A Review of Relational Machine Learning for Knowledge Graphs

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich

(arXiv:1503.00759v1)

Discussion by: Piyush Rai

June 12, 2015

Learning from Relational Data

Non-Relational data: objects as features

• (Multi)-Relational data: objects as their relationship(s) to other objects

Outline

- Introduction to Knowledge Graphs
 - Knowledge Representation
 - Open vs Closed World Assumption
 - Knowledge Base Construction
 - Uses of Knowledge Graphs
 - Typical Learning Tasks on Knowledge Graphs
- Statistical Relational Learning on Knowledge Graphs
 - Problem Formulation and Training Data Generation
 - Penalized Maximum Likelihood Training
 - Pairwise Loss Training
 - Latent Feature Models and Graph Feature Models
- Latent Feature Models
- Current and Future Directions

Knowledge Graph Representation

Figure: Nodes: Entities; Edges: Relations

 Can be extracted from unstructured/semi-structured data and stored using triplets of the form subject-predicate-object or entity-relation-entity

> Leonard Nimoy was an actor who played the character Spock in the science-fiction movie Star Trek can be expressed via the following set of SPO triples:

subject	predicate	object
(LeonardNimoy,	profession,	Actor)
(LeonardNimoy,	starredIn,	StarTrek)
(LeonardNimoy,	played,	Spock)
(Spock,	characterIn,	StarTrek)
(StarTrek,	genre,	ScienceFiction)

Open vs Closed World Assumption

Figure: Nodes: Entities; Edges: Relations

- Closed world assumption (CWA): Non-existing triplet = false relationship
- Open world assumption (OWA): Non-existing triplet = unknown relationship
 - More appropriate as knowledge graphs are highly incomplete
- Local-closed world assumption (LCWA)
 - Once we have observed (e_i, r_k, e_j) , any non-existing $(e_i, r_k, .)$ is indeed false
 - Appropriate for functional relations (e.g., bornIn)

Knowledge Graph / Knowledge Base Construction

- Curated approaches
 - Triplets are created manually by a closed group of experts
 - Data is reliable; algorithms can easily get high accuracies
- Collaborative approaches
 - Triplets are created manually by an open group of volunteers
 - Data is reliable but incomplete; algorithms can easily get high accuracies
- Automatic Knowledge Base Construction (AKBC)
 - Automated semi-structured approaches: Triplets extracted automatically from semi-structured text such as infoboxes in Wikipedia, via hand-crafted rules, learned rules, regular expressions, etc.
 - Automated unstructured approaches: Triplets extracted automatically from unstructured text via Machine Learning and NLP techniques

Some Real-World Knowledge Bases

- Schema-based: Entities and relations have unique identifiers
- Schema-free: Multiple entities/relations could refer to the same semantics (e.g, bornIn and placeOfBirth, both may be present in the knowledge base)

KNOWLEDGE BASE CONSTRUCTION PROJECTS

Creation Method	Schema-Based Projects		
Curated Collaborative Auto. Semi-Structured Auto. Unstructured	Cyc/OpenCyc , WordNet , UMLS Wikidata , Freebase YAGO , DBPedia , Freebase Knowledge Vault , NELL , PATTY DeepDive/Elementary , PROSPERA		
Creation Method	Schema-Free Projects		
Auto. Unstructured	ReVerb , OLLIE , PRISMATIC		

SIZE OF SOME SCHEMA-BASED KNOWLEDGE BASES

	Number of		
Knowledge Graph	Entities	Relation Types	Facts
Freebase	40 M	35,000	637 M
Wikidata	13 M	1,643	50 M
DBpedia	4.6 M	1,367	68 M
YAGO2	10 M	72	120 M
Google Knowledge Graph	570 M	35,000	18,000 M

What might Knowledge Bases be useful for?

