Análisis Matemático I Clase 15: teorema del valor medio para integrales. Teorema fundamental del Cálculo. Cálculo de áreas.

Pablo D. Ochoa

Facultad de Ingeniería Universidad Nacional de Cuyo.

Abril, 2020

Teorema del Valor Medio para integrales

Teorema

Sea f una función continua en [a,b]. Entonces, existe $c \in [a,b]$ tal que:

$$f(c) = \frac{1}{b-a} \int_a^b f(x) dx.$$

Observación: la conclusión del teorema también se puede escribir como:

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

Interpretación geométrica para funciones no negativas:

Así, el Teorema del valor medio para integrales afirma que el área del rectángulo gris f(c)(b-a) es igual al área de la región comprendida por el gráfico de f y el intervalo [a,b]:

$$f(c)(b-a)=\int_a^b f(x)dx.$$

Demostración del teorema del valor medio para integrales

Demostración: como f es continua en [a,b], por el teorema de los valores extremos para funciones continuas, existen $x_1, x_2 \in [a,b]$ tales que:

$$M = f(x_1) = \max_{x \in [a,b]} f(x)$$
 $m = f(x_2) = \min_{x \in [a,b]} f(x).$ (1)

Luego:

$$m \le f(x) \le M$$
 para todo $x \in [a, b]$.

Integrando desde *a* a *b* se obtiene:

$$\int_{a}^{b} m dx \leq \int_{a}^{b} f(x) dx \leq \int_{a}^{b} M dx.$$

Como m y M son constantes, tenemos:

$$\int_a^b m dx = m.x \Big|_a^b = m(b-a), \qquad \int_a^b M dx = M.x \Big|_a^b = M(b-a).$$

Demostración del teorema del valor medio para integrales

Luego:

$$m(b-a) \leq \int_a^b f(x)dx \leq M(b-a).$$

Dividiendo por b - a se obtiene:

$$m \leq \frac{1}{b-a} \int_a^b f(x) dx \leq M.$$

Así, el número:

$$y_0 = \frac{1}{b-a} \int_a^b f(x) dx$$

se encuentra entre $f(x_1) = M$ y $f(x_2) = m$ (recordar (1)). Por el Teorema del valor intermedio, existe $c \in [a, b]$ tal que:

$$f(c) = y_0 = \frac{1}{b-a} \int_a^b f(x) dx.$$

Esto concluye la demostración.

Teorema fundamental del cálculo

Teorema Fundamental del cálculo: Primera Parte

Sea f una función continua en [a, b]. Sea:

$$F(x) = \int_{a}^{x} f(t)dt, \quad x \in [a, b].$$

Entonces:

$$F'(x) = f(x)$$

para todo $x \in [a, b]$.

Observación: F es una antiderivada de f. El teorema permite construir antiderivadas o primitivas de funciones continuas a través de la integración.

Interpretación de la función F cuando $f \ge 0$.

Demostración del Teorema fundamental del cálculo: primera parte

Demostración. Sea $x \in [a, b)$ y h > 0 tal que $x + h \in [a, b)$. Luego:

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \left[\int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt \right]$$

$$= \frac{1}{h} \left[\int_{a}^{x} f(t) dt + \int_{x}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt \right] = \frac{1}{h} \int_{x}^{x+h} f(t) dt. \quad (2)$$

Demostración del Teorema fundamental del cálculo: primera parte

Demostración. Sea $x \in [a, b)$ y h > 0 tal que $x + h \in [a, b)$. Luego:

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \left[\int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt \right]$$

$$= \frac{1}{h} \left[\int_{a}^{x} f(t) dt + \int_{x}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt \right] = \frac{1}{h} \int_{x}^{x+h} f(t) dt. \quad (2)$$

Como f es continua en [a,b], entonces es también continua en [x,x+h], así por el *Teorema del valor medio para integrales*, existe $c_h \in [x,x+h]$ tal que:

$$f(c_h) = \frac{1}{h} \int_{x}^{x+h} f(t) dt.$$

Luego, de (2) obtenemos que:

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \int_{-\infty}^{x+h} f(t) \ dt = f(c_h). \tag{3}$$

8 / 16

Pablo D. Ochoa (Facultad de Ingeniería) Análisis Matemático I Abril, 2020

Demostración del Teorema fundamental del cálculo: primera parte

Notemos que, cuando $h \to 0^+$, $c_h \to x$. Entonces, por la continuidad de f en [a,b], resulta que

$$\lim_{h\to 0^+} f(c_h) = f(x).$$

Así, tomando límite cuando $h \to 0^+$ en (3), obtenemos que

$$\lim_{h \to 0^+} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0^+} f(c_h) = f(x).$$

Por lo tanto, la derivada por derecha de F en $x \in [a,b)$ existe y es f(x). Ahora, tomamos $x \in (a,b]$ y sea h < 0 tal que $x+h \in (a,b]$. Siguiendo un razonamiento similar al anterior, obtenemos que la derivada por izquierda de F en $x \in (a,b]$ es f(x).

