Яндекс. Тренировки по алгоритмам июнь 2021, занятие 2

J. Треугольник Максима

Ограничение времени	1 секунда
Ограничение памяти	64Mb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

С детства Максим был неплохим музыкантом и мастером на все руки. Недавно он самостоятельно сделал несложный перкуссионный музыкальный инструмент — треугольник. Ему нужно узнать, какова частота звука, издаваемого его инструментом.

У Максима есть профессиональный музыкальный тюнер, с помощью которого можно проигрывать ноту с заданной частотой. Максим действует следующим образом: он включает на тюнере ноты с разными частотами и для каждой ноты на слух определяет, ближе или дальше она к издаваемому треугольником звуку, чем предыдущая нота. Поскольку слух у Максима абсолютный, он определяет это всегда абсолютно верно.

Вам Максим показал запись, в которой приведена последовательность частот, выставляемых им на тюнере, и про каждую ноту, начиная со второй, записано — ближе или дальше она к звуку треугольника, чем предыдущая нота. Заранее известно, что частота звучания треугольника Максима составляет не менее 30 герц и не более 4000 герц.

Требуется написать программу, которая определяет, в каком интервале может находиться частота звучания треугольника.

Формат ввода

Первая строка входного файла содержит целое число n — количество нот, которые воспроизводил Максим с помощью тюнера $(2 \le n \le 1000)$. Последующие n строк содержат записи Максима, причём каждая строка содержит две компоненты: вещественное число f_i — частоту, выставленную на тюнере, в герцах $(30 \le f_i \le 4000)$, и слово «closer» или слово «further» для каждой частоты, кроме первой. Слово «closer» означает, что частота данной ноты ближе к частоте звучания треугольника, чем частота предыдущей ноты, что формально описывается соотношением: $|f_i - f_{triangle}| < |f_{i-1} - f_{triangle}|$.

Слово «further» означает, что частота данной ноты дальше, чем предыдущая.

Если оказалось, что очередная нота так же близка к звуку треугольника, как и предыдущая нота, то Максим мог записать любое из двух указанных выше слов.

Гарантируется, что результаты, полученные Максимом, непротиворечивы.

Формат вывода

В выходной файл необходимо вывести через пробел два вещественных числа — наименьшее и наибольшее возможное значение частоты звучания треугольника, изготовленного Максимом. Числа должны быть выведены с точностью не хуже 10^{-6} .

Пример 1

Ввод	Вывод
3	30.0 260.0
440	
220 closer	
300 further	

Пример 2

Ввод	Вывод
4	531.0 660.0
554	
880 further	
440 closer	
622 closer	

Язык Python 3.12.1

Набрать здесь Отправить файл

```
1  N = int(input().strip())
2  top = 4000.0
3  bot = 30.0
4
5  cur = float(input().strip())
6  for _ in range(N - 1):
7    new, dist = input().split()
8    new = float(new)
9    median = (cur + new) / 2
10
11  if new < cur:</pre>
                          if new < cur:
    if dist == 'closer' and top > median:
        top = median
    elif dist == 'further' and bot < median:
        bot = median</pre>
 11
12
13
14
15
16
17
18
19
20
21
22
23
24
                          elif new > cur:
    if dist == 'closer' and bot < median:
        bot = median
    elif dist == 'further' and top > median:
        top = median
                           cur = new
 25
26 print(bot, top)
```

Отправить

Предыдущая