Bem-vindo ao Interactive Physics

Interactive Physics é resultado de uma década de esforço conjunto entre professores de Física, autores, editores, e também engenheiros de software. Além de estar totalmente em sintonia com os Parâmetros Curriculares Nacionais, o software oferece aos seus alunos as mesmas ferramentas utilizadas por cientistas profissionais e engenheiros.

Para iniciar, instale o Interactive Physics e siga cada um dos tópicos do demonstrativo que são descritos abaixo. O Interactive Physics será uma ferramenta muito útil em suas aulas. Em caso de dúvida, entre em contato conosco através do site www.interactivephysics.com

Tópico	Conceito Físico
1.2 Criando um bloco em queda	Massa; objetos em queda livre; leis do movimento; cinemática
1.3 Adicionando um vetor velocidade	Vetor e quantidades escalares; componentes do vetor; versor
1.4 Montando um pêndulo	Movimento oscilatório; frequência e amplitude; cinemática rotacional; força centrípeta
1.5 Alterando a aparência de um objeto	Centro da massa
1.6 Montando um gráfico sobre o movimento do pêndulo	Gráficos e medidas; diagramas do movimento
1.7 Alterando a gravidade	Lei da gravidade; Segunda Lei de Newton
1.8 Adicionando resistência do ar	Resistência do ar; forças não-conservativas
1.9 Adicionando uma mola	Oscilação da mola; forças conservativas; conservação de energia; energia cinética e
	potencial
1.10 Controlando a constante da mola	Constante da mola; comprimento natural da mola; comprimento de equilíbrio da mola
1.11 Colisões com um círculo	Colisão; elasticidade; forças de atrito; impulso e quantidade de movimento
1.12 Anexando uma figura a um objeto	Ao anexar figuras aos experimentos, podemos torná-los mais reais e divertidos
1.13 Adicionando som	Ondas sonoras; velocidade do som; Efeito Doppler; intensidade e frequência do som
1.14 Adicionando um pino sobre uma	Física da "Montanha Russa"; movimento em duas dimensões; conservação de energia e
guia curva	quantidade de movimento
1.15 Adicionando uma força	Conceito de força; Primeira Lei de Newton; trabalho e energia
1.16 Executando os arquivos de demo	O Interactive Physics permite que você explore outros tópicos em Física, incluindo:
	eletrostática, evaporação e condensação, engrenagens, teoria cinética do gás,
	máquinas, magnetismo, dinâmica da partícula, projéteis e foguetes, roldanas, dinâmica
	de rotação, equilíbrio estático, superposição de ondas, e muito mais

1.0 Instalando Interactive Physics

- 1. Insira o CD na sua unidade de CD-Rom e siga as instruções de instalação.
- 2. Quando o número de série for requisitado, digite "DEMO".

- 3. Quando a janela "Selecione uma Pasta" aparecer, clique em OK.
- 4. O tutorial com instruções passo a passo está na próxima página.

1.1 Iniciando Interactive Physics

- Certifique-se de que o Interactive Physics foi corretamente instalado no seu computador.
- 2. A partir do menu Iniciar, clique em Programas e então Interactive Physics 2000. Um novo documento será aberto.

1.2 Criando um Bloco em queda

- 1. A primeira simulação trata do primeiro experimento de Newton: um bloco em queda.
- 2. Para desenhar um retângulo, clique na ferramenta Retângulo, então clique na área de trabalho e desenhe um bloco retangular comprido e estreito.
- 3. Para executar a simulação e visualizar a queda do bloco devido à gravidade,

clique em Executar.

4. Para encerrar a simulação, clique em Rainiciar para reiniciar a simulação. Reiniciar para reiniciar a simulação.

1.3 Adicionando um Vetor Velocidade

1. Para adicionar um vetor velocidade, clique no retângulo.

2. A partir do menu Definir, clique em Vetores e então Velocidade.

3. Clique em executar e observe que o vetor velocidade se altera com o movimento do bloco.

4. Clique em Parar e Reiniciar

1.4 Montando um Pêndulo

- 1. Para montar um pêndulo, clique na ferramenta Articulação e então clique no canto superior esquerdo do retângulo.
- 2. Clique em e observe o movimento do pêndulo.
- 3. Clique em Parar II e Reiniciar

1.5 Alterando a Aparência de um Objeto

 Para alterar a aparência do retângulo, dê um duplo clique no retângulo. No menu Janela, selecione Aparência. Altere a cor e clique na caixa "Localizar o centro de massa".

 Feche a janela Aparência e execute a simulação novamente. Note que alterar a aparência do retângulo não afeta o seu movimento.

1.6 Montando um gráfico sobre o Movimento do Pêndulo

- 1. Para montar um gráfico sobre o movimento do pêndulo, clique no retângulo. Em Medida, selecione Posição, então selecione Rotação Gráfico.
- 2. Para coletar os dados, clique em ráfico, tabela, ou número. (Note que a maneira de exibição dos dados pode ser alterada enquanto a simulação é executada, basta clicar na seta da janela do gráfico.)
- A partir do gráfico, a amplitude e a frequência do movimento do pêndulo podem ser determinadas.
- 4. Para aumentar o gráfico, clique no gráfico e arraste o canto inferior direito para a direita.

