

An Agent-Based Model to simulate the Covid-19 epidemic diffusion, with the use of Genetic Algorithms to optimize vaccinations

G. Pescarmona¹ P. Terna² A. Acquadro¹ P. Pescarmona³ G. Russo⁴ S. Terna⁵

¹University of Torino, Italy

²University of Torino, Italy, retired & Fondazione Collegio Carlo Alberto, Honorary Fellow, Italy

³University of Groningen, The Netherlands

⁴Centro Einaudi, Torino, Italy

5tomorrowdata.io

CCA - March 29th, 2021

Outline

Introduction

The model

Overview Details

Contagions

The proposed technique An introductory example A significant sequence

Exploring cases

Simulation batches
Epidemics without and with control
Actual data
Second wave

New use cases of the model

A new model

Final remarks

Objectives of the model

- We propose an agent-based model to simulate the Covid-19 epidemic diffusion, with Susceptible, Infected, symptomatic, asymptomatic, and Recovered people: hence the name S.I.s.a.R. The scheme comes from S.I.R. models, with (i) infected agents categorized as symptomatic and asymptomatic and (ii) the places of contagion specified in a detailed way, thanks to agent-based modeling capabilities.
- The infection transmission is related to three factors: the infected person's characteristics and those of the susceptible one, plus those of the space in which contact occurs.
- The model includes the structural data of Piedmont, but it can be readily calibrated for other areas. The model manages a realistic calendar (e.g., national or local government decisions), via a script interpreter.

Tool and links

- We use NetLogo, at https://ccl.northwestern.edu/netlogo/.
- S.I.s.a.R. is at https://terna.to.it/simul/SIsaR.html with information on model construction, the draft of a paper also reporting results, and an online executable version of the simulation program, built using NetLogo.
- A short paper related to this presentation is at https://rofasss.org/2020/10/20/sisar/
 G. Pescarmona, P. Terna, A. Acquadro, P. Pescarmona, G. Russo, and S. Terna. How Can ABM Models Become Part of the Policy-Making Process in Times of Emergencies—The SISAR Epidemic Model. *RofASSS*, 2020.

The scale and the items

- 1:1000.
- Houses.
- Schools.
- Hospitals.
- Nursing homes,
- Factories.

The interface and the information sheet

The interface and the information sheet

WHY THE NAME? S - Susceptible I - Infected E - Symptomatic E - Symptomatic R - Recovered

with capital letters referring the classic S.I.R. model, also in Wikipedia

Website

The model has a website

PRELIMINARY NOTE

This is a simulation with random events, please do not take it as a sure forecasting machine: it is a reasoning machine, a sort of very complex "what if" mental experiment.

The New York Times offers us an analysis on the The Could-19 Riddle: Why Does the Virus Wallop Some Pileos and Space Other? (Deen Inik), At the end of the article, we read: Rolf of the Dice - Finally, most experts agree that there may be no single reason for some countries to be hit and others missed. The answer is likely to be some combination of the above factors, as well as one other mentioned by researchers: sheer luck.

In the same way, in the simulations run with this model we can have very different outcomes as we change the initial seed of the random numbers. Those values are determining mainly the movements at a tiny scale and so the interactions—infections chains.

We can use the model in a comparative way, observing different range of results with different initial conditions (parameters).

Finally, to have a reference at an actual situation, the model is related to the Priedmont scale, with 4,350 agents vs. 4.35 millions of inhabitants. The scale 1 to 1000 is cover-operatined in the case of schools, with their classrooms with a realistic number of students, apartments with a realistic quantity of inhabitants, and likewise workspaces, hospitals, nursing homes.

We look also to the time series of the total infected people in Piedmont

VIEWING THE MODEL

In the desk version, we can use both the continuous view, observing all the agents' movements and the "on tick" one, faster but updating the screen only at the end of each tick. To set the view, we use a chooser in the top part of the screen.