Improved search results (Google's Knowledge Graph; Microsoft's Satori)

- Question Answering systems (e.g., IBM's Watson)
- Decision support systems in healthcare (e.g., LinkedLifeData)

Machine Learning with/for Knowledge Bases

- Feature learning (i.e., embeddings) for entities and relations
- Link-Prediction
 - Discovering new facts from existing facts in the knowledge base
 - Correcting wrong facts (e.g., Obama was born in Kenya) using reliable/correct facts (e.g., Obama is president of USA) in the knowledge base
- Entity/Relation Resolution
 - Obama, Barack Obama, 44th US President, all refer to the same person
 - Born-in, place-of-birth, both refer to the same relation
- Entity/Relation Clustering
- Entity/Relation Ranking. E.g.,
 - Given an entity e_1 and relation (r), give a ranked list of entities e_2 on the other side of the relation $(e_1 r ?)$
 - Given a pair of entities (e_1, e_2) , predict the most-likely relations $(e_1 ? e_2)$

Statistical Modeling of Knowledge Graphs

- Given: knowledge graph/knowledge base, consisting of N_e entities, N_r relations, and facts (triplets: entity1-relation-entity2)
- Set of entities $\mathcal{E} = \{e_1, \dots, e_{N_e}\}$, set of relational $\mathcal{R} = \{r_1, \dots, r_{N_r}\}$
- Each possible triplet $x_{ijk} = (e_i, r_k, e_j)$, with $y_{ijk} = \{0, 1\}$ denoting its existence/validity
- \bullet Can store all possible triplets using a binary tensor $\boldsymbol{Y} \in \{0,1\}^{N_e \times N_e \times N_r}$

• Interpretation of $y_{ijk} = 0$ depends on open/closed/local-closed world assumption. Number of 1s is usually very small in either case.

How to get negative examples?

- Most knowledge graphs contain only positive examples (no false facts)
- Thus, positive examples $(y_{ijk} = 1)$ are naturally given to us
- Denote positive examples (e_i, r_k, e_j) , s.t. $y_{ijk} = 1$, by the set \mathcal{D}^+
- How to generate the set \mathcal{D}^- of negative examples (i.e., for which $y_{ijk} = 0$)?
 - One way is to assume everything not in \mathcal{D}^+ to be negative (subject to the constraints on the entity/relation type). Such \mathcal{D}^- can be very massive.
 - ullet Another way is to generate \mathcal{D}^- as

$$\mathcal{D}^{-} = \{ (e_{\ell}, r_k, e_j) \mid e_i \neq e_{\ell} \land (e_i, r_k, e_j) \in \mathcal{D}^{+} \}$$
$$\cup \{ (e_i, r_k, e_{\ell}) \mid e_j \neq e_{\ell} \land (e_i, r_k, e_j) \in \mathcal{D}^{+} \}$$

ullet Caveat: Still no guarantee that each entry in \mathcal{D}^- is necessarily negative

Statistical Modeling of Knowledge Graphs

- ullet The random variables $y_{ijk} \in \{0,1\}$ in old Y are correlated with each other
- Three main ways to model the correlations
 - M1: y_{ijk}'s are iid given the latent features of entities and relations (latent feature models)
 - M2: y_{ijk} 's are iid given observed graph features and additional parameters (graph feature models)
 - M3: y_{ijk}'s have local interactions (Markov Random Fields)
- M1 and M2 predict the existence of y_{ijk} via a score function $f(x_{ijk}; \Theta)$
- Here is a typical probabilistic approach to parameter learning in M1 and M2

$$P(\underline{\mathbf{Y}}|\mathcal{D},\Theta) = \prod_{i=1}^{N_e} \prod_{j=1}^{N_e} \prod_{k=1}^{N_r} \operatorname{Ber}(y_{ijk} \mid \sigma(f(x_{ijk},\Theta)))$$
(1)

where $\sigma(u)=1/(1+e^{-u})$ is the sigmoid (logistic) function, and

$$Ber(y|p) = \begin{cases} p & \text{if } y = 1\\ 1 - p & \text{if } y = 0 \end{cases}$$
 (2)

• Training via (penalized) maximum likelihood, or fully Bayesian inference

Pairwise Loss based Training

 If we can't trust negatives to be really negative, have the model score them lower than the positives

$$\min_{\Theta} \sum_{x^+ \in \mathcal{D}^+} \sum_{x^- \in \mathcal{D}^-} \mathcal{L}(f(x^+; \Theta), f(x^-; \Theta)) + \lambda \operatorname{reg}(\Theta)$$

where $\mathcal{L}(f,f')$ is a margin-based ranking loss function such as

$$\mathcal{L}(f, f') = \max(1 + f - f', 0).$$

- Note: f can be a function or a probability model.
- Optimization-based, penalized ML, or Bayesian, any approach can be used for parameter estimation
- Online methods preferred (sample one positive and one nagative example in each round..)

