Математический анализ 2, Коллоквиум IV

Версия от 13.06.2021 17:02

Содержание

1.	Кусочно-гладкая кривая и ее длина. Элемент длины для параметрически заданной кривой. Криволи- нейный интеграл I-го рода	2
2.	Кусочно-гладкая поверхность и её площадь. Элемент площади для параметрически заданной поверхно-	
	сти. Поверхностный интеграл I-го рода	2
3.	Дифференциальная 1-форма в области пространства. Перенесение дифференциальной 1-формы на глад-	
	кую кривую. Ориентация кривой. Криволинейный интеграл ІІ-го рода. Выражение криволинейного ин-	
	теграла II-го рода через криволинейный интеграл I-го рода	2
4.	Формула Грина и её приложение к вычислению площади клоской фигуры. Внешний дифференциал	
	2-мерный 1-формы и краткая запись формулы Грина	2
5.6.	Дифференциальная 2-форма в области пространства. Перенесение дифференциальной 2-формы на глад-	
	кую поверхность. Ориентация поверхности и вектор нормали. Поверхностный интеграл ІІ-го рода. Вы-	
	ражение поверхностного интеграла II-го рода через поверхностный интеграл I-го рода	2
	Формула Остроградского-Гаусса и её приложение к вычислению объема тела. Внешний дифференциал	
	3-мерной 2-формы, дивергенция векторного поля и краткая запись формы Остроградского-Гаусса	2
7.	Формула Стокса. Внешний дифференциал 3-мерной 1-формы, ротор векторного поля и краткая запись	
	формулы Стокса.	2
8.	Комплексная плоскость, сфера Римана и стереографическая проекция. Определения экспоненты e^z и	
	тригонометрических функций $\sin z,\cos z.$ Определения многозначных функций $\sqrt[n]{z},\ln z.$	2
9.	Дифференциал, дифференцируемость и производная комплексной функции. Условия Коши-Римана и	
	голоморфность. Интеграл от голоморфной функции по кусочно-гладкой кривой. Теорема Коши. Инте-	
	гральная формула Коши.	2
10.	Голоморфная функция нескольких переменных. Голоморфность композиции (в том числе: суммы, про-	
	изведения, частного) голоморфных функций. Голоморфность обратной функции.	2
11.	Аналитическая функция. Аналитичность голоморфной функции. Неравенство Коши для коэффициен-	
	тов ряда. Радиус сходимости ряда как максимальный радиус круга, в котором функция голоморфна.	
	Теорема Лиувилля.	;
12.	Бесконечная дифференцируемость и голоморфность аналитической функции. Нуль аналитической функ-	
	ции и его порядок. Изолированность нуля аналитической функции. Теорема единственности аналитиче-	
	ской функции.	Ę
13.	Однозначные особые точки: устранимая особенность, полюс, существенная особенность. Голоморфность	
	функции, доопределенной по непрерывности в устранимой особой точке. Порядок полюса функции $f(z)$	
	и порядок нуля функции $\frac{1}{f(z)}$. Теорема Сохоцкого о существенно особой точке	Ę
14.	Ряд Лорана и его сходимость. Единственность разложения Лорана. Главная часть ряда Лорана и клас-	
	сификация особых точек	Ę
15.	Вычет голоморфной функции в однозначной особой точке. Теорема Коши о вычетах. Вычет как коэф-	
	фициент c_{-1} ряда Лорана. Вычисления вычета в полюсе	ŗ

