

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AD-E401 205

CONTRACTOR REPORT ARLCD-CR-84020

GEMSS EXTENDED RANGE TRIPLINE SENSOR (ERTS) PRODUCT IMPROVEMENT PROGRAM (PIP)

M.B. WEIDENBACH B.J. AMUNDSON R.A. JOHNSON

HONEYWELL INC.
DEFENSE SYSTEMS DIVISION
5640 SMETANA DRIVE
MINNETONKA, MN 55343

JULY 1984

AD-A145 030

U.S. ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER

LARGE CALIBER WEAPON SYSTEMS LABORATORY

DOVER, NEW JERSEY

Approved for public release; distribution unlimited.

JIR FILE CORY

84 08 20 158

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy this report when no longer needed. Do not return to the originator.

Contents

		Page
Introduc	tion .	1
Technica	al Report	3
Chang	es Incorporated	3
Data I	Review	3
Bobbir	n Analysis	8
Quality	Report .	10
First A	Article Acceptance Tests	10
Lot Ac	ceptance Tests	11
Special '	Tests .	12
Leaka	ge Test	12
Langli	e Test	12
Appendi	xes .	
A	First Article Test Summary Report and Lot Acceptance Test Results	13
В	Engineering Test Report OEXM 32211	31
Distribu	tion List	44

INTRODUCTION

The extended range tripline sensor is used in the antipersonnel mines of the GEMSS, GATOR and MOPMS systems. The tripline is deployed when the bobbin on which it is wound is spring ejected from the sensor body. The bobbin is mechanically locked to the sensor body by a release mechanism which is designed to be activated by gas pressure above a threshold level. Activation of the release mechanism unlocks the bobbin. A pressure cartridge is used to supply the required threshold level of gas pressure. The deployed tripline is the mine's detection element; however, the sensitivity of this detection is dependent on how well the force of target/tripline interaction is transmitted through the tripline to a 0.0040-inch breakwire and the force needed to break this wire. The mine's electronic assembly monitors the continuity of this wire and initiates the self-destruct mode when wire continuity is lost.

In the subzero climate environments of the GEMSS DTII and OTII tests, the deployment of tripline from sensor was adequate but not 100 percent. Analysis of the hardware and data identified the reasons for this non-deployment as: the rigidity of the sensor's diaphragm and/or the lower output of the pressure cartridge at cold temperatures. The current material used for the diaphragm is Roylar E-82 and its flexibility is highly temperature dependent at cold temperatures; for example, its flexibility at the system's required low temperature operating limit of $-35^{\circ}F$ is approximately 52 percent of its flexibility at $0^{\circ}F$. Also, pressure cartridge closed bomb tests indicate that the average peak pressure at $-35^{\circ}F$ is approximately 65 percent of the average peak pressure at the system's high temperature operating limit of $125^{\circ}F$. The need for replacement is urgent because Roylar E-82 is no longer manufactured. It will be replaced by Estane 58880.

The detection sensitivity of the tripline/breakwire interface meets the requirements of the sensor specification; however, tactical field test data indicated that the strength of the tripline should be increased and that of the breakwire decreased. In the ideal detection situation, the minimum (1.8 lb) break strength of the tripline and the maximum (0.9 lb) break strength of the breakwire guarantee a detection if the tension force in the tripline exceeds 0.9 lb. In the tactical situation, it is often the case that between the source of the tension in the tripline and the breakwire, the tripline is in contact with other objects (vegetation, etc.). This means that the tension in the tripline at the source may exceed the minimum 1.8 lb needed to break the tripline before the tension force at the breakwire is sufficient to break the breakwire. An ideal tripline would be one that could not be broken. Another tactical situation that sometimes occurs is that the target detects the tension in

the tripline before it induces a tension of 0.9 lb, the maximum breakwire strength. Detection sensitivity for this last case would be improved if the breakwire had a maximum break strength less than the current 0.9 lb.

One of the principal objectives of this product improvement program was to incorporate the following changes into the extended range tripline (ERTS) technical data package and to demonstrate/characterize each for adequacy:

- a. Alternate diaphragm material which is more flexible at cold temperature. (Original material in TDP is also no longer available.)
 - b. Weaker breakwire for increased sensitivity.
- c. Stronger tripline thread to increase probability of breakwire opening before tripline breaks when pulled.

A second objective was to manufacture and deliver 4,500 ERTS with above modifications to Aerojet Corp., who had a parallel PIP contract to include improved sensors plus other modifications in the M74 mine.

The third objective was to provide a quantity of lithium cells to both Aerojet Corp. and Burroughs Corp. as government furnished material (GFM) to be used on PIP contracts for the M74 and M75 mines, respectively. The lithium cell is the power source for the GEMSS M74 and M75 mines and will be required in many of the mines manufactured under the GEMSS PIP program. The technical data package (TDP) for the lithium cell is a proven TDP; therefore, with respect to the lithium cell, Contract DAAK10-83-C-0049 was simply the vehicle to procure lithium cells and deliver them as GFM to the appropriate PIP contractors.

TECHNICAL REPORT

The principal objectives of this contract were to incorporate three changes into the Extended Range Tripline Sensor (ERTS), to test the effectiveness of these changes, and to ship 4500 ERTS to a specified contractor. An additional objective was to ship 2250 standard lithium batteries to the same contractor.

Changes Incorporated

The three changes incorporated into the ERTS in this contract were:

- 1. A stronger tripline (2.5 lb minimum break strength versus the original 1.8 lb minimum break strength).
- 2. A smaller breakwire (0.0035-inch diameter versus the original 0.0040 inch diameter).
- 3. A different diaphragm material (B.F. Goodrich Estane 58880 versus the original Universal E-82).

Data Review

The initial effort on this contract consisted of a review of the technical data (drawings and specification) to determine changes necessary to make them compatible with the three changes specified above. Results of this review were submitted in a letter from J.H. Lundquist, dated 13 April 1983, Subject: Contract DAAK10-83-C-0049, GEMSS ERTS PIP, CRDL Requirements.

Drawing Changes

The drawing changes necessary to reflect the three changes and to correct minor errors are presented in Table 1.

All NEXT ASSEMBLY and USED ON boxes should be changed as necessary to assure that the drawings are identified with the proper mine.

Table 1. Drawing change summary

Drawing	Change required	Comments
9298576 (Wire, Magnet, Electrical)	In Note 1B, "#38 AWG" should be "#39 AWG". In Note 1C, "0.004 ± 0.0001 ROUND" should be "0.0035 ± 0.0001 ROUND".	This is an ADAM drawing. If this change is made the drawing cannot be used for ADAM. The drawing can either be changed to a tabulated drawing or a new drawing can be made.
9292972 (Tripline Sensor Extended Range)	In Note 3, "LOCATED 32 FEET" should be "LOCATED 29 FEET" and "0.3 TO 0.9 LB" should be "0.22 TO 0.82 LB".	See paragraphs entitled "Deployment Barrier Distance" and "New Minimum and Maximum Limits on Breakwire Strength" on pages 8 and 9, respectively.
9292991 (Release Mechanism Assembly)	In Zone C5 change "RING, LOCK - 9298586" to "RING, BALL LOCK - 9298586".	
9292998 (Diaphragm Assembly)	In Zone CD-3 change "DIAPHRAGM - 9298598-2" to "DIAPHRAGM - 9298598-1".	
9298592 (Thread, Polyester)	In Note 1A, "234 \pm 8 DECITEX" should be "320 \pm 8 DECITEX". In Note 1B, "1.8 LB MIN" should be "2.5 LB MIN".	This is an ADAM drawing. If this change is made it cannot be used for ADAM. The drawing can either be changed to a tabulated drawing or a new drawing can be made.
9298598 (Diaphragm)	In the table at the bottom of the drawing add "9292998" in the NEXT ASSEMBLY box for 9298598-1.	
9292982 (Bobbin Assembly)	In Note 2, "46 ± 3 FEET" should be "34 ± 2 FEET". In Note 7, "750 REVOLUTIONS" should be "580 REVOLUTIONS". Delete Note 8. Change left view as shown in Figure 1. Add Note 10: "ADD A DROP OF ADHESIVE AT EXIT POINT OF THREAD JUST PRIOR TO ASSEMBLY OF THE BOBBIN WEIGHT INTO THE BOBBIN".	Permission to incorporate this change was granted by ARRADCOM approval of Deviation 0297-008 (Ref PAN A3N7705).
XXXXXXX (Adhesive)	Make a new drawing like Figure 2 for the adhesive.	

