TRIGONOMETRY Chapter 23

Ecuaciones Trigonométricas

Helicomotivación

ECUACIONES TRIGONOMÉTRICAS

ECUACION TRIGONOMÉTRICA

ELEMENTAL:

$$FT(ax + b) = N$$

Argumento de la ETE

Donde:

FT: Operador Trigonométrico

x : Variable angular

a, b: Constantes reales; $a \neq 0$

N : Constante real, el cual pertenece al rango de FT

Ejemplos:

•
$$\operatorname{sen}(\mathbf{x}) = \frac{\sqrt{3}}{2}$$

$$\cos(2x) = \frac{1}{2}$$

•
$$\tan\left(3x + \frac{\pi}{6}\right) = 1$$

EXPRESIONES GENERALES:

 x_g : Argumento de la ETE

 $Vp : Valor Principal ; k \in Z$

1. Para el SENO

$$\operatorname{sen}(\mathbf{x}_{\mathbf{g}}) = \mathbf{N} \triangleright \mathbf{x}_{\mathbf{g}} = \mathbf{k}\pi + (-1)^{\mathbf{k}} \mathbf{V} \mathbf{p}$$

2. Para el COSENO

$$\cos(\mathbf{x}_{g}) = \mathbf{N} \triangleright \mathbf{x}_{g} = 2\mathbf{k}\pi \pm \mathbf{V}\mathbf{p}$$

3. Para la TANGENTE

$$tan(\mathbf{x_g}) = \mathbf{N} \ \ \, \mathbf{x_g} = \mathbf{k}\pi + \mathbf{V}\mathbf{p}$$

Ejemplo:

Resolver: $\cos^2(x) - \sin^2(x) = \frac{1}{2}$

Resolución:

- •Usar identidad: $cos(2x) = \frac{1}{2} \dots ETE$
- Valor Principal: $Vp = \frac{\pi}{3}$
- Expresión General:

$$2x = 2k\pi \pm \frac{\pi}{3} \; \; ; \; \; k \in \mathbb{Z}$$

$$\therefore x = k\pi \pm \frac{\pi}{6} \; \; ; \; \; k \in \mathbb{Z}$$

1. Indique el Valor principal de las siguientes ecuaciones trigonométricas:

a. senx =
$$\frac{1}{2}$$

$$\rightarrow V_p = \dots \dots$$

b.
$$\cos 2x = \frac{1}{2}$$

$$\rightarrow V_p = \dots \dots$$

c.
$$tan(2x - \frac{\pi}{3}) = 1 \rightarrow V_p = \dots$$

$$\rightarrow V_p = \dots \dots$$

Resolución:

a. Vp = arcsen(
$$\frac{1}{2}$$
) = $\frac{\pi}{6}$

b. Vp = arccos(
$$\frac{1}{2}$$
) = $\frac{\pi}{3}$

c. Vp = arctan(1) =
$$\frac{\pi}{4}$$

2. Indique la menor solución positiva de:

$$\tan 3x - \sqrt{3} = 0$$

Resolución:

Del dato:
$$tan3x = \sqrt{3}$$
 ... ETE

Luego:
$$3x = \frac{\pi}{3}$$

Recuerda:

$$\tan 60^{\circ} = \sqrt{3}$$

La menor solución positiva: $x = \frac{\pi}{9}$

3. Indique la menor solución positiva de:

$$senx.cosx = 0,25$$

Resolución:

2senx.cosx = 2(0,25)Multiplicando por 2:

Luego:
$$sen 2x = \frac{1}{2}$$
 ... ETE

Así:
$$2x = \frac{7}{6}$$

La menor solución positiva es: $x = \frac{\pi}{40}$

4. Calcular la solución general de: tanx + cotx = 4

Resolución:

$$tanx + cotx = 4$$

2csc2x

$$csc2x = 2$$

Luego:
$$sen2x = \frac{1}{2}$$
 ... ETE

$$Vp = arcsen(\frac{1}{2}) = \frac{\pi}{6}$$

La solución general para el seno:

$$X_g = k\pi + (-1)^k \cdot V_p \; ; k \in \mathbb{Z}$$

$$2x = k\pi + (-1)^k \cdot (\frac{\pi}{6}) \; ; k \in \mathbb{Z}$$

$$\mathbf{x} = \frac{k\pi}{2} + (-1)^{k} \cdot (\frac{\pi}{12}) \; ; \; k \in \mathbb{Z}$$

5. Calcular la solución general de: $2\cos 2x - \tan 45^{\circ} = 0$

Resolución:

$$2\cos 2x - \tan 45^{\circ} = 0$$

$$2\cos 2x - 1 = 0$$

Luego:
$$\cos 2x = \frac{1}{2}$$
 ... ETE

$$Vp = \arccos(\frac{1}{2}) = \frac{\pi}{3}$$

La solución general para el coseno:

$$X_g = 2k\pi \pm V_p$$
 ; $k \in \mathbb{Z}$

$$2x = 2k\pi \pm \frac{\pi}{3} ; k \in \mathbb{Z}$$

$$x = k\pi \pm \frac{\pi}{6}, k \in \mathbb{Z}$$

6. Calcular la segunda solución positiva: $tan\left(\frac{x}{2}\right) - \sqrt{3}$. $tan 30^\circ = 0$

Resolución:

$$\tan\left(\frac{x}{2}\right) - \sqrt{3}.\,tan30^{\circ} = 0$$

$$\tan\left(\frac{x}{2}\right) - \sqrt{3}.\left(\frac{1}{\sqrt{3}}\right) = 0$$

$$\tan\left(\frac{x}{2}\right) - 1 = 0$$

Luego:
$$tan(\frac{x}{2}) = 1$$
 ... ETE

La solución general para la tangente:

$$X_g = k\pi + V_p$$
 ; $k \in \mathbb{Z}$

$$\frac{x}{2} = k\pi + \frac{\pi}{4}, k \in \mathbb{Z}$$

$$x=2k\pi+rac{\pi}{2}$$
 , $k\in\mathbb{Z}$

Segunda solución positiva para: k = 1

$$x = 2(1)\pi + \frac{\pi}{2}$$

$$x=\frac{5\pi}{2}$$

7. Indique el número de soluciones para $x \in [0;2\pi]$

$$(\cos x + \sin x) (\cos x - \sin x) = \frac{\sqrt{2}}{2}$$

Resolución:

$$(\cos x + \sin x) (\cos x - \sin x) = \frac{\sqrt{2}}{2}$$

$$\cos^2 x - \sin^2 x = \frac{\sqrt{2}}{2}$$

$$cos2x = \frac{\sqrt{2}}{2}$$
 ... ETE

$$Vp = \arccos(\frac{\sqrt{2}}{2}) = \frac{\pi}{4}$$

La solución general para el coseno:

$$X_g = 2k\pi \pm V_p$$
 ; $k \in \mathbb{Z}$

$$2x = 2k\pi \pm \frac{\pi}{4}$$

$$2x = 2k\pi \pm \frac{\pi}{4}$$

$$x = k\pi \pm \frac{\pi}{8} ; k \in \mathbb{Z}$$

$$Para k = 0; 1; 2$$
, $x \in [0; 2\pi]$

$$x = \left\{ \frac{\pi}{8}; \frac{7\pi}{8}; \frac{9\pi}{8}; \frac{15\pi}{8} \right\}$$
Hay 4 soluciones

8. Muchas poblaciones de animales como las de los conejos, fluctúan en períodos cíclicos de 12 años. Supongamos que N es la población de conejos en un tiempo t (en años) y está dado por:

$$N_{(t)} = 1000\cos(\frac{\pi}{6}t) + 4000$$

¿Cuál es el menor tiempo para la cual la población de conejos será de 4500?

Resolución:

$$N_{(t)} = 1000cos(\frac{\pi}{6}t) + 4000$$

Dato:
$$N_{(t)} = 4500$$

$$\Rightarrow$$
 4500 = 1000 $cos(\frac{\pi}{6}t)$ + 4000

$$500 = 1000\cos(\frac{\pi}{6}t)$$

$$\Rightarrow \frac{1}{2} = cos(\frac{\pi}{6}t)$$
 ... ETE

Recuerda:

$$\cos 60^{\circ} = \frac{1}{2}$$

La menor solución:

$$\frac{\pi}{6}t = \frac{\pi}{3}$$

$$\Rightarrow t = 2$$

$$t = 2a\tilde{n}os$$