6.1 Uvod

- Porazdeljen sistem je sistem, kjer se procesiranje izvaja na več računalnikih.
- Računalniki med seboj komunicirajo preko omrežja.
- Program je razdeljen na več delov, ki se vzporedno izvajajo na več računalnikih.
- Porazdeljen sistem ima pogosto opravka z:
 - heterogenimi okolji,
 - nepredvidljivimi latenčnimi časi in kapacitetami omrežja,
 - Nepredvidljivimi napakami na omrežju ali računalnikih povezanih v omrežje

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

6.1 Uvod

- Večina sodobnih IS je zasnovanih v obliki porazdeljenih sistemov.
- Zasnove porazdeljenih sistemov sledijo različnim arhitekturnim stilom in vzorcem kot npr.:
 - Odjemalec-strežnik
 - Storitveno usmerjene arhitekture (glej ločeno podpoglavje o SOA)
 - Cevovodi in filtri
 - Peer-to-peer
 - Data-centric
 - Event driven
 - Blackboard
 - ..

- Zelo pogoste so arhitekture temelječe na vzorcu odjemalec-strežnik.
- Osnovni komponenti tako porazdeljenega sistema sta odjemalec (zahteva storitev) in strežnik (izvaja storitev).
- Procesiranje strežnik-odjemalec naj bi potekalo relativno uravnoteženo, pri čemer specializirane storitve izvaja strežnik.

Fakulteta za računalništvo in informatika

6.2 Strežniki in nivojske arhitekture

- V porazdeljenem sistemu lahko sodelujejo različni strežniki:
 - Datotečni strežnik (File server)
 - Podatkovni strežnik (Database server)
 - Strežnik za skupinsko delo (Groupware server)
 - Spletni strežnik (Web server)
 - Poštni strežnik (Mail server)
 - Strežnik objektov (Object server)
 - Strežnik za tiskanje (Print server)
 - Aplikacijski strežnik (Application server)
 - ...

- Porazdeljeni sistemi delujejo na arhitekturah z več nivoji (ravnmi).
- Najbolj znani sta dvo in tri-nivojska arhitektura.

Fakulteta za računalništvo in informatiko

6.2 Strežniki in nivojske arhitekture

- Dvo-nivojsko arhitekturo (tudi arhitektura odjemalec-strežnik) sestavlja:
 - Predstavitvena in logična raven (predstavitev in procesiranje podatkov, ki jih vrne podatkovni strežnik); Fizično realizirana na odjemalcu.
 - Podatkovna raven (shramba podatkov); Fizično realizirana na strežniku.
- Dvo-nivojska arhitektura je smiselna, kadar je malo procesiranja podatkov.
- Primeri: spletni strežnik, datotečni strežnik, podatkovni strežnik, itd. do katerih neposredno dostopajo odjemalci

- Slabosti dvo-nivojske arhitekture se pokažejo, če:
 - imamo veliko odjemalcev;
 - je potrebno veliko procesiranja;
- · Posledice:
 - Visoki stroški skrbništva, delovanja in vzdrževanja sistema;
 - Visoki stroški vpeljave tehnoloških trendov;
 - Slaba izkoriščenost programske opreme. Tipičen uporabnik v povprečju uporablja cca 10% zmogljivosti programske opreme, ki mu je na voljo.

- Tri-nivojska arhitektura pojavi se kot rešitev težav dvo-nivojske arhitekture.
- V tri-nivojski arhitekturi se predstavitveni in procesni nivo ločita. Nivoji so:
 - Predstavitvena raven (vmesnik med uporabnikom in sistemom);
 - Procesna raven (procesiranje, ki ga zahteva sistem); Fizično realizirana na aplikacijskem strežniku.
 - Podatkovna raven (shramba za trajne podatke); Fizično realizirana na podatkovnem strežniku.

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

6.2 Strežniki in nivojske arhitekture Tipična tri-nivojska arhitektura Odjemalec 1 Odjemalec 2 Poslovni objekti Predstavitvena Procesna raven Podatkovna raven Podatkovna raven

- Glavne prednosti tri-nivojske arhitekture:
 - Neodvisnost aplikacije od tehnologije za shrambo podatkov;
 - Procesiranje se seli iz odjemalca na strežnik (cenejša vpeljava, skrbništvo, vzdrževanje in delovanje);
 - Procesiranje se nanaša na objekte skladno z objektno paradigmo;
 - Odjemalci lahko uporabljajo podatke različnih podatkovnih virov (na različnih podatkovnih strežnikih),
 - Zmanjšanje števila povezav (pri dvo-nivojski arhitekturi reda velikosti M×N povezav, pri tri-nivojski pa samo M+N).
 - Večja zanesljivost delovanja sistema;
 - Večja prilagodljivost in odprtost sistemov za nove tehnologije;

