(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-280715

(43)公開日 平成8年(1996)10月29日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ		技術表示箇所		
A61C 13/			A 6 1 C 13/34		A		
9/		·	•	9/00	Z		
19/	•		19/04		Z		
			審査請求	未替求 簡潔	東項の数11	FD	(全 10 頁)
(21)出願番号		特願平7-113790		591031049			
(S1) Interim .1	19404 1			株式会社ユニ	ニスン		
(22)出顧日	平成7年(1995)4	月14日	大阪市淀川区田川北2丁目1番30号				
(OD) MAKE			(71)出願人	595067796			
		•		黒田 敬之			
				神奈川県横泊	兵市戸塚区	平月5~	丁目13番23号
	•		(72)発明者	黒田 敬之			
				神奈川県横江	英市戸塚区	平戸 5 7	丁目13番23号
			(72)発明者				
				東京都武成	野市吉祥寺	本町1	丁目36番2号
			(72)発明者				
				大阪府大阪市淀川区田川北2丁目1番30号 株式会社ユニスン内			
			(74)代理人	弁理士 杉本	本 修司	例 14	名)

(54) [発明の名称] 歯科用予測模型の作成方法および作成装置

(57)【要約】

【目的】容易に歯科用予測模型を作成することができる 歯科用予測模型の作成方法および作成装置を提供する。 【構成】各歯ごとに、解剖学上の近心コンタクトポイン トA1 ,遠心コンタクトポイントA2 ,および頬側歯頚 点B1 と舌側歯頚点B2 の中点Eにより形成される代表 平面RPを生成し、各歯ごとに、上配頬側歯頚点B1と 咬頭部または切縁部の代表点Cとを結ぶ直線を代表平面 RPに投影したDI線と、このDI線と上配代表点Cか ら所定距離だけ顎堤側にずらした点で直交するDH線を10 生成する。そして、顎堤の平面形状を示すガイドライン に沿って平面上に並べられた上記各歯のDH線の高さを 一定高さに合わせるとともに、顔面に設定した顔面基準 線に対する各歯の代表平面RPの傾斜角度を調整する。 従って、歯科用予測模型の作成が容易になる。

(A) (B)

BEST AVAILABLE COPY

7

【特許請求の範囲】

【請求項1】 患者の歯と顎堤を再現した印象模型の形状を光照射を用いた三次元計測装置によって非接触で求めて電子データ化された歯と顎堤の形状を得る形状取得工程、

電子データ上で、個々に歯を多角柱状に切り出し、各歯ごとに、解剖学上の近心コンタクトポイントA1, 遠心コンタクトポイントA2, および頬側歯頚点B1と舌側歯頚点B2の中点Eにより形成される代表平面を生成する代表平面生成工程、

各歯ごとに、上記類側歯類点B1と咬頭部または切縁部の代表点Cとを結ぶ直線を上記代表平面に投影したDI線と、このDI線と上記代表点Cから所定距離だけ顎堤側にずらした点で直交するDH線を生成する基準線生成 TB

顎堤の平面形状を示すガイドラインに沿って平面上に、 各歯のDH線を並べる排列工程、

並べられた上記各歯のDH線の高さを一定高さに合わせるDH線高さ調整工程、および、

顔面に設定した顔面基準線に対する各歯の代表平面の傾20 斜角度を調整する傾斜角度調整工程を有する歯科用予測 模型の作成方法。

【請求項2】 請求項1において、傾斜角度調整工程の つぎに、

上記形状取得工程で得られた上顎前歯の代表点Cの位置と上顎の左右第1大臼歯の代表点Cの位置とにより形成される上顎の咬合平面、および、上記形状取得工程で得られた下顎前歯の代表点Cの位置と下顎の左右第1大臼歯の代表点Cの位置とにより形成される下顎の咬合平面を決定する咬合平面決定工程と、

決定した上下顎の咬合平面に基づいて、各歯のDH線の 高さまたは各歯の代表平面の傾斜角度を修正する修正工 程とを有する歯科用予測模型の作成方法。

【請求項3】 請求項1において、傾斜角度調整工程のつぎに、

上顎前歯と下顎前歯との間で所定のオーバージェット値 およびオーバーバイト値が得られるように、上顎前歯の 代表点Cの位置と下顎前歯の代表点Cの位置との少なく とも一方を調整する前歯位置調整工程と、

