

UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA KATEDRA ZA PRIMENJENE RAČUNARSKE NAUKE

Modeli podataka

Specifikacija šeme baze podataka

Sadržaj

- Pojam modela podataka
- Strukturalna komponenta MP
- Integritetna komponenta MP
- Operacijska komponenta MP
- Nivoi apstrakcije
- Modeli podataka

- Model podataka (MP)
 - matematička apstrakcija
 - putem koje se gradi
 - šema baze podataka, koja treba da predstavlja
 - model baze podataka informacionog sistema
 - > pogled na strukture (model) posmatranog dela realnog sistema
 - služi za predstavljanje
 - šeme baze podataka realnog sistema
 - ograničenja u odnosima između podataka o stanjima realnog sistema
 - b dinamike izmene stanja realnog sistema, putem operacija nad podacima

- Model podataka (MP)
 - trojka

(S, I, O)

- S strukturalna komponenta
 - omogućava modeliranje statičke strukture šeme BP
- ► *I* integritetna komponenta
 - omogućava modeliranje ograničenja nad podacima u BP
- ▶ *O* operacijska komponenta
 - modeliranje dinamike izmene stanja
 - podataka u BP i
 - > same šeme BP

Sadržaj

- Pojam modela podataka
- Strukturalna komponenta MP
- Integritetna komponenta MP
- Operacijska komponenta MP
- Nivoi apstrakcije
- Modeli podataka

Strukturalna komponenta MP

Koncept

- apstraktna (i formalna) predstava jedne klase pojmova
 - kojima se modeluju delovi realnog sveta

Primitivni (atomični) koncept

- uvodi se i postoji "per se"
 - percipira se njegova semantika u realnom svetu
- ne može se dalje dekomponovati na koncepte nižeg reda
 - primitivni pojam, za koji najčešće nije moguće uvesti formalnu definiciju

Strukturalna komponenta MP

- Strukturalna komponenta sadrži
 - skup primitivnih koncepata
 - > sa skupom datih osobina svakog koncepta,
 - skupom pravila (definicija i šablona) za njihovo korišćenje i
 - opisanom mogućom semantikom
 - skup formalnih pravila za kreiranje složenih koncepata
 - polazeći od primitivnih koncepata ili prethodno definisanih složenih koncepata
 - omogućava proširivanje inicijalno definisanog MP
 - skup unapred kreiranih složenih koncepata
 - sa skupom datih osobina svakog koncepta,
 - skupom pravila (definicija i šablona) za njihovo korišćenje i
 - opisanom mogućom semantikom

Sadržaj

- Pojam modela podataka
- Strukturalna komponenta MP
- ► Integritetna komponenta MP
- Operacijska komponenta MP
- Nivoi apstrakcije
- Modeli podataka

Integritetna komponenta MP

- Integritetna komponenta sadrži
 - skup tipova ograničenja (uslova integriteta) sa
 - skupom datih osobina svakog tipa ograničenja, koje uključuju pravila
 - formalnog specificiranja i
 - ▶ interpretacije (validacije, provere zadovoljenja)
 - skupom pravila (definicija i šablona) za njihovo korišćenje i
 - opisanom mogućom semantikom
 - skup formalnih pravila za izvođenje zaključaka o važenju ograničenja
 - skup formalnih pravila za kreiranje novih tipova ograničenja
 - polazeći od poznatih koncepata
 - omogućava proširivanje inicijalno definisanog MP

Integritetna komponenta MP

- Pomoću tipova ograničenja iskazuju se konkretna ograničenja koja se odnose na
 - moguće vrednosti obeležja (podataka) ili
 - moguće odnose između pojava povezanih tipova
- Primeri
 - ograničenje ključa (integritet entiteta)
 - ► Radnik({MBR, PRZ, IME, JMBG}, {MBR, JMBG})
 - Kardinalitet tipa poveznika
 - jedan nastavnik može predavati najviše jedan predmet
 - student iz jednog predmeta ima najviše jednu ocenu

Integritetna komponenta MP

- Validacija ograničenja provera važenja ograničenja
 - može se ugraditi u
 - ▶ transakcione programe, ili
 - specifikaciju šeme baze podataka, sa implementacijom u okviru SUBP
 - ▶ tako da SUBP vrši automatsku proveru zadovoljenja
 - Rešenje kojem se može težiti
 - > sva ograničenja podataka ugraditi u šemu BP i prepustiti proveru SUBP-u
 - pojedina ograničenja ugraditi i u transakcione programe
 - u cilju poboljšanja udobnosti rada korisnika
 - kada je UI transakcionog programa sposoban da "trenutno" odreaguje na pokušaj narušavanja ograničenja

Sadržaj

- Pojam modela podataka
- Strukturalna komponenta MP
- Integritetna komponenta MP
- Operacijska komponenta MP
- Nivoi apstrakcije
- Modeli podataka

- Operacijska komponenta
 - modeliranje dinamike izmene stanja u sistemu BP
 - skup tipova operacija sa
 - skupom datih osobina svakog tipa operacije, koje uključuju pravila
 - formalnog specificiranja i
 - izvršenja nad podacima
 - skupom pravila (definicija i šablona) za njihovo korišćenje i
 - opisanom mogućom semantikom
 - definiše
 - upitni jezik / jezike
 - jezik / jezike za manipulisanje podacima i
 - jezik / jezike za definiciju podataka

- Upitni jezik
 - Query Language (QL)
 - tipovi operacija za iskazivanje upita (selekcije podataka) nad BP
- Jezik za manipulisanje podacima
 - Data Manipulation Language (DML)
 - tipovi operacija za izmenu stanja BP (ažuriranje)
 - u cilju praćenja izmena stanja podataka u realnom sistemu

- Jezik za definiciju podataka
 - Data Definition Language (DDL)
 - tipovi operacija za kreiranje i modifikaciju specifikacija
 - šeme BP
 - fizičke strukture BP
 - prava pristupa i zaštite BP
 - ▶ novih tipova operacija (programa) za upravljanje podacima

- Specifikacija operacije sadrži komponente
 - aktivnost
 - specifikacija akcije nad podacima u BP
 - selekcija
 - > specifikacija dela BP (u DML i QL) ili dela šeme BP (u DDL), nad kojim se sprovodi specificirana aktivnost

- Primer:
 - ► TE Radnik({MBR, IME, PRZ, ZAN}, {MBR})
 - selekcioni izraz
 - ► IME = 'Ivo' AND ZAN IN ['Inženjer', 'Ekonomista']
 - primer u jeziku SQL

SELECT MBR, PRZ, IME, ZAN
FROM Radnik
WHERE PRZ LIKE 'Petr%' AND MBR > 100

- Operacijska komponenta može biti
 - proceduralna (navigaciona)
 - selekcija vrši izbor jednog objekta iz BP
 - selekcija se vrši putem indikatora aktuelnosti, ili putem odnosa između podataka
 - proceduralnost sa programskim petljama i uslovnim grananjima
 - definiše se ŠTA i KAKO
 - specifikaciona (deklarativna)
 - selekcija vrši izbor skupa objekata iz BP
 - selekcija se vrši na osnovu vrednosti obeležja
 - neproceduralnost
 - definise se samo ŠTA

Sadržaj

- Pojam modela podataka
- Strukturalna komponenta MP
- Integritetna komponenta MP
- Operacijska komponenta MP
- Nivoi apstrakcije
- Modeli podataka

- Nivoi apstrakcije
 - određeni modelom podataka
 - nivo intenzije (konteksta)
 - ▶ nivo tipa
 - ▶ npr. nivo logičke strukture obeležja šeme
 - nivo ekstenzije (konkretizacije)
 - nivo pojave tipa
 - ▶ npr. nivo logičke strukture podataka

				KADPKOJ				
RAD	NIK			N	1BR	SPR	BR	C
MBR	IME	PRZ	SEF	1	01	11	5	
101	Ana				101	14	21	
102	Aca	PR	OJEK.	AF 1	102	14	15	5 /
110	Ivo	SPF	RINA	4P ;	MAR	RUK	0	
111	Olja	11	X	25	170	101	9	
		13	Pole	aris	120	110		
			Uni			101		

RADDROI

- Nivoi apstrakcije
 - Primer 1:
 - ▶ nivo intenzije: tip entiteta *Projekat*

 \triangleright nivo ekstenzije: skup pojava tipa entiteta SP(N)

Projekat

Projekat

SPR	NAP	NAR	RUK			
11	X25	10	101			
13	Polaris	20	110			
14 l	Jniv. IS	30	101			

- Primer 2:
 - ▶ nivo intenzije: tip entiteta

N(Q, C)

▶ nivo ekstenzije: tip entiteta *Projekat*

Projekat

Tip entiteta N(Q, C)

Apstraktna predstava

Studenti

BRI IME PRZ BPI

BRI IME PRZ BPI Nastavnici

Apstraktna predstava

Deo realnog sveta

- Nivoi apstrakcije
 - u oblasti modelovanja sistema pa i sistema BP,
 - prema Unified Modeling Language (UML)

Koncept tipa i pojave (nečega)

Meta Level 3 Nivo tipova, pojava i MOF

> Meta Level 2 Nivo koncepata i MP

Koncept tip entiteta

Meta Level 1 Nivo LSO i šeme BP

Konkretni tip entiteta N

Meta Level 0 Nivo LSP i FSP, BP Eclipse Modeling Framework (EMF) - Ecore

Tip entiteta N(Q, C)

Studenti

BRI IME PRZ BPI GOD

SV13 Ana Sin 7 2

Pojava konkretnog tipa entiteta N, p(N)

Primer

M3

Eclipse Modeling Framework (EMF) - Ecore

M2

Tip entiteta N(Q, C)

