Phase correlation - Mathematical Background

1. Fourier Transfom

Given two images:

- $I_{\alpha}(x,y)$ (reference image)
- $I_{\beta}(x,y)$ (reference image)

Their 2D Discrete Fourier Transforms (DFT) are:

$$F_{\alpha}(u, v) = \mathcal{F}[I_{\alpha}(x, y)]$$

$$F_{\beta}(u, v) = \mathcal{F}[I_{\beta}(x, y)]$$

2. Fourier Shift Theorem

If $I_{\beta}(x,y)$ is a shifted version of $I_{\alpha}(x,y)$ by $(\Delta x, \Delta y)$, then in the frequency domain:

$$F_{\beta}(u,v) = F_{\alpha}(u,v)e^{-2\pi j(u\Delta x + v\Delta y)}$$

This introduces a phase difference but preserves the magnitude.

3. Cross Power Spectrum

The normalized cross power spectrum is computed as:

$$C(u,v) = \frac{F_{\alpha}(u,v) \cdot F_{\beta}^{\star}(u,v)}{|F_{\alpha}(u,v) \cdot F_{\beta}^{\star}(u,v)|},$$

where $F_{\beta}^{\star}(u,v)$ is the complex conjugate of $F_{\beta}(u,v)$.

4. Inverse Fourier Transform

The inverse Fourier transform of C(u, v) gives a peak at the displacement $(\Delta x, \Delta y)$:

$$c(x,y) = \mathcal{F}^{-1}[C(u,v)].$$

The coordinates of the maximum value in c(x,y) correspond to the shift $(\Delta x, \Delta y)$.

Phase correlation - Python implementation

1. Compute the Fourier Transfroms of the Two Images

• Let G_{α} and G_{β} be the Fourier transforms of the reference image I_{α} and the shot image I_{β} :

$$G_{\alpha} = \mathcal{F}\{I_{\alpha}\}, \ G_{\beta} = \mathcal{F}\{I_{\beta}\}$$

2. Compute the Cross-Power Spectrum

• The cross-power spectrum is given by:

$$R = \frac{G_{\alpha} \cdot G_{\beta}^{\star}}{|G_{\alpha} \cdot G_{\beta}^{\star}|}$$

- G_{β}^{\star} is the complex conjugate of G_{α} .
- The denominator $|G_{\alpha} \cdot G_{\beta}^{\star}|$ ensures normalization, making the result purely phase-based.

3. Inverse Fourier Transform to Get the Phase Correlation Map

• The inverse Fourier transform is applied to obtain the phase correlation function r(x,y):

$$r = \mathcal{F}^{-1}\{R\}$$

• r(x,y) is a real-valued function, even though R is complex.

4. Find the Peak Location

• The shift $(\Delta x, \Delta y)$ is dound by detecting the peak of r(x, y):

$$(\Delta x, \Delta y) = argmax\{r(x, y)\}\$$