Module EA4 – Éléments d'Algorithmique II Outils pour l'analyse des algorithmes

Dominique Poulalhon dominique.poulalhon@irif.fr

Université Paris Diderot L2 Informatique & DL Bio-Info, Jap-Info, Math-Info Année universitaire 2023-2024

Considérons un algorithme (ou plutôt un programme, dans un langage donné, sur une machine donnée), qui met

1 centième de seconde à traiter les entrées de taille n = 100

Considérons un algorithme (ou plutôt un programme, dans un langage donné, sur une machine donnée), qui met

1 centième de seconde à traiter les entrées de taille n = 100

Question : peut-on l'utiliser pour traiter une entrée de taille $n = 10\,000 \ (= 100 \times 100 = 100^2 = 100 + 9\,900) \ ?$

Considérons un algorithme (ou plutôt un programme, dans un langage donné, sur une machine donnée), qui met

1 centième de seconde à traiter les entrées de taille n = 100

Question : peut-on l'utiliser pour traiter une entrée de taille
$$n = 10\,000 \ (= 100 \times 100 = 100^2 = 100 + 9\,900)$$
?

C(n)	$\Theta(\log n)$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n}\log\mathfrak{n})$	$\Theta(\mathfrak{n}^2)$	$\Theta(\mathfrak{n}^3)$	$\Theta(2^n)$
temps	0,02 s	1 s	2 s	2 min	3 h	10^{2960} ans

Considérons un algorithme (ou plutôt un programme, dans un langage donné, sur une machine donnée), qui met

1 centième de seconde à traiter les entrées de taille n = 100

Question : peut-on l'utiliser pour traiter une entrée de taille
$$n = 10\,000 \ (= 100 \times 100 = 100^2 = 100 + 9\,900)$$
?

C(n)	$\Theta(\log n)$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n}\log\mathfrak{n})$	$\Theta(\mathfrak{n}^2)$	$\Theta(\mathfrak{n}^3)$	$\Theta(2^n)$
temps	0,02 s	1 s	2 s	2 min	3 h	10^{2960} ans

• si
$$C(n) = \alpha \log n$$
:
 $C(10\,000) = C(100^2) = \alpha \log(100^2) = \alpha \cdot 2 \cdot \log 100 = 2 \cdot C(100)$
 $\implies peu importe \alpha$

Considérons un algorithme (ou plutôt un programme, dans un langage donné, sur une machine donnée), qui met

1 centième de seconde à traiter les entrées de taille n = 100

Question : peut-on l'utiliser pour traiter une entrée de taille
$$n = 10\,000 \ (= 100 \times 100 = 100^2 = 100 + 9\,900)$$
?

C(n)	$\Theta(\log n)$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n}\log\mathfrak{n})$	$\Theta(\mathfrak{n}^2)$	$\Theta(\mathfrak{n}^3)$	$\Theta(2^n)$
temps	0,02 s	1 s	2 s	2 min	3 h	10^{2960} ans

• si
$$C(n) = \alpha n$$
:
 $C(10\,000) = C(100 \times 100) = \alpha \times 100 \times 100 = 100 \cdot C(100)$
 $\implies peu importe \alpha$

Considérons un algorithme (ou plutôt un programme, dans un langage donné, sur une machine donnée), qui met

1 centième de seconde à traiter les entrées de taille n = 100

Question : peut-on l'utiliser pour traiter une entrée de taille
$$n = 10\,000 \ (= 100 \times 100 = 100^2 = 100 + 9\,900)$$
?

C(n)	$\Theta(\log n)$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n}\log\mathfrak{n})$	$\Theta(\mathfrak{n}^2)$	$\Theta(\mathfrak{n}^3)$	$\Theta(2^n)$
temps	0,02 s	1 s	2 s	2 min	3 h	10^{2960} ans

• si
$$C(n) = \alpha n^2$$
:
 $C(10\,000) = C(100 \times 100) = \alpha \times 100^2 \times 100^2 = 100^2 \cdot C(100)$
 $\implies peu importe \alpha$

Considérons un algorithme (ou plutôt un programme, dans un langage donné, sur une machine donnée), qui met

1 centième de seconde à traiter les entrées de taille n = 100

Question : peut-on l'utiliser pour traiter une entrée de taille
$$n = 10\,000 \ (= 100 \times 100 = 100^2 = 100 + 9\,900)$$
?

C(n)	$\Theta(\log n)$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n}\log\mathfrak{n})$	$\Theta(\mathfrak{n}^2)$	$\Theta(\mathfrak{n}^3)$	$\Theta(2^n)$
temps	0,02 s	1 s	2 s	2 min	3 h	10^{2960} ans

• si
$$C(n) = \alpha 2^n$$
:
 $C(10\,000) = C(9\,900 + 100) = \alpha \times 2^{9\,900} \times 2^{100} = 2^{9\,900} \cdot C(100)$
 $\implies peu importe \alpha$

Considérons un algorithme (ou plutôt un programme, dans un langage donné, sur une machine donnée), qui met

1 centième de seconde à traiter les entrées de taille n = 100

Question: peut-on l'utiliser pour traiter une entrée de taille
$$n = 10\,000 \ (= 100 \times 100 = 100^2 = 100 + 9\,900)$$
?

