

4. 6.) Electrostatic discharge requirements (ESD) EPOSA 04.00

Type of test	charging voltage	Basic standard	Test set-up	Comment	Performance criteria
Electrostatic discharge Air discharge	20 kV charging voltage	EN 61000-4-2	EN 61000-4-2		В
Electrostatic discharge Contact discharge	8 kV charging voltage	EN 61000-4-2	EN 61000-4-2		В

Operating mode	Test positions	Criteria of compliance
Normal operation with looping of signals	The 33 test positions are shown in the following graphic.	Before, during and after the test the equipment shall operate as intended, no loss of function or loss of voice links shall occur. Short disturbances on the voice link during the test are allowed. After the test there shall be no degradation of performance.

Test positions for ESD on the EPOSA 04.00

Date 31,05,2005

Test result for the EPOSA 04.00

Test position	Charging voltage	Type of discharge	Positive discharge	Negative dischar
1	8 kV	contact	OK	ОК
2	8 kV	contact	OK	ОК
3	20 kV	air	OK	OK
4	20 kV	air	OK	OK
5	20 kV	air	OK	OK
6	20 kV	air	OK	OK
7	20 kV	air	OK	OK
8	20 kV	air	OK	OK
9	20 kV	air	OK	OK
10	20 kV	air	OK	OK
11	20 kV	air	OK	OK
12	20 kV	air	OK	OK
13	20 kV	air	OK	OK
14	8 kV	contact	OK	OK
15	20 kV	air	OK	OK
16	20 kV	air	OK	OK
17	20 kV	air	OK	OK
18	20 kV	air	OK	OK
19	20 kV	air	OK	OK
20	20 kV	air	OK	OK
ok Nok	EUT passed EUT failed			

Test result for the EPOSA 04.00 continued

Test position	Charging voltage	Type of discharge	Positive discharge	Negative discharge
21	8 kV	contact	OK	OK
22	8 kV	contact	OK	OK
23	8 kV	contact	OK	OK
24	8 kV	contact	OK	OK
25	8 kV	contact	OK	OK
26	8 kV	contact	OK	OK
27*	8 kV	contact	OK	OK
28*	8 kV	contact	OK	OK
29*	8 kV	contact	OK	ОК
30*	8 kV	contact	OK	OK
31	20 kV	air	OK	OK
32	8 kV	Indirect HCP	OK	OK
33	8 kV	Indirect VCP	OK	OK

OK EUT passed NOK EUT failed

^{*} The connectors at these positions need to be better conducted with the case. For the tests this was done with adhesive metal foil.

4. 7.) Electrostatic discharge requirements (ESD) C-POS 01

Type of test	charging voltage	Basic standard	Test set-up	Comment	Performance cntena
Electrostatic discharge Air discharge	20 kV charging voltage	EN 61000-4-2	EN 61000-4-2		В
Electrostatic discharge Contact discharge	8 kV charging voltage	EN 61000-4-2	EN 61000-4-2		В

Operating mode	Test positions	Criteria of compliance
Normal operation with looping of signals	The 24 test positions are shown in the following graphic,	Before, during and after the test the equipment shall operate as intended, no loss of function or loss of voice links shall occur. Short disturbances on the voice link during the test are allowed. After the test there shall be no degradation of performance.

Test positions for ESD on the C-POS 01

Test result for the C-POS 01

Test position	Charging voltage	Type of discharge	Positive discharge	Negative discharge
1	8 kV	contact	OK	OK
2	20 kV	air	OK	OK
3	20 kV	air	OK	OK
4	20 kV	air	OK	OK
5	20 kV	air	OK	OK
6	20 kV	air	OK	OK
7	20 kV	air	OK	OK
8	20 kV	air	OK	OK
9	20 kV	air	OK	OK
10	20 kV	air	OK	OK
11	20 kV	air	OK	OK
12	20 kV	air	OK	OK
13	20 kV	air	OK	OK
14	8 kV	contact	OK	OK
15	8 kV	contact	OK	OK
16*	8 kV	contact	OK	OK
17*	8 kV	contact	OK	OK
18*	8 kV	contact	OK	OK
19*	8 kV	contact	OK	OK
20*	8 kV	contact	OK	OK
21*	8 kV	contact	OK	OK
22	20 kV	air	OK	OK
23	8 kV	Indirect HCP	OK	OK
24	8 kV	Indirect VCP	OK	OK

OK EUT passed NOK EUT failed

^{*} The connectors at these positions need to be better conducted with the case. For the tests this was done with adhesive metal foil.

