Outline
Preliminaries
Random patterns
Estimating intensities
Second order properties
Case study: Sea turtle nesting

MODULE 12: Spatial Statistics in Epidemiology and Public Health Lecture 3: Point Processes

Jon Wakefield and Lance Waller

Outline
Preliminaries
Random patterns
Estimating intensities
Second order properties
Case study: Sea turtle nesting

Preliminaries

Random patterns

CSR

Monte Carlo testing
Heterogeneous Poisson process

Estimating intensities

Second order properties

K functions

Estimating K functions

Edge correction

Monte Carlo envelopes

Case study: Sea turtle nesting

Sea Turtle Biology

Juno Beach, Florida

Data

Comparing Nesting patterns

Pre- vs. post-nourishment

References

- Diggle, P.J. (1983) Statistical Analysis of Spatial Point Patterns. London: Academic Press.
- ▶ Diggle, P.J. (2014) Statistical Analysis of Spatial and Spatio-Temporal Point Patterns. CRC/Chapman & Hall.
- Waller and Gotway (2004, Chapter 5) Applied Spatial Statistics for Public Health Data. New York: Wiley.
- Møller, J. and Waagepetersen (2004) Statistical Inference and Simulation for Spatial Point Processes. Boca Raton, FL: CRC/Chapman & Hall.

Goals

- Describe basic types of spatial point patterns.
- Introduce mathematical models for random patterns of events.
- Introduce analytic methods for describing patterns in observed collections of events.
- Illustrate the approaches using examples from archaeology, conservation biology, and epidermal neurology.

Terminology

- Event: An occurrence of interest (e.g., disease case).
- Event location: Where an event occurs.
- Realization: An observed set of event locations (a data set).
- Point: Any location in the study area.
- ▶ Point: Where an event could occur.
- Event: Where an event did occur.

Random patterns

- ► We use probability models to generate patterns so, in effect, all of the patterns we consider are "random".
- Usually, "random pattern" refers to a pattern not influenced by the factors under investigation.

Complete spatial randomness (CSR)

- ► Start with a model of "lack of pattern".
- Events equally likely to occur anywhere in the study area.
- Event locations independent of each other.

Six realizations of CSR

CSR as a boundary condition

CSR serves as a boundary between:

- Patterns that are more "clustered" than CSR.
- Patterns that are more "regular" than CSR.

Too Clustered (top), Too Regular (bottom)

The role of scale

- "Eyeballing" clustered/regular sometimes difficult.
- In fact, an observed pattern may be clustered at one spatial scale, and regular at another.
- ► *Scale* is an important idea and represents the distances at which the underlying process generating the data operates.
- Many ecology papers on estimating scale of a process (e.g., plant disease, animal territories) but little in public health literature (so far).

Clusters of regular patterns/Regular clusters

Spatial Point Processes

- Mathematically, we treat our point patterns as realizations of a spatial stochastic process.
- A stochastic process is a collection of random variables X_1, X_2, \dots, X_N .
- Examples: Number of people in line at grocery store.
- For us, each random variable represents an event location.

Stationarity/Isotropy

- Stationarity: Properties of process invariant to translation.
- Isotropy: Properties of process invariant to rotation around an origin.
- ▶ Why do we need these? They provide a sort of replication in the data that allows statistical estimation.
- Not required, but development easier.

CSR as a Stochastic Process

Let N(A) = number of events observed in region A, and $\lambda =$ a positive constant.

A homogenous spatial Poisson point process is defined by:

- (a) $N(A) \sim Pois(\lambda |A|)$
- (b) given N(A) = n, the locations of the events are uniformly distributed over A.

 λ is the *intensity* of the process (mean number of events expected per unit area).

Is this CSR?

- Criterion (b) describes our notion of uniform and independently distributed in space.
- Criteria (a) and (b) give a "recipe" for simulating realizations of this process:
 - * Generate a Poisson random number of events.
 - * Distribute that many events uniformly across the study area.
 runif(n,min(x),max(x))
 runif(n,min(y),max(y))

Compared to temporal Poisson process

Recall the three "magic" features of a Poisson process in time:

- Number of events in non-overlapping intervals are Poisson distributed,
- Conditional on the number of events, events are uniformly distributed within a fixed interval, and
- ▶ Interevent times are *exponentially* distributed.

