Exercise 10.4.3. Let α be a real number, and let $f:(0,\infty)\to \mathbf{R}$ be the function $f(x)=x^{\alpha}$.

- (a) Show that $\lim_{x\to 1; x\in(0,\infty)\backslash\{1\}}\frac{f(x)-f(1)}{x-1}=\alpha.$
- (b) Show that f is differentiable on $(0, \infty)$ and that $f'(x) = \alpha x^{\alpha-1}$. Solution.

(a) It is enough to consider the right and left limits, prove that they exist, and that they equal α . We will focus on the right limit (the proof for the left limit is similar), i.e. we will show that $\lim_{x\to 1;x\in(1,\infty)}\frac{x^{\alpha}-1}{x-1}=\alpha$.

It is enough to show that, if $(a_m)_{m=0}^{\infty}$ is a sequence converging to 1, with $1 < a_m$ for all $m \in \mathbb{N}$, then $\lim_{m \to \infty} \frac{(a_m)^{\alpha} - 1}{a_m - 1} = \alpha$.

Notice that for every positive integer n there is some rational number in the interval $(\alpha - \frac{1}{n}, \alpha)$. Using the axiom of (countable) choice, we can pick a rational from each of those intervals and have a sequence of rational numbers $(q_n^-)_{n=1}^{\infty}$. Similarly we can have a rational sequence $(q_n^+)_{n=1}^{\infty}$ by picking from the intervals $(\alpha, \alpha + \frac{1}{n})$.

It is worth noting that

$$\alpha - \frac{1}{n} < q_n^- < \alpha < q_n^+ < \alpha + \frac{1}{n},$$

for every positive integer n. By two applications of the squeeze theorem we see that $(q_n^-)_{n=1}^{\infty}$ and $(q_n^+)_{n=1}^{\infty}$ both converge to α . Furthermore, for all n, m, as $a_m > 1$, we have the following chain of reasoning

$$\begin{split} a_m^{q_n^-} &\leq a_m^\alpha \leq a_m^{q_n^-}, \\ a_m^{q_n^-} &- 1 \leq a_m^\alpha - 1 \leq a_m^{q_n^+} - 1, \\ \frac{a_m^{q_n^-} - 1}{a_m - 1} &\leq \frac{a_m^\alpha - 1}{a_m - 1} \leq \frac{a_m^{q_n^+} - 1}{a_m - 1}. \end{split}$$

The second part of Exercise 10.4.2 implies that $\lim_{m\to\infty} \frac{a_m^{q_n^-}-1}{a_m-1}=q_n^-$ and that $\lim_{m\to\infty} \frac{a_m^{q_n^+}-1}{a_m-1}=q_n^+$. Thus, by the comparison principle (Lemma 6.4.13), we get that

$$q_n^- \leq \liminf_{m \to \infty} \frac{a_m^\alpha - 1}{a_m - 1} \leq \limsup_{m \to \infty} \frac{a_m^\alpha - 1}{a_m - 1} \leq q_n^+.$$

Then, by two applications of the squeeze test, we see that the limit superior and the limit inferior coincide and equal α . Thus the sequence is converging to α , i.e. $\lim_{m\to\infty}\frac{a_m^\alpha-1}{a_m-1}=\alpha$, which is what we wanted.

We have shown that the right limit $\lim_{x\to 1; x\in(1,\infty)} \frac{x^{\alpha}-1}{x-1}$ is α , and a similar argument will show that the left limit exists and also equals α . Then we have $\lim_{x\to 1; x\in(0,\infty)\setminus\{1\}} \frac{f(x)-f(1)}{x-1} = \alpha$.

(b) Let $x \in (0, \infty)$. We will show that $\lim_{n\to\infty} \frac{(x_n)^{\alpha} - x^{\alpha}}{x_n - x} = \alpha x^{\alpha - 1}$, where $(x_n)_{n=0}^{\infty}$ is a sequence in $(0, \infty) \setminus \{x\}$ that converges to x; this is enough to show what we want.

Notice that $(\frac{x_n}{x})_{n=0}^{\infty}$ is a sequence in $(0,\infty)\setminus\{x\}$ that converges to 1, by limit laws. Hence, by part (a),

$$\lim_{n \to \infty} \frac{\left(\frac{x_n}{x}\right)^{\alpha} - 1}{\frac{x_n}{x} - 1} = \alpha. \tag{1}$$

Multiplying both sides of this equation by $x^{\alpha-1}$ and applying limit laws yields our result (to make this easier to see, multiply the numerator and denominator of the fraction by x).