PPS10
ENTREGÁVEL

ESPECIFICAÇÕES TÉCNICAS

Especificações para desenvolvimento e capacidade do produto.

Projeto Programação "LOW CODE" de robôs - PPS10

Revisão do documento 01

Data da revisão 07/09/2023

	Produzido por	Revisto por
Empresa	ENARTIN	
Responsável	João Correia	

ESPECIFICAÇÕES TÉCNICAS			
Projeto:	Programação "LOW CODE" de robôs - PPS10	Data:	13/04/2023
		Revisão:	01
Número de Entregável:	02	Pá	gina 2 de 22

Conteúdo

1.	ESTE DOCUMENTO	3
1.1	Objetivo	3
1.2		
2.	CONTEXTO	
2. 1	DESCRIÇÃO DA ATIVIDADE	
۷. ۱		
3.	DEFINIÇÃO DE PRODUTO	6
3.1	OBJETIVOS E PROPÓSITO	6
3.2	ESPECIFICAÇÕES TÉCNICAS	7
3.2.	1 Software	7
3.2.1	1.1 Interface Homem Máquina (front-end)	8
3.2.1		
3.2.1		
3.2.1		
3.2.1		
3.2.1	1.1.5 Melhoria de Operação por Aprendizagem de Reforço	9
3.2.1	1.2 Processamento e Lógica (back-end)	9
3.2.1	1.2.1 Perceção de Mundo (IA)	9
3.2.1	1.2.2 Perceção de objetos e interação (IA)	9
3.2.1	1.2.3 Perceção de pessoas e seus comportamentos (IA)	10
3.2.1	1.2.4 Robótica em operação	10
3.2.1	1.2.5 Perceção em operação	10
3.2.1	1.3 Base de Dados	10
3.2.2	2 Hardware	13
3.2.2	2.1 PC para parametrização	13
3.2.2	PC local (e quadro de controlo)	13
3.2.2	2.3 Unidade de Perceção (Visão)	13
3.2.2	2.4 Robô	13
3.2.2	2.5 Mão de Robô ("Gripper")	14
3.2.2	2.6 Base	14
4.	UTILIZAÇÃO DO PRODUTO	15
4.1	CASO DE USO PARA DESENVOLVIMENTO	15
	1 Necessidade.	15
4.1.2		
4.1.	• •	
	·	
4.1.4	•	
5.	SISTEMA À PROVA DE FUTURO	19
5.1.	1 Cenário #01 – Limpeza e Arrumação de Áreas	19
5.1.2		
6.	RESUMO DE OBJETIVOS E CAPACIDADE DO SISTEMA	20
7	NOTAS IMPORTANTES	22

ESPECIFICAÇÕES TÉCNICAS			
Projeto:	Programação "LOW CODE" de robôs - PPS10	Data:	13/04/2023
		Revisão:	01
Número de Entregável:	02	Pá	gina 3 de 22

1. Este documento

1.1 Objetivo

O "caderno de especificações do produto", serve para garantir que todos os parceiros tenham uma compreensão comum dos objetivos e requisitos do projeto, o que pode ajudar a minimizar erros de comunicação e garantir um desenvolvimento mais fluido e bem-sucedido do produto.

1.2 Registo de Alterações

Descrição da alteração/ atualização	Data	Revisão
Lançamento do documento.	07/09/2023	01

ESPECIFICAÇÕES TÉCNICAS			
Projeto:	Programação "LOW CODE" de robôs - PPS10	Data:	13/04/2023
		Revisão:	01
Número de Entregável:	02	Pá	gina 4 de 22

2. Contexto

A indústria tem passado por um período de mudanças significativas nos últimos tempos, com destaque para a crescente demanda por sistemas robotizados e automáticos. Essa tendência se deve, em grande parte, à necessidade de aumentar a eficiência e a produtividade das operações industriais. No entanto, um dos principais desafios enfrentados por muitas empresas é a escassez de recursos especializados na área, o que pode dificultar a implementação de soluções robotizadas em seus processos.

