SQL and Relational Database Management Systems

By SRK

Why Databases?

CASE: E-Commerce website

Data

Examples of such websites are Amazon, flipkart, tatacliq, myntra, snapdeal

Types of data:

- User data(login)
- List of product categories
- List of products
- List of Vendors
- Images of products
- List of Offers
- Reviews

Data

Smart TV list:

- Vendor name
- Size
- Specifications
- Price
- Warranty
- Reviews

Data Operations

Create: Creating/adding/inserting new record

Ex: Add new products, vendors to e-commerce site

Read: retrieving the data

Ex: User to search and see the products listed in e-commerce site

Update : Change the existing data

Ex: updating price, features, review

Delete: deleting the existing record

Ex: deleting the products and sellers

Database

A database is a collection of data, usually stored in electronic form. A database is typically designed so that it is easy to store and access information.

Manages large amounts of data

A database stores and manages a large amount of data on a daily basis. This would not be possible using any other tool such as a spreadsheet as they would simply not work.

Accurate

A database is pretty accurate as it has all sorts of build in constraints, checks etc. This means that the information available in a database is guaranteed to be correct in most cases.

Easy to update data

In a database, it is easy to update data using various Data Manipulation languages (DML) available. One of these languages is SQL.

Security of data

Databases have various methods to ensure security of data. There are user logins required before accessing a database and various access specifiers. These allow only authorised users to access the database.

Data integrity

This is ensured in databases by using various constraints for data. Data integrity in databases makes sure that the data is accurate and consistent in a database.

Easy to research data

It is very easy to access and research data in a database. This is done using Data Query Languages (DQL) which allow searching of any data in the database and performing computations on it.

Types of Databases

Structured data	Unstructured data
Organised data in tables, rows, columns and relationships	Cannot be organised in rows, columns,tables, and relationships
Dates, Customer, details, Employee details, Order details	Images, audio files, videos files, JSON files, emails
About 18% of enterprise data	More than 80% of enterprise data
Less storage required	Requires more storage
Easier to process information	Difficult to manage and process

Relational Databases	NoSQL Databases		
Data items have pre-defined relationships between them	Uses a storage model optimised for specific requirements of the type of data being stored.		
2. Information is stored in structured tables with rows and columns	2. Document, key-value, Graph database		
Examples: MySQL, MS SQL, Oracle, IBM DB2	Examples: MongoDB, Apache cassandra, redis couchbase		

Introduction to RDBMS

Data	Database	Database Manageme nt System	Relational Data	Relational Database	Relational Database Manageme nt System
Information	Storage of information	Software that helps in performing CRUD operations to data in the database.	Data has relationship	Database that stores structured and relational data -Based on Relational Data Model	Software that helps in performing CRUD operations to structured data in relational database.

RELATIONAL DATA MODEL

- Proposed by EF Codd in 1969
- Model data in the form of relations
- Based on two concepts:
 - Tables
 - Relations
- Relationships (1:1, 1;n, N:N)

RELATIONSHIPS IN DATABASES

One-to-One

One-to-Many

Many-to-Many

SCENARIOS FOR RDBMS

- Strict schema
- Relational data
- Transactional requirements
- When data can be stored on a single server

INDUSTRIAL USE CASES OF RDBMS

- Banking Money transaction system
- Money Wallet Google Pay, PhonePe
- E-commerce Payments, users, etc.
- Restaurant Listing Zomato
- Employee Management Software
- Twitter uses MySQL heavily for primary storage of Tweets and Users
- YouTube uses MySQL

MySQL

- 1. Introduction to MySQL
- 2. SQL Installation
- 3. Types of SQL Commands DDL, DML, DQL,
- 4. SQL Basic Statements and Operators
- 5. Aggregate and InBuilt functions
- 6. String and Date-Time Functions
- 7. Joins

INTRODUCTION TO MYSQL

- A 25-year-old language
- Free and open-source
- Relational Database
 Management System
- Interact directly with a MySQL database using SQL
- Wikipedia, Twitter, Flipkart few of many who use MySQL
- Structured Query Language (SQL)

MySQL Installation

Please refer git repository for installation procedure MySQL community edition on CentOS 7

https://github.com/javafullstackcodes/htd-april-2022/blob/master/SQL/MySQL-Installation.md

TYPES OF SQL COMMANDS

- Data Definition Language -DDL
 - CREATE Used to create the database or its objects (e.g. table, index, function, views, store procedure and triggers).
 - DROP Used to delete objects from the database.
 - ALTER- Used to alter the structure of the database.
 - TRUNCATE- Used to remove all records from a table, including all spaces allocated for the records.
 - RENAME Used to rename an object existing in the database.
- Data Manipulation Language DML
 - INSERT Used to insert data into a table.
 - UPDATE Used to update existing data within a table.
 - DELETE Used to delete records from a database table.
- Data Query Language DQL
 - SELECT Used to retrieve data from a database.

SQL BASIC STATEMENTS AND OPERATORS

- SELECT: Used to read the data
- WHERE: Used as a conditional statement to filter out data
- Some examples of operators that can be used along with the WHERE clause are OR, AND, IN, BETWEEN, and LIKE

AGGREGATE AND INBUILT FUNCTIONS

- COUNT(): Counts the total number of records specified by the given condition
- SUM(): Returns the sum of all the non-NULL values
- AVG(): Returns the average of all the non-NULL values
- MIN(): Returns the minimum of the specified values (NULL is not included)
- MAX(): Returns the maximum of the specified values (NULL is not included)

Thank YOU

Happy Learning!!

