Community Detection Methods for the Generalized Random Dot Product Graph Model Dissertation Proposal Defense

John Koo

TBD

1

Overview

- Preliminaries
 - Block Models and Community Detection
 - ► (Generalized) Random Dot Product Graphs
- Connecting Block Models to (G)RDPG Models
 - Popularity Adjusted Block Model
 - Subspace Clustering
- Community Detection in the (G)RDPG

Preliminaries

Bernoulli Graphs

 $A \sim BernoulliGraph(P)$ iff:

- ightharpoonup G = (V, E)
 - Undirected, unweighted, no self-loops
 - |V| = n
 - ▶ $|E| \le n(n-1)/2$
- ▶ Adjacency matrix $A \in \{0,1\}^{n \times n}$
 - $A_{ij} = \begin{cases} 1 & \exists \text{ edge between } i \text{ and } j \\ 0 & \text{else} \end{cases}$
- ▶ Edge probability matrix $P \in [0,1]^{n \times n}$
- $ightharpoonup A_{ij} \stackrel{indep}{\sim} Bernoulli(P_{ij}) \text{ for } i < j$

4

Block Models

- $ightharpoonup A \sim BernoulliGraph(P)$
 - ightharpoonup (Hidden) labels $z_1,...,z_n \in [K]$
 - $P_{ij} = f(z_i, z_j, \cdot)$
- Example: Stochastic Block Model with two communities
 - K=2

$$P_{ij} = \begin{cases} p & z_i = z_j = 1\\ q & z_i = z_j = 2\\ r & z_i \neq z_j \end{cases}$$

!

Block Models

- ► Erdos-Renyi Model (1959)
 - $ightharpoonup P_{ij} = \theta$
 - Not a block model
- Stochastic Block Model (Lorrain and White, 1971)
 - $P_{ij} = \theta_{z_i z_j}$
 - $\blacktriangleright K(K+1)/2$ parameters θ_{kl}
- Degree Corrected Block Model (Karrer and Newman, 2011)
 - $P_{ij} = \theta_{z_i z_j} \omega_i \omega_j$
 - K(K+1)/2 + n parameters θ_{kl} , ω_i
- Popularity Adjusted Block Model (Sengupta and Chen, 2017)
 - $P_{ij} = \lambda_{iz_j} \lambda_{jz_i}$
 - ightharpoonup Kn parameters λ_{ik}

6

Heirarchy of Block Models

- ▶ PABM \rightarrow DCBM: $\lambda_{ik} = \sqrt{\theta_{z_ik}}\omega_i$
- ▶ DCBM \rightarrow SBM: $\omega_i = 1$
- ▶ SBM \rightarrow Erdos-Renyi: $\theta_{kl} = \theta$

Figure 2: The hierarchy of block models

Community Detection in Block Models

Likelihood

$$L = \prod_{i < j} \prod_{k,l}^{K} \left(p_{k,l,i,j}^{A_{ij}} (1 - p_{k,l,i,j})^{1 - A_{ij}} \right)^{z_{ik} z_{jl}}$$

ightharpoonup Example: DCBM $(p_{k,l,i,j}=\theta_{kl}\omega_i\omega_j)$

$$L = \prod_{i < j} \prod_{k,l} \left((\theta_{kl} \omega_i \omega_j)^{A_{ij}} (1 - \theta_{kl} \omega_i \omega_j)^{1 - A_{ij}} \right)^{z_{ik} z_{jl}}$$

- ML method for community detection: $\hat{\vec{z}} = \arg\max_{\vec{z}} L$
- ▶ NP-complete
 - Expectation-Maximization
 - ► Bayesian methods
 - Spectral methods

