电磁场与电磁波

第8章

磁场力、材料和电感 Magnetic Forces, Materials, and Inductance

8.1	运动电荷所受的力
8.2	元电流所受的力
8.3	元电流之间的作用力
8.4	闭合回路所受的力和力矩
8.5	磁性材料的性质
8.6	磁化和磁导率
8.7	磁场边界条件
8.8	磁路
8.9	势能和磁性材料受到的力
8.10	自感和互感

8.1 运动电荷所受的力 FORCE ON A MOVING CHARGE

电场和磁场作用在点电荷上的力为:

电荷可以是静止的或移动的

 $\mathbf{F}_e = Q\mathbf{E}$

力的方向为E

电荷以v的速度移动

$$\mathbf{F}_m = Q (\mathbf{v} \times \mathbf{B})$$

方向朝屏幕内

8.1 运动电荷所受的力 - 洛伦兹力方程

在同时存在电场和磁场的情况下,就同时存在两种力:

在这种情况下,电场将在 E 方向上加速电荷,使其垂直穿过 B 磁场线,从而产生了一个向屏幕外的磁力分量

因此,移动电荷上的合力是这两者之和:

$$\mathbf{F} = Q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

这就是洛伦兹力方程(有时称为"麦克斯韦第五方程")

FORCE ON A DIFFERENTIAL CURRENT ELEMENT

当沿着与电流垂直的方向施加磁场 B 时,正负载流子将产生轻微的位移,这是由于移动电荷上的磁力作用所致。

因此而产生的可测量的电压, 称为霍尔电压。

霍尔效应(Hall Effect)

考虑以体积电流密度为J的一小段电流,长度 dL,悬浮在磁场B中,电流体积元为 dv

已知电流密度是以速度 v 移动的体电荷的密度:

$$\mathbf{J} = \rho_{\nu} \mathbf{v}$$

因此可知微分电荷dQ上的微分力为: $d\mathbf{F} = dQ \mathbf{v} \times \mathbf{B}$ 式中: $dQ = \rho_{\nu} d\nu$

因此:
$$d\mathbf{F} = \rho_{\nu} d\nu \, \mathbf{v} \times \mathbf{B}$$

最终可得:

$$d\mathbf{F} = \mathbf{J} \times \mathbf{B} \, dv$$

对于体电流、面电流或线电流,都有对应的微分电流表达式:

$$\mathbf{J} dv = \mathbf{K} dS = I d\mathbf{L}$$

磁场 B 中微分力相应的表达式为:

$$d\mathbf{F} = \mathbf{J} \times \mathbf{B} \, d\nu$$

体电流密度 (三维)

$$d\mathbf{F} = \mathbf{K} \times \mathbf{B} \, dS$$

面电流密度 (二维)

$$d\mathbf{F} = I d\mathbf{L} \times \mathbf{B}$$

线电流密度 (一维)

在三维或二维空间中,通过 对电流所占据的体积或表面 积来进行积分以求得合力:

$$\mathbf{F} = \int_{\text{vol}} \mathbf{J} \times \mathbf{B} \, d\nu$$

$$\mathbf{F} = \int_{S} \mathbf{K} \times \mathbf{B} \, dS$$

对于线电流,总的力是微分力的积分,通常是对电流经过的闭合路径进行积分:

$$\mathbf{F} = \oint I \, d\mathbf{L} \times \mathbf{B} = -I \oint \mathbf{B} \times d\mathbf{L}$$

对于长度为L、具有均匀电流I且在均匀磁场B中的直导线所受的力为:

$$\mathbf{F} = I\mathbf{L} \times \mathbf{B}$$

将叉积展开为: $F = BIL \sin \theta$

8.2 元电流所受的力 - 例题8.1: 方形电流回路的受力

直导线在平面电流环路中产生的磁场为:

$$\mathbf{H} = \frac{I}{2\pi x} \mathbf{a}_z = \frac{15}{2\pi x} \mathbf{a}_z \text{ A/m}$$

磁感应强度 B 为:

$$\mathbf{B} = \mu_0 \mathbf{H} = 4\pi \times 10^{-7} \mathbf{H} = \frac{3 \times 10^{-6}}{x} \mathbf{a}_z \,\mathrm{T}$$

从而可通过积分计算电流环受到的总的力为:

$$\mathbf{F} = -I \oint \mathbf{B} \times d\mathbf{L}$$

这需要对环路的四个分段分别求积分

8.2 元电流所受的力 - 例题8.1: 方形电流回路的受力

接上页的积分式:

 $=-8\mathbf{a}_x \text{ nN}$

$$\mathbf{F} = -2 \times 10^{-3} \times 3 \times 10^{-6} \left[\int_{x=1}^{3} \frac{\mathbf{a}_{z}}{x} \times dx \, \mathbf{a}_{x} + \int_{y=0}^{2} \frac{\mathbf{a}_{z}}{3} \times dy \, \mathbf{a}_{y} \right]$$

$$+ \int_{x=3}^{1} \frac{\mathbf{a}_{z}}{x} \times dx \, \mathbf{a}_{x} + \int_{y=2}^{0} \frac{\mathbf{a}_{z}}{1} \times dy \, \mathbf{a}_{y} \right]$$

$$= -6 \times 10^{-9} \left[\ln x \Big|_{1}^{3} \mathbf{a}_{y} + \frac{1}{3} y \Big|_{0}^{2} (-\mathbf{a}_{x}) + \ln x \Big|_{3}^{1} \mathbf{a}_{y} + y \Big|_{2}^{0} (-\mathbf{a}_{x}) \right]$$

$$= -6 \times 10^{-9} \left[(\ln 3) \mathbf{a}_{y} - \frac{2}{3} \mathbf{a}_{x} + \left(\ln \frac{1}{3} \right) \mathbf{a}_{y} + 2 \mathbf{a}_{x} \right]$$

8.3 元电流之间的作用力 FORCE BETWEEN DIFFERENTIAL CURRENT ELEMENTS

使用 Biot-Savart 定律计算点 2 处的微分磁场,该磁场由点 1 处的微分电流元产生:

$$d\mathbf{H}_2 = \frac{I_1 d\mathbf{L}_1 \times \mathbf{a}_{R12}}{4\pi R_{12}^2}$$

该磁场对应的磁通量密度会在点 2 处的电流元上产生一个力

将第二个微分电流元放置在点2处,它受到力为:

$$d(d\mathbf{F}_2) = I_2 d\mathbf{L}_2 \times d\mathbf{B}_2$$

已求得点2处的磁场为:

$$d\mathbf{H}_2 = \frac{I_1 d\mathbf{L}_1 \times \mathbf{a}_{R12}}{4\pi R_{12}^2}$$

因此磁通量密度为:

$$d\mathbf{B}_2 = \mu_0 d\mathbf{H}_2$$

代入上式最终可得:

$$d(d\mathbf{F}_2) = \mu_0 \frac{I_1 I_2}{4\pi R_{12}^2} d\mathbf{L}_2 \times (d\mathbf{L}_1 \times \mathbf{a}_{R12})$$

