注意事项:

- 有 A 和 B 两题, 17 级和 18 级的同学两题都要做, 19 级的可以选一题, 最好两题都做。
- 比赛时间 7 月 18 日 8:00~7 月 19 日 22:00, 结束前请讲论文发到 zjgsu2008@126. com 邮箱, 过时不候;
- 文件名和邮件名请用题号和报名号,两题都做的,题号用 C,只做一题的题号用 A 或者 B,不需要其他东西;
- 个人赛论文正文部分不得少于6页;
- 题目自己思考自己做,不得相互拷贝或者从网上抄袭,一经发现严肃处理:
- 论文格式按照全国赛的格式要求。

A 题: 水管下料问题

某水管有两种型号,分为 A 型水管和 B 型水管两种。每种管的原料管长有 4 米和 6 米两种,其中 4 米 A 型水管 5000 根,6 米 A 型水管 9000 根,4 米 B 型水管 2000 根,6 米 B 型水管 2000 根。

根据实际需求,需要截取 1.5m 的 A 型水管 16500 根,1.8m 的 A 型水管 12000 根,1.2m 的 A 型水管 8000 根,1.4m 的 B 型水管 6000 根,1.7m 的 B 型水管 4200 根,1m 的 B 型水管 2800 根。

请你们根据上述的实际情况建立数学模型,寻找经济效果最优的下料方案。

B 题 业绩考核模型分析

根据表中某公司对 25 位员工的业绩考核资料,考核的总得分为y,试进行y对各分量 x_1 , x_2 , x_3 的多元回归分析;

序号	у	x_1	x_2	x_3	序号	у	x_1	x_2	x_3
1	15.02	23.73	5.49	1.21	14	15.94	23.52	5.18	1.98
2	12.62	22.34	4.32	1.35	15	14.33	21.86	4.86	1.59

3	14.86	28.84	5.04	1.92	16	15.11	28.95	5.18	1.37
4	13.98	27.67	4.72	1.49	17	13.81	24.53	4.88	1.39
5	15.91	20.83	5.35	1.56	18	15.58	27.65	5.02	1.66
6	12.47	22.27	4.27	1.50	19	15.85	27.29	5.55	1.70
7	15.80	27.57	5.25	1.85	20	15.28	29.07	5.26	1.82
8	14.32	28.01	4.62	1.51	21	16.40	32.47	5.18	1.75
9	13.76	24.79	4.42	1.46	22	15.02	29.65	5.08	1.70
10	15.18	28.96	5.30	1.66	23	15.73	22.11	4.90	1.81
11	14.20	25.77	4.87	1.64	24	14.75	22.43	4.65	1.82
12	17.07	23.17	5.80	1.90	25	14.35	20.04	5.08	1.53
13	15.40	28.57	5.22	1.66					

要求:

(1) 求y关于 x_1 , x_2 , x_3 的线性回归方程

$$y = c_0 + c_1 x_1 + c_2 x_2 + c_3 x_3$$

计算 c_0 , c_1 , c_2 , c_3 的估计值。

- (2) 对上述回归模型和回归系数进行检验(要写出相关的统计量)。
- (3) 试建立y关于 x_1 , x_2 , x_3 的二项式回归模型, 并根据适当统计量指标选择一个较好的模型。