4. 8.) Radiated electromagnetic field requirements

Type of test	Test parameters	Basic standards	Test set-up	Comment	Performance criteria
Radiated electromagnetic field 19" cabinet	80 MHz - 1000 MHz Fieldstrength: 10 V/m Modulation 80%/1 kHz AM Polarisation H/V Stepsize 1%	EN 61000-4-3	EN 61000-4-3		A
Radiated electromagnetic field operator positions	80 MHz - 1000 MHz Fieldstrength: 3 V/m Modulation 80%/1 kHz AM Polarisation H/V Stepsize 1%	EN 61000-4-3	EN 61000-4-3		A

Operating mode	Criteria of compliance
Normal operation with looping of signals For the operator positions: Only the handset was connected (No headset)	Before, dunng and after the test the equipment shall operate as intended. A minimum SNR of the voice link of 40 dB shall be maintained. After the test there shall be no degradation of performance.

Test result

Type of test	Test parameters	Performance criteria	Result
Radiated electromagnetic field 19" cabinet	80 MHz - 1000 MHz Fieldstrength: 10 V/m Modulation 80%/1 kHz AM Polarisation H/V Stepsize 1%	А	OK
Radiated electromagnetic field operator positions	80 MHz - 1000 MHz Fieldstrength: 3 V/m Modulation 80%/1 kHz AM Polarisation H/V Stepsize 1%	A	OK

OK EUT passed NOK EUT failed

Date: 31 05,2005

4. 9.) Induced RF-field requirements

Type of test	Test parameters	Basic standards	Test set-up	Comment	Performance criteria
RF-current common mode	0,15 MHz - 80 MHz 10 Vrms (unmodulated) Modulation 80%/1 kHz AM Stepsize 1 % Source impedance 150 Ohm	EN 61000-4-6	EN 61000-4-6		A

Operating mode	Criteria of compliance
Normal operation with looping of signals For the operator positions: There must be a ferrite on the Headset-line to keep the compliance criteria.	Before, during and after the test the equipment shall operate as intended. A minimum SNR of the voice link of 40 dB shall be maintained. After the test there shall be no degradation of performance.

Date 31.05,2005

Test result

Measured line	Type of coupling	Performance criteria	Result
AC-mains supply (1-phase)	M5	А	OK
ERIF 03.00 line	Clamp Injection	А	OK
GPIF 03.01 line	Clamp Injection	А	OK
T0 03,00 line	Clamp Injection	А	OK
BCB 03.00 line	Clamp Injection	A	OK
BCA 03.00 line	Clamp Injection	A	ОК
LB 03.00 line	Clamp Injection	Α	ОК
TMCS line	Clamp Injection	А	ОК
Operator positions line	Clamp Injection	А	OK
OK EUT passed NOK EUT failed			

4. 10.) Electrical fast transients/burst requirements

Type of test	Test parameters	Basic standards	Test set-up	Comment	Performance criteria
Electrical fast transients common mode	5/50 ns t _r /t _n 5kHz Burst frequency 15 ms Burst time 3 Hz Repetition frequency Polarity: positive/negative	EN 61000-4-4	EN 61000-4-4 Coupling clamp		В

Operating mode	Criteria of compliance
Normal operation with looping of signals	Before, during and after the test the equipment shall operate as intended, no loss of function or loss of voice links shall occur. Short disturbances on the voice link during the test are allowed. After the test there shall be no degradation of performance.

Test result

4. 10. 1.) Measurement on other lines (coupling clamp)

Measured line	Test voltage	Performance criteria	Positive pulse	Negative pulse
ERIF 03.00 line	1 kV	В	OK	ОК
GPIF 03.01 line	1 kV	В	OK	OK
T0 03.00 line	1 kV	В	OK	OK
BCB 03.00 line	1 kV	В	OK	OK
BCA 03.00 line	1 kV	В	OK	OK
LB 03.00 line	1 kV	В	OK	OK
TMCS line	1 kV	В	OK	ОК
Operator positions line	1 kV	В	OK	ОК

OK NOK EUT passed EUT failed

4. 11.) Surge requirements

Type of test	Test parameters	Basic standards	Test set-up	Comment	Performance criteria
Surge, common mode, signal lines	1 kV Test level 1,2/50 µs t _r /t _n Polanty: positive/negative	EN 61000-4-5	EN 61000-4-5		В

Operating mode	Criteria of compliance
Normal operation with looping of signals	Before, during and after the test the equipment shall operate as intended, no loss of function or loss of voice links shall occur. Short disturbances on the voice link during the test are allowed. After the test there shall be no degradation of performance.

