Apéndice: Gráficas adicionales en R

XIANA CARRERA ALONSO, ANA CARSI GONZÁLEZ

Arquitectura de Computadores Grupo 01

xiana.carrera@rai.usc.es | ana.carsi@rai.usc.es

I. Ciclos por acceso a memoria según L.

A. Compilación -O3

Figura 1: Coste en ciclos por acceso a memoria en función de L, para la elección D = [1, 6, 8, 15, 71]

Figura 2: Coste en ciclos por acceso a memoria en función de L, para la elección D = [14, 15, 16, 17, 18]

Coste en ciclos de cada acceso a memoria por número de líneas caché diferentes referenciadas Influencia de L, con datos agrupados por D (número de posiciones entre los elementos a sumar)

Figura 3: Coste en ciclos por acceso a memoria en función de L, para la elección D = [10, 30, 50, 70]

Figura 4: Coste en ciclos por acceso a memoria en función de L, para la elección D = [1, 3, 7, 8, 16]

Coste en ciclos de cada acceso a memoria por número de líneas caché diferentes referenciadas Influencia de L, con datos agrupados por D (número de posiciones entre los elementos a sumar)

B. Compilación -O0

Figura 5: Coste en ciclos por acceso a memoria en función de L, para la elección D = [1, 6, 8, 15, 71]

·

Figura 6: Coste en ciclos por acceso a memoria en función de L, para la elección D = [14, 15, 16, 17, 18]

Coste en ciclos de cada acceso a memoria por número de líneas caché diferentes referenciadas Influencia de L, con datos agrupados por D (número de posiciones entre los elementos a sumar)

Figura 7: Coste en ciclos por acceso a memoria en función de L, para la elección D = [10, 30, 50, 70]

Figura 8: Coste en ciclos por acceso a memoria en función de L, para la elección D = [1, 3, 7, 8, 16]

.

Coste en ciclos de cada acceso a memoria por número de líneas caché diferentes referenciadas Influencia de L, con datos agrupados por D (número de posiciones entre los elementos a sumar)

II. Ciclos por acceso a memoria según D

A. Compilación -O3

Figura 9: Coste en ciclos por acceso a memoria en función de D = [1, 6, 8, 15, 71] para distintos valores de L

•

 $\textbf{Figura 10:} \ \textit{Coste en ciclos por acceso a memoria en función de } D = [14, 15, 16, 17, 18] \ \textit{para distintos valores de } L$

Coste en ciclos de cada acceso a memoria según el espacio entre los sumandos de A[] Influencia de D, con datos agrupados por L (número de líneas caché diferentes referenciadasr)

D (número de posiciones entre los elementos a sumar de A[])

Figura 11: Coste en ciclos por acceso a memoria en función D = [10, 30, 50, 70] para distintos valores de L

Coste en ciclos de cada acceso a memoria según el espacio entre los sumandos de A[] Influencia de D, con datos agrupados por L (número de líneas caché diferentes referenciadasr)

Figura 12: Coste en ciclos por acceso a memoria en función de D = [1, 3, 7, 8, 16] para distintos valores de L

.

Coste en ciclos de cada acceso a memoria según el espacio entre los sumandos de A[] Influencia de D, con datos agrupados por L (número de líneas caché diferentes referenciadasr)

D (número de posiciones entre los elementos a sumar de A[])

B. Compilación -O0

Figura 13: Coste en ciclos por acceso a memoria en función de D = [1, 6, 8, 15, 71] para distintos valores de L

Coste en ciclos de cada acceso a memoria según el espacio entre los sumandos de A[]

 $\textbf{Figura 14:} \ \textit{Coste en ciclos por acceso a memoria en función de } D = [14, 15, 16, 17, 18] \ \textit{para distintos valores de } L$

Coste en ciclos de cada acceso a memoria según el espacio entre los sumandos de A[] Influencia de D, con datos agrupados por L (número de líneas caché diferentes referenciadasr)

D (número de posiciones entre los elementos a sumar de A[])

Figura 15: Coste en ciclos por acceso a memoria en función D = [10, 30, 50, 70] para distintos valores de L

Coste en ciclos de cada acceso a memoria según el espacio entre los sumandos de A[] Influencia de D, con datos agrupados por L (número de líneas caché diferentes referenciadasr)

Figura 16: Coste en ciclos por acceso a memoria en función de D = [1, 3, 7, 8, 16] para distintos valores de L

•

Coste en ciclos de cada acceso a memoria según el espacio entre los sumandos de A[] Influencia de D, con datos agrupados por L (número de líneas caché diferentes referenciadasr)

D (número de posiciones entre los elementos a sumar de A[])

III. Ciclos por acceso a memoria según D y L (3D)

A. Compilación -O3

Figura 17: Representación gráfica en 3D: coste en función de D = [1, 6, 8, 15, 71] para distintos valores de L

Figura 18: Representación gráfica en 3D: coste en función de D = [14, 15, 16, 17, 18] para distintos valores de L

Figura 19: Representación gráfica en 3D: coste en función D = [10, 30, 50, 70] para distintos valores de L

Figura 20: Representación gráfica en 3D: coste en función D = [1, 3, 7, 8, 16] para distintos valores de L

B. Compilación -O0

Figura 21: Representación gráfica en 3D: coste en función de D = [1, 6, 8, 15, 71] para distintos valores de L

Figura 22: Representación gráfica en 3D: coste en función de D = [14, 15, 16, 17, 18] para distintos valores de L

Figura 23: Representación gráfica en 3D: coste en función D = [10, 30, 50, 70] para distintos valores de L

Figura 24: Representación gráfica en 3D: coste en función D = [1, 3, 7, 8, 16] para distintos valores de L

IV. Ciclos por acceso a memoria la localidad espacial (razón R/L)

A. Compilación -O3

Figura 25: Coste en ciclos por acceso a razón R/L para D = [1, 6, 8, 15, 71]

Figura 26: Coste en ciclos por acceso a razón R/L para D = [14, 15, 16, 17, 18]

Coste en ciclos de cada acceso a memoria según la localidad espacial Influencia de R/L (cantidad de elementos que se suman por línea cache, con valores agrupados por D 25 98 90 15 1000 1000 1000 1000 1000

Figura 27: Coste en ciclos por acceso a razón R/L para D = [10, 30, 50, 70, 90]

R/L (medida del número elementos a sumar por línea cache diferente a emplear)

Figura 28: Coste en ciclos por acceso a razón R/L para D = [1, 3, 7, 8, 16]

B. Compilación -O0

Figura 29: Coste en ciclos por acceso a razón R/L para D = [1, 6, 8, 15, 71]

Figura 30: Coste en ciclos por acceso a razón R/L para D = [14, 15, 16, 17, 18]

Figura 31: Coste en ciclos por acceso a razón R/L para D = [10, 30, 50, 70, 90]

1.050

1.000

R/L (medida del número elementos a sumar por línea cache diferente a emplear)

0.950

Figura 32: Coste en ciclos por acceso a razón R/L para D = [1, 3, 7, 8, 16]

Coste en ciclos de cada acceso a memoria según la localidad espacial Influencia de R/L (cantidad de elementos que se suman por línea cache, con valores ag

