Lineární programování a kombinatorická optimalizace – příklady na 10. cvičení*

21. dubna 2020

1 Dualita její aplikace

Mějme následující úlohu lineárního programování P s n proměnnými a m podmínkami:

$$\max \mathbf{c}^{\mathsf{T}} \mathbf{x}$$
 za podmínek $A\mathbf{x} \le \mathbf{b}$ a $\mathbf{x} \ge \mathbf{0}$. (P)

Té budeme říkat primární lineární program (neboli primár). Jeho duálním lineárním programem (neboli duálem) nazveme následující lineární program D s m proměnnými a n podmínkami:

$$\min \mathbf{b}^{\top} \mathbf{y}$$
 za podmínek $A^{\top} \mathbf{y} \ge \mathbf{c}$ a $\mathbf{y} \ge \mathbf{0}$. (D)

Vysvětlení: při řešení P se snažíme najít lineární kombinaci m podmínek soustavy $A\mathbf{x} \leq \mathbf{b}$ s nějakými koeficienty $y_1, \ldots, y_m \geq 0$ takovými, aby výsledná nerovnost měla j-tý koeficient aspoň c_j pro každé $j \in \{1, \ldots, n\}$ a pravá strana přitom byla co nejmenší.

Ukazuje se, že program D "hlídá" program P podle následujícího výsledku, ze kterého například vidíme, že je-li P neomezený, pak D nemá přípustné řešení.

Věta 1 (Slabá věta o dualitě). Pro každé přípustné řešení \mathbf{x} úlohy P a každé přípustné řešení \mathbf{y} úlohy D platí $\mathbf{c}^{\top}\mathbf{x} \leq \mathbf{b}^{\top}\mathbf{y}$.

Následující zesílení je asi nejdůležitějším teoretickým výsledkem o lineárních programech.

Věta 2 (Silná věta o dualitě). Pro úlohy P a D nastane právě jedna z následujících čtyř možností:

- (a) Ani P ani D nemá přípustné řešení.
- (b) Úloha P je neomezená a D nemá přípustné řešení.
- (c) Úloha P nemá přípustné řešení a D je neomezená.
- (d) Úlohy P i D mají přípustné řešení. Pak mají i optimální řešení \mathbf{x}^* a \mathbf{y}^* a platí $\mathbf{c}^{\top}\mathbf{x}^* = \mathbf{b}^{\top}\mathbf{y}^*$.

Duální lineární programy můžeme uvážit i pro lineární programy v obecném tvaru, stačí postupovat podle následující tabulky. Postup funguje zleva doprava i zprava doleva.

	Primární úloha	Duální úloha
Proměnné	$\mathbf{x} = (x_1, \dots, x_n)$	$\mathbf{y}=(y_1,\ldots,y_m)$
Matice	$A \in \mathbb{R}^{m \times n}$	$A^{\top} \in \mathbb{R}^{n \times m}$
Pravá strana	$\mathbf{b} \in \mathbb{R}^m$	$\mathbf{c} \in \mathbb{R}^n$
Účelová funkce	$\max \mathbf{c}^{\top} \mathbf{x}$	$\min \mathbf{b}^{ op} \mathbf{y}$
Podmínky	i -tá podmínka má \leq	$y_i \ge 0$
	≥	$y_i \le 0$
	=	$y_i \in \mathbb{R}$
	$x_j \ge 0$	j -tá podmínka má \geq
	$x_j \le 0$	≤
	$x_j \in \mathbb{R}$	=

^{*}Informace o cvičení naleznete na http://kam.mff.cuni.cz/~balko/

Příklad 1. Sestrojte duální úlohu k lineární relaxaci úlohy Nalezení minimálního vrcholového pokrytí ve váženém grafu G = (V, E, w), kde $w \colon V \to \mathbb{R}^+$. Pro připomenutí, tato relaxace vypadá následovně:

$$Proměnné: \quad x_v \geq 0 \ pro \ každé \ v \in V$$

 Účelová funkce:
$$\min \sum_{v \in V} w(v) x_v$$

Podmínky: $x_u + x_v \ge 1$ pro každé $\{u, v\} \in E$

Jaký problém řeší duální úloha pro jednotkové váhy?

