① L'ensemble ℝ des nombres réels peut être représenté par une droite. C'est un espace de dimension 1.

- ① L'ensemble $\mathbb R$ des nombres réels peut être représenté par une droite. C'est un espace de dimension 1.
- 2 Le plan \mathbb{R}^2 de dimension 2 est l'ensemble des couples $\binom{x_1}{x_2}$ de nombres réels.

- ① L'ensemble

 R des nombres réels peut être représenté par une droite. C'est un espace de dimension 1.
- 2 Le plan \mathbb{R}^2 de dimension 2 est l'ensemble des couples $\binom{x_1}{x_2}$ de nombres réels.
- § L'espace \mathbb{R}^3 de dimension 3 est l'ensemble des triplets $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ de nombres réels.

- L'ensemble R des nombres réels peut être représenté par une droite. C'est un espace de dimension 1.
- 2 Le plan \mathbb{R}^2 de dimension 2 est l'ensemble des couples $\binom{x_1}{x_2}$ de nombres réels.
- § L'espace \mathbb{R}^3 de dimension 3 est l'ensemble des triplets $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ de nombres réels.
- 4 L'espace \mathbb{R}^n de dimension $n \in \mathbb{N}^*$ est l'ensemble des n-uplets $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ de nombres réels.

Définition

On appelle \mathbb{R}^n l'ensemble des n-uplets de nombres réels :

$$\mathbb{R}^n = \{(x_1, \ldots, x_n) : x_1 \in \mathbb{R}, x_2 \in \mathbb{R}, \ldots, x_n \in \mathbb{R}\}.$$

Définition

On appelle \mathbb{R}^n l'ensemble des n-uplets de nombres réels :

$$\mathbb{R}^n = \{(x_1, \dots, x_n) : x_1 \in \mathbb{R}, x_2 \in \mathbb{R}, \dots, x_n \in \mathbb{R}\}.$$

On peut noter les éléments de \mathbb{R}^n soit en les écrivant

 horizontalement: (1,4,-7). On parle alors de vecteur ligne.

Définition

On appelle \mathbb{R}^n l'ensemble des n-uplets de nombres réels :

$$\mathbb{R}^n = \{(x_1, \dots, x_n) : x_1 \in \mathbb{R}, x_2 \in \mathbb{R}, \dots, x_n \in \mathbb{R}\}.$$

On peut noter les éléments de \mathbb{R}^n soit en les écrivant

- horizontalement: (1,4,-7). On parle alors de vecteur ligne.
- verticalement : $\begin{pmatrix} 1 \\ 4 \\ -7 \end{pmatrix}$ on parle alors de vecteur colonne.

Définition

On appelle \mathbb{R}^n l'ensemble des n-uplets de nombres réels :

$$\mathbb{R}^n = \{(x_1, \dots, x_n) : x_1 \in \mathbb{R}, x_2 \in \mathbb{R}, \dots, x_n \in \mathbb{R}\}.$$

On peut noter les éléments de \mathbb{R}^n soit en les écrivant

- horizontalement : (1, 4, -7). On parle alors de vecteur ligne.
- verticalement : $\begin{pmatrix} 1 \\ 4 \\ -7 \end{pmatrix}$ on parle alors de vecteur colonne.

La transformation qui associe à un vecteur ligne un vecteur colonne s'appelle transposition:

$$^{t}(1,4,-7)=(1,4,-7)^{T}=\begin{pmatrix}1\\4\\-7\end{pmatrix}.$$

La somme sur \mathbb{R}^n

Définition (Somme)

Si on a deux vecteurs $\vec{x} = (x_1, \dots, x_n)$ et $\vec{y} = (y_1, \dots, y_n)$ de \mathbb{R}^n , on **définit** leur "somme" :

$$\vec{x} + \vec{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n).$$

La somme sur \mathbb{R}^n

Définition (Somme)

Si on a deux vecteurs $\vec{x} = (x_1, \dots, x_n)$ et $\vec{y} = (y_1, \dots, y_n)$ de \mathbb{R}^n , on **définit** leur "somme" :

$$\vec{x} + \vec{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n).$$

$$\left(\begin{array}{c}1\\-1\\3\end{array}\right)+\left(\begin{array}{c}2\\1\\7\end{array}\right)=\left(\begin{array}{c}3\\0\\10\end{array}\right),$$

$$\left(\begin{array}{c}\sqrt{2}\\-27\\\pi\end{array}\right)+\left(\begin{array}{c}1\\10\\0\end{array}\right)=\left(\begin{array}{c}1+\sqrt{2}\\-17\\\pi\end{array}\right).$$

Produit par scalaire

Définition (Produit par scalaire)

Si on a un vecteur $\vec{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n$ et un nombre réel λ de \mathbb{R} , on **définit** leur "produit" :

$$\lambda \vec{x} = (\lambda x_1, \lambda x_2, \dots, \lambda x_n).$$

Produit par scalaire

Définition (Produit par scalaire)

Si on a un vecteur $\vec{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n$ et un nombre réel λ de \mathbb{R} , on **définit** leur "produit" :

$$\lambda \vec{x} = (\lambda x_1, \lambda x_2, \dots, \lambda x_n).$$

$$2\left(\begin{array}{c}1\\-1\\3\end{array}\right)=\left(\begin{array}{c}2\\-2\\6\end{array}\right),$$

$$\sqrt{2} \left(\begin{array}{c} \sqrt{2} \\ -27 \\ \pi \end{array} \right) = \left(\begin{array}{c} 2 \\ -27\sqrt{2} \\ \pi\sqrt{2} \end{array} \right).$$

Vecteur nul et opposé

• Le vecteur nul de
$$\mathbb{R}^n$$
 est le vecteur $\vec{0} = \begin{pmatrix} 0 \\ \vdots \\ \hat{0} \end{pmatrix}$

Vecteur nul et opposé

- Le vecteur nul de \mathbb{R}^n est le vecteur $\vec{0} = \begin{pmatrix} 0 \\ \vdots \\ \hat{0} \end{pmatrix}$
- L'opposé de \vec{u} est le vecteur $-\vec{u} = (-1) \cdot \vec{u} = \begin{pmatrix} -u_1 \\ \vdots \\ -u_n \end{pmatrix}$

Combinaison linéaire

Définition (Combinaison linéaire)

Si on a deux vecteurs $\vec{x}=(x_1,\ldots,x_n)$ et $\vec{y}=(y_1,\ldots,y_n)$ de \mathbb{R}^n et deux scalaires $\lambda_1,\lambda_2\in\mathbb{R}$, on appelle "leur combinaison linéaire à poids λ_1,λ_2 " le vecteur :

$$\lambda_1 \vec{x} + \lambda_2 \vec{y} = (\lambda_1 x_1 + \lambda_2 y_1, \lambda_1 x_2 + \lambda_2 y_2, \dots, \lambda_1 x_n + \lambda_2 y_n).$$

