Assignment 1 Report DD2424

Mehrdad Darraji

I. Gradient Implementation and Test

Using the formulas from lecture, I was able to successfully compute the gradient for model W and b.

- Let $\{(\boldsymbol{x}_1, \boldsymbol{y}_1), \dots, (\boldsymbol{x}_{n_b}, \boldsymbol{y}_{n_b})\}$ be the data n the mini-batch $D^{(t)}$
- Gather all x_i and y_i from the batch into the matrix

$$m{X}_{batch} = egin{pmatrix} \uparrow & & \uparrow \\ m{x}_1 & \dots & m{x}_{n_b} \\ \downarrow & & \downarrow \end{pmatrix}, \ m{Y}_{batch} = egin{pmatrix} \uparrow & & \uparrow \\ m{y}_1 & \dots & m{y}_{n_b} \\ \downarrow & & \downarrow \end{pmatrix}$$

Complete the forward pass

$$\mathbf{P}_{batch} = SoftMax(W\mathbf{X}_{batch} + \mathbf{b1}_{n_b}^T)$$

- Complete the backward pass

$$G_{batch} = -(Y_{batch} - P_{batch})$$

$$\frac{\partial L}{\partial W} = \frac{1}{n_b} \boldsymbol{G}_{batch} \boldsymbol{X}_{batch}^T, \qquad \frac{\partial L}{\partial b} = \frac{1}{n_b} \boldsymbol{G}_{batch} \boldsymbol{1}_{n_b}$$

- Add he gradient for the regularization term

$$\frac{\partial J}{\partial W} = \frac{\partial L}{\partial W} + 2\lambda W , \qquad \frac{\partial J}{\partial b} = \frac{\partial L}{\partial b}$$

I computed the relative error between the numerically computed gradient value g_n and an analytically computed gradient value g_a with an eps value of 0.0001

$$\frac{|g_a - g_n|}{\max(eps, |g_a| + |g_n|)}$$

The result seemed to be very well as the error between my gradient function and the ComputeGradsNumSlow was a very small. Below are different tests I ran and results:

Batch Size	50	50	50	200	200	200
Lambda	0	0.1	1	0	0.1	1
W error	1.54e-8	3.68e-7	1.99e-7	1.32e-8	5.44e-7	1.20e-6
b error	7.33e-10	7.33e-10	7.33e-10	6.70e-10	6.70e-10	6.70e-10

II. Experiments

Through four experiments, we analyze the results of the loss functions and accuracies of the train and validation datasets, then afterwards have a visualization of the weight matrix. Finally, we see the accuracy level achieved by each experiment on the test dataset.

Note: in the plots, the blue line represents the training set, the red line represents the validation set, the x-axis represents the epochs, and the y-axis represents the loss or the accuracy.

a. Experiment a: lambda = 0, $n_epochs = 40$, $n_batch = 100$, eta = .1

The plots shown below have lines that are very jagged with high variance and a lot of noise in the weights—this is due to having a high learning rate and no regularization.

Figure 1: Plot showing loss curves for Experiment a.

Figure 2: Plot showing the accuracy for Experiment a.

Figure 3: Visualization of the learned W matrix for Experiment a.

b. Experiment b: lambda = 0, $n_epochs = 40$, $n_batch = 100$, eta = .01

This experiment resulted differently than the last experiment. It has a lower learning rate – this smoothed out the curves in the plots and had a more stable weight matrix. This was an improvement from the last experiment, but the images are still a bit noisy.

Figure 4: Plot showing loss curves for Experiment b.

Figure 5: Plot showing the accuracy for Experiment b.

Figure 6: Visualization of the learned W matrix for Experiment b.

c. Experiment c: lambda = .1, n epochs = 40, n batch = 100, eta = .01

In this experiment, we decided to increase the regularization term – this resulted in a smoother weight matrix visualization and the performance became more stable than before. Another change is in the plots, where it takes less epochs for the curves to become stable.

Figure 7: Plot showing loss curves for Experiment c.

Figure 8: Plot showing the accuracy for Experiment c.

Figure 9: Visualization of the learned W matrix for Experiment c.

d. Experiment d: lambda = 1, $n_epochs = 40$, $n_batch = 100$, eta = .01

In the last experiment, we increased the regularization even more; however, it was too high and resulted in low performance. The loss and accuracy plots suddenly make a turn instead of smoothly stabilizing.

Figure 10: Plot showing loss curves for Experiment d.

Figure 11: Plot showing the accuracy for Experiment d.

Figure 12: Visualization of the learned W matrix for Experiment d.

After each experiment, I get the final test accuracy that my network achieves after each of the training runs. Below are the results:

Experiments	Accuracies
a	27.58%
b	36.65%
С	33.37%
d	21.92%