ナップサック問題で学ぶ動的計画法

2022/06/04

目次

- 1. ナップサック問題
- 2. 動的計画法

by @shimamoto

1. ナップザック問題

ナップサックに入る範囲で価値の総和の最大値は?

愚直に調べると計算量は $\mathcal{O}(2^n)$

→ もっと効率的に調べられないか? → 動的計画法

2. 動的計画法

動的計画法のポイント

- 1. 全体問題を部分問題に分割化
- 2. 途中の計算結果を保持

by @shimamoto

問題の定式化

ナップザック問題 品物テーブル										
N	1	2	3	4	5	6	7	8	9	
Item	銅1	銅2	銀1	銀2	銀3	銀4	金1	金2	金3	
w[i]	1	1	3	3	3	3	4	4	4	
v[i]	3	3	5	5	5	5	8	8	8	

N=9 個の品物があり、i 番目の重さは w[i], 価値は v[i] である。このとき、ナップサックの上限重量 W=15 を超えない範囲で価値の総和の最大値を求める

1. 全体問題を部分問題に分割化

i 個までの部分問題に分けて、上限重量がjでの価値の総和の最大値を考える。 このとき、

i番目の品物を選ぶ場合と選ばない場合の両方のパターンがある。

また、j = i - 1 個の部分問題の上限重量 + v[j]

1. 全体問題を部分問題に分割化

例 i = 1, w = 1 のとき

銅1を選ぶか選ばないか

- 選ぶ → + 3,
- 選ばない → + 0

このときは銅1を選ぶパターンを選択する

ナップザック問題 品物テーブル										
Ν	1	2	3	4	5	6	7	8	9	
Item	銅1	銅2	銀1	銀2	銀3	銀4	金1	金2	金3	
w[i]	1	1	3	3	3	3	4	4	4	
v[i]	3	3	5	5	5	5	8	8	8	

2. 途中の計算結果を保持

i個までの部分問題に分けて、上限重量がjの価値の総和の最大値を保持

例:i=1,w=1のとき

dp[1][1] = 3, dp: 価値の総和の最大値を保持する配列

このdpは次の計算に使用する

例:i=2,w=2のとき

銅2を選ぶか選ばないか

- 選ぶ → + dp[1][1] + 3 = 6
- 選ばない → + dp[1][1] = 3

dp[2][2] = 6

ナップザック問題 品物テーブル										
Ν	1	2	3	4	5	6	7	8	9	
Item	銅1	銅2	銀1	銀2	銀3	銀4	金1	金2	金3	
w[i]	1	1	3	3	3	3	4	4	4	
v[i]	3	3	5	5	5	5	8	8	8	

例: i = 3, w = 3のとき

銅2を選ぶか選ばないか

- 選ぶ → + dp[2][0] + 3 = 3,
- 選ばない → + dp[2][2] = 6

dp[3][3] = 6

ナップザック問題 品物テーブル										
Ν	1	2	3	4	5	6	7	8	9	
Item	銅1	銅2	銀1	銀2	銀3	銀4	金1	金2	金3	
w[i]	1	1	3	3	3	3	4	4	4	
v[i]	3	3	5	5	5	5	8	8	8	

by @shimamoto

ex

• 数学的には漸化式を利用した方法といえる

品物を選ぶ場合

$$\mathrm{dp}_{\mathrm{i+1,w}} = \mathrm{Max}(\mathrm{dp}_{\mathrm{i+1,w}}, \mathrm{dp}_{\mathrm{i,w-w_i}} + \mathrm{v_i})$$

品物を選ばない場合

$$\mathrm{dp}_{\mathrm{i+1,w}} = \mathrm{Max}(\mathrm{dp}_{\mathrm{i+1,w}},\mathrm{dp}_{\mathrm{i,w}})$$

dp:途中総重量wにおける価値を保存しているテーブル

w_i: ある品物の重量

v_i: ある品物の価値