FROM:

TO:

Figure 1. Changes to end view on drawing 9292982

Figure 2. Adhesive drawing

During this contract it was apparent that vendors were having difficulty manufacturing the booster spring (9292990). The drawing had ambiguities in it as evidenced by various interpretations of what it meant. In addition, it was obvious that the spring load test fixture was not conducive to providing repeatable load readings. In order to clear up the ambiguities and improve the load test fixture, ECP 83-0007-045 was submitted. It was submitted on ERTS GATOR Contract DAAK10-83-C-0007 running concurrently with the ERTS GEMSS PIP contract which this report covers; however, the changes requested in it apply to the GEMSS PIP sensor because the same booster spring is used in both sensors. The ECP requested the following changes to drawing 9292990:

- a. In Zone C4 change "0.395 + 0.010 SEE NOTE 8" to "0.395 + 0.010 SEE NOTES 8 & 9."
- b. In Zone C4 add "SEE NOTE B" with an arrow pointing to the left end of the spring.
- c. In Zone C3 change "SEE NOTE 5" to "SEE NOTE B."
- d. In Zone C2 change "0.385 + 0.010" to "0.385 MIN."
- e. In Zone D2 change "0.455 MAX DIA, 8 COILS REF SEE NOTE 9" to "0.455 MAX DIA, 9 COILS REF SEE NOTE 9."
- f. In Zone D2 make the extension lines defining the 0.455 MAX DIA refer to the OD of the 9 smaller coils rather than to the OD of the 2 larger coils.
- g. In Note 7 change 0.475 to 0.484 and change 0.340 to 0.384.

The ECP was approved with modifications and the final changes are described in NOR A3N5166. The drawing should be changed per this NOR.

Specification Changes

The changes to Specification MIL-S-48755 (AR) necessary to reflect the three $\,$ changes and to correct minor errors are:

- a. Delete paragraphs 3.3 and 4.5.1.1 and all further references to these paragraphs.
- b. In paragraph 3.5 change "thirty-two (32) feet" to "twenty-nine (29) feet."
- c. In paragraph 3.6 change "140 grams (0.3 pound) min and 410 grams (0.9 pound) max" to "100 grams (0.22 pound) min and 370 grams (0.82 pound) max."
- d. In paragraph 3.11.a change "Assemble" to "Assembly."
- e. In paragraph 3.11.f change "Ball Lock Ring" to "Ring, Ball Lock."
- f. In paragraph 4.4.2.22 Major 104 change "140 grams (0.3 pound) to 410 grams (0.9 pound)" to "100 grams (0.22 pound) to 370 grams (0.82 pound)." Delete Major 101 and Note 2.

- g. In paragraph 4.5.1.3.a change "32 feet" to "29 feet."
- h. In paragraphs 6.1.a, 6.1.b, and 6.1.c revise to reflect whatever mines use the smaller breakwire, stronger thread and different diaphragm material.

Bobbin Analysis

An analysis of the bobbin assembly was made to determine the amount of stronger thread that can be wound on the bobbin, and to determine the effect of this stronger thread on deployment barrier distance and bobbin assembly CG location. Results of this analysis were submitted to ARRADCOM in a letter from J.H. Lundquist dated 11 May 1983, Subject: Contract DAAK10-83-C-0049, GEMSS ERTS PIP CRDL Requirements.

Thread Length

The stronger thread used on this contract has a larger diameter than the standard thread. Thus, when the standard length (46 \pm 3 feet) of the stronger thread is wound on the Bobbin (9292985), the diameter over the wound thread is significantly larger than when the standard thread is used. This results in interference between the thread and the inside of the Sleeve (9292988), causing assembly difficulties when assembling the Bobbin Assembly (9292982) into the Sleeve. Cut and nicked thread and friction between the thread and Sleeve ID results.

In order to eliminate these problems, less of the stronger thread must be wound on the bobbin. It has been experimentally determined that a maximum of 36 feet of the stronger thread should be used to provide proper assembly and release and to maintain thread integrity. Using a realistic overall length tolerance of \pm 2 feet results in the recommended thread length of 34 \pm 2 feet for the stronger thread.

Deployment Barrier Distance

Because the stronger thread is thicker, less thread can be wound on the bobbin, making the deployment distance less. Deployment test (OEXM 31388) shows that at the standard barrier deployment distance of 32 feet the barrier could not be cleared consistently. When the barrier distance was moved closer at 29 feet, the barrier was cleared consistently. In additional deployment tests on 36 sensors, all cleared the barrier at 29 feet. The three-foot reduction in barrier distance is strictly a function of thread length and has nothing to do with the weight and CG characteristics of the bobbin. The bobbin wound with the stronger thread clears the barrier located at 29 feet just as well as the bobbin wound with the standard thread clears the barrier located at 32 feet.

Center of Gravity

The bobbin analysis shows that the CG shift of the bobbin assembly wound with the stronger thread is 0.002 inch. This is insignificant with respect to sensor deployment characteristics. The weight of the bobbin assembly wound with the stronger thread is 0.0218 gram more than that of the bobbin assembly wound with the standard thread. This weight increase can be eliminated by removing material from the bobbin weight, either by making it shorter or by increasing the diameter of the hole in it. Since the heavier bobbin assembly clears the barrier located at 29 feet just as well as the standard bobbin assembly clears the barrier located at 32 feet, a change to lighten it is unnecessary and is not recommended.

New Minimum and Maximum Limits on Breakwire Strength

The new minimum and maximum breakwire break strength limits were established from the data on 182 ERTS sensors tested on the GATOR PIP program (Contract DAAK10-82-M-0504) and reported in test report OEXM 31388. The former limits of 140 grams minimum and 410 grams maximum resulted in a spread of 270 grams. Based on statistical analysis of the data and past experience on the ADAM program, it is felt that this spread should be maintained. This is also the basis for selecting the new limits of 100 grams (0.22 lb) minimum and 370 grams (0.82 lb) maximum.

QUALITY REPORT

Quality tests conducted for the GEMSS PIP contract were the standard tests: (1) First Article Acceptance Test (FAAT) and, (2) Lot Acceptance Test (LAT). A total of four tests were actually run, consisting of two unsuccessful FAATs, a final successful FAAT, and a single successful LAT for the single delivery lot containing a quantity of 4,500 units. See Appendix A for attachments dealing with quality tests. Attachment 1 is the conditional approval of the FAAT, Attachment 2 is the raw data sheet for this FAAT, Attachments 3 and 4 are the raw data sheets for the first two FAATs and Attachment 5 is the raw data sheet for the LAT.

First Article Acceptance Tests

The first FAAT occurred on 27 July 1983. Failures to release the bobbin (three units) were traced to a machine assembly problem that was damaging the diaphragm. Appropriate corrective action was taken, which eliminated this problem. All existing hardware was scrapped and a new set of units was built.

The second FAAT on 30 August 1983 was unsuccessful due mainly to test errors as well as sample preparation problems. Improper calibration of the pressure system, used in conjunction with the test equipment during cold temperature testing, caused an over-pressurization of the diaphragm assembly. When combined with inadequate sealing, it caused separation from the sensor case, resulting in release failures. Appropriate corrective action was taken and a third FAAT was scheduled.