In space, no ordering so no (uniquely defined) interevent distances.

Spatial Poisson process equivalent

Criteria (a) and (b) equivalent to

- 1. # events in non-overlapping areas is independent
- 2. Let A = region, |A| = area of A

$$\lim_{|A| \to 0} \frac{\Pr[\text{ exactly one event in } A]}{|A|} = \lambda > 0$$

3.

$$\lim_{|A|\to 0} \frac{\Pr[2 \text{ or more in } A]}{|A|} = 0$$

Interesting questions

- Test for CSR
- Simulate CSR
- Estimate λ (or $\lambda(s)$)
- Compare $\lambda_1(s)$ and $\lambda_2(s)$; $s \in D$ for two point processes. (same underlying intensity?

e.g.
$$Z_1(s) = \text{location of disease cases}$$

$$Z_2(s) = \text{location of population at risk}$$
or environmental exposure levels.))

Monte Carlo hypothesis testing

Review of basic hypothesis testing framework:

- ightharpoonup T = a random variable representing the test statistic.
- ▶ Under H_0 : $U \sim F_0$.
- From the data, observe $T=t_{obs}$ (the observed value of the test statistic).

$$p$$
-value = $1 - F_0(t_{obs})$

Sometimes it is easier to simulate $F_0(\cdot)$ than to calculate $F_0(\cdot)$ exactly.

Besag and Diggle (1977).

Steps in Monte Carlo testing

- 1. observe u_1 .
- 2. simulate $u_2, ..., u_m$ from F_0 .
- 3. p.value = $\frac{\text{rank of } u_1}{m}$.

For tests of CSR (complete spatial randomness), M.C. tests are very useful since CSR is easy to simulate but distribution of test statistic may be complex.

Monte Carlo tests very helpful

- 1. when distribution of U is complex but the spatial distribution associated with H_0 is easy to simulate.
- 2. for permutation tests
 - e.g., 592 cases of leukemia in ~ 1 million people in 790 regions
 - permutation test requires all possible permutations.
 - \blacktriangleright Monte Carlo assigns cases to regions under H_0 .

Testing for CSR

A good place to start analysis because:

- 1. rejecting CSR a minimal prerequisite to model observed pattern (i.e. if not CSR, then there is a pattern to model)
- 2. tests aid in formulation of possible alternatives to CSR (e.g. regular, clustered).
- 3. attained significance levels measure strength of evidence against CSR.
- informal combination of several complementary tests to show how pattern departs from CSR (although this has not been explored in depth).

Final CSR notes

CSR:

- 1. is the "white noise" of spatial point processes.
- 2. characterizes the absence of structure (signal) in data.
- 3. often the null hypothesis in statistical tests to determine if there is structure in an observed point pattern.
- 4. not as useful in public health? Why not?

Heterogeneous population density

What if intensity not constant?

Let
$$d(x,y) = \text{tiny region around } (x,y)$$

$$\lambda(x,y) = \lim_{|d(x,y)| \to 0} \frac{E[N(d(x,y))]}{|d(x,y)|}$$

$$\approx \lim_{|d(x,y)| \to 0} \frac{\Pr[N(d(x,y)) = 1]}{|d(x,y)|}$$

If we use $\lambda(x, y)$ instead of λ , we get a Heterogeneous (Inhomogeneous) Poisson Process

Heterogeneous Poisson Process

1.
$$N(A) = Pois\left(\int_{(x,y)\in A} \lambda(x,y)d(x,y)\right)$$

 $(|A| = \int_{(x,y)\in A} d(x,y))$

2. Given N(A) = n, events distributed in A as an independent sample from a distribution on A with p.d.f. proportional to $\lambda(x,y)$.

Example intensity function

Six realizations

IMPORTANT FACT!

Without additional information, no analysis can differentiate between:

- 1. independent events in a heterogeneous (non-stationary) environment
- 2. dependent events in a homogeneous (stationary) environment

How do we estimate intensities?

For an heterogeneous Poisson process, $\lambda(s)$ is closely related to the density of events over $A(\lambda(s)) \propto \text{density}$.

So density estimators provide a natural approach (for details on density estimation see Silverman (1986) and Wand and Jones (1995, KernSmooth R library!)).

Main idea: Put a little "kernel" of density at each data point, then sum to give the estimate of the overall density function.

What you need

In order to do kernel estimation, you need to choose:

- 1. kernel (shape) Epeuechnikov (1986) shows any reasonable kernel gives near optimal results.
- 2. "bandwidth" (range of influence). The larger *b*, the bandwidth, the smoother the estimated function.

Kernels and bandwidths

Kernel variance = 0.04

Kernel variance = 0.03

Kernel variance = 0.1

1-dim kernel estimation

If we have observations u_1, u_2, \ldots, u_N (in one dimension), the kernel density estimate is

$$\tilde{f}(u) = \frac{1}{Nb} \sum_{i=1}^{N} Kern\left(\frac{u - u_i}{b}\right)$$
 (1)

where $Kern(\cdot)$ is a kernel function satisfying

$$\int_{D} \textit{Kern}(s) ds = 1$$

and b the bandwidth. To estimate the intensity function, replace N^{-1} by $|D|^{-1}$.

What do we do with this?

- Evaluate intensity (density) at each of a grid of locations.
- Make surface or contour plot.

How do we pick the bandwidth?

- Circular question...
- Minimize the Mean Integrated Squared Error (MISE)
- Cross validation
- Scott's rule (good rule of thumb).

$$\widehat{b}_u = \widehat{\sigma}_u N^{-1/(dim+4)} \tag{2}$$

where $\widehat{\sigma}_u$ is the sample standard deviation of the u-coordinates, N represents the number of events in the data set (the sample size), and dim denotes the dimension of the study area.

Kernel estimation in R

base

▶ density() one-dimensional kernel

library(MASS)

kde2d(x, y, h, n = 25, lims = c(range(x), range(y)))

library(KernSmooth)

- bkde2D(x, bandwidth, gridsize=c(51, 51), range.x=<<see below>>, truncate=TRUE) block kernel density estimation
- dpik() to pick bandwidth

More kernel estimation in R

```
library(splancs)
```

kernel2d(pts,poly,h0,nx=20, ny=20,kernel='quartic')

library(spatstat)

ksmooth.ppp(x, sigma, weights, edge=TRUE)

Data Break: Early Medieval Grave Sites

What do we have?

- Alt and Vach (1991). (Data sent from Richard Wright Emeritus Professor, School of Archaeology, University of Sydney.)
- Archeaological dig in Neresheim, Baden-Württemberg, Germany.
- The anthropologists and archaeologists involved wonder if this particular culture tended to place grave sites according to family units.
- ▶ 143 grave sites.

What do we want?

- ➤ 30 with missing or reduced wisdom teeth ("affected").
- ▶ Does the pattern of "affected" graves (cases) differ from the pattern of the 113 non-affected graves (controls)?
- How could estimates of the intensity functions for the affected and non-affected grave sites, respectively, help answer this question?

Outline of analysis

- Read in data.
- Plot data (axis intervals important!).
- Call 2-dimensional kernel smoothing functions (choose kernel and bandwidth).
- ▶ Plot surface (persp()) and contour (contour()) plots.
- Visual comparison of two intensities.

Plot of the data

Case intensity

Control intensity

What we have/don't have

- ▶ Kernel estimates suggest similarities and differences.
- Suggest locations where there might be differences.
- No significance testing (yet!)

First and Second Order Properties

- ► The intensity function describes the *mean* number of events per unit area, a *first order* property of the underlying process.
- What about second order properties relating to the variance/covariance/correlation between event locations (if events non independent...)?

Ripley's K function

Ripley (1976, 1977 introduced) the *reduced second moment* measure or *K function*

$$K(h) = \frac{E[\# \text{ events within } h \text{ of a } randomly \text{ chosen event}]}{\lambda}$$

for any positive spatial lag h.

NOTE: Use of λ implies assumption of stationary process!

Properties of K(h)

- ▶ Ripley (1977) shows specifying K(h) for all h > 0, equivalent to specifying Var[N(A)] for any subregion A.
- ▶ Under CSR, $K(h) = \pi h^2$ (area of circle of with radius h).
- ► Clustered? $K(h) > \pi h^2$.
- ► Regular? $K(h) < \pi h^2$.

