MACHINE LEARNING TO PREDICT ACCIDENT SEVERITY

JOHANNES DANUSANTOSO

BACKGROUND

- Traffic accidents are a major cause of death in the US
- Traffic accidents (injury and non-injury) lead to huge total economic cost and
 - decreased quality of life
 - the immeasurable burden on the victims' families and friends.

OBJECTIVE

Predict the severity of traffic accidents using Machine Learning with Python

TARGET AUDIENCE

- Public traffic and safety officials
- General population

DATA SOURCE

- We use the collision dataset published by the City of Seattle.
- It is a public data and has more than 200k data points from 2004 to present with 40 attributes.

DATA UNDERSTANDING

- Group the target to 2 classes:
 - I. Property damage only (no injuries)
 - 2. Injuries (including fatalities)
- Imbalanced datasets: ~70% of the data belong to class I

DATA PREPARATION

- Transform the categorical values to numerical values.
- Perform attribute selection using Univariate Feature Selection and determine the top attributes contributing to model accuracy:

WEATHER: description of the weather conditions during the time of the collision.				
Original Values	New Values	Frequency		
Clear	1	114807		
Raining	2	34038		
Overcast	3	28556		
blank		26641		
Unknown	99	15131		
Snowing	4	919		
Other	99	860		
Fog/Smog/Smoke	5	577		
Sleet/Hail/Freezing Rain	6	116		
Blowing Sand/Dirt	7	56		
Severe Crosswind	8	26		
Partly Cloudy	9	10		
Blowing Snow	10	1		

LIGHTCOND: the light condition during the collision				
Original Values	New Values	Frequency		
Daylight	1	119555		
Dark - Street Lights On	2	50139		
blank		26730		
Unknown	99	13533		
Dusk	3	6085		
Dawn	4	2609		
Dark - No Street Lights	5	1580		
Dark - Street Lights Off	6	1239		
Other	99	244		
Dark - Unknown Lighting	7	24		

ROADCOND: the condition of the road during the collision				
Original Values	New Values	Frequency		
Dry	1	128660		
Wet	2	48737		
(blank)		26560		
Unknown	99	15139		
Ice	3	1232		
Snow/Slush	4	1014		
Other	99	136		
Standing Water	5	119		
Sand/Mud/Dirt	6	77		
Oil	7	64		

ADDRTYPE: collision address type				
Original Values	New Values	Frequency		
Alley	0	879		
Block	1	145118		
Intersection	2	72027		
blank		3714		

MODELING

- Handle imbalance datasets
 - Balanced Bagging Classifier
 - Undersampling
- Train/test dataset: 80% / 20%
- Machine Learning algorithm
 - Support Vector Machine (SVM)
 - K-Nearest Neighbor
 - Decision Tree
 - Logistic Regression

RESULTS

Algorithm	F1-score		Jaccard index	
	ввс	UND	ввс	UND
SVM	0.650	0.595	0.494	0.425
KNN	0.585	0.569	0.469	0.398
Decision Tree	0.649	0.594	0.492	0.424
Log Regression	0.650	0.593	0.494	0.424

- Balanced Bagging Classifier (BBC) outperforms Undersampling (UND)
- SVM, Decision Tree, and Log Regression performs equally well

CONCLUSION

- We achieve ~65% accuracy in predicting the accident severity using SVM/Decision Tree/Log Regression with Balanced Bagging Classifier with the weather/road/lighting condition and the location of the accident as the input.
- Further study should be conducted to improve the model accuracy using different method of handling imbalance data.