

8-bit Single Chip Microcontroller

Overview

The LC864266A/65A microcontrollers are 8-bit single chip microcontrollers with the following on-chip functional blocks:

- CPU : Operable at a minimum bus cycle time of 0.5 μs
- On-chip program ROM maximum capacity: 64 Kbytes
- On-chip look up table ROM maximum capacity: 64 Kbytes for LC864266A
 32 Kbytes for LC864265A
- On-chip RAM capacity: 512 bytes
- CRT display RAM: 640 × 9 bits
- Closed-caption TV controller and the on-screen display controller
- 16-bit timer/counter
- 4-channel × 5-bit AD converter
- 8-bit synchronous serial-interface circuit
- · Closed-caption data slicer
- 11-source 9-vectored interrupt system

All of the above functions are fabricated on a single chip.

Package Dimensions

unit: mm

3128-DIP52S

Features

(1) Read-only program memory (ROM) : LC864266A 65280×8 bits LC864265A 65280×8 bits

(2) Read-only look up table memory (ROM) : LC864266A 65536×8 bits

LC864265A 32768×8 bits

(3) Random access memory (RAM): 512×8 bits

640 × 9 bits (for CRT display)

(4) OSD functions

• Screen for display : 34 columns × 16 rows (standard character size)

• Display for RAM : 640 × 9 bits (6 columns for control + 34 columns for display) × 16 rows × 9 bits

• 377 kinds of user specified characters

Caption/Text mode : $(9 \times 9 \text{ dots}) \times 125 \text{ kinds}$

OSD mode : (12×18 dots) × 127 characters (127 characters can also be used in Caption/Text mode)

· Various character attributes

Character colors : 16 colors
Character background colors : 16 colors
Fringe / shadow colors : 16 colors
Full screen colors : 16 colors

Fringe / shadow Rounding Underline

Italic character (slanting)

- Close-character attribute data changing available
- Vertical display start line setting in row units available (Row overlapping available)
- Horizontal display start position available
- Display mode specification by row (Display mode mixable)

caption mode / text mode / OSD mode

· Eight kinds of character size

Horiz.
$$\times$$
 Vert. = (1×1) , (1×2) , (2×2) , (2×4) (1.5×1) , (1.5×2) , (3×2) , (3×4)

- · Shuttering and scrolling in row units available
- Horizontal character pitch selectable: 9 to 16 dots
- Polarity of R, G, B, I, BL output programmable
- · Polarity of HS, VS input programmable

(5) Data slicer clock switching function

Clock source is selective from LC oscillation or ceramic resonator (or X'tal) oscillation.

(6) Bus cycle time / Instruction cycle time

The LC864132B/24B/20B/16B/12B microcontrollers are designed to read the ROM twice within one instruction cycle. It has about 1.7 times performance capability within the same instruction-cycle compared to our 4-bit microcontrollers (LC66000 series).

The bus cycle time indicates the speed to read ROM.

Bus cycle time	Instruction cycle time	System clock oscillation	Oscillation frequency	Voltage
0.49 µs 0.99 µs		Ceramic or Crystal	12.08 MHz	4.5 V to 5.5 V
7.5 µs	15.0 μs	Internal RC	800k Hz	4.5 V to 5.5 V

(7) Ports

- Input/output port : 2 ports (16 lines)
Input/output port programmable in nibble unit : 1 port (8 lines)
(When the N-ch open drain output is selected, the data in a bit can be inputted)
Input/output port programmable in a bit : 1 port (8 lines)

Input port : 2 ports (8 lines)

(8) A/D converter

- 4-channel × 5-bit AD converter (converted with program)

(9) PWM output

- 10-channel × 7-bit PWM

(10) Timer

- Timer 0: 16-bit timer / counter

2-bit prescaler + 8-bit built-in programmable prescaler

Mode 0: Two 8-bit timers with a programmable prescaler

Mode 1: 8-bit timer with a programmable prescaler + 8-bit counter

Mode 2: 16-bit timer with a programmable prescaler

Mode 3: 16-bit counter

The resolution of timer is 1 tCYC.

