

ANAIS DO 3º SIMPÓSIO BRASILEIRO DE INFRAESTRUTURAS DE DADOS ESPACIAIS

Geoinformação aberta para o desenvolvimento sustentável

COMISSÃO ORGANIZADORA

HONSECA FILHO - USP

JULIA CELIA MERCEDES STRAUCH - IBGE

MARIA TEREZA CARNEVALE - IBGE

RAFAEL LOPES DA SILVA - IBGE

ROGÉRIO LUÍS RIBEIRO BORBA - IBGE

SILVANA PHILIPPI CAMBOIM - UFPR

SÔNIA CRISTINA BASTOS DE SOUZA – IBGE

VANIA DE OLIVEIRA NAGEM - IBGE

COMITÊ TÉCNICO CIENTÍFICO

ANDRÉ LUIZ ALENCAR DE MENDONÇA – UNIVERSIDADE DO ESTADO DO AMAZONAS

ANGÉLICA CARVALHO DI MAIO – UNIVERSIDADE FEDERAL FLUMINENSE

CLAUDIA ROBBI SLUTER – UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

CLODOVEU AUGUSTO DAVIS JUNIOR– UNIVERSIDADE FEDERAL DE MINAS GERAIS
FLÁVIA MANDARINO – MARINHA DO BRASIL

IVANILDO BARBOSA – INSTITUTO MILITAR DE ENGENHARIA

JOÃO VITOR MEXA BRAVO – UNIVERSIDADE FEDERAL DE UBERLÂNDIA

JOSÉ ALBERTO QUINTANILHA – UNIVERSIDADE DE SÃO PAULO

JUGURTA LISBOA FILHO – UNIVERSIDADE FEDERAL DE VIÇOSA

JULIA CELIA MERCEDES STRAUCH – ESCOLA NACIONAL DE CIÊNCIAS ESTATÍSTICAS

KARINE REIS FERREIRA – INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

KARLA ALBUQUERQUE DE VASCONCELOS BORGES - PRODABEL

LINDA SORAYA ISSMAEL – DIRETORIA DE SERVIÇO GEOGRÁFICO DO EXÉRCITO

LUBIA VINHAS – INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

LUCIENE STAMATO DELAZARI – UNIVERSIDADE FEDERAL DO PARANÁ

LUIZ PAULO SOUTO FORTES – UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO

RAFAEL MARCH CASTÂNEDA FILHO – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA

ROGÉRIO LUÍS RIBEIRO BORBA – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA

SILVANA PHILIPPI CAMBOIM – UNIVERSIDADE FEDERAL DO PARANÁ

VIVIAN DE OLIVEIRA FERNANDES – UNIVERSIDADE FEDERAL DA BAHIA

ÍNDICE

INFRAESTRUTURA DE DADOS ESPACIAIS COMO FONTE DE DADOS CADASTRAIS EM PROL DA POLÍTICA URBANA MUNICIPAL
O IMPACTO DA GEOINFORMAÇÃO ABERTA NO DESENVOLVIMENTO DE POLÍTICAS PÚBLICAS 8
INFRAESTRUTURA DE DADOS ESPACIAIS DO MINISTÉRIO PÚBLICO DO PARANÁ (GEOMP) – ARQUITETURA, PERSONALIZAÇÃO E ATUALIZAÇÃO DE VERSÃO12
PERFIL DE METADADOS MGB2 NO GEONODE 3.X? VIABILIDADE TÉCNICA E PRINCIPAIS DESAFIOS
METODOLOGIA PARA A CONSTRUÇÃO DO GEOCÓDIGO NACIONAL EM SISTEMA DE GRADE REGULAR DISCRETA
AVALIAÇÃO DA CONSTITÊNCIA LÓGICA DOS DADOS EM INFRAESTRUTURAS DE DADOS ESPACIAIS23
INFRAESTRUTURA DE DADOS AMBIENTAIS. APLICAÇÃO DE UMA ABORDAGEM ÁGIL PARA O LITORAL DO PARANÁ
METADADOS GEOESPACIAIS: A IMPORTÂNCIA DA DOCUMENTAÇÃO HISTÓRICA DE BASES CARTOGRÁFICAS EM UMA IDE PARA A GESTÃO DO PATRIMÔNIO DA UNIÃO
A IDE NO CONTEXTO DO CADASTRO TERRITORIAL MULTIFINALITÁRIO34
O PLUGIN POLO PARA MONITORAMENTO DE FOCOS DE CALOR NO ESTADO DO AMAZONAS – BRASIL
INFRAESTRUTURA DE DADOS ESPACIAIS COMO INSTRUMENTO DE GESTÃO DE RECURSOS HÍDRICOS
GESTÃO DE OBRAS DE ARTE ESPECIAIS MUNICIPAIS: MODELAGEM CONCEITUAL APLICADA ÀS PONTES, VIADUTOS E PASSARELAS
AVALIAÇÃO DA DISPONIBILIDADE DE CAMADAS DE GEOINFORMAÇÃO EM IDES GOVERNAMENTAIS ABERTAS PARA ATENDER À GESTÃO DE RESÍDUOS SÓLIDOS NA CIDADE DE SALVADOR/BA
PROGRAMA DE MODERNIZAÇÃO DA GESTÃO DO PATRIMÔNIO IMOBILIÁRIO DA UNIÃO: A NOVA ESTRUTURAÇÃO DE DADOS GEOESPACIAIS NA SECRETARIA DE PATRIMÔNIO DA UNIÃO49
PLANEJAMENTO ESPACIAL MARINHO NO BRASIL
DESASTRES NATURAIS COSTEIROS: UM PANORAMA DOS EVENTOS OCORRIDOS NO ESTADO DO RIO GRANDE DO SUL, BRASIL
A IMPORTÂNCIA DA ESTRUTURAÇÃO E PADRONIZAÇÃO DE DADOS ESPACIAIS PARA IMPLEMENTAÇÃO DE UMA INFRAESTRUTURA DE DADOS ESPACIAIS (IDE) AMBIENTAL
BASE DE DADOS DA DIVISÃO HIDROGRÁFICA NACIONAL
RECURSOS GEOESPACIAIS NA INDE, UMA PERSPECTIVA QUANTITATIVA E QUALITATIVA 67
IMPLEMENTATION OF THE GEOSPATIAL INFORMATION CATALOG OF THE GEOREFERENCED INFORMATION BASE PROGRAM (BIG)71
GEOCODING, COMPARTILHAMENTO E INTEGRAÇÃO DE SERVIÇOS EM UMA IDE PÚBLICA: ESTUDO DE CASO NA PRODEMGE
INTEGRAÇÃO DE DADOS PROVENIENTES DE MAPEAMENTO COLABORATIVO NA CARTOGRAFIA

