Neural Networks for Natural Language Processing

Jun.-Prof. Dr. Sophie Fellenz

Week 12 - Self-Supervised Learning - Style Transfer

27 Jan 2025

Course Organization

- Scheduling of Q&A Session
- Last Exercise Sheet due today

Outline Self-Supervised

- Preliminaries
- Pretext Tasks
- Self-Supervised Learning Concepts
- Contrastive Learning
 - Quick-Thoughts
 - CLIP
- Summary

What is self-supervision?

https://t3.ftcdn.net/jpg/03/12/24/14/360_F_312241 475_OywzPQNBkO4xkSpT9vYDuJZyppn37aHM.jpg

https://ais-akamai.rtl.de/masters/1373178/1686x0/babyentwick lung-baby-spielt-mit-bunten-ringen.jpg

Why self-supervision?

https://uni-tuebingen.de/fakultaeten/mathematischnaturwissenschaftlichefakultaet/fachbereiche/informatik/lehrstuehle/autonomousvision/lectures/computer-vision/

- Getting labels for supervision is expensive
 - E.g. Labeling Imagenet took 22 human years
- Self-supervision from pseudo-labels for free

Idea of Self-Supervision

- Predict any part of the input from any other part.
- Predict the future from the past.
- Predict the future from the recent past.
- Predict the past from the present.
- Predict the top from the bottom.
- Predict the occluded from the visible
- Pretend there is a part of the input you don't know and predict that.

Slide credits: Yann LeCun and Ishan Misra

Jaiswal 2020, https://images.app.goo.gl/cehS4AmHg1tvjzcF9; https://images.app.goo.gl/u8UthNzMf7ooyDj86

Learning problems

- Unsupervised learning
 - Learn model parameters using data without labels $\{x_i\}_{i=1}^N$
 - Examples: Clustering, dimensionality reduction, generative models
- Supervised learning
 - Learn model parameters using data with labels $\{(\mathbf{x_i}, y_i)\}_{i=1}^N$
 - Examples: Classification, regression
- Self-supervised learning
 - Learn model parameters using data-data pairs $\{(\mathbf{x_i}, \mathbf{x_i}')\}_{i=1}^N$
 - Examples: Contrastive learning

Pretext task to learn representations

- Learn more general representations using self-supervision
- Use lots of unlabeled data for pre-training on pretext task
- Pretext Task ≠ Target Task

Skip-Gram

A quick brown fox jumps over the lazy dog

- Goal: Predict context words from center word
- Example
 - Context size 1
 - Predict 2 surrounding words from center word

https://amitness.com/2020/05/self-supervised-learning-nlp/ [Mikolov et al. 2013]

Skip-Thoughts

- Goal: Predict neighboring sentences
- Example
 - Context size 1
 - Predict 2 surrounding sentences from center sentence

https://amitness.com/2020/05/self-supervised-learning-nlp/ [Kiros et al. 2015]

Masked language model

```
Randomly masked

A quick [MASK] fox jumps over the [MASK] dog

Predict

A quick brown fox jumps over the lazy dog
```

- Randomly mask text
- Model predicts masked text from surrounding words
- Used in combination with next sentence prediction for pretraining BERT

https://amitness.com/2020/05/self-supervised-learning-nlp/ [Devlin et al. 2019]

Next sentence prediction

https://amitness.com/2020/05/self-supervised-learning-nlp/ [Devlin et al. 2019]

Pretext Tasks in NLP

- Generative
 - Auto-regressive language modeling
 - Continuous Bag of Words, Skip-Gram
 - Skip-Thoughts
 - Masked language model, next sentence prediction
- Contrastive
 - Quick-Thoughts
 - MI Maximization
- Generative-Contrastive
 - Replaced token detection

Contrastive loss

[Le-Khac et al. 2020]

Contrastive losses

- Traditional losses
 - Discriminative models measure losses with respect to prediction label
 - Generative models measure losses in the input space
- Contrastive losses
 - Target is defined in terms of metric embeddings instead of fixed targets
 - Loss measured in embedding space
 - Decomposed into scoring functions and the actual form

[Le-Khac et al. 2020]

