SQL - Cours 2 Algèbre relationnelle

Ikbel GUIDARA

<u>ikbel.guidara@univ-lyon1.fr</u> 24/10/2017

Algèbre relationnelle

- Un langage formel de manipulation des relations
- Permet d'exprimer une requête sous forme d'une expression algébrique qui s'applique à un ensemble de relations

 Tout résultat d'une opération est une relation; peut donc être réutilisée en entrée d'un nouvel opérateur.

Opérateurs de l'algèbre relationnelle

- L'algèbre relationnelle se base sur un ensemble d'opérateurs (union, produit cartésien, projection, différence,...) qui à partir d'une ou deux relations produisent une nouvelle table temporaire.
- La combinaison de ces opérateurs permet de formuler des requêtes de consultation (interrogation) de la base de données.

Opérateurs	Opérateurs
Unaires	Binaires
Sélection/ RestrictionProjection	 Union Intersection Différence Produit cartésien Jointure Division

Opérateurs	Opérateurs
Ensemblistes	Spécifiques
UnionIntersectionDifférenceProduit cartésien	Sélection/ RestrictionProjectionJointureDivision

Opérateurs: Selection/restriction

BUT:

- Permet de "sélectionner" les tuples répondants à une condition C
- La restriction réduit la taille de la relation horizontalement

Contraintes d'utilisation:

- Unaire (donc une seule table)
- Spécifier une condition de sélection

- T= Selection(R, condition)
- \neg T= σ R(condition)

Opérateurs : Selection/restriction

Inscrit	NumElève	CodeUV	Note	
	2	BD	10	
	1	BD	20	
	2	Ю	17	
	3	Ю	18	

Inscrits en BD:

T = selection (Inscrit, codeUV='BD')

Т	NumElève	CodeUV	Note
	2	BD	10
	1	BD	20

Majors (note > 15) de BD :

T1=selection (Inscrit, coudeUV='BD'

et note>15)

	T1	NumElève	CodeUV	Note
T1 est une ta		1	BD	20
temporair	re			

Condition: (Cond_simple) et|ou (Cond_simple) et|ou (Cond_simple)

Cond_simple : Ai operateur_comparaison Bi Ai est un attribut de la table

Bi est un attribut de la table ou une valeur

Operateur comparaison : > < = !=

Opérateurs: Projection

- BUT:
 - Permet de "sélectionner" des attributs (colonnes)
 - La projection réduit la taille de la relation verticalement
- Contraintes d'utilisation:
 - Unaire
 - Spécifier une liste d'attributs
- Notations:
 - □ T= Projection(R, A1, A2, ...)
 - \Box T= π R(A1, A2, ...)

Opérateurs: Projection

Elève	Num	Nom	Adresse	Age
	1	Belaid	Maisel	20
	2	Millot	CROUS	20
	3	Meunier	Maisel	21

- Adresses des élèves :
- T = Projection(Elève, Adresse)

Code et nb heures des UV :

V = Projection(UV, Code, nbh)

V	Code	nbh
	Ю	45
	BD	15

Opérateurs : Combiner plusieurs opérateurs

- Il est possible de combiner plusieurs opérateurs les uns à la suite des autres
- Exemple:

Code des UV dont le nombre d'heures est > 20

T1 = Selection(UV, nbh>20)

T2 = Projection(T1, Code, nbh)

T2	Code	nbh
	Ю	45

Opérateurs : Union

- BUT:
 - Permet de fusionner 2 relations R et S

Contraintes d'utilisation:

- Binaire
- Même schéma

- \Box T= Union(R, S)
- □ T= R ∪ S
- T est une table de même schéma que R et S
- T contient toutes les lignes de R et celles de S sans redondances

Opérateurs : Union

Nom des personnes :

T = Union (Prof, Elève)

Opérateurs: Intersection

- BUT:
 - Permet d'obtenir l'ensemble des tuples appartenant à deux relations R et S

Contraintes d'utilisation:

- Binaire
- Même schéma

- □ T= Intersection(R, S)
- \Box T=R\cap S
- T est une table de même schéma que R et S
- □ T a pour contenu les tuples commun à R et S

Opérateurs : Intersection

Noms communs élèves-profs

T = Intersection(Prof, Elève)

Opérateurs: Différence

BUT:

Obtenir l'ensemble des tuples d'une relation qui ne figurent pas dans une autre

Contraintes d'utilisation:

- Binaire
- Même schéma
- Non commutatif

- □ T= Difference(R, S)
- □ T= R S
- T est une table de même schéma que R et S
- T contient les tuples de R qui n'apparaissent pas dans la table S

Opérateurs : Différence

Noms des élèves qui ne portent pas le nom d'un prof
 T = Difference (Elève, Prof)

Opérateurs : Produit Cartésien

• BUT:

 Ensemble de tous les tuples obtenus par concaténation de chaque tuple de R avec chaque tuple de S

Contraintes d'utilisation:

Binaire

- T= Produit(R, S)
- □ T= R X S
- T a comme schéma l'union des attributs de R et S
- Schéma du résultat:
 - R(a1, a2,, an), S(b1, b2, ..., bp)
 - T(a1, a2,, an, b1, b2, ..., bp)
 - Card (T) = Card (R) * Card (S)

Opérateurs : Produit Cartésien

Elève	Num	Nom	Adresse	Age
	1	Belaid	Maisel	20
	2	Millot	CROUS	20
	3	Meunier	Maisel	21

UV	Code	Nbh	Coord
	Ю	45	Lalevée
BD		15	Carpentier

Tous les élèves et tous les UV EleveUV = Produit (Eleve, UV)

