School of Computing National University of Singapore CS5240 Theoretical Foundations in Multimedia

Probability Theory

signal: Pr(...)

1 Basics

Random experiment: A repeatable experiment that produces a random outcome. e.g. flipping a coin, rolling a die.

Sample space, S: The set of all possible outcomes.

Event, E: Any subset of S. $E \subset S$

Probability of an event: Pr(E), or P(E): the "chance that E will happen".

Example: Flip a coin. $S = \{Head, Tail\}, \Pr(Head) = p, \Pr(Tail) = 1 - p.$

Notes:

- 1. $1 \ge \Pr(Event) \ge 0$
- 2. Pr(S) = 1

0

3. If $E_1 \cap E_2 = \emptyset$ (called *mutually exclusive*), then $\Pr(E_1 \cup E_2) = \Pr(E_1) + \Pr(E_2)$. Intuitively, this means the probability of E_1 or E_2 occurring. In general $\Pr(E_1 \cup E_2) = \Pr(E_1) + \Pr(E_2) - \Pr(E_1 \cap E_2)$, where $\Pr(E_1 \cap E_2)$ is the probability of E_1 and E_2 occurring.

Q: What is $Pr(\emptyset)$?

Example: Roll a fair (unbiased) die. Let E_1 = "number is even", E_2 = "number is 3".

$$\Pr(E_1 \cup E_2) = \Pr(E_1) + \Pr(E_2) = \frac{1}{2} + \frac{1}{6} = \frac{2}{3}.$$

Random Variable: Technically speaking, a random variable X is a function $X: S \to \mathbb{R}$. It associates every member of the Sample Space S with a real number $x \in \mathbb{R}$. Intuitively, we often use X as if it was the member of S.

Example: Roll a die. Let X denote the number that appears. Then possible values of X are $\{1,2,3,4,5,6\}$. Strictly speaking, $S = \{one, two, three, four, five, six\}$, and $X: S \to \mathbb{R}$ given by X(one) = 1, X(two) = 2, X(three) = 3, X(four) = 4, X(five) = 5, X(six) = 6.

Discrete vs. Continuous Random Variable: Discrete r.v. : X takes on discrete values x_0, x_1, x_2, \ldots

Continuous r.v. : X is continuous. $X \in [a, b]$, e.g. the height of student.

discrete

Probability Mass Function: PMF $P_X(x)$: Probability that the discrete r.v. X takes

Probability Density Funtion: PDF $P_X(x).\Delta x$: Probability that the continuous r.v. X切着春春之歌, is between $x \leq X \leq x + \Delta x$.

Area represents probability

Height represents probability for discrete r.v.

Note: $\sum_{i} P_X(x_i) = 1$ for discrete X, and $\int_{-\infty}^{\infty} P_X(x) dx = 1$, for continuous X.

$\mathbf{2}$ Some common PMF

1. Bernoulli : $P_X(x_0) = p$, $P_X(x_1) = 1 - p$. This is for a binary sample space, e.g. flip a coin. p is called the parameter of the Bernoulli PMF. It is the only parameter.

2. Uniform: $P_X(x_i) = \frac{1}{N}$, i = 1, ..., N, e.g. roll a fair die.

3. Binomial: $P_X(k) = \binom{N}{k} p^k (1-p)^{N-k}, \quad k = 0, 1, \dots, N.$

e.g. X = number of heads when coin is flipped N times.

The Binomial PMF has only two parameters: p and N.

4. Geometric: $P_X(k) = p(1-p)^{k-1}$, k = 1, 2, ... This has one parameter p.

e.g. X = number of coin flips until first head appears. $\Lambda 19 34$

5. Poisson: $P_X(k) = \frac{\lambda^k}{k!} e^{-\lambda}$, $k = 0, 1, 2, \dots$, and $\lambda > 0$.

e.g. X = number of cars arriving at a traffic light in a fixed time interval T. λ is the average number of cars arriving in T time.

