Describing numerical distributions

STA 032: Gateway to data science Lecture 9

Jingwei Xiong

April 21, 2023

Reminders

- HW 2 due April 26 12pm.
- HW 3 due May 3 12pm.
 - Please start the homework as soon as possible.
- **Midterm 1** (Open book, take home, approximate 2 hours, time limit 5 hours)
 - Due April 29 midnight, cover lecture 1-12
 - Preparing guides: Finish Homework 1-3, be familiar to the lecture slides.
 - You can copy any your own codes in homework 1-3 to finish the open book exam.
- The PDF version of slides can be found on Canvas.
 - You can use search on it to find function examples.

Today

- Describing numerical distributions
 - Histograms
 - Measures of central tendency: mean, median, mode
 - Shape: skewness and modality
 - Spread: variance and standard deviation, range and interquartile range
 - Boxplots
 - Unusual observations
 - Density plot

Data: Lending Club

• Lending Club is a platform that allows individuals to lend to other individuals

```
Rows: 10,000
Columns: 9
                <int> 28000, 5000, 2000, 21600, 23000, 5000, 24000, 20000, 2
$ loan_amount
$ interest_rate
                 <dbl> 14.07, 12.61, 17.09, 6.72, 14.07, 6.72, 13.59, 11.99,
                 <dbl> 60, 36, 36, 36, 36, 60, 60, 36, 36, 60, 60, 36, 60
$ term
$ grade
                 <fct> C, C, D, A, C, A, C, B, C, A, C, B, C, B, D, D, D, F,
$ state
                 <fct> NJ, HI, WI, PA, CA, KY, MI, AZ, NV, IL, IL, FL, SC, CO
$ annual_income
                <dbl> 90000, 40000, 40000, 30000, 35000, 34000, 35000, 11000
$ homeownership
                 <fct> MORTGAGE, RENT, RENT, RENT, OWN, MORTGAGE, MORTG
$ debt_to_income
                <dbl> 18.01, 5.04, 21.15, 10.16, 57.96, 6.46, 23.66, 16.19,
$ issue_month
                <fct> Mar-2018, Feb-2018, Feb-2018, Jan-2018, Mar-2018, Jan-
```

Selected variables

Variable	Description
loan_amount	Amount of the loan received, in US dollars
interest_rate	Interest rate on the loan, in an annual percentage
term	The length of the loan, which is always set as a whole number of months
grade	Loan grade, which takes a values A through G and represents the quality of the loan and its likelihood of being repaid
state	US state where the borrower resides
annual_income	Borrower's annual income, including any second income, in US dollars
homeownership	Indicates whether the person owns, owns but has a mortgage, or rents
debt_to_income	Debt-to-income ratio
issue_month	Month the loan was issued

Map of Describing numerical distributions

- Visual summaries:
 - Histogram
 - Boxplot
 - Density plot
 - Line graph
- Measures of **central tendency**: mean, median, mode
- Shape:
 - Skewness: right-skewed, left-skewed, symmetric
 - Modality: unimodal, bimodal, multimodal, uniform
- Spread: variance and standard deviation, range and interquartile range
- Unusual observations
- A **summary statistic** is a single number summarizing a large amount of data

Histogram

- Shows **shape**, **center**, **and spread** of the data
- Contiguous (adjoining) boxes
 - Horizontal axis: what the data represents
 - Vertical axis: frequency or relative frequency

```
ggplot(loans, aes(x = loan_amount)) +
  geom_histogram()
```


hist(loans_full_schema\$loan_amount)

binwidth = 1000 binwidth = 5000 binwidth = 20000 Words

```
ggplot(loans, aes(x = loan_amount)) +
  geom_histogram(binwidth = 1000)
```


binwidth = 1000 binwidth = 5000 binwidth = 20000 Words

```
ggplot(loans, aes(x = loan_amount)) +
  geom_histogram(binwidth = 5000)
```


binwidth = 1000 binwidth = 5000 binwidth = 20000 Words

```
ggplot(loans, aes(x = loan_amount)) +
  geom_histogram(binwidth = 20000)
```


hinwidth = 1000 hinwidth = 5000 hinwidth = 20000

Words

Here we shows how the binwidth parameter affects the appearance of a histogram.