- 1. Кусочно-гладкая кривая и её длина. Элемент длины для параметрически заданной кривой. Криволинейный интеграл I-го рода.
- 2. Кусочно-гладкая поверхность и её площадь. Элемент площади для параметрически заданной поверхности. Поверхностный интеграл I-го рода.
- 3. Дифференциальная 1-форма в области пространства. Перенесение дифференциальной 1-формы на гладкую кривую. Ориентация кривой. Криволинейный интеграл II-го рода. Выражение криволинейного интеграла II-го рода через криволинейный интеграл I-го рода.
- 4. Формула Грина и её приложение к вычислению площади клоской фигуры. Внешний дифференциал 2-мерный 1-формы и краткая запись формулы Грина.
- 5. Дифференциальная 2-форма в области пространства. Перенесение дифференциальной 2-формы на гладкую поверхность. Ориентация поверхности и вектор нормали. Поверхностный интеграл II-го рода. Выражение поверхностного интеграла II-го рода через поверхностный интеграл I-го рода.
- 6. Формула Остроградского-Гаусса и её приложение к вычислению объема тела. Внешний дифференциал 3-мерной 2-формы, дивергенция векторного поля и краткая запись формы Остроградского-Гаусса.
- 7. Формула Стокса. Внешний дифференциал 3-мерной 1-формы, ротор векторного поля и краткая запись формулы Стокса.
- 8. Комплексная плоскость, сфера Римана и стереографическая проекция. Определения экспоненты e^z и тригонометрических функций $\sin z$, $\cos z$. Определения многозначных функций $\sqrt[n]{z}$, $\operatorname{Ln} z$.
- 9. Дифференциал, дифференцируемость и производная комплексной функции. Условия Коши-Римана и голоморфность. Интеграл от голоморфной функции по кусочногладкой кривой. Теорема Коши. Интегральная формула Коши.
- 10. Голоморфная функция нескольких переменных. Голоморфность композиции (в том числе: суммы, произведения, частного) голоморфных функций. Голоморфность обратной функции.

Определение. Пусть $D \subseteq \mathbb{R}^2$ – область определения

 $f:D \to \mathbb{R}^2$ – непрерывно дифференцируема.

f называется голоморфной в D, если она удовлетворяет условию Коши-Римана:

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \end{cases}$$

Определение. Пусть $G_1,G_2\subseteq\mathbb{C}$ – области определения. Функция $F:G_1\times G_2\to\mathbb{C}$:

$$F(z_1, z_2) = U(x_1, y_1, x_2, y_2) + iV(x_1, y_1, x_2, y_2)$$

называется голоморфной, если она непрерывно дифференцируема и голоморфна по каждой переменной в отдельности.

Теорема. Пусть $D\subseteq\mathbb{C}$ – область, $\varphi_1:D\to G_1,\,\varphi_2:D\to G_2$ – голоморфны.

Тогда $f(z) = F(\varphi_1(z), \varphi_2(z))$ – голоморфна.

Доказательство. Для удобства будем иметь в виду, что $\varphi_k(z) = \xi_k(x,y) + i\eta_k(x,y), k \in \{1,2\}$ и f(z) = u(x,y) + iv(x,y) Тогда

$$u_x' = U_{x_1}' \frac{\partial \xi_1}{\partial x} + U_{y_1}' \frac{\partial \eta_1}{\partial x} + U_{x_2}' \frac{\partial \xi_2}{\partial x} + U_{y_1}' \frac{\partial \eta_2}{\partial x} = V_{y_1}' \frac{\partial \eta_1}{\partial y} + \left(-V_{x_1}'\right) \cdot \left(-\frac{\partial \xi_1}{\partial y}\right) + V_{y_2}' \frac{\partial \eta_2}{\partial y} + \left(-V_{x_2}'\right) \cdot \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial x} + \left(-\frac{\partial \xi_1}{\partial y}\right) \cdot \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial x} + \left(-\frac{\partial \xi_2}{\partial y}\right) \cdot \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial x} + \left(-\frac{\partial \xi_2}{\partial y}\right) \cdot \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial x} + \left(-\frac{\partial \xi_2}{\partial y}\right) \cdot \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial x} + \left(-\frac{\partial \xi_2}{\partial y}\right) \cdot \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial x} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + \left(-\frac{\partial \xi_2}{\partial y}\right) = v_y' \frac{\partial \eta_2}{\partial y} + v_y' \frac{$$

Аналогично, $u'_y = -v'_x$

Следствие. Голоморфны следующие функции:

- 1. $F(z_1, z_2) = az_1 + bz_2$
- 2. $F(z_1, z_2) = z_1 \cdot z_2$
- 3. $F(z_1, z_2) = \frac{z_1}{z_2}, z_2 \neq 0$

Теорема. Пусть $w = f(z), w_0 = f(z_0), f'(z_0) \neq 0$ и f – голоморфна в окрестности точки z_0 .

