

=> fil reg
FILE 'REGISTRY' ENTERED AT 16:06:45 ON 30 JAN 2007
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2007 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 29 JAN 2007 HIGHEST RN 918776-45-1
DICTIONARY FILE UPDATES: 29 JAN 2007 HIGHEST RN 918776-45-1

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH June 30, 2006

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/ONLINE/UG/regprops.html>

=> d sta que 156
L42 STR

VAR G2=H/AK/N/25/NO2/7/X/22/CN/CF3/13/17
NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM

DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RSPEC 6 33

NUMBER OF NODES IS 28

STEREO ATTRIBUTES: NONE

L44 585600 SEA FILE=REGISTRY ABB=ON PLU=ON (16.195.22 OR 16.195.24)/RID

L46 6953 SEA FILE=REGISTRY SUB=L44 CSS FUL L42 NOT L***
 L47 STR

VAR G2=H/AK/N/25/NO2/7/X/22/CN/CF3/13/17
 NODE ATTRIBUTES:
 DEFAULT MLEVEL IS ATOM
 DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RSPEC 6 33

NUMBER OF NODES IS 28

STEREO ATTRIBUTES: NONE

L49 5214 SEA FILE=REGISTRY CSS FUL L47 NOT L***
 L50 STR

VAR G2=H/AK/N/25/NO2/7/X/22/CN/CF3/13/17
 NODE ATTRIBUTES:
 DEFAULT MLEVEL IS ATOM
 DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RSPEC 6 33
NUMBER OF NODES IS 27

STEREO ATTRIBUTES: NONE
L51 STR

VAR G2=H/AK/N/25/NO2/7/X/22/CN/CF3/13/17

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM

DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RSPEC 6 33

NUMBER OF NODES IS 27

STEREO ATTRIBUTES: NONE

L55 2946 SEA FILE=REGISTRY CSS FUL L50 OR L51

L56 15107 SEA FILE=REGISTRY ABB=ON PLU=ON (L46 OR L49 OR L55)

=> fil hcaplus
FILE 'HCAPLUS' ENTERED AT 16:07:02 ON 30 JAN 2007
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 30 Jan 2007 VOL 146 ISS 6
FILE LAST UPDATED: 29 Jan 2007 (20070129/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d 1149 bib abs hitind hitstr retable tot

L149 ANSWER 1 OF 81 .HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 2006:29452 HCAPLUS
 DN 144:131802
 TI Hybrid solar cells with thermal deposited semiconductive oxide layer
 IN Nelles, Gabrielle; Yasuda, Akio; Schmidt, Hans-Werner; Thelakkat, Mukundan; Schmitz, Christoph
 PA Germany
 SO U.S. Pat. Appl. Publ., 14 pp., Cont.-in-part of U.S. Ser. No. 799,257.
 CODEN: USXXCO
 DT Patent
 LA English
 FAN.CNT 2

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 2006008580	A1	20060112	US 2005-32326	20050110 <--
EP 1209708	A1	20020529	EP 2000-125784	20001124 <--
EP 1209708	B1	20070117		
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR				
US 2002117201	A1	20020829	US 2001-989848	20011121 <--
US 6706962	B2	20040316		
US 2004168718	A1	20040902	US 2004-799257	20040312 <--
PRAI EP 2000-125784	A	20001124 <--		
US 2001-989848	A1	20011121 <--		
US 2004-799257	A2	20040312		
AB A hybrid solar cell device comprising: a substrate material (substrate), an electrode material (EM), a hole transport material (HTM), a dye material (dye), and a semiconductive oxide layer (SOL), wherein a structure of the hybrid solar cell device is selected from a group consisting of: substrate+EM/HTM/dye/SOL/EM, or substrate+EM/SOL/dye/HTM/EM, or substrate+EM/HTM/SOL/EM, and wherein the EM is selected from a group consisting of a transparent conductive oxide (TCO), a transparent conductive polymer or a transparent organic material, and a metal, with at least one of the EM layer(s) of the hybrid solar cell being a TCO, and wherein the SOL comprises a dense semiconductive oxide layer.				
INCL 427162000				
CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)				
IT Azo dyes				
Dyes				
Electrodes				
Semiconductor materials				
Solar cells				
Substituent effects				
(hybrid solar cells with thermal deposited semiconductive oxide layer)				
IT Glass, uses				
Polyanilines				
Polyphosphazenes				
Polysilanes				
Porphyrins				
Silazanes				
RL: DEV (Device component use); USES (Uses)				
(hybrid solar cells with thermal deposited semiconductive oxide layer)				
IT 84-65-1, Anthraquinone 86-74-8D, Carbazole, derivs. 110-02-1,				

Thiophene 188-72-7, Terrylene 198-55-0, Perylene 288-32-4D, Imidazole, derivs. 574-93-6, Phthalocyanine 574-93-6D, Phthalocyanine, derivs. 588-59-0D, Stilbene, compds. 603-34-9D, derivs. 1047-16-1, Quinacridone 1047-16-1D, Quinacridone, compds. 1065-80-1, Hexabenzocoronene 1306-38-3, Ceria, uses 1309-64-4, Antimony oxide, uses 1313-96-8, Niobium oxide 1314-13-2, Zinc oxide, uses 1314-35-8, Tungsten trioxide, uses 1317-36-8, Lead oxide, uses 1332-29-2, Tin oxide 1344-28-1, Alumina, uses 7429-90-5, Aluminum, uses 7439-95-4, Magnesium, uses 7440-57-5, Gold, uses 7440-70-2, Calcium, uses 7631-86-9, Silica, uses 7789-24-4, Lithium fluoride, uses 11120-54-0D, Oxadiazole, derivs. 12060-18-3, Zirconium trioxide 12060-59-2, Strontium titanium oxide (SrTiO₃) 12250-93-0, Copper aluminum oxide CuAlO₂ 12597-68-1, Stainless steel, uses 13463-67-7, Titania, uses 13598-78-2D, Silanamine, derivs. 25233-34-5, **Polythiophene** 26201-32-1, Titanylphthalocyanine 36118-45-3D, Pyrazoline, derivs. 37306-44-8D, Triazole, derivs. 39455-90-8D, Pyrazolone, derivs. 50926-11-9, Indium tin oxide 55035-43-3 57348-57-9, Strontium copper oxide SrCuO₂ 89114-75-0 95270-88-5, Polyfluorene 126213-51-2, Poly(3,4-ethylenedioxythiophene) 182439-44-7, Porphines

RL: DEV (Device component use); USES (Uses)

(hybrid solar cells with thermal deposited semiconductive oxide layer)

IT 288-32-4D, Imidazole, derivs. 25233-34-5,

Polythiophene

RL: DEV (Device component use); USES (Uses)

(hybrid solar cells with thermal deposited semiconductive oxide layer)

RN 288-32-4 HCAPLUS

CN 1H-Imidazole (9CI) (CA INDEX NAME)

RN 25233-34-5 HCAPLUS

CN Thiophene, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-02-1

CMF C4 H4 S

L149 ANSWER 2 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2005:672920 HCAPLUS

DN 143:176217

TI Conductive polymers for **electrode** materials of
electrochemical cells

IN Nobuta, Tomoki; Nishiyama, Toshihiko; Mitani,
Masaya; Takahashi, Naoki; Yoshinari, Tetsuya

PA Japan

SO U.S. Pat. Appl. Publ., 21 pp.

CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2005165214	A1	20050728	US 2005-42900	20050125
	JP 2005209576	A	20050804	JP 2004-17011	20040126
	KR 2005077017	A	20050729	KR 2005-6054	20050122
	CN 1812170	A	20060802	CN 2005-10005753	20050125
PRAI	JP 2004-17011	A	20040126		

AB This invention relates to a polymer having a chain structure of a repeating unit of a **proton-conducting** compound which causes an **electrochem.** redox reaction in a solution of a **proton** source to act as an **electrode** active material, and a heterocyclic compound structure; and an **electrochem.** **cell** comprising the polymer as an **electrode** active material.

IC ICM H01M0004-60

INCL 528422000

CC 52-2 (**Electrochemical**, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38, 76

ST conductive polymer **electrode** material **electrochem** **cell**; **battery** conductive polymer **electrode** material;material; capacitor conductive polymer **electrode** material

IT Polymers, uses

RL: DEV (Device component use); USES (Uses)
(block; conductive polymers for **electrode** materials of **electrochem.** **cells**)

IT Battery anodes

Battery cathodes

Capacitor electrodes

Conducting polymers

Electrochemical cells**Secondary batteries**(conductive polymers for **electrode** materials of **electrochem.** **cells**)

IT Carbon black, uses

Carbon fibers, uses

Fluoropolymers, uses

RL: MOA (Modifier or additive use); USES (Uses)
(conductive polymers for **electrode** materials of **electrochem.** **cells**)

IT Capacitors

(double layer; conductive polymers for **electrode** materials of **electrochem.** **cells**)

IT Capacitors

(redox; conductive polymers for **electrode** materials of **electrochem.** **cells**)

IT 70381-95-2

RL: DEV (Device component use); USES (Uses)
(conductive polymers for **electrode** materials of **electrochem.** **cells**)

IT 91-95-2DP, [1,1'-Biphenyl]-3,3',4,4'-tetramine, Block copolymers containing 3010-82-0DP, 1,4-Benzenedicarboxamide, Block copolymers containing 3718-04-5DP, Block copolymers containing 28576-59-2DP, Block copolymers containing 52232-62-9DP, Block copolymers containing 652968-48-4P 860792-82-1P

RL: DEV (Device component use); SPN (Synthetic preparation); PREP

(Preparation); USES (Uses)
 (conductive polymers for **electrode** materials of
electrochem. cells)

IT 24937-79-9, Pvdf

RL: MOA (Modifier or additive use); USES (Uses)
 (conductive polymers for **electrode** materials of
electrochem. cells)

IT 3718-04-5DP, Block copolymers containing 28576-59-2DP, Block
 copolymers containing 52232-62-9DP, Block copolymers containing
 652968-48-4P 860792-82-1P

RL: DEV (Device component use); SPN (Synthetic preparation); PREP
 (Preparation); USES (Uses)
 (conductive polymers for **electrode** materials of
electrochem. cells)

RN 3718-04-5 HCAPLUS

CN 1H-Imidazole, 4-ethenyl- (9CI) (CA INDEX NAME)

RN 28576-59-2 HCAPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,4-phenylene) (9CI) (CA INDEX
 NAME)

RN 52232-62-9 HCAPLUS

CN Poly[(3,3'-diphenyl[biquinoxaline]-2,2'-diyl)-1,4-phenylene] (9CI) (CA
 INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 652968-48-4 HCAPLUS

CN Poly[(3-phenyl-7,2-quinoxalinediyl)-1,4-phenylene(3-phenyl-2,7-
 quinoxalinediyl)-1H-benzimidazole-5,2-diyl-1,4-phenylene-1H-benzimidazole-
 2,5-diyl] (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

RN 860792-82-1 HCPLUS

CN Poly[[3,3'-bis[4-(1H-benzimidazol-2-yl)phenyl][biquinoxaline]-2,2'-diyl]-1,4-phenylene] (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L149 ANSWER 3 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2005:283963 HCPLUS

DN 142:358037

TI Polymer electrolyte membrane fuel cell system

IN George, Paul E.; Saunders, James H.; Vijayendran, Bhima R.

PA USA

SO U.S. Pat. Appl. Publ., 39 pp., Cont.-in-part of Appl. No. PCT/US03/03864.
CODEN: USXXCO

DT Patent

LA English

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2005069735	A1	20050331	US 2004-913293	20040806 <--
	WO 2003067695	A2	20030814	WO 2003-US3864	20030206 <--
	WO 2003067695	A3	20031127		
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH,					

PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ,
 UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW

RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,
 KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES,
 FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR, BF,
 BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG

PRAI US 2002-354770P P 20020206 <--

WO 2003-US3864 A2 20030206 <--

AB The invention relates to a **fuel cell** system comprising: a fuel processor for producing hydrogen from a fuel; and a **fuel cell** stack including a plurality of polymer electrolyte membranes and a plurality of **electrodes**; where the polymer electrolyte membrane comprises a proton **conducting** hydrocarbon-based polymer membrane, the polymer having a backbone and having acidic groups on side chains attached to the backbone. The invention also relates to methods of removing contaminants from the **fuel cell electrode**.

IC ICM H01M0008-00
 ICS H01M0008-10

INCL 429013000; 429032000; 429033000

CC 52-2 (**Electrochemical**, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38

ST polymer electrolyte membrane **fuel cell** system

IT Oligomers

Polymers, uses

RL: DEV (Device component use); USES (Uses)
 (hydrocarbon-based; polymer electrolyte membrane **fuel cell** system)

IT Polymer electrolytes

(membrane; polymer electrolyte membrane **fuel cell** system)

IT Polysulfones, uses

RL: DEV (Device component use); USES (Uses)
 (polyether-, sulfonated; polymer electrolyte membrane **fuel cell** system)

IT **Fuel cell electrodes**

Ionic conductivity

Membranes, nonbiological

Reforming apparatus

(polymer electrolyte membrane **fuel cell** system)

IT Polymer blends

RL: DEV (Device component use); USES (Uses)
 (polymer electrolyte membrane **fuel cell** system)

IT **Fuel cells**

(polymer electrolyte; polymer electrolyte membrane **fuel cell** system)

IT Polyethers, uses

RL: DEV (Device component use); USES (Uses)
 (polysulfone-, sulfonated; polymer electrolyte membrane **fuel cell** system)

IT 630-08-0, Carbon monoxide, miscellaneous

RL: MSC (Miscellaneous)
 (contaminant; polymer electrolyte membrane **fuel cell** system)

IT 127-19-5, Dimethylacetamide **288-32-4**, Imidazole, uses

872-50-4, n-Methylpyrrolidone, uses 7778-18-9, Calcium sulfate
 12067-99-1, Phosphotungstic acid

RL: MOA (Modifier or additive use); USES (Uses)
 (polymer electrolyte membrane **fuel cell** system)

IT 1333-74-0P, Hydrogen, uses
 RL: SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (polymer electrolyte membrane fuel cell system)

IT 67-56-1, Methanol, uses 584-08-7, Potassium carbonate 7447-41-8,
 Lithium chloride, uses 7647-14-5, Sodium chloride, uses 7778-80-5,
 Potassium sulfate, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (polymer electrolyte membrane fuel cell system)

IT 288-32-4, Imidazole, uses
 RL: MOA (Modifier or additive use); USES (Uses)
 (polymer electrolyte membrane fuel cell system)

RN 288-32-4 HCAPLUS

CN 1H-Imidazole (9CI) (CA INDEX NAME)

L149 ANSWER 4 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 2005:15771 HCAPLUS
 DN 142:97499
 TI Hydrogen storage by reversible hydrogenation of pi-conjugated substrates
 IN Pez, Guido Peter; Scott, Aaron Raymond; Cooper, Alan Charles; Cheng, Hansong
 PA USA
 SO U.S. Pat. Appl. Publ., 58 pp., Cont.-in-part of U.S. Ser. No. 430,246.
 CODEN: USXXCO
 DT Patent
 LA English
 FAN.CNT 4

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2005002857	A1	20050106	US 2004-833484	20040427 <--
	US 2004223907	A1	20041111	US 2003-430246	20030506 <--
	US 7101530	B2	20060905		
	CA 2465555	A1	20041106	CA 2004-2465555	20040429 <--
	CA 2524846	A1	20050106	CA 2004-2524846	20040506 <--
	WO 2005000457	A2	20050106	WO 2004-US14034	20040506 <--
	WO 2005000457	A3	20050707		
	W:	AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW			
	RW:	BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG			
	EP 1660404	A2	20060531	EP 2004-751428	20040506 <--
	R:	AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, PL, SK			
	CN 1809505	A	20060726	CN 2004-80017488	20040506 <--
PRAI	US 2003-430246	A2	20030506	<--	

US 2004-833467 A 20040427
 US 2004-833484 A 20040427
 WO 2004-US14034 W 20040506

- AB Processes are provided for the storage and release of hydrogen by means of a substantially reversible catalytic hydrogenation of extended pi-conjugated substrates which include large polycyclic aromatic hydrocarbons, polycyclic aromatic hydrocarbons with nitrogen heteroatoms, polycyclic aromatic hydrocarbons with oxygen heteroatoms, polycyclic aromatic hydrocarbons with alkyl, alkoxy, nitrile, ketone, ether or polyether substituents, pi-conjugated mols. comprising 5 membered rings, pi-conjugated mols. comprising six and five membered rings with nitrogen or oxygen hetero atoms, and extended pi-conjugated organic polymers. The hydrogen, contained in the at least partially hydrogenated form of the extended pi-conjugated system, can be facilely released for use by a catalytic dehydrogenation of the latter in the presence of a dehydrogenation catalyst which can be effected by lowering the hydrogen gas pressure, generally to pressures greater than 0.1 bar or raising the temperature to less than 250° or less, or by a combination of these two process parameters.
- IC ICM C01B0003-02
 ICS B65B0003-00; C10G0035-06; F17B0001-00
- INCL 423648100; 206000700; 048174000
- CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 38
- ST hydrogen storage reversible hydrogenation pi conjugated substrate;
 fuel cell hydrogen storage reversible hydrogenation pi conjugated substrate
- IT Dehydrogenation
 Dehydrogenation catalysts
Fuel cells
 Hydrogenation
 Hydrogenation catalysts
 Hydrogenation enthalpy
 Pitch
 (hydrogen storage by reversible hydrogenation of pi-conjugated substrates)
- IT Cyclic compounds
 Heterocyclic compounds
 Oligomers
Polyanilines
 Polymers, uses
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
 (hydrogen storage by reversible hydrogenation of pi-conjugated substrates)
- IT **Heterocyclic compounds**
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)
 (nitrogen; hydrogen storage by reversible hydrogenation of pi-conjugated substrates)
- IT 86-28-2, n-Ethylcarbazole 86-73-7, Fluorene 86-74-8, Carbazole 91-22-5, Quinoline, uses 95-13-6, Indene 100-47-0, Benzonitrile, uses 128-70-1, Pyranthrone 129-00-0, Pyrene, uses 132-65-0, Dibenzothiophene 190-26-1, Ovalene 191-07-1, Coronene 197-61-5, Rubicene 198-55-0, Perylene 198-87-8, Indolo[3,2-a]carbazole 203-65-6, 4H-Benzo[def]carbazole 208-96-8, Acenaphthylene 213-46-7, Picene 241-35-0, Indolo[2,3-b]carbazole 244-33-7, 5H-Dibenzoborole 255-53-8, Pyrazino[2,3-b]pyrazine 260-94-6, Acridine 270-48-4,

1H-1-Benzoborole 272-10-6, Phosphindole 290-37-9, Pyrazine 603-76-9,
 n-Methylindole 616-47-7, n-Methylimidazole 623-26-7,
 Terephthalonitrile 875-79-6 1065-80-1, Hexabenzocoronene 1484-09-9,
 n-Isopropylcarbazole 1484-10-2 1484-12-4, n-Methylcarbazole
 2435-85-0, HexaDecahdropyrene 5856-89-3, N-Lithiodiphenylamine
 6033-87-0, Potassiumcarbazole 7075-70-9, 1,7-Dihydrobenzo[1,2-b:5,4-
 b']dipyrrole 7395-04-2 10365-94-3, 1,3,5-Benzenetricarbonitrile
 11140-68-4, Titanium hydride 12678-01-2, Phenanthroline 13390-92-6,
 N-Lithiocarbazole 20330-24-9, Hexahdropyrene 25067-59-8,
 Poly(9-vinylcarbazole) 25233-30-1, Polyaniline
 27569-42-2 28779-32-0, Dihahdropyrene 30604-81-0,
Polypyrrole 40876-94-6, 1-Ethyl-2-methylindole 55101-66-1,
 Decahdropyrene 55986-39-5 58310-24-0 66161-17-9, Tetrahydropyrene
 75833-66-8 79790-37-7, 1,4,5,8,9,12-Hexaazatriphenylene
82451-55-6, Polyindole 90338-04-8 819802-22-7
 819802-23-8 819802-24-9
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical
 process); TEM (Technical or engineered material use); PROC (Process); USES
 (Uses)

(hydrogen storage by reversible hydrogenation of pi-conjugated
 substrates)

IT 616-47-7, n-Methylimidazole 25067-59-8,
 Poly(9-vinylcarbazole) 25233-30-1, Polyaniline
 30604-81-0, **Polypyrrole** 82451-55-6, Polyindole
 90338-04-8
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical
 process); TEM (Technical or engineered material use); PROC (Process); USES
 (Uses)

(hydrogen storage by reversible hydrogenation of pi-conjugated
 substrates)

RN 616-47-7 HCPLUS
 CN 1H-Imidazole, 1-methyl- (9CI) (CA INDEX NAME)

RN 25067-59-8 HCPLUS
 CN 9H-Carbazole, 9-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1484-13-5
 CMF C14 H11 N

RN 25233-30-1 HCPLUS
 CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
CMF C6 H7 NRN 30604-81-0 HCPLUS
CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7
CMF C4 H5 NRN 82451-55-6 HCPLUS
CN 1H-Indole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 120-72-9
CMF C8 H7 NRN 90338-04-8 HCPLUS
CN 9H-Carbazole, 9-methyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1484-12-4
CMF C13 H11 N

L149 ANSWER 5 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 2004:1156748 HCAPLUS
 DN 142:77635
 TI Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications
 IN Angell, C. Austen; Xu, Wu; Belieres, Jean-Philippe; Yoshizawa, Masahiro
 PA Arizona Board of Regents A Body Corporate Acting On Behalf of Arizona State University, USA
 SO PCT Int. Appl., 76 pp.
 CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2004114445	A1	20041229	WO 2004-US13719	20040503 <--
	WO 2004114445	B1	20050210		
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
	EP 1618618	A1	20060125	EP 2004-751209	20040503 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK, HR				
	JP 2007500429	T	20070111	JP 2006-532544	20040503 <--

PRAI US 2003-467796P P 20030501 <--
 US 2003-501626P P 20030908
 WO 2004-US13719 W 20040503
 AB Disclosed are developments in high temperature fuel cells including ionic liqs. with high temperature stability and the storage of inorg. acids as di-anion salts of low volatility. The formation of ionically conducting liqs. of this type having conductivities of unprecedented magnitude for nonaq. systems is described. The stability of the dianion configuration is shown to play a role in the high performance of the noncorrosive proton-transfer ionic liqs. as high temperature fuel cell electrolytes. Performance of simple H₂ (g) electrolyte/O₂ (g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature

and

temps. up to and above 200° are achieved. Both neutral proton transfer salts and the acid salts with HSO₄ anions, give good results, the bisulfate case being particularly good at low temps. and very high temps. The performance of all electrolytes is improved by the addition of a small amount of nonvolatile base of pKa value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogen sulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

IC ICM H01M0008-00

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST fuel cell ionic liq use; imidazole doped ethylammonium hydrogen sulfate electrolyte **fuel cell**
IT Electric conductivity
Fuel cell electrolytes
Fuel cells
Ionic liquids
(ionic liqs. and ionic liquid acids with high temperature stability for **fuel cell** and other high temperature applications)
IT 75-04-7, Ethylamine, uses 288-32-4, Imidazole, uses 7697-37-2,
Nitric acid, uses
RL: MOA (Modifier or additive use); USES (Uses)
(dopant; ionic liqs. and ionic liquid acids with high temperature stability
for
fuel cell and other high temperature applications)
IT 1341-49-7, Ammonium hydrogen fluoride 2805-17-6 20748-72-5
22113-86-6, Ethylammonium nitrate 22113-87-7, Methylammonium nitrate
30781-73-8, Dimethylammonium nitrate 53226-35-0 55145-87-4, uses
60717-38-6 71173-55-2 815574-79-9 815574-80-2 815574-81-3
815574-82-4 815574-83-5 815574-84-6 815574-85-7 815574-86-8
RL: DEV (Device component use); USES (Uses)
(ionic liqs. and ionic liquid acids with high temperature stability for **fuel cell** and other high temperature applications)
IT 815579-63-6
RL: DEV (Device component use); USES (Uses)
(nonvolatile base-doped; ionic liqs. and ionic liquid acids with high temperature stability for **fuel cell** and other high temperature applications)
IT 288-32-4, Imidazole, uses
RL: MOA (Modifier or additive use); USES (Uses)
(dopant; ionic liqs. and ionic liquid acids with high temperature stability
for
fuel cell and other high temperature applications)
RN 288-32-4 HCPLUS
CN 1H-Imidazole (9CI) (CA INDEX NAME)

RETABLE

Referenced Author (RAU)	Year VOL PG Referenced Work (R PY) (R VL) (R PG) (R WK) Referenced File
Lu	2002 US 20020177039 A1
Narayanan	2003 US 20030148162 A1

L149 ANSWER 6 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN
AN 2004:944007 HCPLUS
DN 142:201427
TI Polyelectrolyte film for **fuel cell** and its manufacture
IN Song, Min Kyu
PA S. Korea
SO Repub. Korean Kongkae Taeho Kongbo, No pp. given
CODEN: KRXXA7
DT Patent
LA Korean
FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI KR 2003032321	A	20030426	KR 2001-64040	20011017 <--
PRAI KR 2001-64040		20011017	<--	
AB	The film comprises 2.5-95% of ion exchange resin having cation exchange radical at side chain, 2.5-95% of ≥1 polymer selected from polybenzimidazole, polypyridine, polypyrimidine, polyimidazole, polybenzothiazole, polybenzoxazole, polyoxadiazole, polyquinoxaline , and polythiadiazole, and 2.5-50% of ion conductor for imparting moisturizing effect to the polyelectrolyte film; wherein the ion conductor is dispersed on the ion exchange resin and the polymer.			
IC	ICM H01M0008-10			
CC	52-2 (Electrochemical, Radiational, and Thermal Energy Technology)			
ST	fuel cell polyelectrolyte film component structure			
IT	Fuel cells Ion exchangers Polyelectrolytes (components and manufacture of polyelectrolyte films for fuel cells)			
IT	Polybenzimidazoles Polyoxadiazoles Polyquinoxalines RL: TEM (Technical or engineered material use); USES (Uses) (components and manufacture of polyelectrolyte films for fuel cells)			
IT	95-16-9D, Benzothiazole, derivs., polymers 288-32-4D , 1H-Imidazole, derivs., polymers 289-06-5D , 1,3,4-Thiadiazole, derivs., polymers 289-95-2D , Pyrimidine, derivs., polymers 25013-01-8 , Polypyridine, RL: TEM (Technical or engineered material use); USES (Uses) (components and manufacture of polyelectrolyte films for fuel cells)			
IT	288-32-4D , 1H-Imidazole, derivs., polymers 289-95-2D , Pyrimidine, derivs., polymers 25013-01-8 , Polypyridine, RL: TEM (Technical or engineered material use); USES (Uses) (components and manufacture of polyelectrolyte films for fuel cells)			
RN	288-32-4 HCPLUS			
CN	1H-Imidazole (9CI) (CA INDEX NAME)			

RN 289-95-2 HCPLUS
CN Pyrimidine (8CI, 9CI) (CA INDEX NAME)

RN 25013-01-8 HCPLUS
CN Pyridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-86-1
CMF C5 H5 N

L149 ANSWER 7 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 2004:931006 HCAPLUS
 DN 141:398125
 TI Dye sensitized solar cell
 IN Wang, Peng; Zakeeruddin, Shaikm; Graetzel, Michael
 PA Ecole Polytechnique Federale De Lausanne Epfl, Switz.
 SO Eur. Pat. Appl., 18 pp.
 CODEN: EPXXDW
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 1473745	A1	20041103	EP 2003-405306	20030430 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK				
	AU 2004235426	A1	20041111	AU 2004-235426	20040429 <--
	WO 2004097871	A2	20041111	WO 2004-CH262	20040429 <--
	WO 2004097871	A3	20050811		
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
	RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
	EP 1620869	A2	20060201	EP 2004-730173	20040429 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK, HR				
	JP 2006525632	T	20061109	JP 2006-504186	20040429 <--
PRAI	EP 2003-405306	A	20030430 <--		
	WO 2004-CH262	W	20040429		
OS	MARPAT 141:398125				
AB	In this dye-sensitized solar cell the dye is an amphiphilic Ru polypyridyl complex. The mol. structure of the stabilizing compound comprises a hydrophobic part and an anchoring group, i.e. decylphosphonic acid. This compound is co-adsorbed with the dye on a semi-conductive metal oxide layer of the photoanode.				
IC	ICM H01G0009-20				
	ICS H01L0051-20				
CC	52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 38, 76				
IT	Photoelectrochemical cells				

Polyelectrolytes

(dye-sensitized solar cell)

IT Carboxylic acids, uses

Fluoropolymers, uses

Polyanilines

Polyoxyalkylenes, uses

RL: DEV (Device component use); USES (Uses)

(dye-sensitized solar cell)

IT **Anodes**

(photoelectrochem.; dye-sensitized solar cell)

IT **51-17-2**, 1H-Benzimidazole 81-25-4, Cholic acid 83-44-3,
 Deoxycholic acid 98-89-5, Cyclohexanecarboxylic acid 109-74-0,
 Butyronitrile 110-67-8, 3-Methoxypropionitrile 128-13-2,
 Ursodeoxycholic acid 434-13-9, Lithocholic acid 474-25-9,
 Chenodeoxycholic acid 1632-83-3, N-Methylbenzimidazole 4371-64-6,
 Hexadecylmalonic acid 6874-60-8, Decylphosphonic acid 7553-56-2,
 Iodine, uses 9002-88-4D, derivs. 9003-07-0, Polypropylene 9003-17-2,
 Polybutadiene **9003-39-8**, Polyvinylpyrrolidone 9003-53-6,
 Polystyrene 9011-14-7, Polymethyl methacrylate 9011-17-0 16269-16-2
 24937-79-9, PVDF 25014-41-9, Polyacrylonitrile **25233-34-5**,
Polythiophene 25322-68-3, Polyethylene oxide 25322-68-3D,
 derivs. 26009-24-5, Poly(1,4-phenylene-1,2-ethenediyl)
30604-81-0, **Polypyrrole** 42862-38-4, Adamantane acetic
 acid 73152-70-2, 4-Pentylbicyclo[2.2.2]octane-1-carboxylic acid
 88684-65-5 119171-18-5, 1-Methyl-3-propylimidazolium iodide
 218151-78-1, 1,2-Dimethyl-3-propylimidazolium iodide 502693-09-6, Z-907
 RL: DEV (Device component use); USES (Uses)
 (dye-sensitized solar cell)

IT **51-17-2**, 1H-Benzimidazole **9003-39-8**,
 Polyvinylpyrrolidone **25233-34-5**, **Polythiophene**
30604-81-0, **Polypyrrole**

RL: DEV (Device component use); USES (Uses)
 (dye-sensitized solar cell)

RN 51-17-2 HCPLUS

CN 1H-Benzimidazole (9CI) (CA INDEX NAME)

RN 9003-39-8 HCPLUS

CN 2-Pyrrolidinone, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 88-12-0

CMF C6 H9 N O

RN 25233-34-5 HCAPLUS
 CN Thiophene, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-02-1
 CMF C4 H4 S

RN 30604-81-0 HCAPLUS
 CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7
 CMF C4 H5 N

L149 ANSWER 8 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2004:905467 HCAPLUS

DN 141:382154

TI Electrode for electrochemical cell

IN Nobuta, Tomoki; Kamisuki, Hiroyuki; Mitani, Masaya; Kaneko, Shinako; Yoshinari, Tetsuya; Nishiyama, Toshihiko; Takahashi, Naoki

PA Japan

SO U.S. Pat. Appl. Publ., 18 pp.

CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2004214081	A1	20041028	US 2004-827074	20040419 <--
	JP 2004342595	A	20041202	JP 2004-106720	20040331 <--
	EP 1494303	A2	20050105	EP 2004-8403	20040407 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK, HR				
	KR 2004092417	A	20041103	KR 2004-26192	20040416 <--
	CN 1540780	A	20041027	CN 2004-10035118	20040423 <--

PRAI JP 2003-121274 A 20030425 <--

AB The present invention relates to an **electrode** for an **electrochem. cell** which comprises a **cathode** containing a **proton-conducting** compound as an **electrode active material**, an **anode** containing a **proton-conducting** compound as an **electrode** active material and an **electrolyte** containing a **proton source**, comprising a **proton-conducting** compound and an

anion-exchange resin. This invention can be used to improve cycle-life properties and high-speed charge/discharge properties in an electrochem. cell.

IC ICM H01M0004-60
 INCL 429212000; 429213000
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 38, 72, 76
 ST battery electrode; capacitor electrode
 IT Capacitors
 (double layer; electrode for electrochem. cell)
 IT Anion exchangers
 Battery electrodes
 Capacitor electrodes
 Secondary batteries
 (electrode for electrochem. cell)
 IT Vinal fibers
 RL: DEV (Device component use); USES (Uses)
 (electrode for electrochem. cell)
 IT Carbon fibers, uses
 RL: MOA (Modifier or additive use); USES (Uses)
 (electrode for electrochem. cell)
 IT Polyquinoxalines
 RL: DEV (Device component use); USES (Uses)
 (polyphenylquinoxalines; electrode for electrochem. cell)
 IT 220310-61-2, 5-Cyanoindole trimer
 RL: DEV (Device component use); USES (Uses)
 (electrode for electrochem. cell)
 IT 12627-85-9, Dowex 1X8 52503-96-5, Diaion SA 10A 156014-64-1, Ionex TIN 200 782478-06-2, Vectron 961
 RL: MOA (Modifier or additive use); USES (Uses)
 (electrode for electrochem. cell)
 IT 220310-61-2, 5-Cyanoindole trimer
 RL: DEV (Device component use); USES (Uses)
 (electrode for electrochem. cell)
 RN 220310-61-2 HCPLUS
 CN 1H-Indole-5-carbonitrile, trimer (9CI) (CA INDEX NAME)

CM 1

CRN 15861-24-2
 CMF C9 H6 N2

L149 ANSWER 9 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 2004:898688 HCPLUS
 DN 141:368427
 TI Electrochemical cell with polymeric electrolyte
 IN Mitani, Masaya; Nobuta, Tomoki; Kamisuki,
 Hiroyuki; Yoshinari, Tetsuya

PA **NEC Tokin Corporation, Japan**
 SO Eur. Pat. Appl., 11 pp.

CODEN: EPXXDW

DT **Patent**

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 1471592	A2	20041027	EP 2004-252182	20040414 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK, HR				
	JP 2004342593	A	20041202	JP 2004-93238	20040326 <--
	KR 2004093397	A	20041105	KR 2004-24688	20040410 <--
	TW 246222	B	20051221	TW 2004-93110343	20040414 <--
	US 2004214078	A1	20041028	US 2004-827179	20040419 <--
	CN 1610165	A	20050427	CN 2004-10035321	20040422 <--
PRAI	JP 2003-117179	A	20030422	<--	

AB This invention relates to an **electrochem. cell** comprising a **cathode** containing a **proton-conducting** compound as an **electrode** active material, an **anode** containing a **proton-conducting** compound as an **electrode** active material and an aqueous electrolytic solution containing a **proton** source as an electrolyte, wherein the electrolytic solution comprises a polymeric compound having an atom with an unpaired electron in its principal chain as an electron-transfer promoter. This invention can provide an **electrochem. cell** exhibiting improved capacity, high-speed charge/discharge properties and cycle properties.

IC ICM H01M0010-40
 ICS H01M0006-16

CC 52-2 (**Electrochemical, Radiational, and Thermal Energy Technology**)

Section cross-reference(s): 38, 76

ST **battery** polymeric electrolyte; capacitor polymeric electrolyte; **electrochem. cell** polymeric electrolyte

IT Capacitors

(double layer; **electrochem. cell** with polymeric electrolyte)

IT Secondary batteries

(**electrochem. cell** with polymeric electrolyte)

IT Polyoxyalkylenes, uses

RL: DEV (Device component use); USES (Uses)

(**electrochem. cell** with polymeric electrolyte)

IT Fluoropolymers, uses

RL: MOA (Modifier or additive use); USES (Uses)

(**electrochem. cell** with polymeric electrolyte)

IT Polyquinoxalines

RL: DEV (Device component use); USES (Uses)

(polyphenylquinoxalines; **electrochem. cell** with polymeric electrolyte)

IT 7664-93-9, Sulfuric acid, uses 9002-98-6 25322-68-3,

Polyethylene glycol 25618-55-7, Polyglycerol 220310-61-2,

5-Cyanoindole trimer

RL: DEV (Device component use); USES (Uses)

(**electrochem. cell** with polymeric electrolyte)

IT 7440-44-0, Carbon, uses 24937-79-9, Pvdf

RL: MOA (Modifier or additive use); USES (Uses)

(**electrochem. cell** with polymeric electrolyte)

IT 9002-98-6 220310-61-2, 5-Cyanoindole trimer

RL: DEV (Device component use); USES (Uses)

(**electrochem. cell** with polymeric electrolyte)

RN 9002-98-6 HCPLUS
 CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4
 CMF C2 H5 N

RN 220310-61-2 HCPLUS
 CN 1H-Indole-5-carbonitrile, trimer (9CI) (CA INDEX NAME)

CM 1

CRN 15861-24-2
 CMF C9 H6 N2

L149 ANSWER 10 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 2004:857795 HCPLUS

DN 141:352737

TI Composite polymer electrolyte composition

IN Ogata, Naoya; Kagawa, Hiroshi; Sada, Makiko

PA Trekion Co., Ltd., Japan

SO PCT Int. Appl., 26 pp.

CODEN: PIXXD2

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2004088671	A1	20041014	WO 2004-JP3447	20040315 <--
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
	RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
	CA 2507438	A1	20041014	CA 2004-2507438	20040315 <--
EP 1612809		A1	20060104	EP 2004-720736	20040315 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK				

PRAI US 2006057465 A1 20060316 US 2005-551330 20050929 <--
 JP 2003-129589 A 20030331 <--
 WO 2004-JP3447 W 20040315

AB The disclosed totally solid polymer electrolyte compns. have high ionic conductivity and enhanced mech. properties. This electrolyte composition is produced by polymerizing a monomer composition comprising a molten quaternary ammonium salt having a polymerizable functional group and a charge transfer ion source in the presence of a polymeric reinforcing material. The polymeric reinforcing material can be formed into a composite of polymer blend morphol. by dissolving the monomer composition and the reinforcing material in an appropriate organic solvent and polymerizing the solution.

Alternatively, the composite can be obtained by impregnating a porous sheet or film as the reinforcing material with the monomer composition and effecting polymerization An electrolyte for lithium ion battery can be obtained by selecting a lithium salt as the charge transfer ion source; an electrolyte for fuel cell by selecting a proton donor; and an electrolyte for dye sensitized solar cell by selecting a redox ion pair. A polymer electrolyte composition not containing the

charge transfer ion source is also useful as an electrolyte for electrolytic capacitor.

IC ICM H01B0001-06

ICS H01M0008-02; H01M0014-00; H01M0010-40; C08L0101-00; H01G0009-035

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST Section cross-reference(s): 76

ST trifluoromethylsulfonylimide onium salt polymer electrolyte fuel cell; lithium battery trifluoromethylsulfonylimide onium salt polymer electrolyte; capacitor trifluoromethylsulfonylimide onium salt polymer electrolyte

IT Secondary batteries

(lithium; preparation of composite solid polymers for)

IT Fuel cells

(polymer electrolyte; preparation of composite solid polymers for)

IT 74-96-4, Ethylbromide 106-95-6, Allyl bromide, reactions 1072-63-5, 1-Vinylimidazole 98402-58-5

RL: RCT (Reactant); RACT (Reactant or reagent)

(in preparation of composite polymer electrolyte)

IT 121-44-8, Triethylamine, reactions 616-47-7, 1-Methylimidazole

RL: RCT (Reactant); RACT (Reactant or reagent)

(reaction with p-chloromethylstyrene in preparation of monomers for polymer electrolyte)

IT 1072-63-5, 1-Vinylimidazole

RL: RCT (Reactant); RACT (Reactant or reagent)

(in preparation of composite polymer electrolyte)

RN 1072-63-5 HCPLUS

CN 1H-Imidazole, 1-ethenyl- (9CI) (CA INDEX NAME)

IT 616-47-7, 1-Methylimidazole

RL: RCT (Reactant); RACT (Reactant or reagent)

(reaction with p-chloromethylstyrene in preparation of monomers for polymer electrolyte)

RN 616-47-7 HCPLUS
 CN 1H-Imidazole, 1-methyl- (9CI) (CA INDEX NAME)

RETABLE

Referenced (RAU)	Author	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (R WK)	Referenced File
Center For Advanced Sci		2000			WO 0054351 A1	HCPLUS
Center For Advanced Sci		2000			EP 1202365 A1	HCPLUS
Mitsubishi Materials Co		2003			JP 200377539 A	
Nitto Denko Corp		2003			JP 200322823 A	
Shikoku Kasei Co Ltd		1998			JP 10-83821 A	HCPLUS

L149 ANSWER 11 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 2004:794599 HCPLUS

DN 141:298693

TI Electrode and electrochemical cell therewith

IN Nobuta, Tomoki; Kamisuki, Hiroyuki; Mitani, Masaya; Kaneko, Shinako; Yoshinari, Tetsuya

PA NEC Tokin Corporation, Japan

SO Brit. UK Pat. Appl., 47 pp.

CODEN: BAXXDU

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	GB 2399938	A	20040929	GB 2004-6023	20040317 <--
	GB 2399938	B	20050406		
	JP 2004311417	A	20041104	JP 2004-68939	20040311 <--
	US 2004191607	A1	20040930	US 2004-804891	20040319 <--
	KR 2004084743	A	20041006	KR 2004-19859	20040324 <--
	CN 1534811	A	20041006	CN 2004-10031391	20040326 <--
PRAI	JP 2003-87872	A	20030327 <--		

AB An **electrode** comprises a **conductive** porous substrate of a specified porosity (e.g., woven or non-woven carbon fiber sheet), the pores of which are filled with a mixture of an **electroactive** material, a **conductive** auxiliary filler and optionally a binder. The **electroactive** material may comprise a **proton conducting** polymer e.g., π -conjugated polymers such as **polyquinoxalines**, or a π -conjugated compound such as an **indole trimer**.

The **conductive** auxiliary typically comprises particulate carbon or chopped carbon fibers and the binder typically comprises polyvinylidene fluoride. To prepare the **electrode**, the **electroactive** material, filler and binder may be blended and then dispersed in a suitable solvent e.g., DMF. The slurry is then applied to the porous substrate using a squeegee. The **electrode** is stated to be useful for making **secondary batteries** or **electrolytic double-layer capacitors**.

IC ICM H01M0004-60
 ICS H01G0009-155; H01M0004-62; H01M0004-96

CC 52-2 (**Electrochemical, Radiational, and Thermal Energy Technology**)
 Section cross-reference(s): 38, 72, 76

ST **electrode electrochem cell; battery**
electrode; elec double layer capacitor electrode

IT Capacitors
 (double layer; **electrode** and **electrochem.**
cell therewith)

IT **Battery electrodes**
Capacitor electrodes

IT Porosity
Secondary batteries
 (**electrode** and **electrochem. cell**
 therewith)

IT Polyolefins
 RL: DEV (Device component use); USES (Uses)
 (**electrode** and **electrochem. cell**
 therewith)

IT Carbon black, uses
 RL: MOA (Modifier or additive use); USES (Uses)
 (**electrode** and **electrochem. cell**
 therewith)

IT Fluoropolymers, uses
 RL: MOA (Modifier or additive use); USES (Uses)
 (**electrode** and **electrochem. cell**
 therewith)

IT **Polyquinoxalines**
 RL: DEV (Device component use); USES (Uses)
 (polyphenylquinoxalines; **electrode** and **electrochem.**
cell therewith)

IT Carbon fibers, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (sheet; **electrode** and **electrochem. cell**
 therewith)

IT 7664-93-9, Sulfuric acid, uses 220310-61-2, 5-Cyanoindole trimer
 RL: DEV (Device component use); USES (Uses)
 (**electrode** and **electrochem. cell**
 therewith)

IT 24937-79-9, Pvdf
 RL: MOA (Modifier or additive use); USES (Uses)
 (**electrode** and **electrochem. cell**
 therewith)

IT 7440-44-0, Carbon, uses
 RL: DEV (Device component use); USES (Uses)
 (particulates; **electrode** and **electrochem.**
cell therewith)

IT 220310-61-2, 5-Cyanoindole trimer
 RL: DEV (Device component use); USES (Uses)
 (**electrode** and **electrochem. cell**
 therewith)

RN 220310-61-2 HCPLUS

CN 1H-Indole-5-carbonitrile, trimer (9CI) (CA INDEX NAME)

CM 1

CRN 15861-24-2
CMF C9 H6 N2

RETABLE

Referenced (RAU)	Author	Year (RPY)	VOL (RVL)	PG (RPG)	Referenced Work (RWK)	Referenced File
Anon		~			JP 2002110178	HCAPLUS
Anon					US 5225296 A	HCAPLUS
Anon					US 5582937 A	HCAPLUS
Anon					JP 59146163	HCAPLUS
Anon					JP 59230257	HCAPLUS
Anon					US 6465041 B1	HCAPLUS

L149 ANSWER 12 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2004:611916 HCAPLUS

DN 141:126396

TI Conducting hybrid organic-inorganic materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells

IN Valle, Karine; Belleville, Philippe; Sanchez, Clement

PA Commissariat A L'energie Atomique, Fr.

SO Fr. Demande, 46 pp.

CODEN: FRXXBL

DT Patent

LA French

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	FR 2850301	A1	20040730	FR 2003-726	20030123 <--
	AU 2004207665	A1	20040812	AU 2004-207665	20040122 <--
	CA 2513700	A1	20040812	CA 2004-2513700	20040122 <--
	WO 2004067611	A1	20040812	WO 2004-FR50025	20040122 <--
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI EP 1585783	A1	20051019	EP 2004-704264	20040122 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK				
	JP 2006519287	T	20060824	JP 2006-502167	20040122 <--
	US 2006194096	A1	20060831	US 2006-542768	20060405 <--
PRAI	FR 2003-726	A	20030123	<--	
	WO 2004-FR50025	W	20040122		

AB Hybrid organic-inorg. materials consist of two phases: (1) a first, mineral phase consisting of a structured mesoporous network with open porosity, and (2) a second phase consisting of an organic component consisting of an organic polymer, optionally containing a third phase of a surfactant within the pore interiors. The material consists of the mineral phase dispersed and intermingled within a continuous organic phase. Elec. **conducting** functional groups on the polymer portion are selected from cation-exchange groups (i.e., acid functionality, such as $-SO_3M$, $-PO_3M_3$, $-COOM$, and $-B(OM)_2$, in which M = H or a monovalent metal cation, etc.) or anion-exchange groups (i.e., heterocyclic amino, etc.). The materials are useful as **proton conducting** membranes or polymer

electrolyte membranes for fabrication of **fuel cells**.

IC ICM B01J0047-12
ICS H01M0008-10; B01J0039-08; B01J0041-08

CC 52-2 (**Electrochemical, Radiational, and Thermal Energy Technology**)
Section cross-reference(s): 38, 49

ST elec **conductor** hybrid org inorg material; polymer mineral oxide hybrid org inorg material **conductor; fuel cell proton conducting** membrane hybrid material

IT Functional groups
(acidic groups, **conducting electrolytes; conducting hybrid organic-inorg. materials, especially as proton-conducting** and polymer-electrolyte membranes in **fuel cells**)

IT Quaternary ammonium compounds, uses
RL: DEV (Device component use); USES (Uses)
(alkyltrimethyl, surfactants, **conducting polymers containing; conducting hybrid organic-inorg. materials, especially as proton-conducting** and polymer-electrolyte membranes in **fuel cells**)

IT Polyelectrolytes
(amphiphilic, surfactants, **conducting polymers containing; conducting hybrid organic-inorg. materials, especially as proton-conducting** and polymer-electrolyte membranes in **fuel cells**)

IT Functional groups
(basic groups, **conducting electrolytes; conducting hybrid organic-inorg. materials, especially as proton-conducting** and polymer-electrolyte membranes in **fuel cells**)

IT Fluoropolymers, uses
Polyanilines
Polybenzimidazoles
Polybenzoxazoles
Polyethers, uses
Polyimides, uses
Polyolefins
Polyphenyls
Polypyrophazenes
Polysulfonamides
Polysulfones, uses
Polythiophenylens
Polyvinyl butyral
Silicone rubber, uses
RL: DEV (Device component use); USES (Uses)
(**conducting electrolytes containing; conducting hybrid organic-inorg. materials, especially as proton-conducting** and polymer-electrolyte membranes in **fuel cells**)

IT **Fuel cell separators**
(**conducting hybrid organic-inorg. materials, especially as proton-conducting** and polymer-electrolyte membranes in **fuel cells**)

IT Sulfonic acids, uses
RL: DEV (Device component use); USES (Uses)
(esters, surfactants, **conducting polymers containing; conducting hybrid organic-inorg. materials, especially as proton-conducting** and polymer-electrolyte membranes in **fuel cells**)

IT Fatty acids, uses
RL: DEV (Device component use); USES (Uses)

(long-chain, surfactants, **conducting polymers containing; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells)**

- IT Conducting polymers
 - Electric conductors
 - Hybrid organic-inorganic materials
 - (membranes; **conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells**)
- IT Porosity
 - (mesoporosity, of **conducting electrolytes; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells**)
- IT Heterocyclic compounds
 - RL: DEV (Device component use); USES (Uses)
 - (nitrogen, aromatic, polymers, **conducting electrolytes; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells**)
- IT Polyimides, uses
 - RL: DEV (Device component use); USES (Uses)
 - (polyamide-, **conducting electrolytes containing; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells**)
- IT Polyketones
 - Polysulfones, uses
 - RL: DEV (Device component use); USES (Uses)
 - (polyether-, **conducting electrolytes containing; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells**)
- IT Polyamides, uses
 - RL: DEV (Device component use); USES (Uses)
 - (polyimide-, **conducting electrolytes containing; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells**)
- IT Polyethers, uses
 - RL: DEV (Device component use); USES (Uses)
 - (polyketone-, **conducting electrolytes containing; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells**)
- IT Fuel cells
 - (polymer electrolyte; **conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells**)
- IT Heterocyclic compounds
 - RL: DEV (Device component use); USES (Uses)
 - (polymers, aromatic nitrogen heterocycles, **conducting electrolytes; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells**)
- IT Acetals
 - Vinyl compounds, uses
 - RL: DEV (Device component use); USES (Uses)
 - (polymers, **conducting electrolytes containing; conducting**

hybrid organic-inorg. materials, especially as **proton-conducting** and polymer-electrolyte membranes in **fuel cells**)

- IT Polysulfones, uses
 RL: DEV (Device component use); USES (Uses)
 (polyoxyphenylene-, **conducting** electrolytes containing;
conducting hybrid organic-inorg. materials, especially as **proton-conducting** and polymer-electrolyte membranes in **fuel cells**)
- IT Conducting polymers
 (polypyrroles, **conducting** electrolytes containing;
conducting hybrid organic-inorg. materials, especially as **proton-conducting** and polymer-electrolyte membranes in **fuel cells**)
- IT Polyethers, uses
 Polyoxyphenylenes
 RL: DEV (Device component use); USES (Uses)
 (polysulfone-, **conducting** electrolytes containing;
conducting hybrid organic-inorg. materials, especially as **proton-conducting** and polymer-electrolyte membranes in **fuel cells**)
- IT Fuel cells
 (**proton** exchange membrane; **conducting** hybrid
 organic-inorg. materials, especially as **proton-conducting**
 and polymer-electrolyte membranes in **fuel cells**)
- IT Oxides (inorganic), uses
 Rare earth oxides
 RL: DEV (Device component use); SPN (Synthetic preparation); PREP
 (Preparation); USES (Uses)
 (reaction products, **conducting** electrolytes;
conducting hybrid organic-inorg. materials, especially as **proton-conducting** and polymer-electrolyte membranes in **fuel cells**)
- IT Anion exchangers
 Cation exchangers
 (reaction products, membranes; **conducting** hybrid organic-inorg.
 materials, especially as **proton-conducting** and
 polymer-electrolyte membranes in **fuel cells**)
- IT Phospholipids, uses
 RL: DEV (Device component use); USES (Uses)
 (surfactants, **conducting** polymers containing; **conducting**
 hybrid organic-inorg. materials, especially as **proton-conducting** and polymer-electrolyte membranes in **fuel cells**)
- IT Polyesters, uses
 RL: DEV (Device component use); USES (Uses)
 (vinyl group-containing, **conducting** electrolytes containing;
conducting hybrid organic-inorg. materials, especially as **proton-conducting** and polymer-electrolyte membranes in **fuel cells**)
- IT 288-42-6, Oxazole 9002-83-9, Polychlorotrifluoroethylene 9002-84-0,
 PTFE 9002-88-4, Polyethylene 9002-89-5, Polyvinyl alcohol 9003-05-8,
 Polyacrylamide 9003-07-0, Polypropylene 9003-20-7, Polyvinyl acetate
 9003-27-4, Polyisobutene 9003-39-8, Polyvinyl pyrrolidone
 9003-55-8, Butadiene-styrene copolymer 9003-95-6, Polyvinyl stearate
 24937-79-9, Polyvinylidene difluoride 24979-97-3, Polytetramethylene
 oxide 24991-32-0, Polyvinyl benzoate 24991-33-1, Polyvinyl
 chloroacetate 25035-84-1, Polyvinyl propionate 25038-32-8,
 Styrene-isoprene copolymer 25068-12-6, Ethylene-styrene copolymer
 25087-26-7, Polymethacrylic acid 25120-07-4, Polyhexafluoropropene

25189-69-9, Polystyrene oxide 25190-06-1, Polytetramethylene oxide
25233-30-1, Polyaniline 25567-89-9, Polyvinyl formate
 25748-85-0, Polyvinyl trifluoroacetate 26246-91-3, Polyvinyl laurate
 26715-88-8, Polyvinyl trimethylacetate 27380-27-4, PEK 30398-71-1,
 Polyvinyl palmitate **30604-81-0, Polypyrrole**
 31694-16-3, PEEK 31762-63-7, Polyhexamethylene oxide 60015-03-4, PEEKK
105809-46-9, Polypyrazole

RL: DEV (Device component use); USES (Uses)

(conducting electrolytes containing; conducting hybrid
 organic-inorg. materials, especially as proton-conducting
 and polymer-electrolyte membranes in fuel cells)

IT 1306-38-3DP, Cerium oxide (CeO₂), reaction products 1308-96-9DP,
 Europium oxide, reaction products 1312-81-8DP, Lanthanum oxide (La₂O₃),
 reaction products 1314-23-4DP, Zirconium dioxide, reaction products
 1314-61-0DP, Tantalum oxide, reaction products 1332-29-2DP, Tin oxide,
 reaction products 1344-28-1DP, Aluminum oxide, reaction products
 7631-86-9DP, Silicon dioxide, reaction products 12055-23-1DP, Hafnium
 oxide (HfO₂), reaction products 12064-62-9DP, Gadolinium oxide (Gd₂O₃),
 reaction products 13463-67-7DP, Titanium dioxide, reaction products

RL: DEV (Device component use); SPN (Synthetic preparation); PREP
 (Preparation); USES (Uses)

(conducting electrolytes; conducting hybrid
 organic-inorg. materials, especially as proton-conducting
 and polymer-electrolyte membranes in fuel cells)

IT 110-16-7, Maleic acid, uses 2743-38-6 7664-38-2D, Phosphoric acid,
 alkyl esters

RL: DEV (Device component use); USES (Uses)

(surfactants, conducting electrolytes containing;
 conducting hybrid organic-inorg. materials, especially as proton
 -conducting and polymer-electrolyte membranes in fuel
 cells)

IT 9003-39-8, Polyvinyl pyrrolidone **25233-30-1,**
Polyaniline 30604-81-0, Polypyrrole
105809-46-9, Polypyrazole

RL: DEV (Device component use); USES (Uses)

(conducting electrolytes containing; conducting hybrid
 organic-inorg. materials, especially as proton-conducting
 and polymer-electrolyte membranes in fuel cells)

RN 9003-39-8 HCPLUS

CN 2-Pyrrolidinone, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 88-12-0
 CMF C6 H9 N O

RN 25233-30-1 HCPLUS

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3

CMF C6 H7 N

RN 30604-81-0 HCPLUS
 CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7
 CMF C4 H5 N

RN 105809-46-9 HCPLUS
 CN 1H-Pyrazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-13-1
 CMF C3 H4 N2

RETABLE

Referenced Author (RAU)	Year (RPY)	VOL (RVL)	PG (RPG)	Referenced Work (RWK)	Referenced File
Anon	2003	2003		PATENT ABSTRACTS OF	
Bauer, B	2002			WO 0205370 A	HCPLUS
Bernd, W	1999			WO 9912994 A	HCPLUS
Commissariat Energie At	1992			WO 9206775 A	HCPLUS
Jeffrey, B	2001			US 6270846 B1	
Kagawa Industry Support	2003			JP 2003016834 A	HCPLUS
Kerres, J	2000			WO 0077080 A	
Kerres, J	2001			WO 0184657 A	HCPLUS
Laconti, A	1992	SYMP3	298	PROCEEDINGS OF THE I	
Univ California	2002			WO 0241043 A	HCPLUS
Univ Schiller Jena	1994			DE 4225952 A	HCPLUS

L149 ANSWER 13 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2004:611915 HCPLUS

DN 141:126395

TI Conducting hybrid organic-inorganic materials, especially as proton-conducting and polymer-electrolyte membranes in

fuel cells

IN Valle, Karine; Belleville, Philippe; Sanchez, Clement

PA Commissariat A L'energie Atomique, Fr.

SO Fr. Demande, 45 pp.

CODEN: FRXXBL

DT **Patent**

LA French

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	FR 2850300	A1	20040730	FR 2003-724	20030123 <--
	FR 2850300	B1	20060602		
	AU 2004207666	A1	20040812	AU 2004-207666	20040122 <--
	CA 2513817	A1	20040812	CA 2004-2513817	20040122 <--
	WO 2004067640	A2	20040812	WO 2004-FR50026	20040122 <--
	WO 2004067640	A3	20040910		
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI				
	EP 1587876	A2	20051026	EP 2004-704265	20040122 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK				
	JP 2006518405	T	20060810	JP 2006-502168	20040122 <--
	US 2006182942	A1	20060817	US 2005-542813	20050720
PRAI	FR 2003-724	A	20030123	<--	
	WO 2004-FR50026	W	20040122		

AB Elec. **conducting** hybrid organic-inorg. materials consist of a mineral (inorg.) phase, which form a structured mesoporous network with open porosity. The material consists of oligomers, such as an organic polymer, integrated into the walls (the outer surfaces) and are covalently bonded to the mineral phase, with a possible second phase inside the pores. Further, the materials contain at least a surfactant; at least one of the mineral phases and the oligomers (or organic polymers) present elec. **conductive** or hydrophilic functions on the pore surfaces. Elec. **conducting** functional groups on the polymer portion are selected from cation-exchange groups (i.e., acid functionality, such as -SO₃M, -PO₃M₃, -COOM, and -B(OM)₂, in which M = H or a monovalent metal cation, etc.) or anion-exchange groups (i.e., heterocyclic amino, etc.). The materials are useful as **proton conducting** membranes or polymer electrolyte membranes for fabrication of **fuel cells**.

IC ICM B01J0047-12

ICS H01M0008-10; B01J0039-08; B01J0041-08

CC 52-2 (**Electrochemical**, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38, 49

ST elec **conductor** hybrid org inorg material; polymer mineral oxide hybrid org inorg material **conductor**; **fuel cell****proton conducting** membrane hybrid material

IT Functional groups

(acidic groups, **conducting** electrolytes; **conducting** hybrid organic-inorg. materials, especially as **proton-conducting** and polymer-electrolyte membranes in **fuel cells**)

IT Quaternary ammonium compounds, uses

RL: DEV (Device component use); USES (Uses)

(alkyltrimethyl, surfactants, **conducting** electrolytes containing; **conducting** hybrid organic-inorg. materials, especially as **proton-conducting** and polymer-electrolyte membranes in **fuel**

- cells)**
- IT Polyelectrolytes
 - (amphiphilic, surfactants, **conducting** electrolytes containing; **conducting** hybrid organic-inorg. materials, especially as **proton-conducting** and polymer-electrolyte membranes in **fuel cells**)
- IT Functional groups
 - (basic groups, **conducting** electrolytes; **conducting** hybrid organic-inorg. materials, especially as **proton-conducting** and polymer-electrolyte membranes in **fuel cells**)
- IT Fluoropolymers, uses
 - Polyanilines**
 - Polybenzimidazoles
 - Polybenzoxazoles
 - Polyethers, uses
 - Polyimides, uses
 - Polyolefins
 - Polyphenyls
 - Polyphosphazenes
 - Polysulfonamides
 - Polysulfones, uses
 - Polythiophenylens
 - Polyvinyl butyral
 - Silicone rubber, uses

RL: DEV (Device component use); USES (Uses)

(**conducting** electrolytes containing; **conducting** hybrid organic-inorg. materials, especially as **proton-conducting** and polymer-electrolyte membranes in **fuel cells**)
- IT Fuel cell separators
 - (**conducting** hybrid organic-inorg. materials, especially as **proton-conducting** and polymer-electrolyte membranes in **fuel cells**)
- IT Sulfonic acids, uses

RL: DEV (Device component use); USES (Uses)

(esters, surfactants, **conducting** electrolytes containing; **conducting** hybrid organic-inorg. materials, especially as **proton-conducting** and polymer-electrolyte membranes in **fuel cells**)
- IT Fatty acids, uses

RL: DEV (Device component use); USES (Uses)

(long-chain, surfactants, **conducting** electrolytes containing; **conducting** hybrid organic-inorg. materials, especially as **proton-conducting** and polymer-electrolyte membranes in **fuel cells**)
- IT Conducting polymers
 - Electric conductors**
 - Hybrid organic-inorganic materials
 - (membranes; **conducting** hybrid organic-inorg. materials, especially as **proton-conducting** and polymer-electrolyte membranes in **fuel cells**)
- IT Porosity
 - (mesoporosity, of **conducting** electrolytes; **conducting** hybrid organic-inorg. materials, especially as **proton-conducting** and polymer-electrolyte membranes in **fuel cells**)
- IT Heterocyclic compounds

RL: DEV (Device component use); USES (Uses)

(**nitrogen**, aromatic, polymers, **conducting** electrolytes; **conducting** hybrid organic-inorg. materials, especially

- as proton-conducting and polymer-electrolyte membranes in fuel cells)
- IT Polyimides, uses
 RL: DEV (Device component use); USES (Uses)
 (polyamide-, conducting electrolytes containing; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells)
- IT Polyketones
 Polysulfones, uses
 RL: DEV (Device component use); USES (Uses)
 (polyether-, conducting electrolytes containing; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells)
- IT Polyamides, uses
 RL: DEV (Device component use); USES (Uses)
 (polyimide-, conducting electrolytes containing; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells)
- IT Polyethers, uses
 RL: DEV (Device component use); USES (Uses)
 (polyketone-, conducting electrolytes containing; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells)
- IT Fuel cells
 (polymer electrolyte; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells)
- IT Heterocyclic compounds
 RL: DEV (Device component use); USES (Uses)
 (polymers, aromatic nitrogen heterocycles, conducting electrolytes; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells)
- IT Acetals
 Vinyl compounds, uses
 RL: DEV (Device component use); USES (Uses)
 (polymers, conducting electrolytes containing; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells)
- IT Polysulfones, uses
 RL: DEV (Device component use); USES (Uses)
 (polyoxyethylene-, conducting electrolytes containing; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells)
- IT Conducting polymers
 (polypyrroles, conducting electrolytes containing; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells)
- IT Polyethers, uses
 Polyoxyphenylenes
 RL: DEV (Device component use); USES (Uses)
 (polysulfone-, conducting electrolytes containing; conducting hybrid organic-inorg. materials, especially as proton

- conducting and polymer-electrolyte membranes in **fuel cells**)
- IT Fuel cells
 - (proton exchange membrane; **conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells**)
- IT Oxides (inorganic), uses
 - Rare earth oxides
 - RL: DEV (Device component use); USES (Uses)
 - (reaction products, **conducting electrolytes; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells**)
- IT Anion exchangers
 - Cation exchangers
 - (reaction products, membranes; **conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells**)
- IT Phospholipids, uses
 - RL: DEV (Device component use); USES (Uses)
 - (surfactants, **conducting electrolytes containing; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells**)
- IT Polyesters, uses
 - RL: DEV (Device component use); USES (Uses)
 - (vinyl group-containing, **conducting electrolytes containing; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells**)
- IT 288-42-6D, Oxazole, polymers 9002-83-9, Polychlorotrifluoroethylene 9002-84-0, PTFE 9002-88-4, Polyethylene 9002-89-5, Polyvinyl alcohol 9003-05-8, Polyacrylamide 9003-07-0, Polypropylene 9003-20-7, Polyvinyl acetate 9003-27-4, Polyisobutylene 9003-39-8, Polyvinyl pyrrolidone 9003-47-8, Polyvinyl pyridine 9003-55-8, Butadiene-styrene copolymer 9003-95-6, Polyvinyl stearate 24937-79-9, Polyvinylidene difluoride 24979-97-3, Polytetramethylene oxide 24991-32-0, Polyvinyl benzoate 24991-33-1, Polyvinyl chloroacetate 25035-84-1, Polyvinyl propionate 25038-32-8, Styrene-isoprene copolymer 25068-12-6 25087-26-7, Poly(methacrylic acid) 25120-07-4, Polyhexafluoropropene 25189-69-9, Poly(styrene oxide) 25190-06-1, Polytetramethylene oxide 25233-30-1, Polyaniline 25567-89-9, Polyvinyl formate 25748-85-0, Polyvinyl trifluoroacetate 25821-66-3, Polyvinyl trichloroacetate 26246-91-3, Polyvinyl laurate 26715-88-8, Polyvinyl trimethylacetate 27380-27-4, Pek 30398-71-1, Polyvinyl palmitate 30604-81-0, Polypyrrole 31694-16-3, Peek 31762-63-7, Polyhexamethylene oxide 60015-03-4, Peekk 105809-46-9, Polypyrazole
 - RL: DEV (Device component use); USES (Uses)
 - (**conducting electrolytes containing; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells**)
- IT 1306-38-3DP, Cerium oxide, reaction products 1308-96-9DP, Europium oxide, reaction products 1312-81-8DP, Lanthanum oxide, reaction products 1314-23-4DP, Zirconium dioxide, reaction products 1314-61-0DP, Tantalum oxide, reaction products 1332-29-2DP, Tin oxide, reaction products 1344-28-1DP, Aluminum oxide, reaction products 7631-86-9DP, Silicon dioxide, reaction products 12055-23-1DP, Hafnium oxide, reaction products 12064-62-9DP, Gadolinium oxide, reaction products 13463-67-7DP, Titanium dioxide, reaction products

RL: DEV (Device component use); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)

(conducting electrolytes; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells)

IT 110-16-7, Maleic acid, uses 2743-38-6 7664-38-2D, Phosphoric acid, alkyl esters

RL: DEV (Device component use); USES (Uses)

(surfactants, conducting electrolytes containing; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells)

IT 9003-39-8, Polyvinyl pyrrolidone 9003-47-8, Polyvinyl pyridine 25233-30-1, Polyaniline 30604-81-0,

Polypyrrole 105809-46-9, Polypyrazole

RL: DEV (Device component use); USES (Uses)

(conducting electrolytes containing; conducting hybrid organic-inorg. materials, especially as proton-conducting and polymer-electrolyte membranes in fuel cells)

RN 9003-39-8 HCPLUS

CN 2-Pyrrolidinone, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 88-12-0

CMF C6 H9 N O

RN 9003-47-8 HCPLUS

CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1

CMF C7 H7 N

CCI IDS

D1-CH=CH₂

RN 25233-30-1 HCPLUS

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
 CMF C6 H7 N

RN 30604-81-0 HCPLUS
 CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7
 CMF C4 H5 N

RN 105809-46-9 HCPLUS
 CN 1H-Pyrazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-13-1
 CMF C3 H4 N2

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (R WK)	Referenced File
Chmelka, B	1999			WO 9937705 A	HCPLUS
Daimler Chrysler Ag	2001			DE 19943244 A	HCPLUS
Fuma Tech Gmbh	2002			FR 2811323 A	HCPLUS
Johnson Matthey Plc	1998			EP 0875524 A	HCPLUS
Laconti, A	1992		298	PROCEEDINGS OF THE I	HCPLUS

L149 ANSWER 14 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2004:609793 HCPLUS

DN 141:159845

TI Method of preparation of proton electrolyte membranes for
fuel cells

IN Li, Siwen; Liu, Meilin

PA USA

SO U.S. Pat. Appl. Publ., 20 pp.

CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2004146766	A1	20040729	US 2004-757661	20040114 <--
PRAI	US 2003-439985P	P	20030114 <--		
AB	Flexible proton electrolyte membranes, fuel cells, and methods for making membranes are disclosed. One exemplary membrane, among others, includes a flexible proton electrolyte membrane having the characteristic of a proton conductivity of about $1+10^{-6}$ to $1+10^{-1}$ S/cm at 30-180° and a relative humidity of 0-100%.				
IC	ICM H01M0008-10				
	ICS C08J0005-22				
INCL	429030000; 521027000; 429033000				
CC	52-2 (Electrochemical, Radiational, and Thermal Energy Technology)				
	Section cross-reference(s): 38				
ST	fuel cell proton electrolyte membrane prepns				
IT	Fuel cell electrolytes (method of preparation of proton electrolyte membranes for fuel cells)				
IT	Fuel cells (proton exchange membrane; method of preparation of proton electrolyte membranes for fuel cells)				
IT	Ionic conductivity (proton; method of preparation of proton electrolyte membranes for fuel cells)				
IT	78-10-4DP, Tetraethoxysilane, polymers, phosphate esters 670-96-2DP, 2-Phenylimidazole, salts with sulfonated polymer phosphate esters 780-69-8DP, Phenyltriethoxysilane, sulfonated, polymers, phosphate esters 2530-83-8DP, γ -Glycidoxypropyltrimethoxysilane, polymers, phosphate esters 75009-88-0DP, polymers, phosphate esters				
	RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (membranes; method of preparation of proton electrolyte membranes for fuel cells)				
IT	670-96-2DP, 2-Phenylimidazole, salts with sulfonated polymer phosphate esters RL: IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (membranes; method of preparation of proton electrolyte membranes for fuel cells)				
RN	670-96-2 HCPLUS				
CN	1H-Imidazole, 2-phenyl- (9CI) (CA INDEX NAME)				

L149 ANSWER 15 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2004:605443 HCPLUS

DN 141:143194

TI Method of fabrication of membrane electrode unit for polymer electrolyte fuel cells

IN Melzner, Dieter; Reiche, Annette; Maehr, Ulrich; Kiel, Suzana
 PA Sartorius Ag, Germany
 SO Ger. Offen., 12 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 10301810	A1	20040729	DE 2003-10301810	20030120 <--
	WO 2004066428	A2	20040805	WO 2003-EP14623	20031219 <--
	WO 2004066428	A3	20050818		
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
	AU 2003300536	A1	20040813	AU 2003-300536	20031219 <--
	EP 1593172	A2	20051109	EP 2003-815370	20031219 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK				
	CN 1729590	A	20060201	CN 2003-80107265	20031219 <--
	JP 2006513544	T	20060420	JP 2004-566800	20031219 <--
	EP 1722435	A1	20061115	EP 2006-12104	20031219 <--
	R: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LI, LU, MC, NL, PT, RO, SE, SI, SK, TR				
PRAI	DE 202004000365	U1	20040422	DE 2004-202004000365	20040113 <--
	DE 2003-10301810	A	20030120	<--	
	EP 2003-815370	A3	20031219		
	WO 2003-EP14623	W	20031219		

AB The invention concerns a membrane-**electrode** unit and polymer electrolyte **fuel cell** using the same for operating temperature $\leq 250^\circ$, as well as method of fabrication of the membrane. Membrane-**electrode** units of the polymer electrolyte **fuel cells** consist ≥ 2 laminar gas distribution **electrodes** and a sandwich-like polymer membrane (provided between the **electrodes**) with at least a basic polymer as well as a dopant, with which the gas distribution **electrodes** are in such a manner loaded that they represent a dopant reservoir for the polymer membrane, whereby the polymer membrane is **proton-conductively** and firmly tied up to the gas distribution **electrodes** over the dopant after the effect of pressure and temperature. In the doped condition, it shows a **conductivity** of at least 0.1 S/m at a temperature of $< 25^\circ$. The invention is applicable directly for stationary and mobile power generation from chemical energy.

IC ICM H01M0008-02

CC 52-2 (**Electrochemical**, Radiational, and Thermal Energy Technology)

ST Section cross-reference(s): 38

ST membrane **electrode** unit fabrication polymer electrolyte **fuel cell**

IT Membranes, nonbiological

(method of fabrication of membrane **electrode** unit for polymer electrolyte **fuel cells**)

IT Epoxides

Isocyanates

RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)

(method of fabrication of membrane **electrode** unit for polymer electrolyte **fuel cells**)

IT Polybenzimidazoles

Polybenzothiazoles

Polybenzoxazoles

Polyoxadiazoles

Polyquinoxalines

RL: DEV (Device component use); USES (Uses)

(method of fabrication of membrane **electrode** unit for polymer electrolyte **fuel cells**)

IT **Fuel cells**

(polymer electrolyte; method of fabrication of membrane **electrode** unit for polymer electrolyte **fuel cells**)

IT 2425-79-8, 1,4-Butanedioldiglycidyl ether

RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)

(method of fabrication of membrane **electrode** unit for polymer electrolyte **fuel cells**)

IT 129-00-0D, Pyrene, tetraaza derivs., polymers 298-07-7,

Bis(2-ethylhexyl) phosphate 838-85-7, Diphenylphosphate

25013-01-8, Polypyridine 82370-43-2, Polyimidazole

128611-69-8, 1,3,4-Thiadiazole homopolymer 190201-51-5,

Pyrimidine, homopolymer

RL: DEV (Device component use); USES (Uses)

(method of fabrication of membrane **electrode** unit for polymer electrolyte **fuel cells**)

IT 7664-38-2, Phosphoric acid, uses

RL: MOA (Modifier or additive use); USES (Uses)

(method of fabrication of membrane **electrode** unit for polymer electrolyte **fuel cells**)

IT 127-19-5, Dimethylacetamide

RL: TEM (Technical or engineered material use); USES (Uses)

(method of fabrication of membrane **electrode** unit for polymer electrolyte **fuel cells**)

IT 25013-01-8, Polypyridine 82370-43-2, Polyimidazole

128611-69-8, 1,3,4-Thiadiazole homopolymer 190201-51-5,

Pyrimidine, homopolymer

RL: DEV (Device component use); USES (Uses)

(method of fabrication of membrane **electrode** unit for polymer electrolyte **fuel cells**)

RN 25013-01-8 HCPLUS

CN Pyridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-86-1

CMF C5 H5 N

RN 82370-43-2 HCPLUS

CN 1H-Imidazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-32-4
CMF C3 H4 N2

RN 128611-69-8 HCPLUS

CN 1,3,4-Thiadiazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 289-06-5
CMF C2 H2 N2 S

RN 190201-51-5 HCPLUS

CN Pyrimidine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 289-95-2
CMF C4 H4 N2

L149 ANSWER 16 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2004:530346 HCPLUS

DN 141:91777

TI Anhydrous proton-conductive membrane and fuel
cell using the membrane

IN Honma, Itaru

PA National Institute of Advanced Industrial Science and Technology, Japan

SO Jpn. Kokai Tokkyo Koho, 12 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
PI JP 2004185891	A	20040702	JP 2002-349503	20021202 <--

PRAI JP 2002-349503 20021202 <--
 AB The membrane is a polymer electrolyte membrane, containing an acidic polymer and/or a basic mol. in its membrane; where the membrane has an ion conductivity of 1 + 10⁻⁵ s/cm at -30-250° under water-free or humidity-free conditions. The **fuel cell** uses the above membrane as an electrolyte membrane.
 IC ICM H01M0008-02
 ICS C08J0005-22; C08K0005-00; C08K0007-02; C08L0101-00; H01B0001-06;
 H01M0008-10
 CC 52-2 (**Electrochemical, Radiational, and Thermal Energy Technology**)
 ST **fuel cell** polymer electrolyte anhyd **proton** conductive membrane; electrolyte membrane acidic polymer basic mol **fuel cell**
 IT **Fuel cell electrolytes**
Fuel cells
 (anhydrous **proton-conductive** membranes containing acidic polymers and/or basic mol. with controlled ion **conductivity** for **fuel cell** electrolytes)
 IT 51-17-2, Benzimidazole 616-47-7, 1-Methyl imidazole 2627-35-2, Monododecyl phosphate 27754-99-0, Polyvinyl phosphonate RL: TEM (Technical or engineered material use); USES (Uses) (anhydrous **proton-conductive** membranes containing acidic polymers and/or basic mol. with controlled ion **conductivity** for **fuel cell** electrolytes)
 IT 51-17-2, Benzimidazole 616-47-7, 1-Methyl imidazole RL: TEM (Technical or engineered material use); USES (Uses) (anhydrous **proton-conductive** membranes containing acidic polymers and/or basic mol. with controlled ion **conductivity** for **fuel cell** electrolytes)
 RN 51-17-2 HCPLUS
 CN 1H-Benzimidazole (9CI) (CA INDEX NAME)

RN 616-47-7 HCPLUS
 CN 1H-Imidazole, 1-methyl- (9CI) (CA INDEX NAME)

L149 ANSWER 17 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 2004:451532 HCPLUS
 DN 141:26109
 TI **Proton exchange membrane for fuel cell**
 IN Wixom, Michael; Lei, Hanwei; Zhang, Pu; Ma, Junqing
 PA T/J Technologies, Inc., USA
 SO U.S. Pat. Appl. Publ., 7 pp.

CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2004106030	A1	20040603	US 2003-719582	20031121 <--
	US 6878475	B2	20050412		
	WO 2004049469	A2	20040610	WO 2003-US37521	20031124 <--
	WO 2004049469	A3	20040910		
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
	AU 2003295870	A1	20040618	AU 2003-295870	20031124 <--
PRAI	US 2002-428542P	P	20021122	<--	
	US 2003-719582	A	20031121		
	WO 2003-US37521	W	20031124		

GI

AB A **proton** exchange membrane for a **fuel cell** is prepared from a polyimidazole polymer having the formula (I) wherein R1-R3 are independently H, a halogen, an alkyl or a substituted alkyl; X1 and X2 are independently or an electron withdrawing group such as CN. The membrane may be doped to alter its **conductivity**. The membrane may be prepared from a copolymer of the polyimidazole. Also disclosed is a **fuel cell** incorporating the membrane.

IC ICM H01M0008-10

INCL 429033000

CC 52-2 (**Electrochemical**, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38

ST **fuel cell proton** exchange membrane

vinylimidazole polymer

IT Polyphosphoric acids

RL: MOA (Modifier or additive use); USES (Uses)
(dopant; **proton** exchange membrane for **fuel cell**)

IT Acids, uses

RL: MOA (Modifier or additive use); USES (Uses)
(inorg., dopant; **proton** exchange membrane for **fuel**

cell)
 IT Electric conductivity
 (proton exchange membrane for fuel cell)
 IT Heteropoly acids
 RL: MOA (Modifier or additive use); USES (Uses)
 (proton exchange membrane for fuel cell)
 IT Fuel cells
 (solid electrolyte; proton exchange membrane for fuel
 cell)
 IT 7664-38-2, Phosphoric acid, uses 7664-93-9, Sulfuric acid, uses
 7697-37-2, Nitric acid, uses
 RL: MOA (Modifier or additive use); USES (Uses)
 (dopant; proton exchange membrane for fuel
 cell)
 IT 67-68-5, Dmso, uses 68-12-2, Dmf, uses 872-50-4, N-Methylpyrrolidone,
 uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (polar solvent; proton exchange membrane for fuel
 cell)
 IT 1184-84-5D, Vinylsulfonic acid, polymers with vinylimidazole derivs.
 1746-03-8D, Vinylphosphonic acid, polymers with vinylimidazole derivs.
 7440-21-3D, Silicon, compound 26914-43-2D, Styrenesulfonic acid, polymers
 with vinylimidazole derivs. 43129-93-7D, 2-Vinylimidazole,
 derivs., polymers with vinyl group-containing acids
 RL: DEV (Device component use); USES (Uses)
 (proton exchange membrane for fuel cell)
 IT 1343-93-7, Phosphotungstic acid 2627-35-2, Monododecylphosphate
 12026-57-2, Phosphomolybdic acid 12027-38-2, Silicotungstic acid
 RL: MOA (Modifier or additive use); USES (Uses)
 (proton exchange membrane for fuel cell)
 IT 7631-86-9, Silica, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (proton exchange membrane for fuel cell)
 IT 43129-93-7D, 2-Vinylimidazole, derivs., polymers with vinyl
 group-containing acids
 RL: DEV (Device component use); USES (Uses)
 (proton exchange membrane for fuel cell)
 RN 43129-93-7 HCPLUS
 CN 1H-Imidazole, 2-ethenyl- (9CI) (CA INDEX NAME)

RETABLE

Referenced Author (RAU)	Year VOL PG (R PY) (R VL) (R PG)	Referenced Work (RWK)	Referenced File
Anon	1999	WO 9952956	HCAPLUS
Anon	2001	WO 0151532 A1	HCAPLUS
Boom	1972	US 3699038 A	HCAPLUS
Boom	1973	US 3737042 A	HCAPLUS
Brinegar	1973	US 3720607 A	HCAPLUS
Brinegar	1974	US 3841492 A	HCAPLUS
Fujishima	2003	US 6624470 B1	HCAPLUS
Ram	1974	US 3851025 A	HCAPLUS
Rasmussen	1998	US 5712408 A	HCAPLUS

Rasmussen	2000		US 6096899 A	HCAPLUS
Rasmussen	2001		US 6274724 B1	
Rasmussen	2002		US 20020028952 A1	
Rasmussen	2002		US 6384068 B1	HCAPLUS
Rasmussen	2002		US 6482954 B1	HCAPLUS
Rasmussen et al..	2001		US 20010053823 A1	
Sakaguchi	2004		US 20040062969 A1	
Savinell	1996		US 5525436 A	HCAPLUS

L149 ANSWER 18 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2004:433703 HCAPLUS

DN 141:9611

TI Enzyme immobilization for use in biofuel cells and sensors

IN Minteer, Shelley D.; Akers, Niki L.; Moore, Christine M.

PA St. Louis University, USA

SO U.S. Pat. Appl. Publ., 33 pp., which

CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2004101741	A1	20040527	US 2003-617452	20030711 <--
	CA 2507455	A1	20040617	CA 2003-2507455	20031121 <--
	WO 2004051774	A2	20040617	WO 2003-US37336	20031121 <--
	WO 2004051774	A3	20041125		
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
	AU 2003297552	A1	20040623	AU 2003-297552	20031121 <--
	EP 1565957	A2	20050824	EP 2003-812443	20031121 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK				
	JP 2006508519	T	20060309	JP 2004-570766	20031121 <--
PRAI	US 2002-429829P	P	20021127 <--		
	US 2003-486076P	P	20030710		
	US 2003-617452	A	20030711		
	WO 2003-US37336	W	20031121		
OS	MARPAT 141:9611				
AB	Disclosed are bioanodes comprising a quaternary ammonium treated Nafion polymer membrane and a dehydrogenase incorporated within the treated Nafion polymer. The dehydrogenase catalyzes the oxidation of an organic fuel and reduces an adenine dinucleotide. The ion conducting polymer membrane lies juxtaposed to a polymethylene green redox polymer membrane, which serves to electro-oxidize the reduced adenine dinucleotide. The bioanode is used in a fuel cell to produce high power densities.				
IC	ICM H01M0004-90 ICS H01M0004-96; H01M0008-10; C12N0011-08				
INCL	429043000; 429044000; 429042000; 429030000; 429013000; 435180000				
CC	52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 7, 38				
ST	enzyme immobilization biofuel cell sensor; fuel cell				

biochem enzyme immobilization
 IT **Fuel cell cathodes**
 (biocathode; enzyme immobilization for use in biofuel cells and
 sensors)
 IT **Fuel cells**
 (biochem. fuel cells; enzyme immobilization for use
 in biofuel cells and sensors)
 IT **Polyanilines**
 Quinones
 RL: CAT (Catalyst use); USES (Uses)
 (enzyme immobilization for use in biofuel cells and sensors)
 IT 61-73-4, Methylene blue 92-31-9, Toluidine blue o 92-82-0D, Phenazine,
 derivs. 92-84-2, Phenothiazine 98-86-2, Acetophenone, uses 135-67-1,
 Phenoxyazine 139-85-5, 3,4-Dihydroxybenzaldehyde 521-31-3, Luminol
 531-53-3, Azure A 531-55-5, Azure B 553-24-2, Neutral red 2381-85-3,
 Nile blue 2679-01-8, Methylene green 3625-57-8, Nile blue A
 7440-04-2D, Osmium, phenanthrolinedione 9003-01-4, Polyacrylic acid
25013-01-8, Polypyridine 25233-30-1, Polyaniline
25233-34-5, Polythiophene 25265-76-3, Diaminobenzene
 27318-90-7, 1,10-Phenanthroline-5,6-dione **30604-81-0**,
Polypyrrole 37251-80-2, Toluidine blue 38096-29-6,
 Diaminopyridine 51878-01-4 54258-43-4, 1,10-Phenanthroline-5,6-diol
 68455-94-7D, Nitrofluorenone, derivs. 74485-93-1,
 Poly(difluoroacetylene) 86090-24-6, Brilliant cresyl blue 87257-37-2,
 Polythionine 103737-36-6, Toluene blue 104934-50-1,
 Poly(3-hexylthiophene) 126213-51-2, Poly(3,4-ethylenedioxothiophene)
 142189-51-3, Poly(thieno[3,4-b]thiophene) 150645-85-5, Poly(neutral red)
 150645-86-6, Poly(methylene blue) 153312-51-7, Poly(3-(4-
 fluorophenyl)thiophene) 161201-31-6 193265-88-2, Phenothiazin-5-iun,
 3-(dimethylamino)-7-(methylamino)-, chloride homopolymer
259737-85-4, Poly(3,4-ethylenedioxypyrrole) 308284-47-1,
 Benzo[a]phenoxazin-7-iun, 5-amino-9-(diethylamino)-, sulfate (2:1)
 homopolymer 692776-93-5
 RL: CAT (Catalyst use); USES (Uses)
 (enzyme immobilization for use in biofuel cells and sensors)
 IT 1643-19-2, Tetrabutylammonium bromide **25036-53-7**, Kapton
25232-42-2, Poly(N-vinylimidazole)
 RL: DEV (Device component use); USES (Uses)
 (enzyme immobilization for use in biofuel cells and sensors)
 IT **25013-01-8, Polypyridine 25233-30-1, Polyaniline**
25233-34-5, Polythiophene **30604-81-0**,
Polypyrrole **259737-85-4**, Poly(3,4-ethylenedioxypyrrole)
 RL: CAT (Catalyst use); USES (Uses)
 (enzyme immobilization for use in biofuel cells and sensors)
 RN 25013-01-8 HCPLUS
 CN Pyridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-86-1
CMF C5 H5 N

RN 25233-30-1 HCPLUS

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
CMF C6 H7 N

RN 25233-34-5 HCPLUS

CN Thiophene, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-02-1
CMF C4 H4 S

RN 30604-81-0 HCPLUS

CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7
CMF C4 H5 N

RN 259737-85-4 HCPLUS

CN 6H-1,4-Dioxino[2,3-c]pyrrole, 2,3-dihydro-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 169616-17-5
CMF C6 H7 N O2

IT 25036-53-7, Kapton 25232-42-2, Poly(N-vinylimidazole)

RL: DEV (Device component use); USES (Uses)
 (enzyme immobilization for use in biofuel cells and sensors)

RN 25036-53-7 HCPLUS

CN Poly[(5,7-dihydro-1,3,5,7-tetraoxobenzo[1,2-c:4,5-c']dipyrrole-2,6(1H,3H)-
 diyl)-1,4-phenyleneoxy-1,4-phenylene] (9CI) (CA INDEX NAME)

RN 25232-42-2 HCPLUS

CN 1H-Imidazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1072-63-5

CMF C5 H6 N2

L149 ANSWER 19 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2004:405622 HCPLUS

DN 140:393384

TI Procedure for the fabrication of a lithium secondary **battery**
 with a **cathode** active material containing lithium cobalt oxide
 as Li intercalating heavy metal oxide

IN Naarmann, Herbert; Kruger, Franz Josef; Theuerkauf, Stefan

PA Gaia Akkumulatorenwerke G.m.b.H., Germany; Dilo Trading AG

SO Ger. Offen., 6 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 10250747	A1	20040519	DE 2002-10250747	20021031 <--
	DE 10250747	B4	20050217		

PRAI DE 2002-10250747 20021031 <--

AB A **cathode** active material contains Co-Li oxide, a polymer binder, a poly(vinyl) compound and an aprotic solvent; an **anode** active mass contains a Li-intercalating carbon, a polymer binder, a poly(vinyl) compound, and an aprotic solvent; and a separator is placed between the **anode** and the **cathode**. According to the invention, this **battery** system is fabricated economically with a **cathode**, which is a mixture of Li cobalt oxide with other Li intercalating metal oxides, whereby the necessary quantity of conducting

salts for the entire **battery** system is brought in over the separator as intermediate layer.

IC ICM H01M0010-38
ICS H01M0010-40

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
ST lithium secondary **battery** fabrication process
IT Styrene-butadiene rubber, uses

RL: DEV (Device component use); USES (Uses)
(block, triblock; procedure for fabrication of lithium secondary **battery** with **cathode** active material containing lithium cobalt oxide as Li intercalating heavy metal oxide)

IT **Secondary batteries**
(lithium; procedure for fabrication of lithium secondary **battery** with **cathode** active material containing lithium cobalt oxide as Li intercalating heavy metal oxide)

IT **Battery anodes**

Battery cathodes
(procedure for fabrication of lithium secondary **battery** with **cathode** active material containing lithium cobalt oxide as Li intercalating heavy metal oxide)

IT Carbon black, uses
Chromates
Fluoro rubber
Isoprene-styrene rubber
Molybdates

Polyanilines

Polyolefins
Titannates

RL: MOA (Modifier or additive use); USES (Uses)
(procedure for fabrication of lithium secondary **battery** with **cathode** active material containing lithium cobalt oxide as Li intercalating heavy metal oxide)

IT Group VIB element compounds

RL: MOA (Modifier or additive use); USES (Uses)
(tungstates; procedure for fabrication of lithium secondary **battery** with **cathode** active material containing lithium cobalt oxide as Li intercalating heavy metal oxide)

IT 25038-32-8

RL: MOA (Modifier or additive use); USES (Uses)
(isoprene-styrene rubber, procedure for fabrication of lithium secondary **battery** with **cathode** active material containing lithium cobalt oxide as Li intercalating heavy metal oxide)

IT 7440-22-4, Silver, uses 7440-32-6, Titanium, uses

RL: MOA (Modifier or additive use); USES (Uses)
(powder; procedure for fabrication of lithium secondary **battery** with **cathode** active material containing lithium cobalt oxide as Li intercalating heavy metal oxide)

IT 96-49-1, Ethylene carbonate 105-58-8, Diethyl carbonate 108-32-7,
Propylene carbonate 616-38-6, Dimethyl carbonate 623-53-0, Ethyl
methyl carbonate 12190-79-3, Cobalt lithium oxide colio2 21324-40-3,
Lithium hexafluorophosphate 52627-24-4, Cobalt lithium oxide
90076-65-6, Lithium triflimide 244761-29-3, Lithium bis(oxalato) borate

RL: DEV (Device component use); USES (Uses)
(procedure for fabrication of lithium secondary **battery** with **cathode** active material containing lithium cobalt oxide as Li intercalating heavy metal oxide)

IT 1305-78-8, Calcia, uses 1309-48-4, Magnesium oxide (MgO), uses
1344-28-1, Alumina, uses 7782-42-5, Graphite, uses 9003-39-8,
Polyvinylpyrrolidone 9003-47-8, Polyvinylpyridine 9011-17-0,
Kynar 2801 25232-42-2, Polyvinylimidazole 25233-30-1,

Polyaniline 30604-81-0, Polypyrrole

39300-70-4, Lithium nickel oxide 39457-42-6, Lithium manganese oxide
 49717-97-7D, 2-Propenoic acid, 2-methyl-, ion(1-) homopolymer, C4-20 alc.
 derivs

RL: MOA (Modifier or additive use); USES (Uses)

(procedure for fabrication of lithium secondary **battery** with
cathode active material containing lithium cobalt oxide as Li
 intercalating heavy metal oxide)

IT 106107-54-4 694491-73-1

RL: DEV (Device component use); USES (Uses)

(styrene-butadiene rubber, block, triblock; procedure for fabrication
 of lithium secondary **battery** with **cathode** active
 material containing lithium cobalt oxide as Li intercalating heavy metal
 oxide)

IT 9003-39-8, Polyvinylpyrrolidone 9003-47-8,

Polyvinylpyridine 25232-42-2, Polyvinylimidazole

25233-30-1, Polyaniline 30604-81-0,

Polypyrrole

RL: MOA (Modifier or additive use); USES (Uses)

(procedure for fabrication of lithium secondary **battery** with
cathode active material containing lithium cobalt oxide as Li
 intercalating heavy metal oxide)

RN 9003-39-8 HCPLUS

CN 2-Pyrrolidinone, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 88-12-0

CMF C6 H9 N O

RN 9003-47-8 HCPLUS

CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1

CMF C7 H7 N

CCI IDS

D1-CH=CH₂

RN 25232-42-2 HCPLUS

CN 1H-Imidazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1072-63-5
 CMF C5 H6 N2

RN 25233-30-1 HCAPLUS
 CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
 CMF C6 H7 N

RN 30604-81-0 HCAPLUS
 CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7
 CMF C4 H5 N

L149 ANSWER 20 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 2004:328921 HCAPLUS
 DN 140:342159
 TI Polymer membranes for a membrane-electrode unit for fuel cell
 PA Sartorius A.-G., Germany
 SO Ger. Gebrauchsmusterschrift, 12 pp.
 CODEN: GGXXFR
 DT Patent
 LA German
 FAN.CNT 2
 PATENT NO. KIND DATE APPLICATION NO. DATE

 PI DE 202004000365 U1 20040422 DE 2004-202004000365 20040113 <--

DE 10301810 A1 20040729 DE 2003-10301810 20030120 <--
 PRAI DE 2003-10301810 IA 20030120 <--
 AB A membrane-electrode unit for polymer electrolyte fuel
 cells with an operating temperature $\leq 250^\circ$ consists at
 least of two laminar gas distribution electrodes and a
 sandwich-like in-between arranged polymer membrane with ≥ 1 basic
 polymer as well as a dopant, provided between them. The gas distribution
 electrodes are so charged that they represent a dopant reservoir
 for the polymer membrane, whereby the polymer membrane is proton
 -conductive and firmly tied up to the gas distribution
 electrodes over the dopant after effect of pressure and temperature and
 has in the doped condition a conductivity of at least 0.1 S/m at a
 temperature of $> 25^\circ$.
 IC ICM H01M0008-02
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy
 Technology)
 Section cross-reference(s): 38
 ST polymer membrane electrode unit fuel cell
 IT Membranes, nonbiological
 (polymer membranes for membrane-electrode unit for
 fuel cell)
 IT Polybenzimidazoles
 Polybenzothiazoles
 Polybenzoxazoles
 Polyoxadiazoles
 Polyquinoxalines
 RL: DEV (Device component use); USES (Uses)
 (polymer membranes for membrane-electrode unit for
 fuel cell)
 IT Fuel cells
 (solid electrolyte; polymer membranes for membrane-electrode
 unit for fuel cell)
 IT 2425-79-8, 1,4-Butanediol diglycidyl ether
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical
 process); PROC (Process)
 (polymer membranes for membrane-electrode unit for
 fuel cell)
 IT 298-07-7, Di(2-ethylhexyl) phosphate 838-85-7, Diphenyl phosphate
 7440-06-4, Platinum, uses 7664-38-2D, Phosphoric acid, diester
 25013-01-8, Polypyridine 82370-43-2, Polyimidazole
 128611-69-8, 1,3,4-Thiadiazole homopolymer 190201-51-5,
 Pyrimidine homopolymer
 RL: DEV (Device component use); USES (Uses)
 (polymer membranes for membrane-electrode unit for
 fuel cell)
 IT 7664-38-2, Phosphoric acid, uses
 RL: MOA (Modifier or additive use); USES (Uses)
 (polymer membranes for membrane-electrode unit for
 fuel cell)
 IT 25013-01-8, Polypyridine 82370-43-2, Polyimidazole
 128611-69-8, 1,3,4-Thiadiazole homopolymer 190201-51-5,
 Pyrimidine homopolymer
 RL: DEV (Device component use); USES (Uses)
 (polymer membranes for membrane-electrode unit for
 fuel cell)
 RN 25013-01-8 HCPLUS
 CN Pyridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-86-1
 CMF C5 H5 N

RN 82370-43-2 HCPLUS
 CN 1H-Imidazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-32-4
 CMF C3 H4 N2

RN 128611-69-8 HCPLUS
 CN 1,3,4-Thiadiazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 289-06-5
 CMF C2 H2 N2 S

RN 190201-51-5 HCPLUS
 CN Pyrimidine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 289-95-2
 CMF C4 H4 N2

L149 ANSWER 21 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 2004:287993 HCPLUS
 DN 140:306759
 TI Polyazole-based proton-conducting membrane for

fuel cell use

IN Calundann, Gordon; Benicewicz, Brian; Baurmeister, Jochen
 PA Celanese Ventures G.m.b.H., Germany; Pemeas GmbH

SO PCT Int. Appl., 44 pp.
 CODEN: PIXXD2

DT **Patent**

LA German

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2004030135	A2	20040408	WO 2003-EP9198	20030820 <--
	WO 2004030135	A3	20050512		
	W: BR, CA, CN, JP, KR, MX, US				
	RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR				
	DE 10242708	A1	20040519	DE 2002-10242708	20020913 <--
	CA 2498370	A1	20040408	CA 2003-2498370	20030820 <--
	EP 1550174	A2	20050706	EP 2003-747913	20030820 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, SK				
	CN 1689186	A	20051026	CN 2003-821673	20030820 <--
	JP 2005538237	T	20051215	JP 2004-538814	20030820 <--
	US 2006035095	A1	20060216	US 2005-527649	20051020 <--

PRAI DE 2002-10242708 A 20020913 <--
 WO 2003-EP9198 W 20030820

AB The invention relates to novel **proton-conducting** and polyazole **conducting** polymer membrane based on the polyazoles and to the use thereof as a polymer electrolyte-membrane (PEM) for the production of membrane-electrode-units for PEM-fuel cells. The invention also relates to other molded bodies based on the polyazoles.

IC ICM H01M0008-10

CC 52-2 (**Electrochemical**, Radiational, and Thermal Energy Technology)

ST Section cross-reference(s): 38

ST polyazole based **proton conducting** membrane
fuel cell

IT Amines, processes

RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)

(aromatic, tetra-; polyazole-based **proton-conducting** membrane for **fuel cell** use)

IT Carboxylic acids, processes

RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)

(dicarboxylic, aromatic; polyazole-based **proton-conducting** membrane for **fuel cell** use)

IT **Heterocyclic compounds**

RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)

(nitrogen, five-membered, polymers; polyazole-based **proton-conducting** membrane for **fuel cell** use)

IT **Fuel cell electrolytes**

(polyazole-based **proton-conducting** membrane for **fuel cell** use)

IT Polybenzimidazoles

RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)

(polyazole-based **proton-conducting** membrane for

fuel cell use)
 IT Polybenzothiazoles
 Polybenzoxazoles
 Polyoxadiazoles
Polyquinoxalines
 RL: DEV (Device component use); USES (Uses)
 (polyazole-based proton-conducting membrane for
 fuel cell use)
 IT Fuel cells
 (solid electrolyte; polyazole-based proton-conducting
 membrane for fuel cell use)
 IT 88-99-3, Phthalic acid, processes 89-05-4, Benzene 1,2,4,5-
 tetracarboxylic acid 91-95-2, 3,3',4,4'-Tetraaminobiphenyl 99-31-0,
 5-Aminoisophthalic acid 100-21-0, Terephthalic acid, processes
 100-26-5, Pyridine-2,5-dicarboxylic acid 100-31-2, 4,4'-
 Stilbenedicarboxylic acid 121-91-5, Isophthalic acid, processes
 122-05-4, 2,5-Pyrazinedicarboxylic acid 128-97-2, Naphthalene-1,4,5,8-
 tetracarboxylic acid 482-05-3, Diphenic acid 499-80-9,
 Pyridine-2,4-dicarboxylic acid 499-81-0, Pyridine-3,5-dicarboxylic acid
 499-83-2, Pyridine-2,6-dicarboxylic acid 528-44-9, Trimellitic acid
 536-20-9, 2,4,6-Pyridine tricarboxylic acid 554-95-0, Trimesic acid
 605-70-9, 1,4-Naphthalenedicarboxylic acid 610-92-4,
 2,5-Dihydroxyterephthalic acid 618-83-7, 5-Hydroxyisophthalic acid
 636-46-4, 4-Hydroxyisophthalic acid 636-94-2, 2-Hydroxyterephthalic acid
 652-03-9, Tetrafluorophthalic acid 652-36-8, Tetrafluoroterephthalic
 acid 787-70-2, Biphenyl-4,4'-dicarboxylic acid 835-58-5,
 4-Trifluoromethylphthalic acid 964-68-1, Benzophenone-4,4'-dicarboxylic
 acid 1141-38-4, 2,6-Naphthalenedicarboxylic acid 1147-65-5
 1171-47-7, 2,2-Bis(4-carboxyphenyl)hexafluoropropane 1551-39-9,
 Tetrafluoroisophthalic acid 1583-66-0, 5-Fluoroisophthalic acid
 1583-67-1, 3-Fluorophthalic acid 1779-05-1, 3,3',4,4'-
 Tetraaminodiphenylmethane 2089-89-6, 2,7-Naphthalenedicarboxylic acid
 2215-89-6, Diphenyl ether-4,4'-dicarboxylic acid 2449-35-6,
 Diphenylsulfone-4,4'-dicarboxylic acid 2479-49-4,
 Benzophenonetetracarboxylic acid 2676-59-7, 3,3',4,4'-
 Tetraaminodiphenylether 3112-31-0, 3,5-Pyrazole dicarboxylic
 acid 3204-61-3, 1,2,4,5-Tetraaminobenzene 3209-07-2,
 3,5-Dihydroxyphthalic acid 3786-46-7, 3,6-Dihydroxyphthalic acid
 3906-87-4 4371-28-2, 3,5,3',5'-Biphenyltetracarboxylic acid 4861-72-7,
 5-(N,N-Dimethylamino)isophthalic acid 5007-67-0, 3,3',4,4'-
 Tetraaminobenzophenone 7315-96-0, 1,5-Naphthalenedicarboxylic acid
 13224-79-8, 3,3',4,4'-Tetraaminodiphenylsulfone 19438-88-1 19675-63-9,
 4-Carboxycinnamic acid 19829-72-2, 2,3-Dihydroxy-1,4-benzenedicarboxylic
 acid 36966-22-0 37645-41-3, 2,4-Pyrimidinedicarboxylic acid
 38926-45-3, 2,3,5,6-Tetraaminopyridine 39155-64-1, 1,2,5,6-
 Naphthalenetetracarboxylic acid 59195-28-7, 2,5-Pyridinedicarboxylic
 acid, 4-phenyl- 82784-82-5, 3,4-Dihydroxyphthalic acid 603993-70-0
 677010-19-4, 5-(N,N-Diethylamino)isophthalic acid 677010-20-7
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical
 process); PROC (Process)
 (polyazole-based proton-conducting membrane for
 fuel cell use)
 IT 129-00-0D, Pyrene, Tetraza derivs. polymers 25013-01-8,
 Polypyridine 128611-69-8, 1,3,4-Thiadiazole homopolymer
 190201-51-5, Pyrimidine homopolymer
 RL: DEV (Device component use); USES (Uses)
 (polyazole-based proton-conducting membrane for
 fuel cell use)
 IT 3112-31-0, 3,5-Pyrazole dicarboxylic acid
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical

process); PROC (Process)
 (polyazole-based proton-conducting membrane for
 fuel cell use)

RN 3112-31-0 HCAPLUS

CN 1H-Pyrazole-3,5-dicarboxylic acid (9CI) (CA INDEX NAME)

IT 25013-01-8, Polypyridine 128611-69-8, 1,3,4-Thiadiazole homopolymer 190201-51-5, Pyrimidine homopolymer

RL: DEV (Device component use); USES (Uses)
 (polyazole-based proton-conducting membrane for
 fuel cell use)

RN 25013-01-8 HCAPLUS

CN Pyridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-86-1

CMF C5 H5 N

RN 128611-69-8 HCAPLUS

CN 1,3,4-Thiadiazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 289-06-5

CMF C2 H2 N2 S

RN 190201-51-5 HCAPLUS

CN Pyrimidine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 289-95-2

CMF C4 H4 N2

L149 ANSWER 22 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 2004:161244 HCPLUS
 DN 140:202430
 TI Salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials
 IN Armand, Michel; Michot, Christophe; Gauthier, Michel; Choquette, Yves
 PA Hydro-Quebec, Can.; Centre National De La Recherche Scientifique (CNRS)
 SO Eur. Pat. Appl., 33 pp.
 CODEN: EPXXDW

DT Patent
 LA French

FAN.CNT 5

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 1391952	A2	20040225	EP 2003-292436	19971230 <--
	R: DE, FR, GB, CA 2194127	IT A1	19980630	CA 1996-2194127	19961230 <--
	CA 2199231	A1	19980905	CA 1997-2199231	19970305 <--
	EP 850933	A1	19980701	EP 1997-403188	19971230 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
	EP 889863	A2	19990113	EP 1997-951051	19971230 <--
	EP 889863	B1	20030507		
	R: DE, FR, GB, IT				
	EP 890176	A1	19990113	EP 1997-951052	19971230 <--
	EP 890176	B1	20010620		
	R: DE, FR, GB, IT				
	JP 2000508114	T	20000627	JP 1998-529517	19971230 <--
	JP 2000508346	T	20000704	JP 1998-529516	19971230 <--
	JP 2000508676	T	20000711	JP 1998-529514	19971230 <--
	JP 2000508677	T	20000711	JP 1998-529515	19971230 <--
	JP 2000508678	T	20000711	JP 1998-529518	19971230 <--
	JP 2002514245	T	20020514	JP 1998-529513	19971230 <--
	US 6120696	A	20000919	US 1998-125792	19980828 <--
	US 6171522	B1	20010109	US 1998-101811	19981119 <--
	US 6333425	B1	20011225	US 1998-101810	19981119 <--
	US 6228942	B1	20010508	US 1998-125798	19981202 <--
	US 6395367	B1	20020528	US 1998-125799	19981202 <--
	US 6319428	B1	20011120	US 1998-125797	19981203 <--
	US 6365068	B1	20020402	US 2000-609362	20000630 <--
	US 6576159	B1	20030610	US 2000-638793	20000809 <--
	US 2001024749	A1	20010927	US 2001-826941	20010406 <--
	US 6506517	B2	20030114		
	US 2002009650	A1	20020124	US 2001-858439	20010516 <--
	US 2002102380	A1	20020801	US 2002-107742	20020327 <--
	US 6835495	B2	20041228		
	US 2003052310	A1	20030320	US 2002-253035	20020924 <--
	US 2003066988	A1	20030410	US 2002-253970	20020924 <--
	US 2005074668	A1	20050407	US 2004-789453	20040227 <--
	US 2005123831	A1	20050609	US 2004-926283	20040825 <--
PRAI	CA 1996-2194127	A	19961230	<--	
	CA 1997-2199231	A	19970305	<--	

EP 1997-403188	A3	19971230	<--
WO 1997-CA1008	W	19971230	<--
WO 1997-CA1009	W	19971230	<--
WO 1997-CA1010	W	19971230	<--
WO 1997-CA1011	W	19971230	<--
WO 1997-CA1012	W	19971230	<--
WO 1997-CA1013	W	19971230	<--
US 1998-101810	A3	19981119	<--
US 1998-101811	A3	19981119	<--
US 1998-125798	A3	19981202	<--
US 1998-125799	A3	19981202	<--
US 1998-125797	A1	19981203	<--
US 2000-638793	A1	20000809	<--
US 2001-858439	A1	20010516	<--
US 2002-107742	A1	20020327	<--

AB This invention describes ionic compds. where the anionic charge is delocalized. One compound of the invention contains an anionic part associated with at least one mono- or multivalent cationic part $Mm+$, in a number sufficient to ensure electronic neutrality of the material. M can be a hydronium, nitrosyl NO_+ , an ammonium NH_4^+ , a metallic cation with valence m, an organic cation having a valence m, or an organometallic cation having valence m. The anionic charge is carried by a new pentacyclic moiety or derivative of tetrapentalene carrying electroattractive substituents. The compds. are used notably for ionic conduction, electronic conductors, dyes and colorants, and catalysts for diverse chemical reactions. They can also be used as electrolytes in **fuel cells** and **batteries**.

