PM PROJECT

Business report.

Contents

I.	Problem 1	5
	Comp-activ:	5
	1.1 : Define the problem and perform exploratory Data Analysis	.6
	Problem definition	.6
	Check shape	.6
	Data types	.7
	Statistical summary	.7
	Univariate analysis	.8
	Multivariate analysis	11
	Use appropriate visualizations to identify the patterns and insights	13
	Key meaningful observations on individual variables and the relationship between variables	14
	1.2 Data Pre-processing	15
	Outlier Detection (treat, if needed)	16
	Feature Engineering - Encode the data - Train-test split	18
	1.3 Model Building - Linear regression	21
	Apply linear Regression using Sklearn - Using Statsmodels Perform checks for significant variables using the appropriate method - Create multiple models and check the performance of Predictions on Train and Test sets using Rsquare, RMSE & Adj Rsquare	
	1.4 Business Insights & Recommendations	32
	Comment on the Linear Regression equation from the final model and impact of relevant variables (atleast 2) as per the equation	32
	Conclude with the key takeaways (actionable insights and recommendations) for the business	
		33
١.		
	2.1 Define the problem and perform exploratory Data Analysis	35
	Problem Definition	35
	Check shape, Data types, statistical summary	35
	Univariate analysis - Multivariate analysis - Use appropriate visualizations to identify the patterns and insights	37
	Key meaningful observations on individual variables and the relationship between variables3	39
	2.2 Data Pre-processing	40
	Feature Engineering (if needed) - Encode the data - Train-test split	41
	2.3 Model Building and Compare the Performance of the Models	42
	Build a Logistic Regression model - Build a Linear Discriminant Analysis model - Build a CART model - Prune the CART model by finding the best hyperparameters using GridSearch - Check	

the pe	rformance of the models across train and test set using different metrics - Compare th	ne
perfor	mance of all the models built and choose the best one with proper rationale	42
2.4	Business Insights & Recommendations	50
Comm	ent on the importance of features based on the best model - Conclude with the key	
takeav	ways (actionable insights and recommendations) for the business	. 50

List of Tables

Table 1 - Dataset	6
Table 2 - Shape and info	7
Table 3 - Statistical summary	7
Table 4 - Null Values	15
Table 5 - After treating null values	15
Table 6 - encode data	18
Table 7 - Train head	20
Table 8 - Test head	20
Table 9 - OLS model 1	21
Table 10 - VIF model 1	22
Table 11 - OLS model 2	23
Table 12 - VIF value 2	23
Table 13 - OLS model 3	24
Table 14 - VIF model 3	25
Table 15 - OLS model 4	26
Table 16 - OLS model 5	27
Table 17 - VIF values 4	27
Table 18 - VIF for all features	28
Table 19 - Dataset	35
Table 20 - Info	36
Table 21 - Statistical data	36
Table 22 - Missing values	40
Table 23 - Post treatment of missing values	40
Table 24 - Data encoding	41
Table 25 – Classification for training data	42
Table 26 – Classification for testing data	42
Table 27 - LDA ARRAY	44
Table 28 - Coefficent data	44
Table 29 - Classification training data LDA	45
Table 30 - Classification test data LDA	46

List of Figures

Figure 1 - Box plot of variables	8
Figure 2 - Histograms for Individual Variables	8
Figure 3 -Iread vs usr	9
Figure 4 - scall vs usr	9
Figure 5 - freeswap vs usr	9
Figure 6 - freemen vs usr	10
Figure 7 - runqsz vs usr	10
Figure 8 - pair plot of multiple variables	11
Figure 9 - pairplot 2	12
Figure 10 - heatmap of variables	13
Figure 11 - Scatterplot of variables	14
Figure 12 - before outlier treatment	16
Figure 13 - after outlier treatment	17
Figure 14 heatmap corelation	19
Figure 15 – Dendrogram	21
Figure 16 - Dendogram 2	21
Figure 17 - Fitted vs residual	28
Figure 18 – Pairplot distribution of data	29
Figure 19 - Normality of residuals	30
Figure 20 - Probability plot	30
Figure 21 - Best model	31
Figure 22 - linear regression equation	32
Figure 23 - coutplot of multiple variable	37
Figure 24 - standard of living index	38
Figure 25 - Husband edcuation	38
Figure 26 - Outliers	40
Figure 27 - Post treatment of outlier	41
Figure 28 - Confusin for train data	43
Figure 29 - confusion for test data	43
Figure 30 - Confusion Matrix LDA	45
Figure 31 - AUC data	46
Figure 32 - Feature importance plot	47
Figure 33 - AUC cart training data	48
Figure 34 - AUC test data	48
Figure 35 - Confusion matrix for training data	49
Figure 36 - Confusion matrix for testing data	40

Problem 1

Comp-activ:

The comp-activ database comprises activity measures of computer systems. Data was gathered from a Sun Sparcstation 20/712 with 128 Mbytes of memory, operating in a multi-user university department. Users engaged in diverse tasks, such as internet access, file editing, and CPU-intensive programs.

Being an aspiring data scientist, you aim to establish a linear equation for predicting 'usr' (the percentage of time CPUs operate in user mode). Your goal is to analyze various system attributes to understand their influence on the system's 'usr' mode.

Data Description:

System measures used:

Iread - Reads (transfers per second) between system memory and user memory

lwrite - writes (transfers per second) between system memory and user memory

scall - Number of system calls of all types per second

sread - Number of system read calls per second.

swrite - Number of system write calls per second .

fork - Number of system fork calls per second.

exec - Number of system exec calls per second.

rchar - Number of characters transferred per second by system read calls

wchar - Number of characters transfreed per second by system write calls

pgout - Number of page out requests per second

ppgout - Number of pages, paged out per second

pgfree - Number of pages per second placed on the free list.

pgscan - Number of pages checked if they can be freed per second

atch - Number of page attaches (satisfying a page fault by reclaiming a page in memory) per second

pgin - Number of page-in requests per second

ppgin - Number of pages paged in per second

pflt - Number of page faults caused by protection errors (copy-on-writes).

vflt - Number of page faults caused by address translation .

runqsz - Process run queue size (The number of kernel threads in memory that are waiting for a CPU to run.

Typically, this value should be less than 2. Consistently higher values mean that the system might be CPU-bound.)

freemem - Number of memory pages available to user processes

freeswap - Number of disk blocks available for page swapping.

Introduction:

The comp-activ database offers a comprehensive snapshot of computer system activity, sourced from a Sun Sparcstation 20/712 in a multi-user university department. Our aim, as aspiring data scientists, is to establish a predictive linear equation for the 'usr' mode—revealing the percentage of time CPUs operate in user mode. This analysis explores the diverse system attributes influencing this behaviour.

Executive Summary:

This analysis dives into the comp-activ database to decode the intricate relationship between system attributes and the 'usr' mode. Through univariate and multivariate analyses, we aim to construct a predictive model, offering insights crucial for system optimization and resource management. The findings empower data science enthusiasts and system administrators with actionable knowledge.

1.1 : Define the problem and perform exploratory Data Analysis

Ans –

Problem definition

Let's embark on an intriguing journey through the comp-activ database, a fascinating collection of computer system activity from a Sun Sparcstation. Our mission? To demystify the 'usr' mode— understanding how much time CPUs spend in user mode. This adventure is all about connecting the dots between different system features and the 'usr' mode, unraveling the secrets of computer system behavior.

Table 1 - Dataset

	Iread	lwrite	scall	sread	swrite	fork	exec	rchar	wchar	pgout	 pgscan	atch	pgin	ppgin	pflt	vflt	runqsz	freemem	freesv
0	1	0	2147	79	68	0.2	0.20	40671.0	53995.0	0.00	 0.00	0.0	1.60	2.60	16.00	26.40	CPU_Bound	4670	1730
1	0	0	170	18	21	0.2	0.20	448.0	8385.0	0.00	 0.00	0.0	0.00	0.00	15.63	16.83	Not_CPU_Bound	7278	1869
2	15	3	2162	159	119	2.0	2.40	NaN	31950.0	0.00	 0.00	1.2	6.00	9.40	150.20	220.20	Not_CPU_Bound	702	1021
3	0	0	160	12	16	0.2	0.20	NaN	8670.0	0.00	 0.00	0.0	0.20	0.20	15.60	16.80	Not_CPU_Bound	7248	1863
4	5	1	330	39	38	0.4	0.40	NaN	12185.0	0.00	 0.00	0.0	1.00	1.20	37.80	47.60	Not_CPU_Bound	633	1760
8187	16	12	3009	360	244	1.6	5.81	405250.0	85282.0	8.02	 55.11	0.6	35.87	47.90	139.28	270.74	CPU_Bound	387	986
8188	4	0	1596	170	146	2.4	1.80	89489.0	41764.0	3.80	 0.20	0.8	3.80	4.40	122.40	212.60	Not_CPU_Bound	263	1055
8189	16	5	3116	289	190	0.6	0.60	325948.0	52640.0	0.40	 0.00	0.4	28.40	45.20	60.20	219.80	Not_CPU_Bound	400	969
8190	32	45	5180	254	179	1.2	1.20	62571.0	29505.0	1.40	 18.04	0.4	23.05	24.25	93.19	202.81	CPU_Bound	141	1022
8191	2	0	985	55	46	1.6	4.80	111111.0	22256.0	0.00	 0.00	0.2	3.40	6.20	91.80	110.00	CPU_Bound	659	1756
8192 ו	ows ×	22 colu	ımns																

