Прикладные модели оптимизации

Доцент, к.ф.-м.н., доцент кафедры № 43 *Фаттахова Мария Владимировна mvfa@yandex.ru*

Тема 5. Моделимногокритериальнойоптимизации

Лекция 12

Формальная постановка задачи многокритериальной оптимизации

$$H_1(x) \to \max,$$
 $H_2(x) \to \max,$
 \vdots
 $H_r(x) \to \max,$
 $x = (x_1, x_2, ..., x_n) \in D_x$

```
D_{x} — множество (область) допустимых решений H_{k}(x) — критерии (цели), r \geq 2
```

Определение оптимальности по Парето

Решение x^* называется **парето-оптимальным** (оптимальным по Парето, эффективным), если **не существует** другого решения x, для которого

$$H_i(x) \ge H_i(x^*), i = 1,...,r,$$

$$\exists i_0: H_{i_0}(x) > H_{i_0}(x^*)$$

Арбитражные схемы. Метод главного критерия

$$H(x) = (H_1(x), ..., H_r(x)),$$

$$H_i \to \max, i = 1, ..., r,$$

$$x \in D_x$$

- 1. Фиксируем точку «*статус-кво*» $H(x_0) = (H_1(x_0), H_2(x_0), ..., H_r(x_0))$
- 2. Выберем главный критерий. (H_1)

$$H_1(x) \rightarrow \max,$$

$$x \in D_x,$$

$$H_i \ge H_i(x_0), i = 2, ..., r,$$

$$\Rightarrow x^* = (x_1^*, ..., x_n^*)$$

 x^* – оптимальное решение по методу главного критерия

(главный критерий – первый) при заданной точке «статус-кво» $H(x_0)$.

Арбитражная схема Нэша

$$H(x) = (H_1(x), ..., H_r(x)),$$

$$H_i \to \max, i = 1, ..., r,$$

$$x \in D_x$$

- 1. Фиксируем точку «*статус-кво*» $H(x) = (H_1(x_0),...,H_r(x_0))$
- 2. Функция Нэша:

$$H^{N}(x) = \prod_{i=1}^{r} (H_{i}(x) - H_{i}(x_{0})).$$

 χ^* , которое решает эту ЗНЛП, называется арбитражным

решением Нэша при точке статус-кво $H(x_0)$.

Арбитражное решение Нэша для

двух критериев

Точка статус-кво:

$$H(x_0) = (H_1(x_0), H_2(x_0)) = (H_1^0, H_2^0)$$

Функция Нэша

$$H^{N}(x) = (H_{1}(x) - H_{1}^{0})(H_{2}(x) - H_{2}^{0})$$

$$H^{N}(x) = \left(H_{1}(x) - H_{1}^{0}\right)\left(H_{2}(x) - H_{2}^{0}\right) \rightarrow \max$$

$$x \in D_{x}$$

$$H_{1}(x) \ge H_{1}^{0}$$

$$H_{2}(x) \ge H_{2}^{0}$$

Арбитражное решение Нэша для двух критериев

$$H^{N}(x) = (H_{1}(x) - H_{1}^{0})(H_{2}(x) - H_{2}^{0}) \rightarrow \max$$

 $x \in D_x$

$$H_1(x) \ge H_1^0$$

$$H_2(x) \ge H_2^0$$

Минимизация расстояния до «утопической точки»

Утопическая точка - это точка $(H_1^{max}, H_2^{max}, ..., H_r^{max})$, где все критерии одновременно достигают своего максимума.

Расстояние от векторной оценки произвольной допустимой точки до утопической:

$$\rho^{2} = \left(H_{1}(x) - H_{1}^{\max}\right)^{2} + \left(H_{2}(x) - H_{2}^{\max}\right)^{2}$$

$$\rho^{2} = \left(H_{1}(x) - H_{1}^{\max}\right)^{2} + \left(H_{2}(x) - H_{2}^{\max}\right)^{2} \rightarrow \min$$

$$x \in D_{x}$$

Теорема (о существовании решения через утопическую точку)

Если множество допустимых решений в задаче многокритериальной оптимизации является выпуклым и замкнутым, то существует единственное решение, минимизирующее расстояние до утопической точки.

Пример. Фирма Сћетсо

Химическая компания «Chemco» планирует выпуск трёх видов продукции.

