Название	Обознач.	Парам.	Носитель	Плотность (последовательность вероятностей)	Матем. ожидание	Дисперсия	Характерис- тическая функция	
Дискретные распределения								
Дискретное равномерное	$R\{1,,N\}$	$N \in \mathbb{N}$	$\{1,, N\}$	$P(\{k\}) = 1/N, k \in \{1,, N\}$	(N+1)/2	$(N^2-1)/12$	$\frac{e^{it} - e^{i(N+1)t}}{N(1 - e^{it})}$	
Бернулли	Bern(p)	$p \in (0,1)$	{0,1}	$P({0}) = 1 - p, P({1}) = p$	p	p(1-p)	$pe^{it} + 1 - p$	
Биномиальное	Bin(n,p)	$n \in \mathbb{N},$ $p \in (0,1)$	$\{0,, n\}$	$P(\{0\}) = 1 - p, P(\{1\}) = p$ $P(\{k\}) = C_n^k p^k (1 - p)^{n-1}$	np	np(1-p)	$pe^{it} + 1 - p$ $(pe^{it} + 1 - p)^n$	
Пуассоновское	$Pois(\lambda)$	$\lambda > 0$	\mathbb{Z}_{+}	$P(\{k\}) = \frac{\lambda^k}{k!} e^{-\lambda}$	λ	λ	$exp\left(\lambda(e^{it}-1)\right)$	
Геометрическое	Geom(p)	$p \in (0,1]$	N	$P(\{k\}) = (1-p)^{k-1}p$	1/p	$(1-p)/p^2$	$\frac{pe^{it}}{1 - (1 - p)e^{it}}$	
Абсолютно непрерывные распределения								
Непрерывное равномерное	R[a,b] или $U[a,b]$	$\begin{array}{ c c } a, b \in \mathbb{R}, \\ a < b \end{array}$	[a,b]	$p(x) = \frac{1}{b-a}I\{x \in [a,b]\}$	(a+b)/2	$(b-a)^2/12$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$	
Нормальное (гауссовское)	$\mathcal{N}(a,\sigma^2)$	$a \in \mathbb{R},$ $\sigma^2 \in \mathbb{R}_+$	\mathbb{R}	$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-a)^2}{2\sigma^2}}$	a	σ^2	$exp(ita - \sigma^2 t^2/2)$	
Гамма- распределение	$\Gamma(\alpha,\beta)$	$\begin{array}{c} \alpha > 0, \\ \beta > 0 \end{array}$	\mathbb{R}_{+}	$p(x) = \frac{\alpha^{\beta}x^{\beta-1}}{\Gamma(\beta)}e^{-\alpha x}, x > 0$	β/α	β/α^2	$(1 - it/\alpha)^{-\beta}$	
Экспоненци-	$Exp(\lambda)$	$\lambda > 0$	\mathbb{R}_{+}	$p(x) = \lambda e^{-\lambda x} I\{x > 0\}$	$1/\lambda$	$1/\lambda^2$	$\lambda/(\lambda-it)$	
Коши	$Cauchy(\theta)$	$\theta > 0$	\mathbb{R}	$p(x) = \frac{\theta}{\pi(x^2 + \theta^2)}$	Нет	Нет	$e^{-\theta t }$	
Бета-	$Beta(\alpha, \beta)$	$\begin{array}{c} \alpha > 0, \\ \beta > 0 \end{array}$	[0, 1]	$p(x) = \frac{\theta}{\pi(x^2 + \theta^2)}$ $p(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}$	$\alpha/(\alpha+\beta)$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$		
Парето	$Pareto(\alpha)$	$\alpha > 0$	$[1,+\infty)$	$p(x) = \frac{\alpha}{x^{\alpha+1}}$	$rac{lpha}{lpha-1}$ если $lpha>1$	$rac{lpha}{(lpha-1)^2(lpha-2)}$		
Многомерные	распределе	кин	1	1	1		1	
Гауссовское	$\mathcal{N}(a,\Sigma)$	$a \in \mathbb{R}^n,$ $\Sigma \in \mathbb{R}^{n \times n},$ $\text{CUMM., HEOTP. OΠP.}$	\mathbb{R}^n	$p(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-a)^T \Sigma^{-1}(x-a)}$	a	Σ	$exp\left(ia^{T}t - \frac{1}{2}t^{T}\Sigma t\right)$	

