Adapting to Heat Extremes with Unequal Access to Cooling: Evidence from India

Filippo Pavanello^{1,2,3} Ian Sue Wing⁴

¹Department of Economics, University of Bologna

Preliminary Version. Please do not cite.

²ECIP Division, Euro-Mediterranean Center on Climate Change (CMCC)

³Department of Economics, Ca' Foscari University of Venice

⁴Department of Earth & Environment, Boston of University

Introduction

• Large evidence about the **welfare costs** of **extreme heat** for individuals

(e.g., Deschenes and Greenstone 2011, AEJ; Park et al. 2020, AEJ; Somanathan et al. 2021, JPE; Carleton et al. 2022, QJE)

Large evidence about the welfare costs of extreme heat for individuals

(e.g. Deschenes and Greenstone 2011. AEI: Park et al. 2020. AEI: Somanathan et al. 2021. IPE: Carleton et al. 2022. OIE)

 Air-conditioning proved to be highly effective against extreme heat (e.g., Barreca et al. 2016, JPE; Park et al. 2020, AEJ; Somanathan et al. 2021, JPE)

Large evidence about the welfare costs of extreme heat for individuals
 (e.g., Deschenes and Greenstone 2011, AEJ; Park et al. 2020, AEJ; Somanathan et al. 2021, IPE; Carleton et al. 2022, QIE)

 Air-conditioning proved to be highly effective against extreme heat (e.g., Barreca et al. 2016, JPE; Park et al. 2020, AEJ; Somanathan et al. 2021, JPE)

• <u>Problem 1.</u>: air conditioners are expensive ⇒ high upfront and operational costs

Large evidence about the welfare costs of extreme heat for individuals
 (e.g., Deschenes and Greenstone 2011, AEI: Park et al., 2020, AEI: Somanathan et al., 2021, IPE: Carleton et al., 2022, OIE)

Air-conditioning proved to be highly effective against extreme heat
 (e.g., Barreca et al. 2016, JPE: Park et al. 2020, AEI: Somanathan et al. 2021, JPE)

- Problem 1.: air conditioners are expensive ⇒ high upfront and operational costs

Large evidence about the welfare costs of extreme heat for individuals
 (e.g., Deschenes and Greenstone 2011, AEI: Park et al., 2020, AEI: Somanathan et al., 2021, IPE: Carleton et al., 2022, OIE)

 Air-conditioning proved to be highly effective against extreme heat (e.g., Barreca et al. 2016, JPE; Park et al. 2020, AEJ; Somanathan et al. 2021, JPE)

- \cdot <u>Problem 1.</u>: air conditioners are **expensive** \Rightarrow high upfront and operational costs
- Emergence of cheaper (but possibly less effective) alternatives ⇒ evaporative coolers

Large evidence about the welfare costs of extreme heat for individuals
(e.g. Deschenes and Greenstone 2011, AEI: Park et al. 2020, AEI: Somanathan et al. 2021, IPE: Carleton et al. 2022, OIE)

Air-conditioning proved to be highly effective against extreme heat
 (e.g., Barreca et al. 2016, JPE: Park et al. 2020, AEI: Somanathan et al. 2021, JPE)

- · <u>Problem 1.</u>: air conditioners are **expensive** ⇒ high upfront and operational costs
- Emergence of cheaper (but possibly less effective) alternatives ⇒ evaporative coolers
- <u>Problem 2.</u>: The degree of <u>substitution</u> between the two technologies is <u>unclear</u>

Large evidence about the welfare costs of extreme heat for individuals
(e.g. Deschenes and Greenstone 2011, AEI: Park et al. 2020, AEI: Somanathan et al. 2021, IPE: Carleton et al. 2022, OIE)

 Air-conditioning proved to be highly effective against extreme heat (e.g., Barreca et al. 2016, JPE; Park et al. 2020, AE); Somanathan et al. 2021, JPE)

- · <u>Problem 1.</u>: air conditioners are **expensive** ⇒ high upfront and operational costs
- Emergence of cheaper (but possibly less effective) alternatives ⇒ evaporative coolers
- Problem 2.: The degree of substitution between the two technologies is unclear
 - \hookrightarrow Is there a **trade-off** cost vs protection?

Large evidence about the welfare costs of extreme heat for individuals
(e.g. Deschenes and Greenstone 2011, AEI: Park et al. 2020, AEI: Somanathan et al. 2021, IPE: Carleton et al. 2022, OIE)

• Air-conditioning proved to be highly effective against extreme heat

(e.g., Barreca et al. 2016, IPE: Park et al. 2020, AEI: Somanathan et al. 2021, IPE)

- <u>Problem 1.</u>: air conditioners are **expensive** ⇒ high upfront and operational costs
- Emergence of cheaper (but possibly less effective) alternatives ⇒ evaporative coolers
- Problem 2.: The degree of substitution between the two technologies is unclear
 - → Is there a trade-off cost vs protection?
 - \rightarrow If there is **imperfect** substitution \Rightarrow **inequality** in exposure to extreme heat

Do these competing technologies contribute to inequality in adaptation to extreme heat?

Research Questions

Do these competing technologies contribute to inequality in adaptation to extreme heat?

⇒ Q1. Is there heterogeneous technological response of households to extreme heat?

Research Questions

Do these competing technologies contribute to inequality in adaptation to extreme heat?

- ⇒ Q1. Is there heterogeneous technological response of households to extreme heat?
- ⇒ Q2. Do air conditioners and evaporative coolers provide different level of protection?

This Paper

- 1. Examine the heterogeneous technological responses of households to hot days
 - · Household (> 200k) panel data from India combined with high-quality weather information
 - Document the extensive margin response: technology adoption
 - Document the intensive margin response: electricity consumption

This Paper

- 1. Examine the heterogeneous technological responses of households to hot days
 - · Household (> 200k) panel data from India combined with high-quality weather information
 - Document the extensive margin response: technology adoption
 - · Document the intensive margin response: electricity consumption
- 2. Test whether technology determines the level of protection from extreme heat
 - · Administrative district-level annual mortality data (all-age, all-causes)
 - · Re-construct district-level **ownership rates** of air conditioners and evaporative coolers
 - · Evaluate the interactions between ownership rates and extreme heat

This Paper

- 1. Examine the heterogeneous technological responses of households to hot days
 - · Household (> 200k) panel data from India combined with high-quality weather information
 - Document the extensive margin response: technology adoption
 - Document the intensive margin response: electricity consumption
- 2. Test whether technology determines the level of protection from extreme heat
 - · Administrative district-level annual mortality data (all-age, all-causes)
 - · Re-construct district-level **ownership rates** of air conditioners and evaporative coolers
 - · Evaluate the interactions between ownership rates and extreme heat
- 3. Determine the consequences of technological inequality in heat adaptation
 - · Number of prevented deaths
 - · Implications for policy: back-to-the-envelope cost-benefit analysis

India

· Extreme heat:

- \hookrightarrow Between March and May 2022: temperature reached 51°C
- ← Future: estimated up to 20 times more likely relative to 2022 (Zachariah et al. 2022)

India

- · Extreme heat:
 - \hookrightarrow Between March and May 2022: temperature reached 51°C
 - \hookrightarrow Future: estimated up to 20 times more likely relative to 2022 (Zachariah et al. 2022)
- · Consequences of extreme heat:
 - \hookrightarrow <u>Historical</u>: about 4-6 deaths per 100k people per year
 - $\hookrightarrow \frac{\text{Future:}}{\text{(Carleton et al. 2022, QJE)}}$ estimated 10-60 deaths per 100k people per year by 2100

India

Extreme heat:

- → Between March and May 2022: temperature reached 51°C
- ← Future: estimated up to 20 times more likely relative to 2022 (Zachariah et al. 2022)
- · Consequences of extreme heat:
 - → <u>Historical</u>: about 4-6 deaths per 100k people per year
 - \hookrightarrow <u>Future</u>: estimated 10-60 deaths per 100k people per year by 2100 (Carleton et al. 2022, QJE)
- · Cooling adaptation:
 - \hookrightarrow Rising incomes and temperatures \Rightarrow boost in cooling demand (IEA, 2018; Davis et al. 2021; Pavanello et al. 2021, NC)
 - → One of the first countries to develop a Cooling Action Plan (2019)

