

AI Community

6. Понижение размерности

План на сегодня

1. Понижение размерности

- а. Определение
- b. Применение
- с. Подходы

2. PCA

- а. Постановка задачи
- b. Решение

3. t-SNE

- а. Многомерное шкалирование
- b. SNE
- c. t-SNE

Понижение размерности

Понижение размерности

Понижение размерности

представляет собой преобразование данных из пространства большой размерности в пространство низкой размерности, так что представление низкой размерности сохраняет некоторые значимые свойства исходных данных.

Зачем нужно понижать размерность?

- Необработанные данные часто являются разреженными
- Облегчает визуализацию и анализ данных
- Пространство, необходимое для хранения данных, уменьшается по мере уменьшения числа измерений
- Меньшие размеры приводят к уменьшению времени для вычислений/обучения

Почему просто не отобрать признаки?

Некоторые подходы понижения размерности

Principal Component **Analysis** (PCA)

Постановка задачи

- ullet Исходные признаки: $oldsymbol{x_{ij}}$, $oldsymbol{D}$
- ullet Новые признаки: $oldsymbol{z_{ij}}$, $oldsymbol{d}$
- Линейный подход

Матричный вид

Чтобы у этого уравнения существовало единственное решение, необходимо:

$$W^TW = I$$

, тогда

$$X = ZW$$

Задача:
$$\|X-ZW\|^2 o \min_{Z,W}$$

Решение

$$\begin{cases} \sum_{j=1}^{d} \mathbf{w}_{j}^{T} X^{T} X \mathbf{w}_{j} \rightarrow \max_{W} \\ W^{T} W = I \end{cases}$$

$$\begin{cases} \mathbf{w}_1^T X^T X \mathbf{w}_1 \to \max_{\mathbf{w}_1} \\ \mathbf{w}_1^T \mathbf{w}_1 = I \end{cases}$$

$$\begin{cases} \mathbf{w}_1^T X^T X \mathbf{w}_1 \to \max_{\mathbf{w}_1} \\ \mathbf{w}_1^T \mathbf{w}_1 = I \end{cases}$$

$$X^T X \mathbf{w}_1 = \lambda \mathbf{w}_1$$

$$\begin{cases} \mathbf{w}_1^T X^T X \mathbf{w}_1 \to \max_{\mathbf{w}_1} \\ \mathbf{w}_1^T \mathbf{w}_1 = I \end{cases}$$

$$X^T X \mathbf{w}_1 = \lambda \mathbf{w}_1$$

$$\mathbf{w}_1^T X^T X \mathbf{w}_1 = \lambda$$

Решение

Сингулярное разложение

$$X = UDV^T$$

- $m{U}$ собственные векторы $m{X}m{X}^T$
- $oldsymbol{V}$ собственные векторы $oldsymbol{X}^T oldsymbol{X}$
-) Диагональ D ненулевые собственные значения XX^T и X^TX (сингулярные числа)

Сингулярное разложение

- Найти сингулярное разложение матрицы X
- Сформировать матрицу весов **W**из собственных векторов
- Преобразование признаков Z = XW

t-distributed Stochastic Neighbor Embedding (t-SNE)

Многомерное шкалирование

$$\sum_{i < j}^{\ell} (\| ilde{x}_i - ilde{x}_j\| - d_{ij})^2
ightarrow \min_{ ilde{x}_1, ..., ilde{x}_\ell}$$

SNE

Если

$$\rho(x_i, x_j) = \alpha \rho(x_i, x_k)$$

, TO

$$\rho(\tilde{x}_i, \tilde{x}_j) = \alpha \rho(\tilde{x}_i, \tilde{x}_k)$$

t-SNE

Если

$$\rho(x_i, x_j) = \alpha \rho(x_i, x_k)$$

, TO

$$\rho(\tilde{x}_i, \tilde{x}_j) = \alpha \rho(\tilde{x}_i, \tilde{x}_k)$$

t-SNE. Step 1

Gaussian Distribution Around Data Point

t-SNE. Step 2

Normal vs Cauchy (Students-T) Distribution

t-SNE. Step 3

$$\sum_{i=1}^\ell \sum_{j
eq i} p(x_j|x_i) \log rac{p(x_j|x_i)}{q(ilde{x}_j| ilde{x}_i)}
ightarrow \min_{ ilde{x}_1,..., ilde{x}_\ell}$$