Balanced Trees Part One

Balanced Trees

- Balanced search trees are among the most useful and versatile data structures.
- Many programming languages ship with a balanced tree library.
 - C++: std::map / std::set
 - Java: TreeMap / TreeSet
 - Python: OrderedDict
- Many advanced data structures are layered on top of balanced trees.
 - We'll see them used to build *y*-Fast Tries later in the quarter. (They're really cool, trust me!)

Where We're Going

- B-Trees (Today)
 - A simple type of balanced tree developed for block storage.
- Red/Black Trees (Today/Tuesday)
 - The canonical balanced binary search tree.
- Augmented Search Trees (Tuesday)
 - Adding extra information to balanced trees to supercharge the data structure.

Outline for Today

- BST Review
 - Refresher on basic BST concepts and runtimes.
- Overview of Red/Black Trees
 - What we're building toward.
- B-Trees and 2-3-4 Trees
 - A simple balanced tree in depth.
- Intuiting Red/Black Trees
 - A much better feel for red/black trees.

A Quick BST Review

Binary Search Trees

- A **binary search tree** is a binary tree with the following properties:
 - Each node in the BST stores a *key*, and optionally, some auxiliary information.
 - The key of every node in a BST is strictly greater than all keys to its left and strictly smaller than all keys to its right.
- The *height* of a binary search tree is the length of the longest path from the root to a leaf, measured in the number of *edges*.
 - A tree with one node has height 0.
 - A tree with no nodes has height -1, by convention.

Case 2: If the node has two children, find its inorder successor (which has zero or one child), replace the node's key with its successor's key, then delete its successor.

Runtime Analysis

- The time complexity of all these operations is O(h), where h is the height of the tree.
 - That's the longest path we can take.
- In the best case, $h = O(\log n)$ and all operations take time $O(\log n)$.
- In the worst case, $h = \Theta(n)$ and some operations will take time $\Theta(n)$.
- *Challenge:* How do you efficiently keep the height of a tree low?

A Glimpse of Red/Black Trees

- A *red/black tree* is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.

- A *red/black tree* is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.

- A *red/black tree* is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.

- A *red/black tree* is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.

- A *red/black tree* is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.

- A *red/black tree* is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.

- Theorem: Any red/black tree with n nodes has height O(log n).
 - We could prove this now, but there's a *much* simpler proof of this we'll see later on.
- Given a fixed red/black tree, lookups can be done in time $O(\log n)$.

How do we fix up the black-height property?

Fixing Up Red/Black Trees

- *The Good News:* After doing an insertion or deletion, can locally modify a red/black tree in time O(log *n*) to fix up the red/black properties.
- *The Bad News:* There are a *lot* of cases to consider and they're not trivial.
- Some questions:
 - How do you memorize / remember all the rules for fixing up the tree?
 - How on earth did anyone come up with red/black trees in the first place?

Fixing Up Red/Black Trees

- *The Good News:* After doing an insertion or deletion, can locally modify a red/black tree in time O(log *n*) to fix up the red/black properties.
- *The Bad News:* There are a *lot* of cases to consider and they're not trivial.
- Some questions:
 - How do you memorize / remember all the rules for fixing up the tree?
 - How on earth did anyone come up with red/black trees in the first place?

B-Trees

Generalizing BSTs

- In a binary search tree, each node stores a single key.
- That key splits the "key space" into two pieces, and each subtree stores the keys in those halves.

Generalizing BSTs

- In a *multiway search tree*, each node stores an arbitrary number of keys in sorted order.
- A node with k keys splits the key space into k+1 regions, with subtrees for keys in each region.

Generalizing BSTs

• In a *multiway search tree*, each node stores an arbitrary number of keys in sorted order.

• Surprisingly, it's a bit easier to build a balanced multiway tree than it is to build a balanced BST. Let's see how.

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

31|41

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

31 41 59

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

26 31 41 59

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

26 31 41 53 59

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

26 31 41 53 58 59

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

26 31 41 53 58 59 97

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

26 31 41 53 58 59 93 97

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

23 26 31 41 53 58 59 93 97

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

23 26 31 41 53 58 59 84 93 97

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

23 26 31 41 53 58 59 62 84 93 97

- In some sense, building a balanced multiway tree isn't all that hard.
- We can always just cram more keys into a single node!

• At a certain point, this stops being a good idea – it's basically just a sorted array. What does "balance" even mean here?