IC ICM H01M0006-16
ICS H01M0010-40

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 27, 28, 29, 35, 76

ST pentacyclic tetrapentalene salt charge delocalized anion ionic conduction; alkali alk earth transition metal salt heterocyclic electrolyte polymer; **electrochem cell** fuel polyelectrolyte cond soly catalysis fluoropolymer polysiloxane

IT Spinel-type crystals
($Li_{y}Mn_{1-x}M_xO_2$, pos. **electrode**; salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)

IT Carbon black, uses
RL: DEV (Device component use); PRP (Properties); USES (Uses)
(composite **electrodes** with soft polymer or $LiCoO_2$ and polymer gel electrolytes, or with acetylene black, VO_2 and PEO; salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)

IT Lithiation
(during **battery** operation; salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)

IT **Heterocyclic compounds**
RL: PRP (Properties); RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(nitrogen, five-membered, aromatic, anions of; salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)

IT Cyclic voltammetry
(of secondary **battery** cells with polymer gel electrolytes; salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)

IT Polysulfides

- RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
(organic, pos. **electrode**; salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)
- IT Olivine-group minerals
RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
(pos. **electrode**; salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)
- IT **Secondary batteries**
(salts of pentacyclic or tetrapentalene derived anions for use in; salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)
- IT Aldol condensation catalysts
Antistatic agents
Coloring materials
Corrosion inhibitors
Dyes
Electron delocalization
Esterification
Friedel-Crafts reaction catalysts
Fuel cell separators
Heterojunction solar cells
Ionic liquids
Michael reaction catalysts
Plasticizers
Polyelectrolytes
Polymer electrolytes
Polymerization catalysts
Solubility
Substitution reaction, nucleophilic
Surfactants
(salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)
- IT Fluoropolymers, uses
Polyanilines
Salts, uses
RL: DEV (Device component use); PRP (Properties); SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)
- IT 12036-21-4, Vanadium dioxide
RL: DEV (Device component use); USES (Uses)
(**battery electrode** composites with acetylene black and PEO; salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)
- IT 210469-97-9P
RL: DEV (Device component use); PRP (Properties); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)
(composite **electrodes** with LiCoO₂ and carbon black; salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)
- IT 661461-60-5DP, **polyaniline** doped with
RL: PEP (Physical, engineering or chemical process); PRP (Properties); PUR (Purification or recovery); PYP (Physical process); SPN (Synthetic preparation); PREP (Preparation); PROC (Process)
(conductor and corrosion inhibitor; salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)

- IT 1314-35-8, Tungsten trioxide, uses 202847-01-6, Hydrogen iridium oxide
 RL: DEV (Device component use); USES (Uses)
 (electrode; salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)
- IT 7429-90-5, Aluminum, uses
 RL: DEV (Device component use); PRP (Properties); TEM (Technical or engineered material use); USES (Uses)
 (in **electrochem. cells**, and corrosion of; salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)
- IT 7439-93-2D, Lithium, alloys
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (neg. **electrode**; salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)
- IT 1317-37-9, Iron sulfide (FeS) 10028-22-5, Iron sulfate (Fe₂(SO₄)₃)
 11099-11-9, Vanadium oxide 12068-85-8, Iron disulfide (FeS₂)
 12423-04-0, Lithium vanadium oxide (LiV₃O₈) 61179-01-9, Aluminum lithium manganese oxide 131344-56-4, Cobalt lithium nickel oxide 133782-19-1, Lithium manganese vanadium oxide 162684-16-4, Lithium manganese nickel oxide 204450-96-4, Chromium lithium manganese oxide
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (pos. **electrode**; salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)
- IT 289-06-5D, Thiadiazole, anionic derivs. 289-95-2D, Pyrimidine, anionic derivs. 290-37-9D, Pyrazine, anionic derivs. 7439-93-2, Lithium, uses 11120-54-0D, Oxadiazole, anionic derivs.
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)
- IT 709-62-6P 7343-34-2P, 3,5-Dimethyl-1H-1,2,4-triazole
 25979-00-4P 210289-29-5P 210289-38-6P 210289-49-9P
 210289-52-4P 210469-88-8P 210469-95-7P 661461-45-6P 661461-57-0P
 661461-60-5P
 RL: PUR (Purification or recovery); RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)
- IT 76-05-1, reactions 78-94-4, Methyl vinyl ketone, reactions 94-41-7
 98-88-4, Benzoyl chloride 100-52-7, Benzaldehyde, reactions 100-66-3,
 Anisole, reactions 102-52-3, 1,1,3,3-Tetramethoxypropane 106-20-7,
 Di-2-ethylhexylamine 108-24-7, Acetic anhydride 109-72-8,
 Butyllithium, reactions 110-61-2, Succinic dinitrile 112-76-5, Stearic acid chloride 121-44-8, Triethylamine, reactions 143-33-9, Sodium cyanide 144-55-8, Sodium bicarbonate, reactions 303-04-8,
 2,3-Dichloro-Hexafluoro-2-butene 326-90-9, 4,4,4-Trifluoro-1-(2-furyl)-1,3-butanedione 326-91-0 375-72-4, Perfluorobutanesulfonyl fluoride 407-38-5, 2,2,2-Trifluoroethyl trifluoroacetate 421-83-0,
 Trifluoromethanesulfonyl chloride 497-19-8, Sodium carbonate, reactions 538-75-0, Dicyclohexylcarbodiimide 542-92-7, Cyclopentadiene, reactions 554-13-2, Lithium carbonate 584-08-7, Potassium carbonate 676-58-4,
 Methylmagnesium chloride 677-25-8, Ethenesulfonyl fluoride 692-50-2
 693-13-0, 1,3-Diisopropylcarbodiimide 764-93-2, 1-Decyne 765-12-8,
 Triethylene glycol divinyl ether 917-70-4, Lanthanum acetate 937-14-4,
 3-Chloroperoxybenzoic acid 1000-84-6 1068-57-1, Acetylhydrazide 1122-28-7, 4,5-Dicyanoimidazole 1310-58-3, Potassium hydroxide, reactions 1522-22-1, Hexafluoroacetylacetone 1643-19-2,
 Tetrabutylammonium bromide 1648-99-3 2094-98-6, 1,1'-

Azobis(cyclohexanecarbonitrile) 2582-30-1, 1-Aminoguanidine bicarbonate
 2633-67-2, 4-Styrenesulfonyl chloride 2638-94-0, 4,4'-Azobis(4-
 cyanovaleric acid) 2893-78-9, Dichloroisocyanuric acid, sodium salt
 3804-23-7, Scandium acetate 4546-95-6, 1,2,3-Triazole-4,5-
 dicarboxylic acid 7447-41-8, Lithium chloride, reactions 7647-01-0,
 Hydrochloric acid, reactions 7647-14-5, Sodium chloride, reactions
 7664-39-3, Hydrofluoric acid, reactions 7757-82-6, Sodium sulfate,
 reactions 7758-09-0, Potassium nitrite 7782-50-5, Chlorine, reactions
 7789-23-3, Potassium fluoride 9002-92-0, Brij 30 13360-57-1
 13637-84-8, Chlorosulfonyl fluoride 13781-67-4, 2-(3-Thienyl)ethanol
 14635-75-7, Nitrosonium tetrafluoroborate 16090-14-5 17455-13-9,
 18-Crown-6 17587-22-3, 1,1,1,2,2,3,3-Heptafluoro-7,7-dimethyl-4,6-
 octanedione 20583-66-8, 1,1,1,5,5,6,6,7,7,7-Decafluoro-2,4-Heptanedione
 26628-22-8, Sodium azide 27070-49-1, 1,2,3-Triazole 31469-15-5,
 1-Methoxy-1-(trimethylsilyloxy)-2-methyl-1-propene 39262-22-1
 39377-49-6, Copper cyanide 53188-07-1, Trolox 56512-49-3,
 4-(Dimethylamino)azobenzene-4'-sulfonyl chloride 65039-09-0,
 1-Ethyl-3-methyl-1H-imidazolium chloride 66051-48-7 77968-17-3
 81850-46-6 81850-47-7 89183-45-9, Polyaniline hydrochloride
 210049-00-6 210289-26-2 210289-55-7 210469-93-5 661461-58-1
 661461-61-6

RL: RCT (Reactant); RACT (Reactant or reagent)
 (salts of pentacyclic or tetrapentalene derived anions, and their uses
 as ionic conductive materials)

IT 7081-78-9P, 1-Chloro-1-ethoxyethane 14694-34-9P 210289-23-9P
210289-24-0P 210289-27-3P 210289-28-4P 210289-33-1P
 210289-34-2P 210289-35-3P 210469-96-8P 210470-00-1P 661461-47-8P
 661461-59-2P 661467-33-0P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
 (Reactant or reagent)
 (salts of pentacyclic or tetrapentalene derived anions, and their uses
 as ionic conductive materials)

IT **289-95-2D**, Pyrimidine, anionic derivs.
 RL: DEV (Device component use); TEM (Technical or engineered material
 use); USES (Uses)
 (salts of pentacyclic or tetrapentalene derived anions, and their uses
 as ionic conductive materials)

RN 289-95-2 HCAPLUS
 CN Pyrimidine (8CI, 9CI) (CA INDEX NAME)

IT **709-62-6P 7343-34-2P, 3,5-Dimethyl-1H-1,2,4-triazole**
25979-00-4P 210289-38-6P
 RL: PUR (Purification or recovery); RCT (Reactant); SPN (Synthetic
 preparation); PREP (Preparation); RACT (Reactant or reagent)
 (salts of pentacyclic or tetrapentalene derived anions, and their uses
 as ionic conductive materials)

RN 709-62-6 HCAPLUS
 CN 1H-1,2,4-Triazole, 3,5-bis(trifluoromethyl)- (9CI) (CA INDEX NAME)

RN 7343-34-2 HCAPLUS
 CN 1H-1,2,4-Triazole, 3,5-dimethyl- (9CI) (CA INDEX NAME)

RN 25979-00-4 HCAPLUS
 CN 1H-1,2,4-Triazol-3-amine, 5-(trifluoromethyl)- (9CI) (CA INDEX NAME)

RN 210289-38-6 HCAPLUS
 CN 1H-1,2,3-Triazole, 4,5-bis(trifluoromethyl)- (9CI) (CA INDEX NAME)

IT 1122-28-7, 4,5-Dicyanoimidazole 4546-95-6,
 1,2,3-Triazole-4,5-dicarboxylic acid
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (salts of pentacyclic or tetrapentalene derived anions, and their uses
 as ionic conductive materials)
 RN 1122-28-7 HCAPLUS
 CN 1H-Imidazole-4,5-dicarbonitrile (9CI) (CA INDEX NAME)

RN 4546-95-6 HCAPLUS
 CN 1H-1,2,3-Triazole-4,5-dicarboxylic acid (9CI) (CA INDEX NAME)

IT 210289-24-0P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (salts of pentacyclic or tetrapentalene derived anions, and their uses as ionic conductive materials)
 RN 210289-24-0 HCAPLUS
 CN 1H-1,2,4-Triazole-3-carbonitrile, 5-(trifluoromethyl)- (9CI) (CA INDEX NAME)

L149 ANSWER 23 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2004:117315 HCAPLUS

DN 140:149157

TI An electrode for an electrochemical cell
 like a secondary battery and an electric double layer capacitor
 IN Nobuta, Tomoki; Nishiyama, Toshihiko; Kamisuki,
 Hiroyuki; Kaneko, Shinako; Kuroasaki, Masato;
 Nakagawa, Yuji; Mitani, Masaya

PA NEC Tokin Corporation, Japan

SO Eur. Pat. Appl., 20 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 1388906	A2	20040211	EP 2003-16458	20030722 <--
	EP 1388906	A3	20061011		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK				
	JP 2004127920	A	20040422	JP 2003-198660	20030717 <--
	JP 3701952	B2	20051005		
	KR 2004014247	A	20040214	KR 2003-53615	20030802 <--
	CN 1481042	A	20040310	CN 2003-152651	20030804 <--
	US 2004029003	A1	20040212	US 2003-634607	20030805 <--
	TW 241734	B	20051011	TW 2003-92121409	20030805 <--
	HK 1060654	A1	20051125	HK 2004-102952	20040427 <--
PRAI	JP 2002-227160	A	20020805 <--		
AB	This invention provides an electrode for an electrochem				

cell in which an active material in an **electrode** material is a **proton-conducting** compound, wherein the **electrode** material comprises a nitrogen-containing heterocyclic compound or a polymer having a unit containing a nitrogen-containing heterocyclic moiety.

IC ICM H01M0004-60
ICS H01M0004-02

CC 52-2 (**Electrochemical**, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 27, 38, 72, 76

ST **battery electrode** nitrogen contg heterocyclic compd; elec double layer capacitor **electrode** nitrogen contg heterocyclic compd

IT Capacitors

(double layer; **electrode for electrochem.**

cell like secondary battery and elec. double layer capacitor)

IT **Battery cathodes**

Battery electrodes

Capacitor electrodes

Secondary batteries

(**electrode for electrochem. cell like**

secondary battery and elec. double layer capacitor)

IT Carbon black, uses

Fluoropolymers, uses

RL: MOA (Modifier or additive use); USES (Uses)

(**electrode for electrochem. cell like**

secondary battery and elec. double layer capacitor)

IT **Heterocyclic compounds**

RL: DEV (Device component use); USES (Uses)

(**nitrogen; electrode for electrochem.**

cell like secondary battery and elec. double layer capacitor)

IT **Heterocyclic compounds**

RL: DEV (Device component use); USES (Uses)

(**polymers, nitrogen-containing; electrode for**

electrochem. cell like secondary battery and elec. double layer capacitor)

IT **Polyquinoxalines**

RL: DEV (Device component use); USES (Uses)

(**polyphenylquinoxalines; electrode for electrochem.**

cell like secondary battery and elec. double layer capacitor)

IT 51-17-2, Benzimidazole 51-17-2D, Benzimidazole, derivative

288-13-1, Pyrazole 288-13-1D, Pyrazole, derivative

288-32-4, Imidazole, uses 288-32-4D, Imidazole, derivative

288-88-0, 1H-1,2,4-Triazole 670-96-2, 2-Phenylimidazole

20154-03-4, 3-Trifluoromethylpyrazole 25232-42-2,

Polyvinylimidazole 37306-44-8, Triazole 37306-44-8D, Triazole, derivative

420784-28-7, 1H-Indole trimer 652968-46-2

652968-47-3 652968-48-4

RL: DEV (Device component use); USES (Uses)

(**electrode for electrochem. cell like**

secondary battery and elec. double layer capacitor)

IT 24937-79-9, Polyfluorovinylidene

RL: MOA (Modifier or additive use); USES (Uses)

(**electrode for electrochem. cell like**

secondary battery and elec. double layer capacitor)

IT 7440-44-0, Carbon, uses

RL: MOA (Modifier or additive use); USES (Uses)

(vapor-grown; electrode for electrochem.
cell like secondary battery and elec. double layer
capacitor)

IT 51-17-2, Benzimidazole 51-17-2D, Benzimidazole, derivative
288-13-1, Pyrazole 288-13-1D, Pyrazole, derivative
288-32-4, Imidazole, uses 288-32-4D, Imidazole, derivative
288-88-0, 1H-1,2,4-Triazole 670-96-2, 2-Phenylimidazole
20154-03-4, 3-Trifluoromethylpyrazole 25232-42-2,
Polyvinylimidazole 420784-28-7, 1H-Indole
trimer 652968-48-4

RL: DEV (Device component use); USES (Uses)
(electrode for electrochem. cell like
secondary battery and elec. double layer capacitor)

RN 51-17-2 HCAPLUS

CN 1H-Benzimidazole (9CI) (CA INDEX NAME)

RN 51-17-2 HCAPLUS

CN 1H-Benzimidazole (9CI) (CA INDEX NAME)

RN 288-13-1 HCAPLUS

CN 1H-Pyrazole (9CI) (CA INDEX NAME)

RN 288-13-1 HCAPLUS

CN 1H-Pyrazole (9CI) (CA INDEX NAME)

RN 288-32-4 HCAPLUS

CN 1H-Imidazole (9CI) (CA INDEX NAME)

RN 288-32-4 HCAPLUS
 CN 1H-Imidazole (9CI) (CA INDEX NAME)

RN 288-88-0 HCAPLUS
 CN 1H-1,2,4-Triazole (7CI, 9CI) (CA INDEX NAME)

RN 670-96-2 HCAPLUS
 CN 1H-Imidazole, 2-phenyl- (9CI) (CA INDEX NAME)

RN 20154-03-4 HCAPLUS
 CN 1H-Pyrazole, 3-(trifluoromethyl)- (9CI) (CA INDEX NAME)

RN 25232-42-2 HCAPLUS
 CN 1H-Imidazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1072-63-5
 CMF C5 H6 N2

RN 420784-28-7 HCAPLUS
 CN 1H-Indole, trimer (9CI) (CA INDEX NAME)

CM 1

CRN 120-72-9
 CMF C₈ H₇ N

RN 652968-48-4 HCAPLUS
 CN Poly[(3-phenyl-7,2-quinoxalinediyl)-1,4-phenylene(3-phenyl-2,7-quinoxalinediyl)-1H-benzimidazole-5,2-diyl-1,4-phenylene-1H-benzimidazole-2,5-diyl] (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

L149 ANSWER 24 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2004:117171 HCPLUS

DN 140:165009

TI **Proton-conductive polyazole membranes containing phosphonic acid group-containing polymers and their application in fuel cells**

IN Calundann, Gordon; Uensal, Oemer; Kiefer, Joachim

PA Celanese Ventures GmbH, Germany

SO Ger. Offen., 32 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 10235358	A1	20040212	DE 2002-10235358	20020802 <--
	CA 2494330	A1	20040219	CA 2003-2494330	20030731 <--
	WO 2004015802	A1	20040219	WO 2003-EP8461	20030731 <--
	W: BR, CA, CN, JP, KR, MX, US RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR				
	EP 1527493	A1	20050504	EP 2003-784120	20030731 <--
	EP 1527493	B1	20060104		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, SK				
	CN 1675790	A	20050928	CN 2003-818584	20030731 <--
	JP 2005534784	T	20051117	JP 2004-526830	20030731 <--
	AT 315278	T	20060215	AT 2003-784120	20030731 <--
	US 2005244694	A1	20051103	US 2005-522839	20050606 <--
PRAI	DE 2002-10235358	A	20020802	<--	
	WO 2003-EP8461	W	20030731		

AB The present invention concerns **proton-conductive** polymer membranes phosphonic acid group-containing polymers, available by a procedure, comprising the steps: (A) mixing one or more aromatic tetra amino compds. with one or more aromatic carboxylic acids and/or their esters, which contain at least two acid radicals, or mixing one or more aromatic and/or heteroarom. diaminocarboxylic acids, in . vinyl-containing phosphonic acids to form a solution and/or a dispersion, (B) heating the solution and/or dispersion from step (A) under inert gas to temps. of $\leq 350^\circ$ to form a polyazole, (C) applying a layer using the mixture in accordance with step (A) and/or (B) on a carrier, and (D) polymerization of the vinyl-containing phosphonic acids existing in the layer from step (C).

IC ICM C08J0005-22

CC ICS H01M0008-02; B01D0071-58
 38-3 (Plastics Fabrication and Uses)
 Section cross-reference(s): 52

ST **proton conductive polyazole membrane fuel cell**; vinyl phosphonic acid polymer contg polyazole membrane

IT Polymerization
 (cyclopolymn.; of aromatic tetraamino compds. with polycarboxylic acids in presence of vinyl-containing phosphonic acids in manufacture of **proton**-containing membranes)

IT Polymerization
 (of vinyl compds. having phosphonic acids in presence of polyazoles in manufacture of **proton conductive** membranes for **fuel cells**)

IT Vinyl compounds, uses
 RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (polymers, phosphonic acid-containing; **proton-conductive** polyazole membranes containing phosphonic acid-containing vinyl polymers for **fuel cells**)

IT Sulfonic acids, uses
 RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (polymers; **proton-conductive** polyazole membranes containing phosphonic acid-containing vinyl polymers for **fuel cells**)

IT Fuel cell electrodes
Fuel cell separators
Ionic conductors
Polyelectrolytes
 (proton-conductive polyazole membranes containing phosphonic acid-containing vinyl polymers for **fuel cells**)

IT Polybenzimidazoles
 Polybenzothiazoles
 Polybenzoxazoles
 Polyoxadiazoles
Polyquinoxalines
 RL: IMF (Industrial manufacture); POF (Polymer in formulation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (proton-conductive polyazole membranes containing phosphonic acid-containing vinyl polymers for **fuel cells**)

IT Polymer blends
 RL: TEM (Technical or engineered material use); USES (Uses)
 (proton-conductive polyazole membranes containing phosphonic acid-containing vinyl polymers for **fuel cells**)

IT Polymers, uses
 RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (sulfo-containing; **proton-conductive** polyazole membranes containing phosphonic acid-containing vinyl polymers for **fuel cells**)

IT 13598-36-2DP, Phosphonic acid, vinyl group-containing, polymers
 RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (proton-conductive polyazole membranes containing phosphonic acid-containing vinyl polymers for **fuel cells**)

IT 110-86-1DP, Pyridine, polymers 289-06-5DP, Thiadiazole, polymers

289-95-2DP, Pyrimidine, polymers 25734-65-0P
 27233-57-4P 28576-59-2P 32075-68-6P
 32109-42-5P, Poly(1H-benzimidazole-2,5-diyl) 42209-07-4P
 55861-56-8P 56713-21-4P 82370-43-2P,
 Polyimidazole 96926-85-1P 111404-83-2P
 111404-85-4P 132937-69-0P 240799-37-5P
 268567-69-7P 368871-22-1P 471256-97-0P
 471256-98-1P 471256-99-2P 471257-00-8P
 471257-01-9P 471257-02-0P 472960-34-2P
 RL: IMF (Industrial manufacture); POF (Polymer in formulation); TEM
 (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (proton-conductive polyazole membranes containing
 phosphonic acid-containing vinyl polymers for fuel cells
)

IT 289-95-2DP, Pyrimidine, polymers 25734-65-0P
 27233-57-4P 28576-59-2P 32075-68-6P
 32109-42-5P, Poly(1H-benzimidazole-2,5-diyl) 42209-07-4P
 55861-56-8P 56713-21-4P 82370-43-2P,
 Polyimidazole 96926-85-1P 111404-83-2P
 111404-85-4P 132937-69-0P 240799-37-5P
 268567-69-7P 368871-22-1P 471256-97-0P
 471256-98-1P 471256-99-2P 471257-00-8P
 471257-01-9P 471257-02-0P 472960-34-2P
 RL: IMF (Industrial manufacture); POF (Polymer in formulation); TEM
 (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (proton-conductive polyazole membranes containing
 phosphonic acid-containing vinyl polymers for fuel cells
)

RN 289-95-2 HCAPLUS
 CN Pyrimidine (8CI, 9CI) (CA INDEX NAME)

RN 25734-65-0 HCAPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,3-phenylene) (9CI) (CA INDEX
 NAME)

RN 27233-57-4 HCAPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1,3-phenylene]
 (9CI) (CA INDEX NAME)

RN 28576-59-2 HCAPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,4-phenylene) (9CI) (CA INDEX NAME)

RN 32075-68-6 HCAPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1,4-phenylene] (9CI) (CA INDEX NAME)

RN 32109-42-5 HCAPLUS
 CN Poly(1H-benzimidazole-2,5-diyl) (9CI) (CA INDEX NAME)

RN 42209-07-4 HCAPLUS
 CN Poly[(1,4-dihydrodiimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)-1,3-phenylene] (9CI) (CA INDEX NAME)

RN 55861-56-8 HCPLUS
 CN Poly[(1,4-dihydrodiimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)-1,4-phenylene]
 (9CI) (CA INDEX NAME)

RN 56713-21-4 HCPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diylpyridinediyl) (9CI) (CA INDEX
 NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 82370-43-2 HCPLUS
 CN 1H-Imidazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-32-4
 CMF C3 H4 N2

RN 96926-85-1 HCPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-3,5-pyridinediyl) (9CI) (CA
 INDEX NAME)

RN 111404-83-2 HCPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-3,5-

pyridinediyl] (9CI) (CA INDEX NAME)

RN 111404-85-4 HCAPLUS

CN Poly[(1,4-dihydrodiimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)-3,5-pyridinediyl] (9CI) (CA INDEX NAME)

RN 132937-69-0 HCAPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-2,6-pyridinediyl) (9CI) (CA INDEX NAME)

RN 240799-37-5 HCAPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-2,5-pyrazinediyl) (9CI) (CA INDEX NAME)

RN 268567-69-7 HCAPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1H-pyrazole-3,5-diyl] (9CI) (CA INDEX NAME)

RN 368871-22-1 HCPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)pyridinediyl] (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 471256-97-0 HCPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-4,6-pyrimidinediyl) (9CI) (CA INDEX NAME)

RN 471256-98-1 HCPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1H-pyrazole-3,5-diyl) (9CI) (CA INDEX NAME)

RN 471256-99-2 HCPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-2,6-pyridinediyl] (9CI) (CA INDEX NAME)

RN 471257-00-8 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-4,6-pyrimidinediyl] (9CI) (CA INDEX NAME)

RN 471257-01-9 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-2,5-pyrazinediyl] (9CI) (CA INDEX NAME)

RN 471257-02-0 HCPLUS

CN Poly[(1,4-dihydrodiimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)-2,6-pyridinediyl] (9CI) (CA INDEX NAME)

RN 472960-34-2 HCPLUS

CN Poly[(1,4-dihydrodiimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)pyridinediyl] (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L149 ANSWER 25 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2004:117170 HCPLUS

DN 140:165008

TI Proton-conductive polyazole membranes containing polymers having phosphonic acid and sulfonic acid groups and their application in fuel cells

IN Calundann, Gordon; Uensal, Oemer; Kiefer, Joachim

PA Celanese Ventures GmbH, Germany

SO Ger. Offen., 32 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 10235357	A1	20040212	DE 2002-10235357	20020802 <--
	CA 2494530	A1	20040219	CA 2003-2494530	20030731 <--
	WO 2004015803	A1	20040219	WO 2003-EP8462	20030731 <--
	W: BR, CA, CN, JP, KR, MX, US RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR				
	EP 1527494	A1	20050504	EP 2003-784121	20030731 <--
	EP 1527494	B1	20051228		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, SK				
	CN 1682400	A	20051012	CN 2003-821477	20030731 <--
	JP 2005534785	T	20051117	JP 2004-526831	20030731 <--
	AT 314735	T	20060115	AT 2003-784121	20030731 <--
	US 2005244695	A1	20051103	US 2005-523373	20050323 <--

PRAI DE 2002-10235356 A 20020802 <--
 DE 2002-10235357 A 20020802 <--
 WO 2003-EP8462 W 20030731

AB The present invention concerns **proton-conductive** polymer membranes containing polymers having sulfonic acid and phosphonic acid groups, available by a procedure, comprising the steps: (A) mixing one or more aromatic tetra amino compds. with one or more aromatic carboxylic acids and/or their esters, which contain at least two acid radicals, or mixing one or more aromatic and/or heteroarom. diaminocarboxylic acids, in mixts. containing vinyl-containing sulfonic acids and vinyl-containing phosphonic acids to

form a solution and/or a dispersion, (B) heating the solution and/or dispersion from step (A) under inert gas to temps. of $\leq 350^\circ$ to form a polyazole, (C) applying a layer using the mixture in accordance with step (A) and/or (B) on a carrier, and (D) polymerization of the vinyl-containing sulfonic

acids and vinyl-containing phosphonic acids existing in the layer from step (C).

IC ICM C08J0005-22

ICS C08L0079-00; H01M0008-02; B01D0071-58

CC 38-3 (Plastics Fabrication and Uses)

Section cross-reference(s): 52

ST **proton conductive** polyazole membrane **fuel** cell; vinyl sulfonic acid phosphonic acid polymer contg polyazole membrane

IT Polymerization
(cyclopolymer.; of aromatic tetraamino compds. with polycarboxylic acids in presence of vinyl-containing sulfonic acids and vinyl-containing phosphonic acids in manufacture of **proton**-containing membranes)

IT Polymerization
(of phosphonic acid-containing vinyl compds. and sulfonic acid-containing vinyl
compds. in presence of polyazoles in manufacture of **proton**
conductuve membranes for **fuel cells**)

IT Vinyl compounds, uses.

RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(polymers, sulfonic acid- and phosphonic acid-containing; **proton**-
conductuve polyazole membranes containing vinyl polymers having
phosphonic acid and sulfonic acid groups for **fuel**
cells)

IT Sulfonic acids, uses

RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (polymers; **proton-conductive** polyazole membranes containing vinyl polymers having phosphonic acid and sulfonic acid groups for fuel cells)

IT Fuel cell electrodes

Fuel cell separators

Ionic conductors

Polyelectrolytes

(**proton-conductive** polyazole membranes containing vinyl polymers having phosphonic acid and sulfonic acid groups for fuel cells)

IT Polybenzimidazoles

Polybenzothiazoles

Polybenzoxazoles

Polyoxadiazoles

Polyquinoxalines

RL: IMF (Industrial manufacture); POF (Polymer in formulation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (**proton-conductive** polyazole membranes containing vinyl polymers having phosphonic acid and sulfonic acid groups for fuel cells)

IT Polymer blends

RL: TEM (Technical or engineered material use); USES (Uses)

(**proton-conductive** polyazole membranes containing vinyl polymers having phosphonic acid and sulfonic acid groups for fuel cells)

IT Polymers, uses

RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (sulfo-containing; **proton-conductive** polyazole membranes containing vinyl polymers having phosphonic acid and sulfonic acid groups for fuel cells)

IT 13598-36-2DP, Phosphonic acid, vinyl group-containing, polymers

RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (**proton-conductive** polyazole membranes containing vinyl polymers having phosphonic acid and sulfonic acid groups for fuel cells)

IT 110-86-1DP, Pyridine, polymers 289-06-5DP, Thiadiazole, polymers

289-95-2DP, Pyrimidine, polymers 25734-65-0P

27233-57-4P 28576-59-2P 32075-68-6P

32109-42-5P, Poly(1H-benzimidazole-2,5-diyl) 42209-07-4P

55861-56-8P 56713-21-4P 82370-43-2P,

Polyimidazole 96926-85-1P 111404-83-2P

111404-85-4P 132937-69-0P 240799-37-5P

268567-69-7P 368871-22-1P 471256-97-0P

471256-98-1P 471256-99-2P 471257-00-8P

471257-01-9P 471257-02-0P 472960-34-2P

RL: IMF (Industrial manufacture); POF (Polymer in formulation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (**proton-conductive** polyazole membranes containing vinyl polymers having phosphonic acid and sulfonic acid groups for fuel cells)

IT 289-95-2DP, Pyrimidine, polymers 25734-65-0P

27233-57-4P 28576-59-2P 32075-68-6P

32109-42-5P, Poly(1H-benzimidazole-2,5-diyl) 42209-07-4P

55861-56-8P 56713-21-4P 82370-43-2P,

Polyimidazole 96926-85-1P 111404-83-2P

111404-85-4P 132937-69-0P 240799-37-5P

268567-69-7P 368871-22-1P 471256-97-0P

471256-98-1P 471256-99-2P 471257-00-8P

471257-01-9P 471257-02-0P 472960-34-2P

RL: IMF (Industrial manufacture); POF (Polymer in formulation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (proton-conductive polyazole membranes containing vinyl polymers having phosphonic acid and sulfonic acid groups for fuel cells)

RN 289-95-2 HCPLUS

CN Pyrimidine (8CI, 9CI) (CA INDEX NAME)

RN 25734-65-0 HCPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,3-phenylene) (9CI) (CA INDEX NAME)

RN 27233-57-4 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1,3-phenylene] (9CI) (CA INDEX NAME)

RN 28576-59-2 HCPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,4-phenylene) (9CI) (CA INDEX NAME)

RN 32075-68-6 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1,4-phenylene]

(9CI) (CA INDEX NAME)

RN 32109-42-5 HCPLUS

CN Poly(1H-benzimidazole-2,5-diyl) (9CI) (CA INDEX NAME)

RN 42209-07-4 HCPLUS

CN Poly[(1,4-dihydrodiimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)-1,3-phenylene] (9CI) (CA INDEX NAME)

RN 55861-56-8 HCPLUS

CN Poly[(1,4-dihydrodiimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)-1,4-phenylene] (9CI) (CA INDEX NAME)

RN 56713-21-4 HCPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diylpyridinediyl) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 82370-43-2 HCPLUS

CN 1H-Imidazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-32-4
CMF C3 H4 N2

RN 96926-85-1 HCPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-3,5-pyridinediyl) (9CI) (CA INDEX NAME)

RN 111404-83-2 HCPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-3,5-pyridinediyl] (9CI) (CA INDEX NAME)

RN 111404-85-4 HCPLUS
 CN Poly[(1,4-dihydrodiimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)-3,5-pyridinediyl] (9CI) (CA INDEX NAME)

RN 132937-69-0 HCPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-2,6-pyridinediyl) (9CI) (CA INDEX NAME)

RN 240799-37-5 HCPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-2,5-pyrazinediyl) (9CI) (CA INDEX NAME)

RN 268567-69-7 HCPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1H-pyrazole-3,5-diyl] (9CI) (CA INDEX NAME)

RN 368871-22-1 HCPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)pyridinediyl] (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 471256-97-0 HCPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-4,6-pyrimidinediyl) (9CI) (CA INDEX NAME)

RN 471256-98-1 HCPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1H-pyrazole-3,5-diyl) (9CI) (CA INDEX NAME)

RN 471256-99-2 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-2,6-pyridinediyl] (9CI) (CA INDEX NAME)

RN 471257-00-8 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-4,6-pyrimidinediyl] (9CI) (CA INDEX NAME)

RN 471257-01-9 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-2,5-pyrazinediyl] (9CI) (CA INDEX NAME)

RN 471257-02-0 HCPLUS

CN Poly[(1,4-dihydrodiimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)-2,6-pyridinediyl] (9CI) (CA INDEX NAME)

RN 472960-34-2 HCPLUS

CN Poly[(1,4-dihydrodiimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)pyridinediyl]
(9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L149 ANSWER 26 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2004:117169 HCPLUS

DN 140:165007

TI Proton-conductive polymer membrane based on sulfonic acid-containing polymers and their application in fuel cells

PA Celanese Ventures GmbH, Germany

SO Ger. Offen., 31 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 10235356	A1	20040212	DE 2002-10235356	20020802 <--
	CA 2494530	A1	20040219	CA 2003-2494530	20030731 <--
	WO 2004015803	A1	20040219	WO 2003-EP8462	20030731 <--
	W: BR, CA, CN, JP, KR, MX, US RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR				
	EP 1527494	A1	20050504	EP 2003-784121	20030731 <--
	EP 1527494	B1	20051228		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, SK				
	CN 1682400	A	20051012	CN 2003-821477	20030731 <--
	AT 314735	T	20060115	AT 2003-784121	20030731 <--
	US 2005244695	A1	20051103	US 2005-523373	20050323 <--
PRAI	DE 2002-10235356	A	20020802	<--	
	DE 2002-10235357	A	20020802	<--	
	WO 2003-EP8462	W	20030731		

AB The present invention concerns proton-conductive polymer membranes containing sulfonic acid-containing polymers, available by a procedure, comprising the steps: (A) mixing one or more aromatic tetra amino compds. with one or more aromatic carboxylic acids and/or their esters, which contain at least two acid radicals, or mixing one or more aromatic and/or heteroarom. diaminocarboxylic acids, in a vinyl-containing sulfonic acid to form a solution and/or a dispersion, (B) heating the solution and/or dispersion from step (A) under inert gas to temps. of $\leq 350^\circ$ to form a polyazole, (C) applying a layer using the mixture in accordance with step (A) and/or (B) on a carrier, and (D) polymerization of the vinyl-containing sulfonic acid existing in the layer from step (C).

IC ICM C08J0005-22
 ICS C08L0079-06; H01M0008-02; B01D0071-58
 CC 38-3 (Plastics Fabrication and Uses)
 Section cross-reference(s): 52
 ST **proton conductive polyazole membrane fuel cell**; vinyl sulfonic acid polymer contg polyazole membrane
 IT Polymerization
 (cyclopolymn.; of aromatic tetraamino compds. with polycarboxylic acids in presence of vinyl-containing sulfonic acids in manufacture of **proton-conducting membranes for fuel cells**)
 IT Polymerization
 (of vinyl containing sulfonic acids in presence of polyazoles in manufacture of
 proton conductive membranes for fuel cells)
 IT Vinyl compounds, uses
 RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (polymer, sulfo-containing; **proton-conductive**
 polyazole membranes containing sulfonic acid-containing vinyl polymers for
 fuel cells)
 IT Sulfonic acids, uses
 RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (polymer; **proton-conductive** polyazole membranes
 containing sulfonic acid-containing vinyl polymers for **fuel cells**)
 IT Fuel cell electrodes
 Fuel cell separators
 Ionic conductors
 Polyelectrolytes
 (**proton-conductive** polyazole membranes containing
 sulfonic acid-containing vinyl polymers for **fuel cells**)
 IT Polybenzimidazoles
 Polybenzothiazoles
 Polybenzoxazoles
 Polyoxadiazoles
 Polyquinoxalines
 RL: IMF (Industrial manufacture); POF (Polymer in formulation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (**proton-conductive** polyazole membranes containing
 sulfonic acid-containing vinyl polymers for **fuel cells**)
 IT Polymer blends
 RL: TEM (Technical or engineered material use); USES (Uses)
 (**proton-conductive** polyazole membranes containing
 sulfonic acid-containing vinyl polymers for **fuel cells**)
 IT Polymers, uses
 RL: IMF (Industrial manufacture); MOA (Modifier or additive use); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (sulfo-containing; **proton-conductive** polyazole
 membranes containing sulfonic acid-containing vinyl polymers for **fuel cells**)
 IT 110-86-1DP, Pyridine, polymers 289-06-5DP, Thiadiazole, polymers
 289-95-2DP, Pyrimidine, polymers 25734-65-0P
 27233-57-4P 28576-59-2P 32075-68-6P
 32109-42-5P, Poly(1H-benzimidazole-2,5-diyl) 42209-07-4P
 55861-56-8P 56713-21-4P 82370-43-2P,
 Polyimidazole 96926-85-1P 111404-83-2P
 111404-85-4P 132937-69-0P 240799-37-5P
 268567-69-7P 368871-22-1P 471256-97-0P

471256-98-1P 471256-99-2P 471257-00-8P

471257-01-9P 471257-02-0P 472960-34-2P

RL: IMF (Industrial manufacture); POF (Polymer in formulation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (proton-conductive polyazole membranes containing sulfonic acid-containing vinyl polymers for fuel cells)

IT 289-95-2DP, Pyrimidine, polymers 25734-65-0P

27233-57-4P 28576-59-2P 32075-68-6P

32109-42-5P, Poly(1H-benzimidazole-2,5-diyl) 42209-07-4P

55861-56-8P 56713-21-4P 82370-43-2P,

Polyimidazole 96926-85-1P 111404-83-2P

111404-85-4P 132937-69-0P 240799-37-5P

268567-69-7P 368871-22-1P 471256-97-0P

471256-98-1P 471256-99-2P 471257-00-8P

471257-01-9P 471257-02-0P 472960-34-2P

RL: IMF (Industrial manufacture); POF (Polymer in formulation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (proton-conductive polyazole membranes containing sulfonic acid-containing vinyl polymers for fuel cells)

RN 289-95-2 HCPLUS

CN Pyrimidine (8CI, 9CI) (CA INDEX NAME)

RN 25734-65-0 HCPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,3-phenylene) (9CI) (CA INDEX NAME)

RN 27233-57-4 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1,3-phenylene] (9CI) (CA INDEX NAME)

RN 28576-59-2 HCPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,4-phenylene) (9CI) (CA INDEX NAME)

RN 32075-68-6 HCAPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1,4-phenylene]
 (9CI) (CA INDEX NAME)

RN 32109-42-5 HCAPLUS
 CN Poly(1H-benzimidazole-2,5-diyl) (9CI) (CA INDEX NAME)

RN 42209-07-4 HCAPLUS
 CN Poly[(1,4-dihydroimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)-1,3-phenylene]
 (9CI) (CA INDEX NAME)

RN 55861-56-8 HCAPLUS
 CN Poly[(1,4-dihydroimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)-1,4-phenylene]
 (9CI) (CA INDEX NAME)

RN 56713-21-4 HCPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diylpyridinediyl) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 82370-43-2 HCPLUS

CN 1H-Imidazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-32-4

CMF C3 H4 N2

RN 96926-85-1 HCPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-3,5-pyridinediyl) (9CI) (CA INDEX NAME)

RN 111404-83-2 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-3,5-pyridinediyl] (9CI) (CA INDEX NAME)

RN 111404-85-4 HCPLUS

CN Poly[(1,4-dihydrodiimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)-3,5-

pyridinediyl] (9CI) (CA INDEX NAME)

RN 132937-69-0 HCAPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-2,6-pyridinediyl] (9CI) (CA INDEX NAME)

RN 240799-37-5 HCAPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-2,5-pyrazinediyl] (9CI) (CA INDEX NAME)

RN 268567-69-7 HCAPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1H-pyrazole-3,5-diyl] (9CI) (CA INDEX NAME)

RN 368871-22-1 HCAPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)pyridinediyl] (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 471256-97-0 HCAPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-4,6-pyrimidinediyl] (9CI) (CA INDEX NAME)

INDEX NAME)

RN 471256-98-1 HCPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1H-pyrazole-3,5-diyl) (9CI) (CA INDEX NAME)

RN 471256-99-2 HCPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-2,6-pyridinediyl] (9CI) (CA INDEX NAME)

RN 471257-00-8 HCPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-4,6-pyrimidinediyl] (9CI) (CA INDEX NAME)

RN 471257-01-9 HCPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-2,5-pyrazinediyl] (9CI) (CA INDEX NAME)

RN 471257-02-0 HCPLUS

CN Poly[(1,4-dihydroimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)-2,6-pyridinediyl] (9CI) (CA INDEX NAME)

RN 472960-34-2 HCPLUS

CN Poly[(1,4-dihydroimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)pyridinediyl] (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L149 ANSWER 27 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2004:36785 HCPLUS

DN 140:96885

TI Proton conductive solid polymer electrolyte for electrochemical cell

IN Komiya, Teruaki

PA Honda Giken Kabushiki Kaisha, Japan

SO Eur. Pat. Appl., 14 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 1381107	A2	20040114	EP 2003-254383	20030710 <--
	EP 1381107	A3	20061115		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK				
	JP 2004047232	A	20040212	JP 2002-201718	20020710 <--
	US 2004013925	A1	20040122	US 2003-616537	20030709 <--

PRAI JP 2002-201718 A 20020710 <--

AB A material such as imidazole (nitrogen-containing heterocyclic compound), which has at least one lone pair, is dispersed in a basic solid polymer such as polybenzimidazole. The mole number of imidazole per g of polybenzimidazole is less than 0.0014 mol, preferably less than 0.0006 mol. The basic solid polymer is impregnated with an acidic inorg. liquid such as phosphoric acid and sulfuric acid to prepare a proton conductive solid

polymer electrolyte.
 IC ICM H01M0010-40
 ICS H01M0006-18; C08G0073-18
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy
 Technology)
 Section cross-reference(s): 38, 72
 ST **electrochem cell proton conductive**
 solid polymer electrolyte; **fuel cell proton**
conductive solid polymer electrolyte; **electrolyzer proton**
conductive solid polymer electrolyte
 IT Azines
 RL: DEV (Device component use); USES (Uses)
 (diazine; **proton conductive** solid polymer
 electrolyte for **electrochem. cell**)
 IT **Heterocyclic compounds**
 RL: DEV (Device component use); USES (Uses)
 (nitrogen; **proton conductive** solid
 polymer electrolyte for **electrochem. cell**)
 IT **Electrochemical cells**
 Electrolytic cells
 Fuel cell electrolytes
 Solid electrolytes
 (**proton conductive** solid polymer electrolyte for
electrochem. cell)
 IT Polybenzimidazoles
 RL: DEV (Device component use); USES (Uses)
 (**proton conductive** solid polymer electrolyte for
electrochem. cell)
 IT Ionic conductivity
 (**proton**; **proton conductive** solid polymer
 electrolyte for **electrochem. cell**)
 IT **Fuel cells**
 (solid electrolyte; **proton conductive** solid polymer
 electrolyte for **electrochem. cell**)
 IT 7732-18-5, Water, processes
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical
 process); PROC (Process)
 (electrolysis; **proton conductive** solid polymer
 electrolyte for **electrochem. cell**)
 IT 91-22-5, Quinoline, uses 110-86-1, Pyridine, uses 119-65-3,
 IsoQuinoline 120-72-9, Indole, uses 120-73-0, Purine 288-13-1
 , Pyrazole 288-32-4, Imidazole, uses 9002-98-6
 9003-47-8, Polyvinylpyridine 25232-42-2,
 Polyvinylimidazole 25233-30-1 25823-41-0,
 Poly(1-vinylpyrazole) 32109-42-5, Poly(1H-benzimidazole-2,5-
 diyl) 50641-39-9 131714-35-7
 RL: DEV (Device component use); USES (Uses)
 (**proton conductive** solid polymer electrolyte for
electrochem. cell)
 IT 7664-38-2, Phosphoric acid, uses 7664-93-9, Sulfuric acid, uses
 RL: MOA (Modifier or additive use); USES (Uses)
 (**proton conductive** solid polymer electrolyte for
electrochem. cell)
 IT 1333-74-0P, Hydrogen, preparation 7782-44-7P, Oxygen, preparation
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (**proton conductive** solid polymer electrolyte for
electrochem. cell)
 IT 288-13-1, Pyrazole 288-32-4, Imidazole, uses
 9002-98-6 9003-47-8, Polyvinylpyridine
 25232-42-2, Polyvinylimidazole 25233-30-1

25823-41-0, Poly(1-vinylpyrazole) 32109-42-5,
 Poly(1H-benzimidazole-2,5-diyl) 50641-39-9 131714-35-7
 RL: DEV (Device component use); USES (Uses)
 (proton conductive solid polymer electrolyte for
 electrochem. cell)

RN 288-13-1 HCAPLUS
 CN 1H-Pyrazole (9CI) (CA INDEX NAME)

RN 288-32-4 HCAPLUS
 CN 1H-Imidazole (9CI) (CA INDEX NAME)

RN 9002-98-6 HCAPLUS
 CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4
 CMF C2 H5 N

RN 9003-47-8 HCAPLUS
 CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1
 CMF C7 H7 N
 CCI IDS

D1-CH=CH₂

RN 25232-42-2 HCAPLUS

CN 1H-Imidazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1072-63-5
CMF C5 H6 N2

RN 25233-30-1 HCAPLUS

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
CMF C6 H7 N

RN 25823-41-0 HCAPLUS

CN 1H-Pyrazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 20173-98-2
CMF C5 H6 N2

RN 32109-42-5 HCAPLUS

CN Poly(1H-benzimidazole-2,5-diyl) (9CI) (CA INDEX NAME)

RN 50641-39-9 HCAPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diylphenylene) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 131714-35-7 HCAPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)phenylene] (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L149 ANSWER 28 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2003:875559 HCAPLUS

DN 139:367552

TI Multilayered electrolyte-electrode membrane assemblies containing mineral acids, basic polymers, and a cation exchange-type barrier coating

IN Uensal, Oemer; Kiefer, Joachim

PA Celanese Ventures GmbH, Germany; Pemeas GmbH

SO PCT Int. Appl., 49 pp.

