Aprendizagem de máquina e aprendizado profundo

Lux.AI

INSTITUIÇÃO EXECUTORA

Aprendizado de máquina e aprendizado profundo

S1 - Introdução Aprendizagem de máquina

S2 -Treinamento e avaliação S3 -Aprendizado profundo e CNNs

S4 - Detecção e Segmentação S5 -Aprendizado profundo e fotografia / MLOPs

- → Semana 01
 - ◆ Introdução ML
 - Modelos lineares
 - Redes Neurais
 - MLPs
 - Backpropagation
 - Otimização

S1 - Introdução Aprendizagem de máquina

S2 -Treinamento e avaliação S3 -Aprendizado profundo e CNNs

S4 - Detecção e Segmentação S5 -Aprendizado profundo e fotografia / MLOPs

→ Semana 02

- ◆ Treinamento e avaliação
- Análise de erro
- Bias e variância
- Comparação de performance
- ◆ Treino x inferência
- ◆ Técnicas de otimização
- ◆ Regularização
- Métricas de avaliação

S2 -Treinamento e avaliação S3 -Aprendizado profundo e CNNs

S4 - Detecção e Segmentação S5 -Aprendizado profundo e fotografia / MLOPs

→ Semana 03

- Redes neurais para imagens
- Aprendizado profundo
- Redes convolucionais
- Transformações e augmentation
- ◆ Transfer Learning
- Evolução das CNNs
- Modelos generativos

S1 - Introdução Aprendizagem de máquina

S2 -Treinamento e avaliação S3 -Aprendizado profundo e CNNs

S4 - Detecção e Segmentação S5 -Aprendizado profundo e fotografia / MLOPs

- → Semana 04
 - Detecção
 - Detecção singleshot x two-stage
 - RCNN
 - YOLO
 - Evolução da arquitetura YOLO
 - Segmentação
 - Arquiteturas de segmentação
 - U-Net
 - Restauração de imagens

- → Semana 05
 - Aplicações de aprendizado em fotografia
 - Photo-enhancement
 - Deblurring
 - Super resolution
 - Neural Style Transfer
 - ◆ Introdução MLOPs

Bibliografia

d2l.ai

deeplearningbook.org

info.deeplearning.ai/machine-learning-yearning-book

Pré-requisitos

- Álgebra Linear
 - Escalares, vetores, matrizes e tensores. Operações com matrizes, normas, determinantes, svd
- Cálculo
 - Funções, derivadas, integrais
- Computação numérica
 - o Otimização, overflow, underflow
- Estatística e Probabilidade
 - variáveis aleatórias, probabilidades (marginal, condicional), distribuições de probabilidade, regra de Bayes, variância e covariância, modelos probabilísticos

Pré-requisitos

- [1] https://www.deeplearningbook.org/contents/part_basics.html
- [2] https://d2l.ai/chapter_preliminaries/index.html

Ferramentas

colab.research.google.com pytorch.org/ scikit-learn.org/ numpy.org/ pandas.pydata.org/

Aprendizagem de máquina e aprendizado profundo

INSTITUIÇÃO EXECUTORA

COORDENATIONA

APOIO

 Durante o processo de aquisição de dados, muitas variáveis geralmente não estão na mesma escala. O exemplo a seguir demonstra uma extração de informações de alguns indivíduos.

Indivíduo	Ano de Nasc.	Altura (m)	Peso (kg)
01	1996	1,80	83
02	2001	1,65	80
03	1980	1,70	90
04	1998	1,86	70
05	2005	1,67	68

No caso de imagens, os pixels geralmente estão disponibilizados na escala RGB que estão no intervalo entre 0 e 255.

- Para resolver esse problema de escala muito difusa, a aplicação do pré-processamento sobre os dados é de extrema importância, uma vez que os pesos treinados no processo pode ser sensível a essas variações.
- Aplicações de uma normalização como a Standard Scaler é frequentemente utilizada para resolver esses problemas, uma vez que normaliza os valores para a média zero e desvio padrão unitário.

- Além do caso de valores de diferentes features, algumas informações podem se tornar ausentes durante o processo de aquisição de dados, seja por falha do equipamento ou informação que não existia.
- Nesse caso, os valores são tidos como not a number (NAN), no qual nenhuma informação pode ser inferida nesse caso. Por esse motivo, o tratamento desses dados deve ser aplicado antes do treinamento dos modelos.
- Alguns tratamentos podem ser aplicados nesse caso, como a remoção da amostra que apresenta esse problema ou introduzir o valor médio das amostras no dado ausente.

