

K-MEANS CLUSTERING ALGORITHM

SEBASTIÁN MARROQUÍN – <u>SEBASMARRO I 0@GMAIL.COM</u>

AGENDA

- I. Introducción
- 2. Descripción de la implementación
- 3. Evaluación de rendimiento
- 4. Conclusiones

I. INTRODUCCIÓN

K-MEANS CLUSTERING ALGORITHM

CONTEXTO

 CLUSTERING: es la tarea de asignar un conjunto de objetos a grupos (llamados clústeres) para que los objetos en el mismo clúster sean más similares (en un sentido u otro) entre sí que a los de otros clústeres.

El Agrupamiento por K-Means es un método de agrupación que particiona n puntos de datos en k clústeres (n >> k) en los que dada observación pertenece al clúster con la media más cercana

CONTEXTO

Se escogen K puntos

El centroide de cada K clúster se convierte ahora en un nuevo mean

Los grupos K se crean al asociar cada punto al conjunto con la media más cercana

Repetir hasta la convergencia

CONTEXTO

 La proximidad se calcula mediante la función de distancia, que es principalmente la distancia euclidiana.

$$d(P1, P2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d_{(i,j)}^2 = \sum_{k=1}^k (x_{ik} - x_{jk})^2$$

Una suposición importante que se debe hacer es que los puntos de datos son independientes entre sí. En otras palabras, no existe dependencia entre ningún punto de datos.

PROBLEMA

Algoritmo:

Inicializar los centroides de los clústeres $\mu_1, \mu_2, ..., \mu_k \in \mathbb{R}^n$ de manera aleatoria

Repetir hasta que convergan:

Para cada i, hacer:

$$c^{(i)} \coloneqq \arg\min_{j} \left| \left| x^i - \mu_j \right| \right|^2$$

Para cada j, hacer:

$$\mu_j := \frac{\sum_{i=1}^m 1\{c^i = j\}x^i}{\sum_{i=1}^m 1\{c^i = j\}}$$

PROBLEMA (2)

- El parámetro k es el número de grupos que queremos encontrar.
- Los centroides agrupados μ_i representan las conjeturas actuales (para las posiciones)
- Para inicializar los centroides del grupo (en el paso I del algoritmo anterior), podríamos elegir k ejemplos de entrenamiento al azar y con ellos establecer los centroides del grupo para que sean iguales a los valores de k.

JUSTIFICACIÓN

- Lo que se trata de hacer es resolver el algoritmo del agrupamiento por K-Means de manera paralela, con paso de mensajes, mismo proporcionado por la herramienta MPI4PY.
- La manera en como podemos encontrar este tipo de problemas es: BIG DATA, DATA MINING, etc.
- TENDRA ÉXITO POR QUE EL OBJETIVO DEL COMPUTO CONCURRENTE ES ACELERAR UN PROGRAMA SECUENCIAL, ADEMAS DE IMPLEMENTARLO DE MANERA CONCURRENTE.

JUSTIFICACIÓN (2)

- Uno de los riesgos es que FALLE LA IMPLEMENTACIÓN.
- La implementación tomo en tiempo: 3 semanas (aunque no es cierto)
- La manera en como se verificara el éxito será con las evaluaciones de rendimiento.

OBJETIVO PRINCIPAL

BLOGECONOMISTA.COM. (2011). Gestión por Objetivos [Image]. Retrieved from http://blogeconomista.com/gestion-porobjetivos/

 Aplicar los conceptos básicos del cómputo concurrente en la programación de algoritmos para la solución de problemas planteamos los siguientes objetivos particulares que deben de cumplirse:

OBJETIVOS SECUNDARIOS

- Implementación de la versión secuencial del algoritmo K-Means.
- Diseño e Implementación de un algoritmo concurrente que solucione el problema de los K-Means
- Evaluar el desempeño de un algoritmo concurrente tomando como base un algoritmo secuencial.

FUNCATE. (2019). *Objetivos* [Image]. Retrieved from http://funcafate.org/objetivos/

2. DESCRIPCIÓN DE LA IMPLEMENTACIÓN

K-MEANS CLUSTERING ALGORITHM

- Con motivos de la implementación, decidí utilizar un conjunto de datos ubicado en la plataforma de Kaggle.
- Este conjunto de datos contiene una lista de videojuegos con ventas superiores a 100,000 copias.

