INF 4300 – Hough transform Anne Solberg (anne@ifi.uio.no)

- •This lecture goes more in detail than Gonzales and Woods 10.2.
- •Introduction to Hough transform
- Using gradient information to detect lines
- Representing a line
- The [a,b]-representation
- The $[\rho, \theta]$ -representation
- Algorithm for detection of lines
- Detecting circles

F1 21.10.09 INF 4300 1

Introduction to Hough transform

- The Hough transform (HT) can be used to detect lines, circles or other parametric curves.
- It was introduced in 1962 (Hough 1962) and first used to find lines in images a decade later (Duda 1972).
- The goal is to find the location of lines in images.
- This problem could be solved by e.g. Morphology and a linear structuring element, or by correlation.
 - Then we would need to handle rotation, zoom, distortions etc.
- Hough transform can detect lines, circles and other structures if their parametric equation is known.
- It can give robust detection under noise and partial occlusion.

An image with linear structures

- Borders between the regions are straight lines.
- These lines separate regions with different grey levels.
- Edge detection is often used as preprocessing to Hough transform.

INF 4300 3

Remember edge types?

INF 4300

Hough-transform – the input

- The input image must be a thresholded edge image.
- The magnitude results computed by the Sobel operator can be thresholded and used as input.

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

INF 4300 5

Repetition - Basic edge detection

- A thresholded edge image is the starting point for Hough transform.
- What does a Sobel filter produce?
- Approximation to the image gradient:

$$\nabla f(x)$$

...which is a vector quantity given by:

$$\nabla \mathbf{f}(x,y) = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Repetition – Edge magnitude

- The gradient is a measure of how the function f(x,y) changes as a function of changes in the arguments x and y.
- The gradient vector points in the direction of maximum change.
- The length of this vector indicates the size of the gradient:

$$\nabla f = |\nabla \mathbf{f}| = \sqrt{G_x^2 + G_y^2}$$

INF 4300 7

G_x, G_y and the gradient operator

- Horisontal edges:
 - Compute $g_x(x,y) = H_x * f(x,y)$
 - Convolve with the horisontal filter kernel H_x
- Vertical edges:
 - Compute $g_t(x,y) = H_y * f(x,y)$
- · Compute the gradient operator as:

$$g(x, y) = \sqrt{g_x^2(x, y) + g_y^2(x, y)}$$
 Gradient-magnitude (kant-styrke)
 $\theta(x, y) = \tan^{-1} \left(\frac{g_y(x, y)}{g_x(x, y)} \right)$ Gradient-retning

Repetition - Edge direction

- The direction of this vector is also an important quantity.
- If $\alpha(x,y)$ is the direction of f in the point (x,y) then:

$$\alpha(x,y) = \tan^{-1}(\frac{G_y}{G_x})$$

- Remember that α(x,y) will be the angle with respect to the x-axis
- Remember also that the direction of an edge will be perpendicular to the gradient in any given point

INF 4300 9

Input to Hough – thresholded edge image

Prior to applying Hough transform:

- Compute edge magnitude from input image.
- As always with edge detection, simple lowpass filtering can be applied first.
- Threshold the gradient magnitude image.

Hough-transform

- Assume that we have performed some edge detection, and a thresholding of the edge magnitude image.
- Thus, we have n pixels that may partially describe the boundary of some objects.
- We wish to find sets of pixels that make up straight lines.
- Regard a point (x_i, y_i)
 and a straight line y_i = ax_i + b
 - There are many lines passing through the point (x_i, y_i) .
 - Common to them is that they satisfy the equation for some set of parameters (a,b).

INF 4300 11

Hough transform – basic idea

Hough transform – basic idea

This equation can obviously be rewritten as follows:

$$b = -xa + y$$

- We now consider x and y as parameters and a and b as variables.
- This is a line in (a,b) space parameterized by x and y.
 So: a single point in xy-space gives a line in (a,b) space.
- Another point (x,y) will give rise to another line in (a,b) space.

INF 4300 13

Hough transform – basic idea

Hough transform – basic idea

- Two points (x,y) and(z,k) define a line in the (x,y) plane.
- These two points give rise to two different lines in (a,b) space.
- In (a,b) space these lines will intersect in a point (a',b') where a' is the rise and b' the intersect of the line defined by (x,y) and (z,k) in (x,y) space.
- The fact is that all points on the line defined by (x,y) and (z,k) in (x,y) space will parameterize lines that intersect in (a',b') in (a,b) space.
- Points that lie on a line will form a "cluster of crossings" in the (a,b) space.

INF 4300 15

Hough transform – algorithm

- Quantize the parameter space (a,b), that is, divide it into cells.
- This quantized space is often referred to as the accumulator cells.
- In the figure in the next slide a_{min} is the minimal value of a etc.
- · Count the number of times a line intersects a given cell.
 - For each point (x,y) with value 1 in the binary image, find the values of (a,b) in the range $[[a_{min},a_{max}],[b_{min},b_{max}]]$ defining the line corresponding to this point.
 - Increase the value of the accumulator for these [a',b'] point.
 - Then proceed with the next point in the image.
- Cells receiving a minimum number of "votes" are assumed to correspond to lines in (x,y) space.
 - Lines can be found as peaks in this accumulator space.

Hough transform – example 3

• Example 3: Natural scene and result of Sobel edge detection followed by thresholding:

INF 4300 29

Hough transform – example 3

• Example 3: Accumulator matrix:

Hough transform – example 3

Example 3: Original image and 20 most prominent lines:

INF 4300 31

Hough transform - advantages

- Advantages:
 - Conceptually simple.
 - Easy implementation.
 - Handles missing and occluded data very gracefully.
 - Can be adapted to many types of forms, not just lines.

Hough transform - disadvantages

- Disadvantages:
 - Computationally complex for objects with many parameters.
 - Looks for only one single type of object.
 - Can be "fooled" by "apparent lines".
 - The length and the position of a line segment cannot be determined.
 - Co-linear line segments cannot be separated.

INF 4300 33

Hough-transform using the full gradient information – a variant

- Given a gradient magnitude image g(x,y) containing a line.
- Simple algorithm:

```
for all g(x_i, y_i) > T do

for all \theta do

\rho = x_i \cos\theta + y_i \sin\theta

find corresponding indexes (m,n) and increment A(m,n)
```

- Better algorithm if we have both
 - The gradient magnitude g(x,y)
 - The gradient components g_x and g_y and can compute

• Algorithm: $\phi_g(x,y) = \arctan\left(\frac{g_x}{g_y}\right)$ for all $g(x_i,y_i) > T$ do for all θ do $\rho = x_i \cos(\phi_g(x,y)) + y_i \sin(\phi_g(x,y))$ find index m corresponding to ρ and increment $A(m, \phi_g(x,y))$