8.3 元电流之间的作用力 - 例题8.2

给定:
$$I_1 d\mathbf{L}_1 = -3\mathbf{a}_y \mathbf{A} \cdot \mathbf{m}$$
 at $P_1(5, 2, 1)$

$$I_2 d\mathbf{L}_2 = -4\mathbf{a}_z \mathbf{A} \cdot \mathbf{m} \text{ at } P_2(1, 8, 5)$$

可得:
$$\mathbf{R}_{12} = -4\mathbf{a}_x + 6\mathbf{a}_y + 4\mathbf{a}_z$$

将上式代入上页得到的公式中:

$$d(d\mathbf{F}_2) = \mu_0 \frac{I_1 I_2}{4\pi R_{12}^2} d\mathbf{L}_2 \times (d\mathbf{L}_1 \times \mathbf{a}_{R12})$$

可得:

$$d(d\mathbf{F}_2) = \frac{4\pi 10^{-7}}{4\pi} \frac{(-4\mathbf{a}_z) \times [(-3\mathbf{a}_y) \times (-4\mathbf{a}_x + 6\mathbf{a}_y + 4\mathbf{a}_z)]}{(16 + 36 + 16)^{1.5}}$$

= 8.56\mathbf{a}_y \text{ nN}

导线总的作用力通过对以下导线受力微分元的积分得到的:

$$d(d\mathbf{F}_2) = \mu_0 \frac{I_1 I_2}{4\pi R_{12}^2} d\mathbf{L}_2 \times (d\mathbf{L}_1 \times \mathbf{a}_{R12})$$

其中积分的范围为两条导线的各自的长度。若两个积分都对应的导线电流形成闭环,那么它们之间相互作用力的表达式为:

$$\mathbf{F}_{2} = \mu_{0} \frac{I_{1}I_{2}}{4\pi} \oint \left[d\mathbf{L}_{2} \times \oint \frac{d\mathbf{L}_{1} \times \mathbf{a}_{R12}}{R_{12}^{2}} \right]$$
$$= \mu_{0} \frac{I_{1}I_{2}}{4\pi} \oint \left[\oint \frac{\mathbf{a}_{R12} \times d\mathbf{L}_{1}}{R_{12}^{2}} \right] \times d\mathbf{L}_{2}$$

考虑两条图中所示的导线,它们承载大小相等方向相反的电流 I,沿 y 轴的间距为 d_{12} ,导线沿 z 方向放置。导线长度为无限长,求它们之间作用力的大小与方向

考虑一段长度为 *l* 的导线 2,根据对称性它在 y 轴的上方和下方受力的情况互相对称

计算导线 1 在导线 2 的位置处产生的磁场 B 为:

$$\mathbf{B}_{12} = -\frac{\mu_0 I}{2\pi d_{12}} \, \mathbf{a}_x$$

且:
$$Id\mathbf{L}_2 = -I\,dz_2\,\mathbf{a}_z$$

已求得:
$$\mathbf{B}_{12} = -\frac{\mu_0 I}{2\pi d_{12}} \mathbf{a}_x$$
 与 $Id\mathbf{L}_2 = -I dz_2 \mathbf{a}_z$

那么作用在微分元电流上的力为:

$$d\mathbf{F}_2 = Id\mathbf{L}_2 \times \mathbf{B}_{12}$$

$$= -I dz_2 \mathbf{a}_z \times \left(-\frac{\mu_0 I}{2\pi d_{12}} \mathbf{a}_x \right) = \frac{\mu_0 I^2 dz_2}{2\pi d_{12}} \mathbf{a}_y$$

作用在导线2上总的力为:

$$\mathbf{F}_{2} = \int_{-\ell/2}^{\ell/2} Id\mathbf{L}_{2} \times \mathbf{B}_{12} = \frac{\mu_{0}I^{2}\ell}{2\pi d_{12}} \,\mathbf{a}_{y}$$

可见这是一种排斥力

对于同样的问题,我们再用通用公式来求解:

$$\mathbf{F}_{2} = \mu_{0} \frac{I_{1}I_{2}}{4\pi} \oint \left[\oint \frac{\mathbf{a}_{R12} \times d\mathbf{L}_{1}}{R_{12}^{2}} \right] \times d\mathbf{L}_{2}$$

第一步是建立微分参数,以及具体的长度和方向参数,这些参数将在方程中使用分别取 z_1 和 z_2 作为沿导线 1 和 导线 2 的位置变量,用于表示微分电流元的位置

曲图可得: $Id\mathbf{L}_1 = I dz_1 \mathbf{a}_z$ $Id\mathbf{L}_2 = -I dz_2 \mathbf{a}_z$ $R_{12} = \sqrt{(z_2 - z_1)^2 + d_{12}^2}$ $\mathbf{a}_{R12} = \frac{d_{12} \mathbf{a}_y + (z_2 - z_1)\mathbf{a}_z}{\sqrt{(z_2 - z_1)^2 + d_{12}^2}}$

总作用力的积分式为:

$$\mathbf{F}_{2} = \mu_{0} \frac{I_{1}I_{2}}{4\pi} \oint \left[\oint \frac{\mathbf{a}_{R12} \times d\mathbf{L}_{1}}{R_{12}^{2}} \right] \times d\mathbf{L}_{2}$$

根据导线长度的设置,积分式化为:

$$\mathbf{F}_{2} = \mu_{0} \frac{I^{2}}{4\pi} \int_{-\ell/2}^{\ell/2} \left[\int_{-\infty}^{\infty} \frac{d_{12} \mathbf{a}_{y} + (z_{2} - z_{1}) \mathbf{a}_{z}}{\left[(z_{2} - z_{1})^{2} + d_{12}^{2} \right]^{3/2}} \times dz_{1} \mathbf{a}_{z} \right] \times (-dz_{2} \mathbf{a}_{z})$$

已求得:

$$\mathbf{F}_{2} = \mu_{0} \frac{I^{2}}{4\pi} \int_{-\ell/2}^{\ell/2} \left[\int_{-\infty}^{\infty} \frac{d_{12} \mathbf{a}_{y} + (z_{2} - z_{1}) \mathbf{a}_{z}}{\left[(z_{2} - z_{1})^{2} + d_{12}^{2} \right]^{3/2}} \times dz_{1} \mathbf{a}_{z} \right] \times (-dz_{2} \mathbf{a}_{z})$$

进行叉乘后,上式化简为:

$$\mathbf{F}_{2} = \mu_{0} \frac{I^{2} d_{12}}{4\pi} \mathbf{a}_{y} \int_{-\ell/2}^{\ell/2} \int_{-\infty}^{\infty} \frac{dz_{1} dz_{2}}{\left[(z_{2} - z_{1})^{2} + d_{12}^{2} \right]^{3/2}}$$

计算内层积分可得:

$$\int_{-\infty}^{\infty} \frac{dz_1}{\left[(z_2 - z_1)^2 + d_{12}^2 \right]^{3/2}} = \frac{z_1 - z_2}{d_{12}^2 \left[(z_2 - z_1)^2 + d_{12}^2 \right]^{1/2}} \Big|_{z_1 = -\infty}^{z_1 = \infty} = \frac{2}{d_{12}^2}$$

代入内层积分,继续计算外层积分:

$$\mathbf{F}_{2} = \mu_{0} \frac{I^{2} d_{12}}{4\pi} \, \mathbf{a}_{y} \int_{-\ell/2}^{\ell/2} \frac{2}{d_{12}^{2}} \, dz_{2} = \frac{\mu_{0} I^{2} \ell}{2\pi d_{12}} \, \mathbf{a}_{y}$$

与前面的计 算结果相同

当电流方向相反时,导线间力的作用是互相排斥

一般而言,对于承载电流 I_1 和 I_2 的平行导线,每单位长度作用在它们之间的力的大小为:

$$F = \frac{\mu_0 I_1 I_2}{2\pi d}$$

若电流方向相同,则该作用力为引力的,如果电流方向相反,则为斥力

8.4 闭合回路所受的力和力矩 FORCE AND TORQUE ON A CLOSED CIRCUIT

给定 P 点处的力为 F, 它相对于原点的力矩 是垂直于包含 F 和位置矢量 R 的平面的矢 量, 因此力矩矢量可表示为叉积:

$$T = R \times F$$

8.4 闭合回路所受的力和力矩

考虑两个大小相等且方向相反的力,施加在如图所示的 P_1 和 P_2 上。

由于合力为零,所以物体不会平移,但可能旋转。

整个系统总的力矩为:

$$\mathbf{T} = \mathbf{R}_1 \times \mathbf{F}_1 + \mathbf{R}_2 \times \mathbf{F}_2$$

由于 $\mathbf{F}_2 = -\mathbf{F}_1$:

$$\mathbf{T} = (\mathbf{R}_1 - \mathbf{R}_2) \times \mathbf{F}_1 = \mathbf{R}_{21} \times \mathbf{F}_1$$

这意味着总的作用力为零时,力矩与原点的选择无关。 这适用于任意数量的作用力存在的情况,并且原点可以位于任意位置。

8.4 闭合回路所受的力和力矩 - 元电流回路的力矩

图中所示的元电流回路于 xy 平面,其中心位于原点。 平面上的磁通密度为 B ,且方向大致相同。 假设 B 的大小在回路区域中是一致的,并且值为 B_0 ,回路中电流为 I,那么作用在编号为 I 的这条边的微分力为:

$$d\mathbf{F}_{1} = I dx \,\mathbf{a}_{x} \times \mathbf{B}_{0}$$
$$= I dx (B_{0y}\mathbf{a}_{z} - B_{0z}\mathbf{a}_{y})$$

8.4 闭合回路所受的力和力矩 - 元电流回路的力矩

已求得作用在 1 这条边的微分力为:

$$d\mathbf{F}_1 = I \, dx (B_{0y}\mathbf{a}_z - B_{0z}\mathbf{a}_y)$$

对于边 1, 力臂从原点延伸到边的中点, 由下式给出:

$$\mathbf{R}_1 = -\frac{1}{2}dy\,\mathbf{a}_y$$

因此作用在边1上的微分力矩为:

$$d\mathbf{T}_{1} = \mathbf{R}_{1} \times d\mathbf{F}_{1}$$

$$= -\frac{1}{2}dy \, \mathbf{a}_{y} \times I \, dx (B_{0y}\mathbf{a}_{z} - B_{0z}\mathbf{a}_{y})$$

$$= -\frac{1}{2}dx \, dy \, I B_{0y}\mathbf{a}_{x}$$

dv

8.4 闭合回路所受的力和力矩 - 元电流回路的力矩

接下来考虑3这条边,并使用类似的推导计算作用在3上的微分力矩为:

$$d\mathbf{T}_{3} = \mathbf{R}_{3} \times d\mathbf{F}_{3}$$

$$= \frac{1}{2} dy \, \mathbf{a}_{y} \times (-I \, dx \, \mathbf{a}_{x} \times \mathbf{B}_{0})$$

$$= -\frac{1}{2} dx \, dy \, IB_{0y} \mathbf{a}_{x} = d\mathbf{T}_{1}^{(!)}$$

作用在边1和边3上的总的微分力矩为:

$$d\mathbf{T}_1 + d\mathbf{T}_3 = -dx \, dy \, IB_{0y}\mathbf{a}_x$$

R

 \mathbf{R}_3

然后使用相同的方式可计算出作用在边 2 和 4 上总的微分力矩为:

$$d\mathbf{T}_2 + d\mathbf{T}_4 = dx \, dy \, IB_{0x} \mathbf{a}_y$$

8.4 闭合回路所受的力和力矩 - 元电流回路的力矩

已求得: $d\mathbf{T}_1 + d\mathbf{T}_3 = -dx \, dy \, IB_{0y} \mathbf{a}_x$

和
$$d\mathbf{T}_2 + d\mathbf{T}_4 = dx \, dy \, IB_{0x} \mathbf{a}_y$$

所有四条边的总力矩为:

$$d\mathbf{T} = I \, dx \, dy (B_{0x} \mathbf{a}_{v} - B_{0y} \mathbf{a}_{x})$$

括号中的项可以用叉积表示:

$$d\mathbf{T} = I \, dx \, dy (\mathbf{a}_z \times \mathbf{B}_0)$$

$$d\mathbf{T} = I d\mathbf{S} \times \mathbf{B}$$

在本例中,dS 指向屏幕外

其中微分回路的面积矢量使用右手法则定义

$$d\mathbf{S} = dxdy\,\mathbf{a}_z$$

四个手指指向电流方向,拇指向 S 方向

8.4 闭合回路所受的力和力矩 - 微分磁偶极矩

已求得微分电流回路的力矩为:

$$d\mathbf{T} = I \, d\mathbf{S} \times \mathbf{B}$$

将电流和微分面积矢量的乘积定义为微分磁偶极矩:

$$d\mathbf{m} = I d\mathbf{S}$$

可得:

$$d\mathbf{T} = d\mathbf{m} \times \mathbf{B}$$

8.4 闭合回路所受的力和力矩

如果取消对微分大小的限制,并假设整个回路区域的磁通量密度均匀分布,则微分结果:

$$d\mathbf{T} = d\mathbf{m} \times \mathbf{B}$$

变为:

$$\mathbf{T} = I\mathbf{S} \times \mathbf{B} = \mathbf{m} \times \mathbf{B}$$

这个结果表明力矩与回路的形状无关,而与回路的面积和方向有关。 电流回路所受到的力矩总是企图使回路转动。

8.4 闭合回路所受的力和力矩 - 例题8.3

使用公式计算图中回路所受的力矩:

$$\mathbf{T} = I\mathbf{S} \times \mathbf{B}.$$

$$\mathbf{T} = 4 \times 10^{-3} [(1)(2)\mathbf{a}_z] \times (-0.6\mathbf{a}_y + 0.8\mathbf{a}_z)$$

$$= 4.8\mathbf{a}_x \text{ mN} \cdot \text{m}$$

电流回路趋于绕平行于正 x 轴的轴线旋转,而回路中的4mA电流所产生的磁场趋于与 \mathbf{B}_0 平行

思考: 电动机为什么会转?