DE REFERÊNCIA DO BRASIL
IMPLANTAÇÃO DA INFRAESTRUTURA DEDADOS ESPACIAIS DO ESTADO DO RIO DE JANEIRO - IDE.RJ
GEOBOLIVIA: NODO INICIADOR DE LA INFRAESTRUCTURA DE DATOS ESPACIALES DEL ESTADO PLURINACIONAL DE BOLIVIA
ANÁLISE DOS PROCESSOS DE COLETA DE DADOS GEOGRÁFICOS COLABORATIVOS PARA MANTER UMA IDE TEMÁTICA: OS CAMPI DA UnB COMO ESPAÇO DE APRENDIZAGEM
SISTEMA ESTADUAL DE INFORMAÇÕES GEOGRÁFICA DO ESTADO DO TOCANTINS - FUNCIONALIDADES NA ESPACIALIZAÇÃO DE DADOS CENSITÁRIOS
ESTRUTURAÇÃO DE DADOS ESPACIAIS PARA A REDE HIDROMETEOROLÓGICA NACIONAL 91
PROCESSO DE PUBLICAÇÃO DE GEOSSERVIÇOS PARA VISUALIZAÇÃO DOS OBJETIVOS DO DESENVOLVIMENTO SUSTENTÁVEL
A ÉTICA NO USO E COMPARTILHAMENTO DE DADOS GEOESPACIAIS - UMA REFLEXÃO NECESSÁRIA
INFRAESTRUTURA DE DADOS ESPACIAL MARINHO, CAMINHO PARA UM OCEANO ACESSÍVEL E TRANSPARENTE
AVALIAÇÃO DE CONJUNTOS DE DADOS GEOGRÁFICOS DE ELEVADO VALOR DO SNIG NO CONTEXTO DA IDE ABERTA
GEOBUSINESS INTELLIGENCE COMO ESTRATÉGIA PARA INTEGRAÇÃO DE DADOS ESPACIAIS E NÃO ESPACIAIS HETEROGÊNEOS106
UTILIZAÇÃO DE CONTAINERS E DE INFRAESTRUTURA COMO CÓDIGO PARA ESTABELECIMENTO DE NÓ PRÓPRIO DA INDE
DESMATAMENTO E GOVERNANÇA AMBIENTAL NO ESTADO DO ACRE
REDE ZEE-SP: EM DIREÇÃO À INFRAESTRUTURA DE CONHECIMENTO ESPACIAL
A PLATAFORMA BRASILEIRA DE GEODESIGN: IDE E WEBGIS PARA A LEITURA DO TERRITÓRIO EM PROCESSOS DE CO-CRIAÇÃO118
A INFRAESTRUTURA DE DADOS ESPACIAS DO DISTRITO FEDERAL – IDE/DF E O IMPACTO NO PLANEJAMENTO URBANO DO DF
DATAGEO: IMPLANTAÇÃO DE UMA IDE TEMÁTICA AMBIENTAL – IDEA-SP
REDES CIENTÍFICAS BRASILEIRAS NA GEOGRAFIA DO CONHECIMENTO E DA INOVAÇÃO: APLICAÇÃO DE MÉTODOS ESPACIAIS
IDE-BHGEO - ALÉM DA ADMINISTRAÇÃO MUNICIPAL
A INDE NO CONTEXTO DOS TEMAS DE DADOS GEOESPACIAIS FUNDAMENTAIS GLOBAIS (UN-GGIM)
AVANÇOS E PERSPECTIVAS DA INTEGRAÇÃO DE DADOS ESPACIAIS NA GESTÃO PÚBLICA AMBIENTAL DO CEARÁ
PÔSTERES
ARQUITETURA COMPUTACIONAL ORIENTADA A CONCEPÇÃO DE SISTEMA DE INFORMAÇÕES GEOGRÁFICA (SIG) AMBIENTAL DIGITAL143
OBSERVATÓRIO URBANO DE VALORES: A EXPERIÊNCIA DO MUNICÍPIO DE BRUSQUE NA CRIAÇÃO E GESTÃO COLABORATIVA147
AVALIAÇÃO DA ACURÁCIA POSICIONAL DE ORTOFOTOS GERADAS A PARTIR DE VANT UTILIZANDO A NORMATIVA DO INCRA PARA GEORREFERENCIAMENTO DE IMÓVEIS RURAIS

