1. Environment Setup and Data Overview

```
In [62]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
In [63]:
df = pd.read csv('BostonHousing.csv')
df.columns = [col.upper() for col in df.columns]
df.head()
Out[63]:
     CRIM
             ZN INDUS CHAS
                                NOX
                                        RM AGE
                                                     DIS RAD TAX PTRATIO
                                                                                   B LSTAT MED
0 0.00632
           18.0
                   2.31
                             0 0.538 6.575
                                            65.2 4.0900
                                                            1
                                                                296
                                                                         15.3
                                                                              396.90
                                                                                        4.98
                                                                                               24
1 0.02731
             0.0
                   7.07
                             0 0.469 6.421
                                             78.9 4.9671
                                                                242
                                                                         17.8
                                                                              396.90
                                                                                        9.14
                                                                                               21
2 0.02729
                   7.07
                             0 0.469 7.185
                                            61.1 4.9671
                                                                242
                                                                         17.8 392.83
             0.0
                                                            2
                                                                                        4.03
                                                                                               34
3 0.03237
             0.0
                   2.18
                             0 0.458 6.998
                                            45.8
                                                  6.0622
                                                                222
                                                                         18.7
                                                                              394.63
                                                                                        2.94
                                                                                               33
4 0.06905
             0.0
                   2.18
                             0 0.458 7.147
                                            54.2 6.0622
                                                            3
                                                                222
                                                                         18.7 396.90
                                                                                        5.33
                                                                                               36
In [64]:
df.shape
Out[64]:
(506, 14)
In [65]:
df.columns.tolist()
Out[65]:
['CRIM',
 'ZN',
 'INDUS',
 'CHAS',
 'NOX',
 'RM',
 'AGE',
 'DIS',
 'RAD',
 'TAX',
 'PTRATIO',
 'B',
 'LSTAT',
 'MEDV']
In [66]:
```

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):
#
     Column
              Non-Null Count Dtype
                               float64
 0
     CRIM
              506 non-null
 1
                               float64
     ZN
              506 non-null
 2
                               float64
     INDUS
              506 non-null
 3
     CHAS
                               int64
              506 non-null
 4
     NOX
              506 non-null
                               float64
 5
     RM
              506 non-null
                               float64
 6
                               float64
     AGE
              506 non-null
 7
     DIS
              506 non-null
                               float64
 8
     RAD
              506 non-null
                               int64
 9
     TAX
              506 non-null
                               int64
 10
     PTRATIO
              506 non-null
                               float64
 11
     В
              506 non-null
                               float64
 12
     LSTAT
              506 non-null
                               float64
                               float64
 13
     MEDV
              506 non-null
dtypes: float64(11), int64(3)
memory usage: 55.5 KB
```

In [67]:

df.dtypes

Out[67]: CRIM float64 ZN float64 float64 **INDUS** CHAS int64 NOX float64 RMfloat64 float64 AGE DIS float64 RAD int64 int64 TAX PTRATIO float64 float64 **LSTAT** float64 MEDV float64 dtype: object

2. Univariate Analysis

Quick Data Summary

In [68]: df.describe().T Out[68]: count mean std min 25% 50% 75% max CRIM 506.0 3.613524 8.601545 0.00632 0.082045 0.25651 3.677083 88.9762

	count	mean	std	min	25%	50%	75%	max
ZN	506.0	11.363636	23.322453	0.00000	0.000000	0.00000	12.500000	100.0000
INDUS	506.0	11.136779	6.860353	0.46000	5.190000	9.69000	18.100000	27.7400
CHAS	506.0	0.069170	0.253994	0.00000	0.000000	0.00000	0.000000	1.0000
NOX	506.0	0.554695	0.115878	0.38500	0.449000	0.53800	0.624000	0.8710
RM	506.0	6.284634	0.702617	3.56100	5.885500	6.20850	6.623500	8.7800
AGE	506.0	68.574901	28.148861	2.90000	45.025000	77.50000	94.075000	100.0000
DIS	506.0	3.795043	2.105710	1.12960	2.100175	3.20745	5.188425	12.1265
RAD	506.0	9.549407	8.707259	1.00000	4.000000	5.00000	24.000000	24.0000
TAX	506.0	408.237154	168.537116	187.00000	279.000000	330.00000	666.000000	711.0000
PTRATIO	506.0	18.455534	2.164946	12.60000	17.400000	19.05000	20.200000	22.0000
В	506.0	356.674032	91.294864	0.32000	375.377500	391.44000	396.225000	396.9000
LSTAT	506.0	12.653063	7.141062	1.73000	6.950000	11.36000	16.955000	37.9700
MEDV	506.0	22.532806	9.197104	5.00000	17.025000	21.20000	25.000000	50.0000

In [69]:

from pandas_summary import DataFrameSummary
dfs = DataFrameSummary(df)
dfs.summary().T

Out[69]:

	count	mean	std	min	25%	50%	75%	max	counts	uniqu
CRIM	506.0	3.613524	8.601545	0.00632	0.082045	0.25651	3.677083	88.9762	506	5
ZN	506.0	11.363636	23.322453	0.0	0.0	0.0	12.5	100.0	506	
INDUS	506.0	11.136779	6.860353	0.46	5.19	9.69	18.1	27.74	506	
CHAS	506.0	0.06917	0.253994	0.0	0.0	0.0	0.0	1.0	506	
NOX	506.0	0.554695	0.115878	0.385	0.449	0.538	0.624	0.871	506	
RM	506.0	6.284634	0.702617	3.561	5.8855	6.2085	6.6235	8.78	506	4
AGE	506.0	68.574901	28.148861	2.9	45.025	77.5	94.075	100.0	506	3
DIS	506.0	3.795043	2.10571	1.1296	2.100175	3.20745	5.188425	12.1265	506	4
RAD	506.0	9.549407	8.707259	1.0	4.0	5.0	24.0	24.0	506	
TAX	506.0	408.237154	168.537116	187.0	279.0	330.0	666.0	711.0	506	
PTRATIO	506.0	18.455534	2.164946	12.6	17.4	19.05	20.2	22.0	506	
В	506.0	356.674032	91.294864	0.32	375.3775	391.44	396.225	396.9	506	3
LSTAT	506.0	12.653063	7.141062	1.73	6.95	11.36	16.955	37.97	506	4
MEDV	506.0	22.532806	9.197104	5.0	17.025	21.2	25.0	50.0	506	2

In [70]:

df.isna().sum()

