WHAT IS CLAIMED IS:

1	1. A method of correlating gene and protein expression in a biological
2	sample, the method comprising the steps of:
3	a) obtaining the biological sample;
4	b) generating a gene expression profile of the sample, thereby identifying
5	an mRNA expressed in the sample;
6	c) identifying a physio-chemical property of a polypeptide encoded by the
7	mRNA;
8	d) fractionating polypeptides in the sample on the basis of the physio-
9	chemical property and;
10	(e) identifying the polypeptide encoded by the mRNA from among the
11	fractionated proteins, wherein the identified polypeptide comprises the physio-chemical
12	property;
13	thereby correlating gene and protein expression in the sample.
1	2. The method of claim 1, wherein the biological sample comprises a
2	cell lysate from a healthy cell.
1	
1	3. The method of claim 1, wherein the biological sample comprises a
2	cell lysate from a pathological cell.
1	4. The method of claim 1, wherein the biological sample comprises a
2	cell lysate from a cell contacted by a toxic compound.
1	5. The method of claim 1, wherein the biological sample comprises a
2	i, wherein the biological sample comprises a
3	cell lysate from a cell of a subject who respond to a drug treatment or a subject who does not respond to a drug treatment.
_	not respond to a drug treatment.
1	6. The method of claim 1, wherein the biological sample comprises a
2	cell lysate from a cell exposed to heat, cold, or radiation.
1	7. The method of claim 1, wherein the biological sample comprises a
2	human cell.
1	8. The method of claim 1, wherein the step of generating the gene
2	expression profile comprises identifying expressed mRNA with an EST array.

1	9. The method of claim 1, wherein the step of generating the gene
2	expression profile comprises identifying expressed mRNA with an oligonucleotide array.
1	10. The method of claim 1, wherein the step of generating the gene
2	expression profile comprises identifying expressed mRNA with an mRNA array.
1	11. The method of claim 1, wherein the mRNA is differentially
2	expressed in two biological samples.
1	12. The method of claim 11, wherein the two biological samples are
2	derived from a normal cell and a pathologic cell.
1	13. The method of claim 12, wherein the pathologic cell is a cancer
2	cell.
1	14. The method of claim 11, wherein the two biological samples are
2	derived from a healthy cell and a cell exposed to a toxic compound.
1	15. The method of claim 1, wherein the step of identifying the physio-
2	chemical property of the polypeptide encoded by the mRNA further comprises
3	identifying a plurality of physio-chemical properties.
1	16. The method of claim 1, wherein the step of identifying a physio-
2	chemical property comprises predicting the masses of proteolytic fragments generated by
3	the polypeptide encoded by the mRNA upon degradation of the polypeptide by a selected
4	proteolytic agent, and the step of identifying the polypeptide encoded by the mRNA
5	comprises subjecting polypeptides in the sample to degradation by the agent and
6	identifying actual proteolytic fragments in the sample having masses that correspond to
7	the masses of the predicted fragments.
1	17. The method of claim 1, wherein the physio-chemical property is
2	selected from the group consisting of: amino acid sequence, molecular weight, iso-
3	electric point, hydrophobicity, hydrophilicity, glycosylation, phosphorylation, epitope
4	sequence, ligand binding sequence, charge at a specified pH, and metal chelate binding.
1	18. The method of claim 1, wherein the step of fractionating the
2	polypeptides in the sample comprises 2D-gel electrophoresis.

