The GAME Engineers

#3 - Logik und Java-Eingaben

Inhalt

- Aussagenlogik
- Einführung
- Anwendung
- Eingaben in Java

Aussagenlogik - Einführung: Elementaraussagen

Def.: Eine **Aussage** ist ein sprachliches Gebilde, dem eindeutig ein Wahrheitswert (**wahr** oder **falsch**) zugeordnet werden kann.

• Ulm liegt in Baden-Württemberg.

• Die Luft ist dünn.

• Dieser Satz ist falsch.

Der Pudding schmeckt nach Vanille.

Marvin pass auf.

Aussagenlogik - Einführung: Elementaraussagen

Sind folgende Aussagen wahr oder falsch?

$$3 < 5 \rightarrow \text{wahr}$$

$$7 > 10$$
 \rightarrow falsch

$$110_2 = 6_{10} \rightarrow \text{wahr}$$

Das Quadrat einer geraden natürlichen Zahl ist wieder gerade.

→ wahr, Beweis? Übung!

Apropos Beweis: Beweisen ist nichts anderes, als aus einer wahren Aussage durch **logische** Schlussfolgerungen die Wahrheit eines neuen Satzes abzuleiten.

Aussagenlogik - Einführung: verknüpfte Aussagen

- Elementaraussagen lassen sich verknüpfen, aber wie?
- UND / AND / Konjunktion
- ODER (inklusiv) / OR / Disjunktion
- XODER (exklusiv) / XOR / Antivalenz
- NICHT / NOT / Negation
- (Implikation)
- (Äquivalenz)
- Wahrheitswerte durch Regeln feststellbar

Aussagenlogik - Einführung: NICHT / NOT / Negation

Ulm liegt in Baden-Württemberg.

München ist Hauptstadt von Deutschland.

Aussagen mit NICHT:

Ulm liegt NICHT in Baden-Württemberg.

München ist NICHT Hauptstadt von Deutschland.

Aussagenlogik - Einführung: NICHT / NOT / Negation

Aussagen:

3 < 5

Negierte Aussagen:

 $3 \ge 5$

10 > 10

$$10 \le 10$$

$$\overline{A} = Y$$

1 + 2 = 3

$$1+2 \neq 3$$

$$101_2 < 6_{10}$$

101_{2}	>	6_{10}
$\mathbf{ror}_{\mathbf{Z}}$	_	OIO

Α	Υ
0	1
1	0

Aussagenlogik - Einführung: UND / AND / Konjunktion

Ulm liegt in Baden-Württemberg und München ist Hauptstadt von Deutschland.

Aussagen:

1) Ulm liegt in Baden-Württemberg.

2) München ist Hauptstadt von Deutschland

UND

Aussagenlogik - Einführung: UND / AND / Konjunktion

$$1+2=3 \text{ UND } 5-2=3$$

\boldsymbol{A}	Λ	B	=	Y
4 1	/ \	$\boldsymbol{\mathcal{L}}$		_

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

Aussagenlogik - Einführung: ODER (inklusiv) / OR / Disjunktion

Ulm liegt in Baden-Württemberg oder München ist Hauptstadt von Deutschland.

Aussagen:

1) Ulm liegt in Baden-Württemberg.

2) München ist Hauptstadt von Deutschland.

Aussagenlogik - Einführung: ODER (inklusiv) / OR / Disjunktion

$$1 + 2 = 3$$
 ODER $5 - 4 = 3$

$$5 > 7 \text{ ODER } 7 < 5$$

$$5 + 3 = 8 \text{ ODER } 7 > 2$$

\boldsymbol{A}	\/	B	=	Y
\mathbf{A}	V	ப	_	1

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

Aussagenlogik - Einführung: ODER (exklusiv) / XOR / Antivalenz

Ulm liegt in Baden-Württemberg oder München ist Hauptstadt von Deutschland.

Aussagen:

1) Ulm liegt in Baden-Württemberg.