```
Out[70]:
CRIM
            0
\mathsf{ZN}
INDUS
            0
CHAS
            0
NOX
            0
RM
            0
            0
AGE
DIS
            0
RAD
            0
TAX
PTRATIO
            0
            0
LSTAT
MEDV
            0
dtype: int64
In [71]:
df.duplicated().sum()
Out[71]:
0
```

Target Variable Exploration

```
In [72]:
sns.set_theme(
    style="whitegrid",
    palette="pastel",
    context="notebook"
)

In [73]:
plt.figure(figsize=(8, 5))
sns.histplot(df['MEDV'], kde=True, color='Lightpink', bins=30)
plt.title("MEDV Distribution")
plt.xlabel("Median Home Value ($1000s)")
plt.show()
```

MEDV Distribution

In [74]:

```
plt.figure(figsize=(8, 5))
sns.boxplot(x=df['MEDV'],color = 'lightpink')
plt.title("Boxplot of MEDV")
plt.show()
```

Boxplot of MEDV


```
In [75]:
df['MEDV'].skew()

Out[75]:
1.1080984082549072

In [76]:
df['MEDV'].kurtosis()

Out[76]:
1.495196944165818
```

Feature Inspection

```
In [77]:
plt.figure(figsize=(20, 40))
for i, col in enumerate(df.columns):
    plt.subplot(7, 2, i+1)
    sns.histplot(df[col], kde=True, bins=30, color='skyblue')
    plt.title(f"Distribution of {col}",fontsize=14, fontweight='bold')

plt.tight_layout()
plt.show()
```


In [78]:

```
plt.figure(figsize=(20, 40))
for i, col in enumerate(df.columns):
    plt.subplot(7, 2, i+1)
    sns.boxplot(df[col], color='skyblue')
    plt.title(f"Boxplot of {col}",fontsize=14, fontweight='bold')

plt.tight_layout()
plt.show()
```



```
skew = df.skew().sort_values(ascending = False)
skew
```

```
Out[79]:
```

5.223149 CRIM CHAS 3.405904 2,225666 ZN MEDV 1.108098 DIS 1.011781 RAD 1.004815 LSTAT 0.906460 0.729308 NOX TAX 0.669956 RM 0.403612 **INDUS** 0.295022 -0.598963 AGE PTRATIO -0.802325 -2.890374 dtype: float64

In [80]:

```
kurt = df.kurtosis().sort_values(ascending = False)
kurt
```

Out[80]:

CRIM 37.130509 **CHAS** 9.638264 В 7.226818 ΖN 4.031510 RM 1.891500 MEDV 1.495197 LSTAT 0.493240 DIS 0.487941 NOX -0.064667 PTRATIO -0.285091

```
RAD -0.867232
AGE -0.967716
TAX -1.142408
INDUS -1.233540
dtype: float64

In [81]:

plt.figure(figsize = (5,4))
sns.countplot(x='CHAS', data=df,color = 'skyblue')
plt.title("CHAS (Bounds River or Not)")
plt.show()
```


3. Bivariate Analysis

Scatter Plot Analysis with Target Variable

```
In [82]:
features = df.drop(columns=(['MEDV','CHAS'])).columns

plt.figure(figsize=(20, 40))
for i, feature in enumerate(features):
    plt.subplot(6, 2, i + 1)
    sns.regplot(x=df[feature], y=df['MEDV'], scatter_kws={'alpha': 0.5}, line_kws={"coloplt.title(f'{feature} vs MEDV',fontsize=14, fontweight='bold')}

plt.tight_layout()
plt.show()
```


Correlation Analysis

```
In [83]:
  corr_matrix = df.corr()
  corr_matrix
```

Out[83]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	R/
CRIM	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734	-0.379670	0.6255
ZN	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.664408	-0.3119
INDUS	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.708027	0.5951
CHAS	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.099176	-0.0073
NOX	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.769230	0.6114
RM	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.205246	-0.2098
AGE	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-0.747881	0.4560
DIS	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.000000	-0.4945
RAD	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.494588	1.0000
TAX	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.534432	0.9102
PTRATIO	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.232471	0.4647
В	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.291512	-0.4444
LSTAT	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.496996	0.4886
MEDV	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	0.249929	-0.3816

In [84]:

```
top corr = corr matrix['MEDV'].sort values(ascending=False)
top corr
Out[84]:
MEDV
           1.000000
           0.695360
RM
\mathsf{ZN}
           0.360445
В
           0.333461
           0.249929
DIS
CHAS
           0.175260
AGE
          -0.376955
RAD
          -0.381626
CRIM
          -0.388305
NOX
          -0.427321
          -0.468536
TAX
INDUS
          -0.483725
PTRATIO
          -0.507787
          -0.737663
LSTAT
Name: MEDV, dtype: float64
In [85]:
top corr features = top corr.index.tolist()
plt.figure(figsize=(12, 10))
sns.heatmap(df[top_corr_features].corr(), annot=True, cmap='coolwarm', fmt='.2f')
plt.title("Correlation Heatmap of Top Features")
plt.show()
```



```
In [86]:
plt.figure(figsize = (12,15))
sns.pairplot(df[['MEDV','RM','ZN','LSTAT','PTRATIO']], diag_kind='kde')
plt.show()
```

RAD

CRIM

XOV

ΙΑΧ

NDUS

PTRATIO

LSTAT

AGE

CHAS

<Figure size 1200x1500 with 0 Axes>

K

 \mathbb{R}

MEDV

Statistical Significance Tests

T-test For Categorical Feature

```
In [87]:
    from scipy.stats import ttest_ind

group0 = df[df['CHAS'] == 0]['MEDV']
    group1 = df[df['CHAS'] == 1]['MEDV']

t_stat, p_val = ttest_ind(group0, group1)
    print(f"t-statistic: {t_stat:.2f}, p-value: {p_val:.4f}")

t-statistic: -4.00, p-value: 0.0001
```

Pearson's Correlation Coefficient For Numerical Fetures

```
In [88]:
    from scipy.stats import pearsonr

target_col = 'MEDV'
    numerical_cols = df.select_dtypes(include=['number']).columns.drop(['MEDV','CHAS'])

print(f"{'Feature':<20} {'Correlation':<15} {'P-Value'}")
print("-" * 50)

for col in numerical_cols:
    corr, p_val = pearsonr(df[col], df[target_col])
    print(f"{col:<20} {corr:<15.4f} {p_val:.4f}")</pre>
```

Feature	Correlation	P-Value
CDTM	0.2002	0.0000
CRIM	-0.3883	0.0000
ZN	0.3604	0.0000
INDUS	-0.4837	0.0000
NOX	-0.4273	0.0000
RM	0.6954	0.0000
AGE	-0.3770	0.0000
DIS	0.2499	0.0000
RAD	-0.3816	0.0000
TAX	-0.4685	0.0000
PTRATIO	-0.5078	0.0000
В	0.3335	0.0000
LSTAT	-0.7377	0.0000

4. Data pre-processing

Handling Missing Values

