

13장 IPv6: 차세대

13.9 | IPv6와 서비스 품질

13.10 ¦ IPv4가 있는 IPv6

13.11 ¦ IPv6 터널

13.12 | 요약

13.15 | 핵심 용어

13.1 왜 새로운 IP를 쓸까

- >> IPv4의 부족한 주소 공간을 위한 해결책으로 제안
- >> IPv6 주소의 길이는 128비트
- >> IPv6 주소 공간은 2¹²⁸
 - 340,282,366,920,938,463,374,607,431,768,211,456
- >> 1/64의 주소만 사람들에게 할당됨
 - 160억의 인구의 각 사람이 288개의 주소 사용 가능

13.1 왜 새로운 IP를 쓸까

>> IPv6의 목표

- 더 큰 주소 공간 128 비트의 길이 (2¹²⁸)
- 새로운 헤더 포맷 옵션 필드를 기본 헤더에서 분리, 라우터에서의 단편화 금지, 체크섬 필드 삭제
- 새로운 옵션들 부가적인 기능을 제공하는 옵션들 추가
- 확장성 증대 새로운 기술이나 응용에 의해 요구될 경우 프로토콜의 확장 가능
- 자원 할당 지원(flow label) 실시간 오디오나 비디오와 같은 트래픽의 효과적인 처리 가능
- 보안성 지원 암호화와 인증을 위한 옵션 추가

b. Base header

13.2 IPv6 헤더 형식

>> Flow Label

- □ Flow 라우터에 의해 특별한 처리가 요구되는 특정한 source로부터 특정한 destination 으로 송신되는 순서 있는 일련의 패킷들
 - 같은 특성들을 공유하는 패킷들의 흐름 같은 경로, 같은 자원의 사용, 같은 종류의 보안 등
- □ Flow의 식별 source address와 flow label의 조합 이용
- □ Flow table을 참조하여 각 패킷을 전달 라우터에서의 패킷 처리속도 가속
- □ 실시간 오디오와 비디오 전송을 위한 자원 예약에 사용
 - Real-Time Protocol (RTP)과 Resource Reservation Protocol (RSVP)와 함께 사용

13.2 IPv6 헤더 형식 >> IPv6 확장 헤더

Extension headers Hop-by-hop Destination Source routing Fragmentation Authentication ESP

IPv4 옵션과 IPv6 확장헤더간 비교

Comparison				
 The no-operation and end-of-option options in IPv4 are replaced by Pad1 and PadN options in IPv6. 				
2. The record route option is not implemented in IPv6 because it was not used.				
3. The timestamp option is not implemented because it was not used.				
The source route option is called the source route extension header in IPv6.				
5. The fragmentation fields in the base header section of IPv4 have moved to the fragmentation extension header in IPv6.				
6. The authentication extension header is new in IPv6.				
7. The encrypted security payload extension header is new in IPv6.				

13.2 IPv6 헤더 형식

>> IPv6 확장 헤더

- 확장 헤더 중, hop-by-hop 확장 헤더와 라우팅 확장 헤더만 전송 경로를 따라 중간 노드가 처리
- hop-by-hop 확장 헤더는 padding과 점보 페이로드(65,535바이트 큰 패킷) 등을 위해 사용
- 소스 라우팅 확장 헤더는 데이터그램이 목적지까지 가는 경로 상의 라우터들을 명시하는데 사용
- 목적지 확장 헤더의 목적은 선택적 정보를 목적지 노드에 연결하는 것
- 인증 확장 헤더는 송신자의 인증과 데이터 무결성을 제공
- ESP 확장 헤더는 페이로드의 암호화를 통한 기밀성 제공
- 프래그먼트 확장 헤더는 IPv4의 fragmentation 기능에 해당

13.3 IPv6 주소 지정

>> IPv6 주소 표기법

• 이진수와 16진수 콜론 표기법

Binary (128 bits) 1111111011110 ... 1111111100000000 Colon Hexadecimal FEF6:BA98:7654:3210:ADEF:BBFF:2922:FF00

>> IPv6 주소 축약 표기법

- 영역 앞에 있는 0은 생략 가능 ex) 0074 → 74, 000F → F
- 연속되는 영역이 0으로만 구성된다면 더블 콜론으로 대체 가능 (0 압축). 이 축약은 주소당한 번만 가능

