REMARKS

A Substitute Specification and Abstract is submitted herewith to place the case in better English form. The Substitute Specification and Abstract contains no new matter. In order that the examiner can satisfy himself in this regard, also submitted herewith is a marked-up copy of the original Specification and Abstract from which the Substitute Specification and Abstract was typed.

Respectfully submitted,

Reg. No. 25,814

Dated: May 5, 2005

LORUSSO & LOUD 3137 Mt. Vernon Avenue Alexandria, VA 22305

(703) 739-9393

DESCRIPTION

Activation Energy Ray Sensitive Resin Composition, Activation Energy Ray Sensitive Resin Film and Method for Forming Pattern Using the Film

Technical Field:

5

This invention relates to an activation energy [0001] ray-sensitive resin composition which comprises an acid former generating an acid by the action of activation radiation which is energy rays and dispersed in an activation rays and dispersed in an aqueous solution of a 10 water-soluble resin, in the presence or absence of a sensitizer, to which an acid-reactive insolubilizing agent the invention further relates is added, to an activation energy ray-sensitive resin film obtainable from the above composition, and to a method for forming a pattern using the film. 15

Background Art:

An activation energy ray-sensitive resin or resin composition is utilized for a covering treatment etc. for a surface of an image forming substrate by utilizing activation energy rays such as light, infrared rays, farinfrared rays, electron beams or X-rays. Among Activation light is widely used. For this reason, the following descriptions occasionally specifically refer to 25 light as the activation energy, rays. However, the activation energy rays utilized in the composition and films obtainable from the composition according to the present invention are not limited to light.

30 [0003] sensitive to light are utilized in many fields and in large quantities as pattern forming materials having high resolution in photolithography-technology, etc. (see "Photopolymer Technology", edited by YAMAOKA, Tsuguo and MATSUNAGA, Gentaro, Nikkan Kogyo Shimbun Ltd. (1988)) 35

good resolution but also permit setting of a wide range for photosensitive region by selecting the wavelengths of are utilizable depending upon their intended of ity as applications. Further, they have an important role in the resin layer thereof patterned by irradiation with light serves to function as a resist material in the case of a chemical, physical or mechanical etching treatment of Further, they are actually used as a platemaking material for letterpress printing, intaglio printing, lithography or stencil printing. By virtue of these characteristics, they are utilized as photolithography process materials encompassing a wide range from submicrons to centimeters. In the case of a polymer-type photosensitive 15 [0004] resin, patterns are formed through a development treatment which utilizes a change in physical properties, such as solubility, caused as a result of a change in chemical structure in the exposed or unexposed region. When the 20 resin is used as a material for a surface covering treatment, a change in chemical structure caused by light exposure induces a significant change in physical property ess the function of protection of a a number substrate. Such a change in chemical structure of the 25 resin is not attributed to the photochemical alone, Rather, the change is based on a total of chemical reactions inclusive of various secondary reactions induced by the photochemical reaction. Thus, for example, it is possible to arbitrarily select the solubility of a resin layer in a solvent before and after light exposure. 30 Namely, when the solubility of the exposed region decreases, the resin_serves as a negative-type photosensitive resin by a solvent developing treatment. When the solubility of the exposed area is impro the resin serves as a positive-type photosensitive resin. 35

Polymer-type photosensitive materials, which not

[0005] When patterning is effected by the development with a solvent, it is indispensable to use water as a solvent which is cheapest and safest, since it is directly related to environmental problems including work environment and waste treatment. When water which is neutral and which has high polarity is used as a solvent, it is required that the material to be dissolved therein should be also high in polarity. Therefore, examples of photosensitive resin capable of being developed with neutral water are restricted as will be described hereinafter.

10

[0006] From the foregoing viewpoint, the production of photosensitive films using neutral water by itself as a solvent and the provision of a photosensitive resin or a photosensitive resin composition capable of being 15 developed with neutral water, alone have been long expected. However, there are available limited number of photosensitive resins capable of being developed with neutral water as will be described hereinafter. Whilst a 20 photosensitive resin which comprises a water-soluble polymer, such as gelatin, casein or poly(vinyl_alcohol), and a dichromate added thereto, has been practically used in from the past, the utilization thereof has been restricted or excluded, since it contains heavy metal ions and since it has poor preservation stability. Similarly, a 25 photosensitive resin using a water-soluble diazo resin as a photo-crosslinking agent and containing the watersoluble polymer as shown above has been widely utilized.

However, the utilizable range of the resin is limited because the photosensitivity is lower than the dichromate-30 type photosensitive resin, because the resin is ill-suited for a thick photosensitive layer due to coloring of the exposed area and resulting reduction in light transmittance thereof and because the problem in long-term preservation stability still remains unsolved. Further,

there has been proposed a composition containing an emulsion of an ethylenically unsaturated compound and a photopolymerizable initiator in poly(vinyl alcohol), and a photo-crosslinking agent blended to the emulsion (Japanese Unexamined Patent Publications No. S49-121852, No. S50-108003, No. S59-107343, etc.). The composition, however, is unsatisfactory with respect to the water resisting property, since no crosslinkages are formed in poly(vinyl alcohol) itself.

Materials containing poly(vinyl alcohol) to 10 [0007] which hydrophilic residues, representative of which is styrylpyridinium, are bonded have been proposed as a water-soluble photosensitive polymer that has solved the foregoing problems (Japanese Unexamined Patent Publications No. S55-23163, No. S55-62905, No. 58-25303, 15 etc.). These materials have merit that the sensitivity thereof is higher than that of the above-described waterdeveloping-type photosensitive resins and the pre stability thereof is excellent and, therefore, are used as pattern forming materials, representative of which is a 20 screen platemaking material. However, since the waterinsolubilization of the photosensitive polymer is attained only by photo-dimerization reaction, there occurs no great change in physical properties, representative of which is hydrophilicity, although change in solubility in neutral 25 water before and after the light exposure is significant. As a consequence, when the polymer is used as a printing platemaking material, it has poor resistance to an aqueous Stance, am improvement of the physical property of the polymer is devised by using various 30 additives. For example, compositions blended with an aqueous emulsion are proposed in Japanese Unexamined Patent Publications No. S55-62446, No. S60-10245, No. S61-

17141, No. 56-122784, No. S60-10245, etc. However, problems in various physical properties such as water

resistance and mechanical strengths still remain unsolved. T maTerials havelbeen wherein likewise_quinonediazido-type resist material and chemical proliferation type resist material, an acidic group such as a carboxyl group or a phenolic hydroxyl group is produced by the catalytic action of an acid generated as a result of photochemical reaction, the acidic group being utilized for the solubilization in an aqueous alkali solution. With this method, a positive-type or negativetype pattern can be formed by a development treatment with 10 an aqueous alkali solution (see C. P. Wong, Polymers for Electronic and Photonic Applications, Academic Press, p.67 (1993)). Because these constituents are insoluble or sparingly soluble in water, the composition is prepared 35 into a (solution in an organic solvent). 15 As a consequence, there arises a problem that the organic solvent evaporates and is scattered during the coating of a film. In a photolithographic process in which production is carried out in an extremely large quantity, it is necessary to neutralize the developing liquid before discarding . 20 Additionally, depending upon the intended use, there pattern resist layer deteriorate since acidic groups having a high polarity are formed in the exposed area. the other hand, a method is also proposed in which 25 alkaline residues, representative of which is an amino group, are formed by photochemical reaction and in which development is carried out using acidic water. Since, however, a film coating step using an organic solvent must be included in this method, it is unavoidable to earry out 30 a neutralizing treatment likewise in the alkali development. Thus, in photosensitive compositions containing a photo acid generating agent as its component, it is A general practice to dissolve the acid generating agent in 35

a solvent or other liquid component. As a consequence, when the solvent for the photosensitive composition and the solvent for development are limited to water, it is necessary that the photogracid generating agent or a photosensitizer thereof should be soluble in water. Japanese Unexamined Patent Publication No. H09-319080 proposes a water-developable photosensitive composition containing poly(vinyl alcohol), a crosslinking agent and a water-soluble photowacid generating agent. The composition has a problem because the wind of the water-10 soluble acid generating agent is restricted and because the acid generated is a carboxylic acid which is low in acidity. On the other hand, Japanese Unexamined Patent Publication No. H10-62990 proposes a photosensitive 15 composition for screen printing which is developable with water and which is prepared by emulsifying a liquid epoxy resin compound into an aqueous solution of poly(vinyl alcohol) containing a cationic photoinitiator to form an oil-in-water type emulsion. In actual, however, 20 composition is added with a diazo resin or dichromate as a water-soluble photo-crosslinking agent or the composition uses poly(vinyl alcohol) into which a photo-crosslinkable stilbazolium group has been introduced. The reason is -considered to be that, because the liquid epoxy resin 25 containing the cationic photoinitiator is emulsified in the aqueous solution of poly(vinyl alcohol), the reaction of the acid generated by irradiation of a resin film made of the composition with the hydroxyl groups of the poly(vinyl alcohol) which is in a discontinuous phase from 30 the epoxy resin does not easily occur, though the acid generated can induce the cationic polymerization of the epoxy resin. Thus, the proposed composition has a problem that crosslinking does not sufficiently proceed in the absence of the photo-crosslinking agent.

[0010] The objective problem of the present invention 35

is to provide an activation energy ray-sensitive resin composition which is capable of being developed with neutral water, an activation energy ray-sensitive resin film obtainable from the composition, and a pattern forming method using the film.

