Comparing Barnes-Hut Tree structures with Physical and Computational Metrics

SCIENCE • SPACE

What These Dazzling James Webb Te Images Mean for Space

How Do We Predict the Movement of the Planets, Stars, and Galaxies?

$$F=Grac{m_1m_2}{r^2}$$

Direct Summation

For every particle calculate the force between that particle and every other particle.

Put a box around all the particles

Cut it in half such that each new box has around the same amount of particles in it

Keep cutting up the boxes until there is one particle per box

For each box that a particle is in, attract it to that box's neighbor's center of mass

Barnes-Hut: Octree

Instead of cutting the boxes by particles just cut them in fourths

Barnes-Hut: Octree

For each box a particle is in attract that particle to all its neighbors' centers of mass

$O(n^2)$ vs O(nlog(n))

So Why not Just use the Binary tree

So Why not Just use the Binary tree

Time Steps Taken

So Why not Just use the Binary tree

Why are There Only Two Lines?

Time Steps Taken

 $k_4 = f(t_n + h, y_n + hk_3).$

Leapfrog Integrator:

$$x_{i+1} = x_i + v_{i+1/2} \, \delta t \,,$$

 $t_{n+1} = t_n + h$

$$v_{i+3/2} = v_{i+1/2} + f(x_{i+1}) \, \delta t \,,$$

Runge Kutta Integrator:

$$rac{dy}{dt}=f(t,y),\quad y(t_0)=y_0.$$
 $k_1=f(t_n,y_n), \ k_2=f\Big(t_n+rac{h}{2},y_n+hrac{k_1}{2}\Big),$ Averages 4 slopes together to get very accurate integration $y_{n+1}=y_n+rac{1}{6}\left(k_1+2k_2+2k_3+k_4
ight)h,$ $k_3=f\Big(t_n+rac{h}{2},y_n+hrac{k_2}{2}\Big),$

$O(dt^2)$

Time reversible meaning it is very stable

O(dt^4)

Averages 4 slopes

http://www.physics.drexel.edu/~steve/Courses/Comp_Phys/Integrators/leapfrog/

https://www.haroldserrano.com/blog/visualizing-the-runge-kutta-method

https://www.haroldserrano.com/blog/visualizing-the-runge-kutta-method

 $k_4 = f(t_n + h, y_n + hk_3).$

Leapfrog Integrator:

$$x_{i+1} = x_i + v_{i+1/2} \, \delta t \,,$$

 $t_{n+1} = t_n + h$

$$v_{i+3/2} = v_{i+1/2} + f(x_{i+1}) \, \delta t \,,$$

Runge Kutta Integrator:

$$rac{dy}{dt}=f(t,y),\quad y(t_0)=y_0.$$
 $k_1=f(t_n,y_n), \ k_2=f\Big(t_n+rac{h}{2},y_n+hrac{k_1}{2}\Big),$ Averages 4 slopes together to get very accurate integration $y_{n+1}=y_n+rac{1}{6}\left(k_1+2k_2+2k_3+k_4
ight)h,$ $k_3=f\Big(t_n+rac{h}{2},y_n+hrac{k_2}{2}\Big),$

$O(dt^2)$

Time reversible meaning it is very stable

O(dt^4)

Averages 4 slopes

How do These Integration Methods Work in Practice?

Inverse Length of Time Steps

What about accuracy?

All the previous graphs have shown both integration methods but there has been no variation in accuracy

Inverse Length of Time Steps

Inverse Length of Time Steps

Length of Time Steps * 100

Does a Higher Initial Density of the Particles change the accuracy?

Acknowledgements:

Owen Young

Johnny Powell