

Aug 24, 2022

Version 2 ■

Optimized protocol for translatome analysis of mouse brain endothelial cells V.2

Won-Jong OH¹, Namsuk Kim¹, Mi-Hee Jun¹, Jin-Young Jeong¹

¹Korea Brain Research Institute

Works for me

dx.doi.org/10.17504/protocols.io.8epv59or6g1b/v2

ABSTRACT

Brain endothelial cells (BECs) are important conduits that deliver oxygen and nutrients, protect parenchyma cells from toxins, and drain wastes to maintain brain homeostasis. Impairment of BECs has been implicated in diverse neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Therefore, molecular analysis of BECs is important for understanding the molecular pathogenesis of these neurological diseases. Even though many transcriptome analyses for BECs have been developed, mRNA levels do not necessarily correlate with the levels of actively translated proteins. Translatome analysis using RiboTag mice, in which Rpl22, a ribosomal component, is tagged by the hemagglutinin epitope under Cre recombinase activation, could serve as an excellent tool that overcomes these caveats. However, implementation of this technique is limited by high noise-to-signal ratios as well as the low yield of mRNAs from BECs, which limits bulk gene expression analysis. In this study, we established a protocol to isolate highly pure mRNAs from BECs in the cortex of eight- to twelveweek-old male *Tie2-Cre; Rpl22^{HA/HA}* mice by using a cell strainer to trap blood vessels prior to immunoprecipitation. According to the results of RT-PCR, the specificity of the mRNA pools isolated by our protocol was much higher than that of the pools isolated by the standard protocol. We were also able to generate a highquality cDNA library for RNA-seq with the small amount of mRNA isolated with our protocol. Thus, this optimized method will be useful for future studies of BECs at the molecular level.

DOI

dx.doi.org/10.17504/protocols.io.8epv59or6g1b/v2

PROTOCOL CITATION

Won-Jong OH, Namsuk Kim, Mi-Hee Jun, Jin-Young Jeong 2022. Optimized protocol for translatome analysis of mouse brain endothelial cells. protocols.io https://protocols.io/view/optimized-protocol-for-translatome-analysis-of-moucfnytmfw

Version created by Neurovascularlab KBRI

KEYWORDS

Brain endothelial cells, RiboTag, Translatome, RNA sequencing

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Aug 23, 2022

LAST MODIFIED

Aug 24, 2022

PROTOCOL INTEGER ID

69048

GUIDELINES

- 1. An RNase-free environment is essential. Use barrier pipet tips to avoid RNase contamination. Wipe down the surface of an experimental table and all equipment including surgical tools, pipets, etc., with RNase Zap.
- 2. Homogenization buffer and high-salt buffer should be freshly prepared.
- 3. Washes should be done in cold conditions.
- 4. Tissue samples should be processed fresh directly to RNA yield.
- 5. The average amount of BEC mRNA => whole cortex (8-12 weeks): 7.3 ng, visual cortex (8-12 weeks): 1.05 ng, visual cortex (2 weeks): 0.25 ng per mouse.

MATERIALS TEXT

Α	В	С	
REAGENT or RESOURCE	SOURCE	IDNETIFIER	
Antibodies			
Mouse anti-HA	Millipore	Cat# 05-904 RRID: AB_417380	
Chemicals, peptides, and kits			
TRIzoITM Reagent	Thermo	Cat# 15596026	

