(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 10 May 2002 (10.05.2002)

PCT

(10) International Publication Number WO 02/36797 A2

(51) International Patent Classification7:

C12P 13/00

- (21) International Application Number: PCT/EP01/11228
- (22) International Filing Date:

28 September 2001 (28.09.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

 100 54 748.6
 4 November 2000 (04.11.2000)
 DE

 60/248,210
 15 November 2000 (15.11.2000)
 US

 101 12 107.5
 14 March 2001 (14.03.2001)
 DE

 60/283,612
 16 April 2001 (16.04.2001)
 US

- (71) Applicant: DEGUSSA AG [DE/DE]; Bennigseplatz 1, 40474 Düsseldorf (DE).
- (72) Inventors: RIEPING, Mechthild; Mönkebergstrasse 1, 33619 Bielefeld (DE). THIERBACH, Georg; Gunststrasse 21, 33613 Bielefeld (DE).

- 81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

CAI

(54) Title: PROCESS FOR THE FERMENTATIVE PREPARATION OF L-AMINO ACIDS USING STRAINS OF THE ENTER-OBACTERIACEAE FAMILY

(57) Abstract: The invention relates to a process for the fermentative preparation of L-amino acids, in particular L-threonine, in which the following steps are carried out: a) fermentation of the microorganisms of the Enterobacteriaceae family which produce the desired L-amino acid and in which at least the poxB gene or nucleotide sequences which code for it are attenuated, in particular eliminated, b) concentration of the L-amino acid in the medium or in the cells of the bacteria and c) isolation of the L-amino acid.

Process for the fermentative preparation of L-amino acids using strains of the Enterobacteriaceae family

This invention relates to a process for the fermentative preparation of L-amino acids, in particular L-threonine,

5 L-lysine and L-valine, using strains of the Enterobacteriaceae family in which the poxB gene is attenuated.

Prior Art

L-Amino acids, in particular L-threonine, L-lysine and
10 L-valine are used in human medicine and in the
pharmaceuticals industry, in the foodstuffs industry and
very particularly in animal nutrition.

It is known to prepare L-amino acids by fermentation of strains of Enterobacteriaceae, in particular Escherichia coli (E. coli) and Serratia marcescens. Because of their great importance, work is constantly being undertaken to improve the preparation processes. Improvements to the process can relate to fermentation measures, such as e.g. stirring and supply of oxygen, or the composition of the nutrient media, such as e.g. the sugar concentration during the fermentation, or the working up to the product form, by e.g. ion exchange chromatography, or the intrinsic output properties of the microorganism itself.

Methods of mutagenesis, selection and mutant selection are used to improve the output properties of these microorganisms. Strains which are resistant to antimetabolites, such as e.g. the threonine analogue α -amino- β -hydroxyvaleric acid (AHV), or are auxotrophic for metabolites of regulatory importance and produce L-amino acid, such as e.g. L-threonine, are obtained in this manner.

Methods of the recombinant DNA technique have also been employed for some years for improving the strain of

strains of the Enterobacteriaceae family which produce L-amino acids, by amplifying individual amino acid biosynthesis genes and investigating the effect on the production.

5 Object of the Invention

The inventors had the object of providing new measures for improved fermentative preparation of L-amino acids, in particular L-threonine, L-lysine and L-valine.

Description of the Invention

- The invention provides a process for the fermentative preparation of L-amino acids, in particular L-threonine, using microorganisms of the Enterobacteriaceae family which, in particular, already produce L-threonine and in which the nucleotide sequence which codes for the enzyme
- 15 pyruvate oxidase (EC 1.2.2.2) (poxB gene) is attenuated.

The term "attenuation" in this connection describes the reduction or elimination of the intracellular activity of one or more enzymes (proteins) in a microorganism which are coded by the corresponding DNA, for example by using a weak

20 promoter or a gene or allele which codes for a corresponding enzyme with a low activity or inactivates the corresponding enzyme (protein) or gene, and optionally combining these measures.

The process comprises carrying out the following steps:

- 25 a) fermentation of microorganisms of the
 Enterobacteriaceae family in which at least the
 poxB gene is attenuated,
 - b) concentration of the corresponding L-amino acid in the medium or in the cells of the microorganisms of the Enterobacteriaceae family, and
 - c) isolation of the desired L-amino acid.

30

The microorganisms which the present invention provides can produce L-amino acids from glucose, sucrose, lactose, fructose, maltose, molasses, optionally starch, optionally cellulose or from glycerol and ethanol. They are

5 representatives of the Enterobacteriaceae family chosen from the genera Escherichia, Erwinia, Providencia and Serratia. The genera Escherichia and Serratia are preferred. Of the genus Escherichia the species Escherichia coli and of the genus Serratia the species Serratia

10 marcescens are to be mentioned in particular.

Suitable strains, which produce L-threonine in particular, of the genus Escherichia, in particular of the species Escherichia coli, are, for example

Escherichia coli TF427

Escherichia coli H4578

Escherichia coli KY10935

Escherichia coli VNIIgenetika MG442

Escherichia coli VNIIgenetika M1

Escherichia coli VNIIgenetika 472T23

Escherichia coli BKIIM B-3996

Escherichia coli kat 13

Escherichia coli KCCM-10132

Suitable L-threonine-producing strains of the genus Serratia, in particular of the species Serratia marcescens, 25 are, for example

> Serratia marcescens HNr21 Serratia marcescens TLr156 Serratia marcescens T2000.

Strains from the Enterobacteriaceae family which produce

30 L-threonine preferably have, inter alia, one or more
genetic or phenotypic features chosen from the group
consisting of: resistance to α-amino-β-hydroxyvaleric acid,
resistance to thialysine, resistance to ethionine,

resistance to α -methylserine, resistance to diaminosuccinic acid, resistance to α -aminobutyric acid, resistance to borrelidin, resistance to rifampicin, resistance to valine analogues, such as, for example, valine hydroxamate,

- 5 resistance to purine analogues, such as, for example, 6-dimethylaminopurine, a need for L-methionine, optionally a partial and compensatable need for L-isoleucine, a need for meso-diaminopimelic acid, auxotrophy in respect of threonine-containing dipeptides, resistance to L-threonine,
- resistance to L-homoserine, resistance to L-lysine, resistance to L-methionine, resistance to L-glutamic acid, resistance to L-aspartate, resistance to L-leucine, resistance to L-phenylalanine, resistance to L-serine, resistance to L-cysteine, resistance to L-valine,
- sensitivity to fluoropyruvate, defective threonine dehydrogenase, optionally a capacity for sucrose utilization, enhancement of the threonine operon, enhancement of homoserine dehydrogenase I-aspartate kinase I, preferably of the feedback-resistant form, enhancement
- of homoserine kinase, enhancement of threonine synthase, enhancement of aspartate kinase, optionally of the feedback-resistant form, enhancement of aspartate semialdehyde dehydrogenase, enhancement of phosphoenol pyruvate carboxylase, optionally of the feedback-resistant
- form, enhancement of phosphoenol pyruvate synthase, enhancement of transhydrogenase, enhancement of the RhtB gene product, enhancement of the RhtC gene product, enhancement of the YfiK gene product, enhancement of a pyruvate carboxylase, and attenuation of acetic acid formation.

It has been found that microorganisms of the Enterobacteriaceae family produce L-amino acids, in particular L-threonine, in an improved manner after attenuation, in particular elimination, of the poxB gene, which codes for pyruvate oxidase (EC number 1.2.2.2).

It has furthermore been found that microorganisms of the Enterobacteriaceae family form lower concentrations of the undesirable by-product acetic acid after attenuation, in particular elimination, of the poxB gene, which codes for pyruvate oxidase (EC number 1.2.2.2).

The nucleotide sequence of the poxB gene of Escherichia coli has been published by Grabau and Cronan (Nucleic Acids Research. 14 (13), 5449-5460 (1986)) and can also be found from the genome sequence of Escherichia coli published by Blattner et al. (Science 277, 1453 - 1462 (1997), under Accession Number AE000188. The nucleotide sequence of the poxB gene of Escherichia coli is shown in SEQ ID No. 1 and the amino acid sequence of the associated gene product is shown in SEQ ID No. 2.

- The poxB genes described in the text references mentioned can be used according to the invention. Alleles of the poxB gene which result from the degeneracy of the genetic code or due to "sense mutations" of neutral function can furthermore be used.
- To achieve an attenuation, for example, expression of the poxB gene or the catalytic properties of the enzyme protein can be reduced or eliminated. The two measures can optionally be combined.
- The reduction in gene expression can take place by suitable culturing, by genetic modification (mutation) of the signal structures of gene expression or also by the antisense-RNA technique. Signal structures of gene expression are, for example, repressor genes, activator genes, operators, promoters, attenuators, ribosome binding sites, the start codon and terminators. The expert can find information in this respect, inter alia, for example, in Jensen and Hammer (Biotechnology and Bioengineering 58: 191-195 (1998)), in Carrier and Keasling (Biotechnology Progress 15, 58-64 (1999), Franch and Gerdes (Current Opinion in Microbiology

3, 159-164 (2000)) and in known textbooks of genetics and molecular biology, such as, for example, the textbook of Knippers ("Molekulare Genetik [Molecular Genetics]", 6th edition, Georg Thieme Verlag, Stuttgart, Germany, 1995) or that of Winnacker ("Gene und Klone [Genes and Clones]", VCH Verlagsgesellschaft, Weinheim, Germany, 1990).

