Estimating gradients using quantum computation

Rigetti quantum computing meetup November 2, 2017

Keri A. McKiernan kmckiern.github.io

Gradients are fundamental to research and engineering applications

Optimization problems

Dynamical systems

https://wikidocs.net/3413

https://www.math.uci.edu/~asgor/dynsys/

Computing numerical gradient estimates

Computing numerical gradient estimates

$$E(h) \approx E(0) + h\nabla E(0)$$

Computing numerical gradient estimates

$$E(h) \approx E(0) + h\nabla E(0)$$

$$\nabla E(0) \approx \frac{E(0) - E(h)}{h}$$

Numerical gradient estimation is fast on quantum architecture

$$E(h) \approx E(0) + h\nabla E(0)$$

$$\nabla E(0) \approx \frac{E(0) - E(h)}{h}$$

	Classical		Quantum	
Derivative	Numerical	Analytical	Numerical	
$\frac{\mathrm{d}E}{\mathrm{d}oldsymbol{\mu}}$	d + 1	0 (1)	1	
$\frac{\mathrm{d}^2 E}{\mathrm{d} \mu^2}$	$d^2 + 1$	$O\left(d\right)$	2	
$rac{\mathrm{d}E}{\mathrm{d}\mu}$ $rac{\mathrm{d}^2E}{\mathrm{d}\mu^2}$ $rac{\mathrm{d}^3E}{\mathrm{d}\mu^3}$	$d^3 + 1$	$O\left(d\right)$	4	
		•	•	
$\frac{\mathrm{d}^n E}{\mathrm{d} \mu^n}$	$d^{n} + 1$	$O\left(d^{\lfloor n/2 floor} ight)$	2^{n-1}	

Numerical gradient estimation is fast on quantum architecture

$$E(h) \approx E(0) + h\nabla E(0)$$

$$\nabla E(0) \approx \frac{E(0) - E(h)}{h}$$

	Classical		Quantum
Derivative	Numerical	Analytical	Numerical
$rac{\mathrm{d} E}{\mathrm{d} \mu}$	d+1	O(1)	1
$\frac{\mathrm{d}^2 E}{\mathrm{d} \mu^2}$	$d^2 + 1$	$O\left(d\right)$	2
$rac{\mathrm{d} E}{\mathrm{d} \mu}$ $rac{\mathrm{d}^2 E}{\mathrm{d} \mu^2}$ $rac{\mathrm{d}^3 E}{\mathrm{d} \mu^3}$	$d^{3} + 1$	$O\left(d\right)$	4
			•
$\frac{\mathrm{d}^n E}{\mathrm{d} \mu^n}$	$d^n + 1$	$O\left(d^{\lfloor n/2 \rfloor} ight)$	2^{n-1}

Numerical gradient estimation is fast on quantum architecture

$$E(h) \approx E(0) + h\nabla E(0)$$

$$\nabla E(0) \approx \frac{E(0) - E(h)}{h}$$

	Classical		Quantum
Derivative	Numerical	Analytical	Numerical
$rac{\mathrm{d} E}{\mathrm{d} oldsymbol{\mu}}$	d + 1	O(1)	1
$rac{\mathrm{d}^{2}E}{\mathrm{d}oldsymbol{\mu^{2}}}$	$d^2 + 1$	$O\left(d ight)$	2
$rac{\mathrm{d} E}{\mathrm{d} oldsymbol{\mu}} \ rac{\mathrm{d}^2 E}{\mathrm{d} oldsymbol{\mu}^2} \ rac{\mathrm{d}^3 E}{\mathrm{d} oldsymbol{\mu}^3}$	$d^{3} + 1$	$O\left(d ight)$	4
:	:	:	:
$\frac{\mathrm{d}^{m{n}}E}{\mathrm{d}m{\mu}^{m{n}}}$	$d^{n} + 1$	$O\left(d^{\lfloor n/2\rfloor}\right)$	2^{n-1}

$$f: \mathbb{R}^d \to \mathbb{R}$$

$$\vec{\nabla} f(\vec{x}) \approx 0.b_0 \cdots b_{n-1}$$

program	ancilla qubits	input qubits
initialize system	QFT, X	Н
phase kickback	U	IQFT
measure	–	М

program	ancilla qubits	input qubits
initialize system	QFT, X	Н
phase kickback	U	IQFT
measure		М