上記上顎前歯の代表点Cが調整された位置と上記形状取40 得工程で得られた上顎の左右第1大臼歯の代表点Cの位置とにより形成される上顎の咬合平面、および、上記下 顎前歯の代表点Cが調整された位置と上記形状取得工程 で得られた下顎の左右第1大臼歯の代表点Cの位置とに より形成される下顎の咬合平面を決定する咬合平面決定 工程と、

決定した上下顎の咬合平面に基づいて、各歯のDH線の 高さまたは各歯の代表平面の傾斜角度を修正する修正工 程とを有する歯科用予測模型の作成方法。

【請求項4】 請求項1において、傾斜角度調整工程の50 手段とを有する歯科用予測模型の作成装置。

2

つぎに、

各歯ごとに、上記A1, A2, B1, B2 またはCを含む歯の代表点と上記DI線またはDH線の歯の基準線との顎堤上のずれを算出する算出工程を有する歯科用予測模型の作成方法。

【請求項5】 請求項1において、傾斜角度調整工程の つぎに、

上記排列工程により排列された個々の歯に形状取得工程 で得られた三次元面形状を付与して、三次元面形状の歯 10 の排列を生成する三次元形状生成工程を有する歯科用予 測模型の作成方法。

【請求項6】 請求項5において、三次元形状生成工程のつぎに、

三次元面形状を有する上下顎の歯を咬合させ、上下顎の 歯の接触面積により咬合状況を確認する咬合確認工程を 有する歯科用予測模型の作成方法。

【請求項7】 請求項6において、咬合確認工程のつぎ に、

下顎歯列弓全体を適切な上下顎被蓋関係が得られるよう に移動するとともに、その移動量を算出する歯列弓移動 工程を有する歯科用予測模型の作成方法。

【請求項8】 患者の歯と顎堤を再現した印象模型の形状を光照射を用いた三次元計測装置によって非接触で求めて電子データ化された歯と顎堤の形状を得る形状取得 手段

電子データ上で、個々に多角柱状に切り出された各歯ごとに、解剖学上の近心コンタクトポイントA1, 遠心コンタクトポイントA2, および頬側歯頚点B1と舌側歯頚点B2 の中点Eにより形成される代表平面を生成する30 代表平面生成手段、

上記類側歯類点B1と咬頭部または切縁部の代表点Cとを結ぶ直線を上記代表平面に投影したDI線と、このDI線と上記代表点Cから所定距離下げた点で直交するDH線を生成する基準線生成手段、

顎堤の平面形状を示すガイドラインに沿って平面上に並 べられた各歯のDH線の高さを一定高さに合わせるDH 線高さ調整手段、および、

傾斜關整指令信号を受けて、顔面に設定した顔面基準線 に対する各歯の代表平面の傾斜角度を調整する傾斜角度 調整手段を有する歯科用予測模型の作成装置。

【請求項9】 請求項8において、上記形状取得手段で得られた上額前歯の代表点Cの位置と上顎の左右第1大日歯の代表点Cの位置とにより形成される上顎の咬合平面、および、上記形状取得手段で得られた下額前歯の代表点Cの位置と下顎の左右第1大臼歯の代表点Cの位置とにより形成される下顎の咬合平面を決定する咬合平面決定手段と、

決定された上下顎の咬合平面に基づいて、各歯のDH線 の高さまたは各歯の代表平面の傾斜角度を修正する修正 手段とを有する検科用予測模型の作成装置。

【請求項10】 請求項8において、上顎前歯と下顎前歯との間で所定のオーバージェット値およびオーバーバイト値が得られるように、前歯位置調整指令信号を受けて、上顎前歯の代表点Cの位置と下顎前歯の代表点Cの位置との少なくとも一方を調整する前歯位置調整手段と、

上記開整された上顎前歯の代表点Cの位置と形状取得手段で得られた上顎の左右第1大臼歯の代表点Cの位置とにより形成される上顎の咬合平面、および、上記調整された下顎前歯の代表点Cの位置と上記形状取得手段で得10られた下顎の左右第1大臼歯の代表点Cの位置とにより形成される下顎の咬合平面を決定する咬合平面決定手段と、

