

UNIVERSIDADE FEDERAL DE SANTA CATARINA Campus Araranguá - ARA Departamento de Energia e Sustentabilidade

UNIDADE 8 ESCOAMENTO INTERNO VISCOSO, INCOMPRESSÍVEL

- No último capítulo, estudamos a teoria do escoamento invíscido, em que os efeitos viscosos podem ser desprezados. Neste capítulo, analisaremos o escoamento interno, viscoso e incompressível, que é muito encontrado em aplicações comerciais/industriais.
- Ao final, teremos condições de calcular diferença de pressão, vazão ou dimensões dos dutos, dependendo do problema em questão.

• <u>Escoamento interno</u>: limitado por superfícies sólidas, tais como dutos, bocais, válvulas.

• O escoamento interno pode ser <u>laminar</u> ou <u>turbulento</u>.

Experimento de Reynolds

Experimento de Reynolds

 Para determinar o regime do escoamento (se é laminar ou turbulento), deve-se avaliar um parâmetro adimensional chamado número de Reynolds.

$$Re = rac{
ho \overline{V} D}{\mu} \longrightarrow ext{Forças de inércia}$$
 Forças viscosas

onde:

 ρ : massa específica $[kg/m^3]$ \overline{V} : velocidade média[m/s] D: diâmetro da tubulação [m] μ : viscosidade absoluta[Pa.s]

 Sob condições típicas, a transição do regime laminar para turbulento para escoamento em tubo ocorre em Re ~ 2300.

$$Re < 2300$$
 $Re > 2300$ laminar turbulento

Para o escoamento de água através de um tubo de D = 25mm, a transição ocorre quando V atinge 0,1 m/s.

Comprimento de entrada: Considere o escoamento laminar no tubo abaixo.

- Velocidade uniforme na entrada U₀.
- Condição de não-escorregamento na parede.

Fig. 8.1 Flow in the entrance region of a pipe.

- Como o escoamento é viscoso, há o desenvolvimento de uma camada limite (região do escoamento onde há taxa de deformação).
- À medida que o escoamento se desenvolve, a presença da parede vai sendo sentida pelo mesmo e a camada limite vai crescendo. A partir do ponto em que a camada limite atinge a região central do tubo, o escoamento é dito completamente desenvolvido e o perfil de velocidades não se altera mais. O comprimento de entrada é definido como a distância entre a entrada e a posição no interior do tubo em que o escoamento atinge seu completo desenvolvimento.

Comprimento de entrada: Considere o escoamento laminar no tubo abaixo.

 Para o escoamento laminar, o comprimento de entrada, L, pode ser escrito como:

$$\frac{L}{D} \sim 0.06 \frac{\rho \overline{V}D}{\mu} \longrightarrow L \sim 0.06 ReD$$

Fig. 8.1 Flow in the entrance region of a pipe.

- Para o caso limite (Re = 2300), o comprimento de entrada será $L \sim 138D$
- Para o escoamento turbulento, o comprimento de entrada é geralmente menor, devido à mistura intensa entre camadas de fluido que acelera o desenvolvimento da camada limite (<80D - dados experimentais).

Considere o escoamento laminar:

Quantidade de movimento em x:

$$F_{SX} + F_{bX} = \frac{\partial}{\partial t} \int_{\forall C} u \rho d \forall + \int_{SC} u \rho \vec{V} \cdot d\vec{A}$$

Considere o escoamento laminar:

Quantidade de movimento em x:

$$0 \text{ (Fbx=0)} \qquad 0 \text{ (RP)} \qquad 0$$

$$F_{SX} + F_{bX} = \frac{\partial}{\partial t} \int_{\forall C} u \rho d \forall + \int_{SC} u \rho \overrightarrow{V} \cdot d\overrightarrow{A}$$

Como o escoamento é CD ao longo da mesma direção, a eq. fica:

$$F_{SX}=0$$

Considere o escoamento laminar:

Quantidade de movimento em x:

$$0 \text{ (Fbx=0)} \qquad 0 \text{ (RP)} \qquad 0$$

$$F_{SX} + F_{bX} = \frac{\partial}{\partial t} \int_{\forall C} u \rho d \forall + \int_{SC} u \rho \vec{V} \cdot d\vec{A}$$

Como o escoamento é CD ao longo da mesma direção, a eq. fica:

$$F_{SX}=0$$

Para determinar as forças que agem sobre o VC na direção x, devemos avaliar o volume de controle anelar traçado.

