Programming

March 27, 2024

0.1 Programming: Question 3 - 50 points

In this problem, we will use university application data for the purpose of admission classification. Find data_train and data_test on canvas.

```
[1]: import pandas as pd
from sklearn.model_selection import train_test_split
from IPython.display import display, Markdown
from sklearn.metrics import accuracy_score
from sklearn.svm import SVC
```

• (a) Data Pre-processing: Create a binary label based on the column "Chance of Admit". Convert any values bigger than the median to 1 and 0 otherwise. Split the data into training and validation sets. You can use a 80-20 split.

Admission Threshold: 0.72

```
[3]: markdown_table = df.head().to_markdown(index=False)
display(Markdown(f"**Original DataFrame:**\n\n{markdown_table}"))
```

Original DataFrame:

Unnamed:	Serial	GRE	TOEFL	University				С	hance of	
0	No.	Score	Score	Rating	SOP	LOR	CGPA	Research	Admit	Admit
0	109	331	116	5	5	5	9.38	1	0.93	1
1	346	316	98	1	1.5	2	7.43	0	0.49	0
2	99	332	119	4	5	4.5	9.24	1	0.9	1
3	210	301	104	3	3.5	4	8.12	1	0.68	0
4	242	317	103	2	2.5	2	8.15	0	0.65	0

```
[4]: X = df.drop(['Serial No.', 'Chance of Admit ', 'Admit'], axis=1)
y = df['Admit']
```

```
Dataset Shapes: - X_train: (256, 8) - y_train: (256,) - X_val: (64, 8) - y_val: (64,)
```

Training Set Distribution:

Admit	proportion
0	0.519531
1	0.480469

Validation Set Distribution:

Admit	proportion
1	0.5625
0	0.4375

- (b) Model Initialization: Initialize 4 different SVM models with the following kernels:
 - 1. Linear kernel
 - 2. RBF kernel
 - 3. Polynomial (degree 3) kernel

```
[7]: svc_linear = SVC(kernel='linear', C=1, random_state=42)
svc_rbf = SVC(kernel='rbf', C=1, random_state=42)
svc_poly = SVC(kernel='poly', C=1, degree=3, random_state=42)

models = [svc_linear, svc_rbf, svc_poly]
model_names = ['Linear SVM', 'RBF SVM', 'Polynomial SVM']
```

```
markdown_str = "**Initialized Models:**\n"
for model, name in zip(models, model_names):
    model_str = f"**{name}**\n```python\n{model}\n```"
    markdown_str += model_str + "\n\n"

display(Markdown(markdown_str))
```

Initialized Models: Linear SVM

```
SVC(C=1, kernel='linear', random_state=42)
RBF SVM
SVC(C=1, random_state=42)
Polynomial SVM
SVC(C=1, kernel='poly', random_state=42)
```

- (c) Feature Selection and Model Training: Train each SVM Model above with the following feature combinations to predict admission.
 - 1. CGPA and SOP
 - 2. CGPA and GRE Score
 - 3. SOP and LOR
 - 4. LOR and GRE Score

```
[8]: feature_sets = [
         ['CGPA', 'SOP'],
         ['CGPA', 'GRE Score'],
         ['SOP', 'LOR'],
         ['LOR ', 'GRE Score']
     ]
     for features in feature_sets:
         display(Markdown(f"**Feature Set:** {features}"))
         for model, name in zip(models, model_names):
             model.fit(X_train[features], y_train)
             y_train_pred = model.predict(X_train[features])
             y_val_pred = model.predict(X_val[features])
             train_acc = accuracy_score(y_train, y_train_pred)
             val_acc = accuracy_score(y_val, y_val_pred)
             markdown_result = f"""
     **{name}**
     - Training Accuracy: {train_acc:.3f}
     - Validation Accuracy: {val_acc:.3f}
     0.000
             display(Markdown(markdown_result))
```

Feature Set: ['CGPA', 'SOP']

Linear SVM

- Training Accuracy: 0.867 - Validation Accuracy: 0.812

RBF SVM

- Training Accuracy: 0.875 - Validation Accuracy: 0.828

Polynomial SVM

- Training Accuracy: 0.867 - Validation Accuracy: 0.812

Feature Set: ['CGPA', 'GRE Score']

Linear SVM

- Training Accuracy: 0.852 - Validation Accuracy: 0.812

RBF SVM

- Training Accuracy: 0.828 - Validation Accuracy: 0.766

Polynomial SVM

- Training Accuracy: 0.828 - Validation Accuracy: 0.766

Feature Set: ['SOP', 'LOR']

