Question 1: START

In a parallel circuit with two resistors, R1 and R2, the total resistance is given by:

Question 1: END

Option_a: R=R1+R2

Option_b: $R=(1/R_1) + (1/R_2)$ Option_c: $(R_1 R_2)/(R_1+R_2)$ Option_d: $(R_1+R_2)/2$

correct_option: c). $(R_1 R_2)/(R_1+R_2)$

Question 2: START

According to Kirchhoff's Current Law (KCL), the algebraic sum of currents at a node is:

Question 2: END

Option_a: Zero

Option_b: Equal to the total voltage at the node Option_c: Equal to the sum of resistances at the node Option_d: Dependent on the values of current

correct_option: a) Zero

Question 3: START

Ohm's Law states that the current through a conductor between two points is directly proportional to the:

Question 3: END

Option_a: Resistance between the points Option_b: Voltage between the points Option_c: Temperature difference Option_d: Power dissipated

correct_option: b) Voltage between the points

Question 4: START

If a resistor of 10 Ω is connected across a 5 V battery, what is the current flowing through the resistor?

Question 4: END

Option_a: 0.5 A
Option_b: 1 A
Option_c: 2 A
Option_d: 5 A

correct_option: a)0.5 A

Question 5: START

For a simple circuit with a 12 V battery and two series resistors, R1=2 Ω and R2=4 Ω , what is the voltage drop across R2?

Question 5: END

Option_a: 4V Option_b: 6V Option_c: 8V Option_d: 12 V correct_option: c)8 V Question 6: START

Which of the following statements about Kirchhoff's Voltage Law (KVL) is correct?

Question 6: END

Option_a: The sum of all voltage drops around a closed loop is always positive.

Option_b: The sum of all voltage drops around a closed loop equals the total resistance.

Option_c: The sum of all voltage drops around a closed loop is equal to the sum of all current sources.

Option_d: The sum of all voltages around a closed loop is zero.

correct_option: d)The sum of all voltages around a closed loop is zero.

Question 7: START

In a series circuit, the current flowing through each component is:

Question 7: END

Option_a: The same Option_b: Different

Option_c: Dependent on the voltage

Option_d: Dependent on the resistance of each component

correct_option: a) The same

Question 8: START

Two resistors of 5 Ω and 10 Ω are connected in parallel. If the current entering the parallel combination is 6 A,

what is the current through the 10 $\boldsymbol{\Omega}$ resistor?

Question 8: END

Option_a: 2 A
Option_b: 4 A
Option_c: 5 A
Option_d: 6 A

correct option: a) 2 A

Question 9: START

If a 5 Ω resistor is connected in series with a 10 Ω resistor across a 15 V battery, what is the current in the circuit?

Question 9: END

Option_a: 2 A
Option_b: 4 A
Option_c: 5 A
Option_d: 6 A

correct_option: a) 2 A

Question 10: START

Kirchhoff's Voltage Law (KVL) is based on the conservation of:

Question 10: END

Option_a: Charge Option b: Energy

Option_c: Momentum Option_d: Mass

correct_option: b) Energy

Question 11: START

Two resistors R1=3 Ω and R2=6 Ω , are connected in series across a 36 V source. What is the voltage across R2 using the voltage division rule?

Question 11: END

Option_a: 12 V Option_b: 18 V Option_c: 24 V Option_d: 30 V

correct_option: c) 24 V

Question 12: START

Three resistors R1=4 Ω , R2=5 Ω , and R3=6 Ω are connected in series across a 45 V source. What is the voltage across R3 using the voltage division rule?

Question 12: END

Option_a: 10 V Option_b: 15 V Option_c: 20 V Option_d: 25 V

correct_option: b) 15 V

Question 13: START

A circuit has two resistors R1=2 Ω and R2=8 Ω connected in parallel. If the total current entering the parallel combination is 20 A, what is the current through R1 using the current division rule?

Question 13: END

Option_a: 16 A Option_b: 10 A Option_c: 4 A Option_d: 2 A

correct_option: a) 16 A

Question 14: START

Two resistors R1=3 Ω and R2=12 Ω , are connected in parallel across a 24 V source. What is the current through R1 using the current division rule?

Question 14: END

Option_a: 1 A
Option_b: 2 A
Option_c: 6 A
Option_d: 8 A

correct_option: c) 6 A

Question 15: START

In a series circuit with resistors R1=10 Ω , R2=20 Ω , and R3=30 Ω connected to a 60 V battery, calculate the voltage drop across R1 using the voltage division rule.

Question 15: END

Option_a: 10 V Option_b: 15 V Option_c: 20 V Option_d: 30 V correct_option: a) 10 V

Question 16: START

Three resistors R1=2 Ω , R2=4 Ω , and R3=8 Ω are connected in parallel. If the total current entering the parallel combination is 24 A, what is the current through R3 using the current division rule?

Question 16: END

Option_a: 6 A
Option_b: 8 A
Option_c: 12 A
Option_d: 18 A
correct_option: a) 6 A

Question 17: START

For a series circuit with resistors R1=1 Ω , R2=4 Ω , and R3=5 Ω , the total resistance is 10 Ω . If the circuit is powered by a 20 V source, what is the voltage drop across R2 using the voltage division rule?

Question 17: END

Option_a: 2 V Option_b: 8 V Option_c: 10 V Option_d: 5 V

correct_option: b) 8 V

Question 18: START

In a parallel circuit, R1= 6Ω and R2= 3Ω with a total current of 18 A flowing into the combination. Calculate the current through R1 using the current division rule.

Question 18: END

Option_a: 6 A
Option_b: 9 A
Option_c: 12 A
Option_d: 15 A
correct_option: a) 6 A

Question 19: START

A 10 V source is connected across two resistors, R1=3 Ω and R2=7 Ω , in series. What is the voltage across R1 using the voltage division rule?

Question 19: END

Option_a: 3 V Option_b: 4 V Option_c: 5 V Option_d: 7 V

correct_option: a) 3 V

Question 20: START

In a circuit with resistors R1=5 Ω and R2=15 Ω connected in parallel, the total current entering the combination is 40 A. Calculate the current through R2 using the current division rule.

Question 20: END

Option_a: 10 A
Option_b: 20 A
Option_c: 30 A
Option_d: 40 A

correct_option: a) 10 A

Question 21: START

Three resistors are connected in a star (Y) configuration with resistances RA= 5Ω , RB= 10Ω , and RC= 15Ω . What is the equivalent resistance between two terminals after converting the network to a delta (Δ) configuration?

Question 21: END

Option_a: 25Ω Option_b: 30Ω Option_c: 50Ω Option_d: 75Ω

correct_option: b) 30 Ω

Question 22: START

In a delta network, the resistances are given as RAB=12 Ω , RBC=24 Ω , and RCA=36 Ω . What is the equivalent resistance RA in the star network?

Question 22: END

Option_a: 6Ω Option_b: 8Ω Option_c: 10Ω Option_d: 12Ω

correct_option: a) 6 Ω

Question 23: START

For a delta network with resistances RAB=30 Ω , RBC=60 Ω , and RCA=90 Ω , the equivalent star resistance RB is given by which formula? Question 23: END

Option_a: RB=(RAB·RBC)/(RAB+RBC+RCA)
Option_b: RB=(RBC·RCA)/(RAB+RBC+RCA)
Option_c: RB=(RCA·RAB)/(RAB+RBC+RCA)
Option_d: RB=(RAB·RBC·RCA)/(RAB+RBC+RCA)
correct_option: b) RB=(RBC·RCA)/(RAB+RBC+RCA)

Question 24: START

In a star network, each resistor has a value of 10 Ω . After converting it to a delta network, what will be the value of each resistor in the delta configuration?

Question 24: END

Option_a: 10Ω Option_b: 20Ω Option_c: 30Ω Option_d: 40Ω

correct_option: c) 30 Ω

Question 25: START

If a delta network has resistors RAB=6 Ω , RBC=12 Ω , and RCA=18 Ω , find the equivalent star resistance RC.

Question 25: END

Option_a: 3Ω Option_b: 4Ω Option_c: 5Ω Option_d: 6Ω correct_option: b) 4Ω

Question 26: START

In a star network with resistances RA= 2Ω , RB= 3Ω , and RC= 4Ω , what is the equivalent resistance between terminals after converting to a delta configuration?

Question 26: END

Option_a: 9Ω Option_b: 12Ω Option_c: 15Ω Option_d: 18Ω

correct_option: d) 18 Ω

Question 27: START

A delta network has resistances RAB= 10Ω , RBC= 15Ω , and RCA= 20Ω . What is the value of RA in the equivalent star network?

Question 27: END

Option_a: 5Ω Option_b: 7.5Ω Option_c: 10Ω Option_d: 12Ω

correct_option: b) 7.5 Ω

Question 28: START

In a balanced delta network, each resistor has a resistance of 12 Ω . If this network is converted to a star configuration, what will be the resistance of each resistor in the star network?

Question 28: END

Option_a: 4Ω Option_b: 8Ω Option_c: 10Ω Option_d: 10 Ω

correct_option: a) 4 Ω

Question 29: START

Given a delta network with resistances RAB=8 Ω , RBC=16 Ω , and RCA=24 Ω , what is the total resistance across terminals A and B after converting it to a star network?

Question 29: END

Option_a: 4 Ω

Option_b: 6 Ω

Option_c: 8 Ω

Option_d: 12 Ω

correct_option: c) 8 Ω

Question 30: START

In Thevenin's Theorem, the Thevenin equivalent circuit for a linear two-terminal network consists of:

Question 30: END

Option_a: An ideal current source and a resistor in series

Option_b: An ideal voltage source and a resistor in series

Option_c: A capacitor and a resistor in parallel

Option_d: An inductor and a resistor in parallel

correct_option: b) An ideal voltage source and a resistor in series

Question 31: START

For a given circuit, the open-circuit voltage across terminals A and B is 12 V, and the equivalent resistance seen from these terminals is 4 Ω . What is the Thevenin equivalent voltage and resistance?

Question 31: END

Option a: 6 V, 4 Ω

Option_b: 12 V, 4 Ω

Option_c: 12 V, 8 Ω

Option_d: 24 V, 4 Ω

correct_option: b) 12 V, 4 Ω

Question 32: START

In a circuit with a Thevenin equivalent voltage of 15 V and a Thevenin resistance of 5 Ω , what load resistance will maximize the power transferred to the load?

Question 32: END

Option_a: 2.5Ω

Option_b: 5Ω

Option_c: 10 Ω

Option_d: 15 Ω

correct_option: b) 5 Ω

Question 33: START

Thevenin's Theorem is applicable only to circuits that are:

Question 33: END

Option_a: Linear and bilateral

Option_b: Non-linear and unilateral Option_c: Linear and time-invariant Option_d: Non-linear and time-variant correct_option: a) Linear and bilateral

Question 34: START

If the load resistance RL is connected to a Thevenin equivalent circuit with a Thevenin voltage Vth=10V and Thevenin resistance Rth=5 Ω , what is the current through RL when RL=5 Ω ?

Question 34: END

Option_a: 1 A
Option_b: 2 A
Option_c: 0.5 A
Option_d: 10 A
correct_option: a) 1 A

Question 35: START

In a circuit, the open-circuit voltage across two terminals is 20 V, and the short-circuit current across the same terminals is 5 A. What is the Thevenin resistance?

Question 35: END

Option_a: 2Ω Option_b: 4Ω Option_c: 5Ω Option_d: 10Ω correct_option: b) 4Ω

Question 36: START

A complex circuit has a Thevenin equivalent voltage of 25 V and a Thevenin resistance of 50 Ω . If a 50 Ω load is connected to the Thevenin equivalent, what is the voltage across the load?

Question 36: END

Option_a: 12.5 V Option_b: 25 V Option_c: 50 V Option_d: 0 V

correct_option: a) 12.5 V

Question 37: START

For maximum power transfer in a circuit, the load resistance RL should be:

Question 37: END

Option_a: Twice the Thevenin resistance Option_b: Half the Thevenin resistance Option_c: Equal to the Thevenin resistance

Option d: Very large compared to the Thevenin resistance

correct_option: C) Equal to the Thevenin resistance

Question 38: START

A network has an internal Thevenin resistance of 10 Ω and a Thevenin voltage of 40 V. To maximize power transfer, what power is delivered to the load?

Question 38: END

Option_a: 40 W
Option_b: 80 W
Option_c: 160 W
Option_d: 200 W
correct_option: b) 80 W

Question 39: START

For a circuit with Thevenin equivalent voltage Vth=12V and Thevenin resistance Rth= 6Ω , what is the current through a load resistance RL= 12Ω when connected across the terminals?

Question 39: END

Option_a: 0.5 A Option_b: 1 A Option_c: 1.5 A Option_d: 2 A

correct_option: a) 0.5 A

Question 40: START

In Norton's Theorem, the Norton equivalent circuit of a linear two-terminal network consists of:

Question 40: END

Option_a: An ideal current source and a resistor in series
Option_b: An ideal voltage source and a resistor in series
Option_c: An ideal current source and a resistor in parallel
Option_d: A capacitor and an inductor in series
correct_option: c) An ideal current source and a resistor in parallel

Question41: START

In superposition theorem, when we consider the effect of one voltage source, all the other voltage sources are

Question41: END

Option_a: Shorted
Option_b: Opened
Option_c: Removed
Option_d: Undisturbed
correct_option: Shorted

Question 42: START

In superposition theorem, when we consider the effect of one current source, all the other voltage sources are Question42: END

Option_a: Shorted Option_b: Opened Option_c: Removed Option_d: Undisturbed correct_option: Shorted

Question43: START

In superposition theorem, when we consider the effect of one voltage source, all the other current sources are

Question43: END

Option_a: Shorted
Option_b: Opened
Option_c: Removed
Option_d: Undisturbed
correct_option: Opened

Question44: START

In superposition theorem, when we consider the effect of one current source, all the other current sources are

Question44: END

Option_a: Shorted
Option_b: Opened
Option_c: Removed
Option_d: Undisturbed
correct option: Opened

Question45: START

Superposition theorem is valid for

Question45: END

Option_a: Linear systems
Option_b: Non-linear systems

Option_c: Both linear and non-linear systems
Option_d: Neither linear nor non-linear systems

correct_option: Linear systems

Question46: START

Superposition theorem does not work for

Question46: END

Option_a: Current Option_b: Voltage Option_c: Power

Option_d: Works for all: current, voltage and power

correct_option: Power

Question47: START

Which of the following statements is/are correct regarding superposition theorem

- (1). It can be used to calculate voltage, current and power
- (2). It can be used to calculate voltage and current in a circuit containing resistor, inductor and diode.

(3). It can be used to calculate voltage and current in a circuit having linear elements resistor, capacitor and inductor Question47: END Option_a: (1),(2) and (3) Option_b: (1) and (2) only Option_c: (3) only Option d: (3) and (2) only correct_option: (3) only Question48: START For applying the superposition theorem, we need Question48: END Option_a: No source Option_b: Only one source Option_c: Two or more sources Option_d: None of the options correct_option: Two or more sources Question49: START The maximum power drawn from source depends on ______ Question49: END Option_a: Value of source resistance Option_b: Value of load resistance Option_c: Both source and load resistance Option_d: Neither source or load resistance correct_option: Value of load resistance Question50: START The maximum power is delivered from a source to its load when the load resistance is _____ the source resistance. Question50: END Option_a: greater than Option_b: less than Option_c: equal to Option_d: less than or equal to correct_option: equal to Question51: START What is the principle of the transformer? Question51: END Option_a: Gauss law

Option_b: Coulomb's law

Option d: Ampere's law

Option_c: Electromagnetic induction

correct_option: Electromagnetic induction

Question52: START Voltage induced in secondary coil of transformer is given by_____ Question52: END Option_a: N_P*V_P/N_S Option b: N_S*V_P/N_P Option c: $(N_P/V_P)*N_S$ Option_d: $N_P/(V_P*N_S)$ correct_option: Ns*Vp/Np Question53: START According to _____ induced e.m.f. opposes the cause due to which they are produced Question53: END Option_a: Lenz law Option_b: Newton's law Option_c: Faraday's law Option_d: Coulomb's law correct_option: Lenz law Question54: START The emf induced in a coil having N turns is? Question54: END Option_a: $E = \phi/t$ Option_b: $E = N*\phi/t$ Option_c: $E = N*\phi*t$ Option_d: $E = N^2 * \phi * t$ correct_option: $E = N*\phi/t$ Question55: START According to ____ induced emf is equal to rate of change of magnetic flux Question55: END Option_a: Newton's law Option_b: Lenz law Option_c: Faraday's law Option_d: Coulomb's law correct_option: Faraday's law Question56: START Transformer cores are laminated to reduce Question56: END Option_a: Copper loss

Option_b: Eddy current loss Option_c: Hysteresis loss Option_d: All of the above

correct_option: Eddy current loss

Question57: START

To reduce hysteresis loss, transformer core is made of

Question57: END

Option_a: Silicon steel Option_b: Aluminium Option_c: Copper Option_d: Lead

correct_option: Silicon steel

Question58: START

If the transformer is loaded then the secondary terminal voltage _____ for lagging power

factor.

Question58: END

Option_a: falls Option_b: rise Option_c: double

Option d: none of the above

correct_option: falls

Question59: START

The efficiency of the transformer will be maximum when

Question59: END

Option_a: Iron losses is equal to the twice of the copper losses Option_b: Copper losses is equal to the twice of the iron losses

Option_c: Iron losses is equal to the copper losses

Option_d: All of these

correct_option: Iron losses is equal to the copper losses

Question60: START

Copper losses occurs due to ohmic resistance in

Question60: END

Option_a: Primary winding Option_b: Secondary winding

Option_c: Both primary and secondary winding

Option_d: None of these

correct_option: Both primary and secondary winding

Question61: START

In transformer if the secondary is open circuited then its terminal voltage is

Question61: END

Option_a: kW
Option_b: KVAR
Option_c: kWh
Option_d: KVA
correct_option: KVA

Question62: START

Which of the following does not change in an ordinary transformer

Question62: END

Option_a: Frequency Option_b: Voltage Option_c: Current Option_d: Power

correct_option: Frequency

Question63: START

If primary number of turns are higher then, transformer is called ______

Question63: END

Option_a: Step-down Option_b: Step-up Option_c: One-one

Option_d: Autotransformer correct_option: Step-down

Question64: START

If secondary number of turns are higher then, transformer is called ______

Question64: END

Option_a: Step-down Option_b: Step-up Option_c: One-one

Option_d: Autotransformer correct_option: Step-up

Question65: START

The open circuit test in a transformer is used to measure___

Question65: END

Option_a: Copper loss Option_b: Winding loss Option_c: Total loss Option_d: Core loss correct_option: Core loss Question66: START

Why OC test is performed on LV side?

Question66: END

Option_a: Simple construction

Option_b: Less voltage is required and parameters can be transformed to HV side

Option_c: It'll not give losses if conducted on HV side Option_d: HV side does not have connections for voltage

correct_option: Less voltage is required and parameters can be transformed to HV side

Question67: START

While conducting short-circuit test on a transformer which side is short circuited?

Question67: END

Option_a: High voltage side
Option_b: Low voltage side
Option_c: Primary side
Option_d: Secondary side

correct_option: Low voltage side

Question68: START

Which types of windings are used in transformer?

Question68: END

Option_a: Helical winding
Option_b: Cylindrical winding
Option_c: Continuous disc winding

Option_d: All of above correct_option: All of above

Question69: START

Breather is provided in a transformer to

Question69: END

Option_a: Absorb moisture of air during breathing Option_b: provide cold air in the transformer

Option_c: The filter of transformer oil

Option_d: None of above

correct_option: Absorb moisture of air during breathing

Question 70: START

Oil is provided in an oil filled transformer for

Question70: END

Option_a: Lubrication Option_b: Insulation Option_c: cooling

Option_d: both cooling and insulation correct option: both cooling and insulation

Question71: START

Which of the following is not a part of transformer?

Question71: END

Option_a: Conservator Option_b: breather Option_c: Exciter

Option_d: Buchholz relay correct_option: Exciter

Question72: START

Noise of transformer mainly due to

Question72: END

Option_a: Cooling fan

Option_b: magnetostriction in an iron core

Option_c: Mechanical vibration Option_d: All of the above

correct_option: magnetostriction in an iron core

Question73: START

The part of a transformer which is visible from outside

Question73: END

Option_a: Bushings Option_b: Core

Option_c: Primary winding Option_d: Secondary winding correct_option: Bushings

Question74: START

Part of the transformer which undergoes most damage from overheating is ___

Question74: END

Option_a: Iron core

Option_b: Copper winding Option_c: Winding insulation Option_d: Frame or case

correct_option: Winding insulation

Question75: START

Which is the most common, famous and adopted method of cooling of a power transformer?

Question75: END

Option_a: Air blast cooling Option_b: Natural air cooling

Option_c: Oil cooling

Option_d: Any of the above method can be used

correct_option: Oil cooling

Question76: START

Function of conservator in an electrical transformer is

Question76: END

Option_a: Supply cooling oil to transformer in time of need Option_b: Provide fresh air for cooling the transformer

Option_c: Protect the transformer from damage when oil expends due to heating

Option d: Cannot be determined

correct option: Protect the transformer from damage when oil expends due to heating

Question77: START

Which chemical is used in breather?

Question77: END

Option_a: Asbestos fibre Option_b: Silica sand Option_c: Sodium chloride

Option_d: Silica gel correct_option: Silica gel

Question78: START

Buchholz's relay will give warning and protection against _____

Question78: END

Option_a: Electrical fault inside the transformer itself

Option_b: Electrical fault outside the transformer in outgoing feeder

Option_c: For both outside and inside faults

Option_d: Cannot be determined

correct_option: Electrical fault inside the transformer itself

Question 79: START

An auto transformer can be used as

Question79: END

Option_a: Step up device Option_b: Step down device

Option_c: Both step up and step down

Option_d: None of the above

correct_option: Both step up and step down

Question80: START

In an Auto Transformer, The Primary and Secondary are_____coupled.

Question80: END

Option_a: Electrically only
Option b: Magnetically only

Option_c: Both electrically & magnetically

Option_d: None of the above

correct_option: Both electrically & magnetically

Question81: START

A load test on a single-phase induction motor is conducted to evaluate its performance under different load

conditions.

Question81: END

Option_a: To determine the voltage drop

Option_b: To evaluate motor performance under varying loads

Option_c: To measure the speed of the motor only

Option_d: To test the insulation resistance

correct_option: To evaluate motor performance under varying loads

Question82: START

The efficiency of a single-phase transformer is maximum at:

Question82: END

Option_a: Full load
Option_b: Half load
Option_c: No load
Option_d: Quarter load
correct_option: Half load

Question83: START

In an LVDT, the output voltage is zero when:

Question83: END

Option_a: The core is at the null position
Option_b: The core is fully inserted
Option_c: The supply voltage is maximum

Option_c: The supply voltage is maximum Option_d: The frequency is maximum

correct_option: The core is at the null position

Question84: START

Which type of meter is commonly used to measure energy consumption in households?

Question84: END

Option_a: Ammeters
Option_b: Voltmeters
Option_c: Energy meters
Option_d: Ohmmeters

correct option: Energy meters

Question85: START

The purpose of using a wattmeter is to measure:

Question85: END

Option_a: Voltage
Option_b: Current
Option_c: Power
Option_d: Resistance
correct_option: Power

Question86: START

A Moving Coil (MC) instrument is primarily used for:

Question86: END

Option_a: AC measurements Option_b: DC measurements

Option_c: Both AC and DC measurements Option_d: Frequency measurements correct_option: DC measurements

Question87: START

The sensitivity of a wattmeter can be increased by:

Question87: END

Option_a: Increasing the resistance of the current coil
Option_b: Decreasing the resistance of the current coil
Option_c: Increasing the inductance of the voltage coil
Option_d: Decreasing the inductance of the voltage coil
correct_option: Increasing the resistance of the current coil

Question88: START

An induction motor is commonly used in:

Question88: END

Option_a: Power plants

Option_b: Domestic appliances Option_c: Aircraft engines Option_d: Nuclear reactors

correct_option: Domestic appliances

Question89: START

The function of a capacitor in a single-phase motor is to:

Question89: END

Option_a: Start the motor Option_b: Increase the speed Option_c: Reduce the voltage Option_d: Decrease the current correct_option: Start the motor

Question 90: START

The standard frequency of AC supply in India is:

Question90: END

Option_a: 50 Hz
Option_b: 60 Hz
Option_c: 75 Hz
Option_d: 100 Hz
correct_option: 50 Hz

Question91: START

In the two wattmeter method, when the power factor is zero, the readings of wattmeters are:

Question91: END

Option_a: Both positive Option_b: Both negative

Option_c: One positive, one negative

Option_d: Zero

correct_option: One positive, one negative

Question92: START

The primary advantage of using an LVDT is its:

Question92: END

Option_a: High accuracy Option_b: Low cost Option_c: Large size

Option_d: High power consumption correct_option: High accuracy

Question93: START

The scale of a Moving Coil (MC) meter is typically:

Question93: END

Option_a: Non-uniform Option_b: Uniform Option_c: Exponential Option_d: Logarithmic correct_option: Uniform

Question94: START

What is the phase difference between current and voltage in a purely capacitive circuit?

Question94: END

Option_a: 0 degrees Option_b: 90 degrees Option_c: 180 degrees Option_d: 270 degrees correct_option: 90 degrees

Question95: START

Which instrument is used to measure high-frequency AC signals?

Question95: END

Option_a: Moving Iron (MI) meter Option_b: Moving Coil (MC) meter Option_c: Electrodynamometer Option_d: Digital Oscilloscope correct option: Digital Oscilloscope

Question96: START

The power factor of a purely inductive circuit is:

Question96: END

Option_a: Unity Option_b: Zero Option_c: 0.5 Option_d: Negative correct_option: Zero

Question 97: START

In an energy meter, the term 'creep' refers to:

Question97: END

Option_a: Unwanted slow rotation of the disc

Option_b: Sudden increase in current Option_c: Sudden decrease in voltage Option_d: Constant power factor

correct_option: Unwanted slow rotation of the disc

Question98: START

LVDTs are best suited for measuring:

Question98: END

Option_a: High temperatures Option_b: Large displacements Option_c: Small displacements Option_d: High pressures

correct_option: Small displacements

Question99: START

The slip of an induction motor increases with:

Question99: END

Option_a: Increase in load Option_b: Decrease in load Option_c: Increase in speed Option_d: Increase in voltage correct_option: Increase in load

Question 100: START

The moving coil meter works on the principle of:

Question100: END

Option_a: Electromagnetic induction

Option_b: Electrostatic effect Option_c: Thermionic emission

Option_d: Motor effect correct_option: Motor effect

Question101: START

If a device consumes 2 kW power for 5 hours, the energy consumed is:

Question101: END

Option_a: 10 kWh
Option_b: 1 kWh
Option_c: 5 kWh
Option_d: 0.5 kWh
correct_option: 10 kWh

Question102: START

What is the typical range of slip for a single-phase induction motor at full load?

Question102: END

Option_a: 0% to 1%
Option_b: 5% to 7%
Option_c: 10% to 15%
Option_d: 20% to 30%
correct_option: 5% to 7%

Question103: START

The scale of a Moving Iron (MI) instrument is typically:

Question103: END

Option_a: Uniform across all ranges

Option_b: Narrower at low readings and wider at higher readings Option_c: Wider at low readings and narrower at higher readings

Option_d: Identical to a Moving Coil (MC) instrument scale

correct_option: Narrower at low readings and wider at higher readings

Question 104: START

The primary winding of a transformer is connected to:

Question104: END

Option_a: The load

Option_b: The power supply

Option_c: A capacitor Option d: A resistor

correct option: The power supply

Question105: START

The power factor of a purely resistive circuit is:

Question105: END

Option_a: 0 Option_b: 0.5 Option_c: 1

Option_d: Negative correct option: 1

Question 106: START

What type of losses occur in the core of a transformer?

Question106: END

Option_a: Copper losses
Option_b: Hysteresis losses
Option_c: Windage losses
Option_d: Mechanical losses
correct_option: Hysteresis losses

Question 107: START

In an LVDT, what is the function of the core?

Question107: END

Option_a: To provide insulation Option_b: To induce voltage Option_c: To measure temperature Option_d: To change the frequency

correct_option: To induce voltage

Question108: START

The slip of an induction motor is defined as:

Question108: END

Option_a: The difference between synchronous speed and rotor speed

Option_b: The ratio of voltage to current

Option_c: The difference between input and output power

Option_d: The ratio of frequency to speed

correct_option: The difference between synchronous speed and rotor speed

Question 109: START

The standard unit for measuring electrical energy is:

Question109: END

Option_a: Watt Option_b: Joule

Option_c: Kilowatt-hour

Option d: Volt

correct_option: Kilowatt-hour

Question110: START

The direction of rotation of a three-phase motor can be changed by:

Question110: END

Option_a: Changing the voltage

Option_b: Reversing two of the phase connections

Option_c: Increasing the frequency Option_d: Adding a capacitor

correct option: Reversing two of the phase connections

Question111: START

The voltage regulation of a transformer is:

Question111: END

Option_a: The ratio of load voltage to no-load voltage

Option_b: The change in secondary voltage from no-load to full-load

Option_c: The efficiency of the transformer Option d: The resistance of the winding

correct_option: The change in secondary voltage from no-load to full-load

Question112: START

What is the function of the commutator in a DC motor?

Question112: END

Option_a: To change AC to DC

Option_b: To reverse the direction of current

Option_c: To increase voltage Option_d: To decrease resistance

correct_option: To reverse the direction of current

Question113: START

An energy meter is calibrated in:

Question113: END

Option_a: Volts
Option_b: Watts
Option_c: Amperes
Option_d: kWh
correct_option: kWh

Question114: START

The purpose of a starter in an induction motor is to:

Question114: END

Option_a: Increase the speed
Option_b: Limit the starting current
Option_c: Decrease the voltage
Option_d: Improve power factor

correct_option: Limit the starting current

Question115: START

The efficiency of a transformer under full load is:

Question115: END

Option_a: Always 100% Option_b: Less than 100% Option_c: More than 100%

Option_d: Equal to the power factor correct_option: Less than 100%

Question116: START

A Moving Iron (MI) instrument is primarily used for:

Question116: END

Option_a: DC measurements

Option_b: High-frequency measurements

Option_c: AC measurements

Option_d: Resistance measurements correct_option: AC measurements

Question117: START

The purpose of a fuse in an electrical circuit is to:

Question117: END

Option_a: Increase current

Option_b: Protect against overcurrent

Option_c: Measure voltage Option_d: Store energy

correct_option: Protect against overcurrent

Question118: START

The typical range of efficiency for an induction motor is:

Question118: END

Option_a: 50-60% Option_b: 70-80% Option_c: 85-95% Option_d: 100%

correct_option: 85-95%

Question119: START

In a star-connected three-phase system, the line voltage is:

Question119: END

Option_a: Equal to the phase voltage Option_b: Less than the phase voltage Option_c: More than the phase voltage

Option d: Zero

correct_option: More than the phase voltage

Question120: START

The primary function of a circuit breaker is to:

Question120: END

Option a: Provide insulation

Option_b: Switch the circuit on and off Option_c: Protect against overload Option_d: Store electrical energy

correct option: Protect against overload

Question 121: START

In a DC shunt motor, speed is related to armature current as

Question 121: END

Option_a: Directly proportional to the armature current Option_b: Proportional to the square of the current

Option_c: Independent of armature current

Option_d: Inversely proportional to the armature current correct_option: Inversely proportional to the armature current

Question 122: START

In a DC shunt motor for zero armature current we get speed

Question 122: END

Option_a: Non-zero and minimum

Option_b: Zero

Option_c: Non-zero and maximum

Option_d: Doesn't depend on armature current

correct_option: - Zero

Question 123: START

As the load is increased the speed of DC shunt motor will

Question 123: END

Option_a: Reduce slightly Option_b: Increase slightly

Option_c: Increase proportionately

Option_d: Reduce rapidly

correct_option: Increase slightly

Question 124: START

The armature torque of the DC shunt motor is proportional to

Question 124: END

Option_a: Field flux only

Option_b: Armature current only

Option_c: Field flux and armature current

Option d: Field current

correct option: Armature current only

Question 125: START

Correct equation of speed-torque characteristic of DC shunt motor is

Question 125: END

Option_a: $[V_t / k\Phi] = [R_a / k^l \Phi^2] T$ Option_b: $[V_t / k\Phi^2] = [R_a / k^l \Phi^2] T$ Option_c: $[V_t / k\Phi] = [R_a / k^l \Phi] T$ Option_d: $[V_t / k\Phi^2] = [R_a / k^l \Phi^2] T$ correct_option: $[V_t / k\Phi] - [R_a / k^l \Phi^2] T$

Question 126: START

For some percentage increase in the torque, which DC motor will have the least percentage increase of input current?

Question 126: END

Option_a: Series motor Option_b: Shunt motor

Option_c: Cumulative compound motor Option_d: Separately exited motor correct_option: Shunt motor

Question 127: START

If a DC shunt motor is working at full load and if shunt field circuit suddenly opens

Question 127: END

Option_a: Will make armature to take heavy current, possibly burning it

Option_b: Will result in excessive speed, possibly destroying armature due to excessive centrifugal stresses

Option_c: Nothing will happen to motor Option d: Motor will come to stop

correct_option: Will make armature to take heavy current, possibly burning it

Question 128: START

The speed of a DC shunt motor can be made more than full load speed by

Question 128: END

Option_a: Reducing the field current

Option_b: Decreasing the armature current Option_c: Increasing the armature current Option_d: Increasing the excitation current correct_option: Reducing the field current

Question 129: START

No load speed of the DC shunt motor is 1322 rpm while full load speed is 1182 rpm. What will be the speed regulation?

Question 129: END

Option_a: 12.82 %
Option_b: 11.8 %
Option_c: 16.6 %
Option_d: 14.2 %
correct_option: 11.8 %

Question 130: START

Magnitude of flux in an energy meter varies _

Question 130: END

Option_a: due to abnormal currents and voltages
Option_b: due to high resistance and inductance values
Option_c: due to changes in the transformer turns
Option_d: due to the induced e.m.f in the windings
correct_option: due to abnormal currents and voltages

Question 131: START Energy meter creeps due to

Question 131: END

Option_a: due to change in supply

Option_b: due to reversal in polarity of voltage Option_c: due to asymmetry in magnetic circuit Option d: due to turns ratio of transformer

correct_option: due to asymmetry in magnetic circuit

Question 132: START

How is the flux of shunt coil related to voltage?

Question 132: END

Option_a: flux is proportional to square of voltage

Option_b: directly proportional Option_c: inversely proportional Option_d: independent of each other

correct_option: flux is proportional to square of voltage

Question 133: START

Supply voltage in an energy meter is

Question 133: END

Option_a: constant always Option_b: zero always

Option_c: depends on the load

Option_d: can fluctuate correct_option: can fluctuate

Question134: START

How is the flux of shunt coil related to voltage?

Question134: END

Option a: flux is proportional to square of voltage

Option_b: directly proportional Option_c: inversely proportional Option_d: independent of each other

correct option: flux is proportional to square of voltage

Question 135: START

How can temperature effect be compensated in an energy meter?

Question 135: END

Option_a: through heat sinks
Option_b: by a temperature shunt
Option_c: by using resistance
Option_d: by using a coolant

correct_option: by a temperature shunt

Question 136: START

In some energy meters, creeping can be avoided by

Question 136: END

Option_a: attaching small gold pieces
Option_b: attaching small aluminium pieces
Option_c: attaching small iron pieces
Option_d: attaching small zinc pieces
correct_option: attaching small iron pieces

Question: 137 START

Routh Hurwitz criterion gives:

Question 137: END

Option_a: Number of roots in the right half of the s-plane

Option_b: Value of the roots

Option_c: Number of roots in the left half of the s-plane Option_d: Number of roots in the top half of the s-plane correct_option: Number of roots in the right half of the s-plane

Question138: START

Routh Hurwitz criterion cannot be applied when the characteristic equation of the system containing coefficient's which is/are

Question138: END

Option_a: Exponential function of s Option_b: Sinusoidal function of s

Option_c: Complex

Option_d: Exponential and sinusoidal function of s and complex correct_option: Exponential and sinusoidal function of s and complex

Question139: START

Consider the following statement regarding Routh Hurwitz criterion

Question139: END

Option_a: It gives absolute stability
Option_b: It gives gain and phase margin

Option c: It gives the number of roots lying in RHS of the s-plane

Option_d: It gives gain, phase margin and number of roots lying in RHS of the s-plane correct_option: it gives gain, phase margin and number of roots lying in RHS of the s-plane

Question140: START

The order of the auxiliary polynomial is always:

Question140: END

Option_a: Even Option_b: Odd

Option_c: May be even or odd Option_d: None of the mentioned

correct_option: Even

Question141: START

Which of the test signals are best utilized by the stability analysis.

Question141: END

Option_a: Impulse
Option_b: Step
Option_c: Ramp
Option_d: Parabolic
correct_option: Impulse

Question142: START

The characteristic equation of a system is given as3s4+10s3+5s2+2=0. This system is:

Question142: END

Option_a: Stable

Option_b: Marginally stable

Option_c: Unstable Option_d: Linear

correct_option: Unstable

Question143: START

The characteristic equation of a system is given ass3+25s2+10s+50=0. What is the number of the roots in the right half s-plane and the imaginary axis respectively?

Question143: END

Option_a: 1,1 Option_b: 0,0 Option_c: 2,1 Option_d: 1,2 correct_option: 0,0

Question144: START

The necessary condition for the stability of the linear system is that all the coefficients of characteristic equation 1+G(s)H(s)=0, be real and have the

Question144: END

Option_a: Positive sign
Option_b: Negative sign
Option c: Same sign

Option_d: Both positive and negative

correct_option: Same sign

Question145: START

For making an unstable system stable:

Question145: END

Option_a: Gain of the system should be increased Option_b: Gain of the system should be decreased

Option_c: The number of zeroes to the loop transfer function should be increased Option_d: The number of poles to the loop transfer function should be increased

correct_option: Gain of the system should be decreased

Question 146: START

The order of the auxiliary polynomial is always:

Question 146: END

Option_a: Even Option_b: Odd

Option_c: May be even or odd
Option d: None of the mentioned

correct_option: Even

Question147: START

The major components of a controller are

Question147: END

Option a: Control element

Option b: Error detector and control element

Option_c: Feedback element

Option_d: Error detector and feedback element correct_option: Error detector and control element

Question148: START What is an electric drive?

Question148: END

Option_a: A machine that converts electrical energy into kinetic energy
Option_b: A machine that converts mechanical energy into electrical energy
Option_c: A machine that converts electrical energy into mechanical energy
Option_d: A machine that converts kinetic energy into electrical energy
correct_option: A machine that converts electrical energy into mechanical energy

Question149: START

Which of the following is used to build a electric drive?

Question149: END

Option_a: Source Option_b: Motor Option_c: Control unit

Option_d: All of the mentioned correct_option: All of the mentioned

Question150: START

Which of the following is/are components of an electric drive?

Question150: END

Option_a: Control unit and Power Modulator Option_b: Electric Motor and Control System

Option_c: Input Command

Option_d: Sensing Device and Electric Motor correct option: Electric Motor and Control System

Question151: START

Which of the following is a function of electric drive?

Question151: END

Option_a: Transport energy from the storage system to the wheels Option_b: Transport energy from the control system to the wheels Option_c: Transport fuel from the electric motor to the wheels Option_d: Transport fuel from the storage system to the wheels

correct_option: Transport energy from the storage system to the wheels

Question152: START

Which of the following exhibits linearly rising load torque characteristics

Question152: END

Option_a: Rolling Mills Option_b: Fan load

Option_c: Separately excited dc generator connected to the resistive load

Option d: Elevators

correct_option: Separately excited dc generator connected to the resistive load

Question153: START

What is the maximum number of lighting points that can be connected in a circuit?

Question153: END

Option_a: 5 Option_b: 10 Option_c: 8 Option_d: 12 correct_option:10

Question154: START

Which material is used for wiring continuous bus bar?

Question154: END

Option_a: Aluminium Option_b: Copper

Option_c: Both (A) and (B)
Option_d: None of these
correct option: Aluminium

Question155: START

For what voltage levels are the screwed conduit circuits used?

Question155: END

Option_a: Less than 250 V

Option_b: For voltages between 250 V - 600 V

Option_c: For voltages above 600 V

Option_d: None of these

correct_option: For voltages between 250 V - 600 V

Question156: START

Which among these is a method of wiring?

Question156: END

Option_a: Joint box
Option_b: Tee system
Option_c: Loop in system
Option_d: All of these
correct_option All of these

Question157: START

Blinking of fluorescent tube may be on account of

Question157: END

Option_a: Low circuit voltage
Option_b: Loose contact
Option_c: Defective starter
Option_d: Any of the above
correct_option: Any of the above

Question158: START

For operation of fluorescent tube on DC supply the additional device incorporated in the Tube circuit is a

Question158: END

Option_a: Transformer
Option_b: Resistor
Option_c: Inductor

Option_d: All of the above correct_option: Resistor

Question159: START

A capacitor is connected across the fluorescent tube circuit in order to

Question 159: END

Option_a: Eliminate the noise Option_b:. Limit the current

Option_c: Improve the power factor of the tube circuit

Option d: None of the mentioned

correct option: Improve the power factor of the tube circuit

Question160: START

The Flickr effect of fluorescent lamps is more pronounced at

Question160: END

Option_a: Lower voltages
Option_b: Higher voltages
Option_c: Higher frequencies
Option_d: Lower frequencies
correct_option: Lower frequencies

Question161: START

For a given system response y(t) to a unit step input u(t), what characteristic of the system can be determined if the response includes an exponential decay term?

Question161: END

Option_a: The system is unstable

Option_b: The system has underdamped poles Option_c: The system is critically damped Option d: The system has no damping

correct_option: The system has underdamped poles

Question162: START

If a unit impulse signal $\delta(t)$ delta(t) $\delta(t)$ is applied to a linear time-invariant (LTI) system, which of the following can best describe the resulting output?

Question162: END

Option_a: The output will be a scaled version of $\delta(t) \cdot (t)$ Option_b: The output will be the impulse response of the system Option_c: The output will be the step response of the system

Option_d: The output will be zero for all time

correct option: The output will be the impulse response of the system

Question163: START

A unit ramp function r(t)=tu(t) is applied to a first-order system with a time constantWhich of the following best describes the output response?

Question163: END

Option_a: It will have a constant steady-state value Option_b: It will linearly increase with time indefinitely

Option_c: It will approach a steady-state ramp with a slope determined by τ\tauτ

Option_d: It will exhibit an oscillatory response

correct_option: It will approach a steady-state ramp with a slope determined by τ\tauτ

Question164: START

In control systems, which of the following input signals is often used to test the transient response characteristics of a system, particularly in feedback control design?

Question164: END

Option_a: Unit ramp signal Option_b: Unit impulse signal Option_c: Exponential decay signal Option_d: Sinusoidal signal

correct_option: Unit impulse signal

Question165: START

Which of the following best describes the response of a second-order system when excited by a unit step signal, if

the system is underdamped?

Question165: END

Option_a: A smooth exponential decay to zero

Option_b: An oscillatory response with a decaying amplitude

Option_c: A ramp response with steady-state error

Option_d: A steady-state constant response with zero overshoot correct_option: An oscillatory response with a decaying amplitude

Question166: START

When comparing the Fourier series representation of a square wave and a sinusoidal wave of the same frequency, what key characteristic distinguishes them?

Question166: END

Option_a: Square wave contains only even harmonics

Option_b: Sinusoidal wave contains more harmonics

Option_c: Square wave contains odd harmonics, sinusoidal contains only the fundamental

Option_d: Sinusoidal wave has a flat amplitude spectrum

correct_option: Square wave contains odd harmonics, sinusoidal contains only the fundamental

Question167: START

In a DIT-FFT algorithm, what key operation differentiates it from the direct computation of the Discrete Fourier

Transform (DFT)?
Question167: END

Option a: Computation is based on breaking the input sequence into even and odd parts

Option b: The output sequence is reversed

Option_c: It only calculates half of the DFT coefficients

Option_d: It requires complex conjugate multiplications at each step

correct_option: Computation is based on breaking the input sequence into even and odd parts

Question168: START

In a DIF-FFT algorithm, what is the main reason for performing decimation on the output instead of the input

sequence?

Question168: END

Option_a: To minimize the total number of computations required

Option_b: To apply twiddle factors more efficiently

Option_c: To ensure that the input sequence remains in natural order

Option_d: To reduce the memory usage during computation

correct_option: To ensure that the input sequence remains in natural order

Question169: START

In a scenario where you need to minimize the number of arithmetic operations for a large input sequence, which FFT structure (DIT or DIF) would you prefer, and how would the choice impact the computation?

Question169: END

Option_a: DIT, because it reduces complex multiplications in each stage

Option_b: DIT, as it performs bit-reversal at the output, optimizing the sequence

Option_c: DIF, as it places the twiddle factor multiplications in initial stages, reducing overall complexity

Option_d: DIF, because it limits additions in the later stages

correct option: DIF, as it places the twiddle factor multiplications in initial stages, reducing overall complexity

Question170: START

How does the butterfly computation in DIT-FFT differ from that in DIF-FFT with respect to the application of

twiddle factors?

Question170: END

Option_a: DIT-FFT applies twiddle factors after the butterfly operation

Option_b: DIT-FFT applies twiddle factors only at the last stage

Option_c: DIF-FFT applies twiddle factors before the butterfly operation

Option d: Both algorithms apply twiddle factors at every stage

correct_option: DIF-FFT applies twiddle factors before the butterfly operation

Question171: START

In an 8-point FFT, the DIT-FFT and DIF-FFT produce the same result but in different orders. What output difference specifically distinguishes the final outputs of DIT-FFT from DIF-FFT?

Question171: END

Option_a: DIT-FFT provides output in bit-reversed order, while DIF-FFT provides it in natural order

Option b: DIT-FFT provides output in natural order, while DIF-FFT provides it in bit-reversed order

Option_c: Both algorithms output in bit-reversed order

Option_d: Both algorithms output in natural order

correct_option: DIT-FFT provides output in bit-reversed order, while DIF-FFT provides it in natural order

Question172: START

Given that both DIT and DIF FFTs involve recursive butterfly operations, in what case would the butterfly structure in DIT be more advantageous than DIF, especially in terms of implementation on a software-based digital signal processor (DSP)?

Question172: END

Option a: When the input data is naturally in bit-reversed order

Option b: When the algorithm needs to minimize memory for each butterfly stage

Option_c: When the DSP is optimized for forward-order computations, aligning with DIT's bit-reversed input order

Option_d: When minimizing latency across stages is essential

correct_option: When the DSP is optimized for forward-order computations, aligning with DIT's bit-reversed input order

Question173: START

You are comparing the speed and efficiency of DIT and DIF FFT algorithms for a research project on high-frequency data processing. Which key factors would you prioritize in selecting one algorithm over the other, and what would be your choice?

Question173: END

Option a: Choose DIT for lower frequency resolution and simplicity

Option_b: Choose DIF for faster computation in hardware due to in-place input structure Option_c: Choose DIT to reduce the total memory requirement

Option_d: Choose DIF to minimize frequency resolution in final stages

correct_option: Choose DIF for faster computation in hardware due to in-place input structure

Question174: START

In designing an FFT algorithm for adaptive filtering applications, where rapid and efficient frequency updates are essential, would DIT or DIF be preferable, and why?

Question174: END

Option_a: DIT, since it can more easily accommodate dynamic input changes

Option_b: DIF, as it optimizes the use of twiddle factors in each stage Option_c: DIT, due to its reduced need for twiddle factor adjustments Option_d: DIF, as it allows for quick adjustments with natural order inputs correct_option: DIF, as it allows for quick adjustments with natural order inputs

Question175: START

If your goal is to implement a parallel FFT computation on a multicore processor, which algorithm (DIT or DIF) would facilitate more efficient parallel processing, and what is the reason behind this choice?

Question175: END

Option_a: DIT, as it allows parallel processing through its decimation structure

Option_b: DIF, because it organizes computations such that later stages can be parallelized

Option_c: DIF, as it provides natural ordering at each stage, simplifying data distribution across cores

Option_d: DIT, since it inherently minimizes the interdependencies between stages

correct_option: DIF, as it provides natural ordering at each stage, simplifying data distribution across cores

Question176: START

If you were given an 8-point FFT to compute by hand and needed the simplest approach to verify the results, which algorithm (DIT or DIF) would you select, and what would be the rationale behind your choice?

Question176: END

Option_a: DIT, because it provides intermediate results that are easy to validate at each stage

Option_b: DIF, as it maintains a straightforward order of input operations

Option_c: DIF, since it produces outputs in natural order, making verification easier

Option_d: DIT, as it minimizes the twiddle factor computations required for each step correct_option: DIF, since it produces outputs in natural order, making verification easier

Question177: START

system produces zero output for one input and same gives the same output for several other inputs. What is the system called?

- a) Non invertible System
- b) Invertible system
- c) Non causal system
- d) Causal system

Question177: END

Option_a: Non – invertible System
Option_b: Invertible system

Option_c: Non – causal system Option_d: Causal system

correct_option Non - invertible System

Question178: START

How is a linear function described as?

- a) Zero in Finite out
- b) Zero in infinite out
- c) Zero in zero out
- d) Zero in Negative out

Question178: END

Option_a: Zero in Finite out Option_b: Zero in infinite out Option_c: Zero in zero out Option_d: Zero in Negative out correct_option: Zero in zero out

Question179: START

If n tends to infinity, is the accumulator function an unstable one?

Question179: END

Option_a: The function is marginally stable

Option_b: The function is unstable Option_c: The function is stable Option_d: None of the mentioned correct_option: The function is unstable

Question 180: START

Determine the discrete-time signal: x(n)=1 for $n\ge 0$ and x(n)=0 for n<0

Question180: END

Option_a: Unit ramp sequence Option_b: Unit impulse sequence Option_c: Exponential sequence Option_d: Unit step sequence correct_option: Unit step sequence

Question181: START

In the context of digital filter design, what is the primary purpose of using the Bilinear Transformation technique?

Question181: END

Option_a: To preserve the frequency response of an analog filter exactly

Option_b: To perform a one-to-one mapping of the impulse response

Option_c: To optimize the phase response of the filter

Option_d: To map the entire analog frequency range to the digital frequency range without aliasing correct_option To map the entire analog frequency range to the digital frequency range without aliasing

Question182: START

Which of the following best describes how the Bilinear Transformation maps the analog s-plane to the digital z-plane?

Question 182: END

Option_a: It maps the entire left half of the s-plane to the entire z-plane Option_b: It maps the origin of the s-plane to infinity in the z-plane Option_c: It maps the $j\omega$ -axis to the unit circle in the z-plane

Option_d: It maps the right half of the s-plane to the left half of the z-plane

correct option: It maps the jw-axis to the unit circle in the z-plane

Question183: START

In Impulse Invariant Transformation, what is a primary drawback that may arise when designing digital filters from analog prototypes?

Question183: END

Option_a: Aliasing, as it does not prevent overlap of the frequency spectrum
Option_b: Frequency warping, causing an inaccurate mapping of frequencies
Option_c: Non-causal filter design, making it impossible for real-time applications

Option_d: A need for high sampling rates to achieve accurate results

correct_option: Aliasing, as it does not prevent overlap of the frequency spectrum

Question184: START

What is the nature of the following function: y[n] = y[n-1] + x[n]?

Question184: END

Option_a: Integrator
Option_b: Differentiator
Option_c: Subtractor
Option_d: Accumulator
correct_option: Accumulator

Question185: START

Which of the following transformations is better suited for low-pass filter designs when a precise match between analog and digital frequency response is critical?

Question185: END

Option_a: Impulse Invariant Transformation, as it avoids aliasing

Option_b: Bilinear Transformation, as it warps frequencies to maintain shape

Option_c: Impulse Invariant Transformation, due to its simple one-to-one mapping

Option_d: Bilinear Transformation, as it provides a more accurate mapping at low frequencies correct_option:

Bilinear Transformation, as it provides a more accurate mapping at low frequencies

Question186: START

In Bilinear Transformation, what effect does the frequency warping have on high-frequency components when transforming from analog to digital?

Question186: END

Option_a: High-frequency components are compressed toward the Nyquist frequency Option_b: High-frequency components are stretched uniformly across the frequency axis

Option_c: High-frequency components are mapped to low frequencies, creating aliasing Option_d: High-frequency components remain unaffected by warping

correct_option: High-frequency components are compressed toward the Nyquist frequency

Question187: START

In designing a high-pass filter using Impulse Invariant Transformation, what must be considered to reduce the effects of aliasing?

Question187: END

Option a: Use a very low cutoff frequency

Option_b: Increase the sampling frequency to minimize aliasing

Option_c: Apply a pre-warping technique

Option_d: Design a low-pass filter instead and convert it to high-pass correct_option: Increase the sampling frequency to minimize aliasing

Question188: START

How does the Impulse Invariant Transformation maintain the time-domain characteristics of an analog filter when transforming it to a digital filter?

Question 188: END

Option_a: It maps each impulse response sample in the analog domain to the digital domain

Option_b: It applies a pre-warping effect to match impulse timings

Option_c: It mirrors the analog filter's poles exactly onto the z-plane

Option d: It uses zero-order hold to approximate the analog response

correct_option: It maps each impulse response sample in the analog domain to the digital domain

Question189: START

Consider designing a band-pass digital filter. Given that both Bilinear Transformation and Impulse Invariant Transformation are options, which would you choose and why?

Question189: END

Option_a: Impulse Invariant, to maintain the time-domain characteristics of the analog filter

Option b: Impulse Invariant, to simplify the mapping of high frequencies

Option c: Bilinear, to avoid frequency warping in the lower frequency range

Option_d: Bilinear, to avoid aliasing and ensure accurate frequency mapping

correct_option: Bilinear, to avoid aliasing and ensure accurate frequency mapping

Question190: START

For an analog filter with a cutoff frequency close to the Nyquist limit, why would Bilinear Transformation be less ideal for digital conversion, and what would you do to mitigate this issue?

Question190: END

Option_a: Frequency warping distorts high frequencies, so apply pre-warping to compensate

Option_b: It fails to map lower frequencies accurately; increase sampling rate

Option_c: Impulse response aliasing; switch to Impulse Invariant Transformation

Option_d: It inverts the phase response; adjust the pole-zero configuration

correct_option: Frequency warping distorts high frequencies, so apply pre-warping to compensate

Question191: START

Which of the following best explains why a Low Pass Filter is often used in anti-aliasing applications?

Question191: END

Option_a: It allows only high frequencies to pass, reducing high-frequency noise

Option_b: It blocks low frequencies, ensuring only high-frequency components are sampled

Option_c: It attenuates high frequencies, limiting the bandwidth and preventing aliasing

Option_d: It mirrors frequencies to reduce spectral overlap

correct option It attenuates high frequencies, limiting the bandwidth and preventing aliasing

Question192: START

For audio applications where low-frequency noise is common, which filter type is typically used to remove low-frequency interference while preserving high-frequency components of the signal?

Question192: END

Option_a: Low Pass Filter
Option_b: High Pass Filter
Option_c: Band Pass Filter
Option_d: Band Reject Filter
correct_option: High Pass Filter

Question193: START

In designing a Band Pass Filter, what characteristic must be carefully controlled to ensure the filter accurately targets the desired frequency band?

Question193: END

Option_a: The passband ripple

Option_b: Only the cutoff frequency of the high-pass component Option_c: The roll-off rate of both the low- and high-frequency cutoffs

Option d: The gain of the entire frequency range

correct_option: The roll-off rate of both the low- and high-frequency cutoffs

Question194: START

Which of the following filter types would be most effective in removing a specific interfering frequency within a signal while leaving the surrounding frequencies largely unaffected?

Question194: END

Option_a: Low Pass Filter
Option_b: High Pass Filter
Option_c: Band Pass Filter
Option_d: Band Reject Filter
correct_option: Band Reject Filter

Question195: START

Suppose you are designing a filter for an audio application to enhance vocals between 300 Hz and 3 kHz while attenuating other frequencies. Which type of filter is most appropriate, and why?

Question195: END

Option_a: Low Pass Filter, to allow all frequencies below 3 kHz Option b: High Pass Filter, to remove frequencies below 300 Hz

Option_c: Band Pass Filter, to pass frequencies only between 300 Hz and 3 kHz Option d: Band Reject Filter, to eliminate all frequencies except 300 Hz to 3 kHz

Question196: START

When designing a High Pass Filter for a real-time signal processing system, what potential limitation should you consider regarding the filter's cutoff frequency, and why?

Question196: END

Option_a: The cutoff should be very low to preserve low-frequency components

Option_b: The cutoff should be chosen carefully to avoid unwanted phase distortion near the cutoff frequency Option_c: The cutoff should be very high to allow only high-frequency signals to pass through Option_d: The cutoff must be flexible to adapt to different signal requirements

correct_option: The cutoff should be chosen carefully to avoid unwanted phase distortion near the cutoff frequency

Question197: START

In wireless communication systems, which type of filter would be chosen to eliminate unwanted signals from neighboring frequency bands, and what is a key requirement of this filter's design?

Question197: END

Option_a: Low Pass Filter, with sharp roll-off
Option_b: High Pass Filter, with gradual roll-off
Option_c: Band Pass Filter, with a narrow bandwidth
Option_d: Band Reject Filter, with selective attenuation
correct_option: Band Reject Filter, with selective attenuation

Question198: START

For a seismic signal processing application that requires monitoring frequencies between 0.1 Hz and 10 Hz, which filter design would you choose and why?

Question198: END

Option_a: Low Pass Filter, to attenuate all frequencies above 10 Hz
Option_b: High Pass Filter, to pass all frequencies above 0.1 Hz
Option_c: Band Pass Filter, to pass frequencies only between 0.1 Hz and 10 Hz

Option_d: Band Reject Filter, to eliminate frequencies outside of the range 0.1 Hz to 10 Hz correct_option: Band Pass Filter, to pass frequencies only between 0.1 Hz and 10 Hz

Question199: START

You are developing a filter to isolate and analyze harmonic frequencies within a power signal. Which type of filter would allow you to observe harmonic components while filtering out both high- and low-frequency noise? Question199: END

Option_a: Low Pass Filter, with a low cutoff frequency Option b: High Pass Filter, with a high cutoff frequency

Option_c: Band Pass Filter, with a narrow passband centered on the harmonic frequencies

Option_d: Band Reject Filter, tuned to remove the fundamental frequency only

correct_option: Band Pass Filter, with a narrow passband centered on the harmonic frequencies

Question200: START

If you need to design a filter for biomedical signals to suppress 60 Hz power line interference while preserving other signal frequencies, which filter type would you select and how would it be configured?

Question200: END

Option_a: Low Pass Filter with cutoff below 60 Hz

Option b: High Pass Filter with cutoff above 60 Hz

Option_c: Band Pass Filter targeting the desired biomedical signal frequencies only Option d: Band Reject Filter centered at 60 Hz to suppress interference specifically

correct option: Band Reject Filter centered at 60 Hz to suppress interference specifically

Question201: START

A circuit has a Norton equivalent current of 3 A and a Norton resistance of 4 Ω . What is the equivalent Thevenin

voltage?

Question201: END

Option_a: 3 V Option_b: 6 V Option_c: 12 V Option_d: 15 V

correct_option: c) 12 V

Question202: START

A circuit has a Norton equivalent current of 3 A and a Norton resistance of 4 Ω . What is the equivalent Thevenin

voltage?

Question202: END

Option_a: 1Ω Option_b: 2Ω Option_c: 3Ω Option_d: 4Ω

correct_option: b) 2 Ω

Question203: START

If the open-circuit voltage across terminals is 24 V and the short-circuit current across the same terminals is 6 A, what is the Norton resistance?

Question203: END

Option_a: 2Ω Option_b: 3Ω Option_c: 4Ω Option_d: 6Ω

correct_option: b) 4 Ω

Question204: START

In a Norton equivalent circuit with Norton current I_N =10 A and Norton resistance R_N =5 Ω , what is the current through a 5 Ω load connected across the terminals?

Question204: END

Option_a: 2 A
Option_b: 5 A
Option_c: 7.5 A
Option_d: 10 A
correct_option: b) 5 A

Question 205: START

The Norton resistance of a network is found to be 10 Ω , and the Norton current is 2 A. If a load resistance of 10 Ω

is connected across the terminals, what is the voltage across the load?

Question205: END

Option_a: 5 V Option_b: 10 V Option_c: 15 V Option_d: 20 V

correct_option: b) 10 V

Question206: START

In Norton's Theorem, what happens to all independent sources in the network while calculating the Norton

resistance?

Question206: END

Option_a: All voltage sources are short-circuited, and current sources are left open

Option_b: All voltage sources are open-circuited, and current sources are shorted

Option_c: All sources are turned off, meaning voltage sources are shorted, and current sources are opened

Option_d: No change is made to the sources

correct_option: c) All sources are turned off, meaning voltage sources are shorted, and current sources are opened

Question207: START

For a network with a Norton equivalent current of 15 A and a Norton resistance of 3 Ω , calculate the power delivered to a 3 Ω load resistor.

Question207: END

Option_a: 37.5 W Option_b: 56.25 W Option_c: 75 W Option_d: 112.5 W

correct_option: b) 56.25 W

Question 208: START

A Norton equivalent circuit has a current source of 8 A and a parallel resistance of 6 Ω . If a 12 Ω resistor is connected across the terminals, what is the equivalent current through the 12 Ω resistor.

Question 208: END

Option_a: 2 A Option_b: 3 A Option_c: 4 A Option_d: 6 A

correct_option: b) 3 A

Question209: START

In a circuit, the open-circuit voltage is measured as 50 V, and the short-circuit current is 5 A. What is the Norton equivalent current and resistance?

Question209: END

Option_a: 5 A, 10 Ω Option_b: 10 A, 5 Ω Option_c: 2.5 A, 20 Ω Option_d: 4 A, 12.5 Ω correct_option: a) 5 A, 10 Ω Question210: START

Norton's theorem is used to simplify which of the following types of electrical circuits?

Question210: END

Option_a: Only AC circuits Option_b: Only DC circuits

Option_c: Both AC and DC circuits Option_d: Only resistive circuits

correct_option: c) Both AC and DC circuits

Question211: START

What is the maximum power that can be transferred to R in the circuit shown below?

Question211: END

Option_a: 2 W
Option_b: 4 W
Option_c: 8 W
Option_d: 16 W
correct_option: 8 W

Question212: START

When the load resistance equal to source resistance, which of the following is maximum

Question212: END

Option_a: Voltage
Option_b: Current
Option_c: Power
Option_d: Power factor
correct_option: Power

Question213: START

Which of the following transformer, Buchholz's relay can be fixed on?

Question213: END

Option_a: Welding transformers
Option_b: Oil cooled transformers
Option_c: Auto-transformers
Option_d: Air-cooled transformers
correct_option: Oil cooled transformers

Question214: START

An ideal transformer will have maximum efficiency at a load such that ______

Question214: END

Option_a: copper loss > iron loss
Option_b: cannot be determined
Option_c: copper loss = iron loss
Option_d: copper loss < iron loss
correct_option: copper loss = iron loss

Question215: START For a transformer with primary turns 400, secondary turns 100, if 20A current is flowing through primary, we will get
Question215: END
Option_a: 800A at secondary Option_b: 40A at secondary Option_c: 80A at secondary Option_d: 5A at secondary correct_option: 80A at secondary
Question216: START The full-load copper loss of a transformer is 1600 W. At half-load, the copper loss will be Question216: END
Option_a: 1600 W Option_b: 6400 W Option_c: 400 W Option_d: 800 W correct_option: 400 W
Question217: START Power transformers other than distribution transformers are generally designed to have maximum efficiency around Question217: END
Option_a: 10% overload Option_b: Near full-load Option_c: Half-load Option_d: No-load correct_option: Near full-load
Question218: START No-load current in the transformer is Question218: END
Option_a: Sinusoidal distorted Option_b: Sinusoidal Option_c: Steps Option_d: Straight DC correct_option: Sinusoidal distorted
Question219: START For a 20kVA transformer with a turn ratio of 0.4 what amount of total power is transferred inductively? Question219: END

Option_a: 10kVA Option_b: 8kVA Option_c: 50kVA Option_d: 12kVA correct_option: 12kVA

Question220: START

Which of the following is the major requirement for the transformers used for electronic purposes?

Question220: END

Option_a: Constant amplitude voltage gain

Option_b: Perfect DC isolation, maximum efficiency and constant voltage gain

Option_c: Perfect DC isolation Option_d: Maximum efficiency

correct_option: Constant amplitude voltage gain

Question221: START

Which type of motor is typically used in electric vehicles for its high torque capabilities?

Question221: END

Option_a: Induction Motor
Option_b: Synchronous Motor
Option_c: Stepper Motor
Option_d: DC Shunt Motor
correct_option: Induction Motor

Question222: START

The primary purpose of using a voltage stabilizer in an electrical system is to:

Question222: END

Option_a: Increase power factor

Option_b: Reduce energy consumption
Option_c: Maintain constant voltage output
Option_d: Protect against short circuits

correct_option: Maintain constant voltage output

Question223: START

What is the typical power factor range for industrial loads?

Question223: END

Option_a: 0.2 to 0.5 Option_b: 0.5 to 0.7 Option_c: 0.7 to 0.9 Option_d: 0.9 to 1.0 correct option: 0.7 to 0.9

Question224: START

In a three-phase power system, the type of connection that allows for reduced conductor material is:

Question224: END

Option_a: Delta connection Option_b: Star connection Option_c: Series connection Option_d: Parallel connection correct_option: Star connection

Question225: START

The insulation resistance of a good electrical cable should be:

Question225: END

Option_a: High
Option_b: Low
Option_c: Zero
Option_d: Variable
correct_option: High

Question226: START

The synchronous speed of a 4-pole motor operating on a 50 Hz supply is:

Question226: END

Option_a: 750 RPM
Option_b: 1500 RPM
Option_c: 3000 RPM
Option_d: 3600 RPM
correct option: 1500 RPM

Question227: START

A rheostat is used in an electrical circuit to:

Question227: END

Option_a: Increase current Option_b: Decrease voltage Option_c: Control resistance Option d: Store charge

correct_option: Control resistance

Question228: START

The primary function of a transformer is to:

Question228: END

Option_a: Convert AC to DC

Option_b: Step up or step down voltage

Option_c: Store electrical energy Option_d: Regulate current flow

correct_option: Step up or step down voltage

Question229: START

Which material is commonly used for the core of a transformer?

Question229: END

Option_a: Aluminum Option_b: Copper Option_c: Silicon steel Option_d: Plastic correct_option: Silicon steel

Question230: START

A power factor of 1 indicates that the load is:

Question230: END

Option_a: Purely resistive Option_b: Purely inductive Option_c: Purely capacitive Option_d: Non-linear

correct_option: Purely resistive

Question 231: START

The Routh-Hurwitz criterion cannot be applied when the characteristic equation of the system contains any coefficients which is :

Question 231: END

Option_a: Negative real and exponential function

Option_b: Negative real, both exponential and sinusoidal function of s

Option_c: Both exponential and sinusoidal function of s

Option_d: Complex, both exponential and sinusoidal function of s

correct_option: Negative real, both exponential and sinusoidal function of s

Question 232: START

The given characteristic equation $s^4+s^3+2s^2+2s+3=0$ has:

Question 232: END

Option_a: Zero root in the s-plane

Option_b: One root in the RHS of s-plane Option_c: Two root in the RHS of s-plane Option_d: Three root in the RHS of s-plane correct_option: Two root in the RHS of s-plane

Question 233: START

The wattmeter reading while measuring the reactive power with wattmeter is?

Question 233: END

Option_a: V_LI_LsecØ Option_b: V_LI_LsinØ Option_c: V_LI_LtanØ Option_d: V_LI_LcosØ

correct_option: - V_LI_LsinØ

Question 234: START

The total reactive power in the load while measuring the reactive power with wattmeter is? Question 234: END

Option_a: V3V_LI_LcosØ Option_b: V3V_LI_LtanØ Option_c: V3V_LI_LsinØ Option_d: V3 V_LI_LsecØ correct_option: \dagger3V_l_l_sin\textsq

Question 235: START

In which of the following motor, ratio of starting torque to full-load torque will be least?

Question 235: END

Option_a: DC series motors
Option_b: DC shunt motors
Option_c: DC compound motors
Option_d: Synchronous motors
correct_option: DC shunt motors

Question 236: START

Which of the following is a function of electric drive?

Question 236: END

Option_a: Transport energy from the storage system to the wheels
Option_b: Transport energy from the control system to the wheels
Option_c: Transport fuel from the electric motor to the wheels
Option_d: Transport fuel from the storage system to the wheels

correct option: Transport energy from the storage system to the wheels

Question 237: START

In the rotor voltage injection method, when an external voltage source is in phase with the main voltage then speed will

Question 237: END

Option_a: Decrease

Option_b: First increases then decrease

Option_c: Increase

Option_d: Remain unchanged correct_option: Increase

Question 238: START

Which of the following motor is a 1-Φ AC motor?

Question 238: END

Option_a: Shunt motor Option_b: Capacitor run Option_c: Series motor

Option_d: Synchronous motor correct option: Capacitor run

Question 239: START

The wattmeter method is used to measure power in a three-phase load. The wattmeter readings are 400W and - 35W. Calculate the total active power.

Question 239: END

Option_a: 360 Option_b: 365 Option_c: 370 Option_d: 375 correct_option: 365

Question 240: START

What is the unit of the apparent or complex power?

Question 240: END

Option_a: VA
Option_b: ohm
Option_c: Volt
Option_d: VAR
correct_option: VA

Question241: START

Analyze the purpose of a low pass filter in an audio system. In what scenarios would it be most effectively

applied?

Question241: END

Option_a: To allow high frequencies for bass enhancement Option_b: To pass only low frequencies, filtering out noise Option_c: To block interference in low-frequency bands

Option_d: To pass all frequencies uniformly

correct_option: To pass only low frequencies, filtering out noise

Question242: START

Identify the application that would benefit from a high pass filter. Why is this choice significant?

Question242: END

Option_a: To improve the bass response in a subwoofer Option_b: To allow only high frequencies in tweeters

Option_c: Band Pass Filter targeting the desired biomedical signal frequencies only

Option_d: To enhance the entire frequency range in speakers correct_option: To allow only high frequencies in tweeters

Question243: START

If you need to allow a specific range of frequencies to pass through a system while attenuating others, which filter

would you use and why?

Question243: END

Option_a: Low pass filter for reducing high frequencies
Option_b: High pass filter for reducing low frequencies
Option_c: Band pass filter to isolate a frequency range
Option_d: Band reject filter for suppressing a range

correct option: Band pass filter to isolate a frequency range

Question244: START

Evaluate a band reject filter's role in eliminating specific interference signals. In what type of signal processing is

this useful?

Question244: END

Option_a: Low pass filter for audio signal noise

Option_b: High pass filter for eliminating low-frequency hums

Option_c: Notch filter to remove 60 Hz electrical noise
Option_d: Band pass filter for passing only desired signals

correct_option: Notch filter to remove 60 Hz electrical noise

Question245: START

Compare the frequency response characteristics of band pass and band reject filters. What insights can be drawn

from their operational differences?

Question245: END

Option_a: Band pass filter passes all frequencies

Option_b: Band reject filter passes frequencies within a certain range

Option_c: Band pass filter blocks all frequencies

Option_d: Band pass passes within a range; band reject blocks a range correct_option: Band pass passes within a range; band reject blocks a range

Question246: START

Explain the significance of the cutoff frequency in a filter design. How does this affect the filter's performance?

Question246: END

Option_a: It defines where 90% power is transmitted

Option_b: It is where the output falls to 70.7% of input power

Option_c: It has no significant effect on performance Option_d: It causes full power output at all frequencies

correct_option: It is where the output falls to 70.7% of input power

Question247: START

If a system requires the elimination of high-frequency noise, which type of filter would you analyze and choose?

Question247: END

Option_a: High pass filter to block low-frequency signals

Option_b: Band pass filter to block a wide range

Option_c: Low pass filter to eliminate high-frequency noise

Option_d: Band reject filter to eliminate specific noise frequencies correct_option: Low pass filter to eliminate high-frequency noise

Question248: START

Examine why an operational amplifier is essential in an active filter circuit. What role does it play in signal

processing?
Question248: END

Option_a: Provides resistance

Option_b: Supplies capacitance for frequency adjustment Option c: Adds gain and stability to filter performance

Option d: Reduces the signal power

correct_option: Adds gain and stability to filter performance

Question249: START

Analyze the relationship between the highest and lowest cutoff frequencies in a band pass filter. How would this

define the filter's bandwidth?

Question249: END

Option_a: The sum of the frequencies

Option_b: The difference between the frequencies

Option_c: The product of the frequencies Option_d: Double the highest frequency

correct_option: The difference between the frequencies

Question250: START

Consider a scenario where frequencies within a narrow range need to be blocked while all others are allowed.

Which filter would you choose and why?

Question250: END

Option_a: Low pass filter for only low-frequency signals Option_b: High pass filter for only high-frequency signals Option_c: Band pass filter to allow a specific range

Option_d: Band reject filter to block a specific frequency range correct_option: Band reject filter to block a specific frequency range