

Allen-Bradley

1336 FORCE™ Adjustable Frequency AC Drive

0.75 - 485 kW (1 - 650 HP)

Standard Adapter 5.01

PLC Communications Adapter 5.01

1335Eure

User Manual

Important User Information

Because of the variety of uses for the product described in this publication, those responsible for the application and use of this control equipment must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any applicable laws, regulations, codes and standards.

The illustrations, charts, sample programs and layout examples shown in this guide are intended solely for purposes of example. Since there are many variables and requirements associated with any particular installation, Allen-Bradley Company does not assume responsibility or liability (to include intellectual property liability) for actual use based upon the examples shown in this publication.

Allen-Bradley publication SGI-1.1 Safety Guidelines for the Application, Installation, and Maintenance of Solid-State Control (available from your local Allen-Bradley office), describes some important differences between solid-state equipment and eletromechanical devices that should be taken into consideration when applying products such as those described in this publication.

Reproduction of the contents of this copyrighted publication, in whole or in part, without written permission of the Allen-Bradley Company, Inc. is prohibited.

Throughout this manual we use notes to make you aware of safety considerations:

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage or economic loss.

Attentions help you:

- · identify a hazard
- avoid the hazard
- recognize the consequences

Important: Identifies information that is especially important for successful application and understanding of the product.

1336 FORCE AC Drive User Manual

This document provides new and updated material for the 1336 FORCE Adjustable Frequency AC Drive User Manual, publication 1336 FORCE-5.12, dated September, 1998. **Please place this document with your manual for future reference.**

HIM Upload/Download Errors

The following information describes the possible errors that can be encountered during a HIM Upload/Download procedure.

HIM Upload/Download Errors

Fault Name	Error Displayed	Probable Cause	Action
HIM -> Drive	ERROR 1	The HIM calculated a checksum for the file to be downloaded, then checked the EEPROM checksum of the download. The checksums did not match, indicating the file stored in the HIM is invalid and the download was not successful.	Upload a valid, uncorrupted file from the source drive and then repeat the download.
	ERROR 2	The number of parameters in the HIM file is different than the number of parameters in the drive file. The smaller of	Verify that the correct file is being downloaded to the correct drive, then press the Enter key.
		the two numbers is the number of parameters downloaded. The last downloaded parameter number is displayed.	Manually reprogram parameters with numbers higher than the last number downloaded or whose values were incorrect.
	ERROR 3	The file in the HIM is for a different type of drive than the drive to which it is connected (i.e. 1336 FORCE file to 1336 IMPACT drive). Downloads can only occur between like drive types.	None - Download not allowed.
	ERROR 4	The value just transferred to the drive is an illegal value (out of range, too high or too low) for the parameter.	Record the parameter number displayed and then press Enter to continue the download. Manually reprogram all recorded parameters after the download is complete.
	ERROR 5	The download was attempted while the drive was running.	Stop the drive and repeat the download attempt.
	ERROR 6	The file in the HIM is for a different HP or voltage drive than the drive to which it is connected (i.e. 1336 FORCE 10 HP file to 1336 FORCE 15 HP drive).	If the download is desired, press the Enter key. If not desired, press the ESCape key to end the download
Drive -> HIM	ERROR 1	The HIM calculated a checksum as the file was uploaded and compared it to the HIM file checksum stored after the upload. The checksums did not match, indicating the upload was not successful and the HIM file is now corrupted.	Repeat the Upload.

Motor Control Board (v6.xx)

The following changes should be noted if a v6.xx Motor Control Board is being used.

Page 1-6

The table has been updated to include v6.xx of the Motor Control Board.

Software Compatibility

MOTOR CONTROL BOARD

		v1.xx	v2.xx	v3.xx	v5.xx/v6.xx
	v1.xx	Compatible	Not Compatible	Not Compatible	Not Compatible
PLC COMM ADAPTER BOARD	v2.xx	Not Compatible	Compatible	Compatible with exception: X Drive Comm #9–19 non–linkable. X Drive Comm Tx/Rx #14–19 max value 219. X Torque Stop Configuration #58 not available. X Service Factor #94 not available. X Feedback Device Type #150 mode 7 not available. X Calculated Torque #267 not available.	Compatible with exception: X Drive Comm #9–19 non-linkable. X Drive Comm Tx/Rx #14–19 max value 219. X Torque Stop Configuration #58 not available. X Service Factor #94 not available. X Feedback Device Type #150 mode 7 not available. X Calculated Torque #267 not available. X Percharge Timeout #225 min value 0. X Perunit Motor Voltage #186 not available. X Transistor Diagnostics #257 bit 12 not available. X Iq Rate Limit #181 max value 30%. X Motor Overload Select #92 min value 150%. X Motor Poles #233 max value 12. X Base Motor Speed #229 max value 6000.
	v3.xx	Not Compatible	Compatible with exception: X Torque Stop Configuration #58 non-functional. X Service Factor #94 non-functional. X Feedback Device Type #150 mode 7 non-functional. X Calculated Torque #267 non-functional.	Compatible with exception: X V3.04 VP must be used with V3.03 AP and V3.03 Language or higher for B800 'H Frame' drive support.	Compatible with exception: X V3.04 VP must be used with V3.03 AP and V3.03 Language or higher for B800 'H Frame' drive support. X Perunit Motor Current #185 not available. X Perunit Motor Current #186 not available. X Transistor Diagnostics #257 bit 12 not available. X Iq Rate Limit #181 max value 30% X Motor Overload Select #92 min value 150%. X Motor Poles #233 max value 12. X Base Motor Speed #229 max value 6000.
	v5.xx	Not Compatible	Compatible with exception: X Torque Stop Configuration #58 non-functional. X Service Factor #94 non-functional. X Feedback Device Type #150 mode 7 non-functional. X Calculated Torque #267 non-functional. X Perunit Motor Current #185 non-functional. X Perunit Motor Voltage #186 non-functional. X Transistor Diagnostics #257 bit 12 non-functional.	Compatible with exception: X V3.04 VP must be used with V3.03 AP and V3.03 Language or higher for B800 'H Frame' drive support. X Perunit Motor Current #185 non— functional. X Perunit Motor Voltage #186 non— functional. X Transistor Diagnostics #257 bit 12 non—functional.	Compatible

Key: VP = Velocity Processor

MCC = Main Control Board Language Module
APL = PLC Comm Language Module
AP = Application Processor on PLC Comm

CP = Current Processor

DP = Domino Processor on PLC Comm SAL = Std. Adapter Language Module

SA = Std Adapter Processor

Page 1-7

The table has been updated to include v6.xx of the Motor Control Board. A note was added to v5.xx of the Standard Adapter Board.

MOTOR CONTROL BOARD

,	WOTOR CONTROL BOARD					
		v1.xx	v2.xx	v3.xx	v5.xx/6.xx	
	v1.xx	Not Compatible	Compatible	Compatible with exception: X Drive Comm #9–19 non–linkable. X Drive Comm Tx/Rx #14–19 max value 219. X Torque Stop Configuration #58 not available. X Service Factor #94 not available. X Feedback Device Type #150 mode 7 not available. X Calculated Torque #267 not available. X Precharge Timeout #225 min value 0	Compatible with exception: X Drive Comm #9–19 non–linkable. X Drive Comm Tx/Rx #14–19 max value 219. X Torque Stop Configuration #58 not available. X Service Factor #94 not available. X Feedback Device Type #150 mode 7 not available. X Feedback Device Type #150 mode 7 not available. X Precharge Timeout #225 min value 0. X Perunit Motor Current #185 not available. X Perunit Motor Voltage #186 not available. X Perunit Motor Voltage #186 not available. X Transistor Diagnostics #257 bit 12 not available. X Iq Rate Limit #181 max value 30%. X Motor Overload Select #92 min value 150%. X Motor Poles #233 max value 12. X Base Motor Speed #229 max val 6000.	
	v3.xx	Not Compatible	Compatible with exception: X Torque Stop Configuration #58 non-functional. X Service Factor #94 non-functional. X Feedback Device Type #150 mode 7 non-functional. X Calculated Torque #267 non-functional.	Compatible	Compatible with exception: X V3.04 VP must be used with V3.03 AP and V3.03 Language or higher for B800 'H Frame' drive support. X Perunit Motor Current #185 not available. X Perunit Motor Voltage #186 not available. X Transistor Diagnostics #257 bit 12 not available. X Iq Rate Limit #181 max value 30% X Motor Overload Select #92 min value 150%. X Motor Poles #233 max value 12. X Base Motor Speed #229 max val 6000.	
	v4.xx	Not Compatible	Compatible with exception: X Torque Stop Configuration #58 non-functional. X Service Factor #94 non-functional. X Feedback Device Type #150 mode 7 non-functional. X Calculated Torque #267 non-functional.	Compatible with exception: X V3.04 VP must be used with V4.02 SA and V4.02 Language or higher for B800 'H Frame' drive support.	Compatible with exception: X V5.xx VP must be used with V4.02 AP and V4.02 Language or higher for B800 'H Frame' drive support. X Perunit Motor Current #185 not available. X Perunit Motor Voltage #186 not available. X Transistor Diagnostics #257 bit 12 not available. X Iq Rate Limit #181 max value 30% X Motor Overload Select #92 min value 150%. X Motor Poles #233 max value 12. X Base Motor Speed #229 max valu 6000.	
	v5.xx	Not Compatible	Compatible with exception: X Torque Stop Configuration #58 non-functional. X Service Factor #94 non-functional. X Feedback Device Type #150 mode 7 non-functional. X Calculated Torque #267 non-functi. X Perunit Motor Curr #185 non-funct. X Perunit Motor Volt #186 non-funct. X Transistor Diag. #257 bit 12 non-funct.	Compatible with exception: X V3.04 VP MUST be used with V3.03 AP and V3.03 Language or higher for B800 'H Frame' drive support. X Calculated Torque #267 non-functi. X Perunit Motor Curr #185 non-funct. X Perunit Motor Volt #186 non-funct. X Transistor Diag. #257 bit 12 non-funct.	v5.xx - Compatible. v6.xx - Drive to drive communications only compatible at 125k baud, Not Compatible at 250k or 500k.	

STANDARD ADAPTER BOARD Pages 3-20 through 3-24

GPT information does not apply.

Page 5-31

Important note added to "Drive Link Baud Rate" description.

Drive Link Baud Rate

[D2D Baud Rate]

This word parameter specifies the baud rate used on the drive-to-drive link (CAN) communication interface as follows:

00H = 125K baud 01H = 250K baud 02H = 500K baud

Important: If a v6.xx drive is added to the drive link that has v5.xx or less, it will only operate at 125k baud. If all drives on the drive link are v6.xx, it can operate at 250k and 500k baud.

Parameter Number	10
Parameter Type	Sink
Display Units	Kbaud
Drive Units Factory Default Minimum Value Maximum Value	None 0 0 2

U.S. Allen-Bradley Drives Technical Support - Tel: (1) 262.512.8176, Fax: (1) 262.512.2222, Email: support@drives.ra.rockwell.com, Online: www.ab.com/support/abdrives

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444 Europe/Middle East/Africa: Rockwell Automation, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640 Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Summary of Changes

Summary of Manual Changes

The 5.01 release of the 1336 FORCE 5.12 User Manual contains some new and updated information. The new and updated information is summarized in the table below. For further information, refer to the page numbers provided.

Description of New or Updated Information	Page	Туре
H frame dimensions added	2-7	New
Line fuse ratings updated	2-7	Clarification
Motor Cable requirements added	2-16	New
H frame terminal block added	2-22	New
Figure 2–17 upgraded	2-29	Clarification
H Frame Terminal Block Location added	2-34	New
Frame D ControlNet connection info added	2-43	New
ControlNet Parameter Table added	5-24	New
Parameter 71 updated	5-35	Clarification
Parameter 92 updated	5-39	Clarification
Parameter 185 added	5-51	New
Parameter 186 added	5-52	New
Parameter 223 updated	5-53	Clarification
Parameter 224 updated	5-53	Clarification
Parameter 229 updated	5-54	Clarification
Parameter 233 updated	5-54	Clarification
Parameter 257 updated	5-57	Clarification
Parameter 258 updated	5-57	Clarification
Parameter 259 updated	5-57	Clarification
Parameter 294 updated	5-62	Clarification
Parameter 385 updated	5-76	Clarification
Understanding Precharge and Ridethru Faults	6–9	New
Understanding the Bus Voltage Tracker	6–15	New
Power structure and transistor Diag tests	6–20	New
Sequential Torque Block Tuning	6–24	New
H Frame Motor cable restrictions added	A-4	New
B/C 700 & B/C 800 Derating Guidelines added	A-15	New
700 - 800 HP Schematic added	A-25	New
Software Block Diagram updated	A-32	Clarification
Torque Block Firmware Diagram updated	A-45	Clarification
Lithium Battery Disposal information added	A-54	New
CE mechanical configuration diagram added	B-5, B-6, B-7	New
Spare Part Appendix added	D-1	New

This Page Intentionally Blank

Table of Contents

Introduction	Chapter 1	
	Manual Objectives	1-1
	Who Should Use This Manual	1-1
	Terminology	1-1
	Standard Drive Features	1-2
	Performance Specifications	1-2
	Control Specifications	1-2
	Options	1-3
	Protective Features	1-3
	Environmental Specifications	1-2
	•	
	Electrical Specifications	1-4
	Feedback Devices	1-5
	Software Compatibility	1-6
Installation/Wiring	Chapter 2	
y	Chapter Objectives	2-1
	Mounting	2-1
	Dimensions	2-2
	Input/Output Ratings	2-7
	AC Supply Source	2-7
	Input Devices	2-9
	Drive Output Disconnection	2-10
	Input Power Conditioning	2-10
	Input Fusing	2–10
	Electrical Interference – EMI/RFI	2-12
	RFI Filtering	2-13
	Grounding	2–14
	Power Cabling	2–16
	Wire Size and Type	2–16
	Lug Kits	2-17
	Power Wiring	2–20
	Control Wiring	2-23
	Encoder Connections	2-24
	Drive to Drive Communication	2-24
	Standard Adapter Board	2–26
	Control & Signal Wiring (Standard Adapter Board)	2–26
	Interface Board Installation & Removal	2-27
	Standard Adapter Analog Inputs	2-28
	Standard Adapter Analog Outputs	2-29
	Standard Adapter Discrete Outputs	2-29
	Pulse Input (Standard Adapter Equipped Drives)	2-29
	Starting & Stopping the Motor (Standard Adapter Equipped Drives)	2-32
	Control Interface Ontion – TB3	2-33

	Control & Signal Wiring (PLC Comm Adapter Board)	2-40
	Switch Settings (PLC Comm Board)	2-41
	Discrete Outputs (PLC Comm Adapter)	2-42
	Discrete Inputs (PLC Comm Adapter)	2-42
	Control Scheme	2-45
	Computer Connections (Frame D Drives)	2-45
	ControlNet Connections (Frame D Drives)	2-45
	Configuration (PLC Comm Adapter)	2–46
Programming Terminals	Chapter 3	
Togramming Terminals	-	2.1
	Chapter Objectives	3-1
	HIM Description	3-1
	HIM Module Removal	3-4
	HIM Operation	3-4
	HIM Programming Steps	3-19
	GPT Description	3-20
	Keypad Description	3-21
	GPT Operation	3-22
	GPT Programming Options	3-24
Start-Up	Chapter 4	
_	Introduction	4-1
	Safety Precautions	4-1
	Required Tools and Equipment	4-2
	Drive Information	4-3
	General	4-4
	Pre–Power Checks	4-4
	Power On	4-5
	Startup Configuration Procedures	4-6
	Quick Startup Procedure	4-7
	Manual Startup Mode	4-10
	Communication Configuration	4-17
	Drive to Drive Communication	4-17
	I/O Communication Configuration	4-20
	External Control Link Configuration	4-21
	Analog I/O Parameter Configuration	4-23
	SCANport Analog I/O Parameter Configuration	4-23
	Output Relay Configuration	4-27
		4-27
	Pulse Input Configuration	
	MOP Configuration	4-28
	SCAN port Control Configuration	4-28
	SCANport Control Configuration	4-29

Table of Contents

	Control Interface Option	4-29
	Using the SCANport Image:	4-30
	I/O Image Table	4-31
	SLC to SCANport Module	4-32
	Serial Communications Module	4-33
	Remote I/O Communications Module	4-34
Programming Parameters	Chapter 5	
	Introduction	5-1
	Terminology	5-1
	Parameter Table Structure	5-2
	Parameter Table (Numerical)	5-3
	Parameter Table (Alphabetical)	5-11
	Standard Adapter Parameters	5-16
	PLC Comm Adapter Parameters	5-20
	Parameter Descriptions	5-24
	ControlNet Parameters	5-80
Troubleshooting	Chapter 6	
	General	6-1
	Required Equipment	6-1
	Fault Descriptions	6-2
	Fault Code Definition	6-2
	Main Control Board Fault Descriptions	6-3
	Standard Adapter Board Fault Descriptions	6-4
	Fault/Warning Handling	6-5
	Current Processor Faults & Warnings	6-7
	Understanding Precharge and Ridethrough Faults	6-9
	Understanding the Bus Voltage Tracker	6-15
	Auto-Tuning Test Procedure	6-20
	Power Structure and Transistor Diagnostics Tests	6-20
	Phase Rotation Tests	6-24
	Sequential Torque Block Tuning	6-24
	Running the Resistance Test	6-26
	Running the Flux Test	6-29
	Torque Block Update	6-31
	Velocity Loop Autotune	6-32
	Hardware Testpoints	6-34

Appendix	Appendix A			
	Motor Cables	A-1		
	Cable Termination	A-5		
	Enclosures	A-5		
	Derating Guidelines	A-7		
	Drive Hardware Overview	A-16		
	Schematic Diagrams	A-17		
	Gate Driver Board Connections	A-27		
	Sensorless Application Notes	A-30		
	Software Block Diagram – Standard Adapter	A-32		
	Firmware Function Overview Diagrams	A-34		
	Battery Disposal	A-54		
CE Conformity	Appendix B			
·	EMC Directive	B-1		
	Requirements for Conforming Installation	B-1		
	Filter	B-2		
	Electrical Configuration	B-3		
	Grounding	В-3		
	Mechanical Configuration	B-4		
	Required Knockout Assignments	B-7		
User Parameter Values	Appendix C			
CSOT Turumout various	Value Table	C-1		
Spare Parts Information	Appendix D			
	Information Location	D-1		

Introduction

Manual Objectives

information to install, program, start up and maintain the 1336 FORCE Digital AC Drive. This manual should be read in its entirety before operating, servicing or initializing the 1336 FORCE Drive.

Who Should Use This Manual

This manual is intended for qualified service personnel responsible for setting up and servicing the 1336 FORCE AC Drive. You must have previous experience with and a basic understanding of electrical terminology, programming procedures, required equipment and safety precautions before attempting any service on the 1336 FORCE Drive.

The purpose of this manual is to provide the user with the necessary

ATTENTION: Only personnel familiar with the 1336 FORCE Drive and the associated machinery should plan or implement the installation, start—up, and subsequent maintenance of the Drive. Failure to comply may result in personal injury and/or equipment damage.

ATTENTION: An incorrectly applied or installed Drive can result in component damage or a reduction in product life. Wiring or application errors such as undersizing the motor, incorrect or inadequate AC supply or excessive ambient temperatures may result in damage to the Drive or motor.

ATTENTION: This Drive contains ESD (Electrostatic Discharge sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing or repairing this assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, reference Allen–Bradley Publication 8000–4.5.2, *Guarding against Electrostatic Damage* or any other applicable ESD protection handbook.

Terminology

Detailed definitions of industrial automation and technical terms used throughout this manual may be found in the **INDUSTRIAL AUTOMATION GLOSSARY** – a guide to Allen–Bradley technical terms, Publication AG–7.1.

Standard Drive Features

The Bulletin1336 FORCE Field Oriented AC Drive is a microprocessor controlled Digital AC Drive with the following features:

- 1 to 650 HP at 0 250 HZ constant torque
- Four Quadrant operation available
- High Performance Digital Velocity Loop
- Microprocessor controlled, field oriented current loop
- Simplified programming through the use of a Parameter Table that features data entries in engineering units with English descriptions
- Nonvolatile Parameter Storage
- Extensive diagnostics, including both logic board and power structure tests
- Time stamped nonvolatile Fault/Warning Queue
- Real Time Clock
- Reference Time Stamp
- Run Time Accumulator
- Enclosed Construction
- Multiple Communication Interfaces
- Complete Encoder Interface
- Drive to Drive Link
- SCANportTM Peripheral Interface

Performance Specifications

- Speed Regulation to 0.001% of top speed.
- Torque Regulation to \pm 5% of rated motor torque.
- Power Loss Ride-Thru capability of two seconds.
- Flying Start: Capability of starting into a spinning motor.
- Torque Linearity 1%
- Overload Capability: 150% for 1 minute, 200% of motor rating for 10 seconds, up to inverter limit.
- Programmable Accel/Decel rates from 0 to 6553 seconds
- Current limit programmable from 200% of rated output current.

Control Specifications

Indirect Self-Organized, Field-Oriented Control,
 Current-regulated, sine coded PWM with programmable carrier frequency.

HP	Drive Rating	Carrier Frequency
1–3 HP	4 kHz	1–12 kHz
7.5-30 HP	4 kHz	1–12 kHz
40-60 HP	4 kHz	1–12 kHz
75-125 HP	2 kHz	1–6 kHz
150-250	2 kHz	1–6 kHz
300-500	2 kHz	1–4 kHz
600-650	1.5 kHz	1–4 kHz
700-800	1 kHz	1–4 kHz

Refer to Derating Guidelines in the Appendix of this manual

- Output Voltage Range 0 to rated voltage
- Output Frequency Range 0 to 250 Hz.
- Speed Regulation with Encoder Feedback 0.001% of Top Speed over a 100.1 Speed Range.

Chapter 1 Introduction

- Encoderless Speed Regulation 1% of Top Speed over a 40:1 Speed Range.
- Accel/Decel Independently programmable accel and decel times. Program from 0 to 6553 seconds in 0.1 second increments.
- Current Limit Independent Motoring and Regenerative Limit
- Inverse Time Overload Capability Class 20 protection with speed–sensitive response. Adjustable from 0–200% of rated output current in 3 speed ranges 2:1, 4:1 & 10:1. UL Certified Meets NEC Article 430.

Options

- Standard Adapter Board which provides:
 - 2 Analog Inputs +/-10V
 - 2 Analog Outputs +/- 10V
 - One 4–20mA input
 - One 4–20mA output
 - 5 or 12 vdc pulse input
 - +/- 10V reference voltages
 - At Speed, Run, Fault and Alarm contacts
- PLC Communication Adapter Board which provides:
 - 4 Analog Inputs +/-10V
 - 4 Analog Outputs +/- 10V
 - +/- 10V Reference voltages
 - RIO/DHTM+ Communications (2 channels selectable)
 - Function Blocks
- DriveToolsTM; PC Windows TM based programming software compatible with the 1336 FORCE Drive and also other Allen–Bradley 1336 and 1395 products.
- Dynamic Braking
- AC Motor Contactor

Protective Features

The 1336 FORCE Drive incorporates the following protective measures:

- Programmable Motor Overload Protection (I²T) investigated by UL to comply with NEC Article 430.
- Programmable Inverter Overload Protection (IT)
- Overspeed Detection, even when operating as a torque follower.
- Programmable Stall Detection
- Peak output current monitoring to protect against excessive current at the output due to a phase to ground or phase to phase short.
- Ground fault monitoring
- DC Bus Voltage monitoring to protect against under/over voltage conditions.
- Power Structure Heatsink Temperature Monitoring

Environmental Specifications

The following environmental guidelines apply to both the 1336 FORCE Drive and all devices and accessories connected to the Drive.

- Ambient Operating Temperature:
 - IP00, Open: 0 to 50 degrees C (32 to 122 degrees F).
 - IP20, NEMA Type 1 Enclosed:
 - 0 to 40 degrees C (32 to 104 degrees F).
 - IP65, NEMA Type 4 Enclosed:
 - 0 to 40 degrees C (32 to 104 degrees F).
- Storage Temperature (all constructions):
 -40 to 70 degrees C (-40 to 158 degrees F).
- Relative Humidity: 5 95% non–condensing
- Altitude: 1000m (3300 ft) without derating.
- Shock: 15g peak for 11ms duration (+ 1.0 ms).
- Vibration: 0.006 inches (0.152 mm) displacement, 1G peak.

Electrical Specifications

- Input Voltage Rating:
 - 200 240VAC, Standalone, 3 Phase, +10%, -15% nominal
 - 380 480VAC, Standalone, 3 Phase, +10%, -15% nominal
 - 500 600VAC Standalone, 3 Phase, +10%, -15% nominal
 - 513 621 VDC, Common Bus, +10%, -15% nominal
 - 776 VDC, Common Bus, +10%, -15% nominal
- Input Power Rating:
 - 2 134 KVA (230V)
 - 2 437 KVA (380 V)
 - 2 555 KVA (460 V)
 - 2/3 578/694 KVA (500/600V)
- Input Frequency: 50/60HZ (±3HZ)
- Standard Output Voltage*: Four frame sizes are available. Each frame size is line dependent and can power a motor between the following voltages:
 - 200 240 Vac (line dependent)
 - 380 480 Vac (line dependent)
 - 500 600 Vac (line dependent)
 - *If voltage required for your application is not shown, contact Allen–Bradley for specific application.
- Output Current: 2.5 673A
- Output Power: 2 116 KVA (230V)
 - 2 190 KVA (380V)
 - 2 208 KVA (415V)
 - 2 537 KVA (460 V)
 - 2 671 KVA (575V)

Note: For information on factors that could effect the power output of the drive please refer to the Enclosure and Derating Guidelines in the Appendix of this manual.

- Output Horsepower (Continuous): 7.5 650HP
- Overload Capability:

Continuous – 100% Fundamental current

 $1\ minute-150\%$

Chapter 1 Introduction

- Output Frequency Range: 0 250 HZ
- Output Waveform: Sinusoidal (PWM)
- Max. Short Circuit Current Rating: 200,000A rms symmetrical, 600 volts (when used with specified AC input line fuses as detailed in Table 2.A).
- Ride Through: 2 seconds minimum
- Efficiency: 97.5% at rated amps, nominal line volts

Feedback Devices

- Encoder: Incremental, dual channel; 12 volts, 500mA, Supply, 5/12 Volt 10ma Min Inputs, isolated with differential transmitter, 102.5 KHz max.

 Quadrature: 90° ±27° @ 25°C, Duty Cycle: 50% + 10%.
- Speed Regulation with Encoder Feedback: 0.001% of Top Speed over a 100:1 Speed Range.
 Encoderless Speed Regulation: 0.5% of Top Speed over a 40:1 Speed Range.

Software Compatibility

MOTOR CONTROL BOARD

		v1.xx	v2.xx	v3.xx	v5.xx
	v1.xx	Compatible	Not Compatible	Not Compatible	Not Compatible
	v2.xx	Not Compatible	Compatible	Compatible with exception: ** Drive Comm #9–19 non-linkable. ** Drive Comm Tx/Rx #14–19 max value 219. ** Torque Stop Configuration #58 not available. ** Service Factor #94 not available. ** Feedback Device Type #150 mode 7 not available. ** Calculated Torque #267 not available.	Compatible with exception: X Drive Comm #9–19 non-linkable. X Drive Comm Tx/Rx #14–19 max value 219. X Torque Stop Configuration #58 not available. X Service Factor #94 not available. X Feedback Device Type #150 mode 7 not available. X Calculated Torque #267 not available. X Precharge Timeout #225 min value 0. X Perunit Motor Voltage #186 not available. X Transistor Diagnostics #257 bit 12 not available. X Iq Rate Limit #181 max value 30%. X Motor Overload Select #92 min value 150%. X Motor Poles #233 max value 12. X Base Motor Speed #229 max value 6000.
ER	v3.xx	Not Compatible	Compatible with exception: X Torque Stop Configuration #58 non-functional. X Service Factor #94 non-functional. X Feedback Device Type #150 mode 7 non-functional. X Calculated Torque #267 non-functional.	Compatible with exception: * V3.04 VP must be used with V3.03 AP and V3.03 Language or higher for B800 'H Frame' drive support.	Compatible with exception: X V3.04 VP must be used with V3.03 AP and V3.03 Language or higher for B800 'H Frame' drive support. X Perunit Motor Current #185 not available. X Perunit Motor Current #186 not available. X Transistor Diagnostics #257 bit 12 not available. X Iq Rate Limit #181 max value 30% X Motor Overload Select #92 min value 150%. X Motor Poles #233 max value 12. X Base Motor Speed #229 max value 6000.
	v5.xx	Not Compatible	Compatible with exception: X Torque Stop Configuration #58 non-functional. X Service Factor #94 non-functional. X Feedback Device Type #150 mode 7 non-functional. X Calculated Torque #267 non-functional. X Perunit Motor Current #185 non-functional. X Perunit Motor Voltage #186 non-functional. X Transistor Diagnostics #257 bit 12 non-functional.	Compatible with exception: X V3.04 VP must be used with V3.03 AP and V3.03 Language or higher for B800 'H Frame' drive support. Perunit Motor Current #185 non- functional. Perunit Motor Voltage #186 non- functional. Transistor Diagnostics #257 bit 12 non-functional.	Compatible

ADAPTER BOARD

PLC COMM

Key: VP = Velocity Processor

MCC = Main Control Board Language Module

APL = PLC Comm Language Module

AP = Application Processor on PLC Comm

CP = **Current Processor**

DP = Domino Processor on PLC Comm

SAL = Std. Adapter Language Module

SA = Std Adapter Processor

MOTOR CONTROL BOARD

	4			-
	v1.xx	v2.xx	v3.xx	v5.xx
v1.xx	Not Compatible	Compatible	Compatible with exception: X Drive Comm #9–19 non–linkable. X Drive Comm Tx/Rx #14–19 max value 219. X Torque Stop Configuration #58 not available. X Service Factor #94 not available. X Feedback Device Type #150 mode 7 not available. X Calculated Torque #267 not available. X Precharge Timeout #225 min value 0	Compatible with exception: X Drive Comm #9–19 non–linkable. X Drive Comm Tx/Rx #14–19 max value 219. X Torque Stop Configuration #58 not available. X Service Factor #94 not available. X Feedback Device Type #150 mode 7 not available. X Calculated Torque #267 not available. X Precharge Timeout #225 min value 0. X Perunit Motor Current #185 not available. X Perunit Motor Voltage #186 not available. X Transistor Diagnostics #257 bit 12 not available. X Iq Rate Limit #181 max value 30%. X Motor Overload Select #92 min value 150%. X Motor Poles #233 max value 12. X Base Motor Speed #229 max val 6000.
v3.xx	Not Compatible	Compatible with exception: X Torque Stop Configuration #58 non-functional. X Service Factor #94 non-functional. X Feedback Device Type #150 mode 7 non-functional. X Calculated Torque #267 non-functional.	Compatible	Compatible with exception: X V3.04 VP must be used with V3.03 AP and V3.03 Language or higher for B800 'H Frame' drive support. X Perunit Motor Current #185 not available. X Perunit Motor Voltage #186 not available. X Transistor Diagnostics #257 bit 12 not available. X Iq Rate Limit #181 max value 30% X Motor Overload Select #92 min value 150%. X Motor Poles #233 max value 12. X Base Motor Speed #229 max val 6000.
v4.xx	Not Compatible	Compatible with exception: X Torque Stop Configuration #58 non-functional. X Service Factor #94 non-functional. X Feedback Device Type #150 mode 7 non-functional. X Calculated Torque #267 non-functional.	Compatible with exception: X V3.04 VP must be used with V4.02 SA and V4.02 Language or higher for B800 'H Frame' drive support.	Compatible with exception: X V5.xx VP must be used with V4.02 AP and V4.02 Language or higher for B800 'H Frame' drive support. X Perunit Motor Current #185 not available. X Perunit Motor Voltage #186 not available. X Transistor Diagnostics #257 bit 12 not available. X Iq Rate Limit #181 max value 30% X Motor Overload Select #92 min value 150%. X Motor Poles #233 max value 12. X Base Motor Speed #229 max valu 6000.
v5.хх	Not Compatible	Compatible with exception: X Torque Stop Configuration #58 non-functional. X Service Factor #94 non-functional. X Feedback Device Type #150 mode 7 non-functional. X Calculated Torque #267 non-functi. X Perunit Motor Curr #185 non-funct. X Perunit Motor Volt #186 non-funct. X Transistor Diag. #257 bit 12 non-funct.	Compatible with exception: X V3.04 VP MUST be used with V3.03 AP and V3.03 Language or higher for B800 'H Frame' drive support. X Calculated Torque #267 non-functi. X Perunit Motor Curr #185 non-funct. X Perunit Motor Volt #186 non-funct. X Transistor Diag. #257 bit 12 non-funct.	Compatible

STADARD ADAPTER BOARD

Chapter 1 Introduction

This Page Intentionally Blank

Installation/Wiring

Chapter Objectives

Chapter 2 provides the information needed to properly mount and wire the 1336 FORCE Drive. Since most start—up difficulties are the result of incorrect wiring, every precaution must be taken to assure that the wiring is completed as instructed. All items must be read and understood before the actual installation begins.

IMPORTANT: The end user is responsible for completing the installation, wiring and grounding of the 1336 FORCE drive and for complying with all National and Local Electrical Codes.

ATTENTION: The following information is merely a guide for proper installation. The National Electrical Code and any other governing regional or local code will overrule this information. The Allen-Bradley Company **cannot** assume responsibility for the compliance or the noncompliance to any code, national, local or otherwise for the proper installation of this drive or associated equipment. A hazard of personal injury and/or equipment damage exists if codes are ignored during installation.

Mounting

When the 1336 FORCE drive is delivered in a NEMA Type 1 enclosure it must be mounted so that there is sufficient space at the top, sides and front of the cabinet to allow for heat dissipation as shown in Figure 2.1.

Figure 2.1. Mounting Requirements

Attention: Care must be taken to prevent debris (metal shavings, conduit knockouts, etc.) from falling into the drive while performing any installation work on or around the drive. A hazard of personal injury and/or equipment damage exists if foreign material lodges inside the drive.

C Max. -0000000 \bigcirc ALLEN-BRADLEY $\mathsf{A}\mathsf{A}$ Ė B BB \bigcirc 0000000 Mounting Holes (4) 7.0 (0.28) → Knockouts 7.0 (0.28) (Location Will Vary with HP) 12.7 (0.50) 12.7 (0.50)

Figure 2.2. IP20 (NEMA Type 1) Dimensions - Frames B and C

All Dimensions in Millimeters and (Inches) All Weights in Kilograms and (Pounds)

Frame ¹ Reference	A	В	C Max.	D	E	Υ	Z	AA	ВВ	СС	Knockouts 3-Dual Size, 1-Fixed	Shipping Weight
B1, B2	276.4	476.3	225.0	212.6	461.0	32.00	7.6	131.1	180.8	71.9	28.6/34.9, 22.2	22.7 kg
	(10.88)	(18.75)	(8.86)	(8.37)	(18.15)	(1.26)	(0.30)	(5.16)	(7.12)	(2.83)	(1.125/1.375, 0.875)	(50 lbs.)
С	301.8	701.0	225.0	238.0	685.8	32.00	7.6	131.1	374.7	71.9	28.6/34.9, 22.2	38.6 kg
	(11.88)	(27.60)	(8.86)	(9.37)	(27.00)	(1.26)	(0.30)	(5.16)	(14.75)	(2.83)	(1.125/1.375, 0.875)	(85 lbs.)

Figure 2.3. IP 20 (NEMA Type 1) Dimensions – Frame D

Frame ¹ Reference	A	В	C Max.	D	E	Υ	Z	AA	ВВ	СС	Knockouts 3-Dual Size, 3-Fixed	Shipping Weight
D	381.5	1240.0	270.8	325.9	1216.2	27.94	11.94	131.1	688.6	71.9	62.7/76.2, 34.9/50.0, 34.9	108.9 kg
	(15.02)	(48.82)	(10.66)	(12.83)	(47.88)	(1.10)	(0.47)	(5.16)	(27.11)	(2.83)	(2.47/3.00, 1.38/1.97, 1.38)	(240 lbs.)

C Max. D 0 0 AB ALLEN-BRADLEY 68 90 A 7 E ΕB 0 BB $\circ \circ$ \circ 00 0 KNOCKOUTS 0 3-DUAL SIZE, 6-FIXED ✓ Mounting Holes (4) cc → | | 7.0 (0.28) 7.0 (0.28) 12.7 (0.50) All Dimensions in Millimeters and (Inches) All Weights in Kilograms and (Pounds) 12.7 (0.50)

Z

40.1

(1.61)

40.1

(1.61)

16.8

(0.66)

16.8

(0.66)

AA

195.0

(7.68)

138.4

(5.45)

BB

901.4

(35.49)

680.0

(26.77)

CC

151.9

(5.98)

126.3

(4.97)

Knockouts

88.9/101.6, 12.7

(3.50/4.00, 0.50)

3-Dual Size, 6-Fixed

Shipping Weight

186 kg

163 kg

(360 lbs.)

(410 lbs.)

Figure 2.4. IP 20 (NEMA Type 1) Dimensions – Frame E

Frame 1

Reference

E-Open

E-Enclosed

Α

511.0

(20.12)

511.0

(20.12)

В

1498.6

(59.00)

1498.6

(59.00)

C Max.

424.4

(16.71)

372.6

(14.67)

D

477.5

(18.80)

477.5

(18.80)

Ε

1447.8

(57.00)

1447.8

(57.00)

635.0 (25.00) 762.0 (30.00) 252.7 (9.95)8 Allen-Bradley 2286.0 (90.00) 37.9 (1.49) 193.0 (7.60) 8 1219.2 (48.00) 8 274.8 (10.82) 31.5 (1.24) 698.5 (27.50) All Dimensions in Millimeters and (Inches) 298.5 (11.75) Conduit Access Area Shipping Weight 415.0 kg (915 lbs) 50.8 (2.00) Bottom View

Figure 2.5. IP 20 (NEMA Type 1) Dimensions – Frame F

Removable Lifting Angle 63.5 (2.50) 50.8 (2.00) 660.4 (26.00) (Top) 431.8 (17.00) **Conduit Access Area** ALLEN-BRADLEY 2324.1 (91.50) 15 FORCE 431.8 29.0 (1.14) (17.00)Conduit 254.0 Access Area (10.00) 547.6 (21.56) 298.5 (Bottom) (11.75) 762.0 (30.00) 381.0 635.0 15.9 (0.63) Dia. 42.9 (1.69) (25.00) (15.00) - 2 Mtg. Holes -

Figure 2.6. IP 20 (NEMA Type 1) Dimensions – Frame G

All Dimensions in Millimeters and (Inches) All Weights in Kilograms and (Pounds)

> Shipping Weight 453.6 kg (1000 lb)

Top Mounted Fan 635.0 Manufacturer-dependent, may be shorter. (25.00)000000 Removable Lifting Angle 2324.1 (91.50) 635.0 762.0 508.0 (30)(20) (25)1270.0 (50) 1270.0 (50) Conduit Access Area 635.0 (25)Conduit Access Area **Bottom View Top View**

Figure 2.7. IP 20 (NEMA Type 1) Dimensions – Frame H

All Dimensions in Millimeters and (Inches)

Input/Output Ratings

The input and output current ratings grouped by drive voltage rating are provided in the following table:

200-240V							
Cat No.	Input kVA	Input Amps	Outpu kVA	t Output Amps			
A001	2	5	2	4.5			
A003	4-5	12	5	12			
A007	10-12	28	11	27.2			
A010	12-14	35	14	33.7			
A015	17-20	49	19	48.2			
A020	23-28	67	26	64.5			
A025	25-30	73	31	78.2			
A030	27-30	79	32	80			
A040	43-51	123	48	120.3			
A050	53-64	154	60	149.2			
A060	60-72	174	72	180.4			
A075	82-99	238	96	240			
A100	100-120	289	116	291.4			
A125	111-134	322	130	327.4			

380-480	V				575V				
	Input	Input	Outpu	t Output		Input	Input	Output	Output
Cat No.	kVA	Amps	kVA	Amps	Cat No.	kVA	Amps	kVA	Amps
B001	2	3	2	2.5	C001	2-3	3	2	2.5
B003	4-5	6	5	6.0	C003	5-6	6	6	6
B007	9–12	14	11	13.9	C007	9–11	10	10	9.9
B010	14-18	22	17	20.9	C010	11–13	12	12	12
B015	18-23	28	22	27.2	C015	17-20	19	19	18.9
B020	23-29	35	27	33.7	C020	21-26	25	24	23.6
B025	23-26	43	33	41.8	C025	27-32	31	30	30
B030	32-41	49	38	48.2	C030	31-37	36	35	34.6
BX040	40-50	62	47	58.7	C040	40-48	46	45	45.1
B040	41–52	63	52	64.5	C050	48-57	55	57	57.2
B050	48–60	75	61	78.2	C060	52-62	60	62	61.6
BX060	62	75	61	78.2	C075	73–88	84	85	85.8
B060	61–77	93	76	96.9	C100	94–112	108	109	109.1
B075	78–99	119	96	120.3	C125	118–142		137	138.6
B100	98–124	149	120	149.2	C150	136–163		157	159.7
B125	117–148	178	143	180.4	C200	217–261		251	252.5
BX150	148	178	143	180.4	C250	244–293		283	283.6
B150	157–198	238	191	240.0	C300	256-307		297	298
B200	191–241	290	233	291.4	C350	304-364		352	353.6
BX250	231–291	350	282	353.6	C400	349–419		405	406.4
B250	212–268	322	259	327.4	C450	394–473		457	459.2
B300	265–335	403	324	406.4	C500	434–520		503	505.1
B350	300-379	455	366	459.2	C600	514-617		597	599.2
B400	330-416	501	402	505.1	C650	578-694		671	673.4
B450	372-470	565	454	570.2	C700	616–739	756	767	770
B500	391–494	594	477	599.2	C800	639–767	786	797	800
B600	439-555	668	537	673.4	12C700C	616-739		767	770
BP250	230-291	350	282	353.6	12C800C	639-767	786	797	800
BP300	265-334	402	324	406.4					
BP350	300-378	455	366	459.2					
BP400	313-396	476	383	481.0					
BP450	346-437	526	424	531.7					
B700C	517-625	835	677	850					
B800C	647-817	965	783	983					
12B700C	517-625	835	677	850					
12B800C	647-817	965	783	983					

AC Supply Source

11–485 kW (7.5–650HP) drives are suitable for use on a circuit capable of delivering up to a maximum of 200,000 rms symmetrical amperes, 600 volts maximum when used with the AC input line fuses specified in Table 2.A. The 1336 FORCE does not contain input power short circuit fusing. Specifications for the recommended size and type to provide drive input power protection against short circuits are on the following pages.

ATTENTION: To guard against personal injury and/or equipment damage caused by improper fusing, use only the recommended line fuses specified in Table 2.A. Branch circuit breakers or disconnect switches cannot provide this level of protection for drive components.

Unbalanced Distribution Systems

The drive is designed for use with conventional three—phase supplies which are symmetrical with respect to ground. Surge suppression devices are included to protect the drive from lightning—induced overvoltages between line and ground. For this reason the drive must not be used directly with supplies where one phase is grounded (Grounded Delta). In such cases an isolation transformer must be used to provide a supply balanced with respect to ground.

Ungrounded Distribution Systems

All 1336 FORCE drives are equipped with an MOV (Metal Oxide Varistor) that provides voltage surge protection and phase–to–phase plus phase–to–ground protection which is designed to meet IEEE 587. The MOV circuit is designed for surge suppression only (transient line protection), not continuous operation.

With ungrounded distribution systems, the phase—to—phase MOV connection could become a continuous current path to ground. MOV line—to—line and line—to—ground voltages should not exceed the values listed below. Exceeding these values may cause physical damage to the MOV.

Frame Reference	Α	B - C	D - G
Device Rating (V)	240 480 600	240 480 600	240 480 600
Line-Line (A)	160 140 NA	160 160 160	140 140 150
Line-Ground (B)	220 220 NA	220 220 220	220 220 220

Line-to-Line MOV Rating Energy Rating = 320 Joules Turn On Voltage = 1020V (nominal) Line-to-Ground MOV Rating

Energy Rating = 380 Joules Turn On Voltage = 1330V (nominal)

Input Devices Starting and Stopping the Motor

Input Devices

Starting and Stopping the Motor

ATTENTION: The drive start/stop control circuitry includes solid—state components. If hazards due to accidental contact with moving machinery or unintentional flow of liquid, gas or solids exist, an additional hardwired stop circuit is required to remove AC line power to the drive. When AC power is removed, there will be a loss of inherent regenerative braking effect & the motor will coast to a stop. An auxiliary braking method may be required.

Repeated Application/Removal of Input Power

ATTENTION: The drive is intended to be controlled by control input signals that will start and stop the motor. A device that routinely disconnects then reapplies line power to the drive for the purpose of starting and stopping the motor is not recommended. If this type of circuit is used, a maximum of 3 stop/start cycles in any 5 minute period (with a minimum 1 minute rest between each cycle) is required. These 5 minute periods must be separated by 10 minute rest cycles to allow the drive precharge resistors to cool. Refer to codes and standards applicable to your particular system for specific requirements and additional information.

Bypass Contactors

ATTENTION: An incorrectly applied or installed system can result in component damage or reduction in product life. The most common causes are:

- Wiring AC line to drive output or control terminals.
- Improper bypass or output circuits not approved by Allen– Bradley.
- Output circuits which do not connect directly to the motor.
- Incorrect or inadequate AC supply.
- Excessive ambient temperature.

Contact Allen–Bradley for assistance with application or wiring.

Drive Output Disconnection

must be capable of disabling the Drive if opened during Drive operation. If opened during Drive operation, the Drive will fault. It is recommended that the Drive Enable be removed before the contactor is opened. When the Drive Enable is removed, the Drive will stop modulating.

Any disconnecting means wired to Drive output terminals M1, M2 and M3

Input Power Conditioning

Typically the 1336 FORCE is suitable for direct connection to a three–phase, AC power line. There are however certain power line conditions which may introduce the possibility of drive input power component malfunction. To reduce the possibility of these malfunctions, a line reactor or isolation type transformer may be required.

The basic rules for determining if a line reactor or isolation type transformer is required are as follows:

- 1. If the AC line supplying the drive has power factor correction capacitors connected, an AC line reactor or isolation type transformer must be connected between the capacitor bank and the input to the drive.
- 2. If the AC line frequently experiences transient power interruptions or significant voltage spikes, an AC line reactor or isolation type transformer may be required.

Refer to "Unbalanced Distribution Systems".

Input Fusing

ATTENTION: The 1336 FORCE does not provide input power short circuit fusing. Specifications for the recommended fuse size and type to provide drive input power protection against short circuits are provided in Table 2.A. Branch circuit breakers or disconnect switches cannot provide this level of protection for drive components.

Table 2.A Maximum Recommended AC Input Line Fuse Ratings (fuses are user supplied)

Drive Catalog Number	kW (HP) Rating	200–240V Rating	380–480V Rating	500-600V Rating
UL Class CC, T, J ¹ -	- BS88 (non-UL install	ations)		
1336TF10	0.75 (1)	10A	6A	-
1336TF30	2.2 (3)	25A	15A	_
1336TF50	3.7 (5)	40A	20A	_
1336T001	0.75 (1)	10A	6A	6A
1336T003	2.2 (3)	15A	10A	10A
1336T007	5.5 (7.5)	40A	20A	15A
1336T010	7.5 (10)	50A	30A	20A
1336T015	11 (15)	70A	35A	25A
1336T020	15 (20)	100A	45A	35A
1336T025	18.5 (25)	100A	60A	40A
1336T030	22 (30)	125A	70A	50A
1336T040	30 (40)	150A	80A	60A
1336T050	37 (50)	200A	100A	80A
1336T X060	45 (60)	_	100A	_
1336T060	45 (60)	250A	125A	90A
1336T075	56 (75)	_	150A	110A
1336T 100	75 (100)	_	200A	150A
1336T 125	93 (125)	_	250A	175A
1336TX150	112 (150)	_	250A	_
1336T 150	112 (150)	_	300A	225A
1336T200	149 (200)	_	400A	350A
1336T250	187 (250)		450A	400A
1336TX300	224 (300)	_	_	400A
Bussmann FWP/Go	ould Shawmut A-70C	Semi-conductor	Туре	
1336T X250	187 (250)	_	450A	_
1336E P250 ²	187 (250)		450A ²	_
1336T 300T	224 (300)	_	450A	400A
1336E 300 ²	224 (300)	_	500A ²	450A
1336T 350	261 (350)	_	500A	450A
1336E 350 ²	261 (350)	_	600A ²	
1336T400	298 (400)	_	600A	500A
1336E 400 ²	298 (400)	_	600A ²	
1336T450	336 (450)	_	800A	600A
1336E450 ²	336 (450)	_	700A ²	600A
1336T500	373 (500)	_	800A	800A
1336T600	448 (600)	_	900A	800A
1336T650	485 (650)	_	_	800A
1336T700C ²	522 (700)	_	600A ³	700A ³
1336T 800C ²	597 (800)	_	700A ³	700A ³

¹ Both fast acting and slow blow are acceptable

 $^{\,2\,}$ Fuses are supplied with F and H Frame drives

³ Two fuses in parallel are required

Electrical Interference - EMI/RFI

Immunity

The immunity of 1336 FORCE drives to externally generated interference is good. Usually, no special precautions are required beyond the installation practices provided in this publication.

It is recommended that the coils of DC energized contactors associated with drives be suppressed with a diode or similar device, since they can generate severe electrical transients.

In areas subject to frequent lightning strikes, additional surge suppression is advisable. Suitable MOVs connected between each line and ground should be used (see Figure 2–8).

Emission

Careful attention must be given to the arrangement of power and ground connections to the drive to avoid interference with nearby sensitive equipment. Refer to "Motor Cables" Appendix A. The cable to the motor carries switched voltages and should be routed well away from sensitive equipment.

The ground conductor of the motor cable should be connected to the drive ground (PE) terminal directly. Connecting this ground conductor to a cabinet ground point or ground bus bar may cause high frequency current to circulate in the ground system of the enclosure. The motor end of this ground conductor must be solidly connected to the motor case ground.

Shielded or armored cable may be used to guard against radiated emissions from the motor cable. The shield or armor should be connected to the drive ground terminal (PE) and the motor ground as outlined above.

Common mode chokes are recommended at the drive output to reduce the common mode noise.

An RFI filter can be used and in most situations provides an effective reduction of RFI emissions that may be conducted into the main supply lines.

If the installation combines a drive with sensitive devices or circuits, it is recommended that the lowest possible drive PWM frequency be programmed.

RFI Filtering

1336 FORCE drives can be installed with an RFI filter, which controls radio–frequency conducted emissions into the main supply lines and ground wiring.

If the cabling and installation recommendation precautions described in this manual are adhered to, it is unlikely that interference problems will occur when the drive is used with conventional industrial electronic circuits and systems. Also refer to "Motor Cables" in the Appendix of this manual.

However, a filter is recommended if there is a likelihood of sensitive devices or circuits being installed on the same AC supply or if the motor cable exceeds 50 meters (164 feet). Beyond this length, capacitance to ground will increase the supply emissions.

Where it is essential that very low emission levels must be achieved or if conformity with standards is required (EN 55011, VDE0875, BSA, FCC) the optional RFI filter should be used.

Important: The conformity of the drive and filter to any standard does not assure that the entire installation will conform. Many other factors can influence the total installation and only direct measurements can verify total conformity.

RFI Filter Installation

The RFI filter must be connected between the incoming AC supply line and the drive power input terminals.

In general, it is best to install the filter on the same mounting plate, physically close (and with short connections) to the drive.

Important: To assure that the RFI filter is effective, the motor cable must be shielded or armored and the guidelines given in this manual must be followed. Refer to "Motor Cables" in the Appendix.

RFI Filter Leakage Current

The optional RFI filter may cause ground leakage currents. Therefore an appropriate ground connection must be provided (refer to grounding instructions on the following page).

ATTENTION: To guard against possible equipment damage RFI filters can only be used with AC supplies that are nominally balanced with respect to ground. In some countries, three–phase supplies are occasionally connected in a 3–wire configuration with one phase grounded (Grounded Delta). The filter must not be used in Ground Delta supplies.

Grounding

Refer to the grounding diagram on the following page. The drive must be connected to the system ground at the power ground (PE) terminal provided on the power terminal block (TB1). Ground impedance must conform to the requirements of national and local industrial safety regulations (NEC, VDE 0160, BSI, etc.) and should be inspected and tested at appropriate and regular intervals.

In any cabinet, a single, low–impedance ground point or ground bus bar should be used. All circuits should be grounded independently and directly. The AC supply ground conductor should also be connected directly to this ground point or bus bar.

Sensitive Circuits

It is essential to define the paths through which the high frequency ground currents flow. This will assure that sensitive circuits do not share a path with such current, and to minimize the area enclosed by these paths. Current carrying ground conductors must be separated. Control and signal ground conductors should not run near or parallel to a power ground conductor.

Motor Cable

The ground conductor of the motor cable (drive end) must be connected directly to the drive ground terminal (PE), not to the enclosure bus bar. Grounding directly to the drive (and filter, if installed) provides a direct route for high frequency current returning from the motor frame and ground conductor. At the motor end, the ground conductor should also be connected to the motor case ground.

If shielded or armored cables are used, the same grounding methods should be used for the shield/armor as well.

Encoder Connections

If encoder connections are required, they must be routed in grounded steel conduit. The conduit must be grounded at both ends. Ground the cable shield at the drive only.

Discrete Control and Signal Wiring

The control and signal wiring must be grounded at a single point in the system, remote from the drive. This means the 0V or ground terminal should be grounded at the equipment end, not the drive end. If shielded control and signal wires are used, the shield must also be grounded at this point.

Signal Ground - TE

The TE terminal block is used for all control signal shields internal to the drive. It must be connected to an earth ground by a separate continuous lead.

Any PLC I/O communication link must be run in grounded steel conduit. The conduit should be bonded to ground at both ends. Ground the cable shield at the drive end only.

The maximum and minimum wire size accepted by this block is 2.1 and 0.30 mm2 (14 and 22 AWG). Maximum torque is 1.36 N-m (12 lb.-in.). Use Copper wire Only.

Safety Ground - PE

This is the safety ground required by code. The ground bus can be connected to adjacent building steel (girder, joist) or a floor ground loop, provided grounding points comply with NEC regulations.

RFI Filter

Important: Using an optional RFI filter may result in relatively high ground leakage currents. Surge suppression devices are also incorporated in the filter to clamp line surges to a limited voltage above ground potential. Therefore, the filter must be permanently installed and solidly grounded. Grounding must not rely on flexible cables and should not include any form of plug or socket that would permit inadvertent disconnection. The integrity of this connection should be periodically checked.

Common Conduit/4-Wire Cable ALLEN-BRADLEY Mode R (L1) Shield Core U (T1) V (T2) S (L2) W (T3) PE/Gnd. T (L3) Shield PΕ Motor Frame PE DC Ground per M Common RIO/DH+ Motor Ground Rod Local Codes Mode Terminator Common Chokes' Mode Core *These are options that can be installed as needed To Computer TE Ground

Figure 2.8.
Recommended 1336 FORCE Grounding

Power Cabling

Input and output power connections are performed through terminal block TB1 on the Gate Driver Board for Frame Size B (1–15 HP, 240V; 1–30 HP, 380V; 1–20 HP, 600V) drives. For larger horsepower drives (frame sizes C,D,E,G and H), TB1 terminal blocks are located on the bottom of the drive where both the input and output power connections are to be made.

Important: For maintenance and setup procedures, the drive may be operated without a motor connected.

Table 2.B TB1 Signals

Terminal	Description
PE	Power Earth Ground
R (L1), S (L2), T (L3)	AC Line Input Terminals
+DC, -DC	DC Bus Terminals
U (T1), V (T2), W (T3)	Motor Connection

ATTENTION: The National Codes and standards (NEC, VDE, BSA etc.) and local codes outline provisions for safely installing electrical equipment. Installation must comply with specifications regarding wire types, conductor sizes, branch circuit protection and disconnect devices. Failure to do so may result in personal injury and/or equipment damage.

Motor Cables

A variety of cable types are acceptable for use with the 1336 FORCE. The choice of cable type is important to a successful application. Motor cables must have an insulation thickness in excess of 15 mils. The THHN type wire or any wire with a nylon coating is not recommended for installations where there is a reasonable risk of wire damage (including small nicks in coating or insulation) due to pulling through conduit or where moisture is present. If wire integrity can be assured and no moisture is present, THHN wire must have a minimum insulation thickness greater than 15 mils, if conduit is used. Refer to page 2–18 under Conduit for recommendations on the number of cables per conduit.

Refer to the Cable recommendations section in the Appendix of this manual for additional information on specific cables.

Wire Size and Type

Wire sizes must be selected individually, observing all applicable safety and NEC and local regulations. Due to the drive overload capacity, the conductors for the transformer primary and secondary must be sized (at a minimum) for 125% of the maximum motor current. The motor conductors must also be rated for 125% of the full load motor current. The distance between the drive and motor may affect the size of the conductors used.

Shielded type wire is recommended in control circuits for protection against interference. A shielded wire is required for all signal wires. The recommended conductor size must be a minimum of 16 AWG. The best interference suppression is obtained with a wire having an individual shield for every twisted pair. Figure 2.9 shows recommended cable shielding.