- Timer 1 : 16-bit timer / PWM

Mode 0 : Two 8-bit timers

Mode 1 : 8-bit timer + 8-bit PWM

Mode 2: 16-bit timer

Mode 3: Variable-bit PWM (9 to 16 bits)

In Mode 0 and Mode 1, the resolution of Timer and PWM is tCYC.

In Mode 2 and Mode 3, the resolution of Timer and PWM selectable: tCYC or 1/2tCYC by program.

(11) Remote control receiver circuit (shares with the P73/INT3/T0IN terminal)

- Noise rejection function
- Polarity switching

(12) Watchdog timer

External RC circuit is required

Interrupt or system reset is selectable

(13) Interrupts

- 11-source 9-vectored interrupts
 - 1. External Interrupt INT0
 - 2. External Interrupt INT1
 - 3. External Interrupt INT2, Timer/counter T0L (Lower 8 bits)
 - 4. External Interrupt INT3
 - 5. Timer/counter T0H (Upper 8 bits)
 - 6. Timer T1H, T1L
 - 7. Serial interface 0 (SIO0)
 - 8. Data slicer
 - 9. Vertical synchronous signal interrupt (\overline{VS})

- Interrupt priority control available

Three interrupt priorities are supported (low, high and the highest) and multilevel nesting is possible. Low or high priority can be assigned to the interrupts from 3 to 10 listed above. For the external interrupt INT0 and INT1, high or the highest priority can be set.

(14) Sub-routine stack level

- A maximum of 128 levels (Sets the stack inside a RAM.)

(15) Multiplication/division instruction

- 16 bits × 8 bits (7 instruction cycle times)
- 16 bits / 8 bits (7 instruction cycle times)

(16) Three oscillation circuits

- On-chip RC oscillation circuit for the system clock
- On-chip ceramic resonator oscillation circuit for the system clock
- On-chip LC oscillation circuit for the CRT synchronization

(17) Standby function

- HALT mode function

The HALT mode is used to reduce the power dissipation. In this operation mode, the program execution is stopped. This mode can be released by the interrupt request signals or the system reset.

HOLD mode

The HOLD mode is used to stop oscillations; the RC (internal) and the ceramic oscillations.

This mode can be released by the following conditions.

- Pull the reset terminal (RES) to low level.
- Feed the selected level to either P70/INT0 or P71/INT1.

(18) Factory shipment

DIP52S

(19) Development Tools

: LC866098 - Evaluation (EVA) chip - EPROM attached a window : LC86E4266

- Emulator : EVA86000 (Main) + ECB864200 (Evaluation board) + POD864100 (Pod)

System Block Diagram

Pin Assignment

Top view

Pin Description

• Port option can be specified in bit units except the pull-up resistor selection of port 0.