CODEN: PIXXD2

DT Patent

LA German

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2003092090	A2	20031106	WO 2003-EP4117	20030422 <--
	WO 2003092090	A3	20050120		
	W: BR, CA, CN, JP, KR, MX, US RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR DE 10218368 DE 10218367 CA 2483015 EP 1518282	A1	20031106	DE 2002-10218368 DE 2002-10218367 CA 2003-2483015 EP 2003-718780	20020425 <-- 20020425 <-- 20030422 <-- 20030422 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, SK CN 1650463 US 2005181254 JP 2005527948	A	20050803	CN 2003-809351 US 2003-512264 JP 2004-500346	20030422 <-- 20030422 <-- 20030422 <--

PRAI DE 2002-10218367

DE 2002-10218368

WO 2003-EP4117

AB Proton-conducting multi-layered electrolyte membranes for fuel cells are characterized by at least one mineral acid-doped or mineral acid-containing flat surfaces and a barrier layer for the other layer, which, together, make up a membrane electrode assembly. Preferred mineral acids include H₃PO₄, H₂SO₄, and polyphosphoric acids. The barrier layer, which preferably consists of a cation exchanger with cation-exchange capacity <0.9 meq/g and a proton conductivity <0.06 S/cm, has a thickness of 10-30 μm (preferably <10 μm). The flat surfaces of the membrane consist of a basic polymer (or a basic polymer integrated with a second polymer or an inert support), selected from polyimidazoles, polybenzimidazoles, polybenzthiazoles, polybenzoxazoles, polytriazoles, polyoxadiazoles, polythiadiazoles, polypyrazoles, polyquinoxalines, polypyridines, polypyrimidines, or poly(tetraazapyrenes). Such multilayer electrolyte membranes prevent mineral acid from being washed out and reduces the overvoltage on the cathode.

IC ICM H01M

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

- Section cross-reference(s): 38
- ST multilayered electrolyte **electrode** membrane **fuel**
cell; basic polymer electrolyte **electrode** membrane
fuel cell; polybenzimidazole electrolyte
electrode membrane **fuel cell**
- IT Polyphosphoric acids
RL: TEM (Technical or engineered material use); USES (Uses)
(membrane assembly containing; multilayered electrolyte-**electrode**
membrane assemblies containing mineral acids, basic polymers, and a cation
exchange-type barrier coating)
- IT Polybenzimidazoles
Polybenzothiazoles
Polybenzoxazoles
Polyoxadiazoles
Polyquinoxalines
RL: DEV (Device component use); TEM (Technical or engineered material
use); USES (Uses)
(membranes; multilayered electrolyte-**electrode** membrane
assemblies containing mineral acids, basic polymers, and a cation
exchange-type barrier coating)
- IT **Fuel cell electrodes**
Fuel cell electrolytes
Fuel cell separators
(multilayered electrolyte-**electrode** membrane assemblies
containing mineral acids, basic polymers, and a cation exchange-type
barrier coating)
- IT Polysulfones, uses
RL: DEV (Device component use); TEM (Technical or engineered material
use); USES (Uses)
(polyether-, membranes; multilayered electrolyte-**electrode**
membrane assemblies containing mineral acids, basic polymers, and a cation
exchange-type barrier coating)
- IT Polyketones
RL: DEV (Device component use); TEM (Technical or engineered material
use); USES (Uses)
(polyether-, sulfonated, membranes; multilayered electrolyte-
electrode membrane assemblies containing mineral acids, basic
polymers, and a cation exchange-type barrier coating)
- IT Polyethers, uses
RL: DEV (Device component use); TEM (Technical or engineered material
use); USES (Uses)
(polyketone-, sulfonated, membranes; multilayered electrolyte-
electrode membrane assemblies containing mineral acids, basic
polymers, and a cation exchange-type barrier coating)
- IT Polyethers, uses
RL: DEV (Device component use); TEM (Technical or engineered material
use); USES (Uses)
(polysulfone-, membranes; multilayered electrolyte-**electrode**
membrane assemblies containing mineral acids, basic polymers, and a cation
exchange-type barrier coating)
- IT 7664-38-2, Phosphoric acid, uses 7664-93-9, Sulfuric acid, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(membrane assembly containing; multilayered electrolyte-**electrode**
membrane assemblies containing mineral acids, basic polymers, and a cation
exchange-type barrier coating)
- IT 620168-47-0, Ultrason E 7020P
RL: DEV (Device component use); USES (Uses)
(membranes; multilayered electrolyte-**electrode** membrane
assemblies containing mineral acids, basic polymers, and a cation
exchange-type barrier coating)

IT 110-86-1D, Pyridine, derivs., polymers 288-13-1D, Pyrazole, derivs., polymers 288-88-0D, 1H-1,2,4-Triazole, derivs., polymers 289-06-5D, Thiadiazole, derivs., polymers 289-95-2D, Pyrimidine, derivs., polymers 7258-75-5D, Pyrimido[4,5,6-gh]perimidine, 1,6-dihydro-, derivs., polymers 27380-27-4D, Pek, sulfonated
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (membranes; multilayered electrolyte-electrode membrane assemblies containing mineral acids, basic polymers, and a cation exchange-type barrier coating)

IT 288-13-1D, Pyrazole, derivs., polymers 288-88-0D, 1H-1,2,4-Triazole, derivs., polymers 289-95-2D, Pyrimidine, derivs., polymers
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (membranes; multilayered electrolyte-electrode membrane assemblies containing mineral acids, basic polymers, and a cation exchange-type barrier coating)

RN 288-13-1 HCAPLUS
 CN 1H-Pyrazole (9CI) (CA INDEX NAME)

RN 288-88-0 HCAPLUS
 CN 1H-1,2,4-Triazole (7CI, 9CI) (CA INDEX NAME)

RN 289-95-2 HCAPLUS
 CN Pyrimidine (8CI, 9CI) (CA INDEX NAME)

L149 ANSWER 29 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 2003:875183 HCAPLUS
 DN 139:335066
 TI Method and apparatus for plasma deposition of chemically reactive groups on substrates chemically reactive substrates obtainable by the method and use thereof
 IN Christensen, Soren Flygenring; Petersen, Steen Guldager
 PA NKT Research & Innovation A/s, Den.
 SO PCT Int. Appl., 70 pp.
 CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2003090939	A1	20031106	WO 2003-DK272	20030425 <--
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
	AU 2003226956	A1	20031110	AU 2003-226956	20030425 <--

PRAI DK 2002-637 A 20020425 <--
WO 2003-DK272 W 20030425 <--

AB The present invention relates to a method and apparatus for plasma deposition of a chemical reactive group (Y-Z) on a substrate, chemical reactive substrates,

and use thereof, e.g. for immobilization of biomols.; the method comprising: (a) providing at least one precursor (A-X (Y)) for the chemical reactive group; (b) providing at least one donor (D(Z)), said at least one donor comprising at least one addition group (Z), optionally said at least one addition group (Z) being comprised in said precursor (A-X (Y)) and optionally said at least one donor (D(Z)) is not being provided; (c) providing a substrate (M); (d) providing a gas plasma, said gas plasma having a pressure and an energy to form at least one activated carrier group (B); and (e) reacting said substrate (M), said at least one precursor (A-X (Y)), said at least one donor (D(Z)) in said gas plasma so that said chemical reactive group (Y-Z) is bound to said substrate, either directly (M-Y-Z) or via said at least one activated carrier group (M-B-Y-Z), and so that when exposed to a substance which chemical reacts with said chemical reactive group, said substance binds thereto.

IC ICM B05D0007-24

ICS A61L0033-00; H05H0001-24; H01J0037-32

CC 9-1 (Biochemical Methods)

IT Apparatus

Atoms

Bond

Bond cleavage

Cantilevers (components)

Carbonyl group

Carriers

Containers

Crystals

Electric current

Electric insulators

Electrodes

Energy

Frequency

Gases

Holders

Immobilization, molecular or cellular

Membranes, nonbiological

Pipes and Tubes

Plasma

Plates

Pressure
 Reaction
 Sensors
 Spheres
 Sulfhydryl group
 Vacuum
 Vacuum pumps
 Wires

(method and apparatus for plasma deposition of chemical reactive groups on substrates chemical reactive substrates obtainable by the method and use thereof)

IT 74-82-8, Methane, reactions 75-00-3, Ethyl chloride 75-05-8, Acetonitrile, reactions 75-43-4, Dichlorofluoromethane 75-44-5, Carbonyl chloride 75-69-4, Trichlorofluoromethane 80-62-6, Methyl methacrylate 96-54-8, 1-Methylpyrrole 97-62-1, Ethyl isobutyrate 100-47-0, Benzonitrile, reactions 102-70-5, Triallylamine 107-13-1, Acrylonitrile, reactions 107-47-1, tert-Butyl sulfide 108-29-2, γ -Valerolactone 109-74-0, n-Butanenitrile 109-89-7, Diethylamine, reactions 109-97-7, Pyrrole 110-01-0, Tetrahydrothiophene 110-02-1, Thiophene 110-86-1, Pyridine, reactions 110-89-4, Piperidine, reactions 120-94-5, 1-Methylpyrrolidine 121-44-8, Triethylamine, reactions 123-75-1, Pyrrolidine, reactions 124-02-7, Diallylamine 141-78-6, Ethyl acetate, reactions 288-13-1, Pyrazole 288-32-4, Imidazole, reactions 289-95-2, Pyrimidine 547-63-7, Methyl isobutyrate 554-14-3, 2-Methylthiophene 592-88-1, Allyl sulfide 616-43-3, 3-Methylpyrrole 623-47-2, Ethyl propiolate 625-82-1, 2,4-Dimethylpyrrole 627-37-2, N-Allylmethylamine 638-02-8, 2,5-Dimethylthiophene 922-67-8, Methyl propiolate 1072-63-5, N-Vinylimidazole 1300-21-6, Dichloroethane 1333-74-0, Hydrogen, reactions 3068-88-0, β -Butyrolactone 7664-41-7, Ammonia, reactions 7704-34-9D, Sulfur, compds. containing 7727-37-9D, Nitrogen, compds. containing 7732-18-5,

Water,
 reactions 7782-44-7D, Oxygen, compds. containing 7782-50-5D, Chlorine, mols. containing 10152-76-8, Allyl methyl sulfide 26446-76-4, Chloropropane 26638-19-7, Dichloropropane
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (method and apparatus for plasma deposition of chemical reactive groups on substrates chemical reactive substrates obtainable by the method and use thereof)

IT 288-13-1, Pyrazole 288-32-4, Imidazole, reactions
 289-95-2, Pyrimidine 1072-63-5, N-Vinylimidazole
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (method and apparatus for plasma deposition of chemical reactive groups on substrates chemical reactive substrates obtainable by the method and use thereof)

RN 288-13-1 HCAPLUS

CN 1H-Pyrazole (9CI) (CA INDEX NAME)

RN 288-32-4 HCAPLUS
 CN 1H-Imidazole (9CI) (CA INDEX NAME)

RN 289-95-2 HCAPLUS
 CN Pyrimidine (8CI, 9CI) (CA INDEX NAME)

RN 1072-63-5 HCAPLUS
 CN 1H-Imidazole, 1-ethenyl- (9CI) (CA INDEX NAME)

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (R WK)	Referenced File
Bazylenko, M	1999			WO 9928528 A	H CAPLUS
Glejboel, K	2000			WO 0044207 A	H CAPLUS
Hess, D	1989			US 4863755 A	H CAPLUS
Steele, J	1995			US 5449383 A	H CAPLUS
Timmons, R	1999			US 5876753 A	H CAPLUS
Univ California	2000			WO 0070117 A	H CAPLUS
Zimmermann, H	1996			US 5580384 A	H CAPLUS

L149 ANSWER 30 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2003:794104 HCAPLUS

DN 139:310014

TI Production of conductive composite particles, conductive molding material, and **fuel cell** separator

IN Fujii, Shunsuke; Hirata, Koji

PA Sumitomo Bakelite Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
PI JP 2003288814	A	20031010	JP 2002-88661	20020327 <--
PRAI JP 2002-88661		20020327	<--	

AB The particle comprises conductive C material (e.g. graphite) coated with conductive polymers. The molding material comprises 70-98 weight part of the particle and 2-30 weight part of thermosetting or thermoplastic resins. The product is excellent in molding, mech., and elec. characteristics, and is

suitable for **fuel cell** separators.

IC ICM H01B0005-00
 ICS C01B0031-04; C08K0009-04; C08L0101-00; H01B0001-24; H01M0008-02
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 49, 76
 ST conductive composite particle molding material **fuel cell**
 separator
 IT Separators
 (fuel cells; production of conductive composite
 particles, conductive molding material, and **fuel cell**
 separator)
 IT Conducting polymers
Fuel cells
 Molding
 (production of conductive composite particles, conductive molding material,
 and **fuel cell** separator)
 IT Epoxy resins, uses
 Phenolic resins, uses
Polyanilines
 RL: NUU (Other use, unclassified); USES (Uses)
 (production of conductive composite particles, conductive molding material,
 and **fuel cell** separator)
 IT Plastics, uses
 RL: NUU (Other use, unclassified); USES (Uses)
 (thermoplastics; production of conductive composite particles, conductive
 molding material, and **fuel cell** separator)
 IT Plastics, uses
 RL: NUU (Other use, unclassified); USES (Uses)
 (thermosetting; production of conductive composite particles, conductive
 molding material, and **fuel cell** separator)
 IT 930-62-1, 1H-Imidazole, 2,4-dimethyl
 RL: MOA (Modifier or additive use); USES (Uses)
 (production of conductive composite particles, conductive molding material,
 and **fuel cell** separator)
 IT 62-53-3, Aniline, uses 108-95-2, Phenol, uses 7782-42-5, Graphite,
 uses
 RL: NUU (Other use, unclassified); USES (Uses)
 (production of conductive composite particles, conductive molding material,
 and **fuel cell** separator)
 IT 557-34-6, Zinc acetate 7446-70-0, Aluminum chloride, reactions
 7727-54-0 25190-62-9, Poly(1,4-phenylene) 30525-89-4, Paraform
 aldehyde 30604-81-0, **Polypyrrole**
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (production of conductive composite particles, conductive molding material,
 and **fuel cell** separator)
 IT 930-62-1, 1H-Imidazole, 2,4-dimethyl
 RL: MOA (Modifier or additive use); USES (Uses)
 (production of conductive composite particles, conductive molding material,
 and **fuel cell** separator)
 RN 930-62-1 HCPLUS
 CN 1H-Imidazole, 2,4-dimethyl- (9CI) (CA INDEX NAME)

IT 25190-62-9, Poly(1,4-phenylene) 30604-81-0,

Polypyrrole

RL: RCT (Reactant); RACT (Reactant or reagent)
 (production of conductive composite particles, conductive molding material,
 and fuel cell separator)

RN 25190-62-9 HCAPLUS

CN Poly(1,4-phenylene) (9CI) (CA INDEX NAME)

RN 30604-81-0 HCAPLUS

CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7

CMF C4 H5 N

L149 ANSWER 31 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2003:634143 HCAPLUS

DN 139:166974

TI Polymer electrolyte membrane fuel cell system
 including contaminant removal method

IN George, Paul E.; Saunders, James H.; Vijayendran, Bhima

PA Battelle Memorial Institute, USA

SO PCT Int. Appl., 69 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2003067695	A2	20030814	WO 2003-US3864	20030206 <--
	WO 2003067695	A3	20031127		
	W:	AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW			
	RW:	GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG			
	AU 2003210939	A1	20030902	AU 2003-210939	20030206 <--

PRAI	US 2005069735 US 2002-354770P WO 2003-US3864	A1 P W	20050331 20020206 <-- 20030206 <--	US 2004-913293	20040806 <--
------	--	--------------	--	----------------	--------------

AB The invention relates to a **fuel cell** system comprising: a fuel processor for producing hydrogen from a fuel; and a **fuel cell** stack including a plurality of polymer electrolyte membranes and a plurality of **electrodes**; where the polymer electrolyte membrane comprises a **proton conducting** hydrocarbon-based polymer membrane, the polymer having a backbone and having acidic groups on side chains attached to the backbone. The invention also relates to methods of removing contaminants from the **fuel cell electrode**.

IC ICM H01M0008-04
ICS H01M0008-10

CC 52-2 (**Electrochemical, Radiational, and Thermal Energy Technology**)
Section cross-reference(s): 38

ST polymer electrolyte membrane **fuel cell** system contaminant removal method

IT Reforming apparatus
(fuel; polymer electrolyte membrane **fuel cell** system including contaminant removal method)

IT Oligomers
RL: TEM (Technical or engineered material use); USES (Uses)
(hydrocarbon-based; polymer electrolyte membrane **fuel cell** system including contaminant removal method)

IT Polyketones
Polysulfones, uses
RL: DEV (Device component use); SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(polyether-, sulfonated; polymer electrolyte membrane **fuel cell** system including contaminant removal method)

IT Polyethers, uses
RL: DEV (Device component use); SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(polyketone-, sulfonated; polymer electrolyte membrane **fuel cell** system including contaminant removal method)

IT Algorithm
Fuel cell electrolytes
(polymer electrolyte membrane **fuel cell** system including contaminant removal method)

IT Polymer blends
RL: DEV (Device component use); SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(polymer electrolyte membrane **fuel cell** system including contaminant removal method)

IT Hydrocarbons, uses
RL: SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(polymers; polymer electrolyte membrane **fuel cell** system including contaminant removal method)

IT Polyethers, uses
RL: DEV (Device component use); SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(polysulfone-, sulfonated; polymer electrolyte membrane **fuel cell** system including contaminant removal method)

IT Fuel gas manufacturing
(reforming; polymer electrolyte membrane **fuel cell** system including contaminant removal method)

IT **Fuel cells**

(solid electrolyte; polymer electrolyte membrane **fuel cell** system including contaminant removal method)

IT Polyoxyalkylenes, uses
 RL: DEV (Device component use); SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (sulfonated; polymer electrolyte membrane **fuel cell** system including contaminant removal method)

IT 630-08-0, Carbon monoxide, miscellaneous
 RL: MSC (Miscellaneous)
 (impurity; polymer electrolyte membrane **fuel cell** system including contaminant removal method)

IT 8062-15-5DP, Lignosulfonate, sulfonated 25322-69-4DP, Polypropylene oxide, sulfonated
 RL: DEV (Device component use); SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (polymer electrolyte membrane **fuel cell** system including contaminant removal method)

IT 127-19-5, Dimethyl acetamide 288-32-4, Imidazole, uses
 872-50-4, n-Methylpyrrolidone, uses 10294-54-9, Cesium sulfate
 12067-99-1, Phosphotungstic acid
 RL: MOA (Modifier or additive use); USES (Uses)
 (polymer electrolyte membrane **fuel cell** system including contaminant removal method)

IT 1333-74-0P, Hydrogen, uses
 RL: SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (polymer electrolyte membrane **fuel cell** system including contaminant removal method)

IT 288-32-4, Imidazole, uses
 RL: MOA (Modifier or additive use); USES (Uses)
 (polymer electrolyte membrane **fuel cell** system including contaminant removal method)

RN 288-32-4 HCAPLUS
 CN 1H-Imidazole (9CI) (CA INDEX NAME)

L149 ANSWER 32 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 2003:634139 HCAPLUS
 DN 139:166971
 TI Polymer electrolyte membranes for use in **fuel cells**
 IN Vijayendran, Bhima; McGinniss, Vincent D.; Risser, Steven M.; Schulte, Michael D.; Sayre, Jay R.; Cafmeyer, Jeffrey T.
 PA Battelle Memorial Institute, USA
 SO PCT Int. Appl., 40 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
PI WO 2003067691	A2	20030814	WO 2003-US3862	20030206 <--
WO 2003067691	A3	20031016		

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,

CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
 GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
 LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH,
 PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ,
 UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW

RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,
 KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES,
 FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR, BF,
 BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG

CA 2475501 A1 20030814 CA 2003-2475501 20030206 <--

AU 2003209080 A1 20030902 AU 2003-209080 20030206 <--

EP 1474839 A2 20041110 EP 2003-707808 20030206 <--

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
 IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK

JP 2005531646 T 20051020 JP 2003-566925 20030206 <--

US 2005069745 A1 20050331 US 2004-912590 20040805 <--

PRAI US 2002-354717P P 20020206 <--

WO 2003-US3862 W 20030206 <--

AB This invention relates to a polymer electrolyte membrane comprising a **proton conducting** hydrocarbon-based polymer membrane, the polymer having a backbone and having acidic groups on side chains attached to the backbone. The invention also relates to a polymer electrolyte membrane comprising a **proton conducting** hydrocarbon-based polymer membrane having a phase separated morphol. microstructure. The invention also relates to a polymer electrolyte membrane comprising a **proton conducting** membrane, the membrane comprising a basic material in combination with an acidic material selected from acidic hydrocarbon-based polymers, acidic hydrocarbon-based oligomers, and blends thereof.

IC ICM H01M0008-02

CC 52-2 (**Electrochemical**, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38

ST polymer electrolyte membrane **fuel cell** use

IT Polymers, uses

RL: TEM (Technical or engineered material use); USES (Uses)
 (aromatic, sulfonated; polymer electrolyte membranes for use in **fuel cells**)

IT Epoxy resins, uses

RL: TEM (Technical or engineered material use); USES (Uses)
 (aromatic; polymer electrolyte membranes for use in **fuel cells**)

IT **Fuel cells**

(direct methanol; polymer electrolyte membranes for use in **fuel cells**)

IT Polyoxyalkylenes, uses

RL: TEM (Technical or engineered material use); USES (Uses)
 (fluorine- and sulfo-containing, ionomers; polymer electrolyte membranes for use in **fuel cells**)

IT Oligomers

RL: TEM (Technical or engineered material use); USES (Uses)
 (hydrocarbon-based; polymer electrolyte membranes for use in **fuel cells**)

IT Polymers, uses

RL: TEM (Technical or engineered material use); USES (Uses)
 (inorg., sulfonated; polymer electrolyte membranes for use in **fuel cells**)

IT Cyclosiloxanes

RL: TEM (Technical or engineered material use); USES (Uses)
 (pentaglycidyl ethers, Siloxirane; polymer electrolyte membranes for

use in fuel cells)

IT Polysulfones, uses
 RL: DEV (Device component use); SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (polyether-, sulfonated; polymer electrolyte membranes for use in fuel cells)

IT Polyketones
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses) (polyether-, sulfonated; polymer electrolyte membranes for use in fuel cells)

IT Polyethers, uses
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses) (polyketone-, sulfonated; polymer electrolyte membranes for use in fuel cells)

IT Fuel cell electrolytes
 Glass transition temperature
 Ionic conductivity
 (polymer electrolyte membranes for use in fuel cells)

IT Polymer blends
 RL: TEM (Technical or engineered material use); USES (Uses) (polymer electrolyte membranes for use in fuel cells)

IT Alicyclic compounds
 RL: TEM (Technical or engineered material use); USES (Uses) (polymers. sulfonated; polymer electrolyte membranes for use in fuel cells)

IT Hydrocarbons, uses
 RL: TEM (Technical or engineered material use); USES (Uses) (polymers; polymer electrolyte membranes for use in fuel cells)

IT Fluoropolymers, uses
 RL: TEM (Technical or engineered material use); USES (Uses) (polyoxyalkylene-, sulfo-containing, ionomers; polymer electrolyte membranes for use in fuel cells)

IT Ionomers
 RL: TEM (Technical or engineered material use); USES (Uses) (polyoxyalkylenes, fluorine- and sulfo-containing; polymer electrolyte membranes for use in fuel cells)

IT Polyethers, uses
 RL: DEV (Device component use); SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses) (polysulfone-, sulfonated; polymer electrolyte membranes for use in fuel cells)

IT Fuel cells
 (solid electrolyte; polymer electrolyte membranes for use in fuel cells)

IT Polymers, uses
 RL: TEM (Technical or engineered material use); USES (Uses) (sulfonated, organic hybrid; polymer electrolyte membranes for use in fuel cells)

IT Polyoxyphenylenes
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses) (sulfonated; polymer electrolyte membranes for use in fuel cells)

IT 127-19-5, Dimethyl acetamide 872-50-4, n-Methylpyrrolidone, uses 10294-54-9, Cesium sulfate 12067-99-1, Phosphotungstic acid

RL: MOA (Modifier or additive use); USES (Uses)
 (polymer electrolyte membranes for use in **fuel cells**)

- IT 67-56-1, Methanol, uses **288-32-4**, Imidazole, uses
288-32-4D, Imidazole, substituted 584-08-7, Potassium carbonate
 7447-41-8, Lithium chloride (LiCl), uses 7647-14-5, Sodium chloride,
 uses 7778-80-5, Potassium sulfate, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (polymer electrolyte membranes for use in **fuel cells**)
- IT 8062-15-5, Lignosulfonate
 RL: DEV (Device component use); TEM (Technical or engineered material
 use); USES (Uses)
 (resins, sulfonated; polymer electrolyte membranes for use in
fuel cells)
- IT **288-32-4**, Imidazole, uses **288-32-4D**, Imidazole,
 substituted
 RL: TEM (Technical or engineered material use); USES (Uses)
 (polymer electrolyte membranes for use in **fuel cells**)
- RN 288-32-4 HCAPLUS
 CN 1H-Imidazole (9CI) (CA INDEX NAME)

- RN 288-32-4 HCAPLUS
 CN 1H-Imidazole (9CI) (CA INDEX NAME)

- L149 ANSWER 33 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 2003:591393 HCAPLUS
 DN 139:150738
 TI Acid-base proton conducting polymer blend membrane for
fuel cells
 IN Nam, Kiehyun; Xu, Helen; Cao, Shuguang; Olmeijer, David; Servaites, Jon;
 Wang, Ying
 PA Polyfuel, Inc., USA
 SO PCT Int. Appl., 38 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 FAN.CNT 1
- | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|--|-------|----------|-----------------|--------------|
| ----- | ----- | ----- | ----- | ----- |
| PI WO 2003062493 | A1 | 20030731 | WO 2003-US2361 | 20030123 <-- |
| W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, | | | | |

LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH,
 PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ,
 UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
 RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,
 KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES,
 FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR, BF,
 BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
 CA 2473907 A1 20030731 CA 2003-2473907 20030123 <--
 US 2003219640 A1 20031127 US 2003-351257 20030123 <--
 EP 1476589 A1 20041117 EP 2003-705924 20030123 <--
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
 IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK
 JP 2006508493 T 20060309 JP 2003-562356 20030123 <--
 PRAI US 2002-351445P P 20020123 <--
 WO 2003-US2361 W 20030123 <--

AB The acid-base **proton conducting** polymer blend membrane comprises a first acidic polymer having acidic subunits, a second basic polymer having basic subunits, and a third polymer containing one or more functional units for improving membrane **conductivity**, flexibility, water remaining ability, dimension stability, and methanol crossover. In one embodiment, the acid-base polymer blend membrane of the present invention comprises a first acidic polymer having acidic subunits, a second basic polymer having basic subunits, wherein at least one of the first acidic and second basic polymer comprises one or more functional units to improve the properties of the membrane. The functional units include hydrophilic units, adhesion promoter units, methanol block units, dimensional stabilizer units, and flexible units. Optionally, interpenetrating polymer networks are added to the blends to improve the membrane dimensional stability, and rubbers are optionally added to the blends to improve the membrane mech. properties and reduce methanol permeability. A typical membrane was manufactured by adding 0.2 g NH₃ to 12 g AcNMe₂ containing 0.7 g sulfonated PEEK, adding 0.3 g styrene-4-vinylpyridine block copolymer (number-average mol. weight vinylpyridine block 80,000, number-average mol.

weight styrene block 160,000), casting, drying, soaking 16 h in 1.5 M H₂SO₄, and rinsing in water.

IC ICM C25B0001-02

ICS C25B0013-08; H01M0008-10

CC 38-3 (Plastics Fabrication and Uses)

Section cross-reference(s): 52

ST acid base **proton conducting** polymer blend membrane
fuel cell; styrene vinylpyridine block copolymer blend
proton conducting membrane; ammonium sulfonated PEEK
 blend acid base **proton conducting** membrane

IT Polymer blends

RL: TEM (Technical or engineered material use); USES (Uses)

(acid-base **proton conducting** polymer blend membrane

with good mech. properties, hydrophilicity, and decreased methanol permeability for **fuel cells**)

IT Synthetic rubber, uses

RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)

(acrylonitrile, mech.-property improving component; acid-base

proton conducting polymer blend membrane with good
 mech. properties, hydrophilicity, and decreased methanol permeability
 for **fuel cells**)

IT Polybenzimidazoles

RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)

(base polymer; acid-base **proton conducting** polymer

- blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for **fuel cells**)
- IT Silicone rubber, uses
 RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)
 (di-Me, aminopropyl group-terminated, mech.-property improving component; acid-base **proton conducting** polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for **fuel cells**)
- IT Fluoro rubber
 RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)
 (hexafluoropropene-vinylidene fluoride, Kynar Flex, mech.-property improving component; acid-base **proton conducting** polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for **fuel cells**)
- IT Interpenetrating polymer networks
 (mech.-property improving component; acid-base **proton conducting** polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for **fuel cells**)
- IT Synthetic rubber, uses
 RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)
 (phosphazene, trifluoroethoxy, mech.-property improving component; acid-base **proton conducting** polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for **fuel cells**)
- IT Polysulfones, uses
 RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)
 (polyether-, acid polymer; acid-base **proton conducting** polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for **fuel cells**)
- IT Polyimides, uses
 Polysulfones, uses
 RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)
 (polyether-, sulfonated, acid polymer; acid-base **proton conducting** polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for **fuel cells**)
- IT Polyketones
 RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)
 (polyether-, sulfonated, ammonium salts, acid polymer; acid-base **proton conducting** polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for **fuel cells**)
- IT Polyethers, uses
 RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)
 (polyimide-, sulfonated, acid polymer; acid-base **proton conducting** polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for **fuel cells**)
- IT Polyethers, uses
 RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)

(polyketone-, sulfonated, ammonium salts, acid polymer; acid-base proton conducting polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT Polyethers, uses

RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)
(polysulfone-, acid polymer; acid-base proton conducting polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT Polyethers, uses

RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)
(polysulfone-, sulfonated, acid polymer; acid-base proton conducting polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT Ionic conductors

(proton; acid-base proton conducting polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT Fluoropolymers, uses

RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)
(rubber, mech.-property improving component; acid-base proton conducting polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT Fuel cells

(solid electrolyte, proton-exchange membranes; acid-base proton conducting polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT Fluoro rubber

RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)
(vinylidene fluoride, mech.-property improving component; acid-base proton conducting polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT 97917-34-5, A 12

RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)
(DMS-A 12, mech.-property improving component; acid-base proton conducting polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT 31694-16-3D, PEEK, sulfonated, ammonium salts

RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)
(acid polymer; acid-base proton conducting polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT 67-56-1, Methanol, miscellaneous

RL: MSC (Miscellaneous)
(acid-base proton conducting polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for fuel cells)

IT 9003-53-6, Polystyrene

RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)

(addnl. hydrophobic component; acid-base **proton**

conducting polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for **fuel cells**)

IT 9003-47-8, Polyvinylpyridine 25232-42-2, Polyvinylimidazole 32236-74-1, Acrylonitrile-4-vinylpyridine copolymer 69638-75-1, Acrylic acid-styrene-4-vinylpyridine copolymer 107082-95-1, Styrene-4-vinylpyridine block copolymer
RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)

(base polymer; acid-base **proton conducting** polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for **fuel cells**)

IT 9003-39-8, PVP 25086-29-7, Styrene-vinylpyrrolidone copolymer 25086-89-9, Vinyl acetate-vinylpyrrolidone copolymer 25189-55-3, Poly-N-isopropylacrylamide 25249-16-5, Poly-2-hydroxyethyl methacrylate 29297-55-0, N-Vinylimidazole-N-vinylpyrrolidone copolymer 30581-59-0, Dimethylaminoethyl methacrylate-vinylpyrrolidone copolymer 31261-19-5, Acrylonitrile-N-isopropylacrylamide copolymer 36521-72-9, Vinyl acetate-vinyl alcohol-N-vinylpyrrolidone copolymer 200216-54-2, Acrylonitrile-vinylimidazole copolymer
RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)

(hydrophilic component; acid-base **proton conducting** polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for **fuel cells**)

IT 24968-99-8, Polyvinyl cinnamate
RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)
(mech.-property improving component; acid-base **proton** **conducting** polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for **fuel cells**)

IT 78-10-4, TEOS 681-84-5, TMOS
RL: TEM (Technical or engineered material use); USES (Uses)
(mech.-property improving component; acid-base **proton** **conducting** polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for **fuel cells**)

IT 9002-89-5, Polyvinyl alcohol 9003-20-7, Polyvinyl acetate 24937-78-8, EVA 25213-24-5, Vinyl acetate-vinyl alcohol copolymer 37203-28-4, Vinyl acetate-vinylpyridine copolymer 61318-17-0, Vinyl alcohol-vinyl acetate-vinylpyridine copolymer 570394-13-7, Vinyl alcohol-vinyl acetate-vinylpyridine copolymer
RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)
(methanol-blocking component; acid-base **proton** **conducting** polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for **fuel cells**)

IT 9011-17-0, Hexafluoropropylene-vinylidene fluoride copolymer 24937-79-9, Polyvinylidene fluoride 25014-41-9, PAN 28212-50-2, Polybis(trifluoroethoxy)phosphazene
RL: POF (Polymer in formulation); TEM (Technical or engineered material use); USES (Uses)
(rubber, mech.-property improving component; acid-base **proton** **conducting** polymer blend membrane with good mech. properties, hydrophilicity, and decreased methanol permeability for **fuel**

cells)

IT 9003-47-8, Polyvinylpyridine 25232-42-2,
 Polyvinylimidazole
 RL: POF (Polymer in formulation); TEM (Technical or engineered material
 use); USES (Uses)
 (base polymer; acid-base proton conducting polymer
 blend membrane with good mech. properties, hydrophilicity, and
 decreased methanol permeability for fuel cells)

RN 9003-47-8 HCPLUS

CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1
 CMF C7 H7 N
 CCI IDS

D1-CH=CH₂

RN 25232-42-2 HCPLUS
 CN 1H-Imidazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1072-63-5
 CMF C5 H6 N2

IT 9003-39-8, PVP
 RL: POF (Polymer in formulation); TEM (Technical or engineered material
 use); USES (Uses)
 (hydrophilic component; acid-base proton conducting
 polymer blend membrane with good mech. properties, hydrophilicity, and
 decreased methanol permeability for fuel cells)

RN 9003-39-8 HCPLUS
 CN 2-Pyrrolidinone, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 88-12-0
 CMF C6 H9 N O

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (R WK)	Referenced File
de Nora	1981			US 4295952 A	HCAPLUS
Formato	2001			US 6248469 B1	HCAPLUS
Prakash	2002			US 6444343 B1	HCAPLUS
Zupncic	1987			US 4664761 A	HCAPLUS

L149 ANSWER 34 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2003:454898 HCAPLUS

DN 139:39126

TI Nonaqueous electrolytes for lithium primary and secondary
batteries

IN Barbarich, Thomas J.

PA Yardney Technical Products, Inc., USA

SO U.S. Pat. Appl. Publ., 15 pp.

CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 2003108800	A1	20030612	US 2002-289784	20021107 <--
US 6852446	B2	20050208		

PRAI US 2001-347083P P 20011109 <--

OS MARPAT 139:39126

AB A nonaq. elec. current producing **electrochem. cell** is provided comprising an **anode** and a **cathode**, an ionically permeable separator interposed between the **anode** and the **cathode**, and a nonaq. electrolyte, the electrolyte comprising an ionically conducting salt in a nonaq. medium, the ionically conducting salt corresponding to the formula: M+(Z*(J*)^j(X*)^x)-, wherein: M is a lithium atom, Z* is an anion group containing two or more Lewis basic sites and comprising less than 50 atoms not including hydrogen atoms, J* independently each occurrence is a Lewis acid coordinated to at least one Lewis basic site of Z*, and optionally two or more such J* groups may be joined together in a moiety having multiple Lewis acidic functionality, X* independently each occurrence is selected from the group consisting of H, Cl-4 alkyl, alkoxide, halide and mixts. thereof, j is an integer from 2 to 12, and x is an integer from 0 to 4.

IC ICM H01M0010-40

ICS H01M0004-58; H01M0004-60

INCL 429324000; 429231950; 429231400; 429213000; 429303000; 429307000;
429338000; 429342000; 429332000; 429333000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST lithium **battery** nonaq electrolyte

IT Polymers, uses

RL: DEV (Device component use); USES (Uses)

(gels; nonaq. electrolytes for lithium primary and secondary
batteries)

IT Chalcogenides

Oxides (inorganic), uses

RL: DEV (Device component use); USES (Uses)
 (lithiated; nonaq. electrolytes for lithium primary and secondary batteries)

IT Primary batteries
 Secondary batteries
 (lithium; nonaq. electrolytes for lithium primary and secondary batteries)

IT Glass, uses
 RL: DEV (Device component use); USES (Uses)
 (membrane; nonaq. electrolytes for lithium primary and secondary batteries)

IT Battery electrolytes
 Ionic conductivity
 Polar solvents
 (nonaq. electrolytes for lithium primary and secondary batteries)

IT Esters, uses
 Ethers, uses
 Lactones
 Nitriles, uses
Polyanilines
 Sulfones
 Transition metal chalcogenides
 Transition metal oxides
 RL: DEV (Device component use); USES (Uses)
 (nonaq. electrolytes for lithium primary and secondary batteries)

IT Disulfides
 RL: DEV (Device component use); USES (Uses)
 (organic, redox polymers; nonaq. electrolytes for lithium primary and secondary batteries)

IT Transition metal compounds
 RL: DEV (Device component use); USES (Uses)
 (oxysulfides; nonaq. electrolytes for lithium primary and secondary batteries)

IT Lithium alloy, base
 RL: DEV (Device component use); USES (Uses)
 (nonaq. electrolytes for lithium primary and secondary batteries)

IT 7440-44-0, Carbon, uses
 RL: DEV (Device component use); USES (Uses)
 (mesocarbon microbeads; nonaq. electrolytes for lithium primary and secondary batteries)

IT 57-12-5, Cyanide, uses 60-29-7, Diethyl ether, uses 96-48-0,
 γ -Butyrolactone 96-49-1, Ethylene carbonate 105-58-8, Diethyl carbonate 108-32-7, Propylene carbonate 109-99-9, Thf, uses 110-71-4, 1,2-Dimethoxyethane 120-73-0D, Purine, derivs. 504-66-5D, Dicyanamide, derivs. 616-38-6, Dimethyl carbonate 623-53-0, Ethyl methyl carbonate 646-06-0, Dioxolane 7439-93-2, Lithium, uses 7439-93-2D, Lithium, intercalation compound 14343-69-2, Azide 17655-31-1, Amide 17997-24-9D, Methanetricarbonitrile, ion(1-), derivs. 25233-30-1, **Polyaniline** 25948-29-2, Carbon disulfide homopolymer 28737-40-8D, Squarate ion(2-), derivs. 32178-55-5D, Benzimidazolide, derivs. 34512-21-5D, derivs. 36954-03-7D, Imidazole anion, derivs. 39448-96-9, Graphite lithium 51719-91-6D, derivs. 64544-32-7D, derivs. 68146-66-7D, derivs. 81425-01-6D, derivs. 217309-42-7, Copper lithium nickel oxide Cu0.2LiNi0.8O2 261356-47-2D, Borate(1-), tetrakis(cyano- κ C)-, derivs. 519040-72-3 527685-88-7 527685-89-8 527685-90-1 527685-91-2 527685-92-3 527685-93-4 527685-94-5 527685-95-6

527685-96-7 527685-98-9 527686-01-7 527686-04-0 527686-06-2
 527686-08-4 541502-73-2D, derivs. 541502-74-3D, derivs.

RL: DEV (Device component use); USES (Uses)
 (nonaq. electrolytes for lithium primary and secondary
batteries)

IT 55986-39-5P, Lithium imidazolidine 148505-26-4P 464194-97-6P
 519040-73-4P 519040-74-5P 519040-75-6P 527685-86-5P 527685-87-6P
 527686-13-1P 527686-16-4P

RL: DEV (Device component use); PRP (Properties); SPN (Synthetic
 preparation); PREP (Preparation); USES (Uses)
 (nonaq. electrolytes for lithium primary and secondary
batteries)

IT 9002-88-4, Polyethylene

RL: DEV (Device component use); USES (Uses)
 (separator; nonaq. electrolytes for lithium primary and secondary
batteries)

IT 25233-30-1, Polyaniline 36954-03-7D, Imidazole
 anion, derivs. 51719-91-6D, derivs. 64544-32-7D,
 derivs.

RL: DEV (Device component use); USES (Uses)
 (nonaq. electrolytes for lithium primary and secondary
batteries)

RN 25233-30-1 HCAPLUS

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3

CMF C6 H7 N

RN 36954-03-7 HCAPLUS

CN 1H-Imidazole, ion(1-) (9CI) (CA INDEX NAME)

RN 51719-91-6 HCAPLUS

CN 1H-1,2,3-Triazole, ion(1-) (9CI) (CA INDEX NAME)

RN 64544-32-7 HCAPLUS

CN 1H-1,2,4-Triazole, ion(1-) (9CI) (CA INDEX NAME)

RETABLE

Referenced Author (RAU)	Year (RPY)	VOL (RVL)	PG (RPG)	Referenced Work (RWK)	Referenced File
Anon	2002			JP 2002260734	HCAPLUS
LaPointe	2002			US 6395671 B2	HCAPLUS
Lapointe	2000	122	9560	J. Am. Chem. Soc.	HCAPLUS
Lee	2000			US 6022643 A	HCAPLUS
Lee	1998	145	2813	J. Electrochem. Soc.	HCAPLUS
Sun	1999	146	3655	Journal of the Electr	HCAPLUS

L149 ANSWER 35 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2003:406546 HCAPLUS

DN 138:404317

TI Procedure for fabrication of **proton-conductive** electrolyte membrane for **fuel cell**

IN Melzner, Dieter; Kiel, Suzana; Maehr, Ulrich; Reiche, Annette

PA Sartorius AG, Germany

SO Ger. Offen., 12 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 3

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 10155543	A1	20030528	DE 2001-10155543	20011112 <--
	DE 10155543	C2	20031113		
	DE 20217178	U1	20030430	DE 2002-20217178	20021107 <--
	WO 2003043116	A1	20030522	WO 2002-EP12461	20021107 <--
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
	RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
	EP 1451887	A1	20040901	EP 2002-785374	20021107 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK				
	JP 2005509695	T	20050414	JP 2003-544837	20021107 <--
	US 2005118476	A1	20050602	US 2003-495222	20021107 <--
	CN 1650462	A	20050803	CN 2002-821859	20021107 <--
PRAI	DE 2001-10155543	IA	20011112 <--		
	DE 2001-10155545	IA	20011112 <--		
	WO 2002-EP12461	W	20021107 <--		
AB	A proton-conductive electrolyte membrane comprises at least a base material and at least one dopant, which is the reaction product of at least one dibasic inorg. acid with an organic compound, which contains an acidic hydroxyl group, or is a condensation product of this				

compound with a multibasic acid. The electrolyte membrane can be prepared in a single-stage procedure, whereby dangerous and polluting materials can be avoided. Addnl., doping the membrane, e.g. in the context of the membrane-electrode-assembly is not impossible. The electrolyte membrane contains a high and a constant mech. stability and flexibility, excellent chemical and thermal stability and a high constant conductivity. The membrane can be inserted in a **fuel cell** in a wide temperature range from e.g., 50° to >200°, whereby the **fuel cell** shows a high and a constant efficiency over the entire temperature range.

- IC ICM H01M0008-02
 ICS C08J0005-22; C08G0061-12
 CC 52-2 (**Electrochemical**, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 38
 ST **fuel cell proton conductive**
 electrolyte membrane fabrication
 IT Alcohols, processes
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)
 (aliphatic, C5-20; procedure for fabrication of **proton-conductive** electrolyte membrane for **fuel cell**
)
 IT Alcohols, processes
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)
 (aralkyl; procedure for fabrication of **proton-conductive** electrolyte membrane for **fuel cell**
)
 IT Ceramics
Fuel cell electrolytes
 (procedure for fabrication of **proton-conductive** electrolyte membrane for **fuel cell**)
 IT Epoxides
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)
 (procedure for fabrication of **proton-conductive** electrolyte membrane for **fuel cell**)
 IT Polybenzimidazoles
 Polybenzothiazoles
 Polybenzoxazoles
 Polyoxadiazoles
Polyquinoxalines
 RL: DEV (Device component use); USES (Uses)
 (procedure for fabrication of **proton-conductive** electrolyte membrane for **fuel cell**)
 IT **Fuel cells**
 (solid electrolyte; procedure for fabrication of **proton-conductive** electrolyte membrane for **fuel cell**
)
 IT 104-76-7, 2-Ethylhexanol 108-95-2, Phenol, processes 298-07-7,
 Phosphoric acid, bis(2-ethylhexyl) ester 838-85-7, Phosphoric acid,
 diphenyl ester 2425-79-8, 1,4-Butanediol diglycidyl ether 7664-38-2,
 Phosphoric acid, processes 7664-93-9, Sulfuric acid, processes
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)
 (procedure for fabrication of **proton-conductive** electrolyte membrane for **fuel cell**)
 IT 67-68-5, Dmso, uses 68-12-2, Dmf, uses 127-19-5, Dimethyl acetamide
 129-00-0D, Pyrene, tetraaza derivs., polymers 872-50-4,

n-Methylpyrrolidone, uses 25013-01-8, Polypyridine
82370-43-2, Polyimidazole 128611-69-8, 1,3,4-Thiadiazole
 homopolymer 190201-51-5, Pyrimidine homopolymer
 RL: DEV (Device component use); USES (Uses)

(procedure for fabrication of proton-conductive
 electrolyte membrane for fuel cell)

IT 25013-01-8, Polypyridine **82370-43-2**, Polyimidazole
128611-69-8, 1,3,4-Thiadiazole homopolymer 190201-51-5,
 Pyrimidine homopolymer

RL: DEV (Device component use); USES (Uses)

(procedure for fabrication of proton-conductive
 electrolyte membrane for fuel cell)

RN 25013-01-8 HCAPLUS

CN Pyridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-86-1

CMF C5 H5 N

RN 82370-43-2 HCAPLUS

CN 1H-Imidazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-32-4

CMF C3 H4 N2

RN 128611-69-8 HCAPLUS

CN 1,3,4-Thiadiazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 289-06-5

CMF C2 H2 N2 S

RN 190201-51-5 HCAPLUS

CN Pyrimidine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 289-95-2
CMF C4 H4 N2

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (R WK)	Referenced File
Anon				WO 0118894 A2	HCAPLUS
Anon				US 4814399 A	HCAPLUS
Anon				US 5525436 A	HCAPLUS

L149 ANSWER 36 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2003:396602 HCAPLUS

DN 138:388180

TI Method of fabrication of **proton-conductive** polymer
electrolyte membrane for **fuel cell**

IN Melzner, Dieter; Kiel, Suzana; Maehr, Ulrich; Reiche, Annette

PA Sartorius A.-G., Germany

SO Ger. Offen., 12 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 3

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI DE 10155545	A1	20030522	DE 2001-10155545	20011112 <--
DE 20217178	U1	20030430	DE 2002-20217178	20021107 <--
WO 2003043116	A1	20030522	WO 2002-EP12461	20021107 <--
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
EP 1451887	A1	20040901	EP 2002-785374	20021107 <--
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK				
JP 2005509695	T	20050414	JP 2003-544837	20021107 <--
CN 1650462	A	20050803	CN 2002-821859	20021107 <--
PRAI DE 2001-10155543	IA	20011112 <--		
DE 2001-10155545	IA	20011112 <--		
WO 2002-EP12461	W	20021107 <--		
AB A proton-conductive polymer electrolyte membrane comprises ≥1 basic polymer and ≥1 dopant, which are the reaction product of ≥1 dibasic inorg. acid with an organic compound, whereby the reaction product contains an unreacted acid hydroxyl group. The electrolyte membrane can be fabricated in a single-stage procedure, by				

avoiding dangerous and polluting materials. The electrolyte membrane contains a high and a constant mech. stability and flexibility, excellent chemical and thermal stability and a high constant **conductivity**. The membrane can be used in a **fuel cell** in a wide temperature range of, e.g., 50° to >200°, whereby the **fuel cell** shows a high and a constant efficiency over the entire temperature range.

- IC ICM H01M0008-02
 ICS C08J0005-22; C08G0061-12
 CC 52-2 (**Electrochemical, Radiational, and Thermal Energy Technology**)
 Section cross-reference(s): 38
 ST **fuel cell proton conductive**
 polymer electrolyte membrane
 IT Amines, processes
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)
 (aliphatic, C5-20, substituted or unsubstituted; method of fabrication of **proton-conductive** polymer electrolyte membrane for **fuel cell**)
 IT Alcohols, processes
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)
 (aliphatic, C5-20; method of fabrication of **proton-conductive** polymer electrolyte membrane for **fuel cell**)
 IT Alcohols, processes
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)
 (aralkyl, substituted or unsubstituted; method of fabrication of **proton-conductive** polymer electrolyte membrane for **fuel cell**)
 IT Amines, processes
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)
 (aromatic; method of fabrication of **proton-conductive** polymer electrolyte membrane for **fuel cell**)
 IT **Fuel cell electrolytes**
 (method of fabrication of **proton-conductive** polymer electrolyte membrane for **fuel cell**)
 IT Polybenzimidazoles
 Polybenzoxazoles
 Polyoxadiazoles
Polyquinoxalines
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (method of fabrication of **proton-conductive** polymer electrolyte membrane for **fuel cell**)
 IT **Fuel cells**
 (solid electrolyte; method of fabrication of **proton-conductive** polymer electrolyte membrane for **fuel cell**)
 IT 104-76-7, 2-Ethylhexanol 108-95-2, Phenol, processes 298-07-7,
 Di(2-ethylhexyl)phosphate 838-85-7, Diphenyl phosphate 2425-79-8,
 1,4-Butanediol diglycidyl ether 7664-38-2, Phosphoric acid, processes
 7664-93-9, Sulfuric acid, processes
 RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)
 (method of fabrication of **proton-conductive** polymer electrolyte membrane for **fuel cell**)

IT 25013-01-8, Polypyridine 31346-56-2 82370-43-2
, Polyimidazole 128611-69-8, 1,3,4-Thiadiazole homopolymer
190201-51-5, Pyrimidine homopolymer
RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
(method of fabrication of **proton-conductive** polymer
electrolyte membrane for **fuel cell**)

IT 67-68-5, Dmso, uses 68-12-2, Dmf, uses 127-19-5, Dimethylacetamide
872-50-4, n-Methylpyrrolidone, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(method of fabrication of **proton-conductive** polymer
electrolyte membrane for **fuel cell**)

IT 25013-01-8, Polypyridine 31346-56-2 82370-43-2
, Polyimidazole 128611-69-8, 1,3,4-Thiadiazole homopolymer
190201-51-5, Pyrimidine homopolymer
RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
(method of fabrication of **proton-conductive** polymer
electrolyte membrane for **fuel cell**)

RN 25013-01-8 HCPLUS
CN Pyridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-86-1
CMF C5 H5 N

RN 31346-56-2 HCPLUS
CN Benzothiazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 95-16-9
CMF C7 H5 N S

RN 82370-43-2 HCPLUS
CN 1H-Imidazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-32-4
CMF C3 H4 N2

RN 128611-69-8 HCPLUS
 CN 1,3,4-Thiadiazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 289-06-5
 CMF C2 H2 N2 S

RN 190201-51-5 HCPLUS
 CN Pyrimidine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 289-95-2
 CMF C4 H4 N2

L149 ANSWER 37 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 2003:317752 HCPLUS
 DN 138:341083
 TI Electrolyte solution and electrochemical cell using
 the solution
 IN Shinoda, Tomoki; Nishiyama, Toshihiko; Kamito, Hiroyuki; Harada,
 Manabu; Kurosaki, Masato; Nakagawa, Yuji; Kaneko,
 Shinako; Mitani, Katsuya
 PA NEC Tokin Corp., Japan
 SO Jpn. Kokai Tokkyo Koho, 9 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 2003123834 EP 1309028 EP 1309028 EP 1309028	A A2 A3 B1	20030425 20030507 20040602 20061018	JP 2001-319390 EP 2002-292430	20011017 <-- 20021003 <--

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
 IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK

TW 564566	B 20031201	TW 2002-91123248	20021008 <--
US 2003091905	A1 20030515	US 2002-271636	20021015 <--
US 6869731	B2 20050322		
CN 1412225	A 20030423	CN 2002-147593	20021017 <--
HK 1053850	A1 20060428	HK 2003-106102	20030826 <--
US 2005135045	A1 20050623	US 2005-50958	20050204 <--
US 7082027	B2 20060725		
PRAI JP 2001-319390	A 20011017 <--		
US 2002-271636	A3 20021015 <--		
OS MARPAT 138:341083			
GI			

AB The electrolyte solution contains a water soluble heterocyclic N compound in an aqueous solution of an org or inorg acid. The heterocyclic compound is selected

from I-IV, where the R's are selected from H, C1-4 alkyl, amino, carboxy, nitro, Ph, vinyl, acyl, cyano, CF₃-, alkylsulfonyl, and CF₃S- groups and halogen. The **electrochem. cell** is a secondary

battery or a double layer capacitor.

