Caleb Logemann, James Rossmanith

Introducti

Denvatio

Convectio

Numerical Result

Travelling Waves

C---I....

Reference

Discontinuous Galerkin Method for Solving Thin Film Equations

Caleb Logemann James Rossmanith

Mathematics Department, Iowa State University

logemann@iastate.edu

May 10, 2019

Overview

Caleb Logemann James Rossmanith

Introducti

Derivation

Method

Convection Diffusion

Numerical Resul Travelling Waves

Conclusion

- 1 Introduction
- 2 Derivation
- 3 Method
 - Convection
 - Diffusion
- 4 Numerical Results
 - Travelling Waves
- 5 Conclusion

Motivation

Caleb Logemann, James Rossmanith

Introduction

Denvatio

Convection

Numerical Result

Conclusion

5.6

■ Aircraft Icing

Runback

■ Industrial Coating

Model Equations

Caleb Logemann James Rossmanith

Introduction

Derivation

Convection

Numerical Result

Conclusion

Reference

Incompressible Navier-Stokes Equation

$$\begin{aligned} u_x + w_z &= 0 \\ \rho(u_t + uu_x + wu_z) &= -p_x + \mu \Delta u - \phi_x \\ \rho(w_t + uw_x + ww_z) &= -p_z + \mu \Delta w - \phi_z \\ w &= 0, u = 0 & \text{at } z = 0 \\ w &= h_t + uh_x & \text{at } z = h \end{aligned}$$

$$\mathbf{T} \cdot \mathbf{n} = (-\kappa \sigma + \Pi)\mathbf{n} + \left(\frac{\partial \sigma}{\partial s} + \tau\right)\mathbf{t} \quad \text{at } z = h$$

Nondimensionalization

Caleb Logemann James Rossmanith

Introduction

Derivation

Convection

Numerical Result

Travelling Wave

. . . .

Reference:

$$\varepsilon = \frac{h_0}{\lambda} \ll 1 \qquad Z = \frac{z}{h_0} \qquad X = \frac{\varepsilon x}{h_0}$$

$$U = \frac{u}{U_0} \qquad W = \frac{w}{\varepsilon U_0} \qquad T = \frac{\varepsilon U_0}{h_0}$$

Nondimensionalization

Caleb Logemann James Rossmanith

Introduction

Derivation

Convection

Numerical Resul

. . .

Conclusion

$$U_X + W_Z = 0$$

$$\varepsilon Re(U_T + UU_X + WU_Z) = -P_X + U_{ZZ} + \varepsilon^2 U_{XX} - \Phi_X$$

$$\varepsilon^3 Re(W_T + WW_X + WW_Z) = -P_Z + \varepsilon^2 (W_{ZZ} + \varepsilon^2 W_{XX}) - \Phi_Z$$

$$W = 0, U = 0 \qquad \text{at } Z = 0$$

$$W = H_T + UH_X \qquad \text{at } Z = H$$

$$U_Z + \varepsilon^2 W_X - 4\varepsilon^2 H_X U_X = \tau + \Sigma_X \qquad \text{at } Z = H$$

$$-P - \Pi + \varepsilon^2 U_X (\varepsilon^2 H_X^2 - 1) = \varepsilon^2 H_X (U_Z + \varepsilon^2 W_X) + C^{-1} \varepsilon^3 H_{XX} \qquad \text{at } Z = H$$

Caleb Logeman James Rossmanith

Derivation

Metho

Diffusion

Travelling Waves

Conclusio

References

Take $\varepsilon \to 0$,

$$U_X + W_Z = 0$$

$$U_{ZZ} = P_X + \Phi_X$$

$$0 = -P_Z - \Phi_Z$$

$$W = 0$$
 at $Z = 0$
 $U = 0$

$$W=H_T+UH_X$$
 at $Z=H$
$$U_Z= au_0+\Sigma_X \ -\Pi_0-P=ar{C}^{-1}H_{XX}$$

Caleb Logeman James Rossmanith

Introduct

Derivation

Convectio

Travelling Waves

Conclusion

Reference

Integrate over Z and simplify

$$0 = H_T + \left(\int_0^H U \, dZ\right)_X$$

$$P + \Phi = \Phi|_{Z=H} - C^{-1}H_{XX} - \Pi$$

$$U = (\tau + \Sigma_X)Z - (P_X + \Phi_X)\left(HZ - \frac{1}{2}Z^2\right)$$

$$0 = H_T + \left((\tau + \Sigma_X)\frac{1}{2}H^2 - (P_X + \Phi_X)\frac{1}{3}H^3\right)_X$$

