

	<pre>print("Accura coef_scores coef_scores print(coef_ fbeta_ = fbeta print("F1 Sco roc_ = roc_au roc = roc_ro print("AUC (R precision_ = p print("Precis recall_ = rec recall = reca</pre>	round(3) re: {}".fc c_score(y_ und(3) OC) Score: precision_ recision ion Score: all_score(llround(test, tr {}".for score(y_ round(3) {}".for (y_test, (3)	rain_pre- rain_pre- rmat(roc _test, t rmat(pre- train_p	dictions)) rain_pre cision)) redictio	s) edictions,		'binary')		
	<pre>print("Recall TP = confusio FN = confusio sensitivity = print("Sensit TN = confusio FP = confusio specificity = print("Specif true_positive print(f"\nCla print(f"Class</pre>	Score: {} n_matrix(y n_matrix(y = TP / (TF sensitivi ivty Score n_matrix(y n_matrix(y = TN / (TN specifici icity Score s = confus ssic train	".format y_test, tr y_test, tr y_test, tr e: {}".fo y_test, tr y_test, tr y_test, tr y_test, tr y_test, tr fe: {}".fo sion_matr core:	rain_pre- rain_p	dictions dictions nsitivit dictions dictions pecifici st, trair	s).ravel() s).ravel() s).ravel() ty)) a_predict: score(X_tr	[1] [3] [2] [ions).ravel	ain),4)}	")		
# # #	confusion_mat print(f"Confu	<pre>rix_ = con sion matri ctions = c s(y_test, d(3) Loss: {}". d.DataFram at([log,loss))</pre>	nfusion_m .x: cc clf.predi train_pr .format(l	natrix(y) pnfusion ict_prob cediction (1))	_test, t _matrix_ a(X_test ns)	rain_pred }\n")	dictions)		ll, se	ensitivit	y, specific
KN ** AC F1 AU Pr Re Se Sp C1 C1	eighborsClassif. **Results**** curacy: 87.0000 Score: 0.929 C (ROC) Score: ecision Score: 0.9 nsitivty Score: ecificity Score assic train scoresic test score nfusion matrix: 276 1287] 478 11523]]	ier 0.568 0.9 6 0.177 : 0.96 re: 0.9107									
De ** AC F1 AU Pr Re Se Sp C1 C1 C2 Ra ** AC F1 AU Pr Re	cisionTreeClass **Results**** curacy: 81.8000° Score: 0.897 C (ROC) Score: ecision Score: 0.8 nsitivty Score: ecificity Score assic train score assic test score nfusion matrix: 387 1176] 1286 10715]] ===================================	ifier 0.57 0.901 93 0.248 0.893 re: 0.9987 e: 0.8185									
Sp Cl Cl Cc [[Ad ** Ac F1 AU	nsitivty Score: ecificity Score assic train score assic test score nfusion matrix: 288 1275] 386 11615]] ==================================	: 0.968 re: 0.9986 e: 0.8775 r					==				
Sp Cl Cl Cc [[Gr ** Ac F1 AU Pr Re	nsitivty Score: ecificity Score assic train score assic test score nfusion matrix: 262 1301] 150 11851]] ==================================	: 0.988 re: 0.8912 e: 0.893 ===================================					==				
Sp Cl Cl Cc [[Ga ** Ac F1 AU	nsitivty Score: ecificity Score assic train score assic test score nfusion matrix: 288 1275] 167 11834]] ==================================	: 0.986 re: 0.8945 e: 0.8937					==				
Sp Cl Cl Cc [[Be ** Ac Fl AU Pr Re Se Sp Cl Cc	Precision Score: 0.917 Recall Score: 0.815 Sensitivty Score: 0.7708 Classic train score: 0.7708 Classic test score: 0.7705 Confusion matrix: [[573 890] [2223 9778]]										
C: ka ti == MI ** Ac F1 AU Pr Re Se Sp	\Users\reagins\a ges\Python310\s c Optimizer: Ma: warnings.warn(====================================	ite-packag ximum iter 3 0.589 0.904 79 0.198 : 0.979	res\sklea	rn\neura (200) rea	al_netwo	rk_multi d the opt	llayer_pero	ceptron.	ру:692:	Converge	
