Synthetic Homotopy Theory Homework: The Hopf fibration

February 19, 2020

The goal of this homework is to construct the Hopf fibration. We use notations from the lecture notes freely. The exercises are **not** independent. First we need an auxiliary definition.

Definition 1. A span consists $A, B, C : \mathcal{U}$ with $f : A \to B$ and $g : B \to C$.

Usually we will denote a span by a diagram:

$$A \stackrel{f}{\leftarrow} B \stackrel{g}{\rightarrow} C$$

We give an analysis of equality between spans.

Proposition 1. Assume given two spans:

$$A \stackrel{f}{\leftarrow} B \stackrel{g}{\rightarrow} C \qquad \qquad A' \stackrel{f'}{\leftarrow} B' \stackrel{g'}{\rightarrow} C'$$

then giving an equality between them is equivalent to giving three equivalences:

$$\epsilon_A: A \simeq A'$$
 $\epsilon_B: B \simeq B'$ $\epsilon_C: C \simeq C'$

such that:

$$\epsilon_A \circ f \sim f' \circ \epsilon_B$$
 $\epsilon_C \circ g \sim g' \circ \epsilon_B$

Now we introduce a new higher inductive type.

Inductive Definition 1. Assume given a span:

$$A \stackrel{f}{\leftarrow} B \stackrel{g}{\rightarrow} C$$

- There is a type $A \coprod_B C$ called the pushout of the span.
- For all x : A we have:

$$\mathbf{left}(x): A \coprod_{B} C$$

For all y: C we have:

right(y):
$$A \coprod_{B} C$$

Moreover for all z : B we have:

$$\mathbf{quo}(z) : \mathbf{left}(f(z)) =_{A \coprod_B C} \mathbf{right}(g(z))$$

• Assume given $P: A \coprod_B C \to \mathcal{U}$, in order to define: $f: (z: A \coprod_B C) \to P(z)$ it is enough to define:

$$f(\mathbf{left}(x)) := t_x$$

with t_x : $P(\mathbf{left}(x))$ for x: A,

$$f(\mathbf{right}(y)) := s_y$$

with s_y : $P(\mathbf{right}(y))$ for y: B, and:

$$\operatorname{apd}_f(\operatorname{\mathbf{quo}}(z)) :\equiv h_z$$

with
$$h_z$$
: $\mathbf{tr}_{\mathbf{quo}(z)}^P(t_{f(z)}) = s_{g(z)}$ for z : B .

Exercise 1 The join of two spaces

First we define the join of two spaces.

Definition 2. Assume given two types A and B, then we define their join A * B as the pushout of the span:

$$A \stackrel{p_1}{\leftarrow} A \times B \stackrel{p_2}{\rightarrow} B$$

where p_1 and p_2 are projections.

Question 1 Let *A* be a type, show that:

$$\mathbf{2} * A \simeq \Sigma A$$

Question 2 Show that the join operation is associative, meaning that for all $A, B, C : \mathcal{U}$ we have:

$$(A*B)*C \simeq A*(B*C)$$

Question 3 Using the two previous questions and the fact that $\Sigma S^n = S^{n+1}$, prove that:

$$S^1*S^1\simeq S^3$$

* Exercise 2 Flattening Lemma for suspension

Assume given $A: \mathcal{U}$ and $P: \Sigma A \to \mathcal{U}$.

Question 1 Prove that $(x : \Sigma A) \times P(x)$ is equivalent to the pushout of the span:

$$P(\mathbf{N}) \stackrel{p_1}{\leftarrow} P(\mathbf{N}) \times A \stackrel{\psi}{\rightarrow} P(\mathbf{S})$$

where ψ is defined for $q : P(\mathbf{N})$ and a : A by:

$$\psi(q,a) := \mathbf{tr}_{\mathbf{merid}_a}^P(q)$$

1

Exercise 3 The Hopf construction

Assume given $A: \mathcal{U}$ with $\mu: A \times A \to A$ such that for all a: A the maps

$$\mu(a, _) \equiv \lambda x. \mu(a, x) : A \rightarrow A$$

$$\mu(\underline{\ },a) \equiv \lambda x.\mu(x,a):A \to A$$

are equivalences.