Second order intensity?

- \triangleright K(h) not universally hailed as *the* way (or even a good way) to describe second order properties.
- Provides a nice introduction for us, but another related property is...
- ► The second order intensity, $\lambda_2(\mathbf{s}, \mathbf{u})$,

$$\lambda_2(\boldsymbol{s}, \boldsymbol{u}) = \lim_{\substack{|d(\boldsymbol{S})| \to 0 \\ |d(\boldsymbol{u})| \to 0}} \frac{E(N(d(\boldsymbol{s}))N(d(\boldsymbol{u}))}{|d(\boldsymbol{s})||d(\boldsymbol{u})|}$$

Relationship to K(h)

► How does $K(\cdot)$ relate to $\lambda_2(\mathbf{s}, \mathbf{u})$?

In \Re^2 , for a stationary, isotropic process $\lambda_2(\boldsymbol{s}, \boldsymbol{u}) = \lambda_2(\|\boldsymbol{s} - \boldsymbol{u}\|)$. Then,

$$\lambda K(h) = \frac{2\pi}{\lambda} \int_0^h u \lambda_2(u) du$$

So

$$\lambda_2(h) = \frac{\lambda^2 K'(h)}{2\pi h}.$$

- ▶ Which to use $(K(\cdot) \text{ or } \lambda_2(\cdot))$?
- In theory, $\lambda_2(h)$ often used but K(h) is easier to estimate from a set of data.

Estimating K(h)

Start with definition, replacing expectation with average yields

$$\widehat{K}(h) = \frac{1}{\widehat{\lambda}N} \sum_{i=1}^{N} \sum_{\substack{j=1 \ j \neq i}}^{N} \delta(d(i,j) < h),$$

for N events, where

- ightharpoonup d(i,j) = distance between events i and j
- $\delta(d(i,j) < h) = 1$ if d(i,j) < h, 0 otherwise.

Edges

- ▶ Think about events near "edges" of study area.
- ► How do we count events within *h* if distance between edge and observed event is < *h*?
- Unobservable data drive increasing.
- ▶ More of a problem as *h* increases...
- "Edge effects" call for "edge correction".

Edge correction

- Add "guard area" around study area and only calculate $\widehat{K}(h)$ for h < width of guard area.
- Toroidal correction.
- ► Ripley's (1976) edge correction

$$\widehat{K}_{ec}(h) = \widehat{\lambda}^{-1} \sum_{\substack{i=1 \ j \neq i}}^{N} \sum_{\substack{j=1 \ j \neq i}}^{N} w_{ij}^{-1} \delta(d(i,j) < h)$$

where w_{ij} = proportion of the circumference of the circle centered at event i with radius d(i,j) within the study area.

Ripley's weights

- Conceptually, conditional probability of observing an event at distance d(i,j) given an event occurs d(i,j) from event i.
- Works for "holes" in study area too. (Astronomy application).
- Requires definition of study boundary (and way of calculating w_{ij}).

Calculating K(h) in R

library(splancs)

- khat(pts,poly,s,newstyle=FALSE)
- poly defines polygon boundary (important!!!).

library(spatstat)

- Kest(X, r, correction=c("border", "isotropic",
 "Ripley", "translate"))
- Boundary part of X (point process "object").

Plots with K(h)

- ▶ Plotting (h, K(h)) for CSR is a parabola.
- \blacktriangleright $K(h) = \pi h^2$ implies

$$\left(\frac{K(h)}{\pi}\right)^{1/2}=h.$$

▶ Besag (1977) suggests plotting

h versus
$$\widehat{L}(h)$$

where

$$\widehat{L}(h) = \left(\frac{\widehat{K}_{ec}(h)}{\pi}\right)^{1/2} - h$$

Variability and Envelopes

Are there any distributional results for $\widehat{K}(h)$?

Some, but mostly for particular region shapes. Monte Carlo approaches more general.

- ▶ Observe $\widehat{K}(h)$ from data.
- Simulate a realization of events from CSR.
- Find $\widehat{K}(h)$ for the simulated data.
- Repeat simulations many times.
- ▶ Create simulation "envelopes" from simulation-based $\widehat{K}(h)$'s.

