MATH 2031 Introduction to Real Analysis

May 9, 2013

Tutorial Note 20

Sequences and Series of Functions (Con't)

(I) Definition (Pointwise Convergence):

Let E be a set. Then a sequence of functions $S_n: E \to \mathbb{R}$ is said to converge pointwise on E to a function $S: E \to \mathbb{R}$

if $\forall x \in E$, $\lim_{n \to \infty} S_n(x) = S(x)$.

In this case, we say that S(x) is the pointwise limit of the sequence $S_n(x)$.

(II) Definition (Pointwise Convergence of series of functions):

Given functions $f_k: E \to \mathbb{R}$, the series $\sum_{k=1}^{\infty} f_k$ is said to converge pointwise on E to a function $S: E \to \mathbb{R}$

if
$$\forall x \in E$$
, $\sum_{k=1}^{\infty} f_k = \lim_{n \to \infty} (f_1(x) + f_2(x) + \dots + f_n(x)) = S(x)$, i.e. $\underbrace{S_n(x) = f_1(x) + f_2(x) + \dots + f_n(x)}_{\text{sequence of partial sums}}$ converges pointwise on E to $S(x)$.

(III) Power series:

(i) **Definition:** A power series is a function of the form $\sum_{k=0}^{\infty} a_k (x-c)^k$,

where
$$c, a_0, a_1, \cdots$$
 are numbers and c is called the center of the power series.
$$E = \left\{ x \in \mathbb{R} \middle| \sum_{k=0}^{\infty} a_k (x-c)^k \text{ converges} \right\} \text{ is the domain of convergence of the power series.}$$

(ii) Domain theorem for Power series

The domain of a power series $f(x) = \sum_{k=0}^{\infty} a_k (x-c)^k$ is a non-empty interval with midpoint c.

The half-length of the interval is the radius of convergence $R = \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|a_k|}}$.

Remark:

Both of the endpoints may or may not be in the domain.

(iii) Definition (Taylor series of functions):

If a function f(x) is infinitely differentiable at c, then the Taylor series of f about c is the series

1

$$\sum_{k=0}^{\infty} a_k (x-c)^k = \sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x-c)^k.$$

(iv) Taylor series theorem

If $f:(a,b)\to\mathbb{R}$ is infinitely differentiable, $c\in(a,b)$ and \exists constants $M,\alpha>0$ such that $|f^{(n)}(x)|\leq\alpha M^n$ for every $x\in(a,b)$ and $n\in\mathbb{N}$,

then
$$\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x-c)^k$$
 converges pointwise on (a,b) to $f(x)$.

(v) Taylor Formula with Integral Remainder

Let f be n-times differentiable on (a,b). Then for every $x,c\in(a,b)$, if $f^{(n)}$ is integrable on the closed interval with endpoints x and c, then

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(c)}{k!} (x - c)^k + R_n(x),$$

where
$$R_n(x) = \frac{1}{(n-1)!} \int_c^x (x-c)^{n-1} f^{(n)}(t) dt$$
.

(vi) Mean Value Theorem for Integral

Let f be continuous on [a, b] and $g \ge 0$ be integrable on [a, b]. Then $\exists x_0 \in [a, b]$ such that

$$\int_{a}^{b} f(x)g(x)dx = f(x_0) \int_{a}^{b} g(x)dx.$$

(vii) Taylor Formula with Cauchy Form Remainder

Let f be n-times differentiable on (a,b). For every $x,c\in(a,b)$, if $f^{(n)}$ is continuous (hence, integrable) on the closed interval with x, c as endpoints, then there exists x_n between x and c such that

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(c)}{k!} (x - c)^k + R_n(x)$$

where
$$R_n(x) = \frac{1}{(n-1)!} \int_c^x (x-c)^{n-1} f^{(n)}(t) dt = \underbrace{\frac{(x-c)(x-x_n)^{n-1} f^{(n)}(x_n)}{(n-1)!}}_{\text{Cauchy form remainder}}$$

Problem 1 Define $S_n:[0,1]\to\mathbb{R}$ by $S_n(x)=x^n$, find the pointwise limit of S_n .

Solution:

For $0 \le x < 1$, $\lim_{n \to \infty} x^n = 0$ and for x = 1, $\lim_{n \to \infty} x^n = 1$, so the pointwise limit of S_n is

$$S(x) = \begin{cases} 0 & 0 \le x < 1\\ 1 & x = 1 \end{cases}$$

Note that even though every S_n is continuous, the pointwise limit S may not necessarily be continuous. When you learn the concept of uniform continuity later, this will serve as an example of a sequence of functions which converges pointwise but not uniformly.

Problem 2 Find the domain of convergence of the series of functions $\sum_{k=0}^{\infty} \frac{x^k}{\ln k}$.

Solution:
$$\sum_{k=2}^{\infty} \frac{x^k}{\ln k} \text{ converges only if } \lim_{k \to \infty} \left| \frac{x^{k+1}}{\ln (k+1)} \frac{\ln k}{x^k} \right| < 1. \text{ Then for } |x| < 1,$$

$$\lim_{k \to \infty} \left| \frac{x^{k+1}}{\ln(k+1)} \frac{\ln k}{x^k} \right| = \lim_{k \to \infty} \frac{|x| \ln k}{\ln(k+1)}$$
$$= \lim_{k \to \infty} \frac{|x|(k+1)}{k}$$
$$= |x| < 1$$

We also need to check the boundary points $x = \pm 1$.

For x = 1 $\sum_{k=2}^{\infty} \frac{1}{\ln k} \ge \sum_{k=2}^{\infty} \frac{1}{k}$ which diverges by *p*-test and comparison test.

For x = -1 Since $\sum_{k=0}^{\infty} \frac{(-1)^k}{\ln k}$ is an alternating series and $\frac{1}{\ln k}$ decreases to zero as $k \to \infty$, by alternating series

Thus, the domain of convergence of $\sum_{k=0}^{\infty} \frac{x^k}{\ln k}$ is [-1,1).