

Bienvenue au sein de l'Université de technologie de Troyes pour cette nouvelle année universitaire qui démarre. Si vous avez choisi notre établissement, c'est certainement pour le modèle si spécifique des UTs qui permet à chaque étudiant de construire et d'individualiser son parcours de formation en fonction de son projet professionnel.

Notre premier conseil est donc de commencer dès maintenant à démarrer cette réflexion et multiplier les expériences qui vous permettront d'affiner votre projet professionnel. Ingénieur n'est pas un métier mais un titre qui va vous ouvrir de nombreuses opportunités professionnelles. Vous avez la chance de pouvoir choisir votre future carrière professionnelle, ne passez pas à côté et saisissez-vous de ces belles années de formation pour acquérir les compétences qui vous permettront de mieux orienter vos choix !

Afin de faire mûrir cette réflexion, appuyez-vous sur les différents acteurs de l'UTT: votre responsable et votre assistante de programme de formation, vos enseignants, le Bureau d'Aide à l'Insertion Professionnelle, les Relations Internationales,... Surtout, n'oubliez pas que chacun d'entre vous a un conseiller pédagogique dont le rôle est de vous accompagner dans votre réflexion, de vous mettre en relation avec les acteurs pertinents, de vous conseiller dans vos méthodes de travail mais également dans votre choix d'Unités d'Enseignement (UE) chaque semestre. Contactez-le, il est là pour vous aider! Et surtout en cas de difficulté médicale, psychologique, sociale, familiale ou financière, n'hésitez pas à vous appuyer sur lui ou sur toute personne de confiance au sein de l'UTT tout en prenant soin de contacter le pôle santé. Ne restez pas isolé!

Pour construire au mieux votre parcours de formation, nous vous conseillons tout d'abord de bien vous approprier le règlement des études qui vous a été fourni à votre arrivée à l'UTT et qui est également disponible sur l'ENT et le site internet de l'UTT. Soyez conscients des règles qui régissent vos études et qui conditionnent l'obtention de votre diplôme !

L'introduction de ce guide des UE vous donne un premier aperçu des possibilités offertes par votre formation, sous un format plus synthétique et plus accessible. Vous allez y découvrir de nombreux sigles nouveaux et vous aurez certainement de nombreuses questions. Ne vous inquiétez pas, très rapidement en posant vos questions aux étudiants des précédentes « promos », à vos enseignants ou aux services de l'UTT, vous trouverez toutes les réponses qui vous permettront de tirer profit de toutes les possibilités offertes par l'UTT.

La seconde partie de ce guide vous donne accès au catalogue de l'ensemble des UE qui sont dispensées à l'UTT. Les possibilités sont nombreuses mais n'oubliez pas non plus que dans un modèle de parcours à la carte, le choix ne peut pas toujours être satisfait à chaque semestre, d'où l'intérêt de réfléchir à son parcours sur plusieurs semestres mais également de saisir les possibilités qui vous sont offertes en dehors des cours plus classiques (projets étudiants, stages, conférences, concours étudiants, ...). La vie associative est également un excellent moyen de se former et d'acquérir des compétences professionnelles qui se révèleront utiles. Ces expériences associatives peuvent être reconnues dans le cadre de l'engagement étudiant et vous valoir l'obtention de crédits ECTS (European Credit Transfer System).

Les années d'études font souvent partie des années les plus intenses d'une vie mais elles filent vite... Pourtant elles se révéleront déterminantes pour ouvrir votre champ des possibles et vous donner toutes les chances de réussir votre vie professionnelle. Sachez donc profiter de l'instant présent tout en préparant au mieux l'avenir! Bienvenue à l'UTT!

Thomas MAURER, directeur de la formation et de la pédagogie et Alexandre VIAL, responsable des formations

SOMMAIRE

V PRÉSENTATION DES FORMATIONS	p. 2
Lexique des formations : de quoi parle-t-on ?	p. 2
Comment utiliser ce guide ?	p. 8
▶ Expression et Communication	p. 10
Les UE Management de l'Entreprise	p. 16
▶ Humanités	p. 18
Les mineurs	p. 20
Les projets étudiants - Démarche Pédagogie Mind	p. 24
Tronc Commun	p. 26
▶ Ingénieur	p. 32
◆Automatique et Informatique Industrielle (A2I)	p. 36
⇒ Génie Industriel (GI)	p. 38
▶Génie Mécanique (GM)	p. 40
▶Informatique et Systèmes d'Information (ISI)	p. 42
➤ Matériaux : technologie et économie (MTE)	p. 44
▶ Réseaux et Télécommunications (RT)	p. 46
Matériaux et Mécanique (MM)	
formation par apprentissage	p. 48
Master DNM «Sciences, technologies et santé»	p. 50
V DESCRIPTIF DES UNITÉS D'ENSEIGNEMENT	p. 61
> Tronc Commun : connaissances scientifiques	p. 61
> Tronc Commun: techniques et méthodes	p. 69
▶ Branches, Master : connaissances scientifiques	p. 77
▶ Branches, Master : techniques et méthodes	p. 103
> Master	p. 141
➤ Expression et Communication	p. 155
➤ Management de l'Entreprise	p. 179
≯ Humanités	p. 189
⇒ Stages	p. 205
▼ INDEX	p. 212

Lexique des formations : de quoi parle-t-on?

Ce lexique a pour objectif de vous familiariser avec la terminologie utilisée dans les études supérieures et à l'UTT. Des détails sur les procédures peuvent être consultés auprès des différents services mentionnés, de vos responsables de programme de formation et de leurs assistantes ou des services de la Direction de la Formation et de la Pédagogie (DFP).

ALTERNANCE: quelle que soit votre formation d'ingénieur, vous avez la possibilité de faire votre dernière année de formation en alternance sous contrat de professionnalisation. Le service des stages (Bureau d'Aide à l'Insertion Professionnelle - BAIP) à la Direction Relation Entreprise (DRE) vous renseignera.

ANNULATION DE SEMESTRE: En cas de difficulté sociale, médicale, psychologique ou personnelle, n'hésitez pas à prendre contact avec le pôle médical pour bénéficier d'un suivi adapté et personnalisé. Vous pourrez, si cela se justifie, solliciter une annulation de semestre afin d'éviter que votre scolarité ne soit impactée..

ÉVALUATION DES ENSEIGNEMENTS : dans le cadre d'un processus d'amélioration continue, vous serez amenés, pour chaque UE, à évaluer anonymement les enseignements dont vous avez bénéficiés. Répondez à ce questionnaire, **le maintien de l'offre de formation étant directement lié à votre taux de participation**.

Le questionnaire est adapté à chaque modalité pédagogique et les réponses seront utilisées par le responsable de l'UE et le conseil de perfectionnement pour améliorer la formation et adapter l'évolution du diplôme.

ASSIDUITÉ: l'UTT met en œuvre une formation intégrée, construite qui n'a de sens que dans sa plénitude. La présence est obligatoire aux cours, travaux dirigés et travaux pratiques et autres séances liées aux modalités pédagogiques. Le maintien d'une bourse est conditionné à l'assiduité. Des contrôles systématiques ou inopinés pourront être réalisés.

Les absences doivent être signalées et justifiées auprès du service Scolarité et du programme de formation et pour toute absence pour raison médicale auprès du pôle santé, au préalable ou dans les 48 heures à partir du début de l'absence. Quand les motifs sont avérés et prévisibles, les justificatifs d'absences aux examens doivent être transmis à, au pôle santé et au responsable des UE concernées, trois semaines avant le début de l'absence, afin de permettre un éventuel réaménagement des examens (formulaire sur ent.utt.fr).

Le pôle santé pourra vous convoquer afin de proposer avec vous une adaptation de votre scolarité, au responsable de la formation. Les absences longues pour raisons médicales peuvent donner lieu à l'annulation du semestre. Les crédits ECTS éventuellement obtenus pendant ce semestre seront conservés.

BRANCHE: c'est le nom usuel d'une spécialité du diplôme d'ingénieur UTT. Les UE proposées dans la grille de la Branche constituent le profil de formation. Ces UE donnent une cohérence à la formation généraliste de la Branche choisie. Les UE de filière proposent une spécialisation dans un domaine en cohérence avec les besoins industriels actuels

CATÉGORIES D'UNITÉS D'ENSEIGNEMENT (art. II-3 Règlement des études) : chaque étudiant construit son parcours de formation, qui nécessite de valider un nombre minimum de crédits ECTS dans les catégories suivantes :

Connaissances Scientifiques > CS

Les enseignements de CS apportent le vocabulaire, les savoirs et concepts qui permettent de structurer la réflexion, le raisonnement pour analyser les problèmes, mettre en œuvre des modèles et proposer des méthodes de résolution. Ils permettent le développement de compétences fondamentales : l'acquisition des connaissances scientifiques et techniques.

Techniques et Méthodes **>** TM

Les enseignements de TM apportent les méthodologies et les processus de résolution de problèmes pratiques. Ces UE permettent d'acquérir les outils et les savoir-faire nécessaires à la résolution de problèmes complexes pour réaliser des projets. Elles complètent ainsi les UE CS. Elles permettent le développement de compétences fondamentales : la maîtrise de la mise en œuvre des connaissances scientifiques et techniques.

Expression et Communication > EC

Les enseignements d'EC développent l'aptitude à s'exprimer et à communiquer en français ou dans une langue étrangère. Elles regroupent l'ensemble des aspects pratiques et utilitaires nécessaires pour une communication et une expression efficace dans toutes les situations, mais aussi la connaissance de la culture nécessaire aux interactions internationales. Elles permettent le développement de compétences fondamentales : comprendre, s'exprimer, faire comprendre, former.

Management de l'Entreprise ➤ ME

Les enseignements de ME apportent des connaissances, savoir-faire et méthodologies appliqués à la gestion de l'entreprise sous ses aspects techniques et éthiques. Elles couvrent les aspects comptables, financiers, socio-économiques et légaux qui régissent l'entreprise. Elles développent l'esprit d'entrepreneuriat et apportent les clés de l'innovation. Elles permettent le développement de compétences fondamentales : l'adaptation aux exigences propres de l'entreprise et de la société et la prise en compte de la dimension organisationnelle.

Humanités > HT

La formation transversale aux Humanités vise à développer des compétences fondamentales : penser la technologie, analyser des problèmes complexes avec incertitudes et enjeux éthiques, acquérir réflexivité sur ses pratiques, autonomie de pensée et esprit critique, développer sa créativité. Elles permettent la prise en compte de la dimension personnelle et culturelle.

Engagement étudiant > EE

La catégorie « engagement étudiant » correspond à des activités réalisées lors de projets étudiants (PE) et qui peuvent être valorisées sous forme de crédits libres. Les activités de cette catégorie permettent l'acquisition de compétences très variées selon le type de projet, comme le management de projet, à l'exercice de responsabilités, travailler en équipe, communiquer au sein d'une organisation, etc.

Stages > ST

Un stage technique (ST05) de 4 semaines non fractionnables doit obligatoirement être réalisé par les étudiants admis à l'UTT après le bac. Il se déroule tant que possible entre le 2° et le 3° semestre ou entre le 3° et le 4° semestre et dans tous les cas, après accord du jury de suivi. Le travail doit correspondre à un poste d'exécution ou de production en entreprise plutôt industrielle de 10 personnes minimum. Ce stage fait l'objet d'un rapport écrit et d'un exposé oral. Sa validation prend en compte ces éléments, ainsi que l'appréciation de l'entreprise d'accueil.

La validation du stage technique donne droit à 6 crédits ECTS.

Un stage d'assistant-ingénieur (ST09) et un projet de fin d'études(ST10) sont prévus dans le cursus de l'ingénieur et sont obligatoires pour obtenir le diplôme. Ces deux stages doivent être d'une durée de six mois (minimum 24 semaines) à temps complet, conformément à la législation en vigueur. Au moins l'un des deux stages doit s'effectuer au sein d'une entreprise. Le stage d'assistant-ingénieur et le projet de fin d'études ne peuvent pas s'enchaîner.

CÉSURE: période d'une durée maximale de deux semestres universitaires consécutifs, pendant laquelle votre projet est d'acquérir une expérience personnelle, soit de façon autonome, soit au sein d'un organisme d'accueil en France ou à l'étranger. Les éventuels crédits ECTS acquis pendant cette période ne sont pas comptabilisés dans votre formation. L'inscription administrative est obligatoire pendant la césure.

CHANGEMENT D'UT: le passage dans une autre UT offrant une formation très différente de celles dispensées à l'UTT, se fait sur dossier et sur demande motivée. Si vous avez d'excellents résultats et si vous souhaitez, dans le cadre d'un projet professionnel précis, choisir une branche distincte de celles disponibles à l'UTT, il est donc possible de demander à continuer ses études dans une autre UT. Ceci est conditionné par l'acceptation du jury de suivi de votre formation, du responsable de programme de l'UT d'accueil et de la DFP. Dans le cas d'un choix de filière, l'étudiant sera diplômé par son établissement d'origine.

CHANGEMENT D'ORIENTATION: si vos résultats le permettent, vous avez droit au remords: vous pouvez changer de branche, de filière, à condition de justifier d'une évolution de votre projet professionnel.

CITATION DE RESSOURCES UTILISÉES/PLAGIAT : dans vos productions écrites, ou orales, il est obligatoire de citer vos sources d'information. Le plagiat est susceptible de sanction disciplinaire, allant jusqu'à l'exclusion définitive des établissements d'enseignement supérieur français. Les rapports écrits sont contrôlés par une application anti-plagiat.

COMPÉTENCE: capacité à agir efficacement en situation complexe. Une compétence acquise permet de mobiliser spontanément, correctement de façon organisée des ressources propres à l'individu (savoirs (connaissances), savoir-faire (pratiques), savoir-être (comportements relationnels)) et externes, provenant d'autres individus ou de ressources documentaires. La compétence est mobilisée en situation complexe (ouverte et critique), donc non identique à des situations déjà expérimentées.

CONSEIL DE PERFECTIONNEMENT : chaque programme de formation est doté d'un conseil de perfectionnement, instance qui a pour objectif l'amélioration continue des formations au moyen d'échanges entre enseignants, enseignants-chercheurs, représentants du monde socioéconomique et étudiants. Le conseil de perfectionnement se réunit au moins deux fois par an.

CONTRAT DE PROFESSIONNALISATION: quelle que soit votre formation d'ingénieur, vous avez la possibilité de faire votre dernière année de formation par alternance sous contrat de professionnalisation. Le service BAIP (Bureau d'Aide à l'Insertion Professionnelle) de la Direction Relation Entreprise (DRE) vous renseignera.

CONTRÔLE DES CONNAISSANCES ET DES COMPETENCES : votre progression dans l'acquisition de compétences dans chaque UE est évaluée selon des modalités de contrôle des connaissances et des compétences. Ces modalités vous sont communiquées au plus tard un mois après le début des enseignements de chaque semestre. Les modalités de contrôle dépendent des méthodes pédagogiques choisies et peuvent prendre la forme de :

- > contrôle continu sous forme de travaux pratiques, tests, devoirs, exposés, etc.
- > examen intermédiaire (épreuves individuelles écrites ou orales)
- > exposé oral, rapport écrit
- > réalisation, projet
- examen final

CONTRÔLE PÉDAGOGIQUE : chaque semestre vous êtes guidés dans vos choix d'UE par le responsable de programme de votre formation et son assistante. La phase de contrôle pédagogique vous permet également de choisir de nouvelles UE, si celles que vous aviez choisie vous sont inaccessibles.

CREDITS LIBRES : Les crédits libres sont des crédits hors grille de formation qui constitue le profil d'une branche. Ce sont des crédits liés à une remise à niveau, des crédits choisis dans les profils d'autres branches, qui peuvent provenir des projets étudiants dans le cadre de la démarche Pédagogie Mind, de semestres à l'étranger, de doubles diplômes, mais en aucun cas de crédits ECTS accumulés en césure, ceci dans la limite des contraintes d'emploi du temps de tous les étudiants.

ECTS (EUROPEAN CREDIT TRANSFER SYSTEM): système qui permet d'attribuer des points à toutes les composantes d'un programme de formation basé sur la charge de travail à réaliser par l'étudiant (25 à 27 h par crédit ECTS). Il permet de faciliter la mobilité d'un pays à l'autre et d'un établissement à l'autre. Un semestre de formation correspond à au moins 30 crédits ECTS.

FILIÈRE: en formation ingénieur, la filière est une spécialisation de la Branche. Elle correspond à trois UE, au minimum, associé au stage ST10.

INTERNATIONAL: pour les élèves ingénieurs, un semestre à l'étranger est obligatoire (stage ou études). Les étudiants ayant un projet précis doivent prendre contact à l'avance avec le responsable de leur formation, le service de Relations Internationales (RI) et éventuellement le service des stages. Une demande de bourses ou l'intégration du programme Erasmus+ sont possibles.

L'UTSEUS (Université de Technologie Sino-Européenne de l'Université de Shanghai) qui associe l'UTT, l'UTC, l'UTBM et l'Université de Shanghai, permet de passer un an immergé dans la culture chinoise et internationale. Après 6 mois de cours à l'UTSEUS (chinois intensif, sciences et technologies, découverte du monde socio-économique chinois...), l'étudiant doit faire un stage dans une entreprise basée en Chine. Dans tous les cas, votre cursus à l'étranger sera reconnu et les crédits ECTS obtenus seront répartis dans votre parcours de formation.

JURY DE SUIVI : à la fin de chaque semestre, ou de l'année pour les étudiants inscrits en FISA, au vu des résultats obtenus aux UE, le jury de suivi des études de chaque formation examine le parcours de formation de chaque étudiant et peut en cas de résultats insuffisants acter une réorientation de l'étudiant. Avant qu'il ne soit rendu définitivement la décision de poursuite avec réserves, d'orientation vers des études différentes, ou d'exclusion, le jury de suivi convoque

l'étudiant et son conseiller afin d'échanger sur les causes des résultats insuffisants, ou des comportements inadéquats. Si l'étudiant ne se présente pas à cette convocation sans motif valable apprécié par le jury, celui-ci peut proposer l'exclusion de l'étudiant. Le jury de suivi peut annuler le semestre en cas de circonstances exceptionnelles prouvées, l'étudiant garde alors le bénéfice des UE validées au cours du semestre concerné.

MASTER'S DEGREE, DOUBLE DIPLÔME: sous certaines conditions, il est possible d'effectuer un "Master's degree" dans une université étrangère. Le projet doit être validé par votre responsable de programme de formation pour obtenir les équivalences d'UE et de projet de fin d'études. Il est également possible de valider le diplôme de master national délivré par l'UTT et d'autres diplômes proposés par d'autres écoles avec un aménagement éventuel de scolarité.

MENTIONS (GRADES) ECTS : l'attribution de chaque UE est décidée par un jury, avec l'une des cinq mentions définies par l'échelle de notation ECTS (European Credit Transfert System) :

- ➤ A = EXCELLENT
- ▶ B = TRÈS BIEN
- ➤ C = BIEN
- ▶ D = SATISFAISANT
- ➤ E = PASSABLE

Des résultats insuffisants sont sanctionnés par les lettres :

- > FX : un travail supplémentaire aurait été nécessaire pour valider l'UE
- F: Insuffisant: vous n'avez pas acquis un niveau suffisant de compétence

MINEUR: ensemble cohérent d'UE qui permet d'acquérir une spécialité dans le domaine des sciences humaines ou du management de l'entreprise. Il figure sur le supplément au diplôme.

NPML (NIVEAU DE PRATIQUE MINIMUM DE LANGUE): pour obtenir votre diplôme vous devez valider par une certification externe a l'UTT, un ou plusieurs niveaux de langue minimum selon le cadre européen de référence pour les langues. Les certifications sont payantes.

PARCOURS DE FORMATION: Le parcours de formation d'un étudiant se définit comme l'ensemble des crédits ECTS à valider pour l'obtention du diplôme, en respectant la répartition dans les différentes catégories d'UE. Il se compose de deux éléments:

- ▶ le profil de formation nombre de crédits ECTS minimum obligatoires dans les différentes catégories d'UE
- ▶ les crédits libres, choisis parmi les UE existantes.

PROFIL DE FORMATION : nombre des crédits ECTS minimum imposés dans les différentes catégories d'UE, correspondant à un certain nombre d'UE au choix ou obligatoires par semestre, parmi une liste. Des crédits ECTS obtenus à l'étranger peuvent entrer dans le profil, après accord de vos responsables de formation.

PROJET ETUDIANT - Démarche Mind : vous aurez l'opportunité d'enrichir votre formation et vos compétences en participant ou en réalisant un projet personnel ou collectif dont vous pourrez tirer profit pour votre vie professionnelle. Ces projets étudiants doivent être définis à l'avance et

leur durée peut être inférieure ou supérieure à un semestre. Ils donneront lieu à l'attribution de crédits ECTS dans le profil ou des crédits libres, en fonction du projet.

RECONNAISSANCE DE COMPETENCES ACQUISES LORS DE CURSUS ANTÉRIEUR OU SEMESTRE D'ÉTUDES HORS UTT : des crédits ECTS, affectés dans les différentes catégories d'UE (dans le profil ou hors du profil de formation), peuvent être attribués à des étudiants ayant acquis hors de leur formation à l'UTT, des connaissances ou des compétences jugées suffisantes dans le domaine concerné par la formation de l'UTT.

L'étudiant doit en faire la demande au début du semestre auprès de son responsable de programme, en fournissant le contenu détaillé des enseignements validés. L'attribution des crédits d'équivalence est accordée par le Directeur de la Formation et de la Pédagogie sur proposition du responsable de programme. Ils peuvent faire l'objet d'une évaluation (petit examen sur table, oral...) pour vérifier les compétences réellement acquises. Ils n'ont aucun caractère automatique.

SECTION DISCIPLINAIRE: toute tentative de fraude (présentation de documents falsifiés, plagiat, utilisation de documents non autorisés pendant les examens, utilisation d'appareils ou de technologie non autorisés...), toute tentative de dégradation, tout comportement agressif ou tout manquement aux chartes conduira à une convocation devant la section disciplinaire qui prononcera une sanction pouvant aller jusqu'à l'exclusion définitive des établissements d'enseignement supérieur français.

STATUT NATIONAL D'ÉTUDIANT-ENTREPRENEUR (SNEE): si vous avez obtenu le statut national d'étudiant-entrepreneur, vous avez la possibilité de remplacer votre stage de fin d'études par un projet de création d'entreprise ou d'activité, après validation par le responsable des stages de chaque programme et par le PEPITE (pôles étudiants pour l'innovation, le transfert et l'entrepreneuriat).

TRONC COMMUN: formation post-bac, comprenant quatre semestres d'enseignement (niveaux L1-L2) et un stage obligatoire (ST05). Le passage dans la branche ingénieur de votre choix est de droit si votre parcours de formation en tronc commun le permet, conformément au règlement des études.

Tronc commun de branche : en formation ingénieur, les deux premiers semestres d'enseignement (niveau L3) de branche. A la suite de votre succès en tronc commun de branche, vous entrez en filière. Le tronc commun de branche propose une formation commune à une branche et des UE communes à une ou plusieurs autres branches.

UE (**UNITÉ D'ENSEIGNEMENT**): Toute activité pédagogique est intégrée à une unité d'enseignement à laquelle sont attribués des crédits ECTS. Les UE sont ventilées dans différentes catégories : connaissances scientifique (**CS**), techniques et méthodes (**TM**), expression et communication (**EC**), management de l'entreprise (**ME**), humanités (**HT**) engagement étudiant (**EE**) et stages (**ST**).

Les objectifs pédagogiques d'une UE peuvent combiner notamment :

- ▶ l'acquisition de connaissances et de compétences
- ▶ l'apprentissage d'une méthode, d'une technique ou d'un langage
- ▶ la découverte de la vie professionnelle
- ▶ la réalisation d'un projet, la résolution d'un problème, individuellement ou collectivement
- ▶ la connaissance du monde de l'entreprise, de la culture d'autres pays

Comment utiliser ce guide?

Chaque parcours de formation est constitué d'un certain nombre d'UE au choix ou obligatoires. Les crédits ECTS correspondant entrent dans le profil de formation ou sont des crédits libres (voir lexique ci-dessus), suivant la répartition suivante :

	CRÉDITS ECTS DANS Le profil de formation	CRÉDITS ECTS LIBRES	CRÉDITS ECTS TOTAL Du parcours de formation
Etudiant entrant en tronc commun	280	20	300
Etudiant entrant en branche	172	8	180

Des crédits ECTS obtenus en semestre à l'étranger, dans le cadre de projets étudiants, de vos parcours antérieurs, pourront être validés par vos responsables de formation.

La cohérence de vos choix d'UE est toujours vérifiée par votre responsable de programme lors du contrôle pédagogique. Les choix sont accessibles dans les listes fournies lors de l'inscription aux UE.

Des tests diagnostiques de votre niveau de langue vous permettront d'intégrer des UE de la catégorie EC adaptées à votre niveau, pour vous préparer au NPML.

Vous aurez donc à choisir des UE et à vous renseigner sur leur contenu. C'est pourquoi, pour chaque Unité d'Enseignement, on trouve :

- ▶ le code d'identification
- > les objectifs de l'UE
- > un bref énoncé du programme des enseignements
- ♦ une description de l'UE par compétences
- ▶ l'indication éventuelle du Mineur dans le profil duquel entre l'UE
- ▶ les volumes semestriels de travail encadrés ou non :
 - C: cours
 - TD: travaux dirigés
 - > TP: travaux pratiques
 - > PRJ : projet encadré
 - ▶ THE : une estimation du volume d'heures de Travail Hors Encadrement que vous devez consacrer pour acquérir l'UE dans le semestre
- ▶ le nombre de crédits ECTS total correspondant à l'UE
- ▶ les semestres d'enseignement : Automne (A), Printemps (P) ou Automne / Printemps (A/P)
- les antécédents : UE dont l'acquisition permet de suivre avec profit l'enseignement proposé

- ▶ la mention ci-après lorsque l'UE est ouverte aux ingénieurs et/ou aux étudiants de master : UE ING, UE MAST.
- le pictogramme ci-contre lorsque les enseignements de cette UE sont dispensés en partie en anglais
- ▶ les UE dont le libellé et le descriptif apparaissent en anglais dans le guide sont enseignées totalement en anglais
- ▶ le pictogramme ci-contre pour les UE demandant une bonne maîtrise du français
 □ pour niveau B2
 □ pour niveau C2
- ▶ le pictogramme ci-contre pour les UE utilisant la « pédagogie par projet »
- ▶ le pictogramme suivant pour le taux de participation d'intervenants extérieur :
 Il plus de 15%
 Il plus de 40%
 Il plus de 75%
- ▶ ☐ le pictogramme suivant pour les UE réalisées entièrement en ligne ou dématérialisées

Sur l'ENT, vous avez accès au guide des UE et vous disposez d'informations détaillées sur chaque UE; vous pouvez poser toutes les questions que vous souhaitez grâce au lien avec le responsable de l'UE.

Pour guider votre choix, des grilles récapitulatives vous sont proposées pour chaque type d'UE.

Expression et Communication

RESPONSABLE → Stephen LE COCHE **SECRÉTARIAT** → Charlotte DI NAPOLI

LANGUES ÉTRANGÈRES

Six langues étrangères sont proposées : **allemand, anglais, chinois, espagnol, japonais et italien**. Ces langues sont enseignées par niveau de compétence CEFR (de A1 a C1). Elles sont enseignées en cinq niveaux de débutants à confirmés (00, 01, 02, 03 et 08) et en UE d'approfondissement (post 08). Pour vous inscrire à une UE de langue étrangère, vous devez passer un test d'évaluation ou avoir réussi l'UE de niveau inférieur. Il est possible de suivre plusieurs UE de langues en un semestre.

Actuellement l'UTT est certifié centre d'examen pour : LinguaSkill (Anglais), TOEIC (Anglais), TCF (Français), EsPro Bulats (Espagnol) et GoethePro (Allemand). D'autres certifications sont à venir.

Les cours de langues sont enseignés à tout public confondu.

Possibilité de suivre des cours d'Anglais et de Français pendant les intersemestres.

POUR LES ÉTUDIANTS ÉTRANGERS : FRANÇAIS LANGUE ÉTRANGÈRE (FLE)

Le Français est enseigné également par niveau de compétence CEFR (de A1 a C1). Il y a un stage intensif (SFA1>B2) organisé en Août ainsi qu'à l'intersemestre de Février (80 heures). Pour être diplômé, il est exigé un niveau B2 en Français certifié CEFR.

NIVEAU DE PRATIQUE MINIMUM DE LANGUE

Conformément aux recommandations de la Commission des Titres d'Ingénieur (CTI), pour être diplômé ingénieur de l'UTT, chaque étudiant doit avoir validé un niveau de langue en anglais (B2+) certifié par un test ou examen externe. Les étudiants étrangers non francophones ont aussi l'obligation de valider par une certification externe un niveau de langue en français à l'issue de la formation (niveau B2).

Parmi les tests ou examens de référence, l'UTT a choisi LinguaSkill (épreuve informatisée). La première inscription est prise en charge par l'UTT uniquement pour les sessions organisées à l'UTT (l'UTT étant organisme certifié). En cas d'échec, les tentatives suivantes sont à la charge de l'étudiant (à un tarif préférentiel). Il est recommandé de s'inscrire, en concertation avec les enseignants, à l'épreuve de test lors du semestre d'inscription à l'UE LE08 (l'accord pédagogique du SUEL est nécessaire pour les autres situations). Les niveaux minimums à atteindre aux tests de langue pour les élèves ingénieurs varient selon leur situation/statut.

- ➤ Étudiants ingénieurs en formation initiale (FISE, dont alternance : contrat de professionnalisation et apprentissage, FISA) : B2+ Anglais (pour étudiants non francophones : B2+ Anglais et B2 Français)
- Étudiants ingénieurs entrés avec une maîtrise : B2
- Étudiants ingénieurs en formation continue et VAE : B1
- ➤ Depuis le semestre d'Automne 2018, les étudiants entrant en Tronc Commun doivent aussi valider un niveau minimum de langue dans une autre langue vivante étrangère parmi celles enseignées à l'UTT :
 - ♦ étudiants francophones : B2+ en Anglais, B1 en 2e langue ou niveau équivalent
 - pour les étudiants étrangers non francophones : B2+ en Anglais et B2 en Français

ÉTUDIANTS ÉTRANGERS

Pour tous les étudiants étrangers diplômants (hors échange), si vous avez en votre possession un certificat externe des niveaux requis, merci de nous le transmettre dès votre arrivée à l'UTT. Contact UTT pour certificat : charlotte.di_napoli@utt.fr

Tableau récapitulatif des scores des différents tests externes acceptés :

	TOEFL	TOEIC	IELTS	LINGUASKILL COMPUTER TEST SCORES	BULATS COMPUTER TEST SCORES	CAMBRIDGE EXAMS	CEFR LEVEL	LEVEL Description
INGÉNIEUR Dont Alternance	100	850	5.5	170	70	CAE C FCE B BEC Higher B	B2+	Advanced Intermediate
ETUDIANTS ENTRÉS AVEC UNE MAÎTRISE	87	785	5	160	60	FCE C BEC Vantage C	B2	Upper intermediate
MASTER OU FC	57	550	3.5	140	40	PET C BEC Prelimi- nary C	B1	Intermediate

^{*}Si vous avez en votre possession un certificat externe des niveaux requis, merci de nous le transmettre dès votre arrivée à l'UTT.

MASTER: NIVEAU DE PRATIQUE MINIMUM DE LANGUE

Pour obtenir le diplôme national de master, les étudiants doivent valider un niveau de pratique minimum de langue (NPML) en langue étrangère, sauf cas exceptionnel accepté par le Directeur de la Formation et de la Pédagogie sur avis du responsable de master.

- ➤ Pour les étudiants dont la première inscription en master est le premier semestre de la première année (M1), le niveau de pratique minimum de langue requis doit être validé par l'obtention d'une certification extérieure conforme au Cadre européen Commun de Référence pour les langues de niveau B1.
- ▶ Pour les étudiants entrant en master au 3° semestre de formation, la validation du NPML est prononcée, au vu des acquis antérieurs et de la progression dans l'apprentissage. La validation du NPML est décidée par le jury de diplôme de master sur proposition du jury de suivi des études de master.

▼EXPRESSION & COMMUNICATION

TYPE	CODE	CRÉD.	LIBELLÉ	SEMESTRE
EC	FA1E	4	Expression/Compréhension Ecrite (niveau A1) de français	А
EC	FA1P	4	Expression/Compréhension Phonique (niveau A1) de français	А
EC	FA2E	4	Expression/Compréhension Ecrite (niveau A2) de français	A/P
EC	FA2P	4	Expression/Compréhension Phonique (niveau A2) de français	A/P
EC	FB1E	4	Expression/Compréhension Ecrite (niveau B1) de français	A/P
EC	FB1P	4	Expression/Compréhension Phonique (niveau B1) de français	A/P
EC	FB2E	2	Préparation Examen TCF (B2) de français	A/P
EC	FB2P	2	Expression/Compréhension Phonique (niveau B2) de français	A/P
EC	FC1E	4	Expression/Compréhension Ecrite (niveau C1) de français	A/P
EC	FC1P	4	Expression/Compréhension Phonique (niveau C1) de français	A/P
EC	FM01	2	Remédiation orthographique en autonomie	A/P
EC	FM02	4	Maîtrise des nuances de la langue française	A/P
EC	FOS1	4	Préparation linguistique aux séances de TP Mathématiques	intersemestre
EC	FOS2	4	Préparation linguistique aux séances de TP Chimie	А
EC	FOS3	4	Préparation linguistique aux séances de TP Physics	intersemestre
EC	FOS4	4	Aide à la rédaction et à la soutenance du stage	Р
EC	ITOO	4	Italien - niveau pré-A1/A1	A/P
EC	ITO1	4	Italien - niveau A1/A2	A/P
EC	IT02	4	Italien – niveau A2/B1	A/P
EC	JP00	4	Japonais- niveau pré A1/A1	A/P
EC	K000	4	Coréen – niveau pré-A1/A1	A/P
EC	LC00	4	Chinois – niveau pré-A1/A1	A/P
EC	LC01	4	Chinois – niveau A1/A2	A/P
EC	LC02	4	Chinois – niveau A2/B1	A/P
EC	LE00	4	Anglais - remise à niveau A2	A/P
EC	LE01	4	Anglais - niveau pratique B1	A/P
EC	LE02	4	Anglais - niveau pratique B1/B2	A/P
EC	LE03	4	Anglais - niveau pratique B2	A/P
EC	LE08	4	Professional English, BULATS reading and listening and speaking test preparation C1	A/P
EC	LE11	4	Anglais pratique dans les domaines scientifiques et techniques C1/C2	A/P

▼EXPRESSION & COMMUNICATION

TYPE	CODE	CRÉD.	LIBELLÉ	SEMESTRE
EC	LE17	4	English for Academic Purposes C1/C2	Р
EC	LE19	4	Conversation, argumentation and pronunciation	A/P
EC	LE20	4	Professionalization and Cross Cultural studies	A/P
EC	LEM1	4	Anglais - niveau A1/A2 / Préparation BULATS (Master)	A/P
EC	LEM2	4	Anglais - niveau A2/B1 / Préparation BULATS (Master)	Р
EC	LESI	4	Remédiation des fondamentaux B1-B2	intersemestre
EC	LG00	4	Allemand - niveau vrai débutant A1	A/P
EC	LG01	4	Allemand - niveau intermédiaire A1/A2	A/P
EC	LG02	4	Allemand - niveau moyen A2/B1	A/P
EC	LG03	4	Allemand - niveau pratique B1/B2	A/P
EC	LG08	4	Allemand - préparation à l'examen niveau B2	A/P
EC	LG10	4	Allemand "culture et civilisation" B2	A/P
EC	LG11	4	Allemand " professionnel" B2	Р
EC	LP00	4	Portugais - niveau pré-A1/A1	A/P
EC	LP01	4	Portugais - niveau A1/A2	A/P
EC	LP02	4	Portugais - niveau A2/B1	A/P
EC	LS00	4	Espagnol - niveau débutant A1/A2	A/P
EC	LS01	4	Espagnol - niveau intermédiaire A2	A/P
EC	LS02	4	Espagnol - niveau pratique B1	A/P
EC	LS03	4	Espagnol - niveau pratique B1/B2	A/P
EC	LS08	4	Espagnol - niveau avancé B2 à C1	A/P
EC	LS10	4	Espagnol - niveau pratique B2	A/P
EC	LS11	4	Espagnol - niveau professionnel Espagne et Amérique Latine B2+/C1	A/P
EC	LX10	4	Formation à l'anglais à distance	A/P
EC	LXIT	4	Tandem italien	A/P
EC	LXLC	4	Tandem chinois	A/P
EC	LXLP	4	Tandem portugais	A/P
EC	LXLS	4	Tandem espagnol	A/P
EC	ME09	4	Préparation à l'essai en environnement et développement durable (Master)	A
EC	SD11	2	Articles scientifiques et entretiens professionnels	А
EC	SFA1	4	Stage intensif préalable au niveau A1 de français	intersemestre
EC	SFA2	4	Stage intensif préalable au niveau A2 de français	intersemestre

▼EXPRESSION & COMMUNICATION

TYPE	CODE	CRÉD.	LIBELLÉ	SEMESTRE
EC	SFB1	4	Stage intensif préalable au niveau B1 de français	intersemestre
EC	SFB2	4	Stage intensif préalable au niveau B2 de français	intersemestre
EC	SI10	4	Formation à la communication écrite et orale	A/P
EC	SI11	4	Communication écrite et orale pour l'ingénieur	Р

RÈGLES D'IDENTIFICATION DES UE EN ANGLAIS DANS LE GUIDE

▶ le pictogramme ci-contre lorsque les enseignements de cette UE sont dispensés en partie en anglais

▶ les UE dont le libellé et le descriptif apparaissent en anglais dans le guide sont enseignées totalement en anglais

▼ UE ENSEIGNÉES EN ANGLAIS - ANNÉE 2020/21

	PARTIELLEMENT	ENTIÈREMENT
A2I	RO01 (P) SY30 (A) SY32 (A)	RE01A (A)
GI	CLO4 (P) MT14 (A)	FQ01A (A)
GM	CS01(A) MQ03 (A) MQ04 (P) MQ06 (P)	CS01A (A) L013 (P) TN14A
ISI	IF02 (P)	IFO2A (A) IFO6A (A) UE conseillée
MTE	MA20 (P) MA21 (P) MA21 (P)	OP01 (A) + master ONT OP02 (A) OP03 (P)
RT	RE04 (P)	REO1A (A)
TC	NF04 (A+P)	MATHO2A (P) MATHO3A (A+P) MATHO3A (A+P) NFO2A (A) NFO5A (P) PHYSO2A (P)
Master	MPO5 (A, MMPA) MPO6 (A, MMPA) NO01 (A, ONT) NSO1 (A, ONT) NTO1 (A, ONT)	MC01 (A, PAIP) ME05 (A, IMEDD)
ME		GE44 (A+P)
HT	EV00 (A+P) EV04 (A)	EV02 (A+P) EV04A (P) EV04A (P) EV13 (A)
Transverses		LO01 (A)

Les UE Management de l'Entreprise

RESPONSABLE ➤ Emmanuel CARQUIN **SECRÉTARIAT** ➤ Muriel LENFANT

L'ingénieur doit travailler avec l'ensemble des composantes de l'entreprise. Des données financières juridiques, sociales et économiques peuvent influencer ses décisions. Les UE ME ont pour objectifs d'initier le futur ingénieur à la compréhension et la pratiques des matières de gestion et de management.

Abordées sous leurs aspects techniques, ces disciplines seront aussi enseignées au regard de leurs interactions possibles avec l'ensemble de l'entreprise et au regard de la prise de décision globale et stratégique. L'intervention dans les UE de nombreux professionnels en exercice permettra une mise à jour en temps réel des compétences mais aussi des nouvelles pratiques et des innovations managériales dans les entreprises.

Par le choix de ses UE, l'étudiant ingénieur disposera de la culture managériale requise pour évoluer au sein des structures. En articulant ses choix, il pourra obtenir une spécialisation validée par l'obtention d'un mineur.

▼ MANAGEMENT DE L'ENTREPRISE

TYPE	CODE	CRÉD.	LIBELLÉ	SEMESTRE
ME	APP10	4	Conduite de projet de professionnalisation	A/P
ME	EI04L*	6	Intelligence économique : stratégie d'entreprise, démarche et outils	Р
ME	FQ54*	6	Méthodes de résolution de problèmes techniques	A/P
ME	GE04	4	Management des ressources humaines	A/P
ME	GE10	4	Introduction à la microéconomie	Α
ME	GE11	4	Nouveaux designs organisationnels et stratégiques	Р
ME	GE18	4	Le management éthique	A/P
ME	GE21	4	L'entreprise et le droit	A/P
ME	GE25	4	Propriété intellectuelle et intelligence économique	Α
ME	GE28	4	Droit du commerce et des affaires	A/P
ME	GE31	4	L'entreprise et la gestion	A/P
ME	GE32	4	Ingénierie financière de l'entreprise	Р
ME	GE33	4	Projet de synthèse de gestion d'entreprise	Α
ME	GE34	4	Stratégie et management de l'entreprise	A/P
ME	GE36	4	Marketing	A/P
ME	GE37	4	Management de l'innovation	А
ME	GE38*	6	Management et outils à la créativité industrielle et à l'innovation	A/P
ME	GE41*	6	Technologie et management	A/P
ME	GE43	4	Création d'entreprise : phase pratique	Р
ME	GE44	4	Approche multiculturelle du business et management	A/P
ME	MG06*	5	Les brevets au service de l'ingénieur	A/P
ME	SP01	4	Initiation à l'animation sportive	A/P
ME	SP02	4	Animateur sportif	A/P
ME	SP03	4	Animateur qualifié	A/P
ME	SP20	4	Conception d'un évènement sportif	Р

^{*} Des UE communes aux trois UT vous sont proposées en ligne : FQ54, GE38, GE41 et MG06 (Automne-Printemps), EI04L(Printemps). Elles permettent de mieux gérer vos temps d'apprentissage et de développer votre autonomie.

Humanités

RESPONSABLE → Pascal SALEMBIER **SECRÉTARIAT** → Muriel LENFANT

1) SCIENCES DE L'HOMME ET ENJEUX CONTEMPORAINS

Ces enseignements sont de deux types : ils introduisent aux théories et concepts de disciplines de sciences humaines et sociales d'une part, et abordent des problématiques liées aux sciences et techniques d'autre part. L'objectif de ces UE est d'intégrer une réflexion épistémologique ou éthique, une posture réflexive sur ses pratiques, ou encore de comprendre les enjeux d'un problème complexe, multidimensionnel, par-delà les disciplines.

A) SCIENCES DE L'HOMME

Ces UE introduisent aux concepts des sciences humaines, pour comprendre les relations sociales et le monde.

TYPE	CODE	CRÉD.	LIBELLÉ	SEMESTRE
HT	EE06	4	L'entreprise dans le contexte européen et international	Р
HT	EP01	4	Responsabilité sociale de l'entreprise	А
HT	HT07	4	Géopolitique du monde contemporain	Р
HT	PH20	4	Introduction à la philosophie des sciences	А
HT	P003	4	Introduction à la vie politique	A/P
HT	SC00	4	Approches de la communication	A/P
HT	SC01	4	Communication d'entreprise	Р
HT	SC02	4	Communication et médias	Р
HT	SC04	4	Communication, persuasion et influence sociale	А
HT	SC05	4	Psychologie du travail et des organisations	Р
HT	SC06	4	Usage des technologies de la communication et innovation	А
HT	SE01	4	Histoire des idées économiques	A/P
HT	SE02	4	Economie générale pour l'ingénieur	Р
HT	SH01	6	Comprendre le monde du travail contemporain	Р
HT	S002	4	Risques sociaux, géopolitique des conflits et initiation aux nouveaux risques	A/P
HT	S003	4	Introduction à l'Intelligence économique et à la géostratégie des acteurs	Р
HT	S004	4	Sécurité, Etat et responsabilité	Р
HT	S008	4	Se préparer au monde du travail avec les sciences sociales	А

B) ENJEUX CONTEMPORAINS

Ces UE permettent de contextualiser le développement des sciences et des techniques, de mettre en perspective savoirs et savoir-faire, pour en dégager les enjeux éthiques, économiques, environnementaux ou sociétaux. Elles développent l'esprit critique.

TYPE	CODE	CRÉD.	LIBELLÉ	SEMESTRE
HT	EC02	4	Eco-énergies	A (Reims)
HT	EVOO	4	Prospective et philosophie de l'environnement	A/P
HT	EV01	4	Bases scientifiques de l'environnement	A/P
HT	EV02	4	Environmental economics	A/P
HT	EV03	4	Droit de l'environnement	Α
HT	EV04	4	Risques environnementaux : gestion et controverses	Р
HT	EVO4A	4	Environmental risks : management and controversies	Α
HT	EV13	4	Introduction to environmental science and engineering	Α
HT	HT05	4	Histoire de la physique et de l'astronomie	Р
HT	HT09	4	Culture scientifique	P (Reims)
HT	HT10	4	Histoire et épistémologie de la physique quantique	Р
HT	HT11	4	Histoire et technologie des objets quotidiens	Р
HT	HT13	4	Humanités techniques et design d'artefacts	Α
HT	PH15	4	Essor des technologies et crise de l'idée de progrès	А
HT	PH21	4	Sociétés en débats : Penser les enjeux du monde contemporain	Р
HT	S005	4	Analyse de l'erreur humaine dans les accidents industriels	Р
HT	S009	4	Innovations techniques, innovations sociétales	Р

2) ARTS, SPORTS ET LITTÉRATURE

En faisant appel à la sensibilité, ces UE visent à stimuler la curiosité, la créativité, et l'inventivité. Attention : les étudiants ne peuvent prendre qu'une seule UE parmi celles-ci au cours de leur formation.

TYPE	CODE	CRÉD.	LIBELLÉ	SEMESTRE
HT	AP03	4	Image, imaginaire et nouvelles technologies	A/P
HT	CTC1	4	Cinéma, technologie et création	Р
HT	HT03	4	Regards sur l'histoire de l'art moderne et contemporain	А
HT	HT12	2	Conférences de l'école du Louvre	А
HT	LI03	4	Art du récit, écriture de scénario	А
HT	MTC01	4	Musique, technologie et Création	A/P
HT	MTC02	4	Esthétique, histoire de l'art et création technique	Р
HT	SP11	4	Projet de performance sportive	A/P

Les Mineurs

Un Mineur est un ensemble cohérent d'UE qui permet d'acquérir une spécialité dans le domaine des sciences Humaines ou du management de l'entreprise. Il n'est pas nécessaire de s'y inscrire. Le jury de mineur décerne chaque semestre les mineurs aux étudiants qui répondent aux critères d'attribution.

MINEUR COMMUNICATION, ENTREPRISE ET SOCIÉTÉ - COESO

RESPONSABLE → Hassan ATIFI

Objectifs:

- > rendre opérationnel dans le domaine de la communication en entreprise, en contexte national ou international, afin de faciliter l'insertion professionnelle
- permettre d'avoir une compréhension générale et organisée du champ des sciences de l'information et de la communication

Programme:

pour obtenir le mineur, il est nécessaire d'avoir validé une UE obligatoire

> SC00: Approches de la communication

et trois UE librement choisies parmi les suivantes :

SC01: Communication d'entreprise

SC02: Communication et médias

SC04: Communication, persuasion et influence sociale

SC06: Usage des technologies de la communication et innovation

> SI11 : Communication écrite et orale pour l'ingénieur

> ou encore une UE d'Enquête et Recherche documentaire (ER)

MINEUR ENVIRONNEMENT ET DÉVELOPPEMENT DURABLE - EDD

RESPONSABLE ▶ Bertrand GUILLAUME

Objectif:

dispenser la culture nécessaire à la compréhension du contexte dans lequel vont désormais s'insérer la production et la vie des entreprises: le développement durable.

Programme:

pour obtenir le mineur, il est nécessaire d'avoir validé quatre UE librement choisies parmi les suivantes :

EV00: Prospective et philosophie de l'environnement

EV01: Bases scientifiques de l'environnement

➤ EV02: Environmental economics

- ➤ EV03 : Droit de l'environnement
- **EV04**: Risques environnementaux : gestion et controverses
- **EV13:** Introduction to environmental science and engineering

MINEUR ENTREPRENEURIAT

RESPONSABLE ▶ Emmanuel CARQUIN

Objectifs:

- comprendre le fonctionnement des organisations au sein desquelles les étudiants évolueront professionnellement
- > sensibiliser les étudiants à l'esprit d'entreprise et à la prise de risque raisonnée
- > simuler l'engagement dans une démarche de création ou de reprise d'entreprise

Programme:

Profil A: gestion des organisations (GEA)

Pour valider ce profil, il faut avoir obtenu les quatre UE suivantes :

- **♦ GE31 :** L'entreprise et la gestion
- ▶ GE11 : Organisation et décision
- **♦ GE04**: Gestion des ressources humaines
- **♦ GE37**: Management de l'innovation

Profil B: économique (GEB)

Pour valider ce profil, il est nécessaire d'avoir obtenu deux UE obligatoires

- **♦ GE31 :** L'entreprise et la gestion
- ▶ GE10 : Introduction à la microéconomie

et deux UE librement choisies parmi les suivantes :

- **♦ GE25 :** Propriété intellectuelle et intelligence économique
- **▶ GE32 :** Ingénierie financière de l'entreprise
- **♦ GE34 :** Stratégie et management de l'entreprise
- **▶ GE36**: Marketing
- **▶ GE37 :** Management de l'innovation

Profil C: iuridique (GEC)

Pour valider ce profil, il faut obtenir de préférence dans cet ordre :

- **▶ GE31 :** L'entreprise et la gestion
- ➤ GE21: L'entreprise et le droit
- **▶ GE28**: Droit du commerce et des affaires
- **♦ GE25 :** Propriété intellectuelle et intelligence économique

Profil D : création d'entreprise (GED)

Pour valider ce profil, il est nécessaire d'avoir obtenu trois **UE obligatoires**

- **♦ GE31 :** L'entreprise et la gestion
- **♦ GE33 :** Projet de synthèse de gestion d'entreprise
- ◆ GE43 : Création d'entreprise : phase pratique

et une UE librement choisie parmi les suivantes :

➤ GE21 : L'entreprise et le droit

▶ GE36 : Marketing

Profil E : Innovation (GEE)

Pour valider ce profil, il faut avoir obtenu les quatre UE suivantes :

➤ GE21 : L'entreprise et le droit

♦ GE25 : Propriété intellectuelle et intelligence économique

♦ GE37 : Management de l'innovation

♦ GE41 : Technologie et management de l'innovation

MINEUR CULTURE INTERNATIONALE ET ENTREPRISE - CIE

RESPONSABLE ➤ Stephen LE COCHE

Objectifs:

- donner une vue d'ensemble du monde international tant d'un point de vue professionnel que social et culturel
- > connaître et prendre conscience de l'impact d'une culture sur le business et les façons de faire de collègues internationaux
- pouvoir comprendre et appréhender des problèmes de communication interculturelles
- ♦ découvrir des cultures à travers les langues, la littérature, ou la philosophie

Programme:

pour obtenir le mineur, il est nécessaire d'avoir validé :

deux UE obligatoires :

- ◆ GE44: Approche multiculturelle du business et du management en anglais
- **EE06**: L'entreprise dans le contexte européen et international

deux UE de langue au choix parmi :

- **▶ LE11 :** Anglais pratique dans les domaines scientifiques et techniques
- ▶ LE20: Professionnalization and Cross Cultural Studies C1/C2
- ▶ LG10 : Allemand « culture et civilisation »
- ▶ LS11 : Espagnol niveau professionnel Espagne et Amérique Latine
- > TN07 : Séjour culturel et linguistique à l'étranger

MINEUR INNOVE-UT

RESPONSABLE ▶ Dominique BARCHIESI

Mineur commun à l'UTBM, l'UTC et l'UTT (toutes les UE proposées sont accessibles à distance et enseignée hors emploi du temps)

Objectif:

- → développer ses compétences en innovation et en commerce international.
- → développer son autonomie (formation à distance)
- ▶ développer ses capacités à travailler en groupe hétérogène et à distance.

Programme:

pour obtenir le mineur, il est nécessaire d'avoir validé 4 UE dans la liste ci-dessous :

UE proposées à l'UTC

- ▶ GE38 : Management et outils d'aide à la créativité industrielle et à l'innovation
- ▶ MG08 : Intelligence économique : stratégie d'entreprise, démarche et outils

UE proposées à l'UTT

- **♦ GE37 :** Management de l'innovation
- **♦ GE41 :** Technologie et management
- **▶ GE44 :** Approche multiculturelle du business et du management

UE proposées à l'UTBM

- ➤ EC02 : Mondialisation de l'économie
- **▶ MBP1 :** Gestion financière de l'investissement international
- > FQ54: Méthodes de résolution de problèmes techniques

Les Projets Etudiants Démarche Pédagogie MIND

RESPONSABLE → Emilie COLAS **SECRÉTARIAT** → Audrey MOREL

Le Projet Etudiant dans le cadre de la démarche Pédagogie MIND est un dispositif qui permet de valider des crédits ECTS associés au développement de compétences hors cursus ou à la valorisation d'activités liées à l'engagement étudiant et propres aux métiers de l'ingénieur au sens le plus large.

LES PROJETS MIND EN OUELOUES MOTS

Le Projet Etudiant dans le cadre de la démarche Pédagogie MIND permet :

- De développer des compétences complémentaires propres aux métiers de l'ingénieur
- ▶ De mobiliser ses apprentissages sur des projets transversaux
- D'accroitre son ouverture d'esprit sur des thématiques environnementales, technologiques, sociétales, etc.

Ces projets peuvent prendre différentes formes :

- ▶ Des projets sur calendrier académique
 - Acquisition et approfondissement de connaissances en autonomie
 - Travail de réalisation et d'expérimentation
 - Enquête et recherche documentaire
- Des projets avec partenariats extérieurs (durée et positionnement variables)
 - Sujet apporté par une entreprise
 - Projet en collaboration avec des associations, organismes publics, etc.
- ▶ Des proiets associatifs ou personnels
 - Clubs et associations étudiantes
 - Engagement pour la promotion et la vie de l'UTT
 - Organisation d'événements
 - Participation à des concours, challenges, défis, etc.

ORGANISATION DES PROIETS ETUDIANTS DEMARCHE MIND

- ➤ Les sujets sont proposés et déposés par des membres du personnel de l'UTT (enseignants, enseignants chercheurs, BIATSS), des entreprises, des associations (étudiantes ou non) ou l'étudiant lui-même.
- Le suivi du projet est effectué par un membre du personnel de l'UTT
- ➤ Les projets peuvent être d'une durée inférieure ou supérieure au semestre (inter semestre et période estivale), et se prolonger dans la limite d'une durée fixée au dépôt du sujet.
- Les projets relatifs à ces activités doivent être définis à l'avance dans une fiche projet validée par l'équipe du programme de l'étudiant (responsable, adjoint ou responsable des formations).
- Cette fiche projet stipulera : le descriptif du projet, le profil du ou des étudiants, les objectifs et programme pédagogiques, le volume estimé de travail, le nombre et les catégories

- de crédits ECTS capitalisables (sous réserve d'évaluation), les modalités et le calendrier d'évaluation des projets.
- ▶ Le nombre de crédits ECTS affecté aux activités se base sur le nombre d'heures effectives de travail (25 à 30 heures de travail = 1 crédit ECTS) et peuvent être répartis dans plusieurs catégories d'UE.
- Les crédits PE demandés doivent s'inscrire dans la charge de travail semestrielle recommandée, qui est comprise entre 30 et 34 crédits ECTS.
- ➤ Un étudiant ne peut pas s'inscrire 2 fois au même Projet Etudiant ni prétendre à des crédits ECTS affectés à un PM ou PE qu'il aura déjà validé

Les crédits ECTS des projets étudiants sont affectés à une catégorie d'UE existante :

- Connaissances scientifiques (CS)
- ➤ Techniques et méthodes (TM)
- ⇒ Stages, projets, périodes de travail à l'extérieur (ST)
- Expression et communication (EC)
- ➤ Management de l'entreprise (ME)
- ➤ Humanités (HT)
- ➤ Engagement Etudiant (EE)

Et ils sont soit comptabilisés dans le profil de formation, soit en tant que crédits libres, selon ce qui est précisé dans la fiche projet.

DÉPÔT DES SUJETS :

Le dépôt des sujets sera possible sur Moodle via un formulaire en ligne selon la procédure détaillée en ligne, et en suivant les calendriers prédéfinis.

VALIDATION DES CREDITS:

- L'équipe Valorisation Projets Etudiants coordonne et organise la validation des crédits avec les équipes programme des étudiants concernés
- ➤ Le projet donne lieu à un livrable adapté au type de projet (vidéo et temps d'échange, rapport et soutenance, soutenance, production, etc.). Les modalités et le calendrier sont indiqués en amont dans le fiche projet.
- Des soutenances publiques pourront être programmées de préférence lors de la semaine des finaux

SFIIIIS DE CRÉDITS PE SEI ON LE CURSUS :

DURÉE DU CURSUS UTT	NOMBRE DE CRÉDITS ECTS MAXIMUM POUR LES PE
3 ans (branche)	18 crédits parmi au maximum 6CS 12TM 4ME 4EC 4HT 6EE
5 ans (TC + branche)	30 crédits parmi au maximum 6CS 18TM 4ME 4EC 4HT 10EE

Au-delà de ces seuils, les crédits obtenus ne rentreront pas dans la limite des 300 crédits nécessaires pour être diplômé, mais pourront être inscrits au supplément au diplôme.

Tronc Commun

D'une durée de quatre semestres, le Tronc Commun regroupe un ensemble d'enseignements essentiels à tout élève-ingénieur. Ce premier temps à l'UTT sert de transition entre le lycée et la branche d'ingénieur en structurant les connaissances acquises dans le secondaire et en les complétant par de nouveaux savoir-faire et notions.

Partiellement à la carte, cette formation propose des UE dans des domaines variés : sciences fondamentales, sciences de l'ingénieur, langues, management et découverte de l'entreprise, sciences humaines et culture générale.

RESPONSABLES TRONC COMMUN (TC) ▶ Benoît PANICAUD

SECRÉTARIAT → Sandrine BERTHIER

STRUCTURE DES ENSEIGNEMENTS

II est recommandé d'équilibrer son profil avec 6 UE par semestre dont 2 CS, 2 TM et 2 parmi les EC, ME et HT.

Les choix d'UE sont vérifiés et éventuellement modifiés lors du contrôle pédagogique semestriel.

UF CONNAISSANCES SCIENTIFICUES

Les étudiants en première année de Tronc Commun doivent suivre sauf exception :

- ➤ MATH01 au premier semestre
- ➤ MATH02 ou MATH03 au second semestre

Le choix des autres UE CS est libre.

UE TECHNIQUES ET MÉTHODES

Les étudiants en première année de Tronc Commun doivent obligatoirement suivre une TM projet à choisir parmi TNO4. TNEV et MMO1.

Le choix des autres UE TM est libre

UE EXPRESSION ET COMMUNICATION, MANAGEMENT DE L'ENTREPRISE, HUMANITÉS

Une UE d'anglais (LExx) doit être suivie chaque semestre jusqu'à la validation du NPML (Niveau de Pratique Minimum de Langues obligatoire pour être diplômé). L'anglais peut être approfondi après le NPML (nombre de places très limité).

Depuis la rentrée de septembre 2018, pour être diplômés, les étudiants doivent valider au minimum un niveau B1 dans une autre langue vivante étrangère parmi celles enseignées à l'UTT (voir modalités dans le règlement des études).

Les étudiants inscrits en TC ont accès à un nombre restreint d'UE dans les catégories ME et HT détaillées dans les tableaux page ?.

L'UE SI10 doit obligatoirement être suivie au cours de la première année de Tronc Commun (en TC1 ou en TC2).

STAGE

Le stage ST05 est effectué à l'issue du 2° ou 3° semestre lors d'un inter-semestre d'été où d'hiver. Cette expérience de quatre semaines en entreprise permet un premier contact avec le milieu industriel et est l'objet d'une analyse des règles et du fonctionnement des organisations.

