5. Choose an appropriate application, find a solution using linear regression and express its performance measures.

▼ Car Price Prediction

```
# importing necessary packages
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

cars_info = pd.read_csv("/content/drive/MyDrive/AI-ML/DM/CarPrice_Assignment.csv")
cars_info.head()

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	d
0	1	3	alfa-romero giulia	gas	std	two	convertible	
1	2	3	alfa-romero stelvio	gas	std	two	convertible	
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	
3	4	2	audi 100 ls	gas	std	four	sedan	
4	5	2	audi 100ls	gas	std	four	sedan	

```
# basic infos
cars_info.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype
0	car_ID	205 non-null	int64
1	symboling	205 non-null	int64
2	CarName	205 non-null	object
3	fueltype	205 non-null	object
4	aspiration	205 non-null	object
5	doornumber	205 non-null	object
6	carbody	205 non-null	object
7	drivewheel	205 non-null	object

```
8
   enginelocation
                     205 non-null
                                     object
9
   wheelbase
                     205 non-null
                                     float64
10 carlength
                     205 non-null
                                     float64
11
                     205 non-null
   carwidth
                                     float64
12
   carheight
                     205 non-null
                                     float64
13
   curbweight
                     205 non-null
                                     int64
14 enginetype
                     205 non-null
                                     object
15
   cylindernumber
                     205 non-null
                                     object
16
   enginesize
                     205 non-null
                                     int64
17
   fuelsystem
                     205 non-null
                                     object
18 boreratio
                     205 non-null
                                     float64
   stroke
19
                     205 non-null
                                     float64
20 compressionratio 205 non-null
                                     float64
                     205 non-null
21
   horsepower
                                     int64
22
                     205 non-null
   peakrpm
                                     int64
23
   citympg
                     205 non-null
                                     int64
24
                     205 non-null
   highwaympg
                                     int64
25
   price
                     205 non-null
                                     float64
```

dtypes: float64(8), int64(8), object(10)

memory usage: 41.8+ KB

cars_info.describe()

	car_ID	symboling	wheelbase	carlength	carwidth	carheight	curbwe
count	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.00
mean	103.000000	0.834146	98.756585	174.049268	65.907805	53.724878	2555.56
std	59.322565	1.245307	6.021776	12.337289	2.145204	2.443522	520.68
min	1.000000	-2.000000	86.600000	141.100000	60.300000	47.800000	1488.00
25%	52.000000	0.000000	94.500000	166.300000	64.100000	52.000000	2145.00
50%	103.000000	1.000000	97.000000	173.200000	65.500000	54.100000	2414.00
75%	154.000000	2.000000	102.400000	183.100000	66.900000	55.500000	2935.00
max	205.000000	3.000000	120.900000	208.100000	72.300000	59.800000	4066.00

```
# checking for null values
cars_info.isnull().sum()
```

car_ID	0
symboling	0
CarName	0
fueltype	0
aspiration	0
doornumber	0
carbody	0
drivewheel	0
enginelocation	0
wheelbase	0
carlength	0
carwidth	0
carheight	0

curbweight	0
enginetype	0
cylindernumber	0
enginesize	0
fuelsystem	0
boreratio	0
stroke	0
compressionratio	0
horsepower	0
peakrpm	0
citympg	0
highwaympg	0
price	0
dtype: int64	

#Check the correlation between each of the columns
cars_info.corr()

- # There is good correlation between
- # 1. engine size and horse power
- # 2. curb weight and car length
- # 3. car width and car length
- # 4. Engine size and price
- # 5. curbweight and price

