rack-bracket. Align the mounting slot farthest from the slotted flange with the rear rack-rail nail hole. Insert a slotted panhead #8-32 x 3/8 screw through the holes. Attach a washer, lock washer, and nut to the screw and secure the rear rack-bracket loosely to the slide-mount assembly
- f. Complete the other slide-mount and rack-bracket assembly in the same manner as just described
-
- g. Slide two self-anchoring #10-32 tinnerman nuts on the front and rear rack-brackets at the top and bottom slots of both slide-mount assemblies

Figure 2.3-Loading the Alignment Blocks

the
de)
of

ent
her
or

ted

and
jet,

ess
#8-
the
the

2.5.3.4 Replace the top and bottom covers on the instrument. Fasten the covers using two cover retaining-brackets (see Figure 2.6) and four phillips panhead screws (two per side) originally removed from the rear corner-feet. The instrument is now ready for attachment to the two triple-rail slide-mount assemblies.

2.5.3.5 Refer to Figure 2.4A/B. Prepare the triple-rail slide-mount assembly for equipment rack installation. First, note that the instrument-rail and rack-rail holes are accessible either directly or through the enlarged holes in the center-rail (as the assembly is extended or retracted). Complete the following procedure:

- a. Place a front rack-bracket (with one mounting slot) on the workbench, slot flange facing down
- b. Position the front end (i.e., slide-out end) of the slide-mount assembly over the bracket parallel to the front rack-bracket. The rack-rail should rest within the bracket about 3/4 inch from the bracket's front edge
- c. Adjust the rails, aligning the front rack-rail hole with the center-rail access hole and mounting slot in the front rack-bracket. Insert a slotted panhead 32 x 3/8 screw through the holes. Attach a washer, lock washer, and nut to the screw and secure firmly, maintaining the 3/4-inch dimension to the front of the bracket

NOTE

Measure the distance between the front and rear mounting-rails of the rack at this point. If the distance is less than 20 inches, follow instruction "d" next; if the distance is greater than 20 inches, follow instruction "e".

2.5.3.2 Prepare the instrument for installing the alignment blocks in the side channels of the unit. Refer to Figures 2.1 and 2.2 and complete the following steps:

- a. Remove the two rear corner-feet by extracting the two phillips retaining screws from each foot
- b. Slide the top and bottom covers 1/2 inch towards the rear panel, then lift them off
- c. Remove the four bench feet and tilt-bail from the bottom cover
- d. Slide the side panels down their retaining tracks towards the rear, then remove the panels
- e. Store the four panels, four bench feet, and tilt-bail in a convenient location
- f. Remove the two front handles/corner inserts from the frame by extracting the two retaining screws from each handle or corner insert

Figure 2.2-Rear Corner Foot, Side Panel, and Handle Detail

2.5.3.3 Refer to Figure 2.3 for alignment block loading. Slide the alignment blocks down the center channel of the frame on each side of the instrument. Three alignment blocks per side should be loaded for full-rack depth units; two blocks for intermediate-rack depth units. The two screw holes in each alignment block should be at center position and below, relative the center channel.

- b. Place an angle bracket over each handle/corner insert, aligning the mounting holes over the retaining screw holes
- c. Insert two replacement flathead #8-32 x 1/2 screws through each angle bracket and handle/corner-insert combination, then screw securely to the case

2.5.2.5 Reassemble the instrument by replacing the top and bottom covers, fitting the front edge of the covers into the groove in the front panel. Do not attempt to replace the instrument's side panels. Complete the procedure by screwing the two rear corner-feet to the case.

2.5.2.6 Store the following items in a convenient location:

Two side-panels, four bench feet and retaining screws, and four replaced retaining screws from the front handles/corner inserts.

2.5.3 ~~—~~ Slide-Mount Option 65 Installation

2.5.3.1 Refer to Figures 2.2-2.6 for this procedure. The installation package includes:

- a. Front corner-inserts for nonhandle installations (2) - P/N 454323
- b. Flange-Mount angle-brackets (2) - P/N 454422
- c. Alignment blocks (6) - P/N 454490
- d. Front rack-brackets (2) - Part of P/N 454488
- e. Rear rack-brackets (2) - Part of P/N 454488
- f. Triple-rail slide-mount assemblies (2) - P/N 454489
- g. Self-Anchoring #10-32 tinnerman nuts (12) - P/N 610920
- h. Phillips panhead #10-32 x 1/2 screws (8) - P/N 615091
- i. Slotted panhead #8-32 x 3/8 screws with nuts, washers, and lock washers (each) - Part of 454488
- j. Phillips panhead self-tapping #8-32 x 5/16 screws (8) - P/N 610910
- k. Phillips flathead #8-32 x 1/2 screws (4) - P/N 615325
- l. Phillips panhead #10-32 x 3/4 screws (4) - P/N 615093
- m. Alignment #8 x 1/16 (spacers) washers (2) - P/N 610921
- n. Cover retaining-brackets (2) - P/N 454597
- o. Phillips Flathead Metric Screws M4 x 12 (4) - P/N 611011

Figure 2.1-Fixed-Mount Angle-Bracket Detail

2.5.2.2 Remove the tilt-bail by applying pressure inward on the bail legs, then unhooking the bail from the bench feet.

2.5.2.3 Remove the bench feet and side panels by completing the following steps:

- a. Unscrew the two phillips head screws from each rear corner-foot. This frees the corner-feet, covers, and side panels
- b. Remove the two rear corner-feet from the case
- c. Place the instrument bottom-up, then slide the bottom cover 1/2 inch towards the rear panel and lift off. The top cover slides off in the same manner
- d. Remove the four bench feet from the bottom cover by unscrewing the phillips head retaining screws from each foot
- e. Slide the side panels down their retaining tracks towards the rear, then remove the panels. (With side panels off, the retaining screws-2 per side-for the front handles/corner inserts are exposed.)

2.5.2.4 Install the flange-mount angle-brackets by completing the following steps:

- a. Remove the retaining screws for both handles/corner inserts, leaving the handles/corner inserts in place

INSTALLATION PREPARATION FOR US

SECTION 2

2.1 INTRODUCTION

2.1.1 This section describes the unpacking and inspection, reshipment, rack installation, miscellaneous option installation, power connections, and storage/temperature requirements for the 1995/1996.

2.2 UNPACKING AND INSPECTION

2.2.1 Before unpacking the counter, check the exterior of the shipping carton for any signs of damage. All irregularities should be noted on the shipping bill. Remove the instrument carefully from its carton, preserving the factory packaging as much as possible. Inspect the counter for any defect or damage. Notify the carrier immediately if any damage is apparent. Have a qualified person check the instrument for safety before use.

2.3 RESHIPMENT INSTRUCTIONS

2.3.1 Use the original packaging if it is necessary to return the counter to Racal-Dana for calibration and/or servicing. The original shipping carton and the instrument's plastic-form will provide the necessary support for safe reshipment. If the original packaging is unavailable, reconstruct it as much as possible. Wrap the counter in plastic; then use plastic spray foam to surround and protect the instrument. Reship in either the original or new, sturdy shipping carton.

2.4 BENCH OPERATION

2.4.1 The 1995/1996 is equipped with a tilt-bail to elevate the front of the instrument for easy operation. The tilt-bail is attached to the two front feet on the bottom of the counter. For use, the bail is pulled down to its vertical position.

2.5 EQUIPMENT RACK INSTALLATION

2.5.1 The 1995/1996 can be mounted in a standard 19-inch equipment rack using either Fixed-Mount Option 60 or Slide-Mount Option 65. Installation instructions for these two options follow.

2.5.2 Fixed-Mount Option 60 Installation

2.5.2.1 Refer to Figure 2.1 for this procedure. The installation package includes:

- a. Flange-Mount angle-brackets (2)
- b. Front corner-inserts for nonhandle installations (2)
- c. Flathead #8-32 x 1/2 screws (4)

:

1.4 SAFETY

1.4.1 The 1995/1996 incorporates a protective earth terminal and is designed to meet international safety requirements. Refer to the safety page "FOR YOUR SAFETY" immediately preceding the Table of Contents. Follow all NOTES, CAUTIONS, and WARNING to ensure personal safety and prevent damage to the instrument.

1.5 PRODUCT SUPPORT

1.5.1 Racal-Dana supports the 1995/1996 with Product Engineering, Service, and Part Departments. A complete listing of service centers and field representatives is provided on the last two pages of the manual.

1.6 GENERAL DESCRIPTION

1.6.1 The 1995/1996 is a universal counter designed for system or bench use. Basic measurement functions include Frequency, Period, Time, Ratio, and Totalize. Inputs A and C provide frequency measurement to 200 MHz; Input C (1996 only) extends frequency and ratio measurements to 1.3 GHz. Computational capabilities include Rise/Fall Time, Pulse Width, Phase Measurement, Duty Cycle, Slew Rate, Statistical Data, and Math Operations. Inputs A and B incorporate independent Start and Stop channels with automatic or manual trigger selection. Input D on the rear panel is used for external arming and gating.

1.6.2 Special Functions

1.6.2.1 Both the 1995/1996 provide a set of Special Functions, permitting extended measurements and capabilities beyond the front-panel keyboard. See Subsection 3.4.8 for details.

1.6.3 GPIB Interface

1.6.3.1 The 1995/1996 provides a GPIB interface as standard. This permits the execution of all front-panel operations except power-on and address selection. See Section 4 for GPIB capabilities, addressing, and bus protocol.

1.6.4 Models 1995/1996-02M

1.6.4.1 These two special versions incorporate a MATE(R)/CIIH interface and are available from Racal-Dana.

1.7 OPTIONS

1.7.1 Options available for the 1995/1996 are listed below. Those specified on the original order will be factory installed and ready for use. Section 2 provides information on the field installation of certain options. See the Specifications in Table 1.1 as required.

- a. Option 01 - Rear Panel Input
- b. Option 04E - High Stability Oven Oscillator
- c. Option 60 - Fixed Rack Mount
- d. Option 65 - Slide Rack Mount

Table 1.1 - Technical Specifications (Cont'd)

Trigger Level Timing Error

Timing Error =
$$\frac{(\text{Trigger Level Error (V)})}{(\text{Input Slew Rate at START trig point (V/sec)} - (\text{Trigger Level Error (V)}) / \text{Input Slew Rate at STOP trig point (V/sec)})}$$

where Trigger Level Error = $\pm 1\%$ of Trigger Level $\pm 10\text{ mV}$

Table 1.1 - Technical Specifications (Cont'd)

OPTIONS*	
Option 01 Rear-Panel Inputs	
Option 04E High-Stability Oven Oscillator	
Proportionally controlled ovenized Internal Frequency Standard	
Frequency:	10 MHz
Aging:	$< 5 \times 10^{-10}$ per day at time of shipment
Temperature Stability:	$< 7 \times 10^{-9}$ over the range 0°C to 50°C
Line Voltage Stability:	$< 5 \times 10^{-10}$ two minutes after a 10% line voltage change
Option 04R Rubidium Precision Internal Frequency Standard	
Frequency:	10 MHz
Long Term Drift:	$\leq 5 \times 10^{-11}$ per month $\leq 5 \times 10^{-10}$ per year
Temperature Stability:	$\leq 3 \times 10^{-10}$ from 0°C to $+50^{\circ}\text{C}$
Line Voltage Stability:	$\leq 2 \times 10^{-11}$ from $\pm 10\%$ voltage change
Option 60	
Rack mounting kit (fixed)	
Option 65	
Rack mounting kit (slides)	
DEFINITIONS	
LSD Least Significant Digit	
Trigger Error	
Trigger error = (Seconds)	$\frac{\sqrt{(e_i^2 + e_n^2)}}{\text{Input Slew Rate at Trigger Point}} \text{ (Volts)}$
where $e_i =$	input amplifier rms noise, $250 \mu\text{V}$ rms max
$e_n =$	input signal rms noise in 250 MHz bandwidth

Table 1.1 - Technical Specifications (Cont'd)

NON-VOLATILE MEMORY
Up to 10 complete front-panel settings may be stored for subsequent recall.
GATE OUT
A TTL-compatible signal is provided from a rear-panel BNC connector coincident with the measurement gate + 100 nanoseconds.
TRIGGER LEVEL OUTPUTS
Start and stop levels are available on the rear panel from BNC connectors for calibration purposes only.
DISPLAY
LED: 10 digit display, character size 0.43". Exponent digit, character size 0.43"
When measurement exceeds 10 digits, the least significant 10 digits are displayed, and the overflow indicator is lit.
TEMPERATURE PERFORMANCE
Operating Temperature: 0°C to +50°C
Storage Temperature: -40°C to +75°C
POWER REQUIREMENTS: 100, 120, 220, 240V rms ± 10% 50 to 400 Hz ± 10% 80 VA
DIMENSIONS: 88.9 mm (3.5 in) High X 427.0 mm (16.8 in) Wide X 475 mm (18.7 in) deep
WEIGHT: 10 kg (22 lb.)

Table 1.1 - Technical Specifications (Cont'd)

STATISTICS	
Sample Size:	2 to 9999
Standard Deviation:	Displays Standard Deviation of sample size (n)
Average:	Displays Average (mean) value of sample size (n)
Highest:	Using Special Function 51, the highest value in sample size (n) is displayed
Lowest:	Using Special Function 52, the lowest value in sample size (n) is displayed
MATH	
Applies to all counting/timing measurement functions. Note Math Function is applied prior to Statistics Function.	
Display = $\frac{\text{Reading} - X}{Y}$	Z
Where X, Y and Z are constants entered and stored via the keyboard.	
Constant (X, Y or Z) Range:	$\pm 0.000000001\text{E-9}$ to $\pm 9999999999\text{E9}$
Power-Up Condition:	X = 0 Y = 1 Z = 1
GPIB INTERFACE	
Standard:	IEEE-STD-488-1978
Programmable Controls	All front panel controls with the exception of Power
Universal Commands:	Trigger, Clear, Remote, Local, Local Lockout, Require Service
Data Output Format:	Refer to Tables 4.5 and 4.7
Data Output Rate:	150 readings/second, maximum

Table 1.1 - Technical Specifications (Cont'd)

External Gate:	
Input:	Inputs A, B or D, selectable via Special Functions 85.0-88.3
Start Arm:	(+) or (-) edge, selectable via special function applied to external arm input allows counter to start a measurement cycle
Stop Arm:	(+) or (-) edge, selectable via special function applied to external arm input allows counter to stop measurement cycle
--	
Synchronous Window Auto-Trigger: (Syn. Wind. AT)	
Input:	Inputs A, B or D, selectable via Special Functions 91.0-94.3
Start/Stop Edges:	(+) or (-), selectable via special function applied to external arm input allows the auto-trigger function to establish the (+) and (-) signal peaks and trigger level only during the period when the arming signal is present
<hr/>	
PEAK SIGNAL MEASUREMENT	
<hr/>	
The auto-trigger function may be used to determine and indicate the peak maximum, peak minimum, and peak-to-peak values of the measurement signal applied to Inputs A or B.	
Display:	Individual 3-digit displays for Inputs A and B.
Frequency Range:	DC and 30 Hz to 25 MHz
Dynamic Range:	.15 to 10V p-p (X1 attenuation)
Resolution:	10 mV (X1 attenuation)
Accuracy:	± 5% of peak-to-peak voltage ± 20 mV for sine waves
	± 2% of peak-to-peak voltage ± 20 mV for pulses > 20-ns wide and ≥ 5 ns rise time

Table 1.1 - Technical Specifications (Cont'd)

TIME BASE (See Option 04E)	
Frequency:	10 MHz
Aging:	< 1 ppm per month < 2 ppm for first year
Temperature Stability:	± 10 ppm over the range 0° to 50°C, referenced to 25°C
External Standard Input:	
Frequency:	1, 5, 10 MHz
Level:	Min., 500 mV rms, Max., 5V rms
Impedance:	1 kilohm
Internal Standard Output:	
Frequency:	10 MHz
Level:	> 1V p-p into 50 ohms
ARMING	
Start Arm:	
Input:	Inputs A, B or D, selectable via Special Functions 82.0-83.3
Start Arm:	(+) or (-) edge, selectable via special function applied to external arm input allows counter to start a measurement cycle

Table 3.10 - Rise A/Fall A Measurements

1. Turn power on.
2. Select either RISE A or FALL A using FUNCTION keys 13.
3. Connect measurement signal to INPUT A 18.

NOTE:

All other controls are set automatically.

Table 3.11 - Phase A rel B Measurement

1. Turn power on.
2. Select PHASE A rel B using FUNCTION keys (13).
3. Select AC/DC coupling (16C), input impedance (16E), and slopes (16D) as required. Selected slopes for signals A and B should be the same.
4. Select the X10 or X50 input attenuation (16F) if desired. Attenuation setting is automatic in the Auto-Trigger mode.
5. Connect the signals to be compared to INPUT A and INPUT B (18).
6. Either set the trigger levels A/B manually using key sequence <value> +/- (15C) TRIG-LEVEL (16B), or select AUTO-TRIG A/B levels (16A). Check that Inputs A/B TRIG LEDs (16H) flash.
7. Select the Hold mode (12) for single-shot measurements. Press the RESET (11) while in Hold to trigger a new measurement.

NOTE:

A phase measurement is always positive, representing the angle by which Input A's signal leads that of Input B. The signals for phase measurement must be continuous and have the same frequency.

Table 3.12 - Duty A Measurement

1. Turn power on.
2. Select DUTY A using FUNCTION keys (13).
3. Select the slope (16D) as required.
4. Connect the signal to INPUT A (18).

NOTE:

All other controls are set automatically.

Table 3.13 - Slew A Measurement

1. Turn power on.
2. Select SLEW A using FUNCTION key (13).
3. Select the slope (16D) as required.
4. Connect the signal to INPUT A (18).

NOTE:

All other controls are set automatically.

3.4.2 Trigger Level Setting

3.4.2.1 Introduction

3.4.2.1.1 Refer to Figure 3.1 for this subsection. The 1995/1996 both provide manual and automatic (including single-shot) trigger setting for Inputs A and B. Manual trigger select involves setting the levels in $\pm 5V$, $\pm 50V$, and $\pm 250V$ ranges, with corresponding resolutions of mV, 100 mV, and 1V. These ranges correspond to attenuation settings of 1X, 10X, and 50X. LEVEL A and B trigger displays of X.XX, XX.X, and XXX., respectively. Auto-Trigger level is the mean of the positive and negative-peak values of the input signal as automatically determined by the counter.

Figure 3.1 - Trigger Level Setting

3.4.2.2 Manual Trigger Setting

NOTE:

An attenuation setting of X1 and a trigger level of 1.23 volts are used in the following description.

3.4.2.2.1 Set the trigger level manually using one of the following key sequences:

- For setting a +1.23, use <1.23> TRIG-LEVEL 16B
- For setting a -1.23, use +/- 15C <1.23> TRIG-LEVEL 16B

3.4.2.2.2 After entering a manual trigger level, it is continuously displayed on the LEVEL A/LEVEL B LED(s) 16G. The 1995/1996 returns immediately to its measurement mode after trigger setting. TRIG A/TRIG B LED(s) 16H flash if the counter is triggered from the input signal.

3.4.2.2.3 Use key sequence TRIG-LEVEL 16B LEVEL↑↓ 17A TRIG-LEVEL 16B to step the displayed trigger level up or down by 0.01 (X1), 0.1 (X10), or 1. (X50) as required. Verify the trigger level changes on the LEVEL A/LEVEL B LED(s) 16G.

3.4.2.2.4 A manual trigger level that is out-of-range for the current attenuation setting produces an error message.

NOTE:

INPUT A and B each have one trigger-level store. Using the Auto-Trigger mode overwrites a manually stored trigger setting. Also, pressing the AUTO-TRIG key (16A) while manually setting the level enables the Auto-Trigger mode. Toggle the AUTO-TRIG key (16A) off, then enter a manual trigger level.

3.4.2.2.5 Press the DISPLAY key (17D) to show V MAX, V MIN or Vpp of the input signal in the LEVEL A/LEVEL B display.

3.4.2.3 Automatic Trigger Setting

3.4.2.3.1 Press the required AUTO-TRIG key (16A) to calculate and show the trigger level in the LEVEL A/LEVEL B display. Automatic attenuation setting occurs in the Auto-Trigger mode.

3.4.2.3.2 Press the DISPLAY key (17D) to show V MAX, V MIN, or Vpp of the input signal in the LEVEL A/LEVEL B display.

3.4.2.4 Single-Shot Automatic Trigger

3.4.2.4.1 Automatic trigger settings vary as peak input levels change. To execute and store a single-shot Auto-Trigger level:

- a. Enter Special Function 31 using key sequence 31 SHIFT (15F) STORE (15L) and SF (15G)
- b. Enable special functions using key sequence SHIFT (15F) SF (15G)
- c. Press the AUTO-TRIG key (16A). The LED lights as the level is calculated and set, then turns off.

3.4.2.4.2 The stored level is retained as a manually set value until either (1) another single-shot measurement is made, or (2) a new manual trigger level is entered.

3.4.2.4.3 To execute additional single-shot trigger settings, press the AUTO-TRIG key (16A) again with Special Function 31 enabled.

3.4.3 Gate Time and Resolution

3.4.3.1 Frequency Functions

3.4.3.1.1 Gate Time Mode - by specifying the counter's gate time, the user can set the resolution in the frequency, period, and ratio functions. Gate times from 200 ns to 100s may be selected. To enter a gate time, use the key sequence <value> SHIFT STORE GATE where <value> is either in decimal or exponential form. To recall a gate time for display, use the key sequence SHIFT RECALL GATE. Use the RESOLUTION $\uparrow\downarrow$ keys to decadically step the displayed gate time (and resolution) either up (\uparrow) towards 100 s or down (\downarrow) towards 200 ns. The counter's gate time (and resolution) can be set to display from one to ten digits (with overflow).

EXAMPLE

Assume EREQ A is selected and a 1 ms gate time specified. Successively pressing the RESOLUTION (\uparrow) key will select and display gate times (and resolutions) of 10 ms, 100 ms, 1s, 10s, and 100s. Successively pressing the RESOLUTION (\downarrow) key will select and display gate times (and resolutions) of 100 μ s, 10 μ s, and 1 μ s. Pressing the RESOLUTION (\downarrow) key again after displaying 1 μ s will not produce a gate time of 100 ns as this value is smaller than the 200 ns lower gate-time limit. The 1 μ s will continue to display on the counter.

3.4.3.1.2 Resolution Mode - when no gate time is specified in frequency, period, and ratio functions, the counter's resolution can be selected using the RESOLUTION ($\uparrow\downarrow$) keys. Now the gate time is automatically set via the number of displayed digits of resolution. Except in some Math computations, pressing the RESOLUTION ($\uparrow\downarrow$) keys will increment/decrement the display by one digit per keyboard maneuver. Each digit displayed decadically increases/decreases the counter's resolution within the counter's gate time range. Gate times from 200 ns to 100 s may be selected. There will be no step-up or-down when the RESOLUTION ($\uparrow\downarrow$) keys are pressed in Time Interval, Totalize, Rise/Fall Time, Positive/Negative Pulse Width, or Slew Rate functions.

EXAMPLE

A 9-digit resolution of a measurement is possible in a 1-second gate time; 10-digit resolution in a 10-second gate time; and 10-digit resolution plus overflow in a 100-second gate time. If one selects a gate time which sets a resolution exceeding the 10-digit display resolution, then an overflow of the most significant digit(s) and lighting of the O/F LED occurs. Two overflow states are permitted in the 1995/1996. In an overflow condition, the user can reduce the gate time to display any "dropped" digit(s). Digits that overflow are not lost, but remain stored in the counter's registers for output over the GPIB.

3.4.3.2 Time Functions

3.4.3.2.1 In Time Interval functions (TI A-B, Rise/Fall, and Pulse Width, e.g.,), the input signal is synchronized with the measurement gate. Thus, there is no gate time as such. The input signal, therefore, determines the counter's resolution. On the 1995/1996, a single-shot Time Interval resolution to 1 ns is possible.

3.4.4 Delay Mode

3.4.4.1 When Time Interval (TI), Totalize, or Positive/Negative Pulse Width is selected, an internal delay from 200 ns to 100 s may be entered from the front panel. This permits the user to increase the elapsed time between the start and stop trigger points by the gate time range. Once stored, the delay may be enabled/disabled as required. Use of the Delay mode prevents premature triggering from spurious signals during measurement.

3.4.4.2 The delay is stored using either an exponential or decimal format. Use one of the following key sequences to store, for example, a 1 μ s delay:

- a. 1 EXPONENT +/- 6 SHIFT STORE DELAY
- b. <.000001>SHIFT STORE DELAY

NOTE:

Once the delay is entered, the counter returns to the measurement mode.

3.4.4.3 Recall the delay to the main display using key sequence SHIFT RECALL DELAY.

3.4.4.4 Enable and disable a stored delay by successively using key sequence SHIFT DELAY. The LED lights when the Delay mode is enabled.

3.4.5 Arming/Gating Selection

3.4.5.1 Refer to Table 3.14 as required. External arming, external gating, and synchronous window auto-trigger (Syn. Wind. AT) modes are selectable via special functions for Inputs A, B, or D.

3.4.5.2 External Arming

3.4.5.2.1 Special Functions 82.0 through 83.3 as applied to the external arming input (A, B, or D) permit selection of positive or negative start edges in the 1995/1996.

3.4.5.3 External Gating

3.4.5.3.1 Special Functions 85.0 through 88.3 as applied to external gating inputs (A, B, or D) permit selection of positive or negative start/stop edges in the 1995/1996.

**3.4.5.4 Synchronous Window Auto-Trigger
(Syn. Wind. AT)**

3.4.5.4.1 Special Functions 91.0 through 94.3 as applied to the external arming input (A, B, or D) permit selection of positive or negative start/stop edges in the counter. Auto-trigger can establish the positive/negative signal peak measurements and trigger level only during the time when the Syn. Wind. AT signal is present. The auto-trigger can now be used for display of peak voltage values of a specific pulse(s) selected by the operator using the Syn. Window AT signal.

3.4.6 Math Function (R-X)Y/Z

3.4.6.1 The Math function applies to all counting and timing functions of the 1995/1996 except phase measurement. This function permits measurement value R to be offset, normalized, and/or scaled before display using stored constants X, Y, and/or Z, respectively. The display indicates (R-X)Y/Z after enabling the Math function. Home state values for X, Y, and Z are 0, 1, and 1, respectively (Z \neq 0 at any time).

3.4.6.2 Math Constant Storage

3.4.6.2.1 Constants X, Y, and/or Z must be stored before enabling the Math function. Use key sequence <value> SHIFT STORE X/Y/Z, where <value> is in decimal or exponential form, to enter any of the constants. The permissible range of values for the Math constants is $\pm 0.00000001E-9$ to $\pm 9999999999E9$. Any number exceeding this range will result in "Error 20" being displayed.

3.4.6.3 Math Constant Recall

3.4.6.3.1 Recall stored Math constants to the main display using key sequence SHIFT RECALL X/Y/Z.

3.4.6.4 Math Function Enabling/Disabling

3.4.6.4.1 Enable and disable the Math function by successively using key sequence SHIFT (R-X)Y/Z. The LED lights when the Math function is enabled.

3.4.7 Statistical Functions/(n) Samples

3.4.7.1 The 1995/1996 Statistical functions include the Mean, Standard Deviation, and Low/High values for user-entered (n) samples. Mean and Standard Deviation are enabled using single front-panel keys; Low/High values by special functions.

3.4.7.2 (n) Samples

3.4.7.2.1 The range of (n) samples is any positive integer from 2 to 9999 (fractions entered for n are truncated). Home state value for (n) samples is 100.

3.4.7.2.2 To store (n) samples, use the key sequence <n> SHIFT STORE (n) where <n> is a valid integer. To recall (n) samples for display, use the key sequence SHIFT RECALL (n). Pushing RESET restarts the period of (n) samples.

3.4.7.3 High/Low Values

3.4.7.3.1 Use Special Function 51 and key sequences 51 SHIFT STORE SF and SHIFT SF to calculate and display the High value of (n) samples. Use Special Function 52 and key sequences 52 SHIFT STORE SF and SHIFT SF to calculate and display the Low value of (n) samples. If enabled, the MEAN(n) or STD(n) key is disabled during determination of High/Low values.

3.4.7.4 MEAN(n)/STD(n) Functions

3.4.7.4.1 Successively use key sequence SHIFT MEAN(n) or SHIFT STD(n) to enable and disable the corresponding statistical function. Pressing SHIFT MEAN(n)/SHIFT STD(n) automatically deselects the opposite function if enabled. Updating of the main display for either statistical function only occurs after (n) samples have been executed.

3.4.8 Special Functions

3.4.8.1 Table 3.14 lists the special functions available on the 1995/1996. All special functions are designated by either a two or three-digit special function number (NN or NN.N). In the table, special functions are organized by mutually exclusive groups shown by lined sections. Selecting a member of one of these groups automatically deselects all other special functions in that group. Storing a circled special function disables all special functions in a group. Circled special functions may not be recalled.

3.4.8.2 Special Function Storage

3.4.8.2.1 Special function numbers must be entered into memory before special functions can be enabled. Use the following key sequence to store, for example, special function number 81: 81 SHIFT STORE SF.

3.4.8.2.2 The digits for a special function number are shown on the main display as the numeric keys are pressed. Once the number is stored, the counter automatically returns to the measurement mode. Storing a special function number overwrites other numbers within its group.

3.4.8.3 Special Function Recall

3.4.8.3.1 Stored special functions are recalled to the main display using key sequence SHIFT RECALL SF. The lowest special function number in memory will be shown first on the display. Use the RESOLUTION keys ($\uparrow\downarrow$) to scroll through the current set of special function numbers.

3.4.8.4 Special Function Enabling/Disabling

3.4.8.4.1 Enable and disable stored special functions by successively using key sequence SHIFT SF. The LED lights when special functions are enabled.

NOTE:

Storing a special function when special functions are enabled immediately enables that special function.

Table 3.14 - Special Functions (SFs)

SF Number	Function
0	No special functions. Storing SF0 erases all current special functions. SF0 is present after power-up
(20) 21	Default for SF 21. Normal Inputs A and B Inputs A and B exchanged
(27) 28 29 --	Default for SFs 28, 29. Filter functions for both Inputs A and B Filter key functions with Input A only Filter key functions with Input B only
(30) 31	Default for SF 31. Continuous Auto-Trigger mode Single-Shot Auto-Trigger mode
(40) 41	Default for SF 41. Read rate of 300 ms Maximum read rate
(50) 51 52	Default for SFs 51, 52. Normal statistics operation Display highest value for (n) samples Display lowest value for (n) samples
(60) 61	Default for SF 61. Automatic start/stop totalize Manual start/stop totalize
70	Keypad test for front-panel LEDs. No SF enabling necessary; just store the SF to initiate the test
(80)	Default for SFs 80 - 90. No external arming, external gate, or synchronous window auto-trigger (Syn. Wind. AT)

Table 3.14 - Special Functions (Cont'd)

SF Number	Function
(81)	External arming off
82.0	Ext. arming, (+) slope
82.1	
82.2	
82.3	
	(82.3 is the default for SFs 82.0 - 82.3)
83.0	Ext. arming, (-) slope
83.1	
83.2	
83.3	
	(83.3 is the default for SFs 83.0 - 83.3)
(84)	External gate off
85.0	Ext. gate, start (+) stop (+)
85.1	
85.2	
85.3	
	(85.3 is the default for SFs 85.0 - 85.3)
86.0	Ext. gate, start (+) stop (-)
86.1	
86.2	
86.3	
	(86.3 is the default for SFs 86.0 - 86.3)
87.0	Ext. gate, start (-) stop (+)
87.1	
87.2	
87.3	
	(87.3 is the default for SFs 87.0 - 87.3)
88.0	Ext. gate, start (-) stop (-)
88.1	
88.2	
88.3	
	(88.3 is the default for SFs 88.0 - 88.3)
(90)	Synchronous Window Auto-Trigger (Syn. Wind. AT) off
91.0	Syn. Wind. AT, start (+) stop (+)
91.1	
91.2	
91.3	
	(91.3 is the default for SFs 91.0 - 91.3)
92.0	Syn. Wind. AT, start (+) stop (-)
92.1	
92.2	
92.3	
	(92.3 is the default for SFs 92.0 - 92.3)

Table 3.14 - Special Functions (Cont'd)

SF Number	Function	
93.0	Syn. Wind. AT, start (-) stop (+)	- Input A
93.1	(93.3 is the default for SFs 93.0 - 93.3)	- Input B
93.2		- Input D, Zero-Crossing Trigger I
93.3		- Input D, TTL-Crossing Trigger I
94.0	Syn. Wind. AT, start (-) stop (-)	- Input A
94.1	(94.3 is the default for SFs 94.0 - 94.3)	- Input B
94.2		- Input D, Zero-Crossing Trigger I
94.3		- Input D, TTL-Crossing Trigger I

NOTE:

When the main function of the 1995/1996 is changed, Special Functions 80 - 94 are reviewed. If setup conditions are appropriate for the new function, they are retained; if they are not, they are cancelled. The setup conditions, however, are reactivated when the original function is reselected because of the counter's one level of keyboard memory.

3.4.9 Error Codes

3.4.9.1 Table 3.15 lists the error codes that may be displayed by the counter during local operation either as "OP Error" or in the form "Error NN" where NN is a 2-digit code number. Error codes will clear automatically after displaying for about 2-3 seconds.

Table 3.15 - Error Codes

Displayed Codes	Error
OP Error	Key invalid in present machine state or key out-of-sequence
Error 20	Input number out-of-range
23	Phase measurement ratio out-of-range
24	Hardware ratio measurement ratio produced divide by zero
25	Internal totalize error
34	Display under flow
35	Display overflow
40	Non-Vol Memory error during calibration
41	Non-Vol Memory error-data verification failure of machine setup store
42	Non-Vol Memory error-attempted recall of nonexistent machine setup store
50	Normalize function error (R-X)Y/Z
51	Statistical calculation error
60	Internal self-test: RAM
61	Internal self-test: ROM
62	Internal self-test: Non-Vol Memory
63	Internal self-test: measurement amplifier failure

Table 3.15 - Error Codes Cont'd)

Displayed Codes	Error
64	Internal self-test: measurement logic failure
70	Floating point addition error
71	Floating point multiplication error
72	Floating point division error
73	Floating point compare error
74	Floating point operation undefined
75	Floating point underflow
76	Floating point overflow
78	ASCII to floating point conversion error
79	Floating point to ASCII conversion error
80	Double precision compare error
81	Double precision to ASCII error
82	Double precision to floating point conversion error
83	Integer division by zero
99	Internal software error

Table 3.16 - Non-Vol Memory Locations

Function/Description	Location
Non-vol memory recall from 0-9	0-9
Non-vol memory store from 0-9	0-9 (see Notes)
<u>NOTE 1:</u>	
Storing a setup (memory locations 0-9) requires a nominal 2-second wait after keyboard entry.	
<u>NOTE 2:</u>	
Calibration constants can only be viewed when the unit is in the Check mode. Also, calibration constants are only stored during the CAL Store step of the calibration procedure (see Section 6).	
Recall calibration constants:	
DAC constants	
Input A slope multiplier	10
Input A slope offset	11
Input B slope multiplier	12
Input B slope offset	13
Input path constants	
Input A start, hyst. low, offset	14
Input A start, hyst. low, hysteresis	15
Input A start, hyst. high, offset	16
Input A start, hyst. high, hysteresis	17
Input A stop, hyst. low, offset	18
Input A stop, hyst. low, hysteresis	19
Input A stop, hyst. high, offset	20
Input A stop, hyst. high, hysteresis	21
Input B start, hyst. low, offset	22
Input B start, hyst. low, hysteresis	23
Input B start, hyst. high, offset	24
Input B start, hyst. high, hysteresis	25
Input B stop, hyst. low, offset	26
Input B stop, hyst. low, hysteresis	27
Input B stop, hyst. high, offset	28
Input B stop, hyst. high, hysteresis	29
Time Interval constants	
A-start, B-stop; A-positive, B-negative	30
A-start, A-stop; A-negative, B-positive	31
B-start, A-stop; A-positive, B-negative	32
B-start, B-stop; A-negative, B-positive	33

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

SECTION 4

SYSTEM OPERATION

4.1 GENERAL PURPOSE INTERFACE BUS (GPIB)

4.1.1 Introduction

4.1.1.1 This subsection provides operating information for the 1995/1996 using the GPIB system interface. The IEEE-488-1978 interface permits remote control of all the counter's functions except POWER ON/OFF. Inputs and outputs are made via a standard 24-pin GPIB connector (see Figure 4.1) on the rear panel. Pin location, signal line identification, and GPIB operation comply with IEEE-STD-488-1978. The GPIB provides interface capability with other instruments and a controller also using the interface-bus structure (see Figure 4.2). This figure also shows signal line designations and pin assignments. IEEE-STD-488-1978 subsets available are listed in Table 4.1.

Pin No.	Assignment	Pin No.	Assignment
1	DIO 1	13	DIO 5
2	DIO 2	14	DIO 6
3	DIO 3	15	DIO 7
4	DIO 4	16	DIO 8
5	EOI	17	REN
6	DAV	18	GND, (6)
7	NRFD	19	GND, (7)
8	NDAC	20	GND, (8)
9	IFC	21	GND, (9)
10	SRQ	22	GND, (10)
11	ATN	23	GND, (11)
12	SHIELD	24	GND, (5 and 17)

Figure 4.1 - GPIB Connector (Rear Panel)

Pin	Nomenclature	Description
1 2 3 4 13 14 15 16	DIO-1 Data In/Out Bit 1 (LSB) DIO-2 Data In/Out Bit 2 DIO-3 Data In/Out Bit 3 DIO-4 Data In/Out Bit 4 DIO-5 Data In/Out Bit 5 DIO-6 Data In/Out Bit 6 DIO-7 Data In/Out Bit 7 DIO-8 Data In/Out Bit 8	Data lines are used to transfer data from one instrument to another
6 7 8	DAV (Data Valid) NRFD (Not Ready for Data) NDAC (Not Data Accepted)	Handshake lines operate in a proper time sequence for complete communication between instruments
5 9 10 11 17	EOI (End or Identify) IFC (Interface Clear) SRQ (Service Request) ATN (Attention) REN (Remote Enable)	Interface lines are used to provide an orderly flow of information between units
12 18 19 20 21 22 23 24	SHIELD GND (6) GND (7) GND (8) GND (9) GND (10) GND (11) GND (5 and 17)	

Figure 4.2 - Interface Signal Pin Assignments

4.2 GPIB DESCRIPTION

4.2.1 Refer to Figure 4.2. There are 24 lines available at the GPIB connector, including 16 signal and 7 ground return lines, and one shield. All of the data bus lines are either input or output lines, having the following characteristics:

Logic Levels: 1 = Low = $\leq .8V$

 0 = High = $\geq 2.0V$

Input Loading: Each input = one TTL load

Output: The output is capable of driving 15 interface bus loads. It consists of an open-collector driver and is capable of sinking 48 mA with a maximum voltage drop of 0.5 volts. See the IEEE-488 Electrical Specifications.

Table 4.1 - IEEE-488-1978 Standard Interface Subset Capability

GPIB Subset	Description	Applicable Capability
SH1	Source Handshake	Complete Capability
AH1	Acceptor Handshake	Complete Capability
T5	Talker	Complete Capability (1) Basic Talker (2) Serial Poll (3) Talk Only Mode (4) Unaddress if MLA
TE0	Extended Talker	None
L4	Listener	Complete except Listen Only (1) Basic Listener (2) Unaddress if MTA
LE0	Extended Listener	None
SR1	Service Request	Complete Capability
RL1	Remote/Local	Complete Capability (1) REN - Remote Enable (2) LLO - Local Lockout (3) GTL - Go to Local
PP0	Parallel Poll	No Capability
DC1	Device Clear	Complete Capability (1) DCL - Device Clear (2) SDC - Selected Device Clear
DT1	Device Trigger	Complete Capability GET - Group Execute Trigger
C0	Controller	No Capability
E1	Open Collector Bus Drivers	

4.2.2 The signal lines shown in Figure 4.2 consist of three functionally separate sets: Data, Handshake, and Interface.

4.2.2.1 Data - the data lines consist of DIO-1 to DIO-8. These lines are the signal channels over which data flows between all instruments on the bus in bit-parallel, byte-serial form.

4.2.2.2 Handshake - these three transfer lines consist of: DAV (Data Valid), NDAC (Not Data Accepted), and NRFD (Not Ready for Data). These lines provide communication between GPIB bus members (i.e., between the instrument that is talking and the instrument(s) that are listening) to synchronize the information flow across the eight data lines. These lines derive their nomenclature from their meaning in the low or 1 state (e.g., when NRFD is low, the device is Not Ready for Data).

- a. DAV - signifies that valid information is available on the data lines
- b. NRFD - signifies that the instrument is not ready to accept information
- c. NDAC - signifies that information is not accepted by the acceptor bus device

4.2.2.3 Interface - these five interface lines coordinate the information flow on the bus.

- a. IFC (Interface Clear) - places the instrument in the Idle state (i.e., Untalk, Unlisten)
- b. ATN (Attention) - indicates the kind of information on the data lines during a handshake transfer sequence. Low indicates data lines carry interface commands; high indicates that the data lines carry data
- c. REN (Remote Enable) - arms the instrument to select Remote operation when it's addressed as a listener
- d. SRQ (Service Request) - signals the system controller that a peripheral device or bus member wants attention for purposes such as transmitting measurement, status, or condition information to the system controller
- e. EOI (End or Identify) - used for (1) signifying the end of a message and (2) signalling bus peripherals to set the I/O bit assigned for parallel poll identification

4.2.3 GPIB Handshake

4.2.3.1 The handshake sequence is the process by which each data byte is transferred from the source to the acceptor.

4.2.3.2 Refer to Figure 4.3. It shows the sequential relationship between the DAV, NFRD, and NDAC lines used to transfer data bytes. Figure 4.4 shows the handshake flow chart.

Figure 4.3 - Handshake Sequence

Figure 4.4 – Handshake Flow Chart

4.3 GPIB ADDRESS ASSIGNMENT

4.3.1 The 1995/1996 must be assigned an address as a bus member when operating in a GPIB system. Assigning an address to the counter permits it to be "called up" by the system controller or other resident bus device without interfering with it.

4.3.2 Table 4.2 provides the available numbers for programming the counter's GPIB address and determining the various talk/listen address codes used in programming the controller.

4.3.3 To program the counter's address, use key sequence <number> SHIFT STORE ADDR where <number> is any number from 00 through 30. To recall the counter's address, use key sequence SHIFT RECALL ADDR. To change the counter's address, simply enter the new address. The new GPIB address will overwrite the old one. The counter will automatically return to its measurement mode.

4.3.4 To enable the Talk-Only mode, just enter 99 as the new address. This will not affect the counter's selected bus address (00 through 30), but will set the unit to respond only as a talker (see Subsection 4.5.2 for details). To exit the Talk-Only mode, just reenter the counter's selected bus address or a new bus address.

NOTE:

Printed instructions for address programming are found on the rear panel just to the right of the GPIB connector.

