Complexidade de Algoritmos

Roland Teodorowitsch

Algoritmos e Estruturas de Dados I - Escola Politécnica - PUCRS

15 de agosto de 2023

Apresentação

Leitura(s) Recomendada(s)

Capítulo 4

GOODRICH, Michael T.; TAMASSIA, Roberto. Estruturas de dados e algoritmos em Java. Tradução: Bernardo Copstein. 5. ed. Porto Alegre: Bookman, 2013. xxii, 713 p. E-book. ISBN 9788582600191. Tradução de: Data Structures and Algorithms in Java, 5th Edition. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788582600191/. Acesso em: 01 ago. 2023.

Capítulo 3

CORMEN, Thomas et al. Algoritmos - Teoria e Prática. Tradução: Arlete Simille Marques. Rio de Janeiro: Grupo GEN, 2012. E-book. ISBN 9788595158092. Tradução de: Introduction to Algorithms, 3rd ed. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788595158092/. Acesso em: 01 ago. 2023.

Sumário

- Complexidade e análise de algoritmos
- Medindo o tempo
- Contagem de operações
- Funções

Complexidade e análise de algoritmos

Complexidade e análise de algoritmos

- No desenvolvimento de uma aplicação tem-se como objetivo projetar "boas" estruturas de dados e "bons" algoritmos
 - Otimizados
 - Simples
- Como saber se um algoritmo é eficiente?

Análise de Algoritmos

- Estudo das características de desempenho de um determinado algoritmo
 - O espaço ocupado é uma característica de desempenho
 - O tempo gasto na execução é outra característica de desempenho

Complexidade de Algoritmos

- A complexidade de um algoritmo é a medida do consumo de recursos de que o algoritmo necessita durante a sua execução
 - Tempo de processamento
 - Memória ocupada
 - Largura de banda de comunicação
 - Hardware necessário
 - etc.

Medindo o tempo

Tempo de processamento

- Depende de uma série de fatores: hardware, software, tamanho e tipo da entrada de dados
- Algoritmo: tempo de execução (ms) X tamanho da entrada de dados (n)


```
CNUFLOT:
set terminal jpeg enhanced size 1280,960 font "arial,32.0"
set output "grafico.jpg"
set xlabel ""
set ylabel "(ss)"
plot [10:100][3:4] "grafico.txt" with points lw 8 lt 5 ps 2 notitle

grafics.in:

10 3.0000
20 3.3010
30 3.4771
40 3.6990
60 3.6990
60 3.9542
70 3.8451
80 3.9031
90 3.9542
```

Medindo o tempo

Em Java, System.currentTimeMillis() retorna o tempo em milissegundos (ms)

```
long antes = System.currentTimeMillis();
// algoritmo a ser medido...
long ms = System.currentTimeMillis() - antes;
```

Em Java, System.nanoTime() retorna o tempo em nanossegundos (ns)

```
long antes = System.nanoTime();
// algoritmo a ser medido...
long ns = System.nanoTime() - antes;
```

Em C, no Unix, pode-se usar gettimeofday() (incluir <sys/time.h>)

```
struct timeval antes, depois;
gettimeofday(&antes, NULL);
// algoritmo a ser medido...
gettimeofday(&depois, NULL);
unsigned long us = (depois.tv_sec - antes.tv_sec) * 1000000 +
                   depois.tv_usec - antes.tv_usec;
```

Exemplo: Pesquisa Linear

 A função abaixo recebe um arranjo, o seu tamanho e um valor a ser localizado, e retorna a posição do valor no arranjo (ou -1 se não achar)

```
int pesquisa_linear(int *dados, int tam, int valor) {
  for (int i=0; i<tam; i++)
     if (valor == dados[i])
      return i;
  return -1;
}</pre>
```

- Melhor caso: o valor procurado é o primeiro elemento do arranjo
- Pior caso: o valor procurado NÃO existe no arranjo
- O arranjo precisa estar ordenado?

Exemplo: Pesquisa Linear

• A função abaixo recebe um arranjo, o seu tamanho e um valor a ser localizado, e retorna a posição do valor no arranjo (ou -1 se não achar)

```
int pesquisa_linear(int *dados, int tam, int valor) {
  for (int i=0; i < tam; i++)</pre>
      if (valor == dados[i])
         return i:
  return -1;
```

- Melhor caso: o valor procurado é o primeiro elemento do arranjo
- Pior caso: o valor procurado NÃO existe no arranio
- O arranjo precisa estar ordenado? ΝÃΩ

Exemplo: Pesquisa Linear

 Para visualizar como o algoritmo se comporta ("entender" a sua complexidade), executa-se a função com valores crescentes de arranjo

```
#include <stdio.h>
#include <stdlib.h>
#include <svs/time.h>
#define INI 1000000
#define FIM 8000000
#define INC 10000
int pesquisa linear(int *dados, int tam, int valor);
int main() {
 struct timeval antes, depois;
 int *vetor = malloc( sizeof(int) * FIM );
  if (vetor == NULL) return 1:
 for (int i=0: i<FIM: i++) vetor[i] = i: //preenche o vetor
 for (int total=INI: total <=FIM: total+=INC) {
      unsigned long min;
      for (int j=0; j<10; ++j) {
          gettime of day (& antes. NULL):
          int loc = pesquisa_linear(vetor, total, total); //pior caso: elemento NAO existe
          gettimeofday(&depois, NULL):
          if (loc != -1) return 1:
          unsigned long microssegundos = (depois tv_sec - antes tv_sec) * 1000000 + depois tv_usec - antes tv_usec:
          if (j == 0 || microssegundos < min) min = microssegundos;
      printf("%d., %lu\n", total, min);
 free(vetor):
 return 0;
```

Exemplo: Pesquisa Linear (Resultado)

set terminal jpeg
set output "grafico.jpg"
set xlabel "m" font "Artial.16"

plot "curva.txt" with lines title "pesquisa_linear()"

set ylabel "t(us)" font "Arial, 16"

Exemplo: Pesquisa Linear (Considerações)

- Considerando o algoritmo e a sua implementação, que tipo de curva de desempenho seria possível esperar?
- É possível visualizar a curva esperada no gráfico obtido?
- Qual a origem das variações do tempo de execução?

Exercício 1: Bubble Sort (Linux)

 Implemente o algoritmo de ordenação BubbleSort, por exemplo, a partir do pseudocódigo disponível na Wikipedia (https://pt.wikipedia.org/wiki/Bubble_sort) – use o seguinte protótipo como modelo:

```
void bubble_sort(int *dados, int tam);
```

- Acrescente a sua implementação ao código da próxima página
 - ullet Este código trabalha com n variando de 1000 até 10000 com incremento 10, e medindo o tempo em microssegundos
- Gere o gráfico de desempenho a partir da execução
 - Salve seu código em um arquivo chamado bubble_sort.c e compile-o usando: gcc -o bubble_sort bubble_sort.c
 - Execute o programa direcionando a sua saída para um arquivo chamado curva1.txt: ./bubble_sort >curva1.txt
 - Use o GNUPLOT para visualizar o arquivo curva1.txt (dicas nas próximas páginas)

Exercício 1: Bubble Sort (código da função main())

```
#include <stdio.h>
#include <stdlib.h>
#include <svs/time.h>
#define INT 1000
#define FIM 10000
#define INC
void bubble sort(int *dados, int tam);
int esta ordenado(int *dados, int tam) {
 for (int i=0; i <tam-1; ++i) if (dados[i] > dados[i+1]) return 0;
 return 1;
int main() {
 struct timeval antes, depois;
 int *vetor = malloc( sizeof(int) * FIM ):
 if (vetor == NULL) return 1:
 for (int total=INI: total <=FIM: total+=INC) {
      unsigned long min:
     for (int i=0; i<10; ++i) {
          for (int pos=0; pos<total; pos++) vetor[pos] = total - pos; //preenche o vetor
          gettimeofday(&antes, NULL);
          bubble sort(vetor.total):
          gettimeofday(&depois, NULL):
          if (!esta ordenado(vetor.total)) return 1:
          unsigned long microssegundos = (depois tv_sec - antes tv_sec) * 1000000 + depois tv_usec - antes tv_usec:
          if (i == 0 || microssegundos < min) min = microssegundos;
      printf("Xd..Xlu\n", total, min):
 free(vetor):
 return 0:
```

Exercício 1: Bubble Sort (dicas sobre GNUPLOT)

- GNUPLOT é um aplicativo para gerar gráficos, disponível em várias plataformas
- Para mostrar, por exemplo, o gráfico correspondente aos dados armazenados no arquivo curva1.txt em uma janela, executa-se o GNUPLOT (gnuplot) e digita-se os seguintes comandos:

```
set xlabel "n" font "Arial,16"
set ylabel "t(us)" font "Arial,16"
plot "curva1.txt" with lines title "bubble\\_sort()"
```

 Para gerar um arquivo JPEG com o conteúdo do gráfico, pode-se usar os seguintes comandos:

```
set terminal jpeg
set output "grafico1.jpg"
set xlabel "n" font "Arial,16"
set ylabel "t(us)" font "Arial,16"
plot "curva1.txt" with lines title "bubble\\_sort()"
```

Solução 1: Bubble Sort (primeira implementação)

```
void bubble_sort(int *dados, int tam) {
  int trocou:
  do {
     trocou = 0:
     for (int i=0; i<tam-1; ++i) {</pre>
         if (dados[i] > dados[i+1]) {
            int aux = dados[i];
            dados[i] = dados[i+1]:
            dados[i+1] = aux;
            trocou = 1:
     while (trocou);
```