Example: Regular clusters and clusters of regularity

Data break: Medieval gravesites

Clustering!

- ► Looks like strong clustering, but wait...
- Compares all, cases, controls to CSR.
- Oops, forgot to adjust for polygon, clustering inside square area!
- Significant clustering, but interesting clustering?
- Let's try again with polygon adjustment.

Medieval graves: K functions with polygon adjustment

Clustering?

- Clustering of cases at very shortest distances.
- Likely due to two coincident-pair sites (both cases in both pairs).
- Could we try random labelling here?
- Construct envelopes based on random samples of 30 "cases" from set of 143 locations.

A few notes

- Since K(h) is a function of distance (h), it can indicate clustering at one scale and regularity at another.
- K(h) measures cumulative aggregation (# events up to h). May result in delayed response to change from clustering to regularity.
- $ightharpoonup \lambda_2$ (or similar measures) based on K'(h) may respond more instantaneously.
- Often see "envelopes" based on extremes, but what does this mean with respect to increasing numbers of simulations? Quantiles may be better (at least they will converge to something).

Testing

- ► Envelopes provide *pointwise* inference at particular values of *h*, but not correct to find deviation then assess whether it is significant.
- ► Can conduct test of $H_0: L(h) = h$ (equivalent to $H_0: K(h) = \pi h^2$) for a *predefined* interval for h (Stoyan et al., 1995, p. 51).
- Monte Carlo test based on

$$T = \max_{0 \le h \le h_{max}} \left| \widehat{L}(h) - h \right|.$$

Notes

- ▶ Just as the first and second moments do not uniquely define a distribution, $\lambda(s)$ and K(h) do not uniquely define a spatial point pattern (Baddeley and Silverman 1984, and in Section 5.3.4).
- Analyses based on $\lambda(s)$ typically assume independent events, describing the observed pattern entirely through a heterogeneous intensity.
- Analyses based on K(h) typically assume a stationary process (with constant λ), describing the observed pattern entirely through correlations between events.
- Remember Barlett's (1964) result (IMPORTANT FACT! above).

What questions can we answer?

- Are events uniformly distributed in space?
 - ► Test CSR.
- If not, where are events more or less likely?
 - Intensity esimtation.
- Do events tend to occur near other events, and, if so, at what scale?
 - K functions with Monte Carlo envelopes.

Sea turtle biology

- ightharpoonup Existed (at least) since Jurassic period (\sim 200-120 mya).
- Air breathing reptile.
- Spends life in ocean, returns to natal beach to lay eggs.
- ightharpoonup Lays eggs on land (\sim 100 eggs per clutch, buried in sand).
- ▶ Hatchlings appear *en masse*, head to the ocean.

Sea Turtle Species

Consider the hatchling

- Life fraught with peril.
- On menu for crabs, gulls, etc.
- Goal 1: Get to the ocean. Follow the light!

Sea Turtles and Humans: Regulatory implications

- ► All species "threatened" or "endangered".
- Regulations in place for fisheries (TEDs), beach-front lighting, beach-front development.
- ► East coast of Florida (USA), prime nesting site for loggerhead turtles.
- Also popular among green turtles (biannual cycle).
- We consider impact of two different construction projects on Juno Beach, Florida.

Two construction projects

- Construction of 990-foot fishing pier in 1998.
- Environmental impact statement approved if collect data to determine impact on sea turtle nesting.
- Beach nourishment project 2000.
- Dredge up sand offshore and rebuild beach.
- ▶ Past studies on impact of beach nourishment on turtle nesting (reduced for 2 nesting seasons, off-shore slope impact?)

"Standard" approach

- ▶ Patrol beach each morning during nesting season.
- Count trackways in each Index Nesting Beach Zone.
- Compare distribution of counts between years.

Juno Beach data

- Marinelife Center of Juno Beach volunteers patrol beach each morning.
- Differential GPS coordinates for apex of each "crawl".
- Store: Date. Nest? Species. Predation?
- Approximately 10,000 points per year.