SUMMARY OF THE INVENTION

Disclosure of the Invention

10

15

20

25

30

35

[0011] The present inventors have made an earnest study with a view to solving the above-described problems and, as a result, have accomplished the present invention.

In accordance with the present invention, there are provided an activation energy ray-sensitive resin composition which is capable of being developed with neutral water, an activation energy ray-sensitive resin film which is capable of being developed with neutral water, and a pattern forming method as follows.

[0013] (1) An activation energy ray-sensitive resin composition, characterized in that said composition comprises:

a dispersion comprising an aqueous solution of a water-soluble resin, and an acid former generating an acid by the action of activation energy rays and being insoluble or sparingly soluble in water, said acid former being dispersed in said aqueous solution in the form of fine powder, and

an acid-reactive insolubilizing agent dissolved or dispersed in said dispersion and insolubilizing said water soluble resin by the action of said acid water soluble resin by the action of said acid

[0014] (1) An activation energy ray-sensitive resin composition, characterized in that said composition comprises:

a dispersion comprising an aqueous solution of a when water-soluble resin, an acid former generating an acid by the action of activation energy rays and being insoluble or sparingly soluble in water, and a sensitizer

sensitizing the acid forming reaction, said acid former and sensitizer being dispersed in said aqueous solution in the form of fine powder, and

an acid-reactive insolubilizing agent dissolved or dispersed in said dispersion and insolubilizing said water-soluble resin by the action of said acid. energy radisensitive resin composition as recited in (1) or in that a compound having at least one radically polymerizable unsaturated bond is dissolved or dispersed. 10 An activation energy ray sensitive resin [0016] composition as recited in any one of (1) through (3) above, said acid-reactive insolubilizing agent is an N-methylolated or N-alkoxymethylated nitrogen-15 containing compound, a hydroxymethylated phenol derivative or a resol resin.

A (0 P -> 100171 An activation energy ray-sensitive resin acid-reactive insolubilizing agent a compound having at least one epoxy group, 20 oxetane group, vinyloxy group, isopropenyloxy group, or orthoester group, formy group or actal group. An activation energy ray-sensitive resig domposition as recited in any one of (1) through (3) 25 characterized in that said acid-reactive insolubilizing agent has at least one formyl group. (7) An activation energy ray-sensitive resin composition as recated in any one of (1) through (3) above characterized, in that said acid-reactive insolubilizing 30

[0020] (b) An activation energy ray sensitive resing composition as recited in any one of (1) through (7) above of the form of characterized in that an aqueous resin emulsion, is mixed:

[0021] (9) An activation energy ray-sensitive resinger.

35 composition comprising the activation energy ray sensitive

Optionally, the radiation sensitive

resin composition as recited in any one of (1) through (8)

above, and a water-soluble, photo-insolubilizable resin,

[0022] (10) An activation energy ray sensitive resin

composition as recited in any one of (1) through (9) above,

characterized in that said water-soluble, photoinsolubilizable resin is a photo-crosslinkable poly(vinyl

No. 2
$$CH_2)_n - O_m$$
 R_2 $CH_2)_n - O_m$ $N-R_1$ X^- (1)

alcohol) into which a styrylpyridinium group represented by the following general formula (1) has been introduced:

wherein R_1 represents a hydrogen atom, an alkyl group or an aralkyl group, R_2 represents a hydrogen atom or a lower alkyl group, X^- represents a halogen ion, a phosphate ion, a p-toluenesulfonate ion or a mixture of these anions, m is a number of 0 or 1 and n is an integer of 1 to 6.

15 [0023] (11) An activation energy ray-sensitive resin-

composition as recited in any one of (1) through (9) above In one preserved emboding The Characterized in that said water-soluble, photo-insolubilizable resin comprises poly(vinyl alcohol), casein or gelatin, and a water-soluble diazo resin or a dichromate.

[0024] An activation energy ray-sensitive resin film characterized in that an activation energy ray sensitive resin sensitive resin composition according to any one of (1) through (11) above is formed into a film. Such a

film for screen printing process characterized in that an activation energy ray-sensitive resin composition according to any one of (1) through (11) above is formed into a film.

30 [0026] (14) A pattern forming method characterized in that an activation energy ray sensitive resin film

according to (12) or (13) above is irradiated with activation energy rays, the resulting film being developed with water optionally after having been heat-treated for facilitating the acid-catalyzed insolubilization reaction.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

-Best Mode for Garrying Out the Invention

[0027] As the water-soluble resin serving as a dispersing agent for finely dispersing the acid former and/or sensitizer in the present invention, there may be

10 used any naturally occurring polymer, semi-synthetic polymer and synthetic polymer (refer to "Development Techniques of Water-Soluble Polymers", CMC (1999)). As the naturally occurring polymer, there may be mentioned chitin, chitosan, casein, collagen, albumen, starch,

carrageenan, xanthan gum, dextran, pullulan, etc. As the semi-synthetic polymer, there may be mentioned dialdehyde starch, partial hydrolysate of starch, hydroxyethyl starch, cyclodextrin, dextrin, carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, hydroxyethyl cellulose, include etc. As the synthetic polymer, there may be mentioned

etc. As the synthetic polymer, there may be mentioned poly(vinyl alcohol), partially saponified poly(vinyl alcohol), poly(vinyl alcohol) acetalized such that the water solubility is not lost, poly(vinylpyrrolidone) and copolymers thereof,

N-isopropylacrylamide and copolymers thereof, acrylamide and copolymers thereof, N,N-dimethylacrylamide and copolymers thereof, poly(N-acetylvinylamine), polyethylene glycol, etc.

for the purpose of the present invention, since reduction of acidity of the acid generated from the acid former can be prevented by adjusting the pH of the aqueous solution at about 7. However, it is more preferred that the water-soluble polymer chains are free of amino groups which are basic residues or that the amount of amino

groups be as small as possible. It is also preferred that the water-soluble polymers contain functional groups capable of reacting with the acid-reactive insolubilizing agent, such as hydroxyl groups. In this regard, starch, dialdehyde starch, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, poly(vinyl alcohol), polyacrylamide, hydroxyethyl acrylate copolymers, hydroxyethyl methacrylate copolymers, water-soluble N-methylolated nylon, etc. are suitably used. Since these water-soluble polymers also and former, cationic residues may be introduced thereinto.

[0029] These water-soluble resin may be added as a binder resin to a fine dispersion of the acid former and/or sensitizer. Further, these water-soluble binder resins may be used together with a diazo resin or a dichromate as a photo-crosslinking agent. Furthermore, a photo-crosslinkable poly(vinyl alcohol), disclosed in Japanese Unexamined Patent Publications No. S55-23163, No. 55-62905, etc. and containing a styrylpyridinium group represented by the general formula (1) shown below, may be suitably used as the binder resin:

In the above formula, R_1 represents a hydrogen atom, an alkyl group or an aralkyl group, R_2 represents a hydrogen atom or a lower alkyl group, X represents a halogen ion, a phosphate ion, a p-toluenesulfonate ion or a mixture of these anions, m is a number of 0 or 1 and n is an integer of 1 to 6.

[0031] The alkyl group R_1 has 1 to 6 carbon atoms, preferably 2 to 4 carbon atoms.

No TI

10

15

20

- 11 -

The aralkyl group R_1 has 7 to 13 carbon atoms, preferably 7 to 10 carbon atoms. The aralkyl group is may be derived from various aromatic compounds (benzene compounds, naphthalene compounds, anthracene compounds, etc.) having alkyl groups. -1-E-E-0-01 The lower alkyl group R_2 has 1 to 4 carbon atoms, preferably 1 to 2 carbon atoms the acid former generating an acid by the activation energy rays according to the present invention, there may be used compounds utilized in chemical amplification-type photoresists or in cationic photopolymerization (refer to "Organic Materials for Imaging", edited by Organic Electronics Material Study Group, Bunshin Shuppan (1993)). Group, Bunshin Shuppan (1993)). As the acid former in the present invention, there may be mentioned a cationic onium compound, A halogen-containing compound which generates a hydrogen halide, and a sulfonated compound which generates sulfonic acid. These compounds are insoluble or sparing soluble in water. Examples of suck suitable compounds are shown below. e ionic acid former there may be mentioned salts of onium cations, such as diazonium, ammonium, iodonium, sulfonium, phosphonium or ferrocenium, with Cl, Br, I, ZnCl3, HSO3, BF4, PF6, AsF6, SbF6, CH3SO3, CF₃SO₃, perfluorobutanesulfonate, perfluorooctanesulfonate, camphorsulfonate, benzenesulfonate, p-toluenesulfonate, 9,10-dimethoxyanthracene-2-sulfonate, cyclohexylamino sulfonate, $(C_6F_5)_4B^{-}$, $(C_4H_9)_4B^{-}$, etc. Specific examples of the onium cation phenyldiazonium, p-methoxy diazonium, α-naphthyldiazonium, biphenyldiazonium, diphenylamine-4-diazonium, 3methoxydiphenylamine-4-diazonium, 2,5-diethoxy-4-

10

15

20

25

30

35

methoxybenzoylamidophenyldiazonium, 2,5-dipropoxy-4-(4-tolyl)thiophenyldiazonium, 4-methoxydiphenylamine-4-

diazonium, condensate of 4-diazodiphenylamine and

formaldehyde, 1-methoxyquinolinium, 1-ethoxyisoquinolinium, 1-phenacylpyridinium, 1-benzyl-4-benzoylpyridinium, 1benzylquinolinium, N-substituted benzothiazolium (refer to Japanese Unexamined Patent Publication No. H05-140143), Further examples inched 1 100371 Further, there may be mentioned benzyltriphenyl sulfonium, p-methoxyphenydiphenyl sulfonium, bis(pmethoxypheny) phenyl sulfonium, tris(p-methoxypheny) sulfonium, p-phenylthiophenyldiphenyl sulfonium, benzyltetramethylene sulfonium, phenacyltetramethylene 10 sulfonium, phenacyldimethyl sulfonium, pmethoxyphenydiethyl sulfonium, naphthyldialkyl sulfonium (refer to Japanese Unexamined Patent Publications No. H09-118663 and No. H05-140209), (2-naphthylcarbonylmethyl)tetramethylene sulfonium, (p-hydroxyphenyl)dimethyl 15 sulfonium, (4-hydroxynaphthyl)dimethyl sulfonium, (4,7dihydroxynaphthyl)-1-dimethyl sulfonium, (4,8dihydroxynaphthyl)-1-dimethyl sulfonium, diphenyl iodonium, phenyl(4-methoxypheny) iodonium, phenyl{4-(tertbutyl)phenyl}iodonium, 4-bis{4-(tert-butyl)phenyl} 20 iodonium, bis(4-dodecylphenyl) iodonium, (4methoxyphenyl)-4-octyloxyphenyl) iodonium, phenacyltriphenyl phosphonium, cyanomethyltriphenyl phosphonium, etc. Examples of the acid former generating a 25 188001 halogenated hydroacid include 1-methyl-3,5bis(trichloromethyl)-s-triazine, 1-phenyl-3, 5bis(trichloromethyl)-s-triazine, 1-(4-chlorophenyl)-3, 5bis(trichloromethyl)-s-triazine, 1-(4-methoxypheny)-3, 5bis(trichloromethyl)-s-triazine, 1-(4-butoxyphenyl)-3, 5-30 bis(trichloromethyl)-s-triazine, 1-(3, 4methylenedioxyphenyl)-3,5-bis(trichloromethyl)-s-triazine, 1-(3,4-dimethoxyphenyl)-3, 5-bis(trichloromethyl)-striazine, 1-(4-methoxynaphthyl-1)-3, 5-

bis(trichloromethyl)-s-triazine, 1-{2-(4-

35

```
methoxypheny) ethenyl}-3,5-bis(trichloromethyl)-s-triazine,
    1-{2-(2-methoxypheny)ethenyl}-3,5-bis(trichloromethyl)-s-
    triazine, 1-{2-(3, 4-dimethoxyphenyl)ethenyl}-3, 5-
    bis(trichloromethyl)-s-triazine, 1-{2-(3-chloro-4-
    methoxypheny) ethenyl}-3,5-bis(trichloromethyl)-s-triazine,
    1-(biphenyl-1)-3,5-bis(trichloromethyl)-s-triazine, 1-(4-
    hydroxybiphenyl-1)-3,5-bis(trichloromethyl)-s-triazine, 1-
    (4-methoxybiphenyl-1)-3,5-bis(trichloromethyl)-s-triazine,
    1-(4-methylbiphenyl-1)-3,5-bis(trichloromethyl)-s-triazine,
    1,3,5-tris(trichloromethyl)-s-triazine, 1,3-dichloro-4-
10
    trichloromethylbenzene, 1,1,1-trichloro-{2,2-84-
    chlorophenyl}ethane, phenyltribromomethyl sulfone, 1-keto-
    4-methyl-4-trichloromethyl-2,5-dichlorohexadiene, 2-
    tribromoquinoline and 1-keto-2, 3-benzo-4, 4, 5, 6-
                  sadiene. Swhich about acid, the acid former generating sulfonic acid,
    tetrachlorohexadiene.
15
       re-may be mentioned 2-nitrobenzyl-p-toluene sulfonate,
    2,6-dinitrobenzyl-p-toluene sulfonate, 1-(p-
    toluenesulfonyloxyimino) -1-phenylethane nitrile, 1-(p-
    toluenesulfonyloxyimino)-1-phenylethanenitrile, benzoin-p-
20
    toluenesulfonate, 2-p-toluenesulfonyloxy-2-benzoylpropane,
    p-nitrobenzyl-9,10-dimethoxyanthracene-2-sulfonate, N-
    trifluoromethanesulfonyloxydiphenylmaleimide, N-p-
    toluenesulfonyloxysuccinimide, N-
    camphorsulfonyloxysuccinimide, N-
25
    trifluoromethanesulfonyloxysuccinimide, N-
    perfluorobutanesulfonyloxysuccinimide, N-p-
    toluenesulfonyloxyphthalimide, N-
    camphorsulfonyloxyphthalimide, N-
    trifluoromethanesulfonyloxyphthalimide, N-
30
    perfluorobutanesulfonyloxyphthalimide, N-p-
    toluenesulfonyloxy-1,8-naphthalenecarboxyimide, N-
    camphorsulfonyloxy-1,8-naphthalenecarboxyimide, N-
    trifluoromethanesulfonyloxy-1,8-naphthalenecarboxyimide,
    N-perfluorobutanesulfonyloxy-1,8-naphthalenecarboxyimide,
35
```

1,2,3-tris(p-toluenesulfonyloxy)benzene, bis(phenylsulfone), bis(phenylsulfonyl)methane, etc. The above-described acid formers which are insoluble or sparingly soluble in water are used by being finely dispersed in the aqueous solution of the watersoluble resin. Therefore, the acid generated by activation energy rays can easily diffuse in the watersoluble resin. As a consequence, the acid-catalyzed reaction of the acid-reactive insolubilizing agent and the water-soluble resin is facilitated so that the 10 insolubilization of the resin can efficiently proceed. In the present invention, whilst the acid mentioned formers exemplified above can generate, by themselves corresponding acid by the action of activation energy ray the acid can be also generated when irradiated, in the 15 presence of a spectrum sensitizer, with light which can be absorbed by the sensitizer. The spectrum sensitizer used for the purpose of the present invention is desirably insoluble or sparingly soluble in water. Thus, the desired objects may be achieved when the acid former is 20 dispersed together with the sensitizer in the form of fine It is unexpected that the sensitized acid forming reaction efficiently occurs to cause the insolubilization even when not only the acid former but also the sensitizer is in the form of dispersed solids. 25 The sensitizer used in the present invention is preferably an electron donating compound in view of the fact that the above-exemplified acid formers function as electron donor, as described in Japanese Unexamined Patent Publications No. S54-151024, No. S58-40302, No. 30 \$60-76740, No. \$60-78443, No. \$60-88005, No. \$60-112802, No. S61-97650, No. S61-180359, No. S62-161820 and No. S63-243102. As the sensitizer having such a property and suitable for the present invention, there may be mentioned, but not limited Mereto, and aromatic polycyclic compound, 35

A porphyrin compound, A phthalocyanine compound, polymethine dye compound, a merocyanine compound, a coumarin compound, a thiopyrylium compound, a pyrylium compound, /a p-dialkylaminostyryl compound, /a thioxanthene compound etc. Most of these compounds are disclosed in "Dye Handbook" (Kodansha) edited by Ookawara, Hirashima, Matsuoka and Kitao; "Handbook of Coloring Material Engineering" (Asakura Publishing (1989)), edited by the Japan Society of Coloring Material; and "Dye Catalogue" of Hayashibara Biochemical Laboratories Photosensitive Dye Lab. Suilable

As the aromatic polycyclic compound, there may [0043] -be mentioned those which have a basic skeleton of a hydrocarbon such as naphthalene, phenanthrene, pyrene, anthracene, tetracene, chrysene, pentacene, picene, coronene, hexacene or ovalene. Also, aromatic fivemembered ring heteropolycyclic compounds containing an oxygen atom, a nitrogen atom or a sulfur atom as their constituent atoms, such as benzofuran, dibenzofuran, indole, carbazole, benzothiophene and dibenzothiophene, may be mentioned. Usable aromatic six-membered ring heteropolycyclic compounds have a basic skeleton of, for example, α -benzopyrone, β -benzopyrone, α -thiabenzopyrone, β-thiabenzopyrone, flavone, xanthone, thioxanthone, phenoxazine or phenothiazine. These basic skeletons may have at least one electron donating group, as a -substituent, such as an alkyl group, a hydroxyl group, an alkoxy group or an alkylthio group. Examples of the sensitizer of substituted aromatic polycyclic compounds include 1-methoxynaphthalene, 1,4-dimethylnaphtalene, 1,8dimethylnaphtalene, 9,10-dimethylphenanthrene, 9methylanthracene, 9,10-dimethylanthracene, 9,10diphenylanthracene, 9,10-bis (phenylethynyl) anthracene, 1,8-dimethyl-9,10-bis(phenylethynyl)anthracene, 9,10dimethoxyanthracene, 9,10-diethoxyanthracene, 9,10-

10

15

20

25

30

35

9,10-dibutoxyanthracene, 1methylpyrene. As the substituted polycyclic heterocyclic compounds there may be mentioned N-methylcarbazole, Nethylcarbazole, thioxanthone, isopropylthioxanthone, etc. [0044] The porphyrin compound may be a compound having a basic skeleton of, for example, tetraphenylporphine, octaethylporphine, mesoporphyrin, protoporphyrin, hematoporphyrin, chlorin, tetrabenzoporphine, phenylsubstituted tetrabenzoporphine, a magnesium complex thereof, Ya zinc complex thereof. Also, there mentioned chlorophyll. The phthalocyanine compound may be a naphthocyanine compound and may have at least one substituent, such as an alkyl group, an alkoxy group, an alkylthio group, an aryl group and a halogen group, introduced into its basic skeleton. Further, as a central metal, magnesium, zinc, cadmium or aluminum is particularly preferred. [0046] As the polymethine dye compound, a cyanine-series or merocyanine-series compound having such a structure in which a heterocycle containing a nitrogen atom, an oxygen atom, a sulfur atom, etc., is by polymethine can be used. For example, compounds disclosed in "Dye Handbook" edited by Makoto OOKAWARA, Teijiro KITAO, Tsuneaki HIRAOKA and Ken MATSUOKA, (Kodansha Scientific (1986)), pages 382-417, may be mentioned: Specific examples of the dye compounds include & cyanine conics comprises a quinoline ring, an indiocyanine series which comprise an indole ring, a thiocyanine serie

5

10

15

20

25

30

the coumarin compound where may be menti 35

may be used

comprises a benzothiazole ring, and a polymethine series

additionally, a benzoxazole-sedies, a pyrylium series, a thiapyrylium series, a squarylium paries, a croconium

an iminocyclohexadiene ring, and

among the monocoumarin compounds described in "Dye Handbook" edited by Makoto OOKAWARA, Teijiro KITAO, Tsuneaki HIRAOKA and Ken MATSUOKA, (Kodansha Scientific (1986)), pages 432-438 and, additionally, 3-(2-benzothiazolyl)-7-(diethylamino)coumarin, 3-(2-benzothiazolyl)-7-(dibutylamino) coumarin, 3-(2-benzothiazolyl) -7-(dioctylamino) coumarin, 3-(2-benzo imidazolyl)-7-(diethylamino) coumarin, 10-(2-benzothiazolyl)-2,3,6,7tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-10 [1]benzopyrano[6,7,8-ij]quinolyzin-11-on, 3,3carbonylbis (7-diethylaminocoumarin), 3,3-carbonylbis (7dibutylaminocoumarin), etc. As the p-dialkylaminostyryl compound there may be mentioned 4-diethylaminobenzylideneacetophenone, 4-diethylaminobenzylidene (p-methoxy) acetophenone, 4-diethylaminobenzylidenemalondinitrile, 4-dimethylaminobenzylideneacetoacetatic ethyl ester, 4-dimethylaminobenzylidenemalonic acid diethyl ester, 4-dimethylaminobenzylidene- α -cyanoacetophenone, 20 2,6-bis(4-dimethylaminobenzylidene)cyclohexanone, 4-dimethylaminocinnamylideneacetophenone, 4-dimethylaminocinnamylidenemalondinitrile, 4-dimethylaminocinnamylidenecyanoacetic acid ethyl ester, 4-dimethylaminocinnamylidenemalonic acid diethyl ester, 4-dimethylaminocinnamylidene- α -cyanoacetophenone, 25 4-dimethylaminocinnamylidenebis (4dimethylaminobenzylidene) cyclohexanone, etc. The absorption wavelengths of these spectrum sensitizers encompass a wide range from these of 30 ultraviolet rays to those of infrared rays. Thus, they can be used singly or as a mixture of two or more thereof so that light of a wide range of wavelengths can be efficiently absorbed for the generation of the acid. The term "acid-reactive insolubilizing agent" as used

herein is intended to refer to a compound which causes

35

dehydrative condensation reactions, addition reactions, cationic polymerization reactions, etc. by the catalytic action of an acid generated by the action of activation ergy rays, so that the water-soluble resin contained in the composition is insolubilized through crosslinking, polymerization, etc. In particular, it is preferred that the insolubilizing agent be acid-catalytically bonded to the main chain or side chain cites of the water-soluble The insolubilizing agent may be soluble, insoluble 10 or sparingly soluble in water. An insolubilizing agent which is insoluble or sparingly soluble in water may be used in the form of a dispersion. The insolubilizing agents which will be exemplified below may be used alone or as a mixture of two or more thereof. As an Insolubilizing agent which undergo 15 dehydrative condensation with alcoholic hydroxyl groups of poly(vinyl alcohol), cellulose derivatives, polysaccharides such as starch, N-methylolated nylon, etc. as the water-soluble resin, there may be mentioned Nhydroxymethylacrylamide, N-hydroxymethylated urea, N-20 hydroxymethylated malonamide, N-hydroxymethylated phthalamide, hexahydroxymethylated melamine, phydroxymethylphenol, o-hydroxymethylphenol, 2,6bis(hydroxymethyl)-p-cresol, resol resin, etc. 25 Derivatives of these compounds in which the hydroxymethyl group is replaced by an alkoxymethyl group having 1-6 carbon atoms, may also be used. [0051] July Insolubilizing agent which undergost 21 addition reaction with alcoholic hydroxyl groups of 30 poly(vinyl alcohol), cellulose derivatives, polysaccharides such as starch, and derivatives thereof as the water-soluble resin, a compound having at least one epoxy group or oxetane group may be suitably used. compound causes also cationic polymerization and is

particularly preferred. As the insolubilizing agents

35

include having two or more glycidyl-type epoxy groups, there may be mentioned EX-611, EX-612, EX-614, and EX-614B EX-614, EX-622, EX-512, EX-521, EX-411, EX-421, EX-313, EX-314, EX-321, EX-201, EX-211, EX-212, EX-252, EX-810, EX-811, EX-850, EX-851, EX-821, EX-830, EX-832, EX-841, EX-861, EX-911, EX-941, EX-920, EX-721, EX-221, EM-150, EM-101 and EM-103, which are DENAKOL-series products described in a catalog of Nagase Chemtex Co., Ltd.; YD-115, YD-115G, YD-115CA, YD-118T and YD-127, which are described in a 10 catalog of Toto Kasei Co., Ltd.; and 40E, 100E, 200E, 400E, 70P, 200P, 400P, 1500NP, 1600, 80MF, 100MF, 4000, 3002 and 1500, which are EPOLITE-series products_described in a catalog of Kyoeisha chemical Co., Ltd. As an alicyclic epoxy compound, there may be mentioned CELOXIDE 2021, CELOXIDE 2080, CELOXIDE 3000, EPOLEAD GT300, EPOLEAD GT400, 15 EPOLEAD D-100ET, EPOLEAD D-100OT, EPOLEAD D-100DT, EPOLEAD D-100ST, EPOLEAD D-200HD, EPOLEAD D-200E, EPOLEAD D-204P, EPOLEAD D-210P, EPOLEAD D-210P, EPOLEAD PB3600, EPOLEAD PB4700, etc. described in a catalog of Daicel Chemical 20 Industries, Ltd. الماتينة ال [0052] be mentioned EX-111, EX-121, EX-141, EX-145, EX-146, EX-171, EX-192, EX-111 and EX-147, which are DENAKOL-series products described in a catalog of Nagase Chemtex Co., Ltd.; and M-1230, EHDG-L and 100MF which are EPOLITE-25 series products described in a catalog of Kyoeisha chemical Co., Ltd. By using these substances as a reactive diluent, a highly viscous or solid epoxy resin can be used, for example, BPF-type epoxy resins, BPA-type 30 epoxy resins, BPF-type epoxy resins, novolak-type epoxy resins, brominated-type epoxy resins and flexible-type resins, which are described in a catalog of Tohto Kasei Co., Ltd.; EPIKOTE basic solid-type and EPIKOTE bis-F solid-type described in a catalog of Yuka Shell Epoxy 35 Kabushiki Kaisha; and EHPE alicyclic-type solid epoxy

resins described in a catalog of Daicel Chemical Industries, Ltd. can be used. [0053] As an oxetane compound, there may be used compounds described in J. V. Crivello and H. Sasaki, J. M. S. Pure Appl. Chem., A30 (2&3), 189 (1993) or J. H. Sasaki and V. Crivello, J. M. S. Pure Appl. Chem., A30 (2&3), 915 (1993). For example OXT-101 OXT-121, OXT-211, OXT-221, OXT-212, OXT-611, etc. of Toa Gosei, Inc., can be mentioned. These oxetane compounds may be used as a mixture with the above-mentioned epoxy compound. As an insolubilizing agent which causes cationic mentioned, in addition to the above epoxy groups and oxetane groups, monomers having a vinyl ether group, a propenyl ether group or a cyclic ortho-ester group. As vinyl ether, there may be mentibutane diol divinyl ether, hexane diol divinyl ether, cyclohexane diol divinyl ether, diethylene glycol monovinyl ether, diethylene glycol divinyl ether, hydroxybutyl vinyl ether, hydroxyethyl vinyl ether, octadecyl vinyl ether, butanediol monovinyl ether. In the composition according to the present invention, a compound having at least one, more preferably at least two, formyl groups or acetal groups can be used as an acid reactive insolubilizing agent, when using polyvinyl alcohol as the water-soluble resin. case, acetalization takes place on the poly(vinyl alcohol)

10

15

20

chain with an acid generated serving as a catalyst, so resulting that the water solubility thereof is lost. Examples of the compound having a formyl group include salicylaldehyde,

30 m-hydroxybenzaldehyde, p-hydroxybenzaldehyde, terephthalaldehyde, terephthalaldehyde bisethyl acetal, terephthalaldehyde bisethylene acetal, terephthalaldehyde trimethylene acetal, glutaraldehyde bisdiethyl acetal and glutaraldehyde bisethylene acetal.

35 [0056] A compound having at least one light-active

ethylenically unsaturated bond may be dissolved or dispersed in the photosensitive composition of the present invention. By containing such a compound, not only an acid is generated by the decomposition of photo-acid former but also radical species are generated together, so that the composition is imparted with an ability 76 initiate radical polymerization. The light-active ethylenically unsaturated compound is a compound having at least one radical polymerizable unsaturated bond such as an acryloyl group, a methacryloyl group or an allyl group. The ethylenically unsaturated compound involves a prepolymer or an oligomer having a molecular weight of 10,000 or less, unsaturated compound there may be mentioned pentaerythritol (meth)acrylate, pentaerythritol tetra (meth) acrylate, trimethylolpropane tri(meth) acrylate, triallyl isocyanurate, lauryl (meth)acrylate, methoxyethylene glycol (meth)acrylate, 2-ethylhexyl (meth)acrylate, benzyl (meth)acrylate, hexyl diglycol (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, trimethylene ethylene glycol di(meth)acrylate, tetramethylene glycol di(meth)acrylate, pentamethylene glycol di(meth)acrylate, hexamethylene glycol di(meth)acrylate, ethylene glycol diglycidyl ether (meth)acrylate, phenyl glycidyl ether (meth)acrylate, trimethylolpropane polyglycidyl ether (meth)acrylate, terephthalic acid diglycidyl ether (meth)acrylate, a reaction product of tolylene diisocyanate and 2-hydroxypropyl (meth)acrylate, a reaction product of phenyl isocyanurate and 2-hydroxyethyl (meth)acrylate and an unsaturated polyester with a molecular weight of 10000 or less and having an ethylenically unsaturated bond such as a maleic acid ester

10

20

25

30

of glycol.

35 [0058] These light-active unsaturated compounds may be

used singly or in combination of two or more and are used in an amount of 0.5 to 5 parts, preferably 0.1 to 3 parts, per 1 part of the water-soluble resin.

[0059] These radically polymerizable compounds generate not only acids but also radical species when irradiated with light in the presence of a photo-acid former alone or in combination with a sensitizer. Therefore, polymerization takes place to cause solubilization. Additionally, a known radical photoinitiator may be cojointly used to facilitate the photo-radical reaction.

[0060] Next, a method for dispersing the above-described constituents in an aqueous solution of a water-soluble resin so as to obtain the composition of the present invention will be described.

10

The acid former, and sensitizer which is used, if 15 necessary, by mixing therewith, are sparingly soluble or insoluble in water and are dispersed in an aqueous solution of a water-soluble resin after having been a -proviously finely ground and further pulverized into fine powder. Alternately, these substances are pulverized in 20 an aqueous solution of a water-soluble resin intovfine powder to obtain a suspension in which they are finely dispersed in a solid state. Since the composition of the present invention is used as a water suspension liquid, it 25 is preferred that the acid former and/or sensitizer be finely dispersed in water. Therefore, as a dispersant, the water-soluble resin is suitably used, though a surfactant, etc. may be used together.

[0062] Thus, the present invention is characterized in that the photo-acid former in a solid state is dispersed in water in the form of fine powder. To this end, known fine pulverization methods, fine dispersion methods and apparatuses therefor used for the manufacture of coating materials, pigments, inks, paints, various coatings, electronic materials, magnetic materials, pharmaceuticals,

agricultural chemicals, cosmetics, food, etc. may be utilized.

These methods and apparatuses are disclosed in, for example, Taiichi TSURITANI and Masumi OISHI, "Industrial Dispersing Technique", Nikkan Kogyo Shimbun Ltd. (1985); Noboru MORIYAMA, "Chemistry of Dispersion and Aggregation", Sangyo Tosho Publishing (1995), p. 150-154; "Fine Particle Control" edited by Society of Chemical Engineers, Japan, Maki-Shoten Publishing (1996), p. 1-14; "Coating", edited by Processing Technique Study Group, 10 Processing Technique Study Group (2002), p. 84-139. Namely, devices such as a colloid mill, a ball mill, a sand mill, a bead mill, three roll mill and, additionally, a kneader, an extruder and a high speed disperser may be used singly or in combination. In dry type fine pulverizing of the 15 acid former and/or sensitizer, the pulverized fine powder are dispersed in an aqueous solution of a water soluble resin. In this case, the water soluble resin itself serves as a dispersant. If desired, a low molecular weight or high molecular weight surfactant may be also 20 added as a dispersant. In the case of wet pulverizing, since the pulverization and fine-dispersion are carried out in an aqueous solution of a water-soluble resin, a photosensitive composition can be easily prepared from the suspension itself. In this case, too, a surfactant can be 25 added in order to efficiently perform the dispersion. The following methods may be employed for the dry-type or wet-type pulverization of the photo-acid former in the presence of the spectral sensitizer: In the first method, solids of the photo-acid 30 [0065] former and sensitizer are pulverized together into fine powder in an aqueous solution of a water-soluble resin and dispersed therein. Namely, the photo-acid former and sensitizer in the form of a mixture are subjected to or wet fine pulverization treatment.

35

In the second method, a mixture of the acid forme proliferation agent and sensitizer are dissolved in an organic solvent. Thereafter, while removing the solvent from the solution or after the solvent has been removed therefrom, the mixture is finely dispersed in an aqueous solution of a water-soluble resin. In the third method, the acid pr agent and sensitizer in the solid state are separately and finely dispersed in aqueous solutions of a water-soluble Then, the resulting dispersions are mixed together. resin. In a further method for finely dispersing the acid former and/or sensitizer, a solution of them dissolved in an organic solvent is added dropwise an aqueous solution of a water-soluble resin in accordance with the method disclosed in Japanese Unexamined Patent Publication No. H06-79168 or No. 2001-262137. Whilst the present inventors expected that, when a photo-acid as a solid is finely dispersed and the dispersion is irradiated with activation energy 20 acid is generated. However, it is unexpected that

the sensitive acid-generation reaction occurs even when both the photo-acid former and the sensitizer are in the form of solids. That is, it is said that in order for an electron transfer reaction or an energy transfer, which is a sensitization reaction, to take place, it is necessary that the intermolecular distance between a molecule which gives electron or excitation energy (the molecule will be referred to as "donor molecule") and a molecule which receives the electron or excitation energy (the molecule -be referred to as "acceptor molecule") should be up mare than to about 10 angstroms. For this reason, it has been the general practice that the donor molecule and the acceptor molecule are combined into the same molecule, or are dissolved to have a molecul concentration higher than a predetermined level. It is therefore surprising that the

10

15

25

35

radiation sensitized at a high sensitization reaction occurs and, hence, the sensitization rate of high sensitivity is obtainable, even though the photo-acid former and the sensitizer are present in the composition of the present invention in dispersed state as solids because they are sparingly soluble or insoluble in water. It is inferred that the acid former and the sensitizer might form an eutectic during the course of mixing and finely dispersing them, or might form a solid solution with the acid-reactive 10 insolubilizing agent and water-soluble resin during the course of a film forming process. Although the particle size of the acid former and/or sensitizer to be dispersed varies with the method and purpose of dispersing, the average particle diameter 15 thereof is 1.5 μm or less, preferably 0.8 μm or less. The particle size of the dispersed acid former and/or sensitizer has distribution. Therefore, photosensitivity is expressed even when the average particle diameter is, for example, $1.0 \ \mu m$ because of the presence of finer 20 particles. If desired, after fully pulverizing and finely dispersing the acid former and/or sensitizer in an aqueous solution of a water-soluble resin, large particles of the acid former and/or sensitizer may be removed by centrifugal separation or by filtration with a glass filter or a membrane filter, etc. It is known that a 25 transparent coloring agent is obtainable by removing the pigment particles having greater than a certain particle size, as described in Japanese Unexamined Patent Publication, No. S60-129707. In the case of the present invention, a photosensitive composition in which the 30 light scattering effect is remarkably reduced can be obtained by removing large particles of the photo-acid former and sensitizer.

during or after the finely dispersing the acid former

35

It is desirable to add an antifoaming agent

and/or sensitizer in an aqueous solution of a water-soluble resin. As the antifoaming agent suitable for the photosensitive composition of the present invention, there may be used antifoaming agents of a silicone-type and, additionally, antifoaming agents of an alcohol-type, an ether-type, a metallic soap-type, an ester-type and a higher fatty acid-type, as described in "Application of Antifoaming Agent", Tsunetaka SASAKI (editorial supervision), CMC (1991).

10 [0072] To the thus obtained composition may be further added with a water-soluble binder resin to control the properties, such as viscosity, of the photosensitive composition and to improve the properties of the photosensitive film, such as mechanical strengths, sensitivity and water resistance. As the binder resin, the water-soluble resin used as a dispersant can be used. It is desirable that the resin have a high polymerization degree.

