Data Structures and Algorithms ¹

BITS-Pilani K. K. Birla Goa Campus

¹Material for the presentation taken from Cormen, Leiserson, Rivest and Stein, *Introduction to Algorithms, Third Edition*;

Ch 4: Divide-and-Conquer

Divide the problem into a number of subproblems that are smaller instances of the same problem.

Conquer the subproblems by solving them recursively.

Combine the solutions to the subproblems into the solution for the original problem.

Q. You are given an unsorted array. Find the minimum element in the array using a divide-and-conquer approach.

- Q. You are given an unsorted array. Find the minimum element in the array using a divide-and-conquer approach.
- 1: **procedure** FINDMINIMUM(arr, left, right)
- 2: **if** left = right **then**
- 3: **return** arr[left]
- 4: $mid \leftarrow \lfloor (left + right)/2 \rfloor$

Q. You are given an unsorted array. Find the minimum element in the array using a divide-and-conquer approach.

```
    procedure FINDMINIMUM(arr, left, right)
    if left = right then
    return arr[left]
    mid ← [(left + right)/2]
    minLeft ← FINDMINIMUM(arr, left, mid)
    minRight ← FINDMINIMUM(arr, mid + 1, right)
```

Q. You are given an unsorted array. Find the minimum element in the array using a divide-and-conquer approach.

```
    procedure FINDMINIMUM(arr, left, right)
    if left = right then
    return arr[left]
    mid ← [(left + right)/2]
    minLeft ← FINDMINIMUM(arr, left, mid)
    minRight ← FINDMINIMUM(arr, mid + 1, right)
    return min(minLeft, minRight)
```

Q. You are given an unsorted array. Find the minimum element in the array using a divide-and-conquer approach.

```
    procedure FINDMINIMUM(arr, left, right)
    if left = right then
    return arr[left]
    mid ← [(left + right)/2]
    minLeft ← FINDMINIMUM(arr, left, mid)
    minRight ← FINDMINIMUM(arr, mid + 1, right)
    return min(minLeft, minRight)
```

(a) Find the recurrence equation for the above algorithm?

Q. You are given an unsorted array. Find the minimum element in the array using a divide-and-conquer approach.

```
    procedure FINDMINIMUM(arr, left, right)
    if left = right then
    return arr[left]
    mid ← [(left + right)/2]
    minLeft ← FINDMINIMUM(arr, left, mid)
    minRight ← FINDMINIMUM(arr, mid + 1, right)
    return min(minLeft, minRight)
```

- (a) Find the recurrence equation for the above algorithm?
- (b) What is the worst case running time of the algorithm?

 $ightharpoonup C = A \cdot B$, where A, B and C are $n \times n$ matrices

 $ightharpoonup C = A \cdot B$, where A, B and C are $n \times n$ matrices

 $ightharpoonup C = A \cdot B$, where A, B and C are $n \times n$ matrices

MATRIX-MULTIPLY
$$(A, B, C, n)$$

1 for $i = 1$ to n

2 for $j = 1$ to n

3 for $k = 1$ to n

4 $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$

▶ MATRIX-MULTIPLY procedure runs in $\Theta(n^3)$ time.

- ► MATRIX-MULTIPLY procedure runs in $\Theta(n^3)$ time.
- Volker Strassen came up with an algorithm that takes $O(n^{\lg 7})$ time, which is $o(n^{2.81})$. ($\lg 7 = 2.8074$)

- ▶ MATRIX-MULTIPLY procedure runs in $\Theta(n^3)$ time.
- Volker Strassen came up with an algorithm that takes $O(n^{\lg 7})$ time, which is $o(n^{2.81})$. ($\lg 7 = 2.8074$)
- ► Strassen's algorithm uses a divide-and-conquer approach.

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix},$$

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix},$$

so that we rewrite the equation $C = A \cdot B$ as

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}.$$

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix},$$

so that we rewrite the equation $C = A \cdot B$ as

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}.$$

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21} ,$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22} ,$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21} ,$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22} .$$

```
MATRIX-MULTIPLY-RECURSIVE (A, B, C, n)
   if n == 1
 2 // Base case.
         c_{11} = c_{11} + a_{11} \cdot b_{11}
         return
 5 // Divide
 6 partition A, B, and C into n/2 \times n/2 submatrices
         A_{11}, A_{12}, A_{21}, A_{22}; B_{11}, B_{12}, B_{21}, B_{22};
         and C_{11}, C_{12}, C_{21}, C_{22}; respectively
    // Conquer.
    MATRIX-MULTIPLY-RECURSIVE (A_{11}, B_{11}, C_{11}, n/2)
    MATRIX-MULTIPLY-RECURSIVE (A_{11}, B_{12}, C_{12}, n/2)
    MATRIX-MULTIPLY-RECURSIVE (A_{21}, B_{11}, C_{21}, n/2)
10
    MATRIX-MULTIPLY-RECURSIVE (A_{21}, B_{12}, C_{22}, n/2)
11
    MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21}, C_{11}, n/2)
12
    MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22}, C_{12}, n/2)
13
    MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21}, C_{21}, n/2)
    MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22}, C_{22}, n/2)
15
```

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21},$$

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21} ,$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22} ,$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21} ,$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22} .$$

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}.$$

$$C_{11} = A_{11} B_{11} + A_{12} B_{21},$$
 $C_{12} = A_{11} B_{11} + A_{12} B_{21},$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22} ,$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21} ,$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22} .$$

$$T(n) = 8T(n/2) + D(n) + C(n)$$

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21} ,$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22} ,$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21} ,$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22} .$$

$$T(n) = 8T(n/2) + D(n) + C(n)$$

►
$$T(n) = 8T(n/2) + \Theta(1) + \Theta(1)$$

Recursion tree for merge sort

$$T(n) = c8^{\lg n} + \dots$$

►
$$T(n) = c8^{\lg n} + ...$$

 $T(n) = cn^{\lg 8} + ...$

$$T(n) = c8^{\lg n} + \dots$$

$$T(n) = cn^{\lg 8} + \dots$$

$$T(n) = \Theta(n^3)$$

$$T(n) = c8^{\lg n} + \dots$$
$$T(n) = cn^{\lg 8} + \dots$$
$$T(n) = \Theta(n^3)$$

Strassen modified the divide-and-conquer approach explained above such that $T(n) = O(n^{\lg 7})$

