M. Sc. (IT) - 1st Year Semester-II

Syllabus of Subject Code: 180801201 Subject Name: Distributed Operating System

Course Objective:

- 1. To make student aware about distributed operating systems.
- 2. To understand the principles underlying the functioning of distributed systems.
- 3. To understand how principles of Distributed OS are applied in distributed systems.
- 4. To understand problems and challenges faced in Distributed OS.

Course Duration:

The course duration is single semester. It will have 50 sessions, each session of 60 minutes.

Module	Modules/Sub-Modules	No. of	% Weightage
No.		Sessions	
I	Fundamentals of Distributed Computing System:	10	20%
	Introduction, Evolution of Distributed Computing		
	Systems, Models of Distributed Computing Systems,		
	Introduction to Distributed Operating Systems,		
	Distributed Computing Environment.		
	Message Passing: Introduction, Features of message		
	passing system, Issues of IPC for Message Passing,		
	Synchronizing, Buffering, Multi datagram Messages,		
	Encoding and Decoding of Message Data, Process		
	Addressing, Failure Management, Group		
	Communication		
II	Remote Procedure Calls: Introduction, RPC Model,	10	20%
	Transparency of RPC, Implementing RPC Mechanism,		
	Stub Generation, RPC Messages, Server Management,		
	Parameter-Passing Semantics, Call Semantics,		
	Communication Protocols for RPCs, Complicated		
	RPCs, Client-Server Binding, Exception Handling,		
III	Distributed Shared Memory: Introduction, General	10	20%
	Architecture of DSM Systems, Design and		
	implementation of DSM, Granularity, Structure of		
	Shared Memory Space, Consistency Models,		
	Replacement Strategy, Thrashing		
	Synchronization: Introduction, Clock synchronization,		
	Event Ordering, Mutual Exclusion, Deadlock		

IV	Resource Management: Introduction, Desirable features of scheduling algorithms, Task assignment approach, Load-balancing approach, Load-sharing approach Process Management: Introduction, Process migration, Threads	10	20%
V	Distributed File System: Introduction, Desirable features of distributed file system, File models, File accessing models, File sharing semantics, File caching schemes, File replication, Atomic transactions, Design principles	10	20%

The following pedagogical tools will be used to teach this course:

- 1. Lectures & Discussions
- 2. Assignments
- 3. Case Studies
- 4. Practical implementation

Evaluation:

The students will be evaluated on a continuous basis and broadly follow the scheme given below:

1.	Continuous Evaluation (Assignments /	30% (Internal Assessment)
	Presentations/ Quizzes / Class Participation/	
	Practical Assignments / Case Analysis)	
2.	Internal Examination (Mid Semester Exam)	20% (Internal Assessment)
3.	External Examination (University Exam / End	50% (External Assessment)
	Semester Exam)	,

Basic Text Book:

Sr. No.	Author	Title	Publisher	Edition
1.		Distributed Operating Systems	PHI	Latest
	Sinha	Concepts and Design		

Sr. No.	Author	Title	Publisher	Edition
1.	Mukesh Singhal & N.G.Shivaratri	Advanced concepts in Operating Systems	Tata McGraw Hill	Latest
2.	Andrew S. Tanenbaum	Distributed System Principles and Paradigms	PHI	Latest
3.	Sunita Mahajan, Seema Shah	Distributed Computing	OXFORD University Press	Latest

Subject Name: Object Oriented Analysis and Designing

Course Objective:

- To understand and analyze the system using Object Oriented Approach
- To help students to identify the objects and apply Object Oriented Analysis and Designing.
- To enable students to prepare the Models based on UML for a given system

Course Duration:

The syllabus is divided in to five modules. Total 50 lectures to be conducted to cover the whole syllabus and each lecture will be of 60 minutes.