· Majority of households has no access to any form of cooling

- \cdot Majority of households has $\frac{1}{1}$ no access to any form of cooling
- · When they do:

- · Majority of households has no access to any form of cooling
- · When they do:
 - $\hookrightarrow \ \ \textbf{Poor and middle-income} \ \ \textbf{households} \Rightarrow \textbf{evaporative coolers}$

- · Majority of households has no access to any form of cooling
- · When they do:
 - → Poor and middle-income households ⇒ evaporative coolers
 - \hookrightarrow High-income urban families \Rightarrow air conditioners

- Majority of households has no access to any form of cooling
- · When they do:
 - → Poor and middle-income households ⇒ evaporative coolers
 - \hookrightarrow High-income urban families \Rightarrow air conditioners
- This implies large disparities in electricity consumption during hot days

- Majority of households has no access to any form of cooling
- · When they do:
 - → Poor and middle-income households ⇒ evaporative coolers
- This implies large disparities in electricity consumption during hot days
- · Air conditioners are three times more effective against extreme heat

- · Majority of households has no access to any form of cooling
- · When they do:
 - → Poor and middle-income households ⇒ evaporative coolers
- This implies large disparities in electricity consumption during hot days
- · Air conditioners are three times more effective against extreme heat

 - → If similarly widespread, air conditioners would have prevented 46% of heat-related deaths

- Majority of households has no access to any form of cooling
- · When they do:
 - → Poor and middle-income households ⇒ evaporative coolers
 - \hookrightarrow High-income urban families \Rightarrow air conditioners
- This implies large disparities in electricity consumption during hot days
- · Air conditioners are three times more effective against extreme heat
- Subsidising air conditioners appear as a cost effective strategy to reduce heat-related mortality

1. Air-conditioning adoption, temperature and income

(Davis and Gertler 2015, PNAS; Davis et al. 2021, GEC; Pavanello 2021, NC; Randazzo et al. 2023, JEEM)

→ Contributions: alternative technologies, prevalence and adoption, heterogeneity

1. Air-conditioning adoption, temperature and income

(Davis and Gertler 2015, PNAS; Davis et al. 2021, GEC; Pavanello 2021, NC; Randazzo et al. 2023, JEEM)

- → Contributions: alternative technologies, prevalence and adoption, heterogeneity
- 2. Residential electricity consumption and temperature

(Deschenes and Greenstone 2011, AEJ; Davis and Gertler 2015, PNAS; Auffhammer 2022, JEEM)

→ Contributions: technological dimension, first response function for India, heterogeneity

1. Air-conditioning adoption, temperature and income

(Davis and Gertler 2015, PNAS: Davis et al. 2021, GEC: Payanello 2021, NC: Randazzo et al. 2023, IEEM)

- → Contributions: alternative technologies, prevalence and adoption, heterogeneity
- 2. Residential electricity consumption and temperature

(Deschenes and Greenstone 2011, AEJ; Davis and Gertler 2015, PNAS; Auffhammer 2022, JEEM)

- 3. Mortality and extreme heat

(Deschenes and Greenstone 2011, AE); Burgess et al. 2017; Carleton et al. 2022, QJE)

 \hookrightarrow Contributions: more recent response function for India, heterogeneity

1. Air-conditioning adoption, temperature and income

(Davis and Gertler 2015, PNAS; Davis et al. 2021, GEC; Pavanello 2021, NC; Randazzo et al. 2023, JEEM)

- → Contributions: alternative technologies, prevalence and adoption, heterogeneity
- 2. Residential electricity consumption and temperature

(Deschenes and Greenstone 2011, AEJ; Davis and Gertler 2015, PNAS; Auffhammer 2022, JEEM)

- → Contributions: technological dimension, first response function for India, heterogeneity
- 3. Mortality and extreme heat

(Deschenes and Greenstone 2011, AE); Burgess et al. 2017; Carleton et al. 2022, QJE)

- → Contributions: more recent response function for India, heterogeneity
- 4. Mediator effect of cooling technologies

(Barreca et al 2016, JPE; Park et al. 2020, AEJ; Somanathan et al. 2021, JPE; Hua et al. 2022, JPopE)

→ Contributions: technological dimension, first application to mortality in India, cost-benefit analysis

