## Benchmarking de methodes exactes et heuristiques sur des problemes d'ordonnancement industriels complexes

Christian Artigues<sup>1</sup> Guillaume Poveda<sup>2</sup>

<sup>1</sup> LAAS-CNRS, Université de Toulouse, France

<sup>2</sup>AIRBUS AI Research, Toulouse, France

KC@ANITI, 11/03/2022











### Présentation basée sur les papiers

- Nahum Alvarez, Christian Artigues, Guillaume Poveda, Multi Skill Scheduling with Preemption and Generalized Precedence Constraints: an Industrial Use Case, Working Paper.
- Oliver Polo Mejia, Christian Artigues, Pierre Lopez, Lars Mönch, Virginie Basini. Heuristic and metaheuristic methods for the multi-skill project scheduling problem with partial preemption. International Transactions in Operational Research, Wiley, 2021, https://doi.org/10.1111/itor.13063.
- Oliver Polo-Mejía, Christian Artigues, Pierre Lopez, Virginie Basini:
   Mixed-integer/linear and constraint programming approaches for activity
   scheduling in a nuclear research facility. International Journal of Production
   Research 58(23): 7149-7166 (2020)
- ► Tamara Borreguerro Sanchidrián, Tom Portoleau, Christian Artigues, Alvaro García Sánchez, Miguel Ortega Mier, et al.. Exact and heuristic methods for an aeronautical assembly line time-constrained scheduling problem with multiple modes and a resource leveling objective. 2021. (hal-03344445)

► Chaine d'assemblage de l'Airbus A330 MRT



Borreguerro, Portoleau et al. 2021]

- ▶ Planning à date de fin imposée (takt time), objectif minimiser le nombre maximal d'opérateurs utilisés
- ► Environ 700 tâches
- Ressources : opérateurs multi-compétences
- ▶ Modélisation comme un problème multi-modes

Installation Nucléaire de Base du CEA



- Laboratoire d'Examens des Combustibles Actifs (LECA) : examens post-irradiatoires des éléments combustibles et des matériaux de structure
- Station de Traitement, d'Assainissement et de Reconditionnement (STAR): traitement et reconditionnement du combustible sans emploi

- ▶ 100 activités par semaine
- ▶ 180 personnes (opérateurs, expérimentateurs et agents de maintenance)
- 6 laboratoires
- Planning = élément important pour la sûreté et la sécurité de l'installation
- Assurer l'exécution la plus rapide de l'ensemble des activités
- ► Caractéristiques des activités et réglementations nucléaires ⇒ ordonnancement complexe

# Caractéristique des problèmes d'ordonnancement industriels complexes

- Ressources renouvelables à capacités limitées : cumulatives et disjonctives
- Précédences entre activités : simples ou généralisées
- Activités requièrent des opérateurs/techniciens avec des compétences particulières et des accréditations
- Les exécutions d'activités sont soumises à des fenêtres temporelles
- Certaines activités requièrent un nombre minimum d'opérateurs pour leur exécution
- Certaines activités doivent être exécutées sans interruption;
   d'autres peuvent être interrompues
  - Pour des raisons de sûreté, pendant les périodes de préemption, certaines ressources utilisées pour l'exécution d'une activité ne peuvent pas être libérées (ex : chambres de confinement); les autres oui (ex : opérateurs)

### RCPSP: données du problème

- ▶ R ensemble de ressources, disponibilité limitée  $B_k \ge 0, k \in R$ ,
- ▶ A ensemble d'activités (tâches), durée  $p_i \ge 0, i \in A$ , demande  $b_{ik} \ge 0$  pour  $k \in R$ ,
- ▶ *E* ensemble de contraintes de précédence (i,j),  $i,j \in A$ , i < j
- $\mathcal{T} = [0, T]$  intervalle de temps (horizon d'ordonnancement)



### RCPSP: variables, objectif et contraintes

- ▶  $S_i \ge 0$  date de début de l'activité *i*
- $ightharpoonup C_{\max} = S_{n+1}$  durée totale du projet