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

6.3 Vmesni sloj (Middleware)

- Vmesni sloj zagotavlja aplikacijam dodatne storitve, ki jih operacijski sistem ne ponuja.
- Gre za "lepilo" med aplikacijami in operacijskim sistemom.
- V porazdeljenih sistemih nudi storitve, ki omogočajo medsebojno povezovanje programskih komponent oz. poslovnih aplikacij

6.3 Vmesni sloji in druge storitve v porazd. sistemih

- Vmesni sloji so ključen element pri sistemski integraciji (povezavi različnih sistemov v enotno, celovito rešitev).
- V preteklosti je bila razvitih vrsta standardov in tehnologij za realizacijo vmesnih slojev.
 - CORBA (Common Object Request Broker Architecture),
 - DCOM (Distributed Component Object Model),
 - RMI (Remote Method Invocation).
- Omenjene standarde danes pogosto nadomeščajo standardi in tehnologije, ki podpirajo koncept storitev.

Fakulteta za računalništvo in informatik

6.3 Vmesni sloji in druge storitve v porazd. sistemih

- Za delovanje porazdeljenih sistemov so v okviru vmesnega sloja na voljo številne storitve. Na primer:
 - Delo z datotekami (File services)
 - Dodeljevanje imen (Name services)
 - Delo z imenikom (Directory services)
 - Nadzor časa (Time services)
 - Replikacija (Replication services)
 - Nadzor transakcij (Transaction service)
 - Nadzor sočasnega dostopa (Concurrency control services)
 - Nadzor varnosti (Security services)

6.4 Integracijska arhitektura

- Ponovitev: Namen integracije poslovnih aplikacij (EAI) je zagotoviti povezavo med uporabniškimi in zalednimi sistemomi in na ta način omogočiti hitrejši in učinkovitejši odziv na različne poslovne dogodke in uporabniške zahteve.
- Pomen integracije poslovnih aplikacij (EAI) za poslovanje je opisan v poglavju 2.6.2
- Na voljo imamo različne integracijske arhitekture

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

6.4 Integracijska arhitektura

- Tipične integracijske arhitekture:
 - Integracija točke do točke (point-to-point integration)
 - Integracija s pomočjo centralne točke (hub and spoke)
 - Integracija z uporabo storitvenega vodila (ESB enterprise service bus)

6.4 Integracija s pomočjo storitvenega vodila

• Prednosti:

- Skupinska komunikacija
- Inteligentno usmerjanje sporočil
- Mediacija sporočil med različnimi sistemi (različni protokoli, zapisi, varnostni nivoji)
- Zagotavljanje varnosti
- Zagotavljanje kakovosti dostave in zagotavljanje transakcijske obravnave sporočil
- Upravljanje procesov
- Nadzor nad delovanjem

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

6.5 Storitveno usmerjena arhitektura (SOA)

• Vsebina:

- Kaj je SOA in glavna načela storitvene usmerjenosti
- Temeljni pojmi SOA
- Tehnološko ozadje
- SOA kot storitveni nivo
- Primernost

Kaj je SOA?

- Storitveno usmerjena arhitektura (SOA) temelji na ohlapno povezanih sistemih, združenih v celoto, pri čemer so posamezni deli med seboj neodvisni in tečejo na poljubnih platformah.
- Gre za koncept, ki je zaradi težav s kompleksnimi sistemi, za katere značilen problem so visoki stroški povezovanja in vzdrževanja, v zadnjih letih postal zelo popularen.
- Osnovni gradniki storitveno usmerjene arhitekture so seveda storitve.

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

6.5 Storitveno usmerjena arhitektura (SOA)

- Glavna načela storitvene usmerjenosti so (1/2):
 - Šibka sklopljenost storitve ohranjajo odnose, ki minimizirajo odvisnosti med njimi in ohranjajo le zavedanje ena druge.
 - Storitvena pogodba storitve se držijo komunikacijskega dogovora, ki je določen z enim ali več opisom storitev in podobnih dokumentov.
 - Neodvisnost storitev je neodvisna od drugih storitev, in sicer v smislu nadzora nad svojo logiko.
 - Abstrakcija razen opisa storitve je logika storitve nedostopna zunanjemu svetu.

- Glavna načela storitvene usmerjenosti so (2/2):
 - Ponovna uporaba logika je razdeljena, ločena oziroma razbita v različne storitve z namenom možnosti ponovne uporabe.
 - Storitve minimizirajo količino informacij, ki pripada določeni aktivnosti - so brez stanja.
 - Odkrivanje storitve so načrtovane tako, da jih lahko opišemo in najdemo; tako lahko do njih dostopamo preko temu namenjenih mehanizmov.

