Predicting Achievement in Mathematics

Presented by: Erica, Melissa, & Jess

Reason for Choosing Mathematics Achievement

- Two of the three members are currently classroom teachers.
- Achievement in mathematics develops critical thinking skills, is essential for many careers, promotes intellectual curiosity, enhances cognitive abilities, and can lead to innovation.
- We were interested in creating a model that could be used to predict achievement so that students could be provided early and targeted intervention.

Description of Data Source

We chose to use a fictional dataset due to the ethical and legal concerns about using real student data. The site we used provides data solely for data science training purpose.

Questions Guiding the Project

Q1: What factors best predict mathematics achievement?

Q2: Are there differences in math achievement by different demographic features?

Data Exploration Phase

- Data cleaning
 - Check for missing values, outliers, & duplicates
 - Data type inspection
- Data transformation
 - Dummy coding categorical features
 - Math score conversion
 - "PASS": score \geq 70 to 1; "FAIL": score \leq 70 to 0
- Data Visualizations
 - Investigate data distribution, correlations, & patterns

Analysis Phase for Q1

- Mock Machine Learning Models
- Hyperparameter Tuning
- Optimization
- Top 3 Models

Model	Accuracy
LogisticRegression	0.891129
Gradient Boosting Classifier	0.870968
KNeighborsClassifier	0.842742

Technologies, Languages, Tools, & Algorithms

PostgreSQL/ PGAdmin

Jupyter Lab/ Notebook

Python

Google Slides

PANDAS

SKlearn

Tableau

SQLAlchemy

Logistic Regression Gradient Boosting
Classifer

KNeighbors Classifier

Google Drive

Optimized Logistic Regression Model: Confusion Matrix

	Predicted Fail	Predicted Pass		
Actual Fail	113 (True Negative)	8 (False Positive)		
Actual Pass	19 (False Negative)	108 (True Positive)		

Optimized Logistic Regression Model: Classification Report

	precision	recall	specificity	f1	geometric mean	Index balanced accuracy (IBA)	# of samples
Fail	0.86	0.93	0.85	0.89	0.89	0.80	121
Pass	0.93	0.85	0.93	0.89	0.89	0.79	127
avg/ total	0.89	0.89	0.89	0.89	0.89	0.79	248

Optimized Logistic Regression Model: Feature Importances

```
Importance
             Feature
          Sex_female
                        0.153848
       Lunch_reduced
                        0.123344
 Test_Prep_completed
                        0.106656
      Test Prep none
                        0.090922
      Lunch standard
                        0.074234
   Ethnicity_group C
                        0.053501
   Ethnicity_group A
                        0.051653
   Ethnicity_group B
                        0.051303
            Sex male
                        0.043731
   Ethnicity_group D
                        0.043321
PLE_bachelor degree
                        0.042782
PLE_some high school
                        0.042444
     PLE high school
                        0.035400
    PLE_some college
                        0.030720
PLE_associate degree
                        0.025032
   PLE_master degree
                        0.021200
       Reading Score
                        0.007707
   Ethnicity_group E
                        0.002200
```

Analysis Phase for Q2

Tableau Interactive Dashboard

Overall Observations

- Math proficiency is:
 - lower for females
 - lower for students receiving free or reduced lunch
 - highest for Ethnic Group E
 - increases as Parent Level of Education increases
 - o higher for students who completed a test prep course

Recommendations for Future Analysis

- Significance testing for different demographic features
- Additional feature analysis
 - Feature binning
- Use real student data

What We Would Do Differently

- Data Cleansing
 - Explore Manual encoding vs. dummy variable encoding to observe the impact on feature importance
- Given more time: use real student data
- Class question: any other ideas for optimization?

Thank you! Any questions?