A GIS Pipeline to produce GeoAI Datasets from Drone Overhead Imagery

Professor John R. Ballesteros

PhD. Informatics, UNC
MS GeonInformatics, ITC, The Netherlands
Geologist

jballes@unal.edu.co

https://github.com/jrballesteros/GeoAl Course

https://www.linkedin.com/in/johnrballesteros

Agenda

- GeoAl
- Machine Learning and Deep Learning
- GeoAl Datasets
- Applications
- A GIS Pipeline for GeoAl datasets
- A road, vehicle and buildings datasets examples for semantic segmentation
- Learning Test

GeoAl

A set of techniques at the intersection of AI and Geospatial Analysis for geographic knowledge discovery.

(Janowicz et al., 2019)

Machine Learning

Algorithms that learn directly from data instead of being explicitly programmed.

Deep Learning

Flexible mapping functions created by layers of neurons emulating how the brain Works.

GeoAl Datasets

Unbiased and enhanced data features

(Blaga and Nedevschi., 2020)

(Abdollahi et al., 2020)

Applications

Encompassing the fast and increasing acquisition of aerial-drone-satellite imagery with the spatial analysis and map production for:

- Mapping & cartography (in minutes nor months).
- Cadaster
- Logistics and Routing
- Disaster management (quick production of maps is needed)
- Oil and Gas
- Solar Energy
- Urban Planning
- Current environmental problems: Heat Islands

Proposed GIS Pipeline to Produce GeoAl Datasets from Drone Overhead Imagery

Ballesteros, John R., German Sanchez-Torres, and John W. Branch-Bedoya. 2022. "A GIS Pipeline to Produce GeoAl Datasets from Drone Overhead Imagery" *ISPRS International Journal of Geo-Information* 11, no. 10: 508. https://doi.org/10.3390/ijgi11100508

Drone Imagery Acquisition & Orthomosaic Production

Legend

Type of Masks

Primitive-mask the simplest raster representation of objects present in input images that allow models to learn objects' structure and simplify their vectorization

(Image, Point primitive-mask), ex. Vehicles

(Image, Line primitive-mask), ex. Roads

(Image, Polygon primitive-mask), ex. Buildings

Producing Primitive Linear Masks

RGB pixel values distribution, f(d)

Buffer distance of masks and RGB pixel distribution

Ballesteros, J.R.; Sanchez-Torres, G.; Branch-Bedoya, J.W., 2022

Producing Primitive Point Masks

RGB pixel values distribution, f(d)

Buffer distance of masks and RGB pixel distribution

Ballesteros, J.R.; Sanchez-Torres, G.; Branch-Bedoya, J.W., 2022

Producing Primitive Polygon Masks

Massachussets Building Dataset

Mnih et al, 2013

RID Dataset (A boundary mask dataset)

Ballesteros, Sanchez-Torres, Branch-Bedoya, 2022 in progress

- High resolution
- Describes roof structure (runoff, material and area)
- High density building areas (developing countries)

Road Centerline Segmentation using a road dataset

Line masks, 1098 ex., 1m

Vehicle Detection

Point masks, 1000 ex, 1m

Building Footprint Segmentation

Polygon masks, 500 ex.

Results on RID: Roof Boundary Mask Dataset

512x512px mloU=0.941

256x256px mloU=0.950

Mask to mask vectorization

Vectorization of a full size mask of a U-Net

Vectorization of a primitive mask 1m after msk2msk translation

Centerline vector layer

Road vectorization Results

Orthomosaic	Application of AGS Metric -	AGS_Lines
	Roads	Collab GPU
El Retiro, (Ant.)	Image to mask translation model and	0.801 at
	vectorization without primitive masks	12.87 m/s
	Image to mask translation model with primitive masks and vectorization	0.903 at 12.39 m/s
	Model including double image to mask translation and vectorization	0.940 at 12.03 m/s

