5. Zugriffsstrukturen für ausgedehnte räumliche Objekte (Forts.)

C) Transformationsmethoden

C1) Transformation in höherdimensionale Punkte

Einfaches geometrisches Objekt → Punkt in höherdim. Raum

- (i) z.B. Intervall $[x_1, x_2] \rightarrow 2$ d-Punkt (x_1, x_2) (Endpunkttransformation)
- (ii) z.B. Rechteck mit diagonal gegenüberliegenden Endpunkten (x_1, y_1) und $(x_2, y_2) \mapsto 4$ d-Punkt (x_1, y_1, x_2, y_2) (Endpunkttransformation)
- (iii) z.B. Ellipse mit Mittelpunkt (x, y) und Radien $r_x, r_y \rightarrow 4$ d-Punkt (x, y, r_x, r_y) (Mittelpunkttransformation)

Komplexe Objekte wären zu approximieren.

Transformation in höherdimensionale Punkte (Forts.)

Vor-/Nachteile:

- + Zugriffsstrukturen für Punktmengen nutzbar
- + Übersetzung von vielen Anfragen einschl. Bereichsanfragen möglich
- Nachbarschaftsstruktur bleibt nicht erhalten
 (benachbarte Objekte können zu weit entfernten Punkten werden)
- manche räumliche Prädikate nicht mehr direkt ausdrückbar,
 z.B. "ist nächster Nachbar"
- Objektverteilung nach Transformation oft "schief"

Es gibt Vorschläge zur Adaption von Punkt-Zugriffstrukturen an solche Transformationen (z.B. k-d-B-Bäume \rightarrow *LSD-Bäume*).

Transformation in höherdimensionale Punkte (Forts.)

zur Übersetzung von Anfragen bzgl. Transformation (i):

Figure 26. Search queries in dual space—endpoint transformation: (a) intersection query; (b) containment/enclosure queries; (c) point query.

- a) Welche Intervalle schneiden das Intervall [l, u]? $= \{ [x, y] | x \le u \land y \ge l \}$
- b) Welche Intervalle enthalten das Intervall [l, u] / sind darin enthalten ? $(z.\ddot{U}b.)$
- c) Welche Intervalle enthalten den Punkt p? = { $[x, y] | x \le p \land y \ge p$ }

C2) Eindimensionale Einbettung

Zunächst Darstellung von Punkten.

Vorbemerkung: Es gibt keine totale Ordnung, die Nachbarschaft (räumliche Nähe) bewahrt.

Ansatz:

- Partitioniere Datenraum durch gleichförmiges Gitter, in mehreren Verfeinerungsstufen.
- Nummeriere Zellen fortlaufend so, dass räumliche Nähe möglichst bewahrt wird, mindestens innerhalb von Zellen einer gröberen Stufe.
- Nutze Zellennummern zur eindimensionalen Indexierung, etwa mittels B*-Baum.

Eindimensionale Einbettung (Forts.)

Abb. 9.8: Wichtige eindimensionale Einbettungen

Z-Ordnung = Z-Codes

Nummerierung:

- Gegeben sei die Zelle mit Nummer p in Binärdarstellung auf Gitterstufe i-1. Dann lauten die vier Zellennummern auf Stufe i in "Z-Reihenfolge": p00, p01, p10, p11.
- Z-Code der einzigen Zelle auf Stufe 0 ist ε (das leere Wort).
- Also haben die Teilzellen den gleichen Präfix der Länge 2(i-1) wie die Oberzellen, nämlich p.
- Spezielle Eigenschaft: ungerades Bit 0/1 entspricht links/rechts, gerades Bit entspricht unten/oben.

Umrechnungen: (Datenraum sei auf $[0,1)^2$ normiert.)