Theoretical Framework

Set-up

A representative household maximises its utility function:

$$\max_{q_S,q_N,k,x} u = D[T, a, q_S, k] \cdot z[q_N, x] \quad \text{s.t. } y \ge p[q_S + q_N] + rk + x$$

$$\hookrightarrow$$
 Assumption: (1) $\partial u/\partial D < 0$ (2) $\partial u/\partial z > 0$

- \cdot T = ambient temperature
- q_S = electricity for cooling
- *k* = space conditioning capital (total capacity)
- p = electricity price, r = discounted capital cost
- $y = \text{income}, q_N = \text{electricity for other uses}, x = \text{numeraire good}$
- a = loss of effectiveness

Damage Function

The damage function is defined as follows:

 \cdot Higher-than-optimal indoor temperatures T^* incur a linear utility penalty D with marginal disutility coefficient δ

$$D = 1 - \delta \left(\frac{1}{A \left[q_{S}, k \right]} T - T^{*} \right)$$

where we assume that $A^{(-1)}T > T^*$

· For simplicity, let A being a **Leontieff** function

$$A = a^{(-1)} \min \left[q_{S}, k \right]$$

Solution

Solve the model:

· Closed-form solution for electricity consumption and cooling capital

$$q_S^*, \overline{k}, q_S^* = k^* \propto \sqrt{T}\sqrt{Y}$$

- → importance of temperature-income interactions
- → diminishing returns to adaptation
- Income inequality ⇒ how much a household can adapt
- · Current assumption: no technological differences

Technology

- · Assume that there exists two type of technologies $\theta\Rightarrow$ conditional maximisation utility problem
- The two technologies only differ in loss of effectiveness a and cost r
- The optimal disutility due to temperature becomes:

$$D_{\theta}^* \propto \sqrt{r_{\theta}}, \sqrt{a_{\theta}}$$

- Coolers are cheaper than air conditioners ($r_C < r_{AC}$)
- If coolers are less effective at bringing thermal comfort ($a_{AC} < a_C$)

Moving to Empirical Analysis

Our empirical analysis:

- 1. Identify how Indian households are adapting and through which technology

- 2. Estimate the marginal disutility $\partial D/\partial T$
 - → mortality—temperature relationship

- 3. Determine differences at reducing thermal discomfort a_{θ}
 - → mortality—(temperature × technology)

Cooling Adaptation

Data

- · Household panel data: Consumer Pyramid Dx survey (2014-2019):
 - Four-month air-conditioning and coolers ownership
 - · Monthly electricity expenditure
 - Households' socio-economic and demographic characteristics

- Actualised electricity prices: 2011 National Socio-Economic Survey
 - Aggregated at the district-urban/rural level

- Population-weighted climate data from ERA5 (0.25 $^{\circ}$ × 0.25 $^{\circ}$ cells):
 - · Daily average temperature
 - Daily total precipitation

The Choice of the Heat Adaptation Technology

- · Our data feature allows to look at both ownership and adoption of cooling appliances
- The investment decision is a slow adjustment process ⇒ long lifetimes of cooling appliances
- Households invest based on expectations about climate ⇒ average weather over long periods
 (Cohen et al. 2017)
- How we model **unobserved heterogeneity** determines the dimension of study

Empirical Framework

Estimating the impact of temperature and income on the ownership and adoption of the cooling appliances:

$$C_{ciw} = \gamma_0 + \frac{1}{\sqrt{10DD}} \frac{1}{d(i)w} + \frac{1}{\sqrt{2}} I_{iw} + \gamma_3 g(P_{d(i)w}) + \lambda X_{iw} + \mu_k + \delta_w + \theta_{s(i)} y + \theta_{s(i)}^2 y^2 + \zeta_{iw}$$

- C_{ciw} : dummy if household i in wave w has a cooling appliance c
- \cdot $\overline{CDD}_{d(i)w}$: 10-year moving average of quarterly CDD in the previous decade
- I_{iw} : natural logarithm of quarterly income of household i
- $\boldsymbol{\cdot}$ Controls: second-degree polynomial of precipitation and household characteristics
- · μ_k : unobserved heterogeneity (state or household FE)
- · Additional fixed-effects: wave FE, quadratic state-year trend
- · All regressions are weighted using survey weights that also correct for attrition

