Term Project

Hidden Markov Models and Anomaly Detection Group 15

Tasks

- Principal Component Analysis -> slide 3
- 2. Training and Testing Hidden Markov Models -> slide 7
- 3. Anomaly Detection -> slide 11

Principal Component Analysis

- 1. Reduces dimensionality of data
- 2. Retains patterns and trends
- 3. Simplifies data analysis

Principal Component Analysis

- Each component is responsible for certain percentage of variability
- Pick the component with the highest percentage

Principal Component

Principal Component Analysis

Variables	Correlation
Global active power	-0.46
Global reactive power	-0.19
Voltage	0.33
Global Intensity	-0.55
Sub metering 3	-0.29
Sub metering 2	-0.28
Sub metering 3	-0.38

Loading values of PCA 1

Principal Component Analysis

- 1. Vectors represent the coefficient of the variable on the principal components
- 2. Vectors pointing in the same direction have similar effect on the component

2. Hidden Markov Model

Stochastic processes where the states are unobservable and then next state relies only on the present state

Data Preprocessing

- 1. We picked Fridays from 6:00 PM to 10:00 PM
 - I. Peaks
 - II. Pattern observed
- Divided dataset into 70%

for testing and 30% for training

The log likelihood and BIC reduces as the number of state increases.

Hidden Markov Model

- 1. Picked state 20
 - I. Had the highest log likelihood and the lowest BIC
 - II. No overfitting

States	Test log likelihood	Train log likelihood
16	-34.88603	-23.82227
20	-18.44902	-3.38566

State 20 is picked as it has a low log likelihood for test and train data

3. Anomaly Detection

Identification of unexpected events or observations that deviate from the norm

Anomaly Detection

1. Presence of outliers gives a higher log likelihood at the chosen state

Dataset	BIC	Log likelihood
1	9677.169	-2647.221
2	11434.964	-3526.119
3	10286.065	-3683.649

Hypothesis: Dataset 3 is the most anomalous

Anomaly Detection

- Normal Data points
- Anomalous Data points

Anomaly Detection

- Normal Data points
- Anomalous Data points

- 1. Mahalanobis Distance was used to compute the distance of each point
- If distance > cutoff distance then its marked as an anomaly
- 3. Dataset 3 is the most anomalous
- 4. Aligns with our previous hypothesis

Lessons Learned

- 1. PCA analysis to reduce complexity
- Training and testing HMM models
- 3. Anomaly detection in a multivariate model

Thanks!

Any questions?