Optimization Methods in Machine Learning Lecure 9: Unconstrained optimization, logistic regression

Katya Scheinberg

Lehigh University

Spring 2016

Motivation

Recall that we have the optimization problem

$$\min f(w) = \frac{1}{m} \sum_{i} (1 + e^{-y_i x_i^T w}) + \lambda ||w||_2^2$$

 We want to have an iterative method to approach the solution. For the optimal solution

$$w^* = \arg\min f(w)$$

we want to make steps $\{w^k\}$ so that as $k \to \infty$, $w^k \to w^*$, $f(w^k) \to f(w^*)$, and $\nabla f(w^k) \to 0$.

Gradient Descent Method

$$\min f(x)$$

Assume that $\nabla f(x)$ and possibly $\nabla^2 f(x)$ exist

- We introduce the gradient descent method as a common iterative method for solving optimization problems of this type.
- A typical iteration of this method will take the form:

$$x^{k+1} = x^k + t^k d^k$$

where t^k is the step size, and d^k is the search direction for the k^{th} step.

• Assume that $(d^k)^T \nabla f(x^k) < 0$.

Gradient Descent Method

- The Gradient Descent Method implements a conditions to ensure convergence:
 - Sufficient Decrease Condition:

$$f(x^k + t^k d^k) \le f(x) + \alpha t^k \nabla f(x)^T d^k$$

• For Gradient Descent method, the search direction is often the opposite direction of the gradient: $d^k = -\nabla f(x^k)$.

Sufficient Decrease Condition

 The sufficient decrease condition ensures that each iteration will make sufficient progress in terms of reducing objective value.

Rate of Convergence

- Assume that f(x) is Lipschitz smooth : $f(x+s) \le f(x) + \nabla f(x)^T s + \frac{L}{2} ||s||^2$
- Assume that f(x) is strongly convex: $f(x+s) \ge f(x) + \nabla f(x)^T s + \frac{\mu}{2} ||s||^2$.
- The above can be ensured if

$$\nabla^2 f(x) \succeq \mu I$$

for some $\mu > 0$.

• The rate of convergence for the gradient descent method with $d^k = \nabla f(x^k)$ is

$$f(x^k) - f(x^*) \le c^k (f(x^0) - f(x^*)), c \in (0, 1)$$
 (1)

where $C=\frac{\gamma-1}{\gamma+1}$, and $\gamma=\frac{L}{\mu}$ (the ratio of the largest value of Hessian and smallest value of Hessian)

• So if we want an accuracy of $\epsilon=10^{-3}$, then $c^k=\frac{1}{1000}$. So $c^k\approx\epsilon$, $k\approx\log_c^\epsilon$.

Slides from L. Vandenberghe http://www.ee.ucla.edu/vandenbe/ee236c.html

quadratic problem in R²

$$f(x) = (1/2)(x_1^2 + \gamma x_2^2) \qquad (\gamma > 0)$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \qquad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma = 10$:

7 / 16

Steepest descent Vs. Gradient descent

Normalized Steepest Descent

$$d_{nsd} = \arg\min\{\nabla f(x)^T v \mid ||v|| = 1\}$$
 (2)

and Gradient Descent

$$d^k = -\frac{\nabla f(x^k)}{\|\nabla f(x^k)\|_2} \tag{3}$$

What is the difference?

Steepest descent Vs. Gradient descent

Difference is the choice of norm.

If we use $\|\cdot\|_2$

$$d_{nsd} = -\frac{\nabla f(x^k)}{\|\nabla f(x^k)\|_2} \tag{4}$$

If we use $\|\cdot\|_1$

$$d_{nsd} = \arg\max \left| \frac{\partial f(x)}{\partial x_i} \right| - \operatorname{sign} \frac{\partial f(x)}{\partial x_{i^*}} e_{i^*}$$
 (5)

If we use $||v||_M = v^T M v$ where $M \succeq 0$

$$d_{nsd} = -\frac{M^{-1}\nabla f(x^k)}{\|M^{-1}\nabla f(x^k)\|_2}$$
 (6)

