

IN THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A method of setting a timer associated with a protocol supporting a data link in a digital mobile communication system in a connection section comprising a transmitting party and a receiving party, in which method an initial value (S_0) has been defined for the timer,

~~characterized by~~

the method comprising:

at least one of the parties monitoring if ~~a~~ the need to change the timer value has arisen; and

setting the timer value (S) to a value deviating from the initial value (S_0), should such a need be detected;

wherein said need to change the timer value is determined repeatedly during a connection, in response to a handover.

2. (Cancelled)

3. (Cancelled)

4. (Currently Amended) A method as claimed in ~~any one of the preceding claims~~ claim 1, characterized by said setting of the timer value (S) comprising the ~~a~~ measurement of the ~~a~~ propagation delay (D) associated with the connection section.

5. (Currently Amended) A method as claimed in claim 4, characterized in that should the ~~a~~ need to decrease the timer value (S) be detected, the timer value is decreased by a first step (ΔS_1) which is substantially lower than the difference between the measured propagation delay (D) and the current timer value (S).

6. (Currently Amended) A method as claimed in claim 4, characterized in that should the ~~a~~ need to increase the timer value (S) be detected, the timer value is increased by a second step (ΔS_2) which is substantially higher than the difference between the measured propagation delay (D) and the current timer value (S).

7. (Currently Amended) A method as claimed in claim 4, characterized by said measurement of the propagation delay (D) comprising the steps of:

either party to the connection transmitting to the other party a frame (F) which is selected/formed such that the party receiving the frame sends an acknowledgement (Aek) to the transmitting party; and

the party which transmitted the frame measuring the time from the moment of transmission of the frame (F) to the arrival of the acknowledgement (Aek) and deducing the propagation delay (D) therefrom.

8. (Currently Amended) A method as claimed in claim 1, characterized by A method of setting a timer associated with a protocol supporting a data link in a digital mobile communication system in a connection section comprising a transmitting party and a receiving party, in which method an initial value has been defined for the timer,

the method comprising at least one of the parties monitoring if a need to change the timer value has arisen; and

setting the timer value to a value deviating from the initial value, should such a need be detected,

wherein said need to change the timer value being is detected from a separate parameter which is read from a database or received from the other party to the connection section at the start of the connection and/or when connection quality changes, such as in handover.

9. (Currently Amended) A method as claimed in claim 8, characterized by wherein said parameter indicating if the connection section is set up via a satellite or not.

10. (Currently Amended) A method as claimed in claim 1, characterized by A method of setting a timer associated with a protocol supporting a data link in a digital mobile communication system in a connection section comprising a transmitting party and a receiving party, in which method an initial value has been defined for the timer,

the method comprising:

at least one of the parties monitoring if a need to change the timer value has arisen;
and

setting the timer value to a value deviating from the initial value, should such a need be detected,

wherein said need to change the timer value being detected on the basis of the location of the mobile station.

11. (Currently Amended) An equipment (MSC/IWF, MS) for setting a timer

associated with a protocol supporting a data link in a digital mobile communication system in a connection section whose first party is said equipment (~~MSC/IWF, MS~~) and which also comprises a second party, (~~MSC/IWF, MS~~) the equipment being adapted to set a predetermined initial value (S_0) to the timer,

characterized by

the equipment comprising:

at least one party being adapted to monitor if the need to change the current timer value (S) has arisen; and

the equipment being adapted to set the current timer value to a value deviating from the initial value (S_0), should such a need be detected, repeatedly during a connection, in response to a handover.

12. (Currently Amended) An equipment as claimed in claim 11, characterized by being wherein the equipment is a mobile switching centre (~~MSC(IWF)~~).

13. (Currently Amended) An equipment as claimed in claim 12, characterized by An equipment for setting a timer associated with a protocol supporting a data link in a digital mobile communication system in a connection section whose first party is said equipment and which also comprises a second party

the equipment being adapted to set a predetermined initial value to the timer,

the equipment comprising:

at least one party being adapted to monitor if a need to change the current timer value has arisen; and

the equipment being adapted to set the current timer value to a value deviating from the initial value, should such a need be detected

the equipment further comprising or having associated with it a data base (DB) comprising a plurality of different cell, location area and/or base station controller-specific timer values (S).

14. (Currently Amended) An equipment as claimed in claim 11, characterized by being wherein the equipment is a mobile station (~~MS~~).