Computational Physics Assignment 2: Numerical Errors

The exponential function e^x can be calculated using the Maclaurin series

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \tag{1}$$

- (a) Starting with n = 0, add terms one at a time to estimate the function e^x at x = 1.
- **(b)** After each term is added, compute the true relative error. Make a plot of the error as a function of the number of terms in series (1).

(Hint: calculate the true error by subtracting the value of the truncated series (1) from the true value e = 2.7182818284590452353602874...)

- (c) How many terms need to be included in the sum (1) in order to reach a precision of 10^{-15} ?
- (d) How the error behaves when you add more terms in the sum (1) after you reach the precision of 10^{-15} ? Explain this behavior.
- (e) Repeat (a)-(d) for x = 2. How do the results change? Explain.
- (f) Repeat (a)-(d) for x = 10. How do the results change? Explain.