Explain the highpass filtering. Explain the gradients.

Michel Jean Joseph Donnet

Gradient

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix}$$

Le gradient d'une fonction nous donne le taux de variation d'une fonction à un point (x, y).

Le gradient est orthogonal à la direction d'une arrête ou d'un contour d'une image

Magnitude

La magniture d'un vecteur ∇f est donnée par:

$$M(f(x,y)) = \sqrt{\left(\frac{\partial f(x,y)}{\partial x}\right)^2 + \left(\frac{\partial f(x,y)}{\partial y}\right)^2} \approx \left|\frac{\partial f(x,y)}{\partial x}\right| + \left|\frac{\partial f(x,y)}{\partial y}\right|$$

La magnitude du gradient détermine si la différence d'intensité est forte ou pas.

Elle sera par exemple grande pour une arrête et faible pour une surface uniforme.

Gradient et approximations discrètes

Approximation de Roberts:

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Approximation de Sobel

$$\begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Exemples