Mutations which lead to a change or reduction in the catalytic properties of enzyme proteins are known from the prior art. Examples which may be mentioned are the works of Qiu and Goodman (Journal of Biological Chemistry 272: 8611-8617 (1997)), Yano et al. (Proceedings of the National Academy of Sciences, USA 95, 5511-5515 (1998), Wente and Schachmann (Journal of Biological Chemistry 266, 20833-20839 (1991). Summarizing descriptions can be found in known textbooks of genetics and molecular biology, such as e.g. that by Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986).

Possible mutations are transitions, transversions, insertions and deletions. Depending on the effect of the 20 amino acid exchange on the enzyme activity, "missense mutations" or "nonsense mutations" are referred to. Insertions or deletions of at least one base pair in a gene lead to "frame shift mutations", which lead to incorrect amino acids being incorporated or translation being 25 interrupted prematurely. Deletions of several codons typically lead to a complete loss of the enzyme activity. Instructions on generation of such mutations are prior art and can be found in known textbooks of genetics and molecular biology, such as e.g. the textbook by Knippers 30 ("Molekulare Genetik [Molecular Genetics]", 6th edition, Georg Thieme Verlag, Stuttgart, Germany, 1995), that by Winnacker ("Gene und Klone ", VCH Verlagsgesellschaft, Weinheim, Germany, 1990) or that by Hagemann ("Allgemeine Genetik ", Gustav Fischer Verlag, Stuttgart, 1986).

An example of a plasmid with the aid of which the poxB gene of Escherichia coli can be attenuated, in particular eliminated, by position-specific mutagenesis is the plasmid pMAK705ΔpoxB (figure 1). In addition to residues of polylinker sequences, it contains only a part of the 5' and a part of the 3' region of the poxB gene. A 340 bp long section of the coding region is missing (deletion). The sequence of this DNA which can be employed for mutagenesis of the poxB gene is shown in SEQ ID No. 3.

- 10 The deletion mutation of the poxB gene can be incorporated into suitable strains by gene or allele replacement.
 - A conventional method is the method, described by Hamilton et al. (Journal of Bacteriology 174, 4617 4622 (1989)), of gene replacement with the aid of a conditionally
- replicating pSC101 derivative pMAK705. Other methods described in the prior art, such as, for example, those of Martinez-Morales et al. (Journal of Bacteriology 1999, 7143-7148 (1999)) or those of Boyd et al. (Journal of Bacteriology 182, 842-847 (2000)), can likewise be used.
- 20 After replacement has taken place, the strain in question contains the form of the Δ poxB allele shown in SEQ ID No. 4, which is also provided by the invention.

It is also possible to transfer mutations in the poxB gene or mutations which affect expression of the poxB gene into various strains by conjugation or transduction.

It may furthermore be advantageous for the production of L-amino acids, in particular L-threonine, with strains of the Enterobacteriaceae family to enhance one or more enzymes of the known threonine biosynthesis pathway or

30 enzymes of anaplerotic metabolism or enzymes for the production of reduced nicotinamide adenine dinucleotide phosphate, in addition to the attenuation of the poxB gene.

The term "enhancement" in this connection describes the increase in the intracellular activity of one or more enzymes or proteins in a microorganism which are coded by the corresponding DNA, for example by increasing the number of copies of the gene or genes, using a potent promoter or a gene which codes for a corresponding enzyme or protein with a high activity, and optionally combining these measures.

Thus, for example, one or more genes chosen from the group 10 consisting of

- the thrABC operon which codes for aspartate kinase, homoserine dehydrogenase, homoserine kinase and threonine synthase (US-A-4,278,765),
- the pyc gene which codes for pyruvate carboxylase (DE-A-19 831 609),
 - the pps gene which codes for phosphoenol pyruvate synthase (Molecular and General Genetics 231:332 1992)),
 - the ppc gene which codes for phosphoenol pyruvate carboxylase (Gene 31:279-283 (1984)),
- 20 the pntA and pntB genes which code for transhydrogenase (European Journal of Biochemistry 158:647-653 (1986)),
 - the rhtB gene which imparts homoserine resistance (EP-A-0 994 190),
- the mqo gene which codes for malate:quinone
 oxidoreductase (DE 100 348 33.5),
 - the rhtC gene which imparts threonine resistance (EP-A-1 013 765), and
 - the thrE gene of Corynebacterium glutamicum which codes for threonine export (DE 100 264 94.8) and

• the gdhA gene which codes for glutamate dehydrogenase (Nucleic Acids Research 11: 5257-5266 (1983); Gene 23: 199-209 (1983))

can be enhanced, in particular over-expressed, at the same 5 time.

It may furthermore be advantageous for the production of L-amino acids, in particular threonine, in addition to the attenuation of the poxB gene, for one or more genes chosen from the group consisting of

- the tdh gene which codes for threonine dehydrogenase (Ravnikar and Somerville, Journal of Bacteriology 169, 4716-4721 (1987)),
- the mdh gene which codes for malate dehydrogenase (E.C. 1.1.1.37) (Vogel et al., Archives in Microbiology 149, 36-42 (1987)),
 - the gene product of the open reading frame (orf) yjfA (Accession Number AAC77180 of the National Center for Biotechnology Information (NCBI, Bethesda, MD, USA),
- the gene product of the open reading frame (orf) ytfP
 (Accession Number AAC77179 of the National Center for Biotechnology Information (NCBI, Bethesda, MD, USA) and
 - the pckA gene which codes for the enzyme phosphoenol pyruvate carboxykinase (Medina et al. (Journal of Bacteriology 172, 7151-7156 (1990))
- 25 to be attenuated, in particular eliminated or reduced in expression.

In addition to attenuation of the poxB gene it may furthermore be advantageous for the production of L-amino acids, in particular L-threonine, to eliminate undesirable 30 side reactions (Nakayama: "Breeding of Amino Acid Producing Microorganisms", in: Overproduction of Microbial Products,

Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

The microorganisms produced according to the invention can be cultured in the batch process (batch culture), the fed 5 batch (feed process) or the repeated fed batch process (feed process). A summary of known culture methods is described in the textbook by Chmiel (Bioprocesstechnik 1. Einführung in die Bioverfahrenstechnik [Bioprocess Technology 1. Introduction to Bioprocess Technology (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)).

The culture medium to be used must meet the requirements of the particular strains in a suitable manner. Descriptions of culture media for various microorganisms are contained in the handbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981).

Sugars and carbohydrates, such as e.g. glucose, sucrose,
20 lactose, fructose, maltose, molasses, starch and optionally
cellulose, oils and fats, such as e.g. soya oil, sunflower
oil, groundnut oil and coconut fat, fatty acids, such as
e.g. palmitic acid, stearic acid and linoleic acid,
alcohols, such as e.g. glycerol and ethanol, and organic
25 acids, such as e.g. acetic acid, can be used as the source
of carbon. These substances can be used individually or as
a mixture.

Organic nitrogen-containing compounds, such as peptones, yeast extract, meat extract, malt extract, corn steep

30 liquor, soya bean flour and urea, or inorganic compounds, such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate, can be used as the source of nitrogen. The sources of nitrogen can be used individually or as a mixture.

Phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts can be used as the source of phosphorus. The culture medium must furthermore comprise salts of 5 metals, such as e.g. magnesium sulfate or iron sulfate, which are necessary for growth. Finally, essential growth substances, such as amino acids and vitamins, can be employed in addition to the abovementioned substances. Suitable precursors can moreover be added to the culture 10 medium. The starting substances mentioned can be added to the culture in the form of a single batch, or can be fed in during the culture in a suitable manner.

Basic compounds, such as sodium hydroxide, potassium hydroxide, ammonia or aqueous ammonia, or acid compounds, such as phosphoric acid or sulfuric acid, can be employed in a suitable manner to control the pH. Antifoams, such as e.g. fatty acid polyglycol esters, can be employed to control the development of foam. Suitable substances having a selective action, e.g. antibiotics, can be added to the medium to maintain the stability of plasmids. To maintain aerobic conditions, oxygen or oxygen-containing gas mixtures, such as e.g. air, are introduced into the culture. The temperature of the culture is usually 25°C to 45°C, and preferably 30°C to 40°C. Culturing is continued until a maximum of L-amino acids or L-threonine has formed. This target is usually reached within 10 hours to 160 hours.

The analysis of L-amino acids can be carried out by anion exchange chromatography with subsequent ninhydrin

30 derivatization, as described by Spackman et al. (Analytical Chemistry, 30, (1958), 1190), or it can take place by reversed phase HPLC as described by Lindroth et al. (Analytical Chemistry (1979) 51:. 1167-1174).

A pure culture of the Escherichia coli K-12 strain 35 DH5 α /pMAK705 was deposited as DSM 13720 on 8th September

2000 at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ = German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) in accordance with the Budapest Treaty.

5 A pure culture of the Escherichia coli K-12 strain MG442ΔpoxB was deposited as DSM 13762 on 2nd October 2000 at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ = German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) in accordance with the Budapest Treaty.

The process according to the invention is used for the fermentative preparation of L-amino acids, such as e.g. L-threonine, L-isoleucine, L-valine, L-methionine, L-homoserine and L-lysine, in particular L-threonine.

15 The present invention is explained in more detail in the following with the aid of embodiment examples.

The isolation of plasmid DNA from Escherichia coli and all techniques of restriction, Klenow and alkaline phosphatase treatment are carried out by the method of Sambrook et al.

