JUNE 7 UPDATE

JUSTINE FILION, NEETHU GOPALAKRISHNA, SAISREE GR, SARA HALL

RECAP: ANOMALY DETECTION IN BIOSENSOR WAVEFORMS

RECAP: ANOMALY DETECTION IN BIOSENSOR WAVEFORMS

Research Questions:

Can we develop machine learning pipelines to cluster readings and isolate pin contact errors?

Determine which methods are effective and which are not for identifying anomalies in biosensor readings?

Deliverables:

- Well commented Python code for everything we have tried
 - Preprocessing
 - Clustering
 - Diagnostics
- A final report detailing our attempts
 - Will explain design decisions

OVERALL PROGRESS

Two Iterations of:

PROGRESS OVER LAST WEEKLY CYCLE

RECAP ON PREPROCESSING FOR ITERATION 2

CLUSTERING – ITERATION 2

TSFRESH Predictors

Phase I: Feature Extraction (~ 770 features)

	value_abs_energy	value_root_mean_square	value_absolute_sum_of_changes
TestId			
8071094	0.177528	0.551571	3.345260
8078100	-0.181169	-0.009647	1.827179

- Phase 2: Feature Significance Testing (~550 features)
- Phase 3: PCA for dimension reduction (~ 30 components)
 - 95 % accumulated amount of variance explained
- Phase 4: Clustered

KMEANS

Cluster 7

Number of cont : 28 Number of synth : 0 Number of wild : 54 Number of tot_pins : 82

Number of un : 30

CLUSTERING – ITERATION 2

Autoencoder for feature extraction

CLUSTERING – ITERATION 2

Autoencoder for feature extraction

- Extracted ~350 features with encoder
- Performed PCA on these features
 - ~3 components to account for ~95% of total variation
- Feature extraction from the predictor file using Random Forest

CLUSTERING – ITERATION 2

Random Forest Variable Importance:

CExtrapolation	0.220742
CNoise	0.142294
SNoise	0.107944
CDrift	0.085921
PSecond	0.073891
SDrift	0.073530
CSecond	0.072283
TransDrift	0.071997
AFirst	0.013949
CWindowMovedBack	0.002231

CLUSTERING – ITERATION 2

Clustering using 3 first PC + 10 predictors

- I. Chose the number of clusters
 - 21 clusters

CLUSTERING – ITERATION 2

Clustering using 3 first PC + 10 predictors

- I. Chose the number of clusters
- 2. Used Gaussian Mixture Modelling for clustering

Evaluate results Clustering

Number of pins: 279

Number of unsuccessful: 230

CLUSTERING – ITERATION 2

Clustering using 3 first PC + 10 predictors

Clusters containing only unsuccessful readings:

CLUSTERING – ITERATION 2

Clustering with KShape

- Uses the whole time series to cluster
- Shape based clustering
- Centroid based algorithm

PRELIMINARY/INCREMENTAL RESULTS CLUSTERING — ITERATION 2

Whole timeseries clustering with KShape

CLUSTERING – ITERATION 2

- I. Randomly assign the readings in K different clusters
- 2. Calculate the centroid of each cluster

Centroids

time (secs) w.r.t sample detect

time (secs) w.r.t sample detect

Readings in cluster 0

CLUSTERING – ITERATION 2

- I. Randomly assign the readings in K different clusters
- 2. Calculate the centroid of each cluster
- 3. Assign each reading to the cluster with the most similar centroid

CLUSTERING – ITERATION 2

Whole timeseries clustering with KShape

- I. Randomly assign the readings in K different clusters
- 2. Calculate the centroid of each cluster
- 3. Assign each reading to the cluster with the most similar centroid
- 4. Repeat step 2 and 3 until convergence

PRELIMINARY/INCREMENTAL RESULTS CLUSTERING – ITERATION 2

Preprocessing

Evaluate results

Clustering

Whole timeseries clustering with KShape

Number of pins: 167

Number of unsuccessful: 135

^{*} Contains all of the synthetic pins

PRELIMINARY/INCREMENTAL RESULTS CLUICTED IN ICC. ITED ATION

CLUSTERING – ITERATION 2

Number of pins: 129

Number of unsuccessful: 8

CLUSTERING – ITERATION 2

CLUSTERING – ITERATION 2

Preprocessing Evaluate results Clustering

Whole timeseries clustering with KShape

Proportion of pins:

$$\frac{129 + 167}{380} = \frac{296}{380} = 78\%$$

CLUSTERING – ITERATION 2

Clusters with only unsuccessful readings:

CLUSTERING – ITERATION 2

Comparison between 2 promising pipelines:

Autoencoder, PCA (Timeseries), Predictors

- More preprocessing steps
- Clusters well less defined
- I cluster with 73 % of all pins

Kshape (Timeseries + Predictors)

- Less preprocessing steps
- Clusters are well defined
- 2 clusters with 78 % of all pins

PLANNING AND ACTIONS FOR THE NEXT CYCLE

Sara:

- Clean PCA and Preprocessing notebooks
- Waveform characterization
- Make a glossary to organize and describe code

Saisree:

- Clean the SOM notebook
- Work on cleaning up Github repo and making sure it's up to date
- Documenting the work done so far

Neethu:

- Clean the autoencoder and random forest feature importance notebook.
- Try running K-shape with some autoencoder features as additional predictors.
- Create slides for the next weekly cycle
- Justine :
- Clean the KShape notebook
- Work on characterizing the clusters using density plots for the predictors
- Upload our preprocessing csv files to the client's cloud
- Change all the directories in the notebooks so that they match the ones in the client's cloud

Team

- Create slides for and present work in meetings (split equally)
- Code review circle

ROADBLOCKS

Make our code as reusable by the client as possible. This includes making a glossary of our various attempts.

DEVIATION FROM THE ORIGINAL PLAN/SCHEDULE

ACCOMPLISHED ALL LAST WEEK'S TASKS?

Last week's tasks:

Sara

- Look into different ways of windowing and standardizing.
- Attempt whole time-series clustering/visualization with new windows.
- Dig into Fourier and other transforms more.
- Record meeting minutes for Siemens check-in on Tuesday.

Saisree

- Try other clustering algorithms on shape-based TS(DTW-SOM applied to different windows)
- Attempt feature extraction using I-D CNN if the shape-based approach is not promising
- Record meeting minutes for Siemens check-in on Friday.

Neethu

- Using auto-encoder to extract features.
- Use the extracted features for clustering.
- Use LSTM for anomaly detection
- Record meeting minutes for Advisory committee on Tuesday.

ustine

- Do more research on anomaly detection in timeseries
- Record meeting minutes for check-in meeting with Capstone advisors.

→

Started focussing on removing noise by comparison with standard waveform

DEVIATION FROM THE ORIGINAL PLAN/SCHEDULE

AHEAD/BEHIND/ONTRACK?

May 16 - June 5	Modelling	 Try to build various machine learning pipelines to figure out what works and what doesn't in terms of clustering different types of unsuccessful readings If the unsupervised pipelines are unsuccessful, we will try building some supervised pipelines to classify successful, unsuccessful, and pin contact. Midterm presentation May 31. 	
June 6 - June 12	Tuning	Tuning • Focus on improving the most promising model(s). • If we have time, maybe look into data augmentation methods.	
June 13 - June 19	Documenting	 Write the final report. Generate slides and practice for the final presentation. 	

SUMMARY OF INTERACTIONS WITH THE CLIENT

- Exchanged a few emails throughout the week
 - The test ids
- Meeting on Monday, May 30th
 - Presented our findings in a data review meeting
- Meeting on Wednesday, June 1st
 - Discussed our plan for the week
 - Were confirmed that some of the unsuccessful readings in our pin contact cluster had been mislabelled
- Meeting on Friday , June 3rd
 - Presented them with the progress we made over the week and got feedback

SUMMARY OF INDIVIDUAL AND TEAM EFFORTS MAY 30 – JUNE 3

Sara:

- Meetings/Presentations: 11 hours
- Coding/Debugging/Documenting: 31 hours
- Administrative work: I hour
- Total : ind. + team = 43

Neethu :

- Feature extraction and modelling: 22 hrs
- Researching: 2 hrs
- Administrative work : 2.5
- Total:ind. + team = 37.5

Saisree:

- Researching: 7 hrs
- Clustering: 17 hrs
- Debugging/ Documenting: 13.5 hrs
- Administrative work: 2.5 hrs
- Total:ind. + team:39 hrs
- Justine:
 - Coding: 24 hours
 - Presentations/Meetings: 18.25 hours
 - Research: 7.5 hours
 - Total : ind. + team = 49.75 hours

Team:

• Time spent in meetings: | | hours

NEXT STEPS

Make more diagnostic plots from the predictor file

Clean and document our code thoroughly

Produce our final report detailing our design decisions

QUESTIONS OR FEEDBACK?

THANK YOU FOR YOUR TIME!

