# House Sales in King County, USA

Submitted on February 20, 2022

Shareable Link

#### **PROMPT**

Question 1) Display the data types of each column using the attribute *dtypes*, then take a screenshot and submit it, include your code in the image.

Display the data types of each column



df.dtypes

**RUBRIC** 

1 a) Does the assignment use the data attribute **dtypes** to get the data type and display the following image

Unnamed: 0 int64 id int64 date object price float64 float64 bedrooms bathrooms float64 sqft\_living int64 int64 sqft\_lot floors float64 waterfront int64 view int64 condition int64 grade int64 sqft\_above int64 sqft\_basement int64 yr\_built int64 int64 yr\_renovated zipcode int64 lat float64 long float64 sqft\_living15 int64 sqft\_lot15 int64 dtype: object

O points

No

1 point

Yes

### PROMPT

Question 2) Drop the columns "id" and "Unnamed: 0" from axis 1 using the method drop(), then use the method describe() to obtain a statistical summary of the data. Take a screenshot and submit it, make sure the inplace parameter is set to *True*. Your output should look like this:

LJ

|       | price        | bedrooms     | bathrooms    | sqft_living  | sqft_lot     | floors       | waterfront   | view         | condition    | grade        | sqft_above   | sqft_bas |
|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------|
| count | 2.161300e+04 | 21600.000000 | 21603.000000 | 21613.000000 | 2.161300e+04 | 21613.000000 | 21613.000000 | 21613.000000 | 21613.000000 | 21613.000000 | 21613.000000 | 21613.0  |
| mean  | 5.400881e+05 | 3.372870     | 2.115736     | 2079.899736  | 1.510697e+04 | 1.494309     | 0.007542     | 0.234303     | 3.409430     | 7.656873     | 1788.390691  | 291.5    |
| std   | 3.671272e+05 | 0.926657     | 0.768996     | 918.440897   | 4.142051e+04 | 0.539989     | 0.086517     | 0.766318     | 0.650743     | 1.175459     | 828.090978   | 442.5    |
| min   | 7.500000e+04 | 1.000000     | 0.500000     | 290.000000   | 5.200000e+02 | 1.000000     | 0.000000     | 0.000000     | 1.000000     | 1.000000     | 290.000000   | 0.0      |
| 25%   | 3.219500e+05 | 3.000000     | 1.750000     | 1427.000000  | 5.040000e+03 | 1.000000     | 0.000000     | 0.000000     | 3.000000     | 7.000000     | 1190.000000  | 0.0      |
| 50%   | 4.500000e+05 | 3.000000     | 2.250000     | 1910.000000  | 7.618000e+03 | 1.500000     | 0.000000     | 0.000000     | 3.000000     | 7.000000     | 1560.000000  | 0.0      |
| 75%   | 6.450000e+05 | 4.000000     | 2.500000     | 2550.000000  | 1.068800e+04 | 2.000000     | 0.000000     | 0.000000     | 4.000000     | 8.000000     | 2210.000000  | 560.C    |
| max   | 7.700000e+06 | 33.000000    | 8.000000     | 13540.000000 | 1.651359e+06 | 3.500000     | 1.000000     | 4.000000     | 5.000000     | 13.000000    | 9410.000000  | 4820.0   |

Drop the columns "id" and "Unnamed: 0" from axis 1



df.drop(["Unnamed: 0","id"], axis = 1, inplace = True) df.describe()

#### **RUBRIC**

Question 2) Does the assignment drop the columns "id" and "Unnamed: 0"

use the method describe() to obtain a statistical summary of the dataframe and produce the result. Note the missing collumns