2) München ist Hauptstadt von Deutschland.

Aussagenlogik - Einführung: ODER (exklusiv) / XOR / Antivalenz

$$1 + 2 = 3 \text{ XODER } 5 - 4 = 3$$

$$5 + 3 = 8 \text{ XODER } 7 > 2$$

A	\bigoplus	B	=	Y
	$\overline{\mathbf{v}}$	_		_

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

Aussagenlogik - Übersicht

Name	NICHT /	NOT	UND / A	UND / AND		ODER / OR		XODER / XOR							
Funktion	$\overline{A} =$	Y	$A \wedge$	B	=Y		1	$4 \vee$	<i>B</i> =	= <i>Y</i>	Į.	1 +	<i>B</i> =	= <i>Y</i>	
Symbol	A — 1	0-Y	А — В	&	— ү			А — В —	≥1	_ ү		А — В —	=1	J-Y	
Wahrheits tabelle	A 0 1	Y 1 0	0 0 1	B 0 1 0	Y 0 0 0 1			A 0 0 1	B 0 1 0	Y 0 1 1 1 1		A 0 0 1 1	B 0 1 0	Y 0 1 1 0	-

Boole'sche Funktion:

$$f^F: \{0,1\}^n \to \{0,1\}^n$$

$$f^F: \{0,1\}^n \to \{0,1\}$$

$$f^F(b_1, b_2, \dots, b_n) = \begin{cases} 1 & \text{falls Interpretation wahr} \\ 0 & \text{sonst} \end{cases}$$

Aussagenlogik - Rechenregeln

• Kommutativität: $A \wedge B = B \wedge A$

$$A \lor B = B \lor A$$

• UND vor ODER: $A \wedge (B \vee C) \neq A \wedge B \vee C$

Analog zu: $a \cdot (b+c) \neq a \cdot b + c$ "Punkt vor Strich"

• De Morgan'sche Regeln: $\overline{A \wedge B} = \overline{A} \vee \overline{B}$

$$\overline{A \vee B} = \overline{A} \wedge \overline{B}$$

• Weitere: Assoziativ, Distributiv, etc.

Aussagenlogik - Anwendung: Schaltalgebra / Digitaltechnik

Halb-Addierer:

- RS-FF, JK-FF, T-FF, ...
- Speicherbausteine
 → RAM-Speicher

Wie addiere ich Binärzahlen?

1001

$$+1101$$
 $=10110$

х	у	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Aussagenlogik - Anwendung: Schaltalgebra / Digitaltechnik

The forging engineers

Aussagenlogik - Anwendung: Programmierung

Praxis

Eingaben in Java - Scanner

```
import java.util.Scanner;
public class ScannerDemo
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.println("Geben Sie Ihren Namen ein:");
        String name = scanner.next();
        System.out.println("Geben Sie Ihr Alter an:");
        byte alter = scanner.nextByte();
        boolean minderjaehrig = alter < 18;
        System.out.println("Ihre Eingabe:");
        System.out.println("Name: " + name);
        System.out.println("Alter: " + alter);
        System.out.println("Minderjährig: " + minderjaehrig);
        scanner.close();
```


String	next()
String	<pre>next(String pattern)</pre>
String	<pre>next(Pattern pattern)</pre>
BigDecimal	<pre>nextBigDecimal()</pre>
BigInteger	<pre>nextBigInteger()</pre>
BigInteger	<pre>nextBigInteger(int radix)</pre>
boolean	nextBoolean()
byte	nextByte()
byte	<pre>nextByte(int radix)</pre>
double	nextDouble()
float	nextFloat()
int	<pre>nextInt()</pre>
int	<pre>nextInt(int radix)</pre>
String	<pre>nextLine()</pre>
long	nextLong()
long	<pre>nextLong(int radix)</pre>
short	nextShort()
short	<pre>nextShort(int radix)</pre>

Eingaben in Java - Scanner

Praxis

Ende

Fragen?

