WHAT IS CLAIMED IS:

1	1. A trenched DMOS device formed atop an N+ silicon substrate with
2	an N epitaxial layer thereon including a device region and a bus region neighboring the
3	device region, the device region comprising:
4	a P substrate, formed in the epitaxial layer and extending to a top
5	surface thereof, a plurality of DMOS trenches extending downward through the P
6	substrate from a top surface thereof;
7	a gate oxide layer formed in the DMOS trenches and extending to
8	cover the top surface of the P substrate;
9	a plurality of polysilicon gates formed in the DMOS trenches;
10	a plurality of N+ source regions formed in the P substrate adjacent
11	the DMOS trenches;
12	a plurality of P+ diffused regions formed in the P substrate and each
13	being interposed between two of the N+ source regions;
14	a first isolation layer formed over the P substrate to cover the
15	polysilicon gate electrodes; and
16	a source metal contact layer formed on the first isolation layer and
17	connecting to the N+ source regions and the P+ diffused regions;
18	and the bus region comprising:
19	a P substrate, formed in the epitaxial layer and extending to a top
20	surface of the epitaxial layer, a field oxide layer being formed on the P substrate and a bus
21	trench extending down from a top surface of the field oxide layer to a lower portion of the
22	P substrate;
23	a gate oxide layer formed in the bus trench and extending to cover a
24	top surface of the P substrate;
25	a polysilicon bus formed in the bus trench and having a top surface
26	disposed at a lower level than the top surface of the field oxide layer;
27	a second isolation layer covering the field oxide layer and having an
28	opening to expose the polysilicon bus; and
29	a metal line formed atop the polysilicon bus.

1 2. The trenched DMOS device of claim 1, wherein the P substrate of 2 the device region and the P substrate of the bus region are formed by ion implantation 3 simultaneously. 1 3. The trenched DMOS device of claim 1, wherein the gate oxide layer 2 of the device region and the gate oxide layer of the bus region are formed simultaneously. 1 4. The trenched DMOS device of claim 1, wherein the polysilicon gate 2 and the polysilicon bus are formed by depositing a polysilicon layer in the DMOS trenches 3 and the bus trench and using the gate oxide layers as etch stop layers to etch the polysilicon layer. 4 5. 1 The trenched DMOS device of claim 1, wherein the plurality of N+ 2 source regions are formed in the P substrate on opposite sides of each of the DMOS 3 trenches. 1 6. A semiconductor device set which comprises at least two types of 2 devices, each of the two types of devices having a trench feature; 3 wherein the first device comprises a gate oxide formed in the trench 4 feature, a polysilicon layer formed on the gate oxide in the trench features, a first isolation 5 layer formed on the polysilicon layer and having an opening, and a metal layer formed on 6 the first isolation layer and filling the opening of the first isolation layer; and 7 wherein the second device comprises a dielectric layer formed 8 adjacent an opening at a top of the trench feature on opposite sides of the trench feature, a 9 gate oxide formed in the trench feature and over the dielectric layer, a polysilicon layer 10 formed on the gate oxide in the trench feature including a space near the top of the trench 11 feature with the dielectric layer disposed on opposite sides thereof, a second isolation layer 12 formed on the dielectric layer, and a metal layer formed on the polysilicon layer. 1 7. The semiconductor device set of claim 6, wherein the at least two 2 types of devices are formed on a silicon substrate.

The semiconductor device set of claim 7, wherein the silicon

1

2

8.

substrate has an epitaxial layer formed thereon.

1	9. The semiconductor device set of claim 8, wherein the epitaxial layer
2	has a P substrate thereon.
1	10. The semiconductor device set of claim 9, wherein each trench
2	feature extends through the P substrate to an area below a top surface of the epitaxial
3	layer.
3	layet.
1	11. The semiconductor device of claim 9, wherein a plurality of N
2	source regions and a plurality of P regions are formed in the P substrate.
1	12. The semiconductor device of claim 11, wherein at least two of the N
2	source regions formed in the P substrate are disposed adjacent to and on opposites sides of
3	one of the first devices, and wherein at least one of the P regions formed in the P substrate
4	is disposed between two adjacent N source regions.
1	13. The semiconductor device of claim 8, wherein the epitaxial layer is
2	an N epitaxial layer.
1	14. The semiconductor device of claim 7, wherein the silicon substrate
2	is an N substrate.
1	15. The semiconductor device of claim 6 wherein the dielectric layer in
2	the second device comprises a field oxide layer.
1	16. A method of forming a trenched DMOS device, the method
2	comprising:
3	providing an N+ silicon substrate with an N epitaxial layer thereon,
4	and a P substrate in the N epitaxial layer extending to a top surface thereof;
5	forming in a device region a plurality of DMOS trenches extending
6	downward through the P substrate from a top surface thereof, and in a bus region a field
7	oxide layer on the P substrate and a bus trench extending down from a top surface of the
8	field oxide layer to a lower portion of the P substrate;
9	forming a gate oxide layer in the DMOS trenches which extends to
10	cover the top surface of the P substrate adjacent the DMOS trenches, and a gate oxide
11	layer in the bus trench which extends to cover the top surface of the P substrate adjacent
12	the bus trench;

13	forming a plurality of polystilicon gates in the DMOS trenches, and
14	a polysilicon bus in the bus trench, the polysilicon bus having a top surface disposed at a
15	lower level than the top surface of the field oxide layer;
16	forming a plurality of N+ source regions in the P substrate adjacent
17	the DMOS trenches;
18	forming a plurality of P+ diffused regions in the P substrate, each of
19	the P+ diffused regions being interposed between two of the N+ source regions;
20	forming a first isolation layer over the P substrate to cover the
21	polysilicon gates, and a second isolation layer to cover the field oxide layer, the second
22	isolation layer having an opening to expose the polysilicon bus; and
23	forming a source metal contact layer on the first isolation layer, and
24	a metal line atop the polysilicon bus, the source metal contact layer connecting to the N+
25	source regions and the P+ diffused regions.
1	17. The method of claim 16, wherein the P substrate of the device
2	region and the P substrate of the bus region are formed by ion implantation
3	simultaneously.
1	18. The method of claim 16, wherein the gate oxide layer of the device
2	region and the gate oxide layer of the bus region are formed simultaneously.
1	19. The method of claim 16, wherein the polysilicon gate and the
2	polysilicon bus are formed by depositing a polysilicon layer in the DMOS trenches and the
3	bus trench and using the gate oxide layers as etch stop layers to etch the polysilicon layer.
1	20. The method of claim 16, wherein the plurality of N+ source regions
2	are formed in the P substrate on opposite sides of each of the DMOS trenches.