4.3.5 Observe in the table that the far right column lists the number addresses that can be assigned to the counter. Once an address has been selected and stored, the controller may then address the 1995/1996 as a talker/listener by transmitting the appropriate ASCII character on the data lines. The "DATA LINES" column of the table shows the 7-bit binary codes for every talk/listen address assigned to the counter. The controller transmits these codes to the counter to establish its talker/listener status.

4.3.6 Note also in the table that there are two address codes for each GPIB address number. Each code represents a different ASCII character. For example, if an address of 02 is assigned to the counter, the talk address is ASCII character B and the listen address is ASCII character ". The only difference in the binary code in each case is the state of data lines D6 and D7.

4.3.7 The counter is preset at GPIB address 03 when shipped.

Table 4.2 - 1995/1996 GPIB Address and Talk/Listen Codes

ASCII CHARACTERS		DATA LINES							DECIMAL ADDRESS
		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	
TALK	LISTEN	TALK	LISTEN	ADDRESS					DECIMAL ADDRESS
				16	8	4	2	1	
	SP	0	1	0	0	0	0	0	00
@		1	0	0	0	0	0	0	00
!		0	1	0	0	0	0	1	01
A		1	0	0	0	0	0	1	01
"		0	1	0	0	0	1	0	02
B		1	0	0	0	0	1	0	02
#		0	1	0	0	0	1	1	03
C		1	0	0	0	0	1	1	03
\$		0	1	0	0	1	0	0	04
D		1	0	0	0	1	0	0	04
%		0	1	0	0	1	0	1	05
E		1	0	0	0	1	0	1	05
&		0	1	0	0	1	1	0	06
F		1	0	0	0	1	1	0	06
' (APOSTROPHE)		0	1	0	0	1	1	1	07
G		1	0	0	0	1	1	1	07
(0	1	0	1	0	0	0	08
H		1	0	0	1	0	0	0	08
)		0	1	0	1	0	0	1	09
I		1	0	0	1	0	0	1	09
*		0	1	0	1	0	1	0	10
J		1	0	0	1	0	1	0	10
+		0	1	0	1	0	1	1	11
K		1	0	0	1	0	1	1	11
,		0	1	0	1	1	0	0	12
L		1	0	0	1	1	0	0	12
-		0	1	0	1	1	0	1	13
M		1	0	0	1	1	0	1	13
.		0	1	0	1	1	1	0	14
N		1	0	0	1	1	1	0	14
/		0	1	0	1	1	1	1	15
O		1	0	0	1	1	1	1	15

Table 4.2 - 1995/1996 GPIB Address and Talk/Listen Codes (Cont'd)

ASCII CHARACTERS		DATA LINES							DECIMAL ADDRESS
		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	
TALK	LISTEN	TALK	LISTEN	ADDRESS					
				16	8	4	2	1	
	Ø	0	1	1	0	0	0	0	16
P		1	0	1	0	0	0	0	
	1	0	1	1	0	0	0	1	17
Q		1	0	1	0	0	0	1	
	2	0	1	1	0	0	1	0	18
R		1	0	1	0	0	1	0	
	3	0	1	1	0	0	1	1	19
S		1	0	1	0	0	1	1	
	4	0	1	1	0	1	0	0	20
T		1	0	1	0	1	0	0	
	5	0	1	1	0	1	0	1	21
U		1	0	1	0	1	0	1	
	6	0	1	1	0	1	1	0	22
V		1	0	1	0	1	1	0	
	7	0	1	1	0	1	1	1	23
W -		1	0	1	0	1	1	1	
	8	0	1	1	1	0	0	0	24
X		1	0	1	1	0	0	0	
	9	0	1	1	1	0	0	1	25
Y		1	0	1	1	0	0	1	
:	0	1	1	1	0	1	0		26
Z		1	0	1	1	0	1	0	
:	0	1	1	1	0	1	1		27
[1	0	1	1	0	1	1	
<	0	1	1	1	1	0	0		28
\		1	0	1	1	1	0	0	
=	0	1	1	1	1	0	1		29
]		1	0	1	1	1	0	1	
>	0	1	1	1	1	1	0		30
^		1	0	1	1	1	1	0	
NONE		ILLEGAL							31

4.4 INTERFACE MESSAGE REPERTOIRE and RESPONSE

4.4.1 Introduction

4.4.1.1 The 1995/1996 is equipped with a standard GPIB interface designed to meet IEEE-STD-488-1978 specifications. These specifications provide a definition of multiline interface messages, dividing them into two main groups:

- a. Primary command group
- b. Secondary command group

This counter includes only the primary commands in its interface repertoire.

4.4.1.2 The primary command group is further divided into four categories:

- - a. Listen address commands
- b. Talk address commands
- c. Addressed commands
- d. Universal commands

4.4.2 Listen and Talk Address Commands

4.4.2.1 The counter is designed to include 31 listen and 31 talk addresses. (Table 4.2 lists these addresses.) The instrument responds to address messages as defined by the programmed GPIB address entered from the counter's front panel.

4.4.2.2 Listen Addresses

4.4.2.2.1 Receipt by the counter of a listen address makes it a listener. If previously addressed to talk, the counter ceases to be a talker. In Local mode, the counter reverts to its Remote state, provided the REN message is true.

4.4.2.3 Talk Addresses

4.4.2.3.1 Receipt by the counter of a talk address makes it a talker. If previously addressed to listen, the counter ceases to be a listener. If in Local mode, the counter will remain under local control.

4.4.2.4 Talk Addresses-Other Devices

4.4.2.4.1 If the counter was previously addressed to talk, then receives the talk address of another bus device, the 1995/1996 ceases to be a talker.

4.4.3 Addressed and Universal Commands

4.4.3.1 Table 4.3 lists the Addressed and Universal commands to which the 1995/1996 responds. These interface commands are recognized because they are sent with the ATN message as true. The following paragraphs describe the counter's response to each of these commands.

Table 4.3 - Addressed and Universal Commands

Message	Meaning	Hex Code	Decimal Equivalent	Data Line Code							
				7	6	5	4	3	2	1	
GTL	Go To Local	01	1	0	0	0	0	0	0	1	
SDC	Selected Device Clear	04	4	0	0	0	0	1	0	0	
GET	Group Execute Trigger	08	8	0	0	0	1	0	0	0	
LLO	Local Lock Out	11	17	0	0	1	0	0	0	1	
DCL	Device Clear	14	20	0	0	1	0	1	0	0	
SPE	Serial Poll Enable	18	24	0	0	1	1	0	0	0	
SPD	Serial Poll Disable	19	25	0	0	1	1	0	0	1	
UNL	Unlisten	3F	63	0	1	1	1	1	1	1	
UNT	Untalk	5F	95	1	0	1	1	1	1	1	

4.4.3.2 Go To Local (GTL)

4.4.3.2.1 Provided the counter is in remote and a listener, it reverts to local operation. The counter remains addressed to listen. It now operates by front-panel controls, until returned to remote control by receipt of the first byte of a device-dependent message. The decimal and hex equivalents are both 01. When in local, the SRQ LED is always off.

NOTE:

If the counter is in a function having no equivalent in local operation, upon receipt of a GTL command, it will default to home state conditions. These functions include: hardware ratios B/A, A/C, B/C; totalize A or B by gate time; and totalize A or B by D.

4.4.3.3 Selected Device Clear (SDC)

4.4.3.3.1 Provided the counter is in remote and a listener, it reverts to home state. The condition of the GPIB interface remains unchanged. The decimal and hex equivalents are both 04.

4.4.3.4 - Group Execute Trigger (GET)

4.4.3.4.1 Provided the counter is a listener and no measurement is in progress, it executes a previously programmed measurement and, if the SRQ mask is set, issues an SRQ command at completion. The GET command permits several bus devices to simultaneously perform a number of different operations. (All bus members have been previously programmed to perform a function on receiving the GET command or trigger command.) The decimal and hex equivalents are both 08.

4.4.3.5 Local Lockout (LLO)

4.4.3.5.1 The counter responds to the LLO command regardless of its addressed state. The LLO command disables the LOCAL key on the front panel. By issuing a GTL command, the counter is returned to local control. However, if the counter is returned to remote operation, the local lockout condition is still active. The only way to deactivate the LLO condition is to turn off the counter.

4.4.3.6 Device Clear (DCL)

4.4.3.6.1 Same as the SDC command, except that all bus devices in remote are put in home state. The counter responds to this command regardless of its addressed state. The decimal and hex equivalents are 10 and 14, respectively.

4.4.3.7 Serial Poll Enable (SPE)

4.4.3.7.1 This command permits all bus members, including the counter, to set their SRQ line to binary 1, informing the controller that attention is required. For the 1995/1996, bit 7 of the status byte is set. Each bus member, having been made a talker, is then serially interrogated by the controller to determine which bus member(s) requested service and the purpose of each request. Bus members respond by transmitting their respective status bytes to the controller. All members respond to the SPE command regardless of their addressed state. The function and format of the 1995/1996's SRQ status byte is described in Subsection 4.7. The decimal and hex equivalents are 24 and 18, respectively.

4.4.3.8 Serial Poll Disable (SPD)

4.4.3.8.1 This command returns all bus members to normal operation after completion of a serial poll. All bus members respond to the SPD command regardless of their addressed state. If addressed to talk, a bus device will put its data output string on the GPIB, provided such data is available in its output buffer. The decimal and hex equivalents are 25 and 19, respectively.

4.4.3.9 Untalk (UNT)

4.4.3.9.1 This universal command instructs all talkers, including the counter, to return to their untalk or talker-idle state. All bus members are also removed from their talker state whenever a talk address other than their own is received. In the Untalk state, the front-panel ADDR LED is turned off. The decimal and hex equivalents are 9 and 5F, respectively.

4.4.3.10 Unlisten (UNL)

4.4.3.10.1 This universal command instructs all listeners, including the counter, to return to their unlisten or listen-idle state. In the Unlisten state, the front-panel ADDR LED is turned off. The decimal and hex equivalents are 63 and 3F, respectively.

4.5 GPIB OPERATING MODES

4.5.1 Introduction

4.5.1.1 Before operating the counter on the GPIB, ensure that the instrument has been assigned its correct bus address (see Subsection 4.3) and that the correct AC line voltage has been selected (see Subsection 2.7.3). The last instruction is especially important if the 1995/1996 is being used for the first time or at a new location.

4.5.1.2 The 1995/1996 can be operated on the GPIB in either its Talk-Only or Addressed mode.

4.5.2 Talk-Only Mode

4.5.2.1 To set the counter in this mode, enter counter address 99.

4.5.2.2 The Talk-Only mode may be used in systems not having a controller. Such a system permits remote reading of counter measurement data, however, the instrument is controlled from the front panel (see Section 3).

4.5.2.3 The counter determines the rate at which measurements are made. The output buffer is updated at the end of each measurement cycle, overwriting the previous measurement data if not transferred to the listener.

4.5.2.4 The listener triggers the transfer of data from the counter. The counter's output buffer is cleared when data transfer is completed.

4.5.2.5 Differences between the measurement rate and data transfer rate are resolved as follows:

- a. If data transfer is in progress at the end of a measurement cycle, updating of the output buffer is delayed. Data transferred will correspond to the previous measurement cycle
- b. If data transfer trigger occurs during a measurement cycle and the output buffer is empty, data transfer is delayed until the buffer is updated. Data transferred will then correspond to the latest measurement cycle
- c. If a measurement cycle is completed before any byte from the previous cycle has been transferred to the listener, the buffer will be updated.

4.5.2.6 Measurement rate in the 1995/1996 can be controlled in the following ways:

- a. The gate time can be controlled by selecting an appropriate display resolution or setting a specific gate time
- b. A time interval delay can be set using the range of 200 ns to 100 s
- c. The counter can be operated in the Hold mode (single-shot measurements). Readings are displayed indefinitely in Hold until the RESET key is pressed, initiating a new measurement cycle

4.5.3 Addressed Mode

4.5.3.1 In the Addressed mode, all of the counter's functions (except POWER ON/OFF) can be controlled using device-dependent commands (see Subsection 4.8.2). These commands are sent over the GPIB after the counter has been addressed to listen. Completed measurement readings and counter status information are then read back over the bus after the counter has been addressed to talk. If the counter is addressed to talk when its output buffer is empty, no data transfer will occur and bus activity will cease. Data transfer will start again after the output buffer is updated at the completion of the next measurement cycle.

4.6 OUTPUT MESSAGE FORMAT (TALKER)

4.6.1 Introduction

4.6.1.1 Refer to Tables 4.4 to 4.7 for the following:

- a. Table 4.4 - Message formats for the various 1995/1996 measurements and "one-time" (recall) outputs
- b. Table 4.5 - Basic 23-byte output format
- c. Table 4.6 - Alpha header output codes
- d. Table 4.7 - High speed data output format

4.6.1.2 Measurement units should be assumed as hertz, seconds, degrees, or a ratio, depending on commands previously sent to the counter.

NOTE:

An SRQ message is not sent by data recall from the counter's stores.

-Table 4.4 - Measurement and "One-Time" Output Formats

Output	Format
<u>Measurement Outputs</u> (see NOTE 1)	
Reading (with/without math, statistics)	A single 23-byte output-see Table 4.5
Standard Deviation and Mean	A double 23-byte output (i.e., two numeric fields, with/without headers, separated by a comma, and terminated by a CRLF)
Mean, High, and Low	A triple 23-byte output (i.e., three numeric fields, with/without headers, separated by commas, and terminated by a CRLF)
<u>"One-Time" (Recall) Outputs</u> (see NOTE 2)	
Data Recall (e.g., gate time, math constants, TI delay, and calibration constants)	A single 23-byte output-see Table 4.5
A and B Trigger Levels	A double 23-byte output (i.e., two numeric fields, with/without headers, separated by a comma, and terminated by a CRLF)
A and B Trigger Peaks (V max., V min)	A double 23-byte output (i.e. two numeric fields, with/without headers, separated by a comma, and terminated by a CRLF)
Learn Mode	A 200-byte ASCII-formatted output sent and readable only by the counter
Error Message, Identification, or String	Variable number of ASCII bytes, null, CR, and LF

NOTE 1:

The statistics and math outputs will be the result of the calculation with the alpha header code of the function measurement. For special output (SO1), the first measurement will have the alpha header code of the normal measurement, and the second and third readings will have the alpha codes from Table 4.6 (e.g., "H" header for High).

NOTE 2:

"One-Time" (recalled) data commands must be entered in outputs by themselves. (Refer to Input Commands tabulated in Subsection 4.8 and identified with an asterisk(*). When data is recalled, it will be placed in the buffer only once. The output buffer will then default to the previously entered measurement only after the recalled data is read by the controller or the counter is programmed with a new command. Recalled data will not generate an SRQ command.

Table 4.5 - Basic 23-Byte Output Format

Byte No.	Interpretation	Permitted ASCII Characters	Notes
1	Space		Spaces are transmitted
2	Alpha header code (See Table 4.6). If turned off using the HD0 command, this byte will be a space		
3	Space		
4	Measurement Sign	+ or -	
5	Most significant digit	0 to 9	Bytes 5 to 19 will always include 14 digits (i.e., the mantissa) and decimal point.
6	Digit ..	0 to 9 or .	The numeric field (bytes 4 to 23) is in scientific notation. Zero's are added as necessary in the less significant digit positions.
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20	Exponent indicator	E	
21	Exponent Sign	+ or -	
22	More significant digit	0 to 9	Commas are used to separate multiple numeric field outputs.
23	Less significant digit	0 to 9	Used as a final output terminator. CRLF is the final output terminator in the buffer. The EOI is always given with LF. No EOI is given if high speed mode is enabled
	CR or ,		
	(LF)		

Table 4.6 - Alpha Header Output Codes

Function/Operation	Header	Function/Operation	Header
Frequency C	F	Ratio B/A (software)	R
Frequency A	F	Ratio C/A (software)	R
Period A	S	Ratio A/B (hardware)	R
Time Interval A → B	S	Ratio B/A (hardware)	R
Time Interval A → B with delay	T	Ratio C/B (hardware)	R
Totalize A by B	T	Ratio C/A (hardware)	R
Ratio A/B (software)	R	Rise Time B	R
Ratio C/A (software)	R	Fall Time B	S
Rise Time A	S	Positive Pulse Width B	S
Fall Time A	S	Positive Pulse Width B with delay	S
Positive Pulse Width A	S	Negative Pulse Width B	S
Positive Pulse Width A with delay	S	Negative Pulse Width B with delay	S
Negative Pulse Width A	S	Phase B rel A	P
Negative Pulse Width A with delay	S	Duty Cycle B	U
Phase A rel B	P	Slew Rate B	S
Duty Cycle A	U	Display Mean	M
Slew Rate A	S	Display High	H
<u>Additional Functions</u>		Display Low	L
Frequency B	F	Recall A trigger level	A
Period B	S	Recall B trigger level	B
Time Interval B → A	S	Recall Peaks-V max, A or B	V
Time Interval B → A with delay	S	Recall X (Offset)	X
Manual Totalize B (software)	T	Recall Y (Normalize)	Y
Manual Totalize B (software)	T	Recall Z (Scale)	Z
Totalize B by A	T	Recall Calibration	C
A by D	T	Constants	N
B by D	T	Recall n value	G
A by gate	T	Recall Gate Time	D
		Recall Delay Time	O
		Transmit Time Out	

NOTES:

1. In general, the following Header Codes precede the listed functions:

F-Frequency measurements

S-Time measurements (seconds); rise/fall times; pulse width

P-Phase measurements

R-Ratio measurements

U-Duty Cycle measurements

T-Totalize measurements

Table 4.7 - High Speed Data (ASCII) Output

ASCII Format	Value Range
b#0.nnnnnnnnnnnnnnE#ddCRLF	0.1 to 0.999999999999999
b#N.nnnnnnnnnnnnnnE#ddCRLF	1.0 to 9.9999999999999
b#NN.nnnnnnnnnnnnnnE#ddCRLF	10.0 to 99.99999999999
b#NNN.nnnnnnnnnnnnnnE#ddCRLF	100.0 to 999.99999999999
•	•
•	•
•	•
b#NNNNNNNNNNNNNNN.E#ddCRLF	10000000000000.0 to 99999999999999.9
b#N.nnnnnnnnnnnnnnE#ddCRLF	Any other number
where:	<ul style="list-style-type: none"> • b = blank space • # = - or + • N = digit • n = the fractional part • = decimal point E = exponent d = ten's exponent digit CR = carriage return LF = line feed
NOTE:	
No SRQ requests are generated when in the high-speed mode.	

4.7 SERVICE REQUEST (SRQ) AND STATUS BYTE

4.7.1 Introduction

4.7.1.1 An SRQ may be transmitted by the 1995/1996 whenever:

- a. An error occurs
- b. A measurement is completed
- c. A timeout occurs

4.7.1.2 The seventh bit in the SRQ and status byte is set to a binary 1. One other bit, indicating the status or type of service requested, is also set. If an SRQ is not enabled, this other bit is still set - even if the seventh bit is not. Refer to Table 4.8 which shows the format for the counter's status byte. The front-panel SRQ LED lights when the SRQ is asserted.

Table 4.8 - Status Byte Format

Bit No.	Bit Weight	Function
1 (LSB)	1	Unused
2*	2	1 = External frequency reference in use; no SRQ issued
3	4	Unused
4**	8	1 = Timeout has occurred
5*	16	1 = Reading ready; no SRQ issued for recalled data; bit is cleared when measurement is output or when buffer is flushed
6**	32	1 = Error condition exists
7--	64	1 = Service requested
8 ..	128	Unused

* = Serial poll alone will not clear this bit
** = Serial poll alone will clear this bit

NOTE:

Controllers vary as to positional designation of status-byte bits. Bytes are indexed in two ways: 1 through 8 with bit 1 having a weight of 1 and bit 8 having a weight of 128 (as for the 1995/1996) or 0 through 7 with bit 0 having a weight of 1 and bit 7 having a weight of 128.

4.7.1.3 The counter's SRQ status byte can be conveniently masked to indicate the type of information. This feature is achieved using the Service Request Mask command (QMn) where the value of n is the loaded bit weight (i.e., binary value) - see Table 4.8 - in the range of 0 to 255.

EXAMPLE:

If the user wants an SRQ message when (1) a timeout has occurred, and (2) an error condition exists, the correct SRQ Mask command that would generate this would be QM40 (8 + 32). Then by reading the SRQ status byte, bits 4 and 6 can be tested to determine which one caused the SRQ message.

4.7.1.4 The Service Request Mask command QM0 will disable all SRQ messages.

4.8 INPUT COMMANDS (LISTENER)

4.8.1 Introduction

4.8.1.1 The 1995/1996 responds to device-dependent commands in a "deferred" manner. This means that the GPIB interface continues to accept commands until the terminating character (LF) is received, then the entire string is executed. There is no "immediate" mode in which commands are obeyed as they are received.

4.8.1.2 The counter clears all data in its output buffer upon receiving a device-dependent command. Recalled data and single measurements, therefore, should be read immediately after the command is sent to program the counter.

4.8.2 Device-Dependent Commands

4.8.2.1 When the counter is addressed to listen, it can be controlled (except POWER ON/OFF) by device-dependent commands. These commands are tabulated below:

- | | |
|--|--|
| a. Table 4.10 - Counter Initialize Code | g. Table 4.19 - Input Control Codes |
| b. Table 4.12-Measurement Function Codes | h. Table 4.20 - Arming Codes |
| c. Table 4.15-Math Codes | i. Table 4.21 - Learn Codes |
| d. Table 4.16-Memory Codes | j. Table 4.22 - Measurement Mode Codes |
| e. Table 4.17-Statistics Codes | k. Table 4.23 - Miscellaneous Codes |
| f. Table 4.18-Gate/Delay Codes | l. Table 4.24 - Calibration Codes |

4.8.2.2 In general, device-dependent commands are executed sequentially beginning with the first one sent, and ending with the last. However, to ensure expected results, it is recommended that the following commands be sent in a separate string: IN (Initialize), RE (Start New Measurement), SM_n (Non-Vol Store to Memory, 0-9), and TG1, TG2, TG3 (Output Trigger/Peak Levels).

4.8.2.3 If more than one command is to be sent, no delimiters are required. If necessary, commas, spaces, and semicolons may be included as delimiters in the command strings for clarification without affecting counter operation. Alpha characters in a command string may be upper or lower case. Each command string must be followed by an end-of-string terminator group. Table 4.9 summarizes the valid terminator groups.

Table 4.9 - Valid Terminators

1	2	3
LF	CRLF EOI True	CRLF

NOTE:
Data output terminators are
CRLF
EOI True
in both standard and high-speed
data output modes

4.8.2.4 Table 4.10 provides the counter initialize code for the 1995/1996.

Table 4.10 - Counter Initialize Code

Function	Code
Initializes counter functions/settings to home state	IN

4.8.2.5 Some of the device-dependent commands in the following tables require additional numerical input data. Such numerical input succeeds its command. "One-time" (recall) outputs are noted by an asterisk(*). Finally, home-state commands (at power-on, after an IN command, or after a diagnostic IST command) are underlined. Refer to Table 4.11 as required for the numerical input format.

Table 4.11 - Numerical Input Format

Byte No.	Interpretation	Permitted ASCII Characteristics
1	Mantissa	+ or -
2	Most significant digit	0 to 9
3	Digit	
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17	Least significant digit	E
18	Exponent indicator	+ or -
19	Exponent sign	0 to 9
20	Digit	0 to 9
21	Digit	0 to 9

NOTE 1:

The valid syntax for the numerical input value tabulated above is:

[+ or -]<H digits>[.]<1 digits>[E [+ or -]<1 or 2 digits>]
where $1 \leq H + I \leq 16$. Characters inside the brackets are optional.

This format is valid for all numerical inputs including measurement functions (e.g., FN10=FN1E1). For enable/disable (i.e., toggle) commands (e.g., CK0/CK1 command), zero (CK0) will turn the command off; and any other valid numeric input (CK+1, CK55.09e-7) will turn the command on.

NOTE 2:

The use of a floating point decimal increases the number of characters in the string from 16 to 17.

NOTE 3:

Leading zeros in the mantissa and/or the exponent are ignored.

NOTE 4:

Byte one may be omitted and a positive mantissa assumed.

NOTE 5:

Bytes 2 to 17 may have up to 16 significant digits and a decimal point. The decimal point is not essential. After entry of 16 digits (without a decimal point), additional digits are ignored and a GPIB programming error is generated. Non-significant zeros will still increase the power-of-ten stored. Also, if fewer than 16 digits are required, unused bytes may be omitted.

NOTE 6:

Spaces or nulls are always ignored.

NOTE 7:

Bytes 18 to 21 (exponent group) may be omitted. Also, byte 19 may be omitted or transmitted as a space (a positive exponent should be assumed in either case).

NOTE 8:

Numbers may be terminated by one of the same terminators used for output messages, or by another device-dependent message.

NOTE 9:

Units are implied; volts for trigger levels, seconds for gate/delay times.

4.8.2.6 Table 4.12 presents the measurement function codes for the 1995/1996. Functions FN1 through FN18 are front-panel selections. Functions FN19 through FN45 are selected either as front-panel special functions or are unavailable from the keyboard. When the controller programs one of the functions (FN1-FN45), external arming, external gating, and synchronized window auto-trigger (SWAT) are turned off if invalid for the new function. If an invalid channel is programmed for a function, the command is ignored and arming, gating, or SWAT default to the off condition. No error is generated for this type of programming.

Table 4.12 - Measurement Function Codes

Function	Code
Frequency C	FN1
Frequency A	FN2
Period A	FN3
Time Interval A B	FN4
Time Interval A B with delay	FN5
Totalize A by B	FN6
Totalize A by B with delay	FN7
Ratio A/B (software)	FN8
Ratio C/B (software)	FN9
Rise Time A	FN10
Fall Time A	FN11
Positive Pulse Width A	FN12
Positive Pulse Width A with delay	FN13

Table 4.12 - Measurement Function Codes (Cont'd)

Function	Code
Negative Pulse Width A	FN14
Negative Pulse Width A with delay	FN15
Phase A rel B	FN16
Duty Cycle A	FN17
Slew Rate A	FN18
Frequency B	FN19
Period B	FN20
Time Interval B-->A	FN21
Time Interval B-->A with delay	FN22
Manual Totalize A	FN23
Manual Totalize B	FN24
Totalize B by A	FN25
B by A	FN26
with delay	FN27
A by D (TTL)	FN28
B by D(TTL)	FN29
A by gate time	FN30
B by gate time	FN31
Ratio B/A (software)	FN32
C/A (software)	FN33
A/B (hardware)	FN34
B/A (hardware)	FN35
C/A (hardware)	FN36
C/B (hardware)	FN37
Rise Time B	FN38
Fall Time B	FN39
Positive Pulse Width B	FN40
Positive Pulse Width B with delay	FN41
Negative Pulse Width B	FN42
Negative Pulse Width B with delay	FN43
Phase B rel A	FN44
Duty Cycle B	FN45
Slew Rate B	

NOTE 1:

Either "FU" or "FN" can be used for the above measurement function codes.

NOTE 2:

All measurement function codes are mutually exclusive.

NOTE 3:

For FN23 and FN24 (Manual Totalize), refer to the Gate codes to start and stop a measurement.

4.8.2.7 Table 4.13 provides the predefined (forced) setting by functions. The Phase Angle, Duty Cycle, and Slew Rate settings are automatically selected, but can be modified by the controller. In addition, for programming selection of Duty Cycle and Slew Rate settings, use the following guidelines:

- a. To change from positive Duty A(B) to negative Duty A(B), program slope A(B) to minus using control code AS1
- b. To change from positive Slew Rate A(B) to negative Slew Rate A(B), program slope A(B) to minus using control code AS1

NOTE:

The COMMON settings shown in the table for Phase Angle, Duty Cycle, and Slew Rate cannot be modified by the controller.

Table 4.13 - Predefined (Forced) Front-Panel Settings

Function	Common	Slope A	Slope B	DC (A and B)	Auto-Trig A	Auto-Trig
Rise Time A	On	+	+	DC	On	On
Rise Time B	On	+	+	DC	On	On
Fall Time A	On	-	-	DC	On	On
Fall Time B	On	-	-	DC	On	On
Pos. Pulse Width A	On	+	-	DC	On	On
Pos. Pulse Width B	On	-	+	DC	On	On
Neg. Pulse Width A	On	-	+	DC	On	On
Neg. Pulse Width B	On	+	-	DC	On	On
Phase A rel B	Off	+	+	DC	On	
Phase B rel A	Off	+	+	DC	On	
Duty Cycle A	On	+	-	DC	On	
Duty Cycle B	On	-	+	DC		On
Slew Rate A	On	+	+	DC		On
Slew Rate B	On	+	+	DC		On
Man. Totalize A (software)	On					Off
Man. Totalize B (software)	On				Off	
Totalize A by Gate	On				Off	
Totalize B by Gate	On				Off	
Totalize A by D	On				Off	
Totalize B by D	On				Off	

NOTE 1:

When Common mode is on and the function is controlled by Input A (e.g., Frequency A, Ratio A/B), Input B auto-trigger and attenuator commands are disregarded. Also in this mode, Input B levels will be ignored if Input A (and therefore B) auto-trigger is on. Similarly when the Common mode is on, and the function is controlled by Input B, Input A auto-trigger and attenuator commands are disregarded. No error is generated for this kind of inconsistent programming.

NOTE 2:

The auto-trigger must be turned off before entering a manual trigger level.

4.8.2.8 Table 4.14 indicates the valid channels for external arming and gating by function. External arming and gating are mutually exclusive commands.

Table 4.14 - Valid Channels for External Arming/Gating

Function	Valid Channels
Frequency C	A, B, D-TTL, D-Zero Crossing
Frequency A, Period A	B, D-TTL, D-Zero Crossing
Frequency B, Period B	A, D-TTL, D-Zero Crossing
Time Interval A to B†; B to A†	D-TTL, D-Zero Crossing
Totalize A by B†; B by A†	
Totalize A by internal gate†; B by internal gate†	
Rise Time A†; Rise Time B†	
Fall Time A†; Fall Time B†	
Positive Pulse Width A†; Positive Pulse Width B†	
Negative Pulse Width A†; Negative Pulse Width B†	
Slew Rate A†, Slew Rate B†	
Hardware Ratio A/B; Hardware Ratio B/A	
Hardware Ratio C/B; Hardware Ratio C/A	
Software Ratio A/B; Software Ratio B/A	
Software Ratio C/B; Software Ratio C/A	
Duty Cycle A; Duty Cycle B	
Phase A rel B; Phase B rel A	
Totalize A by D; Totalize B by D	
Manual Totalize A; Manual Totalize B	None

NOTE 1:

The dagger (†) indicates a function for which external arming is valid; external gating is invalid.

NOTE 2:

Valid channels for Synchronous Window Auto-Trig(SWAT) are identical to those for external arming/gating, except for Frequency C. SWAT is disallowed in Frequency C.

NOTE 3:

If an invalid channel is programmed for a function, the command is ignored and arming, gating, or SWAT default to the off condition. No error is generated for this type of programming.

Table 4.15 - Math Codes

Function	Code
Disable Math	MD0
Enable Math	MD1
Store Offset <value> (X)	MO <value> (home state=0)
Recall Offset	RO *
Store Normalize <value> (Y)	MN <value> (home state=1)
Recall Normalize	RN *
Store Scale <value> (Z)	MS <value> (home state=1)
Recall Scale	RS *

NOTE:

The math constant range for offset X, normalize Y, and scale Z is: $\pm 0.000000001E-9$ to $\pm 9999999999E9$.

Table 4.16 - Memory Codes

Function/Description	Code
Non-vol memory recall from 0-9 Non-vol memory store from 0-9	RM0-9 SM0-9 (see Notes)
<u>NOTE 1:</u>	
SM0-9 requires a 2-second wait after programming.	
<u>NOTE 2:</u>	
If the counter is in a function having no equivalent in local operation, this function cannot be stored in non-vol memory. These functions include: hardware ratios A/B, B/A, A/C, B/C; totalize A or B by gate time; and totalize A or B by D.	
Recall calibration constants: DAC constants Input A slope multiplier Input A slope offset Input B slope multiplier Input B slope offset Input path constants Input A start, hyst. low, offset	RC10* RC11* RC12* RC13* RC14*

Table 4.16 - Memory Codes (Cont'd)

Function/Description	Code
Input A start, hyst. low, hysteresis	RC15*
Input A start, hyst. high, offset	RC16*
Input A start, hyst. high, hysteresis	RC17*
Input A stop, hyst. low, offset	RC18*
Input A stop, hyst. low, hysteresis	RC19*
Input A stop, hyst. high, offset	RC20*
Input A stop, hyst. high, hysteresis	RC21*
Input B start, hyst. low, offset	RC22*
Input B start, hyst. low, hysteresis	RC23*
Input B start, hyst. high, offset	RC24*
Input B start, hyst. high, hysteresis	RC25*
Input B stop, hyst. low, offset	RC26*
Input B stop, hyst. low, hysteresis	RC27*
Input B stop, hyst. high, offset	RC28*
Input B stop, hyst. high, hysteresis	RC29*
Time Interval constants	
A-start, B-stop; A-positive, B-negative	RC30*
A-start, A-stop; A-negative, B-positive	RC31*
B-start; A-stop; A-positive, B-negative	RC32*
B-start, B-stop; A-negative, B-positive	RC33*

Table 4.17 - Statistics Codes

Function/Description	Code
Store n value = 100	SV0
Store n value = 1000	SV1
Store n value, where value = 2 to 9999	SV<value>
Recall n value	RV *
Disable standard deviation	SD0
Enable standard deviation	SD1 - turns off mean
Disable mean	SA0
Enable mean	SA1 -turns off standard deviation
Special output disable	SO0
Special output enable	SO1 -and enable standard deviation (SD1) will output standard deviation and mean; and enable mean (SA1) will output mean, high, and low

Table 4.18 - Gate/Delay Codes

Function/Description	Code
Gate Open - used only to start software manual totalize	GO
Gate Close - used only to stop software manual totalize	GC
Gate Time Adjust - enters gate time <value> where <value> range = 200ns to 100 s; home state value = 10 ms; and a value of 0 = a single event reading	GA <value>
Recall Gate Time	RG *
Delay Time Adjust - enters delay time <value> where <value> range = 200 ns to 100 s; home state value = 1 ms	DA <value>
Recall Delay Time	RD *

4.8.2.9 To use software manual totalize (FN23 or FN24), enter the following 3 commands in order:

- a. FN23 <CR LF> - sets up the manual totalize (A) function and turns on the Hold LED
- b. GO <CR LF> - opens the gate to start the readings. Data can be read from the counter at this point
- c. GC <CR LF> - closes the gate, turns on the Hold LED, and puts the last reading in the buffer. The last reading can be read from the counter

To restart the measurement at zero enter:

RE GO<CR LF>

To continue the measurement count enter:

GO<CR LF>

NOTE:

If a new function is entered, the single measurement mode will still be in effect.

Table 4.19 - Input Control Codes

Function/Description	Code
Trigger Level A Set Trigger Level B Set - home state value is 0	AT <value> BT <value>
Auto-Trig off (A and B) Auto-Trig on (A and B)	AU0 AU1
Auto-Trig Input A off Auto-Trig Input A on Auto-Trig Input B off Auto-Trig Input B on	AU2 <u>AU3</u> <u>AU4</u> <u>AU5</u>
Continuous Auto-Trig Single Auto-Trig - use AU1, 3, or 5 to start a single autotrigger process	<u>ST0</u> ST1
Coupling Input A to DC Coupling Input A to AC Coupling Input B to DC Coupling Input B to AC	AA0 <u>AA1</u> <u>BA0</u> <u>BA1</u>
Slope Input A Positive Slope Input A Negative Slope Input B Positive Slope Input B Negative	<u>AS0</u> AS1 BS0 <u>BS1</u>
Attenuation Input A X 1 Attenuation Input A X 10 Attenuation Input A X 50 Attenuation Input B X 1 Attenuation Input B X 10 Attenuation Input B X 50	AX0 AX1 AX2 BX0 BX1 <u>BX2</u>
Impedance Input A to 1 Mohm Impedance Input A to 50 ohms Impedance Input B to 1 Mohm Impedance Input B to 50 ohms	<u>AZ0</u> <u>AZ1</u> <u>BZ0</u> <u>BZ1</u>
Filter Input A off Filter Input A on Filter Input B off Filter Input B on	<u>AF0</u> AF1 <u>BF0</u> <u>BF1</u>
Hysteresis off Hysteresis on	<u>SE0</u> SE1
Common off (Separate mode) Common on	<u>CM0</u> CM1

Table 4.20 - Arming Codes

Function/Description	Code
External Arming Disable - internal arming enabled is home state	<u>XA0</u>
External Arming Input A	XA1
External Arming Input B	XA2
External Arming Input D - Zero Crossing	XA3
External Arming Input D - TTL	XA4
Arming Slope Positive	XA5
Arming Slope Negative	XA6
External Gate Disable - internal gate enabled is home state (see code GA)	<u>XG0</u>
External Gate Input A	XG1
External Gate Input B	XG2
External Gate Input D-Zero Crossing	XG3
External Gate Input D-TTL	XG4
Gate Slope Start-Negative; Stop-Negative	XG5
Gate Slope Start-Positive; Stop-Negative	XG6
Gate Slope Start-Negative; Stop-Positive	XG7
Gate Slope Start-Positive; Stop-Positive	XG8
Synchronous Window Auto-Trig (SWAT)	
SWAT Disable	<u>XS0</u>
SWAT Input A	XS1
SWAT Input B	XS2
SWAT Input D-Zero Crossing	XS3
SWAT Input D-TTL	XS4
SWAT Slope Start-Negative; Stop-Negative	XS5
SWAT Slope Start-Positive; Stop-Negative	XS6
SWAT Slope Start-Negative; Stop-Positive	XS7
SWAT Slope Start-Positive; Stop-Positive	XS8

Table 4.21 - Learn Codes

Function/Description	Code
Send Machine Setup - Learn Receive Machine Setup - Learn	SL * RL <total machine state string- 200 ASCII bytes>; string is readable only by the counter

Table 4.22 - Measurement Mode Codes

Function/Description	Code
Continuous Reading Mode Single Reading Mode-use RE code to trigger a new measurement	MM0 MM1

Table 4.23 - Miscellaneous Codes

Function/Description	Code
Check Off Check On	<u>CK0</u> or <u>CH0</u> <u>CK1</u> or <u>CH1</u>
Front Panel Display Disable (turns off front panel measurement display) Front Panel Display Enable	<u>DR0</u> <u>DR1</u>
Turns Off Prefix Output Header Turns On Prefix Output Header (e.g., "F" for frequency)	<u>HD0</u> <u>HD1</u>
High Speed Output Disable-defaults to previous auto-trigger mode (single/continuous) High Speed Output Enable-forces continuous measurement mode, turns off statistics, takes single-shot auto-trigger, and no SRQ is given. No data can be recalled at this time	<u>HS0</u> HS1
Transmit Hardware Identification-that is, "RD 1995" or "RD 1996" Transmit Software Identification version that is, 2.1 or other number Internal Self Test-output of <space CR LF> means a successful test. Otherwise, outputs an error message. Counter returns to power-up state on exit	ID0 * ID1 * IST
Set SRQ Mask-where <value>=0 to 255; home state=255; and QM0 code disables all SRQ commands	QM<value>
Start New Measurement-triggers new reading in single measurement mode	RE
Program Timeout, Gate Closed home state value is 500 seconds (see Note 2)	TC<value>
Program Timeout, Gate Open where the home state value is 500 seconds; <value>=1 to 500 seconds(see Note 2)	TO<value>
Transmit Error Code-outputs <space CR LF> if no errors exist	TE *
Output Trigger Levels A and B (see Note 3)	TG1 *

Table 4.23 - Miscellaneous Codes (Cont'd)

Function/Description	Code
Output Peak Levels A (V_{max} , V_{min}) - auto-trigger A turned off (see Note 3)	TG2 *
Output Peak Levels B (V_{max} , V_{min}) - auto-trigger B turned off (see Note 3)	TG3 *
Transmit Timeout Value-total abort time is (TO + GA <value> + TC) or if delay active (TO + DA <value> + TC), or if externally gated (TO + TC + 100 seconds)	TV *

NOTE 1:

Information for the following codes in the above table is not stored in non-vol memory:
DR0, DR1; HD0, HD1; HS0, HS1; QM <value>; TC <value>, TO <value>; TV.

NOTE 2:

Program Timeout, Gate Closed refers to the time that the counter will wait for the measurement gate to close prior to issuing a timeout error. Program Timeout, Gate Open refers to the time that the counter will wait, upon receipt of trigger, for the measurement gate to open prior to issuing a timeout error.

NOTE 3:

For the TG1, TG2, and TG3 codes: if in single measurement mode (or single autotrigger mode), initiate the measurement (or trigger) first, then send the command to output trigger levels. This ensures the output of trigger levels of measurement just taken.

Table 4.24 - Calibration Codes

Function/Description	Code
<u>NOTE 1:</u>	
Each of the eight commands listed below must be on a single line. See Section 5 of this manual for the calibration procedure.	
Step 1	CAL
Step 2 Set start and stop DACs to the maximum positive voltage	CLHI
-- Set start and stop DACs to the maximum negative voltage	CLLO
Step 3 Start DAC positive voltage (+X.XXXX) Stop DAC positive voltage (+X.XXXX) Start DAC negative voltage (-X.XXXX) Stop DAC negative voltage (-X.XXXX)	CLTH <Vstart-high> CLPH <Vstop-high> CLTL <Vstart-low> CLPL <VStop-low>
<u>NOTE 2:</u>	
At this point, "CAL" is shown on the main display. About five minutes later, "CAL donE" is displayed when the calibration is finished. Calibration values may now be stored to non-vol memory by holding the front-panel calibration button in and sending the CLST command.	
Step 4 Stores values to non-vol memory	CLST
<u>NOTE 3:</u>	
Upon successful completion of non-vol store, a "donE" message is displayed, a <space CR LF> GPIB output is given, and the calibration button can be released. If at any point, there is an error (e.g., syntax, calibration), the entire procedure must be repeated starting with Step 1.	

4.9 GPIB ERRORS

4.9.1 When an error occurs, an SRQ message will be generated and the SRQ LED turned on. Should multiple errors occur, only the latest error is saved. An error will be cleared and the SRQ LED turned off when the controller transmits a new command string to the counter. To read the error message, send a TE (Transmit Error) command immediately after the error occurs.

4.9.2 Table 4.25 below lists the GPIB error messages and numbered codes. The numbered error codes are in the form "Error NN" where NN is a 2-digit code.