OPEN DATA SCIENCE. (2014). Kaggle [Image]. Retrieved from https://medium.com/@ODSC/10-tips-to-get-started-with-kaggle-fc7cb9316d27

DATA & PLOTTING

	Platform	Year	Genre	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	1	2006	1	41.49	29.02	3.77	8.46	82.74
1	2	1985	2	29.08	3.58	6.81	0.77	40.24
2	1	2008	3	15.85	12.88	3.79	3.31	35.82
3	1	2009	1	15.75	11.01	3.28	2.96	33
4	3	1996	4	11.27	8.89	10.22	1	31.37
5	3	1989	5	23.2	2.26	4.22	0.58	30.26
6	4	2006	2	11.38	9.23	6.5	2.9	30.01
7	1	2006	6	14.03	9.2	2.93	2.85	29.02
8	1	2009	2	14.59	7.06	4.7	2.26	28.62
9	2	1984	7	26.93	0.63	0.28	0.47	28.31
10	4	2005	8	9.07	11	1.93	2.75	24.76
11	4	2005	3	9.81	7.57	4.13	1.92	23.42
12	3	1999	4	9	6.18	7.2	0.71	23.1
13	1	2007	1	8.94	8.03	3.6	2.15	22.72
14	1	2009	1	9.09	8.59	2.53	1.79	22
15	5	2010	6	14.97	4.94	0.24	1.67	21.82
16	6	2013	9	7.01	9.27	0.97	4.14	21.4
17	7	2004	9	9.43	0.4	0.41	10.57	20.81
18	8	1990	2	12.78	3.75	3.54	0.55	20.61
19	4	2005	6	4.75	9.26	4.16	2.05	20.22
20		2006	4	6.42	4.52	6.04	1.37	
video_gan	video_game_sales ① ① ① ① ② ② ② ② ② ② ② ② ② ② ② ② ② ② ②							

K-Means Clustering Algorithm Design

Sebastián Marroquín

1 Sequential K-Means

Algorithm 1 k-Means Clustering

Input

1.
$$X = x_1, ..., x_2$$

2. **k**

1: Initializar: Centroides de Clusteres $\mu_1, \mu_2, ..., \mu_k$

2: for every $x_i \in 1, ..., k$ do

3: $c^{(i)} := \arg \min_{i} ||x^{i} - \mu_{i}||^{2}$

4: for every $c^i \in 1, ..., k$ do

 $\frac{\sum_{i=1}^{m} 1\{c^{i}=j\} \cdot x^{i}}{\sum_{i=1}^{m} 1\{c^{i}=j\}}$

6: Repetir los pasos 3 y 4 hasta que los centroides se agrupen (i.e la optima solución sea hayada)

7: Output

8: 1. $C = c_1, ..., c_k \in \mathbb{R}^n$ (centroides encontrados)

2. $y = y_1, ..., y_n$

IMPLEMENTACIÓN SECUENCIAL

IMPLEMENTACIÓN SECUENCIAL (2)

sebastian@DESKTOP-M1LRMKV: /mnt/c/Users/sebas/Desktop/UAM/19-I/ComputoConcurrente/PRESENTACIÓN/Code/Seq

sebastian@DESKTOP-M1LRMKV:/mnt/c/Users/sebas/Desktop/UAM/19-I/ComputoConcurrente/PRESENTACIÓN/Code/Seq\$ python3 sequential_kmeans.py 5

Final Centers are:

[[1658.0, 8.522158577027435, 2005.2274012508774, 5.694603557431414, 0.9852607778112747, 0.5824962315345179, 0.25423876997286493, 0.18909255351220763, 2.011091347603256], [4 975.5, 9.091320072332731, 2005.6060159209226, 6.005424954792043, 0.20142555756479755, 0.09420132610006057, 0.06792646172393024, 0.033604581072935714, 0.39712477396020934], [8294.0, 9.53449834287436, 2006.3040576284836, 6.034046399517927, 0.09169629406447766, 0.03638144019282932, 0.035203374510394805, 0.01238324796625494, 0.17574269358240419], [11614.0, 9.920204757603132, 2006.6898931202536, 6.404095152062632, 0.0379223125564591, 0.014619090635350827, 0.021348991267690413, 0.004766636555254357, 0.078912978018671 77], [14936.0, 10.978332831778513, 2008.2015627572061, 7.16190189587722, 0.00789346975624446, 0.006057779115257367, 0.010409268733072356, 0.0006319590731266925, 0.026069816 430936213]]

Execution time 28.247859239578247 seconds

sebastian@DESKTOP-M1LRMKV:/mnt/c/Users/sebas/Desktop/UAM/19-I/ComputoConcurrente/PRESENTACIÓN/Code/Seq\$ _

SOLUCIÓN PARALELA - AGENDA

- I. Descripción del Algoritmo implementado
- 2. Implementación del diseño del algoritmo paralelo

ALGORITMO PARALELO

Mientras sea **VERDADERO**, hacer:

- I. **ROOT** hace *bcast* a los vectores *k* a todos los procesadores.
- 2. Cada proceso calcula la distancia de cada vector a los vectores de los centroides k.
- 3. Cada proceso vuelve a calcular los vectores de centroides k según los centroides reasignados.
- 4. Cada proceso realiza una reducción de **ALL** to **ALL** de los centroides *k*. Después de cada iteración, una reducción de **ALL** to **ALL** sincroniza los vectores centroides.