Pin Description Table

Din none	Din Na	1/0			F ati				Ontina
Pin name	Pin No.	I/O				on description			Option
DVSS	9		<u> </u>	-		digital circuit			
CF1	10	Input	 		or ceramic r				
CF2	11	Output			for ceramic				
DVDD —	12	_		-	supply for d	igital circuit			
RES	17	Input		et terminal					
LC1	18	Input	LC d	scillation ci	rcuit input to	erminal			
LC2	19	Output	LCo	scillation ci	rcuit output	terminal			
FILT	20	Output	Filte	r terminal fo	or PLL				
AVDD	21	_	Posi	tive power	supply for a	nalog circuit			
AVSS	22	_	Neg	ative power	supply for a	analog circuit			
CVIN	23	Input	Vide	o signal inp	ut terminal				
VS	24	Input	Vert	ical synchro	nization sig	nal input termina	d		
HS	25	Input	Hori	zontal sync	hronization	signal input term	inal		
1	26	Output	Imag	ge intensity	output				
R	27	Output	Red	(R) output	terminal of I	RGB image outpu	ut		
G	28	Output	Gree	en (G) outpi	ut terminal o	of RGB image ou	tput		
В	29	Output	Blue	(B) output	terminal of	RGB image outp	ut		
BL	30	Ouptut	I	-	ontrol signal e signal and	d caption/OSD im	nage signal		
PWM0 to PWM9	31 to 40	Output		M0 to 9 outp / withstand	out terminal				
Port 1 P10 to P17	1 to 8	I/O	Inpu	er function SIO0 da SIO0 da SIO0 da	n be specifie ata output				Output Format CMOS/Nch-OD (in bit units)
Port 7 P70 P71 to P73	41 42 to 44	I/O Input	Othe P70 P70 P70 P70	Nch-tra 1 INT1 in 2 INT2 in 3 INT3 in timer 0	nsistor outp put/HOLD re put/timer 0 e put (noise re event input)	ejection filter atta	ched input/		Pull-up resistor provided/ not provided (in bit units)
				Rising	Falling	Rising/falling	H level	L level	Vector
			INT0	enable	enable	disable	enable	enable	03H
			INT1	enable	enable	disable	enable	enable	0BH
			INT2	enable	enable	enable	disable	disable	13H
			INT3				disable	disable	1BH
			IIVIO	enable	enable	enable	uisabie	uisabie	IDII

Continued on next page.

Continued from preceding page.

Pin name	Pin No.	I/O	Function Description	Option
Port9			4-bit input port	
P90 to P93	13 to 16	Input	Other functions AD converter input port (4 lines)	
Port A			8-bit Input/output port	
PA0 to PA7	45 to 52	I/O	Input/output can be specified in nibble units	

Any port option can be selected in bit units.

Port 0 portion : Pull-up resistor is provided when CMOS output is selected.

The pull-up resister is not provided when N-ch Open Drain is selected.

Port 1 option : Programmable pull-up resister is provided when any output form is selected.

· Port status during reset

Terminal	I/O	Pull-up resistor status at selecting pull-up option
Port 1 Input Programmable pull-up resistor OFF		Programmable pull-up resistor OFF
Port 7	Input	Fixed pull-up resistor provided

• AVDD and AVSS are the power supply terminals for built-in analog circuit, while DVDD and DVSS are for built-in digital circuit. Connect them like the following figure to reduce the mutual noise-influence.

Specifications

1. Absolute Maximum Ratings at $\,Ta$ = $25^{\circ}C,\,\,V_{SS}$ = $0\,\,V$

Paran	neter	Symbol	Pins	Conditions			Rating	js	Unit
					V _{DD} [V]	min	typ	max	
Supply v	oltage	V DD max	DVDD, AVDD	DVDD = AVDD		-0.3		7.0	٧
Input volt	tage	V ₁ (1)	• P71, 72, 73 • Port 9 • RES, HS, VS, CVIN			-0.3		V _{DD} +0.3	
Output v	oltage/	V⊙(1)	R, G, B, BL, I, FILT			-0.3		V _{DD} +0.3	
		V _○ (2)	PWM0 to PWM9			-0.3		15	
Input/out voltage	put	V _{IO}	Ports A, 1, P70			-0.3		V _{DD} +0.3	
High- level output	Peak output current	Іорн(1)	Ports A, 1	Pull-up MOS transistor output At each pin		-2			mA
current		І _{ОРН} (2)	Ports A, 1	CMOS output At each pin		-4			
		І _{ОРН} (3)	R, G, B, BL, I	CMOS output At each pin		- 5			
	Total	Σ Ioah(1)	Port 1	The total of all pins		-10			
	output current	Σ I _{OAH} (2)	Port A	The total of all pins		-10			
	current	Σ Ioah(3)	R, G, B, BL, I	The total of all pins		-15			
Low-	Peak	lopl(1)	Ports A, 1	At each pin				20	
level output	output current	I _{OPL} (2)	P70	At each pin				30	
current	odii oiii	Iopl (3)	• R, G, B, BL, I • PWM0 to PWM9	At each pin				5	
	Total	Σ loal(1)	Port A	The total of all pins				40	
	output current	Σ loal(2)	Port 1, P70	The total of all pins				40	
	Current	Σ loal(3)	R, G, B, BL, I	The total of all pins				15	
		Σ IOAL(4)	PWM0 to PWM9	The total of all pins				30	
Maximun dissipatio	-	Pd max	DIP52S	Ta = -30 to +70°C				430	mW
Operating temperat	g ure range	Topr				-30		+70	ů
Storage temperat	ure range	Tstg				– 55		+125	