Combinaison linéaire

Définition (Combinaison linéaire)

Si on a deux vecteurs $\vec{x}=(x_1,\ldots,x_n)$ et $\vec{y}=(y_1,\ldots,y_n)$ de \mathbb{R}^n et deux scalaires $\lambda_1,\lambda_2\in\mathbb{R}$, on appelle "leur combinaison linéaire à poids λ_1,λ_2 " le vecteur :

$$\lambda_1\vec{x} + \lambda_2\vec{y} = (\lambda_1x_1 + \lambda_2y_1, \lambda_1x_2 + \lambda_2y_2, \dots, \lambda_1x_n + \lambda_2y_n).$$

$$2\left(\begin{array}{c}1\\-1\\3\end{array}\right)+3\left(\begin{array}{c}-1\\1\\0\end{array}\right)=\left(\begin{array}{c}2\\-2\\6\end{array}\right)+\left(\begin{array}{c}-3\\3\\0\end{array}\right)=\left(\begin{array}{c}-1\\1\\6\end{array}\right).$$

Exercice

La combinaison linéaire de
$$\vec{x} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$
 et $\vec{y} = \begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix}$ à poids

$$\lambda_1 = 2$$
 et $\lambda_2 = -1$ est :

Définition (Espace vectoriel)

Un espace vectoriel $sur \mathbb{R}$ est un ensemble E dont les éléments sont dits vecteurs qui est muni de deux loi de composition :

Définition (Espace vectoriel)

Un espace vectoriel sur \mathbb{R} est un ensemble E dont les éléments sont dits vecteurs qui est muni de deux loi de composition :

- <u>La somme</u> + : E × E → E qui associe à deux vecteurs u, v un vecteur noté u + v et qui a les propriétés suivantes:
 - $\forall u, v \in E$ on a u + v = v + u (commutativité),
 - $\forall u, v, w \in E$ on a (u + v) + w = u + (v + w) (associativité),
 - il existe un "élément neutre" noté $\vec{0}$, ou 0_E , ou 0, tel que $\forall u \in E : \vec{0} + u = u$,
 - $\forall u \in E$ il existe un vecteur noté -u tel que $u + (-u) = \vec{0}$.

Définition (Espace vectoriel)

Un espace vectoriel sur \mathbb{R} est un ensemble E dont les éléments sont dits vecteurs qui est muni de deux loi de composition :

- <u>La somme</u> + : E × E → E qui associe à deux vecteurs u, v un vecteur noté u + v et qui a les propriétés suivantes:
 - $\forall u, v \in E$ on a u + v = v + u (commutativité),
 - $\forall u, v, w \in E$ on a (u + v) + w = u + (v + w) (associativité),
 - il existe un "élément neutre" noté $\vec{0}$, ou 0_E , ou 0, tel que $\forall u \in E : \vec{0} + u = u$,
 - $\forall u \in E$ il existe un vecteur noté -u tel que $u + (-u) = \vec{0}$.
- Le produit par scalaire $\cdot : \mathbb{R} \times E \to E$ qui associe à $\lambda \in \mathbb{R}$ et à $u \in E$ un vecteur noté $\lambda \cdot u$ ou λu et tel que :
 - $\forall \lambda, \mu \in \mathbb{R}$ on a $\lambda(\mu u) = (\lambda \mu)u$,
 - $\forall u \in E$ on a 1u = u.

De plus, on a les propriétés suivantes de compatibilité entre + et \cdot :

- $\forall \lambda \in \mathbb{R}, \forall u, v \in E$ on a $\lambda(u+v) = \lambda u + \lambda v$,
- $\forall \lambda, \mu \in \mathbb{R}, \forall u \in E \text{ on a } (\lambda + \mu)u = \lambda u + \mu u.$

Remarque

Toutes ces propriétés font que la somme et le produit par scalaire des vecteurs ont le comportement habituel.

Exemple

Sont des espaces vectoriels:

• \mathbb{R}^n avec la somme et le produit par scalaire donnés avant. Son vecteur neutre est $\vec{0}$ =

Exemple

Sont des espaces vectoriels:

• \mathbb{R}^n avec la somme et le produit par scalaire donnés avant. Son vecteur neutre est $\vec{0} = (0, 0, 0, 0, \dots, 0)$ (vecteur nul).

Exemple

Sont des espaces vectoriels:

- \mathbb{R}^n avec la somme et le produit par scalaire donnés avant. Son vecteur neutre est $\vec{0} = (0, 0, 0, 0, \dots, 0)$ (vecteur nul).
- Les polynômes à coefficients réels.
- Les polynômes à coefficients réels de degré ≤ n.
- Les fonctions de [0,1] à valeur dans \mathbb{R} .

Exemple

Sont des espaces vectoriels:

- \mathbb{R}^n avec la somme et le produit par scalaire donnés avant. Son vecteur neutre est $\vec{0} = (0,0,0,0,\ldots,0)$ (vecteur nul).
- Les polynômes à coefficients réels.
- Les polynômes à coefficients réels de degré ≤ n.
- Les fonctions de [0,1] à valeur dans \mathbb{R} .

Exemple

Ne sont pas des espaces vectoriels : pourquoi ?

- Les fonctions de [0,1] à valeur dans \mathbb{R} telles que f(0)=3.
- Les polynômes à coefficients réels de degré exactement 2.

Sous-espaces vectoriels

Dans la suite E désignera un espace vectoriel sur \mathbb{R} .

Définition

Un sous ensemble F de E est un sous-espace vectoriel (ssev) s'il est <u>non-vide</u> et:

- ② ∀λ ∈ ℝ, v ∈ F on a λv ∈ F.
 En particulier F est un espace vectoriel.
 On résume les propriétés 1 et 2 en une seule propriété :
- ③ $\forall \lambda \in \mathbb{R}$, $\forall u, v \in F$, on a $u + \lambda v \in F$.

Exemple

 $F = \{\vec{0}\}\$ et F = E sont des sous-espaces vectoriels de E. Ces deux exemples existent en tout espace vectoriel E, ils sont donc dits les sous-espaces vectoriels triviaux de E.

$$F = \{(x, y, z) \in \mathbb{R}^3 : 3x + y + z = 0\}$$
 est un ssev de \mathbb{R}^3 .

- Il contient (0,0,0) car $3 \cdot 0 + 0 + 0 = 0$, donc est non vide.
- Si u = (x, y, z), $v = (x', y', z') \in F$, $\lambda \in \mathbb{R}$, alors 3x + y + z = 0 et 3x' + y' + z' = 0.

$$F = \{(x, y, z) \in \mathbb{R}^3 : 3x + y + z = 0\}$$
 est un ssev de \mathbb{R}^3 .

