Lecture notes on Analysis and Geometry on Manifolds

 Lecturer
Prof. Dr. Laurent Côté
lcote@math.uni-bonn.de

University of Bonn Winter semester 2024/2025 Last update: October 14, 2024

Contents

Chapt	er 0 Manuel's notes	2
0.1	Organization	2
0.2	Course overview	2
Chapt	er 1 Topological manifolds	4
$1.\overline{1}$	Some point set topology	4
	1.1.1 Locally Euclidean spaces	4
	1.1.2 Hausdorff spaces	5
	1.1.3 Basis and covers	6
1.2	Topological manifolds	10
	1.2.1 Examples of topological manifolds	10
	1.2.2 Brief interlude: Why do we need Hausdorffness?	12
	1.2.3 Manifolds with boundary	12
List	Lectures	14

Chapter 0: Manuel's notes

Warning

These are unofficial lecture notes written by a student. They are messy, will almost surely contain errors, typos and misunderstandings and may not be kept up to date! I do however try my best and use these notes to prepare for my exams. Feel free to email me any corrections to mh@mssh.dev or s6mlhinz@uni-bonn.de.

Happy learning!

General Information

- Basis: Basis
- Website: https://www.math.uni-bonn.de/~lcote/V3D3_2024.html
- Time slot(s): Tuesday: 14-16 Nussallee Anatomie B and Friday: 12-14 GHS
- Exams: Tuesday 11.02.2025, 9-11, Großer Hörsaal, Wegelerstraße 10 and Friday 21.03.2025, 9-11, Großer Hörsaal, Wegelerstraße 10
- Deadlines: Friday before noon

0.1 Organization

- Four exercise classes, in the break come to the front and sign up.
- First homework is due this Friday
- Exercise sheets are due on Fridays, every week electronically (groups, at most 2)
- No published lecture notes by him!
- 5 Minute break right before the full hour
- Friday after class for questions

0.2 Course overview

He assumes we already know about

- Analysis on \mathbb{R}^n
- Basic point set topology

Start of lecture 01 (08.10.2024)

For this class: ${\bf smooth\ manifolds}$

- Intersection between analysis and topology
- Exiting: Connections between those two point of views

Main topics:

- Topic 00: Topological manifolds
- Topic 01: Basic theory of smooth manifolds
- Topic 02: Vector fields on smooth manifolds
- Topic 03: Tensor calculus and Stokes' theorem
- Topic 04: Lie groups, symplectic and Riemannian geometry

Chapter 1: Topological manifolds

1.1 Some point set topology

Some (set theoretical) conventions for the whole course:

- $A \subset B$ means A subset (not necessarily proper!) of B, i.e. $\subset = \subset$
- A neighborhood of some point $p \in X$ means an open set $U \subset X$ containing p
- Given $p = (p_1, \dots, p_n) \in \mathbb{R}^n, r > 0$, $B_r^n(p) := \{(x_1, \dots, x_n) \mid \sum_{x_i = p_i}^2 < r^2\}$. Often while $B_s = B_s^n(0) \subset \mathbb{R}^n$

1.1.1 Locally Euclidean spaces

Definition. A topological space X is called <u>locally Euclidean of dimension</u> $n \ge 0$, if every point of X is contained in a neighborhood homeomorphic to some open subset of \mathbb{R}^n .

Remark. When we speak of a topological space as being locally Euclidean. The dimension is fixed and implicit.

Definition. Assume that X is locally Euclidean. A <u>chart</u> is a pair U, ϕ , where $U \subset X$, $\phi : U \to \mathbb{R}^n$ is a homeomorphism into its image. Given $p \in X$, we say that U, ϕ is <u>centered at p</u> if $p \in U$ and $\phi(p) = 0 \in \mathbb{R}^n$

Figure 1.1: Sketch 1.01

Lemma 1.1. The following are equivalent (TFAE):

- X is locally Euclidean
- For any $p \in X$, there is a chart U, ϕ centered at p with image $\phi(U) = B_1$

• For any $p \in X$, there is a chart U, ϕ centered at p with image $\phi(U) = \mathbb{R}^n$

Proof. 2. and 3. are equivalent, since $B_1 \simeq \mathbb{R}^n$ are homeomorphic $(B_1^n \ni x \mapsto \frac{x}{1-\|x\|})$ 2. \implies 1. is tautological

1. \Longrightarrow 2. given $p \in X$, since X is locally Euclidean, there exists **some** chart $U, \phi, p \in U$. $psi: U \to \mathbb{R}^n$, homeo onto its image $psi(U) = O \subset \mathbb{R}^n$. By translativity $\mathbb{R}^n \ni x \mapsto x - \psi(p)$, one can assume $\psi(p) = 0 \in \mathbb{R}^n$. By scaling $\mathbb{R}^n(x \mapsto \lambda x, \lambda > 0)$, can assume $B_1 \subset \psi(U)$. Let $U' = \psi^{-1}(B_1)$, then (U, ψ) as claimed.

1.1.2 Hausdorff spaces

Definition. A topological space X is called Hausdorff, if given any $p_1 \neq p_2, p_1, p_2 \in X$, there exist neighborhoods $p_1 \in U_1, p_2 \in U_2$ s.t. $U_1 \cap U_2 = \emptyset$.

Figure 1.2: Sketch 1.02

Example. • \mathbb{R}^n

- CW complexes
- most reasonable spaces

Example (Not Hausdorff). $X = \{0, 1\}$, open subsets $\emptyset, \{0\}, \{0, 1\}$

Remark. X is homeomorphic to \mathbb{R}/\mathbb{R}^* (quotient topology), $R^*, (s, x \mapsto sx)$

Lemma 1.2. Let X be Hausdorff.

- (a) point sets $\{x\}$ are closed
- (b) convergent sequences have unique limits. $(x_n \to p, x_n \to q \implies p = q)$
- (c) compact sets are closed

Proof. (c) \Longrightarrow (a)

For (c): Let $K \subset X$ be compact. Want to show K^c is open. Pick $p \in K^c$. For each $q \in K$, we can choose $U_q \ni q, U_p \ni p : U_q \cap U_p = \emptyset$ Since K is compact, it can be covered by U_{q_1}, \ldots, U_{q_l} . Then $\bigcap_{i=1}^l U_{q_i}$ is oen and contains p, disjoint, then $\bigcup_{i=1}^l U_{q_i} \supset K$.

Figure 1.3: Sketch 1.03

(b) Suppose for contradiction that $x_i \to p, x_i \to q$ and $p \neq q$. Since X is Hausdorff, $\exists U \ni p, O \ni q, U \cap O = \emptyset$. But for $N >> 0 x_i \in U, x_i \in O \forall i > N$

1.1.3 Basis and covers

Let X be a topological space.

Definition. A collection \mathcal{B} of subsets of X is called a $\underline{basis(base)}$ for X, if for any $p \in X$ and any neighborhood $U \ni p$, there exists an element $\mathcal{U} \in \mathcal{B}$ $\overline{s.t.}$ $p \in \mathcal{U} \subset U$.

Figure 1.4: Sketch 1.04

Lemma 1.3. \mathcal{B} is a basis for $X \iff$ every open set of X is a union of elements of \mathcal{B} .

Proof. Trivial.

Definition. A topological space X is **second-countable** if it admits a countable basis.

Example. • \mathbb{R}^n , $\mathcal{B} = \{B_s^n(p) \mid s \in \mathbb{Q}_+, p = (p_1, \dots, p_n) \in \mathbb{Q}^n \subset \mathbb{R}^n\}$

Lemma 1.4. The property of being second-countable is closed under

- (a) subspaces
- (b) countable disjoint unions
- (c) countable products

Remark. The property of being second-countable is not closed under arbitrary quotients $q: A \to A/B$. An obvious sufficient conditions is for q to be an open map. (Since it is a pushforward)

Lemma 1.5. If X is second countable, then any open cover of X admits a countable subcover.

