

Université Abdelhamid MEHRI - Constantine 2 -

# Cours ALGEBRE 1

2020/2021

# Chapitre 4 : Structures algébriques

- 1. Loi de composition interne.
- 2. Groupes.
- 3. Anneau.
- 4. Corps

# 1. Loi de composition interne

#### **Définition 1:**

On appelle loi de composition interne sur un ensemble E toute application \* de  $E \times E$  dans E

\*: 
$$E \times E \longrightarrow E$$
  
 $(x, y) \longmapsto x * y$ 

x \* y s'appelle composée x et y.

Une **LCI** notée aussi T, ⊕, ⊗, ....

Si la LCI notée + elle est dite additive, et si elle est notée · est dite multiplicative.

#### **Définition 2:**

Soit E une ensemble, et \* une LCI sur E.

- On dit que \* est associative si :

$$\forall x, y, z \in E \colon (x * y) * z = x * (y * z)$$

- On dit que \* est commutative si :

$$\forall x, y \in E : x * y = y * x$$

- On dit que *e* est un élément neutre pour \* si :

$$\forall x \in E, \exists e \in E : x * e = e * x = x$$

- On dit que  $x \in E$  est symetrisable s'il existe un élément  $y \in E$  tel que :

$$x * y = y * x = e$$

Un tel élément y est appelé le symetrique de x et on le note x';  $sym(x), x^{-1}$ .

#### **Définition 3:**

On dit la LCI T est distributive par rapport \* si :

$$\forall x, y, z \in E : x \top (y * z) = (x \top y) * (x \top z)$$
$$(y * z) \top x = (y \top x) * (z \top x)$$

## **Proposition 1:**

Si e et e' deux éléments neutres de \* dans E alors e = e'.

## **Proposition 2:**

Supposons que \* est associative et soit  $x \in E$ .

Si x est symetrisable pour \* alors x admet un seul symétrique pour \*.

### **Proposition 2:**

Supposons que \* est associative et soit  $x, y \in E$ .

Si x et y sont symétrisables pour \* alors x \* y est symétrisable pour \* et on a :

$$(x * y)^{-1} = y^{-1} * x^{-1}$$

# 2.Groupes

# **Définition (Groupe)**

On dit qu'un ensemble G muni d'une LCI \* est un groupe si et seulement si :

\* est associative

G admet un élément neutre pour \*

tout élément de G admet un symétrique pour \*

Si de plus \* est commutative, on dit que (G,\*) est un groupe abélien (ou groupe commutatif).

# **Définition (Sous-groupe)**

Soit (G,\*) un groupe, une partie H non-vide de G est appelée un sous-groupe de G si la restriction de \* a H lui confère une structure de groupe.

# Remarque:

L'élément neutre de tout sous-groupe H de G coïncide avec celui de G.

## **Proposition:**

Soit (G,\*) un groupe et H un sous-ensemble de G, alors H est un sous-groupe de G si et seulement si :

$$\forall x, y \in H : x * y \in H$$
$$\forall x \in H, x^{-1} \in H$$

Ce qui est aussi équivalent a :

$$\forall x, y \in H: x * y^{-1} \in H$$

#### **Proposition:**

Soit G un groupe et  $H_1$  et  $H_2$  deux sous-groupes de G. Alors  $H_1 \cap H_2$  est un sous groupe de G.

#### Remarque:

Ce résultat reste valable pour un nombre quelconque de groupes.

#### 3.Anneau

#### **Définition:**

Soit A un ensemble muni de deux lois de composition internes \* et T.

On dit que (A,\*,T) est un anneau si :

(*G*,\*) est un groupe abélien

T est associative.

T est distributive par rapport a \*.

Si T est commutative, on dit que (A,\*,T) est un anneau commutatif.

Si A a un élément neutre pour T, on dit que (A,\*,T) est un anneau unitaire.

# 4. Corps

# **Définition:**

Soit k un ensemble muni de deux lois de composition internes \* et T.

On dit que (k,\*, T) est un corps si :

 $(\mathbb{k},*,\mathsf{T})$  est un anneau unitaire.

tous les élément de k sauf le neutre de \* sont symétrisables pour T.