Test result

4. 11.1.) Measurement on shielded signal lines - common mode

Combination	Test voltage	Performance criteria	Positive pulse	Negative pulse
ERIF 03.00 line	1 kV	В	OK	OK
GPIF 03.01 line	1 kV	В	OK	OK
T0 03.00 line	1 kV	В	ОК	OK
BCB 03,00 line	1 kV	В	ОК	OK
BCA 03.00 line	1 kV	В	ОК	OK
LB 03.00 line	1 kV	В	OK	OK
TMCS line	1 kV	В	OK	OK
Operator positions line	1 kV	В	OK	OK

OK NOK EUT passed EUT failed

Appendix 1 Test equipment used

\boxtimes	Anechoic Chamber with 3m measurement distance	NT-100		ESVP - Test receiver 20 - 1000 MHz	NT-201
\boxtimes	MA 240 - Antenna mast 1 - 4 m height	NT-110		ESPC - Test receiver 9 kHz - 2,5 GHz	NT-203
\boxtimes	DS 412 - Turntable 0 - 400 ° Azimuth	NT-111	\boxtimes	ESI26 – Test receiver 20 Hz – 26,5 GHz	NT-207
\boxtimes	HD 100 Controller Mast+Turntable	NT-112		Digital Radio Tester CTS55	NT-208
	HUF-Z2 - Bicon Antennna 20 - 300 MHz	NT-120		Noise-gen , ITU-R 559-2 20 Hz – 20 kHz	NT-209
	HUF-Z3 - Log. Per. Antenna 200 - 1000 MHz	NT-121		CMTA - Radiocommunication analyzer ; 0,1 - 1000 MHz	NT-210
	HFH-Z2 - Loop Antenna. 9 kHz - 30 MHz	NT-122		3271 - Spectrum analyzer 100 Hz - 26,5 GHz	NT-211
	HFH-Z6 - Rod Antenna 9 kHz - 30 MHz	NT-123		Radiocommunicationanalyzer Marconi 2945A	NT-212
	3121C - Dipole Antenna 28 - 1000 MHz	NT-124		2855S - Communication analyzer	NT-213
\boxtimes	3115 - Horn Antenna 1 - 18 GHz	NT-125		Mixer M28HW 26,5 GHz - 40 GHz	NT-214
	3116 - Hom Antenna 18 - 40 GHz	NT-126		Diode Detector 0,01 GHz - 26,5 GHz	NT-215
	SAS-200/543 - Bicon. Ant. 20 MHz - 300 MHz	NT-127		RubiSource T&M Timing reference	NT-216
	AT-1080 - Log. Per. Ant. 80 - 1000 MHz	NT-128		Radiocommunicationanalyzer SWR 1180 MD	NT-217
	HK-116 - bicon Ant. 20 MHz - 300 MHz	NT-129		Mixer M19HWD 40 GHz – 60 GHz	NT-218
	HK-116 - bicon. Ant. 20 MHz - 300 MHz	NT-130		Mixer M12HWD 60 GHz – 90 GHz	NT-219
	3146 - Log. Per. Ant. 200 - 1000MHz	NT-131		TDS - 540 DSO Digital scope	NT-220
	Loop Antenna H-Field	NT-132		PM97 Scopemeter	NT-221
	Hom Antenna 500 MHz - 2900 MHz	NT-133		TPS 2014 Digital scope	NT-222
	Log, per, Antenna 800 MHz - 2500 MHz	NT-134		B10 - Harmonics and flicker analyzer	NT-232
	Log. per. Antenna 800 MHz - 2500 MHz	NT-135		SRM-3000 Spectrumanalyzer	NT-233
	BiConiLog Antenna 26 MHz – 2000 MHz	NT-137		E-field probe SRM 75 MHz – 3 GHz	NT-234
	Conical Dipol Antenna PCD8250	NT-138		Hall-Teslameter ETM-1	NT-241
	HZ-1 Antenna tripod	NT-150		EFA-3 H-field- / E-field probe	NT-243
	BN 1500 Antenna tripod	NT-151		E-field measuring instrument EMR-200; 100 kHz – 3 GHz	NT-244
	Ant. tnpod for EN61000-4-3 Model TP1000A	NT-156		E-field probe 100 kHz – 3 GHz	NT-245
	Spectrumanalyzer – FSP7 9 kHz – 7 GHz	NT-200		Magneticfield-Sensor 300 kHz – 30 MHz	NT-246