IC ICM H01M0010-36

ICS H01G0009-038; H01M0004-60; H01M0010-40

CC 52-2 (**Electrochemical, Radiational, and Thermal Energy Technology**)

ST secondary **battery** electrolyte soln heterocyclic nitrogen compd; double layer capacitor electrolyte soln heterocyclic nitrogen compd

IT **Battery electrolytes**

(aqueous acid electrolyte solns. containing heterocyclic nitrogen compds.

for

secondary **batteries**)

IT 7664-93-9, Sulfuric acid, uses

RL: DEV (Device component use); USES (Uses)

(aqueous acid electrolyte solns. containing heterocyclic nitrogen compds.

for

secondary **batteries** and double layer capacitors)

IT 288-13-1, Pyrazole 288-32-4, Imidazole, uses

20154-03-4, 3-Trifluoromethylpyrazole 37306-44-8, Triazole

RL: MOA (Modifier or additive use); USES (Uses)

(aqueous acid electrolyte solns. containing heterocyclic nitrogen compds.

for

secondary **batteries** and double layer capacitors)

IT 288-13-1, Pyrazole 288-32-4, Imidazole, uses

20154-03-4, 3-Trifluoromethylpyrazole

RL: MOA (Modifier or additive use); USES (Uses)

(aqueous acid electrolyte solns. containing heterocyclic nitrogen compds.

for

secondary **batteries** and double layer capacitors)

RN 288-13-1 HCPLUS

CN 1H-Pyrazole (9CI) (CA INDEX NAME)

RN 288-32-4 HCAPLUS
 CN 1H-Imidazole (9CI) (CA INDEX NAME)

RN 20154-03-4 HCAPLUS
 CN 1H-Pyrazole, 3-(trifluoromethyl)- (9CI) (CA INDEX NAME)

L149 ANSWER 38 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 2003:300775 HCAPLUS
 DN 138:290461
 TI Secondary lithium **batteries** using lithium nickel manganese oxide **cathodes**
 IN Okada, Mikio
 PA Japan Storage Battery Co., Ltd., Japan
 SO Jpn. Kokai Tokkyo Koho, 10 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI JP 2003115324	A	20030418	JP 2001-308766	20011004 <--
PRAI JP 2001-308766		20011004 <--		
AB The batteries comprise LixNiyMn _{2-y} O ₄ (x = 0-1 y = 0.45-0.6) as cathodes , carbonaceous anodes , and nonaq. electrolytes; wherein nitrogen-containing unsatd. cyclic compds. are included in the electrolytes to improve charge-discharge cycling performance. A part of Ni or Mn in the compound oxides may have been substituted with Co, Fe, Zn, Al, or V.				
IC ICM H01M0010-40				
ICS H01M0004-02; H01M0004-58; H01M0004-62				
CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)				
ST lithium battery electrolyte nitrogen unsatd heterocycle additive				
IT Battery cathodes Battery electrolytes Secondary batteries (secondary lithium batteries using lithium nickel manganese oxide cathodes and containing nitrogen-containing unsatd. heterocyclic additives in electrolytes)				

IT 12031-75-3, Lithium manganese nickel oxide (LiMn1.5Ni0.5O4) 444727-97-3,
 Lithium manganese nickel oxide (Li0-1Mn1.4-1.55Ni0.45-0.604)
 RL: TEM (Technical or engineered material use); USES (Uses)
 (cathodes; secondary lithium batteries using
 lithium nickel manganese oxide cathodes and containing
 nitrogen-containing unsatd. heterocyclic additives in electrolytes)

IT 108-47-4, 2,4-Dimethylpyridine 108-48-5, 2,6-Dimethylpyridine
 109-97-7, Pyrrole 110-86-1, Pyridine, uses 120-73-0, Purine
288-13-1, Pyrazole 289-80-5, Pyridazine **289-95-2**,
 Pyrimidine 290-37-9, Pyrazine 372-47-4, 3-Fluoropyridine 372-48-5,
 2-Fluoropyridine 583-58-4, 3,4-Dimethylpyridine 583-61-9,
 2,3-Dimethylpyridine 589-93-5, 2,5-Dimethylpyridine 591-22-0,
 3,5-Dimethylpyridine 5453-67-8, Dimethyl-2,6-pyridine dicarboxylate
 6269-24-5, Methyl-3-pyridyl carbamate 36118-45-3, Pyrazoline
 39455-90-8, Pyrazolone 67242-59-5, N-Methyl-N-(2-pyridyl)formamide
 RL: MOA (Modifier or additive use); TEM (Technical or engineered material
 use); USES (Uses)
 (electrolyte additive; secondary lithium batteries using
 lithium nickel manganese oxide cathodes and containing
 nitrogen-containing unsatd. heterocyclic additives in electrolytes)

IT **288-13-1**, Pyrazole **289-95-2**, Pyrimidine
 RL: MOA (Modifier or additive use); TEM (Technical or engineered material
 use); USES (Uses)
 (electrolyte additive; secondary lithium batteries using
 lithium nickel manganese oxide cathodes and containing
 nitrogen-containing unsatd. heterocyclic additives in electrolytes)

RN 288-13-1 HCAPLUS
 CN 1H-Pyrazole (9CI) (CA INDEX NAME)

RN 289-95-2 HCAPLUS
 CN Pyrimidine (8CI, 9CI) (CA INDEX NAME)

L149 ANSWER 39 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 2003:58413 HCAPLUS
 DN 138:109605
 TI Method for producing a plasma-polymerized polymer electrolyte membrane and
 a polyazole membrane, coated by plasma-polymerization
 IN Mueller, Joerg; Mex, Laurent
 PA Germany
 SO PCT Int. Appl., 42 pp.
 CODEN: PIXXD2
 DT Patent
 LA German
 FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
------------	------	------	-----------------	------

PI WO 2003007411 A2 20030123 WO 2002-EP7734 20020711 <--
 WO 2003007411 A3 20041104
 W: AU, BR, CA, CN, IL, JP, KR, MX, US
 RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT,
 LU, MC, NL, PT, SE, SK, TR
 DE 10133738 A1 20030206 DE 2001-10133738 20010711 <--
 CA 2448447 A1 20030123 CA 2002-2448447 20020711 <--
 EP 1497882 A2 20050119 EP 2002-762348 20020711 <--
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
 IE, FI, CY, TR, BG, CZ, EE, SK
 JP 2005520001 T 20050707 JP 2003-513069 20020711 <--
 US 2004186189 A1 20040923 US 2003-482354 20031229 <--

PRAI DE 2001-10133738 A 20010711 <--
 WO 2002-EP7734 W 20020711 <--

AB The invention relates to a method for producing polymer-electrolyte membranes using plasma-assisted deposition in a gaseous phase. The method simplifies the process in relation to prior art by the selection of its starting materials, carbon or fluorocarbon compds. and water. The invention also relates to a polyazole membrane coated by plasma-polymerization

IC ICM H01M0008-10

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 38, 48, 72

ST fuel cell plasma polymd electrolyte membrane;
 polyazole membrane plasma polymn coated

IT Electrolytic cells
 Fuel cell electrolytes
 Separators
 (method for producing plasma-polymerized polymer electrolyte membrane and polyazole membrane coated by plasma-polymerization)

IT Polybenzimidazoles
 Polybenzothiazoles
 Polybenzoxazoles
 Polyoxadiazoles
 Polyquinoxalines
 RL: SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (method for producing plasma-polymerized polymer electrolyte membrane and polyazole membrane coated by plasma-polymerization)

IT Fuel cells
 (solid electrolyte; method for producing plasma-polymerized polymer electrolyte membrane and polyazole membrane coated by plasma-polymerization)

IT 194-10-5DP, Pyrimido[4,5,6-gh]perimidine, copolymers containing with aryl and heteroaryl ring 25013-01-8P, Polypyridine 30604-81-0P,
 1H-Pyrrole, homopolymer 82370-43-2P, Polyimidazole
 128611-69-8P, 1,3,4-Thiadiazole, homopolymer 190201-51-5P
 , Pyrimidine, homopolymer
 RL: SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (method for producing plasma-polymerized polymer electrolyte membrane and polyazole membrane coated by plasma-polymerization)

IT 25013-01-8P, Polypyridine 30604-81-0P, 1H-Pyrrole,
 homopolymer 82370-43-2P, Polyimidazole 128611-69-8P,
 1,3,4-Thiadiazole, homopolymer 190201-51-5P, Pyrimidine,
 homopolymer
 RL: SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (method for producing plasma-polymerized polymer electrolyte membrane and polyazole membrane coated by plasma-polymerization)

RN 25013-01-8 HCPLUS

CN Pyridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-86-1
CMF C5 H5 N

RN 30604-81-0 HCPLUS
CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7
CMF C4 H5 N

RN 82370-43-2 HCPLUS
CN 1H-Imidazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-32-4
CMF C3 H4 N2

RN 128611-69-8 HCPLUS
CN 1,3,4-Thiadiazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 289-06-5
CMF C2 H2 N2 S

RN 190201-51-5 HCPLUS

CN Pyrimidine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 289-95-2
CMF C4 H4 N2L149 ANSWER 40 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN
AN 2003:56659 HCPLUS

DN 138:124980

TI **Proton-conductive** membranes or films and their manufacture for proton exchange membranes in fuel cells

IN Fujita, Shigeru; Abe, Masao

PA Nitto Denko Corp., Japan

SO Jpn. Kokai Tokkyo Koho, 12 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI JP 2003022823	A	20030124	JP 2001-207547	20010709 <--
PRAI JP 2001-207547		20010709	<--	

AB The **proton-conductive** membranes are manufactured by (1) polymerizing (A) monofunctional monomers having phosphoric, phosphonic, or phosphinic groups in side chains with (B) monofunctional monomers having amine salts of the above groups in pores of porous membranes (e.g., ultrahigh-mol.-weight polyolefins, fluoropolymers) so that the resulting polymers are supported in the pores or (2) polymerizing the above A monomers in the pores and partially converting the side chain groups of the resulting polymers to amine salts. The films are manufactured by closing at least a part of residual hollow pores of the membranes. The polymers having partial amine salts have high adhesion to the porous membranes, and the **proton-conductive** membranes and films have high durability and mech. strength and reduce cost for fuel cell systems.

IC ICM H01M0008-02

ICS C08F0008-32; C08F0230-02; C08J0009-36; H01B0001-06; H01B0013-00;
H01M0008-10; C08L0101-00CC 52-2 (**Electrochemical**, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38, 76

ST **proton conductive** membrane film **fuel**
cell; porous membrane pore monomer polynmn **proton**
conductor; phosphoric monomer polymer partial amine salt;
phosphonic monomer polymer partial amine salt; phosphinic monomer polymer partial amine salt

IT Films

Membranes, nonbiological

(elec. **conductive**; **proton-conductive**
membranes or films using partial amine salt-bearing polymers in

- membrane pores and their manufacture for **proton exchange membranes in fuel cells**)
- IT Electric conductors
 (films; **proton-conductive** membranes or films using partial amine salt-bearing polymers in membrane pores and their manufacture for **proton exchange membranes in fuel cells**)
)
- IT Fluoropolymers, uses
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (porous membrane supports; **proton-conductive** membranes or films using partial amine salt-bearing polymers in membrane pores and their manufacture for **proton exchange membranes in fuel cells**)
- IT Fuel cells
 (**proton-conductive** membranes or films using partial amine salt-bearing polymers in membrane pores and their manufacture for **proton exchange membranes in fuel cells**)
- IT Ionomers
 RL: DEV (Device component use); IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (**proton-conductive** membranes or films using partial amine salt-bearing polymers in membrane pores and their manufacture for **proton exchange membranes in fuel cells**)
- IT Polyolefins
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (ultrahigh-mol.-weight, porous membrane supports; **proton-conductive** membranes or films using partial amine salt-bearing polymers in membrane pores and their manufacture for **proton exchange membranes in fuel cells**)
- IT 9002-88-4, UHMWPE
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (porous membrane supports; **proton-conductive** membranes or films using partial amine salt-bearing polymers in membrane pores and their manufacture for **proton exchange membranes in fuel cells**)
- IT 490028-34-7P 490028-36-9P 490028-37-0P
 RL: DEV (Device component use); IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (**proton-conductive** membranes or films using partial amine salt-bearing polymers in membrane pores and their manufacture for **proton exchange membranes in fuel cells**)
- IT 490028-36-9P
 RL: DEV (Device component use); IMF (Industrial manufacture); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (**proton-conductive** membranes or films using partial amine salt-bearing polymers in membrane pores and their manufacture for **proton exchange membranes in fuel cells**)
- RN 490028-36-9 HCPLUS
- CN 2-Propenoic acid, 2-methyl-, 4,6-dihydroxy-4,6-dioxido-3,5,7-trioxa-4,6-diphosphonanone-1,9-diyl ester, polymer with 2-(phosphonoxy)ethyl 2-methyl-2-propenoate, compd. with 1H-imidazole (9CI) (CA INDEX NAME)

CM 1

CRN 288-32-4
CMF C3 H4 N2

CM 2

CRN 490028-35-8
 CMF (C12 H20 O11 P2 . C6 H11 O6 P)x
 CCI PMS

CM 3

CRN 61988-50-9
 CMF C12 H20 O11 P2

CM 4

CRN 24599-21-1
 CMF C6 H11 O6 P

L149 ANSWER 41 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2002:927733 HCPLUS

DN 138:30831

TI Flexible electrochromic structure and methods for the production thereof

IN Hourquebie, Patrick; Topart, Patrice; Pages, Hubert

PA Commissariat a l'Energie Atomique, Fr.

SO PCT Int. Appl., 34 pp.

CODEN: PIXXD2

DT Patent

LA French

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2002097519	A2	20021205	WO 2002-FR1807	20020529 <--
	WO 2002097519	A3	20030320		
	W:	AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ,			

UA, UG, US, UZ, VN, YU, ZA, ZM, ZW
 RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, CH,
 CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR,
 BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
 FR 2825481 A1 20021206 FR 2001-7144 20010531 <--
 FR 2825481 B1 20030718
 EP 1390803 A2 20040225 EP 2002-747490 20020529 <--
 EP 1390803 B1 20060208
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
 IE, SI, LT, LV, FI, RO, MK, CY, AL, TR
 JP 2004520632 T 20040708 JP 2003-500638 20020529 <--
 AT 317561 T 20060215 AT 2002-747490 20020529 <--
 US 2004012869 A1 20040122 US 2003-332979 20030123 <--
 US 6798554 B2 20040928
 PRAI FR 2001-7144 A 20010531 <--
 WO 2002-FR1807 W 20020529 <--
 AB The invention relates to a flexible electrochromic structure which
 operates as a reflector at wavelengths ranging from (0,35) to (20) μm .
 The inventive structure comprises a microporous membrane including an
 electrolyte and the following items successively disposed in the following
 order on each of the surfaces of said microporous membrane in a sym.
 manner in relation to said membrane: a layer forming a reflecting
electrode, an electrochromic conductive polymer layer, and a
 flexible transparent window at wavelengths ranging from (0,35) and (20)
 μm .
 IC ICM G02F
 CC 73-11 (Optical, Electron, and Mass Spectroscopy and Other Related
 Properties)
 Section cross-reference(s): 36
 IT Conducting polymers
 Electrochromic devices
 Electrodes
 Electrolytes
 Heat transfer
 Optical reflectors
 (electrochromic device with)
 IT Conducting polymers
 (**polythiophenes**; electrochromic device with)
 IT Metals, uses
 Noble metals
 RL: DEV (Device component use); USES (Uses)
 (reflecting **electrodes**; electrochromic device with)
 IT 9033-83-4, Poly(phenylene) 25656-57-9, Poly(diphenylamine) 26747-38-6
 31135-62-3D, Aminoquinoline, polymers **96638-49-2**, Poly(phenylene
 vinylene) 116267-93-7, Poly(4-aminobiphenyl) 117051-73-7,
 Poly(diphenyl benzidine) 142189-51-3D, derivs.
 RL: DEV (Device component use); USES (Uses)
 (conducting polymer; electrochromic device with)
 IT **25233-30-1**, Polyaniline **25233-34-5**,
Polythiophene 30604-81-0, **Polypyrrole**
 RL: DEV (Device component use); USES (Uses)
 (conducting; electrochromic device with)
 IT 96-48-0, Butyrolactone 96-49-1, Ethylene carbonate 108-32-7, Propylene
 carbonate 111-96-6, Diglyme 616-38-6, Dimethyl carbonate
17009-90-4D, Imidazolium, cations 82113-65-3,
 Bis((trifluoromethyl)sulfonyl)imide 90076-65-6, Lithium
 bis((trifluoromethyl)sulfonyl)imide
 RL: DEV (Device component use); USES (Uses)
 (electrolyte; electrochromic device with)
 IT 7440-06-4, Platinum, uses 7440-22-4, Silver, uses 7440-57-5, Gold,

uses

RL: DEV (Device component use); USES (Uses)
 (reflecting electrodes; electrochromic device with)

IT 96638-49-2, Poly(phenylene vinylene)

RL: DEV (Device component use); USES (Uses)
 (conducting polymer; electrochromic device with)

RN 96638-49-2 HCPLUS

CN Poly(phenylene-1,2-ethenediyl) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

IT 25233-30-1, Polyaniline 25233-34-5,
 Polythiophene 30604-81-0, Polypyrrole

RL: DEV (Device component use); USES (Uses)
 (conducting; electrochromic device with)

RN 25233-30-1 HCPLUS

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3

CMF C6 H7 N

RN 25233-34-5 HCPLUS

CN Thiophene, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-02-1

CMF C4 H4 S

RN 30604-81-0 HCPLUS

CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7

CMF C4 H5 N

IT 17009-90-4D, Imidazolium, cations

RL: DEV (Device component use); USES (Uses)

(electrolyte; electrochromic device with)
RN 17009-90-4 HCAPLUS
CN 1H-Imidazole, conjugate monoacid (9CI) (CA INDEX NAME)

● H⁺

L149 ANSWER 42 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN
AN 2002:807948 HCAPLUS
DN 137:312084
TI Proton-conductive membranes and their use
IN Calundann, Gordon; Sansone, Michael J.; Uensal, Oemer; Kiefer, Joachim
PA Celanese Ventures G.m.b.H., Germany
SO Ger. Offen., 8 pp.
CODEN: GWXXBX
DT Patent
LA German
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 10117686	A1	20021024	DE 2001-10117686	20010409 <--
	CA 2443541	A1	20021107	CA 2002-2443541	20020409 <--
	WO 2002088219	A1	20021107	WO 2002-EP3900	20020409 <--
	W: BR, CA, CN, JP, KR, MX, US				
	RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,				
	PT, SE, TR				
	EP 1379573	A1	20040114	EP 2002-766620	20020409 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,				
	IE, FI, CY, TR				
	BR 2002008795	A	20040309	BR 2002-8795	20020409 <--
	CN 1606585	A	20050413	CN 2002-807955	20020409 <--
	JP 2005536570	T	20051202	JP 2002-585516	20020409 <--
	US 2004096734	A1	20040520	US 2003-472814	20031224 <--
PRAI	DE 2001-10117686	A	20010409	<--	
	WO 2002-EP3900	W	20020409	<--	
AB	The title membranes, with high sp. conductivity (especially at high temps.) and useful				
	in fuel cells, are based on polyazoles prepared by spreading mixts. of aromatic tetraamines and aromatic polycarboxylic acids or their esters in polyphosphoric acid on supports, heating in inert gases at ≤350°, and treating the resulting membrane until it is self-supporting. Preferred tetraamines are 3,3',4,4'-biphenyltetramine, 2,3,5,6-pyridinetetramine, or their hydrochlorides, and preferred carboxylic acids are isophthalic and diphenylisophthalic acids.				
IC	ICM B01D0071-58				
	ICS H01M0008-02				
CC	38-3 (Plastics Fabrication and Uses)				
ST	membrane proton conductive polyazole; fuel cell membrane proton conductive; tetramine arom copolymer membrane; dicarboxylic acid copolymer membrane;				

polyphosphoric acid polyazole membrane manuf; bibenzimidazole deriv
 polymer membrane
 IT Carboxylic acids, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (aromatic polybasic, polymers with aromatic tetramines; **proton-conductive** membranes and their use)
 IT Amines, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (aromatic, tetra-, polymers with dicarboxylic acids; **proton-conductive** membranes and their use)
 IT Polybenzimidazoles
 Polybenzoxazoles
 Polyoxadiazoles
Polyquinoxalines
 RL: TEM (Technical or engineered material use); USES (Uses)
 (**proton-conductive** membranes and their use)
 IT Fuel cells
 (**proton-conductive** membranes for use in
 fuel cells)
 IT Membranes, nonbiological
 (**proton-conductive; proton-conductive** membranes and their use)
 IT 110-86-1D, Pyridine, derivs., polymers **288-32-4D**, Imidazole,
 derivs., polymers 289-06-5D, Thiadiazole, derivs., polymers
289-95-2D, Pyrimidine, derivs., polymers **25734-65-0**
 26101-19-9, 3,3',4,4'-Biphenyltetramine-isophthalic acid copolymer
 RL: TEM (Technical or engineered material use); USES (Uses)
 (**proton-conductive** membranes and their use)
 IT **288-32-4D**, Imidazole, derivs., polymers **289-95-2D**,
 Pyrimidine, derivs., polymers **25734-65-0**
 RL: TEM (Technical or engineered material use); USES (Uses)
 (**proton-conductive** membranes and their use)
 RN 288-32-4 HCAPLUS
 CN 1H-Imidazole (9CI) (CA INDEX NAME)

RN 289-95-2 HCAPLUS
 CN Pyrimidine (8CI, 9CI) (CA INDEX NAME)

RN 25734-65-0 HCAPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,3-phenylene) (9CI) (CA INDEX
 NAME)

L149 ANSWER 43 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 2002:793682 HCAPLUS

DN 137:311964

TI **Proton-conducting** membrane and the use thereof for
fuel cells

IN Calundann, Gordon; Sansone, Michael J.; Uensal, Oemer; Kiefer, Joachim

PA Celanese Ventures G.m.b.H., Germany

SO PCT Int. Appl., 51 pp.

CODEN: PIXXD2

DT Patent

LA German

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2002081547	A1	20021017	WO 2002-EP3901	20020409 <--
	W: BR, CA, CN, JP, KR, MX, US				
	RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR				
	DE 10117687	A1	20021017	DE 2001-10117687	20010409 <--
	CA 2443849	A1	20021017	CA 2002-2443849	20020409 <--
	EP 1379572	A1	20040114	EP 2002-745222	20020409 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI, CY, TR				
	CN 1511170	A	20040707	CN 2002-807954	20020409 <--
	BR 2002008728	A	20040720	BR 2002-8728	20020409 <--
	JP 2005536569	T	20051202	JP 2002-579927	20020409 <--
	US 2004127588	A1	20040701	US 2004-472810	20040210 <--

PRAI DE 2001-10117687 A 20010409 <--
 WO 2002-EP3901 W 20020409 <--

AB **Proton-conducting** membranes based on polyazoles,
 useful as polymer electrolyte membranes in **fuel cells**
 at >100°, are manufactured by dissolving the polyazoles in
 polyphosphoric acid and forming membranes.

IC ICM C08G0073-00

ICS C08J0005-00; C08L0079-00; H01M0008-00; C08J0007-00; B05D0003-00

CC 38-3 (Plastics Fabrication and Uses)

Section cross-reference(s): 52, 76

ST **proton conducting** polyphosphoric acid doped polyazole
 membrane **fuel cell**; polymer electrolyte membrane
 polyphosphoric acid doped polyazole

IT Polybenzimidazoles

Polybenzothiazoles

Polybenzoxazoles

Polyoxadiazoles

Polyquinoxalines

RL: TEM (Technical or engineered material use); USES (Uses)

(polyphosphoric acid-doped; **proton-conducting**
 membranes from polymer electrolytes based on polyphosphoric acid-doped
 polyazoles)

IT Fuel cells

Membranes, nonbiological

Polymer electrolytes

(**proton-conducting** membranes from polymer
electrolytes based on polyphosphoric acid-doped polyazoles)

IT Polyphosphoric acids

RL: TEM (Technical or engineered material use); USES (Uses)

(**proton-conducting** membranes from polymer
electrolytes based on polyphosphoric acid-doped polyazoles)

IT Ionic conductors

(**protonic, elec. conductors; proton-**
conducting membranes from polymer electrolytes based on
polyphosphoric acid-doped polyazoles)

IT 25013-01-8, Polypyridine 25584-58-1 25734-65-0

26101-19-9 27233-57-4 28576-59-2 29692-96-4

31851-25-9 32075-68-6 32109-42-5, Poly(1H-
benzimidazole-2,5-diyl) 39151-97-8 42209-07-4

55861-56-8 56411-22-4 56713-21-4 82370-43-2,

Polyimidazole 96926-85-1 96937-25-6 96937-27-8 111404-15-0

111404-18-3 111404-83-2 111404-85-4

132937-69-0 132955-49-8 240799-37-5

268567-69-7 367276-48-0 368871-22-1

471256-97-0 471256-98-1 471256-99-2

471257-00-8 471257-01-9 471257-02-0

471257-03-1 471257-04-2 471257-05-3 471257-06-4 471257-07-5

471257-08-6 471257-09-7 471257-10-0 471257-11-1 471257-12-2

472960-34-2

RL: TEM (Technical or engineered material use); USES (Uses)

(polyphosphoric acid-doped; **proton-conducting**

membranes from polymer electrolytes based on polyphosphoric acid-doped
polyazoles)

IT 25013-01-8, Polypyridine 25734-65-0 27233-57-4

28576-59-2 32075-68-6 32109-42-5,

Poly(1H-benzimidazole-2,5-diyl) 42209-07-4 55861-56-8

56713-21-4 82370-43-2, Polyimidazole 96926-85-1

111404-83-2 111404-85-4 132937-69-0

240799-37-5 268567-69-7 368871-22-1

471256-97-0 471256-98-1 471256-99-2

471257-00-8 471257-01-9 471257-02-0

472960-34-2

RL: TEM (Technical or engineered material use); USES (Uses)

(polyphosphoric acid-doped; **proton-conducting**

membranes from polymer electrolytes based on polyphosphoric acid-doped
polyazoles)

RN 25013-01-8 HCAPLUS

CN Pyridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-86-1

CMF C5 H5 N

RN 25734-65-0 HCAPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,3-phenylene) (9CI) (CA INDEX

NAME)

RN 27233-57-4 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1,3-phenylene] (9CI) (CA INDEX NAME)

RN 28576-59-2 HCPLUS

CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,4-phenylene) (9CI) (CA INDEX NAME)

RN 32075-68-6 HCPLUS

CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1,4-phenylene] (9CI) (CA INDEX NAME)

RN 32109-42-5 HCPLUS

CN Poly(1H-benzimidazole-2,5-diyl) (9CI) (CA INDEX NAME)

RN 42209-07-4 HCAPLUS
 CN Poly[(1,4-dihydrodiimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)-1,3-phenylene]
 (9CI) (CA INDEX NAME)

RN 55861-56-8 HCAPLUS
 CN Poly[(1,4-dihydrodiimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)-1,4-phenylene]
 (9CI) (CA INDEX NAME)

RN 56713-21-4 HCAPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diylpyridinediyl) (9CI) (CA INDEX
 NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 82370-43-2 HCAPLUS
 CN 1H-Imidazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-32-4
 CMF C3 H4 N2

RN 96926-85-1 HCAPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-3,5-pyridinediyl) (9CI) (CA

INDEX NAME)

RN 111404-83-2 HCAPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-3,5-pyridinediyl] (9CI) (CA INDEX NAME)

RN 111404-85-4 HCAPLUS
 CN Poly[(1,4-dihydrodiimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)-3,5-pyridinediyl] (9CI) (CA INDEX NAME)

RN 132937-69-0 HCAPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-2,6-pyridinediyl) (9CI) (CA INDEX NAME)

RN 240799-37-5 HCAPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-2,5-pyrazinediyl) (9CI) (CA INDEX NAME)

RN 268567-69-7 HCAPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-1H-pyrazole-3,5-diyl] (9CI) (CA INDEX NAME)

RN 368871-22-1 HCAPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)pyridinediyl] (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 471256-97-0 HCAPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-4,6-pyrimidinediyl) (9CI) (CA INDEX NAME)

RN 471256-98-1 HCAPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1H-pyrazole-3,5-diyl) (9CI) (CA INDEX NAME)

RN 471256-99-2 HCAPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-2,6-pyridinediyl] (9CI) (CA INDEX NAME)

RN 471257-00-8 HCAPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-4,6-pyrimidinediyl] (9CI) (CA INDEX NAME)

RN 471257-01-9 HCAPLUS
 CN Poly[(1,5-dihydrobenzo[1,2-d:4,5-d']diimidazole-2,6-diyl)-2,5-pyrazinediyl] (9CI) (CA INDEX NAME)

RN 471257-02-0 HCAPLUS
 CN Poly[(1,4-dihydrodiimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)-2,6-pyridinediyl] (9CI) (CA INDEX NAME)

RN 472960-34-2 HCAPLUS
 CN Poly[(1,4-dihydrodiimidazo[4,5-b:4',5'-e]pyridine-2,6-diyl)pyridinediyl] (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RETABLE

Referenced Author (RAU)	Year VOL PG	Referenced Work (RWK)	Referenced File
	(R PY) (R VL) (R PG)		
Osaheni, J	1995 28 1172	MACROMOLECULES	HCAPLUS
Savinell, R	1996	US 5525436 A	HCAPLUS
Yoshio, I	1967	US 3313783 A	

L149 ANSWER 44 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2002:791934 HCAPLUS

DN 137:282820

TI Anticorrosive, electric-conductive primer for surface coating of metals especially used in lithium-polymer **battery** systems

IN Naarmann, Herbert; Kruger, Franz Josef

PA Dilo Trading AG, Switz.

SO Ger. Offen., 4 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI DE 10114232	A1	20021017	DE 2001-10114232	20010322 <--
DE 10114232	C2	20030320		
PRAI DE 2001-10114232		20010322 <--		

AB The anticorrosive, elec. **conductive** coatings for metals are produced from polymers without **proton-active** groups in combination with **metallic-conductive** fillers as dispersion. The thin coatings are applied on metal surfaces with a thickness of 10-1000 µm. The polymers are selected from polyolefins, polystyrene, polyvinyl ether, poly(N-vinyl) compds. as well as poly(meth)acrylester of C4-C12 alcs. The **metallic-conductive** fillers are selected from carbons like carbon black, graphite, or carbon fibers as well as polypyrrol, **polythiophene**, **polyaniline** as well as metals such as Ti, Zn, Ag, and Au in the form of powders, whisker, or colloids. The carbon black dispersion is used as primer for coating of Cu, resp. Al foils, whereby a **battery-type anode** material, resp. **cathode** material can be deposited on the primer coating to form **electrodes** for Li-polymer **batteries** characterized by anticorrosive properties.

IC ICM C23F0015-00

ICS H01M0010-02

CC 56-6 (Nonferrous Metals and Alloys)

Section cross-reference(s): 38, 42, 52

ST anticorrosive primer surface coating metal **electrode**; elec conductive primer polymer carbon black; lithium polymer **battery** **electrode** primer coating

IT Vinyl compounds, processes

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(N-polymers; anticorrosive, elec. conductive primer for surface coating of metals especially used in lithium-polymer **battery** systems)IT **Battery electrodes**

Conducting polymers

(anticorrosive, elec. conductive primer for surface coating of metals especially used in lithium-polymer **battery** systems)

IT Carbon black, processes

Polyolefins

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(anticorrosive, elec. conductive primer for surface coating of metals especially used in lithium-polymer **battery** systems)

IT Coating materials

(anticorrosive; anticorrosive, elec. conductive primer for surface coating of metals especially used in lithium-polymer **battery** systems)

IT Styrene-butadiene rubber, processes

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(block, triblock; anticorrosive, elec. conductive primer for surface coating of metals especially used in lithium-polymer **battery** systems)

IT Soot

(filler; anticorrosive, elec. conductive primer for surface coating of metals especially used in lithium-polymer **battery** systems)

IT Carbon fibers, processes

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(filler; anticorrosive, elec. conductive primer for surface coating of metals especially used in lithium-polymer **battery** systems)

IT Polyesters, processes

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(foil; anticorrosive, elec. conductive primer for surface coating of metals especially used in lithium-polymer **battery** systems)

IT Alkadienes

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(polymers; anticorrosive, elec. conductive primer for surface coating of metals especially used in lithium-polymer **battery** systems)

IT Ethers, processes

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(vinyl, polymers; anticorrosive, elec. conductive primer for surface coating of metals especially used in lithium-polymer **battery** systems)

IT 7429-90-5, Aluminum, processes 7440-50-8, Copper, processes

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)

(anticorrosive, elec. conductive primer for surface coating of metals especially used in lithium-polymer **battery** systems)

IT 79-10-7D, Acrylic acid, C4-C12 esters, polymers 79-41-4D, Methacrylic acid, C4-C12 esters, polymers 100-42-5D, Styrene, polymers 7440-22-4, Silver, processes 7440-32-6, Titanium, processes 7440-57-5, Gold, processes 7440-66-6, Zinc, processes 9003-39-8, Luviskol K90 25233-30-1, Polyaniline 25233-34-5,

Polythiophene 29297-55-0, Vinylpyrrolidone vinylimidazole copolymer 30604-81-0

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(anticorrosive, elec. conductive primer for surface coating of metals especially used in lithium-polymer **battery** systems)

IT 7782-42-5, Graphite, processes

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(filler; anticorrosive, elec. conductive primer for surface coating of metals especially used in lithium-polymer **battery** systems)

IT 106107-54-4 694491-73-1

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(styrene-butadiene rubber, block, triblock; anticorrosive, elec. conductive primer for surface coating of metals especially used in lithium-polymer **battery** systems)

IT 9003-39-8, Luviskol K90 25233-30-1, Polyaniline

25233-34-5, Polythiophene 29297-55-0,

Vinylpyrrolidone vinylimidazole copolymer 30604-81-0

RL: PEP (Physical, engineering or chemical process); PYP (Physical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(anticorrosive, elec. conductive primer for surface coating of metals especially used in lithium-polymer **battery** systems)

RN 9003-39-8 HCAPLUS

CN 2-Pyrrolidinone, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 88-12-0

CMF C6 H9 N O

RN 25233-30-1 HCAPLUS

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3

CMF C6 H7 N

RN 25233-34-5 HCAPLUS

CN Thiophene, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-02-1

CMF C4 H4 S

RN 29297-55-0 HCAPLUS

CN 2-Pyrrolidinone, 1-ethenyl-, polymer with 1-ethenyl-1H-imidazole (9CI)
(CA INDEX NAME)

CM 1

CRN 1072-63-5

CMF C5 H6 N2

CM 2

CRN 88-12-0

CMF C6 H9 N O

RN 30604-81-0 HCAPLUS

CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7

CMF C4 H5 N

RETABLE

Referenced Author (RAU)	Year VOL PG	Referenced Work (RWK)	Referenced File
Anon		JP 10-101793 A	HCAPLUS

Anon			FR 1141594	
Anon			DE 3412234 A1	HCAPLUS
Anon			US 4119763	HCAPLUS
Anon			WO 9950922 A1	HCAPLUS

L149 ANSWER 45 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2002:465870 HCAPLUS

DN 137:49667

TI Production method and use of a cation-conducting or proton-conducting ceramic membrane infiltrated with an ionic liquid

IN Hennige, Volker; Hyring, Christian; Hoerpel, Gerhard

PA Creavis Gesellschaft fuer Technologie und Innovation, Germany

SO PCT Int. Appl., 41 pp.

CODEN: PIXXD2

DT Patent

LA German

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2002047802	A1	20020620	WO 2001-EP12499	20011029 <--
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
	RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
	DE 10061959	A1	20020620	DE 2000-10061959	20001213 <--
	CA 2431057	A1	20020620	CA 2001-2431057	20011029 <--
	AU 2002021783	A5	20020624	AU 2002-21783	20011029 <--
	EP 1345675	A1	20030924	EP 2001-270378	20011029 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR				
	JP 2004515351	T	20040527	JP 2002-549367	20011029 <--
	NO 2003002718	A	20030613	NO 2003-2718	20030613 <--
	US 2004038105	A1	20040226	US 2003-433488	20030613 <--
PRAI	DE 2000-10061959	A	20001213	<--	
	WO 2001-EP12499	W	20011029	<--	

OS MARPAT 137:49667

AB Cationic- and proton-conducting composite membranes for fuel cells are based on a porous and flexible modified ceramic or glass-like membrane in which the pores and interstitial spaces are impregnated with an ionic liquid, which imparts favorable conductivity properties, even at >100°. The membrane carrier can be composed of glass, plastics and polymers, ceramics, and minerals, and contain such ion-conducting functionalities as sulfonic acids, phosphonic acids, carboxylic acids, silylsulfonic and silylphosphonic acids, oxyacids, phosphates, phosphides, sulfates, hydroxysilyl acids, sulfoaryl phosphates, oxymetal salts (e.g., vanadate, stannate, plumbate, chromate, wolframate, manganate, titanate, etc.), aluminosilicates, zeolites, and various metal salts. Ionic liqs. are selected from imidazolium, pyridinium, quaternary ammonium, and quaternary phosphonium salts.

IC ICM B01D0071-02

ICS B01D0053-32; B01D0071-04; B01D0069-14

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST Section cross-reference(s): 38, 48, 57, 72
fuel cell cation conducting ceramic membrane; proton conducting ceramic membrane fuel cell

IT Fluoropolymers, uses
Polyethers, uses
Polysulfones, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(aminolyzed; production method and use of cation-conducting or proton-conducting ceramic membrane infiltrated with ionic liquid)

IT Acids, uses
RL: MOA (Modifier or additive use); USES (Uses)
(isopoly; production method and use of cation-conducting or proton-conducting ceramic membrane infiltrated with ionic liquid)

IT Electrolysis
(membrane; production method and use of cation-conducting or proton-conducting ceramic membrane infiltrated with ionic liquid)

IT Acids, uses
RL: MOA (Modifier or additive use); USES (Uses)
(oxo; production method and use of cation-conducting or proton-conducting ceramic membrane infiltrated with ionic liquid)

IT Group VA element compounds
RL: MOA (Modifier or additive use); USES (Uses)
(phosphides; production method and use of cation-conducting or proton-conducting ceramic membrane infiltrated with ionic liquid)

IT Group IVA element compounds
RL: MOA (Modifier or additive use); USES (Uses)
(plumbates; production method and use of cation-conducting or proton-conducting ceramic membrane infiltrated with ionic liquid)

IT Polyimides, uses
Polyketones
RL: TEM (Technical or engineered material use); USES (Uses)
(polyether-, aminolyzed; production method and use of cation-conducting or proton-conducting ceramic membrane infiltrated with ionic liquid)

IT Polyimides, uses
Polyketones
RL: TEM (Technical or engineered material use); USES (Uses)
(polyether-, sulfonated; production method and use of cation-conducting or proton-conducting ceramic membrane infiltrated with ionic liquid)

IT Polyethers, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(polyimide-, aminolyzed; production method and use of cation-conducting or proton-conducting ceramic membrane infiltrated with ionic liquid)

IT Polyethers, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(polyimide-, sulfonated; production method and use of cation-conducting or proton-conducting ceramic membrane infiltrated with ionic liquid)

IT Polyethers, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(polyketone-, aminolyzed; production method and use of cation-

**conducting or proton-conducting ceramic
membrane infiltrated with ionic liquid)**
 IT Polyethers, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (polyketone-, sulfonated; production method and use of cation-
 conducting or proton-conducting ceramic
membrane infiltrated with ionic liquid)

IT Ceramic membranes
 Ceramics
 Electrodialysis
 Fuel cell separators
 Ionic conductors
 Ionic liquids
 Membranes, nonbiological
 (production method and use of cation-conducting or proton
 -conducting ceramic membrane infiltrated with ionic liquid)

IT Aluminates
 Aluminosilicates, uses
 Bronsted acids
 Chromates
 Heteropoly acids
 Manganates
 Molybdates
 Oxides (inorganic), uses
 Phosphates, uses
 Phosphonium compounds
 Polysiloxanes, uses
 Quaternary ammonium compounds, uses
 Silicates, uses
 Sulfates, uses
 Titanates
 Zeolites (synthetic), uses
 RL: MOA (Modifier or additive use); USES (Uses)
 (production method and use of cation-conducting or proton
 -conducting ceramic membrane infiltrated with ionic liquid)

IT Glass, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (production method and use of cation-conducting or proton
 -conducting ceramic membrane infiltrated with ionic liquid)

IT Minerals, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (production method and use of cation-conducting or proton
 -conducting ceramic membrane infiltrated with ionic liquid)

IT Plastics, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (production method and use of cation-conducting or proton
 -conducting ceramic membrane infiltrated with ionic liquid)

IT Sulfonic acids, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (production method and use of cation-conducting or proton
 -conducting ceramic membrane infiltrated with ionic liquid)

IT Sulfonic acids, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (salts; production method and use of cation-conducting or
 proton-conducting ceramic membrane infiltrated with
 ionic liquid)

IT Group IVA element compounds
 RL: MOA (Modifier or additive use); USES (Uses)
 (stannates; production method and use of cation-conducting or
 proton-conducting ceramic membrane infiltrated with

ionic liquid)

IT Fluoropolymers, uses
 Polyethers, uses
 Polysulfones, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (sulfonated; production method and use of cation-conducting or proton-conducting ceramic membrane infiltrated with ionic liquid)

IT Group VIB element compounds
 RL: MOA (Modifier or additive use); USES (Uses)
 (tungstates; production method and use of cation-conducting or proton-conducting ceramic membrane infiltrated with ionic liquid)

IT Heteropoly acids
 RL: MOA (Modifier or additive use); USES (Uses)
 (tungstophosphoric; production method and use of cation-conducting or proton-conducting ceramic membrane infiltrated with ionic liquid)

IT Group VB element compounds
 RL: MOA (Modifier or additive use); USES (Uses)
 (vanadates; production method and use of cation-conducting or proton-conducting ceramic membrane infiltrated with ionic liquid)

IT , 1314-23-4, Zirconia, uses 1314-56-3, Phosphorus oxide (P2O5), uses
 1344-28-1, Alumina, uses 7429-90-5, Aluminum, uses 7439-89-6, Iron,
 uses 7439-93-2, Lithium, uses 7439-95-4, Magnesium, uses 7439-96-5,
 Manganese, uses 7439-98-7, Molybdenum, uses 7440-02-0, Nickel, uses
 7440-09-7, Potassium, uses 7440-21-3, Silicon, uses 7440-23-5, Sodium,
 uses 7440-31-5, Tin, uses 7440-32-6, Titanium, uses 7440-33-7,
 Tungsten, uses 7440-36-0, Antimony, uses 7440-47-3, Chromium, uses
 7440-48-4, Cobalt, uses 7440-50-8, Copper, uses 7440-62-2, Vanadium,
 uses 7440-65-5, Yttrium, uses 7440-66-6, Zinc, uses 7440-67-7,
 Zirconium, uses 7440-70-2, Calcium, uses 7631-86-9, Silica, uses
 7723-14-0, Phosphorus, uses 13463-67-7, Titania, uses 13765-94-1
 13765-95-2, Zirconium phosphate 13765-96-3 15477-76-6, Phosphonate
 16969-45-2D, Pyridinium, salts 17009-90-4D, Imidazolium, salts
 145022-44-2, 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate
 RL: MOA (Modifier or additive use); USES (Uses)
 (production method and use of cation-conducting or proton-conducting ceramic membrane infiltrated with ionic liquid)

IT 463-79-6, Carbonic acid, uses 463-79-6D, Carbonic acid, salt
 9002-84-0D, Ptfe, aminolyzed 9002-84-0D, Ptfe, sulfonated 13598-36-2,
 Phosphonic acid 13598-36-2D, Phosphonic acid, salt 24937-79-9D,
 Polyvinylidene fluoride, aminolyzed 24937-79-9D, Polyvinylidene
 fluoride, sulfonated
 RL: TEM (Technical or engineered material use); USES (Uses)
 (production method and use of cation-conducting or proton-conducting ceramic membrane infiltrated with ionic liquid)

IT 17009-90-4D, Imidazolium, salts
 RL: MOA (Modifier or additive use); USES (Uses)
 (production method and use of cation-conducting or proton-conducting ceramic membrane infiltrated with ionic liquid)

RN 17009-90-4 HCPLUS
 CN 1H-Imidazole, conjugate monoacid (9CI) (CA INDEX NAME)

● H⁺

RETABLE

Referenced (RAU)	Author	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (R WK)	Referenced File
Creavis		1999			WO 9962620 A	HCAPLUS
Uop Inc		1987			US 4708981 A	HCAPLUS
V I T O		1998			EP 0838258 A	HCAPLUS

L149 ANSWER 46 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2002:364135 HCAPLUS

DN 136:357470

TI Secondary **battery** of proton conductive polymer

IN Nobuta, Tomoki; Nishiyama, Toshihiko; Kamisuki, Hiroyuki; Harada, Gaku; Kuroasaki, Masato; Nakagawa, Yuuji; Yoshida, Shinya; Mitani, Masaya

PA NEC Tokin Corporation, Japan

SO Eur. Pat. Appl., 10 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 1205995	A2	20020515	EP 2001-126869	20011112 <--
	EP 1205995	A3	20060301		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR				
	JP 2002151141	A	20020524	JP 2000-345256	20001113 <--
	JP 3708426	B2	20051019		
	TW 522580	B	20030301	TW 2001-90125453	20011015 <--
	CN 1353471	A	20020612	CN 2001-134906	20011112 <--
	US 2002086203	A1	20020704	US 2001-986791	20011113 <--
	US 6800395	B2	20041005		
PRAI	JP 2000-345256	A	20001113	<--	

AB A secondary **battery** of a proton conductive polymer, wherein a pos. **electrode** and a neg. **electrode** are arranged facing to each other via a separator in an electrolyte and only a **proton** or a **proton** of a hydroxyl group in an **indole trimer** and a π conjugated polymer, i.e., an active material of **electrode** in the pos. **electrode** and in the neg. **electrode** participates in a charge/discharge, and a **proton** concentration is 5 to 40% and an anion concentration is 30 to 60% in the solution, resp., and the anion concentration is at least higher than the **proton** concentration

IC ICM H01M0010-36

ICS H01M0004-60

CC 52-2 (**Electrochemical**, Radiational, and Thermal Energy

Technology)

Section cross-reference(s): 38

ST **battery proton conductive polymer**

IT Fluoropolymers, uses

RL: MOA (Modifier or additive use); USES (Uses)
 (binder; secondary **battery of proton**
conductive polymer)

IT **Polyquinoxalines**

RL: DEV (Device component use); USES (Uses)
 (polyphenylquinoxalines; secondary **battery of proton**
conductive polymer)

IT Conducting polymers

Secondary batteries

(secondary **battery of proton** conductive
 polymer)

IT Polyanilines

Polyquinoxalines

RL: DEV (Device component use); USES (Uses)
 (secondary **battery of proton** conductive
 polymer)

IT 24937-79-9, Polyfluorovinylidene

RL: MOA (Modifier or additive use); USES (Uses)
 (binder; secondary **battery of proton**
conductive polymer)

IT 7664-93-9, Sulfuric acid, uses 25013-01-8, Polypyridine

25233-30-1, Polyaniline 26997-10-4 53162-00-8 116267-93-7

190201-51-5, Pyrimidine, homopolymer 220310-61-2,

5-Cyanoindole trimer 245090-39-5, 9,10-Anthracenedione, diamino-,
 homopolymer 420784-28-7

RL: DEV (Device component use); USES (Uses)
 (secondary **battery of proton** conductive
 polymer)

IT 7440-44-0, Carbon, uses 7646-93-7, Potassium Hydrogen sulfate

7803-63-6, Ammonium bisulfate 14996-02-2, Hydrogen sulfate, uses

RL: MOA (Modifier or additive use); USES (Uses)
 (secondary **battery of proton** conductive
 polymer)

IT 25013-01-8, Polypyridine 190201-51-5, Pyrimidine,
 homopolymer 220310-61-2, 5-Cyanoindole trimer
 420784-28-7

RL: DEV (Device component use); USES (Uses)
 (secondary **battery of proton** conductive
 polymer)

RN 25013-01-8 HCPLUS

CN Pyridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-86-1

CMF C5 H5 N

RN 190201-51-5 HCPLUS

CN Pyrimidine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 289-95-2
CMF C4 H4 N2RN 220310-61-2 HCPLUS
CN 1H-Indole-5-carbonitrile, trimer (9CI) (CA INDEX NAME)

CM 1

CRN 15861-24-2
CMF C9 H6 N2RN 420784-28-7 HCPLUS
CN 1H-Indole, trimer (9CI) (CA INDEX NAME)

CM 1

CRN 120-72-9
CMF C8 H7 N

L149 ANSWER 47 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 2002:349228 HCPLUS
 DN 136:343332
 TI Secondary battery of proton conductive polymer
 IN Kamisuki, Hiroyuki; Nishiyama, Toshihiko; Harada, Gaku; Yoshida, Shinya; Kurosaki, Masato; Nakagawa, Yuuji; Nobuta, Tomoki; Mitani, Masaya
 PA Nec Corporation, Japan
 SO Eur. Pat. Appl., 13 pp.
 CODEN: EPXXDW
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 1204156 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR JP 2002141105 JP 3594895 TW 523944 US 2002076608 US 6899974	A2 A B2 B A1 B2	20020508 20020517 20041202 20030311 20020620 20050531	EP 2001-126015 JP 2000-336276 TW 2001-90126147 US 2001-985272	20011031 <-- 20001102 <-- 20011023 <-- 20011102 <--
PRAI	JP 2000-336276	A	20001102	<--	
AB	In a secondary battery of a proton conductive polymer, a pos. electrode and a neg. electrode are arranged facing to each other via a separator in an electrolytic solution and only a proton in a π conjugated polymer or a proton of a hydroxyl group in a hydroxyl-containing macromol. as an active material of an electrode in the pos. and neg. electrodes participates in a charge/discharge; the secondary battery uses a membrane, which has acid resistance, oxidation resistance and a functional group having cation exchange function, as the separator.				
IC	ICM H01M0010-36 ICS H01M0004-60; H01M0002-16				
CC	52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 38				
ST	battery rechargeable proton conductive polymer				
IT	Fluoropolymers, uses RL: MOA (Modifier or additive use); USES (Uses) (binder; secondary battery of proton conductive polymer)				
IT	Polyoxyalkylenes, uses RL: DEV (Device component use); USES (Uses) (fluorine- and sulfo-containing, ionomers; secondary battery of proton conductive polymer)				
IT	Fluoropolymers, uses RL: DEV (Device component use); USES (Uses) (polyoxyalkylene-, sulfo-containing, ionomers; secondary battery of proton conductive polymer)				
IT	Ionomers RL: DEV (Device component use); USES (Uses) (polyoxyalkylenes, fluorine- and sulfo-containing; secondary battery of proton conductive polymer)				
IT	Polyquinoxalines RL: DEV (Device component use); USES (Uses) (polyphenylquinoxalines; secondary battery of proton conductive polymer)				
IT	Secondary batteries Secondary battery separators (secondary battery of proton conductive polymer)				
IT	Macromolecular compounds RL: DEV (Device component use); USES (Uses) (secondary battery of proton conductive polymer)				
IT	24937-79-9, Polyfluorovinylidene RL: MOA (Modifier or additive use); USES (Uses) (binder; secondary battery of proton conductive polymer)				
IT	7664-93-9, Sulfuric acid, uses 82451-55-6, Polyindole				

415942-36-8, Nafion 17

RL: DEV (Device component use); USES (Uses)
(secondary **battery** of proton conductive polymer)

IT 7440-44-0, Carbon, uses

RL: DEV (Device component use); MOA (Modifier or additive use); USES (Uses)
(secondary **battery** of proton conductive polymer)

IT 82451-55-6, Polyindole

RL: DEV (Device component use); USES (Uses)
(secondary **battery** of proton conductive polymer)

RN 82451-55-6 HCAPLUS

CN 1H-Indole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 120-72-9

CMF C8 H7 N

L149 ANSWER 48 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2002:69588 HCAPLUS

DN 136:105170

TI Manufacture of **cathode** for secondary lithium **battery**,
the **cathode**, and the **battery** using it

IN Hashimoto, Tsutomu; Tajima, Hidehiko

PA Mitsubishi Heavy Industries, Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 8 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
PI JP 2002025542	A	20020125	JP 2000-211735	20000712 <--
PRAI JP 2000-211735		20000712 <--		

AB The **cathode** is manufactured by the following steps: (1) mixing **cathode** active mass powder, elec. conductive powder, and polymer binders with a solvent, (2) dissolving elec. conductive polymers to the resulting mixture for forming a slurry with 0.05-10 weight% of the polymers, and (3) applying the slurry on a current collector and removing the solvent for formation of a **cathode** layer. Since the slurry has low viscosity, agglomeration of the elec. conductive powder is prevented, and it is uniformly dispersed in the **cathode** layer. The **battery** using the **cathode** has high charge/discharge capacity.