Figure 2.9.
Cable Shielding Recommendations

Lug Kits

D,E,F, and G frame drives have stud type terminals and/or bus bars/bolts that require standard crimp—type connectors for cable termination. Connectors such as T&B COLOR—KEYED® Connectors or equivalent are recommended. Table 2.C shows the lug selection for one possible cable choice. Choose connectors for each installation based on the desired cable sizes, the application requirements, and all applicable national, state, and local codes.

Table 2.C Lug Selection

	AC Input R, S, T Output U, V, W and PE		DC+ DC- ²		TE	
Drive Catalog	Cable (per Phase)	T&B Part No.3	Cable (per Phase)	T&B Part No.3	Cable (per Phase)	T&B Part No.3
Number	Qty. mm ² (AWG)	Qty. Number	Qty. mm ² (AWG)	Qty. Number	Qty. mm ² (AWG)	Oty. Number
1336E-A040	(1) 53.5 (1/0)	(8) 54153 ¹	(1) 13.3 (6)	(2) 54135 ¹	(1) 13.3 (6)	(1) 54135 ¹
1336E-A050	(1) 85.0 (3/0)	(8) 54163 ¹	(1) 13.3 (6)	(2) 54135 ¹	(1) 13.3 (6)	(1) 54135 ¹
1336E-A060	(1) 107.2 (4/0)	(8) 54168 ¹	(1) 13.3 (6)	(2) 54135 ¹	(1) 21.2 (4)	(1) 54139 ¹
1336E-A075	(2) 53.5 (1/0)	(8) 54109T (8) 54109B	(1) 33.6 (2)	(2) 54109	(1) 21.2 (4)	(1) 54139 ¹
1336E-A100	(2) 85.0 (3/0)	(8) 54111T (8) 54111B	(1) 42.4 (1)	(2) 54148	(1) 33.6 (2)	(1) 54142 ¹
1336E-A125	(2) 107.2 (4/0)	(8) 54112T (8) 54112B	(1) 67.4 (2/0)	(2) 54110	(1) 33.6 (2)	(1) 54142 ¹
1336E-B060	(1) 42.4 (1)	(8) 54147 ¹	(1) 8.4 (8)	(2) 54131 ¹	(1) 13.3 (6)	(1) 54135 ¹
1336E-B075	(1) 53.5 (1/0)	(8) 54153 ¹	(1) 13.3 (6)	(2) 54135 ¹	(1) 13.3 (6)	(1) 54135 ¹
1336E-B100	(1) 85.0 (3/0)	(8) 54163 ¹	(1) 13.3 (6)	(2) 54135 ¹	(1) 13.3 (6)	(1) 54135 ¹
1336E-B125	(1) 107.2 (4/0)	(8) 54168 ¹	(1) 26.7 (3)	(2) 54147 ¹	(1) 21.2 (4)	(1) 54139 ¹
1336E-BX150	(1) 107.2 (4/0)	(8) 54168 ¹	(1) 26.7 (3)	(2) 54147 ¹	(1) 21.2 (4)	(1) 54139 ¹
1336E-B150	(2) 53.5 (1/0)	(8) 54109T (8) 54109B	(1) 33.6 (2)	(2) 54110	(1) 21.2 (4)	(1) 54139 ¹
1336E-B200	(2) 85.0 (3/0)	(8) 54111T (8) 54111B	(1) 42.4 (1)	(2) 54148	(1) 26.7 (3)	(1) 54142 ¹
1336E-B250	(2) 107.2 (4/0)	(8) 54112T (8) 54112B	(1) 67.4 (2/0)	(2) 54110	(1) 33.6 (2)	(1) 54142 ¹
1336E-BX250	(3) 53.5 (1/0)	(24) 54109	(1) 67.4 (2/0)	(2) 54110	NA	NA
1336E-BP250	(3) 53.5 (1/0)	(24) 54109	(1) 67.4 (2/0)	(2) 54110	NA	NA
1336E-B300	(3) 67.4 (2/0)	(24) 54110	(1) 42.4 (1)	(2) 54148	NA	NA
1336E-BP300	(3) 67.4 (2/0)	(24) 54110	(1) 42.4 (1)	(2) 54148	NA	NA
1336E-B350	(3) 85.0 (3/0)	(24) 54111	(1) 42.4 (1)	(2) 54148	NA	NA
1336E-BP350	(3) 85.0 (3/0)	(24) 54111	(1) 42.4 (1)	(2) 54148	NA	NA
1336E-B400	(3) 107.2 (4/0)	(24) 54112	(1) 42.4 (1)	(2) 54148	NA	NA
1336E-BP400	(3) 107.2 (4/0)	(24) 54112	(1) 42.4 (1)	(2) 54148	NA	NA
1336E-B450	(3) 127.0 (250 MCM)	(24) 54174	(1) 42.4 (1)	(2) 54148	NA	NA
1336E-BP450	(3) 127.0 (250 MCM)	(24) 54174	(1) 42.4 (1)	(2) 54148	NA	NA
1336E-B500	(3) 152.0 (300 MCM)	(24) 54179	(1) 53.5 (1/0)	(2) 54109	NA	NA
1336E-B600	(3) 152.0 (300 MCM)	(24) 54179	(1) 53.5 (1/0)	(2) 54109	NA	NA
1336E-C075	(1) 33.6 (2)	(8) 54142 ¹	(1) 13.3 (6)	(2) 54135 ¹	(1) 8.4 (8)	(1) 54131 ¹
1336E-C100	(1) 53.5 (1/0)	(8) 54153 ¹	(1) 13.3 (6)	(2) 54135 ¹	(1) 13.3 (6)	(1) 54135 ¹
1336E-C125	(1) 67.4 (2/0)	(8) 54158 ¹	(1) 26.7 (3)	(2) 54147 ¹	(1) 13.3 (6)	(1) 54135 ¹
1336E-C150	(1) 107.2 (4/0)	(8) 54111	(1) 42.4 (1)	(2) 54148	(1) 13.3 (6)	(1) 54135 ¹
1336E-C200	(2) 67.4 (2/0)	(8) 54110T (8) 54110B	(1) 42.4 (1)	(2) 54148	(1) 26.7 (3)	(1) 54142 ¹
1336E-C250	(2) 85.0 (3/0)	(8) 54111T (8) 54111B	(1) 67.4 (2/0)	(2) 54110	(1) 26.7 (3)	(1) 54142 ¹
1336E-CX300	(3) 85.0 (3/0)	(16) 54111			NA	NA
1336E-C300	(3) 85.0 (3/0)	(16) 54111			NA	NA
1336E-C350	(3) 53.5 (1/0)	(24) 54109			NA	NA
1336E-C400	(3) 67.4 (2/0)	(24) 54110	Consult F	actory	NA	NA
1336E-C450	(3) 85.0 (3/0)	(24) 54111			NA	NA
1336E-C500	(3) 107.2 (4/0)	(24) 54112			NA	NA
1336E-C600	(3) 127.0 (250 MCM)	(24) 54174			NA	NA
1336E-C700C	-	-	(3) 253.0 (500 MCM)	(6) 54118	(1) 67.4 (2/0)	(1) 54110
1336E-C800C	-	-	(3) 253.0 (500 MCM)	(6) 54118	(1) 67.4 (2/0)	(1) 54110

^{5/16&}quot; Stud. All other studs are 3/8".

Lugs shown for DC+/– are based on dynamic brake sizing of 50% of (motor rating X 1.25). Select proper lugs based on required braking torque.
 T & B COLOR-KEYED® Connectors require T & B WT117 or TBM–6 Crimper tool or equivalent. Lugs should be crimped according to manufacturer's tool instructions.

Table 2.D. **Cable and Wiring Recommendations**

Steel Conduit/Tray	
Steel Colludit/ Hay	Spacing

	Wiring	1					Ste	el Cond	luit/Tray	Spacing
Category		Signal Definition	Signal Examples	Cable Type	1	2/3/4	5/6	7/8	9/10/11	Notes
Power	1	AC Power (600V or greater)	2.3kV 3/Ph AC Lines	per NEC & Local Codes	0	3/9	3/9	3/18	Note 6	1/2/5
	2	AC Power (less than 600V)	460V 3/Ph AC Lines	per NEC & Local Codes				2/12		
	3	AC Power	AC Motor	per NEC & Local Codes	3/9	0	3/6	3/12	Note 6	1/2/5
Control	5	115V AC/DC Logic	Relay Logic/PLC I/O Motor Thermostat	per NEC & Local Codes	3/9	3/6	0	3/9	Note 6	1/2/5
		115V AC Power	Power Supplies, Instruments							
	6	24V AC/DC Logic	PLC I/O	per NEC & Local Codes						
Signal	7	Analog Signals, DC Supplies	Reference/Feedback Signal, 5 to 24V DC	Shielded Cable – Belden 8735, 8737, 8404	3/ 18	3/ 12	3/9	0	1/3	2/3/4/5
(Process)	,	Digital (low speed)	TTL		10					
(,	8	Digital (high speed)	I/O, Encoder, Counter Pulse Tach	Shielded Cable – Belden 9728, 9730						
Signal	9	Serial Communication	RS-232, 422 to Terminals/ Printers	Shielded Cable – Belden RS-232 – 8735, 8737 RS-422 – 9729, 9730		Note	6	1/3	0	
(Comm)	11	Serial Communication (greater than 20k baud)	PLC Remote I/O, PLC Data Highway	Twinaxial Cable – , A-B 1770-CD		Note o				

Spacing relationship between 480V AC incoming power leads and 24V DC logic leads. Example:

- 480V AC leads are Class 2; 24V DC leads are Class 6
- For separate steel conduits, the conduits must be 3 inches (76 mm) apart
- In a cable tray, the two groups of leads are to be 6 inches (152 mm) apart

Spacing Notes:

- 1. Both outgoing and return current carrying conductors are to be pulled in same conduit or laid adjacent in tray.
- 2. Cables of the following classes can be grouped together.
 - A. Class 1; Equal to or above 601 volts
 - Classes 2,3, and 4 may have their respective circuits pulled in the same conduit or layered in the same tray.
 - Classes 5 and 6 may have their respective circuits pulled in the same conduit or layered in the same tray. Note: Bundle may not exceed conditions of NEC 310
 - Classes7 and 8 may have their respective circuits pulled in the same conduit or layered in the same tray. Note: Encoder cables run in a bundle may experience some amount of EMI coupling. The circuit application may dictate separate spacing.
 - Classes 9, 10 and 11 may have their respective circuits pulled in the same conduit or layered in the same tray. Communication cables run in a bundle may experience some amount of EMI coupling and corresponding communication faults. The application may dictate separate spacing.
- 3. All wires of class 7 thru 11 MUST be shielded per the recommendations
- 4. In cable trays, steel separators are advisable between the class
- 5. If conduit is used, it must be continuous and composed of magnetic steel

6. Spacing of communication cables classes 2 thru 6 is: CONDUIT SPACING THRU AIR 115 Volts – 1 inch 115 Volts - 2 inches 230 Volts – 1.5 inches 230 Volts – 4 inches 460/575 Volts - 8 inches 460/575 Volts – 3 inches

575 volts - proportional to 6" 575 volts proportional to 12" per 1000 volts. per 1000 volts

General Notes

- 1. Steel conduit is recommended for all wiring classes. (Classes 7-11).
- 2. Spacing shown between classes is the minimum required for parallel runs less than 400 feet. Greater spacing should be used where possible.
- 3. Shields for shielded cables must be connected at one end only. The other end should be cut back and insulated. Shields for cables from a cabinet to an external device must be connected at cabinet end. Shields for cables from one cabinet to another must be connected at the source end cabinet. Splicing of shielded cables, if absolutely necessary, should be done so that shields remain continuous and insulated from ground.
- Power wire is selected by load. 16AWG is the minimum recommended size for control wiring.

Power Wiring

On 1 to 30 HP drives, input and output power connections are performed through a 10 position terminal block, TB1 located on the Gate Driver Board. On drives larger than 30 HP, input and output power connections are made at seperate terminal strips located at the bottom of the drive. The drive connections are illustrated in Figure 2.10. The C thru G configurations of TB1 are stud terminations and require the use of lug type connectors to terminate the field installed conductors. Cat. No. 1336–LUG–XXXX Lug Kits are available for use with these configurations of TB1. The wire size used is determined by selecting the proper lug kit based on the Cat. No. of the drive. Refer to Table 2.C to determine the correct lug kit for your application.

Figure 2.10. Terminal Block TB1

200-240V, 0.75-5.5 kW (1-7.5 HP) Terminal Designations 380-480/500-600V, 0.75-11 kW (1-15 HP) Terminal Designations

200–240V, 7.5–11 kW (10–15 HP) Terminal Designations 380–480V, 15–22 kW (20–30 HP) Terminal Designations 500–600V, 15 kW (20 HP) Terminal Designations

Figure 2.10. Terminal Block TB1 cont.

200–240V, 30–45 kW (40–60 HP) Terminal Designations 380–480V, 45–112 kW (60–150 HP) Terminal Designations 500–600V, 56–112 kW (75–150 HP) Terminal Designations

380-480V, 224-448 kW (300-600 HP) Terminal Designations 500-600V, 187-485 kW (250-650 HP) Terminal Designations

Figure 2.10. cont. **Terminal Block TB1**

200-240V, 56-75 kW (75-100 HP) Terminal Designations 380-480V, 112-187 kW (150-250 HP) Terminal Designations 500-600V, 112-149 kW (150-200 HP) Terminal Designations

380-480V, 187-336 kW (250-450 HP) Terminal Designations

Figure 2.10. cont. Terminal Block TB1

380-480V, 522-597 kW (700-800 HP) Terminal Designations 500-600V, 522-597 kW (700-800 HP) Terminal Designations

Control Wiring

ATTENTION: When user installed control and signal wiring with an insulation rating of less than 600V is used, this wiring must be routed inside the drive enclosure so that it is separated from any other wiring and uninsulated live parts. Failure to do so could result in equipment damage or unsatisfactory Drive performance.

Encoder, Brake and Drive to Drive interface connections are performed on the Main Control Board (Fig. 2.11). The maximum and minimum wire size accepted by TB10 and TB11 on the Main Control Board is 3.3 and 0.06 mm² (12 and 30 AWG). Maximum torque for both terminal blocks is 0.79 N-m (7 lb-in.). Use copper wire only.

Figure 2.11.
Terminal Block Locations Main Control Board

Encoder Connections

The Encoder connections are made at terminal block TB10 on the Main Control Board as detailed in Figure 2.12.

Figure 2.12. Encoder Connections

Drive to Drive Communication

The TB11 connector on the Main Control Board (Figure 2.13) is used to connect the Drive to Drive Communication Interface.

Figure 2.13.
Drive to Drive Connections

Drive to Drive Setup – The hardware setup for Drive to Drive (D2D) consists of a shielded cable going from CN+ and CN– between the drives. The shields are to be tied together and grounded at one point (TE). TB11–3 SHD is an open connection and is used to tie ground wire together. A wire must go from TB11–3 to TE Bus. Place a 120 Ω terminating resistor on both ends of the cable. You must supply the 8–18 VDC that powers the D2D. Figure 2.14 shows a typical D2D connection using the required Allen–Bradley Isolation Board. Recommended cable is Drive to Drive cable (A–B 1485–C–PI–C) which is available in 50, 150, 300 and 600 meter lengths.

Figure 2.14.
Drive to Drive Hardware Connection

Standard Adapter Board

When installing and wiring the Standard Adapter board, you need to deal with the following issues:

- Control and Signal Wiring
- Interface Board Installation and Removal

Control & Signal Wiring — If your 1336 FORCE Drive is equipped with a Standard Adapter Board, terminal blocks TB5, TB6 and TB7 located at the bottom center of the board (Figure 2.15) are used for control and signal wiring (Drive Permissives). The Standard Adapter Board is connected to the Main Control Board through J1, the Main Control Interface.

The maximum and minimum wire size accepted by TB5, TB6 and TB7 is 3.3 and 0.06 mm² (12 and 30 AWG). Maximum torque for these terminal blocks is 0.79 N-m (7 lb. – in.). Recommended control signal wire is:

- Belden 8760 or equiv. 0.750 mm² (18 AWG), Twisted Pair, Shielded
- Belden 8770 or equiv. 0.750 mm² (18 AWG), 3 Conductor, Shielded
- Belden 9460 or equiv. 0.750 mm² (18 AWG), Twisted Pair, Shielded

Figure 2.15.
Standard Adapter Board Connections

Interface Board Installation and Removal -

IMPORTANT: If the L Option Board is being installed, Standard Adapter Board jumpers at pins 3 & 4 and 17 & 18 of J10 must be removed and the proper Input Mode selected (Figure 2.16). If the L Option board is removed, these jumpers must be reinstalled and the Input Mode parameter must be programmed to "1".

Figure 2.16. Interface Board Jumper Locations

Figure 2.17.

Reference Signal Connections (Standard Adapter Board)

1	2	3	4	5	6	7	8
			TE	36			
┝							
0	0	0	0	0	0	0	0
, ‡=		SH	· ‡ =	- -	SH	· ‡=	- <u> </u> -
0 to ±	10V		0 to	±10V	,	4 –	20 ma
				alog puts			

Terminal Block	Terminal #	Signal		
TB5	SH	Shield Ground		
	1,2,3	DC Power Supply +/- 10VDC, 50 mA per voltage		
	4,5,6,7	0 to +/– 10V DC Input: Input Impedance = 20K Ohms		
	10,11	4 – 20ma Input: Input Impedance = 130 Ohms		
	13,14	Pulse Input for +5V DC – Jumper xx Set to xx Frequency Ref.: +12V DC – Jumper xx Set to xx Scale Factor (Pulse PPR) must be set		
TB6	SH	Shield Ground		
	1,2,4,5	0 to +/- 10 V Output Impedance = 100 Ohms DC Output: Output Impedance = 100 Ohms		
	7,8	4 – 20 ma DC Output Output Impedance = 20 Ohms		
TB7	TE	Logic Earth Ground / Shield Ground		
	4,5,6	Fault Contact Resistive Rating = 115VAC/30VDC, 5.0A Inductive Rating = 115VAC/30VDC, 2.0A		
	7,8,9	Alarm Contact Resistive Rating = 115VAC/30VDC, 5.0A		

Analog Inputs – There are (2) analog inputs to the Standard Adapter Board (Figure 2.18) that have a range of ± 10 V, (1) 4–20 mA analog input and (1) pulse source input with a digital resolution of 12 bits. These inputs are differential inputs with noise rejection filtering.

Each input has a gain and offset adjustment. The A/D converter is a 12 bit device where an input value of +10V will result in a digital value of 2048. Likewise, an input value of -10V will result in a digital output value of -2048.

NOTE: Analog input parameters must be linked to a velocity reference parameter as well as a scaling and offset parameter for an analog input to function.

NOTE: Refer to Chapter 4, Startup, for Analog I/O configuration information.

Figure 2.18
Analog Input Connections

Typical Connections for Unidirectional Operation

Typical Connections for Bidirectional Operation

Analog Outputs – There are (2) analog outputs from the Standard Adapter Board that have a range of + 10V and (1) 4–20 mA output with a digital resolution of 12 bits.

Discrete Outputs

Fault outputs from the 1336 FORCE are supplied at terminal block TB7 on the Standard Adapter Board. Fault outputs provide warning or fault signals based on Drive Programming.

Fault NC

Fault Com

Fault NO – A form C, NO/NC relay contact on the Standard Adapter Board programmed to provide external warning or fault change–of–state signals.

Contact Ratings = 2A @ 115 VAC 2A @ 30 VDC

Figure 2.19
Typical Digital Output (Standard Adapter)

Pulse Input

The pulse input lets an external source provide the drive with a digital reference or trim signal. Pulse input is a differential input with a maximum frequency of 100 kHz.

Figure 2.20 Pulse Input Connection

The pulse input can be useful if you have a system with multiple drives and you want encoder magnetic pickup or other drives that provide a pulse to supply the reference for additional drives. You could use this reference to ensure that all drives run at the same speed or to ensure that the speed of the other drives is related to the speed of the reference.

Configuration

The 1336 FORCE Drive is shipped pre–configured, meaning that some of the inputs and outputs are linked to a predefined signal. Figure 2.21 shows the 1336 FORCE standard configuration when equipped with a Standard Adapter Board. The user has the flexibility to configure the Drive for a particular application.

Figure 2.21. Standard Adapter Links

TB1

TB3

TB4

TB6

TB9 ΤE

Power Terminal Block

Shield Terminals

Starting & Stopping the Motor

ATTENTION: The 1336 FORCE Drive control circuitry includes solid-state components. If hazards due to accidental contact with moving machinery or unintentional flow of liquid, gas or solids exist, an additional hardwired stop circuit is required to remove AC line power to the drive. When AC input power is removed, there will be a loss of inherent regenerative braking effect and the motor will coast to a stop. An auxiliary braking method may be required.

Figure 2.22 illustrates the location of the terminal blocks that are used for interfacing control signals to a 1336 FORCE equipped with a Standard Adapter Board.

Figure 2.22. **Terminal Block Locations**

Control Interface Option – TB3

The Control Interface Option provides a means of interfacing various signals and commands to the 1336 FORCE by using contact closures.

Six different versions of the option are available:

L4	Contact Closure Interface					
L4E	Contact Closure Interface with Encoder Feedback Inputs ¹					
L5	+24V AC/DC Interface					
L5E	+24V AC/DC Interface with Encoder Feedback Inputs ¹					
L6	115V AC Interface					
L6E	115V AC Interface with Encoder Feedback Inputs ¹					
¹ Encoder feedback inputs are connected to TB10 on the FORCE Drive. Do Not						
connect Encoder Feedback inputs to the Control Interface Option card.						

The user inputs are connected to the option board through TB3. The L4, L5 and L6 options each have nine control inputs. The function of each input must be selected through programming as explained later in this section. The L4E, L5E and L6E options are similar to L4, L5 and L6 with the addition of encoder feedback inputs, which are not used with the 1336 FORCE.

Available Inputs

A variety of combinations made up of the following inputs are available.

Start Enable Stop/Clear Fault Ext Flt

Reverse 2 Stop Mode Selects

Digital Potentiometer (MOP) Run Forward
2 Accel/Decel Rates Run Reverse
3 Speed Selects Local Control

The available combinations are shown in Figure 2.24. Programming the [Input Mode] parameter to one of the Input Mode numbers listed, will select that combination of input functions.

Important: The [Input Mode] parameter can be changed at any time, but the change will not affect drive operation until power to the drive has been removed and bus voltage has decayed completely. When changing the [Input Mode] parameter, the functions of the TB3 inputs will change when power is reapplied to the drive.

Important: If a Control Interface Option is not installed, the [Input Mode] parameter must be set to 1 (default) and jumpers must be installed. If the drive was shipped from the factory without the option, these jumpers will have been installed.

The programming options of the Control Interface Option allow the user to select an input combination to meet the needs of a specific installation. Appropriate selection of a combination may be done by using Figure 2.24. First determine the type of start/stop/direction control desired. Then select the remaining control functions available. Record the selected mode number below.

Figure 2.23 provides the terminal designations for TB3. The maximum and minimum wire size accepted by TB3 is 2.1 and 0.30 mm² (14 and 22 AWG). Maximum torque for all terminals is 1.36 N-m (12 lb.-in.). Use Copper wire only.

Figure 2.23. TB3 Terminal Designations

NOTE: Terminals 31 thru 36 are not used with 1336 FORCE applications

The following table defines the input state of the Speed Select inputs for a desired frequency source.

Table 2.E Speed Select Input State vs. Frequency Source

	Speed Select 3	Speed Select 2	Speed Select 1	Velocity Reference Source
TB3	Terminal 26	Terminal 27	Terminal 28	Interface Option (MOD L4,L5,L6)
	0	0	0	Ext Ref 1 Para 101*
	0	0	Χ	Preset Speed Ref 1 (P 119)
	0	Х	0	Preset Speed Ref 2, (P 120)
	0	Х	Х	Preset Speed Ref 3, (P 121)
	Х	0	0	Preset Speed Ref 4, (P 122)
	Х	0	Х	Preset Speed Ref 5, (P 123)
	Х	Х	0	External Reference 2 (P 104)
	Х	Х	Х	Last State

Equivalent truth table implemented in Parameter 52 Logic Command Word

Para 52	Bit 14	Bit 13	Bit 12	Velocity Reference Source Bits
	0	0	Х	Ext Ref 1 (P 101)
	0	Х	0	Preset Speed Ref 1 (P 119)
	0	Х	Х	Preset Speed Ref 2 (P 120)
	Χ	0	0	Preset Speed Ref 3 (P 121)
	Χ	0	Х	Preset Speed Ref 4 (P 122)
	Χ	Х	0	Preset Speed Ref 5 (P 123)
	Χ	Х	Х	External Reference 2 (P 104)
	0	0	0	No Reference or Last State

^{0 =} Open - input removed, X = Closed - input present

^{*} Unless otherwise configured, this will default to the HIM speed reference input.

Figure 2.24. Input Mode Selection & Typical TB3 Connections

[Input Mode] 2-6, 17, 18 Three-Wire Control with Single-Source Reversing

 $^{^{5}}$ For Common Bus – Precharge Enable. 6 Bit 12 of Para 59 Logic Options must = 0 for Reverse Direction Control.

⁷ Soft Fault Reset Only, Must Cycle Power to Drive to Clear Hard Fault; Hard Fault = See Troubleshooting Section

⁸ Soft Fault Refer to Para 59 to Configure Start & Stop Type.

⁹ Digital Pot Value Zeroed When Stop Asserted.

Figure 2.25.
Input Mode Selection & Typical TB3 Connections

[Input Mode] 7–11
Three–Wire Control with Multi–Source Reversing

⁶ Bit 12 of Para 59 Logic Options must = 0 for reverse direction control.

⁷ Soft Fault Reset Only, Must recycle power to drive to clear; Hard fault – see Troubleshooting

⁸ Refer to Para 59 to configure Start & Stop type.

⁹ Digital Pot Value Zeroed When Stop Asserted

L4, L4E Options Typical of Each Input 0.1µf 0.1µf 100 Typical NOT 10.7k 10.7k 681 **USED** Isolated +5V **₩** o< JP4 12V0~ 470 470 $0.1 \mu f$ 90.9 Isolated Ground **IGND** 30 19 20 22 23 25 26 27 28 29 32 33 24 TB3

Figure 2.26.
Option L4/L4E Wiring

Contacts shown are general, refer to Figure 2.24 for Input Mode selection and recommended contact types.

Option L4/L4E – Contact Closure Interface Board Requirements

Circuits used with Option L4/L4E must be capable of operating with low = true logic. Reed type input devices are recommended.

In the low state, external circuits must be capable of a sinking current of approximately 10mA to pull the terminal voltage low to 3.0V DC or less.

In the high state, external circuits must allow the terminal voltage to rise to a voltage of 4.0–5.0V DC.

The L4/L4E option is compatible with the following Allen–Bradley PLC modules:

- 1771–OYL
- 1771–OZL

L5, L5E Options 510 ≷ 100 **Typical** 20k Typical **∕**VV∨ NOT **USED** $0.22 \mu f$ 681 o≺ JP4 510 1k Ā 25 28 29 30 32 19 20 21 22 23 24 26 27 31 33 34 35 Common **User Supplied** 24V AC/DC +24V

Figure 2.27.
Option L5/L5E Wiring

Contacts shown are general, refer to Figures 2.24 & 2.25 for Input Mode selection and recommended contact types.

Option L5/L5E - 24V AC/DC Interface Board Requirements

Circuits used with Option L5/L5E must be capable of operating with high = true logic.

DC external circuits in the low state must generate a voltage of no more than 8V DC. Leakage current must be less than 1.5 mA into a 2.5k ohm load.

AC external circuits in the low state must generate a voltage of no more than 10V AC. Leakage current must be less than 2.5 mA into a 2.5k ohm load.

Both AC and DC external circuits in the high state must generate a voltage of +20 to +26 volts and source a current of approximately 10 mA for each input.

The L5/L5E option is compatible with these Allen–Bradley PLC modules:

- 1771–OB 1771–OQ16 1771–OB16
- 1771–OBD 1771–OYL
- 1771–OBN 1771–OZL
- 1771–OQ 1771–OBB

L6, L6E Options 100 ≥ 100 20k **Typical of Each Input** \mathbb{W} 100 Typical $0.22 \mu f$ 0.15µf NOT 0.33f 681 **USED** 499k -o< JP4 W 12Voノ 49 90.9 ÂĀ 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Common **User Supplied** Fuse = 115V AC Fuse ~ 115V AC

Figure 2.28.
Option L6/L6E Wiring

Contacts shown are general, refer to Figure 2.24 for Input Mode selection and recommended contact types.

Option L6/L6E - 115V AC Interface Board Requirements

Circuits used with Option L6/L6E must be capable of operating with high = true logic. In the low state, circuits must generate a voltage of no more than 30V AC. Leakage current must be less than 10 mA into a 6.5k ohm load. In the high state, circuits must generate a voltage of 90–115V AC +/-10% and source a current of approximately 20 mA for each input. The L6/L6E option is compatible with these Allen–Bradley PLC modules:

- 1771–OW 1771–OA
- 1771–OWN 1771–OAD (contact factory for recommended series/rev. level.)

PLC Communication Adapter Board

Control and Signal Wiring – When installing and wiring the PLC Communication Adapter Board, you need to deal with the following issues:

- Control and Signal Wiring
- Jumper Settings for I/O Circuits

If your 1336 FORCE Drive is equipped with a PLC Comm Adapter Board, terminal blocks TB20 & TB21 located at the bottom center of the PLC Comm Board (Figure 2.29) are used for control and signal wiring (Drive Permissives). Connector TB21 provides the interface for Analog Input and Output reference signals as detailed in Figure 2.30.

Figure 2.29. PLC Comm Board Connections

The maximum and minimum wire size accepted by TB20, TB21, Channel A and Channel B is 3.3 and 0.06 mm² (12 and 30 AWG). Maximum torque for these terminal blocks is 0.79 N–m (7 lb. – in.). Only copper wire may be used.

Figure 2.30.

Reference Signal Connections (PLC Comm Adapter)

Terminal Block	Terminal Number(s)	Signal
TB20	1	Drive Enable (NO)
	2	Motor Thermoguard (NC)
	3	Normal Stop (NC)
	4	External Fault (NC)
	5	
	6	Input Common
	7	
	8	Fault Output (NC)
	9	Fault Output (COM)
	10	Fault Output (NO)
TB21	1	OUT 1
	2	COM 1
	3	OUT 2
	4	COM 2
	5	OUT 3
	6	COM 3
	7	OUT 4
	8	COM 4
	9	IN 1+
	10	IN 1-
	11	IN 2+
	12	IN 2-
	13	IN 3 +
	14	IN 3-
	15	IN 4+
	16	IN 4 –
	17	+10V
	18	COM
	19	-10V

*Refer to Parameter 58 description for explanation of modes

8 9 10 11 12 13 14 15 16 17 18 19

Analog

Analog

TB21

Note: If using a pot as an input $2.5 \text{K}\Omega$ min.

Analog

Analog

In 2

Pin jumper J3 on the PLC Communication Adapter Board Enables or Disables the BRAM (Battery Backup RAM) Write function as follows:

Jumpered 1 - 2 = Enabled

Analog

Out 2

Analog

Out 3

Analog

Out 4

Analog

Out 1

Jumpered 2 - 3 = Disabled

The PLC Communication Adapter Board 120V/24V jumper settings for I/0 circuits (J8 – J11) are detailed in the 1336 FORCE PLC Communications Adapter User Manual Publication 1336 FORCE – 5.13.

Switch Settings – There are DIP switches and jumpers located on the PLC Communications Adapter Board that have been preset at the factory. Communication is received through Channels A and B. This communication protocol is defined through SW U2 – U5. If you need to reconfigure the switches or jumpers consult the 1336 FORCE PLC Communications Adapter User Manual.

Discrete Outputs

Fault outputs from the 1336 FORCE are supplied at terminal block TB20 on the PLC Communication Adapter Board. Fault outputs provide warning or fault signals based on drive programming.

Fault NC

Fault Com

Fault NO – A form C, NO /NC relay contact on the Standard Adapter Board programmed to provide external warning or fault change–of–state signals.

Contact Ratings = 2A @ 115 VAC 2A @ 30 VDC

Figure 2.31. Typical Digital Output

Discrete Inputs

Discrete Inputs to the 1336 FORCE are only supplied when a PLC Communication Adapter Board is used. These inputs are supplied at terminal block TB20.

Discrete inputs serve to enable and stop the Drive as well as provide checks on drive and motor operation.

Figure 2.32. Typical Digital Output

Figure 2–33 illustrates a typical stop control scheme that might be used when the 1336 FORCE is equipped with a PLC Communication Adapter Board. For further information on PLC Communication Adapter board operation and configuration, refer to the PLC Communication Adapter Board User Manual 1336 FORCE 5.13.

Figure 2.33. Control Scheme

Note: Terminal Blocks TB20 & TB21 are pull apart terminal blocks to aid in making cable connections. Both terminal blocks will accept wire sizes from 30-12 AWG $(0.06-3.3 \text{ mm}^2)$.

Computer Connections to Frame D drives

In some cases it will be necessary to use a DH+ port connection kit when connecting some computers to a 1336 FORCE drive in FRAME D ONLY!

Refer to the Installation instructions included with Frame D drives for more information on the use and installation of this kit.

ControlNet Fiber Optic Cable Connections to Frame D drives

If you are installing the fiber optic cable for ControlNet on a Frame D drive, special note should be taken of the following:

- The strain relief/latching cover assembly must be removed from the cable connectors due to space constraints. The cable connectors must then be separately plugged into the ControlNet board connectors on Frame D drives ONLY!
- Correct orientation of the loose cables is determined by the color of the connectors. The blue connector must be plugged into the dark grey connection on the board. The black connector plugs into the light grey connection on the board. The cable with the black connector is the transmit cable (TX) and the cable with the blue connector is the receive (RX) cable. Reset the drive after connecting the cables, and the ControlNet system should be ready to operate.

^{*}This is a configurable stop, see parameter 59 under the Drive Logic group for Start and Stop options. #Input must be jumpered if not used.

Configuration

Figure 2.34.

The 1336 FORCE Drive is shipped pre-configured, which means that some of the inputs and outputs are linked to a predefined signal. Figure 2.34 shows the 1336 FORCE standard configuration when equipped with a PLC Communication Adapter Board. The user has the flexibility to configure the Drive for a particular application.

PLC Comm Adapter Links 1336 FORCE PLC CONTROLLER Remote I/O Interface **PLC Comm Adapter** Drive **OUTPUT IMAGE TABLE** Channel B **Parameters GROUP NUMBER** Reserved For-0/2/4 0/2/4/6 Block Transfer 1/3 1/3/5 1/3/5/7 331 Logic CMD In Port 6 2 3 4 5 6 7 2/4 2/4/6 Ext Vel Ref #1 Hi 3/5 3/5/7 Torque Mode Select 4/6 Process Trim Ref 5/7 1 – Full Rack 2 – 3/4 Rack INPUT IMAGE TABLE 3 – 1/2 Rack GROUP NUMBER 4 - 1/4 Rack 2 3 1/2 1/4 0/2/4 0/2/4/6 0 1 2 3 4 5 6 7 1/3 1/3/5 1/3/5/7 Logic Status Low 2/4 269 Filtered Vel Fdbk 3/5/7 3/5 Motor Current Fdbk 4/6 Motor Voltage Fdbk 5/7 182 Computed Power Stator Frequency **Analog Outputs** TB21 **Drive Parameters** Filtered Vel Fdbk OFFSET SCALE 1 400 387 401 269 Filtered Vel Fdbk Comm 2 OFFSET SCALE Computed Power 3 388 402 403 182 Computed Power 4 Comm + OFFSET SCALE Motor Current Fdbk 5 389 405 264 Motor Current Fdbk 404 Comm 6 OFFSET SCALE Motor Voltage Fdbk 7 406 407 390 265 Motor Voltage Fdbk 8 Comm Analog Inputs SCALE 9 392 393 339 104) Ext Vel Ref #2 Hi Ext Vel Ref #2 Hi 10 OFFSET SCALE 11 Proc Trim Fdbk 394 395 340 28) Process Trim Fdbk 12 + OFFSET SCALE 13 _ 316 317 341 14 OFFSET SCALE 15 318 319 342 16 17 COMM Common 18 Supply 19

2-46

Chapter 3

Programming Terminals

Chapter Objectives

HIM Description

Chapter 3 provides an overview of the optional Programming Terminals available for use with the 1336 FORCE Drive. The various controls and indicators found on the Human Interface Module (HIM) and the Graphic Programming Terminal (GPT) are both explained in this chapter. Additional in depth information on the Graphic Programming Terminal can be found in the GPT programming Manual.

When the drive mounted HIM is supplied, it will be accessible from the front of the drive as shown in Figure 3.1. The HIM has two main functions:

- To provide a means of programming the drive and viewing operating parameters.
- To allow different drive functions to be controlled.

ATTENTION: When a drive mounted HIM is not supplied on enclosed NEMA Type 1 (IP 20) drives, the blank cover plate (option HAB) must be installed to close the opening in the front cover of the enclosure. Failure to install the blank cover plate allows access to electrically live parts which may result in personal injury and/or equipment damage.

When a drive mounted HIM is supplied with enclosed NEMA Type 1 (IP 20) drives, but has been removed from its mounting cradle for remote operation, the blank cover plate must be installed in place of the HIM.

The HIM is divided into two sections; Display Panel and Control Panel. The Display Panel provides a means of programming the Drive and viewing the various operating parameters. The Control Panel allows you to control different drive functions.

Figure 3.1 Human Interface Module Location

Figure 3.2 HIM Front Panel

Key Descriptions

Descriptions of the keys used with the 1336 FORCE Drive are presented in the following paragraphs. Remaining keys that are not described (shaded in figure above) are not used and reserved for future use.

Escand

When pressed, the ESCape key will cause the programming system to go back one level in the menu tree.

Select

Pressing the SELect key alternately causes the top or bottom line of the display to become active. The flashing first character indicates which line is active.

Increment/Decrement

These keys are used to increment and decrement a value or scroll through different groups or parameters.

Enter

When pressed, a group or parameter will be selected or a parameter value will be entered into memory. After a parameter has been entered into memory, the top line of the display will automatically become active, allowing another parameter (or group) to be chosen.

Key Descriptions (continued)

Start

By default, this key will initiate drive operation if hardware is enabled and no other control devices are sending a Stop command. To change this function, the [Command Mask] and [Typ 1 Logic Axis] parameters must be reconfigured. Refer to Chapter 5.

Stop

When pressed, a stop sequence will be initiated at the System Module causing a controlled stop to be initiated in each axis, as determined by [Stop Mode], [Stop Time Lim] and [Stopping Cur].

Jog

By default, when this key is pressed the motor will jog at a speed determined by the [Jog Vel] parameter for any axis that is enabled (default will be 20% of motor rated speed). Releasing the key will stop the function.

Change Direction (Jog/Digital Velocity Reference Modes Only) Pressing this key will cause the motor to change direction. The appropriate Direction Indicator will light to indicate direction.

Direction LEDs (Indicators)

These LEDs will illuminate to indicate the direction of motor rotation for Axis 0 (by default).

Up/Down Arrows (only available with digital speed control)

Pressing these keys will increase or decrease the HIM frequency command. An indication of this command will be shown on the visual Speed Indicator. The drive will run at this command if the HIM is the selected frequency reference. See [Freq Select 1/2].

Pressing both keys simultaneously stores the current HIM frequency command in HIM memory. Cycling power or removing the HIM from the drive will set the

power or removing the HIM from the drive will set the frequency command to the value stored in HIM memory.

Note: Pot Range 0 – 32767

If the Analog Speed Potentiometer option has been ordered, the Up/Down keys and Speed Indicator will be replaced by the pot.

Speed Indicator (only available with digital speed control) Illuminates in steps to give an approximate visual indication of the commanded speed.

If the Analog Speed Potentiometer option has been ordered, the Up/Down keys and Speed Indicator will be replaced by the pot.

AB0283A

Module Removal

For handheld operation, the module can be removed and located up to 10 meters (33 feet) from the Drive.

ATTENTION: Some voltages present behind the Drive front cover are at incoming line potential. To avoid an electric shock hazard, use extreme caution when removing/replacing the HIM.

Important: Removing a HIM (or other SCANport device) from a drive while power is applied will cause a "Serial Fault," unless the [Logic Mask] parameter has been set to disable this fault or Control Logic (Control Status menu) has been disabled (Series A, version 3.0 or Series B HIM). Setting Bit 1 of the [Logic Mask] parameter to "0" will disable "Serial Fault" from a HIM on port 1. Note that this also disables all HIM control functions except Stop.

To remove the module:

- ☐ 1. Assure that power has been removed, [Logic Mask] has been set or Control Logic has been disabled.
- ☐ 2. Take the drive front cover off and simply slide the module down and out of its cradle. Remove cable from module.
- ☐ 3. Remove HIM as described in the following sequence. If Jog control is required after the HIM is reconnected, repeat steps 1, but select "Enable."
- ☐ 4. Connect the appropriate cable between the HIM and the Communications Port (Adapter 2,3, 4 or 5).
- ☐ 5. Reverse the above steps to replace the module. Apply power, reset Bit 1 of the [Logic Mask] or enable Control Logic.

When power is first applied to the drive, the HIM will cycle through a series of displays. These displays will show drive name, HIM ID number and communication status. Upon completion, the Status Display (see Figure 3.3) will be shown.

Figure 3.3 Status Display

AB0286A

This display shows the current status of the drive (i.e. "Stopped," "Running," etc.) or any faults that may be present (refer to Chapter 6 for fault information). On a Series A (version 3.0) or Series B HIM (see back of HIM) the Status Display can be replaced by the Process Display or Password Login menu. See appropriate sections on the following pages for more information.

From this display, pressing any key will cause "Choose Mode" to be displayed. Pressing the Increment or Decrement keys will allow different modes to be selected as described on the pages that follow.

HIM Operation

Display

When selected, the Display mode allows any of the parameters to be viewed. However, parameter modifications are not allowed.

Program

Program mode provides access to the complete listing of parameters available for programming.

Process

The Process mode displays two user-selected parameters with text and scaling programmed by the user.

EEPROM

This mode allows all parameters to be reset to the factory default settings. In addition, a Series B HIM will allow parameter upload/download between the HIM and drive. BRAM (Battery Backup RAM) jumper must be in "Enable" position in order to change parameters.

Search (Series A, version 3.0 or Series B HIM Only)
This mode will search for parameters that are not at their default values.

Control Status (Series A, version 3.0 or Series B HIM Only)

Permits the drive logic mask to be disabled/enabled allowing HIM removal while drive power is applied. Disabling the logic mask with a Series A HIM below version 3.0 can be accomplished with [Logic Mask] as explained on page 3–4. This menu also provides access to a fault queue which will list the last four faults that have occurred. "Trip" displayed with a fault indicates the actual fault that tripped the drive. A clear function clears the queue – it will not clear an active fault.

Link

Link mode provides a method of transferring data from a source parameter to a linkable sink parameter. When a PLC Comm Adapter Board is used, up to (50) links are allowed. Links can be programmed only when the Drive is not running. Links are stored in BRAM and established at power up, BRAM recall, and/or system reset.

Password

The Password mode protects the drive parameters against programming changes by unauthorized personnel. When a password has been assigned, access to the Program/EEProm modes and the Control Logic/Clear Fault Queue menus can only be gained when the correct password has been entered. The password can be any five digit number between 00000 and 65535.

Refer to the Password section of the example that follows.

Program Mode

The Program mode allows access to change parameters.

From the Status Display, press Enter. "Choose Mode" will be shown.

Press the Increment (or Decrement) key to show "Program" if it is not currently shown.

Press Enter. The Choose File Display will appear. Use the Increment (or Decrement) key to select the 'Diagnostics', 'Velocity Torque', 'Communication I/O' or 'Startup' file.

Press Enter. The Choose Group Display will appear.

Press the Increment (or Decrement) key until the desired group is displayed (In this case Torque Ref). Press Enter.

Press the Increment (or Decrement) key to scroll to the desired parameter (In this case Parameter 53, Torque Mode Sel).

If the parameter you have selected has bit definition information use the Select key to access the 2nd or 3rd line.
Continue to press the Select key to access the desired bit. Use the Inc or Dec key to change the value.
NOTE: If the cursor is a blinking underline instead of a flashing character, you are either in Display mode or are trying to change a read—only parameter. For detailed information on changing bit coded parameters refer to the Bit Enums

Press the Enter key to save your changes.

section in this chapter.

Choose Mode Display

Choose Mode Program

Choose File Velocity Torque

Choose Group Logic

Choose Group Torque Ref

Torque Mode Sel

Display Mode

The Display mode allows access to view parameters.

From the Status Display, press Enter. "Choose Mode" will be shown.

Press the Increment (or Decrement) key to show "Display" if it is not currently shown.

Press Enter. The Choose File Display will appear. Use the Increment (or Decrement) key to select the 'Diagnostics', 'Velocity Torque', 'Communication I/O' or 'Startup' file.

Press Enter. The Choose Group Display will appear.

Press the Increment (or Decrement) key until the desired group is displayed (In this case Info). Choices include: Transistor Diag., Motor Overload, Fault Sel/Sts, Testpoints, Monitor, Linear List and Info. Press Enter.

Press the Increment (or Decrement) key to scroll to the desired parameter (In this case Adapter ID, Param. 300).

Choose Mode Process

Choose Mode Display

Choose File Velocity Torque

Choose Group Monitor

Choose Group Info

Adapter ID

Bit ENUMs With drive software versions above 2.00 and Masks a Series A (software version 3.0) or Series B Logic Mask HIM, bit ENUMS (16 character text strings) will be displayed to aid interpretation of bit parameters. X1111111 Select a bit parameter with the Increment (or Decrement) keys. Press the SELect key to view the ENUM of the first bit. Pressing this key again will move the cursor to the left one bit. A blinking underline cursor will indicate that you are in the Display mode or that a Read Only parameter as been accessed. A flashing character will indicate that the value can be changed. Individual bits of a Read/Write parameter can be changed in the same manner. Pressing the SELect key will move the cursor (flashing character) one bit to the left. That bit can then be be changed by pressing the Increment/Decrement keys. The Link Option allows you to view all Link current links in the drive and change or clear these links. From the Status display, press Enter. Choose Mode "Choose Mode" will be shown. Process Press the Increment or Decrement key to Choose Mode reach the Link Option. Link Press Enter and either the Clear Links or Link Set Links option screen will appear. Clear All Links Toggle between the screens using the Inc or Dec key. Drive SW Version From the Clear Links screen use the Enter key to clear all links. To change links, use the Inc or Dec key to reach the link you wish to change. Use the Sel key to access the 2nd line in

the display and then change the link

using the Inc or Dec key.

Process Mode When selected, the Process mode will allow you to monitor 6 different pre-programmed processes. 2 of these processes can be displayed at one time. Use the Enter key to select the Process Choose Mode Mode. Process Press the Enter key again to access the Process Var 1=1 Process Variable display. Process Var 2=2 Press the Enter key again if you wish to monitor the processes under Process Variable 1. Use the Inc/Dec keys to view the six 0.00 Freq Cmd 0.00 Vel FB processes that are currently programmed on line 1. To move to the second Process Variable SEL Line, Press the Select key. This will allow you to access the six processes under Process Variable 2. **ESC** To return to a previous level press the Escape key. Note: HIM Series B Version 1.06 will allow changing of the 6 process displays.

EEProm Mode The EEProm mode is used to restore all settings to factory default values or upload/download parameters between the HIM and drive (Series B HIM, Only). **Reset Defaults** To restore factory defaults: From the Status Display, press Enter (or Choose Mode any key). "Choose Mode" will be Display displayed. Press the Increment (or Decrement) key until "EEProm" is displayed. If EEProm Choose Mode is not in the menu, programming is EEProm password protected. Refer to Password *Mode* later in this section. Press Enter. Press the Increment (or Decrement) key EEProm until "Reset Defaults" is displayed. Reset Defaults Press Enter to restore all parameters to their original factory settings. Press ESC. Display returns to Choose Mode Screen. Choose Mode EEPROM Press the Stop key to reset the fault. Note: Reset Defaults only modifies Stopped parameters in RAM. To save in EE, do +0.00 Hz a "Save" or to recall what is in EE to RAM do a "Recall". **Important:** If [Input Mode] was previously set to a value other than "1," cycle drive power to reset. Drive -> HIM To upload a parameter profile from the drive to the HIM, you must have a Series B HIM. From the EEProm menu (see steps A-C EEProm above), press the Increment/Decrement Drive -> HIM keys until "Drive -> HIM" is displayed. Press Enter. A profile name (up to 14 characters) will be displayed on line 2 of Drive -> HIM the HIM. This name can be changed or a new name entered. Use the SEL key to move the cursor left. The Increment/ **SEL** Decrement keys will change the character. AB0282A

Drive -> HIM (continued)	Press Enter. An informational display will be shown, indicating the drive type and firmware version.	1336T Vector Version 3.02
	Press Enter to start the upload. The parameter number currently being uploaded will be displayed on line 1 of the HIM. Line 2 will indicate total progress. Press ESC to stop the upload.	Drive -> HIM 60
	"COMPLETE" displayed on line 2 will indicate a successful upload. Press Enter. If "ERROR" is displayed, see Chapter 6.	Drive -> HIM 210 COMPLETE
HIM -> Drive	To download a parameter profile from the HIM to a drive, you must have a Series B HIM.	
	Important: The download function will only be available when there is a valid profile stored in the HIM.	
or V	From the EEProm menu, press the Increment/Decrement keys until "HIM -> Drive" is displayed.	EEprom HIM -> Drive
or V	Press the Enter key. A profile name will be displayed on line 2 of the HIM. Pressing the Increment/Decrement keys will scroll the display to a second profile (if available).	HIM -> Drive 1 A
	Once the desired profile name is displayed, press the Enter key. An informational display will be shown, indicating the version numbers of the profile and drive.	1336T Vector 3.02 - > 3.02
	Press Enter to start the download. The parameter number currently being downloaded will be displayed on line 1 of the HIM. Line 2 will indicate total progress. Press ESC to stop the download.	HIM -> Drive 60
	A successful download will be indicated by "COMPLETE" displayed on line 2 of the HIM. Press Enter. If "ERROR" is displayed, see Chapter 6.	Drive -> HIM 210 COMPLETE

Search Mode The Search Mode is only available with a Series A (version 3.0) or Series B HIM. This mode allows you to search through the parameter list and display all parameters that are not at the factory default values. This mode also offers an option to search parameter links for links that are not factory defaults. Choose Mode From the Status Display, press Enter (or Display any key). "Choose Mode" will be shown. Choose Mode Press the Increment (or Decrement) key Search until "Search" is displayed. Press Enter. The HIM will display the Search Search Parameters, or Search Links Parameters screen. Use the Increment or Decrement key to toggle between screens. Proc Trim Fdbk From the Search Parameters display, -0.03% press Enter. The HIM will search through all parameters and display any parameters that are not at their factory default values. Press the Increment (or Decrement) key to scroll through the list. To search parameter links, toggle to the Search Search Links display from the Search Links Parameters display using the Increment or Decrement key. From the Search Links display, press Enter. The HIM will search through all Proc Trim Fdbk links and display any links that are not

at their factory default values.

Control Status Mode

The Control Status mode is only available with a Series A (version 3.0) or Series B HIM.

This mode allows the drive logic mask to be disabled, thus preventing a Serial Fault when the HIM is removed with drive power applied. The logic mask can be disabled with Series A HIM versions below 3.0 by using [Logic Mask] as explained on page 3.4

From the Status Display, press Enter (or any key). "Choose Mode" will be shown.

Press the Increment (or Decrement) key until "Control Status" is displayed. Press Enter.

Select "Control Logic" using the Increment/Decrement keys. Press Enter.

Press the SELect key, then use the Increment (or Decrement) key to select "Disabled" (or "Enable").

Press Enter. The logic mask is now disabled (or enabled).

Choose Mode Display

Choose Mode Control Status

Control Status Control Logic

Control Logic Disabled

AB0282A

Password Mode

The factory default password is 0 (which disables password protection). To change the password and enable password protection, perform the following steps.

From the Status Display, press Enter (or any key). "Choose Mode" will be shown.

Press the Increment (or Decrement) key until "Password" is displayed.

Press Enter.

Press the Increment (or Decrement) key until "Modify" is displayed.

Press Enter. "Enter Password" will be displayed.

Press the Increment (or Decrement) key to scroll to your desired new password. With a Series A (version 3.0) or Series B HIM, the SELect key will move the cursor.

Press Enter to save your new password.

Press Enter again to return to the Password Mode.

Press the Increment (or Decrement) key until "Logout" is displayed.

Press Enter to log out of the Password mode.

With a Series A (version 3.0) or Series B HIM, the Password mode can be programmed to appear when drive power is applied. Simultaneously press the Increment and Decrement keys while the Password display is shown.

Choose Mode Display

Choose Mode Password

Password Modify

Enter Password < 0>

Enter Password < 123>

Choose Mode Password

Password Login

Password Logout

Choose Mode Password

Sets Password Display as Power-Up Display

Password Mode (continued) Login to the Drive	The Program/EEProm modes and the Control Logic/Clear Queue menus are now password protected and will not appear in the menu. To access these modes, perform the following steps.	
or V	Press the Increment (or Decrement) key until "Password" is displayed.	Choose Mode Password
	Press Enter. "Login" will be displayed.	Password Login
	Press Enter, "Enter Password" will be displayed.	Enter Password < 0>
or V	Press the Increment (or Decrement) key until your correct password is displayed. With a Series A (version 3.0) or Series B HIM, the SELect key will move the cursor.	Enter Password < 123>
	Press Enter.	Choose Mode Password
	The Program and EEProm modes will now be accessible. To prevent future access to program changes, logout as described in step 1.	
Logout from the Drive	To prevent unauthorized changes to parameters, Logout must be performed as described below.	
or V	Press the Increment (or Decrement) key until "Password" is displayed.	Choose Mode Password
	Press Enter.	Password Login
or V	Press the Increment (or Decrement) key until "Logout" is displayed.	Password Logout
	Press Enter to log out of the Password mode.	Choose Mode Password

Startup Mode

An automated Quick Startup sequence is available on the HIM to lead you through all data entry, configuration and diagnostic tests that must be performed when starting up the 1336 FORCE drive.

From the Status Display, press Enter (or any key). "Choose Mode" will be shown.

Press the Increment (or Decrement) key until "Startup" is displayed. Press Enter.

The "Setup Motor Nameplate" display will appear. If you DO NOT need to enter motor nameplate data toggle to the No (N) selection and press Enter. A display asking you to run the Motor Connect Diagnostics will appear.

If you have not previously entered the Motor Nameplate data toggle to the Yes (Y) selection in the Setup Motor Nameplate display and press Enter.

The first motor informational screen will appear. Use the Select key to access the second line and make any changes with the Increment and Decrement keys. In subsequent displays you will be asked to provide the following motor information:

Base Motor Current
Base Motor Volts
Base Motor Frequency
Motor Poles
Base Motor Speed
Feedback Device Type

NOTE: For more information on the complete Quick Startup sequence refer to Chapter 4. All tests and entries are covered in greater detail in the Startup chapter.

Choose Mode Display

Choose Mode Startup

Setup Motor Nameplate

Motor Connect Diagnostics?

Base Motor HP

Figure 3.4 **HIM Programming Steps**

3 Series B V 1.06 & up

GPT Description

When an optional GPT (Figure 3.5) is supplied, it will be either mounted to the front of the Drive as a panel mount terminal, or supplied as a remote device with a 1.8 meter (6 foot) long cable. The GPT offers a 40 by 8 character display that can also be used as a graphics display to show trending graphs etc.

Figure 3.5 1201 Graphic Programming Terminal

Keypad Description

The GPT keyboard (Figure 3.5) is provided as either a 26 key version (non–runtime) or 30 key (runtime version). The runtime version as shown in Figure 3.6 provides additional Start, Stop, Jog and Direction keys.

Figure 3.6 GPT Keypad

GPT Operation

When power is first applied to the drive or device, a series of hardware diagnostic tests will run before the Power Up Logo Screen shown in Figure 3.7 appears. Once the initialization has been completed and all information from the drive is uploaded, the terminal will display either the Main Menu screen or the Process Display screen depending on the terminal setup information.

Figure 3.7 GPT Power Up Logo Screen

If it has not been deactivated through the terminal during setup, the Process Display Screen (Figure 3.8) showing you the programmed process variables will appear next. If the Process Display Screen is deactivated, the Main Menu Screen (3.9) will appear first.

Figure 3.8 Process Display Screen

When the Process Display Screen is active, it is necessary to press the Main Menu Option (F2 soft designator) on the Process Display to reach the Main Menu. The Main Menu contains the password option that provides a highlighted dialog box for password entry.

Chapter 3Programming Terminals

The Configuration option (F1 soft designator) allows you to directly access Process parameters from the Process Display screen. The Display Mode option (F3 soft designator) allows you to enter the Logo, Status or Meter modes for the Process Display parameters.

IMPORTANT: Main Menu screens are dynamic and will change based on functionality provided by adapter and drive status.

Figure 3.9 Main Menu Screen

IMPORTANT: Only 5 of the 8 Main Menu options are displayed at one time on the screen. Scroll with the Inc/Dec keys to access all eight selections.

