Denoising Diffusion Probabilistic Models (DDPM)

박동혁

leao8869@g.skku.edu

Computer Vision

2023/03/28

Contents

- Introduction
- Diffusion Model
- DDPM Contribution
- Experiment

Intuition

Intuition

Forward Diffusion Process x_0 x_1 x_2 x_T Denoising UNet x_T Reverse Diffusion Process

color

Forward Reverse

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t\mathbf{I})$$

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}; \underline{\boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t)}, \underline{\boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t)})$$

train

Generative Models

Prerequisite

1. Markov Chain

$$P[s_{t+1}|s_t] = P[s_{t+1}|s_1,...,s_t]$$

$$Ex) \quad P(s_{10}) \quad P(s_9) \quad P(s_8) \quad P(s_7) \quad P(s_6) \quad ... \quad P(s_1)$$

"특정상태 (X_{t+1}) 의 확률이 오직 이전 상태 (X_t) 에만 의존"

2. Gaussian Distribution

" $q(X_t|X_{t-1})$ 가 Gaussian이면, $q(X_{t-1}|X_t)$ 도 Gaussian"

 β_t 가 매우 작음 (T 충분히 큼)

출처: https://www.youtube.com/watch?v= JQSMhqXw-4

Overview

패턴을 무너트리고(Noising), 이를 다시 복원하는 조건부 PDF를 학습(Denoising)

패턴 생성 과정 학습

Diffusion(Forward) Process

Reverse Process

Forward Process

$$q(\mathbf{x}_{1:T}|\mathbf{x}_0) \coloneqq \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1}), \qquad q(\mathbf{x}_t|\mathbf{x}_{t-1}) \coloneqq \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$
(train)

Reverse Process

$$p_{\theta}(\mathbf{x}_{0:T}) \coloneqq p(\mathbf{x}_T) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t), \qquad p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}; \underline{\boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t)}, \underline{\boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t)})$$

Loss(Objective) Function

 $L_{diffusion} \coloneqq Variational\ Bound\ On\ Negative\ Log\ Likelihood\ (\ E[-logp_{\theta}(\mathbf{x}_0)]\)$

$$\coloneqq \mathbb{E}_q \bigg[\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_T | \mathbf{x}_0) \parallel p(\mathbf{x}_T))}_{L_T} + \sum_{t>1} \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t))}_{L_{t-1}} \underbrace{-\log p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1)}_{L_0} \bigg]$$

KL Divergence

"두 확률 분포의 다름 정도"

 $D_{KL}(normal1||real)$: 큼

 $D_{KL}(normal2||real):$ 작음

 \Rightarrow 분포가 비슷할 수록 D_{KL} 작음

$$D_{KL}(P||Q) = \sum_{i} P(i)log \frac{P(i)}{Q(i)}$$

VAE Loss Function

$$\frac{\log p_{\theta}(x^{(i)})}{\mathsf{X}} = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule})$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant})$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Logarithms})$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z)) + D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z \mid x^{(i)})) \right]$$

$$= \mathbf{Tractable, Y} \qquad \qquad \text{Intractable, } \geq 0$$

Negative Log Likelihood \rightarrow -X < -Y

VAE Loss Function

Regularizer on Encoder

Reconstruction on Decoder

$$Loss_{VAE} = D_{KL}(q(z \mid x) || p_{\theta}(z)) - E_{z \sim q(z \mid x)}[\log P_{\theta}(x \mid z)]$$

Reverse Process

$$L_{diffusion} \coloneqq \mathbb{E}_{q} \left[\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{T}|\mathbf{x}_{0}) \parallel p(\mathbf{x}_{T}))}_{L_{T}} + \sum_{t>1} \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}))}_{L_{t-1}} \underbrace{-\log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}_{L_{0}} \right]$$
Regularization

Denoising Process

Reconstruction

Conclusion

$$L_{diffusion} := \mathbb{E}_{q} \left[\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{T}|\mathbf{x}_{0}) \parallel p(\mathbf{x}_{T}))}_{L_{T}} + \sum_{t>1} \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}))}_{L_{t-1}} \underbrace{-\log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}_{L_{0}} \right]$$

$$L_{DDPM} := L_{simple}(\theta) := \mathbb{E}_{t,\mathbf{x}_0,\boldsymbol{\epsilon}} \Big[\Big\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \Big\|^2 \Big]$$

