1. (13.12) Prove that if f is an unsigned measurable function and $\int f < +\infty$, then the set $E := \{x : f(x) > 0\}$ is σ -finite. (That is, E can be written as a disjoint union of measurable sets $E = \bigcup_{n=1}^{\infty} E_n$ with each $\mu(E_n) < +\infty$.)

Proof. Let $E_{\infty} = \{x \colon f(x) = +\infty\}$, which is measurable since f is measurable and E_{∞} is the preimage of the measurable set $\{+\infty\}$. It follows that $\mu(E_{\infty}) = 0$ since otherwise $\int f = +\infty$ (by bounding below), impossible. Let $E_{1/n} = \{x \colon f(x) > 1/n\}$, measurable again since they are the preimages of the measurable sets $(1/n, +\infty]$. Each of $\mu(E_{1/n})$ need to be finite, since otherwise $\int f = +\infty$ (by bounding below), impossible. Observe that $E_{\infty} \cup \bigcup_{n=1}^{\infty} E_{1/n} = E$. We disjointify the sets appearing in the union to form the union of pairwise disjoint sets $\bigcup_{j=0}^{\infty} F_j = E$. By the construction of the disjointification, each F_j has finite measure since each are formed out of taking a single set difference at a time (e.g. with $F_0 = E_{\infty}$ and $F_1 = E_1 \setminus E_{\infty}, \dots, F_n = E_{1/n} \setminus F_{n-1}$). Thus E may be written as a disjoint union of measurable sets, hence σ -finite as desired.

2. (13.18) Let f be an unsigned measurable function on the measure space (X, \mathcal{M}, μ) . Prove that the function $\nu \colon \mathcal{M} \to [0, \infty]$ defined by $\nu(E) = \int_E f \, \mathrm{d}\mu$ is a measure and, if g is an unsigned measurable function on X, then $\int g \, \mathrm{d}\nu = \int g f \, \mathrm{d}\mu$.

Proof. Of course, $\nu(\varnothing) = 0$ since $\int_{\varnothing} f \, d\mu = \int \mathbf{1}_{\varnothing} f \, d\mu = \int 0 \, d\mu = 0$. Then let (E_j) be a sequence of disjoint sets in \mathscr{M} , and let $E = \bigcup_j E_j$.

Observe that because the sets E_j are disjoint, $\mathbf{1}_E = \sum_j \mathbf{1}_{E_j}$ (as a formal sum): We have $\mathbf{1}_E(x) = 1$ if and only if $x \in E$, so x lies in exactly one E_k since the sets E_j are disjoint, hence $\sum_j \mathbf{1}_{E_j}(x) = 1$. Conversely if $\sum_j \mathbf{1}_{E_j}(x) = 1$ (note by disjointness this sum can never exceed 1), then by disjointness of the sets E_j we have $\mathbf{1}_{E_k}(x) = 1$ for some k, so $x \in E_k \subset E$ with $\mathbf{1}_E(x) = 1$. Similarly if $\mathbf{1}_E(x) = 0$ then $x \notin E_j$ for each j, so $\sum_j \mathbf{1}_{E_j}(x) = 0$. Conversely if $\sum_j \mathbf{1}_{E_j}(x) = 0$, then $\mathbf{1}_{E_j}(x) = 0$ for each j so that $x \notin E$ with $\mathbf{1}_E(x) = 0$.

Then with Tonelli's theorem (Corollary 10.6 in the notes) we have $\nu(E) = \int_E f \, d\mu = \int_X \mathbf{1}_E f \, d\mu = \int_X \sum_j \mathbf{1}_{E_j} f \, d\mu = \sum_j \int_X \mathbf{1}_{E_j} f \, d\mu = \sum_j \int_{E_j} f \, d\mu = \sum_j \nu(E_j)$ as desired. Hence ν is a measure.

Since g is an unsigned measurable function, we may approximate g from below by an increasing sequence of simple unsigned measurable functions s_n ; that is, there exists a sequence of simple unsigned measurable functions (s_n) increasing to g pointwise. By the monotone convergence theorem, $\lim_{n\to\infty} \int s_n \,\mathrm{d}\nu = \int g \,\mathrm{d}\nu$. But for any simple function $s = \sum_{j=0}^n c_j \mathbf{1}_{E_j}$ with $\{E_j\}$ a measurable partition of X, $c_j \geq 0$ and $0 \leq s \leq g$, we have $\int_X s \,\mathrm{d}\nu = \sum_{j=0}^n c_j \nu(E_j) = \sum_{j=0}^n c_j \int_{E_j} f \,\mathrm{d}\mu = \int_X \sum_{j=0}^n c_j \mathbf{1}_{E_j} f \,\mathrm{d}\mu = \int_X s f \,\mathrm{d}\mu$. Hence $\lim_{n\to\infty} \int s_n f \,\mathrm{d}\mu = \int g \,\mathrm{d}\nu$.

