Shapley Performance Attribution for Least Squares

Logan Bell Nikhil Devanathan Stephen Boyd

Stanford University

October 27, 2023

Disclaimer

Shapley performance attribution (SPA) is very different from Shapley additive explanations (SHAP).

- ▶ SPA attributes the performance of a model across its features.
- SHAP attributes a specific output of a model across its features for model explainability.
- Both methods share several keywords, but they are only superficially related.
- ▶ We will only discuss SPA, and we will not discuss SHAP in this talk.

Toy example

- ▶ We have a data set $X \in \mathbf{R}^{100 \times 3}$ and labels $y \in \mathbf{R}^{100}$.
- ▶ We split the dataset into 50 training and 50 testing points.
- ▶ We fit a linear, least-squares model to the data.
 - It attains an out-of-sample R^2 of 0.92.
 - We now know how good our model is, but how useful are our features?
 - Which one is most important?

Model performance

The out-of-sample \mathbb{R}^2 is computed as

$$R^{2} = \frac{\|y^{\text{tst}}\|_{2}^{2} - \|X^{\text{tst}}\theta^{*} - y^{\text{tst}}\|_{2}^{2}}{\|y^{\text{tst}}\|_{2}^{2}}.$$

where $X^{\rm tst}$ and $y^{\rm tst}$ are our training dataset, and θ^{\star} is the vector of feature coefficients that we fit using the training data.

 $ightharpoonup R^2$ is not separable!

Shapley attribution

If we view the \mathbb{R}^2 as a reward granted to a coalition of features, then we can use Shapley attribution to determine the importance of our features.

- ▶ In 1952, Lloyd Shapley introduced **Shapley attribution**, a method for splitting a reward granted to a coalition of cooperative players.
- ► The value that Shapley attribution assigns to each player is the player's **Shapley value**.

Shapley attribution lattice representation

Shapley attribution scaling

Suppose we have p features.

▶ The lattice has 2^p vertices and p! paths from \emptyset to $\{1,\ldots,p\}$.

While the Shapley attribution can be directly computed in our case with p=3, it becomes computationally infeasible after $p\approx 15$.

Least-squares Shapley performance attribution

Least-squares Shapley performance attribution (LS-SPA) is a tool we developed for efficiently and accurately estimating Shapley attributions for least-squares problems.

Using LS-SPA

Install from

https://github.com/cvxgrp/ls-spa.

Computing a Shapley attribution is as simple as

from ls_spa import ls_spa

attrs = ls_spa(X_train, X_test, y_train, y_test)

LS-SPA Performance

- ▶ We sample feature chains using a quasi-Monte Carlo method.
 - We get better coverage of the space of feature chains in fewer samples than Monte Carlo.
- ▶ We exploit the QR factorization of our observation matrices to reduce the dimension of the least squares problem.
- ightharpoonup We also use the QR factorization to efficiently compute the R^2 along a feature chain.

LS-SPA Performance

▶ With p=100 features and 10^5 training and test observations, we estimate a Shapley attribution in < 3.2 seconds with < 1% error (2-norm difference to the "true" attribution).

We compute the "true" Shapley attribution by running LS-SPA for 2^{28} sampled permutations.

LS-SPA Performance

Figure: Number of sampled feature chains vs. error for three different sampling schemes.

Acknowledgements

We thank Ron Kahn for suggesting the topic, Kunal Menda for recommending the use of quasi-Monte Carlo, and Trevor Hastie and Thomas Schmelzer for helpful feedback on an early draft.

Acknowledgements 13