

Курс лекций «Линейная алгебра»

Лекция 2. Системы линейных уравнений

Линейные уравнения

Уравнение вида

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b$$

называют линейным. Здесь $x_1, x_2, \dots x_n$ - неизвестные, а a_1, a_2, \dots, a_n и b - коэффициенты уравнения, в их качестве могут выступать известные числа или функции каких-либо параметров. Если n=2 вместо x_1, x_2 обычно используют x, y. Уравнение вида

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0$$

называют однородным линейным уравнением.

Решим систему в общем виде, то есть с буквенными коэффициентами:

$$\begin{cases} a_{11}x + a_{12}y = b_1, \\ a_{21}x + a_{22}y = b_2, \end{cases}$$

Ответ:

$$\left(x = \frac{b_1 a_{22} - b_2 a_{12}}{a_{11} a_{22} - a_{12} a_{21}}, y = \frac{b_2 a_{11} - b_1 a_{21}}{a_{11} a_{22} - a_{12} a_{21}}\right).$$

Перед переменной x стоят коэффициенты a_{11} , a_{21} , а перед переменной y коэффициенты a_{12} , a_{22} . Таким образом, можно составить матрицу коэффициентов этой системы

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix},$$

В ней первый столбец содержит коэффициенты, стоящие перед x, а второй столбец содержит переменные, стоящие перед y.

Матрица
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 называется матрицей линейной системы.

При этом знаменатель выражений для x и y является определителем матрицы коэффициентов

$$\det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

А в числителях стоят определители с измененным первым или вторым

столбцом: у переменной
$$x$$
 числитель равен $\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}$, у переменной y

числитель равен
$$\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}$$

Таким образом, решение системы можно записать в виде:

$$x = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix} : \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \qquad y = \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix} : \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}.$$

Эти выражение для решения системы называют формулами Крамера.

Формулы не имеют смысла, когда определитель матрицы коэффициентов равен 0:

$$\det A = a_{11}a_{22} - a_{12}a_{21} = 0.$$

Из условия $\det A = a_{11}a_{22} - a_{12}a_{21} = 0$. Следует, что система из двух линейных уравнений не имеет решения, если

$$\frac{a_{11}}{a_{21}} = \frac{a_{12}}{a_{22}}.$$

При этом если

$$\frac{b_1}{b_2} = \frac{a_{12}}{a_{22}}$$

то первое и второе уравнения системы, фактически, совпадают, и она имеет бесконечное множество решений. Если $\det A = 0$, но

$$\frac{b_1}{b_2} \neq \frac{a_{12}}{a_{22}}$$

то система уравнений несовместна, то есть не имеет ни одного решения.

Правило Крамера

Чтобы отыскать подходящее значение x (первая переменная), следует заменить в матрице коэффициентов системы $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$

первый столбец на столбец правых частей $egin{pmatrix} b_1 \\ b_2 \end{pmatrix}$

$$A_{x} = \begin{pmatrix} b_{1} & a_{12} \\ b_{2} & a_{22} \end{pmatrix}$$

и разделить определитель этой матрицы на определитель системы. Чтобы отыскать подходящее значение y (вторая переменная), аналогично следует заменить в матрице коэффициентов системы второй столбец на столбец правых частей и разделить определитель этой матрицы на определитель системы.

Правило Крамера. Пример

Пример. Для системы

$$\begin{cases} 5x + y = 1, \\ x + 2y = 3, \end{cases}$$

имеем

$$A = \begin{pmatrix} 5 & 1 \\ 1 & 2 \end{pmatrix}, A_x = \begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix}, A_y = \begin{pmatrix} 5 & 1 \\ 1 & 3 \end{pmatrix}.$$

По формулам Крамера

$$x = \frac{det A_x}{det A}, \ y = \frac{det A_y}{det A}.$$

Правило Крамера. Пример

Вычисляем определители

$$det A = \begin{vmatrix} 5 & 1 \\ 1 & 2 \end{vmatrix} = 5 \cdot 2 - 1 \cdot 1 = 9$$

$$det A_x = \begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix} = 1 \cdot 2 - 1 \cdot 3 = -1$$

$$det A_y = \begin{vmatrix} 5 & 1 \\ 1 & 3 \end{vmatrix} = 5 \cdot 3 - 1 \cdot 1 = 14$$

Таким образом, получаем

$$x = -\frac{1}{9}, y = \frac{14}{9}$$

Пусть определитель системы

$$\begin{cases} a_{11}x + a_{12}y = b_1, \\ a_{21}x + a_{22}y = b_2, \end{cases}$$

равен нулю, то есть $a_{11}: a_{21} = a_{12}: a_{22}$.

Обозначим $a_{11}:a_{21}=a_{12}:a_{22}=\mu$

Это означает, что коэффициенты первого уравнения больше от коэффициентов второго уравнения в μ раз.

