Student Name: Madhushalini Murali; A Id: A20513784

CS 480 Fall 2022 Written Assignment #02

Due: Sunday, October 16th, 11:00 PM CST

Points: 90

Instructions:

1. Use this document template to report your answers. Name the complete document as follows:

2. Submit the final document to Blackboard Assignments section before the due date. No late submissions will be accepted.

Objectives:

- 1. (20 points) Demonstrate your understanding of MinMax games and $\alpha-\beta$ pruning algorithm.
- 2. (50 points) Demonstrate your understanding of propositional logic, its syntax, equivalence laws, and CNF form
- 3. (20 points) Demonstrate your understanding of proof by resolution.

Problem 1 [20 pts]:

Consider the following MinMax game tree

Evaluate MinMax values for all nodes (you can paste in an edited version of this tree below) [10 pts]:

Now, apply **alpha-beta** (α – β) **pruning** to prune some of the tree branches. Show (you can paste in an edited version of this tree below) which sections of the tree will be pruned and **justify your answer** [10 pts]:

Problem 2 [10 pts]:

Use truth tables to show that the following sentences are tautologies [5 pts]:

1. $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$ [5 pts]

Place your truth table here.

р	q	¬р	¬q	p∧q	¬(p∧q)	¬p∨¬q
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	Т	Т
F	Т	Т	F	F	Т	Т
F	F	T	T	F	T	Т

From the last two rows of the truth table, we can infer that $\neg(p \land q) \Leftrightarrow \neg p \lor \neg q$ Hence it is a **Tautology.**

2. $(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$ [5 pts]

Place your truth table here.

р	q	¬р	¬q	(p⇒q)	(¬q⇒¬p)
Т	Т	F	F	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

From the last two rows of the truth table,we can infer that $(p\Rightarrow q)\Leftrightarrow (\neg q\Rightarrow \neg p)$ Hence it is a **Tautology.**

Problem 3 [15 pts]:

Use **deduction** to show (**prove**) that the following sentences are **tautologies**:

1.
$$(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$$
 [5 pts]

Your proof:			
Step	Resulting sentence	Applied law / rule	
Given	$(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$		
1	$(p \Rightarrow q) \Rightarrow (\neg q \Rightarrow \neg p) \land (\neg q \Rightarrow \neg p) \Rightarrow (p \Rightarrow q)$	Equivalence law	
2	$(\neg p \lor q) \Rightarrow (\neg (\neg q) \lor \neg p) \land (\neg (\neg q) \lor \neg p) \Rightarrow (\neg p \lor q)$	Implication law	
3	$(\neg p \lor q) \Rightarrow (q \lor \neg p) \land (\neg q \lor \neg p) \Rightarrow (\neg p \lor q)$	Double negation law	
4	$\neg(\neg p \lor q) \lor (q \lor \neg p) \land \neg(\neg q \lor \neg p) \lor (\neg p \lor q)$	Implication law	
5	$\neg(\neg p \lor q) \lor \bot \lor (\neg p \lor q)$	Contradiction (Negation law)	
6	$\neg(\neg p \lor q) \lor (\neg p \lor q)$	Identity law	
7	T	Law of excluded middle	
Add more rows if necessary Symbols (copy/paste): $T \perp \lor \land \equiv \Leftrightarrow \neg \Rightarrow \therefore$			

2. $((p \Rightarrow q) \land (q \Rightarrow p)) \Leftrightarrow (p \Leftrightarrow q)$ [5 pts]

Your proof:			
Step	Resulting sentence	Applied law / rule	
Given	$((p \Rightarrow q) \land (q \Rightarrow p)) \Leftrightarrow (p \Leftrightarrow q)$		
1	$((p \Rightarrow q) \land (q \Rightarrow p)) \Leftrightarrow (p \Rightarrow q) \land (q \Rightarrow p)$	Equivalence law	
2	$[(p \Rightarrow q) \land (q \Rightarrow p) \Rightarrow (p \Rightarrow q) \land (q \Rightarrow p)] \land$	Equivalence law	
	$[(p \Rightarrow q) \land (q \Rightarrow p) \Rightarrow (p \Rightarrow q) \land (q \Rightarrow p)]$		
3	$[(\neg p \lor q) \land (\neg q \lor p) \Rightarrow (\neg p \lor q) \land (\neg q \lor p)] \land$	Implication law	
	$[(\neg p \lor q) \land (\neg q \lor p) \Rightarrow (\neg p \lor q) \land (\neg q \lor p)]$		
4	$\neg [(\neg p \lor q) \land (\neg q \lor p)] \lor [(\neg p \lor q) \land (\neg q \lor p)] \land$	Implication law	
	$\neg [(\neg p \lor q) \land (\neg q \lor p)] \lor [(\neg p \lor q) \land (\neg q \lor p)]$		
5	$\neg [(\neg p \lor q) \land (\neg q \lor p)] \lor [(\neg p \lor q) \land (\neg q \lor p)] \land T$	Law of Excluded middle	
6	$\neg [(\neg p \lor q) \land (\neg q \lor p)] \lor [(\neg p \lor q) \land (\neg q \lor p)]$	Identity law	
7	T	Law of Excluded middle	
Add more rows if necessary Symbols (copy/paste): T⊥∨∧≡⇔¬⇒∴			

3. $(p \lor q) \land (\neg q \lor r) \Rightarrow (p \lor r)$ [5 pts]

Your proof:			
Step	Resulting sentence	Applied law / rule	
Given	$(p \lor q) \land (\neg q \lor r) \Longrightarrow (p \lor r)$		
1	$\neg((p \lor q) \land (\neg \ q \lor r)) \lor (p \lor r)$	Implication Law	
2	$\neg (\neg q \lor r) \lor \neg (p \lor q) \lor (p \lor r)$	DeMorgan's law	
3	$\neg r \land q \lor \neg q \land \neg p \lor p \lor r$	DeMorgan's law	
4	$\neg r \land T \land \neg p \lor p \lor r$	Law of Excluded middle	
5	$\neg r \land \neg p \lor p \lor r$	Identity law	
6	$\neg p \lor p \land T$	Law of Excluded middle	
7	$\neg p \lor p$	Identity law	
8	T	Law of Excluded middle	
Add more rows if necessary Symbols (copy/paste): T⊥∨∧≡⇔¬⇒∴			

Problem 4 [15 pts]:

Convert the following sentences into **conjunctive normal form (CNF)**:

a) $p \land q \Leftrightarrow p \lor q$ [5 pts]

Your conversion steps:			
Step	Resulting sentence	Applied law / rule	
Given	$p \land q \Leftrightarrow p \lor q$		
1	$((p \land q) \Rightarrow (p \lor q)) \land ((p \lor q) \Rightarrow (p \land q))$	Equivalence law	
2	$(\neg (p \land q) \lor (p \lor q)) \land (\neg (p \lor q) \lor (p \land q))$	Implication law	
3	$((\neg q \lor \neg p) \lor (p \lor q)) \land ((\neg q \land \neg p) \lor (p \land q))$	DeMorgan's law	
4	$((\neg q \lor \neg p) \lor (p \lor q)) \land (((\neg q \land \neg p) \lor p) \land (\neg q \land \neg p) \lor q))$	Distributive law	
5	$(\neg q \lor \neg p \lor p \lor q) \land (\neg q \lor p) \land (\neg p \lor p) \land (\neg q \lor q) \land$	Distributive law and	
	$(\neg p \lor q)$	removing	
		parentheses	
	The above sentence is in CNF.		
Add more rows if necessary Symbols (copy/paste): $T \perp \lor \land \equiv \Leftrightarrow \neg \Rightarrow \therefore$			

b) $(p \land (p \Rightarrow q)) \Rightarrow q$ [10 pts]

Your conversion steps:			
Step	Resulting sentence	Applied law / rule	
Given	$(p \land (p \Rightarrow q)) \Rightarrow q$		
1	$\neg (p \land (p \Rightarrow q)) \lor q$	Implication law	
2	$\neg (p \land (\neg p \lor q)) \lor q$	Implication law	
3	$(\neg (\neg p \lor q) \lor \neg p) \lor q$	DeMorgan's law	
4	$((\neg q \land p) \lor \neg p) \lor q$	DeMorgan's law and Double	
		Negation	
5	$((\neg q \lor \neg p) \land (p \lor \neg p)) \lor q$	Distributive law	
6	$((\neg q \lor \neg p \lor q) \land (p \lor \neg p \lor q))$	Distributive law	
7	$(\neg q \lor \neg p \lor q) \land (p \lor \neg p \lor q)$	Removing exterior parentheses	
	The above sentence is in CNF.		
Add more rows if necessary Symbols (copy/paste): $T \perp \lor \land \equiv \Leftrightarrow \neg \Rightarrow \therefore$			

Problem 5 [20 pts]:

Use **proof by resolution** to show that this claim (sentence) below is true (a tautology):

$$\neg ((p \Leftrightarrow \neg q) \land (q \Leftrightarrow \neg r) \land (r \Leftrightarrow \neg p))$$

Show all the necessary steps.

Answer:

Let
$$S \equiv \neg((p \Leftrightarrow \neg q) \land (q \Leftrightarrow \neg r) \land (r \Leftrightarrow \neg p))$$

Then, $\neg S \equiv ((p \Leftrightarrow \neg q) \land (q \Leftrightarrow \neg r) \land (r \Leftrightarrow \neg p))$

Converting to CNF,

$$((p \Leftrightarrow \neg \ q) \land (q \Leftrightarrow \neg \ r) \land (r \Leftrightarrow \neg \ p))$$

By using Equivalence law,

$$(p \Rightarrow \neg q) \ \land \ (\neg q \Rightarrow p) \ \land \ (q \Rightarrow \neg r) \ \land \ (\neg r \Rightarrow q) \ \land \ (r \Rightarrow \neg p) \ \land \ (\neg p \Rightarrow r)$$

By using Implication law,

$$(\neg p \ \lor \neg q) \ \land \ (q \ \lor p) \ \land \ (\neg q \ \lor \neg r) \ \land \ (r \ \lor \ q) \ \land \ (\neg r \ \lor \neg p) \ \land \ (p \ \lor \ r)$$

Which is now in CNF form.

Clause 1:
$$(\neg p \lor \neg q)$$
; Clause 2: $(q \lor p)$; Clause 3: $(\neg q \lor \neg r)$; Clause 4: $(r \lor q)$;

Clause 5: $(\neg r \lor \neg p)$; Clause 6: $(p \lor r)$

Choosing Clause 1 and Clause 2:

$$(\neg p \ \lor \neg q), (q \ \lor p)$$

By unit resolution, the complimentary pair is deleted and it returns an empty state.

$$\neg S=()$$
 [Empty set]

Choosing Clause 3 and Clause 4:

$$(\neg q \lor \neg r), (r \lor q)$$

This also returns an empty state by deleting the complimentary pairs.

$$\neg S=()$$
 [Empty set]

Choosing Clause 5 and Clause 6:

$$(\neg r \lor \neg p), (p \lor r)$$

This also returns an empty state by deleting the complimentary pairs.

$$\neg S=()$$
 [Empty set]

$$\therefore$$
 $\neg S = ()$ which is an empty set or a contradiction

Since $\neg S$ is a contradiction or false, S = True or Tautology

Hence the given claim is a Tautology.