Table 4.25 - GPIB Error Messages and Codes

Message/Code Number		Error
ALPHA SYNTAX ERROR NUMBER SYNTAX ERROR LEARN ERROR		Alpha syntax error while parsing Number syntax error while parsing Error in machine setup string from "learn"
INVALID RANGE		Range error (e.g., FN code number, gate time, delay value)
LEVEL OR ATTN INVALID		Level out-of-range for the attenuator setting
Error	23	Phase measurement ratio out-of-range
	24	Hardware ratio measurement produced divide by zero
	25	Internal totalize error
	26	Input buffer overflow
	27	Gate did not open in specified time
	28	Gate did not close in specified time
	29	Frequency C not permitted on Model 1995
	30	Error during calibration
	31	Invalid syntax during calibration parsing or commands out-of-order
	32	Cannot store calibration values to Non-Vol memory-values must be entered first
	33	Error during calibration store to Non-Vol memory
	40	Non-Vol Memory error-the Non-Vol data did not pass verification
	41	Non-Vol Memory error during recall of memory
	42	Non-Vol Memory-attemped recall of nonexistent machine setup store
	50	Normalize function error (R-X)Y/Z
	51	Statistical calculation error
	60	Internal self-test: RAM
	61	Internal self-test: ROM
	62	Internal self-test: Non-Vol Memory
	63	Internal self-test: measurement amplifier failure
	64	Internal self-test: measurement logic failure

- Table 4.25 - GPIB Error Messages and Codes (Cont'd)

Message/Code Number		Error
Error	70	Floating point addition error
	71	Floating point multiplication error
	72	Floating point division error
	73	Floating point compare error
	74	Floating point operation undefined
	75	Floating point underflow
	76	Floating point overflow
	78	ASCII to floating point conversion error
	79	Floating point to ASCII conversion error
	80	Double precision compare error
	81	Double precision to ASCII conversion error
	82	Double precision to floating point conversion error
	83	Integer division by zero
	99	Internal software error

NOTE:

If an error is found in a command string, the entire string is ignored. No new programming of the counter will take place and the counter will continue taking measurements as previously set up.

5.1 INTRODUCTION

5.1.1 This section describes the general theory of operation for the Universal Systems Counters Models 1995/1996.

5.1.2 The theory of operation provided is based on the simplified overall block diagram shown in Figure 5.1. Key circuit blocks of the 1995/1996 are described and supported in this section using simplified block and schematic diagrams. These diagrams supplement the complete schematics found in Section 7 of this manual. As much as possible, the simplified schematic and block diagrams provided here are annotated with the same reference designators found in the complete schematics. This should facilitate cross-referencing between this section of the manual and the schematics.

5.1.3 Integrated circuits (ICs) in the following circuit descriptions are designated by circuit references provided on the supporting simplified block and schematic diagrams. Note that each assembly of the 1995/1996 (see Parts List, Section 8) provides a separate series of IC designations starting with U1. These designations are employed in the following key circuit descriptions. When an IC package contains more than one circuit, suffix letters are used to distinguish them (e.g., U40A). Finally, when it is necessary to identify a specific pin in an IC, the reference designator, with a suffix letter if necessary, is followed by a hyphen and then the required pin number (e.g., U40A-1).

5.2 FUNCTIONAL BLOCKS

5.2.1 The 1995/1996 counter is divided into 11 major functional blocks. Most of these blocks are located on the instrument's motherboard. The front panel block, signal conditioner block, measurement block, and channel C block are incorporated on separate board(s) which plug into the motherboard. Figure 5.1 provides an overall simplified block diagram of the 1995/1996 counter. The following is a list of these 11 functional blocks:

1. Channel A/B block (See Subsection 5.3.2)
2. Channel C block (1996 only) (See Subsection 5.3.3.)
3. Measurement logic block (See Subsection 5.3.4)
4. Display/keyboard block (See Subsection 5.3.5)
5. Microprocessor block (See Subsection 5.3.6)
6. Power supply block (See Subsection 5.3.7)
7. External arming/gating block (See Subsection 5.3.8)
8. Internal gate timer block (See Subsection 5.3.9)
9. External reference multiplier block (See Subsection 5.3.10)
10. Channel D block (See Subsection 5.3.11)
11. GPIB block (See Subsection 5.3.12)

5.2.2 Overall Functional Operation

NOTE:

For convenience, since channels A and B are identical, only the former channel is described, unless otherwise indicated.

5.2.2.1 As one reads through the General Information and Theory of Operation sections of this manual, it might prove helpful to refer to the Overall Block Diagram found in Figure 5.1.

5.2.2.2 In general, input signals are conditioned and converted into digital information in the signal conditioning section.

5.2.2.3 The measurement section is internally configured by the microprocessor according to instructions entered via the keyboard or GPIB system. The signal to be measured and the signal from the frequency reference are fed to the measurement logic block. The measured result from here is passed to the microprocessor block. If mathematical manipulation of the result is required, this is performed by the microprocessor before the final output is passed either to the display or GPIB block.

5.2.2.4 In the digital control section, circuit timing and control signals are developed by microprocessor-based logic. This section also provides for keyboard decoding and display logic.

5.2.2.5 The interface section functions as a bidirectional port for data and control signals generated by the digital control section and the external system controller.

5.2.2.6 Overall operation of the 1995/1996 centers in two LSI chips. One chip, the MCC2 (Multiple Counter and Control Chip #2), is a combination of ECL (emitter-coupled logic) and TTL (transistor-transistor logic) circuitry. This LSI chip executes all the high-speed logic steering, gating, and counting. The second LSI chip, the MCC1 (Multiple Counter and Control Chip #1), is a CMOS device that interfaces directly with the CPU. It provides the required logic functions, counting registers for accumulating raw input data, and control lines for the MCC2 chip.

5.2.2.7 Inputs for channel A are first routed through the signal-conditioning circuitry. This circuitry performs the user-selected coupling, impedance, and attenuation operations.

5.2.2.8 After initial signal conditioning, the input measurement signal passes through a protective limiter to two parallel high-input impedance buffer/amplifier stages. These generate a differential output which is applied to a second (Schmitt) amplifier stage.

5.2.2.9 In the Schmitt amplifier stage, the measurement signal is buffered, shaped, and level-shifted. The signal output from this stage is at an ECL level and called the start signal. The start signal is then directed to the divide-by-two/multiplexing circuitry.

5.2.2.10 The multiplexer either selects the divided start signal or the start/stop signals directly. The required signal is then routed to the synchronization circuitry.

5.2.2.11 - The start signal's output from the synchronization circuitry is input to the MCC2 chip. Between the MCC2 and MCC1 chips, measurement pulses are accumulated in the event and time count registers, counted, and stored as unprocessed measurement data.

5.2.2.12 Stored raw data is then retrieved by the microprocessor, manipulated to obtain the desired measurement mode, modified as necessary by special functions, then routed to the 1995/1996's display and GPIB.

5.2.2.13 The 1995/1996 employs a special TEC (Timing Error Correction) configuration which divides the time between the reference oscillator and start/stop signals. This permits the instrument to accumulate measurement pulses to a much greater resolution. In a typical measurement, the instrument's microprocessor reads the time count and TEC registers, performs the necessary calculations, and displays the result. Between measurements, the event, time, and TEC count registers are reset while the microprocessor computes the measurement result.

5.2.2.14 Arming and gating selection for the 1995/1996 are effected through the instrument's arming/gating steering-logic circuitry. For the 1995/1996 user, arming/gating selection is much more flexible than in conventional counters. This ease-of-use results from the operator's ability to employ channel A/B inputs for selecting the various arming/gating modes. This permits input voltages as low as 25 mV at 10 MHz from the front panel. Conventional triggering levels of TTL (1.4V at 10 MHz) and zero-crossing are possible using channel D's rear-panel input.

5.2.2.15 Finally, gate-time setting for the 1995/1996 is not limited to selection by a decade-divided timebase. Rather, the counter uses an internal gate timer to select the desired gate time in a 200 ns to 100 s range. This provides resolutions of 100 ns (gate time < 1 ms resolution) and .1% (gate time > 1 ms resolution).

Figure 5.1 – Simplified Overall Block Diagram

5.3 THEORY OF OPERATION BY BLOCK

5.3.1 Introduction

5.3.1.1 The 1995/1996 is divided into eleven major functional blocks. Functional and circuit theory of operation by block are described in this subsection of the manual. The figures used here are simplified schematic or block diagrams. For complete schematics, refer to Section 7.

5.3.1.2 Table 5.1 presents a list of major signal lines used in the 1995/1996 counters along with a brief functional description. Signals used together are grouped together. Included with the signal description are significant signal sources and destinations.

Table 5.1 - Signal Lines and Functions

SIGNAL NAME	SIGNAL DESCRIPTION
ARM	Arming or gating signal applied to either arm or gate a measurement
ARMSPSL	Arm stop slope select for the arming and gating circuit
ARMSTSL	Arm start slope select for the arming and gating circuit
AS	Microprocessor address strobe
ATRST	Auto-trigger reset line; initializes an auto-trigger
ATSTART+	START+ signal buffered and applied to the auto-trigger circuitry
ATSTOP+	STOP+ signal buffered and applied to the auto-trigger circuitry
BW/R	Microprocessor R/W inverted buffer signal (U5F)
CHANLD	Input signal applied to channel D
CHCENA	Enables channel C signal to be measured
DLYWND	For future use
E	Microprocessor's enable signal for 6800-type peripherals
\bar{E}	Inverted microprocessor's E signal
GATE	Signal that is low when the measurement gate is open
INT/\bar{E}	Selects the external reference or internal reference
LDE	Lower data enable signal generated by the microprocessor's LDS and OR-ed with the BW/R signal (U25B)

Table 5.1 - Signal Lines and Functions (Cont'd)

SIGNAL NAME	SIGNAL DESCRIPTION
<u>LDS</u>	Microprocessor's lower data strobe
<u>LTMS</u>	Selects the 200 ns to 1 ms output or greater than 1 ms to 100 s output from the internal timer
<u>LWE</u>	Lower write enable signal generated by the microprocessor's lower data strobe (LDS) and OR-ed with the Read/Write (R/W) signal (U24C)
<u>MCC/GEND</u>	Selects the SPOUT or GATE END signal for ending a measurement
<u>MLRST</u>	Main logic reset signal from the MCC1 chip
<u>PRE</u>	Peripheral read enable signal generated by the microprocessor's R/W signal and NANDed with E signals (U4C)
<u>RAMENA</u>	RAM enable signal, generated by the microprocessor's address strobe (AS) and inverted address line A21 ($\overline{A21}$) and OR-ed together (U5C and U24A)
<u>R/W</u>	Microprocessor's Read/Write signal
<u>SELARM</u>	Enables application of the ARM signal to the auto-trigger or measurement block
<u>SELCHD</u>	Selects the CHANLD signal as the arm or gate signal
<u>SELSP</u>	Selects the TTLSTOP signal as the arm or gate signal
<u>SPMUX</u>	Stop enable signal selection between SPOUT or <u>GATE END</u> signals
<u>SPOUT</u>	Stop enable output from MCC1 or SPEN signal
<u>SPSL</u>	Selects the slope of the STOP+ signal
<u>SPSLV</u>	Indicates whether the stop measurement signal is above or below the stop DAC trigger-level (TL STOP)
<u>SPSXL</u>	Indicates that the stop measurement signal has crossed the stop DAC trigger-level (TL STOP)
<u>START+</u>	Input signal applied to channel A or B for selection as the START signal
<u>STOP+</u>	Input signal applied to channel A or B for selection as the STOP signal
<u>STSL</u>	Selects the slope of the START+ signal

Table 5.1 - Signal Lines and Functions (Cont'd)

SIGNAL NAME	SIGNAL DESCRIPTION
<u>STSLV</u>	Indicates whether the start measurement signal is above or below the start DAC trigger-level (TL START)
<u>STSXL</u>	Indicates that the start measurement signal has crossed the start DAC trigger-level (TL START)
<u>TTLSTOP</u>	STOP+ signal converted to a TTL signal
<u>TL START</u>	Start channel trigger level
<u>TL STOP</u>	Stop channel trigger level
<u>--UDE</u>	Upper data enable signal generated by the microprocessor's <u>LDS</u> signal and OR-ed with the BW/R signal (U25C)
<u>UDS</u>	Microprocessor's upper data strobe signal
<u>UWE</u>	Upper write enable signal generated by the microprocessor's upper data strobe (<u>UDS</u>) and OR-ed with READ/WRITE signal (R/W) (U24D)
<u>VMA+E</u>	Microprocessor's inverted enable signal (<u>E</u>) OR-ed with the valid memory address (<u>VMA</u>) signal (U5E and U24B)
<u>ZERO/TTL</u>	Selects the channel D trigger point
<u>5.20OFF</u>	Shuts down the ECL 5.2 volts
<u>200MHZ</u>	Enables the divide-by-two circuitry

5.3.2 Channel A/B Block

5.3.2.1 Functional Description

5.3.2.1.1 Refer to the simplified block diagram in Figure 5.2 as required. Channels A and B on the 1995/1996 are identical and only channel A is described here. Measurement signals applied to Input A are first routed through the instrument's signal conditioning circuitry. This circuitry performs selected compensation, coupling, attenuation, and impedance.

5.3.2.1.2 The measurement signal is then applied to the input of the start/stop amplifiers. The start/stop DACs (Digital-to-Analog Converters) provide a DC threshold through which the input signal must swing so that the amplifier's output will toggle.

5.3.2.1.3 The start/stop DACs have a programmable output range of ± 5 VDC in increments of 2.5 mVDC. However, the trigger display only shows resolutions of 10 mVDC.

5.3.2.1.4 The signals are then routed to the start/stop output amplifiers. The switches shown in the figure permit selection of either Input A or B signal for routing to the output amplifiers. The following combinations are possible: A-start/A-stop; A-start/B-stop; B-start/B-stop; and B-start/A-stop.

Figure 5.2 – Simplified Block Diagram for Channel A/B

5.3.2.2 Circuit Description

5.3.2.2.1 Input Conditioning

5.3.2.2.1.1 At the channel A input connector, K1 will select 50-ohm impedance when energized. This is achieved through the two parallel 100-ohm resistors R1 and R3. Refer to Figure 5.3.

5.3.2.2.1.2 AC/DC coupling is effected through K3. When this relay is de-energized, AC coupling is achieved via the two parallel capacitors C7 and C8.

5.3.2.2.1.3 Attenuation is accomplished via the four relays K5, K6, K10 and K12. The X1 range is set by energizing K6. When K6 is dc-energized and its companion relay K5 is energized, the user will have the attenuation (X10 or X50) selected. The X10 or X50 range is selected via K12. When K12 is energized, X10 attenuation is selected. The measurement signal is attenuated by RC voltage-divider network R20, R24, C18, C22 and C32. When K12 is de-energized, X50 attenuation is achieved via RC voltage-divider network R19, R23, R82, C148, C17, C21 and C31.

5.3.2.2.1.4 When relay K9 is de-energized, the input signal is filtered by passage through R16. R16 and input capacitance work together to achieve 100 kHz nominal signal filtering.

Figure 5.3 – Input Switch Circuitry for AC/DC and Attenuator

5.3.2.2.2 Start/Stop Amplifier Circuit Description

5.3.2.2.2.1 Refer to Figure 5.4. The input buffer for channel A (channel B is identical) consists of two ICs, Q8 (transistor array) and Q2 (FET array). These two chips help to comprise two differential amplifiers called the start/stop amplifiers.

5.3.2.2.2.2 Input to the start/stop amplifiers is limited to approximately ± 7 volts at the input to Q2A-6 and Q2D-11. This is achieved by the input clamp circuit consisting of R31, R50, CR1, CR2, CR3, CR4, VR1, and VR2 as shown in Figure 5.3.

5.3.2.2.2.3 The current sources for these two differential stages are supplied by Q1, VR4, R32 and R33 for the start amplifier, and Q5, VR6, R36 and R37 for the stop amplifier. Each source is switched on and off by a section of U1, which in turn is controlled by a TTL-control logic signal from the motherboard.

5.3.2.2.2.4 When control line CH A START is high at U1-13, U1-11 is an open circuit. This turns on Q1 and allows current to flow. This selects the channel A input to pass through the start amplifier to the differential output (A3 and A4). If the CH A STOP control line is also high, channel A's input signal would pass through the stop amplifier to the differential output (A1 and A2). When the control line CHA START is low at U1-13, U1-11 connects the base of Q1 to -15V disabling the current source and, hence, the differential amplifier. When the amplifier is disabled, it is no longer able to process input and trigger level signals.

5.3.2.2.5 The amount of current through current source Q1 is determined by R32 and R33. With the HYSTERESIS control line low at U1-9 (maximum counter sensitivity), U1-2 and 16 are at -15V which puts R32 and R33 in parallel. This provides 11 mA through Q1 and 5.5 mA through each half of the differential stage. With the HYSTERESIS control line high, R32 is removed from across R33, thereby reducing the current through Q1 to 2 mA, and decreasing the counter sensitivity. Switching the current through the start and stop amplifiers, combined with hysteresis control of dual comparator U4 (Figure 5.5) controls the overall hysteresis of the signal conditioner. The amount of hysteresis determines the counter sensitivity.

5.3.2.2.6 The trigger levels are set by two digital-to-analog converter (DAC) circuits on the motherboard. Refer to Figure 5.6. U11A, U19, and U23 are the primary components of the START DAC; U10, U11B, and U14 (not shown) are the primary components of the STOP DAC.

5.3.2.2.7 The level at which the start amplifier circuit triggers is controlled by a voltage at Q2B-3 (see Figure 5.4., the TL START line). This voltage comes from U11A-1 on the motherboard as shown in Figures 5.2 and 5.6.

5.3.2.2.8 The level at which the stop amplifier circuit triggers is controlled by a voltage at Q2D-11 (see Figure 5.4, the TL STOP line). This voltage comes from U11B-8 on the motherboard as shown in Figure 5.2.

5.3.2.2.9 The output of the start/stop amplifiers is taken from the collector of Q8A-6 and Q8B-2 for the start and Q8C-12 and Q8D-11 for the stop amplifier. These four signals are A1, A2, A3, A4 which connect the base of Q11A, Q11B, Q12A, and Q12B as shown in Figure 5.5.

Figure 5.4 – Start/Stop Buffer Amplifier Stage

5.3.2.2.3 Start/Stop Level Shifter Circuit Description

5.3.2.2.3.1 The second amplifier stage is called the start level shifter. (For convenience, since channels A and B are identical, only channel A is discussed.) This stage is also a differential amplifier consisting of Q11A and Q11B with Q7 as the current source. Refer to Figure 5.5.

5.3.2.2.3.2 The second stage's signal is limited to a peak-to-peak swing of 400 millivolts by CR9, CR10, CR11 and CR12. These diodes improve the peak measurement accuracy of the signal conditioner at high frequencies and high input levels.

5.3.2.2.3.3 The second stage operates in the active region with a DC offset at the collector output of Q11A and Q11B. This offset is established by the current-source components Q7, R44, R51, and R52.

5.3.2.2.3.4 R44 and R52 create a voltage divider at the base of Q7, resulting in approximately 1.2 volts across R51. This, in turn, provides about 6.0 millamps through each leg of the differential amplifier. With 6.0 millamps through Z7-2 and Z7-3, start comparator U4A has a signal which swings around a DC offset of 200 millivolts.

5.3.2.2.4 Start/Stop Comparator Circuit Description

5.3.2.2.4.1 U4 is a dual high-speed differential comparator with an ECL output. This device receives an input from the start/stop level shifter (second amplifier stage). Refer to Figure 5.5.

5.3.2.2.4.2 U4-7 and 8 are the start differential inputs; U4-9 and 10 are the stop differential inputs. The output of the comparator is directed in two pathways: (1) measurement logic and (2) auto-trigger circuitry.

5.3.2.2.5 Hysteresis Control Circuit Description

5.3.2.2.5.1 Hysteresis control is achieved by changing the voltage applied to U4-5 and 13. This is effected by the HYSTERESIS control line which sets either a logic low or high at U5-6 in order to turn on Q13 or Q14, respectively.

5.3.2.2.5.2 With a logic low at U5-3 and 6, a high is set at the gate of Q13 and a low is set at the gate of Q14. This condition selects the low hysteresis voltage for application to U4-5 and 13 via Q13 to balancing resistor R67. This low hysteresis voltage source is established through the voltage divider network R66, R68 and R70. This voltage can be adjusted during board level calibration via variable resistors R70 and R71.

5.3.2.2.5.3 With a logic high at U5-3 and 6, Q13 is turned off and Q14 turned on. This applies the high hysteresis voltage to U4-5 and 13 via Q14 to R67. This high hysteresis voltage source is established through voltage divider network R65, R69, and R71. This voltage can be adjusted during calibration via resistor R71.

Figure 5.5 – Level Shifting and Hysteresis Control

5.3.2.2.6 Digital-to-Analog Converter (DAC) – Functional Description

5.3.2.2.6.1 Refer to Figure 5.6. The DAC block contains two identical circuits, the START DAC and the STOP DAC (START DAC only shown in figure). The DACs convert 12 bits of data from the microprocessor's 16-bit data bus into analog voltage used to program the start/stop buffer's trigger levels. These trigger levels are also routed to the rear panel for calibration purposes.

5.3.2.2.6.2 Each DAC consists of two sections: (1) a voltage section which performs the actual digital-to-analog conversion, and (2) a summing amplifier section.

5.3.2.2.7 START DAC Circuit Description

5.3.2.2.7.1 Refer to Figure 5.6. The following description refers only to the START DAC, but can also be applied to the STOP DAC.

5.3.2.2.7.2 The first half of the START DAC circuit, the voltage section, contains the DAC chip U19 and the operational amplifier feedback loop. U19 outputs a current dependent upon the 12-bit code which is input from the microprocessor. This current is converted into a negative voltage by the operational amplifier U23. This voltage is then applied to R19. R19, R20, U11A, and U20 all work together to convert this negative output into either a positive or negative DC level.

5.3.2.2.7.3 U19, a CMOS IC, receives a 12-bit word code from the microprocessor. The data bus, from where this word code is taken, is shared with many other devices, the DAC must be strobed by the microprocessor's chip select line STDAC and write line PWE. When these two lines both go low, they latch the valid data code into U19.

5.3.2.2.7.4 U19 receives a reference voltage from U20. This voltage sets up the current through an internal resistor ladder-network either to ground at pin 2 or to the output at pin 1. The output current is dependent upon the binary code input to the 12 switches. With all data lines latched high, the current at pin 1 is equal to the input current at pin 19 (VREF). There are 4096 incremental steps of the signal level that can appear at the output proportional to the binary weighted input code.

5.3.2.2.7.5 U23 operates in a feedback configuration to act as a current-to-voltage converter. This feedback loop keeps the output voltage of the DAC (pin 1) at zero volts.

5.3.2.2.7.6 The voltage level at the output of U23 is always negative as a result of the signal inversion by operational amplifier U23. R19 and R20 constitute a voltage-divide network with U20 supplying +5 volts to R20 and R19 receiving its supply from the output of U23. As the voltage varies at R19, the amount of current will vary at point A (see Figure 5.6). The amount of current at U11's operational amplifier input will be amplified to achieve the START DAC voltage selected by the microprocessor's binary code. The gain of the summing circuit is about 3.16 and is established by R13, R14, R19 and R20.

5.3.2.2.7.7 The reference voltage input to the DAC is +5 volts and is supplied by U20. The output of the current-to-voltage converter of U23 ranges from zero to -5 volts. Since the DAC has 12 bits, it has the potential for 4096 current increments and its voltage resolution is about 1.2 millivolts. Because of the scaling of current and the gain setup of U11A, the DAC resolution is 2.5 millivolts per step. This provides a trigger level with a voltage range of +5.2 to -5.2 volts.

Figure 5.6 – Simplified Schematic for the START DAC

5.3.2.3 Auto-Trigger Circuitry

5.3.2.3.1 Functional Description

5.3.2.3.1.1 The auto-trigger circuit, in conjunction with the microprocessor and DAC circuitry, determines the amplitude of the input measurement signal for channel A and/or B. This is achieved by doing a signal peak search and then automatically setting the trigger level to the optimum 50% point. Depending on the trigger display selected (peak-to-peak, peak maximum, peak minimum, or the 50% point), this trigger value is then sent to channel A and/or B trigger displays on the front panel.

5.3.2.3.1.2 The peak signal search during auto-trigger determination actually involves a search for the positive and the negative peak levels. During each peak signal search, the microprocessor requires information regarding whether (1) the input signal crossed the trigger point that was set and whether (2) the input signal is above or below the trigger point. Now to a brief circuit description.

5.3.2.3.2 Circuit Description

5.3.2.3.2.1 Refer to Figure 5.7. To determine the trigger level automatically, information for calculation by the microprocessor is obtained from U30. When signal line CSBUFA is brought low, tri-state buffer U30 routes the Start Signal Crossing Level (STSXL) and Start Signal Voltage Level (STSVL) signals to the microprocessor for reading.

5.3.2.3.2.2 The STSXL signal indicates whether the input measurement signal has crossed the trigger level. The STSVL signal indicates whether the trigger level is above or below the measurement signal. The microprocessor always looks at the STSXL signal first. If the STSXL signal level is high, the microprocessor looks at the STSVL signal to determine if the trigger level is set above or below the measurement signal. The microprocessor never looks at the STSVL signal if the STSXL signal is low because the microprocessor now has all the information to set the next trigger point.

5.3.2.3.2.3 Before the microprocessor can perform an auto-trigger, it first sets the DAC's trigger level to the start/stop amplifiers. Next, the auto-trigger circuitry is set up. First, the microprocessor brings the DLYWND and ARM signal lines high. This forces the ATE (Auto-Trigger Enable) line high and the ATE line low. This enables U54B and U55B.

5.3.2.3.2.4 With the DAC's trigger level and auto-trigger circuitry now set, the microprocessor initializes an auto-trigger process. The ATRST (Auto-Trigger Reset) signal line is first pulsed low, setting U55B's Q output high. If the DAC level was set within the measurement signal's peak-to-peak range, U55B's Q output would be clocked low by the ATSTART+ signal which is the buffered Start measurement signal. Once U55B's Q output has been brought low, U55B's Q output is fed back to the input at U58B-4. This maintains the D input to U55B at a low level which keeps U55B's Q output low during any more clock pulses from the ATSTART+ signal.

5.3.2.3.2.5 U54B and U55B's Q outputs STSXL and STSVL now pass to U53. U53 translates ECL signals to TTL signals, then passes the STSXL and STSVL signals to U30 for reading by the microprocessor.

Figure 5.7 - Simplified Schematic for the Auto-Trigger Start Circuitry

5.3.3 Channel C Block

5.3.3.1 Functional Description

5.3.3.1.1 Channel C is provided on Model 1996 only. Refer to Figure 5.8 which provides a simplified block diagram. Channel C processes the signal applied at the channel C input and feeds it to the measurement block.

5.3.3.1.2 Channel C's input is protected by a fuse, mounted in the input connector, and also by a signal-limiting circuit. Next is an automatic level control circuit which reduces the range of the signal level applied to the amplifier.

5.3.3.1.3 After amplification, the signal is prescaled by 64 before being passed via a buffer and a signal gate to the measurement block.

5.3.3.1.4 The amplitude of the signal at the amplifier output is monitored by a detector and a comparator. The comparator output controls the low-signal latch. If the detector output is below the threshold, the latch is set and the channel output is inhibited by the signal gate. When the detector output goes above the threshold, the low-signal latch is armed and opens the signal gate on the next signal edge from the prescaler. This enables the instrument to make measurements on signal bursts.

5.3.3.1.5 The detector output is also applied to the continuous signal latch. This latch is reset at the beginning of each gate period and is set if the detector output falls below the threshold level. The microprocessor system samples the latch output throughout the gate period. If the measured signal falls below the threshold level during this period, the measured result is set to zero.

5.3.3.1.6 If channel C is not selected, the low-signal latch is held in reset by a control signal from the microprocessor and the output to the measurement block is inhibited. The same control signal is used to enable channel A so that the two channels cannot be enabled at the same time.

Figure 5.8 – Simplified Block Diagram for Channel C (1996)

5.3.3.2 Circuit Description

5.3.3.2.1 Refer to Section 7 for the complete channel C schematics. The signal to be measured is applied via SK13 (INPUT C). The circuit is protected by a fuse mounted within SK13. The signal amplitude is limited by the diode clamp comprised of D8, D9, D10 and D11.

5.3.3.2.2 A degree of automatic gain control is achieved by means of an attenuator formed by R6 and the impedance of the PIN diodes D2 and D7. The peak-to-peak detector D1, D3, R7 and C48 produces a negative voltage proportional to the signal amplitude. A direct current proportional to this voltage flows through the PIN diodes via L1. The impedance of the diodes decreases if the current increases so that changes in signal amplitude are offset by changes in attenuation.

5.3.3.2.3 The signal passes through four amplifier stages incorporating Q1, Q2, Q3 and Q4. The amplified signal is fed to the counter IC3 via the shaping circuit formed by R37, C46 and R36.

5.3.3.2.4 The signal frequency is prescaled by 64 in IC3 and buffered in IC2a. Provided that channel C is selected and the amplitude of the signal is adequate, the output at IC2a-2 passes to the measurement logic via the gate IC2b and SK7 pin 5.

5.3.3.2.5 The signal at the output of Q4 is fed to the low-signal detector D5 and C23. The comparator IC1b compares the detector output with a threshold voltage set by R27. The comparator output is at a logic 1 if the detector output is below the threshold (the amplitude of channel C's signal is too low for accurate counting).

5.3.3.2.6 The logic level at the comparator output is inverted in IC1-A and is fed via SK7 pin 14 to the D1 input of U59A-7 on the motherboard. U59A-6 is clocked by the output of IC2a via SK7 pin 8. If the signal from Q4 is below the threshold, U59A-3 goes to a logic 1. This logic level is fed back via SK7 pin 7 to disable the gate IC2-B and inhibit the output to the measurement block.

5.3.3.2.7 The GATE signal enters the system at SK7 pin 17 and is inverted in IC1-C. The resulting signal and the output of the comparator IC1-B are fed to IC4-A. If both inputs are at a logic 1, indicating that the channel C level is too low while the gate is open, the continuous signal latch IC4-C and IC4-D is set. The latch output is fed to the microprocessor via SK7 pin 11 and prevents the result of any measurement made during that gate period from being displayed.

5.3.3.2.8 The STSL signal at SK7 pin 16 is at a logic 1 when channel C is selected. When channel C is not selected, SK7 pin 16 is at a logic 0. This level is inverted and buffered in IC4-B and IC1-D, and then is fed to U59A-4 (see channel C schematic) via SK7 pin 13. U59A-4 is held reset, inhibiting the channel C signal at IC2-B via SK7 pin 7.

5.3.4 Measurement Logic Block

5.3.4.1 Functional Description

5.3.4.1.1 Refer to Figure 5.1 and 5.9 when reading this description of the measurement logic block.

5.3.4.1.2 The start and stop signals after signal conditioning are applied first to the divider/multiplexer and auto-trigger circuitry (see figure). The multiplexer selects either the start divide-by-2 or the start/stop signals.

5.3.4.1.3 The synchronization circuit is designed to delay the start and stop signals' clocking edge from reaching the MCC2 chip (U6) before the start enable (STEN) and stop enable (SPEN) control signals. After synchronization, the start and stop signals are applied to ECL LSI device U6 along with the reference signal and start and stop enable control signals.

5.3.4.1.3.1 The start enable and stop enable signals define the gate time. The start enable control signal is generated by the CPU or external Input A, B or D; the stop enable control signal follows the start enable signal by a time determined by the gate circuitry.

5.3.4.1.3.2 The reference signal is provided by either a precision 10 MHz oscillator or an external reference signal of 1, 5, or 10 MHz at 500 mVrms to 5 Vrms.

5.3.4.1.4 The ECL LSI device executes a partial reading conversion and passes the information to CMOS LSI device U11. Additional information from the ECL LSI device is directed to the precision TEC assembly U10 which performs a precision timing-error-correction operation. The TEC assembly then passes the information from timing error correction to the CMOS LSI device.

5.3.4.1.4.1 This latter device (U11) performs the remaining reading conversion and also presents the results on the data lines when interrogated by the CPU. The CPU then executes the appropriate function-dependent calculations, displaying the measurement results on the instrument's front-panel display.

5.3.4.2 Divider/Multiplexer Circuit Description

5.3.4.2.1 Refer to Figures 5.5 and 5.9 for the following circuit description.

5.3.4.2.2 The four differential output signals from U4 are directed to U7 and U6. One of these, the START+ signal from U4A-1, also passes to the clock input of U8A. U8A (a D-type flip-flop) functions by dividing this clock-input START+ signal by two.

5.3.4.2.3 Q and \bar{Q} are the two outputs of U8A comprising the complementary outputs of the divided START+ signal. Q and \bar{Q} are then routed to U7, a two quad-channel multiplexer.

5.3.4.2.4 U7 selects either the complementary input of the start and stop signals from U4A and B, or the Q and \bar{Q} signals from U8A for presence at its outputs. Selection is effected via the 200 MHz ECL control line.

5.3.4.2.5 The 200 MHz control signal goes to U8A and U7. U8A will only divide the START+ signal at its clock input when both the 200 MHz and Q1 signals at U8A are at an ECL low. This condition permits the START+ signal at U8A's clock input to be divided and routed through U7 to its complementary outputs.

5.3.4.2.6 However, when the 200 MHz signal at U7 and U8A is at an ECL high, the divide path is disabled. Then the complementary outputs from U4A and B are selected to pass through U7 to its complementary outputs.

5.3.4.3 Synchronization Circuit Description

5.3.4.3.1 Refer to Figures 5.5 and 5.9, and especially 5.10 for the following circuit description. This description is confined to the START+ SYNC circuit as the STOP+ SYNC circuit is essentially the same.

5.3.4.3.2 The START+ input signal is connected to U4A, which is an exclusive-or gate with complementary output. U4A selects the slope of the START+ signal at U4A-7 by setting U4A-9 at an ECL logic level.

5.3.4.3.3 Slope selection is effected by the TTL control signal STSL. When this control line goes low at U3A, the latter converts the TTL signal to an ECL low. U3A's ECL level drives U4A-9 to a corresponding low ECL level. This selects the positive slope of the START+ signal to be at U4A's output.

5.3.4.3.4 When control line STSL is high, the negative slope of the START+ signal is selected to be at U4A's output.

5.3.4.3.5 The complementary outputs of U4A are connected to the latch enable lines of U7A. These latch enable lines (U7A-5 and 6) enable or disable the STEN signal to pass through U7A to Q2 and Q4. See Figure 5.10.

5.3.4.3.6 Q2 and Q4 take the complementary ECL outputs from U7A and convert the ECL level to a TTL level at the collector side of Q2. This signal is named DSTEN.

Figure 5.9 - Simplified Diagram for the Measurement Logic Block

Figure 5.10 - Simplified Schematic for the Synchronization Circuit

5.3.4.4 Measurement Circuit Description

5.3.4.4.1 Refer to Figure 5.9 for the following description of the measurement circuit.

5.3.4.4.2 The measurement circuit consists essentially of the three chips, U6, U10, and U11. U6 is the chip where the input signals from channels A, B and C enter for measurement after signal conditioning. U11 is a CMOS chip and the heart of the measurement circuit. This IC receives all control functions for signal measurement from the microprocessor and, also under microprocessor control, enables a reading to be taken.

5.3.4.4.3 A reading takes place when the microprocessor sets up the function control lines Q0 through Q4 of U11. These control lines are connected from U11 to U6 to direct the input signal(s) through U6's internal logic.

5.3.4.4.4 When the microprocessor is ready, it orders U11 to set the STEN line high. However, this control line cannot go high yet as it has to wait to be clocked high by the 10 MHz timing signal from U6. When the STEN line does go high, it is routed to the synchronization circuit where it is converted to the DSTEN signal. It is the DSTEN signal which goes to U6, enabling a measurement to begin on the first clocking edge of the input signal to U6.

5.3.4.4.5 When U6's internal logic sees the clocking edge of the input signal(s), the ST TEC line from U6 to U10 goes low and so does the GATE line to U6. From 100 to 200 nanoseconds later the REF signal will clock the ST TEC line high.

5.3.4.4.6 Once the measurement begins, count lines A, B and C from U6 to U11 start to toggle. These three lines carry the least significant bits of a counter register that is 26 bits in length. The 23 most significant bits are stored in U11. At the end of the measurement, the DSPEN line at U6 goes high. This enables U6's internal logic to stop the measurement on the next clocking edge of the input signal at U6.

5.3.4.4.7 When U6's internal logic sees the input signal(s) next clocking edge, the SP TEC line from U6 to U10 will go low and the GATE line high. From 100 to 200 nanoseconds later, the REF signal will clock the SP TEC line high.

5.3.4.4.8 The ST TEC and SP TEC signals from U6 to U10 are both ECL low-going pulses. Each lasts from 100 to 200 nanoseconds. This pulse width represents the time difference (an error factor) between the clocking edge of the input signal and the 10 MHz reference signal. Refer to Figure 5.11.

5.3.4.4.9 U10 uses the ST TEC and SP TEC pulses in a dual-slope integration scheme. Using a constant current source, both pulses rapidly charge a capacitor. When the pulses end, the capacitor starts a scaled discharge at about 1/400th of the charge rate. This proportionally expands the TEC error pulse by a factor of 400. This integrated waveshape is then squared and used to gate the 10 MHz reference signal (the ST TEC OUT and SP TEC OUT signals) into U11's TEC register counters. Refer again to Figure 5.11.

5.3.4.4.10 At the end of a measurement, the CPU commands U11 to set the MLRST line low. This line resets all logic and register counters in U6 and U11, preparing for the next measurement.

Figure 5.11 – Simplified Diagram of the TEC Interpolator

5.3.5 Display/Keyboard Block

5.3.5.1 Functional Description

5.3.5.1.1 Refer to Figure 5.12. The front panel contains the display and keyboard circuitry. It has all the operator pushbutton controls for all counter functions, and displays measurement readings and diagnostic data such as errors and failure codes.

5.3.5.1.2 The front panel provides eleven 7-segment LEDs, 53 red LEDs, and two 4-digit trigger-level displays for channels A and B. Ten of the 7-segment LEDs are used for the mantissa. The eleventh 7-segment LED is the measurement reading exponent.

5.3.5.1.3 The keyboard has 40 momentary-contact pushbutton switches. It is continuously monitored via a 7 x 6 line matrix. ROW1 through ROW6 are strobed by a 3-to-8 line decoder/multiplexer. COL1 through COL7 are scanned and read from the data bus via a buffer.

5.3.5.2 Circuit Description

5.3.5.2.1 Refer to Figure 5.12. The display board receives its instructions from the microprocessor through chips U3, U5, U6, U7 and U8. U3, U5 and U6 control display drivers U1, U2 and U4 as well as ten miscellaneous function/indicator LEDs. The microprocessor interfaces with the keyboard via chips U7 and U8.

5.3.5.2.2 Display drivers U1, U2 and U4 are Intersil (ICM7218) 8-digit LED devices. This device contains an 8 x 8 static memory array providing storage for the displayed information of the 7-segment decoders, all the multiplex scan circuitry, and high-power digit and segment drivers. The display driver has two control lines (WRITE and MODE) that define the chip select. The chip select either reads four bits of control information (DE, DF, DG or DH) or eight bits of display input data (DA through DH). The MODE control line defines the selection, with a high loading the control word on the write pulse, or a low loading the input data on the write pulse.

5.3.5.2.3 Any data present (BD0 through BD7) at the input of U3, U5 and U6 is latched out on the rising clock edge of lines CSLCHF, CSLCHG and CSLCHH. U5 handles the control lines (MODE, WRU1, WRU2 and WRU4) and U3 handles the data lines (DA through DH) for the display drivers. Drivers U1 and U2 show the mantissa readings on the 7-segment display DS1 through DS11, and driver U4 shows channel A/B trigger levels on display DS12 and DS13.

5.3.5.2.4 The microprocessor refreshes the counter's measurement readings (mantissa) about every millisecond. Every time the display is updated by the microprocessor, the microprocessor must pass the mode data along with eight consecutive bytes of data for each of the three display drivers.

5.3.5.2.5 Mode data is passed to U1, U2 or U4 when the MODE control line from U5 is high and the Write line (WRU1, WRU2 or WRU4) goes low. Lines DE, DF, DG and DH contain the control word that will be loaded into the display drivers.

5.3.5.2.6 Display data is passed when the MODE control line is low and the appropriate Write line goes low. Lines DA through DH now carry the display data for the mantissa and function/indicator LEDs. All display data directed to U1, U2 and U4 is coded in hexadecimal.

5.3.5.2.7 The function/indicator LEDs are controlled by U6, a part of U5, and the last five digit lines of U2 (L1 through L5).

5.3.5.2.8 The keyboard is scanned about every ten milliseconds. Scanning is effected by sequencing through BA1, BA2 and BA3; bring line CSBUFC low; and then reading buffer chip U7. It takes the microprocessor eight passes to read all 40 keys. For example, in order for the microprocessor to read ROW4 and COL6, lines BA1 and BA3 will be set high and line BA2 will be set low. The microprocessor next would bring line CSBUFC low, enabling U8 to bring the ROW4 line low. If the key across ROW4 and COL6 is depressed, COL6 will be low and the microprocessor will read via buffer chip U7 the value BF in hexadecimal. If that key is not depressed, the microprocessor will read an FF instead.

Figure 5.12 - Simplified Schematic for the Display Board

5.3.6 Microprocessor Block

5.3.6.1 Functional Description

5.3.6.1.1 Refer to Figure 5.1. The overall operation of the 1995/1996 is controlled by the microprocessor which resides in the computer section on the motherboard. The microprocessor itself is a Motorola 68000 device. It receives instructions from the keyboard or the GPIB, then sends instructions to and receives data from other functional blocks within the counter.

5.3.6.1.2 The microprocessor continuously scans the counter's keyboard for any change and then updates the front-panel display annunciators and key indicators.

5.3.6.1.3 The microprocessor block contains eight major divisions. Refer to Figure 5.13. These divisions include the following:

- a. Upper and lower RAM (U7 and U8)
- b. Upper and lower ROM (U17 and U18)
- c. Non-volatile memory
- d. Microprocessor control logic
- e. Reset logic
- f. Interrupt logic
- g. Address and data buffer
- h. Input/Output decoders

5.3.6.1.4 The microprocessor interfaces to these eight divisions via a 16-bit data bus and a 24-bit address bus. All input/output functions are effected via an 8-bit data bus and a 4-bit address bus. The address bus interfaces with the measurement block, GPIB block, display block, and hardware control circuitry.

5.3.6.1.5 The microprocessor has 16k bytes of RAM and 128k bytes of ROM available for memory.

5.3.6.2 Circuit Description

5.3.6.2.1 Microprocessor Control Circuitry

5.3.6.2.1.1 The clock (hybrid IC) U16 provides an 8 MHz clock to the microprocessor U6. The control circuitry of U6 consists of inverter U5, NAND gate U4, and OR gates U24 and U25. These devices develop all the control signals listed in Table 5.1 for the microprocessor, permitting it to interface with peripheral devices within and without the kernel.

5.3.6.2.2 Reset Circuitry

5.3.6.2.2.1 The reset circuitry consists of the power-down and power-up circuits. The power-down circuit brings the output of U1C (RESET) low when U1C-11 reaches approximately 4.7 volts. This prevents the microprocessor from accidentally writing to non-volatile memory. The power-up circuit holds the output of U1B (RESET) low until U1C-11's voltage is greater than 1.2 volts. Q1 is the turnoff which permits C2 to begin charging. When C2 reaches a charge that is greater than 1.2 volts, the output of U1B will go high, enabling the microprocessor and other peripherals to return from their reset state.