Ignore Regularization Term (L_T)

$$Loss_{Diffusion} = D_{KL}(q(x_t) || P_{\theta}(z)) + \sum_{t=2} D_{kL}(q(x_{t-1} || x_t, x_0) || P_{\theta}(x_{t-1} || x_t)) - E_q[\log P_{\theta}(x_0 || x_1)]$$

Reconstruction

 β_t : Learnable \Rightarrow Constant (Shceduled)

 \therefore ignore L_T

Reconstruct Denoising Term $(L_{1:T-1})$

1. $\Sigma_t(X_t, t)$ 의 상수화

$$\alpha_t \coloneqq 1 - \beta_t \qquad \bar{\alpha}_t \coloneqq \prod_{s=1}^t \alpha_s$$

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1-\bar{\alpha}_t)\mathbf{I})$$

$$\mathbf{\Sigma}_{\theta}(\mathbf{x}_t, t) = \sigma_t^2 \mathbf{I}$$

$$\underline{\sigma_t^2 = \tilde{\beta}_t} = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t$$

Time step t까지 누적된 noise

→ Time-dependent Constant

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}; \underline{\boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t)}, \underline{\boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t)})$$
train

$$\mathcal{N}(\mathbf{x}_{t-1}; \underline{\boldsymbol{\mu}_{\theta}}(\mathbf{x}_t, t), \sigma_t^2 \mathbf{I})$$

Reconstruct Denoising Term $(L_{1:T-1})$

2. Denoise Matching

$$L_{1:T-1} = \sum_{t>1} D_{KL}(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t,\boldsymbol{x}_0)||p_{\theta}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t))$$

$$L_{1:T-1} = \sum_{t>1} D_{KL}(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t,\boldsymbol{x}_0)||p_{\theta}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)) \qquad \Rightarrow \qquad L_{1:T-1} = E_q \left[\frac{1}{2\sigma_t^2} \left| |\tilde{\mu}_t(\boldsymbol{x}_t,\boldsymbol{x}_0) - \mu_{\theta}(\boldsymbol{x}_t,t)| \right|^2 \right]$$

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = N(\mathbf{x}_{t-1}; \tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t \cdot \mathbf{I})$$

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = N(\mathbf{x}_{t-1}; \mu_{\theta}(\mathbf{x}_t, t), \tilde{\beta}_t \cdot \mathbf{I})$$

Reconstruct Denoising Term $(L_{1:T-1})$

2. Denoise Matching

$$L_{1:T-1} = E_q \left[\frac{1}{2\sigma_t^2} \left| \left| \tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) - \mu_\theta(\mathbf{x}_t, t) \right| \right|^2 \right] \qquad q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I})$$

$$\mathbf{x}_t(\mathbf{x}_0, \boldsymbol{\epsilon}) = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon} \text{ for } \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
: reparameterizing $q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I})$

$$L_{1:T-1} = \mathbb{E}_{\mathbf{x}_0, \epsilon} \left[\frac{1}{2\sigma_t^2} \left\| \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t(\mathbf{x}_0, \epsilon) - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon \right) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t(\mathbf{x}_0, \epsilon), t) \right\|^2 \right]$$

Reconstruct Denoising Term $(L_{1:T-1})$

2. Denoise Matching

$$L_{1:T-1} = \mathbb{E}_{\mathbf{x}_{0},\epsilon} \left[\frac{1}{2\sigma_{t}^{2}} \left\| \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t}(\mathbf{x}_{0},\epsilon) - \frac{\beta_{t}}{\sqrt{1-\bar{\alpha}_{t}}} \epsilon \right) - \underline{\mu_{\theta}(\mathbf{x}_{t}(\mathbf{x}_{0},\epsilon),t)} \right\|^{2} \right]$$
Predict

 x_t, t : given ϵ : Predict (ϵ_{θ})

$$\mu_{\theta}(\mathbf{x}_{t}, t) = \tilde{\mu}_{t}\left(\mathbf{x}_{t}, \frac{1}{\sqrt{\bar{\alpha}_{t}}}(\mathbf{x}_{t} - \sqrt{1 - \bar{\alpha}_{t}}\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}))\right) = \frac{1}{\sqrt{\alpha_{t}}}\left(\mathbf{x}_{t} - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}}\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t)\right)$$

$$L_{1:T-1} = \mathbb{E}_{\mathbf{x}_0, \epsilon} \left[\frac{\beta_t^2}{2\sigma_t^2 \alpha_t (1 - \bar{\alpha}_t)} \left\| \epsilon - \frac{\epsilon_{\theta}}{\epsilon_{\theta}} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \right\|^2 \right]$$