Linear SVM

- Training Accuracy: 0.812 - Validation Accuracy: 0.719

RBF SVM

- Training Accuracy: 0.812 - Validation Accuracy: 0.750

Polynomial SVM

- Training Accuracy: 0.816 - Validation Accuracy: 0.766

Feature Set: ['LOR', 'GRE Score']

Linear SVM

- Training Accuracy: 0.859 - Validation Accuracy: 0.812

RBF SVM

- Training Accuracy: 0.828 - Validation Accuracy: 0.766

Polynomial SVM

- Training Accuracy: 0.828 - Validation Accuracy: 0.766

```
[9]: results = []
for features in feature_sets:
    for model, name in zip(models, model_names):
        model.fit(X_train[features], y_train)

        y_train_pred = model.predict(X_train[features])
        y_val_pred = model.predict(X_val[features])

        train_acc = accuracy_score(y_train, y_train_pred)
        val_acc = accuracy_score(y_val, y_val_pred)

        results.append([name, ", ".join(features), train_acc, val_acc])
```

Summary of Results

Model	Features	Train Accuracy	Validation Accuracy
Linear SVM	CGPA, SOP	0.867188	0.8125
RBF SVM	CGPA, SOP	0.875	0.828125
Polynomial SVM	CGPA, SOP	0.867188	0.8125
Linear SVM	CGPA, GRE Score	0.851562	0.8125
RBF SVM	CGPA, GRE Score	0.828125	0.765625
Polynomial SVM	CGPA, GRE Score	0.828125	0.765625
Linear SVM	SOP, LOR	0.8125	0.71875
RBF SVM	SOP, LOR	0.8125	0.75
Polynomial SVM	SOP, LOR	0.816406	0.765625
Linear SVM	LOR, GRE Score	0.859375	0.8125
RBF SVM	LOR, GRE Score	0.828125	0.765625
Polynomial SVM	LOR , GRE Score	0.828125	0.765625

• (d) Support Vectors: What are the support vectors for each model and feature combination? How many support vectors does each class have in each case?

```
[10]: for features in feature_sets:
          display(Markdown(f"**Feature Set:** {features}"))
          for model, name in zip(models, model_names):
              model.fit(X train[features], y train)
              support_vectors = X_train[features].iloc[model.support_]
              n_support_per_class = model.n_support_
              sample_support_vectors = support_vectors.head(5)
              markdown_table = f"**{name}**\n" + \
                                f"- Number of Support Vectors for Class 0: __
       \rightarrow{n_support_per_class[0]}\n" + \
                                f"- Number of Support Vectors for Class 1: __
       \rightarrow {n_support_per_class[1]}\n\n" + \
                                "**Sample Support Vectors:**\n\n" + \
                                sample_support_vectors.to_markdown(index=False)
              markdown_stats = "\n**Support Vectors Statistics:**\n\n" + \
                                support_vectors.describe().to_markdown()
              display(Markdown(markdown_table))
```

display(Markdown(markdown_stats))

Feature Set: ['CGPA', 'SOP']

 $\bf Linear~SVM$ - Number of Support Vectors for Class 0: 46 - Number of Support Vectors for Class 1: 45

Sample Support Vectors:

CGPA	SOP
8.2	3.5
8.6	3.5
8.5	3
8.69	4
8.73	3

Support Vectors Statistics:

	CGPA	SOP
count	91	91
mean	8.57143	3.41209
std	0.214929	0.626247
min	8.1	2
25%	8.45	3
50%	8.56	3.5
75%	8.69	4
max	9.11	5

 ${\bf RBF~SVM}$ - Number of Support Vectors for Class 0: 58 - Number of Support Vectors for Class 1: 57

Sample Support Vectors:

CGPA	SOP
8.2	3.5
8.6	3.5
8.5	3
8.17	3.5
8.69	4

Support Vectors Statistics:

	CGPA	SOP
count	115	115

	CGPA	SOP
mean	8.56861	3.46957
std	0.293798	0.639651
min	7.66	2
25%	8.4	3
50%	8.56	3.5
75%	8.755	4
max	9.4	5

Polynomial SVM - Number of Support Vectors for Class 0: 42 - Number of Support Vectors for Class 1: 41

Sample Support Vectors:

CGPA	SOP
8.6	3.5
8.5	3
8.69	4
8.73	3
8.64	5

Support Vectors Statistics:

	CGPA	SOP
count	83	83
mean	8.56711	3.41566
std	0.193923	0.628681
\min	8.14	2
25%	8.45	3
50%	8.56	3.5
75%	8.675	4
max	9.04	5

Feature Set: ['CGPA', 'GRE Score']

 $\bf Linear~SVM$ - Number of Support Vectors for Class 0: 43 - Number of Support Vectors for Class 1: 43

Sample Support Vectors:

CGPA	GRE Score
8.6	308
8.5	318
8.69	313

CGPA	GRE Score
8.73	316
8.64	304

Support Vectors Statistics:

	CGPA	GRE Score
count	86	86
mean	8.56465	316.221
std	0.213386	5.74231
\min	8.1	303
25%	8.4325	312
50%	8.56	316
75%	8.6775	320
max	9.04	329

 ${\bf RBF~SVM}$ - Number of Support Vectors for Class 0: 108 - Number of Support Vectors for Class 1: 108

Sample Support Vectors:

CGPA	GRE Score
8.2	304
8.2	311
8.6	308
8.5	318
8.17	300

Support Vectors Statistics:

	CGPA	GRE Score
count	216	216
mean	8.58639	316.792
std	0.536218	9.42279
min	6.8	300
25%	8.2175	310
50%	8.56	316
75%	9.02	324
max	9.87	335

Polynomial SVM - Number of Support Vectors for Class 0: 63 - Number of Support Vectors for Class 1: 63

Sample Support Vectors:

CGPA	GRE Score
8.2	311
8.5	318
8.12	309
8.01	312
8.69	313

Support Vectors Statistics:

	CGPA	GRE Score
count	126	126
mean	8.54833	316.77
std	0.411627	5.3204
\min	7.3	303
25%	8.285	312.25
50%	8.56	316
75%	8.7975	321
max	9.45	329

Feature Set: ['SOP', 'LOR']

 $\bf Linear~SVM$ - Number of Support Vectors for Class 0: 58 - Number of Support Vectors for Class 1: 58

Sample Support Vectors:

LOR	SOP
3	3.5
2.5	3.5
4.5	4
3.5	3
4	5

Support Vectors Statistics:

	SOP	LOR
count	116	116
mean	3.46983	3.5
std	0.61251	0.543739
min	2	2.5
25%	3	3
50%	3.5	3.5
75%	4	4

	SOP	LOR
max	5	5

 ${\bf RBF~SVM}$ - Number of Support Vectors for Class 0: 59 - Number of Support Vectors for Class 1: 59

Sample Support Vectors:

SOP	LOR
3.5	3
3.5	2.5
4	4.5
3	3.5
5	4

Support Vectors Statistics:

	SOP	LOR
count	118	118
mean	3.50424	3.42797
std	0.755311	0.677083
min	1	1
25%	3	3
50%	3.5	3.5
75%	4	4
max	5	5

Polynomial SVM - Number of Support Vectors for Class 0: 58 - Number of Support Vectors for Class 1: 57

Sample Support Vectors:

LOR	SOP
3	3.5
2.5	3.5
4.5	4
3	3
3.5	3

Support Vectors Statistics:

	SOP	LOR
count	115	115
mean	3.48696	3.47391
std	0.594053	0.529165
\min	2	2.5
25%	3	3
50%	3.5	3.5
75%	4	4
max	5	5

Feature Set: ['LOR', 'GRE Score']

 $\bf Linear~SVM$ - Number of Support Vectors for Class 0: 43 - Number of Support Vectors for Class 1: 43

Sample Support Vectors:

LOR	GRE Score
3	318
4.5	313
3	320
3.5	316
4	318

Support Vectors Statistics:

	LOR	GRE Score
count	86	86
mean	3.44767	316.593
std	0.632591	5.93569
\min	1.5	303
25%	3	312.25
50%	3.5	316
75%	4	320
max	5	329

 ${\bf RBF~SVM}$ - Number of Support Vectors for Class 0: 109 - Number of Support Vectors for Class 1: 109

Sample Support Vectors:

LOR	GRE Score
3	304
2	311

GRE Score
308
318
300

Support Vectors Statistics:

	LOR	GRE Score
count	218	218
mean	3.48624	316.798
std	0.891482	9.54618
\min	1.5	299
25%	3	310
50%	3.5	316
75%	4	324
max	5	336

Polynomial SVM - Number of Support Vectors for Class 0: 63 - Number of Support Vectors for Class 1: 63

Sample Support Vectors:

LOR	GRE Score
2	311
3	318
3	309
1.5	312
4.5	313

Support Vectors Statistics:

	LOR	GRE Score
count	126	126
mean	3.46825	316.77
std	0.854976	5.3204
\min	1.5	303
25%	3	312.25
50%	3.5	316
75%	4	321
max	5	329