Studenti

M1

BRI IME PRZ BPI GOD

Nastavnici

Studenti

Predmeti

M0

BRI	IME	PRZ	BPI	GOD
SV59	Ivo	Ban	10	3
SV71	Eva	Kim	13	3
SV13	Ana	Sin	7	2
SV15	Ena	Kon	17	4

Nivo tipova, pojava i MOF

Nivo koncepata i MP

LSO

LSP

Sadržaj

- Pojam modela podataka
- Strukturalna komponenta MP
- Integritetna komponenta MP
- Operacijska komponenta MP
- Nivoi apstrakcije
- Modeli podataka

- Model tipova entiteta i poveznika (ER)
- Mrežni model
- Hijerarhijski model
- Relacioni model
- Logički i verovatnosni (fuzzy) logički modeli
- Objektno orijentisani model
- Objektno relacioni model
- XML model
- Model ključ/vrednost
- Model zasnovan na grafovima
- Model zasnovan na dokumentima
- Model zasnovan na familijama kolona
- Model podatka zasnovan na nizovima i matricama

- Model tipova entiteta i poveznika (ER)
 - semantički model podataka
 - modifikacija
 - ► Prošireni model tipova entiteta i poveznika (EER)
 - ▶ MP konceptualnog nivoa "bliži" korisniku po vrsti primenjenih koncepata
 - nastao na osnovama starijih modela
 - Semantičke hijerarhije (Smith i Smith)
 - ► Semantički model (Hammer i Mcleod)

- Hijerarhijski model
 - implementacioni model podataka
 - ▶ tipične strukture šeme BP
 - strukture stabla nad tipovima slogova
 - operacijska komponenta proceduralna
 - ▶ tipičan predstavnik: IBM DL/I sa programskim jezikom PL/I
- Mrežni model
 - implementacioni model podataka
 - ▶ tipične strukture šeme BP
 - strukture mreže nad tipovima slogova, korišćenje tipova setova
 - operacijska komponenta proceduralna
 - CODASYL DBTG standard
 - ▶ tipični predstavnici: IDMS, IDS-II sa programskim jezikom Cobol

- Relacioni model
 - implementacioni model podataka
 - ▶ tipične strukture šeme BP
 - strukture tabela slogova relacija, kao skupova n-torki
 - operacijska komponenta deklarativna
 - ANSI SQL standard
 - tipični predstavnici RDBMS: Oracle, MS SQL Server, Ingres, Informix, Sybase, DB2, sa programskim jezikom SQL
- Logički i verovatnosni (fuzzy) logički modeli
 - dalja nadgradnja relacionog modela
 - uvođenje dedukcije u baze podataka
 - baza podataka činjenica i baza pravila rezonovanja
 - pridruživanje verovatnoća podacima u bazi
 - rezonovanje u svetu rasplinute logike, na intervalu [0, 1]

- Objektno orijentisani model
 - zasnovanost na
 - mrežnom i semantičkim modelima
 - objektno orijentisanoj paradigmi i programskim jezicima
 - koncepti klase, tipa, operacije i interfejsa
 - objedinjeno posmatranje struktura podataka i operacija nad podacima
 - operacijska komponenta proceduralna (C++, Java)
- Objektno relacioni model
 - implementacioni model podataka
 - ▶ kombinuje sve osobine relacionog i OO modela podataka
 - savremeni ORDBMS nastaju evolucijom RDBMS i nasleđuju sve osobine RDBMS

- XML model
 - zasnovanost na
 - ► XML jezicima i tehnologijama
 - paradigmi analognoj hijerarhijskom modelu podataka i tzv. "logičkim vezama"
 - implementacioni model podataka
 - ▶ tipične strukture šeme BP
 - strukture stabla nad elementima i atributima
 - šema BP se opisuje putem XML Schema jezika
 - operacijska komponenta deklarativna
 - ► ANSI SQL:2006 standard
 - ► XPath i XQuery jezici

Modeli podataka i SUBP

- Karakteristike SUBP
 - mora biti zasnovan na nekom implementacionom modelu podataka
 - idealno, treba da podrži sve koncepte i sve karakteristike, tj. prednosti izabranog modela podataka
 - ▶ npr. relacioni model podataka, objektno-orijentisani, objektno-relacioni, XML
 - mora da poseduje jezik (ili jezike) za obezbeđenje upravljanja BP, tj. komunikacije
 - programer SUBP
 - administrator BP SUBP
 - krajnji korisnik SUBP

Sadržaj

- Pojam modela podataka
- Strukturalna komponenta MP
- ► Integritetna komponenta MP
- Operacijska komponenta MP
- Nivoi apstrakcije
- Modeli podataka

Pitanja i komentari

UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA KATEDRA ZA PRIMENJENE RAČUNARSKE NAUKE

Modeli podataka

Specifikacija šeme baze podataka