The successful FAAT of 20 September 1983 had the following results:

- One of 82 units experienced post pullout below the 540-gram requirement (recorded for information only)
- One of 82 units failed breakwire force
- One of 32 units failed cold release (see Attachment 2 for test data).

The breakwire and release failures were caused by potting material intrusion under the post cover during sample preparation. The sample's post covers had not been sealed with epoxy prior to potting. This type of defect would not normally occur on shipped units since all sensors would be properly sealed with epoxy prior to shipment. These units were classed as "no tests" and spares were functioned in their place. All subsequent testing has been performed with epoxy sealed sensors. Following this FAAT, a conditional approval was given by ARDC (see Appendix A). Honeywell's action for achieving full Governmental approval for the first article test was to ensure that all future LATs would be conducted using sample units sealed with epoxy before potting. The production layout was changed to formalize this action. The corrective action was completed and locally approved by DCAS on 14 October 1983.

Lot Acceptance Test

The LAT was conducted on 16 November 1983. The results of this test were as follows:

- One of 80 units failed breakwire force
- Three of 80 units failed post retention and thread strength (see Attachment 5 for test data).

Analysis of the breakwire failure showed that the breakwire retaining ring was not assembled properly, allowing the post to be pulled out of the sensor without breaking the breakwire. Thus, this unit was also counted in the second category as well, for a total of three defective units (not four). No cause was discerned for the other two units that experienced thread breakage below the 540-gram minimum. No corrective action for the above defects has been taken since additional quantities are not being built. The lot was accepted as tested since the defects identified were below allowable defects per the sample plan and AQL's specified.

SPECIAL TESTS

Leakage Test

The leakage test was conducted to determine: (1) the leak rate through undeployed sensors at a sensor pressurization of 75 ± 5 psi, and (2) the leak rate through deployed sensors at their deployment pressure or, if the sensors did not deploy before being pressurized to 300 ± 10 psi, their leak rate at 300 ± 10 psi. All tests were conducted at ambient temperature $(75^{\circ} \pm 10^{\circ}\text{F})$ and nitrogen gas was used as the pressure medium. Results are contained in test report OEXM 32211 (Appendix B). This test report was also submitted with a letter from J.H. Lundquist dated 6 January 1984, Subject: Contract DAAK10-83-C-0049 GEMSS ERTS PIP Test Report, Langlie Test.

Langlie Test

The Langlie test was conducted to determine sensor tripline deployment at three different square pressure pulse time durations at various pulse pressure levels. Results are also contained in test report OEXM 32211 (Appendix B).

APPENDIX A FIRST ARTICLE TEST SUMMARY REPORT AND LOT ACCEPTANCE TEST RESULTS

1. First Article Test Summary	Panard
US Army Armement Research and Development Center	2. Date 3. Report No. 462-33
Dower, MJ 07801	4. In reply refer to 5. Preliminary Supplemental Final
	DESRC-QAM-VY(D)/92
6. To	7. Date initial production sarple received
Comender	gt <u>Vess Brighton Mil</u> (insert location)
DCASTRO Honeywell	
2701 Fourth Are. So. Honeywell Plaza	Date20_Sept1983
Minnespolis, MW 55408	8. Contract No. DAAKI 0-83-C-0069
	9. Contractor
	Honeysmil Inc.
10. Complete sample 2 11. Item non	nenclature
Portial sample Sensor Trip	ling Extended Range.
	in accordance with
As per Contract MIL-6-4875	5(AR) w/Amend. 5 dtd 5 May 82.
14. Name(s)	15. Representing
·	
16. Inspected by	17. Submitted by
R. Fleneren	A. Siestried/sth/201-724-2458
18. Augustinian de Constitut de la	
The contractor may proceed with production.	Corrective action cited on black 28 is required
The contractor may proceed with production provided the deviations cited under Remark of black 28 are corrected.	Conditionally Approved.
19. Distribution	201CHARD W. PORTER
Cy Farm: Consysell, Inc.	C. Mines & Sel Arm Br
R. Currie 1892-3553	TISD, PAD
3. Ammdson 1879-3681	CONCURS
W. Rehveldt MR29-3681 M. Weidenbach MR29-3680	Signed: Gael C. Baiter W. F. BRI P.
M. Weidenbach MM29-3680 J. Lumdquist MM04-1200	Signed: Gael C. Baiter W. F. BELLT
C. Files 1804-1280	GAEL C. BAKER Contracting Office
R. Ludke MAR-3561	ActC, Product Verification Brauch

15

ARRADOM FORM 51 JUN 78 replaces 360 1031-2 AUG 66 which is obsolete

SHEET _1_ OF _3_

_	7	-		٦
1		Fo	× × ×	
27.	-	Poss	× × ×	
26.		Identification	Release of Sensor Assy. at Ambient Temperature Release of Sensor Assy. at Cold Temperature Tripline Deployment Breakvire Function Post Retention 6 Thread Breaking Strength Examination	
25.	Specification	Perograph No.	4.5.1.2.1 4.5.1.2.2 4.5.1.3 4.5.1.5 4.4.2.22	
24.		Specification No.	MIL-8-48755(AR) V/Amend. 5 dtd 5 May 82	
23.		Seriol No.	V/N	
22.		Part No.	9292972 8-19-82	
21.	liem/Port	Nomencloture	Tripline, Sensor Extended Range 82 each	

ARRADOM FORM 51a JUN 78 replaces SMU 1031-R AUD 66 which is obsolete

SHEET 2 CF 1

28. S	ummary	of	failures	encountered	and	required	corrective	action.
-------	--------	----	----------	-------------	-----	----------	------------	---------

Tripline Sensor, Extended Range, Dwg. 9292972 -

- 1. One unit failed to release at cold temperature. Major Defect
- 2. One unit failed breakwire functioning at cold temperature. Breakwire broke at 800 grams in lieu of 100 to 378 grams. Major Defect
- 3. One unit failed post retention at cold temperature. Post released at 280 grams,min. requirement is 540 grams. Test performed for informational purposes only.

ACTION TO BE TAKEN:

The contractor may proceed with production provided the defects noted above in paragraphs 1 and 2 are corrected to the satisfaction of the QAE.

ARRADOCA FORM 51b JUN 78 tuplaces SAU 1031-R AUG 65 which is obsolete

SHEET 3 OF 3

HE. AMUNUSON SENSOR ASSEMBLY

MN24-3646 MN29-3646 MN29-3588 MN29-3588 MN29-3588 MN29-3588	REMARKS	BLU-82/8 ONLY					:	TAFORMATTOM ON Y
AMUNDSON HANSON JOHNSON HCCABE SHEEHAN STACHOWSKI		:					1	
SCHRLY E. SUHHARY G. C.	REQUIREMENT		20	æ	3	32	82	\$
SENSOR ASSEMBLY LAT RESOLTS SUMMA 9-20-83 P.I.D. (GENSOR		,						
DATE LOT • LOT SIZE	RESULTS		5%	33/2 *	5%	32/	** 0/28	82/,

HIL-5-48755 PARA. 4.4.2.22

POST RETENTION AND THREAD STRENGTH R

HAR GOLD FIRE DUE TO MOTHING MAI'L IN CANT DEEDWE FISHERS MISSING * * HIS EDIO BUE FAILURE DESTO POTTURY MAT C. UNDER FISHEY C.

