Recurrent Neural Networks

CS114B Lab 11

Kenneth Lai

April 23, 2021

▶ Suppose we observe a list of words *X*. What are the respective parts of speech *Y*?

- ► Suppose we observe a list of words *X*. What are the respective parts of speech *Y*?
 - ▶ What is P(Y|X)?

- ▶ Suppose we observe a list of words *X*. What are the respective parts of speech *Y*?
 - ▶ What is P(Y|X)?
- Generative approach: Hidden Markov Models

- ▶ Suppose we observe a list of words *X*. What are the respective parts of speech *Y*?
 - ▶ What is P(Y|X)?
- Generative approach: Hidden Markov Models
- Discriminative approaches:
 - Conditional random fields
 - Structured perceptrons

- ► Suppose we observe a list of words *X*. What are the respective parts of speech *Y*?
 - ▶ What is P(Y|X)?
- Generative approach: Hidden Markov Models
- Discriminative approaches:
 - Conditional random fields
 - Structured perceptrons
 - Neural networks

▶ Discriminative approaches:

- Discriminative approaches:
 - At each time step, use local features to compute local scores, and use the Viterbi algorithm to make predictions for the whole sentence

- Discriminative approaches:
 - At each time step, use local features to compute local scores, and use the Viterbi algorithm to make predictions for the whole sentence
 - Conditional random fields
 - Structured perceptrons

- Discriminative approaches:
 - At each time step, use local features to compute local scores, and use the Viterbi algorithm to make predictions for the whole sentence
 - Conditional random fields
 - Structured perceptrons
 - Use features from other time steps, but make independent predictions at each time step

- Discriminative approaches:
 - At each time step, use local features to compute local scores, and use the Viterbi algorithm to make predictions for the whole sentence
 - Conditional random fields
 - Structured perceptrons
 - Use features from other time steps, but make independent predictions at each time step
 - Neural networks

Feedforward Neural Networks

- Output layer
- ► Hidden layer(s)
- ► Input layer
- $h = g(\mathbf{x} \cdot \mathbf{W})$
- $\quad \quad \mathbf{\hat{y}} = g(\mathbf{h} \cdot \mathbf{V})$

Feedforward Neural Networks

- Output layer
- ► Hidden layer(s)
- Input layer
- ▶ $\mathbf{h} = g(\mathbf{x} \cdot \mathbf{W})$
- $\hat{\mathbf{y}} = g(\mathbf{h} \cdot \mathbf{V})$
 - We will assume that the dummy feature 1 is part of x and h, and that the bias term is part of W and V, etc.

► At each time *i*, the input to the neural network consists of:

- ► At each time *i*, the input to the neural network consists of:
 - Current word (or other input) vector x_i

- ► At each time *i*, the input to the neural network consists of:
 - Current word (or other input) vector x_i
 - ► History/(past) context vector **h**_{i-1}

- ► At each time *i*, the input to the neural network consists of:
 - Current word (or other input) vector x_i
 - History/(past) context vector h_{i-1}
- $h_i = g(\mathbf{x}_i \cdot \mathbf{W} + \mathbf{h}_{i-1} \cdot \mathbf{U})$

► The output of the hidden state at one time step is the history/past context input for the next time step!

- ► The output of the hidden state at one time step is the history/past context input for the next time step!
- ▶ What context information is embedded in \mathbf{h}_{i-1} ?

- ► The output of the hidden state at one time step is the history/past context input for the next time step!
- ▶ What context information is embedded in \mathbf{h}_{i-1} ?
 - ▶ Previous word \mathbf{x}_{i-1}
 - Previous context **h**_{i-2}

- ► The output of the hidden state at one time step is the history/past context input for the next time step!
- ▶ What context information is embedded in \mathbf{h}_{i-1} ?
 - ▶ Previous word \mathbf{x}_{i-1}
 - Previous context **h**_{i-2}
 - ▶ Previous previous word \mathbf{x}_{i-2}
 - ▶ Previous previous context \mathbf{h}_{i-3}

- ► The output of the hidden state at one time step is the history/past context input for the next time step!
- ▶ What context information is embedded in \mathbf{h}_{i-1} ?
 - ► All previous words

- ► The output of the hidden state at one time step is the history/past context input for the next time step!
- ▶ What context information is embedded in \mathbf{h}_{i-1} ?
 - ► All previous words
 - What about previous parts of speech (as in HMMs, CRFs, structured perceptrons)?

