## DS Physique 1

Calculatrice interdite, sans document, durée : 2h, Encadrez vos résultats. Toute valeur numérique donnée sans unité sera considérée comme erronée.

## EXERCICE 1 - Questions de cours

- 1. Un rayon lumineux qui se propage dans un milieu "0" d'indice  $n_0$  connu arrive sur un dioptre qui sépare le milieu "0" d'un autre milieu "1" d'indice  $n_1$  connu. Donner une condition sur l'angle d'incidence i pour qu'il n'y ait pas de rayon transmis dans le milieu "1".
- 2. On considère une onde électromagnétique  $\vec{E}(x,t) = E_0 \vec{u}_z \cos(\alpha(t-\beta x))$ .  $E_0$ ,  $\alpha$  et  $\beta$  sont des grandeurs connues.
  - a) Quelle est la fréquence de cette onde?
  - b) Quelle est la pulsation spatiale (vecteur d'onde) de cette onde?
  - c) Quelle est la vitesse de phase de cette onde?
- 3. On pose a=1 cm. On considère un axe optique horizontal, orienté de la gauche vers la droite. Une lentille mince  $\mathcal{L}$  de focale f'=-3a est placée en O. Un point objet est situé en A=(-2a,0). Un autre point objet est situé en B=(-2a,+5a).
  - a) Cette lentille est-elle convergente ou divergente?
  - b) Déterminer mathématiquement la position de l'image A' du point A. Vous donnerez d'abord votre réponse en fonction de a, puis vous ferez l'application numérique.
  - c) De quel côté de la lentille est située cette image?
  - d) Déterminer mathématiquement la position de l'image B' du point B. Donner une expression en fonction de a, puis faire l'application numérique.

## Exercice 2 - Mirages

Les mirages sont des phénomènes optiques dans lesquels l'image d'un objet se reflète comme dans le cas d'une réflexion totale sous l'eau.



FIGURE 1 – Mirage sur de l'asphalt

Un mirage apparaît lorsque la température varie avec l'altitude. L'indice de réfraction de l'air diminue avec la température, si bien qu'un rayon lumineux passant à travers des couches d'air de températures différentes est réfracté et/ou réfléchi. Dans ce problème, on se propose de modéliser ce phénomène. On travaillera avec des angles orientés, le sens positif étant le sens trigonométrique.

On considère le cas où la température est plus élevée à proximité du sol qu'en altitude. On modélise l'air par trois couches d'indices réspectifs,  $n_1$ ,  $n_2$  et  $n_3$  avec  $n_1 > n_2 > n_3$ . Ces indices sont supposés connus. Chaque couche a une hauteur h connue. On note  $i_1$  l'angle que fait le rayon incident au dioptre qui sépare  $n_1$  de  $n_2$ . On note I le point d'incidence, et O le point d'intersection entre la normale à ce dioptre et le sol.



FIGURE 2 – modélisation en 3 couches d'air distinctes

- 1. Reproduire sur votre copie le schéma de la figure 2 et dessiner l'allure de la trajectoire du rayon lumineux, en supposant celui-ci transmis dans les couches d'indice  $n_2$  et  $n_3$ .
- 2. Lorsque le rayon lumineux arrive sur le dioptre sol, celui-ci forme un angle d'incidence  $i_3$ . Déterminer  $i_3$  en fonction de  $i_1$  et des données.
- 3. Déterminer l'abscisse  $\ell$  du point d'incidence du rayon lumineux sur le sol, en fonction de  $i_1$  et des données, simplifiez au maximum votre expression.
- **4.** Tracer la trajectoire des rayons lumineux lorsqu'il y a réflexion totale sur le dioptre  $n_2|n_3$ .
- 5. Donner une condition sur l'angle d'incidence  $i_1$  pour que cela soit possible. Donner cette condition en fonction de  $n_3$  et  $n_1$ .

On propose une amélioration du modèle, en introduisant N couches d'air au lieu de simplement 3 couches d'air. Chaque couche est d'indice  $n_k$ . On note  $i_k$  l'angle d'incidence sur le dioptre  $n_k | n_{k+1}$ .