 What could we do if our nodes get too big?

- What could we do if our nodes get too big?
- *Option 1:* Push keys down into new nodes.

- What could we do if our nodes get too big?
- *Option 1:* Push keys down into new nodes.

23 26 31 41 53 58 59 84 93 97

- What could we do if our nodes get too big?
- *Option 1:* Push keys down into new nodes.

23 26 31 41 53 58 59 <mark>62</mark> 84 93 97

- What could we do if our nodes get too big?
- *Option 1:* Push keys down into new nodes.

- What could we do if our nodes get too big?
- *Option 1:* Push keys down into new nodes.
- *Option 2:* Split big nodes, kicking keys higher up.

- What could we do if our nodes get too big?
- *Option 1:* Push keys down into new nodes.
- *Option 2:* Split big nodes, kicking keys higher up.

23 26 31 41 53 58 59 84 93 97

- What could we do if our nodes get too big?
- *Option 1:* Push keys down into new nodes.
- *Option 2:* Split big nodes, kicking keys higher up.

23 26 31 41 53 58 59 <mark>62</mark> 84 93 97

- What could we do if our nodes get too big?
- *Option 1:* Push keys down into new nodes.
- *Option 2:* Split big nodes, kicking keys higher up.

- What could we do if our nodes get too big?
- *Option 1:* Push keys down into new nodes.
- *Option 2:* Split big nodes, kicking keys higher up.
- Let's assume that, during an insertion, we add keys to the deepest node possible.
- How do these options compare?

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

10 99 50 20 40 30 31 39 35 32 33 34

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

10

99 | 50 | 20 | 40 | 30 | 31 | 39 | 35 | 32 | 33 | 34

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

10 99

50 20 40 30 31 39 35 32 33 34

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

10 50 99

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

10 20 50 99

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

10 20 50 99

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

 $10 \mid 99$

50

20

0 40

30

31

39

35

32

33

- **Option 1:** Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- **Option 2:** Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

99

40

30

31

39

35

32

33

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

10 99

50

20

40

30

31

39

35

32

33

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

10 50 99

20

40

30

31

39

35

32

33

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

10 20 50 99

40

30

31

39

35

32

33

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

10 20 50 99

40

30

31

39

35

32

33

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

50

10 20

99

40

30

31

39

35

32

33

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

40

30

31

39

35

32

33

31

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

31

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

30

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

- *Option 1:* Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- *Option 2:* Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

• *General idea*: Cap the maximum number of keys in a node. Add keys into leaves. Whenever a node gets too big, split it and kick one key higher up the tree.

- *Advantage 1:* The tree is always balanced.
- Advantage 2: Insertions and lookups are pretty fast.

- We currently have a mechanical description of how these balanced multiway trees work:
 - Cap the size of each node.
 - Add keys into leaves.
 - Split nodes when they get too big and propagate the splits upward.
- We currently don't have an *operational definition* of how these balanced multiway trees work.
 - e.g. "A Cartesian tree for an array is a binary tree that's a min-heap and whose inorder traversal gives back the original array."
 - e.g. "A suffix tree is a Patricia trie with one node for each suffix and branching word of *T*."

B-Trees

- A B-tree of order b is a multiway search tree where
 - each node has (roughly) between b and 2b keys, except the root, which may only have between 1 and 2b keys;
 - each node is either a leaf or has one more child than key; and
 - all leaves are at the same depth.
- Different authors give different bounds on how many keys can be in each node. The ranges are often [b-1, 2b-1] or [b, 2b]. For the purposes of today's lecture, we'll use the range [b-1, 2b-1] for the key limits, just for simplicity.

Analyzing Multiway Trees

The Height of a B-Tree

• What is the maximum possible height of a B-tree of order *b* that holds *n* keys?

Intuition: The branching factor of the tree is at least b, so the number of keys per level grows exponentially in b. Therefore, we'd expect something along the lines of $O(\log_b n)$.

The Height of a B-Tree

• What is the maximum possible height of a B-tree of order *b* that holds *n* keys?

..

