SAKI SS 2021 Homework 1

Author: Andreas Thomas fo91juzi

Repository: https://github.com/chronark/saki

Summary

Classifying a small datase of banking records into 7 categories using scikit-learn's Multinomial Naive-Bayes Classifier.

The dataset contained many unusable features so I focused on only 3 of them: Buchungstext", "Verwendungszweck" and "Beguenstigter/Zahlungspflichtiger". I have done a little bit of cleaning by removing punctuation and transforming everything to lower case. This did not make a significant difference though. The relevant features were concatenated into one and tokenized using a CountVectorizer.

The other features were either very similar across all records or did not carry any meaning for this classification. I tried using the dates as well thinking that recurring transactions for salary or rent could be detected but it did not make a significant difference because the dataset is rather small.

Evaluation

Using the count vectorizer and a multinomial naive bayes algorithm I achieved ~ 88% accuracy. I used a multinomial classifier because multinomial is well suited and the input variables are discrete numbers, see: https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html. I have chosen not to use a tfidf transformer after testing it [Cell 7]. It is generally not suited for this dataset because the type of used features is rather short and most tokens are unique [Cell 5].

As you can see in the confusion matrix [Cell 9] most incorrect classifications are in the categories "leisure" and "standardOfLiving".

Notebook

notebook

May 11, 2021

```
[1]: import pandas as pd
    from sklearn.naive_bayes import MultinomialNB
    from tqdm import tqdm
    from sklearn.metrics import accuracy_score, __
     →classification_report,plot_confusion_matrix
    from sklearn.model_selection import train_test_split
    import matplotlib.pyplot as plt
    from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
    from sklearn.pipeline import Pipeline
    import numpy as np
    from sklearn.model_selection import cross_val_score
[2]: # Represents the proportion of the dataset used for training. Remaining will be \Box
     \rightarrowused for validation.
    TRAIN_SIZE = 0.7
[3]: # Load dataset
    source = pd.read_csv("./SAKI Exercise 1 - Transaction Classification - Data Set.
     source.drop("Unnamed: 0", axis=1, inplace=True)
    source.head()
[3]:
       Auftragskonto Buchungstag Valutadatum
                                                          Buchungstext \
          89990201.0 28.07.2016 28.07.2016
                                                         Lohn / Gehalt
    0
          89990201.0 27.07.2016 27.07.2016
    1
                                                                 Miete
          89990201.0 21.07.2016 21.07.2016
    2
                                                               Bargeld
    3
          89990201.0 20.07.2016 20.07.2016 Lebensmittel / Getraenke
          89990201.0 18.07.2016 18.07.2016
                                                         Spontanausgabe
                                         Verwendungszweck \
    O Gehalt Adorsys GmbH & Co. KG End-To-End-Ref.: ...
    1 Byladem1Sbt De12773501123456789889 Miete Beuth...
    2 21.07/16.34Uhr Nuernberg All Eur 70,00 Geb.Eur...
    3 2831 Edeka Neubauer Nuernb.//Nuernb 2016-07-20...
                                                   Amazon
```

```
0
                   Adorsys GmbH & Co. KG
                                                       7807800780
                                                                       25190001
                            Georg Tasche DE31251900019123456780 VOHADE2HXXX
     1
                                 Bargeld
                                                       9999900780
                                                                       25190001
     3
                           Kartenzahlung
                                                       9736000780
                                                                      25190001
     4
                        neue Playstation
                                                       9988776655
                                                                      25125100
        Betrag Waehrung
                                     label
     0 2000.00
                     EUR
                                    income
     1 -670.00
                     EUR
                                    living
       -70.00
                     EUR
                                   private
        -73.21
                     EUR standardOfLiving
           -363
                     EUR.
                                   leisure
[4]: # Extract relevant features and concatenate them to a single lower case string
     \rightarrowper feature
     # Removing some characters could be helpful.
     # However these are almost always part of a word and are not surrounded by \Box
     \rightarrow whitespace.
     # Hence they are not detected as a single token by the count tokenizer and it
     # increases the accuracy by a very tiny amount, though that might change with a
     # bigger dataset
     def remove_stopwords(feature: str)-> str:
         feature = feature.replace(".", "")
         feature = feature.replace(",", "")
         feature = feature.replace(":", "")
         feature = feature.replace("/", "")
         feature = feature.replace("&", "")
         return feature
     # Concatenate all relevant features into one big string
     features = []
     for i in range(len(source.index)):
         combined = \Pi
         combined.append(source.loc[i, "Buchungstext"])
         combined.append(source.loc[i, "Verwendungszweck"])
         combined.append(source.loc[i, "Beguenstigter/Zahlungspflichtiger"])
         feature = remove_stopwords(" ".join(combined))
         features.append(feature.lower())
     # Extract labels as well
     labels = list(source["label"])
```