Figure 3.10 details the complete menu tree for the GPT Programming Terminal. This menu is dynamic and all options may not be supported by your Drive or SCANport device. If you need more detailed information on Key functions, Menu Screens or general Terminal operation refer to the appropriate chapter in the GPT user manual.

GPT Programming Options Process **Process Process** Power Up Config **Display Program** Logo Screen Screen Screen Screen Main Menu Screen + INC △ DEC 🗸 #1 #2 #3 #4 #5 #6 #7 #8 EE/BRAM Warning Clock Special **Fault Function Parameter** Link Summary Queue Queue **Function** Data **Block** 0 FGE Mode @ Sink Fault List Warning 1. Set Clock File Entry Upload List 2. Set Ref Source Group ➤ 3. Load Ref Stamp Command → 4. Zero Acc Element 1. Clear Warning File ID 2. Clear Warn Q I/O Node Linear Mode 1. Save Par to EE Numerical 2. Recall EE Par **Edit List** ➤ 1. Clear Flt **Parameter** 3. Init Par to RAM **Screens** 2. Clear Flt Q 4. Evnt File Store Download 3. Drive Reset 5. Evnt File Recall 6. Evnt File Init Interval 7. Proc FB Links 8. Clear FB Links **Event File** Autotune Change Version Drive Data **Trend** Startup **Function Tests** Password Info Identity Transfer Save HIM > GPT Recall GPT > HIM Default

Figure 3.10

 This list is dynamic and will change for various Drive States and Drive Product functions.

Chapter 3Programming Terminals

This Page Intentionally Blank

Start-Up

Introduction

This chapter describes the procedure for the proper start up and tuning of the 1336 FORCE AC drive. Among the procedures you must perform in this chapter are the following:

- Pre–power checks
- Power–on checks
- Communication Configuration
- Parameter Programming
- Motor and Feedback Polarity Checks
- Drive Tuning and Calibration

ATTENTION: Hazard of Electric Shock exists in this drive. Power circuits are optically isolated from control driver circuits. Power circuit components are "floating" with respect to "ground". Use only approved methods of isolating test equipment when making measurements in power circuits.

ATTENTION: Only qualified personnel familiar with the 1336 FORCE AC Drive and its associated machinery should plan and implement the installation, startup and subsequent maintenance of the Drive. Failure to comply may result in personal injury and/or equipment damage.

ATTENTION: Working with energized industrial control equipment can be hazardous. Severe injury or death can result from electrical shock, burn, or unintended actuation of controlled equipment. Hazardous voltages may exist in the cabinet even with the circuit breaker in the off position. Multiple sources of power may be connected to this drive. Recommended practice is to disconnect and lock out control equipment from power sources, and discharge stored energy in capacitors, if present before coming in contact with any equipment in this cabinet. During startup it will be necessary to work in the vicinity of energized equipment. The Safety Related Practices of NFPA 70E, "ELECTRICAL SAFETY FOR EMPLOYEE WORKPLACES" must be followed at all times. DO NOT work alone on energized equipment!

Safety Precautions

ATTENTION: Potentially fatal voltages may result from improper useage of an oscilliscope and other test equipment. The oscilliscope chassis may be at potentially fatal voltage if not properly grounded. Allen–Bradley does not recommend use of an oscilliscope to directly measure high voltages. Use an isolated measuring device with a high voltage probe. Contact Allen–Bradley for recommendations.

ATTENTION: This Drive contains ESD (Electro–Static Discharge) sensitive devices. Static control precautions are required when installing, testing, servicing or repairing this assembly. These precautions should be applied when working with logic boards AND any components in the power section. A properly grounded wrist strap should be worn when contacting any component in the drive. If you are not familiar with static control procedures, before servicing, reference Allen–Bradley Publication 8000–4.5.2, Guarding against Electrostatic Damage or any other applicable ESD protection handbook.

Required Tools and Equipment

The following equipment is required for start-up and tuning.

- Digital Multimeter (DMM) capable of 1000V DC/750V AC, with input resistance of at least 1 megohm.
- Hand Tachometer used to monitor motor velocities.
- User Manuals for optional equipment.
- DriveTools Software (optional)

This start—up sequence specifies using hand instruments such as multimeters, tachometers, ammeters and an oscilliscope to carry out this start—up test procedure. If you have the optional DriveTools software for the 1336 FORCE Drive, it can be used to simplify the startup procedure. This option can be used to set input commands, manipulate parameters and verify frequencies and voltage levels.

IMPORTANT: This startup sequence for a Series B Drive assumes that you have a HIM Programming Terminal. If a different programming device is used, you must alter the startup accordingly.

Drive Information

During Startup the following information must be recorded for reference. It is important that an accurate list of drive components be maintained and referred to when contacting service personnel.

Table 4.A. Data Checks –			
DRIVE NAMEPLATE DATA			
Catalog Number:			
Serial Number:		_	
Series:			
AC Input			Amps
AC Output	Volts		Amps
Horsepower Rating:			•
MOTOR NAMEPLATE DATA:			
Catalog Number:			
Serial Number:		_	
Series:		_	
AC Input	Volts		_ Amps
Horsepower Rating:	kw		_ '
Poles:			
RPM:			
Hz:			
ENCODER NAMEPLATE DATA:			
Catalog Number:			
Serial Number:		_	
Series:			
Input Power Supply:		_ Volts	
Input Signal Level:		_ Volts	
Output Type:			
Pulses Per Rev:	PPR		
Maximum Speed:			
Maximum Frequency:		_	
MAIN CONTROL BOARD:			
Board Revision Level:			
PLC COMM BOARD:			
Board Revision Level:			
GATE DRIVER BOARD:			
Board Revision Level:			
STANDARD ADAPTER BOARD:			
Board Revision Level:			
Standard Adapter Board Jumper	Settings:		
Position Position J5: 1 — 2 2 — 3			
J10: 3 – 4 17 – 18	_		
J13: 1 – 2	-		
PLC Comm Adapter Board Switch U2: 1 2 3 4	-	7 8	
U3: 1 2 3 4	56	7 8	
U4: 1 2 3 4	56	7 8	
115: 1 2 3 4	5 6	7 8	

General

Only qualified electrical technicians and/or electrical engineers familiar with solid state controls and circuitry should attempt a 1336 FORCE start—up. Figure 4.1 outlines the sequence that is required to start—up the 1336 FORCE Drive.

Figure 4.1.
Bulletin 1336 FORCE Start-Up Sequence

Pre-Power Checks

Pre—Power checks are meant to identify any problems prior to applying voltage to the system. The drive should be checked for any damage that may have occurred during shipment and installation. You should also verify that all jumpers and configuration controls are properly applied for the application at hand. Finally, you must check all wiring external to the drive for accuracy and reliability.

External Wiring Checks:

1. Verify that all external I/O wires are properly terminated in the terminal blocks. A full point – to – point continuity check should be performed on all I/O wiring connected to the drive.

Chapter 4 Startup

- Verify that the incoming power connections are properly connected and tight. Also verify that the power source is properly sized and protected for your particular drive.
- 3. Verify that the motor power connections are properly connected and tight. Motor Phasing should be checked, Motor Phase A should be connected to Drive output phase A, likewise Phase B and C should be properly terminated to their respective terminals. This phasing will be double checked later in this procedure.
- 4. Verify that the encoder feedback device is properly connected. The encoder should be a quadrature device with a 12V input power requirement and either 12V or 5V differential outputs. Jumpers J3 and J4 on the Main Control Board (Figure 2.7) must be set for the desired output. Phasing of the encoder should be checked in that A and /A, B and /B are properly terminated. This phasing will be double checked later in this procedure.
- 5. If your Drive is equipped with a Standard Adapter Board verify that the Pulse Input Voltage Selection jumper is set correctly for your application. Jumper J13 should be set across pins 1 and 2 for +5V DC input, and across pins 2 and 3 for +12V DC input voltage.
- 6. If your Drive is equipped with a PLC Comm Adapter Board, verify that the standard I/O inputs on the PLC Comm Board are configured for the proper input voltage level. The Standard I/O can be configured for operation at 24V DC or 120V AC. To select the proper voltage set the jumpers on J5, J6, J7 and J8 across pin 1 and 2 if the input voltage level is 120V AC, and across pins 2 and 3 if the input voltage level is 24V DC.

After all pre–power checks have been completed, the incoming power may be applied. The application of power for each system can be different. Make sure you know the safety controls associated with the system. Power should only be applied if you have a thorough understanding of the 1336 FORCE Drive and the associated system design.

• Measure the incoming line voltage between L1 and L2, L2 and L3, and L1 and L3. Use the DMM on AC Volts, highest range (1000 VAC). The input voltage should equal the drive rated input voltage present on the drive's nameplate within +/-10%. If the voltage is out of tolerance, verify the drive rating is correct for the application, if it is, adjust the incoming line voltage to within +/-10%.

Power On

Startup Configuration Procedures

After you have completed all wiring and power up the drive, the parameter configuration procedure must be completed using one of the Startup Configuration Procedures (Quick, or Manual). The configuration procedures used here assumes you have a HIM programming terminal and a Standard Adapter Board in your Drive. If you are using a different programming method or a PLC Comm Adapter Board, the configuration procedure will have to be altered to match your particular setup.

ATTENTION: Failure to complete the parameter configuration could result in injury to personnel, or damage to the drive and the motor, when attempting to perform the remaining steps in the Configuration Procedure.

Apply power to the Drive. The HIM display will appear as shown in Figure 4.2.

ATTENTION: During some startup procedures the motor will rotate. Hazard of personal injury exists due to unexpected starts, rotation in the wrong direction or contact with the motor shaft. If possible, uncouple the motor from the load and place a guard around the motor shaft.

Figure 4.2 HIM Power-Up Display

AB0273A

Quick Start Procedure

From the Status Display, press Enter (or any key). "Choose Mode" will be shown.

Press the Increment (or Decrement) key until "Startup" is displayed. Press Enter.

The "Setup Motor Nameplate" display will appear.

If you have not previously entered the Motor Nameplate data toggle to the Yes (Y) selection in the Setup Motor Nameplate display and press Enter.

The first motor informational screen will appear. Use the Select key to access the second line and make any changes with the Increment and Decrement keys. In subsequent displays you will be asked to provide the following motor information:

- 1. Base Motor Current
- 2. Base Motor Volts
- 3. Base Motor Frequency
- 4. Motor Poles
- 5. Base Motor Speed
- 6. Feedback Device Type

When all motor and feedback data have been entered, a display asking you if you wish to run the Motor Connect Diagnostics will appear. Press the Enter key to initiate the test sequence. In subsequent displays you will be asked if you wish to run the following tests:

- 1. Inverter Diagnostics
- 2. Motor Rotation Test

Press the green Start key to run the diagnostic test.

Press the red Stop key when the Motor Rotation Test has completed.

Choose Mode

Choose Mode Startup

Setup Motor Nameplate

Base Motor HP

Motor Connect Diagnostics?

Transistor Diag Press START!

Check Motor Rotation? Y

Quick Start Procedure cont.

 After Inverter Diagnostics has concluded, or if you answer NO to the Motor Connect Diagnostics question, a display will appear asking if you wish to run the Autotune Torque & Velocity sequence.

Press the Enter key to initiate the test.

If you answer YES to the Autotune Torque & Velocity question, the following configuration options will appear in sequence as each configuration operation is completed.

- 1. Measure Parameters
- 2. Autotune The Velocity Loop?
- 3. Change Velocity Bandwidth & recalculate Gains?
- 4. Configure Analog Inputs?
- 5. Continue CH#3 & #4 configuration?
- 6. Configure Analog Outputs?
- 7. Configure SCANport?

ATTENTION: Hazard of Personal Injury exists when running the Autotune Torque & Velocity sequence as motor rotation occurs with several of these tests.

Use the SELect key to access the 2nd line in any configuration display, and the INC or DEC keys to make any changes. When an option or enable operation is complete, use the Enter key to save this change.

When all tests and enable operations have been completed, a Startup Complete display will appear. Press the Enter key to save all configuration data. A Startup Completed display will appear to indicate that the Quick Start Procedure has been successfully completed and saved.

Autotune Torque & Vel Loops Y

Measure Param's Press START!

Autotune The Velocity Loop?

Change Vel. BW & recalc. Gains ?

Configure Analog Inputs?

Continue CH #3 & #4 config? Y

Configure Analog Outputs? Y

Configure SCANport? Y

Startup Completed

Quick Start Procedure cont. If you answer NO to the Autotune Torque & Velocity question, the following configuration options will appear in sequence as each configuration operation is completed 1. Configure I/O? Configure I/O Configure Scanport? 3. Configure Input Mode? 4. Configure Pulse Input? Configure 5. Configure MOP? Scanport? 6. Configure Analog Input? 7. Configure Analog Output? Configure Use the SELect key to access the 2nd Input Mode? line in any configuration display, and the INC or DEC keys to make any changes. Configure When an option or enable operation is Pulse Input? complete, use the Enter key to save this change. Configure MOP? Y When all tests and enable operations have been completed, a Startup Configure Complete display will appear. Press the Analog Input? Enter key to save all configuration data. A Startup Completed display will Configure appear to indicate that the Quick Start Analog Output? Y Procedure has been successfully completed and saved. Startup Complete Press 'ENTER' Startup Completed **Startup Reset Sequence** If you wish to return to the Startup Startup sequence to make additional changes, Completed this can be accomplished from the Startup Completed display. After Reset pressing the Enter key, use the INC or Sequence DEC key to toggle to Reset Sequence. Press the Enter key again and you can now re-enter the Startup routine.

feedback device that was selected, because the bandwidth of the velocity regulator will be significantly reduced when the drive is used without an encoder.

NOTE: It is important that you retain a record of the

After the feedback device type has been selected and accepted, press the ESC key to return to the Startup Menu. The display should appear as shown below:

Use the INC/DEC keys to scroll thru the Startup Mode menu selections until DRIVE DATA is reached.

Press the ENTER key to access the Drive Data menu.

The HIM will allow you to toggle between the I/O Drive Data menu parameters using the INC/DEC keys. The definitions of the I/O Drive Data menu parameters is detailed below:

- Language Select This parameter indicates whether English or an alternate language will be used for parameter and fault display text.
- Input Mode Defines the function of the inputs on the "L" option board
- Encoder PPR Number of pulses per revolution for encoder.
- Base Motor Speed Motor Nameplate Speed
- Base Motor HP Motor Nameplate Horsepower
- Base Motor Current Motor Nameplate Current
- Base Motor Volts Motor Nameplate Voltage
- Base Motor Frequency Motor Nameplate Frequency

STARTUP MENU:

DRIVE DATA
DRIVE TUNE
LIMITS
FAULT SETUP
MONITOR
LINEAR LIST

DRIVE DATA MENU: -

Language Select #304
Input Mode #385
Encoder PPR #235
Base Motor Speed #229
Base Motor HP #228
Base Motor Current #280
Base Motor Volts #231
Base Motor Freq #232
Torq Mode Select #53
Undervoltage Setpoint
#224*

Motor Poles #235

NOTE: These parameters are primarily motor/ encoder specific parameters that are used for scaling Drive output to motor input requirements.

Not Used in Sensorless Mode

*If using a 230V drive, parameter 224 should be set to a value of 200V.

Motor Poles – Number of Motor Poles (Nameplate)

- Undervoltage Setpoint Sets minimum threshold voltage for a Bus undervoltage condition. Should be set to a value of 200V for 230V AC drives, and 400V for a 460VAC drive.
- Torque Mode Select This parameter is used to select the source for the drive torque reference. (Must be set to Speed Mode for auto commission ing!)

To change a value in any of 10 Drive Data menu parameters, the following sequence which shows you how to change motor base speed should be followed:

Blinking

Base Motor Speed 1750 RPM

Press the SEL key to move from the Drive Data Menu parameter to the Drive Data Value. When this is successful, a blinking box will appear next to the Ram value as shown in the following figure:

Blinking Box

Base Motor Speed 1750 RPM

AB0270A

Use the INC/DEC keys to scroll to the desired value, then press the ENTER key to accept the new value.

When you have entered all Drive Data menu parameters, press the ESC key to return to the Startup Menu. The display should now appear as shown in the following example:

> DRIVE DATA STARTUP

Use the INC/DEC keys to scroll thru the Startup menu until the Limits option is displayed. The HIM display should now appear as shown below. Press the ENTER key to move into the Limits menu.

> T.TMTTS STARTUP

ATTENTION: The Motor Pole Entry is critical to all Autotune tests. Make certain you are entering the correct number of poles for your motor before proceeding with the Autotune sequence.

Blinking First then Blinking

Fwd Speed Limit - 1750 RPM

Use the INC/DEC keys to scroll through the Limits menu selections.

When you reach the Limit selection that you wish to change, press the SEL key to move the blinking cursor down to the value field.

Fwd Speed Limit
+1750 RPM

Once the cursor is in the value field, the INC/DEC keys can be used to scroll to the selected value. After the desired value is reached, the ENTER key must be pressed to accept the value. This process should be repeated for all of the the parameters in the Limit Menu selection.

After all of the parameters in the Limit Menu have been set—up, press the ESC key to take you back to the Startup Menu. The HIM Display should now appear as shown below:

Limits Startup

You must now access the Drive Tuning option in the Startup menu. Use the INC/Dec keys to scroll through the Startup Menu until the Drive Tuning selection is reached. The HIM display should now appear as shown below

Drive Tune — Startup

When Drive Tune appears, press the ENTER key to access the Drive Tune Menu.

The Parameters you will need to set up in the Drive Tune sequence are detailed in the list located in the right column. For detailed descriptions of these parameters and their operation refer to Chapter 5 in this Manual under Group 1 "STARTUP FILE".

The Drive Tune Parameters can be accessed by using the INC/DEC keys to scroll through the Drive Tune Menu. Using the default values for these parameters will work in most cases. If the default value does not work, refer to the parameter value ranges in Chap. 5 for possible alternate values.

Limits Menu Selections:

Accel Rate 1 #389
Decel Rate 1 #391
Accel Rate 2 #390
Decel Rate 2 #391
Logic Options #59
Fwd Speed Limit #128
Rev Speed Limit #127
Pos Mtr Cur Lmt #179
Neg Mtr Cur Lmt #175
Neg Mtr Tor Lmt #176
Motor Power Lmt #176
Di/Dt/ Limit #181

Drive Tune Menu Selections:

Autotune Diag Sel #256
Vel Feedback #146
Vel Desired BW #43
Auto Tune Status #44
Motor Inertia #234
Total Inertia #46
Ki Velocity Loop #139
Kp Velocity Loop #140
Kf Velocity Loop #141
Vel Damp Factor #45
Auto Tune Speed #41
Ph Rot Cur Ref #262
Ph Rot Freq Ref #263

SEL Scroll to the Autotune Diag Sel parameter. Set Bit 0 to a value of 1, and then press the ENTER key and the START button. This will execute the Inverter Transistor Diagnostics test which will take 300 mSec to run. Bit 0 will automatically be set back to 0 upon successful completion of the Inverter Transistor Diagnostics test. If the test fails (non-zero value with flashing CP or VP light), refer to the Startup troubleshooting section of this manual (Chap 6). While you are performing the Inverter Transistor Diagnostics Test the HIM display should appear as shown below: Autotune Diag Sel 0000000 0000001 Bit 0 The purpose of the Inverter Transistor Diagnostic SEL Test is to help you find any problems that might exist in the installation, as well as taking care of setting offset in both the Id & Iq regulators (Parameters 260 & 261 in the linear list). The next test you must run is the Phase Rotation Test. This is accomplished by setting bit 1 to a value of 1 in the Autotune Diag Sel parameter (Parm #256) and pressing the START key to execute the test. The HIM display should appear as shown below: Autotune Diag Sel 00000000 00000010 Bit 1 When the START key is pressed, the motor should **ATTENTION**: During this rotate at a rate specified by both Phase Rotation portion of the Autotune Frequency Ref and a current output as specified by Sequence reverse motor the Phase Rotation Currency Ref. Typically, default rotation is a possiblity. If values for both Ph Rot Freq Ref and Ph Rot Cur Ref your process equipment will work correctly. could be damaged by **Interpreting Phase Rotation Results:** rotation in the wrong 1. In phase rotation, the motor should turn in the direction you must uncouple direction you define as positive velocity. If the the motor from the load motor turns in the wrong direction, shut the drive before running the Phase down, remove power and reverse any two motor Rotation test.

If no motor rotation occurs, refer to the Startup troubleshooting section of this manual.
 In phase rotation with the motor now turning in the positive direction, the sign of the velocity

feedback (P146) should be positive. If it is

leads or the B and /B (Not B) leads.

negative, reverse the A and /A (NOT A) encoder

leads.

Note: Step 3 is skipped with a sensorless drive.

After the New Values for Kp & Ki have been calculated, you are now ready to start the Drive in Velocity mode. Before starting the Drive, use the INC/DEC keys to scroll to Vel Feedback in the Drive Tune Menu. Start the Drive by pressing the START key on the HIM. Press the SPEED IN-CREMENT key to slowly increment the velocity reference. Observe velocity feedback and motor shaft rotation making sure both are stable. If they are not (shaft produces a jittery, oscillating or judering rotation), press the STOP key immediately and readjust the desired bandwidth. This will enter new values for both Kp & Ki. After these new values have been entered, you are now ready to restart the Drive in velocity mode and observe motor shaft rotation and velocity feedback for stability. If problems still occur, refer to the Velocity Loop Autotune troubleshooting section of this manual (Chap 6). The HIM display should now appear as shown below:

> Vel Feedback 100.00 RPM

This Figure should be stable (no wandering of RPM value)

Additional Sensorless Drive Instructions:

If the sensorless mode is being used (Param 150 = 5–7) set Param 43, Param 141 and Param 142 based on the measured inertia expressed in Parameter 46 (Autotune) in Table 4.B. Select Bit 8 of Param 156 and then attempt a Start.

Table 4.B Sensorless Setup Values

Param 46	Param 43	Param 141	Param 142
< 2 Sec	10 rad	.7	50 rad
2–5 Sec	5 rad	.7	25 rad
5–20 Sec	1 rad	.7	25 rad
>20 Sec	.5 rad	.7	25 rad

- If the motor won't start; increase the bandwidth (Param 43), select bit 8 of Param 256 and attempt a restart.
- If the motor chatters, or velocity ripple is too high; decrease the bandwidth (Param 43), select bit 8 of Param 256 and restart.
- If the motor continues to chatter, set Param 142 to zero.

NOTE: For additional information on sensorless operation refer to Appendix A of this manual.

Communication Configuration

Drive to Drive Communication – Drive to Drive Communication (D2D) provides high speed communications between drives. D2D is capable of connecting up to 64 Drives together using three different transfer rates, 125K (64 nodes), 250K (64 nodes), and 500K (32 nodes) baud.

Hardware Setup – Refer to Chapter 2 Installation for Drive to Drive wiring, L Option wiring and Pulse Input Configuration.

Data Transfer – The D2D which allows multiple transmitters to broadcast information based on priority to multiple receivers which choose the information they wish to receive. The D2D will operate at three different baud rates as shown in the following chart.

Baud Rate	Max. Distance (End to End)	Data Rate	Max. Transmitters (2ms task)
125k	330m	600us	3
250k	140m	300us	6
500k	50m	150us	13

The baud rate choices allow for different end to end distances and number of transmitters. The distance is based on the propagation delay of the signal through the wire and the maximum transmitters come from not exceeding the 2ms task. The propagation delay is based on CAN variables. The number of transmitters is based on the data rate.

2 ms			2 ms			2 ms					
600us (1)	600us (2)	600us(3)		600us (1)	600us (2)	600us(3)		600us (1)	600us (2)	600us(3)	\neg
600us(4) 600us(1) 600us(2) 600us(3) 600us(1) 600us(2) 600us(3)											

Shown above is the D2D set at 125k baud with 3 and 4 transmitters. With 3 transmitters, the data rate never exceeds 2ms and all the data is received within the 2ms task. In the case of 4 transmitters, the fourth transmitter does not always get transmitted due to the priority of the transmitters. The lower the node address the higher the priority. All the data is not seen every 2ms task. Data transfer errors also effect how much data is transferred. Errors in the transfer will cause retransmission of the data and may cause the data rate to exceed 2ms. Within the drive itself, the Velocity Processor (VP) will be running the D2D in its 2ms task. With the use of D2D indirects, data can be transferred within 2–3ms from one drive to another and 4–5ms from one drive to another and back.

The D2D receive and transmit are on both sides of the velocity functions. This is to improve the data rate.

Message Transfer – The D2D allows each drive to transfer two words and receive two words from two different drives for a total words received of four (Figure 4.3).

Figure 4.3. D2D Communication

Transmit	•	Receive 1	Receive 2
P11 Node Address		P12 Node Address	P13 Node Address
P14 Data 1 Indirect		P16 Data 1 Indirect	P18 Data 1 Indirect
P15 Data 2 Indirect		P17 Data 2 Indirect	P19 Data 2 Indirect
P20 Data 1		P22 Data 1	P24 Data 1
P21 Data 2		P23 Data 2	P25 Data 2

Node Address – The node address for the transmit is the address at which the drive will transmit its two words of data. The node address for each of the receives is the address of the drive which you wish to receive two words of data from. If the node address is set to zero then the transmit or receive is disabled. It is up to you to make sure there are no duplicate transmit node addresses. If duplicate addresses exist, you must change one address. Refer to the example in Figure 4.4.

Figure 4.4. Node Address Transmittal

Note that a drive cannot receive its own address and both receives cannot be set to the same address unless it is zero.

Data Indirect – The indirect function for the transmit indicates to the D2D transmit (TX) where it should obtain data. The receive it indicates to the D2D receive (RX) where it should put its data. Indirect parameters can have either VP or CP parameters entered into them, or they can have indirect data parameters entered into them as shown in the following examples.

Transmitter Example:

P14 Drive Transmit indirect 1 – Any VP/CP Parameter or – P20 (Drive Xmit Data 1)

P20 would then have a value or be linked to a non VP/CP parm.

Receiver Example:

P16 Drive Receive Indirect 1 – Any VP/CP Parameter or – P22 (Receive 1, Data 1)

P22 would then have a value or a non VP/CP parm linked to it.

Data – The D2D TX and RX data exists as non VP parameters in the parameter table. This allows data outside the Motor Control Board to get access to the D2D. Data parameter examples were shown in the previous transmitter and receiver examples.

Master/Slave Drive to Drive Communication — Figure 4.5 illustrates an example of D2D applied to a master/slave drive set up. The master drive receives its speed reference from a speed pot wired to analog input 1 on a PLC Comm board. P339 (Analog In1) is linked to P101 (Ext Vel Ref) on the master drive. P392 (Analog In 1 Offset) and P393 (analog In1 Scale) are set accordingly. Analog Input 1 must be passed from the master drive to the slave drive and connected to the P101 (Ext Vel Ref) using the D2D protocol.

Setting up the Master drive requires that a transmit address be chosen. An address 1 is chosen in this example. P14 (Drive Xmit Indirect 1) will have a value of 20 entered into it (which means look to P20 (Drive Xmit Data 1)). P20 (Drive Xmit Data 1) must be **linked** to P339 (Analog In1). This is where the data comes from that will be transmitted.

Figure 4.5 Master/Slave Communication Example

Master

P11 Drive Xmit Address - Transmitter Station Address - 1 P14 Drive Xmit Indirect 1 – VP/CP Parm. or P20 -20P20 Drive Xmit Data 1 - Non VP/CP Parm Linked - 339 (Analog In 1) P339 (Analog In 1) linked P101) (Ext Vel Ref) P392 (Analog In1 Offset) P393 (Analog In 1 Scale) **Analog Inputs Drive to Drive** 0 - 10VSlave P12 Drive Receive 1 Address - Transmitter you are getting data from - 1 P16 Drive Receive Indirect 1 - VP/CP Parm. or P22 _101 (Ext Vel Ref) P102 (Vel Scale Factor) Used to Control Gear Ratio

Drive to Drive

The slave drive is set up by first setting P12 (Drive Receive 1 Address). P12 contains the address of the tranmitter that you wish to receive data from. In this example, a value of 1 is entered, indicating that data should be read from transmitter 1. P16 (Drive Receive Indirect 1) should be set to P101 (Ext Vel Ref). It should be noted that the typical transmission **time** from the master to the slave is between **4ms to 6ms** using links, otherwise using indirects it is only 2ms to 4ms.

I/O Communication Configuration:

The Standard I/O of the 1336 FORCE Drive must be checked to verify proper operation. The Standard I/O is used to interface control circuits into the drive. It is very important that this interface is functioning properly.

Standard Adapter Board Equipped Drives:

If a Control Interface option is installed, verify that the Stop, Enable and Ext Fault interlock inputs are present. Voltage level is dependent upon the Control Interface option installed. (Refer to Page 2.27 for Input Mode (Param 385) setting.

IMPORTANT: The Stop, Enable, and Ext Fault inputs must be present before the drive will start. Refer to LEDs D1 and D2 shown in Figure 2.13 to determine Drive Status.

If this option is not installed, verify that two jumpers are installed, one at pins 3& 4 and the other at pins 17 & 18 of J10. If an Ext Fault occurs, check the Fault Mask Programming In parameters 88 and 89, Bit 6 needs to be defined to mask the soft fault and warning indication.

PLC Comm Adapter Board Equipped Drives:

- The DRIVE ENABLE (TB20 terminal 1) on the PLC Comm Board input allows the drive to honor a START command. D11 on the PLC Comm board, a green LED, reflects the present state of the DRIVE ENABLE. If D11 is illuminated, then the drive is enabled and the transistors will be allowed to turn on. Parameter 54 bit 1 also reflects the status of the DRIVE ENABLE input.
- 2. The EXTERNAL FAULT (TB20 terminal 4) PLC Comm input allows you to tie a signal into the 1336 FORCE that will be monitored by the Velocity Processor (VP). If the input voltage is removed, the VP will issue a fault or warning based on the configuration of that fault and the red LED D5 on the PLC Comm board will be illuminated. When Input voltage is applied, D5 will not be illuminated.
- 3. The MOTOR THERMOGUARD (TB20 terminal 2) input allows you to tie a signal from the thermo–switch in the motor into the 1336 FORCE that will be monitored by the Velocity Processor (VP). The red LED D9 will illuminate if an overtemp condition occurs.

- 4. The NORMAL STOP (TB20 terminal 3) input is stop command that will stop the drive according to the specified Stop Mode. The drive responds the same way it would if the STOP bit were set in any Logic Command. The red LED D7 reflects the present state of the STOP input. When a Stop is in effect the LED is illuminated and the Drive is not allowed to run.
- 5. The FAULT OUT (TB20 terminals 8,9,10) input is a Form C relay contact. Red LED D4 reflects the status of relay contact. If the LED is illuminated the contact is not energized.

External Control Link Configuration:

The 1336 FORCE AC Drive has been designed to accept control input through the use of Adapter Boards. A portion of the Drive Control has been designed to act as an interface from the point of view of external devices. In order to perform the control functions required by the specific application, it is necessary to configure various control and reference information such as logic commands, speed reference, and torque reference. Additionally, for the external control equipment to monitor operation conditions in the drive, (such as logic status, actual speed, actual torque) configuration provides a way for this information to be transferred to the external device.

Configuration links must be made between sink and source parameters to allow this information to transfer. The source parameter provides the data to be sent to the receiving sink parameter.

For Example: To send the information from Analog Input #1 (Parameter #355) to External Velocity Reference #1 (Parameter #101) of the drive, then P101 must be linked to P355. All sink and source parameters in the 1336 FORCE AC Drive are available to provide information, and sink parameters can receive information from source parameters. The drive is shipped with pre–configured links between the Standard Adapter board or PLC Comm board and the Main Control board. The user has the flexibility to reconfigure the drive for a particular application. For more information on how to use a particular programming device to configure the 1336 FORCE AC Drive, refer to the instruction manual for that particular device.

Figure 4.6 shows the as shipped pre–configuration links for a 1336 FORCE AC Drive equipped with a Standard Adapter board. Refer to the PLC Communications Adapter User Manual (1336 FORCE 5.13) for information on pre–configured links for PLC Comm equipped drives.

PLC COMM Adapter Board Equipped Drives:

For PLC Comm Adapter Board Equipped Drives refer to the 1336 FORCE PLC Communication Adapter User Manual (1336 FORCE 5.13) for configuration information.

Standard Adapter Motor Control Board TB5 +10V Ref 1 Common 2 OFFSET SCALE -10V Ref 3 356 357 355 28 Proc Trim Fdbk 4 +/- 10V In + 5 ΤE 6 **OFFSET SCALE** Pot In 1 359 360 358 104 Vel Ref #2 Hi 8 9 ΤE OFFSET SCALE 10 4-20mA Input 362 363 361 11 12 Pulse PPR 395 5-12V Pulse Input 13 Pulse Edge 396 Unidirectional 399 14 397 PulseScale 398 Pulse Offset TB6 OFFSET SCALE +/- 10V Analog 1 371 372 370 146 Vel Fdbk Out 1 2 ΤE 3 SCALE +/- 10V Analog 4 375 Computed Power 374 373 182 Out 2 5 ΤE 6 OFFSET SCALE 7 4–20mA Output + 377 378 376 8 TB7 384 Logic Status LO 56 Programmable 1> Logic Status HI < Comm 3 Run From VP Enable Light 55 (Bit 9) Local Output Status N.C. 4 **FAULT** Comm 5 6 N.O. LOGIC STATUS Logic Status Lo 56 N.C. 7 Comm 8 **ALARM** N.O. 9 10 Not Used 11 TE ΤE 12 SP Analog In Select (Par 364) HIM SP Analog In (Par 365) 2 Scale 3 365 Vel Ref #1 Hi 366 101 4 5 SP Analog In Select 2 (Par 367) SP Analog In 2 (Par 368) 2 Scale 3 369 368 4 5 1 SP Analog Out (Par 379) 2 < Filtered 3 379 269 Vel Fdbk

Figure 4.7. Standard Adapter Links

Analog I/O Parameter Configuration:

When you have accomplished the hard wiring of the Analog I/O to the Standard Adapter Board terminals as was detailed in Chapter 2, it is still necessary to set up the parameters in the Drive to allow for data flow between the Adapter Board and the Drive. Each Input/Output has parameters associated with it as shown in Figure 4.7. Set-Up parameters are used to program the Standard Adapter Board functions, such as Scale and Offset. Configuration parameters allow the Standard Adapter Board to communicate with the Drive, and must be linked to analog inputs and outputs.

Each analog input and output is associated with a scaling and offset set-up parameter. These parameters must be adjusted for each analog device.

The Drive works with internal drive units. Each parameter is a 16 bit word, which allows a range of \pm 32767 internal units. The Drive is scaled so that 4096 is equal to one unit of the quantity being regulated. A \pm 10V DC signal applied to an analog input is converted to a digital value of \pm 2048, providing a total range of 4096. When calibrating analog inputs, a scale factor is applied to this value, to provide an effective range of \pm 32767 \pm 16 \pm 2048. The offset parameter determines the offset in volts, applied to the raw analog value before the scale factor is applied. This allows you to shift the range of the analog input by \pm 4096 drive units (\pm 20 volts).

Figure 4.7. Analog I/O Links

A 10V Input and a Pot Input will be used in detailing the scaling and offset parameters. At Pot Input, between TB5 terminals 7 and 8, a potentiometer with a range of ± 10 V DC has been connected. Parameter 358 has been linked to Parameter 104 (Velocity Reference 2 HI) in the Drive, which gives the potentiometer control of the external velocity reference. To calibrate the pot to control 100% base speed in both directions, the scaling parameter must be adjusted. The default value of the scale parameters allows a total range of 4096, -2048 to +2048. This allows only 50% base speed in each direction. By setting a scale factor of 2 in Parameter 360 (An In 1 Scale) the digital input is multiplied by 2, providing a range of -4096 to +4096, or 100% base speed in both directions. If the user wanted a range of ± 2 times base speed, the scale factor would have to be 4 (Base Speed = 4096, 2 times Base Speed = 8192, 2048 times 4 = 8192). Parameter 359 (Offset) will remain at the default value of zero, allowing the input range to be -10V to +10V. The range of the offset parameter is ± 20 V DC as shown in Figure 4.8.

Figure 4.8.

Potentiometer with a +10V Range to Control 0 to +100% Base Speed

For 10V Input, a 0 to 10 volt potentiometer will be used to adjust the Torque Reference from -100% to +100%. To accomplish this, both the scale and offset parameters will need to be adjusted. By linking Parameter 355 to Parameter 162, Torque Reference, the potentiometer connected to Analog Input becomes the Torque Reference Signal. This signal must be scaled and offset in order to get the entire \pm 100% in the 0-10 volt range. A digital range of 8192 (\pm 4096) must now be scaled for an analog range of 10 volts, and must be offset so 5 volts on the potentiometer will indicate 0% Torque.

As shown in Figure 4.9, the offset voltage adds the corresponding digital value to the range. In this case, an offset of –5 volts adds a digital value of –1024 to the range. This causes 0 volts on the potentiometer to register as –1024 digital internal to the drive and 10 volts on the potentiometer will be +1024 to the drive. This can then be scaled by a factor of 4 (8192 drive units) so that 0 volts sends a digital value of –4096 for –100% torque, and 10 volts sends a digital value of +4096 for +100% torque.

Figure 4.9.

Potentiometer 0–10V Range to Control +/– 100% Torque Reference

Analog outputs are set up similar to analog inputs. Each output has a scale and offset parameter, along with a specific variable parameter used for linking. Differences occur because of the direction of information flow. The drive sends a digital value in drive units, which must be matched to the voltage of the monitoring device. Similar to analog inputs, the analog output converts a ± 2048 to ± 10 VDC. Thus, when the drive sends $\pm 100\%$ Base Speed (equal to ± 4096) it must be scaled by 0.5 to be in the proper range ($\pm 4096 \times 0.5 = \pm 2048$). Offset can be ± 20 VDC, even though the physical limit is ± 10 VDC. This allows you to offset the signal anywhere within the entire range.

In Figure 4.10 Analog Output 1 is used as an example to detail the scaling and offset parameters. At Analog Output 1 a meter with a range of 0-10 V DC has been connected. Parameter 370 has been linked to Parameter 146 (Velocity Feedback). In order for the meter to indicate speed in both directions, the scale and offset parameters must be adjusted as shown in Figure 4.10. Working in the opposite direction as the analog inputs, apply the scale factor first. The drive sends a ± 4096 digital value to indicate $\pm 100\%$ velocity feedback for a total digital range of 8192. The meter, having an analog range of 0-10V DC, requires a digital range of 2048. This is accomplished by applying a scale factor of 0.25 (8192 × 0.25 = 2048). In order to have the 0-10V DC meter indicate $\pm 100\%$ feedback, an offset must be applied. Offset parameters for analog outputs will again add the corresponding digital value to the range. In this case, an offset of 5 volts adds a digital value of 1024 to the range. This will allow full range deflection on the 0 to 10 volt meter, with 5 volts indicating zero speed.

Figure 4.10.

Analog Output 1 +/- 100% Speed Indication

SCANport Analog I/O Parameter Configuration:

SCANport analog I/O is what is received from and sent to the SCANport devices.

Figure 4.11. SCANport I/O Parameter Configuration

To receive analog input from a device, the SCANport Analog Input Select parameter 364 must be set to the SCANport device port number and the SCANport Analog Input parameter 365 must be linked to a sink. Set the scale as needed. For example; if the HIM is plugged into Port 1 and it is to control external velocity, you would then enter 1 for SCANport Analog Input Select (364) and link External Velocity (101) to SCANport Analog Input (365). You may scale the velocity through External Velocity Scale (102) or through SP Analog Scale (366).

The Drive sends SCANport Analog Output parameter 379 to all devices connected to SCANport. To send data out to the SCANport devices, you must link SCANport Analog Output (379) to a source. For example; If the HIM is to receive Velocity Feedback, you would link SCANport Analog Output (379) to Velocity Feedback (269).

Output Relay Configuration:

The outputs consist of three (3) permanently configured and one (1) programmable output.

The three permanently configured relays are Run, Warning, and Fault. Run is a normally open contact that closes when current is applied to the motor. It follows the enable LED on the Motor Control Board. Warning has a normally open and close contact that energizes when there is no warnings and de–energizes when there is a warning. Fault has a normally open and close contact that energizes when there are no faults and de–energizes when there is a fault.

The programmable relay is a normally open contact and is configured through the Output Select parameter 384. It allows the relay to follow a single bit within the Logic Status parameters 56 and 57. The relay can be configured to follow the bit function or the not of the bit function. For Example; When the motor is at set speed and you wish the contact to close, you must enter AT SET SPEED (8). When the motor is at set speed and you wish to have the contact open, you must enter NOT AT SET SPEED (40) into Output Select (384).

Pulse Input Configuration:

The pulse input allows an external source to provide the drive with a digital reference or trim signal (Fig. 4.12). It is a differential input with a maximum frequency of 100khz. The pulse input parameters consist of PPR (395). Scale (397), Edges (396), and Offset (398). The PPR is the number of pulses per one revolution. The scale determines the RPM at 1 per unit (4096). The edges are either one edge – rising edge of the pulse, or two edges – the rising and falling edge of the pulse. Two edges provide better resolution. The offset sets the minimum speed. For example: You have a lead drive with a 1024 PPR encoder with a base speed of 1750. The follower uses the lead drive's encoder but runs at half the speed. The follower's ppr should be 1024, scale should be set to 3500, offset should be 0, and a link should be made from external reference (101) to Pulse Value (399).

Figure 4.12.
Pulse Input Configuration

MOP Configuration:

The MOP function is controlled by the L Option I/O, modes 5, 9 and 15. The MOP up and MOP down, increment and decrement the MOP value parameter 394 based on the MOP increment parameter 393 which is in RPM per second.

SCANport Image Configuration:

The SCANport image is a mechanism for transferring data to and from SCANport devices. It operates the same way as a PLC image with its 1/4, 1/2, 3/4, and full racks. The SCANport image is setup by a SCANport device such as a GD1 module or a RIO to SCANport gateway.

SCANport Control Configuration:

The SCANport controls are the functions that control the motor, like start, stop, jog etc. The control can come from up to 6 SCANport devices and L Option Inputs at the same time. The control is based on a ownership mechanism which allows certain functions to have only one owner and other functions to have multiple owners. Speed reference, direction and local functions are the only one owner functions. The other functions like start, stop, jog etc. are considered multiple owner functions. Ownership is when a SCANport device or L option Input commands a function. As long as that function is commanded, that device will be the owner of that function. For Example: Device 1 is commanding a forward direction, this is a one owner function. No other device can change the direction until Device 1 stops commanding the forward direction. If Device 1 is commanding a start which is a multiple owner function, other devices can also command a start. If device 1 stops commanding a start, the drive will continue to run if another device is still commanding a start.

NOTE: A rising edge is required for start and jog functions. If jog is commanded and the drive has been stopped, Start and Jog functions will not operate from any device until the Jog command is stopped. The same holds true if a Start is commanded while the drive is stopped.

The parameters in the range from 340 to 350 indicate the owner of each function. The owner is identified by the bit in the parameter as follows:

Bit 0 – L Option Inputs

Bit 1 – SCANport device 1

SCANport device number is Bit 2 – SCANport device 2 determined by the SCANport

Bit 3 – SCANport device 3

connection. Bit 4 – SCANport device 4

Bit 5 – SCANport device 5

Bit 6 – Internal Gateway

Bit 7 - Not Used

This is very useful for determining who may own a function.

Masking of the control functions allows control functions to be enabled or disabled for all or some of the devices. The parameter bit configuration is the same as the example detailed above with 0 indicating disable and 1 indicating enable. The masking control starts with the port enable mask which enables or disables all of the devices control functions, then the local control mask which allows a device to take full control of the drive, to the individual masks like start, jog, direction, speed reference, clear faults and reset.

Control Interface Option

The Control Interface Option Modes configure the Control Interface Option. The different modes are explained in Chapter 2. The modes allow the user to setup the inputs to meet the requirements of their application. The Input Mode parameter 385 sets the mode and takes effect on a power cycle or reset. The Input Status parameter 386 indicates the status of the input except for the enable input which can be seen in parameter 54 bit 1. The Stop Select parameters 387 & 388 select the way the stop input will function on the L

option only, based on the stop type in modes 3, 13 and 16. Stop from SCANport devices follow parameter 59 bits 4 & 5. The Accel Rates (389 & 390) and Decel Rates (391 & 392) are selected by modes 4, 11 and 14.

NOTE: Mode 2, 3, 4, 5 and 6 take permanent ownership of the direction function.

NOTE: If the Control Interface Option is other than 1, the Control Interface Option speed reference will take ownership of the speed reference. To allow other devices to control speed reference, disable the Control Interface Option speed reference with the speed reference mask (334).

Using the SCANport Image:

You can view the values in the SCANport image table by using parameters 310 through 317 for input and 320 through 327 for output.

SCANport gateways or adapters to RIO, DF1/DH485, DeviceNet, SLC, and Flex I/O are some of the devices that can transfer data between the SCANport I/O image and another device.

Refer to the appropriate manual for your specific adapter.

Within the 1336 FORCE drive, the I/O image table resembles the following:

^① These functions require an edge in order to take effect.

The following examples are provided to show how the 1336 FORCE drive interfaces with some of the available adapters. These are only examples. You should also refer to the appropriate manual for your gateway for additional information.

SLC to SCANport Module:

The following figure shows how the I/O image table for the SLC programmable controller relates to the 1336 FORCE drive. In this example, the drive is connected to channel 1 of the SLC module in enhanced mode. If this were an example of basic mode, only the O:1.2, O:1.3, I:1.2, and I:1.3 entries would be used.

^① Available only in enhanced mode.

² Optionally enabled via G file in SLC processor.

Serial Communications Module:

The following figure shows how the I/O image table for the programmable controller relates to the 1336 FORCE drive when a Serial Communications Module is used.

^① Optionally enabled using DIP switches on the adapter.

Remote I/O Communications Module:

The following figure shows how the I/O image table for the programmable controller relates to the 1336 FORCE drive when a Remote I/O Communications Module is used.

^① Optionally enabled using DIP switches on the module.

Flex I/O Module:

The following figure shows how the I/O image table for the programmable controller relates to the 1336 FORCE drive when a Flex I/O Module is used.

This Page Intentionally Blank

Programming Parameters

Introduction

This chapter contains the information required to assist you in programming the 1336 FORCE AC Drive for a specific application after initial start—up. Drives are shipped programmed with default values and are preconfigured for the options installed.

Parameters 0 thru 288 are the parameters for the 1336 FORCE Motor Control Board. Parameters 300 and above cover the Adapter Board of the 1336 FORCE DRIVE. The 1336 FORCE parameter table has been broken down into three different table types as follows:

Table 5.A lists parameters in numeric order with page references. Table 5.B lists parameters alphabetically with page references Figures 5.2 & 5.3 list Standard Adapter and PLC Comm Adapter parameters by file and group.

Parameters are divided into 4 Files to help ease programming and operator access as follows:

- 1. Startup File
- 2. Communications I/O File
- 3. Velocity Torque File
- 4. Diagnostics File

These four Files are then divided into Groups with each parameter making up an Element in a specific group. Parameters may be used as Elements in more than one group. Refer to Table 5A for a numerical breakdown of the File/Group/Element designations.

NOTE: Parameters that appear in more than one group in Table 5A are listed after the initial entry in italics.

The definition of terms related to the parameter table include:

Configuration – The process of linking Sink to Source parameters.

Configuration Parameters – Parameters used to transfer data between the drive control and external devices. The Configuration Parameters are categorized into two types:

- 1. Source Parameters Parameter used as a source of data.
- 2. Sink Parameters Parameter used to receive data input.

All parameters in the 1336 FORCE AC Drive can be used for evaluation (sink or source) and some can be modified dynamically (sink only) to meet application requirements.

Drive Units – The actual value of the parameter as it is stored within the Drive parameter table. The drive units may be converted to engineering units or to hexidecimal for display using the Programming Terminal, or may be displayed directly in drive units. All internal values in the drive are in terms of Per Unit numbering.

Terminology

Chapter 5Programming Parameters

Engineering Units – A label given to parameter data which specifies what units are to be used to display the parameter value on the Programming Terminal. Examples of engineering units include: RPM, % etc.

Non–Volatile Memory – Data memory in the drive which retains the values of all data even when power is disconnected from the drive control. BRAM (Battery Backed Random Access Memory) chips are used for the non–volatile memory to store some of the drive parameters.

Parameter Table – Table of parameter entries for all configuration and setup parameters used in the drive.

Parameter Entry – Information stored in the drive which contains the parameter number, parameter data and all other information related to the specific parameter.

Parameter – Memory location used to store drive data. Each parameter is given a number called the parameter number. The parameter value may be specified in decimal, or in hexadecimal. When specified in hexadecimal, the word "Hex" will appear after the parameter value.

Per Unit Numbering – Per Unit numbering is a numbering system which defines a specific numeric value as representing 100% of a particular quantity being measured. The number 4096 is used in many places in the drive to represent 1 Per Unit (100%) [pu].

All data used to perform the Drive functions is stored in the Parameter Table. Each parameter entry in the parameter table contains the following information:

No. – The parameter number in decimal.

Name – Parameter text as it appears on the Programming Terminal.

Display Units – Specifies what engineering units will be used to display the parameter value on the Programming Terminal (RPM, % etc.). This is specified first in the Units column of the Parameter Table.

Drive Units – Specifies the Conversion Units as seen in the Drive.

Figure 5.1. Drive Units Example

Factory Default – Parameter value as it will appear after the Drive Initialize (Init) command has been sent from the Programming Terminal. The Init values are the same as the default values listed in the Parameter Descriptions section of this chapter.

 \mathbf{Min} — Minimum allowable value for the parameter. If no min value is given, the parameter has not been assigned a minimum limit.

Max – Maximum allowable value for the parameter. If no max value is given, the parameter has not been assigned a maximum limit.

Enum – Allows numbers or bits to be represented by text.

Parameter Table Structure

Parameter Table (Standard Adapter Equipped Drives)

Note: For PLC Comm equipped drives refer to your PLC Comm User Manual for parameter descriptions. For ControlNet Adapter equipped drives, refer to your ControlNet Adapter Manual for parameter descriptions.

Table 5.A – 1336 FORCE Numerical Parameter Table

Param No.	Parameter Name (Element)	Group	File (File No.)	Param Descrpt.
01	Drive Software Version	Info	Diagnostics (4)	See Page 5–31
05	Drive Power Structure Type	Info	Diagnostics (4)	See Page 5–31
08	Motor Control Counter	Monitor	Startup (1)	See Page 5–31
09	Drive Comm Task Interval	Drive to Drive	Communications I/O (2)	See Page 5–31
10	Drive Comm Baud Rate	Drive to Drive	Communications I/O (2)	See Page 5–31
11	Drive Comm Transmit Addr	Drive to Drive	Communications I/O (2)	See Page 5–31
12	Drive Comm Receive 1 Address	Drive to Drive	Communications I/O (2)	See Page 5–31
13	Drive Comm Receive 2 Address	Drive to Drive	Communications I/O (2)	See Page 5–32
14	Drive Comm Transmit Indirect 1	Drive to Drive	Communications I/O (2)	See Page 5–32
15	Drive Comm Transmit Indirect 2	Drive to Drive	Communications I/O (2)	See Page 5–32
16	Drive Comm Receive 1, Indirect 1	Drive to Drive	Communications I/O (2)	See Page 5–32
17	Drive Comm Receive 1, Indirect 2	Drive to Drive	Communications I/O (2)	See Page 5–32
18	Drive Comm Receive 2, Indirect 1	Drive to Drive	Communications I/O (2)	See Page 5–32
19	Drive Comm Receive 2, Indirect 2	Drive to Drive	Communications I/O (2)	See Page 5–32
20	Drive Comm Transmit Data 1	Drive to Drive	Communications I/O (2)	See Page 5–33
21	Drive Comm Transmit Data 2	Drive to Drive	Communications I/O (2)	See Page 5–33
22	Drive Comm Receive 1, Data 1	Drive to Drive	Communications I/O (2)	See Page 5–33
23	Drive Comm Receive 1, Data 2	Drive to Drive	Communications I/O (2)	See Page 5–33
24	Drive Comm Receive 2, Data 1	Drive to Drive	Communications I/O (2)	See Page 5–33
25	Drive Comm Receive 2, Data 2	Drive to Drive	Communications I/O (2)	See Page 5–33
26	Process Trim Output	Process Trim	Velocity Torque (3)	See Page 5–33
27	Process Trim Reference	Process Trim	Velocity Torque (3)	See Page 5–34
28	Process Trim Feedback	Process Trim	Velocity Torque (3)	See Page 5–34
29	Process Trim Select	Process Trim	Velocity Torque (3)	See Page 5–34
30	Process Trim Filter Bandwidth	Process Trim	Velocity Torque (3)	See Page 5–34
31	Process Trim Data	Process Trim	Velocity Torque (3)	See Page 5–34
32	Process Trim KI Gain	Process Trim	Velocity Torque (3)	See Page 5–34
33	Process Trim KP Gain	Process Trim	Velocity Torque (3)	See Page 5–35
34	Process Trim Low Limit	Process Trim	Velocity Torque (3)	See Page 5–35
35	Process Trim High Limit	Process Trim	Velocity Torque (3)	See Page 5–35
36	Process Trim Output Gain	Process Trim	Velocity Torque (3)	See Page 5–35
37	Process Trim Testpoint	Process Trim	Velocity Torque (3)	See Page 5–35
38	Process Trim Setpoint Select	Process Trim	Velocity Torque (3)	See Page 5–35
40	Auto Tune Torque Limit	Velocity Autotune	Velocity Torque (3)	See Page 5–35
		Torque Autotune	Velocity Torque (3)	See Page 5–35
41	Auto Tune Speed	Velocity Autotune	Velocity Torque (3)	See Page 5–36
		Torque Autotune	Velocity Torque (3)	See Page 5–36
		Drive Tune	Startup (1)	See Page 5–36
43	VP Desired Bandwidth	Velocity Autotune	Velocity Torque (3)	See Page 5–36
	A	Drive Tune	Startup (1)	See Page 5–36
44	Autotune Status	Velocity Autotune	Velocity Torque (3)	See Page 5–36
	100 D	Drive Tune	Startup (1)	See Page 5–36
45	VP Damping Factor	Velocity Autotune	Velocity Torque (3)	See Page 5–36
	m . l r	Drive Tune	Startup (1) Velocity Torque (3)	See Page 5–36 See Page 5–36
46	Total Inertia	Velocity Autotune Drive Tune		See Page 5–36
45	A . T. T	Velocity Autotune	Startup (1) Velocity Torque (3)	See Page 5–36
47	Auto Tune Testpoint Data	Testpoints		See Page 5–36
40	Auto Tuno Tostnoint C-1t	Velocity Autotune	Diagnostics (4) Velocity Torque (3)	See Page 5–36 See Page 5–37
48	Auto Tune Testpoint Select	Testpoints	Diagnostics (4)	See Page 5–37 See Page 5–37
50	Logia Command Word	Logic	Velocity Torque (3)	See Page 5–37 See Page 5–37
52	Logic Command Word	Logic Logic	Communications I/O (2)	See Page 5–37 See Page 5–37
I		Logic	Communications 1/O (2)	See 1 age 3-37

Table 5.A – 1336T Numerical Parameter Table (Cont.)

54 Local Input Status Drive Data Star Logic Velo	city Torque (3) See Page 5–37 tup File (1) See Page 5–37
54 Local Input Status Drive Data Star Logic Velo	
	iup Tite (1) See Tage 3-37
	city Torque (3) See Page 5–38
Logic Con	munications I/O (2) See Page 5–38
55 Local Output Status Logic Velo	city Torque (3) See Page 5–38
Logic Con	munications I/O (2) See Page 5–38
56 Logic Status LOW Logic Velo	city Torque (3) See Page 5–38
	munications I/O (2) See Page 5–38
	city Torque (3) See Page 5–38
	munications I/O (2) See Page 5–38
	nmunications I/O (2) See Page 5–39
	city Torque (3) See Page 5–39
	city Torque (3) See Page 5–39
	munications I/O (2) See Page 5–39
	gnostics (4) See Page 5–39
	tup (1) See Page 5–39
	city Torque (3) See Page 5–39
	munications I/O (2) See Page 5–39
1 ^ 1	city Torque (3) See Page 5–39
	munications I/O (2) See Page 5–39 scity Torque (3) See Page 5–39
	city Torque (3) See Page 5–39 munications I/O (2) See Page 5–39
	city Torque (3) See Page 5–39 See Page 5–39
	imunications I/O (2) See Page 5–39
	city Torque (3) See Page 5–40
1 .	munications I/O (2) See Page 5–40
	city Torque (3) See Page 5–40
1 2	munications I/O (2) See Page 5–40
	city Torque (3) See Page 5–40
	munications I/O (2) See Page 5–40
	city Torque (3) See Page 5–40
	munications I/O (2) See Page 5–40
68 Current Setpoint Tolerance Logic Velo	city Torque (3) See Page 5–40
	munications I/O (2) See Page 5–40
69 Zero Speed Tolerance Logic Velo	city Torque (3) See Page 5–40
	m I/O (2) See Page 5–40
	city Torque (3) See Page 5–40
	munications I/O (2) See Page 5–40
	gnostics (4) See Page 5–40
	city Torque (3) See Page 5–41
	munications I/O (2) See Page 5–41
	gnostics (4) See Page 5–41 See Page 5–41
	imunications I/O (2) See Page 5–41
	gnostics (4) See Page 5–41
	gnostics (4) See Page 5–41
	gnostics (4) See Page 5–41
	nmunications I/O (2) See Page 5–42
	gnostics (4) See Page 5–42
	nmunications I/O (2) See Page 5–42
	gnostics (4) See Page 5–42
	nmunications I/O (2) See Page 5–42
	gnostics (4) See Page 5–42
	nmunications I/O (2) See Page 5–42
	gnostics (4) See Page 5–42
Fault Select/Status Diag	
84 CP Configurable Warning Status Fault Select/Status Con	imunications I/O (2) See Page 5–43 See Page 5–43 See Page 5–43

Table 5.A – 1336T Numerical Parameter Table (Cont.)