C: ka ti == MI ** Ac F1	assic train score assic test score nfusion matrix: 310 1253] 249 11752]] \Users\reagins\r ges\Python310\s c Optimizer: Max warnings.warn(====================================	AppData\Lo ite-packag ximum iter	ocal\Pack res\sklea rations (rn\neura (200) rea	al_netwo	rk_multi d the opt	llayer_perd cimization	ceptron.	- ру:692:	Converge	
Respondent sets of the sets of	call Score: 0.9 nsitivty Score: ecificity Score assic train score assic test score nfusion matrix: 319 1244] 532 11469]] ==================================	56 0.204 : 0.956 re: 0.9171 e: 0.8691 ====================================					==				
Respondent sets of the sets of	ecision Score: call Score: 0.99 nsitivty Score: ecificity Score assic train score assic test score nfusion matrix: 300 1263] 167 11834]] ==================================	86 0.192 : 0.986 re: 0.8919 e: 0.8946					==				
Pr Resserved Septimes	ecision Score: call Score: 0.99 nsitivty Score: ecificity Score assic train score assic test score nfusion matrix: 291 1272] 157 11844]] =================================	0.903 87 0.186 : 0.987 re: 0.8917 e: 0.8946					==				
Pr Resserved Sp Cl Cl Cc [[[ka	C (ROC) Score: ecision Score: call Score: 0.7 nsitivty Score: ecificity Score assic train score assic test score nfusion matrix: 759 804] 3063 8938]] \Users\reagins\r ges\Python310\s warnings.warn(" Save DF as PNG	0.917 45 0.486 : 0.745 re: 0.7184 e: 0.7149 AppData\Lo ite-packag	ocal\Pack res\sklea are coll	rn\disc: .inear")	riminant	_analysis	s.py:878: t	JserWarn.	ing: Va		
	<pre>if render_mpl_ta if ax is None size = (n fig, ax = ax.axis(' mpl_table = a mpl_table.aut mpl_table.set for k, cell i cell.set_ if k[0] = cell.</pre>	header bbox=[ax=Non : p.array(im plt.subpl off') x.table(ce o_set_font fontsize(a_color=' i0, 0, 1, ie, **kwa inputed_df iots(figs ellText=i a_size(Fa ifont_siz iecells iedge_col i < head props(wei	blue', 1], heargs): 5.shape[size=size mputed_dalse) ze) s.items(tor) der_column the shape	<pre>row_colc ader_col ::-1]) + e) df.value): mns: ld', col</pre>	ors=['#f1: .umns=0, - np.array es, bbox=	f1f2', 'w'] y([0, 1]))	* np.ar	color='	ol_width,	row_height s, **kwargs
fi	else:	set_faceco _figure(), pl_table(l es/table_m	olor(row_ ax og, head	colors[der_columnst2.png" Roc 05 0.5 0.5 0.6 0.6	k[0]%ler. mns=0, c) Prec 668 57 678 885			Log Loss 4.49 6.26 4.2 3.69 3.67 7.92 3.65 3.82	4 9 3 5 5 2 7	0.177 0.248 0.184 0.168 0.184 0.431 0.196	Specificity 0.96 0.893 0.968 0.988 0.986 0.815 0.985
Quadra : lc nc pl sr	MLPClassifier tarDiscriminantAnalysis LogisticRegression tttcDiscriminantAnalysis g3 = log.set_in rm3_df = log3 / t.figure(figsiz s.heatmap(norm2) xesSubplot:ylabe	log3.max(e=(12,6)) _df.astype el='Classi	(0) e('float' fier'>	05 05 06				4.52 3.64 3.63 9.84	1	0.204 0.192 0.186 0.486	0.956 0.986 0.987 0.745
