Primena projektivne geometrije u računarstvu Ispitna pitanja - 2023/2024.

1. Veza homogenih i afinih koordinata tačke. Primer. Prevođenje afine jednačine prave u homogenu.

Afine, tj. **standardne koordinate** omogućavaju jednostavan račun sa ravanskim objektima (tačke, prave, duži, trouglovi, ...) i one su u obliku (x, y). **Afina ravan** se označava sa R^2 . **Homogene koordinate** omogućavaju da afinoj ravni dodamo beskonačno daleke tačke:

• Homogene koordinate tačke M(x, y) afine ravni su ma koja tačka (x₁:x₂:x₃) tako da važi x = $\frac{x_1}{x_3}$, y = $\frac{x_2}{x_3}$, x₃ \neq 0 (1)

Primer: A(3, 4) \rightarrow A(3:4:1) ili A(6:8:2). Ako su (x₁:x₂:x₃) homogene koordinate neke tačke tada su i (λ x₁: λ x₂: λ x₃), $\lambda \neq$ 0 homogene koordinate iste tačke. Vektor \vec{M} = (x₁, x₂, x₃) \in R^3 naziva se **vektor predstavnik tačke M**(x₁:x₂:x₃).

Prava p: ax + by + c = 0 afine ravni zamenom relacija (1) dobija oblik:

$$arac{x_1}{x_3} + brac{x_2}{x_3} + c = 0 \ / \cdot x_3
eq 0$$

 $ax_1 + bx_2 + cx_3 = 0 - jednareve{c}ina\ prave\ u\ homogenim\ koordinatama$

Ako pomnožimo homogenu jednačinu prave sa $\lambda \neq 0$ dobijamo jednačinu iste prave. Trojku [a:b:c] zovemo **homogenim koordinatama prave p**, a bilo koji od proprocionalnih vektora \vec{p} = (a, b, c) zovemo **vektorom predstavnikom prave p**.

Prava p_{∞} : $x_3 = 0$ naziva se **beskonačno daleka prava**, a svaka tačka $B_{\infty}(x_1:x_2:0)$ koja joj pripada **beskonačno daleka tačka**. Afina ravan dopunjena tačkama beskonačno daleke prave naziva se **dopunjena** ili **proširena afina ravan** i označava sa $\overline{R^2}$. Paralelne prave afine ravni se seku u beskonačno dalekim tačkama dopunjene afine ravni:

2. Definicija trotemenika i "dokaz" tvrđenja da trotemenik razbija projektivnu ravan na 4 oblasti. Crtež.

Trotemenik ABC je figura projektivne ravni koj se sastoji od tri nekolinearne tačke A, B, C (**temena**) i tri prave AB, BC, CA (**ivice**) njima određene. Trotemenik razbija projektivnu ravan kojoj pripada na 4 oblasti:

Dokaz: Posmatramo tačke X i Y koje pripadaju afino različitim oblastima označenim brojem 3. Prava a = XY je razbijena tačkama X i Y na dve projektivne duži od kojih jedna seče trotemenik, a druga koja sadrži A_{∞} ne seče. Zbog duži koja "spaja" X i Y te tačke pripadaju istoj projektivnoj oblasti. \Box

3. Definicija dvorazmere tačaka i dvorazmere pravih. Dokaz Teoreme 4. Definicija centralnog projektovanja. Dokaz da je dvorazmera invarijanta centralnog projektovanja.

Projektivna geometrija ne čuva ni dužinu, ni razmeru, ali čuva dvorazmeru. Neka su A, B, C i D kolinearne tačke pri čemu važi $\vec{C} = \alpha \vec{A} + \beta \vec{B}$ i $\vec{D} = \gamma \vec{A} + \delta \vec{B}$. **Dvorazmera tačaka A, B, C i D** je broj (A, B, C, D) = $\frac{\beta}{\alpha}$: $\frac{\delta}{\gamma}$. Za kolinearne tačke A, B, C, D kažemo da su **harmonijski konjugovane** ako je (A, B, C, D) = -1. Neka su a, b, c, d konkurentne prave pri čemu važi $\vec{c} = \alpha \vec{a} + \beta \vec{b}$ i $\vec{d} = \gamma \vec{a} + \delta \vec{b}$. **Dvorazmera pravih a, b, c i d** je broj (a, b, c, d) = $\frac{\beta}{\alpha}$: $\frac{\delta}{\gamma}$. Dvorazmera ne zavisi od izbora vektora predstavnika.

