

2012—2013 学年第二学期 《概率论与随机过程》期末试卷

专业班级 _	
姓 名	
学 号	
开课系室	应用数学系
考试日期	2013年6月29日

页 号	_	=	=	四	五.	总分
本页满分	30	20	20	20	10	
本页得分						
阅卷人						

注意事项:

- 1. 封面及试卷背面为草稿纸,附加页为答题纸,背面答题一律无效;
- 2. 答案必须写在该题下方空白处,不得写在草稿纸上,否则该题答案无效;
- 3. 本试卷正文共5页,满分100分;
- 4. 必须保持试卷本完整,拆页的作废。

_	植容斯	(每空3分,	共18分)
	块工双	(華子うガ・	犬 10 ガノ

1	沿車州 A	片 D 相互独立	已知 $P(A) = 0.5$	D(A)	$ D\rangle = 0.0$
Ι.		$\rightarrow B$ 相4.独立,	口知 $P(A) = 0.5$	$P(A \cup$	(B) = 0.8

则
$$P(A\overline{B}) =$$
 .

2. 设随机变量 X (服从参数为 λ 的泊松分布, 且已知

$$E[(X-1)(X-2)] = 1$$
, $\emptyset \lambda =$ _____.

3. 已知随机变量 X 的分布列:

X	-1	0	1	
P_k	0.2	0.3	0. 5	

则: DX = .

4. 设随机过程 $X(t) = Y^2t, t > 0$. 其中 Y 是在区间 (0,a) 上服从均匀分布的随机变量,

则 X(t) 的均值函数为 ______, 自相关函数为_____.

5. 设随机变量 X 的方差为 1,则根据切比雪夫不等式有估计 $P\{|X-EX|<2\}\geq$ ______

二. 选择题(每题 3 分, 共 12 分)

1. 设
$$X$$
的概率分布为 $f(x) = \begin{cases} Ax, & 0 < x < 1 \\ 0, & 其它 \end{cases}$,则 $A =$ ______.

$$(A) \ 1 \qquad (B) \ -1 \qquad (C) \ 2 \qquad (D) \ \frac{1}{2}$$

2. 设X与Y相互独立且同分布: $P{X=-1}=P{Y=-1}=1/2$, $P{X=1}=P{Y=1}=1/2$,

则下列各式中成立的是 .

$$(A)P\{X = Y\} = \frac{1}{2} \qquad (B)P\{X = Y\} = 1$$

$$(C)P{X+Y=0}=1/4$$
 $(D)P{XY=1}=\frac{1}{4}$

3. 设X与Y独立同分布,记U = X - Y,V = X + Y,则U、V 必然

(B)独立

$$(C)$$
相关系数为零

(D)相关系数不为零

设随机变量 X 和 Y 相互独立,且分别服从 $N(1, 2^2)$ 和 N(1, 1) ,则_______.

(A)
$$P\{X+Y\leq 1\}=1/2$$

(A)
$$P{X + Y \le 1} = 1/2$$
 (B) $P{X + Y \le 0} = 1/2$

(C)
$$P(X - Y < 0) = 1/2$$

(C)
$$P{X-Y \le 0} = 1/2$$
 (D) $P{X-Y \le 1} = 1/2$

- 三. 计算和综合题 (共8个小题70分)
- 1. (6 分) 已知 P(A) = 1/3, P(B|A) = 1/5, P(A|B) = 1/2, 求 $P(A \cup B)$.

2. (6 分) 设随机变量 $X \sim B(10,0.5)$ (二项分布), $Y \sim e(1/4)$ (指数分布). 求 E(3X-2Y) 和 $E(X^2-Y^2)$

3. (8 分) 设随机变量 X 的概率密度为

求(1) X 的分布函数 F(x);(2)随机变量 Y = F(X) 的分布函数.

4. (8 分) 已知总体 X 服从正态分布 $N(\mu, \sigma^2)$,今从总体中抽取一个长度为 7 的样本,测得样本均值为 52. 2,样本标准差为 2. 7,试检验假设 $H: \mu=52$ 是否成立? ($\alpha=0.05$).

(注意:可能用到的数据
$$t_{\alpha=0.05}(7)=1.895$$
, $t_{\alpha=0.05}(6)=1.943$ $t_{\alpha=0.025}(7)=2.365$, $t_{\alpha=0.025}(6)=2.447$)

5. (12 分) 已知随机变量 X 的概率密度为

$$f(x) = \begin{cases} \theta x^{\theta - 1}, & 0 < x < 1 \\ 0, & \text{ 其它} \end{cases}$$

其中 $\theta>0$ 是未知参数, X_1,X_2,\cdots,X_n 是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和极大似然估计法求 θ 的估计量.

- 6. (10 分)设有一箱同类产品是由三家工厂生产的,其中 50%是第一家工厂生产的,其余两家各生产 25%,又知第一、二家工厂生产的产品有 5%的次品,第三家工厂生产的产品有 4%的次品,现从箱中任取一件,求: (1)取到的是次品的概率;
- (2) 若已知取到的是次品,它是第一家工厂生产的概率.

7. (10 分) 设马氏链 $\{X_n, n \ge 0\}$ 的状态空间为 $I = \{1, 2, 3, 4\}$,初始分布为 $p_i(0) = 1/4, i = 1, 2, 3, 4 - 步转移概率矩阵为$

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

(1) 计算 $P{X_0=1,X_1=2,X_2=2}$. (2) 计算 $P_{32}(2),P_{32}(4)$.

8. (10分)设二维随机变量(X,Y) 的密度函数为

$$f(x,y) = \begin{cases} cye^{-(x+y)} & x > 0, y > 0 \\ 0 & \sharp \dot{\Xi} \end{cases}$$

- (1) 确定常数c;
- (2) 求边缘分布密度 $f_X(x)$ 和 $f_Y(y)$;
- (3) 求(X,Y)的联合分布函数;
- (4) 求P{0 < X ≤1,0 < Y ≤1}.