Corrigé 3

Exercice 1. Trouver les fonctions analytiques f(z) = u(x,y) + iv(x,y) qui ont pour partie réelle ou imaginaire :

(1)
$$u(x,y) = x^2 - y^2 + 5x + y - \frac{y}{x^2 + y^2}$$
;

(2)
$$u(x,y) = e^x(x\cos y - y\sin y) + 2\sin x \sinh y + x^3 - 3xy^2 + y;$$

(3)
$$v(x,y) = 3 + x^2 - y^2 - \frac{y}{2(x^2 + y^2)}$$
;

(4)
$$v(x,y) = \log(x^2 + y^2) + x - 2y$$

Démonstration. We apply Cauchy-Riemann :

(1) On a

$$\partial_y v(x,y) = \partial_x u(x,y) = 2x + 5 + \frac{2xy}{(x^2 + y^2)^2}$$
$$\partial_x v(x,y) = -\partial_y u(x,y) = 2y - 1 + \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

donc

$$v(x, y_0) - v(x, 0) = \int_0^{y_0} 2x + 5 + \frac{2xy}{(x^2 + y^2)^2} dy$$
$$= 2xy_0 + 5y_0 + x \int_{x^2}^{x^2 + y_0^2} \frac{1}{u^2} du$$
$$= 2xy_0 + 5y_0 + \frac{1}{x} - \frac{x}{x^2 + y_0^2}$$

 et

$$v(x_0, y) - v(0, y) = \int_0^{x_0} 2y - 1 + \frac{x^2 - y^2}{(x^2 + y^2)^2} dx$$
$$= 2x_0 y - x_0 - \frac{x_0}{x_0^2 + y^2}$$

ce qui implique que $v(x,y)=2xy+5y-x-\frac{x}{x^2+y^2}+C$, où $C\in\mathbb{R}$ est une constante arbitraire, et donc que f est de la forme $f(z)=z^2+5z-iz-\frac{i}{z}+C$.

(2) On a

$$\partial_y v(x, y) = \partial_x u(x, y) = e^x (1 + x) \cos y - e^x y \sin y + \cos x \sinh y + 3x^2 - 3y^2$$
$$\partial_x v(x, y) = -\partial_y u(x, y) = e^x (1 + x) \sin y + e^x y \cos y - \sin x \cosh y + 6xy - 1$$

donc

$$v(x, y_0) - v(x, 0) = \int_0^{y_0} e^x (1+x) \cos y - e^x y \sin y + \cos x \sinh y + 3x^2 - 3y^2 dy$$

= $\left[e^x (1+x) \sin y + e^x y \cos y - e^x \sin y + \cos x \cosh y + 3x^2 y - y^3 \right]_0^{y_0}$
= $\left[e^x (x \sin y + y \cos y) + \cos x \cosh y + 3x^2 y - y^3 \right]_0^{y_0}$

et

$$v(x_0, y) - v(0, y) = \int_0^{x_0} e^x (1 + x) \sin y + e^x y \cos y - \sin x \cosh y + 6xy - 1dx$$

= $[e^x \sin y + e^x x \sin y - e^x \sin y + e^x y \cos y + \cos x \cosh y - x]_0^{x_0}$
= $[e^x (x \sin y + y \cos y) + \cos x \cosh y - x]_0^{x_0}$

ce qui implique que $v(x,y) = e^x(x\sin y + y\cos y) + \cos x\cosh y + 3x^2y - y^3 - x + C$ et donc que $f(z) = ze^z + 2i\cos z + z^3 - iz + C$.

- (3) Par la même stratégie, on obtient $f(z) = \frac{1}{2z} + iz^2 + C$.
- (4) On obtient $f(z) = 2i \log z + iz 2z + C$.

Exercice 2. Trouver une fonction continue $f: \mathbb{C} \to \mathbb{C}$ holomorphe en seulement un point.