Binwidth is the width of each bin or bar in the histogram. You can easily change it inside geom histogram function.

A small binwidth creates more bars that reflect more variation in the data but can also cause overplotting, making it difficult to see patterns.

A large binwidth creates fewer bars and provides a smoother visualization but may obscure some patterns.

Choosing the appropriate binwidth depends on the data and the research question.

Adding labels

The labs() function can be an alternated way used to customize the labels and title of the plot.

Plot Code

Adding labels

The labs() function can be an alternated way used to customize the labels and title of the plot.

```
Plot Code
```

```
ggplot(loans, aes(x = loan_amount)) +
  geom_histogram(binwidth = 5000) +
  labs(
    x = "Loan amount ($)",
    y = "Frequency",
    title = "Amounts of Lending Club loans"
)
```

Population vs. sample (2nd time, more later)

- A **sample** is a portion or **subset** of the larger **population**
- E.g., population may be UC Davis students; randomly sample 300 students on the Quad this morning
- Population **parameter**, e.g., population mean
 - This is a fixed quantity
- Sample **statistic**, e.g., sample mean
 - Depends on the sample

Use sample statistics to make **inferences** about **unknown** population parameters

Measures of central tendency (R funcion)

• Mean: "Average", sum the numbers and divide by the count (mean())

 $\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$, where x is the variable of interest, the subscripts index the n observations, and \bar{x} denotes the sample mean.

The population mean is often denoted by μ .

- **Median**: "Middle value", arrange in ascending order (median())
- Mode: Most frequent value (mode () does not do what you might think)
 - We won't test you how to calculate them without using R.
- Note: you will sometimes need the na.rm = TRUE option where the data include NA (missing) values.

Measures of central tendency: Example

- mean(loans\$loan_amount) = 16361.92; median(loans\$loan_amount)= 14500
- Mode is 10000 (Exercise: how to code this in R?)
 - Solution

Measures of shape: Skewness

- Skewness is the degree to which the distribution is off-centered
 - Positive skew/right skew: mean > median
 - Negative skew/left skew: mean < median

Measures of shape: Modality

- **Mode** is the most frequent value, but in real-world data sets, there might not be any observations with the same value.
- A mode is represented by a **prominent peak in the distribution**
- **Unimodal** = one prominent peak, **bimodal** = two prominent peaks, **multimodal** = more than two prominent peaks, uniform means no peaks

Loans data

```
ggplot(loans, aes(x = loan_amount)) +
  geom_histogram(binwidth = 5000)
```


Question: What is the skewness and modality?

Measures of spread: Variance and standard deviation

- Standard deviation measures how far data values are from their mean
- **Deviation** is the distance of an observation from its mean, $x_i \bar{x}$
- **Sample variance**: Take the square of deviations and find the mean, denote as *s*

$$\circ \ \ s^2 = rac{(x_1 - ar{x})^2 + (x_2 - ar{x})^2 + ... + (x_n - ar{x})^2}{n-1}$$

- \circ For the denominator, use n-1 instead of n to make it an *unbiased* estimator of the population mean
- Sample standard deviation, $s=\sqrt{s^2}$
- In R, sd() for sample standard deviation, var() for sample variance
- Population variance and standard deviation are often denoted by σ^2 and σ

Measures of spread: Example

- Red distribution: concentrated closely near the mean
- Blue distribution: more widely spread out from the mean
- They have the same mean, skewness, modality

Measures of spread: Variance and standard deviation

- Standard deviation can roughly be interpreted as the mean distance from mean
- **Rules of thumb** for symmetric, bell-shaped distributions: 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively

Measures of spread: Range and interquartile range

- Percentile: a number that divides ordered data into hundredths
 - Median = 50th percentile
- Quartile: a number that divides ordered data into quarters
 - First quartile = 25th percentile
 - Second quartile = Median = 50th percentile
 - Third quartile = 75th percentile
- **Range** = Max min; sensitive to outliers
- Interquartile range (IQR) = 3rd 1st quartile
 - ∘ IQR() in R
- Five-number summary: Min, 1Q, Median, 3Q, Max
 - summary() in R (also gives mean)