PASSAGE EN BRANCHE

Les règles de passage du Tronc Commun vers la Branche sont résumées ci-dessous. Le passage en branche s'effectue automatiquement dès qu'un étudiant a obtenu au moins 120 crédits ECTS et le profil minimum présente dans le tableau suivant :

Parcours minimum de formation d'un étudiant admis en Tronc commun									
	CS	TM	ST	EC	ME	HT	Totaux		
тс	42	24	6	4	4	4			
TC ou branches	1	2			120				
Total TC	Total TC 78 6 24						120		
Crédits libres 12									

Dans ce cas, l'étudiant ne peut s'opposer au passage en branche. Ce passage a lieu normalement à l'issue du 4° semestre de Tronc Commun.

Le jury de suivi peut proposer à un étudiant de Tronc Commun qui ont acquis 96 crédits ECTS de passer sous l'autorité d'une branche si leurs crédits vérifient les conditions suivantes :

- ▶ 66 crédits ECTS dans les catégories CS et TM du tronc commun dont :
 - 42 crédits ECTS minimum en CS
 - 24 crédits ECTS minimum en TM
- ▶ 24 crédits ECTS cumulés dans les catégories EC, ME et HT dont au moins 4 crédits dans chacune de ces catégories ;
- ♦ 6 crédits ECTS dans la catégorie « stage ».

L'étudiant dans ce cas, passe sous l'autorité de la branche, mais doit compléter en plus son profil de Tronc Commun. Il s'agit d'une possibilité que le jury peut proposer, et en aucun cas d'un droit attribué automatiquement (l'étudiant n'a pas à faire la demande). L'étudiant peut accepter ou décliner la proposition du jury en choisissant de rester en TC lors de l'inscription aux UE.

Le Tronc Commun doit être terminé, au plus tard, le 6° semestre de la formation à l'UTT que l'étudiant soit sous l'autorité de la branche ou non, sous peine d'exclusion

RÉPARTITION DES UE PAR SEMESTRE

▼TC01:2 CS ET 1 TM

ТҮРЕ	CODE	CRÉD.	LIBELLÉ	A	P			
CS	MATH01	6	Analyse : suites et fonctions d'une variable réelle (OBLIGATOIRE POUR TOUS)	Χ	Χ			
			+ 1 CS au choix parmi les CS ci-dessous					
CS	CM10	6	Physico-chimie appliquée à l'ingénierie	Χ				
CS	NF04	6	Algorithmique	Χ	Χ			
CS	PC12	6	Physico-chimie de la matière					
CS	PHYS11	6	Physique pour l'ingénieur : mécanique du point					
CS	PHYS12	6	Physique pour l'ingénieur : électromagnétisme					
		1 TN	// projet au choix parmi les 3 TM projet ci-dessous					
TM	MM01	6	Multimédia, du projet à la réalisation	Χ	Χ			
TM	TN04	6	Gestion et réalisation d'un projet d'ingénierie : initiation	Χ	Χ			
TM	TNEV	6	Gestion et réalisation d'un projet mécatronique : initiation	Χ	Χ			
			OU 1 TM au choix parmi les TM ci-dessous					
TM	MS11	6	Mesure physique et instrumentation	Χ	Χ			
TM	PIX	4	Compétences numériques	Χ	Χ			
TM	TN01	6	Initiation à la définition et à la fabrication d'un objet technique					

▼ FÉVRIER (INTER SEMESTRE) À L'ISSUE DU TC1 DE L'AUTOMNE

TYPE	CODE	CRÉD.	LIBELLÉ
TM	BESST	2	Bases en santé et sécurité au travail (obligatoire)

▼TC02 : CS ET TM

TYPE	CODE	CRÉD.	LIBELLÉ	A	Р
CS	CM02	6	Structure, propriétés et réactivité des matériaux organiques	Χ	
CS	CM10	6	Physico-chimie appliquée à l'ingénierie	Χ	
CS	MATH01	6	Analyse : suites et fonctions d'une variable réelle	Χ	Χ
CS	MATH02	6	Analyse : séries et fonctions de plusieurs variables	Χ	Χ
CS	MATH02A	6	Calculus: series and multivariable functions		Χ
CS	MATH03	6	Algèbre linéaire	Χ	Χ
CS	MATH03A	6	Linear algebra	Χ	
CS	NF04	6	Algorithmique	Χ	Χ
CS	PC12	6	Physico-chimie de la matière		Χ
CS	PHYS11	6	Physique pour l'ingénieur : mécanique du point	Χ	Χ
CS	PHYS12	6	Physique pour l'ingénieur : électromagnétisme	Χ	Χ
TM	EN01	6	Eléments de base en électronique analogique	Χ	Χ
TM	EN03	6	Systèmes électroniques		Χ
TM	MM01	6	Multimédia, du projet à la réalisation	Χ	Χ
TM	MS11	6	Mesure physique et instrumentation	Χ	Χ
TM	PIX	4	Compétences numériques	Χ	Χ
TM	NF02A	6	Computers and Networks Organization	Χ	
TM	NF05	6	Introduction au langage C	Χ	
TM	NF05A	6	Introduction to C langage		Χ
TM	TN01	6	Initiation à la définition et à la fabrication d'un objet technique	Χ	Χ
TM	TN02	6	Technologie et initiation au bureau d'études	Χ	
TM	TN04	6	Gestion et réalisation d'un projet d'ingénierie : initiation	Χ	Χ
TM	TNEV	6	Gestion et réalisation d'un projet mécatronique : initiation	Χ	Χ
TM	TNOP	6	Technologies optiques		Χ

▼INTER SEMESTRE HIVER OU ÉTÉ

TYPE	CODE	CRÉD.	LIBELLÉ
ST	ST05	6	Stage technique (obligatoire)
HP	TN07	6	Séjour à l'étranger (facultatif)

▼TC03/TC04: CS ET TM

TYPE	CODE	CRÉD.	LIBELLÉ					
CS	CM02	6	Structure, propriétés et réactivité des matériaux organiques	Χ				
CS	CM03	6	Structure, propriétés et réactivité des solides métalliques		Χ			
CS	MATH01	6	Analyse : suites et fonctions d'une variable réelle	Χ	Χ			
CS	MATH02	6	Analyse : suites et fonctions de plusieurs variables	Χ	Χ			
CS	MATH02A	6	Iculus : series and multivariable functions					
CS	MATH03	6	Algèbre linéaire	Χ	Χ			
CS	MATH03A	6	Linear algebra	Χ				
CS	MATH04	6	Analyse avancée		Χ			
CS	NF04	6	Algorithmique	Χ	Χ			
CS	PC12	6	Physico-chimie de la matière		Χ			
CS	PHYS02	6	Mécanique	Χ				
CS	PHYS02A	6	Mechanics of rigid bodies		Χ			
CS	PHYS03	6	Champs, ondes, vibrations, propagations	Χ				
CS	PHYS04	6	Thermique, énergétique et machines thermodynamiques					
CS	PHYS11	6	Physique pour l'ingénieur : mécanique du point					
CS	PHYS12	6	Physique pour l'ingénieur : électromagnétisme		Χ			
CS	SY01	6	Bases de calcul des probabilités pour l'ingénieur					
TM	PIX	4	Compétences numériques		Χ			
TM	EN01	6	Eléments de base en électronique analogique	Χ	Χ			
TM	EN03	6	Systèmes électroniques		Χ			
TM	EN08	6	Transformation et utilisation des énergies durables	Χ				
TM	GL01	6	Introduction au génie logiciel		Χ			
TM	MM01	6	Multimédia, du projet à la réalisation	Χ	Χ			
TM	MS11	6	Mesure physique et instrumentation	Χ	Χ			
TM	NF02A	6	Computers and Networks Organization	Χ				
TM	NF05	6	Introduction au langage C	Χ				
TM	NF05A	6	Introduction to C langage		Χ			
TM	RP01	6	Résolution de problème en ingénierie		Χ			
TM	TN01	6	Initiation à la définition et à la fabrication d'un objet technique	Χ	Χ			
TM	TN02	6	Technologie et initiation au bureau d'études	Χ				
TM	TN04	6	Gestion et réalisation d'un projet d'ingénierie : initiation		Χ			
TM	TNEV	6	Gestion et réalisation d'un projet mécatronique : initiation	Χ	Χ			
TM	TN08	6	Initiation à la mise en œuvre de la matière		Χ			
TM	TPC01	6	Techniques d'analyses physico-chimiques					

▼INTER SEMESTRE HIVER OU ÉTÉ

TYPE	CODE	CRÉD.	LIBELLÉ
ST	ST05	6	Stage technique (obligatoire)
HP	TN07	6	Séjour à l'étranger (facultatif)

Les étudiants inscrits en TC n'ont accès qu'à un nombre restreint d'UE dans les catégories ME et HT (niveau à vérifier dans les listes d'UE au moment des inscriptions aux UE en fin de semestre).

▼ UE MANAGEMENT DE L'ENTREPRISE ET HUMANITÉS PROPOSÉES

HT CTC1 4 Cinéma, technologie et création X HT EV00 4 Prospective et philosophie de l'environnement X HT EV01 4 Bases scientifiques de l'environnement X HT EV02 4 Economie et éthique de l'environnement X HT EV04 4 Risques environnementaux : gestion et controverses X HT EV13 4 Introduction to environmental science and engineering X HT HT03 4 Regard sur l'histoire de l'art moderne et contemporain X HT HT05 4 Histoire de la physique et de l'astronomie X HT HT07 4 Géopolitique du monde contemporain X HT HT07 4 Géopolitique du monde contemporain X HT HT01 4 Histoire et technologie des objets quotidiens X HT MT01 4 Musique Technologie des Objets quotidiens X HT MT02 4 Esthétique, histoire de l'art et création technique X HT S003 4 Introduction	TYPE	CODE	CRÉD.	LIBELLÉ	A	Р
HT EV01 4 Bases scientifiques de l'environnement X X X HT EV02 4 Economie et éthique de l'environnement X X HT EV04 4 Risques environnementaux : gestion et controverses X HT EV13 4 Introduction to environmental science and engineering X HT HT03 4 Regard sur l'histoire de l'art moderne et contemporain X HT HT05 4 Histoire de la physique et de l'astronomie X HT HT07 4 Géopolitique du monde contemporain X X HT HT11 4 Histoire et et echnologie des objets quotidiens X HT MTC01 4 Musique Technologie et Création X HT MTC02 4 Esthétique, histoire de l'art et création technique X X X HT SC00 4 Approches de la communication X HT SC00 4 Communication X X HT SC00 4 Communication et médias X HT SC02 4 Communication et médias X HT SC04 4 Communication et médias X HT SC04 5 Economie générale pour l'ingénieur X X HT SC00 4 Analyse de l'erreur humaine dans les accidents industriels X HT SC09 4 Innovations techniques, innovations sociétales X HT SC09 4 Innovations techniques, innovations sociétales X HT SC09 4 Innovations techniques, innovations sociétales X X HT SC01 4 Analyse de l'erreur humaine dans les accidents industriels X MT SC01 4 L'entreprise et le droit X X X MT SC02 4 Communication Scoifétales X X MT SC03 4 Analyse de l'erreur humaine dans les accidents industriels X X MT SC04 4 L'entreprise et le droit X X X MT SC05 4 Analyse de l'erreur humaine dans les accidents industriels X X MT SC06 4 L'entreprise et le droit X X X MT SC07 4 L'entreprise et le droit X X X MT SC08 4 L'entreprise et le droit X X X MT SC09 4 L'entreprise et le droit X X X MT SC09 4 L'entreprise et la gestion X X X X X X X X X X X X X X X X X X X	НТ	CTC1	4	Cinéma, technologie et création		Χ
HT EV02 4 Economie et éthique de l'environnement X HT EV04 4 Risques environnementaux : gestion et controverses X HT EV13 4 Introduction to environmental science and engineering X HT HT03 4 Regard sur l'histoire de l'art moderne et contemporain X HT HT05 4 Histoire de la physique et de l'astronomie X KT HT07 4 Géopolitique du monde contemporain X KT HT07 4 Géopolitique du monde contemporain X KT HT07 4 Géopolitique du monde contemporain X KT HT07 4 Mistoire de l'art et création X KT HT01 4 Mistoire de l'art et création X KT MT020 4 Esthétique, histoire de l'art et création technique X KT HT SC00 4 Approches de la communication X KT SC00 4 Approches de la communication X KT SC02 4 Communication et médias X <td>HT</td> <td>EV00</td> <td>4</td> <td>Prospective et philosophie de l'environnement</td> <td>Χ</td> <td></td>	HT	EV00	4	Prospective et philosophie de l'environnement	Χ	
HT EV04 4 Risques environnementaux : gestion et controverses X HT EV13 4 Introduction to environmental science and engineering X HT HT03 4 Regard sur l'histoire de l'art moderne et contemporain X HT HT05 4 Histoire de la physique et de l'astronomie X HT HT07 4 Géopolitique du monde contemporain X HT HT01 4 Histoire et technologie des objets quotidiens X HT MTC01 4 Musique Technologie et Création X HT MTC02 4 Esthétique, histoire de l'art et création technique X HT P003 4 Introduction à la vie politique X HT SC00 4 Approches de la communication X HT SC02 4 Communication, persuasion et influence sociale X HT SE01 4 Histoire des idées économiques X HT SE02 4 Economie générale pour l'ingénieur X HT SH01 4 Base et modèles de sociologie pour l'	HT	EV01	4	Bases scientifiques de l'environnement	Χ	Χ
HT EV13 4 Introduction to environmental science and engineering X HT HT03 4 Regard sur l'histoire de l'art moderne et contemporain X HT HT05 4 Histoire de la physique et de l'astronomie X HT HT07 4 Géopolitique du monde contemporain X HT HT11 4 Histoire et technologie des objets quotidiens X HT MTC01 4 Musique Technologie et Création X HT MTC02 4 Esthétique, histoire de l'art et création technique X HT P003 4 Introduction à la vie politique X HT SC00 4 Approches de la communication X HT SC02 4 Communication et médias X HT SC04 4 Communication, persuasion et influence sociale X HT SE01 4 Histoire des idées économiques X HT SE02 4 Economie générale pour l'ingénieur X HT SH01 4 Base et modèles de sociologie pour l'ingénieur X HT SO05 4 Analyse de l'erreur humaine dans les accidents industriels X HT SP11 4 La performance sportive X ME GE21 4 L'entreprise et le droit X ME GE28 4 Droit du commerce et des affaires (TC5/6) X ME GE31 4 L'entreprise et la gestion X ME GE31 4 L'entreprise et la gestion X ME GE31 4 L'entreprise et management de l'innovation (TC5/6) X	HT	EV02	4	Economie et éthique de l'environnement	Χ	
HT HT03 4 Regard sur l'histoire de l'art moderne et contemporain X HT HT05 4 Histoire de la physique et de l'astronomie X HT HT07 4 Géopolitique du monde contemporain X HT HT11 4 Histoire et technologie des objets quotidiens X HT MTC01 4 Musique Technologie et Création X HT MTC02 4 Esthétique, histoire de l'art et création technique X HT P003 4 Introduction à la vie politique X X HT SC00 4 Approches de la communication X HT SC02 4 Communication et médias X HT SC02 4 Communication, persuasion et influence sociale X HT SE01 4 Histoire des idées économiques X HT SE02 4 Economie générale pour l'ingénieur X HT SH01 4 Base et modèles de sociologie pour l'ingénieur X HT SO05 4 Analyse de l'erreur humaine dans les accidents industriels X HT SO09 4 Innovations techniques, innovations sociétales X HT SP11 4 La performance sportive X X ME GE21 4 L'entreprise et le droit X X ME GE31 4 L'entreprise et la gestion X X ME GE36 4 Marketing (TC5/6) X X ME GE31 4 L'entreprise et la gestion X X X ME GE36 4 Marketing (TC5/6) X X	HT	EV04	4	Risques environnementaux : gestion et controverses	Χ	
HT HT05 4 Histoire de la physique et de l'astronomie X HT HT07 4 Géopolitique du monde contemporain X HT HT11 4 Histoire et technologie des objets quotidiens X HT MTC01 4 Musique Technologie et Création X HT MTC02 4 Esthétique, histoire de l'art et création technique X HT P003 4 Introduction à la vie politique X X HT SC00 4 Approches de la communication X HT SC02 4 Communication et médias X HT SC02 4 Communication persuasion et influence sociale X HT SE01 4 Histoire des idées économiques X HT SE02 4 Economie générale pour l'ingénieur X HT SH01 4 Base et modèles de sociologie pour l'ingénieur X HT SO05 4 Analyse de l'erreur humaine dans les accidents industriels X HT SO09 4 Innovations techniques, innovations sociétales X HT SP11 4 La performance sportive X X ME GE21 4 L'entreprise et le droit X X ME GE31 4 L'entreprise et la gestion X X ME GE31 4 L'entreprise et la gestion X X ME GE36 4 Marketing (TC5/6) X ME GE41 4 Technologie et management de l'innovation (TC5/6) X	HT	EV13	4	Introduction to environmental science and engineering	Χ	
HT HT07 4 Géopolitique du monde contemporain X HT HT11 4 Histoire et technologie des objets quotidiens X HT MTC01 4 Musique Technologie et Création X HT MTC02 4 Esthétique, histoire de l'art et création technique X HT P003 4 Introduction à la vie politique X HT SC00 4 Approches de la communication X HT SC02 4 Communication et médias X HT SC04 4 Communication, persuasion et influence sociale X HT SE01 4 Histoire des idées économiques X HT SE02 4 Economie générale pour l'ingénieur X HT SH01 4 Base et modèles de sociologie pour l'ingénieur X HT SO05 4 Analyse de l'erreur humaine dans les accidents industriels X HT SO09 4 Innovations techniques, innovations sociétales X HT SP11 4 La performance sportive X X ME GE21 4 L'entreprise et le droit X X ME GE28 4 Droit du commerce et des affaires (TC5/6) X X ME GE36 4 Marketing (TC5/6) X ME GE36 4 Marketing (TC5/6) X	HT	HT03	4	Regard sur l'histoire de l'art moderne et contemporain	Χ	
HT HT11 4 Histoire et technologie des objets quotidiens X HT MTC01 4 Musique Technologie et Création X HT MTC02 4 Esthétique, histoire de l'art et création technique X HT P003 4 Introduction à la vie politique X X HT SC00 4 Approches de la communication X HT SC02 4 Communication et médias X HT SC04 4 Communication, persuasion et influence sociale X HT SE01 4 Histoire des idées économiques X HT SE02 4 Economie générale pour l'ingénieur X HT SH01 4 Base et modèles de sociologie pour l'ingénieur X HT SO05 4 Analyse de l'erreur humaine dans les accidents industriels X HT SO09 4 Innovations techniques, innovations sociétales X HT SP11 4 La performance sportive X X ME GE21 4 L'entreprise et le droit X X ME GE28 4 Droit du commerce et des affaires (TC5/6) X X ME GE36 4 Marketing (TC5/6) X ME GE36 4 Marketing (TC5/6) X	HT	HT05	4	Histoire de la physique et de l'astronomie		Χ
HT MTC01 4 Musique Technologie et Création X HT MTC02 4 Esthétique, histoire de l'art et création technique X HT P003 4 Introduction à la vie politique X X HT SC00 4 Approches de la communication X HT SC02 4 Communication et médias X HT SC04 4 Communication, persuasion et influence sociale X HT SE01 4 Histoire des idées économiques X HT SE02 4 Economie générale pour l'ingénieur X HT SH01 4 Base et modèles de sociologie pour l'ingénieur X HT S005 4 Analyse de l'erreur humaine dans les accidents industriels X HT SP11 4 La performance sportive X ME GE21 4 L'entreprise et le droit X ME GE28 4 Droit du commerce et des affaires (TC5/6) X ME GE31 4 L'entreprise et la gestion X ME GE36 4 Marketing (TC5/6) X ME GE31 4 Technologie et management de l'innovation (TC5/6) X	HT	HT07	4	Géopolitique du monde contemporain		Χ
HT MTC02 4 Esthétique, histoire de l'art et création technique X HT P003 4 Introduction à la vie politique X X HT SC00 4 Approches de la communication X HT SC02 4 Communication et médias X HT SC04 4 Communication, persuasion et influence sociale X HT SE01 4 Histoire des idées économiques X HT SE02 4 Economie générale pour l'ingénieur X HT SH01 4 Base et modèles de sociologie pour l'ingénieur X HT SO05 4 Analyse de l'erreur humaine dans les accidents industriels X HT SO09 4 Innovations techniques, innovations sociétales X HT SP11 4 La performance sportive X X ME GE21 4 L'entreprise et le droit X X ME GE28 4 Droit du commerce et des affaires (TC5/6) X X ME GE31 4 L'entreprise et la gestion X X ME GE36 4 Marketing (TC5/6) X ME GE31 4 Technologie et management de l'innovation (TC5/6) X	HT	HT11	4	Histoire et technologie des objets quotidiens		Χ
HT P003 4 Introduction à la vie politique X X X HT SC00 4 Approches de la communication X HT SC02 4 Communication et médias X HT SC04 4 Communication, persuasion et influence sociale X HT SE01 4 Histoire des idées économiques X HT SE02 4 Economie générale pour l'ingénieur X HT SH01 4 Base et modèles de sociologie pour l'ingénieur X HT SO05 4 Analyse de l'erreur humaine dans les accidents industriels X HT SO09 4 Innovations techniques, innovations sociétales X HT SP11 4 La performance sportive X X X ME GE21 4 L'entreprise et le droit X X X ME GE31 4 L'entreprise et la gestion X X X ME GE36 4 Marketing (TC5/6) X X ME GE36 4 Marketing (TC5/6) X X ME GE31 4 Technologie et management de l'innovation (TC5/6) X	HT	MTC01	4	Musique Technologie et Création	Χ	
HT SC00 4 Approches de la communication X HT SC02 4 Communication et médias X HT SC04 4 Communication, persuasion et influence sociale X HT SE01 4 Histoire des idées économiques X HT SE02 4 Economie générale pour l'ingénieur X HT SH01 4 Base et modèles de sociologie pour l'ingénieur X HT SO05 4 Analyse de l'erreur humaine dans les accidents industriels X HT SO09 4 Innovations techniques, innovations sociétales X HT SP11 4 La performance sportive X X ME GE21 4 L'entreprise et le droit X X ME GE28 4 Droit du commerce et des affaires (TC5/6) X X ME GE31 4 L'entreprise et la gestion X X ME GE36 4 Marketing (TC5/6) X ME GE36 4 Marketing (TC5/6) X	HT	MTC02	4	Esthétique, histoire de l'art et création technique		Χ
HT SC02 4 Communication et médias X HT SC04 4 Communication, persuasion et influence sociale X HT SE01 4 Histoire des idées économiques X HT SE02 4 Economie générale pour l'ingénieur X HT SH01 4 Base et modèles de sociologie pour l'ingénieur X HT SO05 4 Analyse de l'erreur humaine dans les accidents industriels X HT SO09 4 Innovations techniques, innovations sociétales X HT SP11 4 La performance sportive X X ME GE21 4 L'entreprise et le droit X X ME GE28 4 Droit du commerce et des affaires (TC5/6) X X ME GE31 4 L'entreprise et la gestion X X ME GE36 4 Marketing (TC5/6) X X ME GE36 4 Marketing (TC5/6) X	HT	P003	4	Introduction à la vie politique	Χ	Χ
HT SC04 4 Communication, persuasion et influence sociale X HT SE01 4 Histoire des idées économiques X HT SE02 4 Economie générale pour l'ingénieur X HT SH01 4 Base et modèles de sociologie pour l'ingénieur X HT SO05 4 Analyse de l'erreur humaine dans les accidents industriels X HT SO09 4 Innovations techniques, innovations sociétales X HT SP11 4 La performance sportive X X ME GE21 4 L'entreprise et le droit X X ME GE28 4 Droit du commerce et des affaires (TC5/6) X X ME GE31 4 L'entreprise et la gestion X X ME GE36 4 Marketing (TC5/6) X X ME GE36 4 Marketing (TC5/6) X X ME GE41 4 Technologie et management de l'innovation (TC5/6) X	HT	SC00	4	Approches de la communication	Χ	
HT SE01 4 Histoire des idées économiques X HT SE02 4 Economie générale pour l'ingénieur X HT SH01 4 Base et modèles de sociologie pour l'ingénieur X HT SO05 4 Analyse de l'erreur humaine dans les accidents industriels X HT SO09 4 Innovations techniques, innovations sociétales X HT SP11 4 La performance sportive X X ME GE21 4 L'entreprise et le droit X X ME GE28 4 Droit du commerce et des affaires (TC5/6) X X ME GE31 4 L'entreprise et la gestion X X ME GE36 4 Marketing (TC5/6) X X ME GE36 4 Technologie et management de l'innovation (TC5/6) X	HT	SC02	4	Communication et médias		Χ
HT SE02 4 Economie générale pour l'ingénieur X HT SH01 4 Base et modèles de sociologie pour l'ingénieur X HT SO05 4 Analyse de l'erreur humaine dans les accidents industriels X HT SO09 4 Innovations techniques, innovations sociétales X HT SP11 4 La performance sportive X X ME GE21 4 L'entreprise et le droit X X ME GE28 4 Droit du commerce et des affaires (TC5/6) X X ME GE31 4 L'entreprise et la gestion X X ME GE36 4 Marketing (TC5/6) X X ME GE36 4 Technologie et management de l'innovation (TC5/6) X	HT	SC04	4	Communication, persuasion et influence sociale	Χ	
HT SH01 4 Base et modèles de sociologie pour l'ingénieur X HT S005 4 Analyse de l'erreur humaine dans les accidents industriels X HT S009 4 Innovations techniques, innovations sociétales X HT SP11 4 La performance sportive X X ME GE21 4 L'entreprise et le droit X X ME GE28 4 Droit du commerce et des affaires (TC5/6) X X ME GE31 4 L'entreprise et la gestion X X ME GE36 4 Marketing (TC5/6) X X ME GE36 4 Technologie et management de l'innovation (TC5/6) X	HT	SE01	4	Histoire des idées économiques	Χ	
HT SO05 4 Analyse de l'erreur humaine dans les accidents industriels X HT SO09 4 Innovations techniques, innovations sociétales X HT SP11 4 La performance sportive X X ME GE21 4 L'entreprise et le droit X X ME GE28 4 Droit du commerce et des affaires (TC5/6) X X ME GE31 4 L'entreprise et la gestion X X ME GE36 4 Marketing (TC5/6) X X ME GE36 4 Technologie et management de l'innovation (TC5/6) X	HT	SE02	4	Economie générale pour l'ingénieur		Χ
HT SO09 4 Innovations techniques, innovations sociétales X HT SP11 4 La performance sportive X X ME GE21 4 L'entreprise et le droit X X ME GE28 4 Droit du commerce et des affaires (TC5/6) X X ME GE31 4 L'entreprise et la gestion X X ME GE36 4 Marketing (TC5/6) X X ME GE36 4 Technologie et management de l'innovation (TC5/6) X	HT	SH01	4	Base et modèles de sociologie pour l'ingénieur		Χ
HT SP11 4 La performance sportive X X ME GE21 4 L'entreprise et le droit X X ME GE28 4 Droit du commerce et des affaires (TC5/6) X X ME GE31 4 L'entreprise et la gestion X X ME GE36 4 Marketing (TC5/6) X X ME GE41 4 Technologie et management de l'innovation (TC5/6) X	HT	S005	4	Analyse de l'erreur humaine dans les accidents industriels		Χ
MEGE214L'entreprise et le droitXXMEGE284Droit du commerce et des affaires (TC5/6)XXMEGE314L'entreprise et la gestionXXMEGE364Marketing (TC5/6)XXMEGE414Technologie et management de l'innovation (TC5/6)X	HT	S009	4	Innovations techniques, innovations sociétales		Χ
MEGE284Droit du commerce et des affaires (TC5/6)XXMEGE314L'entreprise et la gestionXXMEGE364Marketing (TC5/6)XXMEGE414Technologie et management de l'innovation (TC5/6)X	HT	SP11	4	La performance sportive	Χ	Χ
MEGE314L'entreprise et la gestionXXMEGE364Marketing (TC5/6)XXMEGE414Technologie et management de l'innovation (TC5/6)X	ME	GE21	4	L'entreprise et le droit	Χ	Χ
ME GE36 4 Marketing (TC5/6) X X ME GE41 4 Technologie et management de l'innovation (TC5/6) X	ME	GE28	4	Droit du commerce et des affaires (TC5/6)	Χ	Χ
ME GE41 4 Technologie et management de l'innovation (TC5/6) X	ME	GE31	4	L'entreprise et la gestion	Χ	Χ
	ME	GE36	4	Marketing (TC5/6)	Χ	Χ
ME ODOL A LIVE NE LI	ME	GE41	4	Technologie et management de l'innovation (TC5/6)	Χ	
ME SPUI 4 Initiation a l'animation sportive X X	ME	SP01	4	Initiation à l'animation sportive	Χ	Χ

OBTENTION DU DIPLÔME D'INGÉNIEUR

La durée conseillée des études en vue de l'obtention du diplôme d'ingénieur de l'UTT est de 10 semestres pour les étudiants admis à s'inscrire après l'obtention du baccalauréat : 4 semestres en tronc commun et 6 semestres en branche (les spécialités d'ingénieur sont nommées « branches » en conformité avec l'usage à l'UTT).

Tout étudiant inscrit doit suivre au moins trois semestres de formation de niveau branche dans les murs de l'école.

S'il s'agit d'un semestre suivi dans une autre UT, il est comptabilisé comme ayant été effectué dans les murs de l'école.

Enchaînement des UE au cours d'un cursus normal, les zones de couleur claires montrent les semestres permettant d'anticiper ou de terminer son profil de TC, de branche ou de filière, avec l'autorisation du responsable de la formation :

^{*} SNEE : Statut National Étudiant-Entrepreneur

PARCOURS DE FORMATION INGÉNIEUR

Pour obtenir le diplôme d'ingénieur, il faut valider un parcours de formation. Le parcours de formation requis pour les étudiants entrés en tronc commun impose de valider un minimum de 300 crédits EC répartis de la manière suivante (Art. V-3 Règlement des études ingénieur) :

PARCOURS MINIMUM DE FORMATION D'UN ÉTUDIANT ADMIS EN TRONC COMMUN								
	CS	TM	ST	EC	ME	НТ	TOTAUX	
TC	42	24	6	4	4	4		
TC OU BRANCHES	1	2					120	
TOTAL TC	7	'8	6		24		120	
CRÉDITS LIBRES				12				
TC BRANCHE	4	2	30					
FILIÈRE	18		30	12	4	4	180	
TOUTES BRANCHES	24							
TOTAL BRANCHE	8	34	60	12				
DONT MINIMUM EN Branche	24	24						
CRÉDITS LIBRES				8				
TOTAUX TC+BR	66	48			8	8		
TUIAUX TU+DR	162		66	20	32	2	300	
TOTAL CRÉDITS LIBRES	20	(DONT 1	O CRÉDI	TS EE AI	J MAXIMU	JM)		

Art. V-3 Règlement des études ingénieur)

Le parcours de formation requis pour les étudiants entrés directement en branche et inscrits en FISE et en FC est défini de la façon suivante et impose de valider un minimum de 180 crédits ECTS (Art. V-4 Règlement des études ingénieur) :

PARCOURS MINIMUM DE FORMATION DE BRANCHE									
	CS	TM	ST	EC	ME	HT	TOTAUX		
TC BRANCHE	4	.2	30	12	4	4			
FILIÈRE	18		30						
TOUTES BRANCHES	24								
TOTAL BRANCHE	84		60	12	1	6	180		
DONT AU MINIMUM EN BRANCHE	24	24							
CRÉDITS LIBRES	8 (IM)							

Art. V-4 Règlement des études ingénieur)

Le diplôme d'ingénieur est attribué à tout étudiant ayant validé au cours de sa formation :

- ▶ le parcours de formation (tableaux ci-dessus)
- ▶ le niveau de pratique minimum de langue (tableau des scores requis page 11)
- > un semestre à l'étranger (études ou stage)

Les étudiants en double formation ingénieur UTT et master UTT bénéficient d'une réduction de charge de travail.

CONTRAT DE PROFESSIONNALISATION

La possibilité de faire la dernière année de formation d'ingénieur en contrat de professionnalisation est offerte dans la plupart des branches ou dans certaine filière organisée en alternance.

Le principe consiste à étaler la charge d'UE du dernier semestre d'études sur deux semestres, tout en travaillant en entreprise.

La présence en entreprise est répartie de façon variable sur l'année calendaire. Chaque semaine pendant les deux semestres universitaires est partagée entre formation et entreprise. Le reste de l'année est travaillé à temps plein en entreprise (dont les congés légaux et les RTT éventuelles).

Renseignements concernant:

- > les modalités précises par filière auprès du secrétariat de votre programme.
- ▶ le contrat de professionnalisation auprès du service BAIP.

Attention : il s'agit d'une démarche qui doit être planifiée au moins un an à l'avance. La mise en place est longue, le choix des UE au cours de l'année précédent doit en tenir compte.

STAGES

- ⇒ ST09 un stage professionnel obligatoire de 24 semaines minimum se situant généralement au 7e semestre (Branche 3). Ce stage de niveau assistant-ingénieur permet de découvrir le métier d'ingénieur et confirmer son orientation professionnelle.
- > ST10 un projet de fin d'études obligatoire de 24 semaines minimum se situant généralement au 10e semestre (Branche 6) en cohérence avec la filière choisie. Le stagiaire réalise un travail d'ingénieur en autonomie et prise de responsabilité.

Ces deux stages pour les étudiants ingénieurs, doivent être **complémentaires** ; ils représentent un atout majeur de la formation à l'UTT. Le projet de fin d'étude apparaît de plus en plus comme le vecteur du premier emploi et de l'insertion professionnelle réfléchie.

Les stages s'effectuent dans tous types d'entreprises (start-up, PME-PMI, grands groupes), en France ou à l'international.

Le BAIP facilite l'accueil des étudiants en entreprises, anime des ateliers de recherche de stage et communique aux étudiants toutes les informations nécessaires pour trouver un stage et bénéficier de bourses.

Cependant, l'obtention d'un stage résulte d'une démarche active et personnelle de l'étudiant. La recherche d'un stage est un acte important qui requiert toute l'attention et le sens des

responsabilités de l'étudiant. Les démarches effectuées engagent non seulement l'étudiant de façon personnelle mais aussi l'Université. Le sujet de stage doit être validé par le responsable de stages de la branche pour le ST09 et par le responsable de filière pour le ST10.

L'évaluation des stages repose sur la qualité de la recherche de stage, le travail réalisé dans l'entreprise, le rapport écrit et la soutenance orale. La validation des stages est obligatoire pour l'obtention du diplôme.

Les stages ST09 et ST10 ne peuvent pas s'enchaîner et l'un des deux doit être obligatoirement effectué en entreprise.

LES UE TRANSVERSES

L'élève ingénieur peut capitaliser des crédits toutes branches soit lors de semestres à l'étranger, soit en suivant des UE transverses inscrites au profil d'aucune branche, soit en suivant des UE inscrites au profil d'une autre branche mais adaptées à la branche de l'élève ingénieur. Il est possible de ne pas tenir compte de ces recommandations et de suivre d'autres UE au sein des autres branches mais dans ce cas, il est vivement recommandé de s'assurer des pré-requis nécessaires à la réussite de l'UE.

UE transverses UE communes à toutes les branches	MT11, L001, QX01		
UE transverses UE communes à deux ou plusieurs branches	UE communes au profil de plusieurs branches et ouvertes aux autres branches	UE inscrites au profil d'une seule branche mais ouvertes aux autres branches	
UE A2i ouverte aux autres branches	SY02 , CS03, L002, SY06, RE01		
UE GI ouverte aux autres branches	MT15, SY02, CL01	MT12, FQ03, FQ01, SY05, GP06	
UE GM ouverte aux autres branches	TN14E, MQ21, MQ16	MQ04, CS01, EA01, CS22	
UE ISI ouverte aux autres branches	NF16, L002	IF14, NF19, L007 Les capsules devraient être accessibles à toute branche	
UE MTE ouverte aux autres branches	TN14E, MQ21, MQ16, CL01	CS05, EV14, DS01, OB01, MA02	
UE RT ouverte aux autres branches	MT15, NF16, SY06, L002, RE01, IF03, GS15	MT12, LO14, LO11	

AUTOMATIQUE ET INFORMATIQUE INDUSTRIELLE

RESPONSABLE ▶ Khac Tuan HUYNH

SECRETARIAT ➤ Sarah ZEGUIR-FILALI (URCA)

➤ Mathilde JACQUART (UTT)

RESPONSABLE ADJOINT ➤ Maxime COLAS (URCA)

STAGES > Lyès KHOUKHI

INTERNATIONAL > Tuan HUYNH

SPI: SYSTÈMES DE PRODUCTION INTELLIGENTS → François GELLOT (URCA)
TEI: TECHNOLOGIE EMBARQUÉE ET INTEROPÉRABILITÉ → Alban GOUPIL (URCA)

La formation en Automatique et informatique industrielle se déroule sur 2 sites :

- ▶ le premier semestre d'études à l'automne a lieu à l'UTT, à Troyes
- > les semestres suivants ont lieu à Reims, sur le site Moulin de la Housse de l'URCA

▼ UE DE BRANCHE – AUTOMNE - TROYES

TYPE	CODE	CRÉD.	LIBELLÉ
CS	SY02	6	Statistiques pour l'ingénieur
CS	SY06	6	Analyse et traitement du signal
CS	SY30	6	Automatique linéaire
TM	CS03	6	Conduite de projets
TM	L002	6	Principe et pratique de la programmation objets
TM	RE01	6	Réseaux d'entreprises
TM	SY31	6	Modélisation, analyse et commande des systèmes automatisés

▼ UE DE BRANCHE – AUTOMNE - REIMS

TYPE	CODE	CRÉD.	LIBELLÉ
CS	TI03B	6	Systèmes échantillonnés

▼UE DE BRANCHE - PRINTEMPS - REIMS

TYPE	CODE	CRÉD.	LIBELLÉ
CS	EN06	6	Composants électroniques, systèmes électroniques, capteurs et instrumentation
CS	SY32	6	Contrôle/commande des systèmes dynamiques
CS	TI02	6	Traitement et transmission de l'information
TM	EB01	6	Microcontrôleurs et DSP
TM	IF30	6	Business intelligence et décisionnel
TM	L007	6	Technologie du Web
TM	SY33	6	Industrie 4.0 : systèmes de pilotage et d'information des systèmes de production

▼UE DE BRANCHE – PRINTEMPS - TROYES

TYPE	CODE	CRÉD.	LIBELLÉ
CS	EA01	6	Automatique et asservissement
TM	L007	6	Technologies du Web
TM	MT15	6	Valorisation des données pour l'ingénieur

▼UE DE FILIÈRES – AUTOMNE - REIMS

TYPE	CODE	CRÉD.	LIBELLÉ	SPI	TEI
CS	R002	6	Environnement des systèmes robotisés	Χ	
CS	TI03F	6	Systèmes échantillonnés	Χ	Χ
TM	CS06	6	Projet transversal ingénierie système/concours robotique	Χ	Χ
TM	EB02	6	Prototypage rapide		Χ
TM	EB03	6	Services mobiles et communicants		Χ
TM	SY34	6	Industrie 4.0 : systèmes communicants	Χ	

▼UE DE FILIÈRES – PRINTEMPS - REIMS

TYPE	CODE	CRÉD.	LIBELLÉ	SPI	TEI
CS	TIO1	6	Modélisation pour la conception des systèmes d'information	Χ	Χ
TM	EB04	6	Systèmes temps réel embarqués		Χ
TM	EN07	6	Intégration et technologie des systèmes électroniques		Χ
TM	R001	6	Robotique industrielle	Χ	
TM	SY35	6	Commande et IHM de process industriels	Χ	

GÉNIE INDUSTRIEL

RESPONSABLE ➤ Nacima LABADIE
SECRÉTARIAT ➤ Stéphanie RECCHIA
STAGES ➤ Faicel HNAIEN
INTERNATIONAL ➤ Mitra FOULADIRAD

LET : LOGISTIQUE EXTERNE ET TRANSPORT → Murat AFSAR LIP : LOGISTIQUE INTERNE ET PRODUCTION → Alice YALAOUI

RAMS: RELIABILITY, AVAILABILITY, MAINTENANCE AND SAFETY > Yann DIJOUX

VUE DE BRANCHE - AUTOMNE

TYPE	CODE	CRÉD.	LIBELLÉ
CS	L001	6	Basis of computer science
CS	MT12	6	Techniques mathématiques de l'ingénieur
CS	MT14	6	Recherche opérationnelle
CS	SY02	6	Statistiques pour l'ingénieur
TM	GP06*	6	Organisation et gestion de la production
TM	GP27	6	Méthodes de gestions des stocks et de prévision
TM	GP28	6	Excellence industrielle
TM	SY12	6	Eléments d'automatique et contrôle industriel
TM	SY14	6	Systémique et dynamique des systèmes

^{*} UE proposée au Tronc Commun

▼UE DE BRANCHE - PRINTEMPS

TYPE	CODE	CRÉD.	LIBELLÉ
CS	FQ03	6	Plans d'expériences
CS	RM01	6	Base de la sûreté de fonctionnement
CS	SY05	6	Outils d'aide à la décision et théorie des jeux
CS	SY18*	6	Outils de modélisation et d'évaluation des performances
TM	FQ01	6	Assurance et contrôle de la qualité
TM	MT15	6	Valorisation des données pour l'ingénieur
TM	NF14	6	Structuration et gestion de données industrielles
TM	SY15*	6	Simulation des systèmes industriels

^{*} UE proposée au Tronc Commun

▼ UE CONSEILLÉE

CODE	CRÉDIT	LIBELLÉ	SEMESTRE
MT11	6	Révision d'analyse et d'algèbre	А
L001	6	Remise à niveau en algorithmie	А

▼UE DE FILIÈRES - AUTOMNE

TYPE	CODE	CRÉD.	LIBELLÉ	LET	LIP	RAMS
TM	CL02	6	Conditionnement, manutention et entreposage	Χ	Χ	
TM	CL07	6	Soutien logistique intégré et service après-vente	Χ		Χ
TM	CL10	6	Mobilité et logistique urbaine	Χ		
TM	RM02	6	Analyses de données de retour d'expérience			Χ
TM	SY17	6	Conception préliminaire des systèmes de production		Χ	
TM	SY40	6	Industrie 4.0 : transition industrielle et optimisation de la gestion en temps réel		Χ	
TM	TS02	6	Gestion des risques industriels			Χ

▼UE DE FILIÈRES - PRINTEMPS

TYPE	CODE	CRÉD.	LIBELLÉ	LET	LIP	RAMS
TM	CL01	6	Organisation logistique des échanges commerciaux	Χ		
TM	CL03	6	Logistique de transport et de distribution	Χ		
TM	CL04	6	Conception et organisation de la chaîne logistique Coordination des relations clients-fournisseurs	Χ		
TM	GP17	6	Planification et ordonnancement de la production		Χ	
TM	GP30	6	Introduction à l'économétrie et au pricing		Χ	
TM	RM03	6	Surveillance et pronostic - outils PHM			Χ
TM	RM04	6	Maintenance intelligente			Χ
TM	SY20	6	Intelligence industrielle (Outils logiciels MES/SAP)		Χ	
TM	TS01	6	Sécurité des systèmes			Χ

GÉNIE MÉCANIQUE

RESPONSABLE → Carl LABERGERE
SECRÉTARIAT → Sarah BOURGEOIS
STAGES → Claude GARNIER
INTERNATIONAL → Zhidan SUN

CeISME: CONCEPTION ET INDUSTRIALISATION DES SYSTÈMES MÉCANIQUES

EN LIEN AVEC L'ENVIRONNEMENT

→ Jérôme NOAILLES

SNM: SIMULATION NUMÉRIQUE EN MÉCANIQUE > Abel CHEROUAT

MDPI: MANAGEMENT DIGITAL DES PRODUITS ET

INFRASTRUCTURES en alternance, micro-certifications **>** Guillaume DUCELLIER

VUE DE BRANCHE - AUTOMNE

TYPE	CODE	CRÉD.	LIBELLÉ
CS	MQ01	6	Introduction à la mécanique des matériaux et des structures
CS	MQ03	6	Etudes dynamique et vibratoire de systèmes mécaniques
CS	MQ07	6	Mécanique des fluides
CS	MT13	6	Méthodes numériques pour l'ingénieur
TM	CS01	6	Analyse de la valeur sous forte contrainte
TM	TN12	6	Elément de bureau d'études
TM	TN14*	6	Initiation à la CAO : modélisation géométrique
TM	TN15	6	Techniques de fabrication conventionnelles

^{*} UE proposée au Tronc Commun

WUE DE BRANCHE - PRINTEMPS

TYPE	CODE	CRÉD.	LIBELLÉ
CS	EA01	6	Automatique et asservissement
CS	MQ02	6	Initiation à la mécanique des milieux continus solides
CS	MQ04*	6	Propriétés des matériaux
TM	MQ06	6	Modélisation des structures par éléments finis
TM	TN14A*	6	Introduction to computer-aided design
TM	TN20	6	Etude et dimensionnement de systèmes mécaniques
TM	TN78	6	Industrialisation et technologies de fabrications avancées

^{*} UE proposée au Tronc Commun

▼ MICRO-CERTIFICATIONS (UE TM)

CODE	CRÉDIT	LIBELLÉ
GM_MIC1	2	Introduction à CATIA Automation
GM_MIC2	2	Introduction à la plateforme 3DExpérience

▼UE DE FILIÈRES - AUTOMNE

TYPE	CODE	CRÉD.	LIBELLÉ	CelSME	SNM
CS	EA07	6	Actionneurs électriques	Χ	
CS	SM06	6	Modélisation des phénomènes thermomécaniques couplés		Χ
TM	CS22	6	Industrialisation des systèmes mécaniques	Χ	
TM	MQ16	6	Dimensionnement des structures mécaniques par une approche mixte numérique/expérimentale	Χ	Χ
TM	MQ21	6	Procédés de mise en forme des matériaux et simul. num.		Χ

▼UE DE FILIÈRES - PRINTEMPS

TYPE	CODE	CRÉD.	LIBELLÉ	CeISME	SNM
CS	L013	6	3D computer graphics : theory and applications		Χ
CS	MQ13	6	Thermodynamique et thermique des machines	Χ	
TM	CS21	6	Conception des systèmes complexes	Χ	Χ
TM	EA08	6	Mise en œuvre de Systèmes mécatroniques	Χ	
TM	MQ09	6	Maillage et méthodes d'adaptation		Χ

FILIÈRE MDPI: MANAGEMENT DIGITAL DES PRODUITS ET INFRASTRUCTURES, EN ALTERNANCE

AUTOMNE

TYPE	CODE	CRÉD.	LIBELLÉ	HEURES
CS	MDPIMIC1	3	Introduction à CATIA automation	35
CS	MDPIMIC2	3	Product as a Service Lifecycle Management (PaaSLM)	35
TM	MDPIMIC3	3	Nouveau mode projet	35
TM	MDPIMIC4	3	Transformation des industries et Services par le numérique	35
TM	MDPIMIC5	3	Building Information Modeling	35
	Total	15		175

PRINTEMPS

TYPE	CODE	CRÉD.	LIBELLÉ	HEURES
CS	MDPIMIC6	3	Mise en œuvre de l'interopérabilité dans le domaine PLM	35
CS	MDPIMIC7	3	Introduction à la gestion de projet informatique	35
TM	MDPIMIC8*	3	La conduite du changement	35
TM	MDPIMIC9*	3+2	Processus d'innovation (inclus le CRUNCH UTT)	35
ME	MDPIMIC10*	4	Le management éthique	35
	Total	18		175

^{*} Les descriptifs de ces UE seront communiqués au cours du semestre d'automne 2020

INFORMATIQUE ET SYSTÈMES D'INFORMATION

RESPONSABLE → Inès DI LORETO
SECRÉTARIAT → Sandra LEBEAU
STAGES → Jean-Marc NIGRO
INTERNATIONAL → Florian BLACHERE

ATN : ACCOMPAGNEMENT DE LA TRANSFORMATION NUMERIQUE ▶ Myriam LEWKOWICZ

IPL: INNOVATION PAR LE LOGICIEL ➤ Matthieu TIXIER

VDC: VALORISATION DES DONNEES ET DES CONNAISSANCES ▶ Babiga BIRREGAH

VUE DE BRANCHE - AUTOMNE

TYPE	CODE	CRÉD.	LIBELLÉ
CS	GL02	6	Fondements de l'ingénierie logicielle
CS	IF37	6	Conception responsable de systèmes interactifs
CS	NF16	6	Bases de données
TM	IF14	6	Analyse du Système d'Information
TM	L002	6	Principe et pratique de la programmation orientée objets
TM	NF19	6	Maîtriser les fondamentaux de l'infrastructure informatique
TM	NF21	6	Conception de projet Data pour l'innovation

VUE DE BRANCHE - PRINTEMPS

TYPE	CODE	CRÉD.	LIBELLÉ
CS	IF02	6	Modélisation pour la conception des SI
CS	IF08	6	Management de projets informatiques (pré-requis stage)
CS	L012	6	Intelligence artificielle et applications
TM	EG23	6	Interface Homme-Machine et ergonomie
TM	IF03	6	Initiation à la Sécurité des Systèmes d'Information
TM	IF15	6	Ingénierie des connaissances
TM	L007	6	Technologies du Web

▼ CAPSULES (UE TM EN LIGNE)

CODE	CRÉD.	LIBELLÉ
ISI_C01	3	Introduction au Big Data
ISI_C02	3	Nudge et persuasive computing
ISI_C03	3	Smart Grids
ISI_C04	3	Smart Mobility

▼UE DE FILIÈRES - AUTOMNE

TYPE	CODE	CRÉD.	LIBELLÉ	ATN	IPL	VDC
CS	IF09	6	Systèmes documentaires	Χ	Χ	
CS	IF10	6	Conception centrée usages - Design de l'interaction		Χ	Χ
CS	IF17	6	Architectures décisionnelles			Χ
CS	IF19	6	Réaliser un diagnostic organisationnel (pré-requis stage)	Χ		
TM	IF20	6	Modélisation de processus métier	Χ		
TM	IF26	6	Conception sécurisée d'applications mobiles		Χ	
TM	IF28	6	Fouille de données et connaissances			Χ

▼UE CONSEILLÉE - AUTOMNE

TYPE	CODE	CRÉD.	LIBELLÉ
CS	IF06A	6	Computer Supported Cooperative Work

▼UE DE FILIÈRES - PRINTEMPS

TYPE	CODE	CRÉD.	LIBELLÉ	ATN	IPL	VDC
CS	IF05	6	Qualité du logiciel		Χ	
CS	IF22	6	Gestion des Systèmes d'information	Χ		
CS	IF29	6	Traitement de données (Data Analytics)			Χ
CS	IF36	6	Conception de visualisations de données	Χ		Χ
TM	IF31	6	Analyser et concevoir les plateformes de l'économie collaborative		Χ	
TM	IF34	6	Maitriser les technologies du SI	Χ		Χ
TM	L010	6	Architecture orientées services		Χ	

MATÉRIAUX : TECHNOLOGIE ET ÉCONOMIE

RESPONSABLE → Davy GERARD

SECRÉTARIAT ➤ Laurence VAN DE ROSTYNE

STAGES ▶ Cyrille VEZY

INTERNATIONAL > Demetrio MACIAS

EME : ENERGIE, MATÉRIAUX ET ENVIRONNEMENT → Christophe COUTEAU

TCMC: TECHNOLOGIE ET COMMERCE DES MATÉRIAUX ET COMPOSANTS ▶ Benjamin RUIZ

TQM: TRANSFORMATION ET QUALITÉ DES MATÉRIAUX → Sylvain BLAIZE

▼UE DE BRANCHE - AUTOMNE

TYPE	CODE	CRÉD.	LIBELLÉ	
CS	MA02	6	Structures et propriétés physiques de la matière	
CS	MA03	6	Interaction Rayonnement-Matière	
CS	MA11	6	Matériaux métalliques	
CS	NMO1*	6	Nanomatériaux et matière molle	
TM	DS01	6	Design	
TM	EV14	6	Modélisation Homme-Systèmes-Nature	
TM	MA13	6	Mécanique des matériaux	
TM	·			

^{*}NM01 n'est pas proposée au MTE1

▼UE DE BRANCHE - PRINTEMPS

TYPE	CODE	CRÉD.	LIBELLÉ
CS	MA04	6	Chimie pour les matériaux
CS	MA05	6	Physique de la matière solide
CS	MA12	6	Physique des polymères et composites
CS	MA14	6	Semi-conducteurs et matériaux pour les technologies avancées
TM	MA20	6	Analyses et caractérisations microscopiques des matériaux
TM	MA21	6	Analyses et caractérisations macroscopiques des matériaux
TM	PR15	6	Mise en forme des matériaux

▼UE DE FILIÈRES - AUTOMNE

TYPE	CODE	CRÉD.	LIBELLÉ	EME	тсмс	TQM
CS	OP01	6	Optical and optoelectronic materials	Χ		Χ
CS	OP02	6	Optical communications	Χ		
TM	EV11	6	Management du cycle de vie des matériaux	Χ		
TM	GE40	6	Commerce des matériaux		Χ	
TM	MQ16	6	Dimensionnement des structures mécaniques par une approche mixte numérique/expérimentale			Χ
TM	MQ21	6	Procédés de mise en forme des matériaux et simulation numérique			Χ
TM	NR01	6	Normes et réglementation	Χ	Χ	
TM	TN19	6	Techniques d'achat et de réduction des coûts		Χ	

▼UE DE FILIÈRES - PRINTEMPS

TYPE	CODE	CRÉD.	LIBELLÉ	EME	тсмс	TQM
TM	CL01	6	Organisation logistique des échanges commerciaux		Χ	
TM	CS05	6	Dimensionnement économique de composants		Χ	Χ
TM	EV12	6	Ecoconception, technologies propres et recyclage	Χ		
TM	ME10	6	Matériaux pour l'énergie	Χ		Χ
TM	ME11	6	Matériaux et transition énergétique	Χ	Χ	
TM	OP03	6	Smart photonics systems	Χ		
TM	TN14	6	Initiation à la CAO : modélisation géométrique			Χ

RÉSEAUX ET TÉLÉCOMMUNICATIONS

RESPONSABLE ⇒ Guillaume DOYEN

SECRÉTARIAT → Christine DE ZUTTER

STAGES ▶ Lyès KHOUKHI

INTERNATIONAL ▶ Patrick LALLEMENT

CSR : CONVERGENCE SERVICES ET RÉSEAUX > Samiha AYED

SSC : SÉCURITÉ DES SYSTÈMES ET DES COMMUNICATIONS → Moez ESSEGHIR
TMOC : TECHNOLOGIES MOBILES ET OBJETS CONNECTES → Guillaume DOYEN

▼ UE DE BRANCHE - AUTOMNE

TYPE	CODE	CRÉD.	LIBELLÉ
CS	IF01	6	Théorie et codage de l'information
CS	NF16	6	Bases de données
CS	SY04	6	Outils pour la modélisation de réseaux
CS	SY06	6	Analyse et traitement du signal
TM	L002*	6	Principe et pratique de la programmation orientée objets
TM	L014	6	Administration des systèmes
TM	RE01*	6	Réseaux d'entreprise

^{*} UE proposée au Tronc Commun

▼UE DE BRANCHE - PRINTEMPS

TYPE	CODE	CRÉD.	LIBELLÉ
CS	RE02	6	Transmission de l'information
CS	RE04	6	Réseaux de l'Internet
CS	SY16	6	Traitement numérique du signal et des images
TM	IF03	6	Initiation à la sécurité des Systèmes d'Information
TM	LO11*	6	Introduction à l'internet des objets
TM	L008	6	Architectures Cloud et virtualisation
TM	MT15	6	Valorisation des données pour l'ingénieur
TM	RE14	6	Réseaux d'entreprise avancés

^{*} UE proposée au Tronc Commun

▼UE DE FILIÈRES - AUTOMNE

TYPE	CODE	CRÉD.	LIBELLÉ	CSR	SSC	TMOC
CS	GS15	6	Cryptologie et signature électronique		Χ	
CS	RE15	6	Réseaux à qualité de services	Χ		
CS	SY25	6	Réseaux de capteurs multimédia			Χ
TM	RE06	6	Communications unifiées	Χ		Χ
TM	RE13*	6	Réseaux mobiles et sans fil	Χ	Χ	
TM	RE16*	6	Sécurisation des réseaux		Χ	
TM	SY23*	6	Systèmes connectés intelligents			Χ

^{*} UE ouverte au contrat de professionnalisation

▼UE DE FILIÈRES - PRINTEMPS

TYPE	CODE	CRÉD.	LIBELLÉ	CSR	SSC	TMOC
CS	IF23*	6	Géolocalisation par satellites			Χ
CS	IF27*	6	Sécurité des données et des services		Χ	
CS	RE23	6	Gestion et contrôle des réseaux	Χ		
TM	RE12*	6	Services réseaux	Χ	Χ	
TM	RE20*	6	Réseaux d'opérateurs	Χ		
TM	RE21	6	Technologies mobiles : ergonomie et usages			Χ
TM	SY22	6	Systèmes sans fil		Χ	Χ

^{*} UE ouverte au contrat de professionnalisation

RESPONSABLE → Frédéric SANCHETTE **SECRÉTARIAT** → Marie LECOMTE

La formation Matériaux et Mécanique se déroule uniquement en apprentissage. L'admission à cette formation est donc conditionnée à la signature d'un contrat d'apprentissage de 3 ans avec une entreprise.

Les apprentis suivent les cours des deux premières années à l'antenne de l'UTT à Nogent et ceux de la troisième année à Troves ou en semestre d'études à l'étranger.

RYTHME DE L'ALTERNANCE - SÉJOUR À L'ÉTRANGER

Première et deuxième année : le rythme est de 2 semaines en cours / 2 semaines en entreprise. Un séjour de 12 semaines à l'étranger est obligatoire, sur le temps en entreprise, au cours de la deuxième année (janvier à mars).

La troisième année, les apprentis ingénieurs sont intégrés aux cours du semestre d'automne à Troyes. Ils peuvent également postuler pour un semestre d'études à l'international. Le dernier semestre de la formation se déroule entièrement dans l'entreprise.

Calendrier de formation (à titre indicatif) :

SUIVI

Les étudiants sont encadrés par un tuteur pédagogique, au sein de l'UTT, et un maître d'apprentissage, au sein de l'entreprise, en liens étroits et permanents, via, notamment, un livret d'apprentissage, et les visites du tuteur dans l'entreprise.

5 projets, répartis au cours des 3 années, permettent de rendre compte du travail en entreprise.

PROFIL DE FORMATION OBLIGATOIRE

CS	TM	ST	EC	ME	СТ	total branche	crédits libres	NPML	TOTAL
24	48	78	12	12	0	174	6	B2+	180

Pour connaître le descriptif des UE spécifiques MM, s'adresser au secrétariat de la spécialité Matériaux et Mécanique.

MATÉRIAUX ET MÉCANIQUE

▼ PREMIÈRE ANNÉE

TYPE	CODE	CRÉD	LIBELLÉ	LIEU
CS	MQOON	6	Modélisation, cinématique et statique des systèmes mécaniques	Nogent
CS	MA11N	6	Matériaux métalliques	Nogent
TM	TN14N	6	Initiation à la CAO : modélisation géométrique	Nogent
TM	MQ12N	6	Mise en forme des matériaux et des structures	Nogent
TM	TN15N	6	Techniques de fabrication	Nogent
EC	CE01N	4	Communication en entreprise	Nogent
EC	LE31N	4	Anglais	Nogent
EC	LE32N	4	Anglais	Nogent
ME	GE14N	4	Gestion d'entreprise et gestion de projet	Nogent
ST	ST10N 4		Découverte de l'entreprise et de son environnement	entreprise
ST	ST11N	16	Projet industriel	entreprise

▼ DEUXIÈME ANNÉE

TYPE	CODE	CRÉD	LIBELLÉ	LIEU
CS	MA12N	6	Matériaux non métalliques	Nogent
CS	MA13N	6	Mécanique des matériaux	Nogent
TM	GP01N	6	Systèmes industriels	Nogent
TM	TN12N	6	Bureau d'étude - bureau des méthodes	Nogent
EC	CE02N	4	Communication d'entreprise	Nogent
EC	LE34N	2	Anglais	Nogent
EC	LE35N	2	Anglais	Nogent
EC	LG16N	4	Allemand (pré requis : validation du BULATS)	
ME/HT	GE15N	4	Management et RH de l'entreprise	Nogent
ST	ST13N	6	Expérience à l'étranger – personnel	entreprise
ST	ST14N	6	Expérience à l'étranger - entreprise	entreprise
ST	ST15N	16	Projet recherche et expérimentation	entreprise

▼TROISIÈME ANNÉE

Semestre d'automne : UE au choix parmi les UE enseignées à l'automne à l'UTT.

