SRN	
-----	--

PES University, Bangalore
(Established under Karnataka Act No. 16 of 2013)

UE18CS243

END SEMESTER ASSESSMENT (ESA) B. TECH III SEMESTER- MAY 2020

UE18CS253 – Microprocessor and Computer Architecture

Tir	me: 3	Hrs Answer All Questions	Max
Ma	arks:	100	
No	ote: A	All answers must be precise and to the point.	
1	a)	 i. Explain why RSB instruction is required when SUB is available in ARM? i.e SUB R4, R1,R2 is same as RSB R4, R2,R1 Solution: If we want to perform R4=1-R2 SUB cannot be used as 1st operand cannot be immediate value, however RSB R4, R2,#1 will do. ii. Explain the similarities & differences between the ARM instructions CMP R0,R1 & CMN R0,R1 	
		Both use the contents of R0 & R1 to set the condition codes. CMP compares 0 & R0–R1, CMN compares 0 & R0+R1	
	b)	What is the output of the following program? Write an equivalent program using ADD instruction .TEXT mov r0,#3 RSB R0,R0,R0,LSL #2 SWI 0X011	4
		R0=9, it is the multiplication by 3	
	c)	add r1,r1,r1,lsl #1 31	4
		Solution: The multiply forms SMLAL take two 32 bit numbers and multiply them to produce a 64 bit result of the form RdHi,RdLo := Rm * Rs. The lower 32 bits of the 64 bit result are written to RdLo, the upper 32 bits of the result are written to RdHi Binary equivalent 1110 00001 010 0000 0001 0010 1001 0011	

				SKN							
d)	Consider the program an the execution of program	n, what is	s the status of th	e stack							4
	following program. Give t	the upda	ated value of R13	3.							
	DATA	53F0									
	A:.word 10,20,30	53F4									
	.TEXT	53F8						$oxed{oxed}$			
	LDR R0,=A	53FC									
	LDMIA R0!,{R1-R3} STMFD R13!,{R1-R3}	5400						₩		4	
	SWI 0X011	5404						₩		4	
		5408 540C						\vdash		-	
		340C	STAC	~K				\vdash		_	
			SIAC	∠ N				_			
	R13 will have 53F4 53F0 53F4 10 53F8 20 53FC 30 5400 5404										
	5408 540C										
- \	Describe the sequence of	of overt	s which take pla	oo oftor	on.	EIO i	ntorri	ınt	0001	ırc	4
e)	How does the interrupt he when the interrupt occur are not there in the ordin	nandler i red? Wh	return control to nat are the facilit	the pro	grar	n whi	ich w	as r	unni	ing	4
	W										
	When an FIQ occurs,	t nuo oror	n status ragistar (CDCD) 4	to th		od ste	tua	nogic	nt on	
	• ARM copies the current (SPSR) of FIQ mode.	, progran	ii status register (CPSK)	io in	ie sav	eu sia	itus	regis	ster	
	• It adjusts the instr set bit	in the C	PSR to change o	ver to th	ne A	RM i	nstruc	tion	set ((by	
	clearing the T bit).	in the C	of six to change o	ver to tr	10 11	IXIVI II	iisti uc	tion	500 ((U)	
	• It sets the mode bits in Cl	PSR to ir	ndicate that it is no	w in the	FIQ) mod	e.				
	• It sets the I bit in CPSR to										
	• Stores the return address	in LR. •	stores the FIQ exc	eption v	ecto	r in P	C.				
	To return control to the fo	_	_	•	CDC	n T		4	, .	11	
	• The handler copies the restores the state of the inst	-	•							•	
	original values.	ruction s	et, mode and the i	merrupt	uisa	ioic oi	is I ai	Iu I	to th	ich	
	• The handler then copies the	ne link re	egister back to PC	to resum	ne no	ormal	opera	tion.			
	The FIQ mode has access R13, link register R14 and R8 through R12 without I mode are available to receive to R0 through R7 must be registers must be restored for	saved properties of the saved	rogram status regions save them. Regions lobal data that is really after saving a	ster SPS sters R0 elevant. copy o	R. I thr How n th	t can ough vever, e stac	thus u R7 of any n k and	ise r f the nodi l the	egist e par ficati en the	ent ion ese	