決定した上下顎の咬合平面に基づいて、各歯のDH線の 高さまたは各歯の代表平面の傾斜角度を修正する修正手 段とを有する歯科用予測模型の作成装置。

【請求項11】 請求項8において、各歯ごとに、上記A1,A2,B1,B2 またはCを含む歯の代表点と上記DI線またはDH線の歯の基準線との顎堤上のずれを算出する算出手段を有する歯科用予測模型の作成装置。20 【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、歯科治療に用いられる歯科用予測模型の作成方法および装置に関し、その容易化に関するものである。

[0002]

【従来の技術】一般に、歯科矯正や嚢歯作成などの歯科 治療において、患者の歯と顎堤の印象を採った印象模型 に基づいて、予測模型を作成する場合が多い。この予測 模型は、印象模型の顎堤上の個々の歯を1本ずつ切り出30 して、再排列を行って作成される。この作成された予測 模型により、歯科治療の最終的な目標が明確になり、ま た、具体的に上下顎の咬合状態などを確認できる。

【0003】また、患者は、この予測模型が示されることにより、歯科治療の最終状態を視覚的に認識することができるので、患者の心理面からも好ましい。

[0004]

【発明が解決しようとする課題】しかしながら、従来の 予測模型の作成は手作業で行われるため、煩雑で時間が かかっていた。また、歯科治療の目標を違成するための40 手段が複数考えられる場合には、この作業はきわめて煩 雑になり、作業の時間短縮、省力化が強く望まれる課題 となっていた。

【0005】この発明は上記の問題点を解決して、容易 に予測模型を作成することができる歯科用予測模型の作 成方法および作成装置を提供することを目的としてい る。

[0006]

【課題を解決するための手段】上記目的を達成するため に、額求項1または請求項5の発明は、患者の歯と顎堤50 4

を再現した印象模型の形状を光照射を用いた三次元計測 装置によって非接触で求めて電子データ化された歯と顎 堤の形状を得る。これら電子データ上で、個々に歯を多 角柱状に切り出し、各歯ごとに、解剖学上の近心、 カトポイントA1 , 遠心コンタクトポイントA2 , が通点 B2 の中点 Eにより歯類点 B2 の中点 Eにより歯類点 B1 と で頭師 B1 と で頭 B1 と で B1 と で B1 と E1 に と E2 に B1 と E2 に B1 と E2 に B1 と E3 に B1 と E3 に B1 と E4 に B1 と4 に B1 と4

【0007】また、必要に応じて、上記の歯の形状が取 得された上顎前歯の代表点Cの位置と上顎の左右第1大 臼歯の代表点Cの位置とにより形成される上顎の咬合平 面、および、上記の歯の形状が取得された下顎前歯の代 表点Cの位置と下顎の左右第1大臼歯の代表点Cの位置 とにより形成される下顎の咬合平面を決定する。そし て、決定した上下顎の咬合平面に基づいて、各歯のDH 線の高さまたは各歯の代表平面の傾斜角度を修正する。 【0008】さらに、必要に応じて、上顎前歯と下顎前 歯との間で所定のオーバージェット値およびオーバーバ イト値が得られるように、上顎前歯の代表点Cの位置と 下顎前歯の代表点Cの位置との少なくとも一方を調整す る。この調整された上額前歯の代表点Cの位置と上記の 形状が取得された上顎の左右第1大臼歯の代表点Cの位 置とにより形成される上顎の咬合平面、および、この調 整された下顎前歯の代表点Cの位置と上記の形状が取得 された下顎の左右第1大臼歯の代表点Cの位置とにより 形成される下顎の咬合平面を決定する。そして、決定し た上下顎の咬合平面に基づいて、各歯のDH線の高さま たは各歯の代表平面の傾斜角度を修正する。

【0009】また、必要に応じて、各歯ごとに、上記A1, A2, B1, B2またはCを含む歯の代表点と上記DI線またはDH線の歯の基準線との領堤上のずれを算出する。

【0010】さらに、必要に応じて、DH線で排列された個々の歯に上記の歯の形状が取得された三次元面形状を付与して、三次元面形状の歯の排列を生成し、この三次元面形状を有する上下顎の歯を咬合させ、上下顎の歯の接触面積により咬合状況を確認して、下顎歯列弓全体を適切な上下顎被蓋関係が得られるように移動するとともに、その移動量を算出する。

[0011]

【作用および効果】この発明によれば、各歯ごとに電子データ上で、解剖学上の近心コンタクトポイントA1, 遠心コンタクトポイントA2, および類側歯頚点B1と舌側歯頚点B2の中点Eにより形成される代表平面を生