Semestre de printemps :

TYPE	CODE	CRÉD	LIBELLÉ	LIEU
ST	ST16N	30	Projet de fin d'études	entreprise

Master DNM « Sciences, Technologies et Santé »

POUR OBTENIR LE DIPLÔME NATIONAL DE MASTER, VOUS DEVEZ :

- acquérir 120 crédits ECTS, si vous êtes arrivé en 1er semestre ou 60 crédits ECTS, si vous êtes arrivé en 3e semestre selon les répartitions indiquées ci-dessous, et
- > valider un niveau de pratique minimum de langue étrangère (sauf cas exceptionnel).

LES ÉTUDIANTS ENTRÉS EN 1^{ER} SEMESTRE DE MASTER

Chaque étudiant inscrit doit valider le profil de formation suivant pour totaliser 120 crédits ECTS :

- ▶ 12 crédits ECTS dans les catégories EC
- ▶ 78 crédits ECTS dans la catégorie MASTER dont 24 crédits minimum dans les UE spécifiques au M2 avec dérogation uniquement sur autorisation du responsable du programme master
- ⇒ 30 crédits ECTS pour le stage
- ▶ le niveau de pratique minimum de langue

LES ÉTUDIANTS ENTRÉS EN 3^E SEMESTRE DE MASTER

Chaque étudiant inscrit doit valider le profil de formation suivant pour totaliser 60 crédits ECTS :

- ♦ 6 crédits dans les catégories EC
- ▶ 24 crédits dans la catégorie MASTER dans les UE spécifiques au M2
- ⇒ 30 crédits pour le stage
- > le niveau de pratique minimum de langue

LES ÉTUDIANTS EN DOUBLE DIPLÔME INGÉNIEUR UTT ET MASTER DNM UTT

Diplôme ingénieur : le total de crédits ECTS à obtenir pour la formation d'ingénieur est automatiquement réduit de 8 crédits ECTS, dans le respect du profil de formation.

GESTION DES RÉDUCTIONS DE CRÉDITS POUR LES DOUBLES DIPLÔMES INGÉNIFUR/MASTER :

ТҮРЕ	CODE	CRÉD	LIBELLÉ
crédits libres	DD10	8	Crédits attribués pour double diplôme ingénieur/master

▶ Diplôme national de master : le total de crédits ECTS à obtenir en formation de master est automatiquement réduit de 4 crédits EC et peut en plus être réduit de 0 à 8 crédits de Master selon la grille d'équivalence ci-dessous.

Le profil de formation master pourra donc être le suivant :

- ▶ 2 crédits dans la catégorie EC
- > entre 16 et 24 crédits dans la catégorie MASTER, selon l'application de la grille d'équivalences
- ⇒ 30 crédits ECTS pour le stage

Le stage de Master (ST30) attribuera le stage d'ingénieur (ST10) par équivalence, sous réserve de validation préalable du sujet de stage et de validation du stage par les responsables des deux diplômes concernés.

GESTION DES RÉDUCTIONS DE CRÉDITS POUR LES DOUBLES DIPLÔMES INGÉNIEUR/MASTER

ТҮРЕ	CODE	CRÉD	LIBELLÉ
UE Master 1	DD30	4	crédits attribués pour double diplôme ingénieur/master
UE Master 2	DD31	4	crédits attribués pour double diplôme ingénieur/master
UE Master 3	DD32	6	crédits attribués pour double diplôme ingénieur/master
EC	DD33	2	crédits attribués pour double diplôme ingénieur/master
UE Master 4	DD34	2	crédits attribués pour double diplôme ingénieur/master
EC	DD35	4	crédits attribués pour double diplôme ingénieur/master

TABLEAU DES ÉQUIVALENCES

Une reconnaissance de crédits ECTS, correspondant à une UE, pour cursus antérieur pourra être attribuée à des étudiants ayant acquis des connaissances ou un savoir-faire jugés suffisants et en adéquation avec le contenu d'une UE de l'UTT. L'UE donnée par équivalence ne pourra pas être une UE ayant déjà été validée pour un autre cursus.

L'étudiant doit en faire la demande au début du semestre auprès du responsable du programme Master.

										INGÉN	IIEUR									
		FIL.		ISI		MTE				GI GM			GM			RT			A2I	
		BR.	IPL	ATN	VDC	EME	TCMC	TQM	LET	LIP	RAMS	CEISME	TIM	SNM	CSR	TMOC	SSC	MM	SPI	TEI
	MENTION PAIP	ONT	0	0	0	8	8	8	0	0	0	4	0	4	0	0	0	8	0	0
œ	MENTIC	MMPA	0	0	0	8	8	8	0	0	0	8	8	8	0	0	0	8	0	0
MASTER	MENTION ISC	OSS	4	0	0	0	0	0	8	8	8	4	0	0	0	4	0	0	4	4
	MENTI	SSI	4	4	4	0	0	0	0	0	0	0	0	0	4	4	8	0	4	4
	MENTION RE	IMSGA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MENT	IMEDD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

NIVEAU DE PRATIQUE MINIMUM DE LANGUE

Pour obtenir le diplôme national de master, les étudiants doivent valider un niveau de pratique minimum de langue (NPML) en langue étrangère, sauf cas exceptionnel accepté par le Directeur de la Formation et de la Pédagogie sur avis du responsable de master (se reporter pages 11 et 12).

RESPONSABLES DE FORMATION

RESPONSABLE DU MASTER « SCIENCES, TECHNOLOGIES ET SANTÉ » ➤ Dominique GAÏTI SECRÉTARIAT MASTER ➤ Francine DURAND

MENTION ISC: INGÉNIERIE DES SYSTÈMES COMPLEXES ≯ Patrick LALLEMENT

Comprenant les parcours suivants :

- ♦ OSS : Optimisation et Sûreté des Système > Edith GRALL
- SSI : Sécurité des Systèmes d'Information > Patrick LALLEMENT

MENTION PAIP : PHYSIQUE APPLIQUÉE ET INGÉNIERIE PHYSIQUE ➤ Rodolphe JAFFIOL

Cette mention est co-accréditée avec l'URCA (le M1 se fait à Reims) et comprend les parcours suivants :

- ◆ ONT : Optique et Nanotechnologies > Aurélien BRUYANT Troyes
- ➤ MMPA: Mécanique, Matériaux et Procédés Avancés ➤ Pascal LAFON Troyes
- PSII : Physique, Spectrométrie, Ingénierie et Instrumentation > URCA
- ▶ SPA : Sciences Physique, Agrégation > URCA

MENTION RE: RISOUES ET ENVIRONNEMENT ➤ Guillaume DELATOUR

Comprenant les parcours suivants :

- IMSGA : Ingénierie et Management en Sécurité Globale Appliquée > Guillaume DELATOUR
- ➤ IMEDD: Ingénierie et Management de l'Environnement et du Développement Durable ➤ Sabrina BRULLOT et Victor PETIT

INGÉNIERIE DES SYSTÈMES COMPLEXES

RESPONSABLE MENTION → Patrick LALLEMENT
RESPONSABLE PARCOURS OSS → Edith GRALL
RESPONSABLE PARCOURS SSI → Patrick LALLEMENT
SECRÉTARIAT → NC

▼MASTER 1 - AUTOMNE

TYPE	CODE	CRÉD.	LIBELLÉ
	GE21	4	L'Entreprise et le droit
	IF01	6	Théorie de l'information
Master	IF14	6	Analyse du système d'information (au choix ½)
Mas	IF17	6	Architectures décisionnelles (au choix ½)
UE	SY14	6	Systémique et dynamique des systèmes
	TS02	6	Gestion des risques industriels
	TS02	6	Gestion des risques industriels
EC	LXXX	4	Langue vivante

MASTER 1 - PRINTEMPS

TYPE	CODE	CRÉD.	LIBELLÉ
	GE31	4	L'entreprise et la gestion
	IR30	6	Initiation à la recherche
Master	L013	6	3D computer graphics : theory and applications (au choix ½ si parcours SSI en M2)
Mas	RE23	6	Gestion et contrôle des réseaux (au choix ½ si parcours SSI en M2)
UE	MT15	6	Valorisation des données pour l'ingénieur
	RM03	6	Surveillance et pronostic - outils PHM
	SY05	6	Outils d'aide à la décision et théorie des jeux (au choix ½ recommandé si parcours OSS en M2)
	SY18	6	Outils de modélisation et évaluation de performance (au choix ½ recommandé si parcours OSS en M2)
EC	LXXX	4	Langue vivante

▼ MASTER 2 - PARCOURS OSS - AUTOMNE

TYPE	CODE	CRÉD.	LIBELLÉ
	OS01	4	Modélisation et programmation avancées
70	OS23	4	Outils statistiques et probabilistes pour l'analyse des systèmes et la décision
. Master	OS10	4	Modèles et algorithmes pour la planification et ordonnancement de la production
UE	OS11	4	Modèles et algorithmes pour la logistique et le transport
	OS13	4	Modèles pour la fiabilité et la maintenance
	OS16	4	Apprentissage et Applications en intelligence artificielle
FC	LXXX	4	Langue vivante
EC	SD11	2	Articles scientifiques et entretiens professionnels

MASTER 2 – PARCOURS OSS - PRINTEMPS

TYPE	CODE	CRÉD	LIBELLÉ
ST	ST30	30	Stage master

▼MASTER 2 – PARCOURS SSI - AUTOMNE

TYPE	CODE	CRÉD	LIBELLÉ
	GS10	4	Droit et obligations légales
<u></u>	GS11	6	Techniques de sécurité
UE Master	GS13	6	Management de la sécurité
E	GS15	6	Cryptologie (au choix 2/3)
	GS16	4	Sécurité des réseaux de l'internet (au choix 2/3)
	GS21	4	Cyber enquêtes en entreprise au choix 2/3)
EC	LXXX	4	Langue vivante
EC	SD11	2	Articles scientifiques et entretiens professionnels

▼MASTER 2 – PARCOURS SSI - PRINTEMPS

TYPE	CODE	CRÉD	LIBELLÉ
ST	ST30	30	Stage master

PHYSIQUE APPLIQUÉE ET INGÉNIERIE PHYSIQUE

RESPONSABLE MENTION ➤ Rodolphe JAFFIOL
RESPONSABLE PARCOURS ONT ➤ Aurélien BRUYANT - Troyes
RESPONSABLE PARCOURS MMPA ➤ Pascal LAFON - Troyes
SECRÉTARIAT ➤ NC

▼ MASTER 1 – CO-ACCRÉDITÉ AVEC REIMS, ENSEIGNEMENT À REIMS

▼ MASTER 2 – PARCOURS ONT – AUTOMNE (TOUTES LES UE SONT EN ANGLAIS)

TYPE	CODE	CRÉD	LIBELLÉ
	MC01	6	Multi-scale characterization
<u></u>	NM01	6	Nanomatériaux et nanotechnologies (au choix ½)
UE Master	OP01*	6	Optical and optoelectronic materials (au choix ½)
E	N001	4	Nano-optics
	NS01	4	Advanced spectroscopy of nanostructures
	NTO1	4	Nanotechnologies and industry
EC	LXXX	4	Langue vivante
EC	SD11	2	Articles scientifiques et entretiens professionnels

^{*} NM01 et OP01 au choix, conditionné à l'ouverture des 2 UE. Si OP01 n'ouvre pas, NM01 devient obligatoire.

MASTER 2 - PARCOURS ONT - PRINTEMPS

TYPE	CODE	CRÉD	LIBELLÉ
ST	ST30	30	Stage master

▼ MASTER 2 - PARCOURS MMPA - AUTOMNE

TYPE	CODE	CRÉD	LIBELLÉ
	MC01	6	Multi-scale characterization
Master	MQ21	6	Procédés de mise en forme des matériaux et simulations numériques
Mas	MP04	4	Matériaux avancés et procédés d'élaboration
UE	MP05	4	Ingénierie des contraintes résiduelles
	MP06	4	Modélisation et optimisation des structures et procédés
EC	LXXX	4	Langue vivante
	SD11	2	Articles scientifiques et entretiens professionnels

▼ MASTER 2 – PARCOURS MMPA - PRINTEMPS

TYPE	CODE	CRÉD	LIBELLÉ
ST	ST30	30	Stage Master

▼ PARCOURS EUR*

TYPE	CODE	CRÉD	LIBELLÉ	
	EUR07	6	(nano) materials for optics and optoelectronics	
Master	EUR08	6	Nano-optics 1	Choix
⊠ ⊠	EUR09	6	Quantum and Classical Interaction between light and matter	3 UE
UE	EUR10	6	High resolution microscopies and spectroscopies*	parmi
	EUR11	6	Nanofabrication and nanomaterials*	5
	EUR12	3	Patent, entrepreneurship and Intellectual properties	
EC	EUR13	3	Foreign Language (including FLE)	
	EUR14	6	Lab Project	

^{*} n'ouvrent qu'à partir de P22

RISQUES ET ENVIRONNEMENT (RE)

RESPONSABLE MENTION ➤ Guillaume DELATOUR
RESPONSABLE PARCOURS IMSGA ➤ Patrick LACLEMENCE
RESPONSABLE PARCOURS IMEDD ➤ Sabrina DERMINE-BRULLOT et Victor PETIT
RESPONSABLE PARCOURS BIOREF ERASMUS MUNDUS ➤ Pauline MARTY
SECRÉTARIAT ➤ NC

▼MASTER 1 - AUTOMNE

TYPE	CODE	CRÉD	LIBELLÉ
	EP01	4	Responsabilité sociale de l'entreprise
Master	GE25	4	Propriété intellectuelle et intelligence économique
Mas	MRE01	6	Normalisation internationale et stratégie locale
UE	SY14	6	Systémique et dynamique des systèmes
	TS02	6	Gestion des risques industriels
EC	LXXX	4	Langue vivante

MASTER 1 - PRINTEMPS

TYPE	CODE	CRÉD	LIBELLÉ
	EV00	4	Prospective et philosophie de l'environnement (au choix ½, recommandé si IMSGA en M2)
	EV04	4	Risques environnementaux, gestion et controverses
Master	HT07	4	Géopolitique du monde contemporain
Mas	IR30	6	Initiation à la recherche
UE	MRE02	6	Conduite de projet appliqué (titre provisoire)
	S004	4	Sécurité, état et responsabilité (au choix ½, recommandé si IMSGA en M2)
	S009	4	Innovations techniques, innovations sociétales
EC	LXXX	4	Langue vivante

MASTER 1 - PARCOURS BIOREF ERAMUS MUNDUS - AUTOMNE

CODE	CRÉD	LIBELLÉ
BIO1	6	Bioeconomy : concepts, principles, economic & sustainability challenges
BI02	6	Bioeconomy project : implementing the sustainable biorefinery
EI01A	6	Territorial and industrial Ecology
EVOO	4	Prospective et philosophie de l'environnement
EV04	4	Risques environnementaux : gestion et controverses
ME05	4	Material, Substance and Waste Flow Analysis
LXXX	4	Langue vivante
	BI01 BI02 EI01A EV00 EV04 ME05	BIO1 6 BIO2 6 EIO1A 6 EVOO 4 EVO4 4 MEO5 4

▼MASTER 2 - PARCOURS IMEDD - AUTOMNE

TYPE	CODE	CRÉD	LIBELLÉ
	EIO1	6	Ecologie industrielle et territoriale
Master	EC01	6	Démarche d'éco-conception
Mas	ME01	4	Analyse du cycle de vie et impacts environnementaux
UE	ME02	4	Management du développement durable
	ME05	4	Analyse des flux de matières et d'énergie
ГС	LXXX	4	Langue vivante*
EC	SD11	2	Articles scientifiques et entretiens professionnels

^{*} obligatoire si arrivée directement en M2

▼MASTER 2 – PARCOURS IMEDD - PRINTEMPS

T	YPE	CODE	CRÉD	LIBELLÉ
	ST	ST30	30	Stage Master

▼MASTER 2 – PARCOURS IMEDD, CURSUS INTERNATIONAL - AUTOMNE

TYPE	CODE	CRÉD	LIBELLÉ
	ECO1	6	Démarche d'éco-conception
<u></u>	EIO1	6	Ecologie industrielle et territoriale
Master	EVOO	4	Scénario du développement durable
E	ME01	4	Analyse du cycle de vie et impacts environnementaux
	ME02	4	Management du développement durable
	ME05	4	Analyse des flux de matières et d'énergie
EC	LXXX	4	Langue vivante - option
Ш	ME09	4	Préparation à l'essai en environnement et développement durable

▼MASTER 2 – PARCOURS IMEDD, CURSUS INTERNATIONAL - PRINTEMPS

T	YPE	CODE	CRÉD	LIBELLÉ
	СТ	ST33	18	Stage en environnement durable et développement durable
	ST	PE	12	Projet étudiant - Démarche Pédagogie Mind

MASTER 2 - PARCOURS IMEDD EN ALTERNANCE - AUTOMNE

ТҮРЕ	CODE	CRÉD	LIBELLÉ
iter	EC01	6	Démarche d'éco-conception
	EI01	6	Ecologie industrielle et territoriale
Master	ME01	4	Analyse du cycle de vie et impacts environnementaux
UE	ME02	4	Management du développement durable
	ME05	4	Analyse des flux de matières et d'énergie
EC	SD11	2	Articles scientifiques et entretiens professionnels
ST	ST61	12	Projet de fin d'études en alternance - partie 1

MASTER 2 - PARCOURS IMEDD EN ALTERNANCE - PRINTEMPS

TYPE	CODE	CRÉD	LIBELLÉ
EC	Lxxx	4	Langue vivante
ST	ST62	12	Projet de fin d'études en alternance - partie 2
	ST66	6	Accompagnement méthodologique à la démarche scientifique

WMASTER 2 - PARCOURS IMSGA - AUTOMNE

TYPE	CODE	CRÉD	LIBELLÉ
	SG11	6	Risques sociaux et sociétaux, intelligence économique, cybercriminalité
	SG12	4	Sécurité des personnes et des biens : politique de sécurité et concept transversal
ter	SG21	4	Sûreté des espaces/vie/économie/industrie : hygiène et sécurité
UE Master	SG22	4	Sûreté des espaces/vie/économie/industrie : risques majeurs, communication de crises et économie de la sécurité
	SG31	4	Sûreté des systèmes et des réseaux : analyse des systèmes et gestion des connaissances
	SG32	6	Sûreté des systèmes et des réseaux : réseaux des systèmes informatiques et urbains
O	LXXX	4	Langue vivante*
Ш	SD11	2	Articles scientifiques et entretiens professionnels

^{*} obligatoire si arrivée directement en M2

WMASTER 2 - PARCOURS IMSGA - PRINTEMPS

TYPE	CODE	CRÉD	LIBELLÉ
ST	ST30	30	Stage Master (formation initiale)

CONNAISSANCES SCIENTIFIQUES

TRONG COMMUN

CHMA04

UE ING.

C 30 h TD 30 h TP 24 h THE 62 h

Printemps 6 crédits

Analyse chimique, sûreté et environnement

OBJECTIE

 Cette UE aborde les questions de sécurité et d'environnement à l'aide de modèles scientifiques et présente différentes techniques d'analyse chimique et physico-chimique.

PROGRAMME

- principes d'analyse chimique. CPV, IR, UE. Étalonnage interne, externe, normalisation interne
- aspects physicochimiques de la sécurité. Lois de Raoult et Henry à P et T constants. Application aux gaz dissuis
- première et deuxième lois de Fick. Résolution et exploitation des modèles liés
- études des compartiments air-eau-sol en chimie de l'environnement. Approche systémique. Études de l'effet de serre, de l'ozone troposphérique et stratosphérique
- traitement de l'eau. Identification, description et modélisation des pollutions. Liens avec l'atmosphère et les sols

CM02

UE ING.

C 30 h TD 30 h TP 24 h THF 66 h

Automne 6 crédits

Structure, propriétés et réactivité des matériaux organiques

OBJECTIF

 Les matériaux organiques sont utilisés dans de nombreux secteurs industriels (automobile, aéronautique, construction, textile...). L'objectif est d'aborder les connaissances fondamentales permettant de comprendre leur synthèse, structure et propriétés.

PROGRAMME

- savoir identifier les effets électroniques et comprendre leur influence sur la réactivité des molécules
- savoir exprimer la loi cinétique et comprendre le mécanisme électronique d'une réaction
- découvrir les principales réactions de synthèse des macromolécules (additions et substitutions)
- comprendre la relation entre les propriétés structurales (mésomérie, interactions intermoléculaires, stéréochimie) et physico-chimiques des polymères (thermomécaniques, électriques, énergie de surface)
- un projet avec une approche problème sera proposé

CM03

UE ING.

C 30 h TD 30 h TP 24 h THE 66 h

Printemps 6 crédits

Commentaire : Produit de solubilité atomistique

Structures, propriétés et réactivité des solides métalliques

OBJECTIF

 En raison de leurs propriétés redox et mécaniques, les matériaux métalliques sont utilisés dans de nombreux systèmes industriels. Leur étude est actuellement un enjeu majeur (durée de vie des alliages, voitures électriques, informatique portative,...).

- être capable de prévoir la corrosion/protection d'un métal dans un milieu aqueux oxygéné
- savoir mesurer et calculer une vitesse de corrosion
- · savoir mettre en œuvre des stratégies anticorrosion
- connaître les différents dispositifs de stockage d'énergie électrique
- être capable de décrire les métaux, oxydes et hydroxydes métalliques sous une approche cristallographie
- être capable d'analyser un spectre de diffraction X simple

CM10

UE ING.

C 30 h TD 30 h TP 18 h THE 72 h

Automne 6 crédits

Physicochimie appliquée à l'ingénierie

OBJECTIE

 La transformation de la matière est un enjeu essentiel dans de nombreux processus industriels. L'objectif de de cette UE, est d'apprendre à décrire un système physicochimique, de prévoir et modéliser son évolution, et de quantifier la matière produite dans des contextes variés comme l'alimentation, l'utilisation de produits d'usages courants ou dans des processus industriels.

PROGRAMME

- comprendre et acquérir les connaissances, les concepts et modèles de base en physicochimie
- être capable de décrire et de prévoir la réactivité d'un système chimique qualitativement et quantitativement dans des contextes variés
- choisir et mettre en œuvre des méthodes d'analyse chimique et de caractérisation pertinentes de produits d'usages courants
- · apprendre à respecter les règles d'hygiène et de sécurité en laboratoire

MATH01

UE ING.

C 45 h TD 45 h TP 8 h THE 50 h

Automne 6 crédits

Analyse : suites et fonctions d'une variable réelle

OBJECTIF

 La formation d'ingénieur nécessite la maîtrise de connaissances mathématiques fondamentales qui doivent s'articuler au sein d'un raisonnement scientifique structuré.

PROGRAMME

- assimiler des éléments de logique et s'approprier les modes de raisonnements principaux
- mettre en évidence la structure des nombres réels et complexes
- approfondir l'étude des suites numériques
- consolider et développer des méthodes d'étude de fonctions numériques(développements limités)
- consolider et développer les connaissances liées à l'intégration
- · savoir intégrer des équations différentielles linéaires du premier et du deuxième ordre dans des cas simples

MATH02

JE ING.

C 45 h TD 45 h

TP 8 h THE 50 h

Automne Printemps 6 crédits

Antécédent : MATH01

Analyse : séries et fonctions de plusieurs variables

OR JECTIE

- · consolider et généraliser les acquis de MATH01.
- acquérir et maîtriser des concepts mathématiques nécessaires dans des contextes et domaines variés rencontrés par l'ingénieur.
- s'approprier des outils mathématiques fondamentaux pour aborder d'autres enseignements.

- s'approprier les bases des séries numériques.
- acquérir des outils d'étude des fonctions de plusieurs variables
- être capable d'étudier localement et de paramétrer des courbes et des surfaces
- développer les capacités de représentation multidimensionnelles
- savoir poser des calculs de grandeurs physiques
- · maîtriser les concepts de l'intégration des fonctions de plusieurs variables (intégrales multiples, surfaciques,
- curvilignes)

MATH02A

UE ING.

C 45 h TD 45 h TP 8 h THE 52 h

Printemps 6 crédits

Calculus: series and multivariable functions

OR JECTIE

- acquire and master mathematical concepts that are necessary in various contexts and domains encountered by engineers.
- uptake fundamental mathematical tools to address other courses.

PROCRAMME

- acquire tools to study functions of several variables
- be able to study locally curves and surfaces
- develop multidimensional representation capabilities
- be able to set and compute physical quantities
- master the concept of integrating (multiple, surface and line integrals)

MATH03

UE ING.

C 30 h TD 30 h TP 6 h

THE 80 h
Automne

Printemps 6 crédits

Commentaire : maîtrise des notions injection, surjection, bijection, polynômes et équations différentielles

Algèbre linéaire

OBJECTIF

 Cette UE permet de se former aux bases de l'algèbre linéaire et d'acquérir des outils de calcul matriciel afin de pouvoir exploiter ce cadre de formalisation dans les contextes et domaines variés rencontrés par l'ingénieur.

PROGRAMME

- maîtriser la notion d'espace vectoriel et sa potentielle représentation géométrique
- maîtriser les bases des applications linéaires et leur représentation matricielle
- maîtriser les opérateurs matriciels usuels
- · savoir utiliser le concept de déterminant pour la résolution de systèmes linéaires
- acquérir les principes et les outils de la réduction d'endomorphisme (diagonalisation)
- acquérir les notions de base sur les espaces euclidiens et se familiariser avec les formes quadratiques
- savoir utiliser les outils matriciels pour la résolution de systèmes d'équations différentielles linéaires

MATH03A

UE ING.

C 30 h TD 30 h TP 6 h

Automne Printemps 6 crédits

THE 80 h

Linear Algebra

OBJECTIF

This course aims to give the fundamentals in linear algebra and matrix operations in order to be able to use them
in the framework of engineering problems.

- learn the basics of linear operations and their matrix representation
- master matrix operations
- know how to use the determinant to solve linear systems
- achieve bases and tools to reduce endomorphisms (diagonalization, ¿)
- · achieve basic knowledge on euclidian espaces and quadratic forms
- know how to use the matrix theory to solve differential equation systems

MATH04

UE ING.

30 h TD 30 h

12 h

THE 80 h

Printemps 6 crédits

la notion intégrale simple de continuité et différen-

Analyse avancée

OBJECTIE

- maîtriser les bases des transformations usuelles dans le plan.
- maîtriser les bases d'analyse complexe.
- maîtriser les bases de convergence fonctionnelle.
- maîtriser le concept d'intégration généralisée.
- savoir utiliser les transformées de Laplace et de Fourier.

PROGRAMME

- être capable d'étudier les fonctions d'une variable complexe et de faire le lien avec les notions physiques d'harmonicité et de transformation conforme
- acquérir les bases de convergence (séries numériques, fonctionnelles, de Fourier, ou entières)
- maîtriser les calculs d'intégrales généralisées (réelles, curvilignes) à partir du théorème des résidus ou de la formule de Cauchy
- acquérir les bases des transformations de Laplace et de Fourier

NF04

UE ING.

30 h TD 30 h ΤP 12 h

THE PRJ 6 h

Automne Printemps 6 crédits

Algorithmique

OBJECTIE

- La recherche de processus systématiques de résolution de problèmes requiert une démarche structurée qui conduit, dans le contexte de la programmation, à la production d'algorithmes.
- L'objectif est d'étudier la formalisation de problèmes, des démarches de résolution, des solutions typiques et d'en caractériser les propriétés. Cette démarche est transférable à toute discipline d'ingénierie.

PROGRAMME

- formaliser un problème et rédiger les spécifications associées
- connaître les structures de contrôle
- connaître les structures de données statiques et dynamiques
- maitriser l'approche descendante pour la résolution de problèmes
- avoir des notions sur l'évaluation des performances d'une solution
- traduire un algorithme simple en programme (découverte de deux langages:C et Visual Basic)

PC12

30 h TD 30 h ΤP 72 h

Printemps 6 crédits

THE

Physico-chimie de la matière

Connaître la structure de la matière est essentiel afin de comprendre et expliquer ses propriétés. Cette UE a pour objectif de donner des bases en physique de la matière afin de faire le lien entre structure atomique et propriétés physico-chimiques.

- comprendre et acquérir les connaissances, les concepts et modèles de base en atomistique
- être capable de décrire la structure électronique d'un atome ou d'une molécule
- être capable de prévoir la géométrie d'une molécule
- être capable de comprendre des caractéristiques microscopiques et macroscopiques à partir de la structure atomique

PHYS02

UE ING.

C 30 h TD 30 h TP 12 h THE 75 h

Automne 6 crédits

nécessaires

Commentaire : bases de mécanique du point et opérateurs matriciels

Mécanique

OBJECTIE

 La mécanique des solides indéformables permet de comprendre et décrire le fonctionnement de systèmes utilisés autant dans la vie courante que dans le monde industriel. C'est une science indispensable pour la conception des systèmes mécaniques.

PROGRAMME

- modéliser les actions mécaniques (torseur d'action mécanique, densité de force contact, frottement)
- étudier la cinématique (torseur cinématique, accélérations)
- déterminer les quantités cinétiques et dynamiques (torseurs cinétique et dynamique, énergie cinétique, puissance)
- poser, mettre en éguations et résoudre des problèmes de statique et dynamique
- interpréter les résultats obtenus vis-à-vis du fonctionnement du système modélisé

PHYS02A

UE ING.

C 30 h TD 30 h TP 15 h THE 75 h

Printemps

6 crédits

Antécédent : Mechanics of material point

PHYS03

UE ING.

C 30 h TD 30 h THE 70 h

Automne 6 crédits

Commentaire : bases de calcul vectoriel nécessaires, sortie pédagogique au Palais de la Découverte

Mechanics of rigid bodies

OBJECTIE

 The mechanics of rigid solids make it possible to understand and describe the functioning of systems used both in everyday life and in the industrial world. It is an essential science for the design of mechanical systems.

PROGRAMME

- Model the mechanical actions (mechanical action torsor, contact force density, friction)
- Study the kinematics (kinematic torsor, accelerations)
- Determine the kinetic and dynamic quantities (kinetic and dynamic torsors, kinetic energy, power)
- Model with equations and solve static and dynamic problems for rigid bodies
- Interpret the results obtained regarding the functioning of the modeled system

Champs, ondes, vibrations, propagation

OBJECTIF

 En ingénierie, les champs et les ondes interviennent dans la caractérisation des matériaux, les télécommunications, la mécanique, la métrologie, l'électromagnétisme... Ils permettent de décrire et comprendre des phénomènes à toutes échelles.

- décrire physiquement et mathématiquement les champs (statiques, amortis, oscillants) et les ondes (scalaires, vectorielles)
- reconnaître, poser et résoudre des équations d'ondes simples
- déterminer des solutions d'équations d'onde en fonction des conditions limites, manipuler et exploiter leurs principales propriétés (propagation, dispersion, propagation dans un quide, ondes stationnaires...)
- · identifier, connaître et exploiter les phénomènes (interférences, diffraction...)
- établir des liens entre les expressions mathématiques, les propriétés physiques, les phénomènes observables

PHYS04

UE ING.

C 30 h TD 30 h TP 9 h

THE 75 h

Printemps 6 crédits

Commentaire: notions de dérivées partielles, travail mécanique, relation travail-puissance et modèles des gaz à maîtriser

PHYS11

UE ING.

C 30 h TD 30 h TP 4 h

THE 50 h

Automne Printemps 6 crédits

Thermique, énergétique et machines thermodynamiques

OBJECTIE

En ingénierie, les propriétés thermodynamiques concernent les matériaux, les dispositifs et machines produisant ou exploitant de l'énergie comme les systèmes de transport, de transformation, de chauffage, de refroidissement.

PROGRAMME

- · comprendre la notion d'équation d'état et savoir comment la construire pour un gaz
- comprendre la notion d'énergie interne, déterminer les travaux de forces et les quantités de chaleur échangés pour des évolutions simples de systèmes fermés
- identifier les différentes formes d'échange de chaleur et appliquer les lois élémentaires et équations associées (conduction, convection, rayonnement)
- · comprendre la notion d'entropie et le fonctionnement des machines thermodynamiques
- étudier des cycles de moteurs et générateurs et calculer leur efficacité

Physique pour l'ingénieur : Mécanique du point

OBJECTIE

- introduire la mécanique du point par des exemples pris dans la vie de tous les jours.
- susciter la curiosité de l'étudiants autour des phénomènes observés.
- donner les bases du raisonnement scientifique en s'appuyant sur la mécanique.
- apprendre à modéliser des mouvements simple en utilisant les mathématiques.

PROGRAMME

- · repérer un objet dans l'espace
- modéliser un mouvement
- connaitre la cause d'un mouvement
- comprendre les notions d'énergie potentielle et cinétique et en décrire les effets
- appréhender la notion de mouvement autour du centre de masse (introduction à la mécanique des milieux
- indéformables)
- · analyser les différents systèmes vibratoires et les reconnaitre

PHYS12

UE ING.

C 30 h TD 30 h

TP 4 h THE 50 h

Automne Printemps **6 crédits**

Physique pour l'ingénieur : Electromagnétisme

OR JECTIE

- · introduire l'électromagnétisme par des exemples pris dans la vie de tous les jours. Susciter la curiosité de.
- · l'étudiants autour des phénomènes observés.
- donner les bases du raisonnement scientifique en s'appuyant sur l'électricité et le magnétisme.
- apprendre à modéliser des phénomènes et en particulier des circuits électromagnétiques en utilisant les mathématiques.

- définir les bases de l'électromagnétisme
- lois générales de l'électricité, de l'électrocinétique, de l'électrostatique et de la magnétostatique
- notion de champs, de charge
- notion de circuits électrocinétiques
- décrire avec des mots et mathématiquement les façons dont les concepts électromagnétiques peuvent intervenir dans des situations particulières
- · représenter des champs et phénomènes électromagnétiques mathématiquement dans de telles situations
- prédire les résultats dans d'autres situations similaires

SY01

UE ING.

C 30 h TD 30 h THE 68 h

Automne 6 crédits

Commentaire : maîtriser les notions de suite et séries entières, intégrales simples et doubles, éléments de calculs combinatoires

Bases de calcul des probabilités pour l'ingénieur

OR.IECTIE

 Introduction au calcul et à la modélisation probabiliste. L'accent est mis sur la présentation des définitions et propriétés relatives aux variables et vecteurs aléatoires...

- se familiariser avec la notion d'événement aléatoire et de probabilité
- comprendre et maîtriser les principes fondamentaux du calcul des probabilités
- savoir poser correctement un problème reposant sur des données ou informations aléatoires, afin d'élaborer la bonne démarche permettant de faire les calculs de probabilités appropriés et d'en donner la solution

TECHNIQUES ET MÉTHODES

Tronc Commun

BESST

UE ING.

C 2 h TD 4 h THE 40 h

Printemps 2 crédits

EN01

UE ING.

C 15 h TD 30 h TP 15 h THE 86 h

Automne Printemps **6 crédits**

Commentaire : bases d'électrocinétique

EN03

UE ING.

C 24 h TD 30 h TP 36 h

THE 60 h
Printemps
6 crédits

Commentaire : bases d'électrocinétique

Bases essentielles en santé et sécurité au travail

OR JECTIE

 A partir de contenus proposés par l'INRS, il s'agit de dispenser une formation de base dans le domaine de la santé et de la sécurité professionnelles.

PROGRAMME

- connaître les champs d'application et les enjeux de la SST
- · savoir identifier des dangers, des situations dangereuses pouvant causer des accidents du travail
- · acquérir des notions de bases en SST
- savoir comment sont évalués les risques dans l'entreprise
- · comprendre les processus de management de la SST en entreprise

Eléments de base en électronique analogique

OBJECTIE

 En ingénierie, les cartes électroniques utilisent des composants de base de l'électronique analogique. Leur association permet la réalisation de diverses fonctions, telles que l'amplification, le filtrage, la comparaison, le redressement....

PROGRAMME

- comprendre le fonctionnement et les propriétés des différents composants analogiques de base
- apprendre à effectuer des calculs de circuits linéaires à l'aide de divers lois et théorèmes
- réaliser des fonctions linéaires et non linéaires, telles que l'amplification, la dérivation, le filtrage, la comparaison.... en associant les composants
- concevoir des chaînes électroniques à plusieurs étages permettant la transformation des signaux mesurés bruités en des signaux exploitables

Systèmes électroniques

OR JECTII

 Cette UE permet de comprendre les fonctionnements des systèmes électroniques, analogiques et numériques ainsi que les problèmes liés à la réalisation pratique de ces systèmes..

- · Etre capable de synthétiser :
- une alimentation continue basse tension alimentée par le secteur
- une chaîne d¿amplification et de filtrage
- une solution numérique intégrant des fonctions logiques élémentaires sur FGPA
- Etre capable de programmer un microcontrôleur à partir du langage assembleur

EN08

UE ING.

C 30 h TD 30 h TP 15 h THE 75 h

Automne 6 crédits

GL01

UE ING.

C 30 h TD 30 h TP 32 h THE 30 h PB.I 24 h

Printemps 6 crédits

MM01

UE ING.

C 4 h
TD 24 h
TP 24 h
THE 98 h

Automne 6 crédits

Transformation et utilisation des énergies électriques

OBJECTIE

Les technologies électriques sont essentielles dans nos sociétés modernes. L'UE EN05 aborde différentes technologies de conversion de l'électricité à partir de différentes sources d'énergie (hydrauliques, éoliens, solaires).
 Les problématiques du transport et du stockage de l'énergie sont également abordées.

PROGRAMME

- connaître le principe de fonctionnement et la mise en œuvre de différents actionneurs électriques (modes moteurs et aénératrices)
- pouvoir développer une chaine électronique pour assister la conversion d'énergie via des convertisseurs statiques (électronique de puissance)
- connaître les problématiques du transport et du stockage de l'énergie (batteries, hydrogène)
- avoir des notions sur la variation de vitesse et la régulation des actionneurs électriques
- · être sensibilisé aux risques électriques

Introduction au génie logiciel

OBJECTIE

 Cette UE permet de comprendre les rôles et les enjeux du logiciel comme produit d'ingénierie et de s'initier aux méthodes et outils nécessaires à la réussite d'un projet logiciel.

PROGRAMME

- comprendre le processus de développement logiciel en tant que organisation de phases (cycle de vie d'un logiciel)
- savoir identifier et traiter les éléments essentiels d'un logiciel (MVP-Minimum Viable Product)
- · savoir coopérer en équipe pour la conception et le développement d'applications
- comprendre les principes de base de programmation obiets et évènementielle
- savoir mobiliser les compétences acquises (mise en pratique à travers un projet en équipe dans un environnement pédagogique de développement)

Multimédia : du projet à la réalisation

OR JECTIE

 Créer un site internet demande de maîtriser des aspects à la fois relatifs à l'organisation d'un projet, à la conception graphique, à la navigation interactive en utilisant les standards actuels du monde de l'internet (HTML, CSS, JavaScript).

- · savoir planifier et respecter les phases essentielles de la gestion de projet
- être capable d'intégrer les contraintes techniques associées à un projet web
- connaître les aspects juridiques liés aux sources et à l'activité de publication

MS11

UE ING.

C 30 h TD 30 h TP 15 h THE 70 h

Automne Printemps **6 crédits**

NF₀₂A

UE ING.

C 30 h TD 30 h TP 10 h THE 80 h

Automne 6 crédits

NF05

UE ING.

C 30 h TD 45 h THE 45 h PRJ 30 h

Automne 6 crédits

Antécédent : NF04

Mesure physique et instrumentation

OR JECTIE

- acquérir un savoir-faire pratique de base, concernant les techniques de mesure utilisées dans les laboratoires et l'industrie (physique, mécanique, chimie, biologie).
- savoir interpréter les mesures, tirer le maximum d'informations du signal mesuré, choisir l'appareil adapté à une mesure spécifique et présenter les résultats suivant les normes.

PROGRAMME

- bonne compréhension des différences entre mesure directe et indirecte
- être capable de présenter un résultat de mesure suivant une norme
- appréhender :
 - . la notion de corrélation entre grandeurs mesurées
 - . l'analyse statistique sur des mesures et notion de tests d'hypothèses
 - . la notion de signal périodique et analyse de Fourier
 - . des techniques de mesures et choix des appareils

Computers and Networks Organization

OBJECTIE

 This course details the organization of computers and computer networks in order to explain, for each, how and why it works.

PROGRAMME

- understand the organization of both computer and computer networks
- understand the goal and functions of each and every stack from this organization, from transistors up to
 operating systems for computers and from electrical signal to html webpage for computer networks
- know the main challenges that each element in this organization is aimed at solving as well as the main tools for proving such solution

Introduction au langage C

OR JECTIE

 En ingénierie, il est nécessaire de décrire la solution d'un problème en algorithme puis de le traduire en un programme. Cette UE permet de se familiariser à la programmation en langage C qui, avec ses différentes variantes, est le langage le plus utilisé.

- comprendre les outils de programmation (éditeur syntaxique, compilateur, débuggueur...)
- être capable de traduire un algorithme en langage C
- connaître la structure d'un programme C et les bases du langage (types, opérateurs, structures de contrôle, fonctions, pointeurs, tableaux, chaînes de caractères, listes chaînées, fichiers)
- savoir, à partir d'un algorithme, réaliser un programme dans le respect des exigences industrielles de production de « bons » logiciels

NF05A

UE ING.

30 h TD 45 h THE

30 h

Printemps 6 crédits Antécédent : NF04

PIX

UE ING.

TD 136 h

Automne **Printemps** 4 crédits

RP01

30 h

90 h

24 étudiants maximum Prérequis MATH01

PRJ 30 h

Printemps

6 crédits

Introduction to C language

· In engineering, it is necessary to describe the solution of a problem in algorithm then to translate it into a program. This UE allows you to familiarize yourself with programming in C language which, with its different variants, is the most used language.

- being able to translate an algorithm into C or Python language
- know the structure of a C or Python program and the basics of the language (types, operators, control structures, functions, pointers, arrays, character strings, linked lists, files)
- know, from an algorithm, how to realize a program in compliance with industrial requirements for production of «good» software

Compétences numériques

OBJECTIE

- La maîtrise d'Internet et des outils informatiques passe par des compétences indispensables telles que :
 - . savoir protéger son environnement numérique.
 - . contrôler sa e-réputation,
 - . savoir utiliser une suite bureautique.
 - . rechercher de l'information.

PROGRAMME

- être responsable à l'ère du numérique
- produire, traiter, exploiter et diffuser des documents numériques
- organiser la recherche d'informations à l'ère du numérique

Résolution de problèmes en ingénierie

- utiliser une démarche scientifique pour résoudre des problèmes
- élaborer, exploiter un modèle
- discuter les résultats numériques
- se familiariser au débat contradictoire
- compléter ses connaissances et savoir faire.
- les rendre mobilisables.

- analyser un problème : questions à se poser, actions à planifier et exécuter
- modéliser un problème : cadre, limites et méthodes
- identifier les données d'entrée : variables, paramètres endogènes et exogènes
- résoudre numériquement un problème : utilisation d'outils numériques tels octave et maxima
- discuter l'influence des différents paramètres et la pertinence des solutions, étudier la sensibilité
- présenter une résolution et en débattre avec les autres étudiants, arbitrer
- poser un problème et proposer des pistes de résolution

TNEV

UE ING.

TD 45 h TP 3 h THE 100 h PBJ 130 h

Automne Printemps **6 crédits**

TNOP

UE ING.

C 30 h TD 30 h TP 15 h

Printemps 6 crédits

TN01

UE ING.

C 26 h TD 30 h TP 32 h THE 34 h PRJ 16 h

Automne Printemps 6 crédits

Gestion et réalisation d'un projet mécatronique : initiation

OBJECTIE

• Gestion et réalisation d'un projet mécatronique : initiation.

PROGRAMME

- la gestion de projet en montrant sa capacité à planifier, jalonner, répondre à des échéance
- le travail en équipe en montrant sa capacité à se répartir les tâches, se coordonner, intégrer les travaux réalisés, communiquer
- la réalisation d'un système mécatronique en montrant sa capacité à identifier, utiliser des technologies mécaniques, électroniques et informatiques pour atteindre des objectifs fixés d'une part et sa capacité à mettre en œuvre des moyens techniques de transformation de matière sous contraintes de sécurité, propreté,... d'autre part

Technologies optiques

OBJECTIE

 En partant des composants optiques (sources, détecteurs, éléments d'optiques), découvrir les grandes technologies optiques : imagerie, optique instrumentale, interférométrie, polarimétrie, télécoms.

PROGRAMME

- se familiariser avec les composants optiques (sources, détecteurs, éléments d'optique)
- identifier les composants nécessaires pour une application : choisir une source (lampes, LED, laser), un détecteur (photodiode, CCD...) et des éléments d'optique (filtres, densités, miroirs, lentilles...)
- · dimensionner et concevoir un système d'analyse optique
- connaître les grandes technologies optiques utilisées par l'industrie

Initiation à la définition et à la fabrication d'un objet technique

OBJECTIF

 Lors de la phase de conception d'un système, des maquettes 3D sont utilisées et converties en plan 2D pour leur réalisation en atelier. Le fonctionnement de cette conversion ainsi que son efficacité dépendront du choix des solutions technologiques qui seront prises en compte.

- représenter un produit en utilisant les normes de dessin technique
- analyser et comprendre un système à travers ses schémas et dessin d'ensemble
- utiliser un code C.A.O (Creo) pour définir un composant et un système
- connaître les normes de désignation des matériaux et alliages essentiellement métalliques
- connaître les fonctions et la désignation de divers composants mécaniques (Ex : Vis, Ecrou, Roulement, Clavette, Circlips, Engrenage)
- être initié aux procédés de fabrication avec et sans enlèvement de matière (Ex : Tournage, Fraisage, Moulage, Emboutissage)

TN02

UE ING.

26 h TD 45 h 8 h 70 h

Automne 6 crédits

Antécédent : TN01, ou

TN04

UE ING.

4 h TD 45 h THE 68 h

Automne **Printemps**

6 crédits

de français exigé pour comprendre les règles et contraintes de sécurité sur

TN08

UE ING.

30 h TD 30 h ΤP THE 50 h

Printemps 6 crédits

20 h

Technologie et initiation au bureau d'études

- Cette UE permet d'analyser, de choisir et de mettre en œuvre les éléments techniques et fonctions mécaniques de base nécessaires au concepteur mécanicien.

PROGRAMME

- être capable de dimensionner des composants mécaniques
- découvrir la technologie des liaisons
- être capable d'appréhender les jeux fonctionnels, l'étanchéité, la lubrification, la statique du solide, barre en traction-compression
- modéliser la transmission de puissance
- effectuer une réalisation en CAO sous forme de mini projet

Gestion et réalisation d'un projet d'ingénierie : initiation

OBJECTIF

En atelier, la conception et la réalisation d'un obiet personnel ou imposé en bois et/ou en métal nécessite riqueur et organisation. Les contraintes de résultat, de temps, de coût, d'environnement de travail, etc. doivent être prises en compte.

PROGRAMME

- gérer la livraison d'un projet de qualité dans les délais imposés
- définir de manière précise un objet ou système multi-technique en prenant en compte les contraintes d'un atelier et les compétences techniques que l'on est capable d'acquérir et de mettre en œuvre.

Initiation à la mise en œuvre de la matière

· L'ingénieur est confronté régulièrement à l'utilisation des matériaux. Il est nécessaire de comprendre à différentes échelles, l'organisation de la matière, pour en comprendre les propriétés et faire des choix d'utilisation et de mise en forme.

- connaître les principales catégories de matériaux
- comprendre l'effet de la composition sur les propriétés
- comprendre les propriétés principales des matériaux
- analyser les différents types de caractérisation mécanique et le comportement mécanique des matériaux
- élaborer une méthodologie d'analyse (économique, environnementale et technique) à travers un projet

TPC01

UE ING.

C 15 h TD 30 h TP 40 h THE 65 h

THE 65 h PRJ 16 h

Automne 6 crédits Antécédent : CM10

Techniques d'analyses physico-chimiques

OR JECTIE

 Cette UE aborde un ensemble de techniques d'analyses physique ou chimique sous un angle pratique. Au travers d'un projet concret et actuel, ces techniques seront étudiées, mises en œuvre et analysées afin d'en comprendre les limites d'utilisation.

- être capable de combiner des techniques d'analyses pour répondre à une problématique
- s'initier à la réalisation d'un projet de recherche
- · savoir effectuer des recherches bibliographiques
- · savoir présenter ses résultats de façon moderne et efficace

CONNAISSANCES SCIENTIFIQUES

Branches

DI03

UE ING.

C 30 h TD 16 h TP 18 h

Automne 6 crédits

Commentaire : UE réalisée à Reims

Diagnostic et sûreté de fonctionnement

OR JECTIE

- Formaliser les méthodes de diagnostic et montrer comment elles peuvent être automatisées pour détecter et localiser des défauts.
- Étudier les techniques d'analyse de la sûreté de fonctionnement des systèmes.

PROGRAMME

- méthodes de génération d'équations de redondance
- méthodes à base d'observateurs pour la détection et la localisation des défauts
- placement de capteurs en vue de la détection et l'isolation des défauts
- approches statistiques et tests d'hypothèses
- analyse des Modes de Défaillance, de leurs Effets et de leur Criticité
- arbres de défaillances et diagramme de décision binaire

EA01

UE ING.

C 30 h TD 30 h TP 20 h THE 68 h

Printemps 6 crédits

Automatique et asservissement

OBJECTIF

- · Être capable de maîtriser les concepts et les outils de l'automatique, de la régulation et de l'asservissement.
- Être capable d'analyser ou de commander un système automatisé.

PROGRAMME

- connaître la technologie des systèmes automatisés (automate programmable...)
- savoir résoudre un problème dynamique en utilisant la transformée de Laplace
- connaître, identifier et mettre en œuvre les asservissements linéaires analogiques et les schéma bloc
- savoir calculer des fonctions de transfert, représenter leur comportement via les diagrammes de Bode, Nyquist et/ou Black
- savoir proposer une correction des systèmes asservis répondant à un cahier des charges donné

EA07

UE ING.

C 30 h
TD 30 h
TP 16 h
THE 37 h
PRJ 37 h

Automne 6 crédits

Commentaire : Connaissance des circuits simples en continu et

Actionneurs électriques

OB JECTIE

 Connaître, comprendre et apprendre à utiliser les différents types d'actionneurs électromagnétiques ou piézoélectriques employés, par exemple, pour concevoir des systèmes de production automatisés ou des robots.

- · connaître les principes physiques sur lesquels sont basés les actionneurs électromagnétiques et les phénomènes
- · physiques associés
- savoir utiliser les notices des constructeurs pour calculer l'évolution des grandeurs mécaniques, électriques et
- thermiques
- savoir rédiger un cahier des charges pour la mise en place d'un actionneur avec son alimentation et son pilotage
- connaître les modélisations simplifiées des actionneurs et savoir identifier les paramètres du modèle à partir des notices constructeur ou bien de mesures expérimentales
- être capable de proposer des modes de fonctionnement non standards pour des actionneurs donnés
- savoir mettre en œuvre des asservissements numériques pour piloter les actionneurs

EN06

UE ING.

C 28 h TD 22 h

THE 60 h

Printemps 6 crédits

Commentaire : UE réalisée à Reims

Composants, systèmes électroniques, capteurs et instrumentation

OBJECTIF

- · Connaitre le fonctionnement des composants à semi-conducteurs.
- Mettre en œuvre des composants dans les circuits électroniques.
- · Savoir appréhender l'étude des circuits électroniques et la problématique de la mesure d'une grandeur physique.
- Comprendre le fonctionnement et savoir instrumenter un capteur en vue d'une application déterminée.

PROGRAMME

- transistors, présentation, caractéristiques, régimes de fonctionnement (linéaire et non linéaire)
- · classes de fonctionnement du transistor, étude de montages
- · amplificateur différentiel et Opérationnel
- la fonction Amplification adaptée aux capteurs
- · conditionneurs, ponts de mesure, oscillateurs
- · généralités, métrologie des capteurs
- principes physiques des capteurs
- · capteurs industriels, exemples de mise en œuvre
- pilotage d'instrument, IEEE488, SCPI via LabVIEW

FQ03

UE ING.

C 30 h TD 30 h TP 8 h THE 82 h

Printemps 6 crédits

Plans d'expériences

OBJECTIF

La méthode des plans d'expériences permet de modéliser et d'optimiser la performance d'un système industriel à partir d'essais :

- savoir planifier un jeu d'essais permettant à l'analyse des données de résoudre le problème posé.
- apprendre un panel de plans d'expériences usuels et savoir choisir un plan approprié à un problème spécifique.
- savoir mener l'analyse statistique des données issues d'un plan donné, à l'aide d'un logiciel, pour la prise de décision et l'optimisation.

PROGRAMME

- notions essentielles de planification des essais
- méthode d'analyse des données pour problèmes à un seul facteur
- problèmes à plusieurs facteurs : plans factoriels complets, plans fractionnaires
- plans pour problèmes plus complexes : étude de robustesse, optimisation
- étude de cas pratiques et réalisation de projets (techniques de paramétrage, réglage d'un outil de production, amélioration de performance)

GL02

UE ING.

C 30 h TD 15 h TP 17 h

THE 88 h PRJ 50 h

Automne 6 crédits

Fondements de l'ingénierie logicielle

OBJECTIF

- Comprendre et mettre en pratique les liens entre spécification, implémentation et tests au cœur de la démarche.
- · d'ingénierie logicielle pour le développement de projets logiciels efficients, maintenables, utilisables et sûrs.

- modéliser les fonctions d'un logiciel
- · spécifier des formats de données et des traitements
- · contrôler la conformité à une spécification
- · conduire une inspection des sources d'un projet logiciel
- coordonner des développements en équipe
- réaliser un projet complet en petite équipe afin de participer à l'ensemble des étapes d'un projet d'ingénierie logicielle
- se former en autonomie à la maîtrise d'un langage de programmation (Python, Javascript, Ruby ou Lua)

GP27

UE ING.

C 30 h TD 30 h TP 14 h THE 80 h

Automne 6 crédits

Commentaire :

IF01

UE ING. OU UE MAST.

C 30 h TD 30 h THE 90 h

Automne 6 crédits

Méthodes de gestion des stocks et de prévision de la demande

OBJECTIF

 Cette unité de valeur permet d'étudier les méthodes de prévision de la demande (à court et long terme) et les politiques de gestion de stocks dans différentes configurations (mono, multi-produit, mono, multi-site, déterministes ou aléatoires).

PROGRAMME

- classifier des produits et valoriser un stock
- choisir et appliquer les modèles de prévision de la demande à court et long terme
- choisir et mettre en place une politique adéquate de stockage, déterminer les paramètres (période de révision, quantité à commander, seuil de déclenchement, stock de sécurité)
- programmer des modèles mathématiques issus de la recherche opérationnelle et des méthodes de résolution (VBA, solveur)
- choisir puis étudier un article dans les bases de données scientifiques

Théorie et codage de l'information

OBJECTIE

Devant l'ampleur actuelle des technologies de communications, il est important de comprendre le fonctionnement des systèmes de communication et la manipulation de l'information mise en jeu.

PROGRAMME

- · savoir quantifier l'information au sens de Shannon
- modéliser une source d'information
- coder l'information émise par une source discrète
- · modéliser un canal de transmission
- comprendre le codage canal robuste face au bruit

IF02

UE ING. OU UE MAST.

C 30 h TD 30 h THE 90 h PBJ 50 h

Printemps 6 crédits

Modélisation pour la conception des SI

OR JECTIE

 L'objectif de cette UE est l'apprentissage du rôle des technologies de l'information et de la communication pour résoudre des problèmes dans les organisations. Les étudiants s'approprient le concept de Système d'Information (SI), et de la conception orientée objet de ces SI.

- · comprendre l'alignement stratégique du Système dInformation
- analyser les tâches d'un métier
- établir les exigences fonctionnelles en partant des exigences prédéfinies
- rassembler, formaliser et valider des exigences techniques et non-techniques pour les systèmes sociotechniques complexes
- maîtriser des techniques, normes et méthodes de spécification orientée objet (UML : diagramme de cas d'utilisation, de classes, d'états-transitions, de séquence, d'activité)
- produire de la documentation

IF₀₂A

UE ING.

C 30 h TD 30 h THE 90 h

Automne 6 crédits

Object-Oriented System Analysis and Design

OR JECTIE

 This course gives the concepts and techniques for analyzing the requirements for information systems and designing such systems for solving business problems. Students will go through the steps of system analysis and design by engaging with and object oriented and use-case driven real-life practical case..

PROGRAMME

- positioning a project towards the organization strategy of an organization
- defining and applying requirements gathering techniques
- modelling the current functioning of an organization
- modeling a technical solution to be able to present it to users and get approval
- documenting an Information System project

IF05

UE ING.

TD 60 h THE 90 h

Printemps 6 crédits

Qualité du logiciel

OBJECTIF

 Mettre en œuvre les méthodes dites « agiles » dans le domaine de la création logicielle en vue du respect de la qualité, des coûts et des délais.

PROGRAMME

- · aider les utilisateurs ciblés à énoncer des récits à propos de ce qu'ils pourraient faire avec le logiciel
- identifier et décrire des fonctionnalités du logiciel (tickets)
- planifier et assurer le suivi d'un projet logiciel de manière itérative (kanban)
- réaliser des maguettes et rédiger un manuel d'utilisation autour de scénarios d'usage
- · élaborer, automatiser et faire passer des tests de recette
- concevoir et développer une fonctionnalité de manière « frugale »

IF06A

HE ING

C 30 h TD 30 h THE 90 h PRJ 45 h

Automne 6 crédits

Computer Supported Cooperative Work

OR JECTIE

- This course provides a survey of the social, organizational, and technical concepts and issues.
- · involved in designing, developing, deploying, and evaluating software systems supporting cooperation and.
- coordination in organizations.

- · understanding the most important research traditions and problem statements within the field
- · conducting observation work
- identifying collaborative practices
- · incorporating insights from observation work into system design
- coordinating participatory design sessions
- discussing concepts in the field of computersupported cooperative work (coordination, cooperation, collaborative mechanisms and artefacts, practice-based computing, design case study, awareness, knowledge sharing, heuristic evaluation, scenario-based design....)

IF08

UE ING.

C 30 h TD 30 h THE 90 h

Printemps 6 crédits

Antécédent : stag

IF09

UE ING.

C 30 h TD 30 h THE 90 h PRJ 50 h

Automne 6 crédits

IF10

UE ING.

C 30 h TD 30 h THE 90 h PRJ 70 h

Automne 6 crédits

Commentaire :

Management de projets informatiques

OR JECTIE

 L'objectif de cette UE est l'appropriation des principes et techniques du management de projets informatiques, tant du point de vue de la maîtrise d'œuvre que de la maîtrise d'ouvrage.

PROGRAMME

- appliquer les techniques, normes et méthodes de planification, mettre en place un plan d'activités
- gérer les risques, proposer des mesures d'urgence efficaces
- mettre en œuvre des techniques, normes et méthodes de travail collaboratif, coordonner des développements en équipe
- produire de la documentation
- · gérer la relation client, accompagner le changement

Systèmes documentaires

OBJECTIF

Analyser et concevoir le système d'information d'une activité professionnelle en se focalisant sur ses documents numériques plutôt que sur ses données de gestion.

PROGRAMME

- analyser les propriétés des flux documentaires d'une activité
- choisir les modèles (de preuve, stockage, description, révision, indexation matière, hypermédia) adaptés à chaque type de document
- · concevoir une architecture documentaire complète et cohérente
- évaluer des logiciels ou des normes documentaires en fonction des besoins
- mettre en œuvre des traitements spécifiques de fouille et de transformation de textes structurés

Conception centrée usages - Design de l'interaction

OBJECTIF

 La mise en place d'une démarche centrée utilisateurs/usages constitue un prérequis pour la conception de systèmes interactifs utilisables et performants qui répondent aux attentes des clients et aux besoins des utilisateurs finaux

- identifier et caractériser les besoins utilisateurs
- mettre en œuvre une démarche Agile UX
- · comprendre l'apport des méthodes de design fiction
- concevoir et réaliser des maquettes basse et movenne fidélité (wireframes, Arduinos....)
- utiliser les méthodes d'évaluation utilisateur et experte
- · connaître les principes du design graphique des IHM

naio Scian

IF17

UE ING. OU UE MAST.