Le temps (approximatif) nécessaire dépend de sa complexité :

C(n)	$\Theta(\log n)$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n}\log\mathfrak{n})$	$\Theta(\mathfrak{n}^2)$	$\Theta(\mathfrak{n}^3)$	Θ(2 ⁿ)
temps	0,02 s	1 s	2 s	2 min	3 h	10^{2960} ans

Autre manière de voir les choses : en une heure, ce programme peut traiter des entrées de taille au plus...

C(n)	$\Theta(\log n)$	$\Theta(\mathfrak{n})$	$\Theta(n \log n)$	$\Theta(\mathfrak{n}^2)$	$\Theta(\mathfrak{n}^3)$	$\Theta(2^n)$
n_{max}	10 ^{720 000}	36 000 000	10 000 000	60 000	7100	118

Exemple : soit $f(n) = 5n^3 + 2n^2$

On veut montrer que $f(n)\in\Theta(n^3),$ c'est-à-dire :

$$\exists c_1,c_2>0,\ \exists n_0\in\mathbb{N},\quad \forall n\geqslant n_0,\quad c_1\,n^3\leqslant f(n)\leqslant c_2\,n^3$$

Exemple: soit $f(n) = 5n^3 + 2n^2$

On veut montrer que $f(n)\in\Theta(n^3),$ c'est-à-dire :

$$\exists c_1,c_2>0,\ \exists n_0\in\mathbb{N},\quad \forall n\geqslant n_0,\quad c_1\,n^3\leqslant f(n)\leqslant c_2\,n^3$$

Il suffit donc de trouver/deviner un n_0 et des constantes c_1, c_2 satisfaisants, puis de prouver/vérifier qu'ils le sont.

Exemple: soit $f(n) = 5n^3 + 2n^2$

On veut montrer que $f(n) \in \Theta(n^3)$, c'est-à-dire :

$$\exists c_1, c_2 > 0, \ \exists n_0 \in \mathbb{N}, \quad \forall n \geqslant n_0, \quad c_1 \, n^3 \leqslant f(n) \leqslant c_2 \, n^3$$

Il suffit donc de trouver/deviner un n_0 et des constantes c_1, c_2 satisfaisants, puis de prouver/vérifier qu'ils le sont.

• ici, $c_1 = 5$ convient, puisque pour tout $n \ge 0$,

$$f(n) = 5n^3 + \underbrace{2n^2}_{\geqslant 0} \geqslant 5n^3$$

Exemple: soit $f(n) = 5n^3 + 2n^2$

On veut montrer que $f(n) \in \Theta(n^3)$, c'est-à-dire :

$$\exists c_1, c_2 > 0, \ \exists n_0 \in \mathbb{N}, \quad \forall n \geqslant n_0, \quad c_1 \, n^3 \leqslant f(n) \leqslant c_2 \, n^3$$

Il suffit donc de trouver/deviner un n_0 et des constantes c_1, c_2 satisfaisants, puis de prouver/vérifier qu'ils le sont.

• ici, $c_1 = 5$ convient, puisque pour tout $n \ge 0$,

$$f(n) = 5n^3 + \underbrace{2n^2}_{\geqslant 0} \geqslant 5n^3$$

• pour c_2 et n_0 , c'est un peu plus compliqué; on peut par exemple prendre $c_2 = 7$ et $n_0 = 1$ car pour tout $n \ge 1$, $n^2 \le n^3$, donc

$$f(n) = 5n^3 + 2n^2 \le 7n^3$$
.

Exemple: soit $f(n) = 5n^3 + 2n^2$

On veut montrer que $f(n)\in\Theta(n^3),$ c'est-à-dire :

$$\exists c_1, c_2 > 0, \ \exists n_0 \in \mathbb{N}, \quad \forall n \geqslant n_0, \quad c_1 \, n^3 \leqslant f(n) \leqslant c_2 \, n^3$$

Il suffit donc de trouver/deviner un n_0 et des constantes c_1, c_2 satisfaisants, puis de prouver/vérifier qu'ils le sont.

