### In [36]:

```
print("Name : ")
print("We will be cleaning the big data and make a comparison to show who has a healthic
print("Also we will be deriviring which age group has the high chances of coronary heart
```

#### Name:

We will be cleaning the big data and make a comparison to show who has a healthier heart smokers OR non smokers, uisng a line graph Also we will be deriviring which age group has the high chances of corona ry heart disease in 10 years

## Task 1 - Plot a line graph to show the difference between heart rate of smokers and non smokers

### In [37]:

```
#Import libraries
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
#read the csv
df = pd.read_csv("framingham.csv")
df
```

#### Out[37]:

|      | male | age | education | currentSmoker | cigsPerDay | BPMeds | prevalentStroke | prevalen |
|------|------|-----|-----------|---------------|------------|--------|-----------------|----------|
| 0    | 1    | 39  | 4.0       | 0             | 0.0        | 0.0    | 0               | _        |
| 1    | 0    | 46  | 2.0       | 0             | 0.0        | 0.0    | 0               |          |
| 2    | 1    | 48  | 1.0       | 1             | 20.0       | 0.0    | 0               |          |
| 3    | 0    | 61  | 3.0       | 1             | 30.0       | 0.0    | 0               |          |
| 4    | 0    | 46  | 3.0       | 1             | 23.0       | 0.0    | 0               |          |
|      |      |     |           |               |            |        |                 |          |
| 4233 | 1    | 50  | 1.0       | 1             | 1.0        | 0.0    | 0               |          |
| 4234 | 1    | 51  | 3.0       | 1             | 43.0       | 0.0    | 0               |          |
| 4235 | 0    | 48  | 2.0       | 1             | 20.0       | NaN    | 0               |          |
| 4236 | 0    | 44  | 1.0       | 1             | 15.0       | 0.0    | 0               |          |
| 4237 | 0    | 52  | 2.0       | 0             | 0.0        | 0.0    | 0               |          |
|      |      |     |           |               |            |        |                 |          |

4238 rows × 16 columns

## In [38]:

```
#Filter and make a new dataframe for non smokers
non_smoker = df.loc[df["currentSmoker"] == 0]
non_smoker
```

## Out[38]:

|      | male | age | education | currentSmoker | cigsPerDay | BPMeds | prevalentStroke | prevalen |
|------|------|-----|-----------|---------------|------------|--------|-----------------|----------|
| 0    | 1    | 39  | 4.0       | 0             | 0.0        | 0.0    | 0               |          |
| 1    | 0    | 46  | 2.0       | 0             | 0.0        | 0.0    | 0               |          |
| 5    | 0    | 43  | 2.0       | 0             | 0.0        | 0.0    | 0               |          |
| 6    | 0    | 63  | 1.0       | 0             | 0.0        | 0.0    | 0               |          |
| 8    | 1    | 52  | 1.0       | 0             | 0.0        | 0.0    | 0               |          |
|      |      |     |           |               |            |        |                 |          |
| 4226 | 1    | 58  | 1.0       | 0             | 0.0        | 0.0    | 0               |          |
| 4228 | 0    | 50  | 1.0       | 0             | 0.0        | 0.0    | 0               |          |
| 4231 | 1    | 58  | 3.0       | 0             | 0.0        | 0.0    | 0               |          |
| 4232 | 1    | 68  | 1.0       | 0             | 0.0        | 0.0    | 0               |          |
| 4237 | 0    | 52  | 2.0       | 0             | 0.0        | 0.0    | 0               |          |

2144 rows × 16 columns

## In [39]:

```
#Group by age column and find average heart rate at different age
age_heart = df.groupby("age")["heartRate"].mean().reset_index()
age_heart
```

## Out[39]:

|    | age | heartRate |
|----|-----|-----------|
| 0  | 32  | 80.000000 |
| 1  | 33  | 75.600000 |
| 2  | 34  | 73.555556 |
| 3  | 35  | 73.785714 |
| 4  | 36  | 74.761905 |
| 5  | 37  | 75.043478 |
| 6  | 38  | 76.631944 |
| 7  | 39  | 75.958580 |
| 8  | 40  | 76.518325 |
| 9  | 41  | 75.977011 |
| 10 | 42  | 75.522222 |
| 11 | 43  | 77.603774 |
| 12 | 44  | 74.867470 |
| 13 | 45  | 76.166667 |
| 14 | 46  | 78.027473 |
| 15 | 47  | 76.184397 |
| 16 | 48  | 76.028902 |
| 17 | 49  | 75.363636 |
| 18 | 50  | 76.457143 |
| 19 | 51  | 75.821918 |
| 20 | 52  | 76.255034 |
| 21 | 53  | 77.273381 |
| 22 | 54  | 75.598485 |
| 23 | 55  | 74.965517 |
| 24 | 56  | 73.902439 |
| 25 | 57  | 75.276423 |
| 26 | 58  | 76.675214 |
| 27 | 59  | 74.705882 |
| 28 | 60  | 76.099099 |
| 29 | 61  | 74.681818 |
| 30 | 62  | 74.454545 |
| 31 | 63  | 74.281818 |
| 32 | 64  | 76.706522 |
| 33 | 65  | 74.473684 |
| 34 | 66  | 78.868421 |
| 35 | 67  | 76.266667 |
| 36 | 68  | 80.277778 |

#### age heartRate

**37** 69 77.000000

**138** [49∂: 64.000000

#Filter and make a new dataframe for smokers
smoker = df.loc[df["currentSmoker"] == 1]
smoker

## Out[40]:

|      | male | age | education | currentSmoker | cigsPerDay | BPMeds | prevalentStroke | prevalen |
|------|------|-----|-----------|---------------|------------|--------|-----------------|----------|
| 2    | 1    | 48  | 1.0       | 1             | 20.0       | 0.0    | 0               |          |
| 3    | 0    | 61  | 3.0       | 1             | 30.0       | 0.0    | 0               |          |
| 4    | 0    | 46  | 3.0       | 1             | 23.0       | 0.0    | 0               |          |
| 7    | 0    | 45  | 2.0       | 1             | 20.0       | 0.0    | 0               |          |
| 9    | 1    | 43  | 1.0       | 1             | 30.0       | 0.0    | 0               |          |
|      |      |     |           |               |            |        |                 |          |
| 4230 | 0    | 56  | 1.0       | 1             | 3.0        | 0.0    | 0               |          |
| 4233 | 1    | 50  | 1.0       | 1             | 1.0        | 0.0    | 0               |          |
| 4234 | 1    | 51  | 3.0       | 1             | 43.0       | 0.0    | 0               |          |
| 4235 | 0    | 48  | 2.0       | 1             | 20.0       | NaN    | 0               |          |
| 4236 | 0    | 44  | 1.0       | 1             | 15.0       | 0.0    | 0               |          |
|      |      |     |           |               |            |        |                 |          |

2094 rows × 16 columns

## In [41]:

#Group by age column and find average heart rate at different age
age\_heart = df.groupby("age")["heartRate"].mean().reset\_index()
age\_heart

## Out[41]:

|    | age | heartRate |
|----|-----|-----------|
| 0  | 32  | 80.000000 |
| 1  | 33  | 75.600000 |
| 2  | 34  | 73.555556 |
| 3  | 35  | 73.785714 |
| 4  | 36  | 74.761905 |
| 5  | 37  | 75.043478 |
| 6  | 38  | 76.631944 |
| 7  | 39  | 75.958580 |
| 8  | 40  | 76.518325 |
| 9  | 41  | 75.977011 |
| 10 | 42  | 75.522222 |
| 11 | 43  | 77.603774 |
| 12 | 44  | 74.867470 |
| 13 | 45  | 76.166667 |
| 14 | 46  | 78.027473 |
| 15 | 47  | 76.184397 |
| 16 | 48  | 76.028902 |
| 17 | 49  | 75.363636 |
| 18 | 50  | 76.457143 |
| 19 | 51  | 75.821918 |
| 20 | 52  | 76.255034 |
| 21 | 53  | 77.273381 |
| 22 | 54  | 75.598485 |
| 23 | 55  | 74.965517 |
| 24 | 56  | 73.902439 |
| 25 | 57  | 75.276423 |
| 26 | 58  | 76.675214 |
| 27 | 59  | 74.705882 |
| 28 | 60  | 76.099099 |
| 29 | 61  | 74.681818 |
| 30 | 62  | 74.454545 |
| 31 | 63  | 74.281818 |
| 32 | 64  | 76.706522 |
| 33 | 65  | 74.473684 |
| 34 | 66  | 78.868421 |
| 35 | 67  | 76.266667 |
| 36 | 68  | 80.277778 |
|    |     |           |

|     | age              | heartRate |
|-----|------------------|-----------|
| 37  | 69               | 77.000000 |
| I38 | [ <del>]</del> 6 | 64.000000 |
|     |                  |           |

Conslusion -

# Task 2 - Which age group have high chances of having coronary heart disease in 10 years

## In [42]:

```
#Read the csv
csv = pd.read_csv("framingham.csv")
#Filter and make a new dataframe for those who has chances of having coronary heart dise
filter_in_ten_yrs = csv.loc[csv["TenYearCHD"] == 1]
filter_in_ten_yrs
```

## Out[42]:

|     | male        | age | education | currentSmoker | cigsPerDay | BPMeds | prevalentStroke | prevalen |
|-----|-------------|-----|-----------|---------------|------------|--------|-----------------|----------|
|     | <b>3</b> 0  | 61  | 3.0       | 1             | 30.0       | 0.0    | 0               | _        |
|     | <b>6</b> 0  | 63  | 1.0       | 0             | 0.0        | 0.0    | 0               |          |
| 1   | <b>5</b> 0  | 38  | 2.0       | 1             | 20.0       | 0.0    | 0               |          |
| 1   | 7 0         | 46  | 2.0       | 1             | 20.0       | 0.0    | 0               |          |
| 2   | <b>!5</b> 1 | 47  | 4.0       | 1             | 20.0       | 0.0    | 0               |          |
|     |             |     |           |               |            |        |                 |          |
| 422 | <b>!1</b> 1 | 50  | 1.0       | 0             | 0.0        | 0.0    | 0               |          |
| 422 | <b>.3</b> 1 | 56  | 4.0       | 0             | 0.0        | 1.0    | 0               |          |
| 422 | <b>26</b> 1 | 58  | 1.0       | 0             | 0.0        | 0.0    | 0               |          |
| 423 | <b>32</b> 1 | 68  | 1.0       | 0             | 0.0        | 0.0    | 0               |          |
| 423 | <b>3</b> 1  | 50  | 1.0       | 1             | 1.0        | 0.0    | 0               |          |
|     |             |     |           |               |            |        |                 |          |

644 rows × 16 columns

**◆** 

## In [43]:

```
#Group by age column and count the rows of TenYearCHD column
group_by_age_Ten_Year_CHD = csv.groupby("age")["TenYearCHD"].count().reset_index()
group_by_age_Ten_Year_CHD
```

## Out[43]:

|    | age | TenYearCHD |
|----|-----|------------|
| 0  | 32  | 1          |
| 1  | 33  | 5          |
| 2  | 34  | 18         |
| 3  | 35  | 42         |
| 4  | 36  | 84         |
| 5  | 37  | 92         |
| 6  | 38  | 144        |
| 7  | 39  | 169        |
| 8  | 40  | 191        |
| 9  | 41  | 174        |
| 10 | 42  | 180        |
| 11 | 43  | 159        |
| 12 | 44  | 166        |
| 13 | 45  | 162        |
| 14 | 46  | 182        |
| 15 | 47  | 141        |
| 16 | 48  | 173        |
| 17 | 49  | 132        |
| 18 | 50  | 140        |
| 19 | 51  | 146        |
| 20 | 52  | 149        |
| 21 | 53  | 139        |
| 22 | 54  | 132        |
| 23 | 55  | 145        |
| 24 | 56  | 123        |
| 25 | 57  | 123        |
| 26 | 58  | 117        |
| 27 | 59  | 119        |
| 28 | 60  | 111        |
| 29 | 61  | 110        |
| 30 | 62  | 99         |
| 31 | 63  | 110        |
| 32 | 64  | 93         |
| 33 | 65  | 57         |
| 34 | 66  | 38         |
| 35 | 67  | 45         |
| 36 | 68  | 18         |

|     | age                | TenYearCHD |
|-----|--------------------|------------|
| 37  | 69                 | 7          |
| I38 | [4 <del>4</del> d: | 2          |

```
#Plot a line graph to show total number of people having a chance of coronary heart dise
label = group_by_age_Ten_Year_CHD["age"]
value = group_by_age_Ten_Year_CHD["TenYearCHD"]

plt.subplots(figsize=(19,8))

plt.plot(label, value, label="Age group and their chance of coronary heart disease in 10

plt.xlabel("Age")
plt.xticks(rotation="vertical")
plt.ylabel("TenYearCHD")
plt.title("Age group and their chance of coronary heart disease in 10 years")
plt.legend()
```

#### Out[44]:

#### <matplotlib.legend.Legend at 0x1bc478e8160>



## Conslusion -

### In [ ]: