Introduction to Optimization

Lecture 02: Calculus in \mathbb{R}^N .

Real vectors and their norms

 \mathbb{R}^N is the (real) vector space of N-tuples of real numbers (columns)

$$x \in \mathbb{R}^N \qquad \Longleftrightarrow \qquad x = \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix}, \quad x_1, \dots, x_N \in \mathbb{R}.$$

Real vectors and their norms

 \mathbb{R}^N is the (real) vector space of N-tuples of real numbers (columns)

$$x \in \mathbb{R}^N$$
 \iff $x = \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix}, x_1, \dots, x_N \in \mathbb{R}.$

The norm of $x \in \mathbb{R}^N$ is $||x|| = \sqrt{x_1^2 + \dots + x_N^2}$.

Juan PEYPOUQUET

Real vectors and their norms

 \mathbb{R}^N is the (real) vector space of N-tuples of real numbers (columns)

$$x \in \mathbb{R}^N$$
 \iff $x = \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix}, x_1, \dots, x_N \in \mathbb{R}.$

The norm of $x \in \mathbb{R}^N$ is $||x|| = \sqrt{x_1^2 + \dots + x_N^2}$.

Properties

- ||x|| > 0 for all $x \neq 0$ and ||0|| = 0.
- $\|\alpha x\| = |\alpha| \|x\|$ for all $x \in \mathbb{R}^N$ and $\alpha \in \mathbb{R}$.
- $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{R}^N$.

2/16

The distance between $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^N$ is dist(x, y) = ||x - y||.

3/16

The distance between $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^N$ is dist(x, y) = ||x - y||.

Properties

• $\operatorname{dist}(x, y) > 0$ for all $x \neq y$ and $\operatorname{dist}(x, x) = 0$.

The distance between $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^N$ is dist(x, y) = ||x - y||.

Properties

- $\operatorname{dist}(x, y) > 0$ for all $x \neq y$ and $\operatorname{dist}(x, x) = 0$.
- dist(x, y) = dist(y, x).

The distance between $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^N$ is dist(x, y) = ||x - y||.

Properties

- $\operatorname{dist}(x, y) > 0$ for all $x \neq y$ and $\operatorname{dist}(x, x) = 0$.
- dist(x, y) = dist(y, x).
- $\operatorname{dist}(x, y) \leq \operatorname{dist}(x, z) + \operatorname{dist}(z, y)$.

The distance between $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^N$ is dist(x, y) = ||x - y||.

Properties

- $\operatorname{dist}(x, y) > 0$ for all $x \neq y$ and $\operatorname{dist}(x, x) = 0$.
- dist(x, y) = dist(y, x).
- $\operatorname{dist}(x, y) \leq \operatorname{dist}(x, z) + \operatorname{dist}(z, y)$.

The open ball centered at $x \in \mathbb{R}^N$ with radius r > 0 is

$$B(x; r) = \{ y \in \mathbb{R}^N : \operatorname{dist}(x, y) < r \}.$$

Juan PEYPOUQUET

The distance between $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^N$ is dist(x, y) = ||x - y||.

Properties

- $\operatorname{dist}(x, y) > 0$ for all $x \neq y$ and $\operatorname{dist}(x, x) = 0$.
- dist(x, y) = dist(y, x).
- $dist(x, y) \leq dist(x, z) + dist(z, y)$.

The open ball centered at $x \in \mathbb{R}^N$ with radius r > 0 is

$$B(x; r) = \{ y \in \mathbb{R}^N : \operatorname{dist}(x, y) < r \}.$$

The closed ball centered at $x \in \mathbb{R}^N$ with radius r > 0 is

$$\bar{B}(x;r) = \{ y \in \mathbb{R}^N : \operatorname{dist}(x,y) \le r \}.$$

A subset $A \subset \mathbb{R}^N$ is open if, for each $x \in A$, there is r > 0 such that $B(x; r) \subset A$.

A subset $A \subset \mathbb{R}^N$ is open if, for each $x \in A$, there is r > 0 such that $B(x; r) \subset A$.

A subset $C \subset \mathbb{R}^N$ is closed if its complement is open.

A subset $A \subset \mathbb{R}^N$ is open if, for each $x \in A$, there is r > 0 such that $B(x; r) \subset A$.

A subset $C \subset \mathbb{R}^N$ is closed if its complement is open.

Example

Open balls are open sets. Closed balls are closed sets.

A subset $A \subset \mathbb{R}^N$ is open if, for each $x \in A$, there is r > 0 such that $B(x; r) \subset A$.

