Bayesian Statistics – Lecture 3

Thomas J. Faulkenberry, Ph.D.

June 3, 2024

Goals for today

- 1. Introduce the Bayesian correlation test
- 2. Discuss the stretched Beta prior
- 3. Work some examples in JASP
- 4. Discuss sensitivity analyses

Recall our example from Lecture 1

The NEO Personality Inventory-Revised (NEO PI-R) is a 240-item questionnaire that measures the "Big 5" dimensions of personality: Agreeableness (A), Conscientiousness (C), Neuroticism (N), Extraversion (E), and Openness to Experience (O).

Dolan et al. (2009) administered a Dutch version of the NEO PI-R to 500 first-year psychology students at the University of Amsterdam.

Bayesian Statistics 2

Two examples

Today, we'll perform a Bayesian correlation test in JASP to explore the associations between:

- Neuroticism & Agreeableness
- Extraversion & Conscientiousness

Review: Bayes' theorem

In a (Bayesian) correlation test, we're interested in the population correlation ρ . Bayes' theorem says:

$$\underbrace{\pi(\rho \mid \text{data})}_{\substack{\text{Posterior} \\ \text{distribution} \\ \text{for } \rho}} = \underbrace{\pi(\rho)}_{\substack{\text{Prior} \\ \text{distribution} \\ \text{for } \rho}} \times \underbrace{\frac{p(\text{data} \mid \rho)}{p(\text{data})}}_{\substack{\text{predictive updating} \\ \text{factor}}}$$

Informally – to get the **posterior** distribution for ρ :

- 1. start with a **prior** distribution for ρ
- 2. change/update the prior distribution at each value of ρ by an **updating** factor that depends on the fit between ρ and your observed data

Model comparison via the Bayes factor

In a Bayesian model comparison, we're interested in the relative predictive performance of two models \mathcal{H}_0 and \mathcal{H}_1 . This is given by the *Bayes factor*:

$$\mathsf{BF}_{10} = \frac{p(\mathsf{data} \mid \mathcal{H}_1)}{p(\mathsf{data} \mid \mathcal{H}_0)}$$

- ullet if BF $_{10}>1$, then the data is better predicted by ${\cal H}_1$
- ullet if BF $_{10} < 1$, then the data is better predicted by ${\cal H}_0$
- ullet BF $_{10}$ is a measure of the *evidence* for the winning model

Choosing a prior

Any Bayesian computation requires us to *first* define a prior distribution for the parameter of interest:

- ullet for last week's binomial probability heta, we needed a distribution that ranged from 0 to 1
 - we used a Beta prior
- ullet for this week's correlation ρ , we need a prior that ranges between -1 and 1
 - the Beta prior doesn't work for this, as it is only defined between 0 and 1
 - instead, we can use a stretched Beta prior (Ly, Marsman, & Wagenmakers, 2018)

Stretched Beta Prior

Stretched Beta Prior

The stretched Beta prior is defined on ρ between -1 and 1, and has one shape parameter κ , sometimes called "width"

- \bullet κ must be between 0 and 2
- ullet $\kappa=1$ is equivalent to a uniform distribution
- \bullet $\kappa < 1$ places more prior mass in the middle $(\rho = 0)$
- $\kappa > 1$ places more prior mass at the ends $(\rho = \pm 1)$

Examples in JASP

Let's perform a Bayesian correlation test in JASP to explore the associations between:

- Neuroticism & Agreeableness
- Extraversion & Conscientiousness

Aside - Jeffreys' (1961) Evidence Categories

Bayes factor	Evidence category
> 100	Extreme evidence for \mathcal{H}_1
30 - 100	Very strong evidence for \mathcal{H}_1
10 - 30	Strong evidence for \mathcal{H}_1
3 - 10	Moderate evidence for \mathcal{H}_1
1 - 3	Anecdotal evidence for \mathcal{H}_1
1	No evidence
1/3 - 1	Anecdotal evidence for \mathcal{H}_0
1/10 - 1/3	Moderate evidence for \mathcal{H}_0
1/30 - 1/10	Strong evidence for \mathcal{H}_0
1/100 - 1/30	Very strong evidence for \mathcal{H}_0
< 1/100	Extreme evidence for \mathcal{H}_0

Bayesian Statistics 10

Summary

- 1. We introduced the Bayesian correlation test
- 2. We discussed the stretched Beta prior
- 3. We worked some examples in JASP and discussed Jeffreys' (1961) evidence categories
- 4. Because Bayes factors depend on the choice of prior, we discussed the need for *sensitivity analyses*