Prepare the ancilla register to a plane wave state

$$|\psi\rangle = \frac{1}{\sqrt{2^{N_{q_o}}}} \sum_{k=0}^{2^{N_{q_o}}-1} e^{i2\pi k/2^{N_{q_o}}} |k\rangle$$
 (1)

Prepare the ancilla register to a plane wave state

$$|\psi\rangle = \frac{1}{\sqrt{2^{N_{q_o}}}} \sum_{k=0}^{2^{N_{q_o}}-1} e^{i2\pi k/2^{N_{q_o}}} |k\rangle$$
 (1)


```
from pyquil.gates import X
from grove.qft.fourier import qft
import pyquil.quil as pq
def initialize_system(input_qubits, ancilla_qubits):
    """ Prepare initial state
    :param list input_qubit: Qubits of input registers.
    :param list ancilla_qubits: Qubits of output register.
    :return Program p_ic: Quil program to initialize this system.
    # ancilla qubits to plane wave state
    ic_out = list(map(X, ancilla_qubits))
    ft_out = qft(ancilla_qubits)
    p_ic_out = pq.Program(ic_out) + ft_out
    # input qubits to equal superposition
    ic_in = list(map(H, input_qubits))
    p_ic_in = pq.Program(ic_in)
    # combine programs
    p_ic = p_ic_out + p_ic_in
    return p_ic
```



```
from pyquil.gates import X
from grove.qft.fourier import qft
import pyquil.quil as pq
def initialize_system(input_qubits, ancilla_qubits):
    """ Prepare initial state
    :param list input_qubit: Qubits of input registers.
    :param list ancilla_qubits: Qubits of output register.
    :return Program p_ic: Quil program to initialize this system.
    # ancilla qubits to plane wave state
    ic_out = list(map(X, ancilla_qubits))
    ft_out = qft(ancilla_qubits)
    p_ic_out = pq.Program(ic_out) + ft_out
    # input qubits to equal superposition
    ic_in = list(map(H, input_qubits))
    p_ic_in = pq.Program(ic_in)
    # combine programs
    p_ic = p_ic_out + p_ic_in
    return p_ic
```


Prepare the ancilla register to a plane wave state

$$|\psi\rangle = \frac{1}{\sqrt{2^{N_{q_o}}}} \sum_{k=0}^{2^{N_{q_o}}-1} e^{i2\pi k/2^{N_{q_o}}} |k\rangle$$
 (1)

Prepare the ancilla register to a plane wave state

$$|\psi\rangle = \frac{1}{\sqrt{2^{N_{q_o}}}} \sum_{k=0}^{2^{N_{q_o}}-1} e^{i2\pi k/2^{N_{q_o}}} |k\rangle$$
 (1)

from pyquil.gates import H

```
# ancilla qubits to plane wave state
ic_out = list(map(X, ancilla_qubits))
ft_out = qft(ancilla_qubits)
p_ic_out = pq.Program(ic_out) + ft_out
# input qubits to equal superposition
ic_in = list(map(H, input_qubits))
p_ic_in = pq.Program(ic_in)
# combine programs
p_ic = p_ic_out + p_ic_in
return p_ic
```



```
# ancilla qubits to plane wave state
ic_out = list(map(X, ancilla_qubits))
ft_out = qft(ancilla_qubits)
p_ic_out = pq.Program(ic_out) + ft_out
# input qubits to equal superposition
ic_in = list(map(H, input_qubits))
p_ic_in = pq.Program(ic_in)
# combine programs
p_ic = p_ic_out + p_ic_in
return p_ic
```

program	ancilla qubits	input qubits
initialize system	QFT, X	Н

```
def initialize_system(input_qubits, ancilla_qubits):
    """ Prepare initial state
    :param list input_qubit: Qubits of input registers.
    :param list ancilla_qubits: Qubits of output register.
    :return Program p_ic: Quil program to initialize this system.
    11 11 11
    # ancilla qubits to plane wave state
    ic_out = list(map(X, ancilla_qubits))
    ft_out = qft(ancilla_qubits)
    p_ic_out = pq.Program(ic_out) + ft_out
    # input qubits to equal superposition
    ic_in = list(map(H, input_qubits))
    p_ic_in = pq.Program(ic_in)
    # combine programs
    p_ic = p_ic_out + p_ic_in
    return p_ic
```


program	ancilla qubits	input qubits
initialize system	QFT, X	Н
phase kickback	U	IQFT
measure		М

program	ancilla qubits	input qubits
initialize system	QFT, X	Н
phase kickback	U	IQFT
measure		М

