Organizační úvod

Poznámka

Zkouška bude snad ústní.

Úvod

Věta 0.1 (Lebesgueova míra)

Existuje právě jedna borelovská míra λ^n v \mathbb{R}^n taková, že

$$\lambda^{n} \binom{n}{i=1} [a_{i}, b_{i}] = \prod_{i=1}^{n} (b_{i} - a_{i}), -\infty < a_{i} \le b_{i} < \infty, 1 \le i \le n.$$

Poznámka

Zúplněnou σ-algebru značíme B_0^n a platí $B^n \subsetneq B_0^n$ (pro $n \geq 2$ jednoduché, pro n = 1 možná někdy příště).

 λ^n je translačně a rotačně invariantní (posunutím a otočením se nezmění).

 λ^n je σ -konečná.

 λ^n je regulární (můžeme její hodnotu na množině aproximovat jejími hodnotami na otevřené nadmnožině a uzavřené podmnožině^a).

 $\forall E\in B_0^n \ \forall \varepsilon>0 \ \exists F\subset E\subset G, F \ \text{uzavřená}, G \ \text{otevřená}, \lambda^n\left(G\setminus F\right)<\varepsilon.$

Definice 0.1

 $\tilde{\mu}:\mathcal{A}\to[0,\infty]$ je pramíra (premeasure) na algebře \mathcal{A} podmnožin X, jestliže:

$$\tilde{\mu}\left(\emptyset\right)=0,$$

$$A_{i} \in \mathcal{A}, \bigcup_{i} A_{i} \in \mathcal{A}, A_{i} \text{ po dvou disjunktn} i \implies \tilde{mu} \left(\bigcup_{i} A_{i}\right) = \sum_{i} \tilde{\mu}\left(A_{i}\right).$$

Věta 0.2 (Hahn-Kolmogorov)

Buď $\tilde{\mu}$ pramíra na algebře \mathcal{A} . Pak existuje míra μ na $\sigma \mathcal{A}$ taková, že $\mu = \tilde{\mu}$ na \mathcal{A} . Je-li $\tilde{\mu}$ σ -konečná, je μ určená jednoznačně.

1

1 Konstrukce Lebesgueovy míry z vnější míry

Definice 1.1 (Vnější míra (outer measure))

Nechť $X \neq \emptyset$. Funkce $\mu^* : \mathcal{P}(X) \to [0, \infty]$ je vnější míra na X, jestliže:

$$\mu^*\left(\emptyset\right) = 0,$$

$$A \subset B \implies \mu^*(A) \le \mu^*(B)$$
, (monotonie)

$$A_i \subset X (i \in \mathbb{N}) \implies \mu^* \left(\bigcup_i A_i\right) \leq \sum_i \mu^*(A_i)$$
. (spočetná subadivita)

\(\sum_Například \)

$$\mu^* \equiv 0,$$

$$\mu^* = \delta_x, x \in X,$$

$$\mu^*(A) = A,$$

$$\mu * (A) := 0, A = \emptyset, \mu * (A) := 1, A \neq \emptyset,$$

$$X = \mathbb{R}, \lambda^*(A) := \inf \left\{ \sum_i |I_i|, A \subset \bigcup_i I_i, I_i \text{ otevřené intervaly} \right\}$$

Definice 1.2 (Měřitelnost vůči vnější míře)

Řekneme, že množina $A \subset X$ je μ^* -měřitelná, jestliže

$$\forall T \subset X : \mu^*(T) = \mu * (T \cap A) + \mu^*(T \setminus A).(*)$$

Značíme $\mathcal{A}_{\mu^*} := \{ A \subset X | A \text{ je } \mu^*\text{-měřitelná} \}.$

Poznámka

Ať μ^* je vnější míra na $X,Y\subset X.$ Pak restrikce $\mu^*|_Y:A\mapsto \mu^*(A\cap Y)$ je vnější míra a platí:

$$\mathcal{A}_{\mu^*} \subset \mathcal{A}_{\mu^*}|_Y$$

 \Box $D\mathring{u}kaz$

$$A \in \mathcal{A}_{\mu^*} : \mu^*|_Y(T) = \mu^*(T \cap Y) = \mu^*(T \cap Y \cap A) + \mu^*((T \cap Y) \setminus A) =$$
$$= \mu^*|_Y(T \cap A) + \mu^*|_Y(T \setminus A).$$

Věta 1.1 (Caratheodory)

 \mathcal{A}_{μ^*} je σ -algebra na X a $\mu := \mu^*|_{\mathcal{A}_{\mu^*}}$ je míra. Prostor $(X, \mathcal{A}_{\mu^*}, \mu)$ je úplný.

