Also, do the assigned HW problems. This is just in addition to HW.

ALWAYS JUSTIFY YOUR ANSWER!

Computations

- 1. Describe all group homomorphisms $\mathbb{Z}_{45} \to \mathbb{Z}_{10}$.
- 2. Describe all group homomorphisms $\mathbb{Z}_{45} \to \mathbb{Z}_7$.
- 3. Describe all group homomorphisms $\mathbb{Z}_2 \to \mathbb{Z}_4$.
- 4. Describe all group homomorphisms $\mathbb{Z}_2 \to S_3$.
- 5. Let $f: \mathbb{Z}_{18} \to \mathbb{Z}_{27}$ be given by f(1) = 3 and therefore $f(i) = 3i \pmod{27}$.
 - (a) Find f(0)=
 - (b) Find f(3)=
 - (c) Find f(9)=
 - (d) Find f(10) =
 - (e) Find Im(f) =
 - (f) Find Ker(f) =
 - (g) Is f onto? Justify your answer.
 - (h) Is f one-to-one? Justify your answer.
- 6. Let $f: \mathbb{Z}_{45} \to \mathbb{Z}_{100}$ be given by f(1) = 20 and therefore $f(i) = 20i \pmod{100}$.
 - (a) Find f(0)=
 - (b) Find f(5)=
 - (c) Find f(30) =
 - (d) Find f(38) =
 - (e) Find Im(f) =
 - (f) Find Ker(f) =
 - (g) Is f onto? Justify your answer.
 - (h) Is f one-to-one? Justify your answer.
- 7. Let $f: \mathbb{Z}_6 \to S_4$ be given by f(1) = (124).
 - (a) Find f(0)=
 - (b) Find f(2)=

- (c) Find f(3)=
- (d) Find f(4)=
- (e) Find f(5)=
- (f) Find Im(f) =
- (g) Find Ker(f) =
- (h) Is f onto? Justify your answer.
- (i) Is f one-to-one? Justify your answer.
- 8. Let $G = \mathbb{Z}_{12}$.
 - (a) Find the subgroup $H = \langle 3 \rangle$.
 - (b) Find all left cosets of H in G.
 - (c) Find all right cosets of H in G.
 - (d) Is H normal subgroup of G?
 - (e) Find G/H.
 - (f) Find [G:H].
- 9. Let $G = S_4$.
 - (a) Find the subgroup $H = \langle (1342) \rangle$.
 - (b) Find all left cosets of H in G.
 - (c) Find all right cosets of H in G.
 - (d) Is H normal subgroup of G?
 - (e) Find [G:H].
- 10. Let $G = S_4$.
 - (a) Find the subgroup A_4 of even permutations.
 - (b) Find all left cosets of A_4 in G.
 - (c) Find all right cosets of A_4 in G.
 - (d) Is A_4 normal subgroup of G?
 - (e) Find G/H.
 - (f) Find [G:H].
- 11. Consider the group \mathbb{Z}_{15}^{\times} .
 - (a) Find the subgroup $H = \langle 2 \rangle$
 - (b) Find all left cosets of H in G.

- (c) Find all right cosets of H in G.
- (d) Is H normal subgroup of G?
- (e) Find G/H.
- (f) Find [G:H].

Theoretic Questions

- 12. Write the definition of *Normal Subgroup*.
- 13. Write the definition of Left coset.
- 14. Write the definition of Subgroup.
- 15. Write the definition of Quotient group.
- 16. Write the definition of Kernel of a homomorphism.

Proofs

- 17. Let $f: G \to G'$ be a group homomorphism. Let $g \in G$. Prove that |f(g)| divides |g|.
- 18. Let $f: G \to G'$ be a group homomorphism. Prove that $f(e_G) = e_{G'}$.
- 19. Let $f: G \to G'$ be a homomorphism. Prove that Im(f), the image of f is a subgroup of G'.
- 20. Let $f: G \to G'$ be a homomorphism. Prove that Ker(f), the kernel of f is a subgroup of G.
- 21. Let $f: G \to G'$ be a homomorphism. Prove that Ker(f) is normal subgroup of G.
- 22. Let H be a subgroup of group G. Prove that $(aH = H) \iff (a \in H)$.
- 23. Let H be a subgroup of group G. Let $a \in G$ and let $aHa^{-1} = \{aha^{-1} \mid h \in H\}$. Prove that aHa^{-1} is a subgroup of G.
- 24. Prove that the center of a group is normal subgroup, i.e. Z(G) is normal subgroup in G.

True -False - Sometimes

- 25. True -False Sometimes
 - T F S Let \mathbb{Z}_n^{\times} is a subgroup of \mathbb{Z}_n .
 - T F S Let $G = (\mathbb{Z}_n, +_n)$, let H be a subgroup of G. Then H is normal subgroup.
 - T F S Let $G = S_7$, let H be a subgroup of G. Then H is normal subgroup.
 - T F S Let H be a subgroup of G. Let $a \in G$. Then aH = Ha.
 - T F S $(2\mathbb{Z}, +)$ is a normal subgroup of $(\mathbb{Z}, +)$.

- T F S $\langle 6 \rangle$ is a normal subgroup of $(\mathbb{Z}_9, +_9)$
- T F S Let H be a proper subgroup of S_3 . Then H is normal subgroup.
- T F S All proper subgroups of S_4 are normal.
- T F S Let G be a group of order |G| = 5. Let H < G. Then |H| = 4.
- T F S Let G be a group of order |G| = 5. Let H < G. Then |H| = 1.
- T F S Let G be a group of order |G| = 15. Let H < G. Then [G : H] = 5.
- T F S Let G be a cyclic group of order |G| = 15. Let H < G. Then |H| = 10.
- T F S Let G be a group. Let $g \in G$. Then $\langle g \rangle$ is normal subgroup.

Examples

- 26. Give an example of a group and a subgroup which is not normal. Prove your statement.
- 27. Give an example of a group and a subgroup which is normal. Prove your statement.
- 28. Give an example of a non cyclic group and a subgroup which is normal. Prove your statement.
- 29. Give an example of a group homomorphism which is onto. Prove your statement.
- 30. Give an example of a group homomorphism which is not onto. Prove your statement.
- 31. Give an example of a group homomorphism which is one-to-one. Prove your statement.
- 32. Give an example of a group homomorphism $f: G \to G'$ such that $Ker(f) = \{e_G\}$. Prove your statement.
- 33. Give an example of a group homomorphism $f: G \to G'$ such that $Ker(f) \neq \{e_G\}$. Prove your statement.
- 34. Give an example of a group G and a subgroup H such that [G:H]=3.
- 35. Give an example of a group G and a subgroup H such that [G:H]=2.