Solução 1: Bubble Sort (gráfico da primeira implementação)


```
GNUPLOT:
set terminal jpeg
set output "grafico1.jpg"
set xlabel "n" font "Arial, 16"
```

set vlabel "t(us)" font "Arial, 16"

Exercício 2: Bubble Sort otimizado

- A versão sugerida para implementação do Bubble Sort tem um problema:
 - Depois de executar uma passagem, o maior elemento é "empurrado" para a sua posição
 - E: as passagens seguintes continuam "tentado" empurrar o maior elemento para o final
- A solução consiste em diminuir gradualmente o tamanho até onde cada passagem é executada
- Implemente esta solução e compare o seu desempenho com a versão anterior

Solução 2: Bubble Sort otimizado

```
void bubble_sort(int *dados, int tam) {
  int trocou:
  do {
     trocou = 0:
     --tam:
     for (int i=0; i<tam; ++i) {</pre>
         if (dados[i] > dados[i+1]) {
            int aux = dados[i];
            dados[i] = dados[i+1]:
            dados[i+1] = aux;
            trocou = 1;
     while (trocou):
```

Solução 2: Bubble Sort otimizado (comandos do gnuplot)

Solução 2: Bubble Sort (gráfico das duas implementações)


```
enuplot.

set terminal jpeg
set output "grafico2.jpg"
set xlabel "n" font "Arial,16"
```

plot "curvai.txt" with lines title "Bubble Sort", \
"curva2.txt" with lines title "Bubble Sort Otimizado"

set vlabel "t(us)" font "Arial, 16"

Análise da eficiência de um algoritmo

- Medir o tempo depende de hardware e software (sistema operacional, por exemplo)
- Alternativa?

Análise da eficiência de um algoritmo

- Medir o tempo depende de hardware e software (sistema operacional, por exemplo)
- Alternativa?
 Contar o número de operações (atribuição, operação aritmética, comparação, etc.)

Contagem de operações

Análise de algoritmos

- Não considera o tempo de execução
- Pode ser feita diretamente sobre o pseudocódigo de alto nível
- Consiste em contar quantas operações primitivas são executadas
 - Operação primitiva: instrução de baixo nível com um tempo de execução constante
- Assume-se que os tempos de execução de operações primitivas diferentes são similares

Operações primitivas

- Atribuição de valores a variáveis
- Chamadas de métodos
- Operações aritméticas (por exemplo, adição de dois números)
- Comparação de dois números
- Acesso a um arranjo
- Retorno de um método

• Contar o número de operações para atribuir para cada posição v[i] de um arranjo unidimensional o resultado de i*2

```
v[0..10] : inteiro
for (i = 0; i < v.comprimento; i++)
   v[i] = i * 2</pre>
```

• Contar o número de operações para atribuir para cada posição v[i] de um arranjo unidimensional o resultado de i*2

```
v[0..10] : inteiro
for (i = 0; i < v.comprimento; i++)
   v[i] = i * 2</pre>
```

• Operação (multiplicação, atribuição e acesso às posições do arranjo): n

• Contar o número de operações para atribuir para cada posição v[i] de um arranjo unidimensional o resultado de i*2

```
v[0..10] : inteiro
for (i = 0; i < v.comprimento; i++)
   v[i] = i * 2</pre>
```

• Operação (multiplicação, atribuição e acesso às posições do arranjo): n


```
cnuPtor.
set terminal jpeg enhanced size 1280,960 font "arial,32.0"
set output "10n.jpg"
set xlabel "n"
set xities 1,1,10
set ylabel "f(n)"
set style function linespoints
set style line i lw 8 lc rgb 'yellow' ps 4 pt 5 pi 10
plot [n=1:11] [0:110] 10*n ls 1 notitle
```

 Contar o número de operações para atribuir para cada posição m[i,j] de um arranjo bidimensional o resultado de i*j

```
m[0..10][0..10] : inteiro
for (i=0; i<m.comprimento; i++)
    for (j=0; j<m[i].comprimento; j++)
        m[i][j] = i * j</pre>
```

 Contar o número de operações para atribuir para cada posição m[i,j] de um arranjo bidimensional o resultado de i*j

```
m[0..10][0..10] : inteiro
for (i=0; i<m.comprimento; i++)
    for (j=0; j<m[i].comprimento; j++)
        m[i][j] = i * j</pre>
```

ullet Operação (multiplicação, atribuição e acesso às posições do arranjo): n imes n

