Ćwiczenia XI Model Isinga – dynamiczne formowanie domen

Jakub Tworzydło

Instytut Fizyki Teoretycznej

13 i 14/12/2021 Pasteura, Warszawa

1/9

Plan

Gwałtowne schładzanie układu

2 Rozmiary domer

Plan

Gwałtowne schładzanie układu

2 Rozmiary domen

Temat ćwiczenia

Dzisiaj zmodyfikujemy odrobinę symulację układu spinów Isinga na sieci kwadratowej tak, aby zilustować segregowanie się faz w czasie.

Przetestujemy ilościowo przewidywanie teorii dynamicznej $R \propto t^{1/2}$ dla modelu z nieustalonym parametrem porządku oraz (dodatkowo) $R \propto t^{1/3}$ dla modelu z zachowanym parametrem porządku.

Algorytm Metropolisa

- 1. wybierz losowo spin *i*, z prawd. 1/N (liczba spinów $N = L^2$)
- 2. oblicz zmianę energii

$$\Delta E = E(Y) - E(X) = 2Js_i \sum_{\substack{j \text{ n.n. dla } i}} s_{j(i)}$$

gdzie s_i – **nie**-odwrócony wybrany spin, $s_{j(i)}$ sąsiednie spiny

- 3. dla $\Delta E \ll 0$ akceptuj tj. odwróć s_i .
- 4. dla $\Delta E > 0$ odwróć spin z prawdopodobieństwem $e^{-\beta \Delta E}$

Zadanie 1 (0.3 pkt)

Wykonać symulację Monte Carlo dla spinów Isinga tak, jak na poprzednich ćwiczeniach.

- Zastosować algorytm Metropolisa zamiast heath-bath.
- Obowiązkowo przyspieszyć procedurę sweep dekoratorem
 @jit (nopython=True) z pakieru numba. Przyjąć rozmiar układu
 L = 500.
- Przygotowując układ w przypadkowej początkowej konfiguracji wykonać symulację przez 10,100,1000,5000 MCS kroków w temperaturze T = 2; narysować stany końcowe (imshow lub podobne).

Funkcja korelacji

Robocza definicja funkcji korelacji (dla zadanej konfiguracji układu):

$$\chi(r) = \frac{1}{L} \sum_{r_0=0}^{L-1} s(r_0) s(r_0 + r),$$

gdzie *s* reprezentuje nasz układ na siatce, *r* obliczamy w kierunku poziomym (czyli po indeksie kolumny), ponadto $r_0 + r$ bierzemy z periodycznym warunkiem brzegowym (niech $0 \le r < L/2$). Warto też uśrednić całe $\chi(r)$ po wierszach.

Zadanie 2 (A) 0.4 pkt, (B) 0.3 pkt

- (A) Obliczyć i wykreślić funkcję korelacji przestrzennej $\chi(r)$ po 10, 100, 1000 i 5000 krokach MCS (niech r < L/2, nadal L = 500).
- (B) Obliczyć typowy rozmiar domen R na podstawie $\chi(r)$ (wg. wzorów z następnego slajdu).
- (B) Wykonać wykres R w zależności od czasu t (w jednostkach MCS) w skali logarytmiczno-logarytmicznej, nanieść prostą $R \propto t^{1/2}$ (przeprowadzić przez ostatni punkt lub dopasować); przykładowo przyjąć t=20,50,100,200,500,1000,2000,5000

Rozmiar domen

Zanik wykładniczy funkcji korelacji $\chi(r)=e^{-r/R}$ jest scharakteryzowany typową skalą długości R. Wtedy $-\log\chi=r/R$, a po wysumowaniu stronami $\sum_0^{r_{\max}}$ i uporządkowaniu dostaniemy

$$R = r_{\text{max}}(r_{\text{max}} + 1)/(2C),$$

gdzie $C=-\sum_{r=0}^{r_{\max}}\log\chi(r)$. Możemy ustalić np. r_{\max} największy, dla którego jeszcze $\chi(r)>0.3$.

Zadanie Ekstra

Wykonać zad. 1 oraz zad. 2 dla modelu z zachowanym parametrem porządku, zastosować algorytm Kawabaty.

Przekonać się, że symulację należy przeprowadzić dla nieco mniejszego układu (L=200), ale dla dziesięciokrotnie dłuższych czasów t. Porównać uzyskane wyniki z prawem potęgowym $R \propto t^{1/3}$.