רשימות הרצאה לחבורות לי חורף 2020, הטכניון

הרצאותיו של מקס גורביץ' הוקלדו על ידי אלעד צורני

2020 בדצמבר 6

תוכן העניינים

5																																																		א	מבו	1
5																																															יטורי	היס	וא ו	מב	1.1	
5 5																																														לי לי	חבורו	1	1.1	.1		
6																																																	1.1			
6																																																	1.1	.3		
6																																													•	•			1.1	.4		
6																																											ואלגב						1.1	.5		
7																																											של ה						1.1			
7																																																	ירור ורור	 חר	1.2	
7																																											 . יצות						1.2			
11																																											Baker									
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			Эα.		ρD	CI.		Janei	114	usao	111 ,			1,2			
15																																																לי	ות	ברא	אלג	2
15																							_												_										ות ל	ברא	י ואלו	ן ל	ורור:	חב	2.1	
15				·				į	·	·										·							·					·	·						·			'ו	ורות ל	 לחר	ת לי	 ראו	זאלנ))	2.1	.1		
15																																											אות ל									
19																																																			2.2	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•		. –	J13			,				
25																																															צות	ריצ	מט	רות	חבו	3
25																																									ا .	נ ל	זבורות	ת כו	טריצו	ת מו	חבורו	1	3.0).1		
25																																											נות .	טריצ	ות מ ^י ות	חבור	i על ו	גיה	פולו	טוט	3.1	
28																																																				
30																																																				
32																																																			3.2	
32																																																			٥	
34																																																	3.2			
35																																											· · ·						3.2			
35																																																	3.2			
37																																															•					

תוכן העניינים

פרק 1

מבוא

1.1 מבוא היסטורי

1.1.1 חבורות לי

 $ilde{trans} formation$ בנורבגיה, סביב שנת 1870, מתמטיקאי בשם סופוס לי, שחקר משוואות דיפרנציאליות, שם לב להופעה של מה שנקרא $ilde{trans} formation$. $ilde{groups}$

באופן לוקלי, נניח כי נתון שדה וקטורי חלק

$$x: \mathbb{R}^n \to \mathbb{R}^n$$

נחפש פתרון למשוואה

$$y'(t) = x(y(t))$$
$$y(0) = y_0$$

עבור $\varepsilon>0$ עבור $t\in(-arepsilon,arepsilon)$ שמוגדר עבור $t\in(-arepsilon,arepsilon)$ עבור $t\in(-arepsilon,arepsilon)$ שמוגדר עבור $t\in(-arepsilon,arepsilon)$

נגדיר
$$y_{0}\in\mathbb{R}^{n}$$
 לכל $arphi_{x}\left(t
ight) \left(y_{0}
ight) \coloneqq y\left(t
ight)$ אז

$$\varphi_X(t): \mathbb{R}^n \to \mathbb{R}^n$$

tאוטומורפיזם של \mathbb{R}^n זאת משפחה של אופרטורים שמשתנה באופן חלק כתלות ב

מתקיים

$$\varphi_x(0) = \mathsf{id}$$

ומיחידות הפתרונות,

$$.\varphi_{x}\left(t\right)\circ\varphi_{x}\left(s\right)=\varphi_{x}\left(t+s\right)$$

נקראת *חבורה חד־פרמטרית.* אז Im $arphi_x$

$$\varphi_x \colon \mathbb{R} \to \operatorname{\mathsf{Aut}}(\mathbb{R}^n)$$

. הומומורפיזם של חבורות. זה לא מדויק, $arphi_x$ אולי לא מוגדר תמיד

באופן גלובלי, קיימות משוואות שהפתרונות שלהן אינווריאנטיים לפעולה של חבורה כלשהי. למשל

$$\mathcal{O}_n\left(\mathbb{R}\right) \coloneqq \left\{ A \in M_n\left(\mathbb{R}\right) \mid A^t A = I \right\}$$

נסתכל על הלפלסיאן

$$.\Delta = \sum_{i \in [n]} \partial_{x_i, x_i}$$

$$g\in\mathcal{O}_{n}\left(\mathbb{R}
ight)$$
 לכל $y\circ g=y$ אז $\Delta\left(y
ight)=0$ מקיימת $y\colon\mathbb{R}^{n} o\mathbb{R}$ אם $y\colon$

סופוס לי חקר חבורות חלקות כאלו, ולמעשה הגדיר חשבון דיפרנציאלי של חבורות. כדי לחקור פונקציה חלקה אנו מסתכלים $f\colon \mathbb{R}^n o \mathbb{R}^m$ אנו מסתכלים על הנגזרת של f בנקודה, שהיא העתקה לינארית

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

האנלוג לחבורות הוא *חבורת לי* שהיא חבורה שאותה אפשר ."לגזור" פורמלית, זאת חבורה עם מבנה של יריעה חלקה, או במילים אחרות, אוביקט חבורה בקטגוריה של יריעות חלקות.

ינגזרת" של חבורת לי נקראת *אלגברת לי* Lie (G). זהו מרחב וקטורי עם מבנה מסוים. תורת לי בסיסית היא הבנת ההתאמה בין חבורות לי לאלגבראות לי שלהן.

פרק 1. מבוא

דוגמאות.

.Lie
$$(GL_n(\mathbb{R})) = M_n(\mathbb{R})$$
 .1

.Lie
$$(GL_n(\mathbb{C})) = M_n(\mathbb{C})$$
 .2

.Lie
$$(\mathcal{O}_n(k)) = \mathfrak{so}_n(k) \coloneqq \{A \in M_n(k) \mid A^t = -A\}$$
 .3

.Lie
$$(SL_n(k)) = \mathfrak{sl}_n(k) := \{A \in M_n(k) \mid tr(A) = 0\}$$
 .4

5. ונדיר

$$\mathsf{Sp}_{2n}\left(k\right) = \left\{ A \in M_{2n}\left(k\right) \mid A^{t}JA = J \right\}$$

עבור

$$J = \begin{pmatrix} 0 & I_n \\ {}_{n}-I & 0 \end{pmatrix}.$$

זאת נקראת החבורה הסימפלקטית. אז

$$\mathsf{Lie}\left(\mathsf{Sp}_{2n}\left(k\right)\right)=\mathfrak{sp}_{2n}\left(k\right)\coloneqq\left\{A\in M_{2n}\left(k\right)\mid A^{t}J=-JA\right\}.$$

וזאת תהיה אלגברה יחד עם הפעולה של הקומוטטור Lie $(G) \leq M_n\left(k
ight)$ אז מוואת $G \leq \mathsf{GL}_n\left(k
ight)$ וזאת תהיה אלגברה ויחד עם הפעולה של הקומוטטור

$$. [A, B] = AB - BA$$

.Lie $(G) < M_n(\mathbb{R})$ ובניית $G < \mathsf{GL}_n(\mathbb{R})$ בקורס זה נעשה "קירוב" של התאמת לי על ידי לקיחת כל תת־חבורה

1.1.2 סיווג של חבורות לי

חבורות לי מופיעות במגוון מקומות בטבע ובמתמטיקה. הרבה חבורות סימטריה בטבע הינן חבורות לי. אנו רוצים להבין בין השאר מסיבות אלו את המבנה של חבורות לי ולנסות לסווג אותן.

תחילה נבין את הקשר בין G_1,G_2 כך ש־Lie $(G_1)\cong \mathrm{Lie}\,(G_1)\cong \mathrm{Lie}\,(G_2)$ התשובה לשאלה זאת תיעזר בחבורות כיסוי. נקבל מכך שמספיק להשיג סיווג של אלגבראות לי. למעשה, מספיק לסווג אלגבראות לי מעל \mathbb{C} .

נצמצם לפעמים את הדיון לחבורות לי *פשוטות* שהן חבורות לי קשירות לי קשירות לא עת־חבורות נורמליות קשירות לי פשוטות. דוגמאות לחבורות לי פשוטה, לו פשוטה, לו בנות לי פשוטה, לו אלגברת לי SO $_n = \mathsf{SL}_n \cap \mathcal{O}_n, \mathsf{Sp}_{2n}, \mathsf{SL}_n$ היא אלגברת לי פשוטות. לכן, מספיק לסווג אלגבראות לי פשוטות.

."סביב שנת 1890, Cartan ו־ $\operatorname{Killing}$ סיווגו באופן מלא אלגבראות לי פשוטות מעל \mathbb{C} , שהן "אבני הבניין של הסימטריה של הטבע".

יש משפחות של אלגבראות לי פשוטות, שנקראות אלגבראות קלאסיות. הן $\mathfrak{sl}_n\left(\mathbb{C}\right),\mathfrak{so}_n\left(\mathbb{C}\right),\mathfrak{so}_n\left(\mathbb{C}\right),\mathfrak{sp}_{2n}\left(\mathbb{C}\right)$ שלגות לי שאלו שנקראות שנקראות אלגבראות לי שנקראות חבורות קלאסיות. התברר שלמעט המשפחות הקלאסיות יש עוד בדיוק 5 אלגבראות לי פשוטות, שנקראות מיוחדות אלגבראות לי שלהן נקראות חבורות קלאסיות. התברר שלמעט המשפחות הקלאסיות יש עוד בדיוק 5 אלגבראות לי פשוטות, שנקראות מיוחד G_2 , הכי קטנה מהן היא G_3 בעלת מיוחד G_3 , והכי גדולה היא G_4 , בעלת מיוחד G_4 , לצורך הבנת התוצאה, נדרשת התעמקות אלגברית במבנה של אלגבראות לי, מה שדורש זמן.

1.1.3 חבורות קומפקטיות

חבורות לי הן חבורות שהן יריעות חלקות. מתברר שאם הן קומפקטיות, יש הרבה מה להגיד עליהן. חבורות לי קומפקטיות הן למשל

$$\mathcal{O}(n) \equiv \mathcal{O}_n(\mathbb{R}) := \left\{ A \in \mathsf{GL}_n(\mathbb{R}) \mid A^t A = I \right\}$$
$$.U(n) := \left\{ A \in \mathsf{GL}_n(\mathbb{C}) \mid \bar{A}^t A = I \right\}$$

 $M_{n}\left(k
ight)\cong k^{n^{2}}$ כאשר המבנה שלהן מושרה מזה של

1.1.4 תורת ההצגות

בתורת לי הגיעו להבנה שניתן ללמוד הרבה על חבורה ע"י הבנת הפעולה שלה על מרחבים וקטוריים. זוהי תורת ההצגות. עבור חבורות קומפקטיות יש מבנה נחמד לתורת ההצגות.

1.1.5 חבורות רדוקטיביות ואלגבריות

משפט שנחתור אליו הוא שכל חבורת לי קומפקטית קשירה היא חבורה אלגברית של מטריצות ממשיות. מסקנה ממשפט זה תהיה שלכל חבורת לי קומקפטית ניתן להגדיר קומפלקסיפיקציה על ידי הרחבת סקלרים. זאת מוגדרת על ידי השורשים המרוכבים של אותם פולינומים. חבורות שנקבל מקומפלקסיפיקציה נקראות *רדוקטיביות* ומהוות משפחה גדולה.

בשנת 1920 פיתח הרמן וייל (Weyl) את המבנה וההצגות של חבורות לי רדוקטיביות על סמך חבורות קומפקטיות.

בשנת 1940 קלוד שיבליי (Chevalley) הראה שניתן לתאר כל חבורת לי פשוטה כחבורה אלגברית. מסקנה של כך היא ש"לא צריך" אנליזה כדי לחקור תורת לי. אפשר גם להגדיר אנלוגית של חבורות לי מעל כל שדה. 7 1.2. חבורות לי

התפתחות מודרנית של התחום 1.1.6

חבורות לי התפתחו לנושאים מאוחרים שמופיעים בהרבה תחומים.

• אחד התחומים הוא חבורות אלגבריות. תחום אחר הוא חבורות סופיות מסוג לי (Lie Type) שהן חבורות אלגבריות מעל שדה סופי. אלו אבני יסוד בסיווג של חבורות סופיות פשוטות.

- $\mathcal{O}(3)$ של הפעולה של סימטריים. אלו מרחבים טבעיים עם פעולה של חבורת לי. למשל S^3 הוא מרחב סימטרי עם הפעולה של פ
- חבורות לי גם הפכו לכלי מרכזי בחקר של תבניות אוטומורפיות ותורת המספרים. הן מתקשרות למשפט Harish-Chandraולתוכנית מ .lands
 - חבורות לי מתקשרות גם לאנליזה הרמונית.
- נחקרת היום גם תורת הצגות אינסוף־מימדיות של חבורות לי ופעולות של חבורות לי על מרחבי פונקציות. בין השאר נחקרות פעולות על מרחבי פונקציות שמקודדים תוכן של תורת מספרים.
 - נחקרות גם היום, משנת 1985, חבורות קוונטיות, שהן דפורמציות של חבורות לי.
 - נחקרות גם חבורות ואלגבראות אינסוף־מימדיות שנקראות אלגבראות Kac-Moody.
 - ישנן תורת לי קטגורית ותורת לי גיאומטרית. הראשונה עוסקת למשל בקטגוריות שמוגדרות באופן דומה לחבורות לי.

חבורות לי 1.2

אקספוננט של מטריצות

 $k \in \{\mathbb{R}, \mathbb{C}\}$ נעבוד מעל שדה נסמן ב־

$$M \equiv M_n \equiv M_n(k)$$

 k^{n^2} מטריצות ממל א עם הנורמה האוקלידית מעל א מעל n imes n

טענה 1.2.1 (עקרון ההצבה). יהי

$$F\left(z\right) = \sum_{n=0}^{\infty} a_n z^n$$

.r עבור עם חזקות עם רדיוס התכנסות $a_n \in k$ עבור $a_n \in k$ טור חזקות עם רדיוס התכנס בנורמה. לכל אבורה $\|A\| < r$ עבורה $\|A\| < r$ עבורה לכל

הוכחה. הנורמה מקיימת

$$||X + Y|| \le ||X|| + ||Y||$$

. $||X \cdot Y|| \le ||X|| \cdot ||Y||$

לכן

$$\left\| \sum_{n=k}^{\ell} a_n A^n \right\| \leq \sum_{n=k}^{\ell} |a_n| \|A^n\|$$

$$\leq \sum_{n=k}^{\ell} |a_n| \|A\|^n$$

$$< \sum_{n=k}^{\ell} |a_n| (r - \varepsilon)^n$$

$$\xrightarrow{k, \ell \to \infty} 0$$

. ולפי קריטריון קושי נקבל שיש לסדרה $\left\|\sum_{n=1}^N a_n A^n
ight\|$ גבול

פרק 1. מבוא

אם $F\left(z
ight)$ טור חזקות עם רדיוס התכנסות ho ו־ $G\left(z
ight)$ עם רדיוס התכנסות אם $F\left(z
ight)$

$$(F+G)(A) = F(A) + G(A)$$
$$(FG)(A) = F(A) \cdot G(A)$$

עבור A עם A עם A עם A עם A עם A אז A אז A אז A הוא טור חזקות, ועבור מטריצה A כך ש־A וגם A או הטור A או הטור A או הטור A או הטור חזקות, ועבור מטריצה אם A או הטור A או הטור A או הטור חזקות, ועבור מטריצה אם אונים A או הטור A

$$\left(F\circ G\right)\left(A\right)=F\left(G\left(A\right)\right)$$

מתכנס.

נגדיר בור אקספוננט של מטריצה). עבור $z \in k$ נגדיר

$$\exp\left(z\right) \coloneqq \sum_{n=0}^{\infty} \frac{1}{n!} \cdot z^{n}$$

ועבור |z| < 1 עם $z \in k$ ועבור

$$\log(1+z) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n} \cdot z^n$$

מכאן, לכל מטריצה $X \in M$ ניתן להגדיר

$$\exp\left(X\right) = \sum_{n=0}^{\infty} \frac{1}{n!} X$$

ועבור $\|X-I\| < 1$ עבורה $X \in M$ ועבור

$$.\log\left(x\right)\coloneqq\log\left(1+\left(X-I\right)\right)$$

מסקנה $X \in M$ מתקיים .1. לכל מטריצה $X \in M$

$$\exp\left(X\right)\cdot\exp\left(-X\right)=I$$

.exp $(X)\in\mathsf{GL}_{n}\left(k
ight)$ בגם

מתקיים
$$\|X-I\| < 1$$
 מתקיים.

$$.\exp\left(\log\left(X\right)\right)=X$$

מתקיים $\|X\| < \log 2$ מתקיים $X \in M$ עבור.

$$.\log\left(\exp\left(X\right)\right)=X$$

אכן מתקיים

$$\begin{split} \| \exp{(X)} - I \| &= \left\| \sum_{n=1}^{\infty} \frac{1}{n!} X^n \right\| \\ &\leq \sum_{n=1}^{\infty} \frac{1}{n!} \left\| X \right\|^n \\ &= \exp{(\|X\|)} - 1 \\ &< 2 - 1 \\ &= 1 \end{split}$$

תרגיל 1. כאשר XY=YX מתקיים

$$.\exp\left(X\right)\cdot\exp\left(Y\right) = \sum_{n=0}^{\infty}\frac{1}{n!}\left(X+Y\right)^{n} = \exp\left(X+Y\right)$$

בפרט, עבור $t,s\in k$ מתקיים

$$.\exp\left(tX\right)\cdot\exp\left(sX\right)=\exp\left(\left(t+s\right)X\right)$$

לכן

$$a_X \colon k \to \mathsf{GL}_n(k)$$

 $t \mapsto \mathsf{exp}(tX)$

הומומורפיזם של חבורות.

1.2. חבורות לי

טענה 1.2.4. מענה a_x .1 מענה 1.2.4

$$a'(t) = a(t) \cdot X$$
$$a(0) = I$$

או למשוואה

$$a'(t) = X \cdot a(t)$$

 $a(0) = I$

עבור

$$a: k \to \mathsf{GL}_n(k)$$

הוא ההומומורפיזם החלק היחיד a_X .2

$$a: k \to \mathsf{GL}_n(k)$$

.a'(0) = X שמקיים

הוכחה. מתקיים a_X .1 מתקיים

$$\begin{split} \frac{\mathsf{d}}{\mathsf{d}t}\left(a_{X}\left(t\right)\right) &= \sum_{n=1}^{\infty} \frac{\mathsf{d}}{\mathsf{d}t} \left(\frac{1}{n!}\left(tX\right)^{n}\right) \\ &= \sum_{n=1}^{\infty} \frac{t^{n-1}}{(n-1)!} X^{n} \\ &= \exp\left(tX\right) \cdot X \\ &= X \cdot \exp\left(tX\right) \end{split}$$

יחידות נובעת ממשפט קיום ויחידות למד"ר.

2. אם a הוא הומומורפיזם כלשהו, כמו שנתון, מתקיים

$$a'(t) = \frac{d}{ds} (a(t+s)) \Big|_{s=0}$$

$$= \frac{d}{ds} (a(t) \cdot a(s)) \Big|_{s=0}$$

$$= a(t) \cdot a'(0)$$

$$= a(t) \cdot X$$

 $a=a_X$.

דוגמה 1.2.5. נחשב אקספוננט של מטריצה אלכסונית. נקבל

$$\exp\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} = \sum_{k=0}^{\infty} \frac{1}{k!} \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}^k$$

$$= \sum_{k=0}^{\infty} \frac{1}{k!} \begin{pmatrix} \lambda_1^k & & \\ & \ddots & \\ & & \lambda_n^k \end{pmatrix}$$

$$= \begin{pmatrix} \exp(\lambda_1) & & \\ & \ddots & \\ & & \exp(\lambda_n) \end{pmatrix}$$

ידי על ידי $a\in \mathrm{GL}_n\left(k\right)$ בהינתן בהעמדה ב־ $a\in \mathrm{GL}_n\left(k\right)$ בהינתן

$$\label{eq:Ad} \operatorname{Ad}\left(a\right):M\to M$$

$$.\qquad X\mapsto aXa^{-1}$$

פרק *1. מבוא*

 M_{n^2} את מרחב ההעתקות הלינאריות מ־V לעצמו. זהו מרחב וקטורי איזומורפי לEnd (V) את מרחב ההעתקות הלינאריות מ־

.Aut (V) את מסמנים זאת $GL\left(V
ight)\subseteq \mathsf{End}\left(V
ight)$ נסמן ב־V נסמן ב-1.2.8. עבור מרחב וקטורי וקטורי א נסמן ב-

כיוון ש־ Ad $(a)\in \mathsf{GL}\,(M)$ מתקיים 1.2.9.

.Ad
$$(a^{-1})$$
 (Ad (a) (X)) = X

כמו כן, אם הומומורפיזם של חבורות של חבורות של סיוון שמתקיים Ad כמו כן, אה הומומורפיזם של

$$.\mathsf{Ad}\left(ab\right)\left(X\right)=abX\left(ab\right)^{-1}=a\left(bXb^{-1}\right)a^{-1}=\mathsf{Ad}\left(a\right)\circ\mathsf{Ad}\left(b\right)\left(X\right)$$

תרגיל 2. אם $f\left(X
ight)$ אם טור חזקות, ו־ $X\in M_n$ טור חזקות, מתקיים לועבורה $f\left(z
ight)=\sum_{k=0}^{\infty}a_{k}z^{k}$

$$\mathsf{.Ad}\left(a\right)\left(f\left(X\right)\right) = f\left(\mathsf{Ad}\left(a\right)\left(X\right)\right)$$

בפרט, מתקיים

$$\mathsf{.Ad}\left(a\right)\left(\mathsf{exp}\left(X\right)\right) = \mathsf{exp}\left(\mathsf{Ad}\left(a\right)\left(X\right)\right)$$

מסקנה 1.2.10. נניח כי V מרחב וקטורי עם בסיס B. יש זיהוי

$$\operatorname{End}(V) \cong M_n$$
$$T \leftrightarrow [T]_B$$

כאופרטור שמקיים exp $(X)\in\mathsf{GL}\left(V
ight)$ אפשר להגדיר $X\in\mathsf{End}\left(V
ight)$

$$[\exp{(X)}]_B = \exp{([X]_B)}$$

B ובנייה זאת לא תלויה בבחירת הבסיס

נגדיר 1.2.11 (הקומוטטור). עבור $X,Y\in M$ נגדיר

$$. [X, Y] = XY - YX$$

 $X \in M$ נגדיר 1.2.12. עבור

$$\operatorname{ad}\left(X\right):M\to M$$
 .
$$Y\mapsto\left[X,Y\right]$$

 $m{U}$ טענה $X \in M$ עבור $X \in M$

$$\mathsf{.Ad}\left(\mathsf{exp}\left(X\right)\right) = \mathsf{exp}\left(\mathsf{ad}\left(x\right)\right)$$

הוכחה. מתקיים

$$Ad(\exp(X))(Y) = \exp(X) \cdot Y \cdot \exp(-X)$$

ומצד שני

$$.\exp\left(\operatorname{ad}\left(X\right)\right)\left(Y\right)=\sum_{k=0}^{\infty}\frac{1}{k!}\left(\operatorname{ad}\left(X\right)\right)^{k}\left(Y\right)$$

נגדיר

$$A(t) := Ad(exp(tX))$$

נחפש את A(t) מתקיים

$$A(0) = Ad(I) = id$$

וגם

$$\begin{split} \frac{\mathsf{d}}{\mathsf{d}t}\left(A\left(t\right)\left(Y\right)\right) &= \frac{\mathsf{d}}{\mathsf{d}t}\left(\exp\left(tX\right)\cdot Y\cdot \exp\left(-tX\right)\right) \\ &= \frac{\mathsf{d}}{\mathsf{d}t}\left(\exp\left(tX\right)\right)Y\exp\left(-tX\right) + \exp\left(tX\right)Y\frac{\mathsf{d}}{\mathsf{d}t}\left(\exp\left(-tX\right)\right) \\ &= X\cdot A\left(t\right)\left(Y\right) + A\left(t\right)\left(Y\right)\cdot\left(-X\right) \\ &= \mathsf{ad}\left(X\right)\left(A\left(t\right)\left(Y\right)\right) \end{split}$$

לכן

$$A'(t) = \mathsf{ad}(X) \cdot A(t)$$

ראינו שזה מחייב

$$A(t) = \exp(tad(X))$$

לכן $A\left(1\right)$ מה שרצינו.

1.2. חבורות לי

Campbell-Baker-Hausdorff אוסות 1.2.2

ראינו שקיימות סביבה $U\subseteq M$ של $U\subseteq GL_n$ של $U\subseteq GL_n$ של $U\subseteq M$ הומאומורפיזם. $U\subseteq M$ של $U\subseteq M$ של $U\subseteq M$ שבורה $U\subseteq M$ מספיק קרובות ל־ $U\subseteq M$ מתקיים $U\in M$. כלומר, אם $U\subseteq M$ מספיק קרובות ל־ $U\in M$ של $U\subseteq M$ מחשר של אבורה בינות עבור $U\subseteq M$ של אינו ש

$$.\exp(Z) = \exp(X) \cdot \exp(Y)$$

.0 נחשוב על ההתאמה הזאת כפונקציה, $Z=C\left(X,Y
ight)$, שמוגדרת לפחות עבור X,Y קרובים מספיק ל־ $Z=C\left(X,Y
ight)$, או לפחות תיאור כלשהו של Z. ראינו שאם Z=X+Y אז Z=X+Y או לפחות תיאור כלשהו של

טענה 1.2.14 (נוסחת Campbell-Baker-Hausdorff). באופן כללי מתקיים

$$C(X,Y) = x + Y + \frac{1}{2}[X,Y] + \frac{1}{12}([X,[X,Y]] + [Y,[Y,X]]) + \dots$$

X,Yכאשר שאר הביטויים הם קומוטטורים ארוכים יותר ב-

הערה 1.2.15. מתקיים

$$.C(tx, ty) = t(x + Y) + \frac{t^2}{2}[X, Y] + o(t^2)$$

. תת מרחב $\mathfrak{g} \leq M$ יקרא אלגברת לי של מטריצות אם הוא סגור תחת מרחב הגדרה 1.2.16 (אלגברת לי של מטריצות).

 $C\left(X,Y
ight)\in\mathfrak{g}$ מוגדרת, אז $C\left(X,Y
ight)$ אם $X,Y\in\mathfrak{g}$ אם אב **1.2.17.**

 \mathbf{n} מתקיים $X \in M_n$ מעריצה לכל

$$. \det (\exp (X)) = e^{\mathsf{tr}(X)}$$

נביט בטורי החזקות הבאים.

$$F(z) = \sum_{n \in \mathbb{N}} \frac{(-1)^n}{(n+1)!} z^n = \begin{cases} \frac{1 - \exp(-z)}{z} & z \neq 0\\ 1 & z = 0 \end{cases}$$
$$G(z) = \sum_{n \in \mathbb{N}} \frac{(-1)^n}{n+1} z^n = \begin{cases} \frac{\log(1+z)}{z} & z \neq 0\\ 1 & z = 0 \end{cases}$$

כאשר |z| < 1 מוגדרת כשמתקיים G אז

$$G\left(\exp\left(z\right)-1\right)\cdot\exp\left(z\right)\cdot F\left(z\right)=\frac{z}{\exp\left(z\right)-1}\cdot\exp\left(z\right)\cdot\frac{1-\exp\left(-z\right)}{z}=1$$

 $|z| < \log(2)$ למשל כאשר

 $oldsymbol{u}$ טענה $x\colon \mathbb{R} o M_n$ תהי תהי (Duhamel נוסחת). מסילה חלקה.

$$.\frac{\mathsf{d}}{\mathsf{d}t}\exp\left(x\left(t\right)\right)=\exp\left(x\left(t\right)\right)F\left(\mathsf{ad}\left(x\left(t\right)\right)\left(x'\left(t\right)\right)\right)$$

הוכחה. ונדיר

$$.Y\left(s,t\right) \coloneqq \exp \left(-sx\left(t\right) \right) \cdot \frac{\mathsf{d}}{\mathsf{d}t}\left(\exp \left(sx\left(t\right) \right) \right)$$

$$\frac{\mathsf{d}}{\mathsf{d}t}\left(\exp\left(x\left(t\right)\right)\right) = \exp\left(x\left(t\right)\right)Y\left(1,t\right)$$

וגם

$$.Y\left(0,t\right) =0$$

אז

אז

$$\begin{split} \frac{\partial Y}{\partial s} &= \exp\left(-sx\left(t\right)\right) \cdot \left(-x\left(t\right)\right) \cdot \frac{\mathsf{d}}{\mathsf{d}t} \left(\exp\left(sx\left(t\right)\right)\right) + \exp\left(-sx\left(t\right)\right) \cdot \frac{\mathsf{d}}{\mathsf{d}t} \left(x\left(t\right)\exp\left(sx\left(t\right)\right)\right) \\ &= \exp\left(-sx\left(t\right)\right) \cdot x'\left(t\right) \cdot \exp\left(sx\left(t\right)\right) \\ &= \operatorname{Ad} \left(\exp\left(-sx\left(t\right)\right)\right) \left(x'\left(t\right)\right) \\ &= \exp\left(\operatorname{ad} \left(-sx\left(t\right)\right)\right) \left(x'\left(t\right)\right) \\ &= \exp\left(-s\operatorname{ad} \left(x\left(t\right)\right)\right) \left(x'\left(t\right)\right) \end{split}$$

פרק 1. מבוא

ולכן

$$\begin{split} Y\left(1,t\right) &= \int_{0}^{1} \frac{\partial Y}{\partial s}\left(s,t\right) \mathrm{d}s \\ &= \int_{0}^{1} \sum_{n \in \mathbb{N}} \frac{\left(-1\right)^{n} s^{n}}{n!} \left(\mathrm{ad}\left(x\left(t\right)\right)\right)^{n} \left(x'\left(t\right)\right) \mathrm{d}s \\ &= \sum_{n \in \mathbb{N}} \int_{0}^{1} \frac{\left(-1\right)^{n} s^{n}}{n!} \left(\mathrm{ad}\left(x\left(t\right)\right)\right)^{n} \left(x'\left(t\right)\right) \mathrm{d}s \\ &= \sum_{n \in \mathbb{N}} \frac{\left(-1\right)^{n}}{\left(n+1\right)!} \left(\mathrm{ad}\left(x\left(t\right)\right)\right)^{n} \left(x'\left(t\right)\right) \\ &= F \left(\mathrm{ad}\left(x\left(t\right)\right)\right) \left(x'\left(t\right)\right) \end{split}$$

כנדרש.

סימון 1.2.19. נסמן

$$[X_1, X_2, \dots, X_k] := [X_1, \dots, [X_{k+2}, [X_{k+1}, X_k]]]$$

 $.t\in (0,1)$ מוגדר לכל מוגדר לבר תרגיל 4. אם מוגדר, גם מוגדר גם $C\left(X,Y
ight)$ אם תרגיל 4.

 $C\left(X,Y
ight)$ אם $C\left(X,Y
ight)$ מוגדר אז מוגדר אז $C\left(X,Y
ight)$ אם מוגדר אז

$$.C\left(X,Y\right) = \sum_{k \in \mathbb{N}_{+}} \frac{\left(-1\right)^{k-1}}{k} \sum_{\substack{i_{1},\ldots,i_{k} \in \mathbb{N} \\ j_{1},\ldots,j_{k} \in \mathbb{N} \\ \forall n \in \mathbb{N}:\ i_{n}+j_{n}>0}} \frac{1}{(i_{1}+j_{1})\cdot\ldots\cdot(i_{k}+j_{k})\cdot i_{1}!j_{1}!\cdot\ldots\cdot i_{k}!j_{k}!} \underbrace{\left[\underbrace{X,\ldots,X}_{i_{1}},\underbrace{Y,\ldots,Y}_{j_{1}},\ldots,\underbrace{X,\ldots,X}_{i_{k}},\underbrace{Y,\ldots,Y}_{j_{k}}\right]}_{i_{1}}$$

הוכחה. נגדיר

$$Z(t) = C(tX, tY)$$

$$Z(0) = 0$$
 עבור $t \in (0,1)$, אז

$$\exp Z\left(t\right)=\exp\left(tX\right)\cdot\exp\left(tY\right)$$

ולכן

$$\begin{split} \operatorname{\mathsf{Ad}} \left(\exp Z \left(t \right) \right) &= \operatorname{\mathsf{Ad}} \left(\exp \left(t X \right) \right) \operatorname{\mathsf{Ad}} \left(\exp \left(t Y \right) \right) \\ \exp \left(\operatorname{\mathsf{ad}} Z \left(t \right) \right) &= \exp \left(\operatorname{\mathsf{ad}} \left(t X \right) \right) \exp \left(\operatorname{\mathsf{ad}} \left(t Y \right) \right) \\ &= \exp \left(t \operatorname{\mathsf{ad}} \left(X \right) \right) \exp \left(t \operatorname{\mathsf{ad}} \left(Y \right) \right) \end{split}$$

לכן מתקיים

$$\frac{\mathsf{d}}{\mathsf{d}t}\left(\exp Z\left(t\right)\right) = X\exp\left(Z\left(t\right)\right) + \exp\left(Z\left(t\right)\right) \cdot Y$$

ומצד שני

$$.\frac{\mathsf{d}}{\mathsf{d}t}\left(\exp Z\left(t\right)\right)=\exp \left(Z\left(t\right)\right)\cdot F\left(\operatorname{ad}Z\left(t\right)\right)\left(Z'\left(t\right)\right)$$

לכן

$$X \exp(Z(t)) + \exp(Z(t)) \cdot Y = \exp(Z(t)) \cdot F(\operatorname{ad} Z(t)) (Z'(t))$$

ולאחר פישוט נקבל

$$F\left(\operatorname{ad}Z\left(t\right)\right)\left(Z'\left(t\right)\right) = \operatorname{Ad}\left(\exp\left(-Z\left(t\right)\right)\right)\left(X\right) + Y$$
$$= \exp\left(-ad\left(Z\left(t\right)\right)\right)\left(X\right) + Y$$

לכן

$$\begin{split} Z'\left(t\right) &= \left(G\left(\exp\left(\operatorname{ad}\left(Z\left(t\right)\right)\right) - I\right)\exp\left(\operatorname{ad}\left(Z\left(t\right)\right)\right)\right)\left(\exp\left(-\operatorname{ad}\left(Z\left(t\right)\right)\right)\left(X\right) + Y\right) \\ &= G\left(\exp\left(\operatorname{ad}\left(Z\left(t\right)\right)\right) - I\right)\left(X + \exp\left(\operatorname{ad}Z\left(t\right)\right)\left(Y\right)\right) \\ &= \sum_{k \in \mathbb{N}} \frac{\left(-1\right)^k}{k+1}\left(\exp\left(t\operatorname{ad}X\right)\exp\left(t\operatorname{ad}Y\right) - I\right)^k\left(X + \exp\left(\operatorname{ad}\left(Z\left(t\right)\right)\right)\left(Y\right)\right) \end{split}$$

13. חבורות לי

כאשר

$$\exp\left(t\operatorname{ad}\left(Y\right)\right)\left(Y\right) = \sum_{j\in\mathbb{N}}\frac{1}{j!}t^{j}\left(\operatorname{ad}\left(Y\right)\right)^{j}\left(Y\right) = Y$$

ולכן

$$\begin{split} Z'\left(t\right) &= \sum_{k \in \mathbb{N}} \frac{\left(-1\right)^k}{k+1} \left(\exp\left(t \operatorname{ad} X\right) \exp\left(t \operatorname{ad} Y\right) - I \right)^k \left(X + \exp\left(t \operatorname{ad} \left(X\right)\right) \left(Y\right) \right) \\ &= \sum_{k \in \mathbb{N}} \frac{\left(-1\right)^k}{k+1} \sum_{n \in \mathbb{N}} t^n \left[\operatorname{sums of commutators in } X \operatorname{ and } Y \right] \end{split}$$

אז

$$\begin{split} .C\left(X,Y\right) &Z\left(1\right) \\ &=\int_{0}^{1}Z^{\prime}\left(t\right) \mathrm{d}t \end{split}$$

הערה 1.2.21. מתקיים

$$.C\left(X,Y\right) =\log \left(\exp \left(X\right) \cdot \exp \left(Y\right) \right)$$

פרק *1. מבוא*

פרק 2

אלגבראות לי

2.1 חבורות לי ואלגבראות לי

2.1.1 מאלגבראות לי לחבורות לי

לכל מטריצות נגדיר חבורת לכל $V \leq M_n\left(\mathbb{R}\right)$

$$\Gamma\left(V\right)\coloneqq\left\{ \exp\left(X_{1}\right)\cdot\ldots\cdot\exp\left(X_{m}\right)\mid x_{1},\ldots,x_{m}\in V\right\} \leq\mathsf{GL}_{n}\left(k\right)$$

.GL $_{n}\left(k\right)$ שהיא תת־חבורת מטריצות

2.1.2 מחבורות לי לאלגבראות לי

על ידי G^- על עבור כל תת־חבורה נגדיר את נגדיר את המרחב המשיק ל G^- על ביוון ההפוך, עבור כל תת־חבורה

$$\mathfrak{g}\coloneqq \operatorname{Lie}\left(G\right) = \left\{X \in M_n \;\middle|\; \exists \gamma \colon \left(-\varepsilon,\varepsilon\right) \to G \colon \begin{matrix} \gamma \in \mathscr{C}^1 \\ \gamma(0) = I \\ \gamma'(0) = X \end{matrix}\right\}$$

טענה 2.1.1. g מרחב וקטורי.