- $T(n) = c8^{\lg n} + \dots$ $T(n) = cn^{\lg 8} + \dots$ $T(n) = \Theta(n^3)$
- Strassen modified the divide-and-conquer approach explained above such that $T(n) = O(n^{\lg 7})$
- $T(n) = c7^{\lg n} + \dots$

- $T(n) = c8^{\lg n} + \dots$ $T(n) = cn^{\lg 8} + \dots$ $T(n) = \Theta(n^3)$
- Strassen modified the divide-and-conquer approach explained above such that $T(n) = O(n^{\lg 7})$
- $T(n) = c7^{\lg n} + \dots$ $T(n) = cn^{\lg 7} + \dots$

- $T(n) = c8^{\lg n} + \dots$ $T(n) = cn^{\lg 8} + \dots$ $T(n) = \Theta(n^3)$
- Strassen modified the divide-and-conquer approach explained above such that $T(n) = O(n^{\lg 7})$
- $T(n) = c7^{\lg n} + \dots$ $T(n) = cn^{\lg 7} + \dots$ $T(n) = \Theta(n^{\lg 7})$

$$T(n) = c8^{\lg n} + \dots$$
$$T(n) = cn^{\lg 8} + \dots$$
$$T(n) = \Theta(n^3)$$

- Strassen modified the divide-and-conquer approach explained above such that $T(n) = O(n^{\lg 7})$
- $T(n) = c7^{\lg n} + \dots$ $T(n) = cn^{\lg 7} + \dots$ $T(n) = \Theta(n^{\lg 7})$

						5	6
							262144
							117649
2 ⁿ	1	2	4	8	16	32	64

Strassen's algorithm : Divide (Step 1)

Divide step involves finding ten $n/2 \times n/2$ matrices (S_i).

Strassen's algorithm : Divide (Step 1)

Divide step involves finding ten $n/2 \times n/2$ matrices (S_i).

$$S_{1} = B_{12} - B_{22},$$

$$S_{2} = A_{11} + A_{12},$$

$$S_{3} = A_{21} + A_{22},$$

$$S_{4} = B_{21} - B_{11},$$

$$S_{5} = A_{11} + A_{22},$$

$$S_{6} = B_{11} + B_{22},$$

$$S_{7} = A_{12} - A_{22},$$

$$S_{8} = B_{21} + B_{22},$$

$$S_{9} = A_{11} - A_{21},$$

$$S_{10} = B_{11} + B_{12}.$$

Strassen's algorithm : Conquer (Step 2)

$$P_{1} = A_{11} \cdot S_{1}$$

$$P_{2} = S_{2} \cdot B_{22}$$

$$P_{3} = S_{3} \cdot B_{11}$$

$$P_{4} = A_{22} \cdot S_{4}$$

$$P_{5} = S_{5} \cdot S_{6}$$

$$P_{6} = S_{7} \cdot S_{8}$$

$$P_{7} = S_{9} \cdot S_{10}$$

Strassen's algorithm : Conquer (Step 2)

$$P_{1} = A_{11} \cdot S_{1} = A_{11} \cdot B_{12} - A_{11} \cdot B_{22} ,$$

$$P_{2} = S_{2} \cdot B_{22} = A_{11} \cdot B_{22} + A_{12} \cdot B_{22} ,$$

$$P_{3} = S_{3} \cdot B_{11} = A_{21} \cdot B_{11} + A_{22} \cdot B_{11} ,$$

$$P_{4} = A_{22} \cdot S_{4} = A_{22} \cdot B_{21} - A_{22} \cdot B_{11} ,$$

$$P_{5} = S_{5} \cdot S_{6} = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} ,$$

$$P_{6} = S_{7} \cdot S_{8} = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22} ,$$

$$P_{7} = S_{9} \cdot S_{10} = A_{11} \cdot B_{11} + A_{11} \cdot B_{12} - A_{21} \cdot B_{11} - A_{21} \cdot B_{12} .$$

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21} ,$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22} ,$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21} ,$$

 $C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$.

Strassen's algorithm : Combine (Step 3)

$$C_{11} = P_5 + P_4 - P_2 + P_6.$$

$$\begin{array}{c} A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \\ - A_{22} \cdot B_{11} & + A_{22} \cdot B_{21} \\ - A_{11} \cdot B_{22} & - A_{12} \cdot B_{22} \\ \hline - A_{22} \cdot B_{22} - A_{22} \cdot B_{21} + A_{12} \cdot B_{22} + A_{12} \cdot B_{21} \\ \hline A_{11} \cdot B_{11} & + A_{12} \cdot B_{21} \end{array}$$

Strassen's algorithm : Combine (Step 3)

$$C_{12} = P_1 + P_2 ,$$

$$\frac{A_{11} \cdot B_{12} - A_{11} \cdot B_{22}}{+ A_{11} \cdot B_{22} + A_{12} \cdot B_{22}}$$

$$\frac{A_{11} \cdot B_{12} + A_{12} \cdot B_{22}}{+ A_{12} \cdot B_{22}},$$

Strassen's algorithm: Combine (Step 3)

$$C_{12} = P_1 + P_2$$
,

$$A_{11} \cdot B_{12} - A_{11} \cdot B_{22} + A_{11} \cdot B_{22} + A_{12} \cdot B_{22}$$

$$\frac{}{A_{11} \cdot B_{12}} + A_{12} \cdot B_{22} ,$$

$$C_{21} = P_3 + P_4$$

$$A_{21} \cdot B_{11} + A_{22} \cdot B_{11} - A_{22} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$A_{21} \cdot B_{11} + A_{22} \cdot B_{21} ,$$

Strassen's algorithm: Combine (Step 3)

$$C_{12} = P_1 + P_2 ,$$

$$C_{21} = P_3 + P_4$$

$$\frac{A_{11} \cdot B_{12} - A_{11} \cdot B_{22} + A_{11} \cdot B_{22} + A_{12} \cdot B_{22}}{A_{11} \cdot B_{12} + A_{12} \cdot B_{22}}$$

$$\frac{A_{21} \cdot B_{11} + A_{22} \cdot B_{11}}{-A_{22} \cdot B_{11} + A_{22} \cdot B_{21}} + A_{21} \cdot B_{11} + A_{22} \cdot B_{21}}{A_{21} \cdot B_{11}}$$

$$C_{22} = P_5 + P_1 - P_3 - P_7 ,$$

 $A_{22} \cdot B_{22}$

 $+A_{21}\cdot B_{12}$,

$$T(n) = 7T(n/2) + D(n) + C(n)$$

$$T(n) = 7T(n/2) + D(n) + C(n)$$

►
$$T(n) = 7T(n/2) + \Theta(n^2) + \Theta(n^2)$$

- T(n) = 7T(n/2) + D(n) + C(n)
- ► $T(n) = 7T(n/2) + \Theta(n^2) + \Theta(n^2)$
- $T(n) = 7^{\lg n} + \dots$