• Contar o número de operações para atribuir para cada posição m[i,j] de um arranjo bidimensional o resultado de i*j

```
m[0..10][0..10] : inteiro
for (i=0; i<m.comprimento; i++)
    for (j=0; j<m[i].comprimento; j++)
        m[i][j] = i * j</pre>
```

ullet Operação (multiplicação, atribuição e acesso às posições do arranjo): n imes n


```
cnuplot:
set terminal jpeg enhanced size 1280,960 font "arial,32.0"
set output "nxn.jpg"
set xlabel "n"
set xtise i,i,10
set ylabel "f(n)"
set style function linespoints
set style line i lw 8 lc rgb 'yellow' ps 4 pt 5 pi 10
plot [n=1:11][0:110] n*n ls i notitle
```

Exercício (1/2)

Conte o número de operações executadas pelas seguintes funções.

```
int funcao(int n) {
   int op = 0;
   for (int i=0; i < n; ++i)
        op ++;
   return op;
}</pre>
```

```
int funcao(int n) {
   int op = 0;
   for (int i=0; i<n; ++i)
        for (int j=0; j<2*i; ++j)
        op++;
   return op;
}</pre>
```

Exercício (2/2)

```
int funcao(int n) {
   int op = 1;
   if (n == 1) return op;
   return op + funcao(n-1) + funcao(n-1);
}
```

Exercício: soluções (1/6)

```
int funcao(int n) {
   int op = 0;
   for (int i=0; i<n; ++i)</pre>
        op++;
   return op;
                     [op = 10]
       / i = 0..9
       / i = 0..19
                     [op = 20]
n = 50
       / i = 0..49
                     [op = 50]
n = 100 / i = 0...99
                     [op = 100]
n = 1000 / i = 0..999 [op = 1000]
Número de operações: n : O(n)
```



```
GNUPLOT:
```

```
set terminal jpeg enhanced size 1280,960 font "arial,24.0" set output "contagem01.jpg" set xlabel "n" set xlabel "operações" plot "contagem01.trv" with lines lw 5 lt 2 notitle
```

Exercício: soluções (2/6)

```
int funcao(int n) {
  int op = 0;
  for (int i=0; i<n; ++i)</pre>
        for (int j=0; j < n; ++j)
             op ++;
  return op:
         i = 3 / i = 0...9
                 i = 0...9
         i = 8 / i = 0..9
         i = 9 / i = 0..9 [op = 100]
Número de operações: n \times n = n^2 : O(n^2)
```



```
GNUPLOT:
```

```
set terminal ipeg enhanced size 1280,960 font "arial,24.0"
set output "contagem02.ipg"
set xlabel "n"
set ylabel "operações"
plot "contagem02.txt" with lines 1w 5 1t 2 notitle
```

Exercício: soluções (3/6)

```
int funcao(int n) {
   int op = 0;
   for (int i=0; i<n; ++i)</pre>
         for (int j=i+1; j < n; ++j)
               op ++;
   return op:
n = 10 / i = 0 / j = 1.2.3.4.5.6.7.8.9
          i = 1 / j = 2,3,4,5,6,7,8,9
          i = 2 / i = 3.4.5.6.7.8.9
          i = 3 / i = 4.5.6.7.8.9
          i = 4 / i = 5.6.7.8.9
          i = 5 / i = 6.7.8.9
          i = 6 / i = 7.8.9
          i = 7 / i = 8.9
          i = 8 / i = 9
          i = 9 / i =
                       [op = 45]
Número de operações: \frac{n\times(n-1)}{2}=\frac{n^2}{2}-\frac{n}{2} \therefore O(n^2)
```

```
500000
450000
400000
350000
300000
250000
200000
150000
100000
50000
                 200
                                        600
                                                    800
                                                         900 1000
```

```
GNUPLOT:
```

```
set terminal jpeg enhanced size 1280,960 font "arial,24.0" set output "contagem03.jpg" set Xlahel "n" set Ylahel "nperações" plot "contagem03.txt" with lines lw 5 lt 2 notitle
```

Exercício: soluções (4/6)

```
int funcao(int n) {
  int op = 0;
  for (int i=0; i<n; ++i)</pre>
        for (int j=0; j<2*i; ++j)
             op ++;
  return op:
         i = 1 / i = 0...1
         i = 2 / i = 0..3
         i = 3 / i = 0..5
         i = 6 / i = 0..11
         i = 7 / i = 0..13
         i = 8 / \bar{j} = 0...15
         i = 9 / i = 0..17 [op = 90]
Número de operações: n \times (n-1) = n^2 - n : O(n^2)
```

```
1x106
900000
800000
700000
600000
500000
400000
300000
200000
100000
                 200
                                        600
                                                    800
                                                         900 1000
```

```
GNUPLOT:
```

```
set terminal jone enhanced size 1280,960 font "arial,24.0" set ultpu" contagen04.jpg" set xlabel "peragges" jabel "peragges" plot "contagen04.txt" with lines lw 5 lt 2 notitle
```

