LECTURE NOTES

ANDREW

10/31

Cell Proliferation and Cancer

The following setup is the motivation for a later theorem on Hitting Probabilities. Mutations can affect the rates of cell proliferation (splitting) and death. Suppose we counted the number of occurences of a particular mutation in each of many tissue samples. We wonder if the distribution of mutation numbers is consistent with a <u>driver mutation</u>, i.e. one with a higher than normal rate of proliferation † .

Model

Let X_t be the number of mutated cells at time t, so $X_t \in \mathbb{N}_{\geq 0}$, and assume that $X_0 = 1$ (so we start with one mutated cell).

Assume that each cell divides at rate λ and dies at rate μ . This means that

$$X_t \to X_t + 1$$
 at rate λX_t
 $X_t \to X_t - 1$ at rate μX_t .

Questions:

- (1) What is the probability that the mutation "grows?" That is, for some large N, what is $\mathbb{P}\{X_t = N \text{ before } X_t \text{ hits } 0\} = ?$
- (2) If the mutation is not a driver but present due to an ongoing mutation of rate a, what is the expected distribution of the number of mutations per tissue sample?

Hitting Probabilities

To answer question 1 we need a bit more theory. Suppose $(X_t)_{t\geq 0}$ is a Continuous Time Markov Chain with generator G on a state space \mathcal{X} . For any subset $A\subset\mathcal{X}$, we define

$$\tau_A = \inf\{t \ge 0 \mid X_t \in A\},\,$$

which is the first time that the Markov chain lands in A. If $A = \{x\}$ we just write τ_x , which is the first time the Markov chain hits x. We now state the theorem:

0.1 Theorem (Harmonic Functions) Suppose that $A, B \subset X$ are disjoint subsets with the property that

$$|\{\tau_{A\cup B}<\infty\}|=1.$$

Date: 31 October 2018.

[†] Here, normal would mean that the rate of cell proliferation equals the rate of cell death.

For $x \in \mathcal{X}$ we define

$$h(x) = |^{x} \{ \tau_A < \tau_B \} := |\{ \tau_A < \tau_B \mid X_0 = x \}.$$

Then the function h is the unique function satisfying the following two conditions:

(1)
$$h(x) = \begin{cases} 1 & \text{for } x \in A \\ 0 & \text{for } x \in B \end{cases}$$

(2) $Gh(x) = 0 \text{ for } x \notin A \cup B$

To prove the theorem we need two lemmas.

0.2 Lemma Let T_1, \ldots, T_n be independent random variables with $T_i \sim \text{Exp}(\lambda_k)$. Let $T := \min\{T_1, \ldots, T_n\}$. Then $T \sim \text{Exp}(\sum_{k=1}^n \lambda_k)$ and

$$\{T_k = T\} = \frac{\lambda_k}{\lambda_1 + \dots + \lambda_n}.$$

Proof of Lemma 1.

$$|\{T>t\}| = |\{T_k>t \quad \forall k\}|$$

$$= \prod_{k=1}^{n} |\{T_k>t\}|$$
 (by independence)
$$= \prod_{k=1}^{n} e^{-\lambda_k t}$$

$$= e^{-t\sum_k \lambda_k}$$

which establishes the first claim. For the second claim, first note that

so train. For the second claim, first note that
$$|\{T_k \in dt, T_j > t \quad \text{for } j \neq k\}| = \lambda_k e^{-\lambda_k t} \prod_{j \neq k} e^{-\lambda_j t}$$

$$= \lambda_k e^{-t \sum_j \lambda_j},$$

so we now integrate over t to get

$$\{T_k = T\} = \lambda_k \int e^{-t \sum_j \lambda_j} dt = \frac{\lambda_k}{\lambda_1 + \dots + \lambda_n}.$$