Тогда в некоторой окрестности точки w_0 существует единственная обратная функция $f^{-1}(w): f^{-1}(w_0) = z_0$, которая является голоморфной.

Доказательство. Пусть f(z) = u(x,y) + iv(x,y), тогда:

$$\begin{cases} u = u(x,y) \\ v = v(x,y) \end{cases}$$
, причем
$$\begin{cases} u_0 = u(x_0,y_0) \\ v_0 = v(x_0,y_0) \end{cases}$$

Посчитаем Якобиан отображения в z_0 :

$$\begin{vmatrix} u_x' & u_y' \\ v_x' & v_y' \end{vmatrix} \Big|_{z_0} = \left| f'(z_0) \right|^2 > 0 \implies$$
 Существует единственное обратное отображение по теореме о неявной функции

Найдем матрицу Якоби обратного отображения:

$$\begin{pmatrix} x'_u & x'_v \\ y'_u & y'_v \end{pmatrix} \bigg|_{v_0} = \begin{pmatrix} u'_x & u'_y \\ v'_x & v'_y \end{pmatrix}^{-1} \bigg|_{z_0} = \frac{1}{|f'(z_0)^2|} \begin{pmatrix} v'_y & -u'_y \\ -v'_x & u'_x \end{pmatrix}$$

Рассмотрим элементы на главных диагоналях первой и последней матриц. Т.к. исходное отображение голоморфно, то $v_u' = u_x'$, а значит и $x_u' = y_u'$.

Аналогично, рассмотрев элементы на побочных диагоналях, получим, что $x'_v = -y'_u$. Условие Коши-Римана выполнено, значит, обратная функция является голоморфной.

11. Аналитическая функция. Аналитичность голоморфной функции. Неравенство Коши для коэффициентов ряда. Радиус сходимости ряда как максимальный радиус круга, в котором функция голоморфна. Теорема Лиувилля.

Определение. Функция называется аналитической в точке z_0 , если $\exists \{c_n\} \in \mathbb{C}$:

$$f(z) = \sum_{k=0}^{\infty} c_k \cdot (z - z_0)^k, \, |z - z_0| < \delta$$

Теорема. Если функция f голоморфна в окрестности z_0 , то она аналитична в z_0 .

Доказательство. Пусть
$$|z-z_0| < \varepsilon < \delta$$
, $L = \{\zeta : |\zeta-z_0| = \varepsilon\}$
Тогда по формуле Коши: $f(z) = \frac{1}{2\pi i} \oint_L \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \oint_L \frac{f(\zeta)}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} d\zeta = \frac{1}{2\pi i} \oint_L \frac{f(\zeta)}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} d\zeta = \frac{1}{2\pi i} \oint_L \frac{f(\zeta)}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} d\zeta = \frac{1}{2\pi i} \oint_L \frac{f(\zeta)}{\zeta - z_0} \cdot \frac{1}{\zeta - z_0} \cdot \frac{1}{\zeta - z_0} d\zeta = \frac{1}{2\pi i} \oint_L \frac{f(\zeta)}{\zeta - z_0} \cdot \frac{f(\zeta)}{\zeta - z_0} \cdot \frac{1}{\zeta - z_0} d\zeta = \frac{1}{2\pi i} \oint_L \frac{f(\zeta)}{\zeta - z_0} \cdot \frac{f(\zeta)}{\zeta - z_0} d\zeta = \frac{1}{2\pi i} \oint_L \frac{f(\zeta)}{\zeta - z_0} \cdot \frac{f(\zeta)}{\zeta - z_0} d\zeta = \frac{1}{2\pi i} \oint_L \frac{f(\zeta)}{\zeta - z_0} \cdot \frac{f(\zeta)}{\zeta - z_0} d\zeta = \frac{1}{2\pi i} \oint_L \frac{f(\zeta)}{\zeta - z_0} \cdot \frac{f(\zeta)}{\zeta - z_0} d\zeta$

