MSc Thesis in Computer Vision

Lightweight Monocular 3D Vehicle Detection in Calibrated and Uncalibrated Scenarios

19/09/2022

Author:

Supervisors:

Eric Henriksson Martí

Dimosthenis Karatzas

Marçal Rossinyol

A look into the

Project's background

Images borrowed from AllRead MachineLearning Technologies S.L.

Can we go beyond 2D vehicle detection while still relying on low-resource environments?

Object pose recovery

6D pose estimation

- Main goal: Object pose in space
- Instance level
- No sensors camera alignment constraints

3D bounding box detection

- Main goal: Amodal 3D bounding boxes
 - Location, dimensions, and orientation
- Category level
- Sensors camera alignment constraints

Object pose recovery

6D pose estimation

- Main goal: Object pose in space
 - Location and full orientation
- Instance level
- No sensors camera alignment constraints

3D bounding box detection

- Main goal: Amodal 3D bounding boxes
- Category level
- Sensors camera alignment constraints

Object pose recovery

6D pose estimation

- Main goal: Object pose in space
 - Location and full orientation
 Location and full orientation
- Instance level
- No sensors camera alignment constraints

3D bounding box detection

- Main goal: Amodal 3D bounding boxes
- Category level
- Sensors camera alignment constraints

A comparison between

2D and 3D vehicle detection

Image borrowed from the KITTI vision benchmark suite

Enables: Classification, counting, basic tracking and speed monitoring

?

No information beyond the image plane

A comparison between

2D and 3D vehicle detection

Image borrowed from the KITTI vision benchmark suite

Enables: Classification, counting, advanced tracking and speed monitoring

Localization, estimation of occupied volumes, etc.

Kinds of inputs

RGB images

- Easily accessible
- No explicit depth information

Stereo images

- Better depth perception
- Two cameras are not always available

3D shape priors

- Better interpretations of object geometries
- Variety in vehicle designs

Depth maps

- Direct depth information
- Requires either RGB-D sensors or pre-computed maps

- Direct depth information
- Expensive and bulky sensors

Kinds of inputs

RGB images

- Easily accessible
- No explicit depth information

Stereo images

- Better depth perception
- Two cameras are not always available

3D shape priors

- Better interpretations of object geometries
- Variety in vehicle designs

Depth maps

- Direct depth information
- Requires either RGB-D sensors or pre-computed maps

- Direct depth information
- Expensive and bulky sensors

Kinds of inputs

RGB images

- Easily accessible
- No explicit depth information

Stereo images

- Better depth perception
- Two cameras are not always available

3D shape priors

- Better interpretations of object geometries
- Variety in vehicle designs

Depth maps

- Direct depth information
- Requires either RGB-D sensors or pre-computed maps

- Direct depth information
- Expensive and bulky sensors

Kinds of inputs

RGB images

- Easily accessible
- No explicit depth information

Stereo images

- Better depth perception
- Two cameras are not always available

3D shape priors

- Better interpretations of object geometries
- Variety in vehicle designs

Depth maps

- Direct depth information
- Requires either RGB-D sensors or pre-computed maps

- Direct depth information
- Expensive and bulky sensors

Kinds of inputs

RGB images

- Easily accessible
- No explicit depth information

Stereo images

- Better depth perception
- Two cameras are not always available

3D shape priors

- Better interpretations of object geometries
- Variety in vehicle designs

Depth maps

- Direct depth information
- Requires either RGB-D sensors or pre-computed maps

- Direct depth information
- Expensive and bulky sensors

The challenge of

Monocular 3D detection

Image borrowed from the KITTI vision benchmark suite

Where is the black Renault Megane located in the image?

How far is it from the camera?

What space does it occupy in the image?

Monocular 3D detection

Image borrowed from the KITTI vision benchmark suite

Where is the black Renault Megane located in the image?

How far is it from the camera?

What space does it occupy in the image?

Monocular 3D detection

Image borrowed from the KITTI vision benchmark suite

Where is the black Renault Megane located in the image?

How far is it from the camera?

What space does it occupy in the image?

The basics of

3D bounding box representation

Azimuth rotation (θ)

Elevation rotation (φ)

Roll rotation (α)

The basics of

3D bounding box representation

"Flat earth" assumption

3D bounding box representation

$$\mathbf{x}_i = K[R \ T]\mathbf{X}_i$$

A matter of

Calibration and 3D labeling

Ideally we have access to:

Camera extrinsics and intrinsics

Image borrowed from Motional's NuScenes visualizer

3D bounding box annotations

A matter of

Calibration and 3D labeling

Ideally we have access to:

However, this is usually not the case

Need to simplify the problem

Camera extrinsics and intrinsics

Image borrowed from Motional's NuScenes visualizer

3D bounding box annotations

Image borrowed from the KITTI vision benchmark suite

Anchor boxes + refinement + NMS

Object center points + parameters

Image borrowed from the KITTI vision benchmark suite

Anchor boxes + refinement + NMS

Object center points + parameters

Part 1

Calibrated 3D detection case

Dataset: KITTI 3D object detection

- Car-mounted camera
- RGB images
- Objects divided in difficulty groups
- Only cars considered
- 7,481 training images
 - → 3,682 training
 - → 3,799 validation

Image borrowed from the KITTI vision benchmark suite

Part 1

Object center localization prediction

(Trying both 2D box centers and projected 3D box centers)

$$L_{loc} = \frac{-1}{N} \sum_{xy} \begin{cases} (1 - \hat{Y}_{xy})^{\alpha} \log(\hat{Y}_{xy}) & \text{if } Y_{xy} = 1\\ (1 - Y_{xy})^{\beta} (\hat{Y}_{xy})^{\alpha} \log(1 - \hat{Y}_{xy}) & \text{otherwise} \end{cases}$$

Size prediction

Part 1

Depth prediction

$$L_{dep} = \frac{1}{N} \sum_{k=1}^{N} \left| \frac{1}{\sigma(\hat{d}_k)} - 1 - d_k \right|$$

Orientation prediction

$$L_{ori} = \frac{1}{N} \sum_{k=1}^{N} \sum_{i=1}^{2} (softmax(\hat{b}_{k_i}, c_{k_i}) + w \times c_{k_i} | (sin(\Delta \theta_{lk_i}), cos(\Delta \theta_{lk_i})) - (sin(\theta_{l_k} - m_{k_i}), cos(\theta_{l_k} - m_{k_i})) |)$$

Global orientation vs local orientation

$$\theta = \theta_{ray} + \theta_l$$

Part 1

Calibrated 3D detection case

Global orientation vs local orientation

$$\theta = \theta_{ray} + \theta_l$$

Part 1

Calibrated 3D detection case

Global orientation vs local orientation

$$\theta = \theta_{ray} + \theta_l$$

Images borrowed from Mousavian et al. (*)

Decoding 3D center location

[...]

