OpenCMISS-iron examples and tests used by OpenCMISS developers at University of Stuttgart, Germany

Christian Bleiler, Andreas Hessenthaler, Thomas Klotz, Aaron Krämer, Benjamin Maier, Sergio Morales, Mylena Mordhorst, Harry Saini

> July 4, 2017 12:04

CONTENTS

1	Introduction					
	1.1	Cmgu	ıi files for cmgui-2.9	4		
	1.2	Variat	tions to consider	4		
	1.3	Folde	r structure	4		
2	Hov	v to wo	ork on this document	5		
3	Diff	usion e	equation	6		
	3.1		tion in general form	6		
	3.2		ple-0001	7		
	,	3.2.1	Mathematical model - 2D	7		
		3.2.2	Mathematical model - 3D	7		
		3.2.3	Computational model	7		
		3.2.4	Result summary	8		
	3.3	Exam	•	11		
		3.3.1	Mathematical model - 2D	11		
		3.3.2	Mathematical model - 3D	11		
		3.3.3	Computational model	11		
		3.3.4	Result summary	12		
	3.4	Exam	ple-0002	15		
		3.4.1	Mathematical model - 2D	15		
		3.4.2	Mathematical model - 3D	15		
		3.4.3	Computational model	15		
		3.4.4	Result summary	16		
	3.5	Exam	ple-0003	19		
		3.5.1	Mathematical model - 2D	19		
		3.5.2	Mathematical model - 3D	19		
		3.5.3	Computational model	10		

^{*} Institute of Applied Mechanics (CE), University of Stuttgart, Pfaffenwaldring 7, 70569 Stuttgart, Germany † Institute for Parallel and Distributed Systems, University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany

[‡] Lehrstuhl Mathematische Methoden für komplexe Simulation der Naturwissenschaft und Technik, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany

Figure 10	2D results, current run w/ command line arguments [2.0 1.0	
Figure 11	0.0 8 4 0 1 0]	17
riguie 11	_	15
Figure 12	3D results, current run w/ command line arguments [2.0 1.0	17
rigure 12		18
Figure 13	2D results, iron reference w/ command line arguments [2.0	10
inguic 15		20
Figure 14	2D results, current run w/ command line arguments [2.0 1.0	_(
19410 14		21
Figure 15	3D results, iron reference w/ command line arguments [2.0	_
G		21
Figure 16	3D results, current run w/ command line arguments [2.0 1.0	
O		22
Figure 17	2D results, iron reference w/ command line arguments [8 4	
	•	24
Figure 18	2D results, current run w/ command line arguments [8 4 0 2	
	o]	24
Figure 19	2D results, iron reference w/ command line arguments [2.0	
	1.0 0.0 8 4 0 1 0 1 1]	26
Figure 20	2D results, current run w/ command line arguments [2.0 1.0	
	0.0 8 4 0 1 0 1 1]	27
Figure 21	3D results, iron reference w/ command line arguments [2.0	
	1.0 1.0 8 4 4 1 0 1 1 1]	27
Figure 22	3D results, current run w/ command line arguments [2.0 1.0	
	• •	28
Figure 23		31
Figure 24		31
Figure 25		32
Figure 26		33
Figure 27		35
Figure 28		35
Figure 29		36
Figure 30	Results, abaqus 3D fine mesh	36
LIST OF	TABLES	
Гable 1	Initials of people working on examples, in alphabetical order	
	(surnames)	5
Гable 2	Quantiative error between Abaqus 2017 and iron simulations	_
		32
Гable 3	Quantiative error between Abaqus 2017 and iron simulations	
		37

INTRODUCTION 1

This document contains information about examples used for testing OpenCMISSiron. Read: How-to¹ and [1].

Cmgui files for cmgui-2.9

Variations to consider

Geometry and topology

1D, 2D, 3D

Length, width, height

Number of elements

Interpolation order

Generated or user meshes

quad/hex or tri/tet meshes

- Initial conditions
- Load cases

Dirichlet BC

Neumann BC

Volume force

Mix of previous items

- Sources, sinks
- Time dependence

Static

Quasi-static

Dynamic

• Material laws

Linear

Nonlinear (Mooney-Rivlin, Neo-Hookean, Ogden, etc.)

Active (Stress, strain)

- Material parameters, anisotropy
- Solver

Direct

Iterative

Test cases

Numerical reference data

Analytical solution

• A mix of previous items

1.3 Folder structure

TBD..

¹ https://bitbucket.org/hessenthaler/opencmiss-howto

2 HOW TO WORK ON THIS DOCUMENT

e9TAzqaYavKi0z0D4pKY9RGI/edit#gid=0 please indicate what you are working on or if a given example was finished

• no mark: to be done

• x: currently working on it

• xx: done

Initials	Full name		
CB	Christian Bleiler		
AH	Andreas Hessenthaler		
TK	Thomas Klotz		
AK	Aaron Krämer		
BM	Benjamin Maier		
SM	Sergio Morales		
MM	Mylena Mordhorst		
HS	Harry Saini		

 Table 1: Initials of people working on examples, in alphabetical order (surnames).

3 DIFFUSION EQUATION

3.1 Equation in general form

The governing equation is,

$$\label{eq:delta_t} \vartheta_t \mathfrak{u} + \nabla \cdot [\sigma \nabla \mathfrak{u}] = \mathsf{f} \text{,} \tag{1}$$

with conductivity tensor $\boldsymbol{\sigma}.$ The conductivity tensor is,

- defined in material coordinates (fibre direction),
- diagonal,
- defined per element.

3.2 Example-0001

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.2.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{2}$$

with boundary conditions

$$u = 0 x = y = 0, (3)$$

$$u = 1$$
 $x = 2, y = 1.$ (4)

No material parameters to specify.

3.2.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{5}$$

with boundary conditions

$$u = 0 x = y = z = 0, (6)$$

$$u = 1$$
 $x = 2, y = z = 1.$ (7)

No material parameters to specify.

3.2.3 Computational model

• Commandline arguments are:

float: length along x-direction

float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

• Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

2.0 1.0 0.0 8 4 0 1 1

2.0 1.0 0.0 2 1 0 2 1

3.2.4 Result summary

Figure 1: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 2: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 3: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

Figure 4: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

3.3 Example-0001-u

Example uses user-defined regular meshes in CHeart mesh format and solves a static problem, i.e., applies the boundary conditions in one step.

3.3.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{8}$$

with boundary conditions

$$u = 0 x = y = 0, (9)$$

$$u = 1$$
 $x = 2, y = 1.$ (10)

No material parameters to specify.

3.3.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla u = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{11}$$

with boundary conditions

$$u = 0 x = y = z = 0, (12)$$

$$u = 1$$
 $x = 2, y = z = 1.$ (13)

No material parameters to specify.

3.3.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

• Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

2.0 1.0 0.0 8 4 0 1 1

2.0 1.0 0.0 2 1 0 2 1

• Note: Binary uses command line arguments to search for the relevant mesh files.

3.3.4 Result summary

Figure 5: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 6: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 7: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

Figure 8: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

3.4 Example-0002

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.4.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{14}$$

with boundary conditions

$$u = 15y x = 0, (15)$$

$$u = 25 - 18y$$
 $x = 2.$ (16)

No material parameters to specify.

3.4.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = \mathbf{0} \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{17}$$

with boundary conditions

$$u = 15y x = 0, (18)$$

$$u = 15y$$
 $x = 0,$ (18)
 $u = 25 - 18y$ $x = 2.$ (19)

No material parameters to specify.

3.4.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

• Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

2.0 1.0 0.0 8 4 0 1 1

2.0 1.0 0.0 2 1 0 2 1

3.4.4 Result summary

Figure 9: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 10: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 11: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

Figure 12: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

3.5 Example-0003

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.5.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla u = 0 \qquad \qquad \Omega = [0,2] \times [0,1], \tag{20} \label{eq:20}$$

with boundary conditions

$$u = 15y \qquad x = 0, \tag{21}$$

$$u = 15y$$
 $x = 0,$ (21) $\partial_n u = 25 - 18y$ $x = 2.$ (22)

No material parameters to specify.

3.5.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla u = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{23}$$

with boundary conditions

$$u = 15y x = 0, (24)$$

$$u = 15y$$
 $x = 0,$ (24) $\vartheta_n u = 25 - 18y$ $x = 2.$ (25)

No material parameters to specify.

3.5.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

• Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

2.0 1.0 0.0 8 4 0 1 1

2.0 1.0 0.0 2 1 0 2 1

3.5.4 Result summary

Figure 13: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 14: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 15: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

Figure 16: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

3.6 Example-0004

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.6.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla u = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{26}$$

with boundary conditions

$$u = 2.0e^{x} \cdot \cos(y)$$
 on $\partial\Omega$. (27)

No material parameters to specify.

3.6.2 Computational model

• Commandline arguments are:

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

• Commandline arguments for tests are:

42010

84010

21020

42020

84020

42011

84011

21021

42021

84021

100 50 0 1 0 (not tested yet..)

100 50 0 2 0 (not tested yet..)

100 50 0 1 1 (not tested yet..)

100 50 0 2 1 (not tested yet..)

3.6.3 Result summary

Figure 17: 2D results, iron reference w/ command line arguments [8 4 0 2 0].

Figure 18: 2D results, current run w/ command line arguments [8 4 0 2 0].

3.7 Example-0011

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.7.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot [\sigma \nabla u] = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{28}$$

with boundary conditions

$$u = 0 x = y = 0, (29)$$

$$u = 1$$
 $x = 2, y = 1.$ (30)

The conductivity tensor is defined as,

$$\sigma(x,t) = \sigma = I. \tag{31}$$

3.7.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot [\boldsymbol{\sigma} \nabla \mathbf{u}] = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{32}$$

with boundary conditions

$$u = 0$$
 $x = y = z = 0,$ (33)

$$u = 1$$
 $x = 2, y = z = 1.$ (34)

The conductivity tensor is defined as,

$$\sigma(x,t) = \sigma = I. \tag{35}$$

3.7.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

integer: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

float: σ_{11} float: σ₂₂

float: σ_{33} (ignored for 2D)

• Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0 1 1 2.0 1.0 0.0 4 2 0 1 0 1 1 2.0 1.0 0.0 8 4 0 1 0 1 1 2.0 1.0 0.0 2 1 0 2 0 1 1

3.7.4 Result summary

Figure 19: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0 1 1].

Figure 20: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0 1 1].

Figure 21: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0 1 1 1].

Figure 22: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0 1 1 1].

4 LINEAR ELASTICITY

4.1 Equation in general form

$$\partial_{tt}\mathbf{u} + \nabla \cdot \mathbf{\sigma}(\mathbf{u}, \mathbf{t}) = \mathbf{f}(\mathbf{u}, \mathbf{t})$$
 (36)

4.2 Example-0101

4.2.1 Mathematical model

We solve the following equation (both 2D and 3D domains are considered),

$$\nabla \cdot \sigma(\mathbf{u}, t) = \mathbf{0} \qquad \qquad \Omega = [0, 160] \times [0, 120] \times [0, 120], t \in [0, 5], \tag{37}$$

with time step size $\Delta_t = 1$ and $u = [u_x, u_y]$ in 2D $u = [u_x, u_y, u_z]$ in 3D. The boundary conditions in 2D are given by

$$u_{x} = u_{y} = 0 \qquad \qquad x = y = 0, \tag{38}$$

$$u_x = 16$$
 $x = 160$, (39)

and in 3D by

$$u_x = u_y = u_z = 0$$
 $x = y = z = 0$, (40)

$$u_x = 16$$
 $x = 160$. (41)

The material parameters are

$$E = 10000MPa,$$
 (42)

$$v = 0.3, \tag{43}$$

$$\rho = 5 \times 10^{-9} \text{tonne.mm}^3$$
. (44)

4.2.2 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

integer: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

float: elastic modulus float: Poisson ratio

float: displacement percentage load

• Command line arguments for tests are:

160 120 0 8 6 0 1 0 10000 0.3 0.05

160 120 0 16 12 0 1 0 10000 0.3 0.05

160 120 0 32 24 0 1 0 10000 0.3 0.05

160 120 120 8 6 6 1 0 10000 0.3 0.05

160 120 120 16 12 12 1 0 10000 0.3 0.05

160 120 120 32 24 24 1 0 10000 0.3 0.05

Figure 23: Results, iron 2D fine mesh.

Figure 24: Results, iron 3D fine mesh.

Results 4.2.3

Validation 4.2.4

The iron results are compared to those from Abaqus (version 2017). The figures below show selected results from the validation simulations carried out in Abaqus and provide a qualitative validation. A quantitative validation was carried out by comparing the horizontal displacement u_y along the free-edge (y = 120 for 2D and y = z = 120 for 3D) and computing the L2-norm according to

$$L_{2}\text{-norm} = \sum_{i=1}^{N} \sqrt{\left(u_{y,\text{abaqus}}^{i} - u_{y,\text{iron}}^{i}\right)^{2}}, \tag{45}$$

where N is the total number of nodes along the free-edge. The results over the mesh refinements are given in Table 2.


```
ODB: 2D_UNIAX_ELASTIC_elem_5_160x120mm_intp_1_DIRECT.odb Abaqus/Standard 3DEXPERIENCI
Step: Load, Load.
Increment 5: Step Time = 5.000
Primary Var: U, U2
Deformed Var: U Deformation Scale Factor: +2.000e+00
```

Figure 25: Results, Abaqus 2D fine mesh.

Figure 26: Results, abaqus 3D fine mesh.

Dimension	Mesh	L_2 -norm	
2D	Coarse	5.322×10^{-16}	
2D	Medium	1.559×10^{-15}	
2D	Fine	2.900×10^{-15}	
3D	Coarse	3.071×10^{-17}	
3D	Medium	2.125×10^{-17}	
3D	Fine	2.924×10^{-17}	

Table 2: Quantiative error between Abaqus 2017 and iron simulations for linear elastic uniaxial extenions

4.3.1 Mathematical model

We solve the following equation (both 2D and 3D domains are considered),

$$\nabla \cdot \sigma(u,t) = 0 \qquad \qquad \Omega = [0,160] \times [0,120] \times [0,120], t \in [0,5], \tag{46} \label{eq:46}$$

with time step size $\Delta_t = 1$ and $u = [u_x, u_y]$ in 2D $u = [u_x, u_y, u_z]$ in 3D. The boundary conditions in 2D are given by

$$u_{x} = u_{y} = 0 \qquad \qquad y = 0, \tag{47}$$

$$u_y = 8$$
 $x = 160,$ (48)

and in 3D by

$$u_x = u_z = 0 x = 0, (49)$$

$$u_{\mathbf{u}} = 0 y = 0, (50)$$

$$u_x = 160$$
 $x = 160$, (51)

The material parameters are

$$E = 10000MPa,$$
 (53)

$$v = 0.3,$$
 (54)

$$\rho = 5 \times 10^{-9} \text{tonne.mm}^3. \tag{55}$$

4.3.2 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

integer: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

float: elastic modulus float: Poisson ratio

float: displacement percentage load

Command line arguments for tests are:

160 120 0 8 6 0 1 0 10000 0.3 0.05

160 120 0 16 12 0 1 0 10000 0.3 0.05

160 120 0 32 24 0 1 0 10000 0.3 0.05

160 120 120 8 6 6 1 0 10000 0.3 0.05

160 120 120 16 12 12 1 0 10000 0.3 0.05

160 120 120 32 24 24 1 0 10000 0.3 0.05

Figure 27: Results, iron 2D fine mesh.

Figure 28: Results, iron 3D fine mesh.

