ERRATA

O artigo "Violação de paridade em átomos" por R. Ejnisman e N. P. Bigelow [Rev. Bras. Ens. Fís. 18, 84 (1996)] menciona uma tabela e duas figuras que não foram publicadas. Apresentamos aqui a tabela e as figuras (com suas respectivas legendas) como deveriam ter aparecido.

Interação	Intensidade Relativa	Alcance (m)	Bósons Intermediários	Massa do Bóson Int.
Forte	1	10-15	mésons	$>10^2 \mathrm{MeV}$
Eletromagnética	10^{-2}	∞	fótons	0
Fraca	10 ⁻¹³	10 ⁻¹⁵	Z°,W^{\pm}	$10^5 \mathrm{MeV}$
Gravitacional	10 ⁻³⁹	∞	grávitons	0

Tabela 1. Tipos de interações existentes e algumas de suas características. As interações fracas e eletromagnéticas podem ser tratadas num mesmo formalismo que ficou conhecido como Modelo Padrão, ao qual se agregou mais tardiamente a força forte.

Figura 1. Esquema de níveis simplificado do átomo de Cs.

Figura 2. Na experiência do Colorado, um feixe de átomos de 133 Cs percorria uma cavidade formada pelos espelhos M_1 e M_2 . Nesta cavidade, a luz de 540 nm gerada por um laser de corante tinha sua potência aumentada para poder excitar os átomos até o estado 7S. Em seguida, os átomos decaíam e a fluorescência era observada por um fotodiodo (Det). Note que, perpendicular à cavidade, havia duas placas paralelas que produziam o campo elétrico responsável pelo Efeito Stark que não aparecem na figura.