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

6.5 Storitveno usmerjena arhitektura (SOA)

- Temeljni pojmi SOA:
 - Storitev
 - Opis storitve
 - Sporočilo

• Storitev (1/2):

- Storitev je ponovljivo poslovno opravilo, npr. preveri stanje na računu, odpri nov račun.
- Storitvi pravimo tudi storitveno usmerjena logična enota.
- Da ohranjajo neodvisnost, storitve zajemajo logiko znotraj točno določenega konteksta. Ta kontekst je lahko specifičen za poslovno opravilo, poslovno entiteto ali kakšen drug logičen skupek.
- Logika, ki jo storitev vsebuje, je namenjena za reševanje določenega problema, katerega kompleksnost je lahko zelo različna.

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

6.5 Storitveno usmerjena arhitektura (SOA)

• Storitev (2/2):

- Opis storitve (1/2):
 - Znotraj SOA storitve lahko uporabljajo druge storitve ali drugi programi. Da bi storitev lahko uporabili morajo poznati njeno delovanje. Zato je potreben opis storitve.
 - V osnovi mora opis storitve zajemati ime storitve, podatke, ki jih pričakuje na vhodu ter podatke, ki jih vrne na izhodu.
 - Z uporabo koncepta opisa storitev dosežemo šibko sklopljenost sistema.

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

6.5 Storitveno usmerjena arhitektura (SOA)

• Opis storitve (2/2):

- Sporočilo:
 - Sporočilo je neodvisna enote komunikacije.
 - Ko storitev pošlje sporočilo, nad njim zgubi nadzor (samoobvladovanje delov procesne logike).
 - Sporočilo lahko obravnavamo kot način komunikacije, ki ohranja šibko sklopljenost.

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

6.5 Storitveno usmerjena arhitektura (SOA)

- SOA ne predpisuje uporabe konkretnih tehnologij. Prvotno uveljavljeni standardi:
 - WSDL (Web Service Description Language) podaja opis storitve
 - SOAP format sporočanja med storitvijo in uporabnikom
 - UDDI standardiziran format za registracijo storitev

WSDL

- Kaj je WSDL (1/2):
 - opredeljuje spletne storitve kot zbirke vrat (port, endpoint).
 - storitve opisuje v formatu XML
 - povezuje konkretno izvedbo storitve z njeno abstraktno definicijo
 - definicija opredeljuje:
 - abstraktne tipe
 - abstraktne vmesnike (klici operacij oz. sporočila)
 - tipe vrat v katerih so združeni abstraktni vmesniki
 - povezave med tipi vrat in konkretnimi stroritvami

WSDL

6.5 Storitveno usmerjena arhitektura (SOA)

• Primer WSDL (1/3): abstraktni tipi

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

6.5 Storitveno usmerjena arhitektura (SOA)

WSDL

Primer WSDL (2/3): abstraktni vmesniki

WSDL

6.5 Storitveno usmerjena arhitektura (SOA)

 Primer WSDL (3/3): povezava s konkretno storitvijo in vrata

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

6.5 Storitveno usmerjena arhitektura (SOA)

SOAP

- Kaj je SOAP (1/2)?
 - včasih: "Simple Object Access Protocol"; od različice 1.2 le še SOAP
 - SOAP je specifikacija protokola za izmenjavo strukturiranih podatkov pri implementaciji spletnih storitev v računalniških omrežjih oz. format sporočanja med storitvijo in uporabnikom storitve.
 - Sporočila so zapisana v obliki XML.
 - SOAP lahko uporablja različne transportne protokole.
 Tipično se uporablja HTTP, vendar je mogoče uporabiti tudi druge (npr. SMTP).

SOAP

6.5 Storitveno usmerjena arhitektura (SOA)

- Kaj je SOAP (2/2)?
 - primer uporabe SOAP: "Sporočilo v obliki SOAP pošljemo določeni spletni storitvi (npr. vrednost delnic na borzi) skupaj s parametri za iskanje. Spletna storitev vrne odgovor v obliki XML (npr. vrednosti delnic).

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

6.5 Storitveno usmerjena arhitektura (SOA)

SOAP

• Primer SOAP (1/2): zahteva

SOAP

6.5 Storitveno usmerjena arhitektura (SOA)

• Primer SOAP (2/2): odgovor

```
HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://www.example.org/stock">

<m:GetStockPriceResponse>
<m:Price>34.5</m:Price>
</m:GetStockPriceResponse>
</m:GetStockPriceResponse>
</m:GetStockPriceResponse>
</msap:Body>

</soap:Envelope>
```

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

6.5 Storitveno usmerjena arhitektura (SOA)

UDDI

- Kaj je UDDI?
 - "Universal Description, Discovery and Integration"
 - Omogoča objavljanje seznamov storitev ter iskanje ustreznih storitev po teh seznamih.
 - UDDI je posebna vrsta spletne storitve, ki upravlja s podatki o ponudnikih storitev

- Osnovne karakteristike SOA (1/2):
 - Enkapsulacija
 - Implementacija strežnika je skrita odjemalcu, saj strežnik objavi zgolj vmesnik, tako da je uporabniku podrobnost implementacije skrita.
 - Strežnik ni vezan na fizično lokacijo
 - Strežnik se prijavi v imenik storitev, katero uporabnik povpraša o mrežnem naslovu storitve.
 - Če strežnik zamenja fizično lokacijo, se, ob ponovni prijavi v imenik, ažurira mrežni naslov in uporabniku ni potrebno pomniti naslova storitve

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

6.5 Storitveno usmerjena arhitektura (SOA)

- Osnovne karakteristike SOA (2/2):
 - Skupno delovanje aplikacij
 - Aplikacije, ki se izvajajo na različnih platformah, skupno delujejo tako, da vsaka aplikacija izpostavi vmesnik z uporabo standardnega protokola.

- SOA ni univerzalna rešitev:
 - V stabilnem (nespremenljivem) okolju ponavadi cena vpeljave presega učinkovitost naložbe.
 - Ni potrebe po ponujanju aplikacij v obliki storitev zunanjim poslovnim partnerjem.
 - Realnočasovni sistemi niso primerni za SOA, saj le ta temelji na ohlapno povezani asinhronski komunikaciji, ki ne zagotavlja najhitrejšega odziva.

• Težave SOA:

- Prvotna ideja SOA, da bi skupaj z lahko implementacijo (lahkega) storitvenega vodila poenostavila sodelovanje med različnimi platformami, storitvami oz. aplikacijsko podporo v podjetjih se v veliki meri ni uresničila.
- Uveljavitev oblačnega računalništva oz. njegova porazdeljenost postavlja uporabo centraliziranega storitvenega vodila pod vprašaj
- Razvoj in izvedba projektov z uporabo SOA se je pogosto celo zavlekla v primerjavi z uporabo starejših pristopov
- Sistemi so v marsikaterem pogledu postali celo bolj kompleksni pa tudi dražji
- Agilni pristopi pri razvoju programske opreme

Vir: Kim Clark, MuCoi

"Storitev" v besedi "mikrostoritve" se nanaša na drobljenje komponent in ne drobljenje zunanjih vmesnikov!

> Fakulteta za računalništvo in informatiko Univerza v Ljubljani

6.6 Mikrostoritve

- Kaj je arhitektura mikrostoritev?
 - Arhitektura mikrostoritev je posebna "lahka" oblika SOA, termin se pojavi 2011 (fine-grained SOA).
 - Pristop temelji na sestavljanju aplikacij iz šibko povezanih drobnozrnatih storitev z uporabo lahkih protokolov.
 - Komunikacija med storitvami preko API neodvisnih od programskega jezika
 - Prednosti pristopa:
 - Lažje razumevanje (drobnozrnate storitve)
 - Paralelizacija razvoja (majhne neodvisne skupine)
 - Neodvisno izboljševanje kode mikrostoritev (npr. refactoring)
 - Neprekinjena dostava in postavitev (continuous delivery and deployment)

Arhitektura mikrostoritev vs. monolitne aplikacije Ul Business Logic Data Access Layer Database Monolithic Architecture Microservices Architecture Vir. akioz.com Fakuteta za rokunstilito in Informatilia Ubriverza v Ljubljedi

Arhitektura mikrostoritev in sodoben razvoj Arhitektura mikrostoritev dobro podpira neprekinjeno dostavo in postavitev (continuous delivery and deployment) oz. podpira paradigmo DevOps Vir. Kharnagy Fakulteta za račandiništvo in informatio chiverav v Ljadjani

6.6 Mikrostoritve

- Možna alternativa mikrostoritvam samovsebovani sistemi (self-contained systems SCS)
- V čem se razlikujejo od mikrostoritev:
 - Večji obseg
 - Tipično manjše število SCS
 - V idealnem primeru SCS med seboj ne komunicirajo
 - SCS imajo uporabniški vmesnik
 - Preferirajo integracijo na ravni uporabniškega vmesnika

vs.

