Лекция 1 Об архитектуре вычислительных систем

Ефимов Александр Владимирович E-mail: alexander.v.efimov@sibguti.ru

Курс «Архитектура вычислительных систем» СибГУТИ, 2020

О курсе «Архитектура вычислительных систем»

34 часа лекций (17 пар)
34 часа практических занятий (17 пар, 10 работ)
Расчетно-графическая работа (РГЗ)

Оценка посещаемости и успеваемости через ЭИОС

- лекции: переход по ссылке из ЭИОС
- практика: своевременная загрузка отчетов по практическим работам в ЭИОС
- РГЗ своевременная загрузка ответа на удовлетворительную оценку (до 28.12.2020 г)

вопросы?

Вводная лекция

Кто планирует работать по специальности?

М - Мотивация

Причины не делания

- Отсутствие понимания цели/результата
- Отсутствие понимания способа достижения
- Отсутствие ресурсов для достижения
- Отсутствие мотивации

Работа с сотрудниками

Потребности в ИКТ кадрах (05.2020)

IT CLUB

http://carlcheo.com/startcoding

Что в тренде?

ЦИФРОВИЗАЦИ

- **Р. Коуз «Природа фирмы» (1937 год).** Трансформационные и транзакционные издержки бизнеса.
- **Д. Тапскотт «Цифровая экономика» (1995 год).** Интернет-технологии позволяют существенно снизить транзакционные издержки: поиск, электронная торговля, коммуникации, социальные сети.
- Г. Чесбро «Открытые инновации» (2001 год). Открытое лицензирование. Бесплатный доступ для изучения, модернизации и некоммерческого использования. Накопление научно-технических результатов интеллектуальной деятельности.
- Ф. Фукуяма «Доверие» (2005 год). Доверие к партнерам снижает издержки.
- C. Накамото «Bitcoin: A Peer-to-Peer Electronic Cash System» (2008 год). Попытка замены доверия к личности или общественному институту доверием к алгоритму.
- М. ван Альстин «Революция платформ» (2012 год). Платформа снижает издержки.

Микросервисная архитектура - подход к разработке программного обеспечения, основанный на использовании распределённых, слабо связанных заменяемых модулей, оснащённых стандартизированными интерфейсами и протоколами взаимодействия.

Гартнер, 2015 год. Объектом экономических отношений становится отдельный алгоритм, реализованный в виде модуля или графа.

Добавочная стоимость

"Smiley Face": conceptual model of the shift to a high value added, globally integrated, services economy

Научно-технические парадигмы

Четыре научно-технические парадигмы

Непосредственный опыт

Аналитические зависимости Имитационные модели

Большие данные

Биряльцев Е.В. и др. «Экономика алгоритмов Экосистема прикладного применения высокопроизодительных вычислений» (НСКФ-2019)

- Абстрактное/инженерное мышление
- Научное/инженерное знание
- Фундаментальная/прикладная наука
- Переход от физических задач к математическим
- Научные направления
- Системный анализ

Основы системного анализа

- Понятия
- Объект
- Знаки
- Операции

Понятие архитектуры

Под архитектурой понимается полная и детальная спецификация интерфейса «ЭВМ»-«Пользователь».

IBM (1960-е годы)

Архитектура ЭВМ — это совокупность свойств и характеристик ЭВМ, призванных удовлетворить потребности пользователей

Архитектура вычислительного средства — это концепция взаимосвязи и функционирования его аппаратурных (Hardware) и программных (Software) компонентов

Понятие о ВС

Вычислительная система — средство обработки информации, базирующееся на модели коллектива вычислителей, т.е. на структурной и функциональной имитации деятельности коллектива людей-вычислителей

Вычислительная система — совокупность взаимосвязанных и одновременно функционирующих аппаратурно-программных вычислителей, которая способна не только реализовать (параллельный) процесс решения сложной задачи, но и априори и в процессе работы автоматически настраиваться и перестраиваться с целью достижения адекватности между своей структурно-функциональной организацией и структурой и характеристиками решаемой задачи.

