Chapter 2 Random Variables and Univariate Probability
Distributions

Review:

- Definition: Sigma Algebra (or σ -algebra, Borel field, sigma field). A sigma algebra, denoted by \mathcal{B} , is a collection of subsets of S with
 - (1) $\Phi \in \mathcal{B}$ (the empty set is contained in \mathcal{B}).
 - (2) If $A \in \mathcal{B}$, then $A^c \in \mathcal{B}$.
 - (3) If $A_1, A_2, \dots, \in \mathcal{B}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{B}$.
- **Definition: Probability Function.** Suppose a random experiment has a sample space S and an associated σ -algebra \mathcal{B} . The probability function $P: \mathcal{B} \to [0,1]$ is a mapping that satisfies the following properties:
 - (1) $0 \le P(A) \le 1$ for any event A in \mathcal{B} .
 - (2) P(S) = 1.
 - (3) If $A_1, A_2, \dots \in \mathcal{B}$ are mutually exclusive, then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

- **Definition: Probability Space.** A probability space is a triple (S, \mathcal{B}, P) , where
 - -S is the sample space corresponding to outcomes of the underlying random experiment.
 - $-\mathcal{B}$ is an associated σ -algebra of S. The elements in \mathcal{B} are called events.
 - -P is a probability function (probability measure) defined on (S, \mathcal{B}) .
- ullet It is inconvenient to work with different sample spaces. We need to unify different sample space. Elements of S may be represented by numbers.

- **Definition:** Random Variable. A random variable (r.v.), $X(\cdot)$, is a \mathcal{B} measurable mapping (or point function) from the sample space S to the real line \mathcal{R} such that to each outcome $s \in S$ there exists a corresponding unique real number, X(s). The collection of all possible values that the random variable X can take, also called the range of $X(\cdot)$, constitutes a new sample space, denoted as Ω .
- The function $X: S \to \Omega$ need not be a one to one mapping. Thus, it is possible that two basic outcomes $s_1, s_2 \in S$ will deliver the same value for random variable $X, X(s_1) = X(s_2)$.

• Example. Suppose we throw three fair coins. Then the sample space

$$S = \{TTT, TTH, THT, HTT, HHT, HTH, THH, HHH\}.$$

Let $X(\cdot)$ be the number of heads shown up. Then X(T,T,T)=0, X(T,T,H)=1, X(T,H,T)=1, X(H,T,T)=1, X(H,H,T)=2, X(H,T,H)=2, X(H,T,H)=2, X(H,H,H)=3. We have $\Omega=\{0,1,2,3\}$.

- Here, P(X = 3) = P(A), where $A = \{s \in S : X(s) = 3\} = \{HHH\}$ denotes the probability that exactly three heads occur in the experiment.
- X r.v.; x realization.

• **Remarks.** Suppose we have a sample space with a finite number of basic outcomes $S = \{s_1, \ldots, s_n\}$ and a probability function $P : \mathcal{B} \to [0, 1]$, where \mathcal{B} is a σ -field associated with S. Also, we define a random variable $X : S \to \mathcal{R}$ with the range $\Omega = \{x_1, \ldots, x_m\}$, where m may not be the same as n. Then we can define the probability function $P_X : \Omega \to \mathcal{R}$ for the random variable X in the following way:

$$P_X(x_i) \equiv P(X = x_i) = P(\{s \in S : X(s) = x_i\}).$$

Here, $P_X(\cdot)$ is an induced probability function on Ω . It is defined in terms of the original probability function $P(\cdot)$. Thus an r.v. X is a function that carries the probability from the original sample space S to a new space Ω of real numbers.

- Question: What function form $X(\cdot)$ will ensure $C_A \in \mathcal{B}$?
- **Definition:** Measurable Function. A function $X: S \to \mathcal{R}$ is \mathcal{B} measurable (or measurable with respect to the σ -field \mathcal{B} generated from S)
 if for every real number a, the set $\{s \in S: X(x) \leq a\} \in \mathcal{B}$.
- **Theorem.** Let \mathcal{B} be a σ algebra associated with sample space S. Let $f(\cdot)$ and $g(\cdot)$ be \mathcal{B} -measurable real valued functions, and c be a real number. Then the functions $c \cdot f(\cdot)$, $f(\cdot) + g(\cdot)$, $f(\cdot) \cdot g(\cdot)$ and $|f(\cdot)|$ are also \mathcal{B} -measurable.
- Standard functions are measurable and any standard sequence of countable operations on such functions will not destroy measurability.

- **Theorem:** Let X and Y be random variables, then X + Y is also a random variable.
- **Proof.** We only need to prove that X + Y is a \mathcal{B} -measurable function.
 - For any $a \in \mathbb{R}$,

$$\{s : (X+Y)(s) < a\} = \bigcup_{q \in \mathbb{Q}} [\{s : X(s) < a-q\} \cap \{s : Y(s) < q\}] \in \mathcal{B},$$

where $q \in \mathbb{Q}$ is a rational number.

– For any $b \in \mathbb{R}$,

$$\{s: (X+Y)(s) \le b\} = \bigcap_{i=1}^{\infty} \{s: (X+Y)(s) < b + \frac{1}{i}\} \in \mathcal{B}.$$

• Remark: $\{s \in S : X(s) < x\} \in \mathcal{B} \text{ for any } x \in \mathbb{R} \text{ also implies } \mathcal{B}$ -measurable.

• Example: Discrete R.V. Let's continue the previous example of tossing coins. Suppose we are interested in calculating the probability that $P(0 \le X \le 1)$. Denote

$$C = \{s \in S, \ 0 \le X(s) \le 1\} = \{TTT, TTH, THT, HTT\}.$$

It follows that

$$P(0 \le X \le 1) = P(C) = \frac{1}{2}.$$

• Question: How to characterize a random variable X?

• Definition: Cumulative Distribution Function (CDF). Cumulative Distribution Function of a random variable X is defined as:

$$F_X(x) = P(X \le x)$$
 for all $x \in \mathbb{R}$.

Figure 1: CDF of the example of tossing coin three times.

Figure 2: CDF of normal distribution.

- **Properties of** $F_X(\cdot)$: Suppose $F_X(\cdot)$ is the CDF of some random variable X. Then
 - (1) $\lim_{x \to -\infty} F_X(x) = 0$, $\lim_{x \to +\infty} F_X(x) = 1$.
 - (2) $F_X(x)$ is non-decreasing, i.e., for any $x_1 < x_2$, $F_X(x_1) \le F_X(x_2)$.
 - (3) $F_X(x)$ is right-continuous, i.e., for all x and $\delta > 0$,

$$\lim_{\delta \to 0^+} [F_X(x+\delta) - F_X(x)] = 0.$$

• Theorem. Let a < b. Then

$$P(a < X \le b) = F_X(b) - F_X(a).$$

• **Proof:** $\{X \leq b\} = \{X \leq a\} \cup \{a < X \leq b\}$ and the events $\{X \leq a\}$ and $\{a < X \leq b\}$ are disjoint, so we have

$$P(X \le b) = P(X \le a) + P(a < X \le b).$$

• Remarks:

- By definition, for any $b \in \mathbb{R}$,

$$P(X \ge b) = P(X > b) + P(X = b)$$

= 1 - F_X(b) + P(X = b).

- If a function F(x) satisfies Property (1),(2),(3), then there exists a random variable X such that $P(X \le x) = F(x)$.
- Suppose $F_1(x)$ and $F_2(x)$ are two cumulative distribution functions, then for 0 ,

$$F(x) = pF_1(x) + (1 - p)F_2(x)$$

is also a cdf.

- Theorem. $P(X > b) = 1 F_X(b)$.
- **Proof:** Let $A = \{X \leq a\}$. The the result follows from $P(A^c) = 1 P(A)$ and the definition of the CDF of $F_X(x)$.
- **Definition: Identical Distributions.** Two random variables X and Y are identically distributed if for every set in \mathbb{B}_1 , where \mathbb{B}_1 is the smallest σ -field containing all the intervals of real numbers of the form (a, b), [a, b), (a, b], and [a, b], one has

$$P(X \in A) = P(Y \in A).$$

• Question: Does the identical distribution imply X = Y?