Balanço de força em x:
$$-\frac{\partial p}{\partial x} 2\pi r dr dx + \tau_{rx} 2\pi dr dx + \frac{d\tau_{rx}}{dr} 2\pi r dr dx = 0$$

Balanço de força em x:
$$-\frac{\partial p}{\partial x} 2\pi r dr dx + \tau_{rx} 2\pi dr dx + \frac{d\tau_{rx}}{dr} 2\pi r dr dx = 0 \longrightarrow \frac{\partial p}{\partial x} = \frac{\tau_{rx}}{r} + \frac{d\tau_{rx}}{dr}$$

Balanço de força em x:
$$-\frac{\partial p}{\partial x} 2\pi r dr dx + \tau_{rx} 2\pi dr dx + \frac{d\tau_{rx}}{dr} 2\pi r dr dx = 0$$
 \longrightarrow $\frac{\partial p}{\partial x} = \frac{\tau_{rx}}{r} + \frac{d\tau_{rx}}{dr} = \frac{1}{r} \frac{d(r\tau_{rx})}{dr}$

$$\frac{\partial p}{\partial x} = \frac{1}{r} \frac{d(r\tau_{rx})}{dr}$$

Como:
$$\frac{d(r\tau_{rx})}{dr} = f(r)$$
 e $\frac{\partial p}{\partial x} = f(x)$

$$\frac{\partial p}{\partial x} = \frac{1}{r} \frac{d(r\tau_{rx})}{dr}$$

Como:
$$\frac{d(r\tau_{rx})}{dr} = f(r)$$
 e $\frac{\partial p}{\partial x} = f(x)$

temos que
$$\frac{1}{r} \frac{d(r\tau_{rx})}{dr} = \frac{\partial p}{\partial x} = \text{constant}$$

$$\frac{\partial p}{\partial x} = \frac{1}{r} \frac{d(r\tau_{rx})}{dr}$$

Como:
$$\frac{d(r\tau_{rx})}{dr} = f(r)$$
 e $\frac{\partial p}{\partial x} = f(x)$

temos que
$$\frac{1}{r} \frac{d(r\tau_{rx})}{dr} = \frac{\partial p}{\partial x} = \text{constant}$$

Portanto:

$$\frac{d(r\tau_{rx})}{dr} = r\frac{\partial p}{\partial x} \qquad \frac{\text{Integrando}}{r\tau_{rx}} = \frac{r^2}{2} \left(\frac{\partial p}{\partial x}\right) + c_1 \qquad \qquad \tau_{rx} = \frac{r}{2} \left(\frac{\partial p}{\partial x}\right) + \frac{c_1}{r}$$

$$\frac{\partial p}{\partial x} = \frac{1}{r} \frac{d(r\tau_{rx})}{dr}$$

Como: $\frac{d(r\tau_{rx})}{dr} = f(r)$ e $\frac{\partial p}{\partial x} = f(x)$

temos que
$$\frac{1}{r} \frac{d(r\tau_{rx})}{dr} = \frac{\partial p}{\partial x} = \text{constant}$$

Portanto:

tanto:
$$\frac{\mu \overline{dr}}{\overline{dr}} = \overline{2} \left(\overline{\partial x} \right)^{+} \overline{r}$$

$$\overline{d(r\tau_{rx})} = r \frac{\partial p}{\partial x} \qquad \frac{\text{Integrando}}{} \qquad r\tau_{rx} = \frac{r^2}{2} \left(\frac{\partial p}{\partial x} \right) + c_1 \qquad \qquad \tau_{rx} = \frac{r}{2} \left(\frac{\partial p}{\partial x} \right) + \frac{c_1}{r}$$

 $\mu \frac{du}{dr} = \frac{r}{2} \left(\frac{\partial p}{\partial x} \right) + \frac{c_1}{r}$

Integrando novamente,

$$\mu \frac{du}{dr} = \frac{r}{2} \left(\frac{\partial p}{\partial x} \right) + \frac{c_1}{r}$$

temos
$$u = \frac{r^2}{4\mu} \left(\frac{\partial p}{\partial x} \right) + \frac{c_1}{\mu} \ln r + c_2$$

Integrando novamente,

$$\mu \frac{du}{dr} = \frac{r}{2} \left(\frac{\partial p}{\partial x} \right) + \frac{c_1}{r}$$

temos
$$u = \frac{r^2}{4\mu} \left(\frac{\partial p}{\partial x} \right) + \frac{c_1}{\mu} \ln r + c_2$$

- Uma condição de contorno é clara: u(r = R) = 0 (não-escorregamento na parede).
- A condição de contorno que falta vem de uma consideração física. Sabemos que em r = 0, a velocidade é finita. Para que isso aconteça, a constante c1 deve ser 0.