C 30 h TD 30 h THE 90 h

Automne 6 crédits

Architectures décisionnelles

OR JECTIE

 Les objectifs de ce cours consistent à appréhender les enjeux, les outils et les difficultés liées à la conception et à l'intégration d'applications à caractère décisionnel au sein des Systèmes d'Information ainsi qu'à acquérir des notions concernant la fouille de données dans des grands volumes de données.

PROGRAMME

- analyser les enjeux et les spécificités des projets décisionnels
- concevoir des architectures matérielles et logicielles pour l'informatique décisionnelle
- concevoir des entrepôts de données (datawarehouse)
- mettre en évidence les problèmes et solutions technologiques liés à l'approvisionnement en données des entrepôts (hétérogénéité, volumétrie)

IF19

UE ING.

C 30 h TD 26 h THE 94 h PRJ 25 h

Automne 6 crédits

Réaliser un diagnostic organisationnel

OBJECTIF

 En adoptant des grilles d'analyse sociologiques sur le fonctionnement des organisations, l'UE apprend à réaliser un diagnostic situé afin de dégager des freins et leviers pour accompagner une situation de changement et l'ingénierie des SI.

PROGRAMME

- analyser des situations de travail en mobilisant les principales théories de sociologie des organisations
- identifier de manière systémique les enjeux «métiers» liés au système d'information (question du changement, des identités professionnelles, rapports maîtrise d'œuvre/maîtrise d'ouvrage, etc.)
- aligner les systèmes d'information et l'organisation (du travail, des activités «métier»)
- aligner les systèmes d'information et l'organisation en tenant compte des écarts entre prescrit et réel
- analyser les jeux d'acteurs et les ressorts de la coopération et de l'engagement au travail pour identifier les conditions de réussite des transformations

IF22

HE ING

C 24 h TD 30 h TP 16 h

Printemps 6 crédits

Gestion des Systèmes d'Information

OB JECTI

Ce cours traite de la gestion des Systèmes d'Information selon l'approche globale de l'Architecture d'Entreprise
(AE) qui couvre l'urbanisation du Système d'Information, la gestion des référentiels, la gestion du portefeuille de
projets, et les méthodologies de transformation pour apporter un avantage concurrentiel à l'Entreprise.

PROGRAMME

• appliquer les principaux référentiels du Système de Management d'une DSI (CMMI, ITIL, COBIT, ISO)

IF23

UE ING.

C 30 h TD 15 h TP 15 h THE 60 h

Printemps

6 crédits

Antécédent : MATH03, SY01 Commentaire :

IF25

UE ING. OU UE MAST.

C 30 h TD 30 h THE 86 h

6 crédits

IF27

Printemps

6 crédits

TD

Géolocalisation par satellites

OR IECTIE

• Comprendre et utiliser un système de positionnement par satellites (GNSS).

PROGRAMME

- comprendre et utiliser la notion de pseudo-distances pour calculer la position d'objets statiques ou en mouvements
- connaître le positionnement en mode différentiel et par mesure de phase
- savoir calculer dans les différents repères et systèmes de coordonnées
- être familiarisé avec les notions de géographie physique (géoïde, altitude)
- mettre en place et utiliser un système de géolocalisation par satellites
- avoir des notions sur les applications possibles (agriculture, circulation routière, archéologie, ...)

Data mining pour les réseaux sociaux

OBJECTIE

 Depuis quelques années, les réseaux sociaux se positionnent comme une source de données hétérogènes d'une grande richesse (Big Data). L'utilisation du data mining permet non seulement de suivre les tendances, mais aussi de détecter (et parfois prédire) les acteurs et les interactions atypiques.

PROGRAMME

- modéliser les réseaux sociaux par les graphes (statiques et dynamiques)
- mettre en œuvre les techniques de collecte et de stockage de données (écoute passive et active)
- · extraire des règles de corrélation, classifier les données et détecter des anomalies
- détecter dans un grand flux de données bruitées des signaux faibles
- · détecter des spams et des bots sociaux dans un contexte Big Data

Sécurité des données et des services

OBJECTI

· Connaître et comprendre les outils et démarches de sécurisation des données et des services.

- · connaître la démarche d'audit
- appréhender la notion de Pentest
- · comprendre les architectures de gestion des accès et des identités (IAM)
- proposer des solutions de sécurité
- connaître les dimensions juridiques liées à la protection des données (RGPD)

IF29

UE ING.

C 30 h TD 30 h TP 12 h THE 78 h

Printemps 6 crédits

....

 Le traitement de données est central pour les entreprises, en particulier pour comprendre le marché ou aider à la prise de décision. Il s'aoit de former à la collecte, le traitement, et la compréhension des données.

PROGRAMME

- modéliser un problème complexe pour le traduire en chaîne de valorisation (Collecte, Stockage, Analytics, Visualisation)
- collecter et préparer la donnée (nettoyage,exploration, sélection de dimensions) pour les algorithmes de Machine Learning
- reconnaître et formuler un problème de Machine Learning
- identifier les algorithmes pertinents pour le traitement et la visualisation
- dimensionner les ressources pour une chaîne de traitement pour résoudre un problème complexe

Traitement de données (Data Analytics)

 assurer le passage à l'échelle des traitements pour faire face aux défis de grandes volumétries et de variabilité des projets Big Data Analytics

IF36

UE ING.

C 30 h TD 30 h

Printemps 6 crédits

Conception de visualisations de données

OBJECTIF

 Quand les algorithmes les plus raffinés peinent à mettre en évidence des tendances et des signaux faibles dans des données massives ou complexes, une visualisation adaptée, couplée aux fonctions cognitives d'un humain se révèle parfois plus pertinente.

PROGRAMME

- identifier dans la structure des données des relations possibles à la fois perceptibles et signifiantes
- déterminer si un mode de visualisation existant pourrait convenir
- associer à chaque caractéristique une variable visuelle de manière à obtenir un tout cohérent
- maquetter la solution avec des données réalistes et en discuter avec les usagers ciblés
- prototyper la visualisation
- évaluer sa pertinence en faisant varier les données (réelles) et les usagers

IF37

HE ING

C 30 h TP 30 h THE 90 h

Automne 6 crédits

Conception responsable de systèmes interactifs

OBJECTIF

 L'objectif de l'UE est de fournir les éléments (conceptuels, méthodologiques, techniques) de base pour la conception de systèmes interactifs soutenables dans des contextes d'usage variés.

- · assimiler les connaissances minimales sur le fonctionnement perceptif et cognitif pour l'interaction numérique
- maîtriser les différentes typologies d'interaction (multimodale, incidente, distribuée, médiatrice, virtualisante) et les dispositifs d'entrée et d'affichage associés
- se familiariser avec les dispositifs actuels (outils, langages, frameworks) de conception et développement de systèmes interactifs (WIMP et post-WIMP)
- connaître les principes de la conception durable et de la soutenabilité en tenant compte de l'impact sur les composantes environnementale, humaine et sociale

LO01

UE ING. OU UE MAST.

C 30 h TD 30 h TP 17 h THE 73 h PBJ 30 h

6 crédits

Commentaire : UE fermé pour les étudiants ayant obtenu NF04 et NF05

Basis of computer science

OR JECTIE

The aim of this course is to teach the basic concepts and tools of computer science to acquire a structured
and systematic problem-solving approach and to understand how language interact with finite state machines.

PROGRAMME

- · finite state machines in the broad sense
- mastering the process of algorithm writing
- · knowing static data structures
- · acquiring notions about dynamic data structures
- knowing standard algorithms (such as sorts')
- using recursivity
- knowing basic C language

LO12

UE ING. OU UE MAST.

C 30 h TD 30 h TP 20 h THE 70 h

Printemps 6 crédits

Intelligence artificielle et applications

OBJECTIE

 Les applications de l'intelligence artificielle sont en plein essor. L'objectif de l'UE est de donner les bases de cette discipline, que sont la représentation des connaissances et le raisonnement.

PROGRAMME

- · représenter les connaissances en se basant sur la logique
- mettre en œuvre le principe de résolution dans le langage Prolog
- utiliser différentes formes de raisonnement dans des outils de développement: systèmes à base de règles et générateur de systèmes experts (CLIPS); systèmes multi-agents (plateforme de développement Madkit)
- représenter l'incertain et l'imprécis
- s'initier à des concepts avancés : apprentissage automatique, méta-connaissances, raisonnement à partir de cas

LO13

IE ING

C 30 h TD 30 h TP 20 h THE 40 h

Printemps 6 crédits

3D computer graphics: theory and applications

OR JECTIE

 3D computer graphics concerns the graphic methods representation of 3D objects or 3D scenes. There are many applications, from CAD to scientific visualization and in particular virtual reality.

- how to define a mathematical (continuous) model for 3D objects: Béziers surfaces, splines, NURBS
- · know generate a discrete model from a continuous model of 3D objects: geometric surface mesh
- master the basics of 3D visualization: linear transformations, view systems, perspective projections
- know the realistic 3D rendering: shading models, removal of hidden parts, radiosity method, ray throwing
- · do 3D computer graphics with the OpenGL graphics library
- understanding virtual reality and augmented reality

MA02

UE ING. OU UE MAST.

C 30 h TD 30 h TP 20 h

Automne 6 crédits

Commentaire : nécessaire

Structures et propriétés physiques de la matière

OR JECTIE

- Les propriétés mécaniques, électriques et thermiques de la matière sont, dans une large mesure, issues des comportements microscopiques des atomes et des molécules qui la constituent.
- Nous étudierons comment il est possible de comprendre et prévoir ces propriétés à partir des lois physiques de base.

PROGRAMME

- agitation thermique et interactions dans la matière
- du microscopique au macroscopique: approche statistique et thermodynamique (distribution statistique, ordre et entropie, fondement du 1^{er} et du 2nd principe de la thermodynamique)
- physique quantique (dualité onde-corpuscule, formalisme de la physique quantique, le cas de l'oscillateur harmonique)
- propriétés thermiques de la matière
- propriétés mécaniques de la matière
- propriétés électriques de la matière

MA03

UE ING. OU UE MAST.

C 30 h

TP 20 h

HE 60 I

6 crédits

Commentaire : nécessaire pour suivre OP01 et NM01

Interaction Rayonnement-Matière

OBJECTIF

 Les propriétés d'interaction entre les rayonnements et la matière sont utilisées pour la caractérisation structurale des matériaux, leur mise en forme, et pour le développement des nouvelles technologies (télécommunications, énergie, affichage, capteurs).

PROGRAMME

- comprendre les propriétés fondamentales des photons et des ondes électromagnétiques sur un spectre énergétique étendu allant des très hautes énergies (rayonnement gamma) aux très basses énergies (ondes radioélectriques)
- comprendre et décrire les processus fondamentaux d'interaction entre le rayonnement et la matière : propagation, réflexion, réfraction, diffraction, absorption, émission
- comprendre, mettre en œuvre et utiliser des moyens de caractérisation structurelle des matériaux : interférométrie, réfractométrie, spectroscopies, diffraction des rayons X

MA04

UE ING.

C 30 h TD 30 h

Printemps 6 crédits

Chimie pour les matériaux

OR JECTIE

 La maîtrise des processus d'élaboration, transformation et dégradation des matériaux nécessite une compréhension des aspects chimiques fondamentaux. Ils permettent de décrire la réactivité des molécules, la structure et les propriétés du matériau.

- établir des liens entre la structure de la molécule (modèles de liaison, effets électroniques), la synthèse du matériau (mécanismes, cinétiques), sa structure moléculaire (tacticité...) sa réactivité de surface et ses propriétés
- maîtriser les outils scientifiques et techniques nécessaires à la synthèse et caractérisation des polymères, copolymères et composites
- maîtriser la synthèse des matériaux micro et méso-poreux, décrire leur structure et comprendre leurs propriétés (adsorption, échange ionique..) ainsi que leurs applications (dépollution de l'eau, catalyse, stockage de l'hydrogène)

MA05

UE ING.

C 30 h TD 30 h THE 90 h

Printemps 6 crédits

Antécédent : MA02

Physique de la matière solide

OR JECTIE

La matière condensée permet de mieux comprendre les propriétés physiques des matériaux. Cette UE propose d'approfondir l'usage des lois physiques décrivant les solides.

PROGRAMME

- propriétés physiques de la matière
- modèles simples décrivant les solides
- · conduction électrique et théorie des bandes d'énergie
- chaleur phonon et vibration
- magnétisme dans la matière

MA11

UE ING. OU UE MAST.

C 30 h
TD 30 h
TP 14 h
THE 60 h

Automne 6 crédits

Commentaire : bases de

Matériaux métalliques

OBJECTIF

 On trouve des matériaux métalliques partout dans nos sociétés industrialisées. Il s'agit ici de donner les principales connaissances sur ces alliages, sur leur comportement mécanique et leurs propriétés, que l'on peut maîtriser de différentes façons.

PROGRAMME

- connaître la structure cristallographique des métaux, leurs défauts et les bases de la diffusion
- savoir interpréter les diagrammes binaires et les transformations isothermes
- être capable de prévoir la microstructure d'un alliage donné à partir d'un diagramme d'équilibre ou de diagrammes TTT/TRC lors d'un refroidissement rapide
- · connaître les traitements thermiques usuels
- connaître les principales propriétés des alliages les plus courants, leur élaboration, leurs applications et leurs normalisations
- comprendre le comportement de ces matériaux par la théorie des dislocations

MA12

UE ING. OU UE MAST.

C 30 h TD 24 h TP 12 h THE 80 h

Printemps 6 crédits

Physique des polymères et composites

OR JECTIE

- Donner des connaissances de base sur les matériaux polymères et composites.
- Propriétés physiques et mécaniques, thermodynamique des mélanges, bio-polymères, mise en œuvre.

PROGRAMME

Compétences :

- reconnaître, choisir et utiliser des matériaux polymères
- comprendre la structure interne d'un polymère et les voies de modifications
- caractériser les propriétés de ces matériaux

Contenu du programme :

- polymères: de la molécule au matériau fini. Cohésion, structure moléculaire, thermodynamique des mélanges, formulation et mise en forme, applications nouvelles
- polymères issus du vivant et biomatériaux naturels : formulation, mise en forme et applications
- composites: propriétés mécaniques et physiques, énergie de surface, matrice/renfort, procédés de fabrication, High-Tech

MA14

UE ING. OU UE MAST.

C 30 h TD 30 h

THE 60 h

Printemps 6 crédits

Antécédent : MA02

MDPIMIC1

UE ING.

C 35 h THE 35 h

Automne 6 crédits

UE en alternance, possibilité de la proposer aix étudiants en formation initiale

Admission soumise à un test de positionnement

MDPIMIC2

UE ING.

C 35 h THE 35 h PRJ 35 h

Automne 6 crédits

UE en alternance, possibilité de la proposer aix étudiants en formation initiale Admission soumise à un

test de positionnement

Semi-conducteurs et matériaux pour les technologies avancées

OBJECTIF

 L'électronique et les technologies avancées utilisent des propriétés originales des semi-conducteurs et de certains matériaux qui permettent des fonctions très sophistiquées, à l'utilisation croissante.

PROGRAMME

- comprendre et décrire le fonctionnement et les propriétés des semi-conducteurs et des autres matériaux utilisés dans les technologies électroniques et avancées (magnétisme, supraconductivité, photovoltaïsme)
- comprendre les phénomènes et les principes de fonctionnement des composants à semi-conducteurs et les
- problématiques liées aux matériaux les constituant
- échanger, extraire et traiter des informations techniques relatives à la mise en œuvre de ces matériaux et des
- procédés associés, avec des spécialistes ou à partir de documents techniques

Introduction à CATIA automation (micro-certification)

OBJECTII

Cette micro-certification vous fera découvrir le processus d'automatisation dans CATIA V5. Vous apprendrez comment créer des scripts d'automatisation, des programmes et des macros dans CATIA V5 à l'aide de Visual Basic.Le modèle de données CATIA V5 et l'aide en ligne spécifique à CATIA Automation seront étudiés afin de vous permettre de réaliser un script complexe, basé sur un cas industriel dans la phase de consolidation de la certification.

PROGRAMME

Phase préparatoire :

- · présentation de CATIA Automation
- premier script, découverte de l'interface
- questionnaire d'auto-positionnement

Formation présentielle :

- · concevoir un script d'automatisation, l'idée et sa faisabilité
- l'aide en ligne et son utilisation optimale
- étude de scripts existants, développement d'un script d'automatisation à partir d'un besoin exprimé Phase de consolidation :
- · de l'analyse du besoin à la formation des utilisateurs : créer un script d'automatisation

Product as a service Lifecycle Management (micro-certification)

OR JECTIE

- Cette micro-certification vous fera découvrir la gestion de cycle de vie des produits et infrastructures..
- A partir d'activités vous permettant de comprendre et de partager les concepts, vous serez amené à manipuler le concept de PLM as a service et à mettre en œuvre un projet portant sur sa définition.
- Cette micro-certification vous permettra de comprendre les implications de ce concept dans des domaines industriels variés allant de la conception de produits manufacturés au développement et à la réalisation d'infrastructures plus complexes.

PROGRAMME

- auto-positionnement
- aborder le PLM par un jeu collaboratif

Formation présentielle :

- comprendre les concepts du PLM, du besoin initial au socle fonctionnel, découvrir des plateformes (Windchill / 3DExperience / autre), comprendre les évolutions des attentes et l'émergence des offres as a service dans un contexte d'Industrie 4.0
- illustrer ces concepts sur des projets de mise en œuvre industrielle (industrie des produits et services, infrastructures)
 Phase de consolidation : développer et mettre en œuvre une offre de PaaSLM en lien avec un cas industriel

MDPIMIC6

UE ING.

C 35 h THE 35 h PRJ 35 h

Printemps 6 crédits

UE en alternance, possibilité de la proposer aix étudiants en formation initiale

Admission soumise à un

MDPIMIC7

UE ING.

C 35 h THE 35 h

Printemps 6 crédits

UE en alternance, possibilité de la proposer aix étudiants en formation initiale

Admission soumise à un

MQ01

UE ING.

C 30 h TD 30 h TP 12 h

THE 70 h

Automne 6 crédits

Mise en œuvre de l'interopérabilité dans le domaine PLM (micro-certification)

OBJECTIE

- Cette micro-certification vous fera découvrir les problématiques et les solutions de mise en œuvre, de l'interopérabilité des systèmes dans le domaine du PLM..
- Vous apprendrez à gérer un projet informatique en tenant compte des particularités liées à l'interopérabilité des systèmes...
- Vous expérimenterez vos connaissances grâce à un projet complexe d'interopérabilité de systèmes.

PROGRAMME

présentation outils de PLM, diagramme de classe UML, présentation du langage java

Formation présentielle :

- l'interopérabilité dans le PLM
- maîtriser l'interopérabilité
- gérer l'interopérabilité dans un projet informatique

Phase de consolidation :

• de l'analyse d'un contexte, à la solution validée : réaliser en équipes le démonstrateur d'une solution d'interopérabilité

Introduction à la gestion de projet informatique (micro-certification)

OBJECTIF

- Cette micro-certification vous fera découvrir la gestion d'un proiet informatique...
- Vous apprendrez à réaliser chaque phase d'un projet en intégrant les besoins métiers et à articuler ces phases dans une logique de gestion de projet..
- Vous pourrez éprouver ces connaissances en constituant une équipe, qui devra réaliser une application pour répondre à un besoin du marché.

PROGRAMME

- présentation méthodes de gestion de projet informatique
- présentation du langage Java, premier programme et interface de l'environnement de développement intégré Formation présentielle :
- · gérer un projet informatique, modéliser les données métiers
- · concevoir l'architecture d'une solution informatique
- réaliser des développements en java
- · tester la solution

Phase de consolidation :

du besoin client à la solution validée : réaliser en équipe, le démonstrateur d'une application

Introduction à la mécanique des matériaux et des structures

OR.IECTIE

 La mécanique des structures concerne l'étude du comportement des corps solides déformables soumis à un chargement. Elle permet d'évaluer la capacité de ce corps à supporter ce chargement. Ce cours introductif se limite au cas des structures en forme de poutre subissant de petites perturbations sous l'effet des charges. A l'issue de ce cours, l'étudiant saura maîtriser les concepts de base de déformations et de contraintes et saura vérifier et/ou dimensionner une structure constituée d'une ou plusieurs poutres.

- maitriser la statique des structures et des systèmes
- savoir déterminer les contraintes mécaniques maximales et les déplacements induits par les efforts extérieurs appliqués à une structure
- savoir identifier et résoudre l'équilibre et les déformées de structures hyperstatiques
- savoir dimensionner et/ou vérifier une structure soumise au flambage
- savoir s'autoévaluer via les résultats aux QCM de contrôles continus

MQ02

UE ING. OU UE MAST.

C 30 h TD 30 h TP 16 h THE 68 h

6 crédits

Commentaire : groupe de TD possible

MQ03

UE ING.

C 30 h TD 30 h TP 20 h THE 68 h

Automne 6 crédits

MQ04

UE ING.

C 30 h TD 30 h TP 20 h

Printemps 6 crédits

Initiation à la mécanique des milieux continus solides

OBJECTIE

 Cette UE présente des outils généraux et les principes physiques nécessaires à l'évaluation des contraintes et des déplacements pour les pièces mécaniques à géométrie et sollicitations complexes, dont le matériau a un comportement élastique.

PROGRAMME

- savoir mettre en œuvre un modèle de comportement élastique linéaire, homogène et isotrope
- savoir résoudre des problèmes d'élasticité classique en 3D, dans l'hypothèse des petites perturbations
- savoir calculer l'énergie de déformation d'un solide
- · savoir mettre en œuvre le principe des travaux virtuels, ainsi que les critères de résistance mécanique

Etudes dynamique et vibratoire de systèmes mécaniques

OBJECTIF

 Etre capable de prendre en compte les effets dynamiques et vibratoires sur les mouvements et les efforts de systèmes mécaniques.

PROGRAMME

- savoir réaliser l'étude cinématique, cinétique, équilibrage des systèmes mécaniques
- savoir réaliser l'étude dynamique, énergétique et établir les éguations de l'équilibre dynamique
- savoir modéliser les systèmes discrets avec ou sans amortissement, savoir calculer leur réponse en oscillations libres et forcées
- · savoir modéliser les systèmes continus en oscillations libres et forcées
- connaître l'analyse des chocs, vibrations aléatoires, étouffeur de vibrations, décomposition modale
- savoir mettre en œuvre des applications sur maquettes réelles et via des simulations numériques

Propriétés des matériaux

OR JECTIE

 Connaître les propriétés mécaniques et le comportement vis-à-vis de sollicitations extérieures de différents matériaux (métaux, polymères, composites, céramiques).

- maîtriser la microstructure des matériaux par l'initiation à la cristallographie et aux phénomènes de diffusion à l'état solide
- connaître les propriétés des matériaux et leurs méthodes de caractérisation sur les comportements de fatigue, rupture, fluage, usure, corrosion et vieillissement
- · appréhender les méthodes de calculs vis-à-vis de ces différentes propriétés
- savoir mettre en œuvre quelques techniques expérimentales de caractérisation des propriétés des matériaux, analyser, synthétiser et transmettre les résultats obtenus

MQ07

UE ING.

C 30 h TD 30 h TP 18 h THE 68 h

Automne 6 crédits

Mécanique des fluides

OBJECTIF

- étudier les propriétés des fluides.
- analyser et quantifier leurs influences sur les systèmes mécaniques.

PROGRAMME

- connaître les propriétés des fluides
- · savoir effectuer les équilibres des fluides dans le cas hydrostatique
- mettre en œuvre la cinétique des fluides (Eulérien/Lagrangien, lignes et tubes de courant)
- savoir calculer les écoulements dans les fluides parfaits (non visqueux)
- savoir calculer les écoulements dans les fluides visqueux

MQ13

UE ING. OU UE MAST.

C 30 h TD 30 h

Printemps 6 crédits

Commentaire : ouverte à l'alternance

Thermodynamique et thermique des machines

OBJECTIF

- maîtriser les concepts de la thermodynamique et de la thermique.
- appliquer ces concepts à des machines thermodynamiques, à des problématiques thermiques (fluides ou solides).

PROGRAMME

- connaître les principes de la thermodynamique, premier et deuxième principes
- savoir les appliquer aux cycles thermodynamiques, afin d'en calculer les rendements. COP et efficacité
- savoir mettre en œuvre la thermodynamique des milieux continus et notamment les différents modes de transferts thermiques (conduction, convection, radiation)
- savoir appliquer aux moteurs thermiques, turbines, machines de transfert de chaleur, échangeurs thermiques

MT11

HE ING

C 30 h TD 30 h

Automne 6 crédits

Commentaire UE hors profil

Révision d'analyse et d'algèbre

OR JECTIE

• UE de remise à niveau en mathématiques destinée aux étudiants titulaires d'un BTS ou d'un DUT.

PROGRAMME

 maîtriser les techniques de base d'analyse et d'algèbre linéaire (dérivation d'une fonction à plusieurs variables, intégration simple et multiple, équations différentielles, espaces vectoriels, matrices et systèmes d'équations linéaires, diagonalisation)

MT12

UE ING. OU UE MAST.

C 30 h
TD 30 h
TP 16 h
THE 74 h

Printemps 6 crédits

Antécédent : MATH03

Printomno

 maîtriser les bases théoriques et les principales méthodes numériques directes pour la résolution des systèmes linéaires

La modélisation mathématique est largement utilisée dans les différents domaines de l'ingénierie. Les techniques mathématiques et les méthodes numériques utilisées pour traiter les problèmes sont très variées et parfois complexes. Une bonne compréhension est nécessaire à une résolution efficace et une interprétation

Techniques mathématiques de l'ingénieur

comprendre l'influence du conditionnement matriciel

correcte des résultats obtenus.

- savoir poser un problème de moindres carrés linéaire et maîtriser sa résolution numérique (factorisation QR)
- être capable de caractériser les solutions d'un problème d'optimisation non linéaire et de les déterminer numériquement par des méthodes de descente simples (gradient)
 - comprendre le principe de la convolution et maîtriser la transformation de Laplace
- savoir utiliser la transformation de Laplace pour la résolution de quelques équations différentielles

MT13

UE ING. OU UE MAST.

C 30 h TD 30 h TP 20 h THE 68 h

Automne 6 crédits

Antécédent : MATHO

Méthodes numériques pour l'ingénieur

OBJECTIF

PROGRAMME

 Dans de nombreux problèmes de l'ingénierie, l'obtention de solutions exactes est impossible à cause de la complexité du domaine de résolution et/ou de la non-linéarité des équations du problème. Le recours à des méthodes numériques est alors indispensable pour obtenir des solutions approchées.

PROGRAMME

- savoir poser la forme forte d'un problème physique et connaître la classification en problèmes elliptiques, paraboliques et hyperboliques
- connaître la méthode des différences finies (DF) pour résoudre des EDP stationnaires et application à des problèmes 1D et 2D
- connaître la méthode des éléments finis (EF) pour résoudre des EDP stationnaires et application à des problèmes 1D et 2D
- connaître les méthodes de résolution des problèmes linéaires : méthodes de Gauss, décomposition LU,
 Cholesky, conditionnement des matrices
- connaître les méthodes itératives de résolution des problèmes non linéaires : Méthode de Jacobi, Gauss-Seidel, Newton-Raphson, notion de convergence
- savoir appliquer toutes ces méthodes à la résolution de problèmes par EF et ou DF

MT14

UE ING. OU UE MAST.

C 30 h
TD 30 h
THE 60 h
PRJ 20 h

Printemps 6 crédits

Recherche opérationnelle

OBJECTIF

 La recherche opérationnelle est une discipline à l'intersection des mathématiques appliquées et de l'informatique, pour résoudre des problèmes d'optimisation et d'aide à la décision dans les activités économiques et industrielles.

- connaitre les techniques d'optimisation basées sur la programmation linéaire à variables continues ou entières, la programmation non linéaire et la programmation dynamique
- modéliser des problèmes d'optimisation fréquents en production et logistique
- coder un modèle et le résoudre avec Excel

NF16

UE ING.

C 30 h TD 30 h TP 14 h

Automne 6 crédits

NF20

UE ING.

C 30 h TD 30 h THE 90 h PBJ 25 h

Automne 6 crédits

Commentaire : notion

NM01

UE ING.

C 30 h TD 30 h THE 90 h

Automne 6 crédits

Antécédent : MA02
Commentaire :
ouverte à l'alternance

Bases de données

OR JECTIE

 L'objectif de l'UE est de comprendre et mettre en œuvre les concepts fondamentaux liés à la mise en place et à l'utilisation des bases de données relationnelles.

PROGRAMME

- modéliser une base de données en utilisant l'approche Entité/Association
- formaliser l'interrogation de bases de données au moyen du calcul relationnel et de l'algèbre relationnelle
- manipuler une base de données par le langage SQL
- structurer une base de données relationnelle par la normalisation
- optimiser les requêtes, le stockage et l'accès aux données

Modélisation et évaluation des systèmes complexes

OBJECTIF

 La modélisation et l'évaluation sont importantes pour la performance des systèmes informatiques. Des modèles à base de graphes, des algorithmes efficaces associés, ainsi que le calcul de la complexité algorithmique sont abordés dans ce module.

PROGRAMME

- · identifier les structures de données les plus adaptées au problème et aux algorithmes associés
- déterminer la complexité asymptotique (le pire des cas, le meilleur des cas, moyen et optimale)
- classifier un problème selon sa nature (P, NP, NP-complet et NP-difficile) et appliquer une stratégie de résolution en conséquence

Nanomatériaux et Matière Molle

OB JECTI

 Introduction à la physique de la matière molle et aux bio- et nano-technologies associées. Présentation de différentes applications dans le domaine de la santé: biocapteurs, encapsulation des saveurs, vectorisation des médicaments, séguencage ADN, ...

- découvrir les principes du marquage fluorescent et la détection optique associée à travers différente applications
- acquérir des connaissances sur les propriétés des membranes lipidiques et leurs applications
- découvrir la microfluidique et la manipulation cellulaire
- assimiler les propriétés optiques et les notions élémentaires des systèmes colloïdaux dans le but de manipuler des micro et nanoparticules
- découvrir la plasmonique et les biotechnologies associées

OP01

UE ING. OU UE MAST.

C 30 h TD 30 h TP 16 h THE 60 h

Automne 6 crédits

Antácádant · MAO

Optical and optoelectronic materials

OR JECTIE

Optics and optoelectronics are used in key fields, including lighting, photovoltaics and telecommunications.
 The numerous materials involved have various optical priorities, which are the subject of leading edge developments.

PROGRAMME

- understand and describe the optical properties of dielectric, metallic and semi-conductor materials
- select materials or systems to meet identified needs regarding: absorption, transmission, reflection, filtering, confinement, guiding, dispersion, emission, detection, polarization state
- practical skills: setting a laser, using a detector, connecting a source to an optical fiber, using a numerical code to design a waveguide
- identify manufacturers/suppliers of materials and systems for optics and optoelectronics

OP02

UE ING.

C 60 h TD 12 h THE 78 h

Automne 6 crédits

Commentaire : UE enseignée à distance

Optical communications

OBJECTIF

- · This lecture is an introduction to the working principles of optical telecommunication systems.
- Part 1: Optical fibers and optical networks (submarine communication networks, high-rate data transmission with optical fibers, WDM).
- Part 2: Non-linear optics for frequency conversion and signal processing.
- Part 3: semiconductor lasers.

PROGRAMME

- modeling andnumerically simulation of non-linear optical phenomena
- being able to measure non-linear optical phenomena
- designing a telecommunication system based on optical fibers

QX01

UE ING.

C 28 h TD 28 h TP 9 h THE 85 h PBJ 20 h

Printemps 6 crédits

Introduction à l'information quantique et aux technologies associées

OBJECTIF

- La notion d'information quantique et des technologies quantiques associées vont occuper dans les années.
- à venir une place importante en informatique mais aussi dans nos sociétés en général. Cette UE propose une introduction accessible aux bases de cette nouvelle discipline et des enjeux associés.

PROGRAMME

Les compétences visées de cette UE :

- · comprendre les enjeux de futures technologies quantiques
- · comprendre la différence entre information classique et quantique
- discerner les gains potentiels en performances entre algorithmes quantiques et classiques
- comprendre les challenges technologiques pour le développement de linformation quantique
- évaluer les applications potentielles à venir
- · comprendre la description mathématique et physique des états quantiques et des opérations quantiques

RE02

UE ING.

Printemps 6 crédits

Mineur : Antécédent : Commentaire : Maîtrise

RE04

UE ING. OU UE MAST.

6 crédits

• Il s'agit d'aborder les différentes techniques et paramètres de transmission en fonction des supports utilisés.

- comprendre les différentes étapes de numérisation d'un signal analogique
- comprendre et implémenter une chaîne de communications numériques

Transmission de l'information

- savoir détecter le phénomène d'interférence entre symboles dans les communications en bande de base
- comprendre et comparer les différents schémas de modulation et de démodulation numérique
- comprendre le principe de communications optiques
- connaître l'origine des atténuations et de dispersion en communications optiques
- proposer des solutions technologiques pour améliorer les performances d'une chaîne de communications optiques

Réseaux de l'internet

OBJECTIE

Les réseaux de l'internet utilisent de multiples technologies de transfert ainsi que de contrôle. Il est important de connaître les techniques fondamentales des réseaux étendus pour ensuite savoir les intégrer.

PROGRAMME

- maîtriser les concepts technologiques des réseaux (transmission, commutation, routage, multiplexage)
- maîtriser les concepts fonctionnels (protocoles, unités de données, interfaces, adressage, service de couche)
- savoir faire un plan d'adressage IP
- connaître les protocoles du monde IP (IPv4, IPv6, TCP, ICMP, DNS)

RE15

UE ING.

Automne 6 crédits

Antécédent : RE04

Réseaux à qualité de services

Maîtriser les modèles et architectures de qualité de service (QoS) ainsi que les protocoles sous-jacents actuellement déployés et connaître ceux en cours en développement.

- comprendre et se familiariser avec les algorithmes de gestion de flux (classification, ordonnancement, gestion des files d'attente)
- connaître les mécanismes de mesure de performances des réseaux des opérateurs en s'intéressant particulièrement aux indicateurs de QoS, à la métrologie des indicateurs et au contrat de qualité de service (SLA)
- maîtriser les protocoles et architectures de mise en œuvre de la qualité de service (aux niveaux 2 et 3) et de l'ingénierie de trafic (MPLS)
- connaitre la gestion par politique de la QoS
- se familiariser avec la QoS dans les réseaux mobiles et sans fil
- se familiariser avec les défis de mise en œuvre de la QoS dans l'IoT

RE23

UE ING. OU UE MAST.

C 30 h TD 30 h TP 6 h THE 90 h

Printemps 6 crédits

Antécédent : RE04

Gestion et contrôle des réseaux

OR JECTIE

- Connaître les concepts et principes nécessaires pour gérer, administrer et contrôler un environnement réseau.

PROGRAMME

- s'approprier les différents modèles conceptuels pour la gestion des réseaux et services
- · connaître les règles (normalisation) et recommandations
- mise en œuvre et cas d'usage dans les entreprises (le métier d'architecte réseaux, solutions propriétaires, plateforme open source)
- différencier les différentes approches de gestion (court, moven et long terme)
- connaître les limites d'une approche de gestion dans les nouveaux environnements (cloud, capteurs....)
- identifier de nouveaux outils pour la gestion de réseaux (big data, intelligence artificielle, corrélation et agrégation d'évènements)

RM01

UE ING.

C 30 h TD 30 h TP 10 h THE 80 h PBJ 20 h

Printemps 6 crédits

Bases de la sûreté de fonctionnement

OBJECTIF

 La sûreté de fonctionnement, parfois qualifiée de science des défaillances, caractérise l'aptitude d'une entité à satisfaire les fonctions requises dans des conditions données. Elle a pour objet de modéliser le comportement d'un système, évaluer les risques de défaillances potentielles et fournir des indicateurs pour l'aide à la décision.

PROGRAMME

- comprendre les concepts fondamentaux de fiabilité, maintenabilité, disponibilité et sécurité des systèmes
- · connaître les indicateurs caractéristiques ainsi que le type d'objectifs auxquels ils se rattachent
- maîtriser les bases des principales méthodes modélisation (diagrammes blocs-fonctionnels, diagrammes de fiabilité, diagrammes de décision binaires, arbres de défaillance, approche markovienne et réseau de Petri) ainsi que les techniques d'analyse et d'évaluation associées

RO02

UE ING.

C 30 h TD 20 h TP 15 h

Automne 6 crédits

Commentaire : UE réalisée à Reims

Environnement des systèmes robotisés

OR JECTIE

- maîtriser l'intégration et l'exploitation des robots dans un environnement de production complexe.
- · appréhender les différentes techniques et outils de motion control et de vision industrielle.

- état des lieux des applications industrielles du motion control et solutions industrielles associées
- · intégration et exploitation des robots dans un environnement de production complexe
- couplage robots/système de vision
- introduction au deep learning pour la robotique

SM06

UE ING. OU UE MAST.

C 30 h TD 30 h THF 68 h

Automne 6 crédits

Modélisation des phénomènes thermomécaniques couplés

OBJECTIF

 Lors de la conception de systèmes mécaniques, l'ingénieur doit dimensionner les composants soumis à des chargements thermiques et mécaniques complexes. Il est donc indispensable de savoir formuler des équations de comportement tenant compte des couplages entre les divers phénomènes thermomécaniques.

PROGRAMME

- · connaître les différents schémas de modélisation et principales hypothèses de chacune de ces modélisations
- connaître la mécanique des milieux continus en transformations infinitésimales (HPP): lois de conservation, thermodynamique des milieux continus, notion de variables d'état et méthode de l'état local
- savoir appliquer à la modélisation du comportement des solides thermo-elasto-(visco)-plastiques
- savoir appliquer à la modélisation du couplage comportement-endommagement ductile pour modéliser la rupture ductile
- savoir identifier des paramètres des modèles par une approche inverse

SY02

UE ING. OU UE MAST.

C 30 h TD 30 h TP 14 h THE 68 h

6 crédits

Statistiques pour l'ingénieur

OBJECTIF

 Il s'agit d'introduire les méthodes et outils statistiques de base qu'un ingénieur doit maîtriser. Ce cours repose donc sur une présentation des éléments théoriques (estimation, tests d'hypothèse, analyse de la variance), une mise en application en TD et en TP avec le logiciel libre R.

PROGRAMME

- identifier puis formuler correctement un problème dont les données sont de nature aléatoire, afin de définir et de choisir les outils et approches statistiques à mettre en œuvre
- maîtriser les concepts théoriques fondamentaux qui permettent de comprendre et d'interpréter avec justesse les résultats fournis par les calculs statistiques

SY04

HE ING

C 30 h TD 30 h

Automne 6 crédits

Outils pour la modélisation de réseaux

OB JECTIE

Lors de la conception ou de l'exploitation d'un réseau, il est important de connaître ses propriétés et ses performances. L'objet de ce module est d'étudier différents outils pour la modélisation et l'évaluation de performances de réseaux.

- · connaître la théorie des graphes
- savoir mettre en œuvre une solution à base de graphes pour un problème de réseaux
- connaître la théorie des chaînes de Markov à temps discret et à temps continu
- · connaître les principes de files d'attente simples et réseaux de files d'attente
- savoir modéliser un système à l'aide des chaînes de Markoy et des files d'attente
- savoir déterminer des paramètres de performances (temps d'attente, taux d'occupation, etc.) dans un système modélisé par une chaîne de Markov ou un réseau de files d'attente
- appliquer les modèles étudiés à la garantie de la qualité deservice dans les réseaux

SY06

UE ING. OU UE MAST.

6 crédits

Analyse et traitement du signal

• Il s'agit d'introduire les méthodes essentielles d'analyse et de traitement des signaux déterministes. Les applications illustrant ce module sont issues des télécommunications, de l'analyse des signaux RADAR, vibratoires, du contrôle non destructif, etc.

PROGRAMME

- comprendre les méthodes de base de transmission de l'information en télécommunications
- interpréter un signal et choisir un espace de représentation adapté
- comprendre le rôle et le fonctionnement des éléments d'une chaine de traitement de l'information ou d'aide au diagnostic
- savoir concevoir un système de transmission de l'information ou comprendre le fonctionnement d'un système

SY16

UE ING.

Printemps 6 crédits

Traitement numérique du signal et des images OBJECTIE

Former les futurs ingénieurs aux outils théoriques et pratiques nécessaires au traitement et à l'analyse numérique du signal et des images.

PROGRAMME

- comprendre le fonctionnement et maitriser les concepts de base des systèmes discrets linéaires et invariants
- savoir élaborer un système élémentaire de traitement numérique du signal
- maitriser le principe de formation des images numériques
- savoir élaborer un système de traitement numérique des images

SY18

UE ING. OU UE MAST.

PRJ

Printemps 6 crédits

Outils de modélisation et d'évaluation des performances

OBJECTIF

Etudier les outils de modélisation des systèmes à événements discrets, très fréquents en production, logistique et automatique.

- modéliser un système à événement discret de type systèmes de production, système logistique à l'aide des outils comme les Réseaux de Petri, les Réseaux de file d'attente, les processus et chaines de Markov, les modèles et algorithmes basés sur les graphes
- programmer un simulateur de réseau de Petri, une file d'attente sous Excel avec VBA

SY25

UE ING.

30 h

Automne 6 crédits

SY26

UE ING.

42 h PRJ 20 h

Automne 6 crédits

SY30

THE 60 h

Automne 6 crédits

Réseaux de capteurs multimédia

• Il s'agit d'introduire le contexte des nouvelles technologies basées sur les réseaux de capteurs multimédia et les réseaux de capteurs mobiles (robotique).

PROGRAMME

- connaître le contexte des nouveaux contenus multimédia
- comprendre le fonctionnement d'une chaine de traitement d'images pour la reconnaissance de formes
- comprendre les différentes normes de codage et de compression du son, des images fixes et de la vidéo
- connaître quelques algorithmes de localisation de capteurs en fonction des contraintes des transmissions Radio
- comprendre les problématiques de contrôle et de planification des trajectoires de robots mobiles en réseau
- connaître quelques méthodes de fusion de données et de traitement collaboratif de l'information dans un réseau de capteurs

Systèmes embarqués intelligents

OBJECTIE

- Acquérir les connaissances nécessaires à la compréhension des systèmes embarqués intelligents.
- Être capable de faire un choix technologique pertinent de solution embarquée intelligente pour résoudre un problème de traitement d'information et de prise de décision.

PROGRAMME

- comprendre la théorie des réseaux de neurones
- comprendre les solutions neuro-inspirées
- être capable d'implémenter un réseau de neurones sur FPGA à partir du langage VHDL
- être capable d'intégrer une prise de décision sur un processeur neuronal depuis l'apprentissage jusqu'à la détection

Automatique linéaire

- Connaître les outils d'analyse des systèmes linéaires analogiques et numériques.
- Être capable de réaliser un correcteur linéaire répondant à un cahier des charges précis.

- représentation et simplification des fonctions de transfert
- analyse temporelle et fréquentielle
- précision et stabilité
- conception de correcteurs analogiques : correcteurs PID, correcteurs à avance/retard de phase, correcteurs
- mise au point de correcteurs numériques : transposition des correcteurs analogiques
- implémentation de correcteurs sur une cible temps sous Matlab/Simulink

SY32

UE ING.

C 30 h TD 26 h TP 18 h THE 60 h

Printemps 6 crédits

Antécédent : SY30 Commentaire : UE réalisée à Reims

TI01

UE ING.

C 30 h TD 24 h TP 18 h

Printemps 6 crédits

Commentaire :

TI02

UE ING.

C 30 h TD 20 h TP 30 h

Printemps 6 crédits

Antécédent : SY06 Commentaire : UE réalisée à Reims

Contrôle/commande des systèmes dynamiques

OR JECTIE

- Maîtriser les aspects liés à l'analyse, à l'observation et à la commande des systèmes dynamiques multi-variables tels que les systèmes de transports et les systèmes de production.
- Manipuler les outils récents de mise en œuvre des techniques d'observation et de commande.

PROGRAMME

- · critères de stabilité
- propriétés de commandabilité et d'observabilité
- commande par retour d'état et par retour de sortie
- synthèse d'observateurs
- simulations et tests «hardware-in-the-loop» des algorithmes de contrôle/commande sous Simulink et Stateflow
- initiation aux systèmes non linéaires

Modélisation pour la conception des systèmes d'information

OR JECTIE

- Disposer d'une vue globale de l'Ingénierie des Systèmes.
- Mettre en œuvre les démarches conceptuelles de gestion de projet suivant le modèle du cycle en V.
- Concevoir des architectures fonctionnelles pour des systèmes complexes.
- Acquérir les connaissances nécessaires à la mise en place des stratégies efficaces d'intégration, de vérification et de validation.
- Avoir un apercu des normes de l'Ingénierie Système (ISO/IEC 15288, IEEE 1220, EIA 632).

PROGRAMME

- modélisation, langages formels et application à UML, SysML
- · expression des besoins définition des exigences techniques
- · conception d'architectures fonctionnelle et organique
- test unitaire et global
- vérification et Validation de l'ingénierie
- évaluation et optimisation des architectures
- ingénierie appliquée aux architectures et aux logiciels informatiques (génie informatique et génie logiciel), méthodes et pratiques de développement, approche qualité
- · modélisation Machines à Etats (RdP, SADT)

Traitement et transmission de l'information

OBJECTIF

- Comprendre les concepts issus de la théorie de l'information et ses conséquences en compression, en communications et en cryptographie.
- · Connaître les différents éléments d'une chaîne de communications numériques de l'émetteur au récepteur.

- · codage de canal : limites théoriques, capacité des canaux, codes linéaires
- cryptographie: limites théoriques, fonctions à sens unique, symétrie/asymétrie, mise en œuvre par flots/par blocs
- systèmes de communications numériques : chaîne, mesure de performances
- émission : mise en forme, constellation, modulations mon ou multi porteuses
- perturbation : bruit, canaux sélectifs en temps/en fréquence, théorème de Nyquist
- réception : synchronisation, égalisation, détection, accès multiples
- analyse de normes (RDS, DVB ou DRM)

TI03B

UE ING.

C 26 h TD 16 h TP 21 h THE 60 h

Automne 6 crédits

Commentaire : UE réalisée à Reims

Systèmes échantillonnés

OR JECTIE

- Apporter aux étudiants la maîtrise des notios de signaux et systèmes numériques (échantillonnés) dans les domaines temporel, fréquentiel et en z.
- Acquérir les méthodes d'analyse, de conception et de réalisation de systèmes de filtrage et de traitement numériques des signaux.
- Assimiler les émthodes de synthèse des filtres non récursifs (RIF) et récursifs (RII) par les différents méthodes.
- Maîtriser les outils d'analyse des performances des asservissements échantillonnés.
- Être capable de concevoir et de réaliser des asservissements pilotés par ordinateur.

PROGRAMME

- 1- Outils mathématiques appliqués aux signaux et aux systèmes discrets :
- Transformée de Laplace (rappel), Transformée de Fourier discrète, Transformée en z, suites et séries numériques
- · ralations en Transformée de Fourier, Série de Fourier et Transformée de Fourier discrète, implémentation rapide
- 2 Filtrage numérique (analyse et synthèse de filtres) :
- échantillonnage et reconstitution : théorème de Shonnon-Nyquist
- · notions de signaux et systèmes discrets, convolution discrète
- filtres non récursifs (RIF): caractérisation, analyse, méthodes de synthèse (Remez, Parks-McClellan)
- filtres récursifs (RII): caractérisation, étude de stabilité, analyse, méthode de synthèse (tranformée bilinéare)
- 3 Automatique linéaire discrète (asservissements échantillonnés) :
- modélisation des signaux et systèmes échantillonnés; stabilité des systèmes échantillonnés; performances des systèmes échantillonnés; correction de systèmes échantillonnés asservis (transposition des correcteurs analogiques); méthodes de commandes avancées (Méthode de Zdan, commande RST, prédicteur de Smith)

TI03F

UE ING.

C 26 h TD 16 h TP 21 h

Automne 6 crédits

Commentaire : UE réalisée à Reims

Systèmes échantillonnés

OBJECTIF

- apporter aux étudiants la maîtrise des notios de signaux et systèmes numériques (échantillonnés) dans les domaines temporel, fréquentiel et en z.
- acquérir les méthodes d'analyse, de conception et de réalisation de systèmes de filtrage et de traitement numériques des signaux.
- assimiler les méthodes de synthèse des filtres non récursifs (RIF) et récursifs (RII) par les différents méthodes.
- maîtriser les outils d'analyse des performances des asservissements échantillonnés.
- être capapblede concevoir et de réaliser des asservissements pilotés par ordinateur.

- 1- Outils mathématiques appliqués aux signaux et aux systèmes discrets :
- Transformée de Laplace (rappel), Transformée de Fourier discrète, Transformée en z, suites et séries numériques
- ralations en Transformée de Fourier, Série de Fourier et Transformée de Fourier discrète, implémentation rapide
- 2 Filtrage numérique (analyse et synthèse de filtres) :
- échantillonnage et reconstitution : théorème de Shonnon-Nyquist
- · notions de signaux et systèmes discrets, convolution discrète
- filtres non récursifs (RIF): caractérisation, analyse, méthodes de synthèse (Remez, Parks-McClellan)
- filtres récursifs (RII) : caractérisation, étude de stabilité, analyse, méthode de synthèse (tranformée bilinéare)
- 3 Automatique linéaire discrète (asservissements échantillonnés) :
- modélisation des signaux et systèmes échantillonnés; stabilité des systèmes échantillonnés; performances des systèmes échantillonnés; correction de systèmes échantillonnés asservis (transposition des correcteurs analogiques); méthodes de commandes avancées (Méthode de Zdan, commande RST, prédicteur de Smith)

TECHNIQUES ET MÉTHODES

Branches

CL01

UE ING.

C 30 h TD 24 h THE 70 h

Automne 6 crédits

CL02

UE ING.

C 30 h TD 30 h TP 10 h

6 crédits

Commentaire : ouverte à l'alternance

Organisation logistique des échanges commerciaux

OBJECTIE

· Notions essentielles à la conduite d'un projet d'exportation ou d'importation en intégrant les aspects logistiques.

PROGRAMME

- connaître les acteurs globaux du commerce international
- · savoir utiliser les règles de bases des douanes
- planifier et organiser le flux logistique internationale et gérer le transport (maritime, aérien, routier)
- négocier et établir les contrats d'achat ou de vente avec des acteurs internationaux

Conditionnement, manutention et entreposage

OBJECTIE

 L'organisation et la gestion des entrepôts doit permettre une gestion optimisée des flux internes à celui-ci en fonction des flux externes entrant et sortant.

PROGRAMME

- savoir organiser les réceptions
- identifier les différents types de configuration et déterminer la plus adaptée
- proposer des types de movens de manutention adaptés
- être capables de dimensionner et mettre en place un mode de gestion opérationnelle des outils de manutention
- mettre en œuvre les techniques d'emballage et de conditionnement des marchandises : palettisation, problèmes de placement
- exploiter les principes de préparation des expéditions

CL03

UE ING. OU UE MAST.

C 30 h TD 30 h THE 80 h

6 crédits

Antécédent : MT14 Commentaire : ouverte à l'alternance

Logistique de transport et de distribution

OR JECTII

· Cette UE aborde les principales problématiques qui se posent aux transporteurs.

- connaître les véhicules de transport, leur législation, et les modes conditionnements du fret (palettes, conteneurs)
- · savoir modéliser et calculer des plus courts chemins et des flux de marchandises dans un réseau de transport
- · connaître les principaux problèmes de tournées de véhicules et de gestion de flotte
- savoir utiliser un logiciel d'optimisation pour des problèmes de transport

CL04

UE ING.

C 30 h TD 30 h THE 80 h PRJ 30 h

Printemps 6 crédits

Commentaire : ouverte à l'alternance

CL07

UE ING.

C 30 h TD 30 h THE 88 h

Automne 6 crédits

CL₁₀

UE ING.

C 30 h TD 30 h TP 15 h

PRJ 30 h

6 crédits
Commentaire :

Conception et gestion de la chaîne logistique -Coordination des relations clients-fournisseurs

OBJECTIF

 Conception des réseaux logistiques, gestion des stocks, prévision de la demande, gestion de l'approvisionnement et de la distribution, partage d'informations, collaboration, et technologies de l'information dans la gestion de la chaîne logistique.

PROGRAMME

- être capable de concevoir une chaîne logistique dans une perspective globale
- être capable d'optimiser globalement les activités d'une chaîne logistique
- comprendre l'importance du partage d'informations dans une chaîne logistique
- être capable de coordonner des relations entre clients et fournisseurs
- connaître les systèmes d'information et logiciels pour la gestion de la chaîne logistique

Soutien logistique intégré et service après-vente

OBJECTIE

Le soutien logistique d'un système complexe permet de le maintenir en conditions opérations opérationnelles.
 Son intégration dès la conception permet de maîtriser le coût global de possession et la disponibilité opérationnelle.

PROGRAMME

- comprendre les méthodes d'analyse et de conception des systèmes complexes
- modéliser et évaluer les performances d'un système complexe
- · modéliser et optimiser un réseau logistique de maintenance
- dimensionner les stocks de pièces de rechange
- · analyser et calculer un coût global de possession

Mobilité et logistique urbaine

OR JECTI

- · Identifier et analyser les problématiques de mobilité et de transports en zones urbaines.
- Modéliser les flux de personnes et marchandises dans les zones urbaines.
- Obtenir les solutions de transport adaptées aux problèmes identifiés.
- Découvrir les nouvelles technologies liées à la mobilité urbaine.

- comprendre l'utilité de l'IA et traitement des données massives pour la gestion de trafic
- savoir optimiser les livraisons de dernier kilomètre (problèmes de tournées de véhicules avec fenêtres de temps)
- savoir modéliser les différentes problématiques liées au e-commerce (problèmes de tournées généralisées, problèmes de tournées couvrantes)
- comprendre les liens entre les plateformes logistiques et le choix de types de livraison adaptés (problèmes de tournées 2-échelons)
- identifier et diminuer les impacts écologiques du transport urbaine (tournées de véhicules électriques, localisation des stations de recharge)
- comprendre les avancées technologiques en terme de moyens de transport (véhicules autonomes, drones)
- concevoir et programmer des algorithmes d'optimisation et/ou d'IA pour les différents types de problèmes (Réseaux de neurones, algorithmes génétiques)

CS01

UE ING. OU UE MAST.

Automne 6 crédits

pédagogie selon le principe d'un cours

CS01A

UE ING.

6 crédits

Analyse de la valeur sous fortes contraintes

· L'exigence de concevoir des systèmes en parfaite adéquation avec l'environnement économique, environnemental et socio-culturel requiert de mesurer et maîtriser la valeur de systèmes technologiques sous fortes contraintes.

PROGRAMME

- maîtriser des méthodes de maquettages et de résolution de problèmes sous fortes contraintes (étapes 1,4 à 6 de l'AV)
- maîtriser les méthodes d'analyse multicritères pour décider et implémenter une proposition technologique sous fortes contraintes d'un point de vue opérationnel et managérial (étapes 6 et 7 de l'AV)

Value Analysis under extreme constraints

OBJECTIE

The need to design systems in perfect harmony with the economic, environmental and socio-cultural environment requires the measurement and control of the value of technological systems under extreme constraints.

PROGRAMME

- master the methods of functional analysis and cost analysis to specify the just necessary of a system under extreme constraints (Step 3 of VA)
- master methods of modeling and problem solving of systems under extreme constraints (steps 1, 4 to 6 of VA)
- master the methods of multi-criteria analysis to decide and implement a technological proposal under extreme constraints according to operational and managerial point of view (steps 6 and 7 of VA)

Conduite de projets

OBJECTIF

- Rédaction de cahier des charges.
- Types et organisations de projets.
- Préparation d'un business plan détaillé, ordonnancement déterministe et stochastique.
- Estimation et contrôle des coûts, gestion des risques.
- Exposés industriels, étude de cas réels, utilisation du logiciel MS-Proiect,

PROGRAMME

- concevoir et animer un équipe projet
- réaliser une planification complète et optimisée prenant en compte les ressources disponibles
- analyser les risques, les freins et les opportunités
- piloter et suivre le déroulement du projet
- faire le bilan et clôturer un projet

CS03

UE ING. OU UE MAST.

6 crédits

CS05

UE ING.

C 30 h TD 30 h THE 60 h

Printemps 6 crédits

CS06

UE ING.

C 20 h THE 70 h

Printemps 6 crédits

Commentaire : UE réalisée à Reims

Dimensionnement économique de composants

OBJECTIE

 Analyser les coûts d'un composant à différentes étapes de son cycle de vie en intégrant des notions de choix des procédés liés aux matériaux.

PROGRAMME

- maîtriser le choix des procédés et des matériaux (méthode d'Ashby)
- savoir décrire finement le cahier des charges d'un composant (Mécaniquement, thermiquement, chimiquement, etc.)
- maîtriser le dimensionnement économique d'une structure en combinant les interactions matériaux/procédés
- savoir justifier des choix en prenant en compte des éléments techniques et économiques

Projet transversal ingénierie système/concours robotique

OBJECTIE

- Identifier et appréhender un problème comme un tout et cela aussi bien par ses caractéristiques structurelles, fonctionnelles qu'environnementales.
- Adopter une approche système ainsi qu'à déployer des modèles associés le cadre d'un projet soumis par une entreprise ou d'un challenge robotique.

PROGRAMME

- SADT. ISO 26262, automates à états
- étude de normes IEEE1220, EIA632, IS015288
- prise en compte de la pensée système accompagnant l'IS
- présentation de méthodes génériques d'analyse, de synthèse et de conception, cycle en V
- · répartition des étudiants en équipes projet
- analyse et gestion, réalisation et présentation des résultats d'un projet soumis par une entreprise partenaire réalisé dans le cadre d'un challenge robotique (Concours RobAFIS, Coupe de France de Robotique); de type R&D fourni par un laboratoire de recherche

CS21

HE ING

C 15 h TD 15 h TP 68 h

Printemps 6 crédits

Commentaire : ouverte à l'alternance

Conception des systèmes complexes

OR JECTIE

 L'objectif est de présenter une vision intégrée des différentes technologies à mettre en œuvre dans un contexte collaboratif pour la réalisation d'un système mécanique complexe.

- intégration de contraintes environnementales en conception (cycle de vie, aspect normatif, méthode d'analyse et de décision en conception)
- transmission de puissance hydrostatique (schéma hydraulique, fonctionnement, dimensionnement)
- transmissions de puissance alternatives (hybrides, hydrostatique, électrique)
- mettre en œuvre une conduite de projet de conception et de dimensionnement de systèmes mécaniques complexes, avec des méthodes collaboratives dans un contexte de bureau d'études

CS22

UE ING.

TD 75 h THE 90 h

Automne 6 crédits

Antécédent : CS21, pour les GM

DS01

UE ING.

C 30 h TD 30 h

PRJ 40 h

Automne 6 crédits

EA04

UE ING.

C 30 h TD 20 h TP 28 h

Printemps 6 crédits

Antécédent : EA01

Industrialisation des systèmes mécaniques

OR JECTIE

Le projet vise à construire collectivement un dossier d'industrialisation à partir d'un dossier de définition fourni préalablement.

- · nomenclature PDM.
- · choix des procédés et définition adaptée au procédé.
- · gammes de fabrication et d'assemblage.
- dimensionnement des cadences et flux de production, implantation.

PROGRAMME

- définir et organiser le projet d'industrialisation (choisir les procédés, concevoir les modes opératoires,
- organiser l'usine pour assumer les cadences, évaluer les risques sur des contraintes règlementaires en sécurité et environnement)
- · définir le périmètre du projet et les contraintes et expertises à intégrer
- · coordonner l'activité d'équipe, établir un cahier des charges, réaliser des choix technologiques
- collecter des informations techniques et de veille prospective
- définir une prospective techniques (projet de développement)

Design

OBJECTIE

Se familiariser avec les concepts et la démarche du design :

- histoire du design et principaux courants.
- management de la créativité.
- contraintes liées à l'esthétique (forme, couleurs), aux matériaux utilisés (recyclabilité, impact des choix en conception de produits) et aux coûts.
- · élements de sociologie et de psychologie du design.
- éléments sensoriques.

