Introduction to Modular Forms

General outline

- $SL_2(\mathbf{Z})$, fundamental domains and S and T generate $SL_2(\mathbf{Z})$.
- Definition of modular forms and how for each function we get an infinte number of functions.
- Remarks: e.g. k even, $\mathcal{M}(\Gamma)$ is a vector space, $\mathcal{M}^0(R)$ is a field, and necessary and sufficient conditions for something to be a modular form.
- Eisenstein series
- Definition of modular forms
- Zeroes formula for modular forms
- Dimensional characterizations of modular forms

Things to keep on the board

- S.z, and T.z
- $\operatorname{Im}(\gamma.z) = |cz + d|^{-2}\operatorname{Im}(z)$
- Picture of the fundamental domain

Definition of $SL_2(\mathbf{Z})$ and its action.

We define

$$SL_2(\mathbf{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbf{Z}, ad - bc = 1 \right\}.$$

We denote this set by Γ .

We also define an action . on $\mathbf{C} \cup \infty$ by $SL_2(\mathbf{Z})$ by

$$g.z = \frac{az+b}{cz+d}$$

where $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and

$$g.\infty = \lim_{z \to \infty} \frac{az+b}{cz+d} = \frac{a}{c}.$$

The result of this action is called a $fractional\ linear\ transformation.$ Two important examples are:

$$T.z = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} . z = z + 1$$

$$S.z = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} . z = \frac{-1}{z}$$

$SL_2(\mathbf{Z})$ acts on the complex upper half-plane

Let $H=\{z\in {\bf C}: {\rm Im}(z)>0\}.$ Note that the action . preserves H; i.e., if $z\in H$ then $g.z\in H:$

$$\operatorname{Im}(g.z) = \operatorname{Im}\left(\frac{az+b}{cz+d}\right)$$

$$= \operatorname{Im}\left(\frac{(az+b)(c\bar{z}+d)}{|cz+d|^2}\right)$$

$$= |cz+d|^{-2}\operatorname{Im}(adz+bc\bar{z})$$

$$= |cz+d|^{-2}(ad-bc)\operatorname{Im}(z)$$

$$= |cz+d|^{-2}\operatorname{Im}(z)$$

Notice, though, that this is in H since the coefficient is positive.

Γ -equivalence and Fundamental Domains

An action breaks a set into congruence classes (i.e., orbits). We say, for $z_1, z_2 \in H$, that $z_1 \sim z_2$ if there exists $g \in \Gamma$ such that $g.z_1 = z_2$. The relation \sim is called Γ -equivalence.

Let F be a closed region of H. We say that F is a fundamental domain if

- 1. every $z \in H$ is Γ -equivalent to a point in F
- 2. no two distinct points in the interior of the F are Γ -equivalent.

A fundamental domain for Γ .

Theorem A fundamental domain for Γ is

$$F = \left\{ z \in H : \frac{-1}{2} \le \text{Re}(z) \le \frac{1}{2} \right\}.$$

The proof will work something like this: Take any $z \in H$. Move it over until it's in the strip. If it's in the unit circle, apply S if it's not, we're fine. Take any two elements in F they can't be related by any power of T since T moves everything over 1 (the width of F) and S moves things inside the unit circle. You might notice this would prove the claim only if S and T generate Γ , which we'll see is true.

Proof. Let $z \in H$ and let $\Gamma' = \langle S, T \rangle$. If $\gamma \in \Gamma'$ then as we saw before

$$Im\gamma.z = |cz + d|^{-2}Im(z).$$

We claim that there is some γ for which this is maximal.

The numbers |cz+d| have a lower bound that is not 0. Notice that cz+d is an element of the lattice spanned by z and 1. We can always fit a unit disk around the origin that doesn't hit any lattice points. Since the cz+d have a lower bound, the claim is true.

Replacing this γ with $T^j\gamma$ for some j, we can assume, WLOG, that $\gamma.z$ has real part between -1/2 and 1/2. But then if $\gamma.z \notin F$, i.e., $|\gamma.z| < 1$, then we'd have

$$\operatorname{Im}(S.\gamma.z) = \frac{\operatorname{Im}(\gamma.z)}{|\gamma.z|^2} > \operatorname{Im}(\gamma.z),$$

contradicting our choice of γ .

Now we prove that no two points in the interior of F are Γ -equivalent. Let $z_1, z_2 \in F$ (note this is more than we need). WLOG suppose $\operatorname{Im}(z_2) \geq \operatorname{Im}(z_1)$. By what we've just proved, there exists a $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that $\gamma.z_1 = z_2$.

Since $\operatorname{Im}(z_2) \geq \operatorname{Im}(z_1)$, then $|cz_1 + d| \leq 1$.