Substituindo a condição de nãoescorregamento:

$$u = \frac{r^2}{4\mu} \left(\frac{\partial p}{\partial x} \right) + c_2$$

$$0 = \frac{R^2}{4\mu} \left(\frac{\partial p}{\partial x} \right) + c_2$$

$$c_2 = -\frac{R^2}{4\mu} \left(\frac{\partial p}{\partial x} \right)$$

Substituindo a condição de nãoescorregamento:

$$u = \frac{r^2}{4\mu} \left(\frac{\partial p}{\partial x} \right) + c_2$$

$$0 = \frac{R^2}{4\mu} \left(\frac{\partial p}{\partial x} \right) + c_2$$

$$c_2 = -\frac{R^2}{4\mu} \left(\frac{\partial p}{\partial x} \right)$$

Finalmente:

$$u = \frac{r^2}{4\mu} \left(\frac{\partial p}{\partial x} \right) - \frac{R^2}{4\mu} \left(\frac{\partial p}{\partial x} \right) = \frac{1}{4\mu} \left(\frac{\partial p}{\partial x} \right) (r^2 - R^2)$$

Substituindo a condição de nãoescorregamento:

$$u = \frac{r^2}{4\mu} \left(\frac{\partial p}{\partial x} \right) + c_2$$

$$0 = \frac{R^2}{4\mu} \left(\frac{\partial p}{\partial x} \right) + c_2$$

$$c_2 = -\frac{R^2}{4\mu} \left(\frac{\partial p}{\partial x} \right)$$

Finalmente:

$$u = \frac{r^2}{4\mu} \left(\frac{\partial p}{\partial x} \right) - \frac{R^2}{4\mu} \left(\frac{\partial p}{\partial x} \right) = \frac{1}{4\mu} \left(\frac{\partial p}{\partial x} \right) (r^2 - R^2)$$

$$u = -\frac{R^2}{4\mu} \left(\frac{\partial p}{\partial x} \right) \left[1 - \left(\frac{r}{R} \right)^2 \right]$$

Substituindo a condição de nãoescorregamento:

$$u = \frac{r^2}{4\mu} \left(\frac{\partial p}{\partial x} \right) + c_2$$

$$0 = \frac{R^2}{4\mu} \left(\frac{\partial p}{\partial x} \right) + c_2$$

$$c_2 = -\frac{R^2}{4\mu} \left(\frac{\partial p}{\partial x} \right)$$

Finalmente:

$$u = \frac{r^2}{4\mu} \left(\frac{\partial p}{\partial x} \right) - \frac{R^2}{4\mu} \left(\frac{\partial p}{\partial x} \right) = \frac{1}{4\mu} \left(\frac{\partial p}{\partial x} \right) (r^2 - R^2)$$

$$u = -\frac{R^2}{4\mu} \left(\frac{\partial p}{\partial x}\right) \left[1 - \left(\frac{r}{R}\right)^2\right] \xrightarrow{\text{como} \frac{\partial p}{\partial x} = cte} \frac{\partial p}{\partial x} = \frac{\Delta p}{\Delta x} = \frac{p_2 - p_1}{L}$$

Uma vez que o perfil de velocidades está determinado, podemos obter propriedades do escoamento.

• Tensão cisalhante:
$$\tau_{rx} = \mu \frac{du}{dr} = \frac{r}{2} \left(\frac{\partial p}{\partial x} \right)$$

$$u = -\frac{R^2}{4\mu} \left(\frac{\partial p}{\partial x} \right) \left[1 - \left(\frac{r}{R} \right)^2 \right]$$