Osobine dvorazmere:

- $(A, B, C, D) = (B, A, C, D)^{-1}$
- (A, B, C, D) = (C, D, A, B)
- za različite tačke važi (A, B, C, D) ≠ 0, 1
- Ako su tačke A, B i C kolinearne i M \neq 0, 1 tada postoji jedinstvena tačka D \in AB tako da (A, B, C, D) = M.

T4: Ako su a, b, c, d konkurentne prave i A \in a, B \in b, C \in c, D \in d kolinearne tačke tada je (A, B, C, D) = (a, b, c, d). **Dokaz**: Po definiciji važi (a, b, c, d) = $\frac{\beta}{\alpha}$: $\frac{\delta}{\gamma}$ i $\vec{c} = \alpha \vec{a} + \beta \vec{b}$, $\vec{d} = \gamma \vec{a} + \delta \vec{b}$. Ako sa p označimo pravu koja sadrži tačke A, B, C i D onda C = $\vec{c} \times \vec{p} = \alpha(\vec{a} \times \vec{p}) + \beta(\vec{b} \times \vec{p}) \Rightarrow \vec{C} = \alpha \vec{A} + \beta \vec{B}$ i D = $\vec{d} \times \vec{p} = \gamma(\vec{a} \times \vec{p}) + \delta(\vec{b} \times \vec{p}) \Rightarrow \vec{D} = \gamma \vec{A} + \delta \vec{B}$. Odatle je (A, B, C, D) = $\frac{\beta}{\alpha}$: $\frac{\delta}{\gamma}$ = (a, b, c, d). \Box

Centralno projektovanje sa centrom S je preslikavanje prostora R^3 na ravan $\pi \subset R^3$ koje tačku M $\in R^3$ preslikava u tačku M' = SM $\cap \pi$. Centralno projektovanje preslikava pravu p prostora u pravu p₁ u ravni. **Posledica 1**: Dvorazmera je invarijanta centralnog projektovanja.

Dokaz:

A, B, C, D \in p su kolinearne tačke, a A₁, B₁, C₁, D₁ \in p₁ njihove slike pri centralnom projektovanju iz S. Dva puta koristeći **T4** dobijamo (A, B, C, D) = (a, b, c, d) = (A₁, B₁, C₁, D₁). \Box

4. Definicija projektivnog preslikavanja. Dokaz da projektivna preslikavanja čuvaju dvorazmeru. Definicija tačaka u opštem položaju. Formulacija osnovne teoreme projektivne geometrije.

Projektivno preslikavanje f: $RP^2 \to RP^2$ je preslikavanje koje preslikava tačku $M(x_1:x_2:x_3)$ u tačku $M'(x_1':x_2':x_3')$ po formuli $\lambda x' = Px$ (1), odnosno:

$$\lambda egin{pmatrix} x_1^{'} \ x_2^{'} \ x_3^{'} \end{pmatrix} = egin{pmatrix} p_{11} & p_{12} & p_{13} \ p_{21} & p_{22} & p_{23} \ p_{31} & p_{32} & p_{33} \end{pmatrix} egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix}, \ \lambda
eq 0, \ det(P)
eq 0$$

Projektivno preslikavanje čuva kolinearnost, konkurentnost i dvorazmeru pravih i tačaka.

Dokaz:

Neka su tačke A, B, C, D kolinearne, odnosno važi $\vec{C} = \alpha \vec{A} + \beta \vec{B}$ i $\vec{D} = \gamma \vec{A} + \delta \vec{B}$. Primenom preslikavanja f oblika (1) dobijamo $\vec{C}' = \vec{PC} = P(\alpha \vec{A} + \beta \vec{B}) = \alpha P \vec{A} + \beta P \vec{B} = \alpha \vec{A}' + \beta \vec{B}'$. Jasno je da su i A' = f(A), B' = f(B) i C' = f(C) kolinearne. Analogno dobijamo $D' = f(D) = \gamma \vec{A}' + \delta \vec{B}'$. Odatle dobijamo $(A', B', C', D') = \frac{\beta}{\alpha} : \frac{\delta}{\alpha} = (A, B, C, D)$. \Box

Za četiri tačke od kojih nikoje tri nisu kolinearne kažemo da su u opštem položaju.

Osnovna teorema projektivne geometrije: Postoji jedinstveno projektivno preslikavanje projektivne ravni RP^2 koje četiri tačke A, B, C, D u opštem položaju slika redom u tačke A', B', C', D' u opštem položaju.

