Wels

C Embebido

Variables

ANSI Keywords

auto	break	case	char
const	continue	default	do
double	else	enum	extern
float	for	goto	if
int	long	register	return
short	signed	sizeof	static
struct	switch	typedef	union
unsigned	void	volatile	while

Stdint.h

Librería estándar que permite proporcionar un conjunto de typedefs que especifican tipos de enteros de ancho exactos.

int16_t

uint16_t

Stdint.h

Nombre en stdint	En C	Rango	Tamaño
int8_t	char	-128 a 127	1 byte
uint8_t	unsigned char	0 a 255	1 byte
int16_t	short	-32768 a 32767	2 bytes
uint16_t	unsigned short	0 a 65535	2 bytes
int32_t	int	-2147483648 a 21474834647	4 bytes
uint32_t	unsigned int	0 a 4294967295	4 bytes

Declaración y Declaración con definición

int16_t variable;

 Declaración: es cuando se especifica el tipo de dato y un identificador.

int16_t variable = 5;

• **Definición:** es cuando se le asigna un valor a la variable, utilizando '='.

Wels

No se puede representar el número en INT, CHAR, LONG.

Tipos de datos

IEEE-754 Floating-Point Standar

FLOAT

32 bits

- Es de precisión simple de 32 bits.
- Rango
 - o 3.4e-38 a 3.4e+38
- Se presenta máximo 7 decimales.

float var_float = 1.1234567;

FLOAT

$$(-1)^s \times 1.m \times 2^{e-127}$$

Hagamos una prueba con 1.1234567

DOUBLE

64 bits

- Es de precisión doble de 64 bits.
- Rango
 - o 1.7e-308 a 1.7e+308
- Se presenta máximo 15 decimales.

double var_electron = -1.60217662e-19;

¡Veamos un ejemplo!

DOUBLE

$$(-1)^s \times 1.m \times 2^{e^{-1023}}$$

¡Veamos un ejemplo!

Operadores matemáticos

¡Veamos un ejemplo!

Wels

Gracias

@welstheory
hola@welstheory.com
+51 918 899 684