The Poisson PMF has one parameter k.

The Poisson Figure has one parameter $P_X(k) = \sum_{k=0}^{\infty} (e^{-\lambda}) \frac{\lambda^k}{k!} = e^{-\lambda} \left(\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \right) = e^{-\lambda} e^{\lambda} = 1.$

Recall Taylor series: For any z near a, $f(z) \approx f(a) + f'(a)(z-a) + \frac{f''(a)}{2!}(z-a)^2 + \cdots + \frac{f''($ $\frac{f^{(k)}}{k!}(z-a)^k+\dots$

So
$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots$$

 $\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} + \dots$
 $\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots$

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} + \dots$$

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots$$

3 Some common PDF

1. Uniform (param a, b): $P_X(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b; \\ 0, & \text{otherwise.} \end{cases}$

back to back!

Exponential (param λ): $P_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, y > 0; \\ 0, & \text{otherwise.} \end{cases}$

$$\begin{cases} \lambda e^{-\lambda x}, & x \ge 0, y > 0 \\ 0, & \text{otherwise.} \end{cases}$$

3. Laplace (double exponential, param λ) $P_X(x) = \frac{\lambda}{2}e^{-\lambda|x|}, \quad \lambda > 0.$

$$P_X(x) = \frac{\lambda}{2}e^{-\lambda|x|}, \quad \lambda > 0.$$

Definition:
$$F_X(x) \triangleq \Pr(X \leq x)$$
.

For discrete r.v. $F_X(x) = \sum_{k \le x} P_X(k)$.

For continuous r.v. $F_X(x) = \int_{-\infty}^x P_X(u) du$.

Notes:

- 1. $F_X(-\infty) = 0$
- 2. $F_X(+\infty) = 1$
- 3. For discrete r.v. $P_X(k) = F_X(k) F_X(k-1)$. For continuous r.v. $P_X(k) = \frac{dF_X}{dx} \mid_{x=k} = F'_X(k)$.

Example: Roll a fair die. Let X be the number that appears.

5 Expectation

Let g(X) be a function of r.v. X. Then g(X) is also a r.v.

$$E[g(x)] \triangleq \sum_{x} g(x) P_X(x)$$
 for discrete X.

$$E[g(x)] \triangleq \int_x g(x)P_X(x)dx$$
 for continuous X

Zeroth moment:
$$E[X^0] = 1$$
.

Mean (1st moment): Mean or average or expected value $\mu_X = E[X]$.

2nd moment: $E[X^2]$, etc.

Variance (2nd central moment) $\sigma_X^2 = Var[X] \triangleq E[(x - \mu_X)^2] = E[X^2] - \mu_X^2$. Standard deviation $\sigma_X = \text{positive square root of variance.}$

Example: $X \sim \text{Poisson}(\lambda)$.

That is,
$$P_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

That is,
$$F_X(k) = e^{-\lambda} \frac{1}{k!}$$
, $k = 0, 1, 2, ...$
The mean $\mu_X = E[X] = \sum_{k=0}^{\infty} k e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \left(\sum_k k \frac{\lambda^k}{k!} \right)$
How to compute the sum in the parenthesis?

Consider
$$e^z = 1 + z + \frac{z^2}{2!} + \dots + \frac{z^k}{k!} + \dots$$

Differentiate with respect to
$$z: e^z = 1 + 2\frac{z}{2!} + \dots + k\frac{z^{k-1}}{k!} + \dots$$

Multiply by z:

$$ze^z = z + 2\frac{z^2}{2!} + \dots + k\frac{z^k}{k!} + \dots$$
 (1)

which is the sum we want. Therefore $E[X] = e^{-\lambda} \lambda e^{\lambda} = \lambda = \mu_X$.

$$Var[X] = E[X^2] - \lambda^2.$$

$$E[X^2] = \sum_k k^2 e^{-\lambda} \frac{-\lambda^k}{k!} = e^{-\lambda} \left(\sum_k k^2 \frac{\lambda^k}{k!} \right)$$

Differentiate Equation (1) w.r.t.
$$z: ze^z + e^z = 1 + 2^2 \frac{z}{2!} + \dots + k^2 \frac{z^{k-1}}{k!} + \dots$$

Multiply by $z: z(z+1)e^z = z + 2^2 \frac{z^2}{2!} + \dots + k^2 \frac{z^k}{k!} + \dots$
Therefore, $E[X^2] = e^{-\lambda}\lambda(\lambda+1)e^{\lambda} = \lambda^2 + \lambda$
So that $Var[X] = \lambda^2 + \lambda - \lambda^2 = \lambda$

Multiply by
$$z: z(z+1)e^z = z + 2^2 \frac{z^2}{2!} + \dots + k^2 \frac{z^k}{k!} + \dots$$

Therefore,
$$E[X^2] = e^{-\lambda} \lambda(\lambda + 1)e^{\lambda} = \lambda^2 + \lambda$$

So that
$$Var[X] = \lambda^2 + \lambda - \lambda^2 = \lambda$$

We have just shown that the mean of a Poisson r.v. with parameter λ is λ . Its variance is also λ .

Pairs of Random Variables 6

For a pair of random variables X, Y, we define the joint pdf of $X, Y = P_{X,Y}(x,y)$.

For discrete
$$X, Y, P_{X,Y}(x, y) = Prob(X = x and Y = y)$$
.

For continuous X, Y, $\Pr(a \leq X \leq b \text{ and } c \leq Y \leq d) = \int_c^d \int_a^b P_{X,Y}(x,y) dx dy = \text{volume}$ under the curved surface. 4

也像"分布"

Marginal pdf: $P_X(x) = \sum_{y} P_{X,Y}(x,y)$ or $\int_{-\infty}^{\infty} P_{X,Y}(x,y) dy$.

$$P_Y(y) = \sum_x P_{X,Y}(x,y) \text{ or } \int_{-\infty}^{\infty} P_{X,Y}(x,y) dx.$$

That is, the marginal pdf is obtained from the joint pdf by "integrating (summing) out the other variable".

Conditional pdf: $P_{X|Y}(x \mid y) \triangleq \frac{P_{X,Y}(x,y)}{P_{Y}(y)}$.

Expectation: $E[g(X,Y)] \triangleq \sum_{x} \sum_{y} g(x,y) P_{X,Y}(x,y)$. or $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) P_{X,Y}(x,y) dxdy$

Cross-correlation $R_{XY} \triangleq E[XY]$

Covariance $\sigma_{XY} \triangleq E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$

Correlation coefficient $\rho_{X,Y} \triangleq \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$

Note: $-1 \le \rho_{XY} \le 1$ because $\sigma_{XY}^2 \le \sigma_X^2 \sigma_Y^2$ (Cauchy - Schawarz Inequality)

7 Properties

Let X, Y be r.v., and α, β be real numbers.

1.
$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

2.
$$Var[\alpha X + \beta] = \alpha^2 Var[X]$$

3.
$$Var[\alpha X + \beta Y] = \alpha^2 Var[X] + \beta^2 Var[Y] + 2\alpha\beta\sigma_{XY}$$

8 Expectation (2 r.v.)

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) P_{X,Y}(x,y) dx dy$$
$$= \int_{Y} \int_{X} g(x,y) P_{Y}(y) P_{X|Y}(x|y) dx dy$$
$$= \int_{Y} \left[\int_{Y} g(x,y) P_{X|Y}(x,y) dx \right] P_{Y}(y) dy$$

where $\int_X g(x,y) P_{X|Y}(x,y) dx = E_{X|Y}[g(X,Y)] \triangleq \text{conditional expectation}$

So
$$E[g(X,Y)] = E_Y[E_{X|Y}[g(X,Y)]]$$

Example: Flip a coin, Pr(Head) = p, Pr(Tail) = 1 - p.

Let X = number of flips until the first Head appears.

Then $X \sim Geometric(p)$, i.e. $P_X(k) = (1-p)^{k-1}p$, k = 1, 2, ...

What is E[X]? By definition, it is $=\sum_{k=1}^{\infty}k(1-p)^{k-1}p=\frac{1}{p}$. But this sum is hard to compute.

Another way: let Y = outcome of current flip (trial). Then $E[X] = E_Y \left[E_{X|Y}[X] \right]$

$$E_{X|Y}[X] = \begin{cases} 1 & \text{, when } Y = Head \\ E[X] + 1 & \text{, when } Y = Tail \end{cases}$$

so
$$E[X] = p.1 + (1 - p)(E[X] + 1) = \frac{1}{p}$$

9 Some Definitions

X, Y are statistically independent if $P_{X,Y}(x,y) = P_X(x)P_Y(y)$. That is, the joint PDF can be factored into a product of marginal PDFs.

Note: If X, Y are statistically independent, then

$$P_{X,Y}(x,y) = \frac{P_{X|Y}(x,y)}{P_Y(y)} = \frac{P_X(x)P_Y(y)}{P_Y(y)} = P_X(x)$$
 i.e. knowledge of Y provides no knowledge of X .

X, Y are uncorrelated means $\rho_{XY} = 0$ or $\sigma_{XY} = 0$ or E[XY] = E[X]E[Y]

X, Y are orthogonal means E[XY] = 0

Note:

- 1. If E[X] = 0 or E[Y] = 0, then uncorrelated \Leftrightarrow orthogonal.
- 2. X, Y independent $\Rightarrow X, Y$ uncorrelated.

Proof:
$$E[XY] = \int_y \int_x xy P_{X,Y}(x,y) dx dy$$

 $= \int_x \int_y xy P_X(x) P_Y(y) dx dy$
 $= \left(\int_x y P_X(x) dx\right) \left(\int_y y P_Y(y) dy\right) = E[X] E[Y]$

3. However, uncorrelated \Rightarrow independent, unless the random variables follow a Gaussian pdf. See Sec. 13.1.

10 Bayes' Rule

$$P_{X,Y}(x,y) = P_{X|Y}(x|y)P_Y(y) = P_{Y|X}(y|x)P_X(x)$$

$$\Rightarrow P_{X|Y}(x|y) = \frac{P_{Y|X}(y|x)P_X(x)}{P_Y(y)}$$

$$= \frac{P_{Y|X}(y|x)P_X(x)}{\int_{-\infty}^{\infty} P_{Y|X}(y,x)P_X(x)dx}$$
posterior pdf =
$$\frac{\text{likelihood} \times \text{prior pdf}}{\text{evidence}}$$

e.g. Let X denote "have cancer", and Y denote "blood test is positive"

 $\Pr(\text{have cancer} \mid \text{test positive}) = \frac{\Pr(\text{test positive} \mid \text{have cancer}) \Pr(\text{have cancer})}{P_Y(y)}$

 $P_Y(y) = \Pr(\text{test positive} \mid \text{have cancer}) \Pr(\text{have cancer}) + \Pr(\text{test positive} \mid \text{no cancer}) \Pr(\text{no cancer})$

So getting a positive blood test does not mean that one is definitely stricken with cancer. The probability depends on:

- (a) How prevalent the cancer is in the general population (measured by the prior distribution Pr(have cancer)); and,
- (b) How accurate is the blood test when there is cancer (measured by the likelihood Pr(test positive | have cancer)).

Most medical tests are never 100% accurate. They make two kinds of errors: they can be positive when there is no cancer (patient is healthy), and negative when there is cancer. In medical terminology, these are called the *sensitivity* and *specificity* of the test.