- Example. Suppose a penny and a nickel are each tossed n times, and consider the following two definitions of X and Y respectively:
 - (1) X is the number of heads obtain with the penny, and Y is the number of heads obtained with the nickel.
 - (2) Both X and Y are the number of heads obtained with the penny.
- In both cases, X and Y have the identical distribution. However, X and Y are independent in case (1) while X = Y in case (2). Identical distribution does not imply X = Y, although X = Y implies that X and Y have the same distribution.
- **Theorem.** Two random variables X and Y are identically distributed if and only if

$$F_X(x) = F_Y(x)$$
 for all $-\infty < x < \infty$.

• Example: First Order Stochastic Dominance. If two distributions A and B, characterized respectively by CDFs F_A and F_B satisfy $F_A(x) \ge F_B(x)$ for all x, then we say that the distribution in B has first order stochastic dominance over distribution A. (See Figure 3.2 in lecture notes).

$$F(x) = \begin{cases} 1 - e^{-x}, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0, \end{cases}$$

$$G(x) = \begin{cases} 1 - e^{-2x}, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$

Then $F(x) \leq G(x)$ for all $x \in (-\infty, \infty)$ and $F(\cdot)$ dominates G in first order.

• The first order stochastic dominance is widely used in decision analysis, welfare economics and so on. E.g., the analysis of income distribution.

- **Definition:** Discrete Random Variable. If a random variable X can only take a **countable** number of values, then X is called a *discrete* $random\ variable\ (DRV)$.
- **Definition:** Support of DRV. The collection of the points on the real line \mathbb{R} at which a DRV X has a positive probability is called the *support* of X, denoted as

$$Support(X) = \{x \in \mathbb{R} : f_X(x) > 0\}.$$

• **Remark:** Support of DRV is a countable set. Support(X) = Ω .

• Definition: Probability Mass Function (PMF). Probability mass function of a DRV X is defined as

$$f_X(x) = P(X = x), x \in \text{Support}(X).$$

- Theorem: Properties of PMF.
 - (1) $0 \le f_X(x) \le 1$ for all $x \in \mathbb{R}$.
 - (2) $\sum_{x \in \Omega} f_X(x) = 1$.
- **Theorem.** Suppose $f_X(x)$ is the PMF of a DRV X. Then the CDF of a DRV X is

$$F_X(x) = P(X \le x)$$

= $\sum_{y \le x, y \in \text{Support}(X)} f_X(y)$, for any $x \in \mathbb{R}$.

• Example: Uniform Distribution. A DRV X follows uniform distribution U(N) if its PMF

$$f_X(x) = \begin{cases} 1/N & \text{if } x = 1, 2, \dots, N, \\ 0 & \text{otherwise.} \end{cases}$$

- \bullet CDF of uniform distributed DRV X:
 - For x < 1, $F_X(x) = 0$.
 - For $i \le x < i + 1$, $i = 1, 2, \dots, N 1$, $F_X(x) = P(X \le x) = i/N$.
 - For $x \ge N$, $F_X(x) = 1$.
- See Figure 3.5 for N = 6.

• **Theorem.** Suppose X is a DRV with CDF $F_X(x)$, and its support contains a sequence of points $\{x_1 \leq x_2 \leq \cdots\}$. Then its PMF

$$f_X(x_i) = \begin{cases} F_X(x_i) & i = 1, \\ F_X(x_i) - F_X(x_{i-1}) & i > 1. \end{cases}$$

• Remarks:

- $-f_X(x)$ and $F_X(x)$ are equivalent ways to describe the DRV X.
- $-F_X(x_i) = F_X(x_{i-1}) + f_X(x_i)$. The CDF $F_X(x)$ always have jumps at points with strictly positive probabilities.

• Example: Bernoulli Distribution. A DRV X is called a Bernoulli(p) (0 random variable if its PMF

$$f_X(x) = \begin{cases} p & \text{if } x = 1, \\ 1 - p & \text{if } x = 0. \end{cases}$$

• Example: Binomial Distribution. A DRV X is called a Binomial(n, p) $(n \ge 0 \text{ and } 0 if its PMF is$

$$f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, \dots, n$$

Remark: A person throws a coin n times independently. Each time the head has probability p and the tail has probability q = 1 - p. The number of heads is a random variable following Binomial(n, p) distribution.

• Example: Poisson Distribution. A DRV X follows a Poisson(λ) ($\lambda > 0$) distribution if its PMF

$$f_X(x) = \frac{e^{-\lambda} \lambda^x}{x!}, x = 0, 1, 2, \dots$$

• Remarks:

- Support of Poisson distribution is a infinite countable set.
- $-\sum_{x=0}^{\infty} f_X(x) = \sum_{x=0}^{\infty} \frac{e^{-\lambda} \lambda^x}{x!} = e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{-\lambda} e^{\lambda} = 1.$
- In a Poisson process with intensity λ , the total number of occurrences over (0, t] follows a Poisson (λt) distribution.
- Poisson distribution can be used to describe the number of jumps in financial markets in a certain period.

• Example: Negative Binomial Distribution. The probability distribution of the number of trials required to obtain a given number of successes for binomial distribution is called the negative binomial distribution, denoted as NB(n, p). That is, in a sequence of independent Bernoulli(p) trials, X denotes the number of trials such that the X-th trial the r-th success occurs, where r is a fixed integer. Then the PMF of X is

$$f_X(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, \ x = r, r+1, \dots$$

• Example: Geometric Distribution. The geometric distribution is the probability distribution of the number of Bernoulli trials required to obtain the first success. It is a special case of the negative binomial distribution with r = 1.

$$f_X(x) = p(1-p)^{x-1}, \ x = 1, 2, \dots$$

• **Remark:** The geometric distribution has "memoryless" property. For integers s > t, P(X > s | X > t) = P(X > s - t).

$$P(X > s | X > t) = \frac{P(X > s, X > t)}{P(X > t)} = \frac{P(X > s)}{P(X > t)}$$

$$= \frac{1 - P(X \le s)}{1 - P(X \le t)}$$

$$= \frac{1 - \sum_{x=1}^{s} p(1 - p)^{x-1}}{1 - \sum_{x=1}^{t} p(1 - p)^{x-1}}$$

$$= \frac{(1 - p)^{s}}{(1 - p)^{t}} = (1 - p)^{s-t}$$

$$= P(X > s - t).$$

- Definition: Continuous Random Variables (CRV). A random variable X is called *continuous* if its distribution function $F_X(x)$ is continuous for all x. In contrast, a random variable X is discrete if $F_X(x)$ is a step function of x.
- Question: Can we define a PMF $f_X(x)$ for a CRV X?

For any constant $\varepsilon > 0$, $\{X = x\} \subset \{x - \varepsilon/2 < X \le x + \varepsilon/2\}$,

$$0 \le P(X = x) \le P(x - \varepsilon/2 < X \le x + \varepsilon/2)$$
$$= F_X(x + \varepsilon/2) - F_X(x - \varepsilon/2) \to 0, \varepsilon \to 0.$$

• So $P(a < X \le b) = P(a \le X < b) = P(a \le X \le b)$.

- Definition: Absolute Continuity (AC). A function $F : \mathbb{R} \to \mathbb{R}$ is called *absolutely continuous* with respect to Lebesgue measure if F(x) is continuous on \mathbb{R} and is differentiable almost everywhere (i.e. for almost all x).
- Definition: Probability Density Function (PDF). Suppose the distribution function $F_X(x)$ of a CRV X is absolutely continuous. Then there exists a function $f_X(\cdot)$ such that

$$F_X(x) = \int_{-\infty}^x f_X(y) dy$$
, for all $x \in \mathbb{R}$.

The function $f_X(x): \mathbb{R} \to \mathbb{R}$ is called a *probability density function* of X.

• Remarks:

– For those x's where the derivative $F'_X(x)$ exists, the probability density function is

$$f_X(x) = \frac{dF_X(x)}{dx} = F_X'(x).$$

- Because $f_X(x)$ is a slope of $F_X(x)$, it can take values greater than 1.
- Question: What is the interpretation of the pdf $f_X(x)$?

$$P(x - \varepsilon/2 < X \le x + \varepsilon/2)$$

$$= F_X(x + \varepsilon/2) - F_X(x - \varepsilon/2)$$

$$= \int_{x-\varepsilon/2}^{x+\varepsilon/2} f_X(x) dy = f_X(\bar{x})\varepsilon, \bar{x} \in (x - \varepsilon/2, x + \varepsilon/2]$$

• Remarks:

- An absolutely continuous CDF $F_X(x)$ is continuous for all $x \in \mathbb{R}$.
- For some continuous CDF, absolute continuity may not hold.
- The probability density functions of a continuous random variable can be different on a set of Lebesgue measure 0. For example, the pdf

$$f_X(x) = \begin{cases} e^{-x} & x > 0, \\ 0 & \text{elsewhere,} \end{cases}$$

can also be written as

$$f_X(x) = \begin{cases} e^{-x} & x \ge 0, \\ 0 & \text{elsewhere.} \end{cases}$$

- Usually, we want $f_X(x)$ to be as smooth as possible.

- Theorem: Properties of PDF. A function f(x) is a PDF of a CRV X iff (if and only if)
 - (1) $f(x) \ge 0$, for all x, and
 - $(2) \int_{-\infty}^{\infty} f(x)dx = 1.$
- **Example.** For any nonnegative function g(x) with a finite integral, i.e., $0 < \int_{-\infty}^{\infty} g(x) dx < \infty$, $f(x) = g(x) / \int_{-\infty}^{\infty} g(y) dy$ is a PDF. $\int_{-\infty}^{\infty} g(y) dy$ is called the *normalizing constant*.
- **Definition:** Support. The support of a CRV X is defined as

$$Support(X) = \{x \in \mathbb{R} : f_X(x) > 0\},\$$

where $f_X(x)$ is the PDF of X.

• Example: Uniform Distribution. A CRV X follows a uniform distribution on [a, b] if its PDF

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b, \\ 0 & \text{otherwise.} \end{cases}$$

• Example: Cauchy Distribution. A CRV X follows a Cauchy (μ, σ) distribution if its PDF

$$f_X(x) = \frac{1}{\pi\sigma} \frac{1}{1 + (\frac{x-\mu}{\sigma})^2}$$
, for $-\infty < x < \infty$, where $\sigma > 0$.

 $\mu = 0, \sigma = 1$ is the standard Cauchy distribution Cauchy (0,1).

• Example: Gamma Distribution. A CRV X follows a $Gamma(\alpha, \beta)$ distribution if

$$f_X(x) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta} & 0 < x < \infty, \\ 0 & \text{otherwise,} \end{cases}$$

where $\alpha, \beta > 0$, $\Gamma(\alpha)$ is the Gamma function $\int_0^\infty t^{\alpha-1} e^{-t} dt$.

Figure 3: PDF of Gamma distribution.

• Example: Exponential Distribution. A CRV X follows Exponential (β) distribution if

$$f_X(x) = \begin{cases} \frac{1}{\beta} e^{-x/\beta} & 0 < x < \infty, \\ 0 & \text{otherwise,} \end{cases}$$

where $\beta > 0$.

• Remarks:

- Exponential(β)=Gamma(1, β).
- Exponential Distribution is popular in modelling duration between financial events or economic events because of its "memoryless" property

$$P(X - t > s \mid X - t > 0) = P(X > s \mid X > 0),$$

where s > 0, t > 0.

• Example: Normal Distribution. A normally distributed random variable, $X \sim N(\mu, \sigma^2)$, has the pdf

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\{-\frac{(x-\mu)^2}{2\sigma^2}\},$$

where $-\infty < \mu < \infty$, $\sigma > 0$. X follows standard normal distribution if $\mu = 0$ and $\sigma^2 = 1$.

Figure 4: PDF of standard normal distribution.

• Example: Log-normal Distribution. X follows a log-normal (μ, σ^2) distribution if its pdf

$$f_X(x) = \begin{cases} \frac{1}{\sqrt{2\pi}\sigma^x} \frac{1}{x} \exp\{-\frac{1}{2\sigma^2} (\log x - \mu)^2\} & 0 < x < \infty, \\ 0 & \text{otherwise,} \end{cases}$$

Figure 5: PDF of log-normal distribution.

• Remarks:

- If X follows a log-normal (μ, σ) distribution, then $\log X \sim N(\mu, \sigma^2)$.
- In finance, we often assume price P_t follows stochastic diffusion equation

$$dP_t = \mu_t P_t dt + \sigma P_t dW_t,$$

where W_t is a Brownian motion, μ and σ are constants. Using Ito's lemma,

$$d\log P_t = \left(\mu - \frac{\sigma^2}{2}\right)dt + \sigma dW_t.$$

Here $\log P_t$ is normal, and P_t is log-normal.

• Example: Chi-Square Distribution. A nonnegative CRV X follows a Chi-Square distribution with p degrees of freedom, noted as χ_p^2 , if its PDF

$$f_X(x) = \frac{1}{\Gamma(p/2)2^{p/2}} x^{p/2-1} e^{-x/2}, \ x > 0.$$

The χ_p^2 distribution is a special case of the Gamma (α, β) distribution with $\alpha = p/2$, and $\beta = 2$. And it is equivalent to that of the sum of p squared independent N(0,1) random variables.

ullet Example: Double Exponential Distribution. A continuous random variable X follows a double exponential distribution if its PDF

$$f_X(x) = \frac{1}{2\beta} \exp\left(-\frac{|x-\alpha|}{\beta}\right), -\infty < x < \infty, \text{ where } \beta > 0.$$

2.3 Continuous Random Variable

• Example: Beta Distribution. X follows a Beta(α, β) distribution if

$$f_X(x) = \begin{cases} \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1} & 0 < x < 1, \\ 0 & \text{otherwise,} \end{cases}$$

where $\alpha, \beta > 0$, and $B(\alpha, \beta)$ is the Beta function $\int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx$.

Figure 6: PDF of Beta distribution.

2.3 Continuous Random Variable

- Definition: Mixed Distribution of Discrete and Continuous Components. A random variable X is said to follow a mixed distribution if its CDF is discontinuous at each point having a nonzero probability and continuous elsewhere.
- Lebesgue's Decomposition Theorem: Any CDF $F_X(x)$ may be written in the form

$$F_X(x) = a_1 F_1(x) + a_2 F_2(x) + a_3 F_3(x),$$

where $a_i \ge 0$, i = 1, 2, 3, $a_1 + a_2 + a_3 = 1$, $F_1(x)$ is absolutely continuous, $F_2(x)$ is a step function with a finite or countably infinite number of jumps, $F_3(x)$ is a singular CDF. That is, it is continuous with zero derivative almost everywhere.

2.4 Functions of a Random Variable

• Question: Suppose $g: \mathbb{R} \to \mathbb{R}$ is a real-valued (Borel)-measurable function, then Y = g(X) is also a random variable. What is the probability distribution of the new random variable Y?

• Examples:

- Consumption function Y = g(X), where X is income and Y is consumption.
- Assume P_t is the stock price, $Y_t = \log P_t/P_{t-1}$ is approximately the relative price change.

Discrete Case:

• If X is a **discrete** random variable, then the pmf $f_Y(y)$ of Y = g(X) given the pmf $f_X(x)$ of X can be obtained by using

$$f_Y(y) = \sum_{x:g(x)=y} f_X(x),$$

where the summation is over all possible x's whose g(x) = y.

• Example: Suppose random variable X has the distribution

Find CDF of function (transformation) $Y = X^2 + X$.

Continuous Case:

 \bullet If X is a continuous random variable, the basic idea is first to find the distribution function of Y and then the probability density by differentiation.

• General Method:

- Step 1: Find $F_Y(y)$

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(\{x \in \Omega_X : g(x) \le y\}).$$

- Step 2: Let

$$f_Y(y) = F_Y'(y).$$

- Step 3: Check if $f_Y(y)$ is a PDF.

• Example: Suppose a CRV X has a pdf

$$f_X(x) = \begin{cases} 1 & -\frac{1}{2} < x < \frac{1}{2}, \\ 0 & \text{otherwise,} \end{cases}$$

Find the pdf of the following Y.

- (1) $Y = a + bX, b \neq 0$.
- (2) $Y = X^2$.
- (3) Y = |X|.

• Solution:

(2) Observe that $0 \le X^2 < 1/4$, then $F_Y(y) = 0$ if y < 0 and $F_Y(y) = 1$ if y > 1/4. For $y \in [0, 1/4]$,

$$F_Y(y) = P(Y \le y)$$

$$= P(-\sqrt{y} \le X \le \sqrt{y})$$

$$= 2\sqrt{y}.$$

By differentiation,

$$f_Y(y) = \frac{1}{\sqrt{y}}.$$

Thus, we have

$$f_Y(y) = \begin{cases} \frac{1}{\sqrt{y}} & 0 < y < 1/4, \\ 0 & \text{otherwise.} \end{cases}$$

• Example: Random variable X follows double exponential (Laplace) distribution if

$$f_X(x) = \frac{1}{2}\alpha e^{-\alpha|x|},$$

where $\alpha > 0$. Find the pdf of the following Y.

- (1) Y = |X|;
- (2) $Y = X^2$.

• Solution:

(1) $F_Y(y) = 0$ for $y \le 0$. For y > 0,

$$F_Y(y) = F_X(-y \le X \le y) = \int_{-y}^y f_X(x) dx$$

By differentiation,

$$f_Y(y) = \frac{1}{2}\alpha e^{-\alpha y} + \frac{1}{2}\alpha e^{-\alpha|-y|} = \alpha e^{-\alpha y},$$

for y > 0 and $f_Y(y) = 0$ for $y \le 0$. It is an exponential $(1/\alpha)$.

• (2) $F_Y(y) = 0$ for $y \le 0$. For y > 0,

$$F_Y(y) = F_X(-\sqrt{y} \le X \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} f_X(x) dx$$

By differentiation,

$$f_{Y}(y) = \frac{1}{2}\alpha e^{-\alpha\sqrt{y}} \times \frac{d(\sqrt{y})}{dy} - \frac{1}{2}\alpha e^{-\alpha|-\sqrt{y}|} \frac{d(-\sqrt{y})}{dy} = \frac{1}{2}\alpha e^{-\alpha\sqrt{y}} \times \frac{1}{2\sqrt{y}} + \frac{1}{2}\alpha e^{-\alpha|-\sqrt{y}|} \frac{1}{2\sqrt{y}} = \frac{\alpha}{2\sqrt{y}} e^{-\alpha y},$$

for y > 0 and $f_Y(y) = 0$ for $y \le 0$.

• **Remark:** A Weibull distribution has a pdf $f_X(x) = \frac{\beta}{\delta} (\frac{x-\gamma}{\delta})^{\beta-1} \exp[-(\frac{x-\gamma}{\delta})^{\beta}],$ $x > \gamma$, and 0 otherwise. This distribution is widely used in survival analysis or duration analysis. Here $\beta = 1/2, \delta = \alpha^{-2}, \gamma = 0$.

- Example. Suppose $X \sim N(0,1)$. Find the PDF $f_Y(y)$ of $Y = X^2$.
- Solution: For $y \ge 0$, $P(Y \le y) = F_X(\sqrt{y}) F_X(-\sqrt{y})$. So,

$$f_Y(y) = F_X'(\sqrt{y}) \frac{1}{2\sqrt{y}} + F_X'(-\sqrt{y}) \frac{1}{2\sqrt{y}}$$

= $\frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{y}} e^{-y/2}$.

Y is a chi-square random variable with degree of freedom 1, χ_1^2 .

- **Example.** Suppose $X \sim N(\mu, \sigma)$, then $Y = e^x$ follows log-normal distribution. Find the pdf of Y.
- Solution: For y > 0,

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma}} \frac{1}{y} e^{-(\log y - \mu)^2/2\sigma^2}.$$

• Example: Suppose X has pdf $f_X(x) = \frac{3}{8}(x+1)^2$, -1 < x < 1, and

$$Y = \begin{cases} 1 - X^2 & \text{if } X \le 0, \\ 1 - X & \text{if } X > 0. \end{cases}$$

Find the pdf of Y.

• Solution:

- Observe that $0 < y \le 1$.
- $\text{ For } 0 < y \le 1,$

$$F_Y(y) = P(Y \le y)$$

$$= P(-1 < X \le -\sqrt{1-y}) + P(1-y \le X < 1)$$

$$= \int_{-1}^{-\sqrt{1-y}} f_X(x) dx + \int_{1-y}^{1} f_X(x) dx$$

• - By differentiation,

$$f_Y(y) = f_X(-\sqrt{1-y})\frac{d(-\sqrt{1-y})}{dy} - f_X(1-y)\frac{d(1-y)}{dy}$$
$$= \frac{3}{8}(1-\sqrt{1-y})^2\frac{1}{2\sqrt{1-y}} + \frac{3}{8}(2-y)^2,$$

and $f_Y(y) = 0$ for $y \le 0$ or y > 1.

• Theorem: Probability Integral Transform. Suppose X has a continuous distribution $F_X(x)$ which is strictly monotonically increasing. Define $Y = F_X(X)$, that is

$$Y = \int_{-\infty}^{X} f_X(x) dx.$$

Then Y follows a uniform distribution on [0, 1].

• **Proof:** Because $F_X(x)$ is continuous and strictly monotonically increasing, $F_X(\cdot)$ forms a 1-1 correspondence between \mathbb{R} and interval [0,1]. Inverse function $F_X^{-1}(\cdot)$ exists and $F_X(F_X^{-1}(y)) = y$, for any $y \in \mathbb{R}$. For $0 \le y \le 1$,

$$F_Y(y) = P(F_X(x) \le y)$$

$$= P(x \le F_X^{-1}(y))$$

$$= F_X(F_X^{-1}(y))$$

$$= y.$$

It follows that the pdf

$$f_Y(y) = \begin{cases} 1 & 0 \le y \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Y follows Uniform[0, 1] distribution.

- **Example:** How to generate random sample $X \sim \text{exponential}(1)$?
- Solution:
 - The cdf of X is

$$F_X(x) = \begin{cases} 1 - e^{-x} & x \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

Let
$$Y = F_X(X) = 1 - e^{-X}$$
, then $Y \sim U(0, 1)$.

- Now generate $Y \sim U[0,1]$ and let

$$X = -\log(1 - Y) \sim \text{exponential}(1).$$

• **Remark.** The result that $F_X(X) \sim U[0,1]$ provides a basis for goodness-of-tests of distributional models. And it is the basic idea behind the Kolmogorov-Smirnov test for a hypothesized distribution model.

- Alternative Method: The Transformation Approach.
- Theorem: Univariate Transformation.Let X be a CRV with PDF $f_X(x)$ and let function $g: \mathbb{R} \to \mathbb{R}$ be **strictly monotone** and differentiable over the support of X. Then the PDF of the random variable Y = g(X) is

$$f_Y(y) = \frac{1}{|g'(x)|} f_X(x) \mid_{x=g^{-1}(y)},$$

for any y in the support of Y; where x is the **unique** number in the support of X such that g(x) = y.

• **Proof:** When g(x) is strictly increasing, \exists a unique strictly increasing inverse function $g^{-1}(y)$ s.t. $g^{-1}[g(x)] = x$. For y in the support of Y,

$$F_Y(y) = P(Y \le y) = P[g(X) \le y] = P[X \le g^{-1}(y)] = F_X[g^{-1}(y)].$$

By the chain rule of differentiation, we obtain

$$f_Y(y) = F_Y'(y) = F_X'[g^{-1}(y)] \frac{d}{dy} g^{-1}(y) = f_X(x) \frac{1}{g'(x)},$$

where
$$x = g^{-1}(y)$$
, and $\frac{d}{dy}g^{-1}(y) = \frac{1}{g'(x)}$, $g^{-1}(y) = x$.

When g(X) is monotonically decreasing. Similarly, we can obtain $f_Y(y) = -f_X(x)\frac{1}{g'(x)}$, which finishes the proof.

- **Remark.** Before applying this transformation theorem, it is very important to check whether the function g is strictly monotonic. It can not be directly applied to non-monotonic functions. However, if Y = g(X) is strictly monotonic over several regions of the real line, we can extend the above univariate transformation theorem to cover such more general cases.
- **Theorem.** Suppose $g(x) = g_i(x)$ for all $x \in A_i$, where i = 1, 2, ..., k, where for each $i, g_i(x)$ is strictly monotonic (strictly increasing or decreasing) and diffentiable on region A_i , and the regions $\{A_i\}$ are disjoint and $\bigcup_{i=1}^k A_i = R$. Then the PDF of Y = g(X) is given by

$$f_Y(y) = \sum_{i=1}^k f_X[g_i^{-1}(y)] \frac{1}{|g_i'[g_i^{-1}(y)]} |$$

for all y in the support of Y.