

AD-A181 930 STATISTICS ON AIRCRAFT GAS TURBINE ENGINE ROTOR
FAILURES THAT OCCURRED IN (U) NAVAL AIR PROPULSION
CENTER TRENTON NJ PROPULSION ENGINEERING

1/1

UNCLASSIFIED

R A DELUCIA ET AL MAR 87 NAPC-PE-154C

F/G 21/5

NL

END
2-25
DT-2

MICROCOPY RESOLUTION TEST CHART

DTIC FILE COPY

(1)

DOT/FAA/CT-86/42

FAA TECHNICAL CENTER
Atlantic City International Airport
N.J. 08405

AD-A181 930

Statistics on Aircraft Gas Turbine Engine Rotor Failures that Occurred in U.S. Commercial Aviation During 1981

R.A. DeLucia
J.T. Salvina
T. Russo

Naval Air Propulsion Center
Trenton, New Jersey

S D
DTIC ELECTED
JUN 25 1987
D

March 1987

Final Report

This document is available to the U.S. public
through the National Technical Information
Service, Springfield, Virginia 22161.

DISTRIBUTION STATEMENT A

**Approved for public release;
Distribution Unlimited**

US Department of Transportation
Federal Aviation Administration

87 6 24 048

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page

1. Report No. DOT/FAA/CT-86/42	2. Government Accession No. <i>ADA 181930</i>	3. Recipient's Catalog No.	
4. Title and Subtitle STATISTICS ON AIRCRAFT GAS TURBINE ENGINE ROTOR FAILURES THAT OCCURRED IN U.S. COMMERCIAL AVIATION during 1981.		5. Report Date March 1987	
7. Author(s) R. A. DELUCIA J. T. SALVINO T. RUSSO		6. Performing Organization Code PE32	
9. Performing Organization Name and Address Commanding Officer Naval Air Propulsion Center PO Box 7176 Trenton, NJ 08628-0176		8. Performing Organization Report No. NAPC-PE-154C	
12. Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administration Technical Center Atlantic City International Airport, NJ 08405		10. Work Unit No. (TRAIS)	
		11. Contract or Grant No. Interagency Agreement DOT/FA71NA AP98	
		13. Type of Report and Period Covered	
		14. Sponsoring Agency Code ACT-320	
15. Supplementary Notes PROJECT MANAGER: B. C. Fenton Engine/Fuel Safety Branch, ACT-320 Federal Aviation Administration Atlantic City International Airport, NJ 08405 Technical Center			
16. Abstract >This report presents statistical information relating to gas turbine engine rotor failures which occurred during 1981 in commercial aviation service use. The predominant failure involved blade fragments, 83 percent of which were contained. Three disk failures occurred and all were uncontained. Fifty-seven percent of the 136 failures occurred during the takeoff and climb stages of flight.			
This service data analysis is prepared on a calendar year basis and published yearly. The data is useful in support of flight safety analysis, proposed regulatory actions, certification standards and cost benefit analysis. <i>Kayenne (S)</i>			
17. Key Words Air Transportation, Aircraft Hazards, Aircraft Safety Gas Turbine Engine Rotor Failures Containment,		18. Distribution Statement This Document is available to the U.S. Public through the National Technical Information Service, Springfield, Virginia 22161	
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price

ACKNOWLEDGEMENTS

We thank the following Federal Aviation Administration personnel and offices for their cooperative effort in the preparation of this report:

- o Mr. Bruce Fenton, Project Manager, Engine/Fuel Safety Branch, ACT-320, for his technical assistance.
- o New England Region, Burlington, MA for providing verification of the uncontained engine rotor failure occurrences during calendar year 1981.
- o Flight Standards National Field Office, Oklahoma City, OK, for providing the basic data used to prepare this report.

Accession For	
NTIS CRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution / _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	vii
INTRODUCTION	1
RESULTS	1
CONCLUSIONS	3
FIGURES 1 THROUGH 11	4
APPENDICES	
A - DATA OF ENGINE ROTOR FAILURES IN U.S. COMMERCIAL AVIATION FOR 1981	A-1
B - GAS TURBINE ENGINE FAILURE RATES ACCORDING TO ENGINE MODEL AND TYPE	B-1
C - DISTRIBUTION LIST	C-1

LIST OF FIGURES

Figure		Page
1	Incidence of Engine Rotor Failure in U.S. Commercial Aviation - 1981	4
2	Gas Turbine Engine Fleet Operating Hours in U.S. Commercial Aviation According to Number of Engines in Service - 1981	5
3	Component and Fragment Type Distributions for Contained and Uncontained Rotor Engine Failures (Failures that Produced Fragments) - 1981	6
4	The Incidence of Engine Rotor Failure in U.S. Commercial Aviation According to Engine Type Affected - 1981	7
5	Turbofan Engine Failure Rate According to Engine Model - 1981	8
6	Turboprop Engine Failure rate According to Engine Model - 1981	9
7	Turboshaft and Turboprop Engine Failure Rate According to Engine Model - 1981	10
8	Engine Rotor Failure Cause Categories - 1981	11
9	Flight Condition at Engine Rotor Failure - 1981	12
10	Uncontained Engine Rotor Failure Distributions According to Cause and Flight Condition - 1976 - 1981	13
11	The Incidence of Uncontained Engine Rotor Failures in U.S. Commercial Aviation - 1962 through 1981	14

EXECUTIVE SUMMARY

This service data analysis is prepared on a calendar basis and published yearly. The data are useful in support of flight safety analyses, proposed regulatory actions, certification standards and cost benefit analyses. The following statistics are based on gas turbine engine rotor failures that have occurred in U.S. commercial aviation during 1981.

One hundred and thirty-six rotor failures occurred in 1981. These failures accounted for approximately 2.7 percent of the 5095 shutdowns experienced by the U.S. commercial fleet. Rotor fragments were generated in 84 of the failures and, of these 16 were uncontained. This represents an uncontained failure rate of 2.1 per million gas turbine engine powered aircraft flight hours, or 0.8 per million engine operating hours. Approximately 7.5 million and 20.7 million aircraft flight and engine operating hours, respectively, were logged in 1981.

Turbine rotor fragment producing failures were approximately four times greater than that of the compressor rotor fragment producing failures; 62 and 15 respectively, of the total. Fan rotor failures accounted for 7 of the fragment producing failures experienced.

Blade failures were generated in 78 of the rotor failures; 13 of these were uncontained. The remaining 6 fragment generating failures were produced by disk, rim, or seal.

Total uncontained engine failure rates per million engine type flight hours were: turbofan 0.7 and turboprop 1.5. No uncontained rotor failures were reported for turboshaft and turbojet engines in 1981.

Of the 92 known causes of failures (because of the high percentage of unknown causes of rotor failures, the percentages were based on the total number of known causes), the causal factors were: (1) Secondary Causes 38 (41.3 percent); (2) Foreign Object Damage 35 (38.0 percent); (3) Design and Life Prediction Problems 16 (17.4 percent); and (4) Other 3 (3.3 percent). Seventy-eight (57.4 percent) of the 136 rotor failures occurred during the takeoff and climb stages of flight. Fifty-two (61.9 percent) of the 84 rotor fragment producing failures and 9 (56.3 percent) of the 16 uncontained rotor failures occurred during these same stages of flight.

CONCLUSION:

Although the incidence of engine rotor failures producing fragments has declined 20 percent (84 in 1981 compared to a 1975 through 1980 average of 105), the uncontained engine rotor failure rate has remained constant (16 in 1981 compared to a 1975 through 1980 average of 16).

INTRODUCTION

This report is sponsored by the Department of Transportation (DOT), Federal Aviation Administration (FAA), Technical Center, Engine/Fuel Safety Branch, located at the Atlantic City International Airport, New Jersey.

This service data analysis is prepared on a calendar year basis and published yearly. The data are useful in support of flight safety analyses, proposed regulatory actions, certification standards and cost benefit analyses.

The intent and purpose of this report is to present data as objectively as possible on rotor failure occurrences in U. S. commercial aviation.

Presented in this report are statistics on gas turbine engine failures that have occurred in U. S. commercial aviation during 1981. These statistics are based on data compiled from the Flight Standards Service Difficulty Reports that were published by the DOT, FAA. Independent cross checks to other accident data sources, such as the FAA New England Region Directorate, were made to substantiate the exact nature of an engine failure incident (i.e., contained or uncontained). The compiled data were analyzed to establish:

1. The incidence of rotor failures and the incidence of contained and uncontained rotor fragments; (An uncontained rotor failure is defined as a rotor failure that produces fragments which penetrate and escape the confines of the engine casing).
2. The distribution of rotor failures with respect to engine rotor components, i.e., fan, compressor or turbine rotors and their rotating attachments or appendages such as spacers and seals.
3. The type of rotor fragment (disk, rim or blade) typically generated at failure.
4. The cause of failure.
5. The engines involved by model (JT8D, JT9D, etc.) and by engine type (turbojet, turboshaft/turboprop, and turbofan).
6. The flight conditions at the time of failure.
7. Engine failure rate according to engine fleet hours.

