

Angewandte Stochastik

Prof. Dr. Evgeny Spodarev | Vorlesungskurs |

4. Thema

Heutiges Thema

Quantilplots und Kerndichteschätzung

- Nach der ersten beschreibenden Analyse eines Datensatzes (x₁,...,xn) soll überlegt werden, mit welcher Verteilung diese Stichprobe modelliert werden kann.
- ► Hier sind die sogenannten *Quantilplots* behilflich.
- ▶ Sie zeigen graphisch, wie gut die Daten $(x_1, ..., x_n)$ mit dem Verteilungsgesetz G übereinstimmen.
- ► *G* ist die Verteilungsfunktion einer hypothetischen Verteilung.

Seite 4

- Sei X eine Zufallsvariable mit (unbekannter) Verteilungsfunktion F_X.
- ▶ Auf Basis der Daten $(X_1, ..., X_n)$, X_i unabhängig identisch verteilt und $X_i \stackrel{d}{=} X$ möchte man prüfen, ob $F_X = G$ für eine bekannte Verteilungsfunktion G gilt.
- Methode der *Quantil-Grafiken*: Man vergleicht die entsprechenden Quantil-Funktionen \hat{F}_n^{-1} und G^{-1} von \hat{F}_n und G graphisch.

Hierzu

Seite 5

- plotte man $G^{-1}(\frac{k}{n})$ gegen $\hat{F}_n^{-1}(\frac{k}{n}) = X_{(k)}, \quad k = 1, \dots, n$.
- Falls die Punktwolke

$$\left\{ \left(G^{-1}\left(\frac{k}{n}\right),\,X_{(k)}\right),\quad k=1,\ldots,n\right\}$$

näherungsweise auf einer Geraden y=ax+b liegt, so sagt man, dass $F_X(x)\approx G\left(\frac{x-a}{b}\right),\ x\in\mathbb{R}.$

Figure: Quantil-Grafik

Diese empirische Vergleichsmethode beruht auf folgenden Überlegungen:

 Man ersetzt die unbekannte Funktion F_X durch die aus den Daten berechenbare Funktion \hat{F}_n . Dabei macht man einen Fehler, der allerdings asymptotisch (für $n \to \infty$) klein ist. Dies folgt aus dem Satz von Gliwenko-Cantelli, der besagt, dass

$$\sup_{x\in\mathbb{R}}\left|\hat{F}_n(x)-F_X(x)\right|\underset{n\to\infty}{\longrightarrow}0 \ \text{f.s.}$$

Seite 8

Der Vergleich der entsprechenden Quantil-Funktionen wird durch folgendes Ergebnis bestärkt:

Falls $EX < \infty$, dann gilt

$$\sup_{t\in[0,1]}\left|\int_0^t \left(\hat{F}_n^{-1}(y)-F_X^{-1}(y)\right)\ dy\right| \xrightarrow[n\to\infty]{\text{f.s.}} 0.$$

 \Rightarrow Voraussetzung für Verwendung der Quantil-Grafiken: der Stichprobenumfang n ist ausreichend groß, um $\hat{F}_n^{-1} \approx F_X^{-1}$ zu gewährleisten.

Man setzt zusätzlich voraus, dass die Gleichungen

$$y = ax + b$$
,
 $y = F_X^{-1}(t)$,
 $x = G^{-1}(t)$

für alle t (und nicht nur näherungsweise für $t=\frac{k}{n}, k=1,\ldots,n$) gelten.

$$\Rightarrow G(x) = t = F_X(y) = F_X(ax + b)$$
 für alle x , oder $F_X(y) = G\left(\frac{y-b}{a}\right)$ für alle y , weil $x = \frac{y-b}{a}$ ist.

Seite 10

- Aus praktischer Sicht ist es besser, Paare $\left(G^{-1}\left(\frac{k}{n+1}\right),X_{(k)}\right), \quad k=1,\ldots,n$ zu plotten.
- ▶ Dadurch wird vermieden, dass $G^{-1}(n/n) = G^{-1}(1) = \infty$ vorkommt, wie es zum Beispiel bei einer Verteilung G der Fall ist, bei der F(x) < 1 gilt für alle $x \in \mathbb{R}$.
- ▶ Tatsächlich gilt für k = n, dass $\frac{n}{n+1} < 1$ und somit $G^{-1}\left(\frac{n}{n+1}\right) < \infty$.

Es gilt $G^{-1}(y) = -\frac{1}{\lambda} \log(1-y)$, $y \in (0,1)$. So wird man beim Quantil-Plot Paare

$$\left(-\frac{1}{\lambda}\log\left(1-\frac{k}{n+1}\right),X_{(k)}\right),\quad k=1,\ldots,n$$

zeichnen, wobei der Faktor $\frac{1}{\lambda}$ für die Linearität unwesentlich ist und weggelassen werden kann.

Beispiel (Normalverteilung,

Seite 12

$$G(x) = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$
, $x \in \mathbb{R}$)

Analytische Berechnung von Φ^{-1} mit einer geschlossenen Formel nicht möglich.

Aus diesem Grund wird $\Phi^{-1}\left(\frac{k}{n+1}\right)$ numerisch berechnet und in Tabellen oder statistischen Software-Paketen (wie z.B. R) abgelegt.

