Theorem 2.1.6

Let $u, v \in \Sigma^*$. Then $(uv)^R = v^R u^R$.

Proof The proof is by induction on the length of the string v.

Basis: length(v) = 0. Then $v = \lambda$ and $(uv)^R = u^R$. Similarly, $v^R u^R = \lambda^R u^R = u^R$.

Inductive Hypothesis: Assume $(uv)^R = v^R u^R$ for all strings v of length n or less.

Inductive Step: We must prove, for any string v of length n+1, that $(uv)^R=v^Ru^R$. Let v be a string of length n+1. Then v=wa, where w is a string of length n and $a \in \Sigma$. The inductive step is established by

$$(uv)^R = (u(wa))^R$$

 $= ((uw)a)^R$ (associativity of concatenation)
 $= a(uw)^R$ (definition of reversal)
 $= a(w^Ru^R)$ (inductive hypothesis)
 $= (aw^R)u^R$ (associativity of concatenation)
 $= (wa)^Ru^R$ (definition of reversal)
 $= v^Ru^R$.