正規分布モデルの共役事前分布によるベイズ統計

- 黒木玄
- 2022-09-03~2022-09-06

目次

```
▼ 1 正規分布モデルの共役事前分布とその応用
          <u>1.1 逆ガンマ</u>正規分布
          1.2 共役事前分布のBayes更新
          1.3 µの周辺事前・事後分布および事前・事後予測分布
          1.4 Jeffreys事前分布の場合
          1.5 Jeffreys事前分布の場合の結果の数値的確認
          1.6 平均と対数分散について一様な事前分布の場合
          1.7 平均と対数分散について一様な事前分布の場合の結果の数値的確認
          1.8 通常の信頼区間と予測区間との比較
          1.9 データの数値から事前分布を決めた場合
          1.10 n = 5 では適応事前分布の場合と無情報事前分布の場合の結果が結構違う。
          1.11 n = 20 ではデフォルト事前分布の場合と無情報事前分布の場合の結果が近付く.
          1.12 n = 20 で事前分布とデータの数値の相性が悪い場合
          1.13 n = 200 で事前分布とデータの数値の相性が悪い場合
          1.14 n = 2000 で事前分布とデータの数値の相性が悪い場合
          1.15 n = 20000 で事前分布とデータの数値の相性が悪い場合
In [1]: 1 ENV["COLUMNS"] = 120
        3 using Distributions
        4 using LinearAlgebra
        5 using Random
        6 using StatsPlots
        7 default(fmt=:png, size=(500, 350),
              titlefontsize=10, tickfontsize=6, guidefontsize=9,
              plot_titlefontsize=10)
       10 using SymPy
       11 using Turing
In [2]:
        1 # Override the Base.show definition of SymPy.jl:
        2 # https://github.com/JuliaPy/SymPy.jl/blob/29c5bfd1d10ac53014fa7fef468bc8deccadc2fc/src/types.
          deval SymPy function Base.show(io::IO, ::MIME"text/latex", x::SymbolicObject)
              print(io, as_markdown("\\displaystyle " *
        5
        6
                     sympy.latex(x, mode="plain", fold_short_frac=false)))
        7
          @eval SymPy function Base.show(io::IO, ::MIME"text/latex", x::AbstractArray{Sym})
              function toeqnarray(x::Vector{Sym})
                  a = join(["\\displaystyle " *
       10
                  sympy.latex(x[i]) for i in 1:length(x)], "\\\")
"""\\left[ \begin{array}{r}$a\\end{array} \\right]"""
       11
       12
       13
              end
       14
              function toeqnarray(x::AbstractArray{Sym,2})
       15
                 sz = size(x)
                 16
       17
       18
       19
              end
       20
              print(io, as_markdown(toeqnarray(x)))
       21 end
```

```
In [3]: 1 # One sample t-test
               3 function pvalue_ttest(\bar{x}, s<sup>2</sup>, n, \mu)
                          t = (\bar{x} - \mu)/\sqrt{(s^2/n)}
               4
                           2ccdf(TDist(n-1), abs(t))
               6
               7
                    function pvalue_ttest(x, \mu)

\bar{x}, s^2, n = mean(x), var(x), length(x)

pvalue_ttest(\bar{x}, s^2, n, \mu)
               9
              10
              11
              12
              function confint_ttest(\bar{x}, s<sup>2</sup>, n; \alpha = 0.05)

c = quantile(TDist(n-1), 1-\alpha/2)
              15
                           [\bar{x} - c*\sqrt{(s^2/n)}, \bar{x} + c*\sqrt{(s^2/n)}]
              16 end
              17
              18 function confint_ttest(x; \alpha = 0.05)
                           \bar{x}, s^2, n = mean(x), var(x), length(x) confint_ttest(\bar{x}, s^2, n; \alpha)
              19
              20
              21 end
```

Out[3]: confint_ttest (generic function with 2 methods)

Out[4]: preddist_ttest (generic function with 2 methods)

```
In [5]:
        1 # Jeffreys事前分布などのimproper事前分布を定義するために以下が使われる.
            .....
         3
         4
                PowerPos(p::Real)
           The *positive power distribution* with real-valued parameter `p` is the improper distribution
         7
            of real numbers that has the improper probability density function
            ```math
 9
 10 f(x) = \ \{cases\}
 11 0 & \\text{if } x \\leq 0, \\\
 x^p & \\text{otherwise}.
 \\end{cases}
 13
 14
 15
 16 | struct PowerPos{T<:Real} <: ContinuousUnivariateDistribution
 17
 18
 end
 19
 PowerPos(p::Integer) = PowerPos(float(p))
 20
 21
 Base.minimum(d::PowerPos{T}) where T = zero(T)
 22
 Base.maximum(d::PowerPos{T}) where T = T(Inf)
 23
 Base.rand(rng::Random.AbstractRNG, d::PowerPos) = rand(rng) + 0.5
 24
 25
 function Distributions.logpdf(d::PowerPos, x::Real)
 26
 T = float(eltype(x))
 27
 return x \le 0? T(-Inf): d.p*log(x)
 28
 29
 30
 Distributions.pdf(d::PowerPos, x::Real) = exp(logpdf(d, x))
 31
 32
 # For vec support
 33 | function Distributions.loglikelihood(d::PowerPos, x::AbstractVector{<:Real})
 34
 T = float(eltype(x))
 return any(xi \leq 0 for xi in x) ? T(-Inf) : d.p*log(prod(x))
 35
 36
 37
 38 (ddoc PowerPos
```

Out[5]: PowerPos(p::Real)

The *positive power distribution* with real-valued parameter p is the improper distribution of real numbers that has the improper probability density function

$$f(x) = \begin{cases} 0 & \text{if } x \le 0, \\ x^p & \text{otherwise.} \end{cases}$$

Out[6]: MyInverseGamma (generic function with 1 method)

## 1 正規分布モデルの共役事前分布とその応用

## 1.1 逆ガンマ正規分布

平均  $\mu \in \mathbb{R}$ , 分散  $v = \sigma^2 \in \mathbb{R}_{>0}$  の正規分布の確率密度函数を次のように表す:

$$p_{\text{Normal}}(y|\mu, v) = \frac{1}{\sqrt{2\pi v}} \exp\left(-\frac{1}{2v}(y-\mu)^2\right) \quad (y \in \mathbb{R}).$$

分散パラメータ  $\sigma^2$  を v に書き直している理由は,  $\sigma^2$  を1つの変数として扱いたいからである.