11 Central Limit Theorem

Let $X_1, X_2, ..., X_N$ be independent, identically distributed (iid) random variables with arbitrary pdf $P_X(x)$. Let the mean and variance be μ, σ^2 respectively. Then the r.v. $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$ has pdf $Gauss(\mu, \frac{\sigma^2}{N})$ for large N.

Note:

- 1. $P_X(x)$ is arbitrary, not necessarily Gaussian.
- 2. $Gauss(\alpha, \beta^2)$ means Gaussian pdf, mean $=\alpha$, variance $=\beta^2$.

12 Transformations of r.v.

Let r.v. X, Y have joint PDF $P_{X,Y}(X,Y)$ Let Z = g(X,Y) be some function. We know how to compute μ_Z and σ_Z^2 etc. But how to get $P_Z(z)$?

Most general technique is to find CDF first: $F_Z(z)$. Then differentiate to get $P_Z(z)$.

Examples

1. Two 3-sided dice (fair). Let X, Y denote score on a roll of die 1 and die 2 respectively. Let Z = X + Y. What is $P_Z(z)$?

Joint PDF

$$F_Z(z_0) = Prob(Z \le z_0) = Prob(X + Y \le z_0)$$

$$z_0 = 2, F_Z(2) = \frac{1}{9},$$

$$Z_0 = 3, F_Z(3) = \frac{3}{9},$$

$$F_Z(4) = \frac{6}{9}$$
,

$$F_Z(5) = \frac{8}{9},$$

$$F_Z(6) = \frac{9}{9} = 1$$

The CDF and PDF of Z is are shown in the figure.

2. Let $X \sim Gauss(0,1)$ and $Y = X^2$. What is $P_Y(y)$?

$$F_Y(y_0) = \Pr(Y \le y_0)$$

$$= \Pr(X^2 \le y_0)$$

$$= \Pr(-\sqrt{y_0} \le X \le \sqrt{y_0})$$

$$= 2 \int_0^{\sqrt{y_0}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$$

$$\frac{dF_Y}{dy_0} = 2 \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(\sqrt{y_0})^2} \frac{1}{2\sqrt{y_0}}$$

where we have used the Fundamental Theorem of Calculus, and the Product Rule for Differentiation.

$$= \frac{1}{\sqrt{y_0}} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y_0}$$

$$P_Y(y) = \frac{1}{\sqrt{y}} \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}}$$

This PDF is known as the χ^2 pdf of degree 1.

13 Random Vectors

When we have to deal with many random variables, it is easier to put them in a vector \underline{X} . Then pdf is $P_{\underline{X}}(\underline{x})$. $P_{\underline{X}}(\underline{x})$ means $P_{x_1,x_2,...,x_n}(x_1,x_2,...,x_n)$

$$\underline{x} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$$

Joint pdf

Then $E[\underline{X}] = [E[X_1] \quad E[X_2] \dots E[X_n]]^{\top} = \underline{\mu}_X$. That is, the expectation of the random vector is the vector of expectations of each random variable.

Let
$$\underline{g}(\underline{X}) = [g_1(\underline{X}) \quad g_2(\underline{X}) \dots g_n(\underline{X})]^{\top}$$

 $Var[\underline{X}] \triangleq E[(\underline{X} - \underline{\mu}_X)(\underline{X} - \underline{\mu}_X)^{\top}]$
 $= E[\underline{X} \underline{X}^{\top}] - \underline{\mu}_X \underline{\mu}_X^{\top}$ covariance matrix

Note: Var[X] is symmetric and positive semi-definite (p.s.d). The diagonal entries of the covariance matrix are σ_i^2 , the variances of each random variable X_i , while the off-diagonal entries are σ_{ij} the covariance between random variables X_i and X_j .

13.1 Multivariate Gaussian

$$\underline{X} = [X_1 \quad X_2 \quad \dots \quad X_d]^{\top}$$

 $\underline{X} = [X_1 \quad X_2 \quad \dots \quad X_d]^{\top}$ Let random vector $\underline{X} \sim Gauss(\underline{\mu}_X, \underline{C}_X)$, i.e. it follows a Gaussian pdf.

