Algebra 2

Michal Vaner

24. února 2010

1 Dělitelnost

Řekneme, že $S(\cdot, 1)$ je **komutativní monoid s krácením**, je-li · komutativní a asociativní a funguje tam krácení: $\forall a, b, c \in S; a \cdot b = a \cdot c \rightarrow b = c$.

V $S(\cdot,1)$ řekneme, že a **dělí** b $(a \backslash b),$ $a,b \in S,$ jestliže $\exists c \in S; b = a \cdot c.$

a je **asociováno** s b (a||b), pokud $a \setminus b \wedge b \setminus a$.

Poznámka:

Je-li $R(+,\cdot,-,0,1)$ obor integrity a $a,b\in R-\{0\}$, pak $a\backslash b$ (v $R-\{0\}$ $(\cdot,1)$) $\Leftrightarrow b\cdot R\subseteq a\cdot R.$ $a||b\Leftrightarrow a\cdot R=b\cdot R.$

Důkaz:

 $b = a \cdot c$, což znamená $b \cdot 1 \in a \cdot R$, $b \cdot r = a \cdot c \cdot r$.

 $b \cdot 1 \in b \cdot R \Rightarrow \exists c \in R; b = a \cdot c.$ Zřejmě $c \neq 0$.

Poznámka:

- $\forall a, b \in S \exists$ nejvýše jedno $c \in S; a = b \cdot c$
- $\forall a, b \in S; a | | b \Leftrightarrow \exists u \in S \text{ invertibiln} i; a = b \cdot u$
- \parallel je kongruence na S.
- $S/||(\cdot,[1]_{||})$ je opět komutativní monoid s krácením, na němž relace "dělí" tvoří uspořádání.

 $a, b, c, d, a_1, \ldots, a_n \in S$. Řekneme, že c je **největší společný dělitel** prvků a_1, \ldots, a_n (c je $NSD(a_1, \ldots, a_n)$), $c \setminus a_i \wedge (d \setminus a_i \Rightarrow d \setminus c)$.

O prvku c řekneme, že je **prvočinitel**, jestliže není invertibilní a platí $c \setminus (a \cdot b) \Rightarrow c \setminus a \vee c \setminus b$.

Řekneme, že c je **nerozložitelný** (ireducibilní), jestliže není invertibilní a platí $c = a \cdot b \Rightarrow c||a \vee c||b$.

Poznámka:

 $a, b, c, d, e \in S$.

- Nechť d je NSD(a,b) a e je $NSD(a \cdot c, b \cdot c) \Rightarrow d \cdot c || e$ (pokud oba dělitelé existují).
- Nechť 1 je NSD(a,b) a nechť $a \setminus b \cdot c$. Pokud existuje $NSD(a \cdot c, b \cdot c) \Rightarrow a \setminus c$.

 $S(\cdot, 1)$ je komutotivní monoid s krácením.

Poznámka:

Každý prvočinitel je ireducibilní. Pokud $\forall a, b \exists NSD(a, b) \Rightarrow \text{každý ireducibilní prvek je prvočinitel}.$

Důkaz:

Nechť p je prvočinitel. $p = a \cdot b, a, b \in S$. $a \setminus p, b \setminus p$. $p \setminus a \cdot b \Rightarrow p \setminus a(p||a) \lor p \setminus b(p||b)$.

pireducibilní. $p\backslash a\cdot b,$ nechť $p\not \wedge a.$ Existuje n je $NSD(p,a). p=n\cdot x,$ je ireducibilní, pak $p||n\vee p||x.$ Dle předpokladu $p\not \wedge a,$ tedy p||x. n je invertibilní, tedy 1.

Existuje největší společný dělitel $NSD(p \cdot b, a \cdot b)$. Tedy $p \setminus b$.

Věta:

Nechť každý ireducibilní prvek $S(\cdot,1)$ je prvočinitelem. Nechť p_1,\ldots,p_n a $q_1,\ldots,q_m\in S$ posloupnosti ireducibilních prvků, pro něž platí, že součuin $\prod_{i=1}^n p_i ||\prod_{i=1}^m q_i|$. Potom n=m a existuje bijekce σ mezi posloupnostmi takové, že $p_i||q_{\sigma(i)}$.

Důkaz:

Indukcí dle n. n = 1 je zřejmý.

Je-li $R(+,\cdot,-,0,1)$ obor integrity, pak jeho NSD, ireducibilní prvky, prvočinitele, invertibilní prvky jsou definovány jako totéž na $R - \{0\}$ $(\cdot,1)$.

Obor integrity $R(+,\cdot,-,0,1)$, v němž jsou všechny ideály hlavní, tj. tvaru $aR = \{a \cdot r; r \in R\}$. Pak mu říkáme **Obor integrity hlavních ideálů**.

Poznámka:

Je-li R obor integrity hlavních ideálů a $a_1, \ldots, a_n \in R$, pak existují $u_1, \ldots, u_n \in R$ takový, že $\sum_{i=1}^n a_i \cdot u_i$ je $NSD(a_1, \ldots, a_n)$.

Věta:

Nechť R je obor integrity hlavních ideálů. Každý ireducibilní prvek je prvočinitelem. Pro každý nenulový neinvertibilní prvek $a \in R$ existuje posloupnost ireducibilních prvků p_1, \ldots, p_n takové, že $a = \prod_{i=1}^n$. Jestliže $a = \prod_{i=1}^m q_i$, pak m = n a \exists bijekce $\sigma; p_i || r_{\sigma(i)}$.

2 Okruhy polynomů

Mějme $R(+,\cdot,-,0,1)$ okruh, $M(\cdot,e)$ monoid. $R[M]=\{p:M\to R; |\{m\in M; p(m)\neq 0\}|<\infty\}$ – všechna zobrazení z monoidu do okruhu a jen konečně mnoho jich je nenulových.

$$p = \sum_{m \in M} p(m) \cdot m$$

Členy, kde p(m) = 0 můžeme vynechat.

Nulární prvek je p(?)=0. Jednička $1(e)=1, 1(?\neq e)=0$. $p,q\in R[M]$.

$$\begin{array}{rcl} -p & = & \displaystyle \sum_{m \in M} -p(m) \cdot m \\ \\ p+q & = & \displaystyle \sum_{m \in M} \left(p\left(m\right) + q\left(m\right) \right) \cdot m \\ \\ p \cdot q & = & \displaystyle \sum_{m \in M} \left(\displaystyle \sum_{\substack{a,b \in M \\ a,b = m}} p\left(a\right) \cdot q\left(b\right) \right) \cdot m \end{array}$$

Poznámka:

Nechť $R(+,\cdot,-,0,1)$ a $M(\cdot,e)$ monoid.

- Množina $R[M](+,\cdot,-,0,1)$ je okruh, jsou-li R a M komutativní, je i R[M] komutativní.
- Zobrazení $i:R\to R[M]$, kde $i(r)=r\cdot e$ je prostý okruhový homomorfizmus.
- Zobrazení $v:M\to R[M],$ kde $v(m)=1\cdot m$ je prostý monoidový homomorfizmus.

Důkaz:

R[M](+,-,0) je komutativní grupa. Jde přímo z definice. Také $R[M](\cdot,1)$ musí být monoid. Násobení je podezřelé, je třeba dokázat korektnost – ty sumy musí být konečné, stačí vynechat nulové prvky. Nakonec distributivitu.

Obě zobrazení jsou zřejmě prostá, stačí ověřit homomorfizmy.

R[M] nazýváme **monoidový okruh**. Uvážíme-li monoid $\mathbb{N}_0(+,0)$, pak $R[\mathbb{N}_0]$ budeme nazývat okruhem **polynomů jedné neurčité** a budeme často psát R[x].

Poznámka:

Nechť $S(+,\cdot,-,0,1)$ je okruh. R nějaký jeho podokruh, $\alpha \in S$. Potom zobrazení $\gamma \alpha : R[x] \to S$ daná přepisem

$$\gamma \alpha (\sum_{n \in \mathbb{N}_0} a_n \times x^n) = \sum_{n \in \mathbb{N}_0} a_n \cdot \alpha^n$$

je homomorfizmus. (Toto znamená dosazení)

Důkaz:

Přímočaré ověření slučitelností s $(+,-,0,\cdot,1)$. Buď $R(+,\cdot,-,0,1)$ okruh a $p \in R[x]$. Je-li $p \neq 0$, nazvu číslo $p^{\circ} := \max\{n; p(n) \neq 0\}$ **stupeň polynomu** p.

Stupeň $0^{\circ} = -1$.

Poznámka:

Buď $R(+,\cdot,-,0,1)$ (komutativní) okruh a $p,q\in R\left[x\right]$. Pak platí:

1.

$$p^{\circ} = (-p)^{\circ}$$

2.

$$(p+q)^{\circ} \leq \max\{p^{\circ}, q^{\circ}\}$$

3. je-li $p, q \neq 0$, pak

$$(p \cdot q)^{\circ} \le p^{\circ} + q^{\circ}$$

4. Jestliže R je obor integrity a p a q jsou nenulové.

$$(p \cdot q)^{\circ} = p^{\circ} + q^{\circ}$$

- 5. R je obor integrity $\Leftrightarrow R[x]$ je obor integrity.
- 6. p je invertibilní prvek a R je obor integrity $\Leftrightarrow p^{\circ} = 0 \land p(0)$ je invertibilní v R.

Důkaz:

- 1. Zřejmé.
- 2. Sčítáme po složkách, ze dvou nulových nikdy nemůže vyjít nenula.
- 3. Nechť jsou oba stupně nenulové a n > součet stupňů. Je zřejmé, že koeficient vyjde nulový.

- 4. Je-li R obor integrity, pak nejvyšší koeficient je nenulový, je to jen jeden součin, který je nenulový (součin dvou nenulových).
- 5. Obě implikace. Když R je obor integrity, tak $p, q \neq 0$, součet jejich stupňů je větší než -1. Opačně. Vezmu všechny polynomy stupně 0, ty zobrazím na prvky R. Pokud jsou nenulové, jejich součin není 0 v polynomech, tedy ani v R.
- 6. Nechť p je invertibilní. Tedy $\exists q \in R \, [x] \, ; p \cdot q = 1. \, 1^{\circ} = 0, p, q \neq 0$, tedy stupně obou musí být 0. (Vynecháváme triviální případy, kdy 0 = 1) Zbytek plyne z homomorfizmem všech polynumů stupně $0 \, \mathrm{s} \, R$. Na druhou stranu je zřejmé.

O dělení se zbytkem:

Buď $R(+,\cdot,-,0,1)$ obor integrity. $a,b\in R[x],b\neq 0$ a všechny b_n jsou invertibilní v R.

Potom existují polynomy $q, r \in R[x]$ atkové, že $a = q \cdot b + r \wedge r^{\circ} < b^{\circ}$.

Důkaz:

Pokud stupeň a je menší, než stupeň b, pak položím q=0 a r=a. Ostatní indukcí postupným dělením.

Buď $R(+,\cdot,-,0,1)$ obor integrity a necť existuje $\mu:R\to\mathbb{N}\cup\{0,-1\}$ tak, že platí $\forall a,b\in R,b\neq 0$:

1.
$$a|b:\mu(a) \le \mu(b)$$

2.
$$\exists q, r : a = q \cdot b + r; \mu(r) < \mu(b)$$

Pak R nazvu euklidovským oborem integrity a funkce μ je euklidovská funkce.

Poznámka:

Každý euklidovský obor integrity je obor integrity hlavních ideálů.

Důkaz:

Buď $R(+,\cdot,-,0,1)$ euklidovský obor integrity a μ je příslušná euklidovská funkce. $I=\{0\}: I=0R$. Když I je nenulový, tak si vezmu nejmenší takové I.

Euklidův algoritmus:

Nechť $R(+,\cdot,-,0,1)$ je Euklidův obor integrity s euklidovskou normou μ a $a_0,a_1\neq 0$.

Definujme posloupnost $\{a_i\}$ a $\{q_i\}$. Jestliže $a_i \not| a_{i-1}$, pak vezmu q_i a a_{i+1} : $a_{i-1} = a_i \cdot q_i + a_{i+1}$, kde $\mu(a_{i+1}) < \mu(a_i)$.

Jestliže $a_i|a_{i-1}$, posléze $n=a_i$ a proces končí.

Důkaz:

Proces končí po konečně mnoha krocích a a_n je $NSD(a_0, a_1)$.

Definujme dvojici posloupností $\{x_i\}$ a $\{y_i\}$, $x_0 = y_1 = 1, x_1 = y_0 = 0, x_{i+1} = x_{i-1} - x_i, y_{i+1} = y_{i-1} - y_i \cdot q_i$. Potom $x_n \cdot a_0 + y_n \cdot a_1$ je $NSD(a_0, a_1)$.

Důkaz:

NSD existuje, neboť je to obor integrity hlavních ideálů.

$$NSD(a_{i}, a_{i} + 1)$$
 je $NSD(a_{i-1}, a_{i})$.

Dále indukcí.

Buď S okruh, R podokruh S a $\alpha \in S$. Řekneme, že α je **kořenem polynomu** $p \in R[x]$, jestliže $j\alpha(P) = 0$.

Kořenovým činitelem nazveme polynom $x - \alpha := (-\alpha \cdot x^0 + 1 \cdot x^1)$.

Řekneme, že polynom $p \in R[x]$ se **rozkládá** na kořenové činitele, jestliže $\exists a, \alpha_1, \ldots \alpha_n \in R$ a platí, že $p = a \cdot (x - \alpha_1) \cdot (x - \alpha_2) \cdot \ldots \cdot (x - a_n)$.

Poznámka:

 α je kořenem polynomu $p \Leftrightarrow (x - \alpha)|p$.

