Concours National Commun - Session 2008

Corrigé de l'épreuve d'analyse

Propriétés et applications des fonctions analytiques

Corrigé par Mohamed TARQI

1ère Partie : Résultats préliminaires

- 1. (a) Pour tout $z\in\mathbb{C}$, il existe un seul couple $(x,y)\in\mathbb{R}^2$ tel que z=x+iy, autrement dit l'application ψ est bijective, et comme $\forall z=x+iy\in\mathbb{C}$, on a $|\psi(x,y)|=\sqrt{x^2+y^2}=\|(x,y)\|$, alors ψ est une isométrie bicontinue.
 - (b) La partie $\{(x,y) \in \mathbb{R}^2/x + iy \in \Omega\}$ n'est autre que l'image réciproque de l'ouvert Ω par l'application continue ψ , donc est un ouvert de \mathbb{R}^2 .
 - (c) Il suffit de montrer que Ω^C . Soit $z=x+iy\in\overline{\Omega^C}$, alors il existe une suite $(z_n)_{n\in\mathbb{N}}$ d'éléments de Ω^C telle que $\lim_{n\to\infty}z_n=z$, donc $\forall n\in\mathbb{N}$ $x_n:=\operatorname{Re}(z_n)\leq 0$, ainsi $x=\lim_{n\to\infty}x_n\leq 0$, donc $\operatorname{Re}(z)\leq 0$ et par conséquent $z\in\Omega^C$, c'est-à-dire Ω^C est fermé. Pour tout z et z' de Ω , le segment joignant les points d'affixe z et z' reste dans Ω , donc Ω est convexe et par conséquent connexe par arcs.
- 2. (a) $\forall z \in \mathbb{C}$ telle que |z| < R, on a $f(z) = a_p z^p + a_{p+1} z^{p+1} + ... = z^p g(z)$ avec $g(z) = \sum_{k=p}^{\infty} a_k z^k$. On a évidement $g(0) = a_p$.
 - (b) g étant continue sur D(0,R) et non s'annule pas en 0, donc il existe un réel r>0 tel que $\forall z\in D(0,r)$ $g(z)\neq 0$, et par suite $\forall z\in D(0,r)\setminus\{0\}$, $f(z)=z^pg(z)\neq 0$.

 $2^{\grave{e}me}$ Partie : La propriété (H)

1. (a) Il est évident que \tilde{f} est de classe C^1 sur \mathbb{R}^2 , puisque les dérivées partielles existent et sont continues.

D'autre part, on a $\widetilde{f}(x,y)=e^{x+iy}$, donc $\frac{\partial \widetilde{f}}{\partial x}(x,y)=e^{x+iy}$ et $\frac{\partial \widetilde{f}}{\partial y}(x,y)=ie^{x+iy}$, et par conséquent : $\frac{\partial \widetilde{f}}{\partial y}(x,y)=i\frac{\partial \widetilde{f}}{\partial x}(x,y)$. Donc f vérifie la propriété (H).

(b) \widetilde{f} est de classe \mathcal{C}^1 sur Ω comme composé et produit des fonctions de classe \mathcal{C}^1 .

D'autre part $\forall x>0$, $\frac{\partial \widetilde{f}}{\partial y}(x,y)=\frac{x+iy}{x^2+y^2}$ et $\frac{\partial \widetilde{f}}{\partial x}(x,y)=\frac{y+ix}{x^2+y^2}$. Donc $\frac{\partial \widetilde{f}}{\partial y}(x,y)=i\frac{\partial \widetilde{f}}{\partial x}(x,y)$, donc f vérifie la propriété (H).