Module	Topics/Chapter Name	No. of	%
No.		Sessions	Weightage
I	Introduction to UML and Unified Process	10	20%
	What is UML?, History and future of UML, Objects and		
	UML, UML structures, UML building blocks, UML		
	common mechanism, Architecture, What is Unified		
	Process?, The birth of UP, Axioms, structure and phases of		
	UP, UP – incremental and iterative process		
II	Requirements	10	20%
	The requirement workflow, The importance of		
	requirements, Defining requirements, Finding requirement,		
	Use Case modeling, Finding activity and use cases, Detail a		
	use case, Actor Generalization, Use case Generalization,		
	< <include>>, <<extend>></extend></include>		
III	Analysis	10	20%
	What are objects, UML Object Notation, What are classes?,		
	UML class Notation, What is Relationship?, What is a		
	link?, What is an association?, What is Dependency?,		
	Generalization and class Inheritance, Polymorphism,		
	Advanced Generalization, What is a package?, Packages		
	and Namespace, Nested Packages, Packages Dependency,		
	Package Generalization		
IV	Analysis with Realization	10	20%
	Interactions, Lifelines, Messages, Interaction Diagrams,		
	Sequence Diagrams, Combined fragment and operators,		
	Communication Diagrams, What are Activity Diagrams,		
	Activities, Activity semantics, Control Nodes,		
	Object Nodes		

V	Design	10	20%
	State machines, State machines and UP, State Machine		
	Diagram, State, Transitions, Events, Composite state,		
	Submachine states, Submachine communication.		

The following pedagogical tools will be used to teach this course:

- 1. Lectures & Discussions
- 2. Assignments
- 3. Case Studies

Evaluation:

The students will be evaluated on a continuous basis and broadly follow the scheme given below:

1.	Continuous Evaluation (Assignment / Presentation / Quiz / Class Participation)	30% (Internal Assessment)
2.	Internal Examination (Mid Semester Exam)	20% (Internal Assessment)
3.	External Examination (University Exam / End Semester Exam)	50% (External Assessment)

Basic Text Book:

Sr. No.	Author/s	Name of the Book	Publisher	Edition
T1	Jim Arlow & Ila Neustadt	UML 2 and the Unified Process	Pearson	Latest

Topic Distribution:

Module No.	Topics / Chapters Name	No. of Sessions	% Weightage
_	Chapter 1: 1.2, 1.3, 1.4, 1.6, 1.7, 1.8 – 1.8.1, 1.8.2,	10	20%
I	1.8.3, 1.9 – 1.9.1, 1.9.2, 1.9.3, 1.9.4, 1.10		
	Chapter 2: 2.2, 2.3, 2.6, 2.7 – 2.7.1, 2.7.2, 2.8, 2.9 –		
	2.9.1 to 2.9.12		
	Chapter 3 : 3.2, 3.5, 3.6 – 3.6.1 to 3.6.5, $3.7 - 3.7.1$ to	10	20%
II	3.7.4		
	Chapter 4: 4.2, 4.3 – 4.3.1 to 4.3.4, 4.4		
	Chapter 5: 5.2, 5.3, 5.4, 5.5 – 5.5.1, 5.5.2, 5.5.3		
	Chapter 7: 7.2 – 7.2.1, 7.2.2, 7.3 – 7.3.1, 7.4 – 7.4.1,	10	20%
III	7.4.2, 7.5 – 7.5.1 to 7.5.4		

	Chapter 9: 9.2, 9.3 – 9.3.1, 9.3.2, 9.4 – 9.4.1 to 9.4.6,		
	9.5 – 9.5.1, 9.5.2		
	Chapter 10: 10.2, 10.3 - 10.3.1, 10.3.2, 10.3.2, 10.4,		
	10.5 – 10.5.1, 10.5.2		
	Chapter 11: 11.2, 11.3, 11.4, 11.5, 11.6		
	Chapter 12: 12.5, 12.6, 12.7 – 12.7.1, 12.7.2, 12.7.3,	10	20%
IV	12.8, 12.9–12.9.1, 12.9.2, 12.9.3, 12.9.4, 12.10 –		
	12.10.1, 12.10.2, 12.11 – 12.11,1, 12.11.2		
	Chapter 14: 14.2, 14.4, 14.5, 14.8 – 14.8.1, 14.8.2,		
	14.8.3, 14.9 – 14.9.1, 14.9.2, 14.9.3		
	Chapter 21: 21.2 – 21.2.1, 21.2.2, 21.3, 21.4, 21.5,	10	20%
V	21.6 – 21.6.1, 21.6.2, 21.7 – 21.7.1 to 21.7.4		
	Chapter 22: 22.2 – 22.2.1, 22.2.2, 22.3, 22.4		