Buď $R(+,\cdot,-,0,1)$ komutativní okruh, $\sum_{n\in\mathbb{N}_0}p_nx^n\in R[x]$. Definujme formální derivaci:

$$('): R[x] \to R[x]$$

 $(\sum p_n x^n)' := \sum (n+1)p_{n+1} x^n$

Řekneme, že $\alpha \in R$ je *vícenásobný kořen* polynomu p, jestliže $(x - \alpha)^2 | p$.

Poznámka:

Buď R komutativní okruh a $p, q \in R[x]$ a $c \in R$. Pak platí:

- $\bullet \ (p+q)' = p' + q'$
- $\bullet \ (c \cdot p)' = c \cdot p'$
- $(p \cdot q)' = p' \cdot q + p \cdot q'$

Důkaz:

Viz analýza.

Poznámka:

Buď p polynom nad R. α je vícenásobný kořen $p \Leftrightarrow \alpha$ je kořen p' i p.

Důsledek:

Nechť $R(+,\cdot,-,0,1)$ je obor integrity, $p \in R[x]$. Jestliže 1 je NSD(p,p'), potom p nemá vícenásobný kořen.

Důsledek:

Nechť $R(+,\cdot,-,0,1)$ je obor integrity, jehož charakteristika nedělí číslo $n \in \mathbb{N}$. Potom polynom x^n-1 a $x^{n+1}-x$ nemají vícenásobný kořen.

(Nesmí to být triviální okruh.)

Důkaz:

Zkusí se zderivovat.

Věta

Každá konečná podgrupa grupy $T-\left\{ 0\right\} \left(\cdot,^{-1},1\right)$ tělesa $T(+,\cdot,-,0,1)$ je cyklická.

Důkaz:

G buď nějaká konečná podgrupa této grupy. n := |G|.

(viz minulý semestr) $\forall k | n \exists ! \text{ podgrupa } K \text{ grupy } \mathbb{Z}_n.$

K je také cyklická, tedy izomorfní s \mathbb{Z}_k .

v $\mathbb{Z}_n \exists$ právě $\varphi(k)$ prvků, které generují.

$$\forall g \in G; \langle g \rangle / n$$

 $\forall k/n \text{ označíme } t_n := |\{g \in G; |\langle g \rangle| = k\}|.$

TODO: ?

3 Pořadová a rozkladová tělesa

Mějme okruhy $R(+,\cdot,-,0,1)$ a $S(+,\cdot,-,0,1)$ a $f:R\to S$ jejich homomorfizmus. Definujme zobrazení $f_x:R[x]\to S[x]$ přepisem $f_x\left(\sum a_ix^i\right)=\sum f\left(a_i\right)x^i$.

Poznámka:

Buď R, S a T okruhy a $f: R \to S, g: S \to T$ okruhové homomorfizmy. Pak platí:

- 1. f_x je homomorfizmus okruhů R[x] a S[x].
- 2. $(q.f)_x = q_x.f_x$
- 3. f_x je izomorfizmus $\Leftrightarrow f$ je izomorfizmus.

4. Pokud napřed provedu zobrazení a pak dosadím je totéž, jako když dosadím a pak převedu.

Poznámka:

Nechť $T(+,\cdot,-,0,1)$ je komutativní těleso a $u \in T$ je polynom stupně alespoň 1. Pak faktor T[x]/uT[x] je komutativní těleso $\Leftrightarrow u$ je ireducibilní polynom.

Poznámka:

Buď $T(+,\cdot,-,0,1)$ těleso a $u \in T[x]$. Pak zobrazení $\mu: T \to T[x]/uT[x]$ dané předpisem $t = [tx^0]$ je prostý okruhový homomorfizmus.

Značení: $T(+,\cdot,-,0,1)$ komutativní těleso, $u \in T[x]$ ireducibilní polynom. $T[x]/u \cdot T[x] = T[x]/\sim_u = (T[x])_u$. $a \sim_u b \equiv b - a \in T[x] \equiv u|b - a$. $T \to (T[x])_u$, $t \to t \cdot x^{-1} + u \cdot T[x] = [t \cdot x^{-1}]_{\sim u}$.

Věta:

Nechť T je komutativní těleso, $u \in T[y]$, $u = \sum a_i y^i$ je ireducibilní, potom má polynom $\sum a_i x^i \in T[x]$ má kořen v tělese $(T[y])_u$.

Důkaz:

 $1 \cdot y^1 + u \cdot T[y]$ je kořen polynomu. Dokáže se rozepsáním a dosazením.

Nechť $U(+,\cdot,-,0,1)$ je komutativní těleso. Řekneme, že $T \subseteq U$ je **podtěleso**, je-li to podokruh $U(+,\cdot,-,0,1)$ a $T-\{0\}$ je podgrupa $U-\{0\}$ $(\cdot,^{-1},1)$. Naopak, U je **nadtěleso** T.

Důsledek:

Nechť $T(+,\cdot,-,0,1)$ je komutativní těleso a $a \in T[x]$ stupně alespoň 1.

