Коллок по линалу

Пешехонов Иван. БПМИ1912

25 ноября 2019 г.

Оглавление

Глава 1

Определения

1.1 Сумма двух матриц, произведение матрицы на скаляр

Сложение. $A, B \in \mathbb{R}^{n \times m}, A = (a_{ij}), B = (b_{ij})$

$$A + B = (a_{ij} + b_{ij}) = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & a_{m3} + b_{m3} & \cdots & a_{mn} + b_{mn} \end{pmatrix} \in \mathbb{R}^{n \times m}$$

Умножение на скаляр. $A \in \mathbb{R}^{n \times m}, \lambda \in \mathbb{R}, A = (a_{ij}) \Rightarrow$

$$\lambda A = (\lambda a_{ij}) = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{pmatrix} \in \mathbb{R}^{n \times m}$$

1.2 Транспонированная матрица

Пусть $A \in \mathbb{R}^{n \times m}, A = (a_{ij})$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

тогда транспонированная к A матрица (обозначается) A^T :

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

1.3 Произведение двух матриц

 $A\in\mathbb{R}^{n imes m},\,B\in\mathbb{R}^{m imes p}$ Тогда AB –такая матрица $C\in\mathbb{R}^{n imes p},$ что $c_{ij}=A_{(i)}B^{(j)}=\sum_{k=1}^n a_{ik}b_{kj}$

1.4 Диагональная матрица, умножение на диагональную матрицу слева и справа

атрица $A \in$

азывается диагональной ⇔

$$A = \begin{pmatrix} a_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & a_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & a_n & \cdots & 0 \end{pmatrix} = diag(a_1, a_2, \cdots, a_n)$$

То есть

$$\forall i, j \in \mathbb{N} \Rightarrow a_{ij} = \begin{cases} a_i & i = j \\ 0 & i \neq j \end{cases}$$

Пусть $A = diag(a_1, a_2, \cdots, a_n) \in \mathbb{R}^n$, тогда

$$(1)B\in\mathbb{R}^{n imes m}\Rightarrow AB=egin{pmatrix} a_1B_{(1)}\\a_2B_{(2)}\\\vdots\\a_nB_{(n)} \end{pmatrix}$$
 (Каждая строка B умножается на соответсвующий элемент

столбца матрицы A)

 $(2)B \in \mathbb{R}^{n \times m} \Rightarrow BA = \begin{pmatrix} a_1 B^{(1)} & a_2 B^{(2)} & \cdots & a_n B^{(n)} \end{pmatrix}$ (Каждый сролбец B умножается на соответсвующий элемент строки матрицы A)

1.5 Единичная матрица, её свойства

Матрица $A \in \mathbb{R}^n$ называется **единичной** $\Leftrightarrow A = diag(1,1,\cdots,1) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$, обозначается E (или I).

Свойства:

- (1) $EA = AE = A, \forall A \in \mathbb{R}^n$
- (2) $E = E^{-1}$

1.6 След квадратной матрицы и его поведение при сложении матриц, умножении матрицы на скаляр и транспонировании

Следом матрицы называется сумма элементов её главной диагонали и обозначается tr(A).

Свойства:

- (1) tr(A+B) = tr(A) + tr(B)
- (2) $tr(\lambda A) = \lambda * tr(A)$
- (3) $tr(A) = tr(A^T)$

1.7 След произведения двух матриц

$$tr(AB)=tr(BA) orall A \in {
m I\!R}^{
m n imes m}, B \in {
m I\!R}^{
m m imes n}$$
 Доказательство.

Пусть
$$X = AB, Y = BA$$
, тогда $tr(X) = \sum_{i=1}^{n} x_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij}b_{ji} = \sum_{j=1}^{m} \sum_{i=1}^{n} b_{ji}a_{ij} = \sum_{j=1}^{m} y_{jj} = tr(Y)$

1.8 Совместные и несовместные системы линейных уравнений

Система линейных уравнений (СЛУ):

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Решением СЛУ является такой набор значений неизвестных, который является решением каждого уравнения в СЛУ.

СЛУ называется **совместной** если она имеет хотя бы одно решение. В противном случае СЛУ называется **несовместной**.

1.9 Эквивалентные системы линейных уравнений

Две СЛУ от <u>одних и тех же переменных</u> называются **эквивалентыми** если у них совпадают множества решений.

1.10 Расширенная матрица линейных уравнений

$$(*) = \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Расширенной матрицей СЛУ (*) называется матрица вида
$$(A|b) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

где A –матрица коэффициентов при неизвестных, а b –вектор-слобец правых частей каждого уравнения СЛУ (*).

1.11 Элементарные преобразования строк матрицы

Элементарными преобразованиями называют следующие три преобразрования, меняющие вид матрицы:

1.12 Ступенчатый вид матрицы

Строка (a_1, a_2, \dots, a_i) называется **нулевой**, если $a_1 = a_2 = \dots = a_i = 0$, и **ненулевой** в обратном случае $(\exists i : a_i \neq 0)$.

Ведущим элементом называется первый ненулевой элемент нулевой строки.

Матрица $A \in \mathbb{R}^{n \times m}$ называется **ступенчатой** или имеет **ступенчатый вид**, если:

- 1) Номера ведущих элементов строго возрастают.
- 2) Все нулевые строки расположены в конце.

$$\begin{pmatrix} 0 & \heartsuit & * & * & * & \cdots & * & * \\ 0 & 0 & 0 & \heartsuit & * & * & \cdots & * \\ 0 & 0 & 0 & 0 & \heartsuit & * & \cdots & * \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & \heartsuit \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

где * –что угодно, $\heartsuit = 0$

1.13 Улучшеный ступенчатый вид матрицы

Говорят, что матрица имеет улучшенный (усиленный) ступенчатый вид, если:

- 1) Она имеет ступенчатый вид.
- 2) Все ведущие элементы матрицы равны 1.

$$\begin{pmatrix} 0 & 1 & * & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 1 & * & \cdots & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

1.14 Теорема о виде, к которому можно привести матрицу при помощи элементарных преобразований

Теорема 1. Любую матрицу можно привести к ступенчатому виду. **Доказательство:**

1.15 Общее решение совместной системы линейных уравнений

Общим решением совместной СЛУ является множество наборов значений неизвестных, в которых главные неизвестные выражены через свободные (линейные комбинации от свободных неизвестных).

1.16 Сколько может быть решений у системы линейных уравнений с действительными коэффициентами

Всякая СЛУ с действительными коэффициентами либо несовместна, либо имеет ровно одно решение, либо имеет бесконечно много решений.

1.17 Однородная система линейных уравнений. Что можно сказать про её множество решений?

Однородной системой линейных уравнений (ОСЛУ) называется такая СЛУ, в которой каждое уравнение в правой части имеет 0. Расширенная матрица имеет вид (A|0).

Очевидно: вектор $x = (0, 0, 0, \cdots 0)$ является решением всякой ОСЛУ.

Всякая ОСЛУ имеет либо решение (нулевое), либо бесконечно много решений.

1.18 Свойство однородной системы линейных уравнений, у которой число неизвестных больше числа уравнений

Всякая OCЛУ, у которой число неизвестных больше числа уравнений имеет ненулевое решение \Rightarrow имеет бесконечно много решений.

1.19 Связь между множеством решений совместной системы линейных уравнений и множеством решений соответсвующей ей однородной системы

???

1.20 Обратная матрица

Обратной матрицей к матрице $A \in Mn$ называется такая квадратная матрица $B \in \mathbb{R}^n$, что: AB = BA = E. Матрица B обозначается как A^{-1} .

1.21 Перестановки множества $\{1, 2, \cdots, n\}$

Перестановкой множества $X = \{1, 2, \cdots, n\}$ называется упорядоченный набор (i_1, i_2, \cdots, i_n) , в котором каждое число от 1 до n встречается ровно один раз.

Подстановка (перестановка) из п элементов - это биективное отображение множества $\{1,2,\cdots,n\}$ в себя. Обозначается: $\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ i_1 & i_2 & i_3 & \cdots & i_n \end{pmatrix}$.

1.22 Инверсия в перестановке. Знак перестановки. Чётные и нечётный перестановки.

Говорят, что неупорядоченная пара i,j образует **инверсию** в σ , если числа i-j и $\sigma(i)-\sigma(j)$ имеют разный знак, т.е. либо i>j и $\sigma(i)<\sigma(j)$, либо i<j и $\sigma(i)>\sigma(j)$.

Знаком (сигнатурой) подстановки σ называется число $sgn\ \sigma$, такое что $sgn\ \sigma=(-1)^{inv\ \sigma}$, где $inv\ \sigma$ - число инверсий. Знак может принимать значения $1\ u\ -1$.

Подстановка называется **чётной**, если её знак равен 1, и **нечётной**, если её знак равен -1.

1.23 Произведение двух перестановок

Пусть даны две подстановки σ и $\tau \in S_n$. Произведением или (композицией) двух подстановок называется такая подстановка $\sigma\tau$, что $(\sigma\tau)(i) = \sigma(\tau(i)), \forall i \in \{1, 2, \cdots, n\}$

Тождественная перестановка и её свойства. Обратная пере-1.24становка и её свойства.

Тождественной (единичной) подстановкой называется подстановка вида $\begin{pmatrix} s1 & 2 & 3 & \cdots & n \\ 1 & 2 & 3 & \cdots & n \end{pmatrix} \in$ S_n . Тождественная подстановка обозначается как id (или e). $id(i) = i, \forall i \in \{1, 2, \cdots, n\}.$

Свойство:

 $id * \sigma = \sigma * id = \sigma, \forall \sigma \in S_n$

 $id*\sigma = \sigma*id = \sigma, \forall \sigma \in S_n$ Пусть дана подстановка $\sigma = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n) \end{pmatrix}$, тогда **обратной подстановкой** к σ называется подстановка τ , вида $\begin{pmatrix} \sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n) \\ 1 & 2 & 3 & \cdots & n \end{pmatrix}$, и обозначается, как σ^{-1} .

Свойства:

- 1) σ^{-1} единственная
- 2) $\sigma * \sigma^{-1} = \sigma^{-1} * \sigma = id$.

1.25Теорема о знаке произведения двух подстановок

Теорема: Пусть даный $\sigma, \tau \in S_n$, тогда $sgn(\sigma\tau) = sgn(\sigma) * sgn(\tau)$

1.26 Транспозиция. Знак транспозиции.

Пусть дана подстановка $\tau \in S_n$, такая что $\tau(i) = j, \tau(j) = i, \tau(k) = k \forall k \neq i, j$. Такая подстановка 'tau называется **транспозицией**. $sgn(\tau) = -1$

1.27Общая формула для определителя квадратной матрицы произвольного порядка

Пусть дана матрица $A \in \mathbb{R}^n$, тогда $|A| = \sum_{\sigma \in S_n} a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$

Определители 2-го и 3-го порядка

Определителем 2-го порядка называется определитель квадратной матрицы $A \in \mathbb{R}^{2 \times 2} =$ $\begin{pmatrix} c & d \end{pmatrix}$ |A| = ad - bc.

Определителем 3-го порядка называется определитель квадратной матрицы $A \in \mathbb{R}^{3 \times 3} =$ A| = aek + bjg + cdh - ceg - afh - bdk

1.29 Поведение определителя при разложении строки (столбца) в сумму двух.

???

1.30 Поведение определителя при перестановке двух строк (столбцов)

Элементарное преобразование второго типа, а именно перестановка двух строк (столбцов) местами меняет знак определителя и не меняет значение определителя.

1.31 Поведение определителя при прибавлению к строке (столбцу) другой строки (столбца), умноженного на скаляр

Элементарное преобразование первого типа, а именно прибавление к строке (столбцу) матрицы другой строки (столбца), умноженного на скаляр не меняет знак определителя и не меняет значение определителя.

1.32 Верхнетреугольный и нижнетреугольные матрицы

Верхнетреугольной матрицей называется такая квадратная матрица $A \in \mathbb{R}^{n \times n}$