Ownership

Evaporative coolers are climate sensitive, air conditioners respond only to income

	Both Appliances	Air Conditioner	Evaporative Cooler	
	(1)	(2)	(3)	
CDD (100s)	0.0146***	0.0000542	0.0145***	
	(0.002)	(0.001)	(0.003)	
Log(Income)	0.0861***	0.0607***	0.0597***	
	(0.007)	(0.006)	(0.010)	
Precipitations Controls	Yes	Yes	Yes	
Household Controls	Yes	Yes	Yes	
State FE, Wave FE	Yes	Yes	Yes	
Quadratic State \times Year Trend	Yes	Yes	Yes	
R^2	0.51	0.21	0.51	
Observations	2442730	2442730	2442730	

Notes: (1)-(3) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights.

Additional Drivers

Air conditioners:

- · Living in an urban area (介介)
- · Hours of power availability during the day and ownership of generators (介)
- Education level ($\uparrow \uparrow$), female head (\downarrow), house materials (\uparrow), head age (\downarrow)

Coolers:

- · Hours of power availability during the day and ownership of generators (介介)
- Education level (\uparrow), female head (\Downarrow), house materials (\uparrow), head age (\uparrow)

Adoption

Adoption is a matter of **economic development**

	Both Appliances	Air-conditioning	Evaporative Cooler
	(1)	(2)	(3)
CDD (100s)	-0.000666	0.000216	-0.000764*
	(0.000)	(0.000)	(0.000)
Log(Income)	0.0410***	0.0135***	0.0344***
	(0.003)	(0.001)	(0.003)
Precipitations Controls	Yes	Yes	Yes
Household Controls	Yes	Yes	Yes
Household FE, Wave FE	Yes	Yes	Yes
Quadratic Trend \times State	Yes	Yes	Yes
R^2	0.05	0.02	0.06
Observations	2432366	2432366	2432366

Notes: (1)-(6) clustered standard errors at district level in parentheses. * p< 0.10, ** p< 0.05, *** p< 0.01. All regressions are conducted using survey weights..

Robustness

Our results remain **robust** to sevaral alternative specifications:

- Alternative time and time-invarying fixed-effects
- · Clustering standard errors at state level
- · Changing CDD thresholds
- Specifying temperature up to degree 3 polynomials
- · GLDAS rather than ERA5 climate data

Electricity Consumption

- · Consumption electricity in response to temperature is a short-term decision
- Technology modulates household response
- · Using the monthly information we observe the causal effect of short-term variation in temperature
- Heterogeneity in the response should be confirmatory of the distribution of the technologies

Empirical Framework

Estimating the impact of temperature on electricity quantity:

$$Q_{imy} = \alpha + \sum_{i=1}^{k} \frac{\theta_{i}}{I_{d(i)my}^{i}} + \beta_{2}f(P_{d(i)my}) + \beta_{3}I_{imy} + \mu_{i} + \delta_{my} + \epsilon_{imy}$$

- Q_{imy} : natural logarithm of electricity quantity of household i in month m and year y
- $T_{d(i)mv}$: 3°C bins of daily average temperature in district d (17-20 as reference category)
- · Controls: second-degree polynomial of total precipitation and natural logarithm of monthly income
- \cdot Fixed-effects: household FE (μ_i) and month-year FE (δ_{my})
- $\boldsymbol{\cdot}$ All regressions are weighted using survey weights that also correct for attrition

Temperature-electricity

An additional day \geq 35 °C (wrt 17 - 20) increases electricity consumption by 0.46%

Heterogeneity Het III Het III

We test the **heterogeneity** of the response across different sub-samples

	Rural			Urban			
	Poor (1)			Poor (4)	Middle (5)	Rich (6)	
≥ 35	0.00345*** (0.001)	0.00271*** (0.001)	0.00422*** (0.001)	0.00566*** (0.001)	0.00748*** (0.001)	0.00779*** (0.002)	
Controls	Yes	Yes	Yes	Yes	Yes	Yes	
Household FE	Yes	Yes	Yes	Yes	Yes	Yes	
Month-Year FE	Yes	Yes	Yes	Yes	Yes	Yes	
R ²	0.02	0.01	0.01	0.04	0.04	0.09	
Observations	791899	1293061	236447	854902	2698269	1297719	
Avg. kWh	69.35	103.86	171.59	83.37	117.99	195.08	
Δ(kWh)	+0.24	+0.28	+0.72	+0.47	+0.88	+1.51	

Notes: (1) to (6) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights.

