236621 - Algorithms for Submodular Optimization

Roy Schwartz

April 1, 2019

Abstract

1 Introduction

We are looking on $f: 2^N \to \mathbb{R}$ for some set $N = \{1, \dots n\}$

Definition 1.1. f is submodular if

$$f(A) + f(B) \ge f(A \cap B) + f(A \cup B) \tag{1}$$

Definition 1.2. Return of u wrt A is $f(A \cup \{u\}) - f(A)$

Definition 1.3 (Diminishing returns). f has diminishing returns if for $A \subseteq B$

$$f(A \cup \{u\}) - f(A) \ge f(B \cup \{u\}) - f(B) \tag{2}$$

Proposition 1.1. f is submodular iff f has diminishing returns

 $Proof. \Rightarrow :$

Let $A \subseteq B \subseteq N$ and $u \notin B$. Lets use submodularity property on $A \cup \{u\}$ and B:

$$f(A \cup \{u\}) + f(B) \ge f(A \cup \{u\} \cup B) + f((A \cup \{u\}) \cap B) = f(B \cup \{u\}) + f(A)$$
(3)

Thus

$$f(A \cup \{u\}) - f(A) \ge f(B \cup \{u\}) - f(B) \tag{4}$$

⇐:

We'll proof by induction over $|A \cup B| - |A \cap B|$, i.e., size of symmetric difference.

Basis: $|A \cup B| - |A \cap B| = 0$, then A = B, and then submodular property is fulfilled.

Step: assume $|A \cup B| - |A \cap B| = k$. WLOG let $u \in A$ such that $u \notin B$.

$$f(A) + f(B) = f(A) - f(A \setminus \{u\}) + f(A \setminus \{u\}) + f(B) \ge$$

$$\tag{5}$$

$$> f(A) - f(A \setminus \{u\}) + f(A \setminus \{u\} \cup B) + f(A \setminus \{u\} \cap B) >$$
 (6)

$$\geq f(A \cup B) - f(A \cup B \setminus \{u\}) + f(A \cup B \setminus \{u\}) + f(A \cap B) = f(A \cup B) + f(A \cap B) \tag{7}$$

Definition 1.4 (Monotonous function). f is non-decreasing monotonous if $\forall A \subseteq B \subseteq N, f(A) \leq f(B)$.

Definition 1.5 (Symmetric function). f is symmetric if $\forall S \subseteq N, f(S) \leq f(N \setminus S)$.

Definition 1.6 (Normalized function). f is normalized if $f(\emptyset) = 0$.

Examples

Linear function $\forall n \in N \text{ exists weight } w_n \text{ and }$

$$f(S) = \sum_{u \in S} w_u + b \tag{8}$$

Such f is submodular.

Budget additive function (clipped linear function) $\forall n \in N$ exists weight w_n and

$$f(S) = \min\left\{\sum_{u \in S} w_u, b\right\} \tag{9}$$

Such f is submodular.

Coverage function Given set X and n subsets $S_1, S_2, \ldots, S_n \subset X$ define

$$f(S) = \left| \bigcup_{i \in S} S_i \right| \tag{10}$$

This f is obviously submodular.

Graph cuts Let G + (V, E) be a graph and $w : E \to \mathbb{R}^+$ weights of edges. Given a cut $S \subseteq V$ define $\delta(S)$ to be sum of weights of all edges going through the cut. $\delta : 2^V \to \mathbb{R}^+$ is submodular, normalized, and symmetric.

Rank function Let $v_1, \ldots, v_n \in \mathbb{R}^d$ vectors, and

$$f(S) = \operatorname{rank}(S) = \dim \operatorname{span}(\{v_i | i \in S\})$$
(11)

2 Submodular optimization

Given world N, submodular function $f: 2^N \to \mathbb{R}^+$, and a family of feasible solutions $\mathcal{I} \subseteq 2^N$

$$\max f(S) \tag{12}$$

s.t.
$$S \in \mathcal{I}$$
 (13)

Note Most of submodular functions (except for logarithm of determinant of submatrix) are nonnegative. We use the condition to have properly defined multiplicative approximation.

Note How f is given in input? Obviously, not as a list of values, since it's exponential in |N|. Thus we represent f with black box, and same applies for constraints. Usually, constraints are simple.