Part 1

Calibrated 3D detection case

Experiments

Different kinds of encoders and layer width multipliers:

Encoder model		Parameters	Depth	Number of filters			
				Stride 4	Stride 8	Stride 16	Stride 32
MobileNetV2	$\alpha = 0.35$	224,224	100	48	96	192	336
	$\alpha = 0.5$	417,888	100	96	96	288	480
	$\alpha = 1$	1,528,656	100	144	192	576	960
EfficientNetB0		3,144,899	119	144	240	672	1152

• Different kinds of up-sampling operations:

Transp. convolutions vs nearest neighbor interpolation vs bilinear interpolation

Different kinds of activations for hidden layers:

ReLU vs leaky ReLU

Part 1

Calibrated 3D detection case

Experiments

Different kinds of encoders and layer width multipliers:

Encoder model		Parameters	Depth	Number of filters			
				Stride 4	Stride 8	Stride 16	Stride 32
MobileNetV2	$\alpha = 0.35$	224,224	100	48	96	192	336
	$\alpha = 0.5$	417,888	100	96	96	288	480
	$\alpha = 1$	1,528,656	100	144	192	576	960
EfficientNetB0		3,144,899	119	144	240	672	1152

• Different kinds of up-sampling operations:

Transp. convolutions vs nearest neighbor interpolation vs bilinear interpolation

Different kinds of activations for hidden layers:
 ReLU vs leaky ReLU

Calibrated 3D detection case

Experiments

Different kinds of encoders and layer width multipliers:

Encoder	model	Parameters	Depth		Number	r of filters	
Encoder model	nouci	1 at affecters	Deptii	Stride 4	Stride 8	Stride 16	Stride 32
MobileNetV2	$\alpha = 0.35$	224,224	100	48	96	192	336
	$\alpha = 0.5$	417,888	100	96	96	288	480
	$\alpha = 1$	1,528,656	100	144	192	576	960
EfficientNetB0		3,144,899	119	144	240	672	1152

• Different kinds of up-sampling operations:

Transp. convolutions vs nearest neighbor interpolation vs bilinear interpolation

Different kinds of activations for hidden layers:

ReLU vs leaky ReLU

Calibrated 3D detection case

Experiments

Data augmentation -

Random horizontal flipping (50% chance)

Random brightness alterations (80 to 120% of original value)

Training conditions

- Maximum 100 epochs w/ early stopping set to a patience of 7 epochs
- 1st stage: Frozen encoder weights

 Batch size: 8, initialization: Xavier, learning rate: 1e-3 (w/ *0.25 reductions), optimizer: Adam
- 2nd stage: Unfrozen encoder weights

 Batch size: 8, initialization: Xavier, learning rate: 1e-4 (w/ *0.25 reductions), optimizer: Adam
- Random searches carried out in special cases

Calibrated 3D detection case

Experiments

Data augmentation

Random horizontal flipping (50% chance)

Random brightness alterations (80 to 120% of original value)

Training conditions

- Maximum 100 epochs w/ early stopping set to a patience of 7 epochs
- 1st stage: Frozen encoder weights

Batch size: 8, initialization: Xavier, learning rate: 1e-3 (w/ *0.25 reductions), optimizer: Adam

2nd stage: Unfrozen encoder weights

Batch size: 8, initialization: Xavier, learning rate: 1e-4 (w/ *0.25 reductions), optimizer: Adam

Random searches carried out in selected case

Calibrated 3D detection case

Results

Encoder	model			AP			AOS			BEV AP		Danamata	Inference
	α	\boldsymbol{k}	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard	Parameters	time (ms)
MobileNetV2	0.35	0.5	72.0 / 72.8	52.3 / 52.9	46.3 / 46.3	70.2 / 71.6	51.1 / 51.3	43.5 / 44.5	28.4 / 31.3	19.3 / 23.8	15.7 / 19.8	1,657,450	28.5
		0.75	72.2 / 72.7	51.4 / 51.7	43.8 / 44.2	70.2 / 70.3	49.5 / 49.5	41.9 / 42.1	27.8 / 31.6	18.7 / 22.4	17.1 / 20.6	2,119,630	30.1
		1	68.9 / 72.9	46.2 / 50.4	40.0 / 43.4	66.2 / 69.0	44.1 / 47.3	37.9 / 40.5	23.5 / 28.2	15.9 / 21.2	12.3 / 17.5	2,697,010	31.7
	0.5	0.5	67.9 / 68.9	48.2 / 49.3	42.2 / 42.5	64.3 / 66.5	44.9 / 47.0	40.0 / 40.2	18.5 / 19.5	14.3 / 14.6	11.1 / 11.8	2,804,530	28.6
		0.75	70.6 / 72.4	49.1 / 49.0	41.8 / 41.8	68.3 / 70.1	47.2 / 48.9	39.9 / 39.7	31.5 / 31.4	21.9 / 23.4	20.5 / 19.5	3,736,426	29.5
		1	72.5 / 72.5	50.8 / 51.1	43.6 / 43.5	69.9 / 69.7	48.8 / 48.9	41.6 / 41.3	30.5 / 28.8	21.4 / 21.2	17.5 / 20.5	4,894,114	32.6
	1	0.5	75.6 / 76.3	57.8 / 59.0	44.2 / 46.1	70.1 / 74.0	53.1 / 56.4	42.8 / 44.0	27.4 / 31.4	19.7 / 22.9	19.0 / 21.1	7,816,346	35.1
		0.75	75.1 / 76.3	53.5 / 54.0	45.8 / 46.3	72.3 / 73.4	51.2 / 51.3	43.5 / 43.7	32.4 / 33.3	23.2 / 25.8	21.2 / 21.8	11,493,950	35.8
		1	74.9 / 76.0	54.8 / 54.6	46.4 / 46.7	72.8 / 73.4	53.0 / 52.4	44.7 / 44.6	27.4 / 34.4	19.3 / 23.6	17.6 / 21.6	16,070,114	36.6
EfficientNetB0		0.5	83.8 / 87.0	64.5 / 65.8	55.8 / 57.3	80.2 / 85.3	63.1 / 64.0	52.8 / 55.3	30.0 / 33.2	26.5 / 29.7	17.8 / 20.6	11,197,861	42.7
		0.75	81.7 / 82.2	63.0 / 63.2	54.5 / 54.5	79.3 / 79.3	60.5 / 60.2	51.8 / 51.6	23.9 / 28.7	18.1 / 22.7	16.4 / 20.8	16,275,829	43.2
		1	82.3 / 75.1	60.8 / 59.7	53.0 / 52.2	79.9 / 72.7	58.4 / 57.2	50.6 / 49.6	28.9 / 34.0	20.6 / 23.7	18.9 / 21.7	22,597,381	43.5

Part 1

Results

Differences between encoder models

Encoder	model			AP			AOS			BEV AP		Parameters	Inference
	α	\boldsymbol{k}	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard	rarameters	time (ms)
MobileNetV2	0.35	0.5	72.0 / 72.8	52.3 / 52.9	46.3 / 46.3	70.2 / 71.6	51.1 / 51.3	43.5 / 44.5	28.4 / 31.3	19.3 / 23.8	15.7 / 19.8	1,657,450	28.5
		0.75	72.2 / 72.7	51.4 / 51.7	43.8 / 44.2	70.2 / 70.3	49.5 / 49.5	41.9 / 42.1	27.8 / 31.6	18.7 / 22.4	17.1 / 20.6	2,119,630	30.1
		1	68.9 / 72.9	46.2 / 50.4	40.0 / 43.4	66.2 / 69.0	44.1 / 47.3	37.9 / 40.5	23.5 / 28.2	15.9 / 21.2	12.3 / 17.5	2,697,010	31.7
	0.5	0.5	67.9 / 68.9	48.2 / 49.3	42.2 / 42.5	64.3 / 66.5	44.9 / 47.0	40.0 / 40.2	18.5 / 19.5	14.3 / 14.6	11.1 / 11.8	2,804,530	28.6
		0.75	70.6 / 72.4	49.1 / 49.0	41.8 / 41.8	68.3 / 70.1	47.2 / 48.9	39.9 / 39.7	31.5 / 31.4	21.9 / 23.4	20.5 / 19.5	3,736,426	29.5
		1	72.5 / 72.5	50.8 / 51.1	43.6 / 43.5	69.9 / 69.7	48.8 / 48.9	41.6 / 41.3	30.5 / 28.8	21.4 / 21.2	17.5 / 20.5	4,894,114	32.6
	1	0.5	75.6 / 76.3	57.8 / 59.0	44.2 / 46.1	70.1 / 74.0	53.1 / 56.4	42.8 / 44.0	27.4 / 31.4	19.7 / 22.9	19.0 / 21.1	7,816,346	35.1
		0.75	75.1 / 76.3	53.5 / 54.0	45.8 / 46.3	72.3 / 73.4	51.2 / 51.3	43.5 / 43.7	32.4 / 33.3	23.2 / 25.8	21.2 / 21.8	11,493,950	35.8
		1	74.9 / 76.0	54.8 / 54.6	46.4 / 46.7	72.8 / 73.4	53.0 / 52.4	44.7 / 44.6	27.4 / 34.4	19.3 / 23.6	17.6 / 21.6	16,070,114	36.6
EfficientNetB0	-3	0.5	83.8 / 87.0	64.5 / 65.8	55.8 / 57.3	80.2 / 85.3	63.1 / 64.0	52.8 / 55.3	30.0 / 33.2	26.5 / 29.7	17.8 / 20.6	11,197,861	42.7
		0.75	81.7 / 82.2	63.0 / 63.2	54.5 / 54.5	79.3 / 79.3	60.5 / 60.2	51.8 / 51.6	23.9 / 28.7	18.1 / 22.7	16.4 / 20.8	16,275,829	43.2
		1	82.3 / 75.1	60.8 / 59.7	53.0 / 52.2	79.9 / 72.7	58.4 / 57.2	50.6 / 49.6	28.9 / 34.0	20.6 / 23.7	18.9 / 21.7	22,597,381	43.5

Part 1

Results

Effects of different filter multipliers k

Encoder	model			AP			AOS			BEV AP		Donomotore	Inference
	α	\boldsymbol{k}	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard	Parameters	time (ms)
MobileNetV2	0.35	0.5	72.0 / 72.8	52.3 / 52.9	46.3 / 46.3	70.2 / 71.6	51.1 / 51.3	43.5 / 44.5	28.4 / 31.3	19.3 / 23.8	15.7 / 19.8	1,657,450	28.5
		0.75	72.2 / 72.7	51.4 / 51.7	43.8 / 44.2	70.2 / 70.3	49.5 / 49.5	41.9 / 42.1	27.8 / 31.6	18.7 / 22.4	17.1 / 20.6	2,119,630	30.1
		1	68.9 / 72.9	46.2 / 50.4	40.0 / 43.4	66.2 / 69.0	44.1 / 47.3	37.9 / 40.5	23.5 / 28.2	15.9 / 21.2	12.3 / 17.5	2,697,010	31.7
	0.5	0.5	67.9 / 68.9	48.2 / 49.3	42.2 / 42.5	64.3 / 66.5	44.9 / 47.0	40.0 / 40.2	18.5 / 19.5	14.3 / 14.6	11.1 / 11.8	2,804,530	28.6
		0.75	70.6 / 72.4	49.1 / 49.0	41.8 / 41.8	68.3 / 70.1	47.2 / 48.9	39.9 / 39.7	31.5 / 31.4	21.9 / 23.4	20.5 / 19.5	3,736,426	29.5
		1	72.5 / 72.5	50.8 / 51.1	43.6 / 43.5	69.9 / 69.7	48.8 / 48.9	41.6 / 41.3	30.5 / 28.8	21.4 / 21.2	17.5 / 20.5	4,894,114	32.6
	1	0.5	75.6 / 76.3	57.8 / 59.0	44.2 / 46.1	70.1 / 74.0	53.1 / 56.4	42.8 / 44.0	27.4 / 31.4	19.7 / 22.9	19.0 / 21.1	7,816,346	35.1
		0.75	75.1 / 76.3	53.5 / 54.0	45.8 / 46.3	72.3 / 73.4	51.2 / 51.3	43.5 / 43.7	32.4 / 33.3	23.2 / 25.8	21.2 / 21.8	11,493,950	35.8
		1	74.9 / 76.0	54.8 / 54.6	46.4 / 46.7	72.8 / 73.4	53.0 / 52.4	44.7 / 44.6	27.4 / 34.4	19.3 / 23.6	17.6 / 21.6	16,070,114	36.6
EfficientNetB0		0.5	83.8 / 87.0	64.5 / 65.8	55.8 / 57.3	80.2 / 85.3	63.1 / 64.0	52.8 / 55.3	30.0 / 33.2	26.5 / 29.7	17.8 / 20.6	11,197,861	42.7
		0.75	81.7 / 82.2	63.0 / 63.2	54.5 / 54.5	79.3 / 79.3	60.5 / 60.2	51.8 / 51.6	23.9 / 28.7	18.1 / 22.7	16.4 / 20.8	16,275,829	43.2
		1	82.3 / 75.1	60.8 / 59.7	53.0 / 52.2	79.9 / 72.7	58.4 / 57.2	50.6 / 49.6	28.9 / 34.0	20.6 / 23.7	18.9 / 21.7	22,597,381	43.5