	150
PROPOSTA DE NOVA GRADE ESTATÍSTICA E GEOCÓDIGO POSTAL DO BRASIL	153
GOVERNANÇA TERRITORIAL COM INFRAESTRUTURA DE DADOS GEOESPACIAIS: UMA ANÁLISE DAS AÇÕES ANTRÓPICAS E IMPACTO FLORESTAL EM AURELINO LEAL (BAHIA, BRASIL)	157
BIODIVEPE: UMA FERRAMENTA DE AUXÍLIO À TOMADA DE DECISÃO EM PROJETOS DE ENERGIA	161
SISDIA, A PLATAFORMA DE INTELIGÊNCIA AMBIENTAL-TERRITORIAL BASEADA EM EVIDENCIAS E ORIENTADAS A RESULTADOS NA CAPITAL BRASILEIRA	164
INSERÇÃO DE LINHAS DE TRANSMISSÃO DE ENERGIA – PROPOSTA DE GESTÃO TERRITORIA INTEGRADA	
ÍNDICES DE CAMINHABILIDADE PARA CALÇADAS PÚBLICAS: PROPOSTA DE MODELAGEM CONCEITUAL	169
GEOPROCESSAMENTO APLICADO À EDUCAÇÃO GEOGRÁFICA PARA O RISCO: AULAS DE CAMPO VIRTUAIS COM O GOOGLE EARTH	173
PROPOSTA DE PADRÃO DE DADOS GEOESPACIAIS GEOTÉCNICOS PARA INTEGRAÇÃO BIM I	
CADASTRO TERRITORIAL MULTIFINALITÁRIO: UMA REVISÃO BIBLIOGRÁFICA NACIONAL DA PRODUÇÃO CIENTÍFICA NO TERCEIRO MILÊNIO	
GEONODE-BR: COMUNIDADE BRASILEIRA PARA A COLABORAÇÃO ENTRE USUÁRIOS DO SOFTWARE GEONODE	185
BASE DE DADOS DAS BACIAS HIDROGRÁFICAS DO BRASIL	188
MODELO CONCEITUAL DE DADOS APLICADO AO MAPEAMENTO GEOTÉCNICO DE APTIDÃO ÀS FUNDAÇÕES	

PROPOSTA DE NOVA GRADE ESTATÍSTICA E GEOCÓDIGO POSTAL DO BRASIL

PETER KRAUSS ¹
LUIS CUNHA ¹
CLAITON NEISSE ¹
THIERRY JEAN ¹

¹Instituto De Tecnologias Geo-Sociais Addressforall Peter@Addressforall.Org

O Código de Endereçamento Postal (CEP) do Brasil nunca foi uma tecnologia aberta [1]; sua listagem e base de dados são vistas como fonte de lucros desde a promulgação da Lei 6.538/78, tendo esse aspecto recebido reforço de patente em 2003 [2], apesardo flagrante inconstitucionalidade. Hoje considerada uma tecnologia ultrapassada, o geocódigo de 8 dígitos é incapaz de localizar endereços. A proposta OSMcodes [3] nasceu como esforço para demonstrar a existência de alternativas, com metodologias, algoritmos e dados totalmente abertos, sob licença CCO. Além de garantir um geocódigo satisfatório para o a localização exata da residência do cidadão brasileiro, que com 7 dígitos ou menos "chega na porta de casa", a proposta abrange outras finalidades. O mesmo sistema de grades hierárquicas que abriga a proposta de geocódigo postal faz parte de um conjunto maior, de 40 grades com refinamentos sucessivos até 1 metro, denominado Grade Científica OSMcodes. Sendo baseada em projeção de igual-área, satisfaz as aplicações estatísticas, econômicas, ambientais, logísticas, cadastrais e muitas outras, por seu geocódigo permitir também a indexação espacial e o uso como *quadtree*.

Seu desenvolvimento teve como ponto de partida a Grade Estatística do IBGE de 2016 [4], com proposta formalizada em 2020 [5]. A grade estatística do IBGE pode ser representada de forma mais compacta através de um inteiro de 64 bits, que traz diversas vantagens, computacionais e de distribuição [6]. Ainda assim, ela apresentava problemas, sendo seu geocódigo muito longo e não-hierárquico. A "Nova Grade Estatística do Brasil", proposta pela OSMcodes, resolve esses problemas, de modo que os geocódigos dela resultantes foram denominados "geocódigos científicos", em alusão à notação científica numérica, e diferenciando-se do *geocódigo postal*. Ambos geocódigos são aderentes à proposta de extensão do padrão GeoURI [7].

As decisões de projeto tomadas podem ser resumidas como se segue:

- D1- Optamos por contemplar múltiplas finalidades, nesta ordem de prioridade: aplicações postais ("novo CEP"), aplicações estatísticas, computacionais, cadastrais (registro de imóvel e delimitação grosseira, porém confiável dos terrenos), econômicas, ambientais (ex. transectos) e outras. Todas elas se beneficiando da interoperabilidade e da padronização, bem como se beneficiando da hierarquia dos geocódigos.
 - D2 Projeção de igual-área: adotamos a projeção Albers da Grade do IBGE.
- D3 Área territorial grande: devido a sua abrangência territorial, de escala continental, o Brasil precisa adotar dois sistemas distintos de geocódigo, um mais compacto para aplicações postais, em base32, e outro, abrangendo o primeiro, com mais níveis hierárquicos, porém fazendo uso de geocódigo base16h (interoperável com a base32) para aplicações científicas.

- D4 Compromisso com as grades legadas: houve compromisso com a projeção adotada pela Grade IBGE, mas não com as escalas adotadas por ela. Entendemos que as potências de dois proporcionam a escala natural da divisão sucessiva dos quadriláteros em 4.
- D5 Compromisso com cobertura legada: já existia uma articulação de 56 quadrantes (500 km de lado) passível de adaptação, no entanto optamos por utilizar uma opção mais eficiente, com apenas 1 dígito em base32.
- D6 Intervalos de geocódigos: entendemos que nas aplicações avaliadas não há demanda por intervalos contínuos, de modo que a escolha da "Curva Z" de Morton é a mais apropriada.
- D7 Uso de vogais: em questionário aplicado a um pequeno conjunto de cidadãos brasileiros concluiu-se que a maioria prefere códigos alfanuméricos que não se confundam com palavras. A escolha, portanto, da base32, recaiu sobre o alfabeto NVU (No Vogals except U), definido em [8].
- D8 Uso de abreviações ao invés de nomes extensos: optou-se, para o geocódigo postal, pela adoção de abreviações de 3 letras do nome de cada município, no contexto do estado. Por exemplo Campinas abreviada como BR-SP-CAM, Itu como BR-SP-ITU.
- O sistema de grades brasileiro resultante das decisões pode ser tecnicamente caracterizado por:
 - Projeção Albers, expressa em string PROJ [9]: "+proj=aea +lat_0=-12 +lon_0=-54 +lat_1=-2 +lat_2=-22 +x_0=5000000 +y_0=10000000 +ellps=WGS84 +units=m".
 - Origem do sistema de referência em: X=2715000, Y=6727000.
 - Quantização do nível L0 iniciando com h0=1.048.576 metros.
 - Curva de indexação: Morton (resultando em "curva Z" de preenchimento espacial nos níveis inteiros e "curva N" nos intermediários).
 - Representação interna do identificador de célula (ID): número inteiro positivo de 64 bits (Bigint), com código do país funcionando como "hidden bit", semântica de Natural Code [8]. Geocódigo científico:
 - Representação humana do ID de célula em base16h, conforme [8]. Disponibilidade de 40 níveis hierárquicos, desde a célula do nível zero (L0) com 1024² metros de lado (~1049 km), até a célula nível 20, com 1 metro de lado; e mais 20 níveis intermediários (L+½) em grade degenerada.

Geocódigo postal:

- Prefixo mnemônico: por jurisdição municipal (OSM *admin_level=8*), abreviação de 2 letras por UF e abreviação por 3 letras do município, seguindo extensão do padrão ISO e nome canônico por sintaxe "ISO label extended".
- Indexação do prefixo mnemônico: algoritmo de cobertura conforme publicado em [6], com no mínimo 6 e no máximo 32 células.
- Sufixo de localização na grade: representação humana do ID de célula em base32 com alfabeto NVU ("0123456789BCDFGHJKLMNPQRSTUVWXYZ"), descrito em [8]. Número de níveis variável conforme município. Menor célula recomendada: 1 m². Célula urbana recomendada: 32 m². Célula rural recomendada: 1024 m² (32 m de lado). Níveis inteiros (*L*) e intermediários (*L*+½) intercalados a cada dígito adicional.

Figura 1. Cobertura de nível *LO* no Brasil (esquerda) em base16h, e exemplo de nível *L1*, nas grades dos geocódigos postal e científico (direita). A célula de cobertura "F" (base16h) é utilizada parcialmente no Brasil continental ("FA" e "FB") e nas ilhas mais afastadas do continente ("F4" e "F7").

