

$$2. \quad \int_0^1 f(t)y(t)y(xt)\,dt = A.$$

1°. Solutions:

$$y_1(x) = \sqrt{A/I_0},$$
 $y_2(x) = -\sqrt{A/I_0},$
 $y_3(x) = q(I_1x - I_2),$ $y_4(x) = -q(I_1x - I_2),$

where

$$I_m = \int_0^1 t^m f(t) dt$$
, $q = \left(\frac{A}{I_0 I_2^2 - I_1^2 I_2}\right)^{1/2}$, $m = 0, 1, 2$.

The integral equation has some other (more complicated) solutions of the polynomial form $y(x) = \sum_{k=0}^{n} B_k x^k$, where the constants B_k can be found from the corresponding system of algebraic equations.

2°. Solutions:

$$y_5(x) = q(I_1 x^C - I_2), y_6(x) = -q(I_1 x^C - I_2),$$

$$q = \left(\frac{A}{I_0 I_2^2 - I_1^2 I_2}\right)^{1/2}, I_m = \int_0^1 t^{mC} f(t) dt, m = 0, 1, 2,$$

where C is an arbitrary constant.

The equation has more complicated solutions of the form $y(x) = \sum_{k=0}^{n} B_k x^{kC}$, where C is an arbitrary constant and the coefficients B_k can be found from the corresponding system of algebraic equations.

3°. Solutions:

$$y_7(x) = p(J_0 \ln x - J_1),$$
 $y_8(x) = -p(J_0 \ln x - J_1),$
 $p = \left(\frac{A}{J_0^2 J_2 - J_0 J_1^2}\right)^{1/2},$ $J_m = \int_0^1 (\ln t)^m f(t) dt.$

The equation has more complicated solutions of the form $y(x) = \sum_{k=0}^{n} E_k (\ln x)^k$, where the constants E_k can be found from the corresponding system of algebraic equations.

Reference

Polyanin, A. D. and Manzhirov, A. V., Handbook of Integral Equations, CRC Press, Boca Raton, 1998.

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/ie/ie0602.pdf