Biostatistics and Informatics BTM6000

Jochen G. Raimann

Session 1: Data

Learning objectives Session 1

- Introduction to the course
- Introduction and Comparison of R and Excel
- Outline of Syllabus and expectations
- Identifications of data types
- Creation and Interpretation of tables and graphs

COURSE LEARNING OUTCOMES

By the end of this course, students will be able to:

- 1. Explain the role of probabilistic models, inferential statistics, and descriptive statistics in science.
- 2. Design observational studies and experiments with appropriate scope of inference.
- 3. Collaborate with and coordinate the work of experimental scientists.

Required pre-installed software

- MS Office (or alternatively open-source alternatives i.e. LibreOffice)
 https://www.libreoffice.org
- R base
- R Studio

Required Textbook:

 Diez, D. M. (2015). OpenIntro Statistics: Third Edition. CreateSpace Independent Publishing Platform. A digital version is available free at http://www.openintro.org/stat/textbook.php.

Suggested additional reading

- Geoffrey R. Norman, Geoffrey R., and Sreiner, David L. (2014). Biostatistics: The Bare Essentials 4th Edition. People's Medical Publishing House - USA, Ltd.
- Irizarry, Rafael A. and Love, Michael I. (2016). *Data Analysis for the Life Sciences with R*. Chapman and Hall/CRC.
- Triolo, Marc M. and Triolo, Mario F. (2017). Biostatistics for the Biological and Health Sciences, 2nd edition. Pearson.

Grading

Evaluation criteria entire course

Assessment	Weight
Practice Labs	10%
Graded Labs (n=3)	30%
Quizzes (n=3)	30%
Final Project	30%
	100%

Evaluation criteria Final Project

Assessment	Weight
First Draft	10%
Analysis plan	30%
Final Report	40%
Presentation	20%
	100%

Final Project

There are 2 choices for the final project – every student is expected to choose one and to base the developed analysis plan on.

Option 1 (cross-sectional data):

Based on the provided NHANES dataset (actual study data) students are asked to develop a hypothesis and use simple analytic procedures to test this hypothesis. The hypothesis shall include the analytic testing of a physiological relationship the student is familiar with. The National Library of Medicine Pubmed.gov (https://www.ncbi.nlm.nih.gov/pubmed/) can be used to identify hypotheses that have been tested in the NHANES data and used for inspiration for developing own hypotheses. A glossary of the included parameters is provided on the following page.

Parameters in the dataset: age, gender, race, Hispanic ethnicity, albumin, creatinine, C-reactive protein, systolic and diastolic blood pressure, weight, height, waist circumference, Triceps skinfold

Final Project

There are 2 choices for the final project – every student is expected to choose one and to base the developed analysis plan on.

Option 2 (longitudinal, experimental data):

The provided dataset contains simulated (no real patients') data from a virtual randomized controlled trial. The diverse variables describe a before (i.e. baseline) and after period (i.e. follow up), an "intervention" parameter describes intervention versus control group. Students are asked to "invent" the trial with an established (patho-)physiological association, develop a study hypothesis for the conducted randomized controlled trial and to compare a) before and after period and b) control versus intervention arm using the methods taught in the course.

The students are asked to approach either project with creativity and an understanding where to find information (i.e. internet), how to approach and manage a dataset and how to formulate aims, null-hypotheses and how to approach data analytically using R. An analysis plan with a short background should be developed (sample on the following pages) and the final class will serve as the forum to present hypothesis and results in a brief presentation (<10 minutes) with a Q&A with the entire class.

Parameters in the dataset: age, gender, race, Hispanic ethnicity, albumin, creatinine, C-reactive protein, systolic and diastolic blood pressure, weight, height, waist circumference

Your instructor

• Jochen G. Raimann, MD, PhD, MPH

Research Interests

What is statistics?

- Major components of statistics are:
 - **Design**: planning how to obtain data
 - **Description**: Summarizing the data obtained
 - Inference: Making decisions and predictions that account for uncertainty and incomplete information

450 BC Hippias of Elis uses the average value of the length of a king's reign (the mean) to work out the date of the first Olympic Games, some 300 years before his time.

431 BC Attackers besieging Plataea in the Peloponnesian war calculate the height of the wall by counting the number of bricks. The count was repeated several times by different soldiers. The most frequent value (the mode) was taken to be the most likely. Multiplying it by the height of one brick allowed them to calculate the length of the ladders needed to scale the walls.

To begin with, some definitions

Population: the entire group of interest

- All people
- American adults
- Residents of New York

To begin with, some definitions

'London has been voted one of the world's favourite cities in the largest ever global survey of its kind by Ipsos MORI, covering 18,000 people in 24 countries.'