מתקיים $a \in G$ ו $X \in \mathfrak{g}$ מתקיים.

. Ad
$$(a)(X) \in \mathfrak{g}$$

3. אלגברת לי.

עבורן G מסילות ב־A,b ויהיו $X,Y\in\mathfrak{g}$ מסילות ב־ $X,Y\in\mathfrak{g}$

$$a(0) = b(0) = I$$

 $a'(0) = X$
 $b'(0) = Y$

נגדיר

$$c(t) \coloneqq a(\alpha t) \cdot b(\beta(t)) \in G$$

 $c(0) = I$

אז

$$.c'(0) = \alpha a'(0) b(0) + \beta a(0) b'(0) = \alpha X + \beta Y \in \mathfrak{g}$$

עם א γ עם ההגדרה של לכל לכל . $\gamma'\left(0\right)=X$ ו־א $\gamma\left(0\right)=I$ עם ב-Gעם מסילה לכל . $\delta\left(t\right)$ Ad $(a)\left(\gamma\left(t\right)\right)\in G$

אז

$$\begin{split} \delta\left(0\right) &= \operatorname{Ad}\left(a\right)\left(I\right) = I \\ \delta'\left(0\right) &= \left.\frac{\operatorname{d}}{\operatorname{d}t}\left(a\gamma\left(t\right)a^{-1}\right)\right|_{t=0} \\ &= \operatorname{Ad}\left(a\right)\left(\gamma'\left(0\right)\right) \\ &= \operatorname{Ad}\left(a\right)\left(X\right) \end{split}$$

כנדרש.

16 פרק 2. אלגבראות לי

יהי $a'\left(0\right)=X,b'\left(0\right)=Y$ עבורן G מסילות ב־a,b ו־ $X,Y\in\mathfrak{g}$ יהי.

$$I = a(t) a(t)^{-1}$$

ואז

$$.0 = a'(0) \cdot a(0)^{-1} + a(0) \frac{d}{dt} (a(t)^{-1}) \Big|_{t=0}$$

לכן

$$\left. \frac{\mathsf{d}}{\mathsf{d}t} \left(a \left(t \right)^{-1} \right) \right|_{t=0} = -a' \left(0 \right) = -X$$

אז

$$\gamma(t) = \mathsf{Ad}(a(t))(Y) \in \mathfrak{g}$$

ומתקיים

$$\gamma'\left(0\right) = a'\left(0\right) \cdot Y \cdot a\left(0\right)^{-1} + a\left(0\right) Y \left. \frac{\mathsf{d}}{\mathsf{d}t} \left(a\left(t\right)^{-1}\right)\right|_{t=0}$$
$$= X \cdot Y \cdot Y + I \cdot Y \cdot (-X)$$
$$= [X, Y]$$

לכן

$$.\left[X,Y\right] =\gamma ^{\prime }\left(0\right) \in \mathfrak{g}$$

נרצה להראות שתחת תנאים מתאימים, ההעתקות Lie, Γ הופכיות אחת לשנייה. כלומר, נרצה ליצור התאמה חח"ע בין חבורות מטריצות מסוימות לבין אלגבראות לי.

ליתר דיוק, נוכיח שלושה דברים מרכזיים.

ממשית מתקיים $\mathfrak{g} \leq M_n$ לכל אלגברת לי

$$.\mathfrak{g} = \mathsf{Lie}\left(\Gamma\left(\mathfrak{g}\right)\right)$$

מתקיים $G \leq \operatorname{GL}_n(k)$ מתקיים .2

$$\Gamma(\text{Lie}(G)) \leq G$$

עבורם G עבורם .3

$$\Gamma(\text{Lie}(G)) = G$$

חבורה G כזאת תיקרא בהמשך *קשירה.*

נוכיח את משפט התת־חבורה הסגורה: אם $G \leq \mathsf{GL}_n(k)$ נוכיח את משפט התת־חבורה הסגורה: אם

$$\Gamma(\text{Lie}(G)) = G$$

הערה 2.1.2. בנינו התאמה בין חבורות לי של מטריצות לאלגבראות לי של מטריצות. ניתן להתאים באופן כללי בין חבורות לי לאלגבראות לי (אבסטרקטיות). (אבסטרקטיות).

קיים משפט שאומר שכל אלגברת לי כזאת איזומורפית לאלגברת לי של מטריצות, ונקבל מדיון זה שחבורת לי כללית היא חבורת כיסוי של חבורות לי של מטריצות.

 $\left(k^{ imes}
ight)^{n}$ של מטריצות אלכסוניות הפיכות איזומורפית ל- $G\leq\operatorname{GL}_{n}\left(k
ight)$ של מטריצות אלכסוניות הפיכות איזומורפית ל-

מתקיים

$$.\mathsf{Lie}\left(G\right) = \left\{X \in M_n \;\middle|\; \begin{array}{l} \exists \gamma \colon (-\varepsilon,\varepsilon) \to G \\ \gamma(0) = I \\ \gamma'(0) = X \end{array}\right\}.$$

 k^n - אלגברת המטריצות האלכסוניות, שהאיזומורפית ל-Lie (G)

זה נכון כי לכל $X=\mathsf{diag}\,(1+tx_1,\ldots,1+tx_n)\in G$ נוכל להביט במסילה $X=\mathsf{diag}\,(x_1,\ldots,x_n)$ זה נכון כי לכל

$$.[X,Y]=0$$

עבור לי, נגדיר $\mathfrak{g} \leq M$ עבור **2.1.4.**

$$.\Gamma\left(\mathfrak{g}
ight)\coloneqq\left\{ \mathsf{exp}\left(X_{1}
ight)\cdot\ldots\cdot\mathsf{exp}\left(X_{t}
ight)\ \middle|\ \left(X_{i}
ight)_{i\in\left[t
ight]}\in\mathfrak{g}
ight\} \leq\mathsf{GL}_{n}\left(k
ight)$$

2.1. חבורות לי ואלגבראות לי

דוגמה אלכסוניות נקבל \mathfrak{g} אם \mathfrak{g} האלגברה של מטריצות אלכסוניות נקבל

$$\Gamma\left(g\right) = \left\{\mathsf{diag}\left(e^{\lambda_{1}}, \ldots, e^{\lambda_{n}}\right) \;\middle|\; \left(\lambda_{i}\right)_{i \in [n]} \subseteq k\right\}$$

 $.e^{\lambda}e^{\mu}=e^{\lambda+\mu}$ כי

אם $G = \left(k^{ imes}
ight)^n$ עבור e^a . עבור לכתיבה כל z ניתן לכתיבה $k = \mathbb{C} \setminus \{0\}$

$$.\Gamma\left(\mathsf{Lie}\left(G\right)\right) = G$$

אם את המספרים החיוביים אז e^a נקבל כי $k=\mathbb{R}$

$$\Gamma(\text{Lie}(G)) = \{ \text{diag}(a_1, \dots, a_n) \mid \forall i \in [n] : a_i > 0 \} \cong (R_{>0})^n$$

G אם נחשוב על הטופולוגיה של G נגלה שהיא לא קשירה וש־ Γ (Lie (G)) רכיב קשירות של G נגלה שהיא לא קשירה וש־ $k=\mathbb{R}$ זה איזומורפיזם נסמן $g=\mathrm{Lie}\,(g,+)\cong (k^n,+)$ ל־ $g=\mathrm{Lie}\,(G)$. כאשר $g=\mathrm{Lie}\,(G)$

$$.\exp \colon \mathfrak{g} \xrightarrow{\sim} \Gamma \left(\mathsf{Lie} \left(G \right) \right)$$

אם למשל, נקבל העתקת כיסוי n=1 אם עבור k שלם. עבור $e^{2\pi k i}=1$ יהיה גרעין, כי

$$.\exp\colon (\mathbb{C},+) \to (\mathbb{C}^{\times},\cdot)$$

. נחשוב האם ($k^n,+$) היא חבורת מטריצות, ואם כן מה אלגברת לי שלה. **2.1.6.** התשובה היא כן, מתקיים

$$.G = \left\{ \begin{pmatrix} 1 & \cdots & 0 & \cdots & x_1 \\ \vdots & & & & \\ 0 & & \ddots & & \\ \vdots & & & & x_n \\ 0 & \cdots & 0 & \cdots & 1 \end{pmatrix} \middle| (x_i)_{i \in [n]} \subseteq k \right\} \le \mathsf{GL}_{n+1}(k)$$

רוגמה 2.1.7. מתקיים

$$\operatorname{Lie}\left(G\right) = \left\{ \begin{pmatrix} 0 & \cdots & 0 & \cdots & x_1 \\ \vdots & & & & \\ 0 & & \ddots & & \\ \vdots & & & & x_n \\ 0 & \cdots & 0 & \cdots & 0 \end{pmatrix} \middle| (x_i)_{i \in [n]} \subseteq k \right\} \leq \operatorname{GL}_{n+1}\left(k\right)$$

איזומורפיזם. (Lie (G), +) $\stackrel{\sim}{\to} G^{-1}$

נשים לב כי מתקיים

$$\det\left(\exp\left(X\right)\right)=e^{\operatorname{tr}X}$$

וניתן דוגמאות למשפחות של חבורות לי.

דוגמאות (דוגמאות למשפחות של חבורות לי).

.1

$$\mathsf{SL}_n(k) = \{ g \in \mathsf{GL}_n(k) \mid \mathsf{det}(g) = 1 \}$$

עם אלגברת לי

$$*\mathfrak{sl}_n(k) = \{X \in M_n \mid \operatorname{tr}(X) = 0\}$$

כפי ששנראה.

תהי
$$\gamma'\left(0\right)=X$$
 ו' $\gamma\left(0\right)=I$ אז $\gamma\left(t\right)=\exp\left(tX\right)\in\mathsf{SL}_{n}\left(k\right)$ מתקיים $X\in\mathfrak{sl}_{n}$ כופ ($S\mathsf{L}_{n}\left(k\right)$

וגם
$$\gamma\left(0
ight)=I,\gamma'\left(0
ight)=X$$
 מתקיים $\gamma\left(t
ight)\in\mathsf{SL}_{n}\left(k
ight)$ מתקיים

$$0 \underset{\left[\gamma(t) \in \mathsf{SL}_{n}\right]}{=} \frac{\mathsf{d}}{\mathsf{d}t} \left(\mathsf{det}\left(\gamma\left(t\right)\right)\right)_{t=0} = \mathsf{tr}\left(\gamma'\left(0\right)\right) = \mathsf{tr}\left(X\right)$$

 $\mathfrak{sl}_{n}=\mathsf{Lie}\left(\mathsf{SL}_{n}\left(k\right)\right)$ ולכן באמת

18 פרק *2.* אלגבראות לי

.2

$$\mathcal{O}(n) = \left\{ g \in \mathsf{GL}_n\left(\mathbb{R}\right) \mid g^t \cdot g = I \right\}$$

.3

$$SO(n) = \mathcal{O}(n) \cap \mathsf{SL}_n(\mathbb{R})$$

עם אלגברת לי

$$\mathfrak{so}_{n} = \left\{ X \in M_{n}\left(\mathbb{R}\right) \mid X^{t} = -X \right\}$$

.4

$$U\left(n\right)=\left\{ g\in\mathsf{GL}_{n}\left(\mathbb{C}\right)\mid\bar{g}^{t}\cdot g=I\right\}$$

עם אלגברת לי

$$\mathfrak{u}_{n} = \left\{ X \in M_{n} \left(\mathbb{C} \right) \mid \bar{X}^{t} = -X \right\}$$

.5

$$\mathbb{SU}\left(n\right)=U\left(n\right)\cap\mathsf{SL}_{n}\left(\mathbb{C}\right)$$

עם אלגברת לי

$$\mathfrak{.su}_n = \mathfrak{u}_n \cap \mathfrak{sl}_n \left(\mathbb{C} \right)$$

טענה 2.1.8. 1. מתקיים

$$\mathfrak{so}_{n}=\mathsf{Lie}\left(\mathsf{SO}\left(n
ight)
ight)=\mathsf{Lie}\left(\mathcal{O}\left(n
ight)
ight)$$

2. מתקיים

$$\mathfrak{.su}_n = \mathsf{Lie}\left(\mathsf{SU}\left(n\right)\right)$$

הוכחה. 1. תהי

$$\gamma: (-\varepsilon, \varepsilon) \to \mathsf{SO}(n)$$

אז

$$\forall s \in (-\varepsilon, \varepsilon) : (\gamma(s))^t \gamma(s) = I$$

נגזור את המשווה ונקבל

שחלוף מתחלף עם נגזרת, לכן נקבל

$$.\gamma'(0)^t + \gamma'(0) = 0$$

 $.\gamma'\left(0
ight)\in\mathfrak{so}_{n}$ לכן

להיפך, אם

$$\begin{split} \exp\left(sX\right)^t &= \sum_{n \in \mathbb{N}} \frac{1}{n!} s^n \left(X^t\right)^n \\ &= \exp\left(sX^t\right) \\ &= \exp\left(-sX\right) \\ . &= \exp\left(sX\right)^{-1} \end{split}$$

 $\gamma\left(0
ight)=\gamma\left(s
ight)=\exp\left(sX
ight)\in\mathsf{SO}\left(n
ight)$ לכן $\exp\left(sX
ight)\in\mathsf{SL}_{n}\left(\mathbb{R}
ight)$ אז $X\in\mathfrak{sl}_{n}$ אכן מתקיים $\exp\left(sX
ight)\in\mathcal{O}\left(n
ight)$ לכן $I,\gamma'\left(0
ight)=X$

2. ההוכחה דומה.

2.2. דוגמאות במימדים נמוכים

2.2 דוגמאות במימדים נמוכים

דוגמאות.

$$\mathcal{O}(1) = \{\pm 1\} \cong \mathbb{Z}/2\mathbb{Z}$$
 .1

.2

$$\mathsf{SO}\left(2\right) = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \;\middle|\; a^2 + b^2 = 1 \right\} = \left\{ \begin{pmatrix} \theta \cos & -\sin\theta \\ \theta \sin & \cos\theta \end{pmatrix} \;\middle|\; \theta \in \mathbb{R} \right\} \cong S^1$$

 θ אלו כל הסיבובים בזווית

3. מתקיים

$$\mathcal{O}\left(2\right) = \mathsf{SO}\left(2\right) \sqcup \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \mathsf{SO}\left(2\right)$$

ממשי ממשי $\mathbb{C}^{ imes}\cong\mathsf{GL}_{1}\left(\mathbb{C}
ight)$ מתקיים 4.

$$\mathbb{C} = \mathsf{Span} \{1, i\}$$

כל $z\in\mathbb{C}\setminus\{0\}$ נותן אופרטור הפיך על $C\cong\mathbb{R}^2$ על ידי מכפלה. אם נביט במטריצה המייצגת של אופרטור זה ביחס לבסיס $z\in\mathbb{C}\setminus\{0\}$ נקבל על z=a+ibש־z=a+ib

קבל שיכון:

$$\iota \colon \mathsf{GL}_1\left(\mathbb{C}\right) \hookrightarrow \mathsf{GL}_2\left(\mathbb{R}\right)$$

מתקיים

.U (1) eq
$$\{z \in \mathbb{C} \mid z\bar{z} = 1\} = S^1$$

אז

$$.\iota(U(1)) = SO(2)$$

.U $(1)\cong\mathsf{SO}\left(2
ight)$ לכן $\mathbb{C} o M_{2}\left(\mathbb{R}
ight)$ זאת מתרחבת להעתקה לינארית

נקבל $z\in\mathbb{C}$ אם ניקח אם Lie $(\mathsf{GL}_1\left(\mathbb{C}
ight))=\mathbb{C}$ נקבל .5

$$.\iota\left(\exp\left(z\right)\right) = \exp\left(\iota\left(z\right)\right)$$

אז מתקיים

$$\begin{split} \operatorname{Lie}\left(i\left(\mathsf{U}\left(1\right)\right)\right) &= \operatorname{Lie}\left(\mathsf{SO}\left(2\right)\right) \\ &= \mathfrak{so}_2 \\ &= \left\{ \begin{pmatrix} 0 & -\alpha \\ \alpha & 0 \end{pmatrix} \;\middle|\; \alpha \in \mathbb{R} \right\} \\ &= i\mathbb{R} \\ &\leq \mathbb{C} \end{split}$$

עבור
$$\mathfrak{so}_2$$
 אכן ניתן להגדיר $egin{pmatrix} 0 & -lpha \ lpha & 0 \end{pmatrix} \in \mathfrak{so}_2$ עבור

$$\gamma_{\alpha}\left(t\right) \coloneqq \begin{pmatrix} \left(\alpha t\right)\cos & -\sin\left(\alpha t\right) \\ \left(\alpha t\right)\sin & \cos\left(\alpha t\right) \end{pmatrix} \in \mathsf{SO}\left(2\right)$$

$$.\gamma_{lpha}\left(0
ight)=I,\gamma_{lpha}'=egin{pmatrix}0&-lpha\ lpha&0\end{pmatrix}$$
 שמקיימת

. משפט 2.2.1 (משפט הסיבוב של אוילר). כל איבר $g\in\mathsf{SO}\left(3
ight)$ כל איבר כל איבר פחב.

