Estatística

7 - Distribuições de Probabilidade de Variáveis Aleatórias Contínuas

Distribuição Uniforme

 Variável aleatória contínua podendo assumir qualquer valores dentro de um intervalo [a,b] tal que:

$$f(x) = \frac{1}{b-a}$$
 para $a \le x \le b$;

$$f(x) = 0$$
 para qualquer outro valor.

 Probabilidade da variável assumir um valor num subintervalo é a mesma para qualquer outro subintervalo de mesmo comprimento.

$$E(X) = \frac{a+b}{2}$$

$$\sigma^2(X) = \frac{(b-a)^2}{12}$$

Exemplo - Experimento do disco

EXPERIMENTO: ponteiro girando num disco na horizontal (com uma marca de referência).

Resultados (V.A.contínua): ângulo X de parada do ponteiro em relação a marca de referência.

f(x): função densidade de probabilidade

$$f(x) = \begin{cases} 0 & , & x < 0 \\ 1/2\pi & , & 0 \le x \le 2\pi \\ 0 & , & x > 2\pi \end{cases}$$

Exemplo - Experimento do disco

$$\mu = E(X) = \int_{-\infty}^{+\infty} x \cdot f(x) dx \qquad (v.a.c.)$$

$$\mu = \int_0^{2\pi} \frac{1}{2\pi} x \, dx = \left[\frac{1}{4\pi} x^2 \right]_0^{2\pi} = \frac{4\pi^2}{4\pi} = \pi$$

$$\sigma^2 = E(X^2) - [E(X)]^2$$

$$\sigma^2 = \frac{8\pi^3}{6\pi} - \pi^2 = \frac{4\pi^2}{3} - \pi^2 = \frac{\pi^2}{3}$$

$$\sigma = \sqrt{\frac{\pi^2}{3}} = \frac{\pi}{\sqrt{3}}$$

 Se T é uma variável aleatória com Distribuição Exponencial, então:

$$\begin{cases} f(t) = \lambda e^{-\lambda t} & \text{para } t \ge 0; \\ f(t) = 0 & \text{para } t < 0. \end{cases}$$

$$F(t) = P(T \le t) = 1 - e^{-\lambda t} \qquad \Rightarrow \qquad P(T > t) = e^{-\lambda t}$$

Mostra-se que:

$$\mu_{T} = E(T) = \int_{-\infty}^{+\infty} tf(t)dt = \int_{0}^{+\infty} t\lambda e^{-\lambda t}dt = \dots = \frac{1}{\lambda}$$

$$\sigma_{\mathrm{T}}^{2} = \mathrm{V}(\mathrm{T}) = \int_{-\infty}^{+\infty} [t - \mu_{\mathrm{T}}]^{2}.\mathrm{f}(t)\mathrm{d}t$$

$$= \int_{-\infty}^{+\infty} \left(t - \frac{1}{\lambda} \right) \lambda e^{-\lambda t} dt = \dots = \frac{1}{\lambda^2}$$

Exemplo 1: Um componente eletrônico, de marca "A", tem duração de vida que segue uma Distribuição Exponencial com vida média de 100 horas.

Qual a probabilidade de um componente, de marca "A", durar mais de 150 horas?

Seja T_A: duração da vida de um componente "A"

Pergunta :
$$P(T_A > 150) = ?$$

Sabe-se que:
$$P(T_A > t) = e^{-\lambda t}$$

Como a vida média é de 100 horas, então:

$$E(T_A) = \frac{1}{\lambda} = 100$$
 \Rightarrow $\lambda = \frac{1}{100}$

Logo:

$$P(T_A > 150) = e^{-\frac{150}{100}} = e^{-1.5} = 0.223$$

Exemplo 1: Um componente eletrônico, de marca "A", tem duração de vida que segue uma Distribuição Exponencial com vida média de 100 horas e um custo unitário de R\$10,00. A marca "B", desse componente eletrônico, tem uma vida média de 200 horas e um custo de R\$15,00. Considere também a incidência de um custo adicional de R\$8,00 se o componente durar menos de 200 horas, qualquer que seja a marca

Qual a marca mais econômica?