2

Cycloheximide	Sigma-Aldrich	Cat# 1810
Magnesium chloride	Sigma-Aldrich	Cat# M8266
Potassium chloride	Sigma-Aldrich	Cat# P9333
DNase1	Invitrogen	Cat# 18068015
Pierce™ Protein A/G Magnetic Beads	Thermo	Cat# 88803
Chloroform	Sigma	Cat# C2432
20X TE Buffer (pH 7.5)	Promega Cat# A2651	
Ethyl alcohol, Pure	Sigma	Cat# E7023
Glycogen, Molecular Biology Grade	Roche	Cat# 10901393001
RNasin®	Promega	Cat# N2115
Ribonuclease Inhibitor		
Pierce™ Protein A/G Magnetic Beads	Thermo Fisher	Cat# 88803
	Scientific	
Halt™ Protease and Phosphatase	Thermo Fisher	Cat# 78444
Inhibitor Cocktail	Scientific	
NEBNext® Single Cell/Low Input RNA	NEB	Cat# E6420L
Library Prep Kit for Illumina®	NED	0.14.576000
NEBNext® Multiplex Oligos for Illumina®	NEB	Cat# E7600S
High Sensitivity D5000 Screen tape	Agilent	Cat# 5067-5592
High Sensitivity D1000 Screen tape	Agilent	Cat# 5067-5584
High Sensitivity RNA Screentape	Agilent	Cat# 5067-5579
High Sensitivity D5000 Screen tape	Agilent	Cat# 5067-5593
Reagent	Agricit	Gat# 3007-3393
High Sensitivity D1000 Screen tape	Agilent	Cat# 5067-5585
Reagent		
High Sensitivity RNA Screen tape	Agilent	Cat# 5067-5580
Reagent High Sensitivity D5000 Screen tape	Agilent	Cat# 5067-5594
ladder	Agrient	Cat# 3007-3394
High Sensitivity D1000 Screen tape	Agilent	Cat# 5067-5587
ladder	3	
High Sensitivity RNA Screen tape ladder	Agilent	Cat# 5067-5581
Glass homogenizer	WHEATON	Cat# 357542
Disposable scalpel	Bard-Parker	Cat# 371611
Experimental models:		
Organisms/strains		
Mouse: Tie2-Cre	The Jackson	Stock# 008863
	Laboratory	
Mouse: Ai9	The Jackson	Stock# 007909
	Laboratory	
Mouse:RiboTag mice (RpI22HA/HA)	The Jackson	Stock# 011029
	Laboratory	

SAFETY WARNINGS

TRIzol is a highly corrosive and toxic chemical that can cause burns on contact with the skin as well as systemic poisoning.

Chloroform can cause a person to become unconscious and even be fatal at high doses.

BEFORE STARTING

- 1. An RNase-free environment is essential. Use barrier pipet tips to avoid RNase contamination. Wipe down the surface of an experimental table and all equipment including surgical tools, pipets, etc., with RNase Zap.
- 2. Homogenization buffer and high-salt buffer should be freshly prepared.

Vessel isolation 2h

The whole mouse cortex of a *Tie2-Cre; Rpl22^{HA/HA}* mouse is isolated in the chilled DMEM.

Then, tissues are dissociated by using a glass homogenizer (WHEATON, 357542) in **□10 mL** of chilled DMEM.

2 \$\infty\$1000 x g, 4°C, 00:10:00

10m

- After discarding the supernatants, the pellets are resuspended in **15 mL** of 20 % BSA-DMEM to avoid myelin contamination.
- 4 **32500** x g, 4°C, 00:15:00

15m

5 • This process is repeated three times.

- 6 After discarding the supernatants, the pellets are resuspended in **5 mL** of chilled PBS.
- 7 PBS containing blood vessels is passed through a 40-micrometer cell strainer.

5m

Immunoprecipitation

1d 1h

- The strainer mesh containing vessels is then cut with a disposable scalpel (Bard-Parker, 371611) and transferred into a microcentrifuge tube for lysis in 600 μL of homogenization buffer containing [M]1 % (v/v) NP-40, [M]100 millimolar (mM) KCl, [M]50 millimolar (mM) Tris (p+7.4), [M]12 millimolar (mM) MgCl₂, cycloheximide ([M]100 mg/mL), heparin ([M]1 mg/mL), Halt Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific, 78444), RNA inhibitor (5 units/ml, Promega, N2615), and [M]1 millimolar (mM) DTT).
- 9 The lysates are incubated δ On ice for \bigcirc 00:05:00.

10m

- 10 **12000** x g, 4°C, 00:10:00
- After being transferred to a new 1.5 ml microcentrifuge tube, the supernatants are incubated with a mouse monoclonal antibody against the HA epitope tag (1:200, Millipore, 05-904) for **04:00:00** at **8 4 °C** with rotation by using a multimixer (NanoEnTek, 4519).
- Protein A/G magnetic beads (Thermo Fisher Scientific, 88803) equilibrated in homogenization buffer for 30 min are added to the antibody-lysate solution and incubated **Overnight** at **4 °C** with gentle rotation.
- The next day, after a brief spin-dwon, the magnetic beads are washed five times with 10 mL high salt buffer (1% NP-40, [M]300 millimolar (mM) KCL, [M]50 millimolar (mM) Tris (

 PF7.4), [M]12 millimolar (mM) MgCl₂, cycloheximide ([M]100 mg/mL), and

[M] 0.5 millimolar (mM) DTT).

mRNA isolation

5h 55m

14 After the last wash, all supernatants are removed and **1 mL** of TRIzol reagent (Invitrogen, 15596026) is added to the bead-antibody-tissue homogenate, followed by **200 μL** of chloroform (Sigma-Aldrich, C2432).

