

PPGEEC2318

Machine Learning

Rock, Paper, Scissors

Ivanovitch Silva
ivanovitch.silva@ufrn.br

Daniel Voigt Godoy **Deep Learning** with PyTorch Step-by-Step A Beginner's Guide

Chapter 6: Rock, Paper, Scissors

Spoilers

- > Jupyter Notebook
- > Rock, Paper, Scissors...
- > Data Preparation

Three-Channel Convolutions

Fancier Model

- > Dropout
- Model Configuration
- Model Training
- Learning Rates

Putting It All Together

Recap

Agenda

- 1. **Standardize** an image dataset
- 2. **train** a model to predict **rock**, **paper**, **scissors** poses from hand images
- 3. use **dropout** layers to **regularize** the model

Rock

Paper

Scissors

The dataset contains 2,892 images (2,520 train, 372 test) of diverse hands in the typical rock, paper, and scissors poses against a white background. This is a synthetic dataset as well since the images were generated using CGI techniques. Each image is 300x300 pixels in size and has four channels (RGBA).

If the images are colored

We need to standardize the three channels (RGB)
Find the <mean,std> for each channel
and to limit them to <0,1>
Only for train dataset!!! Avoid data leakage!!!

ImageFolder

```
# Compose a sequence of preprocessing transforms
# 2) Ensure output is a PIL/torchvision Image (dropping any alpha channel)
temp_transform = Compose([
    Resize(28),
    ToImage(),
    ToDtype(torch.float32, scale=True) # Cast to float32 and normalize pixel range
1)
# Images are grouped by subfolder name as class labels, and each image is transformed
temp_dataset = ImageFolder(
    root='rps',
    transform=temp_transform
                                      # Apply the preprocessing pipeline to every image
```

ImageFolder

```
# Get total number of samples in the dataset dataset_size = len(temp_dataset)
print(f"Dataset size: {dataset_size} images")

# Get number of classes
num_classes = len(temp_dataset.classes)
print(f"Number of classes: {num_classes}")

Dataset size: 2520 images
Number of classes: 3
```

```
. .
temp dataset[0][0].shape, temp dataset[0][1]
(torch.Size([3, 28, 28]), 0)
temp dataset[0][0]
Image([[[1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],
       [1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],
       [1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],
       [1.0000, 1.0000, 1.0000, ..., 0.9961, 0.9961, 0.9961],
       [1.0000, 1.0000, 1.0000, ..., 0.9961, 0.9961, 0.9922],
       [1.0000, 1.0000, 1.0000, ..., 0.9961, 0.9922, 0.9922]],
      [[1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],
       [1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],
       [1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],
       [1.0000, 1.0000, 1.0000, ..., 0.9961, 0.9961, 0.9961],
       [1.0000, 1.0000, 1.0000, ..., 0.9961, 0.9961, 0.9922],
       [1.0000, 1.0000, 1.0000, ..., 0.9961, 0.9922, 0.9922]],
      [[1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],
       [1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],
       [1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],
       [1.0000, 1.0000, 1.0000, ..., 0.9961, 0.9961, 0.9961],
       [1.0000, 1.0000, 1.0000,
                                 ..., 0.9961, 0.9961, 0.9922],
        [1.0000, 1.0000, 1.0000,
                                 ..., 0.9961, 0.9922, 0.9922]]], )
```

Standardization

```
temp loader = DataLoader(temp dataset, batch size=16)
# Each column represents a channel
# first row is the number of data points
# second row is the the sum of mean values
# third row is the sum of standard deviations
first images, first labels = next(iter(temp loader))
Architecture.statistics per channel(first images, first labels)
tensor([[16.0000, 16.0000, 16.0000],
        [13.8748, 13.3048, 13.1962],
        [ 3.0507, 3.8268, 3.9754]])
# We can leverage the loader apply() method to get the sums for the whole dataset:
results = Architecture.loader apply(temp loader,
                                   Architecture.statistics per channel)
tensor([[2520.0000, 2520.0000, 2520.0000],
        [2142.5356, 2070.0806, 2045.1444],
        [ 526.3025, 633.0677, 669.9556]])
```

Standardization

The real dataset

```
composer = Compose([
   Resize(28),
                                       # Resize to 28×28
   ToImage().
   ToDtype(torch.float32, scale=True), # Cast to float32 and normalize to [0,1]
   normalizer
train_data = ImageFolder(root='rps', transform=composer)
val data = ImageFolder(root='rps-test-set', transform=composer)
# Wrap datasets in DataLoaders for batching and shuffling:
train loader = DataLoader(train data, batch size=16, shuffle=True)
val loader = DataLoader(val data, batch size=16) # no shuffle for validation,
```


Dropout

It is a form of regularization

Reduces overfitting

Increases test/validation accuracy (sometimes at expense of training accuracy) Randomly disconnects node from current layers to next layer with probability, p