成し、各歯ごとに、上記頬側歯頚点B1 と咬頭部または 切縁部の代表点Cとを結ぶ直線を上記代表平面に投影し たDI線と、このDI線と上記代表点Cから所定距離だ け顎堤側にずらした点で直交するDH線を生成する。そ して、顎堤の平面形状を示すガイドラインに沿って平面 上に並べられた上記各歯のDH線の高さを一定高さに合 わせるとともに、顔面に設定した顔面基準線に対する各 歯の代表平面の傾斜角度を調整する。従って、歯科用予 測模型の作成が容易になる。

【0012】また、必要に応じて、電子データ上で患者 10 の上下顎の咬合平面を決定し、この咬合平面に基づい て、各歯のDH線の高さまたは各歯の代表平面の傾斜角 度を修正する。従って、患者の歯と顎堤の形状に応じた 歯科用予測模型の作成が容易になる。

【0013】さらに、必要に応じて、上顎前歯と下顎前 歯との間でオーバージェットおよびオーバーバイトが所 定値を越えている場合には、上下顎前歯の位置を調整 し、調整した状態で上下顎の咬合平面を決定し、この咬 合平面に基づいて、各歯のDH線の高さまたは各歯の代 表平面の傾斜角度を修正する。従って、上下顎前歯の咬 20 合が好ましくない場合にも、患者の歯と顎堤の形状に応 じた歯科用予測模型の作成が容易になる。

【0014】また、必要に応じて、各歯ごとに、上記A 1, A2, B1, B2 またはCを含む歯の代表点と上記 D I 線またはDH線の歯の基準線との領堤上のずれを算 出する。従って、歯科用予測模型の矯正後データが容易 に得られる。

【0015】さらに、必要に応じて、DH線で排列され た個々の歯に上記の歯の形状が取得された三次元面形状 を付与して、三次元面形状の歯の排列を生成し、この三30 次元面形状を有する上下顎の歯を咬合させ、上下顎の歯 の接触面積により咬合状況を確認して、下顎歯列弓全体 を適切な上下顎被蓋関係が得られるように移動するとと もに、その移動量を算出する。従って、三次元面形状を 有する歯を用いて、上下顎の咬合状況の確認を行い、適 切な上下顎被蓋関係になるように下顎歯列弓全体の移動 を行うことができるので、上下顎の咬合状況に応じた歯 科用予測模型の作成が容易になる。

[0016]

【実施例】以下、この発明の実施例を図面に基づいて説40 明する。図1にこの発明の一実施例による歯科用予測模 型の作成装置の構成を示す。この装置は、矯正対象の歯 と顎堤の形状を電子データ化して取得する形状取得手段 2と、取得された電子データから各歯の形状に応じて設 定された所定基準に基づいて、モニター5上に三次元的 に歯科用予測模型を構築する画像生成装置3とを備えて いる。

【0017】この画像生成装置3は、取得された歯の形 状に基づいて解剖学上の各歯の基準点(代表点)により 各歯ごとの代表平面を生成する代表平面生成手段4と、50 れぞれ咬頭部または切縁部の代表点3点で、上顎(Up

代表平面に基づいて各歯の基準線(DI線、DH線)を 生成する基準線生成手段6と、各歯の生成されたDH線 の高さを一定高さに合わせるDH線高さ調整手段8と、 顧面に設定した顔面基準線に対する各歯の生成された代 表平面の傾斜角度を傾斜調整指令信号 S1 を受けて調整 する傾斜角度調整手段10とを備えている。

【0018】また、画像生成装置3は、上下顎の前歯位 置が互いに所定値以上ずれている場合に、前歯位置調整 指令信号S2 を受けて、そのずれを適正に調整する前歯 位置調整手段12と、調整された前歯位置に基づいて咬 合平面を決定する咬合平面決定手段14と、決定された 咬合平面に基づいて各歯のDH線高さまたは代表平面の 傾斜角度を修正する修正手段16と、各歯ごとに上記基 準点 (代表点) と基準線 (DI線, DH線) との領堤上 のずれを算出する算出手段18とを備えている。

【0019】以下、この装置の動作を説明する。

1. [形状取得段階]

