

INTRODUCTION TO

COMPUTATIONAL TOPOLOGY

HSIEN-CHIH CHANG LECTURE 15, NOVEMBER 2, 2021

MORSE THEORY

REEB GRAPH

• $\beta_1(Reeb(M)) \leq \beta_1(M)$

MORSE THEORY

-Topology is still useful when the surface is just a terrain!

DEFINITIONS

■ Height function h: M -> R

■ Sub-level set $\mathbf{M}_{\leq \mathbf{a}}$: $\mathbf{h}^{-1}(-\infty, \mathbf{a}] = \{\mathbf{x} : \mathbf{h}(\mathbf{x}) \leq \mathbf{a}\}$

- Critical points: where the topology changes

MORSE FUNCTION

-All critical points are non-degenerate and have distinct function values

MORSE LEMMA

[Morse 1934]

Given Morse function h and critical point p, locally U(p) looks like $f(x) = f(p) - x_1^2 \dots - x_s^2 + x_{s+1}^2 \dots + x_d^2$

EXAMPLE

- Rotation number redux
- Morse index μ(p): number of negative quadratic terms

EXAMPLE

- \cdot U = Dⁿ
- $\bullet L = D^{n-(\mu-1)} \times S^{\mu-1}$

FIOWLINES

-Gradient field ∇h defines flowlines between critical points

- M decomposes into flowlines

-Descending manifold M^{\downarrow}(p): flowlines originated from p

PROPOSITION. $M^{\downarrow}(p)$ has dimension $\mu(p)$

PROPERTIES

- Descending manifold M^{\downarrow}(p): flowlines originated from p

- Proposition.

- $\mathbf{M}_{\mathbf{b}} \simeq \mathbf{M}_{\mathbf{a}}$ if no critical points in $\mathbf{h}^{-1}[\mathbf{a}, \mathbf{b}]$
- $-\mathbf{M}_{\leq b} \simeq \mathbf{M}_{\leq a} \cup \mathbf{M}^{\downarrow}(\mathbf{p})$ if $\mathbf{h}^{-1}[\mathbf{a}, \mathbf{b}]$ has critical point \mathbf{p}

MORSE-SMALE FUNCTION

-All flowlines go from k-dim critical pts to (k-1)-dim critical pts

INTERMISSION

Morse Homology

MORSE COMPLEX

- k-chain-complex MC_k : $\langle k$ -dim critical pts \rangle
- Boundary map ∂_k : all (k-1)-dim critical pts reachable by flowlines

[Sousbie 2011]

MORSE HOMOLOGY THEOREM [Thom 1949] [Milnor 1963] [Smale 1967]

 $MH_n(M) \cong H_n(M) \label{eq:model}$ (independent to the choose of height function h)

EXAMPLE

MORSE INEQUALITIES

$$\begin{split} \Sigma_p \ t^{\mu(p)} &= \Sigma_k \, \beta_k \boldsymbol{\cdot} \, t^k \, + \, (1 \! + \! t) \boldsymbol{\cdot} Q(t) \\ \# k \text{-dim critical pts} &\geq \beta_k \end{split}$$

COROLLARY. $\chi(X) = \Sigma_n (-1)^n \cdot \dim H_n(X)$

COROLLARY. $\beta_1(\text{Reeb}(M)) = \beta_1(M) \text{ if } M = \Sigma(g,0)$

WATER-RISING PUTS TOPOLOGY IN GEOMETRY

NEXT TIME.

More applications!

What to do when the space is not a surface?