Таким образом, система в этом вырожденном случае имеет вид

$$\begin{cases} \mu \cdot (a_{21}x + a_{22}y) = b_1, \\ a_{21}x + a_{22}y = b_2. \end{cases}$$

Эта система совместна, то есть имеет решение, в том и только в том случае, когда

$$b_1 = \mu b_2$$

то есть когда уравнения системы отличаются только на мультипликативную константу μ . Уравнение

$$\mu \cdot (a_{21}x + a_{22}y) = \mu b_2$$

без ущерба можно просто выкинуть из системы.

Теорема 1. Если определитель системы двух уравнений с двумя неизвестными равен нулю, то возможно два случая:

- 1. система не имеет решений,
- 2. уравнения системы отличаются только на мультипликативную константу μ , и тогда второе уравнение можно удалить без изменения множества его решений.

Замечание. Запись

$$a_{11}: a_{21} = a_{12}: a_{22}$$

может быть использована даже тогда, когда, $a_{21}=0$. В этом случае она означает, что

$$\frac{a_{21}}{a_{11}} = \frac{a_{22}}{a_{12}}$$

Если интерпретировать x и y как декартовы координаты, то всякое линейное уравнение

$$ax + by + c = 0$$

задает прямую на плоскости xy.

Определение. Множество точек на плоскости xy, координаты которых, удовлетворяют уравнению

$$f(x,y)=0$$

будем называть линией. Множество точек на плоскости xy, координаты которых, удовлетворяют линейному уравнению

$$ax + by + c = 0$$

будем называть прямой линией.

Две прямые пересекаются в одной точке, поэтому система двух линейных уравнений с двумя неизвестными имеет одно решение. Имеется два исключения из этого правила:

- линейные уравнения задают пару параллельных прямых, которые не пересекаются, а следовательно, система, составленная из этих уравнений, не имеет решения;
- линейные уравнения задают одну и ту же прямую линю, а следовательно, система, составленная из этих уравнений, имеет бесконечно много решений.

Эти случаи совпадают с вырожденными случаями, описанными в теореме 1.

Отсюда в частности видно, что несовпадающие друг с другом прямые

$$a_{11}x + a_{12}y = b_1$$
 и $a_{21}x + a_{22}y = b_2$

параллельны в том и только в том случае, когда определитель $\det A = 0$.

Пример. Систем
$$\begin{cases} x + y = 1 \\ 2x + 2y = 1 \end{cases}$$

несовместна, поскольку прямые x + y = 1 и 2x + 2y = 1 параллельны.

Системы с тремя неизвестным

Рассмотрим общую систему из трех уравнений с тремя неизвестными

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1, \\ a_{21}x + a_{22}y + a_{23}z = b_2, \\ a_{31}x + a_{32}y + a_{33}z = b_3. \end{cases}$$

Чтобы найти единственное решение этой системы по формулам Крамера, воспользуемся следующим правилом.

Системы с тремя неизвестным

Правило Крамера. Чтобы отыскать подходящее значение *х* (первая переменная), следует заменить в матрице коэффициентов системы первый столбец на столбец правых частей и разделить определитель полученной матрицы на определитель матрицы коэффициентов системы.

Чтобы отыскать подходящее значение y (вторая переменная), следует заменить в матрице системы второй столбец на столбец правых частей и разделить определитель этой матрицы на определитель системы и т.д.

Системы с тремя неизвестным

Матрица коэффициентов системы следующая:

$$A = egin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, а столбец правой части $b = egin{pmatrix} b_1 \ b_2 \ b_3 \end{pmatrix}$. Таким образом,

по правилу Крамера находим неизвестные x, y, z по следующим формулам:

$$x = \frac{\begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}},$$

$$y = \frac{\begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}},$$

$$\mathbf{z} = egin{array}{c|cccc} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \\ \hline a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \hline \end{array}$$
 Российский университет

дружбы народов

Системы с тремя неизвестным. Пример

Найти решение системы:

$$\begin{cases} x + y + z = 1 \\ 2x + y = 3 \\ x + z = 1 \end{cases}$$

Решение: Составим матрицу коэффициентов и столбец правых частей:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}.$$

Вычисляем определитель системы

$$\det\begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = -2$$

Системы с тремя неизвестным. Пример

и применяем правило Крамера

$$\det_{1} \begin{pmatrix} 1 & 1 & 1 \\ 3 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = -3 \Rightarrow x = \frac{3}{2}; \det_{2} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 0 \\ 1 & 1 & 1 \end{pmatrix} = 0 \Rightarrow y = 0;$$
$$\det_{3} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 1 & 0 & 1 \end{pmatrix} = 1 \Rightarrow z = -\frac{1}{2}.$$

Проверим в MSMath, выполнив команду

$$solve({x + y + z = 1,2x + y = 3, x + z = 1})$$

получим ответ

$$\left(x = \frac{3}{2}, y = 0, z = -\frac{1}{2}\right)$$

Если интерпретировать x, y, z как декартовы координаты, то всякое линейное уравнение

$$ax + by + cz + d = 0$$

задает плоскость в пространстве xyz.

