Urban Technology - Crime data analysis and prediction

5th December 2023 Amin Suaad

Goal of the project

- Analysis of San Francisco Crime dataset from kaggle. This dataset consists incidents from 1/1/2003 to 5/13/2015. Dataset:
 - https://www.kaggle.com/competitions/sf-crime/data
- Visualizing and understanding top crime categories.
- Understanding the effect of date and time on crime category.
- Understanding the effect of location on crime category.
- Checking the correctness of the dataset.
- Predicting severity of the crime using different Machine Learning methods.
- Comparing the performances of different Machine Learning methods.

Data fields

- **Dates** timestamp of the crime event
- Category type of the crime event
- Descript description in details of the crime event
- **DayOfWeek** the day of the week
- PdDistrict name of the Police Department District. Example: NORTHERN, SOUTHERN
- Resolution the solution after the crime event. Example: ARREST, BOOKED
- Address the approximate street address of the crime event
- X Longitude of the crime event
- Y Latitude of the crime event

Dataset

	Dates	Category	Descript	DayOfWeek	PdDistrict	Resolution	Address	X	Y
0	2015-05-13 23:53:00	WARRANTS	WARRANT ARREST	Wednesday	NORTHERN	ARREST, BOOKED	OAK ST / LAGUNA ST	-122.425892	37.774599
1	2015-05-13 23:53:00	OTHER OFFENSES	TRAFFIC VIOLATION ARREST	Wednesday	NORTHERN	ARREST, BOOKED	OAK ST / LAGUNA ST	-122.425892	37.774599
2	2015-05-13 23:33:00	OTHER OFFENSES	TRAFFIC VIOLATION ARREST	Wednesday	NORTHERN	ARREST, BOOKED	VANNESS AV / GREENWICH ST	-122.424363	37.800414
3	2015-05-13 23:30:00	LARCENY/THEFT	GRAND THEFT FROM LOCKED AUTO	Wednesday	NORTHERN	NONE	1500 Block of LOMBARD ST	-122.426995	37.800873
4	2015-05-13 23:30:00	LARCENY/THEFT	GRAND THEFT FROM LOCKED AUTO	Wednesday	PARK	NONE	100 Block of BRODERICK ST	-122.438738	37.771541
***		6223	6201	122	1.22		322	***	222
878044	2003-01-06 00:15:00	ROBBERY	ROBBERY ON THE STREET WITH A GUN	Monday	TARAVAL	NONE	FARALLONES ST / CAPITOL AV	-122.459033	37.714056
878045	2003-01-06 00:01:00	LARCENY/THEFT	GRAND THEFT FROM LOCKED AUTO	Monday	INGLESIDE	NONE	600 Block of EDNA ST	-122.447364	37.731948
878046	2003-01-06 00:01:00	LARCENY/THEFT	GRAND THEFT FROM LOCKED AUTO	Monday	SOUTHERN	NONE	5TH ST / FOLSOM ST	-122.403390	37.780266
878047	2003-01-06 00:01:00	VANDALISM	MALICIOUS MISCHIEF, VANDALISM OF VEHICLES	Monday	SOUTHERN	NONE	TOWNSEND ST / 2ND ST	-122.390531	37.780607
878048	2003-01-06 00:01:00	FORGERY/COUNTERFEITING	CHECKS, FORGERY (FELONY)	Monday	BAYVIEW	NONE	1800 Block of NEWCOMB AV	-122.394926	37.738212

878049 rows x 9 columns

Unique crime categories

- There are 39 different crime categories.
- Some of them are severe like "ROBBERY" and others are less severe like "DRUNKENNESS".
- Crime categories can be divided into less severe and more severe type depending on the severity of the crime.

Most frequent crimes

- Approximately 20% (8 out of 39, which is 20%) of the categories add up to (nearly) 75% of the crimes.
- Top 8 categories are
 'LARCENY/THEFT', 'OTHER
 OFFENSES', 'NON-CRIMINAL',
 'ASSAULT', 'DRUG/NARCOTIC',
 'VEHICLE THEFT',
 'VANDALISM', 'WARRANTS'

Weekdays and weekend

- Some of the crimes increases on Friday.
 Those are LARCENCY/THEFT,
 NON-CRIMINAL, VEHICLE THEFT,
 VANDALISM, ASSAULT
- Some wednesday crimes, which are OTHER OFFENSES, DRUG/NARCOTIC, WARRANTS
- Day of the week might be interesting in prediction task.

Number of crimes in each district

Share of each crime in each district

- Top 17 crimes are shown.
- Tenderloin district is problematic with drug/narcotic.
- Mission district has a large share of offences related to prostitution.
- Larceny/theft seems to be equally distributed among all except southern district.

Longitude and latitude

- The shape of the scatter plot represents the shape of the city.
- It is really important to check the correctness of longitude and latitude column because wrong data might be problematic for a prediction task.
- At this point, we can see similarity and with a lots of data the shape becomes more and more clear.