• Vazão volumétrica:
$$Q = \int_A \vec{V} \cdot d\vec{A} = \int_0^R u 2\pi r \, dr = \int_0^R \frac{1}{4\mu} \left(\frac{\partial p}{\partial x}\right) (r^2 - R^2) 2\pi r \, dr \qquad Q = -\frac{\pi R^4}{8\mu} \left(\frac{\partial p}{\partial x}\right) r^2 + \frac{1}{4\mu} \left(\frac{\partial p}{\partial x}\right)$$

$$Q = -\frac{\pi R^4}{8\mu} \left[\frac{-\Delta p}{L} \right] = \frac{\pi \Delta p R^4}{8\mu L} = \frac{\pi \Delta p D^4}{128\mu L}$$

• Velocidade média:
$$\overline{V}=\frac{Q}{A}=\frac{Q}{\pi R^2}=-\frac{R^2}{8\mu}\left(\frac{\partial p}{\partial x}\right)$$

Exemplo: Um viscosímetro simples e preciso pode ser feito com um tubo capilar. Se a vazão volumétrica e a queda de pressão forem medidas, e a geometria do tubo for conhecida, a viscosidade de um fluido newtoniano poderá ser calculada. Um teste de um certo líquido num viscosímetro capilar forneceu os seguintes dados:

- $Q = 880 \text{ mm}^3/\text{s}$
- D = 0.50 mm
- L = 1 m
- Queda de pressão = 1,0 MPa

$$Q = \frac{\pi \Delta p D^4}{128\mu L}$$

Determine a viscosidade do líquido.

Exemplo: Considere um escoamento a 40°C em um tubo de 6 mm de diâmetro. Determine a máxima vazão (e o correspondente gradiente de pressão) para os quais o regime laminar é esperado. Avalie para água e óleo SAE 10W.

Tabela A.8 Propriedades da Água (Unidades SI)

Temperatura, T (°C)	Massa Específica, ρ (kg/m³)	Viscosidade Dinâmica, μ (N·s/m²)	Viscosidade Cinemática, ν (m²/s)
0	1000	1,76E-03	1,76E-06
5	1000	1,51E-03	1,51E-06
10	1000	1,30E-03	1,30E-06
15	999	1,14E-03	1,14E-06
20	998	1,01E-03	1,01E-06
25	997	8,93E-04	8,96E-07
30	996	8,00E-04	8,03E-07
35	994	7,21E-04	7,25E-07
40	992	6,53E-04	6,59E-07
45	990	5,95E-04	6,02E-07
50	988	5,46E-04	5,52E-07
55	986	5,02E-04	5,09E-07
60	983	4,64E-04	4,72E-07
65	980	4,31E-04	4,40E-07
70	978	4,01E-04	4,10E-07
75	975	3,75E-04	3,85E-07
80	972	3,52E-04	3,62E-07
85	969	3,31E-04	3,41E-07
90	965	3,12E-04	3,23E-07
95	962	2,95E-04	3,06E-07
100	958	2,79E-04	2,92E-07

Escoamento Laminar x Escoamento Turbulento

Experimento de Reynolds

Distribuição da Tensão de Cisalhamento

• No escoamento plenamente desenvolvido em tubos horizontais (seja laminar ou turbulento), a tensão de cisalhamento pode ser escrita como:

$$\tau_{rx} = \frac{r}{2} \frac{\partial p}{\partial x}$$

Distribuição da Tensão de Cisalhamento

• No escoamento plenamente desenvolvido em tubos horizontais (seja laminar ou turbulento), a tensão de cisalhamento pode ser escrita como:

Distribuição da Tensão de Cisalhamento

 No escoamento plenamente desenvolvido em tubos horizontais (seja laminar ou turbulento), a tensão de cisalhamento pode ser escrita como:

Conclusão: Não é possível integrar a equação e obter uma simples relação para velocidade.

Perfil de Velocidades Turbulento

 O perfil de velocidades do escoamento turbulento PD através de um tubo liso pode ser representado por uma relação empírica baseada na lei de potência:

$$\frac{\overline{u}}{U} = \left(1 - \frac{r}{R}\right)^{1/n} \qquad n = -1.7 + 1.8 \log Re_U$$

$$Re_U = \frac{\rho UD}{U}$$

onde \overline{u} é o perfil de velocidade média do escoamento e U é a velocidade média na linha de centro. Um valor muito utilizado é n = 7 em problemas práticos.