FDEC:0:0:0:0:BBFF:0:FFFF → FDEC::BBFF:0:FFFF

>> CIDR 표기

FDEC:0:0:0:0:BBFF:0:FFFF/60

13.3 IPv6 주소 지정

>> IPv6 주소 유형

- 유니캐스트 주소
 - 단일 인터페이스(컴퓨터, 라우터)를 정의
- 애니캐스트 (anycast) 주소
 - 하나의 주소를 공유하는 컴퓨터들의 집합을 정의
 - 애니캐스트 주소를 갖는 패킷은 그룹의 가장 도달 가능한 한 구성원에만 전송됨
- 멀티캐스트 주소

>> IPv6 주소 공간 할당

V				
주소 유형	2진 접두사	IPv6 표기법	설명	
불특정	000 (모두 0)	::/128	절대 할당되면 안 되며, 주소가 없음을 나타냅니다.	
루프백	001 (00 1277ዘ)	::1/128	호스트가 자신에게 패킷을 보내는 데 사 용되는 진단 주소	
매핑된 IPv4	00:FFFF(OO 80개, 10 16개)	::FFFF/96	기존 IPv4 주소와 동등한 IPv6	
멀티캐스트	11111111	FF00::/8	호스트 그룹을 식별합니다.	
링크 로컬 유니캐스트	1111111010	FE80::/10	자동 주소 구성에 사용됩니다.	
범용 유니캐스트	(그 밖의 모든 것)			

13.4 서브넷팅

>> 글로벌 유니캐스트 주소

13.6 링크 로컬

- >> 접두사 FE80::/10을 가진 IPv6 주소는 링크 로컬 주소
- >> 링크 로컬 주소는 라우터를 통과하지 않고 로컬 네트워크 세그먼트 간의 통신에만 사용
- >> 이는 링크 로컬 주소를 IPv4 네트워크에서 사용되는 사설 주소 범위와 유사하게 만듦
- >> 링크 로컬 주소는 컴퓨터가 수동 구성 단계 없이(DHCP 서버를 통한 자동 구성 없이) 로컬 네트워크 세그먼트에서 통신할 수 있도록 허용
- >> 링크 로컬 주소는 라우팅할 수 없으므로 로컬 세그먼트를 넘어선 더 큰 규모의 네트워크와의 연결할 수 없음
- ≫ 연결하려면 호스트는 라우팅 가능한 자신만의 IP 주소를 가지거나 동적 주소를 수신하기 위한 IPv6 지원 DHCP 장치에 접근할 수 있어야 함

13.8 자동 구성

- >> 인터페이스 식별자
 - 이더넷 MAC 주소 매핑을 통해 생성

13.8 자동 구성

- >> IPv6에서는 호스트가 네트워크에 연결되면 다음의 절차로 스스로 구성할 수 있음
 - 1. 호스트가 자기를 위해 링크 로컬 주소를 생성함
 - 2. 생성 주소를 네트워크 상 다른 호스트가 사용하고 있는지 중복 여부 확인 (neighbor solicitation / neighbor advertisement 메시지 이용)
 - 3. 라우터로부터 글로벌 라우팅 프리픽스와 서브넷 식별자를 구하여 (router solicitation/router advertisement 메시지 이용) 인터페이스 식별자와 결합함 → 글로벌 유니캐스트 주소

13.9 IPv6와 서비스 품질

>> IPv6와 서비스 품질

- IPv6는 최근 노화된 IPv4 인프라에 직면한 또 다른 과제인 균일 서비스 품질에 대한 요구를 해격
- 이전에 인터넷이 주로 이메일과 FTP 형식의 다운로드에 사용될 때는 아무도 데이터 전송의 우선 순위에 대해 생각하지 않았음
- IPv6에서는 IP 데이터그램이 전송을 기다리면서 우선순위를 지정할 수 있음
- 대화형 비디오 애플리케이션으로부터 수신된 데이터그램이 라우터 버퍼에서 대기하면 큐의 상단으로 옮길 수 있으며, 이때 이메일 데이터그램은 잠깐 지연시킬 수 있음
- IPv6는 차별화된 서비스 수준으로 우선순위 지정을 지원하도록 설계
- IPv6 헤더의 트래픽 클래스와 흐름 레이블 필드는 데이터그램에 포함된 유형과 데이터의
 우선순위를 지정하는 수단을 제공