Além disso, a programação de robôs tradicionalmente requer um alto nível de conhecimento técnico, o que pode limitar a adoção dessas tecnologias por empresas que não possuem equipes de programadores altamente qualificados. Para superar esses desafios, tem surgido a ideia de uma programação "LOW CODE", que consiste em uma aplicação que permite programar o movimento de um sistema robótico com menos esforço e menor conhecimento técnico.

Essa abordagem envolve o uso de uma interface de programação por blocos que simplifica o processo de programação de robôs e automatiza tarefas repetitivas. Com isso, é possível aumentar a eficiência e a produtividade das operações industriais, tornando-as mais acessíveis a um número maior de empresas. Além disso, a programação "LOW CODE" pode incluir recursos de visão artificial para permitir que os robôs possam perceber seu ambiente e realizar tarefas mais complexas, abrindo ainda mais possibilidades para a automação industrial.

ESPECIFICAÇÕES TÉCNICAS			
Projeto: Programação "LOW CODE" de robôs - PPS10		Data:	13/04/2023
		Revisão:	01
Número de Entregável: 02		Pá	gina 5 de 22

2.1 Descrição da atividade

ESPECIFICAÇÕES TÉCNICAS			
Projeto:	Programação "LOW CODE" de robôs - PPS10	Data:	13/04/2023
		Revisão:	01
Número de Entregável:	02	Pá	gina 6 de 22

3. Definição de Produto

3.1 Objetivos e Propósito

Objetivos Gerais:

- Agilizar Comissionamento: capacitar o equipamento de forma que seja possível que a fase de comissionamento seja apenas introduzir o mínimo de "ordens" possível por um operador não fluente em programação e que o equipamento aprenda a rota e seus detalhes por si próprio.
- 2. Melhorar a Eficiência Operacional: Capacitar um braço robótico para identificar, agarrar e posicionar objetos de forma autónoma, reduzindo a necessidade de intervenção humana e aumentando a eficiência das operações.
- Garantir Precisão e Qualidade: Assegurar operações precisas e consistentes ao permitir que o robô execute tarefas complexas de maneira confiável, minimizando erros e mantendo a qualidade das operações.
- 4. Aumentar a Flexibilidade: Dotar o robô com a capacidade de interagir com objetos e ambientes variados, tornando-o versátil para uma variedade de aplicações agrícolas, desde a manipulação de culturas até a organização de ferramentas.
- Reduzir Dependência de Mão-de-Obra: Contribuir para a superação dos desafios da escassez de mão-de-obra, possibilitando que o robô execute tarefas que normalmente seriam realizadas por trabalhadores humanos.

Propósito:

O propósito deste produto é capacitar um sistema de forma a que este chegue a um determinado posto e, com pouca interação do operador de um operador não qualificado para programação, comece a operar.

Isto só será possível com um sistema integrado de visão artificial e um braço mecânico de alta precisão. Isso permitirá que o robô realize tarefas de perceção, identificação, manipulação e posicionamento de objetos de forma autónoma. O nosso objetivo é transformar determinadas ações por meio da automação inteligente, proporcionando uma solução tecnológica avançada que otimize as operações, aumente a produtividade, a qualidade e a eficiência, ao mesmo tempo reduz a dependência de mão-de-obra qualificada. Este produto será uma ferramenta indispensável para empresas que procurem maximizar os recursos, melhorar a qualidade e preparar-se para as demandas futuras.

ESPECIFICAÇÕES TÉCNICAS			
Projeto:	Programação "LOW CODE" de robôs - PPS10	Data: 13/04/2	13/04/2023
		Revisão:	01
Número de Entregável:	02	Pá	gina 7 de 22

3.2 Especificações Técnicas

O produto é dividido em dois grupos de Software e Hardware, sendo que dentro de cada um dos grupos existem subgrupos que visão explicar "componentes" e/ou "módulos" essenciais ao funcionamento integral da solução. Na Ilustração 1 são apresentados os grupos e subgrupos de investigação e desenvolvimento necessários.