```
In [89]:
df.isna().sum()
Out[89]:
CRIM
           0
ZN
INDUS
           0
CHAS
NOX
           0
RM
           0
AGE
DIS
RAD
TAX
PTRATIO
LSTAT
MEDV
dtype: int64
```

Handling Outliers

```
In [90]:
from sklearn.neighbors import LocalOutlierFactor
from sklearn.preprocessing import StandardScaler
X1 = df.drop(columns=['MEDV'])
scaler = StandardScaler()
X scaled1 = scaler.fit transform(X1)
lof = LocalOutlierFactor(n neighbors=20, contamination=0.03)
y pred = lof.fit predict(X scaled1)
df lof cleaned = df[y pred == 1]
print(f"Original shape: {df.shape}")
print(f"After removing outliers: {df lof cleaned.shape}")
Original shape: (506, 14)
After removing outliers: (490, 14)
In [91]:
df lof cleaned.head()
Out[91]:
            ZN INDUS CHAS
                              NOX
                                      RM AGE
                                                  DIS RAD TAX PTRATIO
                                                                              B LSTAT MED
     CRIM
0 0.00632 18.0
                  2.31
                           0 0.538 6.575 65.2 4.0900
                                                         1
                                                            296
                                                                     15.3
                                                                          396.90
                                                                                   4.98
                                                                                          24
                  7.07
1 0.02731
            0.0
                           0 0.469 6.421 78.9 4.9671
                                                         2
                                                            242
                                                                     17.8
                                                                          396.90
                                                                                   9.14
                                                                                          21
2 0.02729
            0.0
                  7.07
                           0 0.469 7.185 61.1 4.9671
                                                            242
                                                                     17.8 392.83
                                                                                   4.03
                                                         2
                                                                                          34
3 0.03237
            0.0
                  2.18
                           0 0.458 6.998
                                          45.8 6.0622
                                                            222
                                                                     18.7
                                                                          394.63
                                                                                   2.94
                                                                                          33
                                                         3
4 0.06905
            0.0
                  2.18
                           0 0.458 7.147 54.2 6.0622
                                                            222
                                                                     18.7 396.90
                                                                                   5.33
                                                                                          36
Features Transformation
In [92]:
df transformed = df lof cleaned.copy()
```

```
df_transformed = df_lof_cleaned.copy()

df_transformed['CRIM'] = np.log1p(df_transformed['CRIM'])

df_transformed['ZN'] = np.log1p(df_transformed['ZN'])

df_transformed['DIS'] = np.log1p(df_transformed['DIS'])

df_transformed['RAD'] = np.log1p(df_transformed['RAD'])

df_transformed['B'] = np.log1p(df_transformed['B'].max() + 1 - df_transformed['B'])

In [93]:

df_transformed.head()
```

Out[93]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.006300	2.944439	2.31	0	0.538	6.575	65.2	1.627278	0.693147	296	15.3	0.693147
1	0.026944	0.000000	7.07	0	0.469	6.421	78.9	1.786261	1.098612	242	17.8	0.693147
2	0.026924	0.000000	7.07	0	0.469	7.185	61.1	1.786261	1.098612	242	17.8	1.803359
3	0.031857	0.000000	2.18	0	0.458	6.998	45.8	1.954757	1.386294	222	18.7	1.451614
4	0.066770	0.000000	2.18	0	0.458	7.147	54.2	1.954757	1.386294	222	18.7	0.693147

Feature Encoding

we don't have to do this as values in "CHAS" columns are already 0 and 1 format

Feature Scaling