A subset $C \subset \mathbb{R}^N$ is closed if its complement is open.

Example

Open balls are open sets. Closed balls are closed sets.

L

Proposition

If a sequence in a closed set is convergent, its limit has to be in the set. 🙇

A subset $B \subset \mathbb{R}^N$ is bounded if it is contained in a ball.

A subset $B \subset \mathbb{R}^N$ is bounded if it is contained in a ball.

Proposition

Every bounded sequence in \mathbb{R}^N has a convergent subsequence.

A subset $B \subset \mathbb{R}^N$ is bounded if it is contained in a ball.

Proposition

Every bounded sequence in \mathbb{R}^N has a convergent subsequence.

Finally, a subset $K \subset \mathbb{R}^N$ is compact if it is both closed and bounded.

A subset $B \subset \mathbb{R}^N$ is bounded if it is contained in a ball.

Proposition

Every bounded sequence in \mathbb{R}^N has a convergent subsequence.

Finally, a subset $K \subset \mathbb{R}^N$ is compact if it is both closed and bounded.

Proposition

Every sequence in a compact subset of \mathbb{R}^N has a convergent subsequence. The limits of all convergent subsequences must lie in the set.

The dot product (or also inner product) of $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^N$ is

$$x\cdot y=x_1y_1+\cdots+x_Ny_N.$$

The dot product (or also inner product) of $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^N$ is

$$x\cdot y=x_1y_1+\cdots+x_Ny_N.$$

Properties

• $x \cdot x = ||x||^2$ for all $x \in \mathbb{R}^N$.

The dot product (or also inner product) of $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^N$ is

$$x\cdot y=x_1y_1+\cdots+x_Ny_N.$$

Properties

- $x \cdot x = ||x||^2$ for all $x \in \mathbb{R}^N$.
- $x \cdot y = y \cdot x$ for all $x, y \in \mathbb{R}^N$.

The dot product (or also inner product) of $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^N$ is

$$x\cdot y=x_1y_1+\cdots+x_Ny_N.$$

Properties

- $x \cdot x = ||x||^2$ for all $x \in \mathbb{R}^N$.
- $x \cdot y = y \cdot x$ for all $x, y \in \mathbb{R}^N$.
- $(\alpha x + z) \cdot y = \alpha(x \cdot y) + z \cdot y$ for all $x, y, z \in \mathbb{R}^N$ and $\alpha \in \mathbb{R}$.

The dot product (or also inner product) of $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^N$ is

$$x \cdot y = x_1 y_1 + \dots + x_N y_N.$$

Properties

- $x \cdot x = ||x||^2$ for all $x \in \mathbb{R}^N$.
- $x \cdot y = y \cdot x$ for all $x, y \in \mathbb{R}^N$.
- $(\alpha x + z) \cdot y = \alpha(x \cdot y) + z \cdot y$ for all $x, y, z \in \mathbb{R}^N$ and $\alpha \in \mathbb{R}$.

Other notations: $x \cdot y = \langle x, y \rangle = \langle x | y \rangle = x^T y$ (product of matrices).

4ロト 4回ト 4 重ト 4 重ト 重 めの(*)

Proposition

 $|x \cdot y| \le ||x|| \, ||y||$ for all $x, y \in \mathbb{R}^N$.

Proposition

$$|x \cdot y| \le ||x|| \, ||y||$$
 for all $x, y \in \mathbb{R}^N$.

The vectors $x, y \in \mathbb{R}^N \setminus \{0\}$ are perpendicular or orthogonal if $x \cdot y = 0$. In that case, we write $x \perp y$.

Proposition

 $|x \cdot y| \le ||x|| \, ||y||$ for all $x, y \in \mathbb{R}^N$.

The vectors $x, y \in \mathbb{R}^N \setminus \{0\}$ are perpendicular or orthogonal if $x \cdot y = 0$. In that case, we write $x \perp y$.

The vectors $x, y \in \mathbb{R}^N \setminus \{0\}$ are parallel if there is $\alpha \in \mathbb{R}$ such that $x = \alpha y$. We write $x \parallel y$.

Proposition

 $|x \cdot y| \le ||x|| \, ||y||$ for all $x, y \in \mathbb{R}^N$.

The vectors $x, y \in \mathbb{R}^N \setminus \{0\}$ are perpendicular or orthogonal if $x \cdot y = 0$. In that case, we write $x \perp y$.

The vectors $x, y \in \mathbb{R}^N \setminus \{0\}$ are parallel if there is $\alpha \in \mathbb{R}$ such that $x = \alpha y$. We write $x \parallel y$.

