11.17 Notes

Math 403/503

November 2022

1 Game Plan For Future Weeks

- Today finish spectral theorem
- Next week break
- Following week maybe chapter 10
- Dead week review and give out final quiz
- Finals week submit quiz

2 Last Time...

Last time we introduced the (complex) spectral theorem which consisted of two statements:

- If T is normal $(T^*T = TT^*)$ then T and T^* have the same eigenvectors but with conjugate eigenvalues: $Tv = \lambda v \leftrightarrow T^*v = \overline{\lambda}v$
- ullet If T is normal then the eigenvectors of T are mutually orthogonal, and there are dim V many eigenvectors (an orthonormal basis of V consisting of eigenvectors).

I owe you a few portions of proofs.

• Assume $Tv = \lambda v$ (i.e. $(T - \lambda I)v = 0$. Note that $(T - \lambda I)^* = T^* - \overline{\lambda}I$. Note that $T - \lambda I$ is also normal (if T is): $(T - \lambda I)^*(T - \lambda I) = (T^* - \lambda I)(T - \lambda I)$ $= T^*T - \lambda T^* - \overline{\lambda}T + \lambda \overline{\lambda}I$ $= TT^* - \lambda T^* - \overline{\lambda}T + \overline{\lambda}\lambda I$ $= (T - \lambda I)(T^* - \overline{\lambda}I)$ Now, $(T - \lambda I)v = 0 \rightarrow ||(T - \lambda I)v||^2 = 0$ $\rightarrow < (T - \lambda I)v, (T - \lambda I)v >= 0$ $\rightarrow < v, (T - \lambda I)^*(T - \lambda I)v >= 0$ $\rightarrow < v, (T - \lambda I)(T - \lambda I)^*v >= 0$ $\rightarrow < (T - \lambda I)^*v, (T - \lambda I)^*v >= 0$ $\rightarrow < (T - \lambda I)^*v, (T - \lambda I)^*v >= 0$ $\rightarrow (T - \lambda I)^*v = 0$

$$\begin{split} & \to (T^* - \overline{\lambda}I)v = 0 \\ & \to T^*v = \overline{\lambda}v. \end{split}$$

• We showed last time that the various eigenspaces of T are pairwise and orthogonal. Let me just repeat: Let $Tv_1 = \lambda_1 v_1, Tv_2 = \lambda_2 v_2 (\lambda_1 \neq \lambda_2)$. (know that $T^*v_1 = \overline{\lambda_1} v_1, T^*v_2 = \overline{\lambda_2} v_2$). Now, $\langle Tv_1, v_2 \rangle = \langle v_1, T^*v_2 \rangle \rightarrow \langle \lambda_1 v_1, v_2 \rangle = \langle v_1, \overline{\lambda_2} v_2 \rangle \rightarrow \lambda_1 \langle v_1, v_2 \rangle = \lambda_2 \langle v_1, v_2 \rangle \rightarrow \langle v_1, v_2 \rangle = 0$

The last thing we need to do is show that in fact T is diagonalized by its eigenvectors. We can do this in two parts:

- There exists an orthonormal basis in which T has an upper triangular matrix
- Any upper triangular matrix that happens to be normal must be diagonal

The first bullet point follows from some things we have already done. Begin with any basis $v_1, ..., v_n$ and let A be the matrix of T in this basis. Since we are working over C we know that T has an upper triangular matrix with respect to some basis (e.g. the Jordan form) so: $A = BUB^{-1}$ where U is upper triangular. Now from Gram-Schmidt we can factor B as B = QR where Q is orthonormal and R is upper triangular, then:

$$\begin{split} A &= BUB^{-1} \\ &= QRU(QR)^{_1} \\ &= QRUR^{-1}Q^{-1} \\ &= Q(RUR^{-1})Q^{-1} \end{split}$$

For the second bullet point we simply inspect what it means for an upper trian-

gular matrix
$$U$$
 to be normal. $U = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots \end{bmatrix}$ Normal: $U^*U = UU^*$.

Looking at the
$$(1,1)$$
 entry:
 $|a_{11}|^2 = |a_{11}|^2 + ... + |a_{1n}|^2$
 $\rightarrow |a_{12}|^2 = ... = |a_{1n}|^2 = 0$
 $\rightarrow a_{12} = ... = a_{1n} = 0$.

Looking at the
$$(2,2)$$
 entry:
 $|a_{12}|^2 + |a_{22}|^2 = |a_{22}|^2 + \dots + |a_{2n}|^2$
 $\rightarrow |a_{23}|^2 + \dots + |a_{2n}|^2 = 0$
 $\rightarrow a_{23} = \dots = a_{2n} = 0$

Inductively we can find that all off-diagonal entries are zero, so, normal and upper triangular implies diagonal. So we conclude that normal matrices over C have the decomposition $A = Q\Lambda Q^*$ where Q is orthonormal and Λ is diagonal (over a real vector space one must assume A is symmetric i.e. self adjoint).

One application of the spectral theorem is the "Polar decomposition". Any complex number z can be written in a polar form $e^{i\theta} \cdot r$, as a product of a unit (norm 1) and a positive real number. There is a similar result for operators! The unit will be replaced by a "unitary" or orthonormal matrix Q. The positive real number will be replaced by a "positive operator".

Definition: An operator $p\epsilon L(V)$ is called <u>positive</u> if for all $v\epsilon V, < Pv, v > \geq 0$. NOte that over C, positive is equivalent to \overline{P} being orthogonally diagonalizable with all eigenvalues being real and nonnegative.

Theorem: Any square matrix A may be decomposed as $Q \cdot P$ where Q is orthonormal and P is positive.

Proof (in the special case when A is normal): We know $A = Q\Lambda Q^*$ from the spectral theorem. Then for each λ_{ii} in Λ write it as $\lambda_{ii} = u_i |\lambda_{ii}|$ where u_i satisfies $|u_i| = 1$. Then let U be a matrix with just entries along the diagonal, and similarly $|\Lambda|$ just has entries along the diagonal. Then $A = QU|\Lambda|Q^* = QUQ^* \cdot Q|\Lambda|Q^*$

An arbitrary matrix A gives rise to a normal matrix $A^*A...$ then work harder to get the result for A too