#### RCPSP (formulation conceptuelle)

où 
$$S_T = \begin{cases} S_j \geq S_i + p_i & (i,j) \in E \\ \sum_{j \in A(t)} b_{jk} \leq B_k & t \in \mathcal{T}, k \in R \end{cases}$$
 Contraintes de précédence  $0 \leq S_j \leq T - p_j \quad i \in A$ 

avec 
$$A(t) = \{j \in A | t \in [S_j, S_j + p_j)\}, \forall t \in \mathcal{T}$$

 $\mathcal{S}_{\mathcal{T}}^{\emptyset}$  : ensemble des ordonnancements respectant les contraintes de précédence et l'horizon de temps  $\mathcal{T}$ .

### RCPSP: exemple de solution



### RCPSP: complexité, variantes and méthodes

- NP difficile au sens fort
- Généralisation des problèmes à une machine, machines parallèles, job-shop, open-shop, flow-shop
- Multitude de variantes
  - Autres objectifs :  $\min \sum_{i \in A} w_i (S_i + p_i)$
  - lacktriangle Contraintes de précédence généralisées  $S_j \geq S_i + l_{ij}$
  - Temps de préparation, modes multiples, ressources consommables, tâches à intensités variables . . .
  - ▶ Incertitude  $p_i \in [p_i^{\min}, p_i^{\max}], p_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$
- Méthodes exactes et approchées
  - Heuristiques et Metaheuristiques [Kolisch & Hartmann 2006, A. & Rivreau 2008]
  - Méthodes spécifiques de séparation et évaluation
  - Programmation linéaire en nombres entiers (MILP)
  - Programmation par contraintes (CP)
  - hybridations SAT/CP

## Multi-Skill Project Scheduling Problem with Partial Preemption = **MSPSP-PP**

- ► RCPSP multi-compétences = MSPSP (*Multi-Skill Project Scheduling Problem*)
- Proposé par Emmanuel Néron (2002) dans le cadre de la planification de projets de développement
- Nombreux domaines d'applications
  - Pharmaceutique
  - Chimique
  - Nucléaire
- NP-difficile
- MSPSP-PP NP-difficile (RCPSP = cas particulier du MSPSP-PP avec toutes ressources mono-compétences et non préemptives)

### MSPSP avec Préemption Partielle : Exemple

| Activity | Duration | (Required skill,<br>Quantity) | (Required resource,<br>Quantity) | Deadline | Release<br>date | Type                                      |
|----------|----------|-------------------------------|----------------------------------|----------|-----------------|-------------------------------------------|
| $A_1$    | 5        | $(c_1, 1)$                    | $(M_1, 1)$                       | -        | -               | $\overline{P}$                            |
| $A_2$    | 1        | $(c_3,1),(c_4,1)$             | $(M_1,1)$                        | 4        | 3               | $\overline{NP}$                           |
| $A_3$    | 3        | $(c_2, 1)$                    | $(M_1, 1)$                       | -        | -               | $\overline{PP}$ ( $M_1$ canno be released |
| $A_4$    | 2        | $(c_1, 1)$                    | -                                | -        | 6               | $\overline{NP}$                           |
|          |          | Technician                    | Mastered skills                  |          | Resource        | Capacity                                  |
|          |          | $tech_1$                      | $\{c_1, c_3\}$                   |          | $M_1$           | 2                                         |

| Technician | Mastered skills     | Resource | Capacity |
|------------|---------------------|----------|----------|
| $tech_1$   | $\{c_1, c_3\}$      | $M_1$    | 2        |
| $tech_2$   | $\{c_1, c_2, c_4\}$ |          |          |





### Modèle PLNE - Variables globales

 $Y_{i,t}=1$  si activité i en exécution pendant la période t  $O_{j,i,t}=1$  si opérateur j alloué à l'activité i pendant la période t  $Pp_{i,t}=1$  si activité i partiellement préemptive est interrompue pendant la période t