												SRN							
2 a)	Explain how pipelining can improve the performance of a given instruction mix. Pipelining provides "pseudo-parallelism" – instructions are still issued sequentially, but their overall execution (i.e. from fetch to write back) overlaps - Performance is improved via higher throughput												3						
	o An instruction						_			٠.									
b)	Show how the without forward	in	strı	ucti	ons	will	flo)W	thro	ug	h th			ge p	ipeli	ine p	roce	essor	6
		1	2	3	4	5	6	7	8	9	10	11	12	13	3 1	4 1	5		
	L1: LDR R1,[R4]																		
	LDR R2, [R4],#-4																		
	ADD R3,R1,R2																		
	STR R3,[R4]																		
	SUB R4,R4,#4																		
	BNEZ R4 L1																		
				<u> </u>									•		•	•			
		1	2	3	4	5	5	6	7	8	3	9	10	1	1 2	13	1 4	15	
	L1: LDR R1,[R4]	F	D	E X	М	V													
	LDR R2, [R4],#-4		F	D	EX			W											
	ADD R3,R1,R2			F	D	X		X	EX		Л	W							
	STR R3,[R4]				F	X	(X	D		X	Χ	M	W					
	SUB R4,R4,#4								F			Χ	EX	M	W				
	BNEZ R4 L1									F		X	D	X	X	EX	M	W	
(c)	Consider a simisprediction program, 30% 50% of instruction Half of the load and 75% of braprogram on this The CPI would instruction (15% (25% of 20%). Thus, the CPI is	ena of tons ins and prod d b	alty the sar stru he oce	are solictions are solictions are solicted are solicted are solicted are solicted are solicted are solicited are s	structions and structions are por?	sing etion le si are foredi an an	gle- ns a ngle collo ctee ex an	tra	cle I load ycle d in corre	oad ds, AL nme ctly	for cyc	e de 6 ar bera ely l hat load	elay pee brations. by a consist the	ena inch depe e av	Ity. es, ende eraç	the reent ins ge CF	a speemainstruction	ning tion, this	5
d)	Consider a programexecuted many tiprogram core (T Branch 1: T-N-T Branch 2: T-T-T-	mes for -N-	s. B tak T-N	elo en a	w are and N -N	e the V for	out	tcoı	nes	of e								ne	6

	1	T		SKN		
		Assume that the beha			1 0	
		For dynamic branch p			1	ediction
		buffer and each buffe	r is initialized to the	e same state before e	ach execution.	
			1 Bit Predictor, i	nitialized to predict	taken	
			Correct	Wrong	Accuracy	
			Prediction	Prediction		
		Branch 1				
		Branch 2				
		2	bit Predictor , initia	lized to weakly pred	lict taken	
			Correct	Wrong	Accuracy	
			Prediction	Prediction		
		Branch 1				
		Branch 2				
					<u>.</u>	
			1 Bit Predictor, i	nitialized to predict	taken	
			Correct	Wrong	Accuracy	
			Prediction	Prediction		
		Branch 1	1	7	6/17	
		Branch 2	5	4		
				lized to weakly pred	lict taken	
			Correct	Wrong	Accuracy	_
			Prediction	Prediction	recuracy	
		Branch 1	4	4	11/17	
		Branch 2	7	2		
		Brunen 2				
	ı	T				
3		A Pentium 4 microp				
		one for instructions				n – a
		single, 16 Kbyte ca			data.	
		Additional specs for				
		- Each block will ho	•			
		- The cache would		ciative		
		- Physical addresse				
		- Data is addressed	to the word and v	words are 32 bits		
	a)	How many blocks v	ould be in this ca	che?		3
		The cache holds 21	⁴ bytes of data			
		- Each block holds	2 ⁵ bytes			
		- Thus, there are 21	•	locks		
	b)					
	b)	How many bits of ta	ig are stored with	each block entry?		3
		- Index:	0			
		o # of sets: 1024 / 2				
		o Therefore 8 bits of	f index are neede	d		
		- Offset:				