Custo esperado da marca A:

$$E(C_A) = 10 \cdot P(T_A \ge 200) + (10 + 8) \cdot P(T_A < 200) =$$

$$= 10 \cdot e^{-(1/100) \cdot 200} + (10 + 8) \cdot (1 - e^{-(1/100) \cdot 200}) =$$

$$= 10 \cdot e^{-2} + 18(1 - e^{-2}) = 1,353 + 15,565 = 16,918.$$

Custo esperado da marca B:

$$E(C_B) = 15 \cdot P(T_B \ge 200) + (15 + 8) \cdot P(T_B < 200) =$$

$$= 15 \cdot e^{-(1/200) \cdot 200} + 23 \cdot (1 - e^{-(1/200) \cdot 200}) =$$

$$= 15 \cdot e^{-1} + 23 \cdot (1 - e^{-1}) = 5,518 + 14,539 = 20,057.$$

Portanto: marca "A" é mais econômica!

Exemplo 2: O tempo de vida de T de um certo tipo de lâmpada segue uma distribuição exponencial com média de 1000 horas. Se foi encomendado um lote com 10000 lâmpadas desse tipo:

a) Determinar a porcentagem dessas lâmpadas que deverão se queimar antes de 1000 horas.

$$E(T) = \frac{1}{\lambda} = 1000 \longrightarrow \lambda = 0,001 \text{ lâmpada/hora}$$

Pergunta:
$$P(T \le 1000) = ?$$

$$F(1000) = P(T \le 1000) = 1 - e^{-0.001 \times 1000} = 1 - e^{-1} = 0.632$$

Após as 1000 horas, cerca de 63,2% das lâmpadas deverão estar queimadas.

Exemplo 2: O tempo de vida de T de um certo tipo de lâmpada segue uma distribuição exponencial com média de 1000 horas. Se foi encomendado um lote com 10000 lâmpadas desse tipo:

b) Após quantas horas de vida deverão ter se queimado 90% das lâmpadas do lote?

Dado :
$$P(T \le t_0) = 0.9$$

$$F(T_0) = P(T \le t_0) = 1 - e^{-0.001 \times t_0} = 0.9$$

$$e^{-0.001 \times t_0} = 0.1$$

$$-0.001 \times t_0 = \ln(0.1) = -2.303$$

$$t_0 = 2303$$

Após 2303 horas, cerca de 90% das lâmpadas deverão estar queimadas.

Distribuição Exponencial não tem "memória:

$$\Pr[T > t] = e^{-\lambda t}$$

$$\Pr[T > s + t | T > s] = \frac{\Pr[T > s + t]}{\Pr[T > s]} =$$

$$\frac{\Pr[T > s + t]}{\Pr[T > s]} = \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t}$$

$$\Pr[T > s + t | T > s] = \Pr[T > t]$$

Por isso, é "usada em modelos de duração de vida que não desgastam com o tempo"

Distribuição Weibull

$$\Pr[T > t] = e^{-\lambda t^{\beta}} \qquad \beta \neq 1$$

$$\Pr[T > s + t | T > s] = \frac{\Pr[T > s + t]}{\Pr[T > s]} =$$

$$\frac{\Pr[T > s + t]}{\Pr[T > s]} = \frac{e^{-\lambda(s+t)\beta}}{e^{-\lambda s^{\beta}}} \neq e^{-\lambda t^{\beta}}$$

$$\Pr[T > s + t | T > s] \neq \Pr[T > t]$$

$$\lambda = 0.01$$
; $s = 25$; $t = 25$

β	$\Pr[T > 50 T > 25]$	$\Pr[T > 25]$
1	0,6065	0,6065
1,2	0,2421	0,3351
0,8	0,8441	0,7956