IMPLEMENTACIÓN PARALELA

sebastian@DESKTOP-M1LRMKV:/mnt/c/Users/sebas/Desktop/UAM/19-I/ComputoConcurrente/PRESENTACIÓN/Code/Parallel\$ mpiexec -n 8 python parallel_kmeans.py

WARNING: Linux kernel CMA support was requested via the btl_vader_single_copy_mechanism MCA variable, but CMA support is not available due to restrictive ptrace settings.

The vader shared memory BTL will fall back on another single-copy mechanism if one is available. This may result in lower performance.

Local host: DESKTOP-M1LRMKV

[DESKTOP-M1LRMKV:00221] 7 more processes have sent help message help-btl-vader.txt / cma-permission-denied [DESKTOP-M1LRMKV:00221] Set MCA parameter "orte_base_help_aggregate" to 0 to see all help / error messages Final centers are:

[[1034.5, 8.369565217391305, 2004.6951409434414, 5.66328502415459, 1.344009661835748, 0.8020628019323675, 0.35033816425120534, 0.258000000000000034, 2.7543719806763374], [310 5.5, 8.77364864864864865, 2005.9085906094383, 5.776061776061776, 0.34403957528957485, 0.18620173745173677, 0.08854729729729742, 0.06364864864864896, 0.6825772200772103], [5177. 5, 9.195945945945946, 2005.6026371505325, 6.074324324324324325, 0.18650579150579147, 0.08501447876447939, 0.06473938223938219, 0.031100386100386443, 0.36712837837837375], [7250 .5, 9.374156219864995, 2006.1492921693975, 6.012536162005786, 0.11304725168755979, 0.04783027965284473, 0.04378977820636458, 0.016364513018322258, 0.2208823529411756], [9325 .0, 9.670843373493977, 2006.3440993667812, 6.1248192771084335, 0.07185060240963866, 0.02504578313253023, 0.029836144578313215, 0.008930120481927735, 0.13614457831325447], [1 3479.0, 10.54978354978355, 2007.2457042196727, 6.622895622895623, 0.017258297258297417, 0.0092929292929294, 0.015372775372775429, 0.0017412217412217253, 0.0446801346801354 3], [11401.0, 9.76600866634569, 2006.7146907218996, 6.453538757823784, 0.03965816080885902, 0.015373134328358264, 0.022291766971593612, 0.005291285507944062, 0.0823784304285 017], [15558.0, 11.168831168831169, 2008.579158547002, 7.34968734968735, 0.004694564694564634, 0.004559884559884498, 0.00828282828282828253, 0.00013949013949013953, 0.01890331 890331816]]

Execution time 66.5158331394 seconds

3. EVALUACIÓN DE RENDIMIENTO

K-MEANS CLUSTERING ALGORITHM

EVALUACIÓN DE RENDIMIENTO

Los resultados que se presentarán a continuación serán sobre la implementación del algoritmo de agrupamiento de los K-Means.

Se mostrarán graficas de rendimiento

SPEEDUP

ANALYSIS

Number of clusters	Sequential Execution Timing (seconds) Ts	Parallel Execution Timing (seconds) Tp	Speedup (Ts/Tp)
1	0.31026	0.19863	I
2	3.68241	2.34552	1
3	10.39307	4.97802	2
4	23.13027	10.4285	2
5	39.70104	19.0684	2
6	67.29214	31.2834	2
7	103.42623	48.05842	2
8	156.26017	66.51583	2
9	191.71026	88.09356	2
10	250.65177	116.84431	2

GRAFICA DE RENDIMIENTO

Time Analysis

4. CONCLUSIONES

K-MEANS CLUSTERING ALGORITHM

FICA. (2017). Si quieres resolver un problema con alguien, sigue estos cuatro pasos [Image]. Retrieved from http://www.ficaconsulting.com.do/cw/publicaciones/17-otros/801-si-quieres-resolver-un-problema-con-alguien-sigue-estos-cuatro-pasos

Diseñar e Implementar de manera paralela el algoritmo de agrupamiento de los K-Means, utilizando el paso de mensajes.

PROBLEMA A RESOLVER

FICA. (2017). Si quieres resolver un problema con alguien, sigue estos cuatro pasos [Image]. Retrieved from http://www.ficaconsulting.com.do/cw/publicaciones/17-otros/801-si-quieres-resolver-un-problema-con-alguien-sigue-estos-cuatro-pasos

Como se pudo ver en el apartado de **Evaluación de Rendimiento**, pudimos observar que existe una aceleración mayor a la implementación del algoritmo secuencial.

RESULTADOS OBTENIDOS

GRACIAS POR SU ATENCIÓN

Presentó: Sebastián Marroquín Martínez, sebasmarro I 0@gmail.com

Nombre del proyecto: K-Means Clustering Algorithm