Feuille de TD 5

Convergence en probabilité, p.s., dans L^p ; Loi Forte des Grands Nombres, convergence en loi

Toutes les variables aléatoires (v.a.) sont définies sur le même espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$.

Exercice 1 Convergence en probabilité, dans L^p

Soit X_n , $n \ge 1$ une suite de variables aléatoires. Soit p > 0.

- 1. Soit $(A_n)_{n\geq 1}$ une suite d'événements tels que $\mathbb{P}(A_n) \xrightarrow[n\to\infty]{} 0$ et X une v.a. intégrable. Montrer que $\int_{A_n} Xd\mathbb{P} \to_n 0$.
- 2. Montrer que si X_n converge dans L^p vers 0, alors X_n converge en probabilité vers 0.
- 3. Réciproquement, si X_n converge en probabilité vers 0 et si

$$\sup_{n\geq 1}|X_n|\leq Y\in L^p(\mathbb{P}),$$

montrer que X_n converge dans L^p vers 0.

Exercice 2

Soit $\alpha > 0$ et $(Z_n)_{n \ge 1}$ une suite de variables aléatoires indépendantes de loi

$$\mathbb{P}_{Z_n} = \frac{1}{n^{\alpha}} \delta_1 + \left(1 - \frac{1}{n^{\alpha}}\right) \delta_0.$$

- 1. Montrer que $(Z_n)_{n\geq 1}$ converge dans L^1 vers 0.
- 2. Montrer que P-p.s.,

$$\limsup_{n} Z_n = \begin{cases} 1 & \text{si} & \alpha \le 1. \\ 0 & \text{si} & \alpha > 1. \end{cases}$$

Indication: justifier que $\limsup_{n} Z_n \in \{0,1\}$, et que

$$\{\limsup_n Z_n = 1\} = \limsup_n \{Z_n = 1\}.$$

Exercice 3

Déterminer, sans calcul, les limites suivantes :

- 1. $\lim_{n\to\infty} \int_{[0,1]^n} f(\frac{x_1+...+x_n}{n}) dx_1...dx_n$ pour f une fonction continue sur [0,1].
- 2. $\lim_{n\to\infty}\sum_{k=0}^n C_n^k p^k (1-p)^{n-k} f(\frac{k}{n})$ pour f une fonction continue sur [0,1] et $p\in[0,1]$.
- 3. $\lim_{n\to\infty} \sum_{k=0}^{\infty} e^{-\lambda n} \frac{(\lambda n)^k}{k!} f(\frac{k}{n})$ pour f une fonction continue bornée sur \mathbb{R}_+ et $\lambda > 0$.

Indication: LFGN.

Exercice 4 Convergence en loi, propriétés et contre-exemples

- 1. Montrer que si la suite de couples de v.a. $(X_n, Y_n)_n$ converge en loi vers (X, Y), alors $X_n + Y_n$ converge en loi vers X + Y.
 - N.B.: On dit que le couple $(X_n, Y_n)_n$ converge en loi vers (X, Y) si pour toute fonction $f \in C_b(\mathbb{R}^2)$, $\mathbb{E}[f(X_n, Y_n)] \to \mathbb{E}[f(X, Y)]$.
- 2. Donner un exemple d'une suite $(X_n, Y_n)_n$ telle que $(X_n)_n$ converge en loi vers X, $(Y_n)_n$ converge en loi vers Y et que $X_n + Y_n$ ne converge pas en loi.
- 3. Supposons que $X_n \xrightarrow{\mathcal{L}} X$ et $Y_n \xrightarrow{\mathcal{L}} Y$. Si Y est une constante c p.s., montrer que $X_n + Y_n$ converge en loi vers X + c.
- 4. Si une suite de variables aléatoires Z_n converge en loi vers Z, est-ce que $Z_n Z$ converge en loi vers 0? Si oui, le justifier. Sinon, donner un contre-exemple.
- 5. Si une suite de variables aléatoires Z_n converge en loi vers Z, est-ce que $\mathbb{E}[Z_n] \to \mathbb{E}[Z]$? Si oui, le justifier. Sinon, donner un contre-exemple.

Idées de variables à considérer pour les contre-exemples :

- $-(-1)^n X$, où X est de loi $\frac{1}{2}\delta_{-1} + \frac{1}{2}\delta_1$;
- $-(1-\frac{1}{n})\delta_0+\frac{1}{n}\delta_n.$

Exercice 5 Convergence en loi et densités

- 1. Pour tout $n \geq 1$, soit X_n une variable aléatoire de densité $f_n(x) = 1_{[0,1]}(x)(1 \cos(2\pi nx))$.
 - (a) Montrer que $f_n(x)$ converge ssi $x \in \mathbb{N}$.
 - (b) Est-ce que X_n converge en loi? Si oui, déterminer la limite. Indication : on pourra considérer la fonction de répartition.
- 2. Pour tout $n \geq 1$, soit Y_n une variable aléatoire de densité $g_n(x) = \frac{an}{\pi(1+n^2x^2)}$.
 - (a) Calculer a.
 - (b) En considérant les fonctions de répartitions, montrer que Y_n converge en loi et donner la loi de la limite.

Exercice à rendre pour le 22 Mars

Soit $(X_n)_{n\geq 1}$ des vaiid de loi

$$p\delta_1 + (1-p)\delta_{-1}$$
.

avec $p \in]0,1[$ différent de $\frac{1}{2}$. On note pour $n \in \mathbb{N}_{\geq 1}$

$$S_n = \sum_{i=1}^n X_i, \ A_n = \{S_n = 0\}.$$

On appelle le processus $(S_n)_{n\geq 0}$ une marche aléatoire simple sur \mathbb{Z} .

- 1. Décrire l'événement $\limsup_n A_n$ avec des mots.
- 2. Montrer que pour tout $n \in \mathbb{N}$

$$P(A_{2n+1}) = 0$$
, et $\mathbb{P}(A_{2n}) \le (4p(1-p))^n$.

(On pourra utiliser sans le démontrer que $\binom{2n}{n} \le 2^{2n}$).

- 3. Montrer que $\mathbb{P}(\limsup_n A_n) = 0$ en utilisant le lemme de Borel-Cantelli. (Rappel : $p(1-p) < \frac{1}{4}$).
- 4. Bonus : Arriver à la même conclusion en utilisant la LFGN.