5.3.6.2.3 ROM

5.3.6.2.3.1 U17 and U18 are EPROMs containing the resident operating-system. This information is accessed by the microprocessor through a 16-bit data bus and a 24-bit address bus. However, only 14 of the 24 address lines are used (A1 through A15). The microprocessor divides the data bus into upper and lower data lines. U17 is connected to the upper 8 bits (D8 through D15), while U18 is connected to the lower 8 bits (D0 through D7). To enable a data output (read) cycle, both UDE, LDE and address line A17 are pulled low. Instruction bytes are then put onto the data bus.

5.3.6.2.4 RAM

5.3.6.2.4.1 U7 and U8 are static RAM devices that provide 8k x 16 bits of temporary storage. This information is also accessed by the microprocessor through a 16-bit data bus and a 24-bit address bus. However, only 12 of the 24 address lines are used (A1 through A13). U7 is connected to the upper 8 bits (D8 through D15), while U8 is connected to the lower 8 bits (D0 through D7). To enable a data input (write) cycle, the RAMENA, LWE and UDE lines are pulled low. To enable a data output (read) cycle, the LWE line remains high, while the RAMENA and UDE lines are pulled low.

5.3.6.2.5 Non-Volatile Memory

5.3.6.2.5.1 U2 provides 2k x 8 bytes of non-volatile memory storage for calibration constants and machine setups. U2 is connected to the lower half of the data bus (D0 through D7) and A1 through A11 of the address bus. To enable a data input (write) cycle, chip select line CSNONVOL, LDE and the output of U3A are pulled low. To enable a data output (read) cycle, the output of U3A remains high while the CSNONVOL and LDE lines are pulled low. This read/write cycle of non-vol memory involves only the lower 1k of U2's memory. The write cycle of the microprocessor is unable to access the upper 1k of U2's memory because U3A, U3B and the calibration switch on the front panel inhibit this write cycle. This ensures protection to the calibration constants which are stored in the upper half of U2's address space.

5.3.6.2.6 Input/Output Decoder Circuit

5.3.6.2.6.1 The input/output decoders consist of the three 3-to-8 multiplexers U9, U15 and U22. These three chips provide the chip select lines and clock signal for the peripheral devices. Refer to Table 5.1 for a definition of the chip select clock names.

5.3.6.2.7 Interrupt Circuit

5.3.6.2.7.1 This circuit consists of one chip, U12, which is an 8-to-3 line priority encoder. This IC handles the interrupt lines from the measurement block (MCCIRQ), GPIB block, timer and gating block (RTIRQ), and optional interrupts (OPTIRQ). These interrupt lines are prioritized, then a 3-line code is sent to the microprocessor.

5.3.6.2.8 Address and Data Buffer

5.3.6.2.8.1 U26 is a bidirectional buffer that buffers data lines D0 through D7 from the microprocessor to the measurement block, display block, GPIB block, and hardware control circuitry. This buffer chip is only enabled when reading and writing from peripheral devices outside the kernel. U27 buffers address lines A1 through A4.

Figure 5.13 – Simplified Schematic for the Microprocessor Block

5.3.7 Power Supply Block

5.3.7.1 The 1995/1996 uses a linear power supply providing the following voltages ($\pm 5\%$) at the indicated current capacities:

- a. +5V at 750 mA surge, 350 mA nominal (using ovenized oscillator Option 04E)
- b. +5V at 3.2A (TTL)
- c. -5.2V at 2.8A (ECL)
- d. +15V at 250 mA (Linear)
- e. -15V at 100 mA (Linear)

5.3.7.2 -- Line voltage enters the power transformer's primary winding when rear-panel connector S200 is closed. The line voltage selector card is oriented by the user to properly configure the primary winding to match the applied line voltage (see Subsection 2.7.2 in this manual for details).

5.3.7.3 The power transformer is a step-down device with three center-tapped secondary windings. Power transformer output voltages are full-wave, rectified by bridges CR8, CR200, and diodes CR10, CR11, before being capacitor filtered.

5.3.7.4 When switch S1 is closed, the positive and negative 15V supplies come up. The +15V supply enables the +5V TTL supply via Q7. The computer resets and, upon a successful completion of a status check, turns on the -5.2V supply via Q5, Q8 and Q9. When switch S1 is opened, all power supplies shut down except the oven oscillator supply. Q4 turns on and lights the front-panel Standby LED.

5.3.7.5 The +5V TTL and -5.2V ECL power supplies are overvoltage/current protected by thyristors Q10 and Q11. The FANRUN line remains at approximately .7V when the fan is operating. If no current flows through the fan, U1-2 goes low forcing BD5 low when U13 is addressed by the computer. The computer then turns off the -5.2V supply, thereby reducing internal heat dissipation to a safe level.

5.3.8 External Arming/Gating Block

5.3.8.1 Functional Description

5.3.8.1.1 The 1995/1996 provides special circuitry permitting control of the measurement gate start and stop time by external means. Measurement gate control in normal operation is a function of the selected measurement mode and input channel(s). External arming and gating is provided by channels A, B, and rear-input D. Thus, a variety of arming and gating signals can be used.

5.3.8.1.2 When in one of the external arming/gating modes, the microprocessor illuminates the EXT LED on the front panel, indicating that the counter is set up for receiving an external arming/gating signal via channel A, B or D.

5.3.8.1.3 The external gating signal defines the beginning (Start) and end (Stop) of the measurement. In using the external gating signal, one of four slope combinations can be selected: positive-to-positive, positive-to-negative, negative-to-negative, and negative-to-positive.

5.3.8.1.4 The external arming signal defines the beginning (Start) of the measurement; the end (Stop) is defined by the internal gate-time setting. Positive and negative slope selections are possible in the external arming mode.

5.3.8.1.5 In addition, the synchronous window auto-trigger (SWAT) mode may be selected. SWAT, which uses the external arming/gating circuitry, permits the auto-trigger to function only within a specified window. For example, the window can be set between possible ringing on both the rising and falling edges of the input measurement signal. Measurements are then taken only during this window, resulting in much more accurate readings. The only difference between the external gating mode and SWAT is that the gate signal is sent to the auto-trigger circuitry between measurements when in the SWAT mode.

5.3.8.2 Circuit Description

5.3.8.2.1 Refer to Figure 5.14. The arming and gating controls are set up via two latches, U29 and U31. U29 controls several control signal lines for the arming and gating circuitry which are SELSP, SELCHD, ARMSYNC, and SELARM. SELSP and SELCHD control the selection of channel A, B or D as the external arming or gating signal. SELARM enables the arming or gating signal to pass on to the auto-trigger circuitry or the measurement circuitry. ARMSYNC synchronizes the external arming or gating signal with the measurement circuitry. U31, ARMSTSL, and ARMSPSL controls the arming or gating slopes of the selected signal (Channel A, B, or D).

5.3.8.2.2 U40A serves as a 2-to-1 line signal selector/multiplier. It selects either the TTLSTOP (channel A/B input) or CHANLD (channel D input) signal. The TTLSTOP signal is selected to appear at the output of U40A when control signal SELSP is high and SELCHD is low from U29. The CHANLD signal is selected when the SELSP is low and SELCHD is high. Selected signal TTLSTOP or CHANLD is then passed from the input of U40A to the input of U32A and U32B for slope selection.

5.3.8.2.3 U32A and B is an exclusive-or gate with U32A selecting the start slope and U32B selecting the stop slope of the arming or gating signal. A logic high on the ARMSTSL or ARMSPSL line selects the positive slope for clocking U43A and B. A logic low on ARMSTSL or ARMSPSL selects the negative slope. With a selected arming mode, only the ARMSTSL is used to initialize a measurement.

5.3.8.2.4 U43A and B is a D-type, positive-edge trigger flip-flop. U43A's flip-flop circuit controls the rising edge of the ARM signal and U43B's flip-flop circuit controls the falling edge. With an arming mode, only the rising edge of the ARM signal is processed by the measurement block to start a given measurement. With a gating mode, both the rising and the falling edge of the ARM signal is processed by the measurement block to both start and stop a measurement.

5.3.8.2.5 When the microprocessor brings the ARMSYNC signal high, U43A's Clear (CLR) line is released. With the CLR line high, the output of U32A (ARMSTART) clocks U43A's input, forcing U43A's Q output high and \bar{Q} output low. This low is passed to U37A-10, with U37A-9 low; the output of U37A will go from a high to a low. This low from U37A-8 is passed to U39-1 if U42B-4's SELARM is enabled (high). U39A inverts the ARM signal to ARM and passes it to the measurement block. The rising edge of the ARM signal arms U6 to start a measurement.

5.3.8.2.6 U43B is held disabled by U43A's Q output until U43A's ARMSTART signal clocks Q high. Once U43B is enabled, U43A's Q output is passed to U43B's D input. When the clock edge of the ARMSTOP signal clocks U43B, U43B's Q output will go high and the \bar{Q} output will go low. The Q output of U43B is then passed through U37A and U42B to the input of U39A. U39A inverts the high to a low and passes it to the measurement block causing the falling edge of the ARM signal to stop the measurement. U43B's Q output is fed back to U43A's Clear input resetting Q and \bar{Q} and disabling U43B.

5.3.8.2.7 At the end of the measurement, the microprocessor brings the ARMSYNC line low. This disables the arm and gate circuitry until the microprocessor brings the ARMSYNC line high again to start a new measurement.

Figure 5.14 - Simplified Diagram for the External Arming/Gating Block

5.3.9 Internal Gate Timer Block

5.3.9.1 Functional Description

5.3.9.1.1 Refer to Figure 5.15. The gate timer controls two functions: (1) real-time interrupts and (2) gate time. U28 is a programmable interval timer that has three independent 16-bit counters. One is used for real-time interrupts, and the other two are cascaded together as the gate timer.

5.3.9.1.2 The timer for real-time interrupts is programmed to interrupt the microprocessor every ten milliseconds. Programming for this counter is effected at power-up and is not changed.

5.3.9.1.3 The gate time is changed whenever the function, resolution, or a new gate time is programmed by the user. 1995/1996 gate times can be programmed as short as 200 nanoseconds or one cycle of the measurement signal to 100 seconds.

5.3.9.1.4 The gate timer block controls the end of a measurement. Depending on the counter's chosen measurement function, the counter will select the gate-ending signal which is either created by the timer chip U28 or the MCC1 chip in the measurement block.

5.3.9.2 Circuit Description

5.3.9.2.1 Refer to Figure 5.15. The end of a measurement can be controlled by either the SPOUT or GATE END signals. SPOUT is generated by the MCC2 (U11) of the measurement block and is connected to U41-2. GATE END is generated by the Intel timer chip U28 and is connected to U41-1. U41 functions as a 2-to-1 selector/multiplexer. The control signal MCC/GEND from U29-15 controls the selection of the SPOUT or GATE END signals for application to the measurement block. When MCC/GEND is high, the GATE END control signal is passed through U41 and inverted by U39C. This output is called the SPMUX signal. When MCC/GEND is low, SPOUT will be present at the output of U39C.

5.3.9.2.2 U38B is a D-type flip-flop which controls U28's counters 1 and 2 and their reset and counting function. U38A controls the GEND signal clock via the OUT1 or 2 signal of U28. At the end of each measurement, the MLRST line is brought low, resetting the two internal counters of U28. When the MLRST line goes high, the GATE signal will follow, clocking a high to U38B's Q output allowing U28's two internal counters to begin counting. Once the U38 counter has timed out, the selected OUT signal (1 or 2) will then clock the GEND line high at U38A's Q output.

5.3.9.2.3 Chip U28 is connected to the buffered data bus (BD0-BD7) from U26 of the CPU block. U28 uses two buffered address lines BA1 and BA2 from U27 of the CPU block to address the internal counter and control register. When the gate time is being programmed, the timer chip U28 will receive two to four bytes of data from the microprocessor, depending on the gate time being programmed. Each time a data byte is written into the timer chip, the CSTIMR line is brought low, BA1 and BA2 lines select the internal register, data is placed on the buffered data bus, and the PWE signal clocks the data into the U28 register.

5.3.9.2.4 U28's three counters (0, 1 and 2) have independent clock inputs. Counter 0's clock input (CLK0) is connected to the microprocessor's E clock which runs at 800 kHz. Counter 1's clock input (CLK1) is connected to the 10 MHz reference signal. Counter 2's clock input (CLK2) is connected to the counter 1's OUT1 signal.

5.3.9.2.5 When a new gate time is programmed into U28, the OUT1 and OUT2 signals of U28 are now selected by the microprocessor through U29's LTMS control signal. LTMS is connected to U40B for selecting either U28's OUT1 or OUT2 signal for U38A's clock input. U40B also inverts the OUT1 and OUT2 signal to give U38A a rising edge when U28's signal (OUT1 or OUT2) times out. This inversion is effected because U38 is a positive-edge triggered device and the OUT1 and 2 signals are high-to-low transitions when the programmed gate time has expired.

5.3.9.2.6 LTMS control lines select OUT1 or OUT2 from U28 to pass through U40B to the clock input of U38B. The LTMS control line is set high for programmed times less than 1 millisecond and low for 1 millisecond or greater times. The selected OUT signal passes through U40B to U38A's clock input when the gate counters of U28 time out. This rising edge to U38's clock input clocks the D input to Q output, forcing GEND high. This signals the end of a measurement.

Figure 5.15 – Simplified Schematic for the Internal Gate Timer

5.3.10 External Reference Multiplier Block

5.3.10.1 Functional Description

5.3.10.1.1 Refer to Figure 5.16 which shows a block diagram of the external reference multiplier. The input to the circuit is taken from the REF-IN connector on the instrument's rear panel, via a signal conditioning circuit.

5.3.10.1.2 The circuit contains a 10 MHz oscillator operating in a phase-locked loop. If an external reference signal of suitable amplitude is present at the REF-IN connector, the reference frequency is fed to the external reference detector. The detector output then alerts the CPU through the EXTDET signal that there is an external signal present. The VCO oscillator is then enabled and the INT/EXT logic connects the 10 MHz from the buffer and splitter to the output.

5.3.10.1.3 The pulse generator output is fed to the phase detector, and forms the reference signal for the phase-locked loop. The phase detector is of the sampling type, allowing the oscillator to be phase-locked to a reference signal of 10 MHz or any submultiple of 10 MHz.

5.3.10.1.4- If no external reference signal of suitable amplitude is present at the REF-IN connector, the reference detector output does not trigger the switching signal generator. The oscillator is disabled and the INT/EXT logic connects the internal reference to the measurement logic.

Figure 5.16 - Simplified Diagram for the External Frequency Multiplier Block

5.3.10.2 Circuit Description

5.3.10.2.1 Input Circuit and Pulse Generator

5.3.10.2.1.1 Two antiphase waveforms derived from the external reference signal enter the system at J208 connector. The waveform from J208 is converted to TTL levels by U66 and squared in U65D before being applied to the pulse generator, U65B and U65C. The operation of this circuit is shown in Figure 5.17.

Figure 5.17 - Input Circuit and Pulse Generator

5.3.10.2.1.2 The negative-going pulses at U65-C are used to switch Q12 which drives the transmission-line type transformer T1. The transformer acts as a phase splitter. Thus, for the duration of each pulse from U65C-8, the sampling bridge of the phase detector is held forward-biased, with the CR12/CR13 and CR18/19 junctions symmetrical around 0V.

5.3.10.2.2 Phase-Locked Loop

5.3.10.2.2.1 Refer to Figure 5.17 and 5.18. The loop oscillator's active element is U65C. The oscillator frequency is controlled by the crystal Y1 and the varactor diode CR21. The trimming capacitor C142 can be adjusted to compensate for a range of crystal and varactor tolerances.

5.3.10.2.2.2 The oscillator output drives a unity-gain cascade buffer, U64A/D. The buffered signal from the collector of U64A forms the RF input to the phase detector.

5.3.10.2.2.3 When the sampling bridge of the phase detector is forward-biased by the pulses from T1, the CR18/CR19 junction adopts the same potential as the CR12/CR13 junction. At other times, the junctions are isolated from each other by the high impedance of the non-conducting diodes. The bridge output is therefore a series of samples of the loop oscillator waveform, taken at the frequency of the external frequency standard.

5.3.10.2.2.4 The phase detector output depends upon the relative frequency of the loop oscillator and the frequency standard, and upon the phase of the loop oscillator waveform at the instant of sampling. If the standard frequency is 10 MHz, every cycle of the loop oscillator output is sampled, but if it is a submultiple of 10 MHz, only every second, fourth, fifth, or tenth cycle will be sampled. In all cases, however, provided the standard frequency is an exact submultiple of the loop oscillator frequency, the samples will be of constant amplitude. If the standard frequency is not an exact submultiple of the loop oscillator frequency, the output pulses will be amplitude modulated.

5.3.10.2.2.5 The amplitude of each phase detector output pulse depends upon the instantaneous value of the loop oscillator waveform at the instant of sampling. The pulses are integrated in C144 to form the input to the loop amplifier U63. When the loop is in-lock, the voltage across C144 maintains the voltage at U63-6, and therefore across the varactor, at the level needed to maintain the loop oscillator at the lock frequency.

Figure 5.18 - Phase-Locked-Loop Controlled Oscillator

5.3.10.2.3 External Reference Detector and INT/EXT Switching

5.3.10.2.3.1 The output from U65D-11 is fed to a detector formed by C147, CR14, and R61/83. Refer to Figure 5.19. If no external reference signal is present at the REF-IN connector, U66-7 will go high and U65D-11 is at a logic 0. The detector output, and therefore the base of Q13, is at +5V and Q13 is switched off. A logic 0 level is applied to U30-2. When the CPU sees the EXTDET signal low at U30-2, it will, in turn, set U31-6 low (INT/EXT). This is applied to U65A-1, 2 giving a logic 1 at U65A-3. See Figure 5.18.

5.3.10.2.3.2 The zener diode CR22 converts the logic levels from TTL to the level required to switch on U64B. With U64B switched on, the voltage across R92 holds the emitter of U64C positive with respect to its base, disabling the oscillator. With the INT/EXT low at U56A-7, this will deselect the external reference by placing an ECL high at U60B-5 and force any ECL at U60C-10 low. This will now select the internal reference from U60C-14 for the measurement logic. This disables U60B and enables U60C.

5.3.10.2.3.3 When an external reference signal is present at the J208 connector, the output from U65D-11 is a TTL square wave at the external reference frequency. The detector output holds the base of Q13 negative, so that Q13 conducts. Q13's collector is at a logic 1 and its voltage (EXTDET) high. The CPU will detect this and set the INT/EXT signal high. Under these conditions, U64B is cut off and the loop oscillator is enabled.

Figure 5.19 - External Reference Detector

5.3.11 Channel D Block

5.3.11.1 Refer to Figure 5.20. Channel D conditioning circuitry provides input signal limiting/buffering with threshold selection of 0V or 1.25V for AC or TTL channel D input compatibility. Resistors R63 and R99 form a 4:5 DC divider with C163 allowing fast edges to pass through to U62. CR24 and CR25 act as clamps, limiting signal swing from -2.5V to +2.3V.

5.3.11.2 The signal then is fed to voltage comparator U62. The output of U62 will change states when the input crosses the reference voltage on pin 3 of U62. The reference voltage can assume one of two possible levels, 0V or 1.25V. When a TTL logic 0 is applied to the base of Q16, Q16 turns on.

5.3.11.3 Resistors R67 and R100 form a 1:4 voltage divider. The voltage divider then applies a 1.25V reference signal to U62 via resistor R101. When a logic 1 is applied to Q16, Q16 turns off. The reference voltage becomes 0V. Resistor R102 provides positive feedback creating a small amount of hysteresis.

Figure 5.20 - Simplified Block Diagram for Channel D

5.3.12 GPIB Block

5.3.12.1 Functional Description

5.3.12.1.1 Refer to Figure 5.21. The GPIB block for the 1995/1996 consists of only three chips. These include the general interface bus controller (Texas Instruments TMS9914A) and two bus transceivers (75160 and 75161). These provide the necessary interface between the IEEE-bus and the GPIB controller.

5.3.12.1.2 U61 (TMS9914A) is used when it is necessary for an intelligent instrument to communicate with an IEEE-488 General Purpose Interface Bus (GPIB). It performs the interface function between the microprocessor and the bus, relieving the microprocessor of the task of maintaining IEEE protocol. By utilizing the interrupt capabilities of the bus controller U61, the bus does not have to be continually polled, and rapid responses to changes in the interface configuration can be achieved.

5.3.12.1.3 U61 provides an interface between the microprocessor and the GPIB as specified in the IEEE-488 Standard. This device is controlled and configured through 8-bit memory-mapped registers and enables all aspects of the Standard to be implemented, including talker, listener and controller.

5.3.12.1.4 Refer as required to Figure 5.21 which provides a block diagram showing the interfacing of the microprocessor and the GPIB block.

5.3.12.2 Circuit Description

5.3.12.2.1 The input/output pins (DI01 through DI08) of U61 are connected to the IEEE-488 bus via bus transceivers U67 and U68. The direction of data flow is controlled by the TE and CONT output signals generated by U61.

5.3.12.2.2 Communication between the microprocessor and U61 is performed via memory-mapped registers. There are 13 registers within U61, six of which are read registers and seven are write registers. These registers are used to both pass control data to and get status information from the microprocessor.

5.3.12.2.3 The least significant address (BA1, BA2 and BA3) lines from the address buffer-U27 are connected to the register select lines RS0, RS1 and RS2. These latter lines determine the particular register selected. When U61's CE input is pulled low by the CSGPIB control line, any one of the eight consecutive addresses is selected. Reading and writing to these locations transfers information between U61 and the microprocessor.

5.3.12.2.4 U67 is a 20-pin device used to buffer the IEEE-488 data lines (DI01 through DI08) in all applications. The direction of the buffers is controlled by the Talk-Enable (TE) output of U61. This active high signal becomes true whenever U61 is in TACS (addressed to talk) or SPAS (serial polled) mode.

5.3.12.2.5 U68 is a 20-pin device used to buffer the IEEE-488 measurement lines. It may be used for talker or listener status. The direction of the handshake-line buffers NRFD, NDAC and DAV are again controlled by the TE signal from U61. However, the SRQ, ATN, REN and IFC buffers are controlled by the DC input of U68. U68 connects with the Controller Active (CONT) output of U61. The CONT output always remains high because U61 is not being used as a controller device. U68 also includes the logic necessary to control the direction of the EO1 buffer. This is dependent on the TE signal when ATN is false (high) and on the DC signal when ATN is true (low).

Figure 5.21 – Simplified Diagram for the GPIB Block

SECTION 6

MAINTENANCE

6.1 INTRODUCTION

6.1.1 The performance tests in this section are used for (1) receiving inspection/acceptance, (2) periodic determination of the need for recalibration, (3) upon failure of a routine specification check, and (4) after repair of unit. Verify the basic operation of the counter before starting these tests by completing the rapid functional check found in Subsection 2.9.

6.1.2 Satisfactory completion of these performance tests will confirm the 1995/1996's operation by measurement function. Instrument covers need not be removed for any test. Complete the performance tests in the order given.

6.1.3 The following conditions must be maintained during these tests:

- a. The counter must be operated from an AC supply
- b. The line voltage must be within $\pm 10\%$ of the indicated value of the line voltage selector
- c. The ambient temperature must be $23^{\circ}\text{C} \pm 2^{\circ}\text{C}$
- d. The power supply to the internal frequency standard must remain uninterrupted. (This does not apply if the counter is locked to an external frequency standard.)

6.1.4 Warm up the counter for one hour (switched to standby if necessary) before beginning these tests.

6.2 REQUIRED TEST EQUIPMENT

6.2.1 Table 6.1 lists the necessary test equipment for these performance tests. Equipment having operating characteristics equivalent to or better than those listed may be substituted. The procedures described in this section are general in nature and based on the use of the test equipment recommended. Some modification of the procedures may be required if substituted equipment is used.

Table 6.1 - Required Test Equipment

Item	Minimum Use Specifications	Quantity	Recommended Equipment
1. Signal Generator	10 kHz to 1.3 GHz amplitude 5 mV rms to 1V rms into 50 ohms. 1 kHz AF out	1	Racal-Dana Model 9087
2. Audio Generator	10 Hz to 10 kHz; amplitude of 25 mV rms into 50 ohms	1	Racal-Dana Model 845
3. AC Voltmeter (low frequency)	DC to 10 kHz; .1% resolution, and $\pm 2.5\%$ accuracy	1	Racal-Dana Model 5002
4. Pulse Generator	1 Hz to 5 MHz, external lock and trigger cap- ability; ± 2 ns jitter	1	Racal-Dana Model 1500
5. AC Voltmeter (high frequency)	10 kHz to 2 GHz; .1% resolution, and $\pm 2.6\%$ accuracy to 500 MHz & $\pm 5\%$ accuracy to 1.3 GHz	1	Racal-Dana Model 9303
6. BNC T-Connector	50 Ohms	1	—
7. Connector Lead	50-ohm coaxial cable with BNC connectors, ≈ 4 ft. long	5	—
8. Coaxial Load	BNC connector, 50 ohms, 2W BNC $\pm 1\%$	1	—
9. N-type to BNC adapter/connector	50 ohm	1	—

6.3 PERFORMANCE TEST PROCEDURES

6.3.1 Power-on/self-test and home state conditions are described in Subsections 3.2.2 and 3.2.3, respectively. Refer to this information as necessary.

6.3.2 Set up the 1995/1996 and test equipment as shown in the following figures provided for each test procedure. Set the control and inputs as noted in each table and monitor the counter's readout for the indicated values.

Table 5.2 -Self Test

Applied Frequency	Min. Input Signal Level	Tolerance	Counter Resolution	Special Notes
Internal 5 MHz	Internal		10 ms gate (default)	

PROCEDURE

1. Power up the 1995/6.
2. Press the "CHECK" button for 3 seconds until all LEDs light.
3. After the release of "CHECK" button, the unit will be in self-test and the word "test" will appear on the display
4. This test takes a maximum of 75 seconds and any existing error conditions will be displayed momentarily.
5. When the self-test is completed, the unit returns to "CHECK" mode with 5 MHz on the display.

Table 6.3 - Input A Sensitivity Performance Test, I

Applied Frequency :	Performance Standard	Input Signal Level	Tolerance	Counter Resolution	Special Notes
200 MHz 100 MHz		50.0 mV rms 25.0 mV rms	$\pm .2$ Hz $\pm .1$ Hz	1-sec gate 1-sec gate	Use an AC voltmeter to verify applied input signal level into 50- Ω load before applying to UUT

Test Setup

```

graph LR
    SG[SIGNAL GENERATOR] -- "RF OUT" --> I1[INPUT A (AUTO TRIG OFF) 1995/6]
    I1 -- "EXT STD IN" --> SG
    I1 -- "EXT STD OUT" --> SG
  
```

PROCEDURE

1. Power up the 1995/6.
2. Set the 1995/6 as follows:
 - FREQ A
 - Input A 50 ohms input impedance
 - Gate time 1 sec
 - Disable input A auto trigger
 - Set input A trigger level to 0.00V
3. Connect the 1995/6 and signal generator as shown above.
4. Apply the inputs shown in the table above and verify that the measurements taken are within the specified tolerances.

Table 6.4 - Input A Sensitivity Performance Test, II

Applied Frequency	Performance Standard	Input Signal Level	Tolerance	Counter Resolution	Special Notes
20 Hz		25 mV rms	$\pm .1$ Hz	100-ms gate	Use an AC voltmeter to verify applied input signal level into 50- Ω load before applying to UUT

Test Setup

PROCEDURE

1. Power up the 1995/6.
2. Set the 1995/6 as follows:
 - FREQ A
 - Input A 50-ohms input impedance
 - Gate time 0.1 sec
 - Disable input A auto trigger
 - Set input A trigger level to 0.00V
3. Connect the 1995/6 and audio generator as shown above.
4. Apply the inputs shown in the table above and verify that the measurements taken are within the specified tolerances.

Table 6.9 - Time Interval A → B Performance Test

Applied Frequency	Performance Standard	Required Input Signal	Tolerance	Special Notes
100 MHz/5 ns 1 Hz/1s		100 mV rms TTL into 50Ω	± 3 ns ± 3 ns	
<u>Test Setup</u>				
EXT SIGNAL STD GENERATOR OUT (SINEWAVE)		RF OUT (100 mV rms)		
EXT PULSE GENERATOR STD Delay=.1 μs Width=999.9999 ms IN Internal Trigger		DELAY OUT		
<u>PROCEDURE</u>				
1. Power up the 1995/6.				
2. Set the 1995/6 as follows:	TI A → B Input A 50-ohms input impedance Input A DC coupled Disable input A auto trigger Set input A trigger level to 0.00V Enable COM A			
3. Connect the 1995/6 and signal generator as shown above.				
4. Apply 100 MHz, 100 mV rms to input A of the 1995/6.				
5. Verify that the measurement is within the tolerance specified above.				
6. Set the 1995/6 to Slope A 1, Slope B 1.				
7. Verify that the measurement is within the tolerance specified above.				

Table 6.9 - Time Interval A → B Performance Test (Cont'd)

PROCEDURE

8. Disconnect the signal generator and connect the pulse generator DELAY OUT to input A of the 1995/6. Set the pulse generator to a delay of 0.1 microsec., width 999.9999 msec., INT trigger.
9. Set the 1995/6 inputs A and B trigger levels to 1.30V.
10. Set inputs A and B to Slope \lceil .
11. Set the 1995/6 DELAY to 1 msec and enable the DELAY.
12. Verify that the measurement is within the tolerance specified above.

Table 6.10 - Total A by B Performance Test

Applied Frequency:	A	B	Number of Counts	Tolerance	Special Notes
100 MHz 20 kHz	.9999999 Hz 10 kHz		99.99999×10^6 1	± 1 count ± 1 count	
<u>Test Setup</u>					
	EXT STD OUT SIGNAL GENERATOR (100 mV rms) (SINEWAVE)	RF OUT			
	PULSE GENERATOR EXT DELAY = .1 μ s STD WIDTH = 999.9999 ms IN OUTPUT & INTERNAL TRIGGER	DELAY OUT	INPUT A INPUT B	1995/1996 EXT STD IN EXT STD OUT	
<u>PROCEDURE</u>					
1.	Power up the 1995/6.				
2.	Set the 1995/6 as follows:	TOTAL A by B Input A 50 ohms input impedance Input B 50 ohms input impedance Input A DC coupled Input B DC coupled Disable input A auto trigger Set input B attenuation to X1 Set input A trigger level to 0.00V Set input B trigger level to 1.30V Select slope ↓ for input B			
3.	Connect the 1995/6 to the signal generator and pulse generator as shown above.				
4.	Set the signal generator to an output of 100 MHz, 100 mV rms.				
5.	Set the pulse generator to an output of 0.1 microsec. delay and width 999.9999 msec.				
6.	Verify that the measurement is within the tolerance specified above.				
7.	Set the signal generator to an output of 20 kHz, 100 mV rms.				
8.	Set the pulse generator to an output of 50 microsec. delay and width 50 microsec.				
9.	Verify that the measurement is within the tolerance specified above.				

Table 6.11 - Ratio A/B Performance Test

Applied Frequency:	A	B	Performance Standard	Tolerance	Counter Resolution	Special Notes
	200 MHz 1 Hz	1 Hz —	200.0000000×10^6 1.000000000	± 1 count ± 1 count	1-sec gate	

Test SetupPROCEDURE

1. Power up the 1995/6.
2. Set the 1995/6 as follows:

RATIO A/B
 Input A 50 ohms input impedance
 Input B 50 ohms input impedance
 Input A DC coupled
 Input B DC coupled
 Disable input A auto trigger
 Set input B attenuation to X1
 Set input A trigger level to 0.00V
 Set input B trigger level to 1.30V
 Gate time 1 sec.
3. Connect the 1995/6 to the signal generator and pulse generator as shown above.
4. Set the signal generator to an output of 200 MHz, 100 mV rms.
5. Set the pulse generator to an output of 0.1 microsec. delay and width 999.9999 msec.
6. Verify that the measurement is within the tolerance specified above.
7. Disconnect the signal generator from input A. Transfer the pulse generator output from input B to input A.
8. Enable COM A on the 1995/6 and set input A trigger level to 1.30V.
9. Verify that the measurement is within the tolerance specified above.

Table 6.12 – Ratio C/B Performance Test

Applied Frequency:	C	B	Performance Standard	Tolerance	Counter Resolution	Special Notes
	1.3 GHz 40 MHz	1 Hz	1.30000000×10^9 40.0000000×10^6	± 2 count ± 2 count	1-sec gate 1-sec gate	

Test Setup

```

graph LR
    SG["SIGNAL GENERATOR  
(SINEWAVE)  
EXT STD OUT"] -- "RF OUT (200 mV rms)" --> IC[INPUT C  
1995/1996]
    SG -- "RF OUT (200 mV rms)" --> IB[INPUT B]
    PG["PULSE GENERATOR  
EXT STD IN  
Delay = .1 μs  
Width = 999.9999 ms  
Internal Trigger"] -- "DELAY OUT" --> IB
    IC -- "EXT STD IN" --> PG
    IB -- "EXT STD OUT" --> PG
  
```

PROCEDURE

1. Power up the 1995/6.
2. Set the 1995/6 as follows:
 - RATIO C/B
 - Input B 50 ohms input impedance
 - Input B DC coupled
 - Set input B attenuation to X1
 - Set input B trigger level to 1.30V
 - Gate time 1 sec
3. Connect the 1995/6 to the signal generator and pulse generator as shown above.
4. Apply the inputs shown in the table above and verify that the measurements taken are within the specified tolerances.

Table 6.13 - Rise Time A Performance Test

Applied Frequency : Standard	Tolerance	Special Notes
50 MHz/6.0 ns	$\pm 3\text{ns}$	Use an AC voltmeter to verify applied input signal level into $50\text{-}\Omega$ load before applying to UUT
<u>Test Setup</u>		
-- SIGNAL GENERATOR (SINEWAVE) EXT STD OUT	RF OUT	INPUT A 1995/1996 EXT STD IN
<u>PROCEDURE</u>		
1. Power up the 1995/6.		
2. Set the 1995/6 as follows:	RISE A Input A 50 ohms input impedance	
3. Connect the 1995/6 to the signal generator as shown above.		
4. Apply the input shown in the table above and verify that the measurement taken is within the specified tolerance.		
<u>Rise Time A Waveform</u>		
$\text{Rise Time} = \frac{.3}{50 \times 10^6} = 6 \text{ ns}$		

Table 6.14 - Fall Time A Performance Test

Applied Frequency	Performance Standard	Tolerance	Special Notes
50 MHz/6.0 ns		± 3 ns	Use an AC voltmeter to verify applied input signal level into 50-Ω load before applying to UUT
<u>Test Setup</u>			
-- SIGNAL GENERATOR (707 mV rms) EXT STD OUT			
<u>PROCEDURE</u>			
1. Power up the 1995/6.			
2. Set the 1995/6 as follows:	FALL A Input A 50 ohms input impedance		
3. Connect the 1995/6 to the signal generator as shown above.			
4. Apply the input shown in the table above and verify that the measurement taken is within the specified tolerance.			
<u>Fall Time A Waveform</u>			
$\text{Fall Time} = \frac{.3}{50 \times 10^6} = 6.0 \text{ ns}$			

Table 6.15 – Positive Pulse Width Performance Test

Applied Frequency :	Performance Standard	Tolerance	Special Notes
100 MHz/5 ns		± 3 ns	
<u>Test Setup</u>			
SIGNAL GENERATOR (SINEWAVE)	RF OUT	INPUT A 1995/1996	EXT STD IN
<u>PROCEDURE</u>			
<ol style="list-style-type: none"> 1. Power up the 1995/6. 2. Set the 1995/6 as follows: POS WIDTH A Input A 50 ohms input impedance 3. Connect the 1996 to the signal generator as shown above. 4. Apply the input shown in the table above and verify that the measurement taken is within the specified tolerance. 			
<u>Positive Pulse Width Waveform</u>			

Table 6.16 - Negative Pulse Width Performance Test

Applied Frequency	Performance Standard	Tolerance	Special Notes
100 MHz/5 ns		± 3 ns	
<u>Test Setup</u>			
SIGNAL GENERATOR EXT STD OUT	(500 mV rms)	RF OUT	INPUT A 1995/1996 EXT STD IN
<u>PROCEDURE</u>			
1.	Power up the 1995/6.		
2.	Set the 1995/6 as follows:	NEG WIDTH A Input A 50 ohms input impedance	
3.	Connect the 1996 to the signal generator as shown above.		
4.	Apply the input shown in the table above and verify that the measurement taken is within the specified tolerance.		
<u>Negative Pulse Width Waveform</u>			

Table 6.17 - Phase A rel B Performance Test

Applied Frequency :	Performance Standard	Tolerance	Counter Resolution	Special Notes
1 kHz	180°	± .1°	1-sec gate	

Test Setup

PROCEDURE

1. Power up the 1995/6.
2. Set the 1995/6 as follows:

PHASE A REL B
Input A 50 ohms input impedance
Input B 50 ohms input impedance
Gate time 1 sec
3. Connect the 1996 to the signal generator and pulse generator as shown above.
4. Apply the input shown in the table above and verify that the measurement taken is within the specified tolerance.

Phase A rel B Waveform

Table 6.18 - Duty Cycle A Performance Test

Applied Frequency	Performance Standard	Tolerance	Special Notes
10 MHz	50%	$\pm 4\%$	
<u>Test Setup</u>			
SIGNAL EXT GENERATOR (500 mV rms) EXT STD OUT	RF OUT	INPUT A 1995/1996	EXT STD IN
<u>PROCEDURE</u>			
1.	Power up the 1995/6.		
2.	Set the 1995/6 as follows:	DUTY A Input A 50 ohms input impedance	
3.	Connect the 1996 to the signal generator as shown above.		
4.	Apply the input shown in the table above and verify that the measurement taken is within the specified tolerance.		

Table 6.19 - Slew Rate A Performance Test

Applied Frequency	Performance Standard	Tolerance	Special Notes
5 MHz/29 x 10 ⁶ V/s	± 6 x 10 ⁶ V/s		Use an AC voltmeter to verify applied input signal level into 50-Ω load before applying to UUT
<u>Test Setup</u>			
SIGNAL GENERATOR (SINEWAVE) EXT STD OUT	RF OUT	INPUT A 1995/1996 EXT STD IN	
<u>PROCEDURE</u>			
1. Power up the 1995/6.			
2. Set the 1995/6 as follows:	SLEW A Input A 50 ohms input impedance		
3. Connect the 1996 to the signal generator as shown above.			
4. Apply the input shown in the table above and verify that the measurement taken is within the specified tolerance.			
<u>Slew Rate A Waveform</u>			
$\text{Slew Rate} = \left(\frac{V_2 - V_1}{t_2 - t_1} \right) = \frac{1.2V}{40.96 \times 10^{-9} \text{ sec}} \approx \frac{29.3 \times 10^6 \text{ V}}{\text{Sec}}$			
$V_2 - V_1 = .6 - (-.6) = 1.2 \text{ V}$			
$t_2 - t_1 = \frac{2 (\sin^{-1} .6)}{360} \times T = \frac{73.74^\circ}{360^\circ} \times 200 \text{ ns} = 40.96 \text{ ns}$			

6.4 CALIBRATION

6.4.1 This procedure provides calibration information for Racal-Dana's Universal Systems Counters Models 1995/1996.

6.5 REQUIRED EQUIPMENT FOR CALIBRATION

- a. Digital voltmeter with at least a 1 mV accuracy in the 10V range. Use a Racal-Dana Model 5004 or its equivalent
- b. GPIB controller. Use a Hewlett-Packard Model 9826 or its equivalent
- c. DC source with a single-pole output filter set for a 3-dB cutoff frequency of 1.6 Hz (1 KΩ resistor and 100 µF capacitor)

6.6 CALIBRATION PROCEDURE

- a. Turn unit-under-test (UUT) on. Allow 15 minutes for thermal stabilization of the counter
- b. Send the following string to the counter:
"CAL" <cr lf>

The counter now enters the calibration routine.

NOTE:

If at any point during the calibration procedure an error is generated (e.g., syntax or calibration), the entire calibration procedure must be repeated.

- c. Send the following string to the counter:
"CLHI" <cr lf>
- d. Connect the voltmeter to the Start DAC (START-CAL LEVEL) output on the rear panel of the UUT and record this voltage (Vstart-high)
- e. Connect the voltmeter to the Stop DAC (STOP-CAL LEVEL) output on the rear panel of the UUT and record this voltage (Vstop-high)
- f. Send the following string to the counter:
"CLLO" <cr lf>
- g. Record the voltage reading of the meter at the Stop DAC (STOP-CAL LEVEL) output of the UUT (Vstop-low)
- h. Connect the voltmeter to the Start DAC (START-CAL LEVEL) output of the UUT and record this voltage (Vstart-low)

- i. Send the following string to the counter:

```
"CLTH<space>Vstart-high" <cr lf>  
"CLPH<space>Vstop-high" <cr lf>  
"CLTL<space>Vstart-low" <cr lf>  
"CLPL<space>Vstop-low" <cr lf>
```

where Vstart-high, Vstop-high, Vstart-low, and Vstop-low are the previously recorded values. At this point "CAL" is shown on the main display. The following example shows the command strings to be sent with a Model HP85B controller in performing a 1995/1996 calibration procedure:

```
Output703;"CAL"  
Output703;"CLHI" (Record Vstart-high and Vstop-high)  
Output703;"CLLO" (Record Vstart-low and Vstop-low)  
Output703;"CLTH<space>5.2664" (5.2664 is Vstart-high)  
Output703;"CLPH<space>5.2884" (5.2884 is Vstop-high)  
Output703;"CLTL<space>-5.2756" (-5.2756 is Vstart-low)  
Output703;"CLPL<space>-5.2661" (-5.2661 is Vstop-low)
```

NOTE:

Header separators, typically commas or semicolons, are controller-dependent.

- j. About 5 minutes later, when calibration is completed, "CAL done" is displayed on the front panel. Values can now be stored to non-vol memory. Depress the calibration switch (through the front-panel opening to the right of the POWER button), while sending the following string to the counter:

```
"CLST" <cr lf>
```

- k. Keep calibration switch depressed until display shows "done" indicating successful non-vol memory store
- l. A <space><cr lf>GPIB output is given and the calibration switch can now be released

6.7

VERIFICATION PROCEDURE

- a. Connect the DC source to Inputs A and B of the UUT. Adjust the DC voltage to 4.50V using the voltmeter
- b. Set up the counter for time interval A to B, Channels A and B DC coupled
- c. Press the RESET key on the front panel, then the AUTO-TRIG keys for both Inputs A and B
- d. Verify that the trigger LEVEL A and B displays show trigger levels between 4.45 and 4.55 volts
- e. Adjust the DC source to -4.50 V using the voltmeter
- f. Verify that the trigger LEVEL A and B displays show trigger levels between -4.45 and -4.55 volts

6.8

INTERNAL REFERENCE ADJUSTMENT

6.8.1

Required Equipment

- a. 1 MHz frequency standard. Use Racal-Dana Model 9475 or its equivalent
- b. Oscilloscope. 350 MHz, B/W, 4-channel

6.8.2

There are two internal reference oscillators available for the 1995/1996.