PROGRAMME

Analyser un objet sous l'angle du design :

- · concevoir et obéir à un cahier des charges
- travailler et être créatif en groupe (management du design)
- maîtriser les outils : diagramme pieuvre et ternaire ; bête à corne ; planche de tendance ; CAO d'un objet et mise en situation dans un environnement virtuel ; élaborer et analyser un sondage
- · adapter un obiet à une cible commerciale
- · produire une ébauche de plan marketing
- · connaître les éléments de propriété intellectuelle en design

Capteurs, mesure et asservissement numérique

OBJECTIF

 Les capteurs sont présents dans l'essentiel des outils technologiques (mesures de grandeurs physiques, chimiques, ou biochimiques), et sont nécessaires à l'asservissement d'un système, notamment mécanique, via un conditionnement et un interfaçage.

- connaître la métrologie (mesures de grandeurs physiques) des systèmes industriels: étalons, incertitudes, modélisation statistique
- · savoir conditionner et acquérir un signal pour le traiter numériquement
- savoir asservir numériquement un système mécanique(via un Arduino)
- · pouvoir interfacer un capteur par LabVIEW
- au travers de séminaires donnés par des industriels, comprendre les enjeux techniques et applicatifs de familles de capteurs
- savoir choisir et dimensionner un capteur pour une application donnée

EA08

UE ING.

C 30 h TD 30 h TP 20 h THE 70 h

Printemps 6 crédits

EB01

UE ING.

C 24 h TD 20 h TP 39 h THE 40 h PRJ 27 h

Printemps 6 crédits

Commentaire :

Mise en œuvre de systèmes mécatroniques

OR JECTIE

 Savoir définir, choisir et mettre en œuvre les matériels automatiques/électroniques accompagnants les systèmes mécatroniques/robotiques.

PROGRAMME

- approfondir les aspects électriques
- savoir intégrer ces composants électroniques dans un système mécanique et gérer les problèmes interférences/isolations (thermiques, électriques, magnétiques....)
- compléter ces connaissances en automatique séquentiel
- réaliser un projet de conception et réalisation d'un prototype mécatronique (petits véhicules robotisés, systèmes automatisés....)
- savoir asservir numériquement un système mécanique (via un Arduino)

Microcontrôleurs et DSP

OBJECTIF

- Maîtriser les microcontrôleurs dans les applications des systèmes embarqués.
- Approfondir les connaissances de la programmation en C de manière portable et proche du matériel.

PROGRAMME

- · architectures des microcontrôleurs et des DSP, spécificités, virgule fixe, virgule flottante
- programmation en langage évolué, utilisation ponctuelle d'assembleur, observation du code, optimisations
- notion de test unitaire
- · interruptions, gestion du temps
- · notions d'implémentation multitâches
- · applications, mise en œuvre d'algorithmes de traitement du signal
- · gestion de la consommation
- bus d'interconnexion : SPI, DCI, I2C, CAN, JTAG, LIN, RS232
- mini projet de conception d'un système à base de microcontrôleur de type dsPIC (Microchip)

EB02

UE ING.

C 28 h TD 12 h TP 36 h

Automne

6 crédits

Commentaire :

Prototypage rapide

OR JECTIE

- · Acquérir des compétences sur les méthodes de prototypage rapide et les outils associés.
- Développer des applications de contrôle-commande sur processeurs spécialisés.
- Développer des applications à base de circuits logiques programmables.
- Connaître les solutions de développement en VHDL et/ou graphiques.

- techniques SIL, PIL et HIL
- · outils pour le prototypage rapide
- processus de développement d'applications embarquées
- mise en œuvre sur microprocesseurs spécialisés
- architectures des circuits logiques programmables (PAL, GAL, PLD,...) ASIC et FPGA
- · notions de SOC (System On Chip), Processeur softcore
- conception, simulation (VHDL, notions de System C)
- · mise en œuvre avec Quartus II (Altera)
- développement d'un projet autour du FPGA

EB03

UE ING.

C 20 h TD 12 h TP 36 h THE 82 h

Printemps 6 crédits

Antécédent : L002 Commentaire : <u>UE réalisée</u> à Reims

EB04

UE ING.

C 24 h TD 10 h TP 36 h

Printemps 6 crédits

Commentaire : UE réalisée à Reim

Services mobiles et communicants

OR JECTIE

- Développement d'OS pour les systèmes embarqués.
- Mise en œuvre d'applications embarquées incluant des services mobiles.

PROGRAMME

- caractéristiques d'une application embarqué : légèreté, modularité, connectivité
- programmation d'interface opérateur et de commande en temps réel sous Windows CE
- programmation d'application embarquée sous Android
- navigation, géolocalisation, Satellitaire et variantes (GPS, Glonass, Galiléo...), RFID, RCSF, SIG
- création de novau CE sous Plateforme Builder
- création de noyau IHM Android
- présentation et mise en œuvre sur processeurs spécialisés

Systèmes temps réel embarqués

OBJECTIF

- Former les étudiants à la compilation croisée des noyaux Linux embarqué sur des plateformes embarqués de type ARM.
- Former les étudiants à la création d'un système embarqué utilisant un noyau temps-réel open source à base de Linux de type RTLinux ou XENOMAI.

PROGRAMME

- définition et objectifs des systèmes d'exploitation dans l'embarqué
- système de gestion des fichiers dans Linux, méthodologie de création d'un Linux embarqué
- définition et problématique du temps réel, fonctionnement des systèmes temps réel
- · structure et Rôle et importance d'un Système d'exploitation
- · gestion du Multitâches, gestion de la mémoire
- · communication et synchronisation entre les tâches, gestion des taches et des interruptions
- novau temps réel Linux/XENOMAI : installation et paramétrage
- comparaison des latences/performances de XENOMAI et Linux
- communication entre XENOMAI et Linux, installation de XENOMAI sur cible ARM (PANDABOARD)
- applications indépendantes de la charge du système

EG23 Interface Homme-Machine et ergonomie

OB.IECTI

 Le développement d'applications doit nécessairement respecter certaines règles ergonomiques. L'étude des Interfaces Homme-Machine (IHM) est devenue essentielle quant à la future réussite du logiciel ou de l'application.

PROGRAMME

- concevoir et réaliser des interfaces homme-machine
- · réaliser des maquettes et prototypes logiciels dans le cadre des interfaces homme-machine
- utiliser et maîtriser un environnement de développement d'interfaces logicielles
- · connaître et appliquer les règles d'ergonomie logicielle
- savoir évaluer une interface logicielle

Printemps

6 crédits

UE ING.

EN07

UE ING.

C 22 h TD 26 h

THE 60 I

Printemps 6 crédits

Antécédent : EN06 Commentaire : LIE réalisée à Beim

EV10

UE ING.

C 30 h TD 24 h TP 12 h

THE 50 h

EV11

UE ING.

C 24 h TD 24 h

Printemps 6 crédits

Commentaire : ouverte à l'alternance

Intégration et technologie de systèmes électroniques

OBJECTIF

- Savoir développer une fonction électronique, simuler son fonctionnement, l'intégrer à un système et implanter l'ensemble sur un circuit imprimé.
- Savoir dimensionner et réaliser des alimentations et des sources d'énergie électrique rechargeables.
- Savoir analyser les besoins d'un système en termes de conversion d'énergie électrique et comprendre l'architecture d'un système de conversion.

PROGRAMME

- CAO de cartes électroniques et simulation de circuits (simulation Pspice, Psim, développement Eagle)
- théorie et pratique de la conversion statique d'énergie à faible puissance
- contraintes d'intégration (calcul des dissipations thermiques, perturbations et routage d'alimentations, CEM des systèmes électroniques...)

Méthodes et outils de base en analyse environnementale

OBJECTIE

 Sensibiliser les futurs ingénieurs aux problématiques environnementales d'une activité industrielle et les former aux outils et méthodes de l'analyse et du management environnemental.

PROGRAMME

- comprendre les grandes politiques environnementales, la jurisprudence associée et les impacts pour l'entreprise
- évaluer les différents niveaux de risques environnementaux d'une ICPE
- · mettre en place un système de management de l'environnement
- être sensibilisé aux différents outils d'audit et d'analyse environnementale (ACV, audit energétique et déchets, empreinte écologique, eau)
- recevoir la certification bilan carbone par l'Institut français du carbone
- · élaborer une politique de communication environnementale et comprendre la fiscalité environnementale
- illustrer les connaissances acquises sur un projet en lien avec une problématique industrielle, sociétale ou de recherche
- visite d'un site industriel ayant mis en place une politique RSE, environnementale ou énergétique

Management du cycle de vie des matériaux

OBJECTIE

 Le choix des matériaux influence le cycle de vie des produits et leurs impacts environnementaux, il est par conséquent nécessaire de maîtriser les phases de vie des matériaux depuis leur extraction jusqu'à leur fin de vie.

- introduction à la pensée cycle de vie des matériaux utilisés dans les produits manufacturés selon des considérations environnementales
- étude des matériaux critiques pour l'économie européenne et des facteurs influençant leur approvisionnement (épuisement, recyclabilité, substituabilité)
- étude des phases de collecte, recyclage et valorisation des principaux matériaux après usage
- · étude des normes et règlements liés aux matériaux selon des considérations environnementales
- présentation de la réalité du recyclage et valorisation des matériaux

EV12

UE ING. OU UE MAST.

C 30 h TD 22 h TP 20 h

Automne 6 crédits

EV14

UE ING.

6 crédits

Ecoconception, technologies propres et recyclage

OBJECTIE

 La prise de conscience des limites des écosystèmes et l'évolution des pressions sociétales (réglementation, clients, coûts d'approvisionnement ressources) poussent les entreprises à réduire à la source les impacts environnementaux en intégrant l'écoconception, la conception pour le recyclage et les technologies plus responsables dans leur systèmes.

PROGRAMME

- évaluer la performance environnementale d'un produit ou d'un système
- · identifier les points faibles d'un système
- pouvoir optimiser le système d'un point de vue environnement, en utilisant des outils d'écoinnovation et des connaissancees techniques
- · maîtriser la méthode d'analyse du cycle de vie
- recueillir, mobiliser, exploiter et interpréter les informations trouvées dans plusieurs sources
- comprendre les enjeux de recyclage et pouvoir intégrer ces enjeux en conception

Modélisation Homme-Systèmes-Nature

OBJECTIE

 Représenter et modéliser les interactions Homme, Systèmes et Nature selon plusieurs échelles spatio-temporelles. Ces représentations et modélisations faciliteront les entreprises à réduire ou, au minima, respecter les limites planétaires dans la conception des systèmes sociotechniques tout en évitant les effets rebonds.

PROGRAMME

- représenter et modéliser l'interaction Technologie-Homme (diagrammes d'influences physique et physiologiques (fonction, choix, etc.); Analyse du cycle de vie social, théorie du donut, etc.)
- représenter et modéliser l'interaction Technologie-Nature (MFA, ACV, limites planétaires, etc)
- représenter et modéliser l'interaction Homme-Nature (Besoin, fonctions, connexion vitale, etc. de l'individu à la collectif)

FQ01

HE ING

C 30 h TD 30 h TP 12 h

Automne Printemps 6 crédits

Assurance et contrôle de la qualité

OR JECTIE

· Organiser efficacement la qualité des produits et des services dans les entreprises.

- replacer la démarche qualité dans les objectifs de l'entreprise, en tant que sous-système finalisé, en interrelation avec tous les autres systèmes de l'entreprise
- · donner une formation aux principes de base de la qualité totale et du management participatif
- situer et utiliser efficacement les méthodes relatives à l'assurance qualité du produit, au contrôle du processus de fabrication et à la mesure des performances
- mettre en œuvre des plans d'actions

FQ01A

UE ING.

C 30 h TD 30 h TP 12 h THF 40 h

Automne Printemps 6 crédits

Statistical Process Control and Quality Assurance

OR JECTIE

 This course aims to provide a comprehensive coverage of quality control techniques to master the design of statistical process control systems, acceptance sampling, and process improvement. The goal is to introduce students to statistical quality control (SQC) emphasizing those aspects which are relevant for SQC's practical implementation.

PROGRAMME

- · understand the philosophy and basic concepts of quality improvement
- to be able to use the methods of statistical process control
- to be able to design, use, and interpret control charts for variables
- to be able to design, use, and interpret control charts for attributes
- perform analysis of process capability and measurement system capability

GE40

UE ING.

C 30 h TD 30 h

Printemps

Commerce des matériaux

OBJECTIF

Connaître et analyser les différents paramètres influant le marché des matériaux et leur prix de vente.

PROGRAMME

- · connaître les bases du marché des matériaux et comprendre leur fonctionnement
- acquérir une logique d'analyse de l'impact de l'interaction des acteurs sur le prix des matériaux
- appliquer les notions de gestion et de bases du calcul de coût dans les organisations
- élargir le coût d'un produit à l'ensemble de son cycle de vie et appréhender les externalités
- acquérir les bases du métier d'acheteur
- comprendre le marketing et sa fonction en entreprise
- savoir mener une étude de marché/Application aux marchés des matériaux

GP06

UE ING. OU UE MAST.

C 30 h TD 30 h

Automne 6 crédits

Organisation et gestion de la production

OR JECTIE

 Notions essentielles à la conduite d'un système de production et du management des opérations logistiques en intégrant les aspects économiques et humains du milieu industriel.

- comprendre le contexte technico-économique d'une entreprise, différencier les typologies de production et identifier les problématiques du management des opérations
- organiser la circulation de flux via la localisation de sites/implantation de moyens de production
- planifier des activités (prévoir la demande, générer un planning de projet et de production)
- identifier et calculer les indicateurs permettant de gérer et suivre les opérations
- maîtriser les principaux paramètres de gestion : stocks, MRP, Kanban, TOC
- · connaître les concepts de réduction des gaspillages, flexibilité et réactivité

GP17

UE ING. OU UE MAST.

C 30 h TD 30 h TP 20 h THE 70 h

Printemps 6 crédits

Planification et ordonnancement de la production

OR JECTIE

 La planification de la charge de production et des approvisionnements; et le séquencement des tâches ainsi que l'affectation des ressources doivent être optimisés pour minimiser les coûts liés en respectant certaines contraintes.

PROGRAMME

- savoir identifier les problèmes de base NP-difficile, et calculer les principaux critères en ordonnancement
- mettre en œuvre les méthodes pour les problèmes d'ordonnancement à une machine (SPT, SRPT, EDD, etc.)
- mettre en œuvre les méthodes pour les problèmes d'ordonnancement en atelier (Flow-shop, job-shop, open-shop) et machines parallèles
- mettre en œuvre les techniques d'ordonnancement de projet
- modéliser un problème de planification et d'approvisionnement (lot-sizing) et mettre en œuvre des méthodes de résolution (Wagner-Within, Silver Meal, etc.)

GP28

UE ING.

C 30 h TD 30 h TP 24 h THE 80 h

Automne 6 crédits Antécédent : GP06

Excellence industrielle

OBJECTIE

 Les concepts et techniques de l'amélioration continue sont une formidable opportunité pour les industriels de développer des avantages compétitifs en améliorant la satisfaction de leurs clients tout en maîtrisant leurs flux et leur trésorerie et en mobilisant leurs employés.

PROGRAMME

- savoir entrainer les acteurs de l'entreprise dans un mouvement vertueux de progrès permanent en créant un climat de confiance et de bien-être
- maitriser les concepts et outils de l'amélioration continue (Lean Management, Six Sigma, Théorie des Contraintes)

GP30

UE ING.

C 30 h TD 30 h TP 12 h THE 80 h

Printemps 6 crédits

Commentaire : ouverte à l'alternance

Introduction à l'économétrie et au pricing

OR JECTIE

Cette UE a pour objectif d'introduire à la fois à la théorie et à la pratique de la gestion des revenus et de la tarification intelligente (Smart pricing). Elle mobilise des connaissances de la gestion des opérations, de statistiques appliquées et de recherche opérationnelle avec une coloration microéconomique. Il s'agit de donner une compétence pratique des outils analytiques qui portent directement sur les décisions économiques de l'entreprise. Il s'agit également d'utiliser l'analyse statistique, y compris les modèles de régression classiques, pour estimer les paramètres économiques pertinents, prédire les résultats et tester les hypothèses économiques à l'aide de données quantitatives.

- être capable de modéliser et d'analyse des fonctions de demandes en se basant sur différentes données quantitatives
- comprendre comment les méthodes de tarification optimisent les revenus
- maîtriser les outils d'aide à la décision appliqués à la gestion des revenus
- comprendre la pratique de la gestion des revenus et la tarification dans diverses industries (énergie)

IF03

UE ING. OU UE MAST.

C 30 h TD 24 h THE 96 h PRJ 20 h

Printemps 6 crédits

IF14

UE ING. OU UE MAST.

C 15 h TD 30 h THE 105 h PRJ 50 h

Automne 6 crédits

:

IF15

HE ING

C 30 h TP 30 h THE 90 h

Automne 6 crédits

Initiation à la Sécurité des Systèmes d'Information

OBJECTIE

 Appréhender les bases concernant la Sécurité des Systèmes d'Information en entreprise autant dans sa dimension technique, qu'organisationnelle et humaine.

PROGRAMME

- concevoir des architectures sécurisées
- · établir les exigences fonctionnelles et techniques
- · procéder à des investigations informatiques
- · réaliser des audits de sécurité
- proposer des mesures d'urgence efficaces

Analyse du Système d'Information

OBJECTIE

Modéliser le fonctionnement d'une entreprise et d'un métier en vue de son informatisation.

PROGRAMME

- analyser le vocabulaire de l'entreprise (diagramme de classes ou d'objets UML)
- analyser les flux de l'entreprise (diagramme d'activité UML)
- analyser l'organisation de l'entreprise (configurations de H. Mintzberg)
- analyser les tâches du professionnel (diagramme d'activité UML)

Ingénierie des connaissances

OR JECTI

 Face au besoin de gestion des connaissances en entreprise, ce cours forme aux techniques d'Ingénierie des Connaissances pour le recueil et la modélisation des connaissances des experts. Sont passées en revue différentes approches de recueil, de représentation et de gestion des connaissances.

- recueillir les connaissances (entretiens, documents)
- représenter les connaissances (ontologies, RDF, systèmes multi-agents, graphes conceptuels)
- gérer les connaissances (MASK, REX, Common KADS, MACAO, KOD)

IF20

UE ING.

C 30 h TD 30 h THE 90 h PRJ 50 h

Automne 6 crédits

Modélisation de processus métier

OR JECTIE

 L'approche par les processus est au cœur du management moderne des entreprises. Dans cette approche, les processus actuels sont décrits et optimisés, et de nouveaux processus sont conçus ainsi que les Systèmes d'Information associés. Ce cours enseigne la modélisation de processus qui est le prérequis d'une adoption de l'approche par les processus.

PROGRAMME

- identifier et modéliser des processus
- maîtriser pratiquer un outil logiciel de modélisation de processus
- · gérer un projet de modélisation de processus
- lier modélisation de processus et conception des applications du Système d'Information

IF26

UE ING. OU UE MAST.

C 30 h
TD 30 h
THE 90 h
PBJ 70 h

6 crédits

Conception sécurisée d'applications mobiles

OBJECTIF

 Comprendre les méthodes et outils de conception d'applications sécurisées appliqués au développement pour smartphones.

PROGRAMME

- spécifier les solutions de chiffrement et de protection des données sensibles
- utiliser un environnement de développement de logiciels
- réaliser en projet une application mobile (iOS ou Android)

IF28

HE ING

C 30 h TP 30 h THE 90 h

Automne 6 crédits

Fouille de données et connaissances

OR JECTIE

 Les entreprises, les services publics, les associations ont accumulé de grandes quantités de données. Des techniques et méthodes issues notamment de la fouille de données et du Web sémantique permettent d'en tirer des connaissances utiles à l'action.

- · repérer des sources mobilisables (données et textes)
- choisir des traitements de fouille de données et de textes produisant des résultats interprétables
- modéliser sous forme d'un graphe des propositions singulières (RDF) et universelles (RDFS, OWL), les utiliser dans des requêtes (SPARQL)
- accompagner une modélisation par les usagers (modèle entité-attribut-valeur,facettes, thésaurus, points de vue. etc.)
- mettre à l'épreuve les modèles de connaissances et gérer leurs évolutions

IF30

UE ING.

C 30 h TD 20 h TP 30 h

Printemps 6 crédits

Commentaire :

Business intelligence et décisionnel

OR JECTIE

- Présenter les concepts fondamentaux d'exploitation des bases de données et appréhender les modélisations dans le système d'information.
- Maîtriser l'exploitation des modèles relationnels de bases de données.
- Comprendre, mettre en pratique les activités de l'informatique décisionnelle et optimiser les processus de décision d'une organisation.
- Découvrir la gestion de données documentaires, non-structurées ou semi structurées.
- Appréhender le Big Data et le Cloud Computing.

PROGRAMME

- modèle relationnel, algèbre relationnel, architecture SGBD, gestion des transactions (tolérance aux pannes, contrôle de la concurrence, gestion de la cohérence, etc.), SQL, requêtes et optimisation
- du modèle de données à la conception pratique d'un SGBDR (étude de cas avec Microsoft SQL Server), requêtes et procédures stockées, outils d'exploitation, etc.
- architecture des systèmes décisionnels, alimentation, entrepôt et métadonnées, données multidimensionnelles, systèmes d'aide à la décision, outils d'exploitation BI
- bases de données orientées objets, systèmes BD non-structurés et semi-structurés (NoSQL, NewSQL, etc.),
 Big Data et architectures Cloud, de la transaction à l'interaction

IF31

UE ING.

C 30 h TD 30 h THE 90 h

Printemps 6 crédits

IF34

UE ING.

C 30 h TD 30 h THE 90 h

Printemps 6 crédits

Analyser et concevoir les plateformes de l'économie collaborative

OBJECTIF

 L'Internet est durablement au cœur des SI, du commerce électronique au développement de l'économie collaborative. Il s'agit dans ce cours de comprendre les infrastructures techniques et de relever le défi de la conception de plateformes plus inclusives et positives.

PROGRAMME

- maîtriser le concept de plateforme positive
- analyser les mécanismes et les modèles de rôles d'une plate-forme pour l'économie collaborative dans l'environnement technologique contemporain
- définir les exigences techniques, organisationnelles et sociétales pour de tels systèmes à partir de canevas de conception de plateforme (pour l'économie collaborative ou le commerce électronique par exemple)
- identifier les impacts potentiels de l'utilisation d'une plate-forme
- accompagner une organisation dans son choix technologique

Maitriser les technologies du SI

OBJECTIE

 Ce cours traite de la compréhension des technologies du SI (IA, Cloud computing, IoT, blockchain,...) pour contribuer à leur sélection et leur adoption afin de mettre en place une politique d'innovation pertinente et soutenable dans les organisations.

- analyser et évaluer l'écosystème des SI de l'entreprise.
- · gérer le portfolio des technologies de l'entreprise
- mesurer l'impact, l'adoption et les usages pour définir des politiques d'innovation
- piloter la transformation (numérique) des métiers de l'entreprise

ISI C01

UE ING.

Automne Printemps 3 crédits

Introduction au Big Data

OR JECTIE

- Identifier et comprendre un contexte BigData dans l'entreprise.
- Analyser un contexte BigData dans l'entreprise et en identifier les enjeux.
- · Concevoir et planifier un projet BigData.
- Mettre en œuvre un proiet BigData dans l'entreprise.
- Alimenter les traitements en données pérennes et pertinentes.

PROGRAMME

- traduire les défis du BigData en capacités d'action
- définition, composante, interactions, acteurs, enjeux
- spécification de projets BigData
- sources de données, évaluation, augmentation, enrichissement, etc.
- · piloter et maintenir une solution BigData
- classes de traitement, machine Learning, chaîne de traitements

ISI_C02

UE ING.

Automne Printemps 3 crédits

Nudge et persuasive computing

OBJECTIF

- Exprimer les enjeux du PC, reformuler les enjeux du PC en intégrant la dimension éthique dans la pratique de l'ingénierie.
- Comprendre les concepts issus des théories de la persuasion et de l'influence.
- Définir les principes persuasifs et ludopersuasifs.
- Acquérir les bases de la ludicisation (gamification) et de son usage.
- · Produire des scénarios d'usage.

PROGRAMME

- mobilisation de ressources scientifiques et techniques
- ingénierie des systèmes persuasifs
- · évaluation des systèmes persuasifs

ISI C03

HE ING

THE 45 h

Automne Printemps 3 crédits

Smart Grids

OR JECTIE

- · Penser les smartgrids comme une solution pour la gestion de l'énergie.
- Etudier et déployer une solution de gestion de l'énergie adaptée.
- · Gérer les données générées par les smartgrids.
- Envisager la place des smartgrids dans les smartcities.

- Analyser un contexte
- Identifier les opportunités et mesurer les problématiques liées aux smartgrids
- Etudier la gestion de l'énergie dans le cadre d'un batiment intelligent
- Concevoir une solution adaptée
- Traiter et stocker les données
- · Sécuriser les données
- Envisager les influences et interactions dans un eco-système

ISI C04

UE ING.

Automne Printemps 3 crédits

Smart Mobility

- · Mesure des enjeux de la mobilité urbaine.
- Analyse de la gouvernance et de l'organisation des systèmes de mobilité.
- Caractérisation d'une composante de la mobilité urbaine:les transports.
- Ingénierie et management logiciels au service de la mobilité.
- Analyse des situations d'aide à la décision pour les profils d'usagers (gestionnaire utilisateurs finaux).

PROGRAMME

- · Contextualisation : la mobilité urbaine dans la société
- Une composante de la mobilité : les systèmes de transport
- L'informatique et les technologies au service de la mobilité

LO02

UE ING.

6 crédits

LO07

6 crédits

Principe et pratique de la programmation orientée objets

OBJECTIF

 L'objectif de cette UE est de comprendre et utiliser l'approche orientée objet pour la mise en œuvre de projets logiciels. Elle propose de mener de front la conception détaillée (en UML) et le développement (en Java) d'un même projet.

PROGRAMME

- comprendre les concepts de l'approche orientée objet et les traduire en UML et en Java
- connaître et réutiliser les bibliothèques et fonctions essentielles de Java2 SE (Standard Edition)
- concevoir une architecture orientée objet sur la base d'exigences fonctionnelles
- connaître et savoir intégrer des patrons de conception élémentaires dans la production de code
- documenter une API avec Javadoc

Technologies du web

Comprendre et utiliser les briques logicielles nécessaires pour la conception et la réalisation d'applications Web en prenant en compte la persistance des données et les évolutions autour du langage Javascript (AJAX).

- · concevoir et développer des interfaces Web (HTML et CSS).
- sélectionner les modèles de données adaptés aux contraintes de l'application et organiser l'alimentation des
- identifier les extensions Javascript les plus adaptées aux contraintes d'un projet
- utiliser un environnement de développement de logiciels (Netbeans)

LO10

UE ING.

TD 30 h THE 90 h

Printemps 6 crédits

L011

UE ING.

TP 45 h THE 75 h

Printemps 6 crédits

LO14

UE ING.

TD 30 h
THE 90 h

Automne 6 crédits

Antécédent : NF04 ou NF05

LO17

UE ING.

C 30 h

Printemps 6 crédits

Antécédent : NO14 ou NF16

Architectures orientées services

OR IECTIE

 Découverte des enjeux fonctionnels des architectures orientées services (SOA) et des modèles de conception associés. Mise en œuvre de différentes approches (REST, SOAP) et application sur un projet.

PROGRAMME

- choisir des services de différents niveaux (SaaS, PaaS, laaS) adaptés au besoin
- · concevoir et mettre en œuvre des applications orientées services suivant les démarches et formats standards
- choisir une architecture en fonction des contraintes de l'organisation (sécurité, fiabilité, performance, évolution)
- appliquer des patrons de conception architecturaux

Introduction à l'internet des objets

OBJECTIE

 L'objectif est de comprendre les principales technologies et mécanismes utilisés dans l'internet des objets, mais également de savoir mettre en œuvre une solution qui utilise ces technologies.

PROGRAMME

- comprendre l'architecture de ce type de réseau dans son ensemble depuis le capteur jusqu'à la plate-forme de traitement
- savoir programmer des obiets connectés afin de transmettre les données des capteurs
- · savoir mettre en œuvre une solution logicielle de traitement de données sur la plate-forme de traitement
- savoir installer les services réseaux nécessaires au bon fonctionnement de la chaîne de transmission.

Administration des systèmes

OR IECTIE

Acquérir les compétences sur l'administration système et sur le métier d'ingénieur système.

PROGRAMME

- acquérir les connaissances nécessaires à la maîtrise et à la compréhension du fonctionnement des systèmes d'exploitation
- · acquérir les connaissances nécessaires à la maîtrise de la virtualisation des systèmes d'exploitation
- · savoir programmer un système d'exploitation
- savoir administrer un système d'exploitation

Architectures Cloud et virtualisation

OR JECTIE

Comprendre et maîtriser le fonctionnement des architectures Cloud en vue de leur mise en œuvre et leur utilisation.

- Connaître et maîtriser les différentes technologies de virtualisation au niveau système : micro-processeur, mémoire vive, stockage et réseau
- Comprendre le rôle et le fonctionnement des différents composants d'une architecture Cloud ainsi que leurs interfaces
- Savoir mettre en œuvre différents types de services dans une architecture de cloud public ou privé et en maîtriser l'usage
- Comprendre les enjeux liés à la sécurité et maîtriser les briques technologiques associées
- Comprendre les enjeux liés à l'empreinte écologique des architectures Cloud

MA13

UE ING.

C 30 h TD 30 h TP 16 h

Automne Printemps 6 crédits

Commentaire : nécessaire

Mécanique des matériaux

OR JECTIE

 Initier les étudiants aux notions de contraintes et de déformations afin de satisfaire les conditions de résistance mécanique.

PROGRAMME

- comprendre le dimensionnement des structures à l'aide des critères classiques de limite d'élasticité
- comprendre une loi de comportement élastique (loi de Hooke) et plastique
- comprendre les mécanismes élémentaires de déformation en élasticité, en plasticité et en fluage
- connaître les notions de ductilité, de fragilité et d'endommagement

MA20

UE ING. OU UE MAST.

C 30 h TD 30 h TP 6 h

6 crédits

Analyses et caractérisations microscopiques des matériaux

OBJECTIF

 Les récents développements en sciences des matériaux nécessitent une compréhension intime des comportements de la matière aux échelles micronique, submicronique voire nanométrique.

PROGRAMME

- adapter les dispositifs de caractérisation à ces exigences
- comprendre les techniques traditionnelles de Microscopies optiques ou électronique à balayage et DRX
- comprendre les nouvelles techniques à sondes locales
- savoir faire le choix de la technique microscopique ou nanométrique appropriée en fonction du cahier des charges du matériau à analyser
- être apte à mettre en œuvre ou à faire mettre en œuvre la technique appropriée à l'analyse microscopique ou nanométrique demandée

MA21

UE ING. OU UE MAST.

C 30 h TD 30 h TP 12 h THE 60 h

6 crédits

Analyses et caractérisations macroscopiques des matériaux

OBJECTIF

 La grande diversité des matériaux utilisés aujourd'hui dans l'industrie nécessite une approche exhaustive des techniques de caractérisation et d'analyse. On se limitera ici aux propriétés macroscopiques.

- appréhender et comprendre les techniques de caractérisation macroscopiques les plus utilisées; spectroscopie optique (réflexion, transmission, IR, Raman, ellipsométrie),techniques de contrôle non-destructif (ressuage, magnétoscopie, ultrasons), Résonance magnétique nucléaire et chromatographie
- savoir choisir la technique en fonction du matériau à analyser et des paramètres physico-chimiques recherchés
- être apte à interpréter et utiliser les résultats de l'analyse dans le but, entre autre, d'orienter le choix d'un matériau en rapport avec un cahier des charges ou une application donnée

MDPIMIC3

UE ING.

C 35 h THE 35 h

Automne 6 crédits

MDPIMIC4

UE ING.

C 35 h THE 35 h

Automne 6 crédits

MDPIMIC5

UE ING.

C 35 h THE 35 h

Automne 6 crédits

Nouveau mode projet (micro-certification)

OR IECTIE

Cette micro-certification vous fera découvrir les nouvelles modalités du travail collaboratif en plateau projet virtuel. Vous apprendrez le b.a. ba des pratiques collaboratives génériques (opératives quelles que soient les plateformes utilisées) en effectuant en groupes restreints un mini-projet de conception collaborative. Cet apprentissage expérientiel exploitera la plateforme de collaboration digitale Microsoft 365. Cette micro-certification concentre (1) l'acquisition de savoirs théoriques fondamentaux et (2) l'expérience de savoirs d'action instrumentés. Cette formation d'initiation vous permettra d'appréhender les nouvelles compétences requises par le management de dispositifs sociotechniques d'information et de communication qui caractérisent l'ingénierie collaborative du 21° siècle.

PROGRAMME

- Phase préparatoire : comment construire un agir collaboratif en mode projet (livre gris, 50 pages), quiz d'auto-évaluation en maturité collaborative, séminaire d'ouverture de la micro-certification (présentiel ou webinaire)
- Formation présentielle : fondamentaux de l'agir collaboratif, agir collaboratif en plateau projet virtuel, collaboration en conception collective, mise en situation-problème (étude de cas), découverte de la plateforme Microsoft 365 (plateau projet virtuel)
- Phase de consolidation: mini-projet d'écriture collaborative d'un article de glossaire (terminologie de l'ingénierie collaborative)

Transformation des industries et services par le numérique (micro-certification)

OBJECTIF

 Cette micro certification a pour objectif de sensibiliser le futur ingénieur à la prise en compte des facteurs organisationnels et humains dans tout projet de transformation numérique. Elle met l'accent également sur les méthodologies à mettre en œuvre pour permettre le succès de tels projets. Enfin, elle propose une immersion dans le métier de consultant, acteur majeur de cette transformation

PROGRAMME

- · introduction au métier de consultant
- les bonnes pratiques pour un projet de transformation réussi, présentation et mise en place du projet hors encadrement
- Formation présentielle : état des lieux client, méthodologies générales de cadrage, savoir poser un diagnostic, évaluer un plan d'investissement, accompagner le changement
- Phase de consolidation : analyse et restitution d'un cas pratique

Building Information Modeling (micro-certification)

OBJECTIF

 Cette micro-certification vous fera découvrir le BIM, pour Building Information Modeling. Le BIM est une approche globale visant à accélérer la collaboration tout au long des phases d'un projet de construction d'une infrastructure (transport, production d'énergie etc.). Sur la base d'exemples réels, vous appréhenderez la notion de continuité numérique d'un projet d'infrastructure et établirez les correspondances et différences notables avec les approches issues du domaine de l'industrie et des services besoin du marché.

- auto-positionnement
- · aborder les fondamentaux du BIM, du vocabulaire aux contraintes métiers
- Formation présentielle : comprendre l'historique et la maturité du BIM, saisir les enjeux de la continuité numérique dans un projet d'infrastructure, comprendre les évolutions en cours (norme ISO 19650), illustrer la démarche de continuité numérique à travers des projets de mise en œuvre
- Phase de consolidation : développer et mettre en œuvre un service de continuité numérique sur un projet d'infrastructure, compétences développées

h. & Méth.

ME10

UE ING.

C 30 h TD 30 h THE 51 h

Printemps 6 crédits

Matériaux pour l'énergie

OR JECTIE

• Etre capable de dimensionner des matériaux pour le stockage, la production et le transport de l'énergie.

PROGRAMME

- énergies renouvelables : photovoltaïque, solaire thermique, éolien
- énergie nucléaire : production d'énergie nucléaire classique et future, traitement et stockage des déchets, principes et matériaux mis en ieu
- stockage et transport de l'énergie : système traditionnel et moderne pour le stockage de l'énergie, transport optique, transport électrique

ME11

UE ING.

C 30 h TD 30 h TP 12 h

Printemps 6 crédits

Commentaire : visites er

Matériaux et transition énergétique

OBJECTIE

La transition énergétique passe par la connaissance de nouvelles technologies et de nouveaux composants.
 Cette UE propose d'avoir un regard scientifique, technique et économique sur ces différents aspects.

PROGRAMME

- · enjeux énergétiques et climatiques
- règlementation et environnement socio-économique de la transition énergétique
- développement de nouveaux matériaux pour le stockage de l'énergie, le transport, l'habitat, l'éclairage
- technologies et solutions modernes de production d'énergie
- · dimensionnement et chiffrage des énergies renouvelables
- évolution de la chimie des carburants (passé/avenir)

MQ06

UE ING. OU UE MAST.

C 30 h
TD 30 h
TP 12 h

6 crédits

Antécédent : MQ01 ou MQ02

Modélisation des structures par éléments finis

OR JECTIE

 Dimensionner des structures mécaniques passe par le calcul des champs des déplacements, des déformations et des contraintes en résolvant le problème d'équilibre. Les solutions analytiques étant impossibles à obtenir sur des géométries complexes, le recours à la méthode des éléments finis (MEF) est donc incontournable.

- savoir poser les équations définissant l'équilibre d'une structure mécanique en élasticité linéaire
- connaître les différentes méthodes de résolution de différents problèmes types
- connaître la forme intégrale faible des éguations d'équilibre
- connaître les principales étapes de la MEF: discrétisation géométrique, construction d'un EF dans l'espace de référence, approximation nodale par sous-domaines, forme faible élémentaire, assemblage, introduction des CL et résolution, calcul des champs auxiliaires
- savoir appliquer à des structures à barres dans l'espace (treillis)
- savoir appliquer à des poutres minces et épaisses et aux structures à poutres (portiques)
- savoir appliquer à des membranes (2D) et des massifs (3D)

MQ09

UE ING.

C 30 h TD 30 h TP 20 h THE 50 h PRJ 20 h

Printemps 6 crédits

Commentaire : Support de cour

MQ16

UE ING.

C 30 h TD 30 h TP 20 h

THE 50 h PRJ 20 h

Automne 6 crédits

MQ21

UE ING. OU UE CS POUR MAST.

C 30 h TD 30 h TP 20 h

Automne 6 crédits

Antécédent : MQ02, MQ04 Commentaire : ouverte à l'alternance

Maillage et méthodes d'adaptation

OR JECTIE

 La résolution de la plupart des problèmes physiques est basée sur la méthode des éléments finis utilisant un maillage sur lequel les équations physiques sont formulées. Le maillage est en effet, au travers de sa qualité, un élément fondamental dont dépend la qualité des résultats numériques.

PROGRAMME

- avoir les notions de base sur les éléments finis : fonctions de forme et éléments géométriques
- savoir modéliser géométriquement des courbes et des surfaces : modèles 2D. 3D surfacique et 3D volumique
- connaître les généralités sur le maillage : Triangulation versus Maillage, Maillage et Eléments Finis, Estimateur d'erreur. Adaptation de maillages
- · maîtriser les méthodes classiques de génération de maillage : Plan, Surface, Volume
- que représente le maillage en calcul scientifique : applications à la mécanique des solides et des fluides, autres disciplines du calcul numérique

Dimensionnement des structures mécaniques par une approche mixte numérique/expérimentale

OBJECTIF

- · Déterminer et analyser expérimentalement et numériquement par Elements Finis (EF) les déformations et.
- Les contraintes dans les structures mécaniques.
- Confronter les résultats expérimentaux et EF.
- Optimiser les structures vis-à-vis de leurs résistances mécaniques.

PROGRAMME

- · déterminer les déformations et les contraintes dans une structure par différentes techniques expérimentales
- poser correctement le problème d-équilibre de structures élastiques isotropes et anisotropes en vue de leur
- modélisation par EF
- maitriser l'utilisation de divers codes de calcul par EF pour simuler le comportement d-une structure déformée par des sollicitations mécaniques statiques et dynamiques
- analyser les champs de déformations et des contraintes obtenus à partir d'un modèle EF
- recaler les paramètres d'un modèle EF sur la base de comparaisons avec des résultats expérimentaux
- · optimiser une structure en utilisant les codes EF

Procédés de mise en forme des matériaux et simulations numériques

OBJECTIF

· Maîtriser et simuler numériquement divers procédés mécaniques de mise en forme et de fabrication.

- connaître les aspects technologiques des procédés de mise en forme conventionnels (forgeage, laminage, emboutissage, etc.)
- au travers de projets, savoir acquérir et transmettre des notions sur des procédés de mise en forme moins conventionnels
- connaître les notions de base de la mécanique non-linéaire et les modèles de comportement associées
- savoir caractériser et modéliser le comportement des matériaux lors de la mise en forme
- savoir simuler numériquement divers procédés mécaniques à l'aide de logiciels métiers (Abaqus, PAM-Stamp et Forge)

MT15

UE ING.

C 30 h TD 30 h TP 12 h

THE 70 h

6 crédits

Valorisation des Données pour l'ingénieur

OBJECTIF

L'objectif de cette UE est d'enseigner une démarche/méthodologie pour analyser les données en passant par des étapes fondamentales telles que : la description, la classification, la modélisation, la prédiction et la validation en vue d'extraction d'information pour la résolution de problèmes industriels. Il s'agit de permettre aux étudiant d'assimiler les enjeux d'une analyse des données à travers des études de cas. Cet objectif passera par l'acquisition des compétences suivantes :

- structurer l'information contenue dans des données multidimensionnelles.
- maîtriser les méthodes standards pour faire des analyses et produire des rapports complets.
- comprendre les limites de ces approches, et envisager des alternatives, extensions, etc.
- mettre en œuvre ces méthodes dans le cadre d'études de cas issues des différents métiers de l'ingénieur.

PROGRAMME

- méthodes de modélisation par régression linéaire et régression logistique(variables discrètes)
- méthodes de classification (logique floue et réseaux de neurones)
- traitement des données manquantes et aberrantes, à la détection des erreurs
- présentation et étude de cas pratiques (appliqué aux différents domaines du métier de l'ingénieur)

NF14

UE ING. OU UE MAST.

C 30 h TD 24 h TP 24 h

Printemps 6 crédits

Structuration et gestion de données industrielles

OBJECTIF

 NF14 vise à mettre en application sous divers logiciels dédiés à la gestion industrielle des modèles et des méthodes de structuration de données. Elle présente les outils informatiques permettant de : concevoir et interroger une base de donnée, manipuler les données, élaborer des tableaux de bord et graphiques pour le suivi de performance ; planifier l'activités industrielle (ERP).

PROGRAMME

- utilisation avancées d'Excel, conception de macros avec VBA reporting, suivi des performances (logiciel open source)
- · savoir mener un projet d'implantation d'ERP
- · savoir appliquer les fonctionnalités de base d'un ERP pour la planification industrielle

NF19

UE ING. OU UE MAST.

C 30 h TD 30 h THE 90 h

Automne 6 crédits

Commentaires : bases de données

Ouverte aux étudiants de TO

Maîtriser les fondamentaux de l'infrastructure informatique

OBJECTIF

 A la fin de ce cours, l'étudiant sera en mesure de mettre en œuvre une infrastructure logicielle et la faire évoluer pour répondre au mieux aux besoins des usagers.

- gestion des données et stockage, plateformes de mise en réseau, ...)
- identifier les tâches nécessaires pour mettre en place et maintenir une infrastructure informatique
- décrire les principales architectures techniques (ex : architectures transactionnelles, Client-Serveur, ...)
- distinguer les principales techniques de l'optimisation des infrastructures physiques (ex : Virtualisation, Cloud Computing, Converged Infrastructure...)
- identifier les éléments d'un système de gestion de base de données (SGBD, Oracle)
- · proposer et mettre en place, à partir d'un cas d'étude, une infrastructure informatique pertinente

NF21

UE ING.

C 30 h TD 30 h THE 90 h

Automne 6 crédits

NR01

UE ING. OU UE MAST.

C 30 h TD 30 h

6 crédits

Antécédent : TN09 Commentaire : ouverture à l'alternance

OB01

UE ING.

C 24 h TD 30 h TP 32 h

Automne 6 crédits

Conception de projet Data pour l'innovation

OR JECTIE

 L'innovation par la donnée est devenue un enjeu majeur pour les entreprises. La réussite des projets Data constitue le cœur de la stratégie d'innovation de plusieurs entreprises. Elle est en grande partie basée sur la maîtrise de bout en bout des étapes d'un de transformation de la donnée en valeur.

PROGRAMME

- comprendre le concept d'innovation par la donnée (Data-driven Innovation)
- identifier et cartographier les gisements de données potentiellement porteurs d'innovation
- évaluer le périmètre d'un projet Data
- concevoir un projet data pour innover dans l'entreprise
- piloter et maintenir un projet Data

Normes et réglementation

OBJECTIE

 Connaissance et application des aspects normatifs et règlementaires utiles à l'ingénieur dans le domaine de la qualité, la sécurité et l'environnement ainsi que ceux plus spécifiques à des secteurs d'activités donnés.

PROGRAMME

- connaître les principales familles de textes réglementaires dans les domaines de la qualité, la sécurité et l'environnement
- comprendre la structure des normes ISO 14001, ISO 9001, 0HSAS 18001 et d'autres plus spécifiques dans le domaine des transports, des procédés spéciaux, de l'énergie
- appliquer la réglementation et les normes relatives aux substances ou produits
- réaliser un audit sécurité et qualité
- comprendre le rôle potentiel des différentes fonctions de l'entreprise dans la structuration et la mise en œuvre des systèmes de management

Outils scientifiques de base pour l'ingénieur

OR JECTII

 En ingénierie, on est souvent confronté à des problèmes dont la résolution analytique s'avère très compliquée, voire impossible. La simulation numérique devient alors un outil puissant qui permet de mieux comprendre la nature des phénomènes étudiés.

- · identifier les grandeurs jouant un rôle clé dans un phénomène physique
- s'interroger sur la vraisemblance d'un résultat et être capable de quantifier l'erreur commise lors des calculs numériques

OP03

UE ING.

C 60 h THE 90 h

Printemps
6 crédits

Commentaire : UE enseignée à distance

Smart Photonics Systems

OR JECTIE

 In the context of information and communication technologies, light is being more and more used to compute, transport and store information. The goal of this lecture is to present an overview of the recent developments in photonics, including lasers and their applications, ultrafast optics and all-optical data processing.

PROGRAMME

- understanding of the working principles of lasers: lasing threshold, optical cavities, Gaussian beam optics, laser pulses ...
- knowledge of the main applications of lasers: holography, optical cryptography ...
- · getting acquainted with ultrafast optics: femtosecond lasers, optical parametric oscillators
- designing an all-optical communication channel to transfer voice and video
- using non-linear optics to design new optoelectronic devices

PR15

UE ING.

C 60 h

Printemps 6 crédits

Mise en forme des matériaux

OBJECTIF

Appréhender différents procédés industriels permettant le faconnage de différents matériaux.

PROGRAMME

- identifier, connaître et comparer les procédés d'élaboration de mise en forme de différents matériaux (métalliques, polymères, céramiques, agro-matériaux, bois, composites...)
- identifier, connaître et comparer les procédés de fabrication avancés (usinage grande vitesse, fabricatio additive...)
- identifier, connaître et comparer les procédés modifiant la surface afin d'optimiser certaines propriétés (traitements thermochimiques, traitements mécaniques de surface...)

RE01

UE ING. OU UE MAST.

C 30 h TD 30 h

Automne 6 crédits

Réseaux d'entreprise

OR JECTIE

- · Appréhender la notion d'accès dans les réseaux d'entreprises filaires ou sans fil.
- Comprendre la notion d'interconnexion de réseaux et les équipements nécessaires jusqu'au lien vers l'extérieur de l'entreprise.

- · maîtriser la notion de partage par opposition à la notion de commutation
- comprendre les enjeux de la commutation
- comprendre les limitations de l'accès partagé
- maitriser la notion de débit (théorique, moyen, utile, garanti)
- connaître les éléments d'interconnexion, le contrôle de flux, et les problématiques d'adressage

RE01A

HE ING.

C 30 h TD 30 h

Automne 6 crédits

Corporate networks

OBJECTIF

- Understand the concept of access in the wired and wireless networks.
- Understand the notion of network interconnection and the necessary equipment to link to the outside of the company.

PROGRAMME

- master the notion of sharing as opposed to the notion of switching
- · understand the issues of switching
- · understand the limitations of shared access
- master the notion of throughput (theoretical, average, useful, guaranteed)
- know the elements of interconnection, the notion of flow control, and the problems of routing (addressing capabilities)

RE06

UE ING. OU UE MAST.

C 30 h TD 30 h TP 16 h

THE 74 h PRJ 14 h

Automne 6 crédits

Antécédent : RE04

Communications unifiées

OBJECTIF

- Donner une vue globale de la téléphonie et aborder les concepts, protocoles, et technologies des communications unifiées.
- Maîtriser les concepts temps réel dans les réseaux (WAN, IoT ...).

PROGRAMME

- maîtriser les protocoles temps réel (ex. RTP, RTCP) dans les réseaux (WAN, IoT,...) et les protocoles des communications vidéo
- comprendre les principes des communications unifiées pour l'IoT
- comprendre les technologies industrielles de signalisation (SIP, H323)
- maîtriser les enieux de la sécurité des communications unifiées
- maîtriser les solutions VoIP industrielles (Asterisk, Cisco call manager) sur les réseaux (WAN, IoT,...)

RE12

UE ING.

C 45 h TP 21 h THE 81 h

Printemps 6 crédits

Antécédents : L014, RE0 Commentaire :

Services Réseaux

OR JECTIE

 RE12 traite des services déployés sur les infrastructures réseaux connectées à l'Internet. Elle présente les services élémentaires depuis leur concepts et principes de conception protocolaire jusqu'aux implémentations de référence.

- comprendre et maîtriser les fonctionnalités offertes par les couches protocolaires hautes (transport, session et présentation) et connaître les protocoles actuels qui les implémentent (ex. TCP, UDP, SIP, ASN.1 et XML)
- connaître et comprendre les services élémentaires dans les réseaux (résolution des noms, annuaires, web, administration)
- mettre en œuvre les fonctions élémentaires des services réseaux sur des implémentations de référence (Bind, OpenLDAP, Net-SNMP)
- connaître les technologies de mise en production de service cloud et savoir déployer un service dans un environnement virtualisé
- comprendre la normalisation IETF par le biais d'un projet mené en binôme

RE13

UE ING.

6 crédits

Réseaux mobiles et sans fils

· Présenter les architectures et les protocoles des réseaux sans fil et mobiles et comprendre leurs fonctionnements.

PROGRAMME

- comprendre le fonctionnement des couches physiques des réseaux sans fil et mobiles
- maîtriser le fonctionnement du réseau WiFi
- sécuriser un réseau WiFi
- maîtriser les architectures des réseaux mobiles (GSM, UMTS, LTE)
- comprendre le fonctionnement des réseaux IoT
- appréhender la notion de mobilité et les problématiques sous-jacentes

RE14

UE ING. OU UE MAST.

6 crédits

Antécédent : RE01

Réseaux d'entreprise avancés

OBJECTIE

A partir des connaissances fondamentales sur réseaux Ethernet/IP, cette UE traite du déploiement, de la configuration et des éléments d'architecture pour la gestion IP d'un réseau d'entreprise.

PROGRAMME

- maîtriser la mise en route d'un réseau totalement conforme au modèle de routage standard
- optimiser le routage
- réseau de gestion, gestion des configurations

Sécurisation des réseaux

- maîtriser l'architecture de type campus (passage à l'échelle) : accès, distribution, cœur
- comprendre et mettre en œuvre la redondance et l'équilibrage de charge : redondance d'équipements. redondance de liens
- remettre en cause une architecture standard pour des applications spécifiques (par ex. multicast)

RE16

UE ING. OU UE MAST.

6 crédits

Plusieurs moyens d'agir doivent être combinés pour assurer la sécurité des communications et des infrastructures informatiques : au niveau des applications elles-mêmes, au niveau du système d'exploitation des ordinateurs, et au niveau du réseau lui-même. RE16 est centrée sur la contribution du réseau à la sécurité informatique.

- savoir concevoir ou modifier une infrastructure réseau pour l'amener à une structure logique saine, prérequise à la sécurité
- comprendre et mettre en œuvre les outils d'administration et de protection de l'infrastructure réseau elle-même
- comprendre et mettre en œuvre une stratégie de filtrage des communications
- mettre en œuvre un firewall pour le filtrage et l'interconnexion IPSec
- comprendre l'architecture Radius pour le contrôle d'accès au réseau
- comprendre et mettre en œuvre une architecture de certification pour sécuriser des communications web

RE20

UE ING.

C 30 h TD 30 h TP 20 h

Printemps 6 crédits

Antécédent : RE04 Commentaire :

Réseaux d'opérateurs

OR JECTIE

 L'objectif de l'UE est de comprendre le fonctionnement des réseaux IP d'opérateurs, ainsi que les architectures type « datacenters » et les mettre en œuvre dans des environnements opérationnels (BGP, MPLS, VmWare)..

PROGRAMME

- comprendre l'acheminement et la collecte ADSL
- · comprendre et expérimenter MPLS pour la production de services d'interconnexion et de fourniture d'accès à
- l'Interne
- comprendre le routage public et la cohabitation d'IPv4 avec IPv6
- comprendre l'architecture constitutive d'un datacentre et la mettre en œuvre
- nouvelles architectures de contrôle d'IP: Software Defined Network (SDN) et application dans les datacentres (cisco ACI)

RE21

UE ING.

C 30 h TD 30 h THE 90 h

Printemps 6 crédits

Antécédent : LOO

Technologies mobiles : ergonomie et usages

OBJECTIF

 Connaissances et outils pour intégrer, anticiper les aspects humains dans les projets de services mobiles : ergonomie des terminaux, usages des technologies et impact sur les activités humaines, méthodes de conception centrées utilisateur.

PROGRAMME

- prendre en compte l'impact des technologies mobiles sur la société et les activités humaines
- appliquer les critères ergonomiques et les méthodes de conception centrées utilisateur
- acquérir les bases pour développer des IHM Android
- intégrer l'expérience utilisateur dans le processus de conception
- · identifier les enjeux d'acceptabilité des objets connectés
- · développer des aptitudes à travailler au sein d'équipes pluridisciplinaires

RM02

UE ING.

C 30 h TD 30 h THE 60 h

Automne 6 crédits

Analyse des données de retour d'expérience

OR JECTIE

 Apprendre les méthodes de mise en place et d'exploitation du retour d'expérience pour les analyses de sûreté de fonctionnement de systèmes.

- · utiliser les outils de probabilité et statistique en qualité et sûreté de fonctionnement
- modéliser les essais de fiabilité à l'aide des outils statistiques
- traiter et faire une analyse statistique des données de retour d'expérience pour la fiabilité, (ACP, AF, Tests....)
- · employer les méthodes statistiques fréquentistes lorsqu'un grand nombre de données est disponible
- · prendre en compte les données censurées, les erreurs de mesures et les différents types d'incertitude
- employer l'approche bayésienne pour modéliser les événements où peu de données de retour d'expérience est disponible
- appliquer les outils probabilistes pour l'optimisation de la maintenance par la fiabilité (OMF)
- mener une étude probabiliste de sûreté (EPS)
- utiliser des méthodes probabilistes pour la conception de nouvelles installations

RM03

UE ING. OU UE MAST.

6 crédits

Surveillance et pronostic - outils PHM

- Dans le cadre de l'industrie 4.0, l'ingénierie de systèmes sûrs nécessite le traitement et l'exploitation en temps réel des données de surveillance pour pouvoir détecter des défauts et anticiper les défaillances. L'analyse des données de surveillance permet de construire des indicateurs de santé et de prédire la durée de vie résiduelle. La surveillance et le pronostic sont fondamentaux pour une aide à la décision permettant de satisfaire les exigences de maintien en condition opérationnelle de systèmes complexes.

PROGRAMME

- traiter des données de surveillance (CMS, SCADA, HUM.')
- analyser de données de surveillance à l'aide d'outils statistiques (ACP, AF, SVM, classification supervisée, non supervisée. test, analyse de dépendances)
- construire des indicateurs en s'appuyant sur les méthodes d'analyse de données
- modéliser les indicateurs de santé avec prise en compte de covariables et de censures (séries temporelles, processus stochastique, régression....)
- caractériser la durée de vie résiduelle
- évaluer l'indicateur de pronostic (FP, MCMC, EM, HMM, ...)
- estimer l'incertitude des résultats de pronostic (IC, loi de probabilité....)
- appliquer des méthodes d'analyse de risques (logique floue, croyance)

RM04

UE ING.

6 crédits

Maintenance intelligente

OBJECTIF

La planification de maintenance constitue un élément fondamental dans la gestion de systèmes industriels complexes intelligents. En partant des approches classiques de maintenance préventive cette UE présente les défis méthodologiques à relever pour mettre en œuvre une stratégie de maintenance prévisionnelle (Maintenance 4.0) qui tend de plus en plus à exploiter en temps réel l'ensemble des données disponibles. Différentes politiques de maintenance sont évoquées ainsi les méthodes d'analyse et d'évaluation permettant d'assurer les contraintes de sûreté de fonctionnement requises tout en optimisant les performances économiques.

PROGRAMME

- mettre en œuvre des méthodes qualitatives d'optimisation de la maintenance : TPM. RCM. maintenance proactive
- élaborer des politiques de maintenance classiques (age-based, time-based) et politiques intelligentes (CBM, predictive)
- identifier les enjeux de la fonction maintenance pour l'entreprise.
- choisir et mettre en place des critères d'évaluation
- optimiser les politiques de maintenance
- regrouper des actions de maintenance
- prendre des décisions en ligne (planification d'inspection, reconfiguration, remplacement, réparation,...)

RO01

UE ING.

6 crédits

Robotique industrielle

OBJECTIF

• Donner les bases nécessaires à la modélisation et à l'exploitation de systèmes robotisés.

- introduction à la robotique industrielle
- transformations homogènes
- modélisation : géométrique, cinématique et dynamique
- planification et génération de mouvements
- programmation hors ligne de robots industriels
- mise en œuvre et exploitation d'une cellule robotisée

SM02

UE ING. OU UE MAST.

C 30 h TD 28 h TP 20 h

6 crédits

Antécédents : MQ01, ou MQ02 ou MQ06 Commentaire : ouverte à l'alternance

Modélisation avancée des structures par éléments finis

OBJECTIF

- Mise en œuvre d'un calcul de structure simple ou complexe par résolution d'un problème multi-physique basé sur la méthode des éléments finis..
- · Présentation des éléments poutres épaisses, plaques et coques. Formulation de conditions aux limites.

PROGRAMME

- · savoir formuler des éléments de type poutres, plaques et coques
- · connaître l'étude des limites et l'analyse de sensibilité de la méthode des éléments finis
- savoir appliquer à des structures métalliques 2D et 3D
- savoir appliquer à des structures composites 3D
- savoir utiliser différents logiciels éléments finis (Catia analysis, Abagus')

SY05

UE ING. OU UE MAST.

C 30 h TD 30 h THE 80 h PRJ 30 h

Printemps 6 crédits

Antécédents : MT14, SY0

Outils d'aide à la décision et théorie des jeux

OBJECTIF

 La théorie de la décision vise à étudier et analyser des décisions individuelles. La théorie des jeux a comme but de savoir analyser et modéliser des situations d'interaction stratégique d'individus rationnels.

PROGRAMME

- mettre en œuvre différentes techniques d'aide à la décision en entreprise
- comprendre l'intérêt de l'information supplémentaire (sondage, enquête) avec l'approche bayésienne et les arbres de décision
- · être familiariser avec la théorie de l'utilité
- connaître les différentes catégories et modèles de jeux (non coopératifs, à somme nulle, à somme non nulle, dynamiques, répétitifs, coopératifs)
- connaître les conditions d'existence de solutions en stratégies pures et mixtes (aléatoires) pour diverses catégories de jeux
- · savoir mettre en œuvre une méthode de résolution quand les solutions existent

SY12

IE ING

C 30 h TD 30 h TP 24 h

Automne 6 crédits

Eléments d'automatique et contrôle industriel

OR JECTIE

 Étudier les méthodes d'analyse et de conception des algorithmes de commande automatique logique, modéliser les fonctionnements et commandes séquentiels.

- modéliser un système de production par un modèle de simulation à évènement discret
- modéliser un système de production par un modèle de réseaux de Petri
- modéliser une régulation (automatique) par un contrôleur à Logique Floue
- mettre en œuvre les modèles à évènement discret en situation réelle (TP)

UE ING. OU UE MAST.

C 30 h TD 30 h TP 24 h THE 66 h

Automne 6 crédits

SY15

UE ING.

C 30 h TD 30 h TP 24 h THE 60 h

Printemps 6 crédits

SY17

HE ING

C 30 h TD 30 h TP 10 h THE 80 h

Automne 6 crédits

Systémique et dynamique des systèmes

OR JECTIE

 L'aide à la décision dans les systèmes complexes nécessite des démarches adaptées, non limitées aux approches cartésiennes classiques, mais systémiques i.e. globales, tant qualitatives que quantitatives, inspirées des sciences de l'ingénieur, humaines et sociales.