- T(n) = 7T(n/2) + D(n) + C(n)
- ► $T(n) = 7T(n/2) + \Theta(n^2) + \Theta(n^2)$
- $T(n) = 7^{\lg n} + \dots$ $T(n) = n^{\lg 7} + \dots$

- T(n) = 7T(n/2) + D(n) + C(n)
- ► $T(n) = 7T(n/2) + \Theta(n^2) + \Theta(n^2)$
- $T(n) = 7^{\lg n} + \dots$

$$T(n) = n^{\lg 7} + \dots$$

$$T(n) = O(n^{\lg 7}) = o(n^{2.81})$$

- T(n) = 7T(n/2) + D(n) + C(n)
- ► $T(n) = 7T(n/2) + \Theta(n^2) + \Theta(n^2)$
- $T(n) = 7^{\lg n} + \dots$ $T(n) = n^{\lg 7} + \dots$ $T(n) = O(n^{\lg 7}) = o(n^{2.81})$
- \blacktriangleright Why should n be a power of 2?

$$n^{\lg 7} <= m^{\lg 7} <$$

$$n^{\lg 7} <= m^{\lg 7} < (2n)^{\lg 7}$$

$$n^{\lg 7} <= m^{\lg 7} < (2n)^{\lg 7} = 2^{\lg 7} n^{\lg 7}$$

$$n^{\lg 7} <= m^{\lg 7} < (2n)^{\lg 7} = 2^{\lg 7} n^{\lg 7} = 7n^{\lg 7}$$

$$n^{\lg 7} <= m^{\lg 7} < (2n)^{\lg 7} = 2^{\lg 7} n^{\lg 7} = 7n^{\lg 7}$$

Q. How would you modify Strassen's algorithm to multiply $n \times n$ matrices in which n is not an exact power of 2?

$$n^{\lg 7} <= m^{\lg 7} < (2n)^{\lg 7} = 2^{\lg 7} n^{\lg 7} = 7n^{\lg 7}$$

The above implies that $m^{\lg 7} = \Theta(n^{\lg 7})$.

▶ Find an upper bound for $T(n) = 2T(\lfloor n/2 \rfloor) + n$

- ▶ Find an upper bound for $T(n) = 2T(\lfloor n/2 \rfloor) + n$
- ▶ We will first guess a solution: $O(n \lg n)$ (using Recursion tree)

- ▶ Find an upper bound for $T(n) = 2T(\lfloor n/2 \rfloor) + n$
- ▶ We will first guess a solution: $O(n \lg n)$ (using Recursion tree)
- ▶ To show : $T(n) = O(n \lg n)$

- ▶ Find an upper bound for $T(n) = 2T(\lfloor n/2 \rfloor) + n$
- ▶ We will first guess a solution: $O(n \lg n)$ (using Recursion tree)
- To show: $T(n) = O(n \lg n)$ $T(n) \le dn \lg n$

- ▶ Find an upper bound for $T(n) = 2T(\lfloor n/2 \rfloor) + n$
- ▶ We will first guess a solution: $O(n \lg n)$ (using Recursion tree)
- To show: $T(n) = O(n \lg n)$ $T(n) \le dn \lg n$
- We will assume that $T(n/2) \le d(n/2) \lg(n/2)$. Then show that $T(n) \le dn \lg n$. (Inductive step)

$$T(\lfloor n/2 \rfloor) \leq d(\lfloor n/2 \rfloor) \lg(\lfloor n/2 \rfloor) \leq d(n/2) \lg(n/2)$$

$$T(\lfloor n/2 \rfloor) \leq d(\lfloor n/2 \rfloor) \lg(\lfloor n/2 \rfloor) \leq d(n/2) \lg(n/2)$$

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$T(\lfloor n/2 \rfloor) \leq d(\lfloor n/2 \rfloor) \lg(\lfloor n/2 \rfloor) \leq d(n/2) \lg(n/2)$$

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$\leq 2d(n/2)\lg(n/2) + n$$

Inductive step : Assume
$$T(n/2) \le d(n/2) \lg(n/2)$$

$$T(\lfloor n/2 \rfloor) \leq d(\lfloor n/2 \rfloor) \lg(\lfloor n/2 \rfloor) \leq d(n/2) \lg(n/2)$$

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$\leq 2d(n/2)\lg(n/2) + n$$

$$= dn(\lg n - \lg 2) + n$$

Inductive step : Assume
$$T(n/2) \le d(n/2) \lg(n/2)$$

$$T(\lfloor n/2 \rfloor) \le d(\lfloor n/2 \rfloor) \lg(\lfloor n/2 \rfloor) \le d(n/2) \lg(n/2)$$

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$\leq 2d(n/2)\lg(n/2) + n$$

$$= dn(\lg n - \lg 2) + n$$

$$= dn(\lg n - 1) + n$$

Inductive step : Assume
$$T(n/2) \le d(n/2)\lg(n/2)$$

$$T(\lfloor n/2 \rfloor) \le d(\lfloor n/2 \rfloor)\lg(\lfloor n/2 \rfloor) \le d(n/2)\lg(n/2)$$

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$\leq 2d(n/2)\lg(n/2) + n$$

$$= dn(\lg n - \lg 2) + n$$

$$= dn(\lg n - 1) + n$$

$$= dn\lg n - dn + n$$

$$T(\lfloor n/2 \rfloor) \le d(\lfloor n/2 \rfloor) \lg(\lfloor n/2 \rfloor) \le d(n/2) \lg(n/2)$$

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$\leq 2d(n/2)\lg(n/2) + n$$

$$= dn(\lg n - \lg 2) + n$$

$$= dn(\lg n - 1) + n$$

$$= dn\lg n - dn + n$$

$$\leq dn\lg n \text{ , for } d \geq 1$$

Inductive step : Assume $T(n/2) \le d(n/2) \lg(n/2)$

$$T(\lfloor n/2 \rfloor) \le d(\lfloor n/2 \rfloor) \lg(\lfloor n/2 \rfloor) \le d(n/2) \lg(n/2)$$