Contrastive learning objective - similarity

$$\mathcal{L} = \mathbb{E}_{x,x^+,x^-} \left[-\log \left(\frac{\exp(sim(f(x),f(x^+)))}{\exp(sim(f(x),f(x^+)) + \exp(sim(f(x),f(x^-))))} \right) \right]$$

- Similarity functions
 - Distance: Euclidean

$$sim(x,y) = ||x - y||_2$$

• Similarity: Inner product or (normalized) cosine similarity $sim(x,y) = ||f(x)^T f(y)||_2$

Noise Contrastive Estimation

$$\mathcal{L} = \mathbb{E}_{x,x^{+},x^{-}} \left[-\log \left(\frac{e^{f(x)^{T} f(x^{+})}}{e^{f(x)^{T} f(x^{+})} + e^{f(x)^{T} f(x^{-})}} \right) \right]$$

- Encoder f and similarity measure (here inner product) may be exchanged based on the task, framework stays the same
- For more negative samples: InfoNCE

$$\mathcal{L} = \mathbb{E}_{x,x^{+},x^{k}} \left[-\log \left(\frac{e^{f(x)^{T} f(x^{+})}}{e^{f(x)^{T} f(x^{+})} + \sum_{k=1}^{K} e^{f(x)^{T} f(x^{k})}} \right) \right]$$

[Gutmann et al. 2010, Oord et al. 2018]

Quick-Thoughts basic idea

[Logeswaran et al. 2018]

Quick-Thoughts basic architecture

[Logeswaran et al. 2018]

RPTU

CLIP – Contrastive Language-Image Pre-Training

- Learns to associate images and natural language by connecting visual concepts with natural language supervision
- Dataset is created from abundance of image-caption pairs from the internet

[Radford et al. 2021]

CLIP - Pre-training

CLIP

Transfer dataset labels to common format

CLIP

Use transferred dataset labels to create classifier for zero-shot prediction

CLIP performance

CLIP takeaways

CLIP takeaways

CLIP objective

- $x_{i,j}$ is the cosine similarity between the i-th image representation $I(p_i)$ and j-th text representation $T(t_i)$
- y_i is the label index
- Overall loss comprises loss term for image-to-text similarity \mathcal{L}_I and text-to-image similarity \mathcal{L}_T

$$x_{i,j} = \frac{I(p_i) * T(t_j)}{\|I(p_i)\| * \|T(t_j)\|}$$

$$\mathcal{L}_I = -\frac{1}{N} \sum_{i=1}^N \log \frac{\exp(x_{i,y_i})}{\sum_{j=1}^N \exp(x_{i,j})} \qquad \mathcal{L}_T = -\frac{1}{N} \sum_{i=1}^N \log \frac{\exp(x_{y_i,i})}{\sum_{j=1}^N \exp(x_{j,i})}$$

$$\mathcal{L}_{CLIP} = \frac{\mathcal{L}_I + \mathcal{L}_T}{2}$$

CLIP code

```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, 1] - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
# t - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) \#[n, d_i]
T_f = text_encoder(T) #[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_normalize(np.dot(T_f, W_t), axis=1)
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2
```

CLIP performance

CLIP takeaways

- Very efficient due to contrastive training objective
- Flexible and general: good zero-shot performance on many tasks
- Prompt engineering is important for good performance
- Poor generalization to anything not covered in the training set
- On fine-grained or abstract classification tasks, task-specific models are still better

Summary

- Self-Supervised Learning as a workaround for missing labels
- High quality representations from pretext tasks
- NCE as the foundation of contrastive learning
- Contrastive Learning examples
 - Quick-Thoughts for sentence representations
 - CLIP for connecting visual and textual representations

Text Style Transfer

Outline

- Adversarial learning (GANs)
- Introduction to text style transfer
- Definition of text style
- Style transfer models
 - Parallel
 - Non-parallel
 - Examples
- Style transfer evaluation

Adversarial Training

- "Training a model in a worst-case scenario, with inputs chosen by an adversary"
- Examples:
 - An agent playing against a copy of itself in a board game [Samuel, 1959]
 - Robust optimization / robust control [e.g. Rustem and Howe 2002]
 - Training neural networks on adversarial examples [Szegedy et al. 2013, Goodfellow et al. 2014]