Part 1

Results

Effects of different filter multipliers k

Encoder	model			AP			AOS			BEV AP		Doromotore	Inference
	α	\boldsymbol{k}	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard	Parameters	time (ms)
MobileNetV2	0.35	0.5	72.0 / 72.8	52.3 / 52.9	46.3 / 46.3	70.2 / 71.6	51.1 / 51.3	43.5 / 44.5	28.4 / 31.3	19.3 / 23.8	15.7 / 19.8	1,657,450	28.5
		0.75	72.2 / 72.7	51.4 / 51.7	43.8 / 44.2	70.2 / 70.3	49.5 / 49.5	41.9 / 42.1	27.8 / 31.6	18.7 / 22.4	17.1 / 20.6	2,119,630	30.1
		1	68.9 / 72.9	46.2 / 50.4	40.0 / 43.4	66.2 / 69.0	44.1 / 47.3	37.9 / 40.5	23.5 / 28.2	15.9 / 21.2	12.3 / 17.5	2,697,010	31.7
	0.5	0.5	67.9 / 68.9	48.2 / 49.3	42.2 / 42.5	64.3 / 66.5	44.9 / 47.0	40.0 / 40.2	18.5 / 19.5	14.3 / 14.6	11.1 / 11.8	2,804,530	28.6
		0.75	70.6 / 72.4	49.1 / 49.0	41.8 / 41.8	68.3 / 70.1	47.2 / 48.9	39.9 / 39.7	31.5 / 31.4	21.9 / 23.4	20.5 / 19.5	3,736,426	29.5
		1	72.5 / 72.5	50.8 / 51.1	43.6 / 43.5	69.9 / 69.7	48.8 / 48.9	41.6 / 41.3	30.5 / 28.8	21.4 / 21.2	17.5 / 20.5	4,894,114	32.6
	1	0.5	75.6 / 76.3	57.8 / 59.0	44.2 / 46.1	70.1 / 74.0	53.1 / 56.4	42.8 / 44.0	27.4 / 31.4	19.7 / 22.9	19.0 / 21.1	7,816,346	35.1
		0.75	75.1 / 76.3	53.5 / 54.0	45.8 / 46.3	72.3 / 73.4	51.2 / 51.3	43.5 / 43.7	32.4 / 33.3	23.2 / 25.8	21.2 / 21.8	11,493,950	35.8
		1	74.9 / 76.0	54.8 / 54.6	46.4 / 46.7	72.8 / 73.4	53.0 / 52.4	44.7 / 44.6	27.4 / 34.4	19.3 / 23.6	17.6 / 21.6	16,070,114	36.6
EfficientNetB0	17.	0.5	83.8 / 87.0	64.5 / 65.8	55.8 / 57.3	80.2 / 85.3	63.1 / 64.0	52.8 / 55.3	30.0 / 33.2	26.5 / 29.7	17.8 / 20.6	11,197,861	42.7
		0.75	81.7 / 82.2	63.0 / 63.2	54.5 / 54.5	79.3 / 79.3	60.5 / 60.2	51.8 / 51.6	23.9 / 28.7	18.1 / 22.7	16.4 / 20.8	16,275,829	43.2
		1	82.3 / 75.1	60.8 / 59.7	53.0 / 52.2	79.9 / 72.7	58.4 / 57.2	50.6 / 49.6	28.9 / 34.0	20.6 / 23.7	18.9 / 21.7	22,597,381	43.5

Part 1

Results

Difference in accuracy per difficulty level

Encoder	model			AP			AOS			BEV AP		Parameters	Inference
	α	\boldsymbol{k}	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard	rarameters	time (ms)
MobileNetV2	0.35	0.5	72.0 / 72.8	52.3 / 52.9	46.3 / 46.3	70.2 / 71.6	51.1 / 51.3	43.5 / 44.5	28.4 / 31.3	19.3 / 23.8	15.7 / 19.8	1,657,450	28.5
		0.75	72.2 / 72.7	51.4 / 51.7	43.8 / 44.2	70.2 / 70.3	49.5 / 49.5	41.9 / 42.1	27.8 / 31.6	18.7 / 22.4	17.1 / 20.6	2,119,630	30.1
		1	68.9 / 72.9	46.2 / 50.4	40.0 / 43.4	66.2 / 69.0	44.1 / 47.3	37.9 / 40.5	23.5 / 28.2	15.9 / 21.2	12.3 / 17.5	2,697,010	31.7
	0.5	0.5	67.9 / 68.9	48.2 / 49.3	42.2 / 42.5	64.3 / 66.5	44.9 / 47.0	40.0 / 40.2	18.5 / 19.5	14.3 / 14.6	11.1 / 11.8	2,804,530	28.6
		0.75	70.6 / 72.4	49.1 / 49.0	41.8 / 41.8	68.3 / 70.1	47.2 / 48.9	39.9 / 39.7	31.5 / 31.4	21.9 / 23.4	20.5 / 19.5	3,736,426	29.5
		1	72.5 / 72.5	50.8 / 51.1	43.6 / 43.5	69.9 / 69.7	48.8 / 48.9	41.6 / 41.3	30.5 / 28.8	21.4 / 21.2	17.5 / 20.5	4,894,114	32.6
	1	0.5	75.6 / 76.3	57.8 / 59.0	44.2 / 46.1	70.1 / 74.0	53.1 / 56.4	42.8 / 44.0	27.4 / 31.4	19.7 / 22.9	19.0 / 21.1	7,816,346	35.1
		0.75	75.1 / 76.3	53.5 / 54.0	45.8 / 46.3	72.3 / 73.4	51.2 / 51.3	43.5 / 43.7	32.4 / 33.3	23.2 / 25.8	21.2 / 21.8	11,493,950	35.8
		1	74.9 / 76.0	54.8 / 54.6	46.4 / 46.7	72.8 / 73.4	53.0 / 52.4	44.7 / 44.6	27.4 / 34.4	19.3 / 23.6	17.6 / 21.6	16,070,114	36.6
EfficientNetB0	-5	0.5	83.8 / 87.0	64.5 / 65.8	55.8 / 57.3	80.2 / 85.3	63.1 / 64.0	52.8 / 55.3	30.0 / 33.2	26.5 / 29.7	17.8 / 20.6	11,197,861	42.7
		0.75	81.7 / 82.2	63.0 / 63.2	54.5 / 54.5	79.3 / 79.3	60.5 / 60.2	51.8 / 51.6	23.9 / 28.7	18.1 / 22.7	16.4 / 20.8	16,275,829	43.2
	1	82.3 / 75.1	60.8 / 59.7	53.0 / 52.2	79.9 / 72.7	58.4 / 57.2	50.6 / 49.6	28.9 / 34.0	20.6 / 23.7	18.9 / 21.7	22,597,381	43.5	

