推理引擎 OpenPPL 实战训练营

OpenPPL之通用架构下的性能优化概要

2021年12月29日

课程安排

课程安排	主讲人	课程时间
第一期:商汤自研AI推理引擎 OpenPPL 的实践之路	高洋	2021年12月07日
第二期:编程工作坊:基于 OpenPPL 的模型推理与应用部署	欧国宇	2021年12月16日
第三期: OpenPPL之通用架构下的性能优化概要	许志耿	2021年12月29日
第四期:模型大小与推理速度的那些事儿	田子宸	2022年01月06日
第五期:性能调优实战 (x86篇)	梁杰鑫	敬请期待
第六期:性能调优实战(CUDA篇)	李天健	敬请期待
第七期: OpenPPL+RISC-V 指令集初探	焦明俊/杨阳	敬请期待
第八期:OpenPPL 在 ARM Server 上的技术实践	许志耿/邱君仪	敬请期待
第九期: 量化工具实践	纪喆	敬请期待

「商汤学术」公众号 可以回复"抽奖"试试哦

许志耿

商汤科技高级异构计算工程师 PPL CPU & 加速器架构负责人

- 本硕毕业于上海交通大学计算机系,研究方向为高性能计算,在 PARCO、ICPP、IPDPS 等国际会议期刊上发表多篇论文
- · 目前在商汤科技高性能计算部门负责 CPU、加速器等架构方向的 PPL 研发与优化

课程提纲

第三期课程将交流分享在 CPU 等通用架构下,基于微基准测试、性能分析以及底层调优的性能优化整体思路。

1. 工欲善其事,必先 Benchmark: 硬件架构特性分析

2. AI 中的 AI: 基于 Arithmetic Intensity, 探索优化方向

3. 斗榫合缝: 基于微架构的指令级调优

4. 性能优化流程总结

OpenPPL性能优化分享——通用架构下的性能优化概要

许志耿

2021.12.29

AI Computing

- Al Computing: HPC + Al
- 推理部署:基于目标硬件平台,实现AI算法的高效推理过程
- 推理系统在AI应用部署中的定位
 - □ "承上","比算法更懂硬件"—— 架构特性
 - □ "启下","比硬件更懂算法"—— 计算特性

Part 1 工欲善其事,必先Benchmark —— 硬件架构特性分析
Part 2 Al in Al —— 基于Arithmetic Intensity,探索优化方向

Part 3 斗榫合缝 —— 基于微架构的指令级调优 分享

Part 4 性能优化总结

Outline

Part 1. 基于Micro-benchmark的硬件架构特性分析

Al Computing: HPC + Al

• 推理部署:基于目标硬件平台,实现AI算法的高效推理过程

- 推理系统在AI应用部署中的定位
 - □ "承上","比算法更懂硬件"—— 架构特性
 - □ "启下", "比硬件更懂算法"—— 计算特性
- 如何获取架构特性?
 - □ 厂商架构文档 —— 是否足够开放? 完整? 准确?
 - □ 工欲善其事,必先利其器 —— 基于micro-benchmark进行架构特性测试
- Micro-benchmark: "A micro-benchmark is either a program or routine to measure and test the performance of a single component or task." [1]
 - □ 针对单一架构组件的性能测试程序

Part 1. 基于Micro-benchmark的硬件架构特性分析

Micro-benchmark

□ 测试对象:尽可能从功能独立的单一架构组件入手

□ 测试方法:设计基于简单代码/指令片段的小型程序

□ 测试目的: 充分体现架构组件的性能

• 与性能相关的架构组件举例

- □ 计算 —— 流水线微架构(pipeline): instruction latency & throughput
- □ 访存 —— 存储层次(memory hierarchy): global/local memory, cache latency & bandwidth
- □ 通信 —— 互联 (comm): inner/intra node/cluster/core communication latency & bandwidth
- □ 特色架构组件

Part 1. 基于Micro-benchmark的硬件架构特性分析

Micro-benchmark设计

- □ 基于独立指令流的**指令吞吐** (IPC) 测试
- □ 基于依赖序列的指令延迟测试
- □ 基于pointer-chasing的各级访存延迟测试
- □ 基于stream的各级访存带宽测试
- □ 基于ping-pong的**通信延迟**测试
- □ 基于sync的单向延迟测试
- □ 基于架构问题最小复现集的自定义测试
- **...**

向量指令吞吐

■ 以instruction per cycle (IPC) 作为度量

- ➤ At least 7 FMA to achieve peak performance.
- The throughput of SPM access and arithmetic vector instructions are all 1, except div and sgrt.
- ➤ The IPC of div and sqrt are quite low with a reciprocal throughput of 30 (1/0.033) and 28 (1/0.036) respectively in double precision, implying the succeeding independent double-precision div (sqrt) has to stall for 30 (28) cycles before it can be issued.

