

ACADGILD

SESSION 11: Linear Models

Assignment 1

Table of Contents

1.	Introduction	2
	Objective	
	Prerequisites	
	Associated Data Files	
	Problem Statement	
-	Approximate Time to Complete Task	

Expected Output	 	 	
3			

1. Introduction

This assignment will help you understand the concepts learnt in the session.

2. Objective

This assignment will test your skills on the basics of Regression Analysis and Modeling.

3. Prerequisites

Not applicable.

4. Associated Data Files

Not applicable.

5. Problem Statement

1. Use the link given below and locate the bank marketing dataset. https://archive.ics.uci.edu/ml/machine-learning-databases/00222/

Perform the below operations:

- a. Create a visual for representing missing values in the dataset.
- b. Show a distribution of clients based on a job.

- c. Check whether is there any relation between Job and Marital Status?
- d. Check whether is there any association between Job and Education?

```
A- library(readr)
B- bankdata <- read delim("C:/Users/archana/Desktop/archana/GITS/bankdata.csv",
C-
               ";", escape double = FALSE, trim ws = TRUE)
D- View(bankdata)
E- dim(bankdata)
F- str(bankdata)
G- # check for NA
H- is.na(bankdata)
I- sum(is.na(bankdata))
J- sapply(bankdata, function(x) sum(is.na(x)))
K- library(readr)
L- library(dplyr)
M- library(reshape2)
N- library(ggplot2)
O- library(pander)
P- sapply(bankdata, function(x) sum(x<0, na.rm=TRUE))
Q- # As we will see later there are some variables with 'unknown' values (not equal to NAs).
   There are two variables with negative values by default
R-
S- bank<-bankdata
T- bank[bank=="unknown"] <-NA
U- for(i in 1 : nrow(bank)){
V- if (bank$age[i] < 20){
W- bank$age[i] = 'Teenagers'
X- } else if (bank$age[i] < 35 & bank$age[i] > 19){
    bank$age[i] = 'Young Adults'
Υ-
Z- } else if (bank$age[i] < 60 & bank$age[i] > 34){
AA- bank$age[i] = 'Adults'
BB- } else if (bank$age[i] > 59){
CC- bank$age[i] = 'Senior Citizens'
```

```
}
DD-
EE-
FF- }
GG-
          bank$age<-as.factor(bank$age)</pre>
HH-
II- bank$y<-ifelse(bank$y =='yes', 1,0)</pre>
JJ- bank$y<-as.factor(bank$y)
KK-
LL- old_Cust_bank<-subset(bank, bank$poutcome != "nonexistent")
          new Cust bank<-subset(bank, bank$poutcome == "nonexistent")</pre>
NN-
          library(VIM)
00-
         library(ggplot2)
PP-aggr_plot <- aggr(old_Cust_bank, col=c('navyblue','red'), numbers=TRUE,
   sortVars=TRUE, labels=names(bank), cex.axis=.7, gap=3, ylab=c("Histogram of missing
   data","Pattern"))
```


Variables sorted by number of missings:

```
variable
                     Count
       default 0.102222222
     education 0.048000000
       housing 0.024711111
          loan 0.024711111
           job 0.006577778
       marital 0.003200000
           age 0.000000000
       contact 0.000000000
         month 0.000000000
   day_of_week 0.000000000
      duration 0.000000000
      campaign 0.000000000 pdays 0.000000000
      previous 0.000000000
      poutcome 0.000000000
  emp.var.rate 0.000000000
cons.price.jdx 0.000000000
 cons.conf.idx 0.000000000
```

```
euribor3m 0.000000000
nr.employed 0.000000000
y 0.000000000
```

So for this dataset we face only the missing value problem, which can be solved by imputation method We will impute these missing values using MICE package

```
library(mice)
old_bank<-mice(old_Cust_bank)</pre>
```

Check if missing values exists

B- Show a distribution of clients based on a job # Distribution of job

```
ggplot(bank, aes(x = job)) + geom_bar() + theme_bw() + theme(axis.text.x =
element_text(angle = 90, hjust = 1))
```

Job variable gives information on the job profile of targeted customers. There are 11 specified and 1 unspecified categories.

c. Check whether is there any relation between Job and Marital Status?

```
library(MASS)
sum(is.na(bank$job))
sum(is.na(bank$marital))
bank1 <- bank %>% filter(marital != "NA")
bank.data<-data.frame(bank1$job,bank1$education)</pre>
bank.data= table(bank1$job,bank1$marital)
print(bank.data)
print(chisq.test(bank.data))
divorced married single
                        1085
                                 4372
  admin.
                                          3459
  blue-collar
                         507
                                 4092
                                          1332
  entrepreneur
                                  785
                                           186
                                            91
  housemaid
                         100
                                   530
  management
                         270
                                           455
                                 1678
  retired
                         279
                                  942
                                            67
  self-employed
                         114
                                  659
                                           332
                         409
  services
                                 1621
                                           936
  student
                           9
                                   34
                                           705
                                 2965
                         654
  technician
                                          2017
  unemployed
                          95
                                  433
                                           225
> print(chisq.test(bank.data))
```

Pearson's Chi-squared test

```
data: bank.data
X-squared = 2939.9, df = 20, p-value < 2.2e-16
```

The p value is less than 0.05 so there is high correlation between job and marital status

d.Check whether is there any association between Job and Education?

```
library(MASS)
sum(is.na(bank$job))
sum(is.na(bank$education))
```

```
sum(is.na(bank$marital))
bank1 <- bank %>% filter(education != "NA")
bank.data<-data.frame(bank1$job,bank1$education)</pre>
bank.data= table(bank1$job,bank1$education)
print(bank.data)
print(chisq.test(bank.data))
                   university.degree
  admin.
  blue-collar
                                    69
                                   478
  entrepreneur
                                   116
  housemaid
  management
                                  1787
  retired
self-employed
services
                                   677
                                   149
  student
                                   132
  technician
                                  1550
                                   225
  unemployed
print(chisq.test(bank.data))
         Pearson's Chi-squared test
data: bank.data
X-squared = 27184, df = 60, p-value < 2.2e-16
```

The p value is less than 0.05 so there is high correlation between job and education

6. Expected Format

- 1. R file should be submitted where applicable.
- 2. R file should be in PDF or in .r format
- 3. Proper screenshots of the outputs should be submitted as well
- 4. The r codes, if submitted in any other format, will be subjected to deduction in marks

Note: Your solution will not be entertained if it is any other format, e.g., .zip, .doc, .rtf etc.

7. Approximate Time to Complete Task

20 mins.