

TABLE 2–1 Melting Point, Boiling Point, and Heat of Vaporization of Some Common Solvents

	Melting point (°C)	Boiling point (°C)	Heat of vaporization (J/g)*
Water	0	100	2,260
Methanol (CH ₃ OH)	-98	65	1,100
Ethanol (CH ₃ CH ₂ OH)	-117	78	854
Propanol (CH ₃ CH ₂ CH ₂ OH)	-127	97	687
Butanol (CH ₃ (CH ₂) ₂ CH ₂ OH)	-90	117	590
Acetone (CH ₃ COCH ₃)	-95	56	523
Hexane (CH ₃ (CH ₂) ₄ CH ₃)	-98	69	423
Benzene (C ₆ H ₆)	6	80	394
Butane (CH ₃ (CH ₂) ₂ CH ₃)	-135	-0.5	381
Chloroform (CHCl ₃)	-63	61	247

^{*}The heat energy required to convert 1.0 g of a liquid at its boiling point, at atmospheric pressure, into its gaseous state at the same temperature. It is a direct measure of the energy required to overcome attractive forces between molecules in the liquid phase.

Estructura de las moléculas de agua en estado sólido (hielo)

Puentes de H en sistemas biológicos

Otros puentes de H de importancia biológica

Between the hydroxyl group of an alcohol and water

> R O H O H

Between the carbonyl group of a ketone and water

Between peptide groups in polypeptides

Otros puentes de H.....

Between complementary bases of DNA

Agua como solvente => cte. dieléctrica (E) alta (78.5) (permite disociar la > de comp. polares)

TABLE 2-2 Some Examples of Polar, Nonpolar, and Amphipathic Biomolecules (Shown as Ionic Forms at pH 7)

TABLE 2-3 Solubilities of Some Gases in Water

Structure*	Polarity	Solubility in water (g/L) [†]
N≡N	Nonpolar	0.018 (40 °C)
0==0	Nonpolar	0.035 (50 °C)
0 = C = 0	Nonpolar	0.97 (45 °C)
$H \hspace{1cm} \begin{array}{c} H \hspace{1cm} \hspace{1cm} H \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} H \hspace{1cm} 1c$	Polar	900 (10 °C)
H H 8	Polar	1,860 (40 °C)
	$ \begin{array}{c} N = N \\ 0 = 0 \\ $	$N \equiv N$ $N = $

^{*}The arrows represent electric dipoles; there is a partial negative charge (δ^-) at the head of the arrow, a partial positive charge (δ^+ ; not shown here) at the tall.

[†]Note that polar molecules dissolve far better even at low temperatures than do nonpolar molecules at relatively high temperatures.

Conpuestos anfipáticos en agua

OSMOSIS

Movimiento del agua a través de una membrana semipermeable, dirijido por diferencias de presión osmótica

Efecto de la osmolaridad extracelular en el movimeinto del agua a través de la membrana plasmática

Ionización del Agua

$$H_2O \stackrel{\longleftarrow}{\longrightarrow} H^+ + OH^-$$

$$K_{\text{eq}} = \frac{[\text{H}^+][\text{OH}^-]}{[\text{H}_2\text{O}]}$$

A 25 C, la [H₂O] es de 55.5 M porque 1000g/18.15 g/mol

Por lo tanto:

$$K_{\text{eq}} = \frac{[\text{H}^+][\text{OH}^-]}{55.5 \text{ M}},$$

...

$$(55.5 \text{ M})(K_{\text{eq}}) = [\text{H}^+][\text{OH}^-] = K_{\text{w}}$$

Donde Kw = producto iónico del agua

La [H] y [OH] es 1 X10⁻⁷ (pH neutro), por lo que:

$$Kw = 1 \times 10^{-14}$$

Como en agua pura existen las mismas [H] y [OH]:

[H] =
$$1 \times 10^{-7}$$

[OH] = 1×10^{-7}

Se dice que el pH es neutro ó pH = 7

Entonces Kw define la escala de pH

pH

Sörensen .- notación conveniente para definir la [H]

$$pH = -log[H]$$

Ej. El pH de una sol. de HCl 0.01 M es:

$$pH = -log[0.01]$$
 ó $pH = -log[10^{-2}]$

TABLE 2-6 The pH Scale

$[H^+]$ (M)	рН	[OH ⁻] (м)	рОН*
10° (1)	0	10 ⁻¹⁴	14
10^{-1}	1	10^{-13}	13
10^{-2}	2	10^{-12}	12
10^{-3}	3	10^{-11}	11
10^{-4}	4	10^{-10}	10
10^{-5}	5	10^{-9}	9
10^{-6}	6	10^{-8}	8
10^{-7}	7	10^{-7}	7
10^{-8}	8	10^{-6}	6
10^{-9}	9	10^{-5}	5
10^{-10}	10	10^{-4}	4
10^{-11}	11	10^{-3}	3
10^{-12}	12	10^{-2}	2
10^{-13}	13	10^{-1}	1
10^{-14}	14	10 ⁰ (1)	0