Sea Turtle Biology Juno Beach, Florida Data Comparing Nesting patterns Pre- vs. post-nourishment

Juno Beach Data

Loggerhead Displacement from Beach

Displacement of Green Emergences

Displacement of nest sites to loess beach: Greens

"Linearizing" the beach

- While we have sub-meter accurate GPS locations, depth on beach of secondary interest.
- We want to know where differences in nesting pattern occur and whether these observed differences are significant.
- ► Treat emergence locations as realization of a spatial point process in one dimension (events on a line).
- Ignore depth on beach by projecting all points to loess curve representing beach.
- ➤ Three time periods of interest: Pre-pier (1997-1998), pre-nourishment (post-pier) (1999-2000), post-nourishment (2001-2002).

Kernel estimates for each time period

- Let $\lambda(s)$ denote *intensity function* of point process (mean number of events per unit distance).
- Intensity proportional to pdf.
- ▶ Data: locations s_1, \ldots, s_n .
- Estimate via kernel estimation: $\widehat{y}(\mathbf{s}) = 1 \sum_{i=1}^{n} \mathbf{Korn} [(\mathbf{s} \mathbf{s}_i)]$

$$\widehat{\lambda}(oldsymbol{s}) = rac{1}{nb} \sum_{i=1}^n \mathsf{Kern}\left[rac{(oldsymbol{s} - oldsymbol{s}_i)}{b}
ight]$$

► Kern(·) is kernel function, *b* bandwidth (governing smoothness).

Ratio of kernel estimates

- ► Kelsall and Diggle (1995, *Stat in Med*) consider ratio of two intensity estimates as spatial measure of relative risk.
- ▶ Suppose we have n_1 "before" events, n_2 "after" events.
- \triangleright $\lambda_1(s)$, $\lambda_2(s)$ associated before/after intensity functions.
- ▶ Conditional on n_1 and n_2 , data equivalent to two random samples from pdfs:

$$f_1(s) = \lambda_1(s) / \int \lambda_1(u) du$$
 and $f_2(s) = \lambda_2(s) / \int \lambda_2(u) du$.

Ratio of kernel estimates

► Consider *log relative risk*

$$r(\mathbf{s}) = \log \frac{f_1(\mathbf{s})}{f_2(\mathbf{s})}.$$

Some algebra yields:

$$r(s) = \log \left[\frac{\lambda_1(s)}{\lambda_2(s)} \right] - \log \left[\frac{\int \lambda_1(u) du}{\int \lambda_2(u) du} \right].$$

- $\vdash H_0: r(s) = 0 \text{ for all } s.$
- How do we test this?

Monte Carlo inference

- Conditional on all $n_1 + n_2$ locations, randomize n_1 to "before", n_2 to "after".
- ► Calculate $\hat{f}^*(s)$ and $\hat{g}^*(s)$, get ratio $r^*(s)$.
- ► Repeat many (999) times.
- ► Calculate pointwise 95% tolerance region.

Sea Turtle Biology Juno Beach, Florida **Comparing Nesting patterns**

Densities

Nesting locations along beach

Pre- vs. post-pier, Loggerheads

Pre-pier vs. pre-nourishment, Loggerheads

Pre- vs. post-pier, Greens

Pre-pier vs. pre-nourishment, Greens

Differences

- Green densities smoother (wider bandwidth due to smaller sample size).
- ► Clear impact of pier on loggerheads (but very local).
- Conservation strategy? Maintain protected areas nearby.
- ▶ Note: impact on *all* crawls (nesting and non-nesting).

Pre- vs. post-nourishment, Loggerheads

Pre-nourishment vs. post-nourishment, Loggerheads

Pre- vs. post-nourishment, Greens

Pre-nourishment vs. post-nourishment, Greens

Differences

- ▶ Reduced nesting in nourishment zone, increases just to south.
- Offshore current suggests approach from north (left on plot).
- Impact on all crawls (nesting and non-nesting).
- Suggests impact of nourishment before turtle emerges. Slope?

Conclusions

Pairwise comparisons suggest:

- Local impact of pier for loggerheads, but not for greens.
- Shift to south in emergences (nesting and non-nesting) due to nourishment for both loggerheads and greens.

Outline
Preliminaries
Random patterns
Estimating intensities
Second order properties
Case study: Sea turtle nesting

Sea Turtle Biology Juno Beach, Florida Data Comparing Nesting patterns Pre- vs. post-nourishment Case study conclusion

Questions?