

Spotkanie #2

Co to UART?

0101101011

Universal Asynchronous Receiver-Transmitter

UART jest układem scalonym, który zapewnia asynchroniczną komunikację. W tego typu transmisji jest wymagane by ustalić **szybkość transmisji**, **długość słowa**, **bit parzystości** i **bit stopu**.

Poniżej jest przedstawiona ramka 8-bitowego słowem z bitem startu BS = 0 i bitem stopu BK = 1.

UART vs. USART

UART ma z góry założoną przepustowość o której musi wiedzieć odbiornik, natomiast **USART** jest w stanie sam zsynchronizować nadajnik i odbiornik. **UART** jest jedynie asynchroniczny, a **USART** może zarówno być synchroniczny i asynchroniczny

UART kalkuluje sobie częstotliwość taktowania danych **w oparciu o swój mikrokontroler** i z tym synchronizuje swoje bity startu. **USART** ma natomiast możliwość wyliczenia tego przy Pomocy zewnętrznego zegara i osiągnięcia tym samym **wyższych prędkości przesyłu**.

Porty szeregowe w Arduino

W obecnych czasach komputery są coraz rzadziej wyposażane w oryginalne złącza COM ze względu na szybkość i opłacalność innych rozwiązań jak chociaż USB. Jednak sama nazwa jest wciąż wykorzystywana jako uogólnienie portu szeregowego w niektórych wypadkach.

Porty szeregowe

Obecnie używany emulator portu COM

Porty szeregowe w Arduino

W obecnych czasach komputery są coraz rzadziej wyposażane w oryginalne złącza COM ze względu na szybkość i opłacalność innych rozwiązań jak chociaż USB. Jednak sama nazwa jest wciąż wykorzystywana jako uogólnienie portu szeregowego w niektórych wypadkach.

Porty szeregowe

Obecnie używany emulator portu COM

Budujemy!

Projekty z UART

Projekty #1 #2 #3 #4, Schemat Licznik i przeładowanie zmiennej Precyzja liczb niecałkowitych Prezentacja różnych systemów liczbowych

- Potrzebne części:
 - Arduino UNO R3

Projekt #1, Kod Licznik i przeładowanie zmiennej


```
github.com/filesmuggler/octopus
```

```
#define BAUDRATE 9600
//int counter = 0;
//short counter = 0;
//double counter = 0;
char counter = 0;
void setup() {
   Serial.begin(BAUDRATE);
void loop() {
   Serial.print(counter);
   Serial.print(" ");
   counter++;
   delay(5);
```

Projekt #2, Kod Prezentacja różnych systemów liczbowych i alfabetu


```
#define BAUDRATE 9600
void setup() {
     Serial.begin(BAUDRATE);
     Serial.println("Numbers:");
     for(int i = 0; i < 20; i++){
          Serial.print(i);
          Serial.print(" ");
     Serial.println();
     Serial.println("Alphabet:");
     for(int i = 65; i < 91; i++){
          Serial.write(i);
          Serial.print(" ");
     Serial.println();
     Serial.println();
     Serial.println("Different number systems:");
     Serial.println("BIN: OCT: DEC: HEX:");
     for(int i = 0; i < 16; i++){
          Serial.print(i, BIN);
          Serial.print(" ");
          Serial.print(i, OCT);
          Serial.print(" ");
          Serial.print(i, DEC);
          Serial.print(" ");
          Serial.print(i, HEX);
          Serial.print("\n");
}
void loop() {
```

Projekt #3, Kod Precyzja liczb niecałkowitych


```
#define BAUDRATE 9600
int digits after decimal = 3;
float myfloat 1 = 1.2345;
float myfloat 2 = 5.9876;
void setup() {
    Serial.begin(BAUDRATE);
    Serial.print("myfloat1: ");
    Serial.println(myfloat 1, digits after decimal);
    Serial.print("myfloat2: ");
    Serial.println(myfloat 2);
    float result = myfloat 1 + myfloat 2;
    Serial.print("result (sum): ");
    Serial.println(result, digits after decimal);
    result = myfloat 1 - myfloat 2;
    Serial.print("result (substraction): ");
    Serial.println(result, digits after decimal);
    result = myfloat 1 * myfloat 2;
    Serial.print("result (multiplication): ");
    Serial.println(result, digits after decimal);
    result = myfloat 1 / myfloat 2;
    Serial.print("result (division): ");
    Serial.println(result, digits after decimal);
void loop() {}
```