8.5 磁性材料的性质

THE NATURE OF MAGNETIC MATERIALS

磁性材料的特性与其内部原子磁矩以及它们之间的相互作用有关。在原子或分子尺度上,磁矩与电子的轨道构型、电子自旋以及原子核自旋相关。

右图展示了电子轨道(**m**_{orb})和电子自旋(**m**_{spin})对原子总磁矩的贡献,其中后者的矢量可能与轨道磁矩相加或相减。此外,成对出现的电子将具有大小相等方向相反的自旋动量。

图中的磁通密度 \mathbf{B}_0 是由外部施加的

8.5 磁性材料的性质 - 反磁性材料

考虑这样的一些原子,原子中所有电子相关的轨道和自 旋磁矩的总和恰好为零,原子处于未受干扰的状态。

施加磁场会导致绕轨道运行的电子 产生向外的径向力 \mathbf{F}_m , 从而降低 其轨道速度,以保持库仑力和磁力 的平衡。

电子速度降低将导致轨道磁矩减小,从而在自旋矩方向产生非常小的磁矩,方向与施加的磁场相反,因此总的磁通密度将减少

反磁性材料: 金属铋、铜、金、硅、锗、石墨、硫

8.5 磁性材料的性质 - 顺磁性材料

在顺磁性材料中,与原子相关的所有轨道磁矩和自旋磁矩的总和不是零,但非常小。然而,

由于相邻原子的随机取向,材料中的平均磁矩为零。

在非零力矩上施加磁场会在整体上引入 力矩,导致相邻原子的力矩部分对齐, 从而增强了整体磁通密度。

然而,在轨道电子上仍然存在反磁性,会 阻碍磁场的增大。若最终的叠加的结果是 使 **B** 增大,那么这种材料是顺磁性的;反 之,则为反磁性材料。

顺磁性材料: 钾、钨、稀土元素

8.5 磁性材料的性质 - 铁磁性材料

在铁磁材料中,存在相当强的原子或分子磁矩。 相邻分子的力矩相互作用导致力矩在称为磁畴的小区域内部分对齐。 从磁畴与磁畴的之间磁矩方向是随机的,因此材料的总磁矩为零,整个材料不显磁性。

8.5 磁性材料的性质 - 铁磁性材料

施加一个稳定的磁场 \mathbf{B}_0 会对那些更接近于与 \mathbf{B}_0 对齐的磁矩产生更大的力矩。 因此,整个材料的平均对准度增加了,但这是通过扩大接近 对准的磁畴来实现的,而牺牲了那些没有与 \mathbf{B}_0 对准的磁畴。

总的磁通密度显著增加。

铁磁性材料:铁、镍、钴(室温)、钆、镝(低温)。

在超顺磁材料中发现另一种形式,它由悬浮在 非铁磁性基体中的铁磁性颗粒组成,这种材料 应用在磁带中。

8.5 磁性材料的性质 - 反铁磁性材料

在某些材料在低温下,相邻磁矩的方向相反,这是整体的最低能态。 施加外部磁场不会导致净通量密度发生变化。

反铁磁性材料:氧化锰、氧化镍、硫化亚铁、氯化钴

8.5 磁性材料的性质 - 铁淦氧磁性材料 (铁氧体)

在某些材料中,最低能量时相邻磁矩如图所示以相反方向排列,但具有不同的大小。 施加外部磁场会导致磁通密度发生显着变化,但不如铁磁材料那么强。 这类材料中最重要的是铁氧体,其特点是导电率低。

铁淦氧磁性材料: 氧化铁磁铁矿、镍锌铁氧体、镍铁氧体

8.5 磁性材料的性质 - 磁性材料的特性总结

分类	磁矩	B的值	备注
反磁性材料	$\mathbf{m}_{\text{orb}} + \mathbf{m}_{\text{spin}} = 0$	$B_{\rm int} < B_{\rm appl}$	$B_{\rm int} \doteq B_{\rm appl}$
顺磁性材料	$\mathbf{m}_{\mathrm{orb}} + \mathbf{m}_{\mathrm{spin}} = 1$	$B_{\rm int} > B_{\rm appl}$	$B_{\rm int} \doteq B_{\rm appl}$
铁磁性材料	$ \mathbf{m}_{\mathrm{spin}} \gg \mathbf{m}_{\mathrm{orb}} $	$B_{\rm int} \gg B_{\rm appl}$	磁畴
反铁磁性材料	$ \mathbf{m}_{\mathrm{spin}} \gg \mathbf{m}_{\mathrm{orb}} $	$B_{\rm int} \doteq B_{\rm appl}$	相邻磁矩反方向
铁淦氧磁性材料	$ \mathbf{m}_{\mathrm{spin}} \gg \mathbf{m}_{\mathrm{orb}} $	$B_{\rm int} > B_{\rm appl}$	相邻磁矩反方向,但大小不相 等; 低电导率σ
超顺磁性材料	$ \mathbf{m}_{\mathrm{spin}} \gg \mathbf{m}_{\mathrm{orb}} $	$B_{\rm int} > B_{\rm appl}$	非磁性基体;录音带

8.6 磁化和磁导率 MAGNETIZATION AND ERMEABILITY

用磁偶极子量化描述磁性材料

考虑一个约束电流 I_b 围绕着一个微分区域 dS, 其磁矩为:

$$\mathbf{m} = I_b d\mathbf{S}$$

然后,如果体积 Δν 中存在多个这样的磁矩,则该体积内的总磁矩是所有磁矩的矢量和:

$$\mathbf{m}_{\text{total}} = \sum_{i=1}^{n \Delta v} \mathbf{m}_i$$

其中n是单位体积中磁偶极子的个数

8.6 磁化和磁导率 - 磁化强度

磁化强度是每单位体积内的磁偶极矩在体积缩 小到一个点时的极限:

$$\mathbf{M} = \lim_{\Delta \nu \to 0} \frac{1}{\Delta \nu} \sum_{i=1}^{n \Delta \nu} \mathbf{m}_i$$

磁化强度的单位和磁场强度 H 相同,为安培/米

若所有磁偶极子都相同,每个偶极子的力矩为 m,且它们都具有相同的方向,则磁化强度简 化为:

$$\mathbf{M} = n\mathbf{m} = nI_b d\mathbf{S}$$

8.6 磁化和磁导率 - 束缚电流

考虑如下一个相同磁矩的排列,其方向与一个大的封闭路径成 θ 角,它们沿着这个路径排列。路径的方向由微分长度dL给出。该封闭路径定义了一个与电荷轨道相交的表面。

8.6 磁化和磁导率 - 束缚电流

围绕回路排列的磁偶极子包含在一个管子内,该管子在微分长度上的体积为:

$$dv = (dS\cos\theta) dL = d\mathbf{S} \cdot d\mathbf{L}$$

因此,该体积内的磁偶极子数为:

$$N = n \, dv = n \, d\mathbf{S} \cdot d\mathbf{L}$$
 (图中显示了三个)

8.6 磁化和磁导率 - 微分束缚电流

沿长度 dL 穿过表面的微分束缚电流为:

$$dI_B = nI_b \, d\mathbf{S} \cdot d\mathbf{L} = \mathbf{M} \cdot d\mathbf{L}$$
 微分体积 dv