Formula:
$$P_{\underline{X}}(\underline{x}) = \frac{1}{(2\pi)^{\frac{d}{2}} (\det(\underline{C}_X))^{\frac{1}{2}}} e^{-\frac{1}{2} (\underline{X} - \underline{\mu}_X)^\top \underline{C}_X^{-1} (\underline{X} - \underline{\mu}_X)}$$

Note:

- 1. $P_X(\underline{x})$ is a scalar
- 2. $\underline{\mu}_X$ mean vector
- 3. \underline{C}_X covariance matrix
- 4. d = dimension of X

5. Let
$$D^2 = (\underline{X} - \underline{\mu}_X)^{\top} \underline{C}_X^{-1} (\underline{X} - \underline{\mu}_X)$$

Then D is called the Mahalanobis distance of \underline{X} to $\underline{\mu}_X$.

- 6. Let $\underline{Y} = \underline{A} \ \underline{X} + \underline{b}$, where \underline{A} matrix, \underline{b} vector. Then $\underline{Y} \sim Gauss(\underline{A}\underline{\mu}_X + b, \underline{A}\underline{C}_X\underline{A}^\top)$, In other words, a linear transformation of a Gaussian random variable produces another Gaussian random variable.
- 7. $\underline{Z} = \left[\begin{array}{c} \underline{X} \\ \underline{Y} \end{array}\right], \underline{X} \in \mathbb{R}^n, \underline{Y} \in \mathbb{R}^m, \underline{Z} \in \mathbb{R}^{n+m} \text{ and } \underline{Z} \sim Gauss(\underline{\mu}_z, \underline{C}_z) \text{ where } \underline{\mu}_z = C_z$ $\begin{bmatrix} \underline{\mu}_x \\ \underline{\mu}_y \end{bmatrix}, C_z = \begin{bmatrix} \underline{C}_{xx} & \underline{C}_{xy} \\ \underline{C}_{xy}^\top & \underline{C}_{yy} \end{bmatrix}.$

Then conditional r.v. $X|Y \sim Gauss(\underline{m}, \underline{S})$, where

$$\underline{m} = \underline{\mu}_x + \underline{C}_{xy}\underline{C}_{yy}^{-1}(\underline{y} - \underline{\mu}_y)$$

$$\underline{S} = \underline{C}_{xx} - \underline{C}_{xy}\underline{C}_{yy}^{-1}\underline{C}_{xy}^{\top}$$

- 8. $\Phi_r(\omega) = e^{-\frac{1}{2}\underline{\omega}^{\top}\underline{C}_x\underline{\omega} + j\underline{\omega}^{\top}\underline{\mu}_x}$ where $\underline{\omega} = [\omega_1, \omega_2, \cdots \omega_d]^{\top}$ is the vector of frequencies.
- 9. If x_i 's are uncorrelated, then they are independent.

Proof:

$$\overline{x_i\text{'s are uncorrelated means }\underline{C}_x = \left[\begin{array}{ccc} \sigma_1^2 & & & \\ & \sigma_2^2 & & \\ & & \ddots & \\ & & & \sigma_d^2 \end{array} \right]$$

$$\underline{C}_x^{-1} = \begin{bmatrix} \frac{1}{\sigma_1^2} & & & \\ & \frac{1}{\sigma_2^2} & & \\ & & \ddots & \\ & & & \frac{1}{\sigma_d^2} \end{bmatrix}$$

So
$$(\underline{x} - \underline{\mu}_x)^{\top} \underline{C}_x^{-1} (\underline{x} - \underline{\mu}_x) = \sum_{k=1}^d \left(\frac{x_k - \mu_k}{\sigma_k}\right)^2$$