Figura 2. Exemplo de geocódigo postal urbano (resolução de 1m a ~6m) em São Caetano do Sul (abaixo com 4 dígitos) e Óbidos (acima com 7). A quantidade de dígitos do geocódigo postal depende da área do município, mas, conforme ilustrado à direita, quanto mais esparsas as construções menor a demanda por mais dígitos. A conservação das áreas, 32 m², em regiões tão distantes (SP e PA) é garantida pela projeção Albers.

REFERÊNCIAS

- {1} BANDEIRA, Judson et al. Resumo da solicitação e-SIC, em resposta a "CEP da minha cidade, onde posso encontrar fonte aberta, atualizada e confiável?". In: Stack Overflow. 2015. Disponível em: https://pt.stackoverflow.com/a/63936/4186>. Acesso em: 28 jul. 2022.
- {2} Instituto Nacional de Propriedade Industrial (INPI), pedido de Patente de Invenção depositado em 04/10/2002, sob o Nº PI 0.204.305-0 e título "DIRETÓRIO NACIONAL DE ENDEREÇOS (DNE)". A patente foi estendida internacionalmente em 07/10/2003, pelo German Patent Applicatations, sob nº 10.346.551.0.
- [3] Organização OSMcodes. In: GitHub. 2022. Disponível em: < https://git.osm.codes>. Acesso em: 13 jul. 2022.
- [4] IBGE Instituto Brasileiro de Geografia e Estatística. Grade Estatística. Rio de Janeiro, 2016. Disponível em:
- http://geoftp.ibge.gov.br/recortes para fins estatisticos/grade estatistica/censo 2010/grad e_estatistica.pdf>. Acesso em: 13 jul. 2022.
- [5] KRAUSS, Peter & ALMEIDA, Rubens de. Grade Estatística do Brasil: uma proposta de melhora orientada a geocódigos hierárquicos e multifinalitários. In: SIMPÓSIO BRASILEIRO DE INFRAESTRUTURA DE DADOS ESPACIAIS, II, 2020, Rio de Janeiro. Anais eletrônicos [...]. Rio de Janeiro, 2020. Disponível em: https://inde.gov.br/images/inde/ANAIS_2SBIDE.pdf>. Acesso em: 13 jul. 2022.
- [6] KRAUSS, Peter; CUNHA, Luis; JEAN, Thierry. IBGE Statistical Grid in Compact Representation. In: GEOINFO, XXII, 2021, São José dos Campos. Anais eletrônicos [...]. São José dos Campos, 2021. Disponível em: http://mtc-m16c.sid.inpe.br/ibi/8JMKD3MGPDW34P/45U7J5H>. Acesso em: 13 jul. 2022.
- [8] KRAUSS, Peter; JEAN, Thierry; BORTOLINI, Everton. Proposta do Brasil para o mundo: expansão do protocolo GeoURI (RFC 5870 da internet) visando a interoperabilidade de geocódigos nacionais soberanos. In: SIMPÓSIO BRASILEIRO DE INFRAESTRUTURA DE DADOS ESPACIAIS, II, 2020, Rio de Janeiro. Anais eletrônicos [...]. Rio de Janeiro, 2020. Disponível em: https://inde.gov.br/images/inde/ANAIS 2SBIDE.pdf>. Acesso em: 13 jul. 2022.
- [9] KRAUSS, P. et al. Natural Codes as foundation for hierarchical labeling and extend hexadecimals for arbitrary-length bit strings. Disponível em: http://osm.codes/foundations/art1.pdf>. Acesso em: 13 jul. 2022.
- [10] PROJ contributors (2020). PROJ coordinate transformation software library. Open Source Geospatial Foundation. DOI: 10.5281/zenodo.5884394 Disponível em: https://proj.org/>. Acesso em: 13 jul. 2022.

ANAIS DO 3º SIMPÓSIO BRASILEIRO DE INFRAESTRUTURAS DE DADOS ESPACIAIS

Geoinformação aberta para o desenvolvimento sustentável

INDE - 14 ANOS

https://inde.gov.br

dbdg@inde.gov.br