Check shape

Shape – (8192, 22) Total Rows –8192 Total Columns – 22

Table 2 - Shape and info

<clas< th=""><th>ss 'pandas</th><th>.core.frame.Data</th><th>Frame'></th></clas<>	ss 'pandas	.core.frame.Data	Frame'>
		92 entries, 0 to	
		total 22 columns	
#		Non-Null Count	
			• •
0	lread	8192 non-null	int64
1	lwrite	8192 non-null	int64
2	scall	8192 non-null	int64
3	sread	8192 non-null	int64
4	swrite	8192 non-null	int64
5	fork	8192 non-null	float64
6	exec	8192 non-null	float64
7	rchar	8088 non-null	float64
8	wchar	8177 non-null	float64
9	pgout	8192 non-null	float64
10	ppgout	8192 non-null	float64
		8192 non-null	
12	pgscan	8192 non-null	float64
13	atch	8192 non-null	float64
14	pgin	8192 non-null	float64
15	ppgin	8192 non-null	float64
16	pflt	8192 non-null	float64
17	vflt	8192 non-null	float64
18	runqsz	8192 non-null	object
19	freemem	8192 non-null	int64
20	freeswap	8192 non-null	int64
21	usr	8192 non-null	int64
dtyp	es: float6	4(13), int64(8),	object(1)
memo	ry usage:	1.4+ MB	

Data types

Float Datatype – 13 Object Datatype – 1 Int Datatype – 8

Statistical summary

Table 3 - Statistical summary

	Iread	lwrite	scall	sread	swrite	fork	exec	rchar	wchar	pgout	 pgfree
count	8192.000000	8192.000000	8192.000000	8192.000000	8192.000000	8192.000000	8192.000000	8.088000e+03	8.177000e+03	8192.000000	 8192.000000
mean	19.559692	13.106201	2306.318237	210.479980	150.058228	1.884554	2.791998	1.973857e+05	9.590299e+04	2.285317	 11.919712
std	53.353799	29.891726	1633.617322	198.980146	160.478980	2.479493	5.212456	2.398375e+05	1.408417e+05	5.307038	 32.363520
min	0.000000	0.000000	109.000000	6.000000	7.000000	0.000000	0.000000	2.780000e+02	1.498000e+03	0.000000	 0.000000
25%	2.000000	0.000000	1012.000000	86.000000	63.000000	0.400000	0.200000	3.409150e+04	2.291600e+04	0.000000	 0.000000
50%	7.000000	1.000000	2051.500000	166.000000	117.000000	0.800000	1.200000	1.254735e+05	4.661900e+04	0.000000	 0.000000
75%	20.000000	10.000000	3317.250000	279.000000	185.000000	2.200000	2.800000	2.678288e+05	1.061010e+05	2.400000	 5.000000
max	1845.000000	575.000000	12493.000000	5318.000000	5456.000000	20.120000	59.560000	2.526649e+06	1.801623e+06	81.440000	 523.000000

Univariate analysis

Figure 1 - Box plot of variables

We have outliers for our columns Rchar, wchar

Figure 2 - Histograms for Individual Variables

Scall and Freemem are right skewed

USR is is left skewed

Figure 3 -Iread vs usr

Figure 4 - scall vs usr

Figure 5 - freeswap vs usr

Figure 6 - freemen vs usr

Figure 7 - runqsz vs usr

Findings -

• A noticeable observation is the presence of linear relationships among all variables, with the exception of freeswap and runqsz.

Multivariate analysis

The image can be zoomed for better view.

Figure 8 - pair plot of multiple variables

Figure 9 - pairplot 2

- The visual representation in the plots highlights the prevalence of zero values across all variables.
- It is interesting to note that all variables exhibit higher density at elevated rates of usr.

Figure 10 - heatmap of variables

With the analysis we can see the presence of corelation

Figure 11 - Scatterplot of variables

As we can see the correlation is week between the variables

Key meaningful observations on individual variables and the relationship between variables

- The dataset encompasses both categorical and numerical values.
- With a total of 8192 rows and 22 columns, only 1 column is of object type, 8 columns are of integer type, and the remaining 13 are of float type.
- Our target variable is 'usr,' while all others serve as predictor variables.
- Upon delving into the univariate analysis, it becomes evident that there are outliers requiring attention.
- Bivariate and multivariate analyses reveal a robust positive correlation between the target variable 'usr' and the predictor variables 'freemem' and 'freeswap.'
- It's worth noting that there are no duplicate records in the provided dataset.

1.2 Data Pre-processing

Prepare the data for modelling: - Missing Value Treatment (if needed)

Table 4 - Null Values

lread	0	
lwrite	0	
scall	0	
sread	0	
swrite	0	
fork	0	
exec	0	
rchar	104	
wchar	15	
pgout	0	
ppgout	0	
pgfree	0	
pgscan	0	
atch	0	
pgin	0	
ppgin	0	
pflt	0	
vflt	0	
runqsz	0	
freemem	0	
freeswap	0	
usr	0	
dtype: in	t64	

Missing value in Rchar and Wchar

We will treat it using median

Table 5 - After treating null values

lread	0	
lwrite	0	
scall	0	
sread	0	
swrite	0	
fork	0	
exec	0	
rchar	0	
wchar	0	
pgout	0	
ppgout	0	
pgfree	0	
pgscan	0	
atch	0	
pgin	0	
ppgin	0	
pflt	0	
vflt	0	
runqsz	0	
freemem	0	
freeswap	0	
usr	0	
dtype: int	64	

Outlier Detection (treat, if needed)

We can see multiple outliers and we need to remove then for further analysis

Figure 12 - before outlier treatment

After outlier Treatment

Figure 13 - after outlier treatment

Feature Engineering - Encode the data - Train-test split

Table 6 - encode data

	Iread	lwrite	scall		swrite	fork							-4-1-	
				sread			exec	rchar	wchar	pgout	ppgout	pgfree	atch	pgin
Iread	1.000000	0.834674	0.333572	0.326032	0.306542	0.365676	0.364062	0.255544	0.174410	0.208258	0.219798	0.214400	0.230628	0.283252
lwrite	0.834674	1.000000	0.140213	0.148028	0.132097	0.093166	0.121778	0.117504	0.132595	0.090726	0.089149	0.082519	0.126769	0.113368
scall	0.333572	0.140213	1.000000	0.763001	0.742206	0.474491	0.440010	0.386875	0.331933	0.297487	0.305507	0.300612	0.306359	0.335380
sread	0.326032	0.148028	0.763001	1.000000	0.876652	0.528047	0.369723	0.576127	0.415059	0.301658	0.315648	0.311863	0.292044	0.346654
swrite	0.306542	0.132097	0.742206	0.876652	1.000000	0.519148	0.313323	0.419759	0.430126	0.274708	0.284982	0.280082	0.264283	0.307420
fork	0.365676	0.093166	0.474491	0.528047	0.519148	1.000000	0.774268	0.370995	0.122990	0.197047	0.214192	0.216166	0.201768	0.247715
exec	0.364062	0.121778	0.440010	0.369723	0.313323	0.774268	1.000000	0.324990	0.124145	0.230712	0.248680	0.250468	0.252416	0.299591
rchar	0.255544	0.117504	0.386875	0.576127	0.419759	0.370995	0.324990	1.000000	0.486317	0.250881	0.267983	0.261728	0.265281	0.369470
wchar	0.174410	0.132595	0.331933	0.415059	0.430126	0.122990	0.124145	0.486317	1.000000	0.195926	0.204542	0.187786	0.160142	0.250258
pgout	0.208258	0.090726	0.297487	0.301658	0.274708	0.197047	0.230712	0.250881	0.195926	1.000000	0.950418	0.909151	0.642940	0.437916
ppgout	0.219798	0.089149	0.305507	0.315648	0.284982	0.214192	0.248680	0.267983	0.204542	0.950418	1.000000	0.969091	0.614961	0.464484
pgfree	0.214400	0.082519	0.300612	0.311863	0.280082	0.216166	0.250468	0.261728	0.187786	0.909151	0.969091	1.000000	0.598164	0.464531
atch	0.230628	0.126769	0.306359	0.292044	0.264283	0.201768	0.252416	0.265281	0.160142	0.642940	0.614961	0.598164	1.000000	0.329873
pgin	0.283252	0.113368	0.335380	0.346654	0.307420	0.247715	0.299591	0.369470	0.250258	0.437916	0.464484	0.464531	0.329873	1.000000
ppgin	0.290564	0.118388	0.325487	0.344586	0.302481	0.236216	0.288017	0.390376	0.260535	0.448769	0.482710	0.483354	0.334002	0.961242
pflt	0.375250	0.102631	0.485361	0.529364	0.505560	0.939125	0.758255	0.381489	0.125757	0.206128	0.221593	0.221590	0.208409	0.252192
vflt	0.421079	0.135243	0.548081	0.597892	0.563163	0.932579	0.763429	0.438870	0.157922	0.299740	0.320826	0.322354	0.296459	0.396702
freemem	-0.201369	-0.099558	-0.388969	-0.349887	-0.350318	-0.136045	-0.191919	-0.165552	-0.146838	-0.469831	-0.461413	-0.464708	-0.442062	-0.309647
freeswap	-0.243903	-0.149630	-0.357864	-0.369897	-0.336869	-0.133135	-0.184268	-0.230327	-0.175309	-0.348040	-0.338905	-0.339652	-0.345789	-0.365383
usr	-0.438163	-0.185695	-0.618932	-0.638072	-0.598098	-0.673513	-0.609368	-0.507561	-0.317330	-0.381960	-0.388662	-0.382053	-0.341721	-0.459133