Pour tout z=x+iy de Ω , on a $e^{f(z)}=e^{\ln|z|+i \arcsin\left(\frac{y}{|z|}\right)}=|z|e^{i \arcsin\left(\frac{y}{|z|}\right)}$. Mais

$$\cos\left(\arcsin\frac{y}{|z|}\right) + i\sin\left(\arcsin\frac{y}{|z|}\right) = \cos\theta + i\frac{y}{|z|} = e^{i\theta}$$

avec $\theta = \arcsin \frac{y}{|z|}$. On a encore $\cos^2 \left(\arcsin \frac{y}{|z|}\right) + \sin^2 \left(\arcsin \frac{y}{|z|}\right) = 1$, donc

$$\cos(\theta) = \sqrt{1 - \left(\frac{y}{|z|}\right)^2} = \frac{x}{|z|},$$

 $\operatorname{car} \frac{-\pi}{2} \le \theta \le \frac{\pi}{2}$ et par conséquent

$$e^{f(z)} = |z|e^{i \arcsin\left(\frac{y}{|z|}\right)} = |z|\frac{(x+iy)}{|z|} = z.$$

(c) Il suffit de vérifier que les applications puissances $z \longmapsto z^k$ ($k \in \mathbb{N}$) vérifient (H). D'une part \widetilde{f} est \mathcal{C}^1 , car elle est polynomiale. D'autre part, on a $\forall k \in \mathbb{N}^*$

$$\frac{\partial (x+iy)^k}{\partial x}(x,y) = k(x+iy)^{k-1} \text{ et } \frac{\partial (x+iy)^k}{\partial y}(x,y) = ki(x+iy)^k,$$

la propriété est clair si k=0. Ainsi f vérifie la propriété (H) et

$$\frac{\partial \widetilde{f}}{\partial x}(x,y) = \sum_{k=1}^{d} k(x+iy)^{k-1} = P'(z).$$

- (d) Non, puisque $\frac{\partial \widetilde{f}}{\partial x}(x,y)=1$ et $\frac{\partial \widetilde{f}}{\partial y}(x,y)=-i$
- 2. Cas d'une fonction définie par une intégrale
 - (a) On a $|e^{-t^2+ivt}|=e^{-\mathrm{Re}(z)t^2}$, donc la fonction $t\longmapsto e^{-zt^2+ivt}$ est intégrable sur $\mathbb R$ si et seulement si $\mathrm{Re}(z)>0$.
 - (b) Pour x fixé dans $]0,+\infty[$, posons $F:y\to \widetilde{f}_v(x,y)=\int_{-\infty}^{+\infty}e^{-(x+iy)t^2+ivt}dt$ définie sur $\mathbb R$. La fonction $g:y\to e^{-(x+iy)t^2+ivt}$ est dérivable sur $\mathbb R$ et $\frac{\partial g}{\partial y}(x,y)=-it^2e^{-(x+iy)t^2+ivt}$ et $\forall y\in\mathbb R$, on a $\left|\frac{\partial g}{\partial y}(x,y)\right|=t^2e^{-xt^2}=\varphi(t)$, de plus φ est intégrable sur $\mathbb R$, donc d'après le théorème de dérivation sous le signe intégrale, F est dérivable sur $\mathbb R$ et $F'(x)=\int_{-\infty}^{+\infty}-it^2e^{-(x+iy)t^2+ivt}dt$. Autrement dit, \widetilde{f}_v admet une dérivé partielle première par rapport à y et $\forall (x,y)\in]0,+\infty[\times\mathbb R]$,

$$\frac{\partial \widetilde{f}_v}{\partial y}(x,y) = F'(x) = \int_{-\infty}^{+\infty} -it^2 e^{-(x+iy)t^2 + ivt} dt.$$

(c) Pour y fixé dans \mathbb{R} , posons $F: x \to \widetilde{f}_v(x,y) = \int_{-\infty}^{+\infty} e^{-(x+iy)t^2+ivt} dt$ définie sur $]0,+\infty[$. La fonction $g: x \to e^{-(x+iy)t^2+ivt}$ est dérivable sur $]0,+\infty[$ et $\frac{\partial g}{\partial x}(x,y) = -t^2e^{-(x+iy)t^2+ivt}$ et $\forall x \in [a,b] \subset]0,+\infty[$, on a $\left|\frac{\partial g}{\partial x}(x,y)\right| = t^2e^{-xt^2} \leq \varphi(t) = t^2e^{-at^2}$, de plus φ est intégrable sur \mathbb{R} , donc d'après le théorème de dérivation sous le signe intégrale, F est dérivable sur [a,b] et $F'(x) = \int_{-\infty}^{+\infty} -t^2e^{-(x+iy)t^2+ivt}dt$. Comme a et b sont quelconques, le résultat reste valide sur la réunion des intervalles [a,b], donc $\forall x \in]0,+\infty[$,