^{*} DVSS and AVSS must be supplied the same voltage, V_{SS}. DVDD and AVDD must be supplied the same voltage, V_{DD}.

 $V_{SS} = DVSS = AVSS$ $V_{DD} = DVDD = AVDD$

2. Recommended Operating Range at Ta = –30 $^{\circ}C$ to +70 $^{\circ}C,~V_{SS}$ = 0 V

Parameter	Symbol	Pins	Conditions			Ratings		Unit
				V _{DD} [V]	min	typ	max	
Operating supply voltage range	V _{DD}	DVDD, AVDD	0.98 μs ≤ tCYC tCYC ≤ 1.02 μs		4.5		5.5	V
Hold voltage	VHD	DVDD, AVDD	RAMs and the registers hold data at HOLD mode.		2.0		5.5	
Input high	V _{IH} (1)	Port A (Schmitt)	Output disable	4.5 to 5.5	0.6V _{DD}		V_{DD}	
voltage	V _{IH} (2)	• Port 1 (Schmitt) • P72, 73 • HS,VS	Output disable	4.5 to 5.5	0.75V _{DD}		V _{DD}	
	V _{IH} (3)	• P70 port input / interrupt • P71 • RES (Schmitt)	Output N-channel transistor OFF	4.5 to 5.5	0.75V _{DD}		V _{DD}	
	V _{IH} (4)	P70 Watchdog timer input	Output N-channel transistor OFF	4.5 to 5.5	V _{DD} -0.5		V _{DD}	
	V _{IH} (5)	Port 9 port input		4.5 to 5.5	0.7V _{DD}		V _{DD}	
Input low	V⊩(1)	Port A (Schmitt)	Output disable	4.5 to 5.5	Vss		0.2V _{DD}	
voltage	V _{IL} (2)	• Port 1 (Schmitt) • P72, 73 • HS,VS • Port 9	Output disable	4.5 to 5.5	Vss		0.25V _{DD}	
	V _I ∟(3)	P70 port input / interrupt P71 RES (Schmitt)	N-channel transistor OFF	4.5 to 5.5	Vss		0.25V _{DD}	
	V _I (4)	P70 Watchdog timer input	N-channel transistor OFF	4.5 to 5.5	Vss		0.6V _{DD}	
	V _{IL} (5)	Port 9 port input		4.5 to 5.5	Vss		0.3V _{DD}	
CVIN input amplitude	V _{CVIN}	CVIN		5.0	1Vp-p –3dB	1Vp-p	1Vp-p +3 dB	Vp-p
Operation	tCYC(1)		OSD function	4.5 to 5.5	0.97	1	1.02	μs
cycle time	tCYC(2)		Except OSD function	4.5 to 5.5	0.97		40	