まず、患者の上下顎の印象が公知の印象材により採られ る。この矯正前の歯と顎堤を再現した印象模型の形状 が、例えばレーザ光などの光照射を用いた三次元計測装 置である形状取得手段2によって、非接触で計測されて 電子データ化される。ここで、顎堤とは、歯を支持する 顎骨と粘膜とから形成されるものである。この三次元計 測装置としては、例えばマルチスリットレーザとCCD カメラとによる多重露光高速計測装置やスリット光を複 数回投影するパターン投影方式(光切断方式)計測装置 などの従来から周知の装置が用いられるので、具体的な 説明を省略する。

【0020】これらの電子データが画像生成装置3に入 力され、もとの歯と顎堤の模型がモニター5上に三次元 的に構築される。この模型は、各歯の形状に応じて設定 された所定基準に基づいて随時必要なデータが与えられ て変更が加えられ、歯科用予測模型として作成される。 【0021】2. [基準設定段階]

患者の歯と顎堤の形状に基づいて、基準となる各平面が 設定される。図2に下顎(LOWER)の歯の排列モデ ルを示す。L1 ~L7 は下顎の歯の番号を示し、L1 は 中切歯、L2 は側切歯、L3 は犬歯、L4 ~L5 は小臼 歯、L6 ~L7は大臼歯の番号を示す。また、L61は左 第1大臼歯、L62は右第1大臼歯の番号を示す。なお、 上顎 (UPPER) の歯の番号についても同様にU1 ~ U7 で示される。この図において、X軸は前歯(例え ば、中切歯L1) から模型後面に直交する方向を、Y軸 は模型後面と平行な方向を、2軸は紙面と垂直な方向を

【0022】まず、初期咬合平面KH1 が設定される。 この初期咬合平面KH1 は、矯正前の歯の排列状態によ って決定される初期の仮想平面で、下顎(Lower) については、中切歯L1, 左右第1日歯L61, L62のそ

per) については、中切歯U1、左右第1日歯U61, U62のそれぞれ咬頭部または切縁部の代表点3点で構成 される平面である(図7(A)参照)。咬頭部とは臼歯 の歯冠咬合面の突起をいい、咬頭部の代表点とは犬歯で は尖頭、臼歯(小臼歯,大臼歯)では頬側咬頭頂をさ す。切縁部とは切歯切縁をさし、切縁部代表点とは前歯 (中切歯、側切歯) ではその中点をいう。また、顎堤の 形状に基づいて、顎堤の平面形状の輪郭データである顎 堤平面GHも作成される(図3、図5参照)。次いで、 顔面に設定した顔面基準線であるフランクフルト平面F 10 Hが設定される(図6~8参照)。この歯科用予測模型 に顆態模型を用いた場合には、模型底面に平行する面が フランクフルト平面として設定される。平行模型を用い た場合には、咬合面と模型底面が平行するので、模型底 面(初期咬合平面)に対する左右、前後の傾斜角度でフ ランクフルト平面が設定される。

【0023】図3(A)にモニター5上に表示された歯 の三次元モデルを示す。この表示された歯は、解剖学上 の近心コンタクトポイントA1 , 遠心コンタクトポイン トA2 の少なくとも1つを側面に含み歯の境界領域を示 20 す多角柱状(例えば、六角柱状)に、顎堤平面GHを歯 の底面として切り出されたものである。近遠心コンタク トポイントとは隣接する歯同士の接触点を意味し、この うち顔面の正中線に近い方を近心、遠い方を遠心とい う。解剖学上の近遠心コンタクトポイントA1, A2 と は、隣接する歯同士が接触すべき理想の点をいう。この ポイントA1 とA2 間の距離が歯間幅Wになる。また、 頬側歯頚点B1 と舌側歯頚点B2 も指定される。一般に 類または唇側は口腔内前側をいい、舌側は口腔内後側を いう。歯頚とは歯冠と歯根との移行部をいう。 【0024】次に、図3(B)~(D)において、上記

の各基準点A1 , A2 , B1 , B2により、各歯ごと に、歯の形状の基準となる代表平面RP、DI線、およ びDH線が生成される。

2-1. [代表平面生成工程]

まず、代表平面生成手段4により代表平面RPが生成さ れる。図3 (B) において、頬側歯頚点B1 と舌側歯頚 点B2 間の中点Eが指定され、解剖学上の近心コンタク トポイントA1 と、遠心コンタクトポイントA2 と、こ の中点Eとにより形成される代表平面RPが生成され 40 る。この代表平面RPは、実際に各歯ごとに図1のモニ ター5上で線引される。