Proof. Let \mathcal{B} be a countable basis for X. Let \mathcal{C} be an open cover. Let $\tilde{\mathcal{B}} \subset \mathcal{B}$ be the collection of basis elements U, which are contained in some $\mathcal{U} \in \mathcal{C}$. Observe (key!) $\tilde{\mathcal{B}}$ is a cover of X. For each $U \in \tilde{\mathcal{B}}$, choose $\mathcal{U}_U \in \mathcal{C}$ such that $U \subset \mathcal{U}_U$. Then $\{\mathcal{U}_U\}$ is a countable subcover of \mathcal{C} .

Definition. Let X be a topological space. An exhaustion of X by compact subsets is a sequence $\{K_i\}_{i\in\mathbb{N}}$, where $K_i\subset X$ compact and K_i $\subset int(K_{i+1})$ and $\bigcup_{i=1}^{\infty}K_i=X$.

Recall given $A \subset X$. $int(A) := \{x \in A \mid x \text{ in a neighborhood } U \subset A\}$.

When constructing manifolds via quotients, check that it is still second-coutable!

Lemma 1.6. If X is locally Euclidean, Hausdorff^a and second countable. Then X admits an exhaustion by compact subsets.

^anot needed

Proof. Since X is locally Euclidean, admits a basis \mathcal{B} of open subsets having compact closure.

That is take the close of $B_{\frac{1}{2}} \subset \mathbb{R}^n$

Figure 1.5: Sketch 1.05

By Lemma 1.5, one can extract a countable subcover $\{U_i\}_{i=1}^{\infty}$. Set $K_1 = \overline{U_1}$. Assume that we already constructed K_1, \ldots, K_k such that $U_j \subset K_j$ and $K_{j-1} \subset \operatorname{int}(K_j), j \geq 2$. Since K_k is compact and $K_k \subset X = \bigcup_{i=1}^{\infty} U_i$, then there exists some m_k such that $K_k \subset X = \bigcup_{i=1}^{m_k} U_i$ by compactness. Might as well assume that $m_k \geq k$. Set

$$K_{k+1} = \overline{\bigcup_{i=1}^{m_k} U_i} = \bigcup_{i=1}^{m_k} \overline{U_i}.$$

By construction K_{k+1} is compact, $K_k \subset \operatorname{int}(K_{k+1})$. We get $\{K_j\}_{j=1}^{\infty}, U_j \subset K_j \text{ (because } m_j \geq j)$ $\Longrightarrow \bigcup_{i=1}^{\infty} U_i = \bigcup_{i=1}^{\infty} K_i$

Start of lecture 02 (11.10.2024)

Some remarks and apologies

- Homework 01, apology for paracompactness (if this happens again, feel free to complain)
- Lemma 1.4 should be countable disjoint unions (already corrected in my notes)
- In lemma 1.6, Hausdorff assumption not needed (already corrected in my notes)
- For questions about exercises, email Koen von der Dungen or your TA¹ directly

Definition. Let X be a topological space. Let C be a collection of subsets of X. We say that C is <u>locally finite</u> if for every $x \in X$ there exists a neighborhood $U \ni x$ such that the intersection of U with all but finitely many elements of C is empty.

Example (Example for local finiteness). Take $X = \mathbb{R}$, $C = \{(i-1, i+1)\}_{i \in \mathbb{Z}}$.

¹tutor

Figure 1.6: Sketch 1.06

Example (Non-example for local finiteness). $X = \mathbb{R}$, $\mathcal{C} = (q-1, q+1)_{q \in \mathbb{Q}}$

Definition. Let X be a topological space. Let \mathcal{C} be a cover of X. A cover \mathcal{C}' of X is called a **refinement of** \mathcal{C} , if for all elements $U \in \mathcal{C}'$, there exists such $V \in \mathcal{C}$: $U \subset V$.

