수학으로부터 **인류**를 **자유**롭게 하라

Free Humankind from Mathematics

Basic Algebra

Chap.6 Rational and Irrational Functions

6.1 Rational Expressions

Rational Expressions

두 다항식
$$A, B (B \neq 0)$$
이 $\frac{A}{B}$ 로 나타낼 수 있는 식

$$\frac{1}{x}$$
, $\frac{1}{3x+1}$, $\frac{1}{(x+2)^2}$, $\frac{3x}{2x+1}$, $\frac{x-1}{(x-2)^2}$

$$\frac{x(x+1)}{3x-1}$$
, $\frac{x^2+3x+1}{2x}$, $4x+7$, $4x^2-2x+1$

(Polynomials) ⊂ (Rational Expressions)

6.1 Rational Expressions

Rational Expressions

Property of Rational Expressions

Polynomials $A, B, C (B \neq 0, C \neq 0)$

$$\frac{A}{B} = \frac{A \times C}{B \times C} = \frac{A \div C}{B \div C}$$

ex.1)
$$\frac{2x+1}{x} = \frac{(2x+1)(x+1)}{x(x+1)} = \frac{2x^2+3x+1}{x^2+x}$$

ex.2)
$$\frac{x^3(x+1)}{x^2} = x(x+1)$$

ex.3)
$$\frac{x^3(x+1)}{x(x+1)^3} = \frac{x^2}{(x+1)^2}$$

ex.4)
$$\frac{2}{1 - \frac{1}{x}} = \frac{2x}{x - 1}$$

ex.5)
$$\frac{x + \frac{1}{x}}{x - \frac{1}{x}} = \frac{x^2 + 1}{x^2 - 1} = \frac{x^2 + 1}{(x - 1)(x + 1)}$$

6.1 Rational Expressions

Additions / Subtractions of Polynomials

Case.1) Same Denominators

$$\frac{A}{C} \pm \frac{B}{C} = \frac{A \pm B}{C}, C \neq 0$$

ex.1)
$$\frac{x+1}{x} + \frac{1}{x} = \frac{x+2}{x}$$

ex.2)
$$\frac{x}{x+1} + \frac{1}{x+1} = \frac{x+1}{x+1} = 1$$

ex.3)
$$\frac{x^2}{x+1} - \frac{1}{x+1} = \frac{x^2 - 1}{x+1} = \frac{(x-1)(x+1)}{x+1} = x - 1$$

6.1 Rational Expressions

Additions / Subtractions of Polynomials

Case.2) Different Denominators

$$\frac{A}{B} \pm \frac{C}{D} = \frac{AD}{BD} \pm \frac{BC}{BD} = \frac{AD \pm BC}{BD}, (B \neq 0, C \neq 0)$$

ex.1)
$$\frac{1}{x} + \frac{2}{x(x+1)}$$
 $\longrightarrow \frac{x+1}{x(x+1)} + \frac{2}{x(x+1)} = \frac{x+3}{x(x+1)}$

ex.2)
$$\frac{x+3}{x+1} + \frac{-x^2 - x + 4}{x^2 - 1}$$
 $\longrightarrow \frac{x^2 + 2x - 3}{(x+1)(x-1)} + \frac{-x^2 - x + 4}{(x+1)(x-1)} = \frac{x+1}{(x+1)(x-1)} = \frac{1}{(x+1)(x-1)}$

ex.3)
$$\frac{1}{x-1} + \frac{1}{x} \longrightarrow \frac{x}{x(x-1)} + \frac{x-1}{x(x-1)} = \frac{2x-1}{x(x-1)}$$

