HEART: Heterogeneous Relation-Aware Transformer for EHR

Tinglin Huang, Rohan Krishna Thakur, Meili Gupta, Vimig Socrates,
David van Dijk, R. Andrew Taylor, Rex Ying

Electronic Health Record (EHR) Data

- EHR includes the information of an encounter by digitizing the medical information
 - Demography, Diagnosis, Medication, Lab results, Procedures
- It is a hierarchical structures
 - One patient has multiple encounters, and one encounter includes a range of medical entities

Foundation Models for EHR (1)

- EHR allows us to develop healthcare applications with computational methods
 - Such as automatic diagnosis and health outcome prediction
- There are over 3,100,000 concepts in the medical language system
 - Diagnosis code, medicine type, ...
 - It will be very helpful if we can embed the concept into a representation
- Foundation models have demonstrated their effectiveness in medical domains

Foundation Models for EHR (2)

- Foundation model treats medical entities as tokens and organize the entities included in the encounters as sentences
- Pretrain Transformer with self-supervised objective
 - Masked token prediction (MTP)
- Fine-tune the model for different downstream tasks

BEHRT and Med-BERT: Related Work

- For example, BEHRT and Med-BERT
 - They organize the diagnosis entities as a sentence and feed it to Transformer
 - The number of visits and demography is used as the positional encoding

	Vis	it 1		Visit 3		
Input sequence	Diag1	Diag2	Diag3	Diag4	Diag5	Diag6
	+	+	+	+	+	+
#visit	0	0	1	1	1	2
	+	+	+	+	+	+
Age	26	26	28	28	28	30

ExBEHRT: Related Work

- A recent work ExBEHRT utilizes different modalities within the modeling
 - Lab test, Medication, ...
 - By adding representations of other modalities to diagnosis representations

Challenges with Current Models

- However, current models fall short of utilizing the heterogeneous correlations inherent between medical entities
 - BEHRT, Med-BERT: focus merely on encoding diagnoses
 - ExBEHRT: encode different modalities in the same representation space
- Exploiting how entities interact with each other in the heterogeneous space enables the model to perform complex reasoning
 - E.g., the relationship between "Antibiotics" (medication) and both "Fever" (diagnosis) and "Antibody Tests: Positive" (lab test)

Our Proposed Solution: HEART

- HEART, a heterogeneous relation-aware Transformε Medication for EHR
 - Code Structure Embedding
 - Heterogeneous Relation Embedding
 - The pairwise relation between each pair of entities is parameterized as an embedding
 - Multi-Level Attention Scheme
 - Alternatively perform encoding across entity level and encounter level
 - Pretraining Task
 - Adapt the masked token prediction objective to the positionagnostic missing entity prediction task
 - Introduce anomaly detection as an additional objective

HEART: Input representation (1)

- ${f \cdot}$ Given a patient, we flatten the corresponding historical visits into several sequences of entities V
 - ullet Apply patient's demography D as [CLS] token and add it to each sequence

- $V_{i,n}$ is n-th token at i-th encounter
- The combination of age and gender, e.g., "<20, man>", is treated as demography token

HEART: Input representation (2)

An illustrative example

HEART: Code Structure Embedding (1)

Medical concepts often function as tree-like classification systems:

Such code underscores the interconnectedness of medical concepts

HEART: Code Structure Embedding (2)

- Given a diagnosis or medication entity, we divide its embedding into three segments, each associated with one of these code levels
 - Diagnosis: ICD-9, Medicine: ATC

HEART: Heterogeneous Relation Embedding (1)

- Encode relationship between entities with pairwise representation
- The input includes token embedding and pairwise representations
 - $N \times D$ and $N \times N \times D$

HEART: Heterogeneous Relation Embedding (2)

- We incorporate relation embeddings within model, which captures and encodes the heterogeneous correlation between entities
- For an entity pair (V_n, V_m) in the same encounter, we apply type-specific transformation:

$$R_n = \operatorname{Linear}_{\tau(V_n)}(V_n), \ R_m = \operatorname{Linear}_{\tau(V_m)}(V_m)$$

