Elementos de Sistema - Prova 01

SIMULADO

	/ 36	/ 00
Pontos de:	Н₩	SW
Nome completo:		

Instruções:

- 1. A avaliação tem duração total de 100 minutos.
- 2. Resposta final a caneta! (para poder ter revisão)

Dicas:

Lei da Identidade	$ \begin{array}{c} A = A \\ \bar{A} = \bar{A} \end{array} $
Lei da Comutatividade	A = A $A B = B A$
Lei da Associatividade	A + B = B + A $A (B C) = A B C$
Lei da Associatividade	A + (B + C) = A + B + C $A + (B + C) = A + B + C$
Lei da Idempotência	A A = A
	A + A = A
Lei do Complemento Duplo	$ar{A}=A$
Lei da Complementariedade	A A = 0
	$A + \bar{A} = 1$
Lei da Intersecção	A 1 = A
	A 0 = 0
Lei da União	A + 1 = 1
	A + 0 = A
Lei da Distributividade	A (B + C) = (A B) + (A C)
	A + (B C) = (A + B) (A + C)
Teorema de DeMorgan	$\overline{AB} = \overline{A} + \overline{B}$
	$\overline{A+B} = \bar{A}\bar{B}$

Questao 1 (4 HW)

a) (2.0 HW) Simplifique a equação a seguir (algebricamente)

b) (2.0 HW) Simplifique a equação a via mapa de Karnaugh

$$\bar{A}.\bar{B}.\bar{C} + \bar{A}.\bar{B}.\bar{C} + A.\bar{B}.\bar{C}$$

(fazer no papel)

Questao 2 (6 HW)

Arquivo	src/rtl/Questao2.vhd		
Teste	Sim	./testeAV1.py	tst/config.txt

a. (2.0 HW) Encontre a equação que descreve o circuito anterior (fazer no papel)

c. (2.0 HW) Gere o RTL e salve na pasta da avaliação com o nome: **Questao2-rtl.png** (fazer no compuador)

Questão 3 (6 HW)

Enade 2014

E	N	A	D	E	2	01	4
EXAME	NACIO	NAL DI	E DESEN	ИРЕ НО	DOS E	ESTUD/	NTES

QUESTÃO DISCURSIVA 5

Um processo monitora três parâmetros para controle de qualidade: A, B, C. Cada parâmetro possui um valor na decisão final da qualidade. A existência do parâmetro A pesa 30% na decisão final, enquanto os parâmetros B e C pesam 30% e 40%, respectivamente. O grau de aprovação do processo é dado pela soma dos percentuais desses três parâmetros. O produto gerado pelo processo é considerado aprovado, caso o grau de qualidade seja superior ou igual a 60%, e reprovado, se o grau de qualidade for inferior ou igual a 30%. Caso o grau de qualidade esteja entre 30% e 60%, a decisão de aprovação ou reprovação é indiferente. Por exemplo, se um produto apresentar os parâmetros A e B, terá grau de qualidade de 30%+30% = 60%, levando à sua aprovação.

Com base na situação descrita, projete um circuito lógico com o menor número possível de portas lógicas, para determinar a aprovação ou não do produto de acordo com a presença de seus parâmetros. As entradas do circuito serão os sinais A, B, C, e a saída será um sinal Z. Para atingir esse objetivo, faça o que se pede nos itens a seguir.

(fazer no papel)

con explicaçõi a) (2 HW) Monte uma tabela verdade do sistema com a formação ABC.

b) (4 HW) Desenhe o circuito final otimizado utilizando portas lógicas.

https://www.youtube.com/watch?v=qVORNn76G0Q

Questao 5 (16 HW, 0 SW)

Arquivo	src/rtl/Questao5.vhd			
Teste	Simulação	./testeAV1.py	tst/config.txt	

A Figura a seguir representa um circuito multiplicador de números inteiros **positivos** (**unsigned**) que recebe dois números binários de dois bits: $\mathbf{x_1x_0}$ e $\mathbf{y_1y_0}$ e gera um número binário de quatro bits de saída: $\mathbf{z_3z_2z_1z_0}$ igual ao produto aritmético dos dois números de entrada.

a) (10 HW) Encontre a equação que realiza a multiplicação entre x e y e resulta em z:

(fazer no papel) Ut to e to

b) (6 HW) Implemente o multiplicador em .vhdl e teste o mesmo

(fazer no PC)

Questão 6 (4 HW, 0 SW)

(valores sempre codificados em complemento de 2 e 8 bits de largura)

(fazer no papel)