$$P_X + \Phi_X = (\Phi|_{Z=H} - \Pi)_X - C^{-1}H_{XXX}$$

$$H_T + \left(\frac{1}{2}(\tau+\Sigma_X)H^2 - \frac{1}{3}\big(\Phi|_{Z=H} - \Pi\big)_X H^3\right)_X = -\frac{1}{3}C^{-1}\big(H^3H_{XXX}\big)_X$$

Operator Splitting

Caleb Logemann James Rossmanith

Introduction

Method

Convect

Numerical Result

Travelling Waves

Reference

Simplified Model

$$q_t + (q^2 - q^3)_x = -(q^3 q_{xxx})_x$$
 $(0, T) \times \Omega$

Operator Splitting

$$q_t + (q^2 - q^3)_x = 0$$
$$q_t + (q^3 u_{xxx})_x = 0$$

Strang Splitting $\frac{1}{2}\Delta t$ step of Convection

$$q_t + \left(q^2 - q^3\right)_x = 0$$

 Δt step of Diffusion

$$q_t + (q^3 u_{xxx})_x = 0$$

 $\frac{1}{2}\Delta t$ step of Convection

$$q_t + \left(q^2 - q^3\right)_x = 0$$

Convection

Caleb Logemann James Rossmanith

Introducti

Derivation

Method Convection

Diffusion

Numerical Result

Travelling vvaves

Conclusion

Reference

Convection Equation

$$q_t + f(q)_x = 0$$
 $(0, T) \times \Omega$
 $f(q) = q^2 - q^3$

Weak Form Find q such that

$$\int_{\Omega} (q_t v - f(q)v_x) \, \mathrm{d}x + \left. \hat{f} v \right|_{\partial\Omega} = 0$$

for all test functions v

Notation

Caleb Logemann James Rossmanith

Introduction

Derivation

Convection

Numerical Resul

Travelling Waves

Reference:

■ Partition the domain, [a, b] as

$$a = x_{1/2} < \cdots < x_{j-1/2} < x_{j+1/2} < \cdots < x_{N+1/2} = b$$

- $I_j = [x_{j-1/2}, x_{j+1/2}]$
- $x_j = \frac{x_{j+1/2} + x_{j-1/2}}{2}.$

Runge Kutta Discontinuous Galerkin

Caleb Logemani James Rossmanith

Introduct

Derivatio

Metho

Convection

Numerical Results

Reference

$$\begin{split} \int_{I_j} Q_t v \, \mathrm{d}x &= \int_{I_j} f(Q) v_x \, \mathrm{d}x \\ &- \left(\mathcal{F}_{j+1/2} v^-(x_{j+1/2}) - \mathcal{F}_{j-1/2} v^+(x_{j-1/2}) \right) \end{split}$$

for all $v \in V_h$

Rusanov/Local Lax-Friedrichs Numerical Flux

$$\mathcal{F}_{j+1/2} = \frac{1}{2} \big(f \big(Q_{j+1/2}^- \big) + f \big(Q_{j+1/2}^+ \big) \big) + \frac{1}{2} \max_q \big\{ \big| f'(q) \big| \big\} \big(Q_{j+1/2}^- - Q_{j+1/2}^+ \big)$$

 Solve this system of ODEs with any Explicit Strong Stability Preserving (SSP) Runge-Kutta Method.

Explicit SSP Runge Kutta Methods

Convection

Forward Euler

$$q^{n+1} = q^n + \Delta t L(q^n)$$

Second Order

$$egin{aligned} q^\star &= q^n + \Delta t \mathcal{L}(q^n) \ q^{n+1} &= rac{1}{2}(q^n + q^\star) + rac{1}{2}\Delta t \mathcal{L}(q^\star) \end{aligned}$$

Diffusion

Caleb Logemann James Rossmanith

Introducti

Derivation

Convection

Diffusion

Numerical Result

Travelling Wave

_ .

Diffusion Equation

$$q_t = -(q^3 q_{xxx})_x \qquad (0, T) \times \Omega$$

• Linearize operator at $t = t^n$, let $f(x) = q^3(t = t^n, x)$

$$q_t = -(f(x)q_{xxx})_x \qquad (0, T) \times \Omega$$

Finite Difference Approach

Caleb Logemann James Rossmanith

Introduct

Derivatio

Method Convection Diffusion

Numerical Result

Travelling Waves

Reference

- Let cell centers, x_i , form finite difference grid.
- Finite difference space, \mathbb{R}^N .
- $Q_{DG} \in V_h \rightarrow Q_{FD} \in \mathbb{R}^N$

$$(Q_{FD})_i = \frac{1}{h} \int_{K_i} Q_{DG} \, \mathrm{d}x$$

 $lacksquare Q_{FD} \in \mathbb{R}^N o Q_{DG} \in V_h$

$$egin{aligned} Q_{DG}|_K &\in P^1(K) \ rac{1}{h} \int_{K_i} Q_{DG} \, \mathrm{d}x &= (Q_{FD})_i \ \partial_x Q_{DG}|_{K_i} &= rac{(Q_{FD})_{i+1} - (Q_{FD})_{i-1}}{2h} \end{aligned}$$

Finite Difference Approximation

Caleb Logemann James Rossmanith

Introducti

Derivatio

Method

Convection

Diffusion

Numerical Result

Travelling Waves

Reference

■ First derivative approximation

$$(-(f(x)q_{xxx})_x)_i \approx -\frac{f_{i+1/2}(q_{xxx})_{i+1/2} - f_{i-1/2}(q_{xxx})_{i-1/2}}{h}$$

Third derivative approximation

$$(q_{xxx})_{i+1/2} \approx \frac{-Q_{i-1} + 3Q_i - 3Q_{i+1} + Q_{i+2}}{h^3}$$

■ Value of Q³ at boundary

$$f_{i+1/2} = q_{i+1/2}^3 = \left(\frac{Q_i + Q_{i+1}}{2}\right)^3$$

■ Full operator

$$L(q^{n+1}) = L(f = (q^{n+1})^3, q^{n+1}) = Aq^{n+1}$$

Implicit L-Stable Runge Kutta

Caleb Logemann James Rossmanith

Introducti

Derivation

Method

Convection Diffusion

Numerical Results

Travelling Waves

References

Backward Euler

$$q^{n+1} = q^n + \Delta t L(q^{n+1})$$

■ 2nd Order

$$q^* = q^n + \frac{1}{4}\Delta t(L(q^n) + L(q^*))$$

 $3q^{n+1} = 4q^* - q^n + \Delta t L(q^{n+1})$

Nonlinear Solvers

Caleb Logemanr James Rossmanith

Introducti

Derivatio

Method

Convectio Diffusion

Numerical Resul

Travelling Waves

References

Picard Iteration

$$q_0^{n+1} = q^n$$

$$q_{m+1}^{n+1} = q^n + \Delta t L \Big(f = (q_m^{n+1})^3, q_{m+1}^{n+1} \Big)$$

$$q_{m+1}^{\star} = q^n + \frac{1}{4}\Delta t \Big(L(q^n) + L\Big(f = (q_m^{\star})^3, q_{m+1}^{\star} \Big) \Big)$$

 $3q_{m+1}^{n+1} = 4q^{\star} - q^n + \Delta t L\Big(f = (q_m^{n+1})^3, q_{m+1}^{n+1} \Big)$