		SRN
		o # of words per block = 32 / 4 = 8
		$0.2^3 = 8$
		o Therefore 3 bits of offset
		- Tag
		o $32 - 3 - 8 = 21$ bits of tag
		Therefore, 21 bits of tag need to be stored in each block.
	c)	Each instruction fetch means a reference to the instruction cache and 35% of all 10
	,	instructions reference data memory. With the first implementation:
		- The average miss rate in the L1 instruction cache was 2%
		- The average miss rate in the L1 data cache was 10%
		- In both cases, the miss penalty is 9 CCs
		For the new design, the average miss rate is 3% for the cache as a whole, and
		the miss penalty is again 9 CCs.
		Which design is better and by how much?
		Answer
		Miss penaltyv1 = $(1)(.02)(9) + (0.35)(.1)(9) = .18 + .063 = 0.495$
		Miss penaltyv2 = $(.03)(9) = 0.270$
		V2 is the right design choice
	d)	Explain the advantages and disadvantages (in 4-5 sentences or a bulleted list) of 4
	u)	using a direct mapped cache instead of an 8-way set associative cache.
		A direct mapped cache should have a faster hit time; there is only one block that
		data for a physical address can be mapped to
		- The above "pro" can also be a "con"; if there are successive reads to 2
		separate addresses that map to the same cache block, then there may never be
		a cache hit. This will significantly degrade performance.
		- In contrast, with a set associative cache, a block can map to one of 8 blocks
		within a set. Thus,if the situation described above were to occur, both references
		would be hits and there would be no conflict misses.
		- However, a set associative cache will take a bit longer to search – could
		decrease clock rate.
		The average memory access time (AMAT) can be madeled using the
4	a)	The average memory access time (AMAT) can be modeled using the following formula:
•		AMAT = Hit time + Miss rate * Miss penalty
		Name and explain (briefly) one technique for each of the three components of
		the formula in order to decrease the average memory access time
		,
		Reducing Miss penalty: Multilevel eacher: 1st level amall, but at the appeal of the CRLL 2nd level.
		- Multilevel caches: 1st level small, but at the speed of the CPU, 2nd level
		larger but slower - Critical word first: don't wait until the entire cache-block has been load, Focus
		Giving priority to read misses over writes Professions
		- Prefetching
		- Non Blocking Cache
		- Early Restart
		Reducing Miss rate:
		- Larger cache block size
		- Larger caches

		SRN	
		 Higher associativity Way prediction and pseudo-associative caches Compiler optimization Reducing Hit time: Small and simple caches Avoiding address translation Pipelined cache access Trace caches 	
	b)	Hari's program is designed to be 90% parallel. What speedup can Hari expect on 10 processors? What would be the maximum speedup on an infinite number of processors? $Sp = 1 / (f + (1 - f)/p) = 1 / (0.1 + (.9)/10) = 1 / .19 = 5.26$ $max Sp = 1 / (.1 + .9/\infty) = 1 / .1 = 10$	4
	c)	Priya executes her program and determines that in a parallel execution on 100 processors, 5% of the time is spent in the sequential part of the program. Priya's problem size can increase with an increasing number of processors. What is the scaled speedup of the program on 100 processors? $Sp = 100 + (1 - 100) * .05 = 100 - 4.95 = 95.05$	4
	d)	 What is the average memory access time for the following memory system? Level 1 cache: 91% hit rate, 1-cycle access time. Level 2 cache: 98% hit rate, 15-cycle access time. Memory: 140-cycle access time. Cache hits and misses both require some number of cycles to access the cache (the access time). You may assume that all memory accesses are hits in main memory. Solution We incur the access time for a cache regardless of whether it's a hit or a miss. So if we have an access that is not in cache at all, we first spend 1 cycle accessing L1 to find out that it's a miss. Then we spend 15 more cycles accessing L2 to find out that we've missed again, and finally 140 cycles accessing memory. 	6
		We have 3 cases L1 hit (0.91 probability): 1 cycle L1 miss, L2 hit (0.09 * 0.98 probability): 1 cycle + 15 cycles L1/L2 miss, memory hit (0.09 * 0.02 probability): 1 cycle + 15 cycles + 140 cycles Altogether: AMAT = 0.91 * 1 + 0.09 * (0.98*(1+15) + 0.02*(1+15+140) = 2.602 cycles No individual memory access will take 2.602 cycles, but this should be the average over all memory accesses.	
5 .	a)	Modern multicores often have on-chip L2 caches as well as L1 caches. It is common to implement something called the "inclusion property", which means that if a certain cache block is evicted from the L2 cache (eg., due to a conflict) then it also must be evicted from the L1 cache. In one sentence, why would this	3

