МИНОБРНАУКИ РОССИИ

«Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)» (СПбГЭТУ)

Кафедра математического обеспечения и применения ЭВМ

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ **Разработка алгоритма распределения нагрузки между сетями 3G и WLAN для мобильных устройств**

Выполнил: Амеличев Н.В., гр. 6395

Руководитель: Кринкин К.В., к.т.н.

Санкт-Петербург 2012

Введение Интернет Сеть мобильного оператора SGi PDN-GW **GPRS** Core Network (GGSN, SGSN...) S2a Точка доступа **WLAN** Точка доступа Базовые станции **WLAN** Точка доступа сотовой сети **WLAN** Мобильное устройство на базе ОС Linux

Постановка задачи

Цель: реализовать систему для разгрузки сетей 3G по сетям WLAN, позволяющую гибко изменять критерии разгрузки.

Требования: работа на мобильных устройствах с ОС Linux.

Задачи:

- 1. Разработка метода оценки сетей.
 - 1. Выбор оцениваемых параметров сетей.
 - 2. Сопоставление количественных значений параметров сети и их качественных оценок.
 - 3. Разработка функции, оценивающей качество сети по оценкам ее параметров.
- 2. Разработка системы автоматического управления подключениями мобильного устройства к сети.
 - 1. Разработка подсистемы обнаружения близлежащих мобильных сетей, измерения их параметров и оценки сетей на основании текущих и предыдущих измерений.
 - 2. Разработка подсистемы мониторинга состояния близлежащих сетей.
 - 3. Разработка подсистемы разгрузки сетей 3G через WLAN.
- 3. Тестирование разработанного ПО.

Необходимость разгрузки сетей 3G

Глобальный трафик мобильных устройств

Развитие технологий разгрузки сетей 3G через WLAN

Поддержка **хэндовера** 3G↔WLAN включена в стандарты **3GPP Release 8**

ЗGPP Release 10: поддержка соединения через несколько сетей доступа со стороны оборудования мобильного оператора. Часть данных направляется через 3G, часть — через WLAN

Первое коммерческое решение для балансировки нагрузки между 3G и WLAN на базе 3GPP Release 10

CnE (Connectivity Engine):

– работает на

мобильном устройстве

- выбирает наилучший канал связи согласно:
 - политикам мобильного оператора;
 - характеристикам доступных сетей;
 - типу передаваемых данных;
 - состоянию устройства (остаток заряда батареи и т.п.).

Выбор требуемой сети

$$f[N] = \sum_{i=1}^{n} w_{1i} R^{2}(FIP_{i}) + \sum_{j=1}^{m} w_{2j} R(SIP_{j}) - P = \Sigma_{0} - P$$

Значение от 1 до 30, чем больше – тем «лучше» сеть

R(X) — оценка сетевого параметра X по 5-балльной шкале

Штраф.

He более $\sum_0/2$

Весовые коэффициенты w_{kl}

$$0 \le w_{1i}, w_{2j} \le 1$$
 $\sum w_{1i} = 1$ $0 \le \sum w_{2j} \le 1$

Профиль <i>P</i> ₁ VolP						
	Параметр	Bec				
1	Пропускная способность	50%				
	Мощность сигнала	50%				
2	Потеря пакетов	65%				
	Латентность	20%				
	Джиттер	15%				
	•					

Профиль P_3 Быстрое перемещение

Профиль P_4 Низкий заряд
батареи

Профиль *P_K*

Наборы весов группируются в **весовые профили**, соответствующие различным видам **нагрузки** и различным **состояниям** устройства. При оценке сетей все применимые к текущему состоянию профили **комбинируются** в один.

Архитектура системы

Близлежащие сети

Анализатор: алгоритм работы

Анализатор: компоненты

Подсистема «Анализатор» — объектно-ориентированный **каркас** (*framework*), на базе которого можно разрабатывать решения по обнаружению сетей, измерению их параметров и оценке сетей.