6.1 Rational Expressions

Additions / Subtractions of Polynomials

ex.4)
$$\frac{1}{x-1} - \frac{1}{x+1} - \frac{2}{x^2+1} - \frac{4}{x^4+1}$$

$$= \frac{x+1}{x^2-1} - \frac{x-1}{x^2-1} - \frac{2}{x^2+1} - \frac{4}{x^4+1} = \frac{2}{x^2-1} - \frac{2}{x^2+1} - \frac{4}{x^4+1}$$

$$= \frac{2x^2+2}{x^4-1} - \frac{2x^2-2}{x^4-1} - \frac{4}{x^4+1} = \frac{4}{x^4-1} - \frac{4}{x^4+1} = \frac{8}{x^8-1}$$

ex.5)
$$1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{x}}}} = 1 - \frac{1}{1 - \frac{1}{1 - \frac{x}{x-1}}} = 1 - \frac{1}{1 + x - 1} = \frac{x - 1}{x}$$

6.1 Rational Expressions

Additions / Subtractions of Polynomials

Case.3) Special Cases

ex.1)
$$\frac{1}{x(x+1)} = \frac{1}{x} - \frac{1}{x+1}$$

ex.2)
$$\frac{1}{x(x+2)} = \frac{1}{2} \left(\frac{1}{x} - \frac{1}{x+2} \right)$$

$$\frac{1}{AB} = \frac{1}{B - A} \left(\frac{1}{A} - \frac{1}{B} \right)$$

ex.3)
$$\frac{1}{x(x+3)} + \frac{1}{(x+3)(x+6)} + \frac{1}{(x+6)(x+9)}$$
$$= \frac{1}{3} \left(\frac{1}{x} - \frac{1}{x+3} \right) + \frac{1}{3} \left(\frac{1}{x+3} - \frac{1}{x+6} \right) + \frac{1}{3} \left(\frac{1}{x+6} - \frac{1}{x+9} \right)$$
$$= \frac{1}{3} \left(\frac{1}{x} - \frac{1}{x+9} \right) = \frac{3}{x(x+9)}$$

6.1 Rational Expressions

Additions / Subtractions of Polynomials

Case.3) Special Cases

$$\frac{1}{AB} = \frac{1}{B - A} \left(\frac{1}{A} - \frac{1}{B} \right)$$

ex.4)
$$\frac{1}{x(x+1)} + \frac{1}{(x+1)(x+2)} + \dots + \frac{1}{(x+n-2)(x+n-1)} + \frac{1}{(x+n-1)(x+n)}$$

$$= \left(\frac{1}{x} - \frac{1}{x+1}\right) + \left(\frac{1}{x+1} - \frac{1}{x+2}\right) + \dots + \left(\frac{1}{x+n-2} - \frac{1}{x+n-1}\right) + \left(\frac{1}{x+n-1} - \frac{1}{x+n}\right)$$

$$= \frac{1}{x} - \frac{1}{x+n} = \frac{n}{x(x+n)}$$

6.1 Rational Expressions

Additions / Subtractions of Polynomials

Case.4) Special Cases

$$\left(x^{n} \pm \frac{1}{x^{n}}\right)^{2} = x^{2n} + \frac{1}{x^{2n}} \pm 2$$

ex.1)
$$\left(x + \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} + 2$$
 $\left(x - \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} - 2$

ex.2)
$$\left(x^2 + \frac{1}{x^2}\right)^2 = x^4 + \frac{1}{x^4} + 2$$
 $\left(x^2 - \frac{1}{x^2}\right)^2 = x^4 + \frac{1}{x^4} - 2$

ex.3)
$$x^2 + 4x + 1 = 0 \longrightarrow x^2 + x + \frac{1}{x} + \frac{1}{x^2}$$

 $x + \frac{1}{x} = -4$
 $x^2 + \frac{1}{x^2} = 14$ $x^2 + x + \frac{1}{x} + \frac{1}{x^2} = \left(x + \frac{1}{x}\right) + \left(x^2 + \frac{1}{x^2}\right) = 10$

