

History

- 1985: MacFEM PCFEM
- 1990: syntax analyzer (+ D. Bernardi) freefem
- 1995: freefem+ (+ Hecht)
- 2000: freefem++ (Hecht alone)
- 2000: freefem3D (DelPino, Havé, Pironneau)
- 2003: an integrated environment + web (Lerouzic)
- 2005: a new documentation (+ Ohtsuka)
- 2009: freefem++3D
- A web site <u>www.freefem.org</u>
- do not mix freefem++3xx and ff3D:
 - Fictitious domain & mesh gen by marching cube
 - Parallel iterative solver with multigrid

Leading ideas

- Follow the math => variational formulation
- Algorithms are the user's responsability
- Blocks: An elliptic + upwinding operator
- Use Finite Element Methods
- Automatic mesh generation with adaptivity
- Follow the research front (if it is FEM it can be done with freefem++)

solve A(u,w) = int2d(th)(u*w+ nu*dt*grad(u)*grad(w))

+ on (bdy, u=0);

$$\frac{u^{m+1}(x) - u^m(x - a^m(x)\delta t)}{\delta t} - \nu \Delta u(x) = f^m(x)$$

$$\int_{\Omega} (uw + \delta t \nu \nabla u \nabla w) = \int_{\Omega} (u^m o Xw + \delta t fw) \ \forall w \in H_0^1(\Omega)$$

- int2d(th) (convect(v,[a1,a2],-dt)+ f*w*dt)

Leading ideas

- Follow the math => variational formulation
- Algorithms are the user's responsability
- Blocks: An elliptic + upwinding operator
- Use Finite Element Methods
- Automatic mesh generation with adaptivity
- Follow the research front (if it is FEM it can be done with freefem++)

$$\partial_t u + a \cdot \nabla u - \nu \Delta u = f, \quad u|_{\partial\Omega} = 0$$

$$\frac{u^{m+1}(x) - u^m(x - a^m(x)\delta t)}{\delta t} - \nu \Delta u(x) = f^m(x)$$

$$\int_{\Omega} (uw + \delta t \nu \nabla u \nabla w) = \int_{\Omega} (u^m o Xw + \delta t f w) \ \forall w \in H_0^1(\Omega)$$

freefem++ documentation

Third Edition, Version 3.4-2

http://www.freefem.org/ff++

F. Hecht

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris

A Dirichlet Problem

$$-\Delta u = f$$
, $u|_{\partial\Omega} = 0$

Variational formulation

$$u \in H_0^1(\Omega)$$
? : $\int_{\Omega} \nabla u \nabla w = \int_{\Omega} fw \ \forall w \in H_0^1(\Omega)$

Approximation

$$\int_{\Omega} \nabla u_h \nabla w_h) = \int_{\Omega} f w_h \ \forall w \in V_0$$

Integrated Development Environment

- Edit/compile/debug = freefem++-CS (by A. Leyaric)
- Your favorite editor + terminal window
- Smultron (Mac) Crimpson(Windows) + scripts

ubuntu-64

with openGL graphics by L. Dumont (to know which ubunto you have do:)

Install of freefem++

Mac OSX: Download + expand+ Download freefem++-cs

Windows:

Download the archive+exe Download freefem++-cs

Linux: download+unzip+compile

ubuntu-32: download the

freefem++-v3.5-ubuntu.tar.gz
freefem++-v3.2-usr-lib.tar.gz

FreeFem++v3.4-1-Universal_MacC III | 1001 Nom APPAREILS BUGS MacIntel4 COPYRIGHT iDisk download BOOTCAMP examples++-3d MPLACEMENTS examples++-bug M Desktop examples++-chapt3 pironneau examples++-eigen Applications examples++-load Documents examples++-mpi examples++-other examples++-tutorial in Images Vidéos FreeFem++.app Musique freefem++doc.pdf HISTORY RECHERCHER HISTORY BEFORE 2005 Aujourd'hui INNOVATION (L) Hier INSTALL Semaine passée Install-MacOS.command Toutes les images INSTALL-MacOSX Tous les films mode-mi-edp.zip Tous les documents README TODO Mac + (a) + (b) + (b) + (c) FreeFem++v3.4-1-U 1 sur 22 sélectionné, 47.66 Go disponible

sudo tar zxvf freefem++-v3.5-ubuntu.tar.gz -C /
sudo tar zxvf freefem++-v3.2-usr-lib.tar.gz -C / -k

2D Mesh Generation

```
mesh th = square(5,5); //unit square: bdy 1 is (0,1)x(0)
// bdy 2 is (1)x(0,1)... bdy 4 is (0)x(1,0)
mesh Th = square(5,10,[x-0.5, 10*y]);//(-0.5,0.5)x(0,10)
border a(t=0,2*pi){ x = cos(t); y = sin(t);label=2;}
border b(t=0,2*pi){ x =0.5+0.3*cos(-t); y =0.2*sin(-t);}
mesh th1 = buildmesh( a(20) + b(10));
mesh th2 = movemesh(th1,[x+1,y+2]);
mesh th3 = readmesh("mymesh.msh");
func f = sin(x+1);
```

- **Rule 1**: The domain is on the left of its oriented boundary
- **Rule 2**: Borders are defined piecewise analytically but must make continuous and closed curves.
- Rule 3: borders may not overlap nor cross each other.
- **Rule 4**: Each border is assigned a number but can be refered by names also. Unless overwritten the number is the order of appearance of the key word «border».

Finite Element Spaces

P0, P1, P2, P3, P1nc, P1dc, P2dc, P1b, RT0 P03d, P13d, P23d, RT03d, Edge03d, P1b3d

```
fespace Vh(th,Pldc); Vh v,vh;
varf A(v,vh) = int2d(th)(v*vh/dt/2);
varf B(vh,w) =intalledges(th)(vh*mean(w)*(N.x*u1+N.y*u2))
                           -int2d(th)(w*(u1*dx(vh)+u2*dy(vh)));
[N.x,N.y]=vecteur normal
Mean(w) = (v + + v -)/2
      \partial_t u + a \nabla u = 0
 \frac{1}{2\delta t}\int_{\Omega} (u^{m+1}-u^{m-1})w
      = \int_{\Omega} u^m(a\nabla w) - \sum_{a} \int_{\partial T} \bar{u}^m(a\cdot n)w
```

Finite Element Spaces

P0, P1, P2, P3, P1nc, P1dc, P2dc, P1b, RT0 P03d, P13d, P23d, RT03d, Edge03d, P1b3d

[N.x,N.y]=vecteur normal

Mean(w)=(v+ + v-)/2

$$\partial_t u + a \nabla u = 0$$

$$\frac{1}{2\delta t} \int_{\Omega} (u^{m+1} - u^{m-1}) w$$
$$= \int_{\Omega} u^{m} (a \nabla w) - \sum_{\partial T} \bar{u}^{m} (a \cdot n) w$$

Boundary Conditions

- Dirichlet cond by using on (thebdylabel, u=z)
- Neumann cond are in the variational formulation: intld(th,2)(nu*g*w)

$$u - \nu \Delta u = 0$$
, $\frac{\partial u}{\partial n} = g$ on Γ_2 , $u|_{\Gamma_1} = z$

$$\int_{\Omega} (uw + \nu \nabla u \nabla w) = \int_{\Gamma_2} \nu gw \ \forall w|_{\Gamma_1} = 0$$

Periodic conditions are within the space definition

```
mesh Th=square(10,15);
fespace Vh(Th,P1,periodic= [2,y],[4,y]);
```

Conditions on RT0 elements can be tricky to formulate:

Operators

```
fespace Vh(th,P2);
• Vh u:
 dx(u), dy(u), dxx(u), dyy(u), dxy(u)
 convect(u,[a 1,a 2],dt), mean(u), jump(u)
 You can make your own
• macro div(u,v) (dx(u)+dy(v)) //
sin(u), exp(u), ...
  int2d(u), u[].max, ...
 Rule: these are evaluated pointwise when needed . Example:
  real I = intalledge(th)(\sin(dx(u))^2);
  is computed as the sum of the values of the integrand at the
  quadrature points of the edges in a loop over all triangles.
```