RESULTS

1. The data used for analysis are contained in appendix A. The results of these analyses are shown in Figures 1 through 8.

a. Figure 1 shows that 136 rotor failures occurred in 1981. These rotor failures accounted for approximately 2.7 percent of the 5095 shutdowns experienced by the gas turbine powered U. S. commercial aircraft fleet during 1981. Rotor fragments were generated in 84 of the failures experienced and, of these, 16 (19.0 percent of the fragment producing failures) were uncontained. This represents an uncontained failure rate of 2.1 per million gas turbine engine powered aircraft flight hours, or 0.8 per million engine operating hours. Approximately 7.5 million and 20.7 million aircraft flight and engine operating hours, respectively, were logged by the U. S. commercial aviation fleet in 1981. Gas turbine engine fleet

operating hours according to the number and type of engines in use is shown in Figure 2.

b. Figure 3 shows the distribution of rotor failures that produced fragments according to the engine component involved (fan, compressor, turbine), the types of fragments that were generated, and the percentage of uncontained failures according to the type of fragment generated. These data indicate that:

(1) The incidence of turbine rotor fragment producing failures was approximately four times greater than that of the compressor rotor fragment producing failures; these corresponded to 62 (73.8 percent) and 15 (17.9 percent), respectively, of the total number of rotor failures. Fan rotor failures accounted for 7 (8.3 percent) of the fragment producing failures experienced.

(2) Blade fragments were generated in 78 (92.9 percent) of the rotor failures; 13 (16.7 percent) of these were uncontained. The remaining 6 (7.1 percent) rotor fragment failures were produced by disk, rim, or seal.

c. Figure 4 shows the rotor failure distribution among the engine models that were affected, and the total number of the models in use.

d. Figures 5, 6, and 7 illustrate engine failure rates per million engine flight hours according to engine model, engine type, and containment condition. The total engine failure rate per million engine type flight hours are: turbofan 5.7, turboprop 11.8, turboshaft 34.2, and turbojet 27.0. Total uncontained engine failure rates per million engine type flight hours were: turbofan 0.7 and turboprop 1.5. No uncontained rotor failures were reported for turboshaft and turbojet engines in 1981.

The data used to generate figures 5, 6, and 7 is contained in appendix B, page B-1.

e. Figure 8 shows what caused the rotor failures to occur. Of the 92 known causes of failure (because of the high percentage of unknown causes of rotor failure, the percentages were based on the total number of known causes), the causal factors were: (1) Secondary Causes 38 (41.3 percent); (2) Foreign Object Damage 35 (38.0 percent); (3) Design and Life Prediction Problems 16 (17.4 percent); and Other 3 (3.3 percent).

f. Figure 9 indicates the flight conditions that existed when the various rotor failures occurred. Seventy-eight (57.4 percent) of the 136 rotor failures occurred during the takeoff and climb stages of flight. Fifty-two (61.9 percent) of the rotor fragment producing failures and 9 (56.3 percent) of the uncontained rotor failures occurred during these same stages of flight. The highest number of uncontained rotor failures, 7 (43.8 percent) was experienced during climb.

g. Figure 10 is a cumulative tabulation that describes the distribution of uncontained rotor failures according to fragment type, engine component involved, cause category, and flight condition (takeoff and climb are defined as "high power," all other conditions are defined as "low power") for the years 1976 through 1981. This figure is expanded yearly to include all subsequent uncontained rotor failures. These data indicate that: for "secondary causes," the number of uncontained failures was approximately 8 times greater at "high" power than "low" power (namely 23 and 3). For "Design and Life Prediction Problems" the number of

"high" power uncontained failures was approximately three times greater than "low" power (namely 19 and 6); and for "Foreign Object Damage" the number of uncontained failures was six times greater at "high" power than "low" power (namely 6 and 1). This tabulation also indicates that of the 95 total uncontained incidences, blade failures accounted for 75.8 percent, disks failures 10.5 percent, rim failures 7.4 percent, and seal/spacer failures 6.3 percent.

h. Figure 11 shows the annual incidence of uncontained rotor failures in commercial aviation for the years 1962 through 1981. During 1981, the incidence of uncontained rotor failure increased by five over the previous year, 1980. Over the past six years, 1976 through 1981, an average of 16 uncontained rotor failures per year have occurred. During the same time period, the rate of uncontained rotor failures has remained relatively constant at an average of approximately one per million engine operating hours.

The high incidences of uncontained rotor failures in calendar years 1967 through 1973 (except for 1968) were probably due to the introduction of newly developed engines entering the commercial aviation fleet such as the JT9D and CF6 engines.

Structural life prediction and verification is being improved by the increased use of spin chamber testing by government and industry as a means of obtaining failure data for statistically significant samples. In addition, increased development and application of high sensitivity non-destructive inspection methods, should increase the probability of cracks being detected prior to failure. The capability to reduce the causes of failures from secondary effects, also is being addressed through technology development programs. However, causes due to foreign object damage still appear to be beyond the control or scope of present technology.

CONCLUSION

Although the incidence of engine rotor failures producing fragments has declined 20 percent (84 in 1981 compared to a 1975 through 1980 average of 105), the uncontained engine rotor failures has remained constant (16 in 1981 compared to a 1975 through 1980 average of 16).

FIGURE 1: INCIDENCE OF ENGINE ROTOR FAILURE
IN U. S. COMMERCIAL AVIATION 1981

FIGURE 2: GAS TURBINE ENGINE FLEET OPERATING HOURS IN U.S. COMMERCIAL AVIATION ACCORDING TO NUMBER OF ENGINES IN SERVICE - 1981

ENGINE ROTOR COMPONENT	TYPE OF FRAGMENT GENERATED						TOTAL	
	DISK		RIM		BLADE			
	TF	UCF	TF	UCF	TF	UCF		
FAN	0	0	0	0	7	5	0	
COMPRESSOR	1	1	1	0	12	0	1	
TURBINE	2	2	1	0	59	8	0	
TOTAL	3	3	2	0	78	13	1	

(1) FAILURES THAT PRODUCED FRAGMENTS

TF - TOTAL FAILURES
UCF - UNCONTAINED FAILURES

FIGURE 3: COMPONENT AND FRAGMENT TYPE DISTRIBUTIONS FOR
CONTAINED AND UNCONTAINED ROTOR ENGINE FAILURES
(FAILURES THAT PRODUCED FRAGMENTS) - 1981

NOTES: (1) FAILURES THAT PRODUCED FRAGMENTS
 (2) YEARLY AVG. OF ENGINES IN USE AT END OF EACH MONTH
 (3) SEAL/SPACER FAILURES INCLUDED IN DISK/RIM COMPILATION

FIGURE 4: THE INCIDENCE OF ENGINE ROTOR FAILURE IN
 U.S. COMMERCIAL AVIATION ACCORDING TO
 ENGINE TYPE AFFECTED - 1981

FIGURE 5: TURBOFAN ENGINE FAILURE RATE ACCORDING TO ENGINE MODEL - 1981

FIGURE 6: TURBOPROP ENGINE FAILURE RATE ACCORDING TO ENGINE MODEL - 1981

FIGURE 7: TURBOSHAFT AND TURBOJET ENGINE FAILURE RATE ACCORDING TO ENGINE MODEL - 1981

FIGURE 8: ENGINE ROTOR FAILURE CAUSE CATEGORIES - 1981

FIGURE 9: FLIGHT CONDITION AT ENGINE ROTOR FAILURE - 1981

(1) TAKE OFF AND CLIMB ARE DEFINED AS "HIGH POWER" AND ALL OTHER CONDITIONS ARE DEFINED AS "LOW POWER".

FIGURE 10: UNCONTAINED ENGINE ROTOR FAILURE DISTRIBUTIONS

FIGURE 11: THE INCIDENCE OF UNCONTAINED ENGINE
ROTOR FAILURE IN U.S. COMMERCIAL
AVIATION 1962 - 1981

APPENDIX A

Data of Engine Rotor Failures in U. S. Commercial
Aviation for 1981. Compiled from the
Federal Aviation Administration Service
Difficulty Reports.