PROGRAMME

- comprendre les notions fondamentales permettant de construire des démarches globales pour analyser les systèmes complexes
- mettre en œuvre une démarche systémique par itérations successives, appliquée à un système complexe concret
- déterminer et organiser les paramètres pertinents pour construire un ou plusieurs modèles d'un système complexe
- · choisir le ou les modèles adaptés permettant de répondre à une problématique donnée pour un système complexe

Simulation des systèmes industriels

OBJECTIF

 La simulation est un processus qui consiste à concevoir un modèle d'un système réel, à mener des expérimentations avec celui-ci permettant d'en évaluer les performances afin de formuler des décisions relatives au système réel.

PROGRAMME

- écrire un algorithme de simulation du fonctionnement d'un système industriel
- mettre en application la méthode MONTE CARLO
- · savoir exploiter les principes de la simulation des systèmes continus
- savoir réaliser un simulateur d'un système simple sous ARENA
- savoir exploiter les méthodes d'optimisation utilisant la simulation

Conception des systèmes de production

OR JECTII

 Un système de production convertit des matières premières en produits finis par l'application d'outils et d'un procédé d'opérations. Cette unité d'enseignement permet d'acquérir des connaissances de base pour la conception et l'analyse des systèmes de production.

- · analyser la productivité d'un système de production en appliquant des méthodes analytiques
- optimiser un système de production par le placement et le dimensionnement de stocks tampons entre postes de travail
- · appliquer la technologie de groupe à l'implantation des ateliers
- aménager un atelier en appliquant des méthodes d'agencement
- · concevoir un système de manutention pour mettre en œuvre les flux physiques dans un système de production
- simuler et optimiser un système de fabrication et son système de manutention associé grâce à un logiciel de simulation

UE ING.

C 30 h TD 30 h TP 24 h THE 66 h

Printemps 6 crédits

SY22

UE ING.

C 30 h TD 20 h TP 30 h THE 70 h

Printemps 6 crédits

Antécédont I O1

SY23

UE ING. OU UE MAST.

C 30 h TP 30 h THE 90 h

Automne 6 crédits

Antécédent : L011 Commentaire : ouverte à l'alternance

Intelligence Industrielle (Outils logiciels MES/SAP)

OR JECTIE

 Ce cours vise à former les étudiants aux outils de pilotage global d'un système de production intelligent : SAP et son interaction avec les différents logiciels permettant de connecter les composants d'un système d'information.

PROGRAMME

- être capable de piloter un automate via SAP
- être capable de manipuler les différentes bases de données (SAP, automate)
- être capable de gérer un projet SAP du niveau stratégique au niveau exécution
- savoir exploiter les bases du pilotage industriel et la stratégie de collaboration entre MES (architecture et technologie d'un système d'information industrielle, aspect conceptuel) et SAP
- connaître les normes des échanges de données et les transactions entres logiciels(EAI)
- RTPM: pilotage en temps réel, comment le système d'information va permettre d'atteindre l'excellence industrielle (Industrie 4.0)

Systèmes sans fil

OBJECTIF

 Il s'agit d'introduire les principes des systèmes de transmission sans fil sur un canal radio et de mettre en œuvre les principales technologies utilisées (WiFi, Bluetooth, ZigBee).

PROGRAMME

- · connaître et manipuler les technologies de transmission WiFi
- connaître et manipuler les technologies de transmission Zigbee
- construire un réseau Zigbee
- · connaître et manipuler les technologies de transmission Bluetooth
- · comprendre les transmissions satellitaires
- manipuler des techniques d'optimisation de transmission de flux vidéo
- manipuler des techniques d'intelligence artificielle pour optimiser la bande passante lors de la transmission d'un grand volume de données

Objets connectés intelligents

OR JECTII

 L'objectif de cette UE est de comprendre les principales technologies des objets connectés intégrant de l'intelligence, mais aussi de concevoir une solution complète répondant à une problématique définie.

- · comprendre les systèmes d'exploitation utilisés dans une telle structure
- comprendre les principes des réseaux de neurones
- comprendre les principales structures des réseaux de neurones ainsi que les méthodes d'apprentissages associées
- · savoir proposer une structure d'objet connecté intégrant de l'intelligence
- être capable de développer et implémenter une solution logicielle complète

UE ING.

C 30 h TD 26 h TP 24 h

Automne 6 crédits

SY33

UE ING.

C 30 h TD 16 h TP 32 h THE 60 h

Printemps 6 crédits

Antécédent : SY31 Commentaire : UE réalisée à Reims

SY34

UE ING.

C 30 h TD 16 h TP 30 h

Automne 6 crédits

Antécédent : SY31 Commentaire : UE réalisée à Reims

Modélisation, analyse et commande des systèmes automatisés

OBJECTIF

 Maîtriser les outils des systèmes combinatoires et séquentiels pour réaliser une automatisation à partir d'un cahier des charges.

PROGRAMME

- présentation des modèles de base (automates, machine à états, Grafcet) utilisés pour représenter les comportements logiques des systèmes automatisés
- synthèse de systèmes combinatoires : algèbre de Boole, fonctions binaires, minimisation des fonctions binaires
- synthèse synchrone et asynchrone de systèmes séquentiels : notion d'états, fonction mémoire, bascules
- modélisation de la commande des systèmes automatisés par Grafcet
- programmation et mise en œuvre d'un Automate Programmable Industriel (API)

Industrie 4.0 : Systèmes de pilotage et d'information des systèmes de production

OR JECTI

- Introduction à la mise en place d'un système d'exploitation de la production.
- Présenter les principaux enjeux, approches et instrumentations mobilisables dans le domaine de la GdP, d'une part, et de donner une formation de base à l'approche quantitative des problèmes de gestion de l'entreprise, d'autre part.

PROGRAMME

- étude des onze fonctions du MES: gestion des ressources, ordonnancement, cheminement des produits et des lots/ suivi des opérations, gestion des documents de l'atelier, collecte et acquisition de données, gestion du personnel, gestion de la qualité, gestion/pilotage du procédé Allocation des ressources machine, gestion de la maintenance, traçabilité ascendante et descendante du produit/Généalogie, analyse des performances
- liaison avec les autres systèmes d'informations de l'entreprise (GMAO, ERP. ...)
- l'e-Manufacturing, des solutions flexibles et modulaires permettant d'intégrer étroitement les services de production aux systèmes administratifs
- gestion de production et ordonnancement
- · gestion des stocks
- approches Justes à Temps pour la destion de Production
- modèles pour la planification de la production
- méthode d'ingénierie collaborative, Gestion des ressources de l'entreprise, SAP, MES, ERP, GPAO
- intelligence manufacturing, optimisation de lignes

Industrie 4.0 : systèmes communicants

OBJECTIF

- · L'usine connectée : avantages et inconvénients. Vers l'intelligence partagée des systèmes industriels.
- Savoir communiquer pour mettre en œuvre la chaîne d'information de l'industrie 4.0.

- une exigence de l'industrie 4.0 : un contrôle/commande communiquant
- du modèle OSI au modèle OSI réduit
- · qu'est-ce qu'un bus de terrain
- industriels caractéristiques (FIP, MODBUS, MODBUS TCP, PROFIBUS DP et MPI, PROFINET, CAN, ASI, ...)
- étude et mise en œuvre de coupleurs WEB dans les automatismes
- étude de l'accès aux automatismes et superviseurs via TCP IP
- accès de la supervision à des bases de données distantes (MySQL, SQL SERVER)
- application client léger et mobile (Smartphone, tablette)
- communication inter automates homogènes et hétérogènes, étude et mise en œuvre de clients/serveurs OPC

UE ING.

C 14 h TD 14 h TP 45 h

Printemps 6 crédits

Antécédent : SY31 Commentaire : UE réalisée à Reim

SY40

UE ING.

TD 30 h TP 12 h

THE 70 h

Automne 6 crédits

TN12

UE ING.

C 30 h TD 60 h THE 20 h PRJ 8 h

Automne 6 crédits

Antécédent :

Commande et IHM de process industriels

OR JECTIE

 Mettre en œuvre une chaine fonctionnelle de contrôle/commande pilotée par des API et les interfaces de dialogue opérateur associées.

PROGRAMME

- étude et mise en œuvre détaillée du pilotage de l'usine 4.0
- programmation objet d'automatismes et de supervisions
- · qualimétrie du code automate
- ergonomie et sciences cognitives pour l'IHM
- solution de pilotage à distance

Industrie 4.0 : transition industrielle et optimisation de la gestion en temps réel

OBJECTIF

- Maîtriser l'accompagnement industriel pour la migration d'un site de production vers l'industrie 4.0 : démarche à suivre.
- Évaluer la maturité digitale d'un site de production.
- Identifier les données nécessaires pour l'ordonnancement.
- Connaître et mettre en pratique les outils d'aide à la décision pour la gestion (ordonnancement) en temps réel d'un système de production.
- Implémenter des approches d'ordonnancement intelligent sans supervision.

PROGRAMME

- évaluation de la maturité digitale d'un site de production
- · ordonnancement de production en temps réel
- systèmes de production intelligents : caractéristiques et méthodes
- interaction avec les systèmes d'informations de production (MES, ERP, etc.)

Eléments de bureau d'études

OR JECTII

 Les étudiants devront être capables, à partir d'un cahier des charges, d'éditer un cahier des charges fonctionnel, de concevoir et de spécifier complètement un système mécanique simple, compatible avec les couts et moyens de production.

- · transmission de puissance (montage et dimensionnement de courroie et chaine)
- variation de vitesse (boite de vitesse, train épicycloïdal ...)
- guidage en rotation (montage et dimensionnement de roulements)
- liaison (différents types et choix)
- bâtis (différents types et dimensionnement bâtis poutre)
- · cotation (dimensionnelle et géométrique)

TN14

UE ING. OU UE MAST.

C 26 h TD 68 h THE 68 h

Automne 6 crédits

Initiation à la CAO: modélisation géométrique

OBJECTIF

- Étudier les techniques de modélisation géométrique en Conception Assistée par Ordinateur.
- S'initier aux logiciels de CAO industriels Creo et Catia V5 au travers de mini-projets.

PROGRAMME

- connaître le contexte général des outils de conception et de fabrication assistées par ordinateur
- · connaître les matériels et logiciels utilisés
- savoir mettre en œuvre différents types de modélisation (surfaciques et volumiques)
- · connaître différentes techniques mathématiques de modélisation surfaciques et volumiques
- connaître les méthodes de visualisation des modèles géométriques (projection, ombrage...)
- être sensibilisé aux standards d'échanges de données et aux systèmes de gestion de données techniques

TN14A

UE ING.

TD 60 h

PRI ON h

Printemps 6 crédits

Automne

6 crédits

Introduction to computer-aided design

OBJECTIF

- introduction to CAD (CREO ' CATIA).
- inroduction to design technics.
- introduction to complex, feature-based, knowledge-based and reversed parts.

PROGRAMME

- · manipulate CREO interface
- · use of skteches and volumic features
- use of surface modeling
- use of in-situe modeling technics
- Part two : CATIA
- manipulate CATIA interface, use of boolean modeling
- · use of knowledgeware workbenches
- use of powercopies and user-defined features, use of reverse engineering technics
- · quality analysis of a 3D model

TN15 Techniques de fabrication conventionnelles

OR JECTI

 Étudier les différentes techniques de fabrications traditionnelles afin de réaliser les pièces mécaniques en adéquation avec leur conception.

- connaître et savoir mettre en œuvre les éléments suivants :
- · choix et influence des paramètres de coupe
- état de surface et défauts géométriques
- étude des prises de pièce
- machine à commande numérique
- gamme de contrôle, condition d'acceptation des produits et incertitudes de mesure
- · forge, fonderie, métaux en feuille, soudage

TN19

UE ING. OU UE MAST.

C 30 h TD 30 h THE 86 h

Automne 6 crédits

TN20

UE ING.

C 30 h TD 30 h TP 6 h

Printemps 6 crédits

Antécédents : MQ01 ou MQ02

TN78

UE ING.

TD 45 h
TP 4 h

THE 71 h

Printemps 6 crédits

Antécédent : TN1!

Techniques d'achat et de réduction des coûts

OR JECTIE

• Présenter une approche généraliste des techniques d'achat et de réduction des coûts.

PROGRAMME

- comprendre les techniques d'achat et de réduction des coûts
- comprendre les méthodes de décomposition de coûts dans le domaine des matériaux en fonction des contextes économiques et géographiques
- appréhender les techniques d'analyse de la stabilité des coûts durant la durée de vie d'un produit
- maîtriser l'évaluation économique des techniques d'analyse de la valeur en fonction des choix technologiques
- · comprendre les méthodes d'optimisation des coûts dans les systèmes de production et de réduction des coûts

Etude et dimensionnement de systèmes mécaniques

OBJECTIF

- Étudier les techniques de dimensionnement des principales fonctions technologiques utilisées dans la conception des systèmes mécaniques..
- Différents thèmes sont abordés, des boites de vitesses aux pompes hydrauliques, en passant par les robots industriels.

PROGRAMME

- comprendre et savoir appliquer les modèles suivants : torseurs des petits déplacements, contact ponctuel et linéique (Théorie de Hertz, fatique (Diagramme de Haigh)
- savoir dimensionner et optimiser en respectant les critères de résistance aux charges ultimes, de durée de vie et de rigidité, les fonctions suivantes : transmission par engrenages, liaison hyperstatique réalisée par roulements, assemblage réalisé par éléments filetés, arbre de transmission de puissance

Industrialisation et technologies de fabrication avancées

OBJECTIF

• Maitriser l'industrialisation de ses conceptions en passant des modèles CAO aux pièces réelles.

PROGRAMME

Etre capable d'organiser l'industrialisation d'une conception via les éléments suivants :

- rédaction de la gamme de fabrication, choix des outillages
- créer un montage de fabrication, calculs des cotes de fabrication, maîtrise Statistique des Procédés Identifier, connaître et comparer les procédés de fabrication avancés :
- · usinage Grande Vitesse
- découpe plasma, laser, jet d'eau, électroérosion à fil
- moyens de métrologie avancés
- fabrication Assistée par Ordinateur, procédés de fabrication additive

TS01

UE ING. OU UE MAST.

C 56 h TD 12 h THE 84 h PRJ 30 h

6 crédits

TS02

UE ING. OU UE MAST.

C 60 h THE 90 h PRJ 50 h

Automne 6 crédits

Sécurité des systèmes

OR JECTIE

 L'UE TS01 est centrée sur les problématiques liées aux risques de proximité et auxquels est soumis l'homme au travail.

PROGRAMME

- intégrer les facteurs organisationnels et humains dans la démarche de prévention
- analyser les architectures des fonctions de sécurité selon des niveaux de SIL (norme EN61508, ISO26262, EN50126. EN50128. EN50129. EN61513)
- · connaître les réglementations en vigueur

Gestion des risques industriels

OBJECTIF

 La gestion des risques a pour objectif d'identifier les conséquences néfastes, d'évaluer leur gravité et leur vraisemblance, de décider des mesures à prendre. Les aspects liés aux facteurs technologiques et humains doivent être pris en compte.

- étudier la gestion des risques technologiques et naturels, grâce à des méthodes générales d'analyse et de management des risques et des crises
- prévenir les risques
- étudier les risques incendie et environnementaux (activités humaines et milieux naturels)
- étudier la sûreté opérationnelle dans plusieurs domaines (transport, nucléaire, chimie)
- · connaître les principes de la gestion de crises

MASTER

BIO1

UE MAST.

C 30 h TD 30 h

Automne 6 crédits

Bioeconomy: concepts, principles, economic and sustainability challenges

OBJECTIF

Provide the necessary scientific knowledge to understand the current state of and debates on bioeconomy,
 (I) in order to analyze, contextualize and measure its sustainability stakes and (II) be informed on the current organization of the agribusiness sector of biorefinery in order to enhance employability.

PROGRAMME

- understand and acquire bioeconomy's vocabulary, knowledge, scientific concepts and current paradigms (from bioeconomics to bioeconomy: bioeconomy in weak and strong sustainability)
- grasp the benchmarks of experts' discussions and scientific debates on the sustainability evaluation of biobased value chains, for agricultural, forest and aloae biomass
- know how to identify the sustainability stakes of biomass production and valorization in a variety of geographic and economic contexts
- be able to organize and formalize the key elements of a sustainability analysis at different geographic scales (territorial, regional and global) and different system scales (biorefinery system, value chain)
- know the economic, institutional and legal framework and main economic actors of the bioeconomy agribusiness sector (production and valorization of biomass, existing and emerging markets) in Europe and the world
- know the public policies and private stakeholders' strategies of biomass production, valorization and biorefineries in Europe and other world regions

Bioeconomy project: implementing the sustainable biorefinery

OBJECTIF

 Execute as a group, on a case study, a sustainability analysis of a biorefinery system in its multiple aspects and scales throughout the value chain.

PROGRAMME

- implement on a biorefinery system case study a sustainability analysis at the territorial scale, taking into consideration its links to the agricultural production upstream and market valorization downstream
- understand and integrate in the sustainability analysis the legal, institutional and industrial risk prevention framework (by applying skills acquired in other UE of the master, BIO1 and EVO4)
- use and adapt the material flow analysis approach acquired in ME05 to the sustainability analysis of a biorefinery system
- use field trips to challenge sustainability benchmarks created for the sustainability analysis of the biorefinery system case study
- be able to recommend appropriate methods for environmental, social and economic impacts assessment of the biorefinery system case study
- be able to suggest technical or organizational changes to improve the sustainability of the biorefinery system case study
- know how to cooperate and organize as a team for the implementation of the sustainability analysis of the case study

Conception pour la soutenabilité

OBJECTIE

- concevoir un système (produit, service et système industriel) en prenant en compte les critères.
- environnementaux.

PROGRAMME

- comprendre et analyser les différents enjeux liés à la conception des systèmes soutenables
- · savoir construire une stratégie et démarche de conception pour la soutenabilité
- savoir décliner la démarche au niveau opérationnel (processus de conception)
- savoir faire une analyse permettant d'éviter les transferts de pollutions et les effets rebonds
- savoir quand et comment mobiliser les outils, les méthodes et les ressources dans la démarche
- savoir proposer une solution et évaluer son efficacité

BIO2

UE MAST.

TD 30 h

Automne 6 crédits

EC01

UE MAST.

C 30 h TD 30 h

Automne 6 crédits

EI01

UE MAST.

C 30 h TD 30 h

Automne 6 crédits

Ecologie industrielle et territoriale

OR JECTIE

• Concevoir, mettre en œuvre et animer une démarche d'écologie industrielle et territoriale.

PROGRAMME

- enieux et définition de l'écologie industrielle
- principes d'éco-restructuration de la société industrielle
- principes de mise en œuvre des démarches d'écologie industrielle et territoriale : typologies des
- proiets, méthodologies, outils, facteurs humains
- retour d'expérience des démarches en France et à travers le monde
- planification et aménagement des territoires
- · conduite de proiets multi-acteurs

GS10

UE MAST.

C 20 h TD 20 h THE 50 h

Automne 4 crédits

Sécurité des SI, problématique, aspects légaux et réglementaires

OBJECTIF

 Tout responsable de la sécurité des systèmes d'information se doit de connaître les références juridiques liées aux développements et aux usages des technologies numériques.

PROGRAMME

- connaître les principales lois relatives à la SSI pour pouvoir s'y référer : Informatique et liberté, Godfrain, LOPPSI2, Carayon
- connaître la définition de la cyber criminalité dans le droit pénal français
- savoir sécuriser juridiquement un projet informatique
- · savoir adapter les notions de propriété intellectuelle aux créations logicielles
- · connaître les limites iuridiques à la cybersurveillance

GS11

UE ING. OU UE MAST.

C 30 h TD 30 h THE 70 h

Automne 6 crédits

Techniques de sécurisation

OR JECTIE

 Il existe des techniques de base pour sécuriser les composants d'un système : postes de travail, serveurs, smartphones, etc. Certaines architectures (Cloud, SCADA) posent aujourd'hui des défis importants qu'il faut connaître.

- · connaître les enjeux de la sécurité physique
- savoir protéger les stations de travail et les serveurs Microsoft
- savoir protéger les serveurs web
- connaître les vulnérabilités et les enjeux de sécurité des architectures de type Cloud et les systèmes SCADA

GS13

UE ING. OU UE MAST.

C 30 h TD 30 h THE 70 h

Automne 6 crédits

Gestion de la sécurité

OR JECTIE

 La sécurisation des systèmes d'information nécessite une approche globale pour évaluer les risques et apporter des solutions de protection cohérentes.

PROGRAMME

- connaître les principales méthodes d'analyse de risques (ISO, Mehari, Ebios) et savoir les comparer et les appliquer
- savoir définir une politique de sécurité (PSSI)
- savoir établir un plan de reprise et un plan de continuité d'activité en cas d'incident
- · savoir faire un audit de sécurité
- savoir mener une veille technologique sur les menaces et les solutions

GS15

UE ING. OU UE MAST.

C 30 h TD 30 h THE 50 h PRJ 40 h

Automne 6 crédits

Cryptologie et signature électronique

OBJECTIF

 La sécurité des systèmes de communications et des réseaux repose très largement sur des méthodes de cryptographie. En outre, les algorithmes de chiffrement sont toujours utilisés dans des processus incluant signature électronique, authentification et échanges de clés.

PROGRAMME

- connaître les bases de l'arithmétique modulaire et savoir les utiliser pour la résolution d'équations diophantiennes à l'aide d'algorithme efficaces
- · maîtriser le fonctionnement des standards de chiffrement symétrique et asymétrique (DES, AES, El-Gamal et RSA)
- comprendre le fonctionnement et l'intérêt des principaux algorithmes de hashage et de la signature électronique
- savoir quand et comment utiliser les différents outils que sont le chiffrement, le hashage et la signature électronique

GS16

UE MAST.

C 20 h TD 20 h THE 40 h

Automne 4 crédits

Sécurité des réseaux de l'Internet

OR JECTIE

 La connexion à l'internet suscite des cyber-attaques contre les systèmes, qui nécessitent des moyens de protection mais aussi de détection adaptée.

- connaître les fondamentaux de la protection des réseaux (protocoles sécurisés, équipements, segmentation, filtrage) pour être capable de structurer une architecture réseau et d'appliquer les bonnes pratiques
- connaître les vulnérabilités et les contremesures pour des architectures particulières : téléphonie sur IP, réseaux sans fil, pour être capable ensuite de les intégrer
- connaître les différentes types d'attaques et leur caractéristiques pour mieux les anticiper
- connaître les méthodes de détection d'intrusion et leurs applications (IDS/IPS)

GS21

UE MAST.

C 20 h TD 20 h THE 50 h PRJ 10 h

Automne 6 crédits

Cyber-enquête en entreprise

OR JECTIE

 Dans les formations relatives à la SSI, il est rarement question de la gestion des incidents. Il est important pour de futurs RSSI de connaître les scénarios possibles et les services d'enquêtes concernés : gendarmerie, police, douanes, etc.

PROGRAMME

- · connaître les différents acteurs habilités, le cadre légal de leurs interventions, les données recherchées
- savoir ce que l'entreprise peut et ne doit pas faire en matière d'investigations préalables à l'enquête
- · connaître le traitement juridique des incidents
- · savoir gérer les crises
- savoir gérer les impératifs de l'enquête et ceux de la remise en service
- savoir se comporter avec les différents acteurs concernés : enquêteur, administrateur, direction générale

IR30

UE ING. OU UE MAST.

C 30 h TD 30 h THE 68 h

Printemps 6 crédits

Initiation à la recherche

OBJECTIF

 Délivrer les bases nécessaires pour organiser et conduire avec succès un projet de recherche sur un domaine ou une problématique.

PROGRAMME

- découvrir le métier de chercheur
- présentation des thématiques de recherche de chaque spécialité del'UTT
- rédaction d'un article scientifique et présentation des résultats de recherche
- partager une expérience scientifique
- mener parfaitement un projet de recherche

MC01

UE MAST.

C 30 h

Automne 6 crédits

Multi-scale characterization

OB JECTIE

 To provide theoretical and practical training in physico-chemical and mechanical characterization techniques, from macroscopic to nanoscopic scale. Students will be asked to synthesize their own sample.

- 5 themes are addressed in order to acquire experimental skills in the following areas:
- surface analysis and technique (profilometer, atomic force microscope and indentation)
- analysis of the crystallinity of materials (X-ray diffraction)
- optical spectroscopy (Absorption and dynamic scattering of light)
- · mechanical tests (hardness, tensile and shear strength)
- optical and scanning electron microscopy

ME01

UE MAST.

C 20 h

Automne 4 crédits

Analyse de cycle de vie et impacts environnementaux

OBJECTIF

 Maîtriser la mise en œuvre de l'Analyse de Cycle de Vie : comprendre la méthodologie, les outils et bases de données, les indicateurs d'impacts.

PROGRAMME

- introduction à l'ACV
- bases de données
- · méthodes de calcul et indicateurs
- · analyse de gravité, sensibilité et d'incertitude dans l'ACV
- communication environnementale et ACV
- bilan Carbone
- mise en œuvre sur un projet selon l'ISO14040 et avec un des outils d'ACV proposé (Simapro, Gabi, OpenLCA)

ME02

UE MAST.

C 20 h TD 20 h

Automne 4 crédits

Management du développement durable

OBJECTIF

Permettre le déploiement, le pilotage et l'effectivité de stratégies de développement durable.

PROGRAMME

- intégration systémique des grands enjeux et défis du développement durable
- outils de management environnemental et du développement durable : normes, labels et référentiels
- responsabilité sociale de l'entreprise : principes, outils de diagnostic, mise en œuvre
- retours d'expériences de stratégies exemplaires d'entreprises et de territoires intégrant les principes du développement durable dans leur management
- management responsable
- · nouvelles modalités de gouvernance, enjeux de l'acceptabilité sociale et de la participation du public

ME05

UE MAST.

C 20 h TD 20 h

Automne 4 crédits

Material, Substance and Waste Flow Analysis

OR JECTIE

- · Introduction to industrial ecology and system evaluation methods.
- Material Flow Analysis (MFA): definition, concept and principles, method and modeling, key trends, policy and tools, case studies.
- Main challenges and strategies for basic human activities' related metabolism (feeding, cleaning, transport, communication, etc), theory and its examination in space and time through MFA.
- MFA software (STAN and UMBERTO).

- to explain the role of key substances and materials in today's societal metabolism and their potential interactions with the environment
- to define material flow analysis (MFA) systems that are adequate to reflect on practical problems and potential solutions
- to point out and reflect on strengths, limitations, and specific areas of application of different MFAs (including
 other industrial ecology tools that build on them) and to interpret the results in terms of their policy implications
 (e.g., judge the effectiveness of different interventions)

ster

MP04

UE MAST.

C 20 h TD 20 h THE 20 h

Automne 4 crédits

Matériaux avancés et procédés d'élaboration

OR JECTIE

 Être capable de maîtriser les propriétés de matériaux avancés, de caractériser et de connaître les principaux procédés d'élaboration et de mise en forme.

PROGRAMME

- description des matériaux avancés : nouveaux composites (fibres naturelles et de synthèse à matrice polymère), mousses métalliques, alliages à mémoire de formes, matériaux intelligents etc.
- · propriétés et caractérisation physico-chimique des matériaux avancés
- principaux procédés d'élaborations et de mise en œuvre
- modélisation des procédés de mise en forme des nouveaux composites

MP05

UE MAST.

C 20 h TD 20 h

THE 30 h

Automne 4 crédits

MP06

UE MAST.

C 20 h TD 20 h THE 20 h

Automne 4 crédits

Ingénierie des contraintes résiduelles

OBJECTIE

 Prendre en compte les contraintes résiduelles lors de l'élaboration des matériaux et des structures, connaître les techniques de caractérisation expérimentale associées et comprendre leurs effets sur le comportement en service des composants technologiques.

PROGRAMME

- origines et mécanisme de formation des contraintes résiduelles
- effets des contraintes résiduelles sur les matériaux et les structures
- techniques de caractérisations expérimentales
- procédés permettant de générer des états de contrainte favorables (grenaillage, SMAT, choc laser...)

Modélisation et optimisation des structures et procédés

OBJECTIF

 Proposer une formation théorique et pratique aux techniques de modélisation et de méta-modélisation, de maillage et d'optimisation appliquées aux structures et procédés.

- analyser un modèle (domaine d'application, paramètres exogènes et endogènes, notion de méta-modèle)
- connaître l'importance du maillage et les techniques de remaillage, du degré d'interpolation et des méthodes d'inversion
- connaître les techniques de plan d'expériences numériques
- connaître les différentes approches d'optimisation y compris en contexte incertain et choisir une méthode en fonction des applications
- dans le cadre d'un projet, savoir déployer une méthodologie de modélisation et d'optimisation sur un procédé (fabrication additive, procédé de mise en forme, ...)

MRE01

UE MAST.

Automne 6 crédits

Normalisation internationale et stratégie locale

· Transmettre les connaissances nécessaires à la compréhension du cadre institutionnel et normatif de la sécurité globale et de gestion durable des entreprises et des territoires afin d'en contextualiser et mesurer les enieux et les pratiques.

PROGRAMME

- mobiliser les acteurs institutionnels adéquats pour la conduite d'un projet en environnement et en sécurité
- positionner son action et sa stratégie par rapport aux normes et règlementations et outils de planification en viqueur aux différents échelons territoriaux
- accompagner le processus de normalisation
- anticiper les modifications des normes et de la réglementation à partir des évolutions internationales et européennes et de la gouvernance locale
- adapter son action et ses objectifs à l'évolution continue du cadre institutionnel et normatif

MRE02

UE MAST.

6 crédits

Analyse et conception de systèmes soutenables et sécurisés

OBJECTIF

Transmettre les compétences nécessaires à :

- la conduite d'une démarche d'analyse d'une situation complexe,
- l'identification du (ou des) problème(s),
- la recherche de solutions et à leurs conception.
- la formalisation et l'argumentation des solutions.

PROGRAMME

- réaliser l'analyse d'une situation complexe afin d'en comprendre les enjeux et d'en identifier les problèmes
- · rédiger un cahier des charges
- choisir la méthode de résolution de problème adaptée à la recherche de solutions (9 écrans, TRIZ, RIF, etc.)
- concevoir la ou les solutions permettant un système soutenable et sécurisé
- analyser les risques, freins et opportunités afin de formaliser la conception du système
- argumenter afin de convaincre de l'intérêt du système conçu

NO01

UE MAST.

Automne 4 crédits

Nano-optics

To allow the student to deepen his knowledge in the field of nano-optics, through numerical and experimental scientific seminars and workshops.

- Fundamentals of nano-optics and related applications:
- concepts in nano-optics: notions of near field and evanescent waves
- plasmonics: surface plasmon-polariton, localized and delocalized
- optical nanoscopy: models (probe, polarizability of a nano-object), instrumentation (near/ far field)
- optical signal processing: extraction, amplification
- applications; microscopy, spectroscopy, lithography, telecommunications, chemical detection...

NS01

UE MAST.

C 20 h TD 20 h THF 60 h

Automne 4 crédits

Advanced Spectroscopy of Nanostructures

OBJECTIF

 To know the theoretical bases of the different spectroscopies and their interest in nanotechnology. Predict and interpret spectra. To know the experimental devices in spectroscopy, to know the different types of quantum emitters.

PROGRAMME

- principles of spectral analysis, fundamentals of atomic spectroscopy
- spectra: selection rules, intensity, line shape and line width
- absorption, fluorescence, emission
- Raman and IR spectroscopy, time-resolved spectroscopy
- device characteristics (sources, detection, dispersion), Fourier transform spectrometry
- spatial filtering, spectral filtering, ultra-short pulses
- applications to different types of quantum (nano)emitters

NT01

UE MAST.

C 20 h TD 20 h THE 60 h

Automne 4 crédits

Nanotechnologies and Industry

OBJECTIE

 Present the main physical effects (elementary excitations) associated with nanosciences and understand through seminars the technical issues associated with nanotechnology applications (integration, large-scale nanostructuring, etc.).

PROGRAMME

- introduction: from elementary excitations to applications
- électronic confinement and semiconductor nanostructures
- · heat transport in nanostructures
- nanomagnetism
- nanobiotechnology
- seminars: glass processing, integration (e. g. electronics), lighting and spintronics

OS01

UE MAST.

C 20 h TD 20 h

Automne 4 crédits

Fondement de la recherche opérationnelle

OR JECTIE

• Étudier des approches de modélisation et de résolution de problèmes d'optimisation.

- modélisation mathématique de problèmes d'otpimisation
- · programmation linéraire et fondement théorique de la méthode du simplexe
- théorie de la dualité
- programmation linéaire en nombres entiers et procédure par séparation et évaluation
- programmation dynamique
- · programmation non linéaire

OS05

UE MAST.

C 20 h

Automne 4 crédits

Analyse d'images et reconnaissance des formes statistiques

OBJECTIE

 Acquérir et maîtriser les connaissances de base du traitement des images numériques et de la Reconnaissance des Formes (RdF). La partie consacrée à l'image est plus particulièrement ciblée sur l'extraction d'attributs et de caractéristiques d'images dans une perspective de traitement statistique et de RdF orientée vers l'analyse discriminante.

PROGRAMME

- introduction aux images numériques, filtrage, extraction de contours, morphologie mathématique
- texture (définition, caractérisation, modélisation, extraction d'attributs), segmentation, extension aux images couleur
- modélisation statistique et reconnaissance des formes (rappels sur les tests d'hypothèses, méthodes de l'analyse discriminante, analyses factorielles)

OS10

UE MAST.

C 20 h TD 20 h THE 60 h

Automne 4 crédits

Modèles et algorithmes pour la planification et ordonnancement de la production

OBJECTIF

 Étudier les principales approches pour la résolution de problèmes de planification et d'ordonnancement de la production.

PROGRAMME

- · gestion de la production et de la décomposition hiérarchique
- · théorie de la commplexité
- planification de la production (MRP, regroupement des besoins, planification de capacité)
- ordonnancement central et ordonnancement de projets
- principaux problèmes d'ordonnancement (une machine, machines parallèles, flow shop, job shop)et approches de résulotion
- mini-projets:proposition d'algorithmes de résolution simples pour la résolution de certains problèmes simplifiés d'ordonnancement

OS11

UE MAST.

C 20 h TD 20 h

Automne 4 crédits

Modèles et algorithmes pour la logistique et le transport

OBJECTIF

 présentation des principaux concepts, modèles et méthodes de résulction pour la gestion de la chaîne logistique et l'optimisation du transport.

- partie sur la chaîne logistique : introduction à la gestion de la chaîne logistique, conception du réseau logistique, gestion des stocks, partage d'information et partenariats stratégiques, planification intégrée de la chaîne logistique
- partie sur le transport : principaux problèmes de tournées de véhicules, méthodes exactes (branch and bound, branch and cut), heuristiques simples, métaheuristiques, contraintes additionnelles (fenêtres temporelles par exemple)

OS13

UE MAST.

C 20 h TD 20 h

Automne 4 crédits

Modèles pour la fiabilité et la maintenance

OR JECTIE

· Acquérir et maîtriser les notions de bases en théorie de la fiabilité des systèmes.

PROGRAMME

- modèles probabilistes de durées de vie des composants
- processus stochastiques en fiabilité et maintenance
- · fiabilité des sytèmes à composants indépendants
- modèles markoviens (systèmes réparables, à composants dépendants)
- modèles de politiques de maintenance préventive
- défaillances dépendantes (de cause commune)
- · sûreté des sytèmes instrumentés de sécurité
- · introduction à la fiabilité dynamique
- · mini-projets:mises en œuvre des méthodes présentées sur ateliers logiciels de sûreté de fonctionnement

OS16

IF MAST

C 20 h TD 20 h THF 100 h

Automne 4 crédits

OS23

UE MAST.

C 20 h TD 20 h THF 100 h

Automne 4 crédits

Apprentissage et applications en intelligence artificielle

OBJECTIF

- L'objectif du cours est de présenter les méthodes récentes d'apprentissage et de deep learning pour traiter des problèmes de reconnaissance, de détection et d'estimation qui sont au cœur de nombreuses problématiques de sureté et de surveillance.
- · Le cours se concentre sur les problèmes d'apprentissage à partir de données.

PROGRAMME

- rappels de la théorie de la décision (Bayes, Mini-max, Neyman Pearson, courbes COR) et de l'estimation
- apprentissage à partir de données classification supervisée
- · Parzen, KppV, SVMs mono et bi classes, perceptron multi-couches, deep learning (CNN) et auto-encodeurs
- apprentissage à partir de données classification non supervisée
- · Kmeans, Mean Shift Clustering, Modèle mélange et algorithme EM,
- · apprentissage à partir de données classification semi-supervisée
- méthodes avec modèle, graphes, SVMs

Outils statistiques et probabilistes pour l'analyse des systèmes et la décision

OBJECTIF

- L'objectif est de présenter des outils probabilistes et statistiques permettant l'analyse des systèmes depuis la phase de modélisation jusqu'à la prise de décision.
- · savoir modéliser par processus stochastiques, et utiliser des outils probabilistes de calcul et de prévision.
- savoir prendre une décision à base de mesures effectuées sur un système. Méthodes de l'estimation des paramètres inconnus.

- modèles stochastiques pour l'analyse des systèmes
- les processus stochastiques comme outils de modélisation : familles de processus
- modèles à temps discret
- modèles à temps continu
- notions de base de la théorie de décision
- · Lemme de Neyman-Pearson. Test Bayésien, test le plus puissant, test minimax
- rapport de vraisemblance monotone. Notions de base de la théorie d'estimation
- estimation non bayésienne : méthode de moments, méthode du maximum de vraisemblance, comparaison des estimateurs

SG11

UE MAST.

C 30 h

THE 50 h

Automne 6 crédits

SG12

UE MAST.

C 20 h

THF 30 h

PRJ 30 h

Automne 4 crédits

SG21

UE MAST.

C 20 h TD 20 h THE 30 h

Automne 4 crédits

Risques sociaux et sociétaux, intelligence économique, cybercriminalité

OR JECTIE

 Evolution des menaces et conflits liés à la globalisation et la mondialisation. Violences-terrorisme, résolution des crises sociales, IE et cybercriminalité. Mutations et nouveaux défis, pour le citoyen, l'État et l'opinion publique.

PROGRAMME

- analyser les nouveaux risques sociaux et environnementaux
- · cybercriminalité et influence sociétale
- · anticiper les menaces dans un environnement mouvant et global
- fixer des stratégies globales sur les défis répertoriés
- connaître les institutions européennes et les différentes structures politiques
- · avoir une vision globale et transversale sur les nouvelles menaces contemporaines
- · initiation à la géopolitique des conflits
- acquérir les «nouveaux risques du 21° siècle» du référentiel Défense et sécurité

Sécurité des personnes et des biens : Politique de sécurité et concept transversal

OBJECTIF

 Le concept de sécurité, diagnostic et évaluation, les politiques publiques et privées en matière de prévention et de sécurité - Anticiper et appliquer le concept transversal et globale.

PROGRAMME

- · définir le concept de sécurité, le rôle, les acteurs, les institutions de la sécurité
- élaborer une politique en matière de prévention et de sécurité intérieure, étude de cas et présentation du contrat local de sécurité, les politiques de la ville
- comprendre le rôle et les statuts des différents co-acteurs de la sécurité en ayant une vision transversale de la réponse à donner
- · définir une économie de la sécurité et présenter la prévention situationnelle et évènementielle
- · apprendre de la géopolitique des conflits
- répondre aux «nouveaux risques du 21° siècle» du référentiel Défense et sécurité

Sûreté des espaces vie/économie/industrie : hygiène et sécurité

OBJECTIF

Normes incendie, hygiène et sécurité des édifices / les sociétés publiques, sociales, industrielles et commerciales. Les politiques et attentes sécuritaires des acteurs sociaux économiques et sociétés publiques, industrielles et commerciales.

- · aborder les problèmes environnementaux et les mettre en perspective
- élaborer la réglementation et les différentes normes en matière d'hygiène,
- · les exigences relatives à la sécurité incendie des édifices publics et privés,
- les institutions de contrôles et leurs rôles, les différents conseils et comités
- prévention des risques, la politique locale et nationale de prévention des risques
- appréhender les attentes sécuritaires des acteurs sociaux économiques et sociétés publiques, industrielles et commerciales

SG22

UE MAST.

C 20 h TD 20 h THE 30 h

Automne 4 crédits

SG31

UE MAST.

C 20 h TD 20 h THE 30 h PBJ 30 h

Automne 4 crédits

SG32

UE MAST.

C 30 h TD 30 h THE 50 h

Automne 6 crédits

Sûreté des espaces vie/économie/industrie : Risques majeurs, communication de crises et économie de la sécurité

OBJECTIE

 La politique de sécurité en matière de crises risques majeurs. L'apport de la défense, la technologie, les théâtres d'opération, la projection des forces, les risques majeurs et la communication de crise et les enjeux de l'économie de la sécurité.

PROGRAMME

- · intégrer la politique de sécurité et de défense nationale face aux risques majeurs, industriels et technologique
- analyser la gestion des bassins sensibles
- économie de la sécurité : enjeux et mutations
- prévoir et mettre en place une cellule de communication de crise
- planifier les risques et gérer la crise
- prévenir les risques et aborder les plans de secours
- coproduire et manager les acteurs de la gestion de crise
- le risque industriel, la prévention et la technologie

Sûreté des systèmes et des réseaux : analyse des systèmes et gestion des connaissances

OBJECTIF

 Analyse des systèmes et outils de l'ingénieur, conception et sûreté des systèmes de sûreté, plan de continuité, sciences du danger et gestion des connaissances.

PROGRAMME

- modéliser, structurer et évaluer les mesures préventives et correctives des systèmes
- · appréhender la méthodologie de l'ingénieur et les outils de contrôles des systèmes de sûreté de fonctionnement
- étudier les méthodologies de l'ingénieur et les différentes approches des sciences du danger et l'application des connaissances
- mettre en place un plan de continuité et analyser les risques
- signaux faibles et outils d'aide à la décision

Sûreté des systèmes et des réseaux : réseaux de systèmes informatiques et urbains

OBJECTIF

 Analyse des systèmes et outils de l'ingénieur, conception et sûreté des systèmes de sûreté, plan de continuité, sciences du danger et gestion des connaissances.

- connaître les difficultés et les stratégies de protection des Systèmes d'Information
- établir une sécurité et sûreté dans le contexte urbain, établissement d'une cartographie, apport de la technologie, modélisation des systèmes et approche comparative des politiques urbaines
- · professionnalisation et adaptation aux nouvelles technologies de la sécurité
- connaître un service de secours, visite d'un service d'intervention
- observation pratique d'un exercice de secours, sécurité privée et applications
- analyser une chaine vidéo surveillance

SG41

UE MAST.

C 30 h TD 30 h THE 90 h

Automne 6 crédits

Fondamentaux de la gestion des crises

OR.IECTIE

• Caractériser et répondre aux grandes phases d'une crise, de la planification à l'impact.

- définitions et caractéristiques d'une crise, les grandes phases d'une crise, le basculement de la normalité à la crise
- les impacts de la crise, la gestion et la planification
- le développement des structures internationales et gestion coordonnée et élaboration
- le retour d'expérience et la situation de crise à dynamique rapide, de courte et longue durée
- · les autorités, les acteurs et les doctrines

EXPRESSION ET COMMUNICATION

FA1E

UE ING. OU UE MAST.
TD 54 h

Automne Printemps 4 crédits

FA1P

UE ING. OU UE MAST. TD 54 h

Automne Printemps

Antécédent : SFA1

FA2E

UE ING. OU UE MAST.
TD 54 h

Automne Printemps 4 crédits

Antécédent : SFA2

Français: expression/compréhension écrite - niveau A1

OBJECTIE

 Ce cours prépare les étudiants n'ayant jamais appris le français auparavant à atteindre les objectifs du niveau A1 en compréhension et en expression écrite. Il s'adresse aux étudiants ayant suivi le cours SFA1 pendant le stage d'inter-semestre.

PROGRAMME

- Compréhension écrite: comprendre les textes informatifs de la vie quotidienne: horaires de trains, publicités, programmes de cinéma, etc.; être capable d'identifier dans un texte les informations relatives à l'identité de son auteur (nom, nationalité, âge, profession, centres d'intérêt, etc.)
- Expression écrite: maîtriser la syntaxe des phrases minimales et les mécanismes grammaticaux de base: conjugaisons, accords en genre et en nombre des noms et des adjectifs, emploi des pronoms possessifs, etc.; maîtriser la rédaction des écrits simples de la communication quotidienne (SMS, courriels, carte postale, prise de rendez-vous, etc.); acquérir le vocabulaire utile à la description de soi-même et de son environnement familier

Français: expression/compréhension phonique - niveau A1

OBJECTIF

 Ce cours prépare les étudiants n'ayant jamais appris le français auparavant à atteindre les objectifs du niveau A1 en compréhension et en expression orale. Il s'adresse aux étudiants ayant suivi le cours SFA1 pendant le stage d'inter-semestre.

PROGRAMME

- Compréhension orale: comprendre les messages stéréotypés diffusés dans les environnements publics (gares, trains, aéroports, magasins, etc.); comprendre les instructions données à l'impératif en vue de réaliser une tâche simple (recettes de cuisine, mode d'emploi, etc.)
- Expression orale: savoir poser des questions simples sur des sujets familiers ou sur ses besoins immédiats;
 pouvoir répondre à de telles questions; être capable de se présenter dans une prise de parole continue

Français: expression/compréhension écrite - niveau A2

OBJECTIF

Ce cours prépare les étudiants à atteindre les objectifs du niveau A2 en compréhension et en expression écrite.
 Il s'adresse en particulier aux étudiants ayant suivi le cours SFA2 pendant le stage d'intersemestre.

- Compréhension écrite: comprendre les faits décrits dans de courts articles de journaux; réussir à extraire une information utile dans des documents courants tels que les prospectus, les petites annonces, les horaires, les annuaires; identifier la fonction des messages reçus dans la vie quotidienne (demande d'informations, invitation, instructions, etc.)
- Expression écrite: maîtriser les savoir-faire grammaticaux visés au niveau A2 (expression du passé et du futur, constructions interro-négatives et exclamatives, formes simples des pronoms personnels et relatifs, etc.); savoir donner une brève description d'un événement vécu, de ses activités ou de ses expériences personnelles dans des phrases construites en exploitant les connaissances grammaticales et lexicales acquises au niveau A2

FA2P

UE ING. OU UE MAST.

TD 54 h

Automne Printemps 4 crédits

Antécédent : SFA2 ou niveau A1 validé

FB1E

UE ING. OU UE MAST. TD 54 h

Automne Printemps

Antécédent : SFB1

FB₁P

UE ING. OU UE MAST.

THE 60 h

Printemps
4 crédits

Antécédent : SFB1

Français: expression/compréhension phonique - niveau A2

OBJECTIF

Ce cours prépare les étudiants à atteindre les objectifs du niveau A2 en compréhension et en expression orales.
 Il s'adresse en particulier aux étudiants avant suivi le cours SFA2 pendant le stage d'intersemestre.

PROGRAMME

- Compréhension orale: réussir à extraire dans des documents audio de courtes durée (messages téléphoniques, extraits radiophoniques) les informations les plus importantes; comprendre les grandes lignes d'une conversation dans laquelle les interlocuteurs sont attentifs à la qualité de leur élocution
- Expression orale: raconter une histoire simple en utilisant présent, passé composé et imparfait; participer à des échanges dans de courtes conversations dont le déroulement est prévisible (présentation, salutation, invitation, etc.) et le sujet connu: échanger des points de vue sur les situations familières de la vie quotidienne

Français: expression/compréhension écrite - niveau B1

OBJECTIF

Ce cours prépare les étudiants à atteindre les objectifs du niveau B1 en compréhension et en expression écrites.
 Il s'adresse en particulier aux étudiants ayant suivi le cours SFA3 pendant le stage d'intersemestre.

PROGRAMME

- Compréhension écrite: surmonter les difficultés liées à la compréhension d'articles empruntés à la presse nationale et liés à l'actualité sociale et culturelle; comprendre la progression d'un texte narratif grâce à une bonne compréhension de la valeur des temps et des articulateurs chronologiques; acquérir des repères culturels au sujet de la société française, de ses composantes et de leurs attitudes
- Expression écrite: maîtriser les savoir-faire grammaticaux visés au niveau B1: discours rapporté, temps du récit, emploi du subjonctif à l'oral, construction de phrases simples avec adjonction de groupes prépositionnel, etc.; réussir à prendre des notes lors d'un cours ou d'une conférence à condition que le sujet appartienne à ses centres d'intérêt et que l'exposé soit clair et bien structuré; être capable d'écrire des essais sur des sujets en rapport avec ses centres d'intérêt personnels

Français: expression/compréhension phonique - niveau B1

OBJECTIF

Ce cours prépare les étudiants à atteindre les objectifs du niveau B1 en compréhension et en expression orales.
 Il s'adresse en particulier aux étudiants ayant suivi le cours SFB1 pendant le stage d'intersemestre.

- Compréhension orale: comprendre, dans un langage standard, une conversation, une conférence ou un exposé sur un sujet familier; réussir à suivre les films dont la compréhension repose largement sur l'image
- Expression orale: s'exprimer suffisamment bien pour pouvoir collaborer à la réalisation d'un travail de groupe, dans le contexte par exemple d'une activité de vie associative ou d'un projet d'études; être capable d'exposer en détail ses expériences en décrivant ses sentiments et ses réactions; réussir à expliquer sa pensée sur un sujet abstrait ou culturel (un film, des livres, de la musique, etc.)

FB2E

UE ING. OU UE MAST.

TD 54 h

Automne Printemps 4 crédits

Antécédent : SFB2

FB2P

UE ING. OU UE MAST

TD 54 h

Automne Printemps 4 crédits

Antécédent : SFB2

FC1E

 $\label{eq:ue_norm} \textbf{UE ING. OU UE MAST.}$

TD 54 h THE 60 h

Automne Printemps 4 crédits

Antécédent :

Français: expression/compréhension écrite - niveau B2

OBJECTIF

Ce cours prépare les étudiants à atteindre les objectifs du niveau B2 en compréhension et en expression écrites.
 Il s'adresse en particulier aux étudiants avant suivi le cours SFB2 pendant le stage d'intersemestre.

PROGRAMME

- Compréhension écrite: être en mesure de comprendre des articles et des rapports sur des questions contemporaines dans lesquels les auteurs adoptent un point de vue personnel; acquérir une bonne connaissance des problèmes d'actualité grâce à une lecture régulière de la presse; se préparer à réussir l'épreuve de compréhension écrite proposée au TCF et au DELF
- Expression écrite: maîtriser les structures syntaxiques dont la connaissance est demandée au niveau B2, structures de la phrase complexe en particulier; écrire un essai ou un rapport en développant une argumentation de façon méthodique et en explicitant clairement les relations logiques entre ses idées; réussir à résumer les informations et les opinions exprimées par un texte ou par un document sonore en vue de les commenter et de les critiquer

Français: expression/compréhension phonique - niveau B2

OBJECTIF

Ce cours prépare les étudiants à atteindre les objectifs du niveau B2 en compréhension et en expression orales.
 Il s'adresse en particulier aux étudiants ayant suivi le cours SFB2 pendant le stage d'intersemestre.

PROGRAMME

- Compréhension orale: comprendre un discours complexe (narratif, descriptif, explicatif et argumentatif) portant sur un sujet connu dans une conversation entre natifs, une conférence ou un exposé; reconnaître le point de vue et les positions des personnes qui parlent; suivre une conversation animée entre locuteurs natifs
- Expression orale : développer une argumentation en enchainant avec logique des arguments et en mettant en évidence les points importants ; participer activement à des discussions informelles en exposant ses opinions et en réagissant aux arguments d'autrui ; conduire un entretien avec efficacité et aisance, en s'écartant spontanément des questions préparées et en exploitant et relançant les réponses intéressantes

Français: expression/compréhension écrite - niveau C1

OBJECTIF

Ce cours prépare les étudiants à atteindre les objectifs du niveau C1 en compréhension et en expression écrite.
 Il les accompagne dans la lecture de textes empruntés au journalisme d'analyse, à des essais sociologiques et à la littérature.
 Il permet également de travailler la méthodologie des épreuves d'expression écrite proposées au niveau C1, synthèse de documents et essai argumenté en particulier.

- Compréhension écrite: réussir à s'orienter dans le cheminement logique des textes argumentatifs, savoir repérer les indices des stratégies mises en œuvre; développer le regard permettant d'apprécier la dimension stylistique du texte littéraire; accroître sa connaissance du vocabulaire idiomatique et en particulier du vocabulaire imagé
- Expression écrite: maîtriser les structures grammaticales de la phrase complexe et les connecteurs argumentatifs en vue de rédiger des textes d'opinion clairs et bien construits; réussir à développer une argumentation en intégrant des arguments et des exemples et en usant de procédés rhétoriques, acquérir une meilleure orthographe

r & Comm

FC₁P

UE ING. OU UE MAST.

TD 54 h

Automne Printemps 4 crédits

Antécédent :

FM01

UE ING. OU UE MAST.THE 50 h

UE ING. OU UE MAST.

Automne Printemps 2 crédits

Français: expression/compréhension phonique - niveau C1

OBJECTIF

Ce cours prépare les étudiants à atteindre les objectifs du niveau C1 en compréhension et en expression orale.
 Les activités proposées permettront de s'exercer à la compréhension des débats d'idées et aux prises de parole argumentatives.

PROGRAMME

- Compréhension orale: réussir à extraire les informations importantes d'un débat dont le déroulement est perturbé par des prises de position polémiques
- Expression orale : être capable de participer à des échanges rapides dans une discussion de groupe ou un débat en argumentant de manière convaincante et en répondant aux questions et aux contre-arguments avec aisance et pertinence

Remédiation orthographique en autonomie

OBJECTIE

 Le travail en ligne proposé dans le cadre de FM01 permettra de comprendre le rôle des codes graphiques dans la communication écrite et complètera les connaissances nécessaires à la maîtrise d'une orthographe correcte.

PROGRAMME

- · connaître les correspondances «phonies/graphies»
- acquérir un raisonnement orthographique efficace, comprendre les logiques du système graphique
- être conscient des illogismes de l'orthographe : problème des consonnes étymologiques en particulier
- · savoir gérer un apprentissage en autonomie

FM02 Maîtrise des nuances de la langue française

OR JECTI

- · Savoir utiliser les nuances de la langue française notamment dans les sciences et l'ingénierie.
- Améliorer la qualité de ses écrits universitaires et professionnels.
- Comprendre et produire un texte scientifique et professionnel à la structuration avancée.

- · approfondissement du champ lexical scientifique
- développer l'art de nuancer et d'exprimer des concepts, des résultats d'expérimentation ou de recherches d'une facon précise, claire et sans ambiquité
- · apprendre à produire un effet positif sur le lecteur, articulation logique : typologie et pratique
- analyse de la construction de phrases complexes

FOS₁

UE ING.

TD 54 h

4 crédits

Antécédent : Pour les étudiants en échange

Commentaires : Ce cours se déroule

HE hore pro

FOS2

UE ING.

TD 30 h

Automne Printemps 4 crédits

Commentaire UE hors profil

FOS3

UE ING.

TD 30 h

Printemp
4 crédits

Commentaire UE hors profil

Préparation linguistique aux séances de TP de mathématiques

OBJECTIF

 Ce cours s'adresse aux TC01 non francophones appelés à étudier les mathématiques en français. Il vise à vérifier leur connaissance de la terminologie employée dans cette discipline ainsi que des méthodes de travail. Il exerce les étudiants à conduire une démonstration mathématique à l'oral.

PROGRAMME

- · maîtriser l'expression en français des principaux symboles mathématiques
- · connaître le vocabulaire de base de divers domaines de mathématiques (Géométrie, Arithmétique, Algèbre et
- Analyse)
- comprendre, tant à l'oral qu'à l'écrit, les énoncés scientifiques (CM, TD, TP)
- savoir préparer et réaliser un TP. TD de mathématiques en français
- pouvoir lire, analyser et rédiger un rapport scientifique en français (compte-rendu, rapport de stage, article ...)

Préparation linguistique aux séances de TP de chimie

OBJECTIF

 Ce cours s'adresse aux TC01 non francophones appelés à suivre des cours de chimie en français. Il vise à vérifier leur connaissance du vocabulaire employé dans cette discipline et à les préparer aux tâches demandées dans le cadre des enseignements, TD et TP en particulier.

PROGRAMME

- connaître le vocabulaire de base de la chimie
- savoir préparer et réaliser un TP de chimie (maîtrise du matériel, du langage technique, des modalités de rédaction du compte-rendu)
- · savoir rédiger un compte-rendu
- pouvoir lire et analyser des articles de vulgarisation scientifique en français
- être capable de retranscrire un cours magistral

Préparation linguistique aux séances de TP de physique

OBJECTIF

 Ce cours s'adresse aux TC01 non francophones appelés à suivre des cours de physique en français. Il vise à vérifier leur connaissance de la terminologie employée dans cette discipline, des consignes données lors des séances de TP et à garantir le bon déroulement des manipulations.

- connaître le vocabulaire de base des sciences physiques
- maîtriser la préparation des TP de physique (connaissance du matériel, du langage technique, des consignes de sécurité, des modalités de rédaction du compte-rendu)
- pouvoir lire et analyser des articles de vulgarisation scientifique en français

FOS4

UE ING.

TD 54 h

Printemps

Antécédent : ST05 Commentaire :

IT00

UE ING. OU UE MAST.

TD 45 h THE 60 h

Automne Printemps 4 crédits

Aide à la rédaction et à la soutenance du stage ST05

OBJECTIE

 A l'issue du stage ST05, ce cours accompagne les étudiants étrangers dans la rédaction de leur rapport de stage et dans la préparation de la soutenance. Les interventions concernent uniquement la correction de l'expression et de la présentation.

PROGRAMME

- comprendre et appliquer rigoureusement les consignes régissant l'organisation, la présentation et la rédaction d'un rapport de stage
- interpréter des observations et des témoignages, en faire des informations
- classer celles-ci par ordre d'intérêt, sélectionner et reformuler les plus pertinentes en vue de les intégrer au rapport
- maîtriser le matériel linguistique utile à la description d'expériences, à l'explication et à l'analyse
- développer la capacité de travailler à l'autocorrection de ses erreurs
- maîtriser les paramètres d'une présentation orale fluide et synthétique

Italien - Niveau pré-A1/A1

OBJECTIF

- · Apprendre les bases de la communication orale et écrite.
- Communiquer dans des situations simples de la vie courante.
- Appréhender la société italienne à travers sa langue et sa culture.
- Préparer un semestre d'échange en Italie.

PROGRAMME

- rédiger des mots et phrases très simples
- utiliser des expressions et des phrases simples pour décrire une situation et s'exprimer

IT01

UE ING. OU UE MAST.TD 45 h

Automne Printemps

Italien - Niveau A1/A2

OBJECTIE

- maîtriser les bases de la communication orale et écrite.
- · communiquer dans des situations simples de la vie courante.
- améliorer la communication afin d'envisager un semestre d'études ou un stage en Italie.

- communiquer, de façon simple avec un interlocuteur disposé à répéter ou à reformuler ses phrases plus lentement et poser et répondre à des questions simples sur des sujets familiers
- · utiliser des expressions et des phrases simples pour décrire et parler de choses connues
- rédiger des notes et messages simples et courts

IT02

UE ING. OU UE MAST.

TD 45 h THE 60 h

Automne Printemps 4 crédits

Italien - Niveau A2/B1

OR JECTIE

- · Réviser les structures de langue.
- Savoir communiquer dans de multiples situations de la vie courante.
- Appréhender le langage spécifique journalistique d'entreprise.
- Approfondissement de connaissances de la société italienne.

PROGRAMME

- trouver une information particulière prévisible dans des documents courants comme les publicités, les prospectus etc.
- · comprendre des textes journalistiques et littéraires, des lettres personnelles courtes et simples
- communiquer lors de tâches simples et habituelles ne demandant qu'un échange d'informations simple et direct sur des sujets et des activités familiers et avoir des échanges très brefs même si, en règle générale, cela reste insuffisant pour poursuivre une conversation
- · écrire des notes et messages simples et courts : une lettre personnelle très simple, par exemple lettre ou mail

JP00

UE ING. OU UE MAST.
TD 45 h

Automne Printemps

Japonais - niveau pré A1/A1

OBJECTIF

- · Apprendre les bases de la communication orale et écrite.
- Communiquer dans des situations simples de la vie courante.
- Appréhender la société japonaise à travers sa langue et sa culture.
- Préparer un semestre d'échange au Japon.