[0073] In the formulation of the photosensitive composition of the present invention is such that the 20 amount of the acid-reactive insolubilizing agent is 5 to 1,000 parts, preferably 10 to 500 parts, per 100 parts of the water-soluble resin serving as a dispersant and a binder resin; the amount of the acid former is 1 to 100 25 parts, preferably 5 to 50 parts, per 100 parts of the acid-reactive insolubilizing agent; the amount of the sensitizer is 5 to 100 parts, preferably 10 to 50 parts, per 100 parts of the acid former; and the total amount of these ingredients is 5 to 400 parts, preferably 10 to 200 30 parts, per 100 parts of water. When the amount of the acid former and the acid-reactive insolubilizing agent is less than the above ranges, sufficient photoinsolubilization does not occur, while the photoinsolubilization rate will not change even when the 35 amounts thereof increase beyond the above ranges. When

the amount of the sensitizer is less than the above range, sufficient sensitization effect is not obtainable. Even when the sensitizer added beyond the above range, the sensitization rate does not increase but prettern the light transmittance is undesirably reduced to the photosensitive composition of the present invention finely dispersed extender such as aluminum oxide, silicon oxide, titanium oxide or zinc white may be added. An organic pigment which does not give a sensitization effect 30 the acid former, such as a copper, nickel or iron complex of phthalocyanine, may also be added. thereto. [0075] to the photosensitive composition of the present Invention, an aqueous resin emulsion the containing a dispersoid of hydrophobic polymer particles can be added. - As the hydrophobic polymer which constitutes such an aqueous resin emulsion, there may be used poly(vinyl acetate), a polyvinyl acetate/ethylene polymer, a polyvinyl acetate/acrylic ester polymer, a styrene/butadiene copolymer, a methyl methacrylate/butadiene copolymer, an acrylonitrile/butadiene copolymer, a chloroprene copolymer, an isoprene copolymer, a poly(meth)acrylic resin, polyurethane, a polyester resin, poly(vinyl chloride), poly(vinylidene chloride), polystyrene, a silicone resin, polyethylene, a fluororesin, etc. These resin emulsions are used in an amount of 0.05 to 5 parts, preferably 0.1 to 3 parts, per 1 part of the water-soluble resin. [0076] The photosensitive composition of the present invention is suitable for forming a coating (resin film) on any substrate such as wood; textiles; paper; ceramics; glass; a synthetic regin, e.g. polyester, polyolefin, cellulose acetate, polyimide and epoxy resin; glass fiber

10

20

25

30

35

reinforced resin; a metal, e.g. aluminum, copper, nickel,

iron, zinc, magnesium and cobalt; a semiconductor material,

e.g. silicon and gallium-arsenide-germanium; and an insulating material, e.g. silicon nitride and silicon oxide. It is desirable that the substrate be subjected A hydrophilicity imparting treatment beforehand, especially in the case of synthetic resin, for the purpose of improving the film forming efficiency, thereof. A pattern or a protective layer may be formed by irradiating the coating, made of the photosensitive composition of the present invention and formed on these substrates, with light. [0077] The composition may be applied on a surface of the substrate by any known method capable of forming an uniform coating, such as by rotation coating, brushing, spraying, reverse roll coating, dip coating, doctor knife coating or curtain coating. The thickness of the film may ranges from 0.1 µm to 1,000 µm in terms of the purpose, on the wind of the substrate and on the particle size of the acid former or sensitizer. The photosensitive composition applied on the [0078] substrate is exposed to light after evaporation water. The sensitization wavelength region is determined by the range of sensitizers can be used, the wavelength of light be suitably used

10

15

20

The sensitization wavelength region is determined by the find of the acid former and the sensitizer. Since a wide range of sensitizers can be used, the wavelength of light ranges from far ultraviolet ray region to am infrared, region. As the light source, there may be suitably used low pressure mercury lamp, a high pressure mercury lamp, a super-high pressure mercury lamp, a kenon lamp, a mercury-xenon lamp, a halogen lamp, a fluorescent lamp and also, various laser light sources which oscillate ultraviolet was, visible ray and infrared rays. The exposure may be done through a photo mask. Alternatively, the photosensitive film may be directly winted with laser beam. Furthermore, it is without saying that the exposure can be carried out using activation energy rays such as

electron beams a phosensitive film which has been subjected to light exposure is insoluble in water. To facilitate insolubilization, the light exposure may be followed by a heat treatment. The temperature used in the heat treatment may vary depending upon the Hind of the substrate but is generally in the range from room temperature to 250°C, preferably in the range from room temperature to 150°C. The heat treatment time depends upon the kind of the photosensitive composition and heating temperature but is 30 seconds to 60 minutes. 10 The film which has been subjected to the light rexposure and, if necessary, the heat treatment, is developed with neutral water. The development may be 15 —ashieved by immersing the photosensitive film in water for the dissolution and removal of the unexposed area or by contacting water flows from a spray gun for the removal of the unexposed area. [0081] A screen printing plate may be prepared by a 20 conventional method which includes applying the photosensitive composition of the present invention over a screen, followed by drying, light exposure and development. Alternatively, a screen printing plate may also be prepared by a conventional method which includes applying the photosensitive composition on a plastic film, drying 25 the coating to obtain a photosensitive film for preparing -a screen printing plate, applying the film on a screen plate using water, etc., drying the assembly, removing the plastic film, followed by light exposure and development. Further, the activation energy ray-sensitive 30 [0082] composition of the present invention may be used as an aqueous coating material. Thus, the composition is applied on a surface of a substrate, the coating being irradiated with ultraviolet rays, visible light, near infrared rays or an electron beam to harden the surface. 35

[0083] e the activation -ray-sensitive composition an activation energy ray-sensitive film obtainable from the composition and a patter method according to the present invention have described constitution, the following effects [0084] (1) Since only water is used as a solvent for preparation of the activation energy ray-sensitive composition and for development treatment, the composition is suited for ensuring the safety of work environment, fire prevention, prevention of pollution, etc. (2) Since the acid former can generate an acid, [0085] not only by the action of light, but also by the action of 15 activation energy rays such as electron beams or X-rays. the composition is not only sensitive to light but also sensitive to electron beams and X rays. [0086] (3) Since various sensitizers can be used together, the composition obtained may be sensitive to redistion.

20 rays of a wide wavelength ranging from the far ultraviolet ray region to a near infrared ray region. [0087] (4) The composition can be applied to a film or a screen substrate to form an activation energy ray sensitive film which serves as a photosensitive film capable of storing for a long period of time. 25 [0088] (5) A pattern of high resolution can be obtained by adjusting the particle size of the water-insoluble or sparingly water-soluble acid former and the sensitizer to a small size. 30 (6) The composition can provide a surface coating material hardenable by light exposure or electron beam irradiation. (7) The activation energy ray-sensitive [0090] composition and a film obtainable therefrom are can be

Industrial Applicability

35

advantageously utilized in the field of printing such as

screen printing platemaking and also advantageously used as a coating composition, an adhesive composition, etc.

Examples:

10

15

μm.

5 [0091] The present invention will be next described in further detail by examples.

Examples 1 to 12

[0092] Preparation Dispersions of Photo-Acid Former and Sensitizer:

[0093] A dispersion of a photo-acid former was prepared using a planetary-type fine pulverizer (Model P-7 manufactured by Fritsch Inc., Germany) and 45 mL pulverizing vessel made of stainless steel or zirconia in the following manner.

Poly(vinyl alcohol) (PVA, manufactured by Nihon Gosei Kagaku Co., Ltd. as a dispersant was dissolved in water to obtain a 15 % by weight aqueous solution. aqueous solution (15 mL) and a photo-acid former and/or 20 sensitizer were charged in the pulverizing vessel, to which about 15 mL_of stainless steel or zirconia pulverizing beads, having a diameter of 5/32 inches and made of the same material as that of the pulverizing vessel, and an antifoaming agent (AQUAREN 1488 manufactured by Kyoeisha) were added. The vessel was closed and 25 rotated at a revolution speed of 500 rpm for 5 minutes in one direction. Such a pulverization treatment was performed 4 times in total while alternately changing the rotational direction. Thereafter, the pulverizing beads 30 were removed by filtration to obtain a photosensitive dispersion. The thus obtained photosensitive dispersions were as shown in Table 1. The average particle diameter of the fine particles in the dispersions was 0.51 to 0.72

Preparation of Dispersions of Photo-Acid Former and Sensitizer

Table 1

Example	Dispersant:	Dhoto oold formand in	
	PVA solution	inviv-avia former and Amount added	Sensitizer and Amount added
_	10 parts	Tribromomethylphenylsulfone:	
	by weight	4 parts by weight	
2	10 parts	Bis(tert-phenyl)iodonium hexafluorophosphate.	
	by weight	4 parts by weight	
ω	10 parts	3-Methoxyphenylamine-4-diazonium	
	by weight	hexafluorophosphate: 4 parts by weight	
4	10 parts	2-(p-methoxyphenyl)4.6-bistrichloromethyltriazine: 4	
	by weight	parts by weight	
5	10 parts	2-{2-(p-methoxyphenyl)ethenyl}4.6-	
	by weight	bistrichloromethyltriazine: 4 parts by weight	
6	10 parts	Dimethylphenacyl phosphonium	
	by weight	tetra(pentafluorophenyl)borate:	
		4 parts by weight	
7	10 parts		2-chlorothioxantone: 1 part
	by weight		z cincicanovanione. I bart
00	10 parts	Tribromomethylphenyl sulfone:	Q 10-digthovygathroogo: 1 post to the second
	by weight	4 parts by weight	Jiv-menosyminiacene. I part by weight
ν.	10 parts	Tribromomethylphenyl sulfone:	Ris(n-diethylaming)henzonbanona:
5	by weight	4 parts by weight	1 part by weight
10	10 parts	Tribromomethylphenyl sulfone:	1
	by weight	4 parts by weight	1 part by weight
11	10 parts	Tribromomethylphenyl sulfone:	2 Chlorothioconthono. 1
	by weight	4 parts by weight	z-cinologiloxalitione: 1 part by Weight
12	10 parts	Bis(tert-phenyl)iodonium hexafluorophosphate:	3.3-Carbonylhis(7-diethylaminocommerin):
	by weight	4 parts by weight	1 part by weight

