Ph.D. Qualifying Exam, Real Analysis Spring 2012, part I

Do all five problems. Write your solution for each problem in a separate blue book.

- Let μ denote the Lebesgue measure on [0,1]. Suppose that f_k , $k \in \mathbb{N}$, are Lebesgue measurable (real-valued) functions on [0,1], and let $m_{kn} = \mu(\{x \in [0,1] : |f_k| \in (2^{n-1},2^n]\})$ for $n \in \mathbb{N}$.
 - **a.** Suppose that $\sum_{n=1}^{\infty} n2^n m_{kn} \leq 1$ for all k and suppose that $f_k \to 0$ a.e. Show that $\int f_k d\mu \to 0$.
 - **b.** Give an example of f_k as above such that $\sum_{n=1}^{\infty} 2^n m_{kn} \leq 1$ for all $k, f_k \to 0$ a.e, but $\int f_k d\mu$ does not tend to 0.
- Let $\mathcal{S}'(\mathbb{R}^n)$ denote the space of tempered distributions on \mathbb{R}^n . A locally L^1 function f on \mathbb{R}^n (i.e. the restriction to compact sets is L^1) is said to lie in $\mathcal{S}'(\mathbb{R}^n)$ if the map $C_c^{\infty}(\mathbb{R}^n) \ni \phi \mapsto \int_{\mathbb{R}^n} f\phi \in \mathbb{C}$ has a (necessarily unique) continuous extension to an element of $\mathcal{S}'(\mathbb{R}^n)$. Here $C_c^{\infty}(\mathbb{R}^n)$ is the set of compactly supported C^{∞} functions on \mathbb{R}^n .
 - **a.** Show that the function $|x|^{-(n-\beta)}$ lies in the space $\mathcal{S}'(\mathbb{R}^n)$ if $0 < \beta < n$. For what values of β is it a sum of an L^1 and a L^2 function?
 - **b.** Show that the function $e^x \cos(e^x)$ on \mathbb{R} lies in $\mathcal{S}'(\mathbb{R})$.
 - **c.** Prove that there is a locally $L^1(\mathbb{R}^n)$ function that does not lie in $\mathcal{S}'(\mathbb{R}^n)$.
- Suppose that $(X, \|.\|_X)$ is a normed vector space, M and N are (not necessarily closed) subspaces equipped with norms $\|.\|_M$, resp. $\|.\|_N$ such that the identity maps $(M, \|.\|_M) \to (M, \|.\|_X)$, resp. $(N, \|.\|_N) \to (N, \|.\|_X)$ are continuous. Let M+N be the algebraic sum: $M+N=\{m+n\in X: m\in M,\ n\in N\}$. For $x\in M+N$, let

$$||x||_{M+N} = \inf\{||m||_M + ||n||_N : m \in M, n \in N, x = m+n\}.$$

- **a.** Show that $||.||_{M+N}$ is a norm on M+N.
- **b.** Show that if $(M, \|.\|_M)$ and $(N, \|.\|_N)$ are complete then $(M + N, \|.\|_{M+N})$ is complete.
- Suppose that f, g are holomorphic functions on a non-empty open connected set $\Omega \subset \mathbb{C}$, and suppose that $|f|^2 + |g|^2$ is constant on Ω . Show that f and g are constant on Ω .
- Suppose that X,Y are reflexive separable Banach spaces, X^* , Y^* the duals, $P \in \mathcal{L}(X,Y)$, and suppose that its adjoint $P' \in \mathcal{L}(Y^*,X^*)$ satisfies the following property: There is a Banach space Z and a compact map $\iota:Y^* \to Z$ and C>0 such that for all $\phi \in Y^*$,

$$\|\phi\|_{Y^*} \le C(\|P'\phi\|_{X^*} + \|\iota\phi\|_Z).$$

- **a.** Show that KerP' is finite dimensional.
- **b.** Let V be a closed subspace of Y^* with $V \oplus \operatorname{Ker} P' = Y^*$. Show that there is C' > 0 such that for $\phi \in V$, $\|\phi\|_{Y^*} \leq C' \|P'\phi\|_{X^*}$.
- **c.** Show that for $f \in Y$ such that $\ell(f) = 0$ for all $\ell \in \operatorname{Ker} P'$, there is $u \in X$ such that Pu = f.