パラメータ  $\kappa, \theta > 0$  の逆ガンマ分布の確率密度函数を次のように書くことにする:

$$p_{\text{InverseGamma}}(v|\kappa,\theta) = \frac{\theta^{\kappa}}{\Gamma(\kappa)} v^{-\kappa-1} \exp\left(-\frac{\theta}{v}\right) \quad (v > 0).$$

v がこの逆ガンマ分布に従う確率変数だとすると.

$$\frac{1}{v} \sim \operatorname{Gamma}\left(\kappa, \frac{1}{\theta}\right) = \frac{1}{2\theta} \operatorname{Gamma}\left(\frac{2\kappa}{2}, 2\right) = \frac{1}{2\theta} \operatorname{Chisq}(2\kappa),$$

$$E[v] = \frac{\theta}{\kappa - 1}, \quad \operatorname{var}(v) = \frac{E[v]^2}{\kappa - 2}.$$

A と B が  $\mu, v$  に関する定数因子の違いを除いて等しいことを  $A \propto B$  と書くことにする.

逆ガンマ正規分布の密度函数を次のように定義する:

$$p_{\text{InverseGammaNormal}}(\mu, \nu | \mu_*, \nu_*, \kappa, \theta) = p_{\text{Normal}}(\mu | \mu_*, \nu_* \nu) p_{\text{InverseGamma}}(\nu | \kappa, \theta)$$

$$\propto \nu^{-(\kappa + 1/2) - 1} \exp\left(-\frac{1}{\nu} \left(\theta + \frac{1}{2\nu_*} (\mu - \mu_*)^2\right)\right).$$

この逆ガンマ正規分布の密度函数に従う確率変数を  $\mu, v$  と書くと,

$$E[v] = \frac{\theta}{\kappa - 1}$$
,  $var(v) = \frac{E[v]^2}{\kappa - 2}$ ,  $cov(\mu, v) = 0$ ,  $E[\mu] = \mu_*$ ,  $var(\mu) = v_* E[v]$ .

この逆ガンマ正規分布が正規分布の共役事前分布になっていることを次の節で確認する

### 1.2 共役事前分布のBayes更新

データの数値  $y_1, \ldots, y_n$  が与えられたとき, 正規分布モデルの尤度函数は

$$\prod_{i=1}^{n} p_{\text{Normal}}(y_i | \mu, v) \propto v^{-n/2} \exp \left( -\frac{1}{2v} \sum_{i=1}^{n} (y_i - \mu)^2 \right)$$

の形になる. このとき.

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2.$$

とおくと,

$$\sum_{i=1}^{n} (y_i - \mu)^2 = n(\mu - \bar{y})^2 + n\hat{\sigma}^2$$

なので、尤度を最大化する  $\mu, v$  は  $\mu = \bar{y}, v = \hat{\sigma}^2$  になることがわかる.

さらに、次が成立することもわかる:

$$\begin{split} & \prod_{i=1}^{n} p_{\text{Normal}}(y_{i} | \mu, \upsilon) \times p_{\text{InverseGammaNormal}}(\mu, \upsilon | \mu_{*}, \upsilon_{*}, \kappa, \theta) \\ & \propto \upsilon^{-n/2} \exp \left( -\frac{n}{2\upsilon} \left( (\mu - \bar{y})^{2} + \hat{\sigma}^{2} \right) \right) \times \upsilon^{-(\kappa + 1/2) - 1} \exp \left( -\frac{1}{\upsilon} \left( \theta + \frac{1}{2\upsilon_{*}} (\mu - \mu_{*})^{2} \right) \right) \\ & = \upsilon^{-(\kappa + n/2 + 1/2) - 1} \exp \left( -\frac{1}{\upsilon} \left( \theta + \frac{n}{2} \left( \hat{\sigma}^{2} + \frac{(\bar{y} - \mu_{*})^{2}}{1 + n\upsilon_{*}} \right) + \frac{1 + n\upsilon_{*}}{2\upsilon_{*}} \left( \mu - \frac{\mu_{*} + n\upsilon_{*}\bar{y}}{1 + n\upsilon_{*}} \right)^{2} \right) \right). \end{split}$$

ゆえに共役事前分布から得られる事後分布のパラメータは次のようになる:

$$\begin{split} \tilde{\kappa} &= \kappa + \frac{n}{2} = \frac{n}{2} \left( 1 + \frac{2\kappa}{n} \right), \\ \tilde{\theta} &= \theta + \frac{n}{2} \left( \hat{\sigma}^2 + \frac{(\bar{y} - \mu_*)^2}{1 + n v_*} \right) = \frac{n \hat{\sigma}^2}{2} \left( 1 + \frac{2\theta}{n \hat{\sigma}^2} + \frac{(\bar{y} - \mu_*)^2}{(1 + n v_*) \hat{\sigma}^2} \right), \\ \tilde{\mu}_* &= \frac{\mu_* + n v_* \bar{y}}{1 + n v_*} = \bar{y} \frac{1 + \mu_* / (n v_* \bar{y})}{1 + 1 / (n v_*)}, \\ \tilde{v}_* &= \frac{v_*}{1 + n v_*} = \frac{1}{n} \frac{1}{1 + 1 / (n v_*)}. \end{split}$$

```
In [7]: 1 | function bayesian_update(\mustar, vstar, \kappa, \theta, n, \bar{y}, \hat{\sigma}^2)
 \mu star_new = (\mu star/vstar + n*\bar{y})/(1/vstar + n)
 vstar_new = 1/(1/vstar + n)
 \kappa_{\text{new}} = \kappa + n/2
 \theta_{\rm new} = \theta + (n/2)*(\hat{\sigma}^2 + ((\bar{y} - \mu star)^2/v star)/(1/v star + n)) \mu star_{\rm new}, v star_{\rm new}, \kappa_{\rm new}, \theta_{\rm new}
 7
 function bayesian_update(μstar, vstar, κ, θ, y)
 n, \bar{y}, \hat{\sigma}^2 = length(y), mean(y), var(y; corrected=false)
 bayesian_update(\mustar, vstar, \kappa, \theta, n, \bar{y}, \hat{\sigma}^2)
 11
 12
 end
 Out[7]: bayesian_update (generic function with 2 methods)
 In [8]: 1 @vars n ȳ v̂ μ ν μ0 ν0 κ θ
 Out[8]: (n, \bar{y}, \hat{v}, \mu, v, \mu_0, v_0, \kappa, \theta)
 In [9]: 1 | negloglik = n/2*log(v) + n/(2v)*((\mu - \bar{y})^2 + \hat{v})
 Out[9]:
 \frac{n\log(v)}{2} + \frac{n\left(\hat{v} + \left(-\bar{y} + \mu\right)^2\right)}{2}
In [10]:
 1 |\text{neglogpri}| = (\kappa + 1//2 + 1)*|\log(v)| + 1/v*(\theta + 1/(2v\theta)*(\mu-\mu\theta)^2)
Out[10]:
 \left(\kappa + \frac{3}{2}\right)\log\left(\upsilon\right) + \frac{\theta + \frac{\left(\mu - \mu_0\right)^2}{2\upsilon_0}}{\upsilon}
 1 neglogpost = (\kappa + n/2 + 1//2 + 1)*log(v) + 1/v*(
In [11]:
 \theta + n/2*(\hat{v} + 1/(1+n*v\theta)*(\bar{y} - \mu\theta)^2) +
 (1 + n*v0)/(2v0)*(\mu - (\mu 0 + n*v0*\bar{y})/(1 + n*v0))^2
Out[11]:
 \left(\frac{n}{2} + \kappa + \frac{3}{2}\right) \log(v) + \frac{\frac{n\left(\hat{v} + \frac{(\bar{v} - \mu_0)^2}{nv_0 + 1}\right)}{2} + \theta + \frac{\left(\mu - \frac{nv_0\bar{v} + \mu_0}{nv_0 + 1}\right)^2(nv_0 + 1)}{2v_0}}{v_0}
In [12]: 1 simplify(negloglik + neglogpri - neglogpost)
Out[12]: 0
In [13]: 1 bayesian_update(\mu0, \nu0, \kappa, \theta, n, \bar{y}, \hat{v}) \triangleright collect
Out[13]:
```

