Typing Illegal Information Flow as Program Effects

Ana Almeida Matos¹ José Santos²

¹Instituto de Telecomunicações, Lisbon, Portugal

²INRIA Sophia Antipolis Méditerrannée, Antibes, France

April 29, 2012

Problem

How can we?

- Reason about illegal programs:
 - Order illegal programs
- Express arbitrary relaxations of an information flow policy

Problem

How can we?

- Reason about illegal programs:
 - Order illegal programs
- Express arbitrary relaxations of an information flow policy

Approach

- Establish a base lattice ⇒ strictest information flow policy
- Model illegal flows as kernels over the base lattice
- Assign to each program the strictest kernel that captures all its illegal flows

Original Lattice

Kernels are computed iteratively

$$\vec{\Gamma}_{\mathbf{k}} [\mathbf{l}_{1}, \mathbf{l}_{2}](I) = \begin{cases} \mathbf{k}(I \cap \mathbf{l}_{2}) & \text{if } I \leq \mathbf{l}_{1} \\ \mathbf{k}(I) & \text{otherwise} \end{cases}$$

- **k:** original kernel
- \blacksquare (I_1, I_2): new flow

Original Lattice

Illegal Flow: $l_3 \rightarrow l_5$

Original Lattice

Illegal Flow: $l_1 \rightarrow l_3$

Original Lattice

Illegal Flow: $l_3 \rightarrow l_6$

Original Lattice

Illegal Flow: $l_1 \rightarrow l_2$

Language

Syntax

Expressions: λ -Calculus + Reference Creation + Thread creation

Language

Syntax

Expressions: λ -Calculus + Reference Creation + Thread creation

Model

- Model: $\langle P, S \rangle \rightarrow \langle P', S' \rangle$
- *P*: **initial** pool of expressions
- *S*: **initial** memory

Language

Syntax

Expressions: λ -Calculus + Reference Creation + Thread creation

Model

- Model: $\langle P, S \rangle \rightarrow \langle P', S' \rangle$
- \blacksquare P': **final** pool of expressions
- *S'*: **final** memory

IF Property

I-bissimulation

An **I-bissimulation** is a symmetric relation R on sets of threads such that, for all S_1 , S_2 , **if**:

- P_1RP_2
- $\blacksquare \langle P_1, S_1 \rangle \to \langle P_1', S_1' \rangle$
- $S_1 =_I S_2$

Then there exists P'_2 and S'_2 st:

- $S_1' =_I S_2'$

IF Property

I-bissimulation

An **I-bissimulation** is a symmetric relation R on sets of threads such that, for all S_1 , S_2 , **if**:

- P_1RP_2
- $S_1 = S_1$

Then there exists P'_2 and S'_2 st:

- $S_1' =_I S_2'$

The largest *I*-bissimulation.

Original IF Setting

■ Lattice: *L*

■ Labeling: ∑

Original IF Setting

- Lattice: *L*
- Labeling: ∑

Relaxed IF Setting

- Lattice: $k(\mathcal{L})$
- Labeling: $k \circ \Sigma$

Original IF Setting - Illegal

$$\Sigma = \left\{ \begin{array}{l} a \mapsto I_2, b \mapsto I_3 \\ c \mapsto I_5, d \mapsto I_7 \end{array} \right\}$$

Original IF Setting - Illegal

$$\Sigma = \left\{ \begin{array}{l} a \mapsto l_2, b \mapsto l_3 \\ c \mapsto l_5, d \mapsto l_7 \end{array} \right\}$$

Relaxed IF Setting - Legal

$$\Sigma' = \left\{ egin{array}{l} a \mapsto I_7, b \mapsto I_5 \ c \mapsto I_5, d \mapsto I_5 \end{array}
ight\}$$

$$\mathcal{L}'$$

$$\downarrow^{l_1} \\
\downarrow^{l_6} \\
\downarrow^{l_6}$$

$$((c_{l_5}:=(!b_{l_5}));(d_{l_7}:=(!a_{l_7})))$$

Checking Type System

$$\Gamma \vdash_{\mathcal{L},\Sigma}^{\mathbf{k}} M : s, \tau$$

M is typable with **type** τ and **security effect** s in the **typing context** Γ with respect to the IF setting $\langle \mathcal{L}, \Sigma, k \rangle$.