IC ICM H01M0004-04

ICS H01M0004-02; H01M0004-62; H01M0010-40

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST elec conductive powder uniform dispersion **cathode** lithium

IT **battery**
Battery cathodes
 (manufacture of **cathode** containing uniformly dispersed elec.
 conductive powder for lithium **battery** with high capacity)
IT Carbon black, uses
 Fluoropolymers, uses
 Polyanilines
 RL: DEV (Device component use); PEP (Physical, engineering or chemical
 process); PYP (Physical process); PROC (Process); USES (Uses)
 (manufacture of **cathode** containing uniformly dispersed elec.
 conductive powder for lithium **battery** with high capacity)
IT 12057-17-9, Lithium manganese oxide (LiMn₂O₄)
 RL: DEV (Device component use); PEP (Physical, engineering or chemical
 process); PYP (Physical process); PROC (Process); USES (Uses)
 (active mass; manufacture of **cathode** containing uniformly dispersed
 elec. conductive powder for lithium **battery** with high
 capacity)
IT 24937-79-9, Polyvinylidene fluoride 25233-30-1,
 Polyaniline 25233-34-5, Polythiophene
 30604-81-0, Polypyrrole 82370-43-2,
 Polyimidazole
 RL: DEV (Device component use); PEP (Physical, engineering or chemical
 process); PYP (Physical process); PROC (Process); USES (Uses)
 (manufacture of **cathode** containing uniformly dispersed elec.
 conductive powder for lithium **battery** with high capacity)
IT 872-50-4, NMP, uses
 RL: NUU (Other use, unclassified); USES (Uses)
 (solvent; manufacture of **cathode** containing uniformly dispersed elec.
 conductive powder for lithium **battery** with high capacity)
IT 25233-30-1, Polyaniline 25233-34-5,
 Polythiophene 30604-81-0, Polypyrrole
 82370-43-2, Polyimidazole
 RL: DEV (Device component use); PEP (Physical, engineering or chemical
 process); PYP (Physical process); PROC (Process); USES (Uses)
 (manufacture of **cathode** containing uniformly dispersed elec.
 conductive powder for lithium **battery** with high capacity)
RN 25233-30-1 HCPLUS
CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
CMF C6 H7 N

RN 25233-34-5 HCPLUS
CN Thiophene, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-02-1
CMF C4 H4 S

RN 30604-81-0 HCPLUS
 CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7
 CMF C4 H5 N

RN 82370-43-2 HCPLUS
 CN 1H-Imidazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-32-4
 CMF C3 H4 N2

L149 ANSWER 49 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2002:27682 HCPLUS

DN 136:72317

TI Cathode, its manufacture, and secondary lithium battery using it for excellent cycling performance

IN Kobayashi, Katsuaki; Hashimoto, Tsutomu; Tajima, Hidehiko

PA Mitsubishi Heavy Industries, Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 11 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI JP 2002008639	A	20020111	JP 2000-182190	20000616 <--

PRAI JP 2000-182190 20000616 <--

AB The cathode is manufactured by the following steps: (1) covering a mixed oxide $\text{Li}_x\text{Mn}_{2-y}\text{MyO}_4$ ($M = \text{Co, Ni, Fe, Mg, Cr, Ba, Ag, Nb, and/or Al}$; $x = 0-2.0$; $y = 0-2.0$) with an elec. conductive polymer, (2) mixing the covered mixed oxide with conducting aids and a solvent containing a polymer binder for producing a slurry, and (3) applying the slurry on a current collector and removing the solvent for formation of a cathode layer. The obtained cathode has a covering rate of the conductive polymer to the mixed oxide $\geq 17\%$ and that of the binder

to the mixed oxide ≤49% on the surface of the **cathode** layer. The **battery** using the **cathode** is also claimed. Since exposure of the mixed oxide to electrolyte solution that causes elution of Mn is suppressed, deterioration of the **battery** is prevented.

IC ICM H01M0004-04
 ICS H01M0004-02; H01M0004-58; H01M0004-62; H01M0010-40
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 ST manganese elution prevention conductive polymer cover **cathode**
 lithium **battery**

IT Fluoropolymers, uses
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (binder; manufacture of **cathode** containing Li-Mn oxide covered with polymer with high covering rate for Li **battery** with excellent cycling performance)

IT Carbon black, uses
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (conducting aid; manufacture of **cathode** containing Li-Mn oxide covered with polymer with high covering rate for Li **battery** with excellent cycling performance)

IT Polyanilines
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (conductive polymer; manufacture of **cathode** containing Li-Mn oxide covered with polymer with high covering rate for Li **battery** with excellent cycling performance)

IT **Battery cathodes**
 (manufacture of **cathode** containing Li-Mn oxide covered with polymer with high covering rate for Li **battery** with excellent cycling performance)

IT 24937-79-9, Poly(vinylidene fluoride)
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (binder; manufacture of **cathode** containing Li-Mn oxide covered with polymer with high covering rate for Li **battery** with excellent cycling performance)

IT 25233-34-5, Polythiophene 30604-81-0,
Polypyrrole 82370-43-2, Polyimidazole
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (conductive polymer; manufacture of **cathode** containing Li-Mn oxide covered with polymer with high covering rate for Li **battery** with excellent cycling performance)

IT 12057-17-9, Lithium manganese oxide (LiMn₂O₄)
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (manufacture of **cathode** containing Li-Mn oxide covered with polymer with high covering rate for Li **battery** with excellent cycling performance)

IT 25233-34-5, Polythiophene 30604-81-0,
Polypyrrole 82370-43-2, Polyimidazole
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (conductive polymer; manufacture of **cathode** containing Li-Mn oxide covered with polymer with high covering rate for Li **battery** with excellent cycling performance)

RN 25233-34-5 HCPLUS
 CN Thiophene, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-02-1
CMF C4 H4 SRN 30604-81-0 HCPLUS
CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7
CMF C4 H5 NRN 82370-43-2 HCPLUS
CN 1H-Imidazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-32-4
CMF C3 H4 N2

L149 ANSWER 50 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2002:27681 HCPLUS

DN 136:72316

TI Inspection of polymer-covered cathode for secondary lithium batteries

IN Kobayashi, Katsuaki; Hashimoto, Tsutomu; Tajima, Hidehiko

PA Mitsubishi Heavy Industries, Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI JP 2002008638	A	20020111	JP 2000-182189	20000616 <--
PRAI JP 2000-182189		20000616 <--		
AB	The cathode has a layer comprising a mixed oxide $LixMn_{2-y}MyO_4$ ($M = Co, Ni, Fe, Mg, Cr, Ba, Ag, Nb, \text{ and/or Al}; x = 0-2.0; y = 0-2.0$), elec.			

conductive polymer, conducting aids, and polymer binders. The **cathode** is inspected by the following steps: (1) irradiating x ray to the layer and detecting the released photoelectrons, (2) analyzing their energy for measuring the occupation areas of the conductive polymer, conductance aids, and binders on the layer surface, and (3) measuring the covering rate of the conductive polymer to the mixed oxide based on the measured occupation areas. Since exposure of the mixed oxide to electrolyte solution causes deterioration of **batteries**, the detected **cathodes** with low polymer-covering rate are removed during fabrication of the **batteries**.

IC ICM H01M0004-04
 ICS H01M0004-58; H01M0004-62; H01M0010-40
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 ST x ray photoelectron spectroscopy polymer cover **cathode** lithium
battery; inspection polymer cover **cathode** lithium
battery
 IT Fluoropolymers, uses
 RL: DEV (Device component use); USES (Uses)
 (binder; inspection of polymer-covered **cathode** for Li
battery by XPS for removal of inferior **cathode**)
 IT Carbon black, uses
 RL: DEV (Device component use); USES (Uses)
 (conducting aid; inspection of polymer-covered **cathode** for Li
battery by XPS for removal of inferior **cathode**)
 IT Polyanilines
 RL: DEV (Device component use); USES (Uses)
 (conductive polymer; inspection of polymer-covered **cathode**
 for Li **battery** by XPS for removal of inferior **cathode**
)
 IT **Battery cathodes**
 (inspection of polymer-covered **cathode** for Li **battery**
 by XPS for removal of inferior **cathode**)
 IT Oxides (inorganic), uses
 RL: DEV (Device component use); USES (Uses)
 (lithium-manganese-containing; inspection of polymer-covered
cathode for Li **battery** by XPS for removal of inferior
cathode)
 IT 24937-79-9, Poly(vinylidene fluoride)
 RL: DEV (Device component use); USES (Uses)
 (binder; inspection of polymer-covered **cathode** for Li
battery by XPS for removal of inferior **cathode**)
 IT 25233-34-5, Polythiophene 30604-81-0,
Polypyrrole 82370-43-2, Polyimidazole
 RL: DEV (Device component use); USES (Uses)
 (conductive polymer; inspection of polymer-covered **cathode**
 for Li **battery** by XPS for removal of inferior **cathode**
)
 IT 25233-34-5, Polythiophene 30604-81-0,
Polypyrrole 82370-43-2, Polyimidazole
 RL: DEV (Device component use); USES (Uses)
 (conductive polymer; inspection of polymer-covered **cathode**
 for Li **battery** by XPS for removal of inferior **cathode**
)
 RN 25233-34-5 HCPLUS
 CN Thiophene, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-02-1
 CMF C4 H4 S

RN 30604-81-0 HCPLUS
 CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7
 CMF C4 H5 N

RN 82370-43-2 HCPLUS
 CN 1H-Imidazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-32-4
 CMF C3 H4 N2

L149 ANSWER 51 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 2001:924229 HCPLUS
 DN 136:46730
 TI Methods for preparing non-corrosive, electroactive, conductive organic polymers
 IN Kovalev, Igor P.; Sloane, Dawn M.; Trofimov, Boris A.
 PA Moltech Corporation, USA
 SO U.S. Pat. Appl. Publ., 9 pp.
 CODEN: USXXCO
 DT Patent
 LA English
 FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 2001052591	A1	20011220	US 2001-803246	20010309 <--
US 6482334	B2	20021119		
PRAI US 2000-188327P	P	20000309 <--		

AB Provided are methods for preparing noncorrosive, electroactive, conductive organic polymers, such as for use in **electrochem. cells**, in which the noncorrosive polymers are formed by treatment of electroactive, conductive organic polymer compns., comprising corrosive anions, with sulfide anions. Also provided are noncorrosive conductive

organic polymers prepared by such methods, composite **cathodes** comprising such polymers, **electrochem. cells** comprising such **cathodes**, and methods of preparing such composite **cathodes** and **cells**.

IC ICM H01B0001-00
 INCL 252500000
 CC 76-2 (Electric Phenomena)
 Section cross-reference(s): 38, 72
 ST electroactive conductive org polymer **electrochem cell**
 IT Conducting polymers
 Electrochemical cells
 (methods for preparing non-corrosive, electroactive, conductive organic polymers)
 IT **Polyacetylenes, uses**
 RL: TEM (Technical or engineered material use); USES (Uses)
 (methods for preparing non-corrosive, electroactive, conductive organic polymers)
 IT **Polyanilines**
 RL: TEM (Technical or engineered material use); USES (Uses)
 (methods for preparing non-corrosive, electroactive, conductive organic polymers)
 IT Conducting polymers
 (**polythiophenes**; methods for preparing non-corrosive, electroactive, conductive organic polymers)
 IT Conducting polymers
 RL: TEM (Technical or engineered material use); USES (Uses)
 (**polythiophenes**; methods for preparing non-corrosive, electroactive, conductive organic polymers)
 IT 79-06-1D, Acrylamide, polymer derivs. 88-12-0D, polymer derivs.
 100-42-5D, Vinylbenzene, polymer derivs. 105-16-8D, Diethylaminoethyl methacrylate, polymer derivs. 110-02-1D, Thiophene, polymer derivs.
 120-72-9D, Indole, polymer derivs. 1337-81-1D, Vinylpyridine, polymer derivs. 2873-97-4D, Diacetone acrylamide, polymer derivs. 7439-93-2, Lithium, uses 7440-44-0D, Carbon, lithium-intercalated 12798-95-7
 25265-76-3D, Phenylene diamine, polymer derivs. **29383-23-1D**,
 Vinylimidazole, polymer derivs. **30604-81-0**, **Polypyrrole**
 30917-44-3D, polymer derivs. 33611-56-2D, polymer salts 46231-82-7D,
 polymer salts 48042-45-1D, Diallyldimethylammonium, polymer salts
 51441-64-6D, polymer salts 53680-59-4 56816-73-0D, polymer salts
 67296-21-3D, Dimethylaminopropylmethacrylamide, polymer derivs.
 128220-92-8D, polymer derivs.
 RL: TEM (Technical or engineered material use); USES (Uses)
 (methods for preparing non-corrosive, electroactive, conductive organic polymers)
 IT **29383-23-1D**, Vinylimidazole, polymer derivs. **30604-81-0**,
 Polypyrrole
 RL: TEM (Technical or engineered material use); USES (Uses)
 (methods for preparing non-corrosive, electroactive, conductive organic polymers)
 RN 29383-23-1 HCPLUS
 CN 1H-Imidazole, ethenyl- (9CI) (CA INDEX NAME)

D1-CH=CH₂

RN 30604-81-0 HCPLUS
 CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7
 CMF C4 H5 N

L149 ANSWER 52 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 2001:904326 HCPLUS
 DN 136:38557
 TI Polymer composition for membrane formation having electrochemical properties
 IN Narang, Subhash; Ventura, Susanne C.; Olmeijer, David L.
 PA SRI International, USA; Polyfuel, Inc.
 SO PCT Int. Appl., 40 pp.
 CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2001094450	A2	20011213	WO 2001-US17675	20010601 <--
	WO 2001094450	A3	20020704		
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW				
	RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
	CA 2415614	A1	20011213	CA 2001-2415614	20010601 <--
	AU 2001065278	A5	20011217	AU 2001-65278	20010601 <--
	US 2002127454	A1	20020912	US 2001-872770	20010601 <--
	US 7052805	B2	20060530		
	EP 1290068	A2	20030312	EP 2001-939798	20010601 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR				
	JP 2003535940	T	20031202	JP 2002-501997	20010601 <--

PRAI NO 2002005701 A 20030127 NO 2002-5701 20021127 <--
 US 2000-208746P P 20000602 <--
 WO 2001-US17675 W 20010601 <--

AB The invention includes compns. comprising at least first and second polymers and optionally a third polymer wherein acid subunits, basic subunits and elastomeric subunits are contained in the polymers. In one aspect, the composition comprises a ternary polymer blend comprising an acidic polymer comprising acidic subunits, a basic polymer comprising basic subunits and an elastomeric polymer comprising elastomeric subunits. In an alternate aspect, the composition comprises a binary polymer blend which comprises acidic or basic subunits in one polymer and a copolymer comprising the other of the acidic or basic subunit and an elastomeric subunit. Such polymer compns. may be formed into a membrane having electrochem. properties which permit the use of such a membrane in an electrochem. device.

IC ICM C08J0005-22
 CC 38-3 (Plastics Fabrication and Uses)
 Section cross-reference(s): 39
 IT Fuel cells
 Membrane electrodes
 Membranes, nonbiological
 (polymer compns. for membrane formation having electrochem. properties and electrochem. device applications)

IT Ionic conductivity
 (proton; polymer compns. for membrane formation having electrochem. properties and electrochem. device applications)

IT 75-03-6DP, Ethyliodide, reaction products with polybenzimidazole 24937-79-9P, PVDF 25014-41-9P, Polyacrylonitrile **25232-42-2P**, Polyvinylimidazole 54640-82-3P, 2-Acrylamido-2-methyl-1-propanesulfonic acid-acrylonitrile copolymer 101465-21-8P, Acrylonitrile-pentaerythritol triacrylate copolymer 103710-06-1P, Acrylonitrile-N-vinylimidazole-N-vinyl-2-pyrrolidone copolymer
 RL: DEV (Device component use); PRP (Properties); SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (polymer compns. for membrane formation having electrochem. properties and electrochem. device applications)

IT **25232-42-2P**, Polyvinylimidazole
 RL: DEV (Device component use); PRP (Properties); SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
 (polymer compns. for membrane formation having electrochem. properties and electrochem. device applications)

RN 25232-42-2 HCPLUS
 CN 1H-Imidazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1
 CRN 1072-63-5
 CMF C5 H6 N2

L149 ANSWER 53 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 2001:636401 HCPLUS
 DN 135:197999
 TI Method of fabrication of polymer electrolyte membrane for **fuel cell**
 IN Taniguchi, Takumi; Nakano, Mitsuru; Kawasumi, Masaya; Morimoto, Yu;
 Hasegawa, Naoki
 PA Toyota Jidosha Kabushiki Kaisha, Japan
 SO PCT Int. Appl., 28 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2001063683	A2	20010830	WO 2001-IB231	20010221 <--
	WO 2001063683	A3	20020314		
	W: CN, KR, US RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR				
	JP 2001236973	A	20010831	JP 2000-46541	20000223 <--
	EP 1258049	A2	20021120	EP 2001-910069	20010221 <--
	EP 1258049	B1	20051109		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI, CY, TR				
	US 2003087972	A1	20030508	US 2002-204481	20020821 <--
	US 7060735	B2	20060613		
PRAI	JP 2000-46541	A	20000223 <--		
	WO 2001-IB231	W	20010221 <--		
AB	A polymer electrolyte membrane is formed by hot air drying of a membrane formed with an acidic main-polymer having proton conductivity and capability of forming an electrolyte membrane, and then immersing it into a basic polymer solution to impregnate the membrane with the basic polymer. The basic polymer is introduced in a large quantity into a site acting as a proton conduction pass of the main-polymer to take charge of the proton conduction . Since in the polymer electrolyte membrane, a base polymer takes charge of proton conduction as compared with the case where proton takes charge of the proton conduction as a hydrate, the base polymer shows favorable proton conductivity even in a low humidity state at an elevated temperature exceeding b.p. of water.				
IC	ICM H01M0008-10				
CC	52-2 (Electrochemical , Radiational, and Thermal Energy Technology)				
ST	Section cross-reference(s): 38				
IT	polymer electrolyte membrane fuel cell				
IT	Polyoxyalkylenes, uses				
IT	RL: DEV (Device component use); USES (Uses) (fluorine- and sulfo-containing, ionomers; method of fabrication of polymer electrolyte membrane for fuel cell)				
IT	Fuel cell electrolytes				
	Fuel cells				
	(method of fabrication of polymer electrolyte membrane for fuel cell)				
IT	Polybenzimidazoles				
IT	Polyoxyalkylenes, uses				
IT	Polyphosphoric acids				
IT	RL: DEV (Device component use); USES (Uses)				

(method of fabrication of polymer electrolyte membrane for **fuel cell**)

- IT Sulfonic acids, uses
 RL: DEV (Device component use); USES (Uses)
 (perfluorosulfonic acid polymers; method of fabrication of polymer electrolyte membrane for **fuel cell**)
- IT Fluoropolymers, uses
 RL: DEV (Device component use); USES (Uses)
 (polyoxyalkylene-, sulfo-containing, ionomers; method of fabrication of polymer electrolyte membrane for **fuel cell**)
- IT Ionomers
 RL: DEV (Device component use); USES (Uses)
 (polyoxyalkylenes, fluorine- and sulfo-containing; method of fabrication of polymer electrolyte membrane for **fuel cell**)
- IT Ionic conductivity
 (proton; method of fabrication of polymer electrolyte membrane for **fuel cell**)
- IT Fluoropolymers, uses
 RL: DEV (Device component use); USES (Uses)
 (sulfo-containing; method of fabrication of polymer electrolyte membrane for **fuel cell**)
- IT 9002-98-6 9003-47-8, Polyvinyl pyridine
 25232-42-2, Polyvinyl imidazole 25322-68-3, Polyethylene glycol
 25322-69-4, Polypropylene glycol 31669-80-4, phosphonic acid,
 homopolymer 197895-58-2, Ethylene-styrene-tetrafluoroethylene graft
 copolymer 352431-32-4, Ethylene-tetrafluoroethylene-vinylpyridine graft
 copolymer 356771-74-9
 RL: DEV (Device component use); USES (Uses)
 (method of fabrication of polymer electrolyte membrane for **fuel cell**)
- IT 9002-98-6 9003-47-8, Polyvinyl pyridine
 25232-42-2, Polyvinyl imidazole
 RL: DEV (Device component use); USES (Uses)
 (method of fabrication of polymer electrolyte membrane for **fuel cell**)
- RN 9002-98-6 HCPLUS
 CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4
 CMF C2 H5 N

RN 9003-47-8 HCPLUS
 CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1
 CMF C7 H7 N
 CCI IDS

D1-CH=CH₂

RN 25232-42-2 HCAPLUS
 CN 1H-Imidazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)
 CM 1
 CRN 1072-63-5
 CMF C5 H6 N2

L149 ANSWER 54 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 2001:507813 HCAPLUS
 DN 135:101125
 TI Electronic device comprising organic compound having p-type semiconducting characteristics
 IN Son, Se-Hwan; Kim, Ok-Hee; Yoon, Seok-Hee; Kim, Kong-Kyeom; Lee, Youn-Gu;
 Bae, Jae-Soo
 PA LG Chemical Ltd., S. Korea
 SO PCT Int. Appl., 27 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2001049806	A1	20010712	WO 2000-KR1537	20001227 <--
	W: JP, US RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR				
KR	2001062711	A	20010707	KR 2000-82085	20001226 <--
EP	1175470	A1	20020130	EP 2000-989016	20001227 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI				
JP	2003519432	T	20030617	JP 2001-550337	20001227 <--
JP	3614405	B2	20050126		
TW	506229	B	20021011	TW 2001-90111193	20010508 <--
US	2002158242	A1	20021031	US 2001-914731	20010830 <--
US	6720573	B2	20040413		
CN	1361650	A	20020731	CN 2001-142044	20010906 <--
US	2004164294	A1	20040826	US 2004-781076	20040217 <--
US	6953947	B2	20051011		

US 2004169175	A1	20040902	US 2004-798584	20040310 <--
WO 2005078805	A1	20050825	WO 2005-KR449	20050217
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW				
RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
EP 1716601	A1	20061102	EP 2005-726465	20050217
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, FI, RO, CY, TR, BG, CZ, EE, HU, PL, SK, IS				
PRAI KR 1999-67746	A	19991231	<--	
KR 2000-82085	A	20001226	<--	
WO 2000-KR1537	W	20001227	<--	
US 2001-914731	A2	20010830	<--	
US 2004-781076	A	20040217		
WO 2005-KR449	W	20050217		

AB The present invention relates to electronic devices comprising an organic compound acting to inject or transport holes with p-type semi-conducting characteristics. The present invention provides for electronic devices comprising ≥1 or more layers selected from a group composed of a hole injecting layer, a hole transporting layer, and a hole injecting and transporting layer which comprises hexaazatriphenylene based organic compound represented by chemical formula, in which the devices can use low drive-voltage, and can improve a light-emitting life.

IC C09K0017-14

CC 76-5 (Electric Phenomena)

Section cross-reference(s): 75

IT Polyanilines

RL: DEV (Device component use); USES (Uses)
(conducting polymer; electronic device comprising organic compound hexaazatriphenylene having p-type semiconducting characteristics)

IT Poly(arylenealkenylenes)

RL: DEV (Device component use); USES (Uses)
(poly(p-phenylene vinylene),
light-emitting layer; electronic device comprising organic compound hexaazatriphenylene having p-type semiconducting characteristics)

IT Electrodes

(transparent; electronic device comprising organic compound hexaazatriphenylene having p-type semiconducting characteristics)

IT 25233-34-5, Polythiophene 30604-81-0,

Polypyrrole 126213-51-2

RL: DEV (Device component use); USES (Uses)
(conducting polymer; electronic device comprising organic compound hexaazatriphenylene having p-type semiconducting characteristics)

IT 51-17-2, Benzimidazole 273-53-0, Benzoxazole

RL: DEV (Device component use); USES (Uses)
(derivs. of, light-emitting layer; electronic device comprising organic compound hexaazatriphenylene having p-type semiconducting characteristics)

**IT 7439-95-4, Magnesium, uses 7440-70-2, Calcium, uses 12798-95-7,
Aluminum alloy, Al,Li 37334-02-4, Silver alloy, Mg,Ag**

RL: DEV (Device component use); USES (Uses)
(low work function cathode; electronic device comprising organic compound hexaazatriphenylene having p-type semiconducting

characteristics)

IT 1314-13-2, Zinc oxide, uses 1332-29-2, Tin oxide 50926-11-9, Indium tin oxide 117944-65-7, Indium zinc oxide

RL: DEV (Device component use); USES (Uses)

(transparent electrode; electronic device comprising organic compound hexaazatriphenylene having p-type semiconducting characteristics)

IT 25233-34-5, Polythiophene 30604-81-0,

Poly(pyrrole)

RL: DEV (Device component use); USES (Uses)

(conducting polymer; electronic device comprising organic compound hexaazatriphenylene having p-type semiconducting characteristics)

RN 25233-34-5 HCAPLUS

CN Thiophene, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-02-1

CMF C4 H4 S

RN 30604-81-0 HCAPLUS

CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7

CMF C4 H5 N

IT 51-17-2, Benzimidazole

RL: DEV (Device component use); USES (Uses)

(derivs. of, light-emitting layer; electronic device comprising organic compound hexaazatriphenylene having p-type semiconducting characteristics)

RN 51-17-2 HCAPLUS

CN 1H-Benzimidazole (9CI) (CA INDEX NAME)

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG. (R PG)	Referenced Work (RWK)	Referenced File
----------------------------	----------------	---------------	---------------	--------------------------	-----------------

Mitsui Petrochem Ind Lt 1995		JP 711249 A	
Pioneer Electronic Corp 1994		JP 06163158 A	HCAPLUS
Univ Ohio State Res Fou 1988		US 4780536 A	HCAPLUS

L149 ANSWER 55 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2000:772374 HCAPLUS

DN 133:343293

TI Ionic-conducting polymer-ceramic composites

IN Nicoloso, Norbert; Kerres, Jochen

PA Universitaet Stuttgart, Germany

SO Ger. Offen., 6 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 199119988	A1	20001102	DE 1999-199119988	19990430 <--
	CA 2372693	A1	20001221	CA 2000-2372693	20000502 <--
	WO 2000077080	A1	20001221	WO 2000-EP3911	20000502 <--
	W: BR, CA, JP, US				
	RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,				
	PT, SE				
	EP 1181327	A1	20020227	EP 2000-925253	20000502 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,				
	IE, FI				
	US 2002093008	A1	20020718	US 2001-984531	20011030 <--
	US 2004251450	A1	20041216	US 2004-870156	20040618 <--
PRAI	DE 1999-199119988	A	19990430	<--	
	WO 2000-EP3911	W	20000502	<--	
	US 2001-984531	B1	20011030	<--	
AB	Proton-conducting or hydroxyl ion-conducting polymer-ceramic composites comprise polymers and ceramic nano-particles (1-100 nm), and are suitable for ionic conductors, fuel cells, secondary batteries, electrochem. sensors, medical goods and electrocatalysis. The title composites have a sufficiently high mech. stability up to 300°. The polymers suitable for this composites include groups of NR4 with R = H, alkyl, aryl, pyridine, imidazole, pyrazole, sulfone.				
IC	ICM B01D0069-00				
	ICS B01D0067-00; C04B0035-00				
CC	76-2 (Electric Phenomena)				
	Section cross-reference(s): 38, 52, 57, 63, 72				
ST	proton conducting polymer ceramic composite; hydroxyl ion conducting polymer ceramic composite				
IT	Fuel cells				
	Ionic conductors				
	Medical goods				
	Nanoparticles				
	Secondary batteries				
	(ionic-conducting polymer-ceramic composites)				
IT	Ionic conductivity				
	(proton; ionic- conducting polymer-ceramic composites)				
IT	64-17-5P, Ethanol, preparation 67-56-1P, Methanol, preparation 1307-96-6P, Cobalt oxide, preparation 1309-48-4P, Magnesium oxide, preparation 1313-13-9P, Manganese oxide, preparation 1313-99-1P, Nickel oxide, preparation 1314-13-2P, Zinc oxide, preparation 1345-25-1P, Iron oxide FeO, preparation 11118-57-3P, Chromium oxide				

12651-06-8P, Samarium oxide 12770-85-3P, Europium oxide 31694-16-3P,
 Victrex Peek 82370-43-2P, Poly imidazole 105809-46-9P,
 Poly pyrazole 128611-68-7P, Oxazole, homopolymer 154281-38-6P,
 RADEL R

RL: IMF (Industrial manufacture); PREP (Preparation)
 (polymer-ceramic composites; ionic-conducting polymer-ceramic
 composites)

IT 82370-43-2P, Poly imidazole 105809-46-9P, Poly pyrazole

128611-68-7P, Oxazole, homopolymer

RL: IMF (Industrial manufacture); PREP (Preparation)
 (polymer-ceramic composites; ionic-conducting polymer-ceramic
 composites)

RN 82370-43-2 HCAPLUS

CN 1H-Imidazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-32-4

CMF C3 H4 N2

RN 105809-46-9 HCAPLUS

CN 1H-Pyrazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-13-1

CMF C3 H4 N2

RN 128611-68-7 HCAPLUS

CN Oxazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-42-6

CMF C3 H3 N O

L149 ANSWER 56 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2000:665699 HCAPLUS

DN 133:254952

TI Polymer electrolyte for lithium secondary **batteries**

IN Oyama, Noboru

PA Japan

SO Eur. Pat. Appl., 32 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 1037294	A2	20000920	EP 2000-105773	20000317 <--
	EP 1037294	A3	20030730		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
	JP 2001189166	A	20010710	JP 2000-70790	20000314 <--
	CA 2301414	A1	20000917	CA 2000-2301414	20000316 <--
	US 6509122	B1	20030121	US 2000-527569	20000316 <--
	CN 1267683	A	20000927	CN 2000-104319	20000317 <--
	AU 770639	B2	20040226	AU 2000-22331	20000317 <--
	US 2003082458	A1	20030501	US 2002-227532	20020826 <--
	US 7105254	B2	20060912		
PRAI	JP 1999-71758	A	19990317	<--	
	JP 1999-295503	A	19991018	<--	
	US 2000-527569	A3	20000316	<--	

AB A polymer electrolyte providing lithium secondary **batteries** in which growth of lithium dendrites is suppressed and **batteries** exhibiting excellent discharge characteristics in low to high temperature, comprises a polymer gel holding a nonaq. solvent containing an electrolyte. The polymer gel comprises (I) a unit derived from at least one monomer having one copolymerizable vinyl group and (II) a unit derived from at least one compound selected from the group consisting of (II-a) a compound having two acryloyl groups and a (poly)oxyethylene group, (II-b) a compound having one acryloyl group and a (poly)oxyethylene group, and (II-c) a glycidyl ether compound, particularly the polymer gel comprises monomer (I), compound (II-a), and a copolymerizable plasticizing compound

IC ICM H01M0006-18

ICS C08L0071-02

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38, 76

ST lithium **battery** polymer electrolyte

IT Pyridinium compounds

RL: DEV (Device component use); USES (Uses)

(alkyl; polymer electrolyte for lithium secondary **batteries**)

IT **Secondary batteries**

(lithium; polymer electrolyte for lithium secondary **batteries**)

)

IT **Battery electrolytes**

Capacitors

Polymer electrolytes

(polymer electrolyte for lithium secondary **batteries**)

IT Amides, uses

Lactones

Nitriles, uses

Polyanilines

RL: DEV (Device component use); USES (Uses)

(polymer electrolyte for lithium secondary **batteries**)

IT Phosphonium compounds

Quaternary ammonium compounds, uses

RL: DEV (Device component use); USES (Uses)

(tetraalkyl; polymer electrolyte for lithium secondary

batteries)

IT 96-48-0, γ -Butyrolactone 96-49-1, Ethylene carbonate 108-32-7, Propylene carbonate 288-32-4D, Imidazole, alkyl derivative 1072-71-5, 2,5-Dimercapto-1,3,4-thiadiazole 7439-93-2, Lithium, uses 7791-03-9, Lithium perchlorate 9063-88-1, Blemmer PDE 400-methyl methacrylate copolymer 14283-07-9, Lithium tetrafluoroborate 21324-40-3, Lithium hexafluorophosphate 25101-19-3, Methylmethacrylate-triethylene glycol dimethacrylate copolymer 25233-30-1, **Polyaniline** 25777-71-3, Blemmer PDE 50-methyl methacrylate copolymer 27308-26-5, Blemmer PDE 100-methyl methacrylate copolymer 29403-27-8 29935-35-1, Lithium hexafluoroarsenate 33454-82-9, Lithium triflate 35895-69-3, Tetraethylammonium trifluoromethanesulfonate 59049-11-5, Blemmer PME 150-methyl methacrylate copolymer 72892-39-8, Blemmer PE 200-methyl methacrylate copolymer 81381-02-4, Acrylonitrile-triethylene glycol dimethacrylate copolymer 90076-65-6 114388-54-4, Cyclohexyl methacrylate-methyl methacrylate-triethylene glycol dimethacrylate copolymer 129283-05-2 130425-25-1, Blemmer PME 100-methyl methacrylate copolymer 131651-65-5 132404-42-3 144442-23-9 294189-08-5 294189-09-6, Methyl methacrylate-2-methacryloyloxyethyl phthalate-triethylene glycol dimethacrylate copolymer 294189-10-9, Benzyl methacrylate-methyl methacrylate-triethylene glycol dimethacrylate copolymer 294189-11-0, Isobornyl methacrylate-methyl methacrylate-triethylene glycol dimethacrylate copolymer 294189-12-1 294189-13-2 294189-14-3, 2-Diethylaminoethyl methacrylate-methyl methacrylate-triethylene glycol dimethacrylate copolymer 294189-15-4, Methyl methacrylate-triethylene glycol dimethacrylate-trifluoroethyl methacrylate copolymer 294189-16-5, Diethylene glycol monomethacrylate-methyl methacrylate-triethylene glycol dimethacrylate copolymer 294189-17-6, Methoxyethyleneglycol methacrylate-methyl methacrylate-triethylene glycol dimethacrylate copolymer 294189-18-7 294189-20-1

RL: DEV (Device component use); USES (Uses)
(polymer electrolyte for lithium secondary **batteries**)

IT 78-67-1, AIBN

RL: TEM (Technical or engineered material use); USES (Uses)
(polymerization initiator; polymer electrolyte for lithium secondary **batteries**)

IT 288-32-4D, Imidazole, alkyl derivative 25233-30-1,

Polyaniline

RL: DEV (Device component use); USES (Uses)
(polymer electrolyte for lithium secondary **batteries**)

RN 288-32-4 HCAPLUS

CN 1H-Imidazole (9CI) (CA INDEX NAME)

RN 25233-30-1 HCAPLUS

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3

CMF C6 H7 N

L149 ANSWER 57 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2000:539781 HCPLUS

DN 133:122809

TI **Proton conductive solid polymer electrolytes**

IN **Nishiyama, Toshihiko; Harada, Manabu; Fujiwara, Masaki; Okada, Shinako; Kurosaki, Masahito; Tsuchida, Hidetoshi; Takeoka, Shinji; Miyatake, Kenji; Fukushima, Kazuaki**

PA NEC Corp., Japan

SO Jpn. Tokkyo Koho, 7 pp.

CODEN: JTXXFF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 3047973	B1	20000605	JP 1999-36371	19990215 <--
	JP 2000235812	A	20000829		
PRAI	JP 1999-36371		19990215 <--		
AB	The electrolytes contain a carbonate ester polymer -(OCOOR1)-n (R1 = C1-20 organic residue which may contain N, O, P, S, F, Cl, Br, and/or I; n = d.p. ≥2) and sulfonic acid compds. -R2SO3H- or -[R3(SO3H)m]-p (R2 and R3 = C1-20 organic residue which may contain N, O, P, S, F, Cl, Br, and/or I; m = 0.01-4; p = d.p. ≥20). The electrolytes are useful for batteries and fuel cells.				
IC	ICM H01B0001-06 ICS C08G0064-02; H01M0008-02; H01M0010-40; C08L0101-12				
CC	52-2 (Electrochemical, Radiational, and Thermal Energy Technology)				
ST	proton conductive polymer electrolyte; carbonate ester polymer sulfonate proton conductive electrolyte				
IT	Battery electrolytes Fuel cell electrolytes Polymer electrolytes (compns. of proton conductive solid polymer electrolytes for batteries and fuel cells)				
IT	375-73-5, Perfluorobutanesulfonic acid 1763-23-1, Perfluoroctanesulfonic acid 25233-34-5D, Polythiophene , sulfonated 25718-55-2, Poly(ethylene carbonate) 25805-40-7, Poly(butylene carbonate) 26041-91-8, Poly(ethylene carbonate) 110320-40-6, Poly(propylene carbonate) RL: DEV (Device component use); USES (Uses) (compns. of proton conductive solid polymer electrolytes for batteries and fuel cells)				

L149 ANSWER 58 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2000:511869 HCPLUS

DN 133:137838

TI **Electrodes containing conducting polymers and their manufacture and secondary batteries using them**

IN **Kurosaki, Masahito; Okada, Shinako; Harada, Manabu; Fujiwara, Masaki; Nishiyama, Toshihiko**

PA ,NEC Corp., Japan
 SO Jpn. Kokai Tokkyo Koho, 12 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 2000208136	A	20000728	JP 1999-6382	19990113 <--
	JP 3058157	B2	20000704		
PRAI	JP 1999-6382		19990113 <--		

AB The **electrodes** are manufactured by coating active mass containing polymers on current collectors, partitioning the coating into plural parts, and then drying, where the polymers have **proton** adsorption-desorption properties and/or redox reactivity by doping-dedoping of ions other than **proton**. Resulting **electrodes** have increased capacity per unit area and ratio of **electrodes** vs. **batteries**, and are suitable for enlargement of **batteries**. Secondary **batteries** equipped with the **electrodes** are also claimed. Also claimed **batteries** comprise polymers containing π conjugation in the main chains and having elec. **conductivity** as **conductive** agents.

IC ICM H01M0004-04
 ICS H01M0004-02; H01M0004-60; H01M0004-62; H01M0010-40

CC 52-2 (**Electrochemical**, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38

ST conducting polymer **electrode** manuf **battery**

IT **Battery electrodes**

Conducting polymers

(**electrodes** containing conducting polymers manufactured by coating and partitioning for secondary **batteries**)

IT **Secondary batteries**

(lithium; **electrodes** containing conducting polymers manufactured by coating and partitioning for secondary **batteries**)

IT 111641-58-8

RL: DEV (Device component use); USES (Uses)

(**electrodes** containing conducting polymers manufactured by coating and partitioning for secondary **batteries**)

L149 ANSWER 59 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2000:457136 HCPLUS

DN 133:75087

TI Method for production of polyelectrolyte membranes for **fuel cell**

IN Yamamoto, Tetsu

PA Axiva G.m.b.H., Germany

SO PCT Int. Appl., 22 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2000039202	A1	20000706	WO 1999-EP9831	19991211 <--
	W: BR, CA, CN, CZ, JP, KR, MX, PL, RU, SG, US				
	RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
	JP 2000195528	A	20000714	JP 1998-371554	19981225 <--
	CA 2355856	A1	20000706	CA 1999-2355856	19991211 <--

BR 9916818	A	20011016	BR 1999-16818	19991211 <--
EP 1144485	A1	20011017	EP 1999-965448	19991211 <--
EP 1144485	B1	20031119		

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
IE, FI

JP 2002533890	T	20021008	JP 2000-591108	19991211 <--
---------------	---	----------	----------------	--------------

AT 254643	T	20031215	AT 1999-965448	19991211 <--
-----------	---	----------	----------------	--------------

PT 1144485	T	20040430	PT 1999-965448	19991211 <--
------------	---	----------	----------------	--------------

ES 2209546	T3	20040616	ES 1999-965448	19991211 <--
------------	----	----------	----------------	--------------

PRAI JP 1998-371554 A 19981225 <--
WO 1999-EP9831 W 19991211 <--

AB The patent relates to a method for producing a polyelectrolyte membrane, including the step of immersing a basic polymer such as a polybenzimidazole in a strong acid having a concentration sufficient to impregnate the basic polymer with six or more strong acid mols. per polymer repeating unit of the basic polymer at a temperature $\geq 30^\circ$ for a period of 5 h or less, as well as a fuel **battery** having the polyelectrolyte membrane. Hence, the times required to immerse the basic polymers in the strong acids (phosphoric acid or sulfuric acid) can be shortened and the **proton conductivity** of the polyelectrolyte membranes can be improved. The basic polymer is selected from the group consisting of polybenzimidazoles, polypyridines, polypyrimidines polyimidazoles, polybenzothiazoles, polybenzoxazoles, polyoxadiazoles, polyquinolines, **Polyquinoxalines**, polythiadiazoles, polytetrazapyrroles, polyoxazoles, polythiazoles, polyvinylpyridines, polyvinylimidazoles, and polybenzimidazoles. Thus, a polybenzimidazole membrane having a thickness of 50 μm was immersed in 85 weight% phosphoric acid at 40° for 1 h to yield a polyelectrolyte membrane, cut out in a circular piece of 7-cm diameter, sandwiched by two sheets of carbon **electrodes** for a **fuel cell** of the polyelectrolyte type, and hotpressed to yield a cell for fuel **battery**.

IC ICM C08J0005-22

ICS C25B0009-00; H01M0008-10

CC 38-3 (Plastics Fabrication and Uses)
Section cross-reference(s): 72, 76

ST polybenzimidazole polyelectrolyte membrane **fuel cell**
prodn; phosphoric sulfuric acid impregnated polybenzimidazole membrane

IT Polybenzimidazoles

Polybenzoxazoles

Polyoxadiazoles

Polyquinolines

Polyquinoxalines

Polythiazoles

RL: RCT (Reactant); TEM (Technical or engineered material use); RACT
(Reactant or reagent); USES (Uses)

(basic polymer; method for production of polyelectrolyte membranes comprising)

IT Membranes, nonbiological

(elec. conductive; method for production of polyelectrolyte membranes and **fuel cell**)

IT **Fuel cell electrodes**

Polyelectrolytes

(method for production of polyelectrolyte membranes for **fuel cell electrode**)

IT 95-16-9D, Benzothiazole, derivs., polymer **288-32-4D**, Imidazole, derivs., polymer 288-42-6D, Oxazole, derivs., polymer 289-06-5D, Thiadiazole, derivs., polymer **289-95-2D**, Pyrimidine, derivs., polymer **9003-47-8D**, Polyvinylpyridine, derivs.

25013-01-8D, Polypyridine, derivs. **25232-42-2D**,

Polyvinylimidazole, derivs.

RL: RCT (Reactant); TEM (Technical or engineered material use); RACT (Reactant or reagent); USES (Uses)

(basic polymer; method for production of polyelectrolyte membranes comprising)

IT 288-32-4D, Imidazole, derivs., polymer 289-95-2D,

Pyrimidine, derivs., polymer 9003-47-8D, Polyvinylpyridine, derivs. 25013-01-8D, Polypyridine, derivs. 25232-42-2D

, Polyvinylimidazole, derivs.

RL: RCT (Reactant); TEM (Technical or engineered material use); RACT (Reactant or reagent); USES (Uses)

(basic polymer; method for production of polyelectrolyte membranes comprising)

RN 288-32-4 HCAPLUS

CN 1H-Imidazole (9CI) (CA INDEX NAME)

RN 289-95-2 HCAPLUS

CN Pyrimidine (8CI, 9CI) (CA INDEX NAME)

RN 9003-47-8 HCAPLUS

CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1

CMF C7 H7 N

CCI IDS

D1-CH=CH₂

RN 25013-01-8 HCAPLUS

CN Pyridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-86-1

CMF C5 H5 N

RN 25232-42-2 HCPLUS
 CN 1H-Imidazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1072-63-5
 CMF C5 H6 N2

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (R WK)	Referenced File
Hoechst Celanese Corp	1998			WO 9814505 A	HCPLUS
Ogata, N	1997			US 5599639 A	HCPLUS
Univ Case Western Reser	1996			WO 9613872 A	HCPLUS
Univ Case Western Reser	1997			WO 9737396 A	HCPLUS
Wainright, J	1995	142	121	JOURNAL OF THE ELECT	
Wang, J	1996	41	193	ELECTROCHIMICA ACTA	HCPLUS
Young, P	1989			US 4795536 A	HCPLUS

L149 ANSWER 60 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 2000:335691 HCPLUS

DN 132:323960

TI Materials for use in **proton-conducting** polymer
 electrolytes for electrochromic devices, rechargeable **batteries**
 and **fuel cells**

IN Brochu, Fernand; Duval, Michel

PA Hydro-Quebec, Can.

SO PCT Int. Appl., 21 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI WO 2000028611	A1	20000518	WO 1999-CA1022	19991102 <--

W: CA, JP

RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
 PT, SE

PRAI US 1998-186138 A 19981105 <--

AB Organophosphoric materials obtained from the reaction of orthophosphoric acid with various organic reagents, including acetonitrile, acrylonitrile, a low mol. weight ether, a low mol. weight alc., or mixts. thereof are materials

for use in **proton-conducting** polymer electrolytes.
 The novel organophosphoric materials have the beneficial effect of preventing the degradation of the polymers while still providing excellent **ionic conductivity**

- IC ICM H01M0008-10
 ICS H01M0010-40; H01M0006-18; G02F0001-15; C07F0009-09
 CC 52-2 (**Electrochemical**, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 38
 ST organophosphoric material **proton conducting** polymer electrolyte; electrochromic device organophosphoric material electrolyte; **battery** organophosphoric material electrolyte; **fuel cell** organophosphoric material electrolyte
 IT Polysulfones, uses
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (aromatic; materials for use in **proton-conducting** polymer electrolytes for electrochromic devices, rechargeable **batteries** and **fuel cells**)
 IT Alcohols, uses
 Ethers, uses
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (low mol. weight, reaction product with inorg. acid; materials for use in **proton-conducting** polymer electrolytes for electrochromic devices, rechargeable **batteries** and **fuel cells**)
 IT **Battery electrolytes**
Conducting polymers
Electrochromic devices
Fuel cell electrolytes
 (materials for use in **proton-conducting** polymer electrolytes for electrochromic devices, rechargeable **batteries** and **fuel cells**)
 IT Acrylic polymers, uses
 Fluoropolymers, uses
 Polyamides, uses
 Polybenzimidazoles
 Polyethers, uses
 Polyimides, uses
 Polythioarylenes
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (materials for use in **proton-conducting** polymer electrolytes for electrochromic devices, rechargeable **batteries** and **fuel cells**)
 IT Sulfonic acids, uses
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (perfluorosulfonic acid polymers; materials for use in **proton-conducting** polymer electrolytes for electrochromic devices, rechargeable **batteries** and **fuel cells**)
 IT Fluoropolymers, uses
 Fluoropolymers, uses
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (sulfo-containing; materials for use in **proton-conducting** polymer electrolytes for electrochromic devices, rechargeable **batteries** and **fuel cells**)
 IT 7631-86-9, Aerosil, uses

RL: MOA (Modifier or additive use); USES (Uses)
 (colloidal; materials for use in **proton-conducting**
 polymer electrolytes for electrochromic devices, rechargeable
batteries and fuel cells)

- IT 9010-79-1, Ethylene-propylene copolymer
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (fluorinated; materials for use in **proton-conducting**
 polymer electrolytes for electrochromic devices, rechargeable
batteries and fuel cells)
- IT 75-05-8D, Acetonitrile, reaction product with orthophosphoric acid, uses
 107-13-1D, Acrylonitrile, reaction product with orthophosphoric acid
 7601-90-3D, Perchloric acid, reaction product with organic reagent, uses
 7664-38-2D, Orthophosphoric acid, reaction product with acetonitrile
 7664-38-2D, Orthophosphoric acid, reaction product with organic reagent
 7664-93-9D, Sulfuric acid, reaction product with organic reagent, uses
 9002-89-5, Pva 9003-05-8, Polyacrylamide 9003-20-7, Polyvinyl acetate
 9003-39-8 9003-47-8, Polyvinylpyridine 24937-79-9,
 Pvdf 57271-36-0, Butylene-ethylene-styrene copolymer 90622-00-7D,
 Benzene, ethenyl-, trifluoro derivative, sulfonic acid derivative
105809-46-9D, Polypyrazole, aromatic derivative
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (materials for use in **proton-conducting** polymer
 electrolytes for electrochromic devices, rechargeable **batteries**
 and **fuel cells**)
- IT 9003-39-8 9003-47-8, Polyvinylpyridine
105809-46-9D, Polypyrazole, aromatic derivative
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (materials for use in **proton-conducting** polymer
 electrolytes for electrochromic devices, rechargeable **batteries**
 and **fuel cells**)
- RN 9003-39-8 HCPLUS
 CN 2-Pyrrolidinone, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 88-12-0
 CMF C6 H9 N O

RN 9003-47-8 HCPLUS
 CN Pyridine, ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1337-81-1
 CMF C7 H7 N
 CCI IDS

D1-CH=CH₂

RN 105809-46-9 HCAPLUS
 CN 1H-Pyrazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-13-1
 CMF C3 H4 N2

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (R WK)	Referenced File
Anon	1991	015		PATENT ABSTRACTS OF	
Arribart, H	1989			US 4844591 A	
Hitachi, M	1996			EP 0704922 A	H CAPLUS
Hong, J	1998			US 5723645 A	H CAPLUS
J	1996	41	193	ELECTROCHIMICA ACTA	
Nissei Kagaku Kogyo Kk	1991			JP 03077859 A	H CAPLUS
No, B	1995			Preparation of cyano	H CAPLUS
Volgogradskij Politekhn	1993			SU 1828862 A	H CAPLUS
Young, P	1989			US 4795536 A	H CAPLUS
Zvi, R	1970		245	The chemistry of the	

L149 ANSWER 61 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 2000:176057 HCAPLUS

DN 132:224900

TI Element with electrically controllable surface emissivity for infrared radiation

IN Rothmund, Walter; Ortlepp, Katrin; Scherber, Werner; Leupolz, Andreas; Golly, Monika

PA Dornier G.m.b.H., Germany

SO PCT Int. Appl., 10 pp.

CODEN: PIXXD2

DT Patent

LA German

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2000014811	A2	20000316	WO 1999-DE2257	19990722 <--
	WO 2000014811	A3	20001123		
	W: US				
	RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,				

PT, SE
EP 1112595 A2 20010704 EP 1999-948666 19990722 <--
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
IE, FI
PRAI DE 1998-19840183 A 19980903 <--
WO 1999-DE2257 W 19990722 <--
AB Elements with elec. controllable surface emissivity for IR radiation at
1-30 μ m are described which comprise a front substrate transparent to
IR radiation; a functional layer whose reflectivity for IR radiation can
be modified by the incorporation of hydrogen; an anhydrous, IR-absorbing
proton-conducting layer; a hydrogen storage layer; and
an **electrode** layer. Application to controlling the thermal
budget of spacecraft by adjusting the emission of heat or for regulating
the temperature of homes or autos is indicated.
IC ICM H01L0031-00
CC 52-3 (**Electrochemical**, Radiational, and Thermal Energy
Technology)
Section cross-reference(s): 73, 76
IT 288-13-1, Pyrazole 288-32-4, Imidazole, uses
RL: DEV (Device component use); USES (Uses)
(**proton-conducting** layer containing; thermal regulation
apparatus with elec. controllable surface emissivity for IR radiation)
IT 288-13-1, Pyrazole 288-32-4, Imidazole, uses
RL: DEV (Device component use); USES (Uses)
(**proton-conducting** layer containing; thermal regulation
apparatus with elec. controllable surface emissivity for IR radiation)
RN 288-13-1 HCPLUS
CN 1H-Pyrazole (9CI) (CA INDEX NAME)

RN 288-32-4 HCPLUS
CN 1H-Imidazole (9CI) (CA INDEX NAME)

L149 ANSWER 62 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN
AN 1999:665431 HCPLUS
DN 131:260032
TI **Proton conduction type polymer batteries** and
their manufacture
IN Nishiyama, Toshihiko; Harada, Manabu; Okada, Shinako; Fujiwara,
Masaki
PA NEC Corp., Japan
SO Jpn. Kokai Tokkyo Koho, 11 pp.
CODEN: JKXXAF
DT Patent
LA Japanese
FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 11288717	A	19991019	JP 1998-91519	19980403 <--
JP 2943792	B1	19990830		
US 6300015	B1	20011009	US 1999-285795	19990405 <--
EP 966054	A1	19991222	EP 1999-106813	19990406 <--
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
PRAI	JP 1998-91519	A	19980403	<--
AB	<p>The batteries use cathodes and anodes containing substances receiving and releasing electrons during a redox reaction and a solid or gel electrolyte, where the cathodes and anode use active mass mixts. containing a polymer having a conjugated π bond system including N atoms and a N containing quinoid compound and having different potentials, the electrolyte contains H⁺, and the cathodes are doped with the same anion as in the polymer matrix in the electrolyte. The batteries are prepared by doping the cathode active mass with the anion, assembling the doped cathode with an anode, and impregnating the assembly with the polymer or gel electrolyte.</p>			
IC	ICM H01M0004-60			
CC	ICS H01M0004-02; H01M0004-04; H01M0010-40			
CC	52-3 (Electrochemical, Radiational, and Thermal Energy Technology)			
ST	proton conductive polymer battery			
IT	cathode doping			
IT	Battery cathodes (cathodes from polymers doped with anionic components of electrolytes for proton conductive polymer batteries)			
IT	Polyanilines RL: DEV (Device component use); USES (Uses) (cathodes from polymers doped with anionic components of electrolytes for proton conductive polymer batteries)			
IT	Polyoxyalkylenes, uses RL: MOA (Modifier or additive use); USES (Uses) (fluorine- and sulfo-containing, ionomers; cathodes from polymers doped with anionic components of electrolytes for proton conductive polymer batteries)			
IT	Polyoxyalkylenes, uses RL: MOA (Modifier or additive use); USES (Uses) (fluorine-containing, sulfo-containing, ionomers; cathodes from polymers doped with anionic components of electrolytes for proton conductive polymer batteries)			
IT	Fluoropolymers, uses Fluoropolymers, uses RL: MOA (Modifier or additive use); USES (Uses) (polyoxyalkylene-, sulfo-containing, ionomers; cathodes from polymers doped with anionic components of electrolytes for proton conductive polymer batteries)			
IT	Ionomers RL: MOA (Modifier or additive use); USES (Uses) (polyoxyalkylenes, fluorine- and sulfo-containing; cathodes from polymers doped with anionic components of electrolytes for proton conductive polymer batteries)			
IT	Battery electrolytes (trifluoroacetic acid electrolyte additives in proton conductive polymer batteries)			
IT	25233-30-1, Polyaniline			

RL: DEV (Device component use); USES (Uses)
 (cathodes from polymers doped with anionic components of
 electrolytes for proton conductive polymer
 batteries)

IT 25233-30-1D, Polyaniline, nitro derivs. 245090-39-5

RL: MOA (Modifier or additive use); USES (Uses)
 (cathodes from polymers doped with anionic components of
 electrolytes for proton conductive polymer
 batteries)

IT 76-05-1, Trifluoroacetic acid, uses

RL: MOA (Modifier or additive use); USES (Uses)
 (electrolyte additives in proton conductive polymer
 battery using anionic electrolyte component doped polymer
 cathodes)

L149 ANSWER 63 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 1999:375525 HCAPLUS

DN 131:59262

TI Perfluorocarbonyl sulfoxide or sulfone salts and their use as ionic
 conductors

IN Michot, Christophe; Armand, Michel; Choquette, Yves; Gauthier, Michel
 PA Acep Inc., Can.; Universite de Montreal; Centre National de la Recherche
 Scientifique

SO PCT Int. Appl., 66 pp.

CODEN: PIXXD2

DT Patent

LA French

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9928292	A1	19990610	WO 1998-FR2585	19981201 <--
	W: CA, JP, US				
	RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
	CA 2224046	A1	19990601	CA 1997-2224046	19971201 <--
	CA 2228801	A1	19990803	CA 1998-2228801	19980203 <--
	CA 2279399	A1	19990610	CA 1998-2279399	19981201 <--
	EP 968181	A1	20000105	EP 1998-958294	19981201 <--
	EP 968181	B1	20050427		
	R: DE, FR, GB, IT				
	JP 2002500678	T	20020108	JP 1999-530206	19981201 <--
	EP 1626041	A2	20060215	EP 2005-23466	19990203 <--
	R: DE, FR, GB, IT				
	US 6620546	B1	20030916	US 1999-355454	19990924 <--
	US 2002009635	A1	20020124	US 2001-859784	20010516 <--
PRAI	CA 1997-2224046	A	19971201	<--	
	CA 1998-2228801	A	19980203	<--	
	WO 1998-FR2585	W	19981201	<--	
	CA 1998-2256945	A	19981218	<--	
	EP 1999-903554	A3	19990203	<--	
	US 1999-355454	A1	19990924	<--	

OS MARPAT 131:59262

AB An ionic composition comprises a salt dissolved in a solvent and has a conductivity $>10^{-5}$ S/cm between -30 and $+150^\circ$. The cation is a proton, hydronium, hydroxonium, nitrosonium (NO^+), NH_4^+ , or an organic or organometallic metal cation. The anion is a carbanion bearing a perfluorinated substituent or a substituent at least bearing a F on the α carbon of the carbanion, and two nonperfluorinated electron-withdrawing substituents. The composition can be used as an electrolyte in electrochem. devices, as a catalyst for chemical reactions,

and as a photochem. or thermochem. initiator for polymerization or crosslinking reactions. Thus, CH₂(SO₂Cl)₂ was amidated with Me₂NH, treated with NaH, condensed with (trifluoromethylsulfonyl)imidazole, and neutralized with K₂CO₃ to give (Me₂NSO₂)₂C-(SO₂CF₃) K⁺, which was exchanged with LiCl to give (Me₂NSO₂)₂C-(SO₂CF₃) Li⁺ (I), soluble in polar organic solvents and in poly(ethylene oxide) (II). A solution of I in II at O/Li = 12 shows ionic conductivity >10⁻⁴ S/cm at 60°; an acetone solution of I is a catalyst for the Diels-Alder reaction; and a combination of I with an ethylene oxide-allyl glycidyl ether-Me glycidyl ether copolymer at O/Li = 20 serves as an electrolyte in a Li battery. The analog Me₂NSO₂C-(SO₂CF₃)SO₂C₆H₄CH₂-p Li⁺ was prepared and copolymerd. 6:4 with acrylonitrile, and the resulting polymer 30, ethylene carbonate 35, and propylene carbonate 35% were combined to give a polyelectrolyte gel with ionic conductivity >10⁻⁴ S/cm at 30°.

IC ICM C07C0317-04
 ICS C07D0339-06; C07D0311-82; C07C0317-12; C08G0061-02; C08F0232-04;
 H01M0010-40; H01M0006-16
 CC 35-4 (Chemistry of Synthetic High Polymers)
 Section cross-reference(s): 23, 24, 25, 28, 52, 67
 ST perfluoroalkyl sulfone ionic conductor; battery electrolyte
 perfluoroalkyl sulfone salt
 IT **Battery electrolytes**
 Diels-Alder reaction catalysts
Fuel cell electrolytes
 Ionic conductors
 (preparation of perfluorocarbyl sulfone salts as)
 IT 111-92-2, Dibutylamine 124-40-3, reactions 335-05-7,
 Trifluoromethanesulfonyl fluoride 589-15-1, p-Bromobenzyl bromide
 2633-67-2, p-Styrenesulfonyl chloride 5089-70-3, (3-Chloropropyl)triethoxysilane 5799-68-8, Methanedisulfonyl dichloride
 26413-19-4, 1,3-Dithiolane 1,1,3,3-tetraoxide 29540-81-6
 31876-38-7D, Moniliformin, alkali metal salts 41804-89-1, Potassium triflinate 51270-39-4, 1-Bromo-N,N-dimethylmethanesulfonamide
 65039-09-0, 1-Ethyl-3-methyl-1H-imidazolium chloride
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (preparation of perfluorocarbyl sulfone salts as ionic conductors)
 IT 29540-81-6
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (preparation of perfluorocarbyl sulfone salts as ionic conductors)
 RN 29540-81-6 HCPLUS
 CN 1H-Imidazole, 1-[(trifluoromethyl)sulfonyl]- (9CI) (CA INDEX NAME)

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (RWK)	Referenced File
Centre National Recherc	1998			EP 0850921 A	HCAPLUS
Centre National Recherc	1998			EP 0850932 A	HCAPLUS
Dominey, L	1993			US 5273840 A	HCAPLUS
Lee, H	1996			US 5538812 A	HCAPLUS

Ogoiko, P	1978	612	Chelate complexes of HCAPLUS
Ogoiko, P	1977 43	1298	UKR KHIM ZH HCAPLUS

L149 ANSWER 64 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 1999:127081 HCAPLUS

DN 130:176356

TI Nonaqueous electrolyte for electrical storage devices

IN Mcewen, Alan B.; Ein-Eli, Yair

PA Covalent Associates, Inc., USA

SO PCT Int. Appl., 30 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9908299 W: JP RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE US 5965054 EP 1027713 R: DE, FR, GB JP 2001512903	A1 A A1 T	19990218 19991012 20000816 20010828	WO 1998-US16625 US 1997-910143 EP 1998-938481 JP 2000-506668	19980810 <-- 19970812 <-- 19980810 <-- 19980810 <--
PRAI	US 1997-910143 WO 1998-US16625	A W	19970812 19980810	<-- <--	

OS MARPAT 130:176356

AB Nonaq. electrolytes for application in elec. storage devices such as **electrochem.** capacitors or **batteries** contain salts consisting of alkyl substituted, cyclic delocalized aromatic cations, and their perfluoro derivs., and certain polyat. anions having a Van der Waals volume $\leq 100 \text{ \AA}^3$, preferably inorg. perfluoride anions and most preferably PF₆⁻, the salts being dissolved in organic liqs., and preferably alkyl carbonate solvents and/or liquid SO₂, at a concentration $>0.5\text{M}$ and preferably

$>1.0\text{M}$. Exemplary electrolytes comprise 1-ethyl-3-methylimidazolium hexafluorophosphate dissolved in a cyclic or acyclic alkyl carbonate and/or Me formate. These electrolytes have useful characteristics such as higher conductivity, higher concentration, higher energy storage capabilities,

and higher power characteristics compared to prior art electrolytes. Stacked capacitor **cells** using electrolytes of the invention permit high energy, high voltage storage.

IC ICM H01G0009-035

ICS H01G0009-145; H01M0006-16; C07F0005-02; C07F0009-02; C07F0009-54;
C07C0309-71; C07C0309-73; C07D0211-04; C07D0231-10; C07D0231-54;
C07D0233-54; C07D0237-02; C07D0237-26; C07D0239-02; C07D0239-70;
C07D0241-06; C07D0241-36; C07D0249-08; C07D0249-16

CC 76-10 (Electric Phenomena)

ST Section cross-reference(s): 52

ST elec storage device nonaq electrolyte; capacitor **battery** nonaq electrolyte; ethylmethylimidazolium hexafluorophosphate cyclic alkyl carbonate electrolyte; Me formate ethylmethylimidazolium hexafluorophosphate electrolyte; alkyl acyclic carbonate ethylmethylimidazolium hexafluorophosphate electrolyte

IT **Battery electrolytes**
(nonaq.)

IT 96-49-1, Ethylene carbonate 107-31-3, Methyl formate 108-32-7, Propylene carbonate 110-86-1D, Pyridine, derivs., quaternary ammonium salts, uses 288-13-1D, Pyrazole, derivs., quaternary ammonium

salts 288-32-4D, Imidazole, derivs., quaternary ammonium salts
 288-42-6D, Oxazole, derivs., quaternary ammonium salts 288-47-1D,
 Thiazole, derivs., quaternary ammonium salts 288-88-0D,
 1H-1,2,4-Triazole, derivs., quaternary ammonium salts 289-80-5D,
 Pyridazine, derivs., quaternary ammonium salts 289-95-2D,
 Pyrimidine, derivs., quaternary ammonium salts 290-37-9D, Pyrazine,
 derivs., quaternary ammonium salts 616-38-6, Dimethyl carbonate
 623-53-0, Ethyl methyl carbonate 4437-85-8, Butylene carbonate
 7446-09-5, Sulfur dioxide, uses 143314-16-3, 1-Ethyl-3-methylimidazolium
 tetrafluoroborate

RL: TEM (Technical or engineered material use); USES (Uses)
 (in nonaq. electrolyte for elec. storage devices)

IT 288-13-1D, Pyrazole, derivs., quaternary ammonium salts
 288-32-4D, Imidazole, derivs., quaternary ammonium salts
 288-88-0D, 1H-1,2,4-Triazole, derivs., quaternary ammonium salts
 289-95-2D, Pyrimidine, derivs., quaternary ammonium salts

RL: TEM (Technical or engineered material use); USES (Uses)
 (in nonaq. electrolyte for elec. storage devices)

RN 288-13-1 HCAPLUS

CN 1H-Pyrazole (9CI) (CA INDEX NAME)

RN 288-32-4 HCAPLUS

CN 1H-Imidazole (9CI) (CA INDEX NAME)

RN 288-88-0 HCAPLUS

CN 1H-1,2,4-Triazole (7CI, 9CI) (CA INDEX NAME)

RN 289-95-2 HCAPLUS

CN Pyrimidine (8CI, 9CI) (CA INDEX NAME)

RETABLE

Referenced Author (RAU)	Year	VOL	PG	Referenced Work (RWK)	Referenced File
	(R PY)	(R VL)	(R PG)		
Carlin	1994	141	L73	J Electrochem Soc	HCAPLUS
Endo	1992			JP 04-233211 A	HCAPLUS
McEwen	1997	144	L84	J Electrochem Soc	HCAPLUS
Ue	1994	141	2989	J Electrochem Soc	HCAPLUS

L149 ANSWER 65 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 1998:466331 HCAPLUS

DN 129:136626

TI Salts of pentacyclic or tetraazapentalene-based anions for use as ionic conductors

IN Armand, Michel; Choquette, Yves; Gauthier, Michel; Michot, Christophe

PA Centre National de la Recherche Scientifique (CNRS), Fr.; Hydro-Quebec

SO Eur. Pat. Appl., 42 pp.

CODEN: EPXXDW

DT Patent

LA French

FAN.CNT 5

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 850933	A1	19980701	EP 1997-403188	19971230 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
	CA 2194127	A1	19980630	CA 1996-2194127	19961230 <--
	CA 2199231	A1	19980905	CA 1997-2199231	19970305 <--
	CA 2244979	A1	19980709	CA 1997-2244979	19971230 <--
	CA 2248242	A1	19980709	CA 1997-2248242	19971230 <--
	CA 2248244	A1	19980709	CA 1997-2248244	19971230 <--
	CA 2248246	A1	19980709	CA 1997-2248246	19971230 <--
	CA 2248303	A1	19980709	CA 1997-2248303	19971230 <--
	CA 2248304	A1	19980709	CA 1997-2248304	19971230 <--
	WO 9829358	A2	19980709	WO 1997-CA1008	19971230 <--
	WO 9829358	A3	19981008		
	W: CA, JP, US				
	RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
	WO 9829399	A1	19980709	WO 1997-CA1009	19971230 <--
	W: CA, JP, US				
	WO 9829389	A1	19980709	WO 1997-CA1010	19971230 <--
	W: CA, JP, US				
	WO 9829396	A1	19980709	WO 1997-CA1011	19971230 <--
	W: CA, JP, US				
	WO 9829877	A1	19980709	WO 1997-CA1012	19971230 <--
	W: CA, JP, US				
	RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
	WO 9829388	A1	19980709	WO 1997-CA1013	19971230 <--
	W: CA, JP, US				
	EP 889863	A2	19990113	EP 1997-951051	19971230 <--
	EP 889863	B1	20030507		
	R: DE, FR, GB, IT				
	EP 890176	A1	19990113	EP 1997-951052	19971230 <--
	EP 890176	B1	20010620		
	R: DE, FR, GB, IT				
	JP 2000508114	T	20000627	JP 1998-529517	19971230 <--
	JP 2000508346	T	20000704	JP 1998-529516	19971230 <--
	JP 2000508676	T	20000711	JP 1998-529514	19971230 <--
	JP 2000508677	T	20000711	JP 1998-529515	19971230 <--
	JP 2000508678	T	20000711	JP 1998-529518	19971230 <--
	JP 2002514245	T	20020514	JP 1998-529513	19971230 <--

EP 1391952	A2	20040225	EP 2003-292436	19971230 <--
R: DE, FR, GB, IT				
US 6120696	A	20000919	US 1998-125792	19980828 <--
US 6171522	B1	20010109	US 1998-101811	19981119 <--
US 6333425	B1	20011225	US 1998-101810	19981119 <--
US 6228942	B1	20010508	US 1998-125798	19981202 <--
US 6395367	B1	20020528	US 1998-125799	19981202 <--
US 6319428	B1	20011120	US 1998-125797	19981203 <--
US 6365068	B1	20020402	US 2000-609362	20000630 <--
US 6576159	B1	20030610	US 2000-638793	20000809 <--
US 2001024749	A1	20010927	US 2001-826941	20010406 <--
US 6506517	B2	20030114		
US 2002009650	A1	20020124	US 2001-858439	20010516 <--
US 2002102380	A1	20020801	US 2002-107742	20020327 <--
US 6835495	B2	20041228		
US 2003052310	A1	20030320	US 2002-253035	20020924 <--
US 2003066988	A1	20030410	US 2002-253970	20020924 <--
US 2005074668	A1	20050407	US 2004-789453	20040227 <--
US 2005123831	A1	20050609	US 2004-926283	20040825 <--
PRAI CA 1996-2194127	A	19961230	<--	
CA 1997-2199231	A	19970305	<--	
EP 1997-403188	A3	19971230	<--	
WO 1997-CA1008	W	19971230	<--	
WO 1997-CA1009	W	19971230	<--	
WO 1997-CA1010	W	19971230	<--	
WO 1997-CA1011	W	19971230	<--	
WO 1997-CA1012	W	19971230	<--	
WO 1997-CA1013	W	19971230	<--	
US 1998-101810	A3	19981119	<--	
US 1998-101811	A3	19981119	<--	
US 1998-125798	A3	19981202	<--	
US 1998-125799	A3	19981202	<--	
US 1998-125797	A1	19981203	<--	
US 2000-638793	A1	20000809	<--	
US 2001-858439	A1	20010516	<--	
US 2002-107742	A1	20020327	<--	

OS MARPAT 129:136626

GI For diagram(s), see printed CA Issue.

AB Salts of metals, NO₃⁻, H3O⁺, or NH₄⁺ with the heterocycles I [Xi = N, C, S or P derivs. (but ≤ 4 X = N)] or II (Y = electron-withdrawing group of specified structure) are ionic conductors, useful i.a., as catalysts for polymerization and other reactions or as colorants. The reaction of 1 mol aminoguanidine bicarbonate with 1.05 mol CF₃CO₂H in PhMe with azeotropic distn of H₂O gave 92% 5-(trifluoromethyl)-1,3,4-triazole-2-amine, reaction of which with aqueous K₂CO₃ gave 100% of the corresponding anion salt. Uses of the products in the above applications are exemplified.

IC ICM C07D0249-04

ICS C07D0233-90; C07D0231-18; C07C0255-46; C07D0487-04; C07C0317-44; C07F0009-6584; C08G0065-22; C08G0077-04; C08F0220-44; C09K003-00; H01M0006-16; H01M0010-40; C07B0041-00; C08F0004-00; C08J0003-24

ICI C07D0487-04, C07D0249-00, C07D0235-00

CC 35-3 (Chemistry of Synthetic High Polymers)

Section cross-reference(s): 28, 40, 67

IT **Battery electrolytes**(anionic heterocycle salts as **battery** electrolytes)IT **25233-30-1, Polyaniline**RL: PEP (Physical, engineering or chemical process); PROC (Process)
(doping of, with anionic imidazole salts)IT **25979-00-4P 210289-23-9P**

RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT

(Reactant or reagent)
 (preparation and diazo reaction with Na cyanide)

IT **7343-34-2P**, 3,5-Dimethyl-1H-1,2,4-triazole
 RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(preparation and reaction with chlorine and hydrofluoric acid)

IT **709-62-6P** 64139-67-9P 156118-35-3DP, Dimethylsilanediol-methylsilanediol copolymer, reaction products with (difluorobutenyl)cyanotriazole **210289-24-0P** 210289-27-3P
210289-38-6P 210289-52-4DP, reaction products with Me hydrogen polysiloxanes
 RL: IMF (Industrial manufacture); PREP (Preparation)

(preparation of)

IT **1122-28-7**, 4,5-Dicyanoimidazole
 RL: RCT (Reactant); RACT (Reactant or reagent)

(reaction with benzoyl chloride and perfluorobutanesulfonyl fluoride)

IT **4546-95-6**, 1,2,3-Triazole-4,5-dicarboxylic acid
 RL: RCT (Reactant); RACT (Reactant or reagent)

(reaction with polyethylene glycol monododecyl ether)

IT **25233-30-1**, Polyaniline
 RL: PEP (Physical, engineering or chemical process); PROC (Process)

(doping of, with anionic imidazole salts)

RN 25233-30-1 HCAPLUS

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3

CMF C6 H7 N

IT **25979-00-4P**
 RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(preparation and diazo reaction with Na cyanide)

RN 25979-00-4 HCAPLUS

CN 1H-1,2,4-Triazol-3-amine, 5-(trifluoromethyl)- (9CI) (CA INDEX NAME)

IT **7343-34-2P**, 3,5-Dimethyl-1H-1,2,4-triazole
 RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)

(preparation and reaction with chlorine and hydrofluoric acid)

RN 7343-34-2 HCAPLUS

CN 1H-1,2,4-Triazole, 3,5-dimethyl- (9CI) (CA INDEX NAME)

IT 709-62-6P 210289-24-0P 210289-38-6P
 RL: IMF (Industrial manufacture); PREP (Preparation)
 (preparation of)
 RN 709-62-6 HCPLUS
 CN 1H-1,2,4-Triazole, 3,5-bis(trifluoromethyl)- (9CI) (CA INDEX NAME)

RN 210289-24-0 HCPLUS
 CN 1H-1,2,4-Triazole-3-carbonitrile, 5-(trifluoromethyl)- (9CI) (CA INDEX NAME)

RN 210289-38-6 HCPLUS
 CN 1H-1,2,3-Triazole, 4,5-bis(trifluoromethyl)- (9CI) (CA INDEX NAME)

IT 1122-28-7, 4,5-Dicyanoimidazole
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction with benzoyl chloride and perfluorobutanesulfonyl fluoride)
 RN 1122-28-7 HCPLUS
 CN 1H-Imidazole-4,5-dicarbonitrile (9CI) (CA INDEX NAME)

IT **4546-95-6**, 1,2,3-Triazole-4,5-dicarboxylic acid
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction with polyethylene glycol monododecyl ether)

RN 4546-95-6 HCAPLUS
 CN 1H-1,2,3-Triazole-4,5-dicarboxylic acid (9CI) (CA INDEX NAME)

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (R WK)	Referenced File
Abdul-Ghani, M	1995	72	135	JOURNAL OF FLUORINE	H CAPLUS
Abdul-Ghani, M	1995	72	95	JOURNAL OF FLUORINE	H CAPLUS
Beilstein Informationss	1986	22	745	CHEM HETEROCYCL COMP	
Burchfield, H	1962			US 3054800 A	H CAPLUS
Centre National de La R				WO 8803331 A	H CAPLUS
Chambers, R	1990		1128	JOURNAL OF THE CHEMI	H CAPLUS
Chambers, R	1995		841	JOURNAL OF THE CHEMI	H CAPLUS
Covalent Associates Inc				WO 9202966 A	H CAPLUS
Hartke, K	1991		243	LIEBIGS ANNALEN DER	H CAPLUS
Hartke, K	1992		413	LIEBIGS ANNALEN DER	H CAPLUS
Lee, H				US 5538812 A	H CAPLUS
Middleton, W	1970	35	3985	JOURNAL OF ORGANIC C	H CAPLUS
Paprott, G	1988	121	727	CHEMISCHE BERICHTE	H CAPLUS
Sandoz Ag	1970			CH 484920 A	H CAPLUS
Webster, O	1966	88	4055	JOURNAL OF THE AMERI	H CAPLUS
Wiley, D	1976	41	1889	JOURNAL OF ORGANIC C	H CAPLUS

L149 ANSWER 66 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 1998:221042 HCAPLUS

DN 128:244948

TI Preparation of acid-doped polymer films as electrolytes in **fuel cells**

IN Sansone, Michael J.; Onorato, Frank J.; French, Stuart M.; Marikar, Faruq

PA Hoechst Celanese Corp., USA; Sansone, Michael J.; Onorato, Frank J.; French, Stuart M.; Marikar, Faruq

SO PCT Int. Appl., 20 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9814505	A1	19980409	WO 1997-US17790	19970929 <--
	W: AU, BR, CA, CN, JP, KP, KR, MX, US RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
	CA 2266101	A1	19980409	CA 1997-2266101	19970929 <--
	AU 9748939	A	19980424	AU 1997-48939	19970929 <--
	BR 9712247	A	19990824	BR 1997-12247	19970929 <--
	EP 954544	A1	19991110	EP 1997-911615	19970929 <--

EP 954544	B1	20020327		
R: AT, BE, CH, DE, DK, ES, FR, GB, IT, LI, LU, NL, SE, PT, IE, FI				
JP 2001517254	T	20011002	JP 1998-516869	19970929 <--
AT 215107	T	20020415	AT 1997-911615	19970929 <--
ES 2175369	T3	20021116	ES 1997-911615	19970929 <--
TW 402616	B	20000821	TW 1997-86114314	19971001 <--
KR 2000048799	A	20000725	KR 1999-702790	19990331 <--

- PRAI US 1996-27169P P 19961001 <--
 WO 1997-US17790 W 19970929 <--
- AB The acid-doped polymer membranes such as polybenzimidazole are prepared by coagulating a polymeric dope solution in a liquid coagulation bath (containing solvent and/or nonsolvent); submerging the resulting membrane into a nonsolvent bath to remove any residual solvent; placing the membrane into an acid solution, wherein the pores are filled with the acid solution; and drying the membrane to remove residual nonsolvent which collapses the porous structure entrapping the acid and forming a dense film. An alternative method involves coagulating a polymer solution directly into an acid/solvent/nonsolvent mixture to produce a porous membrane which imbibes the acid solution and dried. Thus, a dope solution containing 10 g poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] and 90 g dimethylacetamide was coagulated in water to form a membrane, which was soaked in a 85% of phosphoric acid aq solution at 23° for 2 min, and dried to give a dense film containing 52% acid.
- IC ICM C08J0005-22
 ICS H01M0008-10
- CC 38-3 (Plastics Fabrication and Uses)
 Section cross-reference(s): 52, 76
- ST acid doped polybenzimidazole electrolyte **fuel cell**;
 polyphenylene benzimidazole doped film **fuel cell**;
 phosphoric acid doped polyphenylene benzimidazole film
- IT Polybenzimidazoles
 Polybenzothiazoles
 Polybenzoxazoles
 Polyoxadiazoles
Polyquinoxalines
 Polythiazoles
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (acid-doped; preparation of acid-doped polymer films as electrolytes in **fuel cells**)
- IT **Electrolytic cells**
 (membrane; preparation of acid-doped polymer films for)
- IT **Fuel cell electrolytes**
Fuel cells
 (preparation of acid-doped polymer films as electrolytes in **fuel cells**)
- IT 110-86-1D, Pyridine, derivs., polymers, uses **288-32-4D**,
 Imidazole, derivs., polymers **289-95-2D**, Pyrimidine, derivs.,
 polymers 9042-50-6 25734-65-0 26101-19-9,
 3,3'-Diaminobenzidine-isophthalic acid copolymer
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (acid-doped; preparation of acid-doped polymer films as electrolytes in **fuel cells**)
- IT 7664-38-2, Phosphoric acid, uses
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (polybenzimidazole doped with; preparation of acid-doped polymer films as electrolytes in **fuel cells**)
- IT 75-75-2, Methanesulfonic acid 7664-93-9, Sulfuric acid, uses

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (polymers doped with; preparation of acid-doped polymer films as electrolytes in fuel cells)

IT 288-32-4D, Imidazole, derivs., polymers 289-95-2D,
 Pyrimidine, derivs., polymers 9042-50-6 25734-65-0
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (acid-doped; preparation of acid-doped polymer films as electrolytes in fuel cells)

RN 288-32-4 HCPLUS
 CN 1H-Imidazole (9CI) (CA INDEX NAME)

RN 289-95-2 HCPLUS
 CN Pyrimidine (8CI, 9CI) (CA INDEX NAME)

RN 9042-50-6 HCPLUS
 CN Poly[(13,18-dihydro-13,18-dioxoisooindolo[2,1-a]isoindolo[2',1':1,2]pyrimid o[4,5,6-gh]perimidinediyl)-2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diyl] (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

RN 25734-65-0 HCPLUS
 CN Poly([5,5'-bi-1H-benzimidazole]-2,2'-diyl-1,3-phenylene) (9CI) (CA INDEX NAME)

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (RWK)	Referenced File
Sansone, M	1987			US 4693824 A	HCPLUS
Sansone, M	1997			US 5599639 A	HCPLUS
Univ Case Western Reser	1996			WO 9613872 A	HCPLUS
Zupancic, J	1987			US 4664761 A	HCPLUS

L149 ANSWER 67 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 1998:135852 HCPLUS

DN 128:187463
 TI **Proton conductor** with wide-ranging thermal resistance and good **proton conductivity**, its preparation, and membranes using it
 IN Kreuer, Klaus-Dieter; Fuchs, Annette; Maier, Joachim; Frank, Georg;
 Soczka-Guth, Thomas; Clauss, Joachim
 PA Hoechst Research and Technology Deutschland GmbH and Co. KG, Germany
 SO PCT Int. Appl., 26 pp.
 CODEN: PIXXD2

DT Patent

LA German

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9807164 W: JP, US RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE DE 19632285 EP 917716 EP 917716	A1 A1 A1 B1	19980219 19980219 19990526 20031105	WO 1997-EP4305 DE 1996-19632285 EP 1997-935572	19970807 <-- 19960809 <-- 19970807 <--
	R: DE, FR, GB JP 2000517462 US 6264857	T B1	20001226 20010724	JP 1998-509370 US 1999-242036	19970807 <-- 19990702 <--

PRAI DE 1996-19632285 A 19960809 <--
 WO 1997-EP4305 W 19970807 <--
 AB The invention concerns **proton conductors** which contain 1-99% of an acid and 99-1% of a nonaq. amphoteric substance, are resistant to temps. of -50 to 400°, and have **proton conductivity** of 10-5 S/cm. The invention further concerns membranes containing the **proton conductors**, processes for preparing the membranes, and their use in **electrochem. cells**, **secondary batteries**, and electrochromic displays.

IC ICM H01B0001-12

ICS H01M0008-10; H01M0008-02

CC 76-2 (Electric Phenomena)

Section cross-reference(s): 52, 72, 74

ST **proton conductor** membrane prep; acid nonaq amphoteric substance **proton conductor**

IT Amphoteric materials

(preparation of **proton conductors** for membranes containing)

IT Acids, processes

Naphthenic acids, processes

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); TEM (Technical or engineered material use); PROC (Process); USES (Uses)

(preparation of **proton conductors** for membranes containing)

IT Membranes, nonbiological

(preparation of **proton conductors** with wide-ranging thermal resistance and good **proton conductivity** for)

IT Ionic conductors

(preparation of **proton conductors** with wide-ranging thermal resistance and good **proton conductivity** for membranes)

IT Electrochemical cells

Electrochromic imaging devices

Secondary batteries(preparation of **proton conductors** with wide-ranging thermal resistance and good **proton conductivity** for membranes for)

IT 51-17-2, Benzimidazole 121-57-3, Sulfanilic acid

288-13-1, Pyrazole 288-32-4, Imidazole, processes
 1314-60-9, Antimony oxide (Sb2O5) 60015-03-4D, Hostatec, sulfonated
 RL: DEV (Device component use); PEP (Physical, engineering or chemical
 process); TEM (Technical or engineered material use); PROC (Process); USES
 (Uses)

(preparation of proton conductors for membranes containing)

IT 51-17-2, Benzimidazole 288-13-1, Pyrazole

288-32-4, Imidazole, processes

RL: DEV (Device component use); PEP (Physical, engineering or chemical
 process); TEM (Technical or engineered material use); PROC (Process); USES
 (Uses)

(preparation of proton conductors for membranes containing)

RN 51-17-2 HCAPLUS

CN 1H-Benzimidazole (9CI) (CA INDEX NAME)

RN 288-13-1 HCAPLUS

CN 1H-Pyrazole (9CI) (CA INDEX NAME)

RN 288-32-4 HCAPLUS

CN 1H-Imidazole (9CI) (CA INDEX NAME)

RETABLE

Referenced Author (RAU)	Year (R PY)	VOL (R VL)	PG (R PG)	Referenced Work (RWK)	Referenced File
Case Western Reserve Un	1996			WO 9613872 A	HCAPLUS
Nippon Gosei Gomu Kk	1997			JP 09087510 A	HCAPLUS
Samms, S	1996	143	1225	JOURNAL OF THE ELECT	HCAPLUS
Sansone, M	1997			US 5599639 A	HCAPLUS
Wainright, J	1996	2	1107	IECEC 96 PROCEEDINGS	
Wang, J	1995		202	PROCEEDINGS FO THE F	HCAPLUS

L149 ANSWER 68 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 1997:536871 HCAPLUS

DN 127:222933

TI Electrolytes for secondary lithium batteries and the
batteries

IN Tsutsumi, Masaki; Horiuchi, Hiroshi; Watanabe, Isao; Miyashita, Tsutomu

PA Fujitsu Ltd., Japan
 SO Jpn. Kokai Tokkyo Koho, 7 pp.
 CODEN: JKXXAF

DT Patent
 LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 09204932	A	19970805	JP 1996-11191	19960125 <--
US 5731106	A	19980324	US 1996-653721	19960523 <--
PRAI JP 1996-11191	A	19960125	<--	
OS MARPAT 127:222933				

GI

AB The electrolytes contain additives selected from I [X1-3 = N or C; R1-5 = H, halogen, C1-3 alkyl, Ph, or OH group; and R1 and R2 and/or R4 and R5 form benzene ring when they are alkyl groups (R1-3 does not exist when ≥ 1 of X1, X2, and X3 is N)], II [one of X4 and X5 is N and the other one is C, R6-10 = H, halogen, C1-3 alkyl, Ph, or OH groups (R7 or R8 does not exist when X4 or R5 is N, resp.)], or III (R11-17 = H, halogen, C1-3 alkyl, Ph, or OH groups). Batteries using these additives have high voltage and capacity and good charge discharge performance.

IC ICM H01M0010-40

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST lithium battery electrolyte arom additive

IT Battery electrolytes

(aromatic nitrogen compound additives in electrolytes for secondary lithium batteries)

IT 96-49-1, Ethylene carbonate 616-38-6, Dimethyl carbonate 17084-13-8,
 Potassium hexafluorophosphate

RL: DEV (Device component use); USES (Uses)

(aromatic nitrogen compound additives in electrolytes for secondary lithium batteries)

IT 91-19-0, Quinoxaline 92-82-0, Phenazine 120-72-9, Indole, uses
 253-52-1, Phthalazine 288-13-1, Pyrazole 289-80-5, Pyridazine
 289-95-2, Pyrimidine 290-37-9, Pyrazine 27175-64-0, Lutidine

RL: MOA (Modifier or additive use); USES (Uses)

(aromatic nitrogen compound additives in electrolytes for secondary lithium batteries)

IT 288-13-1, Pyrazole 289-95-2, Pyrimidine

RL: MOA (Modifier or additive use); USES (Uses)
 (aromatic nitrogen compound additives in electrolytes for secondary lithium batteries)

RN 288-13-1 HCAPLUS

CN 1H-Pyrazole (9CI) (CA INDEX NAME)

RN 289-95-2 HCAPLUS

CN Pyrimidine (8CI, 9CI) (CA INDEX NAME)

L149 ANSWER 69 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 1997:9972 HCAPLUS

DN 126:133525

TI Supercapacitor battery

IN De Long, Hugh C.; Carlin, Richard T.

PA United States Dept. of the Air Force, USA

SO U.S., 6 pp.

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 5585999	A	19961217	US 1994-317160	19940930 <--
PRAI US 1994-317160		19940930 <--		

AB The invention provides a thin-film Pd redox-active cathode in a supercapacitor configuration. A room-temperature chloroaluminate molten salt composed of an organic chloride, mixed with a molar excess of AlCl₃, is used as the supercapacitor electrolyte. In this electrolyte, the Pd surface can be reversibly oxidized to an insol. thin-film of PdCl₂. Reduction of this PdCl₂ thin film back to Pd, generates a high c.d. The capacitance of this supercapacitor electrode is 150-550 times that of a double-layer capacitor electrode. By combining the thin-film Pd supercapacitor cathode with a suitable anode, e.g. Al anode, a high power supercapacitor battery, capable of delivering a charge at high c.d., at near constant voltage of .apprx.1 V, is provided. The battery of the invention can accordingly provide power for devices requiring pulsed elec. power, e.g. lasers and for numerous other systems of high current demand, e.g. starters for elec. vehicles.

IC ICM H01G0009-02

INCL 361505000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38

ST battery supercapacitor thin film palladium aluminum

IT Battery electrolytes

(organic chloride mixed with excess aluminum chloride)

IT Secondary batteries
 (supercapacitor aluminum/thin-film palladium)

IT 17009-90-4D, Imidazolium, derivs. 65039-09-0,
 1-Ethyl-3-methylimidazolium chloride
 RL: TEM (Technical or engineered material use); USES (Uses)
 (battery electrolytes containing excess aluminum chloride)

IT 7446-70-0, Aluminum chloride, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (battery electrolytes of organic chloride containing excess)

IT 7429-90-5, Aluminum, uses
 RL: DEV (Device component use); USES (Uses)
 (supercapacitor battery anode)

IT 9003-53-6, Polystyrene 25233-34-5, Polythiophene
 30604-81-0, Polypyrrole
 RL: TEM (Technical or engineered material use); USES (Uses)
 (supercapacitor battery anode)

IT 7440-05-3, Palladium, uses
 RL: DEV (Device component use); USES (Uses)
 (supercapacitor battery cathode of thin-film)

IT 17009-90-4D, Imidazolium, derivs.
 RL: TEM (Technical or engineered material use); USES (Uses)
 (battery electrolytes containing excess aluminum chloride)

RN 17009-90-4 HCAPLUS

CN 1H-Imidazole, conjugate monoacid (9CI) (CA INDEX NAME)

● H⁺

IT 25233-34-5, Polythiophene 30604-81-0,
 Polypyrrole
 RL: TEM (Technical or engineered material use); USES (Uses)
 (supercapacitor battery anode)

RN 25233-34-5 HCAPLUS

CN Thiophene, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-02-1
 CMF C4 H4 S

RN 30604-81-0 HCAPLUS
 CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7
CMF C4 H5 N

L149 ANSWER 70 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 1996:354025 HCAPLUS
 DN 125:25314
 TI Odor sensor
 IN Gibson, Timothy David; Puttick, Peter; Hulbert, John Neal; Marshall, Robert Wilson; Li, Zhuoshu
 PA Mastiff Electronic Systems Ltd, UK
 SO PCT Int. Appl., 34 pp.
 CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9607901	A1	19960314	WO 1995-GB2117	19950906 <--
	W: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM				
	RW: KE, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG				
	AU 9535258	A	19960327	AU 1995-35258	19950906 <--
	EP 779979	A1	19970625	EP 1995-931275	19950906 <--
	EP 779979	B1	19991222		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE				
	AT 188035	T	20000115	AT 1995-931275	19950906 <--
	US 5928609	A	19990727	US 1997-793957	19970714 <--
PRAI	GB 1994-17913	A	19940906 <--		
	WO 1995-GB2117	W	19950906 <--		
AB	A personnel recognition sensor comprises a multiplicity of differentially responding chemo-resistor elements, each element comprising a nonconductive substrate, a plurality of electrodes disposed on the substrate and one or more layers of a conductive polymer overlaying the electrodes , the conductive polymers of at least two of the elements being different; a detector responsive to signals provided by the multiplicity of elements and arranged to provide an output signal characteristic of the multiplicity of signals; the elements being disposed in a housing having an inlet arranged so that a gaseous sample passing into or through the inlet contacts all of the elements in use.				
IC	ICM G01N0033-00				
CC	80-2 (Organic Analytical Chemistry) Section cross-reference(s): 17, 62				
ST	odor sensor; electrode odor sensor				
IT	Electrodes (in odor sensor)				
IT	177580-33-5P 177580-35-7P 177580-37-9P 177580-38-0P 177580-40-4P 177580-42-6P				

RL: ARU (Analytical role, unclassified); NUU (Other use, unclassified);
 SPN (Synthetic preparation); ANST (Analytical study); PREP (Preparation);
 USES (Uses)

(for odor sensor)

IT 25168-37-0P **31177-31-8P** 72945-64-3P 89230-95-5P

RL: ARU (Analytical role, unclassified); DEV (Device component use); SPN
 (Synthetic preparation); ANST (Analytical study); PREP (Preparation); USES
 (Uses)

(for preparation of odor sensor)

IT 106-32-1P, Octanoic acid ethyl ester 1923-70-2P, Tetrabutylammonium
 perchlorate 14797-55-8P, Nitrate, analysis 14808-79-8P, Sulfate,
 analysis 16887-00-6P, Chloride, analysis **25233-30-1P**,
Polyaniline 27813-82-7P, Polytryptophan 88374-64-5P,
 Poly-n-ethylaniline 177580-43-7P 177580-44-8P

RL: ARU (Analytical role, unclassified); NUU (Other use, unclassified);
 SPN (Synthetic preparation); ANST (Analytical study); PREP (Preparation);
 USES (Uses)

(for preparation of odor sensor)

82370-43-2P

RL: ARU (Analytical role, unclassified); DEV (Device component use); SPN
 (Synthetic preparation); ANST (Analytical study); PREP (Preparation); USES
 (Uses)

(in preparation of polymer for odor sensor)

IT 91-22-5, Quinoline, reactions 96-54-8, 1-Methylpyrrole 101-54-2,
 N-Phenyl-1,4-phenylenediamine 109-97-7, Pyrrole **288-32-4**,
 Imidazole, reactions 540-24-9

RL: RCT (Reactant); RACT (Reactant or reagent)

(in preparation of polymer for odor sensor)

IT **177580-33-5P 177580-35-7P 177580-37-9P**

177580-38-0P 177580-42-6P

RL: ARU (Analytical role, unclassified); NUU (Other use, unclassified);
 SPN (Synthetic preparation); ANST (Analytical study); PREP (Preparation);
 USES (Uses)

(for odor sensor)

RN 177580-33-5 HCPLUS

CN 1H-Perimidine, 2,3-dihydro-2,2-dimethyl-, homopolymer (9CI) (CA INDEX
 NAME)

CM 1

CRN 6364-17-6
 CMF C13 H14 N2

RN 177580-35-7 HCPLUS

CN 1H-Perimidine, 2-[1,1'-biphenyl]-4-yl-2,3-dihydro-2-methyl-, homopolymer
 (9CI) (CA INDEX NAME)

CM 1

CRN 177580-34-6
 CMF C24 H20 N2

RN 177580-37-9 HCPLUS
 CN 1H-Perimidine-2-butanoic acid, 2,3-dihydro-2-methyl-, ethyl ester,
 homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 177580-36-8
 CMF C18 H22 N2 O2

RN 177580-38-0 HCPLUS
 CN Phenol, 3-(2,3-dihydro-2-methyl-1H-perimidin-2-yl)-, homopolymer (9CI)
 (CA INDEX NAME)

CM 1

CRN 85557-38-6
 CMF C18 H16 N2 O

RN 177580-42-6 HCPLUS

CN Benzenamine, 3-(2,3-dihydro-2-methyl-1H-pyrimidin-2-yl)-, homopolymer
(9CI) (CA INDEX NAME)

CM 1

CRN 177580-41-5

CMF C18 H17 N3

IT 31177-31-8P

RL: ARU (Analytical role, unclassified); DEV (Device component use); SPN
(Synthetic preparation); ANST (Analytical study); PREP (Preparation); USES
(Uses)

(for preparation of odor sensor)

RN 31177-31-8 HCPLUS

CN Quinoline, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 91-22-5

CMF C9 H7 N

IT 25233-30-1P, Polyaniline 27813-82-7P,

Polytryptophan

RL: ARU (Analytical role, unclassified); NUU (Other use, unclassified);

SPN (Synthetic preparation); ANST (Analytical study); PREP (Preparation);
 USES (Uses)
 (for preparation of odor sensor)

RN 25233-30-1 HCAPLUS
 CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
 CMF C6 H7 N

RN 27813-82-7 HCAPLUS
 CN L-Tryptophan, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 73-22-3
 CMF C11 H12 N2 O2

Absolute stereochemistry.