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$\leq 2d(n/2)\lg(n/2) + n$$

$$= dn(\lg n - \lg 2) + n$$

$$= dn(\lg n - 1) + n$$

$$= dn\lg n - dn + n$$

$$\leq dn\lg n \text{, for } d \geq 1$$

Base case is problematic

$$T(1) = 1$$

Inductive step : Assume $T(n/2) \le d(n/2) \lg(n/2)$

$$T(\lfloor n/2 \rfloor) \le d(\lfloor n/2 \rfloor) \lg(\lfloor n/2 \rfloor) \le d(n/2) \lg(n/2)$$

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$\leq 2d(n/2)\lg(n/2) + n$$

$$= dn(\lg n - \lg 2) + n$$

$$= dn(\lg n - 1) + n$$

$$= dn\lg n - dn + n$$

$$\leq dn\lg n \text{ , for } d \geq 1$$

Base case is problematic

$$T(1) = 1 \nleq d \, 1 \lg 1$$

Inductive step : Assume $T(n/2) \le d(n/2) \lg(n/2)$

$$T(\lfloor n/2 \rfloor) \le d(\lfloor n/2 \rfloor) \lg(\lfloor n/2 \rfloor) \le d(n/2) \lg(n/2)$$

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$\leq 2d(n/2)\lg(n/2) + n$$

$$= dn(\lg n - \lg 2) + n$$

$$= dn(\lg n - 1) + n$$

$$= dn\lg n - dn + n$$

$$\leq dn\lg n \text{, for } d \geq 1$$

Base case is problematic

$$T(1)=1\nleq d\,1\lg 1=0$$

►
$$T(2) = 2T(\lfloor 2/2 \rfloor) + 2$$

►
$$T(2) = 2T(\lfloor 2/2 \rfloor) + 2 = 4$$

►
$$T(2) = 2T(\lfloor 2/2 \rfloor) + 2 = 4 \le d2 \lg 2$$

- ► $T(2) = 2T(\lfloor 2/2 \rfloor) + 2 = 4 \le d2 \lg 2$
- ► $T(3) = 2T(\lfloor 3/2 \rfloor) + 3$

Substitution method : $T(n) = 2T(\lfloor n/2 \rfloor) + n$

- ► $T(2) = 2T(\lfloor 2/2 \rfloor) + 2 = 4 \le d2 \lg 2$
- $T(3) = 2T(\lfloor 3/2 \rfloor) + 3 = 5$

Substitution method : $T(n) = 2T(\lfloor n/2 \rfloor) + n$

- ► $T(2) = 2T(\lfloor 2/2 \rfloor) + 2 = 4 \le d2 \lg 2$
- ► $T(3) = 2T(\lfloor 3/2 \rfloor) + 3 = 5 \le d3 \lg 3$

Substitution method : $T(n) = 2T(\lfloor n/2 \rfloor) + n$

- ► $T(2) = 2T(\lfloor 2/2 \rfloor) + 2 = 4 \le d2 \lg 2$
- ► $T(3) = 2T(\lfloor 3/2 \rfloor) + 3 = 5 \le d3 \lg 3$
- ▶ We only need to show that $T(n) \le dn \lg n$ for $n \ge n_0$, where n_0 need not be 1.

Find a tight upper bound for the recurrence $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$

- Find a tight upper bound for the recurrence $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$
- ► What can be an initial guess for the above question based on recursion tree?

- Find a tight upper bound for the recurrence $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$
- ► What can be an initial guess for the above question based on recursion tree?
- We guess T(n) = O(n).

- Find a tight upper bound for the recurrence $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$
- ► What can be an initial guess for the above question based on recursion tree?
- We guess T(n) = O(n). To prove : $T(n) \le cn$ $\forall n \ge n_0$

- Find a tight upper bound for the recurrence $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$
- ► What can be an initial guess for the above question based on recursion tree?
- We guess T(n) = O(n). To prove : $T(n) \le cn$ $\forall n \ge n_0$ Induction step assumption :

- Find a tight upper bound for the recurrence $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$
- ► What can be an initial guess for the above question based on recursion tree?
- We guess T(n) = O(n). To prove : $T(n) \le cn$ $\forall n \ge n_0$ Induction step assumption :

$$T(\lfloor n/2 \rfloor) \le c(\lfloor n/2 \rfloor)$$
 , $T(\lceil n/2 \rceil) \le c(\lceil n/2 \rceil)$

- Find a tight upper bound for the recurrence $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$
- ► What can be an initial guess for the above question based on recursion tree?
- We guess T(n) = O(n). To prove : $T(n) \le cn \quad \forall n \ge n_0$ Induction step assumption :

$$T(\lfloor n/2 \rfloor) \le c(\lfloor n/2 \rfloor)$$
 , $T(\lceil n/2 \rceil) \le c(\lceil n/2 \rceil)$
 $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$

- Find a tight upper bound for the recurrence $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$
- ▶ What can be an initial guess for the above question based on recursion tree?
- We guess T(n) = O(n). To prove : $T(n) \le cn \quad \forall n \ge n_0$ Induction step assumption :

$$T(\lfloor n/2 \rfloor) \le c(\lfloor n/2 \rfloor) \quad , \quad T(\lceil n/2 \rceil) \le c(\lceil n/2 \rceil)$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 \le c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1$$

- Find a tight upper bound for the recurrence $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$
- ► What can be an initial guess for the above question based on recursion tree?
- We guess T(n) = O(n). To prove : $T(n) \le cn \quad \forall n \ge n_0$ Induction step assumption :

$$T(\lfloor n/2 \rfloor) \le c(\lfloor n/2 \rfloor) \quad , \quad T(\lceil n/2 \rceil) \le c(\lceil n/2 \rceil)$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 \le c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1$$

$$T(n) \le c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1$$

- Find a tight upper bound for the recurrence $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$
- ► What can be an initial guess for the above question based on recursion tree?
- We guess T(n) = O(n). To prove : $T(n) \le cn$ $\forall n \ge n_0$ Induction step assumption :

$$T(\lfloor n/2 \rfloor) \le c(\lfloor n/2 \rfloor)$$
 , $T(\lceil n/2 \rceil) \le c(\lceil n/2 \rceil)$
 $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 \le c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1$
 $T(n) \le c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1$
 $= cn + 1$

- Find a tight upper bound for the recurrence $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$
- ► What can be an initial guess for the above question based on recursion tree?
- We guess T(n) = O(n). To prove : $T(n) \le cn$ $\forall n \ge n_0$ Induction step assumption :

$$T(\lfloor n/2 \rfloor) \le c(\lfloor n/2 \rfloor) \quad , \quad T(\lceil n/2 \rceil) \le c(\lceil n/2 \rceil)$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 \le c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1$$

$$T(n) \le c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1$$

$$= cn + 1 \text{ (cannot proceed)}$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1.$$

To prove:
$$T(n) \le cn - d$$
 $\forall n \ge n_0$.

