EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

11040152

PUBLICATION DATE

12-02-99

APPLICATION DATE

16-07-97

APPLICATION NUMBER

09190318

APPLICANT: YUASA CORP;

INVENTOR: OKI KATSUYUKI;

INT.CL.

: H01M 4/58 H01M 4/02 H01M 10/40

TITLE

: NONAQUEOUS ELECTROLYTE BATTERY

ABSTRACT: PROBLEM TO BE SOLVED: To provide a battery with high capacity and superior charging an discharging cycle property by using a covalent boned crystal which can absorb and emit lithium as a main structure constituent substance of a negative electrode active material and depositing carbon particles on the crystal surface.

> SOLUTION: It is preferable to use silicon having an electrical conductivity σ of 10⁻⁵ S/cm or higher at 20°C and doped with impurities, such as boron as a covalent bond crystal. It is further preferable that carbon particles can absorb and emit lithium. A main solute of an electrolytic substance is a salt- containing carbon and preferably the solute has a C-F bond. It is preferable to use a salt represented by a general formula (R1Y1) (R2Y2)NLi as the salt. In the formula, R1, R2 are represented by C_nF_{2n+} with n 1-4, R1=R2 or R1 \neq R2, Y1, Y2 are each one of CO, SO, or SO₂, Y1=Y2 or

COPYRIGHT: (C)1999,JPO

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-40152

(43)公開日 平成11年(1999)2月12日

(51) Int.Cl. ⁶ H 0 1 M 4/9 4/0 10/0	02	F I H 0 1 M 4/58 4/02 D 10/40 A
		審査請求 未請求 請求項の数8 OL (全 7 g
(21)出願番号	特願平9-190318	(71)出願人 000006688 株式会社ユアサコーポレーション
(22)出顧日	平成9年(1997)7月16日	大阪府高槻市城西町6番6号 (72)発明者 稲益 徳雄 大阪府高槻市城西町6番6号 株式会社 アサコーポレーション内
		(72)発明者 栗山 和哉 大阪府高槻市城西町6番6号 株式会社 アサコーポレーション内
		(72)発明者 大木 克之 大阪府高槻市城西町6番6号 株式会社、 アサコーポレーション内

(54)【発明の名称】 非水電解質電池

(57)【要約】

【目的】 高容量で充放電サイクル特性に優れた非水電 解質電池を提供することを目的とする。

【構成】 負極活物質の主構成物質が、リチウムを吸蔵、放出可能な共有結合結晶であり、その結晶の表面に炭素粒子を担持した非水電解質電池とすることで、上記目的を達成できる。

【特許請求の範囲】

【請求項1】 負極活物質の主構成物質が、リチウムを吸蔵、放出可能な共有結合結晶であり、その結晶の表面に炭素粒子を担持したことを特徴とする非水電解質電池。

【請求項2】 前記炭素粒子が、リチウムを吸蔵、放出 可能な炭素粒子であることを特徴とする請求項1記載の 非水電解質電池。

(R1Y1) (R2Y2) NLi

(一般式(1)中のR1、R2が C_n F_{2n+1} で表され、nは1から4までの数であり、R1=R2あるいはR1 \neq R2であり、さらにY1、Y2がCO、SO、SO₂ のいずれかで表され、Y1=Y2あるいはY1 \neq Y2である。)で表される塩を用いることを特徴とする請求項3記載の非水電解質電池。

【請求項6】 前記共有結合結晶の電気伝導度 σが、2 0℃で10⁻⁵ Scm⁻¹以上であることを特徴とする請求項 1記載の非水電解質電池。

【請求項7】 前記共有結合結晶が、シリコンからなり、不純物としてホウ素がドーピングされていることを 特徴とする請求項1記載の非水電解質電池。

【請求項8】 正極活物質の主構成物質が、リチウム含 有遷移金属酸化物であることを特徴とする請求項1記載 の非水電解質電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は非水電解質電池に係り、特に放電容量、出力密度が大であってサイクル特性 に優れた非水電解質電池用負極に関する。

[0002]

【従来の技術】従来より非水電解質電池用の負極活物質として、リチウムを用いることが代表的であったが、充電時に生成するリチウムの樹枝状析出(デンドライト)のため、サイクル寿命の点で問題があった。また、このデンドライトはセパレータを貫通し内部短絡を引き起こしたり、発火の原因ともなっている。また、上記のような充電時に生成するデンドライトを防止する目的で金属リチウムとの合金も用いられたが、充電量が大きくなると負極の微細粉化や、負極活物質の脱落などの問題があった。

【0003】現在、長寿命化及び安全性のために負極に 炭素材料を用いる電池などが注目を集め一部実用化され ている。しかしながら、負極に用いられる炭素材料は、 急速充電時に内部短絡や充電効率の低下という問題があ った。これらの炭素材料は一般的に、炭素材料へのリチ ウムのドープ電位が0Vに近いため、急速充電を行う場 合、電位が0V以下になり電極上にリチウムを析出する ことがあった。そのため、セルの内部短絡を引き起こし たり、放電効率が低下する原因となる。また、このよう な炭素材料は、サイクル寿命の点でかなりの改善がなさ 【請求項3】 前記非水電解質電池において、その電解質に用いる主溶質が炭素を含有する塩であることを特徴とする請求項1又は2記載の非水電解質電池。

【請求項4】 炭素を含有する塩が、少なくともC-Fの結合を有することを特徴とする請求項3記載の非水電解質電池。

【請求項5】 前記炭素を含有する塩が、少なくとも一一般式(1)

・・・・ 一般式(1)

れているが、密度が比較的小さいため、体積当たりの容量が低くなってしまうことになる。つまり、この炭素材料は高エネルギー密度という点からは未だ不十分である。その上、炭素上に被膜を形成する必要があるものについては初期充放電効率が低下し、この被膜形成に使われる電気量は不可逆であるため、その電気量分の容量が引き出せないことにつながる。

【0004】一方、金属リチウムやリチウム合金または 炭素材料以外の負極活物質として、シリコンとリチウム を含有する複合酸化物 Li_{x} Si_{1-y} M_{y} O_{z} (特開平7-230800号) や、非晶質カルコゲン化合物 M^{1} M^{2} p M^{4} q (特開平7-288123号) を用いることが提唱されており、高容量、高エネルギー密度の点で 改善されている。

【 0 0 0 5 】しかしながら、上記のような複合酸化物は、活物質自身の電気伝導度が低いため、急速充電及び負荷特性に問題があった。複合酸化物等は材料自身が酸化物であるため、酸化物の還元を経てリチウムとの反応が進行すると考えられるため、特に初期での不可逆的な還元が起こり初期充放電効率が低くなることがあった。さらなる高容量、高エネルギー密度で、サイクル寿命が長く、安全な非水電解質電池用負極材料の開発が望まれている。

[0006]

【発明が解決しようとする課題】前述した如く、リチウムやリチウム合金、炭素材及び酸化物を負極として用いた場合、種々の問題があることがわかる。

【 0 0 0 7 】本発明は、前述の問題点を解決するため、 負極活物質の主構成材料がリチウムを吸蔵、放出可能な 共有結合結晶を用い、その結晶表面に炭素粒子を担持し たことを特徴とすることにより、高容量で充放電サイク ル特性に優れた非水電解質電池を提供することを目的と する。

[0008]

【課題を解決するための手段】本発明は上記問題点に鑑みてなされたものであって、非水電解質電池に使用される負極活物質の主構成物質が、リチウムを吸蔵、放出可能な共有結合結晶であって、その結晶表面に炭素粒子を担持してあることを特徴とする。本発明に用いられる共有結合結晶としては、電気伝導度σが20℃で10-5 S cm-1以上であることが好ましく、さらにその共有結合結

晶は、ホウ素等の不純物がドーピングされているシリコンを用いることがより好ましい。

【0009】さらに、上記に挙げた炭素粒子がリチウム を吸蔵、放出可能であることが好ましい。

【0010】また、非水電解質電池における電解質とし (P1V1) (P2V2) N

(一般式(1)中のR1、R2が C_n F_{2n+1} で表され、nは1から4までの数であり、R1=R2あるいはR1 + R2であり、さらにY1、Y2がCO、SO、SO2のいずれかで表され、Y1=Y2あるいはY1+Y2である。)で表される塩を用いることが好ましい。

【0011】先に、リチウムとケイ素の化合物としては Binary Alloy Phase Diagrams (p2465) にあるように、Li $_{22}$ Si $_5$ までの 組成でリチウム化することが知られている。また、特開 平5-74463号では、負極にシリコンの単結晶を用いることで、サイクル特性が向上することを報告している。しかしながら、急速充放電用非水電解質電池の負極 材としてシリコンにリチウムを吸蔵させようと試みる と、ほとんど吸蔵が起こらずにリチウムが析出してしまうことが分かった。

【0012】 つまり、リチウムとシリコン等の共有結合 結晶の化合物は知られているものの、シリコン自身は元 来真性半導体であり、そのままでは電子伝導性が低く、 電池負極材料としての特性が悪かった。そのため、共有 結合結晶と炭素等の導電剤を混合しただけでは、充放電 における体積変化に追随できずに負極活物質が孤立化 し、抵抗が増大することにより容量を低下させる原因と なっていた。しかしながら、シリコンの結晶表面に炭素 粒子を担持させることにより、シリコンの結晶と導電剤 との孤立化を防ぎ、負極の抵抗が増大することを抑制で きることが分かった。さらに、共有結合結晶にドナー原 子、アクセプター原子となり得る原子をドープし、電気 伝導度σを20℃で10-5 Scm-1以上にすることによ り、負極の抵抗を増大させることなくリチウムの吸蔵、 放出が容易に起こることが分かった。特に、シリコンに 不純物としてホウ素をドープすることにより、容量が向 上することが分かった。

【0013】ここで言う共有結合結晶としては、Si, Ge, GaAs, GaP, InSb, GaP, SiC, BN等が挙げられ、それらのうちSiについては、特に優れた充放電特性が得られ、資源的に豊富であり、毒性が低いため安全性に優れ特に好ましいが、これらに限定されるものではない。また、その結晶系については、単結晶、多結晶、微結晶等が挙げらるが、これらに限定されるものではない。

【0014】さらに、この共有結合結晶は、電子伝導性を向上させる目的で不純物を含むことができる。ここで言う不純物とは周期律表のすべての元素のうち、ドナー原子、アクセプター原子となり得るものであるり、好ま

て、その主溶質が炭素を含有している塩であり、好ましくはその溶質中にC-Fの結合を有するものが優れた充放電特性を示すことが分かった。C-F結合を有する塩として、少なくとも一般式(1)

(R1Y1) (R2Y2) NLi ···· 一般式(1)

しくはP. Al. As. Sb. B. Ga. In等であるが、これらに限定されるものではない。また、共有結合結晶内部での不純物によらない格子欠陥の存在などによる電子伝導性の向上も好ましい。

【0015】混在する不純物の濃度については、通常シリコン原子10⁷ 個から10⁶ 個にドナー原子あるいはアクセプター原子1個の割合であるが、好ましくは高濃度のドーピングが適しており、シリコン原子10⁴ 個にドナー原子あるいはアクセプター原子1個の割合、またはそれ以上のシリコンの面心立方構造を残存させる高濃度であることが望ましい。

【0016】本発明に用いる共有結合結晶は、平均粒子サイズ100μm以下であることが望ましい。所定の形状を得る上で、粉体を得るためには粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが乾式、湿式ともに必要に応じて用いられる。

【0017】本発明に用いられる共有結合結晶に炭素粒子を担持する方法としては、通常の混合も可能であるが、好ましくは、焼結法、蒸着法、熱プラズマ法、CVD法、スパッタリング法、ゾルーゲル法等を用いた熱分解法、湿式還元法、電気化学的還元法、気相還元ガス処理法、メカノフュウジョン等が挙げられるがこれらに限定されるものではない。

【0018】本発明に併せて用いることができる負極材料としては、リチウム金属、リチウム合金などや、メチルリチウム等のリチウムを含有する有機化合物等が挙げられる。また、リチウム金属やリチウム合金、リチウムを含有する有機化合物を併用することによって、本発明に用いる共有結合結晶とリチウムの化合物にさらにリチウムを電池内部で挿入することも可能である。

【0019】本発明の炭素粒子を担持した共有結合結晶を用いる場合、電極合剤として導電剤や結着剤やフィラー等を添加することができる。導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば何でも良い。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維や金属(銅、ニッケル、アルミニウム、銀、金など)粉、金属繊維、金属の蒸着、導電性セラミックス材

料等の導電性材料を1種またはそれらの混合物として含 ませることができる。その添加量は1~50重量%が好 ましく、特に2~30重量%が好ましい。

【0020】結着剤としては、通常、テトラフルオロエ チレン、ポリフッ化ビニリデン、ポリエチレン、ポリプ ロピレン、エチレンープロピレンジエンターポリマー (EPDM)、スルホン化EPDM、スチレンブタジエ ンゴム(SBR)、フッ素ゴム、カルボキシメチルセル ロース等といった熱可塑性樹脂、ゴム弾性を有するポリ マー、多糖類等を1種または2種以上の混合物として用 いることができる。また、多糖類の様にリチウムと反応 する官能基を有する結着剤は、例えばメチル化するなど してその官能基を失活させておくことが望ましい。その 添加量としては、1~50重量%が好ましく、特に2~ 30重量%が好ましい。

【0021】フィラーとしては、電池性能に悪影響を及 ぼさない材料であれば何でも良い。通常、ポリプロピレ ン、ポリエチレン等のオレフィン系ポリマー、アエロジ ル、ゼオライト、ガラス、炭素等が用いられる。フィラ 一の添加量は30重量%以下が好ましい。

【0022】電極活物質の集電体としては、構成された 電池において悪影響を及ぼさない電子伝導体であれば何 でもよい。例えば、正極材料としては、アルミニウム、 チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高 分子、導電性ガラス等の他に、接着性、導電性、耐酸化 性向上の目的で、アルミニウムや銅等の表面をカーボ ン、ニッケル、チタンや銀等で処理したものを用いるこ とができる。負極材料としては、銅、ステンレス鋼、ニ ッケル、アルミニウム、チタン、焼成炭素、導電性高分 子、導電性ガラス、A1-Cd合金等の他に、接着性、 導電性、耐酸化性向上の目的で、銅等の表面をカーボ ン、ニッケル、チタンや銀等で処理したものを用いるこ とができる。これらの材料については表面を酸化処理す ることも可能である。これらの形状については、フォイ ル状の他、フィルム状、シート状、ネット状、パンチ、 エキスパンドされたもの、ラス体、多孔質体、発砲体、 繊維群の形成体等が用いられる。厚みは特に限定はない が、 $1\sim500\mu$ mのものが用いられる。

【0023】この様にして得られる共有結合結晶とリチ ウムの化合物を負極活物質として用いることができる。

(R1Y1) (R2Y2) NLi

(一般式(1)中のR1、R2が C_n F_{2n+1} で表され、 nは1から4までの数であり、R1=R2あるいはR1 ≠R2であり、さらにY1, Y2がCO、SO、SO2

(R1SO₂)(R2SO₂)NLi ···· 一般式(4)

を用いることであり、ここで言う一般式(4)中のR $1 R 2 MC_n F_{2n+1}$ で表され、nは1から4までの数 であり、R1=R2あるいはR1≠R2である。最も好 $\sharp L < \iota R 1 = R 2 = C_2 F_5$, $\delta = \iota R 1 = C$ F_3 、 $R2=C_4$ F_9 \mathcal{C} ある。

一方、正極活物質としては、MnO₂ , MoO₃ , V₂ O_5 , $Li_x CoO_2$, $Li_x NiO_2$, $Li_x Mn_2$ O4 等の金属酸化物や、TiS2 . MoS2 , NbSe 3 等の金属カルコゲン化物、ポリアセン、ポリパラフェ ニレン、ポリピロール、ポリアニリン等のグラファイト 層間化合物、及び導電性高分子等のアルカリ金属イオン や、アニオンを吸放出可能な各種の物質を利用すること ができる。

【0024】特に本発明の共有結合結晶とリチウムの化. 合物を負極活物質として用いる場合、高エネルギー密度 という観点から V_2 O_5 , Li_x CoO_2 , Li_x NiO₂, Li_x Mn₂ O₄ 等の3~4 Vの電極電位を有す るものが望ましい。特にLi、CoO。,Li、NiO 2 , Lix Mn2 O4 等のリチウム含有遷移金属酸化物 が好ましい。

【0025】また、電解質としては、例えば有機電解 液、高分子固体電解質、無機固体電解質、溶融塩等を用 いることができ、この中でも有機電解液を用いることが 好ましい。この有機電解液の有機溶媒として、プロピレ ンカーボネート、エチレンカーボネート、ブチレンカー ボネート、ジエチルカーボネート、ジメチルカーボネー ト、メチルエチルカーボネート、アーブチロラクトン等 のエステル類や、テトラヒドロフラン、2-メチルテト ラヒドロフラン等の置換テトラヒドロフラン、ジオキソ ラン、ジエチルエーテル、ジメトキシエタン、ジエトキ シエタン、メトキシエトキシエタン等のエーテル類、ジ メチルスルホキシド、スルホラン、メチルスルホラン、 アセトニトリル、ギ酸メチル、酢酸メチル、Nーメチル ピロリドン、ジメチルフォルムアミド等が挙げられ、こ れらを単独又は混合溶媒として用いることができる。 【0026】本発明に用いられる電解質の主構成溶質と

しては、炭素を含有する塩であればよい。好ましくは、 前記溶質が、CーF結合を有することが好ましい。例え ば、特開昭58-225045号で用いられている式: $(C_n X_{2n+1} Y)_2 N^-, M^+$ で表せるものや、下記一般式(2)、(3):

(RSO₂)₃ C⁻, M⁺ ···· →般式(2) (RSO₂)O⁻, M⁺· · · · · 一般式(3) で表せるものが好ましい。さらに好ましくは一般式 (1)

・・・・ 一般式(1)

で表され、Y1=Y2あるいはY1≠Y2である。)で 表される塩であり、さらに好ましくは―般式(4)

【0027】一方、固体電解質として、例えば無機固体 電解質、有機固体電解質、無機固体電解質、溶融塩等を 用いることができる。無機固体電解質には、リチウムの **窒化物、ハロゲン化物、酸素酸塩、硫化リン化合物など** がよく知られており、これらの1種または2種以上を混 合して用いることができる。なかでも、 Li_8 N. Li_1 I, Li_5 NI $_2$, Li_3 N- Li_1 I- Li_1 OH, Li_4 SiO $_4$, Li_4 SiO $_4$ - Li_1 - Li_1 OH, XLi_3 PO $_4$ -(1-x) Li_4 SiO $_4$, Li_2 SiS $_8$ 等が有効である。一方、有機固体電解質では、ポリエチレンオキサイド誘導体か少なくとも該誘導体を含むポリマー、ポリプロピレンオキサイド誘導体か少なくとも該誘導体を含むポリマー、ボリフォスファゼンや該誘導体、イオン解離基を含むポリマー、リン酸エステルポリマー誘導体、さらにポリビニルピリジン誘導体、ビスフェノールA誘導体、ポリアクリロニトリル、ポリビニリデンフルオライド、フッ素ゴム等に非水電解液を含有させた高分子マトリックス材料(ゲル電解質)等が有効である。

【0028】セパレータとしては、イオンの透過度が優れ、機械的強度のある絶縁性薄膜を用いることができる。耐有機溶剤性と疎水性からポリプロピレンやポリエチレンといったオレフィン系のポリマー、ガラス繊維、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等からつくられたシート、微多孔膜、不織布が用いられる。セパレータの孔径は、一般に電池に用いられる範囲のものであり、例えば0.01~10μmである。またその厚みについても同様で、一般に電池に用いられる範囲のものであり、例えば5~300μmである。

【0029】本発明の炭素粒子を担持した共有結合結晶を用いる場合、その粉体の少なくとも表面層部分をさらに炭素粒子以外の物質で修飾することも可能である。例えば、金、銀、カーボン、ニッケル、銅等の電子伝導性のよい物質や、炭酸リチウム、ホウ素ガラス、固体電解質等のイオン伝導性のよい物質をメッキ、焼結、メカノフュージョン、蒸着、熱プラズマ法等の技術を応用してコートすることが挙げられる。

【0030】この様な優れた充放電特性が得られる理由 として、必ずしも明確ではないが以下のように考察され る。すなわち、共有結合を有する結晶はリチウムの吸蔵 が可能であり、その化合物中のリチウムの存在比は大き いことがうかがえる。しかしながら、共有結合を有する 結晶は半導体であるものの真性半導体であるため、その 常温での電気伝導度は低く充放電時の分極が比較的大き い。これにに対し、共有結合結晶中にドナー原子、アク セプター原子となりうる不純物がドープされると電子伝 導性が向上し充放電時の分極が小さくなり、容易にリチ ウムイオンに電子を与えることができリチウム化物とし て吸蔵し、また吸蔵されたリチウム化物は容易に電子を 放出することができリチウムイオンを放出する。つま り、共有結合結晶が電子を流すメカニズムを得ることに よって結晶内部での電子の流れがスムーズになり、リチ ウムの吸蔵、放出を容易にすると推定される。また、シ リコンやガリウムの結晶構造はダイヤモンドと同じ面心 立方構造であるため、結晶の結合が非常に強固であり、

リチウムの吸蔵、放出に関わる膨脹収縮に追随し、活物質自身の微細化や脱落といったことが見られず、充放電の可逆性を向上しているものと考えられる。さらに、結晶表面に炭素粒子を担持させることで、粒子間における電子伝導性を向上させ、その上、リチウムを吸蔵、放出する際、一旦炭素粒子上ににリチウムを蓄積させることも可能となり、充放電特性が向上するものと考えられる。

【0031】さらに、電解質に用いる主溶質として炭素を含有する塩を用いると、充放電効率が向上する理由として次のように考察している。従来、非水電解質電池に用いられてきたLiPF。に代表される炭素を含有しない塩は、電池内部に微量に存在する水と反応しフッ化水素を発生する。このフッ化水素はシリコン等の表面処理に用いられ、シリコン表面に存在する被膜を浸食する働きがあると考えられる。従って、電池内部に存在するフッ化水素とシリコン表面の被膜が反応し、イオン伝導性の低い化合物として、その界面に残存し、負極の抵抗が増大することにより、充放電効率が低下すると考えられる。それに比べて、一般式(1)で表されるような炭素を含有する塩は、フッ化水素の発生がほとんどなく、よって負極の抵抗増大が抑制され、充放電効率が向上するものと考えられる。

【0032】この様に本発明は、負極活物質の主構成物 質が、リチウムを吸蔵、放出可能な共有結合結晶であ り、その結晶表面に炭素粒子を担持したことを特徴とす る非水電解質電池であり、該電解質の主構成溶質として 炭素を含有する塩を用いることにより、金属リチウムに 対し少なくとも0~2Vの範囲でリチウムを吸蔵、放出 することができ、また結晶が強固なことから、通常の合 金にみられる充放電時の微細粉化や負極活物質の部分的 な孤立化が抑えられ、このような塩を非水電解質として 用いることにより、充放電効率に優れ、サイクル特性が 良好な充放電特性に優れた非水電解質電池の負極として 用いることができる。特にリチウムを吸蔵、放出可能な 炭素粒子を担持させることにより、シリコンへのリチウ ムの吸蔵、放出をスムーズにし、充放電のレート特性が 向上する。また、その容量が大きいことから高エネルギ 一密度が達成される。

[0033]

【実施例】以下、本発明の実施例について説明する。

【0034】(本発明)シリコン原子104個にB原子1個の割合でドープしたp型半導体であるシリコン多結晶粉末(電子伝導度σは20℃で0.8Scm-1)と人造黒鉛(面間隔(d002)=3.37Å,c軸方向の結晶の大きさLc=360Å)を重量比85:10で混合し、窒素雰囲気下1500℃で一部焼結させた。得られた焼結粉末を乳鉢により粉砕し、炭素粒子を担持した共有結合結晶である負極活物質とした。この負極活物質とポリテトラフルオロエチレン粉末とを重量比95:5で

混合し、トルエンを加えて十分混練した。これをローラ ープレスにより厚み0.1mmのシート状に成形した。 次にこれを直径16mmの円形に打ち抜き、減圧下20 0℃で15時間乾燥して負極2を得た。負極2は負極集 電体7の付いた負極缶5に圧着して用いた。正極1は、 正極活物質としてLiCoO2 とアセチレンブラック及 びポリテトラフルオロエチレン粉末とを重量比85:1 0:5で混合し、トルエンを加えて十分混練した。これ をローラープレスにより厚み0.8mmのシート状に成 形した。次にこれを直径16mmの円形に打ち抜き、減 圧下200℃で15時間乾燥して正極1を得た。正極1 は正極集電体6の付いた正極缶4に圧着して用いた。エ チレンカーボネートとジエチルカーボネートとの体積比 1:1の混合溶剤に (C₂ F₅ SO₂), NLiを1m o 1 / 1 溶解した電解液を用い、セパレータ3にはポリ プロピレン製微多孔膜を用いた。上記正極、負極、電解 液及びセパレータを用いて直径20mm、厚さ1.6m mのコイン型リチウム電池を作製した。この電池を本発 明電池(A)とする。

【0035】(比較例1)負極活物質として炭素粒子を担持していない、シリコン原子10⁴ 個にB原子1個の割合でドープしたp型半導体であるシリコン多結晶粉末(電子伝導度σは20℃で0.8 Scm⁻¹)を用いること以外は本発明と同様にして電池を作製した。得られた電池を比較電池(B)とする。

【0036】(比較例2)電解液の溶質として、(C_2 F_5 SO_2) $_2$ NLiの代わりにLiBF4 を用い、それ以外は本発明と同様にして電池を作製した。得られた、電池を比較電池(C)とする。

【0037】このようにして作製した本発明電池 (A)、比較電池(B)及び(C)を用いて充放電サイクル試験を行った。試験条件は、充電電流5mA、充電終止電圧4.1V、放電電流5mA、放電終止電圧3.0Vとした。これら作製した電池の充放電試験の結果を表1に示す。

[0038]

【表1】

電池	1サイクル(mAh)		1 0 サイクル(mAh)	
电 /四	充電容量	放電容量	充電容量	放電容量
(A)	6 5	4 9	4 9	4 9
(B)	6 0	2 5	1 5	1 4
(C)	6 4	4 4	1 4	1 0

【0039】表1から分かるように負極活物質に炭素粒子を担持させた共有結合結晶を用いた本発明電池(A)は、負極活物質に炭素粒子を担持させていない共有結合結晶を用いた比較電池(B)に比べて、充放電効率やサイクル特性といった電池特性が優れていることが分かる。また、電解液の溶質に炭素を含有する塩を用いた本発明電池(A)は、電解液の溶質にLiBF4を用いた比較電池(C)に比べて充放電特性に優れており、10サイクル後の減少が小さかった。

【0040】これらの結果についての理由は定かではないものの、シリコンの結晶表面で起こっている電子やイオンの授受が、電池特性に大きな影響を与えていることが考えられる。つまり、シリコン表面に炭素粒子を担持させることにより、粒子間の電子伝導性を向上させ、その炭素粒子自身がリチウムを吸蔵、放出することにより、シリコンへのリチウムの吸蔵、放出をスムーズにし、さらに電解質にフッ化水素を生成しにくい炭素を含有した塩を用いることで、負極活物質表面に生じるイオ

ン伝導性の比較的低い化合物を作ることを抑制することで、充放電効率やサイクル特性の優れた、高出力で高エネルギー密度の非水電解質電池が得られたものと考えられる。また、シリコンは毒性が低く、安全性の上からも優れた材料であると考えられる。

【0041】本発明の上記実施例においては、共有結合結晶としてシリコンを、電解液の溶質として(C_2 F_5 SO_2) $_2$ NLi について挙げたが、同様の効果が他の炭素を含有した塩についても確認された。なお、本発明は上記実施例に記載された活物質の出発原料、製造方法、正極、負極、電解質、セパレータ及び電池形状などに限定されるものではない。

[0042]

【発明の効果】本発明は上述の如く構成されているので、優れた充放電効率、充放電サイクル特性、急速充放電特性を示し、高出力、高容量、高エネルギー密度で、安全性の高い非水電解質電池を提供できる。

【図面の簡単な説明】

【図1】本発明に係るコイン型非水電解質電池の断面図である。

【符号の説明】

1 正極

2 負極

3 セパレータ

4 正極缶

5 負極缶

6 正極集電体

7 負極集電体

8 絶縁パッキング

【図1】

aHIS PAGE BLANK (USPTO)