DATA COMPILATION KEY

Component Code:

- F - Fan
- C - Compressor
- T - Turbine

Fragment Type Code:

- D - Disk
- R - Rim
- B - Blade
- S - Seal
- N - None

Cause Code:

- 1 - Design and Life Prediction Problems
- 2 - Secondary Causes
- 3 - Foreign Object Damage
- 4 - Quality Control
- 5 - Operational
- 6 - Assembly and Inspection Error
- 7 - Unknown

Containment Condition Code:

- C - Contained
- NC - Not Contained
- N - No Fragments Generated

Flight Condition Code:

- 1 - Insp/Maint
- 2 - Taxi/Grnd Hd1
- 3 - Takeoff
- 4 - Climb
- 5 - Cruise
- 6 - Descent
- 7 - Approach
- 8 - Landing
- 9 - Hovering
- 10 - Unknown

CHARACTERISTICS OF ROTOR FAILURES - 1981

SDR NO.	SUBMITTER	AIRCRAFT	ENGINE	COMPONENT	TYPE	FRAGMENT	CAUSE	CONTAINMENT CONDITION	FLIGHT CONDITION
03181036	EAL	B727	JT8D	F	N	3	N		5
06261020	ACL	B737	JT8D	F	N	3	N		4
07161032	PAA	B727	JT8D	F	N	2	N		4
01291032	AFL	B737	JT8D	F	N	3	N		1
09111032	OZA	DC9	JT8D	F	N	3	N		1
09171031	OZA	DC9	JT8D	F	N	3	N		3
02111037	EAL	B727	JT8D	C	N	3	N		3
03121037	ACL	B737	JT8D	C	N	3	N		3
05281025	USA	B727	JT8D	C	N	3	N		3
09211030	NWA	B727	JT8D	C	NN	2	NN		4
01151024	AFL	B737	JT8D	C	NN	3	NN		4
01261033	AAL	B737	JT8D	C	S	2	C		4
12071025	ACL	B737	JT8D	C	NN	3	NN		7
04241025	ACL	B737	JT8D	C	NN	3	NN		3
02131036	CAL	B727	JT8D	T	N	3	N		5
08141033	AFL	B737	JT8D	T	N	7	N		5
08211028	PSA	DC9	JT8D	T	NN	7	NN		1
08271024	PSA	DC9	JT8D	T	NN	7	NN		1
09041023	PSA	DC9	JT8D	T	NN	7	NN		1
09041024	PSA	DC9	JT8D	T	NN	7	NN		1
09041025	PSA	DC9	JT8D	T	NN	7	NN		1
03031036	ACL	B737	JT8D	T	NN	7	NN		3
11101024	FDE	B727	JT8D	T	N	2	N		4
09251030	AFL	DC9	JT8D	F	B	3	C		6
10091030	EAL	DC9	JT8D	C	DD	1	NC		4
12181024	HAL	DC9	JT8D	C	B	1	C		3
02121039	AAL	B727	JT8D	T	B	2	C		5
02181033	TXI	DC9	JT8D	T	B	1	C		5
03231040	OZA	DC9	JT8D	T	B	7	C		3
05201026	FAL	B737	JT8D	T	B	1	C		10
06231034	REP	DC9	JT8D	T	B	2	C		3
06241031	NWA	B727	JT8D	T	B	2	C		3
06241032	BNF	B727	JT8D	T	B	2	C		4
07071030	FAL	DC9	JT8D	T	B	2	C		4
07231032	ACL	B737	JT8D	T	B	2	NC		4
07301009	USA	DC9	JT8D	T	B	2	C		5
08211029	REP	DC9	JT8D	T	B	7	C		4
09141033	PSA	DC9	JT8D	T	B	7	C		4
10191031	BNF	B727	JT8D	T	B	2	C		4
10201030	REP	DC9	JT8D	T	B	7	C		3
10281025	ACL	B737	JT8D	T	B	1	C		3
11031016	MID	DC9	JT8D	T	B	7	C		3
11121025	FDE	B727	JT8D	T	B	7	NC		4
11131020	DAL	B727	JT8D	T	B	7	C		4
11231026	MID	DC9	JT8D	T	B	2	C		4
12091024	NWA	B727	JT8D	T	B	7	C		4

CHARACTERISTICS OF ROTOR FAILURES - 1981

SDR NO.	SUBMITTER	AIRCRAFT	ENGINE	COMPONENT	FRAGMENT		CONTAINMENT		FLIGHT CONDITION
					TYPE	CAUSE	CONDITION	NC	
01191024	NWA	B727	JT8D	T	B	2	C		3
01261032	CAL	DC10	CF6	F	N	2	N		2
03101038	PAA	DC10	CF6	F	N	2	N		1
03031035	CAL	DC10	CF6	F	N	3	N		5
09161029	UAL	DC10	CF6	F	N	3	N		3
01191023	AFL	DC10	CF6	C	N	7	N		3
07211030	WRL	DC10	CF6	F	B	3	NC		4
06231033	UAL	DC10	CF6	C	B	1	C		5
07071029	AAL	DC10	CF6	C	B	3	C		6
05061026	PAA	DC10	CF6	T	B	2	C		4
04231029	UAL	DC10	CF6	T	B	2	C		2
04161034	WAL	DC10	CF6	T	B	1	C		3
07211029	UAL	DC10	CF6	T	B	2	C		4
07271030	CAL	DC10	CF6	T	B	7	C		4
10021027	PAA	DC10	CF6	T	R	7	C		4
10081033	PAA	DC10	CF6	T	B	7	C		5
10091029	AFT	DC10	CF6	T	D	3	NC		2
05131029	TIA	DC8	JT3D	F	N	3	N		4
04171033	UAC	DC8	JT3D	C	N	3	N		0
10021028	CAP	DC8	JT3D	C	N	3	N		2
06241028	SID	DC8	JT3D	T	B	5	C		3
02231039	IIA	DC8	JT4A	T	N	7	N		5
03231039	ABX	SN601	JT15D	C	B	3	C		5
06181019	TWA	B747	JT9D	F	N	3	N		2
07161033	UAL	B747	JT9D	F	N	3	N		7
07421032	PAA	B747	JT9D	F	N	2	N		3
10131033	NWA	DC10	JT9D	C	N	3	N		5
10091031	FTL	B747	JT9D	F	B	1	NC		4
08171031	WRL	B747	JT9D	T	B	7	C		4
07171022	PAA	B747	JT9D	T	B	2	NC		3
01211012	NWA	B747	JT9D	T	B	1	C		3

THE FOLLOWING INCIDENCES DID NOT OCCUR IN THE UNITED STATES BUT INVOLVED U.S. REGISTERED AIRCRAFT SUBMITTED BY FAA

DATE	SUBMITTER	AIRCRAFT	ENG/ENG/SN	COMPONENT	FRAGMENT		CONTAINMENT		FLIGHT CONDITION
					TYPE	CAUSE	CONDITION	NC	
1/31/81	NWA	DC10	JT9D/686165	F	B	7	NC		7
10/14/81	FTL	B747	JT9D/689156	T	B	2	NC		7
11/11/81	UNKNOWN	B747	JT9D/685764	F	B	3	NC		7
11/17/81	NWA	DC10	JT9D/618870	F	B	3	NC		7