Así, de ambas conclusiones afirmamos que

$$F'(x) = f(x)$$
, para todo $x \in [a, b]$

en donde, cuando x = a o x = b, F'(x) denota la derivada lateral correspondiente.

Teorema fundamental del cálculo

Teorema fundamental del cálculo segunda parte

Sea f una función continua en [a, b], y sea F una antiderivada de f en [a, b]. Entonces:

$$\int_a^b f(x)dx = F(b) - F(a).$$

Ejemplos. Calcule:

Demostración del Teorema fundamental del cálculo: segunda parte

Demostración. Sea F una antiderivada de f en [a,b]. La parte 1 del teorema fundamental del cálculo, nos dice que la función:

$$G(x) = \int_a^x f(t) dt$$

es una antiderivada de f en [a, b]. Así, F y G son antiderivadas de f, y entonces existe una constante C tal que:

$$F(x) - G(x) = C$$

para toda $x \in [a, b]$. Por lo que F(x) = G(x) + C. Luego:

$$F(b) - F(a) = [G(b) + C] - [G(a) + C]$$

$$= G(b) - G(a)$$

$$= \int_{a}^{b} f(t) dt - \int_{a}^{a} f(t) dt = \int_{a}^{b} f(t) dt - 0 = \int_{a}^{b} f(t) dt$$

Esto termina la demostración.

Recordar:

Definición

Sea $f:[a,b]\to\mathbb{R}$ tal que $f(x)\geq 0$ para todo $x\in [a,b]$. Entonces el área de la región comprendida entre el gráfico de f, las rectas x=a, x=b y el eje x se define como:

$$\int_{a}^{b} f(x)dx$$
 (siempre que la integral exista).

Ejemplo 1: supongamos que queremos calcular el área de la región comprendida entre el gráfico de f(x) = sen(x), el eje x y las rectas x = 0 y $x = \pi/2$.

Ejemplo 1: supongamos que queremos calcular el área de la región comprendida entre el gráfico de f(x) = sen(x), el eje x y las rectas x = 0 y $x = \pi/2$.

Solución: Observar que $sen(x) \ge 0$ para todo $x \in [0, \pi/2]$. Entonces:

$$\text{Área} = \int_0^{\pi/2} sen(x) dx = -cos(x) \Big|_0^{\pi/2} = -cos(\pi/2) - (-cos(0)) = 1.$$

Cálculo de áreas de funciones arbitrarias

Ejemplo 2: supongamos que ahora queremos calcular el área de la región comprendida entre el gráfico de f(x) = sen(x), el eje x y las rectas x = 0 y $x = 2\pi$.

En este caso, la función asume valores positivos y negativos. Por ende, no podemos interpretar la integral de f como el área buscada.

Cálculo de áreas de funciones arbitrarias

Cálculo de área para una función arbitraria

Sea $f:[a,b]\to\mathbb{R}$ una función integrable en [a,b]. Para determinar el área comprendida entre el gráfico de f, las rectas x=a y x=b y el eje x, procedemos como sigue:

- Determinamos las intersecciones del gráfico de f con el eje x en el intervalo [a, b].
- Subdividimos [a, b] usando los puntos hallados en el inciso anterior.
- Integramos *f* sobre cada sub-intervalo.
- Sumamos los valores absolutos de las integrales calculadas en el apartado anterior.

Solución del ejemplo 2: Observar que y = sen(x) corta al eje x en x = 0, $x = \pi$ y $x = 2\pi$ en el intervalo de integración $[0, 2\pi]$. Luego, utilizando el procedimiento anterior, obtenemos:

$$Area = \left| \int_0^{\pi} sen(x) dx \right| + \left| \int_{\pi}^{2\pi} sen(x) dx \right| = 4.$$