Sr. No.	Author/s	Name of the Book	Publisher	Edition
1.	Grady Booch, James Rumbaugh and Ivar Jacobson	The Unified Modeling Language User Guide	Pearson Education	Latest
2.	Michael Blaha James Rumbaugh	Object-Oriented Modeling and Design with UML	Pearson	Latest
3.	Simon Bennet Steve McRobb Ray Farmer	Object Oriented Systems Analysis and Design Using UML	Tata McGraw Hill	Latest
4.	Craig Larman	Applying UML and Patterns	Pearson	Latest
5.	Martin Flower	UML Distilled: A Brief Guide to Standard Object Modeling	Pearson	Latest
6.	http://nptel.ac.ihttp://nptel.ac.ihttp://nptel.ac.i	n/courses/106105153/35 n/courses/106105153/36 n/courses/106105153/38 n/courses/106105153/39 n/courses/106105153/44		,

Subject Name: Computer Communication and Networking

Course Objective:

- To make students learn fundamentals of networking.
- To understand the functionality of each layer of the OSI reference model and
- TCP/IP models.
- To understand the interaction and type of services exchanged between each layer.
- To gain insight in how to develop a program related to computer networks.

Course Duration:

The syllabus is divided in to five modules. Total 50 lectures to be conducted to cover the whole syllabus and each lecture will be of 60 minutes.

Module	Topics/Chapter Name	No. of	%
No.		Sessions	Weightage
I	Introduction Internetworks, Network Software, Reference Models, A	10	20%
	comparison of OSI/TCP IP Model.		
	The Physical Layer		
	The Maximum Data Rate of a Channel, Guided		
	Transmission Media, Wireless Transmission, Digital		
	Modulation and Multiplexing		
II	The Data Link Layer	10	20%
	Data Link Layer Design Issues, Error Detection and		
	Correction Elementary Data Link Protocols, Sliding		
	Window Protocols		
III	The Medium Access Control	10	20%
	The Channel Allocation Problem, Multiple Access		
***	Protocols, Ethernet, Wireless LANS, Bluetooth	10	200/
IV	The Network Layer	10	20%
	Network Layer Design Issues, Routing Algorithms (The		
	Optimality Principle, Shortest Path Algo, Flooding,		
	Distance Vector Routing, Link State Routing),		
	Internetworking, The Network Layer in the Internet(IP		
	Addresses, Classful Addressing, Subnets, Introduction to		
V	IPv6, ICMP, NAT, ARP) The Transport Lever & The Application Lever	10	20%
v	The Transport Layer & The Application Layer The Transport service (Services provided to the upper	10	2070
	The transport service (services provided to the upper		

layers, Transport Service Primitives), Elements of	
Transport Protocols(Addressing, Connection Establishment,	
Connection Release), Internet Transport	
Protocols(Introduction to UDP,RPC), Internet Transport	
Protocols(Introduction to TCP, TCP Service Model, The	
TCP Protocol, The TCP Segment Header, TCP Connection	
Establishment, TCP Connection Release, TCP Connection	
Management Modeling, TCP Sliding Window), Domain	
Name System, Content Delivery	

The following pedagogical tools will be used to teach this course:

- 1. Lectures
- 2. Discussions
- 3. Assignments
- 4. Case Studies

Evaluation:

The students will be evaluated on a continuous basis and broadly follow the scheme given below:

1.	Continuous Evaluation	30% (Internal Assessment)
	(Assignment / Presentation / Quiz / Class Participation)	
2.	Internal Examination (Mid Semester Exam)	20% (Internal Assessment)
3.	External Examination (University Exam / End Semester Exam)	50% (External Assessment)

Basic Text Book:

Sr. No.	Author/s	Name of the Book	Publisher	Edition
T1	Andrew S. Tanenbaum David J. Wetherall	Computer Networks	Pearson	5 th

Topic Distribution:

Module No.	Topics / Chapters Name	No. of Sessions	% Weightage
I	Chapter 1: 1.2.5, 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5, 1.4.1,	10	20%
	1.4.2, 1.4.4		
	Chapter 2: 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.3.1,		
	2.3.2, 2.3.3, 2.3.4, 2.3.5, 2.5.1, 2.5.2, 2.5.3, 2.5.4, 2.5.5		
II	Chapter 3: 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.2.1, 3.2.2, 3.3.1,	10	20%
	3.3.2, 3.3.3, 3.4.1, 3.4.2, 3.4.3		
III	Chapter 4: 4.1.1, 4.1.2, 4.2.1, 4.2.2, 4.2.3, 4.2.4, 4.2.5,	10	20%

