

Température de flamme d'un chalumeau au propane

Exercice VIII-5

Exercice VIII-5 : Température de flamme d'un chalumeau au propane

Enoncé

Quelle est la température maximale obtenue à la sortie d'un chalumeau propane-oxygène fonctionnant à l'*air libre*, les gaz étant pris initialement à 298 K ?

Données à 298 K:

• Enthalpie standard de formation :

	С3Н8	H ₂ O ₁	H ₂ O _g	CO ₂
$\Delta_f H^\circ$ en k J . mol $^{-1}$	- 103, 75	- 285,55	- 241,59	- 393,14
C _p en J K ⁻¹ mol ⁻¹		75,23	33,5	37,0

• $\Delta_{Vap}H^{\circ}$ (H₂O) = 43,97 kJ . mol⁻¹ à 373 K.

Température de flamme d'un chalumeau au propane

Exercice VIII-5

Correction:

On réalise un cycle thermochimique, faisant intervenir des transformations pour lesquelles on sait évaluer les variations d'enthalpie. En considérant que l'enthalpie est une fonction d'état, c'est-à-dire que toutes variations d'enthalpie est indépendante du chemin suivi, on en déduit classiquement la température de flamme.

$$C_{3}H_{8 (g)} + 5 O_{2 (g)} + 20 N_{2 (g)} \xrightarrow{\Delta_{r}H^{\circ}} 3 CO_{2 (g)} + 4 H_{2}O_{(l)} + 20 N_{2 (g)} T_{i} = 298 K$$

$$0 A_{r}H^{\circ}{}_{1}$$

$$0 A_{r}H^{\circ}{}_{2}$$

avec $\Delta H^{\circ} = 0$ (système adiabatique);

$$\begin{split} \Delta_r H_2^\circ &= \int_{298}^{373} \!\! \left[\!\! 4 \cdot c_p \! \left(\! H_2 O_{(1)} \right) \! + 20 \cdot c_p \! \left(\! N_{2(g)} \right) \! + 3 \cdot c_p \! \left(\! CO_{2(g)} \right) \! \right] \! \cdot dT \; ; \\ \Delta_r H_3^\circ &= 4 \cdot \Delta_{vap} H_{373K}^\circ (H_2 O) + \int_{373}^{T_f} \!\! \left[\!\! 4 \cdot c_p \! \left(\! H_2 O_{(g)} \right) \! + 20 \cdot c_p \! \left(\! N_{2(g)} \right) \! + 3 \cdot c_p \! \left(\! CO_{2(g)} \right) \! \right] \! \cdot dT \\ &= t \; \Delta_{comb} H_{298K}^\circ = \sum_i \nu_i \cdot \Delta_{form} H_{298}^\circ = -2217.9 \; kJ \; . \; mol^{-1} \\ &= on \; trouve \; T_f = 2733 \; K. \end{split}$$