Equação da Conservação da Energia

- Para obtermos uma relação que permita avaliar o efeito do atrito sobre o escoamento, devemos partir da eq. da Conservação da Energia.
- A equação da conservação da energia aplicada a um <u>sistema</u> fornece:

$$Q - W = dE$$
 $\dot{Q} - \dot{W} = \frac{dE}{dt}$ $E = \int_{\forall} e\rho d\forall$ $e = u + \frac{V^2}{2} + gz$

• Em um volume de controle:

$$\dot{Q} - \dot{W} = \frac{\partial}{\partial t} \int_{VC} e\rho dV + \int_{SC} e\rho \vec{V} \cdot d\vec{A}$$

Equação da Conservação da Energia

• Considere o escoamento através de um tubo (cotovelo redutor).

Pode-se mostrar que a equação da energia para esse escoamento é:

$$\dot{Q} - \dot{W} = \frac{\partial}{\partial t} \int_{VC} e\rho d\forall + \int_{SC} e\rho \vec{V} \cdot d\vec{A} \qquad \qquad \dot{Q} = \int_{SC} (e + p/\rho) \rho \vec{V} \cdot d\vec{A} \qquad e = u + \frac{V^2}{2} + gz$$

considerando

- i. Reg. permanente
- ii. Esc. incompressível
- iii. W = 0 (exceto W_{esc})

Equação da Conservação da Energia

Considere o escoamento através de um tubo (cotovelo redutor).

Pode-se mostrar que a equação da energia para esse escoamento é:

$$\dot{Q} = \int_{SC} (e + p/\rho) \, \rho \vec{V} \cdot d\vec{A} \qquad e = u + \frac{V^2}{2} + gz$$

Se u (energia interna) e p são uniformes nas seções 1 e 2

$$\begin{split} \dot{Q} &= \dot{m}(u_2 - u_1) + \dot{m} \left(\frac{p_2}{\rho} - \frac{p_1}{\rho} \right) + \dot{m} g(z_2 - z_1) + \\ &+ \int_{A_2} \frac{V_2^2}{2} \rho V_2 dA_2 - \int_{A_1} \frac{V_1^2}{2} \rho V_1 dA_1 \end{split}$$

Coeficiente de Energia Cinética (α)

• O coeficiente de energia cinética é definido de forma que:

$$\int_{A} \frac{V^{2}}{2} \rho V dA = \alpha \int_{A} \frac{\overline{V}^{2}}{2} \rho V dA = \alpha \dot{m} \frac{\overline{V}^{2}}{2} \qquad \qquad \alpha = \frac{\int_{A} \rho V^{3} dA}{\dot{m} \overline{V}^{2}}$$

• Escoamento laminar:
$$V = -\frac{R^2}{4\mu} \frac{\partial p}{\partial x} \left[1 - \left(\frac{r}{R} \right)^2 \right]$$
 $\overline{V} = -\frac{R^2}{8\mu} \frac{\partial p}{\partial x}$

• Escoamento turbulento:
$$\frac{\bar{u}}{U} = \left(1 - \frac{r}{R}\right)^{1/n} \qquad \frac{\bar{V}}{U} = \frac{2n^2}{(n+1)(2n+1)} \qquad \qquad \alpha = \left(\frac{U}{\bar{V}}\right)^3 \frac{2n^2}{(n+3)(2n+3)}$$

Coeficiente de Energia Cinética (α)

• O coeficiente de energia cinética é definido de forma que:

$$\int_{A} \frac{V^{2}}{2} \rho V dA = \alpha \int_{A} \frac{\overline{V}^{2}}{2} \rho V dA = \alpha \dot{m} \frac{\overline{V}^{2}}{2} \qquad \qquad \alpha = \frac{\int_{A} \rho V^{3} dA}{\dot{m} \overline{V}^{2}}$$

• Escoamento laminar:
$$V = -\frac{R^2}{4\mu} \frac{\partial p}{\partial x} \left[1 - \left(\frac{r}{R} \right)^2 \right]$$
 $\overline{V} = -\frac{R^2}{8\mu} \frac{\partial p}{\partial x}$

• Escoamento turbulento:
$$\frac{\bar{u}}{U} = \left(1 - \frac{r}{R}\right)^{1/n} \qquad \frac{\bar{V}}{U} = \frac{2n^2}{(n+1)(2n+1)} \qquad \qquad \alpha = \left(\frac{U}{\bar{V}}\right)^3 \frac{2n^2}{(n+3)(2n+3)}$$

$$n = 6$$
 $n = 10$ $\alpha = 1,08$ $\alpha = 1,03$ $\alpha = 1$

Rescrevendo a eq. da energia:

$$\dot{Q} = \dot{m}(u_2 - u_1) + \dot{m}\left(\frac{p_2}{\rho} - \frac{p_1}{\rho}\right) + \dot{m}g(z_2 - z_1) + \alpha_2 \frac{\overline{V}_2^2}{2}\dot{m} - \alpha_1 \frac{\overline{V}_1^2}{2}\dot{m}$$