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1.$$

To prove:
$$T(n) \leq cn - d \quad \forall n \geq n_0$$
.

$$T(\lfloor n/2 \rfloor) \le c(\lfloor n/2 \rfloor) - d$$

We need to slightly modify the initial guess for the recurrence

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1.$$

To prove: $T(n) \le cn - d \quad \forall n \ge n_0$.

$$T(\lfloor n/2 \rfloor) \leq c(\lfloor n/2 \rfloor) - d$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

We need to slightly modify the initial guess for the recurrence

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1.$$

To prove: $T(n) \le cn - d$ $\forall n \ge n_0$.

$$T(\lfloor n/2 \rfloor) \le c(\lfloor n/2 \rfloor) - d$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 \le c \lfloor n/2 \rfloor - d + c \lceil n/2 \rceil - d + 1$$

We need to slightly modify the initial guess for the recurrence

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1.$$

To prove: $T(n) \le cn - d$ $\forall n \ge n_0$.

$$T(\lfloor n/2 \rfloor) \le c(\lfloor n/2 \rfloor) - d$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 \le c \lfloor n/2 \rfloor - d + c \lceil n/2 \rceil - d + 1$$

$$= cn - 2d + 1$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1.$$

To prove:
$$T(n) \le cn - d$$
 $\forall n \ge n_0$.

$$T(\lfloor n/2 \rfloor) \le c(\lfloor n/2 \rfloor) - d$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 \le c\lfloor n/2 \rfloor - d + c\lceil n/2 \rceil - d + 1$$

$$= cn - 2d + 1$$

$$= cn - d - d + 1$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1.$$

To prove: $T(n) \le cn - d \quad \forall n \ge n_0.$

$$T(\lfloor n/2 \rfloor) \le c(\lfloor n/2 \rfloor) - d$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 \le c\lfloor n/2 \rfloor - d + c\lceil n/2 \rceil - d + 1$$

$$= cn - 2d + 1$$

$$= cn - d - d + 1$$

$$\le cn - d \text{ , for } d \ge 1$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1.$$

To prove: $T(n) \le cn - d \quad \forall n \ge n_0.$

$$T(\lfloor n/2 \rfloor) \le c(\lfloor n/2 \rfloor) - d$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 \le c\lfloor n/2 \rfloor - d + c\lceil n/2 \rceil - d + 1$$

$$= cn - 2d + 1$$

$$= cn - d - d + 1$$

$$\le cn - d \text{ , for } d \ge 1$$

$$T(1) = 1 \le cn - d$$

To prove:
$$T(n) \leq cn - d$$
 $\forall n \geq n_0$.

$$T(\lfloor n/2 \rfloor) \le c(\lfloor n/2 \rfloor) - d$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 \le c\lfloor n/2 \rfloor - d + c\lceil n/2 \rceil - d + 1$$

$$= cn - 2d + 1$$

$$= cn - d - d + 1$$

$$\le cn - d \text{ , for } d \ge 1$$

$$T(1) = 1 < cn - d \text{ , for } d > 1 \text{ and } c > d + 1$$

To prove:
$$T(n) \le cn - d$$
 $\forall n \ge n_0$.

$$T(\lfloor n/2 \rfloor) \leq c(\lfloor n/2 \rfloor) - d$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 \leq c \lfloor n/2 \rfloor - d + c \lceil n/2 \rceil - d + 1$$

$$= cn - 2d + 1$$

$$= cn - d - d + 1$$

$$\leq cn - d \text{ , for } d \geq 1$$

$$T(1) = 1 \leq cn - d \text{ , for } d \geq 1 \text{ and } c \geq d + 1$$
For $c = 2$, $d = 1$

To prove:
$$T(n) \leq cn - d$$
 $\forall n \geq n_0$.

$$T(\lfloor n/2 \rfloor) \leq c(\lfloor n/2 \rfloor) - d$$

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 \leq c\lfloor n/2 \rfloor - d + c\lceil n/2 \rceil - d + 1$$

$$= cn - 2d + 1$$

$$= cn - d - d + 1$$

$$\leq cn - d \text{ , for } d \geq 1$$

$$T(1) = 1 \leq cn - d \text{ , for } d \geq 1 \text{ and } c \geq d + 1$$
For $c = 2$, $d = 1$ $T(n) \leq 2n - 1$ $\forall n \geq 1$

Instead of showing T(n) = O(n) we have instead shown than T(n) = O(cn - d), which implies T(n) = O(n)

Find a lower bound for the recurrence T(n) = T(n-1) + n

- Find a lower bound for the recurrence T(n) = T(n-1) + n
- ▶ What would be a good guess?

