Quiz #4

Student Name:	Student ID:	Class: □ Sun / □ Jiang
I pledge to follow the honor code of NTU and do not cheat in the exam.		
Signature:		

Problem 1. (30 pts)

Consider two positively weighted graphs G = (V, E, w) and G' = (V, E, w') with the same vertices V and edges E such that, for any edge $e \in E$, we have $w'(e) = (w(e))^2$. Prove or disprove the following statement:

For any two vertices $u, v \in V$, any shortest path between u and v in G' is also a shortest path in G. Giving a counterexample is sufficient for disproving this statement.

Problem 2. (30 pts)

Let G = (V, E) be a weighted directed graph. The dominant of a path is defined as the **maximum** edge weight among all the edges on the path. Suppose that we want to find a **minimum** dominant path between each pair of vertices. Show how to modify Floyd-Warshall's all-pairs shortest-path algorithm shown below to solve this problem in $O(V^3)$ time. (You only need to give your modifications to save your time.)

Floyd-Warshall(W)

1.
$$n = W.rows$$

2. $D^{(0)} = W$

3. **for** $k = 1$ **to** n

4. let $D^{(k)} = (d_{ij}^{(k)})$ be a new $n \times n$ matrix

5. **for** $i = 1$ **to** n

6. **for** $j = 1$ **to** n

7. $d_{ij}^{(k)} = \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$

8. **return** $D^{(n)}$

Line 7:
$$d_{ij}^{(k)} = \min \left(d_{ij}^{(k-1)}, \max \left(d_{ik}^{(k-1)}, d_{kj}^{(k-1)} \right) \right)$$

e.g.
Denstethe min. dominant of any path from it to j with {1,...,k}
as intermediate nodes as dis.

$$d_{ij}^{(k-1)} = 5$$

$$d_{ij}^{(k)} = \min \left(d_{ij,max}^{(k-1)} \left(d_{ik}^{(k-1)}, d_{kj}^{(k-1)} \right) \right)$$

$$= \min \left(5, 6 \right)$$

$$d_{ij}^{(k-1)} = 5$$

$$= \min \left(5, 6 \right)$$

$$d_{ij}^{(k-1)} = 5$$

$$d_{ij}^{(k-1)} = 6$$

$$d_{ij}^{(k-1)} = 6$$

$$d_{ij}^{(k-1)} = 6$$

Department of Electrical Engineering National Taiwan University Algorithms, Spring 2024

Problem 3. (40 pts)

In the flow network shown below, the number beside an edge denotes its corresponding capacity. Apply the **Edmonds-Karp** algorithm to find a maximum flow from s to t in the network.

Show **every augmentation path** (but you **do NOT** need to show the whole network to save time) and explain why the flow you found is maximum.

Therefore the flow is a max flow.