CHARACTERISTICS OF ROTOR FAILURES - 1981

SDR NO.	SUBMITTER	AIRCRAFT	ENGINE	COMPONENT	FRAGMENT TYPE	CAUSE	CONTAINMENT FLIGHT	
							CONDITION	CONDITION
10221033	TWA	L1011	RB211	C	N	6	N	5
08031030	TWA	L1011	RB211	T	N	2	N	4
06301030	EAL	L1011	RB211	F	B	3	C	3
04091034	TWA	L1011	RB211	C	B	1	C	4
05220124	EAL	L1011	RB211	C	B	1	C	5
10071024	TWA	L1011	RB211	C	B	1	C	4
11201028	EAL	L1011	RB211	C	B	2	C	5
02041034	FAL	L1011	RB211	C	B	2	C	4
08031031	TWA	L1011	RB211	T	B	7	C	4
08281032	DAL	L1011	RB211	T	B	2	NC	4
09231031	TWA	L1011	RB211	T	B	7	C	4
10161032	TWA	L1011	RB211	T	B	2	C	4
12021028	TWA	L1011	RB211	T	B	1	C	10
12151028	TWA	L1011	RB211	T	B	2	C	4
03041037	WRN	CL44	TYNE	C	N	7	NN	5
08251032	SMB	CV600	DART	C	N	7	NN	5
08121033	ZAN	G159	DART	F	N	1	NN	5
03111032	PAI	YS11A	DART	T	N	2	NN	2
02031034	RAM	STC24	DART	T	B	7	NC	10
03171040	SWT	FK27	DART	T	B	1	C	1
08271026	WRT	CV600	DART	T	B	2	C	2
08041014	USA	BA111	SPEY	C	N	3	N	3
10221032	USA	BA111	SPEY	C	R	7	C	4
11171028	RAN	FK28	SPEY	C	B	3	C	4
03111031	USA	BA111	SPEY	T	B	7	C	4
04031033	USA	BA111	SPEY	T	B	7	C	4
04031034	USA	BA111	SPEY	T	B	7	C	4
07071033	USA	BA111	SPEY	T	B	7	C	3
06261022	USA	BA111	SPEY	T	B	7	CC	10
09241055	BRT	99	PT6A	C	B	3	C	2
07161038	PLG	99	PT6A	C	B	2	C	5
03251048	BRT	99	PT6A	T	B	7	C	5
02201052	BRT	99	PT6A	T	B	2	NC	5
10221031	RMA	DC7	PT6A	T	N	5	N	4
04201037	MTR	SD330	PT6A	T	N	2	N	1
10051058	AWA	DHC7103	PT6A	T	N	2	N	1
10201034	COH	SA226	TPE331	T	B	7	C	3
03161047	SUN	SA226	TPE331	T	B	7	C	3
04091048	RIO	SA226	TPE331	T	D	1	NC	2
11061030	RIO	SA226	TPE331	T	B	7	C	3
10221059	RIO	SA226	TPE331	T	B	7	C	5
10221060	RIO	SA226	TPE331	T	B	7	C	5
04211031	TIA	L382	501	C	N	3	N	3
06101030	TIA	L188	501	C	N	7	N	4
07241030	TIA	L188	501	C	N	7	N	2
11121024	TIA	L382	501	C	N	3	N	4

CHARACTERISTICS OF ROTOR FAILURES - 1981

SDR NO.	SUBMITTER	AIRCRAFT	ENGINE	COMPONENT	FRAGMENT		CONTAINMENT CONDITION	FLIGHT CONDITION
					TYPE	CAUSE		
05061024	FIA	L188	501	C	N	3	N	4
08171030	REP	STC CAP60	501	C	N	3	N	1
04061004	ISA	CV340	501	T	N	2	N	4
03191013	AIA	L382	501	T	B	2	C	2
03201019	AIA	L382	501	T	B	2	C	4
03271026	SRA	L382	501	T	B	7	C	1
03301036	SRA	L382	501	T	B	7	C	8
08211025	TIA	L382	501	T	B	2	NC	4
08261038	ALG	206	250C20	T	B	7	C	5

APPENDIX B

GAS TURBINE ENGINE FAILURE RATES ACCORDING TO ENGINE MODEL AND TYPE

MODEL	AVG NO. IN USE	ENGINE FLIGHT HOURS $\times 10^6$	NO. OF FAILURES				FAILURE RATES PER 10^6 ENGINE FLIGHT HRS.			
			C	NC	N	TOTAL	C	NC	N	TOTAL
TURBOFAN										
JT8D	4484	11.5	22	3	22	47	1.9	0.3	1.9	4.1
JT3D	958	1.64	1	0	3	4	0.6	0	1.8	2.4
JT9D	621	2.13	2	6	4	12	0.9	2.8	1.9	5.6
CF6	451	1.34	9	2	5	16	6.7	1.5	3.7	11.9
RB211	298	0.944	11	1	2	14	11.7	1.0	2.1	14.8
CF7	77	0.063	0	0	0	0	0	0	0	0
SPEY	70	0.148	7	0	1	8	47.3	0	6.8	54.1
JT15D	11	0.006	1	0	0	1	1.7	0	0	1.7
TFE731	4	0.001	0	0	0	0	0	0	0	0
ENG. TYPE										
TOTAL	6974	17.772	53	12	37	102	2.9	0.7	2.1	5.7
TURBOPROP										
PT6A	682	1.27	3	1	3	7	2.4	0.8	2.4	5.6
501	478	0.685	4	1	7	12	5.8	1.5	10.2	17.5
TPE331	229	0.45	5	1	0	6	11.1	2.2	0	13.3
DART	186	0.216	2	1	3	6	9.3	4.6	13.9	27.8
BASTAN	28	0.046	0	0	0	0	0	0	0	0
250B	19	0.021	0	0	0	0	0	0	0	0
TYNE	11	0.018	0	0	1	1	0	0	55.6	55.6
ENG. TYPE										
TOTAL	1633	2.706	14	4	14	32	5.2	1.5	5.2	11.8
TURBOSHAFT										
AST14	14	0.028	0	0	0	0	0	0	0	0
250C	4	0.0008	1	0	0	1	1250.0	0	0	1250.0
T58	1	0.0004	0	0	0	0	0	0	0	0
ENG. TYPE										
TOTAL	19	0.0292	1	0	0	1	34.2	0	0	34.2
TURBOJET										
JT4A	73	0.0351	0	0	1	1	0	0	28.5	28.5
AVON	6	0.002	0	0	0	0	0	0	0	0
ENG. TYPE										
TOTAL	79	0.0371	0	0	1	1	0	0	27.0	27.0

APPENDIX C
DISTRIBUTION LIST

Civil Aviation Authority (5)
 Aviation House
 129 Kingsway
 London WC2B 6NN England

Embassy of Australia (1)
 Civil Air Attaché
 1601 Mass. Ave. NW
 Washington, DC 20036

Scientific & Tech. Info FAC (1)
 ATTN: NASA Rep.
 P.O. Box 8757 BWI Airport
 Baltimore, MD 21240

Northwestern University (1)
 Trisnet Repository
 Transportation Center Library
 Evanston, ILL 60201

DOT-FAA AEU-500 (4)
 American Embassy
 APO New York, NY 09667

University of California (1)
 Service Dept Institute of
 Transportation Standard Lib
 412 McLaughlin Hall
 Berkely, CA 94720

British Embassy (1)
 Civil Air Attaché ATS
 3100 Mass Ave. NW
 Washington, DC 20008

Director DuCentre Exp DE LA (1)
 Navigation Aerineene
 941 Orly, France

ANE-40	(2)	ACT-61A	(2)	ASW-53B	(2)
ASO-52C4	(2)	AAL-400	(2)	AAC-64D	(2)
APM-13 Nigro	(2)	M-493.2 Bldg. 10A	(5)	ACE-66	(2)
AEA- 61	(3)	APM-1	(1)	ADL-1	(1)
ADL-32 North	(1)	APA-300	(1)	ALG-300	(1)
AES-3	(1)	AGL-60	(2)	ACT- 5	(1)
ANM-60	(2)				

FAA, Chief, Civil Aviation Assistance Group (1)
Madrid, Spain
c/o American Embassy
APO-New York 09285-0001

Dick Tobiason (1)
ATA of America
1709 New York Avenue, NW
Washington, DC 20006

FAA Anchorage ACO
701 C Street, Box 14
Anchorage, Alaska 99513

FAA Atlanta ACO
1075 Inner Loop Road
College Park, Georgia 30337

FAA Boston ACO
12 New England Executive PArk
Burlington, Mass. 01803

FAA Brussels ACO
American Embassy, APO,
New York, NY 09667

FAA Chicago ACO
2300 E. Devon, Room.232
Des Plains, Illinois 6008

FAA Denver
10455 East 25th Ave., Suite 307
Aurora, Colorado 98168

Frank Taylor
3542 Church Road
Ellicott City, MD 21043

Mr. Gale Braden (FAA)
5928 Queenston St.
Springfield, VA 22152

Richard E. Livingston, Jr.
Director, Aerotech Operations for
the IAPA Group
1805 Crystal Drive, Suite 1112 South
Arlington, VA 22202

Al Astorga (1)
Federal Aviation
Administration (CAAG)
American Embassy, Box 38
APO-New York 09285-0001

Burton Chesterfield, DMA-603 (1)
DOT Transportation Safety Inst.
6500 South McArthur Blvd.
Oklahoma City, OK 73125

FAA Fort Worth ACO
P.O. Box 1689
Fort Worth, TX 76101

FAA Long Beach ACO
4344 Donald Douglas Drive
Long Beach, CA 90808

FAA Los Angeles ACO
P.O. Box 92007, Worldway Postal Center
Hawthorne, CA 90009

FAA New York ACO
181 So. Frankline Ave., Room 202
Valley Stream, NY 11581

FAA Seattle ACO
17900 Pacific Highway South, C-68966
Seattle, Washington 98168

FAA Wichita ACO
Mid Continent Airport, Room 100 FAA Bldg.
1891 Airport Road
Wichita, KA 67209

Dr. Hans A. Krakauer
Deputy Chairman, International Airline
Pilots Association Group
Apartado 97
8200 Albufeira, Portugal