Generative Adversarial Networks

Both players are neural networks

Worst case input for one network is produced by another network

 Goal: Generate new samples that look like examples from the training dataset

GANs

Cop (discriminator)
Tries to distinguish real from fake profiles

Cyber criminal (generator)
Attempts to create online
identities that resemble ordinary
citizens

- [Goodfellow et al. 2014]
- Generative model $x = G_{\theta}(z), z \sim p(z)$
 - Map noise variable z to data space x
- Discriminator $D_{\phi}(x)$
 - ullet Output the probability that x came from the data rather than the generator
- No explicit inference model
- No obvious connection to previous models with inference networks like VAEs

- Learning
 - A minimax game between the generator and the discriminator
 - Train D to maximize the probability of assigning the correct label to both training examples and generated samples
 - Train G to fool the discriminator

$$\min_{G} L_{G} = \min_{G} \mathbb{E}_{x \sim G(z), z \sim p(z)} [\log(1 - D(x))]$$

- Learning
 - Train G to fool the discriminator
 - The original loss suffers from vanishing gradients when D is too strong
 - Instead use the following in practice

- Learning
 - Aim to achieve equilibrium of the game
 - Optimal state:

•
$$p_g(x) = p_{data}(x)$$

•
$$D(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)} = \frac{1}{2}$$

Summary: GAN training

GANs: Example Results

Can potentially improve the blurriness of VAE outputs

RPTU

Mode Collapse/Convergence issues

- Mode collapse refers to a phenomenon where only very similar images are generated.
 - If the discriminator does not change much, the best solution would be to continue to produce the one image that fools the discriminator most
- Optimization algorithms often approach a saddle point or local minimum rather than a global minimum
- Game solving algorithms may not approach an equilibrium at all

Mode Collapse

- The upper row shows a GAN that converges to the target distribution
- The lower row shows how the GAN only produces one mode and rotates to the next one as soon as the discriminator catches up
- Not always unwanted behavior: E.g. in style transfer we just need to find one good image rather than a diverse set of possible variants

GAN Problems

- Non-convergence: model parameters oscillate, destabilize and never converge
- Mode collapse: the generator collapses which produces limited variety of examples
- Diminished gradient: The discriminator becomes too successful and the generator gradient vanishes and learns nothing
- Unbalance between generator and discriminator causing overfitting
- Highly sensitive to hyperparameter selection

Text Style Transfer Introduction

Style is important

Definition of text style

- Data-driven
 - Definition existing datasets used by the community
 - E.g. Amazon or Yelp reviews for sentiment transfer
- Linguistic
 - High level: Formality, simplification,...
 - Low level: Lexical, syntactic,...

Examples for style transfer

You have to consider both sides of the story. Gotta see both sides of the story.

Formality [Rao et al. 2018]

At the first God made the heaven and the earth.

In the beginning God created the heavens and the earth.

Simplification [Carlson et al. 2018]

This is just awful.

This is pure genius.

Sentiment [Shen et al. 2017]

RPTU

Style transfer models

- Supervised models use style labels
 - Parallel methods
 - Non-parallel methods

• Unsupervised models do not use style labels

Parallel text style transfer

- Usually, adopting seq2seq models from neural machine translation
 - Bi-directional LSTM + attention [Bahdanau et al. 2015] used by Rao et al. [2018] and Jhamtani et al. [2017]
 - Transformer-based [Vaswani et al. 2017]
- Data augmentation using back-translation to expand the dataset [Rao et al. 2018]

Latent representation manipulation

- Latent representation splitting (e.g. John et al. [2019])
 - Disentangle latent representation into semantic representation z and attribute (style) representation a
 - Replace a by a'
 - Decode for style transfer

Training objectives

- Target attribute is fully and exclusively controlled by a
 - ➤ Style-oriented losses

- ullet Attribute-independent information is fully and exclusively controlled and captured by z
 - > Content-oriented losses

