

Queste dispense sono state scritte e redatte dal Prof. Alessandro Papadopoulos, Mälardalen University e successivamente in parte modificate e completate.

Richiami di teoria

Si consideri lo schema classico di controllo in retroazione in Figura 1 dove R(s) è la funzione di trasferimento del controllore e G(s) quella del processo da controllare.

Figura 1: Schema classico di controllo in retroazione.

Indichiamo con L(s) la funzione di trasferimento ad anello aperto L(s) = R(s)G(s). Si supponga che gli eventuali autovalori nascosti del sistema con funzione di trasferimento L(s) siano tutti a parte reale strettamente negativa, cioè che non vi siano cancellazioni non lecite tra R(s) e G(s).

Figura 2: Schema di riferimento per l'analisi di stabilità di uno schema classico di controllo in retroazione

Criterio di Nyquist

Dato il sistema retroazionato in Figura 2.

Definiamo le seguenti quantità:

P: numero di poli a parte reale strettamente positiva di L(s);

N: numero di giri compiuti dal diagramma di Nyquist intorno al punto -1 dell'asse reale, contati positivamente se compiuti in senso antiorario e negativamente se in senso orario. N non è ben definito se il diagramma passa per il punto -1.

Allora il sistema retroazionato è asintoticamente stabile se e solo se N è ben definito e risulta:

$$N = P$$
.

Criterio di Bode

Si consideri il sistema retroazionato in Figura 2.

Le condizioni di applicabilità del criterio sono le seguenti:

- 1. L(s) è strettamente propria;
- 2. L(s) non ha poli a parte reale strettamente positiva;
- 3. il diagramma di Bode del modulo di L(s) attraversi una sola volta l'asse a 0 dB, nel punto ω_c , dove pertanto risulta che $|L(\jmath\omega_c)|=1$.

Definiamo le seguenti quantità:

 μ_L : guadagno di L(s);

 φ_m : margine di fase ottenuto come $\varphi_m = 180^\circ - |\varphi_c|$, dove $\varphi_c = \angle L(\jmath\omega_c)$ è detta fase critica.

Se tali condizioni sono verificate, il sistema retroazionato è asintoticamente stabile se e solo se $\mu_L > 0$ e $\varphi_m > 0^{\circ}$.

1 Cruise control

Il cruise control è un esempio eccellente di controllo in retroazione che si può trovare in molte automobili moderne. Lo scopo del cruise control è quello di mantenere la velocità del veicolo costante anche a fronte di disturbi esterni, come ad esempio il vento o la pendenza della strada. Questo è ottenuto misurando la velocità del veicolo, comparandola con la velocità desiderata e aggiustando automaticamente l'accelerazione secondo una legge di controllo.

Figura 3: Diagramma di corpo libero.

Consideriamo un modello semplice della dinamica del veicolo, mostrato in Figura 3. Il veicolo, di massa m, è azionato tramite una forza di controllo u. La forza u rappresenta la forza generata dall'interfaccia strada/pneumatico. Per questo modello semplificato assumiamo che si controlla la forza direttamente, ignorando la dinamica del motore, delle ruote, etc., che sono coinvolte nella generazione della forza. Assumiamo che le forze che si oppongono al moto, bv(t), dovute all'attrito volvente e all'effetto della resistenza dell'aria, dipendano linearmente con la velocità del veicolo v(t), e agiscono nella direzione opposta al movimento del veicolo. Si consideri che la massa del veicolo è pari a m=1000kg, e che il coefficiente d'attrito è b=10Ns/m. Le equazioni del sistema possono essere scritte come:

$$\begin{cases} m\dot{v}(t) + bv(t) = u(t) \\ y(t) = v(t) \end{cases}$$

- 1. Calcolare la funzione di trasferimento P(s) del sistema con ingresso u(t) e uscita v(t).
- 2. Tracciare i diagrammi di Bode asintotici e reali del modulo e della fase di P(s).
- 3. Si consideri lo schema di controllo mostrato in Figura 4.

Figura 4: Schema di controllo.

Determinare la stabilità del sistema in anello chiuso quando $R(s) = \frac{k}{s}$, con $k \in \mathbb{R}_{>0}$, e G(s) = P(s).

4. Si supponga che l'attuatore, non considerato in fase di progetto abbia funzione di trasferimento:

$$A(s) = \frac{1}{1+s}.$$

Dire, motivando la risposta, per quali valori di k il sistema di controllo di Figura 5 che include il controllore $R(s) = \frac{k}{s}$ e l'attuatore con funzione di trasferimento A(s), è ancora asintoticamente stabile.

Figura 5: Schema di controllo.

5. Si supponga che l'attuatore, non considerato in fase di progetto abbia funzione di trasferimento:

$$A(s) = e^{-\tau s}, \quad \tau > 0.$$

Dire, motivando la risposta, per quali valori di τ il sistema di controllo di Figura 5 che include il controllore $R(s) = \frac{1}{s}$ e l'attuatore con funzione di trasferimento A(s), è ancora asintoticamente stabile.

Soluzione

1. Per ottenere la funzione di trasferimento, si può riscrivere il sistema in trasformata di Laplace (dove si pone v(0) = 0):

$$\begin{cases} msV(s) + bV(s) = U(s) \\ Y(s) = V(s) \end{cases} \Rightarrow P(s) := \frac{Y(s)}{U(s)} = \frac{1}{ms + b} = \frac{1}{1000s + 10} = \frac{0.1}{1 + 100s}$$

2. I diagrammi di Bode del modulo e della fase di P(s) sono mostrati in Figura 6.

Figura 6: Diagrammi di Bode asintotici (linea continua) ed esatti (linea tratteggiata) del modulo e della fase della risposta in frequenza associata a P(s).

3. Per determinare la stabilità del sistema in anello chiuso, si considera la funzione di trasferimento d'anello:

$$L(s) = R(s)P(s) = \frac{0.1k}{s} \frac{1}{1 + s100}.$$

Si possono quindi tracciare i diagrammi di Bode per un valore di k generico, come mostrato in Figura 7.

Figura 7: Diagrammi di Bode asintotici (linea continua) ed esatti (linea tratteggiata) del modulo e della fase della risposta in frequenza associata a L(s), con k=1.

Osservazione 1. Si noti che, dato che k > 0, il diagramma di Bode della fase rimane invariato al variare del valore di k. Inoltre, aumentare il valore di k significa traslare verso l'alto il diagramma di Bode del modulo e, viceversa, diminuire il valore di k significa traslare verso il basso il diagramma di Bode del modulo. Questo implica che variare il valore di k fa variare la pulsazione critica ω_c .

Verifichiamo se si può applicare il criterio di Bode:

- (a) L(s) è strettamente propria;
- (b) L(s) non ha poli a parte reale strettamente positiva;
- (c) la pulsazione critica, cioè la pulsazione ω_c tale che $|L(j\omega_c)|=1$, è ben definita dato che il diagramma di Bode del modulo attraversa una e una sola volta dall'alto verso il basso l'asse 0dB.

Si può quindi applicare il criterio di Bode.

Quindi verifichiamo le condizione di stabilità secondo il criterio di Bode:

- (a) $\mu_L = 0.1k > 0$
- (b) $\varphi_m = 180^{\circ} |\varphi_c|$, dove $\varphi_c = \angle L(\jmath\omega_c)$ è detta fase critica. Dato che $\varphi_c > -180^{\circ}$, succede che per qualunque valore di k, $\varphi_m > 0$.
- 4. Se si include la dinamica dell'attuatore nel sistema di controllo, non è più vero che si può scegliere un qualunque valore di k affinché il sistema di controllo rimanga asintoticamente stabile. Infatti,

L(s) diventa:

$$L(s) = \frac{0.1k}{s} \cdot \frac{1}{(1+100s)(1+s)}$$

e i diagrammi di Bode del modulo e della fase cambiano come mostrato in Figura 8.

Figura 8: Diagrammi di Bode asintotici (linea continua) ed esatti (linea tratteggiata) del modulo e della fase della risposta in frequenza associata a L(s), con k = 1.

Notando ancora una volta che la fase non è influenzata dal valore di k e che però, questa volta, la fase raggiunge -270° , è possibile ricavare quale è la pulsazione per cui la fase raggiunge -180° . Si calcola che è possibile avere al limite $\overline{\omega_c} = 0.1 \text{rad/s}$, che si ottiene per:

$$|L(\jmath 0.1)| = 1$$

$$\frac{|0.1\overline{k}|}{|\jmath 0.1| \cdot |1 + 100\jmath 0.1| \cdot |1 + \jmath 0.1|} = 1$$

$$\frac{0.1\overline{k}}{0.1 \cdot \sqrt{1 + 10^2} \cdot \sqrt{1 + 10^{-2}}} = 1$$

$$\frac{\overline{k}}{\sqrt{1 + 10^2} \cdot \sqrt{1 + 10^{-2}}} = 1$$

$$\overline{k} = \sqrt{1 + 10^2} \sqrt{1 + 10^{-2}} = \frac{101}{10} \approx 10$$

Se $k < \overline{k}$ il sistema in anello chiuso è asintoticamente stabile. Se $k > \overline{k}$ il sistema è instabile.

Osservazione 2. Il problema può essere interpretato anche come un problema di stabilità robusta. E' possibile infatti scrivere

$$L(s) = \Delta(s)L^{o}(s)$$

dove $\Delta(s) = k$ può essere considerato come una incertezza sul guadagno e

$$L^{o}(s) = \frac{0.1}{s} \cdot \frac{1}{(1+100s)(1+s)}$$

ottenendo lo schema in Figura 9.

Figura 9: Schema di controllo con incertezza sul guadagno.

La stabilità del sistema complessivo è garantita per valori di k inferiori al margine di guadagno k_M , cioè se

$$k < k_M = \frac{1}{|L^o(j\omega_\pi)|}$$

dove $\omega_{\pi} = \bar{\omega_c}$, e dove risulta dunque che $k_M = \bar{k}$.

5. La funzione d'anello in questo caso è:

$$L(s) = R(s)A(s)P(s) = \frac{0.1}{s} \cdot \frac{e^{-\tau s}}{1 + 100s}$$

Si noti che il ritardo non cambia il diagramma di Bode del modulo, per cui è possibile calcolare quanto vale ω_c in maniera analitica o tramite il tracciamento del diagramma di Bode del modulo (mostrato in Figura 10).

Figura 10: Diagrammi di Bode asintotici (linea continua) ed esatti (linea tratteggiata) del modulo e della fase della risposta in frequenza associata a L(s).

Procediamo per via analitica, e otteniamo quanto vale ω_c :

$$\begin{aligned} |L(\jmath\omega_c)| &= 1\\ \frac{|0.1|}{|\jmath\omega_c|} \cdot \frac{1}{|1 + 100\jmath\omega_c|} &= 1\\ \frac{0.1}{\omega_c} \cdot \frac{1}{\sqrt{1 + 10^4\omega_c^2}} &= 1\\ \omega_c\sqrt{1 + 10^4\omega_c^2} &= 10^{-1}\\ \omega_c^2\left(1 + 10^4\omega_c^2\right) &= 10^{-2}\\ 10^4\omega_c^4 + \omega_c^2 - 10^{-2} &= 0\\ \omega_c^2 &= \frac{1}{2} \cdot \left(-1 + \sqrt{401}\right) \cdot 10^{-4}\\ \omega_c &= \sqrt{\frac{1}{2} \cdot \left(-1 + \sqrt{401}\right)} \cdot 10^{-2} \simeq 0.03 \text{rad/s} \end{aligned}$$

Si può quindi calcolare il valore limite del ritardo calcolando per via analitica la fase:

$$\angle L(j\omega_c) = -90^{\circ} - \arctan(100\omega_c) - \tau\omega_c \cdot \frac{180^{\circ}}{\pi} = -180^{\circ}$$

$$71.565^{\circ} + \tau\omega_c \cdot \frac{180^{\circ}}{\pi} = 90^{\circ}$$

$$\tau = \frac{18.435}{0.03} \cdot \frac{\pi}{180} \simeq 10.725s.$$

Osservazione 3. Il problema può essere interpretato anche come un problema di stabilità robusta. E' possibile infatti scrivere

$$L(s) = \Delta(s)L^{o}(s)$$

dove $\Delta(s) = e^{-\tau s} e$

$$L^{o}(s) = \frac{0.1}{s(1+100s)}$$

Si ricordi che $\Delta(j\omega) = e^{-j\omega\tau}$ e che quindi l'effetto indotto dal ritardo sulla risposta in frequenza è uno sfasamento (proporzionale al valore della pulsazione ω) $\Delta\varphi = \omega\tau$. Può quindi essere trattato similarmente a una incertezza di fase sulla funzione di trasferimento nominale $L^o(s)$, secondo lo schema in Figura 11.

Figura 11: Schema di controllo con ritardo.

La stabilità del sistema complessivo è garantita per valori di $\Delta \varphi$ - con $\omega = \omega_c$ - inferiori al margine di fase φ_M , cioè se

$$\Delta \varphi = \omega_c \tau \frac{180^{\circ}}{\pi} < \varphi_m = 180^{\circ} - |\angle L^o(\jmath \omega_c)|$$

dove $\angle L^o(j\omega_c) = -90^\circ - \arctan(100\omega_c)$.

Si consideri un sistema dinamico di ordine 3 con funzione di trasferimento:

$$L(s) = \frac{100(1-s)}{(1+5s)(1+s/3)^2}$$

- 1. Si traccino i diagrammi di Bode asintotici e reali del modulo e della fase della risposta in frequenza associata alla funzione di trasferimento L(s).
- 2. Si valuti la stabilità del sistema in retroazione mostrato in Figura 12.

Figura 12: Schema di controllo.

Soluzione

1. I diagrammi di Bode asintotici e reali del modulo e della fase associati alla funzione di trasferimento L(s) sono mostrati in Figura 13.

Figura 13: Diagrammi di Bode asintotici (linea continua) ed esatti (linea tratteggiata) del modulo e della fase della risposta in frequenza associata a L(s).

- 2. Per valutare la stabilità del sistema in retroazione, verifichiamo se è possibile applicare il criterio di Bode:
 - (a) L(s) è strettamente propria;

- (b) L(s) non ha poli a parte reale strettamente positiva;
- (c) la pulsazione critica, cioè la pulsazione ω_c tale che $|L(\jmath\omega_c)|=1$, è ben definita dato che il diagramma di Bode del modulo attraversa una e una sola volta dall'alto verso il basso l'asse 0dB. Dal diagramma di Bode del modulo si può vedere che $10 < \omega_c < 20$.

Si può quindi applicare il criterio di Bode.

Quindi verifichiamo le condizione di stabilità secondo il criterio di Bode:

- (a) $\mu_L = 100 > 0$
- (b) $\varphi_m=180^\circ-|\varphi_c|$, dove $\varphi_c=\measuredangle L(\jmath\omega_c)$ è detta fase critica. Dal diagramma di Bode della fase si vede che $\varphi_c<-180^\circ$, per cui $\varphi_m<0$.

Si può quindi concludere che il sistema retroazionato è instabile.

Si consideri un sistema dinamico di ordine 3 con funzione di trasferimento:

$$L(s) = \frac{10s}{(1-s)^2(1+0.1s)}$$

- 1. Si traccino i diagrammi di Bode asintotici e reali del modulo e della fase della risposta in frequenza associata alla funzione di trasferimento L(s).
- 2. Si valuti la stabilità del sistema in retroazione mostrato in Figura 14.

Figura 14: Schema di controllo.

3. Si supponga di connettere il sistema come mostrato in Figura 15. Dire per quali valori del parametro k > 0 il sistema rimane asintoticamente stabile.

Figura 15: Schema di controllo.

Soluzione

1. I diagrammi di Bode asintotici e reali della risposta in frequenza associata alla funzione di trasferimento L(s) sono mostrati in Figura 16.

Figura 16: Diagrammi di Bode asintotici (linea continua) ed esatti (linea tratteggiata) del modulo e della fase della risposta in frequenza associata a L(s).

2. Dato che L(s) ha due poli in s=1, non è possibile applicare il criterio di Bode. È quindi necessario applicare il criterio di Nyquist. Si può tracciare il diagramma di Nyquist di L(s) partendo dai diagrammi di Bode, come mostrato in Figura 17.

Figura 17: Diagrammi di Nyquist della risposta in frequenza associata a L(s).

Il numero di giri contati positivamente in senso antiorario intorno al punto -1 sono N=2. Il numero di poli di L(s) nel semipiano destro sono P=2. Dato che N=P, per il criterio di Nyquist, il sistema in anello chiuso è asintoticamente stabile.

3. Per il criterio di Nyquist, il diagramma di Nyquist di L(s) deve fare N=2 giri in senso antiorario intorno al punto -1 sull'asse reale. L'effetto di moltiplicare su k è di scalare il diagramma di Nyquist. Per cui qualunque valore di k che amplifica il diagramma di Nyquist preserva la stabilità dell'anello chiuso. Si deve quindi trovare il valore di k tale che il diagramma di Nyquist interseca esattamente il punto -1. Per farlo possiamo procedere per via analitica individuando a quale

pulsazione L(s) ha fase 180° (si noti che per k>0 la fase non cambia).

