

Public-Key Cryptography and Message Authentication

Dr. Bhaskar Mondal

Public-Key Cryptography Principles The use of two keys has consequences in: key distribution, confidentiality and authentication.

The scheme has six ingredients

Plaintext

Encryption algorithm

Public and private key

Ciphertext

Decryption algorithm

 Public key like Bank Account Number and Private key is like a PIN

Encryption using Public-Key system

Authentication using Public-Key System

Figure 9.1 Public-Key Cryptography

Applications for Public-Key Cryptosystems

Key echange

Requirements for Public-Key Cryptography

- Computationally easy for a party B to generate a pair (public key KUb, private key KR_b)
- Easy for sender to generate ciphertext:
- Easy for the receiver to decrypt ciphertect using private key:

$$C = E_{KUb}(M)$$

$$M = D_{KRb}(C) = D_{KRb}[E_{KUb}(M)]$$

Public-Key Cryptographic Algorithms

RSA

- Integer factoring
- Key sharing

Diffie-Hellman

Digital Signature Standard (DSS)

- Makes use of the SHA-1
- Not for encryption or key echange

Elliptic-Curve Cryptography (ECC)

- Good for smaller bit size
- Low confidence level, compared with RSA
- Very complex

Diffie-Hellman Key Exchange

Example

Step 1

Alice and Bob get public numbers

G = 9

Step 2

Alice selected a private key

a = 4 and

Bob selected a private key b =

3

Step 3

Alice and Bob compute public values

• Alice:

x = (9^4 mod 23) = (6561 mod 23) = 6

• Bob:

y = (9³ mod 23) = (729 mod

23) = 16

Step 4

Alice and Bob exchange public numbers

Alice receives public key y

Step 5

=16 and

 Bob receives public key

x = 6

Step 6

Alice and Bob compute symmetric keys

Alice:

ka = y^a mod p = 65536 mod

23 = 9

• Bob:

 $kb = x^b \mod p$

= 216 mod 23 =

9

is the shared secret.

Step 7

Diffie-Hellman Key Exchange

Key
Management
Public-Key
Certificate
Use

Message Security Requirements (attacks)

- Disclosure
- Traffic analysis
- Masquerade
- Content modification
- Sequence modification
- Timing modification
- Source repudiation
- Destination repudiation

Approaches to Message Authentication

Authentication Using Conventional Encryption

 Only the sender and receiver should share a key

Message Authentication without Message Encryption

 An authentication tag is generated and appended to each message

Message Authentication Code

• Calculate the MAC as a function of the message and the key. MAC = F(K, M)

MAC Authentication

- concerned of message origin authentication, not confidentiality.
- symmetric key cryptographic technique
- sender and receiver share a symmetric key K.
- MAC is an encrypted checksum generated
- Similar to hash, fixed length output.

Figure 2.3 Message Authentication Using a Message Authentication Code (MAC).

References

- William Stallings, Network Security Essentials: Applications and Standards, ISBN: 9788131761755, 8131761754
- Thanks to the many unknown sources from where some information is adopted.