08/14/03 8:43; **JetFax** #744; Page 5/7

Sulfer randomsetia

rure

ENGINEERING DATA BOOK

FPS VERSION

Volume II Sections 16-26

Published as a service to the gas processing and related process industries

by the

Gas Processors Suppliers Association

6526 East 60th Street Tulsa, Oklahoma 74145

Phone: (918) 493-3872

Fax: (918) 493-3875

e-mail: gpsa@gasprocessors.com

Compiled and edited in co-operation with the

Gas Processors Association

All Rights Reserved

Copyright © 1998 Gas Processors Association

Reproduction or translation of any part of this work without permission of the Gas Processors Suppliers Association is prohibited.

Eleventh Edition — FPS 1998

SECTION 22

Sulfur Recovery

Sulfur is present in natural gas principally as hydrogen sulfide (H_2S) and, in other fossil fuels, as sulfur-containing compounds which are converted to hydrogen sulfide during processing. The H_2S , together with some or all of any carbon dioxide (CO_2) present, is removed from the natural gas or refinery gas by means of one of the gas treating processes described in Section 21. The resulting H_2S -containing acid gas stream is flared, incinerated, or fed to a sulfur recovery unit. This section is concerned with recovery of sulfur by means of the modified Claus and Claus tail gas clean-up processes. Redox processes are touched upon. For a discussion and description of other sulfur recovery processes, see Maddox¹.

THE CLAUS PROCESS

The Claus process as used today is a modification of a process first used in 1883 in which $\rm H_2S$ was reacted over a catalyst with air (oxygen) to form elemental sulfur and water.

$$H_2S + \frac{1}{2}O_2 \rightarrow S + H_2O$$
 Eq 22-

Control of this highly exothermic reaction was difficult and sulfur recovery efficiencies were low. In order to overcome these process deficiencies, a modification of the Claus process was developed and introduced in 1936 in which the overall reaction was separated into (1) a highly exothermic thermal or combustion reaction section in which most of the overall heat of reaction (from burning one-third of the H₂S and essentially 100% of any hydrocarbons and other combustibles in the feed) is released and removed, and (2) a moderately exothermic catalytic reaction section in which sulfur dioxide (SO₂) formed in the combustion section reacts with unburned H₂S to form elemental sulfur. The principal reactions taking place (neglecting those of the hydrocarbons and other combustibles) can then be written as follows:

Thermal or Combustion Reaction Section

 $H_2S + 1\frac{1}{2}O_2 \rightarrow SO_2 + H_2O$

Eq 22-2

ΔH @ 77°F = -223 100 Btu

Combustion and Catalytic Reaction Sections

$$2 H_2S + SO_2 \rightarrow \frac{3}{r} S_x + 2 H_2O$$

Eq 22-3

ΔH @ 77°F = - 41 300 Btu

Overall Reaction

$$3 H_2S + 1 V_2 O_2 \rightarrow \frac{3}{x} S_x + 3 H_2O$$
 Eq 22-4

 $\Delta H @ 77^{\circ}F = -264 400 Btu$

This is a simplified interpretation of the reaction actually taking place in a Claus unit. The reaction equilibrium is complicated by the existence of various species of gaseous sulfur $(S_2, S_3, S_4, S_5, S_6, S_7, \text{ and } S_8)$ whose equilibrium concentrations in relation to each other are not precisely known for the entire range of process conditions. Furthermore, side reactions involving hydrocarbons, H_2S , and CO_2 present in the acid gas feed can result in the formation of carbonyl sulfide (COS), carbon disulfide (CS₂), carbon monoxide (CO), and hydrogen (H₂). Gamson and Elkins² cover the basic theory involved in the Claus process; however, they ignore the many potential side reactions and also the existence of S_3 , S_4 , S_5 , and S_7 .

For the usual Claus plant feed gas composition (water-saturated with 30-80 mol % $\rm H_2S$, 0.5-1.5 mol % hydrocarbons, the remainder $\rm CO_2$), the modified Claus process arrangement results in thermal section (burner) temperatures of about 1800 to 2500°F. The principal molecular species in this temperature range is $\rm S_2$ (Fig. 22-19) and conditions appear favorable for the

FIG. 22-1

Nomenclature

H = heat content or enthalpy, Btu/lb or Btu/lb-mole $K_e = \text{equilibrium constant}$

For the low pressure, vapor phase Claus reaction

$$\begin{split} 2 \; H_2 S + S O_2 \; &\rightarrow \; 2 \; H_2 O + \frac{3}{x} \; S_x \\ K_p \; &= \; \frac{\left(P_{H_2 O}\right)^2 \; \left(P_{S_1}\right)^{3/x}}{\left(P_{H_2 S}\right)^2 \; \left(P_{S O_2}\right)} \\ &= \; \frac{\left[\text{Mols } H_2 O\right]^2 \; \left[\text{Mols } S_x\right]^{3/x}}{\left[\text{Mols } H_2 S\right]^2 \; \left[\text{Mols } S O_2\right]} \left[\frac{\pi}{\text{Total Mols}} \right]^{\frac{3}{x} - 1} \end{split}$$

LT/D = long ton per day. Along ton is 2240 pounds.

P = partial pressure, atmospheres

 $\pi = \text{total pressure, atmospheres}$

Acid Gas: feed stream to sulfur recovery plant consisting of H₂S, CO₂, H₂O, and usually less than 2 mol % hydrocarbons.

Claus Process: a process in which V_3 of the H₂S in the acid gas feed is burned to SO₂ which is then reacted with the remaining H₂S to produce sulfur. This is also referred to as the modified Claus process.

Residence Time: the period of time in which a process stream will be contained within a certain volume or piece of equipment, seconds.

Tail Gas Cleanup Unit: a process unit designed to take tail gas from a Claus sulfur recovery plant and remove additional sulfur with the goal of meeting environmental sulfur emission standards.

FIG. 22-20 Vapor Pressure of Sulfur^{9, 20}

At De Joy condition 2001 mole frac sulfur, no miller would condense at 1 salar total pressure. At higher total pressure, the mole free social be even