6.1 Rational Expressions

Decompositions of Rational Expressions

$$\frac{A * B}{C} = \frac{A}{C} \pm \frac{B}{C} (C \neq 0)$$

ex.1)
$$\frac{(x-1)(x+1)}{x} = \frac{x-1}{x} + \frac{x+1}{x}$$

ex.2)
$$\frac{x(x-1)(x+1)}{x^2-1} = \frac{x}{x^2-1} + \frac{x-1}{x^2-1} + \frac{x+1}{x^2-1} = \frac{x}{x^2-1} + \frac{1}{x+1} + \frac{1}{x-1}$$

6.2 Rational Functions

Rational Functions

$$f(x) = \frac{A(x)}{B(x)}, B(x) \neq 0$$

6.2 Rational Functions

Rational Functions

Basic Rational Functions

$$f(x) = \frac{a}{x}, x \neq 0$$

$\boldsymbol{\mathcal{X}}$	$f(x) = \frac{1}{2x}$	$f(x) = \frac{1}{x}$	$f(x) = \frac{2}{x}$	$f(x) = \frac{4}{x}$
-2	-0.25	-0.5	-1	-2
-1	-0.5	-1	-2	-4
-0.5	-1	-2	-4	-8
-0.25	-2	-4	-8	-16
0.25	2	4	8	16
0.5	1	2	4	8
1	0.5	1	2	4
2	0.25	0.5	1	2

$$f_1(x) = \frac{1}{2x}$$

$$f_2(x) = \frac{1}{x}$$

$$f_3(x) = \frac{2}{x}$$

$$f_3(x) = \frac{2}{x}$$

6.2 Rational Functions

Rational Functions

Basic Rational Functions

$$f(x) = \frac{a}{x}, x \neq 0$$

$\boldsymbol{\mathcal{X}}$	$f(x) = -\frac{1}{2x}$	$f(x) = -\frac{1}{x}$	$f(x) = -\frac{2}{x}$	$f(x) = -\frac{4}{x}$
-2	0.25	0.5	1	2
-1	0.5	1	2	4
-0.5	1	2	4	8
-0.25	2	4	8	16
0.25	-2	-4	-8	-16
0.5	-1	-2	-4	-8
1	-0.5	-1	-2	-4
2	-0.25	-0.5	-1	-2

$$f_1(x) = -\frac{1}{2x}$$

$$f_2(x) = -\frac{1}{x}$$

$$f_3(x) = -\frac{2}{x}$$

$$f_3(x) = -\frac{2}{x}$$

6.2 Rational Functions

Properties of Rational Functions

Odd Functions
$$f(x) = \frac{a}{x}, x \neq 0 \longrightarrow f(-x) = -f(x)$$

Asymptotes
$$f(x) = \frac{a}{x}$$
 (asymptotes: x-axis, y-axis)

Domains, Ranges
$$f(x) = \frac{a}{x} \longrightarrow D = R = \mathbb{R} - \{0\}$$

6.2 Rational Functions

Translations of Rational Functions

$$f(x) = \frac{a}{x} \longrightarrow g(x) = \frac{a}{x - \alpha} + \beta$$

Asymptotes
$$x = \alpha, y = \beta$$

Domains, Ranges
$$D = \mathbb{R} - \{\alpha\}$$

$$R = \mathbb{R} - \{\beta\}$$

6.2 Rational Functions

More General Rational Functions

Polynomial Denominators

$$f(x) = \frac{a}{(x - \alpha)(x - \beta)}$$

Asymptotes
$$x = \alpha$$
 $x = \beta$ $y = 0$

Domains, Ranges $D = \mathbb{R} - \{\alpha, \beta\}$ $R = \mathbb{R} - \{0\}$ 함수에 따라 달라질 수 있음

