Continuamos la Unidad 3

Funciones del Algebra de Boole

Funciones de un Algebra de Boole

Una función del álgebra de Boole es una variable binaria ("0", ó "1"), cuyo valor depende de una cierta combinación de valores relacionados por las operaciones suma lógica y producto lógico, donde las variables que intervienen pueden presentarse en Forma directa por medio de su opuesto.

Muy importante!! El orden de las variables.

Tabla de Verdad

Términos canónicos

Elemento
$$f_{(b,a)} = a + \bar{b} \cdot \bar{a}$$

Distributiva $f_{(b,a)} = b \cdot a + \bar{b} \cdot \bar{a}$

Conmutativa $f_{(b,a)} = b \cdot \bar{a} + \bar{b} \cdot \bar{a} + \bar{b} \cdot \bar{a}$

$$f_{(b,a)} = a + \overline{b} \cdot \overline{a}$$

Si está en 0 -> Se escribe negada SI está en 1 -> Se escribe directa

A toda función la puedo expresar por términos Canónicos.

Términos Canónicos: "Son aquellos términos en el cual intervienen **todas las variables** de la función en cualquiera de sus dos estados" (directas o negadas).

1ra. FORMA NORMAL ó CANONICA - Minitérminos

 $f_{(b,a)} = \overline{b} \cdot \overline{a} + \overline{b} \cdot a + b \cdot a$

Numero la tabla de arriba hacia abajo.

Minitérminos

		,		
b	a	$f_{(b,a)} = a + \bar{b} \cdot \bar{a}$	•	
0	0	1		$ar{b} \cdot ar{a} \ ar{b} \cdot a$
0	1	1		$\bar{b} \cdot a$
1	0	0	2	
1	1	1	3	$b \cdot a$

 $f(\underline{b},\underline{a}) = \Sigma_{\underline{2}} = (0,1,3)$ Minitérminos

$$\overline{b} \cdot \overline{a} + \overline{b} \cdot a + b \cdot a$$

Sumas de Productos Canónicos

Como tendrían que estar las variables para formar el "0" el "1" y el "3".

b	а	f
0 0	0	1
10	1	1
2]	0	0
3]	1	1

Cuando la función vale "1". (Busco los 1).

Expresión Numérica

$$f(b,a) = \Sigma_2(0,1,3)$$

Expresión Algebraica

$$f_{(b,a)} = \overline{b} \cdot \overline{a} + \overline{b} \cdot a + b \cdot a$$

Lic. Claudia Alderete

 $f_{(b,a)}=a+\overline{b}\cdot\overline{a}$

5

Términos canónicos

Productoria

Doble Negación

$$\overline{f_{(b,a)}} = b.\bar{a}$$

$$f_{(b,a)} = b.\,\overline{a}$$

$$f_{(b,a)} = \overline{b} + \overline{\overline{a}}$$

$$f_{(b,a)} = (b + a)$$

¿Si tuviera más de un 0 que hubiese pasado?

¿Son términos canónicos los resultantes?

2da. FORMA NORMAL.

Numero la tabla de abajo hacia arriba.

A 4	• 1			•	
-M	axit	Θ I	rm	ın	OS
/ V 1 '					

		b	а	$f_{(b,a)} = a + \bar{b} \cdot \bar{a}$
	3	0	0	1
	2	0	1	1
/		1	0	0
m	0	1	1	1

Maxitérminos

$$f(\underline{b}, \underline{a}) = \Pi_{\underline{2}} * (1) \quad \text{Maxitérminos}$$

$$\overline{b} + \underline{a}$$

Productos de Sumas Canónicos

Como tendrían que estar las variables para formar el "1".

$$f(b,a) = \Pi_2 \bullet (1)$$

Expresión Algebraica

$$f_{(b,a)} = \overline{b} + a$$

FORMAS NORMALES Ó FORMAS CANÓNICAS

Términos Canónicos; "Son aquellos términos en el cual intervienen **todas las variables** de la función en cualquiera de sus dos estados" (directas o negadas).

Importante!!!

Minitérmino:

Término de producto donde aparecen todas las variables de la función con cualquier estado.
Cada variable aparece complementada si su valor es 0 y sin complementar si es 1.

Maxitérmino:

Término de suma donde aparecen todas las variables de la función con cualquier estado. Cada variable aparece complementada si su valor es 1 y sin complementar si es 0.

Suma canónica:

Expresión algebraica de una función lógica como la suma de los minitérminos que hacen 1 la función.

Producto Canónico:

Expresión algebraica de una función lógica como el producto de los maxitérminos que hacen 0 la función.

Circuitos

(1)
$$f_{(b,a)} = a + \overline{b} \cdot \overline{a}$$

$$f_{(b,a)} = \overline{b} \cdot \overline{a} + \overline{b} \cdot a + b \cdot a$$

$$(3) f_{(b,a)} = (\overline{b} + a)$$

$$(3) f_{(b,a)} = (\overline{b} + a)$$

Simplificación de Funciones

¿Qué hacemos?

Conmutativa

Reciproca de la Distributiva

Elemento Opuesto

Elemento Neutro

$$F_{(c,b,a)} = c \cdot \overline{a} + \overline{c} \cdot b \cdot a + c \cdot b \cdot a + c \cdot a$$

$$F_{(c,b,a)} = c \cdot \overline{a} + c \cdot a + c \cdot b \cdot a + \overline{c} \cdot b \cdot a$$

$$(a + \overline{a}) \cdot c + (\overline{c} + c) \cdot b \cdot a$$

$$F_{(c,b,a)} = c + b \cdot a$$

Simplificación de Funciones

a (b+b)

11

dca

dca

¿Cómo me doy cuenta cuando o que término conviene agregar?

¿Cómo se si mi función Resultante ya es la mínima (o puede estar más simplificada)?

dba + ca

$$F(d,c,b,a) = \overline{dba} + ca$$

Método de Simplificación gráfica

Simplificación de Funciones.

Video del Método de Karnaugh

Ejercicios a realizar: 6,7,8,10,11