- Il contient (0,0,0) car $3 \cdot 0 + 0 + 0 = 0$, donc est non vide.
- Si u = (x, y, z), $v = (x', y', z') \in F$, $\lambda \in \mathbb{R}$, alors 3x + y + z = 0 et 3x' + y' + z' = 0. On a: $u + \lambda v = (x, y, z) + \lambda(x', y', z') = (x + \lambda x', y + \lambda y', z + \lambda z')$ et $3(x + \lambda x') + (y + \lambda y') + (z + \lambda z')$ $= 3x + y + z + \lambda(3x' + y' + z') = 0$.

$$F = \{(x, y, z) \in \mathbb{R}^3 : 3x + y + z = 0\}$$
 est un ssev de \mathbb{R}^3 .

- Il contient (0,0,0) car $3 \cdot 0 + 0 + 0 = 0$, donc est non vide.
- Si u = (x, y, z), $v = (x', y', z') \in F$, $\lambda \in \mathbb{R}$, alors 3x + y + z = 0 et 3x' + y' + z' = 0. On a: $u + \lambda v = (x, y, z) + \lambda(x', y', z') = (x + \lambda x', y + \lambda y', z + \lambda z')$ et $3(x + \lambda x') + (y + \lambda y') + (z + \lambda z')$ = $3x + y + z + \lambda(3x' + y' + z') = 0$. D'où $u + \lambda v \in F$.

Exercice

Soit $E = \mathbb{R}^2$ et $F = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}$. Laquelle des assertions suivantes est vraie?

- F est un ssev de E,
- 2 F n'est pas un ssev de E,
- ous ne pouvez pas dire si F est ou pas un ssev de E.

Exercice

Soit $E = \mathbb{R}^2$ et $F = \{(x, y) \in \mathbb{R}^2 : x + y = 2\}$. Laquelle des assertions suivantes est vraie?

- F est un ssev de E,
- F n'est pas un ssev de E,
- ovous ne pouvez pas dire si F est ou pas un ssev de E.

Sous-espaces vectoriels et systèmes linéaires homogènes

Soit (S_H) un système homogène :

$$(S_H) \begin{cases} a_{11}x_1 + a_{12}x_2 + & \cdots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + & \cdots + a_{2n}x_n = 0 \\ \vdots & + & \vdots = \vdots \\ a_{m1}x_1 + a_{m2}x_2 + & \cdots + a_{mn}x_n = 0. \end{cases}$$

Proposition

L'ensemble des solutions de (S_H) est un sous-espace vectoriel de \mathbb{R}^n .

Soit

$$(S)\begin{cases} 2x_1 + 3x_2 + x_3 = 0\\ x_1 - x_3 = 0. \end{cases}$$

Ses solutions sont :

Soit

$$(S)\begin{cases} 2x_1 + 3x_2 + x_3 = 0\\ x_1 - x_3 = 0. \end{cases}$$

Ses solutions sont :

$$Sol(S) = \{(t, -t, t) \in \mathbb{R}^3 : t \in \mathbb{R}\}.$$

Est-ce un sous-espace vectoriel de \mathbb{R}^3 ?

Soit

$$(S) \begin{cases} 2x_1 + 3x_2 + x_3 = 0 \\ x_1 - x_3 = 0. \end{cases}$$

Ses solutions sont :

$$Sol(S) = \{(t, -t, t) \in \mathbb{R}^3 : t \in \mathbb{R}\}.$$

Est-ce un sous-espace vectoriel de \mathbb{R}^3 ? Oui, en effet il est non vide car contient (0,0,0); de plus si $\lambda \in \mathbb{R}$ et $v,w \in Sol(S)$ alors $v=(t_1,-t_1,t_1)$ pour un certain $t_1 \in \mathbb{R}$ et $w=(t_2,-t_2,t_2)$ pour un certain $t_2 \in \mathbb{R}$. On a:

Soit

$$(S) \begin{cases} 2x_1 + 3x_2 + x_3 = 0 \\ x_1 - x_3 = 0. \end{cases}$$

Ses solutions sont :

$$Sol(S) = \{(t, -t, t) \in \mathbb{R}^3 : t \in \mathbb{R}\}.$$

Est-ce un sous-espace vectoriel de \mathbb{R}^3 ? Oui, en effet il est non vide car contient (0,0,0); de plus si $\lambda \in \mathbb{R}$ et $v,w \in Sol(S)$ alors $v=(t_1,-t_1,t_1)$ pour un certain $t_1 \in \mathbb{R}$ et $w=(t_2,-t_2,t_2)$ pour un certain $t_2 \in \mathbb{R}$. On a:

1
$$v + w = (t_3, -t_3, t_3)$$
 avec $t_3 = t_1 + t_2$, donc $v + w \in Sol(S)$.

Exemple

Soit

$$(S) \begin{cases} 2x_1 + 3x_2 + x_3 = 0 \\ x_1 - x_3 = 0. \end{cases}$$

Ses solutions sont :

$$Sol(S) = \{(t, -t, t) \in \mathbb{R}^3 : t \in \mathbb{R}\}.$$

Est-ce un sous-espace vectoriel de \mathbb{R}^3 ? Oui, en effet il est non vide car contient (0,0,0); de plus si $\lambda \in \mathbb{R}$ et $v,w \in Sol(S)$ alors $v=(t_1,-t_1,t_1)$ pour un certain $t_1 \in \mathbb{R}$ et $w=(t_2,-t_2,t_2)$ pour un certain $t_2 \in \mathbb{R}$. On a:

- **1** $v + w = (t_3, -t_3, t_3)$ avec $t_3 = t_1 + t_2$, donc $v + w \in Sol(S)$.
- ② $\lambda v = (t_4, -t_4, t_4)$ avec $t_4 = \lambda t_1$ donc $\lambda v \in Sol(S)$.

Exemple

Soit

$$(S) \begin{cases} 2x_1 + 3x_2 + x_3 = 0 \\ x_1 - x_3 = 0. \end{cases}$$

Ses solutions sont :

$$Sol(S) = \{(t, -t, t) \in \mathbb{R}^3 : t \in \mathbb{R}\}.$$

Est-ce un sous-espace vectoriel de \mathbb{R}^3 ? Oui, en effet il est non vide car contient (0,0,0); de plus si $\lambda \in \mathbb{R}$ et $v,w \in Sol(S)$ alors $v=(t_1,-t_1,t_1)$ pour un certain $t_1 \in \mathbb{R}$ et $w=(t_2,-t_2,t_2)$ pour un certain $t_2 \in \mathbb{R}$. On a:

- **1** $v + w = (t_3, -t_3, t_3)$ avec $t_3 = t_1 + t_2$, donc $v + w \in Sol(S)$.
- ② $\lambda v = (t_4, -t_4, t_4)$ avec $t_4 = \lambda t_1$ donc $\lambda v \in Sol(S)$.

Remarque

Si on dessine Sol(S) dans \mathbb{R}^3 , on obtient une droite qui passe par l'origine et par (1,-1,1): c'est une droite vectorielle.