Examples 13 to 56

15

20

25

[0095] Preparation of Photosensitive Compositions: [0096] While stirring the dispersion of the photo-acid former or sensitizer obtained in each of Examples 1 to 12, an acid-reactive insolubilizing agent and an aqueous solution of a binder resin were added thereto. As the acid-reactive insolubilizing agent N-methylolacrylamide (manufactured by Soken Chemical Co., Ltd.), methylolmelamine (M-3, manufactured by Sumitomo Chemical 10 Co., Ltd.), resol resin (RESITOP PL-4668, manufactured by Gun-ei Chemical Industry Co., Ltd.), methylolated urea (EX-211 or EX-321, manufactured by Nagase Chemtex Inc.) or an oxetane compound (OXT-121, manufactured by Toa Gosei Co., Ltd.), was ased. As an acrylic monomer, ethylene glycol diacrylate (PET-30, manufactured by Nippon Kayaku Co., Ltd.) was used. As the binder resin, a 15 % by weight aqueous solution of K-217 (manufactured by Kuraray Co., Ltd) or a 10 % by weight aqueous solution of poly(vinyl alcohol) (PVA-SbQ) containing 1.4 mole % stilbazolium substituent was used. As a resin emulsion, HA-100 manufactured by Clariant Polymer Co., Ltd. was used. To each of these photosensitive compositions, FL-GB blue (manufactured by Dainichiseika Kogyo Co., Ltd.) was added. The thus obtained photosensitive compositions were as shown in Tables 2 to 5.

										_		_						
	20	5	6	č	2		17		7	16		15		1	1/		13	Бхашре
Sample of Example 7: 1 part by weight	Sample of Example 7: 1 part by weight	Sample of Example 2: I part by weight	Sample of Example 7. 1 part by Weight	Sample of Example 2. 1 part by Weight	Sample of Evernals 2: 1 1	Sample of Example 7: 1 part by weight	Sample of Example 1: 1 part by weight	Sample of Example 7: 1 part by weight	Sample of Example 1: I part by weight	Sample of Emple 1. 1 part by Weight	Sample of Example 7: 1 part by weight	Sample of Example 1: I part by weight	Sample of Example 7: 1 part by weight	Sample I: I part by weight	Sample of Example /. I part by weight	Sample of Evample 7: 1 part beautiful	Sample of Example 1: 1 part by weight	Photo-acid former dispersion
Resol resin: 1.5 parts by weight		Methylolated urea: 1.5 parts by weight	1.5 parts by weight	N-methylol acrylamide:	1.5 parts by weight	1 5 nows by the second	N-methylol somilamida:	•	Resol resin: 1.5 parts by weight		rateury or area: 1.5 parts by weight	Mothylolotod 1 5		Methylol melamine: 1.5 parts by weight	1.5 parts by weight	in-incuryiolaci ylannide:	N mother lands and a constant	Acid-reactive insolubilizing agent
K-217Aqueous solution: 100 parts by weight	100 parts by weight	K-217Aqueous solution:	100 parts by weight	K-217Aqueous solution:	10 parts by weight	Aqueous solution of PVA-SbQ:	Too barts by weight	100 parts by waisht	K-217Agueous solution:	100 parts by weight	K-217Aqueous solution:	100 parts by weight	יייייייייייייייייייייייייייייייייייייי	K-217A guegus solution:	100 parts by weight	K-217Aqueous solution:	Entropy Toolly	Rinder recin

[7600]	Table 3 Preparation of	f Photosentive Compositions	
21	Photo-acid former dispersion	Acid-reactive insolubilizing agent	Binder resin
1	Sample of Example 7: I part by weight	Epoxy compound: 40 parts by weight	K-217Aqueous solution:
22	Sample of Example 3: I part by weight	N methylological 10 parts by weight	100 parts by weight
3 1	Campic of Example 3. 1 part by weight	N-methylolacrylamide: 1.5 parts by weight	K-217Aqueous solution: 100 parts by weight
3	sample of example 3: I part by weight	Methylol melamine: 1.5 parts by weight	K-217Aqueous solution:
24	Sample of Example 3: 1 part by weight	Methylolated urea: 1.5 parts by weight	K-217Aqueous solution:
25	Sample of Example 3: 1 part by weight	Resol resin. 1 5 parts have significant	100 parts by weight
36 1	Sample of Example 3. 1 part by weight	Resol resin: 1.5 parts by weight	K-217Aqueous solution: 100 parts by weight
27	Sample of Example 3: 1 part by weight	Epoxy compound: 40 parts by weight	K-217Aqueous solution: 100 parts by weight
į	sample of Example 3: 1 part by weight	N-methylol acrylamide: 1.5 parts by weight Terephthalaldehyde bisdiethyl acetal:	K-217Aqueous solution: 100 parts by weight
28	Sample of Example 4: 1 part by weight	N-methylol acrylamide: 1.5 parts by weight	K-217Aqueous solution:
29	Sample of Example 4: 1 part by weight	Methylol melamine: 1.5 parts by weight	K-217Aqueous solution:
) :	Sample of Example 4: I part by weight	Methylolated urea: 1.5 parts by weight	K-217Aqueous solution:
31	Sample of Example 4: 1 part by weight	Resol resin: 1.5 parts by weight	K-217Aqueous solution:
32	Sample of Example 5: 1 part by weight	N-methylol acrylamide: 1.5 parts by weight	K-217Aqueous solution:
33	Sample of Example 5: 1 part by weight	Methylol melamine: 1.5 parts by weight	K-217Aqueous solution:
34	Sample of Evample 5: 1 norther miles		100 parts by weight
36	compre of Example 3. 1 part by Weight	Methylol melamine: 1.5 parts by weight Pentaerythrytol acrylate: 1.5 parts by weight	K-217Aqueous solution: 100 parts by weight
,	sample of Example 3: 1 part by weight	Resol resin: 1.5 parts by weight	K-217Aqueous solution:

2	
	Table
	Le 4
	'P
	Preparation of
	tion
	O H
	of Photosentive (
のではついていたいだい	Compositions

1	┪	OF EMOCOSEMENTA COMPOSITIONS)ns
26 DXalliple	Filoto-acid former dispersion	Acid-reactive insolubilizing agent	Binder resin
00	Sample of Example 6: I part by weight	N-methylol acrylamide: 1.5 parts by weight	K-217Aqueous solution:100 parts by weight
37		Diethylene glycol diacrylate: 1.5 parts by weight	
30	Sample of Example 6: 1 part by weight	Resol resin: 1.5 parts by weight	K-217Aqueous solution: 100 parts by weight
38	Sample of Example 6: 1 part by weight	Epoxy compound: 40 parts by weight	K-217Aqueous solution:100 parts by weight
39	Sample of Example 8: I part by weight	N-methylol acrylamide: 1.5 parts by weight	K-217Aqueous solution:100 parts by weight
40	Sample of Example 8: 1 part by weight	Methylolated urea: 1.5 parts by weight	K-217 Aguegus solution: 100 parts by waish
41.	Sample of Example 9: 1 part by weight	Methylolated urea: 1.5 parts by weight	K-217A gueous solution: 100 parts by weight
42	Sample of Example 9: 1 part by weight	Resol resin: 1.5 parts by weight	K-217Aqueous solution: 100 parts by weight
ŧ,	Sample of Example 10: 1 part by weight	N-methylol acrylamide: 1.5 parts by weight	K-217Aqueous solution:100 parts by weight
44	Sample of Example 10: 1 part by weight	Methylolated urea: 1.5 parts by weight	K-217A queous solution: 100 parts by weight
45	Sample of Example 11: 1 part by weight	N-methylol acrylamide:	K-217Aqueous solution:100 parts by weight
46	Sample of Example 11: 1 part by weight	Resol resin: 1 5 parts by weight	V 217 A 2000 collection 100
47	Sample of Example 12: 1 part by weight	N-methylol acrylamide:	K-217Aqueous solution:100 parts by weight
40		1.5 parts by weight	
à	cample of Example 12. I part by Weight	Methylol melamine: 1.5 parts by weight	K-217Aqueous solution: 100 parts by weight
49	Sample of Example 12: 1 part by weight	Resol resin: 1.5 parts by weight	K-217Aqueous solution: 100 parts by weight
51	Sample of Example 12: I part by weight	Epoxy compound: 40 parts by weight	K-217Aqueous solution: 100 parts by weight
2	Sample of Example 12: I part by weight	Epoxy compound: 20 parts by weight Diethylene glycol diacrylate:	K-217A queous solution:100 parts by weight

[0099] Table 5

Example	Photo-acid	Acid-reactive	Resin	Binder
	former dispersion	insolubilizing agent	emulsion	resin
52	Sample of Example 8:	N-methylol acrylamide:	HA-10:	K-217Aqueous
	1 part by weight	1.5 parts by weight	15 parts	solution: 100 parts
			By weight	by weight
53	Sample of Example 8:	Methylolated urea:	HA-10:	K-217Aqueous
	1 part by weight	1.5 parts by weight	15 parts	solution: 100 parts
			By weight	by weight
54	Sample of Example 8:	Resol resin:	HA-10:	K-217Aqueous
	1 part by weight	1.5 parts by weight	15 parts	solution: 100 parts
			By weight	by weight
55	Sample of Example 9:	N-methylol acrylamide:	HA-10:	K-217Aqueous
	1 part by weight	1.5 parts by weight	15 parts	solution: 100 parts
			By weight	by weight
56	Sample of Example 10:	Methylol melamine:	HA-10:	K-217Aqueous
	1 part by weight	1.5 parts by weight	15 parts	solution: 100 parts
			By weight	by weight

Comparative Examples 1 to 4 [0100]

Photosensitive compositions prepared without using the acid-reactive insolubilizing agent or using only a radical polymerizable monomer are shown in Table 6 as comparative examples.