How to pick M?

$$d_{\text{Newton}} = -\nabla^2 f(x)^{-1} \nabla f(x) \tag{7}$$

Slides from L. Vandenberghe http://www.ee.ucla.edu/ vandenbe/ee236c.html

choice of norm for steepest descent

- · steepest descent with backtracking line search for two quadratic norms
- ellipses show $\{x \mid ||x x^{(k)}||_P = 1\}$
- equivalent interpretation of steepest descent with quadratic norm $\|\cdot\|_P$: gradient descent after change of variables $\bar{x}=P^{1/2}x$

shows choice of P has strong effect on speed of convergence

Slides from L. Vandenberghe http://www.ee.ucla.edu/ vandenbe/ee236c.html

examples

- Euclidean norm: $\Delta x_{\rm sd} = -\nabla f(x)$
- quadratic norm $||x||_P = (x^T P x)^{1/2} (P \in \mathbf{S}_{++}^n)$: $\Delta x_{\mathrm{sd}} = -P^{-1} \nabla f(x)$
- ℓ_1 -norm: $\Delta x_{\rm sd} = -(\partial f(x)/\partial x_i)e_i$, where $|\partial f(x)/\partial x_i| = \|\nabla f(x)\|_{\infty}$

unit balls and normalized steepest descent directions for a quadratic norm and the $\ell_1\text{-norm}\colon$

Slides from L. Vandenberghe http://www.ee.ucla.edu/ vandenbe/ee236c.html

• $\Delta x_{\rm nt}$ is steepest descent direction at x in local Hessian norm

$$||u||_{\nabla^2 f(x)} = (u^T \nabla^2 f(x)u)^{1/2}$$

dashed lines are contour lines of f; ellipse is $\{x+v\mid v^T\nabla^2f(x)v=1\}$ arrow shows $-\nabla f(x)$

Slides from L. Vandenberghe http://www.ee.ucla.edu/vandenbe/ee236c.html

choice of norm for steepest descent

- steepest descent with backtracking line search for two quadratic norms
- ellipses show $\{x \mid ||x x^{(k)}||_P = 1\}$
- equivalent interpretation of steepest descent with quadratic norm $\|\cdot\|_P$: gradient descent after change of variables $\bar{x} = P^{1/2}x$

Slides from L. Vandenberghe http://www.ee.ucla.edu/vandenbe/ee236c.html

Newton step

$$\Delta x_{\rm nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

interpretations

• $x + \Delta x_{\rm nt}$ minimizes second order approximation

$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

• $x + \Delta x_{\rm nt}$ solves linearized optimality condition

$$\nabla f(x+v) \approx \nabla \widehat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$

Slides from L. Vandenberghe http://www.ee.ucla.edu/ vandenbe/ee236c.html

• $\Delta x_{\rm nt}$ is steepest descent direction at x in local Hessian norm

$$||u||_{\nabla^2 f(x)} = (u^T \nabla^2 f(x)u)^{1/2}$$

dashed lines are contour lines of f; ellipse is $\{x+v\mid v^T\nabla^2f(x)v=1\}$ arrow shows $-\nabla f(x)$

Optimization

We come back to the optimization problem

$$\min f(w) = \frac{1}{m} \sum (1 + e^{-y_i x_i^T w}) + \lambda ||w||_2^2$$
 (8)

And we derive the gradient

$$\nabla f(w) = \frac{1}{m} \sum \frac{1}{e^{-y_i x_i^T w} + 1} (-y_i x_i) + \lambda w$$
 (9)

And the Hessian

$$\nabla^2 f(w) = \frac{1}{m} \sum \frac{e^{y_i x_i^T w}}{(1 + e^{y_i x_i^T w})^2} (y_i x_i) (y_i x_i)^T + \lambda I$$
 (10)

Notice that the time complexity for computing the Hessian is d^2m , size of Hessian is $d \times d$, the complexity for computing the inverse of Hessian is d^3 . So computation can be very expensive for large Hessian!