XJTLU Entrepreneur College (Taicang) Cover Sheet

Module code and Title	DTS201TC Pattern Recognition				
School Title	School of AI and Advanced Computing				
Assignment Title	Final project				
Submission Deadline	23:59, 31 st Dec.				
Final Word Count					
If you agree to let the un	Yes				
and learning purposes, please type "yes" here.					

I certify that I have read and understood the University's Policy for dealing with Plagiarism, Collusion and the Fabrication of Data (available on Learning Mall Online). With reference to this policy I certify that:

My work does not contain any instances of plagiarism and/or collusion.
 My work does not contain any fabricated data.

By uploading my assignment onto Learning Mall Online, I formally declare that all of the above information is true to the best of my knowledge and belief.

Scoring – For Tutor Use					
Student ID	1930080				

Stage of Marker			Learning Outcomes Achieved (F/P/M/D)		Final	
Marking		Code	(please modify as appropriate)			Score
			A	В	С	
1st Marker – red						
pen						
Moderation		The original mark has been accepted by the moderator			Y / N	
IM		(please circle as appropriate):				
green penInitials						
		Data entry and score calculation have been checked by		Υ		
		another tutor (please circle):				
2 nd Marker i	f					
needed – green						
pen						
For Academic Office Use		Possible Academic Infringement (please tick as appropriate)			propriate)	
Date	Days	Late	☐ Catego	ry A	Total Academic Infringement Penalty (A,B, C, D, E, Please modify where necessary)	
Received	late	Penalty				
			□ Catego	ry B		
			☐ Catego	ry C		
			☐ Catego	ry D	1	
			☐ Catego	ry E		

DTS201TC Classification Demonstration

Project (Individual)

Yaqi Yu

1 Mathematical problems [40 marks]

Derive the Maximum Likelihood Estimate.

1.1 [20 marks]

Let $x_1, x_2, ..., x_N$ be vectors stemmed from a normal distribution with known covariance matrix and unknown mean, that is

$$p(x_k; \mu) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} exp(-\frac{1}{2} (x_k - \mu)^T \Sigma^{-1} (x_k - \mu))$$
 (1)

where D is the dimension of vector x_k (k = 1, ..., N).

TASK 1: Derive the ML estimate of the mean μ .

Solution:

For N available samples, we have

$$L(\mu) = \ln \prod_{k=1}^{N} p(x_k; \mu)$$

$$= \sum_{k=1}^{N} \ln \left[\frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} exp(-\frac{1}{2} (x_k - \mu)^T \Sigma^{-1} (x_k - \mu)) \right]$$

$$= -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln(|\Sigma|) - \frac{1}{2} \sum_{k=1}^{N} (x_k - \mu)^T \Sigma^{-1} (x_k - \mu)$$
(2)

We've known the derivation rule below (if A is a symmetric matrix)

$$\frac{\partial x^T A x}{\partial x} = (A + A^T)x = 2Ax$$

For the covariance matrix Σ is a symmetric matrix, the inverse matrix Σ^{-1} is also symmetric.

Thus, we obtain:

$$\frac{\partial L}{\partial \mu} = \frac{\partial (-\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln(|\Sigma|) - \frac{1}{2} \sum_{k=1}^{N} (x_k - \mu)^T \Sigma^{-1} (x_k - \mu))}{\partial \mu}
= \frac{\partial (-\frac{1}{2} \sum_{k=1}^{N} (x_k - \mu)^T \Sigma^{-1} (x_k - \mu))}{\partial u}
= \frac{\partial (-\frac{1}{2} \sum_{k=1}^{N} (x_k - \mu)^T \Sigma^{-1} (x_k - \mu))}{\partial (x_k - \mu)} \frac{\partial (x_k - \mu)}{\partial \mu}
= \sum_{k=1}^{N} \Sigma^{-1} (x_k - \mu)$$
(3)

We suppose that

$$\frac{\partial L}{\partial \mu} = 0 = \sum_{k=1}^{N} \Sigma^{-1} (x_k - \mu)$$

And we multiply Σ on both sides to get

$$0 = \sum_{k=1}^{N} (x_k - \mu) \Rightarrow \mu = \frac{1}{N} \sum_{k=1}^{N} x_k$$
 (4)

So the MLE of the μ is : $\hat{\mu}_{ML} = \frac{1}{N} \sum_{k=1}^{N} x_k$

1.2 [20 marks]

Let $x_1, x_2, ..., x_N$ be vectors stemmed from a normal distribution with unknown mean μ and unknown convariance matrix Σ , that is

$$p(x_k; \mu, \Sigma) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} exp(-\frac{1}{2} (x_k - \mu)^T \Sigma^{-1} (x_k - \mu))$$
 (5)

where D is the dimension of vector x_k (k = 1, ..., N).

TASK 2: Derive the ML Estimate of μ and Σ .

Solution:

For N available samples, we have

$$L(\mu, \Sigma) = \ln \prod_{k=1}^{N} p(x_k; \mu)$$

$$= \sum_{k=1}^{N} \ln \left[\frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} exp(-\frac{1}{2} (x_k - \mu)^T \Sigma^{-1} (x_k - \mu)) \right]$$

$$= -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln(|\Sigma|) - \frac{1}{2} \sum_{k=1}^{N} (x_k - \mu)^T \Sigma^{-1} (x_k - \mu)$$
(6)

We've known the derivation rule below (if A is a symmetric matrix)

$$\frac{\partial x^T A x}{\partial x} = (A + A^T)x = 2Ax$$

For the covariance matrix Σ is a symmetric matrix, the inverse matrix Σ^{-1} is also symmetric.

Thus, we obtain:

$$\frac{\partial L}{\partial \mu} = \frac{\partial (-\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln(|\Sigma|) - \frac{1}{2} \sum_{k=1}^{N} (x_k - \mu)^T \Sigma^{-1} (x_k - \mu))}{\partial \mu}
= \frac{\partial (-\frac{1}{2} \sum_{k=1}^{N} (x_k - \mu)^T \Sigma^{-1} (x_k - \mu))}{\partial u}
= \frac{\partial (-\frac{1}{2} \sum_{k=1}^{N} (x_k - \mu)^T \Sigma^{-1} (x_k - \mu))}{\partial (x_k - \mu)} \frac{\partial (x_k - \mu)}{\partial \mu}
= \sum_{k=1}^{N} \Sigma^{-1} (x_k - \mu)$$
(7)

We suppose that

$$\frac{\partial L}{\partial \mu} = 0 = \sum_{k=1}^{N} \Sigma^{-1} (x_k - \mu)$$

And we multiply Σ on both sides to get

$$0 = \sum_{k=1}^{N} (x_k - \mu) \Rightarrow \mu = \frac{1}{N} \sum_{k=1}^{N} x_k$$
 (8)

For Σ , we have a partial derivation rule that

$$\frac{\partial \ln(|X|)}{\partial X} = (X^{-1})^T$$

Derivation of the differential form of the determinant by partial derivation:

$$d\ln(|X|) = \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\partial \ln(|X|)}{\partial X_{ij}} dX_{ij} = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ji}^{-1} dX_{ij} = tr(X^{-1} dX)$$
(9)

So the differential rule that: $d \ln(|X|) = tr(X^{-1}dX)$

And we have another one derivation rule that:

$$0 = dI = d(XX^{-1}) = dXX^{-1} + XdX^{-1}$$

so:

$$dX^{-1} = -X^{-1}dXX^{-1}$$

$$L(\mu, \Sigma) = -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln(|\Sigma|) - \frac{1}{2} \sum_{k=1}^{N} (x_k - \mu)^T \Sigma^{-1} (x_k - \mu)$$
 (10)

We apply the matrix differentiation

$$dL = tr(dL)$$

$$= -\frac{N}{2}tr(\Sigma^{-1}d\Sigma) - \frac{1}{2}\sum_{k=1}^{N}tr((x_k - \mu)^T d\Sigma^{-1}(x_k - \mu))$$

$$= -\frac{N}{2}tr(\Sigma^{-1}d\Sigma) - \frac{1}{2}\sum_{k=1}^{N}tr((x_k - \mu)^T (-\Sigma^{-1}d\Sigma\Sigma^{-1})(x_k - \mu))$$

$$= -\frac{N}{2}tr(\Sigma^{-1}d\Sigma) + \frac{1}{2}\sum_{k=1}^{N}tr(\Sigma^{-1}(x_k - \mu)(x_k - \mu)^T\Sigma^{-1}d\Sigma)$$
(11)

for we have

$$df = tr(\frac{df}{\partial x}^T dx)$$

we can obtain

$$\frac{\partial L}{\partial \Sigma} = -\frac{N}{2} \Sigma^{-1} + \frac{1}{2} \sum_{k=1}^{N} \Sigma^{-1} (x_k - \mu) (x_k - \mu)^T \Sigma^{-1}$$
(12)

We suppose that $\frac{\partial L}{\partial \Sigma} = 0$, so

$$\Sigma = \frac{1}{N} \sum_{k=1}^{N} (x_k - \mu)(x_k - \mu)^T$$

So the MLE of the μ is : $\hat{\mu}_{ML} = \frac{1}{N} \sum_{k=1}^{N} x_k$;

The MLE of the Σ is: $\hat{\Sigma}_{ML} = \frac{1}{N} \sum_{k=1}^{N} (x_k - \mu)(x_k - \mu)^T$

2 Practical problems [60 marks]

I will present the code and comments of this part in another file.