Aritmética da Computação

Trabalho para Casa: TPC1

Baseado no guião de Alberto José Proença & Luís Paulo Santos

Metodologia

Leia as folhas do enunciado, e responda **obrigatoriamente** às questões colocadas na folha fornecida para o efeito (última folha deste guião). A resolução deve ser manuscrita e entregue no início da aula TP.

O objetivo dos TPC's é **fomentar o estudo** individual e contínuo, complementado por trabalho em grupo, sendo <u>contabilizado o esforço para se tentar chegar ao resultado</u> (que deverá ser defendido na aula) em detrimento da correção do mesmo.

O trabalho de grupo é aceite desde que as resoluções possam depois ser integralmente defendidas por quem as submeter. Quando tal acontecer será considerado **fraude** e conduz a uma avaliação negativa.

Máquinas de calcular não deverão ser usadas, para uma melhor assimilação dos resultados (nota: nos testes/exame não será permitida a sua utilização).

Introdução

A lista de exercícios que se apresenta aplica os conceitos introduzidos nas aulas teóricas já lecionadas, nomeadamente sobre sistemas de numeração e representação de inteiros no sistema binário.

- Converta os seguintes valores da representação dada para a representação pedida (representações sem sinal):
 - a) Para binário: 132, 12.375 e 0.2
 - **b)** Para decimal 101001₂ e 1010.1011₂
 - c) Converta para hexadecimal 74,260 e 110101011.01102
 - d) Converta para octal 111110011101₂ e 11011.11₂
 - e) Converta para binário 0x1c2a
 - f) Converta para ternário 24 e 2/3
- 2. Represente, usando apenas 6 bits, os valores abaixo (expressos em decimal) usando cada uma das representações indicadas:

	S+A	Complemento 1	Complemento 2	Excesso 31
12				
-1				
-31				

3. Converta para decimal cada uma das cadeias de *bits* abaixo, considerando a representação indicada em cada coluna:

	S+A	Complemento 1	Complemento 2	Excesso 15
00011				
10001				
11110				

- 4. A maioria das pessoas apenas consegue contar até 10 com os seus dedos; contudo, os engenheiros informáticos podem fazer melhor! Como? Cada dedo conta como um bit, valendo 1 se esticado, e 0 se dobrado.
 - a) Com este método, até quanto é possível contar usando ambas as mãos?
 - b) Considere que um dos dedos na extremidade da mão é o bit do sinal numa representação em sinal + amplitude.
 - Qual a gama de valores que é possível representar com ambas as mãos?
 - c) Considerando apenas 5 dedos e complemento para 2, qual o valor representado na imagem abaixo?

5. Preencha, em decimal, a tabela abaixo com a gama de valores representáveis usando **6 bits** em cada um dos sistemas de representação propostos. Preencha também a coluna que indica qual a resolução da representação, isto é a diferença entre dois valores consecutivos.

Representação	Mínimo	Resolução	Máximo
Binário sem sinal, inteiros			
Binário sem sinal, 2 bits fracionários			
Complemento para 2, inteiros			
Sinal + Amplitude, 1 bit fracionário			
Excesso de 7, 3 bits fracionários			

6. Represente cada um dos valores abaixo em complemento para 2 usando o número de bits indicado. Se algum valor não for representado preencha a respetiva célula com "overflow"

	4 bits	5 bits	7 bits
13			
7			
- 8			

- b) Relembrando aquilo que já sabe e consultando a tabela acima enuncie a regra usada para fazer "extensão do sinal" em complemento para 2, isto é, como se aumenta o número de bits usado para representar um qualquer valor.
- 7. Efectue as seguintes operações aritméticas na base dada e usando apenas o número de dígitos indicado em cada alínea. Note que nas alíneas em que a base é binária a representação é complemento para 2. Se algum resultado não for representável usando esse número de dígitos assinale a situação de overflow
 - a) $00110011_2 + 01110101_2 =$
 - **b)** $00100.11_2 + 00011.01_2 =$
 - **c)** $0100101_2 + 1101001_2 =$
 - **d)** $0 \times ac + 0 \times 2b =$
 - **e)** $272_8 + 533_8 =$
 - **f)** $0010_2 * 0011_2 =$

8. Um centro de supercomputação atribui um código binário a cada um dos núcleos de processamento (processing cores) do seu supercomputador. Este código é atribuído em função do piso do edifício em que se encontra, do bastidor onde está colocado, do número do sistema dentro do bastidor e do número do núcleo de processamento dentro daquele sistema.

O edifício tem um total de 7 pisos: 2 subterrâneos (numerados de -1 a -2), o piso térreo com o número 0 e 4 pisos numerados de 1 a 4. Em cada piso há 200 bastidores, cada bastidor tem 32 sistemas e cada sistema comporta um total de 64 núcleos de processamento.

Proponha uma estrutura para este código binário usando o menor número possível de bits e apresente a codificação para o processador número 14, do terceiro sistema do bastidor 122 do piso -1.

9. Considere que está a executar código num computador de **6-bits**, o qual usa complemento para 2 para representar valores do tipo inteiro. Complete a tabela, considerando as definições abaixo. Se algum resultado não for representável usando 6 bits assinale a situação de *overflow*.

```
int y = -3;
int x = -20;
int z = 21;
unsigned ux = 34;
```

Nota: T_{min} e T_{Max} representam, respectivamente, o menor e o maior valor representável

Expressão	Decimal	Binário
Zero	0	
	-6	
		010010
ux		
2 * ux		
х		
x >> 1		
T _{Max}		
Tmin		
y + x		
x + z		

N° Nome: Turno:

Resolução dos exercícios

Nota: Apresente sempre os cálculos que efetuar no verso da folha; <u>o não cumprimento desta regra equivale</u> <u>à não entrega do trabalho</u>.

1. Converta cada um dos valores para os seguintes sistemas:

	Valor	Resultado	Valor	Resultado
a) binário	132		12.375	
b) decimal	1010012		1010.10112	
c) hexadecimal	260		110101011.01102	
d) octal	1111100111012		11011.112	
f) ternário	24		2/3	

2. Represente, usando apenas 6 *bits*, os valores abaixo (expressos em decimal) usando cada uma das representações indicadas:

	S+A	Complemento 1	Complemento 2	Excesso 31
12				
-1				
-31				

3. Converta para decimal cada uma das cadeias de *bit*s abaixo, considerando a representação indicada em cada coluna:

	S+A	Complemento 1	Complemento 2	Excesso 15
00011				
10001				
11110				

5. Preencha, em decimal, a tabela abaixo com a gama de valores representáveis usando 6 *bits* em cada um dos sistemas de representação propostos. **Preencha** também a coluna que indica qual a resolução da representação, isto é a diferença entre dois valores consecutivos.

Representação	Mínimo	Resolução	Máximo
Binário sem sinal, inteiros			
Binário sem sinal, 2 bits fracionários			
Complemento para 2, inteiros			
Sinal + Amplitude, 1 bit fracionário			
Excesso de 7, 3 bits fracionários			

7. Efetue as seguintes **operações aritméticas** na base dada e usando apenas o número de dígitos indicado em cada alínea. Se algum resultado não for representável usando esse número de dígitos assinale a situação de *overflow*.

a)	00110011 ₂ + 01110101 ₂	
b)	00100.11 ₂ + 00011.01 ₂	
d)	0xac + 0x2b	
e)	272 ₈ + 533 ₈	

8. Faça a codificação binária para o processador nº 14, do terceiro sistema do bastidor 122 do piso -1.