In the web version we have uniquely the on tick feature.

The desk version also allows 3D view: right click on the map of the world and choose Switch to 3D View.

HOW IT WORKS

Scripting capability

The code can manage a script to set the parameter modifications occurring while the simulation is running. Explanations in the right side of the interface.

The simulation starts at tick 1, but we can already set the initial values at tick 0.

A trick: (i) via setup set all the default values for the experiments at tick 0 and then (ii) modify those that we want change before hitting so.

Special item "flash"

With the flash" item, followed by 1 or 2 or 3, we obtain a flash output in the window to the far right, with data at this beginning of the lack for; (1) total infected symptomatic people; (2) total infected symptomatic people; (3) total infected symptomatic people in NH; (4) total infected symptomatic people in NH; (4) total infected symptomatic people in NH; (5) total deceased.

Special item "activate check point"

With the "aCP" (activate checkpoint) item, followed by n with n in [1,8] as closed interpal, we collect data at the tick of the aCP command. In Behavior(Space, we can send (or not) the checkpoint data to the table of the results; we have six possible checkpoints, each reporting stocks of infected symptomatic people, infected asymptomatic people, decreased people. The data are at the beginning of the tick.

Figure 2: The information sheet, about 20 pages

The world

Figure 3: The world

The world 3D

The agents

Figure 5: Probes to different agents

Contagion representation

- The model allows analyzing the sequences of contagions in simulated epidemics, reporting the places where the contagion occur.
- We represent each infecting agent as a horizontal segment with a vertical connections to another agent receiving the infection. We represent the infected agents via further segments at an upper layer.
- With colors, line thickness, and styles, we display multiple information.
- This enables understanding at a glance how an epidemic episode is developing.
 In this way, it is easier to reason about countermeasures and, thus, to develop intervention policies.

An example (1/2)

Figure 6: A case with containment measures, first 40 infections: workplaces (brown) and nursing homes (orange) strictly interweaving

An example (2/2), more contagions

Figure 7: A Case with containment measures, the whole epidemics: workplaces (brown) and nursing homes (orange) and then houses (cyan), with a bridge connecting two waves

Other examples (i) on the left, an epidemic without containment measures; (ii) on the right, an epidemic with basic non-pharmaceutical containment measures

A contagion sequence suggesting policies: in Fig. 9 we can look both at the places where contagions occur and at the dynamics emerging with different levels of intervention.

Figure 9: (top left) an epidemic with regular containment measures, showing a highly significant effect of workplaces (brown): (top right) the effects of stopping fragile workers at day 20, with a positive result, but home contagions (cyan) keep alive the pandemic, exploding again in workplaces (brown): (bottom left) the same analyzing the first 200 infections with evidence of the event around day 110 with the new phase due to a unique asymptomatic worker, and (bottom right) stopping fragile workers and any case of fragility at day 15, also isolating nursing homes

Simulation batches

- We explore systematically the introduction of factual, counterfactual, and prospective interventions to control the spread of the contagions.
- Each simulation run—whose length coincides with the disappearance of symptomatic or asymptomatic contagion cases—is a datum in a wide scenario of variability in time and effects.
- Consequently, we need to represent compactly the results emerging from batches
 of simulation repetitions, to compare the consequences of the basic assumptions
 adopted for each specific batch.
- We use blocs of ten thousand repetitions. Besides summarizing the results with the usual statistical indicators, we adopt the technique of the heatmaps.
- Each heatmap reports the duration of each simulated epidemic in the x axis and the number of the symptomatic, asymptomatic, and deceased agents in the y axis. The z axis is represented by the colors, in logarithmic scale.
- In our batches we have 10.000 runs.