However, observe that $(s_n f)$ increases to gf pointwise so that by using the MCT again we have $\lim_{n\to\infty} \int s_n f \, d\mu = \int g \, d\mu = \int g \, d\nu$ as desired.

3. (13.23) Evaluate each of the following limits, and carefully justify your claims.

- (a) $\lim_{n\to\infty} \int_0^\infty \frac{\sin(x/n)}{(1+(x/n))^n} \mathrm{d}x = 0$. For each $n \geq 2$, the functions f_n given by $f_n(x) = \mathbf{1}_{[0,+\infty]}(x) \frac{\sin(x/n)}{(1+(x/n))^n}$ are in L^1 : observe that from $x \geq 1$ onwards $(|f_n|)$ is integrable from 0 to 1) we have $|f_n| \leq 1/(1+(x/n))^n$, which is integrable $(n \geq 2)$ from 1 to $+\infty$. Furthermore, f_n converges pointwise to the zero function, since $\sin(x/n)$ converges pointwise to the zero function and $(1+(x/n))^{-n}$ converges pointwise to $\exp(-x)$ (by some definition of e^x). We also have that each $|f_n|$ is bounded above by the 1 function: $|f_n| \leq 1/(1+(x/n))^n \leq 1$ for all $x \in [0,+\infty]$. By the DCT, it follows that the above limit is zero.
- (b) $\lim_{n\to\infty} \int_0^\infty \frac{1+nx^2}{(1+x^2)^n} dx = 0$. For each $n \geq 2$, the functions f_n given by $f_n(x) = \mathbf{1}_{[0,+\infty]}(x) \frac{1+nx^2}{(1+x^2)^n}$ are in L^1 : we have $|f_n| = f_n \leq \frac{n}{(1+x^2)^{n-1}}$, which fall off quickly enough (p-test). Furthermore, f_n converges almost everywhere to the zero function: for any fixed x > 0, we can make $f_n(x) \leq \frac{1}{x^{2n}} + \frac{nx^2}{(1+x^2)^n}$ arbitrarily small. At x = 0 the value of f_n is 1 for all n, but singletons have measure zero. The f_n are uniformly bounded above in n by the 1 function: observe that by the binomial theorem we have $\frac{1+nx^2}{(1+x^2)^n} = \frac{1+nx^2}{1+nx^2+O(x^4)} \leq \frac{1+nx^2}{1+nx^2} = 1$ for all $x \geq 0$. Thus by the DCT, the above limit is zero.
- (c) $\lim_{n\to\infty} \int_0^\infty \frac{n\sin(x/n)}{x(1+x^2)} dx = \pi/2$. The functions f_n given by $f_n(x) = \mathbf{1}_{[0,+\infty]}(x) \frac{n\sin(x/n)}{x(1+x^2)}$ are in L^1 since $|f_n| \le \frac{1}{1+x^2}$ (as $\sin(x) \le x$), which is integrable. The almost everywhere pointwise limit of the f_n is the function given by $\frac{1}{1+x^2}$, since $f_n(x) = \frac{1+O((x/n)^2)}{1+x^2}$ by Taylor series, which converges pointwise to $\frac{1}{1+x^2}$ as n tends to infinity as expected. Lastly, the f_n are uniformly bounded in n by $\frac{1}{1+x^2}$ by a previous estimate, so it follows by the DCT that the above limit is equal to $\int_0^\infty \frac{1}{1+x^2} = \pi/2$.
- (d) $\lim_{n\to\infty} \int_0^\infty \frac{n}{1+n^2x^2} \mathrm{d}x = \pi/2$. The DCT does not apply since there is no uniform bound in n for each of the integrands. But for each n, we have by u-substitution $\int_0^\infty \frac{n}{1+n^2x^2} \mathrm{d}x = \int_0^\infty \frac{1}{1+x^2} \, \mathrm{d}x = \pi/2$. Hence the sequence $\left(\int_0^\infty \frac{n}{1+n^2x^2} \mathrm{d}x\right)$ is a constant sequence with limit $\pi/2$.