Polynomials

Alison Miller

June 14, 2010

Things to Know:

(This list is taken from handouts of Melanie Wood, as are some of the problems.)

- Coefficients: Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ be a polynomial. Then the kth symmetric sum of the roots is equal to $(-1)^k a_{n-k}/a_n$.
- Division algorithm: Let a(x) and b(x) be polynomials. There exist unique polynomials q(x) and r(x) with $\deg(r) < \deg(d)$ and such that a(x) = b(x)q(x) + r(x).
- Rational root theorem: Let $p(x) = a_n x^n + \cdots + a_0$ be a polynomial with integer coefficients. If p(x) has a rational root $\frac{r}{s}$ with $r, s \in \mathbb{Z}$ and (r, s) = 1 then $r \mid a_0$ and $s \mid a_n$.
- Gauss's Lemma: If $p(x) \in \mathbb{Z}[x]$ factors in $\mathbb{Q}[x]$, then it factors in $\mathbb{Z}[x]$.
- Eisenstein's Criterion: Let $p(x) = a_n x^n + \cdots + a_0$ be a polynomial with real coefficients, and let q be a prime that divides a_0, a_1, \dots, a_{n-1} but not a_n . If $q^2 \nmid a_0$ then p(x) is irreducible over the integers (and thus also over the rationals, by Gauss's lemma).
- Descartes' Rule of Signs: Let $p(x) = a_n x^n + \cdots + a_0$ be a polynomial with real coefficients, and let V be the number of sign changes in the coefficient list a_n, \ldots, a_0 where we ignore zero coefficients. If p(x) has N positive roots (counted by multiplicity) then N = V 2k for some non-negative integer k. (Use this for p(-x) to get the statement for negative roots of p(x).
- Rolle's Theorem: Let p(x) be a polynomial with real coefficients. Between any two zeroes of p(x) lies a zero of p'(x).
- Lagrange Interpolation: A polynomial of degree at most n with $p(a_k) = b_k$, $0 \le k \le n$ is given by

$$p(x) = \sum_{k=0}^{n} \frac{b_k(x - a_0)(x - a_1) \cdots (x - a_{k-1})(x - a_{k+1}) \cdots (x - a_n)}{(a - a_0)(a - a_1) \cdots (a - a_{k-1})(a - a_{k+1}) \cdots (a - a_n)}.$$

• Newtonian interpolation (finite differences): A polynomial p of degree at most n with $p(k) = b_k$, $0 \le k \le n$, is given by

1

$$p(x) = \sum_{k=0}^{n} \Delta^{k} p(0) {x \choose k},$$

where $\Delta p(x) = p(x+1) - p(x)$ and $\Delta^k p(x) = \Delta(\Delta^{k-1}p(x))$.

• Chebyshev Polynomials: The *n*th Chebyshev polynomial is defined so that $T_n(\cos \theta) = \cos(n\theta)$. They satisfy the recurrence

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \quad n \ge 1$$

with $T_0(x) = 1$ and $T_1(x) = x$. (There are also Chebyshev polynomials of the second kind which satisfy $U_n(\cos \theta) = \frac{\sin(n+1)\theta}{\sin \theta}$ and have a recurrence of the same form. These are much less common, though.)

• Maximum Modulus Theorem: Let p(x) be a polynomial with complex coeffcients. Let D be an open region in the complex plane, and let ∂D be the boundary of D. Then $\max_{z \in D \cap \partial D} |p(z)| = \max_{z \in \partial D} |p(z)|$.

What do these problems have in common?

- **1.** Let A_1, A_2, \ldots, A_n be points in the plane, and \overline{BC} a segment of length 2. Prove that there exists a point M on \overline{BC} such that $MA_1 \cdot MA_2 \cdots MA_n \geq \frac{1}{2^{n-1}}$.
- **2** (Vietnam). Find all polynomials P(x) with integer coefficients such that the polynomial $Q(x) = (x^2 + 6x + 10) \cdot P^2(x) 1$ is the square of a polynomial with integer coefficients.
- **3.** Let $\{P_n(x)\}_{n=1}^{\infty}$ be a sequence of polynomials such that $P_1(x) = x^2 1$, $P_2(x) = 2x^2(x^2 1)$, and

$$P_{n-1}(x)P_{n+1}(x) = (P_n(x))^2 - (x^2 - 1)^2.$$

Let S_n denote the sum of the absolute values of the coefficients of $P_n(x)$. For each positive integer n find the largest non-negative integer k_n such that 2^k divides S_n .

- **4** (MOP '03). Let k be a positive integer. Prove that $\sqrt{k+1} \sqrt{k}$ is not the real part of a complex number z such that $z^n = 1$ for some positive integer n.
- **5** (IMO Shortlist 2003). The sequence a_0, a_1, a_2, \ldots is defined as follows: $a_0 = 2$, $a_{k+1} = 2a_k^2 1$ for $k \ge 0$. Prove that if an odd prime p divides a_n , then 2^{n+3} divides $p^2 1$.
- **6** (IMO Shortlist 2003). Let \mathbb{R}^+ be the set of all positive real numbers. Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ that satisfy the following conditions:
 - $f(xyz) + f(x) + f(y) + f(z) = f(\sqrt{xy})f(\sqrt{yz})f(\sqrt{zx})$ for all $x, y, z \in \mathbb{R}^+$;
 - f(x) < f(y) for all $1 \le x < y$.

General Problems

- 7. Determine all polynomials P(x) with real coefficients such that $P(x)^2 + P(1/x)^2 = P(x)^2 P(1/x)^2$ for all $x \neq 0$.
- **8** (MOP '08). Let P_n be a polynomial of degree n with real coecients, and let t be a real number with $t \ge 3$. For integers $n \ge 0$, show that

$$\max_{0 \le k \le n+1} |t^n - P_n(k)| \ge 1$$

- **9.** Let p, q, r be polynomials with real coefficients, such that at least one of the polynomials has degree 2 and at least one of the polynomials has degree 3. Assume that $p^2 + q^2 = r^2$: Show that at least one of the polynomials both has degree 3 and has 3 (not necessarily distinct) real roots.
- 10 (USAMO 2002). Prove that any monic polynomial (a polynomial with leading coefficient 1) of degree n with real coefficients is the average of two monic polynomials of degree n with n real roots.
- 11 (MOP 01). Let P(x) be a real-valued polynomial with P(n) = P(0). Show that there exist at least n distinct (unordered) pairs of real numbers $\{x,y\}$ such that x-y is a real number and P(x) = P(y).
- 12 (USAMO 88). A certain polynomial product of the form

$$(1-z^{b_1})(1-z^{b_2})\cdots(1-z^{32})^{b_{32}}$$

where the b_k are positive integers, has the surprising property that if we multiply it out and discard all terms involving z to a power larger than 32, we are left with 1-2z. Find b_{32} .