Ten thousand epidemics without control in Piedmont

	symptomatic	totalInfected&Deceased	duration
count	10000.00	10000.00	10000.00
mean	969.46	2500.45	303.10
std	308.80	802.88	93.50

Figure 10: Without non-pharmaceutical containment measures

Ten thousand epidemics with basic control in Piedmont

	symptomatic	totalInfected&Deceased	duration
count	10000.00	10000.00	10000.00
mean	344.22	851.64	277.93
std	368.49	916.41	213.48

Figure 11: First wave with non-pharmaceutical containment measures

Actual data

00000000

Spontaneous second wave, without specific measures

•0000000

140 epidemics stable in Summer 2020 out of 10,000, rule: at Jun 1, 20 select if sym. (10, 70], actual v. 33.3 & at Sep 20, 20 select if sym. (20, 90], actual value 37.5 & at Dec 15, 20 sym.+asym.>Sep 20, 20, actual value: 200.0.

Figure 13: First wave with non-pharmaceutical containment measures, spontaneous second wave, without specific measures

(1000)	Jun 1, 2	:0	Sep 9, 2	20	Dec 15,	20	Feb 1, 2	1	May 1, 2	21	Overall		Days
	sym.	all	sympt.	totalInf.	sympt.	totalInf.	sympt.	totalInf.	sympt.	totalInf.	sympt.	totalInf.	
count	140.0	140.0	140.0	140.0	140.0	140.0	131.0	131.0	128.0	128.0	140.0	140.0	140.0
mean	37.4	95.8	61.6	160.2	248.4	648.7	432.2	1109.5	656.3	1655.5	701.1	1757.9	594.2
std	16.4	59.3	19.3	71.3	167.4	424.3	220.4	538.4	215.4	513.3	246.4	599.7	118.9

Second w., new infections from outside, without specific measures

0000000

1044 epidemics stable in Summer 2020 out of 10,000, rule: at Jun 1, 20 select if sym. (10, 70], actual v. 33.3 & at Sep 20, 20 select if sym. (20, 90], actual value 37.5 & at Dec 15, 20 sym.+asym.>Sep 20, 20, actual value: 200.0.

Figure 14: First wave with non-pharmaceutical containment measures, forcing the second wave, without specific measures

(1000)	Jun 1, 2	0	Sep 9, 2	10	Dec 15,	20	Feb 1, 2	1	May 1, 2	21	Overall		Days
	sym.	all	sympt.	totalInf.	sympt.	totalInf.	sympt.	totalInf.	sympt.	totalInf.	sympt.	totalInf.	
count	1044.0	1044.0	1044.0	1044.0	1044.0	1044.0	1005.0	1005.0	980.0	980.0	1044.0	1044.0	1044.0
mean	35.1	71.9	40.3	85.6	180.4	462.1	354.1	900.4	623.8	1563.3	726.6	1810.9	620.9
std	13.8	41.3	17.0	53.8	134.6	354.6	213.8	535.4	217.9	527.0	221.9	544.0	110.8

0000000

	symptomatic Dec20	totalInfected&Deceased Dec20	duration
count	874.00	874.00	1407.00
mean	223.61	594.97	404.36
std	138.52	372.63	137.51

1,407 epidemics out of 10,000 stable in Summer 2020, with: at 6.1.20 select sym. (10, 70] actual v. 33.3 & at 9.20.20 select sym. (20, 90] actual value 37.5. 874 residual epidemics at 12.15.20 (actual symptomatic + asymptomatic people: 200.0).

Figure 15: First wave with non-pharmaceutical containment measures, forcing the second wave, with new specific non-pharmaceutical containment measures

00000000

	symptomatic Dec20	totalInfected&Deceased Dec20	duration
count	874.00	874.00	1407.00
mean	129.99	340.57	409.56
std	83.91	232.59	146.04

1,407 epidemics out of 10,000 stable in Summer 2020, with: at 6.1.20 select sym. (10, 70] actual v. 33.3 & at 9.20.20 select sym. (20, 90] actual value 37.5. 874 residual epidemics at 12.15.20 (actual symptomatic + asymptomatic people: 200.0).