Démonstration. Les parties réelle et imaginaire de la fonction $f(z) = |z|^2 = x^2 + y^2$ ont comme dérivées partielles

$$\partial_x u(x,y) = 2x, \qquad \partial_y u(x,y) = 2y, \qquad \partial_x v(x,y) = \partial_y v(x,y) = 0.$$

Les équations de Cauchy-Riemann sont donc satisfaites seulement quand x = y = 0.

Exercice 3. Déterminer où les fonctions suivantes sont holomorphes :

- (1) $f(x+iy) = x^2 + y^2 + 2ixy$;
- (2) $f(z) = z \operatorname{Re} z$;
- (3) $f(z) = e^z$;
- (4) $f(z) = \bar{z}$;

Démonstration. (1) On a $\partial_x u(x,y) = 2x$, $\partial_y u(x,y) = 2y$, $\partial_x v(x,y) = 2y$ et $\partial_y v(x,y) = 2x$. Les équations de Cauchy-Riemann sont satisfaites pour y = 0 et tout $x \in \mathbb{R}$.

- (2) On a $\partial_x u(x,y) = 2x$, $\partial_y u(x,y) = 0$, $\partial_x v(x,y) = y$ et $\partial_y v(x,y) = x$. Les équations de Cauchy-Riemann sont satisfaites pour x = 0 et y = 0.
- (3) On a $\partial_x u(x,y) = e^x \cos y$, $\partial_y u(x,y) = -e^x \sin y$, $\partial_x v(x,y) = e^x \sin y$ et $\partial_y v(x,y) = e^x \cos y$. Les équations de Cauchy-Riemann sont satisfaites pour tout $x,y \in \mathbb{R}$.
- (4) On a $\partial_x u(x,y) = 1$, $\partial_y u(x,y) = 0$, $\partial_x v(x,y) = 0$ et $\partial_y v(x,y) = -1$. Les équations de Cauchy-Riemann ne sont donc satisfaites pour aucun $x,y \in \mathbb{R}$.

Exercice 4. Soit $f: U \to \mathbb{C}$ une fonction \mathcal{C}^1 (au sens de fonctions de \mathbb{R}^2 vers \mathbb{R}^2). Montrer que f est holomorphe sur U si et seulement si $\bar{\partial} f(z) = 0$ pour tout $z \in U$ et que dans ce cas $f'(z) = \partial f(z)$.

Démonstration. On a

$$\begin{split} \overline{\partial}f(z) &= \frac{1}{2} \left(\partial_x f(z) + i \partial_y f(z) \right) \\ &= \frac{1}{2} \left(\partial_x u(x,y) + i \partial_y u(x,y) \right) + \frac{i}{2} \left(\partial_x v(x,y) + i \partial_y v(x,y) \right) \\ &= \frac{1}{2} \left(\partial_x u(x,y) - \partial_y v(x,y) \right) + \frac{i}{2} \left(\partial_y u(x,y) + \partial_x v(x,y) \right). \end{split}$$

On voit que les parties réelle et imaginaire sont 0 si et seulement si les équations de Cauchy-Riemann sont satisfaites. On a alors,

$$\begin{split} \partial f(z) &= \frac{1}{2} \left(\partial_x f(z) - i \partial_y f(z) \right) \\ &= \frac{1}{2} \left(\partial_x u(x,y) + i \partial_x v(x,y) \right) - \frac{i}{2} \left(\partial_y u(x,y) + i \partial_y v(x,y) \right) \\ &= \frac{1}{2} \left(\partial_x u(x,y) + \partial_y v(x,y) \right) + \frac{i}{2} \left(-\partial_y u(x,y) + \partial_x v(x,y) \right) \\ &= \partial_x u(x,y) + i \partial_x v(x,y) \\ &= \partial_x f(x+iy) = f'(z). \end{split}$$

Exercice 5. Montrer que si $f: U \to V$ est bijective et holomorphe et si f' ne s'annule pas sur V, alors la fonction inverse f^{-1} est aussi holomorphe.