Ilustração 1 – Árvore de produto.

3.2.1 Software

O software (que será a base do produto em desenvolvimento) deverá obedecer a uma estrutura que permita a modularização da solução no que toca à interface com o utilizador, permitindo a "aquisição" de licenças conforme o caso de uso. Como tal, é possível dividir o software em três módulos de utilização, presentes na figura

Ilustração 2 – Módulos de Interface com utilizador (front-end).

Os módulos de funcionalidade descritos representam a necessidade de desenvolvimento de lógica de processamento de dados, ou seja, os algoritmos de processamento. Esse processamento será dividido nos seguintes módulos:

ESPECIFICAÇÕES TÉCNICAS			
Projeto: Progra	amação "LOW CODE" de robôs - PPS10	Data:	13/04/2023
		Revisão:	01
Número de Entregável: 02		Pá	gina 8 de 22

Ilustração 3 - Módulos de Lógica (back-end).

Por forma a munir o sistema de inteligência é importante o registo de informação em base de dados, sendo que essas bases de dados poderão ser divididas também elas em três grupos:

Ilustração 4 - Módulos de base de dados.

3.2.1.1 Interface Homem Máquina (front-end)

3.2.1.1.1 Parametrização Robótica e Automação Inicial

- Seleção e/ou upload de programa.
- Interface intuitiva e de fácil utilização para inserção de dados iniciais do sistema.
- Permitir a configuração de parâmetros como:
 - Que objeto deve o robô procurar (conforme classificação dos objetos);
 - Onde se encontra esse objeto;
 - o Onde deve ser esse objeto colocado;
 - Velocidade máxima de movimento;
 - Número de Outputs e respetivos modos para controlo de "garra" do robô;
 - o Outros
- Opção de ajustar os parâmetros de acordo com a aplicação específica do usuário.

3.2.1.1.2 Parametrização de Módulo de Perceção Inicial (Visão)

- Interface intuitiva e de fácil utilização para inserção de parâmetros iniciais do sistema, tal como:
 - Que câmara¹ é?
 - Que tipo de dados fornece o modulo de perceção?
- Capacidade de gerar modelo tridimensional (nuvem de pontos).

¹ Se for conveniente o uso de Lidar, em detrimento ou em paralelo com a câmara, para melhor capacidade de perceção, devem ser informadas todas as partes envolvidas.

ESPECIFICAÇÕES TÉCNICAS			
Projeto:	Programação "LOW CODE" de robôs - PPS10	Data:	13/04/2023
		Revisão:	01
Número de Entregável:	02	Pá	gina 9 de 22

3.2.1.1.3 Interface de Ensino Inicial para manipulação de objetos

- Funcionalidade de ensinar robô para melhor classificação de objetos e posições;
 - o Imagem, classificação, propriedades volumétricas necessárias para a pega.

3.2.1.1.4 Interface de Ensino Inicial para interação com humanos

• Funcionalidade de ensinar robô para classificar e prever comportamentos humanos;.

3.2.1.1.5 Melhoria de Operação por Aprendizagem de Reforço

- Funcionalidade de ensinar robô para melhor classificação de objetos e posições;
- Funcionalidade de fornecer feedback durante a operação, indicando ao robô se a tarefa está a ser executada corretamente ou não.
- Interface de botões (ou comandos de voz) para dar instruções ao robô, como "bem feito" ou "tente novamente".
- Integração de um sistema de aprendizagem para que o robô possa melhorar com o feedback ao longo do tempo.

3.2.1.2 Processamento e Lógica (back-end)

3.2.1.2.1 Perceção de Mundo (IA)

- Utilização de algoritmos avançados de visão computacional para identificar o ambiente circundante.
- Reconhecimento de área, obstáculos, objetos e seres humanos em tempo real.
- Atualização contínua da perceção do ambiente para tomar decisões informadas.

