

School of Computing First CIA Exam –Aug 2024

Course Code: CSE301 Course Name: Theory of

Computation

Duration: 90 minutes Max

Marks: 50

Answer Key

1. Proof by induction

Basis: $I(0) = 1 = 2^{\circ}$. Root node, it has at most one leaf.

Inductive: $I(i) \le 2^i$ for i=0,1,...n

I(n+1)=2I(n)

 $I(n+1) \le 2 * 2^n = 2^{n+1}$. Thus, true for n, it must be true for

n+1.

2. Generalized transition graph is a transition graph whose edges are labeled with regular expressions. The label of any walk from the initial state to a final state is the concatenation of several regular expressions, and hence itself a regular expression. A complete GTG is a graph in which all edges are present. A complete GTG with |V| vertices has exactly |V|² edges.

3. dfa accepted even number of a's and odd number of b's

4. An nfa without λ -transitions and with a single final state for $\{a\} \cup \{b^n: n \ge 2\}$.

5. Regular grammar L= $\{w : |n_a(w) - n_b(w)| \text{ is odd}\}$.

$$S \rightarrow aA \mid bA$$

 $A \rightarrow aS \mid bS \mid \lambda$

- 6. Family of regular languages is closed under reversal.
 - In a transition graph for a nfa, make the initial vertex a final vertex, and the final vertex the initial vertex, and reverse the direction on all the edges.
 - The modified nfa accepts w^R if and only if the original nfa accepts w. Therefore, the modified nfa accepts L^R, proving closure under reversal.
- 7. Show that L= $\{a^nb^kc^{n+k}: n\geq 0, k\geq 0\}$ is not regular.

Use closure under homomorphism is easier to prove it. Take h(a)=a, h(b)=a, h(c)=c, then $h(L)=\{a^{n+k}c^{n+k}:n+k\geq 0\}=\{a^ic^i:i\geq 0\}$. Known proof is a^ib^i is not regular; therefore, L cannot be regular either.

8. Given grammar is ambiguous: $S \rightarrow aSbS \mid bSaS \mid \lambda$

9. Construct CFG for a C programming language "literal" and "for statement".

Literal → int | float | char | string

For \rightarrow For <initialization>;<expression>;<increment decrement><statement> Initialization \rightarrow declaration | assignment | λ

10. CFL for $S \rightarrow aaSbb \mid SS$ and $S \rightarrow \lambda$

L={ $w \in \{aa, bb\}^* \mid where \mid w_a \mid = \mid w_b \mid and for every prefix <math>v$ of w, $\mid v \mid_a > = \mid v \mid_b \}$.

Eg. $|v|_a = |v|_b =>$ aabb and $|v|_a > |v|_b =>$ aabbaabb (when compare to last bb, number of aa's are greater)

PART - B

11.nfa to dfa conversion

12. a. To prove that the dfa is already in minimal state.

 $(q_0, bb) \in q_4 - non final state$

 $(q_1, bb) \in q_3 - final state$

Therefore, q₀ and q₁ states are distinguishable

 $(q_0, b) \in q_4 - non final state$

(q₂, b) q₃ – final state

Therefore, q₀ and q₂ states are distinguishable

 $(q_1, b) \in q_2$ – non final state

 $(q_2, b) \in q_3$ – final state

Therefore, q₁ and q₂ states are distinguishable

Hence, the given dfa is in minimal states.

b. Construct right-linear grammar with $V = \{q0, q1,... qn\}$ and S = q0.

For each transition $\delta(qi, aj) = qk$ of M, the productions are $qi \rightarrow aj \ qk$.

If gk is in F, then add to P the production gk $\rightarrow \lambda$.

Consider $w \in L$ of the form $w=ai \ aj \dots akal$.

For M to accept this string it must make move on transition

$$\begin{split} \delta\left(q_{0},a_{i}\right) &= q_{p},\\ \delta\left(q_{p},a_{j}\right) &= q_{r},\\ &\vdots\\ \delta\left(q_{s},a_{k}\right) &= q_{t},\\ \delta\left(q_{t},a_{l}\right) &= q_{f} \in F. \end{split} \qquad \begin{aligned} q_{0} &\Rightarrow a_{i}q_{p} \Rightarrow a_{i}a_{j}q_{r} \stackrel{\circ}{\to} a_{i}a_{j} \cdots a_{k}q_{t}\\ &\Rightarrow a_{i}a_{j} \cdots a_{k}a_{l}q_{f} \Rightarrow a_{i}a_{j} \cdots a_{k}a_{l}, \end{aligned}$$

With the grammar G, and $w \in L(G)$.

This implies that $\delta^*(q0, aiaj....akal) = qf$. Completing the proof.

13. a. Find an s-grammar for L= $\{a^nb^{n+1} : n \ge 2\}$

$$S \rightarrow aA_1$$

 $A_1 \rightarrow aA_2$
 $A_2 \rightarrow aA_2B_1 \mid bB_2$
 $B1 \rightarrow b$
 $B2 \rightarrow bB_3$ and $B_3 \rightarrow b$

- i. Grammar (3 marks)
- ii. Example (2 marks)
- b. Construct CFG for the language L={aⁿb^mc^k, k=n+2m, n≥0, m≥0, k≥0}

$$S \rightarrow \mathsf{aSc} \mid \mathsf{B} \mid \lambda \\ \mathsf{B} \rightarrow \mathsf{bBcc} \mid \lambda$$

i. Grammar (3 marks)

Example (2 marks)