- 20 (Molecular cloning A laboratory manual (1989) Cold Spring Harbour Laboratory Press). Unless described otherwise, the transformation of Escherichia coli is carried out by the method of Chung et al. (Proceedings of the National Academy of Sciences of the United States of America USA (1989) 86: 25 2172-2175).
 - The incubation temperature for the preparation of strains and transformants is 37°C. Temperatures of 30°C and 44°C are used in the gene replacement method of Hamilton et. al.

Example 1

Construction of the deletion mutation of the poxB gene

Parts of the 5' and 3' region of the poxB gene are amplified from Escherichia coli K12 using the polymerase chain reaction (PCR) and synthetic oligonucleotides. Starting from the nucleotide sequence of the poxB gene in E. coli K12 MG1655 (SEQ ID No. 1), the following PCR primers are synthesized (MWG Biotech, Ebersberg, Germany):

poxB'5'-1: 5' - CTGAACGGTCTTAGTGACAG - 3'

10 poxB'5'-2: 5' - AGGCCTGGAATAACGCAGCAGTTG - 3'

poxB'3'-1: 5' - CTGCGTGCATTGCTTCCATTG - 3'

poxB'3'-2: 5' - GCCAGTTCGATCACTTCATCAC - 3'

The chromosomal E. coli K12 MG1655 DNA employed for the PCR is isolated according to the manufacturers instructions

15 with "Qiagen Genomic-tips 100/G" (QIAGEN, Hilden, Germany). A DNA fragment approx. 500 base pairs (bp) in size from the 5' region of the poxB gene (called poxB1) and a DNA fragment approx. 750 bp in size from the 3' region of the poxB gene (called poxB2) can be amplified with the specific primers under standard PCR conditions (Innis et al. (1990) PCR Protocols. A Guide to Methods and Applications, Academic Press) with Taq-DNA polymerase (Gibco-BRL, Eggenstein, Germany). The PCR products are each ligated with the vector pCR2.1TOPO (TOPO TA Cloning Kit,

25 Invitrogen, Groningen, The Netherlands) in accordance with the manufacturers instructions and transformed into the

Selection of plasmid-carrying cells takes place on LB agar, to which 50 $\mu g/ml$ ampicillin are added. After isolation of

30 the plasmid DNA, the vector pCR2.1TOPOpoxB1 is cleaved with the restriction enzymes Ecl136II and XbaI and, after

E. coli strain TOP10F'.

separation in 0.8% agarose gel, the poxBl fragment is isolated with the aid of the QIAquick Gel Extraction Kit (QIAGEN, Hilden, Germany). After isolation of the plasmid DNA the vector pCR2.1TOPOpoxB2 is cleaved with the enzymes 5 EcoRV and XbaI and ligated with the poxBl fragment isolated. The E. coli strain DH5α is transformed with the ligation batch and plasmid-carrying cells are selected on LB agar, to which 50 μg/ml ampicillin is added. After isolation of the plasmid DNA those plasmids in which the 10 mutagenic DNA sequence shown in SEQ ID No. 3 is cloned are detected by control cleavage with the enzymes HindIII and XbaI. One of the plasmids is called pCR2.1TOPOΔpoxB.

Example 2

Construction of the replacement vector $pMAK705\Delta poxB$

The poxB allele described in Example 1 is isolated from the vector pCR2.1TOPOΔpoxB after restriction with the enzymes HindIII and XbaI and separation in 0.8% agarose gel, and ligated with the plasmid pMAK705 (Hamilton et al. (1989) Journal of Bacteriology 174, 4617 - 4622), which has been digested with the enzymes HindIII and XbaI. The ligation batch is transformed in DH5α and plasmid-carrying cells are selected on LB agar, to which 20 μg/ml chloramphenicol is added. Successful cloning is demonstrated after isolation of the plasmid DNA and cleavage with the enzymes HindIII and XbaI. The replacement vector formed, pMAK705ΔpoxB (= pMAK705deltapoxB), is shown in figure 1.

Example 3

Position-specific mutagenesis of the poxB gene in the E. coli strain MG442

30 The L-threonine-producing E. coli strain MG442 is described in the patent specification US-A- 4,278,765 and deposited as CMIM B-1628 at the Russian National Collection for Industrial Microorganisms (VKPM, Moscow, Russia).

For replacement of the chromosomal poxB gene with the plasmid-coded deletion construct, MG442 is transformed with the plasmid pMAK705ΔpoxB, The gene replacement is carried out by the selection method described by Hamilton et al.

[1989] Journal of Bacteriology 174, 4617 - 4622) and is verified by standard PCR methods (Innis et al. (1990) PCR Protocols. A Guide to Methods and Applications, Academic

poxB'5'-1: 5' - CTGAACGGTCTTAGTGACAG - 3'

10 poxB'3'-2: 5' - GCCAGTTCGATCACTTCATCAC -3'

The strain obtained is called MG442∆poxB.

Example 4

Preparation of L-threonine with the strain $MG442\Delta poxB$

Press) with the following oligonucleotide primers:

- MG442ΔpoxB is multiplied on minimal medium with the

 following composition: 3.5 g/l Na₂HPO₄*2H₂O, 1.5 g/l KH₂PO₄,

 l g/l NH₄Cl, 0.1 g/l MgSO₄*7H₂O, 2 g/l glucose, 20 g/l agar.

 The formation of L-threonine is checked in batch cultures

 of 10 ml contained in 100 ml conical flasks. For this,

 l0 ml of preculture medium of the following composition:
- 20 2 g/l yeast extract, 10 g/l $(NH_4)_2SO_4$, 1 g/l KH_2PO_4 , 0.5 g/l $MgSO_4*7H_2O$, 15 g/l $CaCO_3$, 20 g/l glucose are inoculated and the batch is incubated for 16 hours at 37°C and 180 rpm on an ESR incubator from Kühner AG (Birsfelden, Switzerland). 250 µl of this preculture are transinoculated into 10 ml of
- production medium (25 g/l (NH₄)₂SO₄, 2 g/l KH₂PO₄, 1 g/l MgSO₄*7H₂O, 0.03 g/l FeSO₄*7H₂O, 0.018 g/l MnSO₄*1H₂O, 30 g/l CaCO₃, 20 g/l glucose) and the batch is incubated for 48 hours at 37°C. After the incubation the optical density (OD) of the culture suspension is determined with an LP2W
- 30 photometer from Dr. Lange (Berlin, Germany) at a measurement wavelength of 660 nm.

The concentration of L-threonine formed is then determined in the sterile-filtered culture supernatant with an amino acid analyzer from Eppendorf-BioTronik (Hamburg, Germany) by ion exchange chromatography and post-column reaction with ninhydrin detection.

The result of the experiment is shown in Table 1.

Strain	OD	L-Threonine
	(660 nm)	g/l
MG442	6.0	1.5
MG442∆poxB	4.9	2.6

Table 1

Example 5

- 10 Preparation of L-threonine with the strain MG442∆poxB/pMW218gdhA
 - 5.1 Amplification and cloning of the gdhA gene

The glutamate dehydrogenase gene from Escherichia coli K12 is amplified using the polymerase chain reaction (PCR) and synthetic oligonucleotides. Starting from the nucleotide sequence for the gdhA gene in E. coli K12 MG1655 (gene library: Accession No. AE000270 and No. AE000271), PCR primers are synthesized (MWG Biotech, Ebersberg, Germany):

Gdh1: 5' - TGAACACTTCTGGCGGTACG - 3'

20 Gdh2: 5' - CCTCGGCGAAGCTAATATGG - 3'

The chromosomal E. coli K12 MG1655 DNA employed for the PCR is isolated according to the manufacturers instructions with "QIAGEN Genomic-tips 100/G" (QIAGEN, Hilden, Germany). A DNA fragment approx. 2150 bp in size, which comprises the

gdhA coding region and approx. 350 bp 5'-flanking and approx. 450 bp 3'-flanking sequences, can be amplified with the specific primers under standard PCR conditions (Innis et al.: PCR protocols. A guide to methods and applications,

- 5 1990, Academic Press) with Pfu-DNA polymerase (Promega Corporation, Madison, USA). The PCR product is cloned in the plasmid pCR2.1TOPO and transformed in the E. colistrain TOP10 (Invitrogen, Leek, The Netherlands, Product Description TOPO TA Cloning Kit, Cat. No. K4500-01).
- 10 Successful cloning is demonstrated by cleavage of the plasmid pCR2.1TOPOgdhA with the restriction enzymes EcoRI and EcoRV. For this, the plasmid DNA is isolated by means of the "QIAprep Spin Plasmid Kit" (QIAGEN, Hilden, Germany) and, after cleavage, separated in a 0.8% agarose gel.
- 15 5.2 Cloning of the gdhA gene in the plasmid vector pMW218

The plasmid pCR2.1TOPOgdhA is cleaved with the enzyme EcoRI, the cleavage batch is separated on 0.8% agarose gel and the gdhA fragment 2.1 kbp in size is isolated with the aid of the "OIAquick Gel Extraction Kit" (QIAGEN, Hilden,

- 20 Germany). The plasmid pMW218 (Nippon Gene, Toyama, Japan) is cleaved with the enzyme EcoRI and ligated with the gdhA fragment. The E. coli strain DH5α is transformed with the ligation batch and pMW218-carrying cells are selected by plating out on LB agar (Lennox, Virology 1955, 1: 190), to which 20μg/ml kanamycin are added.
 - Successful cloning of the gdhA gene can be demonstrated after plasmid DNA isolation and control cleavage with EcoRI and EcoRV. The plasmid is called pMW218gdhA (figure 2).
 - 5.3 Preparation of the strain MG442ΔpoxB/pMW218gdhA
- 30 The strain MG442 Δ poxB obtained in Example 3 and the strain MG442 are transformed with the plasmid pMW218gdhA and transformants are selected on LB agar, which is supplemented with 20 μ g/ml kanamycin. The strains

 ${
m MG442\Delta poxB/pMW218gdhA}$ and ${
m MG442/pMW218gdhA}$ are formed in this manner.