Démonstration. En considérant la fonction f comme allant de \mathbb{R}^2 à \mathbb{R}^2 , sa Jacobienne $Df\big|_x$ est donc une matrice D de taille 2×2 satisfaisant $D_{11}=D_{22}$ et $D_{12}=-D_{21}$ par Cauchy-Riemann et qui est non-nulle en U. Par le théorème de la fonction inverse (Série 1 Exercise 3), la fonction inverse f en w=f(z) a comme Jacobienne la matrice inverse $D^{-1}=(\det D)^{-1}\begin{pmatrix} D_{22}&-D_{21}\\-D_{12}&D_{11} \end{pmatrix}$. On voit en particulier qu'elle satisfait également les équations de Cauchy-Riemann.

Exercice 6.

- (1) Montrer qu'il n'existe aucun de fonction $f: \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$ t.q. $f(z^2) = z \ \forall z \in \mathbb{C} \setminus \{0\}$;
- (2) Montrer qu'il n'existe pas de logarithme continu sur $\mathbb{C} \setminus \{0\}$.

Démonstration. (1) Il faudrait que $f(1^2) = 1$ et $f((-1)^2) = -1$: contradiction.

(2) Supposons qu'il existe une fonction h t.q. $e^{h(z)}=z$ pour tout $z\in\mathbb{C}\setminus\{0\}$ et $h(e^w)=w$ (continuité). Alors la fonction $f(z)=e^{\frac{1}{2}h(z)}$ satisfait (pour tous $z=e^w$) $f(z^2)=e^{\frac{1}{2}h(e^{2w})}=e^w=z$, ce qui est impossible par (1).

Exercice 7. Trouver le rayon de convergence des séries suivantes :

- (1) $\sum_{n=0}^{\infty} z^{n!}$
- (2) $\sum_{n=0}^{\infty} n^{(-1)^n} z^n$

Démonstration. (1) Le rayon de convergence est 1 car pour chaque $\rho \in [0,1)$,

$$\sum_{n=0}^{\infty} \rho^{n!} \le \sum_{n=0}^{\infty} \rho^n = \frac{1}{1-\rho} < \infty$$

et pour chaque $\rho \ge 1$, chacun des termes $\rho^{n!}$ ne convergent pas vers 0 et il ne peut donc pas y avoir de convergence.

(2) On a $\limsup_{n\to\infty} |a_n|^{\frac{1}{n}} = \limsup_{n\to\infty} n^{\frac{(-1)^n}{n}} = 1$, et donc le rayon de convergence est 1.

Exercice 8. Soit $f(z) = \sum_{k=0}^{\infty} a_k z^k$ une série convergente avec rayon de convergence R > 0. Soit $n \in \mathbb{N}$ et $j \in \{0, \dots, n-1\}$. Montrer que pour |z| < R,

$$\sum_{k=0}^{\infty} a_{j+kn} z^{j+kn} = \frac{1}{n} \sum_{u=0}^{n-1} e^{-\frac{2\pi i}{n} u j} f(e^{\frac{2\pi i}{n} u} z) .$$

Démonstration. We have

$$\frac{1}{n} \sum_{u=0}^{n-1} e^{-\frac{2\pi i}{n}uj} f\left(e^{\frac{2\pi i}{n}u}z\right) = \frac{1}{n} \sum_{u=0}^{n-1} e^{-\frac{2\pi i}{n}uj} \sum_{m=0}^{\infty} a_m e^{\frac{2\pi i m}{n}u} z^m = \sum_{m=0}^{\infty} a_m z^m \left(\frac{1}{n} \sum_{u=0}^{n-1} e^{\frac{2\pi i}{n}u(m-j)}\right).$$

The sum $\sum_{u=0}^{n-1} e^{\frac{2\pi i}{n}u(m-j)}$ equals to n if m-j is divisible by n, and to $\frac{1-e^{2\pi i(m-j)}}{1-e^{\frac{2\pi i}{n}(m-j)}}=0$ otherwise since m-j is an integer. Therefore the above expression equals $\sum_{k=0}^{\infty} a_{j+kn} z^{j+kn}$.