

Linear Regression Machine Learning

(Largely based on slides from Andrew Ng)

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

MC886, August 14, 2019

\$70 000

\$ 160 000

Linear Regression

Today's Agenda

- Linear Regression with One Variable
 - Model Representation
 - Cost Function
 - Gradient Descent
- Linear Regression with Multiple Variables
 - Gradient Descent for Multiple Variables
 - Feature Scaling
 - Learning Rate
 - Features and Polynomial Regression
 - Normal Equation

Model Representation

Housing Prices

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Training	set of
housing	prices

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	•••

Notation:

m = Number of training examples x's = "input" variable / features y's = "output" variable / "target" variable

Training set

Training set

Learning algorithm

How do we represent h?

How do we represent h?

How do we represent h?

Linear regression with one variable. Univariate linear regression.

Cost Function

Training Set

et			

2104

Size in feet² (x)

1416

• • •

460 232

Price (\$) in 1000's (y)

315

178

• • •

1534 852

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$ θi 's: Parameters

How to choose θi 's?

$$\underset{\theta_0,\theta_1}{\text{minimize}}$$

$$(h_{\theta}(x^{-}) - y^{-})^2$$

$$\underset{\theta_0,\theta_1}{\text{minimize}}$$

$$\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$

Choose θ_0 , θ_1 so that training examples (x,y)

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$

$$J(\theta_0,\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$
 Idea: Choose θ_0,θ_1 so that $h_{\theta}(x)$ close to y for our

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$

 $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Choose θ_0 , θ_1 so that $h_{\theta}(x)$ close to y for our training examples (x,y)

minimize
$$J(\theta_0, \theta_1)$$

$$\bullet_{0}, \theta_1$$
Cost function

 θ_0,θ_1 Cost function (Squared error function)

Cost Function Intuition I

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

h(x)

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Simplified

$$h_{\theta}(x) = \theta_1 x$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

 $\underset{\theta_1}{\text{minimize }} J(\theta_I)$

$h_{\theta}(x)$ $J(\theta_1)$ (for fixed θ_1 , this is a function of x) (function of the parameters θ_1)

(for fixed θ_1 , this is a function of x)

 $J(\theta_1)$

(function of the parameters θ_1)

$$h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1) = J(1) = ?$$

$$J(\theta_1)$$

(function of the parameters θ_1)

$$h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1) = J(1) = 0$$

(for fixed θ_1 , this is a function of x)

(for fixed θ_1 , this is a function of x)

Cost Function Intuition II

(function of the parameters $heta_0$, $heta_1$)

 $J(\theta_0,\theta_1)$

 $J(\theta_0,\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1)$

Gradient Descent

Have some function $J(\theta_0, \theta_1)$

Want minimize
$$J(\theta_0, \theta_1)$$

Outline:

- Start with some θ_0 , θ_1
- Keep changing θ_0 , θ_1 to reduce $J(\theta_0,\theta_1)$ until we hopefully end up at a minimum

Gradient Descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update in the order)}$$

$$j = 0 \text{ and } j = 1$$
)

Gradient Descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1\text{)}$$
 Learning rate
$$Derivative \text{ term}$$

$$j = 0 \text{ and } j = 1)$$

Derivative term

Gradient Descent algorithm

repeat until convergence {
$$\theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\!\theta_1)\quad (\text{for }j=0 \text{ and }j=1)$$
 }

Correct: Simultaneous update

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

$$\theta_0 := \text{temp0}$$

Gradient Descent algorithm

repeat until convergence {
$$\theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\!\theta_1)\quad (\text{for }j=0 \text{ and }j=1)$$
 }

Correct: Simultaneous update

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

 $\theta_0 := \text{temp0}$

Incorrect

temp0 := $\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$

 $\theta_0 := \text{temp0}$

temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$ $\theta_1 := \text{temp1}$

$$\theta_1 \subseteq \mathbb{R}$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 \subseteq \mathbb{R}$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 \subseteq \mathbb{R}$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$
 ≥ 0

$$\theta_1 := \theta_1 - \alpha \cdot \text{(positive number)}$$

$$\theta_1 \subseteq \mathbb{R}$$

$$\theta_1 := \theta_1 - \alpha \cdot \text{(positive number)}$$

$$\theta_1 \subseteq \mathbb{R}$$

$$\theta_1$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \cdot \text{(positive number)}$$

$$heta_1 \subseteq \mathbb{R}$$

$$\theta_1$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$
 ≥ 0

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \cdot \text{(positive number)}$$

$$\theta_1 := \theta_1 - \alpha \cdot \text{(negative number)}$$

$$heta_1 \in \mathbb{R}$$

$$\theta_1$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$
 ≥ 0

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \cdot \text{(positive number)}$$

$$\theta_1 := \theta_1 - \alpha \cdot \text{(negative number)}$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too large, gradient descent can be ...

