Korrespondenzen und Sätze der z-Transformation

Nr.	Zeitfunktion (Wertefolge) f(k)	Bildfunktion (z-Transformierte) F(z)	Name
1	$\delta(k) = \begin{cases} 1 & \text{für } k = 0 \\ 0 & \text{sonst} \end{cases}$	1	Einheitsimpuls- folge (Dirac Stoß)
2	$\sigma(k) = \begin{cases} 1 & \text{für } k \ge 0 \\ 0 & \text{für } k < 0 \end{cases}$	$\frac{z}{z-1}$	Einheitssprung- folge
3	k · σ(k)	$\frac{z}{(z-1)^2}$	Anstiegsfolge
4	$a^k \cdot \sigma(k)$	$ \frac{z}{z-a} $ $ \frac{z}{z} $	Potenzfolge
5	$e^{-ak} \cdot \sigma(k)$	$\frac{z}{z - e^{-a}}$ z·sin a	e-Funktions- folge
6	$\sin(ak) \cdot \sigma(k)$	$\frac{z \cdot \sin a}{z^2 - 2z \cdot \cos a + 1}$	Sinusfunktions- folge
7	$\cos(ak) \cdot \sigma(k)$	$\frac{z \cdot (z - \cos a)}{z^2 - 2z \cdot \cos a + 1}$	Kosinusfunktions- folge
8	$e^{-ak}\cdot sin(bk)\cdot \sigma(k)$	$\frac{z \cdot e^{-a} \cdot \sin b}{z^2 - 2z \cdot e^{-a} \cdot \cos b + e^{-2a}}$	abklingende Sinusfunktions- folge
9	$e^{-ak} \cdot cos(bk) \cdot \sigma(k)$	$\frac{z \cdot (z - e^{-a} \cdot \cos b)}{z^2 - 2z \cdot e^{-a} \cdot \cos b + e^{-2a}}$	abklingende Kosinusfunktions- folge
10	$a_1f_1(k) + a_2f_2(k) + \cdots + a_nf_n(k)$	$a_1F_1(z) + a_2F_2(z) + \cdots + a_nF_n(z)$	Linearitätssatz
11	f(k - n)	$z^{-n} \cdot F(z)$	Verschiebungs- satz (nach rechts)
12	f(k + n)	$z^n \cdot F(z) - \sum_{i=0}^{n-1} f(i) \cdot z^{n-i}$	Verschiebungs- satz (nach links)
13	$\sum_{n=0}^{k} f_1(n) \cdot f_2(k-n)$	$F_1(z) \cdot F_2(z)$	Faltungssumme
14	$\lim_{k\to 0} f(k)$	$= \lim_{z \to \infty} F(z)$	Anfangswertsatz
15	$\lim_{k\to\infty}f(k)$	$= \lim_{z \to 1} (z-1) \cdot F(z)$	Endwertsatz