Geoffrey Lipman
Executive Director, President du Conseil
International Foundation of Airline
Passenger Associations
Case Postale 462, 1215 Geneve
15 Aeroport, Suisse, Geneva

APPENDIX C

Civil Aviation Authority (5)
Aviation House
129 Kingsway
London WC2B 6NN
ENGLAND

Embassy of Australia
Civil Air Attaché
1601 Massachusetts Avenue, NW.
Washington, DC 20036

Scientific and Technical Information FAC
ATTN: NASA Representative
P.O. Box 8757 BWI Airport
Baltimore, MD 21240

Northwestern University
Trisnet Repository
Transportation Center Library
Evanston, IL 60201

DOT/Federal Aviation Administration (5)
AEU-500
American Embassy
APO New York, NY 09667

University of California
Service Department Institute of
Transportation Standard Lab
412 McLaughlin Hall
Berkeley, CA 94720

British Embassy
Civil Air Attaché ATS
3100 Massachusetts Avenue, NW.
Washington, DC 20008

DOT/FAA New England Region (2)
ANE-40
12 New England Executive Park
Burlington, MA 01803

DOT/FAA Southern Region (2)
ASO-52C4
P.O. Box 20636
Atlanta, GA 30320

DOT/FAA National Headquarters (2)
APM-13
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA Eastern Region (3)
AEA-61
JFK International Airport
Fitzgerald Federal Building
Jamaica, NY 11430

DOT/FAA National Headquarters
ADL-32
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
AES-3
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA Northwest Mountain Region (2)
ANM-60
17900 Pacific Highway South
C-68966
Seattle, WA 98168

DOT/FAA Technical Center (2)
Technical Library, ACT-61A
Atlantic City Int'l Airport, NJ 08405

DOT/FAA Alaskan Region (2)
AAL-400
701 C Street, Box 14
Anchorage, AK 99513

Department of Transportation (5)
Office of the Secretary
M-493.2, Building 10A
400 7th Street, SW.
Washington, DC 20590

DOT/FAA National Headquarters
APM-1
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
APA-300
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
ASF-100
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA Great Lakes Region (2)
ACL-60
O'Hare Office Center
2300 East Devon Avenue
Des Plaines, IL 60018

DOT/FAA National Headquarters
ASF-200
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA Southwest Region (2)
ASW-53B
P.O. Box 1689
Fort Worth, TX 76101

DOT/FAA National Headquarters
ASF-300
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA Mike Monroney Aeronautical
Center (2)
AAC-64D
P.O. Box 25082
Oklahoma City, OK 73125

DOT/FAA National Headquarters
AST-1
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA Central Region (2)
ACE-66
601 East 12th Street
Federal Building
Kansas City, MO 64106

DOT/FAA National Headquarters
ADL-2A
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
ADL-1
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
AVS-1
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
ALG-300
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
AFS-1
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA Technical Center
Public Affairs Staff, ACT-5
Atlantic City Int'l Airport, NJ 08405

DOT/FAA National Headquarters
ASF-200
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
ASF-1
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
AWS-1
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
AWS-100
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
AWS-120
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
APO-1
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
APO-200
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA Great Lakes Region
Mr. R. Prather, ACE-140C
O'Hare Office Center
2300 East Devon Avenue
Des Plaines, IL 60018

DOT/FAA Great Lakes Region
ACE-140
O'Hare Office Center
2300 East Devon Avenue
Des Plaines, IL 60018

DOT/FAA Great Lakes Region
AGL-200
O'Hare Office Center
2300 East Devon Avenue
Des Plaines, IL 60018

DOT/FAA Central Region
ACE-100
601 East 12th Street
Federal Building
Kansas City, MO 64106

DOT/FAA Central Region
Mr. Oscar Ball, ACE-100
601 East 12th Street
Federal Building
Kansas City, MO 64106

DOT/FAA Central Region
ACE-200
601 East 12th Street
Federal Building
Kansas City, MO 64106

DOT/FAA Eastern Region
AEA-200
JFK International Airport
Fitzgerald Federal Building
Jamaica, NY 11430

DOT/FAA New England Region
ANE-100
12 New England Executive Park
Burlington, MA 01803

DOT/FAA New England Region
ANE-110
12 New England Executive Park
Burlington, MA 01803

DOT/FAA New England Region
ANE-140
12 New England Executive Park
Burlington, MA 01803

DOT/FAA New England Region
ANE-141
12 New England Executive Park
Burlington, MA 01803

DOT/FAA New England Region
ANE-142
12 New England Executive Park
Burlington, MA 01803

DOT/FAA Northwest Mountain Region
ANM-100
17900 Pacific Highway South
C-68966
Seattle, WA 98168

DOT/FAA Northwest Mountain Region
ANM-110
17900 Pacific Highway South
C-68966
Seattle, WA 98168

DOT/FAA Northwest Mountain Region
ANM-200
17900 Pacific Highway South
C-68966
Seattle, WA 98168

DOT/FAA Southern Region
ASO-200
P.O. Box 20636
Atlanta, GA 30320

DOT/FAA Southwest Region
ASW-100
P.O. Box 1689
Fort Worth, TX 76101

DOT/FAA Southwest Region
ASW-110
P.O. Box 1689
Fort Worth, TX 76101

DOT/FAA Southwest Region
W. F. Wells, ASW-111
P.O. Box 1689
Fort Worth, TX 76101

DOT/FAA Southwest Region
ASW-200
P.O. Box 1689
Fort Worth, TX 76101

Federal Aviation Administration
Chief, Civil Aviation Assistance Group
Madrid, Spain
c/o American Embassy
APO New York 09285-0001

Mr. A. R. Tobiason
ATA of America
1709 New York Avenue, NW.
Washington, DC 20006

Federal Aviation Administration
Anchorage ACO
701 C Street, Box 14
Anchorage, AK 99513

Federal Aviation Administration
Atlanta ACO
1075 Inner Loop Road
College Park, GA 30337

Federal Aviation Administration
Boston ACO
12 New England Executive Park
Burlington, MA 01803

Federal Aviation Administration
Brussels ACO
c/o American Embassy
APO
New York, NY 09667

Federal Aviation Administration
Chicago ACO
Room 232
2300 East Devon Avenue
Des Plaines, IL 60018

Federal Aviation Administration
Denver ACO
10455 East 25th Avenue
Suite 307
Aurora, CO 98168

Mr. Frank Taylor
3542 Church Road
Ellicott City, MD 21043

Federal Aviation Administration
Mr. Al Astorga, CAAG
American Embassy
Box 38
APO New York 09285-0001

DOT Transportation Safety Institute
Mr. Burton Chesterfield, DMA-603
6500 South MacArthur Boulevard
Oklahoma City, OK 73125

Federal Aviation Administration
Fort Worth ACO
P.O. Box 1689
Fort Worth, TX 76101

Federal Aviation Administration
Long Beach ACO
ANM-140L
4344 Donald Douglas Drive
Long Beach, CA 90808

Mr. J. Donald Collier
Air Transport Association
of America
1709 New York Avenue, NW.
Washington, DC 20006

Federal Aviation Administration
Los Angeles ACO
P.O. Box 92007
Worldway Postal Center
Hawthorne, CA 90009

Captain Ralph Combariati
Port Authority of NY and NJ
JFK International Airport
Jamaica, NY 11430

Federal Aviation Administration
New York ACO
Room 202
181 South Franklin Avenue
Valley Stream, NY 11581

Mr. Edward Conklin
Sikorsky Aircraft
North Main Street
Stratford, CT 06602

Federal Aviation Administration
Seattle ACO
17900 Pacific Highway South
C-68966
Seattle, WA 98168

Mr. Dick Coykendall
United Airlines
San Francisco International
Airport
San Francisco, CA 94128

Federal Aviation Administration
Wichita ACO, Mid Continent Airport
FAA Building, Room 100
1891 Airport Road
Wichita, KS 67209

Mr. Gerald A. Cundiff
General Electric Company
3 Penn Center Plaza
Philadelphia, PA 19102

Mr. A. Allcock
Department of Industry
Abell House, Room 643
John Islip Street, London, SW14 LN
ENGLAND

Mr. Terence Dixon
Boeing Aerospace Corporation
P.O. Box 3999
M/S 8J-93
Seattle, WA 98124

Dr. S. J. Armour
Defense Research Establishment
Suffield
Ralston, Alberta
CANADA, T0J 2N0

Mr. Thomas F. Donohue
General Electric Company
1 Neumann Way, Mail Drop H-44
P.O. Box 156301
Cincinnati, OH 45215-6301

Captain Ralph Cantrell
University of Bridgeport
U.S. Army ROTC Department
Bridgeport, CT 06601

Mr. John H. Enders
Flight Safety Foundation
5510 Columbia Pike
Arlington, VA 22204

Mr. George A. Coffinberry
General Electric Company
1 Neumann Way
Mail Drop E-186
Cincinnati, OH 45215

Mr. Ray Fitzpatrick
South African Airways
329 Van Riebeeck Road
Glenn Austin Halfway House, 1685
REPUBLIC OF SOUTH AFRICA

Dr. Allen E. Fuhs
Department of Aeronautics
Naval Post Graduate School
Monterey, CA 93940

Major Hudson
Air Force Inspection and Safety
SEDM
Norton Air Force Base, CA 92499

Y. Funatsu
All Nippon Airways
1-6-6, Tokyo International Airport
Ohta-KU, Tokyo 144
JAPAN

Mr. J. P. Jamieson
National Gas Turbine Establishment
Pyestock, Farnborough
Hants GU14 0LS
ENGLAND

Henry A. Gill
Lockheed California Company
Building 88, B-6
P.O. Box 551
Burbank, CA 91520

Dr. C. W. Kauffman
The University of Michigan
Gas Dynamics Laboratories
Aerospace Engineering Building
Ann Arbor, MI 48109

Mr. David J. Goldsmith
Eastern Airlines
Miami International Airport
Miami, FL 33148

FAA National Headquarters
Mr. H. Branting, AWS-120
800 Independence Avenue, SW.
Washington, DC 20591

Mr. Stanley Gray
Mechanical Technology Inc.
968 Albany Shaker Road
Latham, NY 12110

Mr. Richard J. Linn
American Airlines
MD 4H14
P.O. Box 61616
Dallas/Fort Worth Airport, TX 75261

G. Haigh
Air Canada
Air Canada Base, Montreal
International Airport
Quebec, CANADA H4Y 1 C2

Captain A. S. Mattox, Jr.
Allied Pilots Association
12723 Brewster Circle
Woodbridge, VA 22191

M. Hardy
United Airlines
SFOEG, MOC
San Francisco International Airport
California 94128

Mr. Charles McGuire
Department of Transportation
400 7th Street, SW. (P-5)
Washington, DC 20590

W. Hock
Grumman Aerospace Corporation
B 14 035
111 Stewart Avenue
Bethpage, NY 11714

J. J. O'Donnell
Airline Pilots Association
1625 Massachusetts Avenue, NW.
Washington, DC 20036

LCDR William Holland
Department of the Navy
NAVAIR 518
Naval Air Systems Command
Washington, DC 20361

Dean Oliva
Lockheed
Department 7475/Building 229A
P.O. Box 551, Plant 2
Burbank, CA 91520

Dr. Robert C. Oliver
Institute for Defense Analyses
1801 North Bauregard Street
Alexandria, VA 22311

Professor Valentinas Sernas
Rutgers University
College of Engineering
P.O. Box 909
Piscataway, NJ 08854

Mr. George Opdyke
AVCO Lycoming Division
550 South Main Street
Stratford, CT 06497

S. Sokolsky
Aerospace Corporation
P.O. Box 91957
Los Angeles, CA 90009

Dr. Robert H. Page
Texas A&M University
College of Engineering
College Station, TX 77884

Dr. Warren C. Strahle
Georgia Institute of Technology
School of Aerospace Engineering
Atlanta, GA 30332

Mr. Roy E. Pardue
Lockheed/Georgia Company
86 South Cubb Drive
Marietta, GA 30063

Mr. Dick Stutz
Sikorsky Aircraft
Engineering Department
Stratford, CT 06602

Mr. Tom Peacock
Douglas Aircraft Company
3855 Lakewood Boulevard
Longbeach, CA 90846

Mr. A. F. Taylor
Cranfield Institute of Technology
Cranfield, Bedford, MK 43 OAL
ENGLAND

Mr. William Rodenbaugh
General Electric Company
Manager, Operational Planning
1000 Western Avenue
Lynn, MA 01910

Dr. F. F. Tolle
Boeing Military Airplane Company
P.O. Box 3707
M/S 4152
Seattle, WA 98124

C. C. Randall, P.E.
Lockheed Georgia Company
D72-47 Zone 418
Marietta, GA 30063

M. Trimble
Delta Airlines
DEAT 568
Atlanta International Airport
Atlanta, GA 30320

M. Rippen
Pratt and Whitney Aircraft
Government Products Division
P.O. Box 2691
West Palm Beach, FL 33402

Mr. T. Ted Tsue
Boeing Aerospace Company
P.O. Box 3999
M/S 45-07
Seattle, WA 98124

E. T. Roockey
Northrop Corporation
Aircraft Division
One Northrop Avenue
Hawthorne, CA 90250

Trans World Airlines, Inc.
Kansas City International Airport
2-280
P.O. Box 20126
Kansas City, MO 64195

Mr. Ed Versaw
Lockheed/California Company
P.O. Box 551
Burbank, CA 91520

Mr. Rudy Schwartz
Rolls-Royce Inc.
1201 Pennsylvania Avenue
Suite 230
Washington, DC 20004

Mr. John White
National Transportation
Safety Board
800 Independence Avenue, SW.
Washington, DC 20594

Mr. Robert L. Ivan
Chief, Propulsion Division, ASD ENFP
Department of the Air Force
Wright-Patterson Air Force Base
Dayton, OH 45433

Dr. S. P. Wilford
Royal Aircraft Establishment
Farnborough, Hants
GU146TD
ENGLAND

Mr. Michael D. Mead
Senior Engineer
Naval Air Systems Command
AIR 5360D
Washington, DC 20361

R. E. Zalesky
Lockheed California Company
P.O. Box 551
Burbank, CA 91520

E. W. Walacavage, AIA Propulsion Comm.
Garrett Turbine Engine Company
111 South 34th Street
P.O. Box 5217
Phoenix, AZ 85010

Dr. Robert F. Abernethy
Pratt and Whitney Government Products
MS 711-33
Box 2691
West Palm Beach, FL 33408

J. P. Frignac, MS 503-3B
Garrett Turbine Engine Company
111 South 34th Street
P.O. Box 5217
Phoenix, AZ 85010

Mr. James N. Bagnall
Hamilton Standard Division
United Technologies Corporation
Bradley Field Road, M/S 1A-3-6
Windsor Locks, CT 06096

Mr. Daniel R. Gerard
Flight Support Directorate
Airbus Industries, Headquarters BP #33
Blagnac
FRANCE 31700

Mr. Vern W. Ballenger
Director of Engineering
Air Transport Association
1709 New York Avenue, NW.
Washington, DC 20006

Mr. Allen E. Heyson
Aircraft Engine Group
General Electric Company
Mail Drop E-65
Cincinnati, OH 45215

H. R. Bankhead
Department of the Air Force
AFWAL/POTP
Wright-Patterson Air Force Base
Dayton, OH 45433-6563

Mahlon R. Hoover
Manager, Prop & Mech Syst, M/S 6F-25
Boeing Commercial Airplane Company
P.O. Box 3707
Seattle, WA 98124

J. A. DeMarche
Commercial Products Division
UTC Pratt and Whitney Aircraft
Engineering Building 163-12
East Hartford, CT 06108

Mr. George Bianchini
Allison Gas Turbine Division
General Motors Corporation
P.O. Box 420
Indianapolis, IN 46206-0420

Mr. Harry L. Lemasters
Structures Technology, MS 163-09
Pratt and Whitney Aircraft
400 Main Street
East Hartford, CT 06108

Mr. A. B. Wassell
Rolls-Royce Ltd.
P.O. Box 31
Derby DE2 8BJ
ENGLAND

Mr. J. Fresco
Societe Turbomeca
Siege Social, Bureaux et Usine
Bordes, Bizanos
FRANCE 64320

Mr. T. Dickey
Stratford Division
Avco Lycoming
550 South Main Street
Stratford, CT 06497

Mr. Ronald G. Jackson
Product Support
Rolls-Royce, Inc.
1895 Phoenix Boulevard
Altanta, GA 30349

Dr. John R. Fagan, M.S. T15
Allison Gas Turbine Division
General Motors Corporation
P.O. Box 420
Indianapolis, IN 46210-0420

Mr. Kenneth M. Johnson, Jr.
Williamsport Division
Avco Lycoming
652 Oliver Street
Williamsport, PA 17701

Mr. Brad Stumpke
Mail Drop 34511
General Electric Company
1000 Western Avenue
Lynn, MA 01910

Mr. Alan J. Lea, O1MD4
Pratt and Whitney Canada, Inc.
P.O. Box 10
Longueuil, Quebec J4K4X9
CANADA