כלומר, קיימת מטריצה (3) עבורה $T \in \mathsf{SO}(3)$

$$.TgT^{-1} = \begin{pmatrix} \theta \cos & -\sin \theta & 0\\ \theta \sin & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

הוכחה. מתקיים

$$\begin{split} \det{(g-I)} &= \det{\left(g^t - I\right)} \\ &= \det{\left(g^1 - I\right)} \\ &= \det{\left(g^{-1}\left(I - g\right)\right)} \\ &= \det{\left(g^{-1}\right)} \det{\left(I - g\right)} \\ &= \det{\left(I - g\right)} \\ &= \left(-1\right)^3 \det{\left(g - I\right)} \\ &= -\det{\left(g - I\right)} \end{split}$$

 $W:=\{e_3\}^\perp \leq \mathbb{R}^3$ עם ערך עצמי $e_3\in \mathbb{R}^3$ עם ערך עצמי $e_3\in \mathbb{R}^3$ אלכן g לכן של הפולינום האופייני של לכן יש ל־g לכן וש ל־g לכן שורש של הפולינום האופייני של אופייני של לכן וש ל־ק

$$\langle g \cdot W, e_3 \rangle = \langle W, g^t \cdot e_3 \rangle$$
$$= \langle W, g^{-1}e_3 \rangle$$
$$= \langle W, e_3 \rangle$$
$$= \{0\}$$

לכן B נשמר על ידי g. לכן קיים בסיס אורתונורמלי W

$$[g]_B = \begin{pmatrix} h & \\ & 1 \end{pmatrix}$$

עבורה $T\in\mathsf{SO}\left(2
ight)$ וקיימת $h\in M_{2}\left(\mathbb{R}
ight)$

$$.TgT^{-1} = [g]_B = \begin{pmatrix} h & \\ & 1 \end{pmatrix}$$

. לכן $heta\in\mathbb{R}$ עבור $h=egin{pmatrix} heta\cos & -\sin heta \ heta\sin & \cos heta \end{pmatrix}$ לכן

הערה 2.2.2. נכתוב

$$\begin{pmatrix} h & \\ & 1 \end{pmatrix} = \exp(Y)$$

עבור

$$.Y = \begin{pmatrix} 0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \mathfrak{so}_3$$

אז

$$g=\operatorname{Ad}\left(T^{-1}\right)\left(\exp\left(Y\right)\right)=\exp\left(\operatorname{Ad}\left(T^{-1}\right)\left(Y\right)\right)$$

ומתקיים

. Ad
$$\left(T^{-1}\right)\left(Y\right)\in\mathfrak{so}_{3}$$

אז

$$\exp: \mathfrak{so}_3 \to \mathsf{SO}(3)$$

הוא על.

נזכיר כי מתקיים

$$\mathfrak{so}_{3}=\left\{ X\in M_{3}\left(\mathbb{R}
ight) \mid X^{t}=-X
ight\}$$

נבחר בסיס

$$E_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$E_{2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

$$.E_{3} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

2.2. דוגמאות במימדים נמוכים

ל- \mathfrak{so}_3 . נסמן את האיזומורפיזם

$$\mathfrak{so}_3 \to \mathbb{R}^3$$

$$\alpha_1 E_2 + \alpha_2 E_2 + \alpha_3 E_3 \mapsto \begin{pmatrix} 1\alpha \\ 2\alpha \\ 3\alpha \end{pmatrix}$$

 $X\mapsto ec{X}$ על ידי

למה 2.2.3. 1. מתקיים

$$.\forall X,Y\in\mathfrak{so}_3\colon\overrightarrow{AB}[X,Y]=X\left(\overrightarrow{Y}\right)$$

2. מתקיים

$$\overrightarrow{\mathsf{Ad}\left(a\right)\left(X\right)}=a\left(\vec{X}\right)$$

הוכחה. 1. מספיק לבדוק על איברי בסיס

$$.\overrightarrow{[E_i, E_j]} = E_i \left(\vec{E_j} \right)$$

exp .2 הוא על. נקבל

$$\begin{split} \overrightarrow{\mathsf{Ad}\,(a)\,(Y)} &= \overrightarrow{\exp\left(\mathsf{ad}\,X\right)\left(Y\right)} \\ &= \overrightarrow{\sum_{n \in \mathbb{N}} \frac{1}{n!} \left(\mathsf{ad}\,X\right)^n \left(Y\right)} \\ &= \sum_{n \in \mathbb{N}} \frac{1}{n!} \overrightarrow{\left(\mathsf{ad}\,(X)\right)^n \left(Y\right)} \\ &= \sum_{n \in \mathbb{N}} \frac{1}{n!} X^n \left(\vec{Y}\right) \\ &= \exp\left(X\right) \left(\vec{Y}\right) \\ . &= a \left(\vec{Y}\right) \end{split}$$

 \mathbb{R}^3 על SO (3) על SO (3) איזומורפית לפעולה הסטנדרטית של SO (3) על איזומורפית על $a\cdot X=\mathsf{Ad}\left(a\right)(X)$ על $a\cdot X=\mathsf{Ad}\left(a\right)(X)$ על $a\cdot X=\mathsf{Ad}\left(a\right)(X)$ על $a\cdot X=\mathsf{Ad}\left(a\right)(X)$ איזומורפית של $a\cdot X=\mathsf{Ad}\left(a\right)(X)$ על $a\cdot X=\mathsf{Ad}\left(a\right)(X)$ איזומורפית של $a\cdot X=\mathsf{Ad}\left(a\right)(X)$ איזומורפית של $a\cdot X=\mathsf{Ad}\left(a\right)(X)$ על $a\cdot X=\mathsf{Ad}\left(a\right)(X)$ איזומורפית של $a\cdot X=\mathsf{Ad}\left(a\right)(X)$

וגם $c\in\mathbb{R}$ עבור $X=c\cdot Y$ אם ורק אם $X=c\in\mathbb{R}$ וגם פxp $(X)=\exp(Y)$

$$\left\| \vec{X} - \vec{Y} \right\| = 2\pi k$$

 $.k \in \mathbb{Z}$ עבור

עבורם $lpha = \left\| ec{X} \right\|$ ו־ו $a \in \mathsf{SO}\left(3
ight)$ עבורם $X \in \mathfrak{so}_3$ עבורם. .1

$$\vec{X} = a \cdot \left(\vec{E_3} \right)$$

= $\overrightarrow{AB} \alpha \cdot \text{Ad} (a) E_3$

ולכן

$$X = \alpha \operatorname{Ad}(a)(E_3) = \operatorname{Ad}(a) \begin{pmatrix} 0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

אז

$$\begin{split} \exp\left(X\right) &= \exp\left(\operatorname{Ad}\left(a\right) \left(\begin{pmatrix} 0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right) \right) \\ &= \operatorname{Ad}\left(a\right) \begin{pmatrix} \alpha\cos & -\sin\alpha & 0 \\ \alpha\sin & \cos\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{split}$$

פרק 2. אלגבראות לי 22

אז $\exp(X)$ סיבוב סביב הציר

$$a \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = a \left(\vec{E_3} \right) = \frac{1}{\alpha} \vec{X}$$

 $lpha = \left\| ec{X}
ight\|$ או סביב הציר $ec{X}$. הזווית היא

.2 תרגיל.

. העתקה רציפה ועל. SO (2) העתקה רציפה ועל. SO (2) חישבו על אולי. פים ממרחב טופולוגי כפי שמתקבל מהטענה.

דוגמה 2.2.6. מתקיים

$$.\mathsf{SU}\left(2\right) = \left\{A \in \mathsf{GL}_2\left(\mathbb{C}\right) \;\middle|\; \bar{A}^t = A^{-1}\right\} = \left\{\begin{pmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} \;\middle|\; |\alpha|^2 + |\beta|^2 = 1\right\}$$

טופולוגית נוכל לזהות זאת עם S^3 עם לזהות נוכל מופולוגית פוכל מהמשפט אבורה $g\in {\rm SU}\,(2)$ יש $a\in {\rm SU}\,(2)$

$$.gag^{-1} = \begin{pmatrix} z & 0\\ 0 & z^{-1} \end{pmatrix}$$

ידוע $z=e^{i heta}$ לכן $z^{-1}=ar{z}$ כלומר

$$gag^{-1} = \exp\begin{pmatrix} i\theta & 0 \\ 0 & -i\theta \end{pmatrix}$$

ואז

$$.a = \mathrm{Ad}\left(g^{-1}\right) \exp \begin{pmatrix} i\theta & \\ & -\theta \end{pmatrix} = \exp \left(\mathrm{Ad}\left(g^{-1}\right) \begin{pmatrix} i\theta & \\ & -i\theta \end{pmatrix}\right)$$

לכן

$$\exp \colon \mathfrak{su}_2 \to \mathsf{SU}(2)$$

על. מתקיים

$$\mathfrak{su}_2 = \left\{ \begin{pmatrix} 3i\zeta & \zeta_1 - i\zeta_2 \\ 2\zeta_1 + i\zeta & -i\zeta_3 \end{pmatrix} \middle| \zeta_i \in \mathbb{R} \right\}$$

. במעבר ל־ \mathbb{R}^3 מתקבלת המכפלה הפנימית הסטנדרטית. $\binom{1\zeta}{2\zeta}$ מתאימה לוקטור נ״ל מתאימה לוקטור $\mathfrak{su}_2\cong\mathbb{R}^3$

 $X,Y\in\mathfrak{su}_{2}$ ד $a\in\mathsf{SU}\left(2
ight)$ אם

$$\begin{split} \left\langle \mathrm{Ad}\left(a\right)\left(X\right),\mathrm{Ad}\left(a\right)\left(Y\right)\right\rangle &=\mathrm{tr}\left(\overline{aXa^{-1}}^{t}aYa^{-1}\right)\\ &=\mathrm{tr}\left(a\bar{X}^{t}Ya^{-1}\right)\\ &=\left\langle X,Y\right\rangle \end{split}.$$

אז

$$\mathsf{Ad}\colon\mathsf{SU}\left(2\right)\to\mathsf{GL}\left(\mathfrak{su}_{2}\right)\cong\mathsf{GL}_{3}\left(\mathbb{R}\right)$$

והאיזומורפיזם נותו

$$.$$
3 Ad $\subseteq \mathcal{O}(2)$

למעשה גם

$$.\Im Ad \subseteq SO(2)$$

לכן אפשר במקרה זה להסתכל על

. Ad:
$$SU(2) \rightarrow SO(3)$$

אם $Z \in \mathfrak{su}_2$ מתקיים

$$\forall X, Y \in \mathfrak{su}_2 \colon \langle \mathsf{ad}(Z)(X), Y \rangle = \langle X, -\mathsf{ad}(Z)(Y) \rangle$$

אז

$$\mathsf{ad} \colon \mathfrak{su}_2 \to \mathsf{End}\,(\mathfrak{su}_2) \cong M_3\,(\mathbb{R})$$

המשוואה נותנת בזיהוי זה ש־ $\operatorname{ad}(Z)^t = -\operatorname{ad}(Z)$. לכן נוכל לחשוב על ad המשוואה

.ad:
$$\mathfrak{su}_2 o \mathfrak{so}_2$$

2.2. דוגמאות במימדים נמוכים

טענה 2.2.7.

ad:
$$\mathfrak{su}_2 \to \mathfrak{so}_3$$

איזומורפיזם של אלגבראות לי.

.2

$$Ad: SU(2) \rightarrow SO(3)$$

היא על ומתקיים

$$. \ker \mathsf{Ad} = \{\pm 1\}$$

הוכחה. 1. משוויון מימדים, מספיק להראות שמתקיים

$$. \ker (ad) = \{0\}$$

נניח כי $X \in \ker(\mathsf{ad})$ כלומר

$$.\forall Y \in \mathfrak{su}_2 \colon [X,Y] = 0$$

תהי $\alpha\in\mathbb{C}$ ועבור $\alpha\in\mathbb{C}$ עבור סקלר Z=U+iV+lpha I נקבל . $Z\in M_{2}\left(\mathbb{C}
ight)$ תהי

$$.\left[X,Z\right] =\left[X,U\right] +i\left[X,V\right] +\left[X,\alpha I\right] =0+0+0=0$$

X=0 אלכן eta=0 לכן X=0 אלכן X=0 ולכן X=0 לכן יש A=0 לכן יש A=0 לכן יש אלכן A=0 ולכן A=0 ולכן A=0 ולכן מתחלף עם לכן יש

יהיה על נשים לב כי Ad־דומה מאוד לסעיף הקודם. $g \in \ker \mathsf{Ad}$ מתחלפת עם מטריצות כי $g \in \ker \mathsf{Ad}$ דומה מאוד לסעיף הקודם. $g \in \ker \mathsf{Ad}$ באשר $g \in \ker \mathsf{Ad}$ כאשר $g \in \ker \mathsf{Ad}$ באשר $g \in \ker \mathsf{Ad}$ באשר $g \in \ker \mathsf{Ad}$

 $\Gamma\left(\mathsf{Lie}\left(G
ight)
ight) \leq G$ מתקיים $G \leq \mathsf{GL}_n\left(k
ight)$.exp $(X) \in G$ משפט $X \in \mathsf{Lie}\left(G
ight)$ ולכל $G \leq \mathsf{GL}_n\left(k
ight)$ מתקיים $G \in \mathsf{GL}_n\left(k
ight)$

 $k\in\mathbb{Z}$ עבור ,|t|<arepsilon ותהי עבור ,|t|<arepsilon ותהי ואם זה מספיק עבור אם עבור $C\leq \mathsf{GL}_n$ עבור אם אם אבור $C\leq \mathsf{GL}_n$ עבור אבור $C\leq \mathsf{GL}_n$ עבור אבור $C\leq \mathsf{GL}_n$

$$.\exp\left(\frac{1}{k}X\right)\in G\implies \exp\left(X\right)=\exp\left(\frac{1}{k}X\right)^k\in G$$

תהי $\mathfrak{g}=\operatorname{Lie}\left(G
ight)$ וגם $a_{i}\left(0
ight)=X_{i}$ ונבחר בסיס \mathfrak{g} ונבחר בסיס \mathfrak{g} עבור $\mathfrak{g}=\operatorname{Lie}\left(G
ight)$ עבור $\mathfrak{g}=\operatorname{Lie}\left(G
ight)$

$$g \colon \mathfrak{g} \to G$$

על ידי

$$g(t_1X_1 + \ldots + t_kX_k) = a_1(t_1) \cdot \ldots \cdot a_k(t_k)$$

 M_n יהי \mathfrak{g} תת־מרחב משלים ל־ \mathfrak{g} בתוך תהי

$$h \colon S \to M$$

 $Y \mapsto I + Y$

כך שמתקיים $f=q\cdot h$ כך

$$(\mathsf{d}h)_0(Y) = Y$$
$$.(\mathsf{d}g)_0(X) = X$$

נגדיר

$$f = g \cdot h \colon M_n \to M_n$$

אז

$$(\mathsf{d}f)_0 = \mathsf{id}, \quad f(0) = I$$

ובפרט $(\mathrm{d}f)_0$ הפיכה. לכן, לפי משפט הפונקציה ההפוכה f הפיכה מקומית ב־0. כלומר, קיימות סביבה W_1 של W_2 של W_2 של W_2 והעתקה ($\mathrm{d}f)_0$

$$f^{-1}\colon W_1\to W_2\subseteq M_n=\mathfrak{g}\oplus S$$

 W_1 שהפכית ל $f^{-1}=U+V$ כאשר לכתוב ליל. כיוון שהעתקה לסכום ישר היא סכום העתקות (כי סכום ישר הוא קו־מכפלה) נוכל לכתוב $f^{-1}=U+V$ כאשר ל־ g,S^-

פרק *2.* אלגבראות לי

נרצה להראות שמתקיים $V\left(\exp\left(tX\right)
ight)=0$ כיוון שאז נקבל

$$f^{-1}\left(\exp\left(tX\right)\right) = g$$

מספיק להראות

$$\frac{\mathsf{d}}{\mathsf{d}t}\left(V\left(\mathsf{exp}\left(tX\right)\right)\right)=0$$

וכיוון שמתקיים כך להראות $a\left(t
ight)=\exp\left(tX
ight)$ וכיוון שמתקיים

$$\mathrm{d}V_{a(t)}\cdot X\cdot a\left(t\right)=\left(\mathrm{d}V\right)_{a(t)}\cdot a'\left(t\right)=\frac{\mathrm{d}}{\mathrm{d}t}\left(V\left(\exp\left(tX\right)\right)\right)=0.$$

נרצה לכן להראות

$$(\mathsf{d}V)_a \cdot X \cdot a = 0$$

כעת .d $V_a\colon M_n o S$ ולכן $V\colon M_n o S$ מתקיים . $X\in \mathfrak{g}$ ולכל I ולכן לכל מטריצה בסביבת

$$a = f(X_a, Y_a)$$
$$= g(X_a) \cdot h(Y_a)$$

כאשר $X_a \in \mathfrak{g}, Y_a \in S$ כאשר

$$V\left(f\left(X_a + X, Y_a\right)\right) = Y_a$$

לכל $X \in \mathfrak{g}$ לכל

$$.\left(\mathrm{d}V\right)_{a}\cdot\left(\mathrm{d}f\right)_{\left(X_{a},Y_{a}\right)}\left(X\right)=0$$

אבל

$$\begin{split} \left(\mathrm{d}f\right)_{\left(X_{a},Y_{a}\right)}\left(X\right) &= \left(\mathrm{d}g\right)_{X_{a}}\left(X\right)\cdot h\left(Y_{a}\right) \\ &= \left(\mathrm{d}g\right)_{X_{a}}\cdot X\cdot g\left(X_{a}\right)^{-1}\cdot a \end{split}$$

קיבלנו

$$(\mathrm{d}V)_a\cdot(\mathrm{d}g)_{X_a}\cdot X\cdot g\left(X_a\right)^{-1}\cdot a=0$$

לכל $X \in \mathfrak{g}$ ולכל ולכל בסביבת ולכל מכל, נרצה

$$. (dV)_a \cdot X \cdot a = 0$$

נסמן $X'=\gamma'\left(0
ight)$ ונשים לב שמתקיים $X'\coloneqq\left(\mathsf{d}g\right)_{X_a}\cdot X\cdot g\left(X_a\right)^{-1}$ נסמן

$$\gamma\left(t\right) = g\left(X_a - tX\right) \cdot g\left(X_a\right)^{-1} \in G$$

 $f\left(0,0
ight)=I$ ו־a=I אם $\mathfrak{g} o\mathfrak{g}$. אם $\mathfrak{g} o\mathfrak{g}$ נקבל X' לכן מהגדרת \mathfrak{g} נקבל X' לכן ההעתקה לינארית $X\mapsto X'$ היא העתקה לכן מהגדרת

$$(\mathrm{d}g)_0=\mathrm{id},\quad X_a=0$$

ואז

$$A_I = id$$

אופרטור הפיך. לכן אם נרחיק את a ממטריצת היחידה קצת, עדיין A_a הפיך, ולכן על.

פרק 3

חבורות מטריצות

3.0.1 חבורות מטריצות כחבורות לי

3.1 טופולוגיה על חבורות מטריצות

 $X\in \mathrm{Lie}\left(G
ight)$ לכל $\exp\left(X
ight)\in G$ אפשר לדבר על אפשר חבורה לכל חבורה לכל חבורה לאנו שלכל האינו שלכל חבורה ל

. נגדיר טופולוגיה חדשה נגדיר טופולוגיה $G \leq \operatorname{GL}_n\left(k\right)$

 $\|X\|<arepsilon$ המקיים $X\in {
m Lie}\,(G)$ לכל $g\cdot \exp(X)\in U$ באמר שקבוצה $g\in U$ קיים פורמלית, הקבוצות פורמלית, הקבוצות

$$B_{g,\varepsilon} = \left\{g \cdot \exp\left(X\right) \,\middle|\, \begin{smallmatrix} X \in \operatorname{Lie}(G) \\ \|X\| < \varepsilon \end{smallmatrix}\right\}$$

נותנות בסיס לטופולוגיה.

. אבל הוא נותן את אותה הטופולוגיה $\{\exp{(X)\cdot g}\}$ אבר לקחת בסיס אחר אפשר לקחת בסיס אחר

תרגיל 7. ההעתקות

exp: Lie
$$(G) \rightarrow G$$

 $: G \times G \rightarrow G$
 $()^{-1}: G \rightarrow G$

רציפות בטופולוגיה הנ"ל.

G של g שהומיאומורפית לקבוצה פתוחה במרחב אוקלידי. לכן arepsilon = 0 אם נבחר $g \in G$ אם נבחר $g \in G$ מספיק קטן יש סביבה $B_{g,arepsilon}$ של G שהומיאומורפית לקבוצה פתוחה במרחבים האוקלידיים) יוצאות חלקות ולכן G יריעה טופולוגית. ההעתקות המעבר (בין הקבוצות במרחבים האוקלידיים) יוצאות חלקות ולכן

אכן, אם

$$h = g_1 \exp(X_1) = g_2 \cdot \exp(X_2)$$

נקודה בחיתוך של שתי קבוצות פתוחות, ניתן לכתוב

$$X_1 = \log \left(g_1^{-1} g_2 \exp \left(X_2\right)\right) := \psi \left(X_2\right)$$

ולכן X_1 כפונקציה של אופן, ולכן זה דיפאומורפיזם. $\mathbb{R}^n o \mathbb{R}^n$ היא פונקציה חלקה חלקה X_2 היא פונקציה חלקה

העתקות כיריעה חלקה, ההעתקות G במבנה של G. במבנה של

exp: Lie
$$(G) \rightarrow G$$

 $: G \times G \rightarrow G$
 $()^{-1} : G \rightarrow G$

חלקות.

. הערה 3.1.4. לפעמים הטופולוגיה שהגדרנו מתלכדת עם הטופולוגיה על G כתת־קבוצה של M_n , אבל זה לא נכון תמיד.

. Lie $(G)=\{0\}$ ולכן γ' (0)=0 קבועה. לכן $\gamma\colon (-arepsilon,arepsilon) o G$ בל מסילה חלקה $G:=\operatorname{GL}_n(\mathbb{Q})$ קבועה. לכן $G:=\operatorname{GL}_n(\mathbb{Q})$ ולכן $G:=\operatorname{GL}_n(\mathbb{Q})$ אז $B_{g,arepsilon}=\{g\}$ ונקבל את הטופולוגיה הדיסקרטית על

96. חבורות מטריצות

דוגמה 3.1.6 (ישרים על הטורוס). תהי

$$\mathbb{T}^2 := \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \,\middle|\, |a| = |b| = 1 \right\} \le \mathsf{GL}_2\left(\mathbb{C}\right)$$

מתקיים $\mathbb{T}^2\cong S^1 imes S^1$ וגם

.Lie
$$\left(\mathbb{T}^2\right) = \left\{ \begin{pmatrix} {}_12\pi i \theta & 0 \\ 0 & 2\pi i \theta_2 \end{pmatrix} \;\middle|\; \theta_1, \theta_2 \in \mathbb{R} \right\}$$

 $.S^1 imes S^1$ ניתן לבדוק שהטופולוגיה שעל \mathbb{T}^2 שהגדרנו בבניית המבנה של היריעה החלקה מתלכדת עם הטופולוגיה שעל בניית המבנה על \mathbb{T}^2 שהגדרנו בבניית המבנה של \mathbb{T}^2 בניתן לבדוק שהטופולוגיה שעל \mathbb{T}^2 שהגדרנו בבניית המבנה על $X,Y \in \mathfrak{g} := \mathrm{Lie}\left(\mathbb{T}^2\right)$ לכל לכל תת־מרחב של \mathbb{T}^2

$$\exp: (\mathfrak{g},+) \to \mathbb{T}^2$$

הוא הומומורפיזם של חבורות על ידי

$$\mathbb{R}^2 o \mathbb{R}^2 / 2\pi \mathbb{Z}^2 \cong \mathbb{T}^2$$

כשההעתקה הראשונה היא העתקת המנה. כשהרעתקה מיאם לישונה $\alpha \in \mathbb{R}$ עבור כל $\alpha \in \mathbb{R}$

$$\mathfrak{g}_{\alpha} = \{ \mathsf{diag} \left(2\pi i \alpha \theta, 2\pi i \theta \right) \mid \theta \in \mathbb{R} \}$$

אז

$$\mathfrak{g}_{\alpha} = \mathsf{Lie}\left(G_{\alpha}\right)$$

כאשר

$$.G_{\alpha} \coloneqq \left\{ \mathsf{diag}\left(e^{2\pi i \alpha \theta}, e^{2\pi i \theta}\right) \mid \theta \in \mathbb{R} \right\}$$

נגדיר

$$\gamma_{\alpha}\left(\theta\right) = \operatorname{diag}\left(e^{2\pi i \alpha \theta}, e^{2\pi i \theta}\right)$$

(וצפופה) מתקיים G_{lpha} כי G_{lpha} לולאה פתוחה (וצפופה) מתקיים G_{lpha} מתקיים G_{lpha} במקרה זה G_{lpha} לולאה סגורה הומיאומורפית ל־ G_{lpha} אפשר להשתכנע שהטופולוגיה שהגדרנו על G_{lpha} אכן מתאימה לזאת של G_{lpha} , ובמקרה זה הטופולוגיה המושרית על G_{lpha} בתוך G_{lpha} ארכן מתאימה לזאת של G_{lpha} , ובמקרה זה הטופולוגיה המושרית על G_{lpha} ארכן מתאימה לזאת של G_{lpha} אחרת

נוכיח שלכל $|\gamma\left(\alpha\right)\left(\theta\right)-I|<arepsilon$ שמתקיים בחבורה נדולה כרצוננו כך שמתקיים בחבורה נוכיח שלכל

$$S^1 = \{\operatorname{diag}\left(z,1\right) \mid \ |z| = 1\}$$

ובחבורה

$$H := G_{\alpha} \cap S^1 \leq S^1$$

אם H סופית, קיים $d \in \mathbb{N}$ עבורו

$$\gamma_{\alpha}\left(d\right) = \gamma_{\alpha}\left(1\right)^{d} = 1$$

שזאת סטירה לאי־רציונליות של $k_1,k_2\in\mathbb{Z}$ לכן H אינסופית. מקומפקטיות של S^1 נקבל M עבורם α

$$\left|\gamma_{\alpha}\left(k_{1}-k_{2}\right)-I\right|=\left|\gamma_{\alpha}\left(k_{1}\right)-\gamma_{\alpha}\left(k_{2}\right)\right|<\varepsilon$$

 $.G^{\circ}$ תת־חבורה נורמלית וקשירה ב- G° .1 .3.1.7

 $G=G^{\circ}$ אם G קשירה מתקיים G

הוכחה. 1. עבור

$$a = \exp(X_1) \cdot \ldots \cdot \exp(X_k)$$

המסילה

$$\gamma(t) = \exp(tX_1) \cdot \ldots \cdot \exp(tX_k)$$

מסילה רציפה שמקשרת בין a,I מתקיים גם

$$\forall g \in G : \mathsf{Ad}(g)(a) = \mathsf{exp}(\mathsf{Ad}(a)(X_1)) \cdot \ldots \cdot \mathsf{exp}(\mathsf{Ad}(a)(X_k)) \in \mathsf{Lie}(G)$$

.לכן G° נורמלית

מתקיים . $U=B_{I,arepsilon}$ למשל U של U מתקיים .2

$$G^{\circ} = \bigcup_{g \in G^{\circ}} g \cdot U$$

וזה איחוד של קבוצות פתוחות. לכן G° פתוחה. תת־חבורה פתוחה של חבורה טופולוגית היא גם סגורה, כי הקוסטים שלה ב־G פתוחים. G פתוחים וסגורים ולכן הינם רכיבי הקשירות של G באופן דומה, איברי G/G° פתוחה וסגורים ולכן הינם רכיבי הקשירות של G

 $I \in G$ רכיב הקשירות של G° .3.1.8 מסקנה

 $\Gamma\left(\mathsf{Lie}\left(G
ight)
ight)=G$ מסקנה מסקנה קשירה בטופולוגיה שהגדרנו אם ורק אם $G\leq\mathsf{GL}_{n}$

. בעתיד נוכיח שאם $G \leq \operatorname{GL}_n$ היא סגורה בטופולוגיה המושרית, הטופולוגיה שהגדרנו מתלכדת עם הטופולוגיה היחסית.

דוגמה $X\in M_{n}\left(\mathbb{R}
ight)$ לכל 3.1.11. דוגמה

$$.\det\left(\exp\left(X\right)\right)=e^{\mathsf{tr}(X)}>0$$

אז

$$\mathsf{GL}_{n}\left(\mathbb{R}\right)^{\circ}\subseteq\mathsf{GL}_{n}\left(\mathbb{R}\right)^{+}\coloneqq\left\{ A\in\mathsf{GL}_{n}\left(\mathbb{R}\right)\mid\,\mathsf{det}\left(A\right)>0\right\}$$

למעשה, ראינו בתרגיל ש $\left(\mathbb{R}^{+}\right)^{+}$ קשירה. לכן יש שוויון

$$.\mathsf{GL}_n\left(\mathbb{R}\right)^{\circ} = \mathsf{GL}_n\left(\mathbb{R}\right)^{+}$$

דוגמה 3.1.12. ראינו שקיימת $g \in \mathcal{O}\left(n\right)$ עבורה

$$\mathcal{O}(n) = \mathsf{SO}(n) \cup g \cdot \mathsf{SO}(n)$$

ראינו גם שמתקיים

$$\mathfrak{so}_3 = \mathsf{Lie}\left(\mathsf{SO}\left(3\right)\right)$$

ושמתקיים

$$\Gamma\left(\mathfrak{so}_{3}\right)=\mathsf{SO}\left(3\right)$$

לכן

$$.\mathsf{SO}\left(3\right)=\mathsf{SO}\left(3\right)^{\circ}=\mathcal{O}\left(3\right)^{\circ}$$

דוגמה 3.1.13. תהי

$$.O\left(1,1\right) := \left\{ A \in \mathsf{GL}_n\left(\mathbb{R}\right) \;\middle|\; A \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} A^t = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$$

עבור $A \in \mathsf{O}\left(1,1
ight)$ מתקיים

$$\det\left(A\right)\cdot\det\begin{pmatrix}1&\\&-1\end{pmatrix}\cdot\det\left(A^t\right)=\det\begin{pmatrix}1&\\&-1\end{pmatrix}$$

 $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathsf{O}\left(1,1
ight)$ מתקיים . $\det\left(A
ight) = \pm 1$ לכן $\det\left(A
ight)^2 = 1$ וגם .

$$O(1,1) = SO(1,1) \cup \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} SO(1,1)$$

עבור

$$.\mathsf{SO}\left(1,1\right)\coloneqq\mathsf{O}\left(1,1\right)\cap\mathsf{SL}_{n}\left(\mathbb{R}\right)$$

החבורה. מתקיים SO (1,1)

$$g = Lie(O(1,1))$$

נקבל $\gamma\left(0\right)=I$ עם $\gamma\colon\left(-arepsilon,arepsilon
ight) o\mathsf{O}\left(1,1\right)$ ואם נגזור את

$$.\gamma'\left(0\right)\begin{pmatrix}1&0\\0&-1\end{pmatrix}+\begin{pmatrix}1&0\\0&-1\end{pmatrix}\gamma'\left(0\right)^{t}=0$$

אז

$$\mathfrak{g}=\left\{X\in M_{2}\left(\mathbb{R}\right)\;\middle|\;A\begin{pmatrix}1&0\\0&-1\end{pmatrix}+\begin{pmatrix}1&0\\0&-1\end{pmatrix}A^{t}=0\right\}=\left\{\begin{pmatrix}0&a\\a&0\end{pmatrix}\;\middle|\;a\in\mathbb{R}\right\}$$

זאת חבורה חד־מימדית. נקבל

$$\mathsf{O}\left(1,1\right)^{\circ} = \mathsf{SO}\left(1,1\right)^{\circ} = \left\{ \mathsf{exp} \begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix} \;\middle|\; a \in \mathbb{R} \right\}$$

והאיברים בחבורה זאת נקראים סיבובים היפרבוליים. נסמי

נסמן

$$.C \coloneqq \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \in \mathsf{SO}\left(2\right)$$

אז

$$\begin{split} \exp\begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix} &= \exp\left(C\begin{pmatrix} 2a & \\ & -2a \end{pmatrix}C^{-1}\right) \\ &= C\begin{pmatrix} e^{2a} & \\ & e^{-2a} \end{pmatrix}C^{-1} \\ &= \begin{pmatrix} \cosh\left(2a\right) & \sinh\left(2a\right) \\ \sinh\left(2a\right) & \cosh\left(2a\right) \end{pmatrix} \end{split}$$

בבסיס המלכסן אלו העתקות מהצורה $\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$ עבור t>0. העתקות אלה מקיימות

$$xy = (tx) \left(t^{-1}y \right)$$

ולכן משמרות את ההיפרבולה. מתקיים למשל

$$-I \in \mathsf{SO}\left(1,1\right) \setminus \mathsf{SO}\left(1,1\right)^{\circ}$$

ולמעשה

. O (1,1)ig/ס $(1,1)^\circ$ מהי החבורה הסופית מחשבו בנוסף מהי החבורה הסופית

 G/G° של component group נקראת ה־מנדרה לכל G/G° . לכל לכל

 $G/G^{\circ}\cong G$ מתקיים $G:=\mathsf{GL}_{n}\left(\mathbb{Q}
ight)$ דוגמה 3.1.15. עבור

3.1.1 חבורות לי אבליות

 $(X,Y\in \mathrm{Lie}\,(G)$ לכל [X,Y]=0 אבלית (כלומר [X,Y]=0 אבלית אם ורק אם אבלית אבלית אבלית אם $G\leq \mathrm{GL}_n(k)$ אבלית (כלומר 3.1.16 אבלית אבלית אם ורק אם $G\leq \mathrm{GL}_n(k)$

מתקיים $X,Y\in \mathrm{Lie}\,(G)$ מתקיים אבלית ותהיינה G אבלית נניח כי

$$.\gamma\left(s,t
ight)\coloneqq\operatorname{Ad}\left(\exp\left(tX
ight)
ight)\left(\exp\left(sY
ight)
ight)=\exp\left(sY
ight)$$

נגזור ב-0 לפי s ונקבל

$$\operatorname{exp}(tX) \cdot Y \cdot \operatorname{exp}(-tX) = \operatorname{Ad}(\operatorname{exp}(tX))(Y) = Y$$

XY - YX = 0 ונקבל t = 0 נגזור ב־

אבלית וכי G. אז Lie G אבלית וכי G

$$\forall X,Y\in \mathsf{Lie}\left(G\right):\ \exp\left(X\right)\exp\left(Y\right)=\exp\left(Y\right)\exp\left(X\right)$$

. אבלית, ומתקיים $G^\circ=G$ כי $G^\circ=\Gamma$ לית, ומתקיים ר $G^\circ=\Gamma$ לית, ומרה אז ר $G^\circ=\Gamma$

הומומורפיזם מ־(g,+) ל־(g,+). אז אפשר לכתוב exp: $\mathfrak{g} o G$ הומומורפיזם מ־G קשירה אבלית. הערה

$$G = (\mathfrak{g}, +)/L$$

כאשר

$$L := \ker \exp = \{x \in \mathfrak{g} \mid \exp(X) = 1\}$$

(מוכלל). נקראת טורוס G

אפשר לשכן בתוך S_n . יש גם שיכון G אפשר סופית כל חבורה כל חבורה **3.1.18**.

$$i: S_n \to \mathsf{GL}_n\left(\mathbb{R}\right)$$

על ידי מטריצות פרמוטציה על הבסיס הסטנדרטי.