#### Modèle PLNE 1 – Variables binaires

$$Z_{i,t}=1$$
 pour les périodes  $t\geq$  à la date de début de l'activité  $i$ 

 $W_{i,t} = 1$  pour les périodes  $t \le à$  la date de fin de l'activité i

$$Z_{i,t} \ge Y_{i,t'} \qquad \forall i \notin \overline{P}, \forall t' \le t \qquad (1)$$

$$W_{i,t} \ge Y_{i,t'} \qquad \forall i \notin \overline{P}, \forall t' \ge t \qquad (2)$$

$$P_{p_{i,t}} = Z_{i,t} + W_{i,t} - Y_{i,t} - 1 \qquad \forall i \in \overline{PP} \qquad (3)$$

#### Modèle PLNE 2 – Variables continues

 $Pp_{i,t} \leq 1 - Y_{i,t}$ 

G<sub>i</sub> : date de début de l'activité i

F<sub>i</sub> : date de fin de l'activité i

$$F_i - G_i - D_i = \#$$
 périodes préemptées

 $\forall i \in \overline{PP}$ 

$$Pp_{i,t} \le \sum_{t'=1}^{t} Y_{i,t'} \qquad \forall i \in \overline{PP}$$
 (5)

$$Pp_{i,t} \leq \sum_{t'=t}^{T} Y_{i,t'}$$
  $\forall i \in \overline{PP}$ 

$$F_i - G_i + 1 \le D_i + \sum_{i=1}^{T} Pp_{i,t} \quad \forall i \in \overline{PP}$$
 (7)

(4)

(6)

## Modèle 1 ("binaire") vs. modèle 2 ("continu")

#### Théorème

La formulation "binaire" est plus forte que la formulation "continue" (meilleure relaxation linéaire).

Démonstration. (fragment)

$$G_i = T - \sum_{t=1}^{T} Z_{i,t} + 1$$
 et  $F_i = \sum_{t=1}^{T} W_{i,t}$ 

$$F_{i} - G_{i} + 1 = \sum_{t=1}^{T} W_{i,t} + \sum_{t=1}^{T} Z_{i,t} - T$$

$$= \sum_{t=1}^{T} P p_{i,t} + \sum_{t=1}^{T} Y_{i,t}$$

$$= \sum_{t=1}^{T} P p_{i,t} + D_{i}$$

$$P p_{i,t} = Z_{i,t} + W_{i,t} - Y_{i,t} - 1$$

#### Jeu de données

4 ensembles de 50 instances : Fort. P, Fort. PP, Fort. NP, Unif.

|    | Fort. P | Fort. PP | Fort. NP | Unif. |
|----|---------|----------|----------|-------|
| NP | 10%     | 10%      | 80%      | 33,3% |
| PP | 10%     | 80%      | 10%      | 33,3% |
| P  | 80%     | 10%      | 10%      | 33,3% |

- ▶ 30 activités;  $5 \le D_i \le 10$
- Jusqu'à 15 compétences
- 8 techniciens, chacun maîtrisant entre 5 et 10 compétences
- 8 ressources cumulatives
- ▶ 20% des activités avec fenêtres temporelles
- ▶ 10% des activités avec contraintes de précédence
- ► Horizon de planification entre 70 et 90 unités de temps (heure)

### Résultats numériques

- ► IBM ILOG CPLEX
- ► Time out = 10 mn
- "warm start" (algorithme glouton)

|          | Modèle binaire |           |        | Modèle continu |           |        |
|----------|----------------|-----------|--------|----------------|-----------|--------|
| Jeu      | Nombre         | Temps     | Ecart  | Nombre         | Temps     | Ecart  |
| de       | d'instances    | moyen à   | moyen  | d'instances    | moyen à   | moyen  |
| données  | optimales      | l'optimum |        | optimales      | l'optimum |        |
| Fort. P  | 47             | 110.85 s  | 0.01 % | 46             | 87.39 s   | 0.05 % |
| Fort. PP | 19             | 262.99 s  | 1.68 % | 15             | 154.12 s  | 2.69 % |
| Fort. NP | 0              | _         | 9.43 % | 0              | _         | 9.45 % |
| Unif.    | 18             | 289.35 s  | 1.85 % | 19             | 216.12 s  | 1.99 % |
| Global   | 84             | 183.51 s  | 3.24 % | 80             | 130.48 s  | 3.55 % |