Dividindo por \dot{m} :

$$q = u_2 - u_1 + \frac{p_2}{\rho} - \frac{p_1}{\rho} + gz_2 - gz_1 + \alpha_2 \frac{\overline{V}_2^2}{2} - \alpha_1 \frac{\overline{V}_1^2}{2}$$

ou seja:

$$\left(\frac{p_1}{\rho} + \alpha_1 \frac{\bar{V}_1^2}{2} + gz_1\right) - \left(\frac{p_2}{\rho} + \alpha_2 \frac{\bar{V}_2^2}{2} + gz_2\right) = (u_2 - u_1) - q$$

Rescrevendo a eq. da energia:

$$\dot{Q} = \dot{m}(u_2 - u_1) + \dot{m}\left(\frac{p_2}{\rho} - \frac{p_1}{\rho}\right) + \dot{m}g(z_2 - z_1) + \alpha_2 \frac{\overline{V}_2^2}{2}\dot{m} - \alpha_1 \frac{\overline{V}_1^2}{2}\dot{m}$$

Dividindo por \dot{m} :

$$q = u_2 - u_1 + \frac{p_2}{\rho} - \frac{p_1}{\rho} + gz_2 - gz_1 + \alpha_2 \frac{\overline{V}_2^2}{2} - \alpha_1 \frac{\overline{V}_1^2}{2}$$

ou seja:

$$\left(\frac{p_1}{\rho} + \alpha_1 \frac{\bar{V}_1^2}{2} + gz_1\right) - \left(\frac{p_2}{\rho} + \alpha_2 \frac{\bar{V}_2^2}{2} + gz_2\right) = (u_2 - u_1) - q$$

Perda por atrito (conversão em calor)

Rescrevendo a eq. da energia:

$$\dot{Q} = \dot{m}(u_2 - u_1) + \dot{m}\left(\frac{p_2}{\rho} - \frac{p_1}{\rho}\right) + \dot{m}g(z_2 - z_1) + \alpha_2 \frac{\overline{V}_2^2}{2}\dot{m} - \alpha_1 \frac{\overline{V}_1^2}{2}\dot{m}$$

Dividindo por \dot{m} :

$$q = u_2 - u_1 + \frac{p_2}{\rho} - \frac{p_1}{\rho} + gz_2 - gz_1 + \alpha_2 \frac{\overline{V}_2^2}{2} - \alpha_1 \frac{\overline{V}_1^2}{2}$$

ou seja:

PERDA DE CARGA TOTAL

$$\left(\frac{p_1}{\rho} + \alpha_1 \frac{\overline{V}_1^2}{2} + gz_1\right) - \left(\frac{p_2}{\rho} + \alpha_2 \frac{\overline{V}_2^2}{2} + gz_2\right) = h_{l,T} \qquad \text{Unidade SI = [J/kg]}$$

Rescrevendo a eq. da energia:

$$\dot{Q} = \dot{m}(u_2 - u_1) + \dot{m}\left(\frac{p_2}{\rho} - \frac{p_1}{\rho}\right) + \dot{m}g(z_2 - z_1) + \alpha_2 \frac{\overline{V}_2^2}{2}\dot{m} - \alpha_1 \frac{\overline{V}_1^2}{2}\dot{m}$$

Dividindo por \dot{m} :

$$q = u_2 - u_1 + \frac{p_2}{\rho} - \frac{p_1}{\rho} + gz_2 - gz_1 + \alpha_2 \frac{\overline{V}_2^2}{2} - \alpha_1 \frac{\overline{V}_1^2}{2}$$

ou seja:

PERDA DE CARGA TOTAL (Altura de carga)

$$\left(\frac{p_1}{\rho g} + \alpha_1 \frac{\overline{V}_1^2}{2g} + z_1\right) - \left(\frac{p_2}{\rho g} + \alpha_2 \frac{\overline{V}_2^2}{2g} + z_2\right) = \frac{h_{l,T}}{g} = \underbrace{H_{l,T}} \quad \text{Unidade SI = [m]}$$

Perda de carga total:

$$h_{l,T} = h_l + h_{l,m}$$

Para um escoamento PD num tubo de área constante e horizontal:

$$h_{l,m} = 0$$
 $\alpha_1 \frac{\bar{V}_1^2}{2} = \alpha_2 \frac{\bar{V}_2^2}{2}$

Logo, a equação da energia se torna:

$$\frac{p_1 - p_2}{\rho} = \frac{\Delta p}{\rho} = h_l$$

A perda de carga distribuída pode ser representada por uma perda de pressão.