182 COLD RELEASE

103 AMBIENT DEPLOYMENT

183 COLD DEPLOYMENT

184 BREAKUIRE

182 AMBIENT RELEASE

	-		_,		,		- 7	т	7	 -		,				- ,	- r	 ,								
	7,	7	1	7	1	7	1	7		7	7	7	1	7	7	7	7	7	1	1	1	1	` `	1	1,	
	0/0	1450	1290	1811	1460	1370	1450	1250	0111	13/0	288	05.51	1510	13/6	1500	08/1/	147%	ベング	14/50	1351	0//	130	1370	0/2/1	1,560	
	0/0	200	370.	240	0/1/	09/	0770	180	.0%	250	200	081	0000	0000	140	08/	240	310	150	160	220	0//	2.50	300	0,8%	
_	1	<u>\</u>	7	1	7	1	7	7	7	7	1	7	1	7	1	7	/	/	7	1	1	1	7	7	7	_
_	7	7	7	1	7	ر نو	7	7	7	7.	7	7	7	7	7	1	7	<u>'\</u>	7	7	1	7	7	1	1	_
,	8	27	28	58	30	5	35	33	ě	35	36	37	38	30	9	7	7	43	7	45	9	\$	\$	\$	20	
1	T	1					7	[Ţ			1		- [-				_
_	71,	7	7	7	7	7	7	7	7	7	7	7	7.	7	7	7	7.	7	7	7	7	<u> </u>	7	1	7	
. (1410	1480	1380	1270	1300	1520	1190	14/50	1450	1440	1350	0057	1430	1380	01/11	1370	000	1380	1050	1470	1410	1470	7520	12.70	08/1	
:	200	140	270	170	160	200	200	200	450	220	140	(4.0	230	1/40	240	2.30	130	220	216	230	190	27.0	350	210	210	
. \	7	7	7	7	1	7	7	7	1	7	7	7	K	7!	7	7	1	1):	7	7	7	1	7	7	_
`\ 	7.	7	7	7	7	7	1	7	7	7	7	7	7	\ ,	7	7	7	7	7	7	7	7	7	7	J	
	· i	N	7)	₹;	S:	•	7	Ð	9	9	=	12	13	-	15	16	11	9	2	50	2	7.7	23	44	57	

* NOTE: NO MOKE THAN ONE OF THE FIVE ALLOWABLE DEFECTIVES SHALL EXCEED 544 GRAMS.

/	, ,	•	•	•		1	7	1				-	:	-	- !		!	 -					1
المحلو	1	7	7.7	Ţ	7	7		7: 7	7	7	7		7	7	7		7	7					
y sirk	1340	1320	1,000	1460	1380	1530	12.00	1400	1360	1420	Oletel		00111	CAKO	1370		1470	14160			. :		
•	777	350	200 200 200 200 200 200 200 200 200 200	2/80	300	282	350	250	220	2110	12 C.	:	360	240	3.40	-	290	27.20	,			,	
<u>/</u>	7	7	77	7	7	7	7	7/7	7	7	1/2/11	X.	1:	7	7	-	1	7	:	:	-		-
	7 91	7	3 9	29 7	31 - 12	22		25		- · ;	į	圆	30 (31 - 15	77		-	,			-	-	
				Z		7.	7	7			7	7	7	1	1								
sor!	1520	12.20 1	1460	1090	1380	-	1350	05/5/		1160	 ;		i i	•									
	0770	250	120	260	220	210	230	2 40	240	220	280	222	230										
/ 8 /	()	7	7/7	7 7	7	7	7	1/	7	<u>\</u>	7	7	1/1/1/1/1	· ·	-	+		 				+	
		2	5)	2		7	•	2 3	=	12	13	-	15	-	+								

* NOTE: NO MORE THAN ONE OF THE FIVE ALLOWABLE DEFECTIVES SHALL EXCEED 544 GRAMS.

SENSOR ASSEMBLY

LAT RESULTS SUPPLARY

C. HANSON

DATE

727/83

U. H.C.ABE

HN29-3661

B. AMINDSON

HN29-3669

HN29-3669

LOT SIZE

D. STACHOUSKI

HN29-3699

LOT SIZE

ERTS PIP DANKIO-83-C-0089

Genss

8	
4.4.2	
ABTSE PARA.	

RESULTS	TACACIDOSA	REMIKES
1/50	2 0 -1-5	
2/32	24-1-2	
1/50	+-€- 8 5	
C/32	34-2-3	
0/82	87-5-8	
C/87	***	INFORMATION ONLY

1	1
i	i
1	į
-	- 1
1	- (
1	- 1
1	1
1	- {
ł	j
	ì
1	- (
1	- }
1	
ł	i
į	1
1	i
i	1
1	- }
1	
1	- }
1	- }
1	- 1
1	i
	- }
	- 1
1	- }
1	- }
1	- }
1	- {
!	
1	
1	ł
1	l
1	- [
1	1
1	- 1
1	- {
1	- 1
1	- 1
1	- {
1	- 1
ı	- }
1	- 1
1	-)
-	- 1
ĺ	- 1
)	- 1
1	- 1
i	- {
1	}
1	ı
i	ĺ
1	- 1
1	- 1
1	1
1	
i	1
1	- 1
	- 1

183 ANGIENT DEPLOYMENT

183 COLD DEPLOYEDIT

184 BREAKVIRE

102 AMBIENT RELEASE

182 COLD RELEASE

POST RETENTION AND THREAD STRENGTH

Ē

NOTES :

7		Ŀ	260	1361		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1				-
┰	1	1	0770	1361	1	3 6	1	[900	37.67	1
7	1	1	27.0	1000		18	1		2000	177	
7	1	1	290	1,500	1	2	1	7	2/2	7420	7
-	1	V	220	1340	7	8	1	1	270	1290	3
-	1	7	350	13.30	7	98	7	1	2.30	1050	7
	1	1	240	1,3,50	1	31	7		310	1300	1/1
	1		380	1350	1/1	35	1	1	02 F	1390	7
	7	1	01.10	14/50	7	33	7	/	250	1400	Ż
	1	/	250	960	17	34	7	7	220	1260	[7]
	1	17	260	1350	1	38	7	1	210	1430	7.7
	1	1	250	1230	1/1	36	1	7	2.50	1290	1
	\	7		01/11	1	37	1	1	05E	1380	7
-	1	٦.	2.20	1280	7	38	1	7	230	1310	1
	1	1	210	0440	7	39	1	, ,	230	1370] [-]
	7	1/1	230	05/11	7	46	7		260	1190	7
	7		220	1340	7	7	1	1	300	1230	7
	7	7	-760	1320	1	4	7	7	290	980	
\neg	1	7	230	1300	1/2	43	7	1	270	1340	7
	1	7	340	1380		\$	1	1	330	0757	7
	1/		190	1440	1.7	45	7	7	240	6320	7
	1	1	276	0.5.2%	1 ~ 1	46	1	/3	230	0801	[/]
	1	1	250	3/7 [7]	1/1	47	/1	1	02.5	1450	7
	1	7	250	0/7/	1/1	48	1	1	220	1490	7
	1	/ 1	260	1370	1/7	48	7	, ,	075	1250	1
_	``	۲, ۲	250	13.20	1/1	26	1	1	280	1300	111
						7	/ /	1	240	14.50	[1]
_	[]										

■ NOTE: NO MORE THAN ONE OF THE FIVE ALLOWABLE DEFECTIVES SHALL EXCEED 544 GRAMS.

Jour	1/2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	Ź	7	1		~	7	1	1	1	7 7	[~]	7		7	1-1	11				-
	1460	14/BC	1430	1320	1230	15110	087-1	0281	1360	1-110	0.881	840	1310	12 80	0151		026	0351	1370				: : : : :
6 kg/	120	290	.320	280	250	220	220	236	220	190	230	250	190	260	170		180	180	091				
/.	1	,,	7	1,3	7	1	1	1	7	7	1	1	7	1	1		/	/	7				!
	1	1	7	7	1	//	17	7	1.7	/	\sim	1	1	/	1	FTR	1	1	7			j	
	10	17	18	10	20	21	22	23	24	25	20	27	28	29	36	18	32	7.	31				
Jest /	7		7	1	//	1	7	7	7	7	1			/	1								
* ****	1340		1500	1450	12,80	1090	1310	1.390	1470	02/11	0671	1230	1320	1300	05/1								
	280		0.8 2	.230	370	250	097	250	230	. 072	230	300	017	095									
/	[7]		7	1	7	7	1	.7	/	7	7	1	د ر	7	7								
r/	1	FTR	1	7	1	1	1	1	1	7	1	/"	7	1/1	7								
/	_	2	9	4	م	•	7	9	a	9	=	12	13	4	15								

* NOTE: NO MORE THAN ONE OF THE FIVE ALLOWABLE DEFECTIVES SHALL EXCEED 544 GRAMS.