5.4 Preparation of L-threonine

The preparation of L-threonine by the strains $5 MG442\Delta poxB/pMW218gdhA$ and MG442/pMW218gdhA$ is tested as described in Example 4. The minimal medium and the preculture medium are additionally supplemented with 20 <math display="inline">\mu g/ml$ kanamycin for these two strains.

The result of the experiment is summarized in Table 2.

10

Table 2

Strain	OD (660 nm)	L-Threonine g/l
MG442	6.0	1.5
MG442ΔpoxB	4.9	2.6
MG442/pMW218gdhA	5.6	2.6
MG442ΔpoxB/pMW218gdhA	5.5	2.9

Example 6

Preparation of L-threonine with the strain $MG442\Delta poxB/pMW219rhtC$

15 6.1 Amplification of the rhtC gene

The rhtC gene from Escherichia coli K12 is amplified using the polymerase chain reaction (PCR) and synthetic oligonucleotides. Starting from the nucleotide sequence for the rhtC gene in E. coli K12 MG1655 (gene library:

20 Accession No. AE000458, Zakataeva et al. (FEBS Letters 452,

228-232 (1999)), PCR primers are synthesized (MWG Biotech, Ebersberg, Germany):

RhtC1: 5' - CTGTTAGCATCGGCGAGGCA - 3'

RhtC2: 5' - GCATGTTGATGGCGATGACG - 3'

- 5 The chromosomal E. coli K12 MG1655 DNA employed for the PCR is isolated according to the manufacturers instructions with "QIAGEN Genomic-tips 100/G" (QIAGEN, Hilden, Germany). A DNA fragment approx. 800 bp in size can be amplified with the specific primers under standard PCR conditions (Innis
- 10 et al.: PCR protocols. A guide to methods and applications, 1990, Academic Press) with Pfu-DNA polymerase (Promega Corporation, Madison, USA).
 - 6.2 Cloning of the rhtC gene in the plasmid vector pMW219
- The plasmid pMW219 (Nippon Gene, Toyama, Japan) is cleaved with the enzyme SamI and ligated with the rhtC-PCR fragment. The E. coli strain DH5α is transformed with the ligation batch and pMW219-carrying cells are selected on LB agar, which is supplemented with 20 μg/ml kanamycin. Successful cloning can be demonstrated after plasmid DNA
- 20 isolation and control cleavage with KpnI, HindIII and NcoI. The plasmid pMW219rhtC is shown in figure 3.
 - 6.3 Preparation of the strain MG442ΔpoxB/pMW219rhtC

The strain MG442 Δ poxB obtained in Example 3 and the strain MG442 are transformed with the plasmid pMW219rhtC and

- transformants are selected on LB agar, which is supplemented with 20 $\mu g/ml$ kanamycin. The strains MG442 Δ poxB/pMW219rhtC and MG442/pMW219rhtC are formed in this way.
 - 6.4 Preparation of L-threonine
- 30 The preparation of L-threonine by the strains MG442 Δ poxB/pMW219rhtC and MG442/pMW219rhtC is tested as

described in Example 4. The minimal medium and the preculture medium are additionally supplemented with 20 $\mu g/ml$ kanamycin for these two strains.

The result of the experiment is summarized in Table 3.

5

Table :	3
---------	---

	Strain	OD (660 nm)	L-Threonine g/l
	MG442	6.0	1.5
	MG442ΔpoxB	4.9	2.6
	MG442/pMW219rhtC	5.2	2.9
N	MG442ΔpoxB/pMW219rhtC	5.4	3.9

Example 7

Position-specific mutagenesis of the poxB gene in the $E.\ coli\ strain\ TOC21R$

- 10 The L-lysine-producing E. coli strain pDA1/TOC21R is described in the patent application F-A-2511032 and deposited at the Collection Nationale de Culture de Microorganisme (CNCM = National Microorganism Culture Collection, Pasteur Institute, Paris, France) under number
- 15 I-167. The strain and the plasmid-free host are also described by Dauce-Le Reverend et al. (European Journal of Applied Microbiology and Biotechnology 15:227-231 (1982)) under the name TOCR21/pDA1.
- After culture in antibiotic-free LB medium for 20 approximately six generations, a derivative of strain pDA1/TOC21R which no longer contains the plasmid pDA1 is

isolated. The strain formed is tetracycline-sensitive and is called TOC21R.

For replacement of the chromosomal poxB gene with the plasmid-coded deletion construct, TOC21R is transformed with the plasmid pMAK705ApoxB (Example 2). The gene replacement is carried out by the selection method described by Hamilton et al. (1989) Journal of Bacteriology 174, 4617 - 4622) and is verified by standard PCR methods (Innis et al. (1990) PCR Protocols. A Guide to Methods and Applications, Academic Press) with the following oligonucleotide primers:

poxB'5'-1: 5' - CTGAACGGTCTTAGTGACAG - 3'

poxB'3'-2: 5' - GCCAGTTCGATCACTTCATCAC -3'

The strain obtained is called TOC21R∆poxB.

15 Example 8

Preparation of L-lysine with the strain $TOC21R\Delta poxB$

The formation of L-lysine by the strains TOC21RApoxB and TOC21R is checked in batch cultures of 10 ml contained in 100 ml conical flasks. For this, 10 ml of preculture medium of the following composition: 2 g/l yeast extract, 10 g/l (NH₄)₂SO₄, 1 g/l KH₂PO₄, 0.5 g/l MgSO₄*7H₂O, 15 g/l CaCO₃, 20 g/l glucose are inoculated and the batch is incubated

for 16 hours at 37°C and 180 rpm on an ESR incubator from Kühner AG (Birsfelden, Switzerland). 250 µl of this

preculture are transinoculated into 10 ml of production
medium (25 g/l (NH₄)₂SO₄, 2 g/l KH₂PO₄, 1 g/l MgSO₄*7H₂O,
0.03 g/l FeSO₄*7H₂O, 0.018 g/l MnSO₄*1H₂O, 30 g/l CaCO₃,
20 g/l glucose, 25 mg/l L-isoleucine and 5 mg/l thiamine)
and the batch is incubated for 72 hours at 37°C. After the

30 incubation the optical density (OD) of the culture suspension is determined with an LP2W photometer from Dr.

Lange (Berlin, Germany) at a measurement wavelength of 660 nm.

The concentration of L-lysine formed is then determined in the sterile-filtered culture supernatant with an amino acid analyzer from Eppendorf-BioTronik (Hamburg, Germany) by ion exchange chromatography and post-column reaction with ninhydrin detection.

The result of the experiment is shown in table 4.

 Strain
 OD (660 nm)
 L-Lysine g/l

 TOC21R
 1.0
 1.17

 TOC21RΔpoxB
 1.0
 1.29

Table 4

10

Example 9

Position-specific mutagenesis of the poxB gene in the E. coli strain B-1288

The L-valine-producing E. coli strain AJ 11502 is described in the patent specification US-A-4391907 and deposited at the National Center for Agricultural Utilization Research (Peoria, Illinois, USA) as NRRL B-12288.

After culture in antibiotic-free LB medium for approximately six generations, a plasmid-free derivative of strain AJ 11502 is isolated. The strain formed is ampicillin-sensitive and is called AJ11502kur.

For replacement of the chromosomal poxB gene with the plasmid-coded deletion construct, AJ11502kur is transformed with the plasmid pMAK705ΔpoxB (see Example 2). The gene replacement is carried out by the selection method

described by Hamilton et al. (1989) Journal of Bacteriology 174, 4617 - 4622) and is verified by standard PCR methods (Innis et al. (1990) PCR Protocols. A Guide to Methods and Applications, Academic Press) with the following 5 oligonucleotide primers:

poxB'5'-1: 5' - CTGAACGGTCTTAGTGACAG - 3'

poxB'3'-2: 5' - GCCAGTTCGATCACTTCATCAC -3'

The strain obtained is called AJ11502kurΔpoxB. The plasmid described in the patent specification US-A-4391907, which carries the genetic information in respect of valine production, is isolated from strain NRRL B-12288. The strain AJ11502kurΔpoxB is transformed with this plasmid. One of the transformants obtained is called B-12288ΔpoxB.

Example 10

15 Preparation of L-valine with the strain $B-12288\Delta poxB$

The formation of L-valine by the strains B-12288 Δ poxB and NRRL B-12288 is checked in batch cultures of 10 ml contained in 100 ml conical flasks. For this, 10 ml of preculture medium of the following composition: 2 g/l yeast

- 20 extract, 10 g/l (NH₄)₂SO₄, 1 g/l KH₂PO₄, 0.5 g/l MgSO₄*7H₂O, 15 g/l CaCO₃, 20 g/l glucose and 50 mg/l ampicillin are inoculated and the batch is incubated for 16 hours at 37°C and 180 rpm on an ESR incubator from Kühner AG (Birsfelden, Switzerland). 250 μl of this preculture are transinoculated
- 25 into 10 ml of production medium (25 g/l (NH₄)₂SO₄, 2 g/l KH₂PO₄, 1 g/l MgSO₄*7H₂O, 0.03 g/l FeSO₄*7H₂O, 0.018 g/l MnSO₄*1H₂O, 30 g/l CaCO₃, 20 g/l glucose, 5 mg/l thiamine and 50 mg/l ampicillin) and the batch is incubated for 72 hours at 37°C. After the incubation the optical density
- 30 (OD) of the culture suspension is determined with an LP2W photometer from Dr. Lange (Berlin, Germany) at a measurement wavelength of 660 nm.