6.8.3 The calibration procedure for the standard oscillator is a single variable capacitor adjustment, accessible at OSC ADJ on the rear panel. The Option 04E has two adjustments (COARSE and FINE), accessible at the rear panel.

6.8.4 Reference Oscillator Frequency Check

- a. Select the following control settings:
(home state at power-up)

FUNCTION	FREQ A
GATE TIME	1second
INPUT A	
SLOPE	±
COUPLING	DC
TRIGGER LEVEL	AUTO

- b. Connect the 1 MHz frequency standard to Input A
- c. The difference between the internal reference oscillator and the 1 MHz frequency standard can be determined by the following equation:
$$\text{Internal oscillator frequency} = (2\text{E}6 - \text{display}) \times 10$$
- d. Some examples of various counter readings and the frequency difference that is indicated are shown below:

Counter Display	Internal Reference Oscillator
999.9950 E3	10,000.05000 kHz
1.0000000 E6	10,000.00000 kHz
1.0000025 E6	9,999.97500 kHz

6.8.5 Adjustment Procedure

- a. Connect the 1 MHz frequency standard to the vertical input of the oscilloscope and connect the OUT REF signal from the rear panel of the counter to the external trigger of the oscilloscope (see wiring diagram below)

Figure 6.1 – Internal Reference Adjustment Procedure

SECTION 7

DRAWINGS

	Figure/Page No.
404335 Counter Assembly (1995)	7-2
404336 Counter Assembly (1996)	7-3
404332 Chassis Assembly	7-4
401730 PCB Assy., 10 MHz Oscillator	7-6
431730 Schematic, 10 MHz Oscillator	7-7
404389 PCB Assy., Channel C (1996)	7-8
432152 Schematic, Channel C (1996)	7-9
— Component Location, Motherboard	7-10
401725 PCB Assy., Motherboard	7-12
431725 Schematic, Motherboard	7-13
401726 PCB Assy., Signal Conditioner	7-25
431726 Schematic, Signal Conditioner	7-27
401728 PCB Assy., AMCC2 Synch	7-33
431728 Schematic, AMCC2 Synch	7-35
401727 PCB Assy., Display	7-36
431727 Schematic, Display	7-37
404331 Assy., Rear Panel	7-39
404378 Assy., Rear Input, Option 01	7-40
401752 PCB Assy., Option 01	7-41
404384 Assy., Option 04E	7-42
404386 Oscillator (Option 04E)	7-43
401822 PCB Assy., Doubler	7-44
431822 Schematic, Doubler	7-45
404387 Assy.. 220/240V Operation (Option 71)	7-46
454847 Dimensional Outline	7-47

4 PLASTIC HOLE PLUGS ITEM #16 SHOULD BE MOVED TO RELATING HOLES IN FRONT PART WHEN

ALWAYS USE GROOVES [TYPE "V"] IN MOULDED EDGE OF COVER TO INSTALLING COVERS.

卷之三

માર્ગ પત્ર

卷之二

404335
COUNTER ASSY, UN. SYS.
MODEL 1995

3
2
2

A 3 SHIELD, ITEM NO. 19 MUST BE ATTACHED TO PCB ASSY ITEM NO. 2

PRIOR TO INSTALLING IN CHASSIS.

ESTATE PLANNING WITH BNC'S AND THE MD-2

INSTANT | GIGANTIC | FILE NO. 1045 SHOWN -

DOC NO	404-332		
RACAL-DANA Instruments Inc.			
4 GOODYEAR IRVINE CALIFORNIA 92611			
DOCUMENT DATE			
CHASSIS ASSY			
SIZE	CODE SPAN 40	REV SHEET 1 OF 5	
D	21793	404-332	D
SCALE 3/4"			

PROPERTY TAX NOTICE
In accordance with Section 100-100.1 of the Illinois State Tax Code, the following property tax bills are being issued by the DuPage County Assessor's Office. The bills represent the estimated taxes for the year 1992. The bills will be mailed to the property owner at the address shown on the bill. If you have any questions concerning your bill, please call the DuPage County Assessor's Office at 312-594-4200.

4. NOMENCLATURE SHOWN IS ON FAR SIDE OF PC BOARD.

△ 3. STRIP WIRE #14.

△ 2. STRIP WIRE #25.

I. SCHEMATIC REF NO. 431730

OSC. VENDOR CHART

P/N 921013		P/N 921014		P/N 921013	
	NDK		TCXO		SEI
A	4		2		2
B	2		4		1
C	3		1		3
D	1 (NC)		3 (NC)		4 (NC)

FOR SPECIFIC PIN NUMBERS REFER TO OSC. VENDOR CHART.

NOTES: UNLESS OTHERWISE SPECIFIED

Proprietary Data Notice:

This document contains technical data which is the sole property of the manufacturer. It is loaned to the customer and is to be held in strict confidence. It is to be returned to the manufacturer upon request. It is to be used only for the purpose for which it was supplied. It is not to be copied or reproduced in whole or in part without the written consent of the manufacturer. The information contained herein is based on the best knowledge available at the time of publication. The manufacturer makes no guarantee as to its accuracy. The manufacturer reserves the right to change the design of the product at any time without notice or obligation. The manufacturer is not responsible for typographical errors or omissions in this document. The manufacturer is not liable for damages resulting from the use of this document.

SCHEMATIC, 10MHZ OSC			
DATE	EDITION NO.	DOC. NO.	REV.
B	21793	431730	A
SCALE		Sheet 1 of 1	

7-12

6. END LINES TERMINATED WITH 12431-12 INDICATES SHEET # "A" 1001C-105 SKEN
7. VERTICAL LINE OF "3" INDICATES SHEET CONTINUATION.
8. FOR LINES 1581-1584, 1591-1594, 1601-1604, GO TO INCLUDED SHEET Q101C.

SCHEM, MOTHERBOARD	
SIZE	CODE CHART NO.
D	21793
4 31725	
SEARCH	SEARCH
-	-
SEARCH	SEARCH
-	-

After the first year, we had to go through a process of evaluation. We had to prove that we were doing what we said we were going to do. We had to prove that we were meeting our goals. We had to prove that we were making progress. We had to prove that we were making a difference. We had to prove that we were making a difference in the lives of the people we were serving. We had to prove that we were making a difference in the community we were serving. We had to prove that we were making a difference in the world we were serving.

A

SIZE	CONVENTIONAL	DOC. NO.	431725
0	21793	REV.	E
Scale	1/2	Date	10/10/81

7-24

4- CAPACITOR VALUES ARE IN MICROFARADS. *10X, 100V UNLESS OTHERWISE SPECIFIED.
 3- RESISTOR VALUES ARE IN OHMS. *1% 1/4W UNLESS OTHERWISE SPECIFIED.

1- CAPACITOR VALUES ARE IN MICROFARADS.
2- RESISTOR VALUES ARE IN OHMS.
3- RESISTOR NETWORKS : 22.

三

四

三

三

351

ט'ז

10

351

卷之三

101

100
55

92

二二

105

۱۰۲

200

15.

四

E IN

19

5

412

۲۳۰

三

APR
-515

RE

4 3 1

SCN	DATE	SECTION	REV
D	21793	4,3,72E	6

Scal: 1 in

▲ ITEM 20 PINS TO BE PROTECTED FROM DAMAGE DURING HANDLING AND STORAGE USING FOAM PAD. (REF. P/N 454754)

▲ CROSS BARS ON ITEM 21 TO BE CLIPPED FLUSH TO SOCKET SIDES AFTER WAVE SOLDER.

▲ ITEM NO. 20 TO BE PERPENDICULAR AND FIRMLY SEALED ON PCB.

REF. SCHEMATIC 431728.

卷之三

DOC NO.	401752
Section Ref.	PCB ASSY, REAR INPUT
SOFT REF.	401752
D	21793
SPRINT 241	1

REAR INPUT PCB ASSY
This drawing shows the rear input PCB assembly. It consists of a printed circuit board (PCB) with various components and connectors. The PCB is labeled "J98" and "PSA". There are several circular callouts pointing to specific parts, each with a reference number and quantity. A note at the bottom right specifies a clearance of .030 inches between two items.

- A MOUNTING .030 CLEARENCE SH TWEEN CONN. (11144) & PCB TOP.
Z: SCHEMATIC REF. 431752.
 VERIFY ORIENTATION OF SLOTS FLOOR TO CONNECTOR METALLIZATION.
 MOUNTING .030 CLEARENCE SH TWEEN CONN. (11144) & PCB TOP.

- NOTES UNLESS OTHERWISE SPECIFIED
2. REMOVE THE FOLLOWING R/D PART NUMBERS: 10MHZ OSC.PCB ASSY(401730) {
 - SCREW PPH-4-40X.312 WASHER (616252) 2PLCS.
 1. REMOVE CABLE TIE (610777) SECURING CABLES TO J14/P14 AND J13/P13.

RACAL-DANA Instruments Inc.	4 GOODYEAR AVENUE, CALIFORNIA 92714
DETENTION	DETENTION
DOC NO 404384	DOC NO 404384

RACAL-DANA Instruments Inc.	4 GOODYEAR AVENUE, CALIFORNIA 92714
DETENTION	DETENTION
DOC NO 404384	DOC NO 404384

2. SOLDER ATTASSY.

 2. SOLDER AT ASSY.
 1. REMOVE AND DISCARD CABLE SUPPLY WITH ITEM 1 AND REPLACE WITH
ITEMS: 4, 13, 15, 17, 18, 20, 22, 23, 24.

NOTES UNLESS OTHERWISE SPECIFIED

OTHERWISE SPECIFIED

VIEWED FROM TRACK SIDE
(CIRCUIT SIDE)

VIEWED FROM COMPONENT SIDE

NOTES

1. FIT PIN PART NO 24-3519 ITEM NO 68 IN HOLE POSITIONS MARKED TO PROTRUDE ON COMPONENT SIDE 3 OFF
2. FIT PIN PART NO 24-3537 ITEM NO 70 IN HOLE POSITIONS MARKED TO PROTRUDE ON COMPONENT SIDE 1 OFF

REFERENCE	PART NO.	TYP. TYPE NO.
D ₁ , Z		IN4149
Q ₃ -6		2N3904
Q ₁ , Z		2N3906

COMPONENT REF.
T _{P1}
T ₁ , Z
L ₁
Q ₁ -6

Circuit Diagram, Doubler (431822)

VOLTAGE SELECTING PCB SHOWN
IN 120 VOLT POSITION (STANDARD
UNIT) REF.
120V (STANDARD UNIT) REF.

VAMP SLO-BLO FUSE
(STANDARD UNIT) REF.
100V OPTION ASSY

VAMP SLO-BLO FUSE SAME AS
120V (STANDARD UNIT) REF.
220V OPTION ASSY

VAMP SLO-BLO FUSE SAME AS
120V (STANDARD UNIT) REF.
240V OPTION ASSY

INSTALL VOLTAGE SELECTION PCB
FOR 100 VOLTS AS SHOWN
100V OPTION ASSY

INSTALL VOLTAGE SELECTION PCB
FOR 220 VOLTS AS SHOWN
220V OPTION ASSY

INSTALL VOLTAGE SELECTION PCB
FOR 240 VOLTS AS SHOWN
240V OPTION ASSY

- SERIAL NUMBER LABEL SHOULD BE MARKED AS
REQUIRED TO SUIT SPECIFIC OPTION TO INDICATE
CORRECT VOLTAGE.

REMOVE AND RETURN STANDARD FUSE TO STOCK,
FUSE AND PCB ACCESS COVER SHOWN IN OPEN POSITION.

NOTES UNLESS OTHERWISE SPECIFIED

- 220V/240V OF OPERATION,
OPTION 71

SM	EXT. EAS. NO.	404387	A
C	21793	1	2

4 REAR MOUNTING KIT - BACK MOUNTING KIT ADAPTER.

3 FEET, BAIL AND SIDE COVERS ARE REMOVED FOR RACK OR SPLIT INSTALLATION.

2 ALL DIMENSIONS FOR REFERENCE ONLY.

OUTLINE DRAWING		SERIES 990	
D	21793	A54847	A

REAR MOUNTING KIT
REAR MOUNTING KIT ADAPTER.
FEET, BAIL AND SIDE COVERS ARE REMOVED FOR RACK OR SPLIT INSTALLATION.
ALL DIMENSIONS FOR REFERENCE ONLY.

SECTION 8

PARTS LIST

8.1 This section contains lists of replaceable parts arranged in the order of the following subassemblies:

404335	Counter Assy, 1995	8-3
404336	Counter Assy, 1996	8-4
404332	Chassis Assy.....	8-5
401730	10 MHz Oscillator	8-5
404389	Channel C, 1996	8-6
401725	Motherboard.....	8-9
401726	Signal Conditioner.....	8-21
401728	AMCC2 Synch	8-29
401727	Display	8-31
404331	Rear Panel	8-34
401378	Option 01, Rear Input	8-36
401752	PCB Rear Input	8-36
404384	Opt 04E, Oscillator	8-37
404386	Oscillator Assy.....	8-37
401822	Doubler	8-38
404387	Opt 71, 220/240V Operation	8-38

8.2 Manufacturers are identified by FSC numbers listed in table 8.1, "List of Suppliers". The code numbers are from the Federal Supply Code for Manufacturers Cataloging Handbooks H4-1, H4-2, and their supplements.

Table 7.1 - List of Suppliers

FSC	Name
12969	Unitrode Corp. Watertown, MA
13103	Thermalloy, Inc. Dallas, TX
14433	ITT Semiconductors West Palm Beach, FL
14908	Electronic Instrument & Specialty Corp. Stoneham, MA
14949	Tronopeter Electronics Chatsworth, CA
15636	Elec-Trol, Inc. Saugus, CA
17856	Siliconix, Inc. Santa Clara, CA
18324	Signetics Corp. Sunnyvale, CA
03397	Union Carbide Corp. Material Systems Division Cleveland, OH
05245	Corcrom, Inc. Chicago, IL
04713	Motorola, Inc. Semi-Conductor Division Phoenix, AZ
02735	RCA-Solid State Division Somerville, NJ
02114	Ferroxcube Corp. Saugerties, NY
01295	Texas Instruments, Inc. Dallas, TX
00833	Sangamo Electric Co. Pittsfield, SC
00779	Amp, Inc. Harrisburg, PA

FSC	Name
24355	Analog Devices Norwood, MA
25088	Siemens Corp. Components Group Iselin, NJ
27014	National Semi-Conductor Corp. Santa Clara, CA
27264	Molex Products Co. Downers Grove, IL
27777	Vario Electron Devices, Inc. Garland, TX
28520	Heico Kenilworth, NJ
29005	Storm Products Los Angeles, CA
31918	ITT Schadow, Inc. Eden Prairie, MN
32293	Intersil, Inc. Cupertino, CA
32559	Bivar, Inc. Santa Ana, CA
32997	Burns Trimpot Products Division Riverside, CA
34553	Amperex/Empco-Electra (Component Division) Hauppauge, NY
34785	Dek-Inc. St. Charles, IL
36340	Rohm Corp. Irvine, CA
46384	Penn Engineering & Mfg. Corp. Doylestown, PA
50434	Howlett-Packard Co. HPA Division Palo Alto, CA
50579	Littronix, Inc. Cupertino, CA

FSC	Name
52072	Circuit Assembly Corp. Costa Mesa, CA
52531	Hitachi Magnetics Corp. Edmore, MI
52648	Plessey Semiconductors Santa Ana, CA
53421	Tytron Corp. Milwaukee, WI
54473	Matsushita Electric Co. Secaucus, NJ
55167	Corona Magnetics Corona, CA
55322	Samtec, Inc. New Albany, IN
55411	California Crystal Inc. Anaheim, CA
56235	State of the Art Inc. State College, PA
56289	Sprague Electric Co. Pacific Division Los Angeles, CA

404335-COUNTER ASSY., MODEL 1995

FSC	Name	REF DESIG.	ROCAL DATA P/N	DESCRIPTION	FSC	P/N
81349	Military Specification	1	404293	COVER ASSY., BOTTOM	21793	404293
83125	Nytronics, Inc. Darlington, SC	2	401730	PCB ASSY., 10 MHZ, OSCILLATOR	21793	401730
83330	Herman H. Smith, Inc. Brooklyn, NY	3	404332	CHASSIS ASSY	21793	404332
86928	Seastrom Mfg. Co. Glendale, CA	4	454319	FOOT REAR (2 REQ'D)	21793	454319
88245	Liltron Precision Products Van Nuys, CA	5	454344	PANEL, SIDE COVER (2 REQ'D)	21793	454344
91506	Augut, Inc. Attleboro, MA	7	454352	PANEL, TOP COVER	21793	454352
91637	Dale Electronics, Inc. Columbus, NE	9	454353	HANDLE ASSY (2 REQ'D)	21793	454353
75915	Littlefuss, Inc. Des Plaines, IL	11	454768	BUMPER, REAR FOOT (2 REQ'D)	21793	454768
76493	J. W. Miller Co. Compton, CA	12	454769	OVERLAY, FRONT PANEL	21793	454769
78189	Illinois Tool Works, Inc. Shakeproof Division Elgin, IL	13	454770	OVERLAY, REAR PANEL	21793	454770
79963	Zierick Mfg. Corp. New Rochelle, NY	14	610777	CABLE TIE	53121	718R
80031	RPM Enterprises Santa Ana, CA	15	600620	CABLE, POWER AC LINE	70903	KHS-704
80131	Sealectro Corp. Mahwah, NJ	16	610231	BUTTON PLUG, PLASTIC (4 REQ'D)	23520	23520
NOTE 1	NOTE 1 RPM Enterprises Santa Ana, CA	17	610319	WASHER, FLAT, #4, NYLON (4 REQ'D)	94967	94967
NOTE 2	NOTE 2 Res-Net Corp. Whippany, NJ	18	616252	SCREW, PPH, SEMS ASSY (2 REQ'D)	21793	616252
NOTE 3	NOTE 3 Universal Components Co. Marquardt Products Los Angeles, CA	19	615073	SCREW, PPH, 8-32 X .312 (4 REQ'D)	—	—
20	Electronics Industries Associates Washington, DC	20	610925	SCREW, PPH, 6-32 X 1.00 (4 REQ'D)	78189	—
21	21	611026	NUT, HEX, 11/2-28 (6 REQ'D)	00379	1-125631-3	
22	22	611027	WASHER, LOCK, INT, 112 (6 REQ'D)	00779	1-125631-4	
23	23	616255	SCREW, PPH, SEMS ASSY, 6-32 X .312 (7 REQ'D)	78189	—	
24	24	900888	LABEL, IDENTIFICATION	21793	920888	
25	25	980399	MANUAL, INSTRUCTION	21793	980399	

FSC	Name	REF DESIG.	ROCAL DATA P/N	DESCRIPTION	FSC	P/N
71707	Coto-Coil Co., Inc. Providence, RI	1	404293	COVER ASSY., BOTTOM	21793	404293
71785	TRW Electronic Components Clinch Division Elk Grove, IL	2	401730	PCB ASSY., 10 MHZ, OSCILLATOR	21793	401730
72136	Electro motive Mfg. Co., Inc. Willimantic, CT	3	404332	CHASSIS ASSY	21793	404332
72982	Erie Technological Products, Inc. Erie, PA	4	454319	FOOT REAR (2 REQ'D)	21793	454319
73138	Beckman Instruments, Inc. Fullerton, CA	6	454344	PANEL, SIDE COVER (2 REQ'D)	21793	454344
75915	Littlefuss, Inc. Des Plaines, IL	7	454352	PANEL, TOP COVER	21793	454352
76493	J. W. Miller Co. Compton, CA	9	454353	HANDLE ASSY (2 REQ'D)	21793	454353
78189	Illinois Tool Works, Inc. Shakeproof Division Elgin, IL	11	454768	BUMPER, REAR FOOT (2 REQ'D)	21793	454768
79963	Zierick Mfg. Corp. New Rochelle, NY	12	454769	OVERLAY, FRONT PANEL	21793	454769
80031	RPM Enterprises Santa Ana, CA	13	454770	OVERLAY, REAR PANEL	21793	454770
80131	Electronics Industries Associates Washington, DC	14	610777	CABLE TIE	53121	718R
NOTE 1	NOTE 1 RPM Enterprises Santa Ana, CA	15	600620	CABLE, POWER AC LINE	70903	KHS-704
NOTE 2	NOTE 2 Res-Net Corp. Whippany, NJ	16	610231	BUTTON PLUG, PLASTIC (4 REQ'D)	23520	23520
NOTE 3	NOTE 3 Universal Components Co. Marquardt Products Los Angeles, CA	17	610319	WASHER, FLAT, #4, NYLON (4 REQ'D)	94967	94967
21	21	611026	NUT, HEX, 11/2-28 (6 REQ'D)	00379	1-125631-3	
22	22	611027	WASHER, LOCK, INT, 112 (6 REQ'D)	00779	1-125631-4	
23	23	616255	SCREW, PPH, SEMS ASSY, 6-32 X .312 (7 REQ'D)	78189	—	
24	24	900888	LABEL, IDENTIFICATION	21793	920888	
25	25	980399	MANUAL, INSTRUCTION	21793	980399	

404336-COUNTER ASSY., MODEL 1996

REF. DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	W.G. P/N	W.G. P/N
1	404293	COVER ASSY., BOTTOM	21793	404293	404293
2	401730	PCB ASSY., 10 MHZ, OSCILLATOR	21793	401730	401730
3	404332	CHASSIS ASSY	21793	404332	404332
4	454319	FOOT, REAR (2 REQ'D)	21793	454319	454319
6	454344	PANEL, SIDE COVER (2 REQ'D)	21793	454344	454344
7	454352	PANEL, TOP COVER	21793	454352	454352
9	454353	HANDLE ASSY (2 REQ'D)	21793	454353	454353
11	454768	BUMPER, REAR FOOT (2 REQ'D)	21793	454768	454768
12	454769	OVERLAY, FRONT PANEL	21793	454769	454769
13	455770	OVERLAY, REAR PANEL	21793	455770	455770
14	610777	CABLE TIE	53421	118R	118R
15	600620	CABLE, POWER AC LINE	70903	KHS-7041	KHS-7041
16	610231	BUTTON PLUG, PLASTIC (4 REQ'D)	28520	P-500	P-500
17	610379	WASHER, FLAT, #4, NYLON (4 REQ'D)	95587	NWA-2812	NWA-2812
18	616252	SCREW, PPH, SENS ASSY (2 REQ'D)	21793	616252	616252
19	615073	SCREW, PPH, 8-32 X .312 (4 REQ'D)	—	—	—
20	610925	SCREW, PPH, 6-32 X 1.00 (4 REQ'D)	78189	—	—
21	611026	NUT, HEX, 112-28 (6 REQ'D)	00779	1-329631-2	1-329631-2
22	611027	WASHER, LOCK, INT, 112 (6 REQ'D)	00779	1-329632-2	1-329632-2
23	616255	SCREW, PPH, SENS ASSY., 6-32 X .312 (7 REQ'D)	78189	—	—
24	920888	LABEL, IDENTIFICATION	21793	920888	920888
25	980599	MANUAL, INSTRUCTION	21793	980599	980599
26	404389	PCB ASSY., CHANNEL C	21793	404389	404389
27	404365	CABLE ASSY., 2 COND.	21793	404365	404365

Figure 7-3 B

404336-COUNTER ASSY., MODEL 1996 (CONT'D)

REF. DESIG.	RACAL-DANA P/N	DESCRIPTION	REF. DESIG.	RACAL-DANA P/N	DESCRIPTION
28	454868	BRACKET, SUPPORT, CH. C (2 REQ'D)	21793	454868	454868
30	601235	CONNECTOR, BNC, PNL, MTG (J103)	21793	601235	601235
32	610127	WASHER, SHOULDER, #4, NYLON (2 REQ'D)	66928	66928	66928
33	610198	WASHER, FLAT, #4, NYLON (2 REQ'D)	66928	66928	66928
35	611066	SCREW, METRIC, M3X6 (2 REQ'D)	—	—	—
38	617127	WASHER, LOCK, #4, LIGHT SERIES (2 REQ'D)	—	—	—

Figure 7-3 B

404336-COUNTER ASSY., MODEL 1996

REF. DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	W.G. P/N	W.G. P/N
28	454868	BRACKET, SUPPORT, CH. C (2 REQ'D)	21793	454868	454868
30	601235	CONNECTOR, BNC, PNL, MTG (J103)	21793	601235	601235
32	610127	WASHER, SHOULDER, #4, NYLON (2 REQ'D)	66928	66928	66928
33	610198	WASHER, FLAT, #4, NYLON (2 REQ'D)	66928	66928	66928
35	611066	SCREW, METRIC, M3X6 (2 REQ'D)	—	—	—
38	617127	WASHER, LOCK, #4, LIGHT SERIES (2 REQ'D)	—	—	—

Figure 7-3 B

404336-COUNTER ASSY., MODEL 1996

404332 - ASSY., CHASSIS

Figure 7-4 D

REF DESIG.	RACAL-DANA P/N	DESCRIPTION	FGC	W.G. P/N
1	401725	PCB ASSY., MOTHERBOARD	21793	401725
2	401726	PCB ASSY., SIGNAL CORD.	21793	401726
3	401727	PCB ASSY., DISPLAY KEYBOARD	21793	401727
9	196552	FASTERER, LOCK, 14-PIN DIP (2 REQ'D)	52072	CA-14-200-0N
5	404330	ASSY., TRANSFORMER	21793	404330
6	404331	ASSY., REAR PANEL	21793	404331
8	454372	PUSH ROD	21793	454372
10	454390	BLOCK MOUNTING (8 REQ'D)	21793	454390
12	454763	PANEL, FRONT	21793	454763
13	454764	PANEL, SIDE, RIGHT	21793	454764
14	454763	PLATE, SUPPORT, BOTTOM	21793	454766
18	454818	PANEL, SIDE, LEFT	21793	454818
19	454819	SHIELD, SIG. CORD., BTM	21793	454819
21	502113-011	TUBING, TYGON, 1.0 LG	21793	502113-011
23	404385	CABLE ASSY., 2 COND.	21793	404385
24	601225	CABLE ASSY., 14, TWIST PR	52072	CA-14-002-02-284-11-010
26	610909	SCREW, PPH, TRAPITE, 6-32 X .500 (6 REQ'D)	78189	—
30	611075	CLAMP, CLUTCH-TYPE	78553	CA0588-020-1
37	616252	SCREW, PPH, SEMS ASSY., 4-40 X .312 (11 REQ'D)	78189	—
38	616255	SCREW, PPH, SEMS ASSY., 6-32 X .312 (9 REQ'D)	78189	—
40	616259	SCREW, PPH, SEMS ASSY., 8-32 X .312 (4 REQ'D)	78189	—
44	921006	BUTTON, PUSH, PNP, RED	21793	921006

401730 - PCB ASSY., 10 MHz OSCILLATOR

401730 - PCB ASSY., 10 MHZ OSCILLATOR				Mfg.	P/N
REF. DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC		
P14	611056	CONNECTOR, CABLE, 5 PIN	00179	530554-4	
Y1	921013	OSCILLATOR, 10 MHZ	21793	921013	
1	411730	PCB, 10 MHZ OSCILLATOR (UNDRILLED)	21793	411730	
4	524211	WIRE, TEFLON, STRANDED, 24 GA, BRN/RED	—	—	
5	524333	WIRE, TEFLON, STRANDED, 24 GA, ORG	—	—	
6	524555	WIRE, TEFLON, STRANDED, 24 GA, GRN	—	—	
8	610160	STANDOFF, 4-40, THRU SARGE (2 REQ'D)	83330	41113	
10	610777	CABLE 11E	53421	16114	
12	611052	KEY, POLARIZING, PLUG	00079	87077-1	
13	611053	TERMINAL, CRIMP (4 REQ'D)	00079	530553-4	

404389, CHANNEL "C" ASSY., 1.3 GHz

Figure 7-8

REF. DESIG.	RACAL-DANA P/N	DESCRIPTION	FGC	WF.G. P/N	FSC	WF.G. P/N
C1	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA	C25	R-21-1801
C2	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA	C26	R-21-1800
C3	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA	C27	R-21-0795
C4	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA	C28	R-21-1801
C5	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA	C29	R-21-1801
C6	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA	C30	R-21-1801
C7	R-21-1781	CAP, CHIP, 3.3 PF, 50V, t.25 PF	95275	VJ1206A3R3CXA	C31	R-21-1801
C8	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA	C32	R-21-1801
C9	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA	C33	R-21-1784
C10	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA	C34	R-21-1785
C11	R-21-1781	CAP, CHIP, 3.3 PF, 50V, t.25 PF	95275	VJ1206A3R3CXA	C35	R-21-1785
C12	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA	C36	R-21-1785
C13	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA	C37	R-20-1795
C14	R-21-1781	CAP, CHIP, 3.3 PF, 50V, t.25 PF	95275	VJ1206A3R3CXA	C38	R-21-1801
C15	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA	C39	R-21-1801
C16	R-21-0795	CAP, ALUM. ELEC., 47 UF, 25V HKG, -10 +50%	54473	ECEA1HK2R2E	C40	R-21-1781
C17	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA	C41	R-21-1781
C18	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA	C42	R-21-1784
C19	R-21-1783	CAP, CHIP, 4.7 PF, 50V, t.25 PF	95275	VJ1206A4R7CXA	C43	R-21-1801
C21	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA	C44	R-21-0795
C22	R-21-1781	CAP, CHIP, 3.3 PF, 50V, t.25 PF	95275	VJ1206A3R3CXA	C45	R-21-0704
C23	R-21-1799	CAP, CHIP, 12 PF, 50V, 5%	95275	VJ1206A3R1JXA	C46	R-21-1782
C24	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA	C47	R-21-1801
					C48	R-21-1801

Figure 7-8

404389, CHANNEL "C" ASSY., 1.3 GHz (CONT'D)

REF. DESIGN.	RACAL-DANA P/N	DESCRIPTION	FSC	WF.G. P/N
C25	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA
C26	R-21-1800	CAP, CHIP, 1 NF, 50V, 20%	95275	VJ1206Y102MKA
C27	R-21-0795	CAP, ALUM. ELEC., 47 UF	54473	ECEA1HK2R2E
C28	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA
C29	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA
C30	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA
C31	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA
C32	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA
C33	R-21-1784	CAP, CHIP, 5.6 PF, 50V, t.25 PF	95275	VJ1206A5R6CXA
C34	R-21-1785	CAP, CHIP, 6.8 PF, 50V, t.25 PF	95275	VJ1206A6R8CXA
C35	R-21-1785	CAP, CHIP, 6.8 PF, 50V, t.25 PF	95275	VJ1206A6R8CXA
C36	R-21-1785	CAP, CHIP, 6.8 PF, 50V, t.25 PF	95275	VJ1206A5R6CXA
C37	R-20-1795	CAP, CHIP, 47 PF, 50V, 5%	95275	VJ1206A4R7JXA
C38	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA
C39	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA
C40	R-21-1781	CAP, CHIP, 3.3 PF, 50V, t.25 PF	95275	VJ1206A3R3CXA
C41	R-21-1781	CAP, CHIP, 3.3 PF, 50V, t.25 PF	95275	VJ1206A3R3CXA
C42	R-21-1784	CAP, CHIP, 5.6 PF, 50V, t.25 PF	95275	VJ1206A5R6CXA
C43	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA
C44	R-21-0795	CAP, ALUM. ELEC., 47 UF	54473	ECEA1HK2R2E
C45	R-21-0704	CAP, ALUM. ELEC., 47 UF	18324	122-23479
C46	R-21-1782	CAP, CHIP, 3.9 PF, 50V, t.25 PF	95275	VJ1206A3R3CXA
C47	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA
C48	R-21-1801	CAP, CHIP, 10 NF, 50V, 20%	95275	VJ1206Y103MKA

404389, CHANNEL "C" ASSY., 1.3 GHZ (CONT'D)

Figure 7-8

REF.	RACAL-DANA P/N	DESCRIPTION	MFG. P/N	FSC
C49	R-21-1781	CAP, CHIP, 3.3 PF, 50V, ±25 PF	95275	VJ1206A3R30XA
C50	R-21-1781	CAP, CHIP, 3.3 PF, 50V, ±25 PF	95275	VJ1206A3R30XA
C51	R-21-1789	CAP, CHIP, 15 PF, 50V, 5%	95275	VJ1206A150XA
C52	R-21-1789	CAP, CHIP, 15 PF, 50V, 5%	95275	VJ1206A150XA
C53	100133	CAP, CERAM, .1 UF, 20X, LP	72982	8131LP-100-651-104H
01	210089	DIODE, SILICO	50434	5082-2835
02	R-22-1058	DIODE, SILICO	50434	5082-3179
03	210089	DIODE, SILICO	50434	5082-2835
05	210089	DIODE, SILICO	50434	5082-2835
06	210089	DIODE, SILICO	50434	5082-2835
07	R-22-1058	DIODE, SILICO	50434	5082-3379
08	210017	DIODE, HOT CARRIER, PATCHED PAIR	21793	210017
09	210017	DIODE, HOT CARRIER, PATCHED PAIR	21793	210017
010	R-22-1814	DIODE, ZENER	22119	B2X7939V1
011	R-22-1814	DIODE, ZENER	22319	B2X7909V1
012	R-22-1029	DIODE, SILICO	144149	
I1	230547	IC, QUAD COMPARATOR	27014	LNB39N
I2	230787	IC, TRIPLE LINE RECEIVER	04713	MC10116P
I3	R-22-4694	IC, 1.3 GHz PRESCALER PLESSEY	52648	SP4730
I4	230193	IC, TTL LOW POWER SHIFTY NAND GATES	01295	74LS00
L1	R-17-3240	COIL ASSY	21793	R-17-3240

404389, CHANNEL "C" ASSY., 1.3 GHZ (CONT'D)

Figure 7-8

REF.	RACAL-DANA P/N	DESCRIPTION	MFG. P/N	FSC
Q1	R-22-6123	TRANSISTOR	34553	BFR830
Q2	R-22-6123	TRANSISTOR	34553	BF850
Q3	R-22-6123	TRANSISTOR	34553	BF430
Q4	R-22-6155	TRANSISTOR	50334	HX1P31D1
R3	R-20-5768	RES, CHIP, 10K, 1/8W, 5%	65940	MCR1B-10K-5PC1
R4	R-20-5768	RES, CHIP, 10K, 1/8W, 5%	65940	MCR1B-10K-5PC1
R5	R-20-5841	RES, CHIP, 150 OHM, 1W	56235	2021CP151J
R6	R-20-5837	RES, CHIP, 19 OHM, 1W	56235	2021CP139J
R7	R-20-5787	RES, CHIP, 330 OHM, 1/8W, 5%	65940	MCR1B-330-5PC1
R8	R-20-5783	RES, CHIP, 150 OHM, 1/8W, 5%	65940	MCR1B-150-5PC1
R9	R-20-5787	RES, CHIP, 330 OHM, 1/8W, 5%	65940	MCR1B-330-5PC1
R10	R-20-5764	RES, CHIP, 100 OHM, 1/8W, 5%	65940	MCR1B-100-5PC1
R11	R-20-5787	RES, CHIP, 330 OHM, 1/8W, 5%	65940	MCR1B-330-5PC1
R12	R-20-5771	RES, CHIP, 10 OHM, 1/8W, 5%	65940	MCR1B-10-5PC1
R13	R-20-5776	RES, CHIP, 33 OHM, 1/8W, 5%	65940	MCR1B-33-5PC1
R14	R-20-5787	RES, CHIP, 330 OHM, 1/8W, 5%	65940	MCR1B-330-5PC1
R15	R-20-5786	RES, CHIP, 210 OHM, 1/8W, 5%	65940	MCR1B-210-5PC1
R16	R-20-5788	RES, CHIP, 350 OHM, 1/8W, 5%	65940	MCR1B-350-5PC1
R18	R-20-5771	RES, CHIP, 10 OHM, 1/8W, 5%	65940	MCR1B-10-5PC1
R19	R-20-5776	RES, CHIP, 33 OHM, 1/8W, 5%	65940	MCR1B-33-5PC1
R20	R-20-5787	RES, CHIP, 330 OHM, 1/8W, 5%	65940	MCR1B-330-5PC1
R21	R-20-5784	RES, CHIP, 180 OHM, 1/8W, 5%	65940	MCR1B-180-5PC1
R22	R-20-5784	RES, CHIP, 180 OHM, 1/8W, 5%	65940	MCR1B-180-5PC1
R23	R-20-5788	RES, CHIP, 350 OHM, 1/8W, 5%	65940	MCR1B-350-5PC1
R24	R-20-5771	RES, CHIP, 10 OHM, 1/8W, 5%	65940	MCR1B-10-5PC1

404389, CHANNEL "C" ASSY., 1.3 GHz (CONT'D)

REF. DESIG.	RACAL-DANA P/N	DESCRIPTION	MFG. P/N	FSC	REF. DESIG.	RACAL-DANA P/N	DESCRIPTION	MFG. P/N	
R25	R-20-5716	RES, CHIP, .33 OHM, 1/8W, 5%, 200V	65540	MCR18-33-5PCT	R52	R-20-5801	RES, CHIP, 6.8K, 1/8W, 5%, 200V	06540	MCR18-6-8K-5PCT
R26	R-20-5787	RES, CHIP, .330 OHM, 1/8W, 5%, 200V	65540	MCR18-330-5PCT	R53	R-20-5797	RES, CHIP, 3.3K, 1/8W, 5%, 200V	06540	MCR18-3-3K-5PCT
R27	R-20-7049	POT, 20K	73138	72XLR20K	R54	R-20-5792	RES, CHIP, 1K, 1/8W, 5%, 200V	06540	MCR18-1K-5PCT
R28	R-20-5788	RES, CHIP, .390 OHM, 1/8W, 5%, 200V	06540	MCR18-390-5PCT	R55	R-20-5792	RES, CHIP, 1K, 1/8W, 5%, 200V	06540	MCR18-1Y-5PCT
R29	R-20-5813	RES, CHIP, 100K, 1/8W, 5%, 200V	06540	MCR18-100K-5PCT	R56	R-20-5790	RES, CHIP, 680 OHM, 1/8W, 5%, 200V	06540	MCR18-680-5PCT
R30	R-20-5771	RES, CHIP, 10 OHM, 1/8W, 5%, 200V	06540	MCR18-10-5PCT	R57	R-20-5766	RES, CHIP, 2.7K, 1/8W, 5%	06540	MCR18-2.7K-5PCT
R31	R-20-5774	RES, CHIP, .22 OHM, 1/8W, 5%, 200V	06540	MCR18-22-5PCT	R58	R-20-5797	RES, CHIP, 3.3K, 1/8W, 5%, 200V	06540	MCR18-3-3K-5PCT
R32	R-20-5785	RES, CHIP, .220 OHM, 1/8W, 5%, 200V	06540	MCR18-220-5PCT	R59	R-20-5792	RES, CHIP, 1K, 1/8W, 5%, 200V	06540	MCR18-1K-5PCT
R33	R-20-5794	RES, CHIP, 1.5K, 1/8W, 5%, 200V	06540	MCR18-1.5K-5PCT	R60	R-20-5792	RES, CHIP, 1K, 1/8W, 5%, 200V	06540	MCR18-1K-5PCT
R34	R-20-5794	RES, CHIP, 1.5K, 1/8W, 5%, 200V	06540	MCR18-1.5K-5PCT	R61	R-20-5797	RES, CHIP, 1K, 1/8W, 5%, 200V	06540	MCR18-1Y-5PCT
R35	R-20-5810	RES, CHIP, .56K, 1/8W, 5%, 200V	06540	MCR18-56K-5PCT	R62	R-20-5792	RES, CHIP, 1K, 1/8W, 5%, 200V	06540	MCR18-1K-5PCT
R36	R-20-5771	RES, CHIP, 10 OHM, 1/8W, 5%, 200V	06540	MCR18-10-5PCT	R66	R-20-5783	RES, CHIP, 150 OHM, 1/8W, 5%	06540	MCR18-150-5PCT
R37	R-20-5779	RES, CHIP, .56 OHM, 1/8W, 5%, 200V	06540	MCR18-56-5PCT	R68	R-20-5770	RES, CHIP, 1K, 1/8W, 5%	06540	MCR18-1K-5PCT
R38	R-20-5810	RES, CHIP, .56K, 1/8W, 5%, 200V	06540	MCR18-56K-5PCT	R69	R-20-5770	RES, CHIP, 1K, 1/8W, 5%	06540	MCR18-1K-5PCT
R39	R-20-5770	RES, CHIP, 1K, 1/8W, 5%, 200V	06540	MCR18-1K-5PCT	R70	R-20-5771	RES, CHIP, 10 OHM, 1/8W, 5%, 200V	06540	MCR18-10-5PCT
R41	R-20-5799	RES, CHIP, 4.7K, 1/8W, 5%, 200V	06540	MCR18-4.7K-5PCT	R71	R-20-5771	RES, CHIP, 10 OHM, 1/8W, 5%, 200V	06540	MCR18-1M-5PCT
R42	R-20-5799	RES, CHIP, 4.7K, 1/8W, 5%, 200V	06540	MCR18-4.7K-5PCT	SK7	R-23-5173	CONNECTOR, 30 WAY	21793	R-23-3173
R44	R-20-5792	RES, CHIP, 1K, 1/8W, 5%, 200V	06540	MCR18-1K-5PCT	3	601057	CABLE ASSEMBLY	19505	80-1151-1425
R45	R-20-5783	RES, CHIP, 150 OHM, 1/8W, 5%, 200V	06540	MCR18-150-5PCT	4	601056	CONNECTOR	19505	2009-2511-000
R46	R-20-5775	RES, CHIP, .27 OHM, 1/8W, 5%, 200V	06540	MCR18-27-5PCT	6	R-13-2103	SCREEN (2 REQ'D)	21793	R-13-2103
R47	R-20-5775	RES, CHIP, .27 OHM, 1/8W, 5%, 200V	06540	MCR18-27-5PCT	7	R-13-2104	COVER (2 REQ'D)	21793	R-13-2104
R48	R-20-5775	RES, CHIP, .27 OHM, 1/8W, 5%, 200V	06540	MCR18-27-5PCT	8	R-13-4000	SPACER (2 REQ'D)	21793	R-13-4000
R49	R-20-5775	RES, CHIP, .27 OHM, 1/8W, 5%, 200V	06540	MCR18-27-5PCT	10	R-13-1142	P.C. BOARD (UNLOADED)	21793	R-13-1142
R50	R-20-5765	RES, CHIP, .470 OHM, 1/8W, 5%, 200V	06540	MCR18-470-5PCT	156	617042	NUT, HEX, M3 (2 REQ'D)	1CJ86	D1934-AQ
					158	R-24-2801	WASHER, CRINKLE, M3 (2 REQ'D)	21793	R-24-2801
					166	500022	WIRE, BARE COPPER/TIN, 22GA	21793	500022

Figure 7-8

404389, CHANNEL "C" ASSY., 1.3 GHz (CONT'D)