5. Naivni algoritam za određivanje projektivnog preslikavanja.

Ulaz: homogene koordinate 4 originalne tačke A, B, C, D i 4 njihove slike A', B', C', D' u opštem položaju. **Izlaz**: 3×3 matrica P projektivnog preslikavanja ravni koja slika A, B, C, D u A', B', C', D'. **Algoritam**:

- 1. Odrediti $\alpha, \beta, \gamma \neq 0$ tako da D = α A + β B + γ C. P₁ je matrica sa kolonama α A, β B, γ C.
- 2. Odrediti $\alpha', \beta', \gamma' \neq 0$ tako da D' = α' A' + β' B' + γ' C'. P₂ je matrica sa kolonama α' A', β' B', γ' C'.
- 3. Tražena matrica preslikavanja je P = $P_2P_1^{-1}$. Matrica je određena do na λP , $\lambda \neq 0$.

Prednosti: geometrijski jasan i jednostavan za implementaciju.

Mane: radi samo za 4 tačke, a u praksi je često potrebno izvršiti algoritam za mnogo više tačaka.

6. Dve jednačine koje važe za matricu P projektivnog preslikavanja, a koje se dobijaju iz odgovarajućih tačaka M i M bez izvođenja. Primer. DLT algoritam za određivanje projektivnog preslikavanja.

Lema: Neka su $M(x_1:x_2:x_3)$ i $M'(x_1':x_2':x_3')$, $x_3' \neq 0$ odgovarajuće tačke projektivnog preslikavanja ravni čija je matrica $P = (p_{ij})$. Tada vektor $(p_{11}, p_{12}, p_{13}, p_{21}, p_{22}, p_{23}, p_{31}, p_{32}, p_{33})$ zadovoljava homogeni sistem ranga 2 čija je matrica formata 2×9 :

$$\begin{pmatrix} 0 & 0 & 0 & -x_{3}^{'}x_{1} & -x_{3}^{'}x_{2} & -x_{3}^{'}x_{3} & x_{2}^{'}x_{1} & x_{2}^{'}x_{2} & x_{2}^{'}x_{3} \\ x_{3}^{'}x_{1} & x_{3}^{'}x_{2} & x_{3}^{'}x_{3} & 0 & 0 & 0 & -x_{1}^{'}x_{1} & -x_{1}^{'}x_{2} & -x_{1}^{'}x_{3} \end{pmatrix}$$

Primer: $X(1:2:3) \rightarrow X'(4:5:6)$

$$\begin{pmatrix} 0 & 0 & 0 & -6 \cdot 1 & -6 \cdot 2 & -6 \cdot 3 & 5 \cdot 1 & 5 \cdot 2 & 5 \cdot 3 \\ 6 \cdot 1 & 6 \cdot 2 & 6 \cdot 3 & 0 & 0 & 0 & -4 \cdot 1 & -4 \cdot 2 & -4 \cdot 3 \end{pmatrix} (p_{ij}) = 0$$

$$\begin{pmatrix} 0 & 0 & 0 & -6 & -12 & -18 & 5 & 10 & 15 \\ 6 & 12 & 18 & 0 & 0 & 0 & -4 & -8 & -12 \end{pmatrix} (p_{ij}) = 0$$

$$0 \cdot p_{11} + 0 \cdot p_{12} + 0 \cdot p_{13} - 6 \cdot p_{21} - 12 \cdot p_{22} - 18 \cdot p_{23} + 5 \cdot p_{31} + 10 \cdot p_{32} + 15 \cdot p_{33} = 0$$

$$6 \cdot p_{11} + 12 \cdot p_{12} + 18 \cdot p_{13} + 0 \cdot p_{21} + 0 \cdot p_{22} + 0 \cdot p_{23} - 4 \cdot p_{31} - 8 \cdot p_{32} - 12 \cdot p_{33} = 0$$

$\ensuremath{\mathsf{SVD}}$ (Singular Value Decomposition) dekompozicija matrice:

Ako je A matrica formata $m \times n$ postoji jednoznačna dekompozicija A = UDV T gde je U ortogonalna matrica formata $n \times n$, V ortogonalna matrica formata $m \times m$, a D kvazidiagonalna matrica formata $n \times m$ sa opadajućim pozitivnim vrednostima na dijagonali.

DLT (Direct Linear Transformation) algoritam:

Ulaz: homogene koordinate n (n \geq 4) originalnih tačaka M_i i n njihovih slika M_i' . **Izlaz**: 3×3 matrica P projektivnog preslikavanja tako da $\lambda M_i'$ = P M_i . **Algoritam**:

- 1. Za svaku korespodenciju $M_i \leftrightarrow M_i'$ odrediti 2×9 matricu kao u lemi.
- 2. Spojiti te matrice u jednu matricu A formata $2n \times 9$.
- 3. Odrediti SVD dekompoziciju matrice A, A = UDV^{T} .

4. Matrica P je poslednja kolona matrice V.

Prednosti: algoritam minimalizuje grešku i određuje preslikavanje sa više od 4 korespodencije.

Mane: algoritam je algebarske, a ne geometrijske prirode, pa i pored minimalizacije i dalje postoji neka greška. Takođe, nije invarijantan u odnosu na promenu koordinata.

7. Algoritam normalizacije koordinata tačaka. Zašto se radi normalizacija tačaka pri određivanju projektivnog preslikavanja?

Ulaz: homogene koordinate n tačaka M_i.

Izlaz: normalizovane koordinate n tačaka \overline{M}_i (ili matrica normalizacije T).

Algoritam:

- 1. Izračunati afino težiste C sistema n tačaka M_i.
- 2. Translirati tačke translacijom koja težište C translira u koordinatni početak. Matrica translacije je G.
- 3. Skalirati tačke tako da prosečna udaljenost tačke od početka bude $\sqrt{2}$ ako je prosečna udaljenost bila p onda je koeficijent homotetije $\frac{\sqrt{2}}{p}$. Matrica homotetije je S.
- 4. Matrica normalizacija je T = SG.
- 5. Tačke \overline{M}_i = TM_i su normalizovane tačke.

Normalizacija tačaka pri određivanju projektivnog preslikavanja se vrši u cilju smanjenja numeričke greške, ali i da matrica preslikavanja P ne zavisi od izbora koordinata. **DLT algoritam sa normalizacijom** podrazumeva da se DLT algoritam primenjuje na normalizovanim originalima i normalizovanim slikama. Ako je \overline{P} matrica dobijena primenom DLT algoritma na normalizovanim tačkama, a matrice T i T redom matrice normalizacije originala i slika, onda je tražena matrica projektivnog preslikavanja $P = T^{'-1}\overline{P}T$.

8. Objasniti RANSAC algoritam na primeru linearne aproksimacije skupa tačaka ravni.

Prilikom određivanja projektivnih preslikavanja do velikih grešaka dovode tačke koje su sasvim pogrešno identifikovane. Pogrešne tačke nazivamo **uljezima** (**outliers**), dok su ostale **tačne tačke** (**inliers**). Prikaz **RANSAC** (**RAN**dom **SA**mple **C**onsensus) algoritma na primeru određivanja prave koja najbolje aproksimira skup tačaka ravni:

- 1. Dve tačke se slučajno biraju i one određuju pravu. Nosač te prave su tačke koje su na ϵ -udaljenosti od prave. Ako se u nosaču nalazi dovoljan broj tačaka, ide se na poslednji korak.
- 2. Određen broj puta se biraju po dve tačke i određuje nosač, najviše n puta.
- 3. Konsenzusom se bira nosač sa najviše tačaka.
- 4. Tačke odabranog nosača se smatraju tačnim, a ostale uljezima. Algoritam za određivanje prave se onda primenjuje samo nad tačnim tačkama.

9. Definisati rotaciju oko orijentisane prave u prostoru. Crtež. Napisati matrice rotacije oko koordinatnih osa.

Neka je M proizvoljna tačka, α_M ravan koja sadrži M i normalna je na pravu p, a O_M = p $\cap \alpha_M$. Tačka M' = $R_p(\phi)$ (M) se dobija **rotacijom** tačke M ravni α_M oko tačke O_M za ugao ϕ . Orijentisanu pravu p zovemo **osa rotacije**. Smer rotacije određuje činjenica da vektori $\overrightarrow{O_MM}$, $\overrightarrow{O_MM}'$ i \overrightarrow{p} čine bazu pozitivne orijentacije.