- Zellennummer q der Länge $2i \mapsto \text{linker unterer Endpunkt in } [0,1)^2$ unshuffle: $q = (q_{1,x}q_{1,y}...q_{i,x}q_{i,y}) \mapsto (\sum_{j=1}^i q_{j,x}2^{-j}, \sum_{j=1}^i q_{j,y}2^{-j})$
- Punkt P in $[0,1)^2$ (in Nachkommadarstellung, mit $m \ge i$ Bits)
 - \rightarrow Zellennummer bzgl. Gitterstufe i =: Z-Code(P, i)

shuffle:
$$(.x_1...x_m, .y_1...y_m) \mapsto (x_1y_1x_2y_2...x_iy_i)$$

Figure 28. Z-ordering of a polygon.

```
Z-Ordnung = Z-Codes (Forts.)
```

Algorithmus: Rekursive Ermittlung der "maximalen Z-Code-Teilzellen" zu einem Objekt Q mit Ausdehnung =: Z-Codes(Q):

```
maxTeilzelle (Z-Code p einer Gitterzelle, Objekt Q, Gitterstufe j):
  boolean
  (true falls p Zelle,
   die Q schneidet und deren direkte/indirekte Teilzellen alle Q schneiden;
   mit Ausgabe der Z-Codes solcher Zellen auf kleinstmöglicher Gitterstufe)
  if j = \text{maximale Gitterstufe} then return p \cap Q \neq \emptyset
  else if p \subseteq Q then return true
  else for k, l = 0, 1 do b_{kl} := \max Teilzelle(pkl, Q, j+1);
     if b_{00} \wedge b_{01} \wedge b_{10} \wedge b_{11} then
       if j = 0 then Ausgabe(p); return true
     else
       for k, l = 0, 1 do if b_{kl} then Ausgabe(pkl);
       return false.
```

Aufruf: maxTeilzelle(ε , Q, 0)

return false

Verbesserung: betrachte auch Halbzellen (wie in Abbildung!), zähle Bitfolgenlänge 2j-1, 2j statt Gitterstufe j

Variante: Ermittle maximale Teilzellen zu Q, aber mit Merkmal, ob Teilzelle $p \subseteq Q$ ('innen') oder $p \not \equiv Q \land p \cap Q \neq \emptyset$ (am 'Rand')

```
maxRandTeilzelle (p, Q, j): boolean

if p \subseteq Q then Ausgabe(p,'innen'); return false

else if j = maximale Gitterstufe then return p \cap Q \neq \emptyset

else for k, l = 0, 1 do b_{kl} := maxRandTeilzelle(pkl, Q, j + 1);

if b_{00} \wedge b_{01} \wedge b_{10} \wedge b_{11} then

if j = 0 then Ausgabe(p,'Rand'); return true

else

for k, l = 0, 1 do if b_{kl} then Ausgabe(pkl,'Rand');
```

Die Differenzierung erleichtert die Bearbeitung von Anfragen; für Kandidaten P in Innenzellen braucht $P \in Q$ nicht mehr nachgeprüft werden.

Beispiel

links: maximale Teil(halb)zellen für Objekt *Q* = 000111, 001, 01001, 0110, 011100, 011110, 10010, 1100, 110100 rechts: maximale Innen-/Rand(halb)teilzellen ...

Indexierung und Anfragen:

- Indexierung eines Punkts *P* unter seinem Z-Code bzgl. max. Gitterstufe in einem klassischen B*-Baum
- Indexierung eines Objekts *Q* unter allen seinen Z-Codes (Approximations-Teilzellen) wie oben in einem klassischen B*-Baum
- Suche nach einem gespeicherten Punkt P = Suche nach seinem Z-Code bzgl. max. Gitterstufe im Index
- Suche nach einem Objekt *Q* als Suchbereich = Suchen [Mehrzahl] nach allen seinen Z-Codes (Such-Teilzellen) gegen Index
- *Suche gegen Index:* Such-Teilzelle *p* schneidet Approximations-Teilzelle *q* gdw. *p* Präfix von *q* oder *q* Präfix von *p* also zu jeder Such-Teilzelle: Suche danach (als Präfix) und nach allen ihren Präfixen (exakt) im Index

- anschließend exakter Vergleich der Koordinatenwerte bzw. OIDs der Kandidaten-Objekte in den gefundenen Approximations-Teilzellen
- d.h. z.B. für Bereichsanfrage: Welche Punkte liegen in Anfragebereich Q?:

Jede Suchzelle p von Q der Stufe j liefert aus dem Index nacheinander alle gespeicherten Punkte P mit

substring(shuffle(
$$P$$
), 1, 2 j) = p

(eindimensionaler Index-Teilscan); für diese "Kandidaten" ist dann noch $P \in Q$ exakt nachzuprüfen.

