

1.00111110

数字逻辑基础

主讲:何宾

Email: hebin@mail.buct.edu.cn

2014.06

计算机和数字逻辑发展历史上的重大事件

年代	事件
公元前 3000 年	巴比伦王国开发了算盘。这个装置,它使用的线(棍子)上的一列珠子表示数字,今天
	仍然在远东地区的一些地方使用,用于执行计算。
1614-1617	John Napier,苏格兰数学家,发明了对数,允许通过加来进行乘法和减进行除法。他发
	明了棒子或者数支,这样可以通过一种特殊的方法移动棍子来实现对大数的乘或者除。
1623	Wilhelm Schickard,德国教授,发明了第一个机械式计算器,称为"计算钟"。
1630	William Oughtred,英国数学家和牧师,发明了计算尺。
1642-1644	Blaise Pascal,法国数学家,物理学家和宗教哲学家,发明了第一个机械计算器
	Pascaline.
1672-1674	Gottfried Wilhelm Von Leibniz,德国数学家,外交官,历史学家,法学家和微分的
	发明家,发明了一个称为步进式计算器的机械计算器。计算器有一个独一的齿轮-莱布
	尼茨轮,用于机械式的乘法器。尽管没有使用这个计算器,但是该设计对未来的机械式
	计算器的发展产生了深远的影响。

1823-1839	Charles Babbage,英国数学家和发明家,开始在他的差分机上工作,该机器设计用于
	自动的处理对数计算。由于有大量来自政府的工作和资金,没有完成差分机。1834年,
	Babbage 开始在一个功能更强的机器上工作,称为分析机,它被称为第一个通用计算机。
	在这个时间前的 100 年,所要求的精确的机械齿轮,不能在时间上准确的产生,因此没
	有工作。所以,Babbage 被认为是"计算机之父"。
1854	George Boole,英国逻辑学家和数学家,出版了< <investigation law="" of="" the="" thought="">>>,</investigation>
	给出了逻辑的数学基础。
1890	Herman Hollerith,美国发明家,使用打孔卡片制表用于 1890 年的普查。1896 年,他
	成立了打卡机公司,最终于 1924 年演变成了 IBM 公司。
1906	Lee De Forest,美国物理学家,发明了三极管(3 个电极真空管)。直到 1940 年前,
	这些管子没有用于计算机中。
1936	Alan M. Turing,英国逻辑学家,发表了一篇论文《On Computable Numbers》,说明
	任意的计算都可以使用有限状态机实现。Turing 在第二次世界大战后的,英国早期的
	计算机研制中扮演了重要的角色。

30

1937	George Stibitz,贝尔电话实验室的一个物理学家,使用继电器建立了二进制电路,能
	进行加、减、乘和除。
1938	Konrad Zuse ,德国工程师,构建了 Z1-第一个二进制计算机器。1941 年,完成了 Z3-
	通用的电子机械式计算机器。
1938	Claude Shannon,基于他在 MIT 的硕士论文,发表了《A Symbolic Analysis of Relay and
	Switching Circuits》,在该著作中,他说明了符号逻辑和二进制数学如何应用到继电器
	电路中。
1942	John V. Atanasoff ,爱荷华州立大学教授,完成了一个简单的电子计算机器。
1943	IBM-Harvard Mark I-一个大的可运行的电子机械式计算器。
1944-1945	J. Presper Eckert 和 John W.Mauchly,在宾夕法尼亚大学的电气工程摩尔学院,设计
	和建立了 EMIAC。它是首个全功能的电子电子计算器。
1946	John von Neumann,ENIAC 项目的顾问,在该工程后,写了一个很有影响力的报告,
	之后,在普林斯顿高等研究院开始他自己的计算机项目。

1947	Walter Brattain , John Bardeen 和 William Schockley 在贝尔实验室发明了晶体管。
1948	在英国,在 Manchester Mark I 电子计算机上运行第一个存储程序。
1951	发布-第一个商业制造的计算机,Ferranti Mark I 和 UNIVAC。
1953	IBM 发布了一个电子计算机-701。
1958	Kack kilby,德州仪器公司的一名工程师,建立一个可移相的振荡器,作为第一个集成
	电路(Integrated Circuit, IC)。
1959	Robert Noyce, 1958 年所建立的仙童半导体公司联合创始人,生产了第一个集成电路
	平面工艺。这导致实际大规模的生产可靠的集成电路。1968年,Noyce 成立了 Intel 公
	司。
1963	数字设备公司 DEC 生产了首个小型计算机。
1964	IBM 生产了 System/360 系列电脑主机。
1965	在电子杂志上,Gordon Moore 预测一个集成芯片上的元件数量在每一年翻一倍。这就
	是著名的"摩尔定律"。在 1975 年,修改该定律,每两年翻一倍。
1969	IBM 的研究人员开发了第一个片上可编程逻辑阵列(Programmable logic array, PLA)。

1971	Marcian E. Hoff, Jr., Intel 公司的工程师,发明了第一个微处理器。
1975	Intersil 生产了第一片现场可编程逻辑阵列(Field Programmable logic array, FPLA)。
1978	单片存储器引入了可编程阵列逻辑(Programmable Array Logic,PLA)。
1981	IBM 个人电脑诞生。
	美国国防部开始开发 VHDL。VHDL 中的 V 表示 VHSIC(Very High Speed Integrated
	Circuit,超高速集成电路),HDL 代表(Hardware Description Language, HDL).
1983	Intermetric,IBM 和 TI 授权开发 VHDL。
1984	Xilinx 成立,并发明了现场可编程门阵列(Field Programmable Gate Array, FPGA)。
	Gateway 设计自动化公司,引入了硬件描述语言 Verilog。
1987	VHDL 成为 IEEE 标准(IEEE 1076)。
1990	Cadence Design System 收购 Verilog。
1995	Verilog 成为 IEEE 标准。

数字逻辑的发展史 --摩尔定律

该定律由戈登.摩尔于1965年提出,并且于1975年进行了修正。在过去的38年以来,被证明是非常正确的。该定律的主要内容包括:大约每隔18个月,集成电路上可容纳的晶体管数目就会增加一倍,性能也将提升一倍。也就是说,当价格不变时,每一美元所能买到的电脑性能,将每隔18个月翻两倍以上。

到目前为止,半导体技术的发展一直遵循该规律,并且不断 地推动着半导体技术的发展。

摩尔定律与集成电路的发展趋势