- ► The output of the hidden state at one time step is the history/past context input for the next time step!
- ▶ What context information is embedded in \mathbf{h}_{i-1} ?
 - ► All previous words
 - What about previous parts of speech (as in HMMs, CRFs, structured perceptrons)?
 - To learn more, take StatNLP in the fall!

Recurrent Neural Networks

Recurrent Neural Networks

► Neural networks in which the output of a layer in one time step is input to a layer in the next time step

 Sequence labeling: predict current tag given current word, history

- Sequence labeling: predict current tag given current word, history
- ► Language modeling: predict next word given current word, history

- Sequence labeling: predict current tag given current word, context
- ► Language modeling: predict next word given current word, context

RNNs for Text Classification

RNNs for Text Classification

▶ What context information is embedded in h_T?

RNNs for Text Classification

- ▶ What context information is embedded in h_T?
 - Current word x_T
 - ► Context \mathbf{h}_{T-1}

RNNs for Text Classification

- ▶ What context information is embedded in h_T?
 - ► All words (i.e. the whole text)

RNNs for Text Classification

- ▶ What context information is embedded in h_T?
 - ► All words (i.e. the whole text)
- ▶ Use $\mathbf{h}_{\mathcal{T}}$ to predict class $\hat{\mathbf{y}}_{\mathcal{T}}$ of entire document

RNNs for Text Classification

- ▶ What context information is embedded in h_T?
 - ► All words (i.e. the whole text)
- ▶ Use \mathbf{h}_T to predict class $\hat{\mathbf{y}}_T$ of entire document
 - Ignore other outputs

- ► For each matrix of weights **W**, starting from the output and working backwards:
 - ▶ Compute gradient $(\nabla L)^{[\mathbf{W}]}$
- ► For each matrix of weights **W**:
 - ▶ Move in direction of negative gradient

• Compute gradient $(\nabla L)^{[\mathbf{V}]}$

- Compute gradient $(\nabla L)^{[V]}$
- ▶ Use $(\nabla L)^{[\mathbf{V}]}$ to compute gradient $(\nabla L)^{[\mathbf{W}]}$

Start at the end of the text and work backwards

- Start at the end of the text and work backwards
 - Let $(\nabla L)_{i,j}^{[\mathbf{W}]}$ denote the part of the gradient for weight matrix \mathbf{W} at time i that comes from the output at time j

- Start at the end of the text and work backwards
 - ▶ Compute gradient $(\nabla L)_{T,T}^{[V]}$

- Start at the end of the text and work backwards
 - Compute gradient $(\nabla L)_{T,T}^{[V]}$
 - ▶ Use $(\nabla L)_{T,T}^{[\mathbf{V}]}$ to compute gradients $(\nabla L)_{T,T}^{[\mathbf{W}]}$ and $(\nabla L)_{T,T}^{[\mathbf{U}]}$

- Start at the end of the text and work backwards
 - ▶ Compute gradient $(\nabla L)_{T,T}^{[V]}$
 - ▶ Use $(\nabla L)_{T,T}^{[\mathbf{V}]}$ to compute gradients $(\nabla L)_{T,T}^{[\mathbf{W}]}$ and $(\nabla L)_{T,T}^{[\mathbf{U}]}$ ▶ Use $(\nabla L)_{T,T}^{[\mathbf{U}]}$ to compute gradients $(\nabla L)_{T-1,T}^{[\mathbf{W}]}$ and $(\nabla L)_{T-1,T}^{[\mathbf{U}]}$

- Start at the end of the text and work backwards
 - ▶ Compute gradient $(\nabla L)_{T,T}^{[V]}$
 - ▶ Use $(\nabla L)_{T,T}^{[\mathbf{V}]}$ to compute gradients $(\nabla L)_{T,T}^{[\mathbf{W}]}$ and $(\nabla L)_{T,T}^{[\mathbf{U}]}$ ▶ Use $(\nabla L)_{T,T}^{[\mathbf{U}]}$ to compute gradients $(\nabla L)_{T-1,T}^{[\mathbf{W}]}$ and $(\nabla L)_{T-1,T}^{[\mathbf{U}]}$

 - etc.

