2. Basic Image Features

Eun Yi Kim

Color

- Used heavily in human vision
- Color is a pixel property, making som e recognition problems easy
- Visible spectrum for humans is 400 n m (blue) to 700 nm (red)
- Machines can "see" much more;
 ex. X-rays, infrared, radio waves

Coding methods for humans

- RGB is an additive system (add colors to black) used for displays.
- ☐ CMY is a subtractive system for printing.
- ☐ HSI is a good perceptual space for art, psychology, and recognition.
- ☐ YIQ used for TV is good for compression.

RGB color cube

- R, G, B values normalized to (0, 1) int erval
- human perceives gray for triples on the diagonal
- "Pure colors" on corners

RGB color cube

- R, G, B values normalized to (0, 1) int erval
- human perceives gray for triples on the diagonal
- "Pure colors" on corners

Color palette and normalized RGB

In this normalized representation, b = 1 - r - q, so we only need to look at r and g to characterize the color.

Color hexagon for HSI (HSV)

- Hue is encoded as an angle (0 to 2π).
- Saturation is the distance to the vertical axis (0 to 1).
- Intensity is the height along the vertical axis (0 to 1).

RGB to HSI Transform

$ightharpoonup RGB \rightarrow HSI$

$$r = \frac{R}{R+G+B}$$
, $g = \frac{G}{R+G+B}$, $b = \frac{B}{R+G+B}$

$$s = 1 - 3 \cdot \min(r, g, b); \quad s \in [0, 1]$$

$$i = (R + G + B)/(3.255); i \in [0,1]$$

$$h = \cos^{-1} \left\{ \frac{0.5 \cdot \left[(r-g) + (r-b) \right]}{\left[(r-g)^2 + (r-b)(g-b) \right]^{\frac{1}{2}}} \right\}$$

$$h = 2\pi - \cos^{-1} \left\{ \frac{0.5 \cdot \left[(r-g) + (r-b) \right]}{\left[(r-g)^2 + (r-b)(g-b) \right]^{\frac{1}{2}}} \right\}$$

$$h \in [0, \pi]$$
 for $b \le g$

$$h \in [\pi, 2\pi]$$
 for $b > g$

HSI to RGB Transform

□ HSI → RGB

■ RG area ($0 \le H \le 120$)

$$\begin{split} b &= \frac{1}{3} \left(1 - S \right) \\ r &= \frac{1}{3} \left[1 + \frac{Scos(H)}{cos(60 - H)} \right] \\ g &= 1 - (r + b) \end{split}$$

GB area (120 ≤ H ≤ 240)

$$\begin{split} H &= H - 120 \\ g &= \frac{1}{3} \left[1 + \frac{S cos \left(H \right)}{cos \left(60 - H \right)} \right] \\ r &= \frac{1}{3} \left(1 - S \right) \\ b &= 1 - \left(r + g \right) \end{split}$$

- Notes
 - Saturation is not defined when intensity I = 0.
 - Hue is not defined when S = 0.

Editing saturation of colors

- (Left) Image of food originating from a digital camera;
- (center) saturation value of each pixel decreased 20%;
- (right) saturation value of each pixel increased 40%.

YIQ and YUV for TV signals

- Have better compression properties
- Luminance Y encoded using more bits than chrominance values I and Q; humans more sensitive to Y than I,Q
- Luminance used by black/white TVs
- All 3 values used by color TVs
- YUV encoding used in some digital video and JPEG and MPEG compression

Conversion from RGB to YIQ

An approximate linear transformation from RGB to YIQ:

$$\begin{array}{rcl} luminance & Y & = & 0.30R \; + \; 0.59G \; + \; 0.11B \\ & R - cyan \; I & = & 0.60R \; - \; 0.28G \; - \; 0.32B \\ magenta - green \; Q & = & 0.21R \; - \; 0.52G \; + \; 0.31B \end{array}$$

We often use this for color to gray-tone conversion.

Histogram

- Color histogram can represent an image
- Histogram is fast and easy to compute.
- Size can easily be normalized so that different image histo grams can be compared.
- Can match color histograms for database query or classification.

Histogram

Sample image with histogram

Histograms of two color images

Apples versus Oranges

Separate HSI histograms for apples (left) and oranges (right) used by IBM's VeggieVision for r ecognizing produce at the grocery store checkout station.

Skin color in RGB space

(shown as normalized red vs normalized green)

Finding a face in video frame

- (left) input video frame
- (center) pixels classified according to RGB space
- (right) largest connected component with aspect similar to a face (all work contributed by Vera Bakic)

Edges

- Abrupt changes in the intensity of pixels
- Discontinuity in image brightness or contrast
- Usually edges occur on the boundary of two regions

Edges

Edge Detection

- Process of identifying edges in an image to be used as a fundamental asset in image analysis
- Locating areas with strong intensity contrasts
- A kind of filtering that leads to useful features

Edge Detection Usage

- Reduce unnecessary information in the image while preserving the structure of the image
- Extract important features of an image
 - Textures and shapes
 - Corners, Lines and Curves
- Recognize objects, boundaries, segmentation
- Part of computer vision and recognition

Edges

- Abrupt changes in the intensity of pixels
- Discontinuity in image brightness or contrast
- Usually edges occur on the boundary of two regions

Differential Operators

- Attempt to approximate the gradient at a pixel via masks
- Threshold the gradient to select the edge pixels

Differencing 1D Signals

Gradient in images

Two dimensional equivalent of the first order derivative

$$G[f(x,y)] = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$
 points in the direction of max rate of increase of the function $f(x,y)$

magnitude
$$G[f(x, y)] = \sqrt{G_x^2 + G_y^2}$$

direction $\alpha(x, y) = \tan^{-1}(\frac{G_y}{G_x})$

• For digital images, the derivatives are approximated by differences.

$$G_{x} \cong f[i, j+1] - f[i, j]$$

$$G_{y} \cong f[i, j] - f[i+1, j]$$

Differencing masks using first derivatives

$$G_x = \begin{bmatrix} -1 & 1 \end{bmatrix}$$
 $G_y = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

Differencing masks using second derivatives

Common Masks for Computing Gradient

• Sobel :

• Prewitt:

• Roberts:

Sx

Common Masks for Computing Gradient

- let G_v be the response to S_v

On a pixel of the image I
• let
$$G_x$$
 be the response to S_x

Then the gradient is
$$\nabla I = [G_x \ G_y]$$

And
$$g = (G_x^2 + G_y^2)^{1/2}$$
 is the gradient magnitude.
 $\theta = atan2(G_y,G_x)$ is the gradient direction.

Roberts Operator

- Gradient computed across diagonals
- Faster because of 2×2 neighborhood

$$G[f(i,j)] = |f(i,j) - f(i+1,j+1)| + |f(i+1,j) - f(i,j+1)| = |G_x| + |G_y|$$

Convolution masks

Prewitt Operator

Convolution masks

$$S_{x} = \begin{array}{|c|c|c|c|c|c|} \hline -1 & 0 & 1 \\ \hline -1 & 0 & 1 \\ \hline -1 & 0 & 1 \\ \hline \end{array}$$

$$S_{y} = \begin{array}{c|cccc} 1 & 1 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -1 & -1 \end{array}$$

Magnitude of the gradient,
$$M = \sqrt{G_x^2 + G_y^2}$$

If $M \ge thresold$, the current pixel is marked as an edge pixel.

Direction
$$\theta \approx tan^{-1}(\frac{\partial f}{\partial u}/\frac{\partial f}{\partial x})$$

a) Input image

b) Robert

c) Prewitt

Sobel Operator

Convolution masks

$$S_x = \begin{array}{c|cccc} -1 & 0 & 1 \\ -2 & 0 & 2 \\ \hline -1 & 0 & 1 \end{array}$$

$$S_{y} = \begin{array}{c|cccc} 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \end{array}$$

Magnitude of the gradient, M

$$M = \sqrt{G_x^2 + G_y^2}$$

If $M \ge thresold$, the current pixel is marked as an edge pixel.

- places an emphasis on pixels closer to the center of the mask.
- most commonly used.

original image

gradient magnitude

thresholded gradient magnitude

Input Image

Roberts Operator

Sobel Operator

Prewitt Operator

Common Masks for Computing Gradient

• Sobel :

• Prewitt:

• Roberts:

Sx