Medizintechnik/ Nachrichtentechnik/EMV

Department: EMV

Test report number: M/EMV-05/141

Page: 1 of 3

Date: 31.05.2005

Checked by:

Appendix 1 (continued) Test equipment used

	E-field probe 10 MHz – 18 GHz	NT-247		TRANSIENT 1000 Immunity test system	NT-325	Medizintechnik/ Nachrichtentechnik/EMV
	H-field probe 10 MHz – 1 GHz	NT-248		VCS 500-M6 Surge-Generator	NT-326	Department: EMV
	ELT-400 1 Hz – 400 kHz	NT-249		BTA-250 - RF-Amplifier 9 kHz - 220 MHz / 250 W	NT-330	Test report number; M/EMV-05/141
	MDS 21 - Absorbing clamp 30 - 1000 MHz	NT-250		T82-50 RF-Amplifier 2 GHz – 8 GHz	NT-331	Page: 2 of 3
\boxtimes	FCC-2031 EM Injection clamp	NT-251	\boxtimes	500W1000M7 - RF-Amplifier 80 - 1000 MHz / 500 W	NT-332	Date: 31.05.2005 Checked by:
	FCC-203I-DCN	NT-252		AS0102-65R - RF-Amplifier	NT-333	
	PR50	NT-253		1 GHz - 2 GHz APA01 - RF-Amplifier	NT-334	
	Current Probe	NIT DEA		0,5 GHz – 2,5 GHz	NIT 22E	
	PR630 Current Probe	NT-254		Preamplifier 1 GHz - 4 GHz	NT-335	
	Fluke 87 V True RMS Multimeter	NT-260		Preamplifier for GPS MKU 152 A	NT-336	
	Model 2000 Digital Multimeter	NT-261		Preamplifier 100 MHz – 23 GHz	NT-337	
	Fluke 79 Digital Multimeter	NT-262		DC Block 10 MHz – 18 GHz Model 8048	NT-338	
	Fluke 79	NT-263		2-97201	NT-341	
	Digital Multimeter		200	Electronic load		
	ESH2-Z5 Artificial mains network 4x25A	NT-300		TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-344	
	ESH3-Z5 Artificial mains network 2x10A	NT-301		TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-345	
	ESH3-Z6 Artificial mains network 1×100A	NT-302		VDS 200 Mobil-impuls-generator	NT-350	
	ESH3-Z4 T-Artificial network	NT-303		LD 200 Mobil-impuls-generator	NT-351	
	PHE 4500/B Power amplifier	NT-304		MPG 200 Mobil-Impuls-Generators	NT-352	
	EZ10	NT-305		EFT 200	NT-353	
\boxtimes	T-Artificial network	NIT 210		Mobil-impuls-generator	NIT 400	
	SMG - Signal generator 0,1 - 1000 MHz	NT-310		FP 16/3-1 3 ph. Coupling filter (Burst)	NT-400	
	PM 5518 TXVPS Video generator	NT-311		PHE 4500 - Mains impedance network	NT-401	
	RefRad Reference generator	NT-312		IP 6.2 Coupling filter for data lines (Surge)	NT-403	
	SMP 02 Signal generator 10 MHz - 20 GHz	NT-313		ESH2-Z3 - Probe 9 kHz - 30 MHz	NT-410	
	40 MHz Arbitrary Generator T1241	NT-315		IP 4 - Capacitive clamp (Burst)	NT-411	
\boxtimes	PEFT - Burst generator up to 4 kV	NT-320		Highpass-Filter 100 MHz – 4 GHz	NT-412	
\boxtimes	ESD 30 System up to 25 kV	NT-321		Highpass-Filter 600 MHz – 4 GHz	NT-413	
	PSURGE 4.1 Surge generator	NT-324		Highpass-Filter 1250 MHz – 4 GHz	NT-414	
	ou ge generator			1250 12 - 1 01 12		

