1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»
Лабораторная работа № <u>1</u>
Дисциплина Программирование специализированных вычислительных устройств
Студент Брянская Е.В.
Группа <u>ИУ7-41М</u>
Оценка (баллы)
Преподаватель _Ковтушенко А.П.

Задание

Проанализировать зависимость времени работы процесса умножения матриц с помощью технологии CUDA в зависимости от размера матриц, соотношения их сторон и их расположения в памяти.

Решение

Рассматриваются 4 варианта расположения матриц в памяти — варианты отличаются транспонированием одной или обеих матриц. Предусмотрены следующие варианты:

Флаг	Описание
0	«Классическое размещение» обеих матриц
1	Транспонируется первая матрица
2	Транспонируется вторая матрица
3	Транспонируются обе матрицы

Первая матрица описывается следующими размерами: m x n.

Вторая матрица описывается размерами: n x p.

В ходе анализа производятся следующие замеры времени

- 1. GPU Total мс на выделение памяти под матрицы на устройстве, копирование обеих матриц с хоста на устройство, выполнение операции умножения матриц и запись результата графическим процессором
- 2. GPU Clean мс на выполнение операции умножения матриц и запись результата графическим процессором

Результаты замеров на квадратных матрицах приведены ниже в таблице:

Способ	n	m	p	GPU	GPU	СРИ, мс
располо				Clean,	Total,	
жения				мс	мс	

0	100	100	100	0,0594	1,0689	4,6420
0	300	300	300	0,1020	1,4322	72,0870
0	500	500	500	0,2622	3,0279	456,3160
0	1000	1000	1000	1,5398	10,6451	6336,6499
0	1500	1500	1500	4,6068	16,8870	25965,3164
0	2000	2000	2000	10,9951	33,6031	56354,3711
				1		
1	100	100	100	0,0594	0,7476	2,5410
1	300	300	300	0,1279	1,4473	71,3530
1	500	500	500	0,3284	3,8305	603,2300
1	1000	1000	1000	1,9994	9,6311	6576,2480
1	1500	1500	1500	6,2986	20,4611	24917,0449
1	2000	2000	2000	14,9002	37,8443	56507,4297
				1		
2	100	100	100	0,0748	0,7364	2,4980
2	300	300	300	0,2534	1,3265	71,7310
2	500	500	500	0,7853	3,3951	416,1940
2	1000	1000	1000	6,3643	13,4864	6468,1929
2	1500	1500	1500	15,7077	29,9343	25753,3828
2	2000	2000	2000	61,4829	83,0175	56799,5312
	L	I		1	ı	
3	100	100	100	0,0789	0,7196	2,6741
3	300	300	300	0,2554	1,4600	71,0730
3	500	500	500	0,7690	3,1972	417,4530
3	1000	1000	1000	6,4012	13,8697	6132,7988
3	1500	1500	1500	15,6640	30,4613	26506,5273
3	2000	2000	2000	61,3386	84,8868	56552,8906

Результаты замеров на неквадратных матрицах приведены ниже в таблице:

Способ	n	m	p	GPU Clean, мс	GPU Total, мс
располо					
жения					
0	100	50	25	0,0563	0,8353
0	400	200	100	0,0774	0,8076
0	800	400	200	0,2099	2,2944
0	1600	800	400	0,9128	5,6151
0	3200	1600	800	5,6488	22,1217
		1			
1	100	50	25	0,0583	0,5017
1	400	200	100	0,0955	0,9780
1	800	400	200	0,2780	2,3649
1	1600	800	400	1,2352	5,8801
1	3200	1600	800	7,6388	21,6110
	1		l	,	
2	100	50	25	0,0830	0,9998
2	400	200	100	0,3063	1,3542
2	800	400	200	1,4602	4,0852
2	1600	800	400	6,2705	11,7585
2	3200	1600	800	43,9999	60,3755
	•	1	!	,	
3	100	50	25	0,0829	0,7875
3	400	200	100	0,2977	1,3372
3	800	400	200	1,4128	3,1076
3	1600	800	400	6,2505	11,5044
3	3200	1600	800	44,0753	59,3723

Полученные результаты можно визуализировать с помощью графиков, представленных ниже.

Зависимость времени работы GPU от размера и типа матриц

Ниже на рисунках 1 и 2 приведены графики зависимости времени работы GPU от размера как квадратных, так и прямоугольных матриц. Замеры сделаны для классического размещения всех матриц.

Рисунок 1

Рисунок 2

По представленным графикам можно сделать вывод о том, что на малых размерах время, приходящееся на выделение памяти под матрицы, копирование и т.д., занимает большую долю от всего затраченного времени обработки. Например, для квадратных матриц размера 100 на 100 GPU Total примерно в 18 раз больше GPU Clean. Однако с увеличением размера матриц

эта разница ставится меньше, становясь менее значительной. Такой эффект можно наблюдать на матрицах размером 2000 на 2000 элементов — разница составляет примерно 3 раза.

Аналогичная ситуация наблюдается, если рассматривать прямоугольные матрицы.

Таким образом, можно сделать вывод о том, что привлечение GPU имеет место лишь на значительных размерах матриц, поскольку в таком случае накладные расходы окупаются за счёт ресурсоёмкости операции умножения.

Зависимость времени работы GPU и CPU от размера квадратных матриц

На рисунке 3 приведён график демонстрирующий временные затраты, приходящиеся на GPU и CPU соответственно для квадратных матриц с ориентацией 0 варианта.

Рисунок 3

По полученным результатам можно сделать вывод о том, что операция умножения матриц с учетом таких накладных расходов как выделение памяти, копирование данных и т.д. выполняется на GPU значительно быстрее, чем на

СРU. С увеличением количества элементов разница становится всё существеннее.

Аналогичная ситуация наблюдается при рассмотрении других ориентаций как для квадратных, так и для прямоугольных матриц.

Зависимость времени GPU Clean от размера матриц на различных ориентациях

На рисунках 4-5 приведены графики сравнения времени умножения как квадратных, так и прямоугольных матриц при различных ориентациях.

Рисунок 4

По рисунку выше можно сделать вывод о том, что варианты ориентации 0 и 1 имеют лучшие показатели по сравнению с 2 и 3. Наилучший результат наблюдается в случае, когда ни одна матрица не была транспонирована.

Аналогичная ситуация наблюдается в случае, если рассматриваются прямоугольные матрицы.

Рисунок 5

Вывод

В результате проведённых исследований можно прийти к следующим заключениям:

- 1. Затраты, приходящиеся на выделение памяти, копирование данных, составляют значительную долю от всего времени, занимаемого операцией умножения, поэтому привлечение графического процессора лучше осуществлять на матрицах большого размера, поскольку операция умножения в таком случае становится преобладающей по ресурсам.
- 2. Вычисление произведения матриц на GPU происходит быстрее, чем на CPU.
- 3. Не смотря на множество вариаций размещения матриц в памяти, наиболее эффективным оказывается классический способ без какоголибо транспонирования матриц.