Inhibición de MPro y de la replicación de SARS-CoV2 por benzoisotiazolonas

jueves, 28 de julio de 2022 14:45 (15 minutos)

Desde la irrupción de la pandemia causada por SARS-CoV-2 se han realizado numerosas investigaciones tendientes a hallar quimioterapias antivirales. En diciembre 2021, la FDA aprobó el uso clínico de Paxlovid-Pfizer (una combinación de nirmatrelvir, un inhibidor de la proteasa principal o MPro de SARS-CoV2, y ritonavir, un inhibidor de la proteasa de VIH) y de Molnupiravir-Merck (ribonucleósido análogo de la citidina). Actualmente, el ensitrelvir-Shionogi, un inhibidor no covalente y no peptídico de la MPro se encuentra en estudios clínicos de fase 3. El Ebselen (2-fenil-1,2-benzoselenazol-3ona, EbSe) ha sido identificado como inhibidor de la MPro y atraviesa estudios clínicos de fase 2 en pacientes con COVID-19. Estos hallazgos destacan a la MPro como un blanco molecular atractivo para el desarrollo de fármacos anti-SARS-CoV2 efectivos y selectivos. Con ese objetivo, nos propusimos evaluar la actividad contra blanco molecular y biológico de una serie benzoisotiazolonas, análogos sulfurados del EbSe. La mayoría de las benzoisotiazolonas (34 de 39) inhibieron de manera marcada a la MPro (>50 % inhibición a 10 μM), siendo todos sus precursores inactivos. Varios de los hits inhibieron también a la proteasa de papaína de SARS-CoV2. El análisis de relación estructura-actividad combinado con estudios de docking y dinámica molecular dio lugar a una segunda serie de derivados con al menos una molécula que equiparó la potencia del EbSe contra MPro. Excepto por un derivado sulfurado y el EbSe (CC50 < 50 μM), todos los compuestos presentaron baja citotoxicidad contra células de pulmón (CC50 >100 μM) y colon (CC50 >50 μM) humano. Ocho de los compuestos más activos contra MPro (IC50 < 1,5 μΜ) inhibieron la replicación viral a concentraciones (EC50 = 10-50 μΜ) en el mismo orden de magnitud que distintos fármacos de referencia (Lopinavir, Remdesivir y Cloroquina EC50 = 10-14 µM) y el EbSe (EC50 = 10

*igual contribución

Palabras clave

benzoisotiazolonas, inhibidores de MPro, anti SARS-CoV-2.

Características de la colaboración

Este trabajo se generó a partir de autores y coautores que ya colaboraban antes de la pandemia

Interinstitucionalidad

Si

Interdisciplina

Si

Este trabajo fue presentado ante la Comité de Ética de Investigación en Seres Humanos

No corresponde

Este trabajo fue presentado ante la Comisión de Experimentación Animal

No corresponde

Autores primarios: Dr MEDEIROS, Andrea (Laboratorio de Biología Redox de Tripanosomátidos, Institut Pasteur de Montevideo/Departamento de Bioquímica, Facultad de Medicina); Dr FLÓ, Martín (Departamento de Inmunobiología, Facultad de Medicina/Laboratorio de Inmunovirología, Institut Pasteur de Montevideo); Dr IN-CERTI, Marcelo (Departamento de Química Orgánica, Facultad de Química); Dr RUATTA, Santiago (Laboratorio de Biología Redox de Tripanosomátidos, Institut Pasteur de Montevideo); PERELMUTER, Karen (Unidad de Biología Celular, Institut Pasteur de Montevideo); QUIROGA, Cristina (Laboratorio de Biología Redox de Tripanosomátidos, Institut Pasteur de Montevideo); RODRÍGUEZ, Santiago (Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Universidad de la Plata); GANTNER, Melisa (Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB)); LLANOS, Manuel (Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB),); GAVERNET, Luciana (Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB),); BONILLA, Mariana (Laboratorio de Biología Redox de Tripanosomátidos, Institut Pasteur de Montevideo); MANTA, Eduardo (Departamento de Química Orgánica, Facultad de Química); Dr BOLLATI, Mariela (Unidad de Biología Celular, Institut Pasteur de Montevideo,); Dr PARK, Soonju (Screening Discovery Platform, Institut Pasteur of Korea); Dr LEE, Nakyung (Screening Discovery Platform, Institut Pasteur of Korea); Dr BYUN, Sooyoung (Screening Discovery Platform, Institut Pasteur of Korea); Dr PARK, Kyuho Paul (Screening Discovery Platform, Institut Pasteur of Korea); Dr SHUM, David (Screening Discovery Platform, Institut Pasteur of Korea); Dr LÓPEZ, Gloria (Departamento de Química Orgánica, Facultad de Química/Laboratorio de Biología Vascular y Desarrollo de Fármacos, Institut Pasteur de Montevideo); Dr TALEVI, Alan (Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB),); Dr COMINI, Marcelo (Laboratorio de Biología Redox de Tripanosomátidos, Institut Pasteur de Montevideo)

Presentador: Dr MEDEIROS, Andrea (Laboratorio de Biología Redox de Tripanosomátidos, Institut Pasteur de Montevideo/Departamento de Bioquímica, Facultad de Medicina)

Session Classification: Posters y Ponencias Virtuales Breves: Sesión II

Track Classification: .