• (e) Result Visualization: For each kernel - input combination, visualize the predictions on the training set. Color code the points by their labels.

```
[12]: import numpy as np
      import matplotlib.pyplot as plt
      import pandas as pd
      fig, axs = plt.subplots(len(feature_sets), len(models), figsize=(20, 20))
      fig.subplots_adjust(hspace=0.4, wspace=0.3)
      for i, features in enumerate(feature_sets):
          for j, model in enumerate(models):
              ax = axs[i, j]
              X_plot = X_train[features]
              y_plot = y_train
              model.fit(X_plot, y_plot)
              x_min, x_max = X_plot.iloc[:, 0].min() - 1, X_plot.iloc[:, 0].max() + 1
              y min, y_max = X_plot.iloc[:, 1].min() - 1, X_plot.iloc[:, 1].max() + 1
              xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
                                   np.arange(y_min, y_max, 0.1))
              predict_data = pd.DataFrame(
                  np.c_[xx.ravel(), yy.ravel()], columns=features)
              Z = model.predict(predict_data).reshape(xx.shape)
              ax.contourf(xx, yy, Z, alpha=0.5, cmap=plt.cm.RdYlBu)
              ax.scatter(X_plot.iloc[:, 0], X_plot.iloc[:, 1],
                         c=y_plot, cmap=plt.cm.RdYlBu, edgecolor='k')
              ax.set_title(
                  f"{model_names[j]}: {features[0]} & {features[1]}", fontsize=14)
              ax.set_xlabel(features[0], fontsize=12)
              ax.set_ylabel(features[1], fontsize=12)
              ax.grid(False)
              ax.set_xticks(())
              ax.set_yticks(())
      plt.suptitle('Decision Boundary', fontsize=20, y=0.95)
      plt.show()
```

Decision Boundary

• (f) Result Analysis: Just by looking at the figures you generated, answer this question: Which features + kernel combinations give you the best result? Validate your model on the validation set and find the best performing combination with respect to accuracy.

```
[14]: best_model_idx = results_df['Validation Accuracy'].argmax()
best_model_row = results_df.iloc[best_model_idx]

best_model_md = f"""
**Best Model Configuration:**

- Model: {best_model_row['Model']}
```

```
- Features: {best_model_row['Features']}
- Training Accuracy: {best_model_row['Train Accuracy']:.3f}
- Validation Accuracy: {best_model_row['Validation Accuracy']:.3f}
"""
display(Markdown(best_model_md))
```

Best Model Configuration:

Model: RBF SVM
Features: CGPA, SOP
Training Accuracy: 0.875
Validation Accuracy: 0.828

Feature Importance Analysis:

Feature Set	Validation Accuracy
CGPA, SOP	0.818
CGPA, GRE Score	0.781
LOR , GRE Score	0.781
SOP, LOR	0.745

```
[16]: kernel_performances = results_df.groupby(
    'Model')['Validation Accuracy'].mean().sort_values(ascending=False)

kernel_comparison_md = "**Kernel Comparison:**\n\n" + \
    "|Kernel|Validation Accuracy|\n|---|---|\n"

for index, value in kernel_performances.items():
    kernel_comparison_md += f"|{index}|{value:.3f}|\n"

display(Markdown(kernel_comparison_md))
```

Kernel Comparison:

Kernel	Validation Accuracy
Linear SVM	0.789
Polynomial SVM	0.777
RBF SVM	0.777

• (g) Inference: Use the best model you found in the previous step to predict the label of the test data. Save the prediction in a csv file "FirstName_LastName_preds.csv"

```
[17]: test_df = pd.read_csv('data_test-2.csv')
X_test = test_df.drop(['Serial No.'], axis=1)
best_model = svc_linear
best_features = ['CGPA', 'GRE Score']
best_model.fit(X_train[best_features], y_train)
test_pred = best_model.predict(X_test[best_features])
output = pd.DataFrame({'pred_svm': test_pred})
output.to_csv('FirstName_LastName_preds.csv', index=False)
[20]: test_predictions_md = output.to_markdown(index=False)
```

[20]: test_predictions_md = output.to_markdown(index=False)
display(Markdown(test_predictions_md))

pred_{-}	_svm
	0
	1
	0
	$0 \\ 0$
	1
	1
	1
	0
	0
	1 1
	1
	0
	1
	0
	1
	$\begin{array}{c} 1 \\ 0 \end{array}$
	1
	1
	1
	1
	1
	0
	0
	0
	0
	0
	0
	0
	1
	1 1
	1
	0
	0 0
	0
	1
	0
	1
	$\begin{array}{c} 1 \\ 0 \end{array}$
	1

```
pred_svm
0
0
1
```

```
[21]: test_pred_distribution = output['pred_svm'].value_counts().to_frame('count')
    display(Markdown("**Test Prediction Distribution:**\n"))
    test_pred_distribution_md = test_pred_distribution.to_markdown()
    display(Markdown(test_pred_distribution_md))
```

Test Prediction Distribution:

pred_svm	count
1	43
0	37