• ici, $c_1 = 5$ convient, puisque pour tout $n \ge 0$,

$$f(n) = 5n^3 + \underbrace{2n^2}_{\geqslant 0} \geqslant 5n^3$$

• pour c_2 et n_0 , c'est un peu plus compliqué; on peut par exemple prendre $c_2 = 7$ et $n_0 = 1$ car pour tout $n \ge 1$, $n^2 \le n^3$, donc

$$f(n) = 5n^3 + 2n^2 \le 7n^3.$$

Autre option, raisonner « à la limite » : si $\lim \frac{f}{g} = c$ avec c > 0, alors pour n'importe quelles constantes $c_1 < c < c_2$, il existe n_0 (éventuellement très grand) avec la bonne propriété

RÉSULTATS À RETENIR

Remarque : les fonctions de complexité sont par définition positives, et en général de limite infinie

ullet tous les polynômes 1 de degré d sont dans la classe $\Theta(n^d)$

^{1.} à coefficient dominant positif

Résultats à retenir

Remarque : les fonctions de complexité sont par définition positives, et en général de limite infinie

- tous les polynômes 1 de degré d sont dans la classe $\Theta(n^d)$
- les classes $\Theta(n^d)$ ($d \ge 0$) sont strictement ordonnées en fonction du degré (y compris d non entier) :

si
$$d_1 < d_2$$
, $n^{d_1} \in O(n^{d_2})$, mais $n^{d_1} \not \in \Theta(n^{d_2})$

RÉSULTATS À RETENIR

Remarque : les fonctions de complexité sont par définition positives, et en général de limite infinie

- ullet tous les polynômes 1 de degré d sont dans la classe $\Theta(n^d)$
- les classes $\Theta(n^d)$ ($d\geqslant 0$) sont strictement ordonnées en fonction du degré (y compris d non entier) :

si
$$d_1 < d_2, \, n^{d_1} \in O(n^{d_2}), \, \text{mais } n^{d_1} \not\in \Theta(n^{d_2})$$

• tous les logarithmes (de n'importe quelle base) de polynômes (non constants) sont dans la classe $\Theta(\log n)$

RÉSULTATS À RETENIR

Remarque : les fonctions de complexité sont par définition positives, et en général de limite infinie

- ullet tous les polynômes 1 de degré d sont dans la classe $\Theta(n^d)$
- les classes $\Theta(n^d)$ ($d\geqslant 0$) sont strictement ordonnées en fonction du degré (y compris d non entier) :

si
$$d_1 < d_2$$
, $n^{d_1} \in O(n^{d_2})$, mais $n^{d_1} \notin \Theta(n^{d_2})$

- tous les logarithmes (de n'importe quelle base) de polynômes (non constants) sont dans la classe $\Theta(\log n)$
- pour tout d > 0, $\log n \in O(n^d)$, mais $\log n \notin \Theta(n^d)$

Résultats à retenir

Remarque : les fonctions de complexité sont par définition positives, et en général de limite infinie

- ullet tous les polynômes 1 de degré d sont dans la classe $\Theta(n^d)$
- les classes $\Theta(n^d)$ $(d \geqslant 0)$ sont strictement ordonnées en fonction du degré (y compris d non entier) :

si
$$d_1 < d_2$$
, $n^{d_1} \in O(n^{d_2})$, mais $n^{d_1} \notin \Theta(n^{d_2})$

- tous les logarithmes (de n'importe quelle base) de polynômes (non constants) sont dans la classe Θ(log n)
- pour tout d > 0, $\log n \in O(n^d)$, mais $\log n \notin \Theta(n^d)$
- les fonctions exponentielles sont strictement ordonnées en fonction de la base

si
$$b_1 < b_2$$
, $b_1^n \in O(b_2^n)$, mais $b_1^n \not\in \Theta(b_2^n)$

Résultats à retenir

Remarque : les fonctions de complexité sont par définition positives, et en général de limite infinie

- tous les polynômes 1 de degré d sont dans la classe $\Theta(n^d)$
- les classes $\Theta(n^d)$ ($d \ge 0$) sont strictement ordonnées en fonction du degré (y compris d non entier) :

si
$$d_1 < d_2, \, n^{d_1} \in O(n^{d_2}), \, \text{mais } n^{d_1} \notin \Theta(n^{d_2})$$

- tous les logarithmes (de n'importe quelle base) de polynômes (non constants) sont dans la classe Θ(log n)
- pour tout d > 0, $\log n \in O(n^d)$, mais $\log n \notin \Theta(n^d)$
- les fonctions exponentielles sont strictement ordonnées en fonction de la base

si
$$b_1 < b_2$$
, $b_1^n \in O(b_2^n)$, mais $b_1^n \notin \Theta(b_2^n)$

• pour tous d > 0 et b > 1, $n^d \in O(b^n)$, mais $n^d \notin \Theta(b^n)$

^{1.} à coefficient dominant positif

• pour toutes bases a et b , $\log_a n \in \Theta(\log_b n)$: en effet, par définition

$$\forall n, \quad n = a^{\log_a n} = b^{\log_b n} \tag{*}$$

• pour toutes bases a et b , $\log_a n \in \Theta(\log_b n)$: en effet, par définition

$$\forall n, \quad n = a^{\log_a n} = b^{\log_b n} \tag{*}$$

en particulier, $\mathbf{b} = a^{\log_a \mathbf{b}}$ (et symétriquement $a = \mathbf{b}^{\log_b a}$)