Сферы применения вычислительных систем

Application Area System Share

Сферы применения вычислительных систем

Application Area Performance Share

Сегменты потребителей вычислительных систем

Segments System Share

Сегменты потребителей вычислительных систем

Segments Performance Share

Примеры применения

- Предсказания погоды, климата и глобальных изменений в атмосфере
- Науки о материалах
- Построение полупроводниковых приборов
- Сверхпроводимость
- Структурная биология
- Разработка фармацевтических препаратов
- Генетика человека
- Квантовая хромодинамика
- Астрономия
- Транспортные задачи
- Гидро- и газодинамика
- Управляемый термоядерный синтез
- Эффективность систем сгорания топлива
- Разведка нефти и газа
- Вычислительные задачи наук о мировом океане
- Разпознавание и синтез речи
- Разпознавание изображений

Цифровой мир

Цифровое производство

- Цифровые двойники, тени
- 3 уровня моделирования
- Примеры

Инженерная модель ISO «умного» города

Общий доступ Корпоративный Управление ситемой				
Интеллектуальный уровень приложения Учинов			C	
Умное Умный Умное здраво- Умный Умный Государство транспорт образование _{охранение} дом студ.городок		0	Система эксплуатации и обслуживания	
Уровень поддержки данных и услуг		NC.	Ma	
Поддержка услуг	5	истема	HE	
Сбор услуг Управление Объединение Потребление услуг услуг услуг	Система	15108	спл	
Поддержка данных	1960	мен	ıya:	
Сбор и агреги- Интеграция и обра- Интеллектуальный Управление и рование данных ботка данных сбор и анализ администрирование	без	едж	гаці	
Фундаментальные данные Общие данные обмена Данные приложения Интернет-данные	безопасности		ии	
Уровень вычислений и хранения	£	мента	10	
Вычислительные Ресурсы хранения Программные ресурсы ресурсы	1100	0.5	бсл	
Уровень сетевой связи				
Открытые сети Частные сети		качества	ива	
Уровень сбора данных				
Датчик RFID-метки Актуатор Камера			B	

API-as-a-Service

Новейшие инициативы

DARPA (Управление перспективных исследовательских проектов МО США)

Проект PAPPA (Performant Automation of Parallel Program Assembly — высокопроизводительная автоматизация создания параллельных программ) стремится разработать новые подходы к программированию, которые позволили бы исследователям и разработчикам приложений создавать эффективные программы для запуска на высокопараллельных и гетерогенных системах.

Конечная цель: увеличить производительность ряда задач в 10 000 раз

История

Системный стек

Характеристики вычислительных систем

Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband

Site:	D0E/SC/Oak Ridge National Laboratory
System URL:	http://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
Manufacturer:	IBM
Cores:	2,414,592
Memory:	2,801,664 GB
Processor:	IBM POWER9 22C 3.07GHz
Interconnect:	Dual-rail Mellanox EDR Infiniband
Performance	
Linpack Performance (Rmax)	148,600 TFlop/s
Theoretical Peak (Rpeak)	200,795 TFlop/s
Nmax	16,473,600
HPCG [TFlop/s]	2,925.75
Power Consumption	
Power:	10,096.00 kW (Submitted)
Power Measurement Level:	3
Measured Cores:	2,397,824
Software	
Operating System:	RHEL 7.4
Compiler:	XLC, nvcc
Math Library:	ESSL, CUBLAS 9.2
MPI:	Spectrum MPI

Литература

Хорошевский В.Г. Архитектура вычислительных систем.

Учебное пособие. – М.: МГТУ им. Н.Э. Баумана, 2005; 2-е издание, 2008.

Хорошевский В.Г. Инженерные анализ функционирования вычислительных машин и систем. – М.: "Радио и связь", 1987.