באופן זה אפשר לחשוב על כל חבורה סופית כחבורת מטריצות. ל־G סופית נקבל G באופן זה אפשר לחשוב על כל חבורה סופית כחבורת מטריצות. ל־G סופית נקבל דיסקרטית.

נשים לב ש־ $G^\circ = \{ \mathrm{id} \} \subsetneq G$. על כל חבורה סופית אפשר לחשוב כחבורת לי בעוד G לאו דווקא אבלית. זה מתאפשר כי $G^\circ = \{ \mathrm{id} \}$ נשים לב ש־ G° טריוויאלי.

 β).

הגדרה 3.1.19 (טורוס n־מימדי). נגדיר

$$.\mathbb{T}^{n}\coloneqq\left\{\operatorname{diag}\left(e^{i\theta_{1}},\ldots,e^{i\theta_{n}}\right)\;\middle|\;\left(\theta_{i}\right)_{i\in[n]}\subseteq\mathbb{R}\right\}\leq\operatorname{GL}_{n}\left(\mathbb{C}\right)$$

העתקה לי, וההעתקה ($S^1ig)^n\cong \mathbb{T}^n$.3.1.20 הערה

$$\exp \colon \mathbb{R}^n \cong \mathsf{Lie}\left(\mathbb{T}^n\right) o \mathbb{T}^n$$

היא הומומורפיזם על. אז

$$\mathbb{T}^n \cong \mathbb{R}^n / \ker(\exp) = \mathbb{R}^n / \mathbb{Z}^n$$

דוגמה 1.21. ולחילופין, מתקיים $\begin{pmatrix} & * \\ I_n & \vdots \\ & * \\ 0 & 1 \end{pmatrix}$ זאת חבורת מטריצות אבלית קשירה על ידי שיכון כמטריצות ($\mathbb{R}^n,+$). לחילופין, מתקיים

$$\begin{split} & \left(\left(\mathbb{R}^{\times} \right)^{n} \right)^{\circ} \cong \left\{ \operatorname{diag} \left(e^{\theta_{1}}, \ldots, e^{\theta_{n}} \right) \; \middle| \; \left(\theta_{i} \right)_{i \in [n]} \subseteq \mathbb{R} \right\} \\ & . \left(\mathbb{R}^{\times} \right)^{n} \cong \left\{ \operatorname{diag} \left(x_{1}, \ldots, x_{n} \right) \; \middle| \; \forall i \in [n] \colon x_{i} \neq 0 \right\} \end{split}$$

אז

$$\mathbb{R} \cong \left(\mathbb{R}^{\times}\right)^{\circ}$$

$$x \mapsto e^{x}$$

$$\log\left(y\right) \leftarrow y$$

איזומורפיזם. exp: $\mathbb{R}^n o \left(\left(\mathbb{R}^ imes
ight)^n\right)^\circ$ איזומורפיזם. נקבל כי

טענה 3.1.22. תהיG חבורה קשירה אבלית. אז

$$\mathsf{exp} \colon \mathsf{Lie}\,(G) \to G$$

הוא הומומורפיזם על ומתקיים

$$G \cong \operatorname{Lie}(G) / \ker(\exp)$$

 $.(\mathsf{Lie}\left(G\right),+)$ תת־חבורה דיסקרטית בתוך $\mathsf{ker}\left(\mathsf{exp}\right)$

k,n עבורם k,n עבור V מרחב וקטורי ממשי וV מרחב וקטורי ממשי וויע משפט 3.1.23. עבור

$$V/L \cong \mathbb{T}^k \times \mathbb{R}^n$$

 $\mathbb{T}^k imes \mathbb{R}^n$ כל חבורת מטריצות אבלית קשירה היא מהצורה כל חבורת מסקנה 3.1.24.

למה 3.1.25. תהי $L \leq V$ תת־חבורה דיסקרטית של מרחב וקטורי ממשי. אז קיימים וקטורים בלתי־תלויים לינארית $(u_i)_{i \in [n]}$ עבורם

$$L = \operatorname{\mathsf{Span}}_{\mathbb{Z}}\left(u_{i}\right)_{i \in [n]}$$

עבורם Vעבורם לינארית ב־ $(u_i)_{i \in [r]}$ אבורם באינדוקציה וקטורים ל $(u_i)_{i \in [r]}$

$$.L\cap\operatorname{Span}_{\mathbb{R}}\left(u_{1},\ldots,u_{r}\right)=\operatorname{Span}_{\mathbb{Z}}\left(u_{1},\ldots,u_{r}\right)$$

אם (u_1,\ldots,u_r) . מיימנו. אחרת קיים $u\in\mathbb{L}$ סיימנו. אחרת ב' $L\subseteq\mathsf{Span}_\mathbb{R}\,(u_1,\ldots,u_r)$

$$P = \left\{ \sum_{i \in [r]} \alpha_i u_i + \beta u \, \middle| \, \begin{array}{l} (\alpha_i)_{i \in [r]} \subseteq [0,1] \\ \beta \in [0,1] \end{array} \right\} \subseteq V$$

שהינה קומפקטית. אז

$$u \in P \cap L \cong \{0\}$$

 $n\in\mathbb{Z}$ קיים $x\in L\cap\mathsf{Span}_\mathbb{R}$ (u_1,\dots,u_r,u) אז לכל מינימלי. אז לכל $v\in P\cap L$ קיים $x\in L\cap\mathsf{Span}_\mathbb{R}$ קיים אז לכל עבורו

$$x - nv \in L \cap \operatorname{Span}_{\mathbb{R}}(u_1, \dots, u_R) = \operatorname{Span}_{\mathbb{Z}}(u_1, \dots, u_r)$$

lacktriangleאחרת היינו מוצאים $n\in\mathbb{Z}$ שיתן סתירה למינימליות של

לפי הבסיס. נקבל $V\cong\mathbb{R}^k$ ואז V של V ואז V לפי הבסיס. נקבל בסיס $(u_i)_{i\in[m]}$. נשלים בסיס לפי הבסיס. נקבל

$$L \cong \mathbb{Z}^m \times \{0\} \le \mathbb{R}^m \times \mathbb{R}^{k-m}$$

ואז

$$^{k-m} \times \mathbb{R} \mathbb{R}^m / \mathbb{Z}^m \cong V / L.$$

הערה 3.1.26. לפעמים, בהקשר של חבורות אלגבריות, חבורות אלגבריות קשירות נקראות טורוסים.

90 פרק 3. חבורות מטריצות

3.1.2 חזרה להתאמת לי

יתקיים $\mathfrak{g} \leq M_n$ נרצה שלכל אלגברת לי נתונה

$$.\mathfrak{g}=\mathsf{Lie}\left(\Gamma\left(\mathfrak{g}\right)\right)$$

לכן לפי ההגדרה נקבל .exp $(tX)\in\Gamma\left(\mathfrak{g}
ight)$ אנו יודעים $X\in\mathfrak{g}$

$$X \in \text{Lie}(\Gamma(\mathfrak{g}))$$

ולכן

$$.\mathfrak{g}\subseteq\mathsf{Lie}\left(\Gamma\left(\mathfrak{g}\right)\right)$$

נרצה לתאר את $\Gamma\left(\mathfrak{g}\right)$ באופן יותר קונקרטי ונרצה להראות במובן מסוים שהיא לא גדולה מדי. ברצה לתאר את פאופן יותר קונקרטי ונרצה פאופן יותר קונקרטי פאופן מכך ש $U\in\mathfrak{g}$

$$.\Gamma\left(\mathfrak{g}
ight)=igcup_{k\in\mathbb{N}_{+}}\exp\left(U
ight)^{k}=igcup_{k\in\mathbb{N}_{+}}\exp\left(ar{U}
ight)^{k}$$

נרצה להיפטר מהחזקות ולשם כך נוכל לכתוב

$$.\Gamma\left(\mathfrak{g}\right)=\bigcup_{g\in\Gamma\left(\mathfrak{g}\right)}g\cdot\exp\left(\bar{U}\right)$$

,Baker-Cambell-Hausdorff נרצה להיות מסוגלים לכתוב את $\Gamma\left(\mathfrak{g}
ight)$ כאיחוד בן מניה באופן דומה. זה מתאפשר, וינבע מהמהות של נוסחת $\Gamma\left(\mathfrak{g}
ight)$ מזה שקיימת העתקה

$$C \colon \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$$

מוגדרת בסביבת אפס.

ראינו כי עבור G חבורת מטריצות קשירה מתקיים

$$.G = \Gamma\left(\mathsf{Lie}\left(G\right)\right)$$

ראינו שמתקיים .exp נרצה על כל G על כלשהו לשהור כלשהו בעצם תיאור נרצה בעצם בישור כלשהו של כל

$$.\Gamma\left(\mathfrak{g}\right)=\bigcup_{k\in\mathbb{N}_{+}}\exp\left(U\right)^{k}$$

0 עבור פתוחה של טביבה $U\subseteq\mathfrak{g}$

ניזכר שעבור $X,Y\in\mathfrak{g}$ מתקיים

$$C(X,Y) = \log(\exp(X)\exp(Y)) \in \mathfrak{g}$$

כאשר זה מוגדר. נגדיר

$$I_X(Y) := C(X,Y)$$

ואז $I_{0}\left(Y
ight) =Y$ לכן מתקיים

$$.\left(\mathsf{d}\left(I_{0}\right)\right)_{0}=\mathsf{id}$$

מרציפות נקבל כי $U\subseteq \mathfrak{g}$ של $U\subseteq \mathfrak{g}$ מספיק קטן. ממשפט הפונקציה מספיק קטן. ממשפט הפונקציה אפיכה עבור מספיק קטן מחשפט הפונקציה ההפוכה מרציפות נקבל כי

$$I_X(U) = C(X, U)$$

פתוחה (בדקו למה U אחידה לכל X מספיק קטן).

תה

$$V \coloneqq C(U, U)$$

ותהי

$$.V' = C\left(\bar{U}, \bar{U}\right)$$

אז $ar{U} imes ar{U}$ קומפקטית כתמונה רציפה של קבוצה קומפקטית כתמונה רציפה אז V'

$$V' \subseteq \bigcup_{X \in V'} C(X, U)$$

אם בוחרים $\{X_i \mid i \in [n]\} \subseteq V'$ מספיק קטנה, וזה איחוד של קבוצות פתוחות ולכן פתוח. מקומפקטיות, קיימת קבוצה סופית $\{X_i \mid i \in [n]\}$ כך שמתקיים

$$.V' \subseteq \bigcup_{i \in [n]} C(X_i, U)$$

לכל נקבל אקספוננט נקבל על ידי אקספוננט נקבל . $a_i = \exp{(X_i)}$ נסמן $i \in [n]$

.
$$\exp\left(\bar{U}\right)\exp\left(\bar{U}\right)\subseteq\bigcup_{i\in[n]}a_i\cdot\exp\left(\bar{U}\right)$$

אם נמשיך באינדוקציה נקבל

$$\bigcup_{k=1}^{\infty} \exp\left(\bar{U}\right)^k \subseteq \bigcup_b b \cdot \exp\left(\bar{U}\right)$$

 $\{a_i \mid i \in [n]\}$ כאשר b רץ על מילים באותיות

 $\mathfrak{g}=\mathsf{Lie}\left(\Gamma\left(\mathfrak{g}
ight)
ight)$ משפט 3.1.27. לכל אלגברת לי \mathfrak{g} של מטריצות מתקיים

הוכחה. עבור $X \in \mathfrak{g}$ יש מסילה

$$\gamma\left(t\right) = \exp\left(tx\right) \in \Gamma\left(\mathfrak{g}\right)$$

עם

$$X = \gamma'(0) \in \mathsf{Lie}(\Gamma(\mathfrak{g}))$$

 $\mathfrak{g}\subseteq\operatorname{Lie}\left(\Gamma\left(\mathfrak{g}
ight)
ight)$ לכן

להכלה ההפוכה, נראה שקיימת סביבה פתוחה $U\subseteq\mathfrak{g}$ של 0 וקיים c פעף c של c ביר, עראה שקיימת סביבה פתוחה בטופולוגיה של c וקיים c פעף של c וקיים פרוחה בטופולוגיה של קבוצות סגוריה של בייר, איחוד בן מנייה של קבוצות סגורות מהצורה c פעף c פעף מקומית והאוסדורף שהוא איחוד בן מנייה של קבוצות סגורות מהצורה c פעף (c exp (c) ומכאן c exp (c0 פעף פרוחה בתוך c1 שכים לא ריק. אפשר להניח (בדקו!) שיc2 פעפה ופתוחה בתוך c3 ומכאן c3 פעפה בריc5 פעפה בריc6 פעף (c6 פעף (c7 פעף פרוחה בתוך בעצמה בריס פרוחה בתוך פרוחה בתוך פרוחה בתוך פרוחה בתוך בעצמה בריס פרוחה בתוך פרוחה בתוך פרוחה בתוך פרוחה בתוך בעצמה בריס פרוחה בתוך פרוחה בתוך פרוחה בתוך פרוחה בתוך פרוחה בתוך בתצמה בריס פרוחה בתוך פרוחה בתוך בדקוף של פרוחה בתוך בתצמה בריס פרוחה בתוך פרוחה בתוך פרוחה בתוך בתצמה בריס פרוחה בתוך פרוחה בתוך פרוחה בתוך בתצמה בריס פרוחה בתוך פרוחה בתוך בתצמה בריס פרוחה בתוך בתצמה בריס פרוחה בתוך בתצמה בריס פרוחה בתוך בתוחה בתוך בתוחה בתוך בתוחה בתוחה

exp כך שמתקיים שהאקספוננט הומאומורפיזם לתמונה. אז $U\subseteq \mathrm{Lie}\left(\Gamma\left(\mathfrak{g}\right)\right)$ עבור $c\cdot \exp\left(U\right)\subseteq B\left(c,arepsilon
ight)$ פתוחה כי $c\cdot \exp\left(U\right)\subseteq B\left(c,arepsilon
ight)$ פתוחה כי פומיאומורפיזם, אבל אם \mathfrak{g} תת־מרחב ממימד קטן יותר זה לא יכול לקרות (כי תת־מרחב לא יכול להכיל קבוצה פתוחה).

משפט 3.1.28. בהינתן חבורת מטריצות G קיימת התאמה חד־חד ערכית בין אוסף כל התת־חבורות הקשירות $H \leq G$ לבין אוסף כל התת־אלגבראות $\mathfrak{h} \leq \mathfrak{h}$ לי $\mathfrak{h} \leq \mathsf{Lie}\,(G)$ לי

הוכחה. זה נובע מכך שההתאמה שהראנו בין אלגבראות לי לחבורות שומרת על סדר הכלה.

שמקיימות $\mathfrak{h} \leq \mathsf{Lie}\left(G\right)$ שמקיימות ונניח שמתקיים $G = G^\circ$. יש התאמ בין תת־אלגבראות לי $G \leq \mathsf{GL}_n\left(k\right)$

$$[\mathsf{Lie}\left(G\right),\mathfrak{h}]\subseteq\mathfrak{h}$$

 $H \subseteq G$ ונקראות אידאלים), לבין תת-חבורות נורמליות קשירות)

הוכחה. נניח כי H ו־ $ext{f}$ קשורות בהתאמת לי.

נניח כי H ת"ח נורמלית. אז

$$\forall X \in \operatorname{Lie}\left(G\right) \forall Y \in \mathfrak{h} \colon \left[X,Y\right] = \frac{\operatorname{d}}{\operatorname{d}t} \left(\operatorname{Ad}\left(\exp\left(tx\right)\right)\left(Y\right)\right)|_{t=0}$$

כי

$$\frac{\mathsf{d}}{\mathsf{d}t}\left(\exp\left(tx\right)Y\exp\left(-tX\right)\right) = X\exp\left(tX\right)Y\exp\left(-tX\right) + \exp\left(tX\right)Y\exp\left(-tX\right)\left(-X\right)$$

וב־0 = t מקבלים XY - YX מתקיים

$$\mathsf{Ad}\left(\mathsf{exp}\left(tX\right)\right):H\to H$$

וגם

$$\mathsf{Ad}\left(\mathsf{exp}\left(tX\right)\right)\left(\mathfrak{h}\right)\subseteq\mathfrak{h}$$

 $[X,Y] \in \mathfrak{h}$ לכן מהנ"ל

בכיוון השני, אם f אידאל, מספיק לבדוק שמתקיים

$$\forall X \in \mathsf{Lie}(G) \, \forall Y \in \mathfrak{h} \colon \mathsf{Ad}(\mathsf{exp}(X)) \, (\mathsf{exp}(Y)) \in H$$

לכן .exp ולכן G,H נוצרות על ידי ולכן $G=G^\circ,H=H^\circ$ מתקיים

$$\begin{split} \operatorname{Ad}\left(\exp\left(X\right)\right)\left(\exp\left(Y\right)\right) &= \exp\left(\operatorname{Ad}\left(\exp\left(X\right)\right)\left(Y\right)\right) \\ &= \exp\left(\exp\left(\operatorname{ad}\left(X\right)\right)\left(Y\right)\right) \end{split}$$

ולכן ,exp $(\operatorname{ad}(X))(Y) \in \mathfrak{h}$ נובע ad $(X)(Y) \in \mathfrak{h}$ אבל כיוון שמתקיים

$$\in H\left(\exp\left(\operatorname{ad}\left(X\right)\right)\left(Y\right)\right)\exp$$
 .

