Condensé de la terminale Physique

Notations non vues en cours

 $\begin{array}{c|c} := & \text{ \'egal par d\'efinition} \\ \hline [x] & \text{ Arrondir } x \text{ \`a l'entier sup\'erieur. } (\lceil 5.1 \rceil = 6) \\ \hline 1.5 & \text{ S\'eparateur }, \\ \hline x \cdot y & \text{ Multiplication } \times \\ \hline a \propto b & a \text{ proportionnel \`a } b \\ \hline \end{array}$

Notations inventées

Pyramides de formules

$$A$$

$$A$$

$$B \stackrel{-}{\leftarrow} + \stackrel{-}{\rightharpoonup} C$$

$$\iff A = B + C \quad B = A - C \quad C = A - B$$

Contents

0 Outils

0.1 La fonction log

$$\log(10^x) = x \quad \text{(r\'eciproque de log)}$$

$$\log(a \cdot b) = \log(a) + \log(b)$$

$$\log(\frac{a}{b}) = \log(a) - \log(b)$$

$$\log(a^b) = b \cdot \log(a)$$

0.2 L'incertitude $a \pm b$

On prend la même unité de précision pour b que pour a:

$$89,79 \pm 4,5 \,\mu\text{m} \rightarrow 90 \pm 5 \,\mu\text{m}$$

1 Ondes

1.1 Définitions

Onde Phénomène de propagation d'une perturbation sans transport de matière

Onde mécanique Onde qui se propage dans un milieu physique

Onde électromagnétique Onde du spectre électromagnétique pouvant se propager dans le vide

Spectre d'émission Spectre représentant des ondes électromagnétiques émises

Spectre continu Spectre composé de plages de fréquences

Spectre à raies Spectre composé de une ou plusieurs fréquences discrètes

Onde transversale Propagation $\rightarrow \& \perp$ déformation

Onde longitudinale Propagation \rightarrow

Front d'onde Point "devant" la déformation

Onde progressive Onde qui avance

1.2 Les ondes sonores

Type d'onde mécanique

1.2.1 Unité de mesure: Le décibel dB

$$L = 10 \log \left(\frac{I}{I_0}\right)$$

$$I = I_0 \cdot 10^{L/10}$$

$$2I = L + 3$$

 $I_0 = [1 \times 10^{-12} \, \mathrm{W \, m^{-2}}]$ Seuil d'audibilité moyen des humains à 1 kHz

L [dB] Niveau d'intensité sonore

I [W m⁻²] Intensité sonore

1.3 Domaines d'ondes électromagnétique

Domaine	γ	X	UV	Visible	IR	μ -ondes	Radio
$\lambda <$	10^{-11}	10^{-8}	$600 \cdot 10^{-6}$	$800 \cdot 10^{-6}$	10^{-3}	10^{-1}	$+\infty$
Ex. émetteur		Radios médicales	Soleil		Télécommandes		

2 Transferts d'énergie thermique & mécanique

Fil 1 \rangle Séq 3 \rangle Part. A

2.1 Définitions

Convection Transfert thermique entre fluides

Conduction Transfert thermique par contact physique

Rayonnement Transfert thermique par émission d'ondes électromagnétiques

Conducteur Matériau favorisant les transferts par conduction

Isolant Matériau limitant les transferts par conduction

2.2 Flux thermique Φ

 Φ [W] Flux

Q [J] Transfert thermique

au [s] Durée du transfert

2.3 Résistance thermique $R_{\rm th}$

$$\begin{array}{cccc} \Delta T & e \\ & & \wedge \\ & & - \\ R_{\rm th} \stackrel{\frown}{\angle} \times \stackrel{\frown}{\triangle} \Phi & R_{\rm th} \stackrel{\frown}{\angle} \times \stackrel{\frown}{\triangle} \lambda s \end{array}$$

 $R_{\rm th}$ [KW⁻¹] Résistance thermique

 ΔT [K ou °C] Écart de température entre les deux faces de la paroi

 Φ [W] Flux

e [m] épaisseur

s [m²] surface

 λ [W m⁻¹ K⁻¹] Conductivité thermique

2.4 Énergie interne U

Somme des énergies microscopiques de toutes les particules

$$\Delta U = m \cdot c \cdot \Delta T$$

 ΔU [J] Variation d'énergie interne

m [kg] Masse

c [J kg⁻¹ K⁻¹] Capacité thermique massique du solide

 ΔT [K ou °C] Variation de température

2.5 Bilan énergétique

2.5.1 Méthode

- 1. Définir le système macroscopique étudié Des fois mis entre $\{\}$ dans l'énoncé
- 2. Repérer les modes de transfert

