Errors

For N measurements of a quantity Q:

$$\overline{Q} = \frac{1}{N} \sum Q_i$$
Deviation $d = \sqrt{\frac{1}{N} \sum (Q_i - \overline{Q})^2}$

Resultant measurement $Q = \overline{Q} \pm d$

Error
$$\Delta Q =$$
Standard error $= d$

For a quantity Q = Q(x, y, z), the general error is given as:

$$\left(\Delta Q\right)^2 = \left(\Delta Q_x\right)^2 + \left(\Delta Q_y^2\right)^2 + \left(\Delta Q_z^2\right)^2$$

Where $\Delta Q_x = \left(\frac{\partial Q}{\partial x}\right) \Delta x$ and so on for Q_y and Q_z Combination of errors:

$$Q = x \pm y \qquad \Delta Q = \sqrt{\left(\Delta x\right)^2 + \left(\Delta x\right)^2}$$

$$Q = xy \text{ or } \frac{x}{y} \qquad \left(\frac{\Delta Q}{\overline{Q}}\right) = \sqrt{\left(\frac{\Delta x}{\overline{x}}\right)^2 + \left(\frac{\Delta y}{\overline{y}}\right)^2}$$

$$Q = x^n \qquad \left(\frac{\Delta Q}{\overline{Q}}\right) = n\frac{\Delta x}{\overline{x}}$$

$$Q = \ln x \qquad \Delta Q = \frac{\Delta x}{\overline{x}}$$

$$Q = e^x \qquad \frac{\Delta Q}{\overline{Q}} = \Delta x$$

Planck's constant

Boltzmann constant $(k) = 1.38 \cdot 10^{-23} J/K$

Planck's constant = h

$$U(\nu)d\nu = \frac{8\pi h \nu^3}{c^3} \frac{1}{\left(e^{\frac{h\nu}{kT}}-1\right)} d\nu$$
 (now, all relevant appro-

ximations can be made)

At a particular frequency ν , the photocurrent $I_{\rm ph}$ is approximated to be:

$$I_{\rm ph} = \frac{8\pi h \nu^3}{c^3} e^{-\frac{h\nu}{kT}}$$

If we take the *natural logarithm* on both sides, the following is obtained:

$$\ln I_{\rm ph} = -\frac{h\nu}{kT} + {\rm constant}$$

Temperature dependence of resistance of tungsten filament:

$$R = R_0(1 + \alpha T + \beta T^2)$$

 α, β being empirical constants used for calibration

\mathbf{EMI}

Where $\varepsilon = EMF$ and $\phi = flux$ through the coil

$$\omega_{\max} = 2\sqrt{\frac{Mgl}{I}}\sin\frac{\theta_0}{2}$$

Here, $\sqrt{\frac{Mgl}{I}}$ is the frequency of oscillations, which can also be used to find the time period T

Considering R to be the radius of the arc (and v_{max} to be the maximum velocity of the arc), we get:

$$v_{\rm max} = R\omega_{\rm max} = \frac{4\pi R}{T}\sin\frac{\theta_0}{2}$$

After a bunch of approximations, it is concluded that $\varepsilon_{\rm max} \propto v_{\rm max}$ which is given a bit more precisely as:

$$\varepsilon_{\text{max}} = -\frac{1}{R} \frac{d\phi}{d\theta} \Big|_{\theta_{\text{max}}} v_{\text{max}}$$

Consider the pulse width of one oscillation to be τ and the time constant of the circuit to be RC. If:

- $RC < \tau \Longrightarrow$ Capacitor fully charged in one oscillation
- $RC > \tau \Longrightarrow$ Capacitor charges in multiple oscillations

Total charge delivered to capacitor after each swing $=q=\frac{\Delta\phi}{R}$

For a damped oscillation, the angular displacement is given as:

$$\theta_A(t) = \theta_{A_0} e^{-\frac{\omega_0 t}{2Q}}$$

Q being the **Quality factor** or strength of damping $Q \propto \frac{1}{\text{Amount of damping}}$ In a plot of $\ln \theta_{An}$ vs. n, the equation is found to be:

$$\ln \theta_{An} = \ln \theta_{A0} - \frac{\pi}{Q}n$$

n being the number of oscillations

Newton's rings

Optical path difference for interfering waves = $2\mu t$ Conditions for:

- 1. Constructive interference: $2t = m\lambda$
- 2. Destructive interference: $2t = m\left(m + \frac{1}{2}\right)$

Where $m \in \mathbb{Z}^+ \cup 0$.

Denoting the radius of the m^{th} order of the ring by r_m , the following can be proved after a bit of work:

$$r_m = \sqrt{m\lambda R}$$

$$r_m = \sqrt{\left(m + \frac{1}{2}\right)\lambda R}$$

for the dark and bright rings respectively. In the above results, R is the radius of the spherical surface and t is the thickness of the film

Diameter of m^{th} order ring $D_m = \sqrt{4m\lambda R}$

Diffraction grating

$$a = (n-1)\Delta$$

Single slit diffraction:

If the rays make an angle θ with the normal, the corresponding phase difference ϕ is given as ϕ = $\frac{2m}{N}\Delta\sin\theta$, Δ being the distance b/w consecutive points

Intensity distribution: $I = I_0 \frac{\sin^2 \beta}{\beta^2}$ where I_0 is the intensity at $\theta = 0$ and $\beta = \frac{\pi a \sin \theta}{\lambda}$

Minima: $a \sin \theta = m\lambda (m \neq 0)$

Maxima: $\tan \beta = \beta$

Double slit diffraction:

Similar as above, $\phi_1 = \frac{2\pi}{\lambda} d \sin \theta$

Intensity distribution: $I = 4I_0 \frac{\sin^2 \beta}{\beta^2} \cos^2 \gamma$ where $\gamma =$

$$\frac{\phi_1}{2} = \frac{\pi}{\lambda} d \sin \theta$$

Minima: $\gamma = (2n+1)\frac{\pi}{2} \Longrightarrow a \sin \theta = m\lambda$ where $m = (1, 2, 3 \dots)$

Maxima: $\gamma = n\pi \Longrightarrow d\sin\theta = n\lambda$ where n = $(0, 1, 2, \ldots)$

In all of the equations above, d represents the distance between the two point sources and a denotes the width of two parallel slits