3. Опис програми і отриманих результатів

3.1. Призначення програми

Програма призначена для побудови апроксимацій функцій многочленами двома способами: мінімаксним наближенням, та методом найменших квадратів. Функція може бути задана двома способами: дискретним (у вигляді таблиці), або неперервним (аналітично). Програма дає змогу знайти коефіцієнти многочленів, максимальні похибки, побудувати графіки многочлена, яким наближуємо функцію, функції, яка наближується. Є можливість порівняти два наближення для певної функції.

3.2. Умови застосування

Вимоги до ПК:

- 32-розрядний (x86) або 64-розрядний (x64) процесор із тактовою частотою 1 ГГц або швидший;
- 1 гігабайт (ГБ) RAM (для 32-розрядної версії) або 2 ГБ (для 64-розрядної версії);

OC: Windows 7/8/10

Для того, що запустити програму на комп'ютері достатньо мати сучасний браузер, наприклад, Google Chrome, Mozilla Firefox та доступ до мережі інтернет. Далі достатньо зайти на веб сторінку:

https://bodya17.github.io/diplom/index.html

3.3. Запуск програми та задання вхідних даних

Для знаходження наближення функції, спочатку потрібно вибрати, яким чином задана функція (таблично чи аналітично). Це можна зробити натиснувши кнопку з правої сторони головного меню сайту.

Далі необхідно вибрати метод яким потрібно апроксимувати функцію.

Для неперервного випадку, потрібно заповнити наступну форму:

Як видно з рисунку, користувачу потрібно ввести функцію для апроксимації. Приклади вводу функцій:

e^x	e^x
\sqrt{x}	sqrt(x)
$cos^2(x)$	cos(x)^2 або (cos(x))^2

1	
\overline{x}	1/x

Точність – допустима відносна похибка у визначенні похибки наближення у мінімаксному наближенні.

Для дискретного випадку:

Тут можна задати степінь апроксимуючого многочлена та задати табличну функцію. Це можна зробити двома способами:

1) Вручну. За допомогою кнопки "ДОДАТИ ТОЧКУ" можна додати до таблиці, яка знаходиться лівіше, ще одну точку. Редагувати точки можна відразу в таблиці. При необхідності можна також вилучити точку навівши курсор на неї.

Також ϵ можливість посортувати ці точки (по змінній х), натиснувши на відповідну кнопку.

2) Завантажити з файлу. Файл повинен бути у форматі CSV(Comma Separated Values), тобто значення які розділені комою. Перший стовпець — це значення x, другий — y. Приклад файлу CSV:

```
0.1,
              0.77
 2
     1,
              7.68
 3
     2,
              15.34
     3,
              22.96
 5
     4,
              30.55
 6
              38.11
     5,
 7
     6,
              45.63
              60.55
 8
     8,
              75.31
     10,
              89.89
10
     12,
11
     16,
              118.49
12
     20,
              146.26
13
     25,
              179.75
14
     30,
              211.8
15
     35,
              242.39
              271.53
16
     40,
17
     45,
              299.25
18
     50,
              325.6
```

Рис. 1

Також файл може бути у форматі xlsx (Excel). Приклад Excel файлу.

	А	В	С	D
1	тиск	щільність	фактор стиску	енторопія
2	0.1	0.048	1.0004	72.293
3	1	0.483	1.004	62.794
4	2	0.962	1.008	59.933
5	3	1.438	1.012	58.259
6	4	1.909	1.016	57.07
7	5	2.377	1.02	56.147
8	6	2.841	1.024	55.393
9	8	3.759	1.032	54.203
10	10	4.663	1.04	53.278
11	12	5.553	1.048	52.522
12	16	7.293	1.0639	51.327
13	20	8.982	1.0797	50.399
14	25	11.026	1.0995	49.47
15	30	12.998	1.1192	48.709
16	35	14.903	1.1389	48.065
17	40	16.745	1.1584	47.506
18	45	18.526	1.1779	47.013
19	50	20.251	1.1973	46.571
20	60	23.542	1.2359	45.805
21	70	26.64	1.2742	45.157
22	80	29.564	1.3122	44.594

Далі необхідно вибрати яка величина – змінна x, а яка – y.

Після цього, незважаючи на спосіб, яким задали функцію (вручну чи завантажили з файлу), потрібно натиснути кнопку "ОБЧИСЛИТИ". Коли запит обробиться на сервері, результати можна побачити на екрані.

3.4. Опис отриманих результатів

Приклад отриманих результатів наближення функції $\ln(x)$, лінійним многочленом на проміжку [1,3], використовуючи метод найменших квадратів. Вхідні дані:

Вихідні дані:

Аналітичний вигляд многочлена	0.5347x - 0.4326
Значення х в якому досягається максимальна похибка	1.00000
Максимальна похибка	0.10207

Як можна побачити з рисунку, результатом роботи програми ε вивід на екран аналітичного вигляду многочлена, значення x в якій досягається максимальна похибка та величини цієї похибки. Також на екран виводяться такі графіки:

- 1) Графік функції що апроксимується (синій колір).
- 2) Графік апроксимуючого многочлена, в даному випадку лінійний (оранжевий колір).
- 3) Точки, які використовуються в програмі при обчислені коефіцієнтів многочлена (зелений колір).
- 4) Максимальна похибка (червоний колір).

Приклад отриманих результатів наближення табличної функції (рис. 1) многочленом другого степеня, використовуючи метод мінімаксного наближення.

Вхідні дані:

				Степінь 2						
X	0.1	1	2	3	4	5	6	8	10	12
Υ	0.77	7.68	15.34	22.96	30.55	38.11	45.63	60.55	75.31	89.89
X	16	20	25	30	35	40	45	50	ПОСОР	ТУВАТИ
Υ	118.49	146.26	179.75	211.8	242.39	271.53	299.25	325.6	ДОДАТИ	

Вихідні дані:

Точка альтернансу	0.10	10.0		30.0	50.0
Похибка	-0.3172523	0.3172523		-0.3172523	0.3172523
Максимальна похибка		-0.3172523			
Значення х в якому досяга	Значення х в якому досягається максимальна похибка		30.000000		
Аналітичний вигляд много	члена		$-0.0267x^2$	+7.8638x - 0.3333	

Графік функції похибки

Як можна побачити з рисунку, результатом роботи програми ϵ вивід на екран аналітичного вигляду многочлена, значення x в якій досягається максимальна похибка та величини цієї похибки. Також на екран виводяться такі графіки:

- 1) Графік апроксимуючого многочлена, в даному випадку многочлен другого степеня (синій колір).
- 2) Табличні дані (оранжевий колір).
- 3) Точки альтернансу (зелений колір).
- 4) Максимальна похибка (червоний колір).
- 5) Графік функції похибки.