ANA CIG $\frac{(4n^2+n^2+n^2)}{(4n^2+n^2+n^2)}$ gesucht: Grenzwat x VE>O BNEN Yn ZN: d(xn, x) < E Sei 870 bel. Wahle N= [4 +47 Sein 2N bel. Down gill: $\left| 1 - \frac{4n^2 + n}{4n^2 + n - 4} \right| = \left| \frac{4n^2 + n - 4}{4n^2 + n - 4} - \frac{4n^2 + n}{4n^2 + n - 4} \right| = \left| \frac{-4}{4n^2 + n - 4} \right| = \frac{4}{4n^2 + n - 4}$ $\leq \frac{4}{4N^2 + N - 4} < \frac{4}{N - 4} = \frac{4}{\xi} + 4\overline{1 - 4} = \frac{4}{\xi} + 4 - 4 = \frac{4}{\xi} = \frac{4}{\xi}$ $\Rightarrow (x_n) \xrightarrow{n \to \infty} 1$ ges: Icleinstmögliches Nzn festem E>0 $N > \left| \frac{-\varepsilon + \sqrt{65 \,\varepsilon^2 + 64 \,\varepsilon}}{8 \,\varepsilon} \right|$ 2) ges: unbeschränkte Folge in R, die eine konvergente Teilfolge hat $(n + (-1)^n \cdot n)$ bein gerade: $n + (-1)^n \cdot n = n + n = 2n$ unhestränkt lein ungerade: $n+(-1)^n$: $n=n+(-1)\cdot n=n-n=0$ leschant ges: unbeschanke Folge, die keine konvergente Jeilfolge het und nicht monoton wachsend ist bei n gerade: streng monoton worchsend

ANA	ÜG	
3.)	(xn)new Folge in melischem Rausn	6
	$22: \lim_{n\to\infty} x_n = x \iff \lim_{n\to\infty} x_{2n} = x \qquad 1 \qquad \lim_{n\to\infty} x_{2n-1} = x$	
	1.) $\lim_{N\to\infty} x_n = x = x$ $\lim_{N\to\infty} x_{2n} = x$ $\lim_{N\to\infty} x_{2n-1} = x$	
	Da X2n und X2n-1 Teilfolgen von Xn sind konvergieren	
	sie gegen x.	
	2.) $\lim_{n\to\infty} x_{2n} = x$ 1 $\lim_{n\to\infty} x_{2n-1} = x$ => $\lim_{n\to\infty} x_{2n} = x$	
	$\forall \varepsilon \times 0 \exists N \in \mathbb{N} \forall n \geq N, : d(x_{2n}, x) \leq \varepsilon$	
	$\forall \varepsilon > 0 \exists N_2 \in \mathbb{N} \forall n \ge N_2 : d(x_{2n-1}, x) \le \varepsilon$	1
	Sei E>O beliebig. N:= max(N1, N2)	
	$\forall n \geq N: d(x_{2n}, x) \leq \varepsilon \wedge d(x_{2n-1}, x) \leq \varepsilon$	
	$\Rightarrow \forall n \geq M: d(x_n, x) \leq \mathcal{E}$	
4.)	(an) new, (bn) new Folgen in R	
	lim an = a lim by = 6	
	$\forall \varepsilon > 0 \exists N_{\alpha} \in \mathbb{N} \forall n \geq N_{\alpha} : d(\alpha_{n,\alpha}) < \varepsilon$	
	$\forall \mathcal{E} > 0 \ \exists N_{\delta} \in \mathbb{N} \ \forall n \geq N_{\delta} : d(b_{n}, b) \leq \mathcal{E}$	
	5.8.d. A	
	d.h. INEN YnzN: an & bn	
	• $\forall n \geq N : max(a_n, b_n) = b_n$	
	=> max(an, 6n) \$\frac{1}{200} b, da eine Folge gegen einen Grenzwert konvergiert	1
	nem sie ab einen Folgrighied gegen den Grenzwert konvergiert.	
	• $\forall n \geq N : \min(a_n, b_n) = a_n$	
	=> min (au, bu) => a, wieder der eine Folge, die al einem beglimmten	
	Folgenglied konvergiert auch insgesamt konvergiert.	
		-

