

CUDA: Cooperation Between Threads

Ben Cumming, CSCS July 27, 2015

Cooperating Threads

Most algorithms do not lend themselves to trivial parallelization

```
reductions: e.g. dot product
int dot(int *x, int *y, int n){
  int sum = 0.;
  for(auto i=0; i<n; ++i)
    sum += x[i]*y[i];
  return sum;
 scan: e.g. prefix sum
void prefix_sum(int *x, int n){
  for (auto i=1; i<n; ++i)
    x[i] += x[i-1]:
 fusing pipelined stencil loops: e.g. apply blur kernel twice
void twice_blur(float *in, float *out, int n){
  float buff[n]:
  for(auto i=1: i<n-1: ++i)
    buff[i] = 0.25f*(in[i-1]+in[i+1]+2f*in[i]);
  for(auto i=2: i<n-2: ++i)
    \operatorname{out}[i] = 0.25f*(\operatorname{buff}[i-1]+\operatorname{buff}[i+1]+2f*\operatorname{buff}[i]):
```


Block-Level synchronization

CUDA provides mechanisms for cooperation between threads in a thread block.

- All threads in a block run on the same SMX
- Resources for synchronization are at SMX level
- No synchronization between threads in different blocks

Cooperation between threads requires sharing of data

- all threads in a block can share data using shared memory
- shared memory is **not visible** to threads in other thread blocks
- all threads in a block are on the same SMX.
- no synchronization possible between threads in different thread blocks
 - ... except via atomic operations on global memory

One-dimensional blur kernel

$$out_i \leftarrow 0.25 \times (in_{i-1} + 2 \times in_i + in_{i+1})$$

- each output value is a linear combination of neighbours in input array
- first we look at naive implementation

Host implementation of blur kernel

```
void blur(double *in, double *out, int n){
 float buff[n];
 for(auto i=1; i<n-1; ++i)
   out[i] = 0.25*(in[i-1] + 2*in[i] + in[i+1]);
```


Our first CUDA implementation of the blur kernel has each thread load the three values required to form its output

First implementation of blur kernel __global__ void blur(const double *in, double* out, int n) { int i = threadIdx.x + 1; // assume one thread block if(i<n-1) { out[i] = 0.25*(in[i-1] + 2*in[i] + in[i+1]);

Each thread has to load 3 values from global memory to calculate its output

Alternatively, each value in the input array has to be loaded 3 times

To take advantage of shared memory the kernel is split into two stages:

- 1. load in[i] into shared memory buffer[i]
 - one thread has to load in[0] & in[n]
- 2. use values buffer[i-1:i+1] to compute kernel

Blur kernel with shared memory

```
__global__
void blur_shared_block(double *in, double*_out, int n) {
    extern __shared__ double buffer[];
    auto i = threadIdx.x + 1;
    if(i<n-1) {
        // load shared memory
        buffer[i] = in[i];
        if(i==1) {
            buffer[0] = in[0];
            buffer[n] = in[n];
        __syncthreads();
        out[i] = 0.25*(buffer[i-1] + 2.0*buffer[i] + buffer[i+1]);
```


Declaring shared memory

```
extern __shared__ double buffer[];
```

• the size of memory to be allocated is specified when the kernel is launched

Synchronizing threads

__syncthreads();

- threads wait for all threads in thread block to finish loading shared memory buffer
- thread i needs to wait for threads i-1 and i+1 to load values into buffer
- synchronization required to avoid race conditions
 - threads have to wait for other threads to fill buffer

Launching kernels with shared memory

An additional parameter is added to the launch syntax

```
blur<<<grid_dim, block_dim, shared_size>>>(...);
```

shared_size is the shared memory in bytes to be allocated per thread block

Launch blur kernel with shared memory

```
__global__
void blur_shared(double *in, double* out, int n) {
  extern shared double buffer[]:
  int i = threadIdx.x + 1:
// in main()
auto block_dim = n-2;
auto size_in_bytes = n*sizeof(double);
blur_shared <<<1, block_dim, size_in_bytes>>>(x0, x1, n);
```


Is it worth it?

A version of the blur kernel for arbitrarily large n is provided in blur.cu in the example code. The implementation is a bit awkward:

- the in and out arrays use global indexes
- the shared memory uses thread block local indexes

The ~10% performance improvement might be worth it, depending on how important the kernel is to overall application performance

Buffering

A pipelined workflow uses the output of one "kernel" as the input of another

• on the CPU these can be optimized by keeping the intermediate result in cache for the second kernel

An example is two stencils, applied in order

Double blur: basic OpenMP

```
void blur_twice(const double* in , double* out , int n) {
  static double * buffer = malloc_host < double > (n);
 #pragma omp parallel for
 for(auto i=1; i<n-1; ++i) {
    buffer[i] = 0.25*(in[i-1] + 2.0*in[i] + in[i+1]);
 #pragma omp parallel for
 for(auto i=2; i<n-2; ++i) {
    out[i] = 0.25*( buffer[i-1] + 2.0*buffer[i] + buffer[i+1]);
```

Double blur: OpenMP with blocking for cache

```
void blur_twice(const double* in , double* out , int n) {
  auto const block size = std::min(512, n-4):
 auto const num_blocks = (n-4)/block_size;
  static double* buffer = malloc_host < double > ((block_size+4)*
      omp get max threads()):
 auto blur = [] (int pos, const double* u) {
   return 0.25*( u[pos-1] + 2.0*u[pos] + u[pos+1]):
 #pragma omp parallel for
 for(auto b=0: b<num blocks: ++b) {
   auto tid = omp_get_thread_num();
   auto first = 2 + b*block size:
   auto last = first + block size:
   auto buff = buffer + tid*(block_size+4);
   for(auto i=first-1, j=1; i<(last+1); ++i, ++j) {
     buff[j] = blur(i, in);
   for(auto i=first, j=2; i<last; ++i, ++j) {
     out[i] = blur(j, buff);
```


Buffering with shared memory

Shared memory is important for caching intermediate results used in pipelined operations

- shared memory is an order of magnitude faster than global DRAM
- by **fusing** pipelined operations in one kernel, intermediate results can be stored in shared memory
- similar to blocking and tiling for cache on the CPU

Double blur: CUDA with shared memory

```
__global__ void blur_twice(const double *in, double* out, int n) {
 extern shared double buffer[]:
 auto block_start = blockDim.x * blockIdx.x;
 auto block end = block start + blockDim.x:
 auto lid = threadIdx.x + 2:
 auto gid = lid + block_start;
 auto blur = [] (int pos, double const* field) {
   return 0.25*(field[pos-1] + 2.0*field[pos] + field[pos+1]);
 if(gid < n-2) {
   buffer[li] = blur(gi, in);
   if(threadIdx.x==0) {
       buffer[1]
                            = blur(block start+1. in):
       buffer[blockDim.x+2] = blur(block_end+2, in);
   __syncthreads();
   out[gi] = blur(li, buffer);
```


Fused loop results

The OpenMP cache-aware version was harder to implement than the shared-memory CUDA version

 CUDA is initially harder because we have to think and write in parallel from the start

both implementations benefit significantly from optimizations for fast on chip memory

CPU: optimizing for on-chip memory

- let hardware prefetcher automatically manage cache
- choose block/tile sizes so that intermediate data will fit in a target cache (L1, L2 or L3)

GPU: optimizing for on-chip memory

- manage shared memory manually
 - more control
 - hardware-specific
- choose thread block sizes so that intermediate data will fit into shared memory on an SMX

Exercise: Shared Memory

- finish the shared/string_reverse.cu example
- implement a dot product in CUDA in shared/dot.cu
 - the host version has been implemented as dot_host()
 - assume that n is a power of 2 and $n < 102\overline{4}$
 - extra: can you make it work for arbitrary n < 1024?
 - extra: how would you extend it to work for arbitrary n > 1024 and n threads?

