Principal Component Analysis with python #2262

PRESENTED BY: DEEPTHI M

BATCH NUMBER: 05

SERIAL NUMBER: 172

Dimension Reduction:

- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)

x1	x2	x3	x4	x5	х6	x7	x8
					Min H		
	Mark Control			ALTERNA .		4.708	

x1	x2	x3

Principal Component Analysis (PCA)

- PCA is a statistical method that is used to convert a set of correlated variables to a set of uncorrelated variables.
- It is a unsupervised machine learning model.
- Broadly, used as a EDA (Exploratory Data Analysis) method.

Used to convert large number of features into a fewer features with some loss of information:

- Identify the relationship between columns
- Visualize the multivariate data using 2 Principal Components
- •It will help condense the features

When/Why to use PCA:

- •PCA technique is particularly useful in processing data where **multi-colinearity** exists between the **features/variables**.
- •PCA can be used when the dimensions of the input features are high (e.g. a lot of variables).
- •PCA can be also used for **denoising** and **data compression**.

Some of the Applications of PCA:

- Computation is fast
- •Image compression

Dimensionality reduction

Pros

- reflects our intuitions about the data
- allows estimating probabilities in high-dimensional data
 - no need to assume independence etc.
- dramatic reduction in size of data
 - faster processing (as long as reduction is fast), smaller storage

Cons

- too expensive for many applications (Twitter, web)
- disastrous for tasks with fine-grained classes
- understand assumptions behind the methods (linearity etc.)
 - there may be better ways to deal with sparseness

I hope now we have an overview on the topics:

PCA

Thank you I hope you have enjoyed!!!