Param No.	Parameter Name (Element)	Group	File (File No.)	Param Descrpt.
85	VP Configurable Warning Status	Fault Select/Status	Communications I/O (2)	See Page 5–43
		Fault Select/Status	Diagnostics (4)	See Page 5–43
86	CP Fault Configuration	Fault Select/Status	Communications I/O (2)	See Page 5–43
		Fault Setup	Startup (1)	See Page 5–43
		Fault Select/Status	Diagnostics (4)	See Page 5–43
87	CP Warning Configuration Select	Fault Select/Status	Communications I/O (2)	See Page 5–44
		Fault Setup	Startup (1)	See Page 5–44
		Fault Select/Status	Diagnostics (4)	See Page 5–44
88	VP Fault Configuration Select	Fault Select/Status	Communications I/O (2)	See Page 5–44
		Fault Setup	Startup (1)	See Page 5–44
		Fault Select/Status	Diagnostics (4)	See Page 5–44
89	VP Warning Configuration Select	Fault Select/Status	Communications I/O (2)	See Page 5–44
		Fault Setup	Startup (1)	See Page 5–44
		Fault Select/Status	Diagnostics (4)	See Page 5–44
90	Absolute Overspeed Threshold	Fault Setup	Startup (1)	See Page 5–45
91	Stall Delay	Fault Setup	Startup (1)	See Page 5–45
92	Motor Overload Limit	Fault Setup	Startup (1)	See Page 5–45
		Motor Overload	Diagnostics (4)	See Page 5–45
94	Service Factor	Motor Overload	Diagnostics (4)	See Page 5–45
		Limits	Startup (1)	See Page 5–45
95	Motor Overload Speed 1	Fault Setup	Startup (1)	See Page 5–45
		Motor Overload	Diagnostics (4)	See Page 5–45
96	Motor Overload Speed 2	Fault Setup	Startup (1)	See Page 5–45
	motor o remoda speca 2	Motor Overload	Diagnostics (4)	
97	Minimum Overload Limit	Fault Setup	Startup (1)	See Page 5–45
William Ove	William Croffoud Emile	Motor Overload		See Page 5–45
98	Fault Testpoint Data	Testpoints	Diagnostics (4) Diagnostics (4)	See Page 5–45
99	Fault Testpoint Select			See Page 5–46
100	Velocity Reference 1 LOW (FRACTION)	Testpoints	Diagnostics (4)	See Page 5–46
101	Velocity Reference 1 HI (WHOLE, 32 bit)	Velocity Ref	Velocity Torque (3)	See Page 5–46
102	Velocity Scale Factor 1	Velocity Ref	Velocity Torque (3)	See Page 5–46
102	Velocity Reference 2 LOW (FRACTION)	Velocity Ref	Velocity Torque (3)	See Page 5–46
103	Velocity Reference 2 HI (WHOLE, 32 bit)	Velocity Ref	Velocity Torque (3)	See Page 5–47
104	Velocity Scale Factor 2	Velocity Ref	Velocity Torque (3)	See Page 5–47
105	Velocity Trim LOW	Velocity Ref	Velocity Torque (3)	See Page 5–47
100	Velocity Trim HI (32 bit)	Velocity Ref	Velocity Torque (3)	See Page 5–47
107	Velocity Reference Testpoint Data LOW	Velocity Ref	Velocity Torque (3)	See Page 5–47
108	velocity Reference Testpoint Data LOW	Velocity Ref	Velocity Torque (3)	See Page 5–47
100	VI ', D.C. T., ', D., III	Testpoints	Diagnostics (4)	See Page 5–47
109	Velocity Reference Testpoint Data HI	Velocity Ref	Velocity Torque (3)	See Page 5–47
110	William C. T. C. C. C.	Testpoints	Diagnostics (4)	See Page 5–47
110	Velocity Reference Testpoint Select	Velocity Ref	Velocity Torque (3)	See Page 5–48
117		Testpoints	Diagnostics (4)	See Page 5–48
117	Jog Speed 1	Velocity Ref	Velocity Torque (3)	See Page 5–48
118	Jog Speed 2	Velocity Ref	Velocity Torque (3)	See Page 5–48
119	Preset Speed 1	Velocity Ref	Velocity Torque (3)	See Page 5–48
120	Preset Speed 2	Velocity Ref	Velocity Torque (3)	See Page 5–48
121	Preset Speed 3	Velocity Ref	Velocity Torque (3)	See Page 5–48
122	Preset Speed 4	Velocity Ref	Velocity Torque (3)	See Page 5–49
123	Preset Speed 5	Velocity Ref	Velocity Torque (3)	See Page 5–49
125	Accel Time	*	*	See Page 5–49
126	Decel Time	*	*	See Page 5–49
127	Reverse Motor Speed Limit	Velocity Ref	Velocity Torque (3)	See Page 5–49
		Limits	Startup (1)	See Page 5–49
128	Forward Motor Speed Limit	Velocity Ref	Velocity Torque (3)	See Page 5–49
129	Maximum Reverse Speed Trim		· 1 \ /	

^{*} Can be viewed only with PLC Comm Board installed

Table 5.A – 1336T Numerical Parameter Table (Cont.)

Param No.	Parameter Name (Element)	Group	File (File No.)	Param Descrpt.
130	Maximum Forward Speed Trim	Velocity Ref	Velocity Torque (3)	See Page 5–50
131	Droop Percent	Velocity Ref	Velocity Torque (3)	See Page 5–50
132	Velocity Reference Output LOW	Velocity Ref	Velocity Torque (3)	See Page 5–50
133	Velocity Reference Output HI (32 bit)	Velocity Ref	Velocity Torque (3)	See Page 5–50
134	Velocity Regulator Output	Velocity Reg	Velocity Torque (3)	See Page 5–50
135	Velocity Regulator Testpoint Data LOW	Velocity Reg	Velocity Torque (3)	See Page 5–50
	, , ,	Testpoints	Diagnostics (4)	See Page 5–50
136	Velocity Regulator Testpoint Data HI	Velocity Reg	Velocity Torque (3)	See Page 5–50
		Testpoints	Diagnostics (4)	See Page 5–50
137	Velocity Regulator Testpoint Select	Velocity Reg.	Velocity Torque (3)	See Page 5–51
		Testpoints	Diagnostics (4)	See Page 5–51
138	Velocity Error	Velocity Reg.	Velocity Torque (3)	See Page 5–51
139	KI – Velocity Loop	Velocity Reg	Velocity Torque (3)	See Page 5–51
	, ,	Drive Tune	Startup (1)	See Page 5–51
		Velocity Autotune	Velocity Torque (3)	See Page 5–51
140	KP – Velocity Loop	Velocity Reg	Velocity Torque (3)	See Page 5–51
		Drive Tune	Startup (1)	See Page 5–51
		Velocity Autotune	Velocity Torque (3)	See Page 5–51
141	KF – Velocity Loop	Velocity Reg	Velocity Torque (3)	See Page 5–51
		Drive Tune	Startup (1)	See Page 5–51
		Velocity Autotune	Velocity Torque (3)	See Page 5–51
142	KF Error Filter Bandwidth	Velocity Fdbk	Velocity Torque (3)	See Page 5–51
143	Velocity Feedback Testpoint Data LOW	Velocity Fdbk	Velocity Torque (3)	See Page 5–46
		Testpoints	Diagnostics (4)	See Page 5–46
144	Velocity Feedback Testpoint Data HI	Velocity Fdbk	Velocity Torque (3)	See Page 5–46
		Testpoints	Diagnostics (4)	See Page 5–46
145	Velocity Feedback Testpoint Select	Velocity Fdbk	Velocity Torque (3)	See Page 5–46
	-	Testpoints	Diagnostics (4)	See Page 5–46
146	Velocity Feedback	Velocity Fdbk	Velocity Torque (3)	See Page 5–46
		Drive Tune	Startup (1)	See Page 5–46
147	Scaled Velocity Feedback	Velocity Fdbk	Velocity Torque (3)	See Page 5–46
		Monitor	Diagnostics (4)	See Page 5–46
148	Encoder Position Feedback LOW	Velocity Fdbk	Velocity Torque (3)	See Page 5–53
		Monitor	Startup (1)	See Page 5–53
		Monitor	Diagnostics (4)	See Page 5–53
149	Encoder Position Feedback HI	Velocity Fdbk	Velocity Torque	See Page 5–53
		Monitor	Startup (1)	See Page 5–53
		Monitor	Diagnostics (4)	See Page 5–53
150	Fdbk Device Type	Velocity Fdbk	Velocity Torque (3)	See Page 5–53
151	Fdbk Tracker Gain	Velocity Fdbk	Velocity Torque (3)	See Page 5–53
152	Fdbk Filter Select	Velocity Fdbk	Velocity Torque (3)	See Page 5–53
153	Kn–Fdbk Filter Gain	Velocity Fdbk	Velocity Torque (3)	See Page 5–53
154	Wn–Fdbk Filter BW	Velocity Fdbk	Velocity Torque (3)	See Page 5–53
155	Tach Velocity	Velocity Fdbk	Velocity Torque (3)	See Page 5–54
156	Notch Filter Freq	Torque Ref	Velocity Torque (3)	See Page 5–54
157	Notch Filter Q	Torque Ref	Velocity Torque (3)	See Page 5–54
161	External Iq Reference	Torque Ref	Velocity Torque (3)	See Page 5–54
162	External Torque Reference 1	Torque Ref	Velocity Torque (3)	See Page 5–54
163	Slave Torque Percent 1	Torque Ref	Velocity Torque (3)	See Page 5–54
164	External Torque Reference 2	Torque Ref	Velocity Torque (3)	See Page 5–54
165	Slave Torque Percent 2	Torque Ref	Velocity Torque (3)	See Page 5–54
166	External Torque Step	Torque Ref	Velocity Torque (3)	See Page 5–55
167	Internal Torque Reference	Torque Ref	Velocity Torque (3)	See Page 5–55
		Monitor	Diagnostics (4)	See Page 5–55
168	Internal Iq Reference	Torque Ref	Velocity Torque (3)	See Page 5–55
		Monitor	Diagnostics (4)	See Page 5–55

Table 5.A – 1336T Numerical Parameter Table (Cont.)

Param No.	Parameter Name (Element)	Group	File (File No.)	Param Descrpt.
	· ,	-	,	
172	Torque Reference Testpoint Data	Torque Ref	Velocity Torque (3)	See Page 5–55
172		Testpoints	Diagnostics (4)	See Page 5–55
173	Torque Reference Testpoint Select	Torque Ref	Velocity Torque (3)	See Page 5–55
174	M El I I	Testpoints	Diagnostics (4)	See Page 5–55
174	Minimum Flux Level	Torque Ref	Velocity Torque (3)	See Page 5–56
105		Limit	Startup (1)	See Page 5–56
175	Pos Torque Reference Limit	Torque Ref	Velocity Torque (3)	See Page 5–56
176	Neg Torque Reference Limit	Limits Taggie Def	Startup (1)	See Page 5–56
176	reg rorque Reference Emin	Torque Ref Limits	Velocity Torque (3)	See Page 5–56
177	Motoring Power Limit	Torque Ref	Startup (1)	See Page 5–56
1//	motoring 1 o wer zame	Limits	Velocity Torque (3)	See Page 5–56
178	Regen. Power Limit	Torque Ref	Startup (1)	See Page 5–56
176		Limits	Velocity Torque (3)	See Page 5–56
179	Positive Motor Current Reference Limit	Torque Ref	Startup (1)	See Page 5–56
177		Limits	Velocity Torque (3)	See Page 5–56
180	Negative Motor Current Reference Limit	Torque Ref	Startup (1)	See Page 5–56
100		Limits	Velocity Torque (3)	See Page 5–56
181	DI/DT Limit	Torque Ref	Startup (1) Velocity Torque (3)	See Page 5–56
101		Limits	Startup (1)	See Page 5–57 See Page 5–57
182	Computed Power	Torque Ref	Velocity Torque (3)	See Page 5–57
		Monitor	Startup (1)	See Page 5–57
		Monitor	Diagnostics (4)	See Page 5–57
183	Torque Limit Status	Torque Ref	Velocity Torque (3)	See Page 5–57 See Page 5–57
184	Torque Mode Status	Torque Ref	Velocity Torque (3)	See Page 5–57
185	Perunit Motor Current	Monitor	Startup (1)	See Page 5–57
		Monitor	Diagnostics (4)	See Page 5–57
186	Perunit Motor Voltage	Monitor	Startup (1)	See Page 5–58
		Monitor	Diagnostics	See Page 5–58
220	Rated Inverter Output Amps	Info	Diagnostics (4)	See Page 5–58
221	Rated Inverter Input Voltage	Info	Diagnostics (4)	See Page 5–58
222	Inverter Carrier Frequency	Torque Block	Velocity Torque (3)	See Page 5–58
223	Precharge/Ridethru Selection	Torque Block	Velocity Torque (3)	See Page 5–59
224	Undervoltage Setpoint	Torque Block	Velocity Torque (3)	See Page 5–59
225	Bus Precharge Timeout	Torque Block	Velocity Torque (3)	See Page 5–59
226	Bus Ridethru Timeout	Torque Block	Velocity Torque (3)	See Page 5–59
227	CP Operating Options	Torque Block	Velocity Torque (3)	See Page 5–60
228	Base Motor Horsepower	Drive Data	Startup (1)	See Page 5–60
229	Base Motor Speed	Drive Data	Startup (1)	See Page 5-60
230	Base Motor Current	Drive Data	Startup (1)	See Page 5-60
231	Base Motor Volts	Drive Data	Startup (1)	See Page 5–60
232	Base Motor Frequency Motor Poles	Drive Data	Startup (1)	See Page 5–60
233	Motor Inertia	Drive Data	Startup (1)	See Page 5–60
234	Wotor mertia	Drive Tune	Startup (1)	See Page 5–60
225	Encoder PPR	Velocity Autotune	Velocity Torque (3)	See Page 5–61
235	Rs Tune (Stator Resistance)	Drive Data	Startup (1)	See Page 5–61
236	Leakage Inductance	Torque Autotune	Velocity Torque (3)	See Page 5–61
237	Id Tune (Base Flux Current)	Torque Autotune	Velocity Torque (3)	See Page 5–61
238 240	Iq Tune (Base Torque Current)	Torque Autotune	Velocity Torque (3)	See Page 5–61
240	Vde Tune (Base Torque Voltage)	Torque Autotune Torque Autotune	Velocity Torque (3)	See Page 5–61
241	Vqe Tune (Base Flux Voltage)		Velocity Torque (3)	See Page 5–61
242	Vde Maximum (Peak HP)	Torque Autotune	Velocity Torque (3)	See Page 5–61
243	Vqe Maximum (Constant HP)	Torque Autotune Torque Autotune	Velocity Torque (3)	See Page 5–61
244	Vde Minimum	Torque Autotune Torque Autotune	Velocity Torque (3)	See Page 5–62
243	K Slip (Base Slip Frequency)	Torque Autotune Torque Autotune	Velocity Torque (3)	See Page 5–62
240	r (Torque Autotune	Velocity Torque (3)	See Page 5–62
	l	I	ı	l

Table 5.A – 1336T Numerical Parameter Table (Cont.)

Param No.	Parameter Name (Element)	Group	File (File No.)	Param Descrpt.
246	Base Slip Frequency	Torque Autotune	Velocity Torque (3)	See Page 5–62
247	Base Slip Freq Max	Torque Autotune	Velocity Torque (3)	See Page 5–62
248	Base Slip Freq Min	Torque Autotune	Velocity Torque (3)	See Page 5–62
249	Kp – Slip Regulator	Torque Autotune	Velocity Torque (3)	See Page 5–62
250	Ki – Slip Regulator	Torque Autotune	Velocity Torque (3)	See Page 5–62
251	Kp – Flux Regulator	Torque Autotune	Velocity Torque (3)	See Page 5–62
252	Ki – Flux Regulator	Torque Autotune	Velocity Torque (3)	See Page 5–62
256	Autotune/Diagnostics Selection	Drive Tune	Startup (1)	See Page 5–63
		Torque Autotune	Velocity Torque (3)	See Page 5–63
		Velocity Autotune	Velocity Torque (3)	See Page 5–63
		Transistor Diag.	Diagnostics (4)	See Page 5–63
257	Transistor Diagnostics Configuration	Transistor Diag	Diagnostics (4)	See Page 5–63
258	Inverter Diagnostics Result #1	Transistor Diag	Diagnostics (4)	See Page 5–63
259	Inverter Diagnostics Result #2	Transistor Diag	Diagnostics (4)	See Page 5–64
260	Iq Offset	Transistor Diag	Diagnostics (4)	See Page 5–64
261	Id Offset	Transistor Diag	Diagnostics (1)	See Page 5–64
262	Phase Rotation Current Reference	Torque Autotune	Velocity Torque (3)	See Page 5–64
		Drive Tune	Startup (1)	See Page 5–64
263	Phase Rotation Frequency Reference	Torque Autotune	Velocity Torque (3)	See Page 5–64
		Drivetune	Startup (1)	See Page 5–64
264	Motor Current Magnitude Feedback	Monitor	Startup (1)	See Page 5–64
		Monitor	Diagnostics (4)	See Page 5–64
265	Motor Voltage Magnitude	Monitor	Startup (1)	See Page 5–64
		Monitor	Diagnostics (4)	See Page 5–64
266	Stator Frequency	Monitor	Startup (1)	See Page 5–65
		Monitor	Diagnostics (4)	See Page 5–65
267	Calculated Torque			See Page 5–65
268	DC Bus Voltage	Monitor	Startup (1)	See Page 5–65
		Monitor	Diagnostics (4)	See Page 5–65
269	Filtered Motor Velocity Feedback	Monitor	Diagnostics (4)	See Page 5–65
		Monitor	Startup (1)	See Page 5–65
		Velocity Fdbk	Velocity Torque (3)	See Page 5–65
270	Inverter Temperature Feedback	Monitor	Startup (1)	See Page 5–65
		Monitor	Diagnostics (4)	See Page 5–65
271	Limited Motor Flux	Monitor	Startup (1)	See Page 5–65
		Monitor	Diagnostics (4)	See Page 5–65
273	Testpoint Selection	Testpoints	Diagnostics (4)	See Page 5–65
		Torque Autotune	Velocity Torque (4)	See Page 5–65
274	Testpoint Data	Testpoints	Diagnostics (4)	See Page 5–66
		Torque Autotune	Velocity Torque (4)	See Page 5–66
275	Testpoint Selection #2	Factory Use Only	DO NOT USE	See Page 5–66
276	Testpoint Data #2	Factory Use Only	DO NOT USE	See Page 5–66
277	Testpoint Selection #3	Factory Use Only	DO NOT USE	See Page 5–66
278	Testpoint Data #3	Factory Use Only	DO NOT USE	See Page 5–66 See Page 5–66
279	Testpoint Selection #4	Factory Use Only	DO NOT USE	
280	Testpoint Data #4	Factory Use Only	DO NOT USE	See Page 5–66 See Page 5–67
281	Testpoint Selection #5	Factory Use Only	DO NOT USE	See Page 5–67 See Page 5–67
282	Testpoint Data #5	Factory Use Only Factory Use Only	DO NOT USE	See Page 5–67
283	Testpoint Selection #6	Factory Use Only Factory Use Only	DO NOT USE	See Page 5–67
284	Testpoint Data #6 Selection for Test DAC 1	Factory Use Only	DO NOT USE DO NOT USE	See Page 5–67
285	Selection for Test DAC 1 Selection for Test DAC 2	Factory Use Only		See Page 5–67
286		Torque Block	DO NOT USE Valority Torque (3)	See Page 5–67
287	Ki Frequency Regulator	Torque Block	Velocity Torque (3)	See Page 5–68
288	Kp Frequency Regulator Kff Frequency Regulator	Torque Block	Velocity Torque (3)	See Page 5–68
	I KII FTEUUEHEV KESUIÄIOF		Velocity Torque (3)	1 Dec 1 age 3-00
289 290	Ksel Frequency Regulator	Torque Block	Velocity Torque (3)	See Page 5–68

Table 5.A – 1336T Numerical Parameter Table (Cont.)

Param No.	Parameter Name (Element)	Group	File (File No.)	Param Descrpt.
291	Frequency Tracking Filter	Torque Block	Velocity Torque (3)	See Page 5–68
292	Tracking Filter Type	Torque Block	Velocity Torque (3)	See Page 5–68
293	Freq Trim Filter	Torque Block	Velocity Torque (3)	See Page 5–68
294	Motor Phase Rot Errors	Torque Autotune	Velocity Torque (3)	See Page 5–68
295	Motor Inductance Test Errors	Torque Autotune	Velocity Torque (3)	See Page 5–69
296	Stator Resistance Test Errors	Torque Autotune	Velocity Torque (3)	See Page 5–69
297	Motor Flux (Id) Test Errors	Torque Autotune	Velocity Torque (3)	See Page 5–69
298	Torq Block Calc Errors	Torque Autotune	Velocity Torque (3)	See Page 5–69
300	Adapter ID	Info	Diagnostics (4)	
301	Adapter Version	Info	Diagnostics (4)	See Page 5–70 See Page 5–70
302	Adapter Config	Info	Diagnostics (4)	See Page 5–70
304	Language Select	Info	Diagnostics (4)	See Page 5–70
304	gg. 2	Drive Data	Startup (1)	See Page 5–70
310	Data In A1	SCANport I/O	Communications I/O (2)	See Page 5–70
311	Data In A2	SCANport I/O	Communications I/O (2)	See Page 5–70
312	Data In B1	SCANport I/O	Communications I/O (2)	See Page 5–70
313	Data In B1	SCANport I/O	Communications I/O (2)	See Page 5–71
314	Data In B2	SCANport I/O	Communications I/O (2)	See Page 5–71
315	Data III C1 Data In C2	SCANport I/O	Communications I/O (2)	See Page 5–71
316	Data In C2	SCANport I/O	Communications I/O (2)	See Page 5–71
317	Data In D1 Data In D2	SCANport I/O	Communications I/O (2)	See Page 5–71
320	Data Out A1	SCANport I/O	Communications I/O (2)	See Page 5–71
321	Data Out A2	SCANport I/O	Communications I/O (2)	See Page 5–71 See Page 5–71
		SCANport I/O	Communications I/O (2)	
322 323	Data Out B1 Data Out B2	SCANport I/O	Communications I/O (2)	See Page 5–71
323 324	Data Out 62 Data Out C1	SCANport I/O	Communications I/O (2)	See Page 5–72
325	Data Out C1 Data Out C2	SCANport I/O	Communications I/O (2)	See Page 5–72
325 326	Data Out C2	SCANport I/O	Communications I/O (2)	See Page 5–72 See Page 5–72
327	Data Out D1 Data Out D2	SCANport I/O	Communications I/O (2)	See Page 5–72
330	Port Enable Mask	SCANport Masks	Communications I/O (2)	See Page 5–72
331	Direction Mask	SCANport Masks	Communications I/O (2)	See Page 5–73
332	Start Mask	SCANport Masks	Communications I/O (2)	See Page 5–73
333	Jog Mask	SCANport Masks	Communications I/O (2)	See Page 5–73
334	Reference Mask	SCANport Masks	Communications I/O (2)	See Page 5–73
335	Clear Fault Mask	SCANport Masks	Communications I/O (2)	See Page 5–73
336	Reset Dry Mask	SCANport Masks	Communications I/O (2)	See Page 5–74
337	Local Mask	SCANport Masks	Communications I/O (2)	See Page 5–74
340	Stop Owner	SCANport Owners	Communications I/O (2)	See Page 5–74
341	Dir. Owner	SCANport Owners	Communications I/O (2)	See Page 5–74
342	Start Owner	SCANport Owners	Communications I/O (2)	See Page 5–74
343	Jog 1 Owner	SCANport Owners	Communications I/O (2)	See Page 5–75
344	Jog 2 Owner	SCANport Owners	Communications I/O (2)	See Page 5–75
345	Set Ref Owner	SCANport Owners	Communications I/O (2)	See Page 5–75
346	Local Owner	SCANport Owners	Communications I/O (2)	See Page 5–75
347	Flux Owner	SCANport Owners	Communications I/O (2)	See Page 5–75
348	Trim Owner	SCANport Owners	Communications I/O (2)	See Page 5–76
349	Ramp Owner	SCANport Owners	Communications I/O (2)	See Page 5–76
350	Clr Flt Owner	SCANport Owners	Communications I/O (2)	See Page 5–76
352	10 Volt In Fltr	Analog Input	Communications I/O (2)	See Page 5–76
353	Pot In Filtr	Analog Input	Communications I/O (2)	See Page 5–76
354	mA In Filtr	Analog Input	Communications I/O (2)	See Page 5–76
355	10 Volt Input	Analog Input	Communication I/O (2)	See Page 5–77
356	10 Volt Offset	Analog Input	Communication I/O (2)	See Page 5–77
357	10 Volt Scale	Analog Input	Communication I/O (2)	See Page 5–77
358	Pot Input	Analog Input	Communication I/O (2)	See Page 5–77
359	Pot Offset	Analog Input	Communication I/O (2)	See Page 5–77

Table 5.A – 1336T Numerical Parameter Table (Standard Adapter Parameters)

Param No.	Parameter Name (Element)	Group	File (File No.)	Param Descrpt.
360	Pot Scale	Analog Input	Communications I/O (2)	See Page 5–77
361	Milli Amp Input	Analog Input	Communications I/O (2)	See Page 5–77
362	Milli Amp Input Offset	Analog Input	Communications I/O (2)	See Page 5–78
363	Milli Amp Input Scale	Analog Input	Communications I/O (2)	See Page 5–78
364	SP Analog Sel	Analog Input	Communications I/O (2)	See Page 5–78
365	SP Analog In	Analog Input	Communications I/O (2)	See Page 5–78
366	SP Analog 1 Scale	Analog Input	Communications I/O (2)	See Page 5–78
367	SP Analog 2 Select	Analog Input	Communications I/O (2)	See Page 5–78
368	SP Analog 2 In	Analog Input	Communications I/O (2)	See Page 5–79
369	SP Analog 2 Scale	Analog Input	Communications I/O (2)	See Page 5–79
370	Analog Output 1	Analog Output	Communications I/O (2)	See Page 5–79
371	Analog Output 1 Offset	Analog Output	Communications I/O (2)	See Page 5–79
372	Analog Output 1 Scale	Analog Output	Communications I/O (2)	See Page 5–80
373	Analog Output 2	Analog Output	Communications I/O (2)	See Page 5–80
374	Analog Output 2 Offset	Analog Output	Communications I/O (2)	See Page 5–80
375	Analog Output 2 Scale	Analog Output	Communications I/O (2)	See Page 5–80
376	mA Output	Analog Output	Communications I/O (2)	See Page 5–80
377	mA Output Offset	Analog Output	Communications I/O (2)	See Page 5–80
378	mA Output Scale	Analog Output	Communications I/O (2)	See Page 5–81
379	SB Analog Out	Analog Output	Communications I/O (2)	See Page 5–81
384	Output Select	Logic Logic	Communication I/O (2)	See Page 5–81
205	T (M.)	Logic	Velocity Torque (3)	See Page 5–81
385	Input Mode	Logic Logic	Communications I/O (2)	See Page 5–82
		Drive Data	Velocity Torque (3)	See Page 5–82
297	Lumet Chater	Monitor Monitor	Startup (1)	See Page 5–82
386	Input Status	Monitor	Startup (1)	See Page 5–82
387	Stop Select 1	Logic	Diagnostics (4) Velocity Torque (3)	See Page 5–82 See Page 5–82
367	Stop Select 1	Logic	Communications I/O (2)	See Page 5–82
388	Stop Select 2	Logic	Velocity Torque (3)	See Page 5–83
300	Stop Select 2	Logic	Communications I/O (2)	See Page 5–83
389	Accel Rate 1	Velocity Ref	Velocity Torque (3)	See Page 5–83
307	Tieser Rate 1	Limits	Startup (1)	See Page 5–83
390	Accel Rate 2	Velocity Ref	Velocity Torque (3)	See Page 5–83
		Limits	Startup (1)	See Page 5–83
391	Decel Rate 1	Velocity Ref	Velocity Torque (3)	See Page 5–83
		Limits	Startup (1)	See Page 5–83
392	Decel Rate 2	Velocity Ref	Velocity Torque (3)	See Page 5–83
		Limits	Startup (1)	See Page 5–83
393	Mop Increment	Velocity Ref	Velocity Torque (3)	See Page 5–83
394	Mop Value	Monitor	Startup (1)	See Page 5–83
		Monitor	Diagnostics (4)	See Page 5–83
395	Pulse PPR	Velocity Fdbk	Velocity Torque (3)	See Page 5–84
396	Pulse Edge	Velocity Fdbk	Velocity Torque (3)	See Page 5–84
397	Pulse Scale	Velocity Fdbk	Velocity Torque (3)	See Page 5–84
398	Pulse Offset	Velocity Fdbk	Velocity Torque (3)	See Page 5–84
399	Pulse Value	Monitor	Startup (1)	See Page 5–84
		Monitor	Diagnostics (4)	See Page 5–84
404	SP Comm Retries	Info	Diagnostics	See Page 5–84
405	Fault Select	Fault Select/Status	Diagnostics File	See Page 5–85
46.5		Fault Select/Status Fault Select/Status	Communications I/O (2)	See Page 5–85
406	Warning Select	Fault Select/Status Fault Select/Status	Diagnostics File	See Page 5–85
407	E14 C4-4	Fault Select/Status Fault Select/Status	Communications I/O (2)	See Page 5–85
407	Fault Status	Fault Select/Status	Diagnostics File	See Page 5–85
400	Warning Status	Fault Select/Status	Communications I/O (2)	See Page 5–85
408	Warning Status	Fault Select/Status	Diagnostics File	See Page 5–85
		1 ann beiet/bialus	Communications I/O (2)	See Page 5–85

Table 5.B - 1336T Alphabetical Parameter Table

Parameter Name (Element)	Param No.	Page Ref.
Absolute Overspeed Threshold	90	5–45
Accel Rate 1	389	5-83
Accel Rate 2	390	5-83
Accel Time	125	5–49
Adapter Config.	302	5–70
Adapter ID	300	5–70
Adapter Version	301	5–70
Analog Output 1	370	5–79
Analog Output 1 Offset	371	5–79
Analog Output 1 Scale	372	5–80
Analog Output 2	373	5–80
Analog Output 2 Offset	374	5–80
Analog Output 2 Scale	375	5–80
At Setpoint 1	60	5–39
At Setpoint 2	61	5–39 5–39
Autotune Diagnostics Selection	256	5–63
Autotune Speed	41	5–36
Autotune Status	44	5–36
Autotune Testpoint Data	47	5–36
Autotune Testpoint Select	48	5–37
Autotune Torque Limit	40	5–35
Base Motor Speed	229	
Base Slip Freq. Max		5–38
Base Slip Freq. Min	247	5–38
Bus Precharge Timeout	248	5–38
Bus Ridethru Timeout	225	5–59
Clear Fault Mask	226	5–59
Clear Fault Owner	335	5–73
Computed Power	350	5–76
Computed Fower CP Configurable Fault Status	182	5–57
CP Configurable Warning Status	82	5–42
CP Fault Configuration Select	84	5–43
	86	5–43
CP Operating Options	227	5–60
CP Warning Configuration Select	87	5–44
Current Setpoint Tolerance	68	5–40
Data In A1	310	5–70
Data In A2	311	5–70
Data In B1	312	5–70
Data In B2	313	5–71
Data In C1	314	5–71
Data In C2	315	5–71
Data In D1	316	5–71
Data In D2	317	5–71
Data Out A1	320	5–71
Data Out A2	321	5–71
Data Out B1	322	5–71
Data Out B2	323	5-71
Data Out C1	324	5-71
Data Out C2	325	5-71
Data Out D1	326	5-71
Data Out D2	327	5-72
DC Bus Voltage	268	5–65
Decel Rate 1	391	5-83
Decel Rate 2	392	5-83
Decel Time	126	5–49
Direction Owner	341	5–74

Table 5.B - 1336T Alphabetical Parameter Table

Table 5.B – 1336T Alphabetical Parameter Table						
Parameter Name (Element)	Param No.	Page Ref.				
Drive Comm Baud Rate	10	5–31				
Drive Comm Receive 1, Data 1	22	5–33				
Drive Comm Receive 1, Data 2	23	5–33				
Drive Comm Receive 2, Data 1	24	5–33				
Drive Comm Receive 2, Data 2	25	5–33				
Drive Comm Receive 1 Address	12	5–31				
Drive Comm Receive 2 Address	13	5–31				
Drive Comm Task Interval	09	5–31				
Drive Comm Transmit Address	11	5–31				
Drive Comm Transmit Data 1	20	5–34				
Drive Comm Transmit Data 2	21	5–34				
Drive Comm Transmit Indirect 1	14	5–33				
Drive Comm Transmit Indirect 2	15	5–33				
Drive Power Structure Type	05	5–33				
Drive Software Version	01	5–50				
Droop Percent	131	5–50				
Encoder Position Feedback LOW	148	5–50				
Encoder Position Feedback HI	149	5–50				
Encoder PPR	235	5–38				
External IQ Reference	161	5–54				
External Torque Reference 1	162	5–54				
External Torque Reference 2	164	5–54				
External Torque Step	165	5–54				
Fault Status	407	5–42				
Fault Select	405	5–42				
Fault Testpoint Data	98	5–46				
Fault Testpoint Select	99	5–46				
Feedback Device Type	150	5–53				
Feedback Filter Select	152	5–53				
Feedback Tracker Gain	151	5–53				
Filtered Vel Fdbk	269	5–65				
Flux Owner	347	5–75				
Forward Motor Speed Limit	128	5–49				
Frequency Tracker Filter	291	5–68				
Frequency Trim Filter	293	5–68				
Id OFFSET	261	5–64				
Id Tune (Base Flux Current)	238	5–61				
Input Mode	385	5–82				
Input Status	386	5–82				
Internal Torque Reference	167	5–55				
Internal Iq Reference	168	5–55				
Inverter Carrier Frequency	222	5–58				
Iq Offset	260	5–64				
Iq Tune (Base Torque Current)	240	5–61				
Jog Mask	333	5–73				
Jog 1 Owner	343	5–75				
Jog 2 Owner	344	5–75				
Jog Speed 1	117	5–48				
Jog Speed 2	118	5–48				
Kf Velocity Loop	141	5–51				
Kff Freq Regulator	289	5–68				
Ki Flux Regulator	252	5–62				
Ki Frequency Regulator	287	5–67				
Ki Slip Regulator	250	5–62				
Ki Velocity Loop	139	5–51				
Kn Feedback Filter Gain	153	5–53				
KP Flux Regulator	251	5–62				

Table 5.B – 1336T Alphabetical Parameter Table

	I	1
Parameter Name (Element)	Param No.	Page Ref.
Kp Frequency Regulator	288	5–68
Kp Slip Regulator	249	5–62
Kp Velocity Loop	140	5–51
Ksel Freq. Regulator	290	5–68
K Slip	246	5–62
Language Select	304	5–70
Leakage Inductance	237	5–61
Lo Test Errors	295	5–69
Local Owner	346	5–75
Local Mask	337	5–74
Local Input Status	54	5–38
Local Output Status	56	5–38
Logic Command Word	52	5–37
Logic Options	59	5–37 5–39
Logic Status Low	56	5–38
Logic Status Low Logic Status Hi	57	5–38
	70	5–36 5–40
Logic Testpoint Data	70	5–40 5–41
Logic Testpoint Select	1	
mA In Filtr	354	5–76
Maximum Dynamic Brake Power	77	5–41
Maximum Dynamic Brake Temp	78	5–41
Maximum Forward Speed Trim	130	5–50
Maximum Reverse Speed Trim	129	5–49
Milli Amp Input	361	5–77
Milli Amp Input Offset	362	5–78
Milli Amp Input Scale	363	5–78
MilliAmp Output	376	5–80
MilliAmp Output Scale	378	5–81
Minimum Flux Level	174	5–56
Minimum Overload Limit	97	5–45
Motor Current Magnitude Feedback	264	5–64
Motor Control Counter	08	5–31
Motor Flux (Id) Test Errors	297	5–69
Motor Inertia	234	5–60
Motor Nameplate Amps	230	5–60
Motor Nameplate Frequency	232	5–60
Motor Nameplate Poles	233	5–60
Motor Nameplate Volts	231	5–60
Motor Overload Limit	92	5–45
Motor Overload Speed 2	95	5–45
Motoring Power Limit	177	5–56
Motor Voltage Magnitude	265	5–64
Negative Motor Current Reference Limit	179	5–56
Non-Configurable Fault Status	81	5–42
Notch Filter Freq.	156	5–54
Notch Filter Q	157	5–54
Over Setpoint 1	62	5–39
Over Setpoint 2	63	5–39
Over Setpoint 3	64	5–40
Over Setpoint 4	65	5–40
Perunit Motor Current	185	5–57
Perunit Motor Voltage	186	5–57
Phase Rotation Errors	294	5–68
Phase Rotation Frequency Reference	263	5–64
Pot Input	358	5–77
Pot In Filtr	353	5–76

Table 5.B – 1336T Alphabetical Parameter Table

Parameter Name (Element)	Param No.	Page Ref.
Pot Offset	359	5–77
Pot Scale	360	5–77
Powerup/Diagnostic Fault Status	80	5-42
Positive Motor Current Reference Limit	179	5-56
Positive Torque Ref Limit	175	5-56
Precharge/Ridethru Selection	223	5-59
Preset Speed 1	119	5–48
Preset Speed 2	120	5-48
Preset Speed 3	121	5-48
Preset Speed 4	122	5–49
Preset Speed 5	123	5-49
Process Trim Data	31	5-34
Process Trim Feedback	28	5-34
Process Trim Filter Bandwidth	30	5-34
Process Trim KI Gain	32	5-34
Process Trim KP Gain	33	5–35
Process Trim High Limit	35	5–35
Process Trim Low Limit	34	5–35
Process Trim Output	26	5–34
Process Trim Output Gain	36	5-34
Process Trim Select	29	5–34
Process Trim Setpoint Select	38	5–35
Process Trim Testpoint	37	5–35
Process Trim Reference	27	5-34
Pulse Edge	396	5-84
Pulse PPR	395	5-84
Pulse Offset	398	5-84
Pulse Scale	397	5-84
Pulse Value	399	5-84
Ramp Owner	349	5–76
Rated Inverter Output Amps	220	5-58
Rated Torque Voltage	241	5-61
Reference Mask	334	5–73
Regen Power Limit	178	5-56
Reset Drive Mask	336	5–74
Reverse Motor Speed Limit	127	5-49
SP Analog 1 In	365	5–78
SP Analog Out	379	5-81
SP Analog 1 Select	364	5–78
SP Analog 1 Scale	366	5–78
SP Analog 2 In	368	5–79
SP Analog 2 Select	367	5–79
SP Analog 2 Scale	369	5–79
SP Comm Retries	404	5-84
Set Ref Owner	345	5–75
Scaled Velocity Feedback	147	5–52
Setpoint Select	66	5–40
Selection for Test DAC 1	285	5–67
Selection for Test DAC 2	286	5–67
Slave Torque Percent 1	163	5–54
Slave Torque Percent 2	165	5–54
Speed Setpoint Tolerance	67	5–40
Stop Dwell	72	5-41
Stall Delay	91	5–45
Start Mask	332	5–73
Start Owner	342	5–74
Stator Resistance	236	5-61

Table 5.B – 1336T Alphabetical Parameter Table

Testpoint Selection #2 275 Testpoint Selection #2 275 Testpoint Selection #3 277 Testpoint Selection #4 279 Testpoint Selection #4 279 Testpoint Selection #5 281 Testpoint Selection #6 283 Torque Calc Errors 298 Torque Limit Status 183 Torque Mode Status 184 Torque Reference Testpoint Data 172 Torque Reference Testpoint Select 173 Transistor Diagnostics Configuration 257 Trim Owner 348 Undervoltage Setpoint 224 Vde Minimum 245 Vde Tune (Base Torque Voltage) 241 Velocity Error 138 Velocity Feedback Testpoint Data HI 144 Velocity Feedback Testpoint Data HI 144 Velocity Feedback Testpoint Data HI 109 Velocity Reference Testpoint Data HI 109 Velocity Reference Testpoint Data HI 109 Velocity Reference Testpoint Data LOW 108	5-74 5-82 5-83 5-54 5-66 5-66 5-66 5-67 5-65 5-65 5-65 5-67 5-67 5-67 5-67 5-67 5-57 5-57 5-57
Stop Select 2 Tach Velocity Testpoint Data Testpoint Data #2 Testpoint Data #3 Testpoint Data #3 Testpoint Data #4 Testpoint Data #4 Testpoint Data #5 Testpoint Data #6 Testpoint Selection Testpoint Selection #2 Testpoint Selection #2 Testpoint Selection #4 Testpoint Selection #4 Testpoint Selection #5 Testpoint Selection #6 Testpoint Selecti	5-83 5-54 5-66 5-66 5-66 5-65 5-67 5-65 5-65 5-66 5-67 5-67
Tach Velocity Testpoint Data Testpoint Data #2 Testpoint Data #3 Testpoint Data #4 Testpoint Data #4 Testpoint Data #4 Testpoint Data #5 Testpoint Data #6 Testpoint Selection Testpoint Selection #2 Testpoint Selection #2 Testpoint Selection #4 Testpoint Selection #4 Testpoint Selection #5 Testpoint Selection #6 Testpoint Selection #6 Torque Calc Errors Torque Calc Errors Torque Mode Status Torque Reference Testpoint Data Torque Reference Testpoint Select Transistor Diagnostics Configuration Trim Owner Undervoltage Setpoint Vde Minimum Vde Tune (Base Torque Voltage) Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Reference Testpoint Data LOW	5–54 5–66 5–66 5–66 5–67 5–65 5–65 5–66 5–67 5–67 5–67 5–67 5–57 5–57 5–55
Testpoint Data #2 Testpoint Data #3 Testpoint Data #3 Testpoint Data #4 Testpoint Data #4 Testpoint Data #5 Testpoint Data #5 Testpoint Data #6 Testpoint Selection #6 Testpoint Selection #2 Testpoint Selection #3 Testpoint Selection #4 Testpoint Selection #4 Testpoint Selection #6 Testpoint Selection #6 Testpoint Selection #6 Testpoint Selection #6 Torque Calc Errors Torque Limit Status Torque Mode Status Torque Reference Testpoint Data Torque Reference Testpoint Select Transistor Diagnostics Configuration Trim Owner Undervoltage Setpoint Vde Minimum Vde Tune (Base Torque Voltage) Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 110	5-66 5-66 5-66 5-67 5-65 5-65 5-65 5-66 5-67 5-67 5-67 5-57 5-57 5-55
Testpoint Data #2 Testpoint Data #3 Testpoint Data #4 Testpoint Data #4 Testpoint Data #5 Testpoint Data #6 Testpoint Selection Testpoint Selection #2 Testpoint Selection #3 Testpoint Selection #4 Testpoint Selection #4 Testpoint Selection #6 Testpoint Selection #6 Testpoint Selection #6 Torque Calc Errors Torque Limit Status Torque Mode Status Torque Reference Testpoint Data Torque Reference Testpoint Select Transistor Diagnostics Configuration Trim Owner Undervoltage Setpoint Vde Minimum Vde Tune (Base Torque Voltage) Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 110	5–66 5–66 5–67 5–65 5–65 5–65 5–66 5–67 5–67 5–67 5–57 5–57
Testpoint Data #3 Testpoint Data #4 Testpoint Data #4 Testpoint Data #5 Testpoint Data #6 Testpoint Selection Testpoint Selection #2 Testpoint Selection #3 Testpoint Selection #4 Testpoint Selection #4 Testpoint Selection #5 Testpoint Selection #6 Torque Calc Errors Torque Limit Status Torque Mode Status Torque Reference Testpoint Data Transistor Diagnostics Configuration Trim Owner Undervoltage Setpoint Vde Minimum Velocity Feedback Velocity Feedback Testpoint Data LOW Velocity Reference Testpoint Data HI Velocity Reference Testpoint Data LOW	5–66 5–66 5–61 5–67 5–65 5–65 5–66 5–66 5–67 5–67 5–69 5–57 5–57
Testpoint Data #4 Testpoint Data #5 Testpoint Data #6 Testpoint Selection Testpoint Selection #2 Testpoint Selection #3 Testpoint Selection #4 Testpoint Selection #4 Testpoint Selection #5 Testpoint Selection #6 Torque Calc Errors Torque Limit Status Torque Mode Status Torque Reference Testpoint Data Transistor Diagnostics Configuration Trim Owner Undervoltage Setpoint Vde Minimum Vde Tune (Base Torque Voltage) Velocity Feedback Testpoint Data LOW Velocity Reference Testpoint Data HI Velocity Feedback Testpoint Data HI Velocity Reference Testpoint Data LOW	5-66 5-61 5-67 5-65 5-65 5-66 5-66 5-67 5-67 5-57 5-57 5-55
Testpoint Data #5 Testpoint Data #6 Testpoint Selection Testpoint Selection #2 Testpoint Selection #3 Testpoint Selection #4 Testpoint Selection #4 Testpoint Selection #4 Testpoint Selection #5 Testpoint Selection #6 Torque Calc Errors Torque Calc Errors Torque Limit Status Torque Mode Status Torque Mode Status Torque Reference Testpoint Data Torque Reference Testpoint Select Transistor Diagnostics Configuration Trim Owner Undervoltage Setpoint Vde Minimum Vde Tune (Base Torque Voltage) Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 110	5-61 5-67 5-65 5-65 5-66 5-66 5-67 5-67 5-69 5-57 5-57
Testpoint Data #6 Testpoint Selection Testpoint Selection #2 Testpoint Selection #3 Testpoint Selection #4 Testpoint Selection #4 Testpoint Selection #4 Testpoint Selection #5 Testpoint Selection #6 Torque Calc Errors Torque Limit Status Torque Mode Status Torque Mode Status Torque Reference Testpoint Data Torque Reference Testpoint Select Transistor Diagnostics Configuration Transistor Diagnostics Configuration Trim Owner Undervoltage Setpoint Vde Minimum Vde Tune (Base Torque Voltage) Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 110	5–67 5–65 5–65 5–66 5–67 5–67 5–69 5–57 5–57 5–55
Testpoint Selection #2 275 Testpoint Selection #2 275 Testpoint Selection #3 277 Testpoint Selection #4 279 Testpoint Selection #4 279 Testpoint Selection #5 281 Testpoint Selection #6 283 Torque Calc Errors 298 Torque Limit Status 183 Torque Mode Status 184 Torque Reference Testpoint Data 172 Torque Reference Testpoint Select 173 Transistor Diagnostics Configuration 257 Trim Owner 348 Undervoltage Setpoint 224 Vde Minimum 245 Vde Tune (Base Torque Voltage) 241 Velocity Feedback 146 Velocity Feedback Testpoint Data HI 144 Velocity Feedback Testpoint Data HI 144 Velocity Feedback Testpoint Data HI 169 Velocity Reference Testpoint Data HI 109 Velocity Reference Testpoint Data LOW 108 Velocity Reference Testpoint Data LOW 108 Velocity Reference Testpoint Select 110	5–65 5–65 5–66 5–67 5–67 5–69 5–57 5–57 5–55
Testpoint Selection #2 Testpoint Selection #3 Testpoint Selection #4 Testpoint Selection #4 Testpoint Selection #5 Testpoint Selection #5 Testpoint Selection #6 Torque Calc Errors Torque Calc Errors Torque Limit Status Torque Mode Status Torque Reference Testpoint Data Torque Reference Testpoint Select Transistor Diagnostics Configuration Trim Owner Undervoltage Setpoint Vde Minimum Vde Tune (Base Torque Voltage) Velocity Feedback Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 110	5–65 5–66 5–67 5–67 5–67 5–57 5–57 5–55
Testpoint Selection #3 Testpoint Selection #4 Testpoint Selection #5 Testpoint Selection #6 Testpoint Selection #6 Torque Calc Errors Torque Limit Status Torque Mode Status Torque Reference Testpoint Data Torque Reference Testpoint Select Transistor Diagnostics Configuration Trim Owner Undervoltage Setpoint Vde Minimum Vde Tune (Base Torque Voltage) Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 110	5–66 5–67 5–67 5–67 5–69 5–57 5–57 5–55
Testpoint Selection #4 Testpoint Selection #5 Testpoint Selection #6 Torque Calc Errors Torque Limit Status Torque Mode Status Torque Reference Testpoint Data Torque Reference Testpoint Select Transistor Diagnostics Configuration Trim Owner Undervoltage Setpoint Vde Minimum Vde Tune (Base Torque Voltage) Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 110	5–66 5–67 5–67 5–69 5–57 5–57 5–55
Testpoint Selection #5 Testpoint Selection #6 Torque Calc Errors Torque Limit Status Torque Mode Status Torque Reference Testpoint Data Torque Reference Testpoint Select Transistor Diagnostics Configuration Trim Owner Undervoltage Setpoint Vde Minimum Vde Tune (Base Torque Voltage) Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 108	5–67 5–67 5–69 5–57 5–57 5–55
Testpoint Selection #6 Torque Calc Errors Torque Limit Status Torque Mode Status Torque Reference Testpoint Data Torque Reference Testpoint Select Transistor Diagnostics Configuration Trim Owner Undervoltage Setpoint Vde Minimum Vde Tune (Base Torque Voltage) Velocity Error Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 110	5–67 5–69 5–57 5–57 5–55
Torque Calc Errors Torque Limit Status Torque Mode Status Torque Reference Testpoint Data Torque Reference Testpoint Select Torque Reference Testpoint Select Transistor Diagnostics Configuration Trim Owner Undervoltage Setpoint Vde Minimum Vde Tune (Base Torque Voltage) Velocity Error Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data LOW Velocity Reference Testpoint Data HI Velocity Reference Testpoint Data HI Velocity Reference Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 108 Velocity Reference Testpoint Select 110	5–69 5–57 5–57 5–55
Torque Limit Status Torque Mode Status Torque Reference Testpoint Data Torque Reference Testpoint Select Torque Reference Testpoint Select Transistor Diagnostics Configuration Trim Owner Undervoltage Setpoint Vde Minimum Vde Tune (Base Torque Voltage) Velocity Error Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data LOW Velocity Reference Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 110	5–57 5–57 5–55
Torque Mode Status Torque Reference Testpoint Data Torque Reference Testpoint Select Torque Reference Testpoint Select Transistor Diagnostics Configuration Trim Owner Undervoltage Setpoint Vde Minimum Vde Tune (Base Torque Voltage) Velocity Error Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data LOW Velocity Reference Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 110	5–57 5–55
Torque Reference Testpoint Data Torque Reference Testpoint Select Torque Reference Testpoint Select Transistor Diagnostics Configuration Trim Owner Undervoltage Setpoint Vde Minimum Vde Tune (Base Torque Voltage) Velocity Error Velocity Feedback Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data LOW Velocity Reference Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 110	5–55
Torque Reference Testpoint Select Transistor Diagnostics Configuration Trim Owner Undervoltage Setpoint Vde Minimum Vde Tune (Base Torque Voltage) Velocity Error Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data LOW Velocity Reference Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 110	
Transistor Diagnostics Configuration Trim Owner Undervoltage Setpoint Vde Minimum Vde Tune (Base Torque Voltage) Velocity Error Velocity Feedback Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data LOW Velocity Reference Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 110	5 55
Trim Owner Undervoltage Setpoint 224 Vde Minimum 245 Vde Tune (Base Torque Voltage) 241 Velocity Error 138 Velocity Feedback Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data LOW 143 Velocity Feedback Testpoint Select Velocity Reference Testpoint Data HI 109 Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 110	5–55
Undervoltage Setpoint Vde Minimum Vde Tune (Base Torque Voltage) Velocity Error Velocity Feedback Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data LOW Velocity Feedback Testpoint Select Velocity Reference Testpoint Data HI Velocity Reference Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 108	5-63
Vde Minimum245Vde Tune (Base Torque Voltage)241Velocity Error138Velocity Feedback146Velocity Feedback Testpoint Data HI144Velocity Feedback Testpoint Data LOW143Velocity Feedback Testpoint Select145Velocity Reference Testpoint Data HI109Velocity Reference Testpoint Data LOW108Velocity Reference Testpoint Select110	5-76
Vde Tune (Base Torque Voltage)241Velocity Error138Velocity Feedback146Velocity Feedback Testpoint Data HI144Velocity Feedback Testpoint Data LOW143Velocity Feedback Testpoint Select145Velocity Reference Testpoint Data HI109Velocity Reference Testpoint Data LOW108Velocity Reference Testpoint Select110	5-59
Velocity Error Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data LOW Velocity Feedback Testpoint Select Velocity Feedback Testpoint Select Velocity Reference Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 110	5-62
Velocity Feedback Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data LOW Velocity Feedback Testpoint Select Velocity Feedback Testpoint Data HI Velocity Reference Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 110	5-61
Velocity Feedback Testpoint Data HI Velocity Feedback Testpoint Data LOW Velocity Feedback Testpoint Select Velocity Reference Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 108 Velocity Reference Testpoint Select 110	5-51
Velocity Feedback Testpoint Data LOW Velocity Feedback Testpoint Select Velocity Reference Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 108 Velocity Reference Testpoint Select	5-52
Velocity Feedback Testpoint Select Velocity Reference Testpoint Data HI Velocity Reference Testpoint Data LOW Velocity Reference Testpoint Select 145 109 Velocity Reference Testpoint Data LOW 108 Velocity Reference Testpoint Select	5-52
Velocity Reference Testpoint Data HI 109 Velocity Reference Testpoint Data LOW 108 Velocity Reference Testpoint Select 110	5-52
Velocity Reference Testpoint Data LOW 108 Velocity Reference Testpoint Select 110	5–52
Velocity Reference Testpoint Select 110	5–47
	5–47
Velocity Reference 1 HI	5–48
	5–46
Velocity Reference 1 LOW 100	5–46
Velocity Reference 2 HI 104	5–47
	5–47
Velocity Reference Output HI 133	5–50
Velocity Reference Output LOW 132	5-50
Velocity Regulator Output 134	5–50
Velocity Regulator Testpoint Data HI 136	5–50
Velocity Regulator Testpoint Data LOW 135	5–50
Velocity Regulator Testpoint Select 137	5–51
Velocity Regulator Output 134	5–50
Velocity Regulator Testpoint Data HI 136	5–50
	5-50
Velocity Regulator Testpoint Select 137	
Velocity Scale Factor 1 102	5–51
Velocity Scale Factor 2	5–46
Velocity Trim HI 107	5–46 5–47
Velocity Trim LOW 106	5–46 5–47 5–47
VP Configurable Fault Status 83	5–46 5–47 5–47 5–47
VP Configurable Warning Status 85	5–46 5–47 5–47 5–47 5–42
VP Damping Factor 45	5–46 5–47 5–47 5–47 5–42 5–43
VP Desired Bandwidth 43	5–46 5–47 5–47 5–47 5–42 5–43 5–36
VP Fault Configuration Select 88	5–46 5–47 5–47 5–47 5–42 5–43 5–36 5–36
VP Warning Configuration Select 89	5–46 5–47 5–47 5–47 5–42 5–43 5–36

Table 5.B - 1336T Alphabetical Parameter Table

Parameter Name (Element)	Param No.	Page Ref.
Warning Select	406	5–85
Wn-Feedback Filter Bandwidth	154	5–54
Zero Speed Tolerance	69	5–40
10 Volt In Filtr	352	5–76
10 Volt Input	355	5–77
10 Volt Offset	356	5–77
10 Volt Scale	357	5–77

Standard Adapter Parameters

If your 1336 FORCE Drive is equipped with a Standard Adapter Board, the parameters in the range from 300 to 500 are dedicated exclusively to the the Standard Adapter Board. Standard Adapter Parameters are divided into four files. The complete parameter table for a Standard Adapter equipped 1336 Force is detailed in Figure 5.2. The table has been divided into Files, Groups and Elements for ease of reference.

