Модели гауссовских смесей в задачах обнаружения аномалий и их применение для поиска аномальных посадок самолетов

Студент: Миллер Сергей 494а

Научный руководитель: Артемов Алексей

Обзор литературы

 Anomaly detection via a Gaussian Mixture Model for flight operation and safety monitoring

(2015, Lishuai Li, R. John Hansman, Rafael Palacios, Roy Welsch)

Существующие методы

Percentage of flights with Level 3 events detected by MKAD, ClusterAD-Flight, and ClusterAD-Data Sample

Fig. 11. Percentage of flights with Level 3 Exceedance Events Detected by MKAD, ClusterAD-Flight, and ClusterAD-DataSample.

- ClusterAD-Flight (GMM, 2011)
- ClusterAD-DataSample (GMM, 2015)
- MKAD (SVM, 2010)

ClusterAD-DataSample

Normalized vectors

Every flight parameter is normalized to have "zero mean and unit variance"

Clusters

GMM clustering is performed on normalized vectors; each cluster represent a typical operation of aircraft

Temporal distribution of clusters

The temporal distribution of clusters is summarized by observation frequency of each cluster along the temporal reference

Larger circle size and darker color indicates a higher observation frequency

Fig. 3. Cluster analysis: identify typical operations and temporal distribution.

$$p(\mathbf{x}_t^f \text{ is normal}) = \sum_{q=1}^K p(\mathbf{x}_t^f \text{ is from cluster } q) \cdot p(\text{cluster } q \text{ is appropriate at time } t)$$

Цель работы

 построить unsupervised классификатор с качеством не хуже чем у ClusterAD-DataSample + eps

План

- реализовать baseline-алгоритм +
- получить данные о полетах из ЦАГИ (запасной вариант: поиск аномальных объектов на видео с помощью анализа ряда эмбедингов кадров)
- research: поиск оптимального количества кластеров, оптимизация алгоритма под разнородные переменные, иные возможные улучшения baseline-алгоритма
- реализовать итоговый алгоритм