 $\begin{array}{ll} \textbf{Thermique} & \text{chaleur Q} \\ \textbf{M\'{e}canique} & \text{travail W} \end{array}$

3. Affecter un signe aux transferts

 ${f E}$ reçue + ${f E}$ cédée -

2.5.2 Example

Travail mécanique reçuW>0

Travail mécanique cédé W<0

Transfert thermique reçuQ>0

Transfert thermique cédé $Q<0 \label{eq:Q}$

2.6 Différentes énergies

2.7 Lois des circuits en série & en dérivation

3 Transferts d'énergie quantique

Fil 1 \rangle Séq 3 \rangle Part. B

3.1 Définitions

Quantifié ne peut prendre que des valeurs discrètes déterminées

État fondamental Niveau d'énergie le plus bas (E_0)

Atome excité dans un niveau d'énergie autre que l'état fondamental

Atome stable dans l'état fondamental

Transition quantique Passage d'un état à un autre

3.2 Propriétés d'un laser

Monochromatique Une seule couleur

Directif Faisceau lumineux dans une seule direction

3.3 Au niveau atomique

3.3.1 Diagramme d'énergie

3.3.2 Calcul de l'énergie d'un transfert

$$h \stackrel{E}{\stackrel{-}{\rightharpoonup}} \nu = \frac{c}{\lambda}$$

 \mathbf{h} [$\approx 6 \times 10^{-34} \, \mathrm{J \, s^{-1}}$] Constante de planck

 \mathbf{c} [$\approx 3 \times 10^8 \, \mathrm{m \, s^{-1}}$] Célérité de la lumière dans le vide

 λ [m] Longueur d'onde

3.3.3 Absorption

Devient excité

Photon $1 \text{ (avant)} \longrightarrow 0 \text{ (après)}$

Moment quand le photon touche l'atome

3.3.4 Émission spontanée

Devient stable

Photon $0 \longrightarrow 1$

Moment aléatoire

Trajectoire aléatoire

3.3.5 Émission stimulée

Devient stable

Photon $1 \longrightarrow 2$

Moment

• L'atome est déjà stimulé avant la collision

 $\bullet\,$ Un photon touche l'atome

Trajectoire celle du photon incident

3.4 Au niveau moléculaire

Au niveau moléculaire il y a des **sous-niveaux vibratoires**, car les atomes vibrent les uns par rapport aux autres.

3.5 Domaines spectraux des transitions

Nature de l'énergie	Énergie absorbée [eV]	Domaine spectral associé
Électronique	$\in [1.5; 10]$	Visible, ultraviolet
Vibratoire	$\in [0.003; 1.5]$	Infrarouge

4 Réaction acido-basiques

4.1 Définitions

Acide Espèce chimique capable de céder au moins un proton H⁺ au cours d'une réaction.

Base Espèce chimique capable de capter au moins un proton H⁺ au cours d'une réaction.

Acide ou base fort(e) Acide/base qui réagit totalement avec l'eau

Solution tampon Solution qui compense les changements de pH, son pH ne peut varier que très peu.

Exothermique Qui dégage de la chaleur

Endothermique Qui absorbe de la chaleur (Endotre thermes (haha), qui "dégage du froid")

4.2 Le potentiel hydrogène pH

4.2.1 Papier pH

Déposer une goutte du produit sur la papier pH (ne pas tremper le papier dans la solution)

Précision ± 1

4.2.2 pH-mètre

Étalonner avec des solutions tampons

Précision $\pm 0, 1$

4.2.3 Indicateur coloré

Solutions avec zones de pH associées à couleurs. Ne marche que si la solution à mesurer est incolore ou blanche

- 1. Verser indicateur dans solution
- 2. Couleur de solution inconnue \implies encadrement de la valeur

Précision Dépend de la solution. Pas de valeurs exactes.

4.2.4 Calcul

Quand on fait un calcul avec cette grandeur, la précision maximale est de un seul chiffre après la virgule

[X] désigne la concentration molaire de l'ion X en mol L^{-1}

4.3 Réactions acido-basique

Sauf en présence d'acide/base fort(e)s, la réaction n'est pas totale, c'est un équilibre. Soit HA un acide quelconque.

$$HA \rightleftharpoons A^- + H^+$$
Base conjuguée

Mélange avec de l'eau:

$$HA_{(aq)} + H_2O_{(1)} \rightleftharpoons A_{(aq)}^- + H_3O_{(aq)}^+$$

Avec un acide fort, la réaction est complète:

$$HA \longrightarrow A^- + H^+$$

4.4 Produit ionique de l'eau K_e

Pour toutes les solutions:

$$K_e = [H_3O^+]_{\text{\'eq}} \cdot [HO^-]_{\text{\'eq}} = 10^{14}$$
 (à 25°C)

4.5 Constantes d'acidité pK_a et K_a

$$K_a = \frac{[\mathbf{A}^-]_{\text{\'eq}} \cdot [\mathbf{H}_3 \mathbf{O}^+]_{\text{\'eq}}}{[\mathbf{A}\mathbf{H}]_{\text{\'eq}}}$$
$$\mathbf{p}K_a = -\log K_a$$

 $pK_a \in [0; 14]$ pour les couples acide faible/base faible

4.6 Preuve de pH = $pK_a + \log \frac{[\mathbf{A}]_{\acute{e}q}}{[\mathbf{H}\mathbf{A}]_{\acute{e}q}}$

$$-\log pK_a = -\log \left(\frac{[\mathbf{A}^-]_{\acute{\mathbf{e}\mathbf{q}}} \cdot [\mathbf{H}_3\mathbf{O}^+]_{\acute{\mathbf{e}\mathbf{q}}}}{[\mathbf{H}\mathbf{A}]_{\acute{\mathbf{e}\mathbf{q}}}}\right)$$

$$\log \left(\frac{a}{b}\right) = \log(b) - \log(a)$$

$$pK_a = -\log \frac{[\mathbf{A}^-]_{\acute{\mathbf{e}\mathbf{q}}}}{[\mathbf{H}\mathbf{A}]_{\acute{\mathbf{e}\mathbf{q}}}} - \log[\mathbf{H}_3\mathbf{O}^+]_{\acute{\mathbf{e}\mathbf{q}}}$$

$$= -\log \frac{[\mathbf{A}^-]_{\acute{\mathbf{e}\mathbf{q}}}}{[\mathbf{H}\mathbf{A}]_{\acute{\mathbf{e}\mathbf{q}}}} + p\mathbf{H}$$

$$p\mathbf{H} = pK_a + \log \frac{[\mathbf{A}^-]_{\acute{\mathbf{e}\mathbf{q}}}}{[\mathbf{H}\mathbf{A}]_{\acute{\mathbf{e}\mathbf{q}}}}$$

5 Vérification de concentrations

5.1 Loi de Kohlrausch: la conductivité σ

5.1.1 Pour un ion

$$c \stackrel{\sigma}{\stackrel{}{\stackrel{}{\nearrow}}} c \stackrel{}{\stackrel{}{\nearrow}} c \stackrel{}{\stackrel{}{\nearrow}} c \stackrel{}{\nearrow} c \stackrel{}{\nearrow$$

 σ [S m⁻¹] Conductivité

c [mol m⁻³] Concentration molaire

 λ [S m⁻² mol⁻¹] Conductivité électrique molaire

5.1.2 Pour une molécule

Calcul pour une molécule composés des ions X

$$\sigma_{X_1 X_2 X_3 \dots X_j} = \sum_{i=1}^j [X_i] \lambda_{X_i}$$

5.1.3 Example: conductivité de HO⁻Na⁺

$$\begin{split} \sigma_{\mathrm{HO^-Na^+}} &= [\mathrm{HO^-}] \lambda_{\mathrm{HO^-}} + [\mathrm{Na^+}] \lambda_{\mathrm{Na^+}} \\ &= 2 \cdot 19.8 \cdot 10^{-3} + 2 \cdot 5.0 \cdot 10^{-3} \\ &= 5.0 \times 10^{-2} \, \mathrm{S \, m^{-1}} \end{split}$$