PROGRAMME

- comprendre quelques phrases simples
- · connaître l'alphabet Hiragana, Katagana
- rédiger des mots et phrases très simples
- utiliser des expressions et des phrases simples pour décrire et parler

KO00

UE ING. OU UE MAST.
TD 45 h

Automne Printemps

Coréen - niveau pre-A1/A1

OR JECTIE

- Apprendre les bases de la communication orale et écrite.
- · Communiquer dans des situations simples de la vie courante.
- Appréhender la société coréenne à travers sa langue et sa culture.
- Préparer un semestre d'échange en Corée.

- connaître l'alphabet Hanquel
- rédiger des mots et phrases très simples
- utiliser des expressions et des phrases simples pour décrire et parler

r & Comm

LC00

UE ING. OU UE MAST.

TD 45 h THE 60 h

Automne Printemps 4 crédits

Chinois niveau pré-A1/A1

OBJECTIE

- Apprendre les bases de la communication orale et écrite.
- Communiquer dans des situations simples de la vie courante.
- Appréhender la société chinoise à travers sa langue et sa culture.
- Préparer un semestre d'échange en Chine.

PROGRAMME

- · connaître quelques idéogrammes chinois
- rédiger des mots et phrases très simples
- · utiliser des expressions et des phrases simples pour décrire et parler

LC01

UE ING. OU UE MAST.

TD 45 h THE 60 h

Automne Printemps 4 crédits

Antécédent : LCO

Chinois niveau A1/A2

OBJECTIF

- Maîtriser les bases de la communication orale et écrite.
- Communiquer dans la plupart des situations simples de la vie courante.
- Améliorer ses connaissance de la société chinoise et la communication afin d'envisager des études ou un stage en Chine.

PROGRAMME

- communiquer, de façon simple avec un interlocuteur disposé à répéter ou à reformuler ses phrases plus lentement et poser et répondre à des questions simples sur des sujets familiers
- utiliser des expressions et des phrases simples pour décrire et parler de choses connues
- · rédiger dans une écriture simple et courte

LC02

UE ING. OU UE MAST.TD 45 h

THE 60 h

Automne Printemps

Antécédent · LCO

Chinois niveau A2/B1

OR JECTIE

- · Approfondissement des connaissances grammaticales et de la structure de la langue.
- · Parvenir à une expression orale assez aisée.
- · Histoire contemporaine de la Chine.

- trouver une information particulière prévisible dans des documents courants comme les publicités, les prospectus etc, comprendre des textes journalistiques et littéraires, des lettres personnelles courtes et simples
- communiquer lors de tâches simples et habituelles ne demandant qu'un échange d'informations simple et direct sur des sujets et des activités familiers et avoir des échanges très brefs même si, en règle générale, cela reste insuffisant pour poursuivre une conversation
- écrire des notes et messages simples et courts : une lettre personnelle très simple, par exemple une lettre ou un e-mail

LEM₁

UE MAST.
TD 45 h

Automne 4 crédits

Anglais - niveau A1/A2/préparation BULATS

OR JECTIE

- Développement des connaissances lexicales et grammaticales pour l'anglais du monde du travail.
- Entraînement aux compétences requises pour la validation du niveau B1 à l'examen écrit du BULATS.
- Ce cours s'adresse aux étudiants inscrits en première année du diplôme de Master de l'UTT et dont les niveaux d'entrée sont A1 et A2.

PROGRAMME

- comprendre les courriels et informations de routine à propos de produits ou services connus
- · communiquer avec les clients, pour des questions de routine et prendre part à une conversation limitée
- · rédiger des messages factuels et des courriels de routine, sous réserve de vérification du travail

LEM2

UE MAST.

TD 45 h THF 60 h

Automne Printemps

Antécédent : LEM

Anglais - niveau A2/B1/préparation BULATS

OBJECTIF

- Approfondissement de l'apprentissage de l'anglais entrepris en LEM1 en vue de la validation du NPML, soit le lexique et la grammaire pour le monde du travail.
- · Entraînement aux compétences requises pour la validation du niveau B1 à l'examen écrit du BULATS.
- Ce cours réservé aux étudiants inscrits au diplôme de Master de l'UTT qui ont le niveau A2 certifié ou bien qui ont réussi LEM1.

PROGRAMME

- · comprendre les courriels et informations de routine à propos de produits ou services connus
- communiquer avec les clients, pour des questions de routine et prendre part à une conversation limitée
- rédiger des messages factuels et des courriels de routine, sous réserve de vérification du travail

LESI

UE ING. OU UE MAST.

THE 60 h

Automne Printemps 4 crédits

Remédiation des fondamentaux B1-B2

OR JECTIE

- Remise au niveau et consolider des structures lexicales et grammaticales niveau B1-B2.
- Améliorer votre expression et compréhension orale de la langue anglaise.

- · communiquer dans diverses situations
- · comprendre les contextes divers pour l'utilisation du temps
- apprendre à maîtriser des structures grammaticales telles que prépositions, modaux, conditionnel, dans le but de rendre l'échange oral de la langue anglaise plus fluide
- · élargir votre vocabulaire et l'utilisation du langage idiomatique
- développer des stratégies de lecture et des compétences orales efficaces

r & Comm

LE₀₀

UE ING. OU UE MAST.

TD 45 h THE 60 h

Automne Printemps 4 crédits

Anglais - Remise à niveau A2

OR JECTIE

 Introduction et consolidation des structures lexicales et grammaticales de base de la langue anglaise, pour atteindre le socle de compétences langagières et interactionnelles attendues au niveau pré-intermédiaire.

PROGRAMME

- utiliser une série de phrases ou d'expressions pour décrire en termes simples ma famille et d'autres gens, mes conditions de vie, ma formation actuelle ou récente
- communiquer lors de tâches simples et habituelles ne demandant qu'un échange d'informations simple et direct sur des suiets et des activités familiers
- comprendre des expressions et un vocabulaire très fréquent relatifs à ce qui me concerne de très près
- trouver une information prévisible dans des documents contemporains
- écrire des messages simples et courts liés à la vie courante

LE01

UE ING. OU UE MAST.

TD 45 h THF 60 h

Automne Printemps 4 crédits

Antécédent : LE00, ou tes

Anglais - niveau pratique B1

OBJECTIF

- S'approprier et consolider du vocabulaire et des structures grammaticales de niveau B1.
- · Savoir communiquer dans des situations familières de la vie courante.

PROGRAMME

- comprendre des textes rédigés essentiellement dans une langue courante
- prendre part sans préparation à une conversation sur des sujets familiers ou d'intérêt personnel ou qui concernent la vie quotidienne
- brièvement donner les raisons et explications de mes opinions ou projets
- écrire un texte simple et cohérent sur des suiets familiers ou qui m'intéressent personnellement

LE02

UE ING. OU UE MAST.

TD 45 h

Automne Printemps

Antécédent : LE01, ou test

Anglais - Niveau pratique B1/B2

OB JECTIE

- · Acquérir du vocabulaire et des structures grammaticales plus poussées.
- Améliorer ses capacités à s'exprimer en anglais dans des situations de communication de la vie courante et professionnelle dans des situations prévisibles.

- · comprendre des conversations et monologues portant sur la vie courante et professionnelle
- comprendre des textes rédigés dans une langue courante ou relative au travail
- être capable d'écrire une lettre de motivation et des demandes de renseignements cohérentes

LE03

UE ING. OU UE MAST.

TD 45 h THE 60 h

Automne Printemps

Antécédent :

Anglais - Niveau pratique B2

OR JECTIE

- · Consolidations lexicales et grammaticales de niveau B2.
- Maîtrise de la communication dans des situations variées de la vie courante et professionnelle.

PROGRAMME

- · comprendre l'idée principale et les détails d'un discours portant sur des thèmes familiers et hors routine
- identifier rapidement et de manière fine les informations importantes d'un texte écrit
- produire des demandes écrites de manière précise et professionnelle, sous réserve de vérification du travail fourni

LE08

UE ING. OU UE MAST.TD 45 h

Automne Printemps

Antécédent :

Professional english, BULATS reading and listening and speaking test preparation (C1)

OBJECTIF

Fournir et compléter les compétences nécessaires à l'obtention du niveau B2+ minimum.

DDOCDAMME

- communiquer efficacement et traiter des questions appartenant à un domaine différent du sien et assurer tous les échanges dans une conversation
- · rédiger des messages dans un contexte professionnel et dans d'autres domaines, avec un minimum d'erreurs
- suivre et comprendre des échanges suivant l'ordre du jour d'une réunion, d'un séminaire, et tenir une conversation dans le contexte du monde du travail

LE11

UE ING. OU UE MAST.

TD 30 h

4 crédits

Antecedent : niveau B2+ Commentaire : pour les étudiants en branches

Anglais pratique dans les domaines scientifiques et techniques

OBJECTIF

• Découvrir et analyser, en langue anglaise d'un niveau C1-C2, des innovations de l'ingénierie dans le monde.

- analyser des innovations techniques et leurs applications actuelles
- · comprendre, expliquer et examiner les problématiques industrielles dans divers domaines
- utiliser un langage approprié et un lexique professionnel pour enquêter et proposer une solution optimale à des obstacles qui ont été surmontés dans des projets réels d'ingénierie
- produire des présentations orales et la documentation pertinente associée en langue anglaise

LE17

UE ING. OU UE MAST.

TD 30 h

4 crédits

Antécédent : niveau B2+ Commentaire : pour les étudiants en branches

English for Academic Purposes, IELTS and TOEFL preparation

OBJECTIF

- Préparation aux niveaux C1/C2 dans l'optique d'un semestre d'étude dans un pays anglophone.
- Réussite du TOEFL 90+ et IELTS 6.5+.

PROGRAMME

- être capable de s'exprimer d'une manière persuasive face à un locuteur natif et d'une manière efficace et soutenue lors de présentations de divers sujets académiques
- rédiger des «essays» et «intergrated tasks» sur la plupart des sujets et écrire sous la dictée d'un maître de conférence, même sur des sujets inconnus

LE19

UE ING. OU UE MAST.

TD 30 h THE 40 h

Automne Printemps 4 crédits

Conversation, Argumentation and Pronunciation

OBJECTIF

- · Approfondissement des compétences orales.
- Perfectionnement des structures lexicales dans des situations de la vie quotidienne.
- Élargir ses connaissances de variétés de la langue anglaise.

PROGRAMME

- perfectionnement de prononciation et travaille phonétique
- savoir s'exprimer de facon claire et bien structurée sur des sujets complexes du la vie quotidienne
- connaissance et analyse phonétique de différentes variétés d'anglais utilisées dans le monde

LE20

UE ING. OU UE MAST.

TD 30 h THE 40 h

Automne Printemps

Professionalization and Cross Cultural studies

OR JECTIE

· Professionalization and Cross Cultural studies.

- · présentation individuelle lors d'entretien d'embauche
- pouvoir négocier et animer une réunion
- · faire des présentations claires et efficaces et argumenter son point de vue
- travailler sur des études de cas interculturelles
- savoir s'exprimer de façon claire et bien structurée sur des sujets complexes de la vie professionnelle ou académique
- maintenir un excellent niveau de compréhension orale et écrite sur des thèmes variés
- · recherches d'informations pratiques sur les pays concernés pour permettre une bonne intégration

LG00

UE ING. OU UE MAST.

TD 45 h THE 60 h

Automne Printemps

Commentaire : UE réservée au vrais débutants

Allemand - Niveau vrai débutant A1

OR JECTIE

- Apprendre à communiquer dans des situations simples de la vie courante, accent sur l'expression orale et la compréhension auditive à visée communicative : dialogues, jeux de rôles...
- Apprentissage des structures fondamentales et du lexique de base.

PROGRAMME

- · communiquer, de facon simple, à condition que l'interlocuteur répète ou reformule ses phrases plus lentement
- se repérer dans le temps et prendre un rendez-vous
- poser des questions simples sur des sujets familiers ou concernant des besoins immédiats, ainsi que répondre à de telles questions
- écrire des notes et messages simples et courts, remplir un formulaire personnel

LG01

UE ING. OU UE MAST.

THE 60 h

Automne Printemps 4 crédits

Antécédents : LG00 ou niveau A1 ou tes

Allemand - Niveau élémentaire A1/A2

OBJECTIF

- Savoir communiquer dans les situations simples de la vie courante, accent sur l'expression orale et la compréhension auditive : ieux de rôles...
- · Remise à niveau, révision et approfondissement des structures fondamentales et du champ lexical.

PROGRAMME

- compréhension écrite : travail sur des textes et documents de nature diverse
- expression orale : accent mis sur la communication (dialogues, jeux de rôles...)
- · expression écrite : rédaction de petits dialogues et textes
- compétence linguistique : révision des structures fondamentales et apprentissage progressif des principales structures de langue

LG02

UE ING. OU UE MAST.

TD 45 h

Automne Printemps

Antécédents : LG01 ou niveau A1/A2 ou test

Allemand - Niveau moyen A2/B1

OR JECTIE

- · Savoir communiquer dans la plupart des situations de la vie courante.
- · Réviser très largement les principales structures de langue et les développer.
- · 2 entretiens individuels, dont 1 à partir d'un article récent en allemand.

- faire face à la majorité des situations dans un pays germanophone, demander des informations et y répondre
- prendre part de manière simple à une conversation sur des sujets familiers ou d'intérêt personnel, donner son avis et exprimer ses raisons
- · écrire un texte simple et cohérent sur des sujets familiers ou d'intérêt personnel en se faisant relire

LG03

UE ING. OU UE MAST.

TD 45 h THE 60 h

Printemps

4 crédits

Antécédent : LG02 ou niveau A2/B1 ou test

Allemand - Niveau pratique B1/B2

OR JECTIE

- Savoir communiquer dans la plupart des situations de la vie courante.
- Perfectionner les principales structures de langue.
- Rédaction de CV en allemand.
- 2 entretiens individuels, dont 1 à partir d'un article récent en allemand.

PROGRAMME

- comprendre dans les grandes lignes un article de presse ou un reportage de difficulté moyenne sur un sujet actuel, en rendre compte et exprimer son point de vue et ses arguments
- écrire un texte cohérent sur des sujets familiers ou d'intérêt personnel, en utilisant des structures plus complexes

LG08

UE ING. OU UE MAST.

TD 45 h THE 60 h

Automne Printemps

Antécédents : LG10 ou LG11 ou niveau B1+/B2

Allemand - Préparation à l'examen niveau B2

OBJECTIF

- Consolidation et approfondissement des compétences grammaticales et lexicales de niveau minimum B2.
- Accent mis sur la préparation à l'examen BULATS: exercices écrits et audio.
- 2 entretiens individuels préparant au BULATS oral.

PROGRAMME

- identifier rapidement et de manière fine les informations importantes d'un texte écrit portant sur des sujets connus et moins connus
- s'exprimer de façon continue et claire sur un vaste champ de sujets courants et professionnels, exprimer ses idées et opinions de différentes façons
- rédiger des textes clairs et bien structurés et développer son point de vue

LG10

UE ING. OU UE MAST.

TD 45 h THE 60 h

Automne Printemps

Mineur : CIE Antécédents : LG03 ou bon niveau B1 ou test

Allemand « culture et civilisation » B2

OBJECTIE

- Amélioration à la fois des connaissances linguistiques et des connaissances de la culture et de la civilisation allemandes.
- 2 entretiens, dont 1 à partir d'un article récent en allemand en rapport avec la culture ou la civilisation allemande.

- prendre activement part à une conversation de la vie courante, présenter un sujet devant un public, exprimer son point de vue et ses arguments
- · rédiger des textes clairs et structurés dans une langue correcte

LG11

UE ING. OU UE MAST.

TD 45 h THE 60 h

Automne Printemps

Mineur : CIE Antécédent : LG0 ou bon niveau B1

Allemand « Professionnel » B2

OR JECTIE

- Interculturalité et connaissance du monde professionnel allemand.
- Consolidation et élargissement des connaissances lexicales et grammaticales.
- 2 entretiens, dont 1 à partir d'un article récent en allemand en rapport avec le monde du travail.

PROGRAMME

- comprendre dans les grandes lignes un article ou un reportage de la presse allemande sur un sujet actuel lié
 à la vie professionnelle, en rendre compte et le commenter
- prendre activement part à une conversation de la vie courante ou professionnelle, présenter un sujet devant un public, exprimer son point de vue et ses arguments
- rédiger des textes clairs et structurés dans une langue correcte

LP00

UE ING. OU UE MAST.

TD 45 h THE 60 h

Automne Printemps **4 crédits**

Portugais - Niveau pré-A1/A1

OBJECTIF

- Apprendre les bases de la communication orale et écrite.
- Communiquer dans des situations simples de la vie courante.
- Appréhender la société brésilienne à travers sa langue et sa culture.
- Préparer un semestre d'échange au Brésil.

PROGRAMME

- rédiger des mots et phrase très simples
- utiliser des expressions et des phrases simples pour décrire et parler

LP01

UE ING. OU UE MAST.

THE 60 h

Automne Printemps

Antécédent : LP0

Portugais - Niveau A1/A2

OBJECTIE

- Maîtriser les bases de la communication orale et écrite.
- · Communiquer dans des situations simples de la vie courante.
- Améliorer la communication afin d'envisager des études ou un stage au Brésil.

- communiquer, de façon simple avec un interlocuteur disposé à répéter ou à reformuler ses phrases plus lentement et poser et répondre à des questions simples sur des sujets familiers
- utiliser des expressions et des phrases simples pour décrire et parler de choses connues
- rédiger des notes et messages simples et courts

nor & Comm

LP02

UE ING. OU UE MAST.

TD 45 h THE 60 h

Automne Printemps 4 crédits

Antécédent : LPO

Portugais - Niveau A2/B1

OBJECTIE.

- · Réviser les structures de lanque.
- Savoir communiquer dans de multiples situations de la vie courante.
- Appréhender le langage spécifique journalistique d'entreprise.
- Approfondir sa connaissance de la société brésilienne.

PROGRAMME

- trouver une information particulière prévisible dans des documents courants comme les publicités, les prospectus etc. comprendre des textes journalistiques et littéraires, des lettres personnelles courtes et simples
- communiquer lors de tâches simples et habituelles ne demandant qu'un échange d'informations simple et direct sur des sujets et des activités familiers et avoir des échanges très brefs même si, en règle générale, cela reste insuffisant pour poursuivre une conversation
- écrire des notes et messages simples et courts : une lettre personnelle très simple, par exemple une lettre ou un e-mail

LS00

UE ING. OU UE MAST.

THE 60 h

Automne Printemps 4 crédits

Commentaire : UE reservée au vrais débutants

Espagnol - Niveau débutant A1/A2

OBJECTIF

- Apprentissage du lexique et de la grammaire de base dans des situations de la vie courante.
- Apprentissage de la compréhension auditive, la communication orale et l'interaction au travers d'activités simples.

PROGRAMME

- communiquer, de façon simple avec un interlocuteur disposé à répéter ou à reformuler ses phrases plus lentement et poser et répondre à des questions simples sur des sujets familiers
- · utiliser des expressions et des phrases simples pour décrire et parler de choses connues
- rédiger des notes et messages simples et courts, prendre un rendez-vous, remplir un formulaire simple

LS01

UE ING. OU UE MAST.

THE 60 h

Automne Printemps

Antécédents : LS00

Espagnol - Niveau intermédiaire A2

OR JECTIE

- · Approfondissement du langage et des structures grammaticales fondamentales.
- Prise de parole sur des sujets préparés (jeux de rôles...).
- communication et interaction sur des situations simples de la vie courante.

- trouver une information particulière prévisible dans des documents courants (publicités, prospectus, menus et horaires)
- communiquer lors de tâches simples et courantes ne demandant qu'un échange d'informations simples sur des suiets familiers et donner son opinion
- écrire des notes et messages simples et courts : une lettre personnelle très simple, par exemple lettre ou mail de remerciements

LS02

UE ING. OU UE MAST.

TD 45 h THE 60 h

Automne Printemps

Antécédents : LS01 ou niveau A2/B1 ou test

Espagnol - Niveau pratique B1

OR JECTIE

- Approfondissement du langage et des structures grammaticales de niveau B1.
- Amélioration de la communication et interaction dans la plupart des situations de la vie courante et professionnelle
- Deux entretiens individuels dont 1 à partir d'un article de presse en espagnol.

PROGRAMME

- comprendre l'idée principale des textes rédigés, de documents télévisés ou audio essentiellement dans une langue courante ou relative au monde du travail
- identifier les informations importantes d'un texte écrit ou à l'oral et pouvoir donner son avis sur un thème soulevé
- produire des écrits simples et cohérents sur des sujets familiers. Ecrire des lettres personnelles pour décrire ses expériences et impressions

LS03

UE ING. OU UE MAST.

TD 45 h

Automne Printemps 4 crédits

Antécédents : LS02

Espagnol - Niveau pratique B1/B2

OBJECTIE.

- Communiquer et réagir dans des situations variées de la vie courante et professionnelle.
- Rédaction de lettres et CV en espagnol.
- Réalisation d'entretiens d'embauche au travers d'un jeu de création d'entreprise et entretiens individuels sur articles.

PROGRAMME

- comprendre l'idée principale et les détails d'un discours portant sur des thèmes connus ou moins connus quand un langage clair et standard est utilisé
- identifier rapidement et de manière fine les informations importantes d'un texte écrit et savoir en rendre compte et donner son point de vue
- produire des écrits divers plus complexes en utilisant les structures adaptées à la vie quotidienne ainsi qu'au monde du travail

LS08

UE ING. OU UE MAST.

TD 45 h

Automne Printemps

Antécédents : LS03 ou LS10 ou niveau B2

Espagnol - Niveau avancé B2 à C1

OR JECTIE

- Consolidations et approfondissement des structures lexicales et grammaticales de niveau B2+/C1.
- Maîtrise de la communication dans des situations variées de la vie courante et professionnelle avec une relative aisance et spontanéité.

- communiquer dans des situations familières, présenter et défendre son point de vue avec un degré de spontanéité et d'aisance qui rend possible une interaction normale avec un locuteur natif
- s'exprimer de façon claire et détaillée sur une grande gamme de sujets divers
- rédiger des textes clairs et des documents professionnels bien structurés et développer son point de vue

r & Comm

LS10

UE ING. OU UE MAST.

TD 45 h THE 60 h

Printemps

Antécédents : LS03, ou niveau B1 ou test

Espagnol - Niveau pratique B2

OBJECTIF

- Consolidations lexicales et grammaticales de niveau B2.
- Maîtrise de la communication dans des situations variées de la vie courante et professionnelle.

PROGRAMME

- · comprendre l'idée principale et les détails d'un discours portant sur des thèmes connus et peu connus
- identifier rapidement et de manière fine les informations importantes d'un texte écrit
- produire des demandes écrites de manière précise et professionnelle

LS11

UE ING. OU UE MAST.

TD 45 h THF 60 h

Automne Printemps

Mineur : CIE Antécédents : LS08 ou LS10

Espagnol - Niveau pratique B2+/C1 (Post LS08)

OBJECTIF

- Apprentissage du débat d'idée et interaction entre étudiants sur sujets pointilleux.
- Développer ses connaissances du monde professionnel espagnol et latino-américain.

PROGRAMME

- exprimer son accord ou désaccord de façon claire et précise et savoir se justifier en s'appuyant sur des exemples concrets
- identifier rapidement et de manière fine les informations importantes d'un texte écrit
- présenter un sujet de façon à ce qu'il entraîne un débat d'idées

LXIT

UE ING. OU UE MAST.

Automne Printemps

Antécédent : ITO

Tandem italien

OBJECTIE

- · Réviser les structures de langue.
- · Savoir communiquer dans de multiples situations de la vie courante.
- Appréhender le langage spécifique journalistique d'entreprise.
- Approfondissement de connaissances de la société italienne.

- communiquer lors de tâches simples et habituelles ne demandant qu'un échange d'informations simple et direct sur des sujets et des activités familiers et avoir des échanges très brefs même si, en règle générale, cela reste insuffisant pour poursuivre une conversation
- écrire des notes et messages simples et courts : une lettre personnelle très simple, par exemple lettre ou mail

LXLC

UE ING. OU UE MAST.
THE 140 h

Automne Printemps 4 crédits

A-44-44-4-100

Tandem chinois

OR JECTIE

- · Approfondissement des connaissances grammaticales et de la structure de la langue.
- · Parvenir à une expression orale assez aisée.
- · Histoire contemporaine de la Chine.

PROGRAMMI

- trouver une information particulière prévisible dans des documents courants comme les publicités, les prospectus etc. comprendre des textes journalistiques et littéraires, des lettres personnelles courtes et simples
- communiquer lors de tâches simples et habituelles ne demandant qu'un échange d'informations simple et direct sur des sujets et des activités familiers et avoir des échanges très brefs même si, en règle générale, cela reste insuffisant pour poursuivre une conversation
- écrire des notes et messages simples et courts : une lettre personnelle très simple, par exemple une lettre ou un e-mail

LXLP

UE ING. OU UE MAST.
THE 140 h

Automne Printemps 4 crédits

Antécédent : LPO

Tandem portugais

OBJECTIF

- réviser les structures de langue.
- savoir communiquer dans de multiples situations de la vie courante.
- · appréhender le langage spécifique journalistique d'entreprise.
- approfondir sa connaissance de la société brésilienne.

PROGRAMME

- trouver une information particulière prévisible dans des documents courants comme les publicités, les prospectus etc, comprendre des textes journalistiques et littéraires, des lettres personnelles courtes et simples
- communiquer lors de tâches simples et habituelles ne demandant qu'un échange d'informations simple et direct sur des sujets et des activités familiers et avoir des échanges très brefs même si, en règle générale, cela reste insuffisant pour poursuivre une conversation.
- écrire des notes et messages simples et courts : une lettre personnelle très simple, par exemple une lettre ou un e-mail

LXLS

UE ING. OU UE MAST.

Automne Printemps

Antécédent : LS03

Tandem espagnol

OR JECTII

- · Approfondir et consolider le vocabulaire et les structures grammaticales.
- · Apprendre et mettre en pratique le vocabulaire de la vie courante.
- Niveau B1 à B2+.

PROGRAMME

 réalisation de courtes vidéos (10 à 12), suite à chaque rencontre sur des thèmes imposés et au choix pour un tiers de l'UE

LX10

UE ING. OU UE MAST.
THE 140 h

Automne Printemps 4 crédits

Formation à l'anglais à distance (préparation BULATS durant le stage de fin d'études)

OBJECTIF

- · Approfondir et consolider le vocabulaire et les structures grammaticales.
- Apprendre et mettre en pratique le vocabulaire de la vie courante et professionnelle.
- Expression et compréhension orales: exercices sur logiciel pour approfondir les compétences évaluées par l'examen BULATS, enrichissement et mise en pratique du vocabulaire professionnel et technique acquis durant la formation.
- Compréhension orale: le projet de fin d'études fera l'objet d'un rapport et d'une soutenance en anglais devant un jury d'enseignants d'anglais.

PROGRAMMI

- communiquer efficacement et traiter des questions appartenant à un domaine différent du sien et assurer tous les échanges dans une conversation
- · rédiger des messages dans un contexte professionnel et dans d'autres domaines, avec un minimum d'erreurs
- suivre et comprendre des échanges suivant l'ordre du jour d'une réunion, d'un séminaire, et tenir une conversation dans le contexte du monde du travail

ME09

UE MAST.

C 3 h TD 24 h

Automne

Préparation à l'essai en environnement et développement durable

 Délivrer une méthodologie permettant à l'étudiant d'atteindre les objectifs de l'essai en environnement et développement durable.

PROGRAMME

- · recherche bibliographique, analyse et formulation d'une problématique scientifique pertinente
- élaboration du projet scientifique et organisationnel environnant l'essai : choix du type d'essai (avec ou sans stage), identification de la structure d'accueil (si essai avec stage), identification du directeur d'essai
- élaboration du plan de travail de l'essai : identification des objectifs généraux et spécifiques, mise en contexte du sujet traité, définition d'une méthodologie et d'un échéancier appropriés, élaboration d'une table des matières anticipée détaillée

SD11

UE MAST.

C 14 h TD 14 h

Automne Printemps

Articles scientifiques, et entretiens professionnels

OBJECTIF

- Formation aux bases de l'écriture et de la présentation d'articles scientifiques.
- Formation aux règles de base de l'entretien professionnel.

- · maîtriser les règles de base de la recherche documentaire
- être capable de synthétiser des éléments de parcours pour concevoir un CV et les lettres de motivations associées
- · maîtriser les règles de base de l'entretien professionnel

SFA₁

UE ING. OU UE MAST.

TD 80 h THE 60 h

Automne Printemps

Commentaire : le stage se déroule pendant les intersemestres

SFA2

UE ING. OU UE MAST.

TD 80 h THE 60 h

Automne Printemps

Commentaire : le stage se déroule pendant les intersemestres

SFB1

UE ING. OU UE MAST.

TD 80 h THE 60 h

Automne Printemps

Commentaire : le stage se déroule pendant les intercompetres

Stage intensif FLE - niveau A1

OR IECTIE

 Dès le moment de leur arrivée en France, ce cours donne aux étudiants n'ayant jamais étudié le français les premiers moyens d'expression qui leur permettront de gérer les interactions simples et concrètes de leur vie quotidienne. Une priorité est donnée à la pratique de l'oral.

PROGRAMME

- maîtriser les moyens d'expression répertoriés par le CECRL pour le niveau A1 et en particulier :
 - réussir les interactions communicatives de base: entrer en contact avec quelqu'un, saluer, se présenter, répondre à des questions simples et en poser, demander à quelqu'un de ses nouvelles, fixer un rendez-vous, etc.
- comprendre et utiliser le vocabulaire et les expressions stéréotypées permettant de donner des informations sur soi et de répondre à des besoins courants
- comprendre des informations ou des instructions courtes lorsque celles-ci sont formulées lentement par un interlocuteur compréhensif

Stage intensif FLE - niveau A2

OBJECTIE

 Après environ 100 heures d'apprentissage du français, ce stage permettra aux étudiants faux-débutants de développer leurs ressources d'expression et de les mobiliser par le biais du jeu de rôles dans les situations de communication les plus courantes.

PROGRAMME

- maîtriser les compétences d'expression et de compréhension répertoriées par le CECRL pour le niveau A2, et en particulier :
 - être autonome dans les transactions simples de la vie quotidienne: achats dans un magasin, démarches auprès d'une banque ou d'une administration, organisation d'un voyage, utilisation des transports, etc.
 - être en mesure de donner des informations sur soi-même, ses projets et ses activités passées en réutilisant dans les contextes appropriés du vocabulaire et des structures mémorisés
 - repérer l'information essentielle de courts extraits audio portant sur un suiet prévisible

Stage intensif FLE - niveau B1

OR JECTI

 Premier module d'une formation préparant au niveau B1, ce stage permettra aux étudiants ayant déjà consacré
 200 heures à l'apprentissage du français de mobiliser leurs connaissances dans les différents contextes de la communication orale.

- maîtriser, à l'oral, les compétences linguistiques définies par le CECRL pour le niveau B1 et notamment :
 - pouvoir échanger activement de l'information sur des sujets familiers, exprimer des positions personnelles dans des discussions menées en groupe, par exemple dans le cadre des projets réalisés en équipe
- réussir à obtenir de l'information sur un sujet abstrait ou technique, pouvoir expliquer pourquoi quelque chose pose problème
- · réussir à décrire comment faire quelque chose et à donner des instructions détaillées
- acquérir la confiance nécessaire aux prises de parole en cours

SFB₂

UE ING. OU UE MAST.

TD 80 h

Automne Printemps

Commentaire : le stage se déroule pendant les intercompatres

SI10

UE ING.

C 26 h TD 30 h THF 30 h

PRJ 20 h

SI11

HE INC

C 13 h TD 30 h THE 20 h

Printemps

Mineur : COESO

Stage intensif FLE - niveau B2

OR IECTIE

 Après environ 400 heures d'étude de la langue française, ce stage invitera les étudiants à mobiliser leurs apprentissages dans des contextes de communication authentiques: enquêtes, interviews, discussion, prise de parole continue, etc.

PROGRAMME

- maîtriser, à l'oral, les compétences d'expression et de compréhension répertoriées par le CECRL pour le niveau B2, par exemple;
 - pouvoir participer à un débat avec fluidité, conduire efficacement une argumentation autour de sujets abstraits (problèmes de société, choix éthiques, conclusions scientifiques, etc.)
 - développer avec aisance une explication logiquement construite dans une gamme étendue de sujets d'ordre général ou professionnel
- pouvoir extraire le contenu informatif d'une longue intervention orale (cours, conférence, document radiophonique, reportage télévisé, etc.) et reconnaître l'attitude du locuteur

Formation à la communication écrite et orale

OBJECTIE

 Cette UE permet aux étudiants de perfectionner leur communication écrite et orale ainsi que leurs méthodes de recherche documentaire.

PROGRAMME

- maîtriser les bases de la communication orale, en situation d'exposé ou de soutenance
- connaître les méthodes de communication écrite permettant de produire des documents efficaces : notes de synthèse, dossiers, rapports de stage
- être capable de répondre aux attentes des recruteurs pour ce qui concerne les CV, lettres d'accompagnement et entretiens professionnels
- · maîtriser les règles de base de la recherche documentaire

Communication écrite et orale pour l'ingénieur

OR JECTIE

 Cette UE permet aux étudiants de maîtriser les techniques de communication écrite et orale essentielles pour l'ingénieur ou le manager.

- · maîtriser l'expression orale en situation professionnelle : structuration, argumentation, gestuelle, etc.
- maîtriser les méthodes et les outils de la communication écrite professionnelle : compte-rendu, correspondance, courrier électronique
- · utiliser les outils de communication graphique de manière efficace
- savoir animer un brainstorming et une discussion de groupe

MANAGEMENT DE L'ENTREPRISE

APP10

UE ING.

4 crédits

EI04L

UE ING.

6 crédits

FQ54

6 crédits

Conduite du projet de professionnalisation

- La définition du projet de professionnalisation vise à la compréhension du futur environnement professionnel de l'étudiant et de ses mutations. Elle doit permettre à l'étudiant d'opérer des choix éclairés quant à sa son orientation professionnelle de fin de formation.

- Développer une vision de l'environnement professionnel via la découverte d'entreprises au cours des conférences industrielles « Les ieudis de l'entreprise »
- Développer un projet professionnel via la participation aux évènements du BAIP
- Journées de simulation d'entretiens
- Forum UTT / Entreprises
- Entretiens individuels
- Mettre en œuvre une démarche d'identification et de préparation à une candidature à un poste en lien avec le diplôme préparé (choix de métiers, identifications de postes en concordance, identification et interview d'une personne exercant ce poste, synthèse personnelle).

Intelligence économique : stratégie d'entreprise, démarche et outils

OBJECTIF

 L'intelligence économique (IE) regroupe l'ensemble des activités liées à la gestion de l'information, dans le but de développer des stratégies offensives ou défensives.

PROGRAMME

- cerner les enjeux de l'IE en entreprise pour les futurs ingénieurs, face à la mondialisation, aux opportunités et menaces, à la recherche de compétitivité
- initiation aux pratiques et concepts de l'IE permettra notamment de mieux appréhender les leviers d'actions
- initiation à l'innovation, la veille, la gestion de l'information, l'influence, le lobbying et le diagnostic

Méthodes de résolution de problèmes techniques

- Comprendre le fonctionnement d'un système technique (produit ou moyen de production) et proposer des transformations (objectif, priorités, solutions/résolutions problèmes, évaluation des solutions, décision).
- Piloter le processus : anticiper et gérer les effets induits (découvertes, imprévus,...).
- Conduire le changement.

- notions : conception (intuitive, approche socio-eco, processus itératif) ; dualité problème et solution ; domaines fonctionnel et structurel ; raisonnements de déduction/abduction, fixation ; divergence et convergence
- outils méthodologiques de TRIZ : évolution technologique, résolution idéale de problèmes, résolution de contradictions, modèles champs substances, «9 écrans»

Vanad, de l'Ent

GE04

UE ING.

C 30 h TD 15 h THE 60 h

Automne Printemps 4 crédits

Mineur · GEA

Management des Ressources Humaines

OR JECTIE

 Comprendre les enjeux du management des ressources humaines dans les organisations. Elle doit permettre à l'étudiant d'analyser les nouvelles pratiques RH, surtout numériques, et l'émergence de nouvelles dynamiques organisationnelles.

PROGRAMME

- · les fonctions et outils du Management des Ressources Humaines
- les processus transversaux du Management des Ressources Humaines (Recrutement et fidélisation, Management des talents. Gestion des Carrières...)
- · management des Ressources Humaines : nouvelles pratiques et dynamiques organisationnelles

GE10

UE ING.

C 30 h TD 26 h

Automne 4 crédits

Mineur : GEB

Introduction à la microéconomie

OBJECTIF

 Étudier comment, dans la théorie économique, se comportent les deux acteurs essentiels du marché, le consommateur et le producteur. L'ensemble du programme est à forte connotation mathématique.

PROGRAMME

- productivité
- fonction d'utilité des consommateurs, préférences des consommateurs
- calcul de la maximisation du profit par l'entreprise
- le marché en concurrence pure et parfaite
- les marchés imparfaits (oligopole, monopole, concurrence monopolistique)
- relation entre innovation et recherche de profit

GE11

UE ING.

C 45 h

4 crédits

Mineur · GFA

Nouveaux designs organisationnels et stratégiques

OBJECTIF

 Un double objectif : (I) appréhender les caractéristiques processuelles du design organisationnel, en lien avec les enjeux du management contemporain. (II), appréhender sous une forme vivante et appliquée les concepts et les thèmes essentiels du management stratégique.

- lecture en termes de configuration: présentation des différentes formes structurelles, de leurs principales caractéristiques et illustration à partir de cas concrets
- lecture en termes de processus organisationnels : définition du processus, grands principes et principaux enieux
- approche organisationnelles de la stratégie et pilotage de processus clés
- · nouveaux modèles et pratiques du management stratégique

UE ING.

C 40 h

Automne Printemps 4 crédits

Commentaire : UE reservées aux alternants

Le management ethique

OR JECTIE

 Former les étudiants aux principes et techniques de management du personnel dans le respect des individus mais aussi dans l'objectif d'un gain d'efficacité professionnelle.

PROGRAMME

- le savoir-être et le savoir-dire en entreprise seront abordés à travers la rencontre d'intervenants internes et externes à l'UTT dans le but de sensibiliser nos futurs ingénieurs à l'apport d'efficience que représente un management responsable, durable et humain, pour toutes les organisations
- en replaçant la relation humaine au centre de l'entreprise, l'ingénieur prendra conscience de son rôle important en matière de motivation, de gestion des équipes et de préservation de la santé et la sécurité des salariés donc implicitement de compétitivité

GE21

UE ING. OU UE MAST.

C 26 h TD 26 h THF 60 h

Automne 4 crédits

Mineurs : GEC, GED, GEE

L'entreprise et le droit

OBJECTIF

Connaître les bases juridiques utiles à la vie pratique et professionnelle.

PROGRAMME

- institutions judiciaires : édifice juridique français, vocabulaire juridique, tribunaux, compétence
- · droit civil : personnalités physiques et morales, responsabilité civile
- · droit pénal : responsabilité pénale
- · droit du travail : embauche, discipline, licenciement, CDD et CDI

GE25

UE ING. OU UE TM POUR MAST.

C 26 h TD 15 h

Automne 4 crédits

Minoure - GEC GED GEE

Propriété intellectuelle et intelligence économique

OBJECTIF

- Identifier les moyens de protection de l'innovation et comprendre dans quel contexte s'en servir.
- Apprendre à structurer et tirer profit de l'information.

- étude des différents types de protection industrielle : brevets, marques, dessins et modèles, droits d'auteur et logiciels
- connaissance des moyens de lutte contre la contrefaçon
- formation à la veille technologique, économique et concurrentielle
- utilisation d'outils et méthodes pour la recherche d'informations pertinentes
- organisation, traitement et diffusion de l'information
- réalisation d'un projet de veille technologique, économique et concurrentielle (spécifique au projet des ingénieurs inscrits au Mineur Entrepreneuriat)

UE ING.

C 26 h TD 26 h THE 60 h

Automne Printemps 4 crédits

Mineur : GEC

Droit du commerce et des affaires

OR JECTIE

 Assurer des points de repère de base sur les structures des entreprises en France et leurs règles générales de fonctionnement.

PROGRAMME

- cadre juridique des structures des entreprises sociétaires : sociétés de personnes (ex : SNL), société de capitaux (ex : SA), sociétés mixtes (ex : SARL)
- · cadre juridique des entreprises individuelles : commerçants, artisans
- cadre juridique des contrats liés aux activités de l'entreprise (contrat de vente, etc.)
- traitements des entreprises en difficulté (redressement et liquidation judiciaires)
- · rèales juridiques sur l'e-business

GE31

UE ING. OU UE MAST.

C 26 h TD 26 h THE 60 h

Printemps 4 crédits

Mineurs : GEA, GEC,

L'entreprise et la gestion

OBJECTIF

- Découvrir et comprendre en début de cursus le fonctionnement des différents rouages de l'entreprise.
- Acquérir les éléments fondamentaux de la gestion d'entreprise en y incluant les bases de la comptabilité générale.

PROGRAMME

- examen de thèmes couvrant tous les aspects d'applications de la vie courante pour une entreprise industrielle ou commerciale: TVA, factures d'achat et de vente, effets de commerce, amortissements, cessions, provisions, comptes de résultat, bilan, annexe, SIG, capacité d'autofinancement, fonds de roulement, besoin en FR
- illustration par de nombreux cas réels concernant la vie quotidienne d'une entreprise

GE32

HE ING

C 26 h TD 26 h

Printemps
4 crédits

Mineur · GER

Ingénierie financière de l'entreprise

OR JECTIE

- · Approfondir ses connaissances en gestion.
- Acquérir une formation sur le diagnostic financier de l'entreprise.
- · Maîtriser les outils indispensables à la prise de décision lors d'investissements.

- · maîtrise de la trésorerie et de sa gestion à court terme
- analyse financière et notion de risque financier
- rentabilité d'une entreprise et impact de ses investissements
- · critères d'évaluation d'un projet d'investissement et choix du financement
- analyses de cas pratiques et de cas réels d'entreprises françaises dans divers secteurs industriels

UE ING.

C 30 h

Automne 4 crédits

Mineur : GED

Projet de synthèse de gestion d'entreprise

OR JECTIE

 Permettre aux futurs ingénieurs de concrétiser leurs connaissances et prendre conscience des différentes imbrications qui existent en gestion.

PROGRAMME

- Quatre dossiers correspondant aux quatre aspects fondamentaux de la création d'une entreprise industrielle doivent être réalisés :
 - dossier marketing : étude de marché simplifiée (enquête à réaliser)
 - dossier production : étude de la chaîne de fabrication, calculs des stocks et étude de l'implantation de l'usine
 - dossier personnel : définir la politique des ressources humaines et calculs des coûts
 - dossier business plan : à partir des hypothèses élaborées au cours des trois dossiers précédents, synthèse avec présentation des documents prévisionnels

GE34

UE ING. OU UE CS POUR MAST. C 30 h TD 15 h THE 60 h

Printemps
4 crédits

Stratégie et management de l'entreprise

OBJECTIF

 Comprendre l'essence même de la crise à travers une analyse pertinente des causes de la réussite ou de l'échec des entreprises.

PROGRAMME

- les facteurs clés du succès (fondamentaux de l'organisation)
- les phases de croissance de l'entreprise (E. FLAMHOLZ, 1991)
- développement des méthodes du diagnostic de crise
- · exploration des outils de restructuration stratégique (Mac Kinsey)

GE36

UE ING. OU UE MAST.

C 26 h TD 26 h

Printemp

4 crédits

Mineur: GEB, GED

Marketing

OR JECTIE

· Maîtriser les «fondements» du marketing.

- · esprit et démarche du marketing
- · études de marché : fondements, techniques, applications
- · politiques marketing : produit, prix, distribution, communication
- nouveaux outils du marketing pour le XXI^e siècle
- introduction au marketing industriel

UE ING.

C 30 h TD 15 h THE 60 h

Automne Printemps

4 crédits

Mineur : GEA, GEB, GEE,

GE38

UE ING.

C 15 h TD 48 h

Automne

6 crédits

Mineur : Innove-UT Commentaire :

GE41

HE ING

C 26 h TD 26 h THE 88 h

Automne

6 crédits

Mineurs : GEE, Innove-U Commentaire : Examen sur table

Management de l'innovation

OR JECTIE

- Présenter les différents processus d'innovation mis en place par les entreprises dans ses dimensions technologiques et organisationnelles.
- · En étudier les spécificités et les difficultés.

PROGRAMME

- qu'est-ce que l'innovation ? (enjeux, processus de sélection, facteurs clés et obstacles à l'innovation, application de l'innovation)
- qu'est-ce qu'une entreprise innovante? (alliances et stratégies innovantes, structures innovantes, rôle de la RD, innovation technologique: les NTIC...)
- qu'est-ce que conduire un projet innovant ? (management innovation : modèles par phases, logique de projet, capitalisation des innovations...)

Management et outils d'aide à la créativité industrielle et à l'innovation

OBJECTII

Appréhender la créativité industrielle du point de vue théorique et pratique, dans un contexte élargi.

PROCRAMME

- mise en œuvre des outils d'aide à la créativité dans le cadre de TP et d'un projet réel
- · savoir capitaliser les connaissances
- différencier savoir et savoir-faire, connaissances, compétences
- · effectuer de la veille
- · effectuer un audit technologique
- gérer la protection industrielle

Technologie et Management de l'Innovation

OR JECTI

 Acquérir des compétences en gestion de l'innovation dans ses dimensions humaines, financières et organisationnelles, à partir de l'exploitation de récits d'experts ayant innové, de documents sélectionnés et de cours en ligne.

- gestion de projet d'innovation : financement, organisation, propriété industrielle
- gestion d'une équipe innovante : management de la créativité, des activités en ligne permettant de travailler la recherche d'information, l'élaboration collaborative de bases de connaissances et de gestion de la propriété industrielle
- une simulation complète de la gestion de projet innovant, dans ses trois dimensions, sera réalisée sous forme de projet

UE ING.

TD 30 F

Printemps 4 crédits

Mineur : GED

Création d'entreprise : phase pratique

OR JECTIE

- Phase active de la réalisation de projet d'entreprise déjà réfléchi en GE33.
- Construction d'un business plan.
- Création d'entreprise à la sortie de l'UTT ou ultérieurement.

PROGRAMME

- de façon autonome, chaque groupe contactera les intervenants rencontrés lors de GE33 afin de réaliser les travaux nécessaires à la mise en place de leur projet
- organiser ses rendez-vous avec des professionnels afin de se rapprocher de la réalité du créateur d'entreprise
- · apprendre à s'organiser et à manager un groupe

GE44

UE ING. OU UE MAST.

C 30 h TD 15 h

Automne Printemps

Mineurs : CIE, Innove-UT Antécédent : LE03

Intercultural Business and Management

OBJECTIF

- introduction to the world of work in an international context...
- how to benefit from working in an intercultural team and learning to overcome associated difficulties and/or benefitting from university exchange semesters and/or past or future international internships.

PROGRAMME

- · understand differences in laws and regulations
- understand different cultures and cultural levels
- · be able to adapt to and benefit from these differences
- · be able to manage and work effectively in an intercultural team

MG06

HE ING

C 20 h TD 28 h THF 72 h

Automne Printemps 5 crédits

Les brevets au service de l'ingénieur

OR JECTIE

 Découvrir la protection industrielle et principalement par brevets : les stratégies d'entreprises en matière de propriété intellectuelle (brevet, marques, dessins et modèles, droits d'auteurs).

- construire et exploiter une veille technologique et une veille concurrentielle à partir des bases de données brevets : naviguer dans les bases de données brevets, lire un brevet
- déposer un brevet d'invention
- exploiter un brevet : création de valeur versus «patent trolls»

lanad, de l'Ent.

SP01

UE ING.

C 20 h TD 30 h THE 30 h PRJ 18 h

Automne Printemps 4 crédits

Initiation à l'animation sportive

OR JECTIE

- Les thèmes abordés (gestion de projet et sciences du sport) doivent permettre de concevoir des séances d'animation sportive.
- En TD, l'étudiant est responsable de deux séquences, il endosse le rôle d'animateur et propose une activité sportive.

PROGRAMME

- · organiser et gérer des séances de travail
- se connaître, identifier ses compétences dans le domaine du management (de projet et d'équipe)

SP02

UE ING.

C 20 h TP 40 h THE 40 h

Automne Printemps 4 crédits

Animateur sportif

OBJECTIF

- Les thèmes abordés (gestion de projet et sciences du sport) doivent permettre de concevoir un projet d'animation et de manager une équipe en milieu sportif.
- · L'étudiant est responsable d'une équipe et anime des séances de sport.

PROGRAMME

- communiquer
- gérer un projet, appliquer ses connaissances pour optimiser la performance de son équipe
- · créer un cahier des charges : concevoir, planifier, piloter, évaluer et analyser la performance de son équipe

SP03

HE ING

C 30 h TP 30 h THE 20 h

Automne Printemps 4 crédits

Animateur qualifié

OB JECTII

- Obtenir un niveau de qualification dans le domaine de l'entraînement ou de l'animation..
- Formation effectuée par une fédération délégataire : animateur sportif, arbitrage...

- communiquer
- gérer un projet, appliquer ses connaissances pour optimiser la performance de son équipe
- créer un cahier des charges : concevoir, planifier, piloter, évaluer et analyser sa performance

SP20

UE ING.

5 20 N TD 15 h TP 12 h

THE 40 h

Printemps

Organisation d'un évènement sportif

OR JECTIE

 Des notions dans les domaines du management de projet et des ressources humaines, de la sécurité évènementielle et de la communication sont abordées dans le but de mettre en place un évènement sportif.

- manager une équipe et travailler en équipe
- gérer un projet et organiser un évènement
- · créer un cahier des charges : concevoir, planifier, piloter, évaluer et analyser
- · concevoir un plan de communication, un dossier partenariat, un dossier logistique et sécurité

HUMANITÉS

AP03

UE ING.

TD 45 h THE 60 h

Automne Printemps 4 crédits

Image, imaginaire et nouvelles technologies

OBJECTIF

 Exprimer dans une série d'images son univers personnel, donner image(s) à son imaginaire grâce au traitement actuel de la photographie en infographie.

PROGRAMME

- panorama du traitement de l'image depuis l'apparition des nouvelles technologies
- problématique du collage, des œuvres peintes d'Arcimboldo à l'époque de la Renaissance aux images virtuelles d'artistes et de graphistes contemporains en passant par les Surréalistes et les Dadaïstes
- recherches et élaboration d'un projet d'images sous forme de portfolio
- réalisation d'une galerie virtuelle

CTC₁

UE ING.

Printemps 4 crédits

EC02

UE ING.

C 20 h TD 10 h

TP 40 h

Automne Printemps 6 crédits

Commentaire : UE réalisée à Reims

Cinéma, technologie et création

OBJECTIF

 Réalisation d'un film à partir du scénario écrit par les étudiants de l'UE LI03 (Art du récit, écriture de scénario), après avoir constitué une équipe où chacun a un rôle défini : jeu d'acteur, choix du décor, scripte, régie, éclairage, demande d'autorisations, planning de tournage, gestion d'équipe, etc.

PROGRAMME

- intégrer différents types de contraintes (techniques, artistiques, organisationnelles) dans la réalisation d'un film
- utiliser le langage audiovisuel et s'exprimer devant la caméra, avec confiance en soi
- réaliser un court-métrage vidéo

Eco énergies

OBJECTIE

- Connaître les technologies émergentes de production d'électricité et comprendre les enjeux associés.
- Savoir appréhender les principes permettant de convertir les énergies primaires renouvelables en énergie électrique.
- Connaître les méthodes permettant d'adapter l'énergie produite à partir de sources renouvelables aux besoins des utilisateurs et de contrôler le flux d'énergie.
- Comprendre l'origine des contraintes imposées par l'intégration des sources renouvelables dans les réseaux électriques.

- panorama des moyens de production décentralisée d'électricité à partir de sources d'énergie renouvelables
- solaire photovoltaîtque : principe physique et technologies, modélisation, contrôle de la conversion, incidence des aléas climatiques
- éolien : principe physique et technologies, modélisation, contrôle de la conversion, incidence des aléas climatiques
- · hydroélectricité terrestre et marine : retenues, houle et marées
- · vecteur hydrogène : principes et technologies des piles à combustibles, production et stockage de l'énergie
- problématique et éléments de solutions pour l'intégration de la production décentralisée dans l'outil de production et de transport de l'électricité

EE06

UE ING.

C 26 h TD 26 h

Printemps 4 crédits

Minour · CIE

EP01

UE ING. OU UE CS POUR MAST.

TD 15 h

PRJ 30 h

4 crédits

EV00

UE ING. OU UE CS POUR MAST.

C 30 h TD 15 h THE 34 h

Automne Printemps 4 crédits

Mineur : EDD

L'entreprise dans le contexte européen et international

OBJECTIE

 Sont abordés les règles, les enjeux du commerce international et le rôle de l'Europe, les flux d'échanges internationaux du XXº siècle à nos jours, la libéralisation et l'institutionnalisation des échanges, la croissance économique et le développement.

PROGRAMME

- · comprendre l'arrière-plan historique de la mondialisation de l'économie
- comprendre les entreprises face à la mondialisation de l'économie
- comprendre le rôle des institutions : l'Union européenne, l'Organisation Mondiale du Commerce, le Fonds Monétaire International...

Responsabilité sociale de l'entreprise

OBJECTIE

 Offrir une formation pratique et concrète aux principes et aux techniques de la Responsabilité Sociale de l'Entreprise, c'est-à-dire à l'intégration des enjeux du développement durable à la stratégie de l'entreprise.

PROGRAMME

- · comprendre les notions d'éthique, de morale et de responsabilité
- comprendre les enjeux relatifs au management responsable de l'entreprise et en maîtriser les méthodes et outils
- connaître les principaux référentiels en matière de développement durable
- connaître les instruments normatifs, de reporting et de communication sur la responsabilité sociétale
- définir la responsabilité sociétale d'une organisation
- élaborer un plan d'actions permettant d'intégrer les enjeux du développement durable à la stratégie de
- l'entreprise

Prospective et philosophie de l'environnement

OBJECTIF

 L'étude des grands défis écologiques et de leurs enjeux exige de penser ensemble les dimensions du futur, de la technique et de l'environnement, et de penser les changements environnementaux planétaires du point de vue des humanités et en particulier de la philosophie.

- décrire les défis matériels et politiques de la durabilité
- comprendre le rapport au futur du monde contemporain
- identifier les enjeux des changements environnementaux planétaires (climat, biodiversité) et discuter leurs possibles conséquences tangibles et intangibles
- analyser et mettre au débat les promesses et les limites des technologies pour l'environnement dans l'Anthropocène

EV01

UE ING.

C 45 h THE 15 h

Automne Printemps 4 crédits

Mineur · FDF

EV02

UE ING.

C 45 h THE 34 h PRJ 15 h

Automne Printemps 4 crédits

EV03

HE ING

C 30 h TD 15 h THE 20 h

Automne 4 crédits

Mineur · FDΓ

Bases scientifiques de l'environnement

OR JECTIE

• Faire le point sur les différentes connaissances scientifiques relatives aux problèmes environnementaux.

PROGRAMME

- écologie des milieux naturels
- · cycle de l'eau, hydrogéologie
- physico-chimie de l'environnement
- · cycles géochimiques
- comprendre la nécessité d'une approche systémique
- extraire des informations d'articles scientifiques ou non, les synthétiser
- mobiliser les connaissances de différentes disciplines pour décrire un problème environnemental

Environmental economics

OBJECTIE

Environmental economics examine the case for - and provide with - incentives likely to regulate the impacts
of production/consumption processes with regard to natural systems and human welfare.

PROGRAMME

- understand the neo-classical modeling of the economic system, its key assumptions and results
- introduce the (conceptual and practical) ideas of external effects, public and common goods
- understand the rationale underlying economic instruments for environmental policy (taxes, permits)
- know how to write and solve basic equations for related applied problems; appreciate their scope in reality (ecological tax system, market of quotas)
- discuss cost-benefit analysis as an applied method for environmental decision-making
- discuss the issue of temporal updating of long-term economic impacts
- describe the heterodox approach of ecological economics for sustainability studies

Droit de l'environnement

OB JECTI

Étude du fonctionnement des instruments juridiques du droit de l'environnement.

- · connaître le fonctionnement des instruments juridiques du droit de l'environnement
- · connaître les institutions nationales, communautaires et internationales en matière de droit de l'environnement
- · connaître les 4 principes du droit de l'environnement (participation, prévention, précaution, pollueur-payeur)
- réaliser une veille règlementaire
- · réaliser une analyse critique des différents mécanismes du droit de l'environnement

EV04

UE ING. OU UE CS POUR MAST. C 30 h TD 15 h

Automne 4 crédits

Mineur · FDI

EV04A

UE ING.

C 30 h TD 15 h

Printemps **4 crédits**

Antécédent : NPML

EV13

UE ING.

C 30 h TD 15 h THE 45 h

Automne 4 crédits

Antécédent · NPMI

RIsques environnemantaux : gestion et controverses

OBJECTIE

· Analyser les ressorts de la gestion sociale des risques.

PROGRAMME

- principe de précaution, principe de prévention et risque zéro : les différencier, analyser les argumentaires liés au principe de précaution et commenter les erreurs relatives
- de la vigilance à la crise : comprendre le processus d'apparaition d'une crise. Identifier les erreurs à éviter et proposer des pistes de solution le cas échéant
- la participation : découverte des processus participatifs, forums hybrides. Elaboration de processus participatifs.
 Comprendre les enieux, leur potentiel et leurs limites

Environmental risks: management and controversies

OBJECTIE

To analyze the resorts for social management of risks.

DRUCKVIMME

- precaution principle, prevention and zero risk principle: to compare and contrast those principles, to analyse the
 arouments linked to the precaution principle and comment the related mistakes
- from vigilance to crisis: to understand how a crisis builds up. To identify the common mistakes and suggest possible solutions
- participation: introduction to participatory processes, hybrid forums. To develop participatory processes.
 To understand the stakes, their potential and limits

Introduction to Environmental Science and Engineering

OBJECTIF

This course is intended to teach students the fundamental concepts in environmental science and engineering
dealing with water, air, and land pollution, and other areas such as ecology, toxicology, global warming, ozone
depletion, sustainable energy strategies, and pollution control technologies. Also students will learn about
environmental assessment technique and tools.

- · Students will know and understand the following:
- the root causes of environmental problems; principal types of pollution and how they can be reduced or prevented; natural resources (renewable, nonrenewable, and perpetual) and sustainability; and living more sustainably
- air pollution, global warming and ozone loss: air emission prevention and control strategies, global warming, its causes, and strategies to reduce it
- water pollution, water issues and treatment technology: water emission, waste water treatment technologies, water footprint etc.
- · environmental assessment method and techniques : regulation about compartments (Water, Soil, Air)

HT03

UE ING.

TD 15 h

Automne 4 crédits

Regards sur l'histoire de l'art moderne et contemporain

OBJECTIE

 L'art moderne et contemporain est indissociable du contexte socioculturel et économique. L'appréciation d'une œuvre d'art dépend d'un marché. Il s'agira de porter un regard croisé sur toutes ces dimensions, grâce notamment à un contact direct avec les œuvres d'art des musées et lieux patrimoniaux troyens.

PROGRAMME

- situer des œuvres d'art dans le contexte historique et culturel de l'Europe du milieu du XIXe siècle à nos jours
- reconnaître les différents courants artistiques à travers des œuvres particulières (France, Allemagne, Belgique, Pays-Bas, Italie, Russie, monde anglo-saxon)
- commenter différents types d'œuvres d'art : peintures, sculptures, arts décoratifs
- relier l'appréciation des œuvres d'art contemporaines au contexte économique et commercial de l'art

HT05

UE ING.

C 26 h TD 26 h

Printemps
4 crédits

Histoire de la physique et de l'astronomie

OBJECTIF

 L'histoire de la physique et celle de l'astronomie seront abordées jusqu'aux développements récents, et des plus surprenants, de la cosmologie : l'héritage grec, l'Europe du XVI°-XVIII°, la physique quantique, la relativité, la lumière, l'astronomie, l'astrophysique et la cosmologie.