 $Im(z_2) = Im(\gamma.z_1) = |cz + d|^{-2}Im(z)$ which implies $|cz + d|^{-2} \ge 1$ which finally implies $|cz + d| \le 1$.

Since $z_1 \in F$ we see that |c| < 2

Say that c=2+k for $k \in \mathbb{Z}^+$ and $z_1=x+iy$. Then $|cz+d|=\sqrt{((2+k)x+d)^2+(2+k)^2y^2}$ can be shown to be bigger than 1 (using the fact that $x^2+y^2>1$), a contradiction.

So, we have just four cases:

- 1. $c = \pm 1, d = 0$
- 2. $c = 0, d = \pm 1$
- 3. $c = \pm 1, d = \pm 1$
- 4. $c = \pm 1, d = \mp 1$

For case 1 we have:

$$\begin{pmatrix} a & b \\ \pm 1 & 0 \end{pmatrix}.$$

Since the matrix is in $SL_2(\mathbf{Z})$, we have $b=\mp 1$. By a computation we get

$$\begin{pmatrix} a & \mp 1 \\ \pm 1 & 0 \end{pmatrix} = \pm T^a S.$$

For case 2 we have:

$$\begin{pmatrix} a & b \\ 0 & \pm 1 \end{pmatrix}$$

This implies that $a = \pm 1$. So we have

$$\begin{pmatrix} \pm 1 & b \\ 0 & \pm 1 \end{pmatrix} = \pm T^b.$$

For case 3 we have:

$$\begin{pmatrix} a & b \\ \pm 1 & \pm 1 \end{pmatrix}$$

This implies that b = a - 1 so by some computations we get:

$$\begin{pmatrix} a & a-1 \\ \pm 1 & \pm 1 \end{pmatrix} = \begin{pmatrix} \pm 1 & a \\ 0 & \pm 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 \\ 1 & \pm 1 \end{pmatrix}$$
$$= \begin{pmatrix} \pm 1 & a \\ 0 & \pm 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \pm 1 & 1 \\ 0 & \pm 1 \end{pmatrix}$$
$$= \pm T^a ST$$

In case 4 we have, by an identical (almost) computation to case 3, that:

$$\begin{pmatrix} a & b \\ \pm 1 & \mp 1 \end{pmatrix} = \pm T^a S T^{-1}$$

In all four of these cases there are two subcases: a=0 or $a=\pm 1$. It can't be more than one since the strip is only one unit wide. If $a=\pm 1$ this means that z_1, z_2 are on the boundary, so they don't enter into the fundamental domain. If a=0 either $z_1=z_2$ or (as in case 2) z_1 and z_2 are on the circular part of the boundary.

Various corollaries

Denote by Γ_z the set $\{\gamma \in \Gamma : \gamma . z = z\}$. Corollary If $z \in F$ then $\Gamma_z = \pm I$ except

1. if
$$z = i$$
, then $\Gamma_z = \pm \{I, S\}$

2. if
$$z = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$
, then $\Gamma_z = \{I, ST, (ST)^2\}$

3. if
$$z = \frac{1}{2} + i \frac{\sqrt{3}}{2}$$
, then $\Gamma_z = \{I, TS, (TS)^2\}$

Corollary The group $\bar{\Gamma} = \operatorname{SL}_2(\mathbf{Z})/\pm I$ is generated by S and T.

Proof Let $\Gamma' = \langle S, T \rangle$. Let z be any point on the interior of F. Let $g \in \Gamma$. Consider the point $g.z \in H$. We've already shown that there exists a $\gamma \in \Gamma'$ such that $\gamma.(g.z) = z$. But since z is in the interior, we know that $\Gamma'_z = \pm I$ so, in particular, $\gamma \cdot g = \pm I$. I.e., $g = \pm \gamma^{-1}$. This shows that (up to a sign) any $g \in \Gamma$ is also in Γ' (since γ^{-1} is definitely in Γ').

Finally, we get to Modular forms

- Let f(z) be meromorphic on H, k be an integer.
 - *Meromorphic* means that the function is analytic except maybe for some poles.
- Further suppose f(z) satisfies the relation:

$$f(\gamma.z) = (cz+d)^k f(z)$$

for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{Z})$.

- Suppose even further that f(z) is meromorphic at infinity (i.e., $f(z) = \sum_{n \in \mathbb{Z}} a_n q^n$ has at most finitely many nonzero a_n when n < 0.
- Suppose furthest that f(z) is actually holomorphic on H and at infinity (i.e., $a_n = 0$ when n < 0).
 - Holomorphic means analytic everywhere.
- Then f(z) is a modular form of weight k for Γ ; the set of these is denoted $\mathcal{M}_k(\Gamma)$.
- If we further have a_0 , then f(z) is called a cusp form of weight k for Γ . The set of functions is denoted $S_k(\Gamma)$.

