SS 2020 Shestakov

Übungsaufgaben zur Vorlesung "Analysis IIb"

Blatt 4

Aufgabe 1. Sei $U \subset \mathbb{R}^n$ offen und $f: U \to \mathbb{R}$ stetig partiell differenzierbar.

a) Sei $a \in U$ und $h \in \mathbb{R}^n$ ein Vektor derart, dass die ganze Strecke zwischen a und a + h in U liegt. Zeigen Sie, dass es ein $\xi \in (0, 1)$ gibt, sodass

$$f(a+h) - f(a) = \langle \nabla f(a+\xi h), h \rangle.$$

b) Angenommen, zwei beliebige Punkte in U lassen sich durch einen Streckenzug verbinden, das heißt für alle $a,b\in U$ gibt es ein $k\in \mathbb{N}$ und $a=:a_1,a_2,\ldots,a_k:=b\in U$, sodass die Strecken

$$\{(1-t)a_j + ta_{j+1} : t \in [0,1]\}, \quad j = 1, \dots, k-1$$

in U liegen. Man nennt U in diesem Fall auch (weg)zusammenhängend. Zeigen Sie, dass f genau dann konstant auf U ist, wenn $\nabla f(x) = 0$ für alle $x \in U$ ist.

Aufgabe 2.

- a) Sei $f: \mathbb{R}^n \to \mathbb{R}$ eine (k+1)-mal stetig differenzierbare Funktion und seien alle partiellen Ableitungen von f der Ordnung k+1 gleich Null auf \mathbb{R}^n . Beweisen Sie, dass f ein Polynom höchstens k-ten Grades ist.
- b) Sei $P: \mathbb{R}^n \to \mathbb{R}$,

$$P(x) = \sum_{|\alpha|=k} c_{\alpha} x^{\alpha}, \quad \alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}_0^n, \quad x = (x_1, ..., x_n) \in \mathbb{R}^n,$$

ein homogenes Polynom k-ten Grades.

Zeigen Sie: Ist $P(x) = o(||x||^k), x \to 0$, so ist $P \equiv 0$.

c) Sei f eine C^m -Funktion in einer Umgebung von $a \in \mathbb{R}^n$ und P_m ihr Taylorpolynom vom Grad m. Beweisen Sie: Ist Q ein Polynom eines Grades $\leq m$ mit $f(x) = Q(x) + o(\|x - a\|^k)$ für $x \to a$ und $k \geq m$, so gilt $Q = P_m$.

Aufgabe 3. Sei $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{2xy}{\sqrt{x^2 + y^2}}, & \text{falls } x^2 + y^2 \neq 0, \\ 0, & \text{falls } x^2 + y^2 = 0. \end{cases}$$

Zeigen Sie:

- a) f ist stetig in (0,0).
- b) f hat beschränkte partielle Ableitungen.
- c) f ist nicht differenzierbar in (0,0).

Abgabe: Bis 4. Juni um 10 Uhr als PDF-Datei in StudIP in der Veranstaltung Übung Analysis IIb unter dem Reiter Dateien im dafür vorgesehenen Ordner.

Aufgabe	1		2			3			
	a	b	a	b	c	a	b	c	
Punkte	3	3	2	3	3	2	2	2	20

Präsenzaufgaben

1. Sei $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2}, & \text{falls } x^2 + y^2 \neq 0, \\ 0, & \text{falls } x^2 + y^2 = 0. \end{cases}$$

Vergleichen Sie die Ableitungen $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ und $\frac{\partial^2 f}{\partial y \partial x}(0,0)$. Kommentieren Sie das Ergebnis.

- 2. Sei $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = xy^2 + \cos xy$.
 - a) Bestimmen Sie die Taylor-Entwicklung von f im Punkt (1,1) bis einschließlich den Gliedern 2. Ordnung.
 - b) Berechnen Sie näherungsweise $2,03\cdot(0,01)^2+\cos(0,0203)$ (ohne Taschenrechner!).
 - c) Schätzen Sie den Approximationsfehler ab.
- 3. Sei $P: \mathbb{R}^n \to \mathbb{R}$,

$$P(x) = \sum_{|\alpha|=k} c_{\alpha} x^{\alpha}, \quad \alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}_0^n, \quad x = (x_1, ..., x_n) \in \mathbb{R}^n,$$

ein homogenes Polynom k-ten Grades. Zeigen Sie:

- a) Ist $\beta \in \mathbb{N}_0^n$ ein Multiindex mit $|\beta| = k$, so gilt $\partial^{\beta} P(x) = \beta! c_{\beta}$.
- b) Gilt P(x) = 0 für alle x in einer Umgebung des Ursprungs, so sind alle Koeffizienten c_{α} gleich 0.
- 4. Ist $U \subset \mathbb{R}^n$ offen, $0 \in U$ und $f \in C^{\infty}(U)$ in $B_r(0) \subset U$ als Reihe

$$f(x) = \sum_{k=0}^{\infty} P_k(x)$$

mit homogenen Polynomen k-ten Grades P_k dargestellt, so ist diese die Taylorreihe von f in 0.

2

5. Entwickeln Sie $f(x,y) = \frac{x}{y}$ in die Taylorreihe um den Punkt (1,1).