

Analog IC Design

Lecture 05 MOSFET Small Signal Model

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Outline

- ☐ Recapping previous key results
- ☐ The small signal approximation
- \Box The transconductance (g_m)
- \Box Body effect and body transconductance (g_{mb})
- \Box Channel length modulation and output resistance $(r_o = \frac{1}{g_{ds}})$
- Small signal model
- ☐ Short channel effects

N-Channel MOSFET Structure

- MOSFET: Metal-oxide-semiconductor field-effect transistor
- ☐ Three-terminal device: Gate (G), Source (S), and Drain (D)
- ☐ Substrate/Bulk/Body (S/B) can be treated as a fourth terminal

05: MOSFET AC

Regions of Operation Summary

MOSFET in Saturation

☐ The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$V_{GD} \leq V_{TH} \quad OR \quad V_{DS} \geq V_{ov}$$

Square-law (long channel MOS)

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

$$V_{SB} \uparrow \Rightarrow V_{TH} \uparrow$$

Large Signal Model

☐ The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$V_{GD} \leq V_{TH} \quad OR \quad V_{DS} \geq V_{ov}$$

Square-law (long channel MOS)

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

$$V_{SB} \uparrow \Rightarrow V_{TH} \uparrow$$

$$V_{GD} < V_{TH}$$
 $V_{DS} > V_{ov}$
 $V_{GS} > V_{TH}$

Small Signal Approximation

- The transistor is a VCCS
- ☐ Transconductance: how well it converts the voltage to a current

$$g_m = \frac{\Delta I_D}{\Delta V_{GS}} = \frac{\partial I_D}{\partial V_{GS}}$$

Small Signal Model

$$g_m = \frac{\Delta I_D}{\Delta V_{GS}} = \frac{\partial I_D}{\partial V_{GS}}$$

$$r_o = \frac{\Delta V_{DS}}{\Delta I_D} = \frac{1}{\frac{\partial I_D}{\partial V_{DS}}}$$

Large Signal vs Small Signal Model

Transconductance

- ☐ The transistor is a VCCS
- ☐ Transconductance: how well it converts the voltage to a current

$$I_{D} \approx \frac{\mu_{n} C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^{2}$$

$$g_{m} = \frac{\Delta I_{D}}{\Delta V_{GS}} = \frac{\partial I_{D}}{\partial V_{GS}} = \frac{\partial I_{D}}{\partial V_{ov}}$$

$$= \mu C_{ox} \frac{W}{L} V_{ov}$$

$$= \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_{D}}$$

$$= \frac{2I_{D}}{V_{ov}}$$

Transconductance

$$I_D \approx \frac{\mu_n C_{ox} W}{2} \cdot V_{ov}^2$$

$$g_m = \frac{\partial I_D}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_D} = \frac{2I_D}{V_{ov}}$$

W/L constant	V _{ov} constant	I _D constant
$g_m \propto V_{ov}$	$g_m \propto W/L$	$g_m \propto \sqrt{W/L}$
$g_m \propto \sqrt{I_D}$	$g_m \propto I_D$	$g_m \propto 1/V_{ov}$

Body Effect

- \square V_{SB} affects the charge required to invert the channel
 - Increasing V_S or decreasing V_B increases V_{TH}

$$V_{TH} = V_{TH0} + \gamma \left(\sqrt{2\Phi_F + V_{SB}} - \sqrt{|2\Phi_F|} \right)$$

- Φ_F = surface potential at threshold
 - ullet Depends on doping level and intrinsic carrier concentration n_i
- γ = body effect coefficient
 - Depends on C_{ox} and doping

Bulk Transconductance

☐ The bulk behaves as a second gate that changes the output current

$$g_{mb} = \frac{\partial I_D}{\partial V_{BS}} = \eta g_m$$

 η is typically $0.1 \rightarrow 0.25$

Channel Length Modulation (CLM)

 \square The VCCS is not ideal: There is some dependence on V_{DS}

$$r_o = \frac{\Delta V_{DS}}{\Delta I_D} = \frac{1}{\partial I_D/\partial V_{DS}} = \frac{1}{g_{ds}} = \frac{V_A}{I_{DS}} = \frac{1}{\lambda I_{DS}}$$

 V_A : Early voltage $(V_A \propto L) \leftrightarrow \lambda$: Channel length modulation coefficient $(\lambda \propto 1/L)$

$$I_D = I_{DS} + \frac{V_{DS}}{r_o} = I_{DS} \left(1 + \frac{V_{DS}/I_{DS}}{r_o} \right) = \frac{\mu C_{ox}}{2} \frac{W}{L} V_{ov}^2 (1 + \lambda V_{DS})$$

Channel Length Modulation (CLM)

- \Box L_{eff} decreases with $V_{DS} \rightarrow$ Shorter L gives more current
- \square V_A : Early voltage $(V_A \propto L)$
- \square λ : Channel length modulation coefficient ($\lambda \propto 1/L$)

$$I_D = \frac{\mu C_{ox}}{2} \frac{W}{L} V_{ov}^2 (1 + \lambda V_{DS})$$
 $r_o = \frac{V_A}{I_{DS}} = \frac{1}{\lambda I_{DS}}$

 \square V_A increases with V_{DS} : higher r_o as we go deeper into saturation

Low-Frequency Small-Signal Model

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_{D}} = \frac{2I_{D}}{V_{ov}}$$

$$g_{mb} = \eta g_{m} \qquad \eta \approx 0.1 - 0.25$$

$$r_{O} = \frac{1}{\partial I_{D}/\partial V_{DS}} = \frac{V_{A}}{I_{D}} = \frac{1}{\lambda I_{D}}$$
 $V_{A} \propto L \leftrightarrow \lambda \propto \frac{1}{L}$ $V_{DS} \uparrow V_{A} \uparrow$

$$V_A \propto L \leftrightarrow \lambda \propto \frac{1}{L}$$

$$V_{DS} \uparrow V_A \uparrow$$

Short Channel Effects: Velocity Saturation

- \square ID-VGS quadratic: $g_m = \frac{\partial I_D}{\partial V_{GS}} = \text{linear} \rightarrow g_m$ increases with V_{GS}
- \square ID-VGS linear: $g_m = \frac{\partial I_D}{\partial V_{GS}} = \text{constant} \rightarrow g_m \text{ saturates}$

05: MOSFET AC [Sedra/Smith, 2015]

Short Channel Effects: CLM and DIBL

- \square ID-VDS horizontal: no V_{DS} dependence \rightarrow ideal current source
- \square More slope \rightarrow more V_{DS} dependence \rightarrow smaller $r_o \rightarrow$ smaller gain

05: MOSFET AC [West

Thank you!

05: MOSFET AC

References

- ☐ A. Sedra and K. Smith, "Microelectronic Circuits," Oxford University Press, 7th ed., 2015.
- ☐ B. Razavi, "Fundamentals of Microelectronics," Wiley, 2nd ed., 2014.
- ☐ B. Razavi, "Design of Analog CMOS Integrated Circuits," McGraw-Hill, 2nd ed., 2017.
- □ N. Weste and D. Harris, "CMOS VLSI Design," Pearson, 4th ed., 2010.

05: MOSFET AC 20