- Start at the end of the text and work backwards
 - ▶ Compute gradient $(\nabla L)_{T-1,T-1}^{[V]}$

- Start at the end of the text and work backwards
 - Compute gradient $(\nabla L)_{T-1,T-1}^{[V]}$
 - ▶ Use $(\nabla L)_{T-1,T-1}^{[\mathbf{V}]}$ to compute gradients $(\nabla L)_{T-1,T-1}^{[\mathbf{W}]}$ and $(\nabla L)_{T-1,T-1}^{[\mathbf{U}]}$

- Start at the end of the text and work backwards
 - Compute gradient $(\nabla L)_{T-1,T-1}^{[V]}$
 - ▶ Use $(\nabla L)_{T-1,T-1}^{[\mathbf{V}]}$ to compute gradients $(\nabla L)_{T-1,T-1}^{[\mathbf{W}]}$ and $(\nabla L)_{T-1,T-1}^{[\mathbf{U}]}$
 - etc.

▶ The overall gradient for a weight matrix \mathbf{W} is the sum of the gradients at each time i from each output $\hat{\mathbf{y}}_{j}$

▶ The overall gradient for a weight matrix \mathbf{W} is the sum of the gradients at each time i from each output $\hat{\mathbf{y}}_{j}$

$$(\nabla L)^{[\mathbf{W}]} = \sum_{j=1}^{T} \sum_{i=1}^{j} (\nabla L)_{i,j}^{[\mathbf{W}]}$$

▶ The overall gradient for a weight matrix \mathbf{W} is the sum of the gradients at each time i from each output $\hat{\mathbf{y}}_{j}$

$$(\nabla L)^{[\mathbf{W}]} = \sum_{i=1}^{T} \sum_{j=1}^{j} (\nabla L)_{i,j}^{[\mathbf{W}]}$$

▶ Then move in direction of negative gradient

▶ Output $\hat{\mathbf{y}}_i$ depends on hidden state \mathbf{h}_i (i.e. current word \mathbf{x}_i and history/(past) context \mathbf{h}_{i-1})

- ▶ Output $\hat{\mathbf{y}}_i$ depends on hidden state \mathbf{h}_i (i.e. current word \mathbf{x}_i and history/(past) context \mathbf{h}_{i-1})
- What about future context?

Bidirectional RNNs

► Idea: Train two RNNs: passing the input into one forward and one backward

Bidirectional RNNs

- Idea: Train two RNNs: passing the input into one forward and one backward
- ▶ Output $\hat{\mathbf{y}}_i$ depends on forward hidden state $\overrightarrow{\mathbf{h}}_i$ and backward hidden state $\overleftarrow{\mathbf{h}}_i$

Forward RNN

Backward RNN

Bidirectional RNN

ightharpoonup $\overrightarrow{\mathbf{h}}_{\mathcal{T}}$ encodes the whole text

- $\overrightarrow{\mathbf{h}}_T$ encodes the whole text
 - Use $\overrightarrow{\mathbf{h}}_T$ to predict class $\hat{\mathbf{y}}_T$ of entire document

- ightharpoonup ightharpoonup encodes the whole text
 - Use $\overrightarrow{\mathbf{h}}_T$ to predict class $\hat{\mathbf{y}}_T$ of entire document
- \rightarrow \mathbf{h}_1 also encodes the whole text

- $ightharpoonup \overrightarrow{\mathbf{h}}_T$ encodes the whole text
 - Use $\overrightarrow{\mathbf{h}}_{\mathcal{T}}$ to predict class $\hat{\mathbf{y}}_{\mathcal{T}}$ of entire document
- \rightarrow \mathbf{h}_1 also encodes the whole text
 - Use $\overleftarrow{\mathbf{h}}_1$ to predict class $\widehat{\mathbf{y}}_1$ of entire document

• Use $\overrightarrow{\mathbf{h}}_T$ and $\overleftarrow{\mathbf{h}}_1$ to predict class $\hat{\mathbf{y}}$ of entire document

Context and Long-Distance Dependencies

▶ \mathbf{h}_{i-1} encodes the (past, in a forward RNN) context $\mathbf{x}_1, ..., \mathbf{x}_{i-1}$

- ▶ \mathbf{h}_{i-1} encodes the (past, in a forward RNN) context $\mathbf{x}_1, ..., \mathbf{x}_{i-1}$
 - ▶ But mostly \mathbf{x}_{i-1} , less \mathbf{x}_{i-2} , even less \mathbf{x}_{i-3} , ..., very little \mathbf{x}_1

- ▶ \mathbf{h}_{i-1} encodes the (past, in a forward RNN) context $\mathbf{x}_1, ..., \mathbf{x}_{i-1}$
 - ▶ But mostly \mathbf{x}_{i-1} , less \mathbf{x}_{i-2} , even less \mathbf{x}_{i-3} , ..., very little \mathbf{x}_1
- Context is local

► Example: subject-verb agreement

- Example: subject-verb agreement
- ▶ The flights the airline was cancelling were full.

