

Fire Service Hydraulics and Water Supply Analysis

FPST2483 Unit 02 Water at Rest: Hydrostatics

OKLAHOMA VALVANIVA

Hydrostatics

• The study of water at rest and the science behind it.

Chapter TWO

Five Basic Principles

of

Hydrostatics

PRINCIPLE 4

THE PRESSURE CREATED BY A LIQUID IN AN **OPEN CONTAINER IS DIRECTLY** PROPORTIONAL TO THE DENSITY OF THE LIQUID.

P = whWhere:

where.

P = pressure (psi)

w = specific weight of the liquid in lb/ft³

h = height of liquid column in feet

Head

Head – pressure expressed in units of feet of water (instead of psi)

h = P/w

Where:

h = head in feet

P = pressure in psi

w = the specific weight in lb./ft³

1/

IMPORTANT CONCEPTS

1. P = wh

2. FOR WATER

w is weight density

P= .433 h

h is height

P is pressure in psi

3. IN HEAD:

h = (P) / .433 = 2.31 P

Potential Energy is stored energy.

It has the ability to perform work once released.

17

ONLAND IN	HYDRAULIC POTENTIAL ENERGY		
$PE_{t} = PE_{h} + PE_{p}$ $PE_{t} = (W)(h) + (W)(P/w)$			
	RING THAT $P = w h$ AND AD RELATED TO PRESSURE IS $h = P/w$		
EQUATING TOTAL POTENTIAL ENERGY WITH TOTAL STATIC HEAD GIVES:			
TOTAL POTENTIAL ENE	= TOTAL = (P) /w + h		

Electronic Pressure Gauges

- Pressure transformed into digital gauge
- · Very delicate

- We must understand the 5 principles of water at rest before we can study water in motion.
- The concepts of head pressure and potential energy are important in preventing unexpected accidents.
- Pressure measurement tools are based on these principles.