...
$$b-1 2b^{h-1}(b-1)$$

b - 1

The Height of a B-Tree

- **Theorem:** The maximum height of a B-tree of order b containing n keys is $O(\log_b n)$.
- **Proof:** Number of keys *n* in a B-tree of height *h* is guaranteed to be at least

$$1 + 2(b-1) + 2b(b-1) + 2b^{2}(b-1) + ... + 2b^{h-1}(b-1)$$

$$= 1 + 2(b-1)(1 + b + b^{2} + ... + b^{h-1})$$

$$= 1 + 2(b-1)((b^{h} - 1) / (b-1))$$

$$= 1 + 2(b^{h} - 1) = 2b^{h} - 1.$$

Solving $n = 2b^h - 1$ yields $h = \log_b ((n + 1) / 2)$, so the height is $O(\log_b n)$.

- Suppose we have a B-tree of order *b*.
- What is the worstcase runtime of looking up a key in the B-tree?
- Answer: It depends on how we do the search!

- To do a lookup in a B-tree, we need to determine which child tree to descend into.
- This means we need to compare our query key against the keys in the node.
- **Question:** How should we do this?

- *Option 1:* Use a linear search!
- Cost per node: O(b).
- Nodes visited: $O(\log_b n)$.
- Total cost:

$$O(b) \cdot O(\log_b n)$$

 $= O(b \log_b n)$

- *Option 2:* Use a binary search!
- Cost per node: $O(\log b)$.
- Nodes visited: $O(\log_b n)$.
- Total cost:

$$O(\log b) \cdot O(\log_b n)$$

- $= O(\log b \cdot \log_b n)$
- $= O(\log b \cdot (\log n) / (\log b))$
- $= O(\log n).$

Intuition: We can't do better than O(log *n*) for arbitrary data, because it's the information-theoretic minimum number of comparisons needed to find something in a sorted collection!

- Suppose we have a B-tree of order *b*.
- What is the worst-case runtime of inserting a key into the B-tree?
- Each insertion visits $O(\log_b n)$ nodes, and in the worst case we have to split every node we see.
- **Answer:** $O(b \log_b n)$.

- The cost of an insertion in a B-tree of order b is $O(b \log_b n)$.
- What's the best choice of b to use here?
- Note that

```
b \log_b n
= b (\log n / \log b)
= (b / \log b) \log n.
```

Fun fact: This is the same time bound you'd get if you used a b-ary heap instead of a binary heap for a priority queue.

- What choice of b minimizes b / $\log b$?
- **Answer:** Pick b = e.

2-3-4 Trees

- A 2-3-4 tree is a B-tree of order 2. Specifically:
 - each node has between 1 and 3 keys;
 - each node is either a leaf or has one more child than key; and
 - all leaves are at the same depth.
- You actually saw this B-tree earlier! It's the type of tree from our insertion example.

The Story So Far

- A B-tree supports
 - lookups in time $O(\log n)$, and
 - insertions in time $O(b \log_b n)$.
- Picking *b* to be around 2 or 3 makes this optimal in Theoryland.
 - The 2-3-4 tree is great for that reason.
- *Plot Twist:* In practice, you most often see choices of *b* like 1,024 or 4,096.
- *Question:* Why would anyone do that?

Memory Tradeoffs

- There is an enormous tradeoff between *speed* and *size* in memory.
- SRAM (the stuff registers are made of) is fast but very expensive:
 - Can keep up with processor speeds in the GHz.
 - SRAM units can't be easily combined together; increasing sizes require better nanofabrication techniques (difficult, expensive!)
- Hard disks are cheap but very slow:
 - As of 2020, you can buy a 4TB hard drive for about \$70.
 - As of 2020, good disk seek times for magnetic drives are measured in ms (about two to four million times slower than a processor cycle!)

• *Idea:* Try to get the best of all worlds by using multiple types of memory.

• *Idea*: Try to get the best of all worlds by using multiple types of memory.

• *Idea:* Try to get the best of all worlds by using multiple types of memory.

External Data Structures

- Suppose you have a data set that's way too big to fit in RAM.
- The data structure is on disk and read into RAM as needed.
- Data from disk doesn't come back one *byte* at a time, but rather one *page* at a time.
- *Goal:* Minimize the number of disk reads and writes, not the number of instructions executed.

"Please give me 4KB starting at location *addr1*"

1101110010111011110001...

- Suppose you have a data set that's way too big to fit in RAM.
- The data structure is on disk and read into RAM as needed.
- Data from disk doesn't come back one *byte* at a time, but rather one *page* at a time.
- *Goal:* Minimize the number of disk reads and writes, not the number of instructions executed.