#### 1.3 µの周辺事前・事後分布および事前・事後予測分布

確率密度函数

$$p(\mu|\mu_*, v_*, \kappa, \theta) = \int_{\mathbb{R}_{>0}} p_{\text{InverseGammaNormal}}(\mu, v|\mu_*, v_*, \kappa, \theta) \, dv$$

で定義されるμの周辺事前分布は次になる:

$$\mu \sim \mu_* + \sqrt{\frac{\theta}{\kappa} v_*} \text{ TDist}(2\kappa).$$

確率密度函数

$$p_*(y_{\text{new}}|\mu_*, v_*, \kappa, \theta) = \iint_{\mathbb{R} \times \mathbb{R}_{>0}} p_{\text{Normal}}(y_{\text{new}}|\mu, v) p_{\text{InverseGammaNormal}}(\mu, v|\mu_*, v_*, \kappa, \theta) d\mu dv$$

で定義される  $y_{\text{new}}$  の事前予測分布は次になる:

$$y_{\text{new}} \sim \mu_* + \sqrt{\frac{\theta}{\kappa}(1 + v_*)} \text{ TDist}(2\kappa).$$

パラメータをBayes更新後のパラメータ

$$\begin{split} \tilde{\kappa} &= \kappa + \frac{n}{2} = \frac{n}{2} \left( 1 + \frac{2\kappa}{n} \right), \\ \tilde{\theta} &= \theta + \frac{n}{2} \left( \hat{\sigma}^2 + \frac{(\bar{y} - \mu_*)^2}{1 + n v_*} \right) = \frac{n \hat{\sigma}^2}{2} \left( 1 + \frac{2\theta}{n \hat{\sigma}^2} + \frac{(\bar{y} - \mu_*)^2}{(1 + n v_*) \hat{\sigma}^2} \right), \\ \tilde{\mu}_* &= \frac{\mu_* + n v_* \bar{y}}{1 + n v_*} = \bar{y} \frac{1 + \mu_* / (n v_* \bar{y})}{1 + 1 / (n v_*)}, \\ \tilde{v}_* &= \frac{v_*}{1 + n v_*} = \frac{1}{n} \frac{1}{1 + 1 / (n v_*)}. \end{split}$$

に置き換えればこれは u の周辺事後分布および事後予測分布になる。

その事後分布を使った区間推定の幅は

- n が大きいほど狭くなる.
- κが大きいほど狭くなる。
- $\theta$  が大きいほど広くなる.
- $|\bar{y} \mu_*|/\hat{\sigma}$  が大きいほど広くなる.
- $|\bar{y} \mu_*|/\hat{\sigma}$  が大きくても,  $v_*$  がさらに大きければ狭くなる.

In [14]: 1 posterior\_ $\mu(\mu star, vstar, \kappa, \theta) = \mu star + \sqrt{(\theta/\kappa * vstar) * TDist(2\kappa)}$  preddist( $\mu star, vstar, \kappa, \theta$ ) =  $\mu star + \sqrt{(\theta/\kappa * (1 + vstar)) * TDist(2\kappa)}$ 

Out[14]: preddist (generic function with 1 method)

#### 1.4 Jeffreys事前分布の場合

パラメータ空間が  $\{(\mu,v)=(\mu,\sigma^2)\in\mathbb{R}\times\mathbb{R}_{>0}\}$  の 2 次元の正規分布モデルのJeffreys事前分布  $p_{\mathrm{Jeffreys}}(\mu,v)$  は

$$p_{\rm Jeffreys}(\mu, v) \propto v^{-3/2}$$

になることが知られている。 ただし、右辺の  $(\mu,v)\in\mathbb{R} imes\mathbb{R}_{>0}$  に関する積分は  $\infty$  になるので、この場合のJeffreys事前分布は improperである.

逆ガンマ正規分布の密度函数

$$p_{\text{InverseGammaNormal}}(\mu, \nu | \mu_*, \nu_*, \kappa, \theta) \propto v^{-(\kappa + 1/2) - 1} \exp\left(-\frac{1}{\nu}\left(\theta + \frac{1}{2\nu_*}(\mu - \mu_*)^2\right)\right).$$

と比較すると、Jeffreys事前分布に対応する共役事前分布のパラメータ値は形式的に次になることがわかる:

$$\kappa \to 0, \quad \theta \to 0, \quad v_* \to \infty.$$

そのとき、Bayes更新後のパラメータの公式は次のようにシンプルになる:

$$\tilde{\kappa} = \frac{n}{2}, \quad \tilde{\theta} = \frac{n\hat{\sigma}^2}{2}, \quad \tilde{\mu}_* = \bar{y}, \quad \tilde{v}_* = \frac{1}{n}.$$

さらに、前節の公式から、 $n \to \infty$  のとき、一般のパラメータ値に関するBayes更新の結果は、 $n \to \infty$  のとき漸近的にこのJeffreys 事前分布の場合に一致する.

さらに、Jeffreys事前分布の場合には

$$\frac{\tilde{\theta}}{\tilde{\kappa}} = \hat{\sigma}^2, \quad \tilde{v}_* = \frac{1}{n}, \quad 2\tilde{\kappa} = n.$$

ゆえに, μ に関する周辺事後分布は

$$\mu \sim \bar{y} + \frac{\hat{\sigma}}{\sqrt{n}} \text{ TDist}(n)$$

になり、事後予測分布は次になる:

```
y_{\text{new}} \sim \bar{y} + \hat{\sigma} \sqrt{1 + \frac{1}{n}} \text{ TDist}(n).
```

```
In [15]:
 1 prior_jeffreys() = 0.0, Inf, 0.0, 0.0
 3 posterior_\mu_jeffreys(n, \bar{v}, \hat{\sigma}^2) = \bar{v} + \sqrt{(\hat{\sigma}^2/n)*TDist(n)}
 function posterior_µ_jeffreys(y)
 n, ȳ, ô² = length(y), mean(y), var(y; corrected=false)
 posterior_µ_jeffreys(n, ȳ, ô²)
 5
 7
 8
 10 preddist_jeffreys(n, \bar{y}, \hat{\sigma}^2) = \bar{y} + \sqrt{(\hat{\sigma}^2*(1+1/n))*TDist(n)}
 12
 function preddist_jeffreys(y)
 n, \bar{y}, \hat{\sigma}^2 = length(y), mean(y), var(y; corrected=false)
 13
 preddist_jeffreys(n, \bar{y}, \hat{\sigma}^2)
 15 end
Out[15]: preddist_jeffreys (generic function with 2 methods)
In [16]:
 1 \mu_{\text{true}}, \sigma_{\text{true}}, n = 10, 3, 5
 2 @show dist_true = Normal(\mu_true, \sigma_true) n
 3 \mid y = rand(Normal(\mu_true, \sigma_true), n)
 dist_true = Normal(\mu_true, \sigma_true) = Normal{Float64}(\mu=10.0, \sigma=3.0)
 n = 5
Out[16]: 5-element Vector{Float64}:
 13.421461823230711
 10.091318547559782
 9.114689343604514
 8.142099605865505
 12.850119689447698
In [17]: 1 \mid n, \bar{y}, \hat{\sigma}^2 = length(y), mean(y), var(y; corrected=false)
Out[17]: (5, 10.723937801941641, 4.290612291316625)
In [18]: 1 post_\mu = posterior_\mu(bayesian_update(prior_jeffreys()..., y)...)
Out[18]: LocationScale{Float64, Continuous, TDist{Float64}}(
 μ: 10.723937801941641
 σ: 0.926348993772501
 \rho: TDist{Float64}(\nu=5.0)
In [19]: | 1 | posterior_µ_jeffreys(y) ≈ post_µ
```

#### 1.5 Jeffreys事前分布の場合の結果の数値的確認

Out[19]: true

```
In [20]: 1 # プロット用函数
 3 function plot_posterior_\(\mu\)(chn, y, post\(\mu\)_theoretical;
 xlim = quantile.(postµ_theoretical, (0.0001, 0.9999)), kwargs...)
 postu_ttest = posterior_u_ttest(y)
 5
 6
 plot(legend=:outertop)
 7
 if !isnothing(chn)
 8
 stephist!(vec(chn[:µ]); norm=true,
 label="MCMC posterior of \mu", c=1)
 9
 10
 11
 plot!(postu_theoretical, xlim...;
 label="theoretical posterior of \mu", c=2, ls=:dash)
 12
 13
 plot!(postµ_ttest, xlim...;
 label="\bar{y}+\sqrt{(s^2/n)}TDist(n-1)", c=3, ls=:dashdot)
 14
 15
 plot!(; xlim, kwargs...)
 end
 16
 17
 function plot_preddist(chn, y, pred_theoretical; xlim = quantile.(pred_theoretical, (0.0001, 0.9999)), kwargs...) pdf_pred(y_new) = mean(pdf(Normal(\mu, \sqrt{\sigma^2}), y_new)
 for (\mu, \sigma^2) in zip(vec(chn[:\mu]), vec(chn[:\sigma^2])))
 21
 22
 pred_ttest = preddist_ttest(y)
 23
 24
 plot(legend=:outertop)
 25
 if !isnothing(chn)
 26
 plot!(pdf_pred, xlim...; label="MCMC prediction", c=1)
 27
 28
 plot!(pred_theoretical, xlim...;
 label="theoretical prediction", c=2, ls=:dash)
 29
 plot!(pred_ttest, xlim...;
label="\bar{y}+\sqrt{(s^2(1+1/n))}TDist(n-1)", c=3, ls=:dashdot)
 30
 31
 32
 plot!(; kwargs...)
 33 end
Out[20]: plot_preddist (generic function with 1 method)
In [21]:
 @model function normaldistmodel_jeffreys(y)
 \sigma^2 \sim PowerPos(-3/2)
 3
 \mu \sim Flat()
 4
 y ~ MvNormal(fill(\mu, length(y)), \sigma^2 * I)
Out[21]: normaldistmodel_jeffreys (generic function with 2 methods)
In [22]:
 1 \mu_{\text{true}}, \sigma_{\text{true}}, n = 1e4, 1e2, 5
 2 @show dist_true = Normal(\mu_true, \sigma_true) n
 3 \mid y = rand(Normal(\mu_true, \sigma_true), n)
 dist_true = Normal(\mu_true, \sigma_true) = Normal{Float64}(\mu=10000.0, \sigma=100.0)
 n = 5
Out[22]: 5-element Vector{Float64}:
 10046.991358602998
 10090.945260495413
```

10031.966223927362 10049.736827492683 9902.696010134123

```
2 n_threads = min(Threads.nthreads(), 10)
 3 | chn = sample(normaldistmodel_jeffreys(y), NUTS(), MCMCThreads(), L, n_threads);
 L @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC\51xgc\src\hamiltonian.jl:47
 - Warning: The current proposal will be rejected due to numerical error(s).
In [24]:
 1 chn
Out[24]: Chains MCMC chain (100000×14×10 Array{Float64, 3}):
 = 1001:1:101000
 Iterations
 Number of chains = 10
 Samples per chain = 100000
 Wall duration
 = 26.53 seconds
 Compute duration = 240.38 seconds
 parameters
 = \sigma^2, \mu
 internals
 = lp, n_steps, is_accept, acceptance_rate, log_density, hamiltonian_energy, ha
 miltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, no
 m_step_size
 Summary Statistics
 parameters
 mean
 std
 naive_se
 mcse
 ess
 rhat
 ess_per_sec
 Float64
 Float64
 Float64
 Float64
 Float64
 Float64
 Symbol
 Float64
 \sigma^2
 1.0000
 6842.6405
 9896.2407
 9.8962
 18.8615
 268961.4025
 1118.9009
 10024.4777
 37.0518
 0.0371
 0.0625
 338589.4340
 1.0000
 1408.5591
 μ
 Quantiles
 parameters
 2.5%
 25.0%
 50.0%
 75.0%
 97.5%
 Symbol
 Float64
 Float64
 Float64
 Float64
 Float64
 \sigma^2
 1589.0321
 3084.0481
 4695.9500
 7648.9445
 24776.7344
 9950.8760
 10003.7177
 10024.5403
 10045.2740
 10097,9316
```

In [25]: 1 @show confint\_ttest(y);

confint\_ttest(y) = [9935.686679038185, 10113.24759322285]

In [23]:

 $1 L = 10^{5}$ 

```
In [26]: 1 postµ_theoretical = posterior_µ_jeffreys(y)
2 plot_posterior_µ(chn, y, postµ_theoretical)
```

Out[26]:



```
In [27]: 1 pred_theoretical = preddist_jeffreys(y)
2 plot_preddist(chn, y, pred_theoretical)
```

## Out[27]:



## 1.6 平均と対数分散について一様な事前分布の場合

平均  $\mu$  と分数の対数  $\log v = \log \sigma^2$  に関する一様な事前分布は

になる. ただし, 右辺の  $(\mu,v)\in\mathbb{R}\times\mathbb{R}_{>0}$  に関する積分は  $\infty$  になるので, この事前分布はimproperである.

