Using R for Scalable Data Science

Robert Horton, Mario Inchiosa, Vanja Paunic, and Hang Zhang

Microsoft Corporation

Acknowledgements: Gopi Kumar, Paul Shealy, Katherine Zhao

KDD 2017 Halifax, NS **TUTORIAL MATERIAL & SLIDES:**

https://aka.ms/kdd2017r

Tutorial Outline

- Introduction to R for Scalable Data Science
- R in SQL Server
- R in Apache Spark
- Distributed model training and parameter optimization use cases
 - Learning Curves: Detecting Gibberish
 - Grouped Time Series Forecasting
- Sentiment Analysis with Pretrained Deep Learning Model

Challenges with Embracing Open Source R

Data Movement

Moving data from the database to the R Runtime becomes painful as data volumes grow and carries security risks

Scale/Performance

R runs single threaded and only accommodates datasets that fit into available memory

4 Operationalization

How do I call the R script from my production application?

Scalable R Solutions

- R packages for scaling on single machines
 - The **bigmemory** project
 - ff and related packages
 - foreach with doParallel
- R packages for scaling with distributed computing
 - SparkR
 - sparklyr
 - RevoScaleR (Microsoft R Server)
 - h2o,rsparkling
 - foreach with doAzureParallel, doSNOW

SQL Server R Services

Reduce or eliminate data movement with In-Database analytics

 SQL Server 2016 extensibility mechanism allows secure execution of R scripts on the SQL Server

Operationalize R scripts and models

- Use familiar T-SQL stored procedures to invoke R scripts from your application
- Embed the returned predictions and plots in your application

Enterprise Performance and scale

- Use SQL Server's in-memory querying and Columnstore Indexes
- Leverage RevoScaleR support for large datasets and parallel algorithms
- Easily deploy to Spark cluster by just changing compute context

R Services in-database: Data Exploration and Predictive Modeling ('Data Scientist')

Working from my R IDE on my workstation, I can execute an R script that runs in-database, and get the results back.

R Services in-database: Operationalizing R Code via T-SQL ('Developer')

I can call a T-SQL System Stored Procedure from my application and have it trigger R script execution in-database. Results are then returned to my application (predictions, plots, etc).

Free Developer's Versions Available

https://aka.ms/freemrs

https://aka.ms/sqlserverdeveloper

GitHub repository for all code and scripts

https://aka.ms/kdd2017r

Distributed computing on Spark

Brief intro to Spark, its APIs and OS R packages

Scaling R on Spark Clusters

- What is Spark?
 - An unified, open source, parallel, data processing framework for Big Data Analytics

SparkR: R API included with Apache Spark

- An R package provides a light-weight frontend to use Apache Spark from R and allows data scientists to analyze large datasets.
- SparkDataFrame is distributed collection of data organized into named columns.
- SparkR can create SparkDataFrames from local R data frames, csv, json and parquet files.
- Access tables from Hive MetaStore.
- Pre-configured on Spark clusters in Azure HDInsight.

Data processing and modeling with SparkR

- Supports functions for processing structured data
 - <u>Selections</u>: select(), filter()
 - *Grouping, Aggregations*: summarize(), arrange()
 - <u>Running local R functions distributed</u>: spark.lapply()
 - <u>Applying UDFs on each partition/group of a SparkDataFrame</u>: dapply(), dapplyCollect(), gapply(), gapplyCollect()
- Uses MLlib to train models and allows model persistence
 - Generalized Linear Model
 - Survival regression
 - Naive Bayes
 - KMeans
 - Logistic Regression
 - Gradient Boosted Tree
 - Random Forest
 - ... others

sparklyr: R interface for Apache Spark

Easy installation from CRAN

```
install.packages("sparklyr")
```

 Connect to both local instances of Spark and remote Spark clusters

```
library("sparklyr")
# connect to local instance of Spark
sc <- spark_connect(master = "local")
# connect to remote Spark clusters
sc <- spark_connect(master = "yarn-client")</pre>
```

• Loads data into **SparkDataFrame** from: local R data frames, Hive tables, CSV, JSON, and Parquet files.

