Assignment 12: Papoulis Chapter 9

Dhatri Reddy

June 14, 2022

Outline

Question

- Solving a
- Solving b

Question

Problem 9.53

- (a) $E\{y^2(t)\}\$ if y(0) = y'(0) = 0 and y''(t) + 7y'(t) + 10y(t) = x(t) $R_x(\tau) = 5\delta(\tau)$
- (b) $E\{y^2(n)\}\$ if y(-1) = y(-2) = 0 and $8y(n) 6y(n-1) + y(n-2) = x(n)\ R_x(m) = 5\delta(m)$

Solving a

If y(0) = y'(0) = 0 then y(t) is the output of a system with input x(t)U(t) and impulse response h(t) such that $h''(t) + 7h'(t) + 10h(t) = \delta(t)$ $h(0^-) = h(0^+) = 0$ $h(t) = \frac{1}{3} \left(e^{-2t} - e^{-5t} \right) U(t)$ and with q(t) = 5U(t) $E\left\{ y^2(t) \right\} = \int_0^t \left(e^{-2t} - e^{-5t} \right)^2 d\tau$

Solving b

If
$$y(-1) = y'(-2) = 0$$
 then $y(n)$ is the output of a system with input $x(n)U(n)$ and delta response $h(n)$ such that $8h(n) - 6h(n-1) + h(n-2) = \delta(n)$ $h(-1) = h(-2) = 0$ $h(n) = \left(\frac{1}{2^{n+2}} - \frac{1}{2^{2n+3}}\right)U(n)$ and with $q(n) = 5U(n)$ $E\left\{y^2(n)\right\} = 5\sum_{k=0}^n \left(\frac{1}{2^{n+2}} - \frac{1}{2^{2n+3}}\right)^2$