Projekt #4, Kod Precyzja liczb niecałkowitych


```
#define BAUDRATE 9600
int digits_after_decimal = 10;
void setup() {
   Serial.begin(BAUDRATE);
   Serial.print("PI: ");
   Serial.println(PI);
   Serial.print("PI (extended): ");
   Serial.println(PI, digits_after_decimal);
void loop() {
```

Projekty #5 #6, Schemat Sterowanie diodą przez port szeregowy

- Potrzebne części:
 - Arduino UNO R3
 - Diody LED
 - Rezystory 220 Ohm
 - Przewody

Projekt #5, Kod Sterowanie diodą przez port szeregowy


```
#define BAUDRATE 9600
#define LED PIN 8
String readData;
void setup() {
    Serial.begin(BAUDRATE);
    pinMode(LED PIN, OUTPUT);
    digitalWrite(LED PIN, LOW);
void loop() {
    if(Serial.available()>0){
        readData = Serial.readStringUntil('\n');
        if(readData =="on"){
            Serial.println("Turn on diode");
            digitalWrite(LED PIN, HIGH);
        else if(readData == "off"){
            Serial.println("Turn off diode");
            digitalWrite(LED PIN, LOW);
```

Projekt #6, Kod – Część pierwsza Sterowanie diodą przez port szeregowy


```
#define BAUDRATE 9600
#define LED PIN 8
String readData;
String userCommand;
String commandValue;
int ledState = LOW;
long previousMillis = 0;
bool if_flicker = false;
long interval = 1000;
void setup() {
   Serial.begin(BAUDRATE);
   pinMode(LED PIN, OUTPUT);
   digitalWrite(LED PIN, LOW);
```

Projekt #6, Kod – Część druga Sterowanie diodą przez port szeregowy


```
void loop() {
      unsigned long currentMillis = millis();
      if(currentMillis - previousMillis > interval && if flicker) {
            previousMillis = currentMillis;
            if (ledState == LOW){
                  ledState = HIGH;
            else{
                  ledState = LOW;
            digitalWrite(LED PIN, ledState);
      if(Serial.available()>0){
            readData = Serial.readStringUntil('\n');
            char sz[] = "Command Value";
            char buf[sizeof(sz)];
            readData.toCharArray(buf, sizeof(buf));
            char *p = buf;
            char *str;
            for(int i = 0; i<2;i++){</pre>
                  str = strtok_r(p, " ", &p);
                  if(i==0){
                        userCommand= str;
                  if(i==1){
                        commandValue = str;
            if(userCommand == "flicker"){
                  Serial.print("Flickering diode with ms interval: ");
                  Serial.println(commandValue);
                  interval = commandValue.toInt();
                  if flicker = true;
```


Co to ADC?

Analog-Digital Converter

Analog-Digital Converter

- 1. Próbkowanie
- 2. Kwantyzacja
- 3. Kodowanie

Źródło: nutaq.com

ADC w Arduino

IORef: 3.3V Vin: 7-12V DC max. Serial: The 101 has two hardware UARTs. Serial is attached directly to the USB port of the 101, not to any pins. GPIO pins 0 and 1 are Serial1

Interrupts: All GPIO pins can be used as interrupts for HIGH, LOW, RISING, and FALLING.
.Only pins 2, 5, 7, 8, 10, 11, 12, 13 can be used for CHANGE interrupts.

Budujemy!

Projekty z ADC

Projekty #7 #8, Schemat Konwersja danych analogowych na cyfrowe

- Potrzebne części:
 - Arduino UNO R3
 - Potencjometr
 - Przewody
 - Diody LED
 - Rezystory 220 Ohm

