# Codificação de Fonte (Código de Huffman Truncado)

Teoria da Informação - AULA 14 Prof<sup>a</sup>. Verusca Severo

Universidade de Pernambuco Escola Politécnica de Pernambuco

18 de agosto de 2021

- O código de Huffman é uma das técnicas mais populares de codificação de fonte;
- A ideia básica do algoritmo é atribuir palavras código de menor comprimento para os símbolos mais frequentes, e palavras código mais longas para os símbolos mais raros.
- Em suma, a codificação de Huffman possui duas etapas:
  - Cria-se uma série de reduções dos símbolos através da junção dos dois de menores probabilidades a cada iteração.
  - 2 Codificam-se todos os símbolos que foram reduzidos. Consiste em codificar cada fonte reduzida, iniciando pela menor fonte e caminhando em direção à fonte original.

- Em suma, a codificação de Huffman possui duas etapas:
  - Oria-se uma série de reduções dos símbolos através da junção dos dois de menores probabilidades a cada iteração.

| Fonte   | Fonte Original |                | Reduções de fonte |         |     |  |  |  |
|---------|----------------|----------------|-------------------|---------|-----|--|--|--|
| Símbolo | Probabilidade  | 1              | 2                 | 3       | 4   |  |  |  |
| $a_2$   | 0,4            | 0,4            | 0,4               | 0,4     | 0,6 |  |  |  |
| $a_6$   | 0,3            | 0,3            | 0,3               | 0,3     | 0,4 |  |  |  |
| $a_1$   | 0,1            | 0,1            | 0,2               | → 0,3 — | J   |  |  |  |
| $a_4$   | 0,1            | 0,1 —          | 0,1               |         |     |  |  |  |
| $a_3$   | 0,06           | → 0,1 <b>—</b> |                   |         |     |  |  |  |
| $a_5$   | 0,04           |                |                   |         |     |  |  |  |

• Na 1a redução, os 2 símbolos de menor probabilidade são unidos, formando um "símbolo composto" com P=0,06+0,04=0,1. Este símbolo e sua respectiva probabilidade são posicionados na coluna correspondente à 1a redução de forma que todos os valores da coluna estejam em ordem decrescente.

Consiste em codificar cada fonte reduzida, iniciando pela menor fonte e caminhando em direção à fonte original.

| Fonte Original |       | Reduções de fonte |       |               |     |     |                 |                       |
|----------------|-------|-------------------|-------|---------------|-----|-----|-----------------|-----------------------|
| Símbolo        | Prob. | Código            |       | 1             |     | 2   | 3               | 4                     |
| $\mathbf{a}_2$ | 0,4   | 1                 | 0,4   | 1             | 0,4 | 1   | 0,4 1           | 0,6 <b>0</b>          |
| $a_6$          | 0,3   | 00                | 0,3   | 00            | 0,3 | 00  | 0,3 00          | <b>←</b> 0,4 <b>1</b> |
| $\mathbf{a}_1$ | 0,1   | 011               | 0,1   | 011           | 0,2 | 010 | _ 0,3 <b>01</b> | $\leftarrow$          |
| $a_4$          | 0,1   | <b>0100</b>       | 0,1   | <b>0100</b> — | 0,1 | 011 |                 |                       |
| $\mathbf{a}_3$ |       | <b>01010</b> ←    | - 0,1 | <b>0101</b> ← |     |     |                 |                       |
| $a_5$          | 0,04  | <b>01011</b> ←    |       |               |     |     |                 |                       |

• O símbolo com P=0,6 foi gerado a partir da junção de dois outros símbolos na fonte reduzida à sua esquerda, o 0 usado para codificá-lo é agora atribuído a ambos os símbolos que lhe deram origem, colocando-se um 0 ou 1 à direita de cada um para distingui-los.

18 de agosto de 2021

- Note que cada símbolo é codificado individualmente, ou seja, a codificação ocorre para um símbolo de cada vez;
- Os dois símbolos com menor probabilidade de ocorrência têm palavras código com o mesmo comprimento, diferindo apenas no bit menos significativo.

- Quando a codificação tem de ser aplicada a um elevado número de símbolos, a construção de um código Huffman pode tornar-se uma tarefa relativamente complexa do ponto de vista computacional.
  - Além disso, aos símbolos menos prováveis poderão ser atribuídas palavras código muito longas.
  - Neste caso, é preferível sacrificar a eficiência da codificação de modo a reduzir a complexidade computacional.
- Para o caso geral de K símbolos, são necessárias:
  - K-2 reduções de fonte
  - K−2 atribuições de código

- Uma possível modificação sobre o código de Huffman original consiste em se codificar somente os M símbolos mais prováveis, dentre os K símbolos da fonte (com M < K).
- Para os demais símbolos, utiliza-se uma palavra código de prefixo seguida de um código de comprimento fixo adequado.
- Esta modificação do algoritmo original de codificação por Huffman é denominada código de Huffman truncado.

 O código de Huffman truncado, como o nome sugere, é uma variação da codificação de Huffman tradicional.



# truncado

adjetivo

- 1. que se truncou.
- que sofreu mutilação; cortado, mutilado. "imagens sacras t. e comidas por cupim"

- No código de Huffman truncado, os primeiros M símbolos mais prováveis da fonte (de todos os K símbolos) unidos com um símbolo hipotético cuja probabilidade é igual à soma das probabilidades dos K – M símbolos da fonte menos prováveis são codificados com o código de Huffman tradicional.
- Os K-M símbolos menos prováveis são associados ao código dado ao símbolo hipotético concatenado com o código binário natural de comprimento  $\log_2(K-M)$ .
  - Obs.: O  $log_2(K M)$  permite saber a quantidade de *bits* necessária para representar os K M símbolos.



• A constante M < K pode ser escolhida arbitrariamente.

• A codificação de Huffman truncado faz M-1 reduções de fonte, levando menos tempo, pelo custo de maior comprimento médio de código e menos eficiência.

- Passo a passo para o Código de Huffman truncado:
  - Reordene os K símbolos da fonte em ordem decrescente de probabilidade;
  - ② Divida o número total de símbolos em dois grupos: GRUPO 1 = M mais prováveis e GRUPO 2 = K M menos prováveis;
  - Adicione um símbolo hipotético ao GRUPO 1, cuja probabilidade é a soma dos símbolos do GRUPO 2;
  - Reordene os símbolos do GRUPO 1 em ordem decrescente;
  - Codifique os símbolos do GRUPO 1 usando a codificação de Huffman tradicional;
  - Codifique os símbolos do GRUPO 2 associado-os ao código dado ao símbolo hipotético concatenado com os binários naturais de comprimento log<sub>2</sub>(K - M).

• **EXEMPLO 1:** Construa um código de Huffman truncado para a fonte de informação com K=9 símbolos cujo alfabeto e a respectiva distribuição de probabilidade são apresentados na tabela abaixo.

| Fonte de Informação | $\mathbf{Probabilidade}\left(\mathbf{P}_{i}\right)$ |
|---------------------|-----------------------------------------------------|
| A0                  | 0,3                                                 |
| Al                  | 0,2                                                 |
| A2                  | 0,15                                                |
| A3                  | 0,1                                                 |
| A4                  | 0,08                                                |
| A5                  | 0,06                                                |
| <b>A</b> 6          | 0,05                                                |
| A7                  | 0,04                                                |
| A8                  | 0,02                                                |

# • EXEMPLO 1-SOLUÇÃO

• Reordene os K = 9 símbolos da fonte em ordem decrescente de probabilidade;

| Fonte de Informação | $\mathbf{Probabilidade}\left(\mathbf{P}_{i}\right)$ |
|---------------------|-----------------------------------------------------|
| A0                  | 0,3                                                 |
| Al                  | 0,2                                                 |
| A2                  | 0,15                                                |
| A3                  | 0,1                                                 |
| A4                  | 0,08                                                |
| A5                  | 0,06                                                |
| A6                  | 0,05                                                |
| A7                  | 0,04                                                |
| А8                  | 0,02                                                |

# • EXEMPLO 1-SOLUÇÃO

② Divida o número total de símbolos em dois grupos: GRUPO 1 = M = 3 mais prováveis e GRUPO 2 = K - M = 9 - 3 = 6 menos prováveis;

| Fonte de Informação | $\mathbf{Probabilidade}\left(\mathbf{P}_{i}\right)$ |
|---------------------|-----------------------------------------------------|
| A0                  | 0,3                                                 |
| Al                  | 0,2                                                 |
| A2                  | 0,15                                                |
| A3                  | 0,1                                                 |
| A4                  | 0,08                                                |
| A5                  | 0,06                                                |
| A6                  | 0,05                                                |
| A7                  | 0,04                                                |
| A8                  | 0,02                                                |

# • EXEMPLO 1-SOLUÇÃO

- Adicione um símbolo hipotético ao GRUPO 1, cuja probabilidade é a soma dos símbolos do GRUPO 2;
- Reordene os símbolos do GRUPO 1 em ordem decrescente;

| Fonte de Informação | Probabilidade $(\mathbf{\hat{P}}_i)$ |
|---------------------|--------------------------------------|
| Ax                  | 0,35                                 |
| A0                  | 0,3                                  |
| Al                  | 0,2                                  |
| A2                  | 0,15                                 |

Soma das probabilidades dos símbolos menos prováveis!