3.2.1.2.2 Perceção de objetos e interação (IA)

- Capacidade de detetar e classificar objetos com base em características visuais.
- Identificação de objetos alvo para serem agarrados e manipulados pelo braço robótico.
- Capacidade de aprendizagem de novos objetos com base no feedback humano para melhorar a capacidade de reconhecimento.
- Capacidade de aprendizagem "autónoma" sobre como melhorar o movimento de determinado objeto.
 - O algoritmo deve ter a capacidade de informar sobre o ponto onde o a garra deve pegar o objeto.
 - o Possivelmente o centro volumétrico do item.
 - O sistema de visão e o algoritmo deve perceber que a pega foi bem-sucedida.

ESPECIFICAÇÕES TÉCNICAS			
Projeto:	Programação "LOW CODE" de robôs - PPS10	Data:	13/04/2023
		Revisão:	01
Número de Entregável:	02	Pág	ina 10 de 22

3.2.1.2.3 Perceção de pessoas e seus comportamentos (IA)

- Implementação de algoritmos de IA que permitem uma interação segura entre o robô e seres humanos.
- Deteção de movimentos humanos para evitar colisões e garantir a segurança durante a operação conjunta.
- Utilização de algoritmos de "reinforcement learning from human feedback" para melhorar a colaboração ao longo do tempo.

3.2.1.2.4 Robótica em operação

- Um software em back-end deve ser capaz de corrigir a rota e/ou a posição da garra, conforme informação recebida pelo algoritmo de IA para manipulação de objetos.
 - Este processamento deve laborar em conjunto com o algoritmo de perceção de objeto e respetiva informação geométrica.

3.2.1.2.5 Perceção em operação

 Deve existir um processamento em back-end das imagens adquiridas, cuja qualidade deve ser garantida, pelo que devem ser tratadas antes de fornecidas aos sub-processos de análise (IA).

3.2.1.3 Base de Dados

Devem ser providenciadas as bases de dados necessárias para a laboração correta do robô e do sistema de aprendizagem, cujo conteúdo deve ser especificado pelas várias entidades durante o desenvolvimento.

Nas páginas seguintes, na Ilustração 5 é apresentado o fluxo de funcionamento do produto, que dará resposta à fase de comissionamento ("posta em marcha") e na Ilustração 6 é apresentada o fluxo de operação em contínuo (autónomo) do sistema.

ESPECIFICAÇÕES TÉCNICAS			
Projeto:	Programação "LOW CODE" de robôs - PPS10	Data:	13/04/2023
		Revisão:	01
Número de Entregável:	02	Pág	ina 11 de 22

Ilustração 5 – Fluxograma do produto para comissionamento

ESPECIFICAÇÕES TÉCNICAS			
Projeto: Programação "LOW CODE" de robôs - PPS10		Data:	13/04/2023
		Revisão:	01
Número de Entregável:	02	Pág	ina 12 de 22

Operação Continua

Ilustração 6 – Fluxograma do produto para operação e melhoria continua.

ESPECIFICAÇÕES TÉCNICAS			
Projeto:	Programação "LOW CODE" de robôs - PPS10	Data:	13/04/2023
		Revisão:	01
Número de Entregável:	02	Pág	ina 13 de 22

3.2.2 Hardware

3.2.2.1 PC para parametrização

O PC de parametrização poderá ser um PC já existente no cliente, onde será instalado o software descarregado (mediante licenças) e que se ligará ao sistema local por rede ou wi-fi.

3.2.2.2 PC local (e quadro de controlo)

Será construído um módulo, integrando equipamentos a definir pelos especialistas nas áreas, onde o software de aquisição de imagem e de inteligência artificial serão instalados.