Appendix 1 (continued) Test equipment used

Highpass-Filter 1800 MHz – 18 GHz	NT-415		FCC-801-AF10 Coupling decoupling network	NT-461	Medizintechnik/ Nachrichtentechnik/EMV
	NT-416		FCC-801-S25	NT-462	Department: EMV
RF-Attenuator 20 dB	NT-421		Coupling decoupling network FCC-801-T4	NT-463	Test report number: M/EMV-05/141
0,1 - 1000 MHz / 25 W RF-Attenuator 10 dB	NT-422		Coupling decoupling network FCC-801-C1	NT-464	Page: 3 of 3
0,1 - 1000 MHz / 20 W			Coupling decoupling network	Wayna wasan	Date: 31,05,2005
RF-Attenuator 30 dB 0,1 - 1000 MHz / 1 W	NT-423		F-16A - Current probe 1kHz - 70MHz	NT-465	Checked by:
RF-Attenuator 30 dB	NT-424	\boxtimes	PC P4 3 GHz Test computer	NT-500	,
RF-Attenuator 6 dB 0,1 - 1000 MHz / 1 W	NT-425			NT-505	
RF-Attenuator 6 dB 0,1 - 1000 MHz / 1 W	NT-426			NT-506	
RF-Attenuator 6 dB	NT-428		Monitoring camera with Monitor	NT-511	
RF-Attenuator 0 dB - 81 dB	NT-429	\boxtimes	ES-K1 Version 1.71 Test software	NT-520	
WRU 27 - Band blocking 27 MHz	NT-430		SRM-TS Version 1.2.3 software for SRM-3000	NT-522	
WHJ450C9 AA - High pass 450 MHz	NT-431		SPS-PHE Test software V2.32 voltage fluctuations/harmonics	NT-525	
WHJ250C9 AA - High pass 250 MHz	NT-432		SPS-EM Test software V2.32 for PHE 4500/B	NT-527	
RF-Load 150 W	NT-433		Noise power test apparatus according to EN 55014	NT-530	
Impedance transducer 1:4 ; 1:9 ; 1:16	NT-435		Vertical coupling plane (ESD)	NT-531	
RF-Attenuator DC – 18 GHz 6 dB	NT-436	\boxtimes	Test cable #4 for EN 61000-4-6	NT-553	
RF-Attenuator DC – 18 GHz 6 dB	NT-437	\boxtimes	Test cable #3 for conducted emission	NT-554	
RF-Attenuator DC – 18 GHz 10 dB	NT-438		Test cable #5 ESD-cable (2x470k)	NT-555	
RF-Attenuator DC – 18 GHz 20 dB	NT-439		Test cable #6 ESD-cable (2x470k)	NT-556	
I+P 7780 Directional coupler 100 - 2000 MHz	NT-440		Test cable #8 Sucoflex 104EA	NT-559	
ESH3-Z2 - Pulse limiter 9 kHz - 30 MHz	NT-441		Test cable #9 (for outdoor measurements)	NT-580	
Power Divider 6 dB/1 W/50 Ohm	NT-443		Test cable #10 (for outdoor measurements)	NT-581	
Directional coupler 0,1 MHz – 70 MHz	NT-444		Test cable #13 Sucoflex 104PE	NT-584	
Directional coupler 0,1 MHz – 70 MHz	NT-445		Test cable #21 for SRM-3000	NT-592	
Tube imitations according to EN 55015	NT-450		Shield chamber	NT-600	
FCC-801-M2-50A Coupling decoupling network	NT-459		. Climatic chamber -55°C to +180°C	M-512	
FCC-801-M5-25 Coupling decoupling network	NT-460		Control and simulation equipment for EUT	Messi	

Prichtentechnik/EMV

Department: EMC

Tost report reference

MIEMV-05/141

richtentechnik/EMV

Department: EMC

Test report reference
M/EMV-05/141

Department: EMC

Department: EMC
Test report reference
M/EMV-05/141

EN 55022 F QP

Seite 1 30.05.2005 12:12

-LIM

Department: EMC

Medizintechnik/Nach-richtentechnik/EMV

EN 55022 F QP

Seite 1 30.05.2005 12:13

-LIM

Department: EMC Medizintechnik/Nach-richtentechnik/EMV

Medizintechnik/Nachrichtentechnik/EMV

Department: EMC

Test report reference
M/EMV-05/141

Measurement diagrams
of 16

Date: \$1.05.2005

X X > MES FAAAPL_LB_F1_fin MES FAAAPL_LB_F1_pre LIM EN 55022 F QP

300M

EN 55022 F QP

400M

500M

Frequenz [Hz]

600M

700M

800M

900M 1G

0

200M

MES FAAAPL_LB_F3_pre

MES FAAAPL_LB_F3_pre2

LIM EN 55022 F QP

EN 55022 F QP

Seite 1 01.04.2005 09:54

MES C-POS_F3_pre

MES C-POS_F3_pre2

LIM EN 55022 F QP

VCS 3020X Rel. 4.x Information in respect to EMC testing

Device Under Test:

VCS 3020X Rel. 4.x

Voice Communication System - series VCS 3020X Rel. 4.x, voice switch and interface part.

