Assessing the importance of user-defined product dimensions in reviews

Louis-Charles Généreux

Problem definition

What product features are most important to consumer experience across various product categories?

Gourmet food

Toys & games

Fashion

Magazine subscriptions

Appliances

Musical instruments

Possible approaches to solving this problem...

MACRO (full corpus)

Latent semantic analysis (LSA)

MICRO (review per review)

Text with highlighted words

I was here with my bridesmaids couple days before my wedding. The girl who did my nails had major attitude issue and was very impatient and rude doing mine. I had small rhinestones on some my nails but most of it came off after 3 days when the mail technician told it it would last at least 7 days. Then my thumb started chipping. A day later, my pointing figure which I had extension on completely came off. Basically I needed to redo my nails within a week and half. Ive been to cheaper salons and they all last WAY longer than 1.5 weeks. I will definitely not be coming back o this salon, especially not for the price they charge and the snobby attitude this nail technician has.

Prediction probabilities

Local interpretable model-agnostic explanations (LIME)

... But these methods are not ideal

MACRO (full corpus)

Assignment of documents to clusters using semantic analysis (LSA):

- Completely unsupervised method:
 - Classes may not capture incoming belief / hypothesis
 - Overlapping classes (some words present in different clusters)
 - Difficulty to interpret clusters
- Does not necessarily capture positive / negative sentiment

MICRO (review per review)

Localized interpretable explanations (LIME):

- Potentially unstable due to random sampling of words picked for reshuffling (could pick correlated words)
- Not scalable (interpretation of significant words is done for each document individually)

What if I could: define my own dimensions, and assess their importance in a scalable fashion?

Proposed approach to identifying drivers of user experience

This approach allows users to test a set of hypotheses (by defining their own set of dimensions)

Experience depends on	As defined by synonyms and their neighbors
Product's aesthetics	[Beautiful, ugly, appearance]
Product's sensory appeal (smell/touch/taste)	[Aromatic, smelly, sensory]
Product's fit or size	[Fit, bulky, weight]
Product's delivery	[Delivery, timely, delay]
Product's ease of use	[Intuitive, demanding, straightforward]
Product's performance	[Functional, defective, operational]

The 5 nearest neighbor to each dimension synonym are extracted from pre-trained GLOVE embeddings to fully define a dimension

Running the algorithm allows us compare product categories easily

Relative Importance of Customer Experience Dimension

Row-wise:

What dimensions matter for buyers of this product

Column-wise:

Which product 'spikes' most on this dimension?

Direct comparisons of products can be achieved in the web app

Output:

