(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-155626 (P2001-155626A)

(43)公開日 平成13年6月8日(2001.6.8)

(51) Int.Cl.7		畿 別記号	F I 7-73-1-*(参考)
H01J	9/02		H01J 9/02 R 2C0	3 5
			F 2H1	1 3
B41F	15/08	303	B41F 15/08 303E 5C0	27
B 4 1 M	1/12		B 4 1 M 1/12 5 C 0	28
G09F	9/30	310	G09F 9/30 310 5C0	94
		審査請	R 未請求 請求項の数3 OL (全 12 頁) 最終	頁に続く
(21)出願番号	•	特顧平11-337839	(71) 出願人 000004293	- 14
(n.e.) . (-	株式会社ノリタケカンパニーリミラ	
(22)出願日		平成11年11月29日 (1999.11.29)	愛知県名古屋市西区則武新町3丁	11 番36
			号 (50) (10) (50)	
			(71)出顧人 599042717	
			ノリタケ電子工業株式会社	
			愛知県名古屋市西区則武新町三丁	11番36
			号	
			(72)発明者 細見 和徳	
			愛知県名古屋市西区則武新町三丁	11番36
			号 ノリタケ電子工業株式会社内	
			(74)代理人 100085361	
			弁理士 池田 治幸 (外2名)	
			最終	頁に続く

(54) 【発明の名称】 ディスプレイ基板の製造方法

(57)【要約】

【課題】印刷ペーストの滲みや製版の欠陥に起因する不 具合を抑制し得るディスプレイ基板の製造方法を提供す る。

【解決手段】印刷工程SB3では、印刷禁止領域がマスキングで覆われた状態で膜形成面に厚膜銀ペーストを塗布することから、列方向配線を形成するための製版に欠陥が存在し或いはその厚膜銀ペーストが膜形成面上で渗んだ場合等にも、印刷禁止領域内では無用の厚膜銀ペースト(不用パターン)が膜形成面に直接塗布されることはなくマスキング上に塗布され、焼成工程SB4において、そのマスキングと共に膜形成面上から除去される。そのため、印刷禁止領域に不用パターンの厚膜銀が付着し、延いてはそこに固着することが抑制される。一方、印刷禁止領域外では印刷パターン外に渗み等に起因するはみ出し部が生じても、ディスプレイ基板の機能上何ら不都合は生じない。

【特許請求の範囲】

【請求項1】 基板の膜形成面上に厚膜パターンを含む 複数種類の膜を形成してディスプレイ基板を製造する方 法であって、

前記膜形成面のうちの前記厚膜パターンを形成するため の印刷ペーストが付着してはならない予め定められた印 刷禁止領域を所定のマスキング材料で覆うマスキング工 程と、

前記マスキングが施された膜形成面に、前記印刷ペーストを所定パターンで厚膜スクリーン印刷する印刷工程と、

その印刷工程の後に、前記マスキング材料を除去する除去工程とを、含むことを特徴とするディスプレイ基板の 製造方法。

【請求項2】 前記マスキング工程は、前記マスキング 材料として有機化合物を用いるものであり、

前記除去工程は、前記印刷ペーストを加熱処理すること により厚膜を形成すると同時に前記マスキング材料を焼 失させる加熱処理工程である請求項1のディスプレイ基 板の製造方法。

【請求項3】 前記マスキング材料は、前記膜形成面よりも前記印刷ペーストとの接触角が大きいものである請求項1のディスプレイ基板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ディスプレイ基板の製造方法に関し、特に、厚膜スクリーン印刷を利用した膜形成技術の改良に関する。

[0002]

【従来の技術】従来から、種々の形式の平板型表示装置が知られている。例えば、熱陰極から発生した電子により蛍光体を励起発光させて表示する形式の蛍光表示管(VacuumFluorescent Display: VFD)、電界放出により発生した電子により蛍光体を励起発光させて表示する形式の電界電子放出表示装置(Field Emission Display: FED)、或いはガス放電により発生したプラズマの発光をそのまま利用し或いはそのプラズマにより蛍光体を励起発光させて表示する形式のプラズマ・ディスプレイ表示装置(Plasma Display Panel: PDP)等がその一例である。

【0003】上記のような平面型表示装置は、例えば、 互いに平行に配置された一対のディスプレイ基板がスペーサを介して相互に封着されることによって構成された 気密容器を備えている。それら一対のディスプレイ基板 の各々には、表示装置に設けられた複数の発光区画のうちの所望のものを選択的に発光させるために、それぞれ 複数本の少なくとも二種類の電極或いは配線、電子線や プラズマを可視光に変換するための蛍光体等が、表示装置の形式毎に応じた種々のパターンで備えられる。

[0004]

【発明が解決しようとする課題】ところで、前記のような表示装置において、ディスプレイ基板上の電極、配線や蛍光体等の一部或いは全部を厚膜スクリーン印刷法で形成することが行われている。しかしながら、一般に、厚膜スクリーン印刷においては、印刷時の印刷ペーストの滲みすなわち広がりを避け難い。そのため、微細なパターンを形成しようとすると、隣接する厚膜が相互に接触し或いは重なり合うことから、導体相互の短絡或いは蛍光体の混色や劣化等が生じ得るという問題があった。このような無用な厚膜の接触や重なり合い等に基づく不具合は、スクリーン製版に存在するピンホールやパターン欠け等の欠陥に起因して不要な部分に印刷ペーストが塗布された場合にも同様に生じ得る。更に、これらの問題は、膜形成面が大きくなるほど、印刷パターンが微細になるほど顕著になるのである。

【0005】本発明は、以上の事情を背景として為されたものであって、その目的は、印刷ペーストの滲みや製版の欠陥に起因する不具合を抑制し得るディスプレイ基板の製造方法を提供することにある。

[0006]

【課題を解決するための手段】斯かる目的を達成するため、本発明の要旨とするところは、基板の膜形成面上に厚膜パターンを含む複数種類の膜を形成してディスプレイ基板を製造する方法であって、(a) 前記膜形成面のうちの前記厚膜パターンを形成するための印刷ペーストが付着してはならない予め定められた印刷禁止領域を所定のマスキング材料で覆うマスキング工程と、(b) 前記マスキングが施された膜形成面に、前記印刷ペーストを所定パターンで厚膜スクリーン印刷する印刷工程と、(c) その印刷工程の後に、前記マスキング材料を除去する除去工程とを、含むことにある。

