Easy Visa Project: Ensemble methods

Contents / Agenda

- Executive Summary
- Business Problem Overview and Solution Approach
- EDA Results
- Data Preprocessing
- Model Performance Summary
- Appendix

Executive Summary

- the most important features are the following in order:
- ['education_of_employee_HighSchool', 'has_job_experience_Y', 'prevailing_wage', "education_of_employee_Master's", 'education_of_employee_Doctorate', 'continent_Europe', 'unit_of_wage_Year', 'region_of_employment_Midwest', 'region_of_employment_South ', 'no_of_employees', 'continent_North
 America', 'yr_of_estab', 'region_of_employment_West', 'continent_Asia', 'full_time_position_Y', 'region_of_employment_Northeast', 'continent_South America', 'requires_job_training_Y']
 - We can use the Gradient Boost predictive model to predict the certified visa cases. The ability to predict the certified visa per year can allow to oversee the Visa system to manage them more efficiently and fairly. In addition, reduce the labore work for big data.
 - to facilitate the process of visa approvals, a model of the important features will be built to generate prediction and make a list of the approved visa cases. E.g. Applicants with high job experience, from Europe, and high educations are on the top of this list. This list varies by regions as well. The data itself can be reduced by dropping the data with high likelihood to fail to be approved: high school education, and from south America, with no job experience and the job is not yearly.

Business Problem Overview and Solution Approach

- Problems: The Office of Foreign Labor Certification (OFLC) processes job certification applications
 for employers seeking to bring foreign workers into the United States and grants certifications in
 those cases based on specific rolls. The process of reviewing every application is becoming a
 tedious task as the number of applicants is increasing every year. Machine Learning based solution
 will help in shortlisting the candidates having higher chances of VISA approval.
- Solution approach / methodology
 - Classification supervised machine leaning models (logistic regression, Decision Tree, Random Forest, and GBM) applied and choose the best one to predict who's the applicants most likely to have Visa approved. And find what are the most important features affect the chosen model.

Univariate Analysis

Observations on prevailing wage

Observation of no of employees

Univariate Analysis

Link to Appendix slide on data background check

Does education play a role in Visa certification?

LIIIN to Appendix slide on data background check

How does the visa status vary across different continents?

slide on data background check

How does the visa status vary across USA Regions?

Does work experience influence visa status?

Link to Appendix slide on data background check

EDA Results Which pay unit is most likely to be certified for a visa?

dix slide on data background check

How does the visa status change with the prevailing wage?

- There is no a clear relationship between the case status and the prevailing waves. However, the first quantile of prevailing wage is higher for certified visa.
- The outliers does not affect the results.
- Outliers look real values.

Data Preprocessing

- Duplicate value check
 - There is no duplicated Data
- Missing value treatment
 - No missing values
- Outlier check (treatment if needed)
 - Checked the oulier and we did not apply any treatment.
- Feature engineering
 - Drop Case_id feature.
- Data preparation for modeling
 - The defind the target as the Case status and the predictores the rest of the features.
 - Encode categorical features()
 - Split into training and test set with taking acount of class weight.
- Note: You can use more than one slide if needed

Models Performance Summary

Which case of false prediction is more important?

False positive and false negative both the cases are important as if a visa is certified
when it had to be denied a wrong employee will get the job position while US citizens
will miss the opportunity to work on that position. If a visa is denied when it had to
be certified the U.S. will lose a suitable human resource that can contribute to the
economy.

•

To reduce the losses, F1 Score can be used as a metric for evaluation of the model, greater the F1 score higher are the chances of minimizing False Negatives and False Positives.

Models Performance Summary

Overview of final ML model and its parameters

Training Model	Accuracy	F1
Decision Tree	1.000000	1.000000
Tuned Decision Tree	0.712548	0.812411
Bagging Classifier	0.985198	0.988887
Tuned Bagging Classifier	0.996692	0.997529
Random Forest	1.000000	1.000000
Tuned Random Forest	0.769119	0.841652
Adaboost Classifier	0.738226	0.819080
Tuned Adaboost Classifier	0.718995	0.787861
Gradient Boost Classifier	0.758802	0.830349
Tuned Gradient Boost Classifier	0.764802	0.833921
XGBoost Classifier	0.838753	0.885272
XGBoost Classifier Tuned	0.765474	0.833935
Stacking Classifier	0.769679	0.838889

Accuracy	F1
0.664835	0.747487
0.706567	0.809058
0.691523	0.767913
0.731293	0.811179
0.727368	0.805851
0.738095	0.820930
0.734301	0.816481
0.716510	0.786397
<mark>0.744767</mark>	0.820927
0.745029	0.820319
0.733255	0.811675
0.745160	0.820063
0.742151	0.820312

Gradient Boosting Classifier is the best model. It has higher values and the least difference between training and testing values and fast to compute.

GB classifier parameters are

[loss="deviance", learning_rate=0.1, n_estimators=100, subsample=1, criterion="friedman_mse", min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0, max_depth=3, min_impurity_decrease=0, init=None, random_state=None, max_features=None, verbose=0, max_leaf_nodes=None, warm_start=False, validation_fraction=0.1, n_iter_no_change=None, tol=0.0001, ccp_alpha=0]

Gradient boosting, XGBoost, and stacking regressor are the top models. They are all giving a similar performance.

Model Performance Summary

Summary of key performance metrics for training and test data in tabular format for comparison

	Accuracy	Recall	Precision	F1
Training	0.758802	0.88374	0.783042	0.830349
Test	0.744767	0.876004	0.772366	0.820927

Models Performance Summary

Summary of most important factors used by the Gradient Boosting model for prediction

APPENDIX

Data Background and Contents

- The data contains the different attributes of employee and the employer. The detailed data dictionary is given below.
 - case id: ID of each visa application
 - continent: Information of continent the employee
 - education of employee: Information of education of the employee
 - has job experience: Does the employee has any job experience? Y= Yes; N = No
 - requires_job_training: Does the employee require any job training? Y = Yes; N = No
 - no of employees: Number of employees in the employer's company
 - yr of estab: Year in which the employer's company was established
 - region of employment: Information of foreign worker's intended region of employment in the US.
 - prevailing_wage: Average wage paid to similarly employed workers in a specific occupation in the area of intended employment. The purpose of the prevailing wage is to ensure that the foreign worker is not underpaid compared to other workers offering the same or similar service in the same area of employment.
 - unit_of_wage: Unit of prevailing wage. Values include Hourly, Weekly, Monthly, and Yearly.
 - full time position: Is the position of work full-time? Y = Full Time Position; N = Part Time Position
 - case status: Flag indicating if the Visa was certified or denied

Observations:

- * 66% of the visa applicants are Asian, and 14% European
- * 40% has Bachelor degree and 37% has Master degree,8% Doctrorat, 135 high school
- * 58% has a job experiences
- * 88% of applicant does't need job training
- * Northeast, south, and west of region of employment has the highest percentage
- * 66% of visa was approved.
- * there is no correlation between features.
- * The higher education the applicants, the most likely to have granted the visa
- * applicant with Bachelor's mostly will be accepted in south and west. applicant with

Doctorate will be accepted in west and northeast, High school most likely will be accepted in

- south, Master's will be accepted in Northeast and south.
- * The percentage of visa certified is higher is midwest and south.
- * The percentage of visa certified is higher in Africa and Europe.
- * the visa certification is higher for applicant with jobs experience.
- * the employees who have prior work experience require less job training.
- * the higher the prevailing wage the most visa certified.
- * island and Midwest has the higher prevailing wages

Model Building - Bagging Classifier

Model Building - Bagging Random Forest

Model Improvement - Bagging

Boosting models

Adaboost models

Boosting models

Gradient Boost Models

Boosting models

XGradient Boost Models

Stacking Classifier consists of AdaBoost classifier, Gradient

Boosting classifier, Random Forest classifier

F1 of Stacking Classifier Training:0.838889, Testing: 0.820312 No Over Fitting Good result