Then
$$\underline{P}_x(\underline{x}) = \frac{1}{(2\pi)^{d/2} (\det \underline{C}_x)^{1/2}} e^{-\frac{1}{2} (\underline{x} - \underline{\mu}_x)^{\top} \underline{C}_x^{-1} (\underline{x} - \underline{\mu}_x)}$$

$$= \frac{1}{\prod_{k=1}^d (2\pi)^{1/2} (\sigma_k^2)^{1/2}} e^{-\frac{1}{2} \sum_{k=1}^d (\frac{x_k - \mu_k}{\sigma_k})^2}$$

$$= \prod_{k=1}^d \frac{1}{\sqrt{2\pi\sigma_k^2}} e^{-\frac{1}{2} (\frac{x_k - \mu_k}{\sigma_k})^2}$$

$$= P_{x_1} \cdot P_{x_2} \cdot P_{x_3} \cdots P_{x_d}$$

In other words, the joint pdf is decomposed into a product of marginal pdfs. This proves that the random variables are statistically independent.

Characteristic Function 4461 **14**

We can view $P_X(x)$ as a signal. Clearly, $\sum_x P_X(x) = 1$ (for discrete X), or $\int_{-\infty}^{\infty} P_X(x) dx = 1$ (for continuous X), so $P_X(x)$ is ablsolutely summable (integrable). Thus we can take the Fourier Transform!

Definition: Characteristic Function: $\phi_X(\omega) \triangleq E[e^{j\omega X}].$

So
$$\phi_X(\omega) = \sum_x e^{j\omega x} P_X(x)$$
; for discrete X.

and
$$\phi_X(\omega) = \int_{-\infty}^{\infty} e^{j\omega x} P_X(x) dx$$
; for continuous X

Notes:

- 1. Not quite DTFT: $e^{j\omega X}$ instead of $e^{-j\omega X}$
- 2. But can still be considered Fourier Transform.

Inverse transform:

$$P_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_X(\omega) e^{-j\omega X} d\omega$$
, for continuous X . or

$$P_X(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi_X(\omega) e^{-j\omega X} d\omega$$
, for discrete X.

Take derivatives:
$$\frac{d\phi_X}{d\omega} = \frac{d}{d\omega} \left[\int_{-\infty}^{\infty} e^{j\omega x} P_X(x) dx \right]$$

 $\phi_X'(\omega) = \int_{-\infty}^{\infty} jx e^{j\omega x} P_X(x) dx$

Clearly,
$$\phi_X^{(n)}(\omega) = \int_{-\infty}^{\infty} (jx)^n e^{j\omega x} P_X(x) dx$$

$$\Rightarrow \phi_X^{(n)}(0) = j^n E[X^n]$$

This gives us a way to compute moments.

Example: Consider two independent r.v. X, Y. Let Z = X + Y. What is $P_Z(z)$?

Well,
$$\phi_Z(\omega) = E[e^{j\omega z}] = E[e^{j\omega(X+Y)}] = E[e^{j\omega X}e^{j\omega Y}]$$

So $\phi_Z(\omega) = E[e^{j\omega X}]E[e^{j\omega Y}]$
 $\phi_Z(\omega) = \phi_X(\omega)\phi_Y(\omega)$

$$\Rightarrow P_Z(z) = P_X(x) * P_Y(y)$$
; This is convolution!

For continuous
$$Z$$
, $P_Z(z) = \int_{-\infty}^{\infty} P_X(x) P_Y(z-x) dx$

This explains the earlier phenomenon : any pulse-like signal, when convolved with itself many times, produces the *Gaussian*-shape signal.

The Central Limit Theorem says $Y = X_1 + X_2 + \cdots + X_N \sim \text{Gaussian for large } N$.

That is,
$$\phi_Y(\omega) = (\phi_X(\omega))^N \Rightarrow \text{Gaussian}$$

Note : If $X \sim \text{Gauss}(\mu, \sigma^2)$, then its Characteristic Function $\phi_X(\omega) = e^{-\frac{1}{2}\omega^2\sigma^2 + j\mu\omega}$