^{*} Vp-p : Peak-to-peak voltage

Parameter	Symbol	Pins	Conditions			Ratings	6	Unit
				V _{DD} [V]	min	typ	max	
Oscillation frequency range (Note 1)	FmCF (1)	CF1, CF2	12 MHz (ceramic resonator oscillation) Refer to Figure 1.	4.5 to 5.5	11.76	12	12.24	MHz
	FmCF (2)		12.08 MHz (ceramic resonator oscillation) Refer to Figure 1.		11.84	12.08	12.32	
	FmLC	LC1, LC2	14.11 MHz (LC oscillation) Refer to Figure 2.	4.5 to 5.5		14.11		
	FmRC		RC oscillation	4.5 to 5.5	0.3	0.8	2.0	
Oscillation stable time period	tmsCF (1)	CF1, CF2	12 MHz (ceramic resonator oscillation) Refer to Figure 3.	4.5 to 5.5		0.02	0.2	ms
(Note 2)	tmsCF (2)		12.08 MHz (ceramic resonator oscillation) Refer to Figure 3.			0.02	0.2	

⁽Note 1) Refer to Table 1 and Table 2 for the oscillation constant.

⁽Note 2) The oscillation stable time is a period necessary for the oscillation to be stable after the power first applied, the HOLD mode released and the main-clock oscillation stop instruction released.

Refer to the Figure 3 for details.

3. Electrical Characteristics at $Ta = -30^{\circ} C~to$ + $70^{\circ} C$, $V_{SS} =~0~V$

Parameter	Symbol	Pins	Conditions			Ratings	i	Unit
				V _{DD} [V]	min	typ	max	
Input high-level current	I⊩(1)	• Port 1 • Port A	Output disable Pull-up MOS transistor OFF VIN = VDD (including the off-leak current of the output transistor)	4.5 to 5.5			1	μΑ
	I⊩(2)	Port 7 without pull-up MOS transistor Port 9 RES HS,VS	$V_{IN} = V_{DD}$	4.5 to 5.5			1	
Input low-level current	Iı∟(1)	• Port 1 • Port A	Output disable Pull-up MOS transistor OFF VIN = VSS (including the off-leak current of the output transistor)	4.5 to 5.5	-1			
	I⊩(2)	Port 7 without pull-up MOS transistor Port 9	V _{IN} = V _{SS}	4.5 to 5.5	-1			
	I _{IL} (3)	• RES • HS,VS	V _{IN} = V _{SS}	4.5 to 5.5	-1			
Output high-level voltage	Vон(1)	CMOS output of ports A, 1	lон = −1.0 mA	4.5 to 5.5	V _{DD} –1			٧
	Vон(2)	R, G, B, BL, I	Iон = -0.1 mA	4.5 to 5.5	V _{DD} -0.5			
Output low-level	V _{○L} (1)	Ports A, 1	I _{OL} = 10 mA	4.5 to 5.5			1.5	
voltage	V _{○L} (2)	Ports A, 1	 I_{OL} = 1.6 mA The total current of the ports A, 1 is not over 40 mA. 	4.5 to 5.5			0.4	
	V _{○L} (3)	• R, G, B, BL, I • PWM0 to PWM9	IoL = 3.0 mA The current of any unmeasured pins is not over 3 mA.	4.5 to 5.5			0.4	
	Vo∟(4)	P70	loL = 1 mA	4.5 to 5.5			0.4	
Pull-up MOS transistor resistance	Rpu	• Ports A, 1 • Port 7	V _{OH} = 0.9V _{DD}	4.5 to 5.5	13	38	80	kΩ
Output off-leakage current	loff	PWM0 to PWM9	V _{OUT} = 13.5 V	4.5 to 5.5			5	μА
Hysteresis voltage	V _{HIS}	• Ports A, 1 • Port 7 • RES • HS,VS	Output disable	4.5 to 5.5		0.1V _{DD}		V

Parameter	Symbol	Pins	Conditions		Ratings		Unit	
				V _{DD} [V]	min	typ	max	
Input clamp voltage	VCLMP	CVIN		5.0	2.3	2.5	2.7	٧
Pin capacitance	СР	All pins	• f = 1 MHz • Unmeasured input pins are set to V _{SS} level. • Ta = 25°C	4.5 to 5.5		10		pF

4. Serial Input/Output Characteristics at $Ta = -30^{\circ}C$ to +70 $^{\circ}C$, $\,V_{SS} = 0$ V

Р	aramet	er	Symbol	Pins	Conditions			Ratings	;	Unit
						V _{DD} [V]	min	typ	max	
		Cycle	tCKCY(1)	• SCK0	Refer to Figure 5.	4.5 to 5.5	2			tCYC
	Input clock	Low- level pulse width	tCKL(1)	• SCLK0		4.5 to 5.5	1			
Serial clock	dul	High- level pulse width	tCKH(1)			4.5 to 5.5	1			
erial		Cycle	tCKCY(2)	• SCK0	Use an external	4.5 to 5.5	2			
S	Output clock	Low- level pulse width	tCKL(2)	• SCLK0	pull-up resistor (1 kΩ) during open drain output • Refer to Figure 5.	4.5 to 5.5		1/2tCKCY		
	High- tCKH(2) level pulse width		4.5 to 5.5		1/2tCKCY					
nbut	Data s time	set-up	tICK	• SI0	Data set-up to SCK0 rising	4.5 to 5.5	0.1			μs
Serial input	Data I time	nold	tCKI		Data hold from SCK0 rising Refer to Figure 5.	4.5 to 5.5	0.1			
output	time (Exter	nal	tCKO(1)	• 500	Use an external pull-up resistor (1 kΩ) during open drain output.	4.5 to 5.5			7/12tCYC +0.2	μs
Serial output	time (Interr	nt delay nal clock)	tCKO(2)		Data set-up to SCK0 falling Data hold from SCK0 falling Refer to Figure 5.	4.5 to 5.5			1/3tCYC +0.2	

5. Pulse Input Conditions at $Ta = -30^{\circ}C$ to $+70^{\circ}C$, $V_{SS} = 0$ V

Parameter	Symbol	Pins	Conditions			Ratings	6	Unit
				V _{DD} [V]	min	typ	max	
High/low-level pulse width	tPIH(1) tPIL(1)	• INT0, INT1 • INT2/T0IN	Interrupt acceptable Timer/counter 0 pulse countable	4.5 to 5.5	1			tCYC
	tPIH(2) tPIL(2)	INT3/T0IN (The noise rejection clock is selected to 1/1)	Interrupt acceptable Timer/counter 0 pulse countable	4.5 to 5.5	2			
	tPIH(3) tPIL(3)	INT3/T0IN (The noise rejection clock is selected to 1/16)	Interrupt acceptable Timer/counter 0 pulse countable	4.5 to 5.5	32			
	tPIL(4)	RES	Reset acceptable	4.5 to 5.5	200			μs
	tPIH(5) tPIL(5)	HS, VS	Display position controllable Each active edge of HS, VS must be more than 1tCYC. Refer to Figure 7.	4.5 to 5.5	10			tCYC
Rising/falling time	tTHL tTLH	HS	Refer to Figure 7.	4.5 to 5.5			500	ns
Horizontal pull-in range	FH	HS	The monitor point in Figure 10 is 1/2 V _{DD} .	4.5 to 5.5	15.23	15.73	16.23	kHz

6. A/D Converter Characteristics at $Ta = -30^{\circ}C$ to $+70^{\circ}C$, $V_{SS} = 0$ V

Parameter	Symbol	Pins	Conditions			Ratings	S	Unit
				V _{DD} [V]	min	typ	max	
Resolution	N			4.5 to 5.5		5		bit
Absolute precision	ET		(Note 3)	4.5 to 5.5		±1/4	±3/4	LSB
Conversion time	tCAD	From selecting Vref to resulting	1 bit conversion time = 2tCYC	4.5 to 5.5			1.96	μs
Reference current	I _{REF}		(Regulate the ladder resistor)	4.5 to 5.5		1.0	2.0	mA
Analog input voltage range	V _{AIN}	AN0 to AN3		4.5 to 5.5	V _{SS}		V _{DD}	٧
Analog port input	I _{AINH}	1	$V_{AIN} = V_{DD}$	4.5 to 5.5			1	μA
current	I _{AINL}		V _{AIN} = V _{SS}	4.5 to 5.5	-1			

(Note 3) Absolute precision excepts quantizing error (±1/2 LSB).

