Übungsblatt 6 zur Kommutativen Algebra

Aufgabe 1. (2+m+2) Ein konkretes Beispiel für eine Primärzerlegung

Sei K ein Körper. Seien die Ideale $\mathfrak{p}_1=(X,Y), \ \mathfrak{p}_2=(X,Z)$ und $\mathfrak{m}=(X,Y,Z)$ von K[X,Y,Z] gegeben. Sei $\mathfrak{a}=\mathfrak{p}_1\mathfrak{p}_2$.

- a) Zeige, dass $\mathfrak{a} = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \mathfrak{m}^2$ eine minimale Primärzerlegung von \mathfrak{a} ist.
- b) Welche Primideale von K[X,Y,Z] sind zu $\mathfrak a$ isolierte Primideale, welche eingebettete?
- c) Schreibe die assoziierten Primideale in der Form $\sqrt{(\mathfrak{a}:f)}$ für geeignete $f\in K[X,Y,Z]$.

Aufgabe 2. (2+m+2) Erweiterungen primärer Ideale in Polynomringen Sei A ein Ring.

- a) Sei \mathfrak{q} ein \mathfrak{p} -primäres Ideal in A. Zeige, dass $\mathfrak{q}[X]$ ein $\mathfrak{p}[X]$ -primäres Ideal in A[X] ist.
- b) Sei $\mathfrak{a} = \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_n$ eine minimale Primärzerlegung in A. Zeige, dass $\mathfrak{a}[X] = \mathfrak{q}_1[X] \cap \cdots \cap \mathfrak{q}_n[X]$ eine minimale Primärzerlegung in A[X] ist.
- c) Zeige: Ist $\mathfrak p$ ein zu einem zerlegbaren Ideal $\mathfrak a$ isoliertes Primideal, so ist $\mathfrak p[X]$ ein zu $\mathfrak a[X]$ isoliertes Primideal.

Aufgabe 3. (2+m) Ein Kriterium für Assoziiertheit

Sei \mathfrak{a} ein Ideal eines Rings A. Sei \mathfrak{p} ein Ideal, das unter allen Idealen der Form $(\mathfrak{a}:x)$ mit $x \in A$ und $x \notin \mathfrak{a}$ maximal ist. Zeige, dass \mathfrak{p} ein Primideal ist, und dass dieses außerdem zu \mathfrak{a} assoziiert ist, wenn \mathfrak{a} zerlegbar sein sollte.

Aufgabe 4. (0+2+2+m) Erste Schritte mit ganzen Erweiterungen

- a) Seien x und y Elemente eines Rings, die vermöge der Gleichungen $x^2 3x + 1 = 0$ und $y^2 + 5y 2 = 0$ über $\mathbb Z$ ganz sind. Finde eine Ganzheitsgleichung für x + y.
- b) Sei $A \subseteq B$ eine ganze Ringerweiterung. Sei x ein Element von A, das in B invertierbar ist. Zeige, dass x schon in A invertierbar ist.
- c) Sei $A \subseteq B$ eine Ringerweiterung. Sei C der ganze Abschluss von A in B. Seien $f, g \in B[X]$ normierte Polynome mit $fg \in C[X]$. Zeige, dass $f \in C[X]$ und $g \in C[X]$.
- d) Sei G eine endliche Gruppe von Automorphismen eines Rings A. Zeige, dass A über dem Unterring A^G der G-Invarianten, also $\{x \in A \mid g(x) = x \text{ für alle } g \in G\}$, ganz ist.

 $http:/\!/www.smbc\text{-}comics.com/?id{=}3565$