TRIzol is a highly corrosive and toxic chemical that can cause burns on contact with the skin as well as systemic poisoning.

Chloroform can cause a person to become unconscious and even be fatal at high doses.

15 **\$\text{\$\text{\$\text{\$\geq}}\$12000 x g, 4°C, 00:10:00}**

10m

- 17 The mRNA mixture is incubated © Overnight at & -20 °C

16h

The following day, samples are centrifuged **③12000** x g, 4°C, 00:10:00 . After the supernatants are discarded, **□1** mL of 75% ethyl alcohol is added to the pellets for washing.

10m

10m After centrifugation **37500 x g, 4°C, 00:05:00** and subsequent supernatant removal, the

6

Citation: Won-Jong OH, Namsuk Kim, Mi-Hee Jun, Jin-Young Jeong Optimized protocol for translatome analysis of mouse brain endothelial cells https://dx.doi.org/10.17504/protocols.io.8epv59or6g1b/v2

samples are air-dried for **© 00:05:00** at **§ Room temperature**. Do not overdry the beads. 5m 20 The dried pellets are then resuspended in $\Box 16 \mu L$ of RNase-free water. 15m 21 □2 µL of DNase I and □2 µL of 10X DNase I Reaction Buffer (Invitrogen, 18068-015) are added to the reaction mixture, which is then incubated for © 00:15:00 at **8** Room temperature . 22 DNasel is inactivated by adding [M]25 millimolar (mM) of EDTA and heating at § 65 °C for **© 00:10:00** . 16h 23 For RNA precipitation, **2.2** μL of [M]4 Molarity (M) of LiCl, **4.8** μL of 20 X TE ([M]0.2 Molarity (M) Tris-HCl, [M]20 millimolar (mM) EDTA, p+7.5 (Promega, A2651), **□66** µL of 100% ethyl alcohol (Sigma-Aldrich, E7023), and **□1** µL of glycogen (Roche, 10901393001) are added to the RNA mixture, followed by **Overnight** incubation at 8-20 °C . 10m 24 The next day, the RNA mixture is centrifuged **312000** x g, 4°C, 00:10:00 25 After removing the supernatants, 1 mL of 75% ethyl alcohol is added to the pellets for washing. 5m 26 After centrifugation \$\mathbb{g}7500 \text{ x g, 4°C, 00:05:00}\$, the supernatants are discarded. 5m 27 The pellets are then air-dried and finally resuspended in $\Box 10 \mu L$ of RNase-free water. Generation of cDNA library 2h 25m

- The amount of isolated mRNA is measured by using High Sensitivity RNA ScreenTape (Agilent, 5067-5579), High Sensitivity RNA ScreenTape Reagent(Agilent, 5067-5580), and a High Sensitivity RNA ScreenTape ladder(Agilent, 5067-5581) from the Agilent 4200 TapeStation System according to the manufacturer's instructions.
- One nanogram of mRNA obtained from RiboTag immunoprecipitation is reverse-transcribed into cDNA using the NEBNext Single Cell/Low Input RNA Library Prep Kit for Illumina (NEB, E6420L) according to the manufacturer's protocol.
- One nanogram of mRNA is added to the mixture containing $\Box 1~\mu L$ of NEBNext Single Cell RT (Reverse Transcription) Primer Mix. The $\Box 9~\mu L$ of the final volume is achieved by adding nuclease-free water.
- 31 The mixture is incubated at & 70 °C for @00:05:00 with the heated lid set to & 105 °C for annealing and then held at & 4 °C.
- The RT mixture is prepared in a separate tube as follows § On ice; $\Box 5 \mu L$ of NEBNext Single Cell RT buffer, $\Box 1 \mu L$ of NEBNext Template Switching Oligo, $\Box 2 \mu L$ of NEBNext Single Cell RT Enzyme Mix, $\Box 3 \mu L$ of nuclease-free water. It is important to vortex the NEBNext Single Cell RT buffer prior to use for optimal performance.
- The RT mixture ($\blacksquare 11~\mu L$) is combined with the annealed sample ($\blacksquare 9~\mu L$). Mix well by pipetting up and down at least 10 times.
- 34 The reaction is incubated in a thermocycler with the following steps: the heated lid is set to \$ 105 °C , followed by \$ 01:30:00 at \$ 42 °C and \$ 00:10:00 at \$ 70 °C , and then held at \$ 4 °C
- The cDNA amplification mix is prepared as follows: $\square 50~\mu L$ of NEBNext Single Cell cDNA PCR Master Mix, $\square 2~\mu L$ of NEBNext Single Cell cDNA PCR Primer, and $\square 28~\mu L$ of nuclease-free water.
- 36 \blacksquare 80 μ L of cDNA amplification mix are added to \blacksquare 20 μ L of the sample with pipetting.