逆ガンマ正規分布の密度函数

$$p_{\text{InverseGammaNormal}}(\mu, \nu | \mu_*, \nu_*, \kappa, \theta) \propto v^{-(\kappa+1/2)-1} \exp\left(-\frac{1}{\nu}\left(\theta + \frac{1}{2\nu_*}(\mu - \mu_*)^2\right)\right).$$

と比較すると、平均と対数分散について一様な事前分布に対応する共役事前分布のパラメータ値は形式的に次になることがわかる:

$$\kappa \to -\frac{1}{2}, \quad \theta \to 0, \quad v_* \to \infty.$$

このとき、Bayes更新後のパラメータの公式は次のようになる:

$$\tilde{\kappa} = \frac{n-1}{2}, \quad \tilde{\theta} = \frac{n\hat{\sigma}^2}{2}, \quad \tilde{\mu}_* = \bar{y}, \quad \tilde{v}_* = \frac{1}{n}.$$

この場合には

$$\frac{\tilde{\theta}}{\tilde{\kappa}} = \frac{n\hat{\sigma}^2}{n-1} = s^2, \quad \tilde{v}_* = \frac{1}{n}, \quad 2\tilde{\kappa} = n-1.$$

ここで,  $s^2$  はデータの数値  $y_1, \ldots, y_n$  の不偏分散

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2} = \frac{n\hat{\sigma}^{2}}{n-1} > \hat{\sigma}^{2}$$

であり、s はその平方根である.

ゆえに, μ に関する周辺事後分布は

$$\mu \sim \bar{y} + \frac{s}{\sqrt{n}} \operatorname{TDist}(n-1)$$

になり、 y<sub>new</sub> に関する事後予測分布は次になる:

$$y_{\text{new}} \sim \bar{y} + s\sqrt{1 + \frac{1}{n}} \text{ TDist}(n-1).$$

したがって, 前節の結果と比較すると, Jeffreys事前分布の事後分布と予測分布による区間推定よりもこの場合の区間推定は少し広くなる.

Out[28]: preddist\_flat (generic function with 2 methods)

```
In [29]: 1 y = rand(Normal(10, 3), 5)

2 @show dist_true = Normal(\mu_true, \sigma_true) n

3 n, \bar{y}, s^2 = length(y), mean(y), var(y)
```

dist\_true = Normal( $\mu$ \_true,  $\sigma$ \_true) = Normal{Float64}( $\mu$ =10000.0,  $\sigma$ =100.0) n = 5

Out[29]: (5, 9.547963580248759, 4.072331700326717)

```
In [30]:
 1 post_µ = posterior_µ(bayesian_update(prior_flat()..., y)...)
Out[30]: LocationScale{Float64, Continuous, TDist{Float64}}(
 u: 9.547963580248759
 σ: 0.9024778889620196
 \rho: TDist{Float64}(\nu=4.0)
In [31]: 1 posterior_µ_flat(y) ≈ post_µ
Out[31]: true
 1.7 平均と対数分散について一様な事前分布の場合の結果の数値的確認
In [32]:
 @model function normaldistmodel_flat(y)
 \sigma^2 \sim PowerPos(-1)
 3
 μ ~ Flat()
 4
 y ~ MvNormal(fill(\mu, length(y)), \sigma^2 * I)
 end
Out[32]: normaldistmodel_flat (generic function with 2 methods)
In [33]:
 1 \mu_true, \sigma_true, n = 1e4, 1e2, 5
 @show dist_true = Normal(µ_true, o_true) n
 3 \mid y = rand(Normal(\mu_true, \sigma_true), n)
 dist_true = Normal(\mu_true, \sigma_true) = Normal(Float64)(\mu=10000.0, \sigma=100.0)
 n = 5
Out[33]: 5-element Vector{Float64}:
 10042.778128366943
 10062.9725375297
 9923.845841751234
 9965,230031011248
 10006.793852352781
In [34]:
 1 L = 10^{5}
 2 n_threads = min(Threads.nthreads(), 10)
 3 | chn = sample(normaldistmodel_flat(y), NUTS(), MCMCThreads(), L, n_threads);
 - Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell \pi, \ell \kappa)) = (true, false, false, false)
 L @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 L @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
```

# In [35]: 1 chn

### Out[35]: Chains MCMC chain (100000×14×10 Array{Float64, 3}):

Iterations = 1001:1:101000

Number of chains = 10 Samples per chain = 100000

Wall duration = 19.96 seconds Compute duration = 165.38 seconds

parameters =  $\sigma^2$ ,  $\mu$ 

internals = lp, n\_steps, is\_accept, acceptance\_rate, log\_density, hamiltonian\_energy, ha miltonian\_energy\_error, max\_hamiltonian\_energy\_error, tree\_depth, numerical\_error, step\_size, no m\_step\_size

	mary Statis arameters	stics <b>mean</b>	std	naive_se	mcse	ess	rhat	ess_per_se
<b>c</b> 4	Symbol	Float64	Float64	Float64	Float64	Float64	Float64	Float6
4	$\sigma^2$	6432.2097	16654.5449	16.6545	41.5589	155370.8686	1.0000	939.506
4 9	μ	10000.2627	36.0629	0.0361	0.0714	251118.1140	1.0000	1518.476
-	ntiles arameters Symbol	<b>2.5%</b> Float64	<b>25.0%</b> Float64	<b>50.0%</b> Float64	<b>75.0</b> 9 Float6			
	σ² μ	1153.4809 9929.8062	2388.5418 9981.5035	3834.0137 10000.3199	6685.009 10019.084			

# In [36]: 1 @show confint\_ttest(y);

 $confint_test(y) = [9929.949145045925, 10070.69901135884]$ 

```
In [37]: 1 postµ_theoretical = posterior_µ_flat(y) 2 plot_posterior_µ(chn, y, postµ_theoretical)
```

#### Out[37]:



- In [38]: | 1 | pred\_theoretical = preddist\_flat(y)
  - 2 plot\_preddist(chn, y, pred\_theoretical)

Out[38]:



## 1.8 通常の信頼区間と予測区間との比較

通常の t 分布を使う平均の信頼区間と次の値の予測区間の構成では以下を使う:

$$\frac{\bar{y} - \mu}{s/\sqrt{n}} \sim \text{TDist}(n-1), \quad \frac{y_{\text{new}} - \bar{y}}{s\sqrt{1 + 1/n}} \sim \text{TDist}(n-1).$$

ここで、 $s^2$  はデータの数値の不偏分散であり、s はその平方根である.

したがって, 前節の結果と比較すると, 通常の信頼区間と予測区間は, 平均と対数分散に関する一様事前分布に関する事後分布と予 測分布を用いた区間推定に一致する.