Mr. Richard Barnard
Sikorsky Aircraft Division
United Technologies Corporation
North Main Street
Stratford, CT 06602

Mr. Martyn Hexter
Pratt and Whitney Canada, Inc.
90 Dundas Street West
Mississauga, Ontario L5A 3Q4
CANADA

Mr. Chet Lewis
Boeing Commerical Airplane Company
Mail Stop 9W-61
P.O. Box 3707
Seattle, WA 98124

Mr. Richard Ainsworth
Stratford Division
Avco Lycoming
550 South Main Street
Stratford, CT 06497

Mr. Frank M. Shallene
Bell Helicopter Textron
P.O. Box 482
Fort Worth, TX 76101

Mr. John T. Moehring
General Electric Company
Flight Safety Section, Mail Drop J60
One Neuman Way
Cincinnati, OH 45215

Mr. Peter Dahm
Helicopter and Transport Division
Messerschmitt-Bolkon-Blohm GMBH
P.O. Box 801140 DX2, 8000 Munich 80
FEDERAL REPUBLIC OF GERMANY

Mr. Glenn Pittard
Garrett Turbine Engine Company
111 South 34th Street
P.O. Box 5217
Phoenix, AZ 85010

Mr. James B. Harbison
Boeing Vertol Company
MS 32-17
P.O. Box 16858
Philadelphia, PA 19142

Mr. Richard H. Johnson
Department E80, MC 36-41
Douglas Aircraft
3855 Lakewood Boulevard
Long Beach, CA 90846

Mr. John M. Kowalonek
Sikorsky Aircraft Division
United Technologies Corporation
North Main Street
Stratford, CT 06602

Dr. Kenneth M. Rosen
Sikorsky Aircraft Division
United Technologies Corporation
North Main Street
Stratford, CT 06601

Mr. Emmett A. Witmer
Massachusetts Institute
of Technology
Cambridge, MA 02139

Mr. P. B. Gardner
Industrial Ceramics Division
Norton Company
One New Bond Street
Worcester, MA 01606

Mr. Jack A. Mitteer
Product Support
McDonnell Douglas Helicopter Company
5000 East McDowell Road
Mesa, AZ 85205

Captain Edwin R. Arbon
Flight Operations Safety
Flight Safety Foundation, Inc.
5510 Columbia Pike
Arlington, VA 22204-3194

Mr. Donald F. Thielke
Vice President, Safety Engineering
Flight Engineers' International Assoc.
905 16th Street, NW
Washington, DC 20006

Mr. Barry Scott
P.O. Box 25
Moffett Field, CA 94035

Mr. A. T. Weaver, M.S. 165-30
Pratt and Whitney Aircraft
Airworthiness Engineering Division
400 Main Street
East Hartford, CT 06108

Mr. Steve Clark
Rolls-Royce Inc.
1895 Phoenix Boulevard
Atlanta, GA 30349

Mr. William Burcham
Propulsion Branch, Code OFV
NASA Ames - Dryden
P.O. Box 273
Edwards, CA 93523

Mr. Ralph E. Kesler
Delta Air Lines, Inc.
Hartsfield Atlanta International
Airport
Atlanta, GA 30320

Commander
Naval Air Systems Command
AIR-330
Department of the Navy
Washington, DC 20361

Commander
Naval Air Systems Command
AIR-330A
Department of the Navy
Washington, DC 20361

Commander
Naval Air Systems Command
AIR-5017A
Department of the Navy
Washington, DC 20361

Commander
Naval Air Systems Command
AIR-536
Department of the Navy
Washington, DC 20361

Commander
Naval Air Systems Command
AIR-5360
Department of the Navy
Washington, DC 20361

Commander
Naval Air Systems Command
AIR-5361
Department of the Navy
Washington, DC 20361

Commander
Naval Air Systems Command
AIR-5362
Department of the Navy
Washington, DC 20361

Commander
Naval Air Systems Command
AIR-530
Department of the Navy
Washington, DC 20361

Commanding Officer
Naval Air Propulsion Center
PE32
P.O. Box 7176
Trenton, NJ 08628

Commanding Officer
Naval Air Engineering Center
Lakehurst, NJ 08733

Commanding Officer
Naval Air Development Center
Warminster, PA 18974

Commander
Naval Safety Center
Naval Air Station
Norfolk, VA 23511

Director
Applied Technology Laboratory
Army Research and Technology
Laboratories
Fort Eustis, VA 23604

Commanding General
U.S. Army Aviation Systems Command
AMSAV-ERP
12th and Spruce Streets
St. Louis, MO 63166

Commander
Air Force Aero Propulsion Laboratory
AFSC
Wright-Patterson Air Force Base
Dayton, OH 45433

Defense Technical Information Center
Building Number 5
Cameron Station
Alexandria, VA 22314

**National Aeronautics and Space
Administration**
NHS-22/Library
Washington, DC 20546

NASA S&T Information Facility
ATTN: Acquisition Division
P.O. Box 8757
Washington Internat'l Airport, MD 21240

NASA Lewis Research Center
Technology Utilization Office
21000 Brookpark Road
Cleveland, OH 44135

NASA Lewis Research Center
AFSC Liaison Office
21000 Brookpark Road
Cleveland, OH 44135

NASA Lewis Research Center
Library
21000 Brookpark Road
Cleveland, OH 44135

NASA Lewis Research Center
C. C. Chanis
21000 Brookpark Road
Cleveland, OH 44135

NASA Lewis Research Center
R. H. Johns
21000 Brookpark Road
Cleveland, OH 44135

United Airlines, Inc.
ATTN: J. D. Smith
VP, Flight Safety and Industry Affairs
P.O. Box 66100
Chicago, IL 60666

Pratt and Whitney Aircraft
Division of United Technologies Corp.
ATTN: Technical Library
400 Main Street
East Hartford, CT 06108

Piper Aircraft Corporation
ATTN: Mr. Walter C. Jamouneau
Chief Engineer
Lock Haven, PA 17745

Rolls-Royce Limited
ATTN: D. McLean, Chief Design Engineer
Aero-Engine Division
Derby
ENGLAND

Canadian Air Transportation Admin.
ATTN: D. R. Hemming
No. 3 Temp. Building
Wellington Street, Ottawa, Ontario
CANADA

Rollys-Royce Limited
ATTN: S. Cox, Bristol Engine Division
P.O. Box 3 Filton House
Bristol BS12 7QE
ENGLAND

Northrop Corporation
Aircraft Division
3901 West Broadway
Hawthorne, CA 90250

Pan American World Airways
Pan American Building
ATTN: Mr. John G. Borger
Chief Engineer
New York, NY 10017

National Research Council
Assembly of Engineering
ATTN: Mr. John P. Taylor
2101 Constitution Avenue
Washington, DC 20418

North American Rockwell Corporation
Aerospace and Systems Group
ATTN: Technical Library
6633 Canoga Avenue
Canoga Park, CA 91304

British Aircraft Corporation, Ltd.
GPO Box 77, Filton House
ATTN: J. Wallin, Chief Prop. Engineer
Bristol BS99 7AR
ENGLAND

DOT/Federal Aviation Adminstration
Mike Monroney Aeronautical Center
AFS-581
P.O. Box 25082
Oklahoma City, OK 73125

DOT/Federal Aviation Adminstration
Mike Monroney Aeronautical Center
AFS-580
P.O. Box 25082
Oklahoma City, OK 73125

National Transportation Safety Board
Bureau of Aviation Safety
Engineering Division
ATTN: Mr. Martyn V. Clarke, Asst Chief
Washington, DC 20591

British Aircraft Corporation. Ltd.
ATTN: B. Fletcher
GPO Box 77, Filton House
Bristol BS99 7AR
ENGLAND

Civil Aviation Authority
ATTN: L. R. Wilson
Brabazon House
Redhill, Surrey
ENGLAND

Hawker Siddley Aircraft
ATTN: Technical Library
Hawsidair, Hatfield
ENGLAND

Ministry of Defense
W. J. Moschini, Engines T1, Room 151
St. Giles Court 1-13
St. Giles High St., London WC2H 8LD
ENGLAND

Bristol Siddeley Engines, Ltd.
Aero Division
ATTN: Mr. Geoffrey Morris
Filton Bristol
ENGLAND

Director
Naval Research Laboratory
ATTN: Library, Code 2029 (ONRL)
Washington, DC 20390

Office of Naval Research
ATTN: N. Basdekas
Washington, DC 20360

Commander
Naval Air Systems Command
AIR-954
Department of the Navy
Washington, DC 20361