Figure 5.2. 1336 FORCE Drive Equipped with Standard Adapter Board

FILE 1 – Startup

TILL	1 – Startup					
	Drive Tune Drive Tune			Limits Group		
53 228 229 230 231 232 233 235 267* 275* 276* 279* 280* 281* 282* 283* 284* 285* 286* 304 385	Torque Mode Sel Base Motor HP Base Motor Speed Base Motor Curr Base Motor Volt Base Motor Freq Motor Poles Encoder PPR Calc Torque Torq TP Sel 2 Torq TP Data 2 Torq TP Data 3 Torq TP Data 3 Torq TP Data 4 Torq TP Data 5 Torq TP Data 5 Torq TP Data 6 Test DAC 1 Sel Language Select Input Mode	41 43 44 45 46 139 140 141 146 234 256 262 263	Auto Tune Speed Vel Desired BW Auto Tune Status Vel Damp Factor Total Inertia Ki Velocity Loop Kp Velocity Loop Vel Feedback Motor Inertia Autotune Diag Sel Ph Rot Cur Ref Phas Rot Freq Ref	59 94* 127 128 174 175 176 177 178 179 180 181 389 390 391 392	Logic Options Service Factor Rev Speed Limit Fwd Speed Limit Min Flux Level Pos Mtr Tor Lmt Neg Mtr Tor Lmt Motor Power Lmt Regen Power Lmt Pos Mtr Cur Lmt Neg Motor Cur Limit D1/Dt Limit Accel Rate 1 Accel Rate 2 Decel Rate 1 Decel Rate 2	
	Fault Setup Group		N	Aonito	r	
86 87 88 89 90* 91* 92* 95* 96*	CP Faukt Select VP Fault Select CP Warn Select VP Warn Select Absolute Overspd Stall Delay Mtr Overload Lim Mtr Overload Spd 1 Motor Overload Spd 2 Min Overload Lmt	8 148 149 182 184 185 186 264* 265* 266*	MCB Counter Enc Pos Fdbk Low Enc Pos Fdbk Hi Computed Power Perunit Motor Current Perunit Motor Voltage Torque Mode Status Motor Cur Fdbk Motor Volt Magn Freq Command	2 2 2 3 3	DC Bus Voltage Filt Vel Fdbk Inv Temp Fdbk Lim Motor Flux Input Status Mop Value Pulse Value	

^{*} Accessible only while using Drive Tools

Figure 5.2. Standard Adapter Parameters (cont.)

FILE 2 – Communications I/O

SCANport I/O	Logic	Analog Input	Analog Output
310 Data In A1 311 Data In A2 312 Data In B1 313 Data In B2 314 Data In C1 315 Data In C2 316 Data In D1 317 Data In D2 320 Data Out A1 321 Data Out A2 322 Data Out B1 323 Data Out B2 324 Data Out C1 325 Data Out C2 326 Data Out D1 327 Data Out D2	52 Logic Command 54 Local In Status 55 Local Out Status 56 Logic Status Low 57 Logic Status Hi 58 Torq Stop Config 59 Logic Options 60 At Setpoint 1 61 At Setpoint 2 62 Over Setpoint 2 64 Over Setpoint 3 65 Over Setpoint 3 65 Over Setpoint 5 67 Speed Setpoint Tol 68 Cur Setpoint Tol 69 Zero Speed Tol 70 Logic Tstpt Data 71 Logic Testpt Sel 72 Stop Dwell 384 Output Select 385 Input Mode 387 Stop Select 1 388 Stop Select 2	352* 10 Volt in F1ltr 353* Pot In Filtr 354* mA In Filtr 355 10 Volt Input 356 10 Volt Offset 357 10 Volt Scale 358 Pot Input 359 Pot Offset 360 Pot Scale 361 mA Input 362 mA Input Offset 363 mA Input Scale 364 SB Analog Sel 365 SB Analog In 366* SP Analog 1 Scale 367* SP Analog 2 Set 368* SP Analog 2 In 369* SP Analog 2 Scale * Std Adapter 4.xx equipped	370 Analog Out 1 371 An Out 1 Offset 372 An Out 1 Scale 373 Analog Out 2 374 An Out 2 Offset 375 An Out 2 Scale 376 mA Output 377 mA Output Offset 378 mA Output Scale 379 SP Analog Out
Drive to Drive	Fault Select/Status	s SCANport Owners	s SCANport Masks
9 D2D Tsk Interval 10 D2D Baud Rate 11 D2D Xmit Addr 12 D2D Rcv1 Addr 13 D2D Rcv2 Addr 14 D2D Xmit Ind 1 15 D2D Xmit Ind 2 16 D2D Rcv1 Ind1 17 D2D Rcv1 Ind2 18 D2D Rcv2 Ind1 19 D2D Rcv2 Ind2 20 D2D Xmit Data 1 21 D2D Xmit Data 2 22 D2D Rcv1 Data 1 23 D2D Rcv2 Data 1 24 D2D Rcv2 Data 2 25 D2D Rcv2 Data 2	80 Pwrup Flt Status 81 Ncfg Flt Status 82 CP Flt Status 83 VP Flt Status 84 CP Warn Status 85 VP Warn Status 86 CP Fault Select 87 CP Warn Select 88 VP Fault Select 89 VP Warn Select 405 SA Fault Select 406 SA Warn Select 407 SA Fault Status 408 SA Warn Status	340 Stop Owner 341 Direction Owner 342 Start Owner 343 Jog1 Owner 344 Jog2 Owner 345 Reference Owner 346 Local Owner 347 Flux Owner 348 Trim Owner 349 Ramp Owner 350 Clr Fault Owner	asia Start Mask asia Jog Mask asia Reference Mask er asia Clear Fault Mask asia Reset Drive Mask asia Local Mask

Figure 5.2. Standard Adapter Parameters (cont.)

FILE 3 – Velocity Torque

Velocity Ref	Logic	Veloci	ty Fdbk	Torque Auto	tune	Process Trim
100 Vel Ref 1 Low 101 Vel Ref 1 Hi 102 Vel Scale Fctr 1 103 Vel Ref 2 Low 104 Vel Ref 2 Hi 105 Vel Scale Fctr 2 106 Vel Trim Low 107 Vel Trim Hi 108 Vel Ref TP Lo 109 Vel Ref TP Hi 110 Vel Ref TP Sel 117 Jog Speed 1 118 Jog Speed 2 119 Preset Speed 1 120 Preset Speed 3 122 Preset Speed 4 123 Preset Speed 4 123 Preset Speed 4 123 Preset Speed 5 127 Rev Speed Limit 128 Fwd Speed Limit 129 Max Rev Spd Trim 130 Max Fwd Spd Trim 131 Droop Percent 132 Vel Ref Out Low 133 Vel Ref Out Hi 389 Accel Rate 1 390 Accel Rate 2 391 Decel Rate 2 393 Mop Increment	52 Logic Command 54 Local In Status 55 Local Out Status 56 Logic Status Low 57 Logic Status Hi 58 Torq Stop Config 59 Logic Options 60 At Setpoint 1 61 At Setpoint 2 62 Over Setpoint 2 64 Over Setpoint 3 65 Over Setpoint 4 66 Setpoint Select 67 Speed Setpnt Tol 68 Cur Setpt Tol 69 Zero Speed Tol 70 Logic Tstpt Data 71 Logic Tstpt Data 71 Logic Tstpt Sel 72 Stop Dwell 384 Output Select 385 Input Mode 387 Stop Select 1 388 Stop Select 2	143 Vel For 144 Vel For 145 Vel For 146 Vel For 147 Scaler 148 Enc For 149 Enc For 150 Fdbk 151 Fdbk 152 Fdbk 153 Fdbk 155 Tach 155 Tach 269 Filt Volume 396 Pulse 397 Pulse		40 Auto Tune 41 Auto Tune 236 Stator Res 237 Leakage In 238 Base Flux 240 Base Torqu 241 Base Torqu 242 Base Flux 243 Vde Max 244 Vqe Max 245 Vde Min 246 Base Slip F 247 Base Slip F 249 Kp Slip 250 Ki Slip 251 Kp Flux 252 Ki Flux 254 Autotun Di 262 Ph Rot Cur 263 Ph Rot Free 273 Torq TP Se 274 Torq TP Di 294 Phs Test Re 295 Lo Test Err 296 Rs Test Err 297 Id Test Err 298 Torq Calc I	Speed d Cur te Cur te Volt Volt Freq Fr Max Fr Min iag Sel te Ref q Ref tel 1 tot Err tor tor	26 Proc Trim Output 27 Proc Trim Ref 28 Proc Trim Fdbk 29 Proc Trim Select 30 Proc Trim Data 32 Proc Trim Ki 33 Proc Trim Kp 34 Proc Trim Lo Lmt 35 Proc Trim Out K 37 Proc Trim TP 38 Proc Trim TP Sel
Velocity Reg 134 Vel Reg Output 135 Vel Reg TP Low 136 Vel Reg TP Hi 137 Vel Reg TP Sel 138 Velocity Error 139 Ki Velocity Loop 140 Kp Velocity Loop 141 Kf Velocity Loop	Torque F	Sel q of 1 % 1 2 % 2 ep f f f clel el mt Lmt Lmt Lmt Lmt wer	222 PWM I 223 Prech/I 224 Underv 225 Bus Pir 226 Bus Ri 227 CP Opt 287 Ki Frec 288 Kp Fre 289 Kff Fre 290 Ksel Fr	g Reg q Reg eq Reg req Reg rack Filt Filt Type	40 A 41 A 43 V 44 A 45 V 46 T 47 A 48 A 139 K 140 K 141 K 234 M	Vel Autotune Auto Tune Torque Auto Tune Speed Vel Desired BW Auto Tune Status Vel Damp Factor Votal Inertia Auto Tune TP Auto Tune TP Auto Tune TP Sel Gi Velocity Loop Gry Velocity Loop Motor Inertia Autotun Diag Select

Figure 5.2. Standard Adapter Parameters (cont.)

FILE 4 – Diagnostics

1	Monitor		Testpoints	F	ault Sel/Sts
148 En 149 En 167 Int 168 Int 182 Co 185 Per 264 Mo 265 Mo 266 Fric 269 Fril 270 Inv 271 Lir 386 Inp 394 Mo	aled Vel Fdbk to Pos Fdbk Low to Pos Fdbk Hi Torque Ref ternal Iq Ref ternal Iq Ref ternal Motor Current trunit Motor Voltage totor Cur Fdbk totor Volt Fdbk teq Command C Bus Voltage t Vel Fdbk to Temp Fdbk to Motor Flux tott Status top Value lse Value	47 48 70 71 98 99 108 109 110 135 136 137 143 144 145 172 173 273 274	Auto Tune TP Auto Tune TP Sel Logic Tstpt Data Logic Tstpt Sel Fault TP Fault TP Sel Vel Ref TP Low Vel Ref TP Hi Vel Reg TP Lo Vel Reg TP Hi Vel Reg TP Lo Vel Reg TP Hi Vel Reg TP Sel Vel Fdbk TP Low Vel Fdbk TP Low Tel Fdbk TP Sel Torq Ref TP Sel Torque Ref TP Torque TP Sel 1 Torque TP Data 1	77 78 79 80 81 82 83 84 85 86 87 88 89 405 406	SA Warn Select SA Fault Status
Tran	sistor Diag		Info		Motor Overload
256 Aut 257 Trai 258 Invo 259 Invo 260 Iq C	gic Options rotune Diag Sel nos Diag Disable erter Diag 1 erter Diag 2 Offset Offset	5 220 221 300 301 302 304	Drive SW Version Drive Type Base Drive Curr Base Line Volt Adapter ID Adapter Version Adapter Config Language Select SP Comm Retries	92 94 95 96 97	Mtr Overload Lim Service Factor Mtr Overld Spd 1 Mtr Overld Spd 2 Min Overload Lmt

PLC Comm Adapter Parameters

If your 1336 FORCE Drive is equipped with a PLC Comm Adapter Board, the parameters in the range from 300 to 500 are dedicated exclusively to the PLC Comm Adapter Board rather than the Standard Adapter Board. PLC Comm Adapter Parameters are divided into four files as they are with a Standard Adapter Board equipped Drive. The complete parameter table for a PLC Comm Adapter equipped 1336 Force is detailed in Figure 5.3. The table has been divided into Files, Groups and Elements for ease of reference. For a detailed description of PLC Comm Adapter parameters refer to the PLC Comm Adapter Reference Manual.

Figure 5.3. 1336 FORCE equipped with a PLC Comm Adapter Board

FILE 1 - Startup

Г	Orive Data Group	Г	Prive Tune Group		Limits Group
53 228 229 230 231 232 233 235 309	Torque Mode Sel Base Motor HP Base Motor Speed Base Motor Curr Base Motor Volt Base Motor Freq Motor Poles Encoder PPR Language Select	41 Auto Tune Speed 43 Vel Desired BW 44 Auto Tune Status 45 Vel Damp Factor 46 Total Inertia 139 KI Vel Loop 140 KP Vel Loop 141 KF Vel Loop 146 Velocity Feedback 234 Motor Inertia 256 AT Diag Sel 262 Phase Rot I Ref 263 Phas Rot Req Ref Monitor Group		59 125 126 127 128 174 175 176 177 178 179 180	Decel Time Rev Speed Limit Fwd Speed Limit Min Flux Level Pos Motor Tor Limit Neg Motor Tor Limit Motoring Power Limit Regen Power Limit Pos Motor Cur Lim Neg Motor Cur Limit
I	Fault Setup Group		Monitor Group		
86 87 88 89 90 91 92 94* 95 96 97	CP/Flt/Warn Config VP/Flt/Warn Config CP Warn Config VP Warn Config Absolute Overspeed Stall Delay Motor Ovload Lim Service Factor Motor Ovload Speed 1 Motor Ovload Speed 2 Min Overload Lim	8 147* 148 149 167* 168* 182 184 185 186 264 265 266 268 269 270 271	Motor Control Cntr Scaled Velocity Feedb Enc Pos Fdbk Lo Enc Pos Fdbk Hi Internal Torque Fdbk Internal Iq Ref Computed Power Torq Mode Stat Perunit Motor Current Perunit Motor Voltage Motor I Magn. Fdbk Motor Volt Fdbk Stator Frequency DC Bus Voltage Filtered Velocity Fdbk Inverter Temp Fdbk Limited Motor Flux	t ;	

Figure 5.3. PLC Comm Adapter Parameters (cont.)

FILE 2 – Communications I/O

Cha	nnel A Group	Ch	annel B Group	Logic	Group	Analog Input	Group	Analog Output Group
322 323 324 325 326 327 328 329 351 352 353 354 355 356 357 358 427	ChA RIO In 0 ChA RIO In 1 ChA RIO In 2 ChA RIO In 3 ChA RIO In 4 ChA RIO In 5 ChA RIO In 6 ChA RIO In 7 ChA RIO Out 0 ChA RIO Out 1 ChA RIO Out 2 ChA RIO Out 3 ChA RIO Out 4 ChA RIO Out 5 ChA RIO Out 5 ChA RIO Out 7 Redund Chan	330 331 332 333 334 335 336 337 359 360 361 362 363 364 365 366 432	ChB RIO In 0 ChB RIO In 1 ChB RIO In 1 ChB RIO In 2 ChB RIO In 3 ChB RIO In 4 ChB RIO In 5 ChB RIO In 6 ChB RIO In 7 ChB RIO Out 0 ChB RIO Out 1 ChB RIO Out 2 ChB RIO Out 3 ChB RIO Out 4 ChB RIO Out 5 ChB RIO Out 6 ChB RIO Out 7 ChB RIO Out 7 ChB RIO Out 7	56 Log 57 Log 59 Log 367 chA	cic Cmd cic Sts Lo cic Sts Hi cic Options c Logic Cmd c Logic Cmd	 394 Analog 395 Analog 396 Analog 397 Analog 398 Analog 	In 1 In 2 In 3 In 4 In 1 Off In 1 Scale In 2 Off In 2 Scale In 3 Off In 3 Scale	386 SP Analog Out 387 Analog Out 1 388 Analog Out 2 389 Analog Out 3 390 Analog Out 4 400 Analog Out 1 Off 401 Analog Out 1 Scale 403 Analog Out 2 Scale 404 Analog Out 3 Off 405 Analog Out 3 Scale 406 Analog Out 4 Off 407 Analog Out 4 Scale
Fau	lt Select/Status Gr	oup	SCANport Own	ers Group	SCAN	port Masks		SCANport I/O
77 78 79 80 81 82 83 84 85 86 87 88 89 425 426 430 431 436 437 438 439 440 441 442 443	Max Dyn Brake Pw Max Dyn Brake Ter Max Dyn Time Con Pwrup Flt Status Non-config sts CP Flt Status VP Flt Status CP Warn Status CP Flt Status CP Flt Select CP Warn Select VP Flt Select VP Warn Select ChA Flt Sel ChA Warn Sel ChB Flt Sel ChB Flt Status ChB Flt Status ChA Flt Status ChA Flt Status ChA Flt Status ChA Warn Sel ChA Flt Status ChA Warn Sel ChA Flt Status ChA Warn Status ChB Warn Status	mp	369 Stop Owne 370 Dir. Owne 371 Start Owne 372 Jog 1 Own 373 Jog 2 Own 374 Set Ref Ox 375 Local Owr 376 Flux Owne 377 Trim Own 378 Ramp Owr 379 Clr Flt Ow	r er er er vner er er er	409 Dir 410 Star 411 Jog 412 Ref 413 Cle 414 Res	t Enable Mask ection Mask rt Mask Mask erence Mask ar Fault Mask eet Drv Mask eal Mask	315 316 317 318 319 320 321 343 344 345 346 347 348 349	Data In A1 Data In A2 Data In B1 Data In B2 Data In C1 Data In C2 Data In D1 Data In D2 Data Out A1 Data Out B1 Data Out C1 Data Out C1 Data Out D1
		Orive 7	To Drive					
9 10 11 12 13 14 15 16 17 18 19 20	D2D Tsk Interval D2D Baud Rate D2D Xmit Addr D2D Rcv 1 Addr D2D Rcv 2 Addr D2D Xmit Ind 1 D2D Xmit Ind 2 D2D Rcv 1 Ind 1 D2D Rcv 1 Ind 2 D2D Rcv 2 Ind 1 D2D Rcv 2 Ind 2 D2D Rcv 2 Ind 2 D2D Xmit Data 1		21 D2D Xmit 22 D2D Rev 23 D2D Rev 24 D2D Rev 25 D2D Rev	1 Data 1 1 Data 2 2 Data 1				

Figure 5.3. PLC Comm Adapter Parameters (cont.)

FILE 3 – Velocity Torque

	Velocity Ref	Logic	Veloci	ty Fdbk	Torque Auto	otune	Process Trim
100 101 102 103 104 105 106 107 108 109 110 117 118 119 120 121 122 123 125 126 127 128 129 130 131 132 133	Vel Ref 1 Lo VeL Ref 2 Hi Vel Scale Factor 1 Vel Ref 2 Lo Vel Ref 2 Hi Vel Scale Factor 2 Vel Trim Lo Vel Trim Hi Vel Ref Testpt Lo Vel Ref Testpt Hi Vel Ref Testpt Sel Jog Speed 1 Jog Speed 2 Preset Speed 1 Preset Speed 2 Preset Speed 3 Preset Speed 4 Preset Speed 5 Accel Time Decel Time Rev Speed Limit Fwd Speed Limit Max Rev Speed Trim Max Fwd Speed Trim Droop Percent Vel Ref Out Lo Vel Ref Out Hi	52 Logic Cmd 54 Local Input Sts 55 Local Output Sts 56 Local Sts Lo 57 Local Sts Hi 58 Torq Stop Config. 59 Logic Options 60 At Setpt 1 61 At Setpt 2 62 Over Setpt 1 63 Over Setpt 2 64 Over Setpt 3 65 Over Setpt 4 66 Setpt Select 67 Speed Stpt Tol 68 Cur Setpt Tol 69 Zero Speed Tol 70 Logic Testpt Data 71 Logic Testpt Sel 72 Stop Dwell 367 Pt6 Logic Cmd	142 KF Err Filt BW 143 Vel Fdbk Testpt Lo 144 Vel Fdbk Testpt Hi 145 Vel Fdbk Tesetpt Sel 146 Velocity Fdbk 147 Scaled Vel Fdbk 148 Enc. Pos Fdbk Lo 149 Enc. Pos Fdbk Hi 150 Fdbk Device Type 151 Fdbk Tracker Gain 152 Fdbk Filter Sel 153 Kn–Fdbk Filter BW 155 Tach Velocity 269 Filtered Vel Fdbk		40 AT Torque Limit 41 AT Speed 236 Stator Resistance 237 Leakage Inductance 238 Rated Flux Current 240 Rated Torque Current 241 Rated Torque Volt 242 Rated Flux Voltage 243 Vde Max 244 Vqe Max 245 Vde Minimum 246 Base Slip Freq 247 Base Slip Freq Max 248 Base Slip Freq Min 249 Kp Slip Regulator 250 Ki Slip Regulator 251 Kp Flux Regulator 252 Ki Flux Regulator 253 AT Diag Select 264 Phase Rot Cur Ref 265 Phase Rot Freq Ref 276 Torque Testpoint Sel 277 Torque Testpoint Data 278 Phase Rot Errors 279 Rs Test Errors 279 Id Test Errors 279 Torque Calc Errors		26 Process Trim Output 27 Process Trim Ref 28 Proc Trim Fdbk 29 Proc Trim Select 30 Proc Trim Filt BW 31 Proc Trim Data 32 Proc Trim KI 33 Proc Trim KP 34 Proc Trim Lo Lim 35 Proc Trim Out Gain 37 Proc Trim Testpt 38 Proc Trim Testpt Sel
	Velocity Reg	Torque 1	Ref	Torq	ue Block	,	Velocity Autotune
134 135 136 137 138 139 140 141	Vel Regulator Out Velocity Reg Testpt Lo Velocity Reg Testpt Hi Velocity Reg Testpt Sel Velocity Error KI Vel Loop KP Vel Loop KF Vel Loop	157 Notch Filter (Freq Que ef lef 1 Percent 1 lef 2 Percent 2 les Step ef estpoint Data estpoint Sel el ef Limit L	223 Prechai 224 Underv 225 Bus Pre 226 Bus Rie 227 CP Ope 287 Ki Frec 288 Kp Fre 289 Kff Fre 290 Ksel Fr 291 Freque 292 Track F	r Carrier Freq. rge Ridethru Sel roltage Setpt echarge Timeout dethru Timeout dethru Timeout rerating Options quency Regulator quency Regulator requency Regulator requency Regulator rey Track Filter Filter Type ncy Trim Filter	41 A' 43 V' 44 A' 45 V' 46 To 47 A' 48 A' 139 K' 140 K' 141 K' 234 M	Γ Torque Lim Γ Speed P Desired BW uto Tune Status P Damping Factor otal Inertia Γ Testpt Data Γ Testpt Sel I Vel Loop P Vel Loop F Vel Loop Totor Inertia Γ Diag Select

Figure 5.3. PLC Comm Adapter Parameters (cont.)

FILE 4 - Diagnostics

Monitor	Testpoints	Fault Select/Status	Trend Setup*
8 Motor Control Counter 147 Scaled Velocity Fdbk 148 Enc Pos Fdbk Lo 149 Enc Pos Fdbk Hi 167 Internal Torque Fdbk 168 Internal Iq Ref 182 Computed Power 185 Perunit Motor Current 186 Perunit Motor Voltage 264 Motor I Magn. Fdbk 265 Motor Volt Magn. 266 Stator Frequency 268 DC Bus Voltage 269 Filtered Vel Fdbk 270 Inverter Temp Fdbk 271 Limited Motor Flux	47 AT Testpt Data 48 AT Testpt Sel 70 Logic Testpt Data 71 Logic Testpt Data 98 Fault Testpt Data 99 Fault Testpt Sel 108 Velocity Ref Testpt Lo 109 Velocity Ref Testpt Hi 110 Velocity Reg Testpt Sel 135 Velocity Reg Testpnt Lo 136 Velocity Reg Testpnt Hi 137 Velocity Reg Testpnt Hi 137 Velocity Reg Testpt Sel 143 Vel Fdbk Testpt Lo 144 Vel Fdbk Testpt Hi 145 Vel Fdbk Testpt Sel 172 Torque Ref Testpt Data 173 Torque Ref Testpt Sel 273 Torque Testpt Data	77 Max Dyn Brake Pwr 78 Max Dyn Brake Temp 79 Max Dyn Time Const 80 Pwrup Flt sts 81 Non-config sts 82 CP Flt Status 83 VP Flt Status 84 CP Warn Status 85 VP Warn Status 86 CP Flt Select 87 CP Warn Select 88 VP Flt Select 89 VP Warn Select 425 ChA Flt Sel 426 ChA Warn Sel 430 ChB Flt Sel 431 ChB Warn Sel 431 ChB Warn Sel 436 ChA Flt Status 437 ChA Warn Status 438 ChB Flt Status 439 ChB Warn Status 439 ChB Warn Status 440 SP Flt Select 441 SP Warn Ste 442 SP Warn Sts 443 SP Warn Sts	455 Trend 1 Operand X 456 Trend 1 Operand Y 457 Trend 1 Operator 458 Trend 1 Rate 459 Trend 1 Post Samples 460 Trend 1 Select 465 Trend 2 Operand X 466 Trend 2 Operand Y 467 Trend 2 Operand Y 467 Trend 2 Post Samples 470 Trend 2 Post Samples 470 Trend 2 Post Samples 470 Trend 3 Post Samples 471 Trend 3 Operand X 476 Trend 3 Operand X 476 Trend 3 Operand X 477 Trend 3 Operand X 478 Trend 3 Rate 479 Trend 3 Rate 479 Trend 3 Post Samples 480 Trend 3 Continuous Trig 481 Trend 3 Select 485 Trend 4 Operand X 486 Trend 4 Operand Y 487 Trend 4 Operand Y 487 Trend 4 Operand Y 488 Trend 4 Rate 489 Trend 4 Post Samples 490 Trend 4 Continuous Trig 491 Trend 4 Select
Transistor Diag	Info	Trend I/O*	
 59 Logic Options 256 AT Diag Select 257 Trans Diag Config 258 Inv. Dig. Result 1 259 Inv. Diag. Result2 260 Iq Offset 261 Id Offset 	1 Drive Software Ver 5 Power Structure Type 220 Rated Inverter Out Amps 221 Rated Inverter In Volts 300 Adapter ID 301 Adapter Version 302 Adapter Config 303 ChA Dip Switch 304 ChB Dip Switch 305 ChA LED State 306 CHB LED State 307 PLC Comm Bd Sts 309 Language Select	454 Trend In 1 462 Trend In 1 Status 463 Trend Out 1 464 Trend In 2 472 Trend In 2 Status 473 Trend Out 2 Status 474 Trend In 3 482 Trend In 3 Status 483 Trend Out 3 484 Trend In 4 492 Trend In 4 492 Trend In 4 Status 493 Trend Out 4	

 $[{]m *Note:}$ Trending Functions are NOT implemented in Version 2.xx software.

ControlNet Parameters

The complete parameter table for a ControlNet Adapter Board equipped 1336 FORCE is detailed in Figure 5.4. The table has been divided into Files, Groups & Elements for ease of reference. For a detailed description of ControlNet parameters, refer to the ControlNet Adapter Reference Manual.

Figure 5.4 1336 FORCE equipped with a ControlNet Adapter Board File 1 – Startup^①

Drive Data Gr	oup	Drive Tune G	roup	Limits Grou	ıp
Language Sel	309	Autotun Diag Sel	256	Accel Time	125
Encoder PPR	235	Vel Feedback	146	Decel Time	126
Base Motor Speed	229	Vel Desired BW	43	Logic Options	59
Base Motor HP	228	Auto Tune Status	44	Fwd Speed Limit	128
Base Motor Curr	230	Motor Inertia 234		Rev Speed Limit	127
Base Motor Volt	231	Total Inertia	46	Pos Mtr Cur Lmt	179
Base Motor Freq	232	Ki Velocity Loop	139	Neg Mtr Cur Lmt	180
Motor Poles	233	Kp Velocity Loop	140	Pos Mtr Tor Lmt	175
Torque Mode Sel	53	Kf Velocity Loop	141	Neg Mtr Tor Lmt	176
		Vel Damp Factor	45	Motor Power Lmt	177
		Auto Tune Speed	41	Regen Power Lmt	178
		Ph Rot Cur Ref	262	Di/Dt Limit	181
		Ph Rot Freq Ref	263	Min Flux Level	174

Fault Setup Grou	ир	Monitor Gro	up
CP Flt/Warn Cfg	86	Filt Vel Fdbk	269
CP Warn/None Cfg	88	Scaled Vel Fdbk	147
VP Flt/Warn Cfg	87	Int Torque Ref	167
VP Warn/None Cfg	89	Internal Iq Ref	168
Absolute Overspd	90	Computed Power	182
Stall Delay	91	DC Bus Voltage	268
Mtr Overload Lim	92	Motor Volt Fdbk	265
Mtr Overload Spd1	95	Motor Curr Fdbk	264
Mtr Overload Spd2	96	Freq Command	266
Min Overload Lmt	97	Inv Temp Fdbk	270
Service Factor	94	Torque Mode Stat	184
		Lim Motor Flux	271
		Enc Pos Fdbk Low	148
		Enc Pos Fdbk Hi	149
		MCB Counter	8

① Shaded parameters are Standard 1336 FORCE parameters.

File 2 – Communications I/O

Channel A Gi	oup	 Logic Group)	Analog Input Group		Analog Output Group	
CntrlNet In 0	322	ChA Logic Cmd In	367	Analog In 1	339	Analog Out 1	387
CntrlNet In 1	323	Logic Command	52	An In 1 Offset	392	An Out 1 Offset	400
CntrlNet In 2	324	Logic Status Low	56	An In 1 Scale	393	An Out 1 Scale	401
CntrlNet In 3	325	Logic Status Hi	57	Analog In 2	340	Analog Out 2	388
CntrlNet In 4	326	Logic Options	59	An In 2 Offset	394	An Out 2 Offset	402
CntrlNet In 5	327			An In 2 Scale	395	An Out 2 Scale	403
CntrlNet In 6	328			Analog In 3	341	Analog Out 3	389
CntrlNet In 7	329			An In 3 Offset	396	An Out 3 Offset	404
CntrlNet Out 0	351			An In 3 Scale	397	An Out 3 Scale	405
CntrlNet Out 1	352			Analog In 4	342	Analog Out 4	390
CntrlNet Out 2	353			An In 4 Offset	398	An Out 4 Offset	406
CntrlNet Out 3	354			An In 4 Scale	399	An Out 4 Scale	407
CntrlNet Out 4	355			SP Analog In	338	SP Analog Out	386
CntrlNet Out 5	356			SP Analog Sel	391		
CntrlNet Out 6	357						
CntrlNet Out 7	358						

Drv – Drv		Fault Sel/Sts ³		SCANport Owr	SCANport Owners		S	SCANport I/O	
D2D Tsk Interval	9	SP Fault Sts	442	Stop Owner	369	Port Enable Mask	408	Data In A1	314
D2D Baud Rate	10	SP Warn Sts	443	Start Owner	371	Start Mask	410	Data In A2	315
D2D Xmit Addr	11	SP Fault Sel	440	Jog1 Owner	372	Jog Mask	411	Data In B1	316
D2D Xmit Ind 1	14	SP Warn Sel	441	Jog2 Owner	373	Direction Mask	409	Data In B2	317
D2D Xmit Data 1	20	ICN Fault Sel	425	Direction Owner	370	Reference Mask	412	Data In C1	318
D2D Xmit Ind 2	15	ICN Warn Sel	426	Set Ref Owner	374	Local Mask	415	Data In C2	319
D2D Xmit Data 2	21	CP Flt Status	82	Local Owner	375	Clear Fault Mask	413	Data In D1	320
D2D Rcv 1 Addr	12	VP Flt Status	83	Flux Owner	376	Reset Drive Mask	414	Data In D2	321
D2D Rcv 1 Ind 1	16	CP Warn Status	84	Trim Owner	377			Data Out A1	343
D2D Rcv 1 Data 1	22	VP Warn Status	85	Ramp Owner	378			Data Out A2	344
D2D Rcv 1 Ind 2	17	CP Fault Select	86	Clr Fault Owner	379			Data Out B1	345
D2D Rcv 2 Data 2	23	CP Warn Select	87					Data Out B2	346
D2D Rcv 2 Addr	13	VP Fault Select	88					Data Out C1	347
D2D Rcv 2 Ind 1	18	VP Warn Select	89					Data Out C2	348
D2D Rcv 2 Data 1	24	Ncfg Flt Status	81					Data Out D1	349
D2D Rcv 2 Ind 2	19	PwrUp Flt Status	80					Data Out D2	350
D2D Rcv 2 Data 2	25	Max DB Power	77						
		Max DB Temp	78						
		DB Time Const	79						

 $^{^{\}scriptsize \scriptsize (1)}$ Shaded parameters are Standard 1336 FORCE parameters.

File 3 – Velocity Torque^①

Velocity Ref		Logic		Velocity Fdbk	(Velocity Reg		Torque Ref	
Preset Speed 1	119	ChA Logic Cmd In	367	Filt Vel Fdbk	269	Vel Reg Output	134	Torque Mode Sel	53
Preset Speed 2	120	Logic Command	52	Vel Feedback	146	Ki Velocity Loop	139	Torq Mode Stat	184
Preset Speed 3	121	Torq Stop Confg	58	Scaled Vel Fdbk	147	Kp Velocity Loop	140	Pos Mtr Cur Lmt	179
Preset Speed 4	122	Logic Options	59	Enc Pos Fdbk Low	148	Kf Velocity Loop	141	Neg Mtr Cur Lmt	180
Preset Speed 5	123	Logic Status Low	56	Enc Pos Fdbk Hi	149	Velocity Error	138	Int Torque Ref	167
Jog Speed 1	117	Logic Status Hi	57	Fdbk Track Gain	151	Vel Reg TP Sel	137	Internal Iq Ref	168
Jog Speed 2	118	At Setpoint 1	60	Fdbk Filter Gain	153	Vel Reg TP Low	135	Computed Power	182
Vel Ref 1 Low	100	At Setpoint 2	61	Fdbk Filter BW	154	Vel Reg TP Hi	136	Torq Lmt Stat	183
Vel Ref 1 Hi	101	Over Setpoint 1	62	Fdbk Device Type	150			External Iq Ref	161
Vel Ref 2 Low	103	Over Setpoint 2	63	Fdbk Filter Sel	152			Ext Torq Ref 1	162
Vel Ref 2 Hi	104	Over Setpoint 3	64	Tach Velocity	155			Ext Torq Ref 2	164
Vel Scale Fctr 1	102	Over Setpoint 4	65	Error Filter BW	142			Slave Torque % 1	163
Vel Scale Fctr 2	105	Setpoint Select	66	Vel Fdbk TP Sel	145			Slave Torque % 2	165
Vel Trim Low	106	Speed Setpnt Tol	67	Vel Fdbk TP Low	143			Ext Torque Step	166
Vel Trim Hi	107	Cur Setpoint Tol	68	Vel Fdbk TP Hi	144			Notch Filter Freq	156
Vel Ref Out Low	132	Zero Speed Tol	69					Notch Filter Q	157
Vel Ref Out Hi	133	Local In Status	54					Min Flux Level	174
Accel Time	125	Stop Dwell	72					Pos Mtr Tor Lmt	175
Decel Time	126	Local Out Status	55					Neg Mtr Tor Lmt	176
Fwd Speed Limit	128	Logic Tstpt Sel	71					Motor Power Lmt	177
Rev Speed Limit	127							Regen Power Lmt	178
Max Rev Spd Trim	129							Di/Dt Limit	181
Max Fwd Spd Trim	130							Torq Ref TP Sel	173
Droop Percent	131							Torque Ref TP	172
Vel Ref TP Sel	110								
Vel Ref TP Low	108								
Vel Ref TP Hi	109								
SP Default Ref	416								

^① Shaded parameters are Standard 1336 FORCE parameters.

Torque Bloo	:k ^①	Process Tri	m	Torque Aut	otune	Velocity Auto	tune
PWM Frequency	222	Proc Trim Ref	27	Autotun Diag Sel	256	Autotun Diag Sel	256
Prech Rdthru Sel	223	Proc Trim Fdbk	28	Ph Rot Cur Ref	262	Auto Tune Torque	40
Under Volt Stpnt	224	Proc Trim Output	26	Auto Tune Torque	40	Auto Tune Speed	41
Prechrg Timeout	225	Proc Trim Select	29	Auto Tune Speed	41	Total Inertia	46
Ridethru Timeout	226	Proc Trim Ki	32	Ph Rot Freq Ref	263	Motor Inertia	234
CP Options	227	Proc Trim Kp	33	Phs Test Rot Error	294	Auto Tune Status	44
Ki Freq Reg	287	Proc Trim Lo Lmt	34	Lo Test Error	295	Vel Desired BW	43
Kp Freq Reg	288	Proc Trim Hi Lmt	35	Rs Test Error	296	Vel Damp Factor	45
Kff Freq Reg	289	Proc Trim Fltr W	30	ld Test Error	297	Ki Velocity Loop	139
Ksel Freq Reg	290	Proc Trim Data	31	Torq Calc Error	298	Kp Velocity Loop	140
Freq Track Filt	291	Proc Trim Out K	36	Stator Res	236	Kf Velocity Loop	141
Track Filt Type	292	Proc Trim TP Sel	38	Leakage Ind	237	Auto Tune TP Sel	48
Freq Trim Filter	293	Proc Trim TP	37	Base Flux Cur	238	Auto Tune TP	47
				Base Torque Cur	240		
				Base Torque Volt	241		
				Base Flux Volt	242		
				Vde Max	243		
				Vqe Max	244		
				Vde Min	245		
				Base Slip Freq	246		
				Base Slip Fr Max	247		
				Base Slip Fr Min	248		
				Kp Slip	249		
				Ki Slip	250		
				Kp Flux	251		
				Ki Flux	252		
				Torq TP Sel 1	273		
				Torq TP Data 1	274		

 $^{^{\}scriptsize \textcircled{\tiny 1}}$ Shaded parameters are Standard 1336 FORCE parameters.

File 4 - Diagnostics¹

Monitor		Testpoi	ints	Fault Sel/S	Sts	Motor Overl	oad
Filt Vel Fdbk	269	Vel Fdbk TP Sel	145	SP Fault Sts	442	Mtr Overload Lim	92
Scaled Vel Fdbk	147	Vel Fdbk TP Low	143	SP Warn Sts	443	Mtr Overld Spd 1	95
Int Torque Ref	167	Vel Fdbk TP Hi	144	SP Fault Sel	440	Mtr Overld Spd 2	96
Internal Iq Ref	168	Vel Reg TP Sel	137	SP Warn Sel	441	Min Overload Lmt	97
Computed Power	182	Vel Reg TP Low	135	ICN Flt Sel	425	Service Factor	94
DC Bus Voltage	268	Vel Reg TP Hi	136	ICN Warn Sel	426		
Motor Volt Fdbk	265	Vel Ref TP Sel	110	CP Flt Status	82		
Motor Curr Fdbk	264	Vel Ref TP Low	108	VP Flt Status	83		
Freq Command	266	Vel Ref TP Hi	109	CP Warn Status	84		
Inv Temp Fdbk	270	Auto Tune TP Sel	48	VP Warn Status	85		
Torq Mode Stat	184	Auto Tune TP	47	CP Fault Select	86		
Lim Motor Flux	271	Logic Tstpt Sel	71	CP Warn Select	87		
Enc Pos Fdbk Low	148	Logic Tstpt Data	70	VP Fault Select	88		
Enc Pos Fdbk Hi	149	Fault TP Sel	99	VP Warn Select	89		
MCB Counter	8	Fault TP	98	Ncfg Flt Status	81		
		Torq Ref TP Sel	173	PwrUp Flt Status	80		
		Torque Ref TP	172	Max DB Power	77		
		Torq TP Sel 1	273	Max DB Temp	78		
		Torq TP Data 1	274	DB Time Const	79		

 $^{^{\}odot}$ Shaded parameters are Standard 1336 FORCE parameters.

Transistor Diag [⊕]		Trer	nd I/O	Trend Setu	ıp	Info	
Autotun Diag Sel	256	Tr1 Status	462	Tr1 Opnd Parm X	455	Drive SW Version	1
Logic Options	59	Tr2 Status	472	Tr1 Opnd Parm Y	456	Drive Type	5
Tran Diag Disabl	257	Tr3 Status	482	Tr1 Operator	457	Base Drive Curr	220
Inverter Diag 1	258	Tr4 Status	492	Tr1 Sample Rate	458	Base Line Volt	221
Inverter Diag 2	259	Trend In 1	454	Tr1 Post Samples	459	Adapter Version	301
Iq Offset	260	Trend In 2	464	Tr1 Cont Trigger	460	Adapter ID	300
Id Offset	261	Trend In 3	474	Tr1 Select	461	Language Sel	309
		Trend In 4	484	Tr2 Opnd Parm X	465	SP Comm Retries	302
		Trend Out 1	463	Tr2 Opnd Parm Y	466	ICN Status	307
		Trend Out 2	473	Tr2 Operator	467	ChA LED State	305
		Trend Out 3	483	Tr2 Sample Rate	468	DIP Switch ChA	303
		Trend Out 4	493	Tr2 Post Samples	469		
				Tr2 Cont Trigger	470		
				Tr2 Select	471		
				Tr3 Opnd Parm X	475		
				Tr3 Opnd Parm Y	476		
				Tr3 Operator	477		
				Tr3 Sample Rate	478		
				Tr3 Post Samples	479		
				Tr3 Cont Trigger	480		
				Tr3 Select	481		
				Tr4 Opnd Parm X	485		
				Tr4 Opnd Parm Y	486		
				Tr4 Operator	487		
				Tr4 Sample Rate	488		
				Tr4 Post Samples	489		
				Tr4 Cont Trigger	490		
				Tr4 Select	491		

 $^{^{\}scriptsize \scriptsize (1)}$ Shaded parameters are Standard 1336 FORCE parameters.

Parameter Descriptions

A detailed description of each 1336 FORCE Parameter is contained in the following listing. The parameters are listed in numerical order.

Take note that some parameters are used more than once in the 1336 FORCE, and may be located in more than one File and Group. To determine if a parameter is used in more than one application, refer to the numerical list which begins on Page 5-3.

NOTE: The following parameter descriptions in the range from 300 to 500 cover the Standard Adapter Only! If you have a PLC Comm Adapter equipped drive, and wish to refer to PLC Comm parameter descriptions, refer to the PLC Comm User Manual. If you have a ControlNet Adapter equipped drive, parameter descriptions are provided at the end of this chapter.

NOTE: If you wish to record parameter values and links that have been set for your particular application, a User Parameter Sheet is provided in Appendix C.

Drive Software Version [Drive SIO Version] This parameter stores the present software revision for the firmware product. The firmware value represents the software version in the range 00.0 to 99.9.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	01 Source x.xx Display units x 100 1.01 0.00 9.99
Power Structure Type [Drive Type] This number is a unique code that identifies the drive's current and voltage ratings. This number originates from a serial EE memory located on the Drive's Base Drive Board.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	05 Source x None 0 0 65635
Motor Control Counter [MCB Counter] This parameter contains a counter that increments by 1 every 0.1 seconds. It is intended to be a monitor parameter to indicate that the Motor Control Board Velocity Processor firmware is executing.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	08 Source x.x sec None x 10 sec 0.0 sec 65535.5 sec
Drive Link Task Interval [D2D Tsk Interval] This parameter specifies the interval at which drive to drive data will be transmitted and received. The intervals are 2 ms intervals up to 20 ms. 1 = 2 ms scan 2 = 4 ms scan 3 = 6 ms scan 4 = 8 ms scan 7 = 14 ms sca 7 = 14 ms sca	9 = 18 ms sc	an
Drive Link Baud Rate [D2D Baud Rate] This word parameter specifies the baud rate used on the drive-to-drive link (CAN) communication interface as follows: 00H = 125K baud 01H = 250K baud 02H = 500K baud	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	10 Sink Kbaud None 0 0
Drive Link Transmit Address [D2D Xmit Addr] This parameter specifies the node address at which two words of data will be transmitted. A value of zero disables the transmit function.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	11 Sink x None 0 0 64
Drive Link Receive 1 Address [D2D Rcv 1 Addr] This parameter specifies the node address at which two words of data will be received. A value of zero disables the receive function.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	12 Sink x None 0 0

Drive Link Receive 2 Address [D2D Rcv 2 Addr] This parameter specifies the node address at which two words of data will be received. A value of zero disables the receive function.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	13 Sink x None 0 0 64
Drive Link Transmit Indirect 1 [D2D Xmit Ind 1] This is a word parameter defining the parameter number which data will be fetched from to be transmitted in the high speed communication network (CAN) for the first word location of the transmitted message.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	14 Sink x None 20 1 219
Drive Link Transmit Indirect 2 [D2D Xmit Ind 2] This is a word parameter defining the parameter number which data will be fetched from to be transmitted in the high speed communication network (CAN) for the 2nd word location of the transmitted message.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	15 Sink x None 21 1 219
Drive Link Receive 1, Indirect 1 [D2D Rcv 1, Ind 1] This parameter specifies the parameter number where the first word of data will be put after it has been received from the drive to drive communication.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	16 Sink x None 22 1 219
Drive Link Receive 1, Indirect 2 [D2D Rcv 1, Ind 2] This parameter specifies the parameter number where the second word of data will be put after it has been received from the drive to drive communication.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	17 Sink x None 23 1 219
Drive Link Receive 2, Indirect 1 [D2D Rcv 2, Ind 1] This parameter specifies the parameter number where the first word of data will be put after it has been received from the drive to drive communication.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	18 Sink x None 24 1 219
Drive Link Receive 2, Indirect 2 [D2D Rcv 2, Ind 2] This parameter specifies the parameter number where the second word of data will be put after it has been received from the drive to drive communication.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	19 Sink x None 25 1 219

Drive Link Transmit Data 1 [D2D Xmit Data1] This parameter is the default data location of the first word of data for transmit.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	20 Sink +/- x None 0 -32767 +32767
Drive Link Transmit Data 2 [D2D Xmit Data2] This parameter is the default data location of the second word of data for transmit.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	21 Sink +/- x None 0 -32767 32767
Drive Link Receive 1, Data 1 [D2D Rcv 1, Data1] This parameter is the default data location of the first word of data for receive 1	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	22 Source +/- x None 0 -32767 32767
Drive Link Receive 1, Data 2 [D2D Rcv 1, Data 2] This parameter is the default data location of the second word of data for receive 1	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	23 Source +/- x None 0 -32767 32767
Drive Link Receive 2, Data 1 [D2D Rcv 2, Data 1] This parameter is the default data location of the first word of data for receive 2	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	24 Source +/- x None 0 -32767 32767
Drive Link Receive 2, Data 2 [D2D Rcv 2, Data 2] This parameter is the default data location of the second word of data for receive 2	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	25 Source +/- x None 0 -32767 32767
Process Trim Output [Proc Trim Output] This parameter represents the scaled and limited output of the process trim function. Process Trim consists of a general purpose PI regulator that uses unspecified reference and feedback inputs.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	26 Source +/- x.x% 4096 = 100% trim + 0.0% - 800.0% + 800.0%

Process Trim Reference [Proc Trim Ref] This is the reference input value for process trim. The Process Trim Output is updated based on the value of this input.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	27 Sink +/- x.x% 4096 = 100% trim +0.0% -800.0% +800.0%
Process Trim Feedback [Proc Trim Fdbk] This is the feedback input value for process trim. The Process Trim Output parameter is updated based on the value of this input.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	28 Sink +/- x.x% 4096 = 100% trim + 0.0% - 800.0% + 800.0%
Process Trim Select [Proc Trim Sel] This is a bit coded word of data containing several selection options for the process trim regulator as follows: Bit 0 Trim the Velocity Reference Bit 1 Trim the Torque Reference Bit 2 Select Velocity Inputs Bit 3 Set Output Option Bit 4 Preset Integrator Option Bit 5 Force ON Trim Limit option	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	29 Sink Bits None 0000 0000 0000 0000 0000 0000 0000 00
Process Trim Filter Bandwidth [Proc Trim Filtr W] This parameter determines the bandwidth of a single pole filter used with the error input for process trim. The output of this filter is used as the input to the process trim regulator.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	30 Sink x radians/sec 1 = radians/sec 0 radians/sec 0 radians/sec 240 radians/sec
Process Trim Data [Proc Trim Data] This parameter is used to preset the output of the process trim regulator when either the "Set Output Option" or "Preset Integrator Option" is selected in parameter 29.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	31 Sink +/- x.x% 4096 = 100.0% preload +0.0% -800.0% +800.0%
Process Trim KI Gain [Proc Trim Ki] This parameter controls the integral gain of the process trim regulator. If process trim equals 1.0, then the process trim PI regulator output will equal 1 pu in 1 second, for 1 pu process trim error.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	32 Sink x.xxx 4096 = 1.000 Ki gain 1.000 0.000 16.000

Process Trim KP Gain [Proc Trim Kp] This parameter controls the proportional gain of the process trim regulator. If the KP process trim is equal to 1.0, then the process trim PI regulator output will equal 1 pu for 1 pu process trim error.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	33 Sink x.xxx 4096 = 1.0000 Kp gain 1.000 0.000 16.000
Process Trim Low Limit [Proc Trim Lo Lmt] The output of the process trim regulator is limited by adjustable high and low limits. This parameter specifies the low limit of the process trim output value.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	34 Sink +/- x.x% 4096 = 100% trim -100.0% -800.0% +800.0%
Process Trim High Limit [Proc Trim Hi Lmt] The output of the process trim regulator is limited by adjustable high and low limits. This parameter specifies the high limit of the process trim output value.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	35 Sink +/- x.x% 4096 = 100% trim - 100% - 800% + 800%
Process Trim Output Gain [Proc Trim Out K] The output of the process trim regulator is scaled by a gain factor. This occurs just before the upper and lower limit. This parameter specifies the gain value to use.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	36 Sink +/- x.xx 2048 = +1.00 gain + 1.00 - 16.00 + 16.00
Process Trim Testpoint [Proc Trim TP] This parameter indicates the value of the internal location selected by the Process Trim Testpoint Select parameter.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	37 Source +/- x None +0 -32767 +32767
Process Trim Testpoint Select [Proc Trim TP Sel] This parameter selects which location of the Process Trim Controller will become the testpoint value as follows: Value Process Trim Access Point 0 Zero 1 Process Trim Error 2 Process Trim Filter Output 3 Process Trim Control Word	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	38 Sink x None 0 0 3
Auto Tune Torque Limit [Auto Tune Torque] This parameter specifies the motor torque that is applied to the motor during the Velocity motor test and the Velocity system test. 4096 = 100% rated motor torque.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	40 Sink x.x % 4096 @ rated motor torque 50.0 % 25.0 % 100.0 %

Auto Tune Speed [Auto Tune Speed] This parameter is the speed of the motor during an auto tune velocity motor test, system test, and system ID measure. 4096 is base speed	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	41 Sink +/- x.x rpm 4096 @ Base Motor Speed 0.85 x Base Motor Speed 0.3 x Base Motor Speed Base Motor Speed
VP Desired Bandwidth [Vel Desired BW] This parameter specifies the velocity loop bandwidth requested by the User and determines the dynamic behavior of the velocity loop. The maximum value for this parameter is changed by the drive when a request is made to update the the velocity loop gains. The vel loop becomes more responsive and is able to track a faster	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	43 Sink x.xx rad/sec Display units x 100 5.00 rad/sec 0.01 rad/sec 100.00 rad/sec
changing vel ref as bandwidth is increased. System and noise limitations will establish a practical upper limit however.		
Autotune Status [Auto Tune Status] This parameter indicates the status of certain conditions related to the autotune function. This is a bit–coded parameter that is not changeable by the user. Bit 0 = Executing Bit 1 = Complete	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	44 Source bits value (of bits) 0000 0000 0000 0000 0000 0000 0000 00
Bit 2 = Fail Bit 3 = Abort Bit 4 = Flux Active Bit 5 = Not Ready Bit 6 = Not Zero Spd Bit 7 = Running	Bit 8 – 11 = Not Used Bit 12 = Timeout Bit 13 = No Trq Lim	
VP Damping Factor [Vel Damp Factor] This parameter determines the dynamic behavior of the velocity loop. The damping factor influences the amount of overshoot the velocity loop will exhibit during a transient.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	45 Sink x.x 2048 = 1.0 damping 1.0 0.5 3.0
Total Inertia [Total Inertia] This parameter represents the time, in seconds, for a motor coupled to a load to accelerate from zero to base speed, at rated motor torque. This parameter is calculated by the Autotune System Inverter Test.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	46 Sink x.xx sec Display units x 100 2.00 sec 0.01 sec 655.00 sec
Autotune Testpoint Data [Auto Tune TP] This parameter indicates the value of the internal location selected by the Autotune TP Sel parameter, 48.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	47 Source Bits None 0000 0000 0000 0000 0000 0000 0000 00

Auto Tune Testpoint Select

[Auto Tune TP Sel]

This parameter selects what internal location of the Velocity Auto Tune Controller will become the testpoint value shown in P47. The internal locations available are:

Parameter Number	48
Parameter Type	Sink
Display Units	None
Drive Units	None
Factory Default	0
Minimum Value	0
Maximum Value	10
Enums:	

Select Value	Autotune Access Point	Select Value	Autotune Access Point
0	Zero	5	Torque Limit for autotune
1	Autotune Status Bits	6	Autotune State Word 1
2	Autotune Inhibit Word (all zero = OK)	7	Autotune State Word 2
3	Autotune Error Word (all zero = OK)	8	Autotune Control Bits
4	Calculated Friction (4096 @ 1 pu)	9	Minimum Limit for di/dt to acheive requested bandwidth
	, , ,	10	Minimum error filter bandwidth

Logic Command Word

[Logic Command]

This word parameter contains data used to Control Drive logic operation. If a bit is set the function is enabled, otherwise it is disabled (inactive).

Parameter Number	52
Parameter Type	Source
Display Units	Bits
Drive Units	None
Factory Default	0000 0000 0000 0000
Minimum Value	0000 0000 0000 0000
Maximum Value	1111 1111 1111 1111

Torque Mode Select

[Torque Mode Sel]

This is a word parameter used to select the source for the drive torque reference. The operation of this parameter functions as a selector switch. The position of the selector determines the torque reference selection as follows:

Parameter Number	53
Parameter Type	Sink
Display Units	X
Drive Units	None
Factory Default	1
Minimum Value	0
Maximum Value	5

Value	Description	Value	Description
0	Zero Torque	3	Min Select Speed/Torque (Selects the smallest value when the torque
1	Velocity Regulate		reference and the torque generated from the speed are compared.)
2	External Torque	4	Max Select Speed/Torque (Selects the largest value when the torque reference and the torque generated from the speed are compared.
		5	Sum Speed and Torque (selects the sum of the torque reference and the torque generated from the speed.)

Local Input Status

[Local In Status]

This parameter indicates boolean input status conditions for the Velocity Processor. When a bit is set to 1, the corresponding input signal is true.

Parameter Number54Parameter TypeSourceDisplay UnitsBitsDrive UnitsBits

 Factory Default
 0000 0000 0000 0000

 Minimum Value
 0000 0000 0000 0000

 Maximum Value
 1111 1111 1111

Enums:

Value	Description	Value	Description	Value	Description	Value	Description
0	Brake Request	4	External Fault	8	Test Diag	12	Not Used
1	Drive Enable	5	RMS Fault	9	Inverter Status	13	Not Used
2	Motor Overtemp Thermoguard	6	0 = Parall Inv	10	Contactor Verify	14	Not Used
3	Discrete Stop	7	Single Lang	11	Not Used	15	Not Used

Local Output Status

[Local Out Status]

This parameter indicates boolean output status conditions for the Velocity Processor. When a bit is set to 1, the corresponding input signal is true.

Value	Description	Value	Description	Value	Description	Value	Description
0	Brake Enable	4	Not Used	8	Not Used	12	VP Green LED
1	Turn On Delay Select	5	Not Used	9	VP Enable	13	VP Red LED
2	Not Used	6	Not Used	10	Pilot Relay	14	Not Used
3	Not Used	7	Not Used	11	Not Used	15	Not Used

Logic Status Low

[Logic Status Low]

This parameter is the Low part of a double word that indicates boolean logic conditions within the Drive. When a bit is set to 1, the corresponding condition in the Drive is true.

Value 0 1 2	Description Ready to Run Drive Running Cmd Direction (1=FWD, 0=Rev) Rotation Direction (1=FWD, 0=Rev)	Value 4 5 6 7	Description Accelerating (1=Accel) Decelerating (1=Decel) Warning Faulted	Value 8 9 10	Description At Set Speed Local A Local B Local C	Value 12 13 14 15	Description At Zero Speed Reference A Reference B Reference C
ŭ						1 (0 0 No Change 0 1 Ref 1 1 0 Ref 2 1 1 Ref 3 0 0 Ref 4

Logic Status Hi

[Logic Status Hi]

This parameter is the Hi part of a double word that indicates boolean logic conditions within the Drive. When a bit is set to 1, the corresponding condition in the Drive is true.