The concentration of L-valine formed is then determined in the sterile-filtered culture supernatant with an amino acid analyzer from Eppendorf-BioTronik (Hamburg, Germany) by ion exchange chromatography and post-column reaction with 5 ninhydrin detection.

The result of the experiment is shown in table 5.

Table 5

Strain	OD .	L-Valine
NRRL B-12288	(660 nm) 5.7	g/l 0.95
В-12288∆рохВ	5.6	1.05

Brief Description of the Figures

10 • Figure 1: pMAK705ΔpoxB (= pMAK705deltapoxB)

• Figure 2: pMW218gdhA

Figure 3: pMW219rhtC

The length data are to be understood as approx. data. The abbreviations and designations used have the following 15 meaning:

cat: chloramphenicol resistance gene

rep-ts: temperature-sensitive replication region of

the plasmid pSC101

poxB1: part of the 5' region of the poxB gene

20 poxB2: part of the 3' region of the poxB gene

kan: kanamycin resistance gene

gdhA: glutamate dehdyrogensase gene

rhtC: gene imparting threonine resistance

The abbreviations for the restriction enzymes have the following meaning

5 • BamHI: restriction endonuclease from Bacillus amyloliquefaciens

• BglII: restriction endonuclease from Bacillus globigii

• ClaI: restriction endonuclease from Caryphanon latum

Ecl136II restriction endonuclease from Enterobacter cloacae RFL136 (= Ecl136)

EcoRI: restriction endonuclease from Escherichia coli

EcoRV: restriction endonuclease from Escherichia coli

• HindIII: restriction endonuclease from Haemophilus influenzae

15 • KpnI: restriction endonuclease from Klebsiella pneumoniae

• PstI: restriction endonuclease from Providencia stuartii

PvuI: restriction endonuclease from Proteus vulgaris

20 • SacI: restriction endonuclease from Streptomyces achromogenes

• SalI: restriction endonuclease from Streptomyces albus

• SmaI: restriction endonuclease from Serratia
marcescens

XbaI: restriction endonuclease from Xanthomonas

badrii

XhoI: restriction endonuclease from Xanthomonas

holcicola

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

INTERNATIONAL FORM

Degussa-Hüls AG Kantstr. 2

33790 Halle

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY Identified at the bottom of this page

1. IDENTIFICATION OF THE MICROORGANISM	
Identification reference given by the DEPOSITOR: MG442ApoxB	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 13762
IL SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DES	IGNATION
The microorganism identified under L above was accompanied by:	
(X) a scientific description (X) a proposed taxonomic designation (Mark with a cross where applicable).	
III. RECEIPT AND ACCEPTANCE	
This International Depositary Authority accepts the microorganism identified u (Date of the original deposit).	under I. above, which was received by it on 2000-10-02
IV. RECEIPT OF REQUEST FOR CONVERSION	
The microorganism identified under I above was received by this international and a request to convert the original deposit to a deposit under the Budepest I for conversion).	Depositary Authority on (date of original deposit) reaty was received by it on (date of receipt of request
V. INTERNATIONAL DEPOSITARY AUTHORITY	
Name: DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s):
Address: Mascheroder Weg 1b D-38124 Braunschweig	Desc 2000-10-06

Form DSMZ-BP/4 (sole page) 0196

Where Rule 6.4 (d) applies, such date is the date on which the status of international depositary authority was acquired.

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

INTERNATIONAL FORM

Degussa-Hüls AG Kantstr. 2

33790 Halle

VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page

I. DEPOSITOR	II. IDENTIFICATION OF THE MICROORGANISM
Name: Degussa-Hüls AG Kantstr. 2 Address: 33790 Halle	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: DSM 13762 Date of the deposit or the transfer!: 2000-10-02
III. VIABILITY STATEMENT	
() no longer viable () no longer viable IV. CONDITIONS UNDER WHICH THE VIABILITY TEST HAS BEEN PR	PRPORMED*
. INTERNATIONAL DEPOSITARY AUTHORITY	
Name: DSMZ-DEUTSCHE SAMMLUNG VON MIKROORGANISMEN UND ZELLKULTUREN GmbH Address: Mascheroder Weg 1b D-38124 Braunschweig	Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s): Date: 2000-10-06

Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or data of the transfer).

ln the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.

Mark with a cross the applicable box.

Fill in if the information has been requested and if the moults of the test were regutive.

Form DSMZ-BP/9 (sole page) 0196

What is claimed is:

- A process for the fermentative preparation of L-amino acids, in particular L-threonine, which comprises carrying out the following steps:
- fermentation of the microorganisms of the
 Enterobacteriaceae family which produce the desired
 L-amino acid and in which at least the poxB gene or
 nucleotide sequences which code for it are
 attenuated, in particular eliminated,
- b) concentration of the L-amino acid in the medium or in the cells of the bacteria and
 - c) isolation of the L-amino acid.
 - A process as claimed in claim 1, wherein L-threonine, L-valine or L-lysine is prepared.
- 15 3. A process as claimed in claim 1, which comprises employing microorganisms in which further genes of the biosynthesis pathway of the desired L-amino acid are additionally enhanced.
- A process as claimed in claim 1, which comprises
 employing microorganisms in which the metabolic pathways which reduce the formation of the desired L-amino acid are at least partly eliminated.
- A process as claimed in claim 1, which comprises attenuating, in particular eliminating, expression of the polynucleotide(s) which code(s) for the poxB gene.
 - 6. A process as claimed in claim 1, which comprises reducing the regulatory and/or catalytic properties of the polypeptide (enzyme protein) for which the polynucleotide poxB codes.

- 7. A process as claimed in claim 1, which comprises fermenting, for the preparation of L-amino acids, microorganisms of the Enterobacteriaceae family in which one or more genes chosen from the group consisting of:
 - 7.1 the thrABC operon which codes for aspartate kinase, homoserine dehydrogenase, homoserine kinase and threonine synthase,
- 7.2 the pyc gene which codes for pyruvate carboxylase,
 - 7.3 the pps gene which codes for phosphoenol pyruvate synthase,
 - 7.4 the ppc gene which codes for phosphoenol pyruvate carboxylase,
- 7.5 the pntA and pntB genes which code for transhydrogenase,
 - 7.6 the rhtB gene which imparts homoserine resistance,
 - 7.7 the mgo gene which codes for malate:quinone oxidoreductase,
- 7.8 the rhtC gene which imparts threonine resistance,
 - 7.9 the thrE gene which codes for threonine export and
 - 7.10 the gdhA gene which codes for glutamate dehydrogenase
- is or are enhanced, in particular over-expressed, at the same time.
 - 8. A process as claimed in claim 1, which comprises fermenting, for the preparation of L-amino acids, microorganisms of the Enterobacteriaceae family in

which one or more genes chosen from the group consisting of:

- 8.1 the tdh gene which codes for threonine dehydrogenase,
- 5 8.2 the mdh gene which codes for malate dehydrogenase,
 - 8.3 the gene product of the open reading frame (orf) yjfA,
 - 8.4 the gene product of the open reading frame (orf) ytfP, and
- 8.5 the pckA gene which codes for the enzyme phosphoenol pyruvate carboxykinase,

is or are attenuated, in particular eliminated or reduced in expression, at the same time.

- A process as claimed in claim 1 or 2, which comprises
 employing, for the preparation of L-threonine, the strain MG442ΔpoxB transformed with the plasmid pMW218gdhA, shown in figure 2.
- 10. A process as claimed in claim 1 or 2, which comprises employing, for the preparation of L-threonine, the
 20 strain MG442∆poxB transformed with the plasmid pMW219rhtC, shown in figure 3.
 - 11. A process as claimed in claim 1 or 2, which comprises employing, for the preparation of L-lysine, the strain TOC21RApoxB.
- 25 12. A process as claimed in claim 1 or 2, which comprises employing, for the preparation of L-valine, the strain B-12288ΔpoxB.
 - 13. A microorganism of the Enterobacteriaceae family which produces L-amino acids, in which the poxB gene or

nucleotides sequences which code for it are attenuated, in particular eliminated, and which have a resistance to α -amino- β -hydroxyvaleric acid and optionally a compensatable partial need for L-isoleucine.

- 5 14. The Escherichia coli K-12 strain MG442ΔpoxB deposited at the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ = German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) under no. DSM 13762.
- 10 15. The plasmid pMAK705ΔpoxB, which contains parts of the 5' and of the 3' region of the poxB gene, corresponding to SEQ ID No. 3, shown in figure 1.
 - 16. The plasmid pMW218gdhA shown in figure 2.
 - 17. The plasmid pMW219rhtC shown in figure 3.
- 15 18. An isolated polynucleotide from microorganisms of the Enterobacteriaceae family, containing a polynucleotide sequence which codes for the 5' and 3' region of the poxB gene, shown in SEQ ID No. 4, in particular suitable as a constituent of plasmids for position-specific mutagenesis of the poxB gene.
 - 19. A strain of the Enterobacteriaceae family which produces L-threonine and contains a mutation in the poxB gene, corresponding to SEQ ID No. 4.

Figure 1:

Figure 2:

Figure 3:

SEQUENCE PROTOCOL

<110> Degussa AG

5 <120> Process for the fermentative preparation of L-amino acids using strains of the Enterobacteriaceae family.

<130> 000613 BT 10

<140>

<141>

<160> 4 15

<170> PatentIn Ver. 2.1

<210> 1

<211> 1719 20

<212> DNA

<213> Escherichia coli

<220>

<221> CDS

25. <222> (1)..(1716)

<223> poxB

<400> 1

atg aaa caa acg gtt gca gct tat atc gcc aaa aca ctc gaa tcg gca 30 48 Met Lys Gln Thr Val Ala Ala Tyr Ile Ala Lys Thr Leu Glu Ser Ala

ggg gtg aaa cgc atc tgg gga gtc aca ggc gac tct ctg aac ggt ctt Gly Val Lys Arg Ile Trp Gly Val Thr Gly Asp Ser Leu Asn Gly Leu 35 20

agt gac agt ctt aat cgc atg ggc acc atc gag tgg atg tcc acc cgc Ser Asp Ser Leu Asn Arg Met Gly Thr Ile Glu Trp Met Ser Thr Arg 144

cac gaa gaa gtg gcg gcc ttt gcc gct ggc gct gaa gca caa ctt agc 192 His Glu Glu Val Ala Ala Phe Ala Ala Gly Ala Glu Ala Gln Leu Ser - 50 55

gga gaa ctg gcg gtc tgc gcc gga tcg tgc ggc ccc ggc aac ctg cac 240 Gly Glu Leu Ala Val Cys Ala Gly Ser Cys Gly Pro Gly Asn Leu His

tta atc aac ggc ctg ttc gat tgc cac cgc aat cac gtt ccg gta ctg 288 Leu Ile Asn Gly Leu Phe Asp Cys His Arg Asn His Val Pro Val Leu 85 90

gcg att gcc gct cat att ccc tcc agc gaa att ggc agc ggc tat ttc 336 Ala Ile Ala Ala His Ile Pro Ser Ser Glu Ile Gly Ser Gly Tyr Phe 55 100

cag gaa acc cac cca caa gag cta ttc cgc gaa tgt agt cac tat tgc 384 Gln Glu Thr His Pro Gln Glu Leu Phe Arg Glu Cys Ser His Tyr Cys 115 120

60

	gag Glu	ctg Leu 130	val	tcc Ser	agc Ser	ccg Pro	gag Glu 135	cag Gln	atc Ile	cca Pro	caa Gln	gta Val 140	Leu	gcg Ala	att Ile	gcc Ala	432
5	atg Met 145	cgc Arg	aaa Lys	gcg Ala	gtg Val	ctt Leu 150	aac Asn	cgt Arg	ggc Gly	gtt Val	tcg Ser 155	gtt Val	gtc Val	gtg Val	tta Leu	cca Pro 160	480
10	Gly Gly	gac Asp	gtg Val	gcg Ala	tta Leu 165	aaa Lys	cct Pro	gcg Ala	cca Pro	gaa Glu 170	Gly	gca Ala	acc Thr	atg Met	cac His 175	tgg Trp	528
15	tat Tyr	cat His	gcg Ala	cca Pro 180	caa Gln	cca Pro	gtc Val	gtg Val	acg Thr 185	ccg	gaa Glu	gaa Glu	gaa Glu	gag Glu 190	tta Leu	cgc Arg	576
20	aaa Lys	ctg Leu	gcg Ala 195	caa Gln	ctg Leu	ctg Leu	cgt Arg	tat Tyr 200	tcc Ser	agc Ser	aat Asn	atc Ile	gcc Ala 205	ctg Leu	atg Met	tgt Cys	624
	Gl y ggc	agc Ser 210	Gly	tgc Cys	gcg Ala	Gly	gcg Ala 215	cat His	aaa Lys	gag Glu	tta Leu	gtt Val 220	gag Glu	ttt Phe	gcc Ala	Gly	672
25	aaa Lys 225	att Ile	aaa Lys	gcg Ala	cct Pro	att Ile 230	gtt Val	cat His	gcc Ala	ctg Leu	cgc Arg 235	ggt Gly	aaa Lys	gaa Glu	cat His	gtc Val 240	720
30	gaa Glu	Tyr	Asp	Asn	Pro 245	Tyr	Asp	Val	Gly	Met 250	Thr	Gly	Leu	Ile	Gly 255	Phe	768
35	tcg Ser	ser	GIĀ	260	His	Thr	Met	Met	Asn 265	Ala	Asp	Thr	Leu	Val 270	Leu	Leu	816
40	ggc Gly	inr	275	Phe	Pro	Tyr	Arg	Ala 280	Phe	Tyr	Pro	Thr	Asp 285	Ala	Lys	Ile	864
45	ite (290	TTE	Asp	Ile	Asn	Pro 295	Ala	Ser	Ile	Gly	Ala 300	His.	Ser	Lys	Val	912
45	gat a Asp 1 305	ne C	ATA	Leu	Val	310	Asp	Ile	Lys	Ser	Thr 315	Leu	Arg	Ala	Leu	Leu 320	960
50	cca t Pro 1	en	val	GIu	Glu 325	Lys	Ala	Asp	Arg	Lys 330	Phe	Leu	Asp	Lys	Ala 335	Leu	1008
55	gaa q Glu A	rsb	Tyr	Arg 340	Asp	Ala	Arg	Lys	Gly 345	Leu	Asp.	Asp	Leu	Ala 350	Lys	Pro	1056
60	ser o	gag Slu	aaa Lys 355	gcc Ala	att Ile	cac His	ccg Pro	caa Gln 360	tat Tyr	ctg Leu	gcg Ala	cag Gln	caa Gln 365	att Ile	agt Ser	cat His	1104

					•						•						
· ·	ttt Phe	gcc Ala 370	gcc Ala	gat Asp	gac Asp	gct Ala	att Ile 375	ttc Phe	acc Thr	tgt Cys	gac Asp	gtt Val 380	Gly	acg Thr	cca Pro	acg Thr	1152
5	gtg Val 385	tgg Trp	gcg Ala	gca Ala	cgt Arg	tat Tyr 390	cta Leu	aaa Lys	atg Met	aac Asn	ggc Gly 395	aag Lys	cgt Arg	cgc Arg	ctg Leu	tta Leu 400	1200
10	ggt Gly	tcg Ser	ttt Phe	aac Asn	cac His 405	ggt Gly	tcg Ser	atg Met	gct Ala	aac Asn 410	gcc Ala	atg Met	ccg	cag Gln	gcg Ala 415	ctg Leu	1248
15	ggt Gly	gcg Ala	cag Gln	gcg Ala 420	aca Thr	gag Glu	cca Pro	gaa Glu	cgt Arg 425	cag Gln	gtg Val	gtc Val	gcc Ala	atg Met 430	Cys	ggc Gly	1296
20	gat Asp	ggc	ggt Gly 435	ttt Phe	agc Ser	atg Met	ttg Leu	atg Met 440	Gly	gat Asp	ttc Phe	ctc Leu	tca Ser 445	gta Val	gtg Val	cag Gln	1344
	atg Met	aaa Lys 450	Leu	cca Pro	gtg Val	aaa Lys	att Ile 455	gtc Val	gtc Val	ttt Phe	aac Asn	aac Asn 460	agc Ser	gtg Val	ctg Leu	ggc Gly	1392
25	ttt Phe 465	gtg Val	gcg Ala	atg Met	gag Glu	atg Met 470	aaa Lys	gct Ala	ggt Gly	ggc	tat Tyr 475	ttg Leu	act Thr	gac Asp	ggc Gly	acc Thr 480	1440
30	gaa Glu	cta Leu	cac His	gac Asp	aca Thr 485	aac Asn	ttt Phe	gcc Ala	cgc Arg	att Ile 490	gcc Ala	gaa Glu	gcg Ala	tgc Cys	ggc Gly 495	att Ile	1488
35	acg Thr	ggt Gly	atc Ile	cgt Arg 500	gta Val	gaa Glu	aaa Lys	gcg Ala	tct Ser 505	gaa Glu	gtt Val	gat Asp	gaa Glu	gcc Ala 510	ctg Leu	caa Gln	1536
40	cgc Arg	gcc Ala	ttc Phe 515	tcc Ser	atc Ile	gac Asp	ggt Gly	ccg Pro 520	gtg Val	ttg Leu	gtg Val	gat Asp	gtg Val 525	gtg Val	gtc Val	gcc Ala	1584
	гÃа	gaa Glu 530	gag Glu	tta Leu	gcc Ala	att Ile	cca Pro 535	ccg Pro	cag Gln	atc Ile	aaa Lys	ctc Leu 540	gaa Glu	cag Gln	gcc Ala	aaa Lys	1632
45	ggt Gly 545	ttc Phe	agc Ser	ctg Leu	tat Tyr	atg Met 550	ctg Leu	cgc Arg	gca Ala	atc Ile	atc Ile 555	agc Ser	gga Gly	cgc Arg	ggt Gly	gat Asp 560	1680
50	gaa Glu	gtg Val	atc Ile	gaa Glu	ctg Leu 565	Ala	aaa Lys	aca Thr	aac Asn	tgg Trp 570	cta Leu	agg Arg	taa	•			1719
55	<210 <211 <212	> 57	2 T			•							•				·
	<213			ichi	a co	li	•			٠							
60	<400 Met ·		Gln	Thr	Val 5	Ala	Ala	Tyr	Ile	Ala 10	Lys	Thr	Leu	Glu	Ser 15	Ala	
	Gly	Val	Lys	Arg	Ile	Trp	Gly	Val	Thr	Gly	Asp	Ser	Leu	Asn	Gly	Leu	

