

# Information Engineering 2

# Datenqualität & Data Matching

Prof. Dr. Kurt Stockinger

# Semesterplan



| sw | Datum      | Vorlesungsthema                                        | Praktikum                                                                |
|----|------------|--------------------------------------------------------|--------------------------------------------------------------------------|
| 1  | 23.02.2022 | Data Warehousing Einführung                            | Praktikum 1: KNIME Tutorial                                              |
| 2  | 02.03.2022 | Dimensionale Datenmodellierung 1                       | Praktikum 1: KNIME Tutorial (Vertiefung)                                 |
| 3  | 09.03.2022 | Dimensionale Datenmodellierung 2                       | Praktikum 2: Datenmodellierung                                           |
| 4  | 16.03.2022 | Datenqualität und Data Matching                        | Praktikum 3: Star-Schema, Bonus: Praktikum 4: Slowly Changing Dimensions |
| 5  | 23.03.2022 | Big Data Einführung                                    | DWH Projekt - Teil 1                                                     |
| 6  | 30.03.2022 | Spark - Data Frames                                    | DWH Projekt - Teil 2 (Abgabe: 4.4.2022 23:59:59)                         |
| 7  | 06.04.2022 | Data Storage: Hadoop Distributed File System & Parquet | Praktikum 1: Data Frames                                                 |
| 8  | 13.04.2022 | Query Optimization                                     | Praktikum 2: Data Storage                                                |
| 9  | 20.04.2022 | Spark Best Practices & Applications                    | Praktikum 3: Query Optimization & Performance Analysis                   |
| 10 | 27.04.2022 | Machine Learning mit Spark 1                           | Praktikum 3: Query Optimization & Performance Analysis (Vertiefung)      |
| 11 | 04.05.2022 | Machine Learning mit Spark 2 + Q&A                     | Praktikum 4: Machine Learning (Regression)                               |
| 12 | 11.05.2022 | NoSQL Systems                                          | Big Data Projekt - Teil 1                                                |
| 13 | 18.05.2022 | Keine Vorlesung (Arbeit am Projekt)                    | Big Data Projekt - Teil 2                                                |
| 14 | 25.05.2022 | Keine Vorlesung (Arbeit am Projekt)                    | Big Data Projekt - Teil 3 (Abgabe: 30.5.2022 23:59:59)                   |

# Ziele der heutigen Lektionen



- Kennen von
  - unterschiedlichen Fehlerquellen in Daten
- Verstehen von Methoden zur Duplikaterkennung:
  - Masken und Wildecards
  - String-Distanzen
  - Phonetische Suche
- Selbststudium von Methoden zu Data Matching (Entity Matching):

# Die wesentlichen betrieblichen Probleme in einem Data Warehouse





Was ist teuer?

Meyer, Arnold
Meier, Noldi
Josic, Petar
Jositsch, Peter
Bodino, Gerald
Beaudinot, Gérold
Baudinot, Gerold

Fehler sind teuer

Weil Korrekturen
sehr oft Einsatz von
menschlicher
Arbeitskraft
bedeutet

Bienne

Biel

Sitten

Sion



## Woher kommen fehlerhafte Daten?



### Fehlerbeispiele:

- Duplikate
- Out of range
- Missing values
- Typos

#### **Ursachen:**

- Ausfall Quellsystem (geplant oder Absturz)
- Manuelle Eingabe
- Fehlerhafte Konfigurationen
- Unvollständiger / asynchroner Informationsfluss
- Fehlerhafte Konvertierung:
  - z.B. PDF → Text oder Excel → CSV



Datenqualität Teil 1: Fehler in Texten

### Zürcher Hochschule für Angewandte Wissenschaften School of Engineering

# Beispiele für Datenqualitätsprobleme



| Tinnfahlar         | Chinois on Main      | 2709 Main Street                        | Santa Monica         |
|--------------------|----------------------|-----------------------------------------|----------------------|
| Tippfehler         | Chniois on Main      | 2909 Main Street                        | Santa Monca          |
| Ablairenne         | Foobar Holding       | Flurstrasse 10                          | Oetwil an der Limmat |
| Abkürzungen        | Foobar Hldg          | Flurstr. 10                             | Oetwil a. d. Limmat  |
| Abweichende        | Four Seasons         | 854 Seventh Avenue                      | New York City        |
| Bezeichnungen      | 4 Seasons Grill Room | 854 7th Ave. between 54th and 55th Sts. | New York             |
| Untergeordnete     | Grill on the Alley   | 9560 Dayton Way                         | Los Angeles          |
| Ortsbezeichnungen  | Grill on the Alley   | 9560 Dayton Way                         | Beverly Hills        |
| 7                  | Déborah François     | Quellgasse 4                            | Biel                 |
| Zweisprachigkeit   | Déborah François     | Rue de la Source 4                      | Bienne               |
| Unvollständige     | Grill on the Alley   | 9560 Dayton Way                         | Los Angeles          |
| Angaben            | Grill on the Alley   | (null)                                  | Beverly Hills        |
| Vantaugalita Wanta | Thomas               | Blake                                   | Santa Monica         |
| Vertauschte Werte  | Blake                | Thomas                                  | Santa Monica         |