 Parameter Number
 57

 Parameter Type
 Source

 Display Units
 Bits

 Drive Units
 None

 Factory Default
 0000 0000 0000 0000

 Minimum Value
 0000 0000 0000 0000

 Maximum Value
 1111 1111 1111 1111

 Enums:
 1111 1111 1111 1111

111

Ref 7

Value	Description	Value	Description	Value	Description	Value	Description
0	Flux Ready	4	Bus Ridethru	8	At Limit	12	Over Setpoint 1
1	Flux Up	5	Jogging	9	Not Used	13	Over Setpoint 2
2	Not Used	6	Not Used	10	At Setpoint 1	14	Over Setpoint 3
3	Not Used	7	Not Used	11	At Setpoint 2	15	Over Setpoint 4

Torque Stop Configuration [Torq Stop Config] This parameter selects how the drive will react to a stop command when it occurs in a non–speed mode (ex. torque mode). Possible selections are: 0 = Normal Mode – Switch to speed mode. then perform a controlled stop. 1 = Stay in selected torque mode until zero speed is reached. 2 = Stay in selected torque mode until zero torque is reached.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums: This parameter has no effect already in speed mode when mand occurs. Coast stop of also unaffected by this parameter.	0 power has be stoppage of friction of the tif the drive is a stop component at the drive is a stop	past indicates that the Inverter peen disabled, but actual rotational the motor is dependent on the he connected load.
Logic Options [Logic Options] This parameter selects the options for logic operation of the drive as follows: bit# Option 0 Start Type A* 1 Start Type B* 2 Jog Ramp Enable 3 = 1 / Jog Coast = 0 / Regen Stop 4 STOP Input Type A** 5 STOP Input Type B** 6 Do Power Up Diag. 7 Do Flux Up Diag	= 0 / Unipolar Bit 4 Forward Directio	ef value = Forward Dir. - ref value = Reverse Dir. of P52 = 1,	* Start Type B A 0 0 Maint. Start, Rgen Stop 0 1 Maint. Start, Coast Stop 1 0 Momentary Start 1 1 Maint. Start, Rgen Stop ** Stop Type B A 0 0 Coast 0 1 Normal (Ramp–Regen) 1 0 I - Limit 1 1 Coast
At Setpoint 1 [At Setpoint 1] This parameter is used to specify the setpoint threshold for the At Setpoint 1 bit in Logic Status Hi.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	60 Sink +/- x.x % 4096 = 100.0% setpoint +0.0% - 800.0% + 800.0%	t
At Setpoint 2 [At Setpoint 2] This parameter is used to specify the setpoint threshold for the At Setpoint 2 bit in Logic Status Hi.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	61 Sink +/- x.x% 4096 = 100.0% setpoint +0.0% -800.0% +800.0%	
Over Setpoint 1 [Over Setpoint 1] This parameter is used to specify the setpoint threshold for the Over Setpoint 1 bit in Logic Status Hi.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	62 Sink +/- x.x% 4096 = 100% setpoint +0% -800.0% +800.0%	
Over Setpoint 2 [Over Setpoint 2] This parameter is used to specify the setpoint threshold for the Over Setpoint 2 bit in Logic Status Hi.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	63 Sink +/- x.x% 4096 = 100% setpoint + 0.0% -800.0% +800.0%	

Over Setpoint 3 [Over Setpoint 3] This parameter is used to specify the setpoint threshold for the Over Setpoint 3 bit in Logic Status Hi.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	64 Sink +/- x.x% 4096 = 100.0% setpoint +0.0 % -800.0% +800.0%
Over Setpoint 4 [Over Setpoint 4] This parameter is used to specify the setpoint threshold for the Over Setpoint 4 bit in Logic Status Hi.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	65 Sink +/- x.x % 4096 = 100% setpoint +0.0 % -800% +800%
Setpoint Select [Setpoint Select] This parameter makes a selection between actual speed or internal Iq current reference for the At/Over Setpoint parameters. Each Setpoint Status bit can be set for either option (0 = Actual Speed; 1 = Iq Reference).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	66 Sink Bits bit clear = speed, set = current 0000 0000 0000 0000 0000 0000 0000 00
	4 = Over Setpoint 3 5 = Over Setpoint 4	
Speed Setpoint Tolerance [Speed Setpnt Tol] This parameter establishes a hysteresis band around the At Setpoints. It will be used to determine when to update the Setpoint Bits in the Logic Status Hi (P57), when configured for actual speed option.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	67 Sink x.x rpm 4096 = base speed base sp / 100 0.0 rpm base speed /10
Current Setpoint Tolerance [Cur Setpoint Tol] This parameter establishes a hysteresis band around the Setpoints. It will be used to determine when to update the Setpoint Bits in Logic Status Hi (P57), when configured for commanded current option.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	68 Sink x.x% 4096 = 100.0% Iq 2.0% 0.0% 20.0%
Zero Speed Tolerance [Zero Speed Tol] This parameter establishes a band around zero speed that will be used to determine when to update the At Zero Speed bit in the Logic Status Low (P56).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	69 Sink +/- x% 4096 = base speed base speed / 100 0.0 rpm 8 x base speed
Logic Testpoint Data [Logic Tstpt Data] This parameter contains the logic control testpoint data that has been selected by the Logic Tstpt Sel parameter, P71.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	70 Source Bits None 0000 0000 0000 0000 0000 0000 0000 00

Logic Testpoint Select

[Logic Tstpt Sel]

This parameter selects which internal location in the logic control software will become the testpoint value shown in P70. The value based upon the select will be stored in the Logic Tstpnt Data parameter. The internal locations of the logic control software accessible based on the select value are:

Parameter Number	71
Parameter Type	Sink
Display Units	X
Drive Units	None
Factory Default	0
Minimum Value	0
Maximum Value	30
Enums:	

Select Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Logic Access Point Zero Logic State Edge Filtered Logic Command Logic Control Word Flux Inhibit Conditions Run Inhibit Conditions Current Processor Command Word Current Processor Status Word Diagnostic Request Flag Requested Torque Mode Contactor Fault Flag Monitor Sample Sys Status Loss of CP Enable Acknowledge Last Stop Stop Event		Select Valu 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		Logic Access Point Diagnostic Inhibit bits Common Bus Precharge States Contactor Trip Condition Adapter handshake counter Longest handshake count Stop event – LED state Stop event – System mode register Stop event – Fault stop command Stop event – Powerup diagnostic status Stop event – Nonconfigurable fault status Stop event – Current Processor Config Fault Status Stop event – Velocity Processor Config Fault Status Stop event – Adapter fault status Stop event – Logic Command (parameter 52) Stop event – Local Inputs (parameter 54)		
,	able dwell time before speed and torque reguhas occurred.	Parameter Nun Parameter Typ Display Units Drive Units Factory Defaul Minimum Valu Maximum Valu	e t e	Sink x.x sec Display 0.0 sec 0.0 sec 10.0 se	y units x 10	NOTE: Caution should be used when changing the dwell time from the factory setting. Extended dwell times may not be desirable from a safety standpoint in some applications.	
for the optional Dyr	ines the power rating namic Brake resistor. to calculate the per unit	Parameter Nun Parameter Typ Display Units Drive Units Factory Defaul Minimum Valu Maximum Valu	t e	77 Sink x Watts None 0 Watts 0 Watts 30,000	S S		

Maximum Dynamic Brake Temperature [Max DB Temp]

This parameter defines the Maximum Temperature Rating for the optional Dynamic Brake resistor. This value is used to establish setpoints for setting and clearing a Brake Overtemperature fault condition.

Parameter Number	78
Parameter Type	Sink
Display Units	x deg
Drive Units	None
Factory Default	50 deg
Minimum Value	50 deg
Maximum Value	700 deg

Dynamic Brake Time Constant [DB Time Const]

This parameter defines the thermal time constant for the Optional Dynamic Brake resistor. This value is used in the brake resistor thermal model to predict brake temperature as a function of regenerative power.

Parameter Number	79
Parameter Type	Sink
Display Units	x Sec
Drive Units	None
Factory Default	10 sec
Minimum Value	10 sec
Maximum Value	600 sec

Powerup/Diagnostic Fault Status

[PwrUp Flt Status]

This word parameter indicates a fault condition which has been detected during power up or reset of the drive. When a bit is "1", the condition is true, otherwise the condition is false.

Parameter Number 80 Parameter Type Source **Display Units** Bits **Drive Units** None

0000 0000 0000 0000 **Factory Default** Minimum Value 0000 0000 0000 0000 Maximum Value 1111 1111 1111 1111 Enums:

Bit	Condition	Bit	Condition
0	CP PROM Failure	9	VP Internal RAM Failure
1	CP Internal RAM Failure	10	VP External RAM Failure
2	CP External RAM Failure	11	VP Stack RAM Failure
3	CP Stack RAM Failure	12	CP Dualport RAM Failure detected by VP
4	VP Dualport RAM Failure detected by CP	13	AP Dualport Ram Failure detected by VP
5	Not Used	14	Base Drive EE Failure
6	Not Used	15	Reserved, Leave Zero
7	Not Used		
8	VP EPROM Failure		

81

Source

Bits

None

Non-configurable Fault Status

[Ncfg Flt Status]

Bit Condition

Ground Fault

2

3

Rit

This word parameter indicates fault conditions in the drive that Cannot be configured as warnings. When a bit is "1", the condition is true, otherwise the condition is false. Bits 0 - 3 are detected by hardware. Bits 4-15 are detected by software.

Minimum Value Maximum Value Enums:

Condition

Parameter Number

Parameter Type

Factory Default

Display Units

Drive Units

Bit Condition

0000 0000 0000 0000

0000 0000 0000 0000

1111 1111 1111 1111

DC Bus Overvoltage Trip Master/Slave Enable Timeout Transistor Desaturation

Not Used

Bit

Handshake Timeout VP 8 **Absolute Overspeed**

- Analog Power Supply Tolerance Autocommisioning or Transistor Diagnostic Failure 11
- Inverter Temperature Trip 12
- Software Malfunction detected by VP 13
- 14 Not Used
- Reserved, Leave Zero 15

Master/Slave Cable Loss **CP Configurable Fault Status**

Instantaneous Overcurrent

Adapter Comm Loss detected by CP

[CP Flt Status]

This word parameter indicates conditions detected by the Current Processor (CP) that has been configured to report as a Drive fault condition. Each configuration bit matches the bit definitions of Parameter 84, 86 and 87. When a bit is "1" the condition is true, otherwise the condition is false.

Parameter Number 82 Parameter Type Source **Display Units** Bits **Drive Units** None

Factory Default 0000 0000 0000 0000 Minimum Value 0000 0000 0000 0000 **Maximum Value** 1111 1111 1111 1111 **Enums:**

Bit	Condition
0	Bus Ridethrough Timeout
1	Bus Precharge Timeout
2	Bus Drop (150 volts)

Bit Condition Bus Undervoltage 3 4 Bus Drop Cycles > 5

Fast Fluxup Current < 50%

VP Configurable Fault Status

[VP Flt Status]

This word parameter indicates conditions detected by the Velocity Processor (VP) that have been configured to report as fault conditions. Each configuration bit matches the definitions of Parameter 85, 88 and 89. When a bit is "1" the condition is true, otherwise the condition is false.

Bit Condition Feedback Loss Inverter Overtemp Pending Motor Overtemperature Tripped Motor Overload Pending

Motor Overload Trip

Drive Units Factory Default Minimum Value Maximum Value Enums:

Parameter Number 83 Parameter Type Source **Display Units** Bits None 0000 0000 0000 0000

0000 0000 0000 0000 1111 1111 1111 1111

Bit	Condition	Bit	Condition
5	Motor stalled	10	Math Limit
6	External Fault	11	Dynamic Brake Overtemperature
7	RMS Fault	12	AC Motor Contactor Failure
8	Not Used	13	Inverter Overload Pending (IT)
9	Parameter Limit	14	Drive to Drive Communication Fault
		15	Inverter Overload Trip (IT)

CP Configurable Warning Status

[CP Warn Status]

This word parameter indicates conditions detected by the current processor (CP) that have been configured to report as a Drive Warning condition. Each configuration bit matches the bit definitions of parameters 82, 86 and 87. When a bit is set to "1" the corresponding condition in the Drive is true, otherwise it is false.

84 Parameter Number **Parameter Type** Source **Display Units** Bits **Drive Units** None

0000 0000 0000 0000 **Factory Default** Minimum Value 0000 0000 0000 0000 **Maximum Value** 1111 1111 1111 1111 **Enums:**

Bit Condition

- Bus Ridethrough Timeout 0 1 Bus Precharge Timeout
- Bus Drop
- 2 Bus Undervoltage
- 4 Bus Drop Cycles > 5
- Fast Flux Up Current < 50% 5

VP Configurable Warning Status (bits)

[VP Warn Status]

10

This word parameter indicates conditions detected by the Velocity Processor (VP) that have been configured to report as a Drive warning condition. Each configuration bit matches the bit definitions of parameters 83, 88 and 89. When a bit is set to "1", the corresponding condition in the Drive is true, otherwise it is false.

85 Parameter Number **Parameter Type** Source **Display Units** Bits **Drive Units** None

0000 0000 0000 0000 **Factory Default** Minimum Value 0000 0000 0000 0000 **Maximum Value** 1111 1111 1111 1111

Enums:

Enums:

DIL	Condition
0	Encoder Feedback Loss
1	Inverter Overtemp Pending
2	Motor Overtemperature Tripped
3	Motor Overload Pending (I ² T)
4	Motor Overload Trip (I2T)
5	Motor Stalled
6	External Fault
7	RMS Fault
8	Not Used
9	Parameter Limit

Condition

Math Limit

Bit	Condition
11	Dynamic Brake Resistor Overtemperature
12	Motor Contactor Failure
13	Inverter Overload Pending (IT)
14	Drive to Drive Communication Fault
15	Inverter Overload Foldback

CP Fault/Warning Configuration Select [CP Fault Select]

This word parameter determines conditions detected by the Current Processor (CP) that will be reported as either a drive fault or drive warning condition. Each configuration bit matches the bit definitions of parameters 82, 84 and 87. When a bit is set to "1", the corresponding condition in the Drive will be reported as a FAULT, otherwise it will be reported as a WARNING.

86
Sink
Bits
None

Factory Default 0000 0000 0010 0011 Minimum Value 0000 0000 0000 0000 **Maximum Value** 1111 1111 1111 1111

Bit Condition

0	Bus Ridethrough Timeout
1	Bus Precharge Timeout

- 2 Bus Drop
- 3 Bus Undervoltage 4 Bus Drop Cycles > 5
- 5 Fast Flux Up Current < 50%

CP Warning/None Configuration Select [CP Warn Select]

This word parameter determines conditions detected by the Current Processor (CP) that will be reported as either a drive fault or drive warning condition. Each configuration bit matches the bit definition of Parameter 82, 84 and 86. When a bit is set to "1", the corresponding condition in the Drive will be reported as a FAULT, otherwise the condition is reported as a WARNING.

87 **Parameter Number Parameter Type** Sink **Display Units** Bits **Drive Units** None

0000 0000 0001 1111 **Factory Default Minimum Value** 0000 0000 0000 0000 **Maximum Value** 1111 1111 1111 1111 **Enums:**

Bit	Condition
0	Bus Ridethrough Timeout
1	Bus Precharge Timeout
2	Bus Drop (150 volts)
3	Bus Undervoltage
4	Bus Drop Cycles
5	Fast Flux Up Current < 50%

VP Fault/Warning Configuration Select [VP Fault Select]

This word parameter determines conditions detected by the Velocity Processor (VP) that will be reported as either a drive FAULT or drive WARNING condition. Each configuration bit matches the bit definitions of Parameters 83, 85 and 89. When a bit

is set to "1" the corresponding condition in the Drive will be reported as a FAULT, otherwise the condition is reported as a

WARNING.

Parameter Number	88
Parameter Type	Sink
Display Units	Bits
Drive Units	None
Factory Default	1111 1111 1111 1111
Minimum Value	0000 0000 0000 0000
Maximum Value	1111 1111 1111 1111
Enums:	

Bit	Condition	Bit	Condition
0	Encoder Feedback Loss	9	Parameter Limit
1	Inverter Overemp Pending	10	Math Limit
2	Motor Overtemperature Tripped	11	Dynamic brake overtemp
3	Motor Overload Pending (I ² T)	12	AC Motor Contactor Failure
4	Motor Overload Trip (I ² T)	13	Inverter Overload Pending (IT)
5	Motor Stalled	14	Drive to Drive Fault
6	External Fault	15	Inverter Overload Trip (IT)
7	RMS Fault		
8	Reserved, Leave Zero		

VP Warning/None Configuration Select [VP Warn Select]

This parameter determines conditions detected by the Velocity Processor (VP) that will be reported as either a drive FAULT or WARNING or not reported (ignored). Each configuration bit matches the bit definitions of Parameters 83, 85 and 88. When a bit is set to "1", the corresponding condition in the Drive will be reported as configured by parameter 88. If the bit is set to "0", the condition is not reported.

89 **Parameter Number Parameter Type** Sink **Display Units** Bits **Drive Units** None **Factory Default**

1111 1111 1111 1111 **Minimum Value** 0000 0000 0000 0000 **Maximum Value** 1111 1111 1111 1111 Enum:

Bit	Condition	Bit	Condition
0	Encoder Feedback Loss	8	Not Used
1	Inverter Overtemp Pending	9	Parameter Limit
2	Motor Overtemperature Tripped	10	Math Limit
3	Motor Overload Pending (I ² T)	11	Dynamic brake overtemp
4	Motor Overload Trip (I2T)	12	AC Motor Contactor Failure
5	Motor Stalled	13	Inverter Overload Pending (IT)
6	External Fault	14	Drive to Drive Fault
7	RMS Fault	15	Inverter Overload Foldback (IT)

Absolute Overspeed Threshold [Absolute Overspd] This parameter indicates the incremental speed above Forward Speed Limit or below Reverse Speed Limit that is allowable before an Absolute Overspeed Fault is indicated.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	90 Sink x.x rpm 4096 = 100.0% overspeed 0.1 x base speed 0.0 rpm base speed
Stall Delay [Stall Delay] This parameter specifies the amount of time that the Drive must be in current limit and at zero speed before a Stall Fault will be indicated.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	91 Sink x.x sec. sec. x 10.0 1.0 sec 0.1 sec 3276.7 sec
Motor Overload Limit [Mtr Overload Lim] This parameter specifies the level of Iq current that will cause a Motor Overload Trip after 60 seconds.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	92 Sink xx.x% 4096 = 100% Iq for 60 sec. 200.0% 110.0% 400.0%
Service Factor [Service Factor] This parameter specifies the minimum level of Iq current that will cause a motor overload (IIT) trip under continuous operation. Current levels below this value will never result in an overload trip. Example – a service factor of 1.15 implies continuous operation up to 115% of nameplate motor current.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	94 Sink x.xx 4096 = 1.00 1.00 1.00 2.00
Overload Speed 1 [Mtr Overld Spd 1] If the absolute value of motor speed is at or below the speed specified in this parameter, the motor overload will use the Min Overload Lmt (parameter #97) as its minimum current trip level.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	Sink +/- x.x rpm 4096 = Base Motor Speed 0.8 x Base Speed 0.0 rpm 2 x Base Speed
Motor Overload Speed 2 [Mtr Overld Spd 2] If the absolute value of motor speed is at or below the speed specified in this parameter, the motor overload will use 100% as its minimum current trip level.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	96 Sink +/- x.x rpm 4096 = Base Motor Speed 0.8 x Base Speed 0.0 rpm 2 x Base Speed
Minimum Overload Limit [Min Overload Lmt] This is the minimum motor overload trip level that will be in effect when the motor speed is at or below Mtr Overld Spd 2 (P96) Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value		97 Sink x.x% 4096 = 100.0% current 100.0% 0.0 % 100.0%

Fault Testpoint Data Parameter Number 98 [Fault TP] **Parameter Type** Source **Display Units** This parameter contains the fault control **Drive Units** testpoint data that has been selected by None the Fault TP Sel parameter(P99). See the **Factory Default** description for the Fault TP Sel parameter **Minimum Value** 0 99 for a list of possible testpoints. **Maximum Value** 65535 **Fault Testpoint Select Parameter Number** 99 **Parameter Type** [Fault TP Sel] Sink **Display Units** This parameter selects which internal location in the fault control software will be-**Drive Units** None come the testpoint value. The value based **Factory Default** 0 upon the selection will be stored in the Minimum Value 0 Fault TP parameter 98. The internal loca-**Maximum Value** 32 tions of the logic control software that are **Enums:** accessible based on the selected value are listed below: **Select Value Velocity Reference Access Point Select Value Velocity Ref Access Point** 0 Encoder Loss Level 22 1 Adapter Processor Faulted Iq Reference in per unit Inverter Units 23 2 Actual Velocity when Overspeed occurred 24 Motor Overload Integrator Output Level (IT) 3 Motor Overload Calibration Constant (K) 25 Motor Temperature, Degrees C. Heatsink NTC Analog Input Voltage 26 Drive to Drive fault status 5 Heatsink NTC Foldback Current Limit 27 Base Drive EE fault status 6 Negative Analog Supply and/or input voltage 28 Base Drive EE drive type address Positive Analog Supply and/or input Voltage Base Drive EE drive type data 29 8 Zero 30 Heatsink Warn Temp, deg C. Motor Overload Integrator(I²T) level 9 31 Heatsink Trip Temp, deg. C. Dynamic Brake Resistor Temperature, Degrees C. 10 Parameter Limit Status, Word 1 11 12 Parameter Limit Status, Word 2 Velocity Reference Math Overflow Status 13 Velocity Feedback Math Overflow Status 14 Velocity Regulator Math Overflow Status 15 16 Torque Reference Math Overflow Status Process Trim Math Overflow Status 17 **VELOCITY Feedback Error Conditions:** Acceleration Error 18 19 Illegal State Edge Samples 20 Illegal State Level Encoder Loss Edge Samples 100 **Velocity Reference 1 LOW (Fraction) Parameter Number** [Vel Ref 1 Low] **Parameter Type** Sink **Display Units** Х This word supplies the fractional part of the **Drive Units** None external velocity reference 1 when **Factory Default** 0 external velocity control has been selected in Logic Command (P52). **Minimum Value** 0 **Maximum Value** 65535 101 Velocity Reference 1 HI (Whole 32 bit) **Parameter Number** Parameter Type [Velocity Ref 1 Hi] Sink **Display Units** +/- x.x rpm This word supplies the whole number part **Drive Units** 4096 = Base Motor Speed of external velocity reference 1 when the **Factory Default** +0.0 rpmexternal velocity control has been selected **Minimum Value** - 8 x Base Speed in Logic Command (P52). **Maximum Value** +8 x Base Speed Velocity Scale Factor 1 102 **Parameter Number** [Vel Scale Fctr 1] **Parameter Type** Sink This parameter sets the gain multiplier that **Display Units** +/- x.xxxx **Drive Units** 8192 = 1.0000 gain will be used to scale velocity reference 1. **Factory Default** +1.0000

Minimum Value

Maximum Value

-4.0000

+4.0000

Velocity Reference 2 LOW (Fraction) [Vel Ref 2 Low] This word supplies the fractional part of the external velocity reference 2 when the external velocity control has been selected in Logic Command (P52).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	103 Sink x None 0 0 65535
Velocity Reference 2 HI (Whole 32 bit) [Vel Ref 2 Hi] This word supplies the whole number reference 2 when the external velocity control has been selected in Logic Command (P52).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	104 Sink +/- x.x rpm 4096 = Base Motor Speed + 0.0 rpm - 8 x Base Speed + 8 x Base Speed
Velocity Scale Factor 2 [Vel Scale Fctr 2] This parameter sets the gain multiplier that will be used to scale velocity reference 2.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	105 Sink +/- x.xxxx 8192 = 1.000 gain +1.0000 -4.0000 +4.0000
Velocity Trim LOW [Vel Trim Low] This word supplies the fractional number part of a 32 bit velocity reference trim.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	106 Sink x Sec. None 0 0 65535
Velocity Trim Hi (32 bit) [Vel Trim Hi] This word supplies the whole number part of a 32 bit velocity reference trim.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	107 Sink +/- x.x rpm 4096 = Base Motor Speed 0.0 rpm - 8 x Base Speed + 8 x Base Speed
Velocity Reference Testpoint Data LOW [Vel Ref TP Low] This parameter indicates the LOW of the 32 bit value of the internal location selected by the Vel Ref TP Sel, (P110).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	108 Source x $1 = 2^{1}/_{28}$ Base Motor Speed 0 0 65535
Velocity Reference Testpoint Data HI (32 bit) [Vel Ref TP Hi] This parameter indicates the HI 32 bit value of the internal location selected by the Vel Ref TP Sel, (P110).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	109 Source +/- x.x rpm 4096 = Base Motor Speed +0.0 rpm -8 x Base Speed +8 x Base Speed

Velocity Reference Testpoint Select [Vel Ref TP Sel] This parameter selects which internal location of the velocity reference will become the testpoint value shown in P108 and 109. The following are the internal locations based upon the select value:	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	110 Sink x None 0 0	
Velocity Reference Access Point		Select Value 9 10 11 12 13 14 15	Velocity Reference Access Point Internal Velocity Trim (HI, LOW) Trimmed Velocity Reference (HI, LOW) Maximum Frequency Limit (HI); Zero (LOW) Reference after Trim Limit (HI, LOW) Deadband In (HI, LOW) Encoderless On Freq (Low) Encoderless Off Freq (High) Encoderless Status (Low) Zero
Jog Speed 1 [Jog Speed 1] This will be the velocity reference used by the Drive when Jog 1 has been selected in the Logic Command (P52).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	117 Sink +/- x.x rpm 4096 = Base Motor Speed +0.0 rpm -8 x rpm +8 x rpm	
Jog Speed 2 [Jog Speed 2] This will be the velocity reference used by the Drive when Jog 2 has been selected in the Logic Command (P52).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	118 Sink +/- x% 4096 = Base Motor Speed + 0.0 rpm -8 x rpm +8 x rpm	
Preset Speed 1 [Preset Speed 1] This will be the velocity reference used by the Drive when preset 1 has been selected in Logic Command (P52).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	119 Sink +/- x.x rpm 4096 = Base Motor Speed +0.0 rpm -8 x Base Speed +8 x Base Speed	
Preset Speed 2 [Preset Speed 2] This will be the velocity reference used by the Drive when preset 2 has been selected in Logic Command (P52).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	120 Sink +/- x.x rpm 4096 = Base Motor Speed +0.0 rpm -8 x Base Speed +8 x Base Speed	
Preset Speed 3 [Preset Speed 3] This will be the velocity reference used by the Drive when preset 3 has been selected in Logic Command (P52). Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value		121 Sink +/- x.x rpm 4096 = Base Motor Speed +0.0 rpm -8 x Base Speed +8 x Base Speed	

Preset Speed 4 [Preset Speed 4] This will be the velocity reference used by the Drive when preset 4 has been selected in the Logic Command (P52).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	Sink +/- x.x rpm 4096 = Base Motor Speed +0.0 rpm -8 x Base Speed +8 x Base Speed
Preset Speed 5 [Preset Speed 5] This will be the velocity reference used by the Drive when preset 5 has been selected in Logic Command (P52).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	Sink +/- x.x rpm 4096 = Base Motor Speed +0.0 rpm -8 x Base Speed +8 x Base Speed
Accel Time [Accel Time] This parameter displays the ramp rate time for the velocity reference ramp. Time is seconds from zero to base motor speed. Zero will disable accel ramp. See Param 389 & 390 to set this rate. Note: This parameter not used with a Standard Adapter Board Equipped Drive.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	Sink x.x Sec display units x 10 10.0 seconds 0.0 seconds 6,553.5 seconds
Decel Time [Decel Time] This parameter displays the deceleration ramp time. Similar to the parameter above, zero will disable the decel ramp. See param 391 & 392 to set this rate. Note: This parameter not used with a Standard Adapter Board Equipped Drive.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	126 Sink x.x Sec display units x 10 10.0 seconds 0.0 seconds 6,553.5 seconds
Reverse Motor Speed Limit [Rev Speed Limit] This parameter sets a limit on velocity in the negative direction. The value entered must be Negative or Zero. The numeric range of this parameter is 0 to – 6 times base motor speed.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	127 Sink - x.x rpm - 4096 @ Base Motor Speed - Base Motor Speed - 8 x Base Motor Speed + 0.0 rpm
Forward Motor Speed Limit [Fwd Speed Limit] This parameter sets a limit on velocity in the positive direction. The value entered must be Positive or Zero. The numeric range of this parameter is +6 x base speed rpm.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	128 Sink x.x rpm + 4096 @ Base Motor Speed Base Motor Speed + 0.0 rpm 8 x Base Motor Speed
Maximum Reverse Speed Trim [Max Rev Spd Trim] This parameter limits the minimum value of the velocity reference after the process trim output and the external velocity trim has been added.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	129 Sink +/- x.x rpm -4096 = Base Motor Speed - Base Speed - 6 x Base Speed + 6 x Base Speed

		_
Maximum Forward Speed Trim [Max Fwd Spd Trim] This parameter limits the maximum value of the velocity reference after the process trim.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	130 Sink +/- x.x rpm 4096 = Base Motor Speed + Base Speed + 0.0 rpm + 6 x Base Speed
Droop Percent [Droop Percent] This parameter specifies the percent of base speed that the velocity reference will be reduced when at full load torque. This feature can be used to cause motor velocity to droop with an increase in load.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	131 Sink x.x% Display units x 10 0% 0% 25.5%
Velocity Reference Output LOW [Vel Ref Out Low] This is the low word portion of a 32 bit velocity reference quantity. It is the input term for the Velocity PI Regulator.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	132 Source x None 0 0 0 65535
Velocity Reference Output HI (32 bit) [Vel Ref Out High] This is the high word portion of a 32 bit velocity reference quantity. It is the input term for the Velocity PI Regulator.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	133 Source +/- x.x rpm 4096 = Base Motor Speed +0.0 rpm - 8 x Base Speed + 8 x Base Speed
Velocity Regulator Output [Vel Reg Output] This parameter represents the torque reference value that appears at the output of the Velocity PI Regulator. It is the input to the torque mode selector and is used as the drive's torque reference value when in torque mode 1.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	134 Source +/- x.x % 4096 = 100.0% Iq motor + 0.0 % - 300.0% +300.0%
Velocity Regulator Testpoint Data LOW [Vel Reg TP Low] This parameter indicates the value of the internal location selected by the Velocity Regulator Testpoint Select parameter, P137. The select allows this parameter to be used as a testpoint for the velocity regulator.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	135 Source x None 0 0 0 65535
Velocity Regulator Testpoint Data HI (32 bit) [Vel Reg TP Hi] This parameter indicates the value of the internal location selected by the Vel Reg TP Sel parameter, P137. The select allows this parameter to be used as a testpoint for the velocity regulator.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	136 Source +/-x None 0 -32767 +32767

Velocity Regulator Testpoint Select [Vel Reg TP Sel] This parameter selects which internal it tion of the velocity reference will become the testpoint value shown in Vel Reg T Low P135 & Vel Reg TP Hi P136. The lowing are the internal locations based upon the select value:	Drive Units P Factory Default	137 Sink x None 0 0
3 Kf Term (Low), Kf 4 Kf Error Filter Out 5 Kp Term (32 bit) 6 Or – 1st 16 bit (Lo 7 Or – 3rd 16 bit (Lo 9 Of – 1st 16 bit (Lo 10 Oe – 1st 16 bit (Lo 11 Oe – 3rd 16 bit (Lo 12 Oec1 – 1st 16 bit 13 Oec1 – 3rd 16 bit 14 Ki Term (32 bit)	set (32bit) Reference (32 bit)	
Velocity Error [Velocity Error] This parameter contains a value that is difference between the whole number tion of the velocity regulator's reference input and the velocity feedback.	por- Drive Units	138 Source +/- x.x rpm 4096 = Base Motor Speed +0.0 rpm - 8 x Base Speed rpm +8 x Base Speed rpm
KI – Velocity Loop [Ki – Velocity Loop] This parameter controls the integral er gain of the velocity regulator. Gain has resolution of 1/8, therefore a Ki gain of is converted to internal drive units as a ue of 8.	Drive Units 1.0 Factory Default	139 Sink x.x Display units x 8 32.0 0.0 4096.0
KP – Velocity Loop [Kp – Velocity Loop] This parameter controls the proportion error gain of the velocity regulator. Ga has a resolution of 1/8, therefore a gain 1.0 is converted to internal drive units a value of 8.	in Drive Units of Factory Default	140 Sink x.x Display units x 8 8.0 0.0 200.0
KF – Velocity Loop [Kf – Velocity Loop] This parameter controls the feed forward gain of the velocity regulator. Setting to Kf gain to less than one reduces veloc feedback overshoot in response to a suchange in velocity reference.	he Drive Units ty Factory Default	141 Sink x.xx Display units x 65535 1.00 0.50 1.00
KF Error Filter Bandwidth [Error Filter BW] This parameter sets the bandwidths of cascaded low pass filters in the Kf erropath of the Velocity PI Regulator. Banwidth is entered in units of radians per second.	r Drive Units	142 Sink x Radian/Seconds None 500 Radian/Seconds 0 1500 Radian/Seconds

Velocity Feedback Testpoint Data LOW [Vel Fdbk TP Low) This parameter contains the LOW part of the 32 bit value of the internal location selected by the Vel Fdbk TP Sel Parameter, P145.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	143 Source +/- x None 0u 0u 65535u
Velocity Feedback Testpoint Data HI (32 bit) [Vel Fdbk TP Hi] This parameter contains the HIGH part of the 32 bit value of the internal location selected by the Vel Fdbk TP Sel Parameter, P145.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	144 Source +/- x None +0 -32767 +32767
Velocity Feedback Testpoint Select [Vel Fdbk TP Sel] This parameter selects which internal location of the velocity reference will become the testpoint value shown in P143 & P144. The value based upon the select will be stored in the Vel Fdbk TP Low & Vel Fdbk TP Hi parameter.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	145 Sink x None 0 0
Select Value 0 2ero 1 Encoder Velocity edge (2 Selected Velocity (Low), 3 2 msec Scan Interval (L 4 Edge Pulse Count (Low 5 Acceleration (Low), Acc 6 Edges Moved Count (Lo 7 Delta Theta (32 bit) 8 Count Direction (Low), S 9 Edge to Edge Time (Lov 10 Equal Area Intervals (Lo 11 Empty Intervals (Low), 2 12 Active Feedback Device 13 Limit Status (Low), Zero 14 Qf – 1st 16 bit (Low), No 16 Zero	Hi), Diff (Low) , Difference Velocity (High) ow), Zero (High)), Zero (High) eleration Error (High) ow), Zero (High) Status Bits (High) v), Zero (High) w), Zero (High) Zero (High) eleration Error (High) cero (High) eleration Error (High) d 16 bit (High)	
Velocity Feedback [Vel Feedback] This parameter indicates the latest measured motor velocity information from a feedback device (Tach, encoder etc.) The value is taken at the output of the selectable feedback filters.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	146 Source +/- x.x rpm 4096 @ Base Motor Speed +0.0 rpm - 8 x Base Motor Speed + 8 x Base Motor Speed
Scaled Velocity Feedback [Scaled Vel Fdbk] This parameter is a rescaled version of velocity feedback from parameter 146. The inverse of either Velocity Scale Factor 1 or 2 is used.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	147 Source +/- x None 0 -32767 +32767

Encoder Position Feedback LOW [Enc Pos Fdbk Low] This is the LOW word portion of a 32 bit encoder pulse accumulator. Each encoder quadrature edge will be counted, resulting in a 4X multiplication. As a result, this parameter will be scaled such that the position change per motor revolution is equal to 4 times the encoder PPR.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	148 Source x None 0 0 65535
Encoder Position Feedback HI [Enc Pos Fdbk HI] This is the HI word portion of a 32 bit encoder pulse accumulator that was described for the previous parameter. This word will change by 1 count for every change in low count of 65,536 4X encoder pulses.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	149 Source x None 0 0 65535
Feedback Device Type [Fdbk Device Type] This parameter selects the source for motor velocity feedback: 0 – Encoder Feedback 1 – Encoder Feedback 2 – Encoder Feedback w/tracker filter 3 – Motor Simulator 4 – External Feedback 5 – Encoderless velocity estimate with dead 6 – Encoderless velocity estimate without de 7 – Encoderless without deadband and low leads	Drive Units Factory Default Minimum Value Maximum Value band eadband	150 Sink x None Encoder 0 7
Feedback Tracker Gain [Fdbk Track Gain] Affects gain of the alpha–beta tracker filter used when Fdbk Device Type = 2. Smaller gains result in increased filtering. Typical Value: = 0.15 to 0.7 Use 1.0 to disable.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	151 Sink x.xxx 1024 @ 1.000 gain 1.000 0.043 1.000
Feedback Filter Select [Fdbk Filt Sel] 0 = No Filter 1 = "light" 35/49 radian feedback filter 2 = "heavy" 20/40 radian feedback filter 3 = Single pole Lead Lag feedback filter 4 = Notch	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	152 Sink x None 0 0
Kn – Feedback Filter Gain [Fdbk Filt Gain] This is the Kn term of the single pole lead/ lag feedback filter. Kn greater than 1.0 will produce a lead filter, and less than 1.0 a lag filter. Kn equal to 1.0 will disable the feedback filter.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	153 Sink ±x.xx 256 = 1.00 gain + 1.00 - 5.00 +5.00
Wn – Feedback Filter Bandwidth [Fdbk Filt BW] This parameter establishes the breakpoint radian frequency for the velocity feedback lead-lag filter.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	Sink x Radian/Seconds None 100 Radian/Seconds 1 Radian/Seconds 900 Radian/Seconds

Tach Velocity [Tach Velocity] This word supplies a motor velocity feedback signal when a source other than an encoder is used. This input will typically be linked to an analog input parameter from the adapter board. Notch Filter Frequency	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	155 Sink +/- x.xx rpm 4096 = Base Motor Speed 0.000 rpm - 8 x base speed + 8 x base speed
[Notch Filt Freq] This parameter sets the center frequency for an optional 2–pole notch filter. Thenotch filter is enabled by selecting a value of '4' in parameter 152.	Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	Sink x.x Hz 8 = 1.0Hz 135 Hz 5 Hz 135 Hz
Notch Filter Q [Notch Filter Q] This parameter sets the Quality Factor or Q for the 2–pole notch filter described in parameter 156.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	157 Sink x None 50 2 500
External Iq Reference [External Iq Ref] This parameter supplies an external Iq reference to the Drive. The external Iq reference is summed with the internal Iq reference just prior to the current limiter.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	161 Sink +/- x.x % 4096 = 100% Iq motor +0.0% - 800.0% + 800.0%
External Torque Reference 1 [External Torque Ref 1] This word supplies an external motor torque reference to the Drive. The external	Parameter Number Parameter Type Display Units Drive Units	162 Sink x% None
torque reference can be selected by setting the Torque Mode Select parameter (Parm 53) to a value of "2".	Factory Default Minimum Value Maximum Value	+ 0.0% - 800% + 800%
torque reference can be selected by setting the Torque Mode Select parameter (Parm	Factory Default Minimum Value	+ 0.0% - 800%
torque reference can be selected by setting the Torque Mode Select parameter (Parm 53) to a value of "2". Slave Torque Percent 1 [Slave Torque % 1] Ext Torq Ref 1 (P162) is multiplied by a gain that is specified by this parameter. This multiplier is scaled so that 4096 repre-	Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value	+ 0.0% - 800% + 800% 163 Sink +/- x.xx% 4096 = 1.0 gain + 100% - 200%

offset to the Drive.	pplies an external torque The Ext Torque Step is Torque Mode Sel (P53)	Parameter Numb Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	S x 4 0	666 Sink 5.x % 1096 @ rated 0.0% - 800.0% - 800.0%	motor torque
Internal Torque [Int Torque Ref] This parameter sh reference that is p the torque limiter.	Reference ows the value of torque resent at the output of	Parameter Numb Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	S + 4 +	67 Source -/- x.x % 1096 = rated t -0.0 % -800.0% -800.0%	orque
Internal Iq Reference [Internal Iq Ref] This parameter shows the value of the Iq reference that is present at the output of the Iq rate limiter. 4096 is 100% Iq motor current.		Parameter Numb Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	S + 4 + -	68 Source -/- x.x% 4096 = rated t -0.0 % - 800.0%	orque
internal location se TP Sel parameter,	dicates the value of the elected by the Torq Ref P173. The select will er to be used as a test-	Parameter Numb Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	S + 4 +	50urce -/- x.x% 1096 = 100% - 0.0% - 800.0%	(1.0 pu)
[Torq Ref TP Sel] This parameter sel tion of the torque re testpoint value. The	lects which internal loca- eference will become the ne value based on the d in the Torque Ref TP	Parameter Numb Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	S	Vone	
Select Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Torque Reference Acce Zero NTC Limit Inverter Current Limit Overload Current Limit Positive IQ Limit Negative Iq Limit Zero (Not Used) Torque Limit (Low) Torque Limit (High) Scaled External Torque Scaled External Torque Torque Sum Torque Command Filtered Torque Reference Unlimited Iq Reference Current Limited Iq Reference	Reference 1 Reference 2 ce	Select Value 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	ie	Torque Reference Access Point Torque Reference Status Torque Reference Math Overflow Status Active Torque Mode Positive Torque Power Limit Negative Torque Power Limit Rated Inverter Current Averaged Motor Flux Iq Current Reference Adjusted for Motor Range Iq Sum Torque Mode Select Iq Ref Inverter Gain Motor Range Motor to Inverter Current Ratio DC Bus Ride-Thru Latch Current Processor Regulation Active Flag

Minimum Flux Level [Min Flux Level] This parameter sets the smallest level of flux that will be used to convert a torque to a current reference. Setting the parameter to 4096 will prevent flux reduction and bypass the torque to current conversion.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	174 Sink x.x% 4096 = 100.0% Flux 100.0% 12.5% 100.0%
Pos Torque Reference Limit [Pos Mtr Tor Lmt] This parameter provides a user settable torque limit for positive torque reference values. Positive motor torque reference will not be allowed to exceed this value.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	175 Sink x.x% 4096 @ rated motor torque 200.0% 0.0% 800.0%
Neg Torque Reference Limit [Neg Mtr Tor Lmt] This parameter provides a user settable torque limit for negative torque reference values. Negative motor torque reference will not be allowed to exceed this value.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	176 Sink - x.x% - 4096 @ rated motor torque - 200.0% - 800.0% 0.0 %
Motoring Power Limit [Motoring Power Lmt] This parameter provides for a user entry of the maximum power level that will be supplied to the motor from the DC bus. The motoring power limit is used in a calculation that results in an internal torque limit.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	177 Sink x.x% 4096 @ rated motoring power 200.0% 0.0 % 800.0%
Regen Power Limit [Regen. Power Lmt] This parameter provides a user entry for the maximum power level that will be transferred from the motor to the DC bus.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	178 Sink - x.x% 4096 @ rated regen power - 200.0% - 800.0% 0.0%
Positive Motor Current Reference Limit [Pos Mtr Cur Lmt] This parameter specifies the largest allowable positive motor Iq axis current that will be commanded. Bit 0 in Parm 183 indicates when this parameter is actively restricting Iq current.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	179 Sink x.x % 4096 @ 100% Motor Current (I ₂) 100.0% 0.0 % 200.0%
Negative Motor Current Reference Limit [Neg Mtr Cur Lmt] This parameter determines the largest allowable negative motor Iq axis current that will be commanded. Bit 8 in Parm 183 indicates when this parameter is actively restricting Iq current.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	180 Sink - x.x % 4096 @ 100% Motor Current (I ₂) - 100.0% - 200.0% + 0.0%

Di/DT Limit

[Di/Dt Limit]

This parameter determines the largest allowable rate of change for the Iq reference signal. This number is scaled in units of maximum per unit Iq every 2 msec.

Parameter Number 181
Parameter Type Sink
Display Units x.x%

Drive Units 4096 = 100.0% Iq per 2msec

Factory Default 20.0% Minimum Value 0.0% Maximum Value 30.0%

Computed Power

[Computed Power]

Calculated product of Torque Reference time motor velocity feedback. A 125 msec filter is applied to this result. Positive values indicate motoring power, negative regenerative power.

Parameter Number
Parameter Type
Display Units
Drive Units

182
Source
+/-x.x%
4096 @ 100.0% power

Factory Default +0.0% Minimum Value -800.0% Maximum Value +800.0%

Torque Limit Status

[Torq Lmt Stat]

This parameter provides a bit coded summary of any condition that may be limiting either the IQ current or torque reference.

0 = Positive Motor IQ Limit

- 1 = Positive NTC Inverter Foldback
- 2 = Positive IT Inverter Foldback
- 3 = Positive Maximum Inverter Current
- 4 = Positive Torque Limit
- 5 = Positive Torque Power Limit
- 6 = Positive Autotune Torque
- 7 = Not Used
- 8 = Negative Motor Iq Limit

Parameter Number 183
Parameter Type Source
Display Units Bits
Drive Units None

 Factory Default
 0000 0000 0000 0000 0000

 Minimum Value
 0000 0000 0000 0000

 Maximum Value
 1111 1111 1111 1111

 Enums:
 1111 1111 1111 1111

9 = Negative NTC Inverter Protection Foldback

- 10 = Negative IT Inverter Protection Foldback
- 11 = Negative Maximum Inverter Current
- 12 = Negative Torque Limit
- 13 = Negative Torque Power Limit
- 14 = Negative Autotune Torque Limit
- 15 = Reserved, Leave Zero

Enums:

Torque Mode Status

[Torq Mode Stat]

This parameter provides a bit coded indication of the currently active torque mode. If the drive is running, this parameter reflects the Torque Mode selected in Torque Mode Sel (P 53). If the drive is coasting or stopped this parameter will indicate the active torque mode is zero. If in min or max mode, then the corresponding min/max bit will be set along with the appropriate speed or torque mode bit, as determined by the outcome of the min/max selector. Bits are defined as:

Bit 0 - Zero Torque (Iq = 0)

Bit 1 - Speed Mode

Bit 2 - Torque Mode

Bit 3 – Minimum Speed/Torque

Bit 4 – Maximum Speed/Torque

Bit 5 - Sum Speed + Torque

Bit 6 to Bit 15 - Reserved, Leave Zero

Parameter Number 184
Parameter Type Source
Display Units Bits
Drive Units None

 Factory Default
 0000 0000 0000 0000 0000

 Minimum Value
 0000 0000 0000 0000

 Maximum Value
 1111 1111 1111 1111

Perunit Motor Current

[Motor Cur Fdbk]

Displays the perunit value of motor current as determined from the LEM current sensors. This data is scaled to read 1.0 pu at rated motor current. This is a version of parameter 264 that has been scaled to be compatible with analog outputs. This data is averaged and updated on a 50 millisecond basis.

Parameter Number 185
Parameter Type Source
Display Units x.x%

Drive Units 4096 = 100% motor current

Factory Default 0.0% Minimum Value 0.0% Maximum Value 800.0%

Perunit Motor Voltage [Motor Volt Fdbk] Displays the perunit value of motor voltage as determined from an analog—to—digital converter input. This data is scaled to read 1.0 pu at rated motor voltage. This is a version of parameter 265 that has been scaled to perunit to be compatible with analog outputs. This data is averaged and updated on a 50 millisecond basis.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	186 Source x.x% 4096 = 100.0% motor voltage 0.0% 0.0% 800.0%
Rated Inverter Output Amps [Base Drive Curr] Current rating of inverter. Automatically set by drive at powerup as a function of Power Structure Type. Used for	Parameter Number Parameter Type Display Units Drive Units Factory Default	Source x.x amps Display units x 10
current ref scaling and current processor feedback scaling.	Minimum Value Maximum Value	20.0 amps 0.1 amps 3,276.7 amps
Rated Inverter Input Voltage [Base Line Volt]	Parameter Number Parameter Type	221 Source
Drive Nameplate Voltage rating of inverter. Automatically set by drive at powerup as a function of Power Structure Type.	Display Units Drive Units Factory Default Minimum Value Maximum Value	x volt Non 460 volt 75 volt 575 volt
Inverter Carrier Frequency [PWM Frequency]	Parameter Number Parameter Type	222 Sink
This parameter defines the drive carrier frequency in Hz.	Display Units Drive Units Factory Default Minimum Value Maximum Value	x Hz None 4,000 Hz 1,000 Hz 12,000 Hz

Precharge/Ridethru Selection

[Prech/Rdethru Sel]

Parameter 223 lets you choose options for the bus filter reference, precharge/ride-through conditions, and braking.
Use bits 0 through 4 to set the slew rate for the bus voltage tracker. The bus voltage tracker slowly tracks changes in the actual bus voltage. If none of the bits (0 through 4) are set, the slew rate is 0.05V/second.

The precharge function of the drive limits the current to the bus capacitors when power is initially applied to the drive. The precharge function is completed after a minimum 300 millisecond time delay and bus voltage at least 30 volts greater than the undervoltage setpoint and a stable bus voltage. Ridethrough provides extended logic operating time if the power lines drop out while the drive is running. If the precharge function is enabled, ridethrough also provides inrush current protection by starting a precharge, in case the incoming power returns.

The bits are defined as follows:

Bit D	escrip	tion
-------	--------	------

0 Slew Rate 1

Set to choose a slew rate of 10V/second Bit

1 Slew Rate 2

Set to choose a slew rate of 5V/second

2 Slew Rate 3

Set to choose a slew rate of 0.5V/second

3 Slew Rate 4

Set to choose a slew rate of 0.05V/second Slew Rate 5

Sot to choo

Set to choose a slew rate of 0.005V/second

5 Reserved Leave 0 Parameter Number 223

File:group Application:Bus Reg/Control

Parameter Type linkable destination

Display Units Bits **Drive Units** None

Factory Default 0000 0000 0000 0000 0000 Minimum Value 0000 0000 0000 0000 0000 Maximum Value 1111 1111 1111 1111

Conversion: 1 = 1

For additional information about Precharge/Ridethrough Selection, refer to Chapter 12, Troubleshooting

Bit Description

6 Reserved

Leave 0
Reserved

7 Reserved
Leave 0

8 Fast Fluxup

Set to enable fast flux up

9 Reserved

Leave 0

10 Reserved Leave 0

11 Prech Exit

Set to force an exit from precharge after the precharge timeout.

12 En Comm Bus

Set to enable common bus precharge. External fault input is used as precharge enable.

Osed as precharge enable

13 Dis Prech Tm

Set to disable bus precharge and undervoltage faults while the drive is disabled.

drive is disabled.

14 Dis Mult Pre

Set to disable all precharges after the first power up.

15 Dis Ridethru

Set to disable all ridethroughs.

Undervoltage Setpoint

[Under Volt Stpnt]

This sets the minimum threshold voltage as a percent of line voltage that will be compared with the DC Bus Voltage as a check for a Bus Undervoltage condition.

Parameter Number
Parameter Type
Sink
Display Units
Drive Units
None
Factory Default
Minimum Value
Maximum Value
90.0%

Bus Precharge Timeout

[Prechrg Timeout]

This parameter establishes a time delay period for DC Bus Precharge. If the Drive fails to finish a DC Bus Precharge in this time, a Precharge Timeout will occur.

Parameter Number 225
Parameter Type Sink
Display Units x.x Sec
Drive Units Display

Drive UnitsDisplay units x 10Factory Default30.0 SecMinimum Value10.0 SecMaximum Value6553.5 Sec

Bus Ridethru Timeout

[Ridethru Timeout]

This parameter establishes a time delay period for DC Bus Ridethrough. If the bus remains in a low bus ridethru condition longer than this time, a Bus ridethru timeout condition will occur.

Parameter Number 226
Parameter Type Sink
Display Units x.xxx Sec.

Drive Units Display units x 1000
Factory Default 2.000 Sec.

Minimum Value 0.000 Sec.
Maximum Value 65.535 Sec.

