Math 5604 Homework 3

Jacob Hauck March 11, 2024

Problem 1.

Consider the IVP

$$x' = x^{2}y - e^{-t} - e^{-2t}\cos(t)$$

$$y' = yz - \sin(t) - t^{2}\cos(t)$$

$$z' = x + y + 2t - e^{-t} - \cos(t)$$

$$x(0) = 1, \quad y(0) = 1, \quad z(0) = 0.$$
(1)

(a) Assuming a time step of k > 0 with time nodes $\{t_n\}_{n=0}^N$, with $t_0 = 0$ and $t_N = 1$, we can discretize this IVP on the interval [0,1] using the following backward Euler scheme:

$$x^{n+1} = x^{n} + k \left[\left(x^{n+1} \right)^{2} y^{n+1} - e^{-t_{n+1}} - e^{-2t_{n+1}} \cos(t_{n+1}) \right]$$

$$y^{n+1} = y^{n} + k \left[y^{n+1} z^{n+1} - \sin(t_{n+1}) - t_{n+1}^{2} \cos(t_{n+1}) \right] \qquad n = 0, 1, \dots N - 1$$

$$z^{n+1} = z^{n} + k \left[x^{n+1} + y^{n+1} + 2t_{n+1} - e^{-t_{n+1}} - \cos(t_{n+1}) \right]$$

$$x^{0} = 1, \quad y^{0} = 1, \quad z^{0} = 0.$$
(2)

Since $(x^{n+1}, y^{n+1}, z^{n+1})^T$ is a root of $f_n(u, v, w)$, where

$$f_n(u,v,w) = \begin{bmatrix} u - x^n - k \left[u^2 v - e^{-t_{n+1}} - e^{-2t_{n+1}} \cos(t_{n+1}) \right] \\ v - y^n - k \left[vw - \sin(t_{n+1}) - t_{n+1}^2 \cos(t_{n+1}) \right] \\ w - z^n - k \left[u + v + 2t_{n+1} - e^{-t_{n+1}} - \cos(t_{n+1}) \right] \end{bmatrix},$$
(3)

we can use Newton's method to find $(x^{n+1}, y^{n+1}, z^{n+1})^T$ by finding the root of f_n using an initial guess of $(x^n, y^n, z^n)^T$. In order to use Newton's method, we will need the Jacobian Df_n of f_n :

$$Df_n(u, v, w) = \begin{bmatrix} 1 - 2kuv & -ku^2 & 0\\ 0 & 1 - kw & -kv\\ -k & -k & 1 \end{bmatrix}.$$
 (4)

The implementation of the backward Euler method for this problem can be found in problem1.m, and the implementation of Newton's method can be found in newton.m.

(b) Using problem1_calculations.m to calculate the numerical values of x(1), y(1), and z(1) with step size $k \in \{1/16, 1/64\}$, we get

$$(0.400273, 0.540425, 1.075813)^T,$$
 $k = \frac{1}{16}$
 $(0.375735, 0.539848, 1.018419)^T,$ $k = \frac{1}{64}$

(c) Using problem1_calculations.m to calculate the numerical errors at t=1 from the exact solution $(e^{-t},\cos(t),t^2)^T$, we get the results in Table 1, which are copied from p1_output.txt. We notice that the convergence rate for each component and in ℓ^{∞} seems to be 1. The y(t) convergence, however, doesn't start to follow a pattern until the step size is small (in particular, the first 3 or 4 rate entries are all over the place).

1

	x		y		z		ℓ^∞	
k	Error	Rate	Error	Rate	Error	Rate	Error	Rate
1/4	0.158586	-	0.061537	-	0.362011	-	0.362011	-
1/8	0.068026	1.221101	0.006829	3.171723	0.158577	1.190850	0.158577	1.190850
1/16	0.032393	1.070401	0.000123	5.795091	0.075813	1.064661	0.075813	1.064661
1/32	0.015864	1.029925	0.000605	-2.298793	0.037176	1.028067	0.037176	1.028067
1/64	0.007856	1.013926	0.000455	0.412177	0.018419	1.013176	0.018419	1.013176
1/128	0.003910	1.006730	0.000264	0.785388	0.009169	1.006394	0.009169	1.006394
1/256	0.001950	1.003310	0.000141	0.905477	0.004574	1.003150	0.004574	1.003150
1/512	0.000974	1.001641	0.000073	0.955407	0.002285	1.001564	0.002285	1.001564

Table 1: Errors and convergence rates of backward Euler using different error metrics

Problem 2.

Recall the backward Euler method for the IVP

$$y' = f(t, y), \quad t > 0; \qquad y(t_0) = a$$
 (5)

is given implicitly by the scheme

$$y^{n+1} = y^n + kf(t_{n+1}, y^{n+1}), \qquad n = 0, 1, 2, \dots$$
 (6)

$$y^0 = a, (7)$$

where $\{t_n\}$ is a sequence of evenly-spaced times (with the same t_0 from (5)) with $t_{n+1} - t_n = k$. The value y^n is meant to be an approximation of $y(t_n)$.