# Beispiele für Qualitätsprobleme: Duplikate



| Variante 1 | Variante 2           | Variante 3 | Variante 4 |
|------------|----------------------|------------|------------|
| Meier      | Me <mark>y</mark> er | Maier      |            |
| Bumann     | Baumann              |            |            |
| Baudinot   | Baudino              | Bodino     | Beaudineau |
| Jositsch   | Josić                |            |            |
|            |                      |            |            |

Welches Ergebnis liefert folgende SQL-Query?
 select distinct Name from TableX



Wie korrigiert man solche Fehler?

# Methoden für Duplikatserkennung



- Masken / Wildcards:
  - Erkennen von Mustern
- 2. String-Distanzen:
  - Vergleiche Buchstaben und berechne Anzahl unterschiedlicher Zeichen
- 3. Phonetische Suche:
  - Ähnlich klingende Namen werden mit ähnlichem Code abgebildet

# 1) Masken / Wildcards



Suche mit Masken / Wildcards → Beschreibung von Mustern im Text

| Variante 1           | Variante 2           | Maske     | Verfahren |
|----------------------|----------------------|-----------|-----------|
| Meier                | Meier                |           |           |
| Me <mark>i</mark> er | Meyer                | Me?er     | Regex     |
| Meier                | Maier                | M?ier     | Regex     |
| Bumann               | Baumann              | B.*umann  | Regex     |
| Baudinot             | Baudino              | Baudino.* | Regex     |
| Baudinot<br>Baudinot | Bodino<br>Beaudineau |           | ?<br>?    |
| Jositsch             | Josić                |           | ?         |

## Vor- und Nachteile



- Vorteil:
  - Sehr einfach anwendbar für konkrete Fragestellungen

- Nachteil:
  - Suchmuster muss genau bekannt sein

# 2) String-Distanz: Levenshtein Distanz



- Verfahren eignet sich zum Bestimmen möglicher Matches
- Gilt auch als "Editierdistanz"
- Prinzip:
  - Wie viele String-Operationen müssen ausgeführt werden, damit die Strings übereinstimmen?
- Operationen:
  - Ersetzung
  - Löschung
  - Einfügung

### Beispiel:

- Levenshtein Distanz(Gerold, Gerald) = 1
- Levenshtein Distanz(Hildegard, Hilde) = 4

#### Zürcher Hochschule für Angewandte Wissenschaften

# Beispiele: Levenshtein



- Meier vs. Mayer
- Tsar vs. Zar
- Deighton vs. Dayton



# String-Distanzen: Jaro-Winkler Distanz



- Misst Distanz zweier Strings A und B
- Normalisiertes Ähnlichkeitsmass:
  - 0 ... Keine Ähnlichkeit
  - 1... Strings sind identisch

$$d_{jaro}(A, B) = \frac{1}{3} \cdot \left(\frac{m}{|A|} + \frac{m}{|B|} + \frac{m-t}{m}\right) \text{ für } m > 0, \quad d_{jaro} = 0 \text{ für } m = 0$$

m... Matching: Anzahl der übereinstimmenden Zeichen in A und B, falls Abstand nicht grösser als  $floor\left(\frac{max\left(|A|,|B|\right)}{2}\right)-1$ 

t ... Halbe Anzahl der darin notwendigen Transpositionen

# String-Distanzen: Jaro-Winkler Distanz #2



- Transposition:
  - Jedes Zeichen des Strings A wird mit jedem Zeichen des Strings B verglichen
  - Die Anzahl der Operationen, um Matches zu erhalten, geteilt durch 2 entspricht der Anzahl der Transpositionen
- Beispiel:
  - String A: CRATE
  - String B: TRACE
  - A) Matches: R, A, E
    - m = 3
  - B) Keine Matches: C, T
    - Warum?



