MATH 1530 Problem Set 6

Tanish Makadia

(Collaborated with Esmé and Kazuya)

March 2023

Problem 1. Let G be a finite Abelian group and let n be a positive integer that is relatively prime to |G|. Prove that the mapping $a \mapsto a^n$ is an automorphism of G.

 $\textit{Proof.} \ \, \text{Define} \,\, \alpha:G\to G \,\, \text{such that} \,\, \alpha\mapsto \alpha^n. \,\, \text{Let} \,\, g,h\in G.$

1. Injective: Suppose $g^n = h^n$.

$$g^{n} = h^{n} \implies e = g^{n}h^{-n}$$

$$\implies e = (gh^{-1})^{n}$$

$$\implies |gh^{-1}| \mid n$$

Additionally, $gh^{-1} \in G$. By Lagrange's Theorem, we have $|gh^{-1}| \mid |G|$. Since $|gh^{-1}|$ divides both n and |G|, and gcd(n,|G|) = 1, we have that $|gh^{-1}| = 1$. Therefore, $gh^{-1} = e \implies g = eh \implies g = h$.

- 2. **Surjective:** Consider g^n . We have that $g \mapsto g^n$.
- 3. Preserves Group Operation: $\alpha(gh) = (gh)^n = g^nh^n = \alpha(g) \cdot \alpha(h)$.

Problem 2. Let G be a group of order pqr, where p, q, r are distinct primes. If H is a subgroup of G of order pq and K is a subgroup of G of order qr, prove that $|H \cap K| = q$.

Proof. We have already proven that $H \cap K$ is a subgroup of G. This implies that $H \cap K$ is also a subgroup of H and K. By Lagrange's Theorem, we have that

$$|H \cap K| | |H|, |K| \implies |H \cap K| | pq, qr$$

Therefore, $|H \cap K|$ is either 1 or q. Assume for contradiction that $|H \cap K| = 1$. By lemma 1, we have that

$$|\mathsf{HK}| = \frac{\mathsf{pq} \cdot \mathsf{qr}}{1} = \mathsf{pq}^2 \mathsf{r}$$

which is a contradiction since HK is a subset of G, which implies that $|HK| \le |G|$. Therefore, we have shown that $|H \cap K| = q$ as desired.

Lemma 1. Let H and K be subgroups of a finite group G. Then,

$$|HK| = \frac{|H||K|}{|H \cap K|} \ \mathit{where} \ HK = \{hk \mid h \in H, \ k \in K\}$$

Proof. We can separate HK into a union of left cosets of K in G:

$$HK = \bigcup_{h \in H} hK$$

By the properties of cosets, we have that hK = h'K or $hK \cap h'K = \emptyset$ for all $h, h' \in H$. We must now determine how many of these cosets are distinct.

Suppose hK = h'K for some $h, h' \in H$. Since $hK = h'K \Leftrightarrow h^{-1}h' \in K$, we have that $h^{-1}h' = k$ for some $k \in K$. This implies that $k \in H \Longrightarrow k \in H \cap K$. Additionally, h' = hk. Thus, there are $|H \cap K|$ ways to create the same coset for each $h' \in H$ (by *Cayley's Theorem*, we know that each $k \in H \cap K$ has exactly one corresponding $h \in H$ such that hk = h'). Therefore, the number of distinct cosets hK where $h \in H$ is $|H|/|H \cap K|$.

Since |hK| = |h'K| for all $h, h' \in H$, the number of elements in each coset is |hK| = |K|. Therefore, the cardinality of HK equals the number of distinct cosets times the number of distinct elements in each coset, giving us

$$|HK| = \frac{|H||K|}{|H \cap K|}$$

Problem 3. Calculate the order of the group of rotations of a regular dodecahedron:

Proof. Let G be the rotation group of the dodecahedron. Assign each of the 12 faces of the dodecahedron a unique number 1-12. Since every rotation must take each face to exactly one other face, G is a group of permutations on the set $\{1, \ldots, 12\}$.

Consider a single face, $f \in \{1, ..., 12\}$, of the dodecahedron. By the *orbit-stabilizer theorem*, we have that

$$|G| = |\operatorname{orb}_{G}(f)| \cdot |\operatorname{stab}_{G}(f)|$$

- 1. $|\mathbf{orb_G}(\mathbf{f})|$: Picking an axis of rotation through the centers of any two parallel faces allows us to bring f to any other face $\mathbf{f}' \in \{1, \dots, 12\}$. Therefore, $\mathbf{orb_G}(\mathbf{f}) = \{1, \dots, 12\}$ which implies that $|\mathbf{orb_G}(\mathbf{f})| = 12$.
- 2. $|\mathbf{stab_G(f)}|$: Let $\overline{f} \in \{1, \dots, 12\}$ be the face parallel to f. Picking an axis of rotation through the centers of f and \overline{f} allows us to rotate the dodecahedron in 5 distinct ways while fixing the position of f. This implies that $|\mathbf{stab_G(f)}| = 5$.

Together, we have $|G| = 12 \cdot 5 = 60$.

Problem 4. Determine the number of cyclic subgroups of order 15 in $\mathbb{Z}_{90} \oplus \mathbb{Z}_{36}$.

Proof. A cyclic subgroup of order 15 has $\phi(15) = 8$ distinct elements of order 15. We will now determine the number of distinct elements of order 15 in $\mathbb{Z}_{90} \oplus \mathbb{Z}_{36}$.

Let $(g_1, g_2) \in \mathbb{Z}_{90} \oplus \mathbb{Z}_{36}$ such that $|(g_1, g_2)| = 15$. By (Gallian, Theorem 8.1), we have that $lcm(|g_1|, |g_2|) = 15$. For each of the resulting cases, we can use the Euler phi function since \mathbb{Z}_{90} and \mathbb{Z}_{36} are both cyclic.