Manufactured Solution

Caleb Logemanr James Rossmanith

Introducti

Derivation

Method Convection

Numerical Results

Travelling vvav

$$q_{t} + (q^{2} - q^{3})_{x} = -(q^{3}q_{xxx})_{x} + s(x, t)$$

$$q_{t} + (q^{2} - q^{3})_{x} = s(x, t)$$

$$q_{t} = -(q^{3}q_{xxx})_{x}$$

$$q(x, t) = 0.1 * \sin(2\pi(x - t)) + 0.15$$

Backward Euler					
	1 Itera	tion	2 Iterations		
Ν	error	order	error	order	
25	0.1529	_	0.0776	_	
50	0.05334	1.52	0.0370	1.06	
100	0.02374	1.16	0.0177	1.06	
200	0.01186	1.00	0.0091	0.95	

Manufactured Solution

Caleb Logemann James Rossmanith

Introducti

Derivation

Method

Convection

Diffusion

Numerical Results

Travelling Waves

Conclusion

$$\begin{aligned} q_t + \left(q^2 - q^3\right)_x &= -\left(q^3 q_{xxx}\right)_x + s(x, t) \\ q_t + \left(q^2 - q^3\right)_x &= s(x, t) \\ q_t &= -\left(q^3 q_{xxx}\right)_x \\ q(x, t) &= 0.1 * \sin(2\pi(x - t)) + 0.15 \end{aligned}$$

2nd Order IRK						
	1 Iteration		2 Iterations		3 Iterations	
N	error	order	error	order	error	order
25	0.03449	_	0.02890	_	0.03103	_
50	0.01061	1.70	0.00875	1.72	0.00910	1.77
100	0.00330	1.68	0.00197	2.14	0.00202	2.17
200	0.00143	1.20	0.00051	1.96	0.00051	1.98

Manufactured Solution

Caleb Logemann James Rossmanith

Introducti

Derivation

Method Convection

Numerical Results

Travelling Wave

Conclusion

$q_t + \left(q^2 - q^3\right)_x = -\left(\frac{1}{2}\right)_x = -\left(\frac{1}{2}\right)_x$	
$q_t + (q^2 - q^3)_x = s(x)$ $q_t = -(x)$	
,	$e^{-10\left(x-t-\frac{3}{2}\right)^2}+\frac{1}{10}$
2nd Orde	er IRK
1 Itaration	2 Itarations

	2nd Order IKK					
	1 Iteration		2 Iterations			
N	error	order	error	order		
50	0.05609	_	0.3808	_		
100	0.04178	0.42	0.2335	0.7		
200	0.01182	1.82	0.0429	2.44		
400	0.00612	0.94	0.0104	2.04		
800			0.0026	2.03		

Hyperbolic Wave Structure

Caleb Logemann James Rossmanith

Introduction

Derivatio

Method Convectio

Numerical Result

Travelling Waves

.

References

Conservation Law

$$q_t + f(q)_{\mathsf{x}} = 0$$

Riemann Problem Initial Data

$$q(x,0) = \begin{cases} q_l & x < d \\ q_r & x > d \end{cases}$$

■ Rankine-Hugoniot Condition

$$s = \frac{f(q_l) - f(q_r)}{q_l - q_r}$$

Convex Flux Function

Caleb Logemann James Rossmanith

Introducti

Derivation

Method

Convection Diffusion

Numerical Resu

Travelling Waves

D-f----

■ Shock Wave

Rarefaction

$$f'(q_I) < s < f'(q_r)$$
Rarefaction Characteristics
Rarefaction
 $\frac{q}{2s}$
 $\frac{1}{s}$
 $\frac{1}{s}$

Nonconvex Flux Function

aleb Logemann James Rossmanith

Introductio

Derivation

Method Convection

Numerical Result

Travelling Waves

Nonconvex Flux Function

Caleb Logemanr James Rossmanith

Introduction

Derivation

Method Convection

Numerical Result

Travelling Waves

.....