Projekt #7, Kod Konwersja danych analogowych na cyfrowe


```
#define BAUDRATE 9600
#define GREEN LED 8
#define YELLOW LED 9
#define RED LED 10
#define POTENTIOMETER A1
int pot value;
void setup(){
      Serial.begin(BAUDRATE);
      pinMode(GREEN_LED, OUTPUT);
      pinMode(YELLOW LED, OUTPUT);
      pinMode(RED LED, OUTPUT);
      pinMode(POTENTIOMETER, INPUT);
}
void loop(){
      pot value = analogRead(POTENTIOMETER);
      Serial.println(pot value);
      if(pot value == 0){
            digitalWrite(GREEN_LED,LOW);
            digitalWrite(YELLOW LED,LOW);
            digitalWrite(RED LED, LOW);
      else if(pot value < 350 && pot value > 0){
            digitalWrite(GREEN LED, HIGH);
            digitalWrite(YELLOW LED, LOW);
            digitalWrite(RED_LED,LOW);
      else if(pot_value >350 && pot_value < 700){</pre>
            digitalWrite(GREEN LED, HIGH);
            digitalWrite(YELLOW_LED, HIGH);
            digitalWrite(RED LED,LOW);
      else {
            digitalWrite(GREEN LED, HIGH);
            digitalWrite(YELLOW_LED, HIGH);
            digitalWrite(RED LED, HIGH);
```

Projekt #8, Kod – Część pierwsza Konwersja danych analogowych na cyfrowe


```
github.com/filesmuggler/octopus
```

```
#define BAUDRATE 9600
#define GREEN LED 8
#define YELLOW LED 9
#define RED_LED 10
#define POTENTIOMETER A1
int pot value;
int ledState = LOW;
long previousMillis = 0;
long interval = 100;
bool if_blink = false;
void setup(){
   Serial.begin(BAUDRATE);
   pinMode(GREEN_LED, OUTPUT);
   pinMode(YELLOW_LED, OUTPUT);
   pinMode(RED_LED, OUTPUT);
   pinMode(POTENTIOMETER, INPUT);
```

Projekt #8, Kod – Część druga Konwersja danych analogowych na cyfrowe


```
void loop(){
      unsigned long currentMillis = millis();
      if(currentMillis - previousMillis > interval && if blink) {
             previousMillis = currentMillis;
             if (ledState == LOW){
                    ledState = HIGH;
             else{
                    ledState = LOW;
             digitalWrite(RED_LED, ledState);
      pot value = analogRead(POTENTIOMETER);
      Serial.println(pot value);
      if(pot value == 0){
             if blink = false;
             digitalWrite(GREEN_LED,LOW);
             digitalWrite(YELLOW LED, LOW);
             digitalWrite(RED LED,LOW);
      else if(pot value < 350 && pot value > 0){
             if blink = false;
             digitalWrite(GREEN LED, HIGH);
             digitalWrite(YELLOW LED, LOW);
             digitalWrite(RED LED,LOW);
      else if(pot value >350 && pot value < 700){
             if blink = false;
             digitalWrite(GREEN LED, HIGH);
             digitalWrite(YELLOW LED, HIGH);
             digitalWrite(RED LED,LOW);
      else if(pot value >700 && pot value < 1020){
             if blink = false;
             digitalWrite(GREEN LED, HIGH);
             digitalWrite(YELLOW LED, HIGH);
             digitalWrite(RED LED, HIGH);
      else{
             digitalWrite(GREEN_LED,LOW);
             digitalWrite(YELLOW LED, LOW);
             if blink = true;
```

ADC z czujnikiem światła

Projekt #9, Schemat Konwersja danych analogowych na cyfrowe

- Potrzebne części:
 - Arduino UNO R3
 - Fotokomórka
 - Przewody
 - Diody LED
 - Rezystory 220 Ohm i 10 kOhm

ADC z czujnikiem światła

Projekt #9, Kod Konwersja danych analogowych na cyfrowe


```
#define BAUDRATE 9600
#define SENSOR A0
int sens value;
int ledPins[] = { 8, 9, 10 };
int ledCount = 3;
void setup(){
     Serial.begin(BAUDRATE);
     for (int thisLed = 0; thisLed < ledCount; thisLed++) {</pre>
           pinMode(ledPins[thisLed], OUTPUT);
           digitalWrite(ledPins[thisLed], LOW);
     pinMode(SENSOR, INPUT);
void loop(){
     sens value = analogRead(SENSOR);
     int ledLevel = map(sens_value, 0, 1023, 0, ledCount);
     for (int thisLed = 0; thisLed < ledCount; thisLed++) {</pre>
           if (thisLed < ledLevel) {</pre>
                digitalWrite(ledPins[thisLed], HIGH);
           else {
                digitalWrite(ledPins[thisLed], LOW);
     delay(1000);
```

Prezentacja danych

Wyświetlacz LCD

Warsztaty Arduino

