Descriptive mAchine Learning EXplanations

Tomasz Klonecki Aleksandra Łuczak

Opis techniczny paczki

Autorzy: MI2DataLab

• **Start:** 2018 rok

Motywacja: Kontrola i wyjaśnienie modeli

które mogą wpływać na nasze życie

Możliwości

Ogólne:

- Wyjaśnianie modeli z różnych frameworków i JĘZYKÓW
- Wykorzystanie różnych bibliotek do wyjaśniania na wraperach DALEX

Model understanding:

- Residuals
- Feature importance
 - Model agnostic
 - Model specific
- Variable response
 - PD plots
 - ALE plots

Prediction understanding:

- Outlier detection
- Single observation analysis:
 - Ceteris Paribus plot
 - BreakDown

Możliwości

Use Case

Najlepiej zobaczyć jak paczka działa na konkretnym przykładzie. W prezentacji wykorzystamy popularny zbiór danych Titanic, gdzie zmienną celu jest przeżycie katastrofy.

Stworzenie wrapera DALEX

Model Understanding - Residuals

plot(mp_lm, geom = "boxplot")

Model Understanding - PD plots

Prediction understanding

Pasażer	Klasa	Płeć	llość rodzeństwa	llość opiekunów	Cena za bilet
Biedny	3	kobieta	0	0	71.28
Bogaty	1	kobieta	1	0	7.92

Prediction understanding - Ceteris Paribus - bogaty

Prediction understanding - Ceteris Paribus - biedny

Prediction understanding - bogaty - porónanie modeli

DALEX CHEAT SHEET

The DALEX package (Descriptive mAchine Learning EXplanations) helps to understand how complex models are working.

Main wrapper

explain(model, data, y, predict_function,

residual_function)

Function turns models into explainers - wrappers with uniform structure. Then we can use various functions to turn explainers to explanations.

model

Object - a model to be explained

<u>data</u>

Data.frame or matrix - data that was used for fitting.

y

Numeric vector with outputs. If provided then it shall have the same size as data.

predict function

Function that takes two arguments: model and new data and returns numeric vector with predictions.

residual_function

Function that takes three arguments: model, data and response vector y. It should return a numeric vector.

Model understanding

model_performance(explainer)

Prepare a data frame with model residuals.

<u>explainer</u>

Object - a model to be explained, preprocessed by the explain function.

variable_importance(explainer,

loss_function)

Calculate model agnostic variable importance.

loss_function

Function that will be used to assess variable importance

single_variable(explainer, variable, type)

Calculates the average model response as a function of a single selected variable.

variable

character - name of a single variable

<u>type</u>

'pdp' for Partial Dependency and 'ale' for Accumulated Local Effects

Prediction analysis

prediction_breakdown(explainer,

observation)

Calculate Break Down Explanations.

observation

A a new observarvation for which predictions need to be explained

ceteris_paribus(explainer, observations)

This function calculate ceteris paribus profiles for selected data points.

observations

set of observarvation for which profiles are to be calculated

Dziękujemy za uwagę