Short description:

The FREQUENTIS VCS 3020 voice/data switch and the connected operator positions form a fully digital, non-blocking voice communication system based on PCM technology. The FREQUENTIS VCS 3020 provides the possibility to integrate varous types of communication equipment by the use of different interface types.

The system is developed for operation in the fields of e.g. air traffic management, public safety, public transport, maritime etc.

Dimensions:

The system is designed in 19" technology for build in into 19" standard cabinets. Following a typical configuration the DUT was built into a 42 HE cabinet. The total cabinet weight depends on the amout of shelves and interfaces. The weight of the DUT is approx. 150kg.

System configuration:

Provided with a typical system configuration, the DUT VCS 3020X Rel.4.x, including components as described bellow, was installed in a 42 HE cabinet.

Tests were carried out with JIF's and CIF build in into BGT CIF. Four operator positions, a TMCS (Technical Monitoring and Control System) and interfaces for connection to telephone or radio equipment were used. For furthe details see "Test Setup" on page:6

The following hardware components were used during testing: (for locating hardware components see also drawing on next page). Immunity test on line interfaces were carried out for each interface type. Tested interfaces are marked in the serial number list.

- 2 x Rack BGT PS 01
- 3 x Rack BGT UIF
- 1 x Rack BGT PRI
- 1 x Rack BGT IF2000S
- 1 x Rack BGT CIF
- 3 x Rack EFORE Fan
- 1 x Rack Power Supply AC/DC

with following boards:

3 x BG PSU AC

31.5.95 /4

AKTENNOTIZ File: VCS3020X_REL4X_INFOS_EMCTESTREPORT_TUV.DOC Seite: 1 von 7
Q-FM 01001 Rev.11 Nr: Autor: Gerald Herndl Datum: 2005-05-20

- 4 x BG PSU DC
- 8 x BG GPIF 03.01
- 2 x BG GPIF 03.01 (PRI)
- 10 x BG JIF 05
- 2 x BG CIF 05
- 4 x BG ERIF 03.00
- 1 x BG RSIF 03.00
- 2 x BG T0 03.00
- 1 x BG LB 03.00
- 2 x BG BCA 03.00
- 2 x BG BCB 03.00

The VCS 3020 operator positions (touch display, position electronic, handset, headset, footswitch etc.) and TMCS (Technical Monitoring and Control System) were connected by means of multi-wire shielded data cables. CAT 5 for TMCS and interfaces, CAT 7 for operator positions.

The VCS 3020 operator position consists of the following components:

- 1 x cPOS 01
- 2 x EPOSA 04.00
- 1 x EPOSA 04.10
- 2 x MOD PLSP 03.00
- 2 x MOD POT 03.00
- 2 x MOD PIPA 04.00
- 1 x MOD PIPS 05.00
- 3 x Handset
- 2 x Headset
- 1 x Handmic

(Operator Position outside absorber chamber - not tested)

- 1 x PP 04.02
- 1 x MOD XM-EPOS AC
- 1 x Handset
- 1 x PIPS 05.00

AKTENNOTIZ File: VCS3020X_REL4X_INFOS_EMCTESTREPORT_TUV.DOC Seite: 2 von 7 Autor: Gerald Herndl Datum: 2005-05-20

Q-FM 01001 Rev.11 Nr:

Drawing of DUT: Location of used hardware components

31.5.05 M

AKTENNOTIZ File: VCS3020X_REL4X_INFOS_EMCTESTREPORT_TUV.DOC Seite: 3 von 7
Q-FM 01001 Rev.11 Nr: Autor: Gerald Herndl Datum: 2005-05-20

Serial numbers and software of the used hardware:

Test item (cabinet with racks, components and interfaces)

