Trabajo Final

Tema: Dinámica de Circuitos

Cátedra: Teoría de Circuitos II

Año: 2020

Docentes: Ing. Costa, Nicolás. Aux. Consiglio, Dante

Alumnos: Rodriguez, Ana Victoria. Ulloa, Daniel Alejandro

Fecha de Entrega: 11/02/2020

Índice

1.	Introducción	2
2.	Guía de Problemas	2

1. Introducción

2. Guía de Problemas

- 1 Escribir las ecuaciones de estado de un circuito formado por un inductor L en paralelo con un capacitor C. Obtener la solucion en términos de la corriente inicial del inductor $i_L(0)$ y del voltaje inicial del capacitor $v_C(0)$. Mostrar que la trayectoria es una elipse en el espacio de estados.
- **2** Mostrar que los valores propios del circuito de la Figura 2 son $-1 \pm j$. Encontrar la solución completa para condiciones iniciales arbitrarias y una excitación arbitraria E(t). Sea C=1F, L=1H, $R_1=R_2=1\Omega$. Graficar la trayectoria de la solución homogénea para dos condiciones iniciales en el espacio de estados.

3 Para el circuito de la Figura 2, $C_1 = C_2 = C_3 = 1F$, $R_1 = R_2 = 1\Omega$. Mostrar que los valores propios son -1 y $-\frac{1}{3}$. Asumir que la excitación $E(t) = 10\cos(\omega t)$. Encontrar la respuesta de estado estacionario.

4 En el circuito de la figura, sea $v_{out}(t)$ el voltaje a traves de la resistencia R_2 y $E(t) = 2e^-2t$ para t'0 y E(t) = 0 caso contrario. Mostrar que:

$$contenidos...$$
 (1)

5 La fuente E(t) del circuito de la figura se define como $E(t) = 1V \ \forall t \leq 0$ y caso contrario E(t) = 0. Mostrar que el valor a través de la resistencia R_2 para t'0 es

$$v_2(t) = \frac{1}{2}e^{-t} + \frac{\sqrt{3}}{3}e^{-\frac{t}{2}}\sin\frac{\sqrt{3}}{3}t\tag{2}$$

Los valores de los elementos son $R_1=R_2=1\Omega, C_1=C_2=1F$ y L=2H. Graficar la salida $v_2(t)$ para el intervalo de tiempo $0 \le t \le 10s$.

- 6 Aplicar el metodo $Backward\ Euler$ para resolver las ecuaciones de estado del problema anterior siendo $E(t) = \sin t + r(t)$ dónde r(t) es un ruido aleatorio cuya amplitud se encuentra uniformemente distribuida en el rango [-0.1, 0.1]. Graficar la salida.
- 7 En el circuito de la figura, suponer que el voltaje inicial del capacitor C_1 es 1V, y que todas las condiciones iniciales restante son nulas. Mostrar que el voltaje a traves de g_4 para todo t'0 está dado por la siguiente ecuación:

$$v_{4n}(t) = 0.225e^{\alpha t}\cos\beta t - 0.0087e^{\alpha t}\sin\beta t - 0.1434e^{\lambda_3 t} - 0.0791e^{\lambda_4 t}$$
(3)