Electric Drive Optimization

Chong Chee Kang

June 7, 2012

Introduction

PMBLDC

Shell Eco-Marathon

Problem Statement

Objectives

Methodology

Signal Identification and Measurement System

Vehicle Simulation

Result

Signal Identification and Measurement System

Vehicle Simulation

Strategies

Conclusion

Conclusion

Future Work

PMBLDC

▶ Permanent Magnet Brushless DC motor

Figure: PMBLDC motor, source: http://dev.emcelettronica.com/

Shell Eco-Marathon

- ▶ Race for mileage, not speed
- Category:
 - Urban Concept
 - Protoype
- ▶ plug-in electric
- ▶ 4 laps with 10 seconds stoppage between each lap

Problems

- ▶ Types of torque produced by PMBLDC
 - cogging torque
 - reluctance torque
 - mutual torque
- ► Torque ripple
- ▶ Poor Strategy

Objectives

- To identify the output signal of the controller circuit and the hall effect sensor of the PMBLDC and develop a set of instrument for measuring the mileage of the electric vehicle.
- To study the track profile of Sepang North Track and create a simulation program for simulating the vehicle dynamics at the Sepang North Track.
- To compose a set of strategy to increase the mileage of the electric vehicle running on the Sepang North Track using the simulation program.

Figure: Eclimo's speedometer

Figure: Scooterputer, source:

http://www.janspace.com/b2evolution/arduino.php/scooterputer

Figure: Controller 16 pin output

Figure: 8 pin hall effect sensors input/output

Why Vehicle Simulation?

- Baseline data
- Strategies creation tool
- ► Study effect of a component
- Proprietary electric motor and controller

Components

- ► Track
- ► Electric Motor
- ► Vehicle Dynamics

Sepang North Track

Figure: Sepang North Track gradient graph

Electric Motor

Figure: Torque and power output curve of KLD D1064R, source: KLD

Electric Motor

$$T = \begin{cases} 100N.m, & \text{for (0 - 440 RPM)} \\ [0.0003(RPM)^2 - 0.493(RPM) + 260]N.m, & \text{for (441 - 800 RPM)} \\ [-0.56(RPM) + 504]N.m, & \text{for (801 - 900 RPM)} \end{cases}$$
(1)

Vehicle Dynamics

► Air drag

$$F_{drag} = \frac{1}{2} \rho C_d A v^2 \tag{2}$$

▶ Rolling resistance

$$F_{roll} = mgC_{rr} \tag{3}$$

▶ Uphill/Downhill

$$F_{slope} = mgsin\theta \tag{4}$$

Vehicle Dynamics

Combined

$$\sum F_{resistance} = mgsin\theta + mgC_{rr} + \frac{1}{2}\rho C_d A v^2$$
 (5)

Vehicle acceleration

$$a = \frac{\left(\frac{\tau}{R} - \sum F_{resistance}\right)}{m} \tag{6}$$

Voltage Probe	Ground Probe	Voltage
2	1	-56.6
3	1	-44.2
4	1	0.0
5	1	-55.9
6	1	-56.6
7	1	0.0
8	1	0.0
9	1	-33.4
10	1	-33.4
11	1	-56.6
12	1	-28.3
13	1	-24.0
14	1	-23.3
15	1	-21.1
16	1	-23.7

Table: Result of signal tapping with the ground probe on pin 1 and voltage terminal on pin 2 to pin 16.

Voltage Probe	Ground Probe	Voltage
1	2	56.8
3	2	12.4
4	2	0.0
5	2	0.0
6	2	0.0
7	2	0.0
8	2	0.0
9	2	22.6
10	2	22.6
11	2	0.0
12	2	29.9
13	2	0.0
14	2	0.0
15	2	0.0
16	2	0.0

Table: Result of signal tapping with the ground probe on pin 2 and voltage terminal on pin 1, pin 3 to pin 16.

Voltage Probe	Ground Probe	Voltage
1	2	56.7
3	2	12.4
4	2	0.0
5	2	-3.4
6	2	0.0
7	2	0.7-2.4
8	2	0.7-3.2
9	2	22.6
10	2	22.6
11	2	0.0
12	2	27.8
13	2	0.0
14	2	0.0
15	2	0.0
16	2	0.0

Table: Result of signal tapping with the ground probe on pin 2 and voltage terminal on pin 1, pin 3 to pin 16 and the motor rotating.

- ▶ Pin 1: Battery voltage
- ▶ Pin 2, 6, 11: Ground
- ▶ Pin 3: 12V power supply
- ▶ Pin 5: Speed output signal

Hall Effect Sensors Signal

Voltage Probe	Ground Probe	Voltage
1	8	10.4
2	8	10.4
3	8	10.4
4	8	3.1
5	8	0.2
6	8	0.1

Table: Result of hall effect sensors signal tapping with the ground probe on pin 8 and voltage terminal on pin 1 to pin 6.

Hall Effect Sensors Signal

- ▶ Pin 2, 3, 5: Hall Effect Sensors output
- ▶ Pin 1: Power Supply
- ▶ Pin 8: Ground

Measurement System

Figure: Schematic of the Measurement System

Measurement System

Figure: Arduino Microcontroller, display shield and LCD display

	ings Track Settings Iteration	
Wheel Radius (m):	0.5	
Weight (kg):	250	
Frontal Area (m²):	1.4	
Coefficient of Rolling Resistance Crr:	0.016	
Coefficient of Drag Cd:	0.7	
Overall Vehicle Efficiency (%		
0		

Figure: Vehicle parameter for initializing the vehicle model

Figure: Choosing the motor model

Figure: Choosing the track model

Figure: Setting the displacement interval for iteration

Parameter	Value
Wheel Radius	0.5 m
Total Vehicle Mass	250 kg
Frontal Area	1.4 m ²
Crr	0.016
Cd	0.7

Table: Parameters for building the electric vehicle model

Strategies

- 1. Full Throttle Everywhere
- 2. Preset Strategy 1
- 3. Preset Strategy 2
- 4. Preset Strategy 3

Full Throttle Everywhere

Figure: Graph of speed and gradient versus displacement for "full throttle everywhere"

Full Throttle Everywhere

Figure: Graph of power and gradient versus displacement for "full throttle everywhere"

Preset Strategy 1

Figure: Graph of Speed and Gradient versus displacement for "Preset Strategy 1"

Preset Strategy 1

Figure: Graph of Power and Gradient versus displacement for "Preset Strategy 1"

Preset Strategy 2

Figure: Graph of Speed and Gradient versus displacement for "Preset Strategy 2"

Preset Strategy 2

Figure: Graph of Power and Gradient versus displacement for "Preset Strategy 2"

Preset Strategy 3

Figure: Graph of Speed and Gradient versus displacement for "Preset Strategy 3"

Preset Strategy 3

Figure: Graph of Power and Gradient versus displacement for "Preset Strategy 3"

Result	FTE	PS1	PS2	PS3
Total Energy Consumption	560003J	365004J	318200J	216385J
Lap TIme	186.981s	246.554s	261.699s	390.491s
Mileage	18.0 km/kWh	27.6 km/kWh	31.7 km/kWh	46.6 km/kWh

Table: Result comparison for various strategies

Figure: Graph of power output versus displacement for various strategy

Figure: Graph of power output versus displacement for various strategy

Figure: Graph of power output versus displacement for various strategy

Figure: Graph of power output versus displacement for various strategy

Figure: Graph of energy consumption for each strategy

Figure: Graph of vehicle mileage for each strategy

Figure: Graph of lap time for each strategy

Conclusion

- To identify the output signal of the controller circuit and the hall effect sensor of the PMBLDC and develop a set of instrument for measuring the mileage of the electric vehicle. (Achieved)
- 2. To study the track profile of Sepang North Track and create a simulation program for simulating the vehicle dynamics at the Sepang North Track. (Achieved)
- To compose a set of strategy to increase the mileage of the electric vehicle running on the Sepang North Track using the simulation program. (Achieved)

Future Work

- 1. hall effect sensor signal controller phase current
- 2. improve Coefficient of Drag
- 3. improve vehicle simulation software

Q&A

Thank you