Kontonummer

BLZ \

Beguenstigter/Zahlungspflichtiger

```
print("Example of features as a single string:")
print(features[0])
```

Maximum tokens: 19
Average tokens: 11.311004784688995
Average unique tokens 10.311004784688995

We can see that there really aren't that many duplicate tokens in each feature, so I think a tfidf transformer will not help us a lot. I am testing this directly further down.

```
[6]: # Helper function to create a new pipeline with or without tfidf transformer

def create_pipeline(with_tfidf: bool) → Pipeline:
    steps = [ ("vectorizer", CountVectorizer())]
    if (with_tfidf is True):
        steps.append(("tfidf", TfidfTransformer()))
    steps.append(("nb", MultinomialNB()))
    return Pipeline(steps)

# Split our dataset

def split_data(features: [str], labels: [str]):
    return train_test_split(features, labels, train_size=TRAIN_SIZE, 
→ shuffle=True)
```

[7]: # Runs a bunch of predictions with random train/test splits to get an average.

```
def do_random_runs(with_tfidf: bool) -> [float]:
   accuracies = []
   for i in tqdm(range(1000)):
        x_train, x_test, y_train, y_test = split_data(features, labels)
        classifier = create_pipeline(with_tfidf=with_tfidf)
        classifier.fit(x_train, y_train)
        accuracies.append(accuracy_score(y_test,classifier.predict(x_test)))
   return accuracies
# Plot accuracies inside a subplot
def plot(ax, accuracies: [float]) -> None:
   accuracies.sort(reverse=True)
   mean = np.mean(accuracies)
   std = np.array(accuracies).std()
   ax.set_xlabel("mean={:.3f}, std={:.3f}".format(mean,std))
   x = range(0,len(accuracies))
   y = accuracies
   ax.scatter(x=x,y=y,label="Accuracy")
   ax.plot(x,[mean]*len(x),label="Mean", linestyle="--")
# Calculate and plot the difference when using a tfidf transformer or not
def compare_tfidf(features: [str], labels: [str]) -> None:
   fig, (ax1,ax2) = plt.subplots(1,2,sharex=True,sharey=True)
   fig.suptitle("[Figure 1] Comparison with and without tfidf transformer over⊔
→1000 random predictions")
    # 1. with tfidf
   plot(ax1, do_random_runs(True))
   ax1.set title("with tfidf")
   ax1.set_ylabel("Accuracy")
   # 2. without tfidf
   plot(ax2, do_random_runs(False))
   ax2.set_title("without tfidf")
   plt.show()
compare_tfidf(features,labels)
```

```
100% | 1000/1000 [00:04<00:00, 202.39it/s]
100% | 1000/1000 [00:03<00:00, 271.04it/s]
```

[Figure 1] Comparison with and without tfidf transformer over 1000 random predictions with tfidf

Initially I thought using a tfidf transformer would not increase our accuracy a lot because our features have fewer than 20 tokens that do not repeat often. But it actually decreases the accuracy a little bit.

A mean accuracy of ~0.88 and standard deviation of ~0.04 is acceptable however the big range of accuracies depending on the shuffled train/test split is a result of the very small dataset.

```
[8]: # Final model

x_train, x_test, y_train, y_test = split_data(features, labels)
classifier = create_pipeline(with_tfidf=False)
classifier.fit(x_train, y_train)
```

[8]: Pipeline(steps=[('vectorizer', CountVectorizer()), ('nb', MultinomialNB())])

```
[9]: # Let's look at the confusion matrix for our model

plot = plot_confusion_matrix(classifier, x_test, y_test, cmap=plt.cm.Blues)
plot.ax_.set_title("[Figure 2] Confusion matrix")
plt.show()
```


[10]: # And print some statistics
print(classification_report(y_test, classifier.predict(x_test)))

	precision	recall	f1-score	support
finance	1.00	0.93	0.96	14
income	1.00	1.00	1.00	7
leisure	0.77	1.00	0.87	10
living	1.00	0.67	0.80	9
private	1.00	1.00	1.00	5
standardOfLiving	0.89	0.94	0.92	18
accuracy			0.92	63
macro avg	0.94	0.92	0.93	63
weighted avg	0.93	0.92	0.92	63