37 The reaction is performed in a thermocycler with the following PCR cycling conditions.

Cycle step	Temperature	Time	Cycles
Initial	98 °C	45 sec	1
Denaturation			
Denaturation	98 °C	10 sec	32
Annealing	62 °C	15 sec	
Extension	72 °C	3 min	
Final Extension	72 °C	5 min	1
Hold	4 °C		

- For the next step, the NEBNext Bead Reconstitution Buffer and the SPRI (Solid Phase Reversible Immobilization) beads should be warmed to § Room temperature for at least © 00:30:00 before use.
- 39 \blacksquare 60 μ L SPRI beads are added to the PCR. (mix well by pipetting up and down at least 10 times).
- The samples are incubated for at least © 00:05:00 at & Room temperature.
- The samples are placed on the magnetic stand (Promega, Z5342) to separate the beads from the supernatant.
- After \odot **00:05:00**, the supernatant is removed. then, \blacksquare **200** μ L of 80% freshly prepared ethanol is added for washing. The samples are Incubated at & Room temperature for \bigcirc **00:00:30**, and then the supernatant is carefully removed and discarded.
- 43 . This process is repeated twice. The samples are air-dried for © 00:05:00 at 8 Room temperature. Do not overdry the beads.

44

50 μL of 0.1X TE (diluted from 1X TE buffer) is added to the samples to elute the cDNA from the beads.

The samples are mixed well and incubateed for at least \bigcirc **00:02:00** at

- & Room temperature.
- Next, □45 μL of NEBNext Bead Reconstitution Buffer is added to the cDNA-Bead mixture.

 Mix well by pipetting up and down at least 10 times and incubate for at least ⑤ 00:05:00 at

 δ Room temperature.
- 46 The samples are placed on a magnetic stand to separate the beads.
- 47 After © 00:05:00, the supernatant is carefully removed.
- Then, □200 μL of 80% freshly prepared ethanol is added to the tube to wash the beads.

 After ⊙ 00:00:30 of incubation at δ Room temperature, ⋄ . This process is repeated twice.

- The beads containing cDNA are air-dried for **© 00:05:00** at **§ Room temperature**. Do not overdry the beads.
- cDNA is eluted from the beads by adding 33 μL of 1X TE. Mix well by pipetting up and down at least 10 times. The sample is incubated for at least © 00:02:00 at 8 Room temperature.
- The sample is placed on the magnetic stand. After © 00:05:00 of incubation at Room temperature, $\blacksquare 30 \ \mu L$ of the solution is transferred to a new tube.
- The cDNA quality and quantity can be assessed by using High Sensitivity D5000 ScreenTape (Agilent, 5067-5592), High Sensitivity D5000 ScreenTape Reagent (Agilent, 5067-5593), and a

High Sensitivity D5000 ScreenTape ladder (Agilent, 5067-5594) in the Agilent 4200 TapeStation System.