CP Operating Options [CP Options] For proper operation, bits 0 to 6 must be left at zero. If bit 7 = 0, this allows the motor to coast to a stop after the flux test is completed. If bit 7 = 1, this brings the motor to a controlled stop after the flux test is completed.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	227 Sink Bits None 0000 0000 0000 0000 0000 0000 0000 00
Motor Nameplate Horsepower [Base Motor HP] User entered value of nameplate motor horsepower. The drive uses this information in the Dynamic Brake Resistor temperature calculation.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	228 Sink x.x HP Display units x 10 30.0 HP 1.0 HP HP
Base Motor Speed [Base Motor Speed] User entered value of nameplate motor speed in RPM. The drive uses this information to convert motor velocity RPM to/from drive per unit.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	229 Sink x RPM x 1,750 RPM 1 RPM 15,000 RPM
Motor Nameplate AMPS [Base Motor Curr] Drive nameplate current rating of the motor. Used for current reference scaling and current processor feedback scaling.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	230 Sink x.x amps Display units x 10 0.2 amps 0.1 amps Based on parameter 220
Motor Nameplate VOLTS [Base Motor Volt] Drive nameplate voltage rating of the motor.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	231 Sink x Volt None 460 volt 75 volt 575 volt
Motor Nameplate Frequency [Base Motor Freq] Drive nameplate frequency rating of the motor.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	232 Sink x.x Hz display units x 10 60 Hz 1 Hz 250 Hz
Motor Nameplate Poles [Motor Poles] Total number of motor poles in motor.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	233 Sink x poles None 4 poles 2 poles 40 poles
Motor Inertia [Motor Inertia] Time taken to accelerate an uncoupled motor from zero to base speed at rated torque.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	234 Sink x.xx Sec Display units x 100 0.60 Sec 0.01 Sec 655 Sec

Encoder PPR [Encoder PPR] User entered pulse per revolution rating of the feedback device when using an encoder to determine motor velocity.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	235 Sink x PPR None 1,024 ppr 500 ppr 20,000 ppr
RS Tune [Stator Res] Sum of the stator and cable resistances of the motor in a per unit (percent representation) This parameter is determined by the autocommissioning routine.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	236 Sink x.xx % 4096 = 100.00% Stator Res 1.50% 0.00% 100.00%
Lsigma Tune [Leakage Inductance] [Leakage Ind] Sum of the motor stator and rotor leakage inductances and the motor cable inductance in a per unit base impedance. This parameter is determined by the autocommissioning routine.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	237 Sink x.xx% 4096 = 100% Leakage Ind. 18.00% 0.00% 100.00%
Id Tune [Base Flux Current] [Base Flux Cur] Magnetizing current which produces rated flux in the motor in a per unit (percent) representation. This parameter is determined by the autocommissioning routine but can be entered manually.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	238 Sink x.x% 4096 = 100.0% motor amps 30.0% 0.0% 75.0%
Iq Tune (Rated Torque Current) [Base Torque Cur] Current which produces rated torque in the motor in a per unit (percent) representation. This parameter is determined by the autocommissioning routine but can be entered manually.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	240 Sink x.xx% 1024 = 100.00% Iq Motor 95.40 % 0.00% 100.00%
Vde Tune (Base Torque Voltage) [Base Torque Volt] D axis voltage command to the motor at rated speed and rated current. Parameter calculated by autocommissioning routine and MUST NOT BE CHANGED. Data represented as X.X volts	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	241 Sink x.x volts 16 = 1 volt (L-N) -75.0 volts -468.0 volts 0.0 volts
Vqe Tune (Rated Flux Voltage) [Base Flux Volt] Q axis voltage command to the motor at rated speed and rated current if motor is not in field weakening. Parameter calculated by autocommissioning routine and MUST NOT BE CHANGED. Data represented as X.X volts.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	242 Sink x.x volts 16 = 1 volt (L-N) 367.0 volts 0.0 volts 468.0 volts
Vde Maximum (Peak HP) [Vde Max] Maximum D axis voltage allowed on the motor. Parameter calculated by autocommissioning routine and MUST NOT BE CHANGED. Data represented as X.X volts.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	243 Sink x.x volts 16 = 1 volt line to neutral peak 112.5 volts 0.0 volts 468.0 volts

Vqe Maximum (Constant HP) [Vqe Max] Q axis voltage at which the motor enters field weakening. Parameter calculated by autocommissioning routine and MUST NOT BE CHANGED. Data represented as x.x volts	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	244 Sink x.x volts 16 = 1 volt (L-N) 367.0 volts 0.0 volts 468.8 volts
Vde Minimum (Constant HP) [Vde Min] D axis voltage below which the adaption to motor changes in the torque control is disabled. Parameter calculated by autocommissioning routine and MUST NOT BE CHANGED. Data represented as x.x volts	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	245 Sink x.x Volts 16 = 1 volt line to neutral peak 3.0 volts 0.0 volts 50.0 volts
Kslip (Base Slip Frequency) [Base Slip Freq] Base slip frequency of the motor. Parameter calculated by autocommissioning routine. Data represented as x.x Hz.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	246 Sink x.xx Hz 256 = 1Hz/unit torque 0.832 Hz 0.000 Hz 10.000 Hz
Kslip Maximum [Base Slip Fr Max] Maximum slip frequency allowed on the motor. Parameter calculated by autocommissioning routine and MUST NOT BE CHANGED. Data represented as x.x Hz.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	247 Sink x.xx Hz 256 = 1Hz/unit torque 2.00 Hz 0.00 Hz 30.00 Hz
Kslip Minimum [Base Slip Fr Min] Minimum slip frequency allowed on the motor. Calculated by autocommissioning routine and MUST NOT BE CHANGED. Data represented as x.x Hz.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	248 Sink x.xx Hz 256 = 1Hz / unit torque 0.50 Hz 0.00 Hz 10.00 Hz
Kp – Slip Regulator [Kp Slip] Proportional Gain of the slip regulator. This parameter MUST NOT BE CHANGED. Data represented as x.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	249 Sink x None 153 0 32767
Ki – Slip Regulator [Ki Slip] Integral Gain of the slip regulator. This parameter MUST NOT BE CHANGED. Data represented as x.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	250 Sink x None 306 0 32767
Kp – Flux Regulator [Kp Flux] Proportional Gain of the Flux regulator. This parameter MUST NOT BE CHANGED. Data represented as x.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	251 Sink x None 300 0 32767

Ki - Regulator **Parameter Number** 252 [Ki Flux] **Parameter Type** Sink **Display Units** Integral gain of the slip regulator This pa-**Drive Units** None rameter MUST NOT BE CHANGED. **Factory Default** 125 Data represented as x. Minimum Value 0 **Maximum Value** 32767 256 **Autotune/Diagnostics Selection Parameter Number Parameter Type** [Autotun Diag Sel] Sink **Display Units** Bits This parameter allows selection of drive diagnostic and commisioning tests by set-**Drive Units** None **Factory Default** 0000 0000 0000 0000 ting individual bits in this parameter: **Minimum Value** 0000 0000 0000 0000 **Maximum Value** 0000 0001 1111 1111 **Enums:** Bit 0 = Inverter transistor Diagnostics Bit 1 = Motor Phase Rotation Test Bit 2 = Lsigma Measure Test Bit 3 = Rs Measure Test Bit 4 = Id Measure Test Bit 5 = Torque Block Calc Test Bit 6 = Motor Inertia Test Bit 7 = System Inertia Test Bit 8 = Velocity Loop Gain **Transistor Diagnostics Configuration Parameter Number** 257 **Parameter Type** Sink [Tran Diag Disabl] **Display Units** Bits This parameter provides a means of disab-**Drive Units** ling certain transistor diagnostic tests by None 0000 0000 0000 0000 **Factory Default** setting the following bits: **Minimum Value** 0000 0000 0000 0000 **Maximum Value** 1111 1111 1111 1111 **Enums:** Bit 0 = Disable I feedback phase U offset Bit 9 = Disable Power Trans V Lower, for all tests Bit 10 = Disable Power Trans W Upper, for all tests Bit 1 = Disable I feedback phase W offset Bit 11 = Disable Power Trans W Lower, for all tests Bit 2 = Disable Shorted Transistor Tests Bit 3 = Disable Ground Fault Tests Bit 12 = High Induct* Bit 4 = Disable Open device tests Bit 13 = Reserved (Always leave 0) Bit 5 = Not Used Bit 14 = Reserved (Always leave 0) Bit 6 = Disable Power Trans U Upper, for all tests Bit 15 = Reserved (Always leave 0) Bit 7 = Disable Power Trans U Lower, for all tests *High Inductance motors may need extended test time to de-Bit 8 = Disable Power Trans V Upper, for all tests termine opens. Setting bit 12 increases the test time. **Inverter Diagnostics Result #1 Parameter Number** 258 [Inverter Diag 1] **Parameter Type** Source **Display Units** Bits The results of the Transistor Diagnostic **Drive Units** None Tests are given in parameter 258 & 0000 0000 0000 0000 259. **Factory Default Minimum Value** 0000 0000 0000 0000 **Maximum Value** 1111 1111 1111 1111 **Enums:** Bit 0 = Software Fault Bit 9 = Hardware desaturation fault occurred Bit 1 = No motor connected, or open bus fuse Bit 10 = Hardware ground fault occurred Bit 2 = Phase U and W Shorted Bit 11 = Hardware phase overcurrent fault occurred Bit 3 = Phase U and V shorted Bit 12 = Open power transistor(s) See bit 12 in parameter 257 Bit 4 = Phase V and W shorted Bit 13 = Current feedback fault(s)

Bit 14 = Reserved. Leave Zero

Bit 15 = Reserved, Leave Zero

Bit 5 = Shorted modules

Bit 7 = Fault before shorted module ran Bit 8 = Hardware overvoltage fault occurred

Bit 6 = Ground fault

Inverter Diagnostics Result #2 [Inverter Diag 2] The results of the Transistor Diagnostic Tests are given in parameters 258 & 259. If any of the bits shown below are set, then a problem with the associated test is indicated. 0 = Transistor U upper shorted 1 = Transistor U lower shorted 2 = Transistor V upper shorted 3 = Transistor V lower shorted 4 = Transistor W upper shorted 5 = Transistor W lower shorted	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums: 6 = Current fdbk ph U offset 7 = Current fdbk ph W offse 8 = Transistor U upper open 9 = Transistor U lower open 10 = Transistor V upper open *See Parameter 257, bit 12	t too big * *	00
Iq OFFSET [Iq Offset] This parameter contains the LEM U offset required to null the current error. (no motor current flowing) This offset is set automatically by running the transistor diagnostics.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	260 Sink +/- x None +0 -100 +100	
Id OFFSET [Id Offset] This parameter contains the LEM W offset required to null the current error. (no motor current flowing) This offset is set automatically by running the transistor diagnostics.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	261 Sink +/- x None +0 -100 +100	
Phase Rotation Current Reference [Ph Rot Curr Ref] This parameter sets the current reference that will be used when the Phase Rotation test is run (Parm 256, bit 1)	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	262 Sink x.x% 4096 = 100.0% Mo 50.0% 0.0% 100.0%	tor Current
Phase Rotation Frequency Reference [Phase Rot Freq Ref] This parameter sets the frequency reference that will be used when the Phase Rotation test is run (Parm 256, bit 1)	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	263 Sink x.x Hz 128 @ 1 Hz 3.0 Hz - 30.0 Hz +30.0 Hz	
Motor Current Magnitude Feedback [Motor Cur Fdbk] Displays the actual RMS value of the motor current as determined from the LEM current sensors. This data is averaged and updated on a 50 millisecond basis.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	Source x.x Amp Display units x 10 0.0 amps 0.0 amps 6,553.5 amps	
Motor Voltage Magnitude [Motor Volt Fdbk] Displays the actual Line—to—Line RMS value of motor voltage. This data is averaged and updated on a 50 millisecond basis.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	265 Source x Volt None + 0 Volt - 3,000 Volt +3,000 Volt	

Stator Frequency [Freq Command] Displays the actual value of motor stator frequency. Units are in Hz times 128 (128 @ 1 Hz)	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	266 Source x .xxx Hz 128 @ 1Hz 0 .000 Hz -255.992 Hz +255.922 Hz
Calculated Torque [Calc Torque] This parameter will display the calculated value of motor torque as determined by the Velocity Processor. The actual value of motor torque will be within 5% of this value. Scaling is 4096 at rated motor torque. This data is updated on a 2 millisecond basis.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	267 Source +/- x.x% 4096 = 100.0 % 0.0 -800.0% +800.0%
DC Bus Voltage [DC Bus Voltage] This is the actual Bus Voltage as read by the software from an analog input port. Units are in volts.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	268 Source x Vlt None 0 volts 1,000 volts
Filtered Velocity Feedback [Filt Vel Fdbk] This parameter contains a filtered version of velocity feedback. The value contained in this parameter is not meant to be used for control, only for display and monitoring purposes.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	269 Source x.x rpm 4096 = base motor speed 0.0 rpm - 8 x Base Speed +8 x Base Speed
Inverter Temperature Feedback [Inv Temp Fdbk] Inverter temperature determined by NTC device on heatsink power structure. Can be configured to generate either a warning or fault when heatsink reaches 80 degrees C.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	270 Source +/- x deg None 0 deg - 50 deg +255 deg
Limited Motor Flux [Lim Motor Flux] This parameter displays the level of motor field flux calculated by the current processor and limited by the Min Flux Level parameter (Param 174).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	271 Source x.x% 4096 = 100% flux 100% 12.5% 100%
Testpoint Selection #1 [Torq TP Sel 1] This parameter selects a torque block test point. The value of that test point can be read from Torq TP Data 1 (Parm 274).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	273 Sink x None 0 0 100

Testpoint Data #1 [Torq TP Sel 1] This parameter contains the data selected by Testpoint Selection #1 (param 273).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	274 Source +/- x None 0 -32767
Testpoint Selection #2 [Torq TP Sel 2] This parameter selects a torque block test point. The value of that test point can be read from Testpoint Data #2 (Parm 276).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	275 Sink x None 0 0 100
Testpoint Data #2 [Torq TP Data 2] This parameter contains the data selected by Testpoint Selection #1 (param 275).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	276 Source +/- x None 0 -32767
Testpoint Selection #3 [Torq TP Sel 3] This parameter selects a torque block test point. The value of that test point can be read from Testpoint Data #3 (Parm 278).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	277 Sink x None 0 0 100
Testpoint Data #3 [Torq TP Data 3] This parameter contains the data selected by Testpoint Selection #3 (param 277).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	278 Source +/- x None 0 -32767 32767
Testpoint Selection #4 [Torq TP Select 4] This parameter selects a torque block test point. The value of that test point can be read from Testpoint Data #4 (Parm 280).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	279 Sink x None 0 100
Testpoint Data #4 [Torq TP Data 4] This parameter contains the data selected by Testpoint Selection #4 (param 279).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	280 Source +/- x None 0 -32767 32767

Testpoint Selection #5 [Torq TP Sel 5] This parameter selects a torque block test point. The value of that test point can be read from Testpoint Data #5 (Parm 282).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	281 Sink x None 0 0 100
Testpoint Data #5 [Torq TP Data 5] This parameter contains the data selected by Testpoint Selection #5 (param 281).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	282 Source +/- x None 0 -32767 32767
Testpoint Selection #6 [Torq TP Sel 6] This parameter selects a torque block test point. The value of that test point can be read from Testpoint Data #6 (Parm 284).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	283 Sink x None 0 0 100
Testpoint Data #6 [Torq TP Data 6] This parameter contains the data selected by Testpoint Selection #6 (param 283).	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	284 Source +/- x None 0 -32767 32767
Selection for Test DAC 1 [Test DAC1 Sel] This parameter is for factory use only! DO NOT ATTEMPT TO USE.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	285 1 0 256
Selection for Test DAC 2 [Test DAC2 Sel] This parameter is for factory use only! DO NOT ATTEMPT TO USE.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	286 4 0 256
Ki Frequency Regulator [Ki Freq Reg] Integral gain of the frequency regulator in sensorless mode. This parameter must not be changed.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	287 Sink x None 300 0 32767

Kp Frequency Regulator [Kp Freq Reg] Proportional gain of the frequency regulator in sensorless mode. This parameter must not be changed.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	288 Sink x None 800 0 32767
Kff Freq Regulator [Kff Freq Reg] Feedforward gain of the frequency regulator in sensorless mode. This parameter must not be changed.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	289 Sink x 1 = 256 1 0
Ksel Freq Regulator [Ksel Freq Reg] Low frequency gain boost of the frequency regulator in sensorless mode. This parameter must not be changed.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	290 Sink x.x None 67 0.0 32767
Frequency Tracker Filter [Freq Track Filt] Rotor frequency regulator filter in sensor-less mode. This parameter must not be changed.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	291 Sink x None 5000 0 32767
Tracking Filter Type [Track Filt Type] Low frequency filter select of the frequency regulator in sensorless mode. This parameter must not be changed by non–factory personnel.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	292 Sink x None 1 (Self Adjust) 0 (Fixed) 128
Frequency Trim Filter [Freq Trim Filt] Slip frequency regulator filter in sensorless mode. This parameter must not be changed.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	293 Sink x None 5000 0 32767
Motor Phase Rotation Errors [Phs Test Rot Err] This parameter indicates an error condition detected during the motor phase rotation test. 1 = Drive condition true 0 = Drive condition false	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	294 Source Bit None 0000 0000 0000 0000 0000 0000 0000 00
Bits are defined as: Bit Condition 0 Enable Drop Out 1 to 15 Reserved		

Motor Inductance Test Errors

[Lo Test Error]

This parameter indicates an error condition detected during the motor inductance test.

1 = Drive condition true 0 = Drive condition false

295 **Parameter Number Parameter Type** Source **Display Units** Bits **Drive Units** None

0000 0000 0000 0000 **Factory Default Minimum Value** 0000 0000 0000 0000 **Maximum Value** 1111 1111 1111 1111

Bits are defined as follows:

Condition Bit

Motor Not at Zero Speed

Sign Error 1 Zero Current

2 3 A/D Overflow at min gain 4 Enable drop out Sign error/Overflow 5

6 to 15 Reserved

Motor Stator Resistance Test Errors

[Rs Test Error]

Low frequency gain boost of the frequency regulator in sensorless mode. This parameter must not be changed.

Bits are defined as follows:

Bit Condition

0 Motor Not at Zero Speed

1 Sign Error 2 Not Used 3 Zero Current 4 Not Used 5 Software Error 6 Not Used **Enable Drop Out** 8-15 Reserved

296 **Parameter Number Parameter Type** Source **Display Units** Bits **Drive Units** None

Parameter Number

Parameter Type

Factory Default

Minimum Value

Maximum Value

Display Units

Drive Units

0000 0000 0000 0000 **Factory Default Minimum Value** 0000 0000 0000 0000 **Maximum Value** 1111 1111 1111 1111

297

Bits

None

0000 0000 0000 0000

0000 0000 0000 0000

1111 1111 1111 1111

Source

Motor Flux (Id) Test Errors

[Id Test Error]

This parameter indicates an error condition detected during the motor flux (Id) test. If a bit is set to "1" the Drive condition is true, otherwise the condition is false.

Bits are defined as follows:

Bit Condition 0 Autotune Speed Low (30% min)

Identified Id < zero

Identified Id > 100% motor current 2

Enable drop out 4-15 Reserved

Torque Block Calculation Errors

[Torq Calc. Error]

This word parameter indicates an error condition which has been detected during the torque block calculations. If a bit is set to "1" the Drive condition is true, otherwise the condition is false.

298 **Parameter Number Parameter Type** Source **Display Units** Bits **Drive Units** None

Factory Default 0000 0000 0000 0000 Minimum Value 0000 0000 0000 0000 **Maximum Value** 1111 1111 1111 1111 **Enums:**

Bits are defined as:

Bit Condition

Negative or Zero Slip

1 to 15 Reserved NOTE: The Parameters shown here in the range from 300 to 500 are Standard Adapter Parameters Only! Parameter descriptions for PLC Comm Adapter Parameters are covered in the PLC Comm Adapter User Manual.

Adapter Identification Number [Adapter ID] This parameter displays the Standard Adapter ID. Adapter Software Version [Adapter Version] This parameter displays the software version number.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value	300 Source x None 2 2 2 2 301 Source x.xx None x.xx None x.xx 0.00
Adapter Config [Adapter Config] (Not Used In Present Release)	Maximum Value Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	9.99 302 Source
Language Select [Language Select] This parameter makes the selection between two languages: 0 – Primary Language 1 – Alternate Language	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	304 Sink x None 0 0 1
Data In A1 [Data In A1] This parameter displays the SCANport to drive image which is received from some device on SCANport.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	310 Source +/-x None 0 -32767 +32767
Data In A2 [Data In A2] This parameter displays the SCANport to drive image which is received from some device on SCANport.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	311 Source +/-x None 0 -32767 +32767
Data In B1 [Data In B1] This parameter displays the SCANport to drive image which is received from some device on SCANport.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	312 Source +/-x None 0 -32767 +32767

Data In B2 [Data In B2] This parameter displays the SCANport to drive image which is received from some device on SCANport.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	313 Source +/-x None 0 -32767 +32767
Data In C1 [Data In C1] This parameter displays the SCANport to drive image which is received from some device on SCANport.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	314 Source +/-x None 0 -32767 +32767
Data In C2 [Data In C2] This parameter displays the SCANport to drive image which is received from some device on SCANport.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	315 Source +/-x None 0 -32767 +32767
Data In D1 [Data In D2] This parameter displays the SCANport to drive image which is received from some device on SCANport.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	316 Source +/-x None 0 -32767 +32767
Data In D2 [Data In D2] This parameter displays the SCANport to drive image which is received from some device on SCANport.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	317 Source +/-x None 0 -32767 +32767
Data Out A1 [Data Out A1] This parameter displays the drive to SCANport image which is sent to some device on SCANport	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	320 Sink +/-x None 0 -32767 +32767
Data Out A2 [Data Out A2] This parameter displays the drive to SCANport image which is sent to some device on SCANport	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	321 Source +/-x None 0 -32767 +32767
Data Out B1 [Data Out B1] This parameter displays the drive to SCANport image which is sent to some device on SCANport	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	322 Sink +/-x None 0 -32767 +32767

Data Out B2 [Data Out B2] This parameter displays the drive to SCANport image which is sent to some device on SCANport	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	323 Sink +/-x None 0 -32767 +32767
Data Out C1 [Data Out C1] This parameter displays the drive to SCANport image which is sent to some device on SCANport	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	324 Sink +/-x None 0 -32767 +32767
Data Out C2 [Data Out C2] This parameter displays the drive to SCANport image which is sent to some device on SCANport	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	325 Sink +/-x None 0 -32767 +32767
Data Out D1 [Data Out D1] This parameter displays the drive to SCANport image which is sent to some device on SCANport	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	326 Sink +/-x None 0 -32767 +32767
Data Out D2 [Data Out D2] This parameter displays the drive to SCANport image which is sent to some device on SCANport	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	327 Sink -/-x None 0 -32767 +32767
SCANport Port Enable Mask [Port Enable Mask] This parameter selects which SCANport devices can control the Drive. 1 = Permit Control 0 = Deny Control	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	330 Sink Bits None 0111 1111 0000 0000 0111 1111
Bit 1 – SCANport Device 1 Bit 4 –	- SCANport Device 3 - SCANport Device 4 - SCANport Device 5	Bit 6 – SCANport Device 6 (Int Gateway) Bit 7 – Reserved

SCANport Direction Mask [Direction Mask] This parameter selects which SCANport devices can issue a forward/reverse command. 1 = Permit Control 0 = Deny Control	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	331 Sink Bits None 0111 1111 0000 0000 0111 1111
Bit 1 – SCANport Device 1 Bit 4	SCANport Device 3SCANport Device 4SCANport Device 5	Bit 6 – SCANport Device 6 (Int Gateway) Bit 7 – Reserved
SCANport Start Mask [Start Mask] This parameter selects which SCANport devices can issue a start command. 1 = Permit Control 0 = Deny Control	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	332 Sink Bits None 0111 1111 0000 0000 0111 1111
Bit 1 – SCANport Device 1 Bit 4	SCANport Device 3SCANport Device 4SCANport Device 5	Bit 6 – SCANport Device 6 (Int Gateway) Bit 7 – Reserved
SCANport Jog Mask [Jog Mask] This parameter selects which SCANport devices can issue a Jog command. 1 = Permit Control 0 = Deny Control	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	333 Sink Bits None 0111 1111 0000 0000 0111 1111
Bit 1 – SCANport Device 1 Bit 4	SCANport Device 3SCANport Device 4SCANport Device 5	Bit 6 – SCANport Device 6 (Int Gateway) Bit 7 – Reserved
SCANport Reference Mask [Reference Mask] This parameter selects which SCANport device can issue a reference command. 1 = Permit Control 0 = Deny Control	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	334 Sink Bits None 0111 1111 0000 0000 0111 1111
Bit 1 – SCANport Device 1 Bit 4	SCANport Device 3SCANport Device 4SCANport Device 5	Bit 6 – SCANport Device 6 (Int Gateway) Bit 7 – Reserved
SCANport Clear Fault Mask [Clear Fault Mask] This parameter selects which SCANport devices can issue a Clear Faults command. 1 = Permit Control 0 = Deny Control	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	335 Sink Bits None 0111 1111 0000 0000 0111 1111
Bit 1 – SCANport Device 1 Bit 4	SCANport Device 3SCANport Device 4SCANport Device 5	Bit 6 – SCANport Device 6 (Int Gateway) Bit 7 – Reserved

SCANport Reset Drive Mask [Reset Drive Mask] This parameter selects which SCANport devices can issue a Reset Drive command. 1 = Permit Control 0 = Deny Control	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	336 Sink Bits None 0111 1111 0000 0000 0111 1111
Bit 1 – SCANport Device 1 Bit 4 -	- SCANport Device 3 - SCANport Device 4 - SCANport Device 5	Bit 6 – SCANport Device 6 (Int Gateway) Bit 7 – Reserved, Leave Zero
SCANport Local Control Mask [Local Mask] This parameter selects which SCANport devices can take local control. 1 = Permit Control 0 = Deny Control	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	337 Sink Bits None 0111 1111 0000 0000 0111 1111
Bit 1 – SCANport Device 1 Bit 4	SCANport Device 3SCANport Device 4SCANport Device 5	Bit 6 – SCANport Device 6 (Int Gateway) Bit 7 – Reserved, Leave Zero
Bit 1 – SCANport Device 1 Bit 5	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums: - SCANport Device 4 - SCANport Device 5	340 Source Bits None 0000 0000 0000 0000 0111 1111
	S – SCANport Device 6 (Int C – Reserved, Leave Zero Parameter Number	341
[Direction Owner] This parameter displays which SCANport device currently has exclusive control of direction changes. 1 = Current Owner 0 = Non Owner	Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	Source Bits None 0000 0000 0000 0000 0111 1111
Bit 1 – SCANport Device 1 Bit 5 Bit 2 – SCANport Device 2 Bit 6	 SCANport Device 4 SCANport Device 5 SCANport Device 6 (Int C Reserved, Leave Zero 	Gateway)
SCANport Start Owner [Start Owner] This parameter displays which SCANport devices are presently issuing a valid start command. 1 – Start Input Present 0 – Start Input Not Present	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	342 Source Bits None 0000 0000 0000 0000 0111 1111
Bit 1 – SCANport Device 1 Bit 5 Bit 2 – SCANport Device 2 Bit 6	4 – SCANport Device 4 5 – SCANport Device 5 5 – SCANport Device 6 (Int C 7 – Reserved, Leave Zero	Gateway)

SCANport Jog 1 Owner [Jog 1 Owner] This parameter displays which SCANport devices are presently issuing a valid jog 1 command. 1 = Jog 1 Input present 0 = Jog 1 Input Not Present	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	343 Source Bits None 0000 0000 0000 0000 0111 1111
Bit 1 – SCANport Device 1 Bit 5 Bit 2 – SCANport Device 2 Bit 6	 SCANport Device 4 SCANport Device 5 SCANport Device 6 (Int G Reserved, Leave Zero 	ateway)
SCANport Jog 2 Owner [Jog 2 Owner] This parameter displays which SCANport devices are presently issuing a valid jog 2 command. 1 = Jog 2 Input Present 0 = Jog 2 Input Not Present	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	344 Source Bits None 0000 0000 0000 0000 0111 1111
Bit 1 – SCANport Device 1 Bit	3 – SCANport Device 3 4 – SCANport Device 4 5 – SCANport Device 5	Bit 6 – SCANport Device 6 (Int Gateway) Bit 7 – Reserved, Leave Zero
SCANport Reference Owner [Reference Owner] This parameter displays which SCANport device currently has exclusive control of the reference changes. 1 = Current Owner 0 = Non Owner	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	345 Source Bits None 0000 0000 0000 0000 0111 1111
Bit 1 – SCANport Device 1 Bit	3 – SCANport Device 3 4 – SCANport Device 4 5 – SCANport Device 5	Bit 6 – SCANport Device 6 (Int Gateway) Bit 7 – Reserved, Leave Zero
SCANport Local Control Owner [Local Owner] This parameter displays which SCANport device currently has exclusive control of the drive. 1 = Current Owner 0 = Non Owner	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	346 Source Bits None 0000 0000 0000 0000 0111 1111
Bit 1 – SCANport Device 1 Bit	3 – SCANport Device 3 4 – SCANport Device 4 5 – SCANport Device 5	Bit 6 – SCANport Device 6 (Int Gateway) Bit 7 – Reserved, Leave Zero
SCANport Flux Owner [Flux Owner] This parameter displays which SCANport devices are presently issuing a valid flux command. 1 = Flux Input Present 0 = Flux Input Not Present	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	347 Source Bits None 0000 0000 0000 0000 0111 1111
Bit 1 – SCANport Device 1 Bit	3 – SCANport Device 3 4 – SCANport Device 4 5 – SCANport Device 5	Bit 6 – SCANport Device 6 (Int Gateway) Bit 7 – Reserved, Leave Zero

SCANport Process Trim Owner [Trim Owner] This parameter displays which SCANport devices are currently issuing a valid process trim command. 1 = Process Trim Input Present 0 = Process Trim Input Not Present	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	348 Source Bits None 0000 0000 0000 0000 0111 1111
Bit 1 – SCANport Device 1 Bit 4 –	SCANport Device 3 SCANport Device 4 SCANport Device 5	Bit 6 – SCANport Device 6 (Int Gateway) Bit 7 – Reserved, Leave Zero
SCANport Ramp Owner [Ramp Owner] This parameter displays which SCANport devices are presently issuing a valid ramp command. 1 = Ramp Input Present 0 = Ramp Input Not Present	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	349 Source Bits None 0000 0000 0000 0000 0111 1111
Bit 1 – SCANport Device 1 Bit 4 –	SCANport Device 3 SCANport Device 4 SCANport Device 5	Bit 6 – SCANport Device 6 (Int Gateway) Bit 7 – Reserved, Leave Zero
SCANport Clear Fault Owner [Clr Fault Owner] This parameter displays which SCANport devices are presently issuing a valid Clear Fault Command. 1 = Clear Fault Input Present 0 = Clear Fault Input Not Present	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	350 Source Bits None 0000 0000 0000 0000 0111 1111
Bit 1 – SCANport Device 1 Bit 4 –	SCANport Device 3 SCANport Device 4 SCANport Device 5	Bit 6 – SCANport Device 6 (Int Gateway) Bit 7 – Reserved, Leave Zero
10 Volt In Filtr [10 Volt In Filtr] This parameter establishes the breakpoint radian frequency for the 10 Volt Input.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	x.x r/s eng x 10 radian/sec. 0.0 r/s 0.0 r/s 200.0 r/s
Pot In Filtr [Pot In Filter] This parameter establishes the breakpoint radian frequecy for the Pot Input.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	353 x.x r/s eng. x 10 radian/sec 0.0 r/s 0.0 r/s 200.0 r/s
mA In Filtr [mA In Filter] This parameter establishes the breakpoint for the mA Input.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	x.x r/s eng. x 10 radian/sec 0.0 r/s 0.0 r/s 200.0 r/s

10 Volt Input [10 Volt Input] This parameter displays the converted analog value of the +/- 10 volt input.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	355 Source +/- x None 0 -32767 +32767
10 Volt Offset [10 Volt Offset] This parameter determines the offset applied to the raw analog value of the +/- 10 volt input before the scale factor is applied. This allows the user to shift the range of the analog input.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	356 Sink +/- x.xx volt 205 = 1 volt +0.00 volt -20.00 volt +20.00 volt
10 Volt Scale [10 Volt Scale] This parameter determines the scale factor or gain for the +/- 10 volt input. The +/- 10 volt input is converted to +/- 2048 and then the scale is applied which allows an effective digital range of +/- 32767.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	357 Sink +/- x.xxx 2048 = 1 +2.000 -16.000 +16.000
Pot Input [Pot Input] This parameter displays the converted analog value of the pot input.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	358 Source +/- x None 0 -32767 +32767
Pot Offset [Pot Offset] This parameter determines the offset applied to the raw analog value of the pot input before the scale factor is applied. This allows the user to shift the range of the of the analog input.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	359 Sink +/- x.xx volts 205 = 1 volt +0.000 volt -20.000 volt +20.000 volt
Pot Scale [Pot Scale] This parameter determines the scale factor or gain for the pot input. The pot input is converted to a +/- 2048 and then the scale is applied allowing an effective digital range of +/- 32767	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	360 Sink +/- x.xxx 2048 = 1 +1.000 -16.000 +16.000
Milli Amp Input [mA Input] This parameter displays the converted analog value of the milli amp input.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	361 Source x None +0 0 +32767

Milli Amp Input Offset [mA Input Offset] This parameter determines the offset applied to the raw analog value of the milli amp input before the scale factor is applied. This allows the user to shift the range of the analog input.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	362 Sink + x.xxx mA 128 = 1mA +0.000 mA -32.000 mA +32.000 mA
Milli Amp Input Scale [mA Input Scale] This parameter determines the scale factor or gain for the milli amp input. The milli amp input is converted to a +/- 2048 and then the scale is applied which allows an effective digital range of +/- 32767.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	363 Sink +/- x.xxx 2048 = 1 +2.000 -16.000 +16.000
SCANport Analog1 Select [SB Analog Sel] This parameter selects which SCANport analog device is used in parameter 365 'SP Analog In'.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	364 Sink x None 1 1 6
1 SCANport 1 4 2 SCANport 2 5 3 SCANport 3 6	SCANport 4 SCANport 5 SCANport 6	
SCANport Analog1 In [SB Analog1 In] This parameter displays the analog value of the SCANport device selected in parameter 364 'SP Analog Sel'.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	365 Source +/- x None 0 -32767 +32767
SP Analog1 Scale [SB Analog1 Scale] This parameter can be used to scale the value in Parameter 365.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	366 Sink +/-x +/- 1, 1 = 32767 1 (32767) -1 (-32767) 1 (32767)

SCANport Analog2 Select [SB Analog2 Sel] This parameter selects which SCANport analog device is used in parameter 368 'SB Analog In 2'.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	367 Sink x None 1 1
1 Scanport 1 4 2 Scanport 2 5 3 Scanport 3 6	Scanport 4 Scanport 5 Scanport 6	
SCANport Analog2 In [SB Analog2 In] This parameter displays the analog value of the SCANport device selected in parameter 367 'SP Analog2 Sel'.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	368 Source +/- x None 0 -32767 +32767
SP Analog2 Scale [SB Analog2 Scale] This parameter can be used to scale the value in Parameter 368.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	369 Sink +/-x +/- 1, 1 = 32767 1 (32767) -1 (-32767) 1 (32767)
Analog Output 1 [Analog Out 1] This parameter converts a +/- 32767 digital value to a +/- 10 volt output.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	370 Sink +/-x None 0 -32767 +32767
Analog Output 1 Offset [An Out 1 Offset] This parameter determines the offset applied to the raw analog output 1. The offset is applied after the scale factor.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	371 Sink +/- x.xxx volt 205 = 1 volt +0.000 volt -20.000 volt +20.000 volt

Analog Output 1 Scale [An Out 1 Scale] This parameter determines the scale factor or gain for Analog Output 1. A +/- 32767 digital value is converted by the scale factor which allows an effective digital range of +/- 2048 which is then offset to provide a +/- 10 volt range.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	372 Sink +/- x.xxx 32767 = 1 +0.500 -1.000 +1.000
Analog Output 2 [Analog Out 2] This parameter converts a +/– 32767 digital value to a +/– 10 volt output.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	373 Sink +/- x None 0 -32767 +32767
Analog Output 2 Offset [An Out 2 Offset] This parameter determines the offset applied to the raw analog output 2. The offset is applied after the scale factor.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	374 Sink +/- x.xxx volt 205 = 1 volt +0.000 -20.000 +20.000
Analog Output 2 Scale [An Out 2 Scale] This parameter determines the scale factor or gain for Analog Output 2. A +/- 32767 digital value is converted by the scale factor which allows abn effective digital range of +/- 2048 which is then offset to provide a +/- 10 volt range.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	375 Sink +/- x.xxx 32767 = 1 +0.500 -1.000 +1.000
Milli Amp Output [mA Output] This parameter converts a +/- 32767 digital value to a 4-20 mA output.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	376 Sink x None 0 0 +32767
Milli Amp Output Offset [mA Output Offset] This parameter determines the offset applied to the raw milli amp output. The offset is applied after the scale factor.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	377 Sink +/- x.xxx mA 128 = 1mA 0.000 mA -32.000 mA +32.000 mA

Milli Amp Output Scale [mA Output Scale] This parameter determines the scale factor or gain for milli amp output. A +/- 32767 digital value is converted by the scale factor which allows an effective digital range of +/- 2048 which is then offset to provide a +/- 20 mA range.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	378 Sink +/- x.xxx 32767 = 1 +0.500 -1.000 1.000	
SCANport Analog Output [SP Analog Out] This parameter displays the analog value that is sent to all SCANports	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	379 Sink +/-x None 0 -32767 +32767	
Programmable Output Select [Output Select] This parameter selects the function of TB7–1 Output. The NOT column in the following table indicates the value for the inverse condition. For example: Entering a value of 0 will result in a Run Ready condition, while a value of 32	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	384 Sink, x None 8 0 63	
results in a NOT Run Ready condition. NOT EN 32	NOT EN 48 16 FLUX READY 49 17 FLUX UP 50 18 DIAGNOSTIC CO 51 19 DIAGNOSTIC ABI 52 20 BUS RIDETHRU 53 21 JOGGING 54 22 AUTOTUNE STAT 55 23 AUTOTUNE STAT 56 24 AT LIMIT 57 25 NOT USED 58 26 AT SETPOINT 1 59 27 AT SETPOINT 2 60 28 OVER SETPOINT 61 29 OVER SETPOINT 62 30 OVER SETPOINT 63 31 OVER SETPOINT	ORTED A B T C C C C C C C C C C C C C C C C C C	Set P66 to the type of Set Point desired, Current or Speed. Then set the appropriate parameter (P60 – P65) to monitor your desired SetPoint.

Input Mode [Input Mode] This parameter selects the functions of the inputs 1-9 at TB3.			Param Displa Drive Factor Minim	y Default num Value num Value	er	385 Sink x None 1 1 30			
Mode 1 2 3 4 5, 27 6 7 8 9, 28 10, 29 11 12 13 14 15, 30 16 17 18 19 20 21 22 23 24 25 26	Input 1 Status Start Run Fwd Run Fwd Run Fwd Run Fwd Run Fwd Start Run Fwd	Input 2 Stop Stop Stop Stop Stop Stop Stop Stop	Input 3 Status Rev/Fwd Rev/Fwd Rev/Fwd Rev/Fwd Rev/Fwd Rev Rev Rev Rev Sev Sev Run Rev Rev/Fwd Rev/Fwd Spd/Trq3 Rev Spd/Trq3 Run Rev	Input 4 Status Jog Stop Type 1/2 Acc Pot Up Jog Fwd Fwd Pot On Fwd 2nd Acc Loc/Rem Stop Type 1/2 Acc Pot up Loc/Rem Flux En Spd/Trq2 Spd/Trq2 Fwd Spd/Trq2 Fwd Spd/Trq2 Froc Trim Flux En Proc Trim Flux En Spd/Trq2 Fwd Spd/Trq2 Fwd Spd/Trq2 Froc Trim Flux En Proc Trim Flux En	Ext Fault	Input 6 Status Spd 3 Spd 3 1/2 Dec Pot Dn Loc/Rem Jog Spd 3 Spd 3 Pot Up 1st Dec Spd 3 Spd 3 1/2 Dec Pot Dn Stop Type Ramp Reset Spd/Trq1 Spd/Trq2 Ramp Spd/Trq1 Reset Reset Ramp Spd 3	Spd 2 Spd 2 Spd 2 Pot Dn 2nd Dec Spd 2 Spd 1 Flux En Reset	Input 8 Status Spd 1	
Input Status [Input Status] This parameter displays the on/off status of inputs 1-8 at TB3. 1 = ON 0 = Off			of Displa Drive Factor Minim Maxin Enum	ry Default num Value num Value s:		386 Source Bit None 0000 0000 0000 0000 1111 1111			
0 1 2	1 Input 2 4 Input 5 7 Input 8								
[Stop S This pa for a va 3 = Par 2 = Cur 1 = Rar	I/O Stop Select 1 [Stop Select 1] This parameter selects the stopping mode for a valid stop command. 3 = Param 59 Bits 4 or 5 2 = Current limit stop 1 = Ramp Stop 0 = Coast Stop			Param Displa Drive Factor Minim	neter Numb neter Type y Units Units y Default num Value num Value	er	387 Sink x None 0 0 3		

I/O Stop Select 2 [Stop Select 2] This parameter selects the stopping mode for a valid stop command. 3 = Param 59 Bits 4 or 5 2 = Current limit stop 1 = Ramp Stop 0 = Coast Stop	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	388 Sink x None 0 0 3
I/O Acceleration Rate 1 [Accel Rate 1] This parameter determines the 0 rpm to base speed ramp rate.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	389 Sink x.x Sec 10 = 1 sec 10 sec 0.0 sec 6553.5 sec
I/O Acceleration Rate 2 [Accel Rate 2] This parameter determines the 0 rpm to base speed ramp rate.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	390 Sink x.x sec 10 = 1 sec 10.0 sec 0.0 sec 6553.5 sec
I/O Deceleration Rate 1 [Decel Rate 1] This parameter determines the base speed to 0 rpm ramp rate.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	391 Sink x.x sec. 10 = 1 sec 10.0 sec 0.0 sec 6553.5 sec
I/O Deceleration Rate 2 [Decel Rate 2] This parameter determines the base speed to 0 rpm ramp rate.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	392 Sink x.x sec 10 = 1 sec 10.0 sec 0.0 sec 6553.5 sec
Mop Increment [Mop Increment] This parameter determines the rate of increase or decrease to the MOP value per time.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	393 Sink x.x RPM (RPM per sec) 4096= Base Speed 10% of base speed 0.0 RPM Base Speed
MOP Value [Mop Value] This parameter displays the MOP value.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	394 Source x RPM 4096 = Base Speed 0.0 Negative Speed Limit Positive Speed Limit

Pulse PPR [Pulse PPR] This parameter determines the pulse input pulses per revolution.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	395 Sink x PPR None 1024 500 20000
Pulse Single or Double Edge [Pulse Edge] This parameter determines if rising (single) or rising and falling (double) edges are counted for the pulse input.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums: 1 = 1 Edge 2 = 2 Edges	396 Sink None None 1 1 2
Pulse Scale [Pulse Scale] This parameter determines the pulse input speed that is equal to 4096 drive units.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	397 Sink x RPM 4096 1750 -6000 +6000
Pulse Offset [Pulse Offset] This parameter determines the minimum speed the pulse input will go to.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	398 Sink x.x RPM None 0.0 - Pulse Scale + Pulse Scale
Pulse Value [Pulse Value] This parameter displays the pulse input value.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	399 Source x.x RPM 4096 = Pulse Scale 0.0 -8 x Pulse Scale +8 x Pulse Scale
SP Comm Retries [SP Comm Retries] This parameter monitors the amount of SCANport communications errors that have occurred since power up.	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value	404 Source x. 0.0 0 65535

Fault Select [SA Fault Select] This parameter chooses whether a SCAN-port device causes a drive fault, a warning based on 'SA Warn Sel' (P406) or does nothing. 1 = Fault 0 = Warning/Nothing Bit 0 - Not Used Bit 1 - SCANport Device 1	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums: Bit 5 – SCANport Device 5 Bit 6 – SCANport Device 6	405 Sink Bits None 0000 0000 0111 1111 0000 0000 0000 000		
Bit 2 – SCANport Device 2 Bit 3 – SCANport Device 3 Bit 4 – SCANport Device 4	Bit 7 – Not Used Bit 8 – 4–20 mA Loss Bit 9–15 – Not Used			
Warning Select [SA Warn Select] This parameter selects whether a SCAN-port device timeout causes a warning or does nothing. 1 = Warning 0 = Does Nothing	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	406 Sink Bits None 0000 0000 0111 1111 0000 0000 0000 000		
Bit 1 – SCANport Device 1 Bit 2 – SCANport Device 2 Bit 3 – SCANport Device 3 Bit 8 – Bit 8 –	- SCANport Device 5 - SCANport Device 6 - Not Used - 4–20 mA Loss 15 – Not Used			
Fault Status [SA Fault Status] This parameter displays the fault status of the SCANport device. 1 = Fault 0 = No Fault	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	407 Source Bits None 0000 0000 0000 0000 0000 0000 0000 00		
Bit 1 – SCANport Device 1 Bit 2 – SCANport Device 2 Bit 3 – SCANport Device 3 Bit 4 – SCANport Device 4 Bit	6 – SCANport Device 6 7 – Not Used 8 – 4 – 20 mA Loss 9 – Not Used 10 – Not Used 11 – Not Used	Bit 12 – Not Used Bit 13 – Illegal Drive Type (Not Configurable) Bit 14 – Diff Drive Type (Not Configurable) Bit 15 – SCANport error (Not configurable)		
Warning Status [SA Warn Status] This parameter displays the warning status of the SCANport device timeouts. 1 = Warning 0 = No Warning Bit 0 - Not Used	Parameter Number Parameter Type Display Units Drive Units Factory Default Minimum Value Maximum Value Enums:	408 Source Bits None 0000 0000 0000 0000 0000 0000 0000 00		
Bit 2 – SCANport Device 2 Bit	4 – SCANport Device 4 5 – SCANport Device 5 6 – SCANport Device 6	Bit 8 – 4–20 mA Loss Bit 9–15 – Not Used		

Chapter 5 Programming Parameters

This Page Intentionally Blank

Troubleshooting

General

Chapter 6 provides information to guide you in troubleshooting. The 1336 FORCE Drive employs extensive diagnostics to aid in correcting many malfunctions that may occur in the system. This guide is designed to help you interpret the diagnostic response of the Drive when a malfunction occurs. Possible corrective measures will be explained to help you get the Drive repaired or functional as quickly as possible for most types of malfunctions.

ATTENTION: Only qualified personnel familiar with the 1336 FORCE drive system and the associated machinery should perform troubleshooting or maintenance functions on the Drive. Failure to comply may result in personal injury and/or equipment damage.

During Start-up you should have recorded board jumper settings for each board, board software version numbers, and the drive and motor name plate data in Table 4.A. If it was not, record it at this time before beginning any troubleshooting sequences.

For initial troubleshooting, a programming device is required to read fault codes. In addition to a programming device, the following should be available before initiating any troubleshooting procedures:

- ☐ Digital Multimeter (DMM) capable of 1000V DC/750VAC, with one megohm minimum input impedance.
- ☐ Clamp on Ammeter (AC/DC) with current ratings to 2X rated current output of 1336 FORCE AC Drive.
- ☐ Dual trace oscilliscope with differential capability, digital storage, two X10 and one X100 calibrated probes (optional but recommended).

ATTENTION: Potentially fatal voltages may result from improper useage of an oscilliscope and other test equipment. The oscilliscope chassis may be at potentially fatal voltage if not properly grounded. Allen—Bradley does not recommend use of an oscilliscope to directly measure high voltages. Use an isolated measuring device with a high voltage probe. Contact Allen—Bradley for recommendations.

- ☐ Hand tachometer used to monitor motor velocities.
- Programming Device Instruction Manual and Adapter Board Reference Manuals.

Required Equipment

Fault Descriptions

Fault Display – Faults are indicated by showing a decimal number of up to 5 characters relating to the fault (Figure 6.1) or by flashing LED sequences on the Main Control Board. The fault will be displayed until a Drive reset or Clear Faults is initiated. A Drive Reset will clear all faults, but a Clear Faults Command will only clear soft and warning faults. Refer to Tables 6.A & 6.B for a listing and description of the various faults. When applicable, a possible solution will also be provided.

Figure 6.1
Typical Fault Description Display

Fault Code Definition – The fault code is a 5 character decimal number that is defined as follows:

SAXXX S = Source Designator

A = Area Designator

XXX = Internal Fault Code (0 thru 999)

The Source Designator (S) is the 1st digit of the number:

0 = Main Board Velocity Processor (VP)

1 = Main Board Current Processor (CP)

2 = Adapter Processor (PLC Comm, Standard Adapter etc.)

3 = Domino Processor (DP)

4 = Reserved

Area Designator (A) is the 2nd digit of a number:

0 = General

1 = Motor

2 = Inverter

3 = Mtr Control

4 = Adapter

5 = External Device

6 = Communications

7 = Reserved

8 = Reserved

9 = Converter/Brake

Internal Fault Code (XXX)

The internal fault codes (last three digits of number) are identified in Table 6.A thru 6.C.

Table 6.A 1336 FORCE Main Control Fault Descriptions

Fault #	LED	Fault Type	Fault Text	Parameter #	Bit #
13000	CP, Red 1 blink	Soft	CP EPROM Flt	80	00
13001	CP, Red 2 blink	Soft	CP Int RAM Flt	80	01
13002	CP, Red 3 blink	Soft	CP Ext RAM Flt	80	02
13003	CP, Red 4 blink	Soft	CP Stack RAM Flt	80	03
13004	CP, Red 5 blink	Soft	VP MBI Failure (Dual Port)	80	04
03008	VP, Red 1 blink	Soft	VP EPROM Flt	80	08
03009	VP, Red 2 blink	Soft	VP Int RAM Flt	80	09
03010	VP, Red 3 blink	Soft	VP Ext RAM Flt	80	10
03011	VP, Red 4 blink	Soft	VP Stack RAM Flt	80	11
03012	VP, Red 5 blink	Soft	CP MBI Failure	80	12
03012	VP, Red 6 blink	Soft	AP MBI Failure	80	13
02014	VP, Red Flashing	Hard	Power EEPROM Flt	80	14
12016	CP, Solid Red	Hard	Bus Overvoltage	81	00
12017	CP, Solid Red	Hard	Transistor Desat	81	01
12017	CP, Solid Red	Hard	Ground Fault	81	02
12018	,	Hard	IOC Fault	81	03
	CP, Solid Red		SW Malfunction	81	03
14020	CP, Solid Red	Hard			
16021 16022	CP, Solid Red	Hard	M/S Cable Loss	81 81	05
10022	CP, Solid Red	Hard	M/S Ena Timeout	01	06
04024	VP, Solid Red	Hard	AP Handshake Error	81	08
03025	VP, Flashing Red	Soft	Absolute Overspd	81	09
03026	VP, Flashing Red	Soft	Analog Spply Tol	81	10
12027	CP, VP, Flash Red	Soft	Atune/Diag Fail	81	11
02028	VP, Solid Red	Hard	Inv Temperature	81	12
03029	VP, Solid Red	Hard	VP – SW Error	81	13
12032	CP, Flashing Red	Soft	Ridethrough Time	82	00
12033	CP, Flashing Red	Soft	Precharge Time	82	01
12034	CP, Flashing Red	Soft	Bus Drop	82	02
12035	CP, Flashing Red	Soft	Bus Undervolt	82	03
12036	CP, Flashing Red	Soft	Bus Drop Cycles >5	82	04
12037	CP, Flashing Red	Soft	Open Circuit	82	05
05048	VP, Flashing Red	Soft	Vel FB Loss	83	00
02049	VP, Flashing Red	Soft	Inv Overtemp Pnd	83	01
01050	VP, Flashing Red	Soft	Mtr Temperature	83	02
01051	VP, Flashing Red	Soft	Motor Overld Pnd	83	03
01052	VP, Flashing Red	Soft	Motor Overld Trp	83	04
01053	VP, Flashing Red	Soft	Motor Stalled	83	05
05054	VP, Flashing Red	Soft	External Flt In	83	06
02055	VP, Flashing Red	Soft	RMS Fault	83	07
03057	VP, Flashing Red	Soft	Parameter Limit	83	09
03058	VP, Flashing Red	Soft	Math Limit	83	10
09059	VP, Flashing Red	Soft	DB Overtemp	83	11
02060	VP, Solid Red	Hard	AC Contactor	83	12
02061	VP, Flashing Red	Soft	Inv Overld Pnd	83	13
06062	VP, Flashing Red	Soft	Dry to Dry Error	83	14
02063	VP Flashing Red	Soft	Inverter Overload	83	15
02003	vi i lasining Keu	5011	mverter Overroad	03	13

The first digit in the 5 character fault number for Standard Adapter Board faults is always 2, indicating the source is an Adapter Processor:

- 0 = Velocity Processor (VP)
- 1 = Current Processor (CP)
- 2 = Adapter Processor (Standard Adapter or PLC Comm)
- 3 = Domino Processor (DP)

The Area Designator (2nd digit) and internal fault codes (last three digits) remain the same as described under the Fault Code Definition on page 6–2. Listed below are the fault codes for the Standard Adapter Board. For a PLC Comm Adapter fault codes refer to the PLC Comm Adapter manual.

Table 6.B 1336 FORCE Standard Adapter Fault Descriptions

Fault #	Description	Fault Text	Туре
24001	MBI Failure	HW Malfunction	Hard Fault
24002	BRAM Failure	HW Malfunction	Hard Fault
24003	VP Handshake Failure	SW Malfunction	Hard Fault
24004	CP Handshake Failure	SW Malfunction	Hard Fault
24005	VP Mode Failure	SW Malfunction	Hard Fault
24006	CP Mode Failure	SW Malfunction	Hard Fault
24007	SA Language Failure	HW Malfunction	Hard Fault
24017	SP Port 1 Failure	SP PT1 Timeout	Fault/Warning/None
24018	SP Port 2 Failure	SP PT2 Timeout	Fault/Warning/None
24019	SP Port 3 Failure	SP PT3 Timeout	Fault/Warning/None
24020	SP Port 4 Failure	SP PT4 Timeout	Fault/Warning/None
24021	SP Port 5 Failure	SP PT5 Timeout	Fault/Warning/None
24022	SP Port 6 Failure	SP PT6 Timeout	Fault/Warning/None
24024	4 – 20Ma Loss	4 – 20Ma Loss	Fault/Warning/None
24029	Drive Type Difference	Diff Dry Type	Soft Fault
24030	Illegal Drive Type	Illegal Dry Type	Hard Fault
24031	SP Internal Failure	SW Malfunction	Soft Fault

Fault/Warning Handling

The lights on the motor control board indicate the status of the Current and Velocity processors. Both the Current and Velocity processors have both Green and Red LED's associated with their status. Table 6.C explains the meaning of the CP and VP status lights.

Table 6.C CP and VP Status

VP LED	CP LED	Status	Meaning
D2 D2 D3 D3	D4 D4 D5 D5	Solid Green Flashing Green Flashing Red Solid Red	No Fault Drive Warning Drive Soft Fault Drive Hard Fault

Hard Fault – A Drive hard fault is a fault that trips the Drive causing it to come to a stop. This type of fault requires the user to perform a Drive Reset to remove the fault.

Soft Fault – A Drive soft fault will also cause the drive to trip and come to a stop. This type of fault can be removed by doing a Clear Faults command after the condition that caused the Drive to trip has been removed.

Drive Warning – A Drive Warning is simply an undesirable condition that exists within the Drive. It will not cause the Drive to trip. A Clear Faults command after the warning condition has been alleviated, will remove the warning.

Everytime the Drive has any of the faults or warnings decribed above, a fault/warning message is logged in either the fault or warning queue. This is designed to aid in troubleshooting.

Motor Control Board Faults & Warnings — There are two types of fault and warning queues for the Main Control Board, configurable and nonconfigurable.

Configurable Faults & Warnings – The configurable fault queue contains faults that can be set up to either trip the drive or provide only a visual warning while the drive continues to operate.

Nonconfigurable Faults & Warnings — The nonconfigurable fault queue contains faults that you can't disable. These faults are the result of a condition that could damage the Drive if allowed to persist. The non — configurable fault queue faults can be viewed in parameter 81 (Fig. 6.2). In addition to configurable & non—configurable faults, there are the "powerup faults".

Powerup Faults — The powerup faults appear in parameter 80 (Fig. 6.3). These faults primarily consist of problems that could occur with powerup of both the current and velocity processors.

Adapter Board Faults – Adapter board faults are setup and displayed in separate parameters from the Main Control Board.

This word parameter indicates fault conditions in the Drive that CANNOT be configured as warnings. When a bit is set to "1", the corresponding condition in the Drive is true, otherwise the condition is false. Bit 0–3 are detected by hardware and 4–15 are detected by software.

This word parameter indicates a fault condition which has been detected during power up or reset of the drive. Where the bit is set to "1", the corresponding condition in the Drive is true, otherwise the condition is false.

Current Processor Faults & Warnings — Both the fault and warning queues are configurable for either the Current or the Velocity processor. You can configure which Current processor faults you want to trip the Drive by setting Parameter 86. When the Drive trips on one of the faults set in parameter 86, the CP light on the Main Control board will turn red. When the drive trips, it will coast the motor to a stop. Parameter 87 has the same bit definitions as parameter 86, but instead of tripping, the Drive will display a warning fault, which in turn causes the CP light to flash green, indicating a warning. The Drive will continue to run when there is a CP warning. Parameter 82 displays which CP fault caused the Drive to trip, while parameter 84 displays any CP warnings that have occurred.

Most of the setup for the current processor Fault/Warning configuration deals with DC Bus conditions. These Bus conditions deal with the Bus precharge and any type of ride through conditions.

Configuring CP Faults and Warnings – You can configure which of the following faults you want to trip the drive by using *CP Fault/Warning Configuration Select* (parameter 86) and *CP Warning/None Configuration Select* (parameter 87). Parameters 86 and 87 both have the following bit definitions:

This bit:	With this text:	Is defined as:	
0	RidethruTime	A bus ridethrough timeout occurred.	
1	Prechrg Time	A precharge timeout occurred.	
2	Bus Drop	A bus voltage drop of 150V below the bus tracker voltage. This is covered in detail later in this chapter.	
3	Bus Undervit	A bus voltage drop to a level below the value set in <i>Undervoltage Setpoint</i> (parameter 224).	
4	Bus Cycles>5	More than 5 ridethroughs occurred within a 20 second period.	
5	Open Circuit	The fast flux up current is less than 50% of commanded.	
6–15		RESERVED, Always leave zero.	

For each condition that you want the drive to fault on, set the corresponding bit in *Fault Select 1*. When the drive trips on a condition that you set to fault the drive, how the drive reacts depends on which condition occurred.

For bits 0 through 5:

- The red CP light turns on.
- The motor coasts to a stop.

For each condition that you want the drive to display a warning fault on, you need to:

- 1. Set the corresponding bit in CP Warning / None Configuration Select
- **2.** Make sure the corresponding bit in *CP Fault / Warning Configuration Select* is set to 0.

When the drive trips on a condition that you set to display a warning:

- The CP light flashes green.
- The drive continues to run.

If a particular bit is not set in either *CP Fault / Warning Configuration Select* or *CP Warning / None Configuration Select*, the drive ignores the condition when it occurs.

Most of the fault/warning configuration options deal with DC bus conditions. These bus conditions deal with the bus precharge and any type of ridethrough conditions. The bus precharge and ridethrough conditions are covered later in this chapter.

Understanding Precharge and Ridethrough Faults

To understand the precharge and ridethrough faults, you need a basic understanding of how these functions work, as well as the options that you can use to alter the way precharge and ridethrough operate in the 1336 FORCE drive.

Understanding Precharge

The precharge of the drive has different circuits depending on drive size. For the precharge operation for large horsepower (40 hp and larger) standalone drives, the precharge starts the SCR phase advance and completes precharge when the bus is stable. For all other drive types, precharge is completed after a stable bus voltage is achieved and the precharge device (SCR or relay) by—passes the precharge resistor. For common bus operation, set bit 12 in *Precharge / Ridethrough Selection* (parameter 223). The drive current and voltage ratings stored in EEProm determine the standalone operation.

With the default configuration, the following conditions are needed to complete precharge:

- a stable bus voltage for a minimum of 300 milliseconds
- a bus voltage greater than the value set in *Undervoltage Setpoint* (parameter 224)
- a valid control status from the precharge board, if present

You can modify the default configuration for common bus drives by using the external fault (input) and the precharge exit option:

- You can use the external fault input with a cabinet disconnect switch
 to force precharge when the disconnect is opened and the drive is disabled. This may reduce current stress when the disconnect is closed
 again.
- You can use the exit precharge option to let the precharge complete after the precharge timeout period (30 seconds) when the bus voltage is not stable. All other conditions must be met. This is often used in the case of common or shared bus configurations where other drive(s) may be causing bus voltage variations. Only use this option where needed otherwise excessive inrush current could open or weaken the line fuses.

NOTE: The precharge timeout fault (Parameter 86) must be disabled to use this option.

Before you can enable the inverter, all drive types must complete a first time precharge. This is required even if you have set the disable precharge function by setting bit 14 of *Precharge/Ridethrough Selection* (parameter 223).

A filtered, or slow, average of the bus voltage is developed as a reference, or bus voltage tracker, to determine if a line drop out has occurred. If a 150 volt (or greater) drop in present bus voltage compared to the filtered bus voltage occurs, the drive can start a ridethrough. The ridethrough function:

- disables the drive
- restarts a precharge
- waits for the bus to return to within 75 volts of the bus voltage tracker's voltage value before starting again.

You can use bits 0–4 of *Bus/Brake Opts* to control the slew rate of the bus voltage tracker. Refer to the section on the bus voltage tracker later in this chapter for additional information.

Understanding Ridethrough

Ridethrough provides current inrush protection and extended logic operating time if the power lines drop out while the drive is running. The drive is immediately disabled when it senses that the incoming power lines dropped out (bus capacitor voltage drop). The energy stored in the bus capacitors keeps the logic supplies running for an extended time. If the power lines return before the logic power supplies lose power, you can configure the drive to resume operation without system intervention (default). The ridethrough timeout is set for two seconds. This means that the drive is configured to fault (default setting) and not auto—restart if the dropout lasts more than two seconds.

ATTENTION: You must determine safe auto—restart and fault configurations at the system and user level. Incorrect selection(s) may result in safety concerns and/or drive damage.

CP Fault / Warning Configuration Select 1 (parameter 86) and CP Warning / None Configuration Select (parameter 87) let you specify how you want the drive to report specific precharge and ridethrough information.

Ridethrough also protects the drive from excessive inrush current when the power returns by entering a precharge mode when ridethrough is initiated. After precharge has finished, the drive can complete ridethrough and resume normal drive operation. The drive is enabled again after the bus rises to within 75 volts of the bus voltage tracker value.

ATTENTION: If you are using an external logic power supply, the drive may be able to stay in an indefinite ridethrough state. If the power returns to the drive (much later), the drive automatically restarts. You must therefore handle the control of enable, faults, time—outs, drive configuration, and safety issues at the system level.

Use the following parameters to configure the precharge and ridethrough functions:

- *CP Fault / Warning Configuration Select* (parameter 86)
- *CP Warning / None Configuration Select* (parameter 87)
- Precharge / Ridethrough Selection (parameter 223)
- *Undervoltage Setpoint* (parameter 224)

In addition, *Test Select 1* (parameter 93) and *Test Data 1* (parameter 92) contain software testpoints that provide additional precharge information.