Figure 7-8

REF. DESIG.	RACAL-DANA P/N	DESCRIPTION	MFG. P/N	FSC	REF. DESIG.	RACAL-DANA P/N	DESCRIPTION	MFG. P/N	
R52	R-20-5801	RES, CHIP, 6.8K, 1/8W, 5%, 200V	06540	MCR18-6-8K-5PCT	R53	R-20-5797	RES, CHIP, 3.3K, 1/8W, 5%, 200V	06540	MCR18-3-3K-5PCT
R54	R-20-5792	RES, CHIP, 1K, 1/8W, 5%, 200V	06540	MCR18-1K-5PCT	R55	R-20-5792	RES, CHIP, 1K, 1/8W, 5%, 200V	06540	MCR18-1Y-5PCT
R56	R-20-5790	RES, CHIP, 680 OHM, 1/8W, 5%, 200V	06540	MCR18-680-5PCT	R57	R-20-5766	RES, CHIP, 2.7K, 1/8W, 5%	06540	MCR18-2.7K-5PCT
R58	R-20-5797	RES, CHIP, 3.3K, 1/8W, 5%, 200V	06540	MCR18-3-3K-5PCT	R59	R-20-5792	RES, CHIP, 1K, 1/8W, 5%, 200V	06540	MCR18-1K-5PCT
R60	R-20-5792	RES, CHIP, 1K, 1/8W, 5%, 200V	06540	MCR18-1K-5PCT	R61	R-20-5797	RES, CHIP, 1K, 1/8W, 5%, 200V	06540	MCR18-1Y-5PCT
R62	R-20-5792	RES, CHIP, 1K, 1/8W, 5%, 200V	06540	MCR18-1K-5PCT	R66	R-20-5783	RES, CHIP, 150 OHM, 1/8W, 5%	06540	MCR18-150-5PCT
R68	R-20-5770	RES, CHIP, 1K, 1/8W, 5%	06540	MCR18-1K-5PCT	R69	R-20-5770	RES, CHIP, 1K, 1/8W, 5%	06540	MCR18-1K-5PCT
R70	R-20-5771	RES, CHIP, 10 OHM, 1/8W, 5%, 200V	06540	MCR18-10-5PCT	R71	R-20-5771	RES, CHIP, 10 OHM, 1/8W, 5%, 200V	06540	MCR18-10-5PCT
SK7	R-23-5173	CONNECTOR, 30 WAY	21793	R-23-3173					
3	601057	CABLE ASSEMBLY	19505	80-1151-1425					
4	601056	CONNECTOR	19505	2009-2511-000					
6	R-13-2103	SCREEN (2 REQ'D)	21793	R-13-2103					
7	R-13-2104	COVER (2 REQ'D)	21793	R-13-2104					
8	R-13-4000	SPACER (2 REQ'D)	21793	R-13-4000					
10	R-13-1142	P.C. BOARD (UNLOADED)	21793	R-13-1142					
156	617042	NUT, HEX, M3 (2 REQ'D)	1CJ86	D1934-AQ					
158	R-24-2801	WASHER, CRINKLE, M3 (2 REQ'D)	21793	R-24-2801					
166	500022	WIRE, BARE COPPER/TIN, 22GA	21793	500022					

401725 - PCB ASSY., MOTHERBOARD

REF	RAUL-DANA P/N	DESCRIPTION	FSC	MFG P/N
C2	110215	CAP, TANTA, 1.5 MFD, 25V, 10x	00031	4165155A025K1A
C3	110151	CAP, TANTA, 10 MFD, 35V, 20x	05397	1354G106M035AS
C4	100062	CAP, CERAM, .01 MFD, 100V, 10x	72982	8121-100M5R0-103K
C5	110151	CAP, TANTA, 10 MFD, 35V, 20x	05397	1354G106M035AS
C6	110151	CAP, TANTA, 10 MFD, 35V, 20x	05397	1354G106M035AS
C7	110126	CAP, TANTA, 6.8 MFD, 35V, 20x	05397	1354F605M035AS
C8	100062	CAP, CERAM, .01 MFD, 100V, 10x	72982	8121-100M5R0-103K
C9	100062	CAP, CERAM, .01 MFD, 100V, 10x	72982	8121-100M5R0-103K
C10	100062	CAP, CERAM, .01 MFD, 100V, 10x	72982	8121-100M5R0-103K
C11	100062	CAP, CERAM, .01 MFD, 100V, 10x	72982	8121-100M5R0-103K
C12	110151	CAP, TANTA, 10 MFD, 35V, 20x	05397	1354G106M035AS
C13	100062	CAP, CERAM, .01 MFD, 100V, 10x	72982	8121-100M5R0-013K
C14	110126	CAP, TANTA, 6.8 MFD, 35V, 20x	05397	1354F685M035AS
C15	100062	CAP, CERAM, .01 MFD, 100V, 10x	72982	8121-100M5R0-103K
C16	100062	CAP, CERAM, .01 MFD, 100V, 10x	72982	8121-100-M5R0-103K
C17	100062	CAP, CERAM, .01 MFD, 100V, 10x	72982	8121-100-M5R0-103K
C18	100062	CAP, CERAM, .01 MFD, 100V, 10x	72982	8121-100-M5R0-103K
C19	100062	CAP, CERAM, .01 MFD, 100V, 10x	72982	8121-100-M5R0-103K

Figure 7-12 Figure 7-12

401725 - PC ASSY., HOMEWARD (CONT'D)

Figure 7-2

REF. DESIGN.	RACAL-DANA P/N	DESCRIPTION	FSC	H.G. P/N
C20	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8111-154-001
C21	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8111-154-001
C22	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8111-154-001
C23	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8111-154-001
C24	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8111-154-001
C25	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8111-154-001
C26	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8111-154-001
C27	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8111-154-001
C28	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8111-154-001
C29	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8111-154-001
C30	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8111-154-001
C31	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8111-154-001
C32	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8111-154-001
C33	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8111-154-001
C34	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8111-154-001
C35	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8111-154-001

4011725 - PCB ASSY., MOTHERBOARD (CONT'D)

Figure 7-12

401/25 - PUB ASSIST., HØYRERGOND (cont'd)

REF.	RACAL-DANA P/N	DESCRIPTION	WF6. P/N
C36	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K
C37	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K
C38	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K
C39	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K
C40	110151	CAP, TANTA, 10 MF0, 35V, 20%	05397 1354G106W035AS
C41	110151	CAP, TANTA, 10 MF0, 35V, 20%	05397 1354G106W035AS
C42	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K
C43	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K
C44	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K
C45	110151	CAP, TANTA, 10 MF0, 35V, 20%	05397 1354G106W035AS
C46	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K
C47	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K
C48	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K
C49	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K
C50	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K
C51	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K
C52	100062	CAP, TANTA, 10 MF0, 35V, 20%	72982 8121-100-W5R0-103K
C53	110151	CAP, TANTA, 10 MF0, 35V, 20%	05397 1354G106W035AS

Figure 7-12 K

Figure 7-12 K

REF	RACAL-DANA DESIGN.	P/N	DESCRIPTION	FSC	H.G. P/N
C54	100062	CAP, CERAM, .01 MF0, 100V, 10%	72932	8131-130-015-000	103K
C55	100062	CAP, CERAM, .01 MF0, 100V, 10%	72932	8131-130-015-000	103K
C56	110151	CAP, TANT, 10 MF0, 35V, 20%	05397	1353G-084-01-0	
C57	110151	CAP, TANT, 10 MF0, 35V, 20%	05397	1353G-084-01-0	
C58	100062	CAP, CERAM, .01 MF0, 100V, 10%	72932	8131-130-015-000	103K
C59	100062	CAP, CERAM, .01 MF0, 100V, 10%	72932	8131-130-015-000	103K
C60	100062	CAP, CERAM, .01 MF0, 100V, 10%	72932	8131-130-015-000	103K
C61	100062	CAP, CERAM, .01 MF0, 100V, 10%	72932	8131-130-015-000	103K
C62	110151	CAP, TANT, 10 MF0, 35V, 20%	05397	1353G-084-01-0	
C63	100062	CAP, CERAM, .01 MF0, 100V, 10%	72932	8131-130-015-000	103K
C64	100062	CAP, CERAM, .01 MF0, 100V, 10%	72932	8131-130-015-000	103K
C65	110126	CAP, TANT, 6.8 MF0, 35V, 20%	05397	1353G-084-01-0	
C66	100133	CAP, CERAM, .1 MF0, LOW PROFILE, 20%	72932	8131-130-015-000	651-133-0
C67	100133	CAP, CERAM, .1 MF0, LOW PROFILE, 20%	72932	8131-130-015-000	651-133-0
C68	110126	CAP, TANT, 6.8 MF0, 35V, 20%	05397	1353G-084-01-0	
C69	100062	CAP, CERAM, .01 MF0, 100V, 10%	72932	8131-130-015-000	103K
C70	100062	CAP, CERAM, .01 MF0, 100V, 10%	72932	8131-130-015-000	103K
C71	100062	CAP, CERAM, .01 MF0, 100V, 10%	72932	8131-130-015-000	103K

401725 - PCB ASSY., MOTHERBOARD (CONT'D)

REF.	RACAL-DANA P/N	DESCRIPTION	FSC	MFG- P/N	REF. DESIGN.	RACAL-DANA P/N	DESCRIPTION	FSC	MFG- P/N
C72	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-10045R0- 103K	C89	110218	CAP, TANTA, .47 MF0, 20V, 20%	56289	1994-75 C3450 EE2
C73	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-10045R0- 103K	C90	110218	CAP, TANTA, .47 MF0, 20V, 20%	56289	1994-75 C3450 EE2
C74	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-10045R0- 103K	C91	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	5121-100-45R0- 103K
C75	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-10045R0- 103K	C92	110217	CAP, AE, 1000 MF0, 35V, RADIAL	80031	3475K61-35V-35- AE5
C76	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-10045R0- 103K	C93	110217	CAP, AE, 1000 MF0, 35V, RADIAL	80031	3475K61-35V-35- AE5
C77	100113	CAP, CERAM, .1 MF0, LOW PROFILE, 20%	72982	8131LP-100- 651-103K	C94	110214	CAP, AE, 10000 MF0, 16V	00853	360-103-0-16- J04
C78	100113	CAP, CERAM, .1 MF0, LOW PROFILE, 20%	72982	8131LP-100- 651-103K	C95	110214	CAP, AE, 10000 MF0, 16V	00853	380-103-0-16- J04
C79	110126	CAP, TANTA, 6.8 MF0, 35V, 20%	05397	1555F685M015AS	C96	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	3121-100-45R0- J04
C80	100113	CAP, CERAM, .1 MF0, LOW PROFILE, 20%	72982	8131LP-100- 651-104K	C97	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	3121-100-45R0- J04
C81	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-45R0- 103K	C98	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	3121-100-45R0- J04
C82	110126	CAP, TANTA, 6.8 MF0, 35V, 20%	05397	1555F685M015AS	C99	110151	CAP, TANTA, 10 MF0, 35V, 20%	05397	1354G106A3-35- J04
C83	100113	CAP, CERAM, .1 MF0, LOW PROFILE, 20%	72982	8131LP-100- 651-104K	C100	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	3121-100-45R0- J04
C84	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-45R0- 103K	C101	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	3121-100-45R0- J04
C85	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-45R0- 103K	C102	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	3121-100-45R0- J04
C86	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-45R0- 103K	C103	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	3121-100-45R0- J04
C87	110126	CAP, TANTA, 6.8 MF0, 35V, 20%	05397	1555F685M015AS	C104	110151	CAP, TANTA, 10 MF0, 35V, 20%	05397	1354G106A3-35- J04
C88	110126	CAP, TANTA, 6.8 MF0, 35V, 20%	05397	1555F685M015AS	C105	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	3121-100-45R0- J04

Figure 7-12 K 1 401/25 - PUB ASSY., HUJERUDARU (CUNI) U

REF DESIGN. P/N	RACAL-DANA DESCRIPTION	FSC	H.G. P/N
C89	CAP, TANT, .47 MF _D , 20V, 20%	56289	19206-05 G35A EE2
C90	CAP, TANT, .47 MF _D , 20V, 20%	56289	19204-7 G35A EE2
C91	CAP, CERAM, .01 MF _D , 100V, 10%	72982	5121-103-452- 103X
C92	CAP, AE, 1000 MF _D , 35V, RADIAL	80031	3475G1000-35V MS5
C93	CAP, AE, 1000 MF _D , 35V, RADIAL	80031	3475G1000-35V MS5
C94	CAP, AE, 10000 MF _D , 16V	00853	360-102-01-16- J04
C95	CAP, AE, 10000 MF _D , 16V	00853	360-102-01-16- J04
C96	CAP, CERAM, .01 MF _D , 100V, 10%	72982	5121-103-452- 103X
C97	CAP, CERAM, .01 MF _D , 100V, 10%	72982	5121-103-452- 103X
C98	CAP, CERAM, .01 MF _D , 100V, 10%	72982	5121-103-452- 103X
C99	CAP, TANT, 10 MF _D , 35V, 20%	05397	1354G1000-35V MS5
C100	CAP, CERAM, .01 MF _D , 100V, 10%	72982	8121-1-35-452- 103X
C101	CAP, CERAM, .01 MF _D , 100V, 10%	72982	8121-1-35-452- 103X
C102	CAP, CERAM, .01 MF _D , 100V, 10%	72982	8121-1-35-452- 103X
C103	CAP, CERAM, .01 MF _D , 100V, 10%	72982	8121-1-35-452- 103X
C104	CAP, TANT, 10 MF _D , 35V, 20%	05397	1354G1000-35V MS5
C105	CAP, CERAM, .01 MF _D , 100V, 10%	72982	8121-1-35-452- 103X

FIGURE 7-12
MOTHERBOARD (CONT'D)

Figure 7-12 K

401725 - PCB ASSY., MOTHERBOARD (CONT'D)

Figure 7-12 K

REF. DESIG.	RACAL-DATA P/N	DESCRIPTION	FSC P/N	H.F.G. P/N
C106	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C107	110151	CAP, TANTA, 10 MF0, 35V, 20%	05397 1354GL06M035AS	72982 8121-100-W5R0-103K
C108	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C109	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C110	110151	CAP, TANTA, 10 MF0, 35V, 20%	05397 1354GL06M035AS	72982 8121-100-W5R0-103K
C111	110151	CAP, TANTA, 10 MF0, 35V, 20%	05397 1354GL06M035AS	72982 8121-100-W5R0-103K
C112	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C113	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C114	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C115	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C116	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C117	110151	CAP, TANTA, 10 MF0, 35V, 20%	05397 1354GL06M035AS	72982 8121-100-W5R0-103K
C118	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C119	110219	CAP, AE, 3300 MF0, 16V, 20%	06031 3476KL332M016	72982 8121-100-W5R0-103K
C120	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C121	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C122	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C123	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K

401725 - PCB ASSY., MOTHERBOARD (CONT'D)

Figure 7-12 K

REF. DESIG.	RACAL-DATA P/N	DESCRIPTION	FSC P/N	H.F.G. P/N
C124	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C125	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C126	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C127	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C128	110151	CAP, TANTA, 10 MF0, 35V, 20%	05397 1354GL06M035AS	72982 8121-100-W5R0-103K
C129	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C130	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C131	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C132	100062	CAP, CERAM, .01 MF0, 10-V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C133	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C134	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C135	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C136	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C137	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C138	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K
C139	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982 8121-100-W5R0-103K	72982 8121-100-W5R0-103K

401725 - PCB ASSY., MOTHERBOARD (CONT'D)

Figure 7-12 K 1

Figure 7-12

401725 - PCB ASSY., MOTHERBOARD (CONT'D)

REF DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	H.G. P/N	RACAL-DANA P/N	DESCRIPTION	FSC	H.G. P/N	
C140	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K	C157	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K
C141	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K	C158	110151	CAP, TANT, 10 MFD, 35V, 20%	05397	135G106-45R0-103K
C142	130171	CAP, TRIMMER, CERAM, 5-25 PFD, 250V	56289	GRU25000	C159	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K
C143	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K	C160	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K
C144	100065	CAP, CERAM, .0022 MFD, 1000V, 10%	71590	010222	C161	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K
C145	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K	C162	100116	CAP, CERAM, 500 PFD, 100V, 20%	56289	002381025110
C146	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K	C163	100112	CAP, CERAM, 82 PFD, 100V, 5%	05397	135G0350-45R0-103K
C147	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K	C164	100071	CAP, CERAM, .001 MFD, 1000V, 20%	56289	002381025110
C148	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K	C165	110151	CAP, TANT, 10 MFD, 35V, 20%	05397	135G106-45R0-103K
C149	130094	CAP, HICA, 220 PFD, 500V, 5%	72136	SCD10-221J	C166	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K
C150	130094	CAP, HICA, 220 PFD, 500V, 5%	72136	SCD10-221J	C167	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K
C151	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K	C168	110151	CAP, TANT, 10 MFD, 35V, 20%	05397	135G106-45R0-103K
C152	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K	C169	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K
C153	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K	C170	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K
C154	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K	C171	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K
C155	100106	CAP, CERAM, 100 PFD, 1000V, 10%	56289	10-15-110	C172	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K
C156	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K	C173	100116	CAP, CERAM, 500 PFD, 1000V, 20%	56289	002381025110
			C174	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45R0-103K		

Figure 7-12

K 1

Figure 7-12

K

Figure 7-12

401125 - PCB ASSY., MOTHERBOARD (CONT'D)

401725 - PCB ASSY., MOTHERBOARD (TSMI 1.0)

REF. DESIG.	RACAL-DATA P/N	DESCRIPTION	FSC	H.G. P/N
C175	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45KU- 103K
C176	100124	CAP, CERAM, .330 PFD, 1KV, 20%	56289	CU301102-311M
C177	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45KU- 103K
C178	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45KU- 103K
C179	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45KU- 103K
C180	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45KU- 103K
C181	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-100-45KU- 103K
CR1	230551	IC, VOLTAGE REFERENCE	24355	0105893H
CR2	211083	DIODE, SILICO	01349	1N9105
CR3	220095	DIODE, ZENER, DUAL, 18V	SEE NOTE 1 DMS03CC1003P TABLE 7.1	
CR4	220100	DIODE ARRAY, 11 ZENERS, SIP, 6-2V	SEE NOTE 1 DMS12CC1003P TABLE 7.1	
CR5	210004	DIODE, SILICO	81349	1N6004
CR6	210004	DIODE, SILICO	81349	1N6004
CR7	211083	DIODE, SILICO	81349	1N6168
CR8	230594	IC, FULL WAVE RECT. BRIDGE	27777	VH148
CR9	210004	DIODE, SILICO	81349	1N6004
CR10	210004	DIODE, SILICO	81349	1N6004
CR11	210004	DIODE, SILICO	81349	1N6004
CR12	211083	DIODE, SILICO	81349	1N6168
CR13	211083	DIODE, SILICO	81349	1N6168

۲۱

REF.	RACAL-DATA P/N	DESCRIPTION	FSC	HG. P/N
CR14	211083	DIODE, SILICO	811349	143168
CR15	211083	DIODE, SILICO	811349	143168
CR16	211083	DIODE, SILICO	811349	143168
CR17	211083	DIODE, SILICO	811349	143168
CR18	211083	DIODE, SILICO	811349	143168
CR19	211083	DIODE, SILICO	811349	143168
CR20	210004	DIODE, SILICO	811349	143168
CR21	210102	DIODE, VARACTOR, SILICO	04713	SW137
CR22	220099	DIODE, ZENER, 4.7V	04713	1461925
CR23	211083	DIODE, SILICO	811349	143168
CR24	220012	DIODE, SILICO, ZENER	811349	143168
CR25	220012	DIODE, SILICO, ZENER	811349	143168
CR26	220101	DIODE, ZENER, 3.3V, 5A	04713	143168
F1	920930	FUSE, NORMAL BLD, 6A, 250V	75915	142945
F2	920930	FUSE, NORMAL BLD, 6A, 250V	75915	142945
J1	601192	CONNECTOR, PCB, 34P	50072	CA-034-213-11
J2	600798	CONNECTOR, PLUG, 3P	27264	09-18-2031
J4	601221	CONNECTOR, EDGE, RECEPT., 20P	71785	50-251-11
J9	601214	CONNECTOR, EDGE, RECEPT., 72P	57056	80-314-11
J10	601221	CONNECTOR, EDGE, RECEPT., 20P	71785	50-251-11
J11	601217	CONNECTOR, PLR, PLUG, 15P	00779	9-350367-1
J12	601217	CONNECTOR, PLR, PLUG, 15P	00779	9-350367-1
J13	601218	CONNECTOR, PLR, PLUG, 6P	00779	9-350365-1

401725 - PCB ASSY., MOTHERBOARD (CONT'D)

REF.	RACAL-DANA P/N	DESCRIPTION	FG. P/N	FSC	REF. DESIGN.	RACAL-DANA P/N	DESCRIPTION	FG. P/N	FSC
J14	601208-012	CONNECTOR, PCB, PLUG, 5P	21793	601208-012	Q4	200068	TRANS, PNP	20131	24432
J15	601208-013	CONNECTOR, PCB, PLUG, 30P	21793	601208-013	Q5	200068	TRANS, PNP	20131	24432
J16	600947	SOCKET, IC, 20P	52072	CA-203-150-8C	Q6	200298	TRANS, NPN	04713	36264
J17	920734	SOCKET, IC, 14P	00779	583527-1	Q7	200292	TRANS, J-FET	27014	0174
J18	601208-010	CONNECTOR, PCB, PLUG, 2P	21793	601208-010	Q8	200296	TRANS, P-CHAN, J-FET	17856	3177
J19	601208-010	CONNECTOR, PCB, PLUG, 2P	21793	601208-010	Q9	200298	TRANS, NPN	05713	25324
J20	601208-011	CONNECTOR, PCB, PLUG, 4P	21793	601208-011	Q10	200278	TRANS, PWR, SCR	04713	246504
J21	600947	SOCKET, IC, 20P	52072	CA-203-150-HC	Q11	200278	TRANS, PWR, SCR	04713	246504
J23	601231	CONNECTOR, BNC, PC MOUNT	00779	227161-2	Q12	200258	TRANS	02263	274473
J24	601231	CONNECTOR, BNC, PC MOUNT	00779	227161-2	Q13	200258	TRANS	01263	274473
J25	601253	CONNECTOR, GP18, 24P	00779	553811-3	Q14	200298	TRANS, NPN	04713	25324
J26	601231	CONNECTOR, BNC, PC MOUNT	00779	227161-2	Q15	200298	TRANS, NPN	04713	25324
J27	601231	CONNECTOR, BNC, PC MOUNT	00779	227161-2	Q16	200068	TRANS, PNP	60131	244250
J28	601231	CONNECTOR, BNC, PC MOUNT	00779	227161-2	R1	000104	RES, CARBON, 100K, 5%, 1/4W	81349	RC075-1-2
J29	601231	CONNECTOR, BNC, PC MOUNT	00779	227161-2	R2	000103	RES, CARBON, 10K, 5%, 1/4W	81349	RC075-1-2
L1	310051	CHOKE, RF, 1.00 VH, 10%	76493	9230-20	R3	000112	RES, CARBON, 1.1K, 5%, 1/4W	81349	RC075-1-2
L2	310051	CHOKE, RF, 1.00 VH, 10%	76493	9230-20	R4	000104	RES, CARBON, 100K, 5%, 1/4W	81349	RC075-1-2
L3	310051	CHOKE, RF, 1.00 VH, 10%	76493	9230-20	R5	000105	RES, CARBON, 1M, 5%, 1/4W	81349	RC075-1-2
Q1	200295	TRANS, N-CHAN, MOS FET	17856	VN10KM	R6	000474	RES, CARBON, 470K, 5%, 1/4W	81349	RC075-1-2
Q2	200299	TRANS, PNP	04713	2N3906	R7	000225	RES, CARBON, 2.2M, 5%, 1/4W	81349	RC075-1-2
Q3	200298	TRANS, NPN	04713	2N3904	R8	012004	RES, METAL, 4.12K, 1%, 1/10W	81349	RC075-1-2
					R9	000472	RES, CARBON, 4.7K, 5%, 1/4W	81349	RC075-1-2
					R10	000101	RES, CARBON, 100 OHM, 5%, 1/4W	61349	RC075-1-2
					R11	010392	RES, METAL, 20K, 1%, 1/8W	81349	RC075-1-2

401725 - PCB ASSY., MOTHERBOARD (CONT'D)

Figure 7-12 K

Figure 7-12 K

401725 - PCB ASSY., MOTHERBOARD (CONT'D)

Figure 7-12 K

REF.	RACAL-DANA P/N	DESCRIPTION	FG. P/N	FSC	REF. DESIGN.	RACAL-DANA P/N	DESCRIPTION	FG. P/N	FSC
J14	601208-012	CONNECTOR, PCB, PLUG, 5P	21793	601208-012	Q4	200068	TRANS, PNP	20131	24432
J15	601208-013	CONNECTOR, PCB, PLUG, 30P	21793	601208-013	Q5	200068	TRANS, PNP	20131	24432
J16	600947	SOCKET, IC, 20P	52072	CA-203-150-8C	Q6	200298	TRANS, NPN	04713	36264
J17	920734	SOCKET, IC, 14P	00779	583527-1	Q7	200292	TRANS, J-FET	27014	0174
J18	601208-010	CONNECTOR, PCB, PLUG, 2P	21793	601208-010	Q8	200296	TRANS, P-CHAN, J-FET	17856	3177
J19	601208-010	CONNECTOR, PCB, PLUG, 2P	21793	601208-010	Q9	200298	TRANS, NPN	05713	25324
J20	601208-011	CONNECTOR, PCB, PLUG, 4P	21793	601208-011	Q10	200278	TRANS, PWR, SCR	04713	246504
J21	600947	SOCKET, IC, 20P	52072	CA-203-150-HC	Q11	200278	TRANS, PWR, SCR	04713	246504
J23	601231	CONNECTOR, BNC, PC MOUNT	00779	227161-2	Q12	200258	TRANS	02263	274473
J24	601231	CONNECTOR, BNC, PC MOUNT	00779	227161-2	Q13	200258	TRANS	01263	274473
J25	601253	CONNECTOR, GP18, 24P	00779	553811-3	Q14	200298	TRANS, NPN	04713	25324
J26	601231	CONNECTOR, BNC, PC MOUNT	00779	227161-2	Q15	200298	TRANS, NPN	04713	25324
J27	601231	CONNECTOR, BNC, PC MOUNT	00779	227161-2	Q16	200068	TRANS, PNP	60131	244250
J28	601231	CONNECTOR, BNC, PC MOUNT	00779	227161-2	R1	000104	RES, CARBON, 100K, 5%, 1/4W	81349	RC075-1-2
J29	601231	CONNECTOR, BNC, PC MOUNT	00779	227161-2	R2	000103	RES, CARBON, 10K, 5%, 1/4W	81349	RC075-1-2
L1	310051	CHOKE, RF, 1.00 VH, 10%	76493	9230-20	R3	000112	RES, CARBON, 1.1K, 5%, 1/4W	81349	RC075-1-2
L2	310051	CHOKE, RF, 1.00 VH, 10%	76493	9230-20	R4	000104	RES, CARBON, 100K, 5%, 1/4W	81349	RC075-1-2
L3	310051	CHOKE, RF, 1.00 VH, 10%	76493	9230-20	R5	000105	RES, CARBON, 1M, 5%, 1/4W	81349	RC075-1-2
Q1	200295	TRANS, N-CHAN, MOS FET	17856	VN10KM	R6	000474	RES, CARBON, 470K, 5%, 1/4W	81349	RC075-1-2
Q2	200299	TRANS, PNP	04713	2N3906	R7	000225	RES, CARBON, 2.2M, 5%, 1/4W	81349	RC075-1-2
Q3	200298	TRANS, NPN	04713	2N3904	R8	012004	RES, METAL, 4.12K, 1%, 1/10W	81349	RC075-1-2
					R9	000472	RES, CARBON, 4.7K, 5%, 1/4W	81349	RC075-1-2
					R10	000101	RES, CARBON, 100 OHM, 5%, 1/4W	61349	RC075-1-2
					R11	010392	RES, METAL, 20K, 1%, 1/8W	81349	RC075-1-2

401725 - PCB ASSY., MOTHERBOARD (CONT'D)

REF DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC P/N	MF6. P/N
R12	000512	RES, CARBON, 5.1K, 5%, 1/4W	81349 RC07GF512J	R000472 RES, CARBON, 4.7K, 5%, 1/4W
R13	000101	RES, CARBON, 100 OHM, 5%, 1/4W	81349 RC07GF101J	R00102 RES, CARBON, 1K, 5%, 1/4W
R14	010392	RES, METAL, 20K, 1%, 1/8W	81349 R05522002U	R00333 RES, CARBON, 33K, 5%, 1/4W
R15	000512	RES, CARBON, 5.1K, 5%, 1/4W	81349 RC07GF512J	R00470 RES, CARBON, 47 OHM, 5%, 1/4W
R16	010086	RES, METAL, 9.53K, 1%, 1/4W	81349 R06009531F	R00101 RES, CARBON, 100 OHM, 5%, 1/4W
R17	010385	RES, METAL, 19.1K, 1%, 1/4W	81349 R46001912F	R010123 RES, METAL, 23.7K, 1%, 1/8W
R18	000221	RES, CARBON, 220 OHM, 5%, 1/4W	81349 RC07GF221J	R010125 RES, METAL, 16.2K, 1%, 1/4W
R19	010086	RES, METAL, 9.53K, 1%, 1/4W	81349 R06009531H	R00470 RES, CARBON, 47 OHM, 5%, 1/4W
R20	010385	RES, METAL, 19.1K, 1%, 1/4W	81349 R06001912F	R01881 RES, CARBON, 10 OHM, 5%, 1W
R21	000222	RES, CARBON, 2.2K, 5%, 1/4W	81349 RC07GF222J	R01881 RES, CARBON, 10 OHM, 5%, 1W
R22	000222	RES, CARBON, 6.2K, 5%, 1/4W	81349 RC07GF622J	R00681 RES, CARBON, 680 OHM, 5%, 1/4W
R23	000331	RES, CARBON, 330 OHM, 5%, 1/4W	81349 RC07GF331J	R00432 RES, CARBON, 4.3K, 5%, 1/4W
R24	000472	RES, CARBON, 4.7K, 5%, 1/4W	81349 RC07GF472J	R010631 RES, METAL, 10.2K, 1%, 1/8W
R25	000101	RES, CARBON, 100 OHM, 5%, 1/4W	81349 RC07GF101J	R00681 RES, CARBON, 680 OHM, 5%, 1/4W
R26	000470	RES, CARBON, 47 OHM, 5%, 1/4W	81349 RC07GF470J	R00432 RES, CARBON, 4.3K, 5%, 1/4W
R27	000331	RES, CARBON, 330 OHM, 5%, 1/4W	81349 RC07GF331J	R010631 RES, METAL, 10.2K, 1%, 1/8W
R28	000102	RES, CARBON, 1K, 5%, 1/4W	81349 RC07GF102J	R00681 RES, CARBON, 680 OHM, 5%, 1/4W
R29	000103	RES, CARBON, 10K, 5%, 1/4W	81349 RC07GF103J	R00681 RES, CARBON, 51 OHM, 5%, 1/4W
R30	000432	RES, CARBON, 4.3K, 5%, 1/4W	81349 RC07GF432J	R00510 RES, CARBON, 51 OHM, 5%, 1/4W
R31	000103	RES, CARBON, 10K, 5%, 1/4W	81349 RC07GF103J	R00101 RES, CARBON, 100 OHM, 5%, 1/4W
R32	000472	RES, CARBON, 4.7K, 5%, 1/4W	81349 RC07GF472J	R00472 RES, CARBON, 4.7K, 5%, 1/4W
R33	000472	RES, CARBON, 4.7K, 5%, 1/4W	81349 RC07GF472J	R00221 RES, CARBON, 220 OHM, 5%, 1/4W
R34	000472	RES, CARBON, 4.7K, 5%, 1/4W	81349 RC07GF472J	
R35	000104	RES, CARBON, 100K, 5%, 1/4W	81349 RC07GF104J	

401725 - PCB ASSY., MOTHERBOARD (CONT'D)

REF DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC P/N	MF6. P/N
R36	000472	RES, CARBON, 4.7K, 5%, 1/4W	R00472 RES, CARBON, 4.7K, 5%, 1/4W	R01349 R07GF472J
R37	R00102	RES, CARBON, 1K, 5%, 1/4W	R00102 RES, CARBON, 1K, 5%, 1/4W	R01349 R07GF101J
R38	000333	RES, CARBON, 33K, 5%, 1/4W	R00333 RES, CARBON, 33K, 5%, 1/4W	R01349 R07GF331J
R39	000470	RES, CARBON, 47 OHM, 5%, 1/4W	R00470 RES, CARBON, 47 OHM, 5%, 1/4W	R01349 R07GF470J
R40	000101	RES, CARBON, 100 OHM, 5%, 1/4W	R00101 RES, CARBON, 100 OHM, 5%, 1/4W	R01349 R07GF100J
R41	010123	RES, METAL, 23.7K, 1%, 1/8W	R010123 RES, METAL, 23.7K, 1%, 1/8W	R01349 R07GF237J
R42	010125	RES, METAL, 16.2K, 1%, 1/4W	R010125 RES, METAL, 16.2K, 1%, 1/4W	R01349 R07GF162J
R43	000470	RES, CARBON, 47 OHM, 5%, 1/4W	R00470 RES, CARBON, 47 OHM, 5%, 1/4W	R01349 R07GF470J
R44	001881	RES, CARBON, 10 OHM, 5%, 1W	R001881 RES, CARBON, 10 OHM, 5%, 1W	R01349 R07GF100J
R45	001881	RES, CARBON, 10 OHM, 5%, 1W	R001881 RES, CARBON, 10 OHM, 5%, 1W	R01349 R07GF100J
R46	000681	RES, CARBON, 680 OHM, 5%, 1/4W	R00681 RES, CARBON, 680 OHM, 5%, 1/4W	R01349 R07GF680J
R47	000432	RES, CARBON, 4.3K, 5%, 1/4W	R00432 RES, CARBON, 4.3K, 5%, 1/4W	R01349 R07GF430J
R48	010631	RES, METAL, 10.2K, 1%, 1/8W	R010631 RES, METAL, 10.2K, 1%, 1/8W	R01349 R07GF102J
R49	000681	RES, CARBON, 680 OHM, 5%, 1/4W	R00681 RES, CARBON, 680 OHM, 5%, 1/4W	R01349 R07GF680J
R50	000432	RES, CARBON, 4.3K, 5%, 1/4W	R00432 RES, CARBON, 4.3K, 5%, 1/4W	R01349 R07GF430J
R51	010631	RES, METAL, 10.2K, 1%, 1/8W	R010631 RES, METAL, 10.2K, 1%, 1/8W	R01349 R07GF102J
R54	000681	RES, CARBON, 680 OHM, 5%, 1/4W	R00681 RES, CARBON, 680 OHM, 5%, 1/4W	R01349 R07GF680J
R55	000681	RES, CARBON, 680 OHM, 5%, 1/4W	R00681 RES, CARBON, 680 OHM, 5%, 1/4W	R01349 R07GF680J
R56	000510	RES, CARBON, 51 OHM, 5%, 1/4W	R00510 RES, CARBON, 51 OHM, 5%, 1/4W	R01349 R07GF510J
R57	000101	RES, CARBON, 100 OHM, 5%, 1/4W	R00101 RES, CARBON, 100 OHM, 5%, 1/4W	R01349 R07GF100J
R58	000472	RES, CARBON, 4.7K, 5%, 1/4W	R00472 RES, CARBON, 4.7K, 5%, 1/4W	R01349 R07GF470J
R59	000221	RES, CARBON, 220 OHM, 5%, 1/4W	R00221 RES, CARBON, 220 OHM, 5%, 1/4W	R01349 R07GF220J

Figure 7-12

Figure 7-12

401725 - PCB ASSY., MOTHERBOARD (CONT'D)

REF.	RACAL-DANA P/N	DESCRIPTION	FSC	H.F.G. P/N
R60	000221	RES., CARBON, 220 OHM, 5%, 1/4W	81349	RC07GF221J
R61	000103	RES., CARBON, 10K, 5%, 1/4W	81349	RC07GF103J
R62	000102	RES., CARBON, 1K, 5%, 1/4W	81349	RC07GF102J
R63	000822	RES., CARBON, 8.2K, 5%, 1/4W	81349	RC07GF822J
R64	001706	RES., CARBON, 510 OHM, 5%, 1/2W	81349	RC20GF511J
R65	000103	RES., CARBON, 10K, 5%, 1/4W	81349	RC07GF103J
R66	000472	RES., CARBON, 4.7K, 5%, 1/4W	81349	RC07GF472J
R67	000102	RES., CARBON, 1K, 5%, 1/4W	81349	RC07GF102J
R68	000101	RES., CARBON, 100 OHM, 5%, 1/4W	81349	RC07GF101J
R69	000510	RES., CARBON, 51 OHM, 5%, 1/4W	81349	RC07GF510J
R70	000510	RES., CARBON, 51 OHM, 5%, 1/4W	81349	RC07GF510J
R71	000132	RES., CARBON, 1.3K, 5%, 1/4W	81349	RC07GF132J
R72	000132	RES., CARBON, 1.3K, 5%, 1/4W	81349	RC07GF132J
R74	000471	RES., CARBON, 470 OHM, 5%, 1/4W	81349	RC07GF471J
R75	000103	RES., CARBON, 10K, 5%, 1/4W	81349	RC07GF103J
R76	000474	RES., CARBON, 470K, 5%, 1/4W	81349	RC07GF474J
R77	000104	RES., CARBON, 100K, 5%, 1/4W	81349	RC07GF104J
R78	000123	RES., CARBON, 12K, 5%, 1/4W	81349	RC07GF123J
R79	000221	RES., CARBON, 220 OHM, 5%, 1/4W	81349	RC07GF221J
R80	000221	RES., CARBON, 220 OHM, 5%, 1/4W	81349	RC07GF221J
R81	000331	RES., CARBON, 330 OHM, 5%, 1/4W	81349	RC07GF331J
R82	000561	RES., CARBON, 560 OHM, 5%, 1/4W	81349	RC07GF561J
R83	000512	RES., CARBON, 5.1K, 5%, 1/4W	81349	RC-8GF512J

401725 - PCB ASSY., MOTHERBOARD (CONT'D)

REF DESIG.	SACAL-DANA P/N	DESCRIPTION	FSC	WF G- P/N
R84	000560	RES., CARBON, .56 OHM, 5%, 1/4W	81349	A0707GZ511
R85	000471	RES., CARBON, .470 OHM, 5%, 1/4W	81349	A0707GZ511
R86	000624	RES., CARBON, 620K, 5%, 1/4W	81349	A0707GZ511
R87	000101	RES., CARBON, 100 OHM, 5%, 1/4W	81349	A0707GZ511
R88	000301	RES., CARBON, 300 OHM, 5%, 1/4W	81349	A0707GZ511
R89	000101	RES., CARBON, 100 OHM, 5%, 1/4W	81349	A0707GZ511
R90	000153	RES., CARBON, 15K, 5%, 1/4W	81349	A0707GZ511
R91	000560	RES., CARBON, .56 OHM, 5%, 1/4W	81349	A0707GZ511
R92	000182	RES., CARBON, 1.8K, 5%, 1/4W	81349	A0707GZ511
R93	000221	RES., CARBON, 220 OHM, 5%, 1/4W	81349	A0707GZ511
R94	000182	RES., CARBON, 1.8K, 5%, 1/4W	81349	A0707GZ511
R95	000432	RES., CARBON, 4.3K, 5%, 1/4W	81349	A0707GZ511
R96	000511	RES., CARBON, .510 OHM, 5%, 1/4W	81349	A0707GZ511
R97	000103	RES., CARBON, 10K, 5%, 1/4W	81349	A0707GZ511
R98	000471	RES., CARBON, .470 OHM, 5%, 1/4W	81349	A0707GZ511
R99	000202	RES., CARBON, 2K, 5%, 1/4W	81349	A0707GZ511
R100	000302	RES., CARBON, 3K, 5%, 1/4W	81349	A0707GZ511
R101	000912	RES., CARBON, 9.1K, 5%, 1/4W	81349	A0707GZ511
R102	000104	RES., CARBON, 100K, 5%, 1/4W	81349	A0707GZ511
R103	000103	RES., CARBON, 10K, 5%, 1/4W	81349	A0707GZ511
S1	600975	SWITCH, PUSHBUTTON	71590	A0707GZ511
I1	300104	TRANSFORMER, PULSE	55167	CW1915
U1	230547	IC, CHIP COMPARTMENT	27012	IN5317

401725 - PCB ASSY., MOTHERBOARD (COX1'D)

REF	RCAGL-DANA P/N	DESCRIPTION	FSC	MFG. P/N
U2	230746	IC, MEMORY, NON-VOL, 2K X 8	61394	5516A-300
U3	230731	IC, DIGITAL, RAM, DUAL QUAD INPUT	07263	74120PC
U4	230719	IC, FAST RAMD	07263	74160
U5	230705	IC, DIGITAL	04713	74F04
U6	230744	IC, MICRO, 68000, 8 MHZ	04713	HC68000P3
U7	230740	IC, MEMORY, RAM, 8K, 150 NS	\$2531	HM6264P-15
U8	230740	IC, MEMORY, RAM, 8K, 150 NS	\$2531	HM6264P-15
U9	230368	IC, DEMULTIPLEXER	27014	74LS118
U10	230741	IC, INTERFACE, DAC, 12 BIT	24355	AU7345KN
U11	230743	IC, LINEAR, DUAL OP AMP	27014	LF412CN
U12	230742	IC, DIGITAL, PRIORITY ENCODER	04713	SN74LS5XN
U13	230627	IC, DIGITAL	18324	N74LS244
U14	230752	IC, LINEAR, OP AMP	24355	AUD010CN
U16	921005	OSC, CLOCK, 8 MHZ, 0.1%	04713	RASCO-3
U17	230813	IC, MEMORY, 64K X 8	21793	230813
U18	230812	IC, MEMORY, 64K X 8	21793	230812
U19	230741	IC, INTERFACE, DAC, 12 BIT	24355	AUD150CN
U20	230745	IC, LINEAR, VOLTAGE REF, 5V	04713	ME1401V1
U22	230368	IC, DEMULTIPLEXER	27014	74LS118
U23	230752	IC, LINEAR, OP AMP	24355	AUD010CN
U24	230711	IC, DIGITAL	07263	74F32
U25	230760	IC, DIGITAL	27014	NMV41IC37
U26	230422	IC, OCTAL	34335	AU8301B
U27	230330	IC, TRI-STATE BUFFER	01295	74LS367

Figure 7-12
A 1000 Hz sine wave with a 10% amplitude modulation.

