Package 'tlars'

February 24, 2024

```
Title The T-LARS Algorithm: Early-Terminated Forward Variable
     Selection
Version 1.0.1
Date 2024-02-24
Description Computes the solution path of the Terminating-LARS (T-LARS) algorithm. The T-
     LARS algorithm
     is a major building block of the T-Rex selector (see R package 'TRexSelector').
     The package is based on the papers Machkour, Muma, and Palo-
     mar (2022) <arXiv:2110.06048>, Efron, Hastie, Johnstone,
     and Tibshirani (2004) <doi:10.1214/009053604000000067>, and Tibshi-
     rani (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x>.
Maintainer Jasin Machkour < jasin.machkour@tu-darmstadt.de>
URL https://github.com/jasinmachkour/tlars,
     https://arxiv.org/abs/2110.06048
BugReports https://github.com/jasinmachkour/tlars/issues
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.3.1
Suggests knitr, rmarkdown, ggplot2, patchwork, testthat (>= 3.0.0)
Config/testthat/edition 3
Imports Rcpp, methods, stats, graphics
Depends R (>= 2.10)
LinkingTo RcppArmadillo, Rcpp
VignetteBuilder knitr
NeedsCompilation yes
Author Jasin Machkour [aut, cre],
     Simon Tien [aut],
     Daniel P. Palomar [aut],
     Michael Muma [aut]
```

Gauss_data

Repository CRAN

Date/Publication 2024-02-24 00:30:02 UTC

R topics documented:

Gauss_data	
plot.Rcpp_tlars_cpp	3
print.Rcpp_tlars_cpp	4
tlars	
tlars_cpp	
tlars_model	

Index 10

Gauss_data

Toy data generated from a Gaussian linear model

Description

A data set containing a predictor matrix X with n = 50 observations and p = 100 variables (predictors), and a sparse parameter vector beta with associated support vector.

Usage

Gauss_data

Format

A list containing a matrix X and vectors y, beta, and support:

X Predictor matrix, n = 50, p = 100.

y Response vector.

beta Parameter vector.

support support vector.

```
# Generated as follows:
set.seed(789)
n <- 50
p <- 100
X <- matrix(stats::rnorm(n * p), nrow = n, ncol = p)
beta <- c(rep(5, times = 3), rep(0, times = 97))
support <- beta > 0
y <- X %*% beta + stats::rnorm(n)
Gauss_data <- list(
    X = X,
    y = y,</pre>
```

plot.Rcpp_tlars_cpp 3

```
beta = beta,
support = support
)
```

```
\verb"plot.Rcpp_tlars_cpp" \textit{Plots the T-LARS solution path"}
```

Description

Plots the T-LARS solution path stored in C++ objects of class tlars_cpp (see tlars_cpp for details) if the object is created with type = "lar" (no plot for type = "lasso").

Usage

```
## S3 method for class 'Rcpp_tlars_cpp'
plot(
    x,
    xlab = "# Included dummies",
    ylab = "Coefficients",
    include_dummies = TRUE,
    actions = TRUE,
    col_selected = "black",
    col_dummies = "red",
    lty_selected = "solid",
    lty_dummies = "dashed",
    legend_pos = "topleft",
    ...
)
```

Arguments

	X	Object of the class tlars_cpp. See tlars_cpp for details.
	xlab	Label of the x-axis.
	ylab	Label of the y-axis.
include_dummies		
		Logical. If TRUE solution paths of dummies are added to the plot.
	actions	Logical. If TRUE axis above plot with indices of added variables (Dummies represented by 'D') along the solution path is added.
	col_selected	Color of lines corresponding to selected variables.
	col_dummies	Color of lines corresponding to included dummies.
	lty_selected	Line type of lines corresponding to selected variables. See par for more details.
	lty_dummies	Line type of lines corresponding to included dummies. See par for more details.
	legend_pos	Legend position. See xy.coords for more details.
		Ignored. Only added to keep structure of generic plot function.

Value

Plots the T-LARS solution path stored in C++ objects of class tlars_cpp (no plot for type = "lasso").