We define $P: \Sigma A \to \mathcal{U}$ by:

$$P(\mathbf{N}) := A$$

$$P(\mathbf{S}) :\equiv A$$

and for x : A we have:

$$\operatorname{ap}_{P}(\operatorname{\mathbf{merid}}_{x}) := \operatorname{\mathbf{ua}}^{-1}(\mu(\underline{\ },x))$$

where $\mathbf{u}\mathbf{a}^{-1}: A \simeq B \to A =_{\mathscr{U}} B$ is the map assumed by univalence.

Question 1 Prove that for all a, b : A, we have $\mathbf{tr}_{\mathbf{merid}_b}^P(a) = \mu(a, b)$.

Question 2 Using the previous exercise, show that $(x : \Sigma) \times P(x)$ is equivalent to the pushout of the span:

$$A \stackrel{p_1}{\leftarrow} A \times A \stackrel{\mu}{\rightarrow} A$$

Question 3 Using the fact that $\mu(a, _)$ is an equivalence, show that the span:

$$A \stackrel{p_1}{\leftarrow} A \times A \stackrel{\mu}{\rightarrow} A$$

is equal to the span:

$$A \stackrel{p_1}{\leftarrow} A \times A \stackrel{p_2}{\rightarrow} A$$

where $p_1(x, y) :\equiv x$ and $p_2(x, y) :\equiv y$.

Question 4 Conclude that we have:

$$(x:\Sigma A)\times P(x)\simeq A*A$$

Exercise 4 H-types

In this exercise we define H-types and show that they satisfy the hypothesis from the previous exercise, and then build a fiber sequence for any connected H-type.

Definition 3. An H-type consists of a type A with:

- An element e : A.
- *A map*:

$$\mu: A \times A \to A$$

such that for all x: A we have:

$$\mu(x,e)=\mu(e,x)=x$$

As usual we identify an *H*-type and its underlying type. Let *A* be a connected *H*-type.

Question 1 Show that for all x : A, we have $|\mu(x,) = id_A|$ and $|\mu(, x) = id_A|$.

Question 2 From the previous question, prove that for all x : A, the maps $\mu(x, _)$ and $\mu(_, x)$ are equivalences.

Recall that given X a pointed type and $C: X \to \mathcal{U}$ with $*_C: C(*)$, we can build a fiber sequence:

$$C(*) \rightarrow_* (x : X) \times C(x) \rightarrow_* X$$

Question 3 Using the previous exercise, show that we have a fiber sequence:

$$A \rightarrow_* A * A \rightarrow_* \Sigma A$$

Exercise 5

In this exercise we build the Hopf fibration using the fact that S^1 is a H-type.

Question 1 Define:

$$\psi': (x:S^1) \to x = {}^1_S x$$

with $\psi'(\mathbf{base}) :\equiv \mathbf{loop}$.

We define $\mu: S^1 \to S^1 \to S^1$ by:

$$\mu(\mathbf{base}) :\equiv \mathbf{id}_{S^1} : S^1 \to S^1$$

$$ap_{\mu}(\mathbf{loop}) := \psi$$

where $\psi : \mathbf{id}_{S^1} = \mathbf{id}_{S^1}$ is the image of ψ' by function extensionality.

Question 2 Prove that for all $x : S^1$ we have:

$$\mu(x, \mathbf{base}) = x$$

$$\mu(\mathbf{base}, x) = x$$

Question 3 Using the previous exercises, conclude that we have a fiber sequence:

$$S^1 \rightarrow_* S^3 \rightarrow_* S^2$$

Question 4 Prove that:

$$\pi_n(S^3) = \pi_n(S^2)$$

if n > 2.