Séries temporelles linéaires Examen 2015-2016

Durée : 2 heures. Sans document.

Les exercices sont indépendants. Il est demandé de justifier les réponses de façon concise.

Exercice 1 Soit n observations d'une série temporelle bivariée (Y_{1t}, Y_{2t}) pour $t = 1, \ldots, n$. On considère le modèle de régression linéaire

$$Y_{2t} = aY_{1t} + b + U_t$$

où U_t est centré et non corrélé avec Y_{1t} .

- 1. Comment est calculé l'estimateur des moindres carrés ordinaires (MCO) (\hat{a}_n, \hat{b}_n) du paramètre (a, b)?
- 2. Lorsque $n \to \infty$, comment se comporte l'estimateur MCO quand la série bivariée est stationnaire?
- 3. Comment se comporte l'estimateur MCO quand la série bivariée est cointégrée?
- 4. Comment se comporte l'estimateur MCO quand la série bivariée est non stationnaire et non cointégrée?
- 5. Comment se comporte l'estimateur MCO si

$$\left(\begin{array}{c} Y_{1t} \\ Y_{2t} \end{array}\right) = \left(\begin{array}{c} \eta_{1t} \\ 2\eta_{1t} + \eta_{2t} \end{array}\right),$$

où (η_{1t}) et (η_{2t}) sont deux bruits blancs forts indépendants?

6. Comment se comporte l'estimateur MCO si

$$\begin{pmatrix} Y_{1t} \\ Y_{2t} \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{t} \eta_{1i} + 2t \\ \sum_{i=1}^{t} \eta_{2i} + t \end{pmatrix},$$

où (η_{1t}) et (η_{2t}) sont deux bruits blancs forts indépendants?

7. Comment se comporte l'estimateur MCO si

$$\begin{pmatrix} Y_{1t} \\ Y_{2t} \end{pmatrix} = \begin{pmatrix} 2\sum_{i=1}^t \eta_{1i} \\ \sum_{i=1}^t \eta_{1i} + \eta_{2t} \end{pmatrix},$$

où (η_{1t}) et (η_{2t}) sont deux bruits blancs forts indépendants?

Exercice 2 Soit (ϵ_t) et (η_t) deux bruits blancs forts indépendants de variances strictement positives, et

$$\begin{cases} X_t = \epsilon_t + a\eta_t + b\eta_{t-1} \\ Y_t = \eta_t. \end{cases}$$

- 1. La série (Y_t) cause-t-elle la série (X_t) au sens de Granger?
- 2. La série (X_t) cause-t-elle la série (Y_t) au sens de Granger?
- 3. A-t-on causalité instantanée entre les séries (X_t) et (Y_t) au sens de Granger?

Exercice 3 Soit $X_t = \eta_t \eta_{t-3}$, où (η_t) est un bruit blanc fort de loi $\mathcal{N}(0,1)$.

- 1. Le processus X_t est-il stationnaire? est-il ergodique?
- 2. Quel type de modèle ARMA suit le processus X_t ? Quel type de modèle ARMA suit le processus X_t^2 ?
- 3. Soit les observations X_1, \ldots, X_n . Comment sont calculées les autocorrélations empiriques $\hat{\rho}_X(h)$ de ces observations (avec $0 \le h < n$)? Vers quoi converge $\hat{\rho}_X(h)$ lorsque $n \to \infty$?
- 4. Quelle est la loi asymptotique de $\sqrt{n}\hat{\rho}_X(h)$? Comparer avec celle des autocorrélations empiriques d'un bruit blanc fort.