```
In [94]:
x = df transformed.drop(['MEDV'],axis=1)
y = df transformed['MEDV']
In [95]:
x.head()
Out[95]:
                 ZN INDUS CHAS
                                            RM AGE
                                                          DIS
                                                                   RAD TAX PTRATIO
      CRIM
                                    NOX
                                                                                             В
0 0.006300 2.944439
                                 0 0.538 6.575
                                                65.2 1.627278 0.693147
                                                                         296
                                                                                  15.3 0.693147
                        2.31
1 0.026944 0.000000
                        7.07
                                    0.469 6.421
                                                78.9
                                                      1.786261 1.098612
                                                                         242
                                                                                  17.8 0.693147
2 0.026924 0.000000
                        7.07
                                 0 0.469 7.185
                                                61.1
                                                      1.786261 1.098612
                                                                         242
                                                                                  17.8 1.803359
3 0.031857 0.000000
                        2.18
                                    0.458 6.998
                                                45.8
                                                     1.954757
                                                               1.386294
                                                                         222
                                                                                  18.7 1.451614
4 0.066770 0.000000
                        2.18
                                 0 0.458 7.147
                                                54.2 1.954757 1.386294
                                                                         222
                                                                                  18.7 0.693147
In [96]:
y.head()
Out[96]:
     24.0
1
     21.6
2
     34.7
3
     33.4
     36.2
Name: MEDV, dtype: float64
In [97]:
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = pd.DataFrame(scaler.fit_transform(x), columns=x.columns)
In [98]:
X scaled.head()
```

```
Out[98]:
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	
0	-0.786545	1.208551	-1.264745	-0.250812	-0.116444	0.402017	-0.103396	0.330157	-1.813638	-0.64
1	-0.765069	-0.599058	-0.570269	-0.250812	-0.718734	0.178124	0.384718	0.717063	-1.262664	-0.96
2	-0.765089	-0.599058	-0.570269	-0.250812	-0.718734	1.288868	-0.249474	0.717063	-1.262664	-0.96
3	-0.759957	-0.599058	-1.283711	-0.250812	-0.814752	1.016997	-0.794593	1.127119	-0.871742	-1.08
4	-0.723635	-0.599058	-1.283711	-0.250812	-0.814752	1.233621	-0.495312	1.127119	-0.871742	-1.08

```
In [99]:
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_s
```

5. Model Training and Evaluation

Model Building with Statsmodels

Full Model (All Features)

```
In [100]:
import statsmodels.api as sm
x state =sm.add constant(x)
In [101]:
x state, y = x state.align(y, join='inner', axis=0)
In [102]:
stat1 = sm.OLS(y, x state)
results1 = stat1.fit()
results1.summary()
Out[102]:
                    OLS Regression Results
     Dep. Variable:
                           MEDV
                                         R-squared:
                                                         0.772
           Model:
                             OLS
                                     Adj. R-squared:
                                                         0.766
          Method:
                                         F-statistic:
                                                         124.1
                     Least Squares
            Date: Fri, 08 Aug 2025
                                   Prob (F-statistic):
                                                     1.43e-143
            Time:
                                    Log-Likelihood:
                                                       -1407.0
                          19:26:40
 No. Observations:
                              490
                                               AIC:
                                                         2842.
     Df Residuals:
                              476
                                               BIC:
                                                         2901.
        Df Model:
                               13
```

nonrobust

Covariance Type:

	coef	std err	t	P> t	[0.025	0.975]
const	40.0164	5.034	7.950	0.000	30.125	49.908
CRIM	-0.1143	0.548	-0.209	0.835	-1.190	0.962
ZN	0.2792	0.184	1.521	0.129	-0.082	0.640
INDUS	0.0037	0.057	0.065	0.948	-0.108	0.116
CHAS	1.8624	0.864	2.156	0.032	0.165	3.560
NOX	-21.5301	3.733	-5.768	0.000	-28.865	-14.195
RM	4.8537	0.410	11.836	0.000	4.048	5.659
AGE	-0.0127	0.013	-1.007	0.314	-0.037	0.012
DIS	-8.3814	1.073	-7.810	0.000	-10.490	-6.273
RAD	2.0516	0.641	3.202	0.001	0.793	3.311
TAX	-0.0112	0.003	-3.625	0.000	-0.017	-0.005
PTRATIO	-0.8929	0.123	-7.240	0.000	-1.135	-0.651
В	-0.1134	0.149	-0.762	0.446	-0.406	0.179
LSTAT	-0.4840	0.052	-9.320	0.000	-0.586	-0.382
Om	nibus: 11	0.983	Durbin-	Watson:	: 1.1	28
Prob(Omr	nibus):	0.000 J	arque-Be	era (JB):	368.3	01
	Skew:	1.026	Р	rob(JB):	1.06e-	80
1.5		a - 4 a	_		4.00	

Notes:

Kurtosis:

6.719

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No. 1.28e+04

[2] The condition number is large, 1.28e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Reduced Model (Only Statistically Significant Features – p < 0.05)

```
In [103]:
new_x = x_state.drop(['CRIM','ZN','INDUS','AGE','B'],axis = 1)
new_x.head()
```