Source: http://spark.rstudio.com/

dplyr and ML in sparklyr

• Provides a complete dplyr backend for data manipulation,

analysis and visualization

```
# manipulate data with dplyr
library("dplyr")
partitions <- airline_lyr %>%
  mutate(CRSDepTimeHour = floor(CRSDepTime/100)) %>%
  sdf_partition(training = 0.7, test = 0.3, seed = 1099)
```

- Includes 3 family of functions for machine learning pipeline
 - ml_*: Machine learning algorithms for analyzing data provided by the spark.ml package.
 - K-Means, GLM, LR, Survival Regression, DT, RF, GBT, PCA, Naive-Bayes, Multilayer Perceptron, LDA
 - ft *: Feature transformers for manipulating individual features.
 - **sdf_***: Functions for manipulating **SparkDataFrames**.

h20: prediction engine in R

- Optimized for "in memory" processing of distributed, parallel machine learning algorithms on clusters.
- Data manipulation and modeling on H2OFrame:
 R functions + h2o pre-fixed functions.
 - <u>Transformations</u>: h2o.group_by(), h2o.impute()
 - Statistics: h2o.summary(), h2o.quantile(), h2o.mean()
 - <u>Algorithms</u>: h2o.glm(), h2o.naiveBayes(), h2o.deeplearning(), h2o.kmeans()
- rsparkling package: h2o on Spark
 - Provides bindings to h2o's machine learning algorithms
 - Simple data conversion: SparkDataFrame -> H2OFrame

R Server 9.1: Scale-out R, Enterprise-Class Support

- 100% compatible with open source R
 - Virtually any code/package that works today with R will work in R Server.
- Ability to parallelize any R function
 - Ideal for parameter sweeps, simulation, scoring.
- Wide range of scalable and distributed rx pre-fixed functions in RevoScaleR package.
 - <u>Transformations</u>: rxDataStep()
 - <u>Statistics</u>: rxSummary(), rxQuantile(), rxChiSquaredTest(), rxCrossTabs()...
 - <u>Algorithms</u>: rxLinMod(), rxLogit(), rxKmeans(), rxBTrees(), rxDForest()...
 - <u>Parallelism</u>: rxSetComputeContext()
- ML featurizers and algorithms in MicrosoftML package

RevoScaleR: Portable across multiple platforms

Hands-on Tutorial: Airline Arrival Delay Prediction using R Server and sparklyr

Azure Data Science Virtual Machine (Ubuntu Linux)

Data-science virtual machine

xgboost Rattle

- Spark 2.1.1
- HDFS
- YARN

http://aka.ms/dsvm

Spark R Server Clusters in Azure HDInsight

- Provisions Azure compute resources with Spark and R Server installed and configured
- Supports multiple versions of Spark and R Server
- Stores data in Azure Blob storage (WASB), Azure Data Lake Store or Local HDFS.

R Server on Hadoop/HDInsight scales to hundreds of nodes, billions of rows and terabytes of data

Logistic Regression on NYC Taxi Dataset

Airline Arrival Delay Prediction in Spark

Clean/Join – sparklyr

• Train/Score/Evaluate – RevoScaleR

Deploy/Consume – mrsdeploy

Airline data set

- Passenger flight on-time performance data from the US Department of Transportation's TranStats data collection
- >20 years of data
- 300+ Airports
- Every carrier, every commercial flight
- http://www.transtats.bts.gov

Weather data set

- Hourly land-based weather observations from NOAA
- > 2,000 weather stations
- http://www.ncdc.noaa.gov/orders/qclcd/

Comparisons

Base and scalable approaches comparison

Approach	Scalability	Spark	MapReduce	SQL Server	Teradata
Base R	Single machines				
SparkR	Single + Distributed computing	X			
sparklyr	Single + Distributed computing	X			
h2o	Single + Distributed computing	X	X		
RevoScaleR	Single + Distributed computing	X	X	X	X

R Server on Spark - faster and more scalable

End-to-End Process:

- Load Data from .csv
- Transform Features
- Split Data: Train + Test
- Fit Model: Logistic Regression
- Predict and Write Outputs

- 1 Edge Node: 16 cores, 112GB
- 4 Worker Nodes: 16 cores, 112GB
- Dataset: Duplicated Airlines data (.csv)
- Number of columns: 26

Fastest loading data: SparkR

Load Data:

- MRS on Spark: XDF
- MML on Spark: XDF
- SparkR: **Spark DF**
- sparklyr: Spark DF
- h2o: H2OFrame
- CRAN R: DF