Intersection de sous-espaces vectoriels

Théorème

Soit E un espace vectoriel sur \mathbb{R} et F_1 , F_2 deux sous-espaces vectoriels de E. Alors l'intersection $F_1 \cap F_2$ de F_1 et F_2 est un sous-espace vectoriel de E.

Intersection de sous-espaces vectoriels

Théorème

Soit E un espace vectoriel sur \mathbb{R} et F_1 , F_2 deux sous-espaces vectoriels de E. Alors l'intersection $F_1 \cap F_2$ de F_1 et F_2 est un sous-espace vectoriel de E.

Démonstration

 $F_1 \cap F_2$ est non vide car $\vec{0} \in F_1 \cap F_2$.

Si $u, v \in F_1$ et $\lambda \in \mathbb{R}$, alors $u + \lambda v \in F_1$ car F_1 est un ssev de E. Si $u, v \in F_2$ et $\lambda \in \mathbb{R}$, alors $u + \lambda v \in F_2$ car F_2 est un ssev de E. Donc si $u, v \in F_1 \cap F_2$ et $\lambda \in \mathbb{R}$, on a bien $u + \lambda v \in F_1 \cap F_2$.

Exemple

Soit $E = \mathbb{R}^2$, $F_1 = \{(x, y) \in \mathbb{R}^2 : x + 2y = 0\}$ et $F_2 = \{(x, y) \in \mathbb{R}^2 : 2x + y = 0\}$. Laquelle des assertions suivantes est vraie?

- \triangleright $F_1 \cap F_2$ est un ssev de E.
- **③** F_1 ∪ F_2 est un ssev de E.
- **4** Vous ne pouvez pas dire si $F_1 \cap F_2$ est un ssev de E.

Exemple

Soit $E = \mathbb{R}^2$, $F_1 = \{(x, y) \in \mathbb{R}^2 : x + 2y = 0\}$ et $F_2 = \{(x, y) \in \mathbb{R}^2 : 2x + y = 0\}$. Laquelle des assertions suivantes est vraie?

- **③** $F_1 \cup F_2$ est un ssev de E.
- **4** Vous ne pouvez pas dire si $F_1 \cap F_2$ est un ssev de E.

Réponse

 $F_1 \cap F_2$ est un ssev de E. En effet, $F_1 \cap F_2 = \{(0,0)\}$ est l'intersection des droites vectorielles d'équations x+2y=0 et 2x+y=0.

Exercice

Soit
$$E = \mathbb{R}^2$$
, $F_1 = \{(x, y) \in \mathbb{R}^2 : x = 0\}$ et $F_2 = \{(x, y) \in \mathbb{R}^2 : y = 0\}$. Alors $F_1 \cup F_2$ est :

- tout E,
- 2 un ssev de E,
- ovus ne pouvez pas dire si $F_1 \cap F_2$ est un ssev de E,
- 4 aucune des précédentes.

Somme de deux sous-espaces

Définition (Somme de deux sous-espaces)

Soient F et G deux sous-espaces vectoriels d'un \mathbb{R} -espace vectoriel E.

La somme de F et G est l'ensemble

$$F + G = \{u + v \mid u \in F, v \in G\}$$

Somme de deux sous-espaces

Définition (Somme de deux sous-espaces)

Soient F et G deux sous-espaces vectoriels d'un \mathbb{R} -espace vectoriel E.

La somme de F et G est l'ensemble

$$F + G = \{u + v \mid u \in F, v \in G\}$$

Proposition

F + *G* est un sous-espace vectoriel de *E*. C'est le plus petit sous-espace vectoriel de *E* contenant à la fois *F* et *G*.

Somme directe de deux sous-espaces

Définition (Somme directe de deux sous-espaces)

Soient F et G deux sous-espaces vectoriels d'un \mathbb{R} -espace vectoriel E. F et G sont supplémentaires dans E si $F \cap G = \{0_F\}$ et F + G = E.

On note alors $E = F \oplus G$ et on dit que E est la somme directe de F et G.

Somme directe de deux sous-espaces

Définition (Somme directe de deux sous-espaces)

Soient F et G deux sous-espaces vectoriels d'un \mathbb{R} -espace vectoriel E. F et G sont supplémentaires dans E si $F \cap G = \{0_E\}$ et F + G = E.

On note alors $E = F \oplus G$ et on dit que E est la somme directe de F et G.

Proposition

F et G sont supplémentaires dans E ssi tout élément de E s'écrit de manière unique comme somme d'un élément de F et d'un élément de G.

Sous-espace engendré $Vect(v_1, ..., v_n)$

Théorème (Structure de l'ensemble des combinaisons linéaires)

Soient v_1, \ldots, v_n des vecteurs dans un \mathbb{R} -espace vectoriel E.

- L'ensemble des combinaisons linéaires de v₁,..., v_n est un sous-espace vectoriel de E.
- C'est le plus petit sous-espace vectoriel de E contenant v_1, \ldots, v_n .

Sous-espace engendré $Vect(v_1, ..., v_n)$

Théorème (Structure de l'ensemble des combinaisons linéaires)

Soient v_1, \ldots, v_n des vecteurs dans un \mathbb{R} -espace vectoriel E.

- L'ensemble des combinaisons linéaires de v₁,..., v_n est un sous-espace vectoriel de E.
- C'est le plus petit sous-espace vectoriel de E contenant V₁,..., V_n.

Cet ensemble est appelé sous-espace engendré par v_1, \ldots, v_n . Il est noté $\text{Vect}(v_1, \ldots, v_n)$.

Sous-espace engendré $Vect(v_1, ..., v_n)$

Théorème (Structure de l'ensemble des combinaisons linéaires)

Soient v_1, \ldots, v_n des vecteurs dans un \mathbb{R} -espace vectoriel E.

- L'ensemble des combinaisons linéaires de v_1, \ldots, v_n est un sous-espace vectoriel de E.
- C'est le plus petit sous-espace vectoriel de E contenant v_1, \ldots, v_n .

Cet ensemble est appelé sous-espace engendré par v_1, \ldots, v_n . Il est noté $\text{Vect}(v_1, \ldots, v_n)$.

$$u \in Vect(v_1, \ldots, v_n) \iff \exists \lambda_1, \ldots, \lambda_n \in \mathbb{K}, \ u = \lambda_1 v_1 + \cdots + \lambda_n v_n$$

Sous-espace vectoriel engendré

Définition

Soit $\{v_1, \ldots v_n\}$ une famille de vecteurs de E. Alors $Vect(v_1, \ldots v_n)$ est l'ensemble des vecteurs de E qui sont combinaisons linéaires des $v_1, \ldots v_n$:

$$Vect(v_1, \ldots, v_n) = \{\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n \in E : \lambda_i \in \mathbb{R} \ \forall i\}.$$

Notation

Pour ne pas écrire des sommes avec des points de suspension comme ci dessus, on utilise le symbole de somme \sum . Par exemple $Vect(v_1, \ldots, v_n)$ se ré-écrit aussi de façon équivalente

$$Vect(v_1, \ldots, v_n) = \{ \sum_{i=1}^n \lambda_i v_i \in E : \lambda_i \in \mathbb{R} \ \forall i \}.$$

Sous-espace vectoriel engendré

Exemple

Dans
$$\mathbb{R}^3$$
 soit $v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. On a

$$\begin{aligned} \textit{Vect}(\textit{v}_{1},\textit{v}_{2},\textit{v}_{3}) &= \{ \lambda_{1}\textit{v}_{1} + \lambda_{2}\textit{v}_{2} + \lambda_{3}\textit{v}_{3} \in \mathbb{R}^{3} : \lambda_{1},\lambda_{2},\lambda_{3} \in \mathbb{R} \} \\ &= \{ (\lambda_{1} + \lambda_{3},\lambda_{2} + \lambda_{3},0) \in \mathbb{R}^{3} : \lambda_{1},\lambda_{2},\lambda_{3} \in \mathbb{R} \} \\ &= \{ (\gamma,\mu,0) \in \mathbb{R}^{3} : \gamma,\mu \in \mathbb{R} \}. \end{aligned}$$

On a donc $Vect(v_1, v_2, v_3) = Vect(v_1, v_2) !$

Remarque

L'exemple précédent montre que des vecteurs peuvent engendrer un ssev mais être "redondants" (dans l'exemple v_3 ne servait pas à grand chose: $v_3 = v_1 + v_2$). Les notions de système générateur et/ou lié vont clarifier cela.

Bases

Définition

Un système v_1, \ldots, v_n de vecteurs de E est générateur si tout vecteur u de E est combinaison linéaire des v_i . C'est-à-dire qu'il existe des coefficients $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ tels que :

$$u = \lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n.$$

De façon équivalente, il est générateur si $Vect(v_1, ..., v_n) = E$.

Remarque

Dans l'exemple précédent v_1 , v_2 est un système générateur pour $Vect(v_1, v_2, v_3)$, tout comme v_1, v_2, v_3 .

Exercice

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 est une famille génératrice pour \mathbb{R}^3 :

- vrai,
- a faux,
- vous ne savez pas.

Exercice

$$v_1=\left(egin{array}{c}1\\0\\2\end{array}
ight),v_2=\left(egin{array}{c}0\\1\\0\end{array}
ight),v_3=\left(egin{array}{c}0\\0\\1\end{array}
ight)$$
 est une famille

génératrice pour \mathbb{R}^3 :

- vrai,
- faux,
- vous ne savez pas.

Bases

Définition

Un système v_1, \ldots, v_n de vecteurs de E est libre si

$$\sum_{i=1}^n \lambda_i v_i = \vec{0} \implies \lambda_i = 0 \ \forall i.$$

C'est-à-dire, le seul moyen d'obtenir $\vec{0}$ comme combinaison linéaire des v_1, \ldots, v_n est de prendre tous les poids $\lambda_i = 0$. Dans ce cas les vecteurs v_1, \ldots, v_n sont dits linéairement indépendants.

Un système qui n'est pas libre est lié : les vecteurs sont alors dits linéairement dépendants.

Exemple

Dans
$$\mathbb{R}^2$$
 la famille $v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $v_2 = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ est liée:

- vrai,
- faux,
- vous ne savez pas.

Exemple

Dans
$$\mathbb{R}^2$$
 la famille $v_1=\left(\begin{array}{c}1\\2\end{array}\right), v_2=\left(\begin{array}{c}-2\\4\end{array}\right)$ est liée:

- vrai,
- faux,
- vous ne savez pas.

Réponse

S'il existe $\lambda \in \mathbb{R}$ non nul tel que $v_1 = \lambda v_2$, alors $-2\lambda = 1$ et $4\lambda = 2$, soit $\lambda = -\frac{1}{2}$ et $\lambda = \frac{1}{2}$. Ce qui est absurde, donc la famille $\{v_1, v_2\}$ n'est pas liée. Les vecteurs v_1 et v_2 ne sont donc pas colinéaires.

Exercice

Dans
$$\mathbb{R}^3$$
 la famille $v_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} -2 \\ 4 \\ 1 \end{pmatrix}$ est liée :

- vrai,
- faux,
- vous ne savez pas.

Bases

Définition

Un système v_1, \ldots, v_n de vecteurs de E est une base de E s'il est libre et générateur.

Exemple

- $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ est une base de \mathbb{R}^2 .
- $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ est une base de
- En général si e_i est le vecteur de \mathbb{R}^n dont la seule composante non nulle est la $i^{\text{ème}}$ qui est 1, alors e_1, \ldots, e_n est la base canonique de \mathbb{R}^n .

Exercice

Dans
$$\mathbb{R}^2$$
 la famille $v_1=\left(\begin{array}{c}1\\2\end{array}\right), v_2=\left(\begin{array}{c}0\\1\end{array}\right)$ est une base :

- vrai,
- faux,
- vous ne savez pas.

Exercice

Dans
$$\mathbb{R}^3$$
 la famille $v_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$ est

une base :

- vrai,
- faux,
- vous ne savez pas.

Exercice

Dans
$$\mathbb{R}^3$$
 la famille $v_1=\left(egin{array}{c} 0\\1\\1 \end{array}
ight), v_2=\left(egin{array}{c} 1\\0\\0 \end{array}
ight), v_3=\left(egin{array}{c} 1\\2\\0 \end{array}
ight)$ est

une base :

- vrai,
- faux,
- vous ne savez pas.

Proposition

Soit v_1, \ldots, v_n une base de E. Alors tout vecteur u de E s'écrit de façon unique comme combinaison linéaire de v_1, \ldots, v_n :

$$u=\sum_{i=1}^n \lambda_i v_i.$$

Les coefficients λ_i sont les coordonnées de u dans la base v_1, \ldots, v_n et on note

$$u\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}.$$

Exemple

Les coordonnées de
$$u = \begin{pmatrix} x \\ y \end{pmatrix}$$
 dans la base

$$v_1=\left(egin{array}{c}1\\1\end{array}
ight),v_2=\left(egin{array}{c}2\\0\end{array}
ight)$$
 de \mathbb{R}^2 sont :

Exemple

Les coordonnées de
$$u = \begin{pmatrix} x \\ y \end{pmatrix}$$
 dans la base

$$v_1=\left(egin{array}{c}1\\1\end{array}
ight),v_2=\left(egin{array}{c}2\\0\end{array}
ight)$$
 de \mathbb{R}^2 sont :

$$u\left(\begin{array}{c}y\\\frac{x-y}{2}\end{array}\right).$$

Exemple

Les coordonnées de $u = \begin{pmatrix} x \\ y \end{pmatrix}$ dans la base

$$v_1=\left(egin{array}{c}1\\1\end{array}
ight),v_2=\left(egin{array}{c}2\\0\end{array}
ight)$$
 de \mathbb{R}^2 sont :

$$u\left(\begin{array}{c}y\\\frac{x-y}{2}\end{array}\right).$$

En effet on a bien :

$$\left(\begin{array}{c} x \\ y \end{array}\right) = y \left(\begin{array}{c} 1 \\ 1 \end{array}\right) + \frac{x-y}{2} \left(\begin{array}{c} 2 \\ 0 \end{array}\right).$$

Exemple

Les coordonnées de $u = \begin{pmatrix} x \\ y \end{pmatrix}$ dans la base canonique

$$e_1=\left(egin{array}{c}1\\0\end{array}
ight),e_2=\left(egin{array}{c}0\\1\end{array}
ight)$$
 de \mathbb{R}^2 sont :

Exemple

Les coordonnées de
$$u=\begin{pmatrix}x\\y\end{pmatrix}$$
 dans la base canonique $e_1=\begin{pmatrix}1\\0\end{pmatrix}, e_2=\begin{pmatrix}0\\1\end{pmatrix}$ de \mathbb{R}^2 sont :

Exemple

Les coordonnées de $u = \begin{pmatrix} x \\ y \end{pmatrix}$ dans la base canonique

$$e_1=\left(egin{array}{c}1\\0\end{array}
ight),e_2=\left(egin{array}{c}0\\1\end{array}
ight)$$
 de \mathbb{R}^2 sont :

$$u\left(\begin{array}{c}x\\y\end{array}\right).$$

En effet on a bien :

$$\left(\begin{array}{c} x \\ y \end{array}\right) = x \left(\begin{array}{c} 1 \\ 0 \end{array}\right) + y \left(\begin{array}{c} 0 \\ 1 \end{array}\right).$$

Exercice

Les coordonnées de $u = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ dans la base

$$v_1=\left(egin{array}{c}1\\-1\end{array}
ight), v_2=\left(egin{array}{c}1\\1\end{array}
ight)$$
 de \mathbb{R}^2 sont :

- $u\begin{pmatrix} 1\\0 \end{pmatrix}$,
- $u \begin{pmatrix} 1 \\ 1 \end{pmatrix},$
- $u\begin{pmatrix} 0\\1 \end{pmatrix}$,
- aucune des précédentes.

Existence des bases

On a parlé des bases mais on ne s'est pas assuré qu'elles existent en général :

Théorème

Soit v_1, \ldots, v_k une famille de vecteurs de E.

- Si v₁,..., v_k est une famille libre, on peut la compléter en une base de E. C-à-d, on peut trouver d'autres vecteurs v_{k+1},..., v_n tels que v₁,..., v_k, v_{k+1},..., v_n soit une base de E. (Par conséquent il existe toujours une base de E!)
- Si v₁,..., v_k est une famille génératrice de E, on peut en extraire une base de E. C-à-d, on peut trouver un sous ensemble des vecteurs v₁,..., v_k qui est une base de E.
- Deux bases de E ont le même nombre d'éléments (dans la notation précédente, c'est n). Ce nombre est dit la dimension de E et noté dim(E). (Il peut être infini parfois!)

Existence des bases

Exemple

Soit
$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. Il s'agit d'une famille libre dans

 \mathbb{R}^3 mais pas génératrice. Elle peut donc être complétée en une base en prenant par exemple

$$v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

ou encore

$$v_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
.

En général le choix n'est pas unique!

Existence des bases

Exemple

Soit
$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, $v_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Il s'agit d'une famille génératrice de \mathbb{R}^3 . Mais elle n'est pas libre. On peut en extraire une base en prenant par exemple

$$v_1, v_2, v_3$$

ou bien

$$v_1, v_2, v_4.$$

En général le choix n'est pas unique!

Existence des bases

Exemple

Soit
$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

Il s'agit d'une base de \mathbb{R}^3 . Cette base a donc 3 vecteurs tout comme la base canonique :

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

La dimension de \mathbb{R}^3 est donc 3.

Exemple

En général, puisque
$$e_1 = \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix}$$
 est une base de \mathbb{R}^n , on a $\dim(\mathbb{R}^n) = n$.

Dimension et sous-espaces vectoriels

La dimension $\dim(E)$ est une sorte de mesure de la "taille" d'un espace vectoriel. Du coup un sous-espace vectoriel de E doit avoir dimension moindre :

Proposition

Soit $F \subset E$ un sous-espace vectoriel. Alors on a

$$0 \leq \dim(F) \leq \dim(E)$$
.

De plus on a $\dim(F) = 0$ si et seulement si $F = \{\vec{0}\}$ et $\dim(F) = \dim(E)$ si et seulement si F = E.

Proposition

Soit E un espace vectoriel de dimension finie, \mathcal{L} une famille libre de E, et \mathcal{G} une famille génératrice de E. Alors $\operatorname{Card} \mathcal{L} \leq \operatorname{Card} \mathcal{G}$.

Proposition

Soit E un espace vectoriel de dimension finie, \mathcal{L} une famille libre de E, et \mathcal{G} une famille génératrice de E. Alors Card $\mathcal{L} < \mathsf{Card}\,\mathcal{G}$.

Corollaire

Soit E un espace vectoriel admettant une base avec n éléments. Alors

- Toute famille libre de E a au plus n éléments.
- 2 Toute famille génératrice de E a au moins n éléments.

Proposition

Soit E un espace vectoriel de dimension finie, \mathcal{L} une famille libre de E, et \mathcal{G} une famille génératrice de E. Alors Card $\mathcal{L} < \mathsf{Card}\,\mathcal{G}$.

Corollaire

Soit E un espace vectoriel admettant une base avec n éléments. Alors

- Toute famille libre de E a au plus n éléments.
- 2 Toute famille génératrice de E a au moins n éléments.

Théorème

Soient E un \mathbb{R} -espace vectoriel de dimension n et $\mathcal{F} = \{v_1, \dots, v_n\}$ une famille de n vecteurs de E. Les assertions suivantes sont équivalentes :

- F est une base de E,
- F est une famille libre de E,
- F est une famille génératrice de E.

Théorème

Soient E un espace vectoriel de dim. finie et F un sous-espace de E. Alors

- F est de dimension finie.
- \bigcirc dim $F \leq \dim E$.

Théorème

Soient E un espace vectoriel de dim. finie et F un sous-espace de E. Alors

- F est de dimension finie.
- \bigcirc dim $F \leq \dim E$.

Corollaire

Soient E un espace vectoriel et $F \supset G$ deux sous-espaces de E de dimensions finies. Alors $F = G \iff \dim F = \dim G$.

Théorème (Théorème des quatre dimensions.)

Soient E un espace vectoriel de dimension finie et F, G deux sous-espaces de E. Alors

$$\dim(F+G)=\dim F+\dim G-\dim(F\cap G).$$

Théorème (Théorème des quatre dimensions.)