Sample: a subset of the group of interest

Note: a survey of the entire group is a *census*

A single observation is also called a **record**

World's favourite city	Best city to live	Europe's top city	Best city to do business	Best city to visit
1. New York	1. Zurich	1. London	1. New York	1. Paris
2. London	2. Sydney	2. Zurich	2. Abu Dhabi	2. New York
3. Paris	3. London	3. Paris	3. Hong Kong	3. Rome
4. Abu Dhabi	4. Paris	4. Berlin	4. Tokyo	4. London
5. Sydney	5. New York	5. Rome	5. London	5. Sydney

Ipsos MORI Top Cities: Global Survey of the World's Favourite Cities from Ipsos MORI. Sept 4, 2013.

Parts of Statistics

Descriptive Statistics

Parts of Statistics

- Inferential Statistics
 - Inference about the population based on a sample

How great is the uncertainty?

What are the sources of uncertainty?

Trump approval rating by multiple polls

Types of Data

- Nominal data
 - Binary / dichotomous, and categorical
- Ordinal data
 - Ordered data, rank data
- Discrete data
 - Integer data, count data
- Continuous data

Types of Data - nominal

Binary / dichotomous

```
\geq 0 – control, 1 – treatment
```

- \geq 0 alive, 1 dead
- Categorical

➤ Blood types: 0=A, 1=B, 3=AB, 4=O

These are only *nominally* numbers

Types of Data

- Nominal data
 - Binary / dichotomous, and categorical
- Ordinal data
 - Ordered data, rank data
- Discrete data
 - Integer data, count data
- Continuous data

Types of Data - ordinal

"Performance scale":

- 0: fully active
- 1: can do light work
- 2: no work. Ambulatory > 50% of the time
- 3: ambulatory <50% of the time
- 4: disabled

Order important, magnitude unimportant

Rank data is an important type of ordinal data

Types of Data - ordinal

Number of deaths for leading causes of death in 2010 (CDC.gov):

- 1. Heart disease: 597,689
- 2. Cancer: 574,743
- 3. Chronic lower respiratory diseases: 138,080
- 4. Stroke (cerebrovascular diseases): 129,476
- 5. Accidents (unintentional injuries): 120,859

Magnitude of the difference doesn't matter Only the order

Types of Data

- Nominal data
 - Binary / dichotomous, and categorical
- Ordinal data
 - Ordered data, rank data
- Discrete data
 - Integer data, count data
- Continuous data

Types of Data - discrete

Number of deaths for leading causes of death in 2010 (CDC.gov):

- 1. Heart disease: 597,689
- 2. Cancer: 574,743
- 3. Chronic lower respiratory diseases: 138,080
- 4. Stroke (cerebrovascular diseases): 129,476
- 5. Accidents (unintentional injuries): 120,859

Types of Data - discrete

Leading Causes of Death, New York City, 2002-2011

Source: Vital Statistics Data as of March, 2013 New York State Department of Health - Bureau of Biometrics and Health Statistics