Compressive Shock

Caleb Logemann James Rossmanith

Introduction

Derivation

Method

Convection Diffusion

Numerical Result

Travelling Waves

. . .

Rarefaction-Compressive Shock

Caleb Logemanr James Rossmanith

Introduction

Derivation

Method Convectio

Numerical Resu

Travelling Waves

.....

Caleb Logemann James Rossmanith

Introduction

Derivation

Method

Diffusion

Numerical Result

Travelling Waves

Conclusion

40

x - st

60

80

100

0.15 -0.10 -0.05 -

20

 $q_t + (q^2 - q^3)_x = -(q^3 q_{xxx})_x$ $q_t = 0.1$ $q_l = 0.3$

Caleb Logemanr James Rossmanith

Introduction

Denvacion

Convection

Numerical Result

Travelling Waves

Conclusion

$$q_r = 0.1$$
 $q_l = 0.3323$ $q(x,0) = (-\tanh(x-50)+1)\frac{q_l-q_r}{2}+q_r$

Caleb Logemanr James Rossmanith

Introducti

Derivation

Convection

Numerical Results

Travelling Waves

$$q_r = 0.1 \qquad q_l = 0.3323 \qquad q_m = 0.6$$

$$q(x,0) = \begin{cases} \frac{q_m - q_l}{2} \tanh(x - 50) + \frac{q_m + q_l}{2} & x < 55 \\ -\frac{q_m - q_r}{2} \tanh(x - 60) + \frac{q_m + q_r}{2} + q_r & x > 55 \end{cases}$$

Caleb Logemanr James Rossmanith

Introduction

Derivation

Method Convection

Numerical Result

Travelling Waves

$$q_r = 0.1$$
 $q_l = 0.4$ $q(x,0) = (-\tanh(x-50)+1) \frac{q_l-q_r}{2} + q_r$

Caleb Logemanr James Rossmanith

Introduction

Derivation

Method Convection

Numerical Results

Travelling Waves

$$q_r = 0.1$$
 $q_l = 0.8$ $q(x,0) = (-\tanh(x-1100)+1) \frac{q_l-q_r}{2} + q_r$

Conclusion

Caleb Logemanr James Rossmanith

Introduction

Derivatio

Convec

Numerical Resul

Travelling Waves

Conclusion

Reference

Observations

Nonlinear Hyper Diffusion has subtle instabilities

Future Work

- Higher Order Convergence
 - Runge Kutta IMEX
 - Local Discontinuous Galerkin Method
 - Hybridized Discontinuous Galerkin Method

Bibliography I

Caleb Logemann James Rossmanith

Introducti

Method Convection

Numerical Resul Travelling Waves

Conclusion

- [1] Andrea L Bertozzi, Andreas Münch, and Michael Shearer. "Undercompressive shocks in thin film flows". In: *Physica D: Nonlinear Phenomena* 134.4 (1999), pp. 431–464.
- [2] Y. Ha, Y.-J. Kim, and T.G. Myers. "On the numerical solution of a driven thin film equation". In: J. Comp. Phys. 227.15 (2008), pp. 7246–7263.
- [3] T.G. Myers and J.P.F. Charpin. "A mathematical model for atmospheric ice accretion and water flow on a cold surface". In: *Int. J. Heat and Mass Transfer* 47.25 (2004), pp. 5483–5500.
- [4] Tim G Myers. "Thin films with high surface tension". In: *SIAM review* 40.3 (1998), pp. 441–462.
- [5] NASA. URL: http://icebox.grc.nasa.gov/gallery/ images/C95_03918.html.

Bibliography II

Caleb Logemanr James Rossmanith

Introducti

Derivation

Method Convection

Numerical Resul

Conclusion

Conclusion

- [6] Alexander Oron, Stephen H Davis, and S George Bankoff. "Long-scale evolution of thin liquid films". In: Reviews of modern physics 69.3 (1997), p. 931.
- [7] J.A. Rossmanith. DoGPACK. Available from http://www.dogpack-code.org/.