2.1 Examples of submodular optimization problems

Example f is submodular and there are no constraints. It generalizes MAX-CUT, MAX-DICUT

Example f is submodular and there is size constraint:

$$\max f(S) \tag{14}$$

$$s.t. |S| \le k \tag{15}$$

. It generalizes ${\tt MAX\text{-}K\text{-}COVER}.$

Submodular welfare

3 Maximization of the submodular function with cardinality constraints

$$\max f(S) \tag{16}$$

$$s.t. |S| \le k \tag{17}$$

Algorithm 1 Nemhauser-Wolsey-Fisher

```
1: \mathbf{procedure} \ \mathrm{Greedy}(N)
2: A \leftarrow \emptyset
3: \mathbf{for} \ i = 1 \ \mathrm{to} \ k \ \mathbf{do}
4: \mathrm{Let} \ u_i \in N \ \mathrm{maximize} \ f(A_{i-1} \cup \{u_i\}) - f(A_{i-1})
5: A_i \leftarrow A_{i-1} \cup \{u_i\}
6: \mathbf{end} \ \mathbf{for}
7: \mathbf{return} \ A_k
8: \mathbf{end} \ \mathbf{procedure}
```

Greedy algorithm If f is monotonic, greedy algorithm is an optimal approximating algorithm.

Lemma 3.1. For submodular $f: 2^N \to \mathbb{R}_+$,

$$f(A \cup B) - f(A) \le \sum_{b_i \in B} f(A \cup \{b_i\}) - f(A)$$
 (18)

Proof.

$$f(A \cup B) - f(A) = \sum_{i} f(A \cup \{b_1, \dots b_{i-1}\} \cup \{b_i\}) - f(A \cup \{b_1, \dots b_{i-1}\}) \le \sum_{i} f(A \cup \{b_i\}) - f(A)$$

$$(19)$$

Proposition 3.2 (Nemhauser et al. [1978]). Algorithm 1 is $1 - \frac{1}{e}$ optimal.

Proof. For optimal set S^*

$$f(A_{i-1} \cup \{u_i\}) - f(A_{i-1}) \ge \max_{u \in S^*} \{f(A_{i-1} \cup \{u\}) - f(A_{i-1})\} \ge \frac{1}{k} \sum_{u \in S^*} [f(A_{i-1} \cup \{u\}) - f(A_{i-1})] \ge$$
(20)

$$\geq \frac{1}{k} \left(f(A_{i-1} \cup S^*) - f(A_{i-1}) \right) \geq \frac{1}{k} \left[f(S^*) - f(A_{i-1}) \right]$$
(21)

We got a recursion equation:

$$f(A_{i-1} \cup \{u_i\}) - f(A_{i-1}) \ge \frac{1}{k} \left[f(S^*) - f(A_{i-1}) \right]$$
(22)

We can solve the recursion and acquire

$$f(A_k) \ge \left(1 - \left(1 - \frac{1}{k}\right)^k\right) f(S^*) + \left(1 - \frac{1}{k}\right)^k f(A_0) \ge \left(1 - \frac{1}{e}\right) f(S^*)$$
 (23)

Theorem 3.3 (Nemhauser and Wolsey [1978]). For all constant $\epsilon > 0$ each algorithm acquiring $1 - \frac{1}{e} + \epsilon$ requires exponential number of requests to value oracle.

Theorem 3.4 (Feige [1998]). For MAX-K-COVER all constant $\epsilon > 0$ each algorithm acquiring $1 - \frac{1}{e} + \epsilon$ requires exponential number of requests to value oracle unless P = NP.

Note Runtime of Algorithm 1 is $\mathcal{O}(nk)$. It is possible to acquire $\mathcal{O}(n\lg(\frac{1}{\epsilon}))$ runtime and $1-\frac{1}{\epsilon}-\epsilon$ optimality by looking on some subset of N at each step instead of the whole set.

3.1 Non-monotonic functions

What happens if f is not monotonic? First of all, does greed algorithm work? Not only it is not optimal approximation, it can be as bad as $\frac{2}{N}$. However, it can be fixed. The idea is to randomize algorithm to prevent it from "bad" choices.

Algorithm 2

```
1: procedure RANDOMIZED GREEDY(N)
2: A \leftarrow \emptyset
3: for i=1 to k do
4: M_i \leftarrow \arg\max_{B\subseteq N \ : \ |B| \le k} \sum_{u \in B} f(A_{i-1} \cup \{u\}) - f(A_{i-1})
5: A_i \leftarrow \begin{cases} A_{i-1} \cup \{u\} & \forall u \in M_i \text{ with } P = \frac{1}{k} \\ A_{i-1} & \text{with } P = 1 - \frac{|M_i|}{k} \end{cases}
6: end for
7: return A_k
8: end procedure
```

Randomized greedy algorithm

Theorem 3.5 (Buchbinder et al. [2014]). In monotonic case, Algorithm 2 is $1 - \frac{1}{e}$ optimal in expectation.