• pour toutes bases a et b, $\log_a n \in \Theta(\log_b n)$: en effet, par définition

$$\forall n, \quad n = a^{\log_a n} = b^{\log_b n} \tag{*}$$

en particulier, $b = a^{\log_a b}$ (et symétriquement $a = b^{\log_b a}$) en substituant dans (*), on obtient :

$$\forall n, \quad n = a^{\log_a n} = (a^{\log_a b})^{\log_b n} = a^{(\log_a b) \cdot (\log_b n)}$$

• pour toutes bases a et b, $\log_a n \in \Theta(\log_b n)$: en effet, par définition

$$\forall n, \quad n = a^{\log_a n} = b^{\log_b n} \tag{*}$$

en particulier, $b = a^{\log_a b}$ (et symétriquement $a = b^{\log_b a}$) en substituant dans (*), on obtient :

$$\forall n, \quad n = a^{\log_{\alpha} n} = (a^{\log_{\alpha} b})^{\log_{b} n} = a^{(\log_{\alpha} b) \cdot (\log_{b} n)}$$

donc:

$$\forall n, \log_a n = (\log_a b) \cdot (\log_b n)$$

(et en particulier, $(\log_a b) \cdot (\log_b a) = 1$)

• pour toutes bases a et b, $\log_a n \in \Theta(\log_b n)$: en effet, par définition

$$\forall n, \quad n = a^{\log_a n} = b^{\log_b n} \tag{*}$$

en particulier, $b = a^{\log_a b}$ (et symétriquement $a = b^{\log_b a}$) en substituant dans (*), on obtient :

$$\forall n, \quad n = a^{\log_a n} = (a^{\log_a b})^{\log_b n} = a^{(\log_a b) \cdot (\log_b n)}$$

donc:

$$\forall n, \log_{\alpha} n = (\log_{\alpha} b) \cdot (\log_{b} n)$$

(et en particulier, $(\log_a b) \cdot (\log_b a) = 1$)

• pour tout b > 1, et tout d > 0, $\log_b(n^d) \in \Theta(\log_b n)$; en effet,

$$\forall n, \log_{b}(n^{d}) = d \cdot \log_{b} n$$

• pour toutes bases a et b, $\log_a n \in \Theta(\log_b n)$: en effet, par définition

$$\forall n, \quad n = a^{\log_a n} = b^{\log_b n} \tag{*}$$

en particulier, $\mathbf{b} = a^{\log_a b}$ (et symétriquement $a = b^{\log_b a}$) en substituant dans (*), on obtient :

$$\forall n, \quad n = a^{\log_a n} = (a^{\log_a b})^{\log_b n} = a^{(\log_a b) \cdot (\log_b n)}$$

donc:

$$\forall n, \log_{\alpha} n = (\log_{\alpha} b) \cdot (\log_{b} n)$$

(et en particulier, $(\log_a b) \cdot (\log_b a) = 1$)

• pour tout b > 1, et tout d > 0, $\log_b(n^d) \in \Theta(\log_b n)$; en effet,

$$\forall n, \log_b(n^d) = d \cdot \log_b n$$

donc tous les logarithmes (de n'importe quelle base) de polynômes non constants sont dans la même classe, notée $\Theta(\log n)$ sans préciser la base

utilisation naïve de la récurrence

 $\Longrightarrow \Theta(\phi^n)$ additions

```
def fibo_1(n) :
   if n <= 2 : return 1
   return fibo_1(n-1) + fibo_1(n-2)</pre>
```

Analyse de la complexité (démonstration d'un résultat un peu moins fort mais suffisant) : soit A(n) le nombre d'additions effectuées

$$A(n) = \begin{cases} 0 & \text{si } n \leqslant 2 \\ 1 + A(n-1) + A(n-2) & \text{si } n > 2 \end{cases}$$

(donc en fait, $A(n) + 1 = F_n$ pour tout $n \geqslant 1$)

donc $A(n) \geqslant A(n-1)$ pour tout n, c'est-à-dire que A est croissante (et même strictement croissante sauf entre 0 et 2)

d'où l'encadrement : $\forall n > 3$, $2A(n-2) \leq A(n) \leq 2A(n-1)$, qui entraîne : $A(n) \in \Omega(\sqrt{2}^n)$ et $A(n) \in O(2^n)$

calcul itératif des n premières valeurs

```
\implies \Theta(n) additions
```

```
def fibo_3(n) :
  previous, last = 0, 1
  for i in range(2, n+1) :
    previous, last = last, previous + last
  return last
```

calcul itératif des n premières valeurs

```
\implies \Theta(n) additions
```

```
def fibo_3(n) :
  previous, last = 0, 1
  for i in range(2, n+1) :
    previous, last = last, previous + last
  return last
```

Preuve de correction : à l'aide de l'invariant :

- « après le tour de boucle d'indice i, previous $= F_{i-1}$ et last $= F_i$ »
- c'est vrai « après le tour d'indice 1 », *i.e.* avant le 1^{er} tour de boucle (d'indice 2)
- si previous = F_{i-1} et last = F_i au début d'un tour de boucle, previous = F_i et last = $F_{i-1} + F_i = F_{i+1}$ après ce tour

donc à la sortie de la boucle, previous $= F_{n-1}$ et last $= F_n$, donc fibo_3(n) retourne F_n pour tout n

calcul itératif des n premières valeurs

```
\implies \Theta(n) additions
```

```
def fibo_3(n) :
  previous, last = 0, 1
  for i in range(2, n+1) :
    previous, last = last, previous + last
  return last
```

Analyse de la complexité : n-1 tours de boucle, avec une addition (de grands entiers) par tour, donc :

$$A(n) = n - 1 \in \Theta(n)$$

Complexité de l'exponentiation binaire

```
def puissance(a, n) :
    if n == 0 : return 1
    if n == 1 : return a
    tmp = puissance(a, n//2)
    carre = tmp * tmp  # une multiplication
    if n%2 == 0 : return carre
    else : return a * carre  # une multiplication
```

Complexité : $\Theta(\log_2 n)$ multiplications de la forme $a \times a^k$ ou $a^k \times a^k$

Complexité de l'exponentiation binaire

Complexité : $\Theta(\log_2 n)$ multiplications de la forme $a \times a^k$ ou $a^k \times a^k$

Rappel : $\log_b n$ est défini par l'égalité $n = b^{\log_b n}$, donc :

- $b^{\lfloor \log_b n \rfloor} \leqslant n < b^{\lfloor \log_b n \rfloor + 1}$,
- n s'écrit avec $\lfloor \log_b n \rfloor + 1$ chiffres en base b,
- la division euclidienne de n par b itérée $\lfloor \log_b n \rfloor + 1$ fois donne 0

Complexité : $\Theta(log_2n)$ multiplications de la forme $\alpha \times \alpha^k$ ou $\alpha^k \times \alpha^k$

Complexité : $\Theta(log_2n)$ multiplications de la forme $a \times a^k$ ou $a^k \times a^k$

si ces multiplications ont un coût constant, *i.e.* si les opérandes ont une taille constante, complexité en $\Theta(\log_2 n)$

c'est le cas avec l'arithmétique modulaire ou l'arithmétique flottante usuelles : tous les nombres sont codés sur exactement 32 (ou 64) bits, donc le coût d'une multiplication est constant

Complexité : $\Theta(log_2 n)$ multiplications de la forme $\alpha \times \alpha^k$ ou $\alpha^k \times \alpha^k$

si ces multiplications ont un coût constant, complexité en $\Theta(\log_2 n)$

sinon, il faut tenir compte du coût de ces multiplications

Complexité : $\Theta(log_2 n)$ multiplications de la forme $\alpha \times \alpha^k$ ou $\alpha^k \times \alpha^k$

si ces multiplications ont un coût constant, complexité en $\Theta(\log_2 n)$

sinon, il faut tenir compte du coût de ces multiplications

par exemple en arithmétique exacte sur des entiers, même en considérant que a est de taille bornée, a^k est de taille $\Theta(k)$, donc :

- la multiplication $a \times a^k$ par l'algo naïf a un coût $\Theta(k)$
- le calcul du carré de a^k par l'algo naïf a un coût $\Theta(k^2)$

Complexité de l'exponentiation binaire

Complexité : $\Theta(log_2n)$ multiplications de la forme $\alpha \times \alpha^k$ ou $\alpha^k \times \alpha^k$

si ces multiplications ont un coût constant, complexité en $\Theta(\log_2 n)$

sinon, il faut tenir compte du coût de ces multiplications

par exemple en arithmétique exacte sur des entiers, même en considérant que a est de taille bornée, a^k est de taille $\Theta(k)$, donc :

- la multiplication $a \times a^k$ par l'algo naïf a un coût $\Theta(k)$
- le calcul du carré de a^k par l'algo naïf a un coût $\Theta(k^2)$

 $\Theta(\log n)$ multiplications, chacune en $O(n^2) \implies$ cumul en $O(n^2 \log n)$

Complexité de l'exponentiation binaire

Complexité : $\Theta(\log_2 n)$ multiplications de la forme $a \times a^k$ ou $a^k \times a^k$

si ces multiplications ont un coût constant, complexité en $\Theta(\log_2 n)$

sinon, il faut tenir compte du coût de ces multiplications

par exemple en arithmétique exacte sur des entiers, même en considérant que a est de taille bornée, a^k est de taille $\Theta(k)$, donc :

- la multiplication $a \times a^k$ par l'algo naïf a un coût $\Theta(k)$
- le calcul du carré de a^k par l'algo naïf a un coût $\Theta(k^2)$

 $\Theta(\log n)$ multiplications, chacune en $O(n^2)$ \implies cumul en $O(n^2 \log n)$