	4.3.1, 4.3.2, 4.3.4, 4.3.5, 4.3.6, 4.3.7, 4.4.1, 4.4.2, 4.4.3,		
	4.4.4, 4.6.1, 4.6.2, 4.6.3, 4.6.4, 4.6.5, 4.6.6		
IV	Chapter 5: 5.1.1, 5.1.2, 5.1.3, 5.1.4, 5.1.5, 5.2.1, 5.2.2,	10	20%
	5.2.3, 5.2.4, 5.2.5, 5.5.1, 5.5.2, 5.5.3, 5.5.4, 5.5.5, 5.6.2,		
	5.6.3, 5.6.4		
V	Chapter 6: 6.1.1, 6.1.2, 6.2.1, 6.2.2, 6.2.3, 6.4.1, 6.4.2,	10	20%
	6.5.1, 6.5.2, 6.5.3, 6.5.4, 6.5.5, 6.5.6, 6.5.7, 6.5.8		
	Chapter 7: 7.1.1, 7.1.2, 7.1.3, 7.5.1, 7.5.2, 7.5.3, 7.5.4		

Sr. No.	Author/s	Name of the Book	Publisher	Edition	
1.	Behrouz A. Forouzan	Data Communications and Networking	Tata Mcgraw- Hill	Latest	
2.	Behrouz A. Forouzan Firouz Mosharraf	Computer Networks	Tata Mcgraw- Hill	Latest	
3.	Prakash C. Gupta	Data Communications and Computer Networks	PHI Learning	Latest	
4.	James F. Kurose Keith W. Ross	Computer Networking: A Top-Down Approach	Pearson	Latest	
5.	Bhushan Trivedi	Computer Networks	Oxford Higher Education	Latest	
6.	Video Links:			•	
	• http://www.nptelvideos.com/lecture.php?id=5712				
	 http://www.nptelvideos.com/lecture.php?id=5713 				
	 http://www.nptelvideos.com/lecture.php?id=5726 				
	 http://www.nptelvideos.com/lecture.php?id=5737 				
	http://www.npt	elvideos.com/lecture.php?id	l=5724		

Subject Name: Introduction to Blockchain

Course Objective:

- **8** To understand the basic concepts of Blockchain.
- To understand different Blockchain frameworks .

Course Duration:

The syllabus is divided in to five modules. Total 50 lectures to be conducted to cover the whole syllabus and each lecture will be of 60 minutes.

Module	Topics/Chapter Name	No. of	% W/-:-b-4
No.		Sessions	Weightage
I	Introduction	10	20%
	Blockchain basics, How Blockchain works, Mining, Types		
	of Nodes, Usage of Public and Private keys in Blockchain,		
**	Threats and Challenges, Introduction to Bitcoin	10	2007
II	Ethereum	10	20%
	Turing machine, Ethereum virtual machine (EVM), Smart		
	contracts, Solidity, Gas, Consensus Mechanism, Parity		
	Enterprise Blockchain Beyond		
	Identity management, Social Networking, Education, Uses		
	cases of Finance, Travel, Supply chain and other domains,		
	Fraud Prevention, Enterprise Blockchain requirements and		
	Framework.		
III	Quorum, Multichain and R3 Corda	10	20%
	Quorum Components, Node, Constellation, Transaction		
	Manager and Processing, Quorum Clientele. Comparison,		
	Features, Deployment, Digital Audit Trail, Sharing Data.		
	Features, IOU Model, Flows, Contracts, Deploying Corda,		
	Accounting Use cases		
IV	Ripple, HyperLedger and IOTA the 3 rd Generation	10	20%
	Blockchain		
	Technologies used to implement Ripple, Fundamentals of		
	HyperLedger and its use cases, Tangle, Trinary System,		
	IOTA Reference Implementation (IRI)		
V	Neo, COCO Framework and Use Case Scenarios	10	20%
	Initial Coin Offer, Crowd Funding, Real Time Gross		
	Settlement, Various Use Cases, Smart City where		

Blockchain Me	eets IO	T.			
Blockchain in	Blockchain in Practice				
Comparison	of	Frameworks,	Blockchain-As-A-		
Service					

