

Computer Graphics (Graphische Datenverarbeitung)

- Shading -

WS 2021/2022

Corona

- Regular random lookup of the 3G certificates
- Contact tracing: We need to know who is in the class room
 - New ILIAS group for every lecture slot
 - Register via ILIAS or this QR code (only if you are present in this room)

Ray Tracing Steps (repetition)

- Generation of primary rays
 - Rays from viewpoint along viewing directions into 3D scene
 - (At least) one ray per picture element (pixel)
- Ray tracing
 - Traversal of spatial index structures
 - Intersection of ray with scene geometry
- Shading
 - From intersection, determine "light color" sent along primary ray
 - Determines "pixel color"
 - Needed
 - Local material color and reflection properties
 - Object texture
 - Local illumination of intersection point
 - Can be hard to determine correctly

Reflectance Phenomena

Appearance Samples

- How do materials reflect light?
- Light source at exactly the same position

diffuse

glossy

mirror

anisotropic

Appearance Samples (2)

translucency- subsurface scattering

opaque

anisotropic

translucent

translucent

subsurface scattering

transparent

complex surface structure

shadows

complex surface structure

occlusions

fibers

Reflection Models

How to describe materials?

- mechanical, chemical, electrical properties
- reflection properties
- surface roughness
- geometry/meso-structure

• *relightable* representations of appearance

At the Intersection

What happens to the reflected/refracted light?

Snell's Law

For the refracted ray

$$\eta_i(\lambda)\sin\theta_i = \eta_t(\lambda)\sin\theta_t$$

Fresnel Effect

Fresnel Effect

Reflection and Refraction

Fresnel Formula

- Reflectance and refraction depends on polarization
 - orientation of E field wrt. plane of reflection (given by incident direction + normal)

$$R_{||} = \frac{\tan^2(\theta_1 - \theta_3)}{\tan^2(\theta_1 + \theta_3)}$$

$$R_{||} = \frac{\tan^2(\theta_1 - \theta_3)}{\tan^2(\theta_1 + \theta_3)} \qquad T_{||} = \frac{\sin 2\theta_1 \sin 2\theta_3}{\sin^2(\theta_1 + \theta_3)\cos^2(\theta_1 - \theta_3)}$$

$$R_{\perp} = \frac{\sin^2(\theta_1 - \theta_3)}{\sin^2(\theta_1 + \theta_3)}$$

$$R_{\perp} = \frac{\sin^2(\theta_1 - \theta_3)}{\sin^2(\theta_1 + \theta_3)}$$
 $T_{\perp} = \frac{\sin 2\theta_1 \sin 2\theta_3}{\sin^2(\theta_1 + \theta_2)}$

Fresnel Formula

For unpolarized light:

$$R = (R_{||} + R_{\perp})/2$$

- Schlick's approximation:
 - Based on normal reflection

$$\theta_1 = 0$$

$$R_0 = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$

$$R \approx R_0 + (1 - R_0)(1 - \cos \theta_1)^5$$

Appearance Representation

How can we represent / characterize reflectance?

Reflection of an Opaque Surface

Reflection of an Opaque Surface

(bidirectional reflectance distribution function)

$$f_r(\vec{\omega}_i \to \vec{\omega}_o)$$

BRDF - 4D

(bidirectional reflectance distribution function) ratio of reflected radiance to incident irradiance

$$f_r(\vec{\omega}_i \to \vec{\omega}_o) = \frac{dL(\vec{\omega}_o)}{dE(\vec{\omega}_i)}$$

Spatially Varying BRDF – 6D

heterogeneous materials

$$f_r(\vec{\omega}_i \to \vec{\omega}_o)$$

Spatially Varying BRDF – 6D

heterogeneous materials

$$f_r(\vec{\omega}_i \to \vec{\omega}_o)$$

Spatially Varying BRDF – 6D

heterogeneous materials

$$f_r(\vec{x};\vec{\omega}_i \to \vec{\omega}_o)$$

Isotropic BRDF – 3D

invariant with respect to rotation about the normal

Isotropic BRDF – 3D

invariant with respect to rotation about the normal

$$f_r(\vec{\omega}_i \to \vec{\omega}_o)$$

Isotropic BRDF – 3D

invariant with respect to rotation about the normal

$$f_r((\theta_i, \phi_i) \to (\theta_o, \phi_o))$$

Isotropic BRDF – 3D

invariant with respect to rotation about the normal

$$f_r(\Delta \phi; \theta_i \rightarrow \theta_o)$$

Subsurface Scattering

BSSRDF - 8D

(bidirectional scattering surface reflectance distribution function)

$$f_r((\vec{x}_i, \vec{\omega}_i) \rightarrow (\vec{x}_o, \vec{\omega}_o))$$

Subsurface Scattering Homogeneous Material

Homogeneous Material BSSRDF – 6D

$$f_r((\vec{x}_i, \vec{\omega}_i) \rightarrow (\vec{x}_o, \vec{\omega}_o))$$

Homogeneous Material BSSRDF – 6D

$$f_r(\Delta \vec{x}; \vec{\omega}_i \rightarrow \vec{\omega}_o)$$

$$f_r(\lambda; (\vec{x}_i, \vec{\omega}_i) \rightarrow (\vec{x}_o, \vec{\omega}_o))$$

$$f_r(\lambda; (\vec{x}_i, \vec{\omega}_i) \rightarrow (\vec{x}_o, \vec{\omega}_o))$$

$$f_r((\vec{x}_i, \vec{\omega}_i, \lambda_i) \rightarrow (\vec{x}_o, \vec{\omega}_o, \lambda_o))$$

fluorescence

$$f_r(t;(\vec{x}_i,\vec{\omega}_i,\lambda_i) \rightarrow (\vec{x}_o,\vec{\omega}_o,\lambda_o))$$

time-varying scenes

Real-World Examples

Reflectance

Specular black

Diffuse + glossy

Brushed metal Top view Front view

Bidirectional Transmission Distribution Function - BTDF

Bidirectional Scattering Distribution Function - BSDF

Shading Evaluation of Reflections

How to calculate the intensity of the reflected light?

What is necessary?

- Light source position
- View point
- Surface normal / local coordinate frame
- Reflectance model

Light Source Description

- Point light source
- Position
- Intensity

Light Source Description

- Point light source
- Position
- Intensity $\sim 1/r^2$

Viewpoint

Distance not so important for now

Surface Normal

• Trivial for a plane – Hesse form:

$$(\vec{p},\vec{n})$$

Surface Normal - Triangle

$$\vec{n} = \frac{(c-b) \times (a-b)}{||(c-b) \times (a-b)||}$$

- Orientation? Use right-hand rule.
- Normals should point towards the outside of an object.

Flat Shading on a Triangle Mesh

- Per-surface normal
- Flat shading

[wikipedia]

Goraud Shading

Per-vertex normal

Goraud Shading

- Per-vertex normal
- Goraud shading
 - evaluate reflectance model at vertices only

$$L_v \sim f(\vec{\omega}_o, \vec{n}_v, \vec{\omega}_i) L_i$$

- linear interpolation of the shaded colors

$$L_p = \lambda_1 L_a + \lambda_2 L_b + \lambda_3 L_c$$

[wikipedia]

Phong Shading

- Per-vertex normal
- Phong shading
 - linear interpolation of the surface normal

$$\vec{n}_p = \frac{\lambda_1 \vec{n}_a + \lambda_2 \vec{n}_b + \lambda_3 \vec{n}_c}{||\lambda_1 \vec{n}_a + \lambda_2 \vec{n}_b + \lambda_3 \vec{n}_c||}$$

- (spherical interpolation)
- evaluate reflectance model at every point

$$L_p \sim f_r(\vec{\omega}_o, \vec{n}_p, \vec{\omega}_i) L_i$$

[wikipedia]

Phong Reflection Model

Cosine power lobe

$$f_r(\omega_o, x, \omega_i) = k_s (\underline{R}(\underline{I}) \cdot \underline{V})^{k_e}$$
$$L_S = L_i k_s \cos^{k_e} \theta_{RV}$$

- Dot product & power
- Not energy conserving/reciprocal
- Plastic-like appearance

birds eye view at the surface

Phong Exponent k_e

Determines size of highlight

$$f_r(\omega_o, x, \omega_i) = k_s (\underline{R}(\underline{I}) \cdot \underline{V})^{k_e}$$

Blinn-Phong Reflection Model

• Blinn-Phong reflection model: consider halfway vector $H = \frac{I+V}{2}$

$$f_r(\omega_o, x, \omega_i) = k_s (H \cdot N)^{k_e}$$
$$L_s = L_i k_s \cos^{k_e} \theta_{HN}$$

- $\theta_{RV} \Rightarrow \theta_{HN}$ less expensive to compute

Extended light sources: I point light sources

$$L_{r} = k_{a}L_{i,a} + k_{d} \sum_{l} L_{l}(I_{l} \cdot N) + k_{s} \sum_{l} L_{l}(R(I_{l}) \cdot V)^{k_{e}}$$
 (Phong)
$$L_{r} = k_{a}L_{i,a} + k_{d} \sum_{l} L_{l}(I_{l} \cdot N) + k_{s} \sum_{l} L_{l}(H_{l} \cdot N)^{k_{e}}$$
 (Blinn)