Anmerkungen:

- Es werden nur klassische Speicherstrukturen benötigt. Allerdings müssen Operationen auf Bitstrings effizient unterstützt sein.
- *Tradeoff:* geringere Anzahl von Approximationszellen, also weniger Indexeinträge vs. genauere Approximation, weniger falsche Kandidaten
- Zudem sollten Objekte im externen Speicher nach Z-Codes (Nachbarschaft!) geclustert gespeichert werden, um Blockzugriffe nach Auffinden der OIDs im Index zu minimieren.
- Bei ungleichmäßigen Objektverteilungen sollte mit variabler maximaler Gittertiefe (für die kleinsten Suchzellen) gearbeitet werden.
- Z-Codes sind auf beliebige Dimensionsanzahlen d verallgemeinerbar. Der shuffle-Operator muss dann pro Stufe d statt 2 Bits mischen.

Figure 29. Z-ordering.

6. Räumliche Verbunde (Spatial Joins)

Definition: Gegeben seien zwei (große) Mengen O_1 , O_2 räumlicher Objekte, mindestens mit Objekt-Identifier *oid*, Geometrie *geo* und minimalem umgebenden Rechteck mbr^1 .

Der **räumliche Verbund** $O_1 \bowtie_{\cap} O_2$ von O_1 und O_2 ist die Menge von (Objekt- oder OID-) Paaren $\{o_1.oid, o_2.oid \mid o_1.geo \cap o_2.geo \neq \emptyset\}$.

 $Variante: ... \subseteq statt \cap ...$

¹ minimum bounding rectangle

Active area in the last few years.

Central ideas:

- **filter** step (join bounding boxes = rectangles)
 - + **refine** step (check exact geometries)
- use of spatial index structures for the filter step

Classification of strategies:

- grid approximation / bounding box
- none / one / both operand sets represented in a spatial index

Figure 1: Spatial join processor

The Filter Step

Grid approximations

E.g., overlap \rightarrow parallel scan through the sets of Z-codes

B C 0110, 10, 10010, 100110, 10110, ...

0111, 100, 1010, 1011, $1101 \rightarrow (A,B)$, (A,C), ...

Bounding box approximations

(1) None of the operands represented in a spatial index

 \rightarrow rectangle intersection problem

determine all pairs (p, q), p intersects q

→ bb-join operation, general basis for spatial join

Needed as a query processing method in any case:

```
cities select[pop > 500 000]
    states select[language = "french"]
    join[center inside area]
no index
any more
```

Proposed solutions:

• External *divide-and-conquer algorithm* (Güting & Schilling 87), adapted from internal computational geometry algorithm:

Finds all intersecting pairs in *one* set of rectangles.

Simple modification to treat two sets (Becker&Güting 92).

Divide plane into vertical stripes such that each stripe contains about c vertical edges of rectangles. Compute intersections between rectangles represented in the stripe by internal DAC algorithm. *External*: Merge adjacent stripes bottom-up, *as in external merge sort*, writing intermediate structures into files again.

• "Spatial hash join" (Lo & Ravishankar 96, Patel & De Witt 96). Assign the two sets of rectangles to two sets of buckets; process pairs of buckets internally. Many design choices:

Spatial Hash Joins

- Vergleiche klassischen Hash-Join von zwei Datenbanktabellen O_1 und O_2 über die Gleichheit von zwei Attributen A_1 bzw. A_2 ($O_1 \bowtie_{A_1=A_2} O_2$):
 - 1. durchlaufe O_1 und ordne Objekte in Hash-Buckets gemäß Hashfunktion

 $h_1: A_1$ -Werte \rightarrow Nummern von O_1 -Buckets

ein (Einordnung₁, Buckets₁)

 h_1 kann sogar die Identität sein (Einordnung nach Attributwerten).

- 2. ebenso O_2 (Einordnung₂, Buckets₂)
- 3. Die Buckets₁ und Buckets₂ sind einander 1:1 zugeordnet, typischerweise über gleiche Nummern. Bilde den Gesamt-Join durch Vereinigung der Joins zwischen einander zugeordneten Buckets (Bucketjoin).
- \Rightarrow Einordnung_i eindeutig, Buckets_i fest, Bucketmengen disjunkt, Bucketjoin 1:1
- Wie läßt sich dieses Vorgehen auf einen räumlichen Verbund übertragen?

