#### **TALLER INTERNO DER**

Enero, 2020

# Enfoque de evaluación para pesquerás pobres en datos

Sardina austral en la Región de Aysen



#### Sardina austral Distribución y unidades de Pesquería



### Evaluación de stock Aysén



# Análisis del estatus de sardina austral en aguas interiores de la Región de Aysén a través de dos análisis para pesquería pobre en datos

- 1. Hilborn & Mangel (1997) usa desembarques e índice de abundancia relativo (crucero). Se utiliza para acercarse a un valor de **Deplesión** del stock
- 2. Zhou et al. (2013), utiliza solo los desembarques y un supuesto de reducción del stock para estimar las variables biológicas.

Suponen que el recurso constituye un stock auto-sustentado en el área de estudio. Es decir, que se reproduce, recluta y crece en la zona de evaluación. Tal supuesto estaría apoyado por los resultados de **Galleguillos** *et al.* (2012).



| Año  | Hilborn &   | Mangel (1997)   | Zhou <i>et al.</i> (2013) |  |  |
|------|-------------|-----------------|---------------------------|--|--|
| Allo | Captura (t) | índice acústico | Captura                   |  |  |
| 2012 |             |                 | 4033                      |  |  |
| 2013 | 5318        | 106685          | 5318                      |  |  |
| 2014 | 4163        | 32841           | 4163                      |  |  |
| 2015 | 7547        | 21973           | 7547                      |  |  |
| 2016 | 5097        | 44923           | 5097                      |  |  |
| 2017 | 3853        | 35346           | 3853                      |  |  |
| 2018 | 653         | 24805           | 653                       |  |  |
| 2019 |             | 6568            |                           |  |  |

Se estiman variables biológicas como:

La biomasa virginal o capacidad de carga (K), tasa intrínseca de crecimiento poblacional (r)

Biomasa anual (B), nivel de reducción (D)

PBR (Brms y Frms).

Corresponden a alternativas para evaluar pesquerías de datos pobres, **necesita valores a priori para** *K y r*.

El modelo utilizado corresponde al enfoque de producción de Schaefer:

$$B_{t+1} = B_t + rB_t \left( 1 - \frac{B_t}{K} \right) - C_t$$

donde, **Bt** es la biomasa al tiempo t, **r** es la tasa intrínseca de crecimiento poblacional, **K** es la capacidad de carga equivalente a la biomasa virginal B0, y Ct es la captura conocida al tiempo t.

#### Puntos biológicos de referencia

La biomasa del rendimiento máximo sostenido (RMS) corresponde:

$$B_{RMS}=K/2$$
,

donde  $B_{RMS}$  indica la biomasa del RMS y K corresponde a la capacidad de carga.

La mortalidad por pesca de RMS ( $F_{RMS}$ ) se obtiene según  $F_{RMS}=r/2$ ,

donde *r* corresponde a la tasa de crecimiento poblacional.

El RMS se define como

RMS=Kr/4.

#### Valores de entrada para r y K.

$$r = 2 * 0.87M$$
.

 ${\it K}$  se utilizó el criterio de la captura máxima observada como límite inferior, y una amplificación por 20, como límite superior de  ${\it K}$ 

## Método de Hilborn & Mangel (1997)



| PBR      | Septiembre 2019 |  |  |  |  |
|----------|-----------------|--|--|--|--|
| RMS      | 3613            |  |  |  |  |
| Brms     | 7849            |  |  |  |  |
| Frms     | 0,46            |  |  |  |  |
| K        | 15697           |  |  |  |  |
| <u> </u> | 0,92            |  |  |  |  |