The following pedagogical tools will be used to teach this course:

- 1. Lectures
- 2. Discussions
- 3. Assignments
- 4. Case Studies
- 5. Implementation

Evaluation:

The students will be evaluated on a continuous basis and broadly follow the scheme given below:

1.	Continuous Evaluation (Assignment / Presentation / Quiz / Class Participation)	30% (Internal Assessment)
2.	Internal Examination (Mid Semester Exam)	20% (Internal Assessment)
3.	External Examination (University Exam / End Semester Exam)	50% (External Assessment)

Basic Text Book:

Sr. No.	Author/s	Name of the Book	Publisher	Edition
T1	Blockchain : From Concept to Execution	Debajani Mohanty	BPB Publication	Latest

Topic Distribution:

Module	Topics / Chapters Name	No. of	%
No.		Sessions	Weightage
I	Chapter 1 and 2	10	20%
II	Chapter 3 and 4	10	20%
III	Chapter 5, 6 and 7	10	20%
IV	Chapter 8, 9 and 10	10	20%
V	Chapter 11, 12, 13 and 14	10	20%

Sr. No.	Author/s	Name of the Book	Publisher	Edition
1.	Melanie Swan	Blockchain: Blueprint for a New	O'REILY	Latest

		Economy		
2.	Don Tapscott, Alex Tapscott	Blockchain Revolution: How the Technology Behind Bitcoin and Other Cryptocurrencies is Changing the World	PENGUIN	Latest
3.	Tiana Laurence	Blockchain For Dummies	John Wiley & Sons, Inc.	Latest
4.	Video Links: • http://blockcha • http://nptel.ac.i	in.mit.edu/ n/courses/106105184/		

Subject Name: Date Warehousing and Data Mining

Course Objective:

- To understand the basic concepts of data warehousing.
- To understand the basic concepts data mining.
- To study different applications of Data mining.

Course Duration:

The syllabus is divided in to five modules. Total 50 lectures to be conducted to cover the whole syllabus and each lecture will be of 60 minutes.

Module	Topics/Chapter Name	No. of	%
No.		Sessions	Weightage
I	Need for data warehouse, Operational Vs. DSS, Data warehousing - the only viable solution, Data warehouse: A blend of many technologies Evolution of BI.	10	20%
	Defining features, Data warehouse and Data marts, Overview of components, Metadata in data warehouse.		
	Significant Trends - Real time data warehousing, Multiple data types, Data Warehouse and ERP, Data Warehousing and CRM, Data Warehousing and KM, Web Enabled data warehouse.		
II	Introduction to data mining, what kinds of data and patterns can be mined, which technologies are used? Major issues in data mining.	10	20%
	Introduction to data preprocessing, data cleaning, data integration and transformation, data reduction, data decentralization and concept hierarchy generation.		
III	Data Warehouse Modeling: Data cube and OLAP. Data cube computation: preliminary concepts, Data Cube computation methods. Mining frequent Patterns, Associations, and Correlation: basic concepts, frequent item set mining methods.	10	20%
IV	Classification: basic concepts, decision tree induction, Bayes classification methods, rule-based classification. Classification: advanced methods — Bayesian Belief	10	20%

	Networks, Classification by back propagation, Support vector machine.	
V	Mining complex data types, Data mining trends and research frontiers: methodologies of data mining – visual and audio data mining, Data mining Applications, data mining and society.	20%

The following pedagogical tools will be used to teach this course:

- 1. Lectures
- 2. Discussions
- 3. Assignments
- 4. Case Studies

Evaluation:

The students will be evaluated on a continuous basis and broadly follow the scheme given below:

1.	Continuous Evaluation (Assignment / Presentation / Quiz / Class Participation)	30% (Internal Assessment)
2.	Internal Examination (Mid Semester Exam)	20% (Internal Assessment)
3.	External Examination (University Exam / End Semester Exam)	50% (External Assessment)

Basic Text Book:

Sr. No.	Author/s	Name of the Book	Publisher	Edition
T1	Paulraj Ponniah	Data warehousing fundamentals: a comprehensive guide for IT professionals	Wiley	Latest
Т2	Jiawei Han Micheline Kamber	Data mining concepts and techniques (e-book in form of PDF is available)	Elsevier	Third

Topic Distribution:

Module No.	Topics / Chapters Name	No. of Sessions	% Weightage
I	Chapter 1, Chapter 2, Chapter 3 (Textbook 1)	10	20%
II	Chapter 1: 1.2,1.3,1.5,1.7 (Textbook 2)	10	20%
	Chapter 3: 3.1, 3.2, 3.3 (3.3.1, 3.3.3, 3.3.4), 3.4 (3.4.1,		
	3.4.4, 3.4.5, 3.4.7, 3.4.8, 3.4.9), 3.5 (3.5.1, 3.5.4, 3.5.5,		
	3.5.6)		

III	Chapter 4: 4.2, Chapter 5: 5.1, 5.2	10	20%
	Chapter 6: 6.1, 6.2.1, 6.2.2,6.2.5		
IV	Chapter 8: 8.1, 8.2 (8.2.1 (without algorithm), 8.2.3, 8.2.4), 8.3, 8.4 (8.4.1, 8.4.2,), 8.6 (8.6.2, 8.6.3 (without algorithm))		20%
	Chapter 9: 9.1, 9.2 (9.2.1, 9.2.2, 9.2.3 (without algorithm)), 9.3, 9.5, 9.6		
V	Chapter 13: 13.1, 13.2.3, 13.3, 13.4.2	10	20%

Sr. No.	Author/s	Name of the Book	Publisher	Edition
1.	Stephen Haag, Maeve Cummings, Amy Philips, Pang-Ning Tan, Michael Steinbach Vipin Kumar	Introduction to Data Mining	Pearson	Latest
2.	Alex Berson Stephen J. Smith	Data Warehousing, Data Mining & OLAP	Tata McGraw – Hill Publication	Latest
3.	Video Links: • http://nptel.ac	.in/courses/106106093/31		

Subject Name: Web Programming using Python

Course Objective:

- To gain the knowledge of MVT architecture.
- To acquaint the students with web programming using Python Framework.
- To acquaint the students about Git Hub usage.

Course Duration:

The syllabus is divided in to five modules. Total 50 lectures to be conducted to cover the whole syllabus and each lecture will be of 60 minutes.

Course Content:

Module No.	Topics/Chapter Name	No. of Sessions	% Weightage
I	Introduction to Django: Django Installation, Features, Creating Project and overview of the first App, Creating web apps with MVT architecture.	10	20%
II	Models: Introduction to Model, Database Setup, Creating Models, Activating Models, Database API, filtering Database Result, Admin Interface. Views: Introduction to view, writing view, connecting view to the database.	10	20%
III	Template: Introduction to Template, rendering template, adding forms to the template. Session Management: Session, Users, Registration	10	20%
IV	REST Framework: Introduction to REST API, Project Setup, Serializers, views, URLs, Settings, Testing Rest API.	10	20%
V	Bootstrap: Displaying Content and Integrating Bootstrap. Git Hub: Introduction to Git Hub, Applications and usage of Git Hub. Setting up Git Hub repository and various operations like Pull, Push, Commit etc. Usage of Source Tree.	10	20%

Teaching Methods:

The following pedagogical tools will be used to teach this course:

- 1. Lab sessions
- 2. Assignments

- 3. Presentations
- 4. Projects

Evaluation:

The students will be evaluated on a continuous basis and broadly follow the scheme given below:

1.	Continuous Evaluation (Assignment / Presentation / Quiz / Class Participation)	30% (Internal Assessment)
2.	Internal Examination (Mid Semester Exam)	20% (Internal Assessment)
3.	External Examination (University Exam / End Semester Exam)	50% (External Assessment)

Sr. No.	Author/s	Name of the Book	Publisher	Edition
1.		Django: The Definitive Guide to Django: Web Development Done Right	Apress	Latest
2.	Nigel George	Mastering Django	Packt Publishing Ltd	Latest
3.	Sanjeev Jaiswal, Ratan Kumar	Learning Django Web Development	Packt Publishing Ltd	Latest

Subject Name: Web Programming using Java

Course Objective:

- To gain the knowledge of swing, applet, JDBC concept using advance java programming.
- To acquaint the student with web programming using Java technologies like servlet and JSP.

Course Duration:

The syllabus is divided in to five modules. Total 50 lectures to be conducted to cover the whole syllabus and each lecture will be of 60 minutes.