## • EXEMPLO 1-SOLUÇÃO

Odifique os símbolos do GRUPO 1 usando a codificação de Huffman tradicional;

| Ax | Código | Símbolo |
|----|--------|---------|
| A0 | 1      | Ax      |
| ۸1 | 01     | A0      |
| A1 | 000    | Al      |
| A2 | 001    | A2      |



# • EXEMPLO 1-SOLUÇÃO

• Codifique os símbolos do GRUPO 2 associado-os ao código dado ao símbolo hipotético concatenado com os binários naturais de comprimento  $\log_2(9-3) = \log_2(6) = 3$ .

| Fonte de Informação | $\mathbf{Probabilidade}\left(\mathbf{P}_{i}\right)$ | <b>Huffman Truncado</b> |
|---------------------|-----------------------------------------------------|-------------------------|
| A0                  | 0,3                                                 | 01                      |
| Al                  | 0,2                                                 | 000                     |
| A2                  | 0,15                                                | 001                     |
| A3                  | 0,1                                                 | 1000                    |
| A4                  | 0,08                                                | 1001                    |
| A5                  | 0,06                                                | <b>1</b> 010            |
| A6                  | 0,05                                                | <b>1</b> 011            |
| A7                  | 0,04                                                | 1100                    |
| А8                  | 0,02                                                | 1101                    |
|                     |                                                     |                         |

### • EXEMPLO 1-SOLUÇÃO

• O código encontrado tem uma eficiência de:

$$L = \sum_{i=0}^{8} P(A_i)I_{A_i} = 3,05 \ bits/símbolo$$

$$H = \sum_{i=0}^{8} P(A_i) \log_2 \left[ \frac{1}{P(A_i)} \right] = 2,778 \ bits/símbolo$$

Logo:

$$\eta = \frac{H}{L} = \frac{2,778}{3,05} = 91,08\%$$

 Por curiosidade, vamos construir o código de Huffman tradicional para a fonte do Exemplo 1, e vamos comparar a eficiência obtida com a do código de Huffman truncado.



- Por curiosidade, vamos construir o código de Huffman tradicional para a fonte do Exemplo 1, e vamos comparar a eficiência obtida com a do código de Huffman truncado.
  - O código encontrado tem uma eficiência de:

$$L = \sum_{i=0}^{8} P(A_i)I_{A_i} = 2{,}81 \ bits/símbolo$$

Logo:

$$\eta = \frac{H}{L} = \frac{2,778}{2.81} = 98,86\%$$

- Por curiosidade, vamos construir o código de Huffman tradicional para a fonte do Exemplo 1, e vamos comparar a eficiência obtida com a do código de Huffman truncado.
  - Comparando as eficiências, temos:
    - **1** Huffman truncado:  $\eta = 91,08\%$
    - **2** Huffman tradicional:  $\eta = 98,86\%$
  - Sacrificamos a eficiência pela redução da complexidade computacional;
  - Ou seja, o tempo é reduzido conforme a necessidade de apenas 4-2=2 estágios de redução de fonte, enquanto o Huffman tradicional precisa de 9-2=7 estágios de redução.

• Exercício 1: A fonte de informação F gera os símbolos mostrados na tabela abaixo. Codifique os símbolos utilizando o codificador de Huffman e o codificador de Huffman truncado para M=3, M=4 e M=5. Compare as eficiências dos códigos obtidos.

| F        | $f_0$ | $f_1$ | $f_2$ | f <sub>3</sub> | f <sub>4</sub> | $f_5$ | $f_6$ | f <sub>7</sub> |
|----------|-------|-------|-------|----------------|----------------|-------|-------|----------------|
| $P(f_i)$ | 0,35  | 0,24  | 0,16  | 0,1            | 0,1            | 0,02  | 0,02  | 0,01           |

Solução (Exercício 1):

VER MATERIAL EM ANEXO!

• Exercício 2: Defina, independente da distribuição de probabilidade do símbolos, para que valor de *M* a codificação de Huffman truncado sempre será equivalente à codificação de Huffman tradicional.

Solução (Exercício 2):

VER MATERIAL EM ANEXO!

• Exercício 3: Construa o código de Huffman truncado para o valor de M definido no Exercício 2 (valor para o qual a codificação de Huffman truncado é equivalente à codificação de Huffman tradicional) para a fonte do Exercício 1.

Solução (Exercício 3):

VER MATERIAL EM ANEXO!