# Jaro-Winkler Beispiel



$$d_{jaro}(A, B) = \frac{1}{3} \cdot \left(\frac{m}{|A|} + \frac{m}{|B|} + \frac{m-t}{m}\right) \text{ für } m > 0, \quad d_{jaro} = 0 \text{ für } m = 0$$

d<sub>jaro</sub>(Winkler, Winkel) = ?

$$m = ?$$

$$t = ?$$



## Lösung



m=6

Abstand muss kleiner als floor (7/2) =3 – 1 = 2 sein t=2/2 ("L" in Winkeler -> löschen, R-> L: "R" in Winkler durch "L" ersetzen) ... T = halbe Anzahl der notwendigen Transpositionen 1/3 \* (6/7 + 6/6 + (6-1)/6) = 0.897

# Vor- und Nachteile von String-Distanzen



- Vorteile:
  - Sehr generell einsetzbar
  - Funktioniert gut bei "kleinen Tippfehlern"
  - Jaro-Winkler ist echtes Ähnlichkeitsmass (0 bis 1)
- Nachteile:
  - Funktioniert nur bei kurzen Strings (Jaro-Winkler)

# 3) Phonetische Suche



- Phonetische Suche in Texten
  - Beispiel: Mayer und Meier tönen ähnlich, Bodino und Baudinot auch
- → Soundex (www.sound-ex.de, patentiert durch Russel & Odell, 1918)
  - phonetischer Algorithmus zur Indizierung von Wörtern und Phrasen nach ihrem Klang
  - Soundex Code besteht aus einem Buchstaben (Anfangsbuchstabe) gefolgt von drei Ziffern
- Das Verfahren:
  - 1. Erster Buchstabe ist Teil des Codes
  - 2. Vokale, Umlaute und H, W, Y entfernen
  - 3. Restliche Buchstaben anhand Tabelle umkodieren
  - 4. Max. 3 Kodierungen

| Buchstaben             | Code |
|------------------------|------|
| B, F, P, V             | 1    |
| C, G, J, K, Q, S, X, Z | 2    |
| D, T                   | 3    |
| L                      | 4    |
| M, N                   | 5    |
| R                      | 6    |

Beispiel:

Baudinot, Boudinot, Beaudinot → B353

# Beispiele von Soundex



- Meier vs. Mayer
- Tsar vs. Zar
- Deighton vs. Dayton
- Hoffmann vs. Heppenheimer

| Buchstaben             | Code |
|------------------------|------|
| B, F, P, V             | 1    |
| C, G, J, K, Q, S, X, Z | 2    |
| D, T                   | 3    |
| L                      | 4    |
| M, N                   | 5    |
| R                      | 6    |



# Lösung



M600, M600

T260, Z600

D235, D350

H155, H155

## Nachteil von Soundex



- Stark abhängig vom ersten Buchstaben
- Funktioniert gut f
  ür Englisch aber nicht f
  ür Deutsch

### Kölner Phonetik



- Spezielle Anpassung an deutsche Sprache
- Mächtigere Ersetzungstabelle
- Auch erster Buchstabe wird kodiert
- Wort wird vollständig kodiert, d.h. nicht nur 3 Ziffern
- Umwandlung erfolgt in 3 Schritten:
- Buchstabenweise Kodierung von links nach rechts entsprechend der Umwandlungstabelle.
- 2. Entfernen aller mehrfach nebeneinander vorkommenden Ziffern.
- 3. Entfernen aller Codes "0" ausser am Anfang.

# School of Engineering

# Beispiel Kölner Phonetik

| Eingangsbuchstabe | Kontext                                | Code |
|-------------------|----------------------------------------|------|
| A,E,I,J,O,U,Y     |                                        | 0    |
| Н                 |                                        | -    |
| В                 |                                        | 1    |
| P                 | nicht vor H                            | 1    |
| D,T               | nicht vor C,S,Z                        | 2    |
| F,V,W             |                                        | 3    |
| P                 | vor H                                  | 3    |
| G,K,Q             |                                        | 4    |
| C                 | im Anlaut vor A,H,K,L,O,Q,R,U,X        | 4    |
| С                 | vor A,H,K,O,Q,U,X ausser nach S,Z      | 4    |
| X                 | nicht nach C,K,Q                       | 48   |
| L                 |                                        | 5    |
| M,N               |                                        | 6    |
| R                 |                                        | 7    |
| S,Z               |                                        | 8    |
| С                 | nach S,Z                               | 8    |
| С                 | im Anlaut ausser vor A,H,K,L,O,Q,R,U,X | 8    |
| С                 | nicht vor A,H,K,O,Q,U,X                | 8    |
| D,T               | vor C,S,Z                              | 8    |
| X                 | nach C,K,Q                             | 8    |