#### 1.9 データの数値から事前分布を決めた場合

a, b > 0 であると仮定する.

データの数値から共役事前分布のパラメータを次の条件によって決めたと仮定する:

$$E[\mu] = \mu_* = \bar{y}, \quad E[v] = \frac{\theta}{\kappa - 1} = \hat{\sigma}^2, \quad \text{var}(\mu) = v_* E[v] = a\hat{\sigma}^2, \quad \text{var}(v) = \frac{E[v]^2}{\kappa - 2} = b\hat{\sigma}^4.$$

これは次と同値である:

$$\mu_* = \bar{y}, \quad v_* = a, \quad \kappa = 2 + \frac{1}{b}, \quad \theta = \hat{\sigma}^2 \left( 1 + \frac{1}{b} \right).$$

このパラメータ値に対応する共役事前分布を以下では適応事前分布 (adaptive prior)と呼ぶことにする(注意: ここだけの用語). これのBayes更新の結果は以下のようになる:

$$\begin{split} \tilde{\kappa} &= 2 + \frac{1}{b} + \frac{n}{2} = \frac{n}{2} \left( 1 + \frac{2(2 + 1/b)}{n} \right) & \to 2 + \frac{n}{2}, \\ \tilde{\theta} &= \hat{\sigma}^2 \left( 1 + \frac{1}{b} + \frac{n}{2} \right) + \frac{n}{2} \frac{(\bar{y} - \bar{y})^2}{1 + na} = \frac{n\hat{\sigma}^2}{2} \left( 1 + \frac{2(1 + 1/b)}{n} \right) \to \hat{\sigma}^2 \left( 1 + \frac{n}{2} \right), \\ \tilde{\mu}_* &= \frac{\bar{y} + nv_*\bar{y}}{1 + nv_*} = \bar{y} & \to \bar{y}, \\ \tilde{v}_* &= \frac{a}{1 + na} = \frac{1}{n} \frac{1}{1 + 1/(na)} & \to \frac{1}{n}. \end{split}$$

以上における  $\rightarrow$  は  $a \rightarrow \infty$ ,  $b \rightarrow \infty$  での極限を意味する.

適応事前分布の構成のポイントは,  $\mu_*=ar y$  となっているおかげで,  $\tilde\mu_*$  も  $\tilde\mu_*=ar y$  となってバイアスが消え, さらに,  $\tilde\theta$  の中の  $\frac{n}{2}\frac{(ar y-\mu_*)^2}{1+na}$  の項が消えて, 区間推定の幅が無用に広くならずに済むことである.

ただし、適応事前分布の場合には

$$\frac{\tilde{\theta}}{\tilde{\kappa}} = \hat{\sigma}^2 \frac{1 + 2(1 + 1/b)/n}{1 + 2(2 + 1/b)/n} < \hat{\sigma}^2, \quad v_* = \frac{1}{n} \frac{1}{1 + 1/(na)} < \frac{1}{n}$$

なので、区間推定の幅はJeffreys事前分布の場合よりも少し狭くなる.

しかし, n が大きければそれらの違いは小さくなる.

```
1 function prior_adaptive(n, \bar{y}, \hat{\sigma}^2; a = 2.5, b = 2.5)
In [39]:
 \mu star = \bar{y}
 vstar = a
 \kappa = 2 + 1/b
 5
 \theta = \hat{\sigma}^2 * (1 + 1/b)
 6
 µstar, vstar, κ, θ
 7
 function prior_adaptive(y; a = 2.5, b = 2.5)
 n, \bar{y}, \hat{\sigma}^2 = length(y), mean(y), var(y; corrected=false) prior_adaptive(n, \bar{y}, \hat{\sigma}^2; a, b)
 10
 11
 12
 13
 14 | function posterior_adaptive(n, \bar{y}, \hat{\sigma}^2; a = 2.5, b = 2.5)
 15
 vstar = 1/(1/a + n)
 16
 \kappa = 2 + 1/b + n/2
 17
 \theta = \hat{\sigma}^2 * (1 + 1/b + n/2)
 18
 19
 μstar, vstar, κ, θ
 21
 22
 function posterior_adaptive(y; a = 2.5, b = 2.5)
 n, \bar{y}, \hat{\sigma}^2 = length(y), mean(y), var(y; corrected=false) posterior_adaptive(n, \bar{y}, \hat{\sigma}^2; a, b)
 23
 24
```

Out[39]: posterior\_adaptive (generic function with 2 methods)

```
2. [14] (5. 0010 071017770100 10077017000)
```

Out[41]: (5, 9949.831613530489, 19639.166236215202)

```
In [42]:
 1 μstar, vstar, κ, \theta = prior_adaptive(y)
 2 a, b = 2.5, 2.5

3 @show \bar{y}, \hat{\sigma}^2, a*\hat{\sigma}^2, b*\hat{\sigma}^2^2

4 (\bar{y}, \hat{\sigma}^2, a*\hat{\sigma}^2, b*\hat{\sigma}^2^2) .\approx (\mustar, \theta/(\kappa - 1), (\theta/(\kappa - 1))*vstar, (\theta/(\kappa - 1))^2/(\kappa - 2))
 (\bar{y}, \hat{\sigma}^2, a * \hat{\sigma}^2, b * \hat{\sigma}^2 ^2) = (9949.831613530489, 19639.166236215202, 49097.915590538, 9.6424212)
 6134238e8)
Out[42]: (true, true, true, true)
In [43]: 1 posterior_adaptive(n, \bar{y}, \hat{\sigma}^2)
Out[43]: (9949.831613530489, 0.18518518518518517, 4.9, 76592.74832123928)
In [44]: 1 bayesian_update(prior_adaptive(y)..., y)
Out[44]: (9949.831613530489, 0.18518518518518517, 4.9, 76592.74832123928)
In [45]: 1 posterior_adaptive(y)
Out[45]: (9949.831613530489, 0.18518518518517, 4.9, 76592.74832123928)
In [46]: 1 posterior_adaptive(y) ... bayesian_update(prior_adaptive(y)..., y)
Out[46]: (true, true, true, true)
 1.10 n = 5 では適応事前分布の場合と無情報事前分布の場合の結果が結構違う.
In [47]:
 1 @model function normaldistmodel_adaptive(y; a = 2.5, b = 2.5)
 \mustar, vstar, κ, θ = prior_adaptive(y; a, b)
 3
 σ^2 \sim InverseGamma(κ, θ)
 \mu \sim \text{Normal}(\mu \text{star}, \sqrt{(\text{vstar} * \sigma^2)})
 4
 y ~ MvNormal(fill(\mu, length(y)), \sigma^2 * I)
 6
 end
Out[47]: normaldistmodel_adaptive (generic function with 2 methods)
In [48]:
 1 \mu_{\text{true}}, \sigma_{\text{true}}, n = 1e4, 1e2, 5
 2 @show dist_true = Normal(μ_true, σ_true) n
 3 \mid y = rand(Normal(\mu_true, \sigma_true), n)
 dist_true = Normal(\mu_true, \sigma_true) = Normal{Float64}(\mu=10000.0, \sigma=100.0)
Out[48]: 5-element Vector{Float64}:
 10030.5799588623
 9998.014042880812
 10059.31532070359
 10005.17272597195
 9931.520071491572
```

```
Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
In [50]:
 1 chn
Out[50]: Chains MCMC chain (100000×14×10 Array{Float64, 3}):
 = 1001:1:101000
 Iterations
 Number of chains = 10
 Samples per chain = 100000
 Wall duration
 = 18.5 seconds
 Compute duration = 167.67 seconds
 parameters
 = \sigma^2, \mu
 internals
 = lp, n_steps, is_accept, acceptance_rate, log_density, hamiltonian_energy, ha
 miltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, no
 m_step_size
 Summary Statistics
 parameters
 mean
 std
 naive_se
 mcse
 ess
 rhat
 ess_per_sec
 Float64
 Float64
 Float64
 Float64
 Float64
 Float64
 Symbol
 Float64
 \sigma^2
 2995.0549
 1811.4635
 1073.8114
 1.0738
 1.5523
 502189.8472
 1.0000
 10004.9134
 18.3083
 0.0183
 0.0238
 614003.2042
 1.0000
 3661.9086
 μ
 Quantiles
 parameters
 2.5%
 25.0%
 50.0%
 75.0%
 97.5%
 Symbol
 Float64
 Float64
 Float64
 Float64
 Float64
 \sigma^{2}
 698.3470
 1145.3723
 1546.2427
 2150.0831
 4503.5897
 9968.3987
 9993.4939
 10004.9111
 10016.3625
 10041.3650
```