Escoamento laminar

A queda de pressão no escoamento laminar pode ser calculada analiticamente:

$$Q = -\frac{\pi R^4}{8\mu} \left(\frac{\partial p}{\partial x} \right) \longrightarrow \Delta p = \frac{128\mu LQ}{\pi D^4} = 32 \frac{L}{D} \frac{\mu V}{D}$$

como

$$\frac{\Delta p}{\rho} = h_l \qquad \qquad h_l = 32 \frac{L}{D} \frac{\mu \overline{V}}{\rho D}$$

Manipulando...

$$h_l = \left(\frac{64}{Re}\right) \frac{L}{D} \frac{\overline{V}^2}{2}$$

Escoamento turbulento

Não é possível avaliar a queda de pressão analiticamente. São deduzidas relações semi-empíricas (combinação de dados experimentais com análise dimensional)

$$\Delta p = \Delta p(D, L, \overline{V}, \rho, \mu, e)$$

Análise dimensional

$$\frac{\Delta p}{\rho} = h_l = f \frac{L}{D} \frac{\overline{V}^2}{2}$$

fator de atrito

Escoamento turbulento

Não é possível avaliar a queda de pressão analiticamente. São deduzidas relações semi-empíricas (combinação de dados experimentais com análise dimensional)

$$\Delta p = \Delta p(D, L, \overline{V}, \rho, \mu, e)$$

Análise dimensional

$$\frac{\Delta p}{\rho} = h_l = f \frac{L}{D} \frac{\overline{V}^2}{2}$$

sendo

fator de atrito

$$f = \phi\left(Re, \frac{e}{D}\right)$$
 Experimento! rugosidade: e rugosidade relativa: e/D

Escoamento turbulento

Escoamento turbulento

Rugosidade (e): depende do material e do processo de fabricação.

	Rugosidade, e		
Tubo	Pés	Milímetros	
Aço rebitado	0,003-0,03	0,9–9	
Concreto	0,001-0,01	0,3–3	
Madeira	0,0006-0,003	0,2-0,9	
Ferro fundido	0,00085	0,26	
Ferro galvanizado	0,0005	0,15	
Ferro fundido asfaltado	0,0004	0,12	
Aço comercial ou			
ferro forjado	0,00015	0,046	
Trefilado	0,000005	0,0015	

Determinação do fator de atrito, f (Diagrama de Moody)

Determinação do fator de atrito, f (Diagrama de Moody)

<u>Laminar</u>

$$h_l = \left(\frac{64}{Re}\right) \frac{L}{D} \frac{\overline{V}^2}{2}$$

$$f = \frac{64}{Re}$$

Turbulento

$$h_l = f \frac{L}{D} \frac{\overline{V}^2}{2}$$

Determinação do fator de atrito, f (Diagrama de Moody)

- Essas perdas são decorrentes da passagem do escoamento por acessórios, curvas e mudanças súbitas de área.
- São relativamente pequenas quando comparadas com as perdas distribuídas em longas tubulações.
- Podem ser expressas como:

comprimento equivalente

$$h_{l,m} = K \frac{\overline{V}^2}{2}$$
 ou $h_{l,m} = f \frac{\overline{L_e}}{\overline{D}} \frac{\overline{V}}{2}$

coeficiente de perda (experimento)

• Válvulas, curvas, cotovelos e tês

$$h_{l,m} = f \frac{L_e}{D} \frac{\overline{V}^2}{2}$$

Tipo de Acessório	omprimento Equivalente, <i>L,/D</i>
Válvulas (completamente abertas)	
Válvula gaveta	. 8
Válvula globo	340
Válvula angular	150
Válvula de esfera	3
Válvula de retenção: tipo globo	600
: tipo angular	55
Válvula de pé com crivo: disco gui	ado 420
: disco arti	
Cotovelo padrão: 90°	30
: 45°	16
Curva de retorno (180°), configuraçã	o curta 50
Tê padrão : escoamento principal	20
: escoamento lateral	60

^a Baseado em $h_{l_a} = f \frac{L_e}{D} \frac{\overline{V}^2}{2}$.

