Отчёт по лабораторной работе №7

Архитектура компьютера

Морозова Мария Вячеславовна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выполнение самостоятельной работы	11
6	Выводы	12
7	Листинги	13

Список иллюстраций

4.1	Создание файла
4.2	Создание файла, запуск
4.3	Создание файла, запуск
4.4	Результат работы программы
4.5	Создание файла, запуск
4.6	Файл листинга
4.7	Ошибка
5.1	Результат работы программы
	Компоновка файла, запуск программы

Список таблиц

1 Цель работы

Изучение команд условного и безусловного переходов. Приобретение навыков написания программ с использованием переходов. Знакомство с назначением и структурой файла листинга.

2 Задание

Написать программу для нахождения наименьшего из трёх чисел, программу для вычисления значения функции f(x).

3 Теоретическое введение

Для реализации ветвлений в ассемблере используются так называемые команды передачи управления или команды перехода. Можно выделить 2 типа переходов: • условный переход – выполнение или не выполнение перехода в определенную точку программы в зависимости от проверки условия. • безусловный переход – выполнение передачи управления в определенную точку программы без каких-либо условий.

4 Выполнение лабораторной работы

Создала каталог для программ лабораторной работы № 7, перешла в него и создала файл lab7-1.asm: (рис. 4.1).

```
mvmorozova@dk8n81 ~ $ mkdir ~/work/arch-pc/lab07
mvmorozova@dk8n81 ~ $ cd ~/work/arch-pc/lab07
mvmorozova@dk8n81 ~/work/arch-pc/lab07 $ touch lab7-1.asm
mvmorozova@dk8n81 ~/work/arch-pc/lab07 $
```

Рис. 4.1: Создание файла

Создала исполняемый файл и запустила его с кодом листинга 7.1. (рис. 4.2).

```
mvmorozova@dk8n81 -/work/arch-pc/lab07 $ nasm -f elf lab7-1.asm mvmorozova@dk8n81 -/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-1 lab7-1.o mvmorozova@dk8n81 -/work/arch-pc/lab07 $ ./lab7-1 Сообщение No 2 Сообщение No 3 mvmorozova@dk8n81 -/work/arch-pc/lab07 $
```

Рис. 4.2: Создание файла, запуск

Создала исполняемый файл и запустила его с кодом листинга 7.2. (рис. 4.3).

```
mvmorozova@dk8n81 ~/work/arch-pc/lab07 $ nasm -f elf lab7-1.asm
mvmorozova@dk8n81 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-1 lab7-1.o
mvmorozova@dk8n81 ~/work/arch-pc/lab07 $ ./lab7-1
Сообщение No 2
Сообщение No 1
mvmorozova@dk8n81 ~/work/arch-pc/lab07 $
```

Рис. 4.3: Создание файла, запуск

Создала исполняемый файл и запустила его с изменениями инструкции jmp. (рис. 4.4).

```
mvmorozova@dk8n81 ~/work/arch-pc/lab07 $ nasm -f elf lab7-1.asm
mvmorozova@dk8n81 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-1 lab7-1.o
mvmorozova@dk8n81 ~/work/arch-pc/lab07 $ ./lab7-1
Сообщение No 3
Сообщение No 2
Сообщение No 1
mvmorozova@dk8n81 ~/work/arch-pc/lab07 $
```

Рис. 4.4: Результат работы программы

Создала файл lab7-2.asm в каталоге ~/work/arch-pc/lab07. Запустила с использованием программы из листинга 7.3. (рис. 4.5).

```
mvmorozova@dk8n81 ~/work/arch-pc/lab07 $ nasm -f elf lab7-2.asm
mvmorozova@dk8n81 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-2 lab7-2.o
mvmorozova@dk8n81 ~/work/arch-pc/lab07 $ ./lab7-2
Введите В: 50
Наибольшее число: 50
```

Рис. 4.5: Создание файла, запуск

Создала файл листинга для программы из файла lab7-2.asm, открыла файл листинга lab7-2.lst с помощью текстового редактора. Рассмотрим несколько строк: строке 9 содержится номер сторки [9], адресс [00000003], машинный код [803800] и содержимое строки кода [cmp byte [eax], 0] в строке 11 содержится номер сторки [11], адресс [00000008], машинный код [40] и содержимое строки кода [inc eax] в строке 24 содержится номер сторки [24], адресс [0000000F], машинный код [52] и содержимое строки кода [push edx] (рис. 4.6).

