BAUMANN et al., Serial No. 08/718,377

- R3 is halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio or R3 is linked to R14 as indicated above to form a 5- or 6-membered ring;
- is C₁-C₁₀-alkyl which can carry from one to five halogen atoms and/or one of the following radicals: C₁-C₄-alkoxy, C₁-C₄-alkylthio, cyano, C₁-C₈-alkylcarbonyl, C₁-C₈-alkoxy-carbonyl, phenyl, phenoxy or phenylcarbonyl, where the phenyl radicals in turn can carry from one to five halogen atoms and/or from one to three of the following radicals: C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy and/or C₁-C₄-alkylthio;

 C_1 — C_{10} —alkyl which can carry from one to five halogen atoms and carries one of the following radicals: a five-membered heteroaromatic ring which contains from one to three nitrogen atoms and/or one sulfur or oxygen atom and which can carry from one to four halogen atoms and/or one or two of the following radicals: C_1 — C_4 —alkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkoxy, C_1 — C_4 —haloalkoxy, C_1 — C_4 —alkylthio and/or phenyl;

 C_3-C_{12} —cycloalkyl or C_3-C_{12} —cycloalkenyl, each of which can contain one oxygen or sulfur atom and can carry from one to five halogen atoms and/or one of the following radicals: C_1-C_4 —alkyl, C_1-C_4 —alkoxy, C_1-C_4 —alkylthio, cyano, C_1-C_8 —alkylcarbonyl, C_1-C_8 —alkoxycarbonyl, phenyl, phenoxy or phenylcarbonyl, where the phenyl radicals in turn can carry from one to five halogen atoms and/or from one to three of the following radicals: C_1-C_4 —alkyl, C_1-C_4 —haloalkoxy and/or C_1-C_4 —alkylthio;

 C_3 — C_6 —alkenyl or C_3 — C_6 —alkynyl, each of which can carry from one to five halogen atoms and/or one of the following radicals: C_1 — C_4 —alkyl, C_1 — C_4 —alkoxy, C_1 — C_4 —alkylthio, cyano, C_1 — C_8 —alkylcarbonyl, C_1 — C_8 —alkoxycarbonyl, phenyl, phenoxy or phenylcarbonyl, where the phenyl radicals in turn can carry from one to five halogen atoms and/or from one to three of the following radicals: C_1 — C_4 —alkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkoxy, C_1 — C_4 —haloalkoxy and/or C_1 — C_4 —alkylthio;

a five- or six-membered heteroaromatic ring which contains from one to three nitrogen atoms and/or one sulfur or oxygen atom and which can carry from one to four halogen atoms and/or one or two of the following radicals: C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkyl-thio, phenyl, phenoxy or phenylcarbonyl, where the phenyl radicals in turn can carry from one to five halogen atoms and/or from one to three of the following radicals: C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy and/or C_1 - C_4 -alkylthio;

BAUMANN et al., Serial No. 08/718,377

phenyl or naphthyl, each of which can be substituted by one or more of the following radicals: halogen, nitro, cyano, hydroxyl, C_1 — C_4 —alkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkoxy, C_1 — C_4 —haloalkoxy, phenoxy, C_1 — C_4 —alkylthio, amino, C_1 — C_4 —alkylamino or C_1 — C_4 —dialkylamino;

 R^4 and R^5 form, together with the adjacent carbon atom, a 3-to 8-membered ring which can contain one oxygen or sulfur atom and can carry from one to three of the following radicals: C_1 - C_4 -alkyl, halogen, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy and/or C_1 - C_4 -akylthio [sic];

is hydrogen, C₁-C₄-alkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl, C₃-C₈-cycloalkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxyalkyl, C₁-C₄-alkylthioalkyl, phenyl or R⁵ is linked to R⁴ as indicated above to form a 3- to 8-membered ring;

is C₁-C₈-alkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl or C₃-C₈-cycloalkyl, it being possible for each of these radicals to be substituted one or more times by: halogen, nitro, cyano, C₁-C₄-alkoxy, C₃-C₆-alkenyloxy, C₃-C₆-alkynyloxy, C₁-C₄-alkyltio, C₁-C₄-alkylamino, C₁-C₄-alkylamino, di-C₁-C₄-alkylamino, phenyl, phenoxy or phenyl which is substituted one or more times, eg. from one to three times, by halogen, nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkylthio;

phenyl or naphthyl, each of which can be substituted by one or more of the following radicals: halogen, nitro, cyano, hydroxyl, amino, C_1 — C_4 —alkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkoxy, C_1 — C_4 —haloalkoxy, phenoxy, C_1 — C_4 —alkylthio, C_1 — C_4 —alkylamino or C_1 — C_4 —dialkylamino;

a five— or six-membered heteroaromatic ring which contains from one to three nitrogen atoms and/or one sulfur or oxygen atom and which can carry from one to four halogen atoms and/or one or two of the following radicals: C_1 — C_4 —alkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkoxy, C_1 — C_4 —haloalkoxy, C_1 — C_4 —alkyl—thio, phenyl, phenoxy or phenylcarbonyl, where the phenyl radicals in turn can carry from one to five halogen atoms and/or from one to three of the following radicals: C_1 — C_4 —alkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkoxy, C_1 — C_4 —haloalkoxy and/or C_1 — C_4 —alkylthio;

- Y is sulfur or oxygen or a single bond;
- Z is sulfur or oxygen
- 6 for the production of drugs: