Лабораторная работа №5: Исследование колебаний механической системы. Вычислительный эксперимент

Постановка задачи

Организовать и провести вычислительный эксперимент для исследования колебаний механической системы.

Оборудование

- ПК (Использовался ноутбук с установленной ОС GNU/Linux)
- Табличный процессор (в ходе работы использовался LibreOffice Calc 7.0)

Часть 1

План проведения вычислительного эксперимента

- 1. Составить математическую модель задачи
- 2. Создать таблицу с нужными формулами
- 3. Построить график зависимости x(t)
- 4. Зафиксировать результаты в отчете
- 5. Проанализировать полученные результаты и ответить на вопросы:
 - 1. Около какого значения х происходят колебания груза?
 - 2. Опишите энергетические превращения, которые происходят в электрической и механической системах при колебаниях.
- 6. Сформулировать вывод

Математическая модель

$$x(t) = mg / k (1 - \cos(\omega_0 t))$$
, где $\omega_0^2 = k / m$

Исходные данные

m, кг	д, н	k
1,2	9,8	54

Ход эксперимента

График

График зависимости смещения груза от времени

Анализ результатов

Результат эксперимента

	min	max	avg	Δ
x(t)	0	0,44	0,22	0,44

Около какого значения х происходят колебания груза?

Колебания груза происходят около значения $x(t)_{avg} \approx 0,22$

Опишите энергетические превращения, которые происходят в электрической и механической системах при колебаниях.

Электрическая система	Механическая система	
В электрической колебательной системе	В механической колебательной системе	
энергия циклически переходит из магнитной в электрическую и обратно	энергия циклически переходит из потенциальной в кинетическую и обратно	

Вывод

В ходе эксперимента были исследованы колебания в механической колебательной системе на примере математического маятника. Глядя на графики и математические модели, становится понятно, что, с математической точки зрения, электрическая и механическая колебательные системы имеют много общего. Однако, энергетические превращения в них отличаются.

Часть 2

Задание 1

Постановка задачи: Разработайте математическую модель для описания движения данной колебательной системы (пружинного маятника), используя закон сохранения энергии.

Закон сохранения энергии: E_{k1} + E_{p1} = E_{k2} + E_{p2}

Мат. модель

$$E = \frac{mv^2}{2} + \frac{kx^2}{2}$$

Задание 2

Постановка задачи: Разработайте математическую модель для описания движения колебательной системы (математического маятника), используя закон сохранения энергии.

Закон сохранения энергии: E_{k1} + E_{p1} = E_{k2} + E_{p2}

Мат. модель

$$E = \frac{mv^2}{2} + \frac{mgx \ \alpha}{2}$$