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too large, gradient descent can be ...

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

What will one step of gradient descent $\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$ do?

What will one step of gradient descent $\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$ do?

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

Gradient Descent algorithm

repeat until convergence
$$\{$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
(for $i = 0$ and $i = 1$)

(for
$$j = 0$$
 and $j = 1$)

Linear Regression Model

$$h_{\theta}(x) = \theta_{0} \quad \theta_{1}x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient Descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for
$$j = 0$$
 and $j = 1$)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$= \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

 $\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$ $= \frac{\partial}{\partial \theta_j} \cdot \frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

Gradient Descent algorithm

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$
 update θ_0 and θ_1 simultaneously

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0,\!\theta_1)$ (function of the parameters $\theta_0,\!\theta_1)$

$$h_{\theta}(x) = \theta_0 + \theta_1 x \implies y = b + mx$$

$$y = b + mx$$

Credit: https://alykhantejani.github.io/a-brief-introduction-to-gradient-descent/

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

- Stochastic Gradient Descent
- Mini-batch Gradient Descent

"Batch" Gradient Descent

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$
 update θ_0 and θ_1 simultaneously

}

Stochastic Gradient Descent

Each step of gradient descent uses one training example.

```
repeat until convergence { for i = 1, ..., m { \theta_0 := \theta_0 - \alpha(h_\theta(x^{(i)}) - y^{(i)}) \theta_1 := \theta_1 - \alpha(h_\theta(x^{(i)}) - y^{(i)})x^{(i)} }
```

Mini-batch Gradient Descent

Each step of gradient descent uses b training examples.

Say b = 10, m = 1000. repeat until convergence { for i = 1, 11, 21..., 991 { $\theta_0 := \theta_0 - \alpha \frac{1}{10} \sum_{k=0}^{i+9} (h_{\theta}(x^{(k)}) - y^{(k)})$ $\theta_1 := \theta_1 - \alpha \frac{1}{10} \sum_{i+9}^{i=k} (h_{\theta}(x^{(k)}) - y^{(k)}) x^{(k)}$

Batch vs. Stochastic vs. Mini-batch

Linear Regression with multiple variables

Multiple Variables Features

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple Variables Features

Size in feet ²	Number of bedrooms	Number of floors	Age of home (years)	Price (\$) in 1000's
x_1	x_2	x_3	x_4	У
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	2	36	178

Notation:

n = number of features $x^{(i)}$ = input (features) of i^{th} training example $x_i^{(i)}$ = value of features j in i^{th} training example

Hypothesis

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Hypothesis

Previously: $h_{\theta}(x) = \theta_0 + \theta_1 x$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

Hypothesis

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$h_{\theta}(x) = 80 + 0.1x_1 + 10x_2 + 3x_3 - 2x_4$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \ \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \ \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1} \quad \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \ \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1} \quad \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$h_{\theta}(x) = \theta^T x \leftarrow \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Multivariate linear regression.

Parameters: $\theta_0, \theta_1, \ldots, \theta_n$ Cost Function: $J(\theta_0, \theta_1, \ldots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

 $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1, ..., \theta_n)$ (simultaneously update for every j = 0, 1, ..., n)

Gradient Descent

Previously (n = 1):

repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update $heta_0$, $heta_1$)

Gradient Descent

Previously (n = 1):

repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update θ_0 , θ_1)

New Algorithm $(n \ge 1)$:

repeat {

 $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$

(simultaneously update θ_j for j = 0, 1, ..., n)

Gradient Descent

Previously (n = 1):

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}))$$

 $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$ (simultaneously update θ_0 , θ_1)

repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

New Algorithm $(n \ge 1)$:

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\frac{1}{m} \sum_{i=1}^{m}$$

 $\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$

$$\sum_{i=1}^{m} (h_{\theta}($$

=1 date
$$\theta_j$$
 for j =

$$\sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - 1)$$

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$(h_{\theta}(x^{(i)}) - y^{(i)})$$

(simultaneously update
$$\theta_j$$
 for $j=0,\ 1,\ ...,\ n$)

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 2 & 4
- Pattern Recognition and Machine Learning, Chap. 3

Machine Learning Courses

https://www.coursera.org/learn/machine-learning, Week 1 & 2