1.2

Problem

In the following normal-form game, what strategies survive iterated elimination of strictly dominated strategies? What are the pure-strategy Nash equilibria?

	L	C	R
T	2,0	1, 1	4, 2
\overline{M}	3,4	1, 2	2,3
B	1,3	0, 2	3,0

Solution (1)

B is dominated by T:

	L	C	R
\overline{T}	2,0	1, 1	4, 2
M	3,4	1, 2	2,3

 ${\cal C}$ is dominated by ${\cal R}$:

	L	R
\overline{T}	2,0	4, 2
\overline{M}	3,4	2,3

Then we can't eliminate any other strategies

Solution (2)

(T,R) is a pure-strategy Nash equilibrium:

- Player 1 can't be better off (M,B) is 2,3 seperatly)
- Player 2 can't be better off (L,C is 0,1 seperatly)

(M,L) is a pure-strategy Nash equilibrium:

• Player 1 can't be better off (M,B) is 1,2 seperatly)

• Player 2 can't be better off (L, C is 2, 3 seperatly)

1.3

Players 1 and 2 are bargaining over how to split one dollar. Both players simultaneously name shares they would like to have, s_1 and s_2 , where $0 \le s_1, s_2 \le 1$. If $s_1 + s_2 \le 1$, then the players receive the shares they named; if $s_1 + s_2 > 1$, then both players receive zero. What are the pure-strategy Nash equilibria of this game?

Solution

For player 1, given s_2 , he will choose:

$$s_1 = 1 - s_2$$

to maximize his payoff

Similarly, player 2 will choose:

$$s_2 = 1 - s_1$$

Both direct us to:

$$s_1 + s_2 = 1$$

Therefore, any (s_1, s_2) that satisfies this formula is a pure-strategy Nash equilibrium.

Moreover, there's a special case:

$$(s_1, s_2) = (1, 1)$$

In this case:

- ullet when a player want to change to any s>0, the sum is over 1 and he receive zero,
- if he changes to s=0, it satisfies $s_1+s_2\leq 1$ but he chooses 0 so the payoff is 0,

Therefore, he can't be better off.