

Two-Level Logic Optimization

- Two-level logic representations
 - ➤ Sum-of-product form
 - > Product-of-sum form
- ◆ Two-level logic optimization two-level比較好處理
 - Key technique in logic optimization
 - Many efficient algorithms to find a near minimal representation in a practical amount of time
 - In commercial use for several years
 - ➤ Minimization criteria: number of product terms —個term代表—個gate

F = XYZ + XY'Z' + XY'Z + X'YZ + XYY'ZExample: = XY' + YZ

要讓term越小,就能有越 少gate

但literal如果太多也不行 所以第二步是降低input(literal)

Multi-Level Logic Optimization

- Translate a combinational circuit to meet performance or area constraints
 - > Two-level minimization
 - Common factors or kernel extraction
 - Common expression resubstitution
- In commercial use for several years
- ◆ Example:

$$f1 = bcd + \overline{bcd} + \overline{cde} + \frac{\overline{bcd} + \overline{cde} + \overline{bcdf}}{\overline{ac} + cdf + abcde} + \overline{abcdf}$$

$$f2 = bdg + \overline{bdfg} + \overline{bdg} + \overline{bdeg}$$

Technology Mapping

- ◆ Goal: translation of a technology independent representation (e.g. Boolean networks) of a circuit into a circuit in a given technology (e.g. standard cells) with optimal cost
- Optimization criteria:
 - Minimum area
 - Minimum delay
 - Meeting specified timing constraints
 - Meeting specified timing constraints with minimum area
- ◆ Usage:
 - Technology mapping after technology independent logic optimization
 - > Technology translation

Lecture05

Slide 7

Outline

- ◆Logic optimization overview
- ◆Two-level logic optimization
- ◆Multi-level logic optimization

Lecture05

Two-Level Logic Optimization

- **◆Basic idea**: Boolean law x+x'=1 allows for grouping $x_1x_2+x_1$ $x'_2=x_1$
- ◆ Approaches to simplify logic functions:
 - ➤ Karnaugh maps [Kar53]
 - ➤ Quine-McCluskey [McC56]

Lecture0

Minimum Sum-of-Products

- ◆ Minimum number of prime implicants which cover all of the 1's
 - Minimum cover (global optimum)
- ◆ A sum-of-products expression containing a non-prime implicant cannot be minimum
 - Could be simplified by combining the non-prime term with additional minterm
- ◆ To find the minimum sum-of-products
 - Not every prime implicant is needed
 - If prime implicants are selected in the wrong order, a non-minimum solution may result
 - Essential prime implicants must be included

Lecture05

Slide 13

Minimal Cover or Irredundant cover

- ◆ A set of prime implicants that together cover all points in the on-set (and some or all points of the dc-set) is called a prime cover
- ◆A prime cover is irredundant when none of its prime implicants can be removed from the cover
 - ➤ Minimal cover (local optimum)
- Different from minimum cover (possibly same)

Lecture0

可以用第27頁的方法解

Heuristic Optimization

- ◆ Generation of *all* prime implicants is impractical
 - \triangleright The number of prime implicants for functions with n variables is in the order of $3^n/n$
- ♦ Finding an exact minimum cover is NP-hard
 - Cannot be finished in polynomial time
- Heuristic method: avoid generation of all prime implicants
- ◆ Procedure
 - A minterm of ON(f) is selected, and expanded until it becomes a prime implicant
 - The prime implicant is put in the final cover, and all minterms covered by this prime implicant are removed
 - > Iterated until all minterms of the ON(f) are covered
- "ESPRESSO" developed by UC Berkeley
 - > The kernel of synthesis tools, and computes minimal cover

Lecture0

Multi-Level v.s. Two-Level

◆Two-level:

Often used in control logic design

$$f_1 = x_1 x_2 + x_1 x_3 + x_1 x_4$$

$$f_2 = x_1' x_2 + x_1' x_3 + x_1 x_4$$

- \triangleright Only x_1x_4 shared
- Sharing restricted to common cube

☐ Multi-level:

- Datapath or control logic design
- Can share x₂ + x₃ between the two expressions
- Can use complex gates

$$g_1 = x_2 + x_3$$

 $g_2 = x_1 x_4$
 $f_1 = x_1 y_1 + y_2$
 $f_2 = x_1' y_1 + y_2$
(y_i is the output of gate g_i)

Lecture05

Slide 35

Multi-Level Logic Optimization

- ◆Technology independent
- ◆ Decomposition/Restructuring
 - ➤ Algebraic
 - Polynomials
 - > Functional
 - · Don't cares
- ◆ Node optimization
 - > Two-level logic optimization techniques are used