### Modèle PPC (1)

- ▶ IBM ILOG CP Optimizer : variables d'intervalle
- Les variables d'intervalle peuvent être optionnelles
- Deux façons de modéliser les ordonnancements préemptifs avec les variables d'intervalle :
  - Nombre variable de morceaux avec durée variable : le nombre et la taille de chaque intervalle est à décider au moment de résoudre le modèle



Nombre fixe de morceaux de durée unitaire : le nombre d'intervalles pour chaque activité est égal à sa durée



Collaboration avec Philippe Laborie (IBM)

### Modèle PPC (2)

- itvs<sub>i</sub>: variable d'intervalle entre le début et la fin de l'activité i
- par<sub>i,v</sub>: variable d'intervalle indiquant le début et la fin de chaque unité de durée v de l'activité i. Une seule partie pour les activités non-préemptives et D<sub>i</sub> parties pour les autres
- InTechj,i,v: variable d'intervalle optionnelle indiquant les périodes sur lesquelles chaque opérateur travaille (ou pas) sur chaque activité



### comparaison PPC/PLNE

Table 4. Distribution of preemption types per set of instances.

|                      | Set A1 | Set B1 | Set C1 | Set D1 |
|----------------------|--------|--------|--------|--------|
| Non-preemptive       | 10%    | 10%    | 80%    | 33.3%  |
| Partially preemptive | 10%    | 80%    | 10%    | 33.3%  |
| Preemptive           | 80%    | 10%    | 10%    | 33.3%  |

Table 6. Results of MILP and CP models after 10 min of computation using warm start

|        | MILE                 |               |         |                      | CF            |         |
|--------|----------------------|---------------|---------|----------------------|---------------|---------|
|        | Number of instances  | Average time  | Average | Number of instances  | Average time  | Average |
|        | solved to optimality | to optimality | gap     | solved to optimality | to optimality | gap     |
| Set A1 | 46                   | 87.39 s       | 0.05%   | 39                   | 67.17 s       | 0.18%   |
| Set B1 | 15                   | 154.12 s      | 2.69%   | 40                   | 88.01 s       | 0.15%   |
| Set C1 | 0                    | -             | 9.45%   | 41                   | 108.73 s      | 0.39%   |
| Set D1 | 19                   | 216.12 s      | 1.99%   | 40                   | 76.14 s       | 0.21%   |
| All    | 80                   | 130.48 s      | 3.55%   | 160                  | 85;27 s       | 0.23%   |

### Heuristiques : Algorithme glouton + flot

#### Heuristiques: GRASP

#### Algorithm 3: GRASP for the MSPSP-PP

```
1 git \leftarrow 0; fail \leftarrow 0; it \leftarrow 0; fit \leftarrow 0; \varepsilon \leftarrow \emptyset; OLDSIM \leftarrow \infty; OLDFAIL \leftarrow -\infty
2 Choose randomly \alpha and initialise \beta, \delta and \gamma to 0.33;
3 while ait < MAXITER do
        it \leftarrow it + 1 // Iterations counter for parameters
        // Generate initial solution
        Run greedy SGS (algorithm 1) with parameters \alpha, \beta, \delta and \gamma to update the RCL
        if Algorithm 1 found a feasible solution with sequence \sigma then
7
             Run tree-based local search (Algorithm 2) using sequence \sigma for selecting activities:
             Update \varepsilon with \sigma:
             git \leftarrow git + 1
10
        else
             fail \leftarrow fail + 1 // \text{ Fails counter}
11
12
        end
        // Update \alpha, \beta, \delta and \gamma
        if it = NITER then
13
             Update the probability of each \alpha;
14
             if |\Theta| \neq 0 then
15
                  AVSIM \leftarrow \frac{\sum_{\sigma \in \Theta} SIM(\sigma,\Theta)}{|O|};
16
                  if AVSIM < OLDSIM and \delta \le 0.9 then
17
                       \delta \leftarrow \delta + 0.1
18
                  else if \delta > 0.1 then
19
20
                       \delta \leftarrow \delta - 0.1
21
                  end
             end
22
23
             if fail < OLDFAIL then
                 \gamma \leftarrow \gamma - 0.1; fit \leftarrow 0
24
             else if \gamma > 0.9 and fit = NINF then
25
                  exit // fail
26
27
              else if \gamma > 0.9 then
28
                  fit \leftarrow fit + 1
29
              else
30
                 \gamma \leftarrow \gamma + 0.1
31
             \beta \leftarrow 1 - \delta - \gamma; it \leftarrow 0; OLDFAIL \leftarrow fail; fail \leftarrow 0; OLDSIM \leftarrow AVSIM
32
33
        end
34 end
```

### MSPSP avec Préemption Partielle : Exemple

| Activity | Duration | (Required skill,<br>Quantity) | (Required resource,<br>Quantity) | Deadline | Release<br>date | Type                                       |
|----------|----------|-------------------------------|----------------------------------|----------|-----------------|--------------------------------------------|
| $A_1$    | 5        | $(c_1, 1)$                    | $(M_1, 1)$                       | -        | -               | $\overline{P}$                             |
| $A_2$    | 1        | $(c_3,1),(c_4,1)$             | $(M_1,1)$                        | 4        | 3               | $\overline{NP}$                            |
| $A_3$    | 3        | $(c_2, 1)$                    | $(M_1, 1)$                       | -        | -               | $\overline{PP}$ ( $M_1$ cannot be released |
| $A_4$    | 2        | $(c_1, 1)$                    | -                                | -        | 6               | $\overline{NP}$                            |
|          |          | Technician                    | Mastered skills                  |          | Resource        | Capacity                                   |
|          |          | $tech_1$                      | $\{c_1, c_3\}$                   |          | $M_1$           | 2                                          |

| Technician | Mastered skills     | Resource | Capacity |  |
|------------|---------------------|----------|----------|--|
| $tech_1$   | $\{c_1, c_3\}$      | $M_1$    | 2        |  |
| $tech_2$   | $\{c_1, c_2, c_4\}$ |          |          |  |





### Heuristiques: Tree based local search



### Heuristiques: LNS

#### Algorithm 4: LNS for the MSPSP-PP

```
1 Generate initial solution using the multi-pass greedy SGS (Algorithm 1);
2 if a feasible solution has been found then
       Improvement \leftarrow True;
      Define initial time window:
      while Improvement do
          Select activities for the subproblem;
          Construct subproblem;
          Solve subproblem using the CP or MILP exact method (Polo-Mejía et al., 2020);
          if Subproblem solution is improved then
              Include subproblem solution in the global solution;
10
              Reschedule the activities to the right of the current time window with multi-pass
11
                greedy Algorithm 1
          end
12
          if C_{\rm max} is inside the current time window then
13
              if Current Cmax is equal than previous one then
14
15
                  Improvement \leftarrow False;
16
              else
                  Return the time window to period t where first change happened (compared to
17
                   previous solution)
18
              end
19
          else
              Shift time window to start at the middle of the previous one;
20
21
          end
      end
22
23 end
```



# Résultats sur des instances de la littérature non-préemptives

|        | Execution time (sec) |       |                     |  |  |  |
|--------|----------------------|-------|---------------------|--|--|--|
|        | Gap for GRASP        | GRASP | Young et al. (2017) |  |  |  |
| Set 1A | 2.8%                 | 40.3  | 0.5                 |  |  |  |
| Set 1B | 2.3%                 | 151.1 | 536.3               |  |  |  |
| Set 2A | 4.7%                 | 67.6  | 196.6               |  |  |  |
| Set 2B | 4.3%                 | 58.9  | 122.8               |  |  |  |
| Set 2C | 5.21%                | 68.6  | 1.2                 |  |  |  |

56 improved solutions