6. Montrer que, connaissant l'incidence  $i_1$  d'un rayon d'incidence sur la première couche,  $\forall k$ , la quantité  $S \stackrel{\text{def}}{=} n_k \sin i_k$  est constante.

On admet que si on fait tendre N vers l'infini, cette propriété reste respectée. Autrement dit, si on note z l'altitude d'un point par où passe un rayon lumineux, il existe une grandeur S conservée le long du rayon lumineux :

$$S \stackrel{\text{\tiny def}}{=} n(z) \sin i(z)$$

On suppose que la variation d'indice de l'air avec l'altitude z est la suivante :

$$n(z) = n_0(1 + \alpha z)$$

avec 
$$n_0 = 1.0003$$
 et  $\alpha = 2 \times 10^{-6} m^{-1}$ 

On s'intéresse au cas limite qui donne lieu à un mirage, c'est à dire lorsqu'un rayon émis en  $z_0$ , vers le sol est petit à petit dévié à chaque passage d'une couche, puis "rase" le sol (z=0) horizontalement avant de revenir vers le haut.

7. Quelle est l'incidence du rayon lumineux lorsqu'il "rase" le sol? En déduire l'angle d'incidence au moment de l'émission " $i_0^{lim}$ " qui donnera lieu à mirage. Donner votre réponse en fonction de  $z_0$ , l'altitude de l'objet lumineux.

## EXERCICE 3 - Prisme quasi rectangulaire

Le prisme d'indice n=1.5 représenté ci-dessous possède un angle  $\hat{A}$  proche d'un angle droit. Le but de cet exercice est de montrer que la différence d'angle entre le rayon entrant et le rayon sortant  $\delta = r_4 - i_1$  est proportionnelle à l'écart par rapport à l'angle droit de  $\hat{A}$ .



- On note  $\epsilon$  la différence entre l'angle  $\hat{A}$  et l'angle droit, c'est à dire :  $\epsilon = \hat{A} \frac{\pi}{2}$ .
- · Les points d'incidences sont notés successivement  $I_1$ ,  $I_2$ ,  $I_3$  et  $I_4$ .
- On admet qu'il y a réflexion totale en  $\it I_{
  m 2}$  et  $\it I_{
  m 3}$ .
- On note  $\hat{C} \stackrel{\text{def}}{=} \widehat{\overrightarrow{CB}}, \widehat{\overrightarrow{CA}}$
- On note  $\hat{B} \stackrel{\text{def}}{=} \widehat{\overrightarrow{BA}}, \widehat{\overrightarrow{BC}}$
- · Le milieu extérieur est le vide.
- On suppose que les angles  $i_1$  et  $r_4$  sont petits.

On rappelle que pour des "petites" valeurs de x,  $\sin x \approx x$ 

- 1. Montrer que avec l'approximation mentionnée ci-dessus,  $\delta = n(i_4 r_1)$
- 2. Trouver une relation simple entre  $r_1$  l'angle réfracté en  $I_1$ ,  $\hat{C}$  et  $i_2$  l'angle d'incidence en  $i_2$ .
- 3. Obtenir une relation similaire entre  $r_3$  l'angle de réflexion en  $I_3$ ,  $i_4$ , l'angle d'incidence en  $I_4$  et  $\hat{B}$
- **4.** De même, obtenir une relation entre  $i_2$ ,  $r_3$  et  $\hat{A}$
- **5.** En déduire que  $\delta = 2n\epsilon$

1. Déterminer graphiquement la position des images A'B'. Tracer au moins trois rayons caractéristiques sur chaque schéma. Indiquer la trajectoire réelle de la lumière en trait plein, et les prolongements en pointillés. Orientez vos rayons avec des flèches. La lumière se propage de la gauche vers la droite.





2. Sur la figure ci-dessous, la trajectoire de deux rayons qui passent à travers un système optique centré stigmatique et aplanétique est indiquée. Positionner les foyers objet et image sur la figure.