|      | Biomasa estimada |        | Depleción (D) |        | F (año <sup>-1</sup> ) |        | F/FRMS  |        | BD/BDRMS |        |
|------|------------------|--------|---------------|--------|------------------------|--------|---------|--------|----------|--------|
| Año  | sept-18          | jun-19 | sept-18       | jun-19 | sept-18                | jun-19 | sept-18 | jun-19 | sept-18  | jun-19 |
| 2013 | 15660            | 15697  | 1.00          | 1.00   | 0.34                   | 0.34   | 0.56    | 0.74   | 2.00     | 2.00   |
| 2014 | 10342            | 10379  | 0.66          | 0.66   | 0.40                   | 0.40   | 0.66    | 0.87   | 1.32     | 1.32   |
| 2015 | 10434            | 9454   | 0.67          | 0.60   | 0.72                   | 0.80   | 1.19    | 1.73   | 1.33     | 1.20   |
| 2016 | 7105             | 5368   | 0.45          | 0.34   | 0.72                   | 0.95   | 1.18    | 2.06   | 0.91     | 0.68   |
| 2017 | 6711             | 3523   | 0.43          | 0.22   | 0.57                   | 1.09   | 0.94    | 2.38   | 0.86     | 0.45   |
| 2018 | 7504             | 2186   | 0.48          | 0.14   | 0.08                   | 0.30   | 0.13    | 0.65   | 0.96     | 0.28   |
| 2019 |                  | 3265   |               | 0.21   |                        | 0.31   |         | 0.67   |          | 0.42   |

### **Zhou et al (2013)**



| PBR  | sept-18 | sept-19 |
|------|---------|---------|
| RMS  | 4271    | 4159    |
| Brms | 8542    | 8317    |
| Frms | 0,50    | 0,50    |
| K    | 17084   | 16634   |
| r    | 1,00    | 1,00    |

|      | Biomasa estimada |         | Depleción |        | F (año <sup>-1</sup> ) |         | F/FRMS  |         | BD/BDRMS |        |
|------|------------------|---------|-----------|--------|------------------------|---------|---------|---------|----------|--------|
| Año  | sept-18          | sept-19 | sept-18   | sept19 | sept-18                | sept-19 | sept-18 | sept-19 | sept-18  | sept-1 |
| 2012 | 17247            | 16722   | 1.00      | 1.00   | 0.23                   | 0.24    | 0.47    | 0.48    | 2.02     | 2.01   |
| 2013 | 13182            | 12620   | 0.76      | 0.75   | 0.40                   | 0.42    | 0.81    | 0.84    | 1.54     | 1.52   |
| 2014 | 10838            | 10292   | 0.63      | 0.62   | 0.38                   | 0.40    | 0.77    | 0.81    | 1.27     | 1.24   |
| 2015 | 10587            | 10068   | 0.61      | 0.60   | 0.71                   | 0.75    | 1.43    | 1.50    | 1.24     | 1.21   |
| 2016 | 7020             | 6353    | 0.41      | 0.38   | 0.73                   | 0.80    | 1.45    | 1.60    | 0.82     | 0.76   |
| 2017 | 6083             | 5245    | 0.35      | 0.31   | 0.63                   | 0.73    | 1.27    | 1.47    | 0.71     | 0.63   |
| 2018 | 6226             | 5033    | 0.36      | 0.30   | 0.10                   | 0.13    | 0.19    | 0.26    | 0.73     | 0.61   |

# Resultados: Sensibilidad al supuesto de depleción máxima





Se considera, que además de la pesca, posibles cambios en las condiciones el hábitat en ambas regiones, podrían haber afectado de igual manera los reclutamientos durante los últimos años, llevando al recurso a su actual condición.





- Las metodologías usadas están fuertemente limitadas por la corta serie temporal.
- La metodología de Hilborn & Mangel (1997), utiliza el índice acústico para aproximarse a los cambios en la pendiente de la reducción del stock.
- La metodología de Zhou et al (2013), utiliza como nivel de depleción máximo, el valor de 0.4 Este nivel de reducción corresponde a un valor intermedio entre el utilizado en la evaluación previa (0,5) y el valor estimado en el actual estudio (0,21).
- El estatus del recurso, estimado a través de la metodología de Zhou et al (2013), lo define en una condición de sobrexplotación, con niveles de F por debajo de Fmrs (F< Fmrs). Este estatus es similar al estimado para la Región de Los Lagos a través de un enfoque estructurado.