10 Table 6 Preparation of Photosensitive Films

Comparative Example	Photo-acid former dispersion	Additive	Binder resin
1	Sample of Example 3: I part by weight	None	K-217Aqueous solution: 100 parts by weight
2	Sample of Example 3: 1 part by weight	Diethylene glycol diacrylate: 15 parts by weight	K-217Aqueous solution: 100 parts by weight
3	Sample of Example 8: 1 part by weight	Diethylene glycol diacrylate: 20 parts by weight	K-217Aqueous solution: 100 parts by weight
4	Sample of Example 10: 1 part by weight	Diethylene glycol diacrylate: 20 parts by weight	K-217Aqueous solution: 100 parts by weight

Examples 57 to 104

[0101] Preparation of Photosensitive Films and Photosensitization Characteristics:

[0102] The photosensitive compositions obtained in Examples 13 to 56 were each applied onto a polyester film. The coatings were dried at 40°C for 15 minutes to obtain photosensitive films having thicknesses of 25 to 30 µm. Each film was irradiated through a photomask placed in contact therewith using a 4 KW high pressure mercury lamp 10 or a 3 KW halogen lamp spaced a distance of 1 m_away therefrom. After irradiation, water was sprayed thereon using a spray gun to effect development. Prior to the development with water, a heat treatment was carried out for given temperature and time, when needed. The results 15 are summarized in Tables 7 and 8, in which the evaluation of image formation is rated as follows:

[0103] yes: negative pattern is obtained

[0104] no: pattern is not formed

[0105] Good patterns were obtained when the acidreactive insolubilizing agent was used. When no acidreactive insolubilizing agent was added or when only a
radical polymerizable monomer was added, negative
patterns were not obtained.

Table 7 Photosensitization Characteristics of Films obtained from Photosensitive Compositions

Example	Photosensitive	Light	Exposure	Heat treatment	Image
	Composition	Source	Time (min.)		formation
	Preparation		\ ' '		101111011
	Example		_		
57	Example 13	Mercury lamp	3	80°C, 10 minutes	A
58	Example 14	Mercury lamp	3	80°C, 10 minutes	A
59	Example 15	Mercury lamp	3	40°C, 20 minutes	A
60	Example 16	Mercury lamp	3	40°C, 20 minutes	Α
61	Example 17	Mercury lamp	2	40°C, 20 minutes	Α
62	Example 18	Halogen lamp	3	40°C, 20 minutes	A
63	Example 19	Halogen lamp	3	40°C, 20 minutes	A
64	Example 20	Halogen lamp	3	40°C, 20 minutes	A
65	Example 21	Halogen lamp	3	Room temperature	A
	·			120 minutes	
66	Example 22	Mercury lamp	2.5	80°C, 10 minutes	Α
67	Example 23	Mercury lamp	2.5	80°C, 10 minutes	Α
68	Example 24	Mercury lamp	2.5	40°C, 20 minutes	Α
69	Example 25	Mercury lamp	2.5	40°C, 20 minutes	A
70	Example 26	Mercury lamp	2.5	40°C, 20 minutes	Α
71	Example 27	Mercury lamp	2.5	40°C, 20 minutes	Α
72	Example 28	Mercury lamp	4	80°C, 5 minutes	A
73	Example 29	Mercury lamp	3	80°C, 5 minutes	A
	Example 30	Mercury lamp	3	80°C, 5 minutes	A
	Example 31	Mercury lamp	3	80°C, 5 minutes	A
	Example 32	Mercury lamp	3	80°C, 5 minutes	A
	Example 33	Mercury lamp	2.5	80°C, 5 minutes	A
	Example 34	Mercury lamp	2.5	80°C, 5 minutes	A
	Example 35	Mercury lamp	2.5	40°C, 20 minutes	A
80	Example 36	Mercury lamp	1	40°C, 20 minutes	A

[0106]

Table 8 Photosensitization Characteristics of Films obtained from Photosensitive Compositions

Example			Exposure	Heat treatment	Image
	Composition	Source	Time (min.)	condition	formation
	Preparation		1 ' '		Tormation
<u> </u>	Example				
81	Example 37	Mercury lamp	2.5	40°C, 20 minutes	Α
82	Example 38	Mercury lamp	2	40 °C, 20 minutes	A
83	Example 39	Halogen lamp	2	40°C, 20 minutes	A
84	Example 40	Halogen lamp	2	40°C, 20 minutes	A
85	Example 41	Halogen lamp	1.5	80°C, 20 minutes	A
86	Example 42	Halogen lamp	1.5	40°C, 20 minutes	A
87	Example 43	Halogen lamp	1.5	40°C, 20 minutes	A
88	Example 44	Halogen lamp	1	Room temperature	A
				120 minutes	1
89	Example 45	Mercury lamp	3	40°C, 20 minutes	A
90	Example 46	Mercury lamp	3	40°C, 20 minutes	Α
91	Example 47	Mercury lamp	1	40°C, 20 minutes	A
92	Example 48	Mercury lamp	1	80°C, 10 minutes	A
93	Example 49	Mercury lamp	1	80°C, 10 minutes	A
94	Example 50	Mercury lamp	1	40°C, 20 minutes	A
95	Example 51	Mercury lamp	1	40°C, 20 minutes	A
96	Example 52	Mercury lamp	2	40°C, 20 minutes	A
97	Example 53	Mercury lamp	2	80°C, 10 minutes	A
98	Example 54	Mercury lamp	2	80°C, 10 minutes	A
99	Example 55	Mercury lamp	1.5	40 °C, 20 minutes	A
100	Example 56	Mercury lamp	1	40°C, 20 minutes	A
101	Comparative	Mercury lamp	10	40 °C, 20 minutes	B
	Example 1	,		40 C, 20 minutes	
102	Comparative	Mercury lamp	5	40°C, 20 minutes	В
	Example 2			,	-
	Comparative	Mercury lamp	10	40°C, 20 minutes	В
	Example 3			_	
		Mercury lamp	5	80°C, 10 minutes	В
	Example 4				1

5 Examples 105 to 117

[0107] Preparation of Films for Screen Platemaking and Photosensitization Characteristics:

[0108] The photosensitive compositions obtained in the above examples were each applied onto a 250 mesh polyester screen and then dried. Such application and drying

operations were repeated to obtain uniform films having thicknesses of about 15 µm. Each film was irradiated through a photomask placed in contact therewith using a 4 KW high pressure mercury lamp or a 3 KW halogen lamp spaced a distance of 1 m away therefrom. After 5 irradiation, water was sprayed thereon using a spray gun to effect development. Prior to the development with water, a heat treatment was carried out for given temperature and time, when needed. The results are shown 10 in Table 9. The patterns obtained exhibited good water resistance and show good resistance against organic solvents such as toluene, acetone, ethyl acetate and butyl cellosolve. When the compositions of Comparative Examples were used, however, patterns were not formed by water development after the exposure. 15

Table 9 Sensitization Characteristics of Films for Screen Platemaking obtained from Photosensitive Composition

Example	Photosen-	Light	Ехро-	Heat treatment	Image	Water	Sol-
	sitive	Source	sure	condition	Form-	Resis-	vent
	Compo-		Time		ation	tance	resis-
	sition	<u> </u>	(min.)		j	1	tance
ĺ .	Prepa-						
	ration		ļ	·			
	Example	·		·			
105	Example 13	Mercury lamp	3	40°C, 20 minutes	Α	Α	Α
106	Example 21	Mercury lamp	3	40°C, 20 minutes	Α	Α	Α
107	Example 22	Mercury lamp	3	40°C, 20 minutes	Α	Α	Α
108	Example 26	Mercury lamp	4	40°C, 30 minutes	Α	Α .	Α
109	Example 28	Mercury lamp	1	40°C, 20 minutes	Α	Α	Α
110	Example 36	Mercury lamp	2	40°C, 20 minutes	Α	Α	Α
111	Example 38	Mercury lamp	2	40°C, 20 minutes	Α	Α	Α
112	Example 42	Mercury lamp	1.5	40°C, 20 minutes	A	Α	Α
113	Example 50	Mercury lamp	2	40°C, 30 minutes	Α	Α	Α
114	Example 51	Mercury lamp	2	40°C, 30 minutes	Α	Α	Α
115	Example 52	Mercury lamp	1.5	40°C, 20 minutes	Α	A	Α
116	Comp.	Mercury lamp	10	40°C, 20 minutes	В	В	В
	Example 1					•	
117	Comp.	Mercury lamp	10	40°C, 20 minutes	В	В	В
	Example 1						

An activation energy ray-sensitive composition which can be permitting development with neutral water Provided is an activation energy ray-sensitive composition characterized by comprising a dispersion which comprises an aqueous solution of a water-soluble resin, and an acid former dispersed in the aqueous solution in the form of fine powder. The acid former being insoluble or sparingly soluble in water and generating an acid by the action of activation energy rays, and an acid-reactive insolubilizing agent dispersed in the dispersion and insolubilizing the water-soluble resin by the action of the acid.