Soient E un espace vectoriel de dimension finie et F, G deux sous-espaces de E. Alors

$$\dim(F+G)=\dim F+\dim G-\dim(F\cap G).$$

Corollaire

- Tout sous-espace d'un espace de dim. finie admet un supplémentaire.

Les sous-espaces vectoriels de \mathbb{R}^2

Alors les sous espaces vectoriels de \mathbb{R}^2 sont

- Ceux de dimension 0 : donc seulement $\{\vec{0}\} = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$.
- Ceux de dimension 1 : donc les droites vectorielles, i.e. les espaces engendrés par un vecteur non nul. Par exemple la droite vectorielle engendrée par le vecteur (1,2) est D = {λ(1,2) ∈ ℝ² : λ ∈ ℝ}.
- Ceux de dimension 2 : donc seulement le plan \mathbb{R}^2 .

Les sous-espaces vectoriels de \mathbb{R}^3

Les sous espaces vectoriels de \mathbb{R}^3 sont

- Ceux de dimension 0 : donc seulement $\{\vec{0}\} = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$.
- Ceux de dimension 1 : donc les *droites vectorielles*, i.e. les espaces engendrés par un vecteur non nul. Par exemple la droite vectorielle engendrée par le vecteur (1,2,4) est $D = \{(\lambda,2\lambda,4\lambda) \in \mathbb{R}^3 : \lambda \in \mathbb{R}\} = \{\lambda(1,2,4) \in \mathbb{R}^3 : \lambda \in \mathbb{R}\}.$
- Ceux de dimension 2 : donc les plans vectoriels, i.e. les espaces engendrés par deux vecteurs non liés. Par exemple le plan vectoriel engendré par le vecteur (1,2,4) et (0,0,2) est

$$\begin{split} P &= \left\{ \lambda_1(1,2,4) + \lambda_2(0,0,2) \in \mathbb{R}^3 : \lambda_1, \lambda_2 \in \mathbb{R} \right\} \\ &= \left\{ (\lambda_1, 2\lambda_1, 4\lambda_1 + 2\lambda_2) \in \mathbb{R}^3 : \lambda_1, \lambda_2 \in \mathbb{R} \right\}. \end{split}$$

• Ceux de dimension 3 : donc seulement l'espace \mathbb{R}^3 .

Un exemple

Exemple

Soit $F \subset \mathbb{R}^3$ le sous-ensemble défini comme suit :

$$F = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x + y - z = 0 \& x + y + z = 0 \right\}.$$

- Montrons qu'il est bien un sous-espace vectoriel.
- 2 Trouvons une base de F.
- 3 Et puis sa dimension.

• F est un ssev comme intersection de deux ssev: les plans vectoriels d'équations x + y - z = 0 et x + y + z = 0.

- F est un ssev comme intersection de deux ssev: les plans vectoriels d'équations x + y z = 0 et x + y + z = 0.
- $F = \{(x, y, z) \in \mathbb{R}^3 : x + y z = 0 \& x + y + z = 0\}$ $= \{(x, y, z) \in \mathbb{R}^3 : x + y = z \& x + y = -z\}$ $= \{(x, y, z) \in \mathbb{R}^3 : z = 0, x = -y\}$ $= \{(-y, y, 0) \in \mathbb{R}^3 : y \in \mathbb{R}\}$ = Vect((-1, 1, 0)).

- F est un ssev comme intersection de deux ssev: les plans vectoriels d'équations x + y z = 0 et x + y + z = 0.
- $F = \{(x, y, z) \in \mathbb{R}^3 : x + y z = 0 \& x + y + z = 0\}$ $= \{(x, y, z) \in \mathbb{R}^3 : x + y = z \& x + y = -z\}$ $= \{(x, y, z) \in \mathbb{R}^3 : z = 0, x = -y\}$ $= \{(-y, y, 0) \in \mathbb{R}^3 : y \in \mathbb{R}\}$ = Vect((-1, 1, 0)).

F est donc la droite vectorielle de vecteur directeur u = (-1, 1, 0) qui en est une base.

- F est un ssev comme intersection de deux ssev: les plans vectoriels d'équations x + y z = 0 et x + y + z = 0.
- $F = \{(x, y, z) \in \mathbb{R}^3 : x + y z = 0 \& x + y + z = 0\}$ $= \{(x, y, z) \in \mathbb{R}^3 : x + y = z \& x + y = -z\}$ $= \{(x, y, z) \in \mathbb{R}^3 : z = 0, x = -y\}$ $= \{(-y, y, 0) \in \mathbb{R}^3 : y \in \mathbb{R}\}$ = Vect((-1, 1, 0)).

F est donc la droite vectorielle de vecteur directeur u = (-1, 1, 0) qui en est une base.

3 F = Vect(u) avec $u = (-1, 1, 0) \neq \vec{0}$. Donc dim(F) = 1.

Droites et plans vectoriels

Proposition

- D est une droite vectorielle de \mathbb{R}^2 ssi \exists un vecteur $(a,b) \in \mathbb{R}^2 \setminus \{\vec{0}\}$ tel que $D = \{(x,y) \in \mathbb{R}^2 : ax + by = 0\}$.
- P est un plan vectoriel de \mathbb{R}^3 ssi \exists $(a,b,c) \in \mathbb{R}^3 \setminus \{\vec{0}\}$ tel que $P = \{(x,y,z) \in \mathbb{R}^3 : ax + by + cz = 0\}$.
- Les droites vectorielles de \mathbb{R}^3 sont intersection de deux plans vectoriels.

Ces équations sont appelées équations cartésiennes. Attention : elles ne sont pas uniques.

Le déterminant 2D

Définition

Soit
$$u = \begin{pmatrix} a \\ c \end{pmatrix}$$
, $v = \begin{pmatrix} b \\ d \end{pmatrix}$. On définit
$$\det(u, v) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

Lemme

Deux vecteurs u et v de \mathbb{R}^2 sont linéairement indépendants (libres) si et seulement si $\det(u, v) \neq 0$.

Donc ils sont colinéaires si et seulement si det(u, v) = 0.

Corollaire

La droite vectorielle D engendrée par $u = \begin{pmatrix} a \\ b \end{pmatrix}$ a pour équation cartésienne bx -ay = 0.

Test

Exercice

L'équation cartésienne de la droite vectorielle engendrée par

$$u = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
 est:

- 0 3x + y = 0,
- 3 -3x y = 0,
- $\frac{1}{3}x + y = 0$,
- aucune des précédentes.

Plans vectoriels dans \mathbb{R}^3

Proposition

Le plan vectoriel

$$P = Vect\left(\left(\begin{array}{c} a \\ b \\ c \end{array}\right), \left(\begin{array}{c} d \\ e \\ f \end{array}\right)\right)$$

a pour équation cartésienne :

$$\left|\begin{array}{ccc} b & e \\ c & f \end{array}\right| x - \left|\begin{array}{ccc} a & d \\ c & f \end{array}\right| y + \left|\begin{array}{ccc} a & d \\ b & e \end{array}\right| z = 0.$$

Test

Exercice

L'équation cartésienne du plan vectoriel engendré par

$$u = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 et $v = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$ est:

- 0 2x + 2y + 2z = 0,
- 2 2x 2y + 2z = 0,

- aucune des précédentes.