Рис. 4.6: Файл листинга

Удалила один операнд, чтобы посмотреть какая будет получена ошибка. (рис. 4.7).

Рис. 4.7: Ошибка

5 Выполнение самостоятельной работы

Запустила программу для вычисления наименьшего из трёх чисел. (рис. 5.1).

```
mvmorozova@dk5n59 -/work/arch-pc/lab07 $ mc
mvmorozova@dk5n59 -/work/arch-pc/lab07 $ ./lab7-3
Наименьшее число: 15
mvmorozova@dk5n59 -/work/arch-pc/lab07 $
```

Рис. 5.1: Результат работы программы

Создала исполняемый файл и запустила программу для нахождения f(x), проверила работу для двух пар x,a. (рис. 5.2).

```
mvmorozova@dk4n62 ~/work/arch-pc/lab07 $ nasm -f elf lab7-4.asm
mvmorozova@dk4n62 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab7-4 lab7-4.o
mvmorozova@dk4n62 ~/work/arch-pc/lab07 $ ./lab7-4
Введите х: 1
Ввведите а: 1
6
mvmorozova@dk4n62 ~/work/arch-pc/lab07 $ ./lab7-4
Введите х: 2
Ввведите а: 1
3
mvmorozova@dk4n62 ~/work/arch-pc/lab07 $ mc
mvmorozova@dk4n62 ~/work/arch-pc/lab07 $
```

Рис. 5.2: Компоновка файла, запуск программы.

6 Выводы

Изучили команды условного и безусловного переходов. Приобрели навыки написания программ с использованием переходов. Познакомились с назначением и структурой файла листинга.

7 Листинги

```
lab7-3
%include 'in_out.asm'
section .data
    msg1 db "Наименьшее число:"
    a dd 45
    b dd 67
    c dd 15
section .bss
    min resb 10
section .text
global _start
_start:
    mov eax, msg1
    call sprint
    mov ecx, [a]
    mov [min], ecx ; 'min = A'
```

```
; ----- Сравниваем 'А' и 'С' (как числа)
   стр есх, [с]; Сравниваем 'А' и 'С'
   jl check_B; если 'A<C', то переход на метку 'check_B',
   mov ecx, [c]; иначе 'ecx = C'
   mov [min], ecx ; 'min = C'
; ----- Преобразование 'min(A,C)' из символа в число
check_B:
    ; ----- Сравниваем 'min(A,C)' и 'В' (как числа)
mov ecx, [min]
   cmp ecx, [b]; Сравниваем 'min(A,C)' и 'В'
   jl fin ; если 'min(A,C)>B', то переход на 'fin',
   mov ecx, [b]; иначе 'ecx = B'
   mov [min], ecx
; ----- Вывод результата
fin:
   mov eax, [min]
   call iprintLF ; Вывод 'min(A,B,C)'
   call quit ; Выход
lab7-4
%include 'in_out.asm'
SECTION .data
input1 db "Введите x: ",0h
input2 db "Ввведите a: ",0h
```

SECTION .bss

max resb 10

x resb 10

a resb 10

SECTION .text

GLOBAL _start

_start:

mov eax,input1

call sprint

mov ecx,x

mov edx,10

call sread

mov eax,x

call atoi

mov [x],eax

mov eax,input2

call sprint

mov ecx,a

mov edx,10

call sread

mov eax,a

```
call atoi
mov [a],eax
```

mov ebx, [x]
cmp [a], ebx
je check

mov eax, [a]
mov ebx, [x]
add eax, ebx
call iprintLF
call quit

check:

mov eax, [a]
mov ebx, 6
mul ebx
call iprintLF
call quit