CREDIT SCORING

Project

Create a credit scoring calculator based on machine learning techniques

Challenges

- Clients having poor credit history
- Highly imbalanced data
- Transparency of the credit score

MISSION

Implement a credit scoring model

Create a predict API

Create an interactive dashboard

DATA

Database schema

Quick overview

- Data Origin: Home Credit Kaggle Competition
- **7** tables
- **307511** applications in the train set
- 8% applications with payment difficulties
- 92% of no risk applications

METHODOLOGY

2 TYPES OF ERRORS

EVALUATION METRICS

1	COST RATIO SCORE	Ratio of 10*FN + FP
2		Give more weight to Recall
3	ROC AUC	Trade-off between True Positive Rate and the False Positive Rate
4	RECALL	True Positive Rate
5	ACCURACY	 Proportion of observations that were correctly predicted

MODELS

DUMMY: baseline

Dummy Classifier

LINEAR

Logistic Regression

ENSEMBLE

Random Forest Classifier

GRADIENT BOOSTING

- LightGBM
- XGBoost

TRAINING PROCESS FOR EACH MODEL

CLASS IMBALANCE

Oversampling

- SMOTE
- SMOTE-NC

Class weights

- `class_weights`: `balanced' (Logistic Regression,Random Forest Classifier, LightGBM)
- `scale_pos_weight`: 11 (XGBoost)

FEATURE ENGINEERING

FEATURE OPTIMIZATION

- Drop features:
 - with low variance (0.1 variance threshold)
 - correlated (>= 0.7)
- Select 25 final features:
 - Logistic Regression coef_
 - LightGBM feature_importances_
 - XGBoost feature_importances_

PREPROCESSING

OUTLIERS	MISSING VALUES	ENCODING	SCALING	NORMALIZATION
IQR factor 1.5 IQR factor 2.5	Drop columns with > 60% of NaN Simple Imputer:	One Hot Encoding (categorical)	StandardScaler MinMaxScaler RobustScaler	Power Transformer

FINE TUNING

TRAINING RESULTS

	Dummy	LightGBM	XGBoost	Random Forest	Logistic Regression
Cost Ratio	0.79	0.56	0.59	0.6	0.61
Fβ-score	0	0.64	0.65	0.61	0.61
AUC	0.5	0.73	0.71	0.7	0.69
Recall	0	0.66	0.68	0.64	0.63
Ассигасу	0.92	0.68	0.64	0.66	0.65
Duration	7.8s	1.9min	4.5min	2.4min	1.7min

LIGHTGBM CONFIGURATION

Class balance setting: class_weights: 'balanced'

Best threshold: 0.5

PREPROCESSING	HYPERPARAMETERS
 ■ Filling missing values: x ■ Removing outliers: x ■ OneHotEncoding: ✓ ■ Scaling (MinMaxScaler): ✓ ■ Normalization: x 	 n_estimators: 158 num_leaves: 111 max_depth: 4 learning_rate: 0.09 min_data_in_leaf: 135 subsample_for_bin: 20000 colsample_by_tree: 0.59 lambda_l1: 0.71 lambda_l2: 0.19

FEATURE IMPORTANCE: GLOBAL

FEATURE IMPORTANCE: LOCAL

DATA DRIFT ANALYSIS

Tool: Evidently

Detected drift: 8.0% of columns (2 out of 25)

Detection threshold: 0.5

Column	Туре	Reference Distribution	Current Distribution	Data Drift	Stat Test	Drift Score
AMT_CREDIT	num	II		Detected	Wasserstein distance (normed)	0.207334
DAYS_LAST_PHONE_CHANGE	num			Detected	Wasserstein distance (normed)	0.158644

CONTINUOUS INTEGRATION

MODEL TRACKING

MLFLow

VERSION CONTROL

- Git
- Github (<u>repository link</u>)

JOBS

- Tests with PyTest
- Github actions

API HOSTING

Render platform

DASHBOARD

Streamlit (<u>dashboard link</u>)

COMMITS GITHUB ACTIONS

feat(ops): generate a data drift report

NatChe committed last week · ✓ 1 / 1

refacto(dashboard): move dashboard.py to the root

NatChe committed last week · ✓ 1/1

fix(dashboard): run shap initjs

NatChe committed last week · ✓ 1 / 1

fix(dashboard): use abs path for feature importance image

NatChe committed last week ⋅ ✓ 1/1

fix(dashboard): use absolute path for css

NatChe committed last week · ✓ 1 / 1

feat(ops): generate a data drift report

PyTest #21: Commit 10e73c1 pushed by NatChe

refacto(dashboard): move dashboard.py to the root

PyTest #20: Commit a64cedd pushed by NatChe

fix(dashboard): run shap initis

PyTest #19: Commit 116775f pushed by NatChe

fix(dashboard): use abs path for feature importance image

PyTest #18: Commit e8686ab pushed by NatChe

fix(dashboard): use absolute path for css

PyTest #17: Commit 209fc45 pushed by NatChe

TO GO FURTHER

- Study credit risk literature and research papers (feature engineering, score).
- Fine-tune Cost Ratio between Error Type I and Error Type II.
- Exclude features that can lead to discrimination.
- More advanced optimization of the LightGBM model.

THANKS!

Powered by

Links:

- 1. Github repository: https://github.com/NatChe/credit-scoring-dashboard
- 2. Dashbord on Streamlit: https://credit-scoring-dashboard-vo4t4kjrntvwp3fabtzsss.streamlit.app/
- 3. Render platform: https://render.com/
- 4. Kaggle notebook used for Feature Engineering: https://www.kaggle.com/code/jsaguiar/lightgbm-with-simple-features
- 5. Main page of the Home Credit Kaggle Competition for the data explanation: https://www.kaggle.com/competitions/home-credit-default-risk/data