Ballesteros et al, 2021

References

- 1. Abdollahi, Abolfazl & Pradhan, Biswajeet & Shukla, Nagesh & Chakraborty, Subrata & Alamri, Abdullah. (2020). Deep Learning Approaches Applied to Remote Sensing Datasets for Road Extraction: A State-Of-The-Art Review. Remote Sensing. 12. 1444. 10.3390/rs12091444.
- 2. Adam Van Etten, Dave Lindenbaum, Todd Bacastow. SpaceNet: A Remote Sensing Dataset and Challenge Series. Computer Vision. 2019.
- 3. Alec Radford, et al. "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks". ICLR 2016.
- 4. Al-Najjar, H.A.H.; Kalantar, B.; Pradhan, B.; Saeidi, V.; Halin, A.A.; Ueda, N.; Mansor, S. Land Cover Classification from fused DSM and UAV Images Using Convolutional Neural Networks. Remote Sens. 2019, 11, 1461. https://doi.org/10.3390/rs11121461
- 5. Arnadi Murtiyoso, Mirza Veriandi, Deni Suwardhi, Budhy Soeksmantono and Agung Budi Harto. Automatic Workflow for Roof Extraction and Generation of 3D CityGML Models from Low-Cost UAV Image-Derived Point Clouds. International Journal of Geo-Information, 2020.
- 6. Batra et al. Improved Road Connectivity by Joint Learning of Orientation and Segmentation. CVPR 2019.
- 7. Brownlee J. www.machinelearningmastery.com (accessed on 12 March 2020).
- 8. Bulatov, Dimitri & Häufel, Gisela & Böge, Melanie. (2016). VECTORIZATION OF ROAD DATA EXTRACTED FROM AERIAL AND UAV IMAGERY. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XLI-B3. 567-574. 10.5194/isprs-archives-XLI-B3-567-2016.
- 9. Crommelinck, Sophie & Bennett, Rohan & Gerke, Markus & Koeva, Mila & Yang, Michael Ying & Vosselman, George. (2017). SLIC Superpixels for Object Delineation from UAV Data. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. IV-2/W3. 9-16. 10.5194/isprs-annals-IV-2-W3-9-2017.

Contribution - Conferences

- Ballesteros John, Branch-Bedoya John W., Sánchez-Torres Germán. Automatic road extraction in small urban areas of developing countries. The IEEE SCLA International Conference 2021.
- Ballesteros John, Branch-Bedoya John W., Sánchez-Torres Germán. Semantic Segmentation of Urban objects in Satellite and Drone Imagery using Deep Learning. International Conference on Civil Engineering, Concivil 2022.
- Ballesteros John, Sánchez Germán, Branch John. Modelo de generación automática de capas SIG a partir de aprendizaje profundo. Congreso Colombiano de Geología. Medellín, Agosto 2021.
- Ballesteros John, Branch John. Generación automática de mapas usando IA: Conferencia presentada en el ESRI-SGC GISDay. Abril 2021.
- Ballesteros John R., Sánchez-Torres Germán, Branch John W., Segmentación Semántica de Ríos y Erosión Mediante GANs. XV Semana de la geología, Barranquilla, Col., Septiembre 2022.

Contribution - Papers

- Ballesteros, J.R.; Sanchez-Torres, G.; Branch-Bedoya, J.W. A GIS Pipeline to Produce GeoAl Datasets from Drone Overhead Imagery. *ISPRS Int. J. Geo-Inf.* 2022, *11*, 508. https://doi.org/10.3390/ijgi11100508
- Ballesteros, John R.; Sanchez-Torres, German; Branch-Bedoya, John W. HAGDAVS: Height-Augmented Geo-located Dataset for Detection and Semantic Segmentation of Vehicles in Drone Aerial Orthomosaics. Data, April 14, 2022, MDPI.
- <u>Ballesteros</u>, J.R.; <u>Sanchez-Torres</u>, <u>G.</u>; <u>Branch</u>, <u>J.</u>, <u>Road Semantic Segmentation by Fusion-augmented Drone Orthomosaics using a Conditional GAN. In progress. Drone, March 2022, ISPRS Journal of GeoInformation, MDPI. In <u>Reviewing</u>.</u>
- <u>Ballesteros, J.R.; Sanchez-Torres, G.; Branch, J., Mask-to-Mask Translation Generative Model for Improving Roads and Buildings Segmentation in Drone Overhead Imagery. In progress. Drone, March 2022, ISPRS Journal of GeoInformation, MDPI. In Reviewing.</u>
- Ballesteros, J.R.; Sanchez-Torres, G.; Branch, J., Extracting Building Roof Structure of Dense Areas using a cGAN and a Boundary Mask Dataset. In progress. Drone, March 2022, ISPRS Journal of GeoInformation, MDPI. In Reviewing.