Decision Frameworks

Description: Strategic guidance for choosing the right agent patterns, tools, and deployment options

Purpose: Master strategic decision-making for ADK implementation - when to use which patterns, tools, and deployment strategies.

Source of Truth:

google/adk-python/src/google/adk/ (https://github.com/google/adk-python/tree/main/src/google/adk/)
(ADK 1.15) + production case studies

Table of Contents

- 1. Pattern Selection Framework (#pattern-selection-framework)
- 2. Choose the right agent type
- 3. Tool Selection Matrix (#-tool-selection-matrix)
- 4. Function vs OpenAPI vs MCP tools
- 5. Performance Optimization (#-performance-optimization)
- 6. Cost vs speed trade-offs
- 7. Deployment Strategy (#-deployment-strategy-matrix)
- 8. Choose local, cloud, or managed deployment
- 9. Security & Compliance (#-security--compliance)
- 10. Protect agents and data
- 11. Monitoring & Observability (#-monitoring--observability)
- 12. Track performance in production
- 13. Implementation Checklist (#-implementation-checklist)
- 14. Step-by-step deployment guide

Pattern Selection Framework

Agent Type Decision Tree

When to Use Each Agent Type

Agent Type	When to Use	Example Use Cases
LLM Agent	Single-step tasks, pure reasoning	Q&A, analysis, simple classification
SequentialAgent	Ordered dependencies, pipeline workflows	Data processing \rightarrow analysis \rightarrow reporting
ParallelAgent	Independent tasks, speed optimization	Multi-source data collection, parallel analysis
LoopAgent	Iterative refinement, quality improvement	Code review, content editing, optimization

Function Tools vs OpenAPI vs MCP

Tool Decision Criteria

Criteria	Function Tools	OpenAPI Tools	MCP Tools
Development Speed	Fastest	Medium	Slowest
Maintenance	Highest	Medium	Lowest
Flexibility	Maximum	Limited	Medium
Interoperability	None	Limited	Maximum
Security	Custom	API Keys	Built-in

Performance Optimization

Cost vs Speed Trade-offs

Model Selection Guide

Use Case	Recommended Model	Reasoning
Fast Responses	gemini-2.0-flash	Speed optimized, cost effective
Complex Reasoning	gemini-2.0-flash- thinking	Built-in chain-of-thought
Code Generation	gemini-2.0-flash	Strong coding capabilities
Multimodal	gemini-2.0-flash	Vision, audio, video support
Live Interaction	gemini-2.0-flash-live	Real-time streaming

№ Deployment Strategy Matrix

Environment Selection

Deployment Decision Factors

Factor	Local	Cloud Run	Agent Engine	GKE
Setup Time	Fastest	Fast	Medium	Slowest
Scaling	Manual	Automatic	Automatic	Automatic
Cost	Free	Pay-per-use	Pay-per-use	Infrastructure
Customization	Maximum	Limited	Limited	Maximum
Monitoring	Basic	Basic	Advanced	Advanced

Security & Compliance

Data Handling Strategy

State Scope Guidelines

Data Type	Recommended Scope	Retention	Encryption
User Preferences	user:	Permanent	Always
Session Context	session:	Session	Optional
Temporary Data	temp:	Request	Optional
Application Config	арр:	Permanent	Always
Sensitive PII	user:	Permanent	Required

Monitoring & Observability

Alert Thresholds

Key Metrics to Monitor

• Performance: Latency, throughput, error rates

• Cost: Token usage, API costs, infrastructure costs

• Quality: Task completion rates, user satisfaction

• Reliability: Uptime, error recovery, fallback success

Templementation Checklist

Pre-Production Validation

- [] Agent configuration tested with realistic data
- [] Tool integrations verified end-to-end
- [] Error handling covers all failure modes
- [] Performance benchmarks meet requirements
- [] Security review completed
- [] Cost estimates validated
- [] Monitoring and alerting configured
- [] Rollback plan documented

Production Readiness

- [] Load testing completed
- [] Disaster recovery tested
- [] Documentation updated
- [] Team training completed
- [] Support processes established
- [] Compliance requirements met

© Key Takeaways

- 1. Pattern Selection: Match agent types to task complexity and dependencies
- 2. Tool Choice: Balance development speed vs long-term maintenance
- 3. Performance: Optimize for cost, speed, or quality based on priorities
- 4. **Deployment**: Choose environment based on scale and customization needs
- 5. **Security**: Use appropriate state scopes and encryption for data sensitivity
- 6. Monitoring: Establish clear thresholds and comprehensive observability

 ${\color{red} \wp}$ Next: Follow structured <u>Learning Paths (learning-paths.md)</u> to master ADK development.

Generated on 2025-10-21 09:03:20 from decision-frameworks.md

Source: Google ADK Training Hub