Neka je Oxyz fiksiran svetski koordinatni sistem. Rotacije oko koordinatnih osa zovemo svetske rotacije:

$$R_x(\phi) = egin{pmatrix} 1 & 0 & 0 \ 0 & \cos\phi & -\sin\phi \ 0 & \sin\phi & \cos\phi \end{pmatrix}, \ R_y(\phi) = egin{pmatrix} \cos\phi & 0 & \sin\phi \ 0 & 1 & 0 \ -\sin\phi & 0 & \cos\phi \end{pmatrix}, \ R_z(\phi) = egin{pmatrix} \cos\phi & -\sin\phi & 0 \ \sin\phi & \cos\phi & 0 \ 0 & 0 & 1 \end{pmatrix}$$

10. Napisati detaljnu Rodrigezovu formulu i objasniti šta ona radi.

Formula Rodrigeza: matrica rotacije $R_p(\phi)$ za ugao ϕ oko prave čiji je **jedinični vektor** p, a koja sadrži koordinatni početak je:

$$[R_p(\phi)] = (1-\cos\phi)pp^T + \cos\phi E + \sin\phi p_x$$

- p_x je matrica vektorskog množenja vektorom $\vec{p}(p_1,p_2,p_3)$: $\begin{pmatrix} 0 & -p_3 & p_2 \\ p_3 & 0 & -p_1 \\ -p_2 & p_1 & 0 \end{pmatrix}$.
- pp^T je matrica normalnog projektovanja na jedinični vektor \vec{p} : $\mathsf{pp}^T = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \begin{pmatrix} p_1 & p_2 & p_3 \end{pmatrix} = \begin{pmatrix} p_1^2 & p_1p_2 & p_1p_3 \\ p_2p_1 & p_2^2 & p_2p_3 \\ p_3p_1 & p_3p_2 & p_3^2 \end{pmatrix}$.
- E je jedinična matrica.

11. Algoritam A2AngleAxis

Ulaz: Ortogonalna matrica $A \neq E$, $\det A = 1$.

Izlaz: Jedinični vektor \overrightarrow{p} i ugao $\phi \in [0, \pi]$ takvi da A = $[R_p(\phi)]$.

Algoritam:

- 1. Odrediti jedinični sopstveni vektor \overrightarrow{p} za λ = 1.
- 2. Odrediti proizvoljan jedinični vektor $\overrightarrow{u} \perp \overrightarrow{p}$.
- 3. Odrediti jedinični vektor $\overrightarrow{u'} = \overrightarrow{Au}$.
- 4. Odrediti ugao kao $\phi = \langle u, u' \rangle = \arccos(u, u')$.

5. Ako je mešoviti proizvod $[\overrightarrow{u}, \overrightarrow{u'}, \overrightarrow{p}] < 0$, uzeti $\overrightarrow{p} = -\overrightarrow{p}$ da bi rotacija bila u pozitivnom smeru.

12. Objasniti Ojlerove rotacije na primeru aviona. Predstavljanje sopstvenih rotacija matricama.

Svetske rotacije se izvode u odnosu na ose fiksiranog (svetskog) koordinatnog sistema. **Sopstvene rotacije** se izvode u odnosu na pokretni koordinatni sistem vezan za neko telo. Sopstveni koordinatni sistem je vezan za avion: O je centar aviona, x-osa ide duž trupa, y-osa duž krila aviona, a

z-osa je upravna na avion. Sistem Oxyz je pozitivno orijentisan. Izvode se tri sopstvene rotacija za **Ojlerove uglove** pri čemu sopstveni koordinatni sistem stalno menja položaj:

- 1. $R_z(\psi)$ je rotacija oko z-ose aviona za ugao $\psi \in [0, 2\pi)$ koji se naziva **ugao skretanja** i njime avion postiže željeni pravac na pisti. Sopstveni sistem aviona sada postaje $Ox_1y_1z_1$, pri čemu je $z_1 = z$.
- 2. $R_{y1}(\theta)$ je rotacija oko y₁-ose aviona (krila) za ugao $\theta \in [-\pi, \pi]$ koji se naziva **ugao propinjanja** i njime avion zauzima nagib u odnosu na horizontalu. Sopstveni sistem aviona sada postaje $Ox_2y_2z_2$, pri čemu je y₂ = y₁.
- 3. $R_{x2}(\phi)$ je rotacija oko x_2 -ose aviona (trupa) za ugao $\phi \in [0, 2\pi)$ koji se naziva **ugao valjanja**. Sopstveni sistem aviona sada postaje $Ox_3y_3z_3$, pri čemu je $x_3 = x_2$.

Specijalno, ako je redosled izvođenja rotacija z-y-x Ojlerovi uglovi se nazivaju Tejt-Brajanovi uglovi.

