

Apuntes

Nicolas Muñoz

EDO Licenciatura en Matemática Pontificia Universidad Católica - Chile

19 de agosto de 2025

ÉDO

Índice

1.	Introducción a las EDO's 1.1. Generalidades y Definiciones	
2.	Problemas de Cauchy	3
3.	Métodos de Resolución Explícita para EDOs de Primer Orden3.1. Variables Separables	
4.	Soluciones de EDOs Autónomas de Primer Orden 4.1. Intervalo Maximal de Existencia	3

1. Introducción a las EDO's

1.1. Generalidades y Definiciones

Una **ecuación diferencial ordinaria (EDO)** de orden $k \in N$ es una relación funcional entre la variable real $t \in I$ (donde $I \subset R$ es un intervalo abierto), una función $y : I \to R^m$, y sus derivadas $y', y'', \dots, y^{(k)}$. Esta relación se expresa a través de la fórmula:

$$F(t, y(t), y'(t), \dots, y^{(k)}(t)) = 0, \quad \forall t \in I \quad (*)$$

donde $F: J \times \mathbb{R}^m \times \cdots \times \mathbb{R}^m \to \mathbb{R}^n$ es una función dada.

Una **solución** de la EDO (*) es una función $\phi \in C^k(I; \mathbb{R}^m)$ tal que $F(t, \phi(t), \phi'(t), \dots, \phi^{(k)}(t)) = 0$ para todo $t \in I$.

Se asume que la EDO se puede resolverçon respecto a la derivada de mayor orden $y^{(k)}$, resultando en la forma canónica:

$$y^{(k)}(t) = f(t, y(t), y'(t), \dots, y^{(k-1)}(t)), \quad \forall t \in I$$

donde $f \in C(I \times R^m \times \cdots \times R^m; R^m)$. Esto es una hipótesis razonable por el Teorema de la Función Implícita, asumiendo que $\frac{\partial F}{\partial y^{(k)}} \neq 0$.

Una EDO en su forma canónica se dice **lineal** cuando tiene la forma:

$$y^{(k)}(t) = \sum_{j=0}^{k-1} a_j(t)y^{(j)}(t) + g(t), \quad \forall t \in I$$

donde $a_j \in C(I, M_{m \times m}(R))$ y $g \in C(I; R^m)$ son funciones dadas. Un sistema lineal es:

- **Homogéneo** si $g(t) \equiv 0$.
- **Autónomo** si f no depende de $t \in I$.

1.2. Curiosidades y Reducción de Orden

- 1. Las funciones $\phi_1(t) = e^{-2t}$ y $\phi_2(t) = e^{-3t}$ son soluciones de la EDO y''(t) + 5y'(t) + 6y(t) = 0. Por el principio de superposición, cualquier combinación lineal $c_1\phi_1(t) + c_2\phi_2(t)$ también es una solución, lo que implica infinitas soluciones.
- 2. La única solución real de la EDO $(y(t))^2 + (y'(t))^2 = 0$ para todo $t \in R$ es la función idénticamente nula.
- 3. **Invariancia por traslación:** Si ϕ es una solución de un sistema autónomo, entonces $\overline{\phi}(t) = \phi(t t_0)$ también es una solución para cualquier constante t_0 .
- 4. **Reducción a un sistema autónomo de primer orden:** Cualquier sistema de EDOs se puede reducir a un sistema autónomo del primer orden. Para un sistema de orden $k \geq 2$, se definen nuevas variables $u_0 = y, u_1 = y', \ldots, u_{k-1} = y^{(k-1)}$. Esto lleva a un sistema de primer orden. Si se introduce una variable adicional $u_k = t$, se puede obtener un sistema de primer orden autónomo.

2. Problemas de Cauchy

[Problema de Cauchy (PC)] Un **problema de Cauchy** para un sistema de EDOs de primer orden es un problema de valor inicial que se expresa como:

$$(PC)\begin{cases} y'(t) = f(t, y(t)) & \forall t \in I \\ y(t_0) = y_0 \end{cases}$$

donde $t_0 \in I$ es el punto inicial y $y_0 \in \mathbb{R}^m$ es el valor inicial. Para que la solución sea única, se necesita agregar una condición inicial.

Para EDOs de orden superior, el problema de Cauchy incluye condiciones iniciales para la función y sus primeras k-1 derivadas.

$$\begin{cases} y^{(k)}(t) = f(t, y(t), y'(t), \dots, y^{(k-1)}(t)) & \forall t \in I \\ y(t_0) = y_0, y'(t_0) = y_1, \dots, y^{(k-1)}(t_0) = y_{k-1} \end{cases}$$

3. Resolución para EDOs de Primer Orden

3.1. Variables Separables

Una EDO de variables separables tiene la forma y' = g(t)/h(y), donde g y h son funciones continuas y $h(y) \neq 0$. La solución se encuentra al separar las variables e integrar:

$$h(\phi(t))\phi'(t) = g(t) \Rightarrow \int h(y)dy = \int g(t)dt + C$$

Esto da una representación implícita de la solución.

3.2. EDOs Lineales de Primer Orden

Una EDO lineal de primer orden tiene la forma y'(t) + p(t)y(t) = f(t). El método de resolución implica dos pasos:

- 1. **Resolver la ecuación homogénea asociada:** y'(t) + p(t)y(t) = 0. La solución homogénea es $y_h(t) = Ce^{-\int p(t)dt}$.
- 2. **Encontrar una solución particular:** Una solución particular $y_p(t)$ se encuentra multiplicando la ecuación no-homogénea por el factor integrante $e^{\int p(t)dt}$ y luego integrando. La solución general es la suma de las soluciones homogénea y particular: $y(t) = y_h(t) + y_p(t)$.

4. Soluciones de EDOs Autónomas de Primer Orden

Para una EDO autónoma de primer orden de la forma y'(t) = f(y(t)) con una condición inicial $y(0) = y_0$. Si $f(y_0) \neq 0$, se puede encontrar una solución única al integrar la ecuación $\frac{y'(t)}{f(y(t))} = 1$. Esto lleva a la expresión $\int_{y_0}^{y(t)} \frac{du}{f(u)} = t$. Si $\psi(y) = \int_{y_0}^{y} \frac{du}{f(u)}$, la solución es $\phi(t) = \psi^{-1}(t)$. Si $f: I \to R$ es continua y $y_0 \in I$ tal que $f(y_0) \neq 0$, la solución al problema de valor inicial es monótona en su intervalo de definición.

4.1. Intervalo Maximal de Existencia

El intervalo de existencia de la solución puede ser finito. Por ejemplo, en el caso de $y'=y^2$ con $y(0)=y_0>0$, la solución es $\phi(t)=\frac{y_0}{1-y_0t}$, que solo existe en el intervalo $(-\infty,1/y_0)$ y .explota.en $t=1/y_0$. Este es un ejemplo de una **solución maximal**.

Es importante notar que las soluciones pueden no ser únicas si $f(y_0) = 0$ en la condición inicial.