Figure 14 heatmap corelation

The variables have moderate corelation

```
We will now split the data
```

```
X = 'Iread', 'Iwrite', 'scall', 'sread', 'swrite', 'fork', 'exec', 'rchar',
    'wchar', 'pgout', 'ppgout', 'pgfree', 'atch', 'pgin', 'ppgin', 'pflt',
    'vflt', 'freemem', 'freeswap'
Y= 'usr'
```

split X and y into train and test sets in a 70:30 ratio.

Table 7 - Train head

	const	lread	lwrite	sca	ll srea	d swr	rite	fork	exec	r	char \	
694	1.0	1.0	1.0	1345	.0 223.	0 19	92.0	0.6	0.6	1987	03.0	
5535	1.0	1.0	1.0	1429	.0 87.	0 6	57.0	0.2	0.2	71	63.0	
4244	1.0	47.0	25.0	3273	.0 225.	0 18	30.0	0.6	0.4	832	46.0	
2472	1.0	13.0	8.0	4349	.0 300.	0 19	91.0	2.8	3.0	960	09.0	
7052	1.0	17.0	23.0	225	.0 13.	0 1	L3.0	0.4	1.6	171	32.0	
	W		-	pgout	pgfree	atch				pflt	vflt	\
694	230625	.875	0.60	6.20	12.50	1.5	3.80	7.4	10 2	8.20	56.60	
5535	24842	.000	0.00	0.00	0.00	0.0	1.60	1.6	60 1	5.77	30.74	
4244	53705	.000	5.39	7.19	7.19	1.5	3.99	4.5	9 5	9.88	74.05	
2472	70467	.000	0.00	0.00	0.00	0.0	2.80	3.2	0 12	9.00	236.80	
7052	12514	.000	0.00	0.00	0.00	0.0	0.00	0.0	0 1	9.80	23.80	
	freeme	n fre	eswap									
694	121.0		446.0									
5535	1476.0	1021	541.0									
4244	82.0	9 10	989.5									
2472	772.0	993	909.0									
7052	4179.0	1821	682.0									

Train head

Table 8 - Test head

```
const lread lwrite scall sread swrite fork exec
                                                        rchar
3894
      1.0 27.0
                  25.0 1252.0 53.0 118.0 0.2
                                                  0.2
                                                       26592.0
4276
      1.0
            1.0
                   0.0 996.0 85.0
                                     55.0
                                            0.4
                                                  0.4
                                                       16667.0
                   7.0 1530.0 247.0
3414
      1.0
            9.0
                                     135.0
                                            0.4
                                                  0.4
                                                       14513.0
                   4.0 3243.0 182.0
           32.0
                                     140.0
4165
      1.0
                                            4.9
                                                  5.6 337517.0
           16.0
                  3.0 5017.0 259.0 249.0
                                            2.8
7385
      1.0
                                                 1.4
                                                      73537.0
                                                    pflt
         wchar pgout ppgout pgfree atch pgin ppgin
                                                           vflt \
                                             0.6
3894
      54394.000
                0.0
                       0.0
                              0.0
                                   0.0
                                        0.4
                                                    19.44
                                                           20.04
                                              1.4 35.53
                                   0.0
                                        1.0
4276
      36431.000
                 0.0
                       0.0
                              0.0
                                                           52.10
                             12.5 1.5 14.8 18.4 26.80 186.20
3414
     61905.000
                6.0
                      10.5
4165
     94832.000
                0.8
                     1.0 1.0 1.4 4.6 7.0 250.60 420.20
                       0.0 0.0 0.0 5.6 5.8 142.80 276.20
7385 230625.875
                 0.0
      freemem
              freeswap
3894 4659.125 1875466.0
4276 2979.000 1010114.0
3414
      89.000
               10989.5
4165 1300.000 1535309.0
7385 2114.000
             988600.0
```

Test Head

1.3 <u>Model Building - Linear regression</u>

Apply linear Regression using Sklearn - Using Statsmodels Perform checks for significant variables using the appropriate method - Create multiple models and check the performance of Predictions on Train and Test sets using Rsquare, RMSE & Adj Rsquare.

Table 9 - OLS model 1

Dep. Varia	able:		usr	R-sq	uared:		0.790	
Model:			OLS	Adj.	R-squared:		0.790	
Method:		Least Squa	res	F-sta	atistic:		1133.	
Date:	9	un, 14 Jan 2	024	Prob	(F-statistic	:):	0.00	
Time:		03:03	3:34	Log-l	ikelihood:		-16738.	
No. Observ	vations:	5	734	AIC:			3.352e+04	
Df Residua	als:	5	714	BIC:			3.365e+04	
Of Model:			19					
Covariance	21	nonrob						
	coef	std err		t	P> t	[0.025	0.975]	
const	85.5495	0.300		.117	0.000	84.961	86.138	
lread	-0.0748			.259	0.000	-0.093	-0.057	
lwrite	0.0610			.598		0.035	0.087	
scall	-0.0007					-0.001	-0.001	
sread swrite	0.0003 -0.0054			. 266 . 738		-0.002 -0.008	0.002 -0.003	
				. / 30		-0.000		
fork exec	0.0576 -0.3323		_	.431 .347		-0.204 -0.435	0.320 -0.230	
rchar	-5.812e-06					-6.78e-06		
vchar	-7.203e-06			.941			-5.17e-06	
ogout	-0.3309			.627	0.000	-0.510	-0.152	
opgout	-0.0580			.727		-0.214	0.098	
ogfree	0.0695			435	0.151	-0.025	0.164	
atch	0.6753			.664		0.391	0.959	
ogin	0.0171			.593		-0.039	0.074	
ppgin	-0.0631	0.020	-3	.155	0.002	-0.102	-0.024	
of1t	-0.0336	0.002	-16	.716	0.000	-0.038	-0.030	
/flt	-0.0053	0.001	-3	690	0.000	-0.008	-0.003	
freemem	-0.0004	5.12e-05	-7	.818	0.000	-0.001	-0.000	
freeswap	8.627e-06	1.92e-07	-	.918	0.000	8.25e-06	9e-06	
Omnibus:		1325.			in-Watson:		2.019	
Prob(Omni	bus):	0.	000	Jarqu	ue-Bera (JB):	:	3434.492	
Skew:		-1.	247	Prob	(JB):		0.00	
(urtosis:			856	Cond			7.17e+06	
Notes: [1] Standa	ard Errors as	sume that th	ne cov	ariand	ce matrix of	the errors	is correctly	/ specifie

The R-squared value indicates that our model can explain 79.0% of the variance in the training set.

Table 10 - VIF model 1

VIF values	:
const lread lwrite scall sread swrite fork exec	25.601099 5.298513 4.303179 2.929695 6.420121 5.597129 13.031712 3.240493 2.110885
wchar pgout ppgout pgfree atch pgin ppgin pflt vflt freemem	1.555099 11.348082 29.394226 16.486831 1.874624 13.808466 13.947912 12.001459 15.970315 1.945776
dtype: flo	1.828205 at64

using Variance Inflation Factor (VIF)

Let's remove/drop multicollinear columns one by one and observe the effect on our predictive model

- On dropping 'ppgout' and 'pgfree' adj. R-squared almost remains the same.
- On dropping 'vflt', adj. R-squared decresed by 0.001
- On dropping 'ppgin', adj. R-squared decresed by 0.001
- On dropping 'pgin', adj. R-squared almost remains the same.
- On dropping 'fork', adj. R-squared almost remains the same.
- On dropping 'pflt', adj. R-squared decreased by 0.011
- sharp decline indicates that 'pflt' is an important predictor and should not be removed On dropping
- 'pgout', adj. R-squared decresed by 0.001
- On dropping 'sread', adj. R-squared decresed by 0.001
- In conclusion, observing that the adjusted R-squared remains unaffected upon removing the 'ppgout' column, and considering its substantial influence on the variance, we opt to exclude it from the training set.

