Lecture 10: March 3, 2021 Computer Architecture and Organization-I Biplab K Sikdar

Carry Save Adder (CSA)

Carry save adder (CSA) is effective while adding more than two numbers.

Example: addition of three n-bit numbers (in CSA)

An *n*-bit CSA consists of *n*-disjoint full adders (Figure 29(b)).

Addition four n-bit numbers is shown in Figure 29(a).

Addition of six n-bit numbers is shown in Figure 29(c).

Figure 29: Carry save addition

0.9 Multiplication Instruction Implementation

0.9.1 Multiplication in sign magnitude

Simplest implementation of fixed point multiplication instruction is using conters.

Let multiplicand is P and Q is the multiplier.

Product is targeted to store in CP.

In counter based implementation, CP is a counter.

Following steps computes $CP = P \times Q$. all four QC, CQ, MC and CP are counters.

- 1. Let QC \leftarrow multiplier; CQ \leftarrow multiplier; MC \leftarrow multiplicand; CP \leftarrow 0
- 2. If MC and/or CQ = 0, then exit
- 3. Decrement CQ [CQ=CQ-1]; Increment CP [CP=CP+1]
- 4. If $CQ \neq 0$, then go to Step 3
- 5. Decrement MC [MC=MC-1]; Copy QC to CQ [CQ← QC]
- 6. If $MC \neq 0$, then go to Step 3
- 7. Output CP as product

This method is simple but very slow.

Alternative implementation can be add multiplicand (M) Q (multiplier) times.

That is,

Initialize PRODUCT $(M \times Q) = 0$ and then

Perform PUODUCT = PRODUCT + $M \cdot \cdot \cdot Q$ times.

This implementation requires a counter to store the multiplier.

Multiplication of n-bit numbers in sign magnitude can also be implemented following the steps used in multiplication of decimal numbers (shift/addition technique).

Example: Multiplication of 8-bit numbers

$$Y = y_7 y_6 \cdots y_1 y_0 = 01100101$$
 and $X = x_7 x_6 \cdots x_1 x_0 = 11011101$.

To compute magnitude of product $P = p_6 p_5 \cdots p_1 p_0$, the 7 magnitude bits of Y and X are to be multiplied.

	1100101 1011101	$y_6 y_5 y_4 y_3 y_2 y_1 y_0 \\ x_6 x_5 x_4 x_3 x_2 x_1 x_0$
	·	
0000000	1100101	P_0
0 00000 0	0000000	P_1
0000011	0010100	P_2
0000 110	0101000	P_3
000 1100	1010000	P_4
00 00000	0000000	P_5
0 110010	1000000	P_6

 P_i is the partial product. Therefore, the magnitude of product is

$$P = \sum_{i=0}^{n-2} 2^i Y x_i$$

Sign of P -that is, $p_7 = 1$ (XOR of y_7 and x_7).