点对点 RLC 延迟测试

- Result:
 - T_putr(1 cycle) + T_getr(1 cycle) + T_data_trans
 - = 10 cycles > T_data_trans = 10-1-1= 8 cycles
 - We test every pair of CPEs in the same row/col.

RLC latency in row:

RLC latency in col:

Table[i,j] means the latency of transferring data from i_{th} CPE to j_{th} CPE in the same ROW/COL.

Micro-benchmark 测试样例[2]

Part 1 工欲善其事,必先Benchmark —— 硬件架构特性分析

Part 2 Al in Al —— 基于Arithmetic Intensity, 探索优化方向

Part 3 斗榫合缝 —— 基于微架构的指令级调优分享

Part 4 性能优化总结

Outline

Hìgh

Performance

Computing

- 推理部署在AI产业中的定位
 - □ "承上", "比算法更懂硬件" —— 架构特性
 - □ "启下","比硬件更懂算法"—— 计算特性
- 计算特性: 计算过程的计算模式、访存模式、扩展引入的通信等
- 计算特性/架构特性/性能表现与性能优化的关系
 - □ 计算性能优化,本质上是基于给定的计算模式,在目标硬件平台上,依据架构特性,为获取高性能实现,寻找最优的 计算、访存、通信行为的**执行序列(并行算法)**的过程。
- 并行算法设计常常是一个迭代的过程
 - □ 前馈: 根据计算特性、架构特性,进行性能建模,指导优化 方向,设计并行算法。
 - □ 反馈: 根据性能表现反馈,寻找性能瓶颈与潜在的架构特性 的影响,进行架构特性分析与并行算法改良,再次进入前向过程。

ΔΙ

Computing

(Training/

Deployment)

Artificial

Intelligence

- 性能分析中量化指标的必要性
 - □ 关联计算与访存、计算特性与架构特性
 - □ 辅助分析与建模
- 计算强度 Arithmetic Intensity
 - Arithmetic intensity is a measure of floating-point operations (FLOPs) performed by a given code (or code section) relative to the amount of memory accesses (Bytes) that are required to support those operations.[3]
 - □ Flops / Bytes:每搬运单位数量的数据,硬件可以进行的计算次数
 - □ 一定程度上刻画了计算流程与硬件平台在计算与访存方面的特征
 - □ **计算模式**作为计算&访存的**需求方,硬件平台**作为计算&访存的**资源供给方**,两者的**供需匹配程度决定了性能的表现**
- 如何关联计算模式与硬件平台的计算强度,进而分析供需程度?
 - Roofline Model

构建Roofline Model [4]

- □ 横轴: 计算强度
- □ 纵轴:可达到的性能上限 (Attainable FLOPS) ,取 与硬件理论峰值相比的最小值
- □ 斜率:目标存储层次带宽
- □ 将硬件的计算/访存能力与计算任务的需求进行可视化 与分析

在Roofline Model中分析计算任务瓶颈

- □ 选择正确的访存层次 (global memory/LLC/local memory等) 刻画Roofline Model
- □ 正确计算任务的计算强度(访存层次、访存量、计算量等)
- 将任务计算强度与Machine Balance对比,判断性能瓶颈, Memory bound/Compute bound

□ 判断性能上限,与当前实际性能进行对比

Ref. [4] Williams, S., Waterman, A., & Patterson, D. (2009). Roofline: an insightful visual performance in the control of the

Communications of the ACM, 52(4), 65-76.

Roofline Model在某国产平台上的应用 [5] Lin, J., Xu, Z., Cai, L., Nukada, A., & Matsuoka, S. (2018). Evaluating the SW26010 many-core processor with a micro-benchmark

suite for performance optimizations. Parallel Computing, 77, 128-143.