Ako je kretanje f predstavljeno sopstvenim rotacijama f = $R_{x2}(\phi) \circ R_{y1}(\theta) \circ R_z(\psi)$ tada je njegova matrica u polaznom reperu e = Oxyz jednaka proizvodu matrica tih rotacija u suprotnom redosledu: A = [f] $_e$ = $R_z(\psi) \circ R_y(\theta) \circ R_x(\phi)$.

13. Kako se množe dva kvaterniona? Primer. Kako odrediti inverzan kvaternion? Primer.

Kvaternioni su brojevi oblika $H = \{xi + yj + zk + w \mid x, y, z, w \in R\}$, gde su i, j, k imaginarne jedinice. Množenje kvaterniona je asocijativno, ali nije komutativno i definisano je radnjama:

•
$$i^2 = j^2 = k^2 = -1$$

•
$$i \cdot j = k = -j \cdot i$$
.

Primer: $q_1 = 3i - 5k + 1$, $q_2 = i + j + 7$ $(3i - 5k + 1) \cdot (i + j + 7) = 3i^2 + 3ij + 21i - 5ki - 5kj - 35k + i + j + 7 = -3 + 3k + 21i - 5j + 5i - 35k + i + j + 7 = 27i - 4j - 32k + 4$

Inverzan kvaternion kvaterniona $q = [\vec{v}, w]$ je $q^{-1} = \frac{\overline{q}}{||q||^2}$, odnosno količnik konjugovanog kvaterniona i kvadrata norme. **Konjugovani kvaternion** kvaterniona q je $\overline{q} = [-\vec{v}, w] = -xi - yj - zk + w$. Važi $(qq_1)^{-1} = q_1^{-1}q^{-1}$.

14. Šta je matrica kalibracije kamere K i šta predstavljaju njeni elementi?

Matrica kalibracije ili **unutrašnja matrica kamere** K je gornje trougaona matrica formata 3×3 sa pozitivnim vrednostima na dijagonali koja daje vezu piksel koordinata i koordinata u kamerinom koordinatnom sistemu $M' = [K|0]M_k$. Ona je oblika:

$$K=egin{pmatrix} d_x & s & x_0 \ 0 & d_y & y_0 \ 0 & 0 & 1 \end{pmatrix}$$

- x₀ i y₀ su koordinate vektora koji predstavlja translaciju glavne tačke P u odnosu na koordinatni početak P₀ ravni projekcije π.
- d_x i d_y predstavljaju komponente žižne udaljenosti ako su pikseli pravougaoni. Ako su pikseli kvadratni onda je $d_x = d_y = d$.
- s je parametar smicanja koji je numerički blizak nuli ako se radi o snimku kamerom. Ako se radi o snimku snimka onda je on različit od nule.

15. Šta je spoljašnja matrica kamere \mathbf{M}_c i šta predstavljaju njeni elementi?

Spoljašnja matrica kamere M_c je matrica formata 3×4 koja daje vezu između koordinata u kamerinom koordinatnom sistemu i svetskih koordinata: $M = AM_k + C$, tj. $M_k = A^TM - A^TC$. Odatle je matrica M_c jednaka:

$$M_c = egin{bmatrix} A^T & -A^TC \ 0 & 1 \end{bmatrix}$$

- A je ortogonalna matrica formata 3 x 3 čije su vrste koordinate kamerinih baznih vektora u svetskom koordinatnom sistemu.
- C je vektor položaja kamere u svetskom koordinatnom sistemu.

16. Šta je matrica kamere T, koje su joj dimenzije i kako se ona može dekomponovati? Koliko korespodencija je potrebno za njeno određivanje? Za date odgovarajuće tačke napisati jednačine.

Matrica kamere T je matrica formata 3×4 koja daje vezu piksel koordinata i svetskih koordinata, tj. M' = TM. Matrica kamere je:

$$T=[K|0]M_c$$

Matrica kamere T se može dekomponovati na proizvod **ortogonalne matrice Q** i **gornje trougaone matrice R** tako što se na matricu T_0 primeni Gram-Šmitov postupak ortogonalizacije. Matrica T_0 predstavlja 3×3 matricu koja se sastoji od prve 3 kolone matrice T. Znamo da je $T_0 = KA^T$ i da je K gornje trougaona matrica, a A ortogonalna, što je obrnuto od dekompozicije. Odatle je $KA^T = (QR)^{-1} = R^{-1}Q^{-1}$. Jasno je da je $K = R^{-1}$, a $A^T = Q^{-1} = Q^T$ jer je Q ortogonalna, pa je A = Q.