Style-oriented losses

• Attribute classifier on outputs: Make output carry target attribute a' according to pre-trained classifier f_c [Prabhumoye et al. 2018]

$$\mathcal{L}_{ACO}(\theta_G, a') = -\mathbb{E}_{p(x)} \log f_c(x')$$

• Attribute classifier on representations: Enforce style in hidden representation [John et al. 2019]

$$\mathcal{L}_{ACR}(\theta_E, \theta_{f_c}) = -\mathbb{E}_{p(x)} \log f_c(a)$$

Style-oriented losses

• Adversarial learning on representations: Enforce z to not contain any information about a [John et al. 2019]

$$\max_{E} \min_{f_c} \mathcal{L}_{AdvR}(\theta_E, \theta_{f_c}) = -\mathbb{E}_{p(x)} \log f_c(E(x))$$

Educating Text Autoencoders: Latent Representation Guidance via Denoising

Text autoencoders represent sentences as vectors in latent space

[Shen et al. 2020]

Manipulate sentences by modifying the latent representation

[Shen et al. 2020]

Denoising adversarial autoencoder

• Add perturbation process C that maps x to nearby \tilde{x} and ask model to reconstruct x from \tilde{x}

$$\min_{E,G} \max_{D} \mathcal{L}_{rec}(\theta_E, \theta_G) - \lambda \mathcal{L}_{adv}(\theta_E, \theta_G)$$

[Shen et al. 2020]

The discriminator D ensures that the latent encodings $z_1, ..., z_n$ of training examples $x_1, ..., x_n$ are indistinguishable from prior samples $z \sim p(z)$

Unsupervised style transfer with DAAE

[Shen et al. 2020]

Original	I decided to say hello to him, and we stood there until he had to go.
more melodramatic	I decided to go meet him in the pouring rain, to declare my undying love for him in the rain.
more comic	I decided to make a funny face at the creepy man who was starring and we stood there making faces at each other until he had to go.
include the word "balloon"	I decided that he needed to be cheered up as well, and we stood there and talked until he had all the smiles he needed. Then he gave me a balloon, before he left.
include the word "park"	I decided to go for a walk in the park and there I met a man who had an uncanny resemblance to my friend. After that serendipitous encounter we went our seperate ways.
includes a metaphor	A snowflake landed on his nose and melted, and that was my cue to leave.

- Idea: Use natural language to describe the task (text style transfer)
- Prompts
 - Zero-Shot: transfer without examples
 - Few-Shot: transfer with few examples of the wanted style transferred
 - Augmented Zero-Shot: transfer with few examples of arbitrary styles

Zero-Shot

 Here is some text: {That is an ugly dress}. Here is a rewrite of the text, which is more positive: {

Few-Shot

• **Here** is some text: {I was really sad about the loss}. Here is a rewrite of the text, which is more positive: {I was able to accept and work through the loss to move on.} **Here** is some text: {The eggnog was tasteless}. Here is a rewrite of the text, which is more positive: {The eggnog had a great, festive taste to it.} **... Here** is some text: {That is an ugly dress}. Here is a rewrite of the text, which is more positive: {

- Augmented Zero-Shot
 - Here is some text: {When the doctor asked Linda to take the medicine, he smiled and gave her a lollipop}. Here is a rewrite of the text, which is more scary: {When the doctor told Linda to take the medicine, there had been a malicious gleam in her eye that Linda didn't like at all} Here is some text: {They asked loudly, over the sound of the train}. Here is a rewrite of the text, which is more intense: {They yelled aggressively, over the clanging of the train} ... Here is some text: {That is an ugly dress}. Here is a rewrite of the text, which is more positive:{
- Augmented Zero-Shot works best in this setting
- Tested with several LLMs, LLM optimized for dialogs works best

Style transfer evaluation

- Dimensions
 - Fluency
 - Content Preservation
 - Style Transfer Accuracy
- Human annotation or automated metrics

Conclusion

- Different definitions of text style
- Text style transfer and its evaluation easy on parallel data that is scarce
- Non-parallel methods
 - Disentanglement-based
 - Prototype editing
 - Pseudo-parallel corpus construction
- Evaluation conducted on three dimensions