3.2.2.3 Unidade de Perceção (Visão)

Este conjunto de sensores (câmaras e/ou outros) deve garantir a captação de dados que permitam perceber o tipo, a posição e volumetria de objetos, bem como as interferências no trajeto do braço robótico. Deve possibilitar reconhecer pessoas e movimentos. Deverá conseguir operar em ambientes de baixa luminosidade bem como em ambientes com interferência da luz solar.

Deverá ser considerada a utilização de um Lidar se benefícios de aí advirem.

3.2.2.4 Robô

O robô selecionado trata-se de um robô colaborativo com os seguintes detalhes:

Marca: Doosan (a confirmar)Modelo: M1509 (a confirmar)

Carga máxima: 15kgAlcance: 900mm

Figura 1 – Braço robótico Doosan M1509

ESPECIFICAÇÕES TÉCNICAS			
Projeto:	Programação "LOW CODE" de robôs - PPS10	Data:	13/04/2023
		Revisão:	01
Número de Entregável:	02	Pág	ina 14 de 22

3.2.2.5 Mão de Robô ("Gripper")

A ferramenta permitirá executar o "pick-&-place" do item a movimentar e deve ser desenvolvida através de uma filosofia modular que permite a alteração da interface com objeto.

Figura 2 – Gripper (imagem meramente representativa).

3.2.2.6 Base

A "base" será o local onde o braço robótico irá ser instalado, sendo que por norma se trata de um pedestal. O software em desenvolvimento deve possibilitar a instalação do braço robótico tanto numa plataforma móvel com um pedestal estático.

No desenvolvimento em curso, a base será um Rover com capacidade de navegação em ambientes exteriores. Esta opção irá permitir demonstrar a agilidade adicionada ao processo de equipamento, uma vez que que o robô execute uma operação de pick & place num local e outra noutro local de uma mesma unidade fabril.

O trajeto do rover é parameterizado no software próprio do rover, sendo que o sistema apenas terá de dar indicação ao rover que poderá iniciar rota do ponto A para o ponto B.

ESPECIFICAÇÕES TÉCNICAS			
Projeto:	Programação "LOW CODE" de robôs - PPS10	Data:	13/04/2023
		Revisão:	01
Número de Entregável:	02	Pág	ina 15 de 22

4. Utilização do Produto

4.1 Caso de uso para desenvolvimento

Para desenvolvimento do nosso sistema é necessário especificar um primeiro caso de uso de forma a objetivar o desenvolvimento.

O caso de uso será:

 Sistema de "pick and place", com reconhecimento de formas, posições, cores e texturas (materiais).

4.1.1 Necessidade

Atualmente existe na fábrica da Stellantis, em Mangualde, a necessidade de remoção e separação dos resíduos que resultam da produção das viaturas. Estes resíduos são:

- Plástico
- Cartão

4.1.2 Operação atual

Para remoção dos resíduos existe a seguinte sequência de operações:

1.	Os resíduos são colocados	
	pelos operadores de	
	montagem em zona específica,	0.45
	ao longo da linha em vários	
	locais. Na linha os resíduos	
	são separados entre plástico e	
	papel.	
	Nota: O papel, separado é colocado	Page 11 March 2019
	dentro de um saco de plástico.	
2.	Um operador remove os	
	resíduos ao longo da linha com	
	um carrinho volante. O	
	operador coloca no mesmo	
	carrinho "atacados" de plástico	
	e "sacos" de papel.	

ESPECIFICAÇÕES TÉCNICAS			
Projeto:	Programação "LOW CODE" de robôs - PPS10	Data:	13/04/2023
		Revisão:	01
Número de Entregável:	02	Pág	ina 16 de 22

3.	O carrinho, no estado de cheio, é transportado, pelo operador até à zona de separação de resíduos, no exterior da fábrica.	Francis of the Control of the Contro
4.	Na zona de separação o operador, separa o plástico do papel, colocando estes resíduos em dois contentores separados.	PAPEL & CARTÃO PLÁSTICO

4.1.3 Oportunidade

Uma vez identificada a operação explicada na secção anterior, surge a oportunidade de automatização e robotização da tarefa. O transporte poderá ser executado através de um rover (AMR) outdoor, a separação dos resíduos conseguida através do reconhecimento da matéria através de visão artificial e *machine learning*, sendo o manuseamento garantido por e robótica.

Perante a oportunidade identificada, surgem várias oportunidades:

- Benefício para a Stelantis com a libertação do operador no tempo equivalente ao tempo necessário para transporte e separação;
- Desenvolvimento de uma solução no âmbito de um tema geral atual (separação de resíduos e economia circular);
- Investigação, desenvolvimento e instalação num ambiente industrial exigente, sem que o desenvolvimento e a incerteza envolvida gerem pressão na linha de produção.

4.1.4 Solução

A solução passará então por instalação de um rover capaz de tracionar os contentores de resíduos desde o bordo de linha até à zona de separação de resíduos.

No rover, estará instalado um braço robótico que, através de visão artificial deverá aprender a reconhecer e interagir com os vários itens:

ESPECIFICAÇÕES TÉCNICAS			
Projeto: Programação "LOW CODE" de robôs - PPS10		Data:	13/04/2023
		Revisão:	01
Número de Entregável:	02	Página 17 de 22	

- Vagões,
- Contentores,
- Plástico e
- Papel/Cartão,

procedendo à manipulação e separação nos contentores designados. O gripper presente no robô deverá possibilitar o manuseamento de plástico e de papel/cartão.

A interface do rover com o vagão será desenvolvida para que o acoplamento seja operacionalizado sem interface humana (possivelmente com ajuda do braço robótico, pois em caso de sucesso do produto aqui especificado será "simples" parametrizar o braço para atuar conforme necessário).

A operação do sistema deverá obedecer à seguinte ordem de ações mecânicas do equipamento:

	Task
	O rover chega ao local A e informa o sistema que se encontra no local A, zona
1.	de "contentores/vagões".
	O sistema de visão deteta o "contentor/vagão" e respetiva zona de acoplamento.
2.	O "contentor/vagão" é colocado previamente numa zona demarcada, com uma
2.	tolerância conhecida (a confirmar).
3.	O rover executa movimento para acoplamento.
4.	O rover desloca-se para o ponto B através de rota pré-definida.
	O rover chega ao local B e informa o sistema que se encontra no local B, zona
5.	de separação de resíduos.
	O "braço munido de sistema de visão" faz um varrimento tridimensional da zona
6.	e percebe onde estão os contentores:
O.	Verifica posição dos contentores de depósito (papel/cartão e plástico);

ESPECIFICAÇÕES TÉCNICAS			
Projeto	Programação "LOW CODE" de robôs - PPS10	Data:	13/04/2023
		Revisão:	01
Número de Entregável	02	Pág	ina 18 de 22

	Verifica "nível" dos contentores de depósito;
	 confirma a posição do "contentor/vagão";
	 verifica a posição das primeiras camadas de resíduos no vagão.
	O braço inicia operação de <i>pick</i> & <i>place</i> .
7.	Nota: no contentor de depósito, o braço deve espalhar os itens de forma a não concentrar o maior volume no centro do contentor.
	Terminado a descarga o sistema deve informar o rover de que se poderá deslocar
8.	para o ponto A.

ESPECIFICAÇÕES TÉCNICAS			
Projeto:	Programação "LOW CODE" de robôs - PPS10	Data:	13/04/2023
		Revisão:	01
Número de Entregável:	02	Página 19 de 22	

5. Sistema à prova de futuro

No desenvolvimento deste produto, alem de um caso de uso específico explicado anteriormente no documento, as equipas de desenvolvimento devem ter em mente a versatilidade que este produto deve apresentar. Será interessante que se prepare o produto para que a sua evolução seja facilitada.