	•																
	-		•	20					25					30			
5	Ser	Asp	Ser 35	Leu	Asn	Arg	Met	Gly 40	Thr	Ile	Glu	Trp	Met 45		Thr	Arg	
	His	Glu 50	Glu	Val	Ala	Ala	Phe 55	Ala	Ala	Gly	Ala	Glu 60	Ala	Gln	Leu	Ser	
10	Gly 65	Glu	Leu	Ala	Val	Cys 70	Ala	GŢĀ	Ser	Cys	Gly 75	Pro	Gly	Asn	Leu	His 80	
	Leu	Ile	Asn	Gly	Leu 85	Phe	Asp	Cys	His	Arg 90	Asn	His	.Val	Pro	Val 95	Leu	
15	Ala	Ile	Ala	Ala 100	His	Ile	Pro	Ser	Ser 105	Glu	Ile	Gly	Ser	Gly 110		Phe	
20	Gln	Glu	Thr 115	His	Pro	Gln	Glu	Leu 120	Phe	Arg	Glu	Cys	Ser 125		Tyr	Суз	:
20	Glu	Leu 130	Val	Ser	Ser	Pro	Glu 135	Gln	Ile	Pro	Gln	Val 140	Leu	Ala	Ile	Ala	
25	Met 145	Arg	Lys	Ala	Val	Leu 150	Asn	Arg	Gly	Val	Ser 155	Val	Val	Val	Leu	Pro 160	
	Gly	Asp	Val	Ala	Leu 165	Lys	Pro	Ala	Pro	Glu 170	Gly	Ala	Thr	Met	His 175	Trp	
30	Tyr	His	Ala	Pro 180	Gln	Pro	Val	Val	Thr 185	Pro	Glu	Glu	Glu	Glu 190	Leu	Arg	
35	Lys	Leu	Ala 195	Gln	Leu	Leu	Arg	Tyr 200	Ser	Ser	Asn	Ile	Ala 205	Leu	Met	Суз	
	Gly	Ser 210	Gly	Cys	Ala	Gly	Ala 215	His	Lys	Glu	Leu	Val 220	Glu	Phe	Ala	Gly	
40	Lys 225	Ile	Lys	Ala	Pro	Ile 230	Val	His	Ala	Leu	Arg 235	Gly	Lys	Glu	His	Val 240	
	Glu.	Tyr	Asp	Asn	Pro 245	Tyr	Asp	Val	Gly	Met 250	Thr	Gly	Leu	-Ile	G1y 255	Phe-	
45	Ser	Ser	Gly	Phe 260	His	Thr	Met	Met	Asn 265	Ala	Asp	Thr	Leu	Val 270	Leu	Leu	÷
50	Gly	Thr	Gln 275	Phe	Pro	Tyr	Arg	Ala 280	Phe	Tyr	Pro	Thr	Asp 285	Ala	Lys	Ile	
· - .	Ile	Gln 290	Ile	Asp	Ile	Asn	Pro 295	Ala	Ser	Ile	Gly	Ala 300	His	Ser	Lys	Val	
55	Asp 305	Met 	Ala	Leu	Val	Gly 310	Asp	Ile	Lys	Ser	Thr 315	Leu	Arg	Ala	Leu	Leu 320	

Pro Leu Val Glu Glu Lys Ala Asp Arg Lys Phe Leu Asp Lys Ala Leu 325 330 335

Glu Asp Tyr Arg Asp Ala Arg Lys Gly Leu Asp Asp Leu Ala Lys Pro 340 345 350

Ser Glu Lys Ala Ile His Pro Gln Tyr Leu Ala Gln Gln Ile Ser His

60

			355		٠.			360					365	•		
5	Phe A	11a 170	Ala	Asp	Asp	Ala	Ile 375	Phe	Thr	Суѕ	Asp	Val 380	Gly	Thr	Pro	Thr
	Val 1 385	rp .	Ala	Ala	Arg	Tyr 390	Leu	Lys	Met	Asn	Gly 395	Lys	Arg	Arg	Leu	Leu 400
10	Gly S	er	Phe	Asn	His 405	Gly	Ser	Met	Ala	Asn 410	Ala	Met	Pro	Gln	Ala 415	Leu
	Gly A	la	Gln	Ala 420	Thr	Glu	Pro	Glu	Arg 425	Gln	Val	Val	Ala	Met 430	Суѕ	Gly
15	Asp G		Gly 435	Phe	Ser	Met	Leu	Met 440	Gly	Asp	Phe	Leu	Ser 445	Val	Val	Gln
20	Met I	ys 50	Leu	Pro	Val	Lys	Ile 455	Val	Val	Phe	Asn	Asn 460	Ser	Val	Leu	Gly
	Phe V 465	'al	Ala	Met	Glu	Met 470	Lys	Ala	Gly	Gly	Tyr 475	Leu	Thr	Asp	Gly	Thr 480
25	Glu L	eu	His	Asp	Thr 485	Asn	Phe	Ala	Arg (Ile 490	Ala	Glu	Ala	Суз	Gly 495	Ile
	Thr G	ly	Ile	Arg 500	Val	Glu	Lys	Ala	Ser 505	Glu	Val	Asp	Glu	Ala 510	Leu	Gln
30	Arg A		Phe 515	Ser	Ile	Asp	Gly	Pro 520	Val	Leu	Val	Asp	Val 525	Val	Val	Ala
35	Lys G 5	1u 30	Glu	Leu	Ala	Ile	Pro 535	Pro	Gln	Ile	Lys	Leu 540	Glu	Gln	Ala	Lys
	Gly P 545	he	Ser	Leu	Tyr	Met 550	Leu	Arg	Ala	Ile	11e 555	Ser	Gly	Arg	Gly	Asp 560
40	Glu V	al	Ile	Glu	Leu 565	Ala	Lys	Thr	Asn	Trp 570	Leu	Arg				
	<210>	3					-						÷			
45	<211> <212> <213>	DN	Ά	rich	La c	oli			-					- . ·		
50	<220> <221> <222> <223>	mi (1)	(1:454	1)											
55	<220><221><222><222><223>	mi (1	sc_:	featı (56)	ıre	/res:	idue	s of	the	poly	Vlini	ker :	seave	ence		
50	<220> <221> <222> <223>	mi (5	sc_1	feat: . (57	ure 7)					,						

```
<220>
        <221> misc_feature
         <222> (578)..(646)
        <223> Technical DNA/residues of the polylinker sequence
        <220>
        <221> misc feature
        <222> (647)..(1398)
        <223> Part of the 3' region (poxB2) of the poxB gene
 10
        <220>
        <221> misc_feature
        <222> (1399)..(1454)
        <223> Technical DNA/residues of the polylinker sequence
 15
        <400> 3
        ctagatgeat gctcgagegg ccgccagtgt gatggatatc tgcagaattc gcccttctga 60
        acggtettag tgacagtett aategeatgg geaccatega gtggatgtee accegeeacg 120 aagaagtgge ggeetttgee getggegetg aageacaact tageggagaa etggeggtet 180
 20
        gcgccggate gtgcggcccc ggcaacctgc acttaatcaa cggcctgttc gattgccacc 240
        gcaatcacgt teeggtactg gcgattgccg etcatattee etceagegaa attggcageg 300
        gctatttcca ggaaacccac ccacaagagc tattccgcga atgtagtcac tattgcgagc 360
        tggtttccag cccggagcag atcccacaag tactggcgat tgccatgcgc aaagcggtgc 420 ttaaccgtgg cgtttcggtt gtcgtgttac caggcgacgt ggcgttaaaa cctgcgccag 480 aaggggcaac catgcactgg tatcatgcgc cacaaccagt cgtgacgccg gaagaagaag 540
 25
        agttacgcaa actggcgcaa ctgctgcgtt attccaggcc taagggcgaa ttccagcaca 600
        ctggcggccg ttactagtgg atccgagate tgcagaatte gcccttctgc gtgcattgct 660
       tccattggtg gaagaaaaag ccgatcgcaa gtttctggat aaagcgctgg aagattaccg 720 cgacgcccgc aaagggctgg acgatttagc taaaccgagc gagaaagcca ttcacccgca 780 atatctggcg cagcaaatta gtcattttgc cgccgatgac gctattttca cctgtgacgt 840
 30
       tggtacgcca acggtgtggg cggcacgtta tctaaaaatg aacggcaagc gtcgcctgtt 900
        aggttegttt aaccaeggtt egatggetaa egecatgeeg eaggegetgg gtgegeagge 960
       gacagagcca gaacgtcagg tggtcgccat gtgcggcgat ggcggtttta gcatgttgat 1020 gggcgatttc ctctcagtag tgcagatgaa actgccagtg aaaattgtcg tctttaacaa 1080 cagcgtgctg ggctttgtgg cgatggagat gaaagctggt ggctatttga ctgacggcac 1140
       cgaactacac gacacaaact ttgcccgcat tgccgaagcg tgcggcatta cgggtatccg 1200
       tgtagaaaaa gcgtctgaag ttgatgaagc cctgcaacgc gccttctcca tcgacggtcc 1260
       ggtgttggtg gatgtggtgg tcgccaaaga agagttagcc attccaccgc agatcaaact 1320
       cgaacaggcc aaaggtttca gcctgtatat gctgcgcgca atcatcagcg gacgcggtga 1380
40
       tgaagtgate gaactggeaa gggegaatte cagcacactg geggeegtta ctagtggate 1440
       cgagctcggt acca
       <210> 4
45
       <211> 1448
       <212> DNA
       <213> Escherichia coli
       <220>
50
       <221> misc_feature
       <222> (1)..(3)
       <223> Start codon of the delta poxB allele
       <220>
55
      <221> misc_feature <222> (1)..(605)
      <223> 5' region of the delta poxB allele
      <220>
60
      <221> misc_feature
      <222> (606)..(674)
      <223> Technical DNA/residues of the polylinker sequence
```

<220>

```
<221> misc feature
        <222> (675)..(1445)
        <223> 3' region of the delta poxB allele
  5
        <220>
        <221> misc feature
        <222> (1446)..(1448)
        <223> Stop codon of the delta poxB allele
10
        <400> 4
       atgaaacaaa cggttgcagc ttatatcgcc aaaacactcg aatcggcagg ggtgaaacgc 60
       atctggggag tcacaggcga ctctctgaac ggtcttagtg acagtcttaa tcgcatgggc 120
       accatcgagt ggatgtccac ccgccacgaa gaagtggcgg cctttgccgc tggcgctgaa 180
       gcacaactta gcggagaact ggcggtctgc gccggatcgt gcggccccgg caacctgcac 240 ttaatcaacg gcctgttcga ttgccaccgc aatcacgttc cggtactgc gattgccgct 300 catattccct ccagcgaaat tggcagcggc tatttccagg aaacccaccc acaagagcta 460
15
       ttccgcgaat gtagtcacta ttgcgagctg gtttccagcc cggagcagat cccacaagta 420 ctggcgattg ccatgcgcaa agcggtgctt aaccgtggcg tttcggttgt cgtgttacca 480
       ggcgacgtgg cgttaaaacc tgcgccagaa ggggcaacca tgcactggta tcatgcgcca 540 caaccagtcg tgacgccgga agaagaagag ttacgcaaac tggcgcaact gctgcgttat 600
20
       tecaggeeta agggegaatt ecageacact ggeggeegtt actagtggat ecgagatetg 660
       cagaattege cettetgegt geattgette cattggtgga agaaaaagee gategeaagt 720
       ttctggataa agcgctggaa gattaccgcg acgcccgcaa agggctggac gatttagcta 780 aaccgagcga gaaagccatt cacccgcaat atctggcgca gcaaattagt cattttgccg 840
       ccgatgacgc tattttcacc tgtgacgttg gtacgccaac ggtgtgggcg gcacgttatc 900
       taaaaatgaa cggcaagcgt cgcctgttag gttcgtttaa ccacggttcg atggctaacg 960
       ccatgccgca ggcgctgggt gcgcaggcga cagagccaga acgtcaggtg gtcgccatgt 1020
       geggegatgg eggttttage atgttgatgg gegattteet etcagtagtg eagatgaaac 1080 tgecagtgaa aattgtegte tttaacaaca gegtgetggg etttgtggeg atggagatga 1140 aagetggtgg etatttgaet gaeggeaceg aactacaega cacaaacttt geeegcattg 1200
30
       ccgaagcgtg cggcattacg ggtatccgtg tagaaaaagc gtctgaagtt gatgaagccc 1260 tgcaacgcgc cttctccatc gacggtccgg tgttggtgga tgtggtggtc gccaaagaag 1320
       agttagecat tecacegeag atcaaacteg aacaggecaa aggttteage etgtatatge 1380
       tgcgcgcaat catcagcgga cgcggtgatg aagtgatcga actggcgaaa acaaactggc 1440
35
       taaggtaa
```

(19) World Intellectual Property Organization International Bureau

- 10016 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010 10010

(43) International Publication Date 10 May 2002 (10.05.2002)

PCT

(10) International Publication Number WO 02/036797 A3

- (51) International Patent Classification7: C12N 15/53, 15/52, 15/70, C12P 13/08, C12N 9/02, 1/21
- (21) International Application Number: PCT/EP01/11228
- (22) International Filing Date:

28 September 2001 (28.09.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

 100 54 748.6
 4 November 2000 (04.11.2000)
 DE

 60/248,210
 15 November 2000 (15.11.2000)
 US

 101 12 107.5
 14 March 2001 (14.03.2001)
 DE

 60/283,612
 16 April 2001 (16.04.2001)
 US

- (71) Applicant: DEGUSSA AG [DE/DE]; Bennigseplatz 1, 40474 Düsseldorf (DE).
- (72) Inventors: RIEPING, Mechthild; Mönkebergstrasse 1, 33619 Bielefeld (DE). THIERBACH, Georg; Gunststrasse 21, 33613 Bielefeld (DE).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report: 14 November 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROCESS FOR THE FERMENTATIVE PREPARATION OF L-AMINO ACIDS USING STRAINS OF THE ENTER-OBACTERIACEAE FAMILY

(57) Abstract: The invention relates to a process for the fermentative preparation of L-amino acids, in particular L-threonine, in which the following steps are carried out: a) fermentation of the microorganisms of the Enterobacteriaceae family which produce the latest the definition of the microorganisms of the Enterobacteriaceae family which produce the latest the definition of the microorganisms of the Enterobacteriaceae family which produce the latest the definition of the microorganisms of the Enterobacteriaceae family which produce the latest the definition of the microorganisms of the Enterobacteriaceae family which produce the latest the latest

ang kangang kepadang dialah banggalag di Papagang ang pangkang kalang dialah di Kalandar Nebalah na kanah kana

97 A3

INTERNATIONAL SEARCH REPORT

Int ional Application No PCT/EP 01/11228

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N15/53 C12N C12N15/52 C12N15/70 C12P13/08 C12N9/02 C12N1/21 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the International search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ, BIOSIS, SEQUENCE SEARCH, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Cliation of document, with indication, where appropriate, of the relevant passages A DATABASE BIOSIS 'Online! 1 - 19BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1989 GRABAU C ET AL: "LIPID BINDING BY ESCHERICHIA-COLI PYRUVATE OXIDASE IS DISRUPTED BY SMALL ALTERATIONS OF THE CARBOXYL-TERMINAL REGION" Database accession no. PREV198988088849 XP002208064 abstract & JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 264, no. 21, 1989, pages 12510-12519, ISSN: 0021-9258 X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents : "T" tater document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the International "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to hyolve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or document published prior to the International filing date but later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 30 July 2002 14/08/2002 Name and malling address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Douschan, K

INTERNATIONAL SEARCH REPORT

Int mail Application No PCT/EP 01/11228

		PC1/EP 01/11228
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	CHANG Y-Y ET AL: "MOLECULAR CLONING, DNA SEQUENCING, AND ENZYMATIC ANALYSES OF TWO ESCHERICHIA COLI PYRUVATE OXIDASE MUTANTS DEFECTIVE IN ACTIVATION BY LIPIDS" JOURNAL OF BACTERIOLOGY, WASHINGTON, DC,	1-19
	US, vol. 167, no. 1, July 1986 (1986-07), pages 312-318, XP000987283 ISSN: 0021-9193 the whole document	
A	GRABAU C ET AL: "MOLECULAR CLONING OF THE GENE (POXB) ENCODING THE PYRUVATE OXIDASE OF ESCHERICHIA COLI, A LIPID-ACTIVATED ENZYME"	1-19
	JOURNAL OF BACTERIOLOGY, WASHINGTON, DC, US, vol. 160, no. 3, December 1984 (1984-12),	
	pages 1088-1092, XP000987282 ISSN: 0021-9193 the whole document	
A	US 4 278 765 A (DEBABOV V. G. ET AL.) 14 July 1981 (1981-07-14) cited in the application the whole document	1–19
A	DATABASE BIOSIS 'Online! BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1987 VAN DYK T K ET AL: "PLEIOTROPIC EFFECTS OF POX-A REGULATORY MUTATIONS OF	13,19
	ESCHERICHIA-COLI AND SALMONELLA-TYPHIMURIUM MUTATIONS CONFERRING SULFOMETURON METHYL AND ALPHA KETOBUTYRATE HYPERSENSITIVITY"	
	Database accession no. PREV198784118407 XP002208065 abstract & JOURNAL OF BACTERIOLOGY,	
	vol. 169, no. 10, 1987, pages 4540-4546, ISSN: 0021-9193	
A,P	WO 01 71012 A (DEGUSSA AG) 27 September 2001 (2001-09-27) claim 7	1-19
A,P	EP 1 096 013 A (DEGUSSA G) 2 May 2001 (2001-05-02) claims 1-16	1-19
:		
		ł

INTERNATIONAL SEARCH REPORT

formation on patent family members

hi lonal Application No PCT/EP 01/11228

						FCI/EF U1/11228			
cite	atent document d in search report		Publication date		Patent family member(s)		Publication date	- 1	
US 	4278765	A	14-07-1981	SU	875663 A 190999 B		15-09-1982 28-12-1986	<u>.</u> .	
WO 	0171012	A	27-09-2001	AU BR CN WO EP	6431600 A 0010817 A 1350586 T 0171012 A 1179076 A	1	03-10-2001 05-03-2002 22-05-2002 27-09-2001 13-02-2002		
EP	1096013	А	02-05-2001	DE AU BR CN EP JP SK	19951975 A 6807500 A 0005091 A 1304997 A 1096013 A 2001161386 A 15732000 A	2	03-05-2001 03-05-2001 19-06-2001 25-07-2001 02-05-2001 19-06-2001 06-11-2001		