Proof. Take a look at i^{th} iteration and condition on previous iterations, denote a chosen element from M_i as u_i :

$$\mathbb{E}\left[f(A_{i-1} \cup \{u_i\}) - f(A_{i-1})|A_{i-1}\right] = \frac{1}{k} \sum_{u_i \in M_i} f(A_{i-1} \cup \{u_i\}) - f(A_{i-1}) \ge \frac{1}{k} (f(A_{i-1} \cup S^*) - f(A_{i-1})) \ge$$
(24)

$$\geq \frac{1}{k}(f(S^*) - f(A_{i-1})) \geq \frac{1}{k}(f(S^*) - f(A_{i-1})) \tag{25}$$

If the inequality is right for any A_{i-1} it is right, from tower property, in expectation over A_{i-1} :

$$\mathbb{E}\left[f(A_{i-1} \cup \{u_i\}) - f(A_{i-1})\right] \ge \frac{1}{k}(f(S^*) - \mathbb{E}[f(A_{i-1})]) \tag{26}$$

And thus we can once again solve the recurrence and acquire same result as in Proposition 3.2 on the previous page.

Lemma 3.6. Given set $B \subseteq N$ such that

$$\forall u \in N \quad P(u \in B) \le p \tag{27}$$

then

$$\mathbb{E}[f(B)] \ge (1-p)f(\emptyset) \tag{28}$$

Proof. WLoG $p(u_1 \in B) \ge p(u_2 \in B) \ge \cdots \ge p(u_n \in B)$. Denote

$$X_i = \mathbb{1}_{u_i \in B} N_i = \bigcup_{j=1}^i u_j \tag{29}$$

We can then rewrite

$$f(B) = f(N_0) + \sum_{i=1}^{n} X_i \left(f(B \cap N_i) - f(B \cap N_{i-1}) \right)$$
(30)

$$\mathbb{E}[f(B)] = f(N_0) + \sum_{i=1}^{n} \mathbb{E}\left[X_i \left(f(B \cap N_i) - f(B \cap N_{i-1})\right)\right] \ge$$
(31)

$$\geq f(N_0) + \sum_{i=1}^n \left(f(N_i) - f(N_{i-1}) \right) \mathbb{E}[X_i] = f(N_0) + \sum_{i=1}^n \left(f(N_i) - f(N_{i-1}) \right) p_i =$$
(32)

$$= f(N_0)(1-p_1) + \sum_{i=1}^{n} f(N_i) \underbrace{(p_i - p_{i+1})}_{\leq 0} \ge f(N_0)(1-p_1) \ge f(\emptyset)(1-p)$$
(33)

4

Lemma 3.7. Given set $A \subseteq N$ and set $B \subseteq N$ such that

$$\forall u \in N \quad P(u \in B) \le p \tag{34}$$

$$\mathbb{E}[f(A \cup B)] \ge (1 - p)f(A) \tag{35}$$

Proof. Define

$$g_A(S) = f(A \cup S) \tag{36}$$

Obviously, g_A is also submodular (from diminishing returns). Then, from Lemma 3.6 on the preceding page

$$\mathbb{E}[f(A \cup B)] = \mathbb{E}[g(B)] \ge (1 - p)g(\emptyset) = (1 - p)f(A) \tag{37}$$

Theorem 3.8 (Buchbinder et al. [2014]). In non-monotonic case, Algorithm 2 on the previous page is $\frac{1}{e}$ optimal in expectation. *Proof.* Similarly to monotonic case, take a look at i^{th} iteration and condition on previous iterations, denote a chosen element from M_i as u_i :

$$\mathbb{E}\left[f(A_{i-1} \cup \{u_i\}) - f(A_{i-1})|A_{i-1}\right] = \frac{1}{k} \sum_{u_i \in M_i} f(A_{i-1} \cup \{u_i\}) - f(A_{i-1}) \ge \frac{1}{k} (f(A_{i-1} \cup S^*) - f(A_{i-1}))$$
(38)

Since

$$P(u \in A_{i-1}) \le 1 - \left(1 - \frac{1}{k}\right)^{i-1} \tag{39}$$

from Lemma 3.7

$$\mathbb{E}[f(A_{i-1} \cup S^*)] \ge \left(1 - \frac{1}{k}\right)^{i-1} f(S^*) \tag{40}$$

Thus, taking expectation

$$\mathbb{E}\left[f(A_{i-1} \cup \{u_i\}) - f(A_{i-1})\right] \ge \frac{1}{k} (f(A_{i-1} \cup S^*) - f(A_{i-1})) \ge \frac{1}{k} \left[\left(1 - \frac{1}{k}\right)^{i-1} f(S^*) - \mathbb{E}\left[f(A_{i-1})\right]\right]$$
(41)

$$\mathbb{E}\left[f(A_i)\right] \ge \frac{1}{k} (f(A_{i-1} \cup S^*) - f(A_{i-1})) \ge \frac{1}{k} \left[\left(1 - \frac{1}{k}\right)^{i-1} f(S^*) - \mathbb{E}\left[f(A_{i-1})\right] \right]$$
(42)

Solving the recurrence we get

$$\mathbb{E}[f(A)] \ge \frac{i}{k} \left(1 - \frac{1}{k} \right)^{k-1} f(S^*) \ge \frac{1}{e} f(S^*) \tag{43}$$

i.e.,

$$\mathbb{E}[f(A_k)] \ge \left(1 - \frac{1}{k}\right)^{k-1} f(S^*) \ge \frac{1}{e} f(S^*) \tag{44}$$

Note Algorithm 2 on the previous page is not optimal. In addition, the upper bound of the best approximation is 0.49.