 $\xi_1 \sim \mathcal{N}(a_1, \sigma_1^2) \text{ незав. от } \xi_2 \sim \mathcal{N}(a_2, \sigma_2^2) \implies \xi_1 + \xi_2 \sim \mathcal{N}(a_1 + a_2, \sigma_1^2 + \sigma_2^2), \quad c\xi_1 \sim \mathcal{N}(ca_1, c^2\sigma_1^2)$ $\xi \sim \mathcal{N}(0, \sigma^2) \implies \mathsf{E}\xi^{2n} = (2n-1)!!\sigma^{2n}, \quad \mathsf{E}|\xi|^{2n+1} = (2n)!!\sigma^{2n+1}\sqrt{2/\pi}$ $\xi_1 \sim \Gamma(\alpha, \beta_1) \text{ незав. от } \xi_2 \sim \Gamma(\alpha, \beta_2) \implies \xi_1 + \xi_2 \sim \Gamma(\alpha, \beta_1 + \beta_2), \quad c\xi_1 \sim \Gamma(\alpha/c, \beta), \quad \mathsf{E}\xi_1^k = \beta(\beta+1)...(\beta+k-1)/\alpha^k,$ $\Gamma(x) = \int_0^{+\infty} t^{x-1}e^{-t}dt, \quad \Gamma(x+1) = x\Gamma(x), \quad \Gamma(n+1) = n!, \quad \Gamma(1/2) = \sqrt{\pi}$ $\xi_1 \sim Bin(n_1, p) \text{ незав. от } \xi_2 \sim Bin(n_2, p) \implies \xi_1 + \xi_2 \sim Bin(n_1 + n_2, p)$ $\xi_1 \sim Pois(\lambda_1) \text{ незав. от } \xi_2 \sim Pois(\lambda_2) \implies \xi_1 + \xi_2 \sim Pois(\lambda_1 + \lambda_2)$

Название	Обознач.	Питон (scipy.stats)	Смысл и применение				
Дискретные распределения							
Дискретное	$R{1,,N}$	randint(low=1, high= $N+1$)	Бросок <i>N</i> -гранного кубика.				
равномерное							
Бернулли	Bern(p)	bernoulli(p)	Бросок монеты один раз.				
Биномиальное	Bin(n,p)	binom(n, p)	Бросок монеты n раз.				
Пуассоновское	$Pois(\lambda)$	poisson(mu= λ)	Число событий, произошедших за фиксированное время, при условии, что				
			данные события происходят с некоторой фиксированной средней интенсив-				
			ностью и независимо друг от друга. См. — теория массового обслуживания.				
Геометрическое	Geom(p)	geom(p)	Количество испытаний случайного эксперимента до наблюдения первого				
			«успеха».				
Абсолютно не		распределения					
Непрерывное	R[a,b] или	uniform(loc= a , scale= $b-a$)	Случайная точка из отрезка. Используется, например, для генерации произ-				
равномерное	U[a,b]		вольных распределений.				
Нормальное	$\mathcal{N}(a,\sigma^2)$	$norm(loc=a, scale=\sigma)$	Часто встречается в природе. Широко применяется в статистике, машинном				
(гауссовское)		(He σ^2)	обучении. Хорошо моделирует, например, погрешности измерений. Может				
			использоваться также для приближения других распределений.				
Гамма-	$\Gamma(\alpha,\beta)$	gamma(a= β , scale= $1/lpha$)	Моделирование размера страховых возмещений. Широко используется в ка-				
распределение			честве априорного распределения в байесовской статистике.				
Экспоненци-	$Exp(\lambda)$	expon(scale= $1/lpha$)	Время между двумя последовательными свершениями одного и того же со-				
альное			бытия.				
Коши	$Cauchy(\theta)$	cauchy(scale= θ)	В физике описывает профили равномерно уширенных спектральных линий,				
			амплитудно-частотные характеристики линейных колебательных систем в				
			окрестности резонансных частот.				
Бета-	$Beta(\alpha, \beta)$	beta(a= α , b= β)	Априорное распределение на вероятность успеха в испытании Бернулли. Т.е.				
распределение			задает распределение на p , если оно неизвестно.				
Парето	$Pareto(\alpha)$	pareto(b= α)	В лингвистике распределение Парето известно под именем закона Ципфа,				
			например, зависимость абсолютной частоты слов в достаточно длинном тек-				
			сте от ранга. Также описывает распределение размера населенных пунктов.				
Многомерные распределения							
Гауссовское	$\mathcal{N}(a,\Sigma)$	multivariate_normal(Аналогично одномерному.				
		mean= a , cov= Σ)					