MAST20004 Assignment 4, S1 2023. Due 4pm, Friday May 19

Question 1

A box contains an unknown number of white and black balls. We wish to estimate the proportion p of white balls in the box. To do so, we draw n successive balls with replacement. Let Z_n be the proportion of white balls obtained after n drawings.

(a) Use Chebyshev's Inequality to show that, for all $\varepsilon > 0$,

$$\mathbb{P}(|Z_n - p| \ge \varepsilon) \le \frac{1}{4n\varepsilon^2}.$$

(b) Using the result in part (a), find the smallest value of n such that, with probability greater than 0.95, the proportion Z_n in the sample will estimate p to within an accuracy of 0.1.

Question 2

Let N be a geometric random variable (taking values in 1, 2...) with parameter p and let $(X_i)_{i\in\mathbb{N}}$ be independent exponential random variables with parameter λ that are independent of N. Let $T = \sum_{i=1}^{N} X_i$, and let $M_{\alpha} = \inf\{i : X_i > \alpha\}$ (where $\alpha > 0$ is a constant).

Find $\mathbb{E}[e^{t}]$	$\frac{\partial T}{\partial N} = n$, in	dicating for v	vhich values	of θ your a	nswer is vali	id.
~.						
Give a sin	mple expressi	ion for $\mathbb{E}[e^{\theta T} $	<i>N</i>].			

(c)	Find $\mathbb{E}[e^{\theta T}]$, specifying the values of θ for which your answer is valid.
(d)	Based on your answer above, identify the distribution of T .

(e)	Find the distribution of M_{α} , and hence show that for some $\alpha > 0$, M_{α} and N have the same distribution.
(f)	Prove that (for each α) $\sum_{i=1}^{M_{\alpha}} X_i$ does not have the same distribution as T .

	,

Question 3

Let $\beta > 1$, and suppose that X is a random variable taking the value β^k with probability $c2^{-|k|}$ for $k \in \mathbb{Z}$ (where c is a constant). The demi-god Maui has two boats. He puts X in one boat and A in the other. Which boat receives which amount is decided by a fair coin toss that is independent of X. Moana gets to look at the amount of money Y_1 in boat 1. She then has to decide to take the money in boat 1 or boat 2 (without seeing how much money, Y_2 , is in boat 2).

(a)	Find the value of c .
(b)	Explain intuitively why we should believe that $\mathbb{E}[Y_1] = \mathbb{E}[Y_2]$.

(c)	(c) Evaluate $\mathbb{E}[Y_1 X=\beta^k]$ and $\mathbb{E}[Y_2 X=\beta^k]$.	
(d)	(d) Give a simple expression for $\mathbb{E}[Y_1 X]$ and $\mathbb{E}[Y_2 X]$.	

(e)	Evaluate $\mathbb{P}(Y_1 = \beta^k)$.		

(f)	Find the conditional distribution of Y_2 given that $Y_1 = \beta^k$ (i.e. determine the possible
	values of Y_2 and their probabilities, given that the event $Y_1 = \beta^k$ occurs)

Evaluate	Evaluate $\mathbb{E}[Y_2 Y_1=\beta^k]$ (write your answer as β^k times something).						

(i) From the previous part, no matter what Moana sees in boat 1, the expected value of what is in boat 2 is larger. Moana concludes that (when $\beta > 2$)
(a) $\mathbb{E}[Y_2 Y_1] > Y_1$, and
(b) it is advantageous to choose boat 2 without even looking in boat 1, and
$(\mathrm{c}) \ \mathbb{E}[Y_2] > \mathbb{E}[Y_1].$
Which of the above are right, and which are wrong?

Question 4

Let X_1, \ldots, X_d be d independent standard normal random variables. The goal of this problem is to study the sum of the squares of these random variables.

Talaulata +1-	o moment ===	onating for	M = M = M = M = M	of the grown C	$-\nabla^d$ v2	
Jaiculate th	e moment gen	erating funct	$MS_d(t)$ (of the sum S_d	$=\sum_{j=1}^{N} \Lambda_{j}^{-}$.	

(c)	The Gamma distribution $\gamma(r, \alpha)$ with parameters $r > 0$ and $\alpha > 0$ has probability density function $\alpha^r x^{r-1} \exp(-\alpha x)$				
	$f(x) = \frac{\alpha^r x^{r-1} \exp(-\alpha x)}{\Gamma(r)}$				
	if $x \geq 0$ and 0 elsewhere (where $\Gamma(r)$ is the gamma function). If d is a positive integer, $r = d/2$ and $\alpha = 1/2$, the Gamma distribution is called the <i>Chi-squared</i> (χ^2) distribution with d degrees of freedom. Using any relevant results from lectures, write down the moment generating function of a random variable X_d with this distribution.				
(d)	Deduce that the sum $S_d = \sum_{j=1}^d X_j^2$ of d mutually-independent standard normal random variables has a Chi-squared distribution with d degrees of freedom.				