Statistical Modeling of Knowledge Graphs

Two main approaches

Latent feature models

- Assume each entity e_i to have an embedding $\mathbf{e}_i \in \mathbb{R}^{H_e}$
- Assume each relation type r_k to be parameterized by some \mathbf{W}_k
- Define score of a triplet (e_i, r_k, e_j) as some function $f(\mathbf{e}_i, \mathbf{e}_j, \mathbf{W}_k)$, e.g.,

$$f(\mathbf{e}_i, \mathbf{e}_j, \mathbf{W}_k) = \mathbf{e}_i^{\top} \mathbf{W}_k \mathbf{e}_j \text{ where } \mathbf{W}_k \in \mathbb{R}^{H_e \times H_e}$$

 $f(\mathbf{e}_i, \mathbf{e}_j, \mathbf{W}_k) = -dist(\mathbf{e}_i + \mathbf{W}_k, \mathbf{e}_j) \text{ where } \mathbf{W}_k \in \mathbb{R}^{H_e}$

- Score can be turned into a probability if needed (e.g., via a logistic function)
- ullet Assumptions can be imposed on $ullet_i$'s and $ullet_k$'s (e.g., sparsity, non-negativity)

Graph feature models

- Score of a triplet (e_i, r_k, e_j) depends on graph-based notions (e.g., number of all paths of some length L or less, number of common neighbors).
- Some commonly used methods: Katz index, Adamic-Adar index, Page Ranking algorithm

Latent feature models and graph feature models can also be combined (some recent work; see reference [103] in the survey paper)

More on Latent Feature Models

- Assume the $N_e \times N_h$ matrix $\mathbf{E} = [\mathbf{e}_1; \dots; \mathbf{e}_N]$ contains the latent features (i.e., embeddings) of the N_e entities. \mathbf{E} is shared across all relations
- A bilinear latent feature model for relation r_k (parameterized by $N_h \times N_h$ matrix \mathbf{W}_k) models the score as: $\mathbf{Y}_k \approx \mathbf{E} \mathbf{W}_k \mathbf{E}^{\top}$

- $y_{ijk} \approx \mathbf{e}_i^{\top} \mathbf{W}_k \mathbf{e}_j = \mathbf{w}_k^{\top} (\mathbf{e}_i \otimes \mathbf{e}_j)$ where $\mathbf{w}_k = vec(\mathbf{W}_k)$
- Basically, a linear model

Nonlinear Latent Feature Models

ullet Replace the linear mapping $f_{ijk} = \mathbf{w}_k^{ op}(\mathbf{e}_i \otimes \mathbf{e}_j)$ by a nonlinear one

$$f_{ijk} = \mathbf{w}_k^{\top} g(\mathbf{h}_a)$$
 (where g is some nonlinear function)
 $\mathbf{h}_a = \mathbf{A}_k^{\top} \phi_{ij}$
 $\phi_{ij} = [\mathbf{e}_i; \mathbf{e}_i]$

• Another model:

$$f_{ijk} = \mathbf{w}^{\top} g(\mathbf{h}_c)$$
 (where g is some nonlinear function)
 $\mathbf{h}_c = \mathbf{C}^{\top} \phi_{ijk}$
 $\phi_{ijk} = [\mathbf{e}_i; \mathbf{e}_i; \mathbf{r}_k]$

Architecture of Google Knowledge Vault

A hybrid, fusion-based architecture consisting of latent feature model, graph feature model, and an information extraction component

- Incorporating type constraints (e.g., relation "married-to" can only involve entities that correspond to "people") or functional constraints (e.g., a person can be born in only one city).
- Generalizing to new entities and new relations
- Incorporating other sources (e.g., text) in addition to knowledge base data
- Including other dimensions such as time (e.g., Larry Page was Google CEO from 2001-2011)
- Models that support complex queries on probabilistic knowledge graphs, e.g.,
 - "Find the athlete who is from Romania who won gold in 3000m and bronze in 1500m in 1984 Olympics"
- Richer model structures (e.g., hierarchies/clusters among relations/entities)
- Scaling up to web-scale knowledge bases (also making the model depend only on the known facts, i.e., the 1s, in the data)