Пусть $M=\sup_{|\zeta-z_0|=\varepsilon}|f(\zeta)|$, а также заметим, что $|\zeta-z|\geqslant |\zeta-z_0|-|z-z_0|=\varepsilon(1-\alpha)$, тогда:

$$|r_n(z,z_0)| \leqslant \frac{1}{2\pi} \oint\limits_L |f(\zeta)| \cdot \frac{\left|\frac{z-z_0}{\zeta-z_0}\right|^{n+1}}{|\zeta-z|} dl \leqslant \frac{M \cdot \alpha^{n+1}}{2\pi \cdot \varepsilon (1-\alpha)} \cdot \underbrace{2\pi \varepsilon}_{\text{длина кривой}} \leqslant \frac{M \cdot \alpha^{n+1}}{\varepsilon (1-\alpha)} \to 0 \text{ при } n \to \infty$$

Значит, $f(z) = \sum_{k=0}^{\infty} c_k (z-z_0)^k$, $c_k = \frac{1}{2\pi i} \oint_{\mathbf{r}} \frac{f(\zeta)}{(\zeta-z_0)^{k+1}} d\zeta$ при $\forall z: |z-z_0| < \delta$.

Так как $\frac{f(\zeta)}{(\zeta-z_0)^{k+1}}$ голоморфна в кольце $\varepsilon_1\leqslant |z-z_0|\leqslant \varepsilon_2$, то $\oint\limits_{|z-z_0|=\varepsilon_2} \frac{f(\zeta)}{(\zeta-z_0)^{k+1}} d\zeta - \oint\limits_{|z-z_0|=\varepsilon_1} \frac{f(\zeta)}{(\zeta-z)^{k+1}} d\zeta = 0 \implies c_k$

не зависит от ε .

Следствие. (Неравенство Коши)
$$|c_k| \leqslant \oint\limits_L \frac{|f(\zeta)|}{|\zeta-z_0|^{k+1}} dl \leqslant \frac{M}{2\pi\varepsilon^{k+1}} \cdot 2\pi\varepsilon = \frac{M}{\varepsilon^k}, \text{ подставим } M \colon \\ |c_k| \leqslant \frac{1}{\varepsilon^k} \cdot \sup_{|z-z_0|=\varepsilon} |f(z)| \; \forall \varepsilon < \delta$$

Теорема. Пусть f(z) голоморфна в $|z-z_0| < r$, но не является голоморфной в круге большего радиуса, f(z) = $\sum_{k=0}^{\infty} c_k (z-z_0)^k, \, |z-z_0| < R = rac{1}{\lim_{k o \infty} \sqrt[k]{|c_k|}}.$ Тогда R = r.

Доказательство. Пусть $M = \sup_{|z-z_0|=\varepsilon} |f(z)|, |c_k| \leqslant \frac{M}{\varepsilon^k} \ \forall \varepsilon < r$

$$\overline{\lim} \sqrt[k]{|c_k|} \leqslant \frac{1}{\varepsilon} \implies R \geqslant \varepsilon \ \forall \varepsilon < r \implies R \geqslant.$$
 Но если $R > r$, то ряд сходится в $z \colon |z - z_0| > r$, что противоречит условию.

Значит, R = r.

Теорема. (Лиувилля)

Если функция f(z) голоморфна и ограничена на \mathbb{C} , то она – константа.

Доказательство. Пусть $M = \sup_{z \in \mathbb{C}} |f(z)|, f(z) = \sum_{k=0}^{\infty} c_k z^k$

Так как $|c_k| \leqslant \frac{M}{\varepsilon^k} \ \forall \varepsilon$, то при $\varepsilon \to \infty$ получаем, что $c_1 = c_2 = \cdots = 0 \implies f(z) = c_0$

- 12. Бесконечная дифференцируемость и голоморфность аналитической функции. Нуль аналитической функции и его порядок. Изолированность нуля аналитической функции. Теорема единственности аналитической функции.
- 13. Однозначные особые точки: устранимая особенность, полюс, существенная особенность. Голоморфность функции, доопределенной по непрерывности в устранимой особой точке. Порядок полюса функции f(z) и порядок нуля функции $\frac{1}{f(z)}$. Теорема Сохоцкого о существенно особой точке.
- 14. Ряд Лорана и его сходимость. Единственность разложения Лорана. Главная часть ряда Лорана и классификация особых точек.
- 15. Вычет голоморфной функции в однозначной особой точке. Теорема Коши о вычетах. Вычет как коэффициент c_{-1} ряда Лорана. Вычисления вычета в полюсе.