Tsar vs. Zar

Hoffmann vs. Heppenheimer



# Lösung



Tsar 8807 => 87 vs. Zar: 807 => 87 (gleich)

Hoffmann: 0366, Heppenheimer: 01667 (ungleich)

# Vor- und Nachteile phonetischer Codes



#### Vorteile:

- Sehr gut für Namensabgleichung geeignet
- Soundex für Englisch optimiert
- Kölner Phonetik für Deutsch optimiert

#### Nachteile:

- Sprachabhängig
- Kleine Tippfehler können grosse Änderungen bewirken
- Kein richtiges Ähnlichkeitsverfahren (alles oder nichts)

# Alternative Lösungen



• Welche Möglichkeiten gibt es noch?



# Wie hilft das bei der Duplikatseliminierung?



- Phonetische Funktionen erzeugen Hash Codes
- Bei Hash Codes gibt es immer Kollisionen
- Bei Duplikatseliminierung sind Kollisionen erwünscht:

| Name    | Hash_                      |
|---------|----------------------------|
| Baumann | B550                       |
| Bumann  | B <sub>550</sub> Kollision |
| Buman   | B550                       |
|         |                            |

→ Nachfolgende Anwendung von SELECT DISTINCT

#### Zürcher Hochschule für Angewandte Wissenschafte

# Data Matching Problem (Entity Matching)





# Literatur für Data Matching





https://link.springer.com/book/10.1007%2F978-3-642-31164-2

The Data Matching Process, S. 23-35

# Aktuelles Paper



#### Deep Learning for Entity Matching: A Design Space Exploration

Sidharth Mudgal<sup>1</sup>, Han Li<sup>1</sup>, Theodoros Rekatsinas<sup>1</sup>, AnHai Doan<sup>1</sup>,
Youngchoon Park<sup>2</sup>, Ganesh Krishnan<sup>3</sup>, Rohit Deep<sup>3</sup>, Esteban Arcaute<sup>4</sup>, Vijay Raghavendra<sup>3</sup>

<sup>1</sup>University of Wisconsin-Madison, <sup>2</sup>Johnson Controls, <sup>3</sup>@WalmartLabs, <sup>4</sup>Facebook

#### ABSTRACT

Entity matching (EM) finds data instances that refer to the same real-world entity. In this paper we examine applying deep learning (DL) to EM, to understand DL's benefits and limitations. We review many DL solutions that have been developed for related matching tasks in text processing (e.g., entity linking, textual entailment, etc.). We categorize these solutions and define a space of DL solutions for EM, as embodied by four solutions with varying representational power: SIF, RNN, Attention, and Hybrid. Next, we investigate the types of EM problems for which DL can be helpful. We consider three such problem types, which match structured data instances, textual instances, and dirty instances, respectively. We empirically compare the above four DL solutions with Magellan, a state-of-the-art learning-based EM solution. The results show that DL does not outperform current solutions on structured EM, but it can significantly outperform them on textual and dirty EM. For practitioners, this suggests that they should seriously consider using DL for textual and dirty EM problems. Finally, we analyze DL's performance and discuss future research directions.

#### **KEYWORDS**

Deep learning; entity matching; entity resolution

can automatically construct important features, thereby obviating the need for manual feature engineering. This has transformed fields such as image and speech processing, medical diagnosis, autonomous driving, robotics, NLP, and many others [28, 46]. Recently, DL has also gained the attention of the database research community [17, 83].

A natural question then is whether deep learning can help entity matching. Specifically, has DL been applied to EM and other related matching tasks? If so, what are those tasks, and what kinds of solutions have been proposed? How do we categorize those solutions? How would those DL solutions compare to existing (non-DL) EM solutions? On what kinds of EM problems would they help? And on what kinds of problems would they not? What are the opportunities and challenges in applying DL to EM? As far as we know, no published work has studied these questions in depth.