- Differentiating between the heterogeneous semantics of different type pairs
- Then we combine these two embeddings to generate the relational embedding for the entity pair

$$R_{n \leftarrow m} = \operatorname{Linear}(R_n || R_m)$$

HEART: Multi-level attention scheme

- Although more heterogeneous entities introduce rich semantic information, the computational cost increases quadratically
- Self-attention is alternately applied across these two levels, effectively increasing the receptive fields for each entity
 - Entity-level: Biased Self-Attention Module
 - Encounter-level: Self-Attention solely on Demography tokens

HEART: Entity-Level Biased Self-Attention Module

 As for entity-level context, we focus on encoding the entity within the same visit

$$\left[D', V'_1, \dots, V'_N\right] = \text{Entity-Attn}\left(\left[D, V_1, \dots, V_N\right]\right)$$

 We incorporate the heterogeneous information from the relation embeddings, which serves as a bias term:

Attention score between
$$n$$
-
th and m -th entities
$$A_{nm} = \operatorname{Softmax}_{n} \left(\frac{1}{\sqrt{d}} V_{n}^{qryT} V_{m}^{key} + b_{nm} \right)$$

Relation embedding will also serve as context

$$V'_n = \operatorname{Linear}\left(\operatorname{LN}\left(\sum_m A_{nm}V^{val}_m||\sum_m A_{nm}R_{n\leftarrow m}\right)\right) + V_n$$

HEART: Entity-Level Biased Self-Attention Module

- Applying relation embedding as bias can directly prioritize or deprioritize certain connections
 - Illustrative example:


```
Algorithm 2: Entity-Level Biased Self-Attention Module
 Input: Entity embeddings [D, V_1, \dots, V_N] from the same
           encounter, Relation embeddings for each entity pair
           \{R_{n\leftarrow m}\mid n,m\leq N\}.
 Hyper-parameters: Hidden size d
 Output: Updated entity embeddings D, V'_1, \dots, V'_N
 for every entity n do
      // OKV Linear transformer over all the entities.
      V_n^{qry} = \text{Linear}^{qry}(V_n)
      V_n^{key} = \text{Linear}^{key}(V_n)
      V_n^{val} = \operatorname{Linear}^{val}(V_n)
 for every entity pair (n, m) do
      // Calculate bias based on the relation embedding.
      b_{nm} = \operatorname{Linear}(R_{n \leftarrow m})
      // Calculate the biased attention map.
     A_{nm} = \left(\frac{1}{\sqrt{d}}V_n^{qry}V_m^{key} + b_{nm}\right)
 end
 A = Softmax(A)
 for every entity n do
      // Aggregation.
     V'_n = \operatorname{Linear}\left(\operatorname{LN}(A_{nm}V^{val}_n||A_{nm}R_{n\leftarrow m})\right) + V_n
 end
 return D, V'_1, \cdots, V'_N
```

HEART: Encounter-Level Self-Attention Module

We limit the attention to demography tokens across encounters

$$\left[D'_1, \cdots, D'_S\right] = \text{Enc-Attn}\left(\left[D_1, \cdots, D_S\right]\right)$$

• Besides standard self-attention mechanism, we incorporate order of visits as a position encoding in the query and key transformations:

$$D_i^{qry} = \text{Linear}(D_i + t_i), D_i^{key} = \text{Linear}(D_i + t_i)$$

• t_i is the embedding for i-th visit

HEART: Missing Entity Prediction (1)

- Masked token prediction (MTP)
 - Replaces actual tokens with [MASK] and performs single-label classification at each masked position to predict the original token
 - Position-dependent and thus not suitable for EHR due to the unordered nature of medical entities

HEART: Missing Entity Prediction (2)

- Missing entity prediction (MEP)
 - Randomly drop some entities and let the model perform multi-label classification based on one [MASK] for each entity type
 - Position-agnostic and heterogeneity-aware