Quadrature formulae and Solvers

Because the quadrature points are the vertices, it is the same as

Syntax: an incomplete extension of C++

```
mesh Th = square(5,5);
fespace Vh(Th,P1); Vh u=0;
Vh < complex > uc = x+1.i*y ; //complex FE function or array
int i = 0;
real a=2/5; // quiz? value of a?
bool b=(a<2);
real[int] aa(10); // a real array of 10 value
cout<<u(.5,0.6)<<endl ; //value of FE function u at (.5,.6)</pre>
if(u<1.0) a=2; else a=1; // wrong
Vh au = (u<1.0) ? 2.0 : 1.0;
ofstream ff("myfile.txt");
for(i=0;i<Th.nv;i++) // also while, break, continue</pre>
for(int j=0;j<3;j++)</pre>
        cout<<Th[i][j].x<<"\t"<<Th[i][j].y<<"\t"<<u[]</pre>
[Vh(i,j)]<<endl;
for (int i=0 ;i<u[].n ;++i) { u[][i]=1 ;</pre>
       plot(u, wait=1, dim=3, fill=1, cmm=" v"+i); u[][i]=0;}
```

Finite Volumes / Finite Elements

• A volume σ is associated to each vertex

$$\partial_t v + \nabla F(v) = 0 \Longrightarrow \int_{\sigma} \partial_t v + \int_{\partial \sigma} F(v) \cdot n = 0$$

triangle/triangle assembly is possible

- -The first intégral is 1/3 of the same on triangles
- -One needs to write a load module for the boundary terms

Max=0.43 (very diffusive

Finite Volumes / Finite Elements

• A volume σ is associated to each vertex

$$\partial_t v + \nabla F(v) = 0 \Longrightarrow \int_{\sigma} \partial_t v + \int_{\partial \sigma} F(v) \cdot n = 0$$

triangle/triangle assembly is possible

- -The first intégral is 1/3 of the same on triangles
- -One needs to write a load module for the boundary terms

Max=0.43 (very diffusive

Plots

```
border a(t=0,pi){ x=cos(t); y=sin(t);}
border b(t=pi,2*pi){ x=cos(t); y=sin(t);}
plot(a(20)+b(40),wait=true);
mesh th=buildmesh(a(20)+b(40));
plot(th, wait=1,ps="th.eps");
fespace Vh(th,P2); Vh u=sin(x*y), v=x*exp(-y);
plot(u,v,wait=1, value=1,fill=1,dim=3);
```


More: cut, link with gnuplot and medit

Interpolation

```
border a(t=-pi/2,pi/2) { x=cos(t); y=sin(t); }
border b(t=pi/2,3*pi/2){ x=cos(t); y=sin(t);}
mesh th1=buildmesh(a(10)+b(10));
mesh th2=square(5,5,[2*x,2*y-1]);
plot(th1,th2, wait=1);
fespace Vh1(th1,P2); Vh1 w1,u1=0;
fespace Vh2(th2,P1); Vh2 w2,u2=0;
macro Grad(u) [dx(u),dy(u)] //
func f=1;
int i; // to avoid refactorization LU
problem L1(u1,w1,solver=LU, init=i)
      = int2d(th1)(Grad(u1)'*Grad(w1))
         -int2d(th1)(f*w1) + on(b,u1=0)+on(a,u1=u2);
problem L2(u2,w2,solver=LU, init=i)
      = int2d(th2)(Grad(u2)'*Grad(w2))
         -int2d(th2)(f*w2)
+ on(4,u2=u1) + on(1,2,3,u2=0);
for(i=0;i<5;i++){
     L2; L1; plot(u1,u2,wait=1);}
Rule: pointwise evaluation when needed
```