$$\frac{\partial \widetilde{f}_v}{\partial x}(x,y) = F'(x) = \int_{-\infty}^{+\infty} -t^2 e^{-(x+iy)t^2 + ivt} dt = \frac{1}{i} \frac{\partial \widetilde{f}_v}{\partial y}(x,y)$$

(d) On peut vérifie que l'application $(x,y)\longmapsto \frac{\partial \tilde{f}_v}{\partial x}(x,y)$ est continue, ce qui entraı̂ne la continuité de $(x,y)\longmapsto \frac{\partial \tilde{f}_v}{\partial y}(x,y)$, grace à la dernière relation et on a bien, pour tout v de \mathbb{R} :

$$\forall (x,y) \in \mathcal{U}, \ \frac{\partial \widetilde{f}_v}{\partial y}(x,y) = i \frac{\partial \widetilde{f}_v}{\partial x}(x,y).$$

Donc la fonction \widetilde{f}_v vérifie la propriété (H).

- 3. Cas de la somme d'une série entière
 - (a) Pour $y \in]-R, R[\ (=\mathbb{R}) \text{ si } R=+\infty)$ fixé, on peut appliquer le théorème de dérivation sous le signe somme à la fonction $x \longmapsto \sum\limits_{n=0}^{\infty} a_n (x+iy)^n$ sur les compacts inclus dans]-r,r[avec $r=\sqrt{R^2-y_0^2}.$ On obtient alors

$$\frac{\partial \widetilde{f}}{\partial x}(x,y) = \sum_{n=1}^{\infty} n a_n (x+iy)^{n-1}$$

(b) De même , pour $x \in]-R, R[\ (=\mathbb{R}) \text{ si } R=+\infty)$ fixé, on a :

$$\frac{\partial \widetilde{f}}{\partial y}(x,y) = \sum_{n=1}^{\infty} ina_n(x+iy)^{n-1} = i\frac{\partial \widetilde{f}}{\partial x}(x,y)$$

(c) On a $(x,y) \longmapsto \frac{\partial \widetilde{f}}{\partial x}(x,y)$ est continue et :

$$\forall (x,y) \in \mathcal{U}, \ \frac{\partial \widetilde{f}}{\partial y}(x,y) = i \frac{\partial \widetilde{f}}{\partial x}(x,y).$$

Donc la fonction \widetilde{f} vérifie la propriété (H).

- 4. Quelques propriétés générales
 - (a) $\lambda f + g$ est C^1 sur \mathcal{U} , et pour tout $(x, y) \in \mathcal{U}$, on a :

$$\frac{\partial (\widetilde{\lambda f + g})}{\partial y}(x, y) = \lambda \frac{\partial \widetilde{f}}{\partial y}(x, y) + \frac{\partial \widetilde{g}}{\partial y}(x, y) = \lambda i \lambda \frac{\partial \widetilde{f}}{\partial x}(x, y) + i \frac{\partial \widetilde{g}}{\partial x}(x, y) = i \frac{\partial (\widetilde{\lambda f + g})}{\partial x}(x, y).$$

Donc $\lambda f + g$ vérifie la propriété (H).

(b) De même , \widetilde{fg} est \mathcal{C}^1 sur \mathcal{U} , et on a pour tout $(x,y) \in \mathcal{U}$:

$$\frac{\partial (\widetilde{fg})}{\partial y}(x,y) = \frac{\partial \widetilde{f}}{\partial y}(x,y)\widetilde{g}(x,y) + \widetilde{f}(x,y)\frac{\partial \widetilde{g}}{\partial y}(x,y) = i\frac{\partial \widetilde{f}}{\partial x}(x,y)\widetilde{g}(x,y) + \widetilde{f}(x,y)i\frac{\partial \widetilde{g}}{\partial x}(x,y) = i\frac{\partial (\widetilde{fg})}{\partial x}(x,y)$$

Donc fg vérifie la propriété (H).