Exercise

Show that $x \parallel y$ if, and only if, $|x \cdot y| = ||x|| ||y||$.

Angles and triangles

The angle θ between $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^N$ is

$$\cos^{-1}\left(\frac{x\cdot y}{\|x\|\,\|y\|}\right).$$

Angles and triangles

The angle θ between $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^N$ is

$$\cos^{-1}\left(\frac{x\cdot y}{\|x\|\,\|y\|}\right).$$

Law of cosines

$$||x + y||^2 = ||x||^2 + ||y||^2 - 2||x|| ||y|| \cos(\theta).$$

Angles and triangles

The angle θ between $x \in \mathbb{R}^N$ and $y \in \mathbb{R}^N$ is

$$\cos^{-1}\left(\frac{x\cdot y}{\|x\|\,\|y\|}\right).$$

Law of cosines

$$||x + y||^2 = ||x||^2 + ||y||^2 - 2||x|| ||y|| \cos(\theta).$$

Pythagoras's Theorem

 $x \perp y$ if, and only if, $||x + y||^2 = ||x||^2 + ||y||^2$.

Convex sets

A subset $\subset \mathbb{R}^N C$ is convex if $\lambda x + (1 - \lambda)y \in C$ whenever $x, y \in C$ and $\lambda \in [0, 1]$.

Convex sets

A subset $\subset \mathbb{R}^N C$ is convex if $\lambda x + (1 - \lambda)y \in C$ whenever $x, y \in C$ and $\lambda \in [0, 1]$. In other words, if the segment joining any two points of C also belongs to C.

9/16

Convex sets

A subset $\subset \mathbb{R}^N C$ is convex if $\lambda x + (1 - \lambda)y \in C$ whenever $x, y \in C$ and $\lambda \in [0, 1]$. In other words, if the segment joining any two points of C also belongs to C.

This one is not

Projection

Theorem

Let $C \subset \mathbb{R}^N$ be nonempty, closed and convex. For each $x \in \mathbb{R}^N$, there is a unique point $\hat{x} \in C$ such that

$$dist(x,\hat{x}) = min\{dist(x,y) : y \in C\}.$$

Moreover, \hat{x} is the only point in C that satisfies the inequality

$$(x-\hat{x})\cdot(y-\hat{x})\leq 0$$

for all $y \in C$.

The point \hat{x} is the projection of x onto C, and is denoted by $P_C(x)$.

◆ロト ◆昼 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

Break

Differentiability and gradient

Let $A \subset \mathbb{R}^N$ be nonempty and open. A function $f: A \to \mathbb{R}$ is differentiable at $x \in A$ (in the sense of Gâteaux) if the directional derivative

$$f'(x; h) = \lim_{t \to 0} \frac{f(x + th) - f(x)}{t}$$

exists for all $h \in \mathbb{R}^N$, and there is $g \in \mathbb{R}^N$ such that

$$g \cdot h = f'(x; h)$$

for all $h \in \mathbb{R}^N$. If this case, the gradient of f at x is $\nabla f(x) = g$.

4□ > 4□ > 4 = > 4 = > = 90

12 / 16

Juan PEYPOUQUET Optimization 2022-2023

Differentiability and gradient

Let $A \subset \mathbb{R}^N$ be nonempty and open. A function $f: A \to \mathbb{R}$ is differentiable at $x \in A$ (in the sense of Gâteaux) if the directional derivative

$$f'(x; h) = \lim_{t \to 0} \frac{f(x + th) - f(x)}{t}$$

exists for all $h \in \mathbb{R}^N$, and there is $g \in \mathbb{R}^N$ such that

$$g \cdot h = f'(x; h)$$

for all $h \in \mathbb{R}^N$. If this case, the gradient of f at x is $\nabla f(x) = g$.

As usual, f is differentiable on A if it is so at every point of A.

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

12 / 16

Juan PEYPOUQUET Optimization 2022-2023

More about the gradient

Remark

Let f be differentiable at x, and let $g = \nabla f(x)$ be its gradient at that point. If e_i denotes the i-th canonical vector in \mathbb{R}^N , then

$$g_i = \nabla f(x) \cdot e_i = f'(x; e_i) = \lim_{t \to 0} \frac{f(x + te_i) - f(x)}{t} = \frac{\partial f}{\partial x_i}(x).$$

More about the gradient

Remark

Let f be differentiable at x, and let $g = \nabla f(x)$ be its gradient at that point. If e_i denotes the i-th canonical vector in \mathbb{R}^N , then

$$g_i = \nabla f(x) \cdot e_i = f'(x; e_i) = \lim_{t \to 0} \frac{f(x + te_i) - f(x)}{t} = \frac{\partial f}{\partial x_i}(x).$$

Example **Example**

Let us compute the gradient of the function $f: \mathbb{R}^N \to \mathbb{R}$, defined by

$$f(x) = \frac{1}{2} ||Ax - y||^2,$$

where A is a real matrix of size $M \times N$ and $b \in \mathbb{R}^M$.

