

Dealing with Numbers

"Surviving the post p-values era"

Estibaliz Gómez de Mariscal esgomezm@pa.uc3m.es

I.	Errors & Uncertainty
II.	Statistical measures to characterize uncertainty

IV. Sample size

III.

Surviving the post p-values era:

Statistical sampling

• Use of the p-value as a size-dependent function: model and applications

Measurement is a process of experimentally obtaining the value of a quantity.

Optimal measurement procedure to be as close as possible to the true value

ERROR

most times cannot be used in practice

UNCERTAINTY

Interval around the measured value. It provides the <u>quality of a</u>

<u>measurement</u>

Resolution

Estimation method

Calibration

Repeatability uncertainty (human factor)

Reproducibility

Data acquisition (measurement error)

Biological systems

Data analysis

https://sisu.ut.ee/measurement/uncertainty

Final result report

Sources of variance / errors / uncertainty / bias / noise

Resolution Controlled measures Calibration e_c Data acquisition (measurement error) Biological systems Uncontrolled & subjective Reproducibility e_u Repeatability uncertainty (human factor) Data analysis Calculated using statistical methods **Estimation method**

Final result $\pm e_c \pm e_u \pm e$

Statistical measures to characterize uncertainty

Standard deviation (σ)

- Variability or dispersion of the data w.r.t. the mean.
- $s = \sqrt{\frac{\sum_{i=1}^{n} (x_i \bar{x})^2}{n}}$; (s^2 : sample variance, biased)
- $S = \sqrt{\frac{\sum_{i=1}^{n} (x_i \bar{x})^2}{n-1}}$; (S^2 : quasi-variance non-biased)

Standard error of the mean (SEM)

- Standard deviation of the mean: how far the sample mean of the data is likely to be from the true population mean
- It can be used to validate the accuracy of a sample.
- $s. e. m_{\bar{x}} = \frac{s}{\sqrt{n}}$: standard error

Confidence Intervals (CI at 95%)

- "A range of values it can be 95% confident that it contains the true mean value"
- If the variance of the population (σ^2) is known:

$$CI = \bar{x} \pm z_{(1-\alpha/2)} \frac{\sigma}{\sqrt{n}}$$

• If the σ is unknown but n is large:

$$CI = \bar{x} \pm z_{(1-\alpha/2)} \frac{S}{\sqrt{n}}$$

• If the σ is unknown but n is small:

$$CI = \bar{x} \pm t_{(n-1,1-\alpha/2)} \frac{S}{\sqrt{n}}$$

Statistical measures to characterize uncertainty

Standard deviation (σ)

Variability or dispersion of the data w.r.t. the mean.

Confidence Intervals (CI at 95%)

- A range of values it can be 95% confident that it contains the true mean value.

Standard error of the mean (SEM)

- Standard deviation of the mean: how far the sample mean of the data is likely to be from the true population mean
- It can be used to validate the accuracy of a sample.

True meaning of a Confidence Interval

For each 100 intervals, we belief that at least in 95 of them we will find the expected value.

Statistical sampling

- 1. Any finite sample of that variable will have a different sample mean and standard deviation.
- 2. Repeat the sampling and calculate a mean each time.

Statistical sampling

The resulting means would be distributed according to the

sampling distribution of the mean.

Computation of (confidence) intervals of the sample mean

Computation of (confidence) intervals of the sample mean

The following conditions must be satisfied:

- I. All the samples must be randomly chosen
- II. Confidence intervals are designed for **normal distributions**.
 - > The mean follows a normal conditions (central limit theorem).
- III. Sampling has to satisfy the **independence** condition.
 - Sampling with replacement.
 - Case without replacement: Questionnaires to people who is leaving a store, you cannot ask them to go back again.
 - \triangleright Recommendation: n value smaller than 10% of the sample \rightarrow Calculate first n.

How robust are these measures?

What is the main problem with estimation using experimental data?

- Pooled mean (mean of the sample means): $\mu_X = \frac{\sum_i N_{X_i} \mu_{X_i}}{\sum_i N_{X_i}}$
- Pooled standard deviation: $\sigma_X = \frac{\sum_i (N_{X_i} 1) \sigma_{X_i}^2}{\sum_i (N_{X_i} 1)}$

Sampling distributions of sample means for 10,000 samples for indicated sample sizes

Relationship between s.e.m. and CI at 95% error bars when increasing the sample size (n)

Sample size (n)

Figure 4 | The mean (\bar{X}) , s.d. (s) and s.e.m. of three samples of increasing size drawn from the distribution in **Figure 2a**. As n is increased, \bar{X} and s more closely approximate μ and σ . The s.e.m. (s/\sqrt{n}) is an estimate of $\sigma_{\bar{X}}$ and measures how well the sample mean approximates the population mean.