	car_ID	symboling	wheelbase	carlength	carwidth	carheight
car_ID	1.000000	-0.151621	0.129729	0.170636	0.052387	0.255960
symboling	-0.151621	1.000000	-0.531954	-0.357612	-0.232919	-0.541038
wheelbase	0.129729	-0.531954	1.000000	0.874587	0.795144	0.589435
carlength	0.170636	-0.357612	0.874587	1.000000	0.841118	0.491029
carwidth	0.052387	-0.232919	0.795144	0.841118	1.000000	0.279210
carheight	0.255960	-0.541038	0.589435	0.491029	0.279210	1.000000
curbweight	0.071962	-0.227691	0.776386	0.877728	0.867032	0.295572
enginesize	-0.033930	-0.105790	0.569329	0.683360	0.735433	0.067149
boreratio	0.260064	-0.130051	0.488750	0.606454	0.559150	0.171071
stroke	-0.160824	-0.008735	0.160959	0.129533	0.182942	-0.055307
compressionratio	0.150276	-0.178515	0.249786	0.158414	0.181129	0.261214
horsepower	-0.015006	0.070873	0.353294	0.552623	0.640732	-0.108802
peakrpm	-0.203789	0.273606	-0.360469	-0.287242	-0.220012	-0.320411
citympg	0.015940	-0.035823	-0.470414	-0.670909	-0.642704	-0.048640
highwaympg	0.011255	0.034606	-0.544082	-0.704662	-0.677218	-0.107358
price	-0.109093	-0.079978	0.577816	0.682920	0.759325	0.119336

```
# visulaizing correlation using heat map
plt.figure(figsize=(14,7))
sns.heatmap(cars_info.corr(),annot=True,cmap='coolwarm')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f90eacbd350>


```
# highest correlation is engine size vs price
# scatter plot
sns.scatterplot(x='price',y='enginesize',data=cars_info)
plt.show()
```



```
# dropping these columns
cars_info.drop(['car_ID','CarName','fuelsystem','enginetype'],axis=1,inplace=True)
cars info.head()
```

	symboling	fueltype	aspiration	doornumber	carbody	drivewheel	enginelc
0	3	gas	std	two	convertible	rwd	
1	3	gas	std	two	convertible	rwd	
2	1	gas	std	two	hatchback	rwd	
3	2	gas	std	four	sedan	fwd	
4	2	gas	std	four	sedan	4wd	

```
# encoding strings to number to use it in the model

# mapping

cars_info['fueltype'] = cars_info['fueltype'].map({'gas':'0','diesel':'1'})

cars_info['aspiration'] = cars_info['aspiration'].map({'std':'0','turbo':'1'})

cars_info['doornumber'] = cars_info['doornumber'].map({'two':'2','four':'4'})

cars_info['carbody'] = cars_info['carbody'].map({'convertible':'0','hatchback':'1'

cars_info['drivewheel'] = cars_info['drivewheel'].map({'rwd':'0','fwd':'1','4wd':'

cars_info['enginelocation'] = cars_info['enginelocation'].map({'front':'0','rear':

cars_info['cylindernumber'] = cars_info['cylindernumber'].map({'four':'4','six':'6})

# checking

cars_info.head()
```

	symboling	fueltype	aspiration	doornumber	carbody	drivewheel	engineloc
0	3	0	0	2	0	0	
1	3	0	0	2	0	0	
2	1	0	0	2	1	0	
3	2	0	0	4	2	1	
4	2	0	0	4	2	2	

Model building part

```
# taking price as the label or target

from sklearn.model_selection import train_test_split

X = cars_info_drop('price' axis=1)
```

```
DM Assignment 2.ipynb - Colaboratory
  - cars_inio.arob( brice ,axis-i)
y= cars_info['price']
X_train,X_test,y_train,y_test= train_test_split(X,y,test_size=0.3,random_state=55)
# training or fitting the curve
from sklearn.linear model import LinearRegression
lr = LinearRegression()
lr.fit(X_train,y_train, )
    LinearRegression(copy X=True, fit intercept=True, n jobs=None, normalize=Fals
# prediction part
prediction = lr.predict(X test)
```

Perfomance measures

```
# r2 score
from sklearn.metrics import r2 score
print(r2_score(y_test,prediction))
# got 78% accuracy
    0.7784967344806435
# The explained variance score computes the explained variance regression score.
from sklearn.metrics import explained_variance_score
explained_variance_score(y_test, prediction, multioutput='raw_values')
    array([0.77858187])
# The max error function computes the maximum residual error ,
# a metric that captures the worst case error between the predicted
# value and the true value.
from sklearn.metrics import max_error
max_error(y_test, prediction)
    16867.0309776942
# Mean Abosulute Error
from sklearn.metrics import mean_absolute_error
```

```
mean_absolute_error(y_test, prediction, multioutput='raw_values')
array([2343.26176044])
```

```
# Mean squared error
from sklearn.metrics import mean_squared_error
mean_squared_error(y_test, prediction)
```

13119405.902743611

```
# test data vs prediction
plt.scatter(y_test, prediction)
```