See Also

```
tlars_cpp, plot, par, and xy.coords.
```

Examples

```
data("Gauss_data")
X <- Gauss_data$X
y <- drop(Gauss_data$y)
p <- ncol(X)
n <- nrow(X)
num_dummies <- p
dummies <- matrix(stats::rnorm(n * p), nrow = n, ncol = num_dummies)
XD <- cbind(X, dummies)
mod_tlars <- tlars_model(X = XD, y = y, num_dummies = num_dummies)
tlars(model = mod_tlars, T_stop = 3, early_stop = TRUE)
plot(mod_tlars)</pre>
```

```
print.Rcpp_tlars_cpp Prints\ a\ summary\ of\ the\ results\ stored\ in\ a\ C++\ object\ of\ class\ tlars\_cpp.
```

Description

Prints a summary of the results stored in a C++ object of class tlars_cpp (see tlars_cpp for details), i.e., selected variables, computation time, and number of included dummies.

Usage

```
## S3 method for class 'Rcpp_tlars_cpp'
print(x, ...)
```

Arguments

- x Object of the class tlars_cpp. See tlars_cpp for details.
- . . . Ignored. Only added to keep structure of generic print function.

Value

Prints a summary of the results stored in a C++ object of class tlars_cpp.

See Also

```
tlars_cpp.
```

tlars 5

Examples

```
data("Gauss_data")
X <- Gauss_data$X
y <- drop(Gauss_data$y)
p <- ncol(X)
n <- nrow(X)
num_dummies <- p
dummies <- matrix(stats::rnorm(n * p), nrow = n, ncol = num_dummies)
XD <- cbind(X, dummies)
mod_tlars <- tlars_model(X = XD, y = y, num_dummies = num_dummies)
tlars(model = mod_tlars, T_stop = 3, early_stop = TRUE)
print(mod_tlars)</pre>
```

tlars

Executes the Terminating-LARS (T-LARS) algorithm

Description

Modifies the generic tlars_cpp model by executing the T-LARS algorithm and including the results in the tlars_cpp model.

Usage

```
tlars(model, T_stop = 1, early_stop = TRUE, info = TRUE)
```

Arguments

model	Object of the class tlars_cpp.
T_stop	Number of included dummies after which the random experiments (i.e., forward selection processes) are stopped.
early_stop	Logical. If TRUE, then the forward selection process is stopped after T_stop dummies have been included. Otherwise the entire solution path is computed.
info	If TRUE information about the T-LARS step are printed.

Value

No return value. Executes the T-LARS algorithm and includes the results in the associated object of class tlars_cpp.

```
data("Gauss_data")
X <- Gauss_data$X
y <- drop(Gauss_data$y)
p <- ncol(X)
n <- nrow(X)
num_dummies <- p
dummies <- matrix(stats::rnorm(n * p), nrow = n, ncol = num_dummies)</pre>
```

6 tlars_cpp

```
XD <- cbind(X, dummies)
mod_tlars <- tlars_model(X = XD, y = y, num_dummies = num_dummies)
tlars(model = mod_tlars, T_stop = 3, early_stop = TRUE)
beta <- mod_tlars$get_beta()
beta</pre>
```

tlars_cpp

Exposes the C++ class tlars cpp to R

Description

Type 'tlars_cpp' in the console to see the constructors, variables, and methods of the class tlars_cpp.

Arguments

X Real valued predictor matrix.

y Response vector.

verbose Logical. If TRUE progress in computations is shown.

intercept Logical. If TRUE an intercept is included.

standardize Logical. If TRUE the predictors are standardized and the response is centered.

num_dummies
Number of dummies that are appended to the predictor matrix.

type Type of used algorithm (currently possible choices: 'lar' or 'lasso').

lars_state Input list that was extracted from a previous tlars_cpp object using get_all().

T_stop Number of included dummies after which the random experiments (i.e., forward

selection processes) are stopped.

early_stop Logical. If TRUE, then the forward selection process is stopped after T_stop

dummies have been included. Otherwise the entire solution path is computed.

Value

No return value. Exposes the C++ class tlars_cpp to R.

Fields

Constructor: new - Creates a new object of the class tlars_cpp.

Constructor: new - Re-creates an object of the class tlars_cpp based on a list of class variables that is obtained via get_all().

Method: execute_lars_step - Executes LARS steps until a stopping-condition is satisfied.

Method: get_beta - Returns the estimate of the beta vector.

Method: get_beta_path - Returns a a matrix with the estimates of the beta vectors at all steps.

Method: get_num_active - Returns the number of active predictors.

Method: get_num_active_dummies - Returns the number of dummy variables that have been included.

tlars_cpp 7

Method: get_num_dummies - Returns the number of dummy predictors.

Method: get_actions - Returns the indices of added/removed variables along the solution path.

Method: get_df - Returns the degrees of freedom at each step which is given by number of active variables (+1 if intercept is true).

Method: get_R2 - Returns the R^2 statistic at each step.

Method: get_RSS - Returns the residual sum of squares at each step.

Method: get_Cp - Returns the Cp-statistic at each step.

Method: get_lambda - Returns the lambda-values (penalty parameters) at each step along the solution path.

Method: get_entry - Returns the first entry/selection steps of the predictors along the solution path.

Method: get_norm_X - Returns the L2-norm of the predictors.

Method: get_mean_X - Returns the sample means of the predictors.

Method: get_mean_y - Returns the sample mean of the response y.

Method: get_all - Returns all class variables: This list can be used as an input to the constructor to re-create an object of class tlars_cpp.

```
data("Gauss_data")
X <- Gauss_data$X</pre>
y <- drop(Gauss_data$y)</pre>
p <- ncol(X)
n <- nrow(X)
dummies <- matrix(stats::rnorm(n * p), nrow = n, ncol = p)</pre>
XD <- cbind(X, dummies)</pre>
mod_tlars < - tlars_model(X = XD, y = y, num_dummies = ncol(dummies))
tlars(model = mod_tlars, T_stop = 3, early_stop = TRUE)
mod_tlars$get_beta()
# mod_tlars$get_beta_path()
# mod_tlars$get_num_active()
# mod_tlars$get_num_active_dummies()
# mod_tlars$get_num_dummies()
# mod_tlars$get_actions()
# mod_tlars$get_df()
# mod_tlars$get_R2()
# mod_tlars$get_RSS()
# mod_tlars$get_Cp()
# mod_tlars$get_lambda()
# mod_tlars$get_entry()
# mod_tlars$get_norm_X()
# mod_tlars$get_mean_X()
# mod_tlars$get_mean_y()
# mod_tlars$get_all()
```

8 tlars_model

tlars_model

Creates a Terminating-LARS (T-LARS) object

Description

Creates an object of the class tlars_cpp.

Usage

```
tlars_model(
  lars_state,
  X,
  y,
  num_dummies,
  verbose = FALSE,
  intercept = FALSE,
  standardize = TRUE,
  type = "lar",
  info = TRUE
)
```

Arguments

the forward selection process exactly where it was previously terminated). The lars_state is extracted from an object of class tlars_cpp via get_all() and is only required when the object (or its pointer) of class tlars_cpp is deleted or got lost

in another R session (e.g., in parallel processing).

X Real valued predictor matrix.

y Response vector.

verbose Logical. If TRUE progress in computations is shown when performing T-LARS

steps on the created model.

intercept Logical. If TRUE an intercept is included.

standardize Logical. If TRUE the predictors are standardized and the response is centered.

type 'lar' for 'LARS' and 'lasso' for Lasso.

info Logical. If TRUE and object is not recreated from previous T-LARS state, then

information about the created object is printed.

Value

Object of the class tlars_cpp.

tlars_model 9

```
data("Gauss_data")
X <- Gauss_data$X
y <- drop(Gauss_data$y)
p <- ncol(X)
n <- nrow(X)
num_dummies <- p
dummies <- matrix(stats::rnorm(n * p), nrow = n, ncol = num_dummies)
XD <- cbind(X, dummies)
mod_tlars <- tlars_model(X = XD, y = y, num_dummies = num_dummies)
mod_tlars</pre>
```

Index