# Ferienkurs Experimentalphysik II Elektrodynamik

Übung zur Magnetostatik

12. September 2011 Michael Mittermair

#### Aufgabe 1

Bestimmen sie das B-Feld eines dünnen, (unendlich) langen, geraden Leiters, in dem der Strom I fließt.

#### Aufgabe 2

Berechnen sie das statische Magnetfeld eines Stroms durch eine unendlich ausgedehnte Ebene mit vernachlässigbarer Dicke und konstanter Stromdichte.

<u>Hinweis:</u> O.B.d.A. kann angenommen werden, dass es sich bei der Ebene um die x-y-Ebene handelt und der Stromfluss nur eine x-Komponente aufweist.

#### Aufgabe 3

Gegeben sei ein in der x-y-Ebene liegender dünner Leiter mit einer halbkreisförmigen Ausbuchtung mit Radius R, durch den ein Strom I fließt(siehe Abbildung).



Berechnen sie die Stärke des Magnetfeldes im Ursprung mit Hilfe des Biot-Savart'schen Gesetzes. Welche Stärke hätte das Feld im Ursprung, wenn es sich stattdessen um einen Einviertel- bzw. Dreiviertel-Kreis oder einen ganzen -kreis handeln würde.

#### Aufgabe 4

Ein unendlich langer Hohlzylinder mit dem Innenradius a und dem Außenradius b führe einen Gleichstrom I. Berechnen sie die magnetische Feldstärke  $\vec{B}$  im gesamten Raum, das heißt für Radien r.



#### Aufgabe 5

Berechnen Sie das magnetische Dipolmoment eines mit Winkelgeschwindigkeit  $\omega$  rotierenden Kegels, mit Höhe h und Grundseitenradius R, der die konstante Oberflächenladungsdichte  $\sigma$  trägt.

#### Aufgabe 6

Bei Wasserstoffatomen bewegt sich das Elektron mit einem Radius  $r=0,529\cdot 10^{-10}$  m um den Kern. Welcher mittleren Stromstärke entspricht diese Ladungsbewegung und welche Magnetfeldstärke erzeugt sie am Ort des Kerns?

#### Aufgabe 7

Zwei konzentrisch angeordnete Rohre werden in entgegengesetzter Richtung von einem Strom I durchflossen. Berechne das Magnetfeld in Abhängigkeit vom Abstand r zum Mittelpunkt der Anordnung! (Der Strom fließt in den grauen Bereichen)



### Aufgabe 8

Zwei lange parallele Drähte sind im Abstand 2cm parallel zueinander wie in der Abbildung zu sehen in z, Richtung gespannt und werden jeweils in die gleiche Richtung von Strom I=10A durchflossen. Wie groß ist die Kraft pro Längeneinheit, die die Drähte aufeinander ausüben? Welche Kraft würde wirken, wenn die Ströme in entgegengesetzte Richtungen fließen würden?



## Aufgabe 9

Gegeben ist die rechteckige Stromschleife mit den Abmessungen a=11cm und b=14cm. Der Winkel  $\Theta zwischen Schleife und Achsebeträgt\Theta=30$ 

und es fließt ein Strom I=1A durch die Schleife.

**a**)

Berechnen Sie das magnetische Dipolmoment  $\vec{p}_m$  der Stromschleife.

**b**)

Wie groß ist die potentielle Energie der Schleife in einem Magnetfeld B=1T, wenn  $\vec{B}$  entlang der x-Achse angelegt wird? Wie groß ist das Drehmoment auf die Schleife und in welche Richtung wirkt es?



# Aufgabe 10

Gegeben sei ein Draht mit der Form einer Archimedischen Spule.



Die Gleichung, dieser Leiterkonfiguration wird beschrieben durch

$$r(\Theta) = a + \frac{b}{\pi}\Theta \text{ für } 0 \le \Theta \le \pi$$

wobei  $\Theta$  der Winkel von der x-Achse aus gesehen ist(im Bogenmaß). Der Punkt P befindet sich im Ursprung des xy-Koordinatensystems.  $\vec{e}_r$  und  $\vec{e}_\phi$  sind die Einheitsvektoren in radialer und azimutaler Richtung. Der Draht wird vom Strom I in der Abbildung angegebenen Richtung durchflossen. Berechnen Sie das Magnetfeld B im Punkt P.

#### Aufgabe 11

In einem kartesischen Koordinatensystem ist der Halbraum z<0 mit einem magnetisierbaren Material der Permeabilitätszahl  $\mu_r$  gefüllt, der Halbraum z>0 ist leer. Auf der magnetisierbaren Oberfläche verläuft entlang der y-Achse ein unendlich langer gerader Draht mit vernachlässigbarem Querschnitt, durch den ein konstanter Strom der Stärke I in positive y-Richtung fließt. Bestimmen sie H,H und M in den beiden Halbräumen. Hinweis: Nehmen sie an, dass H, B und M die Form  $\vec{H}(r) = H_a(r)\vec{e}_{\phi}$  im Außenraum bzw.  $\vec{H}(r) = H_i(r)\vec{e}_{\phi}$  im Innenraum haben. Wobei r der Abstand zum Draht und  $\phi$  der Winkel um die y-Achse ist.