Задача 2.1. Алгоритм Уоршалла. Найти компоненты связности.

2 4 6

a)

Компоненты связности: V1={1, 5, 6}, V2={2, 3, 7}, V3 = {4}.

R	1	2	3	4	5	6	7			R_1	1	2	3	4	5	6	7
1					1	1				1					1	1	
2			1				1			2			1				1
3		1					1			3		1					1
4										4							
5	1									5	1				1	1	
6	1									6	1				1	1	
7		1	1							7		1	1				
R_2	1	2	3	4	5	6	,	7	Ī	R_3	1	2	3	4	5	6	7
1					1	1				1					1	1	
2			1					1		2		1	1				1
3		1	1					1]	3		1	1				1
4										4							
5	1				1					5	1				1	1	
6	1				1	1				6	1				1	1	
7		1	1					1		7		1	1				1
R ₄	1	2	3	4	5	6		7		R ₄	1	2	3	4	5	6	7
1	1				1	1				1	1				1	1	
2		1	1					1		2		1	1				1
3		1	1					1		3		1	1				1
4										4							
5	1				1	1				5	1				1	1	
6	1				1	1				6	1				1	1	
7		1	1					1		7		1	1				1

b) 2

b)Найти бикомпоненты.

R_0	1	2	3	4	5
1			1		
2			1		1
3				1	
4	1				
5		1	1		

R_1	1	2	3	4	5
1			1		
2			1		1
3				1	
4	1		1		
5		1	1		

R_2	1	2	3	4	5
1			1		
2			1		1
3				1	
4	1		1		
5		1	1		1

R ₃	1	2	3	4	5
1			1	1	
2			1	1	1
3				1	
4	1			1	
5		1	1	1	1

R ₄	1	2	3	4	5
1	1		1	1	
2	1		1	1	1
3	1		1	1	
4	1		1	1	
5	1	1	1	1	1

R_5	1	2	3	4	5
1	1		1	1	
2	1	1	1	1	1
3	1			1	
4	1			1	
5	1	1	1	1	1

R_5	1	2	3	4	5
1	1		1	1	
2	1	1	1	1	1
3	1		1	1	
4	1		1	1	
5	1	1	1	1	1
	•				•

Бикомпоненты: $V1 = \{1, 3, 4\}, V2 = \{2, 5\}.$

Задача 2.2.

1. Найти все маршруты длины 3 из вершины а. (стр. 29 Лекции)

a1b1a1b, a1b2c2b, a1b4d4b, a1b4d3c, a1b2c3d, a1b4d5d

2. Найти число всех маршрутов длины 1, 2, 3. (стр. 28)

число маршрутов длины 1: 10 маршрутов

число маршрутов длины 2: 24 маршрута

число маршрутов длины 3: 58 маршрутов

R	a	b	c	d	e
a	0	1	0	0	0
b	1	0	1	1	0
c	0	1	0	1	0
d	0	1	1	1	0
e	0	0	0	0	1

\mathbb{R}^2	a	b	c	d	e
a	1	0	1	1	0
b	0	3	1	2	0
c	1	1	2	2	0
d	1	2	2	3	0
e	0	0	0	0	1

\mathbb{R}^3	a	b	c	d	e
a	0	3	1	2	0
ь	3	3	5	6	0
С	1	5	3	5	0
d	2	6	5	7	0
e	0	0	0	0	1

маршруты длины 1 маршруты длины 2 маршруты длины 3 **Задача 2.3.** Найти кратчайшие цепи из вершины a во все остальные (алгоритм Мура – Ли, расстановка меток). Стр. 37

 $a \rightarrow f$: [a b d f] или [a c d f]

 $a \rightarrow g$: [a b d f g] или [a c d f g]

 $a\rightarrow h$: [a b d f g h] или [a c d f g h]

a→i: [a b d f g h i] или [a c d f g h i]

Задача 2.4.

Алгоритм Беллмана – Форда, алгоритм Дейкстры.

Кратчайшие пути из вершины а. (следующая страница)

Таблица итераций (алг. Дейкстры)

Расстановка меток и кратчайшая цепь (алг. Беллмана-Форда)

Таблица итераций (алг. Беллмана-Форда)

Задача 2.5. Алгоритм Флойда. Найти кратчайшие пути в графе из каждой вершины в каждую. Перерисовывать граф и матрицы для каждой итерации.

1	$ \cap$
K-	-U

-3 -2	(
$\begin{pmatrix} 1 & 5 & 4 & 5 \\ 6 & 5 & 4 & 5 \end{pmatrix}$	
-3	
4 3	

C0	1	2	3	4	P0	1	2	3	4
1	0	-3	5	6	1	1	1	1	1
2	8	0	5	8	2	2	2	2	2
3	8	8	0	5	3	3	3	3	3
4	-3	4	-4	0	4	4	4	4	4

 $k{=}1;\,c_{42}\!>\,c_{41}+c_{12};\,c_{42}\!:=\text{-}6;\,p_{42}\!:=p_{12}=1.$

	C1	1	2	3	4	P1	1	2	3	4
	1	0	-3	5	6	1	1	1	1	1
	2	∞	0	5	∞	2	2	2	2	2
7	3	8	8	0	5	3	3	3	3	3
	4	-3	-6	-4	0	4	4	1	4	4
	•		U		U			1		

 $k=2; c_{13} > c_{12} + c_{23}; c_{13} := 2; p_{13} := p_{23} = 2;$ $c_{43} > c_{42} + c_{23}; c_{43} := 4; p_{43} := p_{23} = 2.$

	C2	1	2	3	4	P2	1	2	3	4
	1	0	-3	2	6	1	1	1	2	1
	2	8	0	5	∞	2	2	2	2	2
	3	8	8	0	5	3	3	3	3	3
)	4	-3	-6	-1	0	4	4	1	2	4

k=3; $c_{24} > c_{23} + c_{34}$; $c_{24} := 10$; $p_{24} := p_{34} = 3$.

$$\begin{split} \text{k=4; } c_{21} > \ c_{24} + c_{41}; \ c_{21} &:= 7 \ ; \ p_{21} := p_{41} = 4; \\ c_{31} > \ c_{34} + c_{41}; \ c_{31} &:= 2 \ ; \ p_{31} := p_{41} = 4; \\ c_{32} > \ c_{34} + c_{42}; \ c_{32} &:= -1 \ ; \ p_{32} := p_{42} = 1. \end{split}$$

Резульат на следующей странице.

<u>Результат:</u> снова нарисовать исходный граф и для тех вершин, в которых было $c_{ij} = \infty$, выписать кратчайшие пути.

C4	1	2	3	4
1	0	-3	2	6
2	7	0	5	10
3	2	-1	0	5
4	-3	-6	-1	0

P4	1	2	3	4
1	1	1	2	1
2	4	2	2	3
3	4	1	3	3
4	4	1	2	4

Кратчайший путь из:

2 в 1: 2-3-4-1 длины c_{21} = 7;

2 в 4: 2-3-4 длины c_{24} = 10;

3 в 1: 3-4-1 длины c_{31} = 2;

3 в 2: 3-4-1-2 длины c_{32} = -1;

C0	1	2 3		4
1	0	-3	5	6
2	8	0	5	8
3	8	8	0	5
4	-3	4	-4	0