Part 1

Results

Difference in accuracy per difficulty level

Encoder	model			AP			AOS			BEV AP		Parameters	Inference
	α	\boldsymbol{k}	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard	rarameters	time (ms)
MobileNetV2	0.35	0.5	72.0 / 72.8	52.3 / 52.9	46.3 / 46.3	70.2 / 71.6	51.1 / 51.3	43.5 / 44.5	28.4 / 31.3	19.3 / 23.8	15.7 / 19.8	1,657,450	28.5
		0.75	72.2 / 72.7	51.4 / 51.7	43.8 / 44.2	70.2 / 70.3	49.5 / 49.5	41.9 / 42.1	27.8 / 31.6	18.7 / 22.4	17.1 / 20.6	2,119,630	30.1
		1	68.9 / 72.9	46.2 / 50.4	40.0 / 43.4	66.2 / 69.0	44.1 / 47.3	37.9 / 40.5	23.5 / 28.2	15.9 / 21.2	12.3 / 17.5	2,697,010	31.7
	0.5	0.5	67.9 / 68.9	48.2 / 49.3	42.2 / 42.5	64.3 / 66.5	44.9 / 47.0	40.0 / 40.2	18.5 / 19.5	14.3 / 14.6	11.1 / 11.8	2,804,530	28.6
		0.75	70.6 / 72.4	49.1 / 49.0	41.8 / 41.8	68.3 / 70.1	47.2 / 48.9	39.9 / 39.7	31.5 / 31.4	21.9 / 23.4	20.5 / 19.5	3,736,426	29.5
		1	72.5 / 72.5	50.8 / 51.1	43.6 / 43.5	69.9 / 69.7	48.8 / 48.9	41.6 / 41.3	30.5 / 28.8	21.4 / 21.2	17.5 / 20.5	4,894,114	32.6
	1	0.5	75.6 / 76.3	57.8 / 59.0	44.2 / 46.1	70.1 / 74.0	53.1 / 56.4	42.8 / 44.0	27.4 / 31.4	19.7 / 22.9	19.0 / 21.1	7,816,346	35.1
		0.75	75.1 / 76.3	53.5 / 54.0	45.8 / 46.3	72.3 / 73.4	51.2 / 51.3	43.5 / 43.7	32.4 / 33.3	23.2 / 25.8	21.2 / 21.8	11,493,950	35.8
		1	74.9 / 76.0	54.8 / 54.6	46.4 / 46.7	72.8 / 73.4	53.0 / 52.4	44.7 / 44.6	27.4 / 34.4	19.3 / 23.6	17.6 / 21.6	16,070,114	36.6
EfficientNetB0	-3	0.5	83.8 / 87.0	64.5 / 65.8	55.8 / 57.3	80.2 / 85.3	63.1 / 64.0	52.8 / 55.3	30.0 / 33.2	26.5 / 29.7	17.8 / 20.6	11,197,861	42.7
		0.75	81.7 / 82.2	63.0 / 63.2	54.5 / 54.5	79.3 / 79.3	60.5 / 60.2	51.8 / 51.6	23.9 / 28.7	18.1 / 22.7	16.4 / 20.8	16,275,829	43.2
		1	82.3 / 75.1	60.8 / 59.7	53.0 / 52.2	79.9 / 72.7	58.4 / 57.2	50.6 / 49.6	28.9 / 34.0	20.6 / 23.7	18.9 / 21.7	22,597,381	43.5

Part 1

Results

Difference in accuracy per difficulty level

Encoder	model			AP			AOS			BEV AP		Donomatana	Inference
	α	\boldsymbol{k}	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard	Parameters	time (ms)
MobileNetV2	0.35	0.5	72.0 / 72.8	52.3 / 52.9	46.3 / 46.3	70.2 / 71.6	51.1 / 51.3	43.5 / 44.5	28.4 / 31.3	19.3 / 23.8	15.7 / 19.8	1,657,450	28.5
		0.75	72.2 / 72.7	51.4 / 51.7	43.8 / 44.2	70.2 / 70.3	49.5 / 49.5	41.9 / 42.1	27.8 / 31.6	18.7 / 22.4	17.1 / 20.6	2,119,630	30.1
		1	68.9 / 72.9	46.2 / 50.4	40.0 / 43.4	66.2 / 69.0	44.1 / 47.3	37.9 / 40.5	23.5 / 28.2	15.9 / 21.2	12.3 / 17.5	2,697,010	31.7
	0.5	0.5	67.9 / 68.9	48.2 / 49.3	42.2 / 42.5	64.3 / 66.5	44.9 / 47.0	40.0 / 40.2	18.5 / 19.5	14.3 / 14.6	11.1 / 11.8	2,804,530	28.6
		0.75	70.6 / 72.4	49.1 / 49.0	41.8 / 41.8	68.3 / 70.1	47.2 / 48.9	39.9 / 39.7	31.5 / 31.4	21.9 / 23.4	20.5 / 19.5	3,736,426	29.5
		1	72.5 / 72.5	50.8 / 51.1	43.6 / 43.5	69.9 / 69.7	48.8 / 48.9	41.6 / 41.3	30.5 / 28.8	21.4 / 21.2	17.5 / 20.5	4,894,114	32.6
	1	0.5	75.6 / 76.3	57.8 / 59.0	44.2 / 46.1	70.1 / 74.0	53.1 / 56.4	42.8 / 44.0	27.4 / 31.4	19.7 / 22.9	19.0 / 21.1	7,816,346	35.1
		0.75	75.1 / 76.3	53.5 / 54.0	45.8 / 46.3	72.3 / 73.4	51.2 / 51.3	43.5 / 43.7	32.4 / 33.3	23.2 / 25.8	21.2 / 21.8	11,493,950	35.8
		1	74.9 / 76.0	54.8 / 54.6	46.4 / 46.7	72.8 / 73.4	53.0 / 52.4	44.7 / 44.6	27.4 / 34.4	19.3 / 23.6	17.6 / 21.6	16,070,114	36.6
EfficientNetB0	-5	0.5	83.8 / 87.0	64.5 / 65.8	55.8 / 57.3	80.2 / 85.3	63.1 / 64.0	52.8 / 55.3	30.0 / 33.2	26.5 / 29.7	17.8 / 20.6	11,197,861	42.7
		0.75	81.7 / 82.2	63.0 / 63.2	54.5 / 54.5	79.3 / 79.3	60.5 / 60.2	51.8 / 51.6	23.9 / 28.7	18.1 / 22.7	16.4 / 20.8	16,275,829	43.2
		1	82.3 / 75.1	60.8 / 59.7	53.0 / 52.2	79.9 / 72.7	58.4 / 57.2	50.6 / 49.6	28.9 / 34.0	20.6 / 23.7	18.9 / 21.7	22,597,381	43.5