Construct U such that

$$U^{2^j} |\psi\rangle = e^{i2\pi 2^j f(x)} |\psi\rangle \tag{2}$$

$$U_{2\pi f(x)}^{2^{j}} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i2\pi 2^{j} f(x)} \end{bmatrix}$$
 (3)

Construct U such that

$$U^{2^{j}} |\psi\rangle = e^{i2\pi 2^{j} f(x)} |\psi\rangle \tag{2}$$

$$U_{2\pi f(x)}^{2^{j}} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i2\pi 2^{j} f(x)} \end{bmatrix}$$
 (3)

Construct U such that

$$U^{2^{j}} |\psi\rangle = e^{i2\pi 2^{j} f(x)} |\psi\rangle \tag{2}$$

$$U_{2\pi f(x)}^{2^{j}} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i2\pi 2^{j} f(x)} \end{bmatrix}$$
 (3)

Construct *U* such that

$$U^{2^j} |\psi\rangle = e^{i2\pi 2^j f(x)} |\psi\rangle \tag{2}$$

$$U_{2\pi f(x)}^{2^{j}} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i2\pi 2^{j} f(x)} \end{bmatrix}$$
 (3)

Hence, we may use the PHASE gate for U

$$U_{2\pi f(x)}^{2^{j}} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i2\pi 2^{j} f(x)} \end{bmatrix}$$
 (3)

from grove.alpha.phaseestimation.phase_estimation import controlled
from grove.qft.fourier import inverse_qft

encode f_h into CPHASE gate

Hence, we may use the PHASE gate for U

$$U_{2\pi f(x)}^{2^{j}} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i2\pi 2^{j} f(x)} \end{bmatrix}$$
 (3)

from grove.alpha.phaseestimation.phase_estimation import controlled
from grove.qft.fourier import inverse_qft

encode f_h into CPHASE gate

Construct *U* such that

$$U^{2^j} |\psi\rangle = e^{i2\pi 2^j f(x)} |\psi\rangle \tag{2}$$

$$U_{2\pi f(x)}^{2^{j}} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i2\pi 2^{j} f(x)} \end{bmatrix}$$
 (3)

Sample f(h). For small h, recall

$$f(h) \approx f(0) + h\nabla f(0) \tag{4}$$

$$e^{i2\pi 2^j f(h)} \approx e^{i2\pi 2^j f(0)} e^{i2\pi 2^j h} \nabla f(0)$$
 (5)

Sample f(h). For small h, recall

$$f(h) \approx f(0) + h\nabla f(0) \tag{4}$$

So

$$e^{i2\pi 2^{j}f(h)} \approx e^{i2\pi 2^{j}f(0)}e^{i2\pi 2^{j}h\nabla f(0)}$$
 (5)

Sample f(h). For small h, recall

$$f(h) \approx f(0) + h\nabla f(0) \tag{4}$$

$$e^{i2\pi 2^{j}f(h)} \approx e^{i2\pi 2^{j}f(0)}e^{i2\pi 2^{j}h\nabla f(0)}$$
 (5)

Sample f(h). For small h, recall

$$f(h) \approx f(0) + h\nabla f(0) \tag{4}$$

$$e^{i2\pi 2^{j}f(h)} \approx e^{i2\pi 2^{j}f(0)}e^{i2\pi 2^{j}h\nabla f(0)}$$
 (5)

$$\nabla f(0) \approx 0.b_0 \cdots b_{n-1} \tag{6}$$

$$2^{j}(0.b_{0}\cdots b_{n-1}) = b_{0}\cdots b_{j}.b_{j+1}\cdots b_{n-1}$$
(7)

$$e^{i2\pi 2^{j}(0.b_{0}\cdots b_{n-1})} = e^{i2\pi b_{0}\cdots b_{j}}e^{i2\pi b_{j+1}\cdots b_{n-1}}$$
$$= e^{i2\pi b_{j+1}\cdots b_{n-1}}$$

