

Fundamentos de Machine Learning

Índice

- 1. Introducción
- 2. Tipos de machine learning
- 3. Vecinos más próximos
 - a. Evaluación y selección del modelo
- 4. ¿Cómo elegir el algoritmo adecuado?
- 5. Principios del aprendizaje
- 6. Ciclo de vida de un proyecto en ML
- 7. ML en la vida real

La ciencia de

- "Proporcionar a los ordenadores la capacidad de aprender a tomar decisiones a partir de los datos, sin ser programados explícitamente para ello" Arthur Samuel, 1959
- Útil cuando no se puede utilizar una fórmula que describa la realidad, pero sí dispones de datos para construir una solución empírica

https://ai.google/research/teams/brain/healthcare-biosciences

■ ¿Y qué NO es? Diferencias con la IA

- La inteligencia artificial es la "ciencia e ingenio de hacer máquinas inteligentes, especialmente programas de cómputo inteligentes" – McCarthy, 1956
- La definición es difusa: inteligencia llevada a cabo por máquinas.
 - Técnicamente, la percepción del entorno y consecución de objetivos se considera inteligencia.
 - La definición más aceptada socialmente incluye funciones cognitivas: percepción, razonamiento, resolución.

Y qué NO es? Diferencias con la IA

- IA estrecha o *narrow*: Resuelve una tarea de forma igual o superior a un humano. DeepBlue (sin ML!), AlphaGo (RL). No va más allá de esa tarea; cualquier otra actividad escapa a su comprensión. AlphaGo es capaz de vencer a los grandes maestros del Go, pero no puede pedir una pizza. De hecho, ni siquiera sabe que está jugando al Go.
- IA general o *AGI*: Inteligencia a nivel humano. Según dicen, estamos cerca de alcanzarla; aunque hace dos décadas también decían que lo estábamos (spoiler: no lo estábamos)
- Super inteligencia o *ASI*: Superior a los humanos en cualquier ámbito, incluyendo creatividad artística y habilidades sociales.

https://bdtechtalks.com/2017/05/12/what-is-narrow-general-and-super-artificial-intelligence/

Diferencias con *Deep Learning*

- Redes neuronales (algoritmo de machine learning)
- Arquitecturas complejas (profundas)
- Teorizadas en los años 50, recuperadas gracias a GPUs y datos masivos (digitalización)
- Grandes resultados (superior a humanos) en datos estructurados y algoritmos supervisados
 - Imagen médica
 - Gaming

AI, ML y DL

Fuente: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

Relación entre ML y ciencia de datos

Estado actual

Las empresas más grandes llevan algunos años con estas tecnologías implantadas; se van extendiendo paulatinamente.

El impacto es real, pero hay humo. Mucho humo. Por todas partes.

TECH ARTIFICIAL INTELLIGENCE

Forty percent of 'Al startups' in Europe don't actually use Al, claims report

Companies want to take advantage of the AI hype

By James Vincent | Mar 5, 2019, 8:14am EST

Fuente: https://www.theverge.com/2019/3/5/18251326/ai-startups-europe-fake-40-percent-mmc-report

■ ¿Y en lo laboral?

	Business-Oriented	Engineering-Oriented
Emerging	 Data Analyst Data Scientist Data/ML Product Manager 	Data EngineerML Researcher/ScientistML/DL/AI Engineer
Traditional	Business Analyst (Various Functions)BI Analyst	BI Engineer/Developer DATAKADEMY

Fuente: https://hackernoon.com/navigating-the-data-science-career-landscape-db746a61ac62

Índice

- 1. Introducción
- 2. Tipos de machine learning
- 3. Vecinos más próximos
 - a. Evaluación y selección del modelo
- 4. ¿Cómo elegir el algoritmo adecuado?
- 5. Principios del aprendizaje
- 6. Ciclo de vida de un proyecto en ML
- 7. ML en la vida real

Tipos de *machine learning*

https://medium.com/marketing-and-entrepreneurship/10-companies-using-machine-learning-in-cool-ways-887c25f913c3

Aprendizaje supervisado

$$\{\mathbf{x}^{(i)}, y^{(i)}\} \propto p(x, y) \text{ i.i.d.},$$

$$\mathbf{x}^{(i)} \in \mathbb{R}^d,$$
 $y^{(i)} \in \mathbb{R},$
 $i = 1, \dots, N,$
 $f_{\omega}(\mathbf{x}^{(i)}) \approx y^{(i)}$

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.8	2.8	5.1	2.4
1	6.0	2.2	4.0	1.0
2	5.5	4.2	1.4	0.2
3	7.3	2.9	6.3	1.8
4	5.0	3.4	1.5	0.2

	Species
0	virginica
1	versicolor
2	setosa
3	virginica
4	setosa

Iris data set: https://es.wikipedia.org/wiki/Iris_flor_conjunto_de_datos

Clasificación y regresión (supervisado)

Clasificación

- La variable objetivo y es discreta
- Ej: Apto / No apto
- Regresión logística

Regresión

- La variable objetivo y es continua
- Ej: Nota del examen
- Regresión lineal

Clasificación y regresión (supervisado)

Clasificación

Regresión

Aprendizaje no supervisado (ya estudiado)

$$\{\mathbf{x}^{(i)}\} \propto p(x)$$

aprender sobre p

Generalización

No solo buscamos que el entrenamiento tenga buen resultado:

$$f_{\omega}(x^{(i)}) \approx y^{(i)}$$

También que lo tenga el subconjunto de test:

$$f_{\omega}(x^{(new)}) \approx y^{(new)}$$

Paramétricos vs no paramétricos

<u>Paramétricos</u>: el modelo tiene un conjunto limitado de parámetros

- Regresión lineal
- Regresión logística
- Naïve Bayes
- Redes neuronales
- Eficientes: sencillos de entrenar
- Menos complejos

No paramétricos: la complejidad aumenta con el número de muestras

- Vecinos más próximos K-NN
- Kernel SVM
- Árboles de decisión

- Más flexibles
- Computacionalmente costosos

Índice

- 1. Introducción
- 2. Tipos de machine learning
- 3. Vecinos más próximos
 - a. Evaluación y selección del modelo
- 4. ¿Cómo elegir el algoritmo adecuado?
- 5. Principios del aprendizaje
- 6. Ciclo de vida de un proyecto en ML
- 7. ML en la vida real

■ Vecinos más próximos (K-NN)

- Del inglés, K-Nearest Neighbors
- Puede utilizarse en **clasificación** y en regresión (más adelante)

☐ Si k=3: Rojo

☐ Si k=5: Azul

Matemáticamente:

$$f(\mathbf{x}_0) = y_i$$

 $i = \arg\min_{j} (||\mathbf{x}_j - \mathbf{x}_0||_2)$

Fuente: https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

Let's code!

■ Train + test: sobreajuste

Model complexity

Limitaciones train + test

- Si las muestras de entrenamiento son escasas, el error en test puede ser muy variable, dependiendo de las muestras incluidas en el conjunto de entrenamiento y el conjunto de test.
- No permite seleccionar los parámetros del modelo

■ Entrenamiento + validación + test

- Rápido y sencillo
- Mucha varianza (mismas limitaciones que caso anterior)

■ Validación cruzada: k-fold *cross-validation*

© All rights reserved. www.keepcoding.i

■ Validación cruzada: Paso 1

Validación cruzada: Paso 2

for n = 1: Nyecinos

$$\begin{array}{c|c} \rightarrow \operatorname{Err}_{n,2} \\ \rightarrow \operatorname{Err}_{n,3} \\ \rightarrow \operatorname{Err}_{n,4} \end{array} \middle| \operatorname{Err}_n = \frac{1}{5} \sum_{i=1}^5 \operatorname{Err}_{n,i} \bigcirc$$

$$n_{opt} = \arg\min_{n} \left(\operatorname{Err}_{n} \right)$$

end

■ Validación cruzada: Paso 3

Consideraciones sobre k-fold *CV*

- Si K = N (número de muestras) se tiene leave-one out CV
 - N-1 muestras para entrenar, y 1 muestra para medir prestaciones
 - El conjunto de entrenamiento es muy parecido para cada fold ⇒ la estimación del error de tiene poco sesgo, pero mucha varianza.
 - Es computacionalmente costoso
- En la práctica K = 5, 10 proporciona buenos resultados, buen compromiso entre sesgo y varianza

CV en series temporales

No es un proceso i.i.d

Time series cross-validation

A

Let's code!

Índice

- 1. Introducción
- 2. Tipos de machine learning
- 3. Vecinos más próximos
 - a. Evaluación y selección del modelo
- 4. ¿Cómo elegir el algoritmo adecuado?
- 5. Principios del aprendizaje
- 6. Ciclo de vida de un proyecto en ML
- 7. ML en la vida real

■ ¿Cómo elegir el algoritmo adecuado?

- No free lunch, no hay un algoritmo mejor que otro para todos los problemas
- "All models are wrong, but some are useful", George Box

Algunas consideraciones

- Compromiso sesgo-varianza
- Ruido y número de muestras de entrenamiento
- Complejidad de la solución
- Dimensionalidad del conjunto de entrada

Otros factores

- Heterogeneidad de los datos
 - Árboles vs algoritmos basados distancia
- Redundancia
 - Métodos lineales
- Interacciones y relaciones complejas

Let's code!

Índice

- 1. Introducción
- 2. Tipos de machine learning
- 3. Vecinos más próximos
 - a. Evaluación y selección del modelo
- 4. ¿Cómo elegir el algoritmo adecuado?
- 5. Principios del aprendizaje
- 6. Ciclo de vida de un proyecto en ML
- 7. ML en la vida real

Principios del aprendizaje

- Navaja de Occam: el modelo más simple es el más plausible
- Sesgo en la población: el aprendizaje también estará sesgado
 - Manipulación en el conjunto de test
 - Normalización de variables
 - Selección de características

Índice

- 1. Introducción
- 2. Tipos de machine learning
- 3. Vecinos más próximos
 - a. Evaluación y selección del modelo
- 4. ¿Cómo elegir el algoritmo adecuado?
- 5. Principios del aprendizaje
- 6. Ciclo de vida de un proyecto en ML
- 7. ML en la vida real

ML pipeline: general

· Reducción de

dimensionalidad

 Combinación de variables

Estadística

Correlación

■ ML pipeline: específico

Errores muy distintos (overfitting):

- 1. Conseguir más muestras de entrenamiento
- 2. Reducir el número de variables
- 3. Aumentar el valor del parámetro de regularización

Errores similares, pero de valor elevado:

- 1. Añadir nuevas variables
- 2. Añadir variables polinómicas y/ointeracciones
- 3. Disminuir el valor del parámetro de regularización

Índice

- 1. Introducción
- 2. Tipos de machine learning
- 3. Vecinos más próximos
 - a. Evaluación y selección del modelo
- 4. ¿Cómo elegir el algoritmo adecuado?
- 5. Principios del aprendizaje
- 6. Ciclo de vida de un proyecto en ML
- 7. ML en la vida real

Principios básicos

- Definición del problema: elegir la tarea de ML adecuada
 - Probabilidad de que un cliente deje de usar la aplicación: ¿regresión, clasificación, clustering?
- Recopila datos, análisis exploratorio, y después (si es necesario), aplica ML (no comenzar con deep learning)
- Mide el impacto:
 - ¿De verdad necesitas un algoritmo de ML? ¿y qué beneficios vas a obtener? ¿y cómo mides esos beneficios?
- Explicar los resultados
 - Interpretabilidad y comunicación
 - Sistemas de recomendación mejoran si se dicen causas de recomendación

Referencias

- An Introduction to Statistical Learning.
 - Capítulos 2, 5.
- Machine Learning a Probabilistic Perspective.
 - Capítulo 1
- Hands On Machine Learning.
 - Capítulo 1

