Noche loca en el Penicilino

En el bar Penicilino de Valladolid, dos de las consumiciones más típicas son las zarzaparrillas y las zapatillas. Un matemático muy ingenioso a altas horas de la madrugada decidió que iba a llamar a los vectores de Z^2 zarzaparrillosos si todas sus coordenadas son positivas e iba a llamar a los vectores de Z^2 zapatillosos si todas sus coordenadas son números primos.

Este matemático, antes de desplomarse en el suelo y echarse una siesta, dejó un problema que nadie todavía ha resuelto: si $\mathbf{u} = (\mathbf{u} \times \mathbf{u})$, $\mathbf{v} = (\mathbf{v} \times \mathbf{v})$, $\mathbf{w} = (\mathbf{w} \times \mathbf{u})$ son zarzaparrilosos y $\mathbf{u} + \mathbf{v}$, $\mathbf{v} + \mathbf{w}$ y $\mathbf{w} + \mathbf{u}$ son zapatillosos y $\mathbf{\theta}$ es el ángulo que forman el vector \mathbf{u} y el eje X, ¿cuántas tuplas (\mathbf{u} , \mathbf{v} , \mathbf{w}) hay sabiendo que dos de ellas tienen el mismo módulo?

Input Format

La entrada empezará con un entero N que indica el número de casos de prueba. Después, para cada caso, vendrá el ángulo del vector \mathbf{u} con el eje X, θ en radianes con tres decimales.

Constraints

 $0 \le N \le 10^6 \ 0 \le \theta \le \pi/2$

Output Format

Por cada caso de prueba, se escribirá en una línea el número de tuplas que hay, y los ángulos que forman \mathbf{v} y \mathbf{w} ($\theta \mathbf{v} \leq \theta \mathbf{w}$), con el eje X con tres decimales (mira los casos de ejemplo).

Sample Input 0

```
3
1 1
1 3
1 4
```

Sample Output 0

```
Infinitas
No hay
1 (0.785, 1.326)
```