Exercice 1. Cet exercice s'intéresse à l'étude d'endomorphismes spécifiques de \mathbb{R}^3 . On note $\mathscr{L}(\mathbb{R}^3)$ l'ensemble des endomorphismes de \mathbb{R}^3 , et si $f \in \mathscr{L}(\mathbb{R}^3)$, on rappelle que la puissance $n^{\rm e}$, $n \in \mathbb{N}$, d'un endomorphisme est définie de la façon suivante :

$$f^n = \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ fois}}.$$

Un endomorphisme est nilpotent s'il existe $p \in \mathbb{N}^*$ tel que $f^p = 0_{\mathscr{L}(\mathbb{R}^3)}$. On définit alors l'indice de nilpotence p^* de $f: p^* = \min \{p \in \mathbb{N}^* : f^p = 0\}$. C'est le plus petit entier positif p tel que f^p est nul. De même, une matrice $M \in \mathscr{M}_3(\mathbb{R})$ est nilpotente s'il existe $p \in \mathbb{N}^*$ tel que $M^p = 0_{\mathscr{M}_3(\mathbb{R})}$ et on définit de manière similaire l'indice de nilpotence d'une matrice nilpotente. Soit les matrices N_1 et N_2 suivantes de $\mathscr{M}_3(\mathbb{R})$:

$$N_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, N_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

1. Montrer que N_1 et N_2 sont nilpotentes, et préciser leur indice de nilpotence.

Dans toute la suite du problème, on considère $f \in \mathcal{L}(\mathbb{R}^3)$ nilpotent non nul et on note p^* son indice de nilpotence.

- **2.** Soit $x_0 \in \mathbb{R}^3$ tel que $f^{p^*-1}(x_0) \neq 0$.
 - a) Pourquoi un tel x_0 existe-t-il?
 - **b)** Montrer que $(x_0, f(x_0), \dots, f^{p^*-1}(x_0))$ forme une famille libre de \mathbb{R}^3 .
 - c) En déduire que $p^* \leq 3$.

Dorénavant, et jusqu'à la question $\mathbf{6}$, on suppose en plus que dim Ker f=1.

- 3. On veut montrer qu'alors $p^* = 3$. On raisonne par l'absurde et on suppose que $p^* = 2$.
 - a) Montrer que Im $f \subset \text{Ker } f$.
 - b) En déduire une absurdité et conclure.
- **4.** Exprimer f sous forme matricielle dans la base $(x_0, f(x_0), f^2(x_0))$.
- **5.** En déduire que f s'exprime dans une base bien choisie comme N_2 .
- **6. Bonus.** Montrer que lorsque dim Ker f=2, f s'exprime dans une base bien choisie comme N_1 .