Runtime Runtime of Algorithm 2 on the preceding page is $\mathcal{O}(nk)$.

4 Maximization of the submodular function without constraints

$$\max f(S) \tag{45}$$

Examples

- MAX-CUT
- MAX-DIRECTED-CUT
- Max Facility Location
- MAX-SAT (with all literals in a clause having same sign).

Proposition 4.1 ([Feige et al., 2011]). Algorithm which choose random solution as following: $u \in S$ with probability $\frac{1}{2}$ independently, is $\frac{1}{4}$ approximation in expectation:

$$\mathbb{E}[f(S)] \ge \frac{1}{4}f(S^*) \tag{46}$$

Proposition 4.2 ([Feige et al., 2011]). If f is symmetric, the same algorithm is $\frac{1}{2}$ approximation in expectation:

$$\mathbb{E}[f(S)] \ge \frac{1}{2}f(S^*) \tag{47}$$

Proposition 4.3 ([Feige et al., 2011]). For any constant $\epsilon > 0$ it is impossible to acquire $(\frac{1}{2} + \epsilon)$ approximation in polynomial time, even in symmetric case.

Note that for $\bar{f}(S) = f(\bar{S})$, we can use the same oracle. So a "conjugate" algorithm would be start from N and drop elements from it.

Algorithm 3

```
1: procedure Double Greedy(N)
         X \leftarrow \emptyset, Y \leftarrow N
 2:
         for i = 1 to n do
 3:
              a_i = f(X_{i-1} \cup \{u_i\}) - f(X_i)
 4:
               b_i = f(Y_{i-1} \setminus \{u_i\}) - f(Y_i)
 5:
              if a_i > b_i then
 6:
                   X_i \leftarrow X_{i-1} \cup \{u_i\}
 7:
                   Y_i \leftarrow Y_{i-1}
 8:
 9:
                   X_i \leftarrow X_{i-1}
10:
                   Y_i \leftarrow Y_{i-1} \setminus \{u_i\}
11:
              end if
12:
         end for
13:
         return X_N
14:
15: end procedure
```

Theorem 4.4. Algorithm 3 is $\frac{1}{3}$ approximation.

Theorem 4.5 ([Buchbinder et al., 2015]). Algorithm 4 on the following page is $\frac{1}{2}$ approximation in expectation.

Proof. Let S^* be an optimal solution and

$$S_i^* = S^* \cup X_i \cap Y_i \tag{48}$$

i.e., optimal solution to which we add everything Algorithm 4 added and drop everything it dropped.

Algorithm 4

```
1: procedure Randomized Double Greedy(N)
2: X \leftarrow \emptyset, Y \leftarrow N
3: for i = 1 to n do
4: a_i = \max\{0, f(X_{i-1} \cup \{u_i\}) - f(X_i)\}
5: b_i = \max\{f(Y_{i-1} \setminus \{u_i\}) - f(Y_i)\}
6: (X_i, Y_i) \leftarrow \begin{cases} (X_{i-1} \cup \{u_i\}, Y_i) & \text{with } P = \frac{a_i}{a_i + b_i} \\ (X_{i-1}, Y_{i-1} \setminus \{u_i\}) & \text{with } P = \frac{b_i}{a_i + b_i} \end{cases}
7: end for
8: return X_N
9: end procedure
```

References

Niv Buchbinder, Moran Feldman, Joseph Seffi Naor, and Roy Schwartz. Submodular maximization with cardinality constraints. In *Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms*, pages 1433–1452. Society for Industrial and Applied Mathematics, 2014. (cited on pp. 4 and 5)

Niv Buchbinder, Moran Feldman, Joseph Seffi, and Roy Schwartz. A tight linear time (1/2)-approximation for unconstrained submodular maximization. SIAM Journal on Computing, 44(5):1384–1402, 2015.

Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM), 45(4):634-652, 1998. (cited on p. 3)

Uriel Feige, Vahab S Mirrokni, and Jan Vondrak. Maximizing non-monotone submodular functions. SIAM Journal on Computing, 40(4):1133–1153, 2011. (cited on p. 6)

George L Nemhauser and Laurence A Wolsey. Best algorithms for approximating the maximum of a submodular set function. *Mathematics of operations research*, 3(3):177–188, 1978. (cited on p. 3)

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for maximizing submodular set functions—i. *Mathematical programming*, 14(1):265–294, 1978. (cited on p. 3)