Group 15 Final Report Daycare CIS 3400 EMWA

Arfin Jahan (arfin.jahan@baruchmail.cuny.edu)
Chi Ying Annice Chan (chiyingannice.chan@baruchmail.cuny.edu)
Christian Sierra Perez (christian.sierraperez1@baruchmail.cuny.edu)
Colleen Zeng (colleen.zeng@baruchmail.cuny.edu)
Yondonjamts Otgontamir (yondonjamts.otgontamir@baruchmail.cuny.edu)

Introduction:

Nicole's Family Daycare is a childcare business that has been running for 8 years. By running a daycare, Nicole has to keep track of employees, paychecks, parent's information, pay rates, children, etc. For the last 8 years, Nicole hasn't modernized her data. She has been using file cabinets filled with papers and folders to keep track of all the information. However, Nicole has realized this is quite inefficient because she spends a lot of time going through papers and it's difficult to organize everything.

In Nicole's family business, we need to keep track of the child's meals, allergies, equipment, parent's contact information, payments expectation, and the duration the child stays at the Daycare. We create data to keep up with records of what it was needed to organize the Daycare to make sure we have the correct data to keep up on what was needed. Therefore, we also have created forms and reports to help Nicole's Family Daycare to keep in record whenever she needs them.

Entity Relationship Model Diagram:

E-R Diagram on Lucid

Normalization:

Payment (Payment_ID (Key), Payment_Type, Hours_Enrolled, Pay_Rate, Payment_Date, Adult_ID (FK)) Key: Payment ID

Adult_Info (Adult_ID (Key), First_Name, Last_Name, Phone_Number, Email, Street, Apartment, Zip_Code) Key: Adult_ID

Adult_Location_Info (Zip_Code (Key), City, State)

Key: Zip Code

Role (Relationship, Child_ID (FK)(Key), Adult_ID (FK)(Key))

Key: Child_ID, Adult_ID

Log_Sheets (Logsheet_ID (Key), PickupDateTime, DropoffDateTime, Child_ID (FK))

Key: Logsheet_ID

Child (Child_ID (Key), First_Name, Last_Name, Date_of_Birth, Gender, Ethnicity, Favorite_Color, Favorite_Food, Favorite_Sport, Daycare_ID (FK))

Key: Child ID

Time_Sheets (Timesheet_ID (Key), Normal_Pay_Rate, Overtime_Pay_Rate, Working_Hours,

Overtime_Hours, Pay_Date, Employees_ID (FK))

Key: Timesheet_ID

Pay_Check (Pay_Check_ID (Key), Gross_Amount, Tax_Amount, FICA_Amount, Net_Amount,

Check_Number, Check_Date, Timesheet_ID (FK))

Key: Pay_Check_ID

Employee_SS (SocialSecurityNumber (Key), First_Name, Last_Name)

Key: SocialSecurityNumber

Employee_Info (Empoyees_ID (Key), SocialSecurityNumber, Phone_Number, Email, Street, Apartment,

Zip_Code, Daycare_ID(FK))

Key: Empoyees_ID

Employee_Location (**Zip_Code** (**Key**), City, State)

Key: Zip_Code

Daycare_Zip (Zip_Code (Key), City, State)

Key: Zip_Code

Daycare_Info (Daycare_ID (Key), Email, Street, Apartment, Zip_Code, Opening_Time, Closing_Time)

Key: Daycare ID

Functional dependencies:

Daycare Relation (Daycare_ID (Key), Email, Street, Apartment, City, State, Zip_Code, Opening_Time, Closing_Time)

Key: Daycare_ID

FD 1: Daycare_ID → Email, Street, Apartment, City, State, Zip_Code, Opening_Time, Closing_Time

FD 2: $Zip_Code \rightarrow City$, State

1NF: Yes, Given as a relation

2NF: Yes, because there are no partial key dependencies

3NF: No, because there is a transitive dependency

Normalization of Daycare Relation:

Daycare_Info Relation (Daycare_ID, Email, Street, Apartment, Zip_Code, Opening_Time, Closing Time)