(Generalized) Random Dot Product Graph Model

- ▶ Random Dot Product Graph $A \sim RDPG(X)$
 - Latent vectors $x_1,...,x_n \in \mathcal{X} \subset \mathbb{R}^d$
 - $\mathcal{X} = \{x, y : 0 \le x^{\top} y \le 1\}$
 - Data matrix $X = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}$
 - Edge probability matrix $P = XX^{\top}$
 - Adjacency matrix $A \sim BernoulliGraph(P)$
- ▶ Generalized Random Dot Product Graph $A \sim GRDPG_{p,q}(X)$
 - ▶ Latent vectors $x_1, ..., x_n \in \mathcal{X} \subset \mathbb{R}^d$
 - $\mathcal{X} = \{x, y : 0 \le x^{\top} I_{p,q} y \le 1\}$
 - $I_{p,q} = blockdiag(I_p, -I_q)$
 - p + q = d

 - Edge probability matrix $P = X \vec{I}_{pq} X^{\top}$
 - ▶ Adjacency matrix $A \sim BernoulliGraph(P)$
- ▶ If $X_1, ..., X_n \stackrel{iid}{\sim} F$, then $(A, X) \sim RDPG(F, n)$ or $(A, X) \sim GRDPG_{p,q}(F, n)$

ç

(Generalized) Random Dot Product Graph Model

Recovery/Estimation

- Want to estimate X given A
 - ightharpoonup Alternatively, recover some property of X given A
 - Interpoint distances
 - Inner products
 - Angles
- Adjacency Spectral Embedding
 - Given embedding dimension d, $A \approx \hat{V} \hat{\Lambda} \hat{V}^{\top}$
 - ► If RDPG, use *d* greatest eigenvalues
 - ▶ If GRDPG, use p most positive and q most negative eigenvalues
 - $\hat{V} \in \mathbb{R}^{n \times d}$
 - $\hat{\Lambda} \in \mathbb{R}^{d \times d}$
 - ▶ RDPG: $\hat{X} = \hat{V}\hat{\Lambda}^{1/2}$
 - ► GRDPG: $\hat{X} = \hat{V} |\hat{\Lambda}|^{1/2}$
- ▶ RDPG: $\max_{i} \|\hat{X}_i W_n X_i\| \stackrel{a.s.}{\to} 0$ (Athreya et al.)
- ▶ GRDPG: $\max_i \|\hat{X}_i Q_n X_i\| \stackrel{a.s.}{\to} 0$ (Rubin-Delanchy et al.)

Connecting Block Models to the (G)RDPG Model

- ▶ All G with $A \sim BernoulliGraph(P)$ are RDPG (if P is positive semidefinite) or GRDPG
 - Includes all block models
- Example: SBM

$$X = \begin{bmatrix} \sqrt{p} & 0\\ \vdots & \vdots\\ \sqrt{p} & 0\\ \sqrt{r^2/p} & \sqrt{q - r^2/p}\\ \vdots & \vdots\\ \sqrt{r^2/p} & \sqrt{q - r^2/p} \end{bmatrix}$$

$$P = XX^{\top}$$

1

Connecting Block Models to the (G)RDPG Model

Example: SBM (cont'd)

- $ightharpoonup A \sim BernoulliGraph(XX^{\top})$
- $A \approx \hat{X}\hat{X}^{\top}$
 - $\hat{X} = \hat{V} \hat{\Lambda}^{1/2}$
- lacktriangle Apply clustering algorithm (e.g., K-means) on \hat{X}

Connecting Block Models to the (G)RDPG Model

PABM: Subspaces

Popularity Adjusted Block Model

Popularity Adjusted Block Model (Reparameterization)

$$A \sim PABM(\{\lambda^{(kl)}\}_K)$$
 iff

- w.l.o.g., organize P such that each block $P^{(kl)} \in [0,1]^{n_k \times n_l}$ contains edge probabilities between communities k and l
- Popularity vectors $\lambda^{(kl)} \in \mathbb{R}^{n_k}$ are the popularity parameters of members of community k to community l
- $\{\lambda^{(kl)}\}_K$ is the set of K^2 popularity vectors
- $P^{(kl)} = \lambda^{(kl)} (\lambda^{(lk)})^{\top}$
- $ightharpoonup A \sim BernoulliGraph(P)$

Connecting the PABM to the GRDPG (K = 2)