Um die empirische Verteilung der Daten mit der Normalverteilung zu vergleichen, trägt man Punkte mit Koordinaten

$$\left(\Phi^{-1}\left(\frac{k}{n+1}\right), X_{(k)}\right), \quad k=1,\ldots,n$$

auf der Ebene auf und prüft, ob sie eine Gerade bilden (vgl. Abb. auf der nächsten Folie).

(a)

(b)

Figure: QQ-Plot einer Normalverteilung (a), einer linkssteilen Verteilung (b), einer rechtssteilen Verteilung (c) und einer symmetrischen, aber stark gekrümmten Verteilung (d).

- Falls $\bar{x}_n = 0$ und die Verteilung F_X linkssteil ist, so sind die Quantile von F_X kleiner als die von Φ .
 - ⇒ Der Normal-Quantilplot ist konvex.
- ightharpoonup Falls $\bar{x}_n = 0$ und F_X rechtssteil ist, so wird der Normal-Quantilplot konkav sein.

Figure: Ordnungsstatistiken einer Stichprobe von Schadenhöhen der Industrie-Unfälle in Belgien im Jahr 1992

Beispiel (Haftpflichtversicherung (Belgien, 1992))

- In obiger Abbildung sind Ordnungsstatistiken der Stichprobe von n = 227 Schadenhöhen der Industrie-Unfälle in Belgien im Jahr 1992 (Haftpflichtversicherung) gegen Quantile von Exponential-, Pareto-, Standardnormal- und Weibull-Verteilungen geplottet.
- Im Bereich von Kleinschäden zeigen die Exponential- und Pareto-Verteilungen eine gute Übereinstimmung mit den Daten.
- Die Verteilung von mittelgroßen Schäden kann am besten durch die Lognormal- und Weibull-Verteilungen modelliert werden.
- ► Für Großschäden erweist sich die Weibull-Verteilung als geeignet.

Beispiel (Rendite der BMW-Aktie)

In der folgenden Abbildung ist der Quantilplot für Renditen der BMW-Aktie beispielhaft zu sehen.

Figure: Quantilplot der Rendite der BMW-Aktie

Sei eine Stichprobe $(x_1, ..., x_n)$ von unabhängigen Realisierungen eines absolut stetig verteilten Merkmals X mit Dichte f_X gegeben.

- Mit Hilfe der Histogramme lässt sich f_X graphisch durch eine Treppenfunktion \hat{f}_X darstellen.
- Dabei gibt es zwei entscheidende Nachteile der Histogrammdarstellung:
 - 1. Willkür in der Wahl der Klasseneinteilung $[c_{i-1}, c_i]$,
 - 2. Eine (möglicherweise) stetige Funktion f_X wird durch eine Treppenfunktion \hat{f}_X ersetzt.
- Auf den folgenden Folien werden wir versuchen, diese Nachteile beseitigen, indem wir eine Klasse von Kerndichtenschätzern einführen, die (je nach Wahl des Kerns) auch zu stetigen Schätzern \hat{f}_X führen.

Definition

Der Kern K(x) wird definiert als eine nicht-negative messbare Funktion auf \mathbb{R} mit der Eigenschaft $\int_{\mathbb{R}} K(x) dx = 1$.

Der Kerndichteschätzer der Dichte f_X aus den Daten (x_1, \ldots, x_n) mit Kernfunktion K(x) ist gegeben durch

$$\hat{f}_X(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x-x_i}{h}\right), \quad x \in \mathbb{R},$$

wobei h > 0 die sogenannte Bandbreite ist.

Beispiele für Kerne

Seite 21

1. Rechteckskern:

$$K(x) = \frac{1}{2} \cdot I(x \in [-1, 1)).$$

Dabei ist

$$\frac{1}{h}K\left(\frac{x-x_i}{h}\right) = \begin{cases} \frac{1}{(2h)}, & x_i-h \leq x < x_i+h, \\ 0, & \text{sonst,} \end{cases}$$

und somit

$$\hat{f}_X(x) = \frac{1}{nh} \sum_{i=1}^k K\left(\frac{x-x_i}{h}\right) = \frac{\#\{x_i \in [x-h,x+h)\}}{2nh},$$

das auch *gleitendes Histogramm* genannt wird. Dieser Dichteschätzer ist (noch) nicht stetig, was durch die (besonders einfache rechteckige unstetige) Form des Kerns erklärt wird. 4 D > 4 D > 4 E > 4 E > . E

Figure: Rechteckkern

Beispiele für Kerne

2. Epanechnikov-Kern:

$$K(x) = \begin{cases} \frac{3}{4}(1 - x^2), & x \in [-1, 1) \\ 0, & \text{sonst.} \end{cases}$$

K(x)

Beispiele für Kerne

Bisquare-Kern:

$$K(x) = \frac{15}{16} \left((1 - x^2)^2 \cdot I(x \in [-1, 1)) \right) .$$

4. Gauss-Kern:

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, \quad x \in \mathbb{R}.$$

- ▶ Dabei ist die Wahl der Bandbreite h entscheidend für die Qualität der Schätzung.
- ▶ Je größer h > 0, desto glatter wird \hat{f}_X sein und desto mehr "Details" werden "herausgemittelt".
- Für kleinere h wird \hat{f}_X rauer.
- Dabei können aber auch Details auftreten, die rein stochastischer Natur sind und keine Gesetzmäßigkeiten zeigen.
- Mit der adäquaten Wahl von h beschäftigen sich viele wissenschaftliche Arbeiten, die empirische Faustregeln, aber auch kompliziertere Optimierungsmethoden dafür vorschlagen.