Mais on peut être plus précis : si on néglige le coût des multiplications par a et qu'on considère seulement les calculs successifs de carrés, cela fait (à peu près, en partant du dernier calculé) : $c(\frac{n}{2})^2 + c(\frac{n}{4})^2 + c(\frac{n}{8})^2 + c(\frac{n}{16})^2 + \dots$

d'où un coût cumulé en $\Theta(n^2)$

(par l'algo de multiplication naïf)

Complexité des calculs de Fn

utilisation naïve de la récurrence $\Longrightarrow \Theta(\phi^n)$ additions (d'entiers) calcul itératif des n premières valeurs $\Longrightarrow \Theta(n)$ additions (d'entiers) calcul de $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1}$ $\Longrightarrow \Theta(\log_2 n)$ multiplications (de matrices 2×2) (chacune implique 4 additions et 8 multiplications d'entiers)

Complexité des calculs de Fn

utilisation naïve de la récurrence $\implies \Theta(\varphi^n)$ additions (d'entiers) calcul itératif des n premières valeurs $\implies \Theta(n)$ additions (d'entiers) calcul de $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1}$ $\implies \Theta(\log_2 n)$ multiplications (de matrices 2×2) (chacune implique 4 additions et 8 multiplications d'entiers) comme $F_n \in \Theta(\varphi^n)$, les opérations arithmétiques se font sur des *entiers de* taille $\Theta(n)$ (c'est-à-dire de $\Theta(n)$ chiffres dans la base choisie)

 \implies additions en $\Theta(n)$ opérations élémentaires, multiplications en $O(n^2)$ (coût de l'algo naïf)

Complexité des calculs de F_n (et du produit d'entiers)

Conclusion provisoire

- le calcul itératif des n premières valeurs est en $\Theta(n^2)$
- le calcul de $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1}$ est en $O(n^2)$ (coût de l'algo basé sur l'algo de multiplication usuel)

Complexité des calculs de F_n (et du produit d'entiers)

Conclusion provisoire

- le calcul itératif des n premières valeurs est en $\Theta(n^2)$
- le calcul de $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1}$ est en $O(n^2)$ (coût de l'algo basé sur l'algo de multiplication usuel)

Or...

- les résultats des expérimentations montrent bien une complexité en Θ(n²) pour fibo_3
- mais fibo_4 semble nettement plus efficace que fibo_3

Complexité des calculs de F_n (et du produit d'entiers)

Conclusion provisoire

- le calcul itératif des n premières valeurs est en $\Theta(n^2)$
- le calcul de $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1}$ est en $O(n^2)$ (coût de l'algo basé sur l'algo de multiplication usuel)

Or...

- les résultats des expérimentations montrent bien une complexité en Θ(n²) pour fibo_3
- mais fibo_4 semble nettement plus efficace que fibo_3

Conclusion : l'algorithme de multiplication usuel *n'est pas optimal* (et ce n'est pas lui qui est utilisé par PYTHON)

(présentée sur des polynômes pour éviter les retenues)

Hypothèse : P, Q de degré (au plus) $2^k - 1$, $P^{(0)}$ et $P^{(1)}$ les polynômes de degré (au plus) $2^{k-1} - 1$ tels que :

$$P = P^{(0)} + P^{(1)} \cdot X^{2^{k-1}}$$

(présentée sur des polynômes pour éviter les retenues)

Hypothèse: P, Q de degré (au plus) $2^k - 1$, $P^{(0)}$ et $P^{(1)}$ les polynômes de degré (au plus) $2^{k-1} - 1$ tels que:

$$P = P^{(0)} + P^{(1)} \cdot X^{2^{k-1}}$$

Alors:

$$P \cdot Q = P^{(0)}Q^{(0)} + (P^{(0)}Q^{(1)} + P^{(1)}Q^{(0)})X^{2^{k-1}} + P^{(1)}Q^{(1)}X^{2^k}$$

(présentée sur des polynômes pour éviter les retenues)

Hypothèse : P, Q de degré (au plus) $2^k - 1$, $P^{(0)}$ et $P^{(1)}$ les polynômes de degré (au plus) $2^{k-1} - 1$ tels que :

$$P = P^{(0)} + P^{(1)} \cdot X^{2^{k-1}}$$

Alors:

$$P \cdot Q = P^{(0)}Q^{(0)} + (P^{(0)}Q^{(1)} + P^{(1)}Q^{(0)})X^{2^{k-1}} + P^{(1)}Q^{(1)}X^{2^k}$$

Ou encore:

$$\begin{split} P \cdot Q &= P^{(0)}Q^{(0)} + P^{(1)}Q^{(1)}X^{2^k} \\ &+ \left[(P^{(0)} + P^{(1)})(Q^{(0)} + Q^{(1)}) - P^{(0)}Q^{(0)} - P^{(1)}Q^{(1)} \right]X^{2^{k-1}} \end{split}$$