- $\exists U$ nadtěleso U, nad nímž má u kořen.
- $\exists V$ nadtěleso T, nad nímž se u rozkládá na kořenové činitele, tedy mohu ho napsat jako součin polynomů stupně 1.

Důkaz:

T[x] je obor integrity hlavních ideálů. Vezmu libovolný ireducibilní polynom (dle nějakého tvrzení existuje) na něj pustím předchozí větu.

Druhou část vezmeme indukcí podle stupně u. Najdeme kořen (nad U) a vydělíme, oba polynomy jsou z U, v má o 1 menší stupeň. Rozšíříme pro $U \subset V$, takže můžeme pokračovat.

Poznámka:

Všechna komutativní podtělesa libovolného komutativního tělesa tvoří uzávěrový systém. Což znamená, že je to úplný svaz a průsek je průnik, tedy průnik dvou podtěles je opět podtěleso.

Důkaz:

Podokruhy tvoří uzávěrový systém. Stejně tak i podgrupy.

Následně uvažujme tělesa $U(+,\cdot,-,0,1)$ a jeho podtěleso $T\subseteq U$, případně $V\supseteq U$ je nadtěleso U.

Nechť $S \subseteq U$ těleso. T[S] bude nejmenší podokruh obsahující množinu $T \cup S$. Obdobně T(S) je nejmenší podtěleso obsahující $T \cup S$.

Jestliže $S = \{\alpha_1, \ldots, \alpha_n\}$, pak $T[\alpha_1, \ldots, \alpha_n] := T[S], T(\alpha_1, \ldots, \alpha_n) := T(S)$.

Poznámka:

 $T \subseteq U$ podtěleso. $\alpha \in U$. Potom $T[\alpha] = \{p(\alpha)|p \in T[x]\}$ – dosadím α do všech polynomů. $T[S] \subseteq T(S)$.

Důkaz:

Podtěleso – podokruh je zřejmý z definice.

To první je okruhový homomorfizmus. Homomorfní zobrazení podalgebry je zase podalgebry.

 $T \subseteq U, p \in T[x]$. U je **kořenové** (**rozkladové**) **nadtěleso** polynomu p, existuje-li kořen $\alpha \in U$ (kořeny $\alpha_1, \ldots, \alpha_n$)tak, že $p = a \cdot (x - \alpha_1) \cdot \ldots \cdot (x - \alpha_n)$ a pro žádné menší U to neplatí.

Věta:

- \exists kartézké nadtěleso p nad T.
- \exists rozkaldové nadtěleso p nad T.

Důkaz:

Najít nějaké těleso, nad kterým to lze rozložit, je možné. Pak vezmeme nejmenší podtěleso obsahující všechny kořeny.

 $T \subseteq U, \alpha \in U$. Řekneme, že α je **algebraický nad** T, existuje-li polynom $p \in T[x]$ tak, že $p(\alpha) = 0$. V opačném případě nazveme α **transcendentní**.

Buď $m \in T[x], m^{\circ} \geq 0$. Řekneme, že m je **monický**, jestliže $a_{m^{\circ}} = 1$.

Věta:

 $T \subseteq U, \alpha \in U$ je algebraický nad T. Potom $\exists !$ monický polynom $m \in T[x]$ takový, že $\forall p \in T[x] - \{0\}; p(\alpha) = 0 \Leftrightarrow m/p$.

Nechť m je ireducibilní. Potom $T[\alpha] = T(\alpha)$ a $(T[x])_m \cong T(\alpha)$.

Důkaz:

Vezmu všechny polynomy I, kterých je α kořenem. I je uzavřené na součty,

rozdíly, nulu obsahuje, je to tedy podgrupa. Stejně tak je uzavřené na součiny, tedy je ideálem. Je neprázdný, protože α je algebraický.

T[x] je obor integrity hlavních ideálů, $\exists m; m \cdot T[x] = I$, existuje právě jeden monický (všechny generátory jsou asociovány).

Pokud je m ireducibilní, pak pokud $m = a \cdot b$, pak $m|a \vee m|b$.

Dosazení je homomorfizmus okruhů.

Poznámka:

Nechť $T_1 \subseteq U_1, T_2 \subseteq U_2$ jsou tělesa, $\alpha \in U_1, \beta \in U_2$ algebraické prvky nad T_1, T_2 . $f: T_1 \to T_2$ je izomorfizmus.

Potom \exists také izomorfizmus $g: T_1(\alpha) \to T_2(\beta)$, že $\forall t \in T_1, f(t) = g(t)$ a $g(\alpha) = \beta \Leftrightarrow f_x(m_\alpha) = m_\beta$.