Substitution method : $\overline{T(n)} = \overline{T(n-1)} + \overline{n}$

- Find a lower bound for the recurrence T(n) = T(n-1) + n
- ▶ What would be a good guess? $T(n) = \Omega(n^2)$

- Find a lower bound for the recurrence T(n) = T(n-1) + n
- ▶ What would be a good guess? $T(n) = \Omega(n^2)$

To show : $T(n) \ge cn^2 \quad \forall n \ge n_0$

- Find a lower bound for the recurrence T(n) = T(n-1) + n
- ▶ What would be a good guess? $T(n) = \Omega(n^2)$

To show : $T(n) \ge cn^2 \quad \forall \ n \ge n_0$

$$T(n-1) \geq c(n-1)^2$$

- Find a lower bound for the recurrence T(n) = T(n-1) + n
- ▶ What would be a good guess? $T(n) = \Omega(n^2)$

To show : $T(n) \ge cn^2 \quad \forall n \ge n_0$

$$T(n-1) \ge c(n-1)^2$$

= $c(n^2 + 1 - 2n) = cn^2 + c - 2cn$

- Find a lower bound for the recurrence T(n) = T(n-1) + n
- ▶ What would be a good guess? $T(n) = \Omega(n^2)$

To show :
$$T(n) \ge cn^2 \quad \forall \ n \ge n_0$$

$$T(n-1) \ge c(n-1)^2$$

= $c(n^2 + 1 - 2n) = cn^2 + c - 2cn$
 $T(n) \ge cn^2 + c - 2cn + n$

- Find a lower bound for the recurrence T(n) = T(n-1) + n
- ▶ What would be a good guess? $T(n) = \Omega(n^2)$

To show : $T(n) \ge cn^2 \quad \forall n \ge n_0$

$$T(n-1) \ge c(n-1)^2$$

= $c(n^2 + 1 - 2n) = cn^2 + c - 2cn$
 $T(n) \ge cn^2 + c - 2cn + n$ (when c=1/2 , R.H.S. $\ge cn^2$)

Substitution method : T(n) = T(n-1) + n

- Find a lower bound for the recurrence T(n) = T(n-1) + n
- ▶ What would be a good guess? $T(n) = \Omega(n^2)$

To show : $T(n) \ge cn^2 \quad \forall n \ge n_0$

Induction step:

$$T(n-1) \ge c(n-1)^2$$

= $c(n^2+1-2n) = cn^2+c-2cn$
 $T(n) \ge cn^2+c-2cn+n$ (when c=1/2, R.H.S. $\ge cn^2$)
 $\ge cn^2$ (for c=1/2 and $n \ge 1$)

Substitution method : T(n) = T(n-1) + n

- Find a lower bound for the recurrence T(n) = T(n-1) + n
- ▶ What would be a good guess? $T(n) = \Omega(n^2)$

To show : $T(n) \ge cn^2 \quad \forall n \ge n_0$

Induction step:

$$T(n-1) \ge c(n-1)^2$$

= $c(n^2+1-2n) = cn^2+c-2cn$
 $T(n) \ge cn^2+c-2cn+n$ (when c=1/2 , R.H.S. $\ge cn^2$)
 $\ge cn^2$ (for c=1/2 and $n \ge 1$)

Base case:

Substitution method : T(n) = T(n-1) + n

- Find a lower bound for the recurrence T(n) = T(n-1) + n
- ▶ What would be a good guess? $T(n) = \Omega(n^2)$

To show :
$$T(n) \ge cn^2 \quad \forall n \ge n_0$$

Induction step:

$$T(n-1) \ge c(n-1)^2$$

= $c(n^2+1-2n) = cn^2+c-2cn$
 $T(n) \ge cn^2+c-2cn+n$ (when c=1/2, R.H.S. $\ge cn^2$)
 $\ge cn^2$ (for c=1/2 and $n \ge 1$)

Base case:

$$T(1) \geq cn^2$$

Solving recurrences: Recursion tree

Recursion tree can be used to generate a good guess for the Substitution method.

Solving recurrences: Recursion tree

- Recursion tree can be used to generate a good guess for the Substitution method.
- ▶ Finding a good guess for $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$

Solving recurrences : Recursion tree

- Recursion tree can be used to generate a good guess for the Substitution method.
- ▶ Finding a good guess for $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$
- ▶ We will ignore the floors and ceilings, because usually they don't affect the asymptotic order of growth.

$$T(n) \qquad cn^2$$

$$T\left(\frac{n}{4}\right) T\left(\frac{n}{4}\right) T\left(\frac{n}{4}\right)$$

Number of levels :

$$\frac{n}{4^{i-1}}=1$$

Number of levels :

$$\frac{n}{4^{i-1}} = 1$$
$$i = \log_4 n + 1$$

Number of levels :

$$\frac{n}{4^{i-1}} = 1$$
$$i = \log_4 n + 1$$

▶ Running time for the non-leaf levels:

$$cn^2\left(1+\frac{3}{16}+\left(\frac{3}{16}\right)^2+\ldots\right)(\log_4 n \text{ terms})$$

Number of levels :

$$\frac{n}{4^{i-1}} = 1$$
$$i = \log_4 n + 1$$

► Running time for the non-leaf levels:

$$cn^2\left(1+\frac{3}{16}+\left(\frac{3}{16}\right)^2+\ldots\right)$$
 ($\log_4 n$ terms) $< cn^2\left(1+\frac{3}{16}+\left(\frac{3}{16}\right)^2+\ldots\right)$ (infinite series sum)

Number of levels :

$$\frac{n}{4^{i-1}} = 1$$
$$i = \log_4 n + 1$$

► Running time for the non-leaf levels:

$$cn^{2}\left(1+\frac{3}{16}+\left(\frac{3}{16}\right)^{2}+\ldots\right)\left(\log_{4} n \text{ terms}\right)$$

$$< cn^{2}\left(1+\frac{3}{16}+\left(\frac{3}{16}\right)^{2}+\ldots\right)\left(\text{ infinite series sum}\right)$$

$$=\frac{16}{13}cn^{2}$$

Number of levels :

$$\frac{n}{4^{i-1}} = 1$$
$$i = \log_4 n + 1$$

► Running time for the non-leaf levels:

$$cn^{2}\left(1+\frac{3}{16}+\left(\frac{3}{16}\right)^{2}+\ldots\right)\left(\log_{4}n \text{ terms}\right)$$

$$< cn^{2}\left(1+\frac{3}{16}+\left(\frac{3}{16}\right)^{2}+\ldots\right)\left(\text{ infinite series sum}\right)$$

$$=\frac{16}{13}cn^{2}=O(n^{2})$$

Running time for leaf level nodes :

$$3^{\log_4 n} = n^{\log_4 3}$$

Running time for leaf level nodes :

$$3^{\log_4 n} = n^{\log_4 3}$$

► Total running time

Running time for leaf level nodes :

$$3^{\log_4 n} = n^{\log_4 3}$$

► Total running time

$$= O(n^2) + \Theta(n^{\log_4 3})$$

Running time for leaf level nodes :

$$3^{\log_4 n} = n^{\log_4 3}$$

► Total running time

$$= O(n^2) + \Theta(n^{log_43})$$
$$= O(n^2)$$

▶ By looking at the recursion tree we can guess $T(n) = O(n^2)$

- ▶ By looking at the recursion tree we can guess $T(n) = O(n^2)$
- Then we can use the substitution method to show that our guess is correct.

