

APR 05, 2023

OPEN BACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.rm7vzboy4vx1/v1

Protocol Citation: Marcel Keller, Christiana L Scheib, Biancamaria Bonucci 2023. Indexing PCR and purification of dsDNA libraries.

protocols.io

https://dx.doi.org/10.17504/protocols.io.rm7vzboy4vx1/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Jan 31, 2023

Last Modified: Apr 05, 2023

PROTOCOL integer ID:

76150

(Indexing PCR and purification of dsDNA libraries

Marcel Keller^{1,2}, Christiana L Scheib^{1,3}, Biancamaria Bonucci¹

¹Institute of Genomics, University of Tartu;

²Institute of Forensic Medicine, University of Bern;

³University of Cambridge

Marcel Keller

Institute of Forensic Medicine, University of Bern, Institut...

ABSTRACT

Protocol for the indexing PCR and purification of dsDNA libraries, optimized for ultrashort ancient DNA molecules, modified from Meyer & Kircher (2010) Cold Spring Harb. Protoc. (doi: 10.1101/pdb.prot5448).

GUIDELINES

Please read the general guidelines for working in the Ancient DNA protocol collection – University of Tartu, Institute of Genomics.

Keywords: ancient DNA, aDNA, archeogenetics, archaeogenetics, paleogenetics, pleogenetics, library preparation

MATERIALS

Reagents:

А	В	С	D	E	F	G
Step	Reagents	Con c.	Uni t	Manufactu rer	Kit/full description	Product number
Purificati on	PB Buffer	N/A	N/ A	Qiagen	MinElute PCR Purification Kit	19066
Purificati on	PE Buffer	N/A	N/ A	Qiagen	MinElute PCR Purification Kit	19065
Purificati on	EB Buffer	N/A	N/ A	Qiagen	MinElute PCR Purification Kit	28006

Equipment and consumables:

A		В
Nur	mber	Equipment and consumables
1		0.2 ml tube rack
1		1.5 ml tube rack
1		50 ml Falcon rack
		100 μl filter tips
		200 μl filter tips
		1000 μl filter tips
[# o san	f nples]+1	1.5 ml tubes
[# o	f samples]	MinElute columns
1		50 ml Falcon (waste)

Lab equipment:

Dead Air Hood Centrifuge (1.5/2 ml) Heat block Mini table centrifuge/vortexer

Other consumables:

DNA ExitusPlus Paper towels

SAFETY WARNINGS

0

Reagents

DNA ExitusPlus

H319 Causes serious eye irritation.

Guanidinium hydrochloride (GuHCI) (in PB buffer of Qiagen MinElute kit)

- H302 Harmful if swallowed.
- H332 Harmful if inhaled.
- H315 Causes skin irritation.
- H319 Causes serious eye irritation.

Ethanol

- H225 Highly flammable liquid and vapor.
- H319 Causes serious eye irritation.

Equipment

UV radiation

- UV radiation can damage eyes and can be carcinogenic in contact with skin. Do not look directly at unshielded UV radiation. Do not expose unprotected skin to UV radiation.
- UV emitters generate ozone during operation. Use only in ventilated rooms.

Previous step:

This protocol follows the library preparation protocols.

Following step:

After the purification, the libraries are ready for quality control.

Equipment and consumables:

A	В
Number	Equipment and consumables
1	0.2 ml tube rack
1	1.5 ml tube rack
1	50 ml Falcon rack
	100 μl filter tips
	200 μl filter tips
	1000 μl filter tips
[# of samples]+1	1.5 ml tubes
[# of samples]	MinElute columns
1	50 ml Falcon (waste)

[# of samples] includes the blank(s).

PCR

In the modern lab, place the PCR strips in the cycler and run the following program:

A	В	С	D
Step	Time [min:sec]	Temperature [°C]	Cycles
Preincubation	5:00	94	1
Denaturation	0:30	94	
Annealing	0:30	60	15
Elongation	0:30	68	
Final elongation	7:00	72	1

A	В	С	D
Hold	infinite	4	1

2

Note

Continue immediately with the purification or stop here and purify later.

To continue with purification, take MinElute columns out of the fridge while the PCR is running.

To stop and purify later, put the strips into the fridge (if stored for max. 1 day) or freezer (if stored for multiple days) after the PCR is done. For the purification, take the MinElute columns out of the fridge in time so they can reach room temperature until PB buffer and libraries are added.

Purification

2m

- Turn on the heat block 37 °C for the elution.
- 4 Label the 1.5 ml EB tube and aliquot: [# of samples] \times 35 μ l plus 10%.
- 5 Prepare PE (wash) buffer by adding ethanol and aliquoting to 50 ml tubes.
- Label MinElute columns.
 Label the 50 ml waste tube.
- 7 Label tubes:

А	В	С
Тор	Project ID	PROJ
	Library ID	ABC001A 1 SG1
	indices	NEB1 (single) i701 / i501 (double)
Side	Project ID	PROJ
	Library ID	ABC001A 1 SG1
	indices	NEB1 (single) i701 / i501 (double)
	date	01.01.2021
	initials	XY

8 Add 🔼 500 µL PB buffer (binding buffer) to the MinElute column.

Add the (first) PCR reaction (\pm 100 μ L) and pipette-mix.

10 Spin 3 rpm, 00:01:00

1_m

- ₩
- 11 Discard flowthrough into your waste tube.

12

Note

Steps 12 to 14 only apply if you have 2x split the PCR reaction.

14 Add the second PCR reaction ($\mathbb{Z}_{100 \, \mu L}$) and pipet-mix.

15 Spin (3) 13 rpm, 00:01:00

16 Discard flowthrough into your waste tube.

17 Add Δ 690 μL μl PE buffer (wash buffer), change tip for every sample.

18 Spin (3) 13 rpm, 00:01:00

19 Discard flowthrough into your waste tube.

1m

- 21 Put column in labeled tube.
- Elute in \underline{A} 35 μ L EB buffer (elution buffer). Change tip for every sample.

23 Incubate at \$\mathbb{8} 37 \cdot \cdot \text{for } \cdot \cdot \cdot 00:10:00

- 24 Spin 🚷 13 rpm, 00:02:00

- 25 Check that there is liquid in your tube, throw away the column and close your tube.
- Put the tubes into the fridge (if stored for max. 1 day) or freezer (if stored for multiple days).