Module No.	Topics/Chapter Name	No. of Sessions	% Weightage
I	Swing Components and JApplet JFrame, JApplet, JPanel, JLabel, JTextField, JButton, JCheckBox, JRadioButton, JSlider, JComboBox, JTabbedPane, JScrollPane, Menus, Jlist Layout Managers: Spring Layout, Box Layout	10	20%
77	Java Bean	1.0	2007
II	Working with JDBC JDBC APIs, JDBC Classes and Interfaces Driver Manager Class, Driver Interface, Connection Interface, Statement Interface	10	20%
III	Introduction to HTML – only basic structure and tags (upto table tag) of HTML, Overview of Java Script, Primitives, Date and Time, Operations and Expressions, Screen Output and Keyboard Input, Control Statement, Object Creation and Modification, Arrays, Functions, Constructors Working with Servlets Creating Simple Servlet, Creating Servlet using Annotation, Introduction of HttpServletRequest and HttpServletResponse Interface, Request Delegation and Request Scane Session Session Tracking and its	10	20%
	Request Scope, Session, Session Tracking and its Mechanisms, Java Servlet API for Session Tracking		
IV	Java Server Pages (JSP) JSP Basic Tags and Implicit Objects, JSP Action Tags,	10	20%

	Introduction to JSP Unified EL, Using functions with EL		
V	Advanced JSP & MVC Architecture Using <jsp:usebean>, <jsp:getproperty>, <jsp:setproperty>, Sharing Beans, Use of Scopes and their Attributes</jsp:setproperty></jsp:getproperty></jsp:usebean>	10	20%
	Integrating Servlets and JSP in a Web Application (MVC Architecture for Web Applications)		
	Implementing MVC with Request Dispatcher, Understanding Data Sharing Between Servlets and JSP, JSP Expression Language for Beans , Accessing Scoped Variables, Bean Properties		

The following pedagogical tools will be used to teach this course:

- 1. Lab sessions
- 2. Assignments
- 3. Presentations
- 4. Projects

Evaluation:

The students will be evaluated on a continuous basis and broadly follow the scheme given below:

1.	Continuous Evaluation (Assignment / Presentation / Quiz / Class Participation)	30% (Internal Assessment)
2.	Internal Examination (Mid Semester Exam)	20% (Internal Assessment)
3.	External Examination (University Exam / End Semester Exam)	50% (External Assessment)

Basic Text Book:

Sr. No.	Author/s	Name of the Book	Publisher	Edition
T1	M. T. Savaliya	Advance Java Technology	Dreamtech Press	Latest

Sr. No.	Author/s	Name of the Book	Publisher	Edition
1.	Marty Hall, Larry Brown	Core Servlets and JavaServer Pages Volume – 1	Pearson Education	Second
2.	Marty Hall, Larry Brown, Yaakov Chaikin	Core Servlets and JavaServer Pages Volume – 2	Pearson Education	Second
3.	Sachin Malhotra	Programming in JAVA	OXFORD	2010

GLS University - FCAIT - MSc (IT) PROGRAMME

	Saurabh Choudhary			
4.	Ivan Bayross	Web Enabled Commercial Application Development Using HTML, DHTML, PERL, Java Script	BPB Publications	Revised Edition
5.	Kogent Learning Solutions Inc.	Web Technologies Black Book	Dreamtech Press	2010
6	C Muthu	Programming With JAVA	Tata McGraw Hill	

M. Sc. (IT) - 1st Year Semester-II

Syllabus of Subject Code: 180801208 Subject Name: Summer Assignment

Course Objective:

To learn new technologies that will allow the student to choose the specialization track.

Course Duration:

The course duration is of maximum one month.

Course Content:

The summer assignment can be given on probable topics as mentioned below:

HTML 5
PHP & MySQL
Graph Database
Design Patterns
Python Scripting

Open Source Technologies

Teaching Methods:

The following pedagogical tools will be used to teach this course:

- 1. Presentation
- 2. Case Studies
- 3. Practical implementation

Evaluation:

The students will be evaluated on a continuous basis and broadly follow the scheme given below:

1.	Continuous Evaluation (Practical Assignments /	
	Case Analysis / Presentations)	50% (Internal Assessment)
2.	Internal Examination (Mid Semester Exam)	
3.	End Semester Exam	50% (Internal Assessment)
	Note: The End Semester Exam will be conducted by the institute and marks will be sent to the University.	