- Incorporating type constraints (e.g., relation "married-to" can only involve entities that correspond to "people") or functional constraints (e.g., a person can be born in only one city).
- Generalizing to new entities and new relations
- Incorporating other sources (e.g., text) in addition to knowledge base data
- Including other dimensions such as time (e.g., Larry Page was Google CEO from 2001-2011)
- Models that support complex queries on probabilistic knowledge graphs, e.g.,
 - "Find the athlete who is from Romania who won gold in 3000m and bronze in 1500m in 1984 Olympics"
- Richer model structures (e.g., hierarchies/clusters among relations/entities)
- Scaling up to web-scale knowledge bases (also making the model depend only on the known facts, i.e., the 1s, in the data)

- Incorporating type constraints (e.g., relation "married-to" can only involve entities that correspond to "people") or functional constraints (e.g., a person can be born in only one city).
- Generalizing to new entities and new relations
- Incorporating other sources (e.g., text) in addition to knowledge base data
- Including other dimensions such as time (e.g., Larry Page was Google CEO from 2001-2011)
- Models that support complex queries on probabilistic knowledge graphs, e.g.,
 - "Find the athlete who is from Romania who won gold in 3000m and bronze in 1500m in 1984 Olympics"
- Richer model structures (e.g., hierarchies/clusters among relations/entities)
- Scaling up to web-scale knowledge bases (also making the model depend only on the known facts, i.e., the 1s, in the data)

- Incorporating type constraints (e.g., relation "married-to" can only involve entities that correspond to "people") or functional constraints (e.g., a person can be born in only one city).
- Generalizing to new entities and new relations
- Incorporating other sources (e.g., text) in addition to knowledge base data
- Including other dimensions such as time (e.g., Larry Page was Google CEO from 2001-2011)
- Models that support complex queries on probabilistic knowledge graphs, e.g.,
 - "Find the athlete who is from Romania who won gold in 3000m and bronze in 1500m in 1984 Olympics"
- Richer model structures (e.g., hierarchies/clusters among relations/entities)
- Scaling up to web-scale knowledge bases (also making the model depend only on the known facts, i.e., the 1s, in the data)

- Incorporating type constraints (e.g., relation "married-to" can only involve entities that correspond to "people") or functional constraints (e.g., a person can be born in only one city).
- Generalizing to new entities and new relations
- Incorporating other sources (e.g., text) in addition to knowledge base data
- Including other dimensions such as time (e.g., Larry Page was Google CEO from 2001-2011)
- Models that support complex queries on probabilistic knowledge graphs, e.g.,
 - "Find the athlete who is from Romania who won gold in 3000m and bronze in 1500m in 1984 Olympics"
- Richer model structures (e.g., hierarchies/clusters among relations/entities)
- Scaling up to web-scale knowledge bases (also making the model depend only on the known facts, i.e., the 1s, in the data)

- Incorporating type constraints (e.g., relation "married-to" can only involve entities that correspond to "people") or functional constraints (e.g., a person can be born in only one city).
- Generalizing to new entities and new relations
- Incorporating other sources (e.g., text) in addition to knowledge base data
- Including other dimensions such as time (e.g., Larry Page was Google CEO from 2001-2011)
- Models that support complex queries on probabilistic knowledge graphs, e.g.,
 - "Find the athlete who is from Romania who won gold in 3000m and bronze in 1500m in 1984 Olympics"
- Richer model structures (e.g., hierarchies/clusters among relations/entities)
- Scaling up to web-scale knowledge bases (also making the model depend only on the known facts, i.e., the 1s, in the data)

- Incorporating type constraints (e.g., relation "married-to" can only involve entities that correspond to "people") or functional constraints (e.g., a person can be born in only one city).
- Generalizing to new entities and new relations
- Incorporating other sources (e.g., text) in addition to knowledge base data
- Including other dimensions such as time (e.g., Larry Page was Google CEO from 2001-2011)
- Models that support complex queries on probabilistic knowledge graphs, e.g.,
 - "Find the athlete who is from Romania who won gold in 3000m and bronze in 1500m in 1984 Olympics"
- Richer model structures (e.g., hierarchies/clusters among relations/entities)
- Scaling up to web-scale knowledge bases (also making the model depend only on the known facts, i.e., the 1s, in the data)

Thanks! Questions?