 Die Einordnungen der Objekte in Buckets muss natürlich in Abhängigkeit von ihren *mbr*-Werten erfolgen.

Spatial Hash Joins (Forts.)

1. Alternative:

- * Buckets_i: Zellen eines festen Gitters
- * Einordnung_i : Objekt $o \in O_i \mapsto$ alle Buckets_i, die o überlappen, also mehrdeutig
- * Bucketjoin: 1:1
- * Nachteile: Buckets evtl. ungleichmäßig gefüllt, Mehrfachdarstellung von Objekten, Bucketjoin erfordert Duplikateliminierung

Spatial Hash Joins (Forts.)

2. Alternative:

- * Buckets_i: anfangs Zellen eines festen Gitters; dann wachsen Buckets unabhängig voneinander so, dass Objekte eingeschlossen werden
- * Einordnung_i: Objekt $o \in O_i \mapsto \text{Bucket}_i$ mit minimaler Flächenvergrößerung, um o einzuschließen (eindeutig)
- * Bucketjoin: m:n, da Buckets beliebig überlappen können
- * Nachteil: nested-loop-Algorithmus für Bucketjoin

3., empfohlene Alternative: [=Lo&Rav.96]

- * Buckets₁: anfangs nur "Saat"-Punkte (etwa Mittelpunkte von aus Stichprobe erwarteten Häufungen); dann wachsen Buckets so wie in Alternative 2; Bucketeinteilung basiert also auf Objektverteilung.
- * Einordnung₁: wie bei Alternative 2, eindeutig
- * Buckets₂ := (immer) Buckets₁ !!!
- * Einordnung₂: wie bei Alternative 1, mehrdeutig, aber Join-vorbereitend (keine Duplikateliminierungn nötig, keine unnötigen Flächenüberlappungen)
- * Bucketjoin: 1:1

(2) One of the operands represented in a spatial index

→ index join, repeated search join. Scan "outer" operand set; for each object perform a search with the bounding box on the index for the "inner" operand.

(3) Both operands are represented in a spatial index

Basic idea: Synchronized, parallel traversal of the two data structures

- grid files
 (Rotem 91, Becker, Hinrichs & Finke 93)
- R-trees ("*R-tree join*")
 (Brinkhoff, Kriegel & Seeger 93; refined version with breadth-first traversal: Huang, Jing & Rundensteiner 97)
- generalization trees(Günther 93)

Further idea: Use of join indices (Rotem 91, Lu & Han 92)

R-Tree Join

```
Basis-Algorithmus^{2,3}:
  rtree-join (Knoten V_1, Knoten V_2, Suchfenster w):
     if not (V_1 \text{ Blatt or } V_2 \text{ Blatt}) then
        for alle Einträge E_1 \in V_1 mit E_1.mbr \cap w \neq \emptyset do
           for alle Einträge E_2 \in V_2 mit E_2.mbr \cap w \neq \emptyset do
              if E_1.mbr \cap E_2.mbr \neq \emptyset then
                 rtree-join(E_1.succ, E_2.succ, E_1.mbr \cap E_2.mbr)
     else if (V_1 \text{ Blatt } \mathbf{xor} \ V_2 \text{ Blatt}) then
        ... analoger Abstieg nur für den Nicht-Blattknoten ...
     else /* zwei Blattknoten */
        for alle Einträge E_1 \in V_1 mit E_1.mbr \cap w \neq \emptyset do
           for alle Einträge E_2 \in V_2 mit E_2.mbr \cap w \neq \emptyset do
              if E_1.mbr \cap E_2.mbr \neq \emptyset then output(E_1.oid, E_2.oid).
```

Aufruf: rtree-join (Wurzel 1.Baum, Wurzel 2.Baum, ges. Datenraum)

 $^{^2}$ Alle umgebenden Objekt- und Verzeichnisrechtecke seien hier einheitlich mit .mbr zugreifbar.

³Weitere Optimierungen im Detail möglich, z.B. Plane-Sweep-artiger Durchlauf durch gleichsortierte Einträge zweier Knoten.