Historical remarks

- 1. You may wonder where the $(cz+d)^k$ in the definition comes from. Surprisingly it comes from geometry. A fundamental domain for a modular form can be made into a manifold by adding a point at infinity and gluing sides together. Geometers are interested in functions that are invariant on the manifold acted on by Γ . Poincaré created this functions he called θ -Fuchsian that popped out a scalar when the argument was acted on by a γ . Realizing that if he could two different θ -Fuchsian functions to spit out the same constant, taking their quotient, he would have the function he desired. It so happened that the function he created spat out $(cz+d)^k$. This history is due to Stillwell in his edition of Poincaré's papers.
- 2. Another version has as its, in brief, the first ingredient the classical definition of the Weierstraß \wp -function expanded in terms of partial fractions and the consequent differential equation $(y')^2 = 4x^3 60G_4(x) 140G_6(x)$. Here the quantities $G_k(\Lambda) = \sum' \omega^{-k}$ are Eisenstein series with the sum taken over all periods $\omega \neq 0$ in the period lattice Λ . Note that a typical ω looks like $n\omega_1 + m\omega_2$ where ω_1 and ω_2 are the primitive periods of \wp and the (n,m) run through all ordered pairs of integers not both zero. It's convenient to multiply the G_k by ω_1^k and to set $z = \omega_2/\omega_1$ (and still to call these things G_k ; in effect rescale so that $\omega_1 = 1$). It's now straightforward to see (because the transformation essentially only permutes the periods)

that the G_{2k} are invariant under a transformation $z \mapsto (az+b)/cz+d$), with ad-bc=1, precisely up to a factor $(cz+d)^{2k}$. Moreover, general considerations, which are little more than linear algebra, lead one to see that all modular forms are in fact polynomials in G_4 and G_6 .

Remarks that can be easily verified:

- 1. k is even.
 - Note that if $\gamma = -I$ then $f(\gamma.z) = f(z)$, which in turn implies $f(\gamma.z) = (-1)^k f(z)$ which can't hold if k is odd.
- 2. For $\Gamma = \mathrm{SL}_2(\mathbf{Z})$ if the relation holds for S and T it holds for all elements of Γ .
 - Note first that $\frac{d\gamma \cdot z}{dz} = (cz+d)^{-2}$. So, we can rewrite the relation as $(\frac{d\gamma \cdot z}{dz})^{k/2} f(\gamma \cdot z) = f(z)$. Notice this means that $(dz)^{k/2} f(z)$ is invariant if we multiply it by γ . So, we conclude if the relation holds for γ_1 and for γ_2 , it holds for $\gamma_1\gamma_2$.
- 3. $\mathcal{M}_k(\Gamma)$ is a complex vector space, trivially. Moreover, take a form of weight k_1 and a form of weight k_2 , their product is a form of weight $k_1 + k_2$.

Examples of modular forms

Example 1 Let k be an even integer greater than 2. For $z \in H$, let

$$G_k(z) = \sum_{m,n} \frac{1}{(mz+n)^k}$$

where the sum is over all pairs of integers m, n.

Because $k \geq 4$ the sum is absolutely convergent on all compact subsets of H. Hence $G_k(z)$ is holomorphic on H. Further, note that $G_k(z) = G_k(z+1)$ since the sum is over pairs of integers. Finally, note that

$$G_k(-\frac{1}{z}) = \sum_{m,n} \frac{1}{(mz+n)^k}$$
$$= \sum_{m,n} \frac{1}{\left(\frac{m-nz}{-z}\right)^k}$$
$$= \sum_{m,n} \frac{(-z)^k}{(m-nz)^k}$$
$$= (-z)^k G_k(z)$$

Sometimes the Fourier coefficients are of arithmetic (and hence number theoretic) interest. For instance,

Theorem Let k > 2 be an even integer. Then the Eisenstein series has Fourier expansion:

$$G_k(z) = 2\zeta(k) \left(1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n \right)$$

where

- $q = e^{2\pi i z}.$
- the Bernoulli numbers B_k are defined by

$$\frac{x}{x-1} = \sum_{k=0}^{\infty} B_k \frac{x^k}{k!},$$

• and the function σ_{k-1} is the divisor function of n and is defined by

$$\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}.$$

Example 2 The discriminant modular form $\Delta(z)$ is defined to be a linear combination of the normalized Eisenstein series $E_k(z) = \frac{1}{2\zeta(k)}G_k(z)$. Let

$$g_2(z) = \frac{4}{3}\pi^4 E_4(z)$$
 and $g_3(z) = \frac{8}{27}\pi^6 E_6(z)$. Define

$$\Delta(z) = g_2(z)^3 - 27g_3(z)^2.$$

Since $\mathcal{M}(\Gamma)$ is a complex vector space, we see that $\Delta(z)$ is an element of $\mathcal{M}(\Gamma)$. Note that since both $E_6(z)$ and E_4 have $a_0=1$, Δ has $a_0=0$ so it is a cusp form of weight 12. The zeroes for $f \in \mathcal{M}_k(\Gamma)$.

Theorem Let $f(z) \in \mathcal{M}(\Gamma)$. For $P \in H$ let $v_p(f)$ be the order of the zero (or minus the order of the pole) of f at P. Let $v_{\infty}(f)$ be the index of the first nonvanishing term in the Fourier expansion of f. Then

$$v_{\infty}(f) + \frac{1}{2}v_{i}(f) + \frac{1}{3}v_{\omega}(f) + \sum_{P \in \Gamma/H, P \neq i, \omega} v_{P}(f) = \frac{k}{12}.$$

(Here
$$\omega = 1/2 + \frac{\sqrt{-3}}{2}$$
.)

Sketch of proof Apply the residue theorem to the fundamental domain with loops around the zeroes and cut off at some T bigger than all the poles and zeroes of f. Say P is on the LHS of the contour at is a zero, Q is on the circular part and is a zero, and that it has zeroes at ω (hence $T.\omega$) and i. The residue theorem says

$$\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = \sum_{P \in \Gamma/H, P \neq i, \omega} v_P(f).$$

Integrating over the contour, the top part gives up $-v_{\infty}(f)$, around each ω gives us $-v_{\omega}(f)/6$ and integrating over the *i* gives us $-v_{i}(f)/2$. Finally the integral over the rest of the unit circle gives us k/12.

Corollary Let k be even.

- 1. The only modular forms of weight 0 for Γ are constants.
 - **Proof** Let c be any value taken by f. Then f(z) c has a zero. This means one of the terms on the LHS is nonzero, but the RHS is zero. This means that f(z) = c is the zero function.
- 2. $\mathcal{M}_k(\Gamma) = 0 \text{ if } k < 0 \text{ or } k = 2.$

Proof There is no way for the number of zeroes to be less than 1/3.

3. $\mathcal{M}_k(\Gamma)$ is one-dimensional and generated by $E_k(z)$ for k=4,6,8,10,14.

Proof For k=4, we have $v_{\omega}(f)=1$. For k=6, we have $v_i(f)=1$. For k=8, we must have $v_{\omega}(f)=2$. For k=10 we have $v_i(f)=v_{\omega}(f)=1$. For k=14 we have $v_{\omega}(f)=2$, $v_i(f)=1$. Let $f_1, f_2 \in \mathcal{M}_k(\Gamma)$. They have the same zeroes, so f_1/f_2 is also a modular function of weight 0, hence a constant. Picking $f_2=E_k$, we see that we're done.

4. $S_k(\Gamma) = 0$ if k < 12 or k = 14, $S_{12}(\Gamma)$ is one dimensional and generated by Δ , $S_k(\Gamma) = \Delta \mathcal{M}_{k-12}(\Gamma)$.

Proof For f a cusp form we have that $v_{\infty}(f) > 0$. Notice that when k = 12 and $f = \Delta$ we see that ∞ is the only zero. This means that f/Δ is also a modular form of weight k - 12.

5. $\mathcal{M}_k(\Gamma) = \mathcal{S}_k(\Gamma) \oplus \mathbf{C}E_k \text{ for } k > 2.$

Proof E_k does not vanish at infinity, but we can find a c so that $f - cE_k$ does vanish at ∞ , i.e., so that $f - cE_k$ is a cusp form g and hence $f = cE_k + g$.

Corollary to the Corollary Any $f \in \mathcal{M}_k(\Gamma)$ can be written in the form

$$f(z) = \sum_{4i+6j=k} c_{i,j} E_4(z)^i E_6(z)^j.$$

We use induction. For k=4,6,8,10,14 we get that $\mathcal{M}_k(\Gamma)$ is spanned by $E_4,E_6,E_4^2,E_4E_6,E_4^2E_6$ respectively. For $f\in\mathcal{M}_k(\Gamma)$ we can find a c so that $f-cE_4^iE_6^j$ is a cusp form. From before we get $f-cE_4^iE_6^j=f_1\Delta$. So

$$f = cE_4^i E_6^j + f_1 \Delta = cE_4^i E_6^j + \frac{(2\pi)^{12}}{1728} (E_4^3 - E_6^2) f_1$$

where $f_1 \in \mathcal{M}_{k-12}(\Gamma)$. Apply the induction hypothesis to f_1 and we're done.