The social network Soutenance du projet de Simulations et MonteCarlo

Pierre Delanoue - Clément Guillo - Hugues Gallier

ENSAE ParisTech

21 mai 2019

Soutenance StatApp

The social network

- Simulation par MCMC
 - Gibbs sampling
 - Convergence et indépendance
- 2 Estimation des paramètres
 - Important sampling
 - EMV : descente de gradient
- Perpectives

Introduction

- Objectif 1 : Simuler un réseau modélisé par un Exponential Random Graph Model (ERGM)
- Objectif 2 : À partir d'un réseau donné, le caractériser à partir des coefficients estimés du modèle

Simulation par MCMC

Introduction

- Gibbs sampling
- Convergence et indépendance
- 2 Estimation des paramètres
 - Important sampling
 - EMV : descente de gradient
- 3 Perpectives

Gibbs Sampling

- Réseaux de n noeuds, on modélise ses liens par : $x_{ii} = 1$ si i et j sont reliés, 0 sinon
- Représentation matricielle $X \in \mathcal{M}(\{0,1\}^{n \times n})$
- Loi jointe des $X_{i,j}$ est $p(x|\theta) = \frac{1}{Z(\theta)} \exp^{\theta^T S(x)}$
- $S(x) = \left[\sum_{i < j} x_{ij}, \sum_{i < j < k} x_{ij} x_{jk} x_{ki}\right]$ et Z(.) inconnu.

Soutenance StatApp

Gibbs Sampling

• On remplace tour à tour x_{ij} par la réalisation d'une Bernoulli de paramètre :

$$P(X_{ij} = 1 | \theta, x_{-ij}) = \frac{1}{1 + \exp^{\theta^T(S_0(x) - S_1(x))}}$$

- $S_1(x)$, statistique de la matrice x où x_{ij} vaut 1, $S_0(x)$ la même chose pour x_{ij} vallant 0.
- Seulement besoin de calculer les statistiques d'une matrice

Convergence¹

- $M_1 \dots M_n$, générations issues du Gibbs sampling
- Chaîne de Markov à espace d'états fini, irréductible : récurrente positive
- ullet Théorème ergodique : $\sum_{i=1}^n S(M_i) \longrightarrow \mathbb{E}_{p(x| heta)}(S(X))$
- Combien d'itérations suffisent pour converger?

Théorème ergodique

Convergence de la loi

Pseudo Indépendance

- Calcul des autocorrélations $\gamma(h)$ à différent ordres h
- Recherche de l'ordre h tel que $\gamma(h) \approx 0$

Pseudo Indépendance

• Test et Corrélation de Spearman

The social network

Estimateur de Monte Carlo

12 / 18

- Simulation par MCMC
 - Gibbs sampling
 - Convergence et indépendance
- 2 Estimation des paramètres
 - Important sampling
 - EMV : descente de gradient
- 3 Perpectives

Importance sampling

On part de notre équation :

$$egin{aligned} 1 &= \mathbb{E}_{ heta_0}(rac{f_{ heta}(X)}{f_{ heta_0}(X)}) \ &= \mathbb{E}_{ heta_0}(rac{Z(heta_0)}{Z(heta)} \exp^{(heta- heta_0)S(X)}) \end{aligned}$$

Donc:

$$Z(\theta) = Z(\theta_0) \mathbb{E}_{\theta_0} \exp^{(\theta - \theta_0)S(X)}$$

Ainsi:

$$L(x, \theta) \propto \frac{1}{\mathbb{E}_{\theta_0}(\exp^{(\theta - \theta_0)S(X)})} \exp^{\theta S(x)}$$

Important sampling

On maximise donc:

$$\begin{split} I(x,\theta) &\propto -\log(\mathbb{E}_{\theta_0}(\exp^{(\theta-\theta_0)S(X)}) + \theta S(x) \\ &\propto \theta S(x) - \log(\frac{1}{N} \sum_{i=1}^{N} \exp^{(\theta-\theta_0)S(X_i)}) \\ &\propto \theta S(x) - \log\left(\exp^{(\theta-\theta_0)S(X_m)} \frac{1}{N} \sum_{i=1}^{N} \exp^{(\theta-\theta_0)*(S(X_i) - S(X_m))}\right) \\ &\propto \theta S(x) - (\theta - \theta_0)S(X_m) - \log\left(\frac{1}{N} \sum_{i=1}^{N} \exp^{(\theta-\theta_0)*(S(X_i) - S(X_m))}\right) \end{split}$$

The social network

Descente de gradient

- $ln(\frac{Z(\theta)}{Z(\theta_0)})$ estimé par importance sampling
- Recherche du bon estimateur par descente de gradient, avec :

$$\frac{\partial I(x,\theta)}{\partial \theta} = S(x) - S(X_m) - \frac{\frac{1}{N} \sum_{i=1}^{N} (S(X_i) - S(X_m)) \exp^{(\theta - \theta_0) * (S(X_i) - S(X_m))}}{\frac{1}{N} \sum_{i=1}^{N} \exp^{(\theta - \theta_0) * (S(X_i) - S(X_m))}}$$

- 1 Simulation par MCMC
 - Gibbs sampling
 - Convergence et indépendance
- Estimation des paramètres
 - Important sampling
 - EMV : descente de gradient
- 3 Perpectives

17 / 18

Perspectives

- Travail généralisable à des réseaux orientés
- Développer les statistiques associées au réseau
- algorithme tie-no-tie