[0007]

【発明の効果】このようにすれば、印刷禁止領域がマス キング材料で覆われた状態で膜形成面に印刷ペーストを 塗布することから、製版に欠陥が存在し或いはその印刷 ペーストが膜形成面上で滲んだ場合にも、印刷禁止領域 内では無用の印刷ペーストが膜形成面に直接塗布される ことはなくマスキング材料上に塗布され、除去工程にお いて、そのマスキング材料と共に膜形成面上から除去さ れる。そのため、印刷禁止領域に無用の印刷ペーストが 付着し、延いてはそこに固着することが抑制される。一 方、印刷禁止領域外では印刷パターン外に滲みや製版欠 陥に起因する印刷ペーストの付着が生じ得るが、ディス プレイ基板の機能上何ら不都合は生じない。換言すれ ば、印刷禁止領域は、無用の印刷ペーストが付着すると ディスプレイ基板の機能が阻害される範囲に設定され る。したがって、ディスプレイ基板を製造するに際し て、印刷ペーストの滲みや製版の欠陥に起因して不具合 の生じることが抑制される。

[0008]

【発明の他の態様】ここで、好適には、前記のマスキング材料は、PMMA(ポリメチルメタクリレート)、PMIPK(ポリメチルイソプロペニルケトン)、ポリビニルアルコールー重クロム酸アンモニウム、或いはポリビニルピロリドンージアジドスチルベン等の感光性樹脂である。このようにすれば、露光および現像処理によりマスキング材料で印刷禁止領域を覆うことができるため、マスキング材料で印刷禁止領域を覆うことができるため、マスキング材料はフィルム状に成形し或いは溶媒に溶解して分散させて用いられる。後者の場合には、例えば、水およびアルカリ水溶液等の水性溶媒、或いは、トルエン、メチルセロソルブ、ブチルセロソロブ、メチルカルビトール等のグリコールエーテル、およびセロソルブアセテート、ブチルカルビトールアセテート等のグリコールエステル等の有機溶剤が用いられる。

【0009】また、好適には、前記のマスキング材料は、アルミニウム(Al)、ニッケル(Ni)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、クロム(Cr)、或いは銀(Ag)等の金属材料である。このようにすれば、露光、現像、およびエッチング処理によりマスキング材料で印刷禁止領域を覆うことができるため、マスキング・パターンを高精度で形成できる。

【0010】また、好適には、(a-2) 前記マスキングエ 程は、前記マスキング材料として有機化合物を用いるも のであり、(c-2) 前記除去工程は、前記印刷ペーストを 加熱処理することにより厚膜を形成すると同時に前記マ スキング材料を焼失させる加熱処理工程である。このよ うにすれば、印刷ペーストから厚膜を生成する加熱処理 の際にマスキング材料が焼失させられることから、その 除去のために工数が増加し或いは工程が煩雑になること がない。一方、マスキング上に付着した印刷ペースト は、無機物或いは金属を含むことから完全に焼失するこ とはないが、マスキング材料が焼失する過程でガス化す ると、その蒸気によって、加熱処理におけるその蒸気の 排出経路から共に排出され、或いは、それが付着してい た膜形成面上の印刷禁止領域から外れた位置に運ばれ る。そのため、印刷禁止領域に付着した印刷ペーストを 除去するための処理を特に施す必要もない。なお、有機 化合物としては、前記の感光性樹脂や樹脂材料等が好適 に用いられる。

【0011】また、好適には、上記のように前記の除去工程が加熱処理工程である場合において、前記のマスキング材料は、メチルセルロース或いはエチルセルロース等のセルロース樹脂、またはメチルアクリレート、ブチルアクリレート、アクリルニトリル等のアクリル樹脂である。このようにすれば、感光性樹脂がマスキング材料として用いられる場合よりも低い温度で、マスキング材料を分解および焼失させ得る。

【0012】また、好適には、上記のように除去工程が 加熱処理工程である場合において、マスキング材料は、 加熱により分解される際に金属元素やその化合物等の残留物を生じさせること無く焼失させられる有機化合物である。

【0013】また、好適には、上記のように除去工程が 加熱処理工程である場合において、(a-3) 前記のマスキ ング工程は、前記印刷ペーストがディスプレイ基板の機 能上付着してはならない領域だけに前記マスキング材料 を設けるものである。このようにすれば、印刷パターン から外れた位置ではあるが機能上何ら支障のない領域に 付着した印刷ペーストは、除去工程でマスキング材料の 蒸気で運ばれることはなく、そのままその印刷位置に固 着させられる。そのため、その支障のない領域に付着し た印刷ペーストが加熱処理の過程で印刷禁止領域に運ば れ得ないことから、その印刷禁止領域に印刷ペーストか ら生成された厚膜が固着されることが一層抑制される。 【0014】また、好適には、前記マスキング材料は、 前記膜形成面よりも前記印刷ペーストとの接触角が大き いものである。このようにすれば、印刷ペーストとの接 触角の大きなマスキング材料上にはその印刷ペーストが 広がり難いため、その印刷ペーストの渗みやペーストだ れ等に起因するパターン幅寸法の拡大が好適に抑制され る。したがって、一層精細度の高い厚膜パターンを形成

【0015】また、好適には、前記のマスキング工程は、前記のマスキング材料を厚膜スクリーン印刷法、フィルム或いはシートの貼り着け、フォトリソグラフィ法、真空蒸着、スパッタリング、電解または無電解めっき、或いは電鋳等により膜形成面上に設けるものである。すなわち、マスキング工程は、必要なパターン精度、寸法、或いはマスキング材料の種類等に応じて、適宜の方法を採ることができる。

