Chapter 8. Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods

- Linear Classifier
- Model Evaluation and Selection
- ☐ Techniques to Improve Classification Accuracy: Ensemble Methods
- Additional Concepts on Classification
- Summary

What Is Bayesian Classification?

Colomatina de stat dissimina

- A statistical classifier
 - Perform probabilistic prediction (i.e., predict class membership probabilities)
- Foundation—Based on Bayes' Theorem
- Performance
 - A simple Bayesian classifier, naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers
- Incremental
 - Each training example can incrementally increase/decrease the probability that a hypothesis is correct—prior knowledge can be combined with observed data
- Theoretical Standard
 - Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Bayes' Theorem: Basics

Total probability Theorem:

- X: a data sample ("evidence")
- H: X belongs to class C

 X Manna Manally matter highlighth

Prediction can be done based on Bayes' Theorem:

Classification is to derive the maximum posteriori

Naïve Bayes Classifier: Making a Naïve Assumption

- Practical difficulty of Naïve Bayes inference: It requires initial knowledge of many probabilities, which may not be available or involving significant computational cost
- A Naïve Special Case
 - Make an additional assumption to simplify the model, but achieve comparable performance.

attributes are conditionally independent (i.e., no dependence relation between attributes)

$$p(X|C_i) = \prod_k p(x_k|C_i) = p(x_1|C_i) \cdot p(x_2|C_i) \cdot \dots \cdot p(x_n|C_i)$$

Only need to count the class distribution w.r.t. features

Naïve Bayes Classifier: Categorical vs. Continuous Valued Features

□ If feature x_k is categorical, $p(x_k = v_k | C_i)$ is the # of tuples in C_i with $x_k = v_k$, divided by $|C_{i,D}|$ (# of tuples of C_i in D)

$$p(X|C_i) = \prod_k p(x_k|C_i) = p(x_1|C_i) \cdot p(x_2|C_i) \cdot \cdots \cdot p(x_n|C_i)$$

 $\hfill \square$ If feature x_k is continuous-valued, $p(x_k=v_k|C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

$$p(x_k = v_k | C_i) = N(x_k | \mu_{C_i}, \sigma_{C_i}) = \frac{1}{\sqrt{2\pi}\sigma_{C_i}} e^{-\frac{(x - \mu_{C_i})^2}{2\sigma^2}}$$

Naïve Bayes Classifier: Training Dataset

Class:

C1:buys_computer = 'yes'

C2:buys_computer = 'no'

Data to be classified:

X = (age <= 30, Income = medium)

Student = yes, Credit rating = Fair)

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no \

Naïve Bayes Classifier: An Example

```
P(C<sub>i</sub>): P(buys_computer = "yes") = 9/14 = 0.643
P(buys_computer = "no") = 5/14 = 0.357
```

 \square Compute $P(X|C_i)$ for each class

$$P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222$$

$$P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6$$

P(student = "yes" | buys_computer = "yes) =
$$6/9 = 0.667$$

P(student = "yes" | buys computer = "no") =
$$1/5 = 0.2$$

	_			
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

X = (age <= 30, income = medium, student = yes, credit_rating = fair)</p>

$$P(X|C_i)$$
: $P(X|buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044$

$$P(X|C_i)*P(C_i): P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028$$

 $P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007$

Therefore, X belongs to class ("buys_computer = yes")

$$\dot{\chi} = 0000 = 42$$
, student = yes?

D(H(X) = 3

P(Hmy = N) ((age = 42 Stu = 30)

Avoiding the Zero-Probability Problem

- □ Naïve Bayesian prediction requires each conditional probability be **non-zero**
 - Otherwise, the predicted probability will be zero

$$p(X|C_i) = \prod_k p(x_k|C_i) = p(x_1|C_i) \cdot p(x_2|C_i) \cdot \dots \cdot p(x_n|C_i)$$

■ Example. Suppose a dataset with 1000 tuples:

```
income = low (0), income = medium (990), and income = high (10)
```

- Use Laplacian correction (or Laplacian estimator)
 - Adding 1 to each case

$$Prob(income = low) = 1/(1000 + 3)$$

Prob(income = medium) =
$$(990 + 1)/(1000 + 3)$$

Prob(income = high) =
$$(10 + 1)/(1000 + 3)$$

The "corrected" probability estimates are close to their "uncorrected" counterparts

Naïve Bayes Classifier: Strength vs. Weakness

- Strength
 - Easy to implement
 - Good results obtained in most of the cases
- Weakness
 - Assumption: attributes conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - E.g., Patients: Profile: age, family history, etc.
 - Symptoms: fever, cough etc.
 - Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayes Classifier
- How to deal with these dependencies?
 - ☐ Use Bayesian Belief Networks (to be covered in the next chapter)