Engenharia de Confiabilidade

Confiabilidade do sistema

$$R[t] = \Pr[T > t]$$

Taxa de Falhas com o tempo

Engenharia de Confiabilidade

Confiabilidade do sistema

$$R[t] = \Pr[T > t]$$

Sistema em série

Sistema em paralelo

INTERVALO ENTRE CHEGADAS EM UMA FILA DE BANCO

$$F(t_0) = \int_0^{t_0} \lambda e^{-\lambda t} dt = 1 - e^{-\lambda t_0} = Y$$

$$t_0 = -\frac{1}{\lambda} \ln(1 - Y)$$

Distribuição Normal ou de Gauss

Definida pela seguinte fdp:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(1/2)\left(\frac{x-\mu}{\sigma}\right)^2} - \infty < x < +\infty$$

Exemplo: A duração de um certo tipo de pneu, em km rodados, é uma variável normal com duração média 60000 km e desvio-padrão de 10000 km.

a) Qual a probabilidade de um pneu escolhido ao acaso durar mais de 75000 km?

$$Z = \frac{X - \mu}{\sigma}$$

$$0 \quad 1.5 \quad Z$$

$$Z = \frac{75.000 - 60.000}{10.000} = 1,5$$

$$Pr[Z>1,5] = 0,5-0,4332 = 0,0668$$

Z: Distribuição Normal Reduzida

$$\mu_{Z} = 0$$

$$\sigma_{Z}^{2} = 1$$

$$Z = \frac{X - \mu_X}{\sigma_X}$$

Distribuição normal — valores de $P(0 \le Z \le z_0)$

z ₀	0	1	2	3	4
0,0	0,0000	0,0040	0,0080	0,0120	0,016
0,1	0,0398	0,0438	0,0478	0,0517	0,055
0,2	0,0793	0,0832	0,0871	0,0910	0,094
0,3	0,1179	0,1217	0,1255	0,1293	0,133
0,4	0,1554	0,15		664	0,170
0,5	0,1915	0,19		019	0,205
0,6	0,2257	0,22		357	0,238
0,7	0,2580	0,26		673	0,270
0,8	0,2881	0,29		967	0,299
0,9	0,3159	0,31	0,0212	0,5238	0,326
1,0	0,3413	0,3438	0,3461	0,3485	0,350
1,1	0,3643	0,3665	0,3686	0,3708	0,372
1,2	0,3849	0,3869	0,3888	0,3907	0,392
1,3	0,4032	0,4049	0,4066	0,4082	0,409
1,4	0.4192	0,4207	0,4222	0,4236	0,425
1,5	0,4332	0,4345	0,4357	0,4370	0,438
1,6	0,4452	0,4463	0,4474	0,4484	0,449
1,7	0,4554	0,4564	0,4573	0,4582	0,459
1,8	0,4641	0,4649	0,4656	0,4664	0,467
1,9	0,4713	0,4719	0,4726	0,4732	0,473
2,0	0,4772	0,4778	0,4783	0,4788	0,479
2.1	0.4821	0.4826	0.4830	0.4834	0.483

Exemplo: A duração de um certo tipo de pneu, em km rodados, é uma variável normal com duração média 60000 km e desvio-padrão de 10000 km.

b) Qual a probabilidade de um pneu escolhido ao acaso durar entre 63500 e 70000 km?

$$Pr[0,35 < Z < 1,00] = 0,3413 - 0,1368 = 0,2945$$

Z: Distribuição Normal Reduzida

$$\mu_{z} = 0$$

$$\sigma_{z}^{2} = 1$$

$$Z = \frac{X - \mu_X}{\sigma_X}$$

Distribuição normal — valores de $P(0 \le Z \le z_0)$

Z ₀	0	1	2	3	4	5
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368
0,4	0,1554	0 1591	ი 1628	0 1664	0,1700	0,1736
0,5	0,1915			019	0,2054	0,2088
0,6	0,2257			357	0,2389	0,2422
0,7	0,2580			673	0,2704	0,2734
0,8	0,2881			967	0,2995	0,3023
0,9	0,3159			238	0,3264	0,3289
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842

Teorema das Combinações Lineares:

Se X₁, X₂, ..., X_n são V.A. com Distr. NORMAL então

$$X = \sum_{i=1}^{n} a_i \cdot X_i \quad \text{\'e V.A. NORMAL}$$

onde: a_i são constantes

Teorema do Limite Central:

Se X₁, X₂, ..., X_n são V.A. Independentes, com Distribuição QUALQUER então

$$X = \sum_{i=1}^{n} a_i \cdot X_i \quad \text{\'e V.A. NORMAL}$$

para n suficientemente grande

Distribuição Normal

Exemplo: Uma companhia embala em cada caixa 5 pires e 5 xícaras. Os pesos dos pires distribuem-se normalmente com média de 190 g e variância 100 g². Os pesos das xícaras também são normais com média 170 g e variância 150 g². O peso da embalagem é praticamente constante, igual a 100g.

Qual a probabilidade da caixa pesar menos de 2000 g?

X = peso da xícaras

Y = peso do pires

E = peso da embalagem

C = peso da caixa completa

$$\Rightarrow$$
 P(C<2000)=?

$$C = E + \sum_{i=1}^{5} X_i + \sum_{i=1}^{5} Y_i$$

$$\mu(C) = \mu(E) + \sum_{i=1}^{5} \mu(X_i) + \sum_{i=1}^{5} \mu(Y_i)$$

$$\mu(C) = \mu(E) + 5 \cdot \mu(X) + 5 \cdot \mu(Y) = 100 + 5 \times 170 + 5 \times 190 = 1900$$

Considerando X e Y variáveis aleatórias INDEPENDENTES, tem-se:

$$\sigma^{2}(C) = \sigma^{2}(E) + \sum_{i=1}^{5} \sigma^{2}(X_{i}) + \sum_{i=1}^{5} \sigma^{2}(Y_{i}) =$$

$$= \sigma^{2}(E) + 5 \cdot \sigma^{2}(X) + 5 \cdot \sigma^{2}(Y) = 0 + 5 \times 150 + 5 \times 100 = 1250$$

$$Z = \frac{X - \mu_C}{\sigma_C}$$
 $z(2000) = \frac{2000 - 1900}{\sqrt{1250}} \approx 2,83$

$$P(0 \le Z \le 2.83) = P(1900 \le C \le 2000) = 0.4977 \text{ (tabela)}$$

 $P(C < 2000) = 0.5 + 0.4977 = 0.9977$

Distribuição Normal

Exemplo: Uma companhia embala em cada caixa 5 pires e 5 xícaras. Os pesos dos pires distribuem-se normalmente com média de 190 g e variância 100 g². Os pesos das xícaras também são normais com média 170 g e variância 150 g². O peso da embalagem é praticamente constante, igual a 100g.

Qual a probabilidade de um píres pesar menos que uma xícara numa escolha ao acaso?

X = peso da xícara

Y = peso do pires

Pergunta:
$$P(Y-X<0)=$$
?

Seja W = Y - X, logo:
$$P(W < 0) = ?$$

$$E(W) = E(Y) - E(X) = 190 - 170 = 20g$$

$$\sigma^{2}(W) = \sigma^{2}(Y) + \sigma^{2}(X) = 100 + 150 = 250g^{2}$$

$$z(20) = \frac{20 - 20}{\sqrt{250}} = 0$$

$$P(W < 0) = P(W < 20) - P(0 < W < 20) =$$

$$= 0.5 - P(-1.265 < Z < 0) =$$

$$= 0.5 - P(0 < Z < 1.265) =$$

$$= 0.5 - 0.3971 = 0.1029$$

Distribuição Normal

Aproximação utilizando a Distr.Normal:

Aproximação utilizarido a Distr. Normal.
 n.p ≥ 5
 n.g ≥ 5

• Distr. POISSON, para: $\mu = \lambda \cdot t \geq 5$

• Correção de Continuidade devido aprox. Distr. discreta pela $P(X=k) \rightarrow P\left(k-\frac{1}{2} \le X \le k+\frac{1}{2}\right)$ Distr.Normal (contínua):

$$P(K_1 < X \le k_2) \to P(k_1 + \frac{1}{2} \le X \le k_2 + \frac{1}{2})$$