$$f(x) = \frac{1}{x(x+1)}$$

$$g(x) = -\frac{2}{(x+2)(x-1)}$$

6.2 Rational Functions

More General Rational Functions

Polynomial Denominators

$$f(x) = -\frac{2}{(x-1)^2}$$

$$g(x) = \frac{3}{(x+2)^2}$$

$$h(x) = \frac{4}{(x-1)^2}$$

6.2 Rational Functions

More General Rational Functions

Polynomial Denominators

$$f(x) = \frac{a}{(x - \alpha)(x - \beta)(x - \gamma)}$$

Asymptotes
$$x = \alpha$$
 $x = \beta$
 $x = \gamma$
 $y = 0$

Domains, Ranges
$$D=\mathbb{R}-\{lpha,eta,\gamma\}$$
 $R=\mathbb{R}-\{0\}$

$$f(x) = \frac{3}{x(x+2)(x-3)}$$

6.2 Rational Functions

More General Rational Functions

Polynomial Denominators

6.2 Rational Functions

More General Rational Functions

Improper Rational Functions

분자의 차수가 더 높을 때, polynomial function과 rational function으로 나눌 수 있다.

$$P(x) = \frac{A(x)}{B(x)} = C(x) + \frac{A'(x)}{B(x)}$$

ex.1)
$$\frac{x^2 + 1}{x} = \frac{x^2}{x} + \frac{1}{x} = x + \frac{1}{x}$$

ex.2)
$$\frac{3x^3 - 2x^2 + 5}{x^2} = \frac{3x^3}{x^2} + \frac{-2x^2}{x^2} + \frac{5}{x^2} = (3x - 2) + \frac{5}{x^2}$$

6.2 Rational Functions

More General Rational Functions

Improper Rational Functions

$$P(x) = \frac{A(x)}{B(x)} = C(x) + \frac{A'(x)}{B(x)}$$

6.3 Inequalities with Rational Functions

Multiplications / Divisions and Inequalities

$$A(x)$$
, $B(x)$, $P(x)$, $Q(x)$: Polynomials

$$\frac{A(x)}{B(x)} > < 0 \longleftrightarrow A(x) \cdot B(x) > < 0, B(x) \neq 0$$

6.3 Inequalities with Rational Functions

Multiplications / Divisions and Inequalities

ex.1)
$$A(x) = x(x - 1)$$
, $B(x) = x^2$ 일 때, $A(x)B(x) > 0$ 의 solution set을 구하세요.

$$A(x) \cdot B(x) > 0$$

$$\longrightarrow x^{3}(x-1) > 0$$

$$\longrightarrow S = (-\infty,0) \cup (1,\infty)$$

ex.2)
$$A(x) = x(x-1)$$
, $B(x) = x^2$ 일 때, $\frac{A(x)}{B(x)} > 0$ 의 solution set을 구하세요.

$$\frac{A(x)}{B(x)} > 0$$

$$\longrightarrow A(x) \cdot B(x) > 0$$

$$\longrightarrow x^{3}(x-1) > 0$$

$$\longrightarrow S = (-\infty,0) \cup (1,\infty)$$

6.3 Inequalities with Rational Functions

Additions / Subtractions and Inequalities

$$\frac{A(x)}{B(x)} \pm \frac{P(x)}{Q(x)} \ge \le 0$$

$$\longrightarrow \frac{A(x)Q(x) \pm B(x)P(x)}{B(x)Q(x)} \ge \le 0$$

$$\longrightarrow B(x)Q(x)[A(x)Q(x) \pm B(x)P(x)] \ge \le 0$$

$$B(x) \ne 0, \ Q(x) \ne 0$$

6.3 Inequalities with Rational Functions

Additions / Subtractions and Inequalities

ex.1)
$$\frac{A(x)}{B(x)} = \frac{1}{x}$$
, $\frac{P(x)}{Q(x)} = \frac{1}{x+1}$ 일때, $\frac{A(x)}{B(x)} - \frac{P(x)}{Q(x)} \le 0$ 의 solution set을 구하세요.