References

- Rao, Sudha, and Joel Tetreault. "Dear sir or madam, may i introduce the gyafc dataset: Corpus, benchmarks and metrics for formality style transfer." arXiv preprint arXiv:1803.06535 (2018).
- Carlson, Keith, Allen Riddell, and Daniel Rockmore. "Evaluating prose style transfer with the Bible." Royal Society open science 5.10
 (2018): 171920.
- Shen, Tianxiao, et al. "Style transfer from non-parallel text by cross-alignment." Advances in neural information processing systems. 2017.
- DiMarco, Chrysanne, and Graeme Hirst. "A computational theory of goal-directed style in syntax." Computational Linguistics 19.3 (1993): 451-500.
- Lyu et al., "StylePTB: A Compositional Benchmark for Fine-Grained Controllable Text Style Transfer." NAACL-HLT (2021).
- Jhamtani, Harsh, et al. "Shakespearizing modern language using copy-enriched sequence-to-sequence models." arXiv preprint arXiv:1707.01161 (2017).
- Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
- Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate. ICLR 2015
- Liu, Dayiheng, et al. "Revision in continuous space: Unsupervised text style transfer without adversarial learning." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. No. 05. 2020.
- John, Vineet, et al. "Disentangled representation learning for non-parallel text style transfer." ACL (2019).
- Prabhumoye et al., "Style Transfer Through Back-Translation." ACL (2018).
- Yang et al., "Unsupervised Text Style Transfer Using Language Models as Discriminators." NeurIPS (2018)
- Logeswaran, Lee, and Bengio, "Content Preserving Text Generation with Attribute Controls." NeurIPS (2018)

References

- Li, Juncen, et al. "Delete, retrieve, generate: a simple approach to sentiment and style transfer." NAACL-HLT (2018).
- Jin et al., "IMaT: Unsupervised Text Attribute Transfer via Iterative Matching and Translation." EMNLP (2019)
- Hoang et al., "Iterative Back-Translation for Neural Machine Translation." NMT@ACL 2018
- Shen et al., "Educating Text Autoencoders." ICML (2020).
- Makhzani et al., "Adversarial Autoencoders."
- Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
- Mir et al., "Evaluating Style Transfer for Text." NAACL-HLT (2019).
- Pang and Gimpel, "Unsupervised Evaluation Metrics and Learning Criteria for Non-Parallel Textual Transfer." Proceedings of the 3rd Workshop on Neural Generation and Translation (2019)
- Zhang et al., "BERTScore: Evaluating Text Generation with BERT." ICLR (2020).
- Kusner, Matt, et al. "From word embeddings to document distances." International conference on machine learning. PMLR, 2015.
- Kim, Yoon. "Convolutional Neural Networks for Sentence Classification." EMNLP (2014).
- Reif, Emily, et al. "A recipe for arbitrary text style transfer with large language models." ACL (2022)
- Jin et al., "Deep Learning for Text Style Transfer: A Survey."
- Papineni, Kishore, et al. "Bleu: a method for automatic evaluation of machine translation." Proceedings of the 40th annual meeting of the Association for Computational Linguistics. 2002 Papineni, Kishore, et al. "Bleu: a method for automatic evaluation of machine translation." Proceedings of the 40th annual meeting of the Association for Computational Linguistics. 2002.

References

- Bengio, Yoshua et al. "A Neural Probabilistic Language Model." J. Mach. Learn. Res. (2000).
- Mikolov, Tomas et al. "Efficient Estimation of Word Representations in Vector Space." ICLR (2013).
- Kiros, Ryan et al. "Skip-Thought Vectors." NIPS (2015)
- Devlin, Jacob et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." NAACL (2019)
- Gutmann, Michael, and Aapo Hyvärinen. "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2010.
- OORD, Aaron van den; LI, Yazhe; VINYALS, Oriol. Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.
- Jaiswal, Ashish, et al. "A survey on contrastive self-supervised learning." Technologies 9.1 (2020): 2
- Logeswaran, Lajanugen, and Honglak Lee. "An efficient framework for learning sentence representations." ICLR (2018)
- Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International Conference on Machine Learning. PMLR, 2021.
- Liu, Xiao, et al. "Self-supervised learning: Generativ" A survey on contrastive self-supervised learning.e or contrastive." IEEE Transactions on Knowledge and Data Engineering (2021).
- Jaiswal, Ashish, et al. "Technologies 9.1 (2020): 2.
- Le-Khac, Phuc H., Graham Healy, and Alan F. Smeaton. "Contrastive representation learning: A framework and review." IEEE Access 8 (2020): 193907-193934.