 $\check{R}e\check{s}eni$. Nejprve převedeme primár do tvaru max $\mathbf{c}^{\top}\mathbf{x}$ za podmínek $A\mathbf{x} \leq \mathbf{b}$ a $\mathbf{x} \geq \mathbf{0}$.

Proměnné: $x_v \ge 0$ pro každé $v \in V$

Účelová funkce: $\max \sum_{v \in V} -w(v)x_v$

Podmínky: $-x_u - x_v \le -1$ pro každé $\{u, v\} \in E$

Poté vytvoříme duál (lze postupovat i podle tabulky zprava doleva bez předešlého předvodu).

Proměnné: $y_e \ge 0$ pro každé $e \in E$

Účelová funkce: $\min \sum_{e \in E} -y_e$

Podmínky : $\sum_{\{v,w\}\in E} -y_{\{v,w\}} \geq -w(v) \text{ pro každé } v \in V$

Po přepsání účelové funkce na maximum pak dostáváme

Proměnné: $y_e \ge 0$ pro každé $e \in E$

Účelová funkce: $\max \sum_{e \in E} y_e$

Podmínky : $\sum_{\{v,w\}\in E} y_{\{v,w\}} \le w(v) \text{ pro každé } v \in V$

Duál je pro jednotkové váhy lineární relaxací problému maximálního párování, příčemž párování je graf maximálního stupně 1. To proto, že podmínky v duálu jsou poté ve tvaru $\sum_{\{v,w\}\in E} y_{\{v,w\}} \le 1$ pro každé $v\in V$ a maximalizujeme součet $\sum_{e\in E} y_e$, což by v případě binárních proměnných odpovídalo výběrům co nejvíce hran, přičemž z každého vrcholu vede nanejvýš jedna vybraná hrana. Neboli pak chceme vyrat co nejvíce hran tvořících párování.

Zatímco problém nalezení minimálního vrcholového pokrytí je NP-úplný, problém nalezení maximálního párování v obecném grafu se dá řešit v polynomiálním čase pomocí kvítkového Edmonsova algoritmu ("Blossom algorithm"). Podle Silné věty o dualitě se hodnoty optimálních řešení primáru a duálu rovnají. Nedokázali jsme tedy, že P=NP? Ne, protože duální k sobě jsou jen lineární relaxace problémů nalezení minimálního vrcholového pokrytí a relaxace problému nalezení maximálního párování. Trváme-li na celočíselnosti řešení, pak se může stát, že celočíselné optimum u úlohy nalezení minimálního vrcholového pokrytí je menší než celočíslené optimální řešení úlohy nalezení maximálního párování. Je-li ovšem graf G bipartitní, pak, jak snad ještě uvidíme, vždy existuje celočíselné optimální řešení a dostáváme tak důkaz Königovy–Egerváryho věty, která říká, že v bipartitním grafu se velikost maximálního párování rovná velikosti minimálního vrcholového pokrytí.

Sit je uspořádaná čtveřice (G,z,s,c), kde G=(V,E) je orientovaný graf, neboli $E\subseteq V\times V$, z a s jsou dva různé vrcholy grafu G (zvané zdroj a stok) a kapacita $c\colon E\to \mathbb{R}^+_0$ je funkce ohodnocující hrany. Tok v siti je každá funkce $f\colon E\to \mathbb{R}$ splňující $0\le f(e)\le c(e)$ pro každou hranu $e\in E$ a

$$\sum_{v:(u,v)\in E} f(u,v) = \sum_{v:(v,u)\in E} f(v,u)$$

pro každý vrchol $u \in V$ mimo stok a zdroj. Velikost toku je

$$w(f) = \sum_{v:(z,v)\in E} f(z,v) - \sum_{v:(v,z)\in E} f(v,z).$$

 \check{R} ezem v síti je množina R hran vedoucích z množiny vrcholů Z do množiny vrcholů $S=V\setminus S$, kde $z\in Z$ a $s\in S$. Kapacitou řezu R je $\sum_{e\in R}c(e)$.