Анализатор: диаграмма классов

Монитор: алгоритм работы

Переключатели: распределение нагрузки

Технологии реализации

- Android: 51% рынка (3 кв. 2011 г.)
- Монитор сервис Android (на Java) + форма для показа состояния сети
- Анализатор native приложение
 (на C++/Qt) с использованием
 Necessitas и Ministro
- Переключатели shell-скрипты, использующие BusyBox,
 OpenVPN, wireless-tools

Графический интерфейс

Тестирование: тестовый стенд

- rooted
- BusyBox
- OpenVPN

Тестирование: фрагменты сетевых трасс

• ICMP (ping request, ping reply) посылаются и принимаются через 3G-интерфейс с адресом **192.168.1.80**:

• HTTP-запросы — через WLAN-интерфейс с адресом **10.40.115.53**:

Результаты работы

- Разработана система разгрузки сетей 3G по сетям WLAN, позволяющая гибко изменять критерии разгрузки в зависимости от характеристик обнаруживаемых сетей и параметров мобильного устройства:
- 1. Выбран **способа оценки качества сетей** набор основных параметров (мощность сигнала, отношение сигнал/шум, пропускная способность, время существования сети), измеряемых для сети и произведено сопоставление их количественным значениям качественных оценок по 5-балльной шкале.
- 2. Разработана система автоматического управления подключениями мобильного устройства к сети, состоящая из системного сервиса мониторинга состояния близлежащих сетей, подсистемы обнаружения сетей, измерения их параметров и оценки на базе способа из п. 1; а также скрипты для разгрузки всего трафика, кроме ICMP, через WLAN.
- 3. Разработанное ПО было успешно протестировано.

Направления дальнейших исследований

- Полномасштабное тестирование разработанного прототипа
 - Езда в машине
 - Метро
 - Кафе с доступом WiFi
 - и т.д.
- Добавление правил, согласно которым сеть может быть исключена из процесса оценки вообще:
 - Отключение WLAN при низком заряде батареи
 - Отключение WLAN при быстром движении
- **Продвинутое управление трафиком** через 3G и WLAN на стороне клиента с помощью утилиты *tc* (Traffic Control)
 - Если устройство работает от батареи, большую часть трафика направлять через 3G
 - и т.д.

Вопросы и ответы

Выбор параметров для оценки сети

$$f[N] \rightarrow \max$$

Параметры категории 1 — оценка качества сети, с которой устройство еще не соединено:

Мощность сигнала, дБм или % Отношение сигнал/шум, дБ

Макс. пропускная способность (DL), Мбит/с **Время существования сети**, мин.

— **Параметры категории 2** — оценка качества сети, с которой установлено подключение **Потери пакетов**, % **Латентность** (roundtrip time), мс **Джиттер**, мс

Сопоставление значений параметров и оценок по **5-балльной** шкале (больше = лучше):

Мощность сигнала, дБм	Оценка	Комментарий
> -30	****	Максимальный уровень сигнала для сетей 802.11
[-30, -45]	****	
(-45, -60]	***	
(-60, -80]	**	Типичный уровень сигнала 802.11
< -80	*	Фоновый шум

Пример расчета оценки сети

- Штрафа нет (P=0)
- Используемый весовой профиль:

$$w_{1i} = 1/n, w_{2i} = 1/m$$

	Параметр сети	Значение Х	У Оценка R(X)		Bec
1	Мощность сигнала	-50 дБм		3	1/4
	Отношение сигнал/шум	30 дБ		4	1/4
	Пропускная способность	4 Мбит/с		2	1/4
	Время существования	15 мин		4	1/4
2	Потери пакетов	0.35%		3	1/3
	Латентность	65 мс		3	1/3
	Джиттер	1 мс		2	1/3
Оценка сети в целом $f[N]$				14 из 3	30

Переключатели

- Если доступны обе сети, нагрузка распределяется:
 - в зависимости от протокола, № порта...
- Доступ к WLAN производится через OpenVPNтуннель **tun0**, что позволяет менять реальный IPадрес узла в WLAN-сети незаметно для приложения