- Suppose you have a data set that's way too big to fit in RAM.
- The data structure is on disk and read into RAM as needed.
- Data from disk doesn't come back one *byte* at a time, but rather one *page* at a time.
- *Goal:* Minimize the number of disk reads and writes, not the number of instructions executed.

"Please give me 4KB starting at location *addr2*"

001101010001010001010001...

- Suppose you have a data set that's way too big to fit in RAM.
- The data structure is on disk and read into RAM as needed.
- Data from disk doesn't come back one *byte* at a time, but rather one *page* at a time.
- *Goal:* Minimize the number of disk reads and writes, not the number of instructions executed.

- Suppose you have a data set that's way too big to fit in RAM.
- The data structure is on disk and read into RAM as needed.
- Data from disk doesn't come back one *byte* at a time, but rather one *page* at a time.
- *Goal:* Minimize the number of disk reads and writes, not the number of instructions executed.

"Please give me 4KB starting at location *addr3*"

1111010010000100000000010...

Analyzing B-Trees

- Suppose we tune *b* so that each node in the B-tree fits inside a single disk page.
- We *only* care about the number of disk pages read or written.
 - It's so much slower than RAM that it'll dominate the runtime.
- Question: What is the cost of a lookup in a B-tree in this model?
- *Question:* What is the cost of inserting into a B-tree in this model?

Analyzing B-Trees

- Suppose we tune *b* so that each node in the B-tree fits inside a single disk page.
- We *only* care about the number of disk pages read or written.
 - It's so much slower than RAM that it'll dominate the runtime.
- *Question:* What is the cost of a lookup in a B-tree in this model?
 - Answer: The height of the tree, $O(\log_b n)$.
- *Question:* What is the cost of inserting into a B-tree in this model?
 - Answer: The height of the tree, $O(\log_b n)$.

- Because B-trees have a huge branching factor, they're great for on-disk storage.
 - Disk block reads/writes are glacially slow.
 - The high branching factor minimizes the number of blocks to read during a lookup.
 - Extra work scanning inside a block offset by these savings.
- Major use cases for B-trees and their variants (B+-trees, H-trees, etc.) include
 - databases (huge amount of data stored on disk);
 - file systems (ext4, NTFS, ReFS); and, recently,
 - in-memory data structures (due to cache effects).

Analyzing B-Trees

- The cost model we use will change our overall analysis.
- Cost is number of operations: $O(\log n)$ per lookup, $O(b \log_b n)$ per insertion.
- Cost is number of blocks accessed:
 - $O(\log_b n)$ per lookup, $O(\log_b n)$ per insertion.
- Going forward, we'll use operation counts as our cost model, though looking at caching effects of data structures would make for an awesome final project!

The Story So Far

- We've just built a simple, elegant, balanced multiway tree structure.
- We can use them as balanced trees in main memory (2-3-4 trees).
- We can use them to store huge quantities of information on disk (B-trees).
- We've seen that different cost models are appropriate in different situations.

So... red/black trees?

Red/Black Trees

- A *red/black tree* is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - · No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.

Red/Black Trees

- A red/black tree is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.
- After we hoist red nodes into their parents:
 - Each "meta node" has 1, 2, or 3 keys in it. (No red node has a red child.)
 - Each "meta node" is either a leaf or has one more child than key. (Rootnull path property.)
 - Each "meta leaf" is at the same depth. (Root-null path property.)

This is a 2-3-4 tree!

Data Structure Isometries

- Red/black trees are an *isometry* of 2-3-4 trees; they represent the structure of 2-3-4 trees in a different way.
- Many data structures can be designed and analyzed in the same way.
- *Huge advantage:* Rather than memorizing a complex list of red/black tree rules, just think about what the equivalent operation on the corresponding 2-3-4 tree would be and simulate it with BST operations.

The Height of a Red/Black Tree

Theorem: Any red/black tree with n nodes has height $O(\log n)$.

Proof: Contract all red nodes into their parent nodes to convert the red/black tree into a 2-3-4 tree. This decreases the height of the tree by at most a factor of two. The resulting 2-3-4 tree has height $O(\log n)$, so the original red/black tree has height $2 \cdot O(\log n) = O(\log n)$.

Next Time

Deriving Red/Black Trees

 Figuring out rules for red/black trees using our isometry.

Tree Rotations

A key operation on binary search trees.

Augmented Trees

 Building data structures on top of balanced BSTs.