Machine Translation

Sequence to Sequence, Encoder Decoder Model

Section 1: Pre-Neural Machine Translation

Machine Translation

Machine Translation (MT) is the task of translating a sentence x from one language (the source language) to a sentence y in another language (the target language).

x: L'homme est né libre, et partout il est dans les fers

y: Man is born free, but everywhere he is in chains

Rousseau

1950s: Early Machine Translation

Machine Translation research began in the early 1950s.

 Russian → English (motivated by the Cold War!)

1 minute video showing 1954 MT:

https://youtu.be/K-HfpsHPmvw

 Systems were mostly rule-based, using a bilingual dictionary to map Russian words to their English counterparts

1990s-2010s: Statistical Machine Translation

- Core idea: Learn a probabilistic model from data
- Suppose we're translating French → English.
- We want to find best English sentence y, given French sentence x

$$\operatorname{argmax}_{y} P(y|x)$$

 Use Bayes Rule to break this down into two components to be learnt separately:

$$= \operatorname{argmax}_{y} P(x|y) P(y)$$

Translation Model

Models how words and phrases should be translated (*fidelity*). Learnt from parallel data.

Language Model

Models how to write good English (fluency).
Learnt from monolingual data.

1990s-2010s: Statistical Machine Translation

- Question: How to learn translation model P(x|y) ?
- First, need large amount of parallel data
 (e.g. pairs of human-translated French/English sentences)

Learning alignment for SMT

- Question: How to learn translation model P(x|y) from the parallel corpus?
- Break it down further: we actually want to consider

where a is the alignment, i.e. word-level correspondence between French sentence x and English sentence y

What is alignment?

Alignment is the correspondence between particular words in the translated sentence pair.

Note: Some words have no counterpart

Alignment can be many-to-one

Alignment can be one-to-many

Some words are very fertile!

word equivalent in English

Alignment can be many-to-many (phrase-level)

Learning alignment for SMT

- We learn P(x, a|y) as a combination of many factors, including:
 - Probability of particular words aligning (also depends on position in sent)
 - Probability of particular words having particular fertility (number of corresponding words)
 - etc.

Decoding for SMT

- We could enumerate every possible y and calculate the probability? → Too expensive!
- Answer: Use a heuristic search algorithm to search for the best translation, discarding hypotheses that are too low-probability
- This process is called decoding

Decoding for SMT

Source: "Statistical Machine Translation", Chapter 6, Koehn, 2009.

Decoding for SMT

Source: "Statistical Machine Translation", Chapter 6, Koehn, 2009.

https://www.cambridge.org/core/books/statistical-machine-translation/94EADF9F680558E13BE759997553CDE5

1990s-2010s: Statistical Machine Translation

- SMT was a huge research field
- The best systems were extremely complex
 - Hundreds of important details we haven't mentioned here
 - Systems had many separately-designed subcomponents
 - Lots of feature engineering
 - Need to design features to capture particular language phenomena
 - Require compiling and maintaining extra resources
 - Like tables of equivalent phrases
 - Lots of human effort to maintain
 - Repeated effort for each language pair!

Section 2: Neural Machine Translation

What is Neural Machine Translation?

- Neural Machine Translation (NMT) is a way to do Machine Translation with a single neural network
- The neural network architecture is called sequence-to-sequence (aka seq2seq) and it involves two RNNs.

Neural Machine Translation (NMT)

Encoder RNN produces an encoding of the source sentence.

Note: This diagram shows **test time** behavior: decoder output is fed in as next step's input

Sequence-to-sequence is versatile!

- Sequence-to-sequence is useful for more than just MT
- Many NLP tasks can be phrased as sequence-to-sequence:
 - Summarization (long text → short text)
 - Dialogue (previous utterances -> next utterance)
 - Parsing (input text → output parse as sequence)
 - Code generation (natural language → Python code)

Neural Machine Translation (NMT)

- The sequence-to-sequence model is an example of a Conditional Language Model.
 - Language Model because the decoder is predicting the next word of the target sentence y
 - Conditional because its predictions are also conditioned on the source sentence x
- NMT directly calculates P(y|x):

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots P(y_T|y_1, \dots, y_{T-1}, x)$$

Probability of next target word, given target words so far and source sentence x

- Question: How to train a NMT system?
- Answer: Get a big parallel corpus...

Training a Neural Machine Translation system

Seq2seq is optimized as a <u>single system.</u> Backpropagation operates "end-to-end".

Greedy decoding

 We saw how to generate (or "decode") the target sentence by taking argmax on each step of the decoder

- This is greedy decoding (take most probable word on each step)
- Problems with this method?

Problems with greedy decoding

- Greedy decoding has no way to undo decisions!
 - Input: il a m'entarté (he hit me with a pie)
 - → he ____
 - \rightarrow he hit ____
 - → he hit a _____ (whoops! no going back now...)

How to fix this?

Exhaustive search decoding

Ideally we want to find a (length T) translation y that maximizes

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$$

$$= \prod_{t=1}^{T} P(y_t|y_1, \dots, y_{t-1}, x)$$

- We could try computing all possible sequences y
 - This means that on each step t of the decoder, we're tracking V^t possible partial translations, where V is vocab size
 - This O(V^T) complexity is far too expensive!

Beam search decoding

- <u>Core idea:</u> On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)
 - k is the beam size (in practice around 5 to 10)
- A hypothesis y_1, \dots, y_t has a score which is its log probability:

score
$$(y_1, ..., y_t) = \log P_{LM}(y_1, ..., y_t | x) = \sum_{i=1}^t \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$$

- Scores are all negative, and higher score is better
- We search for high-scoring hypotheses, tracking top k on each step
- Beam search is not guaranteed to find optimal solution
- But much more efficient than exhaustive search!

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

<START>

Calculate prob dist of next word

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

Take top *k* words and compute scores

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

Of these k^2 hypotheses, just keep k with highest scores

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^{t} log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

Of these k^2 hypotheses, just keep k with highest scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$

For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$

Of these k^2 hypotheses, just keep k with highest scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{t} log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$

For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$

Of these k^2 hypotheses, just keep k with highest scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$

For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$

This is the top-scoring hypothesis!

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$

Backtrack to obtain the full hypothesis

Beam search decoding: stopping criterion

- In greedy decoding, usually we decode until the model produces a <END> token
 - For example: <START> he hit me with a pie <END>
- In beam search decoding, different hypotheses may produce <END> tokens on different timesteps
 - When a hypothesis produces <END>, that hypothesis is complete.
 - Place it aside and continue exploring other hypotheses via beam search.
- Usually we continue beam search until:
 - We reach timestep T (where T is some pre-defined cutoff), or
 - We have at least n completed hypotheses (where n is pre-defined cutoff)

Beam search decoding: finishing up

- We have our list of completed hypotheses.
- How to select top one with highest score?
- Each hypothesis y_1, \dots, y_t on our list has a score

$$score(y_1, ..., y_t) = log P_{LM}(y_1, ..., y_t | x) = \sum_{i=1}^t log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$$

- Problem with this: longer hypotheses have lower scores
- <u>Fix:</u> Normalize by length. Use this to select top one instead:

$$\frac{1}{t} \sum_{i=1}^{t} \log P_{\text{LM}}(y_i|y_1,\ldots,y_{i-1},x)$$

Advantages of NMT

Compared to SMT, NMT has many advantages:

- Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities
- A single neural network to be optimized end-to-end
 - No subcomponents to be individually optimized
- Requires much less human engineering effort
 - No feature engineering
 - Same method for all language pairs

Disadvantages of NMT?

Compared to SMT:

- NMT is less interpretable
 - Hard to debug
- NMT is difficult to control
 - For example, can't easily specify rules or guidelines for translation
 - Safety concerns!

How do we evaluate Machine Translation?

BLEU (Bilingual Evaluation Understudy)

- BLEU compares the <u>machine-written translation</u> to one or several <u>human-written translation</u>(s), and computes a <u>similarity</u> score based on:
 - n-gram precision (usually for 1, 2, 3 and 4-grams)
 - Plus a penalty for too-short system translations
- BLEU is useful but imperfect
 - There are many valid ways to translate a sentence
 - So a good translation can get a poor BLEU score because it has low n-gram overlap with the human translation ☺

Source: "BLEU: a Method for Automatic Evaluation of Machine Translation", Papineni et al, 2002.

BLEU (Problem with using just precision)

Example of poor machine translation output with high precision

Candidate	the	the	the	the	the	the	the
Reference 1	the	cat	is	on	the	mat	
Reference 2	there	is	а	cat	on	the	mat

MT progress over time

[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

Source: http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf

NMT: the biggest success story of NLP Deep Learning

Neural Machine Translation went from a fringe research activity in **2014** to the leading standard method in **2016**

- 2014: First seq2seq paper published
- 2016: Google Translate switches from SMT to NMT
- This is amazing!
 - SMT systems, built by hundreds of engineers over many years, outperformed by NMT systems trained by a handful of engineers in a few months

- Nope!
- Many difficulties remain:
 - Out-of-vocabulary words
 - Domain mismatch between train and test data
 - Maintaining context over longer text
 - Low-resource language pairs

- Nope!
- Using common sense is still hard

- Nope!
- NMT picks up biases in training data

- Nope!
- Uninterpretable systems do strange things

Open in Google Translate

Feedback