Titel

Namen

Distortion example

$$x = x_d + (x_d - x_c)(1 + K_1r^2 + K_2r^4) + P_1(r^2 + 2(x_d - x_c)^2) + 2P_2(x_d - x_c)(y_d - y_c)$$

$$y = y_d + (y_d - y_c)(1 + K_1r^2 + K_2r^4) + 2P_1(x_d - x_c)(y_d - y_c) + P_2(r^2 + 2((y_d - y_c)^2))$$

Radial distortion:

Tangential distortion:

 $K_n = n^{th}$ radial distortion coefficient

 $P_n = n^{th}$ tangential distortion coefficient

 (x_d, y_d) = distorted imaage point as projected on image plane (x, y) = undistorted imaage point as projected on image plane (x_c, y_c) = distortion center (x_c, y_c) = $\sqrt{(x_d - x_c)^2 + (y_d - y_c)^2}$

Distortion example

$$x = x_d + (x_d - x_c)(1 + K_1r^2 + K_2r^4) + P_1(r^2 + 2(x_d - x_c)^2) + 2P_2(x_d - x_c)(y_d - y_c)$$

$$y = y_d + (y_d - y_c)(1 + K_1r^2 + K_2r^4) + 2P_1(x_d - x_c)(y_d - y_c) + P_2(r^2 + 2((y_d - y_c)^2))$$

Radial distortion:

Tangential distortion:

Abbildung: radial distortions

Abbildung: first order tangential distortion

pixel size detection

pixelSize = 1:

pixelSize = 8:

Center point estimation

$$\mathbf{x}_c = \frac{\sum_{k=1}^{n} \mathbf{x}_k}{n}$$

n: number of seen pixels

 \mathbf{x}_k : position of seen pixel

Results

Ground truth:

Abbildung: all white lines that we're drawn and seen on the screen

Mapped Image:

Abbildung: the seen lines after they were mapped by the algorithm

Comparison

Substraction of ground truth and mapped image

Abbildung: difference of both images 824 of 290,191 pixels do not fit