Suche mit A*

Carsten Gips (FH Bielefeld)

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.

Hole das Buch

Informierte Suche: Nutzung der Kostenfunktion:

Gesamtkosten: f(n) = g(n) + h(n)

A*-Suche

- Kombination aus Branch-and-Bound und Best-First-Suche
- Kostenfunktion: f(n) = g(n) + h(n)
- Datenstruktur: sortierte Queue (Prioritätsqueue)
- Voraussetzung:
 - 1. Alle Aktionen haben positive Kosten $(g(n) \ge \epsilon)$
 - 2. Heuristik h(n) muss zulässig/konsistent sein

A*-Suche – Anforderungen an Heuristik (Tree-Search)

Tree-Search-Variante: Die Heuristik muss zulässig sein:

- Seien $h^*(n)$ die tatsächlichen optimalen Restkosten von einem Knoten n zum nächsten Ziel.
- Dann muss für jeden beliebigen Knoten *n* gelten:

$$h(n) \leq h^{\star}(n)$$

- Außerdem muss gelten:
 - $h(n) \ge 0$ für jeden Knoten n
 - h(n) = 0 für jeden Zielknoten n

=> Beispiel: Luftlinie als Abschätzung

A* ist optimal

 $A \hbox{* (Tree-Search-Variante) mit zul\"{a}ssiger Heuristik ist optimal.} \\$

Beweis siehe Übungsblatt "Blatt 01" :-)

Einfache Verbesserungen A* (Tree-Search)

- Dynamische Programmierung: Behalte von mehreren Pfaden zum gleichen Knoten nur den günstigsten in der Queue
- Pfade, deren Endknoten bereits früher im Pfad vorkommt (Schleifen), werden in Schritt 2 nicht in die Queue aufgenommen
- Übergang zur Graph-Search-Variante und Markierung von Knoten
 - => Achtung: Dann schärfere Anforderungen an Heuristik (Konsistenz)

A*-Suche – Anforderungen an Heuristik (Graph-Search)

Graph-Search-Variante: Die Heuristik muss konsistent sein:

Für jeden Knoten n und jeden durch eine Aktion a erreichten Nachfolger m gilt:

$$h(n) \leq c(n, a, m) + h(m)$$

mit c(n, a, m) Schrittkosten für den Weg von n nach m mit Aktion a.

Außerdem muss gelten:

- $h(n) \ge 0$ für jeden Knoten n
- h(n) = 0 für jeden Zielknoten n

=> Eine konsistente Heuristik ist gleichzeitig zulässig.

Eigenschaften Branch-and-Bound, Best-First, A*

	Branch-and-Bound	Best-First	A *
Kosten	f(n) = g(n)	f(n) = h(n)	f(n) = g(n) + h(n)
Vollständigkeit	ja^1	nein ²	ja
Optimalität	ja	nein	ja
Aufwand	exponentiell	exponentiell	exponentiell
Bemerkung	Probiert erst alle	Suchverlauf stark	Heuristik: zulässig
	"kleinen" Pfade	abh. v. Heuristik	bzw. konsistent

¹BnB vollständig: Kosten größer Epsilon (positiv)

²gilt für Tree-Search-Variante; vollständig bei Graph-Search und endlichen Problemräumen

Wrap-Up

- Informierte Suchverfahren
 - Nutzen reale Pfadkosten und/oder Schätzungen der Restkosten
 - A*: komplette Kostenfunktion f(n) = g(n) + h(n)
 - => besondere Anforderungen an die Heuristik!

LICENSE

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.