There is a certain value of n for which the population mean is well approximated.

Sample size (n)

To calculate n it is necessary to set parameters that depend on the type of study:

- Standard deviation of the sample (σ)
- Confidence level $(1-\alpha)$
- Error range (e) / Length of the confidence interval (L)

If we are interested in the confidence interval of the sample mean (μ):

• If the standard deviation of the population (σ) is known:

• If σ is unknown but n is large: $n = \frac{(2z_{(1-\alpha/2)}S)^2}{L^2}.$

• If σ is unknown but n is small: $n = \frac{(2t_{(n-1,1-\alpha/2)}S)^2}{L^2},$

where $z_{(1-\alpha/2)}$ and $t_{(n-1,1-\alpha/2)}$ are the corresponding quantiles in the Normal and t-Student distributions respectively.

 $n = \frac{(2z_{(1-\alpha/2)}\sigma)^2}{r^2}.$

Sample size (n)

		Fórmula	R
One parameter	Mean	$n = \left(\frac{2 \cdot z_{\alpha/2} \cdot \sigma}{A}\right)^2$	sample.size.mean
Estimation	Probabilities	$n = \left(\frac{z_{\alpha/2}}{A}\right)^2$	sample.size.prop
	Independent	$n = \frac{2 \cdot \sigma^2 \cdot (z_{\alpha/2} + Z_{\beta})^2}{\Delta^2}$	TwoSampleMean.Equality
	Paired	$N = \frac{2 \cdot \sigma_I^2 \cdot (z_{\alpha/2} + z_\beta)^2}{\Delta^2}$	-
Means	Análisis del cambio	$n = \frac{2 \cdot \sigma_C^2 \cdot (z_{\alpha/2} + z_\beta)^2}{\Delta^2}$	-
comparison	Equivalent	$n = \frac{2\sigma^2 \left(z_{\alpha} + z_{\beta/2}\right)^2}{\Delta^2}$	TwoSampleMean.Equivalence
	Non-inferiority	$n = \frac{2\sigma^2 \big(z_\alpha + z_\beta\big)^2}{\Delta^2}$	TwoSampleMean.NIS
	Precision	$n = \frac{8 \cdot \sigma^2 \cdot z_{\alpha/2}^2}{A^2}$	-
Probabilities comparison	Independent $n = \left(\begin{array}{c} \\ \end{array}\right)$	$\frac{z_{\alpha/2}\sqrt{2p(1-p)}}{p_A - p_B} + \frac{z_{\beta}\sqrt{p_A(1-p_A) + p_B(1-p_B)}}{p_A - p_B} \bigg)^2$	TwoSampleProportion.Equality
Times	Instant recruitment	$N = \frac{2E}{2 - \pi_A - \pi_B}$	ssizeCT.default (para HRR constantes)
comparison	Recruitment for a period	$N = \frac{2(z_{1-\alpha/2} + z_{1-\beta})^2 (\Phi(\lambda_A) + \Phi(\lambda_B))}{(\lambda_A - \lambda_B)^2}$	TwoSampleSurvival.Equality

Nomenclature

 σ^2 : total variance

 $\sigma_{\rm l}^{\,2}$: intra-subject variance

 $\sigma_{\rm C}{}^2$: variance of the changing variable

Δ: difference we want to detect

ho: correlation between both observations

 $\emph{\textbf{A}}$: amplitude of the interval

E: number of events we need to observe

 λ : event appearance rate

 π : estimated proportion of cases for which the event will NOT be present during the study.

Surviving the post *p-values* era

Acknowledgments: This work was produced with the support of the Spanish Ministry of Economy and Competitiveness (TEC2015-73064-EXP, TEC2016-78052-RTC2017-6600-1, RTC-2017-6600-1), a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation, and NEUBIAS (Network of European Bioimage Analysists).

uc3m Universidad Carlos III de Madrid

Instituto de Investigación Sanitaria Gregorio Marañón

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