Hotspot of top 8 crimes

Predicting the severity of the crime

- Client wanted a prediction of severity of crime based on location and time.
- We defined what is severe and what is less severe. For example: Robbery goes to severe category and Prostitution goes to less severe category.
- Some wrong longitude and latitude in the dataset.
- 80% training and 20% test set.
- Features used: "DayOfWeek", "X", "Y", "PdDistrict", "Hour", "Month"
- Algorithms: KNN, Random Forest, XGBoost
- GridSearchCV for hyperparameter tuning.
- SMOTE for class balancing.

Severe and less severe

Severe:

WARRANTS, LARCENY/THEFT, VEHICLE
THEFT, VANDALISM, ROBBERY, ASSAULT,
WEAPON LAWS, BURGLARY,
FORGERY/COUNTERFEITING,
DRUG/NARCOTIC, STOLEN PROPERTY,
MISSING PERSON, FRAUD, KIDNAPPING,
SEX OFFENSES FORCIBLE, ARSON, FAMILY
OFFENSES, BRIBERY, SUICIDE, EXTORTION

Less severe:

OTHER OFFENSES, NON-CRIMINAL, SUSPICIOUS OCC, DRUNKENNESS, SECONDARY CODES, TRESPASS, RUNAWAY, DRIVING UNDER THE INFLUENCE, PROSTITUTION, DISORDERLY CONDUCT, LIQUOR LAWS, EMBEZZLEMENT, LOITERING, SEX OFFENSES NON FORCIBLE, GAMBLING, BAD CHECKS, TREA, RECOVERED VEHICLE, PORNOGRAPHY/OBSCENE MAT

KNN Classifier

- 1 represents severe class and 0 represents less severe class.
- Features: "DayOfWeek", "X", "Y", "PdDistrict"
- n neighbors=9
- Training accuracy: 0.69
- Test accuracy: 0.65
- Recall : 0.65
- Precision: 0.61
- F1 Score : 0.61
- Confusion Matrix: [[15324 43713]

[18590 97983]]

	precision	recall	f1-score	support
0	0.45	0.26	0.33	59037
1	0.69	0.84	0.76	116573
accuracy			0.65	175610
macro avg	0.57	0.55	0.54	175610
weighted avg	0.61	0.65	0.61	175610

Random Forest Classifier

- 1 represents severe class and 0 represents less severe class.
- Features: "DayOfWeek", "X", "Y", "PdDistrict"
- n_estimators=150
- Training accuracy: 0.73
- Test accuracy: 0.65
- Recall : 0.65
- Precision : 0.62
- F1 Score : 0.62
- Confusion Matrix: [[14920 44117]

[16903 99670]]

		precision	recall	f1-score	support
	0	0.47	0.25	0.33	59037
	1	0.69	0.86	0.77	116573
accui	racy			0.65	175610
macro	avg	0.58	0.55	0.55	175610
weighted	avg	0.62	0.65	0.62	175610

SMOTE (Synthetic Minority Oversampling Technique)

- SMOTE is an oversampling technique which is used to solve class imbalance problem in the dataset.
- The main goal is to balance class distribution by replicating the minority class examples.
- SMOTE generates new data points by linear interpolation.
- x' = x + rand(0, 1) * |x xk|, x is a data point from the minority class and xk is one of the k-nearest neighbors of x.

KNN Classifier (After SMOTE)

- 1 represents severe class and 0 represents less severe class.
- Features: "DayOfWeek", "X", "Y", "PdDistrict"
- n_neighbors=6
- Training accuracy: 0.66
- Test accuracy: 0.58
- Recall : 0.58
- Precision : 0.60
- F1 Score : 0.59
- Confusion Matrix: [[28185 30852]

[43246 73327]]

	precision	recall	f1-score	support
0	0.39	0.48	0.43	59037
1	0.70	0.63	0.66	116573
accuracy			0.58	175610
macro avg	0.55	0.55	0.55	175610
weighted avg	0.60	0.58	0.59	175610

Random Forest Classifier (After SMOTE)

- 1 represents severe class and 0 represents less severe class.
- Features: "DayOfWeek", "X", "Y", "PdDistrict"
- n_estimators=100
- Training accuracy: 0.73
- Test accuracy: 0.59
- Recall : 0.59
- Precision: 0.62
- F1 Score : 0.60
- Confusion Matrix: [[30340 28697]

[42582 73991]]

	precision	recall	f1-score	support
0	0.42	0.51	0.46	59037
1	0.72	0.63	0.67	116573
accuracy			0.59	175610
macro avg	0.57	0.57	0.57	175610
weighted avg	0.62	0.59	0.60	175610

Sum up

- SMOTE did not work as I expected. Without SMOTE the results are better.
- Without SMOTE, KNN and Random Forest performed almost similar.
- Some useful features could be interesting. For example: average education of the area, average age of the area, financial situation of the people living in the area of the crime incident.
- One further possibility: Scoring the category column depending on the severity of crime and fit a regression model.

Resources

- https://www.kaggle.com/competitions/sf-crime
- https://www.geeksforgeeks.org/ml-handling-imbalanced-data-with-smote-and-near-miss -algorithm-in-python/
- https://www.kaggle.com/code/nitinvijay23/predict-the-crime-category-knn-logistic