EL9343 Homework 6 Solutions

1. Huffman coding

- 2. (Problem 16-1 in CLRS)
 - (a) This is known as the cashier's algorithm.

Algorithm 1 cashier's algorithm(x)

- $\begin{array}{lll} \text{1: } S = \emptyset \\ \text{2: while } x > 0 \text{ do} \\ \text{3: } & c \leftarrow \max\{1,5,10,25\} \text{ such that } c \leq x \\ \text{4: } & x \leftarrow x c \\ \text{5: } & S \leftarrow S \cup \{c\} \\ \text{6: end while} \\ \text{7: return } S \end{array}$
 - (i) Denote the number of pennies, nickels, dimes and quarters by P, N, D and Q, respectively. In the optimal solution, we must have $P \leq 4$, otherwise we could replace every 5P with 1N. Similarly, we must have $N \leq 1$, otherwise replace every 2N with 1D. Also, $D \leq 2$, otherwise replace every 3D with 1Q and 1N; and also we cannot have 2D and 1N, which is replaceable by 1Q. The last two constraints can be summarized by $N + D \leq 2$.
 - (ii) Now, let $c_1 = 1, c_2 = 5, c_3 = 10, c_4 = 25$ be the coin denominations. To make $c_k \leq x < c_{k+1}$ cents of change, greedy solution takes the largest coin denomination available c_k . If the optimal solution doesn't take c_k , then it needs to reach x using smaller coins. However, this is not possible due to the constraints above.

Examples: For $5 \le x < 10$, maximum we can reach with only pennies is 4P = 4 (we showed it would be sub-optimal otherwise). For $10 \le x < 25$, maximum we can reach with only pennies and nickels is 1N + 4P = 9. For $25 \le x$, maximum we can reach with pennies, nickels and dimes is 2D + 4P = 24.

- (iii) The problem reduces to making change for $x c_k$. \Rightarrow this is solved by Algorithm 1.
- (b) Similar to the proof above
- (c) Make 14 cents of change w/ coins of $\{1, 5, 7, 10\}$

Greedy: one 10, four 1s Optimal: two 7s

- (d) Dynamic programming
- 3. Prim's algorithm:

Kruskal's algorithm:

- 4. (Problem 23-1 in CLRS)
- 5. (Exercise 24.1-1 in CLRS)

6. (Exercise 24.2-1 in CLRS)

7. (Exercise 24.3-1 in CLRS)

	d	74	Heration
Set 5	5 t x + 7	s t x y 7	
-7	* * * * * ()	<u> </u>	
7,5	3 20 7 20 0	7 - 7	×
7,5,4	3 6 7 8 0	2 5 7 5 -	
7, 5, t, X	(no changes)	(no changes)	
		· ·	1-

- 8. (Problem 24.3-6 in CLRS) Maximizing the probability along paths is equivalent to maximizing the log-likelihood along paths, which itself is equivalent to minimizing its negative. So define $w(u,v) = -\log r(u,v)$ and run Dijkstra's algorithm.
- 9. (Exercise 25.2-1 in CLRS)

D(0) [0 00 00 00 -1 00]	D(1) 10 00 00 00 -1 00]
10 00 2 00 00	0 0 0 0 0 0
∞ 2 0 m ~ -8	∞ 2 0 ∞ ∞ −8
-4 × × 0 3 ×	-4 ∞ ∞ 0 -5 ∞
∞ 7 ∞ ∞ 0 ∞	n 7 20 00 00
Ø 5 10 ∞ ∞ 0]	[0 0 00 00 0]
D(2) 0 00 00 00 -1 00	D(3) 0 00 00 1 00]
10 00 20 00	23100000
3 2 0 4 2 -8	3 2 0 4 2 -8
-4 a a 0 -3 x	-4 m m 0 -5 m
870900	87 89 8 00
(4) [(4) [[6510750]
D ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	D(5) 0 6 ~ 8 -1 ~
-7 0 2 -3 2	-2 6 a 2 -3 m
6 2 0 4 -1 -8.	0 2 0 4 -1 -8
-y × × 0 -5 ×	-4 2 A B -5 A
57 000	57~90~
(6) 3 5 10 7 2 0	3 5 10 7 2 0
0 6 20 8-120	
-2 6 2 -3 2	
-5 -3 0 -1 -6 -8	
7 2 0 -5 0	
5 7 2 9 0 2	
3 5 10 7 2 0)

. (Exercise 25.2-2 in CLRS)

Let $w_{i,j}=1$ if (i,j) is an edge, 0 otherwise. Then run SLOW-ALL-PAIRS-SHORTEST-PATHS, modifying line 7 in EXTEND-SHORTEST-PATHS to $l_{i,j}'=l_{i,j}'$ OR $(l_{ik}$ AND $w_{kj})$.