92 פרק 3. חבורות מטריצות

3.2 הומומורפיזמים

3.2.1 הגדרה

בהינתן הומומורפיזם גזיר $\varphi \colon G o H$ בין חבורות מטריצות, הנגזרת

$$(\mathrm{d}\varphi)_I$$

היא העתקה לינארית

.Lie
$$(G) \rightarrow \text{Lie}(H)$$

ביתר פירוט, אם

$$\gamma \colon (-\varepsilon, \varepsilon) \to G$$

מקיימת

$$\gamma(0) = I$$
$$\gamma'(0) = X \in \mathsf{Lie}(G)$$

אז

$$\varphi\left(\gamma\left(0\right)\right)=\varphi\left(I\right)=I\in H$$

ומתקיים

.
$$\left(\varphi\circ\gamma\right)'(0)=\left(\mathrm{d}\varphi\right)_{I}\left(\gamma'\left(0\right)\right)=\left(\mathrm{d}\varphi\right)_{I}\left(X\right)\in\mathrm{Lie}\left(H\right)$$
 ,

אז בין המשיקים ב-G לוקטורים משיקים ב-לוקטורים משיקים ב-לוקטורים משיקים ב-לוקטורים משיקים ב-לוקטורים משיקים ב-

$$.dφ$$
: Lie (G) → Lie (H)

טענה 1.2.1 הוא הומומורפיזם של אלגבראות לי. כלומר, מתקיים $\mathrm{d} \varphi$

$$\forall X,Y\in \mathsf{Lie}\left(G\right)\colon \left[\mathsf{d}\varphi\left(X\right),\mathsf{d}\varphi\left(Y\right)\right]=\mathsf{d}\varphi\left(\left[X,Y\right]\right)$$

וגם

$$.\forall X\in\mathsf{Lie}\left(G\right):\varphi\left(\mathsf{exp}\left(X\right)\right)=\mathsf{exp}\left(\mathsf{d}\varphi\left(X\right)\right)$$

את המשוואה השנייה נציג על ידי הדיאגרמה הקומוטטיבית הבאה.

$$\begin{array}{ccc} G & \xrightarrow{\quad \varphi \quad } & H \\ \exp \uparrow & & \uparrow \exp \\ \operatorname{Lie} \left(G \right) & \xrightarrow{\quad \operatorname{d} \varphi \quad } \operatorname{Lie} \left(H \right) \end{array}$$

מתקיים $X \in \text{Lie}(G)$ מתקיים

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \left(\varphi \left(\exp \left(tX \right) \right) \right) &= \frac{\mathrm{d}}{\mathrm{d}s} \left(\varphi \left(\exp \left(\left(t+s \right)X \right) \right) \right)_{s=0} \\ &= \frac{\mathrm{d}}{\mathrm{d}s} \left(\varphi \left(\exp \left(tX \right) \right) \varphi \left(\exp \left(sX \right) \right) \right)_{s=0} \\ &= \varphi \left(\exp \left(tX \right) \right) \cdot \frac{\mathrm{d}}{\mathrm{d}s} \left(\varphi \left(\exp \left(sX \right) \right) \right)_{s=0} \\ &= \varphi \left(\exp \left(tX \right) \right) \cdot \mathrm{d}\varphi \left(X \right) \end{split}$$

ולפי טענת המד"ר בתחילת הקורס נובע

$$\varphi\left(\exp\left(tX\right)\right) = \exp\left(t \cdot \mathsf{d}\varphi\left(X\right)\right)$$

. כאשר t=1 אנו מקבלים את המשוואה

מתקיים $X,Y\in \mathrm{Lie}\,(G)$ הוא הומומורפיזם. לכל

$$\begin{split} \varphi\left(\operatorname{Ad}\left(\exp\left(tX\right)\right)\left(\exp\left(sY\right)\right)\right) &= \operatorname{Ad}\left(\varphi\left(\exp\left(tX\right)\right)\right)\left(\varphi\left(\exp\left(sY\right)\right)\right) \\ &= \operatorname{Ad}\left(\exp\left(t\operatorname{d}\varphi\left(X\right)\right)\right)\left(\exp\left(s\operatorname{d}\varphi\left(Y\right)\right)\right) \end{split}$$

ולאחר גזירה ב־s=0 נקבל

$$. d\varphi (Ad (exp (tX)) (Y)) = Ad (exp (t d\varphi (X))) (d\varphi (Y))$$

נגזור כעת ב־t=0 ונקבל שאגף שמאל שווה

$$.\operatorname{d}\varphi\left(\frac{\operatorname{d}}{\operatorname{d}t}\left(\operatorname{Ad}\left(\exp\left(tX\right)\right)\left(Y\right)\right)_{t=0}\right)=\operatorname{d}\varphi\left(\left[X,Y\right]\right)$$

. באותו טיעון, ולכן נקבל את התוצאה. $\left[\mathsf{d}\varphi\left(X\right),\mathsf{d}\varphi\left(Y\right)
ight]$ אגף ימין שווה

3.2. הומומורפיזמים

הערה 3.2.2. למעשה, קיבלנו ש־

Lie: Mat-Grp → Lie-Alg

העובדה Lie $(arphi)=\mathsf{d}arphi$ הוא פנקטור מהקטגוריה של חבורות לקטגוריה של אלגבראות לי כשעל מורפיזמים הוא מוגדר

$$\mathsf{Lie}\,(\varphi_1\circ\varphi_2)=\mathsf{Lie}\,(\varphi_1)\circ\mathsf{Lie}\,(\varphi_2)$$

היא כלל השרשרת.

נרצה לדעת מתי

 $d: \operatorname{Hom}(G, H) \to \operatorname{Hom}(\operatorname{Lie}(G), \operatorname{Lie}(H))$

הוא חד־חד ערכי, ומתי הוא על. אם הוא חד־חד ערכי ועל, הדבר קרוב להיות שקילות בין קטגוריות. מד־חד ערכי, נבדוק מתי φ נקבע ביחידות על ידי d. מתקיים

$$\varphi\left(\exp\left(X\right)\right) = \exp\left(\mathsf{d}\varphi\left(X\right)\right)$$

חבירות מטריצות של תת־קטגוריה של חבורות מטריצות מטריצות G' קשירה לכן אם $G^\circ = \Gamma\left(\text{Lie}\left(G\right)\right)$. לכן אם $G^\circ = \Gamma\left(\text{Lie}\left(G\right)\right)$ אם נביט על תת־קטגוריה של חבורות מטריצות קשירות נקבל שהפנקטור Lie חד־חד ערכי על מורפיזמים, כלומר *נאמן.*

 $arphi\colon G o H$ מתי קיים $\psi\colon {
m Lie}\,(G) o {
m Lie}\,(H)$ על. זאת השאלה מתי אפשר להרים הומומורפיזם של אלגבראות לי. אם $\psi\colon {
m Lie}\,(G) o {
m Lie}\,(H)$, מתי קיים $\psi\colon G$ מרים הוא כן בפרט כאשר G פשוטת קשר.

העתקה באוטומורפיזם של G. נקבל העתקה אפשר לחשוב על $g \in G$ אם $g = \mathrm{Lie}\,(G)$. נקבל העתקה מטריצות ונסמן G. נקבל העתקה ...

. Ad:
$$G \to \operatorname{Aut}(G)$$

נוכל להרכיב ולקבל

 $.G \underset{\mathsf{Ad}}{\longrightarrow} \mathsf{Aut}\left(G\right) \underset{\mathsf{d}}{\rightarrow} \mathsf{Aut}\left(\mathfrak{g}\right) \leq \mathsf{GL}\left(\mathfrak{g}\right)$

(with abuse of notation) נסמן הרכבה זאת

. Ad $(g) = (\mathsf{d} \circ \mathsf{Ad})\,(g) \in \mathsf{Aut}\,(\mathfrak{g})$

נקבל Ad $_{\mathfrak{g}}$ אם נסמן זאת

. $Ad_{\mathfrak{g}} \colon G \to \operatorname{\mathsf{Aut}}(\mathfrak{g})$

נוכל גם לגזור ולקבל

. $\mathsf{Ad}_{\mathfrak{g}}\left(g\right)=\mathsf{d}\left(\mathsf{Ad}_{G}\left(g\right)\right):\mathfrak{g}\to\mathfrak{g}$

חבורת מטריצות ומתקיים Aut (\mathfrak{g})

. d $(Ad_{\mathfrak{g}}): \mathfrak{g} \to Lie(Aut(\mathfrak{g})) \leq End(\mathfrak{g})$

העתקה זאת מסומנת ad העתקה זאת

 $Ad_{\mathfrak{a}}(exp(X)) = exp(ad(X))$

 $X \in \mathfrak{g}$ לכל

קיבלנו חבורת מטריצות חדשה

$$.G/\mathrm{ker}\left(\mathrm{Ad}_{\mathfrak{g}}\right)\cong\mathrm{Ad}_{\mathfrak{g}}\left(G
ight)\leq\mathrm{GL}\left(\mathfrak{g}
ight)$$

את הגרעין הזה אנחנו לא מבינים ישר. מתקיים

$$\ker\left(\mathsf{Ad}_{G}\right)=Z\left(G\right)$$

. אך נראה זאת, חבורת מטריצות, אך על פניו, מלחתכילה לא ידוע לנו ש־ $Z\left(G
ight) \leq \ker\left(\mathsf{Ad}_{\mathfrak{g}}
ight)$ חבורת מטריצות, אך נראה זאת. $Z\left(G
ight) \leq \ker\left(\mathsf{Ad}_{\mathfrak{g}}
ight)$

Gב ב'ז. מטריצות, והגדרנו את מסריצות של הומומורפיזמים Gב ליט כאשר Gב ב'Gב' כאשר הומומורפיזמים של הומומורפיזמים ליכות של Gב' כאשר Gב' כאשר Gב' ב'Gב' של Gב' שמוגדרת על ידי שאם ניקח סביבה Gב' של Gב' שמוגדרת של ידי

,
$$\left\{ \exp \left(X \right) \, \middle| \, egin{array}{l} X \in \mathsf{Lie}(G) \\ \|X\| < arepsilon \end{array}
ight\}$$

לא תלויה $\mathrm{d}\varphi$ וניקח סביבה $\mathrm{d}\varphi'$ של $\mathrm{d}I$, נקבל שההעתקת המעבר $\mathrm{exp}|_V^{-1}\circ \varphi\circ \mathrm{exp}|_U$ גזירה/חלקה ו־ $\mathrm{d}G'$ של $\mathrm{d}I$, נקבל שההעתקת המעבר בפרט, $\mathrm{d}G'$ החלקות של $\mathrm{d}G'$ אינן תלויות במימוש. במימוש של $\mathrm{d}G'$ החלקות שאינן בהכרח חבורות מטריצות, באופן שאינו תלוי במימוש. בהמשך נגדיר חבורות לי כלליות שאינן בהכרח חבורות מטריצות, באופן שאינו תלוי במימוש.

עולות לנו כמה שאלות על ההתאמה

.Lie: $\operatorname{Hom}(G, H) \to \operatorname{Hom}(\operatorname{Lie}(G), \operatorname{Lie}(H))$

 $^{2}arphi$ איזומורפיזם, מה זה אומר על $^{2}arphi$ אלו של $^{2}arphi$ אם אומרות התכונות של $^{2}arphi$ על אלו של

פרק 3. חבורות מטריצות 34

 $\mathsf{Pd} \varphi = f$ שמקיים $\varphi \colon G \to H$ שמקיים אותו להומומורפיזם, האם אפשר להרים אותו להומומורפיזם $\varphi \colon G \to H$ שמקיים

אז $G = (\mathbb{C}, +) \,, H = (\mathbb{C}^{\times}, \cdot)$ אז נסתכל על .3.2.7 גומה

$$G\cong\left\{\begin{pmatrix}1&a\\0&1\end{pmatrix}\;\middle|\;a\in\mathbb{C}\right\}\leq\mathsf{GL}_{2}\left(\mathbb{C}\right).H$$

$$\cong\mathsf{GL}_{1}\left(\mathbb{C}\right)$$

נקבל

$$\begin{split} \operatorname{Lie}\left(G\right) &= \left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \;\middle|\; a \in \mathbb{C} \right\} \\ \operatorname{Lie}\left(H\right) &= \mathbb{C} \end{split}$$

ואכן מתקיים

$$.\exp\begin{pmatrix}0&a\\0&0\end{pmatrix}=\begin{pmatrix}1&0\\0&1\end{pmatrix}+\begin{pmatrix}0&a\\0&0\end{pmatrix}+0=\begin{pmatrix}1&a\\0&1\end{pmatrix}$$

תהי

$$f: \mathsf{Lie}\,(G) \xrightarrow{\sim} \mathsf{Lie}\,(G_2)$$
$$\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \mapsto (a)$$

ונחפש הרמה

$$\varphi\colon G\to H$$

נדרוש

$$\varphi\left(\exp_{G_1}\begin{pmatrix}0&a\\0&0\end{pmatrix}\right) = \exp_{G_2}\left(f\begin{pmatrix}0&a\\0&0\end{pmatrix}\right)$$

אז

$$\varphi\left(\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}\right) = e^a$$

. עדיין, \log מוגדר מקומית. $\mathbb{C}^{ imes}$ נרצה לדעת האם אפשר להרים את f^{-1} . התשובה היא לא, כי \log לא מוגדר על כל

3.2.2 הצגות של טורוסים

נסתכל על טורוס n־מימדי

$$\mathbb{T}^n \coloneqq \{\mathsf{diag}\left(z_1,\ldots,z_n
ight) \mid \, |z_i| = 1\} \cong \left(S^1
ight)^n$$

נניח כי

$$\varphi \colon \mathbb{T}^n \to \mathbb{C}^\times = \mathsf{GL}_1(\mathbb{C})$$

נסמן $\mathfrak{t}^n \coloneqq \mathsf{Lie}\left(\mathbb{T}^n\right)$ ומתקיים

$$\mathfrak{t}^n = \{ \mathsf{diag} (2\pi i \theta_1, \dots, 2\pi i \theta_n) \mid \theta_i \in \mathbb{R} \}$$

מתקיים כי \mathfrak{t}^n אלגברה קומוטטיבית ו־ ϕ הומומורפיזם כללי. נכתוב

$$.\forall X\in\mathfrak{t}^{n}\colon\varphi\left(\exp\left(X\right)\right)=e^{\mathsf{d}\varphi\left(X\right)}$$

אם $X=(2\pi i\theta_1,\ldots,2\pi i\theta_n)$ אם

$$\mathsf{d}\varphi(X) = 2\pi i \left(\ell_1 \theta_1 + \ldots + \ell_n \theta_n\right)$$

 $\mathbb{R}^n o\mathbb{C}$ עבור $\ell_1,\dots,\ell_n\in\mathbb{C}$. ככה נראים פונקציונלית \mathbb{R}^n לינאריים \mathbb{R}^n לינאריים \mathcal{R}^n לינא

$$\mathsf{d}\varphi\left(X\right) = 2\pi i\ell_{i} \in 2\pi i\mathbb{Z}$$

ואז $\ell_i \in \mathbb{Z}$ ואז

$$\varphi\left(\operatorname{diag}\left(1,\ldots,1,e^{2\pi i\theta},1,\ldots,1\right)\right)=e^{2\pi i\ell_{j}\theta}$$

כאשר ה $e^{2\pi i heta}$ מופיע במקום ה $e^{2\pi i heta}$

$$.\varphi\left(\mathsf{diag}\left(1,\ldots,z,\ldots,1
ight)
ight)=z^{\ell_{j}}$$

נצרף את כל ערכי i ונקבל

$$arphi\left(\mathsf{diag}\left(z_{1},\ldots,z_{n}
ight)
ight)=z_{1}^{\ell_{1}}\cdot\ldots\cdot z_{n}^{\ell_{n}}$$

 $.\ell_i \in \mathbb{Z}$ עבור

3.2. הומומורפיזמים

אכן, כל בחירה של שלמים ℓ_1,\dots,ℓ_n מגדירה הומומורפיזם $\mathbb{T}^n o \mathbb{C}^ imes$ לפי הנוסחה הזאת. יתרה מכך, אם

$$\varphi \colon \mathbb{T}^n \to \mathsf{GL}(V)$$

אז ($\mathbb C$ מ"ו מעל V מ"ו מרוכבת של טורוס (כלומר, הומומורפיזם, כאשר V

$$d\varphi \colon \mathfrak{t}^n \to \operatorname{End}(V)$$

העתקה לינארית. נסמן

$$E_j = \mathsf{d}\varphi\left(2\pi i e_j\right) \in \mathsf{End}\left(V\right)$$

ונקבל E_j בבסיס E_j בבסיס ל E_j בו ל-V בו במסיס פולות שלמות של פולית שלמות של פריע להיות לכסינה עם ע"ע שהם כפולות שלמות של

$$[\varphi(1,\ldots,z,\ldots,1)]_B = \exp[E_j]_B = \operatorname{diag}(z^{\ell_{j,1}},\ldots,z^{\ell_{j,n}})$$

וכאשר $n = \dim(V)$ כאשר

$$. [E_j] = \mathsf{diag}\left(2\pi i \ell_{j,1}, \ldots, 2\pi i \ell_{j,n}\right)$$

מתקיים

$$[E_{i,1}, E_{i_2}] = d\varphi([t_1, t_2]) = d\varphi(0) = 0$$

 E_1,\dots,E_n עבור $t_j=2\pi ie_j$ וכיוון ש־ $t_j=0$ אלגברה קומוטטיבית. לכן E_1,\dots,E_n מטריצות מתחלפות בזוגות. במצב כזה, קיים בסיס $t_j=0$ אלכסוניות. כלומר

$$\left[\varphi\left(z_{1},\ldots,z_{n}\right)\right]_{B}=\mathsf{diag}\left(z_{1}^{\ell_{1,1}}\cdot\ldots\cdot z_{n}^{\ell_{n,1}},\ldots,z_{1}^{\ell_{1,m}}\cdot\ldots z_{n}^{\ell_{n,m}}\right)$$

. אכם כך בלחרה של שלמים אותן $\{\ell_{r,s}\}_{\substack{r\in[n]\\s\in[m]}}$ עיתן הומומורפיזם כזה.

במילים אחרות, פירקנו א \hat{V} לסכום ישר

$$V = \bigoplus_{i \in [m]} V_i$$

 $arphi\left(\mathbb{T}^{n}
ight)$ כל שכל V_{i} הוא מרחב חד־מימדי של וקטורים עצמיים ל

3.2.3 טורי פורייה

פורייה ניסה לפתור מד"ח (משוואת החום) עם תנאי התחלה מחזוריים. תנאי ההתחלה הוא פונקציה רציפה $f\colon S^1 o \mathbb{C}$. הוא שם לב שקל יותר לפתור את הבעיה אם מפרקים את f לטור

$$f = \sum_{n \in \mathbb{Z}} a_n z^n$$

בשפה מודרנית, f היא וקטור בתוך מרחב הפונקציות על $\mathbb{T}\cong S^1$, שהיא חבורה. נסמן ב־ $\mathcal{T}(\mathbb{T})$ את הפונקציות הרציפות על היש הומומורפיזם שהיא חבורה. נסמן ב־ \mathcal{T}

$$\varphi \colon \mathbb{T} \to \mathbb{GL}\left(\mathcal{C}\left(\mathbb{T}\right)\right)$$

זאת נקראת ההצגה הרגולרית של ${\mathbb T}$ ומוגדרת על ידי

$$\varphi(g)(f) = \varphi(g)(f)(z) = f(g^{-1}z)$$

אם z^n מתפרק (כמו במקרה הסוף מימדי) לסכום ישר של מרחבים עצמיים חד־מימדיים זה בדיוק יתן פירוק לטור פורייה, כי הפונקציות z^n אם $\mathcal{C}\left(\mathbb{T}\right)$ מתפרק (כמו במקרה הסוף מימדי) לסכום ישר של מרחבים עצמיים חד־מימדיים זה בדיוק הוקטורים העצמיים של $\varphi\left(\mathbb{T}\right)$

גרעין ותמונה 3.2.4

. יהי G o H הומומורפיזם של חבורות מטריצות $\varphi \colon G o H$ יהי

- .Lie $(\ker(\varphi)) = \ker(\mathsf{d}\varphi)$.1
- $G/_{G^\circ}$ אם $G/_{G^\circ}$ בת־מניה. Lie (Im φ) = Im (d φ) .2

לכל אם ורק אם ורק אם ורק אם אם ורק אם אם אם ורק אם ורק אם אם ורק אם אם אם ורק אם ורק אם ורק אם ורק אם ורק אם ורק אם אם ורק אם ורק אם ורק אם אם ורק אם ו

$$\exp(t d\varphi(X)) = \varphi(\exp(tX)) = I_H$$

 $X\in\ker\left(\mathsf{d}arphi
ight)$ אם ורק אם ורק אם ורק אם לכל $\mathsf{d}arphi\left(X
ight)=0$ אם ורק אם ורק אם

פרק 3. חבורות מטריצות

אז
$$X\in\operatorname{Lie}\left(G
ight)$$
 אז .2

$$\exp(t d\varphi(X)) = \varphi(\exp(tX)) \in \operatorname{Im} \varphi$$

 $\mathsf{Im}\,(\mathsf{d}\varphi)\subseteq\mathsf{Lie}\,(\mathsf{Im}\,\varphi)$ אז $\mathsf{d}\varphi\,(X)\in\mathsf{Lie}\,(\mathsf{Im}\,\varphi)$ ולכן

בכיוון ההפוך, מתקיים

$$G^{\circ} = \Gamma\left(\mathsf{Lie}\left(G\right)\right) = \bigcup_{k \in \mathbb{Z}} a_k \cdot \exp\left(\bar{U}\right)$$

עבור ערכים $U\subseteq \mathrm{Lie}\,(G)$ תהי $a_k\in G^\circ$ עבור ערכים

$$G = \bigcup a_k \exp\left(\bar{U}\right)$$

איחוד בן מניה עבור ערכים $a_k \in G$ איחוד בן מניה

$$.\operatorname{Im}\varphi = \bigcup \varphi\left(a_{k}\right)\varphi\left(\exp\left([\bar{U}\right)\right)$$

קומפקטית ובפרט סגורה. כמו בהוכחה מקודם, אם נפעיל את משפט בייר arphi קומפקטית לכן arphi (exp (ar U)) קומפקטית ובפרט סגורה.

$$\varphi\left(a_{k}\right) \varphi\left(\exp\left(\bar{U}\right)\right) = \varphi\left(a_{k}\right) \exp\left(\mathsf{d}\varphi\left(\bar{U}\right)\right)$$

עם פנים פתוח. כמו בהוכחה קודמת, נקבל ש־ $\mathrm{d} \varphi\left(\bar{U}\right)$ מכילה קבוצה פתוחה ב־Lie $(\mathrm{Im}\, \varphi)$ Lie $\mathrm{d} \varphi\left(\mathrm{Lie}\, (G)\right)=$.

מסקנה 3.2.9. אם φ חד־חד ערכית / על, בהתאמה.

וגם d
$$(\mathrm{Ad}_G\left(a\right))=\mathrm{Ad}_{\mathfrak{g}}\left(a\right)$$
 ראינו שמתקיים . $\mathfrak{g}=\mathrm{Lie}\left(G\right)$ וגם .
$$\ker\mathrm{Ad}_G\left(a\right)=Z\left(a\right)$$

כעת נקבל מהטענה שמתקיים

$$\mathsf{Lie}\left(Z\left(a\right)\right) = \mathsf{ker}\left(\mathsf{d}\left(\mathsf{Ad}_{G}\left(a\right)\right)\right) = \mathsf{ker}\left(\mathsf{Ad}_{\mathfrak{g}}\left(a\right)\right) = \left\{X \in \mathfrak{g} \mid aX = Xa\right\}$$

ונסמן את הביטוי האחרון $\mathfrak{z}(a)$ אז

$$\begin{split} a \in \ker\left(\mathsf{Ad}_{\mathfrak{g}}\right) &\iff \mathfrak{z}\left(a\right) = \mathfrak{g} \\ &\iff \mathsf{Lie}\left(Z\left(a\right)\right) = \mathfrak{g} \\ &\iff Z\left(a\right)^{\circ} = G^{\circ} \\ &\iff G^{\circ} \leq Z\left(a\right) \end{split}$$

ואם G קשירה נקבל

$$.\ker\left(\mathsf{Ad}_{\mathfrak{g}}\right)=Z\left(G\right)$$

נקבל באופן כללי יותר

$$Z(G) \leq \ker(\mathsf{Ad}_{\mathfrak{g}}) = Z_G(G^{\circ}) = \{a \in G \mid \forall g \in G^{\circ} : ag = ga\}$$

אז

$$\mathsf{Lie}\left(\mathsf{ker}\,\mathsf{Ad}_{\mathfrak{g}}\right) = \mathsf{ker}\left(\mathsf{d}\left(\mathsf{Ad}_{\mathfrak{g}}\right)\right) = \mathsf{ker}\left(\mathsf{ad}\right) = \left\{X \in \mathfrak{g} \mid \forall Y \in \mathfrak{g} \colon \left[X,Y\right] = 0\right\} = \mathfrak{g}\left(\mathfrak{g}\right)$$

ואם G קשירה נקבל

$$\mathfrak{z}(\mathfrak{g}) = \text{Lie}(Z(G))$$

במקרה זה נקבל גם

$$.\operatorname{Ad}_{\mathfrak{g}}\left(G\right)\cong \left.^{G}\middle/\ker\left(\operatorname{Ad}_{\mathfrak{g}}\right)\right.=\left.^{G}\middle/Z\left(G\right)\right.$$

עובדה 3.2.10. אם $f : \mathfrak{g} \to \mathfrak{h}$ הומומורפיזם של אלגבראות לי, אז

$$\operatorname{Im} f \cong \mathfrak{g}/\ker f$$

כאלגבראות לי.

לפי העובדה, מתקיים

$$\mathrm{Lie}\left(\mathrm{Ad}_{\mathfrak{g}}\left(G\right)\right)=\Im\left(\mathrm{ad}_{\mathfrak{g}}\right)\cong\mathfrak{g}\Big/\mathrm{ker}\left(\mathrm{Ad}_{\mathfrak{g}}\right)=\mathfrak{g}\Big/\mathfrak{z}\left(\mathfrak{g}\right)$$

קשירה ולכן Ad $_{\mathfrak{g}}\left(G\right)$ גם זה במקרה במקרה קשירה לאשר G

$$\mathrm{.}\,\mathsf{Ad}_{\mathfrak{g}}\left(G\right)=\Gamma\left(\mathfrak{g}\Big/_{\mathfrak{F}\left(\mathfrak{g}\right)}\right)$$

 $\mathfrak{g}^{\mathsf{-}}$ זה לא תלוי ב־G אל רק

37 3.2. הומומורפיזמים

, בילינארית, אסוציאטיבית [\cdot,\cdot] : $\mathfrak{g} imes\mathfrak{g} o\mathfrak{g}$ אלגברת לי היא מרחב וקטורי \mathfrak{g} מעל שדה \mathbb{F} יחד עם פעולה אנטיאסוציאטיבית (כלומר [x,y]=-[y,x] אושמקיימת את זהו יעקובי:

$$[x, [y, z]] + [z, [x, y]] + [Y, [z, x]]$$

 $\mathfrak{g} \subseteq \mathfrak{h}$ אידאל (תת־מרחב שמקיים $\mathfrak{g} \subseteq \mathfrak{g}$ עם הגדרה זאת לפעמים יותר קל לעבוד. למשל, אפשר להגדיר כך מנה של אלגברת לי. אם נוכל להגדיר $\mathfrak{g}/\mathfrak{h}$ ביחד עם

.
$$[X + \mathfrak{h}, Y + \mathfrak{h}] \coloneqq [X, Y] + \mathfrak{h}$$

בחזרה לדיון הקודם, מתקיים

$$\mathsf{ad}\left(\mathfrak{g}\right)\cong\mathfrak{g}\Big/\mathsf{ker}\left(\mathsf{ad}\right)=\mathfrak{g}/_{z\mathfrak{z}prs\mathfrak{g}}$$

כאשר

$$\mathfrak{Z}(\mathfrak{g})(X \in \mathfrak{g}) \forall Y \in \mathfrak{g} \colon [X,Y] = 0$$

זה איזומורפיזם של אלגבראות לי, ומתקיים גם

.Lie
$$\left(G \middle/ Z\left(G \right) \right) \mathfrak{g} \middle/ \mathfrak{z} \left(\mathfrak{g} \right)$$

אלגברה של מטריצות עבור ad (\mathfrak{g}) גם אם \mathfrak{g} מראש הייתה נלקחת כאלגברה אבסטרקטית אז עדיין. גם אם

. ad :
$$\mathfrak{g} \to \mathsf{End}\,(\mathfrak{g})$$

. אבסטרקטית. \mathfrak{g} אלגברת מטריצות גם עבור $\mathfrak{g}/\mathfrak{z}(\mathfrak{g})$ אלגברת מטריצות. ממשפט אדו, למעשה \mathfrak{g} עצמה גם בהכרח ניתנת לשיכון כמטריצות.

לא G/H, אם סגורה, נורמלית סגורה עבור G עבור עבור G אם היא חבורה מטריצות קשירה, קיבלנו גם שעבור Gבהכרח חבורת מטריצות. זאת אחת המוטיבציות להגדיר חבורות לי אסטרקטיות.

דוגמה 3.2.13. מתקיים $\mathsf{GL}_n(\mathbb{C})=\mathsf{Ad}_\mathfrak{g}\left(\mathsf{GL}_n(\mathbb{C})
ight)$. ידוע כי $\mathsf{GL}_n(\mathbb{C})$ קשירה. אפשר לראות זאת על ידי צורת ז'ורדן. הראו כתרגיל שאפשר לחבר כל איבר במסילה רציפה ליחידה.

מתקיים גם

$$Z\left(\mathsf{GL}_{n}\left(\mathbb{C}\right)\right)\cong\mathbb{C}^{\times}$$

$$\mathsf{PGL}_{n}\left(\mathbb{C}\right)\cong\left.\mathsf{GL}_{n}\left(\mathbb{C}\right)\right/_{\mathbb{C}}^{\times}$$

$$.\mathsf{Lie}\left(\mathsf{PGL}_{n}\left(\mathbb{C}\right)\right)\cong\left.M_{n}\left(\mathbb{C}\right)\right/_{\mathbb{C}}$$

גם

$$\varphi \colon \mathfrak{sl}_n\left(\mathbb{C}\right) \to \mathsf{Lie}\left(\mathsf{PGL}_n\left(\mathbb{C}\right)\right)$$

$$X \to X$$

איזומורפיזם.

כל כתיבה לכתיבה $X \in M_n\left(\mathbb{C}\right)$

$$X = X_0 + \alpha I$$

 $X=X_0$ עבור $X=X_0$ ולכן $X=X_0$ מתקיים $M_n\left(\mathbb{C}
ight)\Big/_{\mathbb{C}}$ ב־ $\alpha=rac{\mathrm{tr}\,X}{n}$ ולכן $X_0\in\mathfrak{sl}_n\left(\mathbb{C}
ight)$ עבור X=0 ומתקיים $X=\alpha I$ אז $X\in\ker\varphi$ לכן X=0 נראה ש־ γ חד־חד ערכית. יהי

$$\mathsf{PSL}_n\left(\mathbb{C}\right) = \mathsf{Ad}_{\mathfrak{g}}\left(\mathsf{SL}_n\left(\mathbb{C}\right)\right) = \left.\mathsf{SL}_n\left(\mathbb{C}\right)\right/\mu_n \cdot I$$

כאשר

$$\mu_n := \{ z \in \mathbb{C} \mid z^n = 1 \}$$

גם אותן סיבות. מתקיים $\mathsf{SL}_n\left(\mathbb{C}\right)$

$$\mathfrak{z}\left(\mathfrak{sl}_{n}\left(\mathbb{C}\right)\right)=\left\{ 0\right\}$$

וגם

. ad
$$(\mathfrak{sl}_n(\mathbb{C})) = \mathfrak{sl}_n(\mathbb{C})$$

אז

$$\mathsf{.PSL}_n\left(\mathbb{C}\right)\cong\mathsf{PGL}_n\left(\mathbb{C}\right)$$

פרק 3. חבורות מטריצות

3.2.5 מרחבי כיסוי

הגדרה 3.2.14 (הומאומורפיזם לוקלי). נאמר שהומומורפיזם

$$\pi\colon \tilde{G}\to G$$

. הוא הומאומורפיזם לוקלי אם לכל $\pi|_U$ יש סביבה פתוחה T כך ש־T כך של כך אם לכל אם לכל אם לכל אם לכל יש סביבה פתוחה ש

 $\pi\colon ilde{G} o G$ העתקת ביסוי). אם $ilde{G},G$ קשירות, נקרא להומאומורפיזם לוקלי (העתקת ביסוי). אם

דוגמה 3.2.16. נסתכל על $z\mapsto z^n$ ואז $z\mapsto z^n$ ואז $\varphi_n\colon\mathbb{T}\to\mathbb{T}$ או גדיר $\varphi=\mathbb{Z}$. אז $\theta\mapsto e^{2\pi i\theta}$ אז $\varphi:\mathbb{R}\to\mathbb{T}$ ואז $\varphi:\mathbb{R}\to\mathbb{T}$ אם העתקות .ker $\varphi=\mathbb{T}$ ואז φ בחליים. מתקיים .ker $\varphi=\mathbb{T}$ ואז $\varphi=\mathbb{T}$ וא

טענה 3.2.17. 1. תהי

$$\pi \colon \tilde{G} \to G$$

העתקת כיסוי. אז π על כי יש סביבה פתוחה $\pi\left(U
ight)$ של $\pi\left(U
ight)$ נוצרת תמיד על ידי סביבה פתוחה של $\pi\left(U
ight)$ ומתקיים

$$.G = G^{\circ} \subseteq \operatorname{Im} \pi$$

רטית. אם e
eq u של סביבה U של סביבה אם $e \in \ker \pi$ אם אבורה דיסקרטית. אם $\ker \pi \leq \tilde{G}$

$$U \cap \ker \pi = \{e\}$$

.3 $\tilde{a}\left(1
ight)=a$ עם $\tilde{a}\left(0
ight)=I$ עם $\tilde{a}\left(t
ight)$ עם מסילה רציפה $a\in ilde{G}$ עבור $e\in \ker\pi$ יהי. $e\in \ker\pi$ ארר .

$$.\gamma\left(t\right)\coloneqq\tilde{a}\left(t\right)\cdot\boldsymbol{e}\cdot\tilde{a}\left(t\right)^{-1}\in\ker\pi$$

ſλ

$$\gamma(0) = e, \quad \gamma(1) = aea^{-1}$$

דיסקרטית. אז $\ker \pi$ וזאת מסילה בתוך

$$.e = \gamma(0) = \gamma(1) = aea^{-1}$$

.4 היא מנה של $ilde{G}$ בחבורה דיסקרטית במרכז.

למה 3.2.18. יהי G o H יהי הומומורפיזם. למה $\phi\colon G o H$ איזומורפיזם. φ העתקת כיסוי אם ורק אם φ