Out[103]:

	const	CHAS	NOX	RM	DIS	RAD	TAX	PTRATIO	LSTAT
0	1.0	0	0.538	6.575	1.627278	0.693147	296	15.3	4.98
1	1.0	0	0.469	6.421	1.786261	1.098612	242	17.8	9.14
2	1.0	0	0.469	7.185	1.786261	1.098612	242	17.8	4.03
3	1.0	0	0.458	6.998	1.954757	1.386294	222	18.7	2.94
4	1.0	0	0.458	7.147	1.954757	1.386294	222	18.7	5.33

```
In [104]:
```

```
stat2 = sm.OLS(y, new_x)
results2 = stat2.fit()
results2.summary()
```

Out[104]:

OLS Regression Results

Dep. Variable:	MEDV	R-squared:	0.770
Model:	OLS	Adj. R-squared:	0.766
Method:	Least Squares	F-statistic:	201.2
Date:	Fri, 08 Aug 2025	Prob (F-statistic):	3.63e-148
Time:	19:26:40	Log-Likelihood:	-1409.4
No. Observations:	490	AIC:	2837.
Df Residuals:	481	BIC:	2874.
Df Model:	8		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	40.6238	4.933	8.235	0.000	30.931	50.317
CHAS	1.7385	0.853	2.037	0.042	0.062	3.415
NOX	-23.3781	3.457	-6.762	0.000	-30.171	-16.585
RM	4.8227	0.389	12.384	0.000	4.058	5.588
DIS	-7.4037	0.874	-8.472	0.000	-9.121	-5.687
RAD	1.9914	0.540	3.686	0.000	0.930	3.053
TAX	-0.0108	0.003	-4.075	0.000	-0.016	-0.006
PTRATIO	-0.9770	0.110	-8.879	0.000	-1.193	-0.761
LSTAT	-0.5031	0.046	-10.883	0.000	-0.594	-0.412

1.125	Durbin-Watson:	108.751	Omnibus:
344.323	Jarque-Bera (JB):	0.000	Prob(Omnibus):
1.70e-75	Prob(JB):	1.021	Skew:
1.24e+04	Cond. No.	6.563	Kurtosis:

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.24e+04. This might indicate that there are strong multicollinearity or other numerical problems.

VIF-Based Model (Remove features with VIF > 5)

```
In [105]:
from statsmodels.stats.outliers influence import variance inflation factor
vif data = pd.DataFrame()
vif_data['Feature'] = x state.columns
vif data['VIF'] = [
     variance inflation factor(x state.values, i)
     for i in range(x state.shape[1])
1
print(vif data)
    Feature
                      VIF
              660.332039
0
      const
1
       CRIM
                7.220934
2
          ZN
                2.331247
3
      INDUS
                3.968059
4
       CHAS
                1.082510
5
         NOX
                4.765554
6
         RM
                2.073471
7
         AGE
                3.253687
8
         DIS
                5.067188
9
         RAD
                5.793705
10
        TAX
                6.845770
11
   PTRATIO
                1.858438
                1.301130
12
           В
13
      LSTAT
                3.501780
In [106]:
new_x = x_state.drop(['CRIM'], axis =1)
In [107]:
stat3 = sm.OLS(y, new x)
results3 = stat3.fit()
results3.summary()
Out[107]:
                    OLS Regression Results
    Dep. Variable:
                           MEDV
                                       R-squared:
                                                       0.772
           Model:
                            OLS
                                    Adj. R-squared:
                                                       0.766
         Method:
                    Least Squares
                                        F-statistic:
                                                       134.7
            Date: Fri, 08 Aug 2025 Prob (F-statistic): 1.23e-144
            Time:
                         19:26:40
                                   Log-Likelihood:
                                                     -1407.0
 No. Observations:
                             490
                                             AIC:
                                                       2840.
     Df Residuals:
                                             BIC:
                                                       2895.
                             477
        Df Model:
                              12
 Covariance Type:
                        nonrobust
              coef std err
                                   P>|t|
                                          [0.025]
                                                  0.975]
```

const	40.1956	4.955	8.112	0.000	30.459	49.932
ZN	0.2771	0.183	1.513	0.131	-0.083	0.637
INDUS	0.0047	0.057	0.083	0.934	-0.107	0.116
CHAS	1.8683	0.862	2.166	0.031	0.174	3.563
NOX	-21.6575	3.679	-5.887	0.000	-28.886	-14.429
RM	4.8514	0.410	11.846	0.000	4.047	5.656
AGE	-0.0126	0.013	-1.000	0.318	-0.037	0.012
DIS	-8.3450	1.058	-7.889	0.000	-10.423	-6.267
RAD	1.9868	0.560	3.548	0.000	0.887	3.087
TAX	-0.0114	0.003	-3.852	0.000	-0.017	-0.006
PTRATIO	-0.8932	0.123	-7.250	0.000	-1.135	-0.651
В	-0.1173	0.147	-0.796	0.427	-0.407	0.172
LSTAT	-0.4867	0.050	-9.675	0.000	-0.585	-0.388

1.128	Durbin-Watson:	110.033	Omnibus:
363.556	Jarque-Bera (JB):	0.000	Prob(Omnibus):
1.13e-79	Prob(JB):	1.018	Skew:
1.26e+04	Cond. No.	6.696	Kurtosis:

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.26e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [108]:
```

```
vif_data = pd.DataFrame()
vif_data['Feature'] = new_x.columns

vif_data['VIF'] = [
    variance_inflation_factor(new_x.values, i)
    for i in range(new_x.shape[1])
]
print(vif_data)
```

```
Feature
                     VIF
0
      const 641.133335
1
         ZN
               2.324302
2
      INDUS
               3.940057
3
       CHAS
               1.081354
4
        NOX
               4.637969
5
               2.072018
         RM
6
        AGE
               3.246709
7
               4.932772
        DIS
8
        RAD
               4.433999
```

```
9 TAX 6.279230
10 PTRATIO 1.858224
11 B 1.280264
12 LSTAT 3.291567
```

Model Building with sklearn Linear Regression

```
In [109]:
from sklearn.linear model import ElasticNet
from sklearn.model selection import GridSearchCV
from sklearn.metrics import mean squared error, r2 score
In [110]:
elastic net = ElasticNet()
In [111]:
param_grid = {
    'alpha': [0.01, 0.1, 1.0, 10.0, 100.0],
     'll ratio': [0.1, 0.3, 0.5, 0.7, 0.9, 1.0]
grid search = GridSearchCV(estimator=elastic net,
                            param grid=param grid,
                            scoring='neg_mean_squared_error',
                            cv=5.
                            n jobs=-1)
grid_search.fit(X_train, y_train)
print("Best Parameters:", grid search.best params )
best model = grid search.best estimator
y pred = best model.predict(X test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("Test MSE:", mse)
print("Test R2 Score:", r2)
Best Parameters: {'alpha': 0.01, 'l1 ratio': 0.1}
Test MSE: 15.629724406696106
Test R2 Score: 0.7803442899953164
```

Model Building with sklearn Random Forest Regressor

```
In [112]:
    from sklearn.ensemble import RandomForestRegressor

rf = RandomForestRegressor(random_state=42)

param_grid = {
        'n_estimators': [100, 200, 300],
        'max_depth': [None, 10, 20, 30],
        'min_samples_split': [2, 5, 10],
        'min_samples_leaf': [1, 2, 4],
```

```
'max features': ['auto', 'sqrt', 'log2']
}
grid search = GridSearchCV(estimator=rf,
                            param grid=param grid,
                            cv=5,
                            n jobs=-1,
                            scoring='r2',
                            verbose=1)
grid search.fit(X train, y train)
best rf = grid search.best estimator
print("Best Parameters:", grid_search.best_params_)
y pred = best rf.predict(X test)
mse = mean squared error(y test, y pred)
r2 = r2_score(y_test, y_pred)
print("Random Forest with GridSearch Results:")
print("Test MSE:", mse)
print("Test R2 Score:", r2)
Fitting 5 folds for each of 324 candidates, totalling 1620 fits
Best Parameters: {'max_depth': None, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min
samples split': 2, 'n estimators': 200}
Random Forest with GridSearch Results:
Test MSE: 8.79938058418366
Test R<sup>2</sup> Score: 0.8763360031484482
In [113]:
importances = best_rf.feature_importances_
feature names = X train.columns
feat imp = pd.Series(importances, index=feature names).sort values(ascending=False)
feat imp
Out[113]:
RM
           0.289698
LSTAT
           0.252946
PTRATIO
           0.073926
INDUS
           0.072950
           0.063911
CRIM
NOX
           0.055424
DIS
           0.053130
TAX
           0.043558
           0.035192
AGE
В
           0.025056
RAD
           0.015712
ZN
           0.014440
CHAS
           0.004058
dtype: float64
In [114]:
low importance = ['CHAS', 'ZN', 'RAD']
X_train_reduced = X_train.drop(columns=low_importance)
X test reduced = X test.drop(columns=low importance)
best rf.fit(X train reduced, y train)
```

```
y pred = best rf.predict(X test reduced)
from sklearn.metrics import r2 score
print("R2:", r2 score(y test, y pred))
print('MSE', mean squared error(y test, y pred))
R2: 0.8693199890669581
MSF 9.298608974489792
In [ ]:
In [ ]:
```


Boston Housing Price Prediction

An end-to-end **Data Science Regression Project** built to predict housing prices using machine learning and statistical modeling. This project covers the complete data science pipeline — from EDA and preprocessing to model building, hyperparameter tuning, and evaluation — using the well-known **Boston Housing Dataset.**

Project Highlights

- Hands-on implementation of both Statistical Models and Machine Learning Algorithms
- Real-world Data Preprocessing Techniques including outlier detection using LOF
- ▼ Thorough Exploratory Data Analysis (EDA): Univariate, Bivariate, and Statistical Tests
- Performed Feature Engineering, Scaling, and Multicollinearity Check (VIF)
- Used Grid Search CV for Hyperparameter Tuning
- Compared model performance using MSE and R² Score
- Feature importance analysis from Random Forest

Table of Contents

- 1. Dataset Overview
- 2. Project Structure
- 3. Step-by-Step Workflow
- 4. Tools and Libraries
- 5. Results Summary
- · 6. Contact

1. Dataset Overview

The Boston Housing Dataset contains information collected by the U.S Census Service concerning housing in the area of Boston Mass.

Target Variable: MEDV (Median value of owner-occupied homes in \$1000s)

Features: 14 numerical and categorical predictors like RM (rooms), LSTAT (lower status population %),

CRIM (crime rate), etc.

2. Project Structure

- 1. Environment Setup and Data Overview
- 2. Univariate Analysis
- 3. Bivariate Analysis
- 4. Data Preprocessing
- 5. Model Training & Evaluation

3. Step-by-Step Workflow

Step 1: Environment Setup & Data Overview

- · Imported all essential libraries.
- Loaded the dataset and did initial data screening (.info(), .describe(), null check).

Step 2: Univariate Analysis

- Visualized distribution of features and the target using histograms and boxplots.
- Calculated and interpreted skewness and kurtosis to understand the shape of the distributions.

Step 3: Bivariate Analysis

- Created scatter plots between each numerical feature and the target variable to observe relationships.
- Generated **correlation heatmap** to identify strong and weak relationships.
- Performed statistical significance tests:
 - Pearson correlation for numerical vs numerical
 - T-test for binary categorical vs numerical

Step 4: Data Preprocessing

- No missing values were found.
- Detected **outliers** using **Local Outlier Factor** (**LOF**) and removed them.
- Scaled features using StandardScaler for linear models.

Step 5: Model Training & Evaluation

StatsModels (OLS)

Built a baseline regression model.

- · Removed statistically insignificant variables.
- Checked VIF values to reduce multicollinearity.

✓ Scikit-learn Linear Regression

- · Trained a model using scaled features.
- · Applied GridSearchCV to explore hyperparameters.

✓ Random Forest Regressor

- · Used ensemble technique to capture non-linearities.
- Tuned with GridSearchCV.
- Extracted **feature importances** for interpretation.

Evaluation Metrics

- Used R2 Score and Mean Squared Error (MSE) for model comparison.
- · Compared models on performance and interpretability.

4. Tools and Libraries

Tool	Purpose
Pandas	Data manipulation and wrangling
NumPy	Numerical operations
Matplotlib	Data visualization
Seaborn	Statistical plots
Scikit-learn	Machine learning models & tools
Statsmodels	Statistical modeling
SciPy	Hypothesis testing

🏁 5. Results Summary

Model	R ² Score	MSE
StatsModels OLS	~0.77	-
Linear Regression (SKL)	~0.78	~15.63
Random Forest Regressor	~0.86	~9.30

- RM (average number of rooms per dwelling) and LSTAT (lower status population %) were the most influential features.
- Random Forest gave the best performance, but the Linear model offers more interpretability.

Made with | by Mit Trivedi

Email: trivedimit04@gmail.com

★ If you found this useful, give it a star and share it! ★

In []: In []: