PARSING

PCFG, Recursive Neural Network

Document classification, sentiment analysis, QA, conversation agents, summarization, translation

Discourse

Semantics

CommunicationEvent(e) SpeakerContext(s)
Agent(e, Alice) TemporalBefore(e, s)
Recipient(e, Bob)
Word embeddings

Syntax: Constituents

Syntax: Part of Speech

Words

Morphology

Characters
Ref: Prof. Brendan O'Connor, CS 588 Intro to NLP, @UMass

Use Syntax to create sentence level meanings!

talked

to

Semantic embeddings of several words

- Compositionality
- We know how to create a dense vector representation for a word
 - What about larger linguistic units? (e.g. phrase, sentence)
- We can combine smaller units into a larger unit

Image ref: Prof. Regina Barzilay, NLP@MIT

Semantic vectors overview

word phrase sentence paragraph document

- Word vectors
 - Co-occurrence
 - PPMI
 - TFIDF
 - Word2vec
 - CBoW
 - Skip-gram

Doc vectors

Discourse level

- Term-document
 - Bag of words model

Recurrent networks

documents, showing just two of the dimensions, corresponding to the words battle and fool.

The comedies have high values for the fool dimension and low values for the battle dimension.

Semantic vectors overview

How do we represent things in this level? Without ignoring word order (bag of words)

- Word vectors
 - Co-occurrence
 - PPMI
 - TFIDF
 - Word2vec
 - CBoW
 - Skip-gram

- Doc vectors
 - Term-document
 - Bag of words model
 - Doc2Vec
 - LDA2Vec
 - Recurrent networks

Parsing and representation big picture

Parsing and representation big picture

Recursive vs Recurrent representation

Cases where recursive might be better?

But recurrent structures might be able to learn this too...

Application of parse trees: info

extraction

parse tree + rule based extraction = more robust

A side note: discourse parsing

at tropical latitudes is warm enough to thaw ice

Image ref: Prof. Regina Barzilay, NLP@MIT

Overview

- Types of grammars
 - Context Free Grammar
 - Probabilistic Context Free Grammar
 - CYK parser
 - Dependency Grammar
 - Transition-based parsing
 - Recursive neural networks

Constituents

- Groups of words behaving as a single units
 - Ex: Noun phrase

Harry the Horse

The reason he comes into the house

They

A high-class spot such as Mindy's

- Checking for constituents
 - See if they can appear in similar syntactic environments

They sit...

The reason he comes into the house is...

Context-Free Grammar (CFG)

- A grammar specifies what kind of parse tree can be generated.
- CFG or Phrase-Structure Grammars assumes the grammar is context-free
 - Most forms of natural language are context-free
 - Thai and English are typically CFG languages
 - Used in many programming languages
- CFG is based on constituents structures

A context-free grammar example

- A CFG is defined by $G = (N, S, \Sigma, R)$
- N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN} Nonterminals
- S = S Starting symbol
- Σ = {sleeps, saw, man, woman, telescope, the, with, in}

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

Terminals

Production rules

X -> Y₁...Y_n

Y_i can be terminal or
nonterminal

The rule only relies on
X (no context)
(vs context-sensitive)

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

Generation using left-most derivation

strategy

Recursive strategy

rhs = right_hand_side(rule)

rule = choose (rules(A))

```
NP
             VP
VP
        Vi
        Vt
            NP
VP
        VP
            PP
NP
        DT
            NN
NP
        NP
            PP
PP
        IN
            NP
```

```
Vi
            sleeps
Vt
            saw
NN
            man
NN
            woman
NN
            telescope
DT
            the
      \Rightarrow
IN
            with
      \Rightarrow
IN
            in
```

To generate we call left_most_derivation(S) (top down)

return concatenate([left_most_derivation(A') for A' in rhs])

 A string belongs to the language of a CFG if there exist a sequence of left-most derivation that can generate the string

$$L = \{s \in \Sigma^* | s = left_most_derivation(S)\}$$

The woman saw the man with the telescope

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

The woman saw the man with the telescope

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

• The woman saw the man with the telescope

R =	S	\Rightarrow	NP	VP
	VP	\Rightarrow	Vi	
	VP	\Rightarrow	Vt	NP
	VP	\Rightarrow	VP	PP
	NP	\Rightarrow	DT	NN
	NP	\Rightarrow	NP	PP
	PP	\Rightarrow	IN	NP

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

• The woman saw the man with the telescope

R =	S	\Rightarrow	NP	VP
	VP	\Rightarrow	Vi	
	VP	\Rightarrow	Vt	NP
	VP	\Rightarrow	VP	PP
	NP	\Rightarrow	DT	NN
	NP	\Rightarrow	NP	PP
	PP	\Rightarrow	IN	NP

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

• The woman saw the man with the telescope

R =	S	\Rightarrow	NP	VP
	VP	\Rightarrow	Vi	
	VP	\Rightarrow	Vt	NP
	VP	\Rightarrow	VP	PP
	NP	\Rightarrow	DT	NN
	NP	\Rightarrow	NP	PP
	PP	\Rightarrow	IN	NP

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

The woman saw the man with the telescope

Ambiguities

- There can be multiple derivations for the same string
- These sentences are ambiguous as each parse represents a different meaning

Probabilistic Context-Free Grammar

Production rules now have probabilities

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

The probability of a (sentence, parse tree) pair is

$$p(S,T) = \prod_{i=1}^{m} p(\alpha_i \to \beta_i | \alpha_i)$$

m is the number of transitions

 $P(NN \rightarrow man \mid NN) = 0.7$

P(S,T)

• P(S,T) = [1.0 * 0.3 * 1.0 * 0.2] * [0.4 * 1.0 * 0.7 * (0.3 * 1.0 * 0.7) * (1.0 * 0.5 * 0.3 * 1.0 * 0.1)]

IN

with

NP

NN

telescope

DT

the

DT

the

NN

man

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Estimating transition probabilities

Counts from training set!

$$P(S \to NP \ VP|S) = \frac{count(S \to NP \ VP)}{count(S)}$$

PCFG related questions

- What is the most likely parse? (parsing task)
 - argmax_T P(T,S)
- What is the probability of the sentence, P(S)? (Language modeling task)
 - $P(S) = \Sigma_T P(T,S)$

How?
Dynamic programming
(CYK algorithm –
Cocke–Younger–Kasami algorithm)

WULBER

OXX.

Chomsky Normal Form

- CYK can be used if the CFG is in Chomsky Normal Form
- A CFG is in Chomsky Normal Form if each rule either converts to two nonterminals or a single terminal.

$$X \rightarrow Y_1 Y_2$$

Uppercase letters mean nonterminal Lowercsae letters mean terminal

$$X \rightarrow y$$

- Any CFG can be converted to CNF
 - For example NP -> DT, ADJ, NN
 - Turns into two rules
 - NP -> DT, ADJP
 - ADJP -> ADJ, NN

- N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN} Nonterminals
- S = S Starting symbol
- Σ = {sleeps, saw, man, woman, telescope, the, with, in}

S	\Rightarrow	NP	VP
VP	\Rightarrow	Vi	
VP	\Rightarrow	Vt	NP
VP	\Rightarrow	VP	PP
NP	\Rightarrow	DT	NN
NP	\Rightarrow	NP	PP
DD		TNI	NID

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
TAT		2

Production rules

X -> Y₁... Y_n

Y_i can be terminal or nonterminal

The rule only relies on X (no context)

(ys context-sensitive)

Terminals

CYK algorithm for parsing

3 dimensional

probability that words i to j can be generated by nonterminal N

• Base case:
$$\pi(i,i,N) = P(N \to w_i|N)$$

Inductive case:

k is the index that splits the subsentence

$$\pi(i,j,N) = \max_{k,P,Q} Pr(N \to P|Q|N) \cdot \pi(\underline{i,k},P) \cdot \pi(\underline{k+1,j},Q)$$

where
$$k \in \{i, ..., j-1\}$$
, $P \in \mathcal{N}$, and $Q \in \mathcal{N}$.

Saves the rule that gave max probability to backtrack

CYK algorithm for language modeling

• $\pi(i,j,N)$ probability that words i to j can be generated by nonterminal N

• Base case:
$$\pi(i,i,N) = P(N \to w_i|N)$$

Inductive case:

$$\pi(i,j,N) = \max_{k,P,Q} Pr(N \to P|Q|N) \cdot \pi(i,k,P) \cdot \pi(k+1,j,Q)$$

$$\operatorname{argmax}_{\mathsf{T}} \mathsf{P}(\mathsf{T},\mathsf{S}) \quad \text{vs} \quad \mathsf{P}(\mathsf{S}) = \Sigma_{\mathsf{T}} \mathsf{P}(\mathsf{T},\mathsf{S})$$

$$\pi(i,j,N) = \sum_{k,P,Q} P(N \to P | Q|N) \cdot \pi(\underline{i,k,P}) \cdot \pi(\underline{k+1,j,Q})$$

where
$$k \in \{i, ..., j-1\}$$
, $P \in \mathcal{N}$, and $Q \in \mathcal{N}$.

Language modeling example CYK with

PCFG

$$\cdot N = \{A, B\}$$

•
$$\Sigma = \{a, b, c\}$$

•
$$S = \{A\}$$

$A \rightarrow AB$	0.8
$A \rightarrow a$	0.2
$B \to BB$	0.7
$B \rightarrow b$	0.1
$B \rightarrow c$	0.2

$$\pi(i,j,N)$$

Α

а		
b		
С		

В

а		
b		
С		

Base case

•
$$N = \{A, B\}$$

•
$$\Sigma = \{a, b, c\}$$

•
$$S = \{A\}$$

$$B \rightarrow c$$
 0.2

0.8

0.2

0.7

0.1

 $A \rightarrow AB$

$$\pi(i,i,N) = P(N \to w_i|N)$$

Α

а	0.2		
b		0	
С			0

В

а	0		
b		0.1	
С			0.2

1st step

•
$$N = \{A, B\}$$

•
$$\Sigma = \{a, b, c\}$$

$$-S = \{A\}$$

$A \rightarrow AB$	0.8
$A \rightarrow a$	0.2
$B \rightarrow BB$	0.7
$B \rightarrow b$	0.1
$B \rightarrow c$	0.2

$$\pi(i,j,N) = \sum_{k,P,Q} P(N \to P|Q|N) \cdot \pi(i,k,P) \cdot \pi(k+1,j,Q)$$

В

A

а	0.2				
b			0		
С				0	
		0:-		 :	

а	0		
b		0.1	
С			0.2

Only consider i, j where i < j

1st step

•
$$N = \{A, B\}$$

•
$$\Sigma = \{a, b, c\}$$

$$-S = \{A\}$$

$$A \rightarrow AB$$
 0.8
 $A \rightarrow a$ 0.2
 $B \rightarrow BB$ 0.7
 $B \rightarrow b$ 0.1
 $B \rightarrow c$ 0.2

$$\pi(i,j,N) = \sum_{k,P,Q} P(N \to P|Q|N) \cdot \pi(i,k,P) \cdot \pi(k+1,j,Q)$$

Α

$$\pi[1,2,A] = P(A \to AA) \cdot P(A \to a|A) \cdot P(A \to b|A) + P(A \to AB) \cdot P(A \to a|A) \cdot P(B \to b|B) + P(A \to BA) \cdot P(B \to a|B) \cdot P(A \to b|A) + P(A \to BB) \cdot P(B \to a|B) \cdot P(B \to b|B) = 0 + P(A \to AB) \cdot \pi[1,1,A] \cdot \pi[2,2,B] + 0 + 0 = 0.8 \cdot 0.2 \cdot 0.1 = 0.016$$

1st step

 $-S = \{A\}$

Find P("abc")

$$A oup AB$$
 0.8
 $A oup a$ 0.2
 $B oup BB$ 0.7
 $B oup b$ 0.1
 $B oup c$ 0.2

$$\pi(i,j,N) = \sum_{k,P,Q} P(N \to P|Q|N) \cdot \pi(i,k,P) \cdot \pi(k+1,j,Q)$$

$$\pi(1,2,B) = P(B \rightarrow BB)P(B\rightarrow a|B)P(B\rightarrow b|B)$$

= $P(B \rightarrow BB)\pi(1,1,B)\pi(2,2,B)$
= $0.7*0*0.1 = 0$

В

а	0	0	
b		0.1	
С			0.2

2nd step

•
$$N = \{A, B\}$$

•
$$\Sigma = \{a, b, c\}$$

$$-S = \{A\}$$

$$A \rightarrow AB$$
 0.8
 $A \rightarrow a$ 0.2
 $B \rightarrow BB$ 0.7
 $B \rightarrow b$ 0.1
 $B \rightarrow c$ 0.2

$$\pi(i,j,N) = \sum_{k,P,Q} P(N \to P|Q|N) \cdot \pi(i,k,P) \cdot \pi(k+1,j,Q)$$

В

A

а	0.2	0.016	
b		0	0
С			0

а	0	0	
b		0.1	0.014
С			0.2

$$\pi(2,3,A) = P(A \rightarrow A B)\pi(2,2,A)\pi(3,3,B) = 0.8*0*0.2 = 0$$

2nd step

•
$$N = \{A, B\}$$

•
$$\Sigma = \{a, b, c\}$$

$$-S = \{A\}$$

$A \rightarrow AB$	0.8
$A \rightarrow a$	0.2
$B \to BB$	0.7
$B \rightarrow b$	0.1
$B \rightarrow c$	0.2

$$\pi(i,j,N) = \sum_{k,P,Q} P(N \to P|Q|N) \cdot \pi(i,k,P) \cdot \pi(k+1,j,Q)$$

Α

а	0.2	0.016	
b		0	0
С			0

а	0	0	
b		0.1	0.014
С			0.2

$$\pi(2,3,B) = P(B \rightarrow B B)\pi(2,2,B)\pi(3,3,B) + 0 = 0.7*0.1*0.2 = 0.014$$

В

Finish

•
$$N = \{A, B\}$$

•
$$\Sigma = \{a, b, c\}$$

$$-S = \{A\}$$

$$A \rightarrow AB$$
 0.8
 $A \rightarrow a$ 0.2
 $B \rightarrow BB$ 0.7
 $B \rightarrow b$ 0.1
 $B \rightarrow c$ 0.2

$$\pi(i,j,N) = \sum_{k,P,Q} P(N \to P|Q|N) \cdot \pi(i,k,P) \cdot \pi(k+1,j,Q)$$

B

A

а	0.2	0.016	0.0048
b		0	0
С			0

а	0	0	0
b		0.1	0.014
С			0.2

$$\pi(1,3,A) = P(A \rightarrow A B)\pi(1,2,A)\pi(3,3,B) + P(A \rightarrow A B)\pi(1,1,A)\pi(2,3,B)$$

= 0.8 * 0.016 * 0.2 + 0.8 * 0.2 * 0.014 = 0.0048

PCFG weakness

- Lack of sensitivity to lexical info (does not consider semantics)
- Lack of sensitivity to structural frequency

Lack of lexical info

The probabilities only see terminals and expansions

The street in the car

Lack of sensitivity to structural frequency

Both trees have same expansion and so same probability

Turns out, left hand side structure appears more frequently in the training set

Methods to improve PCFG

- Add lexical information to the tree
 - Label each node with associate words
 - Lexicalized trees
 - Latent variable grammars
- Look at bigger portions of the tree at a time

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Lexicalized tree

Overview

- Types of grammars
 - Context Free Grammar
 - Probabilistic Context Free Grammar
 - CYK parser
 - Dependency Grammar
 - Transition-based parsing
 - Recursive neural networks

Dependency grammar

- CFG is based on constituency relation
- In dependency grammar the structure is composed of lexical items (words) linked by edges to form a tree
- Assumptions
 - Each words in a sentence is related or modifies another word
 - All words have a direct or indirect relation to the main verb

Example

- Add ROOT node as the root of the tree
- The main verb always point to ROOT

A -> B means
A governs B or
B depends on A

A is the head of B

- Each arc can have a category for the relationship.
- Each word can have a PoS label

Constituency structures vs dependency structures

Figure 14.1 A dependency-style parse alongside the corresponding constituent-based analysis for *I prefer the morning flight through Denver.*

Constituency structures vs dependency structures

- Constituency structures use more nodes to represent sentences at different levels.
- Constituency structures explicitly label non-terminal nodes (NP vs VP)
- Constituency structures encode more info than dependency structures
- You can convert constituency structures to dependency structures
 - Dependency parsers trained on this is usually better than dependency parsers trained on original dependency structures

Criteria for heads (basics)

- Head, H. Dependent D
- D modifies H
 - Big (D) dogs (H), willow (D) tree (H)
- H can often replace D
 - I love big (D) dogs (H) -> I love dogs
- H is obligatory while D sometimes is optional
- H determines whether D is obligatory
 - Sarah sneezed (H) vs George kicks (H) the chair (D)
- More criterias! Mostly depends on corpus

Dependency and meaning

Scientists study whales from space

Scientists study whales from space

Dependency and meaning

Scientists study whales from space

Scientists study whales from space

Sample Thai sentences

- วัน หนึ่ง เกิด เหตุ ที่ ไม่ คาดคิด ขึ้น มา
- การ ที่ เรา จะ รู้ ถึง สิ่ง เหล่านั้น ได้ ก็ ต้อง อาศัย ปัจจัย หลาย ๆ อย่าง ประกอบ เข้า ด้วยกัน

Sample Thai sentences

Sample Thai sentences

Note these criteria depends on the corpus convention

Dependency graph requirements

- Syntactic structure is complete (connectedness, spanning)
- Hierarchical (acyclic)
- Every word has a single head

Projectivity

A dependency graph is projective if the arcs do not cross

English and Thai are mostly projective.

Some languages are more non-projective than others, for example German, Dutch, Czech.

When picking a parser algo, check whether it assumes projectivity

Transition-based parsing (Nivre 2007)

- Use a stack and buffer data structure and sequentially add edges
- Characteristics
 - Greedy algo. Only goes left to right. No backtracking
 - Fast O(n)
 - Requires projectivity
 - The algo is closely related to how human parse sentences (left to right one word at a time instead of looking at the sentence as a whole)

Arc-standard Transition-based parsing

- A stack σ, written with top of the stack to the right
 - Starts with the ROOT symbol
- A buffer β, written with top to the left
 - Starts with the input sentence
- A set of dependency arcs A
 - Starts of empty

$$\sigma = [ROOT], \beta = w_1, ..., w_n, A = \emptyset$$

- A set of actions
- 1. Shift $\sigma, w_i | \beta, A \rightarrow \sigma | w_i, \beta, A$ Move buffer to stack
- 2. Left-Arc_r $\sigma|w_i|w_j$, β , $A \rightarrow \sigma|w_j$, β , $A \cup \{r(w_j,w_i)\}$
- 3. Right-Arc, $\sigma|w_i|w_j$, β , $A \rightarrow \sigma|w_i$, β , $A \cup \{r(w_i, w_j)\}$
 - Finishes when β becomes empty

I ate fish

I ate fish

Left Arc

Discriminative parsing

- How to choose an action?
 - Shift, left-arc, right-arc
- Each action is predicted by a discriminative classifier (SVM, logistic regression, Neural networks) over legal moves
 - Features: top two word from stack, POS, children info; first word in buffer, POS, children info; etc.
- Greedy and no beamsearch
 - But you can include beamsearch (modern parsers do)

Discriminative parsing with neural networks

Shift, left, right (in actual, left/right + type of dependency) So 2N+1, where N = dependency types

https://cs.stanford.edu/people/danqi/papers/emnlp2014.pdf

Improvements

- Bigger networks
- Beam search
- Global inference over the sequence (CRF style)
- Lead to SyntaxNet and Parsey McParseFace model

https://github.com/tensorflow/models/tree/master/research/syntaxnet

https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Parsing evaluation

- Labeled parsing accuracy (LAS)
- Unlabeled parsing accuracy (UAS)

Acc =	# correct deps	
	# of deps	
UAS =	4/5 = 80%	
LAS =	2/5 = 40%	

Go	old		
1	2	She	nsubj
2	0	saw	root
3	5	the	det
4	5	video	nn
5	2	lecture	obj

Pa	rse		
1	2	She	nsubj
2	0	saw	root
3	4	the	det
4	5	video	nsubj
5	2	lecture	ccomp

UAS of Parsey McParseFace

Model	News	Web	Questions	
Martins et al. (2013)	93.10	88.23	94.21	
Zhang and McDonald (2014)	93.32	88.65	93.37	
Weiss et al. (2015)	93.91	89.29	94.17	
Andor et al. (2016)*	94.44	90.17	95.40	
Parsey McParseface	94.15	89.08	94.77	

Recursive neural networks

- Not really used in parsing anymore but interesting concept
- Recursive vs Recurrent

Recursive neural networks

- Concept: try different connections, see if which one gives the highest score (graph-based dependency parsers)
- Inputs: two candidate children representations
- Output:
 - Semantic representation of the parent
 - Score of new node

Shared recursive structure

score =
$$U^T p$$

$$p = \tanh(W\binom{c_1}{c_2} + b),$$

Same W parameters at all nodes of the tree

Parsing with recursive networks

Follow the highest scoring pair

http://ai.stanford.edu/~ang/papers/icml11-ParsingWithRecursiveNeuralNetworks.pdf

Recursive neural networks for scene parsing

Resources for parsing

- Orchid & some corpus in development by NECTEC
- http://universaldependencies.org/

-		Russian	3	1,226K	₽©0 W	IE, Slavic
F	8	Sanskrit	1	1K	8	IE, Indic
-	3	Serbian	1	86K	■W	IE, Slavic
+	2	Slovak	1	106K	8 @0	IE, Slavic
	-	Slovenian	2	170K		IE, Slavic
+	E	Spanish	3	1,004K	⊞ ©W	IE, Romance
	+	Swedish	3	195K		IE, Germanic
+	+	Swedish Sign Language	1	1K	Q	Sign Language
	8	Tamil	1	9K		Dravidian, Southern
+	-	Telugu	1	6K	7	Dravidian, South Central
		Thai	1	23K	■W	Tai-Kadai
þ.	0	Turkish	2	74K	■6 W	Turkic, Southwestern
		Ukrainian	1	100K	<u> </u>	IE, Slavic
		Upper Sorbian	1	10K	0 W	IE, Slavic
		Urdu	1	138K		IE, Indic
-	*200	Uyghur	1	15K	8	Turkic, Southeastern
-	*	Vietnamese	1	43K		Austro-Asiatic

Recursive vs Recurrent representation

resurgence of recursive idea in newer BERTs

Towards unsupervised dependency parsing

Towards unsupervised dependency parsing

Discourse

Semantics

CommunicationEvent(e) SpeakerContext(s)
Agent(e, Alice) TemporalBefore(e, s)
Recipient(e, Bob)
Word embeddings

Syntax: Constituents

Syntax: Part of Speech

Words

Morphology

Characters
Ref: Prof. Brendan O'Connor, CS 586 Intro to NLP, @UMass

An top down end-to-end approach

- Input: text
- Output: some task, sentiment analysis score
- Automatically gets parse tree (without any treebank corpus)

Example of generated parse tree

Three men are socializing during happy hour

Workers filling orders at Basking Robbins https://arxiv.org/pdf/1705.09207.pdf

Can also use recursive neural networks to learn unsupervised parse trees Example https://arxiv.org/pdf/1707.02786.pdf

Summary

- Parsing
- Types of grammars
 - Context Free Grammar
 - Probabilistic Context Free Grammar (Constituency parsers)
 - CYK parser
 - Dependency Grammar (Dependency parsers)
 - Transition-based parsing
 - Recursive Neural networks