It has recently

On the Relationship Between the Statistics of SPR Area and the Number of Activated G-proteins/PDE* Produced per R*

Introduction

It has recently been argued that the total number of activated G-proteins (G*) produced per activated rhodopsin molecule (R*) may be as low as 20, on average. We show here that this low number is not compatible with the reproducibility of the single0photon response (SPR) under the multiple-phosporylation hypothesis for reproducibility of the SPR. We use statistical reasoning in combination with a particular feature of the SPR, the SPR area, to argue our case.

Statistical Model for Activated Phosphodiesterase (PDE*)

Assume that for each activated rhodopsin molecule, R^* , a random number N of PDE* subunits (just PDE* for short) are produced in a one-to-one fashion by activated G-proteins (G*), at random times T_k . Further assume that the time course of deactivation of PDE* is dominated by a single rate-limiting step, so that it can be assume that the lifetimes of the PDE* molecules are independent, identically distributed, exponential ,random variables, with mean τ_{PDE} .

Define P(t) as the random *PDE activity indicator function*. It is defines in such a way that P(t) is the sum over $X_k(t)$, where $X_k(t) = 1$ during the lifetime of the kth activated PDE subunit and zero otherwise. Then

$$P(t) = \sum_{k=0}^{N} X_k(t) \quad \text{with}$$
 (1)

$$X_k(t) = \begin{cases} 0 \text{ for } k = 0\\ H(t - T_k) - H(t - T_k - L_k) \text{ for } k > 0 \end{cases}$$
 (2)

where T_k is the random time at which the kth PDE* is produced, and L_k is the random lifetime of the kth PDE* for $k \neq 0$ and $L_0 = 0$ by definition.

Relationship between PDE* and the Single-Photon Response (SPR)

Assume the random SPR photocurrent (or relative photocurrent), S(t), is a linear functional of the PDE* activity function P(t), so S(t) can be written as

$$S(t) = \int_0^\infty dt' \, P(t') \, g(t - t'), \tag{3}$$

where g(t) is a linear kernel that represents the kinetics of all dynamical processes that link PDE* activity to the SPR.

It follows that the random area A of the SPR is given by

$$A = \int_0^\infty dt \, S(t) \tag{4}$$

$$= \left(\int_0^\infty dt \, g(t)\right) \sum_{k=0}^N L_k. \tag{5}$$

It can be shown that, for exponentially distributed L_k , the coefficient of variation of A is given by

$$\frac{\sigma_A}{\mu_A} = \sqrt{\frac{\sigma_N^2}{\mu_N^2} + \frac{1}{\mu_N}}. (6)$$

Statistics of the Random Number of PDE* per R*

In the simple multiple-phosphorylation model for R* inactivation, each phosphorylated form of R*, R_k^* for k = 0, 1, ...m, produces a random number of activated G-proteins/PDE*, N_k , where the N_k are independent random variables. It is reasonable to assume that the N_k are geometrically distributed. The argument is as follow. Every time and R_k^* molecule is free, it can exit that free state either by catalyzing the production of a G* (which, in turn, produces a PDE*), or it can be phosphorylated to give R_{k+1}^* , or it can be capped by arrestin. There is some probability, call it p_k that a G* will be produced before either of the other 2 possible

events occur, and upon producing a G^* , R^* is freed up again. The outcome every time R_k^* is free is independent of the number of times a G^* has been produced up to that point in time. Therefore, in this scenario, the probability that n G^* are produced by R_k^* before one of the other events occur is given by

$$\Pr\{N_k = n\} = (1 - p_k) \, p_k^n; \tag{7}$$

that is, the probability mass function for N_k is a geometric distribution. A property of a geometric random variable is that its variance is its mean plus the square of its mean, and this feature will play a crucial role below.

It can be shown that the best-case scenario, with regard to producing an SPR area with low coefficient of variation, is achieved when all possible R* phosphorylations take place before arrestin capping, and when the mean of each N_k is the same. Let us specialize to this best-case scenario. If we define N as the random total number of G* produced, in the best case scenario,

$$\mu_{N_k} = \frac{\mu_N}{m+1} \text{ and} \tag{8}$$

$$\sigma_{N_k}^2 = \mu_{N_k} + \mu_{N_k}^2 \tag{9}$$

$$= \left(\frac{\mu_N}{m+1}\right) + \left(\frac{\mu_N}{m+1}\right)^2. \tag{10}$$

It follows that

$$\sigma_N^2 = \mu_N + \frac{\mu_N^2}{m+1},\tag{11}$$

and

$$\frac{\sigma_N^2}{\mu_N^2} = \frac{1}{\mu_N} + \frac{1}{m+1}. (12)$$

If we substitute (??) into (??), we find the coefficient of variation of the SPR area is

given by

$$\frac{\sigma_A}{\mu_A} = \sqrt{\frac{1}{m+1} + \frac{2}{\mu_N}}. (13)$$

Figure ?? plots the coefficient of variation of SPR area in the best-case scenario as a function of the assumed mean number of G^* produced per R^* , and for a family of assumed phopshorylations for R^* deactivation. It is cleat that only 20 G^* produced per R^* is incompatible with the measures reproducibility of the SPR area. The measured coefficient of variation of SPR are in a number of different experiments has been measured as 0.36 ± 0.02 .

Figure 1: Coefficient of variation of SPR area in best-case scenarios in which R^* is deactivated by sequential phophorylations terminating in arrestin capping. Each curve is for a different number of phosphorylation sites as indicated in the figure legend. Each cirve is a plot of the minumum coefficient of variation possible as a function of the average number of G^* produced per R^* .