Example (Example of Refinement). In the proof of lemma 1.5, we showed that any open cover admits a refinement by basis elements.

Definition. A topological space X is called <u>paracompact</u> if every open cover admits a locally finite refinement.

Whats up with the word **para**compact? It's like compact, but weaker! It is necessary that it only admits a locally finite refinement!

Lemma 1.7. Let X be Hausdorff and suppose that X admits an exhaustion by compact subsets. Then X is paracompact. In fact, we will show that given any basis \mathcal{B} of X, any open cover admits a locally finite refinement by elements of \mathcal{B} .

Proof. By assumption, $\{K_i\}_{i\in\mathbb{N}}$, K_i compact, $K_i \subset \operatorname{int}(K_{i+1})$, $\bigcup_{i=1}^{\infty} K_i = X$. Let, for $j \in \mathbb{Z} : V_j = K_{j+1} \setminus \int (K_j)$ if $j \leq 0 : K_j = \emptyset^2$.

Careful! There are many definitions of exhaustion by compact sets . . .

Figure 1.7: Sketch 1.07

Notice:

- V_j is compact, since we take the intersection of a compact set and a closed set. $(int(K_j)^c)$ is closed)
- $\bigcup_{j \in \mathbb{Z}} V_J = X$, since $\bigcup_{j \le n} = \bigcup_{j \le n+1} K_j = K_{j+1}$
- The compact sets V_j are intersecting (along their boundary?) $V_j \cap V_{j-1} = \partial K_j := K_j \setminus \operatorname{int}(K_j)$

Evidently $\{U_{\alpha} \cap \operatorname{int}(K_{j+1}) \cap \operatorname{int}(K_{j-1})^c\}_{\alpha \in \mathcal{A}}$ covers $V_j = K_{j+1} - \backslash K_{j-1}^c$, where the $\{U_{\alpha}\}_{\alpha \in \mathcal{A}}$ is an open cover. Since \mathcal{B} is a basis, we can find a refinement of this cover by basis elements. Since V_j are compact, we can extract a finite subcover $\{V_l^j\}_{l=1,\ldots,k_j}$. Let's consider: $\{V_l^j\}_{j\in Z, l=1,\ldots,k_j}$. This subcover works, i.e.

Here we use Hausdorffness

²He writes − for \

- obviously a cover, since the V_j cover X, obviously a refinement of $\{U_\alpha\}$
- locally finite: given $x \in X, x \in V_j$, hence $x \in \operatorname{int}(K_{K_{j+2}}) \cap K_{j-1}^c =: U$. If $U \cap V_l^k$, then we must have $j-2 \le k \le j+2$. But $\{V_l^k\}_{j-2 \le k \le j+2}$ is finite.

Corollary 1.8. If X is locally Euclidean, Hausdorff and second countable \implies X is paracompact.

Proof. By lemma 1.6 (exhaustion by compact subsets) and lemma 1.7 \Longrightarrow paracompact.

Corollary 1.8'. Let X be Euclidean and Hausdorff. Then X is second countable iff X has countably many components and X is paracompact.

Remark. There are different definitions of manifolds. They differ in either forcing second countability or paracompactness. This lemma shows that there only is a difference if there are uncountably many components.

Proof. Corollary 1.8 and the bonus homework problem from sheet 01. \Box

Remark. Basis elements are open.

1.2 Topological manifolds

Definition. A topological n-manifold M is a topological space with the following properties:

- (i) M is locally Euclidean (of dimension n)
- (ii) M is Hausdorff
- (iii) M is second countable

Morally we only really need condition (i). Why do we need the others? For (ii) you will not get a useful theory without it, while (iii) can be replaced by paracompactness (see corollary 1.8').

Definition. Let Man⁰ be the category of topological manifolds with

- 1. objects: topological manifolds
- 2. morphisms: continuous functions

Remark. Man⁰ full subcategory of Top.