【0025】2-2. [基準線生成工程]

次に、図3 (C) に示すように、基準線生成手段6によ り、上記頬側歯頚点B1 と咬頭部または切縁部の代表点 Cとを結ぶ直線を代表平面RPに投影したDI線が生成 される。そして、図3 (D) において、このDI線と上 配代表点Cから所定距離hだけ顎堤側にずらした点で直 交するDH線が生成される。図4に示すように、この所 定距離 h は歯ごとに異なる経験値であり、この値を初期 50 とともに表示される。この図により、上下顎の中切歯U

値として一旦決定され後に修正される場合がある。これ 5DI線, DH線も実際に各歯ごとにモニター5上に線 引される。なお、各歯のDH線の長さは各歯の歯間幅W を示す。このようにして、各歯の形状に応じて基準が設 定され、これらの基準に基づいて、歯科用予測模型が作 成される。

[0026]3. [模型作成段階]

まず、上下顎の基準となるセンターラインが決定され る。図5 (A) に示すように、モニター5上に、上下顎 の顎堤平面GH上に各歯のDH線が表示される。上下顎 は模型後面に対して見開きの状態で表示される。この場 合、顔面の正中線または上下顎のレントゲン写真によ り、上下顎のセンターと判断される前歯付近のポイント P1 , P2 からそれぞれ模型後面と直交するようにライ ンが引かれ、上顎のライン上に下顎のラインがくるよう に下顎の歯列弓が移動される。この仮のセンターライン O1 に対して、第1大臼歯L61の左右対称点となるL62 が求められる。このL62が顎堤平面GH上をはずれるよ うな場合には、仮のセンターラインO1 をO2 にずらし てL62が顎堤平面GH上にくるようにする。このO2が 上下顎のセンターラインになる。なお、左右第1大臼歯 L61. L62が図5 (B) のように顎堤平面GHに対して 傾いているような場合には、これに応じてセンターライ ンO2 を回転させる必要がある。こうして、最終的なセ ンターラインO2が決定される。

【0027】3-1. [前歯位置調整工程]

ところで、上下顎前歯の咬み合わせに大きなずれがある 場合がある。図6(A)の側面図において、例えば下顎 中切歯 L 1 の先端と上顎中切歯 U 1 の先端との垂直方向 のずれをオーバーバイト(OB)といい、水平方向のず れをオーバージェット(OJ)という。適正なオーバー バイト値は約2mm、オーバージェット値も約2mmで ある。患者の上下顎前歯がこの値を大きく越えてずれて いるような場合にはその位置を矯正する必要がある。こ の場合、前歯位置調整手段12により、上下顎の前歯の 位置が適正なオーバージェット値およびオーバーバイト 値になるように、前歯位置調整指令信号S2 を受けて、 上顎前歯の切縁部の代表点Cの位置と下顎前歯の切縁部 の代表点Cの位置との少なくとも一方が、以下のように 調整される。

【0028】まず、図6 (A) において、上顎の中切歯 U1 について、その切縁部の代表点Cと中点Eとを結ぶ 中心線CE-1線上に位置する切縁部の代表点C, 頬側 歯頚点B1, および舌側歯頚点B2 からなる中央輪郭線 が抽出される。下顎の中切歯L1 についても同様に、下 顎の中切歯L1 の切縁部の代表点Cと中点Eとを結ぶ中 心線CE-2線上に位置する中央輸郭線が抽出される。 図6 (B) において、矯正前の上下顎の中切歯U1, L 1 のCE-1, CE-2線が、フランクフルト平面FH

1, L1のオーバーバイト(OB)値,オーバージェット(OJ)値,及びフランクフルト平面FHとCE-1,CE-2線のなす角度が示される。以下、この図に基づいて、上下顎の中切歯U1,L1の位置が調整される。

【0029】下顎の中切歯L1の矯正位置は、例えばレントゲン写真からの顎骨構造などを考慮して決められる。この場合、図7(A)に示すように、中切歯L1の切縁部の代表点Cの位置からX方向にxmm, Z方向にzmm移動した新代表点C1が、下顎の初期咬合平面K10H1を基準にして指定される。なお、必要に応じてY方向にも移動される。また、中切歯L1のCE-2線とフランクフルト平面FHとのなす角度βも指定される。この前歯位置調整指令信号S2に基づいて、点線部のように下顎の中切歯L1の位置が決定される。

【0030】次に、上顎の中切歯U1の位置が決められる。この場合、図8(A)に示すように、上下顎の中切歯U1, L1が適正なオーバージェット(OJ)値およびオーバーバイト(OB)値になるように移動点が指定され、また、中切歯U1のCE-1線とフランクフルト20平面FHとのなす角度γが指定される。この場合、上下顎の中切歯U1, L1の外形線が互いに重ならないように干渉チェックが行われる。

【0031】3-2. [咬合平面決定工程]

図7 (A) に示すように、下顎の中切歯L1 の位置が点線部に変更されることにより、初期咬合平面KH1 から新咬合平面KH2 に変更される。すなわち、咬合平面決定手段14により、下顎前歯L1 の切縁部の代表点Cが調整された位置と、形状取得手段2で得られた下顎の左右第1大臼歯L61, L62の咬頭部の代表点Cの位置とに30より形成される下顎の新しい咬合平面KH2 が決定される。そして、図7 (B) のように、この下顎の新咬合平面KH2 を基準にして下顎のDH平面が決定される。

【0032】また、図8(A)のように、上顎の中切歯 U1の位置が点線部に変更されると、同様に、上顎の新 咬合平面KH2に変更される。すなわち、咬合平面決定 手段14により、上顎前歯U1の切縁部の代表点Cが調整された位置と、形状取得手段2で得られた上顎の左右 第1大臼歯U61,U62の咬頭部の代表点Cの位置とにより形成される上顎の新しい咬合平面KH2が決定され 40る。そして、図8(B)のように、この上顎の新咬合平面KH2を基準にして上顎のDH平面が決定される。

【0033】こうして、上下顎の新咬合平面KH2が作成される。もちろん、矯正前の上下顎の前歯のオーバーバイト、オーバージェット値が適正であれば、前歯の位置は調整されず、初期咬合平面KH1が維持される。

【0034】なお、上下顎の前歯の位置を調整する必要がなく左右第1大臼歯L61、L62の位置を調整する必要があるときには、その変更位置により新咬合平面KH2が決定され、上下顎のDH平面が決定される。

10

【0035】また、抜歯する必要がある歯があれば、歯の番号L1~L7, U1~U7を指定する。また、歯が抜けている場合には補綴する歯のスペースが確保される。

【0036】3-3. [排列工程]

次に、歯のDH線を排列するために、顎堤の平面形状を示すガイドラインが決定される。まず、前歯のDH線を排列するアーチ部分が決められる。図9(A)は下顎を代表として示しており、上記センターラインO2上に、片側の中切歯L1,側切歯L2,犬歯L3のDH線の長さ(歯の幅)Wの総和をアーチ半径Rにして、上下顎の前歯のセンターポイントPを通る円が描かれる。この円に沿って、両側に中切歯L1,側切歯L2,犬歯L3のDH線が置かれ、犬歯L3のDH線の末端点と左右第1大臼歯L61,L62とがそれぞれ直線で結ばれる。上顎についても同様にしてガイドラインを作成し、こうして作成された上下顎のガイドラインUG,LGは、図9

(B) に示すように、互いに重ね合わされて、ラインの 干渉がチェックされる。この図において、上顎のガイド ラインUGは実線で、下顎のガイドラインLGは破線で 示される。この干渉チェック後に最終的なガイドライン が決定される。そして、図10の平面図に示すように、 この決定されたガイドラインLG(UG)に沿って平面 上に、それぞれDH線の長さ(歯の幅)Wによって示さ れる各歯が排列される。

【0037】このように、個々の歯をDH線に置き換えてガイドラインLG(UG)上に排列することにより、短時間で正確に各歯の排列を行うことができる。また、排列に要するデータ量もDH線のデータだけであるので三次元面形状のデータ量に比較して少なく済む。

【0038】3-4. [DH線高さ調整工程]

次に、DH線高さ調整手段8により、図11に示すように、ガイドラインLGに沿って平面上に並べられた各歯のDH線の高さが一定高さに合わせられる。この高さは前述したDH平面の高さに相当する。上記のように、上下顎の咬合平面が変更された場合には、このDH平面の高さが修正手段16により修正される。

【0039】3-5. [傾斜角度調整工程]