Ph.D. Qualifying Exam, Real Analysis Spring 2012, part II

Do all five problems. Write your solution for each problem in a separate blue book.

- Suppose X is a compact metric space, and ℓ is a positive linear functional on C(X), the Banach space of real valued continuous functions, i.e. $f \geq 0$ implies $\ell(f) \geq 0$. Suppose $K \subset X$ compact. Let O_j , $j \in \mathbb{N}$, be open sets satisfying $O_j \supset \overline{O_{j+1}}$ and $\bigcap_{j \in \mathbb{N}} O_j = K$, and let $f_j \in C(X; [0,1])$ be such that $f_j = 1$ on K, $f_j = 0$ on the complement of O_j . Show directly from first principles (without quoting a major theorem) that $\lim_{j \to \infty} \ell(f_j)$ exists, and is independent of the choice of O_j and f_j satisfying these conditions.
- Suppose $p \in (0,1)$, 0 < a < p, and suppose $N \in \mathbb{N}$, A_1, \ldots, A_N are Lebesgue measurable subsets of [0,1] with average measure $\frac{1}{N} \sum_{i=1}^{N} \mu(A_i) \ge p$. Let $E = \{x \in [0,1] : x \in A_i \text{ for at least } aN \text{ values of } i\}$.
 - **a.** Show that $\mu(E) \geq \frac{p-a}{1-a}$
 - **b.** Show that if $c > \frac{p-a}{1-a}$ then there exist $N \in \mathbb{N}$ and sets A_1, \ldots, A_N with $\mu(A_i) \geq p$ for all i such that $\mu(E) < c$.
- 3 Let S denote the set of Schwartz functions on \mathbb{R}^n . The Fourier transform on S, and more generally on L^1 , is given by $(\mathcal{F}\phi)(\xi) = \int e^{-ix\cdot\xi}\phi(x)\,dx$, while on tempered distributions $v\in S'$ it is given by $(\mathcal{F}v)(\phi) = v(\mathcal{F}\phi), \phi\in S$.
 - **a.** Show that there exists a compactly supported C^{∞} function ϕ on \mathbb{R} such that $\phi \geq 0$, $\phi(0) > 0$, and $\mathcal{F}\phi$ is non-negative, $(\mathcal{F}\phi)(0) > 0$. (Hint: when is the Fourier transform of a function real?)
 - **b.** Show that if u is a compactly supported distribution then the Fourier transform (as defined above) is C^{∞} , and there exists $N \in \mathbb{R}$ such that for all $\alpha \in \mathbb{N}^n$ there exist $C_{\alpha} > 0$ with $|(D^{\alpha}\mathcal{F}u)(\xi)| \leq C_{\alpha}(1+|\xi|)^N$.
- Suppose X is a vector space over \mathbb{C} and \mathcal{F} is a collection of linear maps $X \to \mathbb{C}$. Equip X with the \mathcal{F} -weak topology, i.e. the weakest topology in which all elements of \mathcal{F} are continuous.
 - **a.** Show that the vector space operations $+: X \times X \to X$ and $\cdot: \mathbb{C} \times X \to X$ are continuous in this topology (where $X \times X$ and $\mathbb{C} \times X$ are equipped with the product topology).
 - **b.** Suppose that $\rho: X \to [0, \infty)$ is continuous and is a seminorm. Show that there exist $k \in \mathbb{N}$, $\ell_1, \ldots, \ell_k \in \mathcal{F}$ and C > 0 such that $\rho(x) \leq C \sum_{j=1}^k |\ell_j(x)|$ for all $x \in X$.
- For $s \geq 0$, let $H^s(\mathbb{T})$ be the space of L^2 functions f on the circle $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$ whose Fourier coefficients $\hat{f}_n = \int e^{-inx} f(x) \, dx$ satisfy $\sum (1+n^2)^s |\hat{f}_n|^2 < \infty$, with norm $||f||_s^2 = (2\pi)^{-1} \sum (1+n^2)^s |\hat{f}_n|^2$.
 - **a.** Show that for $r > s \ge 0$, the inclusion map $\iota : H^r(\mathbb{T}) \to H^s(\mathbb{T})$ is compact.
 - **b.** Show that if s > 1/2, then $H^s(\mathbb{T})$ includes continuously into $C(\mathbb{T})$, and indeed the inclusion map is compact.