5.1.1 Cenário #01 – Limpeza e Arrumação de Áreas

Imagine-se um cenário em que a visão do braço tem controlo "para/arranca" sobre a plataforma móvel (o rover), e estes estão definidos para percorrer um caminho batendo uma área. O sistema, ao executar a identificação de objetos (classificados como resíduos), deve criar um trajeto no local para que o braço possa capturar o objeto e colocá-lo no local apropriado, seja esse local um "reboque", uma caixa de carga ou palete transportada pelo rover.

5.1.2 Cenário #02 - Empilhamento de objetos

Imagine-se um cenário onde o sistema deve fazer o "pick" de determinada quantidade de objetos idênticos entre si e bem definidos geometricamente, em que estes estão posicionados de forma irregular, sendo que na ação de "place" estes objetos devem ficar empilhados.

ESPECIFICAÇÕES TÉCNICAS			
Projeto:	Programação "LOW CODE" de robôs - PPS10	Data:	13/04/2023
		Revisão:	01
Número de Entregável:	02	Página 20 de 22	

6. Resumo de Objetivos e Capacidade do Sistema

Por forma a classificar o projeto como "bem-sucedido" será obrigatório o sistema garantir:

#	Feature	Responsável
1.	Software para parametrização robótica e automação do sistema (por blocos), com front-end (NI#01), back-end e base de dados necessários.	RRS
2.	Hardware de aquisição de imagens (visão artificial).	SENTINEL
3.	Software de parametrização do fluxo de aquisição de imagens (que deve funcionar com vários equipamentos no mercado câmra e lidar se necessário), com frontend (NI#01), back-end e base de dados necessários.	SENTINEL
4.	Algoritmo de identificação de formas, texturas e "output" para indicação de manipulação (como e onde agarrar) dos objetos irregulares com front-end (NI#01), back-end e base de dados necessários para a aprendizagem por reforço.	FEUP
5.	Algoritmo (em back-end) para incorporação e tratamento da informação sobre onde/como agarrar o item em cada manipulação, em operação continua.	RRS
6.	Sistema robótico (hardware) com capacidade de suportar as cargas e cadências necessárias.	RRS
7.	Gripper (hardware) com capacidade para manipular plástico e papel/cartão	ENARTIN
8.	Algoritmo para aprender a interagir com humanos e antever seus comportamentos de modo que os robôs (rover e braço robótico) operem em segurança, com front-end (NI#01), back-end e base de dados necessários para a aprendizagem por reforço.	UC
9.	Algoritmo (em back-end) para incorporação e tratamento da informação	RRS

ESPECIFICAÇÕES TÉCNICAS			
Projeto: Programação "LOW CODE" de robôs - PPS1		Data:	13/04/2023
		Revisão:	01
Número de Entregável:	02	Página 21 de 22	

	vinda da aprendizagem de comportamentos humanos.	
10.	Rover com navegação autónoma (e respetiva segurança)	ENARTIN
11.	Reporte positivo de "User Interface" e "User Experience".	ENARTIN / ISQCTAG

ESPECIFICAÇÕES TÉCNICAS			
Projeto:	Programação "LOW CODE" de robôs - PPS10	Data:	13/04/2023
		Revisão:	01
Número de Entregável:	02	Página 22 de 22	

7. Notas Importantes

- NI#01. Todo o front-end, idependentemente da entidade que o desenvolve, deve obedecer à mesma norma de design. Norma de design a sere produzida por entidade a designar.
- NI#02. Todas as entidades se devem auto questionar e verificar se têm a informação e inputs necessários para o seu desenvolvimento e identificar todos os processos necessários (INPUT >PROCESS>OUTPUT).
- NI#03. Todas as entidades que desenvolvem software devem indicar ao líder do consorcio o formato de dados de input que necessitam, para melhor definição de interfaces.
- NI#04. Todas as entidades que desenvolvem software devem indicar ao líder do consorcio o formato de dados de output que lhes é mais favorável, para melhor definição de interfaces.