Computer Organization Lab4

Name:邱弘竣

ID:109550136

Architecture diagrams:

Hardware module analysis:

- Adder: we have two adder
 - \circ one is for PC + 4, and one is for imm
- ALU
 - o Do the different things based on different input
- ALU_Ctrl
 - o control signal of ALU
- Decoder
 - output different control signals based on different operation and send them to different Pipe_Reg
- Instr_Memory
 - read instruction
- ProgramCounter

- o let us know the current PC
- Shift_Left_Two_32
 - o shift left two bits and add zero to the empty bit
- Sign_Extend
 - o Extend the leftmost bit
- MUX 2to1: we have four MUX 2to1
 - The first one is to check the value of Write Register
 - The second one is to check R-format or I format
 - The third one is to check the value of Write Data
 - The fourth one is to check whether to perform branch
- Pipe_CPU_1
 - o combine all the units
- Pipe_Reg: we have four Pipe_Reg
 - o IF/ID
 - o ID/EX
 - o EX/MEM
 - o MEM / WB

Finished part:

CO_P4_test_1.txt

			_		- ·				
Register=									
r0=	0, r1=	3, r2=	4, r3=	1, r4=	6, r5=	2, гб=	7, r7=	1	
r8=	1, r9=	0, r10=	3, r11=	0, r12=	0, r13	3= 0, r14	= 0, r15=	=	0
r16=	0, r17=	0, r18=	0, r19=	0, r20	⊫ 0, ı	r21= 0, r	22= 0, r2	23=	0
r24=	0, r25=	0, r26=	0, r27=	0, r28	t= 0, ı	r29= 0, r	30= 0, r3	31=	0
Homorre	==========								
мешоту									
m0=	0, m1=	3, m2=	0, m3=	0, m4=	0, m5=	0, мб= 0	, m7= 0		
m8=	0, m9=	0, m10=	0, m11=	0, m12=	0, m13=	0, m14=	0, m15=	0	
r16=	0, m17=	0, m18=	0, m19=	0, m20=	0, m21=	0, m22=	0, m23=	0	
m24=	0, m25=	0, m26=	0, m27=	0, m28=	0, m29=	0, m30=	0, m31=	0	

- In our waveform, Pipe_Reg will output some value every time when clock goes from zero to one so that we can perform out instructions in different state.
- In the testbench, count will plus one every time when clock goes from zero to one.
- The instruction below is the meaning of CO_P4_test_1.txt. Trace it from the beginning to the end and we can get the value in the memory and the registers.
 - \circ addi \$1,\$0,3; // a = 3
 - o addi \$2,\$0,4; // b = 4
 - \circ addi \$3,\$0,1; // c = 1
 - o sw \$1,4(\$0); // A[1] = 3
 - o add \$4,\$1,\$1; // \$4 = 2a
 - \circ or \$6,\$1,\$2; // e = a / b
 - \circ and \$7,\$1,\$3; // f = a & c
 - o *sub \$5,\$4,\$2; // d = 2*a b
 - \circ slt \$8,\$1,\$2; // g = a < b
 - beq \$1,\$2,begin
 - o lw 10,4(0); // i = A[1]

CO_P4_test_2.txt

Register=			=========					
r0=	0, r1=	16, r2=	20, r3=	8, r4=	16, r5=	8, тб=	24, r7=	26
r8=	8, r9=	100, r10=	0, r11=	0, r12=	0, r13=	0, r14=	0, r15	= 0
r16=	0, r17=	0, r18=	0, r19=	0, r2	O= 0, r2	21= 0, r22	2= 0, r	23= 0
r24=	0, r25=	0, r26=	0, r27=	0, r2	8= 0, r2	29= 0, r30)= 0, r	31= 0
Memory===			=======================================					
mO=	0, m1=	16, m2=	0, m3=	0, m4=	0, m5=	0, мб= 0,	m7= 0	
m8=	0, m9=	0, m10=	0, m11=	0, m12=	0, m13=	0, m14=	0, m15=	0
r16=	0, m17=	0, m18=	0, m19=	0, m20=	0, m21=	0, m22=	0, m23=	0
m24=	0, m25=	0, m26=	0, m27=	0, m28=	0, m29=	0, m30=	0, m31=	0
Untitled 1	e ∺ × •	ぜ ਮ ੯ ੯ ੯ ਰ ਰ	г -г н					_ 0 7 ×
Name	Value 0	0.000 ms 20.000 ms	40.000 ns 60.000 ns	80.000 ms	00.000 ms 120.000 ms	140,000 as 160,000 as	180.000 ms 200.00	0 ns 220.000 ns
	1 00000001 00000000	0000000) 00000002 00000003 0	0000004 00000004 000000006 0000		000000000000000000000000000000000000000	0000000¢ 0000000¢ 00000010 00000001	000000120000001300000014	2
> M handle[31:0]) XXXXXXX				XXXXXXXX			
	< >	<						Š

- Same as data1. However, after solving the problem of hazard, we can get the real answer
- Trace it from the begining to the end and we can get the value in the memory and the registers. The machine code is below.

Problems you met and solutions:

• One of the parts that stopped my footsteps is that I don't know how to input a lot of different wires into a port. It is intuitive to add extra ports to Pipe_Reg. However, I don't think it's a good idea. If that is the only solution then I

- don't think TA will design our template like that way. As a result, I searched the information on the Internet and finally found a better way.
- After connecting all the wires, I still got the wrong answer. I felt confused about this circumstance. As a result, I checked my answer in each step and looked for the function outputting the wrong value. Then I found that I forgot to add "multiplication" in ALU.

Bonus (optional):

- for I1 / I2
 - We just need to switch the position of the two instructions. It means that we perform I2 first and then I1.
- for I5 / I6, I8 / I9
 - o can be solved by reorder instructions
 - o modified machine code:

Summary:

After this lab, I think I understand more about pipeline. During the class, I felt confused of the rectangle, Pipe_Reg. It is a strange register because I didn't know what to do in that register. Is seems like I input something into it and the register will output the same thing without doing anything else. It sounded a little bit strang. During this lab, I realize that what I understood before is right. It is a "register", not a gate. It's just a place to store our data not to perform something in it. I feel great after solving the problem deep in my heart.