Feature/Selection

Юлия Пономарева

О спикере:

- Data Scientist
- автор YouTube канала «machine learrrning»
- работала в ITMO и Napoleon IT

Содержание

- 1 Введение
- 2 Методы отбора признаков
- 3) Преобразование признаков

Введение

Введение. Зачем всё это?

Проклятье размерности - проблема, связанная с экспоненциальным возрастанием количества данных необходимых для обучения с увеличением размерности пространства

Одно измерение - 5 точек

Два измерение - 25 точек

Три измерения - 125 точек

Введение. Зачем всё это?

С увеличением размерности пространства, некоторые алгоритмы начинают хуже работать

Методы отбора признаков

Позволяют получить:

- упрощение моделей для повышения возможности интерпретации
- сокращение времени тренировки
- уменьшения влияния проклятия размерности
- улучшение обобщения путём сокращения переобучения
- фильтрацию шумных признаков

Как можно избежать проклятия размерности?

Преобразовать признаки

Отобрать признаки

n – количество примеровm – количество признаков

Методы отбора признаков

Методы отбора признаков

Задача – найти подмножество признаков на котором выбранная модель покажет лучшее качество

Фильтры (одномерный отбор)

основаны на некоторых показателях, которые не зависит от метода классификации (коэффициент корреляции, взаимная информация, F-тест, Хи-квадрат)

Обертки

опираются на информацию о метрике качества, полученную от моделей ML (последовательный отбор и последовательное исключение признаков и др.)

Встроенные в алгоритмы

выполняют отбор признаков во время процедуры обучения классификатора, и именно они явно оптимизируют набор используемых признаков для достижения лучшей точности (регрессия с L1-регуляризация, Random Forest, SHAP, перемешивания и др.)

Фильтры Одномерный отбор

Корреляция

Корреля́ция — статистическая взаимосвязь двух величин. При этом изменения значений одной величин сопутствуют систематическому изменению значений другой величины

Коэффициент корреляции Пирсона

$$R_{k_{i},p} = \frac{\sum_{i=1}^{n} (k_{i} - \hat{k}) \cdot (p_{i} - \hat{p})}{\sqrt{\sum_{i=1}^{n} (k_{i} - \hat{k})^{2} \cdot \sum_{i=1}^{n} (p_{i} - \hat{p})^{2}}}$$

Взаимная информация (Mutual Information)

МІ(переменная x1 ; таргет) = Entropy(переменная x1) Entropy(переменная x1 | таргет)

Entropy = $-\sum p(X) \log p(X)$

Зависимость между	полом и пользованием	страховыми услугами
Jacamoenio mene	nonom a nonoscoanach	cinpanocomia y criy cama

Пол	Пользуетесь ли Вы услугами страхования жизни?	
	Да	Нет
Мужской	39%	54%
Женский	61%	46%
Итого по столбцу	100%	100%

here p(x) is a <u>fraction</u> of examples in a given <u>class</u>

Чем выше значение MI, тем сильнее связь между этой переменной и таргетом, что говорит о том, что мы должны поместить эту переменную в набор данных для обучения

F-тест (критерий Фишера)

Очевидно, что при равенстве дисперсий величина критерия будет равна единице

Одномерный отбор

У одномерного отбора признаков есть проблема - они не учитывают взаимосвязь признаков, зависимость целевой переменной от сложной комбинации признаков.

Встроенные в алгоритмы

Методы встроенные в алгоритмы

L1 регуляризация

Feature Importance

Методы встроенные в алгоритмы (отдельная библиотека - SHAP*)

SHAP – значения показывают, насколько данный конкретный признак изменил наше предсказание (по сравнению с тем, как мы сделали бы это предсказание при некотором базовом значении этого признака)

Метод подходит для большинства моделей МЛ

^{*} Лучше изучить все способы применения этого пакета https://shap.readthedocs.io/en/latest/index.html

Преобразование признаков

Преобразование признаков

Преобразование признаков может проводиться с помощью:

- PCA Principal Component analysis (Метода главных компонент)
- LDA Linear discriminant analysis (Линейного дискриминантного анализа)
- NCA Neighbourhood components analysis (Анализа компонентов соседств)

Собственные векторы

$$M\vec{x} = \lambda \vec{x}$$

Собственный вектор - вектор, который при умножении на матрицу дает точно такой же вектор, но измененный в масштабе

PCA

Позволяет уменьшить размерность данных с помощью преобразования на основе линейной алгебры

• Первая ось новой системы координат строится таким образом, чтобы дисперсия данных вдоль неё была бы максимальна

Первая ось называется первой главной компонентой

Позволяет уменьшить размерность данных с помощью преобразования на основе линейной алгебры

- Первая ось новой системы координат строится таким образом, чтобы дисперсия данных вдоль неё была бы максимальна
- Вторая ось строится перпендикулярно первой так, чтобы дисперсия данных вдоль неё, была бы максимальной их оставшихся возможных и т.д.

Первая ось называется первой главной компонентой, вторая — второй и т.д.

Позволяет уменьшить размерность данных с помощью преобразования на основе линейной алгебры

Таким образом, для реализации метода главных компонент нужно:

- найти собственные значения матрицы $X^T X$;
- отобрать d максимальных;
- составить матрицу W^T , столбцы которой будут являться собственными векторами, соответствующими отобранным собственным значениям, расположенным в порядке убывания;
- ullet получить новую матрицу "объекты-признаки", умножив исходную матрицу X на матрицу весов W :

$$Z = XW$$
.

LDA

LDA - Linear discriminant analysis

Линейный дискриминантный анализ - метод уменьшения размерности, используемый в качестве этапа предварительной обработки в приложениях машинного обучения и классификации

Первый этап - вычислить разделимость между разными классами (расстоение между средними значениями разных классов),
также называемое межклассовой дисперсией

$$S_b = \sum_{i=1}^g N_i (\overline{x_i} - \overline{x}) (\overline{x_i} - \overline{x})^T$$

 Второй этап - вычислить расстояние между средним значением и выборкой каждого класса, которое называется внутриклассовой дисперсией.

$$S_w = \sum_{i=1}^g (N_i - 1) S_i = \sum_{i=1}^g \sum_{j=1}^{N_i} (\overline{x_{i,j}} - \overline{x_i}) (\overline{x_{i,j}} - \overline{x_i})^T$$

 Третий этап - построить пространство более низкой размерности, которое максимизирует дисперсию между классами и минимизирует дисперсию внутри класса.

$$P_{lda} = arg \max_{P} rac{|P^T S_b P|}{|P^T S_w P|}$$

Пример для двух классов

LDA - примеры

Отображение распределение в 1- мерное пространство

Двумерное представление

Одномерное представление

Отображение картинок MNIST в 2- и 1- мерное пространство

NCA

NCA - Neighbourhood components analysis

Анализ компонентов соседств — это алгоритм, использующий метод, аналогичный методу К-ближайших соседей, для нахождения пространства, в котором окрестности точек с одинаковыми метками более плотные, чем точки с разными метками

Мы используем NCA, чтобы изучить эмбеддинги* и построить точки после преобразования. Затем мы берем вложение и находим ближайших соседей

^{*}Tepмин «эмбеддинг» (от англ. embedding — вложение) https://scikit-learn.org/stable/auto_examples/neighbors/plot_nca_illustration.html#sphx-glr-auto-examples-neighbors-plot-nca-illustration-py

NCA - Neighbourhood components analysis

Класс точки определяется взвешенным объединением классов всех остальных точек

$$p_i = \sum_{j \in C_i} p_{ij}$$
 $p_{ii} = 0$ $p_{ij} = \frac{\exp(-\|Ax_i - Ax_j\|^2)}{\sum_{k \neq i} \exp(-\|Ax_i - Ax_k\|^2)}$

С - множество точек с таким же классом, как у объекта і А - метрика расстояния

Приближение матрицы преобразования происходит градиентными итеративными методами

$$\frac{\partial f}{\partial A} = 2A \sum_i \left(p_i \sum_k p_{ik} x_{ik} x_{ik}^\top - \sum_{j \in C_i} p_{ij} x_{ij} x_{ij}^\top \right)$$

Сравнение LDA, РСА и NCA

PCA:

Оси компонент максимизируют дисперсию

LDA:

Оси компонент максимизируют разделение классов

NCA:

Находит более плотные группы точек с одинаковыми метками, а не разными

Сравнение LDA, PCA и NCA

Эксперименты проведенные на различных данных с использованием разных алгоритмов показывают, что в зависимости от датасета, алгоритмы работают с разной эффективностью

Практика

Итоги

Итоги

- 1. С увеличением размерности пространства некоторые алгоритмы начинают хуже работать и решить эту проблему помогают преобразование и отбор признаков
- 2. Методы отбора признаков позволяют упростить модели, сократить время тренировки, уменьшить влияние проклятия размерности, сократить переобучение, отфильтровать шумные признаки
- 3. Методы отбора признаков обычно делят на фильтры, обёртки, встроенные в алгоритмы
- 4. Преобразование признаков может проводиться с помощью метода главных компонент, линейного дискриминантного анализа, анализа компонентов соседств

Feature/Selection