Dropout (what's going on here?)

```
dropping_model = nn.Sequential(nn.Dropout(p=0.5))
spaced_points = torch.linspace(.1, 1.1, 11)
spaced points
tensor([0.1000, 0.2000, 0.3000, 0.4000, 0.5000, 0.6000, 0.7000, 0.8000, 0.9000,
        1.0000, 1.1000])
dropping model.train()
output train = dropping model(spaced points)
output_train
tensor([0.0000, 0.4000, 0.0000, 0.8000, 0.0000, 1.2000, 1.4000, 1.6000, 1.8000,
        0.0000, 2.2000)
```

Dropout (what's going on here?)

```
F.linear(output_train, weight=torch.ones(11), bias=torch.tensor(0))
tensor(9.4000)
dropping_model.eval()
output_eval = dropping_model(spaced_points)
output eval
tensor([0.1000, 0.2000, 0.3000, 0.4000, 0.5000, 0.6000, 0.7000, 0.8000, 0.9000,
        1.0000, 1.1000])
F.linear(output eval, weight=torch.ones(11), bias=torch.tensor(0))
tensor(6.6000)
```

Dropout

Distribution of 1000 outputs

Dropout

Distribution of 1000 outputs

- For more typical dropout probabilities (like 30% or 50%), the distribution may take some more extreme values when compared to 10%
- The variance of the distribution of outputs grows with the dropout probability.
- A higher dropout probability makes it harder for your model to learn—that's what regularization does

Two dimensional dropout

- It drops entire channels / filters.
- If a convolutional layer produces ten filters, a two-dimensional dropout with a probability of 50% would drop five filters (on average)
- The remaining filters would have all their pixel values left untouched.

Fancier Model

```
class CNN2(nn.Module):
    def __init__(self, n_feature, p=0.0):
        super(CNN2, self).__init__()
        self.n feature = n feature
        self.p = p
        self.conv1 = nn.Conv2d(in_channels=3,
                               out channels=n feature,
                               kernel_size=3)
        self.conv2 = nn.Conv2d(in_channels=n_feature,
                               out_channels=n_feature,
                               kernel_size=3)
        # Where do this 5 * 5 come from?! Check it below
        self.fc1 = nn.Linear(n_feature * 5 * 5, 50)
        self.fc2 = nn.Linear(50, 3)
        # Creates dropout layers
        self.drop = nn.Dropout(self.p)
```


Fancier Model

```
def featurizer(self, x):
    # Featurizer
    # First convolutional block
    # 3@28x28 -> n_feature@26x26 -> n_feature@13x13
    x = self.conv1(x)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2)
    # Second convolutional block
    # n_feature * @13x13 -> n_feature@11x11 -> n_feature@5x5
    x = self.conv2(x)
    x = F.relu(x)
    x = F.max_pool2d(x, kernel_size=2)
    # Input dimension (n_feature@5x5)
    # Output dimension (n_feature * 5 * 5)
    x = nn.Flatten()(x)
    return x
```


Fancier Model

```
def classifier(self, x):
    # Hidden Layer
    # Input dimension (n_feature * 5 * 5)
    # Output dimension (50)
    if self.p > 0:
        x = self.drop(x)
    x = self.fcl(x)
    x = F.relu(x)
    # Output Layer
    if self.p > 0:
        x = self.drop(x)
    x = self.fc2(x)
    return x
def forward(self, x):
    x = self.featurizer(x)
    x = self.classifier(x)
    return x
```


Case Study

Model Configuration
Model Training
Accuracy
Regularizing Effect
Visualizing Filters

Model Config.

```
torch.manual_seed(13)

# Model/Architecture
model_cnn2 = CNN2(n_feature=5, p=0.3)

# Loss function
multi_loss_fn = nn.CrossEntropyLoss(reduction='mean')

# Optimizer
optimizer_cnn2 = optim.Adam(model_cnn2.parameters(), lr=3e-4)
```


Model Train

Regularizing Effect

Regularizing Effect

```
# no dropout
print(
    Architecture.loader_apply(train_loader, arch_cnn2_nodrop.correct).sum(axis=0),
    Architecture.loader_apply(val_loader, arch_cnn2_nodrop.correct).sum(axis=0)
tensor([2520, 2520]) tensor([292, 372])
1.0 0.7849462365591398
# with dropout
print(
    Architecture.loader_apply(train_loader, arch_cnn2.correct).sum(axis=0),
    Architecture.loader apply(val loader, arch cnn2.correct).sum(axis=0)
tensor([2504, 2520]) tensor([326, 372])
0.9936507936507937 0.8763440860215054
```

Visual. Filters

Visual. Filters

torch.Size([5, 5, 3, 3])

Cont.