EPITA / InfoS1		Janvier 2020
NOM:	Prénom :	Groupe :

Partiel Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème

ÉCOLE D'INGÉNIEURS EN INF	Réponses exclusiveme	nt sui	r le	e indicatif. sujet. Si vous mar er le verso des pag		ez de
Exercice 1. Q	uestions de cours : QCM (5 points	s – pa	s de	e point négatif)		
Entourez la ou le	es bonnes réponses.					
1. Qu'est-ce qu	u'un déplacement ordonné de charges é	électriq	ques	;?		
a- Une r	résistance	C-	Uı	n courant		
b- Une t	ension	d-	· Ri	en de tout cela		
série avec ce di a- V			b-	FAUX		
directement la te		.11 10.32	Ct	ic courant cii mzi,	011	Obticit
a. A	b. <i>V</i>	C.	. n	ıA	d.	MV
4. A quelle unit	té correspond 1 Ampère par Volt ($A.V^-$	·1)?				
a- 1 Ohm		C- 1	1 Jo	ule		
b- 1 Sieme	ens	d- F	Rien	de tout cela		
5. Un interrupto	eur ouvert impose :					
a- u	ın courant infini qui le traverse		C-	une tension infinie à	ses	bornes
b- u	ine tension nulle à ses bornes		d-	Aucune de ces répon	ses	

- 6. Quelle est la résistance vue entre A et B?
 - a. $\frac{15}{23}R$
 - b. $\frac{3}{5}R$
 - c. $\frac{5}{2}R$
 - d. $\frac{5}{3}R$

- 7. Soit le circuit ci-contre. Que vaut U?
 - a- 2,5 V

c- 5V

b- -2,5 V

d- 7,5 V

8. On considère le circuit ci-contre. Quelle est la bonne formule ?

a.
$$I_1 = \frac{1}{3R} I$$

c.
$$I_1 = \frac{1}{3} I$$

b.
$$I_1 = \frac{2}{3} I$$

d.
$$I_1 = \frac{1}{2} I$$

On considère les 2 circuits suivants :

Ces 2 circuits sont équivalents si et seulement si :

- 9. E =
 - a- *I*
 - b- *R.I*

- $C- \frac{R'.R}{R+R'}.$
- d- Aucune de ces réponses

- 10. R' =
 - a- F
 - $b-\frac{R.R^4}{R}$

- C- $\frac{R}{R+R'}$
- d- Aucune de ces réponses

Exercice 2. Théorème de superposition (4,5 points)

Soit le circuit ci-contre, dans lequel :

$$E_1 = -5V$$
, $E_2 = 3V$, $I_1 = 1A$, $I_2 = 2A$, $R_1 = 2\Omega$ et $R_2 = 3\Omega$.

En utilisant le théorème de superposition, déterminer l'intensité du courant I et la tension U. Vous donnerez l'expression littérale avant de faire l'application numérique.

Exercice 3. Théorème de Norton (4 points)

Soit le circuit suivant :

1. Déterminer le générateur de Norton vu par R_4 .

2. En déduire l'intensité I_4 du courant dans R_4 . Vous exprimerez le résultat en fonction des résistances R_i et de la tension E.

Soit le mo	Théorème de Thévenin (6,5 points ntage ci-contre : E rminer le générateur de Thévenin vu par	$3R$ $3R$ $3R$ E_2	$\bigcap_{R'} I$