HEART: Anomaly Detection Task

- EHR data often contain noise due to human input errors
 - Incorrect data can significantly impact billing and coverage decisions
- We incorporate anomaly detection as our pretrained task to encourage the model to identify unrelated entities given a context
 - Randomly replace some entities with the entities of the same type
 - Let the model predict whether the tokens are anomalies

HEART: Pretrained Tasks Overview

Experiments

- Two EHR datasets
 - MIMIC-III and eICU
- Pipeline
 - Pretrain the model with 70% patients
 - Finetune the model with only 20% of the remaining datasets and conduct evaluation
- Downstream tasks
 - Death prediction
 - Prolonged length of stay (PLOS) prediction
 - Readmission prediction
 - Next Diagnosis Prediction in 6/12 months

	MIMIC-III	eICU
#patients	33,582	86,290
#encounter	40,770	100,839
#diagnosis	1,998	903
#medication	149	2044
#procedure	801	n/a
#lab	1,500	756
avg # of visits	1.214	1.169
max # of visits	15	24
avg # of diagnosis	10.765	3.344
avg # of medication	11.248	24.036
avg # of procedure	4.459	n/a
avg # of lab	41.592	39.779

Experiments

- Comparison results
 - On the eICU dataset, the model can only perform death and PLOS prediction since it lacks sequential information

Dataset T	Task	G-BERT		BEHRT		Med-BERT		ExBEHRT		HEART		
	Task	F1	AUC	F1	AUC	F1	AUC	F1	AUC	F1	AUC	
	Death	0.6452	0.8546	0.6491	0.8449	0.6606	0.8543	0.6338	0.8420	0.7238	0.9029	1 9.5%
MIMIC-III	PLOS	0.6957	0.6988	0.6852	0.7081	0.7240	0.7617	0.7410	0.8036	0.7572	0.8222	1 2.2%
	Readmission	0.6043	0.6473	0.6475	0.7563	0.6631	0.7559	0.6511	0.7514	0.6968	0.7881	1 5.0%
eICU	Death	0.7580	0.9059	0.6287	0.8039	0.6069	0.7950	0.6286	0.8049	0.8049	0.9333	1 6.2%
	PLOS	0.6997	0.8240	0.5060	0.6356	0.4423	0.6355	0.5261	0.6509	0.7125	0.8373	1.8%

Dataset Task	G-BERT		BEHRT		Med-BERT		ExBEHRT		HEART			
Dataset	Task	Precision	PRAUC	Precision	PRAUC	Precision	PRAUC	Precision	PRAUC	Precision	PRAUC	
MIMIC-III	6 Months	0.2668	0.1490	0.3637	0.1733	0.4225	0.1854	0.2006	0.1541	0.4867	0.1911	↑ 15.1%
WIIIWIIC-III	12 Months	0.3382	0.1666	0.4019	0.1855	0.3803	0.1906	0.3015	0.1682	0.4546	0.2004	↑ 13.1%

Further Study

Ablation study

	Death		PL	OS	Readmission		Diagnosis (6M)	
	F1	AUC	F1	AUC	F1	AUC	Precision	PRAUC
HEART	0.7238	0.9029	0.7527	0.8222	0.6968	0.7881	0.4867	0.1911
w/o Relation Embedding	0.6707	0.8510	0.7238	0.7744	0.6758	0.7791	0.4455	0.1867
w/o Multi-Level Attention	0.7217	0.9014	0.7518	0.8185	0.6079	0.7492	0.4219	0.1849
w/o Anomaly Detection	0.7138	0.8965	0.7439	0.7879	0.6889	0.7813	0.4413	0.1830

- Performance on different patient groups
 - Patients w/ and w/o past encounters

 Performance with different finetuning data ratio

Case Study on Relation Embedding

Conclusion

- We propose HEART, a pretrained language model for structured EHR data
 - 1) HEART seamlessly integrates heterogeneous medical entity information and captures their pairwise relationships through relation embedding
 - 2) An efficient encoding scheme is proposed
 - 3) The model is pretrained with two tasks, which is more suitable to EHR
 - 4) Results on 5 downstream tasks using 2 datasets demonstrate its effectiveness