Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа Р3340

Лабораторная работа №11 Исследование математической модели пьезоэлектрического исполнительного устройства Вариант - 3

Выполнил		(подпись)	
	(фамилия, и.о.)	(
Проверил	(фамилия, и.о.)	(подпись)	
""г.	Санкт-Петербург,	20г.	
Работа выполнена с оценкой			
Дата защиты ""	20г.		

1 Задание

Целью работы является изучение математических моделей и исследование характеристик исполнительного устройства, построенного на основе пьезоэлектрического двигателя ($\Pi \Pi$) микроперемещений.

Необходимо построить схему ПД, которая изображена на рисунке 1 и провести математическое моделирование при различных значениях параметров системы.

Рисунок 1 – Структурная схема пьезоэлектрического исполнительного устройства

Параметры данной схемы указаны в таблице 1.

Таблица 1 – параметры пьезоэлектрического двигателя

C_p	m	K_0	K_d	T_u	F_B
Н/м	КГ	H/B	Н∙с/м	мс	Н
$0.8 \cdot 10^{8}$	0.5	9.3	$0.8 \cdot 10^3$	0.08	75

2 Анализ пьезоэлектрического двигателя

Рисунок 2 – ЛАЧХ исполнительно элемента

Исполнительное устройство можно представить в следующем (операторном) виде.

$$x = \frac{K_u K_0 U - T_u F_B s - F_B}{(T_u s + 1)(m s^2 + K_d s + C_p)}$$
(1)

Из выражения (1) можем вывести выражения для ЛАЧХ исследуемого объекта.

$$A(\omega) = \sqrt{\frac{(K_u K_d U - F_B)^2 + (T_u F_B \omega)^2}{(1 + (T_u \omega)^2)((C_p - m\omega^2)^2 + (K_d \omega)^2)}}$$
 (2)

В итоге, можем по выражению 2 можем построить саму характеристику. Эта характеристика построена на рисунке 2.

На рисунке 3 представлены переходные процессы в $\Pi Д$ при возмущающем воздействии $F_B=0$. Как видно процесс имеет колебательный характер, затухающий по экспоненте.

Рисунок 3 – Переходные процессы в ПД

3 Исследование вленяния массы m нагрузки

Иземеняя массу нагрузки в пределах [0.5m, 1.5m] получим различные виды переходных процессов с различными значениями преререгулирования σ , времени переходных процессов $t_{\rm n}$, и установившегося значения выходного сигнала $x_{\rm уст}$. Полученные значеня представлены в таблице 2.

Таблица 2 – Данные о перехоных процессах при изменении момента нагрузки

m	$x_{ m ycr}$	$t_{\scriptscriptstyle m II}$	σ
0.25	5.36	$1.2 \cdot 10^{-4}$	37.01
0.38	5.36	$1.3 \cdot 10^{-4}$	48.07
0.5	5.36	$3.5 \cdot 10^{-4}$	54.98
0.63	5.36	$6.4 \cdot 10^{-4}$	60.22
0.75	5.36	$7.2 \cdot 10^{-4}$	63.94

При изменении массы не изменяется $x_{\text{уст}}$. С увеличением массы увеличиваются значения перерегулироуваия и времени переходных процессов. Этот факт объясняется увеличением динамического усилия $F_{\text{Д}}$, представленноым выражением ниже.

$$F_{\perp} = -m \frac{d^2x}{dt^2}$$

Как видно масса является коэффициентом пропорциональности, соответственно при его увеличении амплитуда колебаний увеличивается. При установлении переходного процесса ускорение стемится к нулю, как следствие влеяние массы на переходной процесс также стремится к нулю.

Все это подтверждают графики, полученные в результате математического моделирования системы. Они представлены на рисунке 4.

Рисунок 4 – Влияние массы т на качество перехоных процессов

$oldsymbol{4}$ Исследование влияния T_u

Иземеняя время T_u получим различные виды переходных процессов с различными значениями преререгулирования σ , времени переходных процессов $t_{\rm n}$, и установившегося значения выходного сигнала $x_{\rm уст}$. Полученные значеня представлены в таблице 3.

Таблица 3 — Данные о переходных процессах при изменении времени T_u

T_u	$x_{ m yct}$	t_{π}	σ
$8 \cdot 10^{-5}$	6.47	$3.5\cdot 10^{-4}$	54.98
$1.6 \cdot 10^{-4}$	6.47	$1.8 \cdot 10^{-4}$	24.49
$3.2 \cdot 10^{-4}$	6.47	$2.3 \cdot 10^{-4}$	6.24
$4.8 \cdot 10^{-4}$	6.47	$2.9 \cdot 10^{-4}$	1.16

При увеличении значения T_u , уменьшаются значеия времени переходного процесса и перерегулирования. Так происходит, посокльку явление обратного пьезоффэкта, который характерерзуется уравнением, представленным ниже, протекает более плавно, за счет течго разница между силами уменьшается и процесс протекает с меньшей амплитудой колебаний, за счет чего уменьшается время переходного процесса.

$$F_0 = K_0 U_p$$

На рисунке 5 представлены переходные процессы проеткающие в пьезоэлектрическом двигателе пр изменении значения постоянной времени T_u .

Рисунок 5 — Влияние времени T_u на качество перехоных процессов

5 Исследование влияния коэффициентка упрогости C_p

Исследуем поведение системы, варьируя C_p , при выключенном питании U=0 и приложенном воздействии $F_B=75$. На рисунке 6 представлены полученные в результате математического моделирования переходные процессы при различных C_p .

Рисунок 6 – Переходные процессы в ПД при различных C_p и U=0

Как видно из рисунка, при увеличении коэффициента упругости, сопротивление системы увеличивается и как следствие влияние сил снижается на значение C_p , в результате чего снижается амплитуда колебаний и уровень "сжатия" двигателя. Это подтверждает следующее выражение:

$$F_y = C_p x = F_0 + F_{\perp} + F_d + F_B \Rightarrow x = \frac{F_0 + F_{\perp} + F_d + F_B}{C_p}$$

где F_y - сила упрогости, F_0 - обратный пьезоэфект, F_d - демпфирующее усилие, $F_{\mathbb Z}$ - динамическое усилие.

Вывод

В данной работе мы ознакомились с принципом работы составного пьезоэлектрического двигателя, а также исследовали его математическую модель.

Система имеет комплексно-сопряженные корни с отрицаетльной вещественной частью. Это видно по переходным процессам, представленным на рисунке 3.

При увеличении массы нагрузки m, вследствие увеличения динамического воздействия F_d , увеличивается перерегулирование σ и время переходных процессов t_{π} .

При увеличении постоянной времени T_u уменьшается скорость изменения напряжения U_p , соотвественно уменьшается разность между силами действующими на $\Pi \square \Pi$ и процесс протекает более плавно. Как следствие уменьшается значение перерегулирования, и времени переходного процессо, что преслеживается на рисунке 5.

При увеличи коэффициента упрогости C_p уменьшается влияние сил системы и как следствие снижается амплитуда колебани и установившееся значение $x_{\rm уст}$. Это хорошо прослеживается из выражения: $F=-F_B-K_d\dot x-C_px$. Значение x будет уменьшаться до тех пор, пока $x>\frac{-F_B-K_d\dot x}{C_p}$, когда x опустится ниже этого значения, скорость начнет менять свой знак, и чем выше C_p , тем раньше это произойдет. Что видно на рисунке 6.