SENSOR ASSEMBLY 8292972 LAT RESOLTS SUMMARY 8-30-83 FARTAZ 82 LOT SIZE

MN29-3680 HN29-3680 HN29-3680 MN29-3300 MN29-3690 MN29-3680 AMUNDSON HANSON JOHNSON McCABE SHEEHAN STACHOWSKI 8008376

HIL-S-48755 PARA. 4.4.2.22 102 ANDIENT RELEASE 102 COLD RELEASE 103 ANDIENT DEPLOYMENT 104 BNEAKUINE 105 AND	0/50 0/32 1/50 0/32 9/82	Se Se SA 32 32 32 82	BLU-92/B ONLY THFORMATTON ON Y
--	--------------------------------------	----------------------	--------------------------------

Blow Abarts weevered during testing. These are not to be counted as Lunstional falues and spaces were deived to frust the test. Nine Aug NOTES :

	<u>'</u>	7	1	, ,	7	7.7	7	7	1	· .		\ \	7	•		7	7		7	7.7	7	į.	7	/ /	/ /
). 		1200	1450	01/11	1400	1570	0011	1230	1400	1510	14/60	1,370	1340	1490	1010	1180	12.50	0/1/1	1170	1350	0///	1.500	1450	14/10	11/10
041		100	07.0	220	140		•	170	150	120					220	640	2.50	0/1/	170	140	310	180	550	R	016
		7	7:	1	7	1	7	7	7	7	7	1	100	1	7	7	7	1	1	7	7	1	2	7	1/1/1
26	3	77	28	29	36	6	32	33	34	38	38	37	38	38	\$	7	45	5	*	45	9	4	8	49	20
\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		T	7	7	7	7	7	777	1	7		/	13		7	1/7	1	7:	7	7	7		7	777	1/1
7460		3/501	74/60	1450	1380	1380	1340	147C	314/1	1450	1510	COHI	02F1	02/1	1380	09/11	0/1/1	1580	1460	380	1340	1360	1360	Odh	14/20
			,	:			:	 :	·· -		- <u> </u>	:		081			:	•	02/	Rone	160.	190	120	190	160
بــز (۱)	· ·	7	11/	7	1		1/1/1	1	7	1	7	7	7	7	7	7	7/7	1/2/1/2	1	1	<u>''</u>	1	7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7
`	-	•	_	7						7		7	, E					-					-		

* NOTE: NO MOKE THAN ONE OF THE FIVE ALLOWABLE DEFECTIVES SHALL EXCEED 544 GRAMS.

				- -		 ,				,	1	;		 ;			_	- !										
		/	7	7	1/7	1	7	7	7	7:	†	7	1	7	7	1	+;	+-	†. —						,			_
Now OR H50 H 16 19 240 19 19 19 19 19 19 19 1	2		02/	22.	080	230	430	00%	38	310	رسا	150	360	370	200	16	US.	121	1	}	•	;						
		•	<u>\</u>		5	1	\	<u>\</u>	7	\ 		-	/	7	0	9	Ê	۲,					:	-	;	:		
	1		240		220	190	430	150	2020	120	\sim	190	210	120	220	220	(Y	V.			,	:			' !	;	:	
10 14 16 16 16 16 16 16 16	10 14.50 14.50 14.50 18 18 18 18 18 18 18 1	/	7	13	7	7	7	7	7	73	7	7	7	7	7	/	7		ال ا				- ;			<u>:</u> !		_
	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	7	1	7	1	7	/ 2	V	7	7	7	7	7	7	1	17	7	7									_
1450 1450 1450 1450 1450 1450 1450 1450	13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		16	8417	9	9	29	21	22	23	BA 24	25	26	27	28	29	CA 30	DA 31	2840									
1450 1450 1450 1450 1450 1450 1450 1450	13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			1	_			7		1	7	1	7	7	7		-					}			_		_
220 220 220 220 220 220 220 220 220 220	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7,	7	7	7	7	1	1	7		7	7	:	7	//	73		7	7	1	7	7	7	1	7	7	_
120 00 00 00 00 00 00 00 00 00 00 00 00 0	13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1450	0077	1340	0/1/1	13.0	rexE)	430	.370	380	1580	7777	510	1380	1380	1220		1370	35/7	3%,	1350	1360	1300	1240	1400	1370	
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	_	8	ak				ਪ੍ਰ ਹ੍ਹ	_;	<u> </u>	-			<u>) y</u>	-	- 		÷								-	-	_
22777277777777	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	(110 WE	MONE	220	200	081	NOWE	(420)	NONE	220	180	700	WENE	880	220	220	:	280	220	346	240	1.50	120	220	190		
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1	7	<u> </u>	7		-/-	اذ	1	7	1	7	1	7	<u>)</u>	7	7.		1	7	7	7	/ /	1	1	7	1	
	100 100 100 100 100 100 100 100 100 100	_	7	7	7	7	7	ĭ	7	7	7	7	\	7	1	,	7	- 1	7	7	7	1	//	7	1	1	1	

NOTE: NO MORE THAN ONE OF THE FIVE ALLOWABLE BA : WLO ANAKT

Contract and and the Mindelle Contract of the Contract of the

26

SENSOR ASSEMBLY 8292972 LAT RESOLTS SUMMARY 3-1 4621 DATE 101 LOT SIZE

MN29-3680 MN29-3680 MN29-3680 MN29-3680 MN29-3690 MN29-3690 AMUNDSON HANSON JOHNSON MCCABE SHEEHAN STACHOWSKI

MIL-5-48755 PARA, 4.4.2.22		
-		

NON-RELEASE
ē

BLU-82/B ONLY

REQUIRENENT

86-2-3 54-1-5

182 AMBIENT RELEASE

182 COLD RELEASE

AMBIENT DEPLOYMENT

58-3-4

36-2-3

86-5-6

8

3/80

30-1-2

0/20

%50

0/50 //80

05/0

K 2

183 COLD DEPLOYMENT BREAKUIRE 3 POST RETENTION AND THREAD STRENGTH R

NOTES :

INFORMATION ONLY

11-41-83 -22-83

27

_	-	. –,			, -		-	了.	_	,	, .	, -						_	<u>-</u>	٦,	\ 	7			
	-	_	4 . ~	<u>;</u>	<u>!</u>	<u> </u>	<u> </u>	7	<u>.</u>	- -		<u>;</u>	_		4		_		· -		٠,	7		<u> </u>	<u></u>
`	1	7	7	7	7	7	7		7	7	7	7	7	7	7	7	7	7	7	7	7		7:	7	7
110%		1370	01/17	0821	1400	1250	1330	370	1380	1500	1580	1/70	1480	1380	370	1470	1370	1380	0141	1430	670	920	1420	1310	08//
200		160	220	210	150	230	048	220	280	190	120	270	140	230	0/8	260	0//	210	230	120	320	190	200	240	220
7	<u>;</u>	1	7	7	1	1	7	1	1	1	1	7	7	7	7	7	7	7	1	7	7	7	<u></u>	7	7
Ź	<u>;</u>	7	7	1	1	7	1	1	7	1	7	1	1	1	7	7	7	1	1	1	1	1	7	1	1
20		27	28	29	30	31	32	33	34	35	96	37	98	30	40	7	42	43	4	45	ş	4	8	9	58
	I	1							Z									V							
1	j	7	1	1	7	1	1	7	- -	1	1	1	7	7	7	7	7	-+	1	1	7	7	7	7	7
1100		1200	1330	1380	1330	1310	1210	1460	910	1260	4560	1510	1450	08 117	1230	1390	1440	1000	880	1370	1250	08/1	1330	1250	1420
101		2/10	210	180	160	130	230	120	220	400	220	170	120	1.70	210	150	240	200	000	210	250	/60	260	170	230
	1	7	7	7	7	1	7	/	Ź	7	7	7	7	1	7	7	7	7	7	7	7	7	7	7	7
	<u> </u>	7	1	1	7	7	1	1	7	7	7	1	7	7	7	7	7	7	7	7	7	7	7	7	7
•	*	j	Ì							9		2	6		ام	9		20	9	59	2	22	53		25

* NOTE: NO MORE THAN ONE OF THE FIVE ALLOWABLE DEFECTIVES SHALL EXCEED 544 GRAMS.