Loans data

???

```
sd(loans$loan amount)
[1] 10301.96
var(loans$loan_amount)
[1] 106130313
sqrt(var(loans$loan_amount))
[1] 10301.96
summary(loans$loan_amount)
                           Mean 3rd Qu.
  Min. 1st Qu. Median
                                           Max.
           8000
  1000
                 14500
                          16362
                                  24000
                                          40000
IQR(loans$loan_amount)
[1] 16000
```

Here we use R functions to get these summary statistics of the loan_amount variable.

homeownership is a factor variable with three levels, MORTGAGE, OWN and RENT. How do we calculate the variance and mean for each type of home ownership status?

```
loans %>%
  group_by(homeownership) %>%
  summarise(var = var(loan_amount),
            mean = mean(loan amount))
# A tibble: 3 x 3
  homeownership
                       var
                             mean
  <fct>
                     <dbl> <dbl>
1 MORTGAGE
                113425575. 18129.
2 OWN
                100698933. 15684.
3 RENT
                 91169018. 14406.
```

Percentiles

Vertical lines for 5th, 25th percentile, median, mean, 75th and 95th percentiles

Plot Code

Percentiles

Vertical lines for 5th, 25th percentile, median, mean, 75th and 95th percentiles

```
Plot Code
```

Boxplots

```
ggplot(loans, aes(x = loan_amount)) +
  geom_boxplot() +
  labs(x = "Loan amount") +
  scale_y_continuous(breaks = NULL)
```


- Lower whisker, box (1Q, median, 3Q), upper whisker
- Total length of the box is IQR
- The length of each whisker is up to 1.5*IQR
- Any points beyond that are **outliers**, observations that are unusually far from the rest of the data
- Outliers appear as points

Boxplots are particularly useful for identifying outliers and understanding the spread of the data.

Boxplots

• Boxplot provide a concise summary of the data

Box plot and outliers

Income data are often skewed (right or left?)

```
ggplot(loans, aes(x = annual_income)) +
  geom_boxplot()+
  scale_y_continuous(breaks = NULL)
```


Boxplots in base R

```
ggplot(loans, aes(x = loan_amount)) +
  geom_boxplot()
```


boxplot(loans\$loan_amount)

Another way to remove y-axis labels

We saw scale_y_continuous(breaks = NULL) earlier

Plot Code

Loan amounts of Lending Club loans

Another way to remove y-axis labels

We saw scale_y_continuous(breaks = NULL) earlier

```
Plot Code
```

```
ggplot(loans, aes(x = loan_amount)) +
  geom_boxplot() +
  labs(
    x = "Loan amount ($)",
    y = NULL,
    title = "Loan amounts of Lending Club loans"
) +
  theme(
    axis.ticks.y = element_blank(),
    axis.text.y = element_blank()
)
```

Density plot

Density plots are an alternative to histograms

plot(density(loans\$loan_amount))

Density plots and adjusting bandwidth

• Larger adjust = smoother

```
adjust = 0.5 adjust = 1 adjust = 2
```

```
ggplot(loans, aes(x = loan_amount)) +
  geom_density(adjust = 0.5)
```


Density plots and adjusting bandwidth

• Larger adjust = smoother

```
adjust = 0.5 adjust = 1 adjust = 2
```

```
ggplot(loans, aes(x = loan_amount)) +
  geom_density(adjust = 1) # default bandwidth
```


Density plots and adjusting bandwidth

• Larger adjust = smoother

```
adjust = 0.5 adjust = 1 adjust = 2
```

```
ggplot(loans, aes(x = loan_amount)) +
  geom_density(adjust = 2)
```


Title and labels

Plot Code

Title and labels

Plot Code

```
ggplot(loans, aes(x = loan_amount)) +
  geom_density(adjust = 2) +
  labs(
    x = "Loan amount ($)",
    y = "Density",
    title = "Amounts of Lending Club loans"
)
```

Next lecture: Relationships between numerical variables

- Paired or bivariate data
 - Scatterplot
 - Hexplot
 - Correlation
 - Line graph

Summary

- Describing numerical distributions
 - Histograms
 - Measures of central tendency: mean, median, mode
 - Shape: skewness and modality
 - Spread: variance and standard deviation, range and interquartile range
 - Boxplots
 - Unusual observations
 - Density plot

Reading

- Open Intro Statistics Chapter 1
- Chapter 9 Visualizing data distributions