Robustness

Our results remain **robust** to alternative specifications:

- Alternative time and time-invarying fixed-effects
- · Electricity quantity in levels
- · Clustering standard errors at state level
- Specifying temperature as 5-degree bins, up to degree 3 polynomials, as Cooling Degree Days (CDD)
- · CRU rather than ERA5 climate data

Health and Extreme Heat

Data

- District-level annual mortality data: Civil Registration System (2009-2019)
 - · Digitalise the reports
 - · All-age and all-causes
 - · Distinction between total, urban and rural deaths

- District-level data on heat adaptation: Consumer Pyramid Dx survey (2014-2019)
 - · District and state-level penetration rates of air conditioners and evaporative coolers

- Population-weighted climate data from ERA5 (0.25 $^{\circ}$ × 0.25 $^{\circ}$ cells):
 - · Daily average temperature
 - · Daily total precipitation
 - Daily specific humidity

Empirical Framework

Estimating the impact of temperature on mortality:

$$M_{dt} = \alpha_0 + \sum_{j=1}^8 \frac{\theta_j}{T_{dtj}} + \sum_r \delta_r \{ P_{dt} \in terciler \} + \mu_d + \rho_t + \lambda_{r(d)} t + \lambda_{r(d)}^2 t^2 + \epsilon_{dt}$$

- · M_{dt}: natural logarithm of mortality rate in district d and year y
- $T_{d(i)my}$: 5°C bins of daily average temperature in district d (15-20 as reference category)
- Fixed-effects: district FE (μ_d) , year FE (ρ_t) , climatic region \times quadratic trend $(\lambda_{s(d)}t + \lambda_{s(d)}^2t^2)$
- Square root of district population used as weight for the regression (Barreca et al. 2016, JPE; Burgess et al. 2017)
- Additional regressions: (1) bins of humidity, (2) interaction warmest × most humid bin

The Role of Cooling

Estimate an augmented regression model:

$$M_{dt} = \alpha_0 + \sum_{j=1}^{8} \theta_j T_{dtj} + \sum_{l=1}^{2} \gamma_l T_{dt}^{\geq 35} \times C_{dtl} + \sum_{l=1}^{2} \phi_l C_{dtl} + \sum_{r} \delta_r \{ P_{dt} \in tercile \, r \} + \mu_d + \rho_t + \lambda_{r(d)} t + \lambda_{r(d)}^2 t^2 + \epsilon_{dt}$$

- C_{dtl} : penetration rate in district d of technology l
- \cdot Additional regressions: interactions with (1) bins of humidity, (2) warmest imes most humid bin
- · Drawback: no quasi-experimental design
 - \hookrightarrow Key for identification: the two shares do not have to correlate with other drivers of mortality
- \hookrightarrow **Robustness**: log of income per capita, log of income per capita \times all bins, ownership rates \times with all bins

Temperature-mortality

An additional day \geq 35 °C (wrt 15 - 20) increases mortality rates by 1%

Controlling for Humidity

	FE	FE	FE	FE
	(1)	(2)	(3)	(4)
T (≥ 35)	0.00943***		0.00996***	0.000320
	(0.002)		(0.002)	(0.003)
H(0-3)		0.000660	-0.000505	-0.000102
		(0.003)	(0.003)	(0.003)
H (≥ 18)		-0.000102	0.000756	0.000110
		(0.001)	(0.001)	(0.001)
T (\geq 35) \times H (\geq 18)				0.000123***
				(0.000)
District FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
Quadratic Trend \times Region	Yes	Yes	Yes	Yes
R^2	0.03	0.02	0.03	0.04
Observations	3908	3908	3908	3908

Notes: (1)-(4) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of district population.