Key: Daycare_ID

FD1: Daycare_ID → Email, Street, Apartment, Zip_Code, Opening_Time, Closing_Time

1NF: Yes, because it was split from a relation

2NF: Yes, because there are no partial key dependencies

3NF: Yes, because there are no transitive dependencies

Daycare_Zip Relation (Zip_Code, City, State)

Key: Zip_Code

FD1: Zip Code \rightarrow City, State

1NF: Yes, because it was split from a relation

2NF: Yes, because there are no partial key dependencies

3NF: Yes, because there are no transitive dependencies

Employees Relation (Employees_ID (Key), SocialSecurityNumber, First_Name, Last_Name, Phone_Number, Email, Street, Apartment, City, State, Zip_Code, Daycare_ID (FK))

Key: Employees ID

FD 1: Employees_ID → SocialSecurityNumber, First_Name, Last_Name, Phone_Number, Email, Street, Apartment, City, State, Zip Code, Daycare ID

FD 2: $Zip_Code \rightarrow City$, State

FD 3: SocialSecurityNumber → First Name, Last Name

1NF: Yes, because it's given as a relation

2NF: Yes, because there are no partial key dependencies

3NF: No, because there are transitive dependencies

Normalization of Employee Relation:

Employee_Info Relation (Empoyees_ID, SocialSecurityNumber, Phone_Number, Email, Street, Apartment, Zip_Code, Daycare_ID(FK))

Key: Employees_ID

FD1: Employees_ID → SocialSecurityNumber, Phone_Number, Email, Street, Apartment, Zip_Code, Daycare ID)

1NF: Yes, because it is split from a relation

2NF: Yes, because there are no partial key dependencies

3NF: Yes, because there are no transitive dependency

Employee_Info Relation (Empoyees_ID, SocialSecurityNumber, Phone_Number, Email, Street, Apartment, City, State, Zip_Code, Daycare_ID(FK))

Key: Employees_ID

FD1: Employees_ID → SocialSecurityNumber, Phone_Number, Email, Street, Apartment, Zip_Code, City,

State, Daycare_ID)

1NF: Yes, because it is split from a relation

2NF: Yes, because there are no partial key dependencies

3NF: Yes, because there are no transitive dependency

Employee_Location Relation (Zip_Code, City, State)

Key: Zip_Code

FD1: $Zip_Code \rightarrow City$, State

1NF: Yes, because it's split from a relation

2NF: Yes, because there are no partial key dependencies

3NF: Yes, because there is no transitive dependency

Employee_SS Relation (SocialSecurityNumber, First_Name, Last_Name)

Key: SocialSecurityNumber

FD1: SocialSecurityNumber → First Name, Last Name

1NF: Yes, because it is split from a relation

2NF: Yes, because there are no partial key dependencies

3NF: Yes, because there are no transitive dependencies

Time_Sheets Relation (Timesheet_ID (Key), Normal_Pay_Rate, Overtime_Pay_Rate, Working_Hours, Overtime Hours, Pay Date, Employees ID (FK))

Key: Timesheet ID

FD 1: Timesheet_ID → Normal_Pay_Rate, Overtime_Pay_Rate, Working_Hours, Overtime_Hours, Pay_Date, Employees ID

1NF: Yes, because given as a relation

2NF: Yes, because there are no partial key dependencies

3NF: Yes, because there are no transitive dependencies

Pay_Check Relation (Pay_Check_ID (Key), Gross_Amount, Tax_Amount, FICA_Amount, Net_Amount, Check_Number, Check_Date, Timesheet_ID (FK))

Key: Pay_Check_ID

FD 1: Pay_Check_ID → Gross_Amount, Tax_Amount, FICA_Amount, Net_Amount, Check_Number,

Check Date, Timesheet ID

1NF: Yes, because given as a relation

2NF: Yes, because there are no partial key dependencies

3NF: Yes, because there are no transitive dependencies

Child Relation (Child_ID (Key), First_Name, Last_Name, Date_of_Birth, Gender, Ethnicity, Favorite_Color, Favorite_Food, Favorite_Sport, Daycare_ID (FK))

Key: Child ID

FD 1: Child_ID → First_Name, Last_Name, Date_of_Birth, Gender, Ethnicity, Favorite_Color, Favorite_Food, Favorite_Sport, Daycare ID

1NF: Yes, because given as a relation

2NF: Yes, because there are no partial key dependencies

3NF: Yes, because there are no transitive dependencies

Log_Sheets Relation (Logsheet_ID (Key), PickupDateTime, DropoffDateTime, Child_ID (FK))

Key: Logsheet ID

FD 1: Logsheet_ID → PickupDateTime, DropoffDateTime, Child_ID (**FK**)

1NF: Yes, because given as a relation

2NF: Yes, because there are no partial key dependencies

3NF: Yes, because there are no transitive dependencies

Role (Relationship, Child_ID (FK)(Key), Adult_ID (FK)(Key))

Key: Child ID, Adult ID

FD1: Child ID, Adult ID → Relationship

1NF: Yes, given as a relation

2NF: Yes, because there are no partial key dependencies.

3NF: Yes, because there are no transitive dependencies.

Adult Relation (Adult_ID (Key), First_Name, Last_Name, Phone_Number, Email, Street, Apartment, City, State, Zip_Code)

Key: Adult_ID

FD 1: Adult_ID → First_Name, Last_Name, Phone_Number, Email, Street, Apartment, City, State, Zip_Code

FD 2: Zip_Code → City, State

1NF: Yes, because given as a relation

2NF: Yes, because there are no partial key dependencies

3NF: No, because there is a transitive dependency

Normalization of Adult Relation:

Adult_Info Relation (Adult_ID (Key), First_Name, Last_Name, Phone_Number, Email, Street, Apartment, Zip_Code)

Key: Adult ID

FD 1: Adult ID → First Name, Last Name, Phone Number, Email, Street, Apartment, Zip Code

1NF: Yes, because given as a relation

2NF: Yes, because there are no partial key dependencies

3NF: Yes, because there are no transitive dependencies

Adult_Location_Info Relation (Zip_Code, City, State)

Key: Zip_Code

FD1: Zip Code \rightarrow City, State

1NF: Yes, it is split from a relation

2NF: Yes, because there are no partial key dependencies

3NF: Yes, there are no transitive dependencies

Payment Relation (Payment_ID (Key), Payment_Type, Hours_Enrolled, Pay_Rate, Payment_Date, Adult ID (FK))

Key: Payment ID

FD 1: Payment ID → Payment Type, Hours Enrolled, Pay Rate, Payment Date, Adult ID (**FK**)

1NF: Yes, because given as a relation

2NF: Yes, because there are no partial key dependencies

3NF: Yes, because there are no transitive dependencies

CREATING TABLE:

```
CREATE TABLE Daycare (
Daycare_ID NUMBER NOT NULL PRIMARY KEY,
Email VARCHAR(30),
Street VARCHAR(30),
Apartment VARCHAR(30),
City VARCHAR(30),
State VARCHAR(2),
Zip_Code VARCHAR(10),
Opening_Time VARCHAR(20),
```

```
Closing Time VARCHAR(20));
CREATE TABLE Employee Info (
                                             NOT NULL PRIMARY KEY,
     Employee_ID NUMBER
     First_Name VARCHAR(20) NOT NULL,
Last_Name VARCHAR(20) NOT NULL,
                                               NOT NULL,
     SocialSecurityNumberVARCHAR(15),
     Phone_Number VARCHAR(15),
Email VARCHAR(30),
                           VARCHAR(15),
     Street
                            VARCHAR (15),
     Apartment
                           VARCHAR (20),
VARCHAR (2),
VARCHAR (15),
     City
     State
     Zip Code
     Daycare ID NUMBER
                                              NOT NULL);
CREATE TABLE TimeSheet (
     Timesheet ID
                            NUMBER NOT NULL PRIMARY KEY,
     Normal_Pay_Rate NUMBER,
Overtime_Pay_Rate NUMBER,
Working_Hours NUMBER,
Overtime_Hours NUMBER,
Pay_Date DATETIME NOT NULL,
Employee_ID NUMBER NOT NULL);
CREATE TABLE Pay Check(
                         NUMBER
NUMBER,
NUMBER,
NUMBER,
NUMBER,
INTEGER,
DATETIME,
                            NUMBER NOT NULL PRIMARY KEY,
     Pay Check ID
     Gross Amount
     Tax Amount
     FICA_Amount
     Net Amount
     Check_Number
Check Date
     Timesheet ID NUMBER NOT NULL);
CREATE TABLE Adult (
     Adult_ID NUMBER NOT NULL PRIMARY KEY, First_Name VARCHAR(30) NOT NULL, Last_Name VARCHAR(30) NOT NULL,
     Phone_number VARCHAR(20),
                     VARCHAR(30),
VARCHAR(30),
     Email
     Street
                    VARCHAR(30),
VARCHAR(30),
     Apartment
     City
     State
                     VARCHAR(2),
     Zip Code VARCHAR(10));
CREATE TABLE Payment (
     Payment ID NUMBER NOT NULL PRIMARY KEY,
     Payment Type VARCHAR (20),
     Hours Enrolled NUMBER,
     Pay Rate NUMBER,
```

```
Payment Date DATETIME,
      Adult ID NUMBER NOT NULL);
CREATE TABLE Child (
     Child_ID NUMBER NOT NULL PRIMARY KEY, First_Name VARCHAR(30) NOT NULL, Last_Name VARCHAR(30) NOT NULL,
      Date of Birth DATETIME NOT NULL,
      Gender VARCHAR (20),
Ethnicity VARCHAR (20),
      Favorite Color VARCHAR(20),
      Favorite Food VARCHAR(20),
      Favorite Sport VARCHAR (20),
      Daycare_ID NUMBER NOT NULL);
CREATE TABLE Log Sheet (
     Logsheet_ID NUMBER NOT NULL PRIMARY KEY,
Pickup_Date_Time DATETIME NOT NULL,
Dropoff_Date_Time DATETIME NOT NULL,
Child_ID NUMBER NOT NULL);
CREATE TABLE Role (
     ROLE_ID NUMBER NOT NULL PRIMARY KEY
Child_ID NUMBER NOT NULL,
Adult_ID NUMBER NOT NULL,
Relationship VARCHAR(20));
ALTER TABLES:
ALTER TABLE TimeSheet
    ADD FOREIGN KEY (Employee ID)
                REFERENCES Employee Info(Employee ID);
ALTER TABLE Pay Check
   ADD FOREIGN KEY (Timesheet ID)
         REFERENCES TimeSheets (Timesheet ID);
ALTER TABLE Payment
    ADD FOREIGN KEY (Adult ID)
               REFERENCES Adult (Adult ID);
ALTER TABLE Child
    ADD FOREIGN KEY (Daycare ID)
              REFERENCES Daycare Relation (Daycare ID);
ALTER TABLE Log Sheet
    ADD FOREIGN KEY (Child ID)
                  REFERENCES Child (Child ID);
ALTER TABLE Role
      ADD FOREIGN KEY (Child ID)
            REFERENCES Child (Child ID);
```

```
ALTER TABLE Role

ADD FOREIGN KEY(Adult_ID)

REFERENCES Adult(Adult_ID);
```

ALTER TABLE Employee_Info
ADD FOREIGN KEY (Daycare_ID)
REFERENCES Daycare (Daycare ID);

Reporting Questions with SQL Code:

1. List all children with the names and relationships of related adults

```
SELECT Child.First_Name, Child.Last_Name, Role.Relationship, Adult.First_Name, Adult.Last_Name

FROM (( Child INNER JOIN Role ON Child.Child_ID = Role.Child_ID )

INNER JOIN Adult ON Role.Adult_ID = Adult.Adult_ID)

ORDER BY Child.First_Name ASC;
```

Child First Name	Child Last Name	Relationship	Adult First Name	Adult Last Name
Gojo	Sataro			
		Uncle	Maria	Sofia
Josh	Adams			
		Father	Danny	John
Mikasa	Eren			
		Father	Ronaldo	Chris
Nancy	Pelocy			
		Aunt	Heath	Bulth
Odell	Owens			
		Neighbor	Kobe	Kendrick
Versh	Mcgraw			
		Mother	Alfonze	Dempsey

2. List all employees with a sum of hours worked (overtime, etc.) per timesheet and total of net amount

SELECT First_Name, Last_Name, (Working_Hours + Overtime_Hours) AS Total_Hours, SUM(Pay_Check.Net_Amount) AS Total_Net_Amount

FROM (Employee_Info INNER JOIN TimeSheet ON Employee_Info.Employee_ID = TimeSheet.Employee_ID) INNER JOIN Pay_Check ON TimeSheet.Timesheet_ID = Pay_Check.Timesheet_ID

GROUP BY First Name, Last Name, (Working Hours + Overtime Hours);

oldi nou	ırs and Total Net	Amoun	
First Name	Last Name	Total Hours	Total Net Amount
Edth	Kith	95	505
Jerry	Harry	110	405
John	Rafal	115	505
Kanye	Kim	100	600
Micheal	Douglas	100	500
Nadal	Federer	105	600
Will	Smith	100	500

3. List all parents and their preferred payment types

SELECT Adult.First_Name, Adult.Last_Name, Payment.Payment_Type **FROM** Adult **INNER JOIN** Payment **ON** Adult.Adult_ID = Payment.Adult_ID;

Parent and Pa	ayments	
First Name	Last Name	Payment Type
Alfonze	Dempsey	
		Cash
Danny	John	
		Cash
Heath	Bulth	
		Credit Card
Kobe	Kendrick	
		Cash
Lamar	Mahomes	
		Debit Card
Maria	Sofia	
		Credit Card
Ronaldo	Chris	
		Debit Card

Specific questions with SQL Code:

1. Sum of payments, a sum of payroll then get the difference (by month?) Can the business cover payroll from the payments?

SELECT SUM(Hours_Enrolled * Pay_Rate) AS Sum_of_Payments, SUM(Net_Amount) AS Sum_of_Paycheck, (Sum_of_Payments - Sum_of_Paycheck) AS Difference **FROM** Payment, Pay Check;

No, the business cannot cover payroll from the payments.

2. For all the children that are registered in our daycare, show me all the children located in NY.

SELECT Child.First_Name, Child.Last_Name, Adult.City, Adult.State FROM (Child INNER JOIN Role ON Child.Child_ID = Role.Child_ID) INNER JOIN Adult ON Role.Adult_ID = Adult.Adult_ID WHERE Adult.State = "NY";

	NY Children $ imes$				
4	First_Name -	Last_Name -	City -	State -	
	Versh	Mcgraw	Jackson Heith	NY	
	Mikasa	Eren	Sunnyside	NY	
	Gojo	Sataro	Manhattan	NY	
	Odell	Owens	Manhattan	NY	
	Josh	Adams	Manhattan	NY	
*					

3. Employees with the most overtime hours

SELECT First_Name, Last_Name, MAX(Overtime_Hours) AS Most_Overtime **FROM** Employee_Info **INNER JOIN** TimeSheet **ON** Employee_Info.Employee_ID =

TimeSheet.Employee_ID **GROUP BY** First_Name, Last_Name **ORDER BY** MAX(Overtime_Hours) DESC;

Max Overtime ×				
	First_Name -	Last_Name -	Most_Overtir -	
	John	Rafal	75	
	Jerry	Harry	70	
	Nadal	Federer	65	
	Will	Smith	60	
	Micheal	Douglas	60	
	Kanye	Kim	60	
	Edth	Kith	55	

Forms, Reports, and Queries:

Daycare	Data Entry Form
Daycare ID Email Street Apartment City State Zip Code Opening Time Closing Time	fred.john@gmail.com 456 4 Brooklyn NY 2345 7:00AM 6:30PM

Private Sub City_AfterUpdate()
City = StrConv(City, vbProperCase)
End Sub

The **Daycare Data Entry Form** is used to input and update the daycare basic information. After the previous person enters their information and presses the enter on the keyboard to save, the next person can enter their information. The VBA code capitalizes the first letter of the City field.

Child Information				
Child ID First Name Last Name Date of Birth Gender Ethnicity Favorite Color Favorite Food Favorite Sport Daycare ID	Josh Adams 11/20/2017 Male White Blue Pasta Swimming			
Role **	Relationship Father	Adult_ID	First_Name 1 Danny	Johr
Private Sub Ethnicity_AfterUpdate() Ethnicity = StrConv(Ethnicity, vbProperCase) End Sub				
<pre>Private Sub First_Name_AfterUpdate() First_Name = StrConv(First_Name, vbProperCase) End Sub</pre>				
<pre>Private Sub Gender_AfterUpdate() Gender = StrConv(Gender, vbProperCase) End Sub</pre>				
<pre>Private Sub Last_Name_AfterUpdate() Last_Name = StrConv(Last_Name, vbProperCase) End Sub</pre>				

The **Child Form** is used to input interesting and basic information about the child. The daycare that the child is enrolled in can be selected from the Daycare_ID as shown. Under Role Subform, users can input the relationship of the child and the adult, making it easier to track in the system. Additionally, VBA code has been implemented to auto-capitalize the first letter of the Ethnicity, City, First_Name, and Last_Name fields.

Adult ID	1	
First Name		
Last Name	John	Microsoft Access X
Phone Number	718-987-5678	
Email	Danny.John@gmail.com1	Warning: You Must Enter a Name!
Street	789 greek st	
Apartment	4	OK
City	San Diego	
State	CA	
Zip Code	43679	
_		

```
Private Sub First_Name_AfterUpdate()
    First_Name = StrConv(First_Name, vbProperCase)
    If IsNull(Me.First_Name.Value) Or Me.First_Name.Value = "" Then
        MsgBox ("Warning: You Must Enter a Name!")
    End If
End Sub

Private Sub Last_Name_AfterUpdate()
Last_Name = StrConv(Last_Name, vbProperCase)
End Sub

Private Sub New_Form_Click()
    DoCmd.GoToRecord , acNewRec
    Dim New_ID As Integer
    New_ID = DLookup("Max(Adult_ID)", "Adult") + 1
    Me.Adult_ID.Value = New_ID
End Sub
```

The **Adult Data Entry Form** is used to input information of the adult, who's related to the child(ren) entrusted in the daycare. This form features VBA code to capitalize the first letter of the First_Name, Last_Name fields. A warning message also pops up if the First_Name field is left blank. Lastly, when the button "New Form" is clicked, a new form populates with a unique Adult_ID.


```
Private Sub First_Name_AfterUpdate()
|First_Name = StrConv(First_Name, vbProperCase)
End Sub

Private Sub Last_Name_AfterUpdate()
Last_Name = StrConv(Last_Name, vbProperCase)
End Sub
```

The Log_Sheet Data Entry Form is used to log when and how long the child is in the daycare, which will be related to payment after. Users can select the child from the Child_ID as shown. This VBA code automatically capitalizes the first letter of the first and last names.

Payment Data Entry		
	_	
Payment ID		
Payment Type	Cash	
Hours Enrolled	40	
Pay Rate	15	
Payment Date	12/30/2022	
Adult ID	1~	
First Name	Danny	
Last Name	John	
	New Payment	

```
Private Sub First_Name_AfterUpdate()
First_Name = StrConv(First_Name, vbProperCase)
End Sub

Private Sub Last_Name_AfterUpdate()
Last_Name = StrConv(Last_Name, vbProperCase)
End Sub

Private Sub New_Payment_Click()
DoCmd.GoToRecord , acNewRec
    Dim New_P_ID As Integer
    New_P_ID = DLookup("Max(Payment_ID)", "Payment") + 1
    Me.Payment_ID.Value = New_P_ID
End Sub
```

The **Payment Data Entry Form** is used to input and update adult payment to the daycare. Users can select the adult from the Adult_ID as shown. Additionally, VBA codes were inputted to auto-capitalize the first letters of the first and last names. There's also an option to create a new form which automatically creates a new unique Payment ID.


```
Private Sub City_AfterUpdate()
City = StrConv(City, vbProperCase)
End Sub

Private Sub First_Name_AfterUpdate()
First_Name = StrConv(First_Name, vbProperCase)
End Sub

Private Sub Last_Name_AfterUpdate()
Last_Name = StrConv(Last_Name, vbProperCase)
End Sub

Private Sub New_Form_E_Click()
    DoCmd.GoToRecord , , acNewRec
    Dim New_E_ID As Integer
    New_E_ID = DLookup("Max(Employee_ID)", "Employee_Info") + 1
    Me.Employee_ID.Value = New_E_ID
End Sub
```

The **Employee_Info Data Form** is used to input and update the employee basic information. Users can select the daycare based on where they work from the Daycare_ID as shown. VBA code was implemented to auto-capitalize the first letters of the First_Name, Last_Name, and City fields. Additionally, users can click on the button to create a new form that will automatically generate a unique Employee ID as well.


```
Private Sub First_Name_AfterUpdate()
First_Name = StrConv(First_Name, vbProperCase)
End Sub

Private Sub Last_Name_AfterUpdate()
Last_Name = StrConv(Last_Name, vbProperCase)|
End Sub

Private Sub SocialSecurityNumber_AfterUpdate()
If IsNull(Me.SocialSecurityNumber.Value) Or Me.SocialSecurityNumber.Value = "" Then
MsgBox ("Warning: You Must Enter a Social Security Number!")
End If
End Sub
```

The Employee Pay Information Form can be used to input and update Employee information and payment information in the TimeSheet and Pay_Check tables. VBA code was implemented to capitalize First_Name, Last_Name. Additionally, a warning message appears if the user leaves the Social Security field blank.

Navigation Form:

==	Navigation Navigation	on Form
Da	ycare Data Entry F	orm Employee_Info (Master) Employee_Info Data Entry Total Hours and Total Net Amount Child (N
	Payme	nt Data Entry
•		
	Payment ID	1
	Payment Type	Cash
	Hours Enrolled	40
	Pay Rate	15
	Payment Date	12/30/2022
	Adult ID	1~
	First Name	Danny
	Last Name	John
		New Payment

The Navigation Form features all of the forms and reports grouped into sections:

- Daycare Business Related Forms
 - o Daycare Data Entry Form
 - Employee_Info (Master)
 - o Employee Info Data Entry
 - o Total Hours and Total Net Amount Report
- Child Related Forms
 - o Child (Master Detail-Lookup)
 - Log Sheet Data Entry
 - Child and Relationships Report
- Adult Related Forms
 - o Adult Data Entry Form
 - o Parent and Payments Report
 - Payment Data Entry

Conclusion:

By developing a database application, we help Nicole's Family Daycare business to systemize its software and services. Where she can easily input and track her daycare, customers, employees, payments and other important information. Our Daycare Model highlights the key elements of a database development lifecycle. From crafting a proposal based on her needs, creating a conceptual data model to provide a visualized understanding, and finalizing the database with logical, physical data models and application developments, making simple access for users.

The E-R Model, normalization and relation model were the simpler steps. Mostly, we just need to make sure to convert the functional dependencies properly, and many were already in third normal form. While database and application implementation require the most attention and effort, especially when the codes and forms might not work or slightly off. Overall, the project brought us a great experience, taught us how to use Access and it is a great skillset to put on our resume to find more internships and carrer. We learned much about using the wizard queries and, unexpectedly, the relation model as well. Next time, we can improve on cutting back a few entities and focusing more on each entity in detail instead to create a better, solid database system.

Project Link