

Objectives (1 of 2)

- Explain the role of a financial manager in **corporate decision making** and the **value creation process**.
- Explain the **alternative investment rules** that are used to select investment projects.
- Describe the process of **estimating a project's estimated cash flows**, which are crucial inputs in the investment decision process.
- Explain how stocks are valued as the present value of all expected future dividends.

Objectives (2 of 2)

- Describe how risk is measured for financial instruments.
- Explain the relation between risk and expected return using Capital Asset Pricing Model.
- Estimate the **weighted average cost of capital** that determines the minimum rate of return that the corporation must earn on its invested capital to breakeven in economic terms.
- Estimate the **value of a firm** using the present value of projected free cash flows discounted at its weighted average cost of capital.
- Define the concepts of Economic Value Added and Market Value Added and explain how they relate to the goal of managing for value creation.

Georgia Tech

3

What's So Special about the Shareholder?

- Shareholders are the owners of the corporation.
- The primary financial goal of any public corporation is to create economic value for its shareholders.
- · Shareholders are residual claimants.
- They receive money only after:
 - · suppliers have been paid.
 - · wages to workers have been paid.
 - interest to bondholders have been paid.
 - taxes have been paid.
- If the shareholders are happy, so are the other stakeholders!

"Management doesn't get paid to make the shareholders comfortable. We get paid to make the shareholders rich."

Roberto Goizueta
Chairman and CEO, Coca-Cola

Georgia Tech

11

Identification **Evaluation** Selection Implementation Finding out Estimating the Choosing a decision making rule Establishing an opportunities and audit and a generating follow-up appropriate discount rate investment (accept/reject criterion) procedure proposals Type of Type of Type of Type of investment investment investment investment · Monitor the magnitude Required · Expected cash-· Net present and timing of cash flows investment flow stream value · Check if the project still Replacement · Discount rate · Profitability meets the selection investment index criterion Expansion · Internal rate of · Decide on a continuation investment return or abandonment Diversification · Payback period · Review previous steps if investment Georgia Tech failure rate is high 15

Statemen	t of Cash Flows	
	Home Depot for Period ending 2/3/2019	,
	CASH PROVIDED FROM OPERATIONS (in millions \$	
	Net Earnings	11,121
	Reconciliation of net earnings to net cash	<u>1,917</u>
	Net Cash provided by operations	13,038
	CASH FLOW FROM INVESTING ACTIVITIES	
	Capital expenditures	(2,442)
	Others (purchase of investments etc.)	<u>24</u>
	Net cash used in investing activities	(2,416)
	CASH FLOW FROM FINANCING ACTIVITIES	
	Repurchase of Common Stock	0
	Cash Dividends Paid	(4,704)
	Net borrowing	2,037
	Other Cash Flows	(9,727)
	Total cash flow from financing activities	(12,420)
	Effect of exchange rate changes	(19)
	CASH AND CASH EQUIVALENT	
		(1,817)

L 16

Evaluating Long-Term Investment Projects

Most investments that corporations make are long-term in nature. We need a method for evaluating the financial benefits for these long-term investments.

To do this we need to understand the concept of the time value of money.

- A dollar today is worth more than a dollar in the future.
- But how much more and what does it depend upon?

Suppose your uncle offers a choice between receiving \$1,000 today or \$1,500 in five years. Which option would you accept if your opportunity cost of capital were r=10%?

Georgia Tech

17

Future Values (2 of 3)

Using an opportunity cost of capital r = 10%, the future value of your investment is calculated in the following table:

Because the amount you will have after 5 years is greater than the \$1,000 today offered by your uncle, you are better off accepting the \$1,000 today and investing it at r = 10% for the next 5 years

Year (t)	Beginning Balance	Interest (r = 10%)	Ending Balance
1	1,000.00	100.00	1,100.00
2	1,100.00	110.00	1,210.00
3	1,210.00	121.00	1,331.00
4	1,331.00	133.10	1,464.00
5	1,464.00	146.41	1,610.51

Future Values (3 of 3)

The general formula for finding the future value, FV_t, of an investment of PV dollars today is:

$$FV_t = PV \times (1+r)^t$$

- Verify that the above formula works for PV = \$1,000, r = 10% and t = 5 years.
- Use the FV formula to decide which option you should accept if r = 5%.