Figure 16: First wave with non-pharmaceutical containment measures, forcing the second wave, with new specific non-pharmaceutical containment measures, March update

00000000

	symptomatic Dec20	totalInfected&Deceased Dec20	duration
count	770.00	770.00	1407.00
mean	108.95	289.36	391.58
std	63.07	181.02	145.51

1,407 epidemics out of 10,000 stable in Summer 2020, with: at 6.1.20 select sym. (10, 70] actual v. 33.3 & at 9.20.20 select sym. (20, 90] actual value 37.5. 770 residual epidemics at 12.15.20 (actual symptomatic + asymptomatic people: 200.0).

Figure 17: First wave with non-pharmaceutical containment measures, forcing the second wave, with new specific non-pharmaceutical cont. measures, March update, 20 day anticipation

00000000

	symptomatic Dec20	totalInfected&Deceased Dec20	duration
count	987.00	987.00	1407.00
mean	286.09	753.06	443.05
std	164.33	424.90	151.25

1,407 epidemics out of 10,000 stable in Summer 2020, with: at 6.1.20 select sym. (10, 70] actual v. 33.3 & at 9.20.20 select sym. (20, 90] actual value 37.5. 987 residual epidemics at 12.15.20 (actual symptomatic + asymptomatic people: 200.0).

Figure 18: First wave with non-pharmaceutical containment measures, forcing the second wave; in second wave, uniquely stop to fragile people of any kind (including workers)

00000000

To recap

Scenarios		total sym.	total sym., asympt., deceased	duration
no control in first wave				
	count	10000.00	10000.00	10000.00
	mean	969.46	2500.45	303.10
	std	308.80	802.88	93.50
basic controls in first wave				
	count	10000.00	10000.00	10000.00
	mean	344.22	851.64	277.93
	std	368.49	916.41	213.48
basic controls in first wave				
forcing realistic second	count	1044.00	1044.00	1407.00
wave, without new controls	mean	588.67	1474.10	527.85
	std	251.96	618.87	184.76
basic controls in first wave				
forcing realistic second	count	874.00	874.00	1407.00
wave, with new controls	mean	223.61	594.97	404.36
	std	138.52	372.63	137.51
basic controls in first wave				
forcing realistic second	count	987.00	987.00	1407.00
wave, with stop to frag.	mean	286.09	753.06	443.05
people (incl. workers)	std	164.33	424.90	151.25

Table 1: Report of the key results, with count, mean, and std

Exploring vaccinations

Exploring vaccination sequences (using genetic algorithms or reinforcement learning).

A new model: the map

A new model: the scale and the items

- 1:100.
- Infection engine, https://terna.to.it/simul/InfectionEngine.pdf.
- Houses.
- · Schools.
- Hospitals.
- Nursing homes,
- · Factories.
- Transportations.
- Aggregation places: happy hours, night life, sport stadiums, discotheques, ...

The tool: S.L.A.P.P.

Scientific advertising: https://terna.github.io/SLAPP/

SLAPP

Hosted on GitHub Pages - Theme by orderedlist

Macroeconomics with Endogenous Market Structure, is deeply based on

Figure 20: Swarm-Like Agent Protocol in Python

SLAPP.

A few considerations:

- The importance of High Performance Computing.
- From S.I.s.a.R. to a model of the society and of the economy of Piedmont.
- The S.I.s.a.R. model is a tool for comparative analyses, not for forecasting (the enormous standard deviation values are intrinsic to the problem).
- The model is highly parametric and more it will be.
- New crisis calling for immediate simulation could take a substantial advantage from the parametric structure of the model.

The slides are at https://terna.to.it/simul/TernaIRES20210223.pdf.

My homepage https://terna.to.it and my address pietro.terna@unito.it.

The image, elaborating Fig. ??, is dedicated to Pietro Greco (Barano d'Ischia, April 20th, 1955—Ischia, December 18th, 2020)