Důkaz:

 $f_x: T_1[x] \to T_2[x]$ je také izomorfizmus. $f_x(m_\alpha)$ je ireducibilní, protože m_α je ireducibilní (minimální polynom). $f_x(m_\alpha)$ je monický $(g: T_1(\alpha) \to T_2(\beta))$. f = g na T_1 . g(0) = 0, β je kořenem $f_x(m_\alpha)$, $m_\beta|f_x(m_\alpha)$.

Je ireducibilní, tedy jsou asociované.

A zpátky:

$$T_{1}(\alpha) = T_{1} [x] \cong T [x] / m_{\alpha} T [x]$$

$$p(\alpha) \Leftrightarrow p + mT [x]$$

$$T_{1}(a) \cong (T_{1} [x])_{m_{\alpha}} \cong (T_{2} [x])_{m_{\beta}} \cong T_{2}(\beta)$$

$$p(\alpha) \to p + m_{\alpha} T_{1} [x] \to f_{x}(p) \to m_{\alpha} T_{2} [x] \to j\beta (f_{x} (p))$$
To je izomorfizmus
$$tx^{0} \in T_{1} [x]$$

$$g(t) = f(t)$$

$$f_{x}(tx^{0}) = f(t)x^{0}$$

Věta:

Nechť $T_1 \subseteq U_1, T_2 \subseteq U_2$ jsou komutativní tělesa, $p \in T_1[x], U_1$ buď rozkladové těleso polynomu p nad T_1 a U_2 rozkladové těleso $f_x(p)$ nad T_2 , kde $f: T_1 \to T_2$ je izomorfizmus. Jsou-li $\alpha_1, \ldots, \alpha_n \in U_1, \beta_1, \ldots, \beta_m \in U_2$ všechny kořeny p, resp $f_x(p)$ (násobně), pak n = m a existuje izomorfizmus $g: U_1 \to U_2$ takový, že $\exists \sigma$ permutace, $g \upharpoonright T_1 = f$ a $\forall i \in 1..n; g(\alpha_i) = \beta_{\sigma_i}$.

Důkaz:

Indukcí dle n.

n=1 je triviální, p=ax-b, $f_x(p)=f(a)x-f(b)$, oba stupně 1 a mají zjevně jeden kořen a g=f.

Předpoklad platí pro všechna tělesa a polynomy stupně až n-1. Mám polynom p stupně n. Vezmu $m_{\alpha_1} \in T_1[x]$, ten dělí p, tedy $f_x(m_{\alpha_1})$ dělí $f_x(p)$. $f_x(p)$ je nad U_2 rozložitelný na dva polynomy, protože v $U_2[x]$ máme jednoznačný rozklad na ireducibilní prvky. Tedy v rozkladu $f_x(m_{\alpha_1})$, tak se v rozkladu se mohou vyskytovat pouze β_1, \ldots, β_n (až na asociovanost). BÚNO β_1 je kořenem monický ireducibilního (nad $T_2[x]$) polynomu $f_x(m_{\alpha_1})$. Dle minulého tvrzení $\exists h: T_1(\alpha_1) \to T_2(\beta_1)$ izomorfizmus. $p = (x - \alpha_1) \cdot u$, stupeň u < n, použiji indukční předpoklad.

$$\exists g: U_1 \to U_2, g \upharpoonright T_1(\alpha_1) = h, g(\alpha_i) = \beta_{\sigma_i}.$$

Nechť $T(+,\cdot,-,0,1)$ je komutativní těleso. Řekneme, že T je **algebraicky uzavřené**, jestliže každý neinvertibilní polynom $p \in T[x]$ má v T kořen. (Ekvivalentní, že ho lze rozložit)

Nechť U je nadtěleso tělesa T. Nazvu jej **algebraickým uzávěrem**, jestliže je algebraicky uzavřené a žádné $V, T \subseteq V \subseteq U$, pro které to platí, U = V.

Věta:

Každé těleso má algebraický uzávěr.

Důkaz:

Potřebuji axiom výběru (pro transfinitní indukci). T je komutativní těleso. Konstruujeme posloupnost nadtěles $T_1 \subseteq T_2 \subseteq T_3 \dots$ takových, že všechny polynomy z $T_i[x]$ stupně nejvýše i jsou rozložitelné v $T_{i+1}[x]$.

Nechť $T_1 = T$. Dále vyrábíme těleso o jedna větší. Vezmu si všechny polynomy nad T_1 . Seřadím si je (pomocí nějakého ordinálu a axiomu výběru). $T_{i,\alpha}$ je rozkladové nadtěleso polynomu p_{α} . Tyto pak sjednotím.

 $U = \bigcup_{i \in \mathbb{N}} T_i$. Nyní je třeba dokázat, že je algebraicky uzavřené. Vezmu si polynom, ten má nějaké koeficienty z některého tělesa T_i . Proto je rozložitelný v T_{i+1} , který ve sjednocení je.

4 Konečná komutativní tělesa

Poznámka:

Žádné konečné komutativní těleso není algebraicky uzavřené.

Důkaz

Vezmeme polynom $p = \prod_{t \in T} (x - t) + 1$, v libovolném bodě je roven 1.

Poznámka:

Algebraický uzávěr konečného komutativního tělesa je (nekonečný) spočetný.

Důkaz:

Konstrukce viz minulou kapitolu. Každé těleso je větší, ale konečné, takže

celkem dají spočetné číslo.

Poznámka:

Nechť T je komutativní těleso prvočíselné charakteristiky a $n \in \mathbb{N}$. Pak $Q = \{t \in T | t^{p^n} = t\}$ je podtěleso T.

Důkaz:

 $\varphi_p:T\to T, \varphi_p(t)=t^p$ je okruhový homomorfizmus. Složením n kopií tohoto homomorfizmu je opět homomorfizmus.

Stačí dokázat, že obsahuje 0,1 a z homomorfizmu uzavřenost operací.

Poznámka:

$$P = \{k \times 1 | k \in \mathbb{N}\} \subseteq T$$

Potom P podtěleso T izomorfní s \mathbb{Z}_p pro nějaké prvočíselné p a $|T| = |P|^n = p^n$.

Důkaz:

 $\varphi: \mathbb{Z} \to T$ je okruhový homomorfizmus.

Věta:

 $q \in \mathbb{N}$, existuje konečné komutativní těleso T o q prvcích $\Leftrightarrow \exists n \in \mathbb{N}$ a prvočíslo p, že $q = p^n$. Toto těleso je izomorfní rozkladovému nadtělesu polynomu $x^{p^n} - x$ nad tělesem \mathbb{Z}_p .

Důkaz:

Jedním směrem minulá poznámka.

Opačně: T buď rozkladové nadtěleso, $x^{p^n}-x$ nad Z_p . Dle předchozí poznámky je jeho charakteristika p. $Q=\left\{t\in T|t^{p^n}=t\right\}$, což jsou právě všechny kořeny polynomu $x^{p^n}-x$. $Z_p\subseteq Q=T$.

Důsledek:

V T existuje podtěleso o q prvcích $\Leftrightarrow q\backslash |T| \wedge (q-1)\backslash (|T|-1)$. Takové podtěleso je určeno jednoznačně.

Poznámka:

Nechť $k, n \in \mathbb{N}$ a p je prvočíslo. Pak $k \setminus n \Leftrightarrow p^k - 1 \setminus p^n - 1$.

Poznámka:

Je-li u ireducibilní polynom stupně k nad T, pak $u \setminus x^{|T|^k} - x$.

10.11:

Nechť T konečné komutativní těleso, $d \in \mathbb{N}$, $u \in T[x]$ je ireducibilní polynom stupně $k \in \mathbb{N}$, q = |T|. Pak je následující ekvivalentní:

1.
$$x^{q^k} - x/x^{q^d} - x \vee T[x]$$

2.
$$u/x^{q^d} - x \vee T[x]$$

3.
$$q^k - 1/q^d - 1 \vee \mathbb{Z}$$

4. k/d

Důkaz:

(3) \Leftrightarrow (4) $-q=p^n, p$ je prvočíslo, $n \in \mathbb{N}.$ $q^k-1=p^{nk}-1/p^{nd}-1=p^d-1 \Leftrightarrow nk/kd \Leftrightarrow k/d$

$$(1) \Rightarrow (2) - u/x^{q^x} - x$$
 dle předchozí poznámky, $x^{q^k} - x/x^{q^d} - x \Rightarrow u/x^{q^d} - x$.

 $(2)\Rightarrow (3)-U$ je těleso o $q^d=p^{n\cdot d}$ prvcích. $n/n\cdot d\Rightarrow \exists!$ (až na izomorfizmus) těleso $T\subseteq U, |T|=p^n$. Mohu ho ztotožnit s původním tělesem. $\forall \alpha\in U$ jsou kořenem $x^{q^d}-x=\prod_{\alpha\in U}(x-\alpha).\ u/x^{q^d}-x$ v $T[x],\ u$ lze chápat $\in U[x]$. TODO:

$$(3) \Rightarrow (1)$$
 – \exists tělesa $T \subseteq U \subseteq V, \ |T|=q, |U|=q^d, |V|=q^k.$ $x^{q^d}-x=(x^{q^k}-x)\cdot r+w, \ w^\circ < q^k.$

Důsledek:

Každý polynom $x^{q^d} - x$ je nad konečným tělesem o q prvcích součinem právě všech monických ireducibilních polynomů stupně k pro $\forall k/d$.