$$e^{i2\pi 2^j \nabla f(0)} \approx e^{i2\pi b_{j+1} \cdots b_{n-1}} \tag{8}$$

$$\frac{1}{2^{N_{q_i}/2}}(|0\rangle + e^{i2\pi h 2^{N_{q_i}-1}\nabla f(0)}|1\rangle) \qquad |2^{N_{q_i}-1}\nabla f(0)\rangle$$

$$\vdots \qquad QFT^{\dagger} \qquad \vdots$$

$$\frac{1}{2^{N_{q_i}/2}}(|0\rangle + e^{i2\pi h 2^{0}\nabla f(0)}|1\rangle) \qquad |2^{0}\nabla f(0)\rangle$$

$$|\psi\rangle \qquad |\psi\rangle$$

$$\nabla f(0) \approx 0.b_0 \cdots b_{n-1} \tag{6}$$

$$2^{j}(0.b_{0}\cdots b_{n-1}) = b_{0}\cdots b_{j}.b_{j+1}\cdots b_{n-1}$$
(7)

$$e^{i2\pi 2^{j}(0.b_{0}\cdots b_{n-1})} = e^{i2\pi b_{0}\cdots b_{j}}e^{i2\pi b_{j+1}\cdots b_{n-1}}$$
$$= e^{i2\pi b_{j+1}\cdots b_{n-1}}$$

$$e^{i2\pi 2^j \nabla f(0)} \approx e^{i2\pi b_{j+1} \cdots b_{n-1}} \tag{8}$$

$$\frac{1}{2^{N_{q_i}/2}}(|0\rangle + e^{i2\pi h 2^{N_{q_i}-1}\nabla f(\mathbf{0})}|1\rangle) \qquad |2^{N_{q_i}-1}\nabla f(\mathbf{0})\rangle$$

$$\vdots \qquad QFT^{\dagger} \qquad \vdots$$

$$\frac{1}{2^{N_{q_i}/2}}(|0\rangle + e^{i2\pi h 2^{0}\nabla f(\mathbf{0})}|1\rangle) \qquad |2^{0}\nabla f(\mathbf{0})\rangle$$

$$|\psi\rangle \qquad |\psi\rangle$$

$$\nabla f(0) \approx 0.b_0 \cdots b_{n-1} \tag{6}$$

$$2^{j}(0.b_{0}\cdots b_{n-1}) = b_{0}\cdots b_{j}.b_{j+1}\cdots b_{n-1}$$
(7)

$$e^{i2\pi 2^{j}(0.b_{0}\cdots b_{n-1})} = e^{i2\pi b_{0}\cdots b_{j}}e^{i2\pi b_{j+1}\cdots b_{n-1}}$$
$$= e^{i2\pi b_{j+1}\cdots b_{n-1}}$$

$$e^{i2\pi 2^j \nabla f(0)} \approx e^{i2\pi b_{j+1} \cdots b_{n-1}} \tag{8}$$

$$\nabla f(0) \approx 0.b_0 \cdots b_{n-1} \tag{6}$$

$$2^{j}(0.b_{0}\cdots b_{n-1}) = b_{0}\cdots b_{j}.b_{j+1}\cdots b_{n-1}$$
(7)

$$e^{i2\pi 2^{j}(0.b_{0}\cdots b_{n-1})} = e^{i2\pi b_{0}\cdots b_{j}}e^{i2\pi b_{j+1}\cdots b_{n-1}}$$
$$= e^{i2\pi b_{j+1}\cdots b_{n-1}}$$

$$e^{i2\pi 2^j \nabla f(0)} \approx e^{i2\pi b_{j+1} \cdots b_{n-1}} \tag{8}$$

$$\nabla f(0) \approx 0.b_0 \cdots b_{n-1} \tag{6}$$

$$2^{j}(0.b_{0}\cdots b_{n-1}) = b_{0}\cdots b_{j}.b_{j+1}\cdots b_{n-1}$$
(7)

$$e^{i2\pi 2^{j}(0.b_{0}\cdots b_{n-1})} = e^{i2\pi b_{0}\cdots b_{j}}e^{i2\pi b_{j+1}\cdots b_{n-1}}$$
$$= e^{i2\pi b_{j+1}\cdots b_{n-1}}$$

$$e^{i2\pi 2^j \nabla f(0)} \approx e^{i2\pi b_{j+1} \cdots b_{n-1}} \tag{8}$$

$$\nabla f(0) \approx 0.b_0 \cdots b_{n-1} \tag{6}$$

$$2^{j}(0.b_{0}\cdots b_{n-1}) = b_{0}\cdots b_{j}.b_{j+1}\cdots b_{n-1}$$
(7)

$$e^{i2\pi 2^{j}(0.b_{0}\cdots b_{n-1})} = e^{i2\pi b_{0}\cdots b_{j}}e^{i2\pi b_{j+1}\cdots b_{n-1}}$$
$$= e^{i2\pi b_{j+1}\cdots b_{n-1}}$$

$$e^{i2\pi 2^j \nabla f(0)} \approx e^{i2\pi b_{j+1} \cdots b_{n-1}} \tag{8}$$

$$\begin{array}{c|c} \frac{1}{2^{N_{q_i}/2}}(|0\rangle + e^{i2\pi h 2^{N_{q_i}-1}\nabla f(0)}\,|1\rangle) & & |b_{N_{q_i}-1}\rangle \\ \\ \vdots & & & \\ \frac{1}{2^{N_{q_i}/2}}(|0\rangle + e^{i2\pi h 2^0\nabla f(0)}\,|1\rangle) & & & |b_0\cdots b_{N_{q_i}-1}\rangle \\ \\ |\psi\rangle & & & |\psi\rangle & & |\psi\rangle \end{array}$$

$$\nabla f(0) \approx 0.b_0 \cdots b_{n-1} \tag{6}$$

$$2^{j}(0.b_{0}\cdots b_{n-1}) = b_{0}\cdots b_{j}.b_{j+1}\cdots b_{n-1}$$
(7)

$$e^{i2\pi 2^{j}(0.b_{0}\cdots b_{n-1})} = e^{i2\pi b_{0}\cdots b_{j}}e^{i2\pi b_{j+1}\cdots b_{n-1}}$$
$$= e^{i2\pi b_{j+1}\cdots b_{n-1}}$$

$$e^{i2\pi 2^j \nabla f(0)} \approx e^{i2\pi b_{j+1} \cdots b_{n-1}} \tag{8}$$

from grove.alpha.phaseestimation.phase_estimation import controlled
from grove.qft.fourier import inverse_qft

```
for i in input_qubits:
    if i > 0:
        U = np.dot(U, U)
    cU = controlled(U)
    name = "c-U{0}".format(2 ** i)
    p_kickback.defgate(name, cU)
    p_kickback.inst((name, i, ancilla_qubits[0]))
# iqft to pull out fractional component of eigenphase
p_kickback += inverse_qft(input_qubits)
return p_kickback
```


from grove.alpha.phaseestimation.phase_estimation import controlled
from grove.qft.fourier import inverse_qft

for i in input_qubits:
 if i > 0:
 U = np.dot(U, U)
 cU = controlled(U)
 name = "c-U{0}".format(2 ** i)
 p_kickback.defgate(name, cU)
 p_kickback.inst((name, i, ancilla_qubits[0]))
iqft to pull out fractional component of eigenphase
p_kickback += inverse_qft(input_qubits)
return p_kickback

```
def phase_kickback(f_h, input_qubits, ancilla_qubits, precision):
    """ Phase kickback of f_h
```

phase kickback		IQFT	
program	ancilla qubits	input qubits	

11 11 11

Jordan gradient estimation

program	ancilla qubits	input qubits
initialize system	QFT, X	Н
phase kickback	U	IQFT
measure		М

Jordan gradient estimation

program	ancilla qubits	input qubits
initialize system	QFT, X	Н
phase kickback	U	IQFT
measure	-	M

measure

$$|b_{N_{q_i}-1}
angle \qquad \qquad b_{N_{q_i}-1}$$
 $\vdots \qquad \qquad \vdots \qquad \qquad \vdots$
 $|b_0\cdots b_{N_{q_i}-1}
angle \qquad \qquad b_0\cdots b_{N_{q_i}-1}$
 $|\psi
angle \qquad \qquad |\psi
angle \qquad \qquad |\psi
angle$