|       | price        | bedrooms     | bathrooms    | sqft_living  | sqft_lot     | floors       | waterfront   | view         | condition    | grade        | sqft_above   | sqft_bas |
|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------|
| count | 2.161300e+04 | 21600.000000 | 21603.000000 | 21613.000000 | 2.161300e+04 | 21613.000000 | 21613.000000 | 21613.000000 | 21613.000000 | 21613.000000 | 21613.000000 | 21613.0  |
| mean  | 5.400881e+05 | 3.372870     | 2.115736     | 2079.899736  | 1.510697e+04 | 1.494309     | 0.007542     | 0.234303     | 3.409430     | 7.656873     | 1788.390691  | 291.5    |
| std   | 3.671272e+05 | 0.926657     | 0.768996     | 918.440897   | 4.142051e+04 | 0.539989     | 0.086517     | 0.766318     | 0.650743     | 1.175459     | 828.090978   | 442.5    |
| min   | 7.500000e+04 | 1.000000     | 0.500000     | 290.000000   | 5.200000e+02 | 1.000000     | 0.000000     | 0.000000     | 1.000000     | 1.000000     | 290.000000   | 0.0      |
| 25%   | 3.219500e+05 | 3.000000     | 1.750000     | 1427.000000  | 5.040000e+03 | 1.000000     | 0.000000     | 0.000000     | 3.000000     | 7.000000     | 1190.000000  | 0.0      |
| 50%   | 4.500000e+05 | 3.000000     | 2.250000     | 1910.000000  | 7.618000e+03 | 1.500000     | 0.000000     | 0.000000     | 3.000000     | 7.000000     | 1560.000000  | 0.0      |
| 75%   | 6.450000e+05 | 4.000000     | 2.500000     | 2550.000000  | 1.068800e+04 | 2.000000     | 0.000000     | 0.000000     | 4.000000     | 8.000000     | 2210.000000  | 560.C    |
| max   | 7.700000e+06 | 33.000000    | 8.000000     | 13540.000000 | 1.651359e+06 | 3.500000     | 1.000000     | 4.000000     | 5.000000     | 13.000000    | 9410.000000  | 4820.0   |
| C     | 0 pc         | oints        |              |              |              |              |              |              |              |              |              |          |
| •     | 2 nc         | oints        |              |              |              |              |              |              |              |              |              |          |

0 1 point

Partially complete

Yes

2 points

# **PROMPT**

Question 3) use the method value\_counts to count the number of houses with unique floor values, use the method .to\_frame() to convert it to a dataframe. Your output should look like this :

|     | floors |
|-----|--------|
| 1.0 | 10680  |
| 2.0 | 8241   |
| 1.5 | 1910   |
| 3.0 | 613    |
| 2.5 | 161    |
| 3.5 | 8      |

Υ

use the method value\_counts to count the number of houses with unique floor values



df['floors'].value\_counts().to\_frame()

## **RUBRIC**

Question 3) does the assignment use the method **value\_counts** to count the number of houses with unique floor values, then produce the following plot:

|     | floors |
|-----|--------|
| 1.0 | 10680  |
| 2.0 | 8241   |
| 1.5 | 1910   |
| 3.0 | 613    |
| 2.5 | 161    |
| 3.5 | 8      |
|     |        |

O points

No

1 pointYes

O.5 points

They used the method **value\_counts** on the correct column but did not produce the plot.

### **PROMPT**

Question 4) use the function *boxplot* in the seaborn library to produce a plot that can be used to determine whether houses with a waterfront view or without a waterfront view have more price outliers. Your output should look like this with the code that produced it (the colors may be different):



use the function boxplot in the seaborn library to produce a plot

Use the function boxplot in the seaborn library to determine whether houses price outliers.



sns.set\_style("whitegrid") sns.boxplot(x = 'waterfront', y = 'price', data = df)
RUBRIC

Question 4) was the following plot produced:



O points

1 point
 Yes

### **PROMPT**

Question 5) Use the function *regplot in* the seaborn library to determine if the feature sqft\_above is negatively or positively correlated with price. Take a screenshot of the plot and the code used to generate it.

Your output should look like this with the code that produced it :



Use the function regplot in the seaborn library to determine

# Use the function regplot in the seaborn library to determine if the feature

sns.regplot(x = 'sqft\_above', y = 'price', data = df)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f9705404c10>



sns.regplot(x = 'sqft\_above', y = 'price', data = df)

**RUBRIC** 

Question 5) Was the following plot produced?



O points

No

1 point

### **PROMPT**

Yes

Question 6) Fit a linear regression model to predict the price using the feature 'sqft\_living' then calculate the R^2. Take a screenshot of your code and the value of the R^2.

Fit a linear regression model to predict the price

```
Fit a linear regression model to predict the 'price' using the feature 'sqft_living' and the value of the R^2.

[25] X = df[['sqft_living']]
    Y = df['price']
    lm.fit(X,Y)
    lm.score(X,Y)

0.4928532179037931
```

 $X = df[['sqft_living']] Y = df['price'] Im.fit(X,Y) Im.score(X,Y)$ 

**RUBRIC** 

Question 6) Was a linear regression model fit and a R^2 of approximately 0.49285 calculated?

O points
No

2 points
Yes

1 point
Partially complete

### **PROMPT**

Question 7) Fit a linear regression model to predict the 'price' using the list of features:

- "floors"
- "waterfront"
- "lat"
- "bedrooms"
- "sqft\_basement"
- "view"
- "bathrooms"
- "sqft\_living15"
- "sqft\_above"
- "grade"
- "sqft\_living"

The calculate the R^2. Take a screenshot of your code and the value of the R^2.

# Fit a linear regression model to predict the 'price' using the list of features



X = df[features] Y = df['price'] Im.fit(X,Y) Im.score(X,Y)

### **RUBRIC**

Question 7) Was a linear regression model fit and a R^2 of approximately 0.657695 calculated?



Question 8) Create a pipeline object that scales the data performs a polynomial transform and fits a linear regression model. Fit the object using the features in the question above, then fit the model and calculate the R^2. Take a screenshot of your code and the R^2.

There are some hints in the notebook

Create a pipeline object that scales the data performs a polynomial transform and fits a linear regression model



pipe=Pipeline(Input) pipe.fit(X,Y) pipe.score(X,Y)

**RUBRIC** 

Question 8) Was an R^2 of approximately 0.75133 calculated?

| 0 | 0 points           |    |
|---|--------------------|----|
|   | No                 |    |
|   |                    |    |
| • | 2 points           | LJ |
|   | Yes                |    |
|   |                    |    |
| 0 | 1 point            |    |
|   | Partially complete |    |

# PROMPT

Question 9) Create and fit a Ridge regression object using the training data, setting the regularization parameter to 0.1 and calculate the R^2 using the test data. Take a screenshot for your code and the R^2

Create and fit a Ridge regression object

```
▼ Question 9
Create and fit a Ridge regression object using the training data, set the regularization parameter to 0.1, and calculate the R^2 using the test data.
[29] from sklearn.linear_model import Ridge
[30] RigeModel=Ridge(alpha=0.1)
RigeModel.fit(x_train, y_train)
RigeModel.score(x_test, y_test)
0.64787591639399114
```

RigeModel=Ridge(alpha=0.1) RigeModel.fit(x\_train, y\_train) RigeModel.score(x\_test, y\_test)

**RUBRIC** 

Question 9) Was the R^2 of approximately 0.647?

| • | 1 point  Partially complete | LJ |
|---|-----------------------------|----|
|   |                             |    |
|   | Yes                         |    |
| 0 | 2 points                    |    |
|   |                             |    |
|   | No                          |    |
| 0 | 0 points                    |    |
|   |                             |    |

### **PROMPT**

Question 10) Perform a second order polynomial transform on both the training data and testing data. Create and fit a Ridge regression object using the training data, setting the regularisation parameter to 0.1. Calculate the R^2 utilising the test data provided. Take a screenshot of your code and the R^2.

Perform a second order polynomial transform on both the training data and testing data

|           | ynomialFeatures(degree=2) x_train_pr = pr.fit_transform(x_train) x_test_pr = pr.fit_transform(x_test)<br>del=Ridge(alpha=0.1) RigeModel.fit(x_train_pr, y_train) RigeModel.score(x_test_pr, y_test)   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RUBRIC    |                                                                                                                                                                                                       |
| Questior  | n 10) Was the R^2 of approximately 0.7?                                                                                                                                                               |
| 0         | 0 points                                                                                                                                                                                              |
|           | No                                                                                                                                                                                                    |
| •         | 1 point LJ                                                                                                                                                                                            |
|           | Yes                                                                                                                                                                                                   |
| PROMPT    |                                                                                                                                                                                                       |
| Share th  | e link for your notebook                                                                                                                                                                              |
| House S   | Sales in King County, USA                                                                                                                                                                             |
|           | ave credit card for IBM Cloud. so I did the project on Google Collaboratory. Please feel free to check the ere: https://colab.research.google.com/drive/17fR_KgeEst5GIUC742bHAjE-LbjZfzKK?usp=sharing |
| RUBRIC    |                                                                                                                                                                                                       |
| Did the ι | user share their notebook?                                                                                                                                                                            |
| 0         | 0 points                                                                                                                                                                                              |
|           | No                                                                                                                                                                                                    |
| •         | 3 points                                                                                                                                                                                              |
|           | Yes                                                                                                                                                                                                   |
|           |                                                                                                                                                                                                       |
|           |                                                                                                                                                                                                       |
|           |                                                                                                                                                                                                       |