Unit	Softwarelevel	Serial Number
BG GPIF 03.01	Rel. 4.1	30-0006600-00400
BG GPIF 03.01	Rel. 4.1	30-0006600-00367
BG GPIF 03.01	Rel. 4.1	30-0006608-00382
BG GPIF 03.01	Rel. 4.1	30-0006610-Proto
BG GPIF 03.01	Rel. 4.1	30-0006610-Proto
BG GPIF 03.01	Rel. 4.1	30-0006610-Proto
BG GPIF 03.01	Rel. 4.1	30-0006610-Proto
BG GPIF 03.01	Rel. 4.1	30-0006610-Proto
BG GPIF 03.01 (PRI)	Rel. 4.1	30-0006608-00449
BG GPIF 03.01 (PRI)	Rel. 4.1	30-0006608-00382
BG JIF5 01.00	Rel. 4.1	30-0112402-Proto
BG JIF5 01.00	Rel. 4.1	30-0112402-Proto
BG JIF5 01.00	Rel. 4.1	30-0112402-Proto
BG JIF5 01.00	Rel. 4.1	30-0112402-Proto
BG JIF5 01.00	Rel. 4.1	30-0112402-Proto
BG JIF5 01.00	Rel. 4.1	30-0112402-Proto
BG JIF5 01.00	Rel. 4.1	30-0112402-Proto
BG JIF5 01.00	Rel. 4.1	30-0112402-Proto
BG JIF5 01.00	Rel. 4.1	30-0112400-Proto
BG JIF5 01.00	Rel. 4.1	30-0112400-Proto
BG CIF5 01.00	Rel. 4.1	30-0112300-00059
BG CIF5 01.10	Rel. 4.1	30-0112303-Proto
BG ERIF 03.00	Rel. 4.1	30-9909700- 07202
BG ERIF 03.00	Rel. 4,1	30-9909700- 07464
BG ERIF 03.00	Rel. 4.1	30-9909700-08410
BG ERIF 03.00	Rel. 4.1	30-9909700-07195
BG RSIF 03.00	Rel. 4.1	30-0000000-00523
BG T0 03.00	Rel. 4.1	30-0011800-00381
BG T0 03.00	Rel. 4.1	30-0011800-00257
BG BCB 03.00	Rel. 4.1	30-0001500-01378
BG BCB 03.00	Rel. 4.1	30-0001500-00572
BG BCA 03.00	Rel. 4.1	30-0000800- 00207
BG BCA 03.00	Rel. 4.1	30-0000800-00004
BG LB 03.00	Rel. 4.1	30-9909800-00120
BG LB 03.00	Rel. 4.1	30-9909800-00112
BG PSU AC		SN: H2140410
BG PSU AC		SN: H3442483
BG PSU AC		SN: H3442504
BG PSU AC		SN: DE0470768
BG PSU DC		SN: E4400300
BG PSU DC		SN: E4400301
BG PSU DC	555	SN: E4400302
BG PSU DC		SN: E4400299
BGT CIF2	220	30-0400100- Proto
BGT UIF		30-0203300- 00230
BGT UIF		30-0203300- 00224

31.5.05 h

AKTENNOTIZ File: VCS3020X_REL4X_INFOS_EMCTESTREPORT_TUV.DOC Seite: 4 von 7
Q-FM 01001 Rev.11 Nr: Autor: Gerald Herndl Datum: 2005-05-20

BGT UIF		30-0203300-00039
BGT PRI		30-0102501-00006
BGT IF2000S		30-9612600-00796
BGT PS01 AC		30-9407700- 00339
BGT PS01 DC	***	30-9407701- 00229
BGT 1 HU Switch	Rel. 4.1	30-0403600-00400
BGT EFORE Fan AC		20-0000832
BGT EFORE Fan DC		20-0000559
BGT EFORE Fan DC		20-0000831
Power Distrubution	PSM Rittal	7.856.020
Power Distrubution	PSM Rittal	7.856.100
42HE Cabinet	Rittal	Flex Rack

Components of VCS 3020 Operator Position

Unit	Softwarelevel	Serial Number
MOD cPOS 01	Rel. 4.1	30-0403800-Prototype
MOD EPOSA 04.00	Rel. 4.1	30-0400200-Prototype
MOD EPOSA 04.10	Rel. 4.1	30-0400201-Prototype
MOD PLSP 03.00		VS-0401200-00003
MOD PLSP 03.00		VS-0401200-00002
MOD POT 03.00		VS-0401400-00005
MOD POT 03.00		VS-0401400-00004
MOD PIPA 04.00		30-0401000-Prototype
MOD PIPA 04.00		30-0401000-Prototype
PIPS 05.00		30-0008800-00237
Headset Plantronics	Supra	20-0000554
Headset VRM100		
Handset TAS		30-0013802
Headset FAA		
Handset HA11		30-0305101
Handmic FAA		

Components of VCS 3020 Operator Position (Outside absorber camber)