		!			1	Γ	12							1				[!		
7	1	1	7	3	200	1		1	7	7	7	1	7		7						;		:
12.50	102	1.760	1450	1440	ED AN DEC	0551	1220	1330	0841	1340	1250	10.70	1210	1400	065/						:	;	
260	001	001	180	230	POST PALLE	_	180	790	360	160	240	300			120						;		1
7	\	12		7	7	7		7		7	7	7	7	7	7	 <u>!</u>	_		<u> </u>	-		:	_
7	\	1		1	7	1/1	7	1	7	7	1	7	7	7	7/	 i					!	-	ì
9	1.	90	9	20	21	22	23	24	56	26	27	28	62	98	# 21								
7		2		/	7	7	7	7	7	7		7			-								
15/0	1210	//70	1440	1410	09/1/	1220	03/57	1400	1530	1400	11.30	1380	1450	07/									
260	200	240	340		210	13	220	210		320	/ NE	390	230	/4									
1	1	1	1	/	1	1	1	1	1	7	7	7	7	1									ſ
7	<u> </u>	1	1	7	1	7	Ž	7	1	1	7	7	7	7									Γ
_	2	6	-	S	9	7	8	0	10	11	12	13	+	15									

* NOTE: NO MORE THAN ONE OF THE FIVE ALLOWABLE DEFECTIVES SHALL EXCEED 544 GRAMS.

APPENDIX B ENGINEERING TEST REPORT OEXM 32211

Honeywell

ENGINEERING TEST REPORT

COPYLIST:		AVIONICS	12-29-83		0EXM 3221	
B. Amundson	MN29-3681	DEFENSE SYSTEMS		-6000-2759	PAC	1 OF 7
R. Currie	MN29-3553	N8103 - D & E Lab		DAAK 10-	83-C-0049	
J. Funk	MN29-3682	UNITS TESTED:				
J. Haley ·	MN29-3553	One hundred thirty-	five Extended	Range Trip	line Sensors (9292972
J.Lundquist(3)	MN04-1200	Modified). Modific 0.0035 + .0001 diame	ations consister breakwire	st of the and 320 +	9298598-1 dia 8 Decitrex Thr	aphragm, read.
T. Martorano	MN29-3682			_		
D. Stachowski	MN29-3680	OBJECT OF TEST:				
D. Swanson	MN11-1430	Conduct Leakage Rate	e and Langlie I and II.	One-Shot R	Release Tests	as out-
M. Weidenbach	MN29-3680					
L. Wilder	MN11-1430	DOCUMENTATION:				
D & E File	MN11-1430	See attached data sh	eets.			
Uniterm File	MN11-1430	PROCEDURE AND RESULT	<u>·S</u> :			
KEYWORDS: GEMSS, XM74 Sensor, Extende Leakage Rate	ed	Each unit was test the Nicolet Oscil before applying pr (supply pressure second intervals the scope trace. Langlie Test: Each test was con Initial "no relea psi and 350 psi re	loscope was s ressure to the cut-off) and as shown in nducted as sh se" and "all	et on a slessensor. I the fixt the data si own on the	ow trace and The starting p cure pressure heets were re attached Tes	started pressure at 30 ad from t Plan.
ATTACHMENTS:		, , , , , , , , , , , , , , , , , , , ,				
I Leakage Te II Langlie Te						
DAYA BOOK NUMBER	PAGE		YESY STARTED		TEST COMPLEYED	
0-2431		112-117	12-5-83		12-16-83	
M. Weid	enbach	12-1-83	J. Funk/T	. Martorano		· · · · · · · · · · ·
1	ion Engine	ering	L. D. W11		·	
715-445 REV 12/78						

			In	Inition L	7 60 406 6	7017		(Leinimen 189 25)		SHEBT	0 4	OEXM 32211		
				1 -		الم		(,		1 1				
***	30.64	@ 3 c.m	mag •	-reg 0	0//em	** 05/ B	~4 • 4 / •	A 21012	0 3 Yes	~3 ac e 0	→ 300€	0 3 30 se	~3 0) { 0	9.55
\	76.6	7/ 3	6.63	4.35	49.6	72:4	43.1	37.6	37.8	36.5	35.7	35.0	345	34.4
7	75.1	21.3	61.0	14.8	6.73	58.2	1.35	52.7	21.3	418.7	£.34	47.1	0.7/5	15.57
3	50.0	75.4	63.3	63.0	58.1	53.7	20.0	42.7	2:15	43.1	430	40.6	393	33 5
7	50.0	77.4	61.8	54.4	47.7	42.4	1.38	35.7	32.8	30.8	23.5	28.4	28.0	22.4
5	23.0	65.8	37.5	50.6	44. 2	3€.८	34.0	78.7	26.3	23.1	20.8	75.2	15: 9	2 1.1
و	80.0	20.7	17.5	4.65	47.1	41.5	38.0	84.9	32.4	30.6	F.86	7.50	876	22.3
7	77.1	16.5	52.6	49.8	43.4	35.0	33.7	29.8	26.8	34.3	570	20.1	18.1	7 7
8	75.1	74.1	(1, 3	62.3	54.8	57.3	48.4	2,1,1	43.1	39.6	\$2.7	35.0	33.0	31.0
•	14.2	(0.1	45.8	36.3	30.6	7.26	22.3	17.7	17.9	16.6	15.6	12.1	14.4	0 4/
01	75.8	53.2	42.0	32.9	31.0	24.1	22.50	/2.3	/4.3	15.5	14.3	13,5	12.7	11.15
,,	12.2	177	47.9	33.2	31.5	23.4	6.50	246	376	70.4	1.17	2.3/	12.3	170
2/	22.8	53.1	45.4	35.6	28.6	24.0	75.56	12.9	1.1	14.8	13.7	13.1	17.7	7.5
13	73.6	7.87	53.6	45.4	39.0	33.7	23.4	25.6	22.55	21.7	19.9	15.3	1.7/	13.6
14	25.0	61.5	43.5	35.8	32.4	76.7	17.1	15.6	/4.7	15.9	11.7	10.8	7.8	8.6
77	78.1	14.1	544	76.6	40.5	35.1	3/. 3	18.1	25.6	23.4	21.6	20.2	192	12.4
1,6	2.6	4.1	(3.7	5.23	52.0	47.8	۸۸.۱	40.7	38.3	36.2	34.5	37 2	30.7	27.4
=	25.3	17.9	727	43.7	36.8	3/.0	2.4	73.0	70.1	7.7	16.0	0%/	13.3	19.4
9)	72.2	2 79	15.1	33.4	24.4	18.4	14.5	• '	10,1	7.7	9.0	0	1	,
7	74.4	76	24.6	127	51.7	3.3%	126	36.1	1:51	22.7	30.3	28.6	27.7	25.6
ò	326	63.4	29.1	21.7	45.4	40.2	35.8	22.5	13.5	26.9	2:56	75.4	27.5	7 %
1	74.6	6.3	61.1	54.2	2.34	43.6	22.5	36.7	23.5	71.4	21.6	770	2.2	2.3
7	17.6	613	2.59	2.19	27.2	53.6	51.0	1.01	45.7	47.6	41.8	40.4	33.5	37.7
2	75.4	52,9	41:4	36.6	30.0	25.2	11.7	13.4	1.5%	1.7	15:31	17.57	1.4.1	77
77	25.2	506	35.3	16.1	20.4	79.9/	14.1	13.3	7	10.7	101	2%	9.3	2
216	25.6	. 0	(347 . 5	Sec. 15.0	10 500.	6.5 0 /1	Sec. 7.	0 20 11	7	1	,	١	-	,
7,	25.6	64.5	24.1	4.5	40.9	36.9	32.1	2). 6	22.3	25.5	24	725	71.2	20.5
2	25.3	200	44.6	34.6	30.9	76.6	23.6	2:0	/3./	17.6	7.97	15.9	15.2	7.5
36	75.0	12.5	59.7	52.5	7. 14	41.3	24.2	22.52	30.8	78.4	26.0	14.2	224	77.6
2	24.3	5.28	50.4	42.4	74.1	30.1	21.8	23.4	20.8	15.5	2.21	3.9/	16.3	17.00
5	7%.8	8.8	シン	25.50	* • *	(1)	'	,	3	١	,	ļ	'	,

