Estatística Básica e Introdução ao R

Profa. Dra. Natalia Giordani

4. Regressão Linear Múltipla

- Quando uso?
 - Contexto em que minha variável resposta é quantitativa
- Objetivo
 - Modelar a resposta esperada (\hat{y}) como função de variáveis explicativas

$$\widehat{y} = \widehat{\beta_0} + \widehat{\beta_1} x_1 + \widehat{\beta_2} x_2 + \dots + \widehat{\beta_p} x_p$$

- Interpretação dos parâmetros relacionados as variáveis explicativas
 - $\widehat{\beta}_i$: valor esperado de y por unidade de x_i mantendo as demais variáveis explicativas constantes

5. Regressão Logística

- Variável resposta: dicotômica
- Exemplos
 - Cálculo da chance de ser inadimplente/ fraude
 - Avaliar fatores associados ao cancelamento de plano/desenvolvimento de uma doença
- Objetivo
 - Modelar a resposta esperada, nesse caso uma probabilidade, como função da(s) variável(is)
 explicativa(s)

5. Regressão Logística

Detalhes teóricos

 Por questões técnicas e de interpretação, ao invés de modelar a resposta esperada, modelamos uma função dela: o logaritmo da chance de resposta positiva.

$$\log \frac{P(Y_i = 1 | X = x_i)}{P(Y_i = 0 | X = x_i)} = \alpha + \beta x_i, i = 1, ..., n$$

$$= P(Y_i = 1 | X = x_i) = \frac{\exp(\alpha + \beta x_i)}{1 + \exp(\alpha + \beta x_i)}$$

- Parâmetros do modelo obtidos pelo método da máxima verossimilhança
- O que interpretamos: $\exp(\beta)$

Vamos praticar!

- Objetivo: identificar fatores de risco para baixo peso da criança
 - Dados: birthwt
- Conceitos a desenvolver/discutir
 - Ajuste modelo
 - Avaliação ajuste
 - Interpretação

Referências

 Morretin, PA; Singer JDM. Estatística e Ciência de Dados. Rio de Janeiro: LTC Editora, 2022.

Hosmer, DW; Lemeshow, S. Applied logistic regression. New York: John Wiley & sons, 1989.

