CSCI 2011 HW 5

Fletcher Gornick

October 13, 2020

1 4.1 Problem 10

Let $r \ge 2$ be an integer. Prove that $1 + r + r^2 + ... + r^n = \frac{r^{n+1}-1}{r-1}$ for every positive integer n.

Base Case: Since this claim must hold true for every positive integer n, we can use n=1 as our base case. Therefore $1+\cdots r^n=1+r^1=1+r$. Since $\frac{r^{n+1}-1}{r-1}=\frac{r^2-1}{r-1}=\frac{(r+1)(r-1)}{r-1}=r+1$, our base case holds.

Inductive Step: Now let's assume for some $k \ge 1$, that $1 + r + r^2 + ... + r^k = \frac{r^{k+1}-1}{r-1}$. We show that $1 + r + r^2 + ... + r^k + r^{k+1} = \frac{r^{k+2}-1}{r-1}$.

$$1+r+r^2+...+r^k+r^{k+1}=\frac{r^{k+1}-1}{r-1}+r^{k+1} \qquad \text{(by the inductive hypothesis)}$$

$$=\frac{r^{k+1}-1+r^{k+1}(r-1)}{r-1}$$

$$=\frac{r^{k+1}(1+r-1)}{r-1}-\frac{1}{r-1}$$

$$=\frac{r\cdot r^{k+1}-1}{r-1}$$

$$=\frac{r^{k+2}-1}{r-1}$$

Therefore the claim holds for the inductive step as well. Hence, by the principle of mathematical induction, the claim $1 + r + r^2 + ... + r^n = \frac{r^{n+1}-1}{r-1}$ is true for all integers $n \ge 1$.

2 4.2 Problem 14

Prove that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} > \sqrt{n+1}$ for ever integer $n \ge 3$.

Base Case: Let n=3, $\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\approx 2.284>2=\sqrt{3+1}$. Therefore, our base case holds.

Inductive Step: Assume for some integer $k \geq 3$, that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} > \sqrt{k+1}$. We show that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > \sqrt{k+2}$. By the inductive hypothesis, we know that... $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1} + \frac{1}{\sqrt{k+1}} = \frac{k+1+1}{\sqrt{k+1}} = \frac{k+2}{\sqrt{k+1}} > \frac{k+2}{\sqrt{k+2}} = \sqrt{k+2}$.

Therefore, by the principle of mathematical induction, the claim $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} > \sqrt{n+1}$ holds for all integers $n \ge 3$.

1

3 4.2 Problem 16

Prove for every positive integer n that $2! \cdot 4! \cdot 6! \cdots (2n)! \geq ((n+1)!)^n$.

Base Case: Since n can be any positive integer, we can look at when n = 1, so $(2 \cdot 1)! = 2$, and $((n+1)!)^n = ((1+1)!)^1 = 2$. So the base case holds.

Inductive Step: Now we can assume for some integer $k \ge 1$, that $2! \cdot 4! \cdot 6! \cdots (2k)! \ge ((k+1)!)^k$. We show that $2! \cdot 4! \cdot 6! \cdots (2k)! \cdot (2k+2)! \ge ((k+2)!)^{k+1}$

$$2! \cdot 4! \cdot 6! \cdots (2k)! \cdot (2k+2)! \geq ((k+1)!)^k (2k+2)!$$
 (by the inductive hypothesis)
$$\geq ((k+1)!)^k (k+1)! (k+2)^{k+1}$$

$$= ((k+1)!)^{k+1} (k+2)^{k+1}$$

$$= ((k+2)(k+1)!)^{k+1}$$

$$= ((k+2)!)^{k+1}$$

$$= ((k+2)!)^{k+1}$$

Therefore, the claim holds for the inductive step. Hence, by the principle of mathematical induction, the claim $2! \cdot 4! \cdot 6! \cdots (2n)! \ge ((n+1)!)^n$ holds for all integers $n \ge 1$.

4 4.3 Problem 14

A sequence $a_1, a_2, a_3...$ is defined recursively by $a_1 = 3$ and $a_n = 2a_{n-1} + 1$ for $n \ge 2$.

(a) Determine a_2, a_3, a_4 and a_5 .

$$a_2 = 2a_1 + 1 = 2 \cdot 3 + 1 = 7.$$

 $a_3 = 2a_2 + 1 = 2 \cdot 7 + 1 = 15.$
 $a_4 = 2a_3 + 1 = 2 \cdot 15 + 1 = 31.$
 $a_5 = 2a_4 + 1 = 2 \cdot 31 + 1 = 63.$

(b) Based on the variables obtained in (a), make a guess for a formula for a_n for every positive integer n and use induction to verify that your guess is correct.

My best guess for the formula for this equation is $a_n = 2^{n+1} - 1, \forall n \in \mathbb{N}$.

Base Case: First, we must prove for the n = 1 case. We know that $a_1 = 3$ from above, and $2^{n+1} - 1 = 2^{1+1} - 1 = 3$, so the base case holds.

Inductive Step: Let's assume for some integer $k \ge 2$, that $a_k = 2a_{k-1} + 1 = 2^{k+1} - 1$. We show that $a_{k+1} = 2a_k + 1 = 2^{k+2} - 1$.

By the inductive hypothesis, we know that $a_{k+1} = 2a_k + 1 = 2(2^{k+1} - 1) + 1$, so $2(2^{k+1} - 1) + 1 = 2 \cdot 2^{k+1} - 2 + 1 = 2^{k+2} - 1$, therefore the claim holds for the inductive step as well.

By the principle of mathematical induction, the claim $a_n = 2a_{n-1} + 1 = 2^{n+1} - 1$ holds for all integers $n \ge 2$.

2

5 4.3 Problem 22

Use induction to show the following for Fibonacci numbers: $F_2 + F_4 + \cdots + F_{2n} = F_{2n+1} - 1$ for every positive integer n.

Base Case: Assume n=1, we know $F_{2\cdot 1}=1$. Also $F_{2\cdot 1+1}-1=F_3-1=1$, therefore the claim holds for the base case.

Inductive Step: Now let's assume for some integer $k \ge 1$, that $F_2 + F_4 + \cdots + F_{2k} = F_{2k+1} - 1$. We show that $F_2 + F_4 + \cdots + F_{2k} + F_{2k+2} = F_{2k+3} - 1$

$$\begin{split} F_2+F_4+\cdots+F_{2k}+F_{2k+2}&=F_{2k+1}-1+F_{2k+2} &\text{ (by the inductive hypothesis)}\\ &=F_{2k+1}+F_{2k+2}-1\\ &=F_{2k+3}-1 &\text{ (by the definintion of the Fibonacci Sequence)} \end{split}$$

Therefore the claim holds for the inductive step. Hence, by the principle of mathematical induction, the claim $F_2 + F_4 + \cdots + F_{2n} = F_{2n+1} - 1$ holds for all intergers $n \ge 1$.