Příklad 2. Uvažme následující úlohu lineárního programování pro problém Nalezení maximálního toku v síti (G = (V, E), z, s, c):

Proměnné: $x_e \ge 0$ pro každé $e \in E$

Podmínky:
$$\sum_{u:(u,v)\in E} x_{u,v} - \sum_{u:(v,u)\in E} x_{v,u} = 0 \text{ pro každ\'e } v \in V$$
$$x_e \le c(e) \text{ pro každ\'e } e \in E$$

 $(V\ tomto\ programu\ jsme\ přidali\ hranu\ (s,z)\ "nekonečně"\ velké\ kapacity,\ čímž\ tok\ cirkuluje\ a\ program\ se\ tak\ zjednoduší\ uvedením\ podmínek\ Kirchhoffových\ zákonů\ i\ pro\ zdroj\ a\ stok).$

Sestrojte duál této úlohy a (*) nahlédněte, že odpovídá relaxaci úlohy Nalezení řezu minimální kapacity v síti.

Řešení. Podle tabulky je duálem následující úloha:

Proměnné: $y_v \in \mathbb{R}$ pro každé $v \in V$ a $y_e \geq 0$ pro každé $e \in E$

Účelová funkce: $\min \sum_{e \in E} c(e) y_e$

Podmínky : $y_{u,v}+y_v-y_u\geq 0$ pro každé $(u,v)\in E\setminus\{(s,z)\}$ $y_{s,z}+y_z-y_s\geq 1$

Dokážeme, že duál je relaxací úlohy Nalezení minimálního řezu v síti. V duálu proměnné y_e odpovídají hranám e, které vybereme do R, je-li $y_e>0$, a proměnné y_v odpovídají vybraným vrcholům do Z, které vybereme, je-li $y_v>y_s$. Položme $S=V\setminus Z$. Podmínky $y_{u,v}+y_v-y_u\geq 0$, které jsou ekvivalentní s $y_{u,v}\geq y_u-y_v$, říkají, že je-li $u\in Z$ a $v\in S$, pak je $(u,v)\in R$. Tedy R obsahuje hrany jdoucí ze Z do S.

Nyní nahlédneme, že skutečně platí $z\in Z$ a $s\in S$. Podmínka $y_{s,z}+y_z-y_s\geq 1$ v naší interpretaci říká, že $z\in Z$ a $s\in S$, protože c(s,z) je velmi velké a tedy z minimalizace je v optimu $y_{s,z}=0$, což z podmínek dává $0\geq y_s-y_z$, neboli $y_z\geq y_s$. Potom z $y_z-y_s\geq 1$ je nutně $y_z>y_s$, což znamená $z\in Z$, zatímco triviálně neplatí $y_s>y_s$ a tak $s\in S$.

Proměnné y_e a y_v tak skutečně určují rozdělení V na Z a S, kde $z \in Z$ a $s \in S$, přičemž hrany ze Z do S musí být v R, které tak obsahuje řez. Ještě ukážeme, že v optimálním řešení jsou v R skutečně jen hrany jdoucí ze Z do S a žádné navíc. Z minimalizace jsou hodnoty y_e co nejmenší a nezáporné, tedy $y_{u,v} = y_u - y_v$ pro $y_u > y_v$ a 0 jinak. Pokud $u,v \in Z$, pak volbou $y_u = y_v$ je $y_{u,v} = 0$ a podobně pro $u,v \in S$. Tedy z minimalizace mají všechny proměnné y_u s $u \in Z$ stejnou hodnotu y_z a y_u s $u \in S$ mají stejnou hodnotu y_s a v R skutečne leží jen hrany mezi Z do S. Hodnotu $y_{s,z} = y_z - y_s \ge 1$ chceme co nejmenší, což odpovídá volbě $y_{s,z} = 1$, speciálně $y_z > y_s$ a v R tak leží jen hrany směřující ze Z do S, protože hrany (u,v) z S do Z mají $y_u - y_v = y_s - y_z < 0$ a tak $y_{u,v} = 0$. Z tvaru účelové funkce je tak optimálním řešením duálu řez minimální kapacity.

Podle Silné věty o dualitě platí, že velikost maximálního toku se rovná "kapacitě minimálního řezu", který vystoupí relaxace úlohy nalezení minimálního řezu. O tomto řešení ještě nevíme, zda musí být celočíselné a nedokážeme tedy ještě říct, že dává opravdový minimální řez. Později si snad ale ukážeme, že jsou-li kapacity v síti celočíselné, tak existuje optimální celočíselné řešení duálu. To nám potom podle Silné věty o dualitě nejen dokáže Hlavní větu o tocích (maximální velikost toku v síti se rovná kapacitě minimálního řezu), ale také větu o celočíselnosti (Jsou-li kapacity celočíselné, tak existuje celočíselný tok maximální velikosti.).