(c) $F \circ f$ est C^1 sur U. Soit $(x, y) \in U$, on a :

$$\frac{\partial (\widetilde{F \circ f})}{\partial y}(x,y) = \frac{\partial \widetilde{F}}{\partial y} \circ \widetilde{f}(x,y) \times \frac{\partial \widetilde{f}}{\partial y}(x,y) = i \frac{\partial \widetilde{F}}{\partial x} \circ \widetilde{f}(x,y) \times i \frac{\partial \widetilde{f}}{\partial x}(x,y) = i \frac{\partial (\widetilde{F \circ f})}{\partial x}(x,y).$$

Ainsi $F \circ f$ vérifie la propriété (H) sur \mathcal{U} .

(d) De même , $\frac{1}{f}$ est \mathcal{C}^1 sur \mathcal{U} et on pour tout $(x,y)\in\mathcal{U}$:

$$\frac{\partial(\widetilde{\frac{1}{f}})}{\partial y}(x,y) = \frac{-\partial\widetilde{f}}{\partial y}(x,y) = \frac{-i\frac{\partial\widetilde{f}}{\partial x}(x,y)}{(\widetilde{f}(x,y))^2} = \frac{-i\frac{\partial\widetilde{f}}{\partial x}(x,y)}{(\widetilde{f}(x,y))^2} = i\frac{\partial(\widetilde{\frac{1}{f}})}{\partial x}(x,y)$$

Donc $\frac{1}{f}$ vérifie la propriété (H)

 $\text{(e)} \quad \text{ i. On a } d\widetilde{f}(x_0,y_0) = \frac{\partial \widetilde{f}}{\partial x}(x_0,y_0)dx + \frac{\partial \widetilde{f}}{\partial y}(x_0,y_0)dy = (a+ib)dx + i(a+ib)dy, \text{ et } x \in \mathbb{R}^n$

$$A=J_{\widetilde{f}}(x_0,y_0)=\left(\frac{\partial \widetilde{f}}{\partial x}(x_0,y_0),\frac{\partial \widetilde{f}}{\partial y}(x_0,y_0)\right)=(a+ib,-b+ia)=\left(\begin{array}{cc}a&-b\\b&a\end{array}\right)$$

- ii. Si $a+ib\neq 0$, A représente une similitude de rapport $k=\sqrt{a^2+b^2}$. Si $a^2+b^2=1$, A représente une rotation vectorielle.
- (f) Si \widetilde{f} est de classe \mathcal{C}^2 , alors on peut écrire :

$$\frac{\partial^2 \widetilde{f}}{\partial x^2} = i \frac{\partial (\frac{\partial f}{\partial y})}{\partial x} = i \frac{\partial^2 \widetilde{f}}{\partial x \partial y}$$

et

$$\frac{\partial^2 \widetilde{f}}{\partial y^2} = \frac{\partial (\frac{\partial \widetilde{f}}{\partial y})}{\partial y} = \frac{1}{i} \frac{\partial^2 \widetilde{f}}{\partial y \partial x} = -i \frac{\partial^2 \widetilde{f}}{\partial y \partial x}$$

mais le théorème de Schwarz montre que $\frac{\partial^2 \widetilde{f}}{\partial u \partial x} = \frac{\partial^2 \widetilde{f}}{\partial x \partial u}$, donc

$$\frac{\partial^2 \widetilde{f}}{\partial x^2} + \frac{\partial^2 \widetilde{f}}{\partial y^2} = 0.$$

- 1. Puisque Ω est un ouvert et $z_0 \in \Omega$, alors $\exists \rho > 0$ tel que $D(z_0, \rho) \subset \Omega$, donc $\{\rho > 0/D(z_0, \rho) \subset \Omega\}$ est non vide.
- 2. φ est de classe \mathcal{C}^1 sur $]0, R[\times \mathbb{R}$, comme composé de fonctions de classe \mathcal{C}^1 . De plus pour tout couple $(r,\theta) \in]0, R[\times \mathbb{R}$, on a :

$$\frac{\partial \varphi}{\partial r}(r,\theta) = \frac{\partial \widetilde{f}}{\partial x}\cos\theta + \frac{\partial \widetilde{f}}{\partial y}\sin\theta = \frac{\partial \widetilde{f}}{\partial x}(\cos\theta + i\sin\theta).$$

et

$$\frac{\partial \varphi}{\partial \theta}(r,\theta) = -r\sin\theta \frac{\partial \widetilde{f}}{\partial x} + r\cos\theta \frac{\partial \widetilde{f}}{\partial y} = r\frac{\partial \widetilde{f}}{\partial x}(-\sin\theta + i\cos\theta).$$

On a

$$r\cos\theta\frac{\partial\varphi}{\partial r}(r,\theta)-\sin\theta\frac{\partial\varphi}{\partial\theta}(r,\theta)=r\frac{\partial\widetilde{f}}{\partial x}.$$

3. (a) Il est clair que φ_r est 2π -périodique et \mathcal{C}^1 sur \mathbb{R} et on a :

$$\varphi'_r(\theta) = \frac{\partial \varphi}{\partial \theta}(r, \theta) = r \frac{\partial \widetilde{f}}{\partial x}(-\sin \theta + i\cos \theta).$$

(b) Puisque l'application φ_r est 2π -périodique et \mathcal{C}^1 , alors d'après le théorème de Dirichlet, la série $c_0(r) + \sum_{n=1}^{\infty} |c_n(r)| + \sum_{n=1}^{\infty} |c_{-n}(r)|$ est convergente, c'est-à-dire la suite $(c_n(r))_{n \in \mathbb{Z}}$ est sommable.

Pour tout $r \in]0, R[$, la fon,ction $\varphi_r : \mathbb{R} \to \mathbb{C}$ est 2π -périodique, continue, et de classe \mathcal{C}^1 sur \mathbb{R} , alors, d'après le théorème de Dirichlet, la série de Fourier de φ_r converge normalement sur \mathbb{R} et a pour somme φ_r

- 4. (a) $\forall n \in \mathbb{Z} \text{ et } \forall r \in]0, R[, c_n(r) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) e^{-in\theta} d\theta.$
 - (b) Soit $n \in \mathbb{Z}$ fixé. D'après les théorèmes usuels de régularité sous l'integrale la fonction c_n est \mathcal{C}^1 sur]0, R[. Puis par une intégration par parties, on obtient :

$$\begin{split} c_n'(r) &= \frac{1}{2\pi} \int_0^{2\pi} \frac{\partial \varphi}{\partial r}(r,\theta) e^{-in\theta} d\theta \\ &= \frac{1}{2\pi i r} \int_0^{2\pi} \frac{\partial \varphi}{\partial \theta}(r,\theta) e^{-in\theta} d\theta \\ &= \frac{1}{2\pi i r} \left[\varphi(r,\theta) e^{-in\theta} \right]_0^{2\pi} - \frac{1}{2\pi i r} \int_0^{2\pi} \varphi(r,\theta) (-in) e^{-in\theta} d\theta \\ &= \frac{n}{2\pi r} \int_0^{2\pi} \varphi(r,\theta) e^{-in\theta} d\theta = \frac{n}{r} c_n(r). \end{split}$$

