

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Laboratório de Algoritmos e Técnicas de Programação

Observações:

- Cópias serão desconsideradas, ou seja, a nota será igual a 0 (zero).
- Implemente os programas utilizando a linguagem C#.
- Na resolução dos exercícios só podem ser utilizados comandos vistos nas aulas.
- Escreva um programa que leia dois valores m e n, corresponde ao número de linhas e colunas de uma matriz de inteiros. Preencha a matriz (os valores podem ser lidos do teclado ou gerados automaticamente). Em seguida calcule e imprima o número de linhas e o número de colunas nulas da matriz.
- Exemplo: m = 4 e n = 4

$$\begin{pmatrix}
1 & 0 & 2 & 3 \\
4 & 0 & 5 & 6 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

• A matriz tem 2 linhas nulas e 1 coluna nula

Lista de Exercícios 06 - Matrizes

- 01. Considere uma matriz de $n \times n$ elementos, onde n será informado pelo usuário. Preencha a matriz (os valores podem ser lidos do teclado ou gerados automaticamente). Calcule e imprima:
 - a) A soma de cada linha;
 - b) A soma de cada coluna;
 - c) A soma dos elementos da diagonal principal da matriz;
 - d) A soma dos elementos da diagonal secundária.

Exemplos:

- 02. Elabore um programa que preencha duas matrizes de *n x m* elementos, onde *n* e *m* serão informados pelo usuário. Preencha as duas matrizes (os valores podem ser lidos do teclado ou gerados automaticamente). Em seguida, o programa deve verificar e imprimir se as duas matrizes são iguais, isto é, possuem os mesmos valores em cada posição.
- 03. Desenvolva um programa que:
 - Preencha uma matriz 10x10 (os valores podem ser lidos do teclado ou gerados automaticamente)
 - Imprima a matriz gerada;
 - Modifique os elementos que estão na diagonal principal da matriz: cada posição da diagonal principal deve receber a raiz quadrada do valor que consta naquela posição;
 - Imprima a matriz modificada.

matriz original

	2		
9	1	3	
4	81	6	
10	13	16	

matriz modificada

3	1	3
4	9	6
10	13	4

- 04. Faça programa que preencha uma matriz 3 x 6 com valores reais (os valores podem ser lidos do teclado ou gerados automaticamente)
 - (a) Imprima a soma de todos os elementos das colunas pares (0, 2, 4).
 - (b) Imprima a média aritmética dos elementos das colunas 3 e 5.
 - (c) Substitua os valores da coluna 5 pela soma dos valores das colunas 1 e 2. Imprima a matriz modificada.
- 05. Escreva um programa que preencha com números inteiros uma matriz com 500 linhas e 500 colunas (os valores podem ser lidos do teclado ou gerados automaticamente). Em seguida, verifique e imprima se a matriz é um quadrado mágico.

Dizemos que uma matriz é um quadrado mágico se a soma dos elementos de cada linha, a soma dos elementos de cada coluna e a soma dos elementos das diagonais principal e secundária são todas iguais.

Exemplo:

$$\begin{bmatrix}
2 & 7 & 6 \\
9 & 5 & 1 \\
4 & 3 & 8
\end{bmatrix}
\rightarrow$$

$$\downarrow
\downarrow
\downarrow
\downarrow
\downarrow$$
15 15 15 15 15

06. Elabore um programa que leia uma matriz 4 x 4 e indique se é uma matriz triangular superior. Matriz triangular superior é uma matriz onde todos os elementos abaixo da diagonal principal são iguais a zero. Exemplo:

5	4	99	8	
0	7	13	0	
0	0	`.1	6	
0	0	0	-2	
			``	A
				Diagonal principal

07. Escreva um programa que leia dois valores m e n, corresponde ao número de linhas e colunas de uma matriz de inteiros. Preencha a matriz (os valores podem ser lidos do teclado ou gerados automaticamente). Em seguida calcule e imprima o número de linhas e o número de colunas nulas da matriz.

Exemplo: m = 4 e n = 4

A matriz tem 2 linhas nulas e 1 coluna nula.

08. Implemente o Jogo da velha. Para tanto, crie uma matriz de char com 3 linhas e 3 colunas. O programa deve seguir os seguintes passos:

- Ler jogada do jogador 1 (linha e coluna). O jogador 1 deve ser representado por X.
- Imprimir a matriz após a jogada
- Verificar se o jogador 1 venceu (Verificar linhas, colunas, diagonal principal e diagonal secundária)
- Ler jogada do jogador 2 (linha e coluna). O jogador 2 deve ser representado por O.
- Imprimir a matriz após a jogada
- Verificar se o jogador 2 venceu (Verificar linhas, colunas, diagonal principal e diagonal secundária)

Esses passos devem ser repetidos até um jogador vencer ou ocorrer empate (9 jogadas foram feitas e nenhum jogador venceu). Ao final, o programa deve informar qual jogador venceu ou se ocorreu empate. **Exemplo do jogo da velha:** https://g.co/kgs/aWMEJk