(présentée sur des polynômes pour éviter les retenues)

Hypothèse : P, Q de degré (au plus) $2^k - 1$, $P^{(0)}$ et $P^{(1)}$ les polynômes de degré (au plus) $2^{k-1} - 1$ tels que :

$$P = P^{(0)} + P^{(1)} \cdot X^{2^{k-1}}$$

Alors:

$$P \cdot Q = P^{(0)}Q^{(0)} + (P^{(0)}Q^{(1)} + P^{(1)}Q^{(0)})X^{2^{k-1}} + P^{(1)}Q^{(1)}X^{2^k}$$

Ou encore:

$$\begin{split} P \cdot Q &= P^{(0)}Q^{(0)} + P^{(1)}Q^{(1)}X^{2^k} \\ &+ \left[(P^{(0)} + P^{(1)})(Q^{(0)} + Q^{(1)}) - P^{(0)}Q^{(0)} - P^{(1)}Q^{(1)} \right]X^{2^{k-1}} \end{split}$$

 \bullet Polynômes de degré $2^k-1 \iff$ tableaux de longueur 2^k

×

Multiplication par la méthode de Karatsuba

Découpage en tableaux de longueur 2^{k-1}

Multiplication par la méthode de Karatsuba

Découpage en tableaux de longueur 2^{k-1}

• Trois appels *récursifs* sur des tableaux de longueur 2^{k-1}

• Trois appels *récursifs* sur des tableaux de longueur 2^{k-1}

• Regroupement des résultats des appels récursifs

• Regroupement des résultats des appels récursifs

• Regroupement des résultats des appels récursifs

$$\begin{bmatrix} 1 & 3 \end{bmatrix}$$
 $\begin{bmatrix} 5 & 7 \end{bmatrix}$ = $13 \cdot 100 + 57$

$$\times$$
 8 4 2 1 $= 84 \cdot 100 + 21$

$$\begin{bmatrix} 1 & 3 & + & 5 & 7 & ---- & 70 \\ 8 & 4 & + & 2 & 1 & ---- & 105 \end{bmatrix}$$

$$1092 \cdot 10000 + (7350 - 1092 - 1197) \cdot 100 + 1197$$

= 11 427 297

stratégie « diviser-pour- $r\acute{e}gner$ » :

- découper le problème en sous-problèmes de taille inférieure
- résoudre *récursivement* le ou les sous-problèmes
- résoudre le problème initial à l'aide des résultats des sous-problèmes

stratégie « diviser-pour-régner » :

- scinder chaque polynôme de longueur $n=2^k$ en deux polynômes de longueur $\frac{n}{2}=2^{k-1}$ \Longrightarrow $P^{(0)},P^{(1)},Q^{(0)},Q^{(1)}$
- calculer $P^{(0)} + P^{(1)}$ et $Q^{(0)} + Q^{(1)}$ (2 sommes de taille $\frac{n}{2}$)
- résoudre *récursivement* le ou les sous-problèmes
- résoudre le problème initial à l'aide des résultats des sous-problèmes

stratégie « diviser-pour-régner » :

- scinder chaque polynôme de longueur $n=2^k$ en deux polynômes de longueur $\frac{n}{2}=2^{k-1}$ \Longrightarrow $P^{(0)},P^{(1)},Q^{(0)},Q^{(1)}$
- calculer $P^{(0)} + P^{(1)}$ et $Q^{(0)} + Q^{(1)}$ (2 sommes de taille $\frac{n}{2}$)
- appeler récursivement karatsuba sur :
 - $(P^{(0)}, O^{(0)})$
 - $(P^{(1)}, O^{(1)})$
 - $(P^{(0)} + P^{(1)}, Q^{(0)} + Q^{(1)})$

- $\implies R^{(0)}$ (de taille n)
- $\implies R^{(1)}$ (de taille n)
- $\implies R^{(2)}$ (de taille n)

 résoudre le problème initial à l'aide des résultats des sous-problèmes

stratégie « diviser-pour-régner » :

- scinder chaque polynôme de longueur $n=2^k$ en deux polynômes de longueur $\frac{n}{2}=2^{k-1}$ \Longrightarrow $P^{(0)},P^{(1)},Q^{(0)},Q^{(1)}$
- calculer $P^{(0)} + P^{(1)}$ et $Q^{(0)} + Q^{(1)}$ (2 sommes de taille $\frac{n}{2}$)
- appeler récursivement karatsuba sur :
 - $(P^{(0)}, O^{(0)})$
 - $(P^{(1)}, O^{(1)})$
 - $(P^{(0)} + P^{(1)}, Q^{(0)} + Q^{(1)})$

- $\implies R^{(0)}$ (de taille n)
- $\implies R^{(1)}$ (de taille n)
- $\implies R^{(2)} \; (\text{de taille } n)$