また、傾斜角度調整手段10により各歯の傾斜角度が調整される。ここで、傾斜角度αとは、図12に示すように、顔面に設定した顔面基準線(フランクフルト平面)FHがその垂直面FHVと直交する直線FHLに対して、歯の代表平面RPがその垂直面RPVと直交する直線RPLがなす角度をいう。各歯ごとに、矯正前の傾斜角度αに対する矯正目標値が予め決められている。この各歯の矯正目標値に応じて出力される傾斜調整指令信号S1を受けて、傾斜角度調整手段10により、モニター5上にその歯の矯正目標値になるように各歯の傾斜角度αが調整される。同様に、上下顎の咬合平面が変更された場合には、この調整された各歯の代表平面の傾斜角度

αが修正手段16により修正される。

【0040】3-6. [三次元形状生成工程]

なお、個々の歯のDH線による排列だけでは、上下顎の 咬合状況の判断が困難な場合には、上記排列工程により 排列された個々の歯に1. [形状取得工程] で得られた 三次元面形状を付与して、三次元面形状の各歯の排列が 図1のモニター5上に生成される。

[0041] 3-7. [咬合確認工程]

モニター 5 上で、三次元面形状を有する上下顎の歯を咬 合させて、上下顎個々の歯の接触面積を求め、これら接10 成装置を示す構成図である。 触面稍により上下顎の咬合状況が確認される。この際、 必要があれば、接触面積が最小になるように、個々の歯 の再排列が行われる。

【0042】3-8. [歯列弓移動工程]

また、確認された咬合状況によって適切な上下顎被蓋関 係が得られないと判断された場合には、モニター5上で 下顎歯列弓全体を、適切な上下顎被蓋関係になるように 三次元的に移動する(3. [模型作成段階] における下 額歯列弓の左右の移動も含む) ことも考慮される。この 移動は外科的矯正治療をシュミレーションしたものであ20 る。

【0043】なお、算出手段18により、各歯ごとに、 図3 (D) の解剖学上の近心コンタクトポイントA1, 遠心コンタクトポイントA2, 頬側歯頚点B1, 舌側歯 頚点B2 または咬頭部(切縁部)の代表点Cを含む歯の 基準点(代表点)と、上記DI線またはDH線の歯の基 準線との顎堤上のずれが算出される。このずれは予測模 型の形状を示すものである。また、歯列弓移動工程にお 12

ける下顎歯列弓の移動量も算出される。これにより、歯 科用予測模型がデータ化される。

【0044】なお、この実施例では、この予測模型を歯 科矯正用に作成しているが、データベースに記憶された 各歯のデータに基づいて義歯作成用に作成してもよい。

【0045】このようにして、モニター5上で、歯科治 療に用いられる予測模型が容易に作成される。

【図面の簡単な説明】

【図1】この発明の一実施例に係る歯科矯正用模型の作

【図2】歯の排列モデルを示す平面図である。

【図3】歯の三次元モデルを示す斜視図である。

【図4】DH線の高さを示す図である。

【図5】矯正前における上下顎の顎堤平面上の歯の排列 を示す平面図である。

【図6】上下顎前歯のオーパーバイト、オーバージェッ トを示す側面図である。

【図7】下顎の前歯を示す側面図である。

【図8】上顎の前歯を示す側面図である。

【図9】ガイドラインを示す平面図である。

【図10】各歯の排列状態を示す平面図である。

【図11】各歯のDH線の高さが一定になった状態を示 す斜視図である。

【図12】各歯の傾斜角度を示す斜視図である。

【符号の説明】

2…形状取得手段、4…代表平面生成手段、6…基準線 生成手段、8…DH線高さ調整手段、10…傾斜角度調 整手段。

[図10] 【図1】

[図4]

hの位(単位mm)

11-12-(
齿	下類((Lower)	上領 (Upper)					
種	左(left)	右 (Right)	左 (Left)	右 (Right)				
1	3. 0	3. 0	3. 0	3, 0				
2	2. 0	2. 0	2. 0	2. 0				
8	2. 0	2, 0	2, 0	2. 0				
4	2. 5	2. 5	2. 5	2, 5				
5	2. 5	2, 5	2. 5	2. 5				
6	2. 0	2. 0	2. 0	2. 0				
7	2. 0	2. 0	2. 0	2. 0				

[図6]

【図3】

【図5】

[図8]

(B)

(A) .

(A)

【図11】

(B)

【図12】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.