Álgebra Linear

Algebra Linear

Soma ou multiplicação de um escalar pelo tensor (vetor ou matriz) resulta em uma saída com a mesma dimensão da original.

$$a \rightarrow escalar \; ; \; B = \begin{bmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \dots & b_{mn} \end{bmatrix}$$

$$a \cdot B = \begin{bmatrix} a \cdot b_{11} & \dots & a \cdot b_{1n} \\ \vdots & \ddots & \vdots \\ a \cdot b_{m1} & \dots & a \cdot b_{mn} \end{bmatrix}$$

$$a + B = \begin{bmatrix} a + b_{11} & \dots & a + b_{1n} \\ \vdots & \ddots & \vdots \\ a + b_{m1} & \dots & a + b_{mn} \end{bmatrix}$$

$$a \cdot B = \begin{bmatrix} a \cdot b_{11} & \dots & a \cdot b_{1n} \\ \vdots & \ddots & \vdots \\ a \cdot b_{m1} & \dots & a \cdot b_{mn} \end{bmatrix}$$

Álgebra Linear

- A realização de operações elemento por elemento gera uma saída de mesma dimensão dos tensores de entrada.
- Note que o produto elemento a elemento, gera um operador conhecido com produto da matriz de Hadamard

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \qquad A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n+}b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{bmatrix}$$

$$B = egin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \ b_{21} & b_{22} & \cdots & b_{2n} \ dots & dots & \ddots & dots \ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix}$$

$$B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix} \qquad A \odot B = \begin{bmatrix} a_{11}b_{11} & a_{12}b_{12} & \dots & a_{1n}b_{1n} \\ a_{21}b_{21} & a_{22}b_{22} & \cdots & a_{2n}b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}b_{m1} & a_{m2}b_{m2} & \dots & a_{mn}b_{mn} \end{bmatrix}$$

Álgebra Linear

Produto vetorial

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} e y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$x \cdot y = \sum_{i=1}^{n} x_i y_i$$

Algebra Linear

Multiplicação de Matrizes.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{bmatrix} = \begin{bmatrix} a_1^{\mathsf{T}} \\ a_2^{\mathsf{T}} \\ \vdots \\ a_n^{\mathsf{T}} \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{bmatrix} = \begin{bmatrix} a_1^\top \\ a_2^\top \\ \vdots \\ a_n^\top \end{bmatrix} \qquad B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{n2} & \dots & b_{nm} \end{bmatrix} = [b_1 \ b_2 \ \cdots \ b_m]$$

$$C = AB = \begin{bmatrix} a_1^\top \\ a_2^\top \\ \vdots \\ a_n^\top \end{bmatrix} [b_1 \quad b_2 \quad \cdots \quad b_m]$$

Cálculo

- Cálculo
 - Derivada

$$f: \mathbb{R} \to \mathbb{R}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- Cálculo
 - Derivada parcial e gradientes

$$f: \mathbb{R}^n \to \mathbb{R}$$

$$\frac{\partial f(x)}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_{i-1}, x_i + h, x_{i+1}, \dots, x_n) - f(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n)}{h}$$

$$\nabla_{x} f(X) = \left[\partial_{x_{1}} f(x), \ \partial_{x_{2}} f(x), \ \cdots, \ \partial_{x_{n}} f(x) \right]$$

Probabilidade e Estatística

- A probabilidade é um valor que determina a possibilidade de um evento acontecer, quanto maior esse valor, maior as chances de ocorrência desse evento.
- A probabilidade de um evento acontecer é um número que se encontra no intervalo [0, 1], no qual 1 (um) significa certeza do evento acontecer e 0 (zero) o evento é impossível.
- A soma de todas as probabilidade de um espaço amostral é 1 (um).

Probabilidade e Estatística

 Dados um conjunto de variáveis aleatórias independentes P, a probabilidade de ocorrer dois eventos simultâneos é o produto da probabilidade dos eventos separadamente.

$$P(X, Y) = P(X) P(Y)$$

 Teorema de Bayes é a probabilidade de um evento ocorrer, dado um conhecimento a priori.

$$P(Y \mid X) = \frac{P(X \mid Y) P(Y)}{P(X)}$$

$$P(Y \mid X) = \frac{P(X \mid Y) P(Y)}{\sum_{a} P(X \mid Y = a) P(Y = a)}$$