【0016】また、好適には、前記厚膜パターンが2種 類以上設けられ且つそれら2種以上の厚膜パターンをそ れぞれ形成するための2種以上の印刷ペーストのうちの 複数のものが膜形成面上にそれぞれ付着してならない領 域を有する場合には、前記のマスキング工程および除去 工程は、それら2種以上の印刷ペーストからそれぞれ厚 膜を形成するに際してそれぞれ実施される。このように すれば、全ての印刷ペーストが膜形成面上の付着しては ならない領域すなわち印刷禁止領域を避けて塗布される ことから、無用の印刷ペースト付着に起因するディスプ レイ基板の不具合が一層抑制される。例えば、複数種類 の蛍光体層が膜形成面に塗着される蛍光体基板において は、蛍光体の混色を防止する必要があるため、各々の蛍 光体ペーストを塗布する際に他の蛍光体ペーストが塗布 される位置にマスキングを施して無用な付着を抑制する 必要がある。また、複数種類の導体配線や電極等を積層 形成する場合においても、その各々について短絡防止の ために必要な部分にはマスキングを施すことが好まし 11

[0017]

【発明の実施の形態】以下、本発明の一実施例を図面を 参照して詳細に説明する。

【0018】図1は、本発明の一実施例のディスプレイ基板の製造方法がその製造過程に適用されたFED10の構成を一部を切り欠いて示す斜視図である。図において、FED10は、それぞれの略平坦な一面12,14が向かい合うように所定間隔を隔てて互いに平行に配置された相互に同様な寸法・形状の前面板16および背面板18と、それらの間に配置されたスペーサ22とを備えたものである。それら前面板16、背面板18、およびスペーサ22は互いに気密に封着されており、それらによってFED10の外囲器である気密容器が構成されている。気密容器内は例えば6.7×10-5 (Pa) [5×10-7 (Torr)]程度の真空になっている。

【0019】上記の前面板16および背面板18は、例えばそれぞれ1~2(mm)程度の均一な厚さを備えて透光性を有する軟化点が600(℃)程度の高歪点ガラス、例えば、ソーダライム・ガラス等から成るものである。また、前記のスペーサ22は、例えば、前面板16および背面板18と同様な外形寸法を有する矩形枠状或いは格子状を成すものである。このスペーサ22は、例えば426合金から成る2~5(mm)程度の一様な厚さの矩形枠状或いは格子状等の素材の表面に、600(℃)程度の軟化点の硼珪酸ガラス等から成る図示しない絶縁ガラス層が10(μm)程度の厚さに電着等によって設けられて構成されている。このため、前面板16と背面板18との間隔すなわち気密空間の高さ寸法は、例えば2~5(mm)程度である。

【0020】また、前面板16の一面12には、例えば ITO (酸化インジウム錫: IndiumTin Oxide) 等から 成る0.1 ~0.5(mm) 程度の幅寸法のストライプ状の複数 本の透明な陽極24が、例えば0.1~0.5(㎜)程度の一 定の中心間隔を以て一方向に沿って並んで設けられてい る。それら複数本の陽極24の各々の表面には、R (赤), G(緑), B(青)の3つの発光色の何れかに 対応する蛍光体層26が、例えば、その一方向と直交す る方向にR, G, Bの順に繰り返し並ぶように、陽極2 4と同様な幅寸法を以てストライプ状或いはマトリクス 状に設けられている。上記の陽極24は、例えばスパッ タ等の薄膜法によって例えば1(μπ)程度の厚さに形成さ れたものであり、シート抵抗値が $10(\Omega/\Box)$ 以下程度 の比較的高い導電性を備えている。また、上記の蛍光体 層26は、例えば、ZnO:Zn, ZnS:Ag+In2O3等の電子線に よって可視光を発する材料から構成されるものであっ て、例えば厚膜スクリーン印刷法等によって10~ 20(μ m)程度の厚さで設けられることにより、面積抵抗率が50 $O(\Omega/cm^2)$ 以下程度の導電性を付与されている。また、 これら3種の蛍光体層26には、他の蛍光体が混入する ことに起因する混色は何ら生じていない。

【0021】また、前面板16の一面12のうちの蛍光 体層26が設けられていない残部には、例えば黒色顔料 を含むガラスから成るブラック・マトリクス(マスク) 28が10~ 20(μm)程度の厚さで設けられており、それ ら蛍光体層26の表面およびブラック・マトリクス28 の表面は、一面12の全面にそれら蛍光体層26および ブラック・マトリクス28の表面形状に倣って設けられ た 100~ 200(nm)程度の厚さのメタル・バック30によ って覆われている。上記のブラック・マトリクス28は 例えば厚膜スクリーン印刷法等によって設けられたもの であり、蛍光体層26がストライプ状に設けられている 場合にはその間を通るストライプ状に、蛍光体層26が マトリクス状に設けられている場合には格子状に形成さ れる。また、上記のメタル・バック30は例えばアルミ ニウム薄膜の蒸着等によって設けられたものであり、比 較的滑らかな表面を有して電子が容易に透過する程度の 厚さの薄膜に形成されている。

【0022】一方、前記の背面板18の一面14には、互いに直交する二方向(列方向すなわちY方向および行方向すなわちX方向)に沿ってそれぞれ伸びる複数本の列方向(Y方向)配線32および行方向(X方向)配線34が、層間絶縁層36を介して重ねて備えられている。列方向配線32は、前面板16上の陽極24に平行に設けられており、その中心間隔は陽極24と同様である。これに対して、それらに直交する方向に沿って伸びる行方向配線34の中心間隔は、例えば列方向配線32のそれの3倍の0.3~1.5(m) 程度になっている。また、列方向配線32の幅寸法は100(μ m)程度であり、厚さ寸法は例えば 12(μ m)程度であり、厚さ寸法は 20(μ m)程度である。

【0023】上記の列方向配線32および行方向配線3 4は、例えば、何れも厚膜銀等の厚膜導体から成るもの であり、背面板18の内面14に厚膜スクリーン印刷法 等を用いて形成されている。また、内面14上には、そ の列方向配線32に沿った方向においては行方向配線3 4と同様な一定の中心間隔を以てその行方向配線34相 互間に位置するように並び、且つその行方向配線34に 沿った方向においては列方向配線32と同様な一定の中 心間隔を以てその列方向配線32相互間に位置するよう に並ぶ複数個の矩形のY電極38が備えられる。行方向 配線34に沿った方向における背面板18の断面の要部 を拡大した図2(a) に示すように、列方向配線32は、 それら複数個のY電極38に一部が重なる位置に設けら れており、Y電極38はその列方向配線32に電気的に 接続されている。また、複数個のY電極38の各々とそ れが接続されたものに隣接する列方向配線32との間に は、その列方向配線32に沿って伸び且つそれとは電気 的に絶縁させられた長手状のX電極40がそれぞれ備え られている。本実施例においては、列方向配線32およ

び行方向配線34が第一配線および第二配線に、Y電極38およびX電極40が第一電極および第二電極にそれぞれ相当する。

【0024】図3は、上記配線32、34および電極38、40等の位置関係を説明するための平面図である。上記のY電極は、例えば列方向配線32に沿った方向における長さ寸法wが数 (μ m)~数百 (μ m)程度に形成されたものであり、上記のX電極40は、一端部側においてY電極38との間隔gが例えば数百(μ m)~数百 (μ m)程度、例えば 0.5~20(μ m)程度の小さな値になるように形成されたものである。行方向配線34はX電極40の他端部40aに重なる位置に設けられており、X電極40はその行方向配線34に電気的に接続されている。これら両電極38、40は、何れも厚さ寸法が数(μ m)以下、例えば500($^{\rm A}$)程度の白金を主成分とする合金から成るものであり、例えば真空蒸着法やスパッタ等の薄膜プロセスによって膜形成された後、フォトリソグラフィ等を用いてパターン形成されている。

【0025】また、Y電極38およびX電極40間に形 成されている隙間には、平面形状が略円形を成し一部が それらに重なる電子放出膜42が備えられている。前記 の図2(a) は、この電子放出膜42を通る断面を表して いる。電子放出膜42は、例えば酸化パラジウムを主成 分とするものであって、例えば100(A) 程度の厚さ寸法 を備えたものである。この電子放出膜42は、フォーミ ングと称される通電処理が施されて局所的に破壊、変 形、若しくは変質させられることにより、Y電極38お よびX電極40間の隙間内にナノメートル・オーダの亀 裂44を有している。したがって、Y電極38とX電極 40とは、電子放出膜42が両者に重なるように設けら れているが、その電子放出膜42が電気的には極めて高 抵抗であるため、実質的に接続されてはいない。なお、 亀裂44は、図1においては左端に位置する一つについ て例示した。

【0026】また、列方向配線32および行方向配線3 4の間に設けられた前記の層間絶縁層36は、その行方 向配線34に沿って伸びる長手状を成すが、その長手方 向の一辺(行方向配線34とX電極40とが重なってい る側の一辺) が凸部36aを一定の間隔で断続的に備え た波状に形成されていることから、その幅寸法は一様で はない。凸部36aは、複数本の列方向配線32と行方 向配線34との重なり部分46毎に設けられており、そ こでは絶縁層36がその上側に位置する行方向配線34 の幅方向においてその両側にはみ出している。このた め、層間絶縁層36は、重なり部分46においては行方 向配線34よりも幅広に形成されていることから、列方 向配線32を覆ってそれらを電気的に絶縁する。絶縁層 36は、列方向配線32および行方向配線34を確実に 絶縁しており、それらが電気的に短絡した部分 (短絡欠 陥) は存在しない。

【0027】一方、行方向配線34毎の凸部36a相互 間の凹部36bが備えられる部分では、X電極40と重 なっている行方向配線34の一辺側で、絶縁層36がそ の行方向配線34よりもその幅方向において引っ込んで いる。そのため、図3に示されるように、行方向配線3 4とX電極40との重なり部分48には、それらの間に 絶縁層36が存在しない部分があることから、前述した ようにそれら行方向配線34およびX電極40はそこで 電気的に接続される。層間絶縁層36は、このように複 数本の列方向配線32および複数個のX電極40に部分 的に重なるように設けられた行方向配線34を、その列 方向配線32とは絶縁させ且つそのX電極40とは接続 させるために設けられている。図2(b) は、行方向配線 34に沿った方向における上記重なり部分48を通る背 面板18の断面を表したものであり、図に示されるよう に、絶縁層36で覆われた列方向電極32は行方向配線 34に接触していないが、絶縁層36で覆われていない X電極40は行方向配線34に接触する。

【0028】以上のように構成されるFED10を駆動 するに際しては、メタル・バック30に例えば5(kV)程 度の一定の加速電圧を定常的に印加した状態で、例え ば、複数本の行方向配線34に順次負電圧(走査電圧) を印加して走査すると共に、複数本の列方向配線32の . うちの所望のものにその走査に同期して正電圧 (信号電 圧)を印加すると、列方向配線32および行方向配線3 4を介してそれぞれ電圧を印加されたY電極38および X電極40間の大きな電圧勾配に基づいて生じる電界放 出 (Field Emission) によって、それらの間に設けられ た電子放出膜42から電子が放出される。この電子は、 前面板16上に設けられた陽極24に所定の正電圧(加 速電圧)が印加されることにより、その陽極24に向か って飛ぶ。これにより、その陽極24上に設けられてい る前記蛍光体層26に電子が衝突させられ、蛍光体層2 6が発光させられる。この発光を前面板16を通して観 察したところ、蛍光体層26の混色や、電極38、40 間の短絡等に起因する発光不良等は何ら認められなかっ た。なお、本実施例においては、列方向配線32および 行方向配線34の交点毎に表示の1ドットが形成され、 3ドットに対応する行方向に並ぶ3色の蛍光体層26毎 に1画素が構成される。

【0029】なお、蛍光体層26はメタル・バック30で覆われているが、そのメタル・バック30を透過して蛍光 体層26に入射して蛍光体に衝突する。一方、蛍光体層26で発生した光は、前面板16側だけでなく背面板18側にも向かうが、その背面板18側に向かう光はアルミニウム薄膜30で前面板16側に反射される。したがって、発生した光の殆どが前面板16を透過して射出されることとなるため、実質的な発光効率が高められる。すなわち、FED10は、前面板16側から蛍光体層2

6を透過した光を観察する所謂透過型の表示装置に構成されている。なお、FED10には、気密容器内から排気するための排気穴等が備えられているが、図においては省略した。

【0030】上記のFED10は、例えば前面板16および背面板18にそれぞれ必要な膜形成を施した後、一面12、14が向かい合う向きでスペーサ22を介して鉛ガラス等のシール・ガラスで封着し、真空管に構成することで製造される。その製造工程のうち、背面板18上に積層形成される列方向配線32および行方向配線34すなわち積層配線の形成工程は、例えば図4に示される工程図に従って実施される。以下、図4、図5、および工程の各段階における背面板内面14の膜形成状態を表した図6(a)~(f)を参照して背面板18の製造方法の要部を説明する。

【0031】図4において、先ず、電極形成工程SA1 においては、背面板18の内面14上に薄膜形成技術を 用いて前記のY電極38およびX電極40を形成する。 すなわち、例えば、真空チャンバ内において、白金を主 成分とする合金をスパッタリング等によって内面14上 に500(A)程度の厚さで成膜し、チャンバから取り出し てスピン・コーティング法等を用いて内面14の全面に 感光性樹脂を塗布する。この背面板18を例えば 60 (℃) 程度の温度で乾燥すると共に、90(℃) 程度の温 度でプリベークを行った後、感光性樹脂を電極38、4 0のパターンに対応するネガ・パターンで露光、現像 し、再度 60(℃) 程度の温度で乾燥した後、真空チャン バ内でイオン・ミリング等で不要部の酸化チタンを除去 し、チャンバから取り出した基板を現像液(剥離液)で 処理して感光性樹脂を取り除く。これにより、前記の図 1乃至3に示されるY電極38およびX電極40が内面 14上に設けられる。

【0032】次いで、列方向配線形成工程SA2におい ては、例えば厚膜スクリーン印刷法等を利用して厚膜銀 から成る列方向配線32を、一部がY電極38に重なる ように形成する。この工程は例えば図5に示される各工 程に従って実施される。図5において、マスキング工程 SB1では、上記厚膜銀が付着してはならない部分すな わち印刷禁止領域50にマスキング52を施す。図6 (a) は、この段階を示している。なお、図6の各図(a) ~(f) においては、電極38、40を一対だけ、すなわ ち列方向配線32と行方向配線34の一交点だけを示し た。ここで、厚膜銀が付着してはならない部分とは、電 子放出部すなわち前記の電子放出膜42が設けられるこ ととなる電極38、40間の隙間の近傍である。マスキ ング52は、その隙間を略覆い且つ列方向配線32との 重なり部分においてY電極38が露出させられるよう に、その列方向配線32の長手方向と略直交する方向に おいて断続する帯状に設けられる。すなわち、マスキン グ52は、厚膜銀の付着を避けるべき位置だけに設けら

れている。また、上記のマスキング52は、例えば、粘度測定法から得られた重合度100程度のエチルセルロース樹脂をターピネオールに溶解し混練したものであり、例えば厚膜スクリーン印刷を利用して塗布した後、120(°C)程度の温度で乾燥することにより、例えば5(μπ)程度の厚さに設けられている。

【0033】次いで、印刷工程SB2では、予め定めら れたパターン、本実施例ではストライプ・パターンで例 えば 15(μm)程度の厚さに厚膜銀ペーストを塗布する。 この厚膜銀ペーストは、例えば、銀粉末およびガラス粉 末を樹脂成分と共に溶剤に分散させたものである。ペー スト組成は、例えば、重量百分率で銀 75(%)、ガラス8 (%) 、樹脂 3(%) 、および溶剤 14(%)程度とした。銀粉 末は、例えば平均粒径0.2(µm)程度でフレーク状を成す ものであり、ガラス粉末は、例えば平均粒径が0.3(μπ) 程度で軟化点450(℃) 程度のSi-B-Pb 系非晶質ガラスで ある。また、樹脂成分は、例えば粘度測定法から得られ た重合度が10および100 程度の二種類のエチルセルロー スを混合したものであり、溶剤は例えばブチルカルビト ールアセテート(BCA) である。このように構成される厚 膜銀ペーストは、マスキング52に対する接触角が背面 板18の一面14に対するそれよりも大きいことから、 厚膜銀ペーストはそのマスキング52上では殆ど広がら ない。本実施例においては、上記の厚膜銀ペーストが印 剧ペーストに相当する。

【0034】続く乾燥工程SB3では、背面板18を乾燥機内に入れて120(℃)程度の温度で乾燥してペースト中の溶剤成分を除去してペーストを硬化させる。そして、焼成工程SB4において、焼成炉で例えば大気雰囲気下500(℃)程度の温度で10(分間)程度保持して加熱処理を施す。これにより、溶剤が除去された乾燥膜中の樹脂等の有機成分が焼失させられると共に、銀粉末やガラス成分が熔融され且つ加熱処理の冷却過程で硬化させられて、例えば12(μm)程度の厚さの厚膜銀から成る前記列方向配線32が生成される。また、この厚膜銀の生成と同時に、有機成分から成るマスキング52も同時に焼失させられる。図6(b)はこの段階を示している。なお、これらマスキング乃至加熱処理は、必要な列方向配線32の厚みに応じて例えば2回繰り返される。

【0035】このように列方向配線32を形成する過程において、上記の図6(b)に示されるように、一面14上における厚膜銀ペーストのだれや滲み等に起因して、スクリーン製版の印刷パターンからはみ出したはみ出し部54が列方向配線32の一部に形成されている。しかしながら、このはみ出し部54は、後述する図6(c)以下に示されるように層間絶縁層36によって覆われる部分であって他の電極や配線等と何ら接触していないため、FED10の機能に不都合が生じることはない。

【0036】また、その図6(b)には、加熱処理前までは存在するマスキング52を一点鎖線で示した。図に示

されるように、マスキング52が設けられている位置に おいては、列方向配線32にはみ出し部54が形成され ていない。前述したように、厚膜銀ペーストがマスキン グ52に対する接触角の大きいことに起因してその上で 広がらないからである。一方、列方向配線32から外れ た位置、すなわち印刷パターンから外れた位置におい て、マスキング52上に無用の厚膜銀ペーストの付着す なわち不用パターン56が生じている。この不用パター ン56は、例えばスクリーン製版に欠陥の存在する場合 等に形成されるものであって、電極38、40を短絡さ せるような位置、すなわちそれらのギャップ上にある が、この不用パターン56も加熱処理の過程で印刷禁止 領域50上から取り除かれる。すなわち、マスキング5 2が焼失させられる際にはそれを構成する有機成分がガ ス化するため、発生した蒸気によって不用パターン56 の厚膜銀ペーストが印刷禁止領域50外に運ばれて除去 される。したがって、上記の短絡させるような位置に塗 布されていても、FED10の機能を害することはな い。本実施例においては、焼成工程SB4が除去工程に 対応する。

【0037】図4に戻って、層間絶縁層形成工程SA3においては、列方向配線32の場合と同様に厚膜スクリーン印刷法を利用して、列方向配線32に垂直な方向に沿って伸びるストライプ・パターンで、その列方向配線32上の厚さ寸法が28(μm)程度の層間絶縁層36を形成する。この工程において、厚膜スクリーン印刷に用いるペーストは、ガラス粉末を樹脂成分と共に溶剤に分散した厚膜絶縁ペーストであり、印刷乃至焼成処理は、必要な厚みに応じて例えば5回程度繰り返される。図6(c)は、この段階を示している。

【0038】続く行方向配線形成工程SA4においては、列方向配線32および層間絶縁層36の場合と同様に厚膜スクリーン印刷法を利用して、上記のストライプ状の層間絶縁層36上に、それに沿って伸びるストライプ・パターンで膜厚が例えば20(μm)程度の前記の行方向配線34を形成する。この工程において用いられるペーストは、列方向配線32の場合と同じものであり、印刷乃至焼成処理の繰り返し回数もそれと同様である。図6(d)は、この段階を示している。図においては特に示していないが、必要であれば、列方向配線32の形成時と同様にマスキング52を施した上で厚膜銀ペーストを塗布することができる。なお、図6(d)においては、前記の図3等とは異なり、行方向配線34が層間絶縁層36よりも細幅に形成されることによって列方向配線32と絶縁させられている場合を示した。

【0039】また、電子放出膜形成工程SA5においては、Y電極38およびX電極40間に、それらに跨がるように電子放出膜42を形成する。この電子放出膜42は、例えば、有機パラジウム・ペーストをインク・ジェット印刷等によって塗布し、例えば 70(℃) 程度の温度

で乾燥した後、400(℃) 程度の温度で大気雰囲気下において加熱処理を施すことにより、有機パラジウムを分解および酸化して100(Å) 程度の厚さの酸化パラジウムを生成したものである。図6(e) は、この段階を示している。上記の有機パラジウム・ペーストは、パラジウムの金属有機化合物を溶媒に分散させたものであるが、これに代えてパラジウムの超微粒子を溶媒に分散させたペーストを用いてもよい。

【0040】そして、フォーミング工程SA6において、複数本の列方向配線32および行方向配線34間に順次パルス電圧を印加して電子放出膜42に通電することにより、その電子放出膜42の組織を部分的に破壊或いは改質して前記の亀裂44を生成する。フォーミング処理は、例えば昇圧10(秒)、降圧10(秒)、最高電圧5(V)程度の三角波を10回程度印加することで行った。これにより、電子放出膜42に電子放出機能が与えられる。

【0041】要するに、本実施例においては、印刷禁止 領域50がマスキング52で覆われた状態で膜形成面1 4に厚膜銀ペーストを塗布することから、列方向配線3 2を形成するための製版に欠陥が存在し或いはその厚膜 銀ペーストが膜形成面14上で滲んだ場合等にも、印刷 禁止領域50内では無用の厚膜銀ペースト(不用パター ン56)が膜形成面14に直接塗布されることはなくマ スキング52上に塗布され、焼成工程SB4において、 そのマスキング52と共に膜形成面14上から除去され る。そのため、印刷禁止領域50に不用パターン56の 厚膜銀が付着し、延いてはそこに固着することが抑制さ れる。一方、印刷禁止領域50外では印刷パターン外に 渗み等に起因するはみ出し部54が生じても、背面板1 8の機能上何ら不都合は生じない。したがって、背面板 18を製造するに際して、印刷ペーストの渗みや製版の 欠陥に起因して不具合の生じることが抑制される。

【0042】また、本実施例においては、マスキング52が、エチルセルロース樹脂をターピネオールに溶解・混練したマスキング材料から形成されているため、加熱処理によりマスキング52を焼失させた後に分解残滓の残ることがない。

【0043】また、好適には、本実施例においては、マスキング材料として有機化合物が用いられると共に、厚膜銀ペーストを加熱処理することにより列方向配線32を形成する過程で同時にマスキング52が焼失させられているため、その除去のために工数が増加し或いは工程が煩雑になることがない。特に、マスキング材料中にマスキング52の焼失後に残留するような金属或いは無機化合物等が含まれていないため、その残留物が問題になることもない。

【0044】また、本実施例においては、列方向配線3 2を構成する厚膜銀がFED10の機能上付着してはならない領域50だけにマスキング52が設けられている ため、印刷パターンから外れた位置ではあるが機能上何ら支障のない領域、例えば、はみ出し部54が生じている部分に付着した厚膜銀ペーストは、焼成工程SB4でマスキング52の焼失過程で発生する蒸気で運ばれることはなく、そのままその印刷位置に固着させられる。そのため、その支障のない領域に付着した厚膜銀ペーストが焼成処理の際に印刷禁止領域50に運ばれ得ないことから、その印刷禁止領域50に厚膜銀が固着することが一層抑制される。

【0045】また、本実施例においては、マスキング52は厚膜銀ペーストとの接触角が大きいことから、そのマスキング52上にはその厚膜銀ペーストが広がり難いため、その滲みやペーストだれ等に起因するパターン幅寸法の拡大が抑制される。したがって、一層精細度の高い厚膜パターンを形成できる。

【0046】次に、本発明の他の実施例を説明する。なお、以下の実施例において、前述の実施例と共通する部分は同一の符号を付して説明を省略する。

【0047】図7は、本発明が蛍光体層26を備えた前 面板16に適用された場合の製造工程の要部を説明する 工程図である。以下、工程の要部段階を示す図8(a) ~ (d)を参照して蛍光体層26の形成方法を説明する。先 ず、陽極形成工程SC1においては、例えば蒸着やスパ ッタリング等の薄膜形成技術を用いて前面板内面12に ITO膜を形成し、必要に応じてパターニングすること により前記の陽極24を形成する。次いで、ブラック・ マスク形成工程SC2において、黒色絶縁ペーストを厚 膜スクリーン印刷法等を用いて一面12の略全面に塗布 し、所定のパターンで露光および現像した後、例えば45 0(℃)程度の焼成温度で加熱処理を施すことにより、複 数本のストライプ状の開口部58を備えたブラック・マ スク60を形成する。図8(a) は、この段階を示してい る。但し、図においては陽極24を省略している。上記 の黒色絶縁ペーストは、例えば、黒色顔料およびガラス パウダを感光性樹脂に分散させたものである。黒色顔 料としては例えばカーボン・パウダが、感光性樹脂とし ては、例えばポリビニルアルコールー重クロム酸アンモ ニウムを主成分とするもの等が好適に用いられる。

【0048】続く蛍光体層形成工程SC3においては、赤色(R)、青色(B)、および緑色(G)の蛍光体を、順次に上記の開口部58内に塗布して蛍光体層26を形成する。蛍光体としては、例えば、赤色発光のY202S:Eu、青色発光のZnS:Ag、緑色発光のZnS:Cu,Al等が用いられる。また、蛍光体層26は、これらの蛍光体粉末を含むペーストを用いて、例えば各色毎に前記の図5に示される工程に従って形成した。すなわち、赤色発光の蛍光体層26(R)を形成するに際しては、先ず、マスキング工程SB1において、青色発光の蛍光体層26(B)および緑色発光の蛍光体層26(G)を形成すべ

き位置にマスキング62を設け、ブラック・マスク60

の開口部58を覆う。図8(b) は、この段階を示している。図において左端および左から3番目の開口部58が赤色蛍光体層26(R)を形成する位置であり、他の開口部58はマスキング62で覆われている。なお、本実施例においては、マスキング材料としてポリビニルアルコールー重クロム酸アンモニウム等の感光性樹脂溶液を用い、スピン・コーティング等によってこの溶液を基板全面に塗布して露光および現像することによりマスキング62を形成した。

【0049】次いで、印刷工程SB2において、例えば厚膜スクリーン印刷法を用いて蛍光体ペーストを開口部58内に塗布する。蛍光体ペーストは、例えば、上記の蛍光体粉末、エチルセルロース等の樹脂成分、ターピネオール等の溶剤、および少量の珪酸カリウム溶液を混練したもの等が用いられる。そして、乾燥工程SB3において、例えば120(℃)程度の温度で乾燥してベースト中の溶剤を除去した後、焼成工程SB4において例えば450(℃)程度の温度で加熱処理を施す。これにより、蛍光体ペースト中の有機成分が除去されると共に、蛍光体粉末が珪酸カリウムの結合力や分子間力等で相互に且つ前面板内面12に固着されると同時に、マスキング62が焼失させられる。図8(c)は、このようにして赤色発光の蛍光体層26(R)を形成した後の状態を示している。

【0050】このとき、蛍光体ペーストの塗布に用いた スクリーン製版にピンホール等の欠陥が存在すると、赤 色の蛍光体層26を設ける開口部58以外の位置、例え ば他の発光色の蛍光体層26(B)、26(G)等を設 ける開口部58上にも蛍光体ペーストが付着する。図8 (c) において一点鎖線で示した64は、このような部分 に蛍光体ペーストが付着した不用パターンである。本実 施例においても、この不用パターン64はマスキング6 2が焼失させられる際に同時に除去されるため、赤色発 光の蛍光体は、他の発光色の蛍光体を設けるべき位置に 全く付着していない。また、正しい位置(この段階では 赤色発光の蛍光体層26を設けるべき位置)に塗布され た蛍光体ペーストは、接触角が大きいマスキング62に はじかれて他の発光色の蛍光体を設けるべき位置に広が り得ないため、その広がり(流れやだれ)に起因する蛍 光体の混色も生じていない。

【0051】そして、青色発光および緑色発光の蛍光体についても、それぞれ上記のマスキング工程SB1乃至焼成工程SB4に従って処理することにより、前面板内面12にはRGB三色の蛍光体層26がストライプ状に並んで設けられる。図8(d)は、この段階を示している。なお、青色発光の蛍光体層26(B)を設ける際には、マスキング工程SB1において赤色発光の蛍光体層26(G)を設ける開口部58上にマスキング62が施され、緑色発光の蛍光体層26(G)を設ける際には、マスキング工程

SB1において赤色発光の蛍光体層26(R)上および 青色発光の蛍光体層26(B)上にマスキング62が設 けられる。そのため、どの蛍光体ペーストも他の発光色 の蛍光体を設ける位置に無用に付着することはない。し たがって、本実施例においては、塗着しようとするもの とは異なる蛍光体を設けるべき位置が印刷禁止領域に相 当する。

【0052】図7に戻って、メタル・バック形成工程SC4においては、上記のようにして形成されたブラック・マスク60および蛍光体層26上に前記のメタル・バック30を形成する。このメタル・バック30の形成は、例えば、ラッカー溶液等の樹脂溶液を一面12上の全面に塗布するフィルミング処理を施した後、真空チャンバ内でアルミニウム薄膜を蒸着し、その後加熱処理を施してフィルミング膜を焼失させることによって行うことができる。

【0053】要するに、本実施例においても、他の発光 色の蛍光体層26を設けるべき印刷禁止領域がマスキン グ62で覆われた状態で一面12に蛍光体ペーストを塗 布することから、製版に欠陥が存在し或いは蛍光体ペー ストが一面12上で滲んだ場合にも、その印刷禁止領域 内では無用の蛍光体ペーストが一面12に直接塗布され ることはなくマスキング62上に塗布され、焼成工程S B4において、そのマスキング62と共に一面12上か ら除去される。そのため、印刷禁止領域に無用の蛍光体 ペーストが付着し、延いてはそこに固着することが抑制 されることから、蛍光体の混色が好適に抑制される。

【0054】また、本実施例においては、一面12上に三色の蛍光体層26(R)、26(B)、26(G)が設けられるが、3種の蛍光体ペーストからそれぞれを形成するに際して、マスキング工程SB1乃至焼成工程SB4がそれぞれ実施される。そのため、全ての蛍光体ペーストが一面12上の付着してはならない領域すなわち他の蛍光体を設ける印刷禁止領域を避けて塗布されることから、無用の蛍光体ペースト付着に起因するFED10の不具合、すなわち混色が一層抑制される。

