1.6 Arguments using 'not'.

If ϕ is a statement, we write (7ϕ) for the statement expressing that ϕ is not time. The symbol \neg is pronounced not or negation, and (7ϕ) is called the negation of ϕ . (...)

(1.20) If that's justice then I'm a banana.

He meant 'That's hot justice? He was using the following device.

We write \bot (pronounced 'absurdity') for a statement which is definitely false, for example, '0=1' or (\bot) m a banana'. In derivations we shall treat $(\lnot\phi)$ exactly as if it was written $(\phi \to \bot)$.

NATURAL DEDUCTION RULE (-E) are derivations and (7\$) respectively, then is a derivation of \bot . Its undischarged assumptions are those of D together with those of D.

Scanné avec CamScanner

For the second rule, Suppose we want to prove (7%). Then we proceed as if we were using $(\Rightarrow I)$ to prove $(\% \to \bot)$. In other words, we assume % and deduce \bot . The assumption % is discharged after it has been used. NATURAL DEDUCTION RULE (7I) Suppose

•

is a derivation of \bot , and \emptyset is a statement. Then the following is a derivation of $(\neg \emptyset)$:

 $\frac{1}{(\neg \phi)}(\neg I)$

Ito undischarged assumptions are those of D, except possibly of.

Example 1.6.1

The following derivation proves $\vdash (\phi \rightarrow (\neg (\neg \phi)))$.

$$\frac{\cancel{2}}{\cancel{2}} \frac{\cancel{4}}{\cancel{3}} (\neg E)$$

$$\frac{\cancel{1}}{\cancel{3}} \frac{\cancel{4}}{\cancel{3}} (\neg I)$$

$$\frac{\cancel{1}}{\cancel{3}} \frac{\cancel{4}}{\cancel{3}} (\neg I)$$

$$\frac{\cancel{2}}{\cancel{3}} \frac{\cancel{4}}{\cancel{3}} (\neg (\neg \phi))$$

$$(\neg (\neg \phi))$$

At the application of $(\neg I)$ we discharge the assumption $(\neg \phi)$ to get the conclusion $(\neg (\neg \phi))$.

Example 1.6.2 Theorem There are infinitely many prime numbers Proof Assume not. Then there are only finitely many prime numbers P_1, \dots, P_n

Consider the integer.

 $9 = (p_1 \times \cdots \times p_n) + 1.$

The integer of must have at least one prime factor r.

But then r is one of the Pi, so it cannot be a factor of 9;

of 9. Hence r both is and is not a factor of 9;

absurd! So our assumption is false, and the theorem

A close inspection of this argument shows that we prove the theorem of by assuming (7\$) and deducing on absurdity. The assumption (7\$) is then discharged. This is known as reduction ad absurdum, RAA for short. In natural deduction form it comes out as follows.

NATURAL DEDUCTION RULE (RAA) Suppose we have a derivation

whose conclusion is I. Then there is a derivation

D (RAA)

Its undischarged assumptions are those of D, except possibly

Example 1.6.3 We prove $\vdash ((\neg(\neg \phi)) \rightarrow \phi)$.

$$\begin{array}{c}
(\neg \phi) \\
(\neg (\neg \phi)) \\
(\neg E)
\end{array}$$

$$\begin{array}{c}
(\neg (\neg \phi)) \\
(\neg (\neg \phi)) \\
(\neg (\neg \phi)) \\
(\neg (\neg \phi)) \\
(\neg (\neg \phi))
\end{array}$$

$$\begin{array}{c}
(\neg (\neg \phi)) \\
(\neg (\neg \phi)) \\
(\neg (\neg \phi))
\end{array}$$

Here are the sequent rules corresponding to (TE), (TI) and (RAA):

SEQUENT RULE (TE) If $(\Gamma + \beta)$ and $(\Delta + (\tau \beta))$ are both correct sequents, then the sequent $(\Gamma \cup \Delta + \bot)$ is correct.

SEQUENT RULE (TI) If the sequent ($\Gamma \cup \{\phi\} \vdash \bot$) is correct, then so is the sequent ($\Gamma \vdash (\neg \phi)$).

SEQUENT RULE (RAA) If the sequent ($\Gamma U\{(\neg \phi)\} \vdash \bot$) is correct, then so is the sequent ($\Gamma \vdash \phi$).