Heterogeneity I

Heat-related deaths mostly occur in rural areas

	Rı	ıral	Urban		
	(1)	(2)	(3)	(4)	
T (≥ 35)	0.00909**	-0.00191	0.00549*	0.00229	
	(0.004)	(0.005)	(0.003)	(0.004)	
$T (\geq 35) \times H (\geq 18)$		0.000153**		0.0000533	
		(0.000)		(0.000)	
District FE	Yes	Yes	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	
Quadratic Trend \times Region	Yes	Yes	Yes	Yes	
R^2	0.03	0.04	0.02	0.02	
Observations	2520	2520	1549	1549	

Notes: (1)-(4) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of district rural and urban population.

Heterogeneity II

Heat-related deaths mostly occur in district with a higher share of poor individuals

	Below	Median	Above Median		
	(1)	(2)	(3)	(4)	
T (≥ 35)	0.00430*	0.00410	0.0173***	0.00147	
	(0.003)	(0.003)	(0.004)	(0.006)	
$T (\geq 35) \times H (\geq 18)$		0.0000199		0.000168**	
		(0.000)		(0.000)	
District FE	Yes	Yes	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	
Quadratic Trend \times Region	Yes	Yes	Yes	Yes	
R^2	0.04	0.04	0.06	0.07	
Observations	1369	1369	1384	1384	

Notes: (1)-(4) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of district population.

Evaporative Cooler vs Air conditioner

Evaporative coolers are more than two times less effective than air conditioners

	Temperature			Humidity			Temperature × Humidity		
	Air conditioner	Cooler (2)	Both (3)	Air conditioner (4)	Cooler (5)	Both (6)	Air conditioner	Cooler (8)	Both (9)
AC \times T (\geq 35)	-0.0302*** (0.009)		-0.0268*** (0.009)						
Cooler \times T (\geq 35)		-0.0132** (0.005)	-0.0123** (0.005)						
$AC \times H (\geq 18)$				-0.000661 (0.002)		-0.000685 (0.002)			
Cooler × H (≥ 18)					0.000506 (0.001)	0.000538 (0.001)			
$AC \times T (\geq 35) \times H (\geq 18)$							-0.000436*** (0.000)		-0.000368*** (0.000)
Cooler \times T (\geq 35) \times H (\geq 18)								-0.000131** (0.000)	-0.000113** (0.000)
District FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Quadratic Trend × Region	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
R^2	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.06	0.06
Observations	2753	2753	2753	2753	2753	2753	2753	2753	2753

Notes: (1)-(9) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of district population.

Discussion

Let's make an example:

Let's make an example:

· Delhi:

 \hookrightarrow income = 42183 rupees, CDD = 465 degree-days

Let's make an example:

· Delhi:

 $\,\hookrightarrow\,$ increase by 30% p.p. in air-conditioning penetration rate (25% to 55%)

Let's make an example:

- · Delhi:

 - \hookrightarrow increase by 30% p.p. in air-conditioning penetration rate (25% to 55%)
 - \hookrightarrow heat-related mortality from extreme heat reduced by 36%

Let's make an example:

· Delhi:

- → increase by 30% p.p. in air-conditioning penetration rate (25% to 55%)
- \hookrightarrow heat-related mortality from extreme heat reduced by 36%

· Uttar Pradesh:

Let's make an example:

· Delhi:

- → increase by 30% p.p. in air-conditioning penetration rate (25% to 55%)
- \hookrightarrow heat-related mortality from extreme heat reduced by 36%

· Uttar Pradesh:

Let's make an example:

· Delhi:

- → heat-related mortality from extreme heat reduced by 36%

· Uttar Pradesh:

- → increase by 30% p.p. in evaporative cooler penetration rate (25% to 55%)
- → heat-related mortality from extreme heat reduced by 19%

Without adaptation \Rightarrow 1.01 million people excess deaths due to extreme heat

Without adaptation ⇒ 1.01 million people excess deaths due to extreme heat

• Percentage of **avoided deaths** in the period 2014-2019:

Without adaptation ⇒ 1.01 million people excess deaths due to extreme heat

• Percentage of **avoided deaths** in the period 2014-2019:

 \hookrightarrow with heat adaptation \Rightarrow 30%

Without adaptation \Rightarrow 1.01 million people excess deaths due to extreme heat