ANA UG 5. $(x_n)_{n \in \mathbb{N}}$ $x_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$ Erage: honvergent? 22: (Xn) rist beschränkt (werch aben) VKEIN: XX hat K Summandan hat and der größte Summand 1. ist. => XK < K. K+1 < 1 22: (xn) ist monoton wachsend $x_{n+1} - x_n = \sum_{i=1}^{n+1} \frac{1}{n+i} + \sum_{i=1}^{n} \frac{1}{n+i} = \sum_{i=2}^{n} \frac{1}{n+i} - \sum_{i=1}^{n} \frac{1}{n+i} = \frac{1}{2n+1} + \frac{1}{2n+2} + \sum_{i=2}^{n} \frac{1}{n+i} - \sum_{i=2}^{n} \frac{1}{n+i} - \frac{1}{n+1}$ $= \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1} \ge 0 \iff \frac{1}{2n+1} + \frac{1}{2n+2} \ge \frac{1}{n+1}$ $=>2\cdot\frac{1}{2n+2}\geq\frac{1}{n+1}\iff\frac{1}{n+1}\geq\frac{1}{n+1}$ => (xn) konvergiert, da nach aben beschankt und wonden wachsend $\frac{1}{1+\frac{1}{n^2}} = \frac{1}{1+\frac{2}{n^2}} = \frac{1$ $(1+x)^n \ge 1+x \cdot n$ XZO NEN $\left(1 + \frac{1}{n^2}\right)^{2n-2} > 1 + \frac{2n-2}{n^2}$

```
ANA 06
 7.) x_1 = 0 x_{n+1} = \frac{1}{2} \left( \alpha + x_n^2 \right) \lim_{n \to \infty} n \in \mathbb{N} and 0 \le \alpha \le 1

\alpha = 1 \quad x_1 = 0 \quad x_2 = \frac{7}{2} \quad x_3 = \frac{5}{8} \quad x_4 = \frac{89}{128}

\alpha = 0 \quad x_1 = 0 \quad x_2 = 0 \quad x_3 = 0 \quad x_4 = 0

\alpha = 0.5 \quad x_1 = 0 \quad x_2 = \frac{7}{4} \quad x_3 = \frac{3}{3}

\alpha = 0.1

       Behauptung: monoton wachsend
          A: x_2 - x_1: \frac{1}{2}(a+0^2) - 0 = \frac{1}{2}a - 0 = \frac{a}{2}, da \ 0 \le a \le 1
                                            \Rightarrow x_2 - x_1 > 0 \Rightarrow x_2 > x_1
                   XK-XK-1>0
                     X_{K+1} - X_K = \frac{1}{2} (\alpha + X_K) - X_K = \frac{1}{2} \alpha + \frac{1}{2} X_K^2 - X_K
                            = 2 a + 2 xx2 - 2 (a + xx12) = 2 a + 2 xx2 - 2 a - 2 xx-12
                            = \frac{1}{2} \times_{\kappa}^{2} - \frac{1}{2} \times_{\kappa-1}^{2} = \frac{1}{2} (\times_{\kappa} - \times_{\kappa-1}) \cdot (\times_{\kappa} + \times_{\kappa-1}) > 0
    Behaupting: nach oben beschränkt
       1A: x1 = 0 < 1
        15: xn+1 = \frac{1}{2}(01 + xn^2); der 0\le a \le 1 und xn^2 < 1 folgt \frac{1}{2}(a+xn^2) \le \frac{1}{2}(2) = 1
                        => (Xm) kon vergiert
   ges Grenzwat: \lim_{n\to\infty} x_n = \lim_{n\to\infty} \frac{1}{2}(a + x_n^2) = \lim_{n\to\infty} \frac{1}{2}a + \frac{1}{2}x_n
                  = \left(\lim_{n\to\infty} \frac{1}{2} \alpha_n\right) + \left(\lim_{n\to\infty} \frac{1}{2} \times n\right) = \frac{1}{2} \alpha_n + \left(\lim_{n\to\infty} \frac{1}{2}\right) \cdot \left(\lim_{n\to\infty} \times n\right) \cdot \left(\lim_{n\to\infty} \times n\right) = \frac{1}{2} \alpha_n + \frac{1}{2} \times 2
                 x = \frac{1}{2}a + \frac{1}{2}x^{2} \iff 0 = \frac{1}{2}x^{2} - x + \frac{1}{2}a \iff 0 = x^{2} - 2x + a
                       \Rightarrow x = 1 \pm \sqrt{1-a'}, dax_n < 1 \Rightarrow x = 1 - \sqrt{1-a'}
```

ANA UG 8.) (i) < C \ 203, d2> Kein vollständig mehischer Raum, dar (+ 0i) new eine Cauchy-Folge ist, alen gegen einen Punkt konvergiat, de nicht in CC 205, de > liegt (nambich 0+0i). (ii) $\langle [0,1] \cup [2,3], d_2 \rangle$ VETO FNEIN Vn, m = N: d2(xm, xn) E Sei (Xn) new eine beliebige Courchy-Folge, dont de Definition gill (E=0,5) FNEIN Vn, m ZN: 1xm-xn1<0,5 => ab einem Sudex N liegen die Werte der Folge nu mehr in [0,1] oder [2,3]. Da ([0,1],dz) und ([2,3],dz) vallstandig metrische Räume sind gild es ein x e [0,1] v [2,3] mit him x = x. (iii) < Z, d2> Behamptung: Sn Z gill es nur Canchy-Folgen, die al einem Sudex konstant Ben: Sei E = 2. In einer nicht Iconstanten Folge in Z Ixm, xm, E(xn) mit xm # xm + und d2(xm, xm+1) > 1 and soun't > E. Eur jede Cauchy-Folge (also at einem Index konsont) gill es einen grenewert, nambich den konstantin West at Snotet. => < Z/, olz > ist vallständig metrisch