IT 82370-43-2P

RL: ARU (Analytical role, unclassified); DEV (Device component use); SPN (Synthetic preparation); ANST (Analytical study); PREP (Preparation); USES (Uses)

(in preparation of polymer for odor sensor)

RN 82370-43-2 HCAPLUS
 CN 1H-Imidazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-32-4
 CMF C3 H4 N2

IT 288-32-4, Imidazole, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)
 (in preparation of polymer for odor sensor)

RN 288-32-4 HCAPLUS

CN 1H-Imidazole (9CI) (CA INDEX NAME)

L149 ANSWER 71 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 1995:758786 HCAPLUS
 DN 123:138131
 TI Shapable electrically conductive polymer film having adsorbed protein
 IN Wernet, Wolfgang; Khan, Golam F.
 PA Japat Ltd., Switz.
 SO Eur. Pat. Appl., 32 pp.
 CODEN: EPXXDW
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 658906	A2	19950621	EP 1994-810713	19941209 <--
	EP 658906	A3	19951102		
	R: BE, CH, DE, ES, FR, GB, IT, LI, NL, SE				
	CA 2138332	A1	19950619	CA 1994-2138332	19941216 <--
	JP 07190985	A	19950728	JP 1994-314980	19941219 <--
PRAI	GB 1993-25946	A	19931218 <--		
AB	A shapable elec. conductive polymer film comprises (1) a film containing (a) ≥1 polyheteroarom. compound or aniline in oxidized, polycationic form and (b) ≥1 polyanion of a film-forming thermoplastic polymer containing COSO ₃ and/or CO(C _n H _{2n})SO ₃ groups in repeating structural units, where the group (C _n H _{2n}) is linear or branched C ₂ -12 alkylene containing 2-5 C atoms in the main chain, the alkylene being unsubstituted or substituted by C ₁ -4 alkoxy; and (2) a protein adsorbed on the film. This film can be used in biosensors, bioreactors, and immunosensors.				
IC	ICM H01B0001-12 ICS C12N0011-08				
CC	9-1 (Biochemical Methods) Section cross-reference(s): 15, 38, 76				
IT	Biosensors Electrodes Films Immobilization, biochemical Plasma (shapable elec. conductive polymer film having adsorbed proteins)				
IT	62-53-3, Aniline, uses 62-53-3D, Aniline, derivs. 78-79-5, Isoprene, uses 79-10-7, Acrylic acid, uses 79-41-4, Methacrylic acid, uses 106-99-0, Butadiene, uses 109-97-7, Pyrrole 110-00-9, Furan 110-02-1, Thiophene 126-99-8, Chloroprene 288-32-4, Imidazole, uses 288-42-6, Oxazole 288-47-1, Thiazole 289-06-5, Thiadiazole 492-97-7, 2,2'-Dithiophene 557-75-5, Vinyl alcohol, uses 5905-00-0, 2,2'-Bifuran 9003-01-4, Polyacrylic acid 10087-64-6, 2,2'-Bipyrrole 25087-26-7, Polymethacrylic acid 25233-34-5, Polythiophene 31257-96-2, Vinyl phenol 59269-51-1, Polyvinyl phenol RL: DEV (Device component use); USES (Uses) (shapable elec. conductive polymer film having adsorbed proteins)				
IT	288-32-4, Imidazole, uses 25233-34-5,				

Polythiophene

RL: DEV (Device component use); USES (Uses)

(shapable elec. conductive polymer film having adsorbed proteins)

RN 288-32-4 HCAPLUS

CN 1H-Imidazole (9CI) (CA INDEX NAME)

RN 25233-34-5 HCAPLUS

CN Thiophene, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-02-1

CMF C4 H4 S

L149 ANSWER 72 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 1993:584774 HCAPLUS

DN 119:184774

TI Lithium secondary **battery**

IN Fujimoto, Masahisa; Yoshinaga, Noriyuki; Ueno, Koji; Furukawa, Nobuhiro; Nohma, Toshiyuki; Takahashi, Masatoshi

PA Sanyo Electric Co., Ltd., Japan

SO Eur. Pat. Appl., 60 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 3

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 541889	A1	19930519	EP 1992-103986	19920309 <--
	EP 541889	B1	19980909		
	R: CH, DE, FR, GB, LI				
	JP 05013088	A	19930122	JP 1991-325778	19911210 <--
	JP 3369583	B2	20030120		
	JP 11224675	A	19990817	JP 1998-340492	19911210 <--
	JP 05211070	A	19930820	JP 1991-360254	19911227 <--
	JP 3229635	B2	20011119		
	JP 2002075451	A	20020315	JP 2001-213908	19911227 <--
	JP 3403184	B2	20030506		
	JP 2002075452	A	20020315	JP 2001-213909	19911227 <--
	JP 3408250	B2	20030519		
	CA 2064965	A1	19930513	CA 1992-2064965	19920402 <--
	CA 2064965	C	19970603		
	JP 2002075448	A	20020315	JP 2001-213905	20010713 <--
	JP 3374135	B2	20030204		
	JP 2002075449	A	20020315	JP 2001-213906	20010713 <--
	JP 3374136	B2	20030204		

JP 2002075450	A 20020315	JP 2001-213907	20010713 <--
JP 3374137	B2 20030204		
PRAI JP 1991-295835	A 19911112 <--		
JP 1991-319200	A 19911203 <--		
JP 1991-325778	A 19911210 <--		
JP 1991-360254	A 19911227 <--		
JP 1990-401667	A1 19901212 <--		
AB	<p>The battery includes a cathode of a Li-intercalatable compound, an anode of a carbonaceous material comprising mainly or only graphite, a separator, and an electrolyte of a Li salt in a solvent comprising ≥ 1 cyclic compound such as ethylene carbonate, ethylene thiocarbonate, γ-thiobutyrolactone, α-pyrrolidone, γ-butyrolactone, propylene carbonate, 1,2-butylene carbonate, etc. The graphite has an average particle diameter 1-30 μm, spacing of (002) planes 3.35-3.40 Å, crystallite size in c direction ≥ 150 Å, sp. surface area 0.5-50 m²/g, and true d. 1.9-2.3 g/cm³. The Li-intercalatable compound is Li_xMO_2 or $\text{Li}_y\text{M}_2\text{O}_4$, where M is a transition element, $x \leq 1$ and $y \leq 2$; metal oxide-, anion-, or halide-intercalated graphite; or a conductive polymer containing a dopant.</p>		
IC	ICM H01M0004-58		
IC	ICS H01M0010-40		
CC	52-2 (Electrochemical, Radiational, and Thermal Energy Technology)		
CC	Section cross-reference(s): 38		
ST	<p>lithium battery electrolyte solvent; electrolyte org lithium battery; graphite anode lithium battery; anode graphite lithium battery; transition metal lithium oxide cathode; polymer lithium intercalatable battery cathode</p>		
IT	Battery electrolytes		
IT	(lithium salt in at least one cyclic organic compound)		
IT	Batteries, secondary		
IT	(lithium, high-performance and long cycle-life)		
IT	Carbon fibers, compounds		
IT	<p>RL: USES (Uses) (graphite, intercalation compds., with nitrate or sulfate, lithium-intercalatable, cathodes, in high-performance organic-electrolyte lithium batteries)</p>		
IT	7782-42-5, Graphite, uses		
IT	<p>RL: USES (Uses) (anodes, in high-performance organic-electrolyte lithium batteries)</p>		
IT	7440-44-0 7782-42-5		
IT	<p>RL: USES (Uses) (carbon fibers, graphite, intercalation compds., with nitrate or sulfate, lithium-intercalatable, cathodes, in high-performance organic-electrolyte lithium batteries)</p>		
IT	<p>12031-65-1, Lithium nickel oxide (LiNiO_2) 12057-17-9, Lithium manganese oxide (LiMn_2O_4) 12162-87-7D, Lithium vanadium oxide (LiVO_2), graphite intercalated with 12190-79-3, Cobalt lithium oxide (CoLiO_2) 15060-59-0D, Lithium vanadium oxide (LiVO_3), graphite intercalated with 118321-27-0D, Lithium molybdenum oxide ($\text{Li}_0.3\text{MoO}_3$), graphite intercalated with</p>		
IT	<p>RL: USES (Uses) (cathodes, in high-performance organic-electrolyte lithium batteries)</p>		
IT	<p>25233-30-1, Polyaniline 25233-34-5, Polythiophene 25718-66-5 30604-81-0, Polypyrrole 51555-21-6, Polycarbazole</p>		
IT	<p>RL: USES (Uses) (doped, lithium-intercalatable, cathodes, in high-performance</p>		

IT organic-electrolyte lithium batteries)
 96-48-0, γ -Butyrolactone 96-49-1, 1,3-Dioxolan-2-one 108-29-2,
 γ -Valerolactone 108-32-7 109-99-9, uses 110-01-0, Thiolane
 123-75-1, Pyrrolidine, uses 504-70-1, Pyrazolidine 616-45-5,
 α -Pyrrolidone 695-06-7, γ -Ethyl- γ -butyrolactone
 1003-10-7, γ -Thiobutyrolactone 1003-46-9, 2-Methylsulfolane
 1679-49-8, β -Methyl- γ -butyrolactone 4437-70-1, 2,3-Butylene
 carbonate 4437-85-8, 1,2-Butylene carbonate 7791-03-9, Lithium
 perchlorate 10178-59-3 13423-15-9, 3-Methyltetrahydrofuran
 14283-07-9, Lithium tetrafluoroborate 20628-59-5, Ethylene thiocarbonate
 21324-40-3, Lithium hexafluorophosphate 33454-82-9, Lithium
 trifluoromethanesulfonate 89791-49-1 90076-65-6 131651-65-5
 RL: USES (Uses)
 (electrolyte containing, for high-performance and long cycle-life lithium
 batteries)

IT 1313-27-5D, Molybdenum oxide (MoO₃), graphite intercalated with
 1314-35-8D, Tungsten oxide (WO₃), graphite intercalated with 1314-62-1D,
 Vanadium pentoxide, graphite intercalated with 1333-82-0D, Chromium
 oxide (CrO₃), graphite intercalated with 7783-63-3D, graphite
 intercalated with 11115-86-9, Graphite iron chloride 11129-36-5
 12036-21-4D, Vanadium oxide (VO₂), graphite intercalated with
 12039-13-3D, Titanium disulfide, graphite intercalated with 12067-45-7D,
 Titanium diselenide, graphite intercalated with 12166-28-8D, Vanadium
 disulfide, graphite intercalated with 12299-51-3D, Vanadium diselenide,
 graphite intercalated with 12672-50-3, Graphite cobalt chloride
 12707-64-1 14477-72-6D, Trifluoroacetate, graphite intercalated with
 14797-73-0D, Perchlorate, graphite intercalated with 14844-07-6D,
 Dithionite, graphite intercalated with 14874-70-5D, Tetrafluoroborate,
 graphite intercalated with 16919-18-9D, Hexafluorophosphate, graphite
 intercalated with 18868-43-4D, Molybdenum oxide (MoO₂), graphite
 intercalated with 37181-39-8D, Trifluoromethanesulfonate, graphite
 intercalated with 37210-78-9 37348-79-1, Graphite iodine chloride
 39345-60-3D, graphite intercalated with 39383-90-9 51358-33-9D,
 graphite intercalated with 58572-93-3 61008-50-2, Graphite magnesium
 chloride 61462-06-4, Graphite manganese chloride 61811-49-2, Graphite
 iodine bromide 63943-01-1D, graphite intercalated with 89172-94-1
 89820-60-0 106496-65-5, Molybdenum potassium oxide (MoK_{0.3}O₃)
 RL: USES (Uses)
 (lithium-intercalatable, cathodes, in high-performance
 organic-electrolyte lithium batteries)

IT 7782-42-5, Graphite, uses
 RL: USES (Uses)
 (lithium-intercalatable, cathodes, in high-performance
 organic-electrolyte lithium batteries)

IT 25233-30-1, Polyaniline 25233-34-5,
 Polythiophene 30604-81-0, Polypyrrole
 51555-21-6, Polycarbazole
 RL: USES (Uses)
 (doped, lithium-intercalatable, cathodes, in high-performance
 organic-electrolyte lithium batteries)

RN 25233-30-1 HCAPLUS
 CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
CMF C6 H7 N

RN 25233-34-5 HCAPLUS
 CN Thiophene, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-02-1
 CMF C4 H4 S

RN 30604-81-0 HCAPLUS
 CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7
 CMF C4 H5 N

RN 51555-21-6 HCAPLUS
 CN 9H-Carbazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 86-74-8
 CMF C12 H9 N

IT 504-70-1, Pyrazolidine
 RL: USES (Uses)
 (electrolyte containing, for high-performance and long cycle-life lithium batteries)

RN 504-70-1 HCAPLUS
 CN Pyrazolidine (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

L149 ANSWER 73 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 1992:534548 HCAPLUS

DN 117:134548

TI Electrically conductive films for **batteries** and electrochromic displays

IN Yoshinaga, Noriyuki; Fujimoto, Masahisa; Furukawa, Sanehiro

PA Sanyo Electric Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 4 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 04137311 JP 3197554	A B2	19920512 20010813	JP 1990-257693	19900926 <--

PRAI JP 1990-257693 19900926 <--

AB The films are prepared by treating an elec. conductive polymer with alkali, dispersing in a N-containing compound, applying on a substrate, and drying. NH₄OH-treated **polyaniline** was dispersed in N-methyl-2-pyrrolidone for preparing **cathodes** for Li **batteries**.

IC ICM H01B0005-02

ICS H01B0001-12; H01M0004-02; H01M0004-60

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 38, 76

ST **battery cathode polyaniline** prepn;
polyaniline cathode ammonium hydroxide treatment;
methylpyrrolidone treatment polyaniline cathode

IT **Cathodes**

(**battery, polyaniline**, manufacture of, alkali treatment and nitrogen-containing dispersing agents in)

IT 1336-21-6, Ammonium hydroxide

RL: USES (Uses)

(conducting polymers treated with, for manuf of **electrodes** for **batteries** and electrochromic displays)

IT 68-12-2, N,N-Dimethylformamide, uses 75-12-7, Formamide, uses

123-75-1, Pyrrolidine, uses 288-13-1, Pyrazole 288-36-8

, 1H-1,2,3-Triazole 288-94-8, 1H-Tetrazole 504-70-1,

Pyrazolidine 616-45-5, Pyrrolidone 638-31-3, 2-Pyrroline 872-50-4,

N-Methyl-2-pyrrolidone, uses 1739-84-0, 1,2-Dimethylimidazole

RL: USES (Uses)

(dispersing agent, in conducting polymer manufacture, for **batteries** and electrochromic displays)

IT 25233-30-1P, **Polyaniline**

RL: PREP (Preparation)

(**electrodes**, alkali treatment and nitrogen-containing dispersing agents in manufacture of, for **batteries** and electrochromic displays)

IT 288-13-1, Pyrazole 288-36-8, 1H-1,2,3-Triazole

504-70-1, Pyrazolidine 1739-84-0, 1,2-Dimethylimidazole

RL: USES (Uses)

(dispersing agent, in conducting polymer manufacture, for **batteries** and electrochromic displays)

RN 288-13-1 HCAPLUS
 CN 1H-Pyrazole (9CI) (CA INDEX NAME)

RN 288-36-8 HCAPLUS
 CN 1H-1,2,3-Triazole (9CI) (CA INDEX NAME)

RN 504-70-1 HCAPLUS
 CN Pyrazolidine (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

RN 1739-84-0 HCAPLUS
 CN 1H-Imidazole, 1,2-dimethyl- (9CI) (CA INDEX NAME)

IT 25233-30-1P, Polyaniline
 RL: PREP (Preparation)
 (electrodes, alkali treatment and nitrogen-containing dispersing
 agents in manufacture of, for batteries and electrochromic
 displays)
 RN 25233-30-1 HCAPLUS
 CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
 CMF C6 H7 N

L149 ANSWER 74 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN
 AN 1992:534544 HCAPLUS
 DN 117:134544
 TI Secondary batteries with electroconducting-polymer cathodes
 IN Yoshinaga, Noriyuki; Fujimoto, Masahisa; Furukawa, Sanehiro
 PA Sanyo Electric Co., Ltd., Japan
 SO Jpn. Kokai Tokkyo Koho, 3 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 04133275 JP 2999813	A B2	19920507 20000117	JP 1990-255720	19900925 <--
PRAI	JP 1990-255720		19900925 <--		
AB	The batteries use conducting polymers prepared by electropolymer. in a N-containing compound solvent for their cathodes. Li batteries using polyaniline cathodes prepared in N-methyl pyrrolidone solns. had higher capacity than control batteries.				
IC	ICM H01M0010-40 ICS H01M0004-02; H01M0004-60				
ICA	C08G0061-12				
CC	52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 35				
ST	conductive polymer battery cathode; aniline polymer cathode methyl pyrrolidone				
IT	Electric conductors, polymeric (cathodes, preparation of, by electrolytic polymerization, nitrogen-containing compound solvents in, for batteries)				
IT	Cathodes (battery, conducting polymer, preparation of, by electrolytic polymerization, nitrogen-containing compds. solvents in)				
IT	Polymerization (electrochem., manufacture of conducting polymers by, for battery cathodes, nitrogen-containing compound solvents in)				
IT	25233-30-1P, Polyaniline 30604-81-0P, Polypyrrole RL: PREP (Preparation) (cathodes, preparation of, by electrolytic polymerization, nitrogen-containing compound solvents in, for batteries)				
IT	68-12-2, N,N-Dimethylformamide, uses 75-12-7, Formamide, uses 123-75-1, Pyrrolidine, uses 288-13-1, Pyrazole 288-36-8, 1H-1,2,3-Triazole 288-94-8, 1H-Tetrazole 504-70-1, Pyrazolidine 616-45-5, Pyrrolidone 638-31-3, 2-Pyrrolidine 872-50-4, N-Methyl-2-pyrrolidone, uses 1739-84-0, 1,2-Dimethylimidazole RL: USES (Uses) (solvent, in electropolymer. preparation of conducting polymers, for battery cathodes)				
IT	25233-30-1P, Polyaniline 30604-81-0P,				

Polypyrrole

RL: PREP (Preparation)

(cathodes, preparation of, by electrolytic polymerization,
nitrogen-containing compound solvents in, for batteries)

RN 25233-30-1 HCAPLUS

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3

CMF C6 H7 N

RN 30604-81-0 HCAPLUS

CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7

CMF C4 H5 N

IT 288-13-1, Pyrazole 288-36-8, 1H-1,2,3-Triazole

504-70-1, Pyrazolidine 1739-84-0, 1,2-Dimethylimidazole

RL: USES (Uses)

(solvent, in electropolymer. preparation of conducting polymers, for
battery cathodes)

RN 288-13-1 HCAPLUS

CN 1H-Pyrazole (9CI) (CA INDEX NAME)

RN 288-36-8 HCAPLUS

CN 1H-1,2,3-Triazole (9CI) (CA INDEX NAME)

RN 504-70-1 HCAPLUS
 CN Pyrazolidine (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

RN 1739-84-0 HCAPLUS
 CN 1H-Imidazole, 1,2-dimethyl- (9CI) (CA INDEX NAME)

L149 ANSWER 75 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 1992:493801 HCAPLUS

DN 117:93801

TI Secondary batteries with polymer electrodes

IN Yoshinaga, Noryuki; Fujimoto, Masahisa; Furukawa, Sanehiro

PA Sanyo Denki K. K., Japan

SO Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 04104477	A	19920406	JP 1990-222005	19900822 <--
	JP 3108082	B2	20001113		

PRAI JP 1990-222005 19900822 <--

AB In batteries use conducting polymer anodes and/or cathodes and N-containing compds. as electrolyte solvents. The compds. are selected from pyrrolidone, pyrrolidine, pyrroline, pyrazole, pyrazolidine, imidazole, triazole, tetrazole, and their derivs. There batteries have high capacity d.

IC ICM H01M0010-40

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST polymer battery electrolyte solvent; nitrogen compd solvent
battery electrolyte

IT Battery electrolytes

(lithium salts, nitrogen-containing compds. as solvents for)

IT Batteries, secondary

(polymer, nitrogen-containing compds. as solvents for)

IT 25233-30-1, Polyaniline 25233-34-5,

Polythiophene 30604-81-0, Polypyrrole

RL: USES (Uses)

(electrodes, batteries with, nitrogen-containing
compds. as electrolyte solvents for)

IT 123-75-1, Pyrrolidine, uses 288-13-1, Pyrazole 288-32-4

, Imidazole, uses 288-94-8, 1H-Tetrazole 504-70-1,

Pyrazolidine 616-45-5, Pyrrolidone 638-31-3, 2-Pyrroline 872-50-4,

N-Methyl-2-pyrrolidone, uses 28350-87-0, Pyrroline 37306-44-8,
 Triazole
 RL: USES (Uses)
 (electrolyte solvent, for batteries with polymer electrodes)

IT 25233-30-1, Polyaniline 25233-34-5,
 Polythiophene 30604-81-0, Polypyrrole
 RL: USES (Uses)
 (electrodes, batteries with, nitrogen-containing compds. as electrolyte solvents for)

RN 25233-30-1 HCPLUS

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
 CMF C6 H7 N

RN 25233-34-5 HCPLUS
 CN Thiophene, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-02-1
 CMF C4 H4 S

RN 30604-81-0 HCPLUS
 CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7
 CMF C4 H5 N

IT 288-13-1, Pyrazole 288-32-4, Imidazole, uses
 504-70-1, Pyrazolidine
 RL: USES (Uses)
 (electrolyte solvent, for batteries with polymer electrodes)

RN 288-13-1 HCPLUS

CN 1H-Pyrazole (9CI) (CA INDEX NAME)

RN 288-32-4 HCAPLUS
CN 1H-Imidazole (9CI) (CA INDEX NAME)RN 504-70-1 HCAPLUS
CN Pyrazolidine (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

L149 ANSWER 76 OF 81 HCAPLUS COPYRIGHT 2007 ACS on STN

AN 1990:524677 HCAPLUS

DN 113:124677

TI Electrically conductive compositions with polyheteroaromatics and polymer sulfates, their preparation, and their uses

IN Wernet, Wolfgang; Stoffer, Jean

PA Ciba-Geigy A.-G., Switz.

SO Eur. Pat. Appl., 20 pp.

CODEN: EPXXDW

DT Patent

LA German

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 358188	A2	19900314	EP 1989-116436	19890906 <--
	EP 358188	A3	19901031		
	EP 358188	B1	19970115		
	R: BE, CH, DE, FR, GB, IT, LI, NL, SE				
	US 5061401	A	19911029	US 1989-401352	19890831 <--
	JP 02113055	A	19900425	JP 1989-231802	19890908 <--
	US 34514	E	19940118	US 1992-876743	19920427 <--
PRAI	CH 1988-3374	A	19880909	<--	
	US 1989-401352	A5	19890831	<--	
AB	The title compns. comprise ≥1 polyheteroarom. compound or aniline in oxidized polycationic form associated with ≥1 polyanion from a film-forming thermoplastic having structural repeating units incorporating sulfated alc. groups (C-O-SO ₃ -). Preparation of the compns. by electrochem. polymerization of precursors in aqueous, organic, or mixed aqueous-organic solvent solns. is described, optionally including stretching the produced films or fibers at				

temps. lower than their m.p. or decomposition temps. to enhance their conductivity

Use of the compns. as elec. conductors, **electrodes**, **battery cathodes**, electromagnetic shielding materials, antistatic packaging materials, conductive sealing materials, or in sensors is also described.

IC ICM H01B0001-12

ICS H01M0004-60

CC 76-2 (Electric Phenomena)

Section cross-reference(s): 27, 38

ST **battery cathode** conductor polymer compn;

electromagnetic shielding conductor polymer compn; antistatic packaging conductor polymer compn; sensor conductor polymer compn; conductor polymer compn polyheteroarom sulfated polymer

IT **Cathodes**

(**battery**, polymeric conductive compns. from polyheteroarom. compds. with sulfated polymers for)

IT 10087-64-6D, 2,2'-Bispyrrole, compds. with sulfated polymers

25067-54-3D, **Polyfuran**, compds. with sulfated polymers

25233-30-1D, **Polyaniline**, compds. with sulfated polymers

25233-34-5D, **Polythiophene**, compds. with sulfated

polymers **30604-81-0D**, **Polypyrrole**, compds. with

sulfated polymers **80029-99-8D**, Poly(2,2'-bithiophene), compds. with sulfated polymers **82370-43-2D**, compds. with sulfated polymers

90967-54-7D, compds. with sulfated polymers **128611-67-6D**,

compds. with sulfated polymers **128611-68-7D**, compds. with

sulfated polymers **128611-69-8D**, compds. with sulfated polymers

RL: USES (Uses)

(elec. conductive compns. based on)

IT **30604-81-0DP**, compound with polybutadiene sulfate **128611-45-0P**

128681-09-4P 128681-10-7P 128921-13-1P 128921-14-2P

RL: PRP (Properties); PREP (Preparation)

(preparation of elec. conductive)

IT **25067-54-3D**, **Polyfuran**, compds. with sulfated polymers

25233-30-1D, **Polyaniline**, compds. with sulfated polymers

25233-34-5D, **Polythiophene**, compds. with sulfated

polymers **30604-81-0D**, **Polypyrrole**, compds. with

sulfated polymers **82370-43-2D**, compds. with sulfated polymers

90967-54-7D, compds. with sulfated polymers **128611-68-7D**

, compds. with sulfated polymers **128611-69-8D**, compds. with sulfated polymers

RL: USES (Uses)

(elec. conductive compns. based on)

RN 25067-54-3 HCPLUS

CN Furan, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-00-9

CMF C4 H4 O

RN 25233-30-1 HCPLUS

CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3
CMF C6 H7 NRN 25233-34-5 HCPLUS
CN Thiophene, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 110-02-1
CMF C4 H4 SRN 30604-81-0 HCPLUS
CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7
CMF C4 H5 NRN 82370-43-2 HCPLUS
CN 1H-Imidazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-32-4
CMF C3 H4 N2RN 90967-54-7 HCPLUS
CN Thiazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-47-1
 CMF C3 H3 N S

RN 128611-68-7 HCPLUS
 CN Oxazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 288-42-6
 CMF C3 H3 N O

RN 128611-69-8 HCPLUS
 CN 1,3,4-Thiadiazole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 289-06-5
 CMF C2 H2 N2 S

IT 30604-81-0DP, compound with polybutadiene sulfate
 RL: PRP (Properties); PREP (Preparation)
 (preparation of elec. conductive)

RN 30604-81-0 HCPLUS
 CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7
 CMF C4 H5 N

L149 ANSWER 77 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 1990:182916 HCPLUS

DN 112:182916
 TI **Batteries with aluminum anodes and nonaqueous electrolytes**
 IN Kora, Nobuyuki; Akiyama, Tomoyuki; Sudo, Hajime; Takahashi, Kenichi
 PA Tosoh Corp., Japan
 SO Jpn. Kokai Tokkyo Koho, 4 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 01296572	A	19891129	JP 1988-124948	19880524 <--
PRAI JP 1988-124948		19880524 <--		

AB The title **batteries** have Al **anodes**, conducting polymer **cathodes**, and an electrolytes, which is a liquid at .apprx.20° and comprises Al trihalides and alkylimidazolium halides,. These **batteries** are inexpensive and light weight, have low self discharge, high voltage, and long cycle life. An electrolyte prepared from a 3:1 (mol) AlCl₃-1,2,3-tributylimidazolium chloride mixture was used for an Al-polyaniline **battery** in example.
 IC ICM H01M0010-36
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 ST **battery** nonaq electrolyte aluminum halide; aluminum chloride nonaq **battery** electrolyte; imidazolium chloride nonaq **battery** electrolyte
 IT **Batteries, secondary**
 (aluminum-polyaniline, low-temperature molten aluminum halide-alkylimidazolium halide electrolytes for)
 IT 7429-90-5, Aluminum, uses and miscellaneous
 RL: USES (Uses)
 (anodes, for **batteries** with low-temperature molten-salt electrolyte)
 IT 25233-30-1, Polyaniline
 RL: USES (Uses)
 (cathodes, for aluminum **batteries** with low-temperature molten-salt electrolytes)
 IT 7727-15-3, Aluminum bromide
 RL: USES (Uses)
 (electrolyte containing alkylimidazolium bromide and, molten, for secondary aluminum **batteries**)
 IT 7446-70-0, Aluminum chloride, uses and miscellaneous
 RL: USES (Uses)
 (electrolyte containing alkylimidazolium chloride and, molten, for secondary aluminum **batteries**)
 IT 101023-58-9 125400-93-3
 RL: USES (Uses)
 (electrolytes containing aluminum halides and, molten, for secondary aluminum **batteries**)
 IT 25233-30-1, Polyaniline
 RL: USES (Uses)
 (cathodes, for aluminum **batteries** with low-temperature molten-salt electrolytes)
 RN 25233-30-1 HCPLUS
 CN Benzenamine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 62-53-3

CMF C6 H7 N

IT 101023-58-9

RL: USES (Uses)

(electrolytes containing aluminum halides and, molten, for secondary
aluminum batteries)

RN 101023-58-9 HCPLUS

CN 1H-Imidazole, 1-methyl-, monohydrobromide (9CI) (CA INDEX NAME)

● HBr

L149 ANSWER 78 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 1988:188070 HCPLUS

DN 108:188070

TI Water-insoluble proton-conducting membranes

IN Zupancic, Joseph J.; Swedo, Raymond J.; Petty-Weeks, Sandra

PA UOP Inc., USA

SO U.S., 7 pp.

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 4708981	A	19871124	US 1985-807727	19851211 <--
PRAI US 1985-807727		19851211 <--		

AB Title membranes, useful for gas separating and sensing, comprise interpenetrating networks of a host composition containing H₂SO₄ or H₃PO₄ and polymers from unsatd. compds., ethylene oxide, ethylenimine, or phenol-HCHO mixts., and a guest polymer formed from a monofunctional acrylic monomer different from that of the host polymer and difunctional acrylic crosslinking agents. Thus, solns. of 0.5 g poly(vinyl alc.) and 0.2 mL 85% H₃PO₄, and 2 g methylenebisacrylamide and 30.1 g methacrylic acid were prepared in 25 mL boiling water and water, resp. Mixing 6.7 mL and 10 mL of each solution, pouring into a polycarbonate Petridish, drying and irradiating with electron beam gave a membrane. Cutting the membrane into disk, sputter-depositing Pt electrodes on both sides of the disk, assembling this membrane onto a Teflon holder, and connecting with electricity through Cu platens while maintaining 1 atmospheric H pressure on 1 side and exposing the other side to a mixture of 10% H and 90% N for 24 h showed an output electromotive force (EMF) 29.2 mV and resistivity 2.0 + 10⁶

$\Omega\text{-cm}$. This was compared to an output EMF 0.1 mV when 100% H was present on both sides of the membrane.

IC ICM C08L0029-04
 ICS C08L0033-02; C08L0041-00; C08L0043-02
 INCL 525059000
 CC 38-3 (Plastics Fabrication and Uses)
 Section cross-reference(s): 72
 ST membrane gas sepn; sensor gas membrane; hydrogen sensor membrane; permselective membrane **proton conducting** polymer; electrolyte thin film gas sepn; polyvinyl alc membrane gas sensor; phosphoric acid membrane gas sensor; acrylamide polymer membrane gas sensor
 IT Plastics, film
 RL: USES (Uses)
 (interpenetrating polymer blend, acid-containing, water-insol. **proton conducting**, for gas separating and sensing)
 IT Membranes
 (permselective, for gas separating and sensing, interpenetrating polymer blends for, water-insol., **proton-conducting**)
 IT 7664-38-2, uses and miscellaneous 7664-93-9, uses and miscellaneous
 RL: USES (Uses)
 (membranes containing, interpenetrating-polymer blend-based, **proton-conducting** water-insol., for gas separating and sensing)
 IT 25034-58-6 30280-72-9, Acrylic acid-methylenebisacrylamide copolymer
 30421-16-0, Methacrylic acid-methylenebisacrylamide copolymer
 114239-64-4, N,N-Diallylacrylamide-methacrylic acid copolymer
 RL: USES (Uses)
 (permselective membrane composites containing acid-modified polymer and, water-insol., **proton-conducting**, for gas separating and sensing)
 IT 9002-89-5, Poly(vinyl alcohol) 9002-98-6 9003-01-4,
 Poly(acrylic acid) 9003-05-8, Poly(acrylamide) 9003-35-4,
 Formaldehyde-phenol copolymer 25014-15-7, Poly(2-vinylpyridine)
 25087-26-7, Poly(methacrylic acid) 25232-41-1,
 Poly(4-vinylpyridine) 25232-42-2, Poly(N-vinylimidazole)
 25322-68-3, Poly(ethylene oxide) 25805-17-8,
 Poly(2-ethyl-2-oxazoline) 26101-52-0, Poly(vinyl sulfonic acid)
 RL: USES (Uses)
 (permselective membrane composites containing crosslinked polymers and acid-modified, water-insol. and **proton-conducting**, for gas separating and sensing)
 IT 9002-98-6 25014-15-7, Poly(2-vinylpyridine)
 25232-41-1, Poly(4-vinylpyridine) 25232-42-2,
 Poly(N-vinylimidazole) 25805-17-8, Poly(2-ethyl-2-oxazoline)
 RL: USES (Uses)
 (permselective membrane composites containing crosslinked polymers and acid-modified, water-insol. and **proton-conducting**, for gas separating and sensing)
 RN 9002-98-6 HCPLUS
 CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4
 CMF C2 H5 N

RN 25014-15-7 HCPLUS
 CN Pyridine, 2-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 100-69-6
 CMF C7 H7 N

RN 25232-41-1 HCPLUS
 CN Pyridine, 4-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 100-43-6
 CMF C7 H7 N

RN 25232-42-2 HCPLUS
 CN 1H-Imidazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1072-63-5
 CMF C5 H6 N2

RN 25805-17-8 HCPLUS
 CN Oxazole, 2-ethyl-4,5-dihydro-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 10431-98-8
 CMF C5 H9 N O

L149 ANSWER 79 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 1988:64669 HCPLUS

DN 108:64669

TI Electrically conductive polymer films and **electrode** materials coated with them

IN Naarmann, Herbert

PA BASF A.-G., Fed. Rep. Ger.

SO Ger. Offen., 5 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 3609137	A1	19870924	DE 1986-3609137	19860319 <--
	EP 241728	A1	19871021	EP 1987-103749	19870314 <--

R: BE, DE, FR, GB, NL

PRAI DE 1986-3609137 A 19860319 <--

AB Films containing elec. conductive polymers are formed by electrochem. polymerization

of the monomers on flat **electrodes** in baths containing conductive salts. The films are used to coat **electrode** materials and and for antistatic finishing of plastics or for shielding electromagnetic waves. H₂O, pyrrole, lignin sulfate, and Na dodecylsulfate were combined and the solution was polymerized at 22° and c.d. 3 mA/cm² for 60 min. A **polypyrrole** film 100 µm thick with an elec. conductivity of 20 S/cm and a tear resistance of 40 N/mm² was obtained.

IC ICM C25B0003-10

ICS C08F0002-58; C08F0002-44; C08L0045-00; C09D0005-24; H05K0009-00;
 H05F0001-02; G12B0017-02; C25D0013-08; H01B0001-12

ICA C08F0034-00; C08F0032-00; H01L0029-28; H01L0023-48

CC 72-9 (Electrochemistry)

Section cross-reference(s): 38, 76

ST polymn electrochem elec conductive polymer; **polypyrrole** film elec conductive **electrode**

IT **Electrodes**

(elec. conductive films for, by electrochem. polymerization)

IT Polymers, preparation

RL: PREP (Preparation)

(electrochem., for films for **electrodes**)

IT Polymerization

(electrochem., for forming elec. conductive films for **electrodes**)

IT Electric conductors

(film, for **electrodes**, by electrochem. polymerization)

IT 9002-86-2P, PVC 9003-09-2P 9003-19-4P, Poly(vinyl ether)
 9003-39-8P, Poly(vinyl pyrrolidone) 9004-67-5P, Cellulose methyl ether 25232-42-2P, Poly(vinyl imidazole) 30604-81-0P,

Polypyrrole

RL: PREP (Preparation)

(elec. conductive films, electrochem. production of, for electrodes
)

- IT 151-21-3, Sodium dodecyl sulfate, uses and miscellaneous 8068-05-1,
Lignin sulfate
RL: USES (Uses)
(in electrochem. polymerization for formation of elec. conductive films for
electrodes)
- IT 26914-43-2, Styrene sulfonic acid 101211-94-3
RL: PRP (Properties)
(in electrochem. polymerization for formation of elec. conductive films for
electrodes)
- IT 9003-39-8P, Poly(vinyl pyrrolidone) 25232-42-2P,
Poly(vinyl imidazole) 30604-81-0P, Polypyrrole
RL: PREP (Preparation)
(elec. conductive films, electrochem. production of, for electrodes
)
- RN 9003-39-8 HCAPLUS
CN 2-Pyrrolidinone, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 88-12-0
CMF C6 H9 N O

- RN 25232-42-2 HCAPLUS
CN 1H-Imidazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1072-63-5
CMF C5 H6 N2

- RN 30604-81-0 HCAPLUS
CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7
CMF C4 H5 N

L149 ANSWER 80 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN
 AN 1987:462049 HCPLUS
 DN 107:62049
 TI Electrochemical method and apparatus using **proton-conducting** polymers
 IN Zupancic, Joseph J.; Swedo, Raymond J.; Petty-Weeks, Sandra L.
 PA UOP Inc., USA
 SO U.S., 10 pp.
 CODEN: USXXAM
 DT Patent
 LA English
 FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 4664761	A	19870512	US 1985-814339	19851227 <--
PRAI US 1985-814339		19851227	<--	
AB An interpenetrating polymer-network membrane for use as solid electrolyte in fuel cells or separation of H from gas mixture or other electrochem. processes involving H ⁺ contains a host polymer blend of H ₃ PO ₄ or H ₂ SO ₄ mixed with a polymer or copolymer of ethyleneimine, acrylic acid, ethylene oxide, 2-ethyl-2-oxazoline, acrylamide, N-substituted acrylamide, 4-vinylpyridine, methacrylic acid, N-vinylimidazole, vinylsulfonic acid, 2-vinylpyridine, poly(hydroxyethylene), or PhOH-HCHO resin and a guest polymer of acrylic acid, methacrylic acid, acrylamide, methacrylamide, 2-acrylamido-2-methylpropanesulfonic acid, N-benzylacrylamide, N-ethylmethacrylamide, N-phenylacrylamide, or N-phenylmethacrylamide crosslinked by methylenebisacrylamide, N,N-diallylacryllamide, m-xylenebisacrylamide, or N,N'-trimethylenebisacrylamide where the repeating units of the guest polymer is different from that of the host polymer. The membrane is coated with catalysts on opposite sides and used as partitioner to sep. 2 gas chambers in an apparatus. An aqueous solution of H ₃ PO ₄ and poly(vinyl alc.) and an aqueous solution of methylenebisacrylamide and methacrylic acid were mixed, poured into a Petri dish, H ₂ O was evaporated, the film was irradiated by a 175-keV electron beam at 5 Mrad/pass from 1 side, cut into a 1"-diameter disk, and sputtered to form 400-Å Pt layers on both sides. This disk had a resistivity of 2 + 10 ⁶ Ω-cm and a H flux of 1.8 + 10 ⁻⁵ ft ³ /ft ² -h.				
IC ICM C25B0001-02				
IC S H01M0008-10				
INCL 204129000				
CC 52-2 (Electrochemical , Radiational, and Thermal Energy Technology)				
ST Section cross-reference(s): 38, 47, 49, 72				
ST polyvinyl alc phosphoric acid electrolyte; polymethacrylic acid solid electrolyte; fuel cell polymer solid electrolyte; hydrogen sepn polymer solid electrolyte				
IT Fuel cells				
IT (electrolytes for, solid polymer)				
IT 30421-16-0, Methacrylic acid-methylenebisacrylamide copolymer				
RL: USES (Uses)				

(crosslinked, solid electrolytes containing, **proton-conductive**, for **fuel cells** and other **electrochem.** apparatus)

- IT 7664-38-2, Phosphoric acid, uses and miscellaneous 7664-93-9, Sulfuric acid, uses and miscellaneous 9002-89-5 9002-98-6 9003-01-4, Poly(acrylic acid) 9003-05-8 9003-35-4, Formaldehyde phenol copolymer 25014-15-7, Poly(2-vinylpyridine) 25087-26-7, Poly(methacrylic acid) 25232-41-1, Poly(4-vinylpyridine) 25232-42-2, Poly(N-vinylimidazole) 25322-68-3, Poly(ethylene oxide) 25805-17-8, Poly(2-ethyl-2-oxazoline) 26101-52-0, Poly(vinyl sulfonic acid)
 RL: USES (Uses)
 (solid electrolytes containing, **proton-conductive**, for **fuel cells** and other **electrochem.** app)
- IT 9002-98-6 25014-15-7, Poly(2-vinylpyridine)
 25232-41-1, Poly(4-vinylpyridine) 25232-42-2,
 Poly(N-vinylimidazole) 25805-17-8, Poly(2-ethyl-2-oxazoline)
 RL: USES (Uses)
 (solid electrolytes containing, **proton-conductive**, for **fuel cells** and other **electrochem.** app)
- RN 9002-98-6 HCPLUS
 CN Aziridine, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 151-56-4
 CMF C2 H5 N

- RN 25014-15-7 HCPLUS
 CN Pyridine, 2-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 100-69-6
 CMF C7 H7 N

- RN 25232-41-1 HCPLUS
 CN Pyridine, 4-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 100-43-6
 CMF C7 H7 N

RN 25232-42-2 HCPLUS
 CN 1H-Imidazole, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 1072-63-5
 CMF C5 H6 N2

RN 25805-17-8 HCPLUS
 CN Oxazole, 2-ethyl-4,5-dihydro-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 10431-98-8
 CMF C5 H9 N O

L149 ANSWER 81 OF 81 HCPLUS COPYRIGHT 2007 ACS on STN

AN 1985:169807 HCPLUS

DN 102:169807

TI **Batteries**

IN Naarmann, Herbert; Muenstedt, Helmut

PA BASF A.-G. , Fed. Rep. Ger.

SO Ger. Offen., 19 pp.

CODEN: GWXXBX

DT **Patent**

LA German

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI DE 3428843	A1	19850221	DE 1984-3428843	19840804 <--
PRAI DE 1983-3328634	A1	19830809	<--	
AB A battery has ≥2 electrodes , the electrode active material of ≥1 electrode being from an elec. conducting, electrochem. oxidizable and/or reducible polymer, and an electrolyte from ≥1 ionic or ionizable compound				

supporting electrolyte dissolved or suspended in an organic solvent. As the electrolyte solvent ≥ 1 non-crosslinked dimer and/or oligomer of a heterocyclic compound is used. Thus, a sealed **battery** containing poly(Me methacrylate) casing; a Li **anode**; a **polyacetylene** [25067-58-7] **cathode** doped with 6% AsF₆-, elec. conductivity 100/ Ω -cm; and a 0.5M LiAsF₆ in THF-25% dioxane dimers electrolyte was prepared. The **battery** with an initial voltage of 4 V was discharged continuously via a load resistance to 2 V and recharged, and >50 charge-discharge cycles were obtained with 100% yield.

- IC ICM H01M0004-60
 ICS H01M0006-16
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 27
 ST **polyacetylene battery** electrolyte; dioxane dimer
 electrolyte **battery**; lithium hexafluoroarsenate electrolyte
battery
 IT **Batteries, secondary**
 (lithium-**polyacetylene**, with electrolyte solvent of dimer
 and/or oligomer of heterocyclic compound)
 IT 429-07-2
 RL: USES (Uses)
 (batter electrolyte containing THF dimer-, lithium-**polyacetylene**)
 IT 123-75-1D, dimer
 RL: USES (Uses)
 (batter electrolyte containing, lithium hexafluoroantimonate-, lithium-
polyacetylene)
 IT 7791-03-9
 RL: USES (Uses)
 (**battery** electrolyte containing THF dimer-, lithium-
polypyrrole)
 IT 29935-35-1
 RL: USES (Uses)
 (**battery** electrolyte containing dioxane dimer and, lithium-
polyacetylene)
 IT 429-06-1
 RL: USES (Uses)
 (**battery** electrolyte containing indole dimer-, lithium-
polyacetylene)
 IT 123-91-1D, dimer
 RL: USES (Uses)
 (**battery** electrolyte containing lithium hexafluoroarsenate and,
 lithium-**polyacetylene**)
 IT 109-99-9D, oligomer 288-32-4D, dimer
 RL: USES (Uses)
 (**battery** electrolyte containing lithium hexafluoroarsenate-,
 lithium-**polyacetylene**)
 IT 109-99-9D, dimer
 RL: USES (Uses)
 (**battery** electrolyte containing lithium perchlorate-, lithium-
polypyrrole)
 IT 18424-17-4
 RL: USES (Uses)
 (**battery** electrolyte containing pyrrolidine dimer-, lithium-
polyacetylene)
 IT 9003-39-8
 RL: USES (Uses)
 (**battery** electrolyte containing tetraethylammonium
 hexafluorophosphate-, lithium-**polypyrrole**)
 IT 120-72-9D, dimer
 RL: USES (Uses)

(**battery** electrolyte containing tetraethylammonium tetrafluoroborate-, lithium-**polyacetylene**)

IT 25067-58-7 **30604-81-0**

RL: USES (Uses)

(**cathodes, battery**, with dioxane dimer-lithium hexafluoroarsenate electrolyte)

IT **288-32-4D**, dimer

RL: USES (Uses)

(**battery** electrolyte containing lithium hexafluoroarsenate-, lithium-**polyacetylene**)

RN 288-32-4 HCPLUS

CN 1H-Imidazole (9CI) (CA INDEX NAME)

IT **9003-39-8**

RL: USES (Uses)

(**battery** electrolyte containing tetraethylammonium hexafluorophosphate-, lithium-**polypyrrole**)

RN 9003-39-8 HCPLUS

CN 2-Pyrrolidinone, 1-ethenyl-, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 88-12-0

CMF C6 H9 N O

IT **30604-81-0**

RL: USES (Uses)

(**cathodes, battery**, with dioxane dimer-lithium hexafluoroarsenate electrolyte)

RN 30604-81-0 HCPLUS

CN 1H-Pyrrole, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 109-97-7

CMF C4 H5 N

=> d his

(FILE 'HOME' ENTERED AT 14:44:46 ON 30 JAN 2007)
SET COST OFF

FILE 'HCAPLUS' ENTERED AT 14:44:55 ON 30 JAN 2007
L1 1 S US20040029003/PN OR (US2003-634607# OR JP2002-227160)/AP, PRN
E NOBUTA/AU
E NOBUTA T/AU
L2 22 S E3,E6
E NOBUTA NAME/AU
E TOMOKI/AU
E NISHIYAMA/AU
L3 1 S E3
E NISHIYAMA T/AU
L4 83 S E3
E NISHIYAMA TOSHI/AU
L5 178 S E6
E NISHIYAMA NAME/AU
L6 4 S E4
E TOSHIHIKO/AU
L7 1 S E3
E KAMISUKI/AU
L8 17 S E4,E5
E HIROYUKI/AU
L9 8 S E3
L10 1 S E34
E KANEKO/AU
L11 1 S E3
E KANEKO S/AU
L12 261 S E3,E4
L13 46 S E74,E76
E KANEKO NAME/AU
L14 29 S E4
E SHINAKO/AU
E KUROSAKI/AU
L15 1 S E3
E KUROSAKI M/AU
L16 16 S E3
L17 37 S E20
L18 8 S E39
E MASATO/AU
E NAKAGAWA/AU
E NAKAGAWA Y/AU
L19 547 S E3-E5
E NAKAGAWA YU/AU
L20 87 S E10
E NAKAGAWA NAME/AU
L21 40 S E4
E YUJI/AU
L22 8 S E3
L23 17 S E35
E MITANI/AU
E MITANI M/AU
L24 30 S E3,E4
L25 18 S E32
L26 14 S E60
E MASAYA/AU
L27 1 S E15

L28 E NEC/PA,CS
 1019 S (NEC(L)TOKIN)/PA,CS
 L29 13838 S PROTON(L)CONDUCT?
 E PROTON/CT
 E E12+ALL
 L30 1687 S E2
 E PROTON/CT
 L31 13838 S L29,L30
 E HETEROCYC/CT
 L32 9757 S E23 (L) NITROGEN?
 L33 9778 S HETEROCYCL?/CW,CT (L) NITROGEN?
 L34 10 S L32,L33 AND L31
 L35 18 S L1-L28 AND L31
 L36 1 S L35 AND L32,L33
 L37 17 S L35 NOT L36
 L38 547 S PROTON? AND L32,L33

FILE 'REGISTRY' ENTERED AT 14:55:06 ON 30 JAN 2007

L39 4 S 288-32-4 OR 288-88-0 OR 288-13-1 OR 51-17-2
 L40 STR
 L41 STR L40
 L42 STR L41
 L43 22 S L42 CSS SAM
 L44 585600 S (16.195.22 OR 16.195.24)/RID
 L45 7 S L42 NOT L*** CSS SAM SUB=L44
 L46 6953 S L42 NOT L*** CSS FUL SUB=L44
 SAV TEMP L46 LAURA634/A
 L47 STR L42
 L48 18 S L47 NOT L*** CSS SAM
 L49 5214 S L47 NOT L*** CSS FUL
 SAV TEMP L49 LAURA634A/A
 L50 STR L47
 L51 STR L50
 L52 24 S L50 CSS SAM
 L53 7 S L51 CSS SAM
 L54 12 S L50 OR L51 CSS SAM
 L55 2946 S L50 OR L51 CSS FUL
 SAV TEMP L55 LAURA634B/A
 L56 15107 S L46,L49,L55
 SAV L56 TEMP LAURA634C/A
 L57 1894 S L56 AND PMS/CI
 L58 116 S L57 AND 1/NC
 L59 115 S L58 NOT C2H4O
 L60 13213 S L56 NOT L57
 L61 9086 S L60 AND 1/NC
 L62 858 S L61 AND IDS/CI
 L63 8228 S L61 NOT L62

FILE 'HCAPLUS' ENTERED AT 15:26:17 ON 30 JAN 2007

L64 56560 S L39 OR L59 OR L63
 L65 4737 S L56 NOT L64
 L66 147 S L64 AND L31
 L67 36 S L65 AND L31
 L68 199 S L66,L67,L36,L37
 L69 46 S L68 AND ?ELECTROD?
 E ELECTRODE/CT
 L70 4 S E3
 E E96+ALL
 L71 221575 S E3+NT
 E ELECTROCHEMICAL CELL/CT

L72 107218 S E4+ALL
 L73 35395 S E3+NT
 L74 58288 S E4+OLD,NT OR E5+OLD,NT OR E6+OLD,NT OR E7 OR E8+OLD,NT
 L75 8767 S E2+OLD,NT OR E3+OLD,NT OR E4+OLD,NT
 L76 120002 S E1 OR E2+OLD,NT OR E3+OLD,NT OR E4+OLD,NT OR E5+OLD,NT
 L77 114 S L68 AND L70-L76
 L78 121 S L69,L77
 L79 15 S L78 AND PY<=2003 NOT P/DT
 L80 45 S L78 AND (PD<=20030521 OR PRD<=20030521 OR AD<=20030521) AND P
 L81 4 S L1-L28 AND L64,L65
 L82 1 S L1-L28 AND L32,L33
 L83 4 S L81,L82
 L84 3 S L83 NOT ARYL/TI
 L85 62 S L79,L80,L84
 L86 60 S L85 AND ELECTR?/SC,SX
 L87 62 S L85,L86
 L88 62 S L87 AND L1-L38,L64-L87
 L89 61 S L88 AND PROTON?
 L90 1 S L88 NOT L89
 L91 62 S L89,L90
 SEL HIT RN

FILE 'REGISTRY' ENTERED AT 15:34:17 ON 30 JAN 2007
 L92 23 S E1-E23

FILE 'HCAPLUS' ENTERED AT 15:34:43 ON 30 JAN 2007
 L93 15189 S POLYANILINE
 L94 8031 S POLYTHIOPHENE
 L95 12341 S POLYPYRROLE
 L96 14936 S POLYACETYLENE
 L97 6272 S POLY() (PARA OR P OR 4) () PHENYLENE
 L98 672 S POLYPHENYLENE VINYLENE
 L99 57 S POLYPERINAPHTHALENE
 L100 467 S POLYFURAN
 L101 0 S POLYFLURANE
 L102 0 S POLY FLURANE
 L103 162 S POLYTHIENYLENE
 L104 54 S POLYPYRIDINEDIYL
 L105 171 S POLYISOTHIANAPHTHENE
 L106 863 S POLYQUINOXALINE
 L107 25 S POLYAMINOANTHRAQUINONE
 L108 42 S INDOLE TRIMER
 L109 21 S POLYANTHRAQUINONE
 L110 35 S POLYBENZOQUINONE
 S 67987-55-7/REG# OR 91201-85-3/REG# OR 28411-42-9/REG# OR 2

FILE 'REGISTRY' ENTERED AT 15:44:19 ON 30 JAN 2007
 L111 1 S 25190-62-9/RN

FILE 'HCAPLUS' ENTERED AT 15:44:20 ON 30 JAN 2007
 L112 1737 S L111

FILE 'REGISTRY' ENTERED AT 15:44:20 ON 30 JAN 2007
 L113 1 S 96638-49-2/RN

FILE 'HCAPLUS' ENTERED AT 15:44:21 ON 30 JAN 2007
 L114 792 S L113

FILE 'REGISTRY' ENTERED AT 15:44:21 ON 30 JAN 2007
 L115 1 S 114239-80-4/RN

FILE 'HCAPLUS' ENTERED AT 15:44:22 ON 30 JAN 2007

FILE 'REGISTRY' ENTERED AT 15:44:26 ON 30 JAN 2007
 L111 18 S 67987-55-7 OR 91201-85-3 OR 28411-42-9 OR 25233-30-1 OR 25233

FILE 'HCAPLUS' ENTERED AT 15:45:10 ON 30 JAN 2007
 L112 868 S L111 AND L64,L65
 L113 94 S L112 AND L70-L76
 L114 2 S L113 AND PY<=2003 NOT P/DT
 L115 51 S L113 AND (PD<=20030521 OR PRD<=20030521 OR AD<=20030521) AND
 L116 53 S L114,L115
 L117 98 S L91,L116
 L118 11 S L117 AND L1-L28
 SEL RN

FILE 'REGISTRY' ENTERED AT 15:47:09 ON 30 JAN 2007
 L119 51 S E24-E74
 L120 18 S L119 AND N/ELS AND PMS/CI
 L121 3 S L120 AND (C5H6N2 OR C34H20N4 OR C48H28N8)
 L122 8 S L120 AND (NCNC2-C6 OR NC2 OR NC4-C6 OR NCNC3 OR NC5)/ES

FILE 'HCAPLUS' ENTERED AT 15:49:21 ON 30 JAN 2007
 L123 29 S L121,L122 AND L117
 L124 87 S L117 NOT L118

FILE 'REGISTRY' ENTERED AT 15:49:34 ON 30 JAN 2007

FILE 'HCAPLUS' ENTERED AT 15:49:34 ON 30 JAN 2007
 L125 TRA L124 1- RN : 1342 TERMS

FILE 'REGISTRY' ENTERED AT 15:49:36 ON 30 JAN 2007
 L126 TRA L124 RN RAN=(ALL)

FILE 'REGISTRY' ENTERED AT 15:49:36 ON 30 JAN 2007
 L126 1342 SEA L125
 L127 1342 S L125
 L128 154 S L126 AND PMS/CI AND N/ELS
 L129 146 S L128 NOT L120
 L130 66 S L129 AND 1/NC
 L131 20 S L130 AND (C12H6N6 OR C20H12N4 OR C33H20N4O6 OR C14H8N4 OR C13
 L132 38 S L130 AND (NC5 OR NCNC3 OR NCNC3-C6-C6 OR NCOC2 OR NC5-C6 OR N
 L132 38 S L130 AND (NC5 OR NCNC3 OR NCNC3-C6-C6 OR NCOC2 OR NC5-C6 OR N
 L133 37 S L132 NOT FE/ELS
 L134 48 S L131,L133
 L135 18 S L130 NOT L134
 L136 3 S L135 AND (N2CSC OR NC4)/ES
 L137 51 S L134,L136

FILE 'HCAPLUS' ENTERED AT 15:58:56 ON 30 JAN 2007
 L138 46 S L137 AND L117
 L139 0 S L1181,L123,L138
 L139 59 S L118,L123,L138
 L140 39 S L117 NOT L139

L139 59 S L118,L123,L138
L139 1 S L1
L138 46 S L137 AND L117
L139 59 S L118,L123,L138
L140 39 S L117 NOT L139
L141 36 S L139 AND (PROTON? OR HETERO?(L)NITROGEN?)
L142 59 S L139 AND (FUEL CELL OR ELECTROCHEM?(L)CELL OR BATTERY OR ANOD
L143 0 S LD141,L142
L143 59 S L141,L142
L142 59 S L139 AND (FUEL CELL OR ELECTROCHEM?(L)CELL OR BATTERY OR ANOD
L138 46 S L137 AND L117
L139 59 S L118,L123,L138
L140 59 S L139 AND (FUEL CELL OR ELECTROCHEM?(L)CELL OR BATTERY OR ANOD
L141 39 S L117 NOT L140
L142 39 S L141 AND (FUEL CELL OR ELECTROCHEM?(L)CELL OR BATTERY OR ANOD
L143 59 S L140 AND L1-L38,L64-L91,L93-L110,L112-L118,L123,L124,L138-L
L144 39 S L142 AND L1-L38,L64-L91,L93-L110,L112-L118,L123,L124,L138-L
L145 98 S L143,L144
L146 17 S L145 NOT P/DT
L147 81 S L145 NOT L146
L148 80 S L147 AND (PD<=20030521 OR PRD<=20030521 OR AD<=20030521)
L149 1 S L147 NOT L148
L149 81 S L147,L148

FILE 'REGISTRY' ENTERED AT 16:06:45 ON 30 JAN 2007

FILE 'HCAPLUS' ENTERED AT 16:07:02 ON 30 JAN 2007

=>