- Percentage of avoided deaths in the period 2014-2019:
 - \hookrightarrow with heat adaptation \Rightarrow 30%
- Gross welfare gains from heat adaptation in the period 2014-2019
 - \hookrightarrow 1.05 \times 30% \times VSL \Rightarrow 55 billion \$
 - \rightarrow yearly: 9 billion \$ \Rightarrow 0.34% of the annual GDP

Avoided Deaths

Without adaptation ⇒ 1.01 million people excess deaths due to extreme heat

- Percentage of avoided deaths in the period 2014-2019:
 - \hookrightarrow with heat adaptation \Rightarrow 30%
- · Gross welfare gains from heat adaptation in the period 2014-2019
 - \hookrightarrow 1.05 \times 30% \times VSL \Rightarrow 55 billion \$
 - \rightarrow yearly: 9 billion \$ \Rightarrow 0.34% of the annual GDP
- · What would have happened if air conditioners were as spread as evaporative cooler?
 - air-conditioning alone \Rightarrow 46%
 - \hookrightarrow gross welfare gains \Rightarrow 14 billion \$ \Rightarrow 0.46% of the annual GDP

Implications for Policy

- Subsidise air conditioners may be a very expensive policy
 - → the annualised cost is around 3083 rupees (37 \$)
 - \rightarrow 100% subsidy for having same rate of coolers \Rightarrow 252 billion rupees (3 billion \$)
- · Evaporative coolers seems a stop-gap solution
 - → better an evaporative cooler than no cooling
- · Air conditioners are likely the solution in the long-term
 - ⇔ extreme heat will become more intense and frequent

 - → need for investment in innovation United States

Conclusion

Conclusion

- There exists a trade-off between accessibility to cooling and health protection
- Technology layer in the heat adaptation inequality for low- and middle-income households
- · Only rich urban households adopt and use the most effective technology
- Trade-off also for policy makers
- · Future research agenda:
 - \hookrightarrow do competing strategies in other setting (e.g. agriculture) have similar inequality consequences?
 - \hookrightarrow is there a trade-off between adaptation and mitigation?
 - → is the technological gap specific of India?

Thank you for your attention! Any questions?

Welfare Costs of Extreme (Back)

Examples of evidence about the welfare costs of extreme heat:

- Mortality and morbidity
 (Deschenes and Greenstone 2011, AE); Barreca et al. 2016, JPE; Burgess et al. 2017; Heutel et al. 2021, RESTAT; Carleton et al. 2022, QJE
- Learning (Park et al. 2020, AEJ; Zivin et al. 2020, JEEM; Park 2022, JHR)
- Mental health and mood (Noelke et al. 2016, ER; Baylis 2020, JPubE; Hua et al. 2022, JPopE)
- Labour productivity
 (Dasgupta et al. 2021, Lancet; Somanathan et al. 2021, JPE)
- Aggressive behaviour and crime
 (Ranson et al. 2015, JEEM; Baysan et al. 2019; JEBO; Blakeslee et al. 2021; JEBO)

Mediating Effects of Air-conditioning (Back)

Mortality

(Barreca et al. 2016, JPE)

Further evidence: learning achievements, labour productivity and mental health

Trends in Ownership Rates by Income and Climate Back State

Trends in Ownership Rates by States (Back Trend Zoom)

United States (1900-2004)

Delhi (2014-2019)

Electricity - Heterogeneity II

Heterogeneity based on technology

	Air Conditioner (1)	Evaporative Cooler (2)
≥ 35	0.00726*** (0.002)	0.00429*** (0.001)
Precipitations Controls	Yes	Yes
Household FE	Yes	Yes
Month-Year FE	Yes	Yes
R ²	0.04	0.01
Observations	724127	3648335

Notes: (1) and (2) clustered standard errors at district level in parentheses. * p < 0.10, *** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights.

Electricity - Heterogeneity III

Focusing on **high-income** families

	Air Conditioner	Evaporative Cooler
	(1)	(2)
≥ 35	0.00939***	0.00677***
	(0.002)	(0.001)
Precipitations Controls	Yes	Yes
Household FE	Yes	Yes
Month-Year FE	Yes	Yes
Within R ²	0.05	0.02
Observations	490613	995301

Notes: (1) and (2) clustered standard errors at district level in parentheses. * p < 0.10, *** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights.

Rapson (2014, JEEM)

