OPEN MP PROGRAMMING: ASSIGNMENT 3

MEASUREMENT REPORT

Siddhartha Srinadhuni Madhukar Enugurthi

9508286854 9506077537

sisr16@student.bth.se maen16@student.bth.se

Measurement Report:

Execution time of Quick Sort.

Time	Sequential Version of Quick Sort	
User	25.60 seconds	
System	0.13 seconds	
Elapsed	0:25.80 seconds	
CPU Usage	99%	

Table 1: Sequential execution time of quick sort.

Time	Parallel Version of Quick Sort	
No. of CPUs	1 CPU	8 CPU
User	25.62 seconds	25.86 seconds
System	0.13 seconds	0.13 seconds
Elapsed	0:25.76 seconds	0:07.6 seconds
CPU Usage	99%	367%

Table 2: Parallel execution time of quick sort on 1 and 8CPUs.

The parallel version of quick sort evidently performs better than the sequential version. The speedups established when 8CPUs are used is 3.39. To overcome the overhead when threads are created, a small segment of code is implemented sequentially.

Execution time of Gaussian Elimination.

Time	Sequential Version of Gaussian Elimination	
User	24.45 seconds	
System	0.03 seconds	
Elapsed	0:24.53 seconds	
CPU Usage	99%	

Table 3: Serial execution time of Gaussian Elimination

Time	Parallel Version of Gaussian Elimination	
No. of CPUs	1 CPU	8 CPU
User	26.65 seconds	59.44 seconds
System	0.04 seconds	8.45 seconds
Elapsed	0:26.71 seconds	0:09.48 seconds
CPU Usage	99%	716%

Table 4: Parallel execution time of Gaussian Elimination.

Our OpenMP implementation of the Gaussian elimination program has a **speedup of 2.6** (on 8 cpus) over the sequential version.

Compiling and execution procedures for quick sort:

- The local machine has to be connected with kraken. Kraken.tek.bth.se is used as a remote computer.
- For compiling the parallel version of Quicksort using OpenMP, use the command "gcc fopenmp -o parqs quicksortfinal.c" where quicksortfinal.c is the file name.
- The number of cores can be changes in the commandline using export OMP_NUM_THREADS= 1 or 8 after compiling
- Upon compiling, use "/usr/bin/time ./parqs" to measure the execution time.

Compiling and execution procedures for Gaussian elimination:

- For compiling the parallel version of Gaussian Elimination using OpenMP, use the command "gcc -fopenmp -o pargauss gomp.c" where gomp.c is the file name.
- The number of cores can be switched between 1 and 8 within the declaration in NUMB_CORES. Meaning, if the program has to be executed on 8 cores, NUMB_CORES has to be 8 in the code.
- Upon compiling, use "/usr/bin/time ./pargauss" to measure the execution time.