Důkaz:

(2) ⇔ (4) z minulé věty dokazuje, že jsou všechny dělitele.

Rozkladovým nadtělesem $x^{q^d} - x$ jsou všechny kořeny jednonásobné.

 $f \in T[x]$, T je komutativní těleso. Řekneme, že f je **bez čtverců**, jestliže g^2/f pro $g \in T[x] \Rightarrow g^\circ = 0$. Rozklad $f = \prod_{i \in \mathbb{N}} f_i^i$ nazveme **bezčtvercový rozklad**, jestliže f_i jsou bezčtvercové polynomy.

Poznámka:

Každý polynom $f \in T[x]$, kde T je komutativní těleso, má bezčtvercový rozklad.

Poznámka:

Polynom $f \in T[x]$ je bez čtverců právě tehdy, když f, f' jsou nesoudělné.

10.16:

Nechť $f\in T\left[x\right]$ je bez
čtvercový monický polynom, kde T je nějaké konečné těleso.
 $V=T\left[x\right]/f\cdot T\left[x\right]$ a $W=\left\{ \left[u\right]_{f}\in V|\left[u\right]_{f}^{\left|T\right|}=\left[u\right]\right\} .$

V je vektorový prostor nad T,W je jeho podprostor. Je-li f součinem právě k ireducibilních polynomů. Je-li $[u]_f \in W, 1 \in u^\circ < f^\circ$, pak $f = \Pi_{t \in T} nsd(u-s,f)$. Jsou-li $[u_1]_f,\ldots,[u_k]_f$ báze W a f_1,f_2 dva neasociované ireducibilní faktory f, $(f_1,f_2|f)$, pak $\exists i \leq k$ a $t \in T: f_1|w_i-t,f_2 \not|(w_i-t)$.

5 Booleovy algebry

Nechť $S(\wedge, \vee)$ je svaz. Řekneme, že je **distributivní**, platí-li $\forall a, b, c \in S; a \vee (b \wedge c) = (a \vee b) \wedge (a \vee b)$.

Poznámka:

Je-li $S(\land, \lor)$ distributivní svaz \Leftrightarrow i druhá distributivita $(\forall a, b, c; a \land (b \lor c) = (a \land b) \lor (a \land c))$.

Důkaz:

Stačí jedna implikace, pro druhé stačí vzít opačný svaz.

Nechť je tedy svaz distributivní.

$$(a \wedge b) \vee (a \wedge c) = ((a \wedge b) \vee a) \wedge ((a \wedge b) \vee c) = a \wedge ((a \vee c) \wedge (b \vee c)) = a \wedge (b \vee c).$$

Poznámka:

Každý distributivní svaz je modulární.

Nechť $S(\wedge, \vee)$ je svaz, 0 jeho nejmenší, 1 jeho největší prvek. Pak řekneme, že $a' \in S$ je **doplněk** (komplement) prvku a, jestliže $a \wedge a' = 0$, $a \vee a' = 1$.

Poznámka:

V distributivním svazu existuje pro každý prvek nejvýše jeden komplement.

 $S(\vee, \wedge, 0, 1, ')$ nazveme Booleovou algebrou, je-li $S(\wedge, \vee)$ distributivní svaz, 0 je nejmenší prvek, 1 je největší prvek a $': S \to S$ komplement.

Poznámka:

Je-li $S(\vee, \wedge, 0, 1, ')$ Booleova algebra, pak $\forall a, b \in S$ platí:

- (a')' = a
- $(a \wedge b)' = a' \vee b'$
- $(a \lor b)' = a' \land b'$
- 0' = 1, 1' = 0.

11.5:

Nechť $S(\vee, \wedge, 0, 1, ')$ je konečná Booleova algebra, A buď množina všech atomů $S(\wedge, \vee)$. Potom $a \in A \equiv a \neq 0, b \leq a, b \neq 0 \Rightarrow b = a$.

Okruhu $R(+,\cdot,-,0,1)$ budeme říkat **Booleův okruh**, jestliže je komutativní, je charakteristiky 2 (r+r=0) a $r\cdot r=r$.

Poznámka:

Nechť $S(\vee, \wedge, 0, 1,')$ je Booleova algebra. Definujeme-li operaci $+: a+b=(a\wedge b')\vee(a'\wedge b)$, pak $S(+,\wedge,Id_S,0,1)$ je Booleův okruh. Navíc kongruence obou algeber splývají.

Vezmeme-li $S(+,\cdot,-,0,1)$ Booleův okruh. Definujeme operaci $\vee:a\vee b=a+b+a\cdot b$ a operaci ':a'=1+a. Potom $S(\vee,\cdot,0,1,')$ je Booleova algebra. Navíc kongruence obou algebra splývají.