	Продукт 1	Продукт 2	Продукт 3	ЗАПАС
				ресурсов
Прибыль	\$10	\$9	\$8	-
Временные	4 ч	3 ч	2 ч	1 300 ч
затраты				
Затраты ресурса	3 ед.	2 ед.	3 ед.	1 000 ед.
Загрязнение	10 ед.	6 ед.	3 ед.	-

Фирма «Chemco» ставит две цели:

- 1. Максимизировать прибыль.
- 2. Минимизировать загрязнение окружающей среды.

Математическая модель. Chemco

	Продукт 1	Продукт 2	Продукт З	ЗАПАС ресурсов
Прибыль	\$10	\$9	\$8	-
Временные затраты	4 ч	3 ч	2 ч	1 300 ч
Затраты ресурса	3 ед.	2 ед.	3 ед.	1 000 ед.
Загрязнение	10 ед.	6 ед.	3 ед.	-

Фирма «Chemco» ставит две цели:

- 1. Максимизировать прибыль.
- 2. Минимизировать загрязнение окружающей среды.

$$x_j$$
 – объём продукта j , выпускаемый в плановый период, $j=1,2,3$. $x=(x_1,x_2,x_3)$

Цель 1:
$$H_1(x) = 10x_1 + 9x_2 + 8x_3 \rightarrow max$$
 – суммарная прибыль

Цель 2:
$$\overline{H}_2(x) = 10x_1 + 6x_2 + 3x_3 \rightarrow min$$
 – суммарное загрязнение

Ограничения:
$$4x_1 + 3x_2 + 2x_3 \le 1300$$

$$3x_1 + 2x_2 + 3x_3 \le 1000$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

Chemco. Математическая модель

$$\max H_1(x) = \max (10x_1 + 9x_2 + 8x_3)$$

$$\min \overline{H}_2(x) = \min (10x_1 + 6x_2 + 3x_3)$$

$$4x_1 + 3x_2 + 2x_3 \le 1300$$

$$3x_1 + 2x_2 + 3x_3 \le 1000$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

$$\max H_1(x) = \max (10x_1 + 9x_2 + 8x_3)$$

$$\max H_2(x) = \max (-(10x_1 + 6x_2 + 3x_3))$$

$$4x_1 + 3x_2 + 2x_3 \le 1300$$

$$3x_1 + 2x_2 + 3x_3 \le 1000$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

Оптимизация по первой цели

Оптимальное решение в зада	аче макси	мизации	прибыли	:						
		$\max H_1(x) = \max (10x_1 + 9x_2 + 8x_3)$								
			$4x_1 + 3x_2 +$	$-2x_3 \le 130$	0					
			$3x_1 + 2x_2 +$	$-3x_3 \le 1000$)					
Входные данные			$x_1 \ge 0, x_2 \ge$	$0, x_3 \ge 0$						
	Вид про	одукции								
Ресурсы	Продукт 1	Продукт 2	Продукт 3	Всего затрачено		Всего доступно				
Временные затраты, ч	4	3	2	1300	<=	1300				
Затраты ресурса, ед.	3	2	3	1000	<=	1000				
Загрязнение, ед.	10	6	3	2520						
						Суммарная прибыль				
Прибыль от реализации ед. изделия	\$10,00	\$9,00	\$8,00			\$4 060,00				
Производственный план										
	Ви	ід продукі	ции							
	Продукт 1	Продукт 2	Продукт 3							
Объем производства	0	380								

Оптимизация по второй цели

		max ($(x_2 + 3x_3)$				
		$4x_1 +$	$-3x_2 + 2x_3$	≤ 1300			
			$2x_2 + 3x_3$:				
			$0, x_2 \ge 0, x_3$				
		1					
Входные данные							
	Вид про	одукции					
Ресурсы	Пролукт 1	Пролукт 2	Продукт 3	Всего затрачено		Всего доступно	
Временные затраты, ч	4	3	2	0	<=	1300	
Затраты ресурса, ед.	3	2	3	0	<=	1000	
Загрязнение, ед.	10	6	3	0			
						Суммарная прибыль	Суммарное загрязнение (обратная функция)
Прибыль от реализации ед. издег	\$10,00	\$9,00	\$8,00			\$0,00	С
Производственный план							
	Ви	ід продукц	ции				
	Продукт 1	Продукт 2	Продукт 3				
Объем производства	0						

Chemco. Выбор точки SQ

Ресурсы	Продукт 1	Продукт 2	Продукт 3	Всего затрачено		Всего доступно	
Временные затраты, ч	4	3	2	860	<=	1300	
Затраты ресурса, ед.	3	2	3	615	<=	1000	
Загрязнение, ед.	10	6	3	1915			
						Суммарная пр <u>ибыль</u>	Суммарное загрязнение (обратная функция)
Прибыль от реализации ед. издег	\$10,00	\$9,00	\$8,00			\$2 390,00	-1915
Производственный план							
	Ви	ии					
	Продукт 1	Продукт 2	Продукт 3				
Объем производства	100	150	5				

Точка SQ: (2390; -1915)

Chemco. Метод главного критерия. Главный критерий - первый

$$\max H_1(x) = \max (10x_1 + 9x_2 + 8x_3)$$

$$\max H_2(x) = \max (-(10x_1 + 6x_2 + 3x_3))$$

$$4x_1 + 3x_2 + 2x_3 \le 1300$$

$$3x_1 + 2x_2 + 3x_3 \le 1000$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

Точка SQ: (2390; -1915)

$$\max H_1(x) = \max (10x_1 + 9x_2 + 8x_3)$$

$$4x_1 + 3x_2 + 2x_3 \le 1300$$

$$3x_1 + 2x_2 + 3x_3 \le 1000$$

$$-(10x_1 + 6x_2 + 3x_3) \ge -1915$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

					max	$H_1(x) = ma$	ax (1	$0x_1 + 9x_2 + 8x_3$
Арбитражное решение в заб				оитерия.		$+3x_2 + 2x_3 \le$	`	· ·
Главный критерий - ПЕРВ	ВЫЙ. Точка	" статус-і	кво ": (2390 ,	-1915)	•	$-2x_2 + 3x_3 \le$		
					-10.	$x_1 - 6x_2 - 3x$	$c_3 \ge -$	-1915
Входные данные					$x_1 \ge$	$0, x_2 \ge 0, x_3$	≥0	
Exegusio Hamilio	Вид про	одукции						
Ресурсы	Продукт 1	Продукт 2	Продукт 3	Всего затрачено				
Временные затраты, ч	4	3	2	1047,91667	<=	1300		
Затраты ресурса, ед.	3	2	3	1000	<=	1000		
Загрязнение, ед.	10	6	3	1915	5			
						Суммарная прибыль		Суммарное загрязнение (обратная функция)
Прибыль от реализации ед. издег	\$10,00	\$9,00	\$8,00			\$3 505,42		-1915
Производственный план							"SQ"	>= -1915
	Ви	ід продукц	ии					
	Продукт 1	Продукт 2	Продукт 3					
Объем производства	0	228,75	180,8333					

«Chemco». Эффективная граница

max H ₁	4060	min H ₁	0
min H ₂	-2520	max H ₂	0

$$\Delta = \frac{\max H_2 - \min H_2}{10} = \frac{2520}{10} = 252$$

$$\max H_1(x) = \max (10x_1 + 9x_2 + 8x_3)$$
$$4x_1 + 3x_2 + 2x_3 \le 1300$$

$$3x_1 + 2x_2 + 3x_3 \le 1000$$

$$-10x_1 - 6x_2 - 3x_3 \ge k \cdot (-\Delta), k = 0, ..., 10$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

«Chemco». Эффективная граница

Входные данные								
	Вид про	одукции						
Ресурсы	Продукт 1	Продукт 2	Продукт 3	Всего затраче		Всего доступно		
Временные затраты, ч	4	3	2	168	<=	1300		
Затраты ресурса, ед.	3	2	3	252	<=	1000		
Загрязнение, ед.	10	6	3	252				
						Суммарная прибыль		Суммарное загрязнение (обратная функция)
Прибыль от реализации ед. издел	\$10,00	\$9,00	\$8,00			\$672,00		-252
Производственный план						k	$\cdot \Delta$	>= -252
	Ви	ии						
	Продукт 1	Продукт 2	Продукт 3					
Объем производства	0							

«Chemco». Эффективная граница

Chemco. Арбитражное решение Нэша

$$\max H_1(x) = \max (10x_1 + 9x_2 + 8x_3)$$

$$\max H_2(x) = \max (-(10x_1 + 6x_2 + 3x_3))$$

$$4x_1 + 3x_2 + 2x_3 \le 1300$$

$$3x_1 + 2x_2 + 3x_3 \le 1000$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

Точка SQ: (2390; -1915)

$$\max H^{N}(x) = \max (10x_{1} + 9x_{2} + 8x_{3} - 2390)(-10x_{1} - 6x_{2} - 3x_{3} + 1915)$$

$$4x_{1} + 3x_{2} + 2x_{3} \le 1300$$

$$3x_{1} + 2x_{2} + 3x_{3} \le 1000$$

$$10x_{1} + 9x_{2} + 8x_{3} \ge 2390$$

$$-10x_{1} - 6x_{2} - 3x_{3} \ge -1915$$

$$x_{1} \ge 0, x_{2} \ge 0, x_{3} \ge 0$$

«Chemco». Арбитражное решение Нэша

$$\max H^{N}(x) = \max (10x_{1} + 9x_{2} + 8x_{3} - 2390)(-10x_{1} - 6x_{2} - 3x_{3} + 1915)$$

$$4x_{1} + 3x_{2} + 2x_{3} \le 1300$$

$$3x_{1} + 2x_{2} + 3x_{3} \le 1000$$

$$10x_{1} + 9x_{2} + 8x_{3} \ge 2390$$

$$-10x_{1} - 6x_{2} - 3x_{3} \ge -1915$$

$$x_{1} \ge 0, x_{2} \ge 0, x_{3} \ge 0$$

Входные данные									
	Вид про	одукции							
Ресурсы		П	П0	Всего		Всего			
	Продукт 1		Продукт 3	затрачено		доступно			
Временные затраты, ч	4	3	2	861,45243	<=	1300			
Затраты ресурса, ед.	3	2	3	1000	<=	1000			
Загрязнение, ед.	10	6	3	1467,4858					
						Суммарная	Суммарное загрязнение (обратная		Функция
	* 40.00	40.00	40.00			прибыль	функция)		Нэша
Прибыль от реализации ед. изделия	\$10,00	\$9,00	\$8,00			3095,1954	-1467,485837		3095,2
						>=	>=		
Производственный план					"SQ"	2390	-1915		
	Ви	ід продукі	ции					/	
	Продукт 1	Продукт 2	Продукт 3						
Объем производства	0	116,8715	255,419						

Минимизация расстояния до «утопической

точки»

$$\min \rho^{2}(x) = \min (10x_{1} + 9x_{2} + 8x_{3} - 4060)^{2} + (-10x_{1} - 6x_{2} - 3x_{3} - 0)^{2}$$

$$4x_{1} + 3x_{2} + 2x_{3} \le 1300$$

$$3x_{1} + 2x_{2} + 3x_{3} \le 1000$$

$$x_{1} \ge 0, x_{2} \ge 0, x_{3} \ge 0$$

	Вид пр	одукции						
Ресурсы				Всего		Всего		
Гесурсы	Продукт 1	Продукт 2	Продукт 3	затрачено		доступно		
Временные затраты, ч	4	3	2	729,43397	<=	1300		
Затраты ресурса, ед.	3	2	3	1000	<=	1000		
Загрязнение, ед.	10	6	3	1150,6415				
						Суммарная прибыль	Суммарное загрязнение (обратная функция)	Расстояние до утопической точки
Прибыль от реализации ед. изделия	\$10,00	\$9,00	\$8,00			2804,7547	-1150,641524	2899616,615
						>=	>=	
Производственный план			Ут	опическая п	почка	4060	0	
	В	ід продукі	ции					
	Продукт 1	Продукт 2	Продукт 3					
Объем производства	0	37 66038	308 2264	Решение ме	тодоі	и минимизации	расстояния до утопич	еской точки

Chemco. Сравнение решений

Решение	x_1^*	$oldsymbol{x_2^*}$	x_3^*	Максим. прибыль (ЦФ1)	Сумм. загрязнение (ЦФ2)
Оптим. для ЦФ1	0	380	80	4060	2520
Оптим. для ЦФ2	0	0	0	0	0
Точка SQ	-	_	_	2390	1915
Метода главного критерия (главный – первый)	0	228,75	180,83	3505,42	1915
Арбитражное решение Нэша	0	116,87	266,42	3095,20	1467,49
Минимизация расстояния до утопической точки	0	37,66	308,23	2804,75	1150,64

Лабораторная работа 3

• СРОК СДАЧИ без потери баллов:

Группа 4931: 24.11.2021

Группа 4932: 24.11.2021

Группа 4933: 26.11.2021

Группа 4936: 26.11.2021

- Задачи к ЛР № 3 задачи к ЛР № 1, в которых добавлены новые цели.
- Критериев три, но решения аналогичны рассмотренным.