13 / 16

2022-2023

First order optimality condition

Theorem (Fermat's Rule)

Let $f: A \subset \mathbb{R}^N \to \mathbb{R}$ and let $\emptyset \neq C \subset A$ be convex. If $\hat{x} \in C$ is such that $f(\hat{x}) \leq f(y)$ for all $y \in C$, and if f is differentiable at \hat{x} , then

$$\nabla f(\hat{x}) \cdot (y - \hat{x}) \ge 0$$

for all $y \in C$.

First order optimality condition

Theorem (Fermat's Rule)

Let $f: A \subset \mathbb{R}^N \to \mathbb{R}$ and let $\emptyset \neq C \subset A$ be convex. If $\hat{x} \in C$ is such that $f(\hat{x}) \leq f(y)$ for all $y \in C$, and if f is differentiable at \hat{x} , then

$$\nabla f(\hat{x}) \cdot (y - \hat{x}) \ge 0$$

for all $y \in C$.

Ø

If, moreover, $\hat{x} \in \text{int}(C)$, then $\nabla f(\hat{x}) = 0$.

L-smoothness

A differentiable function $f:A\subset\mathbb{R}^N\to\mathbb{R}$ is L-smooth, with L>0, if

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

for all $x, y \in A$.

L-smoothness

A differentiable function $f:A\subset\mathbb{R}^N\to\mathbb{R}$ is L-smooth, with L>0, if

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

for all $x, y \in A$.

Proposition (Descent Lemma)

If f is L-smooth and A is convex, then

$$|f(y) - f(x) - \nabla f(x) \cdot (y - x)| \le \frac{L}{2} ||x - y||^2$$

for all $x, y \in A$.

1

Second order conditions

Proposition (Taylor's Approximation)

Let $f: dom(f) \to \mathbb{R}$ be twice differentiable at x. For each $d \in \mathbb{R}^N$,

$$\lim_{t\to 0}\frac{1}{t^2}\left|f(x+td)-f(x)-t\langle\nabla f(x),d\rangle-\frac{t^2}{2}\langle\nabla^2 f(x)d,d\rangle\right|=0.$$

4□ ト 4 昼 ト 4 差 ト ■ 9 4 ℃

Second order conditions

Proposition (Taylor's Approximation)

Let $f: \mathsf{dom}(f) \to \mathbb{R}$ be twice differentiable at x. For each $d \in \mathbb{R}^N$,

$$\lim_{t\to 0}\frac{1}{t^2}\left|f(x+td)-f(x)-t\langle\nabla f(x),d\rangle-\frac{t^2}{2}\langle\nabla^2 f(x)d,d\rangle\right|=0.$$

Theorem (Second order optimality conditions)

Let $f : dom(f) \to \mathbb{R}$ be twice differentiable at \hat{x} .

i) If \hat{x} is a local minimizer of f, then $\nabla f(\hat{x}) = 0$ and $\nabla^2 f(\hat{x}) \ge 0$.

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト 9 Q C

Juan PEYPOUQUET Optimization 2022-2023 16 / 16

Second order conditions

Proposition (Taylor's Approximation)

Let $f: dom(f) \to \mathbb{R}$ be twice differentiable at x. For each $d \in \mathbb{R}^N$,

$$\lim_{t\to 0}\frac{1}{t^2}\left|f(x+td)-f(x)-t\langle\nabla f(x),d\rangle-\frac{t^2}{2}\langle\nabla^2 f(x)d,d\rangle\right|=0.$$

Theorem (Second order optimality conditions)

Let $f : dom(f) \to \mathbb{R}$ be twice differentiable at \hat{x} .

- i) If \hat{x} is a local minimizer of f, then $\nabla f(\hat{x}) = 0$ and $\nabla^2 f(\hat{x}) \ge 0$.
- ii) If $\nabla f(\hat{x}) = 0$ and $\nabla^2 f(\hat{x}) > 0$, then \hat{x} is a strict local minimizer of f.