3 chn = sample(normaldistmodel\_adaptive(y), NUTS(), MCMCThreads(), L, n\_threads);

In [51]: | 1 |@show confint\_ttest(y);

In [49]:

 $1 L = 10^5$ 

2 n\_threads = min(Threads.nthreads(), 10)

 $confint_test(y) = [9945.851301450186, 10063.989546513903]$ 

```
In [52]:
 1 postµ_theoretical = posterior_µ(posterior_adaptive(y)...)
 2 plot_posterior_μ(chn, y, postμ_theoretical)
Out[52]:
 MCMC posterior of \mu theoretical posterior of \mu
 \bar{y} + \sqrt{(s^2/n)} T \dot{D} ist(n-1)
 0.020
 0.015
 0.010
 0.005
 9950
 9975
 10000
 10025
 10050
 9925
 10075
```

```
In [53]:
 1 pred_theoretical = preddist(posterior_adaptive(y)...)
 plot_preddist(chn, y, pred_theoretical)
Out[53]:
 MCMC prediction
 theoretical prediction \bar{y}+\sqrt{(s^2(1+1/n))}TDist(n-1)
 0.008
 0.006
 0.004
 0.002
 0.000
 9800
 9900
 10000
 10100
 10200
```

以上のように n=5 の場合には、適応事前分布の場合の結果は無情報事前分布の場合の結果(緑のdashdotライン)とかなり違う.

## 1.11 n = 20 ではデフォルト事前分布の場合と無情報事前分布の場合の結果が近付く.

```
In [54]:
 1 \mu_true, \sigma_true, n = 1e4, 1e2, 20
 2 @show dist_true = Normal(\mu_true, \sigma_true)
 3 y = rand(dist_true, n)
 4 @show length(y) mean(y) var(y);
 dist_true = Normal(\mu_true, \sigma_true) = Normal{Float64}(\mu=10000.0, \sigma=100.0)
 length(y) = 20
 mean(y) = 10021.312271029448
 var(y) = 13942.23507271364
In [55]: 1 L = 10^5
 2 n_threads = min(Threads.nthreads(), 10)
 3 chn = sample(normaldistmodel_adaptive(y), NUTS(), MCMCThreads(), L, n_threads);
 - Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 L @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 @ AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
In [56]:
 1 chn
Out[56]: Chains MCMC chain (100000×14×10 Array{Float64, 3}):
 = 1001:1:101000
 Iterations
 Number of chains = 10
 Samples per chain = 100000
 Wall duration
 = 15.84 seconds
 Compute duration = 151.17 seconds
 = \sigma^2, \mu
 parameters
 = lp, n_steps, is_accept, acceptance_rate, log_density, hamiltonian_energy, ha
 internals
 miltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, no
 m_step_size
 Summary Statistics
 parameters
 naive_se
 rhat
 mean
 std
 mcse
 ess
 ess_per_sec
 Float64
 Float64
 Float64
 Float64
 Float64
 Float64
 Symbol
 Float64
 \sigma^{2}
 13252.0016
 4113.1679
 4.1132
 4.6948
 725981.9288
 1.0000
 4802.4842
 1.0000
 10021.3589
 25.5266
 0.0255
 0.0282
 833465.2790
 5513.5034
 μ
 Quantiles
 97.5%
 parameters
 2.5%
 25.0%
 50.0%
 75.0%
 Symbol
 Float64
 Float64
 Float64
 Float64
 Float64
 \sigma^2
 7475.8314
 10373.7813
 12516.5525
 15294.5654
 23285.6434
 10004.6664
 9970.8576
 10021.3395
 10038.0758
 10071.8367
 μ
In [57]:
 1 @show confint_ttest(y);
```

```
In [59]: 1 pred_theoretical = preddist(posterior_adaptive(y)...)

Out[59]:

MCMC prediction
--- theoretical prediction
--- ȳ+√(s²(1+1/n))TDist(n-1)

0.003

0.002

0.001
```

# 1.12 n = 20 で事前分布とデータの数値の相性が悪い場合

Out[60]: normaldistmodel (generic function with 2 methods)

```
In [61]: 1 # 固定された事前分布の設定
 3 \mid a, b = 5.0^{2}, 5.0^{2}
 4 µstar, vstar, \kappa, \theta = 0.0, a, 2 + 1/b, 1 + 1/b
 5 @show μstar vstar κ θ
 6 println()
 8 Eµ, Ev = \mustar, \theta/(\kappa - 1)
 9 var_{\mu}, var_{\nu} = vstar*Ev, Ev^{2}/(\kappa - 2)
 10 @show Eµ Ev var_µ var_v;
 \mustar = 0.0
 vstar = 25.0
 \kappa = 2.04
 \theta = 1.04
 E\mu = 0.0
 Ev = 1.0
 var_{\mu} = 25.0
 var_v = 24.9999999999998
 以下では以上のようにして定めた事前分布を使う.
 この事前分布における \mu の平均と分散はそれぞれ 0 \ge 5^2 であり, v = \sigma^2 の平均と分散はそれぞれ 1 \ge 5^2 である.
In [62]:
 1 \mu_{\text{true}}, \sigma_{\text{true}}, n = 1e4, 1e2, 20
 2 @show dist_true = Normal(μ_true, σ_true)
 3 y = rand(dist_true, n)
 4 @show length(y) mean(y) var(y);
 dist_true = Normal(\mu_true, \sigma_true) = Normal(Float64)(\mu=10000.0, \sigma=100.0)
 length(y) = 20
 mean(y) = 9975.2893410502
 var(y) = 9047.15859738387
 平均と分散がそれぞれ 10000, 100^2 の正規分布でサイズ 20 のサンプルを生成している.
 平均 10000 と分散 100^2 は上で定めた事前分布と極めて相性が悪い.
In [63]:
 1 L = 10^{5}
 2 n_threads = min(Threads.nthreads(), 10)
 3 chn = sample(normaldistmodel(y, \mustar, vstar, \kappa, \theta), NUTS(), MCMCThreads(), L, n_threads);
 r Warning: The current proposal will be rejected due to numerical error(s). □
 isfinite.((\theta, r, \ell \pi, \ell \kappa)) = (true, false, false, false)
 @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 L @ AdvancedHMC D:\.julia\páckagès\AdvancedHMC\51xgc\src\hámiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 L @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 L @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 L @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
 isfinite.((\theta, r, \ell\pi, \ell\kappa)) = (true, false, false, false)
 L @ AdvancedHMC D:\.julia\packages\AdvancedHMC\51xgc\src\hamiltonian.jl:47
 Warning: The current proposal will be rejected due to numerical error(s).
```

# In [64]: 1 chn

#### Out[64]: Chains MCMC chain (100000×14×10 Array{Float64, 3}):

Iterations = 1001:1:101000

Number of chains = 10 Samples per chain = 100000

Wall duration = 19.88 seconds Compute duration = 193.25 seconds

parameters =  $\sigma^2$ ,  $\mu$ 

internals = lp, n\_steps, is\_accept, acceptance\_rate, log\_density, hamiltonian\_energy, ha miltonian\_energy\_error, max\_hamiltonian\_energy\_error, tree\_depth, numerical\_error, step\_size, no m\_step\_size

Summary Stati parameters		stics <b>mean</b>	std	naive_se	mcse	es	s rhat	ess_per_s
<b>ec</b> 64	Symbol	Float64	Float64	Float64	Float64	Float64	Float64	Float
39	$\sigma^2$	187678.3265	59231.3056	59.2313	66.8673	754361.681	1.0000	3903.61
28	μ	9955.3048	96.8643	0.0969	0.1054	865190.5498	1.0000	4477.12
Quantiles parameters Symbol		<b>2.5%</b> Float64	<b>25.0%</b> Float64	<b>50.</b> Float		<b>75.0%</b> Float64	<b>97.5%</b> Float64	
	σ² μ	104916.3421 9763.6855	146309.4780 9891.8617	177025.10 9955.35			2730.2136 0146.6951	

# In [65]: 1 @show confint\_ttest(y);

 $confint_test(y) = [9930.773424097964, 10019.805258002436]$ 

In [66]: 1 post $\mu$ \_theoretical = posterior\_ $\mu$ (bayesian\_update( $\mu$ star, vstar,  $\kappa$ ,  $\theta$ , y)...) 2 plot\_posterior\_ $\mu$ (chn, y, post $\mu$ \_theoretical)





```
In [67]: 1 pred_theoretical = preddist(bayesian_update(μstar, vstar, κ, θ, y)...)
2 plot_preddist(chn, y, pred_theoretical)
```

Out[67]:



## 1.13 n = 200 で事前分布とデータの数値の相性が悪い場合

前節の続き

```
In [68]: 1 μ_true, σ_true, n = 1e4, 1e2, 200
2 @show dist_true = Normal(μ_true, σ_true)
3 y = rand(dist_true, n)
4 @show length(y) mean(y) var(y);

dist_true = Normal(μ_true, σ_true) = Normal{Float64}(μ=10000.0, σ=100.0)
 length(y) = 200
 mean(y) = 9985.454981200888
 var(y) = 9312.384006700653
```

```
In [69]: 1 postμ_theoretical = posterior_μ(bayesian_update(μstar, vstar, κ, θ, y)...)
2 plot_posterior_μ(nothing, y, postμ_theoretical)
```

Out[69]:

```
\begin{array}{c} --- \text{ theoretical posterior of } \mu \\ --- \bar{y} + \sqrt{(s^2/n) \text{TDist}(n-1)} \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.02 \\ 0.01 \\ 0.00 \\ 9940 \\ 9960 \\ 9980 \\ 10000 \\ 10020 \\ \end{array}
```

```
In [70]: 1 pred_theoretical = preddist(bayesian_update(μstar, vstar, κ, θ, y)...)
2 plot_preddist(nothing, y, pred_theoretical)
```

## Out[70]:



### 1.14 n = 2000 で事前分布とデータの数値の相性が悪い場合

前節の続き

var(y) = 9762.499844804266

```
In [72]:
 1 post\mu_theoretical = posterior_\mu(bayesian_update(\mustar, vstar, \kappa, \theta, y)...)
 2 plot_posterior_μ(nothing, y, postμ_theoretical)
```

Out[72]:



```
In [73]:
 1 | pred_theoretical = preddist(bayesian_update(\mustar, vstar, \kappa, \theta, y)...)
 2 plot_preddist(nothing, y, pred_theoretical)
```

#### Out[73]:



## 1.15 n = 20000 で事前分布とデータの数値の相性が悪い場合

前節の続き

```
In [74]:
 1 \mu_true, \sigma_true, n = 1e4, 1e2, 20000
 2 @show dist_true = Normal(μ_true, σ_true)
 3 y = rand(dist_true, n)
 4 @show length(y) mean(y) var(y);
 dist_true = Normal(\mu_true, \sigma_true) = Normal{Float64}(\mu=10000.0, \sigma=100.0)
 length(y) = 20000
 mean(y) = 10000.24090421595
 var(y) = 9932.528226665096
```

```
In [75]:
 1 post\mu_theoretical = posterior_\mu(bayesian_update(\mustar, vstar, \kappa, \theta, y)...)
 2 plot_posterior_µ(nothing, y, postµ_theoretical)
Out[75]:
 theoretical posterior of \mu \bar{y}+\sqrt{(s^2/n)TDist(n-1)}
 0.5
 0.4
 0.3
 0.2
 0.1
 9998
 10000
 10001
 10002
 pred_theoretical = preddist(bayesian_update(μstar, vstar, κ, θ, y)...)
plot_preddist(nothing, y, pred_theoretical)
In [76]:
Out[76]:
 theoretical prediction \bar{y}+\sqrt{(s^2(1+1/n))TDist(n-1)}
 0.004
 0.003
 0.002
```

10100

10200

10300

0.001

0.000

In [ ]:

9700