Results 4.3.3

Validation 4.3.4

The iron results are compared to those from Abaqus (version 2017). The figures below show selected results from the validation simulations carried out in Abaqus and provide a qualitative validation. A quantitative validation was carried out by comparing the horizontal displacement u_x along the free-edge (y = 120 for 2D and y = z = 120 for 3D) and computing the L2-norm according to

$$L_{2}\text{-norm} = \sum_{i=1}^{N} \sqrt{\left(u_{y,\text{abaqus}}^{i} - u_{y,\text{iron}}^{i}\right)^{2}}, \tag{56}$$

where N is the total number of nodes along the free-edge. The results over the mesh refinements are given in Table 2.


```
Step: Load, Load.
Microment 5: Step Time = 5.000
Primary Var: U, U1
Deformed Var: U Deformation Scale Factor: +2.000e+00
```

Figure 29: Results, Abaqus 2D fine mesh.

Figure 30: Results, abaqus 3D fine mesh.

Dimension	Mesh	L_2 -norm	
2D	Coarse	6.696×10^{-3}	
2D	Medium	1.273×10^{-3}	
2D	Fine	2.489×10^{-4}	
3D	Coarse	4.234×10^{-4}	
3D	Medium	4.184×10^{-5}	
3D	Fine	3.781×10^{-6}	

Table 3: Quantiative error between Abaqus 2017 and iron simulations for linear elastic shear

5 FINITE ELASTICITY

6 NAVIER-STOKES FLOW

6.1 Equation in general form

$$\partial_{t}(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v} + p\mathbf{I}) = \rho \mathbf{f} \tag{57}$$

Example uses user-defined simplex meshes in CHeart mesh format with quadratic/linear interpolation for velocity/pressure and solves a dynamic problem.

Setup is the well-known lid-driven cavity problem on the unit square or unit cube in two and three dimensions

6.2.1 Mathematical model - 2D

We solve the incompressible Navier-Stokes equation,

$$\partial_{\mathbf{t}}(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v} + p\mathbf{I}) = \rho \mathbf{f}$$
 $\Omega = [0, 1] \times [0, 1],$ (58)

$$\nabla \cdot \mathbf{v} = \mathbf{0},\tag{59}$$

with boundary conditions

$$\mathbf{v} = \mathbf{0} \qquad \qquad \mathbf{x} = \mathbf{0}, \tag{60}$$

$$v = 0 x = 1, (61)$$

$$v = 0 y = 0, (62)$$

$$\mathbf{v} = [1, 0]^{\mathsf{T}} \qquad \qquad \mathbf{y} = 1. \tag{63}$$

Density $\rho=1$, viscosity $\mu=0.0025$. Thus, Reynolds number Re=400.

6.2.2 Mathematical model - 3D

We solve the incompressible Navier-Stokes equation,

$$\partial_{\mathbf{t}}(\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v} + p\mathbf{I}) = \rho \mathbf{f} \qquad \qquad \Omega = [0, 1] \times [0, 1] \times [0, 1], \tag{64}$$

$$\nabla \cdot \mathbf{v} = 0, \tag{65}$$

with boundary conditions

$$v = 0 x = 0, (66)$$

$$v = 0 x = 1, (67)$$

$$v = 0 y = 0, (68)$$

$$\mathbf{v} = [1, 0]^{\mathsf{T}} \qquad \qquad \mathbf{y} = 1, \tag{69}$$

$$v = 0 z = 0, (70)$$

$$v = 0 z = 1. (71)$$

Density $\rho=1$, viscosity $\mu=0.01$. Thus, Reynolds number Re=100.

6.2.3 Computational model

• Commandline arguments are:

integer: number of dimensions (2: 2D, 3: 3D

integer: mesh refinement level (1, 2, 3, ...)

float: start time float: stop time float: time step size

float: density float: viscosity

integer: solver type (o: direct; 1: iterative)

• Commandline arguments for tests are:

 Note: Binary uses command line arguments to search for the relevant mesh files.

6.2.4 Result summary

7 MONODOMAIN

8 CELLML MODEL

REFERENCES

[1] Chris Bradley, Andy Bowery, Randall Britten, Vincent Budelmann, Oscar Camara, Richard Christie, Andrew Cookson, Alejandro F Frangi, Thiranja Babarenda Gamage, Thomas Heidlauf, et al. Opencmiss: a multi-physics & multi-scale computational infrastructure for the vph/physiome project. *Progress* in biophysics and molecular biology, 107(1):32–47, 2011.