Project: Creditworthiness

Step 1: Business and Data Understanding

Key Decisions:

- What decisions needs to be made?
 - The objective is to build a predictive classification model to classify whether customers who
 applied for loan are creditworthy.
- What data is needed to inform those decisions? The data needed can be summarized in three categories and I listed few for each category:
 - · Personal information
 - length of employeement
 - duration of current address
 - number of dependent
 - Basic account information
 - have account in bank or not and the balance
 - duration of credit month
 - Loan information
 - loan purpose
 - o credit aount
- What kind of model (Continuous, Binary, Non-Binary, Time-Series) do we need to use to help make these decisions?
 - Since the desired outcome is creditworthy or not, it would be a binary classification model. We'll go run logistic regression model, decision tree model etc respectively to compare the model accuracy.

Step 2: Building the Training Set

EDA

Fields Summary

This dataset contains 20 variables including 11 continuous variables and 0 categorical variables. We can

gain more overview from the histogram of each variable.

Before we jump into the model part, we'll clean and manipulate the dataset for model preparation.

1. Missing values

- The Duration of current address has 69% missing data so this field should be removed.
- We'll impute the missing value with median data in the Age-year field since it only has 2.4% missing data. Since the age is right skewed, so we'll impute the data with median instead of mean.

2. Association Check: Correlation

• We want to make sure the numeric variables are not highly correlated with each other.

Pearson Correlation Analysis

Full Correlation Matrix

	Duration.of.Credit.Month	Credit.Amount	Instalment.per.cent	Duration.in.Current.address	Most.valuable.available.asset	Age.years
Duration.of.Credit.Month	1.000000	0.565054	0.145637	-0.032494	0.128814	-0.018171
Credit.Amount	0.565054	1.000000	-0.253286	-0.136621	0.457147	0.040486
Instalment.per.cent	0.145637	-0.253286	1.000000	0.131231	0.115114	0.111456
Duration.in.Current.address	-0.032494	-0.136621	0.131231	1.000000	-0.047386	0.301966
Most.valuable.available.asset	0.128814	0.457147	0.115114	-0.047386	1.000000	0.123579
Age.years	-0.018171	0.040486	0.111456	0.301966	0.123579	1.000000
Type.of.apartment	0.126967	0.100413	0.178926	-0.163386	0.182744	0.208552
Occupation	NaN	NaN	NaN	NaN	NaN	NaN
No.of.dependents	-0.185180	0.082721	-0.293380	-0.036814	0.019435	0.046996
Telephone	0.238437	0.192532	0.038515	0.055112	0.083395	0.141103
Foreign.Worker	-0.207298	-0.045994	-0.155458	-0.015787	0.071932	-0.020939
	Type.of.apartment	Occupation	No.of.dependents	Telephone	Foreign.Worker	
Duration.of.Credit.Month	0.126967	NaN	-0.185180	0.238437	-0.207298	
Credit.Amount	0.100413	NaN	0.082721	0.192532	-0.045994	
Instalment.per.cent	0.178926	NaN	-0.293380	0.038515	-0.155458	
Duration.in.Current.address	-0.163386	NaN	-0.036814	0.055112	-0.015787	
Most.valuable.available.asset	0.182744	NaN	0.019435	0.083395	0.071932	
Age.years	0.208552	NaN	0.046996	0.141103	-0.020939	
Type.of.apartment	1.000000	NaN	-0.010189	0.179688	-0.026742	
Occupation	NaN	1.000000	NaN	NaN	NaN	
No.of.dependents	-0.010189	NaN	1.000000	-0.097632	0.218454	
Telephone	0.179688	NaN	-0.097632	1.000000	-0.168472	
Foreign.Worker	-0.026742	NaN	0.218454	-0.168472	1.000000	

• An assoication analysis is performed on the numeric variables and there are no variables which are highly correlated with each other (the abs(correlation) is > 0.7 and the p-value is also not significant).

3. Varibility Check

 We also want to remove data with low variability. Referring to the fields summary plots above, Guarantors, Foreign Worker, No of Dependents show low varibility where more than 80% of the data skewed towards to one value. These three fields should be removed in order not to skwe our model results.

4. Irrelevancy Check

• Telephone field should be removed since its irrelevancy to the creditworthy.

Summary

Category	Field	Process
Missing Value	Duration of current address	Removed
Missing Value	Age-Years	Impute missing with median
	Guarantors	Removed
	Foreign Worker	Removed
Low Varibility	Occupation	Removed
	Concurrent Credits	Removed
	No of Dependents	Removed
Irrelevancy	Telephone	Removed

Step 3: Train Classification Models

• First, I created Estimation and Validation samples where 70% of the dataset should go to Estimation and 30% of entire dataset should be reserved for Validation. Set the Random Seed to 1.

- Then I'll create all of the following models: Logistic Regression, Decision Tree, Forest Model, Boosted Model.
- The target variable for all models is credit application result.

1. Logistic Regression (Stepwise)

· summary of the model

Report for Logistic Regression Model LogisticModel_Stepwise

Basic Summary

Call:

glm(formula = Credit.Application.Result ~ Account.Balance +

Payment.Status.of.Previous.Credit + Purpose + Credit.Amount +

Length.of.current.employment + Instalment.per.cent +

Most.valuable.available.asset, family = binomial(logit), data = the.data)

Deviance Residuals:

Min	1Q	Median	3Q	Max
-2.289	-0.713	-0.448	0.722	2.454

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-2.9621914	6.837e-01	-4.3326	1e-05	***
Account.BalanceSome Balance	-1.6053228	3.067e-01	-5.2344	1.65e- 07	***
Payment.Status.of.Previous.CreditPaid Up	0.2360857	2.977e-01	0.7930	0.42775	
Payment.Status.of.Previous.CreditSome Problems	1.2154514	5.151e-01	2.3595	0.0183	*
PurposeNew car	-1.6993164	6.142e-01	-2.7668	0.00566	**
PurposeOther	-0.3257637	8.179e-01	-0.3983	0.69042	
PurposeUsed car	-0.7645820	4.004e-01	-1.9096	0.05618	
Credit.Amount	0.0001704	5.733e-05	2.9716	0.00296	**
Length.of.current.employment4-7 yrs	0.3127022	4.587e-01	0.6817	0.49545	
Length.of.current.employment< 1yr	0.8125785	3.874e-01	2.0973	0.03596	*
Instalment.per.cent	0.3016731	1.350e-01	2.2340	0.02549	*
Most.valuable.available.asset	0.2650267	1.425e-01	1.8599	0.06289	

From this model we can tell that Account-Some balance, payment status
 CreditSomeProblems, Purpose, and Credit Amount are the significant predictor variables with significant p-value.

Model Comparison Report

Fit and error measures						
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non- Creditworthy	
LogisticModel_Stepwise	0.7600	0.8364	0.7306	0.8762	0.4889	

Confusion matrix of LogisticModel_Stepwise						
	Actual_Creditworthy	Actual_Non-Creditworthy				
Predicted_Creditworthy	92	23				
Predicted_Non-Creditworthy	13	22				

While this

stepwise model has 76% accuracy and its Non-creditworthy group is 48%.

2. Decision Tree

• Decision Tree

• From this model we can tell that Account—Some balance, Value Saving Stock, Duration of Month are the significant predictor variables with high variable importance.

	Model Comparison Report						
Fit and e	ror measure	es					
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy		
DT	0.7467	0.8304	0.7035	0.8857	0.4222		
Confusio	n matrix of E	T					
				Actual_Creditworthy	Actual_Non-Creditworthy		
	Predict	ed_Credity	vorthy	93	26		
Predicted_Non-Creditworthy			vorthy	12	19		

• The overall Model Accuracy is 79% while the accuracy for Non-creditworthy group is 42%.

3. Forest Model

• Random Forest Model

Variable Importance Plot

• From this **Variable Importance Plot** we can tell that **Credit Amount**, **Age. years**, **Duration** of **credit month** are the significant predictor variables with high variable importance.

• The overall acuracy is 79.33% and the Non-creditworthy accuracy is 40%.

4. Boosted Model

Boosted Model

Report

Report for Boosted Model BoostedModel

Basic Summary:

Loss function distribution: Bernoulli Total number of trees used: 4000

Best number of trees based on 5-fold cross validation: 1988

From this Variable Importance Plot we can tell that Credit Amount, account balance,
 Duration of credit month are the significant predictor variables with high variable importance.

	Model Comparison Report							
Fit and erro	r measures							
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy			
BoostedModel	0.7933	0.8670	0.7469	0.9619	0.4000			
Confusion i	matrix of Boos	stedMo	del					
				Actual_Creditworthy	Actual_Non-Creditworthy			
Predicted_Creditworthy			у	101	27			
	Predicted_Non-Cr	reditworth	y	4	18			

• The overall acuracy is 79.33% and the Non-creditworthy accuracy is 40%.

Step 4: Write-up

Final Model Compare

ere is the final four model comparison								
Model Comparison Report								
Fit and error meas	ures							
Model	Accuracy	F1	AUC	Accuracy_Credi	tworthy	Accuracy_Non-Creditworthy		
DT	0.7467	0.8304	0.7035		0.8857	0.4222		
RandomForest	0.7933	0.8670	0.7403		0.9619	0.4000		
LogisticModel_Stepwise	0.7600	0.8364	0.7306		0.8762	0.4889		
BoostedModel	0.7933	0.8670	0.7469		0.9619	0.4000		
Confusion matrix	of BoostedM	odel						
				Actual_Creditworthy		Actual_Non-Creditworthy		
P	redicted_Creditwor	thy		101		27		
Predict	ed_Non-Creditwor	thy		4		18		
Confusion matrix	of DT							
				Actual_Creditworthy		Actual_Non-Creditworthy		
P	redicted Creditwor	thy		93		26		
	Predicted_Non-Creditworthy 12					19		
Fredict	ca_Non CreditWor	uny		12		19		

Confusion matrix of LogisticModel_Stepwise					
	Actual_Creditworthy	Actual_Non-Creditworthy			
Predicted_Creditworthy	92	23			
Predicted_Non-Creditworthy	13	22			

Confusion matrix of RandomForest					
	Actual_Creditworthy	Actual_Non-Creditworthy			
Predicted_Creditworthy	101	27			
Predicted_Non-Creditworthy	4	18			

Overall Accuracy

• We can find that both Random forest model and boosted model have the top 79.33% accuracy rate.

Accuracies in each segments

- Creditworthy: Random forest model and boosted model 96%
- Non-Creidtworthy: Logistic Regression Model 48%

ROC curve

• From the ROC curve we can see that the Random forest performs slightly better than others.

Lift curve

Other supporting Plots

Precision and recall curve

By comparing the above

aspects, i choose the random forest model as it has the higher accuracy and less bais among two segments.

Q: How many individuals are creditworthy?

• In this step I used the random forest model to predict the customers from (customer-to-score) file. If the score of creditworthy is greater than score noncredictworthy then the person should be labeled as creditworthy.

• The final result is there are 410 creidtworthy customers and 90 non-creditworthy customers.

Appendix

Alteryx Workflow