【0055】以上、本発明の一実施例を図面を参照して 詳細に説明したが、本発明は、更に別の態様でも実施で きる。

【0056】例えば、実施例においては、画像表示装置であるカラー表示用のFED10を構成する背面板18 或いは前面板16の製造方法に本発明が適用された場合について説明したが、厚膜パターンを含む複数種類の膜が一面12、14に備えられた表示装置の基板であれば、他の形式のカラー或いはモノクロ表示装置、例えば蛍光表示管やPDP等を構成するディスプレイ基板にも本発明は同様に適用される。

【0057】また、図1乃至図6に示される実施例においては、前面板16への膜形成工程のうち列方向配線3 2の形成時だけに本発明が適用されていたが、他の厚膜 パターンの形成時、例えば、行方向配線34の形成時 や、電子放出膜42の形成時等にも、それの構成材料の 他の部分への付着が生じ得ると共に、その付着が問題と なるならば、本発明を同様に適用し得る。

【0058】また、実施例においては、特に不用パターン56の付着を禁止すべき領域50等だけにマスキング52を施していたが、厚膜スクリーン印刷を施す部分を除く全ての部分をマスキング52で覆ってもよい。

【0059】また、実施例においては、マスキング処理が厚膜スクリーン印刷法を用いて実施されていたが、その方法はマスキング材料の種類やマスキング形状等に応じて適宜変更される。例えば、フィルムやシートの貼り着け等によって印刷の場合と同様な膜を形成してもよく、フォトリソグラフィ技術によってパターン形成してもよく、或いは、真空蒸着やスパッタリング、めっき、電鋳処理等によって形成することもできる。

【0060】また、実施例においては、電極38、40等が薄膜技術で形成されることからその形成の際にはマスキング52が設けられていなかったが、電極38、40を厚膜スクリーン印刷で形成する場合には、その形成工程においても必要に応じて本発明を適用することができる。

【0061】また、実施例においては、マスキング52 および不用パターン56を除去するための除去工程が、厚膜印刷ペーストから厚膜を生成する焼成工程SB4における加熱処理で兼ねられていたが、除去工程はその加熱処理に先立って別途実施してもよい。すなわち、例えば、その厚膜ペーストを溶解しない液、例えば厚膜ペーストが水に不溶な場合には水により、厚膜ペーストが特定の溶剤に不溶な場合にはその溶剤により、それぞれ洗い流す洗浄処理を施して不用パターン56を除去することもできる。

【0062】また、配線32、34を形成するための厚 膜銀ペーストは、図1乃至図6の実施例において示した ものに限られず、種々の構成を採り得る。例えば、各成 分の構成割合は、銀 65 ~90(%) 程度、ガラス 2~15 (%) 程度、樹脂 2~7(%)程度、溶剤 5~20(%) 程度の範 囲のものが好適に用いられる。また、銀粉末としては、 例えば平均粒径が0.2 ~0.3(μm)程度でフレーク状或い は球状を成すものが好適に用いられる。但し、可及的に 高い導電性を得るためには、実施例で示したようにフレ ーク状のものを用いることが好ましい。ガラス粉末とし ては、例えば、軟化点380 ~470(℃) 程度の低軟化点ガ ラスが好ましく、前述のSi-B-Pb 系の他にZn-Pb 系ガラ ス等も好適に用いられる。また、樹脂成分は、アクリル ニトリル樹脂やメチルセルロース樹脂等を用いてもよ く、溶剤は、ターピネオールやセロソルブアセテート等 を用いることもできる。

【0063】また、実施例においては、マスキング52 等が塗布しようとする厚膜印刷ペーストの接触角の大き い材料で構成されていたが、マスキング52上に付着したペーストはその後の除去工程で膜形成面上から除去されるため、接触角の小さい材料で構成しても差し支えない。

【0064】その他、一々例示はしないが、本発明はその主旨を逸脱しない範囲で種々変更を加え得るものである

【図面の簡単な説明】

【図1】本発明の一実施例のディスプレイ基板の製造方法が製造工程に適用されたFEDの構成を一部を切り欠いて示す斜視図である。

【図2】(a) は、図1における背面板のIIaーIIa視断面の要部を、(b) は、同IIbーIIb視断面の要部をそれぞれ拡大して示す図である。

【図3】図1のFEDにおいて背面板上の配線の相互関係を説明するための要部を拡大した平面図である。

【図4】図1のFEDの背面板上に設けられる電極や配線等の形成工程を説明する工程図である。

【図5】図4の列方向配線形成工程を更に詳細に説明する工程図である。

【図6】(a) \sim (f) は、それぞれ図4の各段階における 膜形成状態を説明する図である。

【図7】本発明が図1のFEDの前面板の製造工程に適用された場合を説明するための工程図である。

【図8】(a)~(d)は、図7の要部工程における膜形成状態を説明する図である。

【符号の説明】

16:前面板、18:背面板 (ディスプレイ基板)

32:列方向配線(厚膜パターン)

50:印刷禁止領域 52:マスキング

【図1】

【図2】

(a)

(b)

【図3】

【図4】

【図5】

【図7】

フロントページの続き

(51) Int. Cl. ⁷		識別記号	FΙ		テーマコード(参考)
G09F	9/30	337	G09F	9/30	337 5E343
H01J	9/227		H01J	9/227	С
					E
// H05K	3/12	610	H05K	3/12	610P

(72)発明者 平川 幸太

愛知県名古屋市西区則武新町三丁目1番36

号 ノリタケ電子工業株式会社内

(72)発明者 森 信輔

愛知県名古屋市西区則武新町三丁目1番36

号 ノリタケ電子工業株式会社内

Fターム(参考) 2CO35 AAO6 FD51 FD52

2H113 AA04 AA05 BA10 BB09 BB22

BB32 CA15 CA32 DA04 DA43

DA52 FA10 FA29 FA48

5C027 AA02 BB01 BB02

5C028 FF06 FF14 HH09 HH12

5C094 AA05 AA42 AA43 BA12 BA32

BA34 CA19 DA13 DB04 EA04

EA05 EA10 EB02 EC02 FA01

FA02 FB01 FB02 FB12 FB15

FB20 GB10

5E343 AA02 AA11 BB72 DD03 ER35

FF02 FF11 FF12 GG08