- 1. $(|\mathbf{g_1}| = 5, |\mathbf{g_2}| = 3)$:
 - $\phi(5) = 4 \implies 4$ distinct elements of order 5 in \mathbb{Z}_{90} .
 - $\phi(3) = 2 \implies 2$ distinct elements of order 3 in \mathbb{Z}_{36} .

Therefore, we have $4 \cdot 2 = 8$ ways to make (g_1, g_2) from this case.

- 2. $(|\mathbf{g_1}| = 15, |\mathbf{g_2}| = 1)$:
 - $\phi(15) = 8 \implies 8$ distinct elements of order 15 in \mathbb{Z}_{90} .
 - $\phi(1) = 1 \implies 1$ distinct element of order 1 in \mathbb{Z}_{36} .

So there are $8 \cdot 1 = 8$ ways to make (g_1, g_2) from this case.

3. ($|\mathbf{g_1}| = 15$, $|\mathbf{g_2}| = 3$): From above, we have 8 distinct elements of order 15 in \mathbb{Z}_{90} , and 2 distinct elements of order 3 in \mathbb{Z}_{36} . Hence, there are $8 \cdot 2 = 16$ ways to make (g_1, g_2) from this case.

In total, there are 8+8+16=32 distinct elements of order 15 in $\mathbb{Z}_{90} \oplus \mathbb{Z}_{36}$. Since each cyclic subgroup of order 15 is disjoint and has 8 distinct elements of order 15 which can generate it, the number of cyclic subgroups of order 15 in $\mathbb{Z}_{90} \oplus \mathbb{Z}_{36}$ is 32/8=4.

Problem 5. Let p and q be odd primes and let m and n be positive integers. Prove that $U(p^m) \oplus U(q^n)$ is not cyclic. [hint: read the book to find a useful result we didn't cover in class]

Proof. By (Gallian, pg. 160), we have that $U(p^m) \approx \mathbb{Z}_{p^m-p^{m-1}}$ and $U(q^n) \approx \mathbb{Z}_{q^n-q^{n-1}}$. Because $\mathbb{Z}_{p^m-p^{m-1}}$ and $\mathbb{Z}_{q^n-q^{n-1}}$ are both cyclic, we have that $U(p^m)$ and $U(q^n)$ are cyclic as well. Therefore, by (Gallian, Theorem 8.2), we must show that $|U(p^m)|$ and $|U(q^n)|$ are not relatively prime.

By lemma 3, we have that $|U(p^m)| = p^m - p^{m-1}$ and $|U(q^n)| = q^n - q^{n-1}$. Since the product of odds is odd, p^m , p^{m-1} , q^n , and q^{n-1} must all be odd. Since the difference of odds is even, we have that $2 \mid p^m - p^{m-1}$, $q^n - q^{n-1} \implies gcd(p^m - p^{m-1}, q^n - q^{n-1}) \neq 1$. Therefore, $|U(p^m)|$ and $|U(q^n)|$ are not relatively prime, which means $|U(p^m)| \oplus |U(q^n)|$ is not cyclic. \square

Lemma 2. Let $\mathfrak p$ be an odd prime. Then $U(\mathfrak p^n) \approx \mathbb Z_{\mathfrak p^n - \mathfrak p^{n-1}}.$

Proof. By lemma 3, we have that $|U(p^n)| = p^n - p^{n-1}$. We can arrange the elements of $U(p^n)$ in ascending order so that $U(p^n) = \{u_1, \ldots, u_{p^n-p^{n-1}}\}$ where $j < k \implies u_j < u_k$. Similarly, we can arrange the elements of $\mathbb{Z}_{p^n-p^{n-1}}$ in ascending order so that $\mathbb{Z}_{p^n-p^{n-1}} = \{z_1, \ldots, z_{p^n-p^{n-1}}\}$ where $j < k \implies z_j < z_k$.

Define a mapping $\phi: U(p^n) \to \mathbb{Z}_{p^n-p^{n-1}}$ such that $u_i \mapsto z_i$. We will now show that ϕ is an isomorphism. Let $z_m, z_n \in \mathbb{Z}_{p^n-p^{n-1}}$.

- 1. **Injective:** to be proved ...
- 2. Surjective: to be proved ...
- 3. Preserves Group Operation: $\phi(u_m \cdot u_n) = \phi((u_m u_n)) = \dots$ to be proved

Lemma 3. Let \mathfrak{p} be an odd prime. Then $\varphi(\mathfrak{p}^n) = \mathfrak{p}^n - \mathfrak{p}^{n-1}$.

Proof. We will show $|\mathsf{U}(\mathfrak{p}^n)| = \mathfrak{p}^n - \mathfrak{p}^{n-1}$. Of course, there are \mathfrak{p}^n integers up to \mathfrak{p}^n . Therefore, $|\mathsf{U}(\mathfrak{p}^n)| = \mathfrak{p}^n - \mathfrak{m}$ where \mathfrak{m} is the number of integers in the set $\{1, \ldots, \mathfrak{p}^n\}$ that are not relatively prime with \mathfrak{p}^n . Evidently, the prime factorization of \mathfrak{p}^n only contains the prime \mathfrak{p} . This implies that \mathfrak{p} divides every integer that is not relatively prime with \mathfrak{p}^n . The number of such integers in the set $\{1, \ldots, \mathfrak{p}^n\}$ is $\mathfrak{p}^n/\mathfrak{p}$. Therefore,

$$|U(p^n)| = p^n - m = p^n - \frac{p^n}{p} = p^n - p^{n-1}$$