REF DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	W. & P/N
U28	230704	IC, DIGITAL TIMER	27014	35-352
U29	230306	IC, 8-BIT REGISTER	27014	35-352
U30	230637	IC, DIGITAL	1634	35-352
U31	230386	IC, 8-BIT REGISTER	27014	35-352
U32	230414	IC, QUAD EXCLUSIVE OR GATE	27014	35-356
U33	230315	IC, MULTIPLEXER	01295	35-352
U34	230386	IC, 8-BIT REGISTER	27014	35-352
U35	200294	TRANS., PNP, QUAD 40V	0415	35-352
U36	200294	TRANS., PNP, QUAD 40V	0415	35-352
U37	230111	IC, QUAD 2-INPUT OR GATE	0423	35-352
U38	230194	IC, 14 DIP, DUAL D FLIP-FLOP	01295	35-352
U39	230234	IC, 14 DIP, ALX INVERTER	01295	35-352
U40	230196	IC, 14 DIP, AND-OR-INV GATES	01295	35-352
U41	230507	IC, DIGITAL	27014	35-352
U42	230305	IC, QUAD, 2-INPUT AND GATES	01295	35-352
U43	230194	IC, 14 DIP, DUAL D FLIP-FLOP	01295	35-352
U44	230306	IC, 8-BIT REGISTER	0415	35-352
U45	200294	TRANS., PNP, QUAD 40V	0415	35-352
U46	230747	IC, LINEAR, VOLTAGE REG.	12962	35-352
U47	230747	IC, LINEAR, VOLTAGE REG.	12964	35-352
U48	230373	IC, VOLTAGE REGULATOR	0415	35-352
U49	230318	IC, 3-TERR M/G. REGULATOR	27014	35-352
U50	230442	IC, QUAD MTL TO MCL TRANS.	0415	35-352
U51	230443	IC, QUAD MCL TO MTL TRANS.	0415	35-352

Figure 7-12
MOTTERBOARD (CONT'D)

Figure 7-12

8-18

401725 - PCB ASSY., MOTHERBOARD (CONT'D)

REF	RACAL-DANA P/N	DESCRIPTION	FSC	MFG. P/N
U52	230730	IC, DIGITAL, ECL	04713	MC1021GP
U53	230443	IC, QUAD PECL TO TTL TRANS.	04713	MC10125
U54	230751	IC, DIGITAL, ECL	04713	MC10130P
U55	230733	IC, DIGITAL, ECL FLIP-FLOP	04713	MC10231
U56	230442	IC, QUAD TTL TO PECL TRANS.	04713	MC10124
U57	230205	IC, QUAD 2 INPUT NOR GATE	04713	MC10102P
U58	230205	IC, QUAD 2 INPUT NOR GATE	04713	MC10102P
U59	230733	IC, DIGITAL, ECL FLIP-FLOP	04713	MC10231
U60	230205	IC, QUAD 2 INPUT NOR GATE	04713	MC10102P
U61	230793	IC, DIGITAL, GP1B	01295	TM39914HNL
U62	230445	IC, 606 VOLTAGE COMPARATOR	34335	AM2861CN-1
U63	230748	IC, LINEAR, OP AMP	01295	TL081C
U64	230792	IC, LINEAR, TRANS ARRAY	02735	CA3046
U65	230509	IC, DIGITAL	27014	74LS132N
U66	230757	IC, LINEAR, 710 COMPARATOR	27014	MC1170CH
U67	230459	IC, OCTAL GP1B TRANS	01295	SN75160
U68	230472	IC, OCTAL GP1B TRANS	01295	SN75161
W1	601195	PLUG, JUMPER, 0.1 CTR, LOW PROFILE	00779	531120-2
W2	601195	PLUG, JUMPER, 0.1 CTR, LOW PROFILE	00779	531120-2
W3	601195	PLUG, JUMPER, 0.1 CTR, LOW PROFILE	00779	531120-2
W4	601195	PLUG, JUMPER, 0.1 CTR, LOW PROFILE	00779	531120-2
W5	601195	PLUG, JUMPER, 0.1 CTR, LOW PROFILE	00779	531120-2
W6	601195	PLUG, JUMPER, 0.1 CTR, LOW PROFILE	00779	531120-2
W7	601195	PLUG, JUMPER, 0.1 CTR, LOW PROFILE	00779	531120-2
W8	601195	PLUG, JUMPER, 0.1 CTR, LOW PROFILE	00779	531120-2

Figure 7-12 K Multiboard (CCW) PCB ASSY.

REF DESIG.	RACAL-DANA PN	DESCRIPTION
W9	601195	PLUG, JUMPER, 0
W11	601195	PLUG, JUMPER, 0
W12	601195	PLUG, JUMPER, 0
Y1	921004	OSC, 10 MHZ, CR
Z1	080005	RES NETWORK, CEE
Z2	080032	RES NETWORK, CEE
Z3	080015	RES NETWORK, 10
Z4	080023	RES NETWORK, 4.7
Z5	080067	RES NETWORK, 2
Z6	080035	RES NETWORK, 6K
Z7	080067	RES NETWORK, 2
Z8	080002	RES NETWORK, 500
Z9	080080	RES NETWORK, 16
Z10	080081	RES NETWORK, 27
Z11	080002	RES NETWORK, 500
Z12	080002	RES NETWORK, 500
Z13	080002	RES NETWORK, 500
Z14	080002	RES NETWORK, 500

Figure 7-12

REF	RACAL-DANA P/N	DESCRIPTION	FSC	HFC, P/N
W9	601195	PLUG, JUMPER, 0.1 CTR, LOW PROFILE	00779	33123211
W11	601195	PLUG, JUMPER, 0.1 CTR, LOW PROFILE	00779	33123212
W12	601195	PLUG, JUMPER, 0.1 CTR, LOW PROFILE	00779	33123213
Y1	921004	OSC, 10 MHZ, CRYSTAL	55411	00779
Z1	080005	RES NETWORK, CERMET, 10K, 60%R, 2%	11236	33123214
Z2	080032	RES NETWORK, CERMET, 4.7K, 10%R	11236	33123215
Z3	080015	RES NETWORK, 10K, 5%	91637	33123216
Z4	080023	RES NETWORK, 4.7K, 8%R, 2%	11236	33123217
Z5	080067	RES NETWORK, 2.2K, 8 RES	11236	33123218
Z6	080035	RES NETWORK, 6K, 1.5W, 14PI3R, 2%	11236	33123219
Z7	080067	RES NETWORK, 2.2K, 8 RES	11236	33123220
Z8	080002	RES NETWORK, 500 OHM, 8P7R, 2%	11236	33123221
Z9	080080	RES NETWORK, 160 OHM, 8P7R	11236	33123222
Z10	080081	RES NETWORK, 270 OHM, 8P7R	11236	33123223
Z11	080002	RES NETWORK, 500 OHM, 8P7R, 2%	11236	33123224
Z12	080002	RES NETWORK, 500 OHM, 8P7R, 2%	11236	33123225
Z13	080002	RES NETWORK, 500 OHM, 8P7R, 2%	11236	33123226
Z14	080002	RES NETWORK, 500 OHM, 8P7R, 2%	11236	33123227

401725 - PCB ASSY., MOTHERBOARD (CONT'D)

REF.	RACAL-PANA P/N	DESCRIPTION	U.S.C.	MFG. P/N
Z15	080068	RES NETWORK, CERMET, 47Ω OHM, 3 RES	11236	750-63-R470 OHM
Z16	080002	RES NETWORK, 500 OHM, 8P8R, 2X	11236	750-81-R500 OHM
Z17	080005	RES NETWORK, 1K, 6P5R, 2X	11236	750-61-R10K OHM
Z18	500002	TUBING, SHRINK, -153 ID	—	—
Z19	600786	POST TERMINAL, TPI-TP17, TH9-TP27, E1-E12, E25-E27, WG-W11 (2 EA) (53 REQ'D)	00779	1-87022-0
Z20	411725	PCB, MOTHERBOARD (UNLOADED)	21793	411725
Z21	600947	SOCKET, IC, 20P (2 REQ'D)	52072	CA-20S-TSD-BC
Z22	611059	CONNECTOR, DIP, LOW PROFILE, 40P	91506	240-46-390
Z23	601199	SOCKET, 64P, LOW PROFILE	06776	ICA-644-S-1G
Z24	630010	KIT, HORN, STANDOFF, STUD MT	00779	552631J-3
Z25	601230	HEATSHRK, TO-220	13103	9222B-MT
Z26	610001	STANDOFF, 6-32 X 3/8, CAD PLATED BRASS (S REQ'D)	88245	1530-B-3/8
Z27	610905	BRACKET, ANGLE, 8-32 TAPPED	79363	345
Z28	610949	RIVET, .205D X .276L	19738	1601-5307
Z29	611065	SPACER, 14-PIN DIP	32359	814-100
Z30	615043	SCREW, PPH, 4-40 X .312	—	—

Figure 7-12 K 461725 - PCB ASSY., POWERBOARD (CONT'D)

REF D/F/S/G		R/M/N - NAME P/N	DESCRIPTION
		616252	SCREW, PHM. SEMS
262		617004	NUT, HEX, 4-40
264		617077	WASHER, INT. LOCK
265		920624	SOCKET, IC, 24P (
266		920735	SOCKET, IC, 16P (
272		920891	SOCKET, 25P, SODI
274		920971	FUSEHOLDER, PC MM
278			

Figure 7-12

REF. #	R/CAL-DANA P/N	DESCRIPTION	FSC	MFG. P/N
262	616252	SCREW, PHM. SEMS ASSY., 4-40 X .312 (2 REQ'D)	J31349	-
264	617004	NUT, HEX. 4-40	—	—
265	617077	WASHER, INT. LOCK, #4	—	—
268	920624	SOCKET, IC, 24P (2 REQ'D)	71785	133-73-02-063
272	920735	SOCKET, IC, 16P (2 REQ'D)	71785	133-51-04-158
274	920891	SOCKET, 28P, SOLDER TAIL (4 REQ'D)	52072	CA-235-155
278	920971	FUSEHOLDER, PC MOUNT (4 REQ'D)	75915	121688

401726 - PCB ASSY., SIGNAL CONDITIONER

REF	RACAL-DANA P/N	DESCRIPTION	MFG. P/N	FSC	Figure 7-25
C1	100066	CAP, CERAM, 8.2 PFO, 1000V, 5%	56289 CO308102E8R2D	C20	130170
C2	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 8121-100-M5R0-103K	C22	100050
C3	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 8121-100-M5R0-103K	C23	100050
C4	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 8121-100-M5R0-103K	C25	100062
C5	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 8121-100-M5R0-103K	C26	100062
C6	100056	CAP, CERAM, 8.2 PFO, 1000V, 5%	56289 CO308102E8R2D	C27	100062
C7	100063	CAP, CERAM, .01 MFD, 500V, 20%	56289 CO238501E103M	C28	100062
C8	100063	CAP, CERAM, .01 MFD, 500V, 20%	56289 CO238501E103M	C29	100062
C9	100063	CAP, CERAM, .01 MFD, 500V, 20%	56289 CO238501E103M	C30	100062
C10	100063	CAP, CERAM, .01 MFD, 500V, 20%	56289 CO238501E103M	C31	100146
C11	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 8121-100-M5R0-103K	C32	130080
C12	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 8121-100-M5R0-103K	C33	130080
C13	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 8121-100-M5R0-103K	C34	100146
C14	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 8121-100-M5R0-103K	C35	100062
C15	101174	CAP, ELECT, 10000 MFD, 15V	80031 J050H5103U015	C36	100062
C16	101174	CAP, ELECT, 10000 MFD, 15V	80031 J050H5103U015	C37	100062
C17	130170	CAP, TRIMMER, .5-3 PFD, 300V	80031 2502A0R503VP02 F00	C38	100062
C18	130170	CAP, TRIMMER, .5-3 PFD, 300V	80031 2502A0R503VP02 F00	C39	100062
C19	130170	CAP, TRIMMER, .5-3 PFD, 300V	80031 2502A0R503VP02 F00		

401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)

REF	RACAL-DANA P/N	DESCRIPTION	MFG. P/N	FSC	Figure 7-25
C20		CAP, TRIMMER, .5-3 PFD, JUDY	80031 2502A0R503VP02 F00		
C22		CAP, CERAM, 2.2 PFO, 1000V, 5%	56189 CO238501E103M		
C23		CAP, CERAM, 2.2 PFD, 1000V, 5%	56189 CO238501E103M		
C25		CAP, CERAM, .01 MFD, 100V, 10%	12982 8121-100-M5R0-103K		
C26		CAP, CERAM, .01 MFD, 100V, 10%	12982 8121-100-M5R0-103K		
C27		CAP, CERAM, .01 MFD, 100V, 10%	12982 8121-100-M5R0-103K		
C28		CAP, CERAM, .01 MFD, 100V, 10%	12982 8121-100-M5R0-103K		
C29		CAP, CERAM, .01 MFD, 100V, 10%	12982 8121-100-M5R0-103K		
C30		CAP, CERAM, .01 MFD, 100V, 10%	12982 8121-100-M5R0-103K		
C31		CAP, CERAM, 39 PFO, 100V, 5%	05397 CO238501E103M		
C32		CAP, MICA, 22 PFO	72116 0451-103M		
C33		CAP, MICA, 22 PFO	72116 0451-103M		
C34		CAP, CERAM, 39 PFO, 100V, 5%	05397 CO238501E103M		
C35		CAP, CERAM, .01 MFD, 100V, 10%	72982 8121-100-M5R0-103K		
C36		CAP, CERAM, .01 MFD, 100V, 10%	72982 8121-100-M5R0-103K		
C37		CAP, CERAM, .01 MFD, 100V, 10%	72982 8121-100-M5R0-103K		
C38		CAP, CERAM, .01 MFD, 100V, 10%	72982 8121-100-M5R0-103K		
C39		CAP, CERAM, .01 MFD, 100V, 10%	72982 8121-100-M5R0-103K		

401726 : PCB ASSY., SIGNAL CONDITIONER (CONT'D)

REF DESIG.	RADIAL-DANA P/N	DESCRIPTION	FSC	MFG. P/N
C40	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8121-100-W5R0-10K
C41	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8121-100-W5R0-10K
C42	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8121-100-W5R0-10K
C43	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8121-100-W5R0-10K
C44	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8121-100-W5R0-10K
C45	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8121-100-W5R0-10K
C46	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8121-100-W5R0-10K
C47	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8121-100-W5R0-10K
C48	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8121-100-W5R0-10K
C49	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8121-100-W5R0-10K
C50	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8121-100-W5R0-10K
C51	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8121-100-W5R0-10K
C52	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8121-100-W5R0-10K
C53	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8121-100-W5R0-10K
C54	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8121-100-W5R0-10K
C55	100062	CAP, CERAM, .01 MFD, 100V, 10 \times	72982	8121-100-W5R0-10K

401/26 - PUD AS311; SIGNAL CONVENTION

PCB ASSY., SIGNAL CONDITIONER (CONT'D)					
REF DESIG.	RACAL-DATA P/N	DESCRIPTION	FSC	FSC	H.G. P/N
C56	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-153-001	103K
C57	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-153-001	103K
C58	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-153-001	103K
C59	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-153-001	103K
C60	110126	CAP, TANTA, 6.8 MFD, 35V, 20%	05397	1155555555555555	
C61	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-153-001	103K
C62	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-153-001	103K
C63	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-153-001	103K
C64	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-153-001	103K
C65	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-153-001	103K
C66	110126	CAP, TANTA, 6.8 MFD, 35V, 20%	05397	1155555555555555	
C67	110126	CAP, TANTA, 6.8 MFD, 35V, 20%	05397	1155555555555555	
C68	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-153-001	103K
C69	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-153-001	103K
C70	110126	CAP, TANTA, 6.8 MFD, 35V, 20%	05397	1155555555555555	
C71	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-153-001	103K
C72	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-153-001	103K
C73	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	8121-153-001	103K

Figure 7-25

Figure 7-25 E 101126 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)			
REF. DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC
C56	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K
C57	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K
C58	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K
C59	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K
C60	110126	CAP, TANT, 6.8 MFD, 35V, 20%	05397 103K
C61	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K
C62	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K
C63	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K
C64	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K
C65	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K
C66	110126	CAP, TANT, 6.8 MFD, 35V, 20%	05397 103K
C67	110126	CAP, TANT, 6.8 MFD, 35V, 20%	05397 103K
C68	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K
C69	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K
C70	110126	CAP, TANT, 6.8 MFD, 35V, 20%	05397 103K
C71	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K
C72	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K
C73	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K

401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'0)

REF DESIG.	RACAL-DARIA P/N	DESCRIPTION	FSC	MFG. P/N	RACAL-DARIA P/N	DESCRIPTION	FSC	MFG. P/N
C74	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K
C75	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K
C76	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K
C77	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K
C78	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K	110126	CAP, TANTA, 6.8 MF0, 35V, 20%	05397	1355F65W4011
C79	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K
C80	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K
C81	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K	110126	CAP, TANTA, 6.8 MF0, 35V, 20%	05397	1355F65W4011
C82	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K
C83	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K
C84	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K
C85	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K
C86	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K	110126	CAP, TANTA, 6.8 MF0, 35V, 20%	05397	1355F65W4011
C87	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K
C88	130103	CAP, CERAM, .01 MF0, 25V, 20%	72982	GR42-6x7R103 M50Y	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K
C89	130103	CAP, CERAM, .01 MF0, 25V, 20%	72982	GR42-6x7R103 M50Y	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-W5R0-103K
C90	110126	CAP, TANTA, 6.8 MF0, 35V, 20%	05397	1355F65W4011				

Figure 7-25

401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'0)

REF DESIG.	RACAL-DARIA P/N	DESCRIPTION	FSC	MFG. P/N	RACAL-DARIA P/N	DESCRIPTION	FSC	MFG. P/N
C91			100062		CAP, CERAM, .01 MF0, 100V, 10%		72982	8121-100-W5R0-103K
C92			100062		CAP, CERAM, .01 MF0, 100V, 10%		72982	8121-100-W5R0-103K
C93			100062		CAP, CERAM, .01 MF0, 100V, 10%		72982	8121-100-W5R0-103K
C94			100062		CAP, CERAM, .01 MF0, 100V, 10%		72982	8121-100-W5R0-103K
C95			110126		CAP, TANTA, 6.8 MF0, 35V, 20%		05397	1355F65W4011
C96			100062		CAP, CERAM, .01 MF0, 100V, 10%		72982	8121-100-W5R0-103K
C97			100062		CAP, CERAM, .01 MF0, 100V, 10%		72982	8121-100-W5R0-103K
C98			110126		CAP, TANTA, 6.8 MF0, 35V, 20%		05397	1355F65W4011
C99			100062		CAP, CERAM, .01 MF0, 100V, 10%		72982	8121-100-W5R0-103K
C100			100062		CAP, CERAM, .01 MF0, 100V, 10%		72982	8121-100-W5R0-103K
C101			100062		CAP, CERAM, .01 MF0, 100V, 10%		72982	8121-100-W5R0-103K
C102			100062		CAP, CERAM, .01 MF0, 100V, 10%		72982	8121-100-W5R0-103K
C103			100062		CAP, CERAM, .01 MF0, 100V, 10%		72982	8121-100-W5R0-103K
C104			110126		CAP, TANTA, 6.8 MF0, 35V, 20%		05397	1355F65W4011
C105			100062		CAP, CERAM, .01 MF0, 100V, 10%		72982	8121-100-W5R0-103K
C106			100062		CAP, CERAM, .01 MF0, 100V, 10%		72982	8121-100-W5R0-103K
C107			100062		CAP, CERAM, .01 MF0, 100V, 10%		72982	8121-100-W5R0-103K

Figure 7-25

401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'0)

Figure 7-25

401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)

REF. DES.	RACAL-DANA P/N	DESCRIPTION	FSC P/N	MF6 P/N	Figure 7-25
C108	110151	CAP, TANTA, 10 MF0, 35V, 20%	05397	T354G1060M035AS	
C109	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	
C110	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	
C111	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	
C112	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	
C113	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	
C114	110151	CAP, TANTA, 10 MF0, 35V, 20%	05397	T354G1060M035AS	
C115	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	
C116	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	
C117	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	
C118	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	
C119	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	
C120	110151	CAP, TANTA, 10 MF0, 35V, 20%	05397	T354G1060M035AS	
C121	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	
C122	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	
C123	110151	CAP, TANTA, 10 MF0, 35V, 20%	05397	T354G1060M035AS	
C124	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	

401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)

REF. DES.	RACAL-DANA P/N	DESCRIPTION	REF. DES.	RACAL-DANA P/N	DESCRIPTION	FSC	MF6 P/N	Figure 7-25
C125	100062	CAP, CERAM, .01 MF0, 100V, 10%	C126	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	
C127	100062	CAP, CERAM, .01 MF0, 100V, 10%	C128	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	
C129	100062	CAP, CERAM, .01 MF0, 100V, 10%	C130	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	
C131	100062	CAP, CERAM, .01 MF0, 100V, 10%	C132	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	
C133	100062	CAP, CERAM, .01 MF0, 100V, 10%	C134	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	
C135	100062	CAP, CERAM, .01 MF0, 100V, 10%	C136	100062	CAP, CERAM, .01 MF0, 100V, 10%	72982	8121-100-M5R0-103K	
C137	100062	CAP, CERAM, .01 MF0, 100V, 10%	C138	110126	CAP, TANTA, 6.8 MF0, 35V, 20%	72982	8121-100-M5R0-103K	
C139	130088	CAP, MICA, 5 PFD, 100V	C140	130088	CAP, MICA, 5 PFD, 100V	72136	8121-100-M5R0-103K	
C141	100062	CAP, CERAM, .01 MF0, 100V, 10%				72982	8121-100-M5R0-103K	

401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)

REF DESIG.	RACAL-DANA P/N	DESCRIPTION	MFG. P/N	FSC	E
C142	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K	8121-100-W5R0-	
C143	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K	8121-100-W5R0-	
C144	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K	8121-100-W5R0-	
C145	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K	8121-100-W5R0-	
C146	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982 103K	8121-100-W5R0-	
C147	100133	CAP, CERAM, .1MFD, LOW PROFILE, 20%	72982 651-104M	8131LP-100-	
C148	100147	CAP, CERAM, 120 PF0, 100V, SS	05397	C315C121J105CA	K4
C149	100147	CAP, CERAM, 120 PF0, 100V, SS	05397	C315C121J105CA	K5
CR1	210036	DIODE	07263	FD300	K6
CR2	211083	DIODE, SILICO	81349	IN916B	K7
CR3	211083	DIODE, SILICO	81349	IN916B	K8
CR4	210036	DIODE	07263	FD300	K9
CR5	210036	DIODE	07263	FD300	K10
CR6	211083	DIODE, SILICO	81349	IN916B	K11
CR7	211083	DIODE, SILICO	81349	IN916B	K12
CR8	210036	DIODE	07263	FD300	K13
CR9	210090	DIODE	50434	HP5082-2800	L1
CR10	210090	DIODE	50434	HP5082-2800	L2
CR11	210090	DIODE	50434	HP5082-2800	L3
CR12	210090	DIODE	50434	HP5082-2800	L4

Figure 7-25 E

401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)

REF DESIG.	RACAL-DANA P/N	DESCRIPTION	MFG. P/N	FSC	E	MFG. P/N
J5	600823	SOCKET, DUAL IN-LINE, 40P		520L		1A142-1-J-11
J6	920734	SOCKET, IC, 14P		00779		5A1521-1
J7	601268-010	CONNECTOR, PCB PLUG, 2 PIN		21793		001203-01-0
J8	601208-010	CONNECTOR, PCB PLUG, 2 PIN		21793		001203-01-0
J9	601234	CONNECTOR, BNC, PCB MOUNT		21793		001234
J10	601234	CONNECTOR, BNC, PCB MOUNT		21793		001234
K1	310164	RELAY, REED, 1A, 200V		71707		2903-06-7
K2	310164	RELAY, REED, 1A, 200V		71707		2903-06-7
K3	310164	RELAY, REED, 1A, 200V		71707		2903-06-7
K4	310164	RELAY, REED, 1A, 200V		71707		2903-06-7
K5	310164	RELAY, REED, 1A, 200V		71707		2903-06-7
K6	310157	RELAY, CRYSTAL, CAN, 2P-2T		11532		17-12 (N-1)
K7	310157	RELAY, CRYSTAL, CAN, 2P-2T		11532		17-12 (N-1)
K8	310164	RELAY, REED, 1A, 200V		71707		2903-06-7
K9	310164	RELAY, REED, 1A, 200V		71707		2903-06-7
K10	310165	RELAY, REED, 2C		21317		80154-01
K11	310164	RELAY, REED, 1A, 200V		71707		2903-06-7
K12	310163	RELAY, REED, 1C		14308		24-23
K13	310163	RELAY, REED, 1C		14308		24-23
L1	310092	CHOKE, RF, -1 UH		76493		5210-01-0
L2	310092	CHOKE, RF, -1 UH		76333		5230-01-0
L3	310056	CHOKE, RF, .68 UH		76493		5240-01-0
L4	310056	CHOKE, RF, .68 UH		76493		5250-01-0

Figure 7-25 E

401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)

401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)

REF DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	MFG. P/N	REF DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	MFG. P/N
L5	310056	CHOKE, RF, .68 UH	76493	9230-16	Q11	200289	TRANSISTOR, DUAL, PNP	04113	MD-SUB, A
L6	310056	CHOKE, RF, .68 UH	76493	9230-16	Q12	200289	TRANSISTOR, DUAL, PNP	04113	MD-SUB, A
L7	310056	CHOKE, RF, .68 UH	76493	9230-16	Q13	200288	TRANSISTOR, FET, N-CHANNEL	17856	J105-13
L8	310056	CHOKE, RF, .68 UH	76493	9230-16	Q14	200288	TRANSISTOR, FET, N-CHANNEL	17856	J105-12
L9	310056	CHOKE, RF, .68 UH	76493	9230-16	R1	010137	RES, METAL 100 OHM, 1%, 1/4W	81349	RACAL-DANA
L10	310056	CHOKE, RF, .68 UH	76493	9230-16	R2	010137	RES, METAL 100 OHM, 1%, 1/4W	81349	RACAL-DANA
L11	310056	CHOKE, RF, .68 UH	76493	9230-16	R3	010137	RES, METAL 100 OHM, 1%, 1/4W	81349	RACAL-DANA
L12	310056	CHOKE, RF, .68 UH	76493	9230-16	R4	010137	RES, METAL 100 OHM, 1%, 1/4W	81349	RACAL-DANA
L13	310056	CHOKE, RF, .68 UH	76493	9230-16	R5	012123	RES, CERMET, 51 OHM, 1%, 1/4W	19647	MD-132
L14	310056	CHOKE, RF, .68 UH	76493	9230-16	R6	000102	RES, CARBON, 1K, 5%, 1/4W	81349	RACAL-DANA
L15	310056	CHOKE, RF, .68 UH	76493	9230-16	R7	000102	RES, CARBON, 1K, 5%, 1/4W	81349	RACAL-DANA
L16	310056	CHOKE, RF, .68 UH	76493	9230-16	R8	012123	RES, CERMET, 51 OHM, 1%, 1/4W	19647	MD-132
P9	601213	CONNECTOR, EDGE, PLUG, .72 PIN	57856	PR36-6101-15	R9	000680	RES, CARBON, 60 OHM, 5%, 1/4W	81349	RACAL-DANA
Q1	200297	TRANSISTOR, NPN	04713	NPS-H10	R10	000680	RES, CARBON, 60 OHM, 5%, 1/4W	81349	RACAL-DANA
Q2	200291	TRANSISTOR, DMOS QUAD	17856	SD5000N	R11	010650	RES, METAL, 1M, 1%, 1/8W	81349	RACAL-DANA
Q3	200291	TRANSISTOR, DMOS QUAD	17856	SD5000N	R12	010650	RES, METAL, 1M, 1%, 1/8W	81349	RACAL-DANA
Q4	200197	TRANSISTOR, NPN	04713	NPS-H10	R13	000510	RES, CARBON, 51 OHM, 5%, 1/4W	81349	RACAL-DANA
Q5	200197	TRANSISTOR, NPN	04713	NPS-H10	R14	000510	RES, CARBON, 51 OHM, 5%, 1/4W	81349	RACAL-DANA
Q6	200197	TRANSISTOR, NPN	04713	NPS-H10	R15	000474	RES, CARBON, 470K, 5%, 1/4W	81349	RACAL-DANA
Q7	200099	TRANSISTOR, PNP	81349	2N4258	R16	010536	RES, METAL, 100K, 1%, 1/8W	81349	RACAL-DANA
Q8	200290	TRANSISTOR, NPN	52648	SL3127C	R17	010536	RES, METAL, 100K, 1%, 1/8W	81349	RACAL-DANA
Q9	200290	TRANSISTOR, NPN	52648	SL3127C	R18	000474	RES, CARBON, 470K, 5%, 1/4W	81349	RACAL-DANA
Q10	200099	TRANSISTOR, PNP	81349	2N4258	R19	012110	RES, CERMET, 1.96K, 1%, 1/4W	19647	MD-132
					R20	012111	RES, CERMET, 1.9M, 1%, 1/4W	19647	MD-132

Figure 7-25 E 401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)

REF DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	MFG. P/N	REF DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	MFG. P/N
L5	310056	CHOKE, RF, .68 UH	76493	9230-16	Q11	200289	TRANSISTOR, DUAL, PNP	04113	MD-SUB, A
L6	310056	CHOKE, RF, .68 UH	76493	9230-16	Q12	200289	TRANSISTOR, DUAL, PNP	04113	MD-SUB, A
L7	310056	CHOKE, RF, .68 UH	76493	9230-16	Q13	200288	TRANSISTOR, FET, N-CHANNEL	17856	J105-13
L8	310056	CHOKE, RF, .68 UH	76493	9230-16	Q14	200288	TRANSISTOR, FET, N-CHANNEL	17856	J105-12
L9	310056	CHOKE, RF, .68 UH	76493	9230-16	R1	010137	RES, METAL 100 OHM, 1%, 1/4W	81349	RACAL-DANA
L10	310056	CHOKE, RF, .68 UH	76493	9230-16	R2	010137	RES, METAL 100 OHM, 1%, 1/4W	81349	RACAL-DANA
L11	310056	CHOKE, RF, .68 UH	76493	9230-16	R3	010137	RES, METAL 100 OHM, 1%, 1/4W	81349	RACAL-DANA
L12	310056	CHOKE, RF, .68 UH	76493	9230-16	R4	010137	RES, METAL 100 OHM, 1%, 1/4W	81349	RACAL-DANA
L13	310056	CHOKE, RF, .68 UH	76493	9230-16	R5	012123	RES, CERMET, 51 OHM, 1%, 1/4W	19647	MD-132
L14	310056	CHOKE, RF, .68 UH	76493	9230-16	R6	000102	RES, CARBON, 1K, 5%, 1/4W	81349	RACAL-DANA
L15	310056	CHOKE, RF, .68 UH	76493	9230-16	R7	000102	RES, CARBON, 1K, 5%, 1/4W	81349	RACAL-DANA
L16	310056	CHOKE, RF, .68 UH	76493	9230-16	R8	012123	RES, CERMET, 51 OHM, 1%, 1/4W	19647	MD-132
P9	601213	CONNECTOR, EDGE, PLUG, .72 PIN	57856	PR36-6101-15	R9	000680	RES, CARBON, 60 OHM, 5%, 1/4W	81349	RACAL-DANA
Q1	200297	TRANSISTOR, NPN	04713	NPS-H10	R10	000680	RES, CARBON, 60 OHM, 5%, 1/4W	81349	RACAL-DANA
Q2	200291	TRANSISTOR, DMOS QUAD	17856	SD5000N	R11	010650	RES, METAL, 1M, 1%, 1/8W	81349	RACAL-DANA
Q3	200291	TRANSISTOR, DMOS QUAD	17856	SD5000N	R12	010650	RES, METAL, 1M, 1%, 1/8W	81349	RACAL-DANA
Q4	200197	TRANSISTOR, NPN	04713	NPS-H10	R13	000510	RES, CARBON, 51 OHM, 5%, 1/4W	81349	RACAL-DANA
Q5	200197	TRANSISTOR, NPN	04713	NPS-H10	R14	000510	RES, CARBON, 51 OHM, 5%, 1/4W	81349	RACAL-DANA
Q6	200197	TRANSISTOR, NPN	04713	NPS-H10	R15	000474	RES, CARBON, 470K, 5%, 1/4W	81349	RACAL-DANA
Q7	200099	TRANSISTOR, PNP	81349	2N4258	R16	010536	RES, METAL, 100K, 1%, 1/8W	81349	RACAL-DANA
Q8	200290	TRANSISTOR, NPN	52648	SL3127C	R17	010536	RES, METAL, 100K, 1%, 1/8W	81349	RACAL-DANA
Q9	200290	TRANSISTOR, NPN	52648	SL3127C	R18	000474	RES, CARBON, 470K, 5%, 1/4W	81349	RACAL-DANA
Q10	200099	TRANSISTOR, PNP	81349	2N4258	R19	012110	RES, CERMET, 1.96K, 1%, 1/4W	19647	MD-132
					R20	012111	RES, CERMET, 1.9M, 1%, 1/4W	19647	MD-132

Figure 7-25 E 401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)

Figure 7-25 E 401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)

401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)

Figure 7-25 E						Figure 7-26 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)						Figure 7-25 E					
REF.	RACAL-DANA P/N	DESCRIPTION	REF.	RACAL-DANA P/N	DESCRIPTION	REF.	RACAL-DANA P/N	DESCRIPTION	REF.	RACAL-DANA P/N	DESCRIPTION	REF.	RACAL-DANA P/N	DESCRIPTION	REF.	RACAL-DANA P/N	DESCRIPTION
OES16			R45	010928	RES, METAL, 3.0K, 1X, 1/8W	R45	010928	RES, METAL, 3.0K, 1X, 1/8W	R45	010928	RES, METAL, 3.0K, 1X, 1/8W	R45	010928	RES, METAL, 3.0K, 1X, 1/8W	R45	010928	RES, METAL, 3.0K, 1X, 1/8W
R21	012111	RES, CERMET, 1.6M, 1X, 1/4W	R46	000101	RES, CARBON, 100 OHM, 5%, 1/4W	R46	000101	RES, CARBON, 100 OHM, 5%, 1/4W	R47	012121	RES, CERMET, 32.5 OHM, 1X, 1/4W	R47	012121	RES, CERMET, 32.5 OHM, 1X, 1/4W	R47	012121	RES, CERMET, 32.5 OHM, 1X, 1/4W
R22	012110	RES, CERMET, 1.96M, 1X, 1/4W	R48	000122	RES, CARBON, 1.2K, 5%, 1/4W	R48	000122	RES, CARBON, 1.2K, 5%, 1/4W	R49	012121	RES, CERMET, 82.5 OHM, 1X, 1/4W	R49	012121	RES, CERMET, 82.5 OHM, 1X, 1/4W	R49	012121	RES, CERMET, 82.5 OHM, 1X, 1/4W
R23	012109	RES, CERMET, 41.6K, 1X, 1/4W	R50	000102	RES, CARBON, 1K, 5%, 1/4W	R50	000102	RES, METAL FILM, 100 OHM, 1X, 1/8W	R51	012084	RES, METAL FILM, 100 OHM, 1X, 1/8W	R51	012084	RES, METAL FILM, 100 OHM, 1X, 1/8W	R51	012084	RES, METAL FILM, 100 OHM, 1X, 1/8W
R24	012108	RES, CERMET, 250K, 1X, 1/4W	R52	010918	RES, METAL, 499 OHM, 1X, 1/8W	R52	010918	RES, METAL, 499 OHM, 1X, 1/8W	R53	012121	RES, CERMET, 82.5 OHM, 1X, 1/4W	R53	012121	RES, CERMET, 82.5 OHM, 1X, 1/4W	R53	012121	RES, CERMET, 82.5 OHM, 1X, 1/4W
R25	012108	RES, CERMET, 250K, 1X, 1/4W	R54	012121	RES, CERMET, 82.5 OHM, 1X, 1/4W	R54	012121	RES, CERMET, 82.5 OHM, 1X, 1/4W	R55	010918	RES, METAL, 499 OHM, 1X, 1/8W	R55	010918	RES, METAL, 499 OHM, 1X, 1/8W	R55	010918	RES, METAL, 499 OHM, 1X, 1/8W
R26	012109	RES, CERMET, 41.6K, 1X, 1/4W	R56	012084	RES, METAL FILM, 100 OHM, 1X, 1/8W	R56	012084	RES, METAL FILM, 100 OHM, 1X, 1/8W	R57	012084	RES, METAL FILM, 100 OHM, 1X, 1/8W	R57	012084	RES, METAL FILM, 100 OHM, 1X, 1/8W	R57	012084	RES, METAL FILM, 100 OHM, 1X, 1/8W
R27	000300	RES, CARBON, 30 OHM, 5%, 1/4W	R58	012084	RES, METAL FILM, 100 OHM, 1X, 1/8W	R58	012084	RES, METAL FILM, 100 OHM, 1X, 1/8W	R59	012084	RES, METAL FILM, 100 OHM, 1X, 1/8W	R59	012084	RES, METAL FILM, 100 OHM, 1X, 1/8W	R59	012084	RES, METAL FILM, 100 OHM, 1X, 1/8W
R28	000300	RES, CARBON, 30 OHM, 5%, 1/4W	R60	012084	RES, METAL FILM, 100 OHM, 1X, 1/8W	R60	012084	RES, METAL FILM, 100 OHM, 1X, 1/8W	R61	012120	RES, CERMET, 1.5K, 1X, 1/4W	R61	012120	RES, CERMET, 1.5K, 1X, 1/4W	R61	012120	RES, CERMET, 1.5K, 1X, 1/4W
R29	000470	RES, CARBON, 47 OHM, 5%, 1/4W	R62	012122	RES, CERMET, 10 OHM, 1X, 1/4W	R62	012122	RES, CERMET, 10 OHM, 1X, 1/4W	R63	012122	RES, CERMET, 10 OHM, 1X, 1/4W	R63	012122	RES, CERMET, 10 OHM, 1X, 1/4W	R63	012122	RES, CERMET, 10 OHM, 1X, 1/4W
R30	000470	RES, CARBON, 47 OHM, 5%, 1/4W	R64	012120	RES, CERMET, 1.5K, 1X, 1/4W	R64	012120	RES, CERMET, 1.5K, 1X, 1/4W	R65	012116	RES, METAL FILM, 475 OHM, 1%, 1/8W	R65	012116	RES, METAL FILM, 475 OHM, 1%, 1/8W	R65	012116	RES, METAL FILM, 475 OHM, 1%, 1/8W
R31	000102	RES, CARBON, 1K, 5%, 1/4W	R66	012124	RES, METAL FILM, 301 OHM, 1%, 1/8W	R66	012124	RES, METAL FILM, 301 OHM, 1%, 1/8W	R67	040310	POT, CERMET, TOP ADJ, 1K, 10%	R67	040310	POT, CERMET, TOP ADJ, 1K, 10%	R67	040310	POT, CERMET, TOP ADJ, 1K, 10%
R32	012114	RES, METAL FILM, 316 OHM, 1X, 1/8W	R68	012115	RES, METAL FILM, 374 OHM, 1%, 1/8W	R68	012115	RES, METAL FILM, 374 OHM, 1%, 1/8W									
R33	012118	RES, METAL FILM, 1.5K, 1X, 1/8W															
R34	012118	RES, METAL FILM, 1.5K, 1X, 1/8W															
R35	012114	RES, METAL FILM, 316 OHM, 1X, 1/8W															
R36	012114	RES, METAL FILM, 316 OHM, 1X, 1/8W															
R37	012118	RES, METAL FILM, 1.5K, 1X, 1/8W															
R38	000105	RES, CARBON, 1K, 5%, 1/4W															
R39	012118	RES, METAL FILM, 1.5K, 1X, 1/8W															
R40	012114	RES, METAL FILM, 316 OHM, 1X, 1/8W															
R41	000102	RES, CARBON, 1K, 5%, 1/4W															
R42	000105	RES, CARBON, 1M, 5%, 1/4W															
R43	000101	RES, CARBON, 100 OHM, 5%, 1/4W															
R44	010628	RES, METAL, 3.0K, 1%, 1/8W															

Figure 7-25 E

Figure 7-26 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)

F

E

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)

REF DESIG.	RACAL-DATA P/N	DESCRIPTION	FSC	MFG. P/N	REF DESIG.	RACAL-DATA P/N	DESCRIPTION	FSC	MFG. P/N
R59	012084	RES, METAL FILM, 100 OHM, 1%, 1/8W	81349	RH555C100F	U10	230791	IC, DIGITAL	21193	230791
R70	040310	POT, CERMET, TOP ADJ, 1K, 10%	32997	32664-1-102	U11	230790	IC, DIGITAL	21193	230792
R71	040310	POT, CERMET, TOP ADJ, 1K, 10%	32997	32664-1-102	VR1	220007	DIODE, SILICO, ZENER	31139	135735
R72	010925	RES, METAL FILM, 1.33K, 1%, 1/8W	81349	RH55C1331F	VR2	220007	DIODE, SILICO, ZENER	61339	140515
R73	010704	RES, METAL, 1K, 1%, 1/8W	81349	RNS501001F	VR3	220007	DIODE, SILICO, ZENER	81339	140515
R74	010704	RES, METAL, 1K, 1%, 1/8W	81349	RNS501001F	VR4	220098	DIODE, ZENER, 3.9V, 5%	64713	2424945
R75	000161	RES, CARBON, 160 OHM, 5%, 1/4W	81349	RC07GF161J	VR5	220098	DIODE, ZENER, 3.9V, 5%	81349	140515
R76	000161	RES, CARBON, 160 OHM, 5%, 1/4W	81349	RC07GF161J	VR6	220098	DIODE, ZENER, 3.9V, 5%	81349	140515
R77	000271	RES, CARBON, 270 OHM, 5%, 1/4W	81349	RC07GF271J	VR7	220098	DIODE, ZENER, 3.9V, 5%	81349	140515
R78	000271	RES, CARBON, 270 OHM, 5%, 1/4W	81349	RC07GF271J	VR8	220101	DIODE, ZENER, 3.3V, 5%	81349	140515
R79	000103	RES, CARBON, 10K, 5%, 1/4W	81349	RC07GF103J	W1	601023	PLUG, JUMPER	38291	526-441C
R80	000660	RES, CARBON, 68 OHM, 5%, 1/4W	81349	RC07GF680J					
R81	000101	RES, CARBON, 100 OHM, 5%, 1/4W	81349	RC07GF101J	Z1	080069	RES NETWORK, CERMET, 2.2K, 3R	11236	750-63-221
R82	001787	RES, CARBON, 20 OHM, 5%, 1/8W	81349	RC05GF200J	Z2	080068	RES NETWORK, CERMET, 4.7 OHM, 3R	11236	750-63-221
R83	001787	RES, CARBON, 20 OHM, 5%, 1/8W	81349	RC05GF200J	Z3	080068	RES NETWORK, CERMET, 470 OHM, 3R	11236	750-63-221
R84	000101	RES, CARBON, 100 OHM, 5%, 1/4W	81349	RC07GF101J	Z4	080069	RES NETWORK, CERMET, 2.2K, 3R	11236	750-63-221
U1	230753	IC, COMPARATOR, QUAL ULTRA FAST	54473	3015C13	Z5	080064	RES NETWORK, CERMET, 330 OHM, 5R	11236	750-63-221
U2	230753	IC, DIGITAL, 1 & SENSITIVITY CONTROL	54473	3015C13	Z6	080064	RES NETWORK, CERMET, 330 OHM, 5R	11236	750-63-221
U3	230754	IC, LINEAR	01295	VAT8L10A1LP	Z7	080065	RES NETWORK, CERMET, 33 OHM, 5R	11236	750-63-221
U4	230735	IC, COMPARATOR, QUAL ULTRA FAST	52648	SP968706	Z8	080040	RES NETWORK, CERMET, 22K, 8P4R, 2%, 1.1W	11236	750-53-221
U5	230736	IC, INT., QUAL COMPARATOR	27014	LM2903N	Z9	080019	RES NETWORK, CERMET, 100K, 6P3R, 2%, .9W	11236	750-63-221
U6	230750	IC, DIGITAL, ECL	04713	MC10216P	Z10	080064	RES NETWORK, CERMET, 330 OHM, 5R	11236	750-61-R35
U7	230783	IC, ECL, HS QUAD 2-INPUT MUX	04713	MC10H158P	Z11	080064	RES NETWORK, CERMET, 330 OHM, 5R	11236	750-61-R33C
U8	230733	IC, DIGITAL, ECL FLIP-FLOP	04713	MC10231	Z13	080001	RES NETWORK, CERMET, 330 OHM, 8P1R, 2X	11236	750-61-R33C
U9	230750	IC, DIGITAL, ECL	04713	MC10216P					

Figure 7-25 E

401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)

REF DESIG.	RACAL-DATA P/N	DESCRIPTION	FSC	MFG. P/N	REF DESIG.	RACAL-DATA P/N	DESCRIPTION	FSC	MFG. P/N
R59	012084	RES, METAL FILM, 100 OHM, 1%, 1/8W	81349	RH555C100F	U10	230791	IC, DIGITAL	21193	230792
R70	040310	POT, CERMET, TOP ADJ, 1K, 10%	32997	32664-1-102	U11	230790	IC, DIGITAL	21193	230792
R71	040310	POT, CERMET, TOP ADJ, 1K, 10%	32997	32664-1-102	VR1	220007	DIODE, SILICO, ZENER	31139	135735
R72	010925	RES, METAL FILM, 1.33K, 1%, 1/8W	81349	RH55C1331F	VR2	220007	DIODE, SILICO, ZENER	61339	140515
R73	010704	RES, METAL, 1K, 1%, 1/8W	81349	RNS501001F	VR3	220007	DIODE, SILICO, ZENER	81339	140515
R74	010704	RES, METAL, 1K, 1%, 1/8W	81349	RNS501001F	VR4	220098	DIODE, ZENER, 3.9V, 5%	64713	2424945
R75	000161	RES, CARBON, 160 OHM, 5%, 1/4W	81349	RC07GF161J	VR5	220098	DIODE, ZENER, 3.9V, 5%	81349	140515
R76	000161	RES, CARBON, 160 OHM, 5%, 1/4W	81349	RC07GF161J	VR6	220098	DIODE, ZENER, 3.9V, 5%	81349	140515
R77	000271	RES, CARBON, 270 OHM, 5%, 1/4W	81349	RC07GF271J	VR7	220098	DIODE, ZENER, 3.9V, 5%	81349	140515
R78	000271	RES, CARBON, 270 OHM, 5%, 1/4W	81349	RC07GF271J	VR8	220101	DIODE, ZENER, 3.3V, 5%	81349	140515
R79	000103	RES, CARBON, 10K, 5%, 1/4W	81349	RC07GF103J	W1	601023	PLUG, JUMPER	38291	526-441C
R80	000660	RES, CARBON, 68 OHM, 5%, 1/4W	81349	RC07GF680J					
R81	000101	RES, CARBON, 100 OHM, 5%, 1/4W	81349	RC07GF101J	Z1	080069	RES NETWORK, CERMET, 2.2K, 3R	11236	750-63-221
R82	001787	RES, CARBON, 20 OHM, 5%, 1/8W	81349	RC05GF200J	Z2	080068	RES NETWORK, CERMET, 4.7 OHM, 3R	11236	750-63-221
R83	001787	RES, CARBON, 20 OHM, 5%, 1/8W	81349	RC05GF200J	Z3	080068	RES NETWORK, CERMET, 470 OHM, 3R	11236	750-63-221
R84	000101	RES, CARBON, 100 OHM, 5%, 1/4W	81349	RC07GF101J	Z4	080069	RES NETWORK, CERMET, 2.2K, 3R	11236	750-63-221
U1	230753	IC, COMPARATOR, QUAL ULTRA FAST	54473	3015C13	Z5	080064	RES NETWORK, CERMET, 330 OHM, 5R	11236	750-63-221
U2	230753	IC, DIGITAL, 1 & SENSITIVITY CONTROL	54473	3015C13	Z6	080064	RES NETWORK, CERMET, 330 OHM, 5R	11236	750-63-221
U3	230754	IC, LINEAR	01295	VAT8L10A1LP	Z7	080065	RES NETWORK, CERMET, 33 OHM, 5R	11236	750-63-221
U4	230735	IC, COMPARATOR, QUAL ULTRA FAST	52648	SP968706	Z8	080040	RES NETWORK, CERMET, 22K, 8P4R, 2%, 1.1W	11236	750-53-221
U5	230736	IC, INT., QUAL COMPARATOR	27014	LM2903N	Z9	080019	RES NETWORK, CERMET, 100K, 6P3R, 2%, .9W	11236	750-63-221
U6	230750	IC, DIGITAL, ECL	04713	MC10216P	Z10	080064	RES NETWORK, CERMET, 330 OHM, 5R	11236	750-61-R35
U7	230783	IC, ECL, HS QUAD 2-INPUT MUX	04713	MC10H158P	Z11	080064	RES NETWORK, CERMET, 330 OHM, 5R	11236	750-61-R33C
U8	230733	IC, DIGITAL, ECL FLIP-FLOP	04713	MC10231	Z13	080001	RES NETWORK, CERMET, 330 OHM, 8P1R, 2X	11236	750-61-R33C
U9	230750	IC, DIGITAL, ECL	04713	MC10216P					

Figure 7-25 E

401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)

REF DESIG.	RACAL-DATA P/N	DESCRIPTION	FSC	MFG. P/N	REF DESIG.	RACAL-DATA P/N	DESCRIPTION	FSC	MFG. P/N
R59	012084	RES, METAL FILM, 100 OHM, 1%, 1/8W	81349	RH555C100F	U10	230791	IC, DIGITAL	21193	230792
R70	040310	POT, CERMET, TOP ADJ, 1K, 10%	32997	32664-1-102	U11	230790	IC, DIGITAL	21193	230792
R71	040310	POT, CERMET, TOP ADJ, 1K, 10%	32997	32664-1-102	VR1	220007	DIODE, SILICO, ZENER	31139	135735
R72	010925	RES, METAL FILM, 1.33K, 1%, 1/8W	81349	RH55C1331F	VR2	220007	DIODE, SILICO, ZENER	61339	140515
R73	010704	RES, METAL, 1K, 1%, 1/8W	81349	RNS501001F	VR3	220007	DIODE, SILICO, ZENER	81339	140515
R74	010704	RES, METAL, 1K, 1%, 1/8W	81349	RNS501001F	VR4	220098	DIODE, ZENER, 3.9V, 5%	64713	2424945
R75	000161	RES, CARBON, 160 OHM, 5%, 1/4W	81349	RC07GF161J	VR5	220098	DIODE, ZENER, 3.9V, 5%	81349	140515
R76	000161	RES, CARBON, 160 OHM, 5%, 1/4W	81349	RC07GF161J	VR6	220098	DIODE, ZENER, 3.9V, 5%	81349	140515
R77	000271	RES, CARBON, 270 OHM, 5%, 1/4W	81349	RC07GF271J	VR7	220098	DIODE, ZENER, 3.9V, 5%	81349	140515
R78	000271	RES, CARBON, 270 OHM, 5%, 1/4W	81349	RC07GF271J	VR8	220101	DIODE, ZENER, 3.3V, 5%	81349	140515
R79	000103	RES, CARBON, 10K, 5%, 1/4W	81349	RC07GF103J	W1	601023	PLUG, JUMPER	38291	526-441C
R80	000660	RES, CARBON, 68 OHM, 5%, 1/4W	81349	RC07GF680J					
R81	000101	RES, CARBON, 100 OHM, 5%, 1/4W	81349	RC07GF101J	Z1	080069	RES NETWORK, CERMET, 2.2K, 3R	11236	750-63-221
R82	001787	RES, CARBON, 20 OHM, 5%, 1/8W	81349	RC05GF200J	Z2	080068	RES NETWORK, CERMET, 4.7 OHM, 3R	11236	750-63-221
R83	001787	RES, CARBON, 20 OHM, 5%, 1/8W	81349	RC05GF200J	Z3	080068	RES NETWORK, CERMET, 470 OHM, 3R	11236	750-63-221
R84	000101	RES, CARBON, 100 OHM, 5%, 1/4W	81349	RC07GF101J	Z4	080069	RES NETWORK, CERMET, 2.2K, 3R	11236	750-63-221
U1	230753	IC, COMPARATOR, QUAL ULTRA FAST	54473	3015C13	Z5	080064	RES NETWORK, CERMET, 330 OHM, 5R	11236	750-63-221
U2	230753	IC, DIGITAL, 1 & SENSITIVITY CONTROL	54473	3015C13	Z6	080064	RES NETWORK, CERMET, 330 OHM, 5R	11236	750-63-221
U3	230754	IC, LINEAR	01295	VAT8L10A1LP	Z7	080065	RES NETWORK, CERMET, 33 OHM, 5R	11236	750-63-221
U4	230735	IC, COMPARATOR, QUAL ULTRA FAST	52648	SP968706	Z8	080040	RES NETWORK, CERMET, 22K, 8P4R, 2%, 1.1W	11236	750-53-221
U5	230736	IC, INT., QUAL COMPARATOR	27014	LM2903N	Z9	080019	RES NETWORK, CERMET, 100K, 6P3R, 2%, .9W	11236	750-63-221
U6	230750	IC, DIGITAL, ECL	04713	MC10216P	Z10	080064	RES NETWORK, CERMET, 330 OHM, 5R	11236	750-61-R35
U7	230783	IC, ECL, HS QUAD 2-INPUT MUX	04713	MC10H158P	Z11	080064	RES NETWORK, CERMET, 330 OHM, 5R	11236	750-61-R33C
U8	230733	IC, DIGITAL, ECL FLIP-FLOP	04713	MC10231	Z13	080001	RES NETWORK, CERMET, 330 OHM, 8P1R, 2X	11236	750-61-R33C
U9	230750	IC, DIGITAL, ECL	04713	MC10216P					

Figure 7-25 E

401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)

401726 - PCB ASSY., SIGNAL CONDITIONER (CONT'D)

Figure 7-25			Figure 7-26		
REF	RACAL-DANA P/N	DESCRIPTION	FSC	MFG. P/N	E
214	080002	RES NETWORK, CERMET, 500 QHM, SP7R, 2%	11236	750-81-R300	
112	401728	PCB ASSY., MCC2 SYNCH	21793	401728	
113	411726	PC BOARD, SIGNAL CARD, (UNLOADED)	21793	411726	
115	453936	RETAINER, FOAM, ADHESIVE	21793	453936	
116	600786	POST, TERMINAL (TIPS-12, W1 {2}) (10 REQ'D)	00779	1-87022-0	
118	610912	CLIP, FLAT, CABLE	34785	031-0100	
123	560022	WIRE, BARE COPPER, TRIMMED, SOLID, 22 GA	21793	500022	
124	610227	NUT, PRESS, 2-56 (6 REQ'D)	46384	KF2-256	
125	610612	STANOFF, SHAGE, 4-40 X .453 (2 REQ'D)	06540	95368-29-A0440-16	
126	611032	SPACER, .2 CTR, .04 SHL, 2-LEAD (2 REQ'D)	32559	302-200	
128	611043	WASHER, FLAT, #2, NYLON (2 REQ'D)	86928	5610-9-20	
129	611059	CONNECTOR, DIP, LOW PROFILE, 4OP	91506	240-AG-390	
130	611060	CONNECTOR, DIP, LOW PROFILE, 1GP (2 REQ'D)	91506	216-AG-390	
132	615017	SCREW, PPH, 2-56 X .438 (2 REQ'D)	—	—	
133	615019	SCREW, PPH, 2-56 X .625 (4 REQ'D)	—	—	
134	616252	SCREW, PPH, SEMS ASSY., 4-40 X .312 (2 REQ'D)	78189	—	
135	617126	WASHER, LOCK, #2, LIGHT SERIES (4 REQ'D)	—	—	
137	920563	BEADS, SHIELDING (8 REQ'D)	02114	56-59065/48	
139	920962	LOCITE, 242, MED SIR.	05972	242	

401728 - PCB ASSY., ANMC2 SYNCH :

Figure 7-33			Figure 7-34		
REF	RACAL-DANA P/N	DESCRIPTION	FSC	MFG. P/N	B
C1	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	5121-100-52	
C2	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	5121-100-52	
C3	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	5121-100-52	
C4	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	5121-100-52	
C5	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	5121-100-52	
C6	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	5121-100-52	
C7	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	5121-100-52	
C8	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	5121-100-52	
C9	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	5121-100-52	
C10	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	5121-100-52	
C11	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	5121-100-52	
C12	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	5121-100-52	
C13	100062	CAP, CERAM, .01 MFD, 100V, 10%	72982	5121-100-52	
Q1	200197	TRANSISTOR, NPN	04713	NP5-n13	
Q2	200197	TRANSISTOR, NPN	04713	NP5-n13	
Q3	200197	TRANSISTOR, NPN	04713	NP5-n13	
Q4	200197	TRANSISTOR, NPN	04713	NP5-n13	

Figure 7-33

Figure 7-34

AMCC2 SYNCH (CONT'D)

REF	REF ID	RACAL-DATA P/N	DESCRIPTION	FSC	MFG. P/N
U1	230787	IC, DIGITAL, TRIPLE LINE REC'R	04713	MC10116P	
U2	230787	IC, DIGITAL, TRIPLE LINE REC'R	04713	MC10116P	
U3	230442	IC, DIGITAL	04713	MC10124	
U4	230785	IC, DIGITAL, TRIPLE X OR GATE	04713	MC10H107	
U5	230787	IC, DIGITAL, TRIPLE LINE REC'R	04713	MC10116P	
U6	230789	IC, DIGITAL, ECL/TTL CHIP	21793	230789	
U7	230735	IC, COMPARATOR, DUAL ULTRA FAST	52548	SP968106	
Z1	080075	RES NETWORK, CERMET, 470 OHM, 7R	11236	750-81-R470	
Z2	080073	RES NETWORK, CERMET, 470 OHM, 5R	11236	750-61-R470	
Z3	080073	RES NETWORK, CERMET, 470 OHM, 5R	11236	750-61-R470	
Z4	080064	RES NETWORK, CERMET, 330 OHM, 5R	11236	750-61-R330	
Z5	080073	RES NETWORK, CERMET, 470 OHM, 5R	11236	750-61-R470	
Z6	080075	RES NETWORK, CERMET, 470 OHM, 7R	11236	750-81-R470	
Z7	080064	RES NETWORK, CERMET, 330 OHM, 5R	11236	750-61-R330	
Z8	080064	RES NETWORK, CERMET, 330 OHM, 5R	11236	750-61-R330	
Z11	080004	RES NETWORK, CERMET, 4.7K, 6P5R, 2%	11236	750-61-R4.7K	
Z12	080074	RES NETWORK, CERMET, 22K, 5R	11236	750-61-R22K	
Z13	080004	RES NETWORK, CERMET, 4.7K, 6P5R, 2%	11236	750-61-R4.7K	
Z14	080004	RES NETWORK, CERMET, 4.7K, 6P5R, 2%	11236	750-61-R4.7K	
Z15	080074	RES NETWORK, CERMET, 22K, 5R	11236	750-61-R22K	
19	411728	PCB, AMCC2, SYNCH (UNLOADED)	21793	411728	
20	601013	CONNECTOR, TERM. STRIP, 20P, (2 REQ'D)	55322	TS-120-G-A1	

Figure 7-33 B
401728 - PCB ASSY., AMCC2 SYNCH (CONT'D)

401728 - PCB ASSY., AMCC2 SYNCH (CONT'D)			
REF DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC
21	611059	CONNECTOR, DIP, LOW PROFILE, 4GP	91506
22	611050	CONNECTOR, DIP, LOW PROFILE, 16P (3 REQ'D)	91506

卷之三

REF DESIG.	RAZAL-DNA P/N	DESCRIPTION	FSC	MFG. P/N
21	611059	CONNECTOR, OIP, LOW PROFILE, 4OP	91506	240-5514
22	611060	CONNECTOR, OIP, LOW PROFILE, 16P (3 REQ'D)	91506	210-5514

401127 - PCB ASSY., DISPLAY KEYBOARD

REF. DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	MFG- P/N	
C1	100133	CAP, CERAM, .1 MFD, LOW PROFILE, 20%	72982	8131LP-100- 651-104M	210108
C2	100133	CAP, CERAM, .1 MFD, LOW PROFILE, 20%	72982	8131LP-100- 651-104M	210106
C3	100133	CAP, CERAM, .1 MFD, LOW PROFILE, 20%	72982	8131LP-100- 651-104M	210106
C4	100133	CAP, CERAM, .1 MFD, LOW PROFILE, 20%	72982	8131LP-100- 651-104M	210108
C5	110126	CAP, TANT, 6.8 MFD, 35V, 20%	05397	T35SF685W035A5	210106
C6	100133	CAP, CERAM, .1 MFD, LOW PROFILE, 20%	72982	8131LP-100- 651-104M	210106
C7	100133	CAP, CERAM, .1 MFD, LOW PROFILE, 20%	72982	8131LP-100- 651-104M	210108
C8	100133	CAP, CERAM, .1 MFD, LOW PROFILE, 20%	72982	8131LP-100- 651-104M	210106
C9	100133	CAP, CERAM, .1 MFD, LOW PROFILE, 20%	72982	8131LP-100- 651-104M	210106
C10	100133	CAP, CERAM, .1 MFD, LOW PROFILE, 20%	72982	8131LP-100- 651-104M	210108
C11	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112	25088
CR2	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112	25088
CR3	210108	DIODE, LIGHT EMITTING, RED	25088	L0H5122	25088
CR4	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112	25088
CR5	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112	25088
CR6	210108	DIODE, LIGHT EMITTING, RED	25088	L0H5122	25088
CR7	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112	25088
CR8	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112	25088
CR9	210108	DIODE, LIGHT EMITTING, RED	25088	L0H5122	25088

401127 - PCB ASSY., DISPLAY KEYBOARD (CONT'D)

REF. DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	MFG. P/N
CR10	210108	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR11	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR12	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR13	210108	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR14	210108	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR15	210108	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR16	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR17	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR18	210108	DIODE, LIGHT EMITTING, RED	25088	L0H5122
CR19	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR20	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR21	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR22	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR23	210108	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR24	210108	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR25	210108	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR26	210108	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR27	210108	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR28	210108	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR29	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR30	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR31	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR32	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR33	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112

Figure 7-36

Figure 7-36

Figure 7-36

401727 - PCB ASSY., DISPLAY KEYBOARD (CONT'D)

REF	RACAL-DANA P/N	DESCRIPTION	FSC	MFN, P/N
CR34	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR35	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR36	210108	DIODE, LIGHT EMITTING, RED	25088	L0H5122
CR37	210108	DIODE, LIGHT EMITTING, RED	25088	L0H5122
CR38	210108	DIODE, LIGHT EMITTING, RED	25088	L0H5122
CR39	210108	DIODE, LIGHT EMITTING, RED	25088	L0H5122
CR40	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR41	210108	DIODE, LIGHT EMITTING, RED	25088	L0H5122
CR42	210108	DIODE, LIGHT EMITTING, RED	25088	L0H5122
CR43	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR44	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR45	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR46	210108	DIODE, LIGHT EMITTING, RED	25088	L0H5122
CR47	210108	DIODE, LIGHT EMITTING, RED	25088	L0H5122
CR49	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR50	210108	DIODE, LIGHT EMITTING, RED	25088	L0H5122
CR51	210108	DIODE, LIGHT EMITTING, RED	25088	L0H5122
CR52	210106	DIODE, LIGHT EMITTING, RED	25088	L0H1112
CR53	210108	DIODE, LIGHT EMITTING, RED	25088	L0H5122
CR54	210108	DIODE, LIGHT EMITTING, RED	25088	L0H5122
DS1	210105	DISPLAY, NUMERIC, RED, R.H. DECIMAL	25088	01-76510
DS2	210105	DISPLAY, NUMERIC, RED, R.H. DECIMAL	25088	01-76510
DS3	210105	DISPLAY, NUMERIC, RED, R.H. DECIMAL	25088	01-76510
DS4	210105	DISPLAY, NUMERIC, RED, R.H. DECIMAL	25088	01-76510

401727 - PCB ASSY , DISPLAY KEYBOARD (CONT'D)

401727 - PCB ASSY., DISPLAY KEYBOARD (CONT'D)				Figure 7-36			
REF.	RICAL-DANA P/N	DESCRIPTION	MFG. P/N	REF.	RICAL-DANA P/N	DESCRIPTION	MFG. P/N
D55	210105	DISPLAY, NUMERIC, RED, R.H. DECIMAL	2500E8	D56	210105	DISPLAY, NUMERIC, RED, R.H. DECIMAL	2500E8
D57	210105	DISPLAY, NUMERIC, RED, R.H. DECIMAL	2500E8	D58	210105	DISPLAY, NUMERIC, RED, R.H. DECIMAL	2500E8
D59	210105	DISPLAY, NUMERIC, RED, R.H. DECIMAL	2500E8	D510	210105	DISPLAY, NUMERIC, RED, R.H. DECIMAL	2500E8
D511	210105	DISPLAY, NUMERIC, RED, R.H. DECIMAL	2500E8	D512	210104	DISPLAY, 7 SEGMENT, 4 DIGIT	2500E8
D513	210104	DISPLAY, 7 SEGMENT, 4 DIGIT	2500E8	P1	601223	CABLE ASSY., 34 CONDUCTOR	52072
R1	000561	RES. CARBON, 560 OHM, 5%, 1/4W	81349	R2	000561	RES. CARBON, 560 OHM, 5%, 1/4W	81349
R3	000103	RES. CARBON, 10K, 5%, 1/4W	81349	R4	000103	RES. CARBON, 10K, 5%, 1/4W	81349
R5	000561	RES. CARBON, 560 OHM, 5%, 1/4W	81349	R6	000103	RES. CARBON, 10K, 5%, 1/4W	81349
R7	000103	RES. CARBON, 10K, 5%, 1/4W	81349	S1	601211	SWITCH, PUSHBUTTON	21793
S2	601211	SWITCH, PUSHBUTTON	21793	S3	601211	SWITCH, PUSHBUTTON	21793
S4	601211	SWITCH, PUSHBUTTON	21793				

Figure 7-35

Figure 7-35

401727 - PCB ASSY., DISPLAY KEYBOARD (CONT'D)

REF	RACAL-DANA P/N	DESCRIPTION	MFG. P/N
DESIG.			FSC
S5	601211	SWITCH, PUSHBUTTON	21793 601211
S6	601211	SWITCH, PUSHBUTTON	21793 601211
S7	601211	SWITCH, PUSHBUTTON	21793 601211
S8	601211	SWITCH, PUSHBUTTON	21793 601211
S9	601211	SWITCH, PUSHBUTTON	21793 601211
S10	601211	SWITCH, PUSHBUTTON	21793 601211
S11	601211	SWITCH, PUSHBUTTON	21793 601211
S12	601211	SWITCH, PUSHBUTTON	21793 601211
S13	601211	SWITCH, PUSHBUTTON	21793 601211
S14	601211	SWITCH, PUSHBUTTON	21793 601211
S15	601211	SWITCH, PUSHBUTTON	21793 601211
S16	601211	SWITCH, PUSHBUTTON	21793 601211
S17	601211	SWITCH, PUSHBUTTON	21793 601211
S18	601211	SWITCH, PUSHBUTTON	21793 601211
S19	601211	SWITCH, PUSHBUTTON	21793 601211
S20	601211	SWITCH, PUSHBUTTON	21793 601211
S21	601211	SWITCH, PUSHBUTTON	21793 601211
S22	601211	SWITCH, PUSHBUTTON	21793 601211
S23	601211	SWITCH, PUSHBUTTON	21793 601211
S24	601211	SWITCH, PUSHBUTTON	21793 601211
S25	601211	SWITCH, PUSHBUTTON	21793 601211
S26	601211	SWITCH, PUSHBUTTON	21793 601211
S27	601211	SWITCH, PUSHBUTTON	21793 601211
S28	601211	SWITCH, PUSHBUTTON	21793 601211

1908-1931: 1931-1950: 1950-1970: 1970-1990: 1990-2010: 2010-2015: 2015-2016:

REF.	RACAL-DANA P/N	DESCRIPTION	FSC	MFG. P/N
S29	601211	SWITCH, PUSHBUTTON	21793	601211
S30	601211	SWITCH, PUSHBUTTON	21793	601211
S31	601211	SWITCH, PUSHBUTTON	21793	601211
S32	601211	SWITCH, PUSHBUTTON	21793	601211
S33	601211	SWITCH, PUSHBUTTON	21793	601211
S34	601211	SWITCH, PUSHBUTTON	21793	601211
S35	601211	SWITCH, PUSHBUTTON	21793	601211
S36	601211	SWITCH, PUSHBUTTON	21793	601211
S37	601211	SWITCH, PUSHBUTTON	21793	601211
S38	601211	SWITCH, PUSHBUTTON	21793	601211
S39	601211	SWITCH, PUSHBUTTON	21793	601211
S40	601211	SWITCH, PUSHBUTTON	21793	601211
S41	920905	SWITCH, MOMENTARY, SPST	21793	601211
U1	230457	IC, LED DRIVER	50579	1A072-3A
U2	230457	IC, LED DRIVER	50579	1A072-3A
U3	230386	IC, DIGITAL	27014	74LS223
U4	230506	IC, INTERFACE 8-0167 LED DRIVES	32293	1CA72136-13
U5	230386	IC, DIGITAL	27014	74LS223
U6	230386	IC, DIGITAL	27014	74LS223
U7	230636	IC, OCTAL BUFFER	18124	74LS244F
U8	230368	IC, DEMULTIPLEXER	27014	74LS138
Z1	080050	RES NETWORK, 470 OHM, 10PF	11236	153.101-217
Z2	080023	RES NETWORK, CERMET, 4.7K, 0.7W, 2%	11236	750.051-217

Figure 7-36

146

401727 - PCB ASSY., DISPLAY KEYBOARD (CONT'D)

Figure 7-36 F

REF	RACAL-DATA P/N	DESCRIPTION	FSC	MFG. P/N	
26	411727	PCB - DISPLAY, KEYBOARD (UNLOADED)	21793	411727	
29	454817	SPACER, LED, 7 POSITION (2 REQ'D)	21793	454817	
30	454817-021	SPACER, LED, 3 POS. MOD.	21793	454817-021	
31	454817-022	SPACER, LED, 4 POS. MOD.	21793	454817-022	
39	611057	SPACER, LED, 1 POS. (7 REQ'D)	21793	611057	
40	611065	SPACER, 14-PIN DIP (2 REQ'D)	32559	814-100	
43	921007	CAP, SWITCH, GRAY (25 REQ'D)	21793	921007	
44	921009	CAP, SWITCH, BLUE	21793	921009	
46	921049-01	CAP, SWITCH, "1"	21793	921049-01	
47	921049-02	CAP, SWITCH, "2"	21793	921049-02	
48	921049-03	CAP, SWITCH, "3"	21793	921049-03	
49	921049-04	CAP, SWITCH, "4"	21793	921049-04	
50	921049-05	CAP, SWITCH, "5"	21793	921049-05	
51	921049-06	CAP, SWITCH, "6" (2 REQ'D)	21793	921049-06	
52	921049-07	CAP, SWITCH, "7"	21793	921049-07	
53	921049-08	CAP, SWITCH, "8"	21793	921049-08	
54	921049-09	CAP, SWITCH, "9"	21793	921049-09	
55	921049-010	CAP, SWITCH, "10"	21793	921049-010	
56	921049-011	CAP, SWITCH, "11"	21793	921049-011	
57	921049-012	CAP, SWITCH, "CE"	21793	921049-012	
58	921049-013	CAP, SWITCH, "+/-"	21793	921049-013	

Figure 7-36 E

404331 - ASSY., REAR PANEL

Figure 7-39 E

REF	RACAL-DATA P/N	DESCRIPTION	FSC	MFG. P/N
B200	921015	FAN, DC, 20 CFM, 2.38 SF	21793	921015
C200	110126	CAP, TANT, 6.8 MF D. 35V, 20X	05397	135565511111
C201	110126	CAP, TANT, 6.8 MF D. 35V, 20X	05397	135565511111
CR200	230594	IC, FULL WAVE RECT. BRIDGE	27777	241143
J211	601219	CONNECTOR, PWR, EMI FILTER	05245	514
P11	601215	CONNECTOR, PWR, HOUSING, 1SP	00779	1-159351-9
P13	601216	CONNECTOR, PWR, HOUSING, 6P	00779	1-159351-13
P20	611055	CONNECTOR, CABLE, 4 PIN	00779	532591111
Q200	200301	TRANSISTOR, PNP, PWR, 75W	04713	MC24951
Q201	200302	TRANSISTOR, NPN, PWR, 75W	04713	MC24955
S200	601112	SWITCH, ROCKER, DPST		NOTE 3 13555.1131 TABLE 8.1
U200	230788	IC, LINEAR, V REG	04713	1355657-5-1
2	404331-001	ASSY., REGULATOR	21793	104331-0-1
5	404331-002	ASSY., POWER RECEPT	21793	104331-0-2
10	45492	BOOT, CONN. - INSULATOR	21793	45492
11	454763	PANEL, REAR	21793	454763
13	454822-020	HOUSING, FAN, STD.	21793	454822-020
14	454823	GUARD, FINGER, FAN	21793	454823
15	454824	HEAT SINK, BRKT, RIGHT	21793	454824
16	454825	HEAT SINK, BRKT, LEFT	21793	454825

404331 - ASSY., REAR PANEL (CONT'D)

REF DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	WF.G. P/N	A
17	522222	WIRE, TEFLON, STR, 18G, RED	—	—	
18	500052	WIRE, TEFLON, STR, 18G, BLK	—	—	
19	500061	WIRE, TEFLON, STR, 18G, WHIT	—	—	
20	500064	TUBING, SHANK, .03310, BLK	—	—	
21	522333	WIRE, TEFLON, STR, 18G, ORG	—	—	
22	500070	WIRE, TEFLON, STR, 18G, BLK/RED	—	—	
23	500071	WIRE, TEFLON, STR, 18G, BLK/ORG	—	—	
24	500074	WIRE, TEFLON, STR, 18G, WHIT/ORG	—	—	
25	522244	WIRE, TEFLON, STR, 18G, YEL	—	—	
26	500212	WIRE, TEFLON, STR, 18G, GRN	—	—	
27	500214	WIRE, TEFLON, STR, 18G, BRN	—	—	
28	500215	WIRE, TEFLON, STR, 18G, GRN/YEL	—	—	
29	500216	WIRE, TEFLON, STR, 18G, BLU	—	—	
30	522777	WIRE, TEFLON, STR, 18G, VIO	—	—	
31	600022	LUG, SOLDER	83330	1416-6	
33	600745	TERMINAL, RECEPTACLE	00779	60196-3	
35	601011	TERMINAL, CRIMP, .039 DIA	00779	60059-2	
36	601212	TERMINAL, CRIMP, 18-26	00779	641294-1	
44	610777	CABLE TIE	53421	T18R	
46	610820	WASHER, SHOULDER, 10-220	13103	14875	
48	610851	WASHER, INSULATING, TIP-32 STYLE	18365	60-11-5791-1674	
49	610869	SCREW, PPH, 4-40 X .375	—	—	
50	500056	TUBING, CLR, 3/16" DIA	—	—	
51	611052	KEY, POLARIZING, PLUG	00779	87077-1	

404331 - ASSY., REAR PANEL (CONT'D)

REF DESIG.	RACAL-DANA P/N	DESCRIPTION	TERMINAL, CRIMP (2 REQ'D)	FSC	WF.G. P/N
52	611053	SCREW, PPH, 6-32 X 1.50 (4 REQ'D)	—	00779	530553-2
55	615068	SCREW, PPH, 6-32 X 1.50 (4 REQ'D)	—	—	—
57	616252	SCREW, PPH, SEWS ASSY, 4-40 X .312 (4 REQ'D)	78189	—	—
59	617005	NUT, HEX, 6-32	—	—	—
61	617103	WASHER, FLAT, #6, LIGHT SERIES (4 REQ'D)	—	—	—
63	617128	WASHER, LOCK, #6, LIGHT SERIES (4 REQ'D)	—	—	—
65	920364	FUSE, SLO BLO, 1A	75915	313-0012	—

Figure 7-39

Figure 7-39

Figure 7-39

404378 - ASSY-, REAR INPUT (OPT. 01)

REF. DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	WFG. P/N
1	401752	PCB ASSY., REAR INPUT	21793	401752
5	601222	CABLE ASSY., 72 CONDUCT	21793	601222
7	611058	STANDOFF, 6-32 X 1.25 (5 REQ'D)	065540	8224 SS-0632-4
9	616255	SCREW, PPH, SENS ASSY (9 REQ'D)	21793	616255

Figure 7-40 A 1

401752 - PCB ASSY., REAR INPUT

REF. DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	WFG. P/N
1	411752	PCB, REAR INPUT (THIS ONE D)	21793	411752
4	601213	CONNECTOR, EDGE, PLUG 72 PIN (2 REQ'D)	51856	P536-6111-15
6	610227	NUT, PRESS, 2-56 (4 REQ'D)	46384	KF2-256
8	615017	SCREW, PPH, 2-56 X .438 (4 REQ'D)	—	—
9	920962	LOCTITE, 242, #0 STR	05972	242
10	610198	WASHER, FLAT, NYLON, #4 (4 REQ'D)	86628	5610-10-31

Figure 7-41 B

401752 - PCB ASSY., REAR INPUT

REF. DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	WFG. P/N
1	411752	PCB, REAR INPUT (THIS ONE D)	21793	411752
4	601213	CONNECTOR, EDGE, PLUG 72 PIN (2 REQ'D)	51856	P536-6111-15
6	610227	NUT, PRESS, 2-56 (4 REQ'D)	46384	KF2-256
8	615017	SCREW, PPH, 2-56 X .438 (4 REQ'D)	—	—
9	920962	LOCTITE, 242, #0 STR	05972	242
10	610198	WASHER, FLAT, NYLON, #4 (4 REQ'D)	86628	5610-10-31

404384 - OPT. 04E, OSCILLATOR

REF DESIGN.	RACAL-DANA P/N	DESCRIPTION	FSC	MF6, P/N
3	404386	OSCILLATOR ASSY	21793	404386
5	610777	CABLE TIE	53421	118R
7	611067	SCREW, METRIC, M3 X 8 (2 REQ'D)	---	---
9	6117102	WASHER, FLAT, #4, LIGHT SERIES (2 REQ'D)	---	---
10	6117127	WASHER, LOCK, #4, LIGHT SERIES (2 REQ'D)	---	---
11	6117127	WASHER, LOCK, #4, LIGHT SERIES (2 REQ'D)	---	---
13	500009	TUBING, SHRINK, .125 ID, BLK	29005	RHF-100-1216
15	500174	CABLE, COAX, LOW THERMAL	21793	500174
17	524555	WIRE, TEFLON, STRANDED, 24 GA, GRN	---	---
18	524929	WIRE, TEFLON, STRANDED, 24 GA, WH/RED	---	---
20	610777	CABLE TIE	53421	113R
22	611052	KEY, POLARIZING, PLMS	00779	31077-1
23	611053	TERMINAL, CRIMP	00779	530553-2

404386 - OSCILLATOR ASSY (OPT. 04E)

REF DESIGN.	RACAL-DANA P/N	DESCRIPTION	FSC	MF6, P/N
34	611056	CONNECTOR, CABLE, 5-PIN	21793	500175
1	401822	PIN ASSY, COMBIER	21793	500175
2	454879	FREQUENCY S10, 5 MHZ	21793	500175
4	500064	TUBING, SHRINK, .093 ID	---	---
6	610304	SPACER, 1/4 D X 1/2 LG (2 REQ'D)	---	---
8	611074	SCREW, METRIC, M3 X 10 (2 REQ'D)	---	---
10	6117102	WASHER, FLAT, #4, LIGHT SERIES (2 REQ'D)	---	---
11	6117127	WASHER, LOCK, #4, LIGHT SERIES (2 REQ'D)	---	---
13	500009	TUBING, SHRINK, .125 ID, BLK	29005	RHF-100-1216
15	500174	CABLE, COAX, LOW THERMAL	21793	500174
17	524555	WIRE, TEFLON, STRANDED, 24 GA, GRN	---	---
18	524929	WIRE, TEFLON, STRANDED, 24 GA, WH/RED	---	---
20	610777	CABLE TIE	53421	113R
22	611052	KEY, POLARIZING, PLMS	00779	31077-1
23	611053	TERMINAL, CRIMP	00779	530553-2

Figure 7-43 C

Figure 7-42 C

401832 - PCB ASSY., DOUBLER

Figure 7-44 - A

REF DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	WF.G. P/N	WF.G. P/N
C1-9	R-21-1801	CAP, CHIP, 10nF	95275	VJ12061013HF	75917
Q1-2	K-32-1029	0100E, SILICON	14433	144149	
L1	J10151	CHOKE, 10%, 100 OHM	63125	MUR100MH	
Q1-2	200L49	TRANS, PNP	64713	UN350B	
Q3-5	200298	TRANS, NPN	04713	ZN3904	
R1	R-20-5776	RES, CHIP, 33 OHM, 1/8W, 5%	65940	MCR18-33 OHM-5%	
R2-3	R-20-5764	RES, CHIP, 100 OHM, 1/8W, 5%	65940	MCR18-100 OHM-5%	
R4	R-20-5792	RES, CHIP, 1K, 1/8W, 5%	65940	MCR19-1K-5%	
R5-6	R-20-5785	RES, CHIP, 470 OHM, 1/8W, 5%	65940	MCR18-470 OHM-5%	
R7	R-20-5794	RES, CHIP, 1.5K, 1/8W, 5%	65940	MCR18-1.5K-5%	
R8-9	R-20-5798	RES, CHIP, 3.9K, 1/8W, 5%	65940	MCR18-3.9K-5%	
R10	R-20-5794	RES, CHIP, 1.5K, 1/8W, 5%	65940	MCR18-1.5K-5%	
R11	R-20-5792	RES, CHIP, 1K, 1/8W, 5%	65940	MCR18-1K-5%	
R12	R-20-5808	RES, CHIP, 39K, 1/8W, 5%	65940	MCR18-39K-5%	
R13	R-20-5803	RES, CHIP, 15K, 1/8W, 5%	65940	MCR18-15K-5%	
R14	R-20-5816	RES, CHIP, 330K, 1/8W, 5%	65940	MCR18-330K-5%	
R15	R-20-5768	RES, CHIP, 10K, 1/8W, 5%	65940	MCR18-10K OHM-5%	
R16	R-20-5792	RES, CHIP, 1K, 1/8W, 5%	65940	MCR18-1K-5%	
R17-18	R-20-5793	RES, CHIP, 3.9K, 1/8W, 5%	65940	MCR18-3.9K-5%	
R19	R-20-5764	RES, CHIP, 100 OHM, 1/8W, 5%	65940	MCR18-100 OHM-5%	
R20	R-20-5792	RES, CHIP, 1K, 1/8W, 5%	65940	MCR18-1K-5%	
R21	R-20-5814	RES, CHIP, 51 OHM, 1/8W, 5%	65940	MCR18-51 OHM-5%	
R11-2	R-23-7149	TRANSFORMER	21793	R-23-7143	
TPI	R-24-3537	TERMINAL ASSY.	21793	R-24-3537	
10	411822	PCB, DOUBLER (UNLOADED)	21793	411822	
56	R-24-3513	AVV LUGS (3 PKG'd)	19738	AVV LUGS (3 PKG'd)	

404387 - 220V/240V OPERATION (OPT-71)*

Figure 7-44 - A

REF DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	WF.G. P/N
1	920204	FUSE, SLO BLO, .50A, 250V		75917

404293 - BOTTOM COVER ASSEMBLY

Figure 7-48

REF. DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	MFG. P/N
1	454351	BAIL	21793	454351
2	454354	COVER	21793	454354
3	920958	RIVET (4 REQ'D)	98388	3188
4	454355	PAD, FOOT (4 REQ'D)	21793	454355
5	920504	ADHESIVE, SCOTCH GRIP	04963	4475
6	454621	FOOT (4 REQ'D)	21793	454621
7	610554	SCREW, TAP, #8-18x3/8, TYPE B (4 REQ'D)	08226	PTH-8-18x3/8- SS-BLK
8	454542	PLATE (4 REQ'D)	21793	454542

404183 - RACK SLIDE KIT

Figure 7-49

REF. DESIG.	RACAL-DANA P/N	DESCRIPTION	FSC	MFG. P/N
1	454597	RETAINER, COVER (2 REQ'D)	21793	454597
2	454488	KIT, BRACKET (INCLUDES ITEMS 6 THRU 10)	21793	454488
3	610920	NUT, RETAINER (8 REQ'D)	21793	610920
4	615091	SCREW, PPH, 10-32x.500 (8 REQ'D)	21793	615091
5	454489	SLIDE (2 REQ'D)	21793	454489
6	--	SCREW, PPH, 8-32x.375 (8 REQ'D)	96906	MS35206-243
7	--	BRACKET (4 REQ'D)	05236	SP0551
8	--	NUT, #8-32 (8 REQ'D)	96906	MS35649-282
9	--	WASHER, LOCK, #8 (8 REQ'D)	96906	MS35338-42
10	--	WASHER, FLAT, #8 (8 REQ'D)	88044	AN960-B
11	610910	SCREW, PPH, 8-32x.312 (8 REQ'D)	21793	610910
12	615325	SCREW, PPH, 8-32x.500 (4 REQ'D)	21793	615325
13	610921	WASHER, FLAT, #8 (2 REQ'D)	21793	610921
14	454422	EAR, MOUNTING (2 REQ'D)	21793	454422
15*	615093	SCREW, PPH, 10-32x.750 (4 REQ'D)	21793	615093
15*	611011	SCREW, PPH, M4x12 (4 REQ'D)	21793	611011
16	454490	MOUNTING BLOCK, SLIDE (6 REQ'D)	21793	454490
17	454323	INSERT, CORNER (2 REQ'D)	21793	454323

*For Ref. Desig. 15, use screw with English or metric dimensions as appropriate.

