Phân tích ô nhiễm không khí ở VN

Sử dụng R & Openair package

Tuan Vu

Senior air quality scientist, King's College London

Email: tuan.vu@kcl.ac.uk

https://tuanvvu.github.io/

Aims

- Introduction to R data analysis software
- Introduction and use of the R package: openair
- Machine learning in data analysis

"We can only see a short distance ahead, but we can see plenty there that needs to be done"- Alan Turning

I. Introduction to R data analysis software

1. Downloading and installing R/ Rstudio

2. General approach to data analysis

- Use scripts: save all objects in the current R sessions as an .RData file
- Leave the data alone: as much as you can
- Coding style
- Simple R and vectors: R cheat sheet

2. Useful packages

- lubridate/dplyr/plyr
- ggplot2
- openair/worldmet

II. Introduction to "openair"

http://www.openair-project.org/PDF/OpenAir Manual.pdf

Useful openair functions

- 1. Summary data: Understand your data
- 2. Merging data sets
- 3. Selecting data by date
- 4. Averaging data to different time intervals
- 5. The ScatterPlot

Understanding about the pollutants

Levels of Pollutants

Data obtained from: http://uk-air.defra.gov.uk/

summaryPlot

6. CorPlot

6. Time Variable Function

PM_{2.5} diurnal patterns & Polar Plot

Summer 2017

Winter 2016

Diurnal variations in the ABL

Cooling of surface during sunset

– stable nocturnal layer grows
from below

Heating from radiation on surface during sunrise - convection breaks up stable nocturnal later and entrains air from above

7. Scatter plot

8. Theilsen regression

9. Air-cluster analysis

10. CTW longrange/transport

III. Machine learning

Useful technique

- 1. Factor analysis: PMF, K-mean cluster
- 2. Decision tree: Random forest, BRT
- 3. Deep learning: CCN

https://machinelearningcoban.com/

https://rpubs.com/lengockhanhi

Other program: Python

Weather normalisation using package "rmweather"

https://github.com/skgrange/rmweather

Random forest algorithm:

- What is decision tree?
- Random forest is non-linear regression?
- How to select the trees?

Long-term trend analysis method

The long-term time series of a pollutant can be split into components

$$In[C(t)] = C^{LT}(t) + C^{S}(t) + C^{STM}(t) + C^{WH}(t) + C^{WN}(t)$$

where, LT: long-term component; S: seasonal components; STM: Short-term component; WH: weekend/holiday impact; WN: white-noise is the residual.

A decision tree-based random forest technique

Input datasets of Air Pollutants in Beijing

Six key pollutants: PM_{2.5}, PM₁₀, SO₂, NO₂, CO, O₃ from 12 national monitoring stations during 2013-2017 & **30-year MET** data sets

Spatial variation of PM_{2.5} level during APHH winter campaign 2016

Refs: Shi et al 2019 ACP

30-year MET data sets& back trajectories

Home key messages

- Understand the data first
- Practise basic coding more as you can
- How to use the techniques

Thank you for your attention