简单示例

- 基于内积的GEMM外围naïve算法分析(为简化说明,考虑C = A * B)
- gemm size为M,N,K, 假设在LLC/local memory只做了一级分块 bm, bn, bk
- 假设数据较大,需要在主存与cache中迁移,选取主存作为存储层次分析对象
- 则单次K向迭代中
 - 访存量为 block A(bm * bk) + block B(bn * bk) + block C(bm * bn) / (K / bk)
 - 计算量为2 * bm * bn * bk
 - 考虑到内积计算方式对矩阵A的复用,以及B的重复加载,还需要根据分块个数(M/bm, N/bn, K/bk),重新调整访存量
- 则计算访存比为与M、N、K、bm、bn、bk相关的表达式 F(M, K, K, bm, bn, bk)
- Cache上矩阵分块占用容量为B(bm, bn, bk), 需考虑双缓冲
- 考虑到gemm kernel的寄存器分块,bm, bn, bk最好是寄存器分块rm, rn, rk的整倍数
- 如果希望gemm达到峰值,则需求解满足如下约束的不等式,找到合适的分块大小
 - ① F(M, K, K, bm, bn, bk) >= Machine Balance
 - ② B(bm, bn, bk) <= Cache Size (e.g., LLC);
 - (3) bm % rm == 0; bn % rn == 0; bk % rk ==0;
 - ④ 为了使汇编kernel效率足够高,bk需要尽可能大

- Roofline Model 前置条件 & 局限性
 - □ 根据是否使用FMA/SIMD/ILP选取性能上界
 - □ 假定计算与访存可以overlap
 - □ 需选取正确的存储层次带宽
 - □ 计算指令可以fully-pipelined (throughput-oriented model) ,否则需降低性能上界(latency bound)
 - □ 错误的计算性能上界/存储层次/计算访存无法掩盖将导致实际性能表现与建模存在较大偏差
 - □ 适合用于评估卷积/矩阵乘的并行算法性能上限与优化方向;或评估长尾算子的瓶颈类型(memory bound/compute bound)
- 同一计算任务在不同架构上,瓶颈类型可能不同
 - □ 核心在于分析不同硬件架构的Machine Balance和任务的计算强度
 - □ 例如:在端侧arm平台, conv常常是compute-bound
 - □ 若云侧大算力处理器的local memory空间有限,或内存带宽有限,则conv将成为memory bound,优化思路截然不同

硬件平台/架构特性	端侧处理器	云侧处理器
算力量级(TOPS)	1~10	~100
带宽量级 (GB/S)	10~100	100~1000
Machine Balance	10~100	100~1000

ninable Tops			
-	│	Peak Flops	
	Preak Bandwidth		+ FMA
	and Rand		+ ILP
	/	Compute-bound	+ SIMD
	Machine 1	Balance	Arithmetic Intensity

Part 1 工欲善其事,必先Benchmark —— 硬件架构特性分析

Part 2 Al in Al —— 基于Arithmetic Intensity, 探索优化方向

Part 3 斗榫合缝 —— 基于微架构的指令级调优 分享

Part 4 性能优化总结

Outline

Part 3. 基于微架构的底层调优

- Compute-bound类型的调优与底层微架构息息相关
- 调优目标是最大化指令吞吐
- 常见调优方法举例
 - □ 最大化寄存器复用率,进而增大gemm汇编kernel的寄存器分块,隐藏ld/st指令延迟,提高指令吞吐率
 - □ 依据指令延迟,以及指令间依赖关系,交错指令发射时机,减少气泡
 - □ 寄存器双缓冲/分时复用,隐藏迭代间的数据加载开销
 - □ 依据指令发射端口数量和发射限制, group相关指令 (尤其是VLIW类架构)
 - □ loop unrolling并寻找上述指令调度优化机会,提升ILP
 - □ 以软件模拟算法替代SFU运算(在SFU的IPC较低的情况下),并辅以loop unrolling等等

Part 1 工欲善其事,必先Benchmark —— 硬件架构特性分析

Part 2 Al in Al —— 基于Arithmetic Intensity, 探索优化方向

Part 3 斗榫合缝 —— 基于微架构的指令级调优分享

Part 4 性能优化总结

Outline

Part 4. 性能优化总结

• 优化流程

- □ Step1. 基于microbenchmark,分析获取架构计 算/访存/通信特性
- □ Step2. 结合计算任务的计算模式,设计并行算法
- □ Step3. 分析性能瓶颈,结合架构特性,针对性调优计算/访存瓶颈,或返回Step2. 改善并行算法设计,迭代直至性能收敛

Q&A

https://github.com/openppl-public

https://openppl.ai/

https://www.zhihu.com/people/openppl