Si calcola $\bar{\omega} = \frac{\sqrt{5}}{2} \approx 1 \text{ rad/s},$ in corrispondenza del quale

$$|L(j\bar{\omega})| = \frac{10\bar{\omega}}{\sqrt{1+\bar{\omega}^2}\sqrt{1+10^{-2}\bar{\omega}^2}} \approx 5$$

Affinchè N=2, si deve quindi imporre che $k>\overline{k}=1/|L(\jmath\bar{\omega})|=1/5.$

Riassumendo, per $k>\overline{k}$ il sistema in anello chiuso è asintoticamente stabile, per $k<\overline{k}$ il sistema è instabile.

Si consideri un sistema dinamico di ordine 3 con funzione di trasferimento:

$$L(s) = \frac{400(1-2s)}{s^3 + 9s^2 + 8s}$$

- 1. Si traccino i diagrammi di Bode asintotici e reali del modulo e della fase della risposta in frequenza associata alla funzione di trasferimento L(s).
- 2. Si valuti la stabilità del sistema in retroazione mostrato in Figura 18.

Figura 18: Schema di controllo.

Soluzione

1. Riscriviamo la funzione di trasferimento L(s) come:

$$L(s) = \frac{400(1-2s)}{s(s+1)(s+8)} = \frac{50}{s} \cdot \frac{(1-2s)}{(1+s)(1+s/8)}.$$

I diagrammi di Bode asintotici e reali della risposta in frequenza associata alla funzione di trasferimento L(s) sono mostrati in Figura 19.

Figura 19: Diagrammi di Bode asintotici (linea continua) ed esatti (linea tratteggiata) del modulo e della fase della risposta in frequenza associata a L(s).

- 2. Per valutare la stabilità del sistema in retroazione, verifichiamo se è possibile applicare il criterio di Bode:
 - (a) L(s) è strettamente propria;
 - (b) L(s) non ha poli a parte reale strettamente positiva;
 - (c) la pulsazione critica, cioè la pulsazione ω_c tale che $|L(j\omega_c)|=1$, è ben definita dato che il diagramma di Bode del modulo attraversa una e una sola volta dall'alto verso il basso l'asse 0dB. Dal diagramma di Bode del modulo si può vedere che $\omega_c \simeq 30$.

Si può quindi applicare il criterio di Bode.

Quindi verifichiamo le condizione di stabilità secondo il criterio di Bode:

- (a) $\mu_L = 50 > 0$
- (b) $\varphi_m = 180^\circ |\varphi_c|$, dove $\varphi_c = \angle L(\jmath\omega_c)$ è detta fase critica. Dal diagramma di Bode della fase si vede che $\varphi_c < -180^\circ$, per cui $\varphi_m < 0$.

Si può quindi concludere che il sistema retroazionato è instabile.

Si consideri un sistema dinamico di ordine 3 con funzione di trasferimento:

$$L(s) = \frac{1000(s+10)}{(s-5)(s+20)^2}$$

- 1. Si traccino i diagrammi di Bode asintotici e reali del modulo e della fase della risposta in frequenza associata alla funzione di trasferimento L(s).
- 2. Si valuti la stabilità del sistema in retroazione mostrato in Figura 20.

Figura 20: Schema di controllo.

Soluzione

1. Riscriviamo la funzione di trasferimento L(s) come:

$$L(s) = \frac{1000(s+10)}{(s-5)(s+20)^2} = -5\frac{1+s/10}{(1-s/5)(1+s/20)^2}$$

I diagrammi di Bode asintotici e reali della risposta in frequenza associata alla funzione di trasferimento L(s) sono mostrati in Figura 21.

Figura 21: Diagrammi di Bode asintotici (linea continua) ed esatti (linea tratteggiata) del modulo e della fase della risposta in frequenza associata a L(s).

2. Dato che L(s) ha un polo in s=5, non è possibile applicare il criterio di Bode. È quindi necessario applicare il criterio di Nyquist. Si può tracciare il diagramma di Nyquist di L(s) partendo dai diagrammi di Bode, come mostrato in Figura 22.

Figura 22: Diagrammi di Nyquist della risposta in frequenza associata a L(s).

Il numero di giri contati positivamente in senso antiorario intorno al punto -1 sono N=1. Il numero di poli di L(s) nel semipiano destro sono P=1. Dato che N=P, per il criterio di Nyquist, il sistema in anello chiuso è asintoticamente stabile.