- Color of specular reflection equal to light source
- Heuristic model
 - Contradicts physics
 - Purely local illumination
 - Only direct light from the light sources
 - No further reflection on other surfaces
 - Constant ambient term
- Often: light sources & viewer assumed to be far away

Extended light sources: I point light sources

$$L_{r} = k_{a}L_{i,a} + k_{d}\sum_{l}L_{l}(I_{l} \cdot N) + k_{s}\sum_{l}L_{l}(R(I_{l}) \cdot V)^{k_{e}}$$
 (Phong)
$$L_{r} = k_{a}L_{i,a} + k_{d}\sum_{l}L_{l}(I_{l} \cdot N) + k_{s}\sum_{l}L_{l}(H_{l} \cdot N)^{k_{e}}$$
 (Blinn)
ambient

- Color of specular reflection equal to light source
- Heuristic model
 - Contradicts physics
 - Purely local illumination
 - Only direct light from the light sources
 - No further reflection on other surfaces
 - Constant ambient term
- Often: light sources & viewer assumed to be far away

Extended light sources: I point light sources

$$L_{r} = k_{a}L_{i,a} + k_{d}\sum_{l}L_{l}(I_{l} \cdot N) + k_{s}\sum_{l}L_{l}(R(I_{l}) \cdot V)^{k_{e}}$$
 (Phong)
$$L_{r} = k_{a}L_{i,a} + k_{d}\sum_{l}L_{l}(I_{l} \cdot N) + k_{s}\sum_{l}L_{l}(H_{l} \cdot N)^{k_{e}}$$
 (Blinn)
diffuse

- Color of specular reflection equal to light source
- Heuristic model
 - Contradicts physics
 - Purely local illumination
 - Only direct light from the light sources
 - No further reflection on other surfaces
 - Constant ambient term
- Often: light sources & viewer assumed to be far away

• Extended light sources: I point light sources

$$L_{r} = k_{a}L_{i,a} + k_{d} \sum_{l} L_{l}(I_{l} \cdot N) + k_{s} \sum_{l} L_{l}(R(I_{l}) \cdot V)^{k_{e}}$$
(Phong)

$$L_{r} = k_{a}L_{i,a} + k_{d} \sum_{l} L_{l}(I_{l} \cdot N) + k_{s} \sum_{l} L_{l}(H_{l} \cdot N)^{k_{e}}$$
(Blinn)

specular/glossy

- Color of specular reflection equal to light source
- Heuristic model
 - Contradicts physics
 - Purely local illumination
 - Only direct light from the light sources
 - No further reflection on other surfaces
 - Constant ambient term
- Often: light sources & viewer assumed to be far away

• Extended light sources: I point light sources

$$L_{r} = k_{u}L_{l,a} + k_{d} \sum_{l} L_{l}(I_{l} \cdot N) + k_{s} \sum_{l} L_{l}(R(I_{l}) \cdot V)^{k_{e}}$$
 (Phong)
$$L_{r} = k_{a}L_{l,a} + k_{d} \sum_{l} L_{l}(I_{l} \cdot N) + k_{s} \sum_{l} L_{l}(H_{l} \cdot N)^{k_{e}}$$
 (Blinn)

not physically plausible

- Color of specular reflection equal to light source
- Heuristic model
 - Contradicts physics
 - Purely local illumination
 - Only direct light from the light sources
 - No further reflection on other surfaces
 - Constant ambient term
- Often: light sources & viewer assumed to be far away

Multiple Light Sources

Add their contributions

$$L_{r} = \sum_{N} f(\vec{\omega}_{o}, \vec{\omega}_{i}^{k}) L_{i}^{k} \cos(\theta^{k})$$

Occlusions

- The point on the surface might be in shadow from some object.
- Trace ray to light source and test for occlusion

$$L_{r} = \sum_{N} f(\vec{\omega}_{o}, \vec{\omega}_{i}^{k}) v(p, \vec{\omega}_{i}^{k}) L_{i}^{k} \cos(\theta^{k})$$

Area Light sources

Typically approximated by sampling

Area Light sources

Typically approximated by sampling

Area Light sources

Typically approximated by sampling

Wrap-Up

Appearance and Reflectance

- Phenomena
- Characterization
- Snell's law / Polarization

Shading

- Goraud / Phong
- Blinn-Phong
- Multiple light sources

Questions

- What does "BRDF" stand for? What is represented by a BRDF?
- Explain the differences between diffuse, glossy and mirror reflections.

How can you control the specular lobe in the Blinn reflection model?