- 1 Edge Node: 16 cores, 112GB
- 4 Worker Nodes: 16 cores, 112GB
- Dataset: Duplicated Airlines data (.csv)
- Number of columns: 26

Fastest fitting big data: R Server

Fit model:

• Logistic regression

- 1 Edge Node: 16 cores, 112GB
- 4 Worker Nodes: 16 cores, 112GB
- Dataset: Duplicated Airlines data (.csv)
- Number of columns: 26

Fastest making predictions: R Server

Predict:

Outputs predictions into files in HDFS

- 1 Edge Node: 16 cores, 112GB
- 4 Worker Nodes: 16 cores, 112GB
- Dataset: Duplicated Airlines data (.csv)
- Number of columns: 26

Distributed model training and parameter optimization:

Learning Curves on Big Data

Learning Curve

Detecting Gibberish

Was the value entered on a web form a real name?

Training Set

real: unique names from babynames database (71323)

pseudogibberish: simulated keymash (712625)

random: randomly sampled lower case letters (712695)

	name	category	is_real
1		pseudogibberish	FALSE
2	A A SD	pseudogibberish	FALSE
3	nvsfmxnkw	random	FALSE
4	jbhu	random	FALSE
5	ethjef	random	FALSE
6	opndgsc	random	FALSE
7	smly	random	FALSE
8	ASDASDAS	pseudogibberish	FALSE
9	sbzjo	random	FALSE
10	ellqnc	random	FALSE
11	rerereuy	pseudogibberish	FALSE
12	uswfs	random	FALSE
13	tztxksfl	random	FALSE
14	DSA }	pseudogibberish	FALSE
15	Kaylah	real	TRUE
16	rewrew	pseudogibberish	FALSE
17	uytuyt	pseudogibberish	FALSE
18	Semaiah	real	TRUE
19	iomnbm	random	FALSE
20	nqbthsh	random	FALSE
21	wwxnx	random	FALSE
22	bvgl	random	FALSE
23	Annabellee	real	TRUE

Text Featurization

```
fit <- rxFastLinear(</pre>
       is real ~ chargrams,
       local_xdf,
      type="binary", normalize="no",
       11Weight=0, 12Weight=1e-8,
      mlTransforms = featurizeText(
             vars = c(chargrams="name"),
             case='lower',
             keepNumbers=FALSE,
             keepDiacritics=FALSE,
             keepPunctuations=FALSE,
             charFeatureExtractor=ngramCount(
                    ngramLength=3,
                    weighting="tf",
                    maxNumTerms=1e8
             wordFeatureExtractor=NULL
```

Model Coefficients

```
coefficient
(Bias)
        -10.71464
r|e|r
        -17.37628
        -15.18943
<2> a <2> -14.60359
qu
         13.91951
n|a|n
        -13.82819
s a s
        -13.79482
i|i
        -13.73330
f|f
    13.53813
<?>|1|u
        13.33264
```

Tuning Regularization Penalties

pAOC

Grouped Time Series Forecasting

KDD 2017 – Using R for Scalable Data Science tutorial 8/16/2017

Grouped Time Series (GTS) Forecasting

- Time series demand data can often be disaggregated by attributes of interest to form groups of time series or a hierarchy.
- For example, one might be interested in forecasting demand of all products in total, by location, by product category, by customer, etc.

Grouped time series forecasting | Concept

- Problem definition: use historical demand data to forecast demand in future periods across various **customers**, **products and destinations**.
- Forecasts need to be consistent across the groups / hierarchy
 - Lower level forecasts need to sum up to higher level forecasts
- We use **hierarchical (or more generally grouped) time series forecasting** to reconcile forecasts across the hierarchy
- Several approaches to GTS forecasting: bottom-up, top-down, middle-out

Grouped time series forecasting | Concept

Example Demand Data Set

Customer	Product	Destination	Date C	Quantity
Contoso	Metals	China	1/1/2015	84
Contoso	Metals	China	2/1/2015	80
Contoso	Metals	China	3/1/2015	97
Contoso	Metals	China	4/1/2015	85
Contoso	Metals	China	5/1/2015	97
Contoso	Metals	China	6/1/2015	93
Contoso	Metals	China	7/1/2015	91
Contoso	Metals	China	8/1/2015	87
Contoso	Metals	China	9/1/2015	93
Contoso	Metals	China	10/1/2015	94
Contoso	Metals	China	11/1/2015	82
Contoso	Metals	China	12/1/2015	74
Contoso	Metals	India	3/1/2015	47
Contoso	Metals	India	4/1/2015	39
Contoso	Metals	India	7/1/2015	41
Contoso	Metals	India	8/1/2015	44
Contoso	Metals	India	9/1/2015	51
Contoso	Metals	India	10/1/2015	61
Contoso	Metals	India	11/1/2015	66