- (c) $\forall n \in \mathbb{Z}$, c_n est solution de l'équation différentielle du premier ordre ry'(r) ny(r) = 0, ainsi $c_n(r) = kr^n = c_n(\rho) \ \rho^n r^n$, où $0 < \rho < r$. Donc h_n est constante sur]0, R[.
- (d) Si n < 0, pour que l'expression $c_n(r) = kr^n = \frac{c_n(\rho)}{\rho^n} r^n$ ait une limite quand r tend vers 0^+ , il est nécessaire et suffisante que $c_n(\rho) = 0$, donc $c_n = 0$ si $n \in \mathbb{N}^-$. Si $n \ge 0$, la continuité de c_n assure la validité de la formule en r = 0.
- 5. Pour tout $z \in \mathbb{C}$ tel que $|z-z_0| < R$, il existe r > 0 et $\theta \in \mathbb{R}$ tels que $z = z_0 + re^{i\theta}$. Pour r fixé, la fonction φ_r étant de classe \mathcal{C}^1 sur \mathbb{R} , donc la série de Fourier associée à φ_r , à savoir $\sum_{n=0}^{\infty} c_n(r)e^{in\theta} = \sum_{n=0}^{\infty} a_n(z-z_0)^n$ est normalement convergente sur \mathbb{R} et sa somme vaut $\varphi_r(\theta) = f(z_0 + re^{i\theta}) = f(z)$. De plus le rayon de convergence de la série $\sum_{n \in \mathbb{N}} a_n z^n$ est supérieur ou égal à R.

- 6. D'après le cours, les a_n sont unique et $\forall n \in \mathbb{N}$, $a_n = \frac{\varphi_r^{(n)}(0)}{n!}$.
- 7. L'égalité de Parseval, s'écrit pour φ_r

$$\frac{1}{2\pi} \int_0^{2\pi} |\varphi_r(\theta)|^2 d\theta = \sum_{n=-\infty}^{+\infty} |c_n(r)|^2,$$

qui s'écrit encore, en tenant compte de $a_n = 0$ si n < 0:

$$\frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{\theta})|^2 d\theta = \sum_{n=0}^{+\infty} |a_n|^2 r^{2n}.$$

 $4^{\grave{e}re}$ Partie : Propriétés fondamentales des applications vérifiant la propriété (H)

A. Théorème de Liouville

1. Soit $n \in \mathbb{N}$ et r > 0. on a :

$$|c_n(r)| \le \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})e^{-ip\theta}| d\theta \le M = \sup_{z \in \mathbb{C}} |f(z)|.$$

On en déduit que $\forall n \in \mathbb{N}, \forall r > 0, |a_n| \leq \frac{M}{r^n}$, alors on obtient, quand r tend vers l'infini et $n \neq 0$, $a_n = 0$. Ainsi $f(z) = a_0$, donc f est constante.

- 2. Application:
 - (a) Posons $f(x) = |a_d| x^d \sum_{k=0}^{d-1} |a_k| x^k$ avec $x \in \mathbb{R}$. En utilisant l'inégalité triangulaire, on peut écrire :

$$\forall z \in \mathbb{C}, \ |a_d z^d| - \sum_{k=0}^{d-1} |a_k| |z^k| \le \left| a_d z^d + \sum_{k=0}^d a_k z^k \right| = |P(z)|.$$

Il clair que $\lim_{x\to +\infty} f(x) = +\infty$, et comme on a $\forall z\in \mathbb{C}, \ |P(z)|\geq f(|z|)\lim_{x\to +\infty} |P(z)| = +\infty$, donc $|P(z)|\sim |a_d||z^d|$ au voisinage de l'infini, et par suite $\lim_{x\to +\infty} \frac{1}{P(z)}=0$.

Il existe $r_0>0$ tel que $\forall |z|>r_0$ on a $\frac{1}{|P(z)|}\leq 1$. $\forall z\in\mathbb{C},\, P(z)$ est non nul, donc la fonction $g:z\longmapsto \frac{1}{P(z)}$ est une fraction polynomiale continue sur \mathbb{C} , en particulier sur le compact $K=\{z\in\mathbb{C}/|z|\leq r_0\}$, donc bornée par M_0 .

Sur K^c la fonction $g: z \longmapsto \frac{1}{P(z)}$ est majorée par 1 et sur K elle est majorée par M_0 , donc $g: z \mapsto \frac{1}{P(z)}$ est majorée sur $\mathbb{C} = K \cup K^c$ par $M = \sup\{1, M_0\}$.

