Solve the following problems by hand, then implement in numpy to check your work and familiarize yourself with the library.

1. Given $\mathbf{u} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$, find: (a) $4\mathbf{u} - 3\mathbf{v}$

(b) $\mathbf{u} \cdot \mathbf{v}$

(c) The angle θ between \mathbf{u} and \mathbf{v} , knowing that $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$

(d) Bonus: plot ${\bf u}$ and ${\bf v}$ using matplotlib. Does your angle θ make sense?

Tutorial 02: Linear Algebra and numpy Practice

January 17

- 2. Consider a matrix $A = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$ and a vector $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
 - (a) Compute Ab.

(b) Find A^{-1} . For 2×2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

(c) Solve the equation Ax = b an unknown vector x.