		9 To 1	40.3	8 /11	220	رو /	13.0														
OEXM 32211 Page 3 of 7		ا المعدد	41.3	416.1	23.2	1.65	15.1											٠			
OEXH Page		~; 0 { E O	15.1	418.4	24.9	60.2	17.0														
7 14		O Seein	45.0	20.1	26.4	61.6	12.0														
Sweer A		6 2 70 In	48.0	5.23	28.4	62.8	21.5														
(184781	·	0 3 Ver.	50.7	54.3	30.9	63.9	24.5														
7 : 63 : 7	(,;	4 2141 6 3 VOIL 6 378 IN	13.5	56.4	33.7	65.6	27.7														
01T (a (Psi)	A 180 Pm	18	٠	36.9	66.9	17.3														
7 751	PROSSURA	₩ /2.6 1m	58.3	6.13	40.6	18.5	36.0														
INITIAL LEARASE TOST (25 ps. Medines)	1 298	@ /som @ 150 in	(7)	1.79	4.4.9	70.0	11.2					-									
78.7.	Chamber	A 3014	5.37	67.0	205	77	47.3														
In	,	~109 @	70.5	61.9	521	220	15.0														
		@ 3 ·	25.0	25.5	45.6	24.0	64.4														
		7-44	>8.0	74.9	7.6	25.6	76.5														
		4.4.7	31	3.2	3.3	3.7	35														

		Ree	2416	Camuse		Sesson 2	Test			3.4	SHEET E	Par	DEXM 52211 Page 4 of 7	
				Chen Chen	44864 /	PRESSURE (PS)	(Ps.	,						
7	Keist.	m • 8 D	~(o) ()	A 901m	mo// 0	~r e.5/ @	~6.66.	119016 D	THAN C O	~) ~ e 0	D Book	~, of § 0	9 3 to ta	1 2
~	16%	23.5	57.0	40.5	0 /, 5	30.0	25.0	12.5	0	=			1	1
~	/nx•	18%.	175.0	11.55	158.0	150.0	142.5	136.5	131.5	135.5	131.5	112,0	0 /1/	11.5
^	1111	2.311	102.5	°	25.0	0.0	61.0	6.7.3	48.5	12.5	38.0	34.0	22.5	27.0
3	135.0	101.	22.5	72.	100	50.0	12.	36.0	31.0	220	27.0	20.0	/9.0	170
٧,	141.0	120.5	164.5	27.0	27.0	0.0	60.0	2.53	44.5	41.0	32.0	34.0	30.5	27.0
7	///	015	41.0	35.5	36.0	7.75	3/.6	28.5	78.1	27.0	25.0	25.0	24.5	27.5
~	1425	116.0	% 0	72.4	66.5	5.5	47.5	40.5	\$5.0	\$1:0	22.5	24.5	21.3	195
2	121.0	24.5	21.0	7:53	. 77.	54.0	30.0	24.1	21.5	19.5	17.0	14.0	15:51	0.71
-	12.50	24.0	24.5	41.0	12.	21.6	91.0	W. 1"	15.0	12.5	12.5	11.5	, '''	9.5
"	142.	22.5	70.0	57.5	39.0	27.0	22.5	18:0	//.	15:0	13.5	13.0	10.5	9.0
=	121.5	102.0	27.8	14.5	64.0	5.0	45.0	44.0	38.0	34.0	30.5	28.0	0.56	23.5
1.2	148.0.	64.5	31.0	15.0	13.5	0	•	1	•	•	ı	ı	ì	,
2	250	106.5	84.0	54.0	745	41.1	50.6	47.0	35.0	27.0	33.5	20.5	12.0	0 %/
2	7.5%	7.70	24.0	73.6	13.0	46.3	32.	25.5	21.5	13.5	15.50	13.0	/3.0	11.5
*/	1.11.5		24.5	17.77	28.0	27.0	.,	18.5	0	-	,		j	,
*	128.0	107.5	21.0	777	66.15	56.0	41.	720	36.0	320	27.0	73.0	20.0	18.5
=	1/6.0.	56.5	66.0	50.5	17.0	26.0	22.	2%.	15:0	10.5	6.5	20.5	1.5%	э
3,	18. K	104.5	85.5	3	50.5	15.0	3//.	10.00	0.,	0	1	١	١	١
?	120	105.5	/00.0	11:1	23.5	7.0	62.5	61.5	2.22	57.5	440	17.0	38.5	15.0
3	121.	104.5	233	7	51.0	48.0	41.5	23.52	120	22.5	13.0	15.0	125	8.5
10	200	24.5	14.5	57.5	47.0	40.0	34.5	29.5	16.0	24.0	(8.3	16.0	13.0	11.0
77	24.0	52.0	23.5	66.0	51.0	2%.	43.0	7%.0	40.0	36.5	77.77	33.4	\$2.0	76.0
7	777	7	7.5	7.7.7	64.0	• 55	46.5	40.5	35.0	26.5	25.0	24.0	18.5	18.0
7.	77.7		94.0	78.1	66.0	20.5	22.5	(6.5	/0.0	6.0	25.	0.5	0	,
25	123.0	10%	57.0	7.0	65.0	56.0	40.0	42.	36.0	31.0	27.0	23.5	20.5	17.1
35	717	40.5	20.0	2, 9	6.1	0	,	'	,	1	1	١	١	3
5	•	73.5	• 5	14.0	26.50	15.1	<u>ر</u> د	6.5	18.50	3.5	2.5	2.5	2.0	20
30	121.51	107.0	70.5	76.5	68.0	10.5	53.5	4/F.0	43.5	37.0	36.0	33.5	20,55	28.5
5	541	22.5	720	27.27	41.0	30.0	31.5	27.0	23.5	12.5	16.5	15:0	/4.0	125
4	97.7	73.0	ं	47.0	32.0	21.0	2.5	18.5	14.5	14.0	0.//	10.5	9,0	å

