# Guía Laboratorio 6 Procesamiento Digital de Señales

Paula Pérez, Alejandro Escobar y Cristian Ríos 2024-1

#### **NOTAS:**

- Enviar el informe del laboratorio con el siguiente nombre: Lab6\_PDS\_Apellido\_Nombre.ipynb
- Enviar junto con el informe los archivos adicionales generados y descargados. Todo esto debe ir en un archivo comprimido con el siguiente nombre: Lab6\_PDS\_Apellido\_Nombre.zip
- OJO! Recuerde tener cuidado con la indentación y caracteres como el guión bajo y las llaves cuando copie y pegue el código entregado en esta guía.
- Las preguntas deberán ser resueltas en el notebook indicando sus respectivos numerales.

#### 1. Introducción - Serie discreta de Fourier

Una señal discreta x[n] que se repite periódicamente cada N intervalos de tiempo, puede representarse en términos de la serie de Fourier tal y como se muestra en la ecuación 1.

$$x[n] = \sum_{k=0}^{N-1} C_k \cdot e^{j\frac{2\pi kn}{N}}$$
 (1)

Los valores de  $C_k$  son conocidos como coeficientes de la serie de Fourier y pueden ser calculados a partir de la ecuación 2.

$$C_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \cdot e^{-j\frac{2\pi kn}{N}}$$
 (2)

### 2. Generación de Señales

Dada la señal:

$$x(n) = \begin{cases} 2 * (C+1) & -\frac{N}{2} < n < 0 \\ 0 & n = 0 \\ -2 * (C+1) & 0 < n < \frac{N}{2} \end{cases}$$
 (3)

Donde N = (30 + C \* 2) y C es el último dígito de su cédula.

• Grafique la señal x(n) con su respectivo vector de tiempo n para una frecuencia de muestreo de 1Hz. ¿Qué puede decir sobre la señal graficada?

Nota: use la función plt.stem(n,x) para graficar la señal.

■ Es la señal par o impar. ¿Por qué?

## 3. Coeficientes de la serie de Fourier

- ullet Calcule los coeficientes par e impar de la serie de Fourier para un k=12.
- Grafique en un subplot el espectro de potencia para la parte par y la impar. ¿Qué puede concluir a partir de esto? ¿Tiene coeficientes en cero o muy cercanos a cero? ¿Por qué?
- lacktriangle Construya los coeficientes  $C_k$  a partir de los coeficientes pares e impares y grafíquelos.

**Nota**: recuerde que el espectro es simétrico, por lo tanto debe reflejar los coeficientes para construir la parte negativa del espectro. Debería obtener una gráfica como la siguiente:



• Calcule la potencia de la señal a partir de los coeficientes encontrados y compruebe el teorema de Parseval. ¿Obtuvo el resultado esperado? Explique.

#### 4. Síntesis de señales

- Reconstruya la señal x(n) a partir de los coeficientes extraídos usando la ecuación de síntesis (Ecuación 1). Grafique y concluya acerca de la señal obtenida.
- Repita el procedimiento anterior para un k = 5 y  $k = (\frac{N}{2} 1)$ . ¿Qué se puede observar al reducir y al incrementar el número de coeficientes?
- ¿Fue posible recuperar la señal en su totalidad? Cuántos coeficientes considera necesarios para recuperar la señal en su totalidad. Explique.

#### 5. Conclusiones

Realice conclusiones generales sobre la práctica. Recuerde que las conclusiones son parte fundamental de su evaluación en el laboratorio, tómese el tiempo de pensar las conclusiones.