Year and # of Deaths	#1 Cause of Death and # of Deaths Age-adjusted Death Rate	#2 Cause of Death and # of Deaths Age-adjusted Death Rate	#3 Cause of Death and # of Death Age-adjusted Death Rate	#4 Cause of Death and # of Deaths Age-adjusted Death Rate	#5 Cause of Death and # of Deaths Age-adjusted Death Rate
2011 Tatal: 51 244	Heart Disease 16,794 196 per 100,000	Cancer 12,476	Pneumonia and Influenza 2,490 29 per 100,000	Chronic Lower Respiratory Diseases (CLRD) 1,785 21 per 100,000	Stroke 1,778 21 per 100,000
Total: 51,344 2010	Heart Disease 17.669	Cancer 12.408	Pneumonia and Influenza 2.420	Chronic Lower Respiratory Diseases (CLRD)	1
Total: 50,852	211 per 100,000	150 per 100,000	29 per 100,000	21 per 100,000	20 per 100,000
2009 Total: 51,446	Heart Disease 19,715 229 per 100,000	12,277 144 per 100,000	Pneumonia and Influenza 2,188 26 per 100.000	Diabetes 1,653 19 per 100,000	Chronic Lower Respiratory Diseases (CLRD) 1,532 18 per 100,000
2008 Total: 52,998	Heart Disease 21,063 235 per 100,000	Cancer 12,238 142 per 100,000	Pneumonia and Influenza 2,284 25 per 100,000	Chronic Lower Respiratory Diseases (CLRD) 1,627 19 per 100,000	Diabetes 1,607 18 per 100,000
2007 Total: 52,864	Heart Disease 21,173 243 per 100,000	Cancer 12,450 148 per 100,000	Pneumonia and Influenza 2,353 27 per 100,000	Unintentional Injury 1,658 19 per 100,000	Stroke 1,601 19 per 100,000
2006 Total: 54,225	Heart Disease 21,681 255 per 100,000	Cancer 12,289 148 per 100,000	Pneumonia and Influenza 2,549 30 per 100,000	Stroke 1,713 20 per 100,000	Diabetes 1,678 20 per 100,000
2005 Total: 55,827	Heart Disease 22,514 263 per 100,000	Cancer 12,487 152 per 100,000	Pneumonia and Influenza 2,887 34 per 100,000	Diabetes 1,781 22 per 100,000	Stroke 1,666 20 per 100,000
2004 Total: 56,043	Heart Disease 22,429 271 per 100,000	Cancer 12,649 157 per 100,000	Pneumonia and Influenza 2,951 35 per 100,000	Stroke 1,820 22 per 100,000	Diabetes 1,715 21 per 100,000
2003 Total: 57,869	Heart Disease 23,722 293 per 100,000	Cancer 12,895 162 per 100,000	Pneumonia and Influenza 2,677 33 per 100,000	Diabetes 1,870 24 per 100,000	Stroke 1,867 23 per 100,000
2002	Heart Disease 24,281	Cancer 12,867	Pneumonia and Influenza 2,513	Stroke 1,877	Chronic Lower Respiratory Diseases (CLRD)
Total: 58,327	307 per 100,000	165 per 100,000	32 per 100,000	24 per 100,000	22 per 100,000

Standardized: per 100,000

Fluctuations in #4/5 positions

Discreteness becomes unimportant with many possible values

Magnitude matters, arithmetic applies

Types of Data

- Nominal data
 - Binary / dichotomous, and categorical
- Ordinal data
 - Ordered data, rank data
- Discrete data
 - Integer data, count data
- Continuous data

Types of Data - continuous

- Time
- Weight
- Length
- Mass

May be bounded or unbounded All values are possible within bounds Magnitude matters, arithmetic applies

Summarization of Data

- Very, very, very important
- Do it for every dataset you analyze seriously
- Multiple options for every data type and combination of data types

Numeric summary and graphical summary

Summarization of Data

- Nominal data
 - Binary / dichotomous, and categorical
- Ordinal data
 - Ordered data, rank data
- Discrete data
 - Integer data, count data
- Continuous data

Pie gone wrong!

What's wrong with this?

THIS WILL BE THE ONLY PIE
CHART YOU WILL SEE IN
THIS COURSE!

- Also called contingency tables
- Provides the total number of each variable

Single nominal or ordinal variable

• Clinical trial:

Treatment	Control
50	50

• Severity:

Mild	Moderate	Severe
20	30	50

Two nominal or ordinal variables:

	Treatment	Control		
Mild	15	5	20	0.2
Moderate	15	15	30	0.3
Severe	20	30	50	0.5

Marginal totals \longrightarrow 50 50 Marginal probabilities \longrightarrow 0.5 0.5

Graphical Displays: Bar Chart

Single nominal or ordinal variable

Graphical Displays: Bar Chart

Two nominal or ordinal variables

Summarization of Data

- Nominal data
 - Binary / dichotomous, and categorical
- Ordinal data
 - Ordered data, rank data
- Discrete data
 - Integer data, count data
- Continuous data

- Discrete and continuous data
 - select appropriate bins
 - Discretize (or further discretize)
 - Then do the same as for nominal and ordinal data

0-30	
30-50	
50-100	

	Treatment	Control
Mild	15	5
Moderate	15	15
Severe	20	30

• smaller bins = bigger table.

Can show more bins than a table, but it's the same

Number of bins is a subjective choice

In this case, selection of mild/moderate/severe cutoffs is arbitrary

"Frequency polygons"

Can estimate a smooth probability density

Box plot

Percentile = % of data below a given value Quartile = 25, 50, 75^{th} percentile Median = 50^{th} percentile IQR = Interquartile Range = $25^{th} - 75^{th}$ percentile

Exact plotting of data

One-dimensional scatterplot, or stripchart

Mash-up combinations...

Summarization of Data

- Nominal and ordinal data
 - Frequency tables and plots
- Discrete and continuous data
 - With further discretization:
 - Frequency tables and plots
 - Histogram
 - Boxplot
 - Frequency polygon
 - Without further discretization
 - Scatterplot, strip-chart