		1	• 35%	5.1.2	0 %	22.1-	18.5															
2211 of 7		~3 c) £ @	. 17.5	56.5	36.1	74.5	010															
OEXM 32211 Page 5 of 7		O 3 30 12.	51.0	19.5	15.5	77.5	23.5															
		· Josia	5.4.	(3.0	44.0	0.00/	56.0															
7 2		11 05 6 B	57.50	67.0	78.5	103.0	23.5															
SHEET		-10A C 0	0.47	7/. •	53.5	105.0	33.6															
		9 2101c	68.0	>5.0	58.0	107.5	37.0	1														
Terr	((1))	~1.04/ D	0.46	72.57	66.0	110.0	43.0															
Leerose Terr	PRESSURG (PS.)	M 150 1m	80.0	25.73	72.5	113.5	47.															
ſ		# /30m @ /50 m	0 73	28.5	80.5	116.0	57.5															
LEASE PRESSURE	Chamber	8 302a	94.0	26 5	59.5	/110	62.0		1													
6 + 5 4 1 6		mies 0	070/	(03.0	(0.0)	125	Fe. 5'			1												
R		G Jen	0 '0//	110.0	4.2.0	194.0	53.0															
		Sec.	130.0	117.0	1210	0.507	13.5															
•		4.,4	37	72	3.3	34	177															

CEXM 32211
Page 6 of 7

LEARAGE TEST - BREAK WIPE & TRIPLING FORCE

un; t	Break.	Trip
CALL TO SERVICE CONTRACTOR OF THE SERVICE CO	(Grami)	(GRAWI)
<u>′</u>	230	920
Σ	250	740
<u></u>	260	1550
 4	18.	1020
<u> </u>	240	/040
<u> </u>	<u> </u>	
<u> </u>	180	/030
<u> </u>	200	<u>)Y••</u>
	190	
/•	220	1340
	240	//3•
	+10	1200
	240	/150
	710	/370
/5	180	
	270	. //20
	0-15	1260
, 8	240	/330
	220	//40
30	230	1440
21	240	1300
	230	/3/0
23	240	/230.
34	220	1140
25-	260	/324
36	270	//20
27	200	/040
28	260	/230
29	230	1250
30	250	//60
3,	23.	,330
3/	26.	. 1410
33	230	1240
34	280	//50
35-	220	650
		

			LANGALE	Relieve T	7.635				OE.	OEXM 32211 Page 7 of 7		
, ''	50 m3	ودرود			75 ms.	P. 13x			0/	100 mis 1	اله راء د	•
42	:::3)	Relens	7.61/2	5.m2	(ند) (دد)	Cekss.	مدراده		40.1	(.v)	R.h.	". P. f. 11.
,	200	×		3.1	200	×			ij	200	×	ļi P
2	7561	×		32	105	×			ر ڊ	501	×	: ! !
(82.5		0	3.3	87.5		o		ć 3	578	! ·	•
7	106.25	×		37	106.35		0		7,	100.05		4)
2	96.35		0	7.5	300	×			635	228	×	
9	5.101		0	36	139	×			7,5	139	×	
^	205	×		33	24.5		0		C	24.5		
4	/40	×		35	7.8.5		0		3	116.5	×	
^	/30		0	33	(2)	~			3	101		o
0/	145	×		40	183.5		٥		20	// 0		0
"	1375	, x		1.6	146.5	×			71	691	~	
2/	13.25		0	24	143	×			7.5	-1441	×	
/3	116		0	4.3	14.	×			?	133	ĸ	
41	/38	×		44	95		0		77	118.5		0
-6/	127	×		\$	",		0		۲,	133.5	^	
"	101		0	76	301	\			77	/20:	*	
17	801	×		ç	12.5	×			~	///	i !	0
3/	124.5	~		٠,٤	8	×			8 ^	240	×	
()	٤٥		0	41	1183		0		11	11/1/	ĸ	
70	105		0	57	111		٥		20	22.5		٥
12	116		J	 5.7	/30	~			18	101	×	
22	137	×		52	125		9		22	107.5	×	
20	151	×		2	21.61	X			5.3	11.7	! 	0
40	118		0	5.7	136.5	X			7 12	8//		0
35	123	×		-ری	122.5		0		£ 1_	1315	x	
>0	167	×		5.6	124.5		0		26	7501		0
27	2611		0	5	137	*		1	25	128	×	
38	133		•	2.0	196	×			28.5	25.367	×	
23	1.50		9	2	135	×			23	107		0
30	7 %/	×		٥	57.5		0		30	134	×	

TEST PLAN

GEMMS/ERTS LEAKAGE TEST

1.0 Purpose

The purpose of the test is to determine the rate of pressure leakdown through the sensor.

2.0 Test Procedure

- 2.1 Initial leakage.
 - 2.1.1 Install sensor in release socket of pressure chamber.
 - 2.1.2 Pressurize chamber with nitrogen gas to 75+5 psi.
 - 2.1.3 Close shut off valve to chamber and start Nicolet Oscilloscope trace.
 - 2.1.4 Record pressure trace on Floppy Disc.

2.2 Function and leakage

- 2.2.1 Attach continuity meter to breakwire leads for continuous monitoring.
- 2.2.2 Increase pressure in the chamber at a steady rate until tripline deploys or to 300±10 psi.
- 2.2.3 Close shutoff valve to chamber and start Nicolet Oscilloscope trace.
- 2.2.4 Record pressure trace on Floppy Disc.
- 2.2.5 Pull trip line along longitudinal axis of sensor and record the force to break the break wire and the force to break the trip line.
- 2.3 Repeat (2.1) and (2.2) on 35 sensors at ambient temperature $(75\pm10^{\circ}F)$.

3.0 Fixture Design

The fixture design is shown on the attached drawing.

4.0 Pass/Fail Criteria.

There is no pass/fail criteria.

Submitted by: J. E. Funk
Principal Engineer

ATTACHMENT II

Page 1 of 2

TEST PLAN

GEMMS/ERTS LANGLIE TEST

1:0 Purpose

The purpose of the test is to determine the pressure level/pulse time characteristics to produce trip line deployment.

2.0 Test Procedure

2.1 Test A

- 2.1.1 Adjust pressure input solenoid to produce a square wave pulse of 50+5ms duration. Check that pressure rise and fall rates are 50 psi/ms minimum.
- 2.1.2 Adjust pressure input level desired. (Estimate expected release level from results of leakage test for first trial).
- 2.1.3 Install sensor in release fixture, pressurize and record result.
- 2.1.4 Repeat 2.1.2 and 2.1.3 (for a total of 30 units) using the Langlie test procedure per MIL-STD-331A and a new sensor for each trial.

2.2 Test B

2.2.1 Repeat 2.1 except the pulse duration will be adjusted to 75±5ms duration.

2.3 Test C

2.3.1 Repeat 2.1 except the pulse duration will be adjusted to 100+5 ms duration.

3.0 Fixture Design

The fixture design is shown on the attached drawing.

4.0 Pass/Fail Criteria

There is no pass/fail criteria.

Submitted by: J. E. Funk
Principal Engineer

Distribution List

Administrator Defense Technical Information Center ATTN: Accessions Division (12) Cameron Station Alexandria, VA 22314

Director U.S. Army Materiel Systems Analysis Activity ATTN: DRXSY-MP Aberdeen Proving Ground, MD 21005

Commander/Director
Chemical Research and Development Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: DRSMC-CLJ-L(A)
DRSMC-CLB-PA(A)
APG, Edgewood Area, MD 21010

Director
Ballistics Research Laboratory
Armament Research and Development Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: DRSMC-BLA-S(A)
Aberdeen Proving Ground, MD 21005

Chief Benet Weapons Laboratory, LCWSL Armament Research and Development Center U.S. Army Armament, Munitions and Chemical Command ATTN: DRSMC-LCB-TL Watervliet, NY 12189

Commander U.S. Army Armament, Munitions and Chemical Command ATTN: DRSMC-LEP-L(R) Rock Island, IL 61299

Director
U.S. Army TRADOC Systems
Analysis Activity
ATTN: ATAA-SL
White Sands Missile Range, NM 88002

FILMED

10-84

DIC