• calculer $R^{(3)} = R^{(2)} - R^{(0)} - R^{(1)}$

- (2 sommes de taille n)
- calculer $R = R^{(0)} + R^{(3)} X^{\frac{n}{2}} + R^{(1)} X^n$
- (2 sommes de taille $\frac{n}{2}$)

Complexité : elle se décompose en 2 parties :

- ullet le coût des 3 appels récursifs sur des paramètres de taille $\frac{n}{2}$
- le coût des additions : Θ(n) additions élémentaires
 i.e. de coefficients (pour les polynômes) ou de chiffres (pour les entiers)

Complexité : elle se décompose en 2 parties :

- le coût des 3 appels récursifs sur des paramètres de taille $\frac{n}{2}$
- le coût des additions : Θ(n) additions élémentaires
 i.e. de coefficients (pour les polynômes) ou de chiffres (pour les entiers)

$$\implies$$
 $C(n) = 3 \cdot C(\frac{n}{2}) + \Theta(n)$

Multiplication par la méthode de Karatsuba

Complexité : elle se décompose en 2 parties :

- le coût des 3 appels récursifs sur des paramètres de taille $\frac{n}{2}$
- le coût des additions : Θ(n) additions élémentaires
 i.e. de coefficients (pour les polynômes) ou de chiffres (pour les entiers)

$$\implies$$
 $C(n) = 3 \cdot C(\frac{n}{2}) + \Theta(n)$

Hypothèse : on peut se contenter de compter les multiplications soit M(n) le nombre de multiplications élémentaires (de chiffres),

$$M(1) = 1$$
 et $M(2^k) = 3 \cdot M(2^{k-1})$

donc $M(2^k) = 3^k$, et plus généralement

$$M(n) = \Theta(3^{\log_2 n}) = \Theta(n^{\log_2 3})$$

avec $log_2 3 \approx 1.585$

Complexité : elle se décompose en 2 parties :

- le coût des 3 appels récursifs sur des paramètres de taille $\frac{n}{2}$
- le coût des additions : Θ(n) additions élémentaires
 i.e. de coefficients (pour les polynômes) ou de chiffres (pour les entiers)

$$\implies$$
 $C(n) = 3 \cdot C(\frac{n}{2}) + \Theta(n)$

Hypothèse : on peut se contenter de compter les multiplications soit M(n) le nombre de multiplications élémentaires (de chiffres),

$$M(1) = 1$$
 et $M(2^k) = 3 \cdot M(2^{k-1})$

donc $M(2^k) = 3^k$, et plus généralement

$$M(n) = \Theta(3^{\log_2 n}) = \Theta(n^{\log_2 3})$$

avec $\log_2 3 \approx 1.585$

Remarque : cela valide *a posteriori* le choix de négliger les additions, puisqu'on peut montrer qu'elles ont donc un coût cumulé en $O(n^{\log_2 3})$

CONCLUSION: COMPLEXITÉ DES CALCULS DE F_n

 $\begin{array}{ll} \text{utilisation na\"ive de la r\'ecurrence} & \Longrightarrow \Theta(\mathfrak{n}\phi^{\mathfrak{n}}) \\ \\ \text{calcul it\'eratif des n premi\`eres valeurs} & \Longrightarrow \Theta(\mathfrak{n}^2) \\ \\ \text{calcul de} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{\mathfrak{n}-1} & \Longrightarrow O(\mathfrak{n}^{\log_2 3}) \end{array}$

CONCLUSION: COMPLEXITÉ DES CALCULS DE Fn

utilisation naïve de la récurrence
$$\implies \Theta(n\phi^n)$$
 calcul itératif des n premières valeurs
$$\implies \Theta(n^2)$$
 calcul de
$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \implies O(n^{\log_2 3})$$

(la complexité du calcul de puissance par exponentiation rapide est du même ordre de grandeur que la multiplication utilisée; la preuve est la même que pour le cas de la multiplication naïve; donc $\Theta(n^{\log_2 3})$ par Karatsuba)

MULTIPLICATION : ÉTAT DE L'ART

Complexité pour deux entiers de n bits		
???	par itération d'additions	$\Theta(n \cdot 2^n)$
???	méthode scolaire version binaire utilisée dès l'Égypte ancienne en général, nécessite une numération de position	$\Theta(\mathfrak{n}^2)$
1960	conjecture de Kolmogorov : complexité intrin	. 3.
1962	algorithme de Karatsuba utilisé par Python pour les grands entiers	$\Theta(\mathfrak{n}^{\log_2 3})$
1971	algorithme de Schönhage et Strassen à base de « Transformée de Fourier Rapide » utilisé par la bibliothèque GMP pour $n>10000$	$\Theta(n \log n \log \log n)$
2019	algorithme de Harvey et van der Hoeven (mais seulement pour $n \geqslant 2^{1729^{12}}$)	$O(n \log n)$

Conjecture (1971) complexité intrinsèque du problème en $\Theta(n \log n)$