Part 1

Results

The effects of data augmentation

Encoder	model			AP			AOS			BEV AP		Darameters	Inference
	α	\boldsymbol{k}	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard	Parameters	time (ms)
MobileNetV2	0.35	0.5	72.0 / 72.8	52.3 / 52.9	46.3 / 46.3	70.2 / 71.6	51.1 / 51.3	43.5 / 44.5	28.4 / 31.3	19.3 / 23.8	15.7 / 19.8	1,657,450	28.5
		0.75	72.2 / 72.7	51.4 / 51.7	43.8 / 44.2	70.2 / 70.3	49.5 / 49.5	41.9 / 42.1	27.8 / 31.6	18.7 / 22.4	17.1 / 20.6	2,119,630	30.1
		1	68.9 / 72.9	46.2 / 50.4	40.0 / 43.4	66.2 / 69.0	44.1 / 47.3	37.9 / 40.5	23.5 / 28.2	15.9 / 21.2	12.3 / 17.5	2,697,010	31.7
	0.5	0.5	67.9 / 68.9	48.2 / 49.3	42.2 / 42.5	64.3 / 66.5	44.9 / 47.0	40.0 / 40.2	18.5 / 19.5	14.3 / 14.6	11.1 / 11.8	2,804,530	28.6
		0.75	70.6 / 72.4	49.1 / 49.0	41.8 / 41.8	68.3 / 70.1	47.2 / 48.9	39.9 / 39.7	31.5 / 31.4	21.9 / 23.4	20.5 / 19.5	3,736,426	29.5
		1	72.5 / 72.5	50.8 / 51.1	43.6 / 43.5	69.9 / 69.7	48.8 / 48.9	41.6 / 41.3	30.5 / 28.8	21.4 / 21.2	17.5 / 20.5	4,894,114	32.6
	1	0.5	75.6 / 76.3	57.8 / 59.0	44.2 / 46.1	70.1 / 74.0	53.1 / 56.4	42.8 / 44.0	27.4 / 31.4	19.7 / 22.9	19.0 / 21.1	7,816,346	35.1
		0.75	75.1 / 76.3	53.5 / 54.0	45.8 / 46.3	72.3 / 73.4	51.2 / 51.3	43.5 / 43.7	32.4 / 33.3	23.2 / 25.8	21.2 / 21.8	11,493,950	35.8
		1	74.9 / 76.0	54.8 / 54.6	46.4 / 46.7	72.8 / 73.4	53.0 / 52.4	44.7 / 44.6	27.4 / 34.4	19.3 / 23.6	17.6 / 21.6	16,070,114	36.6
EfficientNetB0	-7	0.5	83.8 / 87.0	64.5 / 65.8	55.8 / 57.3	80.2 / 85.3	63.1 / 64.0	52.8 / 55.3	30.0 / 33.2	26.5 / 29.7	17.8 / 20.6	11,197,861	42.7
		0.75	81.7 / 82.2	63.0 / 63.2	54.5 / 54.5	79.3 / 79.3	60.5 / 60.2	51.8 / 51.6	23.9 / 28.7	18.1 / 22.7	16.4 / 20.8	16,275,829	43.2
		1	82.3 / 75.1	60.8 / 59.7	53.0 / 52.2	79.9 / 72.7	58.4 / 57.2	50.6 / 49.6	28.9 / 34.0	20.6 / 23.7	18.9 / 21.7	22,597,381	43.5

Part 1

Results

Settling for the middle ground

Encoder	model			AP			AOS			BEV AP		Doromotore	Inference
	α	\boldsymbol{k}	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard	Parameters	time (ms)
MobileNetV2	0.35	0.5	72.0 / 72.8	52.3 / 52.9	46.3 / 46.3	70.2 / 71.6	51.1 / 51.3	43.5 / 44.5	28.4 / 31.3	19.3 / 23.8	15.7 / 19.8	1,657,450	28.5
		0.75	72.2 / 72.7	51.4 / 51.7	43.8 / 44.2	70.2 / 70.3	49.5 / 49.5	41.9 / 42.1	27.8 / 31.6	18.7 / 22.4	17.1 / 20.6	2,119,630	30.1
		1	68.9 / 72.9	46.2 / 50.4	40.0 / 43.4	66.2 / 69.0	44.1 / 47.3	37.9 / 40.5	23.5 / 28.2	15.9 / 21.2	12.3 / 17.5	2,697,010	31.7
	0.5	0.5	67.9 / 68.9	48.2 / 49.3	42.2 / 42.5	64.3 / 66.5	44.9 / 47.0	40.0 / 40.2	18.5 / 19.5	14.3 / 14.6	11.1 / 11.8	2,804,530	28.6
		0.75	70.6 / 72.4	49.1 / 49.0	41.8 / 41.8	68.3 / 70.1	47.2 / 48.9	39.9 / 39.7	31.5 / 31.4	21.9 / 23.4	20.5 / 19.5	3,736,426	29.5
		1	72.5 / 72.5	50.8 / 51.1	43.6 / 43.5	69.9 / 69.7	48.8 / 48.9	41.6 / 41.3	30.5 / 28.8	21.4 / 21.2	17.5 / 20.5	4,894,114	32.6
	1	0.5	75.6 / 76.3	57.8 / 59.0	44.2 / 46.1	70.1 / 74.0	53.1 / 56.4	42.8 / 44.0	27.4 / 31.4	19.7 / 22.9	19.0 / 21.1	7,816,346	35.1
		0.75	75.1 / 76.3	53.5 / 54.0	45.8 / 46.3	72.3 / 73.4	51.2 / 51.3	43.5 / 43.7	32.4 / 33.3	23.2 / 25.8	21.2 / 21.8	11,493,950	35.8
		1	74.9 / 76.0	54.8 / 54.6	46.4 / 46.7	72.8 / 73.4	53.0 / 52.4	44.7 / 44.6	27.4 / 34.4	19.3 / 23.6	17.6 / 21.6	16,070,114	36.6
EfficientNetB0	-7	0.5	83.8 / 87.0	64.5 / 65.8	55.8 / 57.3	80.2 / 85.3	63.1 / 64.0	52.8 / 55.3	30.0 / 33.2	26.5 / 29.7	17.8 / 20.6	11,197,861	42.7
		0.75	81.7 / 82.2	63.0 / 63.2	54.5 / 54.5	79.3 / 79.3	60.5 / 60.2	51.8 / 51.6	23.9 / 28.7	18.1 / 22.7	16.4 / 20.8	16,275,829	43.2
		1	82.3 / 75.1	60.8 / 59.7	53.0 / 52.2	79.9 / 72.7	58.4 / 57.2	50.6 / 49.6	28.9 / 34.0	20.6 / 23.7	18.9 / 21.7	22,597,381	43.5