Georgia Tech

21

Future Values in Excel

t = 5 years

PV	\$1,000				
r	10%				
t	5				
		Equation		Answer	
Future '	Value (FV)	 FV(C3,C4,,-0	C2)	\$1,610.51	

Georgia Tech

Present Values (2 of 4)

- For example, how much money would you need to invest today to duplicate the \$1,500 payment in 5 years offered to you uncle? Assume your opportunity cost of capital is r = 10%.
- To answer this question, we can rearrange the formula for future values to arrive at a formula for present values:

Present Values (3 of 4)

 Using the present value formula, we can calculate the present value of the \$1,500 payment as follows:

$$1,500$$
PV = ----- = \$931.38
 $(1.10)^5$

 Since the present value is only \$931.38, you are better off accepting your uncle's offer of \$1,000 today.

25

Present Values (4 of 4)

- By accepting the \$1,000 today you can do the following:
 - Invest \$931.38 at r = 10% for 5 years. After 5 years it will be worth \$1,500.
 - Enjoy a nice dinner at your favorite restaurant with the remaining \$68.62.
- Which option has the higher present value if your opportunity cost of capital is r = 5%?

Present Values in Excel

- FV = \$1,500
- r = 10%
- t = 5 years

FV	\$1,500				
r	10%				
t	5				
			Equation		Answer
Present Value (PV)		=	PV(C3,C4,,-C	22)	\$931.38

Georgia Tech

27

Finding Unknown Interest Rates in Excel

- Zachary's parents anticipate that a college education will cost \$80,000 when he enters school in 18 years. They presently have \$10,000 to invest.
- What rate of return must they earn to cover the cost of his education?

PV	\$10,000				
t	18				
FV	\$80,000				
			Equation	Answe	r
Interest Rate		=	RATE(J15,,J14,-J16)	12.25%)

Georgia Tech

29

Finding an Unknown Number of Periods in Excel

- Holly is saving to buy a \$20,000 speedboat to take to the lake. She has \$16,000 in an account paying 6 percent annual interest.
- How long will it be before she will have enough to buy the boat?

Number of Periods		= NPER(J15,,J14,-、	J16)	3.83
		Equation	<i></i>	Answe
FV	\$20,000			_
r	6%			
PV	\$16,000			

Georgia Tech

Present Value of an Annuity

- Skye just won first prize in the Colossal Lottery. He can choose between \$50,000 in cash now, or its equivalent paid out in ten annual payments at an interest rate of 12%.
- What will his annual payments be under the second alternative?
- $PMT = \frac{(r * PV)}{[1 (1 + r)^{(-t)}]}$
- $PMT = \frac{(.12*50,000)}{[1-(1+.12)^{(-10)}]}$
- PMT = \$8,849.21

Georgia Tech

31

Present Value of an Annuity In Excel

- Skye just won first prize in the Colossal Lottery. He can choose between \$50,000 in cash now, or its equivalent paid out in ten annual payments at an interest rate of 12%.
- What will his annual payments be under the second alternative?

	PV	\$50,000			
	r	12%			
	t	10			
				Equation	Answer
Pa	ayment Amou	nt	=	PMT(J15,J16,-J14)	\$8,849.21

Georgia Tech

Net Present Value

Most investments made by corporations are long-term in nature and generate cash flows for many years in the future. The most common method for evaluating these long-term investments as Net Present Value (NPV):

$$NPV = C_0 + ---- + ---- + (1 + r)^2 (1 + r)^T$$

 C_0 , C_1 , C_2 , are cash flows at 0, 1, 2, etc.

Georgia Tech

33

Net Present Value (Cont'd)

The NPV measures the value created for shareholders by the investment project.

- If NPV > 0, then the project increases shareholder value and should be accepted.
- If NPV < 0, the project destroys shareholder value and should be rejected.

Because of the need to make large investments up front, the early cash flows are typically negative for most investment projects.

Net Present Value: An Illustration

Consider the following investment projects:

Future Cash Flows					
Project	t=0	t=1	t=2	t=3	
Α	-100	125	0	0	
В	-200	100	100	100	
С	-300	0	0	500	

What is the net present value created by each of these investment projects for r=5%, r=15%, and r=25%?

