Lecture 5: KNN regression and Evalvation

KNN regression.

 $f(\chi) = \frac{1}{K} \sum_{n \in N_K(\chi)} y_n = avg, traing y_ns whose the K recrest neighbors to <math>\chi$

What happens as I change K?

General rule: K control model flexibility

Small K -> very flexible methods my predictor

Large IL -> very inflexible methods for is

Evaluation

Han do I chouse among my various models?

e.g. choose K for KNN

e.g. choose design for OLS

We reed some way to evaluate which model building process (MBP) is going to perform better.

way: Calculate Same performance metric
of my model of on the
training date traing RSS RSS train = Z(yn-yn) training MSF MSEtrain = RSStrain 3) training RMSE 2 MSEtrain = training R TSS train = Z(yn-y) ~ % of var. explained by

Why shortful we do this? (why isn't a metric calc. on training good?) > I don't actually care about predictions on my trains data. -> I actually cave about performence on new/unseen data. [Generalization Performance] Focusing too much on traing data is misleading 1.e- a bad surrogate for generalization perfermance. Ex. If want to choose a "best" valve fer K in KNN what happens of I choose the val. to minmize KSS train. Always going to choose K=1 b/c then yn=yn (Interpolate) so PSS = 0.

Similarly for OLS if I let PN I will eventually Interpolate my trains data. If I fit a N-1 th derree polywe really want to calculate is metric pts draw data

trains data

trains data

trains data I wont to

Jose here generalization over-fitting moder model flexibility more flex KNN M K=N KUN W, OLS W/ low P OLS Whigh P

-	tou do me du this?
エ	need some data my approach (MBP) hasn't seen before
	e'll call this test dater: 3 (2kn, test, Yn, test) n=1,, Ntert
	E[M(X,Y)] ~ M(test data)
Pro	cedure. D'train f on trains dute verelvate f on test data
	(2) evaluate f on test data
How	do I get test duta?
	Do a train/test split
	Sdata p~.9
	P 2.8
	training (testing
	auxu auxu

Ca	n also de this multiple times,
	Cross-Validation
K –	Fold X-Validation e.s. K=10
	Fold 1 For k=1,, K
Cda	Fold? 1) train model on all but 12th fold
<u> </u>	Fold K 2 evaluate on the
	let mp = perf. metnic for this iter
A	t the end I have
	$M_1, M_2, M_3, \dots, M_K$
	Can combine together to get an overall metric e.s.
	$M = mean(M, , , , M_K).$
Λk	C. 10 - 1 / 1 DDa. L. 10 - 10 (-
UK 1	so now I have K differt models, which do I use?
	re. I Shald probably train using all my