Part 1

Results

Differences between up-sampling methods

Up-sampling method		AP			AOS			BEV AP	
Op-sampling method	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard
Transposed convolutions	72.4	49.0	41.8	70.1	48.9	39.7	31.4	23.4	19.5
Nearest neighbor interp.	72.6	52.5	44.8	68.6	49.0	41.4	32.1	21.8	17.8
Bilinear interpolation	75.8	54.8	46.6	73.7	52.4	44.3	25.8	18.2	14.3

Differences between activation functions

Hidden layer activations		AP			AOS			BEV AP	
riiduen layer activations	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard
Standard ReLU	72.4	49.0	41.8	70.1	48.9	39.7	31.4	23.4	19.5
Leaky ReLU	72.8	50.7	43.6	69.4	47.6	40.7	30.4	20.9	17.2

Calibrated 3D detection case

Results

Differences between up-sampling methods

Up-sampling method		AP			AOS			BEV AP	
Op-sampling method	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard
Transposed convolutions	72.4	49.0	41.8	70.1	48.9	39.7	31.4	23.4	19.5
Nearest neighbor interp.	72.6	52.5	44.8	68.6	49.0	41.4	32.1	21.8	17.8
Bilinear interpolation	75.8	54.8	46.6	73.7	52.4	44.3	25.8	18.2	14.3

Differences between activation functions in hidden layers

Hidden layer activations	AP			AOS			BEV AP		
	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard
Standard ReLU	72.4	49.0	41.8	70.1	48.9	39.7	31.4	23.4	19.5
Leaky ReLU	72.8	50.7	43.6	69.4	47.6	40.7	30.4	20.9	17.2

Calibrated 3D detection case

Results

Comparative between systems

Detection system	AP				AOS		BEV AP			Parameters
Detection system	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard	rarameters
Original CenterNet	90.2±1.2	80.4±1.4	71.1±1.6	85.3±1.7	75.0±1.6	66.2±1.8	31.4±3.7	26.5±1.6	23.8±2.9	20,615,323
Ours (*)	72.8 ± 0.8	50.6±1.1	42.3±1.8	71.4±1.4	50.1 ± 1.8	41.4±1.8	31.4±2.2	23.6±2.0	19.8 ± 2.3	3,736,426
Ours (**)	32.1±1.6	20.2±1.8	18.9 ± 1.8	31.17±1.6	20.2 ± 1.8	18.9 ± 1.9	31.6 ± 2.5	23.5 ± 2.2	19.5 ± 2.6	3,476,832

(*) Standard version: Prediction of 2D centers and size, (**) Alternative version: Direct prediction of projected 3D centers

Calibrated 3D detection case

Results

Comparative between systems

Detection system	AP				AOS			BEV AP	Parameters	
Detection system	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard	rarameters
Original CenterNet	90.2±1.2	80.4±1.4	71.1±1.6	85.3±1.7	75.0±1.6	66.2±1.8	31.4±3.7	26.5±1.6	23.8±2.9	20,615,323
Ours (*)	72.8 ± 0.8	50.6 ± 1.1	42.3 ± 1.8	71.4±1.4	50.1±1.8	41.4±1.8	31.4±2.2	23.6±2.0	19.8 ± 2.3	3,736,426
Ours (**)	32.1 ± 1.6	20.2 ± 1.8	18.9 ± 1.8	31.17±1.6	20.2±1.8	18.9±1.9	31.6±2.5	23.5 ± 2.2	19.5 ± 2.6	3,476,832

(*) Standard version: Prediction of 2D centers and size, (**) Alternative version: Direct prediction of projected 3D centers

	OS	
Easy	Medium	Hard
~0.94	~0.93	~0.93
~0.98	~0.99	~0.97
~0.97	~1.00	~1.00

Calibrated 3D detection case

Results

Comparative between systems

Datastian system	AP				AOS			BEV AP		
Detection system	Easy	Medium	Hard	Easy	Medium	Hard	Easy	Medium	Hard	Parameters
Original CenterNet	90.2±1.2	80.4±1.4	71.1±1.6	85.3±1.7	75.0±1.6	66.2±1.8	31.4±3.7	26.5±1.6	23.8±2.9	20,615,323
Ours (*)	72.8 ± 0.8	50.6 ± 1.1	42.3 ± 1.8	71.4 ± 1.4	50.1 ± 1.8	41.4±1.8	31.4±2.2	23.6±2.0	19.8±2.3	3,736,426
Ours (**)	32.1 ± 1.6	20.2 ± 1.8	18.9 ± 1.8	31.17 ± 1.6	20.2 ± 1.8	18.9 ± 1.9	31.6±2.5	23.5±2.2	19.5±2.6	3,476,832

(*) Standard version: Prediction of 2D centers and size, (**) Alternative version: Direct prediction of projected 3D centers

Part 1

Part 1

Calibrated 3D detection case

Calibrated 3D detection case

Standard version: Prediction of 2D centers

Alternative version: Direct prediction of projected 3D centers

Dataset: Ko-PER intersection laserscanner and video dataset

- 2 traffic monitoring cams
- Greyscale images
- Only cars considered
- 4-part sequence, totalling
 4,831 images per camera
 - → 3,626 training
 - → 1,205 validation

Images borrowed from the Ko-PER intersection laserscanner and video dataset

A lack of calibration is assumed

Simplifying the problem

4+ point correspondences between camera images and map

Calculation of homography, incl. the use of RANSAC

Planar transformation of camera images and stitching into BEV

Uncalibrated 3D detection case

Simplifying the problem

4+ point correspondences between camera images and map

Calculation of homography, incl. the use of RANSAC

Planar transformation of camera images and stitching into BEV

Uncalibrated 3D detection case

Simplifying the problem

4+ point correspondences between camera images and map

Calculation of homography, incl. the use of RANSAC

Planar transformation of camera images and stitching into BEV

Uncalibrated 3D detection case

Simplifying the problem

4+ point correspondences between camera images and map

Calculation of homography, incl. the use of RANSAC

Planar transformation of camera images and stitching into BEV

Part 2

Uncalibrated 3D detection case

Experiments

Random horizontal flipping (50% chance)

Data augmentation

darka Random vertical flipping (50% chance)

Random horizontal or vertical flipping (50% chance)

Training conditions → Same 2 stage approach. Hyperparameters based on random search

Results

BEV AP								
No data augmentation	Random H flipping	Random V flippling	Random H & V flipping					
62.37	71.14	59.93	58.09					

Uncalibrated 3D detection case

Experiments

Data augmentation -

Random horizontal flipping (50% chance)

Random vertical flipping (50% chance)

Random horizontal or vertical flipping (50% chance)

Training conditions --> Same 2 stage approach. Hyperparameters based on random search

Results

BEV AP							
No data augmentation	Random H flipping	Random V flippling	Random H & V flipping				
62.37 71.14		59.93	58.09				

Part 2

Usability of the studied systems

Calibration is a must for accurate full 3D bounding box detection

It can be estimated for most uncalibrated cameras

A few comments on the

Usability of the studied systems

Still, the difficult access to 3D annotated data remains a problem

Possible sources - Existing datasets Problem of camera angle and calibration compatibilities

Annotating own data obtained with calibrated cameras and LiDARs

Using synthetic data

All inviable in many scenarios

The proposed uncalibrated detection approach can still be considered

• A satellite image of most scenes can be obtained

Generalization?

Annotating rotated 2D bounding boxes is (usually) feasible

A few comments on the

Usability of the studied systems

Still, the difficult access to 3D annotated data remains a problem

Possible sources - Existing datasets Problem of camera angle and calibration compatibilities

Annotating own data obtained with calibrated cameras and LiDARs

Using synthetic data

All inviable in many scenarios

The proposed uncalibrated detection approach can still be considered

• A satellite image of most scenes can be obtained

Generalization?

Annotating rotated 2D bounding boxes is (usually) feasible

A few comments on the

Usability of the studied systems

- Relying exclusively on monocular 3D detection is challenging, but doable to an extent
- Camera calibration and 3D annotations are necessary for accurate full 3D detection, but can be difficult to access
- When not available, part of the 3D detection task can still be carried out through a simplification to a 2D detection problem of rotated bounding boxes on BEVs
- The end-to-end differentiability, speed and adaptability of the CenterNet make it a great fit for the task of 3D detection
- Lightweight variants of the CenterNet with simpler feature extraction architectures can still provide functional detection capabilities
- There is plenty of progress to be made in terms of automatization and generalization

- Relying exclusively on monocular 3D detection is challenging, but doable to an extent
- Camera calibration and 3D annotations are necessary for accurate full 3D detection, but can be difficult to access
- When not available, part of the 3D detection task can still be carried out through a simplification to a 2D detection problem of rotated bounding boxes on BEVs
- The end-to-end differentiability, speed and adaptability of the CenterNet make it a great fit for the task of 3D detection
- Lightweight variants of the CenterNet with simpler feature extraction architectures can still provide functional detection capabilities
- There is plenty of progress to be made in terms of automatization and generalization

- Relying exclusively on monocular 3D detection is challenging, but doable to an extent
- Camera calibration and 3D annotations are necessary for accurate full 3D detection, but can be difficult to access
- When not available, part of the 3D detection task can still be carried out through a simplification to a 2D detection problem of rotated bounding boxes on BEVs
- The end-to-end differentiability, speed and adaptability of the CenterNet make it a great fit for the task of 3D detection
- Lightweight variants of the CenterNet with simpler feature extraction architectures can still provide functional detection capabilities
- There is plenty of progress to be made in terms of automatization and generalization

- Relying exclusively on monocular 3D detection is challenging, but doable to an extent
- Camera calibration and 3D annotations are necessary for accurate full 3D detection, but can be difficult to access
- When not available, part of the 3D detection task can still be carried out through a simplification to a 2D detection problem of rotated bounding boxes on BEVs
- The end-to-end differentiability, speed and adaptability of the CenterNet make it a great fit for the task of 3D detection
- Lightweight variants of the CenterNet with simpler feature extraction architectures can still provide functional detection capabilities
- There is plenty of progress to be made in terms of automatization and generalization

- Relying exclusively on monocular 3D detection is challenging, but doable to an extent
- Camera calibration and 3D annotations are necessary for accurate full 3D detection, but can be difficult to access
- When not available, part of the 3D detection task can still be carried out through a simplification to a 2D detection problem of rotated bounding boxes on BEVs
- The end-to-end differentiability, speed and adaptability of the CenterNet make it a great fit for the task of 3D detection
- Lightweight variants of the CenterNet with simpler feature extraction architectures can still provide functional detection capabilities
- There is plenty of progress to be made in terms of automatization and generalization

- Relying exclusively on monocular 3D detection is challenging, but doable to an extent
- Camera calibration and 3D annotations are necessary for accurate full 3D detection, but can be difficult to access
- When not available, part of the 3D detection task can still be carried out through a simplification to a 2D detection problem of rotated bounding boxes on BEVs
- The end-to-end differentiability, speed and adaptability of the CenterNet make it a great fit for the task of 3D detection
- Lightweight variants of the CenterNet with simpler feature extraction architectures can still provide functional detection capabilities
- There is plenty of progress to be made in terms of automatization and generalization

Thank you!

Eric Henriksson Martí

E-mail: eckehenrikssonmarti@gmail.com

LinkedIn: linkedin.com/in/erichenriksson/

Mobile: +34 618 777 779