- Example: subject-verb agreement
- ▶ The flights the airline was cancelling were full.

- Example: subject-verb agreement
- ► The flights the airline was cancelling were full.
 - ► The context for "was" is mostly "airline"

- Example: subject-verb agreement
- ► The flights the airline was cancelling were full.
 - ► The context for "was" is mostly "airline"

- Example: subject-verb agreement
- ► The flights the airline was cancelling were full.
 - ► The context for "was" is mostly "airline"
 - ► The context for "were" is mostly "cancelling", "was", "airline"

- Example: subject-verb agreement
- ► The flights the airline was cancelling were full.
 - ► The context for "was" is mostly "airline"
 - ► The context for "were" is mostly "cancelling", "was", "airline"
 - Very little "flights"

• What is $(\nabla L)_{1,T}^{[\mathbf{W}]}$?

• What is $(\nabla L)_{1,T}^{[\mathbf{W}]}$?

- ► For all layers i:
 - $(\nabla L)^{[i]} = (\mathbf{a}^{[i-1]})^T \cdot \delta^{[i]}$

- ► For all layers *i*:
 - $(\nabla L)^{[i]} = (\mathbf{a}^{[i-1]})^T \cdot \delta^{[i]}$
 - For simplicity, we will assume that the minibatch size m=1

- ► For all layers *i*:
 - $(\nabla L)^{[i]} = (\mathbf{a}^{[i-1]})^T \cdot \delta^{[i]}$
 - For simplicity, we will assume that the minibatch size m=1
- ► For an output layer £:

For a hidden layer i:

$$(\nabla L)_{1,T}^{[\mathbf{W}]} = \mathbf{x}^T \cdot \delta^{[\mathbf{h}_1]}$$

$$\begin{split} (\nabla L)_{1,\mathcal{T}}^{[\mathbf{W}]} &= \mathbf{x}^{\mathcal{T}} \cdot \delta^{[\mathbf{h}_1]} \\ &= \mathbf{x}^{\mathcal{T}} \cdot ((\delta^{[\mathbf{h}_2]} \cdot \mathbf{U}^{\mathcal{T}}) \odot g'(\mathbf{z}^{[\mathbf{h}_1]})) \end{split}$$

$$\begin{split} (\nabla L)_{1,T}^{[\mathbf{W}]} &= \mathbf{x}^{T} \cdot \delta^{[\mathbf{h}_{1}]} \\ &= \mathbf{x}^{T} \cdot ((\delta^{[\mathbf{h}_{2}]} \cdot \mathbf{U}^{T}) \odot g'(\mathbf{z}^{[\mathbf{h}_{1}]})) \\ &= \mathbf{x}^{T} \cdot ((((\delta^{[\mathbf{h}_{3}]} \cdot \mathbf{U}^{T}) \odot g'(\mathbf{z}^{[\mathbf{h}_{2}]})) \cdot \mathbf{U}^{T}) \odot g'(\mathbf{z}^{[\mathbf{h}_{1}]})) \end{split}$$

$$(\nabla L)_{1,T}^{[\mathbf{W}]} = \mathbf{x}^{T} \cdot \delta^{[\mathbf{h}_{1}]}$$

$$= \mathbf{x}^{T} \cdot ((\delta^{[\mathbf{h}_{2}]} \cdot \mathbf{U}^{T}) \odot g'(\mathbf{z}^{[\mathbf{h}_{1}]}))$$

$$= \mathbf{x}^{T} \cdot ((((\delta^{[\mathbf{h}_{3}]} \cdot \mathbf{U}^{T}) \odot g'(\mathbf{z}^{[\mathbf{h}_{2}]})) \cdot \mathbf{U}^{T}) \odot g'(\mathbf{z}^{[\mathbf{h}_{1}]}))$$