1	19. The method of claim 1, wherein the step of fractionating the
2	polypeptides in the sample comprises mass spectrometry.
1	20. The method of claim 1, wherein the step of fractionating the
2	polypeptides in the sample comprises surface enhanced laser desorption ionization,
3	wherein the surface enhanced laser desorption ionization comprises fractionating by
4	affinity retention on solid phase-bound adsorbent followed by fractionating retained
5	polypeptides from the solid phase by gas phase ion spectrometry.
1	21. The method of claim 20, wherein the adsorbent is selected to have
2	affinity for polypeptides possessing at least one physio-chemical property selected from
3	the group consisting of: amino acid sequence, molecular weight, iso-electric point,
4	hydrophobicity, hydrophilicity, glycosylation, phosphorylation, epitope sequence, ligand
5	binding sequence, charge at a specified pH, and metal chelate binding.
1	22. The method of claim 1, wherein the step of identifying the
2	polypeptide comprises selecting a polypeptide from among the fractionated polypeptides,
3	which selected polypeptide comprises the physio-chemical property, identifying the
4	selected polypeptide and correlating the identity of the selected polypeptide with the
5	polypeptide encoded by the mRNA.
1	23. A method of correlating gene and protein expression in a biological
2	sample, the method comprising the steps of:
3	a) obtaining a biological sample;
4	b) generating a gene expression profile of the sample using a nucleic acid
5	array, thereby identifying an mRNA expressed in the sample;
6	c) identifying a physio-chemical property of a polypeptide encoded by the
7	mRNA;
8	d) fractionating polypeptides in the sample on the basis of the physio-
9	chemical property, using mass spectrometry and;
10	(e) identifying the polypeptide encoded by the mRNA from among the
11	fractionated proteins, wherein the identified polypeptide comprises the physio-chemical
12	property;
13	thereby correlating gene and protein expression in the cell.

1	24. The method of claim 23, wherein the step of generating the gene
2	expression profile comprises identifying expressed mRNA with an EST array.
1	25. The method of claim 23, wherein the step of generating the gene
2	expression profile comprises identifying expressed mRNA with an oligonucleotide array.
1	26. The method of claim 23, wherein the step of generating the gene
2	expression profile comprises identifying expressed mRNA with an mRNA array.
1	27. The method of claim 23, wherein the step of identifying the
2	polypeptide encoded by the mRNA comprises fractionating polypeptides in the sample by
3	surface enhanced laser desorption ionization, wherein the surface enhanced laser
4	desorption ionization comprises fractionating by affinity retention on solid phase-bound
5	adsorbent followed by fractionating retained polypeptides from the solid phase by gas
6	phase ion spectrometry.
1	28. A method of correlating gene and protein expression in a biological
2	sample, the method comprising the steps of:
3	a) obtaining a biological sample;
4	b) generating a gene expression profile of the sample using an
5	oligonucleotide array, thereby identifying an mRNA expressed in the sample;
6	c) identifying a physio-chemical property of a polypeptide encoded by the
7	mRNA;
8	d) fractionating polypeptides in the sample on the basis of the physio-
9	chemical property with surface enhanced laser desorption ionization, wherein the surface
10	enhanced laser desorption ionization comprises fractionating by affinity retention on solid
11	phase-bound adsorbent followed by fractionating retained polypeptides from the solid
12	phase by gas phase ion spectrometry; and
13	e) identifying the polypeptide encoded by the mRNA from among the
14	fractionated proteins, wherein the identified polypeptide comprises the physio-chemical
15	property;
16	thereby correlating gene and protein expression in the cell.
1	29. The method of claim 28, wherein the adsorbent is selected to have
2	affinity for polypeptides possessing at least one physio-chemical property selected from

- 3 the group consisting of: amino acid sequence, molecular weight, iso-electric point,
- 4 hydrophobicity, hydrophilicity, glycosylation, phosphorylation, epitope sequence, ligand
- 5 binding sequence, charge at a specified pH, and metal chelate binding.
- 1 30. The method of claim 28, wherein the step of identifying the physio-
- 2 chemical property comprises predicting the masses of proteolytic fragments generated by
- 3 the polypeptide encoded by the mRNA upon degradation of the polypeptide by a selected
- 4 proteolytic agent, and the step of identifying the polypeptide encoded by the mRNA
- 5 comprises subjecting polypeptides in the sample to degradation by the agent and
- 6 identifying actual proteolytic fragments in the sample having masses that correspond to
- 7 the masses of the predicted fragments.