 $\nabla f(0) \approx 0.b_0 \cdots b_{n-1}$

measure

$$|b_{N_{q_i}-1}
angle \qquad \qquad b_{N_{q_i}-1}$$
 $\vdots \qquad \qquad \vdots \qquad \qquad \vdots$
 $|b_0\cdots b_{N_{q_i}-1}
angle \qquad \qquad b_0\cdots b_{N_{q_i}-1}$
 $|\psi
angle \qquad \qquad |\psi
angle$

 $\nabla f(0) \approx 0.b_0 \cdots b_{n-1}$

from pyquil.api import SyncConnection
qvm = SyncConnection()
measurement = qvm.run_and_measure(p_gradient, input_qubits)

Running this algorithm

Running this algorithm

```
def gradient_estimator(f_h, input_qubits, ancilla_qubits, precision=16):
    """ Gradient estimation via Jordan's algorithm
    10.1103/PhysRevLett.95.050501
    :param np.array f: Oracle outputs.
    :param list input_qubit: Qubits of input registers.
    :param list ancilla_qubits: Qubits of output register.
    :param int precision: Bit precision of gradient.
    :return Program p_gradient: Quil program to estimate gradient of f.
    11 11 11
    # intialize input and output registers
    p_ic = initialize_system(input_qubits, ancilla_qubits)
    # encode oracle values into phase
    p_kickback = phase_kickback(f_h, input_qubits, ancilla_qubits, precision)
    # combine steps of algorithm into one program
    p_gradient = p_ic + p_kickback
    return p_gradient
```

```
def gradient_estimator(f_h, input_qubits, ancilla_qubits, precision=16):
    """ Gradient estimation via Jordan's algorithm
    10.1103/PhysRevLett.95.050501
    :param np.array f: Oracle outputs.
    :param list input_qubit: Qubits of input registers.
    :param list ancilla_qubits: Qubits of output register.
    :param int precision: Bit precision of gradient.
    :return Program p_gradient: Quil program to estimate gradient of f.
    11 11 11
    # intialize input and output registers
    p_ic = initialize_system(input_qubits, ancilla_qubits)
    # encode oracle values into phase
    p_kickback = phase_kickback(f_h, input_qubits, ancilla_qubits, precision)
    # combine steps of algorithm into one program
    p_gradient = p_ic + p_kickback
    return p_gradient
```

```
def gradient_estimator(f_h, input_qubits, ancilla_qubits, precision=16):
    """ Gradient estimation via Jordan's algorithm
    10.1103/PhysRevLett.95.050501
    :param np.array f: Oracle outputs.
    :param list input_qubit: Qubits of input registers.
    :param list ancilla_qubits: Qubits of output register.
    :param int precision: Bit precision of gradient.
    :return Program p_gradient: Quil program to estimate gradient of f.
    11 11 11
    # intialize input and output registers
    p_ic = initialize_system(input_qubits, ancilla_qubits)
    # encode oracle values into phase
    p_kickback = phase_kickback(f_h, input_qubits, ancilla_qubits, precision)
    # combine steps of algorithm into one program
    p_gradient = p_ic + p_kickback
    return p_gradient
```

```
def gradient_estimator(f_h, input_qubits, ancilla_qubits, precision=16):
    """ Gradient estimation via Jordan's algorithm
    10.1103/PhysRevLett.95.050501
    :param np.array f: Oracle outputs.
    :param list input_qubit: Qubits of input registers.
    :param list ancilla_qubits: Qubits of output register.
    :param int precision: Bit precision of gradient.
    :return Program p_gradient: Quil program to estimate gradient of f.
    11 11 11
    # intialize input and output registers
    p_ic = initialize_system(input_qubits, ancilla_qubits)
    # encode oracle values into phase
    p_kickback = phase_kickback(f_h, input_qubits, ancilla_qubits, precision)
    # combine steps of algorithm into one program
    p_gradient = p_ic + p_kickback
    return p_gradient
```

Running this algorithm

Demo

Thank you

References

Fast Quantum Algorithm for Numerical Gradient Estimation Stephen P. Jordan 10.1103/PhysRevLett.95.050501

Quantum Algorithm for Molecular Properties and Geometry Optimization Ivan Kassal, Alán Aspuru-Guzik 10.1063/1.3266959

Code

github.com/rigetticomputing/grove github.com/kmckiern/grove/blob/master/grove/alpha/jordan_gradient