$$= \dots$$

$$\begin{split} (\nabla L)_{1,T}^{[\mathbf{W}]} &= \mathbf{x}^T \cdot \delta^{[\mathbf{h}_1]} \\ &= \mathbf{x}^T \cdot ((\delta^{[\mathbf{h}_2]} \cdot \mathbf{U}^T) \odot g'(\mathbf{z}^{[\mathbf{h}_1]})) \\ &= \mathbf{x}^T \cdot ((((\delta^{[\mathbf{h}_3]} \cdot \mathbf{U}^T) \odot g'(\mathbf{z}^{[\mathbf{h}_2]})) \cdot \mathbf{U}^T) \odot g'(\mathbf{z}^{[\mathbf{h}_1]})) \\ &= \dots \end{split}$$

▶ If weights/derivatives are small, vanishing gradient

$$\begin{split} (\nabla L)_{1,T}^{[\mathbf{W}]} &= \mathbf{x}^T \cdot \delta^{[\mathbf{h}_1]} \\ &= \mathbf{x}^T \cdot ((\delta^{[\mathbf{h}_2]} \cdot \mathbf{U}^T) \odot g'(\mathbf{z}^{[\mathbf{h}_1]})) \\ &= \mathbf{x}^T \cdot ((((\delta^{[\mathbf{h}_3]} \cdot \mathbf{U}^T) \odot g'(\mathbf{z}^{[\mathbf{h}_2]})) \cdot \mathbf{U}^T) \odot g'(\mathbf{z}^{[\mathbf{h}_1]})) \\ &= \dots \end{split}$$

- If weights/derivatives are small, vanishing gradient
- If weights/derivatives are large, exploding gradient

Simple RNN

Simple RNN

Separate memory (cell) state

Source

- ► Separate memory (cell) state
 - Reading from and writing to memory controlled by gates

- Source
- Separate memory (cell) state
 - Reading from and writing to memory controlled by gates
 - ▶ Each gate contains one or two neural network layers

Source

- Separate memory (cell) state
 - Reading from and writing to memory controlled by gates
 - ► Each gate contains one or two neural network layers
 - ► State persists across time

Source

- ► Separate memory (cell) state
 - Reading from and writing to memory controlled by gates
 - Each gate contains one or two neural network layers
 - State persists across time
 - May remember information from long ago

Source

- Separate memory (cell) state
 - Reading from and writing to memory controlled by gates
 - ► Each gate contains one or two neural network layers
 - State persists across time
 - May remember information from long ago
 - Gradients for memory don't decay with time

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Source

► Neural network layer with logistic activation function

- Neural network layer with logistic activation function
- Element-wise multiplication of forget gate output with memory state

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- Neural network layer with logistic activation function
- Element-wise multiplication of forget gate output with memory state
 - Mask: What parts of memory to forget/remember?

Input Gate

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Source

Two parts

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- Two parts
 - 1. Candidate choice

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- ► Two parts
 - 1. Candidate choice
 - ▶ Logistic activation function

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- ► Two parts
 - 1. Candidate choice
 - ► Logistic activation function
 - What parts of memory to update?

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- Two parts
 - 1. Candidate choice
 - ▶ Logistic activation function
 - What parts of memory to update?
 - 2. Candidate values

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- Two parts
 - 1. Candidate choice
 - ► Logistic activation function
 - What parts of memory to update?
 - 2. Candidate values
 - Tanh activation function

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- Two parts
 - 1. Candidate choice
 - ▶ Logistic activation function
 - What parts of memory to update?
 - 2. Candidate values
 - ► Tanh activation function
 - ▶ How much to update them by?

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Source

► Element-wise multiplication of two outputs

- Source
- ► Element-wise multiplication of two outputs
- ► Then element-wise addition with memory state

$$o_t = \sigma(W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh(C_t)$$

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Source

► Logistic activation function

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

- Logistic activation function
 - ▶ What parts of memory to output?

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

- Logistic activation function
 - What parts of memory to output?
- ▶ Element-wise multiplication with tanh of memory state

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

- ► Logistic activation function
 - ▶ What parts of memory to output?
- ▶ Element-wise multiplication with tanh of memory state
 - ► This is the "hidden layer output" that gets passed on to the output layer/next time step