 $D\mathring{u}kaz$

 $\emptyset \in \mathcal{A}_{\mu}^{*}$ je zřejmé. Uzavřenost na komplement je také snadná, z definice $\mathcal{A}_{\mu^{*}}$. Místo sjednocení ukážeme uzavřenost na konečný průnik: Víme $T \subset X : \mu^{*}(T) = \mu^{*}(T \cap A) + \mu^{*}(T \setminus A)$, $\mu^{*}(T \cap A) = \mu^{*}(T \cup A \cup B) + \mu^{*}((T \cap A) \setminus B)$ a $\mu^{*}(T \setminus (A \cap B)) = \mu^{*}((T \setminus (A \cap B)) \cap A) + \mu^{*}((T \setminus (A \cap B)) \setminus A) = \mu^{*}((T \cap A) \setminus B) + \mu^{*}(T \setminus A)$.

Tedy $\mu^*(T) = \mu^*(T \cap A \cap B) + \mu^*((T \cap A) \setminus B) + \mu^*(T \setminus A) = \mu^*(T \cap A \cap B) + \mu^*(T \setminus (A \cap B)).$ Tudíž \mathcal{A}_{μ^*} je algebra.

Nyní chceme ukázat, že μ^* je σ -aditivní na \mathcal{A}_{μ^*} : Buďte $A_i \in \mathcal{A}_{\mu^*}$ po dvou disjunktní. Volbou $T = A_1 \cup A_2$ dostaneme $\mu^*(A_1 \cup A_2) = \mu^*(A_1) + \mu^*(A_2) \implies \mu^*$ je konečně aditivní na \mathcal{A}_{μ^*} .

$$\forall n \in \mathbb{N} : \sum_{i=1}^{\infty} \mu^*(A_i) = \lim_{n \to \infty} \sum_{i=1}^{n} \mu^*(A_i) = \lim_{n \to \infty} \mu^* \left(\bigcup_{i=1}^{n} A_i\right) \le \mu^* \left(\bigcup_{i=1}^{\infty} A_i\right).$$

Opačná nerovnost plyne ze spočetné subaditivity. To znamená, že μ^* ($\bigcup_i A_i$) = $\sum_i \mu^* (A_i)$, $A_i \in \mathcal{A}_{\mu^*}$, po dvou disjunktní.

 \mathcal{A}_{μ^*} je uzavřená na disjunktní spočetné sjednocení: $A_i \in \mathcal{A}_{\mu^*}$, po dvou disjunktní, $T \subset X$.

$$\mu^*(T) = \mu^* \left(T \setminus \bigcup_{i=1}^n A_i \right) + \mu^* \left(T \cap \bigcup_{i=1}^n A_i \right) \ge \mu^* \left(T \setminus \bigcup_{i=1}^\infty A_i \right) + (\mu^*|_T) \left(\bigcup_{i=1}^\infty A_i \right) = TODO$$

Limitním přechodem $n \to \infty$ dostaneme

$$\mu^*(T) \ge \mu^*(T \setminus \bigcup_{i=1}^{\infty} A_i) + \sum_{i=1}^{\infty} (\mu^*|_T) (A_i) = \mu^* \left(T \setminus \bigcup_{i=1}^{\infty} \right) (\mu^*|_T) \left(\bigcup_{i=1}^{\infty} A_i \right) \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}_{\mu^*}.$$

Z tohoto všeho plyne, že $\mu = \mu^*|_{A_{\mu^*}}$ je míra na σ-algebře \mathcal{A}_{μ^*} . Zbývá už jen úplnost:

$$\mu^*(A) = 0, T \subset X \implies \mu^*(T) \ge \mu^*(T \setminus A) = \underbrace{\mu^*(T \cap A)}_{=0} + \mu^*(T \setminus A) \implies A \in \mathcal{A}_{\mu^*}.$$

TODO!!!

Věta 1.2 (Regularita Lebesgueovy míry)

Nechť $E \subset \mathbb{R}^n$. Je ekvivalentní:

- 1. $E \in \mathcal{A}_{\lambda^{n*}}$,
- 2. $\forall \varepsilon > 0 \ \exists F \subset E \subset G, \ F \ uzavřená, \ G \ otevřená, \ \lambda^n(G \setminus F) < \varepsilon,$
- 3. $\exists A \subset E \subset B, A, B \in \mathcal{B}^n, \lambda^n(B \setminus A) = 0$
- 4. $E \in \mathcal{B}_0^n$.

 $D\mathring{u}kaz$

 $1 \implies 2: \text{ Mějme } E \in \mathcal{A}_{\lambda^{n*}}, \ \varepsilon > 0. \text{ Nechť nejprve } \lambda^{n*}(E) < \infty. \text{ Pak } \exists I_i \in O_n, \ E \subset \bigcup_i I_i, \\ \sum_i v(I_i) < \lambda^{n*}(E) + \frac{\varepsilon}{2}. \text{ Položme } G := \bigcup_i I_i \text{ (otevřená)}, \ E \subset G, \ \lambda^n(G \setminus E) < \frac{\varepsilon}{2}. \text{ Je-li} \\ \lambda^{n*}(E) = \infty, \text{ pak ze } \sigma\text{-konečnosti je } E = \bigcup_m E_m, \ E_m := E \cap [-m, m]^n. \ \lambda^{n*}(E_m) < \infty \implies \exists G_m \text{ otevřená}, \ E_m \subset G_m, \ \lambda^n(G_m \setminus E_m) < \frac{\varepsilon}{2^{m+1}}. \ G := \bigcup_m G_m \text{ otevřené}, \ E \subset G, \\ \lambda^n(G \setminus E) \leq \sum_m \lambda^n(G_m \setminus E_m) < \frac{\varepsilon}{2}.$

 $E^c \in \mathcal{A}_{\lambda^{m*}} \implies \exists H$ otevřená, $E^c \subset H$, $\lambda^n(H \setminus E^c) < \frac{\varepsilon}{2}$. $F := H^c$ uzavřená, $F \subset E$, $\lambda^n(E \setminus F) = \lambda^n(E \setminus H^c) = \lambda^n(H \setminus E^c) < \frac{\varepsilon}{2}$. TODO

 $2 \implies 3$: Nechť $E \subset \mathbb{R}^n$ splňuje 2.

$$\forall j \in \mathbb{N} \ \exists F_j \subset E \subset G_j, F_j \ \text{uzavřená}, G_j \ \text{uzavřená}, \lambda^n(G_j \setminus F_j) < \frac{1}{j}.$$

Položme $A := \bigcup_j F_j$, $B := \bigcap_j G_j$, $A, B \in \mathcal{B}^n$, $A \subset E \subset B$. $\lambda^n(B \setminus A) \leq \lambda^n(G_j \setminus F_j) < \frac{1}{j}$ pro libovolné $j \in \mathbb{N}$, tedy $\lambda^n(B \setminus A) = 0$.

 $3 \implies 4$: Jsou-li $A \subset E \subset B$ jako v 3, pak $B \setminus A$ je λ^n -nulová množina, a tedy $E \in \mathcal{B}_0^n$.

 $4 \implies 1$: $\mathcal{A}_{\lambda^{n*}}$ obsahuje \mathcal{B}^n a nulové množiny, tedy obsahuje \mathcal{B}_0^n .

Věta 1.3 (Luzinova (běžně bývá obecnější))

Buď $f: \mathbb{R}^n \to \mathbb{R}$ lebesgueovsky měřitelná. Buď $\varepsilon > 0$. Pak existuje $G \subset \mathbb{R}^n$ otevřená taková, že $\lambda^n(G) < \varepsilon$ a restrikce $f|_{G^c}$ je spojitá.

 $D\mathring{u}kaz$

Buď U_1, U_2, \ldots posloupnost všech otevřených intervalů s racionálními koncovými body. f je lebesgueovsky měřitelná, tedy $\forall j, f^{-1}(U_1) \in \mathcal{B}_0^n$. Podle regularity pak $\exists F_j \subset f^{-1}(U_j) \subset G_j$, F_j uzavřená, G_j otevřená, $\lambda^n(G_j \setminus F_j) < \frac{\varepsilon}{2^j}$. Položme $G := \bigcup_j (G_j \setminus F_j)$. Zřejmě G je otevřená, $\lambda^n(G) \leq \sum_j \lambda^n(G_j \setminus F_j) < \varepsilon$.

Pro restrikci $g := F|_{G^c}$ platí:

$$g^{-1}(U_j) = \{x \in G^c : f(x) \in U_j\} = f^{-1}(U_j) \cap G^c = G_j \cap G^c, j \in \mathbb{N}.$$

Zřejmě $U \subset \mathbb{R}$ otevřená $\Longrightarrow U = \bigcup_{U_j \subset U} U_j$, tedy $g^{-1}(U) = \bigcup_{U_j \in U} g^{-1}(U_j)$ otevřená množina v G^c , tedy g je spojitá na G^c .

Poznámka

Obecně nelze požadovat $\lambda^n(G)=0$. Např. charakteristická funkce diskontinua kladné míry (podobně jako Cantorovo diskontinuum, ale nenulové míry), které dostaneme tak, že z prostředků intervalů v i-tém kroku vždy odebereme intervaly délky a_i tak, aby $a_1+2a_2+4a_3+\ldots<1$. (G z minulé věty pak bude sjednocení malých okolíček krajních bodů odebíraných intervalů.)

2 Regularita borelovských měr

Definice 2.1 (Regulární borelovská míra)

Borelovská míra μ na topologickém (metrickém) prostoru X je regulární, jestliže $\forall B \in \mathcal{B}(X) : \mu(B) = \inf \{ \mu(G) | B \subset G, G \text{ otevřená} \}.$

Poznámka

1) Často se hovoří o vnější regularitě (outer regular measure). 2) Pro konečné míry: μ je regulární $\Longrightarrow \forall B \in \mathcal{B} : \mu(B) = \sup \{\mu(F) | F \subset B, F \text{ uzavřená} \}.$

Věta 2.1

Každá konečná borelovská míra na metrickém prostoru je regulární.

Důkaz

 (X,ϱ) metrický prostor, μ borelovská míra na $X, \mu(X) < \infty$. Označme

$$\mathcal{D}:=\left\{B\in\mathcal{B}(X)|\ \varepsilon>0\ \exists F\subset B\subset G, F\ \text{uzavřen\'a}, G\ \text{otevřen\'a}, \mu(G\setminus F)<\varepsilon\right\}.$$

Ukážeme $\mathcal{D}:=\mathcal{B}(X)$. \mathcal{D} obsahuje všechny množiny: $F\subset X$ uzavřená, $F_{<\varepsilon}:=\{x\in X|\ \varrho(x,F)<\varepsilon\}$ (otevřená). Zřejmě $F_{<\frac{1}{j}}\searrow F,\ j\to\infty$ z uzavřenosti $F.\ \mu$ konečna \Longrightarrow (spojitost míry) $\mu F_{<\frac{1}{j}}\to\mu(F)$.

 \mathcal{D} je σ -algebra: $\emptyset \in \mathcal{D}$, $D \in \mathcal{D} \implies D^c \in \mathcal{D}$:

$$F \subset D \subset G, \mu(G \setminus F) < \varepsilon \implies G^c \subset D^c \subset F^c, \mu(F^c \setminus G^c) < \varepsilon.$$

 $D_i \in \mathcal{D} \implies \bigcup_i D_i \in \mathcal{D}$:

$$\exists F_i \subset D_i \subset G_i, \mu(G_i \setminus F_i) < \frac{\varepsilon}{2^i}.$$

TODO!

$$\bigcup_{i=1}^{N} F_i \subset \bigcup_{i=1}^{\infty} D_i \subset \bigcup_{i=1}^{\infty} G_i, N \in \mathbb{N}.$$

$$\bigcup_{i=1}^{\infty} G_i \setminus \bigcup_{i=1}^{F} i$$

L

Poznámka

 σ -konečné míry nemusí být regulární, viz prostor spočetně přímek procházejících počátkem v $\mathbb{R}^2.$

Definice 2.2 (Těsnost (= vnitřní regularita))

Borelovská míra μ na metrickém (topologickém) prostoru X je těsná (= tight), jestliže $\forall B \in \mathcal{B}(X) : \mu(B) = \sup \{\mu(K) | K \subset B \text{ kompaktní} \}.$

Poznámka

 μ je Radonova míra, jestliže je těsná a konečná na kompaktech.

Pokud μ je konečná a těsná, pak už je mu regulární.

Jestliže μ je konečná a regulární a $\mu(X) = \sup \{\mu(K) | K \subset X \text{ kompaktní}\}$, pak μ je těsná.

Věta 2.2

 $Pokud \mu$ je konečná borelovská míra na úplném separabilním metrickém prostoru, potom už je těsná.

 $D\mathring{u}kaz$

Stačí ukázat $\mu(X) = \sup \{\mu(K) | K \subset X \text{ kompaktní} \}$: $S = \{x_1, x_2, \ldots\} \subset X \text{ hustá spočetná (ze separability).} \forall n \in \mathbb{N} : \bigcup_i \mathcal{U}_{\frac{1}{n}}(x_i) = X$. Nechť je dáno $\varepsilon > 0$. Pak $\forall n \exists k_n : \mu\left(X \setminus \bigcup_{i=1}^{k_n} \mathcal{U}_{\frac{1}{n}}(x_i)\right) < \frac{\varepsilon}{2^n}$ (ze spojitosti míry).

Definujeme $A := \bigcap_{n=1}^{\infty} \bigcup_{i=1}^{k_n} \mathcal{U}_{\frac{1}{n}}\left(x_i\right) \ (\in \mathcal{B}(X))$. A je totálně omezená (tzn. $\forall \varepsilon > 0 \ \exists F \subset A$ kompaktní tak, že $A \subset \bigcup_{x \in F} B_{\varepsilon}(x)$). \overline{A} je totálně omezená a uzavřená $\Longrightarrow \overline{A}$ je úplný MP (+ totálně omezený), tedy \overline{A} je kompaktní.

$$\mu(X \setminus \overline{A}) \le \mu(X \setminus A) = \mu\left(\bigcup_{n=1}^{\infty} \mu\left(X \setminus \bigcup_{i=1}^{k_n} \mathcal{U}_{\frac{1}{n}}(x_i)\right)\right).$$

3 Věta o rozšíření míry

Věta 3.1 (Hahn-Komogorov)

Buď $\tilde{\mu}$ pramíra na algebře $\mathcal{A} \subset \mathcal{P}(X) \Longrightarrow \text{existuje míra } \mu \text{ na } \sigma \mathcal{A} \text{ taková, } \check{z}e \ \mu = \tilde{\mu} \text{ ne } \mathcal{A}.$ Je-li $\tilde{\mu}$ σ -konečná, je μ určena jednoznačně.

 $D\mathring{u}kaz$

Pro $E \subset X$ položme $\mu^*(E) := \inf \{ \sum_{i=1}^{\infty} \mu(A_i) | A_i \in \mathcal{A}, E \subset \bigcup_{i=1}^{\infty} A_i \}$. Ověříme, že μ^* je vnější míra.

 $\forall A \in \mathcal{A} : \mu^*(A) = \tilde{\mu}(A)$. Zřejmě $\mu^*(A) \leq \tilde{\mu}(A)$, jelikož můžeme pokrýt A množinami $A, \emptyset, \emptyset, \ldots$ Pro \geq mějme $A \subset \bigcup_i A_i, A_i \in \mathcal{A}$. $B_1 := A_1 \cap A, B_2 := (A_2 \cap A) \setminus B_1, \ldots$ O nich víme, že $A = \bigcup_i B_i$, B_i po dvou disjunktní, $B_i \in \mathcal{A}$. $\tilde{\mu}(A) = \sum_i \tilde{\mu}(B_i) \leq \sum_i \tilde{\mu}(A_i)$, tedy z definice infima $\tilde{\mu}(A) \leq \inf_{A_i} \sum_i \tilde{\mu}(A_i) = \mu^*(A)$.

Zbývá ukázat, že $\mathcal{A} \subset \mathcal{A}_{\mu^*}$. TODO.

Jednoznačnost: \mathcal{A} uzavřená na konečné průniky, $\tilde{\mu}$ je σ -konečná $\Longrightarrow \exists A_n \in \mathcal{A}, A_n \nearrow X, \tilde{\mu}(A_n) < \infty \Longrightarrow \mu$ je jednoznačně určena (věta o jednoznačnosti míry, TMI1).

Poznámka (Zobecnění příkladu z TMI1)

 $E =_{i=1}^{\infty} E_i$, E_i úplné separabilní metrické prostory (např. $E_i = \mathbb{R}$), $\emptyset \neq I \subset \mathbb{N}$... $E_I = E_i$, E, E_I metrické prostory. $\pi_I : E \to E_I$ kanonická projekce. A následující věta:

Věta 3.2 (Daniell-Koleuogorov)

 E_i úplné separabilní metrické prostory, $i \in \mathbb{N}$. Nechť pro každou $\emptyset \neq I \subset \mathbb{N}$ existuje borelovská pravděpodobnostní míra μ_I na E_I . A nechť je splněna projektivní vlastnost:

$$\emptyset \neq I \subset J \subset \mathbb{N} \ konečná, \forall B \in \mathcal{B}(E_I) : \mu_I(B) = \mu_J \left(\left(\pi_I^J \right)^{-1}(B) \right),$$

pak $\exists !$ borelovská míra μ na $E =_{i=1}^{\infty} E_i$ taková, že $\forall \emptyset \neq I \subset \mathbb{N}$ konečná, $\forall B \in \mathcal{B}(E_I) : \mu(\pi_I^{-1}(B) = \mu_I(B)).$