$$\frac{A(x)}{B(x)} - \frac{P(x)}{Q(x)} \le 0 \longrightarrow \frac{1}{x} - \frac{1}{x+1} \le 0 \longrightarrow \frac{1}{x(x+1)} \le 0 \longrightarrow x(x+1) \le 0$$

$$\longrightarrow$$
 $S = (-1, 0)$

6.3 Inequalities with Rational Functions

Additions / Subtractions and Inequalities

ex.2)
$$\frac{A(x)}{B(x)} = x^2 - 3x + 8$$
, $\frac{P(x)}{Q(x)} = \frac{24}{x+3}$ 일 때, $\frac{A(x)}{B(x)} - \frac{P(x)}{Q(x)} > 0$ 의 solution set을 구하세요.

$$\frac{A(x)}{B(x)} - \frac{P(x)}{Q(x)} > 0 \longrightarrow x^2 - 3x + 8 - \frac{24}{x+3} > 0 \longrightarrow \frac{x(x+1)(x-1)}{x+3} > 0$$

$$\longrightarrow x(x+3)(x+1)(x-1) > 0 \longrightarrow S = (-\infty, -3) \cup (-1,0) \cup (1,\infty)$$

Irrational Expressions

root안에 변수가 포함된 식

$$\sqrt{x}, \quad \sqrt{x+2}, \quad -2\sqrt{x-1}, \quad \sqrt{x+3}+3$$

$$\sqrt{-x}, \quad \sqrt{-x+12}, \quad -2\sqrt{-x^2+1}, \quad \sqrt{-x^2+2x-1}+3x$$

$$\sqrt[3]{x^2-2}-2, \quad \sqrt[4]{x+5}, \quad \sqrt[5]{x^2-5}$$

Square Roots

$$a^{2} = b \longrightarrow \begin{cases} \sqrt{b} = a, \text{ if } a > 0\\ \sqrt{b} = -a, \text{ if } a < 0 \end{cases}$$

ex.1)
$$2^2 = 4 \longrightarrow \sqrt{4} = 2$$

ex.2)
$$3^2 = 9 \longrightarrow \sqrt{9} = 3$$

ex.3)
$$4^2 = 16 \longrightarrow \sqrt{16} = 4$$

ex.4)
$$\left(\frac{1}{2}\right)^2 = \frac{1}{4} \longrightarrow \sqrt{\frac{1}{4}} = \frac{1}{2}$$

ex.5)
$$\left(\frac{1}{5}\right)^2 = \frac{1}{25} \longrightarrow \sqrt{\frac{1}{25}} = \frac{1}{5}$$

$$(-2)^2 = 4 \longrightarrow \sqrt{4} = -(-2) = 2$$

$$(-3)^2 = 9 \longrightarrow \sqrt{9} = -(-3) = 3$$

$$(-4)^2 = 16 \longrightarrow \sqrt{16} = -(-4) = 4$$

ex.4)
$$\left(\frac{1}{2}\right)^2 = \frac{1}{4} \longrightarrow \sqrt{\frac{1}{4}} = \frac{1}{2}$$
 $\left(-\frac{1}{2}\right)^2 = \frac{1}{4} \longrightarrow \sqrt{\frac{1}{4}} = -\left(-\frac{1}{2}\right) = \frac{1}{2}$

ex.5)
$$\left(\frac{1}{5}\right)^2 = \frac{1}{25} \longrightarrow \sqrt{\frac{1}{25}} = \frac{1}{5}$$
 $\left(-\frac{1}{5}\right)^2 = \frac{1}{25} \longrightarrow \sqrt{\frac{1}{25}} = -\left(-\frac{1}{5}\right) = \frac{1}{5}$

Square Roots

ex.6)
$$\sqrt{49} = 7$$

$$-\sqrt{4} = -2$$

$$\sqrt{36} = 6$$

$$-\sqrt{100} = -10$$

$$\sqrt{64} = 8$$

$$-\sqrt{400} = -20$$

$$\sqrt{121} = 11$$

$$-\sqrt{169} = -13$$

$$\sqrt{(-4)^4} = 16$$

$$\sqrt{\frac{4}{9}} = \frac{2}{3}$$

$$\sqrt{(-3)^2} = 3$$

$$-\sqrt{(-11)^2} = -11$$

$$\sqrt{\frac{1}{49}} = \frac{1}{7}$$

$$-\sqrt{\frac{1}{9}} = -\frac{1}{3}$$

$$-\sqrt{\left(-\frac{4}{3}\right)^2} = -\frac{8}{27}$$

6.4 Irrational Expressions

Cube Roots

$$a^3 = b \longrightarrow \sqrt[3]{b} = a$$

ex.1)
$$2^3 = 8 \longrightarrow \sqrt[3]{8} = 2$$

ex.2)
$$3^3 = 27 \longrightarrow \sqrt[3]{27} = 3$$

ex.3)
$$\left(\frac{1}{2}\right)^3 = \frac{1}{8} \longrightarrow \sqrt[3]{\frac{1}{8}} = \frac{1}{2}$$

ex.4)
$$\left(\frac{1}{5}\right)^3 = \frac{1}{125} \longrightarrow \sqrt[3]{\frac{1}{125}} = \frac{1}{5}$$

$$(-2)^3 = -8 \longrightarrow \sqrt[3]{-8} = -2$$

$$(-3)^3 = -27 \longrightarrow \sqrt[3]{-27} = -3$$

ex.3)
$$\left(\frac{1}{2}\right)^3 = \frac{1}{8} \longrightarrow \sqrt[3]{\frac{1}{8}} = \frac{1}{2}$$
 $\left(-\frac{1}{2}\right)^3 = -\frac{1}{8} \longrightarrow \sqrt[3]{-\frac{1}{8}} = -\frac{1}{2}$

ex.4)
$$\left(\frac{1}{5}\right)^3 = \frac{1}{125} \longrightarrow \sqrt[3]{\frac{1}{125}} = \frac{1}{5}$$
 $\left(-\frac{1}{5}\right)^3 = -\frac{1}{125} \longrightarrow \sqrt[3]{-\frac{1}{125}} = -\frac{1}{5}$

nth Roots(Radicals)

$$a^{2m} = b \longrightarrow \begin{cases} \sqrt[2m]{b} = a, \text{ if } a > 0\\ \sqrt[2m]{b} = -a, \text{ if } a < 0 \end{cases}$$
$$a^{2m-1} = b \longrightarrow \sqrt[2m-1]{b} = a$$

ex.1)
$$2^4 = 16 \longrightarrow \sqrt[4]{16} = 2$$

ex.2)
$$\left(-\frac{1}{3}\right)^5 = -\frac{1}{243} \longrightarrow \sqrt[5]{\frac{1}{-243}} = -\frac{1}{3}$$

6.4 Irrational Expressions

Properties of Roots

•
$$(\sqrt{a})^2 = a$$

•
$$\sqrt{a^2} = |a|$$

 $\sqrt{3^2} = \sqrt{9} = 3 = |3|, \quad \sqrt{(-3)^2} = \sqrt{9} = 3 = |-3|$
 $\sqrt{\left(\frac{1}{4}\right)^2} = \sqrt{\frac{1}{16}} = \frac{1}{4} = \left|\frac{1}{4}\right|, \quad \sqrt{\left(-\frac{1}{4}\right)^2} = \sqrt{\frac{1}{16}} = \frac{1}{4} = \left|-\frac{1}{4}\right|$

$$\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}$$

$$\sqrt{4} \cdot \sqrt{9} = \sqrt{36}$$

$$\sqrt{4} \cdot \sqrt{\frac{1}{9}} = \sqrt{\frac{4}{9}} = \frac{2}{3}$$

6.4 Irrational Expressions

Rationalization of Denominators

Case.1)

$$\frac{a}{\sqrt{b}} = \frac{a\sqrt{b}}{\sqrt{b} \cdot \sqrt{b}} = \frac{a\sqrt{b}}{b}$$