Table 11 - OLS model 2

		OLS Re	gress	ion R	esults			
Dep. Varia	ble:		===== usr	R-sa	======================================		0.790	
Model:			OLS		R-squared:		0.790	
Method:		Least Squa					1196.	
Date:	9	Sun, 14 Jan 2				c):	0.00	
Time:		03:03			Likelihood:	-,-	-16739.	
No. Observ	ations:		734	AIC:			3.352e+04	
Df Residua			715	BIC:			3.364e+04	
Df Model:	-5.	_	18	520.			313012101	
Covariance	Type:	nonrob						
	coef	std err		 t	P> t	[0.025	0.9751	
		300 011			12151	[0.025	0.5/5]	
const	85.5676	0.299	286	.179	0.000	84.981	86.154	
lread	-0.0749	0.009	-8	.262	0.000	-0.093	-0.057	
lwrite	0.0610	0.013	4	.600	0.000	0.035	0.087	
scall	-0.0007	6.34e-05	-11	.777	0.000	-0.001	-0.001	
sread	0.0003	0.001	0	.264	0.792	-0.002	0.002	
swrite	-0.0054	0.001	-3	.741	0.000	-0.008	-0.003	
fork	0.0600	0.134	0	.449	0.654	-0.202	0.322	
exec	-0.3333	0.052	-6	.368	0.000	-0.436	-0.231	
rchar	-5.811e-06	4.92e-07	-11	.816	0.000	-6.77e-06	-4.85e-06	
wchar	-7.236e-06	1.04e-06	-6	.981	0.000	-9.27e-06	-5.2e-06	
pgout	-0.3745	0.069	-5	.454	0.000	-0.509	-0.240	
pgfree	0.0417	0.030	1	.406	0.160	-0.016	0.100	
atch	0.6767	0.145	4	.674	0.000	0.393	0.961	
pgin	0.0180	0.029	0	.624	0.532	-0.038	0.074	
ppgin	-0.0640	0.020	-3	.207	0.001	-0.103	-0.025	
pflt	-0.0336	0.002	-16	.717	0.000	-0.038	-0.030	
vflt	-0.0054	0.001	-3	.703	0.000	-0.008	-0.003	
freemem	-0.0004	5.12e-05	-7	.847	0.000	-0.001	-0.000	
freeswap	8.621e-06	1.92e-07	44	.926	0.000	8.25e-06	9e-06	
Omnibus:		1324.4	===== 415	Duch	in-Watson:		2.019	
Prob(Omnib	ue).		999		ue-Bera (JB)		3427.527	
Skew:	us/i		246		(JB):	•	0.00	
Kurtosis:			852		. No.		7.14e+06	
Kul LUSIS:		J.,		CONG	. 140.		7.146700	
[2] The co	ndition numb	ssume that the per is large, ity or other	7.14	e+06.	This might:		is correctly at there are	specified.

The R-squared value tells us that our model can explain 79.0% of the variance in the training set.

check for multicollinearity

Table 12 - VIF value 2

VIF values	:	
const	25.424423	
lread	5.298433	
lwrite	4.303148	
scall	2.929554	
sread	6.420086	
swrite	5.597020	
fork	13.023854	
exec	3.238358	
rchar	2.110869	
wchar	1.551973	
pgout	6.430968	
pgfree	6.171219	
atch	1.874301	
pgin	13.782952	
ppgin	13.894353	
pflt	12.001459	
vflt	15.966065	
freemem	1.943526	
freeswap	1.825361	
dtype: flo	at64	

- On dropping 'vflt', adj. R-squared decresed by 0.001
- In conclusion, the removal of 'pflt' led to a substantial 0.011 decrease in the adjusted R-squared. This pronounced reduction underscores the significance of 'pflt' as a crucial predictor, strongly advising against its exclusion from the model.

Given the absence of any impact on the adjusted R-squared after removing the 'pgin' column, and considering its high variance influence factor, the decision is made to exclude it from the training set.

Table 13 - OLS model 3

Dep. Varia	ble:		usr R-			0.790	
Model:			OLS Ad:	j. R-squared:		0.790	
Method:		Least Squa				1266.	
Date:	Si	un, 14 Jan 2	.024 Pro	ob (F-statisti	c):	0.00	
Time:		03:03	:34 Lo	g-Likelihood:		-16739.	
No. Observ		5	734 AI			3.351e+04	
Df Residua	ls:	_	716 BI	:		3.363e+04	
Df Model:			17				
Covariance		nonrob					
	coef	std err	1	t P> t		0.975]	
const	85,5825	0.298		0.000	84.998	86.167	
lread	-0.0750						
lwrite	0.0610	0.013	4.60	0.000	0.035	0.087	
scall	-0.0007	6.34e-05	-11.76	0.000	-0.001	-0.001	
sread	0.0003	0.001	0.25	0.799	-0.002	0.002	
swrite	-0.0054	0.001	-3.73	0.000	-0.008	-0.003	
fork	0.0571	0.134 0.052	0.42	7 0.669	-0.205	0.319	
exec	-0.3324	0.052	-6.35	0.000	-0.435	-0.230	
rchar	-5.833e-06	4.9e-07	-11.89	0.000	-6.79e-06	-4.87e-06	
wchar	-7.22e-06		-6.96		-9.25e-06	-5.19e-06	
pgout	-0.3730	0.069			-0.507	-0.238	
pgfree		0.030		7 0.169			
atch	0.6771	0.145	4.67	7 0.000	0.393	0.961	
ppgin				7 0.000			
pflt				0.000			
vf1t	-0.0053						
freemem				0.000			
	8.614e-06			l 0.000			
Omnibus:		1325.	636 Dui	rbin-Watson:		2.019	
Prob(Omnib	us):			rque-Bera (JB)	:	3435.181	
Skew: Kurtosis:			247 Pro			0.00	
		5.	857 Cor	nd. No.		7.12e+06	

The R-squared value indicates that our model can account for 79.0% of the variance within the training set.

Check for multicollinearity

Table 14 - VIF model 3

VIF values:	
const lread lwrite scall sread swrite fork exec rchar wchar pgout pgfree atch ppgin pflt	25.263079 5.295815 4.303110 2.927766 6.418812 5.596559 13.008265 3.235774 2.099560 1.550961 6.422354 6.155198 1.874263 1.722709 11.952041 15.755601
	1.943522
freeswap dtype: floa	

Let's eliminate multicollinear columns step by step and assess their impact on our predictive model.

Table 15 - OLS model 4

Dep. Vari	able:		usr R	R-squared:			0.790
Model:			OLS A	Adj. R-squ	ared:		0.790
Method:		Least Squa	res F	-statisti	c:		1346.
Date:	Si	un, 14 Jan 2	024 P	rob (F-st	atisti	c):	0.00
Time:		03:03	3:34 L	.og-Likeli	hood:		-16739.
No. Observ	vations:	5	734 A	AIC:			3.351e+04
Df Residu	als:	5	717 E	BIC:			3.363e+04
Df Model:			16				
Covariance	e Type:	nonrob	ust				
	coef	std err		t P	> t	[0.025	0.975]
const	85.5665	0.296	289.4	100 0	.000	84.987	86.146
lread	-0.0749	0.009	-8.2	270 0	.000	-0.093	-0.057
lwrite	0.0608	0.013	4.5	87 0	.000	0.035	0.087
scall	-0.0007	6.28e-05	-11.9	16 0	.000	-0.001	-0.001
sread	0.0002	0.001	0.2	234 0	.815	-0.002	0.002
swrite	-0.0053	0.001	-3.7	719 0	.000	-0.008	-0.003
exec	-0.3261	0.050	-6.4	199 0	.000	-0.424	-0.228
rchar	-5.835e-06	4.9e-07	-11.8	399 0	.000	-6.8e-06	-4.87e-06
wchar	-7.225e-06	1.04e-06	-6.9	974 0	.000	-9.26e-06	-5.19e-06
pgout	-0.3728	0.069	-5.4	133 0	.000	-0.507	-0.238
pgfree	0.0405	0.030	1.3	370 0	.171	-0.017	0.098
atch	0.6736	0.145		660 0	.000	0.390	0.957
ppgin	-0.0529	0.007	-7.6	62 0	.000	-0.066	-0.039
pflt	-0.0334	0.002	-17.9	949 0	.000	-0.037	-0.030
vf1t	-0.0050	0.001	-3.9	923 0	.000	-0.007	-0.002
freemem		5.12e-05	-7.8		.000	-0.001	-0.000
freeswap	8.623e-06	1.9e-07	45.3	331 0	.000	8.25e-06	9e-06
Omnibus:		1325.	032 D	Ourbin-Wat			2.019
Prob(Omnil	bus):	0.	000	larque-Ber	a (JB)	:	3427.344
Skew:		-1.	247 P	rob(JB):			0.00
Kurtosis:		5.	851 (ond. No.			7.05e+06
Notes: [1] Standa	ard Errors as	sume that th	ne covar	iance mat	rix of	the errors	is correctly sp

Following the removal of features responsible for significant multicollinearity and those deemed statistically insignificant, our model's performance has not experienced a substantial decline. This suggests that these variables lacked considerable predictive power in our model.

