## Completely Randomized Design

Norberto E. Milla, Jr.

2025-08-13

### Introduction

- Simplest experimental design
- Frequently used to compare treatments when environmental conditions are fairly uniform (homogeneous experimental units)
- Each treatment is applied at random to several experimental units



### Introduction

### Advantages:

- design is extremely easy to construct
- design is easy to analyze even if the sample sizes might not be the same for each treatment
- design can be used for any number of treatments

#### Disadvantages:

- it is best suited for situations in which there are relatively few treatments
- experimental units to which treatments are applied must be as homogeneous as possible
- if the experimental units are not homogeneous, experimental error would be large and difficult to detect treatment effect
- suitable only for laboratory and greenhouse experiments where the environment and other conditions can be controlled

### Experimental layout



## Data Format

|           | I               | Replic          | ation ( | (Obser          | Treatment      | Treatment |                               |
|-----------|-----------------|-----------------|---------|-----------------|----------------|-----------|-------------------------------|
| Treatment | 1               | 2               |         | j               | <br>Γi         | Total     | Mean                          |
|           |                 |                 |         |                 |                | yi.       | $\overline{\mathcal{Y}}_{i.}$ |
| 1         | <b>y</b> 11     | <b>y</b> 12     |         | y <sub>1j</sub> | <br>$y_{1n_1}$ | y1.       | $\overline{y}_{1.}$           |
| 2         | y21             | <b>y</b> 22     |         | У2ј             | <br>$y_{2n_2}$ | У2.       | $\overline{y}_{2}$            |
|           |                 |                 |         |                 |                | -         | J 2.                          |
| -         |                 |                 |         |                 |                | •         |                               |
| :         |                 |                 |         |                 |                |           | $\overline{y}_{i}$            |
| 1         | yi1             | yi2             |         | Уij             | $y_{in_1}$     | yi.       | J 1.                          |
|           |                 |                 |         |                 |                | •         |                               |
|           |                 |                 |         | :               |                | -         |                               |
| p         | y <sub>p1</sub> | y <sub>p2</sub> |         | Урј             | $y_{pn_p}$     | Уp.       | $\overline{y}_{p}$ .          |
| 1         | "               | J F-            |         | 7 19            | - prop         | ) P       | у р.                          |
| Total     |                 |                 |         |                 |                | у         | $\bar{y}_{}$                  |

### Linear models

#### Means model

$$Y_{ij} = \mu_i + \epsilon_{ij}, \ i = 1, 2, \cdots, t; \ j = 1, 2, \cdots, r_t$$

where:

- $Y_{ij}$  is the response of the  $j^{th}$  unit given treatment i
- ullet  $\mu_i$  is the mean response of units given treatment i
- $\epsilon_{ij}$  is the random error component associated with each  $Y_{ij}$ ,  $\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$

### Linear models

#### Effects model

$$Y_{ij} = \mu + \tau_i + \epsilon_{ij}, i = 1, 2, \dots, t; j = 1, 2, \dots, r_i; \epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$$

where:

- $Y_{ij}$  is the response of the  $j^{th}$  unit given treatment i
- ullet  $\mu$  is the mean response of all units
- $\tau_i$  is the effect of treatment i,  $\tau_i = \mu_i \mu$
- $\epsilon_{ij}$  is the random error component associated with each  $Y_{ij}$ ,  $\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$

### Estimation of parameters

ullet the random errors  $\epsilon_{ij}$  are estimated by

$$e_{ij} = Y_{ij} - \bar{y}_{i.}$$

• minimize sum of squared errors  $e_{ij}$  (Method of least squares)

$$\sum_{i=1}^{t} \sum_{j=1}^{r_t} \epsilon_{ij}^2 = \sum_{i=1}^{t} \sum_{j=1}^{r_t} (Y_{ij} - \mu - \tau_i)^2$$

 apply partial differentiation to get the estimators that would minimize the above expression

# Analysis of fixed effects model

#### Recall

- The t treatments are deliberately chosen by the researcher or are the only available treatments
- Conclusions apply only to the treatments considered
- Treatment effects  $\tau_i$  are considered fixed
- Goal: test of equality of treatment means or treatment effects
- Hypotheses:
  - $H_0: \mu_1 = \mu_2 = \cdots = \mu_t$  versus  $H_1: \mu_i \neq \mu_j$ , for at least one pair  $i \neq j$
  - $H_0: \tau_i = 0, \forall i \text{ versus } H_1: \tau_i \neq 0, \exists i$

## Analysis of fixed effects model

### Analysis of Variance (ANOVA)

- A method of partitioning the total variance in the response into different components which can be attributed to different sources
  - Systematic variation- effect of manipulated factors
  - Random variation- experimental error
- Method of comparing the effect of treatments on the response variable
- Method of comparing the means of three or more treatments
- Partitioning the total variance observed in the response:

$$\sum_{i=1}^{t} \sum_{j=1}^{r_i} (y_{ij} - \bar{y}_{..})^2 = \underbrace{\sum_{i=1}^{t} (\bar{y}_{i.} - \bar{y}_{..})^2}_{SST} + \underbrace{\sum_{i=1}^{t} \sum_{j=1}^{r_i} (y_{ij} - \bar{y}_{i.})^2}_{SSE}$$

# Analysis of variance (ANOVA)

- SSTr is also referred to as SSB for sum of squares treatment and SSE as SSW for sum of square for experimental error
- When each of the sums of squares is divided by its corresponding degree of freedom we obtain the Mean Square (MS) which is a variance

$$S_T^2 = \frac{\sum_{i=1}^t \sum_{j=1}^{r_i} (y_{ij} - \bar{y}_{..})^2}{n-1}$$

$$MSTr = S_B^2 = \frac{\sum_{i=1}^{t} (\bar{y}_{i.} - \bar{y}_{..})^2}{t-1}$$

$$MSE = S_W^2 = \frac{\sum_{j=1}^{r_i} (y_{ij} - \bar{y}_{i.})^2}{n-t}$$

hence, the name Analysis of Variance

# Analysis of variance (ANOVA): Test statistic

#### Recall

• Theorem: Let  $Y_1, Y_2, \dots, Y_n$  be a random sample from a normal distribution with mean  $\mu$  and variance  $\sigma^2$ . Then

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \frac{(Y_i - \bar{Y})^2}{\sigma^2}$$

has a  $\chi^2$  distribution with n-1 degrees of freedom

• Theorem: Suppose U and V are independent chi-square random variables with m and n degrees of freedom, respectively. Then

$$\frac{U/m}{V/n}$$

has an F distribution with m and n degrees of freedom

# Analysis of variance (ANOVA): Test statistic

- $MSTr=rac{\sum_{i=1}^t (ar{y}_i.-ar{y}_{\cdot\cdot})^2}{t-1}$  has a  $\chi^2$  distribution with t-1 degrees of freedom
- $MSE = \frac{\sum_{j=1}^{r_i} (y_{ij} \bar{y}_{i.})^2}{n-t}$  has a  $\chi^2$  distribution with n-t degrees of freedom
- Hence,

$$F = \frac{MSTr}{MSE}$$

has an F distribution with t-1 and n-t degrees of freedom

### The ANOVA table

| Source of Variation       | Sum of<br>Squares | Degrees of<br>Freedom | Mean<br>Square | ${f F}$  |
|---------------------------|-------------------|-----------------------|----------------|----------|
| Between Treatments        | SSTr              | <i>t</i> -1           | MSTr           | MSTr/MSE |
| Error (Within Treatments) | SSE               | n-t                   | MSE            |          |
| Total                     | SST               | n-1                   |                |          |

The data in Table 1.1 came from an experiment that was conducted to determine how six different kinds of work tasks affect a worker's pulse rate. In this experiment, 78 male workers were assigned at random to six different groups so that there were 13 workers in each group. Each group of workers was trained to perform their assigned task. On a selected day after training, the pulse rates of the workers were measured after they had performed their assigned tasks for 1hr. Unfortunately, some individuals withdrew from the experiment during the training process so that some groups contained fewer than 13 individuals. The recorded data represent the number of heart pulsations in 20 seconds where there are n = 68observations.

**TABLE 1.1**Pulsation Data and Summary Information for Six Tasks

|         |     |     |     | <b>Task</b> |     |     |
|---------|-----|-----|-----|-------------|-----|-----|
|         | 1   | 2   | 3   | 4           | 5   | 6   |
|         | 27  | 29  | 34  | 34          | 28  | 28  |
|         | 31  | 28  | 36  | 34          | 28  | 26  |
|         | 26  | 37  | 34  | 43          | 26  | 29  |
|         | 32  | 24  | 41  | 44          | 35  | 25  |
|         | 39  | 35  | 30  | 40          | 31  | 35  |
|         | 37  | 40  | 44  | 47          | 30  | 34  |
|         | 38  | 40  | 44  | 34          | 34  | 37  |
|         | 39  | 31  | 32  | 31          | 34  | 28  |
|         | 30  | 30  | 32  | 45          | 26  | 21  |
|         | 28  | 25  | 31  | 28          | 20  | 28  |
|         | 27  | 29  |     |             | 41  | 26  |
|         | 27  | 25  |     |             | 21  |     |
|         | 34  |     |     |             |     |     |
| $y_i$ . | 415 | 373 | 358 | 380         | 354 | 317 |
| $n_i$   | 13  | 12  | 10  | 10          | 12  | 11  |

#### Computing formulas for the sums of squares

$$SST = \sum_{i=1}^{t} \sum_{j=1}^{r_t} Y_{ij}^2 - \frac{y..^2}{n}$$

$$SSTr = \sum_{i=1}^{t} \frac{y_{i.}^2}{r_i} - \frac{y..^2}{n}$$

$$SSE = SST - SSTr$$

#### Totals:

$$y_{1.} = 415$$
,  $y_{2.} = 373$ ,  $y_{3.} = 358$ ,  $y_{4.} = 380$ ,  $y_{5.} = 354$ ,  $y_{6.} = 317$ ,  $y_{..} = 2197$ ,  $n = 68$ 

$$SST = \sum_{i=1}^{t} \sum_{j=1}^{r_{t}} Y_{ij}^{2} - \frac{y..^{2}}{n}$$

$$= [27^{2} + 31^{2} + \dots + 26^{2}] - \frac{2197^{2}}{68}$$

$$= 73593 - 70982.49$$

$$\approx 2610.51$$

$$SSTr = \sum_{i=1}^{t} \frac{y_{i.}^{2}}{r_{i}} - \frac{y..^{2}}{n}$$

$$= \left[\frac{415^{2}}{13} + \frac{373^{2}}{12} + \dots + \frac{317^{2}}{11}\right] - \frac{2197^{2}}{68}$$

$$= 71676.92 - 70982.49$$

$$\approx 694.43$$

$$SSE = SST - SSTr = 2610.51 - 694.43 \approx 1916.08$$

| Source of Variation | Sum of Squares | df | Mean Square | F    |
|---------------------|----------------|----|-------------|------|
| Between Treatments  | 694.43         | 5  | 138.89      | 4.49 |
| Within Treatments   | 1916.08        | 62 | 30.90       |      |
| Total               | 2610.51        | 67 |             |      |

• The p-value associated with F = 4.49 is obtained using the R command pf(4.49, 5, 62, lower.tail = F) which gives 0.0014807

### Using base R:

```
pulse <- read.csv("Pulse.csv")
mod1 <- with(pulse, aov(Pulse ~ factor(Task)))
summary(mod1)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(Task) 5 694.4 138.9 4.494 0.00147 **
## Residuals 62 1916.1 30.9
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

### Using ExpDes package

```
library(ExpDes)
with(pulse, crd(Task, Pulse, quali=T))
```

```
Analysis of Variance Table

DF SS MS FC Pr>FC
Treatament 5 694.44 138.888 4.4941 0.0014709
Residuals 62 1916.08 30.904
Total 67 2610.51

CV = 17.21 %
```

## An example: test of hypothesis

- $H_0$ : There is no significant difference in the mean pulse rates of workers assigned to different work tasks  $[H_0: \mu_1 = \mu_2 = \cdots = \mu_6]$ .
- $H_1$ : There is significant difference in the mean pulse rates of workers assigned to different work tasks  $[H_1: \mu_i \neq \mu_i$ , for at least one pair  $i \neq j$ ].
- $\alpha = 0.05$
- Test statistic: F = 4.94, p = 0.0014807
- Decision on H<sub>0</sub>: Reject.
- Conclusion: At the 5% level of significance, there is sufficient evidence indicating that a significant difference in the mean pulse rates of workers assigned to different tasks.

## Measures of precision

#### Coefficient of variation

- overall index of the reliability (precision) of the experiment
- it is computed as

$$CV = \frac{\sqrt{MSE}}{\overline{Y}_{..}}$$

• the experiment is very precise if  $CV \le 10\%$ ; with acceptable precision if  $10\% < CV \le 20\%$ ; not precise if CV > 20%

## Measures of precision

#### Standard error of a treatment mean

- measures the average error in estimating the true treatment mean
- it is computed as

$$se(\bar{y_{i.}}) = \sqrt{\frac{MSE}{r_i}}$$

#### Standard error of the difference in any two treatment means

- measures the average error in estimating the difference in the true means of treatments i and j
- it is computed as

$$se(\overline{y}_{i.} - \overline{y}_{j.}) = \sqrt{MSE\left(\frac{1}{r_i} + \frac{1}{r_j}\right)}$$

# Analysis of random effects model

#### Recall

- The treatments is a random sample from a larger population of treatments
- **Goal**: estimate and (test, if any) the variability among treatments in the population
- Linear model:

$$Y_{ij} = \mu + \tau_i + \epsilon_{ij}, i = 1, 2, \dots, t; j = 1, 2, \dots, r_i; \epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$$

- $\tau_i$  are random variables,  $\tau_i \sim N(0, \sigma_{\tau}^2)$
- $\tau_i$  and  $\epsilon_{ij}$  are independent,  $\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$
- $V(Y_{ij}) = \sigma_{\tau}^2 + \sigma_{\epsilon}^2$

# Analysis of random effects model

- $\bullet$  the variances  $\sigma_{\tau}^2$  and  $\sigma_{\epsilon}^2$  are called variance components
- Hence, the random effects model is also known as variance components model
- Goal: Estimation and testing of the variance components
- Hypothesis: $H_0: \sigma_{\tau}^2 = 0$  versus  $H_1: \sigma_{\tau}^2 > 0$
- The partitioning of the total sum of squares still holds, that is, SST = SSTr + SSE
- Test statistic is the same as that of the fixed effects model

# Analysis of random effects model

Estimation using Method of Moments (also known as ANOVA Method)

$$\hat{\sigma}^2_{\epsilon} = MSE$$
 
$$\hat{\sigma}^2_{\tau} = \frac{MSTr - MSE}{n_0}$$

where:

$$n_0 = \frac{1}{t-1} \left[ n - \frac{\sum_{i=1}^{t} r_i^2}{n} \right]$$

A textile company weaves a fabric on a large number of looms. They would like the looms to be homogeneous so that they obtain a fabric of uniform strength. The process engineer suspects that, in addition to the usual variation in strength within samples of fabric from the same loom, there may also be significant variations in strength between looms. To investigate this, he selects four looms at random and makes four strength determinations on the fabric manufactured on each loom. The data and the corresponding ANOVA Table are given on the following slide. Verify

|       | Observations |    |    |    |  |  |  |  |  |  |
|-------|--------------|----|----|----|--|--|--|--|--|--|
| Looms | 1            | 2  | 3  | 4  |  |  |  |  |  |  |
| 1     | 98           | 97 | 99 | 96 |  |  |  |  |  |  |
| 2     | 91           | 90 | 93 | 92 |  |  |  |  |  |  |
| 3     | 96           | 95 | 97 | 95 |  |  |  |  |  |  |
| 4     | 95           | 96 | 99 | 98 |  |  |  |  |  |  |

### Estimates of the variance components:

$$n_{0} = \frac{1}{t-1} \left[ n - \frac{\sum_{i=1}^{t} r_{i}^{2}}{n} \right]$$

$$= \frac{1}{4-1} \left[ 16 - \frac{\sum_{i=1}^{4} 4^{2}}{16} \right]$$

$$= 4$$

$$\hat{\sigma}_{\tau}^{2} = \frac{MSTr - MSE}{n_{0}}$$

$$= \frac{29.7292 - 1.8958}{4}$$

$$\approx 6.96$$

$$\hat{\sigma}_{\epsilon}^{2} = MSE = 1.8958$$

### Test of hypothesis:

- $H_0: \sigma_{\epsilon}^2 = 0$
- $H_1: \sigma_{\epsilon}^2 > 0$
- $\alpha = 0.05$
- Test statistic: F = 15.681, p = 0.00018779
- Decision on H<sub>0</sub>: Reject.
- Conclusion: At  $\alpha = 5\%$ , there exists significant *variation* in the strength of fabric among looms.

- experimental unit is the unit of research material to which a treatment is applied
- experimental unit may consist of two or more measurement units
- For example, feed ration (treatment) is randomly assigned to each of 5 pens (experimental units) and each pen contains 4 animals (measurement units)
  - variation among pens given the same feed ration plus variation among animals within each pen



#### Linear Model:

$$Y_{ijk} = \mu + \tau_i + \epsilon_{ij} + \delta_{ijk}, i = 1, 2, \cdots, t; \ j = 1, 2, \cdots, r_i; \ k = 1, 2, \cdots, n_{ij}$$

#### where:

- $Y_{ijk}$  = response of the  $k^{th}$  (sub)sample of the  $j^{th}$  experimental unit given treatment i
- ullet  $\mu=$  overall mean response
- $\tau_i$  = effect of treatment i
- $\epsilon_{ij} = \text{random error}$  associated with the  $j^{th}$  experimental unit given treatment i
- $\delta_{ijk}$  = random error associated with the  $k^{th}$  (sub)sample of the  $j^{th}$  experimental unit given treatment i

#### Some Remarks:

- **Fixed model**:  $\tau_i$  are fixed parameters with  $\sum_{i=1}^t \tau_i = 0$
- Random model:  $\tau_i$  are random parameters with  $\tau_i \sim N(0, \sigma_\tau^2)$
- $\tau_i, \epsilon_{ij}, \delta_{ijk}$  are independent with  $\epsilon_{ij} \sim \textit{N}(0, \sigma_{\epsilon}^2)$  and  $\delta_{ijk} \sim \textit{N}(0, \sigma_{\delta}^2)$

### Partitioning of the sums of squares:

$$\sum_{i=1}^{t} \sum_{j=1}^{r_{i}} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{...})^{2} = \sum_{i=1}^{t} \sum_{j=1}^{r_{i}} r_{i} (\bar{y}_{i..} - \bar{y}_{...})^{2} + \sum_{i=1}^{t} \sum_{j=1}^{r_{i}} n_{ij} (\bar{y}_{ij.} - \bar{y}_{i...})^{2} + \sum_{i=1}^{t} \sum_{j=1}^{n_{ij}} \sum_{k=1}^{n_{ij}} (y_{ijk} - \bar{y}_{ij..})^{2}$$

#### **ANOVA Table**

| Source of Variation                     | SS     | DF                                                      | MS     | F |
|-----------------------------------------|--------|---------------------------------------------------------|--------|---|
| Between Treatments                      | SSTr   | t-1                                                     | MSTr   |   |
| Experimental Error (Within Treatments)  | SSE    | $\sum_{i}^{t} r_{i} - t$                                | MSE    |   |
| Sampling error (Between sampling units) | SS(SE) | $\sum_{i}^{t} \sum_{j}^{r_i} n_{ij} - \sum_{i}^{t} r_i$ | MS(SE) |   |
| Total                                   | SST    | n-1                                                     |        |   |

### **Expected Mean Squares**

- Fixed model (balance case)
  - $\bullet$  Between treatments:  $\sigma_{\delta}^2 + n\sigma_{\epsilon}^2 + \frac{\mathit{rs}\sum_{i=1}^t \tau_i^2}{t-1}$
  - ullet Within treatments:  $\sigma_\delta^2 + n\sigma_\epsilon^2$
  - Between (sub)sampling units:  $\sigma_\delta^2$
- Random model (balance case)
  - Between treatments:  $\sigma_{\delta}^2 + n\sigma_{\epsilon}^2 + nr\sigma_{\tau}^2$
  - Within treatments:  $\sigma_{\delta}^2 + n\sigma_{\epsilon}^2$
  - Between (sub)sampling units:  $\sigma_\delta^2$

### Sequential hypothesis testing

A. Test on the variability of the experimental units

- $H_0: \sigma_\epsilon^2 = 0$  versus  $H_1: \sigma_\epsilon^2 > 0$
- Test statistic:  $F = \frac{MSE}{MS(SE)}$

B. Test on the differences among treatment means

- $H_0: \mu_1 = \mu_2 = \cdots = \mu_t$  versus  $H_1: \mu_i \neq \mu_j$ , for at least one pair  $i \neq j$
- Test statistic (CASE 1,  $H_0$  :  $\sigma_{\epsilon}^2=0$  is rejected):  $F=\frac{MSTr}{MSE}$
- Test statistic (CASE 2,  $H_0: \sigma_{\epsilon}^2 = 0$  is not rejected):  $F = \frac{MSTr}{MSE_{\text{pooled}}}$

$$MSE_{pooled} = \frac{SSE + SS(SE)}{df_{SSE} + df_{SS(SE)}}$$

The following data come from an experiment that was conducted in a completely randomized design with sub-sampling: there were 4 treatments, and 4 plots for each treatment. Within each plot 3 measurements (subsamples) were taken. The treatments are different forms of irrigation; the subsamples correspond to 3 small amounts of soil that are measured in each plot. The measurement Y corresponds to a measure of soil moisture. The data are tabulated below. For each treatment and plot combination, the 3 values represent the 3 subsamples.

| Treatment | Plot 1 |      |      | Plot 2 |      |      | Plot 3 |      |      | Plot 4 |      |      |
|-----------|--------|------|------|--------|------|------|--------|------|------|--------|------|------|
| 1         | 12.6   | 11.9 | 12.3 | 13.0   | 12.4 | 12.4 | 11.3   | 11.9 | 10.9 | 12.5   | 11.8 | 11.9 |
| 2         | 12.4   | 12.1 | 12.6 | 11.9   | 11.6 | 12.2 | 14.2   | 13.3 | 13.8 | 12.9   | 13.7 | 13.1 |
| 3         | 12.2   | 11.5 | 12.0 | 11.4   | 11.8 | 11.0 | 9.80   | 10.0 | 10.4 | 10.7   | 11.2 | 11.2 |
| 4         | 12.9   | 12.2 | 12.8 | 14.2   | 13.9 | 13.7 | 12.5   | 12.9 | 12.8 | 13.3   | 13.6 | 12.8 |

### Computing formulas:

$$SST = \sum_{i=1}^{t} \sum_{j=1}^{r_i} \sum_{k=1}^{n_{ij}} y_{ijk}^2 - \frac{y_{...}^2}{n}$$

$$SSTr = \sum_{i=1}^{t} \frac{y_{i..}^2}{r_i} - \frac{y_{...}^2}{n}$$

$$SSE = \sum_{i=1}^{t} \sum_{j=1}^{n_{ij}} \frac{y_{ij}^2}{n_{ij}} - \sum_{i=1}^{t} \frac{y_{i..}^2}{r_i}$$

$$SS(SE) = SST - SSTr - SSE$$

### Using R:

```
subsample <- read.csv("Subsample.csv")
mod2=aov(y~trt+trt/plot,data=subsample)
summary(mod2)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)

## trt 3 29.41 9.802 76.51 1.10e-14 ***

## trt:plot 12 17.39 1.449 11.31 2.34e-08 ***

## Residuals 32 4.10 0.128

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
```

#### Tasks:

- Verify the entries in the ANOVA table using the computing formulas.
- ② Test the necessary hypotheses at 5% level of significance.
- **③** Estimate the variance components  $\sigma_{\epsilon}^2$  and  $\sigma_{\delta}^2$ .