Checking Type System

$$\Gamma \vdash_{\mathcal{L},\Sigma}^{\mathbf{k}} M : s, \tau$$

M is typable with **type** τ and **security effect** s in the **typing context** Γ with respect to the IF setting $\langle \mathcal{L}, \Sigma, \mathbf{k} \rangle$.

Security Effect - s

- s.r: reading effect
- s.w: writting effect
- *s.t*: testing effect

Checking Type System

$$\Gamma \vdash_{\mathcal{L},\Sigma}^{\mathbf{k}} M : s, \tau$$

Informative Type System

$$\Gamma \vdash_{\mathcal{L},\Sigma} M : \langle s, \underline{s_d} \rangle, \tau$$

 s_d is the **declassification effect** of M.

Checking Type System

$$\Gamma \vdash_{\mathcal{L},\Sigma}^k M : s, \tau$$

Informative Type System

$$\Gamma \vdash_{\mathcal{L},\Sigma} M : \langle s, s_d \rangle, \tau$$

■ **\(\Gamma\)**: a map from variables to security levels

Checking Type System

$$\Gamma \vdash_{\mathcal{L},\Sigma}^k M : s, \tau$$

$$\Gamma \vdash_{\mathcal{L},\Sigma} M : \langle s, s_d \rangle, \tau$$

- Γ: a map from variables to security levels
- L: Lattice of security levels

Checking Type System

$$\Gamma \vdash_{\mathcal{L},\Sigma}^{k} M : s, \tau$$

$$\Gamma \vdash_{\mathcal{L},\Sigma} M : \langle s, s_d \rangle, \tau$$

- Γ: a map from variables to security levels
- lacksquare \mathcal{L} : lattice of security levels
- Σ: a map from references to security levels

Checking Type System

$$\Gamma \vdash_{\mathcal{L},\Sigma}^{k} M : s, \tau$$

$$\Gamma \vdash_{\mathcal{L},\Sigma} M : \langle s, s_d \rangle, \tau$$

- Γ: a map from variables to security levels
- L: lattice of security levels
- Σ : a map from references to security levels
- s: security effect

Checking Type System

$$\Gamma \vdash_{\mathcal{L},\Sigma}^{\mathbf{k}} M : s, \tau$$

■ k: parametrizing kernel

$$\Gamma \vdash_{\mathcal{L},\Sigma} M : \langle s, s_d \rangle, \tau$$

- \blacksquare s_d : declassification effect
- Γ: a map from variables to security levels
- lacksquare \mathcal{L} : lattice of security levels
- Σ: a map from references to security levels
- s: security effect

Checking Type System - Assign Rule

$$\frac{\Gamma \vdash_{\mathcal{L},\Sigma}^{k} M : s_{1}, \theta \text{ ref}_{I} \qquad k(s_{1}.t) \sqsubseteq k(s_{2}.w)}{\Gamma \vdash_{\mathcal{L},\Sigma}^{k} N : s_{2}, \theta \qquad k(s_{1}.r), k(s_{2}.r) \sqsubseteq k(I)}$$

$$\Gamma \vdash_{\mathcal{L},\Sigma}^{k} M := N : s_{1} \sqcup s_{2} \sqcup s_{I}, \text{unit}$$