Определение. Множество точек в пространстве xyz, координаты которых, удовлетворяют уравнению

$$f(x, y, z) = 0$$

будем называть поверхностью. Множество точек в пространстве xyz, координаты которых, удовлетворяют уравнению

$$ax + by + cz + d = 0$$

будем называть плоскостью.

Две плоскости пересекаются по прямой линии, поэтому система двух линейных уравнений с 3-мя неизвестными всегда имеет бесконечное число решений. Три плоскости пересекаются в одной точке, поэтому система 3 линейных уравнений с 3-мя неизвестными имеет в точности одно решение - координаты точки пересечения.

Замечание. Для поверхностей сказанное не верно. Например, две сферы $x^2 + y^2 + z^2 = 1$ и $x^2 + y^2 + z^2 = 2$ не имеют точек пересечения.

Имеется исключения из этого правила:

- две из трех плоскостей параллельны,
- третья плоскость проходит через прямую, по которой пересекаются первые две плоскости,
- три плоскости совпадают друг с другом.

Во всех этих случаях точек пересечения или бесконечно много, или нет ни одной. Это означает, что во всех этих случаях правило Крамера не работает.

Системы п уравнений

Правило Крамера распространяется на системы n уравнений с n неизвестными без изменений.

Формулы Крамера позволяют отыскать единственное решение системы линейных алгебраических уравнений. Таким образом, можно сформулировать следующее утверждение:

Система линейных алгебраических уравнений имеет единственное решение только в том случае, если определитель матрицы коэффициентов системы $det A \neq 0$. В противном случаем (при det A = 0) система не имеет единственного решения.

Система линейных однородных уравнений

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = 0, \\ a_{21}x + a_{22}y + a_{23}z = 0, \\ a_{31}x + a_{32}y + a_{33}z = 0 \end{cases}$$

всегда совместна, поскольку она всегда имеет нулевое решение x=y=z=0. Такое решение называется тривиальным.

Теорема. Система линейных однородных уравнений имеет нетривиальное решение в том и только в том случае, когда ее определитель равен нулю.

Доказательство. Пусть определитель равен нулю

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = 0.$$

Тогда раскрывая определитель по первой строке получаем

$$+a_{11}\det\begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} - a_{12}\det\begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} + a_{13}\det\begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} = 0$$
 (*)

Выбрав

$$x = \det\begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}$$
, $y = -\det\begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix}$, $z = \det\begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$ (**)

Подставив это в (*), мы удовлетворим первому уравнению системы

$$a_{11}x + a_{12}y + a_{13}z = 0$$

Теперь подставим (**) во второе уравнение системы

$$a_{21}x+a_{22}y+a_{23}z=0$$
 , получим
$$+a_{21}\det \begin{pmatrix} a_{22}&a_{23}\\a_{32}&a_{33} \end{pmatrix}-a_{22}\det \begin{pmatrix} a_{21}&a_{23}\\a_{31}&a_{33} \end{pmatrix}+a_{23}\det \begin{pmatrix} a_{21}&a_{22}\\a_{31}&a_{32} \end{pmatrix}=0$$

ИЛИ

$$\det \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

1 и 2 строки совпадают $\Rightarrow \det A = 0$. Таким образом, второе уравнение тоже удовлетворяется. Аналогично доказывается, что удовлетворяется и третье уравнение системы.

Если среди определителей

$$x = \det \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}$$
, $y = -\det \begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix}$, $z = \det \begin{pmatrix} a_{21} & a_{22} \\ a_{33} & a_{33} \end{pmatrix}$

имеются отличные от нуля (то есть имеется ненулевое решение), то теорема доказана, в противном случае

$$a_{22}$$
: $a_{32} = a_{23}$: a_{33} , a_{21} : $a_{31} = a_{23}$: a_{33} , a_{21} : $a_{31} = a_{22}$: a_{32}

ИЛИ

$$a_{21}$$
: $a_{31} = a_{22}$: $a_{32} = a_{23}$: a_{33}

Это означает, что второе и третье уравнение отличаются только на мультипликативную константу, то они задают одну и ту же плоскость и поэтому утверждение очевидно.