- 53 **40 ng** of cDNA is used for Illumina NGS (Next Generation Sequencing) library preparation.
- 54 \blacksquare 40 ng of cDNA in 1X TE is mixed with \blacksquare 7 μ L of NEBNext Ultra II FS Reaction Buffer and \blacksquare 2 μ L of NEBNext Ultra II FS Enzyme Mix in a PCR tube. The final volume of the mixture is brought to \blacksquare 35 μ L, and the sample is vortexed for \bigcirc 00:00:05.
- In a thermocycler, with the heated lid set to & 75 °C , the following program is performed: @00:25:00 at & 37 °C and @00:30:00 at & 65 °C .
- While the PCR is running, prepare the solution for the next step. NEBNext Adaptor for Illumina is diluted by 25-fold in the NEBNext Adaptor Dilution Buffer.
- The following components should be added directly to the above sample ($\blacksquare 35~\mu L$). The adaptor should be added separately to each sample (DO NOT premix with ligation master mix and enhancer).

Component	Volume	
FS Reaction Mixture	35 µl	
NEBNExt Ultra II Ligation Master Mix	30 μΙ	
NEBNext Ligation Enhancer	1 μΙ	
NEBNext Adaptor for Illumina (dilluted 1:25)	2.5 μΙ	

- The samples are mixed well by using pipetting the entire volume up and down at least 10^{15m} times. The ligation mixture is incubated at § 20 °C for © 00:15:00 in a thermocycler without the heated lid.

at § 37 °C for © 00:15:00 .

- For the next step, the NEBNext Bead Reconstitution Buffer and the SPRI beads should be warm to & Room temperature for at least © 00:30:00 before use.
- 61 **37 μL** of SPRI beads are added to the PCR reaction. The sample is incubated for at least **300:05:00** at **§ Room temperature**.
- The sample is placed on a magnetic stand.
- After © 00:05:00 incubation, the supernatant is removed. Then, 200 μL of 80% freshly prepared ethanol is added to the tube. After incubation at 8 Room temperature for © 00:00:30, the supernatant is removed. ♦ . This process is repeated twice.
- The beads containing cDNA are air-dried for © 00:05:00 at & Room temperature. Do not overdry the beads.
- 65 □17 μL of 0.1X TE is added to resuspend the beads. The cDNA-bead mixture is incubated for at least © 00:02:00 at & Room temperature.
- The sample is placed on a magnetic stand. After ⊙ **00:05:00**, **□15** μL of the cleared solution is transferred to a new PCR tube.
- The following components are combined into a new PCR tube.

Component	Volume
Adaptor Ligated DNA Fragments	15 μΙ
NEBNext Ultra II Q5 Master Mix	25 μΙ
Index Primer / i7	5 μΙ
Index Primer / i5	5 μΙ

68 Labelling with dual barcodes is performed by using the following PCR cycling conditions.

Cycle step	Temperature	Time	Cycles
Initial	98 °C	30 sec	1
Denaturation			
Denaturation	98 °C	10 sec	8
Annealing	65°C	75 sec	
Final Extension	65 °C	5 min	
Hold	4 °C		

- For the next step, the NEBNext Bead Reconstitution Buffer and the SPRI beads should be warmed to **8 Room temperature** for at least **© 00:30:00** before use.
- 70 The PCR mixture is resuspended in \Box 45 μ L of SPRI beads. The sample is incubated for at least \bigcirc 00:05:00 at & Room temperature .
- 71 The cDNA-bead mixture is placed on a magnetic stand to separate the beads from the supernatant.
- 72 After © 00:05:00 , the supernatant is removed and discarded.

- 73 \blacksquare 200 μ L of 80% freshly prepared ethanol are added to the tube in the magnetic stand. \circlearrowleft . This process is repeated twice.
- 74 The beads containing cDNA are air-dried on a magnetic stand for © **00:05:00** at **8 Room temperature** .
- 75 The cDNA library is eluted by adding \blacksquare 33 μ L of 0.1X TE. Mix well by pipetting up and down 10 times.

- 76 The sample is placed on a magnetic stand. After © 00:05:00 , □30 μL of the sample containing the cDNA library is transferred to a new tube. Libraries can be stored at δ -20 °C .
- Per Proposition 1000 Before NGS, the quality of the final cDNA libraries is checked by using High Sensitivity D1000 ScreenTape (Agilent, 5067-5584), High Sensitivity D1000 ScreenTape Reagent(Agilent, 5067-5585), and a High Sensitivity D1000 ScreenTape ladder (Agilent, 5067-5587) in the Agilent 4200 TapeStation System.