Lecture05

Decomposition / Restructuring

- ◆Goal: given initial network, find best network
- **◆**Two problems:
 - > Find good common sub-functions
 - ➤ How to perform division
- ◆Example:

$$f_1 = bcd + b'cd' + cd'e + a'c + cdf + abc'd'e' + ab'c'df'$$

 $f_2 = bdg + b'dfg + b'd'g + bd'eg$

decompose:

$$f_1 = c(a' + x) + ac'x'$$
 $x = d(b + f) + d'(b' + e)$
 $f_2 = gx$ $\mathbf{f}_{dividend} = \mathbf{f}_{divisor}$ $\mathbf{f}_{quotient}$ + $\mathbf{f}_{remainder}$

Lecture05

Slide 37

Basic Operations (1/2)

1. decomposition

(single function)

$$f = abc + abd + c'd' + a' + b'$$

2. extraction

(multiple functions)

$$f = (az + bz')cd + e$$

 $g = (az + bz')e'$
 $h = cde$


```
f = xy + e

g = xe'

h = ye

x = az + bz'

y = cd
```


Lecture0

Division

- ♦ Division: p is a Boolean divisor of f if $q \neq \phi$ and r exist such that f = pq + r
 - \triangleright p is said to be a factor of f if in addition $r = \phi$:

$$f = pq$$

- > q is called the quotient
- r is called the **remainder**
- q and r are not unique
- ♦ Weak division: the unique algebraic division such that r has as few cubes as possible
 - ➤ The quotient q resulting from weak division is denoted by f / p (it is unique)

Lecture0

Weak Division Algorithm (1/2)

Weak_div(f, p):

 $U = \text{Set } \{u_i\}$ of cubes in f with literals not in p deleted

 $V = \text{Set } \{v_i\}$ of cubes in f with literals in p deleted

/* note that $u_i v_i$ is the j-th cube of f */

$$V^i = \{v_j \in V : u_j = p_i\}$$

 $q = \bigcap V^i$

r = f - pq

return(q, r)

Lecture05

Slide 41

Weak Division Algorithm (2/2)

• Example

common
$$f = acg + adg + ae + bc + bd + be + a'b$$

expressions $p = ag + b$

$$U = ag + ag + a + b + b + b + b$$

$$V = c + d + e + c + d + e + a'$$

$$V'' = c + d$$

$$V'' = c + d$$

$$V'' = c + d + e + a'$$

$$Q'' = c + d = f/p$$

Lecture05

Algebraic Divisor

◆Example:

$$X = (a + b + c)de + f$$

$$Y = (b + c + d)g + aef$$

$$Z = aeg + bc$$

- ◆Single-cube divisor: ae
- ◆Multiple-cube divisor: b + c
- ◆ Extraction of common sub-expression is a global area optimization effort

Lecture05

Slide 43

Some Definitions about Kernels

- ◆ Definition: An expression is *cube-free* if no cube divides the expression evenly (i.e., cannot be factored)
 - > ab + c is cube-free
 - \rightarrow ab + ac = a (b + c) is not cube-free
- ◆ Note: a cube-free expression must have more than one cube ➤ abc is not cube-free
- ◆ Definition: The *primary divisors* of an expression f are the set of expressions

$$D(f) = \{f/c \mid c \text{ is a cube}\}$$

Lecture05

Kernels

- ◆ Definition: The *kernels* of an expression f are the set of expressions $K(f) = \{g \mid g \in D(f) \text{ and } g \text{ is cube free}\}$
- lack The kernels of an expression f are K(f) = {f/c}, where
 - / denote algebraic polynomial division
 - > c is a cube
 - ➤ No cube divide f/c evenly (without any remainder)
- ◆ Naïve kernel computation method
 - Divide function by the elements of the power set of its support set
- ◆ The cube c used to obtain the kernel is the *co-kernel* for that kernel

Lecture0

Slide 45

Co-Kernels

- ◆ Definition: A cube c used to obtain the kernel k = f/c is called a co-kernel of k. C(f) is used to denote the set of co-kernels of f.
- **♦** Example

$$x = adf + aef + bdf + bef + cdf + cef + g$$
$$= (a + b + c)(d + e)f + g$$

Kernel	Co-kernel
a+b+c	df, ef
d+e	af, bf, cf
(a+b+c)(d+e)f+g	1

Lecture05

Kernels of Expressions

◆Example:

$$f = x_1 x_2 x_3 + x_1 x_2 x_4 + x_3' x_2$$

$$K = \{x_1 x_3 + x_1 x_4 + x_3', x_3 + x_4\}$$

 $x_1 x_2$ is the co-kernel for the kernel $x_3 + x_4$

◆Kernels can be used to factor an expression

$$f = x_2(x_1(x_3 + x_4) + x_3')$$

Key in finding common divisors between expressions

Lecture05

Slide 47

Common Divisor

◆ Theorem (Brayton & McMullen):

f and g have a multiple-cube common divisor if and only if the intersection of a kernel of f and a kernel of g has more than one cube

$$\begin{split} f_1 &= x_1(x_2x_3 + x_2{}'x_4) + x_5 \\ f_2 &= x_1(x_2x_3 + x_2{}'x_5) + x_4 \\ K(f_1) &= \{x_2x_3 + x_2{}'x_4, \\ &\quad x_1(x_2x_3 + x_2{}'x_4) + x_5\} \\ K(f_2) &= \{x_2x_3 + x_2{}'x_5, \\ &\quad x_1(x_2x_3 + x_2{}'x_5) + x_4\} \\ K_1 &\cap K_2 &= \{x_2x_3, x_1x_2x_3\} \end{split}$$

 f₁ and f₂ have no multiplecube common divisor

$$f_1 = x_1 x_2 + x_3 x_4 + x_5$$

$$f_2 = x_1 x_2 + x_3' x_4 + x_5$$

$$K(f_1) = \{ x_1 x_2 + x_3 x_4 + x_5 \}$$

$$K(f_2) = \{ x_1x_2 + x_3'x_4 + x_5 \}$$

$$K_1 \cap K_2 = \{ x_1 x_2 + x_5 \}$$

f₁ and f₂ have multiple-cube common divisor

Lecture05

Cube-Literal Matrix

◆ Cube-literal matrix

f = x1x2x3x4x7 + x1x2x3x4x8 + x1x2x3x5 + x1x2x3x6 + x1x2x9

	x_I	x_2	x_3	x_4	x_5	x_6	x_7	x_8	X9
$x_1x_2x_3x_4x_7$	1	1	1	1	O	0 0 0 0	1	О	O
$x_1x_2x_3x_4x_8$	1	1	1	1	O	O	O	1	O
$x_1x_2x_3x_5$	1	1	1	O	1	O	O	O	O
$x_1x_2x_3x_6$	1	1	1	O	O	1	O	O	O
$x_1x_2x_9$	1	1	O	O	O	O	O	O	1

Lecture0

Slide 49

Cube-Literal Matrix & Rectangles (1/2)

◆ A rectangle (R, C) of a matrix A is a subset of rows R and columns C such that

$$A_{ii} = 1 \forall i \in \mathbb{R}, j \in \mathbb{C}$$

- > Rows and columns need not to be continuous
- ◆A prime rectangle is a rectangle not contained in any other rectangle
 - ➤ A prime rectangle indicates a {co-kernel, kernel} pair

Lecture05

Cube-Literal Matrix & Rectangles (2/2)

◆Example:

$$R = \{\{1, 2, 3, 4\}, \{1, 2, 3\}\}$$

 \triangleright co-kernel: $x_1x_2x_3$

 \triangleright kernel: $x_4x_7 + x_4x_8 + x_5 + x_6$

x_{I}	x_2	x_3	<i>x</i> ₄	x_5	x_6	x_7	x_8	X9
1	1	1	1	O	O	1	O	O
1	1	1	1	O	O	O	1	O
1	1	1	О	1	O	O	O	O
1_	1	1	О	O	1	O	O	O
1	1	O	O	0	O	O	O	1
	1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0	1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 0 0

Rectangles and Logic Synthesis

♦ Single cube extraction

F = abc + abd + eg

G = abfg

H = bd + ef

({1,2,4},{1,2}) <=> ab

({2,5},{2,4}) <=> bd

F = Xc + XY + eg

G = Xfg

H = Y + ef

X = ab

Y = bd

<u>4</u> 0	5 O	<i>f</i> 6	7
		О	О
1	_		
1	O	O	О
			1
\mathbf{o}	\mathbf{o}	1	1
1	\mathbf{o}	O	О
\mathbf{o}	1	1	О
	O O 1	O O 1 O	O 1 O O O 1

Lecture05

Summary

- ◆Two-level logic optimization
 - ➤ Minimization criteria: number of product terms
 - ➤ Karnaugh maps [Kar53]
 - ➤ Quine-McCluskey [McC56]
- ◆ Multi-level logic optimization
 - ➤ Goal : given initial network, find best network
 - > Two problems:
 - Find good common sub-functions
 - How to perform division
 - > Weak Division Algorithm

Lecture05