Gelijkstroomtheorie

1.1 Opgaven

1.1. Gegeven is het netwerk in figuur P1.1 met stroomtakken. Bereken de stroom *I*.

Figuur P1.1: Stroomvoerende verbindingen.

1.2. Gegeven is het netwerk in figuur P1.2 met stroomtakken. Bereken de stroom *I*.

Figuur P1.2: Stroomvoerende verbindingen.

- **1.3.** Gegeven is de netwerken in figuur P1.3 met spanningsbronnen. Bereken van beide netwerken de spanning U_X .
- **1.4.** Drie weerstanden van $1,2\,k\Omega$, $2,7\,k\Omega$ en $3,9\,k\Omega$ zijn in serie geschakeld. Bepaal de totale weerstand.
- **1.5.** Drie weerstanden van 2,7 k Ω , 5,6 k Ω en 8,2 k Ω zijn parallel geschakeld. Bepaal de totale weerstand.
- **1.6.** Gegeven is het netwerk in figuur P1.4. Bepaal de totale weerstand tussen de punten A en B.

Figuur P1.3: Spanningsbronnen in een kring.

Figuur P1.4: Netwerk van weerstanden.

1.7. Gegeven het weerstandsnetwerk in figuur P1.5. Bepaal de vervangingsweerstand tussen de punten A en B.

Figuur P1.5: Laddernetwerk van weerstanden.

1.8. Gegeven is het netwerk in figuur. Bepaal de spanningen U_1 en U_2 .

Figuur P1.6: Netwerk met spanningsbron en weerstanden.

1.9. Gegeven is het netwerk in figuur P1.7. De interne weerstand van de spanningsmeter is $10 \,\mathrm{M}\Omega$. Bereken spanning die de spanningsmeter meet.

Figuur P1.7: Netwerk van weerstanden en spanningsmeter.

1.10. Gegeven is het netwerk in figuur P1.8. De waarden voor de weerstanden is als volgt: $R_1 = 100 \,\Omega$, $R_2 = 150 \,\Omega$ en $R_L = 200 \,\Omega$. Bepaal de vervangingsweerstand tussen de punten A en B.

Figuur P1.8: Netwerk van weerstanden.

- **1.11.** Gegeven is het netwerk in figuur P1.8. De waarden voor de weerstanden is als volgt: $R_1 = 25 \,\Omega$, $R_2 = 100 \,\Omega$ en $R_L = 75 \,\Omega$. Bepaal de vervangingsweerstand tussen de punten A en B.
- **1.12.** Gegeven is het weerstandennetwerk in figuur P1.8. De waarden van de weerstanden zijn als in opgave 1.11. Tussen de punten A en B worden een ideale spanningsbron aangesloten met de waarde $U_{AB} = 1 \text{ V}$. Bepaal de spanningen op punt X en Y (dus U_{XB} en U_{YB}).
- * 1.13. Gegeven is het weerstandennetwerk in figuur P1.8. We stellen nu dat R_{AB} gelijk is aan R_L , dus als we het netwerk inkijken vanuit de punten A en B dan meten we dezelfde waarde als R_L (ja dat kan, zie de uitkomsten van opgave 1.10 en 1.11). Bewijs nu dat geldt:

$$R_I^2 = \sqrt{R_1^2 + 2R_1R_2} \tag{P1.1}$$

Hint: stel eerst de vergelijking op voor de vervangingsweerstand R_{AB} , dus zoiets als $R_{AB} = \dots$ (een functie van R_1 , R_2 en R_L). Vul daarna voor R_{AB} gewoon R_L in, dus dan krijgen we iets van $R_L = \dots$ (een functie van R_1 , R_2 en R_L). Daarna is het gewoon wat eenvoudige wiskunde. Stug doorrekenen en zorgen dat de basisregels van de rekenkunde netjes gehanteerd worden.

* **1.14.** Gegeven is het weerstandennetwerk in figuur P1.8. We stellen nu dat R_{AB} gelijk is aan R_L , dus als we het netwerk inkijken vanuit de punten A en B dan meten we

4

dezelfde waarde als R_L (ja dat kan, zie de uitkomsten van opgave 1.10 en 1.11). Bewijs nu dat geldt:

$$\frac{U_{YB}}{U_{AB}} = \frac{R_L - R_1}{R_L + R_1} \tag{P1.2}$$

Hint: deze is ondoenlijk, maar wel leuk. Hierbij komt echt inzicht kijken.

1.15. Gegeven is het netwerk in figuur P1.9. Het netwerk bestaat uit een parallelschakeling van een weerstand van $3,3\,\mathrm{k}\Omega$ en een weerstand van $5,6\,\mathrm{k}\Omega$. In serie met deze (deel-)schakeling staat een onbekende weerstand R_X . De bron levert een spanning van $48\,\mathrm{V}$ en een onbekende stroom I_X . De deelstroom door de weerstand van $5,6\,\mathrm{k}\Omega$ is $5\,\mathrm{m}A$. Bepaal de waarden voor R_X en I_X .

Figuur P1.9: Netwerk met spanningsbron en weerstanden.

1.16. Gegeven zijn de netwerken in figuur P1.10. Bepaal voor elk netwerk het Théveninvervangingsnetwerk.

Figuur P1.10: Netwerken met spanningsbron en weerstanden.

1.17. Gegeven is het netwerk in figuur P1.11. Bepaal het Thévenin-vervangingsnetwerk tussen de punten A en B.

Figuur P1.11: Netwerk met spanningsbron en weerstanden.

1.18. Gegeven is het netwerk in figuur P1.12. Bepaal de spanning U_x door middel van superpositie.

Figuur P1.12: Netwerk met spanningsbron, stroombron en weerstanden.

- **1.19.** Gegeven is het netwerk in figuur P1.11. De weerstand tussen A en B is nu 1,8 k Ω . Deze weerstand wordt vervangen door een andere weerstand zodanig dat maximale vermogensoverdracht plaatsvindt in deze weerstand. Bepaal de waarde van de vervangende weerstand.
- **1.20.** Gegeven is het netwerk in figuur P1.13. Bepaal het thévenin-vervangingsschema tussen de punten A en B.

Figuur P1.13: Netwerk met spanningsbronnen en weerstanden.

1.21. Gegeven is het netwerk in figuur P1.14. Bereken het maximale vermogen dat in R_X gedissipeerd kan worden.

Figuur P1.14: Netwerk met spanningsbron en weerstanden.

- **1.22.** Gegeven is het netwerk in figuur P1.14. Neem $R_X = 30 \Omega$. Bereken de spanningen op de punten A en B met behulp van de knooppuntspanningsmethode.
- **1.23.** Gegeven is het netwerk in figuur P1.15. Een ontwerper wil de spanning U_x op 3 V hebben. Bepaal de waarde van R_x .

Figuur P1.15: Netwerk met spanningsbronnen en weerstanden.

1.24. Gegeven is het netwerk in figuur P1.16. Bepaal de spanning U_2 en U_x als functie van de overige parameters. Gebruik hiervoor de knooppuntspanningsmethode.

Figuur P1.16: Opamp-netwerk.