单位体积的磁偶极子电流

8.6 磁化和磁导率 - 闭合路径中的束缚电流

通过对在整个闭合路径上微分电流的积分,可计算出净束缚电流为:

$$I_B = \oint \mathbf{M} \cdot d\mathbf{L}$$

这个方程表明,当沿某一闭合路径绕行和求磁偶极矩时,将会有一个相应的电流存在,例如穿过内部表面的绕轨道运行的电子

这个方程与安培环路定律有明显的相似之处:

$$I = \oint \mathbf{H} \cdot d\mathbf{L}$$

8.6 磁化和磁导率 - B与H的关系

一般情况下,介质中的总电流为束缚电流和自由电流之和

将 B 定义为基本磁场量,用总电流将安培环路定律重写为:

$$\oint \frac{\mathbf{B}}{\mu_0} \cdot d\mathbf{L} = I_T \quad \exists \oplus \quad I_T = I_{\mathbf{B}} + I$$

从而有:

$$\oint \mathbf{H} \cdot d\mathbf{L} = I = I_T - I_B = \oint \left(\frac{\mathbf{B}}{\mu_0} - \mathbf{M}\right) \cdot d\mathbf{L}$$

可得:
$$\mathbf{H} = \frac{\mathbf{B}}{\mu_0} - \mathbf{M}$$
 最终得到: $\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$

8.6 磁化和磁导率 - 电流和电流密度

已知: $I_T = I + I_B$

上式中:

束缚电流:
$$I_B = \int_S \mathbf{J}_B \cdot d\mathbf{S}$$

总电流:
$$I_T = \int_s \mathbf{J}_T \cdot d\mathbf{S}$$

自由电流:
$$I = \int_{\mathcal{S}} \mathbf{J} \cdot d\mathbf{S}$$

8.6 磁化和磁导率 - 相对磁导率

随着施加的 H 的增加, 磁化强度的增加取决于:

$$\mathbf{M} = \chi_m \mathbf{H}$$
 \dagger

磁化率

可得:
$$\mathbf{B} = \mu_0(\mathbf{H} + \chi_m \mathbf{H}) = \mu_0 \mu_r \mathbf{H}$$

其中相对磁导率为: $\mu_r = 1 + \chi_m$

磁导率的定义为:

$$\mu = \mu_0 \mu_r$$

从而得:

$$\mathbf{B} = \mu \mathbf{H}$$

8.6 磁化和磁导率 - 例题8.5

已知当B = 0.05T 时某种铁氧体材料工作在线性状态。若假定 $\mu_r = 50$,计算 χ_m 、**M** 和 **H** 的值。

由于:
$$\mu_r = 1 + \chi_m$$
 可得: $\chi_m = \mu_r - 1 = \underline{49}$

由于:
$$B = \mu_r \mu_0 H$$
 因此: $H = \frac{0.05}{50 \times 4\pi \times 10^{-7}} = \underline{796 \text{ A/m}}$

磁化强度 \mathbf{M} 为: $\chi_m H$ 约 39000 A/m

8.6 磁化和磁导率 - 各向异性材料

在某些晶体材料中,结构上的约束可能导致磁化方向与施加的 H 场的方向不同

在这种情况下,磁场 B 需要根据张量关系构建,用以下矩阵形式表示:

$$B_{x} = \mu_{xx} H_{x} + \mu_{xy} H_{y} + \mu_{xz} H_{z}$$

$$B_{y} = \mu_{yx} H_{x} + \mu_{yy} H_{y} + \mu_{yz} H_{z}$$

$$B_{z} = \mu_{zx} H_{x} + \mu_{zy} H_{y} + \mu_{zz} H_{z}$$

课堂习题 8.1 - 8.6

• 8.2, 8.12, 8.18

8.7 磁场边界条件 MAGNETIC BOUNDARY CONDITIONS

考虑具有不同磁导率的两种介质之间的边界,希望找到边界处磁场之间的关系。这需要通过分别考虑磁场法向分量和切向分量来完成。

8.7 磁场边界条件 - 法向分量

在这种情况下,对磁通密度使用高斯定律:

$$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$$

并将其应用于图中的圆柱体

得到:
$$B_{N1}\Delta S - B_{N2}\Delta S = 0$$

因此:
$$B_{N2}=B_{N1}$$

说明B的法向分量在边界上是连续的

8.7 磁场边界条件 - 切向分量

在这种情况下,考虑了边界处表面电流密度 K 的情况。

根据安培环路定律:

$$\oint \mathbf{H} \cdot d\mathbf{L} = I$$

根据图中的路径,积分展开为:

$$H_{t1}\Delta L - H_{t2}\Delta L = K\Delta L$$

得到:

$$H_{t1} - H_{t2} = K$$

更一般的形式为:

$$(\mathbf{H}_1 - \mathbf{H}_2) \times \mathbf{a}_{N12} = \mathbf{K}$$

or
$$\mathbf{H}_{t1} - \mathbf{H}_{t2} = \mathbf{a}_{N12} \times \mathbf{K}$$

显然,如果不存在表面电流,那么两个切向磁场 H 在边界处是相等的!

8.7 磁场边界条件 - 例题8.6

给定这些条件:

$$\begin{cases} \mu_1 = 4 \ \mu \text{H/m} \ (z > 0) \\ \mu_2 = 7 \ \mu \text{H/m} \ (z < 0) \\ \mathbf{K} = 80 \mathbf{a}_x \ \text{A/m} \ \text{at } z = 0 \end{cases}$$

$$\mathbf{B}_1 = 2\mathbf{a}_x - 3\mathbf{a}_y + \mathbf{a}_z \text{ mT} \qquad \mathbf{R}_2$$

先来计算法向分量:

$$\mathbf{B}_{N1} = (\mathbf{B}_1 \cdot \mathbf{a}_{N12}) \mathbf{a}_{N12}$$
$$= [(2\mathbf{a}_x - 3\mathbf{a}_y + \mathbf{a}_z) \cdot (-\mathbf{a}_z)](-\mathbf{a}_z) = \mathbf{a}_z \text{ mT}$$

因此:
$$\mathbf{B}_{N2} = \mathbf{B}_{N1} = \mathbf{a}_z \text{ mT}$$

8.7 磁场边界条件 - 例题8.6

再来计算切向分量:

$$\mathbf{B}_{t1} = \mathbf{B}_1 - \mathbf{B}_{N1} = 2\mathbf{a}_x - 3\mathbf{a}y \text{ mT}$$

$$\mathbf{H}_{t1} = \frac{\mathbf{B}_{t1}}{\mu_1} = \frac{(2\mathbf{a}_x - 3\mathbf{a}_y)10^{-3}}{4 \times 10^{-6}} = 500\mathbf{a}_x - 750\mathbf{a}_y \text{ A/m}$$

$$\mathbf{H}_{t2} = \mathbf{H}_{t1} - \mathbf{a}_{N12} \times \mathbf{K} = 500\mathbf{a}_x - 750\mathbf{a}_y - (-\mathbf{a}_z) \times 80\mathbf{a}_x$$

= $500\mathbf{a}_x - 750\mathbf{a}_y + 80\mathbf{a}_y = 500\mathbf{a}_x - 670\mathbf{a}_y$ A/m

$$\mathbf{B}_{t2} = \mu_2 \mathbf{H}_{t2} = 7 \times 10^{-6} (500 \mathbf{a}_x - 670 \mathbf{a}_y) = 3.5 \mathbf{a}_x - 4.69 \mathbf{a}_y \text{ mT}$$

8.7 磁场边界条件 - 例题8.6

已求得:

$$\begin{cases} \mathbf{B}_{N2} = \mathbf{a}_z \text{ mT} \\ \mathbf{B}_{t2} = 3.5\mathbf{a}_x - 4.69\mathbf{a}_y \text{ mT} \end{cases}$$

$$\mathbf{B}_{t2} = 3.5\mathbf{a}_x - 4.69\mathbf{a}_y \text{ mT}$$

最终可得:

$$\mathbf{B}_2 = \mathbf{B}_{N2} + \mathbf{B}_{t2} = 3.5\mathbf{a}_x - 4.69\mathbf{a}_y + \mathbf{a}_z \text{ mT}$$

8.8 磁路 THE MAGNETIC CIRCUIT

电场与电位的关系为:

$$\mathbf{E} = -\nabla V$$

$$V_{AB} = \int_{A}^{B} \mathbf{E} \cdot d\mathbf{L}$$

磁场与标量磁位的关系为:

$$\mathbf{H} = -\nabla V_m$$

$$V_{mAB} = \int_{A}^{B} \mathbf{H} \cdot d\mathbf{L}$$

 V_m 称为磁动势(magnetomotive force), 简称mmf

电场中欧姆定律的点形式为: $\mathbf{J} = \sigma \mathbf{E}$

电流为:
$$I = \int_{S} \mathbf{J} \cdot d\mathbf{S}$$

类似于欧姆定律,磁场中也有: $\mathbf{B} = \mu \mathbf{H}$

B 相当于电场中的电流密度 J

磁通量为:
$$\Phi = \int_S \mathbf{B} \cdot d\mathbf{S}$$

欧姆定律的一般形式为:
$$V = IR$$

可以构建一个类似的规则,将 mmf 与磁通量相关联:

$$V_m = \Phi \Re$$

这是磁路中与欧姆 定律类似的方程

式中 97 是介质的磁阻,与电阻类似

对于导电率均匀的直导线,有:
$$R = \frac{d}{\sigma S}$$

类似的,对于具有均匀磁导率的介质,在磁路中有:

$$\Re = \frac{d}{\mu S}$$

在电路中,基尔霍夫电 压定律可表示为:

$$\oint \mathbf{E} \cdot d\mathbf{L} = 0$$

当它与时变的电通量有关时,它不等于零,以后将称这个量称为电动势或*emf*

在磁场类似的有安培环路定律:

$$\oint \mathbf{H} \cdot d\mathbf{L} = I_{\text{total}}$$

通常 H 的闭合回路积分可能包括 N 匝导线:

$$\oint \mathbf{H} \cdot d\mathbf{L} = NI$$

这个量是围绕闭合路径的磁动势 mmf,在磁路方程中将它作为 V_m 。

这个示例演示如何使用磁阻,图中的环形 横截面为矩形,它的内半径和外半径满足 条件 *b* - *a* << *b* , 计算内部磁场大小。 在这种情况下,可以将磁阻近似为:

$$\Re = \frac{d}{\mu S} \approx \frac{2\pi \rho_m}{\mu (b-a)h}$$

磁通量为:

$$\Phi = \frac{V_m}{\Re} = \frac{NI\mu(b-a)h}{2\pi\rho_m}$$

最终可得:

$$H = \frac{B}{\mu} = \frac{\Phi}{\mu S} = \frac{NI}{2\pi\rho_m}$$

注意刚得到的结果:

$$H = \frac{B}{\mu} = \frac{\Phi}{\mu S} = \frac{NI}{2\pi\rho_m}$$

这与使用安培环路定律计算结果相同:

$$\oint_C \mathbf{H} \cdot d\mathbf{L} = 2\pi \rho_m H_\phi = I_{encl} = NI$$

$$H_{\phi} = \frac{NI}{2\pi\rho_m} \text{ A/m}$$

现在假设核心面积更大,其中近似 *b* - *a* << *b* 的假设可能不再有效。同时需要考虑磁通量密度的径向相关性,不能再假设磁芯区域的密度均匀

根据安培环路定律,其中闭合路径为半 (24) 径为 (24) 的圆,从而有:

$$\mathbf{B} = B_{\phi} \mathbf{a}_{\phi} = \frac{\mu NI}{2\pi\rho} \mathbf{a}_{\phi}$$

通过在横截面上对 B 积分得到磁芯中的通量:

$$\Phi = \int \int \mathbf{B} \cdot d\mathbf{S} = \int_0^h \int_a^b \frac{\mu NI}{2\pi\rho} d\rho dz$$
$$= \frac{\mu NIh}{2\pi} \ln\left(\frac{b}{a}\right)$$

现在得到了磁通量的"精确"解:

$$\Phi = \frac{\mu NIh}{2\pi} \ln \left(\frac{b}{a}\right)$$

将它与假设均匀场时的近似解进行比较:

$$\Phi = \frac{\mu N I(b-a)h}{2\pi \rho_m} \quad \text{\sharpth:} \quad \rho_m = \frac{1}{2}(b+a)$$

即:

$$\Phi = \frac{\mu NIh}{2\pi} \left[\frac{2(b-a)}{(b+a)} \right] = \frac{\mu NIh}{2\pi} \left[\frac{2(b/a-1)}{(b/a+1)} \right]$$

近似解:
$$\Phi = \frac{\mu NIh}{2\pi} \left[\frac{2(b/a-1)}{(b/a+1)} \right]$$

精确解:
$$\Phi = \frac{\mu NIh}{2\pi} \ln \left(\frac{b}{a}\right)$$

将ln函数进行级数展开得:

$$\ln\left(\frac{b}{a}\right) = 2\left[\left(\frac{b/a - 1}{b/a + 1}\right) + \frac{1}{3}\left(\frac{b/a - 1}{b/a + 1}\right)^3 + \frac{1}{5}\left(\frac{b/a - 1}{b/a + 1}\right)^5 + \dots\right]$$

可见近似解相当于仅使用了级数中的第一项

已求得:

$$\Phi = \frac{\mu NIh}{2\pi} \ln\left(\frac{b}{a}\right)$$

$$= \frac{\mu NIh}{2\pi} 2 \left[\left(\frac{b/a-1}{b/a+1}\right) + \frac{1}{3} \left(\frac{b/a-1}{b/a+1}\right)^3 + \frac{1}{5} \left(\frac{b/a-1}{b/a+1}\right)^5 + \dots \right]$$
均匀场的近似项 修正项

由于级数快速收敛,因此可以仅使用前两项作为修正项。

假设b = 2a (这是一个比较极端的示例)

可得到以下展开式项的值:

$$\Phi = \frac{\mu NIh}{2\pi} 2 \left[\left(\frac{b/a - 1}{b/a + 1} \right) + \frac{1}{3} \left(\frac{b/a - 1}{b/a + 1} \right)^3 + \frac{1}{5} \left(\frac{b/a - 1}{b/a + 1} \right)^5 + \dots \right]$$

$$0.33 \qquad 1.2 \times 10^{-2} \qquad 8.2 \times 10^{-4}$$

使用均匀场近似的百分比误差为:

error
$$\approx \frac{(1.2 \times 10^{-2}) + (8.2 \times 10^{-4})}{0.33 + (1.2 \times 10^{-2}) + (8.2 \times 10^{-4})} \approx 4\%$$

考虑到 b 和 a 在这种情况下的巨大差异,仍然能得到误差不大的结果,说明 这种近似是有效的

如图所示,假设磁芯中存在一个 空气间隙,厚度为 t

磁路的磁阻为磁芯磁阻和间隙磁阻的串联:

$$\Re = \frac{2\pi\rho_m - t}{\mu S} + \frac{t}{\mu_0 S}$$

核心的磁导率为: $\mu = \mu_r \mu_0$

总的磁阻为:

$$\Re = \frac{2\pi\rho_m + (\mu_r - 1)t}{\mu_r \mu_0 S}$$

如果磁芯是铁磁性的,相对磁导率将 在数千的量级,在这种情况下,即使 空气间隙尺寸非常小,它对磁阻的贡 献仍然可能占主导地位。

可以忽略

$$\Re = \frac{2\pi\rho_m + (\mu_r - 1)t}{\mu_r \mu_0 S}$$

如果 *t* 的厚度占整个磁芯周长的一 定的比例,则总的磁阻通常可以视 为空气间隙的磁阻

假设 $\mu_r >> 1$ 因此净磁阻近似为:

$$\Re \approx \frac{2\pi\rho_m + \mu_r t}{\mu_r \mu_0 S}$$

磁芯和间隙中的磁通量密度相同:

$$B_c = B_g = B = \frac{NI}{\Re S} \approx \left[\frac{\mu_r \mu_0}{2\pi \rho_m + \mu_r t}\right] NI$$

现在每个区域中的磁场强度是:

$$\mu = \mu_r \mu_0$$
核心材料中的磁场: $H_c = \frac{B}{\mu_r \mu_0} = \frac{NI}{2\pi \rho_m + \mu_r t}$

$$H_g = \frac{B}{\mu_0} = \frac{\mu_r NI}{2\pi\rho_m + \mu_r t} = \mu_r H_c \qquad \text{ } \exists \psi$$

式中µ_r仍未知

在铁磁材料中, B 随着 H 的增加而非线性增加, 如下图中的曲线所示:

确定了B或H时,才能确定磁导率

再次考虑平均半径为 ρ_m 且空气间隙厚度为 t 的环面。

$$\Re \approx \frac{2\pi\rho_m + \mu_r t}{\mu_r \mu_0 S}$$

需要解决的问题是:

且:
$$B = \frac{NI}{\Re S} \approx \left[\frac{\mu_r \mu_0}{2\pi \rho_m + \mu_r t}\right] N$$

该过程通过先假设 B 的值,再求解 μ_r 的方程, 然后使用该结果通过实际的B-H曲线计算 H_c

且:
$$B = \frac{NI}{\Re S} \approx \left[\frac{\mu_r \mu_0}{2\pi \rho_m + \mu_r t}\right] NI \longrightarrow NI \approx \left[\frac{2\pi \rho_m}{\mu_r \mu_0} + \frac{t}{\mu_0}\right] B$$
 表知

上式连同:
$$H_g = \frac{B}{\mu_0}$$
 都必须满足安培环路定律: $NI \approx 2\pi \rho_m H_c + t H_g$

如果不满足,那么继续使用修正的 B 值重新计算,进行多次这样的迭代直至得出结果为止

8.8 磁路 - 硅钢片样品的磁滞回线

铁磁材料中的磁畴壁移动产生半永久性磁化状态 该状态对所施加磁场的变化响应缓慢。 产生的磁化曲线证明了这里所示的磁滞现象。

将施加的 H 场减少到零时仍有许多 磁偶极子对齐,那么就会有剩余磁 通密度 B_r ,该材料已成为永磁体。

需要通过施加相反的磁场强度 -H。 才能使残余磁通密度减小到零的磁 场称为矫顽场(或矫顽力)

将H增加到高负值将再次导致饱和

 $-H_{r}$

将 H 增加到高正值将使所有磁矩重 排列,并留下单个磁畴(在极端情 况下)。 因此磁芯处于饱和状态。

H 的进一步增加将通过自由空间磁 导率使B增加

矫顽场将 B 从负值转换为正值 **(6**) H_r B_r $-B_x$

 B_x

2

 $-H_c$

剩余磁通密度将 H 场从 负值增加到正值

8.8 磁路-矩形的磁路

练习题 8.9: 这个问题的计算方式与之前相同,只是周长由长度 L_1 和 L_2 构成

8.9 势能和磁性材料受到的力

POTENTIAL ENERGY AND FORCES ON MAGNETIC MATERIALS

在之前的课程中,已经证明了体积 v 内的电场能量为:

$$W_E = \int_v \frac{1}{2} \mathbf{D} \cdot \mathbf{E} \, dv$$
 J

与此类似, 体积 v 内的磁场能量为:

$$W_M = \int_v \frac{1}{2} \mathbf{B} \cdot \mathbf{H} \, dv$$
 J

这两个结果都是正确的,但仅限于线性介质(其中介电常数和磁导率随场强恒定)。磁能关系的推导非常复杂,本课程中不做证明。

磁场的能量密度也与电场能量密度类似:

$$\underline{w_e = \frac{1}{2} \mathbf{D} \cdot \mathbf{E}} = \underbrace{\frac{1}{2} \epsilon E^2}_{\text{对各向同性介质有效}} \mathbf{J/m^3} \quad \text{与} \quad \underline{w_m = \frac{1}{2} \mathbf{B} \cdot \mathbf{H}}_{\text{J/m^3}} = \underbrace{\frac{1}{2} \mu H^2}_{\text{J/m^3}} \mathbf{J/m^3}$$

8.9 势能和磁性材料受到的力

若线圈铁芯为两个半无限长圆柱体构成,施加用力 F 将它们分开,做功增量为:

$$dW_H = F dL = \frac{1}{2} \frac{B_{\rm st}^2}{\mu_0} S dL$$

 B_{ST} 为铁芯内磁通密度,S 为铁芯横截面。因此力F 为:

$$F = \frac{B_{\rm st}^2 S}{2\mu_0}$$

若磁场为1.4T时磁通密度达到饱和,该力为:

$$F = 7.80 \times 10^5 S \text{ N}$$

8.10 自感和互感 INDUCTANCE AND MUTUAL INDUCTANCE

考虑一个如图所示长度为 d 的螺线管,它在有 N 个绕线,每个绕线中的电流为 I。 每一匝具有独立的面积 S_i 。每匝的磁场 B 不一定相同

磁通链定义为通过所有匝的磁通量的总和,由所有匝 共同作用产生。

$$\lambda = \sum_{i=1}^{N} \Phi_i \qquad \exists : \exists \Phi_i = \int_{S_i} \mathbf{B}_i \cdot d\mathbf{S}_i$$

磁通链的单位为 韦伯-匝[Wb-t]

如果每个匝中通过的磁通量密度 B 都相等,则上式简化为:

$$\lambda = N\Phi = N \int_{S} \mathbf{B} \cdot d\mathbf{S}$$
 式中的积分可对其中一匝计算

8.10 自感和互感 - 电感的定义

己知磁通链为:

$$\lambda = \sum_{i=1}^{N} \Phi_i \quad \exists : \Phi_i = \int_{S_i} \mathbf{B}_i \cdot d\mathbf{S}_i$$

电感定义为器件中每单位电流的磁通链:

$$L \equiv \frac{\lambda}{I} = \frac{N\Phi}{I}$$
 其中最后一个等式适用于 所有匝都相同的情况

电感的单位是每安培的韦伯匝数,将 1 Wb-t/A 定义为一个亨利 [H]

8.10 自感和互感 - 电感的计算

对于具有匝数密度 n 和磁芯磁导率 μ 的长螺线管,磁通量密度为:

$$B = \mu nI = \frac{\mu NI}{d}$$

假设通过 N 个相同匝数的磁通密度相等, 磁通链为:

$$\lambda = N\Phi = NBS = \frac{\mu N^2 IS}{d}$$

电感为:
$$L \equiv \frac{\lambda}{I} = N^2 \frac{\mu S}{d}$$

将此结果与平行板电容器的电容进行比较可发现有些相似,电容器具有板面积 S、板间距 d 和介电常数 ε :

$$C = \frac{\epsilon S}{d}$$

在实际中,每匝产生的磁通密度可能不会交链整个线圈。 下图中显示的此类边缘场可能仅交链一到两圈。

增加绕线的间距使问题变得更难解,可以依靠经验或使用称为绕线因子和 螺距因子这两个经验值去修正总磁通链的基本计算公式

考虑下图所示长度为 d 的同轴电缆, 内外导体之间的磁场强度为:

$$H_{\phi} = \frac{I}{2\pi\rho} \quad (a < \rho < b)$$

以及:
$$\mathbf{B} = \mu_0 \mathbf{H} = \frac{\mu_0 I}{2\pi\rho} \mathbf{a}_{\phi}$$

磁通量为 \mathbf{B} 在半径 a 和 b 之间的平面上的积分,并且沿 z 轴的长度为 \mathbf{d} 。 尽管只有一匝 (N=1),其结果也是磁通链:

$$\lambda = \Phi = \int_{S} \mathbf{B} \cdot d\mathbf{S} = \int_{0}^{d} \int_{a}^{b} \frac{\mu_{0} I}{2\pi \rho} \mathbf{a}_{\phi} \cdot d\rho \, dz \, \mathbf{a}_{\phi} = \frac{\mu_{0} I d}{2\pi} \ln \frac{b}{a}$$

当 d=1 时,单位长度的电感为:

$$L = \frac{\lambda}{I} = \frac{\mu_0}{2\pi} \ln\left(\frac{b}{a}\right) \quad H/m$$

假设有两个螺线管,具有不同的规格。假设通过每匝的磁通相同,每个线圈的自链和自感以之前的计算方式确定:

$$\lambda_{22} = N_2 \Phi_{22} = N_2 \int_{S_2} \mathbf{B}_{22} \cdot d\mathbf{S}_2$$

$$= \lambda_{22} = \frac{\lambda_{22}}{I_2} = N_2^2 \frac{\mu_2 S_2}{d_2}$$

$$\lambda_{11} = N_1 \Phi_{11} = N_1 \int_{S_1} \mathbf{B}_{11} \cdot d\mathbf{S}_1$$

实际上如图所示,每个线圈产生的磁场会相互链接,这种通量重叠是互感的基础

图中红色磁场线是由线圈 1 产生的,而蓝色场是由线圈 2 产生的

在两个电流都存在的情况下,图中标出的所有磁场都将出现,磁场其下标量的含义是:

注意图中显示的场线过于简化,实际中交叉场 \mathbf{B}_{12} 和 \mathbf{B}_{21} 会有明显的发散。

在这种情况下,线圈 2 中的电流关闭,只留下线圈 1 产生的磁通密度 \mathbf{B}_{12} 存在于线圈 2 中。

线圈 1 和 2 之间的互链为:

$$\lambda_{12} = N_2 \Phi_{12} = N_2 \int_{S_2} \mathbf{B}_{12} \cdot d\mathbf{S}_2$$

线圈 1 和线圈 2 之间的互感为:

$$M_{12} \equiv \frac{\lambda_{12}}{I_1}$$

同样,此图也过于简化,由于 \mathbf{B}_{12} 的非均匀性可能需要对线圈 2 中的磁通量进行逐个计算,以获得准确的互链(在最坏的情况下)

在这种情况下,线圈 1 中的电流关闭,只留下线圈 2 产生的磁通量密度 \mathbf{B}_{21} 存在于线圈 1 中

线圈 2 和 1 之间的互链为:

$$\lambda_{21} = N_1 \Phi_{21} = N_1 \int_{S_1} \mathbf{B}_{21} \cdot d\mathbf{S}_1$$

线圈 2 和线圈 1 之间的互感为:

$$M_{21} \equiv \frac{\lambda_{21}}{I_2}$$

和以前一样, \mathbf{B}_{21} 可能存在不均匀性,需要对线圈 1 中的磁通进行逐个计算,以获得互链。

图中所示,两个同心螺线管具有不同的匝数 N_1 和 N_2 ,两个线圈具有相同的长度 d。 外线圈面积为 S_1 ,内线圈面积为 S_2 ,磁芯的磁导率为 μ

随着外部线圈电流 *I*₁ 的打开,内部磁通量存在于整个外部线圈体范围中,因此也存在于整个内部线圈体中。

磁通量密度 B₁₂位于线圈 2 内(也位于线圈 1 中)

假设有一个长线圈,

磁通量密度为:

$$\mathbf{B}_{12} = \frac{\mu N_1 I_1}{d} \, \mathbf{a}_z$$

线圈 1 和 2 之间的互链为:

$$\lambda_{12} = N_2 \Phi_{12} = N_2 \frac{\mu N_1 I_1}{d} S_2$$

从而互感为:

$$M_{12} = \frac{\lambda_{12}}{I_1} = N_1 N_2 \frac{\mu S_2}{d}$$

若只打开内部线圈的电流 I_2 ,内部磁通存在于整个内部 线圈体中,与外部线圈体重叠

磁通量密度 \mathbf{B}_{21} 位于线圈 2 内部(以及线圈 1 中),但线圈 1 内的磁通被限制在线圈 2 内。

线圈 2 磁通量密度为:
$$\mathbf{B}_{21} = \frac{\mu N_2 I_2}{d} \mathbf{a}_z$$

线圈 2 和 1 之间的互链为:

$$\lambda_{21} = N_1 \Phi_{21} = N_1 \frac{\mu N_2 I_2}{d} S_2$$

从而互感为:

$$M_{21} = \frac{\lambda_{21}}{I_2} = N_1 N_2 \frac{\mu S_2}{d} = M_{12}$$

前面的例子说明了任意一对电感之间互感的一个重要特性:

互感是相同的!

$$M_{12} = M_{21}$$

习题8.7 - 8.10

• 课堂: 8.32, 8.34, 8.38

• 课后: 8.3, 8.5, 8.7, 8.19, 8.21, 8.25,