Ammonia: Distillation of NH₄⁺ salt with a base gives ammonia.

$$NH_4CI + NaOH \rightarrow NaCI + NH_3 + H_2O$$

Cyanamide process:

Calcium carbide on reaction with nitrogen gas at 1273k in the presence of CaCl₂ or CaF₂
as catalyst gives calcium cyanamide and graphite mixture. This is called as nitrolim.

$$CaC_2 + N_2 \xrightarrow{1273-1378K} CaCN_2 + C$$

• Hydrolysis of cyanamide with steam gives NH₃.

$$CaCN_2 + 3H_2O \xrightarrow{453K} CaCO_3 + 2NH_3$$

Haber - Bosch process:

• H_2 and N_2 gives in 3 : 1 ratio with iron as catalyst and Mo or small amounts of mixture of potassium and aluminium oxides (K_2O and Al_2O_3) as promoter and at a pressure of 200 atm, 725 – 775 k. gives ammonia.

$$N_2 + 3H_2 \implies 2NH_3$$
; $\square H = -93.63 \text{ kJ}$

- In serpeck's process by product is NH₃.
- Quick lime is used to dry NH₃.
- CaCl₂, P₂O₅ and H₂SO₄ are acidic hence they can't be used as drying agents for NH₃.
- At 20°C 1 litre H₂O dissolves 700 litres of NH₃.
- Saturated sol of NH₃ at room temperature contains 35% (w/w) NH₃.
- NH₃ in the presence of catalyst gives NO.
- NH₃ with hot CuO gives N₂ gas.
- With lesser Cl₂ on oxidation NH₃ gives N₂ and with excess Cl₂ gives NCl₃.
- NH₃ is Lewis base.
- NH₃ acts as ligand and forms complexes like [Ag (NH₃)₂]⁺, [Cu(NH₃)₄]²⁺ etc.

Uses of Ammonia:

- NH₃ is used in refrigeration due to high latent heat of evaporation.
- For nitrogenous fertilizers like ammonium sulphate, urea, calcium ammonium nitrate etc. Preparation, ammonia is the starting material.
- In the manufacture of sodium carbonate by Solvay process ammonia is used.
- In the preparation of rayon and artificial silks, explosive like ammonium nitrate, ammonia is required.
- Nitric acid manufacture (by Ostwarld's process), explosive like ammonium nitrate, ammonia is required.
- Liquior ammonia is useful as a good solvent for both ionic as well as covalent compounds.
- Structure: Pyramidal in shape, Hybridisation sp³.

• A mixture of CaC₂ + Ca₃ P₂ is used as Holmes signals.

Superphosphate of lime (calcium superphosphate) Ca(H₂PO₄)₂ + 2(CaSO₄ .2H₂O)

- Mixture of calcium dihydrogen phosphoate [Ca(H₂PO₄)₂] and gypsum (CaSO₄.2H₂O) is known as super phosphate of lime.
- Powdered phosphate rock (calcium phosphate) on treating with concentrated sulphuric acid (chamber acid)

 $Ca_3(PO_4)_2+2H_2SO_4+4H_2O \rightarrow Ca(H_2PO_4)_2+2(CaSO_4. 2H_2O) + heat$

- The reaction between phosphate rock and conc. H₂SO₄ is allowed to take place for 24 36 hours.
- In the above reaction the temperature rises to about 373 383 K.
- The carbonate and the fluoride impurities in the phosphate rock react with H₂SO₄ and liberate CO₂ and HF gases.
- Uses: Superphosphate of lime is a good phosphate fertilizer.
- CaSO₄ present in superphosphate of lime is insoluble waste product. To avoid it superphosphate is changed into triple phosphate which is completely dissolves in water.