Table 16 - OLS model 5

Model: OLS Adj. R-squared: 0.786 Method: Least Squares F-statistic: 1625. Date: Sun, 14 Jan 2024 Prob (F-statistic): 0.00 Time: 03:03:35 Log-Likelihood: -16783. No. Observations: 5734 AIC: 3.359e+04 DF Residuals: 5720 BIC: 3.369e+04 DF Model: 13 13 Covariance Type: nonrobust coef std err t P> t [0.025 0.975] const 85.4441 0.296 288.345 0.000 84.863 86.025 lwrite -0.0354 0.007 -5.361 0.000 -0.048 -0.022 scall -0.0059 0.001 -5.518 0.000 -0.008 -0.004 swrite -0.0059 0.001 -5.518 0.000 -0.008 -0.004 exec -0.4084 0.049 -8.304 0.000 -6.86e-06 -5.14e-06	Dep. Varia	ble:		usr R-s	quared:		0.787	
Date: Sun, 14 Jan 2024 Prob (F-statistic): 0.00 Time: 03:03:35 Log-Likelihood: -16783. No. Observations: 5734 AIC: 3.359e+04 Df Residuals: 5720 BIC: 3.369e+04 Df Model: 13 Covariance Type: nonrobust	Model:						0.786	
Time: 03:03:35 Log-Likelihood: -16783. No. Observations: 5734 AIC: 3.359e+04 Df Residuals: 5720 BIC: 3.369e+04 Df Model: 13 Covariance Type: nonrobust	Method:							
No. Observations: 5734 AIC: 3.359e+04 Df Residuals: 5720 BIC: 3.369e+04 Df Model: 13 Covariance Type: nonrobust		S			•	ic):	0.00	
Df Residuals: 5720 BIC: 3.369e+04 Df Model: 13 Covariance Type: nonrobust							-16783.	
Df Model: 13 Covariance Type: nonrobust coef std err t P> t [0.025 0.975] const 85.4441 0.296 288.345 0.000 84.863 86.025 lwrite -0.0354 0.007 -5.361 0.000 -0.048 -0.022 scall -0.0008 6.03e-05 -12.916 0.000 -0.001 -0.001 swrite -0.0059 0.001 -5.518 0.000 -0.008 -0.004 exec -0.4084 0.049 -8.304 0.000 -0.505 -0.312 rchar -6e-06 4.41e-07 -13.607 0.000 -6.86e-06 -5.14e-06 wchar -6.376e-06 1.03e-06 -6.200 0.000 -8.39e-06 -4.36e-06 pgout -0.3521 0.069 -5.097 0.000 -0.488 -0.217 pgfree 0.0275 0.030 0.925 0.355 -0.031 0.086 atch 0.6217 0.145 4.278 0.000 0.337 0.907 ppgin -0.0699 0.007 -10.556 0.000 -0.083 -0.057 pflt -0.0414 0.001 -39.277 0.000 -0.043 -0.039 freemem -0.0004 5.15e-05 -7.760 0.000 8.44e-06 9.18e-06			_					
Covariance Type: nonrobust coef std err t P> t [0.025] 0.975] const 85.4441 0.296 288.345 0.000 84.863 86.025 lwrite -0.0354 0.007 -5.361 0.000 -0.048 -0.022 scall -0.0008 6.03e-05 -12.916 0.000 -0.001 -0.001 swrite -0.0059 0.001 -5.518 0.000 -0.008 -0.004 exec -0.4084 0.049 -8.304 0.000 -0.008 -0.004 exec -0.4084 0.049 -8.304 0.000 -0.505 -0.312 rchar -6e-06 4.41e-07 -13.607 0.000 -6.86e-06 -5.14e-06 wchar -6.376e-06 1.03e-06 -6.200 0.000 -8.39e-06 -4.36e-06 pgout -0.3521 0.069 -5.097 0.000 -0.488 -0.217 pgfree 0.0275 0.030 0.925		ls:	5	720 BIC	:		3.369e+04	
coef std err t P> t [0.025] 0.975] const 85.4441 0.296 288.345 0.000 84.863 86.025 lwrite -0.0354 0.007 -5.361 0.000 -0.048 -0.022 scall -0.0088 6.03e-05 -12.916 0.000 -0.001 -0.001 swrite -0.0059 0.001 -5.518 0.000 -0.008 -0.004 exec -0.4084 0.049 -8.304 0.000 -0.505 -0.312 rchar -6e-06 4.41e-07 -13.607 0.000 -6.86e-06 -5.14e-06 wchar -6.376e-06 1.03e-06 -6.200 0.000 -8.39e-06 -4.36e-06 pgout -0.3521 0.069 -5.097 0.000 -0.488 -0.217 pgfree 0.0275 0.030 0.925 0.355 -0.031 0.086 atch 0.6217 0.145 4.278 0.000 0.337 0.907								
const 85.4441 0.296 288.345 0.000 84.863 86.025 lwrite -0.0354 0.007 -5.361 0.000 -0.048 -0.022 scall -0.0008 6.03e-05 -12.916 0.000 -0.001 -0.001 swrite -0.0059 0.001 -5.518 0.000 -0.008 -0.004 exec -0.4084 0.049 -8.304 0.000 -0.505 -0.312 rchar -6e-06 4.41e-07 -13.607 0.000 -6.86e-06 -5.14e-06 wchar -6.376e-06 1.03e-06 -6.200 0.000 -8.39e-06 -4.36e-06 pgout -0.3521 0.069 -5.097 0.000 -0.488 -0.217 pgfree 0.0275 0.030 0.925 0.355 -0.031 0.086 atch 0.6217 0.145 4.278 0.000 0.337 0.907 ppgin -0.0699 0.007 -10.556 0.000 -0.083 -0.057 pflt -0.0414 0.001 -39.277 0.000 -0.083 -0.057 pflt -0.0414 0.001 -39.277 0.000 -0.043 -0.039 freemem -0.0004 5.15e-05 -7.760 0.000 8.44e-06 9.18e-06	Covariance	Type:	nonrob	ust				
lwrite -0.0354 0.007 -5.361 0.000 -0.048 -0.022 scall -0.0008 6.03e-05 -12.916 0.000 -0.001 -0.001 swrite -0.0059 0.001 -5.518 0.000 -0.008 -0.004 exec -0.4084 0.049 -8.304 0.000 -0.505 -0.312 rchar -6e-06 4.41e-07 -13.607 0.000 -6.86e-06 -5.14e-06 wchar -6.376e-06 1.03e-06 -6.200 0.000 -8.39e-06 -4.36e-06 pgout -0.3521 0.069 -5.097 0.000 -0.488 -0.217 pgfree 0.0275 0.030 0.925 0.355 -0.031 0.086 atch 0.6217 0.145 4.278 0.000 0.337 0.907 ppgin -0.0699 0.007 -10.556 0.000 -0.083 -0.057 pflt -0.0414 0.001 -39.277 0.000 -0.043 -0.039		coef	std err	t	P> t	[0.025	0.975]	
scall -0.0008 6.03e-05 -12.916 0.000 -0.001 -0.001 swrite -0.0059 0.001 -5.518 0.000 -0.008 -0.004 exec -0.4084 0.049 -8.304 0.000 -0.505 -0.312 rchar -6e-06 4.41e-07 -13.607 0.000 -6.86e-06 -5.14e-06 wchar -6.376e-06 1.03e-06 -6.200 0.000 -8.39e-06 -4.36e-06 pgout -0.3521 0.069 -5.097 0.000 -0.488 -0.217 pgfree 0.0275 0.030 0.925 0.355 -0.031 0.086 atch 0.6217 0.145 4.278 0.000 0.337 0.907 ppgin -0.0699 0.007 -10.556 0.000 -0.083 -0.057 pflt -0.0414 0.001 -39.277 0.000 -0.043 -0.039 freemem -0.0004 5.15e-05 -7.760 0.000 -0.001 -0.000<	const	85.4441	0.296	288.345	0.000	84.863	86.025	
swrite -0.0059 0.001 -5.518 0.000 -0.008 -0.004 exec -0.4084 0.049 -8.304 0.000 -0.505 -0.312 rchar -6e-06 4.41e-07 -13.607 0.000 -6.86e-06 -5.14e-06 wchar -6.376e-06 1.03e-06 -6.200 0.000 -8.39e-06 -4.36e-06 pgout -0.3521 0.069 -5.097 0.000 -0.488 -0.217 pgfree 0.0275 0.030 0.925 0.355 -0.031 0.086 atch 0.6217 0.145 4.278 0.000 0.337 0.907 ppgin -0.0699 0.007 -10.556 0.000 -0.083 -0.057 pflt -0.0414 0.001 -39.277 0.000 -0.043 -0.039 freemem -0.0004 5.15e-05 -7.760 0.000 -0.001 -0.000 freeswap 8.812e-06 1.89e-07 46.673 0.000 8.44e-06 9	lwrite	-0.0354	0.007	-5.361	0.000	-0.048	-0.022	
exec -0.4084 0.049 -8.304 0.000 -0.505 -0.312 rchar -6e-06 4.41e-07 -13.607 0.000 -6.86e-06 -5.14e-06 wchar -6.376e-06 1.03e-06 -6.200 0.000 -8.39e-06 -4.36e-06 pgout -0.3521 0.069 -5.097 0.000 -0.488 -0.217 pgfree 0.0275 0.030 0.925 0.355 -0.031 0.086 atch 0.6217 0.145 4.278 0.000 0.337 0.907 ppgin -0.0699 0.007 -10.556 0.000 -0.083 -0.057 pflt -0.0414 0.001 -39.277 0.000 -0.043 -0.039 freemem -0.0004 5.15e-05 -7.760 0.000 -0.001 -0.000 freeswap 8.812e-06 1.89e-07 46.673 0.000 8.44e-06 9.18e-06	scall	-0.0008	6.03e-05	-12.916	0.000	-0.001	-0.001	
rchar	swrite	-0.0059	0.001	-5.518	0.000	-0.008	-0.004	
wchar -6.376e-06 1.03e-06 -6.200 0.000 -8.39e-06 -4.36e-06 pgout -0.3521 0.069 -5.097 0.000 -0.488 -0.217 pgfree 0.0275 0.030 0.925 0.355 -0.031 0.086 atch 0.6217 0.145 4.278 0.000 0.337 0.907 ppgin -0.0699 0.007 -10.556 0.000 -0.083 -0.057 pflt -0.0414 0.001 -39.277 0.000 -0.043 -0.039 freemem -0.0004 5.15e-05 -7.760 0.000 -0.001 -0.000 freeswap 8.812e-06 1.89e-07 46.673 0.000 8.44e-06 9.18e-06	exec	-0.4084	0.049	-8.304	0.000	-0.505	-0.312	
pgout -0.3521 0.069 -5.097 0.000 -0.488 -0.217 pgfree 0.0275 0.030 0.925 0.355 -0.031 0.086 atch 0.6217 0.145 4.278 0.000 0.337 0.907 ppgin -0.0699 0.007 -10.556 0.000 -0.083 -0.057 pflt -0.0414 0.001 -39.277 0.000 -0.043 -0.039 freemem -0.0004 5.15e-05 -7.760 0.000 -0.001 -0.000 freeswap 8.812e-06 1.89e-07 46.673 0.000 8.44e-06 9.18e-06	rchar	-6e-06	4.41e-07	-13.607	0.000	-6.86e-06	-5.14e-06	
pgfree 0.0275 0.030 0.925 0.355 -0.031 0.086 atch 0.6217 0.145 4.278 0.000 0.337 0.907 ppgin -0.0699 0.007 -10.556 0.000 -0.083 -0.057 pflt -0.0414 0.001 -39.277 0.000 -0.043 -0.039 freemem -0.0004 5.15e-05 -7.760 0.000 -0.001 -0.000 freeswap 8.812e-06 1.89e-07 46.673 0.000 8.44e-06 9.18e-06	wchar	-6.376e-06	1.03e-06	-6.200	0.000	-8.39e-06	-4.36e-06	
atch 0.6217 0.145 4.278 0.000 0.337 0.907 ppgin -0.0699 0.007 -10.556 0.000 -0.083 -0.057 pflt -0.0414 0.001 -39.277 0.000 -0.043 -0.039 freemem -0.0004 5.15e-05 -7.760 0.000 -0.001 -0.000 freeswap 8.812e-06 1.89e-07 46.673 0.000 8.44e-06 9.18e-06	pgout	-0.3521	0.069	-5.097	0.000	-0.488	-0.217	
ppgin -0.0699 0.007 -10.556 0.000 -0.083 -0.057 pflt -0.0414 0.001 -39.277 0.000 -0.043 -0.039 freemem -0.0004 5.15e-05 -7.760 0.000 -0.001 -0.000 freeswap 8.812e-06 1.89e-07 46.673 0.000 8.44e-06 9.18e-06	pgfree	0.0275	0.030	0.925	0.355	-0.031	0.086	
pflt -0.0414 0.001 -39.277 0.000 -0.043 -0.039 freemem -0.0004 5.15e-05 -7.760 0.000 -0.001 -0.000 freeswap 8.812e-06 1.89e-07 46.673 0.000 8.44e-06 9.18e-06 Omnibus: 1268.997 Durbin-Watson: 2.014 Prob(Omnibus): 0.000 Jarque-Bera (JB): 3195.014 Skew: -1.206 Prob(JB): 0.00	atch			4.278				
freemem -0.0004 5.15e-05 -7.760 0.000 -0.001 -0.000 freeswap 8.812e-06 1.89e-07 46.673 0.000 8.44e-06 9.18e-06 	ppgin	-0.0699	0.007	-10.556	0.000	-0.083	-0.057	
freeswap 8.812e-06 1.89e-07 46.673 0.000 8.44e-06 9.18e-06 Omnibus: 1268.997 Durbin-Watson: 2.014 Prob(Omnibus): 0.000 Jarque-Bera (JB): 3195.014 Skew: -1.206 Prob(JB): 0.00	pflt	-0.0414	0.001	-39.277	0.000	-0.043	-0.039	
Omnibus: 1268.997 Durbin-Watson: 2.014 Prob(Omnibus): 0.000 Jarque-Bera (JB): 3195.014 Skew: -1.206 Prob(JB): 0.00	freemem	-0.0004	5.15e-05	-7.760	0.000	-0.001	-0.000	
Omnibus: 1268.997 Durbin-Watson: 2.014 Prob(Omnibus): 0.000 Jarque-Bera (JB): 3195.014 Skew: -1.206 Prob(JB): 0.00	freeswap	8.812e-06	1.89e-07	46.673	0.000			
Prob(Omnibus): 0.000 Jarque-Bera (JB): 3195.014 Skew: -1.206 Prob(JB): 0.00	 Omnibus:		1268.	997 Dur	bin-Watson:			
Skew: -1.206 Prob(JB): 0.00		us):):		
		,				, -	0.00	