1.7 Alterando a Gravidade

- 1. Para alterar a gravidade, clique no menu Mundo, selecione Gravidade, arraste o botão para cima até o valor 20 m/sec², e clique em OK.
- 2. Clique em e observe que, de acordo com as previsões teóricas e experimentais, o pêndulo apresentará uma maior frequência natural.

1.8 Adicionando Resistência do Ar

- 1. No menu Mundo, selecione Resistência do Ar, clique em Padrão, arraste o botão até o valor 1.0 kg/(m * s), e clique em OK.
- 2. Clique em Executarit , observe as oscilações decaindo exponencialmente e note que o centro de massa do pêndulo estabiliza abaixo da articulação. Clique em Parar III e Reinisiar

1.9 Adicionando uma Mola

- 1. Para adicionar uma mola, clique na ferramenta Mola. Clique no canto superior direito do bloço e estenda a mola para cima à direita.
- 2. Clique em e observe a frequência natural mais alta do pêndulo e sua nova posição de equilíbrio. Clique em e Reiniciar e Reiniciar

1.10 Controlando a Constante da Mola

- 1. Para controlar a constante da mola, selecione a mola. A partir do menu Definir, selecione Novo Controle, então selecione Mola Constante.
- 2. O botão que controla a mola irá aparecer no lado esquerdo da área de trabalho. Para aproximar o botão da mola, clique no título e arraste-o para perto da mola.
- 3. Para visualizar o efeito de variação da constante da mola, clique em e observe que o ângulo de equilibrio do pêndulo é uma função da constante da mola (mova o botão para cima e para baixo enquanto a simulação é executada).

1.11 Colisões com um Círculo

- 1. Para criar um círculo, clique na ferramenta Círculo, então clique na área de trabalho e desenhe um círculo.
- 2. Clique em para iniciar a simulação e observe que o círculo pula e rola no topo do retângulo. Colisão automática e Contato são características muito úteis no Interactive Physics (até mesmo as propriedades de elasticidade e atrito do objeto podem variar). Clique em Parar III e Reiniciar

1.12 Anexando uma Figura a um Objeto

- 1. Utilizando o Windows Explorer, vá para o diretório onde o Interactive Physics está instalado, por exemplo, D:\Arquivos de Programas\IP 2000. Entre no subdiretório "Picture Library" e então no sub-diretório "People".
- 2. Dê um duplo-clique no arquivo bitmap chamado "Spaceman.bmp". O arquivo deverá ser aberto em um programa como o Paintbrush.
- 3. No Paintbrush, clique em Selecionar Tudo no menu Editar para selecionar toda a figura. Clique em Copiar no menu Editar para copiar a figura.
- 4. Volte ao Interactive Physics.
- 5. Selecione Colar no menu Editar para copiar a imagem do astronauta para a área de trabalho do Interactive Physics.
- 6. Para anexar a figura do astronauta ao círculo, selecione o astronauta. Então pressione a tecla Shift (teclado) enquanto você clica e seleciona o círculo.
 - Nota: O Interactive Physics é um software de fácil utilização. Nesta atividade, você só precisa usar o teclado para pressionar a tecla Shift.

- 7. Selecione Anexar Figura no menu Objeto. Note que o objeto círculo desapareceu e foi substituído pela figura do astronauta.
- 8. Clique em para executar a simulação. Clique em e Reiniciar

1.13 Adicionando Som

- Para adicionar som, clique no astronauta e selecione Som de Contato no menu Medida.
- 2. Clique em para iniciar a simulação e ouvir o som quando o astronauta toca o bloco. Clique em Parar II e Reiniciar

1.14 Adicionando um pino sobre uma guia curva

- 1. Para adicionar um pino sobre uma guia curva, clique na ferramenta pino sobre guia curva.
- 2. Clique no astronauta e então clique em qualquer outro lugar à direita do astronauta, e então dê um duplo clique para completar a guia.
- 3. Clique em para iniciar a simulação e observe que o astronauta desliza sobre a guia curva. Clique em Parar III e Reiniciar

1.15 Adicionando uma Força

- Para aplicar uma força ao astronauta para que ele possa superar a resistência do ar, clique na ferramenta Força, então clique no astronauta, em seguida arraste o mouse para a esquerda e clique novamente.
- 2. Clique em para iniciar a simulação e observe que o astronauta está superando a resistência do ar e está se movendo mais rapidamente pela guia curva
- 3. Clique em Parar e Reiniciar

1.16 Executando os Arquivos de Demo

- 1. A partir do menu Roteiro, clique em "Executar Todos os Arquivos de Demo".
- 2. Divirta-se com uma grande variedade de demonstrativos que vão explorar muitos tópicos do ensino de Física.