7. Current Drain Characteristics at $Ta = -30\,^{\circ}\mathrm{C}$ to $+70\,^{\circ}\mathrm{C}$, $V_{SS} = 0~V$

Parameter	Symbol	Pins	Conditions	Conditions		Ratings		
				V _{DD} [V]	min	typ	max	
Current drain during basic operation (Note 4)	IDDOP(1)	DVDD, AVDD	FmCF = 12 MHz Ceramic resonator oscillation FmLC = 14.11 MHz LC oscillation System clock: CF oscillation Internal RC oscillation stops	4.5 to 5.5		21	32	mA
Current drain in HALT mode (Note 4)	IDDHALT(1)	DVDD, AVDD	HALT mode FmCF = 12 MHz or 12.08 MHz Ceramic resonator oscillation FmLC = 0 Hz (oscillation stops) System clock: CF oscillation Internal RC oscillation stops.	4.5 to 5.5		Œ	10	mA
	IDDHALT(2)	DVDD, AVDD	HALT mode FmCF = 0 MHz (oscillation stops) FmLC = 0 Hz (oscillation stops) System clock: Internal RC	4.5 to 5.5		300	800	μΑ
Current drain in HOLD mode (Note 4)	Iddhold	DVDD, AVDD	HOLD mode All oscillation stops.	4.5 to 5.5		0.05	20	μА

(Note 4) The currents of the output transistors and the pull-up MOS transistors are ignored.

Oscillation type	Manufacturer	Oscillator	C1	C2
12 MHz ceramic resonator	Murata	CSA12.0MTZ	33 pF	33 pF
oscillation		CST12.0MTW	on chip	
	Kyocera	KBR-12.0M	33 pF	33 pF
12.08 MHz ceramic	Murata	CSA 12.0MTZ021	33 pF	33 pF
resonator oscillation	Kyocera	KBR-12.08M	33 pF	33 pF

^{*} Both C1 and C2 must use an K rank (±10%) and an SL characteristics.

Table 1. Ceramic Resonator Oscillation Guaranteed Constant (Main-clock)

Oscillation	L	С3	C4	
14.11 MHz LC oscillation	4.7 μΗ	33 pF	45 pF (Trimmer)	
	4.7 μH±10% (Variable)	33 pF	33 pF	

^{*} See Figure 11, 12 for LC oscillation characteristics.

Table 2. LC Oscillation Guaranteed Constant (OSD clock)

- (Notes) Since the circuit pattern affects the oscillation frequency, place the oscillation-related parts as close to the oscillation pins as possible with the shortest pattern length.
 - If you use other oscillators than those shown above, we provide no guarantee for the characteristics.
 - Adjust the voltage of monitor point in figure 10 to 1/2 V_{DD}±10% by the LC oscillation constant 'L' or 'C' to lock the PLL circuit

Figure 1 Ceramic Resonator Oscillation Figure 2 LC Resonator Oscillation 1, 2

Figure 3 Oscillation Stable Time

Figure 4 Reset Circuit

Figure 5 Serial Input/output Test Condition

Figure 6 Pulse Input Timing Condition - 1

Figure 7 Pulse Input Timing Condition - 2

Figure 8 Recommended Interface Circuit

< Test load >

Figure 9 CVIN Recommended Circuit

Figure 10 FILT Recommended Circuit

(Note) • Place the parts connected FILT terminal as close to the FILT as possible with the pattern length on the board.

Figure 11 FILT-LC Oscillation Frequency (1)

Figure 12 FILT-LC Oscillation Frequency (2)

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use
 - Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 1998. Specifications and information herein are subject to change without notice.