Définition

Produit scalaire Soient $u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$. Leur produit scalaire est défini par

$$\langle u, v \rangle = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

Définition

Produit scalaire Soient
$$u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$$
. Leur produit scalaire est défini par
$$\langle u, v \rangle = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

Autres notations : (u, v), (u|v), $\langle u|v \rangle$

Définition

Produit scalaire Soient $u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$. Leur produit scalaire est défini par

$$\langle u,v\rangle=u_1v_1+u_2v_2+\cdots+u_nv_n$$

Autres notations : (u, v), (u|v), $\langle u|v \rangle$

Proposition

Pour tous $u, v, w \in \mathbb{R}^n$ et $\lambda, \mu \in \mathbb{R}$,

Définition

Produit scalaire Soient $u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$. Leur produit scalaire est défini par

$$\langle u,v\rangle=u_1v_1+u_2v_2+\cdots+u_nv_n$$

Autres notations : (u, v), (u|v), $\langle u|v \rangle$

Proposition

Pour tous $u, v, w \in \mathbb{R}^n$ et $\lambda, \mu \in \mathbb{R}$,

- $\bullet \langle v, u \rangle = \langle u, v \rangle$
- $\langle u, (\lambda v + \mu w) \rangle = \lambda \langle u, v \rangle + \mu \langle u, w \rangle$

Définition

Produit scalaire Soient $u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathbb{R}^n$. Leur produit scalaire est défini par

$$\langle u,v\rangle=u_1v_1+u_2v_2+\cdots+u_nv_n$$

Autres notations : (u, v), (u|v), $\langle u|v \rangle$

Proposition

Pour tous $u, v, w \in \mathbb{R}^n$ et $\lambda, \mu \in \mathbb{R}$,

- $\bullet \langle v, u \rangle = \langle u, v \rangle$

Norme

Définition (Norme)

La norme de
$$u \in \mathbb{R}^n$$
 est $||u|| = \sqrt{\langle u, u \rangle}$ où $\langle u, u \rangle = \sum_{i=1}^n |u_i|^2$

Norme

Définition (Norme)

La norme de
$$u \in \mathbb{R}^n$$
 est $||u|| = \sqrt{\langle u, u \rangle}$ où $\langle u, u \rangle = \sum_{i=1}^n |u_i|^2$

Par le théorème de Pythagore, $\|u\|$ est la longueur de u.

Proposition

Soient $u, v \in \mathbb{R}^n$.

- Inégalité de Cauchy–Schwarz : $|\langle u, v \rangle| \le ||u|| ||v||$
- Inégalité triangulaire : $||u + v|| \le ||u|| + ||v||$
- Pythagore : $||u + v||^2 = ||u||^2 + ||v||^2 + 2\langle u, v \rangle$

Produit scalaire, cosinus et orthogonalité

Théorème (Théorème du cosinus)

$$\langle u, v \rangle = ||u|| ||v|| \cos(\theta_{u,v})$$

Conséquence : $u \perp v \iff \langle u, v \rangle = 0$

Définition (Base orthonormée)

Une base $\mathcal{B} = (e_1, \dots, e_n)$ de \mathbb{R}^n est orthonormée si $\langle e_i, e_j \rangle = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{sinon} \end{cases}$

Dans ce cas, la décomposition de $u \in \mathbb{R}^n$ dans la base s'écrit $u = u_1 e_1 + \cdots + u_n e_n$ avec $u_i = \langle e_i, u \rangle$ et sa norme vérifie

$$||u||^2 = u_1^2 + \cdots + u_n^2$$

Comment construire une base orthonormée?

Définition (Projection orthogonale)

Soient $u, v \in \mathbb{R}^n$. La projection orthogonale de u sur v, notée $proj_v(u)$ est définie par

$$proj_{v}(u) = \frac{\langle u, v \rangle}{\langle v, v \rangle} v$$

Proposition

Soient $u, v \in \mathbb{R}^n$.

- $\langle u proj_v(u) \rangle, v \rangle = 0$
- $||u||^2 = ||proj_v(u)||^2 + ||u proj_v(u)||^2$

Comment construire une base orthonormée?

Définition (Procédé d'orthonormalisation de Gram-Schmidt)

Soit (v_1, \ldots, v_n) une base de \mathbb{R}^n .

• On peut construire de manière itérative une base de \mathbb{R}^n composée de vecteurs (e_1, \ldots, e_n) orthogonaux deux à deux par le procédé suivant :

$$e_1 = v_1, e_2 = v_2 - proj_{e_1}(v_2), \dots, e_n = v_n - \sum_{j=1}^{n-1} proj_{e_j}(v_n)$$

② On peut ensuite construire $(u_1, ..., u_n)$, une base orthonormée de \mathbb{R}^n par le procédé suivant :

$$u_1 = \frac{1}{\|e_1\|} e_1, \ u_2 = \frac{1}{\|e_2\|} e_2, \dots, u_n = \frac{1}{\|e_n\|} e_n$$

Définition (Produit vectoriel)

Soient $u=\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}, v=\begin{pmatrix}v_1\\v_2\\v_3\end{pmatrix}\in\mathbb{R}^3$. Leur produit vectoriel est défini par

$$u \wedge v = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}$$

Proposition

Pour tous $u, v, w \in \mathbb{R}^3$ et $\lambda \in \mathbb{R}$,

- \bullet $V \wedge U = -U \wedge V$
- $u \wedge (v + w) = u \wedge v + u \wedge w$
- $\lambda(u \wedge v) = (\lambda u) \wedge v = u \wedge (\lambda v)$

Proposition

Pour tous $u, v, w \in \mathbb{R}^3$ et $\lambda \in \mathbb{R}$,

- \bullet $V \wedge U = -U \wedge V$
- $u \wedge (v + w) = u \wedge v + u \wedge w$
- $(u \wedge v) \cdot u = 0$. et $(u \wedge v) \cdot v = 0$ donc $u \wedge v$ est orthogonal à u et v

Proposition

Pour tous $u, v, w \in \mathbb{R}^3$ et $\lambda \in \mathbb{R}$,

- \bullet $V \wedge U = -U \wedge V$
- $u \wedge (v + w) = u \wedge v + u \wedge w$
- $\bullet \ \lambda(u \wedge v) = (\lambda u) \wedge v = u \wedge (\lambda v)$
- $(u \wedge v) \cdot u = 0$. et $(u \wedge v) \cdot v = 0$ donc $u \wedge v$ est orthogonal à u et v
- $||u \wedge v|| = ||u|| ||v|| \sin \theta = A$, où A est l'aire du parallélogramme engendré par u et v.

