

Recent time scale

Heterozygosity

Number of variants per individual

Genetic Differentiation

Genetic Differentiation

Tons of modern human DNA sequence data

What are the relative contributions of genetic drift and natural selection? What are the genes under positive selection?

Tons of modern human DNA sequence data

What are the relative contributions of genetic drift and natural selection? What are the genes under positive selection?

- Population size has not been constant in time
- •The effect of demography can mimic the effect of natural selection

← Sites sequenced →

A T G A C C A G A C C T A G T A A C T T G T A G T C G T C A T A

A C G A C A A T A G C T A C C G A C T T C C T G A A G T C A T A

A C G A C A T T A G C A A C T A T G T A G C T G T A G T C A T G

A T G T C C T T A G T A A C T A T C T A G C T G A C G T C A T G

A C G A G A T T C G C A G C T A T C A T G T A G A C G T C A T A

A C T A C C A T A G C A A G T G T C A T G T A G A C G T C T T A

A C G A C C T T A G C A A C T G T C T A G C A G A G T T T T A

ACGACCTGAGCAACTGTCTAGCAGAAGTTATG

Chimp reference

← Sites sequenced →

A T G A C C A G A C C T A G T A A C T T G T A G T C G T C A T A

A C G A C A A T A G C T A C C G A C T T C C T G A A G T C A T A

SEPTE A C G A C A T T A G C A A C T A T G T A G C T G T A G T C A T G

A T G T C C T T A G T A A C T A T C T A G C T G A C G T C A T G

A C G A G A T T C G C A G C T A T C A T G T A G A C G T C A T A

A C T A C C A T A G C A A G T G T C A T G T A G A C G T C T T A

A C G A C C T T A G C A A C T G T C T A G C A G A A G T T T T A

O 2 1 1 1 3 3 6 1 1 1 2 1 2 1 4 2 1 2 4 1 3 3 0 2 4 0 0 6 2 0 5

← Sites sequenced →

A T G A C C A G A C C T A G T A A C T T G T A G T C G T C A T A
A C G A C A A T A G C T A C C G A C T T C C T G A A G T C A T A
A C G A C A T T A G C A A C T A T G T A G C T G T A G T C A T G
A T G T C C T T A G T A A C T A T C T A G C T G A C G T C A T G
A C G A G A T T C G C A G C T A T C A T G T A G A C G T C T T A
A C T A C C A T A G C A A G T G T C A T G T A G A C G T C T T A
A C G A C C T T A G C A A C T G T C T A G C A G A G T T T T A

← individuals

0 2 1 1 1 3 3 6 1 1 1 2 1 2 1 4 2 1 2 4 1 3 3 0 2 4 0 0 6 2 0 5

← Sites sequenced →

← individuals –

A T G A C C A G A C C T A G T A A C T T G T A G T C G T C A T A
A C G A C A A T A G C T A C C G A C T T C C T G A A G T C A T A
A C G A C A T T A G C A A C T A T G T A G C T G T A G T C A T G
A T G T C C T T A G T A A C T A T C T A G C T G A C G T C A T G
A C G A G A T T C G C A G C T A T C A T G T A G A C G T C A T A
A C T A C C A T A G C A A G T G T C A T G T A G A C G T C T T A
A C G A C C T T A G C A A C T G T C T A G C A G A A G T T T T A

0 2 1 1 1 3 3 6 1 1 1 2 1 2 1 4 2 1 2 4 1 3 3 0 2 4 0 0 6 2 0 5

The site frequency spectrum \rightarrow

2D SFS

Neutrality

By chance ...

Natural selection

Positive Selection

Natural selection

Positive Selection

Negative Selection

How is the SFS shaped by difference processes?

The geneaology of a sample

The Wright-Fisher model

X(t) = number of individuals carrying mutation at time t

X(t) is a **Markov chain** with transition probabilities:

$$P_{ij} = Bin(2N,i/2N)$$

If mutations are arriving at Poisson times

If mutations are arriving at Poisson times

The SFS in a sample of size *n*

The expected number of variant sites at frequency i

$$\theta F(i,\gamma) = \theta \int_{0}^{1} f(q) \Pr(i \mid q) dq$$

$$= \theta \int_{0}^{1} \frac{1}{q} \binom{n}{i} q^{i} (1-q)^{n-i} dq$$

$$= \frac{\theta}{i}$$

The site frequency spectrum

Beichman A, Huerta-Sanchez E, Lohmueller K. Annual Review of Ecology, Evolution, and Systematics (2019)

Beichman A, Huerta-Sanchez E, Lohmueller K. Annual Review of Ecology, Evolution, and Systematics (2019)

Beichman A, Huerta-Sanchez E, Lohmueller K. Annual Review of Ecology, Evolution, and Systematics (2019)

The effect of demography

The effect of demography

The effect of demography

Data from 1500 Danes and 1500 Chinese individuals

Synonymous sites

The effect of a bottleneck and population structure

Population structure

The effect of demography

If mutations are arriving at Poisson times

The SFS in a sample of size *n* with selection

The expected number of variant sites at frequency i

$$\theta F(i, \gamma) = \int_0^1 \frac{f(q, \gamma)}{2} \cdot \Pr(i \mid q) \, dq$$

$$= \int_0^1 \frac{1 - e^{-2\gamma(1 - q)}}{1 - e^{-2\gamma}} \frac{1}{q(1 - q)} \binom{n}{i} q^i (1 - q)^{n - i} dq$$

The SFS in a sample of size *n*

The expected number of variant sites at frequency i

$$\theta F(i, \gamma) = \int_0^1 \frac{f(q, \gamma)}{2} \cdot \Pr(i \mid q) \, dq$$

$$= \int_0^1 \frac{1 - e^{-2\gamma(1-q)}}{1 - e^{-2\gamma}} \frac{1}{q(1-q)} \binom{n}{i} q^i (1-q)^{n-i} dq$$

The probability of seeing x_i sites at frequency i

$$p(X_i = x_i \mid \theta, \gamma) = e^{-\theta F(i,\gamma)} \frac{(\theta F(i,\gamma))^{x_i}}{x_i!}$$

The SFS in a sample of size *n*

The expected number of variant sites at frequency i

$$\theta F(i,\gamma) = \int_0^1 \frac{f(q,\gamma)}{2} \cdot \Pr(i \mid q) \, dq$$

$$= \int_0^1 \frac{1 - e^{-2\gamma(1-q)}}{1 - e^{-2\gamma}} \frac{1}{q(1-q)} \binom{n}{i} q^i (1-q)^{n-i} dq$$

The probability of seeing x_i sites at frequency i

$$p(X_i = x_i \mid \theta, \gamma) = e^{-\theta F(i,\gamma)} \frac{(\theta F(i,\gamma))^{x_i}}{x_i!}$$

The likelihood function

$$L_{u}(\theta, \gamma \mid x) = \prod_{i=1}^{n-1} e^{-\theta F(i,y)} \frac{(\theta F(i, \gamma))^{x_{i}}}{x_{i}!}$$

If mutations are arriving at Poisson times

Huerta-Sanchez et al. (2008)

Population sample

An excess of rare mutations

Li* Y. et al. (2010) Nature Genetics

An excess of rare mutations

Li* Y. et al. (2010) Nature Genetics

An excess of rare mutations

Negative Selection

An excess of rare deleterious mutations

Li* Y. et al. (2010) Nature Genetics

X chromosome

Li* Y. et al. (2010) Nature Genetics

Distribution of selective effects of non-synonymous mutations

$$f(x) = k \frac{1}{x} + (1 - k) \int f_{sel}(x, -\gamma) Gamma(\gamma; \alpha, \beta) d\gamma$$

A proportion k of mutations are neutral

A proportion (1-k) are deleterious

A larger proportion of weakly deleterious mutations

Estimated gamma densities

Boyko et al. (2008) Plos Genetics

Selection strength

Demographic inference, Gutenkunst et al. 2009

Demographic inference

dadi

$$\frac{d}{dt}f(q,t;\Theta) = \frac{1}{2}\frac{d^2}{dq^2}\left\{V(q;\Theta)f(q,t;\Theta)\right\} - \frac{d}{dq}\left\{M(q;\Theta)f(q,t;\Theta)\right\}$$

dadi

dadi

Demographic inference with dadi of fastsimcoal

Benefits of model-based approach over Structure

A tutorial on how not to over-interpret STRUCTURE and ADMIXTURE bar plots

Decision Tree from Beichman et al. (2018) Annual Review of Ecology, Evolution, and Systematics

We need to consider demography when detecting selection

- When the population size grows, genetic drift slows down and selection becomes more efficient
- A population bottleneck speeds up genetic drift and makes natural selection get less efficient
- Population size changes shift the site frequency spectrum away from the shape $SFS(n)^{\sim}1/n$ that is expected under neutrality
- Natural selection also shifts the SFS away from the equilibrium 1/n shape
- The SFS shape can be used to test for selection, but only after correcting for nonequilibrium demography