(b) On sait, d'après la question 1.(c) de la deuxième partie, que $g=\frac{1}{P}$ vérifie la propriété (H) et comme elle est bornée, alors, d'après la question A.1. de cette partie, g est une constante, ce qui est absurde. Ainsi tout polynôme non constant à coefficients complexes admet une racine dans \mathbb{C} .

B. Principe du prolongement anlytique

- 1. C'est par définition d'une partie connexe par arcs.
- 2. I est une partie non vide, car il contient 0, et est majorée puisque $I\subset [0,1]$, donc $\sigma=\sup I$ est bien défini.

Supposons $I=\{0\}$, alors dans ce cas $\gamma([0,1])\cap D(z_0,\rho)=\{z_0\}$, ce qui est absurde, car γ est continue.

Soit $(t_n)_{n\in\mathbb{N}}$ une suite d'éléments de I tel que $\sigma=\lim_{t\to+\infty}t_n$ (d'après la caractérisation de la borne supérieure), on a $\forall s\in[0,\sigma[$, $f(\gamma(s))$ =0, en particulier $\forall n\in\mathbb{N},\ f(\gamma(t_n))=0$ et par argument de continuité, $f(\gamma(\sigma))=0$, donc $\sigma\in I$.

- 3. Soit $t \in [0, \sigma]$, alors $\forall s \in [0, t] \subset [0, \sigma]$, $f(\gamma(s)) = 0$, donc $t \in I$. Ainsi $[0, \sigma] \subset I$. Supposons $\sigma = 1$, alors dans ce cas $f(\gamma(1) = f(z_1) = 0$, ce qui est impossible. $\sigma = \inf]\sigma, 1]$, donc il existe une suite $(t_n)_{n \in \mathbb{N}}$ d'éléments de $]\sigma, 1]$ telle que $\lim_{t \to +\infty} t_n = \sigma$, en particulier $\forall n \in \mathbb{N}$, $f(\gamma(t_n)) \neq 0$. Si $\gamma(\sigma) = z_0$, alors $\gamma(\sigma) = \gamma(0)$ et donc $\gamma([0, 1]) \cap D(z_0, \rho) = \{z_0\}$, ce qui est absurde.
- 4. (a) Il suffit d'appliquer les résultats de la troisième partie à f au point $\gamma(\sigma)$.
 - (b) Si tous les a_n sont nuls, alors f(z)=0 pour tout $z\in D(\gamma(\sigma),r_1)$. D'autre part, $\lim_{n\to\infty}\gamma(t_n)=\gamma(\sigma)$, donc il existe $k_0\in\mathbb{N}$ tel que $\forall k\geq k_0$, on a $|\gamma(t_k)-\gamma(\sigma)|< r_1$, en particulier $f(\gamma(t_k))=0$ pour tout $k\geq k_0$, et ceci est impossible, donc les coefficients a_n ne sont pas tous nuls, et d'après la question 2 de la partie préliminaire, il existe $r\in]0,r_1[$ tel que $f(z)\neq 0$ pour tout $z\in D(\gamma(\sigma),r)\setminus\{\gamma(\sigma)\}$.
- 5. Soit $\beta=\inf J$ avec $J=\{t\in[0,\sigma]/\gamma(t)=\gamma(\sigma)\}$, on vérifie facilement que β est bien définie et appartient à J. Alors il existe une suite $(t_n)_{n\in\mathbb{N}}$ d'éléments de $\{t\in[0,\sigma]/\gamma(t)=\gamma(\sigma)\}$ telle que $\lim_{n\to+\infty}t_n=\beta$. Si $\beta=0$, alors $\lim_{t\to\infty}\gamma(t_n)=\gamma(0)=\gamma(\sigma)$, ceci est impossible, donc $\beta>0$. Autrement dit, $\gamma([0,1])$ coupe $D(\gamma(\sigma),r)$ en d'autre point que $\gamma(\sigma)$. En particulier on a $\forall t\in[0,\sigma]$:

$$f(\gamma(t)) = \sum_{n=0}^{\infty} a_n (\gamma(t) - \gamma(\sigma))^n = 0.$$

Ceci est en contradiction avec la question 4.(b) de cette partie. en conclusion : un tel z_1 n'existe pas, donc f est nulle sur tout Ω .

