Depth-first search - DFS traversal - Keep the following applications in mind: 1) Are all paths unique in a given G? 2) Is Gacyclic? [Tarjan'72]3) Find the strongly connected components in G? I.e. a maximal SEV s.t. Vijj∈S, i~oj & j~oi. [Edmonds, Korp 72/4) Maximum flow? 5) Matching ? (Hoporosth DFS idea: Recursively explore a Tarjan 13) neighbor before moving to the next neighbor. - Pseudocode: DFS-graph (G=(V,E)) { For each ve V visit[v] - false; count ←1; For each vEV if (visit[v] = false) DFS(v);

DFS(v) } risit[v] - true; begin time + D[v] < count++; For each (v, w) EE with visit[w] = false end time -F[v] - count++; DO(n+m) time complexity is easy to show.
-Example: timestamp: D(u) = 1D[j] = 7D Note the general D[V]=3 D[k] = 8 relationship: F[k] = 9D[W]= 3 F[j] = 10 D[t]=4 D[u] (D[v] F[v) = 11 F[t]=5 D[2]= 12 LF[v] LFlw F[w)=6 (Interval enclosed) for tree edge (4,2)

a forward edge or - Lemma: (u,v) is an edge in the DFS-tree if D(u) < D(v) < F(v) < F(u) & (u,v) ∈ E. Pf: . (=): is clear from the recursive nature of the DFS traversal. 2 2 1 W · (=): In the DFS aborithm either v is explored as a neighbor of u; or, it is explored as a neighbor of w; in the latter case (u,v) is called a forward edge. Lemma: The other kinds of non-tree edges are:

(Parenthesis · cross edge (u,v): (D[w], F[u]) &

(D[v], F[v]) are disjoint. · backward edge (u,v): D[v] < D[v] < F[v]. Cross backward edge

	Application 1: Unique-path testing
-	Input: Directed graph G=(V,E).
	Output: Yes if & u, v \in V, Fat most one
-	Simple path from u to v.

- Easy algorithm:

For each $u \in V$?

DFS(u);

if (DFS-tree has a forward or a cross edge)

then output non-unique-path;

3

output unique-path;

D Backward edges in DFS(u) do not yield multiple simple paths from u to any v.

D Time complexity is nx O(m+n).

Bringing it down to O(12).

- Note that if Ju, v∈ V At. in DFS(u):

 there are two backward edges from v

 then G is non-unique-path!

 Jhus,
- DG is unique-path => tue V, DFS(u)
 has no cross edge, no forward edge &
 tv EV, at most one backward edge from v.
- This can be used to speed up the code; DFs(4) {

visit[u] \leftarrow true; $D[u] \leftarrow$ count++; $//D[\cdot]$, $F[\cdot]$ are initialized Back Edge $[u] \leftarrow 0$; For each $(u,v) \in E$ \mathcal{E} if (visit[v] = false) DFS(v);

· · · · · (contd.)

	:: forward/cross edge
	else if (F[v]70) output non-unique-path
	else {
	Back Edge [v] ++;
	if (Back Edge [w] > 2) ! Two backwar edges output non-unique-path;
-	3 //end else
	3/lend for
	F(u) <- count ++;
3	llend DFS(u)
Lemma.	The also, for DFS (u) above, takes O(n) tin
Pf:	
-	The edges that are traversed are either DFS(u) Tree edges, or <1 forward edge, or <1 cross edge, or <2 backward edges
	DFS(u) Tree edges or S1 forward edge
	es 51 consedos es 62 haberbard o dos
=	or - Cours age, or = 2 maximum cages
-	· This cities up a count of 1111-1000
	· This gives us a count of n-1+1+n = O(n) edges actually traversed.
-ncozem	Doing this for all u, we get an O(n2) time also to decide unique-path.
	une aga to accae unique-path.

	Application 2: Topological ordering in da
	- Can a trackward edge abbear in
	Can a backward edge appear in DFS-Graph (G), if G is a day?
	: Testing whether G is a day is doable in O(n+m) time.
	- Let G be a dag & u ∈ V.
	Let v, w be vertices in DFS(u).
	· If (v, w) is a DFS-tree edge then
	F[v] > F[w].
	· If (v, w) is a forward edge then
-	F[v]>F[w].
	· If (v, w) is a cross edge then
	F[v]>F[w],

Theorem! Decreasing order of finish time F[-] gives us a topological ordering on a day G in O(n+m) time.

	Application 3: Compute strongly connected amp.
	——————————————————————————————————————
- Def	n: Let G=(V,E) be a directed graph.
	Vertices u, v e V are strongly connected
	if u-ov & v-ou.
	A maximal subset of vertices in V,
	with every pair strongly connected, is
	called a strongly connected component.
	(SCC)
D	Ising repeated DFS we
	Using repeated DFS we can find the strongly
	connected components in
	nx O(m+n) time.
Pf:	(Exercise)
-	an this be improved?
	Yes, in O(mm) time.
	We'll discuss Kosaraju (1978) 's
	idea.

- -Defn: The root of a scc s is the vertex which is visited first in DFS.
- => D Root of a Scc sis the vertex that finishes last (among S).
- This gives an idea to spot the root of some occ:

Do DFS on G, order V in the increasing order of F[] & pick the last vertex u.

=> u is the root of a sec in G, say S.

- an: How do we find 5? Let 5' be another &cc & v'es!

<u>Lemma</u>: ∀u'∈S, v'∈S', (v',u') & E.

· Let v be the root of s'. (Gontdi)

···· (contd.)

- This gives us the idea to reverse the edges in G & consider $G^z := (V, E^z)$:

D 52 is a sec in 92 & there is no edge going out of 52.

D DFS on u in G² gives us S²!

Final algorithm for SCC · Do DFS on G& store V in the decreasing order of F[·]. · Compute Gr by reversing the edges. · Initialize ∀v∈V, SSCC-found[v] ← false; SCC-num[v] ← -1; · L-1; · For each ve V { if (scc-found [v) = false) { Do DFS(v) in G2; Let the DFS-tree have vertices A; For each XEA { Scc-found [n] - true; SC-num (x) ~i; remore x from 92; Theorem: SCC is computable in O(mon) time. Pf: (Exercise)