- ▶ By looking at the recursion tree we can guess $T(n) = O(n^2)$
- Then we can use the substitution method to show that our guess is correct.
- ► To prove : $T(n) \le dn^2 \quad \forall n \ge n_0$

Total: $O(n \lg n)$

Number of levels :

$$\frac{n}{\left(\frac{3}{2}\right)^{i-1}} = 1$$

Number of levels :

$$\frac{n}{\left(\frac{3}{2}\right)^{i-1}} = 1$$
$$i = \log_{\frac{3}{2}} n + 1$$

Number of levels :

$$\frac{n}{\left(\frac{3}{2}\right)^{i-1}} = 1$$
$$i = \log_{\frac{3}{2}} n + 1$$

► Running time :

$$T(n) = O(n \log_{\frac{3}{2}} n)$$

Number of levels :

$$\frac{n}{\left(\frac{3}{2}\right)^{i-1}} = 1$$
$$i = \log_{\frac{3}{2}} n + 1$$

► Running time :

$$T(n) = O(n \log_{\frac{3}{2}} n)$$

 $\blacktriangleright \mathsf{ Is } \Theta(\log_{10} n) = \Theta(\log_3 n)?$

Number of levels :

$$\frac{n}{\left(\frac{3}{2}\right)^{i-1}} = 1$$
$$i = \log_{\frac{3}{2}} n + 1$$

► Running time :

$$T(n) = O(n \log_{\frac{3}{2}} n)$$

- $\blacktriangleright \mathsf{ Is } \Theta(\log_{10} n) = \Theta(\log_3 n)?$
- Running time :

$$T(n) = O(n \log_{\frac{3}{2}} n) = O(n \lg n)$$

Number of levels :

$$\frac{n}{\left(\frac{3}{2}\right)^{i-1}} = 1$$
$$i = \log_{\frac{3}{2}} n + 1$$

Running time :

$$T(n) = O(n \log_{\frac{3}{2}} n)$$

- $\blacktriangleright \mathsf{ Is } \Theta(\log_{10} n) = \Theta(\log_3 n)?$
- Running time :

$$T(n) = O(n \log_{\frac{3}{2}} n) = O(n \lg n)$$

► We can again use the substitution method to show the upper bound.

▶ For any positive ϵ (however small), is $n^{\epsilon} = \omega(\lg n)$?

- ▶ For any positive ϵ (however small), is $n^{\epsilon} = \omega(\lg n)$?
- Using L'Hospital's rule:

$$\lim_{n\to\infty}\frac{\lg n}{n^\epsilon}=0$$

- ▶ For any positive ϵ (however small), is $n^{\epsilon} = \omega(\lg n)$?
- Using L'Hospital's rule:

$$\lim_{n\to\infty}\frac{\lg n}{n^\epsilon}=0$$

 $\blacktriangleright \text{ Is } n^{1+\epsilon} = \omega(n \lg n)?$

$$n = o(n^2)$$

▶ $n = o(n^2)$ (n is asymptotically smaller)

- ▶ $n = o(n^2)$ (n is asymptotically smaller)

- ▶ $n = o(n^2)$ (n is asymptotically smaller)
- $n^{1+\epsilon} = o(n^2)$ (n is polynomially smaller because we can find a positive constant ϵ)

- ▶ $n = o(n^2)$ (n is asymptotically smaller)
- $n^{1+\epsilon} = o(n^2)$ (n is polynomially smaller because we can find a positive constant ϵ)
- $n = o(n \lg n)$

- ▶ $n = o(n^2)$ (n is asymptotically smaller)
- $n^{1+\epsilon} = o(n^2)$ (n is polynomially smaller because we can find a positive constant ϵ)
- $ightharpoonup n = o(n \lg n)$ (n is asymptotically smaller)

- ▶ $n = o(n^2)$ (n is asymptotically smaller)
- $n^{1+\epsilon} = o(n^2)$ (n is polynomially smaller because we can find a positive constant ϵ)
- $ightharpoonup n = o(n \lg n)$ (n is asymptotically smaller)
- ▶ However, $n^{1+\epsilon} \neq o(n \lg n)$

- $ightharpoonup n = o(n^2)$ (n is asymptotically smaller)
- $ightharpoonup n = o(n \lg n)$ (n is asymptotically smaller)
- ▶ However, $n^{1+\epsilon} \neq o(n \lg n)$ (n is **not** polynomially smaller)

Master method : $T(n) = 3T(n/4) + cn^2$

Solving recurrences: Master method

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n) ,$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.
 - T(n) = 9T(n/3) + n

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 9T(n/3) + n$$

$$n^{\log_b a} = n^{\log_3 9}$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 9T(n/3) + n$$

$$n^{\log_b a} = n^{\log_3 9}$$

$$f(n) = n =$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 9T(n/3) + n$$

$$n^{\log_b a} = n^{\log_3 9}$$

$$f(n) = n = O(n^{2-\epsilon})$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 9T(n/3) + n$$

$$n^{\log_b a} = n^{\log_3 9}$$

$$f(n) = n = O(n^{2-\epsilon})$$

$$T(n) = \Theta(n^2)$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.
 - T(n) = T(2n/3) + 1

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = T(2n/3) + 1$$

$$n^{\log_b a} = n^{\log_{\frac{3}{2}} 1}$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = T(2n/3) + 1$$

$$n^{\log_b a} = n^{\log_{\frac{3}{2}} 1} = n^0$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = T(2n/3) + 1$$

$$n^{\log_b a} = n^{\log_{\frac{3}{2}} 1} = n^0$$

$$f(n) = \Theta(1)$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = T(2n/3) + 1$$

$$n^{\log_b a} = n^{\log_{\frac{3}{2}} 1} = n^0$$

 $f(n) = \Theta(1) = \Theta(n^{\log_b a})$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = T(2n/3) + 1$$

$$n^{\log_b a} = n^{\log_{\frac{3}{2}} 1} = n^0$$

$$f(n) = \Theta(1) = \Theta(n^{\log_b a})$$

$$T(n) = \Theta(n^{\log_b a} \lg n)$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = T(2n/3) + 1$$

$$n^{\log_b a} = n^{\log_{\frac{3}{2}} 1} = n^0$$

$$f(n) = \Theta(1) = \Theta(n^{\log_b a})$$

$$T(n) = \Theta(n^{\log_b a} \lg n)$$

$$= \Theta(\lg n)$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.
 - $T(n) = 3T(n/4) + n \lg n$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.
 - $T(n) = 3T(n/4) + n \lg n$ $n^{\log_b a} = n^{\log_4 3}$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 3T(n/4) + n \lg n$$

$$n^{\log_b a} = n^{\log_4 3}$$

$$f(n) = n \lg n$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.
 - $T(n) = 3T(n/4) + n \lg n$

$$n^{\log_b a} = n^{\log_4 3}$$

$$f(n) = n \lg n = \Omega(n^{\log_4 3 + \epsilon}) ?$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 3T(n/4) + n \lg n$$

$$n^{\log_b a} = n^{\log_4 3}$$

$$f(n) = n \lg n = \Omega(n^{\log_4 3 + \epsilon}) ?$$

$$a(n/b) \lg(n/b) < cn \lg n$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 3T(n/4) + n \lg n$$

$$n^{\log_b a} = n^{\log_4 3}$$

$$f(n) = n \lg n = \Omega(n^{\log_4 3 + \epsilon}) ?$$

$$a(n/b) \lg(n/b) \le cn \lg n$$

$$3(n/4) \lg(n/4) < (3/4) n \lg n \text{, for } c = 3/4$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 3T(n/4) + n \lg n$$

$$n^{\log_b a} = n^{\log_4 3}$$

$$f(n) = n \lg n = \Omega(n^{\log_4 3 + \epsilon}) ?$$

$$a(n/b) \lg(n/b) \le cn \lg n$$

$$3(n/4) \lg(n/4) \le (3/4) n \lg n \text{, for } c = 3/4$$

$$T(n) = \Theta(n \lg n)$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.
 - $T(n) = 2T(n/2) + n \lg n$

$$n^{\log_b a} = n^{\log_2 2} = n$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 2T(n/2) + n \lg n$$

$$n^{\log_b a} = n^{\log_2 2} = n$$
$$f(n) = n \lg n$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.
 - $T(n) = 2T(n/2) + n \lg n$

$$n^{\log_b a} = n^{\log_2 2} = n$$

$$f(n) = n \lg n = \Omega(n^{1+\epsilon}) ?$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 2T(n/2) + n \lg n$$

$$n^{\log_b a} = n^{\log_2 2} = n$$

$$f(n) = n \lg n = \Omega(n^{1+\epsilon}) ?$$

Master method cannot be applied.

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 7T(n/2) + \Theta(n^2)$$

$$n^{\log_b a} = n^{\lg 7} \approx n^{2.81}$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 7T(n/2) + \Theta(n^2)$$

$$n^{\log_b a} = n^{\lg 7} \approx n^{2.81}$$

$$f(n) = \Theta(n^2)$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 7T(n/2) + \Theta(n^2)$$

$$n^{\log_b a} = n^{\lg 7} \approx n^{2.81}$$

$$f(n) = \Theta(n^2) = O(n^{\log_b a - \epsilon})$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 7T(n/2) + \Theta(n^2)$$

$$n^{\log_b a} = n^{\lg 7} \approx n^{2.81}$$

$$f(n) = \Theta(n^2) = O(n^{\log_b a - \epsilon})$$

$$= O(n^{\lg 7 - \epsilon}) ?$$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 7T(n/2) + \Theta(n^2)$$

$$n^{\log_b a} = n^{\lg 7} \approx n^{2.81}$$

$$f(n) = \Theta(n^2) = O(n^{\log_b a - \epsilon})$$

$$= O(n^{\lg 7 - \epsilon}) ?$$

$$T(n) = \Theta(n^{\log_b a})$$

T(n) = aT(n/b) + f(n), $a \ge 1, b > 1$

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 7T(n/2) + \Theta(n^2)$$

$$n^{\log_b a} = n^{\lg 7} \approx n^{2.81}$$

$$f(n) = \Theta(n^2) = O(n^{\log_b a - \epsilon})$$

$$= O(n^{\lg 7 - \epsilon}) ?$$

$$T(n) = \Theta(n^{\log_b a})$$

$$= \Theta(n^{\lg 7})$$

Proof of the master theorem

► Section 4.6 will not be a part of our syllabus

► Record : Collection of data

► Record : Collection of data

► Key : Value to be sorted

- ► Record : Collection of data
- ► Key : Value to be sorted
- Satellite data

- ► Record : Collection of data
- Key : Value to be sorted
- Satellite data
- ► If satellite data is large, we permute an array of pointers to the records.

► In place sorting: If at any time only a constant number of elements are stored outside the array.

- In place sorting: If at any time only a constant number of elements are stored outside the array.
- MERGE procedure does not operate in place.

- In place sorting: If at any time only a constant number of elements are stored outside the array.
- MERGE procedure does not operate in place.
- ► Ch 6 : Heapsort that uses a data structure called heap.

- In place sorting: If at any time only a constant number of elements are stored outside the array.
- ► MERGE procedure does not operate in place.
- ► Ch 6 : Heapsort that uses a data structure called heap.
- ▶ Heapsort sorts n elements in place in $O(n \lg n)$ time.

Algorithm	Worst-case running time	Average-case/expected running time
Insertion sort	$\Theta(n^2)$	$\Theta(n^2)$
msertion sort	\ /	\ /
Merge sort	$\Theta(n \lg n)$	$\Theta(n \lg n)$
Heapsort	$O(n \lg n)$	_
Quicksort	$\Theta(n^2)$	$\Theta(n \lg n)$ (expected)
Counting sort	$\Theta(k+n)$	$\Theta(k+n)$
Radix sort	$\Theta(d(n+k))$	$\Theta(d(n+k))$
Bucket sort	$\Theta(n^2)$	$\Theta(n)$ (average-case)

Ch 6: Heapsort

► Heapsort uses the Heap data structure.

Ch 6: Heapsort

- ► Heapsort uses the Heap data structure.
- To understand heap, we need to understand a few terminologies.

Binary tree

▶ Binary tree is a tree data structure where each node can have at most two child nodes: left child node and right child node.

Binary tree

▶ Binary tree is a tree data structure where each node can have at most two child nodes: left child node and right child node.