C. Applications

- 1. Principe du maximum:
 - (a) On sait qu'il existe R>0 et une suite $(a_n)_{n\in\mathbb{N}}$ tels que $\forall z\in D(z_0,R)$, $f(z)=\sum\limits_{n=0}^{\infty}a_n(z-z_0)^n$, en particulier $\forall z\in D(z_0,\rho)$, $f(z)=\sum\limits_{n=0}^{\infty}a_n(z-z_0)^n$ et comme elle est bornée sur $\in D(z_0,\rho)$, f est constante et vaut $a_0=f(z_0)$.
 - (b) C'est une conséquence immédiate du principe du prolongement analytique.
- 2. Calcul d'une intégrale :
 - (a) i. En reprenant la question 2 de la deuxième partie, on peut montrer que μ est dériavable sur $\mathbb R$ et que $\mu'(t)=\int_{-\infty}^{+\infty}ite^{-ut^2+ivt}dt$, et comme

$$\frac{\partial (e^{-ut^2+ivt})}{\partial t} = (iv - 2ut)e^{-ut^2+ivt}$$

alors

$$\left[e^{-ut^{2}+ivt}\right]_{-\infty}^{+\infty} = \int_{-\infty}^{+\infty} (iv - 2ut)e^{-ut^{2}+ivt} = iv\mu(v) + i2u\mu'(v)$$

et par conséquent :

$$\mu'(v) = \frac{-v}{2u}\mu(v).$$

- ii. On a $\mu(0)=\int_{-\infty}^{+\infty}e^{-ut^2}dt=\frac{1}{u}\int_{-\infty}^{+\infty}e^{-r^2}dr=\sqrt{\frac{\pi}{u}}.$ (on posant $r=\sqrt{u}t$). La solution de l'équation différentielle $\mu'(v)=\frac{-v}{2u}\mu(v)$ est $\mu(v)=\mu(0)e^{\frac{-v^2}{4u}}=\sqrt{\frac{\pi}{u}}e^{\frac{-v^2}{4u}}$.
- (b) i. Si u>0, alors $f(u)=\ln u$ et donc $f_v(u)=\mu(v)=\sqrt{\pi}u^{\frac{-f(u)}{2}}e^{\frac{-v^2}{4u}}=\sqrt{\pi}e^{\frac{-f(u)}{2}}e^{\frac{-v^2}{4u}}$.
 - ii. L'application $z \longmapsto \sqrt{\pi}e^{\frac{-f(z)}{2}}e^{\frac{-v^2}{4z}}$ appariait comme composé et produit des fonctions vérifiant la propriété (H), donc elle même vérifie la propriété (H).

iii. Pour tout $v\in\mathbb{R}$, posons $g(z)=f_v(z)-\sqrt{\pi}e^{\frac{-f(z)}{2}}e^{\frac{-v^2}{4z}}$. g vérifie la propriété (H) donc développable en série entière au voisinage de $z_0=1$, soit $g(z)=\sum\limits_{n=0}^{\infty}a_n(z-1)^n$ pour $z\in D(1,R)$, si g est non nulle, alors les coefficients a_n ne sont pas tous nuls, et d'après la question 2. de la première partie $\exists r\in]0,R[$ tel que, pour tout $z\in D(1,r))\backslash\{1\}, g(z)\neq 0$, ce qui est absurde, puisque g est nulle sur $D(1,r)\cap\mathbb{R}$. Ainsi g est nulle et par conséquent :

$$\forall v \in \mathbb{R}, \quad \int_{-\infty}^{+\infty} e^{-ut^2 + ivt} dt = \sqrt{\pi} e^{\frac{-f(z)}{2}} e^{\frac{-v^2}{4z}}.$$

M.Tarqi-Centre Ibn Abdoune des classes préparatoires-Khouribga. Maroc E-mail : medtarqi@yahoo.fr