• Entradas

Tipo de Entrada			Coeficiente de Perda Localizada, K ^a	
Reentrante	>		0,78	
Borda viva	>		0,5	
Arredondado		r $\frac{1}{1}$	$ r/D 0.02 0.06 \ge 0.15$ $ K 0.28 0.15 0.04 $	

$$h_{l,m} = K \frac{\bar{V}^2}{2}$$

• Contrações e Expansões

 A equação da energia é utilizada para resolver os problemas de escoamento interno viscoso e incompressível:

$$\left(\frac{p_1}{\rho} + \alpha_1 \frac{V_1^2}{2} + gz_1\right) - \left(\frac{p_2}{\rho} + \alpha_2 \frac{V_2^2}{2} + gz_2\right) = f \frac{L}{D} \frac{\overline{V}^2}{2} + K \frac{\overline{V}^2}{2}$$

Geralmente, os problemas relacionam quatro variáveis: Δp , D, L, Q

- i. L, Q e D conhecidos, Δp desconhecido
- ii. Δp , $Q \in D$ conhecidos, L desconhecido
- iii. Δp , $L \in D$ conhecidos, Q desconhecido
- iv. Δp , $L \in Q$ conhecidos, D desconhecido

 A equação da energia é utilizada para resolver os problemas de escoamento interno viscoso e incompressível:

$$\left(\frac{p_1}{\rho} + \alpha_1 \frac{V_1^2}{2} + gz_1\right) - \left(\frac{p_2}{\rho} + \alpha_2 \frac{V_2^2}{2} + gz_2\right) = f \frac{L}{D} \frac{\overline{V}^2}{2} + K \frac{\overline{V}^2}{2}$$

Geralmente, os problemas relacionam quatro variáveis: Δp , D, L, Q

i. L, Q e D conhecidos, Δp desconhecido

ii. Δp , $Q \in D$ conhecidos, L desconhecido

iii. Δp , $L \in D$ conhecidos, Q desconhecido

iv. Δp , $L \in Q$ conhecidos, D desconhecido

Solução direta

Solução iterativa

Exemplo: O sistema de resfriamento do processador de um computador é composto por uma tubulação de diâmetro D = 12,7 mm e comprimento L = 3 m, por onde escoa água a uma vazão volumétrica de 3,5 L/min. A fim de selecionar a bomba necessária para promover essa vazão, você deve determinar qual é a queda de pressão na tubulação. Assuma que o tubo é de aço comercial e adote pagua = 1000 kg/m³ e μ agua = 10-3 Pa.s.

	Rugosidade, e		
Tubo	Pés	Milímetros	
Aço rebitado	0,003-0,03	0,9–9	
Concreto	0,001-0,01	0,3–3	
Madeira	0,0006-0,003	0,2-0,9	
Ferro fundido	0,00085	0,26	
Ferro galvanizado	0,0005	0,15	
Ferro fundido asfaltado	0,0004	0,12	
Aço comercial ou			
ferro forjado	0,00015	0,046	
Trefilado	0,000005	0,0015	

Standard Sizes for Carbon Steel, Alloy Steel, and Stainless Steel Pipe

Nominal Pipe Size (in.)	Inside Diameter (in.)	Nominal Pipe Size (in.)	Inside Diameter (in.)
18	0.269	2 <u>1</u>	2.469
1/4	0.364	3	3.068
3 8	0.493	4	4.026
1/2	0.622	5	5.047
$\frac{2}{4}$	0.824	6	6.065
1	1.049	8	7.981
$1\frac{1}{2}$	1.610	10	10.020
2	2.067	12	12.000

Exemplo: Selecione uma tubulação para o sistema de resfriamento do processador de um computador, sabendo que o comprimento da tubulação deve ser de L = 3 m, a vazão volumétrica de água, de 3,5 L/min e a diferença de pressão a ser promovida pela bomba, de 1000 Pa. Assuma que o tubo é de aço comercial e adote pagua = 1000 kg/m³ e μ agua = 10-3 Pa.s.