13.10 IPv4가 있는 IPv6

>> IPv4-mapped IPv6 주소

• IPv6를 사용하는 컴퓨터에서 IPv4를 사용하는 컴퓨터로 전송 시 사용

- 예를 들어 다음과 같은 IPv4 주소가 169,219,13,133이라면
- 다음 IPv6 주소로 매핑 0000:0000:0000:0000:0000:FFFF:A9DB:0D85
- 축약 표기 시 ::FFFF:A9DB:0D85

13.11 IPv6 터널

- >> IPv4 네트워크를 통해 IPv6 네트워크를 연결하는 방법
 - IPv6 터널의 개념은 IPv4 내에 IPv6를 캡슐화하는 것
 - 6in4 고정된 터널 종단점간에 IPv6 트래픽을 전달

13.11 IPv6 터널

>> 6to4

- 6to4 릴레이 서버는 해당 IPv6 주소를 받아서 IPv4 주소를 추출하고 IPv4 패킷 내에 IPv6 패킷을 캡슐화한 뒤 목적지 주소에 보냄
- 목적지에서 패킷은 애니캐스트 주소 192.88.89.1에서 동작하는 6to4 릴레이로 전송된 후 원본 IPv6 패킷이 추출되어 전달됨

13.11 IPv6 터널

>> TSP

- 터널 셋업 프로토콜(TSP, Tunnel Setup Protocol)은 터널 매개변수의 동적인 협상을 허용하는 기술
- TSP의 작동 방식에서 연결하고자 하는 IPv6 네트워크의 엔드 포인트는 TSP 서버와 계약을 함
- 서버는 목적지 네트워크의 연결 가능한 엔드 포인트와 연결 매개변수를 협상하여 두 엔드 포인트가 연결될 수 있도록 함

13.12 요약

- >> 차세대 IP 프로토콜인 IPv6가 천천히 세상 밖으로 나오고 있음
- >> IPv6 주소 지정 시스템은 4장에서 설명한 시스템과 전혀 다름
- >> 128비트 주소 공간은 거의 제한 없는 주소를 수용할 것
- >> IPv6는 또한 단순화된 헤더, 더 큰 페이로드 및 여러 보안 및 서비스 품질과 관련된 여러 개선 사항을 제공
- >> 이미 IPv6로 전환되기 시작
- >> 다양한 터널 서비스가 현 IPv4 네트워크를 통해 연결 서비스를 제공

13.15 핵심 용어

- » 6in4: 터널 엔드 포인트의 고정 구성을 요구하는 Pv6 터널링 기술
- >> 6to4: IPv6 주소 내에 IPv4 주소를 포함하는 IPv6 터널링 기술
- 》 애니캐스트: 가장 가까운 혹은 최상의 목적지로 데이터그램을 전송하는 주소 지정 기술
- >> 흐름 레벨: 처리량의 특별한 처리 혹은 특별한 수준(예를 들어 실시간 같은)을 명시하는 IPv6 데이터그램에 대한 지정
- >> IPv6: 1280비트 IP 주소 기능을 제공하는 IP주소 지정의 새로운 표준. IPv6 설계자의 의도는 IPv6가 향후 몇 년 동안 조금씩 단계적으로 확장하기 위함
- >> IPv6 터널: IPv4 네트워크를 통해 IPv6 트래픽을 전송할 수 있는 인터넷 연결
- >> 점보 페이로드: 기존 65,535 바이트의 제약을 넘어선 길이의 데이터그램 페이로드. IPv6는 점포 페이로드 데이터그램이 네트워크를 통과할 수 있도록 함
- >> 멀티캐스팅: 네트워크 세그먼트의 사용자 그룹에 전송하는 기술
- >> 인접 탐색: IPv6 네트워크에서 IPv6 주소를 물리 주소(MAC)로 매핑하는 과정
- >> 경로 MTU: 전송 경로에 있는 모든 장치의 가장 작은 MTU 설정. 경로 MTU는 전송 경로가 전송할 수 있는 가장 큰 데이터 단위를 나타냄