Theorem: $A \sim PABM(\{\lambda^{(kl)}\}_2)$ is equivalent to $A \sim GRDPG_{3,1}(XU)$ for X constructed from $\{\lambda^{(kl)}\}_2$ and $U \in \mathbb{O}(4)$

Proof:

$$X = \begin{bmatrix} \lambda^{(11)} & \lambda^{(12)} & 0 & 0\\ 0 & 0 & \lambda^{(21)} & \lambda^{(22)} \end{bmatrix}$$

$$Y = \begin{bmatrix} \lambda^{(11)} & 0 & \lambda^{(12)} & 0\\ 0 & \lambda^{(21)} & 0 & \lambda^{(22)} \end{bmatrix}$$

$$P = XY^{\top}$$

16

Connecting the PABM to the GRDPG (K=2)

Proof (cont'd):

$$Y = X\Pi$$

$$\Pi = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = UI_{3,1}U^{\top}$$

$$U = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$P = (XU)I_{3,1}(XU)^{\top}$$

Connecting the PABM to the GRDPG

Theorem: $A \sim PABM(\{\lambda^{(kl)}\}_K)$ is equivalent to $A \sim GRDPG_{p,q}(XU)$ such that

- p = K(K+1)/2
- q = K(K-1)/2
- ightharpoonup U is orthogonal
- ► X is block diagonal
- Non-uniqueness: $A \sim GRDPG_{p,q}(XU) \implies A \sim GRDPG_{p,q}(XUQ) \text{ for } Q \in \mathbb{O}(p,q)$

Orthogonal Spectral Clustering

Theorem: If $P = V\Lambda V^{\top}$ and $B = nVV^{\top}$, then $B_{ij} = 0 \ \forall i, j$ in different communities.

Orthogonalized Spectral Clustering algorithm:

- ▶ Input: Adjacency matrix A, number of communities K
- ▶ Output: Community assignments 1, ..., K
- 1. Compute the eigenvectors of A that correspond to the K(K+1)/2 most positive and K(K-1)/2 most negative eigenvalues to construct V.
- 2. Compute $B = |nVV^{\top}|$ applying $|\cdot|$ entry-wise.
- 3. Construct graph G using B as its similarity matrix.
- 4. Partition G into K disconnected subgraphs (e.g., using edge thresholding or spectral clustering).
- 5. Map each partition to the community labels 1, ..., K.

Orthogonal Spectral Clustering

Theorem: Let \hat{B}_n with entries $\hat{B}_n^{(ij)}$ be the affinity matrix from OSC. Then \forall pairs (i,j) belonging to different communities and sparsity factor satisfying $n\rho_n = \omega\{(\log n)^{4c}\}$,

$$\max_{i,j} \hat{B}^{(ij)} = O_P \left(\frac{(\log n)^c}{\sqrt{n\rho_n}} \right)$$

20

Sparse Subspace Clustering

- $lackbox{X}$ is block diagonal and U is orthogonal \Longrightarrow each community corresponds to a subspace in \mathbb{R}^d .
- ▶ Subspace property holds even with linear transformation $Q \in \mathbb{O}(p,q)$.
- ▶ If $P = V\Lambda V^{\top}$, then V consists of *orthogonal* subspaces.

Sparse Subspace Clustering algorithm:

- 1. Solve n optimization problems $c_i = \arg\min_c \|c\|_1$ subject to $x_i = X_{-i}c$ and $c_i^{(i)} = 0$.
- 2. Compile solutions $C = \begin{bmatrix} c_1 & \cdots & c_n \end{bmatrix}$
- 3. Construct affinity matrix $B = |C| + C^{\top}$
- ▶ If X obeys the Subspace Detection Property, then B is sparse such that $B_{ij} = 0$ if i and j belong to different communities and $||c_i|| > 0$.
- Step (1) of SSC typically performed via LASSO: $c_i = \arg\min \frac{1}{2} ||x_i X_{-i}c||_2^2 + \lambda ||c||_1$

Sparse Subspace Clustering

Theorem:

Let

- $ightharpoonup P_n$ describe the edge probability matrix of the PABM with n vertices
- $ightharpoonup A_n \sim BernoulliGraph(P_n)$
- $ightharpoonup \hat{V}_n$ be the matrix of eigenvectors of A_n corresponding to the K(K+1)/2 most positive and K(K-1)/2 most negative eigenvalues.