NASA Langley Research Center
ATTN: Library
Langley Station
Hampton, VA 23365

The Boeing Company
Commercial Airplane Group
ATTN: Technical Library
Seattle, WA 98124

Avco Corporation
Lycoming Division
ATTN: Technical Library
550 Main Street
Stratford, CT 06497

GM Corporation
Allison Division
ATTN: Technical Library
340 White River Parkway
Indianapolis, IN 46296

GM Corporation
Manufacturing Division
Materials and Structures Laboratory
ATTN: Technical Library
Warren, MI 48090

Goodyear Aerospace Corporation
Aero-Structures Marketing
ATTN: Technical Library
Akron, OH 44305

Goodyear Aerospace Corporation
Arizona Division
ATTN: Technical Library
Litchfield Park, AZ 85340

Lockheed California Company
Division of Lockheed Aircraft
Corporation
ATTN: Technical Library
Burbank, CA 91503

Massachusetts Institute of Technology
ATTN: Aero Library
Aeroelastic and Structures Research Lab
Cambridge, MA 02139

University of Notre Dame
ATTN: L. H. N. Lee
Department of Aeromechanical
Engineering
Notre Dame, IN 46556

The Pennsylvania State University
ATTN: B. W. McCormick
Department of Aerospace Engineering
233 Hammond
University Park, PA 16802

Battelle Memorial Institute
Columbus Laboratory
ATTN: Technical Library
505 King Avenue
Columbus, OH 43201

Beech Aircraft Corporation
ATTN: Technical Library
9709 East Central
Wichita, KS 67201

Aeronautical Research Association
of Princeton
ATTN: Technical Library
50 Washington Road
Princeton, NJ 08540

Garrett Turbine Engine Company
ATTN: Technical Library
402 South 36th Street
Phoenix, AZ 85034

University of West Virginia
ATTN: Technical Library
College of Engineering
Morgantown, WV 26505

Garrett Turbine Engine Company
ATTN: K. K. Sorenson
Starters and Air Turbine Motors
402 South 36th Street
Phoenix, AZ 85034

Garrett Turbine Engine Company
ATTN: D. G. Furst
Auxiliary Power Units
402 South 36th Street
Phoenix, AZ 85034

Garrett Turbine Engine Company
ATTN: Mr. Alvin R. Finklestein
Department 93-7, Adv. Prop. Eng.
402 South 36th Street
Phoenix, AZ 85034

Marquardt Corporation
ATTN: Technical Library
16555 Saticoy Street
Van Nuys, CA 91405

Commanding Officer
U. S. Army Aviation Material Lab
Fort Eustis, VA 23604

U.S. Army Materials Research Agency
Watertown Arsenal
ATTN: Mr. Kenneth Abbott
Chief Engineer, Materials Branch
Watertown, MA 02172

Hamilton Standard, Division of UACC
ATTN: Mr. Gerry Moltar
Mechanical Mettalurgist Technical
Staff, Testing and Analysis
Windsor Locks, CT 06096

General Electric Company
CF6 Engine Structures & Contain. Design
ATTN: J. G. Simon
Aircraft Engineering Group
Cincinnati, OH 45215

General Electric Company
TF39 Service Engineering
ATTN: H. O. Russell
Mail Zone F211
Cincinnati, OH 45215

Lockheed California Company
L1011 Structures
ATTN: Mr. Warren Stauffer
Building 90
Burbank, CA 91503

General Electric Company
Commercial Jet Engine Operation
GE Containment Program
ATTN: Mr. Gordon Oxx, Metallurgist
Cincinnati, OH 45215

General Electric Company
SAED Advanced Applicaitons
1000 Western Avenue
ATTN: Mr. W. A. Harris, Manager
West Lynn, MA 09105

Cornell Aeronautical Lab, Inc.
Applied Physics Department
ATTN: Paul Rosenthal
Head Engineer
Buffalo, NY 14221

ASD (ASQ/ASNYY-QJ)
C-5A Propulsion and Power Division
ATTN: Mr. Phillip H. Evans
Wright-Patterson Air Force Base
Dayton, OH 45433

Cornell Aeronautical Lab, Inc.
ATTN: Dr. Norman S. Eiss, Jr.
Research Mechanical Manager
Applied Physics Department
Buffalo, NY 14221

Air Force Flight Dynamics Laboratory
ATTN: R. M. Bader, FDTR
Wright-Patterson Air Force Base
Dayton, OH 45433

**Arnold Engineering Development Center
Headquarters (AFSC)
ARO, Inc.
Arnold Air Force Station
Tullahoma, TN 37389**

**Office of Naval Research
Keysign House, 429 Oxford Street
ATTN: Technical Library
London, W.I.
ENGLAND**

**General Electric Company
Structures Design
ATTN: Technical Library
Cincinnati, OH 45215**

**Pratt and Whitney Aircraft
of Canada, Ltd.
ATTN: Technical Library
P.O. Box 186
Highgate Springs, VT 05460**

**Republic Steel Corporation
Special Metals Division
ATTN: Technical Library
410 Oberlin Avenue, SW.
Massillon, OH 44646**

**Safety Research Information Service
Research Depart., Nat'l Safety Council
ATTN: Ms. Therese A. Quirk
425 North Michigan Avenue
Chicago, IL 60611**

**Sandia Corporation
ATTN: Information Dist. Division
Albuquerque, NM 87115**

**Southwest Research Institute
ATTN: Technical Library
8500 Culebra Road
San Antonio, TX 78206**

**Office of Naval Research
Branch Office
P.O. Box 39
FPO, NY 09510**

**Douglas Aircraft Company
3855 Lakewood Boulevard
ATTN: Technical Library
MC 36-84
Long Beach, CA 90846**

**Chief of Naval Material
Code MAT-03L
Department of the Navy
Washington, DC 20361**

**General Electric Company
1000 Western Avenue
ATTN: Technical Library
West Lynn, MA 09105**

**Hamilton Standard
Division of United Aircraft Corporation
ATTN: Technical Library
Windsor Locks, CT 06096**

**Director
Applied Technology Laboratory
U.S. Army Mobility R&D Lab
SAVDL-EU-TAP
Fort Eustis, VA 23604**

**Commanding General
U.S. Army Aviation Systems Command
AMSAV-ERD
12th and Spruce Streets
St. Louis, MO 63166**

**North American Rockwell Corporation
Aerospace and Systems Group
ATTN: Technical Library
6633 Canoga Avenue
Canoga Park, CA 91304**

**National Gas Turbine Establishment
ATTN: Dr. E. Glenny, Materials Depart.
Pyestock, Farnsborough
Hants
ENGLAND**

**U.S. Nuclear Regulatory Commission
ATTN: Mr. Ross Chappell
Transportation Branch
Bethesda, MD 20555**

Picatinny Arsenal
ATTN: Allen M. Shibley
Specialist
Plastics Technical Evaluation Center
Dover, NJ 07801

DOT/Federal Aviation Administration
Mike Monroney Aeronautical Center
Mr. Dale Crawford, AFS-500
P.O. Box 25082
Oklahoma City, OK 73125

Rolls-Royce (1971) Limited
ATTN: D. J. S. Lancaster
Bristol Engineering Division
P.O. Box 3, Filton, Bristol BS12 7QE
ENGLAND

Bendix Corporation
Utica Division
ATTN: Technical Library
211 Steward Avenue
Utica, NY 13503

Texas A&M University
ATTN: Technical Library
Department of Aerospace Engineering
College Station, TX 77843

Boston University College of Engineering
ATTN: Technical Library
11C Cummings Street
Boston, MA 02215

The City College of the University of
New York
ATTN: S. B. Menkes
Department of Mechanical Engineering
New York, NY 10031

NASA Lewis Research Center
MS 500-302
21000 Brookpark Road
Cleveland, OH 44135

Air Force Systems Command
Structures Division
Design Criteria Branch (Code FDTE)
Wright-Patterson Air Force Base
Dayton, OH 45433

NASA, Office of Advanced Research
and Technology
ATTN: W. S. Aiken (RAO), Room 6242
800 Independence Avenue
Washington, DC 20546

Canadair Ltd.
ATTN: W. P. Ewanchyna
P.O. Box 6087, Station A
Montreal, Quebec H3C3G9
CANADA

DOT/FAA National Headquarters
Mr. Tom Horeff, AWS-120
800 Independence Avenue, SW.
Washington, DC 20591

ASF-1 - Office of Aviation Safety

AST-1 - Office of Science & Advanced
Technology

APM-1 - Program Engineer & Maintenance
Service

AVS-1 - Associate Administrator for
Aviation Standards

AWS-1 - Office of Airworthiness

AWS-1 - Aircraft Engineering Division

END

8-87

DTIC