Multi-Physics

```
mesh th=square(20,10,[x,y/4+1]);
fespace Vh(th,P2); Vh u,v,uu,vv;
mesh Th=square(20,20);
fespace Uh(Th,P1b); Uh uf,vf,uuf,vvf;
fespace Ph(Th,P1); Ph p,pp;
solve stokes([uf,vf,p],[uuf,vvf,pp]) =
   int2d(Th)(dx(uf)*dx(uuf)+dy(uf)*dy(uuf)
         + dx(vf)*dx(vvf)+ dy(vf)*dy(vvf)
         + dx(p)*uuf + dy(p)*vvf + pp*(dx(uf)+dy(vf)))
         + on(1,2,4,uf=0,vf=0) + on(3,uf=1,vf=0);
real s2=sqrt(2.0);
macro epsilon(u1,u2) [dx(u1),dy(u2),(dy(u1)+dx(u2))/s2] // EOM
macro div(u,v) ( dx(u)+dy(v) ) // EOM
real E=21e5, nu=0.28, mu=E/(2*(1+nu)), lambda=E*nu/((1+nu)*(1-2*nu)), f=-1;
solve lame([u,v],[uu,vv]) = int2d(th)( lambda*div(u,v)*div(uu,vv)
                 +2*mu*( epsilon(u,v)'*epsilon(uu,vv) ) ) - int2d(th)(f*vv)
                 +int1d(th,1)(50*p*vv) + on(2,3,4,u=0,v=0);
th = movemesh(th,[x,y+400*v]);
Th = movemesh(Th, [x, y+400*y*v(x,1.0)]);
 u=u; v=v; uf=uf;vf=vf;
plot(v,[uf,vf],wait=0);
```

Non-linear problem

$$-\nabla \cdot ((1+|u|^p)\nabla u) = f, \quad u|_{\partial\Omega} = 0$$

Try the fixed point scheme:

```
u^{m+1} \in H_0^1(\Omega) : \int_{\Omega} ((1+|u^m|^p)\nabla u^{m+1} \cdot \nabla w) = \int_{\Omega} fw, \quad \forall w \in H_0^1(\Omega)
mesh th = square(10,10);
fespace Vh(th,P1);
func f = \exp(x) * \sin(y);
Vh u,w, uold=x*(x-1)*y*(y-1);
problem A(u,w,solver=LU)
           =int2d(th)((1+uold^3) *(dx(u)*dx(w)+ dy(u)*dy(w)))
- int2d(th)(f*w) + on(1,2,3,4,u=0);
for(int m=0; m<5; m++) {</pre>
      A; w=u-uold;
      plot(w, wait=true, value=true);
      uold=u;
}
```

```
Optimization e.g. -\nabla \cdot ((1+|\nabla u|^2)^p \nabla u) = f, u|_{\partial\Omega} = 0
mesh th = square(10,10);
                                     A better method is to solve, with q=p+1
                                   \min_{u \in H_0^1(\Omega)} \int_{\Omega} (1 + |\nabla u|^2)^q - 2q \int_{\Omega} fu
fespace Vh(th,P1);
fespace Ph(th,P0);
func f=1;
func real F(real v){return (1+v^2)^4; } //v will be |grad(u)|
func real dF(real v){return 8*(1+v^2)^3;}
func real J(real[int] & u) {
     Vh w; w[]=u; // copy array u in the FEM function w
     return int2d(th)(F( dx(w)^2 + dy(w)^2 ) - 8*f*w);
func real[int] dJ(real[int] & u) {
     Vh w;w[]=u;
     Ph rho=dF( dx(w)^2 + dy(w)^2);
     varf au(uh, vh) = int2d(th)(rho*(dx(w)*dx(vh)+dy(w)*dy(vh))
                      -8*f*vh) + on(1,2,3,4,uh=0);
u= au(0,Vh); //above with vh replaced by the ith hat function
return u;
real[int] u(th.nv);
for(int j=0;j<u.n;j++) u[j]=0;</pre>
BFGS(J,dJ,u,eps=1.e-6,nbiter=10,nbiterline=10);
Vh w; w[]=u; plot(w);
```

Perspectives

 FreeFem++ is easy to use for simple problems and hard on complex problem (the no-free lunch theorem)

Now 3D but speed is an issue: parallel version

 Sensitivity, optimisation, eigenvalues, matrix form, optimal control, mesh adaptivity, etc?