				'	•		
EleveUV	Num	Nom	Adresse	Age	Code	Nbh	Coord
•	1	Belaid	Maisel	20	Ю	45	Lalevée
	2	Millot	CROUS	20	Ю	45	Lalevée
3	Meunier	Maisel	21	Ю	45	Lalevée	
	1	Belaid	Maisel	20	BD	15	Carpentier
	2	Millot	CROUS	20	BD	15	Carpentier
	3	Meunier	Maisel	21	BD	15	Carpentier

16 Cours SQL 24/10/2017 Ikbel Guidara

Opérateurs: Jointure

BUT:

 Permet d'établir le lien sémantique entre les relations lors d'un produit cartésien

Contraintes d'utilisation:

Binaire

- T= Jointure(R, S, condition)
- □ T= R ⋈ S Condition
- T a pour schéma le schéma du produit cartésien de R et S
- T contient les tuples du produit cartésien qui vérifient la condition de jointure

Opérateurs: Jointure

Elève.Num=Chambre.numElève

Tous les élèves qui ont une chambre

T = Jointure (Elève, Chambre, Elève.Num=Chambre.NumElève)

Т	Num	Nom	Adresse	Age	No	Prix	numElève
	2	Millot	CROUS	20	21	150	2
	3	Meunier	Maisel	21	10	200	3

- 1 tuple de Chambre → 1 tuple de résultat
- 1 tuple de Elève → 0 ou 1 tuple de résultat

Opérateurs: Jointure

			Insc
Inscrit	<u>NumElève</u>	CodeUV	Note
	2	BD	10
	1	BD	20
	2	Ю	17
	3	Ю	18

Toutes les informations sur les étudiants inscrits et leurs notes

S = Jointure (Eleve, Inscrit, Eleve.Num = Inscrit.NumEleve)

S	Num	Nom	Adresse	Age	NumElève	CodeUV	Note
	1	Belaid	Maisel	20	1	BD	20
	2	Millot	CROUS	20	2	Ю	17
	2	Millot	CROUS	20	2	BD	10
	3	Meunier	Maisel	21	3	Ю	18

Opérateurs : Jointure

			Insc	erit.NumElève	=Elève.N	lum			
Inscrit	NumElève	CodeUV	Note	1					
moone	<u> </u>	<u> </u>	11010		Elève	<u>Num</u>	Nom	Adresse	Age
	2	BD	10			1	Belaid	Maisel	20
	1	BD	20			2	Millot	CROUS	20
	2	Ю	17			3	Meunier	Maisel	21
	3	Ю	18						

Toutes les informations sur les étudiants inscrits et qui ont des notes de BD
 S = Jointure (Eleve, Inscrit, CodeUV='BD' et Eleve.Num=Inscrit.Num)

S	Num		Adresse	Age	CodeUV	Note
	1	Belaid	Maisel	20	BD	20
	2	Millot	CROUS	20	BD	10

Opérateurs: Division

BUT:

- Répondre aux requêtes de type « tous les »
- Exemple : les élèves inscrits à toutes les UV

Contraintes d'utilisation:

- Binaire
- Le schéma de S est inclus dans le schéma de R
- R(a1, a2,, an, b1, b2, ..., bp), S(b1, b2, ..., bp)

- T= Divison(R, S)
- T=R÷S
- T a pour schéma les attributs (a1, a2, ..., an) donc les attributs de R qui ne sont pas dans S
- Les lignes de T sont des lignes qui combinées à n'importe quelle ligne de S produiront toujours une ligne dans R

Opérateurs: Division

Quels sont les élèves inscrits à toutes les UVs ?

$$T = Division (R,S)$$

Opérateurs: Division

Inscrit	NumElève	CodeUV	Note	
	2	BD	10	
	1	BD	20	
	2	Ю	17	
	3	Ю	18	

R=Projection(Inscrit, NumEleve, CodeUV)

R	NumElève	CodeUV
	2	BD
	1	BD
	2	Ю
	3	Ю

S = Projection(UV, CodeUV)

T = Division (R,S)

Res NumElève 2

Renommage

BUT:

Renommer des noms d'attributs pour les besoins de certaines requêtes

Contraintes d'utilisation:

- UnaireS(b1, b2, ..., bn)
- Notations:
 - T = RENOMMER(S, b1, a1, b5, a2)
 - Les attributs b1 et b5 sont renommés en a1 et a2 respectivement dans la nouvelle table temporaire T

Exemple

- S (Num, Nom, prenom, courriel)
- T1 = Renommer (S, Num, Numéro, courriel, email)
- La table T1(Numéro, Nom, prenom, email)
- Le contenu de T1 est le même que celui de S

Bilan : sémantique et notations des opérateurs

Opérateur	Sémantique	Notation textuelle
Selection/ Restriction	« Sélectionner » des tuples	T=Selection(R, conditions)
Projection	« Sélectionner » des attributs	T=Projection(R, A1;)
Union	Fusionner les extensions de 2 relations	T = Union(R, S)
Intersection	Obtenir l'ensemble des tuples communs à deux relations	T = Intersection (R, S)
Différence	Tuples d'une relation qui ne figurent pas dans une autre	T = Difference (R, S)
Produit cartésien	Concaténer chaque tuple de R avec chaque tuple de S	T = Produit(R, S)
Jointure	Etablir le lien sémantique entre les relations	T = Jointure (R, S)
Division	Répondre aux requêtes de type « tous les »	T = Division(R, S)