Classifier	Bern MLPCI	assifier - 0.9 assifier - 1 assifier - 1 sianNB - 0.8 oulliNB - 0.9 assifier - 1 assifier - 0.9 nalysis - 1	98 0.9 1 1 36 0.9 99 0.9 1 1 98 0.9	9 0.9 0.9 1 1 9 0.9 0.9 0.9 0.9	0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	0.98 0.98 0.82 0.98 0.98 0.98 0.98 0.98 0.98	0.51 0.46 0.45 0.99 0.5 0.46	0.62 0.45 0.4 0.46 1 0.59 0.48 0.49 0.48	0.91 0.98 1 1 0.82 0.98 1 0.98	0.62 0.45 0.4 0.46 1 0.59 0.48 0.49 0.48	- 0.9 - 0.8 - 0.7 - 0.6
pl	<pre>QuadraticDiscriminantA g_norm_df = (no t.figure(figsiz s.heatmap(big_n xesSubplot:ylabe AdaBoostCle AdaBoostCle </pre>	rm1_df + ne=(12,6)) orm_df.ast el='Classi	norm2_df	+ norm3	_df) / 3	Recall -	- rog Loss -	Sensitivity - 0.9	Specificity - 0.80	Frue Positives - 0.9	
Classifier	DecisionTreeCl	sianNB - assifier - assifier - 0.9 nalysis -						0.71	0.91	0.71	- 0.9 - 0.8 - 0.7
	MLPCI MLPCI	assifier - assifier - assifier - nalysis -		ROC -	Precision -		- sso Tog Loss -	Sensitivity -	Specificity -	ecificity Tr	ue Positives
: bi	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI g_log_df = (log g_log_df CI	assifier - assifier - assifier - assifier - assifier - Accassifier	- log3) /	/ 3 Score	ROC Pro		Recall Log Lo			NaN	NaN
: ## ## FI Out The state of	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI	Accomposition for to the plays assifier	NaN	NaN	NaN NaN 75333 NaN NaN 76333 O.S NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na	aN 33 0.257 aN 91 0 aN	NaN NaN 7333 C NaN NaN NaN NaN NaN NaN NaN NaN NaN Na		
: bi bi :: ### FI	KNeighborsCl LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCl Gaus G_log_df = (log g_log_df Cl AdaBoostCl Berno DecisionTreeCl Gaus GradientBoostingCl KNeighborsCl LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCl AdaBoostCl Figure (figsi ms.b.xricks (rotat lt.title ("Extra LogisticReg PLA (principal Playing with par Algorithms Scalers like Si PCA (principal Playing with par That is, maxii Even if that in business opp Extending this te e.g. prediction	Accomposition for to the plays variations of the large transcriber assifier	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Quality Quality Fig. 4.5. Fig. 4.5.	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus G_log_df = (log g_log_df CI AdaBoostCI Berno DecisionTreeCI Gaus GradientBoostingCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Intitle ("Extra It title ("It ti	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N
Cu	KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI QuadraticDiscriminantA RandomForestCI Gaus GradientBoostingCI KNeighborsCI KNeighborsCI LinearDiscriminantA LogisticReg MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI MLPCI adraticDiscriminantA RandomForestCI Family and the ref Removing the refunction of the ref	Accomposition of the paragraph of the pa	NaN	Score NaN NaN P7333 0.5 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN NaN 75333 NaN NaN 76333 NaN NaN NaN NaN NaN NaN NaN NaN NaN	NaN 0.901 0.89 NaN NaN 900333 NaN NaN NaN NaN NaN NaN NaN	NaN Na Na NaN Na NaN Na NaN Na Na NaN Na NaN Na Na NaN Na Na NaN Na Na Na NaN Na N	aN 33 0.257 aN 91 0 aN	NaN	NaN 0.893667 NaN NaN 0.959 NaN NaN NaN NaN NaN NaN NaN	NaN 406.666667 NaN NaN 306.333333 NaN NaN NaN NaN NaN NaN NaN NaN N