Test 6(Week 14)

Discrete Mathematics 2

1. n 个结点的简单图 G , n>2 且 n 奇数 , G 和 G 补图中度数为奇数的结点个数是否相等?请证明或给出反例.

2. 有多少种方法把52张标准的扑克牌发给4个人使得每个人有5张牌.

3. 设 n 是正整数. 证明:在任意一组 n 个连续的正整数中恰好有一个被 n 整除.

4. 证明:如果 n 和 k 是整数,其中 $1 \leq k \leq n$,则 $\binom{n}{k} \leq \frac{n^k}{2^{k-1}}$.

5. 求解递推关系 $a_n=6a_{n-1}-12a_{n-2}+8a_{n-3}$, $a_0=-5, a_1=4, a_2=88$.

Probability Theory and Mathematical Statistics

- 1. 按以往某课程考试结果分析, 努力学习的学生有 90\%的可能考试及格, 不努力学习的学生有 90%的可能考试不及格.据调查,学生中有 80% 的人是努力学习的, 试问:
 - (1) 考试及格的学生有多大可能是不努力学习的人?
 - (2) 考试不及格的学生有多大可能是努力学习的人?
- 2. 设随机变量 X 的概率密度为

$$f_X(x) = egin{cases} e^{-x}, & x \geq 0, \ 0, & x < 0. \end{cases}$$

求 $Y=e^X$ 的概率密度 $f_Y(y)$

3. 设 X, Y 的联合密度函数为

$$f(x,y) = egin{cases} e^{-y} & 0 < x < 1, 0 < y \ 0 & ext{ text{\sharp}} arphi \end{cases}$$

- (1) X 与 Y 是否独立?
- (2) 求 X 与 Y 的分布函数
- (3) 求 $V = max\{X,Y\}$ 的密度函数
- 4. 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = egin{cases} 1, & |y| < x, 0 < x < 1, \ 0, & ext{ 其它}. \end{cases}$$

求 EX, EY, EXY, D(2X+1)

- 5. 从一批钉子中抽取 16 枚, 测量长度 (单位: 厘米), 经统计计算, 样本均值为 2.125 厘 米, 样本标准差为 0.017 厘米, 设钉长分布为正态, 试在下列情况下, 求总体期望 μ 的置信 度为 0.90 的置信区间。 $u_{0.05}=1.645, t_{0.05}(15)=1.7531$
 - (1) 已知 $\sigma = 0.01$ 厘米
 - $(2) \sigma$ 为末知

6. 从一批轴料中取 15 件测量其椭圆度, 计算得 S=0.025, 问该批轴料椭圆度的总 体方差与规定的 $\sigma^2=0.0004$ 有无显著差别? ($\alpha=0.05$, 椭圆度服从正态分布)。

卡方分布表如下:

df	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267

- 7. 设 X,Y 是相互独立的随机变量, 它们分别服从参数为 λ_1,λ_2 的泊松分布, 证明 Z=X+Y 服从 参数为 $\lambda_1+\lambda_2$ 的泊松分布。
- 8. 设 X_1,X_2,\cdots,X_n 是来自总体 X 的简单随机样本, 已知 $EX^k=\alpha_k(k=1,2,3,4)$ 。证明 当 n 充分大时,随机变量 $Z_n=\frac{1}{n}\sum_{i=1}^nX_i^2$ 近似服从正态分布,并指出其分布参数。

Data structure

- 1. 下列关于无向连通图特性的叙述中, 正确的是().
 - I. 所有顶点的度之和为偶数
 - Ⅱ. 边数大于顶点个数减1
 - II. 至少有一个顶点的度为1
 - A.只有I B.只有II C.I和II D.I和III
- 2. 若无向图G=(V,E)中含有7个顶点,要保证图G在任何情况下都是连通的,则需要的边数最少是().

A.6 B.15 C.16 D.21

3. 设图的邻接矩阵 A如下所示,各顶点的度依次是().

$$A = egin{bmatrix} 0 & 1 & 0 & 1 \ 0 & 0 & 1 & 1 \ 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \end{bmatrix}$$

A.1, 2, 1, 2 B.2, 2, 1, 1 C.3, 4, 2, 3 D.4, 4, 2, 2

4. 对下图所示的无向图,按照Dijkstra算法,写出从顶点1到其他各个顶点的最短路径和最短路径长度(顺序不能颠倒).

Computer organization and structure

1. 某计算机的主频为6MHz,各类指令的平均执行时间和使用频度如下表所示,试计算该机的速度 (单位用MIPS表示),若上述CPU芯片升级为10MHz,则该机的速度又为多少?

指令类别	存取	加、减、比较、转移	乘除	其它
平均指令执行时间	0.6µs	0.8µs	10µs	1.4µs
使用频度	35%	45%	5%	15%

2. 设CPU内部结构如图所示,此外还设有B、C、D、E、H、L六个寄存器,它们各自的输入和输出端都与内部总线相通,并分别受控制信号控制(如Bi为寄存器B的输入控制;Bo为B的输出控制)。要求从取指令开始,写出完成下列指令所需的全部微操作和控制信号

- (1) ADD B, C ((B)+(C)->B)
- (2) SUB A,H ((AC)-(H) ->AC)

3. 设CPU内部结构如图所示,此外还设有R1~R4四个寄存器,它们各自的输入和输出端都与内部总线相通,并分别受控制信号控制(如R2i为寄存器R2的输入控制; R2o为R2的输出控制)。要求从取指令开始,写出完成下列指令所需的全部微操作和控制信号。

(1) ADD R2, @R4; ((R2)+((R4))->R2, 寄存器间接寻址)

4. 设机器A的主频为8MHz,机器周期含4个时钟周期,且该机的平均指令执行速度是0.4MIPS,试求该机的平均指令周期和机器周期,每个指令周期中含几个机器周期? 如果机器B的主频为12MHz,且机器周期也含4个时钟周期,试问B机的平均指令执行速度为多少MIPS?

5. 试比较同步控制、异步控制和联合控制的区别。