Remark. By definition, $M, N \in Man^0$, then M, N are isomorphic iff M, N are homeomorphic.

1.2.1 Examples of topological manifolds

Example (Spaces isomorphic to \mathbb{R}^n). \mathbb{R}^n , $n \geq 0$ More generally, if V a finite dimensional \mathbb{R} -vector space, then V is a topological n-manifold.

Example. Any open subset of \mathbb{R}^n

Example (Graphs). Let $U \subseteq \mathbb{R}^n$ open, let $f: U \to \mathbb{R}^n$ be a continuous function. We set

$$M := graph(f) := \{(x, y) \in U \times \mathbb{R}^n \mid y = f(x)\}.$$

Then M is a manifold. The map $M \to U$ by $(x,y) \mapsto U$ gives a global chart.

Example (Spheres). Let $S^n := \{x_0^2 + \dots + x_n^2 = 1\} \subset \mathbb{R}^{n+1}$. Then S^n is a manifold. We define charts

$$\phi_i^{\pm}: U_i^{\pm} = \{(x_0, \dots, x_n) \in S^n \mid \pm x_i > 0\} \to B_1^n(0)$$

$$by (x_0, ..., x_n) \mapsto (x_0, ..., \hat{x}_i, ..., x_n) := (x_0, ..., x_{i-1}, x_{i+1}, ..., x_n)$$

Here we no longer have a global chart (for topological reasons)

Figure 1.8: Sketch 1.08

Example (spheres'). Let $C^n := \partial([-1,1]^{n+1}) = [-1,1]^{n+1} \setminus int([-1,1]^{n+1})$. Homework: $C^n \simeq S^n$ (homeomorphic)

Example (n-torus). Let $\Pi^n := \mathbb{R}^n/\mathbb{Z}^n$ with the quotient topology. Then this is a manifold (exercise).

Figure 1.9: Sketch 1.09

Example $(\mathbb{RP}^n := S^n/\{x \sim -x\})$. \mathbb{RP}^n are also manifolds (called the real projective spaces).

Figure 1.10: Sketch 1.10

Example (Klein bottle).

Remark. \mathbb{RP}^2 or generally \mathbb{RP}^{2n} and the Klein bottle are not orientable.

1.2.2 Brief interlude: Why do we need Hausdorffness?

- Back in the day (Riemann)
- There is no hope to classify even 1d locally Euclidean, second-countable NOT Hausdorff spaces (See the line with two origins)
- \bullet With Hausdorff: Only 1d manifolds are \mathbb{R}, S^1 (see website)

Why do we need second countability?

- \bullet Subspaces of \mathbb{R}^n are second countable
- We want partitions of unity (paracompactness suffices for that)

1.2.3 Manifolds with boundary

Let
$$\mathbb{H}^n := \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_n \ge 0\}.$$

Definition. A manifold with boundary is a topological space with the following properties:

- (i) Every point has a neighborhood homeomorphic to an open subset of \mathbb{H}^n
- (ii) Hausdorff
- (iii) second countable

Clearly every manifold is also a manifold with boundary.

Example. \mathbb{H}^n is a manifold with boundary, but not a manifold. Since for points on the boundary, there are no neighborhoods homeomorphic to Euclidean space.

Example.
$$S^n \cap \mathcal{H}^{n+1}, S^n \subset \mathbb{R}^{n+1}, [a,b], [0,\infty)$$

Figure 1.11: Sketch 1.12

Definition. If M manifold with boundary, we say x is a **boundary point**, if $x \in M \setminus int(M)$ (i.e. it has no neighborhood homeomorphic to Euclidean space?), otherwise x is an iterior point. We let $\partial M := \{boundary\ points\}.$

List of Lectures

- Lecture 01: Introduction: locally Euclidean, Hausdorff, second countable spaces, their covers and exhaustions by compact sets
- Lecture 02: Local finiteness, refinements, paracompactness, introduction to topological manifolds and examples