Unit	Softwarelevel	Serial Number
MOD XM-EPOS AC	Rel. 4.1	30-0008900-00007
MOD PP 04.02	Rel. 4.1	30-9810402-00927
PIPS 05.00		30-0008800-00237
Handset		TAS
Handset		TAS
TMCS		Personal Computer

31.5.05 /

AKTENNOTIZ File: VCS3020X_REL4X_INFOS_EMCTESTREPORT_TUV.DOC Seite: 5 von 7
Q-FM 01001 Rev.11 Nr: Autor: Gerald Herndl Datum: 2005-05-20

Seld diagnostic:

The FREQUENTIS VCS 3020 system is supervised via a PC based Technical Monitoring and Control System (TMCS) developed by FREQUENTIS.

The TMCS has two main tasks to perform:

- 1. Providing the possibility to configure and control the VCS 3020.
- 2. Monitor the status (e.g. ok, not ok) of the VCS HW and SW modules.

For self-diagnostic purposes the VCS 3020 reports state changes (e.g. "ok -> not ok" or "not ok -> ok") to the TMCS which displays the actual state and documents the occurred events in log files.

Test Setup:

The proper function of the DUT during testing was monitored by VCS 3020 operator positions and the TMCS. In order to evaluate the performance of the system and the interface boards during testing, active connections were set up. Using the VCS 3020 operator positions and TMCS outside the absorber room, active calls and data connections were monitored. These connections were not to be interrupted nor affected. For immunity testing the active voice path was additionally monitored with Rhode&Schwarz Radio Communication Analyser CMTA84. Therfore a "test-box" was connected to the operator position (PIP) instead of the handset. The test box provides connectors to apply or measure singnals. The level on the voice output port of the operator position was measured.

The following connections were set up:

1) Active TMCS connection

The Technical Monitoring and Control System (outside the absorber room) was permanently connected via shielded CAT 5 cable with the VCS 3020X Rel.4.x switch. (max. length > 30m). The TMCS shows the current system status. The system status was montitored before, during and after testing

2) Active Call: Operator Position No.:1(OP1) to Operator Position No.:2 (OP2)

Operator Positions were connected to the VCS 3020 switch via shielded CAT 7 cables. (max. length > 30m)

Active call connection from OP1 (inside absorber chamber) to OP2 (outside absorber chamber) was set up from outside the absorber room via the operator positions (touch panels). During test the call was routed from OP1 trough the system switch to OP2. The active connection was monitored.

3) Active radio connection 1: ERIF 03.00 to ERIF 03.00

Both ERIF interfaces (4 wire analogue) were connected via shielded CAT5 loop back cable >10m, inside the absorber room. (Rx-Tx, Tx-Rx). An active call was set up from outside the absorber room via operator positions (and PTT) and monitored during testing.

4) Active radio connection 2: ERIF 03.00 to Radio Simulator

31.75

The ERIF interface was connected via shielded CAT5 cable to the radio simulator box inside the absorber room. An active call (1kHz tone) was generated in the simulator box and routed through

AKTENNOTIZ File: VCS3020X_REL4X_INFOS_EMCTESTREPORT_TUV.DOC Seite: 6 von 7
Q-FM 01001 Rev.11 Nr: Autor: Gerald Herndl Datum: 2005-05-20

the switch to the operator position outside the absorber room. The call (tone) was monitored during testing.

5) Active digital connection: GPIF 03.01 (ISDN PRI)

Both interfaces (4 wire 2MB/s) were connected via shielded CAT 5 loop back cable, >10m, inside the absorber room. The connection was monitored during tests via TMCS status view and log file.

6) Active digital connection: T0 03.00 (ISDN BRI)

Both interfaces (4 wire 64kb/s) were connected via shielded CAT 5 loop back cable, >10m, inside the absorber room. The connection was monitored during tests via TMCS status view and log file.

7) Active analog connection: BCB 03.00 to BCA 03.00

Both interfaces were connected together where the BCA feeds the BCB interface. An active call connection was established and routed trough the system to the operator position. The active call was monitored during testing.

8) Active analog connection: LB 03.00

Two LB 03.00 interfaces were connected via loop back cable inside the absorber room. An active connection was established and monitored during testing.

Block diagramm - test configuration - active connections:

37. T. or /4

AKTENNOTIZ File: VCS3020X_REL4X_INFOS_EMCTESTREPORT_TUV.DOC Seite: 7 von 7
Q-FM 01001 Rev.11 Nr: Autor: Gerald Herndl Datum: 2005-05-20