PROGRAMME

- questionner les concepts scientifiques, leur sens, ainsi que les changements de paradigmes, en exerçant sa curiosité et son esprit critique
- mobiliser ses connaissances scientifiques pour les articuler et les situer dans l'élaboration de la physique et de l'astronomie
- relier les connaissances scientifiques à leur contexte historique, pour en comprendre leur émergence, leur évolution et leur portée
- rendre le monde physique intelligible grâce aux grandes idées scientifiques

HT07

UE ING. OU UE MAST.

C 26 h TD 26 h THE 60 h PRJ 10 h

Printemps 4 crédits

Géopolitique du monde contemporain

OR JECTIE

 Dans le cadre du référentiel défense et sécurité «Nouveaux risques du 21e siècle», aborder la géopolitique du monde contemporain, les outils Internet et les risques : intelligence économique, cyber guerre, les nouveaux lieux et acteurs.

- · analyser une situation géopolitique particulière
- appréhender les relations internationales et les grandes aires géopolitiques (Europe, Afrique, Asie-Pacifique, Moyen-Orient et Amériques)
- · connaître les nouvelles compétitions espace/temps avec la mondialisation et la globalisation
- études de cas à différentes échelles : planétaire, continentale, régionale et locale
- appliquer la méthodologie géopolitique pour la présentation des sources, des recherches actuellement menées et des outils d'analyse
- réduire les risques de l'intelligence économique et établir une prospective stratégique de demain

HT09

UE ING.

C 22 h TD 20 h THF 40 h

Automne Printemps 4 crédits

HT10

UE ING.

C 23 h TD 23 h

Printemps **4 crédits**

Commentaire : Quelques résolutions d'équations à prévoir

HT11

UE ING.

TD 45 h THE 55 h

Printemps 4 crédits

Culture scientifique

OBJECTIF

· Comprendre le cheminement de la pensée scientifique.

PROGRAMME

- cheminement de la pensée scientifique au cours des siècles
- pourquoi et comment l'innovation se développe ?
- · les révolutions industrielles
- progression des techniques dans les domaines de l'électronique, l'électrotechnique, l'automatique et l'informatique
- · applications à différents sujets et différentes époques

Histoire et épistémologie de la physique quantique

OBJECTIE

Plusieurs formulations de la physique quantique seront abordées, elles seront notamment reliées aux phénomènes classiques afin de faire la part entre ce qui est propre au domaine d'étude et ce qui vient du formalisme retenu pour exprimer les lois. L'approche sera historique (du début du XXº à aujourd'hui), épistémologique et technique (quelques résolutions d'équations).

PROGRAMME

- donner un sens physique à des formulations et expressions mathématiques, déterminer les limites des interprétations proposées
- identifier les niveaux de représentation d'un domaine scientifique (nature d'obiets ou observables...)
- analyser la manière dont un formalisme influence les représentations de phénomènes
- manipuler des phénomènes et des concepts non intuitifs, travailler sur des problématiques sans faire appel au sens commun
- situer le projet des sciences comme recherche d'intelligibilité et de prévisibilité des phénomènes

Histoire et technologie des objets quotidiens

OR JECTIE

 Les objets de la vie quotidienne relient des propriétés et des fonctions qui évoluent dans l'histoire de la société, corrélativement aux progrès des sciences et des techniques, mais aussi par rapport aux évolutions sociétales.
 Il s'agira de démonter et d'analyser les éléments constitutifs d'objets quotidiens pour comprendre l'articulation entre ces dimensions humaines et techniques.

- effectuer une recherche bibliographique à visée technologique et historique
- comprendre l'impact sociétal de l'évolution de la technologie, et réciproquement
- · identifier les éléments fonctionnels essentiels d'un objet technologique
- faire le lien entre un principe physique et son application technologique
- · imaginer une évolution/innovation de l'objet
- communiquer de facon vulgarisée selon différents médias

HT12

UE ING.

C 12 h TD 8 h THE 24 h

Automne 2 crédits

Commentaire : groupe restreint, 12 personnes maximum. UE offerte aver la Maison du Patrimoine et le Centre Universitaire

HT13

UE ING.

C 30 h

Automne 4 crédits

Commentaire : 16

LI03

UE ING.

C 30 h TD 15 h THF 60 h

Automne 4 crédits

Conférences de l'École du Louvre

OR JECTIE

 Cette UE offre un cycle de cours thématiques assurés par l'École du Louvre (archéologie, histoire de l'art, histoire des civilisations et muséologie) à proximité de l'UTT le mercredi soir. Le programme d'automne s'intéressera à l'étude de quelques œuvres phares du XXº siècle, à titre d'exemple.

PROGRAMME

- découvrir le champ des sciences du patrimoine et les capacités d'analyse et de synthèse associées
- effectuer des recherches complémentaires en autonomie
- développer son aptitude à s'ouvrir à la richesse culturelle et/ou patrimoniale des productions et civilisations humaines

Humanités techniques et design d'artefacts

OBJECTIE

 Cette UE est offerte avec l'Ecole Supérieure de Design. Il s'agit de s'initier à l'histoire longue de l'évolution technique et de réfléchir à la production d'artefacts sous l'angle des sciences et de la philosophie du design.

PROGRAMME

- s'initier à la macro-histoire des techniques ainsi qu'aux sciences et à la philosophie du design
- dans le cadre d'un travail collaboratif entre élèves-ingénieurs et élèves-designers, analyser des artefacts emblématiques de l'évolution technique et en proposer une réinterprétation contemporaine entre ingénierie, design et critique

Art du récit, écriture de scénario

OR JECTIE

 En vue de produire un scénario pour un court-métrage, il s'agit d'élaborer un découpage technique et/ou un story board, définissant concrètement la façon de filmer et de mettre en scène chaque séquence.

- · écrire un scénario en maîtrisant sa technique, sa forme spécifique de séquences et les dialogues
- · analyser l'art du récit, tel qu'il se déploie dans les films cinématographiques
- mettre à profit son imagination, sa sensibilité et son esprit créatif, individuellement ou en groupe

Imanitáe

MTC01

UE ING.

TD 30 h THE 40 h

Automne 4 crédits

Musique Technologie et Création

OR JECTIE

 Les techniques liées à la création, l'enregistrement et l'écoute de la musique sont en constante évolution. La numérisation d'un signal, sa compression, l'acoustique d'une pièce font partie des problèmes à appréhender pour dissimuler les aspects techniques à l'auditeur.

PROGRAMME

- connaître les problèmes liés à la numérisation d'un signal (échantillonnage, discrétisation)
- connaître les bases de la compression du son
- connaître les règles de base de l'acoustique
- faire le lien entre les compétences du cycle ingénieur et les techniques du son

MTC02

UE ING.

TD 30 h THE 40 h PRJ 30 h

Printemps
4 crédits

Esthétique, histoire de l'art et création technique

OBJECTIF

 Il s'agira de questionner, d'interroger, ou plutôt de susciter l'interrogation chez l'étudiant sur son rapport à l'art mais également à la création, ou encore à l'éthique ou le beau. Juger, critiquer, faire valoir son droit à l'appréciation ou au rejet, telles sont les questions que toute approche de l'art par l'esthétique peut révéler.

PROGRAMME

- savoir apporter un jugement sur l'art dans un contexte historique, social et philosophique
- connaître les mouvements artistiques maieurs des arts vivants et des arts plastiques
- · apporter une réflexion sur la notion du beau et de l'utile
- apporter un regard nouveau et différent sur la pratique culturelle

PH15

UE ING.

C 30 h

Automne 4 crédits

Essor des technologies et crise de l'idée de progrès

OBJECTIF

 La réflexion sur le développement technique et technologique nous amène à reconsidérer l'idée moderne de Progrès. Dans la mesure où il peut constituer une menace pour l'environnement et les êtres humains, il nous interroge sur ses limites éthiques, politiques ou juridiques.

- faire des choix éclairés, prendre des décisions responsables grâce au questionnement et la réflexion systématiques
- construire, structurer et articuler une réflexion personnelle argumentée et rigoureuse
- prendre, affirmer et défendre une position avec confiance face à des protagonistes dans l'opposition
- penser et problématiser les enjeux contemporains liés à l'essor des technologies
- intégrer une réflexion sur le sens et les valeurs dans son activité professionnelle
- · avoir une réflexivité et une certaine hauteur de vue par rapport à sa future pratique professionnelle

PH20

UE ING.

C 30 h TD 15 h THE 60 h

Automne 4 crédits

Introduction à la philosophie des sciences

OR JECTIE

 La philosophie des sciences interroge l'origine et le statut des connaissances scientifiques, leur spécificité, leur finalité et leur usage, à travers l'étude de certains concepts comme la théorie, l'expérience, la vérité scientifique, les lois, la mesure, etc.

PROGRAMME

- engager une réflexion personnelle et rationnelle en mettant à profit son esprit critique, et en évitant tout dogmatisme
- problématiser une notion ou une question
- intégrer et articuler sa culture scientifique à sa réflexion personnelle
- contextualiser et mettre en perspective savoirs et savoir-faire, dégager les enjeux (philosophiques, éthiques, sociétaux...) des pratiques scientifiques et techniques
- · avoir une réflexivité par rapport à la démarche scientifique

PH21

UE ING. OU UE MAST.

C 30 h TD 15 h

Printemps **4 crédits**

Commentaire : Pas de dissertation écrite

Sociétés en débats : penser les enjeux du monde contemporain

OBJECTIF

Les évolutions du monde actuel (biotechnologies, usages du numérique ...) nous mettent en face de problématiques complexes et multidimensionnelles qui nous interrogent sur notre projet de civilisation : l'idée que nous nous faisons de la société, de ce qu'elle devrait être ou ne jamais devenir.

PROGRAMME

- mener un travail d'enquête, seul ou à plusieurs, et amorcer une réflexion personnelle approfondie, éventuellement en remettant en question ses préconceptions
- prendre position dans un débat, faire face aux contradictions et aux différents points de vue
- argumenter et défendre sa position avec confiance, rigueur et conviction
- poser un problème complexe, flou, avec incertitudes et enjeux éthiques, en le situant dans un contexte multidimensionnel
- intégrer et articuler sa culture scientifique à sa réflexion personnelle

PO03

UE ING.

C 30 h TD 15 h THE 60 h

Automne Printemps 4 crédits

Introduction à la vie politique

OBJECTIF

 Sont abordés les repères fondamentaux idéologiques et sociologiques de la vie politique actuelle, les démocraties avancées (projets, nouveaux défis et limites), les totalitarismes, ainsi que les structures politiques et juridictionnelles actuelles qui régissent les rapports entre l'Etat et la société.

- · analyser des totalitarismes et des démocraties contemporaines
- comprendre le fonctionnement des institutions françaises et supranationales (partis politiques, rôle du gouvernement, des lois et règlements, rôle de l'Europe, l'ONU...)
- comprendre les nouveaux défis de la démocratie (abstention, racisme, société civile...)

SC00

UE ING. OU UE MAST.

C 26 h TD 30 h THE 60 h

Automne Printemps **4 crédits**

SC01

UE ING.

C 45 h THE 60 h

Printemps 4 crédits

SC02

HE ING

C 26 h TD 30 h THE 30 h

Printemps
4 crédits

Mineur · CCESO

Approches de la communication

OR JECTIE

 A travers la présentation des principales théories en sciences de l'information et de la communication (S. I. C), cette UE dote les étudiants des connaissances scientifiques nécessaires pour mieux appréhender et analyser les situations de communication interpersonnelle, organisationnelle et sociale.

PROGRAMME

- bien comprendre et maîtriser les mécanismes de communication : le face-à-face, les médias de masse, la communication médiatisée par les technologies numériques. la communication interculturelle, etc.
- analyser les textes, discours et images de la communication : publicités, propagandes, logos, affiches, tracts, forums, etc.
- mener une réflexion critique sur la complexité de la communication, et analyser les enjeux individuels et collectifs : relation, pouvoir, influence, image de soi, altérité, etc.

Communication d'entreprise

OBJECTIE

 Dans cette UE, les intervenants sont des spécialistes reconnus de la communication d'entreprise. Ils forment les étudiants aux principales notions et méthodes de la communication d'entreprise et des organisations. La formation accorde une grande place aux études de cas empiriques.

PROGRAMME

- maîtriser la communication en entreprise : interne, évènementielle, de crise, externe, institutionnelle, environnementale, publique, locale, avec les élus, avec les médias, etc.
- utiliser les principaux outils de communication selon les situations : bâtir un plan de communication
- être conscient des enjeux identitaires, sociaux et humains de la communication en entreprise : information, transparence, motivation, lobbying, promotion, crise, etc.

Communication et médias

OR JECTIE

 Cette UE permet aux étudiants de décrypter les mécanismes de la communication médiatique, de la Gazette à l'Internet.

- connaître les schémas d'évolution historique des médias de masse : presse, radio, télévision, Internet
- intégrer les déterminants économiques et juridiques à l'analyse de médias
- analyser les discours médiatiques, en utilisant les méthodes de l'analyse textuelle et sémiologique
- analyser les genres principaux des médias de masse : information, divertissement, jeux, talk-shows

SC04

UE ING.

C 26 h TD 30 h THE 25 h

Automne **4 crédits**

Mineur · CCESO

 L'objectif de cet enseignement est de comprendre quelques mécanismes de la communication humaine avec l'aide des modèles et outils de la psychologie: l'influence dans les groupes, la persuasion, l'engagement, la soumission à l'autorité, la communication non verbale, la dynamique des groupes.

Communication, persuasion et influence sociale

PROGRAMME

- analyser des situations de communication quotidiennes (publicités, discussions dans les groupes, etc.) avec les modèles et outils proposés en psychologie
- connaître les rouages de l'influence sociale et de la persuasion
- mettre en œuvre une observation, une enquête ou une expérience pour approfondir une question de psychologie et de communication
- observer et comprendre le rôle de la communication non verbale
- · analyser la dynamique des groupes
- savoir identifier les mécanismes de manipulation dans les situations de communication quotidiennes

SC05

UE ING.

C 23 h TD 30 h PRJ 14 h

Printemps
4 crédits

Psychologie du travail et des organisations

OBJECTIF

 La compréhension des processus psychologiques en jeu dans les situations de travail permet d'analyser l'efficacité des équipes, la prise de décision, les relations, la motivation et le bien-être, etc.

PROGRAMME

- maîtriser les concepts de base en psychologie
- analyser des situations de travail avec les modèles et outils de la psychologie
- comprendre l'impact de la personnalité sur le travail et les relations au travail
- · appliquer les théories du leadership et de l'influence des groupes
- comprendre les relations et la communication dans les équipes
- identifier les facteurs de la motivation, de l'implication au travail, du stress

SC06

UE ING.

C 30 h TD 15 h

Automne 4 crédits

Usage des technologies de la communication et innovation

OBJECTIF

 L'UE se propose d'étudier l'usage des moyens de communication contemporains (messageries, sites de mise en relation, mobiles, etc.), d'identifier les mécanismes et les régularités dans ces usages, ainsi que d'aborder la problématique de l'innovation.

- savoir reconnaître des mécanismes et des régularités dans l'usage des technologies de la communication, au-delà de leur diversité et leur renouvellement
- être capable de catégoriser des styles d'usage dans un panel de technologies de la communication
- savoir articuler la logique sociale des usages et la logique technique dans le domaine de l'innovation
- savoir mener et analyser un entretien semi-directif, instrument d'investigation privilégié par la sociologie

SE01

UE ING.

C 30 h TD 15 h THE 60 h

Automne 4 crédits

SE02

UE ING.

C 30 h TD 15 h

Printemps
4 crédits

Antécédent · SE0

SH01

UE ING.

C 23 h TD 30 h THE 27 h

Printemps 4 crédits

Histoire des idées économiques

OBJECTIF

· Les grands courants de la pensée économique.

PROGRAMME

- connaître l'histoire des idées économiques (Adam Smith, John Maynard Kevnes...)
- comprendre le triomphe du libéralisme (Friedrich Von Hayek, Milton Friedman)
- comprendre le renouvellement apporté par les courants de pensées récents (Ecole des choix publics, Théorie du capital humain)

Economie générale pour l'ingénieur

OBJECTIE

 Sont abordés les différents mécanismes économiques, leurs interactions, et les principaux facteurs qui influencent les agents économiques et les entreprises, pour mener une réflexion sur les grands enjeux de l'économie contemporaine.

PROGRAMME

- connaître les principaux courants économiques
- être initié à la macroéconomie
- comprendre les politiques économiques et monétaires européennes, les marchés financiers
- comprendre les grandes problématiques contemporaines : croissance et régulation, chômage, les délocalisations, la mondialisation des échanges...

Comprendre le monde du travail contemporain

OR JECTIE

 L'UE porte sur le monde du travail et ses mutations. A partir de plusieurs angles d'analyse (relations de pouvoir, conditions de travail, identités professionnelles...), différentes situations de travail sont examinées (le travail des ingénieurs, des managers, l'uberisation...).

- appréhender les mutations du travail contemporain
- savoir utiliser des outils d'analyse sociologique et psychosociologique pour décrire et comprendre des situations professionnelles
- savoir se situer dans un environnement professionnel, en revoyant et consolidant son expérience de stage / emploi
- maîtriser les rouages de la motivation, du stress, du fonctionnement des groupes en organisation
- · savoir réaliser un diagnostic structurel d'une organisation
- savoir conduire une enquête de terrain

SO02

UE ING.

C 30 h TD 15 h THE 60 h PRJ 10 h

Automne Printemps 4 crédits

SO03

UE ING.

C 30 h TD 15 h THE 60 h

Printemps 4 crédits

Antécédent : S002

SO04

UE ING. OU UE TM POUR MAST.

C 30 h TD 15 h

Printemps 4 crédits

Risques sociaux, géopolitique des conflits et initiation aux nouveaux risques

OBJECTIF

 Le référentiel défense et sécurité « Nouveaux risques du 21° siècle » nous incite à considérer l'évolution des menaces et des conflits liés à la globalisation et à la mondialisation : violences liées au terrorisme, résolution des crises sociales, mutations et nouveaux défis, pour le citoyen, l'État et l'opinion publique.

PROGRAMME

- appréhender l'évolution des nouvelles menaces et risques sociétaux (violences, criminalité organisée, terrorisme et malveillance sur la société)
- analyser des événements collectifs, la prise de décision et l'évolution du leadership
- analyser la géopolitique des conflits et les forces de l'ordre
- analyser l'évolution de sa place dans la société, l'entreprise, l'État et l'opinion publique
- · anticiper les risques par le concept de sécurité globale
- intégrer les stratégies de résilience des situations à risques dans ses actions
- · répondre aux défis « Sécurité-Défense »

Introduction à l'intelligence économique et à la géostratégie des acteurs

OBJECTIF

Le référentiel défense et sécurité nous incite à aborder l'intelligence économique et la protection de l'information pour les acteurs économiques, sociaux et institutionnels. Il s'agit de comprendre et d'appréhender les différents facteurs de la géostratégie de l'intelligence économique, les enjeux de la synergie public/privé et du fonctionnement en réseau.

PROGRAMME

- identifier les principales menaces de la captation de l'intelligence immatérielle
- maîtriser le paysage des acteurs de l'intelligence économique et disposer de références pour comprendre la mondialisation et la transformation des procédés
- présenter les principales vulnérabilités à des acteurs pour renforcer l'action des entreprises
- · connaître le dispositif national, la cartographie et l'organisation des réseaux de soutien aux entreprises
- protéger l'information stratégique pour tout acteur économique et institutionnel
- être capable d'intégrer la géostratégie des acteurs

Sécurité, Etat et responsabilité

OBJECTIF

 Initiation à une politique de prévention situationnelle: présentation des institutions de l'Etat, des responsabilités, des influences et des recours pour le citoyen; les interventions des acteurs territoriaux, les nécessités, les restrictions et les limites: la politique de prévention situationnelle.

- · connaître la responsabilité en matière de police et d'ordre public : nécessités, restrictions et limites
- analyser et appréhender les phénomènes juridiques susceptibles d'engager une action devant le juge administratif
- · aider à la prise de décision et appliquer les politiques de prévention situationnelle
- prendre des responsabilités et avoir du leadership

SO05

UE ING.

4 crédits

Analyse de l'erreur humaine dans les accidents industriels

OBJECTIF

· La compréhension du fonctionnement des systèmes complexes à risques qui intègrent dimensions techniques, cognitives et organisationnelles, constitue un enjeu critique. Elle est un pré-requis à la conception et à l'exploitation de systèmes sociotechniques résilients, tolérants à l'erreur.

PROGRAMME

- comprendre l'évolution des points de vue sur la sûreté des systèmes
- analyser les facteurs explicatifs de la fiabilité des systèmes à risque (cognition individuelle et collective. structure des organisations)
- appliquer les cadres de classification de l'erreur humaine
- mettre en œuvre des méthodes et outils d'analyse rétrospective des accidents (FTA, CREAM, FRAM, etc.)

SO09

UE ING.

4 crédits

Innovations techniques, innovations sociétales

OBJECTIE

Certaines innovations technologiques récentes conduisent à redéfinir les relations entre agents humains. organisations et systèmes techniques. Elles interrogent ainsi les cadres traditionnels utilisés pour penser la relation Homme-Société-Technologie.

PROGRAMME

- analyser un large panel d'innovations technologiques contemporaines, et comprendre leurs conséguences sur le fonctionnement cognitif, les pratiques professionnelles et privées, et l'organisation de la société
- comprendre les conditions de leur mise en œuvre des innovations technologiques à une échelle industrielle
- penser les rapports Homme-Société-Technologie en questionnant les modèles traditionnels utilisés

SP11

Automne 4 crédits

La performance sportive

· Des thèmes liés à la performance (anatomie, physiologie, psychologie...) sont abordés afin de concevoir un projet d'entraînement. Plusieurs activités sportives sont proposées en TD et sont axées sur le travail en équipe et le développement de la condition physique.

- gérer un projet. Appliquer ses connaissances dans le cadre d'un entraînement sportif
- créer un cahier des charges : concevoir, planifier, piloter, évaluer et analyser sa performance
- travailler en équipe, coopérer et s'entraider
- gérer un effort et se surpasser. Gérer ses émotions en situation de compétition

STAGES

APPTC

UE ING. 6 h

TD 6 h THE 70 h

Automne **Printemps** 3 crédits

Accompagnement à la construction du projet personnel de formation

OBJECTIE

 L'UE a pour objectif d'apporter des éléments de connaissance et méthodologique pour être capable de développer son projet professionnel dès le début du cursus postbac.

- savoir évaluer son niveau relatif aux différentes compétences identifiées
- savoir identifier les actions et activités pédagogiques ou autres permettant d'acquérir de nouvelles compétences ou d'améliorer son niveau de compétence
- savoir mettre en œuvre une stratégie de formation personnelle construite, cohérente et évolutive
- savoir présenter ses compétences à travers un portfolio

ST05

UE ING. STG 4 semaines

Automne Printemps 6 crédits

Stage technique

OBJECTIF

Le stage technique a pour but de permettre la découverte de la vie active. l'entreprise, son organisation et ses modes de fonctionnement. Il donne à l'étudiant sa première expérience professionnelle. Il permet à travers les livrables de développer la communication écrite et orale.

PROGRAMME

- être capable de s'intégrer dans un milieu professionnel et une équipe de travail
- être capable de réaliser les activités demandées avec professionnalisme
- être capable de rechercher des informations sur son environnement de travail (observations, échanges) pour comprendre le fonctionnement d'une entreprise et, si possible, le rôle d'un ingénieur
- être capable de présenter à l'écrit et à l'oral son expérience de manière synthétique et claire

ST09

STG 24 semaines

Automne **Printemps** 30 crédits

Stage professionnel

OBJECTIF

Le stage ST09 a pour objectifs de développer la connaissance du milieu de l'entreprise, d'appliquer et valoriser les connaissances et savoir-faire acquis à l'UTT, de réaliser un travail personnel mettant en œuvre des compétences techniques et de valider l'orientation professionnelle et le choix de filière.

- être capable de s'intégrer dans un contexte professionnel nouveau
- être capable de mobiliser les connaissances et savoir-faire acquis en formation pour apporter de la valeur ajoutée à l'organisme d'accueil
- être capable de réaliser, de manière autonome et avec le niveau de responsabilité requis, des activités relevant de son champ de compétences
- être capable de valoriser les activités réalisées, les résultats obtenus et les nouvelles compétences acquises aussi bien par écrit qu'à l'oral

ST10

UE ING.
STG 24 semaines

Automne Printemps **30 crédits**

Projet de fin d'étude

OR JECTIE

 Le projet de fin d'études vise à la réalisation d'un travail d'ingénieur en conformité avec le projet professionnel de l'étudiant. Ce travail doit être en cohérence avec le diplôme préparé et l'étudiant doit être amené à gérer entièrement un projet, à être force de propositions et à faire preuve d'autonomie.

PROGRAMME

- être capable de s'intégrer dans un contexte professionnel nouveau
- être capable de mobiliser les connaissances et savoir-faire acquis en formation pour apporter de la valeur aioutée à l'organisme d'accueil
- être capable de réaliser, de manière autonome et avec le niveau de responsabilité requis, des activités relevant de son champ de compétences
- être capable de valoriser les activités réalisées, les résultats obtenus et les nouvelles compétences acquises aussi bien par écrit qu'à l'oral

ST30

UE MAST.STG 20 semaines

Automne Printemps **30 crédits**

Commentaire : Durée du stage de 20 à 26 semaines maximum

ST31

UE MAST.STG 16 semaines

Automne Printemps 18 crédits

Stage master

OBJECTIF

 Le stage master apporte à l'étudiant une expérience professionnelle significative dans les conditions qui seront celles de ses activités et responsabilités.

PROGRAMME

- · maîtrise des concepts et des objets techniques et scientifiques
- maîtrise, autonomie et adaptation face aux changements
- maîtrise de l'analyse et de la synthèse du proiet en relation avec son environnement
- autonomie de gestion et d'encadrement d'un projet
- valorisation des activités réalisées, des résultats obtenus et des nouvelles compétences acquises aussi bien par écrit qu'à l'oral

Stage spécial en environnement et développement durable

OBJECTIF

 Permettre une intégration interdisciplinaire des apprentissages par l'application des connaissances en situation réelle de la pratique professionnelle.

- le sujet proposé est soumis à l'agrément de l'UTT
- le sujet doit répondre au projet professionnel de l'étudiant
- chaque étudiant est suivi par un enseignant de l'UTT
- le stage master fait l'objet d'un rapport et d'une soutenance orale devant un jury
- la validation est obligatoire pour l'obtention du diplôme

ST33

UE MAST.STG 16 semaines

Automne Printemps 18 crédits

Stage intervention en environnement et développement durable

OBJECTIF

- Développer une expertise concrète en milieu de travail dans le domaine de l'environnement ou du développement durable.
- Appliquer des connaissances acquises et poursuivre le développement des compétences exigées au programme lors d'une situation professionnelle.
- Appliquer les bonnes pratiques de gestion de projet.

PROGRAMME

- le sujet proposé est soumis à l'agrément de l'UTT
- le suiet doit répondre au projet professionnel de l'étudiant et s'inscrire en lien avec l'essai (ST32)
- chaque étudiant est suivi par un enseignant de l'UTT
- le stage master fait l'objet d'un rapport et d'une soutenance orale devant un jury
- la validation est obligatoire pour l'obtention du diplôme

ST40

UE ING.STG 24 semaines

Automne Printemps **30 crédits**

Projet en laboratoire pour un étudiant d'échange

OBJECTIE

· Permettre à un étudiant d'échange de participer à un projet de recherche dans un des laboratoires de l'UTT.

PROGRAMME

- le sujet est proposé par un enseignant-chercheur de l'UTT et validé par l'université d'envoi
- le sujet doit répondre au projet professionnel de l'étudiant
- chaque étudiant est suivi par l'enseignant qui l'accueille dans son laboratoire
- le projet fait l'objet d'un rapport et d'une soutenance orale devant un jury

ST51

UE ING.

Automne Printemps 18 crédits

Projet de fin d'études en alternance - Partie 1

OR JECTIE

 Le projet de fin d'études vise à la réalisation d'un travail d'ingénieur en conformité avec le projet professionnel de l'étudiant. Ce travail doit être en cohérence avec le diplôme préparé et l'étudiant doit être amené à gérer entièrement un projet, à être force de propositions et à faire preuve d'autonomie.

- être capable de s'intégrer dans un contexte professionnel nouveau
- être capable de mobiliser les connaissances et savoir-faire acquis en formation pour apporter de la valeur ajoutée à l'organisme d'accueil
- être capable de réaliser, de manière autonome et avec le niveau de responsabilité requis, des activités relevant de son champ de compétences
- être capable de valoriser les activités réalisées, les résultats obtenus et les nouvelles compétences acquises aussi bien par écrit qu'à l'oral

משטע

ST52

UE ING.STG 24 semaines

Automne Printemps 12 crédits

Projet de fin d'études en alternance - Partie 2

OBJECTIE

 Le projet de fin d'études vise à la réalisation d'un travail d'ingénieur en conformité avec le projet professionnel de l'étudiant. Ce travail doit être en cohérence avec le diplôme préparé et l'étudiant doit être amené à gérer entièrement un projet, à être force de propositions et à faire preuve d'autonomie.

PROGRAMME

- être capable de s'intégrer dans un contexte professionnel nouveau
- être capable de mobiliser les connaissances et savoir-faire acquis en formation pour apporter de la valeur aioutée à l'organisme d'accueil
- être capable de réaliser, de manière autonome et avec le niveau de responsabilité requis, des activités relevant de son champ de compétences
- être capable de valoriser les activités réalisées, les résultats obtenus et les nouvelles compétences acquises aussi bien par écrit qu'à l'oral

ST61

UE MAST.

TP 15 h

STG 24 semaines

Automne Printemps 12 crédits

Projet de fin d'études en alternance - Partie 1

OBJECTIF

 Le projet de fin d'études vise à la réalisation d'un travail de master en conformité avec le projet professionnel de l'étudiant. Ce travail doit être en cohérence avec le diplôme préparé et l'étudiant doit être amené à gérer entièrement un projet, à être force de propositions et à faire preuve d'autonomie.

PROGRAMME

- réaliser, de manière autonome et avec le niveau de responsabilité requis, des activités relevant de son champ de compétences
- valoriser les activités réalisées, les résultats obtenus et les nouvelles compétences acquises aussi bien par écrit qu'à l'oral

ST62

UE MAST.

TP 15 h

STG 24 semaines

Automne Printemps 12 crédits

Projet de fin d'études en alternance - Partie 2

OR JECTIE

 Le projet de fin d'études vise à la réalisation d'un travail de master en conformité avec le projet professionnel de l'étudiant. Ce travail doit être en cohérence avec le diplôme préparé et l'étudiant doit être amené à gérer entièrement un projet, à être force de propositions et à faire preuve d'autonomie.

- · s'intégrer dans un contexte professionnel nouveau
- mobiliser les connaissances et savoir-faire acquis et en cours d'acquisition en formation pour apporter de la valeur ajoutée à l'organisme d'accueil
- réaliser, de manière autonome et avec le niveau de responsabilité requis, des activités relevant de son champ de compétences
- valoriser les activités réalisées, les résultats obtenus et les nouvelles compétences acquises aussi bien par écrit qu'à l'oral

ST63

UE MAST.

TP 10 h STG 24 semaines

8 crédits

Projet de fin d'études en alternance - Partie 1

OBJECTIE

 Le projet de fin d'études vise à la réalisation d'un travail de master en conformité avec le projet professionnel de l'étudiant. Ce travail doit être en cohérence avec le diplôme préparé et l'étudiant doit être amené à gérer entièrement un projet, à être force de propositions et à faire preuve d'autonomie.

PROGRAMME

- s'intégrer dans un contexte professionnel nouveau
- mobiliser les connaissances et savoir-faire acquis et en cours d'acquisition en formation pour apporter de la valeur aioutée à l'organisme d'accueil
- réaliser, de manière autonome et avec le niveau de responsabilité requis, des activités relevant de son champ de compétences
- valoriser les activités réalisées, les résultats obtenus et les nouvelles compétences acquises aussi bien par écrit qu'à l'oral

ST64

UE MAST. TP 10 h

STG 24 semaines

8 crédits

Projet de fin d'études en alternance - Partie 2

OBJECTIF

 Le projet de fin d'études vise à la réalisation d'un travail de master en conformité avec le projet professionnel de l'étudiant. Ce travail doit être en cohérence avec le diplôme préparé et l'étudiant doit être amené à gérer entièrement un projet, à être force de propositions et à faire preuve d'autonomie.

PROGRAMME

- s'intégrer dans un contexte professionnel nouveau
- mobiliser les connaissances et savoir-faire acquis et en cours d'acquisition en formation pour apporter de la valeur ajoutée à l'organisme d'accueil
- réaliser, de manière autonome et avec le niveau de responsabilité requis, des activités relevant de son champ de compétences
- valoriser les activités réalisées, les résultats obtenus et les nouvelles compétences acquises aussi bien par écrit qu'à l'oral

ST65

UE MAST. TP 10 h

STG 24 semaines

8 crédits

Projet de fin d'études en alternance - Partie 3

OR JECTIE

 Le projet de fin d'études vise à la réalisation d'un travail de master en conformité avec le projet professionnel de l'étudiant. Ce travail doit être en cohérence avec le diplôme préparé et l'étudiant doit être amené à gérer entièrement un projet, à être force de propositions et à faire preuve d'autonomie.

- s'intégrer dans un contexte professionnel nouveau
- mobiliser les connaissances et savoir-faire acquis et en cours d'acquisition en formation pour apporter de la valeur ajoutée à l'organisme d'accueil
- réaliser, de manière autonome et avec le niveau de responsabilité requis, des activités relevant de son champ de compétences
- valoriser les activités réalisées, les résultats obtenus et les nouvelles compétences acquises aussi bien par écrit qu'à l'oral

ST66

UE MAST.TD 58 h

Automne Printemps 6 crédits

Accompagnement méthodologique à la démarche scientifique

OBJECTIF

 L'accompagnement méthodologique à la démarche scientifique est offert aux stagiaires à l'alternance de la mention Risques et Environnement, en complément du proiet de fin d'étude.

PROGRAMME

- · réaliser un état de l'art afin d'identifier des verrous scientifiques et opérationnels
- · réaliser une recherche bibliographique
- positionner sa mission professionnelle par rapport à cet état de l'art, formuler une problématique et des questions de recherche
- poser un diagnostic sur une problématique
- élaborer un plan d'intervention ou une analyse critique intégrant la multidisciplinarité
- valoriser des résultats scientifiques à l'écrit et à l'oral

Séjour culturel et linguistique à l'étranger

OBJECTIF

- Proposition d'un suiet et d'une problématique afférant à un pays spécifique.
- Prise de conscience des défis liés à la mobilité internationale.

PROGRAMME

- organiser la logistique d'un séjour d'au moins guatre semaines à l'étranger
- · collecter des informations pertinentes et authentiques à l'aide de questionnaires ou d'autres dispositifs
- montrer des capacités d'analyse personnelle à partir des expériences vécues
- rédiger un rapport détaillé en français et mener une soutenance devant un jury, de préférence dans la langue du pays choisi

TN07

UE HP POUR ING. OU UE ING. STG 4 semaines

Automne Printemps **4 crédits**

Commentaire : UE hors profil

NDEX ALPHABÉTIQUE DES UE

code UE	titre	catégorie	page
AP03	Image, imaginaire et nouvelles technologies	HT	190
APP10	Conduite du projet de professionnalisation	ME	180
APPTC	Accompagnement A la Construction Du Projet Personnel de formation	ST	206
BESST	Bases essentielles en santé et sécurité au travail	TC TM	70
BIO1	Bioeconomy : concepts, principles, economic and sustainability challenges	Mast	142
BIO2	Bioeconomy project : implementing the sustainable biorefinery	Mast	142
CHMA04	Analyse chimique, sûreté et environnement	TC CS	62
CL01	Organisation logistique des échanges commerciaux	TM	104
CL02	Conditionnement, manutention et entreposage	TM	104
CL03	Logistique de transport et de distribution	TM	104
CL04	Conception et gestion de la chaîne logistique - Coordination des relations clients-fournisseurs	TM	105
CL07	Soutien logistique intégré et service après-vente	TM	105
CL10	Mobilité et logistique urbaine	TM	105
CM02	Structure, propriétés et réactivité des matériaux organiques	TC CS	62
CM03	Structures, propriétés et réactivité des solides métalliques	TC CS	62
CM10	Physicochimie appliquée à l'ingénierie	TC CS	63
CS01	Analyse de la valeur sous fortes contraintes	TM	106
CS01A	Value Analysis under extreme constraints	TM	106
CS03	Conduite de projets	TM	106
CS05	Dimensionnement économique de composants	TM	107
CS06	Projet transversal ingénierie système/concours robotique	TM	107
CS21	Conception des systèmes complexes	TM	107
CS22	Industrialisation des systèmes mécaniques	TM	108
CTC1	Cinéma, technologie et création	HT	190
DI03	Diagnostic et sûreté de fonctionnement	CS	78
DS01	Design	TM	108
EA01	Automatique et asservissement	CS	78

EA04	Capteurs, mesure et asservissement numérique	TM	108
EA07	Actionneurs électriques	CS	78
EA08	Mise en oeuvre de Systèmes mécatroniques	TM	109
EB01	Microcontrôleurs et DSP	TM	109
EB02	Prototypage rapide	TM	109
EB03	Services mobiles et communicants	TM	110
EB04	Systèmes temps réel embarqués	TM	110
EC01	Conception pour la soutenabilité	Mast	142
EC02	Eco énergies	HT	190
EE06	L'entreprise dans le contexte européen et international	HT	191
EG23	Interface Homme-Machine et ergonomie	TM	110
EI01	Ecologie industrielle et territoriale	Mast	143
EI04L	Intelligence économique : stratégie d'entreprise, démarche et outils	ME	180
EN01	Eléments de base en électronique analogique	TC TM	70
EN03	Systèmes électroniques	TC TM	70
EN06	Composants, systèmes électroniques, capteurs et instrumentation	CS	79
EN07	Intégration et technologie de systèmes électroniques	TM	111
EN08	Transformation et utilisation des énergies électriques	TC TM	71
EP01	Responsabilité sociale de l'entreprise	HT	191
EV00	Prospective et philosophie de l'environnement	HT	191
EV01	Bases scientifiques de l'environnement	HT	192
EV02	Environmental economics	HT	192
EV03	Droit de l'environnement	HT	192
EV04	RIsques environnemantaux : gestion et controverses	HT	193
EV04A	Environmental risks: management and controversies	HT	193
EV10	Méthodes et outils de base en analyse environnementale	TM	111
EV11	Management du cycle de vie des matériaux	TM	111
EV12	Ecoconception, technologies propres et recyclage	TM	112
EV13	Introduction to Environmental Science and Engineering	HT	193
EV14	Modélisation Homme-Systèmes-Nature	TM	112
FA1E	Français : expression/compréhension écrite - niveau A1	EC	156
FA1P	Français : expression/compréhension phonique - niveau A1	EC	156
FA2E	Français : expression/compréhension écrite - niveau A2	EC	156
FA2P	Français : expression/compréhension phonique - niveau A2	EC	157
FB1E	Français : expression/compréhension écrite - niveau B1	EC	157
FB1P	Français : expression/compréhension phonique - niveau B1	EC	157
FB2E	Français : expression/compréhension écrite - niveau B2	EC	158
FB2P	Français : expression/compréhension phonique - niveau B2	EC	158
FC1E	Français : expression/compréhension écrite - niveau C1	EC	158

FC1P	Français : expression/compréhension phonique - niveau C1	EC	159
FM01	Remédiation orthographique en autonomie	EC	159
FM02	Maîtrise des nuances de la langue française	EC	159
FOS1	Préparation linguistique aux séances de TP de mathématiques	EC	160
FOS2	Préparation linguistique aux séances de TP de chimie	EC	160
FOS3	Préparation linguistique aux séances de TP de physique	EC	160
FOS4	Aide à la rédaction et à la soutenance du stage ST05	EC	161
FQ01	Assurance et contrôle de la qualité	TM	112
FQ01A	Statistical Process Control and Quality Assurance	TM	113
FQ03	Plans d'expériences	CS	79
FQ54	Méthodes de résolution de problèmes techniques	ME	180
GE04	Management des Ressources Humaines	ME	181
GE10	Introduction à la microéconomie	ME	181
GE11	Nouveaux Designs Organisationnels et Stratégiques	ME	181
GE18	Le management ethique	ME	182
GE21	L'entreprise et le droit	ME	182
GE25	Propriété intellectuelle et intelligence économique	ME	182
GE28	Droit du commerce et des affaires	ME	183
GE31	L'entreprise et la gestion	ME	183
GE32	Ingénierie financière de l'entreprise	ME	183
GE33	Projet de synthèse de gestion d'entreprise	ME	184
GE34	Stratégie et management de l'entreprise	ME	184
GE36	Marketing	ME	184
GE37	Management de l'innovation	ME	185
GE38	Management et outils d'aide à la créativité industrielle et à l'innovation	ME	185
GE40	Commerce des matériaux	TM	113
GE41	Technologie et Management de l'Innovation	ME	185
GE43	Création d'entreprise : phase pratique	ME	186
GE44	Intercultural Business and Management	ME	186
GL01	Introduction au génie logiciel	TC TM	71
GL02	Fondements de l'ingénierie logicielle	CS	79
GP06	Organisation et gestion de la production	TM	113
GP17	Planification et ordonnancement de la production	TM	114
GP27	Méthodes de gestion des stocks et de prévision de la demande	CS	80
GP28	Excellence industrielle	TM	114
GP30	Introduction à l'économétrie et au pricing	TM	114
GS10	Sécurité des SI, problématique, aspects légaux et réglementaires	Mast	143
GS11	Techniques de sécurisation	Mast	143
GS13	Gestion de la sécurité	Mast	144

GS15	Cryptologie et signature électronique	Mast	144
GS16	Sécurité des réseaux de l'Internet	Mast	144
GS21	Cyber-enquête en entreprise	Mast	145
HT03	Regards sur l'histoire de l'art moderne et contemporain	HT	194
HT05	Histoire de la physique et de l'astronomie	HT	194
HT07	Géopolitique du monde contemporain	HT	194
HT09	Culture scientifique	HT	195
HT10	Histoire et épistémologie de la physique quantique	HT	195
HT11	Histoire et technologie des objets quotidiens	HT	195
HT12	Conférences de l'Ecole du Louvres	HT	196
HT13	Humanités techniques et design d'artefacts	HT	196
IF01	Théorie et codage de l'information	CS	80
IF02	Modélisation pour la conception des SI	CS	80
IF02A	Object-Oriented System Analysis and Design	CS	81
IF03	Initiation à la Sécurité des Systèmes d'Information	TM	115
IF05	Qualité du logiciel	CS	81
IF06A	Computer Supported Cooperative Work	CS	81
IF08	Management de projets informatiques	CS	82
IF09	Systèmes documentaires	CS	82
IF10	Conception centrée usages - Design de l'interaction	CS	82
IF14	Analyse du Système d'Information	TM	115
IF15	Ingénierie des connaissances	TM	115
IF17	Architectures décisionnelles	CS	83
IF19	Réaliser un diagnostic organisationnel	CS	83
IF20	Modélisation de processus métier	TM	116
IF22	Gestion des Systèmes d'Information	CS	83
IF23	Géolocalisation par satellites	CS	84
IF25	Data mining pour les réseaux sociaux	CS	84
IF26	Conception sécurisée d'applications mobiles	TM	116
IF27	Sécurité des données et des services	CS	84
IF28	Fouille de données et connaissances	TM	116
IF29	Traitement de données (Data Analytics)	CS	85
IF30	Business intelligence et décisionnel	TM	117
IF31	Analyser et concevoir les plateformes de l'économie collaborative	TM	117
IF34	Maitriser les technologies du SI	TM	117
IF36	Conception de visualisations de données	CS	85
IF37	Conception responsable de systèmes interactifs	CS	85
IR30	Initiation à la recherche	Mast	145
ISI_C01	Introduction au Big Data	TM	118

ISI_C02	Nudge et persuasive computing	TM	118
ISI_C03	Smart Grids	TM	118
ISI_C04	Smart Mobility	TM	119
IT00	Italien - Niveau pré-A1/A1	EC	161
IT01	Italien - Niveau A1/A2	EC	161
IT02	Italien - Niveau A2/B1	EC	162
JP00	Japonais - niveau pré A1/A1	EC	162
K000	Coréen - niveau pre-A1/A1	EC	162
LC00	Chinois niveau pré-A1/A1	EC	163
LC01	Chinois niveau A1/A2	EC	163
LC02	Chinois niveau A2/B1	EC	163
LE00	Anglais - Remise à niveau A2	EC	165
LE01	Anglais - niveau pratique B1	EC	165
LE02	Anglais - Niveau pratique B1/B2	EC	165
LE03	Anglais - Niveau pratique B2	EC	166
LE08	Professional english, BULATS reading & listening & speaking test prepa.(C1)	EC	166
LE11	Anglais pratique dans les domaines scientifiques et techniques	EC	166
LE17	English for Academic Purposes, IELTS and TOEFL preparation	EC	167
LE19	Conversation, Argumentation and Pronunciation	EC	167
LE20	Professionalization and Cross Cultural studies	EC	167
LEM1	Anglais - niveau A1/A2/préparation BULATS	EC	164
LEM2	Anglais - niveau A2/B1/préparation BULATS	EC	164
LESI	Remédiation des fondamentaux B1-B2	EC	164
LG00	Allemand - Niveau vrai débutant A1	EC	168
LG01	Allemand - Niveau élémentaire A1/A2	EC	168
LG02	Allemand - Niveau moyen A2/B1	EC	168
LG03	Allemand - Niveau pratique B1/B2	EC	169
LG08	Allemand - Préparation à l'examen niveau B2	EC	169
LG10	Allemand "culture et civilisation" B2	EC	169
LG11	Allemand « Professionnel » B2	EC	170
LI03	Art du récit, écriture de scénario	HT	196
L001	Basis of computer science	CS	86
L002	Principe et pratique de la programmation orientée objets	TM	119
L007	Technologies du web	TM	119
L010	Architectures orientées services	TM	120
L011	Introduction à l'internet des objets	TM	120
L012	Intelligence artificielle et applications	CS	86
L013	3D computer graphics : theory and applications	CS	86
L014	Administration des systèmes	TM	120

L017	Architectures Cloud et virtualisation	TM	120
LP00	Portugais - Niveau pré-A1/A1	EC	170
LP01	Portugais - Niveau A1/A2	EC	170
LP02	Portugais - Niveau A2/B1	EC	171
LS00	Espagnol - Niveau débutant A1/A2	EC	171
LS01	Espagnol - Niveau intermédiaire A2	EC	171
LS02	Espagnol - Niveau memeriane Az	EC	172
LS02	Espagnol - Niveau pratique B1 Espagnol - Niveau pratique B1/B2	EC	172
LS08	Espagnol - Niveau avancé B2 à C1	EC	172
	1.0		
LS10	Espagnol - Niveau pratique B2	EC	173
LS11	Espagnol - Niveau pratique B2+/C1 (Post LS08)	EC	173
LX10	Formation à l'anglais à distance (prépa. BULATS durant le stage de fin d'études)	EC	175
LXIT	Tandem italien	EC	173
LXLC	Tandem chinois	EC	174
LXLP	Tandem portugais	EC	174
LXLS	Tandem espagnol	EC	174
MA02	Structures et propriétés physiques de la matière	CS	87
MA03	Interaction Rayonnement-Matière	CS	87
MAO4	Chimie pour les matériaux	CS	87
MA05	Physique de la matière solide	CS	88
MA11	Matériaux métalliques	CS	88
MA12	Physique des polymères et composites	CS	88
MA13	Mécanique des matériaux	TM	121
MA14	Semi-conducteurs et matériaux pour les technologies avancées	CS	89
MA20	Analyses et caractérisations microscopiques des matériaux	TM	121
MA21	Analyses et caractérisations macroscopiques des matériaux	TM	121
MATH01	Analyse:suites et fonctions d'une variable réelle	TC CS	63
MATH02	Analyse:séries et fonctions de plusieurs variables	TC CS	63
MATH02A	Calculus: series and multivariable functions	TC CS	64
MATH03	Algèbre linéaire	TC CS	64
MATH03A	Linear Algebra	TC CS	64
MATH04	Analyse avancée	TC CS	65
MC01	Multi-scale characterization	Mast	145
MDPIMIC1	Introduction à CATIA automation (micro-certification)	CS	89
MDPIMIC2	Product as a service Lifecycle Management (micro-certification)	CS	89
MDPIMIC3	Nouveau mode projet (micro-certification)	TM	122
MDPIMIC4	Transformation des industries et services par le numérique (micro-certification)	TM	122
MDPIMIC5	Building Information Modeling (micro-certification)	TM	122
MDPIMIC6	Mise en oeuvre de l'interopérabilité dans le domaine PLM (micro-certification)	CS	90

MDPIMIC7	Introduction à la gestion de projet informatique (micro-certification)	CS	90
ME01	Analyse de cycle de vie et impacts environnementaux	Mast	146
ME02	Management du développement durable	Mast	146
ME05	Material, Substance and Waste Flow Analysis	Mast	146
ME09	Préparation à l'essai en environnement et développement durable	EC	175
ME10	Matériaux pour l'énergie	TM	123
ME11	Matériaux et transition énergétique	TM	123
MG06	Les brevets au service de l'ingénieur	ME	186
MM01	Multimédia : du projet à la réalisation	TC TM	71
MP04	Matériaux avancés et procédés d'élaboration	Mast	147
MP05	Ingénierie des contraintes résiduelles	Mast	147
MP06	Modélisation et optimisation des structures et procédés	Mast	147
MQ01	Introduction à la mécanique des matériaux et des structures	CS	90
MQ02	Initiation à la mécanique des milieux continus solides	CS	91
MQ03	Etudes dynamique et vibratoire de systèmes mécaniques	CS	91
MQ04	Propriétés des matériaux	CS	91
MQ06	Modélisation des structures par éléments finis	TM	123
MQ07	Mécanique des fluides	CS	92
MQ09	Maillage et méthodes d'adaptation	TM	124
MQ13	Thermodynamique et thermique des machines	CS	92
MQ16	Dimensionnement des structures mécaniques par une approche mixte num.	TM	124
MQ21	Procédés de mise en forme des matériaux et simulations numériques	TM	124
MRE01	Normalisation internationale et stratégie locale	Mast	148
MRE02	Analyse et conception de systèmes soutenables et sécurisés	Mast	148
MS11	Mesure physique et instrumentation	TC TM	72
MT11	Révision d'analyse et d'algèbre	CS	92
MT12	Techniques mathématiques de l'ingénieur	CS	93
MT13	Méthodes numériques pour l'ingénieur	CS	93
MT14	Recherche opérationnelle	CS	93
MT15	Valorisation des Données pour l'ingénieur	TM	125
MTC01	Musique Technologie et Création	HT	197
MTC02	Esthétique, histoire de l'art et création technique	HT	197
NF02A	Computers and Networks Organization	TC TM	72
NF04	Algorithmique	TC CS	65
NF05	Introduction au langage C	TC TM	72
NF05A	Introduction to C language	TC TM	73
NF14	Structuration et gestion de données industrielles	TM	125
NF16	Bases de données	CS	94
NF19	Maîtriser les fondamentaux de l'infrastructure informatique	TM	125

NF20	Modélisation et évaluation des systèmes complexes	CS	94
NF21	Conception de projet Data pour l'innovation	TM	126
NM01	Nanomatériaux et Matière Molle	CS	94
N001	Nano-optics	Mast	148
NR01	Normes et réglementation	TM	126
NS01	Advanced Spectroscopy of Nanostructures	Mast	149
NT01	Nanotechnologies and Industry	Mast	149
OB01	Outils scientifiques de base pour l'ingénieur	TM	126
OP01	Optical and optoelectronic materials	CS	95
0P02	Optical communications	CS	95
0P03	Smart Photonics Systems	TM	127
OS01	Fondement de la recherche opérationnelle	Mast	149
0S05	Analyse d'images et reconnaissance des formes statistiques	Mast	150
OS10	Modèles et algorithmes pour la planification et ordonnancement de la prod.	Mast	150
OS11	Modèles et algorithmes pour la logistique et le transport	Mast	150
OS13	Modèles pour la fiabilité et la maintenance	Mast	151
OS16	Apprentissage et applications en intelligence artificielle	Mast	151
0S23	Outils statistiques et probabilistes pour l'analyse des systèmes et la décision	Mast	151
PC12	Physico-chimie de la matière	TC CS	65
PH15	Essor des technologies et crise de l'idée de progrès	HT	197
PH20	Introduction à la philosophie des sciences	HT	198
PH21	Sociétés en débats : penser les enjeux du monde contemporain	HT	198
PHYS02	Mécanique	TC CS	66
PHYS02A	Mechanics of rigid bodies	TC CS	66
PHYS03	Champs, ondes, vibrations, propagation	TC CS	66
PHYS04	Thermique, énergétique et machines thermodynamiques	TC CS	67
PHYS11	Physique pour l'ingénieur : Mécanique du point	TC CS	67
PHYS12	Physique pour l'ingénieur : Electromagnétisme	TC CS	67
PIX	Compétences numériques	TC TM	73
P003	Introduction à la vie politique	HT	198
PR15	Mise en forme des matériaux	TM	127
QX01	Introduction à l'information quantique et aux technologies associées	CS	95
RE01	Réseaux d'entreprise	TM	127
RE01A	Corporate networks	TM	128
RE02	Transmission de l'information	CS	96
RE04	Réseaux de l'internet	CS	96
RE06	Communications unifiées	TM	128
RE12	Services Réseaux	TM	128
RE13	Réseaux mobiles et sans fils	TM	129

RE14	Réseaux d'entreprise avancés	TM	129
RE15	Réseaux à qualité de services	CS	96
RE16	Sécurisation des réseaux	TM	129
RE20	Réseaux d'opérateurs	TM	130
RE21	Technologies mobiles : ergonomie et usages	TM	130
RE23	Gestion et contrôle des réseaux	CS	97
RM01	Bases de la sûreté de fonctionnement	CS	97
RM02	Analyse des données de retour d'expérience	TM	130
RM03	Surveillance et pronostic - outils PHM	TM	131
RM04	Maintenance intelligente	TM	131
R001	Robotique industrielle	TM	131
R002	Environnement des systèmes robotisés	CS	97
RP01	Résolution de problèmes en ingénierie	TC TM	73
SC00	Approches de la communication	HT	199
SC01	Communication d'entreprise	HT	199
SC02	Communication et médias	HT	199
SC04	Communication, persuasion et influence sociale	HT	200
SC05	Psychologie du travail et des organisations	HT	200
SC06	Usage des technologies de la communication et innovation	HT	200
SD11	Articles scientifiques, et entretiens professionnels	EC	175
SE01	Histoire des idées économiques	HT	201
SE02	Economie générale pour l'ingénieur	HT	201
SFA1	Stage intensif FLE - niveau A1	EC	176
SFA2	Stage intensif FLE - niveau A2	EC	176
SFB1	Stage intensif FLE - niveau B1	EC	176
SFB2	Stage intensif FLE - niveau B2	EC	177
SG11	Risques sociaux et sociétaux, intelligence économique, cybercriminalité	Mast	152
SG12	Sécurité des personnes et des biens : Politique de sécurité et concept transversal	Mast	152
SG21	Sûreté des espaces vie/économie/industrie : hygiène et sécurité	Mast	152
SG22	Sûreté des espaces vie/économie/industrie : Risques majeurs, communication	Mast	153
SG31	Sûreté des systèmes et des réseaux : analyse des systèmes et gestion des connais.	Mast	153
SG32	Sûreté des systèmes et des réseaux : réseaux de systèmes informatiques et urbains	Mast	153
SG41	Fondamentaux de la gestion des crises	Mast	154
SH01	Comprendre le monde du travail contemporain	HT	201
SI10	Formation à la communication écrite et orale	EC	177
SI11	Communication écrite et orale pour l'ingénieur	EC	177
SM02	Modélisation avancée des structures par éléments finis	TM	132
SM06	Modélisation des phénomènes thermomécaniques couplés	CS	98
S002	Risques sociaux, géopolitique des conflits et initiation aux nouveaux risques	HT	202

S003	Introduction à l'intelligence économique et à la géostratégie des acteurs	HT	202
S004	Sécurité, Etat et responsabilité	HT	202
S005	Analyse de l'erreur humaine dans les accidents industriels	HT	203
S009	Innovations techniques, innovations sociétales	HT	203
SP01	Initiation à l'animation sportive	ME	187
SP02	Animateur sportif	ME	187
SP03	Animateur qualifié	ME	187
SP11	La performance sportive	HT	203
SP20	Organisation d'un évènement sportif	ME	188
ST05	Stage technique	ST	206
ST09	Stage professionnel	ST	206
ST10	Projet de fin d'étude	ST	207
ST30	Stage master	ST	207
ST31	Stage spécial en environnement et développement durable	ST	207
ST33	Stage intervention en environnement et développement durable	ST	208
ST40	Projet en laboratoire pour un étudiant d'échange	ST	208
ST51	Projet de fin d'études en alternance Partie 1	ST	208
ST52	Projet de fin d'études en alternance Partie 2	ST	209
ST61	Projet de fin d'études en alternance - Partie 1	ST	209
ST62	Projet de fin d'études en alternance - Partie 2	ST	209
ST63	Projet de fin d'études en alternance - Partie 1	ST	210
ST64	Projet de fin d'études en alternance - Partie 2	ST	210
ST65	Projet de fin d'études en alternance - Partie 3	ST	210
ST66	Accompagnement méthodologique à la démarche scientifique	ST	211
SY01	Bases de calcul des probabilités pour l'ingénieur	TC CS	68
SY02	Statistiques pour l'ingénieur	CS	98
SY04	Outils pour la modélisation de réseaux	CS	98
SY05	Outils d'aide à la décision et théorie des jeux	TM	132
SY06	Analyse et traitement du signal	CS	99
SY12	Eléments d'automatique et contrôle industriel	TM	132
SY14	Systémique et dynamique des systèmes	TM	133
SY15	Simulation des systèmes industriels	TM	133
SY16	Traitement numérique du signal et des images	CS	99
SY17	Conception des systèmes de production	TM	133
SY18	Outils de modélisation et d'évaluation des performances	CS	99
SY20	Intelligence Industrielle (Outils logiciels MES/SAP)	TM	134
SY22	Systèmes sans fil	TM	134
SY23	Objets connectés intelligents	TM	134
SY25	Réseaux de capteurs multimédia	CS	100

SY26	Systèmes embarqués intelligents	CS	100
SY30	Automatique linéaire	CS	100
SY31	Modélisation, analyse et commande des systèmes automatisés	TM	135
SY32	Contrôle/commande des systèmes dynamiques	CS	101
SY33	Industrie 4.0 : Systèmes de pilotage et d'information des systèmes de prod.	TM	135
SY34	Industrie 4.0 : systèmes communicants	TM	135
SY35	Commande et IHM de process industriels	TM	136
SY40	Industrie 4.0 : transition industrielle et optimisation de la gestion en temps réel	TM	136
TIO1	Modélisation pour la conception des systèmes d'information	CS	101
TI02	Traitement et transmission de l'information	CS	101
TI03B	Systèmes échantillonnés	CS	102
TI03F	Systèmes échantillonnés	CS	102
TN01	Initiation à la définition et à la fabrication d'un objet technique	TC TM	74
TN02	Technologie et initiation au bureau d'études	TC TM	75
TN04	Gestion et réalisation d'un projet d'ingénierie : initiation	TC TM	75
TN07	Séjour culturel et linguistique à l'étranger	ST	211
TN08	Initiation à la mise en oeuvre de la matière	TC TM	75
TN12	Eléments de bureau d'études	TM	136
TN14	Initiation à la CAO : modélisation géométrique	TM	137
TN14A	Introduction to computer-aided design	TM	137
TN15	Techniques de fabrication conventionnelles	TM	137
TN19	Techniques d'achat et de réduction des coûts	TM	138
TN20	Etude et dimensionnement de systèmes mécaniques	TM	138
TN78	Industrialisation et technologies de fabrication avancées	TM	138
TNEV	Gestion et réalisation d'un projet mécatronique : initiation	TC TM	74
TNOP	Technologies optiques	TC TM	74
TPC01	Techniques d'analyses physico-chimiques	TC TM	76
TS01	Sécurité des systèmes	TM	139
TS02	Gestion des risques industriels	TM	139

NOTES

