第一题:

直接相联 L1 Cache (容量多于 4 个块),块 A,B,C 和 D 均映射到同一组中。 处理器按如下地址流访问 L1 Cache:

ABBACBCDA

1. 根据 3C 模型填写下表

	Α	В	В	Α	С	В	С	D	Α
命中									
强制缺失									
容量缺失									
冲突缺失									

- 2. 假设为该 L1 Cache 配置了一个 Victim Cache,且 Victim Cache 只能容纳 1 块。那么将有多少次读请求被发往 L2 Cache?
- 3. 假设为该 L1 Cache 配置了一个 Victim Cache,且 Victim Cache 能容纳 N 块 (如果 N>1,将采用 LRU 替换策略)。那么使发往 L2 Cache 的读请求次数最少的 N 的取值是多少? 此时发往 L2 Cache 的最少读请求次数是多少?

答案:

1.

	A	В	В	A	С	В	С	D	A
Hit			*						
Compulsory miss	*	*			*			*	
Capacity miss									
Conflict miss				*		*	*		*

2.6次

A: miss, L2 read	L1 set	VC
	A	
B: miss, L2 read		
	В	A
B: hit		
	В	A
A: hit (swap)		
	A	В
C: miss, L2 read		
	С	A
B: miss, L2 read		
ŕ	В	С
C: hit (swap)		
	С	В
D: miss, L2 read		
	D	С
A: miss, L2 read		
•	A	D

3. N = 3,最少向 L2 Cache 发出 4 次读请求(全部是强制缺失引发的)

下图括号中表示的是 LRU 的计数值

A: miss, L2 read	L1 set			VC	
	A		(0)	(1)	(2)
B: miss, L2 read					
	В		(1)	(2)	A (0)
B: hit					
	В		(1)	(2)	A (0)
A: hit (swap)					
	A	[(1)	(2)	B (0)
C: miss, L2 read					
	С		(2)	A (0)	B (1)
B: hit (swap)					
	В		(2)	A (1)	C (0)
C: hit (swap)					
	С		(2)	A (1)	B (0)
D: miss, L2 read					
	D		C (0)	A (2)	B(1)
A: hit (swap)					
	A		C(1)	D (0)	B (2)

第二题:

假设某存储系统由 L1 和 L2 两级 Cache 构成,其中 L1 的参数为直接映射、容量为 256B、块大小为 16B、命中时间为 1 个时钟周期,L2 的参数为直接映射、容量为 4KB、块大小为 256B、命中时间为 10 个时钟周期。访问该存储系统的地址流如下:

- r 0000FC00
- r 0000FC20

r 0000FCA0	
r 0000FCC0	
r 0000FCE0	
r 0000FD00	
r 0000FD20	
假设 L1 和 L2 Cache 初始状态均为 0,从主存中读取一个 256B 的块需要 100)
个时钟周期,将上述地址流循环执行 10 次,请回答下列问题	
1. 请填写下表,其中第一列表示读次数,中间4列是不同类型的读缺失次数	

read misses

Conflict

Total

Capacity

miss rate

2.上述地址流循环执行 10 次的存储器平均访问时间 MAAT 是多少?

Compulsory

答案:

L1 cache: L2 cache: reads

r 0000FC40

r 0000FC60

r 0000FC80

1.

KEY:

M(c1): compulsory miss M(c2): conflict miss

H = hit

		L1 cache				L2 cac	he	
	tag	index	1 st iter: miss?	other iter: miss?	tag	index	1 st iter: miss?	other iter: miss?
0000FC00	0000FC	0	M(c1)	M(c2)	0000F	С	M(c1)	Н
0000FC20	0000FC	2	M(c1)	M(c2)	0000F	С	Н	Н
0000FC40	0000FC	4	M(c1)	Н	0000F	С	Н	
0000FC60	0000FC	6	M(c1)	Н	0000F	С	Н	
0000FC80	0000FC	8	M(c1)	Н	0000F	С	Н	
0000FCA0	0000FC	А	M(c1)	Н	0000F	С	Н	
0000FCC0	0000FC	С	M(c1)	Н	0000F	С	Н	
0000FCE0	0000FC	E	M(c1)	Н	0000F	С	Н	
0000FD00	0000FD	0	M(c1)	M(c2)	0000F	D	M(c1)	Н
0000FD20	0000FD	2	M(c1)	M(c2)	0000F	D	Н	Н

L1	cache:
L2	cache:

man da		read m	isses		miss mats
reads	Compulsory	Capacity	Conflict	Total	miss rate
100	10	0	36	46	0.46
46	2	0	0	2	2/46 = 0.043

2.

