Model Questions

SKR/KW/24/2181

Faculty of Science & Technology Eighth Semester B.E. (Information Technology) (C.B.S.) Examination DIGITAL IMAGE PROCESSING Elective-III

Tim	ie : Tl	hree Hours] [Maximum Marks :	80
		INSTRUCTIONS TO CANDIDATES	
	(1)	All questions carry marks as indicated.	
	(2)	Solve Question 1 OR Question No. 2.	
	(3)	Solve Question 3 OR Question No. 4.	
	(4)	Solve Question 5 OR Question No. 6.	
	(5)	Solve Question 7 OR Question No. 8.	
	(6)	Solve Question 9 OR Question No. 10.	
	(7)	Solve Question 11 OR Question No. 12.	
	(8)	Due credit will be given to neatness and adequate dimensions.	
	(9)	Assume suitable data wherever necessary.	
	(10)) Illustrate your answers wherever necessary with the help of neat sketches.	
1.	(a)	What is digital image processing ? Describe the elements of digital image processing system.	9
	(b)	Define:	5
		(i) Hue	
		(ii) Contrast	
		(iii) Saturation	
		(iv) Brightness	
		(v) Mach band effect.	
		OR	
2.	(a)	Explain with the help of example, image sampling and quantization.	5
	(b)	Explain the discrete cosine transform.	4
	(c)	Explain about vidicon in brief.	5

MI—8184 1 (Contd.)

MI-8184

Winter 2024 ▼

(Contd.)

Model Questions

		Gray level	1	2	3	4	5	6	7
		Frequency	700	1350	2500	3000	1500	550	0
		Compute the equalization t		l histogram	of output i	mage obtair	ning by enha	ncing the inpu	it by histogram
	(b)	Discuss RGI	3 color mo	odel in deta	uil.				3
	OR								
4.	(a)	Explain conc	ept of spe	cial filtering	g.				7
	(b)	Write short i	notes on a	ny two :					6
		(i) Median	filter						
		(ii) Histogra	am matchii	ng					
		(iii) Harmor	nic filters.						
5.	5. (a) How wiener filtering is useful to reduce the mean square error?				6				
	(b)			-		gradation p	rocess mod	el for a contin	nuous function
		giving releva	nt mathem	atical supp					7
,	()	W/I . I			OR	0			2
6.	(a) What do you mean by unconstrained restoration?(b) Write short note on Gray scale level interpolation.			3					
	(b)								4
-	(c)	Explain remo		-					6
7.	(a)	Elaborate the						entation.	7
	(b) Write short note on Region growing by pixel segmentation.					,			
0	(-X	Confide the	1-1-1	5.70	OR				7
8.	(a)	Explain the g					and in turns		7
0	(b)							e segmentatio	
9.	(a)	How image				ige compre	ssion stand	ard /	5
	(b)	Enlist object			ession.				5
	(c)	Write short i	note on M	PEG.	0.0				3
					OR				

Winter 2024 ▼

(ii) Syntactic Recognition

(iii) Clustering(iv) Graph matching.

Model Questions

10.	(a)	Design a binary Huffman code for a discrete source three independent symbols α , β , γ with probability 0.9, 0.08 and 0.02 respectively.		
		Determine		
		(i) Entropy of source		
		(ii) Average length of Code		
		(iii) Coding efficiency.		
	(b)	Briefly explain transform coding with neat sketch.	5	
11.	(a)	Explain feature extraction in topological and geometric attributes.	6	
	(b)	Discuss about Region based description in detail.	7	
		OR		
12.	Wri	ite short notes on :	13	
		(i) Statistical Classification		

MI—8184 3

Summer 2024 ▼

Model Questions

PRS/KS/24/2508

Faculty of Science and Technology B.E. (Information Technology) Semester—VIII (C.B.S.) Examination DIGITAL IMAGE PROCESSING

Elective - III

Time: Three Hours] [Maximum Marks: 80 INSTRUCTIONS TO CANDIDATES (1) All questions carry marks as indicated. (2) Solve Question 1 OR Question No. 2 (3) Solve Question 3 OR Question No. 4 (4) Solve Question 5 OR Question No. 6. (5) Solve Question 7 OR Question No. 8 (6) Solve Question 9 OR Question No. 10. (7) Solve Question 11 OR Question No. 12 (8) Assume suitable data wherever necessary (9) Diagrams should be given wherever necessary. (10) Illustrate your answers wherever necessary with the help of neat sketches. (11) Use of non programmable calculator is permitted. (a) Explain about vidicon in detail with its operations (b) What are the elements of an image processing system? 7 2. (a) Explain the sampling and quantization process used for creating digital image. 5 (b) What is connectivity between pixels? Explain 4 and 8 connectivity. (c) Explain the discrete cosine transform. Obtain the 4 length DCT for the following sequence $\{1, 3, 2, -4\}$ 3. (a) Explain histogram equalization and its advantages. 5 (b) Explain median filtering along with properties of median filter. 4 (c) Explain RGB colour model in detail. 4 4. (a) Explain the colour image enhancement with diagram. (b) Describe the following with respect to spatial filtering : (i) Filter (ii) Mask (iii) Kernel (iv) Window (v) Template. MH-449 (Contd)

Summer 2024 ▼

Model Questions

5.	(a)	Explain the image restoration process w.r. to degradation.	/				
	(b)	How individual elements are divided in inverse filtering? Explain in detail.	6				
		OR					
6.	(a)	Differentiate between constrained restoration and unconstrained restoration.	6				
	(b)	How Wiener filtering is useful to reduce the mean square error?	7				
7.	(a)	Explain the region growing by pixel segmentation.	5				
	(b)	Explain the global process via Hough transform.	8				
		OR					
8.	(a)	Explain the region based segmentation of digital images, in detail.	4				
	(b)	Explain watershed segmentation algorithm in detail.	6				
	(c)	Explain how the process of region splitting and merging takes place.					
9.	(a)	Explain the objective of image compression.					
	(b)	(b) A binary Huffman code for a discrete source with three independent symbols X,Y					
		be designed with probability 0.8, 0.18 and 0.02 respectively.					
		Determine :					
		(i) Entropy of a source					
		(ii) Average length of code					
		(iii) Coding efficiency and redundancy.	8				
		OR					
10.	(a)	Explain the Run-length encoding in detail. Also encode the following data:					
		13 8 24 00027 4 0000 539	7				
	(b)	Explain the JPEG standard for image compression with the help of diagram.	6				
11.	Exp	xplain the following terms in brief:					
	(i)	Statistical classification					
	(ii)	Syntactic recognition					
	(iii)	Clustering					
	(iv)	Graph Matching					
		OR					
12.	(a)	Explain the feature extraction in topological and geometric attributes.	7				
	(1-)	Fundamental the boundament and description and assign bound description	7				

MH—449 2