Reconstruct Denoising Term $(L_{1:T-1})$

2. Denoise Matching

$$L_{1:T-1} = \mathbb{E}_{\mathbf{x}_0, \epsilon} \left[\frac{\beta_t^2}{2\sigma_t^2 \alpha_t (1 - \bar{\alpha}_t)} \left\| \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \right\|^2 \right]$$

t ↑ → coefficient term ↓

$$L_{\text{simple}}(\theta) := \mathbb{E}_{t,\mathbf{x}_0,\boldsymbol{\epsilon}} \Big[\|\boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}, t) \|^2 \Big]$$

Experiment

Sample Quality

Table 1: CIFAR10 results. NLL measured in bits/dim.

Model	IS	FID	NLL Test (Train)
Conditional			
EBM [11]	8.30	37.9	
JEM [17]	8.76	38.4	
BigGAN [3]	9.22	14.73	
StyleGAN2 + ADA (v1) [29]	10.06	2.67	
Unconditional			
Diffusion (original) [53]			< 5.40
Gated PixelCNN [59]	4.60	65.93	$3.\overline{03}$ (2.90)
Sparse Transformer [7]			2.80
PixelIQN [43]	5.29	49.46	
EBM [11]	6.78	38.2	
NCSNv2 [56]		31.75	
NCSN [55]	8.87 ± 0.12	25.32	
SNGAN [39]	8.22 ± 0.05	21.7	
SNGAN-DDLS [4]	9.09 ± 0.10	15.42	
StyleGAN2 + ADA (v1) [29]	9.74 ± 0.05	3.26	
Ours $(L, \text{ fixed isotropic } \Sigma)$	7.67 ± 0.13	13.51	$\leq 3.70 (3.69)$
Ours (L_{simple})	9.46 ± 0.11	3.17	$\leq 3.75 (3.72)$

Figure 4: LSUN Bedroom samples. FID=4.90

Figure 3: LSUN Church samples. FID=7.89

Experiment

Sample Quality

Table 2: Unconditional CIFAR10 reverse process parameterization and training objective ablation. Blank entries were unstable to train and generated poor samples with out-of-range scores.

	Objective	IS	FID
-	$ ilde{\mu}$ prediction (baseline)		
1) [L , learned diagonal Σ	7.28 ± 0.10	23.69
۱,۲	L , learned diagonal Σ L , fixed isotropic Σ	8.06 ± 0.09	13.22
2)	$\ ilde{oldsymbol{\mu}} - ilde{oldsymbol{\mu}}_{ heta}\ ^2$		=8
107	ϵ prediction (ours)		
3) [L , learned diagonal Σ	-	0
_	L, fixed isotropic Σ	7.67 ± 0.13	13.51
4)	$\ \tilde{\boldsymbol{\epsilon}} - \boldsymbol{\epsilon}_{\theta}\ ^2 (L_{\text{simple}})$	9.46 ± 0.11	3.17

$$(1) \quad \mathbb{E}_{q}\bigg[\frac{1}{2\sigma_{t}^{2}}\|\tilde{\boldsymbol{\mu}}_{t}(\mathbf{x}_{t},\mathbf{x}_{0})-\boldsymbol{\mu}_{\theta}(\mathbf{x}_{t},t)\|^{2}\bigg]$$

(2)
$$\mathbb{E}_q \Big[\| \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t) \|^2 \Big]$$

$$(3) \quad \mathbb{E}_{\mathbf{x}_{0},\boldsymbol{\epsilon}}\bigg[\frac{\beta_{t}^{2}}{2\sigma_{t}^{2}\alpha_{t}(1-\bar{\alpha}_{t})}\Big\|\boldsymbol{\epsilon}-\boldsymbol{\epsilon}_{\theta}\Big(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}+\sqrt{1-\bar{\alpha}_{t}}\boldsymbol{\epsilon},t\Big)\Big\|^{2}\bigg]$$

$$(4) \quad \mathbb{E}_{t,\mathbf{x}_{0},\epsilon}\bigg[\Big\|\boldsymbol{\epsilon}-\boldsymbol{\epsilon}_{\theta}\Big(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}+\sqrt{1-\bar{\alpha}_{t}}\boldsymbol{\epsilon},t\Big)\Big\|^{2}\bigg]$$

매우 불안정한 학습 및 성능이 매우 악화된 경우, " – "로 표기

Experiment

Interpolation

Figure 8: Interpolations of CelebA-HQ 256x256 images with 500 timesteps of diffusion.

