ZILFIMIAN

Regularization/R (Q7L8)

35% (7/20)

X 1. In Poisson regression...

- (A) The asymptotic distribution of the maximum likelihood estimates is multivariate normal.
- (B) The distribution of the maximum likelihood estimates is multivariate normal.
- The asymptotic distribution of the maximum likelihood estimates is multivariate Poisson distribution.
- D I do not know

✓ 2. In the case of intercept-only model

- A The mean of the dependent variable equals the exponential value of intercept
- B The mean of the dependent variable equals the intercept
- (c) The mean of the dependent variable equals 0
- D I do not know

\times 3. $ln(lambda) = 0.6 - 0.2* female [lamda = the average number of articles] Note: <math>e^{(-0.2)} = 0.78$

- (A) One unit increase in female brings a 0.2 decrease in ln(lambda).
- Being female decreases the average number of articles by 0.78 percent
- C Being female decreases the average number of articles by 22%
- D I do not know

✓ 4. In the multiple linear regression, we assume that...

- A The number of observations is much larger than the number of variables (n>>p)
- (B) The number of observations is slightly larger than the number of variables (n>p)
- C The number of observations equals than the number of variables (n=p)
- $\left(\mathsf{D} \right)$ The number of observations is lees than the number of variables (n<p)
- (E) It is not important
- F I do not know

Mary Page 1 of 5

×	5. A	The way of solving the problem of a large number of variables is Subset Selection & Shrinkage (Regularization)
	$\overline{\mathbb{B}}$	Shrinkage (Regularization) & Maximum Likelihood estimation
	\overline{C}	Dimension Reduction & OLS estimation
	D	I do not know
	E	The absence of the right answer
×	6. (A)	The bias of an estimator (e.g. z^{-}) equalsHint: the OLS coefficients are unbias :) $E(z^{-}) - z$
	B	$E(z^2) - [E(z)]^2$
	C	$[E(z^2) - E(z)]^2$
		E(z^2)
	E	I do not know
/	7.	The main idea of regularization is
	A	To introduce a small amount of bias in order to have less variance.
	B	To introduce a small amount of variance in order to have less bias.
	C	To introduce a small amount of variance and bias in order to have less bias.
	D	I do not know
×	8.	With which function we can show regularization in R
	A	glmnet()
	В	regular()
	(c)	lm()
	(D)	glm()
	(E)	I do not know
X	9.	How the tune of any parametr can be made
	A	using Cross validation
	B	It is impossible
	C	I do not now
	D	using larger sample
	F	only having population

Mary Page 2 of 5

(A) the combination of L1 and L2 regularization B) the combination of L2 and L3 regularization is independent from other types of refularization I do not know not a type of regularization Regularization is used only for Poisson Regression Linear Regression Logistic Regression any regression I do not know Regularization can solve the problem of 12. heteroscedasticity multicollinearity autocorrelation I do not know As a result of regularization we will have smaller slope than in case of OLS larger slope than in case of OLS the slope remains the same I do not know **X** 14. The ridge coefficient estimates shrink towards zero when lambda increases when lambda decreases when lambda = 0 I do not know

X 10.

Elastic Net is

Mary Page 3 of 5

×	15. Which one can shrink the slope all the way to 0?	
	A) Lasso B Ridge	
	C Regression D I do not know	
	(D) I do not know	
X	16. When lambda = 0, we have	
	A Ridge	
	B Lasso	
	C EL	
	D Regression	
	E I do not know	
X	17 When alpha – 0 we have	
^	17. When alpha = 0, we have A Ridge	
	B) Lasso	
	D Regression	
	I do not know	
	T do not know	
×	18variables need to be incorporated in the model according to domain knowledge	
	This statement is true for	
	A) Ridge	
	B Lasso	
	C EL	
	D Regression	
	E I do not know	
X	19. Which function can help to perform cross-validation for regularization in R?	
	A) cv.glmnet()	
	B cros_val()	
	c) glmnet(method = "cv)	
	D I do not know	
	\smile	

Mary Page 4 of 5

20. Why we use set.seed() in R?

To have universal result

(B) To perform better result

C To have random models

I do not know

Mary Page 5 of 5