Practical 7(A): Time Series

#rainfall <- c(799,1174.8,865.1,1334.6,635.4,918.5,685.5,998.6,784.2,985,882.8,1071)

#rainfall.timeseries <- ts(rainfall,start = c(2012,1),frequency = 12)

#print(rainfall.timeseries)

<u>Jan Feb Mar Apr May Jun Jul Aug Sep Oct</u> 2012 799.0 1174.8 865.1 1334.6 635.4 918.5 685.5 998.6 784.2 985.0 <u>Nov Dec</u> 2012 882.8 1071.0

#png(file = "rainfall.png")

#plot(rainfall.timeseries)

#dev.off()

null device

____1

OUTPUT:-

Practical 8: Perform the data clustering using clustering algorithm

Step 1 : Install Library → install.packages('caret',dependencies=TRUE)

Step 2 : Install Library → install.packages('ggplot2',dependencies=TRUE)

Step 3 : Install Library → install.packages('lattice',dependencies=TRUE)

Step 4 : library('caret')

Step 5 : Choose file(.csv) \rightarrow data<-read.csv(file.choose(),header=FALSE)

Step 6: Display data in the file.

Step 7: View the summary and table headers of the data.

Step 8: Create a new class having only the data that we want.

Step 9: Viewing the headers of our new class

Step 10: Normalize the data.

Step 11 : Apply K-Means Clustering with 3 clusters using kmeans function.

Step 12: View Results.

Step 13: Initialize row and columns area to draw the clusters graphically.

Step 14: Draw the clusters with respect to sepal length and width and petal length and width.