ex.1)
$$\frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

ex.2)
$$\frac{-2}{\sqrt{5}} = -\frac{2\sqrt{5}}{5}$$

Case.2)

$$\frac{c}{\sqrt{a} + \sqrt{b}} = \frac{c(\sqrt{a} - \sqrt{b})}{(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})} = \frac{c(\sqrt{a} - \sqrt{b})}{a - b}$$

ex.1)
$$\frac{1}{\sqrt{5} + \sqrt{3}} = \frac{\sqrt{5} - \sqrt{3}}{5 - 3} = \frac{1}{2}(\sqrt{5} - \sqrt{3})$$

ex.2)
$$\frac{1}{\sqrt{5}+2} = \frac{\sqrt{5}-2}{5-4} = \sqrt{5}-2$$

ex.3)
$$\frac{\sqrt{5}-1}{\sqrt{5}+1} - \frac{\sqrt{5}+1}{\sqrt{5}-1} = \frac{(\sqrt{5}-1)^2}{4} - \frac{(\sqrt{5}+1)^2}{4} = -\sqrt{5}$$

Chap.6 Rational and Irrational Functions 6.5 Irrational Functions

Irrational Functions

$$f(x) = \sqrt{A(x)}, \ A(x) \ge 0$$
$$f(x) = \sqrt[3]{A(x)}$$

6.5 Irrational Functions

Irrational Functions

Basic Irrational Functions

$$f(x) = \pm \sqrt{ax}, \, a > 0, \, x \ge 0$$

$$f(x) = \sqrt{\frac{1}{2}}x \qquad g(x) = \sqrt{x} \qquad h(x) = \sqrt{2x}$$

$$f(x) = -\sqrt{\frac{1}{2}}x \qquad g(x) = -\sqrt{x} \qquad h(x) = -\sqrt{2x}$$

6.5 Irrational Functions

Irrational Functions

Basic Irrational Functions

$$f(x) = \pm \sqrt{ax}, \, a < 0, \, x \le 0$$

$$f(x) = \sqrt{-\frac{1}{2}x}$$
 $g(x) = \sqrt{-x}$ $h(x) = \sqrt{-2x}$

$$f(x) = -\sqrt{-\frac{1}{2}x}$$
 $g(x) = -\sqrt{-x}$ $h(x) = -\sqrt{-2x}$

6.5 Irrational Functions

Irrational Functions

Basic Irrational Functions

$$f(x) = \pm \sqrt{ax}, \, x \ge 0$$

$$y = \sqrt{ax}, a < 0$$

$$D = (-\infty, 0]$$

$$R = [0, \infty)$$

$$y = \sqrt{ax}, a > 0$$
$$D = [0, \infty)$$
$$R = [0, \infty)$$

$$y = -\sqrt{ax}, a < 0$$

$$D = (-\infty, 0]$$

$$R = (-\infty, 0]$$

$$y = -\sqrt{x}, a > 0$$

$$D = [0, \infty)$$

$$R = (-\infty, 0]$$

6.5 Irrational Functions

Irrational Functions

Cube Roots

$$f(x) = \sqrt[3]{x}$$
$$D = R = \mathbb{R}$$

6.5 Irrational Functions

Translations of Irrational Functions

$$f(x) = \sqrt{a(x - \alpha)} + \beta$$

Examples 다음 irrational function들의 그래프를 그리고, domain과 codomain을 구하세요.

ex.1)
$$f_1(x) = \sqrt{2(x-1)} + 2$$

ex.2)
$$f_2(x) = -\sqrt{-2(x+1)} + 3$$

ex.3)
$$f_3(x) = \sqrt{-2(x-1)} - 1$$

ex.4)
$$f_4(x) = -2\sqrt{x+1} + 2$$

C L O S I N G

Basic Algebra

Chap.6 Rational and Irrational Functions