AArch64
Instructions

Index by Encoding

External Registers

MDRAR_EL1, Monitor Debug ROM Address Register

The MDRAR EL1 characteristics are:

Purpose

Defines the base physical address of a 4KB-aligned memory-mapped debug component, usually a ROM table that locates and describes the memory-mapped debug components in the system. Armv8 deprecates any use of this register.

Configuration

AArch64 System register MDRAR_EL1 bits [63:0] are architecturally mapped to AArch32 System register <u>DBGDRAR[63:0]</u>.

Attributes

MDRAR EL1 is a 64-bit register.

Field descriptions

63 62 61 60 59 58 57 56	55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RESO	ROMADDR

ROMADDR RESO Valid
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:56]

Reserved, res0.

ROMADDR, bits [55:12]

ROMADDR encoding when FEAT_D128 is implemented and MDRAR_EL1.Valid != 0b00

434241403938373635343332

ROMADDR | ROMADDR | 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

ROMADDR, bits [43:0]

Bits [55:12] of the ROM table physical address.

Bits [11:0] of the ROM table physical address are zero.

For implementations with fewer than 56 physical address bits, the corresponding upper bits of this field are res0

In an implementation that includes EL3, ROMADDR is an address in Non-secure PA space. It is implementation defined whether the ROM table is also accessible in Secure PA space. If FEAT_RME is implemented, it is implementation defined whether the ROM table is also accessible in the Root or Realm PA spaces.

Arm strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system where the implementation only supports execution in AArch32 state.

ROMADDR encoding when FEAT_D128 is not implemented, FEAT_LPA is implemented and MDRAR EL1.Valid != 0b00

434241403938373635343332

RES0	ROMADDR										
ROMADDR											
31302028	2726252/23222120	10181716151/1131211110 0	8	7	6	5	1	3	2	1	

Bits [43:40]

Reserved, res0.

ROMADDR, bits [39:0]

Bits [51:12] of the ROM table physical address.

Bits [11:0] of the ROM table physical address are zero.

For implementations with fewer than 52 physical address bits, the corresponding upper bits of this field are res0

In an implementation that includes EL3, ROMADDR is an address in Non-secure PA space. It is implementation defined whether the ROM table is also accessible in Secure PA space. If FEAT_RME is implemented, it is implementation defined whether the ROM table is also accessible in the Root or Realm PA spaces.

Arm strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system where the implementation only supports execution in AArch32 state.

ROMADDR encoding when FEAT_D128 is not implemented, FEAT_LPA is not implemented and MDRAR EL1.Valid != 0b00

434241403938373635343332

RESO ROMADDR

ROMADDR

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Bits [43:36]

Reserved, res0.

ROMADDR, bits [35:0]

Bits [39:12] of the ROM table physical address.

Bits [11:0] of the ROM table physical address are zero.

For implementations with fewer than 48 physical address bits, the corresponding upper bits of this field are res0

In an implementation that includes EL3, ROMADDR is an address in Non-secure PA space. It is implementation defined whether the ROM table is also accessible in Secure PA space. If FEAT_RME is implemented, it is implementation defined whether the ROM table is also accessible in Root or Realm PA spaces.

Arm strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system where the implementation only supports execution in AArch32 state.

ROMADDR encoding when MDRAR_EL1.Valid == 0b00

434241403938373635343332

UNKNOWN

UNKNOWN

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Bits [43:0]

Reserved, unknown.

Bits [11:2]

Reserved, res0.

Valid, bits [1:0]

This field indicates whether the ROM Table address is valid.

Valid	Meaning			
0b00	ROM Table address is not valid.			
	Software must ignore			
	ROMADDR.			
0b11	ROM Table address is valid.			

Other values are reserved.

Arm recommends implementations set this field to zero.

Accessing MDRAR EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDRAR_EL1

op0	op1	CRn	CRm	op2
0b10	0b000	0b0001	0b0000	0b000

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif EL2Enabled() && MDCR_EL2.<TDE,TDRA> !=
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = MDRAR\_EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
```

```
else
     X[t, 64] = MDRAR_EL1;
elsif PSTATE.EL == EL3 then
     X[t, 64] = MDRAR_EL1;
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions Index by Encoding External Registers

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.