Stat 230: Probability Lecture 18

Jeremy VanderDoes

University of Waterloo

Wednesday, June 15th

Example

Compute the expected value and variance for

- Flipping a fair coin
- Rolling a fair die
- Flipping a fair coin 1000 times

Last time:

(1) Variance of Discrete Distributions

For today:

- (1) R Applications
- (2) Continuous Random Variables

Reading: Chapter 7 and 8

- Monday: TA R tutorial
- Quiz Review

Other Summary Statistics

- **Median**: Middle value (Half observations above/below. If even number of observations then sum of the two divided by 2)
- Mode: Most common value (May have multiple)

R Applications

Remark

There exist distributions without expectation: Suppose X is a random variable with probability function

$$f_X(x) = \frac{6}{\pi^2} \frac{1}{x^2}, \quad x = 1, 2, ...$$

Then $E(X) = +\infty$ and Var(X) is not defined.

Definition

A random variable X is said to be continuous if its range X(S) is an interval $(a,b) \subset \mathbb{R}$.

Continuous random variables don't exist in "real life", however they may represent useful approximations in many cases:

Examples include:

- Measuring time (time is "continuous")
- Measuring distance or height
- Determining the angle a spinner point comes to rest at.

Suppose X is a continuous random variable with range [0,1] (for example). How can we describe probabilities associated with X?

• Try to define the analog of the probability function $f_X(x) = P(X = x)$. In order to satisfy the axioms of probability we would need that

$$\sum_{x\in[0,1]}P(X=x)=1$$

but this is hard to make sense of. If P(X = x) > 0 for all $x \in [0, 1]$, how can this sum converge?

 Another idea comes from trying to model relative frequency from the histogram.

$$P(a \le X \le b) = \int_a^b f(x) dx$$

Probability Density Function

Definition (Probability Density Function)

We say that a continuous random variable X has probability density function f(x) if

- (1) $f(x) \ge 0$
- (2) $\int_{-\infty}^{\infty} f(x) dx = 1$
- (3) $P(a \le X \le b) = \int_a^b f(x) dx$

The probability density function is often abbreviated pdf

Probability Density Function

Definition

The support of a pdf f(x) is defined as

$$supp(f) = \{x \in \mathbb{R} : f(x) \neq 0\}$$

Integrals of a function f over a domain D may be computed on the domain $D \cap supp(f)$.

Probability Density Function

Example

Suppose that X is a continuous random variable with probability density function

$$f(x) = \begin{cases} cx(1-x) & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise} \end{cases}$$

- (1) Compute c so that this is a valid pdf
- (2) Graph f(x)
- (3) Compute $P(X \ge 1/2)$
- (4) Compute $P(1/4 \le X \le 3/4)$
- (5) Compute P(X = 1/2)