3.4 Nonlinear/Kernel PCA

3.4.1 Motivation

$$\phi: \mathbb{R}^2 \to \mathbb{R}^3$$

$$(x_1, x_2) \mapsto (z_1, z_2, z_3) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

Observation: (1) nonlinear change of features can turn nonlinear egns into linear egns.

Observe tion: (2) in some cases, increasing
the number of features is helpful.
Nonhinean/Kernel PCA: a method to embed
sample près înto a high dimensioned
space before applying PCA such that the structure of the sample becomes
the structure of the sample becomes
incar.
Setting: Civen sample pts x", x" & Rt

Setting: Civen sample pts $x^{(i)}$, $x^{(n)} \in \mathbb{R}^{t}$ consider a nonlinear embedding map ϕ bandown 08 the feature map $\phi: \mathbb{R}^{t} \to \mathbb{R}^{t}$ $f(x) = \mathbb{R}^{t}$ $f(x) = \mathbb{R}^{t}$

 $\chi^{(i)} = (\chi^{(i)}) \times \chi^{(i)} \longrightarrow \beta(\chi^{(i)}) = (\beta(\chi^{(i)}) - \beta(\chi^{(i)}))$ ith sample pt old features image of new features

the ith sample pt

In the higher dim space RD the sample pts become $\phi(x^{(n)})$, $\phi(x^{(n)}) \in \mathbb{R}^{D}$. cond the sample matrix becomes In nonlineers/ kernel PCA, we do: Step \pm : center $\phi(x^{(i)})$, \cdots , $\phi(x^{(i)})$. If $\mu \stackrel{\text{def}}{=} \frac{1}{n} \stackrel{\text{fi}}{=} \phi(x^{(i)}) \neq 0$, replace them by $\phi(x^{(j)}) - \mu$, $\phi(x^{(j)}) - \mu$, This corresponds to replace I by It where H=I-111 is the centering m conix. Step 2: camply PCA to $\beta(x^{(i)})$, $\phi(x^{(i)})$ i.e., find the eigenvectors associated to the largest eigenvalues of $\overline{\Phi}$

3.4.2. Math Rep, Let AER^{mxn}.

Lemma: If v is an eigenvector of A'A

associated to 2>0, then

u def Av

Proof: We have $A^TAV = \lambda V$, then $AA^Tu \stackrel{\text{def at } u}{=} A(A^TAV) = A(\lambda V) = \lambda AV = \lambda u$

which means u is an eigenvector of AAT associated to 2. Moreover,

$$\|u\|^2 = \|Av\|^2 = (Av)^T (Av) = v^T (A^T Av) = v^T (\lambda v)$$

$$=\lambda \|v\|^2$$

If $n \ll D$, the lemma says that the eigenvectors of $\Phi \Phi \in \mathbb{R}^{n \times n}$ can be obtained from the eigenvectors of $\Phi \Phi \in \mathbb{R}^{n \times n}$. We proceed in this way to vachue the computational band.

where $\lambda, \geq -2\lambda_1 \geq 0$ and $u^{(i)}$ is a unit eigenvector of $\Phi^T\Phi$ associated to λ_i .

By the lemma; $\overline{\Phi}u^{(i)}$ is an eigenvector of $\overline{\Phi}$ $\overline{\Phi}$ associated to λ_i and

$$\| \underline{\Phi} u^{(i)} \| = \sqrt{\lambda_i} \| u^{(i)} \| = \sqrt{\lambda_i}.$$

Thus $V^{(i)} \stackrel{\text{def}}{=} \stackrel{\text$