Automatic LLM Benchmark Analysis for Text2SQL

Authors: Cristian DEGNI, Francesco GIANNUZZO

Supervised by: Prof. Paolo PAPOTTI, Simone PAPICCHIO (PhD)

Project Background & Motivation

LLMs and approaches like Text-to-SQL and Text-to-Code are transforming how we query databases, especially in complex, enterprise settings.

Existing public benchmarks often fail to reflect the diversity and complexity of real-world datasets, limiting accurate model evaluation.

It is therefore important to:

- Evaluate the robustness and generalization of models on SQL-centric tasks.
- Compare Text-to-Code systematically against established methods like Text-to-SQL.

Project Objectives

- 1) Develop a web application using GRADIO to make QATCH more user-friendly and accessible for end users.
- 2) Compare the Text-to-SQL and Text-to-Code approaches using different LMMs on different databases using Natural Language Question for querying the data.
- 3) Evaluate models performance using QATCH metrics for multiple scenarios and Code metrics for the Text-To-Code task.
- 4) Analyze the results obtained from models on different SQL-centric and non-SQL datasets to compare the effectiveness of both task approaches under realistic conditions.

Workflow Overview

Workflow Overview

Workflow Overview

SQL-centric (Text2SQL & Table QA)

Text-to-SQL:

Goal: translate an NL question and data context into a SQL query, which is executed to obtain table results. QATCH evaluates execution accuracy and fine-grained metrics for a full performance profile.

Table Question Answering:

LLM takes an **NL** question and data context to produce directly an answer, without issuing SQL engine. **QATCH** then compares this output to the ground-truth answer to measure accuracy and pinpoint errors at the cell and tuple levels.

Text2SQL

Text2Code

Definition:

Map a natural language question and database context into executable Python code that returns the answer table.

*Approaches:

Vanilla: single-prompt for directly generate a Python code

CodexDB: LLM-driven pseudocode translated into Python without leaking gold SQL

Binder: two-stage LLM decomposition with intermediate mapping

IIIQuality code metrics:

Cyclomatic Complexity, Halstead Measures, Maintainability Index

Vanilla Code Python

Binder Python

Binder Python example

qa_map('table_default.csv', 'which cities are in the United States', ['City'])

Binder Python example

Neuro Python Code generated

```
# Use qa map to filter the table
for cities in the United States
filtered table =
qa map('table default.csv', 'which
cities are in the United States',
['City'])
# Count the number of people who
live in the United States
count usa = len(filtered table)
# Print the result
print([[count usa]])
```

Code after results integrations

```
#Use qa_map to filter the table
for cities in the United States
filtered_table =
pd.read_csv('map0.csv')

# Count the number of people who
live in the United States
count_usa = len(filtered_table)

# Print the result
print([[count_usa]])
```

Metrics: Evaluating Model Performance

To provide a comprehensive analysis of the performance of our models, we used two different classes of metrics:

QATCH Metrics:

Unified evaluation metrics used across QA, Text-to-SQL, and Text-to-Code, measuring both **semantic correctness** and **structural fidelity** of the model outputs.

Code Metrics:

A custom suite designed for Text-to-Code, evaluating the **complexity**, **maintainability**, and **readability** of generated Python code.

Code Metrics

Cyclomatic Complexity

Measures the number of independent "paths" that can be taken in the code execution flow. It is related to conditional logic (if, for, while, try, etc.).

Components

E = arcs,

N = nodes,

P = connected components

CC = E - N + 2P

Returns a list of values representing the complexity for each independent "path"

Code Metrics

Halstead Metrics

Measures the cognitive complexity of code based on the operators and operands used. It is useful for estimating how difficult it is to understand or maintain a program.

Components

n1: distinct number of operands

n2: distinct number of operands

N1: total number of operands

N2: total number of operands

Volume (V) = $(N1 + N2) \times log_2(n1 + n2)$

→ amount of information

Difficulty (D) =
$$(n1 / 2) \times (N2 / n2)$$

→ difficulty of comprehension

Effort (E) =
$$D \times V$$

→ estimated mental effort

Code Metrics

Maintainability Index

A composite index that measures how easy a piece of code is to maintain.

Components

CC = Cyclomatic Complexity

HV = Halstead Volume

NLC = Number of Lines of Code

MI = 171 - 5.2 * In(HV) - 0.23 * CC - 16.2 * In(NLC)

QATCH Metrics

E Cell Precision	Percentage of predicted table cells that are correct.
© Cell Recall	Percentage of ground-truth table cells that were successfully retrieved.
* Tuple Constraint	Exact match on schema, cardinality, and cell values (1 if identical, 0 otherwise).
Tuple Cardinality	Ratio of predicted to ground-truth tuple counts.
12 Tuple Order	Correlation between predicted vs. true tuple ordering (for ORDER BY queries).

Results

Preliminary Tests

[Non-proprietary] Spider avg metrics (Concert Singer)

[Proprietary] BEAVER avg metrics (TIME QUARTERS)

QATCH Results

Halstead (effort) Results

Maintainability Index Results

Cyclomatic Complexity Results

Conclusions

Some models show stronger task-specific especially in structured reasoning. domains.

There is **room for improvement** in handling complex datasets and ambiguous queries.

LLMs prefer simpler tasks with clearer structure, especially when schema info is limited.

Model performance varies depending on dataset type (e.g., BEAVER vs. SPIDER).

Text2SQL is stronger on SQL-centric tasks, while Text2Code excels in reasoning intensive ones.

Prompt design and instance diversity play a critical role in code generation quality.

Thanks for your attention;)

Questions?

Future works

Enhance existing pipelines

Explore new Text2Code paradigms

Explore methods like chain-of-thought and program-by-example for better reasoning.

Automatic schema induction

Develop automatic schema induction for
semi-structured tables like WTQ.

Benchmark on no-SQL-centric datasets
Evaluate performance on datasets like
TabFact or HybridQA.

Evaluate different model typesUse code-specialized and multimodal models to assess task suitability.

Scale Table QA to full datasets

Implement full-dataset QA with retrieval and streaming for large tables.