Exercício: soluções (5/6)

```
int funcao(int n) {
  int op = 0;
  for (int i=0; i<n; i++)</pre>
       for (int j=i; j<i+3; j++)
            for (int k=i; k<j; k++)</pre>
                 op++;
  return op;
                i = 11 / k = 9..10 [op = 30]
Número de operações: n \times 3 = 3n : O(n)
```

CHUPLOTI

Set terminal jpeg enhanced size 1280,960 font "arial,24.0" set output "contagem05.jpg" set ylabel "n" set ylabel "n" set ylabel "operações" plot "contagem05.txt" with lines lw 5 lt 2 notitle

3000

2500

2000

1500

Exercício: soluções (6/6)

```
int funcao(int n) {
   int op = 1;
   if (n == 1) return op;
   return op + funcao(n-1) + funcao(n-1);
      [op = 1]
      [op = 3]
      [op = 7]
      [op = 15]
      [op = 31]
n = 6
      [op = 63]
      [op = 127]
      [op = 255]
n = 9
     [op = 511]
Número de operações: 2^n - 1 :: O(2^n)
```

```
1.2x109
 1x109
 8x108
 6x108
  4x108
 2x108
                 5
                                     15
                           10
                                               20
```

GNUPLOT:

```
set terminal jpeg enhanced size 1280,960 font "arial,24.0" set output "contagem06.jpg" set xlabel "ny set ylabel "operações" plot "contagem06.txt" with lines lw 5 lt 2 notitle
```

- Uma classe de complexidade é uma forma de agrupar algoritmos que apresentam complexidade similar. Por exemplo:
 - Complexidade constante: o algoritmo sempre ocupa a mesma quantidade de recursos
 - Complexidade linear: o algoritmo consome recursos de forma diretamente proporcional ao tamanho do problema

- Sete funções mais comuns usadas em análise de algoritmos:
 - Constante: 1
 - ullet Logaritmo: $\log n$
 - Linear: n
 - n-log-n: $n \log n$ • Quadrática: n^2
 - Cúbica: n^3
 - Exponencial: a^n

Função Constante: 1

- Função mais simples
- f(n) = c
- ullet Não importa o valor de n, sempre será igual ao valor da constante c
- Exemplo: função que recebe um arranjo de inteiros e retorna o valor do primeiro elemento multiplicado por 2


```
set terminal jpeg enhanced size 1280,960 font "arial,24.0" set output "1.jpg" set xlabe! "n" set ylabe! "n" set ylabe! "1" plot [n=1:100][0:6] 1 with lines lw 5 lt 1 notitle
```

Função Logaritmo: $\log n$

- $f(n) = \log n$ ou $f(n) = \log_2 n$
- O número de operações realizadas para solução do problema não cresce da mesma forma que n: se dobra o valor de n, o incremento do consumo é bem menor

GNUPLOT

• Exemplo: conversão de número decimal para binário e pesquisa binária (binary search)


```
set terminal jpeg enhanced size 1280,960 font "arial,24.0" set output "log_n.jpg" set xlabel "n" set ylabel "log(n)" set ylabel "log(n)" plot [n=1:100][0:6] log(n) with lines lw 5 lt 2 notitle
```

Função Linear: n

- ullet Se dobra o valor de n, dobra o consumo de recursos
- f(n) = n
- Exemplo: localizar um elemento em uma lista

GNUPLOT:

```
set terminal jpeg enhanced size 1280,960 font "arial,24.0" set output "n.jpg" set xlabel "n" set ylabel "n" set ylabel "n" plot [n=:1:00] [0::100] n with lines lw 5 lt 3 notitle
```

Função n-log-n: $n \log n$

- $f(n) = n \log n$
- ullet Atribui para uma entrada n o valor de n multiplicado pelo logaritmo de base 2 de n
- Cresce mais rápido que a função linear e mais devagar que a função quadrática
- Exemplo: Algoritmos de ordenação mergesort e heapsort

http://www.sorting-algorithms.com/


```
set terminal jpeg enhanced size 1280,960 font "arial,24.0" set output "n.log.n.jpg" set Xlabel "n" set Ylabel "n.log(n)" plot [n=1:100][0:500] n*log(n) with lines lw 5 lt 4 notitle
```

GNUPLOT:

Função Quadrática: n^2

- Função polinomial com expoente 2
- $f(n) = n^2$
- Não cresce de forma abrupta, mas dificultam o uso em problemas grandes.
- Exemplo: Ordenação com o algoritmo bubblesort

set terminal jpeg enhanced size 1280,960 font "arial,24.0" set output "n"2.jpg" set Xlabel "n" set ylabel "n"2" plot [n=1:100] [0:1000] n**2 with lines lw 5 lt 5 notitle

