Cognome	Nome
Matricola	Fila 1

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di INFORMATICA TEORICA (6 CFU), 21/05/2025

Utilizzare i riquadri bianchi per le risposte. Solo se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

Nota: nelle domande da Q1 a Q4 una risposta giusta da 1 punto, una risposta sbagliata sottrae 0.25 punti. Si puó scegliere di non rispondere, nel qual caso non vengono dati né sottratti punti.

Q1 (5 punti). Nel seguito, sia code(-) una funzione iniettiva calcolabile che codifichi macchine di Turing come stringhe in $\{0,1\}^*$. Per ciascuno dei seguenti linguaggi, indica se é (1) decidibile, (2) indecidibile ma riconoscibile, (3) non riconoscibile.

	Linguaggio	Decidicible	Indecidibile ma riconoscibile	Non riconoscibile
(a)	$\{y \in \{0,1\}^* \mid y = \text{code}(M) \text{ per qualche TM } M$ e M si ferma sulla stringa 000 $\}$			
(b)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M$ e M va sempre a destra durante la computazione $\}$			
(c)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M$ e M non si ferma su $\operatorname{code}(M)\}$			
(d)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M \text{ e} M \text{ si ferma su almeno una stringa di lunghezza pari} \}$			
(e)	$\{\langle y,x\rangle\in\{0,1\}^\star\times\{0,1\}^\star\mid y=\operatorname{code}(M)\text{ e }x=\operatorname{code}(M')$ per qualche TM $M,M',\text{ e }M$ si ferma sulle stesse stringe di $M'\}$			

Q2 (5 punti). Indica (con un Si o No) a quali dei linguaggi di Q2 (indicati con (a), (b), (c) e (d)) é applicabile il teorema di Rice.

	Rice?								
(a)		(b)		(c)		(d)		(e)	

Q3 (5 punti). Per ciascuno dei seguenti linguaggi, indica se l'algoritmo noto di complessità minore é nella classe P o NP. Si assume che $\langle - \rangle$ sia una codifica di un oggetto del problema (grafo, strategia, formula, etc.) come stringa del linguaggio. Come in classe, assumiamo che calcolare $\langle - \rangle$ impieghi tempo al piú polinomiale.

	Linguaggio	Р	NP
(a)	Considera il seguente problema riferito a grafi diretti G : $\{\langle G,s,t\rangle \mid \text{ esiste un percorso da } s \text{ a } t \text{ in } G\}$		
(b)	Dato un grafo indiretto G , ricorda che un k -clique in G é un sottografo G' di G con k nodi, tale che ogni coppia di nodi di G' é collegata da un arco. Considera il linguaggio $\{\langle G,k\rangle \mid G \text{ ha un } k\text{-clique}\}$		
(c)	Dato un grafo indiretto G , ricorda che un k -clique in G é un sottografo G' di G con k nodi, tale che ogni coppia di nodi di G' é collegata da un arco. Considera il linguaggio $\{\langle G \rangle \mid G \text{ ha un 3-clique}\}$		
(d)	Considera il seguente problema riferito a grafi indiretti G : $\{\langle G \rangle \mid \text{ esiste un percorso in } G \text{ che visita tutti i nodi esattamente una volta}\}$		
(e)	Considera il seguente problema riferito a grafi diretti G : $\{\langle G,s,t\rangle \mid \text{ non esiste alcun percorso da } s \text{ a } t \text{ in } G\}$		

Cognome	Nome
Matricola	Fila 1

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di INFORMATICA TEORICA (6 CFU), 21/05/2025

Utilizzare i riquadri bianchi per le risposte. Solo se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

Q4 (11 punti). Indica (senza dimostrazione) quali di queste affermazioni sono vere, quali sono false, e quali sono problemi aperti.

		V	F	Aperto
(a)	Il linguaggio $FL = \{y \in \{0,1\}^* \mid y = code(M) \text{ per qualche TM } M$ e M accetta tutte le stringhe} é riconoscibile.			
(b)	Se L é in NP , allora anche il suo complemento é in NP .			
(c)	Sia L in P . Se $SAT \leq_p L$, allora $P = NP$.			
(d)	La classe dei linguaggi in P é chiusa sotto l'operazione di unione.			
(e)	3SAT é in P .			
(f)	PSPACE = NPSPACE.			
(g)	Esistono linguaggi L_1 e L_2 tali che $L_1 \leq L_2$ ma $L_1^- \not\leq L_2^-$, dove L^- indica il complemento di L .			
(h)	Esiste un linguaggio decidibile non in $PSPACE$.			
(i)	Esiste un linguaggio $EXPTIME$ -completo in P .			
(j)	$NP \subseteq PSPACE.$			
(k)	Se $P=NP$, allora il linguaggio della fermata $HALT$ é in P , dove: $HALT=\{\langle y,x\rangle\in\{0,1\}^\star\mid y=\operatorname{code}(M)\text{ per qualche TM }M\text{ e }M\text{ si ferma su }x\}$			

Cognom	e	Nome				
Matricol	la	Fila 1				
$Utilizzare\ i$	Università degli Studi di Bologna, C Esame di INFORMATICA TEOR riquadri bianchi per le risposte. Solo se strettam n ulteriore testo, indicando in alto nome, cognome	RICA (6 CFU), 21/05/2025 nente necessario, si può allegare un foglio protocollo				
Q5 (5 punti). Consid	dera i seguenti linguaggi L_1 e L_2 .					
	$= \{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualch} $ = $\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualch} $	e TM M , e M si ferma sulla string vuota ϵ } e TM M , e M si ferma su $code(M)$ }				
Dimos	stra che esiste una mapping reduction da	L_1 a L_2 (notazione $L_1 \leq L_2$).				