Hierarchical or Grouped Time Series

GTS Forecasting | Bottom-up Approach

• Forecast at lowest level, Destination, than use aggregation to obtain forecasts at levels above

GTS Forecasting | Top-down Approach

• Forecast at the top level, Total, than use disaggregation based on historical proportions to obtain forecasts at lower levels.

GTS Forecasting | Middle-out Approach

• Forecast at some level, Level 2, than use aggregation to obtain forecasts at levels above, and disaggregation based on historical proportions to obtain forecasts at lower below.

Sentiment Analysis with Pretrained Deep Learning

Vanja Paunić Data Scientist

Deep Learning in R

KDD 2017 – Using R for Scalable Data Science tutorial

Package	Network Architecture	CPU / GPU support	Tensor backend	Reference
tensorflow TensorFlow for R	FFNN, CNN, RNN	CPU, GPU	Tensorflow	https://tensorflow.rstudio.com/
mxnet MXNet R API	FFNN, CNN, RNN	CPU, GPU	MXNet	http://mxnet.io/api/r/index.html
keras R interface for Keras	FFNN, CNN, RNN	CPU, GPU	Tensorflow, CNTK, Theano	https://rstudio.github.io/keras/
h2o - h2o.deepwater Deep Water R API	FFNN, CNN, RNN	CPU, GPU	Tensorflow, Caffe, MXNet	https://www.h2o.ai/deep-water/
h2o - h2o.deeplearning	FFNN	CPU	NA	http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html
MicrosoftML Microsoft R Server	FFNN, CNN	CPU, GPU	NA	1) https://docs.microsoft.com/en-us/r- server/r- reference/microsoftml/rxneuralnet 2) https://blogs.msdn.microsoft.com/microsof trservertigerteam/2017/03/10/get-started- with-microsoftmls-rxneuralnet-with-gpu- acceleration/

Other Options for Scaling R Scripts

The bigmemory project

- bigmemory supports large matrix-like objects in R
- Combines memory and file-backed data structures: analyze numerical data larger than RAM

The data structures may be allocated to shared memory

sister packages and related work

- **biganalytics**: provides exploratory data analysis functionality on big.matrix
- **bigtabulate**: adds table-, tapply-, and split-like behavior for big.matrix
- **bigalgebra**: performs linear algebra calculations on big.matrix and R matrix
- **synchronicity**: supports synchronization and may eventually support interprocess communication (ipc) and message passing
- biglm: provides linear and generalized linear models on big.matrix
- Rdsm: enables shared-memory parallelism with big.matrix

ff package

 Provides data structures that are stored on Disk, but behave as if they were in RAM

Maps only a section in main memory for effective

consumption

Accepts numeric and characters as input data

ff related packages

- ffbase: adds basic statistical functionality to ff
 - <u>Coercions</u>: as.character.ff(), as.Date_ff_vector(), as.ffdf.ffdf(), as.ram.ffdf()
 - <u>Selections</u>: subset.ffdf(), ffwhich(), transform.ffdf(), within.ffdf(), with.ffdf()
 - <u>Aggregations</u>: quantile.ff(), hist.ff(), sum.ff(), mean.ff(), range.ff(), tabulate.ff()
 - Algorithms: bigglm.ffdf()
- **biglars**: provides least-angle regression, lasso and stepwise regression on ff

Parallel programming with foreach

- Provides a function foreach and two operators %do% and %dopar% that support parallel execution
- %dopar% operator relies on a pre-registered parallel backend doParallel(), doSNOW(), doAzureParallel(), etc.

Source: foreach package. 58

Q & A

CONTACT INFORMATION

Robert Horton (<u>rhorton@microsoft.com</u>)
Mario Inchiosa (<u>marioinc@yahoo.com</u>)
Vanja Paunic (<u>vanja.paunic@microsoft.com</u>)
Hang Zhang (<u>hangzh@microsoft.com</u>)

THANK YOU