Then

▶ $\exists \lambda > 0$ and $N < \infty$ such that when n > N, $\sqrt{n} \hat{V}_n$ obeys the Subspace Detection Property with probability 1.

Remarks:

- ▶ For large n, we can identify λ for SDP (Wang and Xu, 2016).
- ► SDP does not guarantee community detection.

Generalizations to Community Detection for the (G)RDPG

Generative Model

Let $(A, X) \sim RDPG(F, n)$ such that

- 1. Define functions $f_1,...,f_K$ such that $f_k:[0,1]\mapsto \mathcal{X}$ and $f_k(t)\neq f_l(t)\ \forall k,l\in [K].$
- 2. Sample labels $Z_1, ..., Z_n \stackrel{iid}{\sim} Categorical(\pi_1, ..., \pi_K)$.
- 3. Sample $T_1, ..., T_n \stackrel{iid}{\sim} D$ with support [0, 1].
- 4. Set latent positions $X_i = f_{Z_i}(T_i)$ and $X = \begin{bmatrix} X_1 & \cdots & X_n \end{bmatrix}^{\top}$.
- 5. $A \sim BernoulliGraph(XX^{\top})$

Community Detection

- Athreya et al. and Rubin-Delanchy et al.: we can approximate properties of the latent configurations via ASE.
- ▶ General community detection method: Given A, K, and d (or p and q),
 - 1. Use ASE to approximate the latent configuration.
 - 2. Use the appropriate clustering algorithm for the form of the latent configuration (manifolds).

Parallel Segments

Example: Let $U_1,...,U_{n_1},U_{n_1+1},...,U_n \stackrel{iid}{\sim} Uniform(0,\cos\frac{\pi}{2}a)$, $f_1(t)=(t,0)$, and $f_2(t)=(t,a)$. $X_i=f_1(U_i)$ for $i\leq n_1$ and $X_j=f_2(U_j)$ for $n_1+1\leq j\leq n$. If we observe $X_1,...,X_{n_1},X_{n_1+1},...,X_n$, what approach will allow us to group the observations by segment?

 $\forall a \in (0,1), \ \delta \in (0,1), \ \text{and} \ K \geq 2, \ \exists N(a,\delta,K) < \infty \ \text{such that}$ when $\min_k n_k \geq N$, with probability at least $1-\delta$,

- Single linkage clustering will produce perfect community detection.
- 2. An ϵ -neighborhood graph with $\epsilon \in (0, a)$ will consist of at least K disjoint subgraphs such that no subgraph contains members of two different communities.

Noisy Parallel Segments and One-Dimensional Manifolds

Example: Starting with the parallel segments as before, suppose instead of observing $X_1,...,X_n$, we have noisy observations $X_1+\xi_1,...,X_n+\xi_n$ such that $\max_i \|\xi_i\|=\xi \leq a/3$.

Then $\forall a \in (0,1)$, $\delta \in (0,1)$, $K \geq 2$, and $\xi \leq a/3$, $\exists N(a,\delta,K,\xi) < \infty$ such that when $\min_k n_k \geq N$, with probability at least $1-\delta$,

- 1. Single linkage will produce perfect community detection.
- 2. An ϵ -neighborhood graph will consist of at least K sub-graphs with no subgraph containing vertices of two communities.

This also holds for noisy points sampled on one-dimensional manifolds such that the manifolds are distance at least a apart.

Future Work

- 1. Show that the ASE of a random graph generated by these latent vectors produces the correct conditions for sufficiently large n.
- 2. Extend results to non-uniform distributions.
- 3. Extend results to multidimensional manifolds.
- 4. Relax condition for the minimum distance between manifolds.
- 5. Explore additional clustering techniques for these latent configurations.

Additional Slides

Expectation Maximization for the PABM

MCMC Sampling for the PABM

Variational Inference for the PABM