Modelling Polymer Dynamics

Robert Jomar Malate PS10 Final Project

Polymers

 "Substance or material consisting of large macromolecules with repeating subunits" (Wikipedia)

Movement

- Based on Boltzmann Distribution
- Due to thermal fluctuations

$$P(X) = Ae^{\frac{-\epsilon_i}{k_B T}}$$

1D Polymer Dynamics

Probability Distribution (1D)

$$P(L|R) = \frac{e^{\overline{k_B T}}}{2\cosh(\frac{FL}{k_B T})}$$

$$\epsilon_i = \pm FL$$

Polymer 1D Simulation Results

Leftward Force

Rightward Force

2D Polymer Dynamics

Probability Distribution (2D)

$$P(\theta) = Ae^{\frac{-\epsilon_i}{k_B T}}$$

$$A = \frac{1}{\int_0^{2\pi} e^{\frac{-\epsilon_i}{k_B T}} d\theta} \qquad \epsilon_i = -\vec{L} \cdot \vec{F} = -L \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \cdot \begin{bmatrix} F_x \\ F_y \end{bmatrix}$$

Probability Distribution (2D)

Rightward Force θ =0 rad.

Up-Right Force $\theta = \pi/4$ rad.

Upward Force $\theta = \pi/2$ rad.

Down-Right Force θ =- π /4 rad.

Increasing Force (2D)

End position

Increasing Temperature (2D) $P(\theta) = Ae^{\overline{\ k_B T}}$

$$P(\theta) = Ae^{\frac{-L \cdot F}{k_B T}}$$

End position

Polymer 2D Simulation Results

3D Polymer Dynamics

Probability Distribution (3D)

$$P(\theta) = Ae^{\frac{-\epsilon_i}{k_B T}}$$

$$A = \frac{1}{\int_0^{\pi} \int_0^{2\pi} e^{\frac{-\epsilon_i}{k_B T}} d\theta d\phi}$$

$$\epsilon_i = -\vec{L} \cdot \vec{F} = -L \begin{bmatrix} \sin \phi \cos \theta \\ \sin \phi \sin \theta \\ \cos \phi \end{bmatrix} \cdot \begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix}$$

Probability Distribution (3D)

X Force $[F \ 0 \ 0]^T$

Z Force $[0 \ 0 \ F]^T$

Increasing Force (3D)

Start position

End position

Increasing Temperature (3D) $P(\theta,\phi) = Ae^{\frac{-}{k_B}}$

$$P(\theta, \phi) = Ae^{\frac{-L \cdot F}{k_B T}}$$

Start position

End position

Polymer 3D Simulation Results