Příklad 3. (a) Uvažte následující lineární program pro neorientovaný graf G = (V, E) a jeho vrcholy s a t:

 $\begin{array}{ll} \textit{Proměnné:} & x_v \geq 0 \ \textit{pro každ\'e} \ v \in V \\ \\ \textit{\'U\'eelov\'a funkce:} & \max x_t \\ \\ \textit{Podm\'inky:} & x_s = 0 \\ \\ & x_u - x_v \leq 1 \ \textit{pro každ\'e} \ \{u,v\} \in E \\ \\ & x_v - x_u \leq 1 \ \textit{pro každ\'e} \ \{u,v\} \in E \end{array}$

Nahlédněte, že řeší úlohu Nalezení délky nejkratší cesty $mezi \ vrcholy \ s \ a \ t \ v \ G. \ V$ účelové funkci je skutečně maximum, i když chceme nalézt nejkratší cestu.

- (b) Zkonstruujte duál k předešlé úloze. Jaký problém duál řeší?
- \check{R} ešení. (a) Lineární program ze zadání nastaví nulu do x_s a poté zvyšuje hodnoty v dalších vrcholech podle jejich minimální vdálenosti od s. Představme si hodnotu proměnné x_v jako pozici, na reálné ose, na kterou umístíme vrchol v. Potom podmínky říkají, že za každou hranu $\{u,v\}\in E$ jsou vrcholy u a v umístěné ve vzdálenosti nanejvýš 1 od sebe. Maximalizujeme hodnotu $x_t\geq 0$, neboli chceme pozici vrcholu x_t dát co nejdál napravo od nuly. Nejvíce nás přitom limituje délka nejkratší cesty z s do t, protože za každou její hranu můžeme dát její vrcholy do vzdálenosti 1 na reálné ose, čímž vidíme, že x_t je shora odhadnuté délkou nejkratší cesty z s do t v s0. Na druhou stranu existuje řešení s0, s0, ves0, ve kterém je s0, rovné délce nejkratší cesty z s0 do s0, stačí pro každé s0, nastavit s0, jako délku nejkratší cesty z s0 do s0. Tedy s1, skutečně odpovídá délce nejkratší cesty z s3 do s4 v s5.
- (b) Z úlohy v zadání uděláme duál podle tabulky a dostaneme lineární program se dvěma proměnnými $y_{u,v}$ a $y_{v,u}$ za každou hranu $\{u,v\} \in E$ a jednou proměnnou y_s navíc za podmínku $x_s = 0$. V každém sloupci původní matice podmínek odpovídajícímu vrcholu $v \in V \setminus \{s,t\}$ jsou členy +1 za každou hranu $\{u,v\}$ v pořadí (u,v) a -1 za pořadí (v,u). Tento sloupec se v duálu stane řádkem a dá nám jednu podmínku. Pro vrchol t máme podobné sloupce a tedy i podmínky, jen na pravé straně je 1 namísto 0 kvůli původní účelové funkci. Pro vrchol s je ve soupci ještě navíc 1 za první původní podmínku, což se projeví na levé straně příslušné podmínky pro s v duálu. Konkrétně dostaneme následující lineární program:

Proměnné:
$$y_{u,v}, y_{v,u} \geq 0$$
 pro každé $\{u,v\} \in E$ a $y_s \in \mathbb{R}$ Účelová funkce:
$$\min \sum_{\{u,v\} \in E} (y_{u,v} + y_{v,u})$$
 Podmínky:
$$-\sum_{\{u,v\} \in E} y_{u,v} + \sum_{\{v,u\} \in E} y_{v,u} \geq 0$$
 pro každé $v \in V \setminus \{s,t\}$
$$-\sum_{\{u,t\} \in E} y_{u,t} + \sum_{\{t,u\} \in E} y_{t,u} \geq 1$$

$$y_s - \sum_{\{u,s\} \in E} y_{u,s} + \sum_{\{s,u\} \in E} y_{s,u} \geq 0$$

V duálu tedy hledáme minimální "tok" v síti určené orientací grafu G, do které přidáme hrany v obou směrech za každou původní hranu. Chceme takový tok, aby ze stoku t odteklo o 1 víc, než do něj přiteklo, a z každého vrcholu odteklo aspoň tolik, kolik do něj přiteklo.