3

2

4

property be useful?

Solution:

Coherence mechanisms don't have to check both the L2 and the L1 for existence of a cache block, only the L2.

b) Consider the following sequence of instructions. The table on the right represents the latency incurred by each instruction.

I1: LDR R1, [R0]		
I2: MUL R2, R1, R3	Instruction	Latency
I3: ADD R4, R2, R3	LDR	3
I4: LDR R1, R5	MUL	6
I5: ADD R3, R1, R2	ADD	2
I6: LDR R1, [R5]		
17: ADD R3, R1, R3		

- i. List all RAW, WAW and WAR hazards found in the code.
- ii. Rename enough registers in the code to eliminate as many as dependency.
- iii. How many cycles would be needed to execute the example code if the pipeline stalled only on true dependences (RAW hazards) found in the code? Show the instruction schedule?
- i. List all RAW hazards found in the code.

```
Solution
```

```
RAW: I1 _ I2 (for R1)

I2 _ I3 (for R2)

I2 _ I5 (for R2)

I4 _ I5 (for R1)

I5 _ I7 (for R3)

I6 _ I7 (for R1)
```

ii. List all WAW and WAR hazards in the code

```
WAR: I2 _ I4 (for R1)
I2 _ I5 (for R3)
I3 _ I5 (for R3)
I5 _ I6 (for R1)
WAW: I1 _ I4 (for R1)
I4 _ I6 (for R1)
I5 _ I7 (for R3)
```

iii. Rename enough registers in the code to eliminate as many as dependency.

```
I1: LDR R1, [R0]
I2: MUL R2, R1, R3
I3: ADD R4, R2, R3
I4: LDR R6, R5
I5: ADD R3, R6, R2
I6: LDR R7, [R5]
I7: ADD R3, R7, R3
```

How many cycles would be needed to execute the example code if the

	SRN SRN	
	pipeline stalled only on true dependences (RAW hazards) found in the code?	
	Show the instruction schedule?	
	Cycle Instruction	
	1 I1: LDR R1, [R0]	
	2 stall	
	3 stall	
	4 stall	
	5 I2: MUL R2, R1, R3	
	6 stall	
	7 stall	
	8 stall	
	9 stall	
	9 stall	
	10 stall	
	11 I3: ADD R4, R2, R3	
	12 I4: LDR R6, [R5]	
	13 stall	
	14 stall	
	15 stall	
	16 I5: ADD R3, R6, R2	
	17 I6: LD R7, [R5]	
	18 stall	
	19 stall	
	20 stall	
	21 I7: ADD R3, R7, R3	
	22 stall	
	23 stall	
	24 Execution complete	
c)	Unroll the following loop twice and perform register renaming.	8
	Loop: Idr r5, [r1]	Ū
	ldr r4, [r2]	
	sub r5, r5, r4	
	add r6, r6, r5	
	add r2, r2, #4	
	add r1, r1, #4	
	bne r1, r3, Loop	
	Loop: ldr r5, [r1] #4	
	ldr r4, [r2] #4	
	sub r5, r5, r4	
i		

add r6, r6, r5 ldr r7, [r1]

ldr r8, [r2] sub r7, r7, r8

add r6, r6, r7 add r2, r2, #8 add r1, r1, #8 bne r1, r3, Loop