part2

1.

(a)

BH+ = ADBHGEFC

D+ = BDHAGEFC

BCE+ = BCEF violate

F+ = CF violate

A+ = ACGEF violate

(b)

Decompose R using FD, A->GEF, A+ = ACGEF

R1 = ACGEF

R2 = ABDH

Project FDs onto R1 = ACGEF

Α	С	G	Е	F	Closure	FDs	
✓					A+ = ACGEF	A->CGEF	
	1				C+=C	Nothing	
		✓			G+=G	Nothing	
			✓		E+ = E	Nothing	
				1	F+ = FC	F->C violates BCNF	

Decompose R1 using FD F->C, yields R3 = FC, R4 = FAGE

Project FD onto R3 = FC

F	С	Closure	FD
1		F+=FC	F->C
	1	C+=C	nothing

This satisfies BCNF

Project FD onto R4 = FAGE

F	Α	G	E	Closure	FD
1				F+ = FC	Nothing
	1			A+ = AGEF	A-> GEF
		\		G+=G	Nothing
			✓	E+ = E	Nothing
Su	Superset of A Irrelevant				
1		✓		FG+ = FGC	Nothing
1			✓	FE+ = FCE	Nothing
		1	1	GE+=GE	Nothing

This satisfies BCNF

Return to R2 = ABDH

Α	В	D	Н	Closure	FD
✓				A+ = ACGEF	Nothing
	1			B+ = B	Nothing

		\		D+ = DBHAGEFC	D->BHA
			\	H+ = H	Nothing
Suj	Superset of D Irrelevant				
✓	✓			AB+ = ABGEFC	Nothing
✓			\	AH+ = AGEFHC	Nothing

This satisfies BCNF

R2 = ABDH, D->BHA

 $R3 = FC, F \rightarrow C$

R4 = FAGE, A->GEF

2.

(a)

A + = A

B+=B

C+=C

D+ = DABGFEC Therefore D is a key

E + = E

F + = F

G + = G

EF+ = EFB

Because ABCEFG+ = ABCEFG we know there is no key that does not have D.

D is the only key.

(b)

Simplify to singleton RHS.

DBE->F	DBE+ = DBECAFG	discard
DBE->C	DBE+ = DBEFAGC	discard
CD->A	CD+ = CDFABGE	discard
CD->F	CD+ = CDABGEF	discard
D->A	only way to get A	keep
D->B	D+ = DAGF	keep
D->G	only way to get G	keep
BADE->C	only way to get C	keep
ABD->E	only way to get E	keep
D->F	only way to get F	keep
EF->B	EF+=EF	discard

We are left with

D->A

D->B

D->G

BADE->C

ABD->E

```
D->F
Reduce multiple attributes on LHS
BADE->C
   B+=B
   A + = A
    D+ = DABGE so we can reduce the LHS to D
ABD->E
   A + = A
   B+=B
   D+ = ABDGE so we can reduce the LHS to D
now we have
D->A
D->B
D->G
D->F
D->C
D->E
(c)
Merge RHS first.
D->ABCEFG
The relation will have these attributes
R1(A,B,C,D,E,F,G)
This relation follows 3NF, so it is the final relation
```

that D is a superkey of R1.

No it does not allow redundancy since if we project FDs onto relations, we can see