Пусть однородная система

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = 0, \\ a_{21}x + a_{22}y + a_{23}z = 0, \\ a_{31}x + a_{32}y + a_{33}z = 0 \end{cases}$$

имеет нетривиальное решение

$$x = x_0, y = y_0, z = z_0.$$

Тогда

 $x = cx_0, \ y = cy_0, \ z = cz_0$

при любом значении мультипликативной константы c тоже будет решением системы. Следовательно, система имеет бесконечное число решений

Теорема. Если определитель неоднородно системы равен нулю, то эта система или имеет бесконечно много решений, или ни одного.

Доказательство. Пусть система

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1, \\ a_{21}x + a_{22}y + a_{23}z = b_2, \\ a_{31}x + a_{32}y + a_{33}z = b_3 \end{cases}$$

имеет решение

$$x = x_1$$
, $y = y_1$, $z = z_1$.

Если ее определитель равен нулю, то в силу предыдущей теоремы однородная система

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = 0, \\ a_{21}x + a_{22}y + a_{23}z = 0, \\ a_{31}x + a_{32}y + a_{33}z = 0 \end{cases}$$

имеет нетривиальное решение

$$x = x_0, y = y_0, z = z_0.$$

В таком случае, выражения

$$x = x_1 + cx_0$$
, $y = y_1 + cy_0$, $z = z_1 + cz_0$

тоже дают решение рассматриваемой системы. Таким образом, эта система имеет бесконечное число решений, что и требовалось доказать.

Пример

Определитель системы

$$\begin{cases} x + 2y + 3z = 1\\ 4x + 5y + 6z = 2\\ 7x + 8y + 9z = 0 \end{cases}$$

равен нулю, поэтому эта система не имеет единственного решения. В этом случае решений либо бесконечно много, либо решения нет.

Чтобы проверить, совместна ли система, воспользуемся методом исключений.

Пример. Решение

Из первого уравнения

$$x + 2y + 3z = 1$$

получается, что

$$x = 1 - 3z - 2y$$

Подставляя это выражение во второе уравнение, получим

$$4(1-3z-2y) + 5y + 6z - 2 = 0$$

или

$$2 - 6z - 3y = 0$$
,

а подставляя в третье уравнение, получим

$$7(1-3z-2y) + 8y + 9z = 0$$

или

$$7 - 12z - 6y = 0$$
.

Пример. Решение

Теперь из второго уравнения получается

$$y=\frac{2}{3}-2z,$$

подстановка этого выражения в третье уравнение дает

$$7 - 12z - 6\left(\frac{2}{3} - 2z\right) = 0$$

ИЛИ

$$3 = 0$$

что невозможно. Поэтому система несовместна.

Задача

При каких значениях параметра t совместна система

$$\begin{cases} x + 2y + 3z = 1 \\ 4x + 5ty + 6z = 0? \\ x + y + tz = 0 \end{cases}$$

Решение. Эта система может быть несовместна, только если ее определитель равен нулю.

$$\det \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5t & 6 \\ 1 & 1 & t \end{pmatrix} = 0$$
, то есть $5 t^2 - 23 t + 18 = 0$

 \Rightarrow система может быть несовместна при t=1 или $t=\frac{18}{5}$.

Задача

Проверим каждое полученное значение. Пусть t=1 . Получаем систему:

$$\begin{cases} x + 2y + 3z = 1 \\ 4x + 5y + 6z = 0 \\ x + y + z = 0 \end{cases}$$

Ищем решение методом исключений, получим, что система несовместна.

Задача

Проверим систему на совместимость при $t = \frac{18}{5}$. Получаем систему:

$$\begin{cases} x + 2y + 3z = 1\\ 4x + 18y + 6z = 0\\ x + y + \frac{18}{5}z = 0 \end{cases}$$

Ищем решение методом исключений, также получаем, что система несовместна.

Ответ: система совместна при всех t, кроме t = 1 или $t = \frac{18}{5}$.

Вопросы для самопроверки

- 1. Что такое матрица? Что такое определитель?
- 2. Сформулируйте правило вычисление определителя по первой строке. Докажите его для матриц размера 3 на 3.
- 3. Сформулируйте правило Крамера. Докажите его для случая систем с 2-мя неизвестными.
- 4. Что можно сказать о решении системы

$$\begin{cases} a_{11}x + a_{12}y = b_1, \\ a_{21}x + a_{22}y = b_2, \end{cases}$$

если ее определитель равен нулю? Дайте ответу геометрическую интерпретацию.

Вопросы для самопроверки

5. Что можно сказать о решении системы

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = 0, \\ a_{21}x + a_{22}y + a_{23}z = 0, \\ a_{31}x + a_{32}y + a_{33}z = 0, \end{cases}$$

если ее определитель равен нулю? Дайте ответу геометрическую интерпретацию.

6. Что можно сказать о решении системы

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1, \\ a_{21}x + a_{22}y + a_{23}z = b_2, \\ a_{31}x + a_{32}y + a_{33}z = b_3, \end{cases}$$

если ее определитель равен нулю?