Define $e_n = y(t_n) - y^n$. On a given interval $[t_0, t_0 + T]$, suppose we use a step size $k = \frac{T}{N}$, so that $t_N = t_0 + T$. Then the global truncation error (GTE) is given by $\max_{0 \le n \le N} |e_n|$.

Assume that f is L-Lipschitz in y uniformly for $t \in [t_0, t_0 + T]$, and assume that $y \in C^2([t_0, t_0 + T])$, with $|y''(t)| \le C$ for all $t \in [t_0, t_0 + T]$.

By Taylor's Theorem, for all $n = 0, 1, 2, \dots N - 1$, there exists $\tau_n \in [t_n, t_{n+1}]$ such that

$$y(t_{n+1}) = y(t_n) + ky'(t_{n+1}) + \frac{1}{2}k^2y''(\tau_n).$$

Then

$$y(t_{n+1}) = y(t_n) - y_n + y_n + kf\left(t_{n+1}, y^{n+1}\right) + k\left[f(t_{n+1}, y(t_{n+1})) - f\left(t_{n+1}, y^{n+1}\right)\right] + \frac{1}{2}k^2y''(\tau_n)$$

$$= e_n + y^{n+1} + k\left[f(t_{n+1}, y(t_{n+1})) - f\left(t_{n+1}, y^{n+1}\right)\right] + \frac{1}{2}k^2y''(\tau_n).$$

Hence, by the assumptions on y and f,

$$|e_{n+1}| \le |e_n| + k \left| f(t_{n+1}, y(t_{n+1})) - f\left(t_{n+1}, y^{n+1}\right) \right| + \frac{1}{2} k^2 |y''(\tau_n)|$$

$$\le |e_n| + kL \left| y(t_{n+1}) - y^{n+1} \right| + \frac{1}{2} Ck^2$$

$$= |e_n| + kL |e_{n+1}| + \frac{1}{2} Ck^2$$

This holds for all $n=0,1,2,\ldots N-1$. Noting that $y^0=a=y(t_0)$, we have $e_0=0$, so this gives us a recurrent set of inequalities for $|e_n|$. Since we are only interested in proving GTE $\to 0$ as $k\to 0$, we can safely assume that $k<\frac{1}{L}$. In this case, we have

$$|e_{n+1}| \le \frac{|e_n| + \frac{1}{2}Ck^2}{1 - kL}, \qquad n = 0, 1, 2, \dots, N - 1.$$
 (8)

Using the fact that $e_0 = 0$ and iterating (8), we get

$$|e_n| \le \sum_{j=0}^{n-1} \frac{\frac{1}{2}Ck^2}{(1-kL)^{j+1}} = \frac{\frac{1}{2}Ck^2}{1-kL} \sum_{j=0}^{n-1} \left(\frac{1}{1-kL}\right)^j = \frac{\frac{1}{2}Ck^2}{1-kL} \frac{\left(\frac{1}{1-kL}\right)^n - 1}{\frac{1}{1-kL} - 1} = \frac{Ck}{2L} \left[\left(\frac{1}{1-kL}\right)^n - 1\right].$$

Since 1 - kL > 0 and $kL \ge 0$, it follows that $\left(\frac{1}{1 - kL}\right)^n \le \left(\frac{1}{1 - kL}\right)^N$ for $n = 0, 1, \dots, N$. Recalling that $k = \frac{T}{N}$, we have

GTE =
$$\max_{0 \le n \le N} |e_n| \le \frac{Ck}{2L} \left[\left(1 - \frac{TL}{N} \right)^{-N} - 1 \right].$$

If $kL = \frac{TL}{N}$ is close to 1, then this bound doesn't say much. Since we are interested in bounding the error as $k \to 0$, and we have already assumed that $k < \frac{1}{L}$, there is no harm in further assuming that $k < \frac{1}{2L}$. Thus, $\frac{TL}{N} \le \frac{1}{2}$. Note that by the Taylor series for $\log(1-x)$,

$$-\log(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots \le x + x^2, \qquad 0 \le x \le \frac{1}{2}$$

because

$$\frac{x^2}{2} + \frac{x^3}{3} + \dots \le \frac{x^2}{2} \left(1 + x + x^2 + \dots \right) = \frac{x^2}{2} \cdot \frac{1}{1 - x} \le x^2, \quad 0 \le x \le \frac{1}{2}$$

Therefore,

$$\mathrm{GTE} \leq \frac{Ck}{2L} \left[e^{-N\log\left(1-\frac{TL}{N}\right)} - 1 \right] \leq \frac{Ck}{2L} \left[e^{TL + \frac{(TL)^2}{N}} - 1 \right] \leq \frac{Ck}{2L} \left[e^{\frac{3TL}{2}} - 1 \right],$$

which shows that GTE = $\mathcal{O}(k)$ as $k \to 0$. Thus, the Backward Euler method is convergent, and the convergence order is 1.