Georgia Tech

35

Net Present Value: An Illustration

Consider the following investment projects:

	Future Cash Flows					
Project	t=0	t=1	t=2	t=3		
Α	-100	125	0	0		
В	-200	100	100	100		
С	-300	0	0	500		

What is the net present value created by each of these investment projects for r=5%, r=15%, and r=25%?

Georgia Tech

37

Net Present Value

Project	r=5%	R=15%	R=25%		
А	\$19.05	\$8.70	\$ 0.00		
В	72.32	28.32	-4.80		
С	131.92	28.76	-44.00		
Net Present Value (B) = $\frac{100}{(1.05)} + \frac{100}{(1.05)^2} + \frac{100}{(1.05)^3} - 200 = 72.32$					

Payback Period

A project's payback period is the number of periods (usually measured in years) required for the sum of the project's expected cash flows to equal its initial cash outlay. In other words, the payback period is the time it takes for a firm to recover its initial investment.

Payback for Project "A" =

Payback for Project "B" =

Payback for Project "C" =

Internal Rate of Return

A project's internal rate of return (IRR) is the discount rate that makes the net present value (NPV) of the project equal to zero:

Accept the project if IRR is greater than the cost of capital.

Georgia Tech

41

Profitability Index

The present value of an investment's future cash flows divided by its initial cost. Also called benefit/cost ratio.

```
r = 5\%
```

```
PI for "A" = (100 + 19.05) / (100) = 1.19

PI for "B" = (200+72.32) / (200) = 1.36

PI for "C" = (300+131.92) / (300) = 1.44
```

Georgia Tech

45

NPV, IRR, PI in Excel

CF ₀	-200	
CF ₁	100	
CF ₂	100	
CF ₃	100	
r	5.00%	
NPV	72.32	NPV(B7,B4:B6)+B3
IRR	23%	IRR(B3:B6)
PI	1.36	PI=(NPV+(-B3))/(-B3)

Additional Problem

Two projects have the expected cash flows shown below. The projects have similar risk characteristics and their cost of capital is 10%.

Expected Cash Flows					
End of Year	Project A	Project B			
Now	\$(2,000,000)	\$(2,000,000)			
1	200,000	1,400,000			
2	1,200,000	1,000,000			
3	1,700,000	400,000			

55

Problem (Cont'd)

- 1. Calculate the NPV of each project. According to the NPV rule, which project should be accepted if they are independent? If they are mutually exclusive?
- 2. Calculate the payback period of each project. If the two projects are mutually exclusive, which project should be accepted?
- 3. Calculate the IRR of each project. Which project should be accepted if they are independent? If they are mutually exclusive?
- 4. Calculate the profitability index of each project. Which project should be accepted if they are independent? If they are mutually exclusive?
- 5. Based on your previous answers, which criterion leads to the best investment decision if the projects are independent? If they are mutually exclusive?

Problem (Solution)

57

The Drivers of Value Creation

EVALUATION METHOD	INPUTS REQUIRED FOR:		DECISION RULE		DOES THE RULE ADJUST CASH FLOWS FOR:		IS THE RULE CONSISTENT WITH THE MAXIMIZATION OF THE FIRM'S EQUITY VALUE?
	Calculation	Decision	Accept	Reject	Time?	Risk?	
Net present value (NPV)	* Cash flows * Cost of capital (k)	* NPV	NPV>0	NPV<0	Yes	Yes	Yes, a project's NPV is a measure of the value the project creates or destroys.
Profitability index (PI)	* Cash flows * Cost of capital (k)	* PI	PI>1	PI<1	Yes	Yes	Yes, but may fail to select the project with the highes NPV when projects are mutually exclusive.
Internal rate of return (IRR)	* Cash flows	* IRR * Cost of capital (k)	IRR>k	IRR <k< td=""><td>Yes</td><td>Yes</td><td>Yes, but may fail when: * Projects are mutually exclusive * Cash flows change sign more than once.</td></k<>	Yes	Yes	Yes, but may fail when: * Projects are mutually exclusive * Cash flows change sign more than once.
Payback period (PP)	* Cash flows	* PP * Cutoff	PP <cutof f period</cutof 	PP>Cutof f period	No	No	No