In this paper we study the above questions, with the goal of understanding the benefits and limitations of DL when applied to EM problems. Clearly, DL and EM can be studied in many different settings. In this paper, as a first step, we consider the classic setting in which we can automatically train DL and EM solutions on *labeled training data*, then apply them to test data. This setting excludes unsupervised EM approaches such as clustering, and approaches that require substantial human effort such as crowdsourced EM or

http://pages.cs.wisc.edu/~anhai/papers1/deepmatcher-sigmod18.pdf

# ZHAW-Forschung an Entity Matching



#### Entity Matching on Unstructured Data: An Active Learning Approach

Ursin Brunner and Kurt Stockinger ZHAW Zurich University of Applied Sciences, Switzerland

Abstract—With the growing number of data sources in enmatching process as a classification problem where we need terprises, entity matching becomes a crucial part of every data integration project. In order to reduce the human effort involved in identifying matching entities between different database tables typically machine learning algorithms are applied. Moreover, active learning is often combined with supervised machine learning methods to further reduce the effort of labeling entities as true or false matches. However, while state-of-the-art active learning algorithms have proven to work well on structured data sets, unstructured data still poses a challenge in entity matching,

This paper proposes an end-to-end entity matching pipeline to minimize the human labeling effort for entity matching on unstructured data sets. We use several natural language processing techniques such as soft tf-idf to pre-process the record pairs before we classify them using a novel Active Learning with Uncertainty Sampling (ALWUS) algorithm. We designed our algorithm as a plugin system to work with any state-of-the-art classifier such as support vector machines, random forests or deep neural networks. Detailed experimental results demonstrate that our end-to-end entity matching pipeline clearly outperforms comparable entity matching approaches on an unstructured realword data set. Our approach achieves significantly better scores (F1-score) while using 1 to 2 orders of magnitude fewer human labeling efforts than existing state-of-the-art algorithms.

to minimize the number of false positives.

TABLE I DATABASE A

| Surname | GivenName | Street           | City     |
|---------|-----------|------------------|----------|
| Meyer   | Marie     | 3/12-14 Hope Cnr | Sydney   |
| Smith   | John      | 42 Miller St     | Canberra |

TABLE II DATABASE B

| Name        | Address                             |
|-------------|-------------------------------------|
| Meier, Mary | 14 (App 3) Hope Corner, Sydney 2000 |
| Jonny Smith | 47 Miller Street, 2619 Canberra ACT |

While early entity matching was heavily used in the health sector and in national censuses [5], it is now a challenge that appears in numerous application domains. As large companies produce (and consume) more and more data which originates from multiple data sources, the process of data integration

#### **Entity Matching with Transformer Architectures -**A Step Forward in Data Integration

Ursin Brunner Zurich University of Applied Sciences Switzerland ursin.brunner@zhaw.ch

#### ABSTRACT

Transformer architectures have proven to be very effective and provide state-of-the-art results in many natural language tasks. The attention-based architecture in combination with pre-training on large amounts of text lead to the recent breakthrough and a variety of slightly different implementations.

In this paper we analyze how well four of the most recent attention-based transformer architectures (BERT[6], XLNet[33], RoBERTa[17] and DistilBERT [23]) perform on the task of entity matching - a crucial part of data integration. Entity matching (EM) is the task of finding data instances that refer to the same real-world entity. It is a challenging task if the data instances consist of long textual data or if the data instances are "dirty" due to misplaced values.

To evaluate the capability of transformer architectures and transfer-learning on the task of EM, we empirically compare the four approaches on inherently difficult data sets. We show that transformer architectures outperform classical deep learning methods in EM[7, 20] by an average margin of 27.5%.

Kurt Stockinger Zurich University of Applied Sciences Switzerland kurt.stockinger@zhaw.ch

or require large efforts in hand-crafted features [2, 13]. Therefore and due to the recent advances of deep learning in natural language processing (NLP), several papers suggest end-to-end deep learning architectures [7, 20, 34] for EM.

Table 1: Database A - structured product information, with description being a text-blob.

| Title         | Brand | Description                                                                                                                           | Price  |
|---------------|-------|---------------------------------------------------------------------------------------------------------------------------------------|--------|
| iPhone XS     | Apple | The brand new iPhone<br>now available in white,<br>red and silver.                                                                    | 899.99 |
| ZenFone 4 Pro | Asus  | Thin and light, yet incredibly<br>strong, the ZenFone 4<br>Pro (ZS551KL) features<br>an expansive 5.5-inch,<br>Full HD AMOLED display | 530.00 |

Swiss Data Science Conference, 2019

International Conference on Extending Database Technology, 2020

# Zusammenfassung



- Datenqualitätsprobleme werden oft unterschätzt
- Thema ist fast für jedes Unternehmen von höchster Relevanz
- Leider wird das Thema oft als "langweilig" empfunden
- Mit Maschine Learning lassen sich viele interessante Datenqualitätsprobleme lösen und machen das Thema wieder "spannend"