Whittaker functions & Demazure operators

Source Brubaker, Bump, & Licata

1 I water Whit facs

2. Computing I w/operators ~> rep'n of Hecke aly

3. Connection to geometry of flag varieties

1. I wahou Whit fines

Notation: $G = GL_n(\mathbb{Q}_p)$ $\widehat{G} = GL_n(\mathbb{C})$ $T = \begin{pmatrix} \times \\ \times \end{pmatrix}$ $B = \begin{pmatrix} \times \\ 0 \end{pmatrix}$ $N = \begin{pmatrix} \cdot \\ \cdot \\ 0 \end{pmatrix}$ $\Theta = \mathbb{Z}_p$ $P = \langle p \rangle$ q = |9/8|

T= (
$$^{\circ}$$
 $^{\circ}$)
The principal series rep'ns of G
are of the form
$$T = \ln d_{B}(\gamma)$$
char

Fix a char. γ γ γ char

A Wnittaker functional is a

Unear map
$$-\Omega_{\gamma} \ln d_{B}(\gamma) \rightarrow C$$
S.t. $\Omega_{\gamma}(\gamma) = \gamma(\gamma)$

Let $M(\tau) = |nd_B^G(\tau)^T$ The standard basis $\{ T_w \}_{w \in W}$ of $M(\tau)$ consists of characteristic functions on J-double corets k is indexed by $W = S_n$. We want to calculate The Iwahori Whittaker functions $M_{\sigma,T_w}(g) = \Omega_{\sigma}(\pi(g)T_w)$ 2. Demazine-Lusztig operators

A dual connection $Z \in \widehat{T}(C) \longleftrightarrow \text{chars of } T(Qp)$ $Z = \left(\frac{Z}{Z}\right) \longleftrightarrow J_{Z}\left(\frac{t_{1}}{t_{2}}\right)$ $Z = T_{Z} \text{ ord}(t_{1})$

A char of $\widehat{T}(C) \longleftrightarrow \alpha_{\lambda} \in T(\Omega_{l})/$ $\lambda \begin{pmatrix} z_{1} \\ z_{n} \end{pmatrix} = \overline{z_{1}} \cdot \overline{z_{n}} \longleftrightarrow \alpha_{\lambda} = \begin{pmatrix} p^{\lambda_{1}}, T(\theta) \\ p^{\lambda_{2}} \end{pmatrix}$ Suffices to calculate W's Dn α_{λ}

W's will be force in
$$O(\widehat{T})$$
reg force

Def For each $S_i \in W$, the

Demazure operator ∂_L on $O(\widehat{T})$
 $\partial_i f(z) = \frac{f(z) - \frac{z_{i+1}}{z_i} f(S_i z)}{(1 - \frac{z_{i+1}}{z_i})}$

Oldo Considur

 $D_i = (1 - q^{-1} \frac{z_{i+1}}{z_i}) \partial_i$
 $T_i = D_i - 1$

Thm A To any weW &

dominant $\lambda = (\lambda_1 > \lambda_2)$ $\lambda = (\lambda_1 > \lambda_2)$ The first Hecke alg Hq on $\Theta(T)$ Remarks The Tw come from an alyzing the effect of intertwining ops \mathcal{L}_{w} Ind $\mathcal{E}(T_{wz})$ on \mathcal{L}_{wz}

They are closely related to Demazene - Lusztig ops which are derived as endom son equiv K-theory of fly variety

3. Connection to geometry

Lit X = G/B var (implied)

Lit X = BwB/B is a Scubart

Let I BwB/B = U Yu

10 a Schubert variety

Of singulanties, w/constant fibers Fu over each Yu, u < W

Thm B

$$\mathcal{D}_{\omega} = \sum_{u \leq w} \mathcal{D}_{\omega, u} \left(\vec{q} \right) \mathcal{T}_{u}$$

Where Pw,u is the Poincaré polynomial of Fu poly in q'w/nth coeff=H2n(Fu)

1.e, the relationship between Zw & Yn is the same as that between Dw & Tn (cool!)

Further remarks:
This realization of Whittaker fines
also gives efficient proofs of
This realization of Whittaker firs also gives efficient proofs of Casselman-Shalika formula Demazure character formula
& can be used to show that $W_{r_2}, \overline{\Phi}_{n}(a_{.1})$ is a specialization of non-symmetric
Macdonald 1300g
(in type) Hecke alg ~~ R-matrix for a guartum group
a la Andy's talk a la Ben's class; also see his most rewrt paper
talk recent paper