CS 577 — Deep Learning — Homework 4

Read these instructions carefully:

- In the LATEX source code, type your answer in between "%%% BEGIN ANSWER" and "%%% END ANSWER". For advanced LATEX users, you can use your custom macros if you wish by placing them between "%%% BEGIN MACROS" and "%%% END MACROS" in the header. Do not modify anything else.
- Turn in both your .tex file and the generated .pdf file.

1 Backpropagation

[5] point(s) — part a:

Answer the question in Section 1.3.7 of backpropagation.pdf: How can we calculate $\frac{\partial f}{\partial z_4}(x,y)$ given correct value of $\frac{\partial f}{\partial z_5}(x,y)$?

Answer:

Using the chain rule, we can calculate the derivative of f with respect to z_4 as follows:

$$\frac{\partial f}{\partial z_4} = \frac{\partial f}{\partial z_5}(x, y) \frac{\partial z_5}{\partial z_4}$$

[5] point(s) — part b:

Answer the question in Section 1.3.8 of backpropagation.pdf: What is currently stored in z3.grad right before z4.backward() is called?

Answer:

 $\frac{\partial f}{\partial x_3}$ is stored in z3.grad . Using the chain rule, we can calculate the derivative of f with respect to z_3 as follows:

$$\frac{\partial f}{\partial x_3} = \frac{\partial f}{\partial x_8}(x, y) \frac{\partial x_8}{\partial x_3}$$

We know that $\frac{\partial f}{\partial x_8}(x,y)$ is 1, as $z_8 = f(x,y)$ and $\frac{\partial x_8}{\partial x_3}$ is $\frac{\partial (x_7 * x_3)}{\partial z_3}$, so:

$$\frac{\partial f}{\partial x_3} = \frac{\partial (x_7 * x_3)}{\partial z_3}$$

Using the product rule and knowing the derivative of z_3 with respect to z_3 is 1, we get:

$$\frac{\partial f}{\partial x_3} = z_7 \frac{\partial z_3}{\partial z_3} + z_3 \frac{\partial z_7}{\partial z_3} = z_7 + z_3 \frac{\partial z_7}{\partial z_3}$$

The first term is z_7 and the second term is $z_3 \frac{\partial z_7}{\partial z_3}$. This last term has not been compute because it depends on the backward pass through z_4 . So, the value of z3.grad stored before calling z4._backward() is z_7 . The second term will be added once backpropagation processes earlier nodes.

2 Gradient descent with ag.Scalar

[10] point(s) — part a: This is a programming exercise. See hw4.ipynb

3 Transformer with ag.Scalar

[Bonus 20] point(s) — part a: This is a programming exercise. See hw4.ipynb