Exploring Kubeflow Components

Abhishek Kumar
DATA SCIENTIST | AUTHOR | SPEAKER
@meabhishekkumar

Kubeflow Overview

Kubeflow

Machine learning toolkit for Kubernetes

Kubernetes

Open source system that runs everywhere (on-premise, public cloud, hybrid)

Allow data scientists to be more productive without deep expertise in containers and Kubernetes

High ceiling

Allow experts to customize based on complex requirement

Why Kubernetes Basics?

Overview

Just enough Docker

Demo: Docker overview

Just enough Kubernetes

Demo: Kubernetes overview

Kubeflow components overview

Just Enough Docker

Environment Dependency

import tensorflow as tf
print(tf.__version__)

Python environment

Python 2 or 3

Python package(s)

TensorFlow with specific version

Operating system

Linux/macOS/Windows

Environment Dependency

Containers

Docker Container

Linux

macOS

Windows

Docker Container

Virtual Machine

Hypervisor vs. Container

Container Architecture

Containers are lightweight and can be created or destroyed quickly.

Hypervisor vs. Container

Container Architecture

Docker Process

Environment Dependency

print(tf.__version__)

Python environment

Python 2 or 3

Python package(s)

TensorFlow with specific version

TensorFlow 2.1.0

Operating system

Linux/macOS/Windows

Dockerfile

dockerhub.com

```
FROM ubuntu:16.04
                                                Base image
                                  •........
RUN apt-get update && \
                                                Ubuntu linux
    apt-get install -y python3-pip python3-dev
&& \
    cd /usr/local/bin && \
                                           E..... Python environment
    ln -s /usr/bin/python3 python && \
    pip3 install --upgrade pip
                                                Python 3
RUN pip3 install tensorflow==2.1.0
                                        :..... Python package(s)
WORKDIR /app
                                                TensorFlow with
COPY app.py .
                                                specific version
ENTRYPOINT ["python3", "app.py"]
```


Docker Image and Container

docker build -t myimage:v1 .

|||||||||| docker run myimage:v1

Create Docker container from image and run

Docker overview

- Build Docker image
- Create and run Docker container

Why Kubernetes?

Machine learning prediction API

Just Enough Kubernetes

Taking Containers to Real World

Why Kubernetes?

Scale
Automated scaling

Monitor

Monitor performance,
recovery

Kubernetes Cluster

On-premise setup

Google Kubernetes Engine (GKE)
Azure Kubernetes Service (AKS)
Amazon Elastic Kubernetes Service (EKS)

Pod

Atomic unit in Kubernetes

Horizontal scale by creating Pod replicas

Pod

YAML

Deployment


```
YAML
apiVersion: apps/v1
kind: Deployment
metadata:
   name: nginx-deployment
spec:
replicas: 2
selector:
    matchLabels:
        app: my-nginx
template:
    metadata:
        labels:
        app: my-nginx
   spec:
       containers:
           - name: nginx
             image: nginx:1.7.9
```

Service

Service


```
YAML
apiVersion: v1
kind: Service
metadata:
name: nginx-service
spec:
type : LoadBalancer
                         ClusterIP
selector:
 app: my-nginx
ports:
 - port : 80
   targetPort: 80
```


Namespace

Namespace

Environment QA Dev Prod

Play with Kubernetes

Kubeflow

https://www.kubeflow.org/docs/started/

Minikube

https://github.com/kubern etes/minikube

Docker Desktop

https://www.docker.com/products/docker-desktop

Kubernetes overview

- Create pod
- Create deployment
- Create service
- Kubectl commands

Kubeflow overview

- Kubectl commands
- Kubernetes concepts

Kubeflow central dashboard overview

Summary

Docker overview

Kubernetes overview and key concepts

- Pod
- Deployment
- Service
- Ingress
- Namespace

Kubeflow central dashboard

Next up: Building Machine Learning Model on Kubeflow

