Game of Life Modelowanie komputerowe Lista 1

Łukasz Chmielowski (307713)

2023

1 Treść zadania

Na liście znajdują się trzy zadania:

W zadaniu pierwszym należało napisać własny kod do gry w życie wybierając dowolną technologię.

W zadaniu drugim mieliśmy w zadeklarowanym układzie przeprowadzić kilka symulacji dla różnych warunków początkowych, gdzie każdy miał posiadać inne prawdopodobieństwo nadania wartości każdemu węzłowi. Po wykonaniu symulacji należało wykonać wykresy gęstości "żywych"komórek od czasu.

W zadaniu trzecim mieliśmy przeanalizować zmianę gęstości dla jednego warunku początkowego przy różnych rozmiarach układu.

2 Zadanie pierwsze

Kod do gry w życie wykonałem w technologi C++, ponieważ uznałem, że będzie najszybsza do wykonania wielu dużych symulacji w kolejnych zadaniach. Kod został dołączony do sprawozdania w załączniku (plik life.cpp).

3 Zadanie drugie

W zadaniu drugim układ gry w życie ustawiłem na 100x100. Prawdopodobieństwa p0 wybrałem następujące: 10%, 30%, 60%, 75%, 80%. Czas dla każdej symulacji wynosił 100 cykli. Po wykonaniu symulacji, do każdego p0 wykonałem wykres (podane na końcu sprawozdania). Następnie do każdego wykresu wyliczyłem średnią gęstość stanu ustalonego (gęstości zostały wyliczone programem life.cpp), czyli z okna czasowego między 80. a 90. iteracją (wykorzystałem do tego kod napisany w Pythonie, plik test.py). Otrzymałem następujące wyniki:

p0	średnia gęstość
10%	0.0325
30%	0.04425
60%	0.0512
75%	0.0520
80%	0.05425

Patrząc na wyniki gęstości możemy zauważyć, że dla większego prawdopodobieństwa stan ustalony rośnie. Patrząc natomiast na wykresy przebiegu tych symulacji, możemy zauważyć, że po pierwszej iteracji, która jest bardzo gęsta w żywe komórki, w drugiej już następuje ogromna redukcja populacji, co jest spowodowane przez jeden z warunków gry w życie, kiedy komórka umiera od zbyt dużej ilości sąsiadów. Po ogromnej redukcji następuje parę cykli, gdzie gęstość się waha, po czym stabilizuje. Po tej stabilizacji wyliczyłem gęstości.

4 Zadanie trzecie

W zadaniu trzecim wykonałem 100 symulacji dla różnych rozmiarów układu. Rozmiary wybrałem następujące: 10×10 , 100×100 , 200×200 , 500×500 , 1000×1000 . Wszystkie symulacje posiadały p0 = 30%. Wybrałem takie p0, ponieważ jego wykres na rozmiarach 100×100 najbardziej mnie satysfakcjonował. Po ukończeniu obliczeń gęstości dla wszystkich symulacji dla wszystkich rozmiarów układu, wyliczyłem średnie gęstości dla każdego rozmiaru (wykorzystałem program srednia-final.py):

NxN	średnia gęstość
10x10	0.09907632997956148
100x100	0.05001512237592209
200x200	0.044173859725289776
500x500	0.04034439605454117
1000x1000	0.03890538685216672

Po wyliczeniu gęstości wyliczyłem odchylenie standardowe s oraz błąd e wykorzystując następujące wzory:

$$s = \sqrt{\frac{\sum_{i=1}^{k} (x_i - \Delta x)^2}{n}}$$
$$e = \frac{s}{\sqrt{n}}$$

Wzory zaaplikowałem w programie stand.py. Otrzymałem następujące wyniki:

Średnia	0.054503018997496246
Błąd	0.022615771184915333
Odchylenie	0.01011408034661033

Po przybliżeniu do liczb znaczących otrzymałem wyniki:

Średnia	0.0545
Błąd	0.0226
Odchylenie	0.0101

Możemy zauważyć, że błąd oraz odchylenie jest bardzo duży w porównaniu do średniej. Powodem jest straszna rozbieżność wyników gęstości stanu ustalonego dla poszczególnych rozmiarów układu.

Rysunek 1: Zmiana gęstości przyp0=10%

Rysunek 2: Zmiana gęstości przyp0=30%

Rysunek 3: Zmiana gęstości przyp0=60%

Rysunek 4: Zmiana gęstości przyp0=75%

Rysunek 5: Zmiana gęstości przyp0=80%