Where: $s_I = \langle \bot, k(I), \bot \rangle$

Checking Type System - Assign Rule

$$\Gamma \vdash_{\mathcal{L},\Sigma}^{k} M : s_{1}, \theta \text{ ref}_{I} \qquad k(s_{1}.t) \sqsubseteq k(s_{2}.w)
\Gamma \vdash_{\mathcal{L},\Sigma}^{k} N : s_{2}, \theta \qquad k(s_{1}.r), k(s_{2}.r) \sqsubseteq k(I)$$

$$\Gamma \vdash_{\mathcal{L},\Sigma}^{k} M := N : s_{1} \sqcup s_{2} \sqcup s_{I}, \text{ unit}$$

Where: $s_l = \langle \bot, k(l), \bot \rangle$

Informative Type System - Assign Rule

$$\frac{\Gamma \vdash_{\mathcal{L},\Sigma} M : \langle s_1, s_1^d \rangle, \theta \text{ ref}_I \quad \Gamma \vdash_{\mathcal{L},\Sigma} N : \langle s_2, s_2^d \rangle, \theta}{\Gamma \vdash_{\mathcal{L},\Sigma} M := N : \langle s, s_d \rangle, \text{unit}}$$

Where:

Soundness

$$\Gamma \vdash_{\mathcal{L},\Sigma} M : \langle s, s_d \rangle, \tau
\Downarrow
\Gamma \vdash_{\mathcal{L},\Sigma}^{s_d} M : s', \tau$$

Soundness

$$\Gamma \vdash_{\mathcal{L},\Sigma} M : \langle s, s_d \rangle, \tau
\downarrow \downarrow
\Gamma \vdash_{\mathcal{L},\Sigma}^{s_d} M : s', \tau$$

Optimality

Ingredients

- Set of Principals: Pri
- Security levels: subsets of Pri
- Security lattice: $\langle \mathcal{P}(\mathsf{Pri}), \supseteq \rangle$
- Flow Relations: binary relations on Pri
 - $(A, B) \in F$: information may flow from principal A to principal B

Ingredients

- Set of Principals: Pri
- Security levels: subsets of Pri
- Security lattice: $\langle \mathcal{P}(\mathsf{Pri}), \supseteq \rangle$
- Flow Relations: binary relations on Pri

Remark

Flow Relations correspond to the co-additive kernels on Pri

Original IF Setting

Original IF Setting

$$\mathbf{Pri} = \{A, B, C\}$$

$$\{C\} \quad \{A\} \quad \{B\} \quad \{A, C\} \quad \{A, B\} \quad \{A, B\}$$

Relaxed IF Setting

$$\mathbf{f} = \{(B, A), (C, A)\}$$

$$\uparrow_f (\mathcal{P}(\mathbf{Pri})) \quad \{A\}$$

$$\{A, C\} \quad \{A, B\}$$

$$\{A, B, C\}$$

No optimality result for flow relations!

 \bullet $f_1, f_2 \preccurlyeq s_d$ and $f_1 \not\preccurlyeq f_2$ and $f_2 \not\preccurlyeq f_1$

Permissivity Contexts as Kernels

Ingredients

- Model the permissivity context under which a program executes as a kernel
- The permissivity context ⇒ Relaxation of the original IF setting
- Permissivity contexts are allowed to change dynamically

Permissivity Contexts as Kernels

Ingredients

- Model the permissivity context under which a program executes as a kernel
- The permissivity context ⇒ Relaxation of the original IF setting
- Permissivity contexts are allowed to change dynamically

Goal

Only the threads that respect **all** the permissivity contexts that were allowed during the program execution are allowed to terminate.

Permissivity Contexts as Kernels

Approach

- The current permissivity context k_A to configurations
- Add a mapping from thread names to their declassification effect - D - to configurations
- When the permissivity context changes remove the threads that are not compliant with it

Configurations

$$\langle P, S, D, k_A \rangle$$

Changing the permissivity context

$$\langle P, S, D, k_A \rangle \rightarrow \langle P', S, D, k_F \rangle$$

Future Work

Study new program constructs to **dynamically** interact with the permissivity context:

- Check if an expression is compliant with the current permissivity context
- Test the current permissivity context
- Kernels as values...

Thank You!

Questions...