Neka su $M'(x_1', x_2', x_3')$, $x_3' \neq 0$ i $M(X_1:X_2:X_3:X_4) = X^T$ odgovarajuće tačke centralnog projektovanja iz prostora na ravan matricom T. Tada vrste matrice T t_1 , t_2 , t_3 zadovoljavaju homogeni sistem jednačina:

$$egin{pmatrix} egin{pmatrix} 0 \ 0 \end{pmatrix} = egin{pmatrix} 0 & -x_3^{'}X^T & x_2^{'}X^T \ x_3^{'}X^T & 0 & -x_1^{'}X^T \end{pmatrix} egin{pmatrix} t_1^T \ t_2^T \ t_3^T \end{pmatrix}$$

Svaka korespodencija daje 2 jednačine, a matrica T je formata 3×4 i suštinski ima 11 nepoznatih, pa je jasno da je za njeno određivanje potrebno 6 ili više tačaka.

17. Objasniti jednostavnu stereo kameru. Izvesti formulu za Z i paralaksu p i objasniti šta je paralaksa.

Jednostavna stereo kamera podrazumeva dve kamere koje su na fiksiranom rastojanju i isto orijentisane. Pretpostavljamo da su unutrašnji parametri kamera isti i da su udaljene za e > 0 duž x-ose. U slučaju jedne kamere koordinate projekcije M'(x', y') i originala M(X, Y, Z) vezane su relacijama:

•
$$x' = \frac{d_x}{Z}X + x_0$$

• $y' = \frac{d_y}{Z}Y + y_0$

Na osnovu M' moguće je rekonstruisati samo zrak CM' na kom se M nalazi, ali ne i samu tačku M. Pošto imamo dve kamere $C_1(-\frac{e}{2}, 0, 0)$ i $C_2(\frac{e}{2}, 0, 0)$ tačku M dobijamo kao presek zrakova C_1M_1' i C_2M_2' , gde su $M_1'(x_l, y_l)$ i $M_2'(x_r, y_r)$ projekcije **leve** i **desne kamere**. Dobijamo:

•
$$x_l = \frac{d_x}{Z}(X + \frac{e}{2}) + x_0, y_l = \frac{d_y}{Z}Y + y_0$$

• $x_r = \frac{d_x}{Z}(X - \frac{e}{2}) + x_0, y_r = \frac{d_y}{Z}Y + y_0$

Vidimo da su piksel y-koordinate na levoj i desnoj slici jednake. Oduzimanjem jednačina po x-koordinati dobijamo $x_l - x_r = \frac{ed_x}{Z} = p$. Broj p naziva se **paralaksa** i predstavlja pomeraj iste tačke na desnoj slici u odnosu na levu. Paralaksa je veća ukoliko je tačka bliže kamerama, tj. ako je Z koordinata manja. Obrnuto, ako Z koordinata teži beskonačnosti paralaksa teži nuli. Z-koordinata tačke M(X, Y, Z) prostora u koordinatnom sistemu između kamera je onda $Z = \frac{ed_x}{p} = \frac{ed_x}{x_l - x_s}$.

18. Šta je triangulacija? Koje se jednačine dobijaju za dato \mathbf{M}_1' , \mathbf{M}_2' , \mathbf{T}_1 , \mathbf{T}_2 . Za dati primer napisati jednačine.

Triangulacija je proces određivanja tačke prostora iz njenih ravanskih projekcija. Pretpostavimo da su nam poznate matrice kamera T_1 i T_2 kao i projekcije $M_1^{'}$ i $M_2^{'}$ tačke prostora M. Piksel koordinate su konačne pa možemo pisati $M_1^{'}(x_1:y_1:1)$ i $M_2^{'}(x_2:y_2:1)$.

Ako sa T_{11} , T_{12} , T_{13} označimo vrste marice T_1 tada T_1M možemo zapisati kao kolonu $(T_{11}M, T_{12}M, T_{13}M)^T$. Homogena relacija $M_1' = T_1M$ je ekvivalentna sa $M_1' \times T_1M = \vec{0}$ pa dobijamo 3 jednačine:

$$(y_1T_{13}M-T_{12}M,-x_1T_{13}M+T_{11}M,x_1T_{12}M-y_1T_{11}M)=(0,0,0)$$

Prve dve jednačine su nezavisne pa uzimamo njih. Analogno, iz relacije $M_2' = T_2M$ dobijamo još dve jednačine. Homogene koordinate tačke M onda predstavljaju rešenje sistema:

$$egin{pmatrix} y_1T_{13} - T_{12} \ -x_1T_{13} + T_{11} \ y_2T_{23} - T_{22} \ -x_2T_{23} + T_{21} \end{pmatrix}$$

19. Šta je epipolarna ravan, a šta epipolovi? Kako se računa fundamentalna matrica, iz koje jednačine i koliko tačaka? Koje su joj osobine?

Tačke M_1' , M_2' , M, C_1 i C_2 pripadaju ravni koja se naziva **epipolarna ravan tačke M**. **Epipolovi** e_1 i e_2 su tačke u kojima **linija kamera** C_1C_2 seče ravni projektovanja kamera. Epipol e_2 je slika prve kamere drugom, tj. kako druga kamera vidi prvu i obrnuto. **Fundamentalna matrica** F kamera C_1 i C_2 formata 3×3 računa se iz jednačine:

$$M_{2}^{'T}FM_{1}^{'} = 0$$

Gornjom relacijom matrica F je određena do na proporcionalnost i ona važi za svake dve odgovarajuće projekcije M_1' i M_2' neke tačke prostora M. Fundamentalna matrica ima 7 stepeni slobode pa je za njeno određivanje potrebno 7 ili više korespodencija.

Osobine fundamentalne matrice:

- F je ranga 2 i detF = 0.
- Ako je F fundamentalna za kamere C_1 i C_2 , onda je F^T fundamentalna matrica za kamere C_2 i C_1 .
- Epipol e_1 je rešenje jednačine $Fe_1 = 0$. Epipol e_2 je rešenje jednačine $F^Te_2 = 0$.

20. Šta je osnovna matrica i kako se računa? Objasniti dekompoziciju osnovne matrice.

Znamo da je veza između piksel koordinata i kamerinih koordinata data matricom kalibracije, odnosno $M_1' = K_1 M_{K1}$ i $M_2' = K_2 M_{K2}$. Zamenom u relaciju fundamentalne matrice dobijamo relaciju $M_{K2}^T (K_2^T F K_1) M_{K1} = 0$. Matrica $E = K_2^T F K_1$ naziva se **osnovna matrica** kamera C_1 i C_2 .

Matrica E je osnovna matrica za neke kamere akko ima jednu sopstvenu vrednost jednaku 0, a preostale dve su jednake. Osnovna matrica E se može dekomponovati na proizvod koso-simetrične matrice vektorskog proizvoda E_C i matrice kretanja A. Neka je E = U diag(1, 1, 0) V^T SVD dekompozicija osnovne matrice. Tada postoje dve dekompozicije:

$$E_C = UZU^T, \; A_1 = UWV^T \; ili \; A_2 = UW^TV^T$$

•
$$Z = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 je rotacija oko z-ose.

• W =
$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 je matrica vektorskog množenja sa e_3 .

Matrica E je određena do na množenje sa skalarom, a samim tim i matrice E_c i vektor C. Zbog toga možemo uzeti proizvoljno rastojanje između kamera. Ako uzmemo da se centar druge kamere nalazi u koordinatnom početku svetskog koordinatnog sistema $C_2 = O$, onda postoje četiri položaja prve kamere $C_1 = C$: (C, A_1) , (C, A_2) , $(-C, A_1)$ i $(-C, A_2)$. Ove mogućnosti dopuštaju da tačka bude ispred ili iza kamere, ali geometrijski tačne su samo dve $(Z > 0, Z_c > 0$ ili $Z < 0, Z_c < 0$). Primenom na dve konkretne projekcije jedne iste tačke dolazimo do tačne kombinacije od 4 moguće.

21. Koraci kalibrisane 3D rekonstrukcije.

Kalibrisana 3D rekonstrukcija:

- 1. Odrediti fundamentalnu matricu F iz bar 8 korespodencija $\textbf{M}_{1}^{'} \leftrightarrow \textbf{M}_{1}^{'}$ koristeći SVD dekompoziciju.
- 2. Odrediti osnovnu matricu $E = K_2^T F K_1$.
- 3. Odrediti dekompoziciju matrice $E = E_C A$, gde je E_C koso-simetrična, a A matrica kretanja.
- 4. Odrediti C tako da je E_C matrica vektorskog množenja sa C.
- 5. Odrediti matrice kamera u sistemu druge kamere:
 - $C_1 = [K_1A^T \mid -K_1A^TC]$
 - C₂ = [K₂ | 0]
- 6. Triangulisati tačke scene.