Answers - Turning problems into quadratics (page ??)

1.
$$(2^2)^x + 2^x - 24 = 0$$

$$(2^x)^2 + 2^x - 24 = 0$$

Making the substitution $u = 2^x$

$$u^2 + 2u - 24 = 0$$

$$u = 4.42, -5.42$$

 2^x can never be negative so we can ignore the -5.42 solution.

$$2^x = 4.42$$

$$ln 2^x = ln 4.42$$

$$x \ln 2 = \ln 4.42$$

$$x = \frac{\ln 4.42}{\ln 2}$$

$$x = 2.14 \text{ (1dp)}$$

2. Rearrange to
$$9^x - 6^x - 4^x = 0$$

We need a constant so divide through by the lowest term.

$$\frac{9^x}{4^x} - \frac{6^x}{4^x} - \frac{4^x}{4^x} = 0$$

$$(\frac{9}{4})^x - (\frac{6}{4})^x - 1 = 0$$

$$((\frac{3}{2})^2)^x - (\frac{3}{2})^x - 1 = 0$$

$$\left(\left(\frac{3}{2} \right)^x \right)^2 - \left(\frac{3}{2} \right)^x - 1 = 0$$

Use the substitution $u = (\frac{3}{2})^x$

$$u^2 - u - 1 = 0$$

$$u - 1.618, -0.618$$

 $(\frac{3}{2})^x$ can never be negative so we ignore -0.618.

$$(\frac{3}{2})^x = 1.618$$

$$\ln\left(\frac{3}{2}\right)^x = \ln 1.618$$

$$x\ln(\frac{3}{2}) = \ln 1.6.18$$

$$x = \frac{\ln 1.618}{\ln \frac{3}{2}}$$

$$x = 1.187$$

3. We need a constant so divide through by the lowest term.

1

$$8(\frac{9^x}{4^x}) + 3(\frac{6^x}{4^x}) - 81 = 0$$

$$8(\frac{9}{4})^x + 3(\frac{6}{4})^x - 81 = 0$$

$$8\left(\left(\frac{3}{2}\right)^2\right)^x + 3\left(\frac{3}{2}\right)^x - 81 = 0$$

$$8\left(\left(\frac{3}{2}\right)^x\right)^2 + 3\left(\frac{3}{2}\right)^x - 81 = 0$$

Use the substitution $u = (\frac{3}{2})^x$

$$8u^2 + 3u - 81 = 0$$

$$u = 3, -3.375$$

Since $(\frac{3}{2})^x$ can never be negative, we can ignore the -3.375 solution.

$$\left(\frac{3}{2}\right)^x = 3$$

$$\ln\left(\frac{3}{2}\right)^x = \ln 3$$

$$x\ln\left(\frac{3}{2}\right) = \ln 3$$

$$x = \frac{\ln 3}{\ln \frac{3}{2}} = 2.71$$

4. We need a constant so divide through by the lowest term.

$$\left(\frac{25^x}{9^x}\right) + 2\left(\frac{15^x}{9^x}\right) - 24 = 0$$

$$\left(\frac{25}{9}\right)^x + 2\left(\frac{15}{9}\right)^x - 24 = 0$$

$$\left(\left(\frac{5}{3}\right)^2\right)^x + 2\left(\frac{5}{3}\right)^x - 24 = 0$$

$$\left(\left(\frac{5}{3} \right)^x \right)^2 + 2 \left(\frac{5}{3} \right)^x - 24 = 0$$

Use the substitution $u = (\frac{5}{3})^x$

$$u^2 + 2u - 24 = 0$$

$$u = 4, -6$$

Since $(\frac{5}{3})^x$ can never be negative, we can ignore the -6 solution.

$$(\frac{5}{3})^x = 4$$

$$\ln\left(\frac{5}{3}\right)^x = \ln 4$$

$$x\ln\left(\frac{5}{3}\right) = \ln 4$$

$$x = \frac{\ln 4}{\ln \frac{5}{3}} = 2.714$$