AAT with L2 cache =
$$HT_{L1} + MR_{L1} * [HT_{L2} + MR_{L2} * miss_penalty]$$

= $(1 \text{ cycle}) + (0.46) * [(10 \text{ cycles}) + (2/46)*(100 \text{ cycles})]$
= $(1 \text{ cycle}) + (46/100)*(10 \text{ cycles}) + (46/100)*(2/46)*(100 \text{ cycles})$
= $(1 \text{ cycle}) + (4.6 \text{ cycles}) + (2 \text{ cycles})$
= 7.6 cycles

第三题:

变换下面的循环以充分发挥 Cache 的性能优势,并解释变换后程序性能改善多少?

假设变量 x, k 和 i 均被分配到寄存器中;每个元素 a[i]占 4 个字节; Cache 采用直接相联,容量 32B,块大小 4B

$$x = 0$$
;

for
$$(k = 1; k < 10; k++)$$

for $(i = 0; i < 128; i++)$

```
x += k*a[i];
```

答案:

对于未变换的循环,Cache 的访问情况如下

a[0]-miss, a[1]-miss, a[2]-miss, ..., a[127]-miss, a[0]-miss, a[1]-miss,

a[2]-miss, ..., a[127]-miss...

缺失率 100%

变换后的代码为:

x = 0;

for (i = 0; i < 128; i++)

for (k = 1; k < 10; k++)

x += k*a[i];

此时访存地址流为: a[0], a[0], a[0], ..., a[1], a[1], a[1], ..., a[127], a[127], a[127],

此时,对于同样的 Cache,其访问情况为:

a[0] - miss; a[0] - hit; a[0] - hit; ..., a[0]—hit;

a[1] – miss; a[1] – hit; a[1] – hit; ..., a[1]—hit;

.....

a[127] - miss; a[127] - hit; a[127] - hit; ..., a[127] - hit;

因此, 缺失率为 1/9 (11.1%)

第四题:

通常来说, cache 命中时间与 cache 容量成正比。假设访问主存需要 70ns,并且在所有指令中,有 36%的指令需要访存。下表是 P1 和 P2 两个处理器各自的 L1 cache 的参数。

	L1 Cache 容量	L1 Cache 缺失率	L1 Cache 命中时间
P1	2KB	8%	0.66ns
P2	4KB	6%	0.90ns

- 1. 假定 L1 cache 的命中时间决定了 P1 和 P2 的时钟周期,它们各自的时钟频率是多少?
- 2. P1 和 P2 各自的 AMAT (平均存储器访问时间) 分别是多少?
- 3. 假定在没有任何存储器阻塞时基本的 CPI 为 1. 0, P1 和 P2 各自的总 CPI 分别是多少?哪个处理器更快?

对于下面上个问题,我们考虑在 P1 中增加 L2 cache, 以弥补 L1 cache 容量的限制。在解决这些问题时,依然使用上表中 L1 cache 的容量和命中时间。表中二级 cache 的缺失率指的是它的局部缺失率。

L2 Cache 容量	L2 Cache 缺失率	L2 Cache 命中时间
1MB	95%(局部缺失率)	5.62ns

- 4. 增加 L2 cache 后,P1 的 AMAT 是多少?有了 L2 cache, AMAT 是更好还是更差了?
- 5. 假定在没有任何存储器阻塞时基本的 CPI 为 1.0, 增加 L2 cache 后, P1 的 总的 CPI 是多少?

答案:

- 1. P1 的主频 = 1/P1 的命中时间 = 1.53GHz; P2 的主频 = 1/P2 的命中时间 = 1.11GHz
- 2. AMAT = 命中时间+缺失率×缺失代价

P1的AMAT = 0.66+0.08×70=6.26ns

P2的AMAT=0.9×0.06×70=5.1ns

3. CPI = CPI $_{\Xi \Pi \Xi}$ + CPI $_{\Pi \Xi}$

P1的CPI = 1+(1+0.36)×0.08×70ns/0.66ns = 12.54

P2的CPI = 1+(1+0.36)×0.06×70ns/0.9ns = 7.35

P2 处理器更快一些

4. P1 的 AMAT=0.66+0.08×(5.62+0.95*70) = 6.6ns > 6.26, AMAT 变差了

5. P1 的 CPI = 1+(1+0.36)×0.08×(5.62ns/0.66ns+0.95×70ns/0.66ns) = 12.9