Table 17 - VIF values 4

V	/IF values:		
S S S S F F F F F F F F F F F F F F F F	swrite exec echar echar gout etch opgin	24.318585 1.051894 2.601101 2.521669 1.368012 1.623734 1.438804 2.027035 1.858638 1.463216 1.911325	
1	itype: floa		

VIF for all features is less than 3

Table 18 - VIF for all features

	Actual Values	Fitted Values	Residuals
0	91.0	91.765169	-0.765169
1	94.0	91.261125	2.738875
2	61.5	76.430666	-14.930666
3	83.0	81.272261	1.727739
4	94.0	97.101512	-3.101512

Checking linearity and independence

Figure 17 - Fitted vs residual

It's noted that the pattern has slightly diminished, and the data points now appear to be more randomly distributed.

Lets check the distribution of the data

Figure 18 – Pairplot distribution of data

Figure 19 - Normality of residuals

The residual terms demonstrate a normal distribution. A visual examination of the QQ plot of residuals can validate the normality assumption, where the normal probability plot should closely align with a straight line.

Figure 20 - Probability plot

Partially the points are lying on the straight line in QQ plot

[('F statistic', 1.1299923459713648), ('p-value', 0.0005576651863864631)]

assumptions of linear regression are now satisfied.

Best Model

Dep. Varia			usr R-sau	ared:		0.787	
Model:	ibie.		OLS Adj.			0.786	
Method:		Least Squa				1625.	
Date:		un, 14 Jan 2			ic):	0.00	
Time:	_	•	:30 Log-L	•		-16783.	
No. Observ	/ations:		734 AIC:			3.359e+04	
Df Residua		_	720 BIC:			3.369e+04	
Df Model:			13				
Covariance		nonrob					
	coef	std err	t			0.975]	
const	85,4441	0.296	288.345	0.000	84.863	86.025	
lwrite	-0.0354	0.007	-5.361	0.000	-0.048	-0.022	
scall		6.03e-05		0.000	-0.001	-0.001	
swrite	-0.0059		-5.518	0.000	-0.008	-0.004	
exec	-0.4084	0.049	-8.304	0.000	-0.505	-0.312	
rchar		4.41e-07	-13.607	0.000	-6.86e-06	-5.14e-06	
wchar	-6.376e-06	1.03e-06	-6.200	0.000	-8.39e-06	-4.36e-06	
pgout	-0.3521	0.069	-5.097	0.000	-0.488	-0.217	
pgfree	0.0275	0.030	0.925	0.355	-0.031	0.086	
atch	0.6217	0.145	4.278	0.000	0.337	0.907	
ppgin	-0.0699		-10.556	0.000	-0.083	-0.057	
pflt	-0.0414	0.001	-39.277	0.000	-0.043	-0.039	
freemem		5.15e-05				-0.000	
freeswap	8.812e-06		46.673	0.000	8.44e-06	9.18e-06	
Omnibus:			997 Durbi			2.014	
Prob(Omnib	ous):	0.	000 Jarqu	ie-Bera (JB)):	3195.014	
Skew:		-1.	206 Prob(JB):		0.00	
		5.	748 Cond.	No.		7.02e+06	

Figure 21 - Best model

```
usr = 85.44405142467511 + -0.035431681356878006 * (lwrite) + -0.0007789166996726056 * (scall) + -0.0059364238127426 * (swrite) + -0.408362100281623 * (exec) + -6.000393832825783e-06 * (rchar) + -6.376410814972524e-06 * (wchar) + -0.35214422917288685 * (pgout) + 0.02750333410757566 * (pgfree) + 0.6216576279548014 * (atch) + -0.06988532485141626 * (ppgin) + -0.04141258260531031 * (pflt) + -0.0004000185573245753 * (freemem) + 8.81187709338839e-06 * (freeswap)
```

RMSE of train data 4.517865444540217

RMSE of test data 4.789314038671895

Observation: The comparable RMSE values on both the train and test sets suggest that our model isn't encountering overfitting issues. The MAE indicates that our current model can predict 'mpg' within a mean error of the test data. Therefore, we can confidently conclude that the "fitres_42" model is suitable for both prediction and inference purposes.

1.4 Business Insights & Recommendations

<u>Comment on the Linear Regression equation from the final model and impact of relevant</u> variables (atleast 2) as per the equation

```
85.444051
lwrite
            -0.035432
scall
            -0.000779
swrite
            -0.005936
            -0.408362
            -0.000006
wchar
            -0.000006
            -0.352144
pgout
pgfree
             0.027503
atch
             0.621658
ppgin
            -0.069885
pflt
            -0.041413
freemem
            -0.000400
             0.000009
freeswap
dtype: float64
```

Figure 22 - linear regression equation

Positive Impact:

pgfree: An increase in pgfree is associated with an increase in 'usr.' atch: An increase in atch is linked to an increase in 'usr.'

Negative Impact:

exec: An increase in exec is associated with a decrease in 'usr.' pflt: An increase in pflt is linked to a decrease in 'usr.'

Conclude with the key takeaways (actionable insights and recommendations) for the business

1. Efficient Resource Management

- Focus on optimizing activities related to pgfree and text atch for improved 'usr' mode.
- Allocate resources strategically to enhance system performance.

2. Execution Call Monitoring

- Keep a close eye on exec calls, as they negatively impact 'usr.'
- Streamline processes with frequent execution calls to improve overall efficiency.

3. Continuous Monitoring and Improvement

- Regularly monitor system attributes for emerging patterns or issues.
- Implement ongoing improvements based on data analysis to adapt to changing system requirements.

4. Protection Fault Mitigation:

- Address protection faults Pflt to minimize their adverse effect on 'usr.'
- Implement measures to reduce protection errors and ensure system stability.

These insights aim to guide efficient resource allocation, address potential performance issues, and ensure the stability of the computer systems' 'usr' mode.

Problem 2

In your role as a statistician at the Republic of Indonesia Ministry of Health, you have been entrusted with a dataset containing information from a Contraceptive Prevalence Survey. This dataset encompasses data from 1473 married females who were either not pregnant or were uncertain of their pregnancy status during the survey.

Your task involves predicting whether these women opt for a contraceptive method of choice. This prediction will be based on a comprehensive analysis of their demographic and socio-economic attributes.

Data Description

- 1. Wife's age (numerical)
- 2. Wife's education (categorical) 1=uneducated, 2, 3, 4=tertiary
- 3. Husband's education (categorical) 1=uneducated, 2, 3, 4=tertiary
- 4. Number of children ever born (numerical)
- 5. Wife's religion (binary) Non-Scientology, Scientology
- 6. Wife's now working? (binary) Yes, No
- 7. Husband's occupation (categorical) 1, 2, 3, 4(random)
- 8. Standard-of-living index (categorical) 1=verlow, 2, 3, 4=high
- 9. Media exposure (binary) Good, Not good
- 10. Contraceptive method used (class attribute) No,Yes

Introduction:

As a statistician at the Republic of Indonesia Ministry of Health, I am tasked with analyzing a dataset from a Contraceptive Prevalence Survey. The dataset includes information from 1473 married females, focusing on predicting contraceptive choices based on their demographic and socio-economic attributes.

Executive Summary:

The dataset encompasses key variables such as age, education, religion, employment status, and more. Our goal is to build a predictive model to understand the factors influencing contraceptive decisions among married females. This analysis is crucial for guiding public health initiatives and interventions related to family planning in Indonesia. The process involves exploring data patterns, identifying correlations, and utilizing statistical models to provide actionable insights for effective policy recommendations.

2.1 Define the problem and perform exploratory Data Analysis

Problem Definition

Predicting contraceptive choices among married females based on demographic and socio-economic attributes for informed public health strategies in Indonesia.

Table 19 - Dataset

	Wife_age	Wife_ education	Husband_education	No_of_children_born	Wife_religion	Wife_Working	Husband_Occupation	Standard_of_living_index	Media_exposure
0	24.0	Primary	Secondary	3.0	Scientology	No	2	High	Exposed
1	45.0	Uneducated	Secondary	10.0	Scientology	No	3	Very High	Exposed
2	43.0	Primary	Secondary	7.0	Scientology	No	3	Very High	Exposed
3	42.0	Secondary	Primary	9.0	Scientology	No	3	High	Exposed
4	36.0	Secondary	Secondary	8.0	Scientology	No	3	Low	Exposed

Check shape, Data types, statistical summary

Shape – (1473, 10)

Total Rows – 1473, Total Columns – 10

Object Datatype – 7

Int Datatype – 1

float64 - 2

Table 20 - Info

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1473 entries, 0 to 1472 Data columns (total 10 columns): # Column Non-Null Count Dtype ---Wife_age 1402 non-null 0 float64 1 Wife_ education 1473 non-null object 1473 non-null 2 Husband_education object 3 No_of_children_born 1452 non-null float64 Wife_religion 1473 non-null object 1473 non-null 5 Wife_Working object Husband_Occupation 1473 non-null 6 int64 Standard_of_living_index 1473 non-null object Media_exposure 1473 non-null object Contraceptive_method_used 1473 non-null object dtypes: float64(2), int64(1), object(7) memory usage: 115.2+ KB

Table 21 - Statistical data

	Wife_age	No_of_children_born	Husband_Occupation
count	1402.000000	1452.000000	1473.000000
mean	32.606277	3.254132	2.137814
std	8.274927	2.365212	0.864857
min	16.000000	0.000000	1.000000
25%	26.000000	1.000000	1.000000
50%	32.000000	3.000000	2.000000
75%	39.000000	4.000000	3.000000
max	49.000000	16.000000	4.000000

<u>Univariate analysis - Multivariate analysis - Use appropriate visualizations to identify the patterns and insights</u>

Figure 23 - coutplot of multiple variable

The dataset reveals a higher proportion of educated women and men, with a notable disparity showing more uneducated women than men.

Additionally, a significant number of women are not actively working.

Media exposure is widespread among the surveyed population.

The majority of individuals in the dataset are using contraceptive methods, and a preference for a very high standard of living is evident.

Figure 24 - standard of living index

People with high standard of living prefer contraceptive method

Figure 25 - Husband edcuation

Those husbands having tertiary education have very high standard of living

Key meaningful observations on individual variables and the relationship between variables

Wife's Age:

The age distribution of married females in the dataset varies, providing a diverse range of age groups for analysis.

Education Levels:

There is a significant number of educated women, and the dataset reflects varying education levels for both wives and husbands.

Number of Children Ever Born:

The dataset includes information on the number of children ever born, indicating the family size of the surveyed population.

Religion and Occupation:

The dataset captures information on the wife's religion and the husband's occupation, providing insights into the religious and occupational diversity of the respondents.

Working Status:

A substantial number of women in the dataset are not currently working, highlighting potential implications for family planning and decision-making.

Standard-of-Living Index:

The standard-of-living index varies, with a notable preference for a very high standard of living among the surveyed population.

Media Exposure:

Media exposure is prevalent among the respondents, indicating a potential influence on their awareness and decision-making processes.

Contraceptive Usage:

The majority of individuals in the dataset are currently using contraceptive methods, showcasing the prevalence of family planning practices.

These observations provide a foundation for exploring relationships between variables

2.2 Data Pre-processing

<u>Prepare the data for modelling: - Missing value Treatment (if needed) - Outlier</u> <u>Detection(treat, if needed)</u>

Table 22 - Missing values

Wife_age	71	
Wife_ education	0	
Husband_education	0	
No_of_children_born	21	
Wife_religion	0	
Wife_Working	0	
Husband_Occupation	0	
Standard_of_living_index	0	
Media_exposure	0	
Contraceptive_method_used	0	
dtype: int64		

Missing values are present for No of children born and Wife age

We will treat them with median

Table 23 - Post treatment of missing values

Figure 26 - Outliers

There our outliers in children born and we need to remove them.

Figure 27 - Post treatment of outlier

Post treatment of outlier

Feature Engineering (if needed) - Encode the data - Train-test split

create dummy variables for categorical columns in the DataFrame df2.

Table 24 - Data encoding

3.0 3.0	3.0 3.0	2.0	0	1	0	0
3.0	3.0	1.0	0	4		
			•		0	0
9.0	3.0	1.0	1	0	0	1
3.0	3.0	2.0	1	0	0	1
7.0	1.0	2.0	1	0	0	1

We'll separate the data into independent (x) and dependent (y) variables. Subsequently, we'll split the data into a 70:30 ratio for training and testing purposes. This implies that 70% of the data will be used to train the model, while the remaining 30% will be reserved for testing the model.

2.3 Model Building and Compare the Performance of the Models

<u>Build a Logistic Regression model - Build a Linear Discriminant Analysis model - Build a CART model - Prune the CART model by finding the best hyperparameters using GridSearch - Check the performance of the models across train and test set using different metrics - Compare the performance of all the models built and choose the best one with proper rationale</u>

Logistic Regression

Table 25 - Classification for training data

0.64932126696 [[218 214] [103 496]]	83258			
	precision	recall	f1-score	support
0.0	0.68	0.50	0.58	432
1.0	0.70	0.83	0.76	599
accuracy			0.69	1031
macro avg	0.69	0.67	0.67	1031
weighted avg	0.69	0.69	0.68	1031

Classification report for training data

Table 26 – Classification for testing data

0.64932126696 [[89 108] [47 198]]	83258			
	precision	recall	f1-score	support
0.0	0.65	0.45	0.53	197
1.0	0.65	0.81	0.72	245
accuracy			0.65	442
macro avg	0.65	0.63	0.63	442
weighted avg	0.65	0.65	0.64	442

Classification report for testing data

Confusion matrix for train Data

Figure 28 - Confusin for train data

Confusion matrix for test data

Figure 29 - confusion for test data

The analysis of the confusion matrix on the training data reveals the following:

- True Negative (TN): 198 instances were correctly identified as negative.
- True Positive (TP): 218 instances were correctly identified as positive.
- False Negative (FN): 214 instances were actually positive but predicted as negative.
- False Positive (FP): 103 instances were actually negative but predicted as positive.

Similarly, the confusion matrix analysis on the testing data shows:

- True Negative (TN): 496 instances were correctly identified as negative.
- True Positive (TP): 89 instances were correctly identified as positive.
- False Negative (FN): 108 instances were actually positive but predicted as negative.
- False Positive (FP): 47 instances were actually negative but predicted as positive.

Linear Discriminant Analysis

Coefficient of LDA is a follows

Table 27 - LDA ARRAY

```
array([[-0.08935853, 0.38082614, 0.09030706, 0.6349701, 1.54470159,
-0.3754929, 0.17097053, -0.14116475, -0.38729069, -0.46933499,
-0.12916726, -0.03764121, 0.29537192, -0.39828833, -0.25029414]])
```

Table 28 - Coefficent data

```
The coefficient for Wife_age is -0.08935853494596956
The coefficient for No_of_children_born is 0.38082614077700017
The coefficient for Husband_Occupation is 0.09030705841213124
The coefficient for Wife_ education_Secondary is 0.6349700985239196
The coefficient for Wife_ education_Tertiary is 1.5447015885975135
The coefficient for Wife_ education_Uneducated is -0.37549289911044414
The coefficient for Husband_education_Secondary is 0.17097052569898152
The coefficient for Husband_education_Tertiary is -0.14116474811655483
The coefficient for Husband_education_Uneducated is -0.3872906896794378
The coefficient for Wife_religion_Scientology is -0.4693349895134461
The coefficient for Wife_Working_Yes is -0.12916726253578836
The coefficient for Standard_of_living_index_Low is -0.03764120954991867
The coefficient for Standard_of_living_index_Very High is 0.2953719197526194
The coefficient for Standard_of_living_index_Very Low is -0.39828832728498603
The coefficient for Media_exposure _Not-Exposed is -0.25029413609573725
```

-0.09 x Wife_age + 0.38 x No_of_children_born + 0.09 x Husband_Occupation + 0.63 x Wife_education_Secondary + 1.54 x Wife_education_Tertiary + -0.38 x Wife_education_Uneducated + 0.17 x Husband_education_Secondary + -0.14 x Husband_education_Tertiary + -0.39 x Husband_education_Uneducated + -0.47 x Wife_religion_Scientology + -0.13 x Wife_Working_Yes + -0.04 x Standard_of_living_index_Low + 0.3 x Standard_of_living_index_Very High + -0.4 x Standard_of_living_index_Very Low + -0.25 x Media_exposure_Not-Exposed +

From the provided equation and coefficients, it's evident that the predictor "Wife_education_Tertiary" holds the highest magnitude, suggesting a significant impact on classification. On the other hand, the predictor "Wife_religion_Scientology" possesses the smallest magnitude, indicating a relatively lesser influence on classification, helping discern the least.

Figure 30 - Confusion Matrix LDA

Table 29 - Classification training data LDA

Classification	lassification Report of the training data:				
	precision	recall	f1-score	support	
0	0.68	0.49	0.57	432	
1	0.69	0.83	0.76	599	
accuracy			0.69	1031	
macro avg	0.69	0.66	0.66	1031	
weighted avg	0.69	0.69	0.68	1031	

Table 30 - Classification test data LDA

Classification Report of the test data:				
	precision	recall	f1-score	support
0	0.67	0.46	0.54	197
1	0.65	0.82	0.72	245
accuracy			0.66	442
macro avg	0.66	0.64	0.63	442
weighted avg	0.66	0.66	0.64	442

Figure 31 - AUC data

AUC for the Training Data: 0.723

AUC for the Test Data: 0.705

The ROC (Receiver Operating Characteristic) curve is a graphical representation of a model's performance, depicting the true positive rate against the false positive rate. AUC (Area Under the Curve) quantifies the entire area under the ROC curve. In this case, the AUC for both the training and testing data is 72% and 70%, respectively. This indicates that the model covers approximately 70% of the data, demonstrating good performance.

CART - Classification and Regression Trees

We divide the data into independent variables 'X' and dependent variable 'y'. The dataset is split into 70% for training the model and 30% for testing. To implement the CART Algorithm, necessary packages are imported. The data is then fitted to the algorithm using the Gini Index as the classifier for classification at each stage.

Figure 32 - Feature importance plot

AUC of training data is 78%

Figure 33 - AUC cart training data

AUC of testing data is 73%

Figure 34 - AUC test data

The analysis of the confusion matrix on the training data reveals 517 True Negatives, 238 True Positives, 194 False Negatives, and 84 False Positives. In the testing data, there are 213 True Negatives, 96 True Positives, 101 False Negatives, and 32 False Positives.

Confusion matrix for training data

Figure 35 - Confusion matrix for training data

Confusion matrix for testing data

Figure 36 - Confusion matrix for testing data

Among the models employed, Logistic Regression achieved an accuracy of 65%, LDA achieved 69%, and the CART algorithm led with an accuracy of 70%. Additionally, the AUC for LDA on the training data was 72%, on the test data was 70%, and for the CART algorithm, it was 78% on the training data and 73% on the test data. In comparison, the CART algorithm outperforms Logistic Regression and LDA, demonstrating higher accuracy.

2.4 Business Insights & Recommendations

Comment on the importance of features based on the best model - Conclude with the key takeaways (actionable insights and recommendations) for the business

After employing various models to predict contraceptive choices, it was observed that certain features played a crucial role in determining the outcomes. The best-performing model, the Classification and Regression Trees (CART) algorithm, provided insights into feature importance.

Key features contributing significantly to the prediction of contraceptive choices include wife's age, education levels of both wife and husband, the number of children ever born, wife's religion, and media exposure. These features exhibited higher importance in influencing the model's decision-making process.

Key Insights:

- 1. Age Matters: A woman's age is crucial in predicting contraceptive choices.
- 2. Education is Significant: Both the wife's and husband's education levels strongly influence decisions.
- 3. Religion Plays a Role: The wife's religion impacts contraceptive choices, emphasizing the need for cultural sensitivity.
- 4. Media Exposure Counts: Media exposure is influential, suggesting targeted campaigns for better outcomes.
- 5. Family Planning Programs: Consider the number of children born for more comprehensive family planning strategies.
- 6. Support for Working Women: Tailored interventions for working women could enhance family planning success.
- 7. Socio-economic Factors: Husband's occupation and living standards contribute, albeit less significantly.

Recommendations:

- 1. Age-Based Programs: Tailor family planning initiatives based on age groups.
- 2. Educational Campaigns: Focus on educational programs for informed decision-making.

- 3. Cultural Sensitivity: Consider religious perspectives in family planning strategies.
- 4. Media-Centric Approaches: Leverage media for targeted campaigns and education.
- 5. Comprehensive Strategies: Integrate factors like the number of children into family planning programs.
- 6. Support for Working Women: Implement policies supporting working women in family planning.
- 7. Socio-economic Tailoring: Tailor interventions based on occupation and living standards.
- 8. In summary, adopting a nuanced approach considering these insights is recommended for effective family planning programs, promoting better reproductive health outcomes for married women.

The end