TD 8 : Équations différentielles à coefficients constants

Entraînements

Exercice 1. Résoudre les équations différentielles suivantes, puis déterminer l'unique solution vérifiant y(0) = 1

1.
$$y' - 2y = x + x^2$$

3.
$$y' = y + 1$$

2.
$$3y' - 2y = x$$

4.
$$y' = -y + e^x$$

Exercice 2. Résoudre les équations différentielles suivantes

1.
$$y'' + 4y' + 4y = x^2 e^x$$

2.
$$y'' + 4y' + 4y = x^2 e^{-2x}$$

3.
$$y'' + 4y' + 4y = \sin xe^{-2x}$$

4.
$$y'' - 6y' + 9y = e^x$$

5.
$$y'' - 2y' + 2y = x^2 + x$$

6.
$$2y'' - y' - y = e^x + e^{-x}$$

7.
$$y'' - 2y' + 3y = \cos x$$

8.
$$4y'' + 4y' + y = x + x^2 + 3\sin x + e^{3x} + xe^{-\frac{x}{2}}$$

9.
$$y'' - my + y = 0$$
 avec $m \in \mathbb{R}$

10.
$$y'' + y = x^2 \cos x$$

11.
$$y'' + y = \cos x + \sin(2x)$$

Exercice 3. Résoudre les équations différentielles suivantes, puis déterminer l'unique solution vérifiant y(0) = 0 et y'(0) = 1.

1.
$$y'' + 8y' + 15y = 5$$

$$2. \ 4y'' - 4y' + y = 4$$

3.
$$y'' - 2y' + 5y = 5$$

4.
$$y'' - 2y' = 2$$

Exercice 4. On considère un paramètre réel m. Résoudre l'équation différentielle suivante en discutant selon les valeurs de m:

$$y'' - (m+1)y' + my = e^x - x - 1.$$

Exercice 5. Résoudre les problèmes de Cauchy suivants :

1.
$$y'' - 4y' + 5y = e^x$$
 avec $y(0) = 1$ et $y'(0) = 0$

2.
$$y'' - 4y' + 5y = e^{2x}$$
 avec $y(0) = 0$ et $y'(0) = 1$

Type DS

Exercice 6. Cinétique chimique

On considère la réaction chimique d'équation bilan : $2N_2O_5 \rightarrow 4NO_2 + O_2$. Cette réaction a une cinétique d'ordre 1, c'est-à-dire que la vitesse de disparition du pentaoxyde de diazote, définie par $v = -\frac{1}{2}\frac{d[N_2O_5]}{dt}$ vérifie l'équation : $v = k[N_2O_5]$.

En posant $y(t) = [N_2O_5](t)$, et en notant $c_0 = y(0)$, donner l'expression exacte de la vitesse de disparition du pentaoxyde de diazote, et tracer sa courbe.

Exercice 7. Loi de Fick

Une cellule est plongée dans une solution de potassium de concentration c_p . On note c(t) la concentration de potassium dans la cellule à l'instant t, et on suppose que c(0) = 0. D'après la loi de Fick, la vitesse de variation de la concentration de potassium dans la cellule est proportionnelle au gradient de concentration $c_p - c(t)$, c'est-à-dire qu'il existe une constante τ homogène à un temps telle que

$$c'(t) = \frac{c_p - c(t)}{\tau}.$$

Déterminer c(t) et tracer le graphe de c.

Exercice 8. Datation au carbone 14.

La vitesse de désintégration du carbone 14 est proportionnelle à sa quantité présente dans le matériau considéré. Ainsi, si on note y(t) le nombre d'atomes de carbone 14 présents dans un échantillon de matière organique à l'année t, y vérifie l'équation différentielle

$$y'(t) = -ky(t),$$

où $k = 1.238 \times 10^{-4} \text{an}^{-1}$ est la constante de désintégration du carbone 14.

- 1. Calculer l'expression explicite de y(t) en fonction du nombre N_0 d'atomes de carbone 14 à l'instant t=0.
- 2. On appelle demi-vie d'un élément radioactif le temps au bout duquel la moitié de ses atomes se sont désintégrés. Déterminer la demi-vie du carbone 14.
- 3. Lors de fouilles, on a découvert un fragment d'os dont la teneur en carbone 14 vaut 70% de celle d'un os actuel de même masse. Estimer l'âge de ces fragments.

Exercice 9.

1. Circuit RC

On place en série un condensateur de capacité C et une résistance R, alimentés par un générateur de force électromotrice V. La charge q(t) du condensateur vérifie alors l'équation

$$q'(t) + \frac{1}{RC}q(t) = \frac{V}{R}.$$

Calculer l'expression explicite de q, sachant que la charge initiale est nulle, et tracer le graphe de q.

2. Circuit LC

On place en série un condensateur de capacité C et une bobine d'inductance L, alimentés par un générateur de force électromotrice V. La charge q(t) du condensateur vérifie alors l'équation

$$q''(t) + \frac{1}{LC}q(t) = \frac{V}{L}.$$

Calculer l'expression explicite de q, sachant que la charge initiale est nulle et que q'(0) = 0, et tracer le graphe de q.