GNUPLOT

Função Cúbica: n^3

- Função polinomial com expoente 3
- $f(n) = n^3$
- Aparece com menos frequência na análise de algoritmos do que as funções constante, linear ou quadrática

GNUPLOT:

• Exemplo: multiplicar duas matrizes


```
set terminal jpeg enhanced size 1280,960 font "arial,24.0" set output "n-3.jpg" set xlabel "n-" set ylabel "n-" plot [n-1:100] [0:1000] n**3 with lines lw 5 lt 6 notitle
```

Função Exponencial: a^n

- Expoente é variável
- $f(n) = a^n$
- Algoritmos "ruins", crescem abruptamente
- Aplicável apenas em problemas pequenos.
- Exemplos: quebrar senhas com força bruta e listar todos os subconjuntos de um conjunto S

GNUPLOT:

Comparativo entre as taxas de crescimento das funções (todas)

Comparativo entre as taxas de crescimento das funções (grupo 1)

Comparativo entre as taxas de crescimento das funções (grupo 2)

Comparativo entre as taxas de crescimento das funções (grupo 3)

- Um problema é dividido em funções/métodos
 - Cada função/método tem um "custo" diferente
 - Estes custos são somados para determinar o custo total para solução do problema

Dois algoritmos para resolver o mesmo problema foram analisados e concluiu-se que eles executam os seguintes números de operações:

- Algoritmo A: $f_A(n) = 2n^2 + 5n$ operações
- Algoritmo B: $f_B(n) = 500n + 4000$ operações

Qual desses algoritmos consiste na melhor solução? Analise o número de operações de cada algoritmo para diferentes valores de n (por exemplo, n=10, n=100, n=100, etc.)

Analise os algoritmos abaixo e identifique a sua classe de complexidade. Para verificar se a sua resposta está correta, implemente cada algoritmo, teste com diferentes valores de n e gere um gráfico usando o GNUPLOT.

```
int funcao(int n) {
   int op = 0;
   for (int i=0; i<n; i++)</pre>
       for (int j=i; j<i+3; j++)</pre>
            for (int k=j; k<j+2; k++)</pre>
                 op++;
   return op;
int funcao(int n) {
   int op = 0;
   for (int i=0; i<n; i++)</pre>
       for (int j=i; j <2*i; j++)
            op ++;
   return op:
```

```
int funcao(int n) {
     int op = 0;
     for (int i=1; i<n; i=i+i)</pre>
          op ++;
     return op;
   int funcao(int n) {
     int op = 0;
     for (int i=1; i<n; i++)</pre>
          for (int j=1; j<n; j=j+j)</pre>
              op++;
     return op;
```

Faça um algoritmo para o problema abaixo e analise a sua complexidade.

Problema:

- Dado um intervalo [1;V]
- Determinar quantas sequencias de valores entre 1 e V somam exatamente V

Exemplo:

- V=15
- Sequências
 - 1+2+3+4+5
 - 4+5+6
 - 7+8
 - 15
- Resposta: 4 sequências de valores somam exatamente 15

- O número de passos durante a execução de um algoritmo pode variar
- Exemplo: ordenar um vetor
 2 1 3 4 5 6 x 6 5 4 3 2
- Existe o limite superior e o limite inferior para cada algoritmo
- Exemplo: https://www.toptal.com/developers/sorting-algorithms/bubble-sort

- Limite inferior
 - ullet Menor tempo de execução sobre todas as entradas de tamanho n
 - Exemplo: Bubble Sort recebe vetor de entrada quase ordenado
- Limite superior
 - ullet Maior tempo de execução sobre todas as entradas de tamanho n
 - Exemplo: Bubble Sort recebe vetor de entrada ordenado de trás para frente
- Caso "médio"
 - Média dos tempos de execução sobre todas as entradas de tamanho n

- Tempo cresce conforme a entrada de dados cresce
- Determinar o "tempo médio" é difícil
- Portanto, para análise de algoritmos quase sempre se quer saber o limite superior
 - Mais fácil de analisar
 - Crucial para determinadas aplicações

- Importante:
 - \bullet Concentrar-se na taxa de crescimento do tempo de execução como uma função do tamanho da entrada n
- Por exemplo:
 - No algoritmo que verifica maior número de um arranjo de inteiros, o tempo de execução cresce proporcionalmente a n
 - ullet Tempo de execução: n vezes um fator constante

- Ao ver uma expressão $f(n) = a^n$, normalmente se pensa em valores pequenos
 - É o que se consegue resolver
- Análise de algoritmos
 - ullet Ignora os valores pequenos e concentra-se nos valores enormes de n
- \bullet Para grandes valores de n, as funções n^2 , $(3/2)n^2$, n^2+100n , por exemplo, crescem com a mesma velocidade, portanto são equivalentes

GNUPLOT:

```
set terminal jpeg enhanced size 1280,960 font "arial,32.0" set output "grafico2.jpg" set key top left set xlabel "n" set xlabel "n" set ylabel "f(n)" plot [n=1:250] n=n with lines title "n-2" lw 4, \ 1.5*n=n with lines title "(3/2)n-2" lw 4, \ n+n+100*n with lines title "n-2+100n" lw 4
```

Notação Assintótica

- Assintótico (Adj.)
 - Quando se quer descrever o comportamento quando se aproxima de um limite, ou seja, quando n tende ao infinito
 - Aquilo que está relativamente próximo
 - Para todos os valores suficientemente grandes
 - ullet O comportamento a ser observado em uma função f(n), quando n tende ao infinito
 - Relativo à Assintota
 - (Mat.) linha reta relacionada com uma curva, cuja distância entre elas se torna infinitamente pequena, a partir de determinado ponto
 - (Fig.) Caminho que se aproxima continuamente de um ideal sem jamais o atingir
- Notações
 - Notação O
 - Notação Ω (ômega)
 - Notação Θ (theta)

- ullet Sejam f(n) e g(n) funções mapeando inteiros não negativos em números reais
- Diz-se que f(n) é O(g(n)) se existe uma constante real c>0 e uma constante inteira $n_0\geq 1$ tais que $f(n)\leq cg(n)$, para todo inteiro $n\geq n0$

- Notação O:
 - f(n) é **O** de g(n)
 - f(n) é da ordem de g(n)
- f(n) = O(g(n))
 - Significa que g(n) cresce mais (ou da mesma forma que) a função f(n) à medida que n cresce para o infinito
 - ullet Para isso, pode ser preciso multiplicar g(n) por uma constante
- Notação O é usada para
 - Caracterizar o tempo de execução e limites espaciais em função de um parâmetro n que varia de problema para problema

- Exemplo: algoritmo para encontrar o maior elemento de um arranjo de inteiros
 - n representa o número de elementos no arranjo
 - Usando a notação O se pode afirmar (independente do computador que será usado):
 - Este algoritmo executa em tempo O(n)
 - Justificativa:
 - O número de operações primitivas executadas pelo algoritmo é constante em cada iteração
 - \bullet Pode-se dizer que o tempo de execução do algoritmo para uma entrada de tamanho n é no máximo uma constante, vezes n

Propriedades da notação O

- Permite ignorar os fatores constantes e os termos de menor ordem, focando nos principais componentes da função que afetam seu crescimento
- ullet Se f(n) é um polinômio de grau d, isto é,

$$f(n) = a_0 + a_1 n + \dots + a_d n^d$$

e
$$a_d > 0$$
, então $f(n)$ é $O(n^d)$

• Deve-se descrever a função O em termos simples

Propriedades da notação O

- Portanto, o termo de mais alto grau em um polinômio é o termo que determina a taxa de crescimento assintótico do polinômio
- Exemplos:

•
$$5n^2 + 3n\log n + 2n + 5 \in O(n^2)$$

•
$$20n^3 + 10n \log n + 5 \in O(n^3)$$

- $3\log n + 2 \notin O(\log n)$
- 2^{n+2} é $O(2^n)$
- $2n + 100 \log n$ é O(n)

- As sete funções apresentadas são as mais usadas em conjunto com a notação O 1. $\log n$, n, $n \log n$, n^2 , n^3 , a^n
- Caracterizam os tempos de execução e consumo de memória dos algoritmos
- Os nomes destas funções são usados para referenciar o tempo de execução
- Exemplos:
 - Algoritmo que executa no limite superior em tempo $4n^2+n\log n$ é um algoritmo de tempo quadrático, pois executa em tempo $O(n^2)$
 - Algoritmo que executa no limite superior em $5n + 20\log n + 4$ é um algoritmo de tempo linear, ou seja, O(n)

Notação Ω e Notação Θ

Notação Ω e Notação Θ

- Notação O
 Maneira assintótica de dizer que uma função é "menor que ou igual a" outra função
- Notação Ω Maneira assintótica de dizer que uma função cresce a uma taxa que é "maior ou igual a" outra função
- Notação ⊖
 Permite dizer que duas funções crescem à mesma taxa

Notação Ω

- Sejam f(n) e g(n) funções mapeando inteiros não negativos em números reais
- Diz-se que f(n) é $\Omega(g(n))$ se g(n) é O(f(n)), ou seja, se existe uma constante real c>0 e uma constante inteira $n_0\geq 1$ tais que $f(n)\geq cg(n)$, para todo inteiro $n\geq n_0$
- Permite dizer que uma função é assintoticamente maior que ou igual a outra, exceto por um fator constante
- ullet Se diz que f(n) é ômega de g(n)
- Exemplo: $3n \log n + 2n \in \Omega(n \log n)$

Notação Θ

- Diz-se que f(n) é $\Theta(q(n))$, se f(n) é O(q(n)) e f(n) é $\Omega(q(n))$, ou seja, existem constantes reais c' > 0 e c'' > 0 e uma constante inteira $n_0 > 1$ tais que c'q(n) < f(n) < c''q(n), para $n > n_0$
- Se diz que f(n) é theta de g(n)
- Exemplo: $3n \log n + 4n + 5 \log n \in \Theta(n \log n)$

Exemplo de gráficos das notações O. Ω e Θ

- Notação Θ limita uma função entre valores constantes
- Notação O dá um limite superior para uma função dentro de um valor constante
- ullet Notação Ω dá um limite inferior para uma função dentro de um valor constante

- Suponha dois algoritmos, A e B, para resolver um mesmo problema
 - ullet A tem um tempo de execução O(n)
 - ullet B tem um tempo de execução $O(n^2)$
 - Qual deles é melhor?
 - A é assintoticamente melhor que B

• Pode-se usar a notação O para ordenar classes de funções por seu crescimento assintótico $1 \log n - n \log n - n^2 - n^3 - 2^n$

n	$\log n$	n	$n \log n$	n^2	n^3	2"
8	3	8	24	64	512	256
16	4	16	64	256	4.096	65.536
32	5	32	160	1.024	32.768	4.294.967.296
64	6	64	384	4.096	262.144	$1,84 \times 10^{19}$
128	7	128	896	16.384	2.097.152	$3,40 \times 10^{38}$
256	8	256	2.048	65.536	16.777.216	$1,15 \times 10^{77}$
512	9	512	4.608	262.144	134.217.728	$1,34 \times 10^{154}$

• Para analisar algoritmos com a notação O, o mais apropriado é dizer:

$$f(n) \not\in O(g(n)),$$
 ou
$$f(n) \in O(g(n))$$

O que é um algoritmo rápido?

- razoável, pode ser considerado eficiente
- ullet Até um método $O(n^2)$ pode ser suficientemente rápido em alguns contextos (n pequeno)
- ullet Algoritmo executando em tempo $O(2^n)$ dificilmente pode ser considerado eficiente

• Em geral, um algoritmo executando em tempo $O(n \log n)$, com um fator constante

- Notações $O,\ \Omega$ e Θ fornecem uma linguagem conveniente para análise de estruturas de dados e algoritmos
 - Permitem a concentração nos aspectos gerais, em vez dos detalhes

Qual a complexidade do algoritmo abaixo?

- O(n)
- $O(n^2)$
- $O(n \log 2n)$
- O(2n)

Qual a complexidade do algoritmo abaixo?

```
int busca(v[1..N] : inteiro, elem : inteiro)
  for (i = 1; i <= n; i++)
      if (elem == v[i])
      return i // elemento encontrado no indice i
  return -1 // elemento NAO encontrado</pre>
```

- O(n)
- $O(n^2)$
- $O(n \log 2n)$
- O(2n)

Analise os trechos de algoritmos abaixo e identifique suas respectivas classes de complexidade.

Algoritmo I:

```
for (i=0; i < n; i++)
for (j=0; j < n; j++)
a += i*3 + aa[i][j];
```

Algoritmo II:

```
for (i=1; i < n; i=i+i)
b = b >> i:
```

Algoritmo III:

```
for (i=0; i < n; i++)
for (j=0; j < n; j++)
for (k=0; k < n; k++)
c += i + j + k;
```

Algoritmo IV:

```
for (i=0; i < n; i++)
  for (j=i; j < i+5; j++)
    for (k=0; k < n; k++)
    d++;</pre>
```

Algoritmo V:

```
for (i=0; i < 127; i++)
for (j = 0; j < 127; j++)
e[i][j] = 0;
```

Considere as seguintes funções:

$$f_1(n) = O(n)$$
 $f_2(n) = O(\log n)$ $f_3(n) = O(2^n)$ $f_4(n) = O(n^2)$

A sequência que apresenta as funções acima ordenadas, pela sua taxa de crescimento, de forma crescente é:

- \bullet $f_2 f_1 f_4 f_3$

Qual a notação O dos algoritmos que têm as seguintes taxas de crescimento assintóticas?

- $3n\log n + 2n + 5$
- $1000n \log n + 15n^3$
- $500n^5 + 2n$
- 3n + 4500n
- $3n + 753 \log n + 4$

Créditos

Créditos

• Estas lâminas contêm trechos de materiais criados e disponibilizados pelos professores Isabe Harb Manssour e Iacanã Ianiski Weber.