Configuring the Faults and Warnings for Precharge

You can use *CP Fault / Warning Configuration Select* and *CP Warning / None Configuration Select* to enable fault/warning conditions when the appropriate bit is set (1). If a bit is clear (0) in *CP Fault/ Warning Configuration Select*, you can choose to have the condition reported as a warning by setting the bit in *CP Warning / None Configuration Select*. The following are the bits that pertain to precharge:

This bit:	With this text:	When set, generates a fault when:
0	RidethruTime	The ridethrough time exceeds 2 seconds (default see P226).
1	Prechrg Time The precharge time exceeds 30 seconds (default see P225).	
2	2 Bus Drop The bus voltage drops 150 volts be bus tracker voltage. This is the level the drive would normally enter ride	
3	Bus Undervlt	The bus voltage drops below the level set in <i>Undervoltage Setpoint</i> (parameter 224). This is the level where the drive would enter ridethrough if it occurs before a 150 volt drop in bus voltage.
4	Bus Cycles>5	At least 5 ridethrough cycles have occurred within a 20 second period. This indicates a converter problem or a problem with incoming power. Consider checking the incoming power for a phase loss.

Using Precharge / Ridethrough Selection to Change Precharge/Ridethrough Options

You can use *Precharge / Ridethrough Selection* (parameter 223) to change how precharge and ridethrough work. *Precharge / Ridethrough Selection* is a bit encoded word that disables the following functions when the appropriate bit is set (1):

This bit:	Has this definition:		
0	Sets the bus voltage tracker slew rate to 10 volts/second.		
1	Sets the bus voltage tracker slew rate to 5 volts/second.		
2	Sets the bus voltage tracker slew rate to 0.5 volts/second.		
3	Sets the bus voltage tracker slew rate to 0.05 volts/second.		
4	Sets the bus voltage tracker slew rate to 0.005 volts/second.		
5	Reserved. Leave zero.		
6	Reserved. Leave zero		
7	Setting this bit selects the slave drive of a Master–Slave combination to use the master drive analog frequency reference in place of the slave encoder input.		
8	Enables fast flux up. This is covered in more detail later in this chapter.		
9	Reserved, Leave zero.		
10	Reserved, Leave zero.		
11	Forces an exit from precharge after the precharge timeout.		
12	Identifies the drive as a common bus converter.		
13	Disables faults or warnings while the drive is disabled. This allows power up and down the bus for a common bus system without faulting even if the faults or warnings are enabled. For example, faults or warnings only occur if the drive is running. This may be desirable when external power supplies are used.		
14	Disables the precharge function after initial power up. Any bus drop or undervoltage will not result in precharge. This may destroy the drive if power returns to the system. This should be used where you control the input impedance or with a front end converter that is current limited.		
15	Disables the ridethrough and precharge functions. If the power lines drop out, the drive attempts to continue operation as long as any power is available. This may destroy the drive if power returns to the system. This should be used only where you control the system's incoming power.		

Using Undervoltage Setpoint

You can use *Undervoltage Setpoint* (parameter 224) to set the level of bus voltage that must be present to complete precharge and a level where ridethrough can be initiated. If configured as a fault/warning, *Undervoltage Setpoint* sets the bus voltage level that faults/warns the drive. The bus voltage level that is used is determined as follows:

Undervoltage Setpoint * *Rated Inverter Input Voltage* (parameter 221) * sqrt(2) = bus voltage level for ridethroughs, faults, or warnings

Using Testpoint Select 1 and Testpoint Data 1 to View Software Testpoints

Additional information concerning precharges and ridethroughs is available through *Testpoint Select #1* (parameter 273) and *Testpoint Data #1* (parameter 274).

Viewing the Calculated Undervoltage Value of Bus Voltage

To view the value of the calculated undervoltage:

- **1.** Enter a value of 24 into *Testpoint Select #1*.
- **2.** Monitor *Testpoint Data #1*.

You can use this to check the actual bus voltage that causes an undervoltage condition.

Checking the Status of the Precharge

To view the precharge status, enter a value of 12 into *Testpoint Select #1*, and then monitor *Test Data #1* for the precharge status. The precharge status is bit encoded as follows:

This bit:	When set, indicates that:		
0	The precharge function has been completed and the precharge device should be on. The drive can be enabled only after this bit is set.		
1	The drive is in ridethrough. Precharge must be completed and the bus must return to within 75 volts of the bus voltage tracker before normal drive operation can resume.		
2	A precharge–initiated condition is in ridethrough.		
3	A precharge has been requested due to an external fault (input). Common Bus Configuration only		
4	The converter is ready for precharge and the controller may start its precharge function. The external precharge board is ok, if present.		

5	The measured bus voltage is not stable (there is a variation of greater than ± 25 volts) and the precharge cannot finish.
6	The DC bus voltage is less than line undervolts.
7	The precharge function cannot complete because the measured bus voltage is less than 75 volts below the bus voltage tracker. This only applies to precharging after a ridethrough.
8	The precharge device has been commanded ON.
9	Not used.
10	An exit from precharge was requested.
11	Precharge was skipped due to an enable dropout.
12	An initial (first) precharge is executed.
13	A high horsepower drive type is being used.

Enabling Fast Flux Up

You can use fast flux up to achieve rated flux conditions and consequently high torque as fast as possible after an enable. Under default conditions (no fast flux up), the drive brings the motor to rated flux conditions in a time proportional to the rotor time constant of the motor. These times range from 50 milliseconds for small motors to several seconds for large motors. If a high load is attempting to be started, no acceleration occurs until that time has elapsed. Enabling fast flux up can decrease that time by a factor of 5 to 10.

You can enable the fast flux up function of the drive by setting bit 8 of *Precharge / Ridethrough Selection* (parameter 223). In this case:

Use *Testpoint Select #1* (parameter 273) to check the approximate fluxing time. Enter a value of 86 into *Testpoint Select #1* to display the fluxing time in *Testpoint Data #1* (parameter 274). The time delay is given in seconds x 0.000977. If the flux time is 0, no fast flux up occurs and the drive starts normally. If at least 50% of the commanded current is not measured, you can configure the drive to fault at this time using *CP Fault Warning Configuration Select* (P86).

Forcing the Drive to Complete a Precharge

In some cases, the precharge may not complete due to external bus disturbances. Setting bit 11 in *Bus/Brake Opts* forces the precharge to complete at the precharge interval (default 30 seconds). This may cause precharge damage and should only be used when large inrush currents cannot occur.

Understanding the Bus Voltage Tracker

Precharge/Ridethrough Selection (parameter 223) also lets you select a rate, called a slew rate, for the bus voltage tracker. The bus voltage tracker slowly tracks changes in the actual bus voltage. If the actual bus voltage drops 150 volts or greater below the current value of the bus voltage tracker, the drive automatically disables modulation and enters precharge.

Important: You should only use the bus voltage tracker if you are having ridethrough problems. The bus voltage tracker adjusts the bus sensitivity to ridethrough for cases where there is an unstable bus.

By changing the rate used for the bus voltage tracker, you can make your system more or less sensitive to changes in the actual bus voltage. For example, if your drive currently enters precharge after the motor exits regeneration, you may need to change your slew rate.

Figure 6.4 shows an example of the filtered bus voltage reference.

At point **A**, the motor was in regeneration, so the value of the bus voltage tracker slowly increased.

At point **B**, the motor was no longer in regeneration and the bus voltage had dipped below the nominal range. If the drive compared point B with point A, the drive would have seen a bus drop of 150V and entered precharge. However, because the drive compared point B with the bus voltage tracker, the bus drop was less than 150V and the drive continued operating.

At point C, the bus voltage had dropped 150V and the drive entered a precharge state.

Precharge / Ridethrough Selection provides the following options for changing the slew rate:

This bit:	With this text:	Sets the slew rate to:	
0	Slew Rate 1	10V/second. This option is the most sensitive to	
U		changes in the actual bus voltage.	
1 Slew Rate 2 5V/second.		5V/second.	
2	Slew Rate 3	0.5V/second.	
3 Slew Rate 4 0.05V/second.		0.05V/second.	
4	Slew Rate 5	0.005V/second. This option is the least sensitive to changes in the actual bus voltage.	

If all bits are clear (0), the slew rate is 0.05 V/second. If more than one bit is set, the first bit that is set is used for the slew rate. For most applications, the default slew rate of 0.05 V/second, which is 1 volt in 20 seconds, should be appropriate.

Velocity Processor Faults & Warnings — You can configure which velocity processor faults you want to trip the drive by setting Parameter 88 (Figure 6.5). When there is a velocity processor fault, the VP light on the Main Control board will blink red (soft fault) for configurable VP faults. When this happens, the drive will shut off and coast the motor to a stop. VP faults can be viewed in parameter 83 (Figure 6.6). Configurable VP warnings can be setup in Parameter 89 (Figure 6.7) and viewed in parameter 85. When a configurable VP warning exists, the VP light will be flashing green, but the drive will continue to run. Velocity processor warning faults can be viewed in parameter 85 (Figure 6.8).

This word parameter indicates conditions detected by the Velocity Processor (VP) that have been configured to report as a Drive warning condition. Each configuration bit matches the bit definitions of Parameters 83, 85 and 89. When a bit is set to "1", the corresponding condition in the Drive will be reported as a FAULT, otherwise the condition is reported as a WARNING.

This word parameter indicates conditions detected by the Velocity Processor (VP) that have been configured to report as a Drive fault condition. Each configuration bit matches the bit definitions of Parameters 85, 88 and 89. When a bit is set to "1", the corresponding condition in the Drive is true, otherwise the condition is false.

Figure 6.7

This word parameter indicates conditions detected by the Velocity Processor (VP) that will be reported as either a drive fault or warning or not reported at all (ignored). Each configuration bit matches the bit definitions of Parameters 83, 85 and 88. When a bit is set to "1", the corresponding condition in the Drive will be reported as configured by parameter 88. When the bit is set to "0", the condition is not reported.

Figure 6.8
Parameter 85 (VP Configurable Warning Status (bits))

This word parameter indicates conditions detected by the Velocity Processor (VP) that have been configured to report as a Drive warning condition. Each configuration bit matches the bit definitions of Parameters 83, 88 and 89. When a bit is set to "1", the corresponding condition in the Drive is true, otherwise the condition is false.

Auto-Tuning Test Procedure

Auto—Tuning is a procedure which involves the running of a group of tests on the motor/drive combination. Some of these tests check the Drive hardware and others configure Drive parameters for torque control with the attached motor.

NOTE: The Quickstart procedure in Chapter 4 will take you step—by—step throught the Autotuning Procedure. The information presented here explains how to manually tune specific areas.

ATTENTION: Power must be applied to the Drive and the motor must be connected for some of the following tests. Some of the voltages present are at incoming line potential. To avoid electrical shock hazard or damage to equipment, only qualified service personnel should perform the following procedures.

Test Overview: Auto—Tuning includes 6 tests, all of which can be performed on a motor which is either coupled or decoupled from load. These tests include:

Power Structure and Transistor Diagnostics Tests

The power structure and transistor diagnostics routines let you determine if any problems exist in the power structure of the drive and determine the probable cause of these problems.

The diagnostic software determines hardware problems through a series of system tests. These tests are parameter dependent. The test results depend on drive size, motor size, system wiring, and other factors that affect system voltage and load impedance.

In most cases, the software can properly determine if faults exist; however, there may be some installations where some faults cannot be properly checked. In general, test results are listed as failed if a questionable case is found. You must review test results with respect to the whole drive system to properly interpret whether a real problem exists.

You can run the transistor diagnostics before a start by setting bits 6–8 of *Logic Options* (parameter 59). Transistor diagnostics require motor current, so a user–start transition is required to run the tests.

To run the transistor diagnostics independently:

- 1. In Autotune/Dgn Sel (parameter 256), set bit 0 to 1.
- **2.** Enable the drive.

The green enable light (D1) turns on very briefly (approximately 300 ms) and then turns off. This runs only the transistor diagnostics and leaves the drive disabled after the diagnostics are complete. *Autotune/Diagnostics Selection* is automatically cleared to zero after the diagnostics have run.

Chapter 6 Troubleshooting

Because the test results depend on your particular system, you can disable tests that may give questionable or nuisance faults. Use *Transistor Diagnostics Configuration* (parameter 257) to disable individual tests:

If you want to disable:	Then, set this bit:
Current feedback phase U offset tests	0
Current feedback phase W offset tests	1
Shorted power transistor tests	2
Ground fault tests	3
Open transistor, open motor, open current feedback, open gate drive, and open bus fuse tests	4
Power transistor U upper for all tests	6
Power transistor U lower for all tests	7
Power transistor V upper for all tests	8
Power transistor V lower for all tests	9
Power transistor W upper for all tests	10
Power transistor W lower for all tests	11

Bits 5 and 13 through 15 are reserved. You must leave these bits 0.

Even though you set bits 6 through 11 to disable the individual tests, you will still get a fault with the other tests if there is an open in an individual section.

To test specific modules within the power structure, you can disable any transistor or any combination of transistors. You must leave all transistors enabled under most conditions. Use sound judgement to verify that power transistor fault conditions do not exist before disabling tests.

Inverter Diagnostics Result #1 (parameter 258) and *Inverter Diagnostics Result #2* (parameter 259) contain the results of the transistor diagnostic tests.

Important: Serious component failures may occur if unverified power transistor fault conditions are ignored or tests are disabled before you proceed to run the drive under load.

Inverter Diagnostics Result #1 (parameter 258) is defined as follows:

When this bit is set (1):	Then:
0	A software fault occurred.
1	No motor is connected, or a bus fuse is open.
2	Phase U and W shorted.
3	Phase U and V shorted.
4	Phase V and W shorted.
5	There are shorted modules.
6	A ground fault occurred.
7	A fault occurred before the short module ran.
8	A hardware overvoltage fault occurred.
9	A hardware desat fault occurred.
10	A hardware ground fault occurred.
11	A hardware phase overcurrent fault occurred.
12	There are open power transistor(s).
13	There are current feedback faults.

Bits 14 and 15 are reserved.

Inverter Diagnostics Result #2 (parameter 259) is defined as follows:

When this bit is set (1):	Then:
0	Transistor U upper shorted.
1	Transistor U lower shorted.
2	Transistor V upper shorted.
3	Transistor V lower shorted.
4	Transistor W upper shorted.
5	Transistor W lower shorted.
6	The current feedback phase U offset is too large.
7	The current feedback phase W offset is too large.
8	Transistor U upper open.
9	Transistor U lower open.
10	Transistor V upper open.
11	Transistor V lower open.
12	Transistor W upper open.
13	Transistor W lower open.
14	Current feedback phase U open.
15	Current feedback phase W open.

If any hardware fault occurs during the open transistor testing, then the following occur:

- The hardware fault is saved.
- A phase-to-phase fault is set.
- All subsequent testing is stopped.
- Some untested devices may be set as open.

Typically, you should fix the hardware faults and run open tests again to determine if any opens exist.

What Do Open Transistor Faults Indicate?

Open transistor faults could indicate an open anywhere in the control or power section that turns on a given transistor. You should check the power transistor gate drive signal from the control board through the cabling to the opto—isolators continuing through the gate drives and finally through the cabling to the power transistor. This includes the power wiring to the motor terminals and the motor. If the bus voltage is too low, opens could occur; bus voltage should be greater than 85% of nominal line.

Phase Rotation Tests

For proper drive operation it is necessary to have:

- A. A specific phase sequence of the motor leads (M1 M2 M3, M1 M3 M2 etc.)
- B. A specific sequence of encoder leads (pulse A leads B etc.)

 These sequences determine the direction of rotation of the motor shaft on application of torque. An improper sequence can result in either the motor rotating the wrong direction or no production of torque. This test is used to ensure the above conditions by applying a positive torque and manually checking motor rotation and velocity feedback.

Sequential Torque Block Tuning

Set parameter 256 (Autotune Diagnostics Selection) Bit 3 to a value of 1:

Running the Inductance Test

A measurement of the motor inductance is required to determine the references for the regulators that control torque. This test measures the motor inductance and displays it in *Lsigma Tune [Leakage Inductance]* (parameter 237).

When running this test, you should be aware of the following:

- The motor should not rotate during this test although rated voltages and currents are present and the possibility of rotation exists. For encoderless systems, you must visually verify that the motor does not rotate.
- This test is run at rated motor current and by—passes the normal current limit functions.

Before running the inductance test, make sure that you have entered the correct motor nameplate information.

To run the inductance test:

- 1. Set bit 2 in Autotune/Diagnostics Selection (parameter 256).
- **2.** Enable the drive.

The drive enable light turns off when the test is complete. The inductance test runs for approximately 1 minute. When a reading is obtained in *Lsigma Tune*, perform the resistance test.

Typical values for per unit inductance are in the range of 15% to 25% motor impedance. The value shown in *Lsigma Tune* is a percent value. If you are using long wiring runs, the typical value for per unit inductance should increase by the ratio of wiring inductance to motor inductance.

The motor inductance measuring routine contains several special faults. If the drive trips during the inductance test, check bits 0 through 5 of *Motor Inductance Test Errors* (parameter 295):

If this bit is set (1):	Then:		
	Motor Not at Zero Speed		
	The motor is not at zero speed. Generally, this bit is set in two cases:		
	• If the motor rotates during this test, an improper result is likely. Make sure the motor (decoupled from load or process) is not rotating just before or during the test.		
0	• If the motor is not rotating during this test, then investigate electrical noise creating encoder transitions. Improper encoder grounding or a noisy encoder power supply could cause noise.		
	This fault cannot be determined for encoderless applications. You must visually check for this condition on encoderless systems.		
	If your motor does rotate during this test, consult the factory.		
	Sign Error		
	A sign error fault occurs when the average voltage is negative. If you		
1	receive a sign error, you need to:		
	1. Run the test again.		
-	2. Consider replacing the circuit boards.		
	Zero Current		
	If this bit is set, you need to:		
2	1. Set the rated motor current in <i>Nameplate Amps</i> (parameter 4) to the		
	correct value.		
	2. Run the test again.		
	3. Consider replacing the control board.		
	A/D Overflow at Min gain		
	The motor terminal voltage measuring circuit is not working properly.		
2	You need to:		
3	Determine if the motor is connected. Check could connections between the gets drive and control boards.		
	2. Check cable connections between the gate drive and control boards.3. Consider replacing the circuit boards.		
	Consider replacing the circuit boards. Investigate any noise problems.		
	Enable Dropout		
	The drive enable was lost during the inductance test. Consider running		
4	the test again and monitor the drive enable (bit 9 of <i>Inverter Status</i>		
	(parameter 54) and/or the Inv En LED on the main control board.		
	Sign error / Overflow		
	The calculated inductance is negative		
5	1. Run the test again		
	2. Consider replacing the circuit boards		

Running the Resistance Test

The drive requires a motor resistance measurement to determine the references for the regulators that control torque. The motor resistance test measures the motor resistance and displays it in *Rs Tune* (parameter 236). The test runs for approximately 10 - 30 seconds.

When running this test, you should be aware of the following:

- The motor should not rotate during this test although rated voltages and currents are present and the possibility of rotation exists. For encoderless systems, you must visually verify that the motor does not rotate.
- This test is run at rated motor current and by—passes the normal current limit functions.

Before running the resistance test make sure that you have entered the correct motor nameplate information.

To run the motor resistance test:

- 1. Set bit 3 in Autotune/Diagnostic Selection (parameter 256).
- **2.** Enable the drive.

The drive enable light turns off when the test is complete. When a reading is obtained in *RS Tune*, perform the flux test.

Typical values for per unit motor resistance are in the range of 1% to 3% as displayed in *RS Tune*. The value in *RS Tune* increases as the length of wiring runs increase.

Several faults have been included to identify some problems that can occur in the resistance measuring routine. If the drive trips during the resistance test, check bits 0 through 7 of *Motor Stator Resistance Test Errors* (parameter 296):

If this bit is set:	Then:
	Motor Not at Zero Speed
	The motor is not at zero speed. Generally, this bit is set in two cases:
	• If the motor rotates during this test, an improper result is likely. Make sure the motor (decoupled from load or process) is not rotating just before or during the test.
0	• If the motor is not rotating during this test, then investigate electrical noise creating encoder transitions. Improper encoder grounding or a noisy encoder power supply could cause noise.
	This fault cannot be determined for encoderless applications. You must visually check for this condition on encoderless systems.
	If your motor does rotate during this test, consult the factory.
	Sign Error
1	A sign error fault occurs when the average voltage is negative. If you
	receive a sign error, run the test again because the value returned is not
	reliable.
2	Not Used
4	Not Used
6	Not Used
	Zero Current
	If this bit is set, you need to:
8	1. Set the rated motor current in <i>Nameplate Amps</i> (parameter 4) to the
O	correct value.
	2. Run the test again.
	3. Consider replacing the control board.
0	Software Error
9	A software fault is generated when an improper sequence of events has occurred. Consider running the test again.
	Enable Dropout
10	The drive enable was lost during the resistance test. Consider running the
10	test again and monitor the drive enable (bit 9 of <i>Inverter Status</i> (parameter
	54) and/or the Inv En LED on the main control board).

What Happens If Multiple Opens Occur?

If multiple opens occur, several additional faults may be indicated. For example, if transistor U upper and U lower are open, the test also indicates that current feedback U phase is open. Because current cannot run through phase U, the current feedback device cannot be checked and therefore is listed as a malfunction The type of installation often determines which parts of the transistor diagnostics may or may not work. As a result, treat the software only as an aid for testing the power structure.

What Do I Do If I Get a Software Fault?

If bit 0 of *Inverter Diagnostics Result # 1 (P 258)* is set to 1, an improper sequence of events has occurred. Either the software cannot distinguish what is occurring, or there is noise in the system. If a fault occurs repeatedly, the problem may be a fault that the software cannot directly identify (for example, a voltage breakdown in a snubber). If this is the case, you need to determine through external measurements if the problem is real or if there is a noise problem. In cases where a specific test continually results in nuisance faults, use *Transistor Diagnostics Configuration* (parameter 257) to disable that test.

Running the Flux Test

Rated motor flux is required in order to produce rated torque at rated current.

Set **Parameter 256** Bit 4 to a value of 1. This selects the Motor Flux Test. This test measures the amount of current required to produce rated motor flux and displays it in **Parameter 238**. The motor will accelerate to approximately two–thirds base speed and then coast for several seconds. This cycle may repeat several times. The motor will then decelerate to a low speed before disabling. If the motor will not accelerate; increase parameter 40 (Torque Limit) until the motor accelerates. Parameter 41 (Speed Limit) will change the speed the motor accelerates to.

The Transistor Diagnostics, Phase Rotation, Inductance and Resistance Tests MUST be run before this test can be performed!

Toggle the start bit in the logic command to start the test. The Drive enable light will go out when the test is complete. When a reading is obtained in **Parameter 238**, record it and then update the torque block gains. If the test still faults, refer to the flux test faults.

Flux Test Faults: Typical values for rated motor flux range from 20% to 50%. Several faults have been added to identify some problems that can occur in the flux test. Should the drive trip while the flux test is being performed, the cause can be found using parameter 297. The possible faults are detailed in Table 6.D.

Table 6.D Flux Test Fault Descriptions

]	Bit#	Fault	
0	Set	Parameter 41 set to less than 33% speed	
1	Set	Parm 238 < 0 Current	
2	Set	Parm 238 > 100% Drive current	
3	Set	Master_Slave enable dropout fault	
4	Set	Not Used	
5	Set	Not Used	
6	Set	Not Used	
7	Set	Not Used	

Responses for faults:

<u>Parm 41 set to less than 33% speed</u>: The Autotune speed must be set higher in order to get a meaningful result out of the flux test.

<u>Parm 238 < 0 Current</u>: This indicates that either 1 or some of the parameters are incorrectly set, electrical noise is/was present, motor phasing could be incorrect or other problems exist.

<u>Parm 238 > 100% Drive Current</u>: This identifies flux current greater than the drive rated current. This may be due to incorrect parameter settings, an undersized drive for the motor, or a problem motor.

<u>Master–Slave Enable Dropout</u>: This cable interlock between the Master and Slave drive was opened during the test.

If you experience problems while running the Flux Test it may be necessary to verify that parameters are set properly. The parameters listed in Table 6.E are the parameters that directly effect the Flux Test.

Table 6.E Flux Test Parameters

Parameter Number	Description	Value/Comments
40	Autotune Torque Limit	100% allows 1 p.u. torque during accel
41	Autotune Speed	+/- 68% is the max. for the flux test, limited internally by the software.
127	Reverse Speed Limit	Set this to the limit of the application, if set to 0, the motor may not accelerate.
128	Forward Speed Limit	Set this to the limit of the application, if set to 0, the motor may not accelerate.
175	Positive Torque Ref Limit	Set this to the limit of the application, if set too low, the motor may not accelerate.
176	Negative Torque Ref Limit	Set this to the limit of the application, if set too low, the motor may not accelerate.
177	Motoring Power Limit	Set this to the limit of the application, if set too low, the motor may not accelerate.
178	Regen Power Limit	If set too high, you may trip out on a Bus Overvolts (see note).
179	Positive Motor Current Ref Limit	Set this to the limit of the application, if set too low, the motor may not accelerate.
180	Negative Motor Current Ref Limit	Set this to the limit of the application, if set too low, the motor may not accelerate.
227	Cp Operating Options	Set to 0 to allow the motor to coast to stop once the flux test is completed. Set to 128 to regen to stop even without a brake once the flux test is completed*.

^{*}Note: The option to regenerate to stop following identification of flux producing current should function properly with or without a brake or regeneration unit. However, if a bus overvoltage fault occurs during the regen to stop, the identified value of flux producing current can be retrieved and placed in P238 without re–running the flux identification test with the regen to stop disabled. The identified value of flux can be found by using Software Testpoint Parameter 273 and placing 67 into it. The value of flux can be read by the user in the corresponding testpoint data parameter #274. The value of 274 is the identified flux current and must then be entered into parameter 238.

Torque Block Update

To update the Torque Block gains, bit 5 in **Parameter 256** must be set to 1, and then a Start command must be given to the drive. Bit 5 of parameter 256 will automatically be set back to zero. The values in parameters 240 thru 248 will now to be updated.

Calculations: This procedure takes the motor parameter information from Parameters 236, 237 and 238 along with the inverter and motor nameplate data and calculates the proper regulator references for torque control (Fig 6.9).

Figure 6.9 Calculations Test

Velocity Loop Autotune

The Velocity Loop Autotune procedure for the 1336 FORCE is designed to let you determine the maximum bandwidth for a particular system. You can select operation at any bandwidth at or below the maximum bandwidth that has been calculated.

The velocity regulator is a PI regulator with a Velocity Feed Forward term (K_F Parm 141). The K_F term is user chosen and describes the system response to a change in velocity reference only. By decreasing the value of K_F the overshoot of the system will be reduced. When K_F is 1.0 the velocity loop behaves like a normal PI loop with the overshoot equaling approximately 10%. If K_F is reduced to 0.7 (the recommended operating point) then the overshoot is typically less than 1%, if K_F is reduced even further to 0.5 (the lowest recommended value) the response becomes underdamped with no overshoot.

The velocity loop KI term (parm 139) is the integral term of the PI regulator. The KI term is adjusted to remove any steady state instabilities.

The velocity loop KP term (Parm 140) is the proportional term of the PI regulator. The KP term is adjusted to determine how the drive responds to a step change in load.

IMPORTANT: If the velocity regulator is tuned too responsive, the motor and load could potentially chatter. If tuned non–responsive, the regulator will seem sluggish. The value for Kp will increase as the system inertia increases. For High inertia systems, Kp may be greater than for KI. For low inertia systems (systems with inertias under 1 Sec.) KI will typically be larger than KP.

Figure 6.10 Velocity Regulator Functional Diagram

The list of parameters that must be set to achieve proper velocity loop tuning is detailed in Table 6.F.

Chapter 6 Troubleshooting

Table 6.F Velocity Loop Parameters

Parameter Number	Description	Value/Comments
40	Autotune Torque Limit	75% allows 75% rated torque during accel
41	Autotune Speed	75% allows Autotune velocity to go to 75% Percent base motor velocity
53	Torq Mode Select	Set to Value of 1 for encoder fdbk
127	Reverse Speed Limit	Set this to the limit of the application, if set to 0, the motor may not accelerate.
128	Forward Speed Limit	Set this to the limit of the application, if set to 0, the motor may not accelerate.
150	Feedback Device Type	Set to Value of 1 for encoder fdbk
175	Positive Torque Ref Limit	Set this to the limit of the application, if set too low, the motor may not accelerate.
176	Negative Torque Ref Limit	Set this to the limit of the application, if set too low, the motor may not accelerate.
177	Motoring Power Limit	Set this to the limit of the application, if set too low, the motor may not accelerate.
178	Regen Power Limit	If set too high may trip on a Bus Overvoltage fault.
179	Positive Motor Current Ref Limit	Set this to the limit of the application, if set too low, the motor may not accelerate.
180	Negative Motor Current Ref Limit	Set this to the limit of the application, if set too low, the motor may not accelerate.
235	Encoder PPR	Pulses Per Revolution

Hardware Testpoints

The Hardware Testpoints on the Series B 1336 FORCE Control Board are illustrated in Figure 6.11. The accompanying table details the expected output from each testpoint.

Figure 6.11 Main Control Board Test Points

Testpoint	Adapter Board Interface Application	Testpoint	Application
TP1	DGND	TP16	la FDBK (0 to =/- 5V sine wave) same as Iq feedback
TP2	+5V	TP17	Ic FDBK (0 to =/- 5V sine wave) same as Iq feedback
TP3	+15V	TP18	Iqs Command (0 to +/- 10V sine wave)
TP4	AGND	TP19	Ids Command (0 to +/- 10V sine wave)
TP5	–15V	TP20	Master Reset (5V = Reset)
TP6	-2.5 to 2.5 V	TP21	Id FDBK (0 to +/- 5V sine wave)
TP7	0 to 2.5V	TP22	Feed Forward Voltage (0 to +/-/7.5V sine wave)
TP8	+5V when faulted	TP23	ISO 12V for Tachometer/Encoder
TP9	CHA Encoder Fdbk 0 to 5 Square Wave with respect	TP24	ISO RTN for Tachometer/Encoder
	to TP1 or TP25 DGND	TP25	DGND
TP10	Test DAC2 (Development Use Only)		
TP11	Square Wave (Follows Carrier Frequency)		
TP12	Test DAC1 (Development Use Only)		
TP13	CHB Encoder Fdbk 0 to 5V Square Wave with respect to		
	TP1 or TP25 DGND		
TP14	Bus Voltage FDBK (4V = 650 vdc)		
TP15	Feed Forward Voltage (0 to +/- 7.5V sine wave)		

The Hardware Testpoints on the PLC Comm Adapter Board are illustrated in Figure 6.12. The accompanying table details the expected output from each testpoint.

Figure 6.12 PLC Comm Board Test Points

Testpoint	Application	Testpoint	Application
TP1	DGND	TP15	AIN – 1
TP2	+5V	TP16	AIN – 2
TP3	+15V	TP17	AIN – 3
TP4	AGND	TP18	AIN – 4
TP5	–15V	TP19	+12V
TP9	Not Used	TP20	AOUT – 1
TP10	Not Used	TP21	AOUT – 2
TP11	ISO +12 VDC	TP22	AOUT – 3
TP12	ISO –5V	TP23	AOUT – 4
TP13	ISO GND	TP24	+10V Ref
TP14	IGND	TP25	-10V Ref

This Page Intentionally Blank

Appendix

Motor Cables

A variety of cable types are acceptable for 1336 FORCE drive installations. For many installations, unshielded cable is adequate, provided it can be separated from sensitive circuits. As an approximate guide, allow a spacing of 1 meter (3.3 feet) for every 10 meters (33 feet) of length. In all cases, long parallel runs must be avoided.

The cable should be 4–conductor with the ground lead being connected directly to the drive ground terminal (PE) and the motor frame ground terminal.

Shielded Cable — Shielded cable is recommended if sensitive circuits or devices are connected or mounted to the machinery driven by the motor. The shield must be connected to the drive ground terminal (PE) and the motor frame ground terminal. It is important that the connection be made at both ends to minimize the external magnetic field.

If cable trays or large conduits are used to distribute the motor leads for multiple drives, shielded cable is recommended to reduce or capture the noise from the motor leads and minimize "cross coupling" of noise between the leads of different drives. The shield should be connected to the ground (PE) connections at both the motor and drive end.

Armored cable also provides effective shielding. Ideally it should be grounded only at the the drive (PE) and motor frame. Some armored cable has a PVC coating over the armor to prevent incidental contact with grounded structure. If, due to the type of connector, the armor must be grounded at the cabinet entrance, shielded cable should be used within the cabinet to continue as far as possible to the coaxial arrangement of power cable and ground.

In some hazardous environments it is not permissible to ground both ends of the cable armor. This is because of the possibility of high current circulating at the input frequency if the ground loop is cut by a strong magnetic field. This only applies in the proximity of powerful electrical machines. In this case, the ground connection at one end may be made through a capacitance which will block the frequency current but present a low impedance to RF. Because of the highly pulsed nature of the circulating current, the capacitor type used must be rated for AC-to-ground voltage. Consult factory for specific guidelines.

Conduit – If metal conduit is preferred for cable distribution the following guidelines must be followed:

 Drives are normally mounted in cabinets and ground connections are made at a common ground point in the cabinet. If the conduit is connected to the motor junction box and the drive end, no further conduit connections are necessary. 2. No more than three sets of motor leads can be routed through a single conduit. This will minimize "cross talk" that could reduce the effectiveness of the noise reduction methods described. If more than three drive/motor connections per conduit are required, shielded cable as described above must be used. If practical, each conduit should contain only one set of motor leads.

ATTENTION: To avoid a possible shock hazard caused by induced voltages, unused wires in the conduit must be grounded at both ends. For the same reason, if a drive sharing a conduit is being serviced or installed, all drives using this conduit should be disabled. This will eliminate the possible shock hazard from "cross coupled" drive motor leads.

Motor Lead Length – Installations with long cables to the motor may require the addition of output reactors or cable terminators to limit voltage reflections at the motor. Refer to the following tables for the maximum length cable allowed for various installation techniques.

Table A.1 Maximum Motor Cable Length Restrictions in meters (feet) – 380V-480V Drives 1

			No External Devices Motor A B 1329 1329R, HR, L				w/ 1204-TFB2 Term.			w/1204-TFA1 Terminator					Reactor at Drive ²	
							Motor A or B		1329	Motor A		B 1329			Motor A	B or 1329
	Drive kW	Motor kW	Any	Any	Any	Any	Cable Type		Any	Cable Type				Any	Any	Any
Drive Frame	(HP)	(HP)	Cable	Cable	Cable	Cable	Shld. ³	Unshld.	Cable	Shld.3	Unshld.	Shld.3	Unshld.	Cable	Cable	Cable
A1	0.37 (0.5)	0.37 (0.5)	12.2 (40)	33.5 (110)	114.3 (375)					30.5 (100)	61.0 (200)	30.5 (100)	61.0 (200)	182.9 (600)	22.9 (75)	182.9 (600)
	0.75 (1)	0.75 (1)	12.2 (40)	33.5 (110)	114.3 (375)						30.5 30.5 30.5 30.5 (100) (100) (100)			182.9 (600)	22.9 (75)	182.9 (600)
		0.37 (0.5)	12.2 (40)	33.5 (110)	114.3 (375)		Us	e 1204-T l	FA1	30.5 (100)	61.0 (200)	30.5 (100)	61.0 (200)	182.9 (600)	22.9 (75)	182.9 (600)
A2	1.2 (1.5)	1.2 (1.5)	12.2 (40)	33.5 (110)	114.3 (375)	Unlimited				30.5 (100)	30.5 (100)	61.0 (200)	61.0 (200)	182.9 (600)	22.9 (75)	182.9 (600)
		0.75 (1)	12.2 (40)	33.5 (110)	114.3 (375)	Applies to new installa-				30.5 (100)	30.5 61.0 61.0 182.9 (100) (200) (200) (600)					182.9 (600)
		0.37 (0.5)	12.2 (40)	33.5 (110)	114.3 (375)	tions using new motors				30.5 (100)	30.5 (100)	61.0 (200)	61.0 (200)	182.9 (600)	22.9 (75)	182.9 (600)
	1.5 (2)	1.5 (2)	7.6 (25)	12.2 (40)	114.3 (375)	and new drives.	91.4 (300)	182.9 (600)	182.9 (600)	30.5 (100)	30.5 (100)	91.4 (300)	61.0 (200)	182.9 (600)	22.9 (75)	182.9 (600)
		1.2 (1.5)	7.6 (25)	12.2 (40)	114.3 (375)	For retrofit situations,	91.4 (300)	182.9 (600)	182.9 (600)	30.5 (100)	30.5 (100)	91.4 (300)	61.0 (200)	182.9 (600)	22.9 (75)	182.9 (600)
		0.75 (1)	7.6 (25)	12.2 (40)	114.3 (375)	check with the motor	182.9 (600)	182.9 (600)	182.9 (600)	30.5 (100)	30.5 (100)	91.4 (300)	61.0 (200)	182.9 (600)	22.9 (75)	182.9 (600)
		0.37 (0.5)	7.6 (25)	12.2 (40)	114.3 (375)	manufactur- er for insula-	182.9 (600)	182.9 (600)	182.9 (600)	30.5 (100)	30.5 (100)	91.4 (300)	61.0 (200)	182.9 (600)	22.9 (75)	182.9 (600)
	2.2 (3)	2.2 (3)	7.6 (25)	12.2 (40)	114.3 (375)	tion rating.	182.9 (600)	182.9 (600)	182.9 (600)						22.9 (75)	182.9 (600)
		1.5 (2)	7.6 (25)	12.2 (40)	114.3 (375)		182.9 (600)	182.9 (600)	182.9 (600)						22.9 (75)	182.9 (600)
		0.75 (1)	7.6 (25)	12.2 (40)	114.3 (375)		182.9 (600)	182.9 (600)	182.9 (600)							182.9 (600)
		0.37 (0.5)	7.6 (25)	12.2 (40)	114.3 (375)	-	182.9 (600)	182.9 (600)	182.9 (600)						22.9 (75)	182.9 (600)
A3	3.7 (5)	3.7 (5)	7.6 (25)	12.2 (40)	114.3 (375)		182.9 (600)	182.9 (600)	182.9 (600)							182.9 (600)
		2.2 (3)	7.6 (25)	12.2 (40)	114.3 (375)	-	182.9 (600)	182.9 (600)	182.9 (600)						22.9 (75)	182.9 (600)
		1.5 (2)	7.6 (25)	12.2 (40)	114.3 (375)		182.9 (600)	182.9 (600)	182.9 (600)						22.9 (75)	182.9 (600)
		0.75 (1)	7.6 (25)	12.2 (40)	114.3 (375)		182.9 (600)	182.9 (600)	182.9 (600)	_					22.9 (75)	182.9 (600)
		0.37 (0.5)	7.6 (25)	12.2 (40)	114.3 (375)		182.9 (600)	182.9 (600)	182.9 (600)		Use	e 1204-TI	FB2		22.9 (75)	182.9 (600)
A4	5.5-7.5 (7.5-10)	5.5-7.5 (7.5-10)	7.6 (25)	12.2 (40)	114.3 (375)	-	182.9 (600)	182.9 (600)	182.9 (600)						24.4 (80)	182.9 (600)
В	5.5-22 (7.5-30)	5.5-22 (7.5-30)	7.6 (25)	12.2 (40)	114.3 (375)		182.9 (600)	182.9 (600)	182.9 (600)	_					24.4 (80)	182.9 (600)
С	30-45 (X40-X60)	30-45 (40-60)	7.6 (25)	12.2 (40)	114.3 (375)	=	182.9 (600)	182.9 (600)	182.9 (600)						76.2 (250)	182.9 (600)
D	45-112 (60-X150)	45-112 (60-150)	12.2 (40)	30.5 (100)	114.3 (375)	-	182.9 (600)	182.9 (600)	182.9 (600)						61.0 (200)	91.4 (300)
E	112-187 (150-250)	112-224 (150-300)	12.2 (40)	53.3 (175)	114.3 (375)	-	182.9 (600)	182.9 (600)	182.9 (600)						182.9 (600)	182.9 (600)
F	187-336 (250-450)	187-336 (250-450)	18.3 (60)	53.3 (175)	114.3 (375)	-	182.9 (600)	182.9 (600)	182.9 (600)						182.9 (600)	182.9 (600)
G	187-448 (X250-600)	187-448 (250-600)	18.3 (60)	53.3 (175)	114.3 (375)	-	182.9 (600)	182.9 (600)	182.9 (600)			182.9 (600)	182.9 (600)			

Type B Motor Characteristics: 1329R Motors:

Type A Motor Characteristics: No phase paper or misplaced phase paper, lower quality insulation systems, corona inception voltages between 850 and 1000 volts. Properly placed phase paper, medium quality insulation systems, corona inception voltages between 1000 and 1200 volts.

These AC Variable Speed motors are "Power Matched" for use with Allen-Bradley Drives. Each motor is energy efficient and designed to meet or exceed the requirements of the Federal Energy Act of 1992. All 1329R motors are optimized for variable speed operation and include premium inverter grade insulation systems which meet or exceed NEMA MG1. Part 31.40.4.2.

Table A.2
Maximum Motor Cable Length Restrictions in meters (feet) – 500V-600V Drives 4

			No Exte	rnal Devi	ces	w/ 1204	-TFB2 Tern	ninator	w/ 1204-	TFA1 Tern	ninator	Reactor at Drive ²				
			Motor w	/Insulation	V _{P-P}	Motor w	/ Insulation	V _{P-P}	Motor w/	Insulation	V _{P-P}	Motor w/Insulation V _{P-P}				
			1000V	1200V	1600V ⁶	1000V	1200V	1600V ⁶	1000V	1200V	1600V ⁶	1000V	1200V	1600V		
Drive Frame	Drive kW (HP)	Motor kW (HP)	Any Cable	Any Cable	Any Cable	Any Cable	Any Cable	Any Cable	Any Cable	Any Cable	Any Cable	Any Cable	Any Cable	Any Cable		
A4	0.75 (1)	0.75 (1)	NR	NR	15.2 (50)	NR	182.9 (600)	335.3 (1100)	NR	61.0 (200)	182.9 (600)					
		0.37 (0.5)	NR	NR	15.2 (50)	NR	182.9 (600)	335.3 (1100)	NR	61.0 (200)	182.9 (600)					
	1.5 (2)	1.5 (2)	NR	NR	15.2 (50)	NR	182.9 (600)	335.3 (1100)	NR	61.0 (200)	182.9 (600)					
		1.2 (1.5)	NR	NR	15.2 (50)	NR	182.9 (600)	335.3 (1100)	NR	61.0 (200)	182.9 (600)					
		0.75 (1)	NR	NR	15.2 (50)	NR	182.9 (600)	335.3 (1100)	NR	61.0 (200)	182.9 (600)					
		0.37 (0.5)	NR	NR	15.2 (50)	NR	182.9 (600)	335.3 (1100)	NR	61.0 (200)	182.9 (600)					
	2.2 (3)	2.2 (3)	NR	NR	15.2 (50)	NR	182.9 (600)	335.3 (1100)	NR	61.0 (200)	182.9 (600)					
		1.5 (2)	NR	NR	15.2 (50)	NR	182.9 (600)	335.3 (1100)	NR	61.0 (200)	182.9 (600)	F	ded			
		0.75 (1)	NR	NR	15.2 (50)	NR	182.9 (600)	335.3 (1100)	NR	61.0 (200)	182.9 (600)					
		0.37 (0.5)	NR	NR	15.2 (50)	NR	182.9 (600)	335.3 (1100)	NR	61.0 (200)	182.9 (600)					
	3.7 (5)	3.7 (5)	NR	NR	15.2 (50)	NR	182.9 (600)	335.3 (1100)	NR	61.0 (200)	182.9 (600)					
	2.2	2.2 (3)	NR	NR	15.2 (50)	NR	182.9 (600)	335.3 (1100)	NR	61.0 (200)	182.9 (600)					
		1.5 (2)	NR	NR	15.2 (50)	NR	182.9 (600)	335.3 (1100)	NR	61.0 (200)	182.9 (600)					
		0.75 (1)	NR	NR	15.2 (50)	NR	182.9 (600)	335.3 (1100)	NR	61.0 (200)	182.9 (600)					
		0.37 (0.5)	NR	NR	15.2 (50)	NR	182.9 (600)	335.3 (1100)	NR	61.0 (200)	182.9 (600)					
В	5.5-15 (7.5-20)	5.5-15 (7.5-20)	NR	9.1 (30)	15.2 (50)	91.4 (300)	182.9 (600)	182.9 (600)	NR	61.0 (200)	182.9 (600)	30.5 (100)	91.4 (300)	182.9 (600)		
C	18.5-45 (25-60)	18.5-45 (25-60)	NR	9.1 (30)	12.2 (40)	91.4 (300)	182.9 (600)	182.9 (600)	NR	61.0 (200)	182.9 (600)	30.5 (100)	91.4 (300)	182.9 (600)		
D	56-93 (75-125)	56-93 (75-125)	NR	9.1 (30)	33.5 (110)	91.4 (300)	182.9 (600)	182.9 (600)	NR	61.0 (200)	182.9 (600)	61.0 (200)	91.4 (300)	182.9 (600)		
E	112-224 (150-X300)	112-224 (150-X300)	NR	9.1 (30)	21.3 (70)	91.4 (300)	182.9 (600)	182.9 (600)	NR	61.0 (200)	182.9 (600)	182.9 (600)	182.9 (600)	182.9 (600)		
F	187-336 (250-450)	187-336 (250-450)	NR	9.1 (30)	41.1 (135)	91.4 (300)	182.9 (600)	182.9 (600)	NR	61.0 (200)	182.9 (600)	182.9 (600)	182.9 (600)	182.9 (600)		
G	224-448 (300-600)	224-448 (300-600)	NR	9.1 (30)	41.1 (135)	91.4 (300)	182.9 (600)	182.9 (600)	NR	61.0 (200)	182.9 (600)	182.9 (600)	182.9 (600)	182.9 (600)		
Н	522-597 (700-800)	522-597 (700-800)	NR	9.1 (30)	41.1 (135)	91.4 (300)	182.9 (600)	182.9 (600)	NR	61.0 (200)	182.9 (600)	182.9 (600)	182.9 (600)	182.9 (600)		

NR = Not Recommended

Values shown are for 480V nominal input voltage and drive carrier frequency of 2 kHz. Consult factory regarding operation at carrier frequencies above 2 kHz. Multiply values by 0.85 for high line conditions. For input voltages of 380, 400 or 415V AC, multiply the table values by 1.25, 1.20 or 1.15, respectively.

² A 3% reactor reduces motor and cable stress but may cause a degradation of motor waveform quality. Reactors must have a turn-turn insulation rating of 2100 volts or higher.

³ Includes wire in conduit.

⁴ Values shown are for nominal input voltage and drive carrier frequency of 2 kHz. Consult factory regarding operation at carrier frequencies above 2 kHz. Multiply values by 0.85 for high line conditions.

Information not available at time of printing.

⁶ 1329R only.

Cable Termination

Optional Cable Terminator

Voltage doubling at motor terminals, known as reflected wave phenomenon, standing wave or transmission line effect, can occur when using drives with long motor cables.

Inverter duty motors with phase—to—phase insulation ratings of 1600 volts or higher should be used to minimize effects of reflected wave on motor insulation life.

Applications with non–inverter duty motors or any motor with exceptionally long leads may require an output inductor or cable terminator. An inductor or terminator will help limit reflection to the motor, to levels which are less than the motor insulation value.

Tables 2.A & 2.B list the maximum recommended cable length for unterminated cables, since the voltage doubling phenomenon occurs at different lengths for different drive ratings. If your installation requires longer motor cable lengths, a reactor or cable terminator is recommended.

Optional Output Reactor

The reactors listed in the 1336 FORCE price list can be used for drive input and output. These reactors are specifically constructed to accomodate IGBT inverter applications with switching frequencies up to 20 KHz. They have a UL approved dielectric strength of 4000 volts, opposed to a normal rating of 2500 volts. The first two and last two turns of each coil are triple insulated to guard against insulation breakdown resulting from high dv/dt. When using motor line reactors, it is recommended that the drive PWM frequency be set to its lowest value to minimize losses in the reactors.

Important: By using an output reactor the effective motor voltage will be lower because of the voltage drop across the reactors – this may also mean a reduction of the motor torque.

Common Mode Cores – Common Mode cores will help reduce the common mode noise at the drive output, and guard against tripping of the drive caused by capacitive leakage effects. The capacitive currents are larger at higher PWM frequencies.

Customer Supplied Enclosure Requirements – 1336 FORCE drives installed in customer supplied enclosures may be mounted within an enclosure or may be mounted to allow the heatsink to extend outside the enclosure. Use the information in Table A.3 in combination with the enclosure manufacturer's guidelines for sizing.

Enclosures

Table A.3 - Enclosure Requirements

	Table A.3 – Enclosure Requirements									
	(Catalog No.	Base Derate Amps ¹	Derate Curve ^{2,3}	Heat Dissipation Drive Watts ^{2,3,4}	Heatsink Watts ²	Total Watts ²			
	200 – 240 V Drives	A001 A003 A007 A010 A015 A020 A025 A030 A040 A050 A060 A075 A100 A125	4.5 12 27 34 48 65 78 80 120 149 180 240 291 327	None None None Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 16	17 33 156 200 205 210 215 220 361 426 522 606 755	32 72 486 721 819 933 1110 1110 1708 1944 2664 2769 3700 4100	49 105 642 921 1024 1143 1325 1330 2069 2370 3186 3375 4455 5002			
	380 - 460 V Drives	B001 B003 B007 B010 B015 B020 B025 B030 BX040 B040 B050 BX060 B060 B075 B100 B125 BX150 B150 B250 B300 B250 B300 B750 B300 B750 B300 B750 B300 B750 B300 B750 B300 B750 B300 B750 B750 B750 B750 B750 B750 B750 B7	2.5 6 14 21 27 34 42 48 59 65 78 78 97 120 150 180 240 291 327 406 406 459 459 505 481 570 532 599 673	None None None None None Fig. 10 Fig. 1 Fig. 2 Fig. 12 Fig. 3 Fig. 4 Fig. 13 Fig. 14 Fig. 15 Fig. 15 Fig. 15 Fig. 16 None Fig. 33 None Fig. 34 None Fig. 35 None Fig. 36 Fig. 36 Fig. 37 Fig. 37 Fig. 38	15 23 91 103 117 140 141 141 175 175 193 193 361 361 426 522 606 606 755 902 1005 619 1055 733 1295 793 1335 931 1395 1485	20 54 270 394 486 628 720 820 933 933 1110 1110 1708 1708 1944 2664 2769 2769 3700 4100 4805 5342 5455 6039 6175 6329 6875 7000 7800 8767	35 777 361 497 603 768 861 961 1108 1108 1303 2069 2069 2370 3186 3375 3375 4455 5002 5810 5961 6510 6772 7470 7122 8210 7931 9200 10252			
	500 - 600 V Drives	C001 C003 C007 C010 C015 C020 C025 C030 C040 C050 C060 C075 C100 C125 C150 C200 C250 C300 ⁵ C350 ⁵ C450 ⁵ C450 ⁵ C650 ⁵ C650 ⁵	2.5 6 10 12 19 24 30 35 45 57 62 86 109 138 160 252 284 298 354 406 460 505 600 673	4 4 4 4 4 4 4 4 Fig. 19 Fig. 20 Fig. 21 Fig. 22 Fig. 23 Fig. 24 None None Fig. 25 Fig. 26 Fig. 27 Fig. 28 Fig. 29	4 4 91 103 117 140 141 141 175 193 361 426 522 4 755 890 926 1000 1430 1465 1500 1610 1700	4 4 217 251 360 467 492 526 678 899 981 1553 1978 2162 4 3065 3625 5015 5935 7120 8020 8925 10767 12000	4 4 308 354 477 607 633 667 853 1092 1174 1894 2504 2683 4 3820 4515 5941 6935 8550 9485 10425 12377 1400			

Base Derate Amps are based on nominal voltage (240, 480 or 600V). If input voltage exceeds Drive Rating, Drive Output must be derated. Refer to Figure 31.

2 Drive Ambient Temperature Rating is 40°C. If ambient exceeds 40°C, the drive must be derated. Refer to Figures 1–29.

3 DriveRating is based on altitudes of 1,000m (3000 ft.) or less. If installed at a higher altitude, Drive must be derated.

Refer to Figure 30.

Not available at time of publication.

5 Important: Two (2) 725 CFM fans are required if an open type drive is mounted in a user supplied enclosure.

Derating Guidelines

Drive ratings can be affected by a number of factors. If more than one factor exists, consult Allen–Bradley Co.

Standard Rating for Enclosed Drive in 40°C Ambient & Open Drive in 50°C Ambient Derating Factor for Enclosed Drive in Ambient between 41°C & 50°C. Figure 5 1336T-A040 % of Drive 100% -Rated Amps 95% -90% -85% -80% -75% -70% -65% **I** 10 **I** 12 Carrier Frequency in kHz Figure 6 1336T-A050 % of Drive 100% -**Rated Amps** 95% -90% -85% -80% -75% -70% -65% -**I** 10 Carrier Frequency in kHz Figure 7 1336T-A060 % of Drive 100% -Rated Amps 95% 90% -85% -80% -75% **–** 70% -65% -60% Carrier Frequency in kHz Figure 8 1336T-A075 and B150 % of Drive 100% -Rated Amps 95% -90% -85% -80% -75% **-**70% -65% **-**Carrier Frequency in kHz

Appendix A

Standard Rating for Enclosed Drive in 40°C Ambient & Open Drive in 50°C Ambient

Derating Factor for Enclosed Drive in Ambient between 41°C & 50°C.

% of Drive Figure 9 100% 1336T-A100 and B200 **Rated Amps** 95% 90% 85%-80%-75%**-**70% 65% 3 Carrier Frequency in kHz Figure 10 1336T-B015 % of Drive 100%-**Rated Amps** 95% 90% 85% 80% 75% 70% 65% **I** 12 **I** 10 1 11 Carrier Frequency in kHz % of Drive Figure 11 100% 1336T-B025 **Rated Amps** 95% 90% 85% 80% 75% 70% 65% 60% 55% **1** 1 11 Carrier Frequency in kHz Figure 12 % of Drive 100%-1336T-BX040 **Rated Amps** 95%-90%-85%-75%-70%-**I** 10 **I** 12 1 11 Carrier Frequency in kHz % of Drive Figure 13 100%-1336T-B075 **Rated Amps** 95%-90%-85%-80%-75% - 70%-60%-Carrier Frequency in kHz

Figure 14 % of Drive 100% 1336T-B100 Rated Amps 95% 90% 85% 80% 75% • 70% Carrier Frequency in kHz Figure 15 % of Drive 100%-1336T-B125 and BX150 **Rated Amps** 90% -85% -80% -75% - 70% -65% Carrier Frequency in kHz % of Drive Figure 16 100%-1336T-B250 **Rated Amps** 95% 90% 85% 80% 75% 70% 65% Carrier Frequency in kHz Figure 17 1336T-B500 % of Drive 100%-**Rated Amps** 95% 90% 85% 80% -75% **-**70% -60% 55% Carrier Frequency in kHz % of Drive Figure 18 1336T-B600 **Rated Amps** 95% 90% -85% -80% -70% 65% Carrier Frequency in kHz

Standard Rating for Enclosed Drive in 40°C Ambient & Open Drive in 50°C Ambient

Derating Factor for Enclosed Drive in Ambient between 41°C & 50°C.

Appendix A

Standard Rating for Enclosed Drive in 40°C Ambient & Open Drive in 50°C Ambient Derating Factor for Enclosed Drive in Ambient between 41°C & 50°C. Figure 19 1336T-C075 % of Drive 100% **Rated Amps** 95% 90% • 85% -80% -75% -70% • 65% -Carrier Frequency in kHz Figure 20 1336T-C100 % of Drive 100%-**Rated Amps** 90% -85% -80% -75% - 70% -60% -Carrier Frequency in kHz Figure 21 1336T-C125 % of Drive 100%-**Rated Amps** 95% -90% -85% -80% -75% • 70% -65% 60% -Carrier Frequency in kHz Figure 22 1336T-C150 % of Drive 100%-**Rated Amps** 95% 90% 85% -80% -75% - 70% 65% Carrier Frequency in kHz Figure 23 1336T-C200 % of Drive 100% **Rated Amps** 95% 90% 85% -80% -75% **-**70% -65% - 60% -55% -50% -Carrier Frequency in kHz

Figure 24 1336T-C250 % of Drive 100% **Rated Amps** 95% -90% -85% -80% -75% -70% 65% -60% -55% -50% • 45% 40% -Carrier Frequency in kHz Figure 25 1336T-C400 % of Drive 100%-**Rated Amps** 95% -90% -85% -80% -75% 70% 65% Carrier Frequency in kHz Figure 26 1336T-C450 % of Drive 100% **Rated Amps** 95% -90% 85% -80% 75% 70% 65% Carrier Frequency in kHz Figure 27 1336T-C500 % of Drive Rated Amps 100% 95% 80% -75% -70% • 65% Carrier Frequency in kHz

Standard Rating for Enclosed Drive in 40°C Ambient & Open Drive in 50°C Ambient

Derating Factor for Enclosed Drive in Ambient between 41°C & 50°C.

Figure 29 1336T-C650

Figure 30 All Drive Ratings

Figure 31 Required Only for the following drives:

1336T-A/B/C-025 18.5 kW (25 HP) at 8 kHz 1336T-A/B/C 22 kW (30 HP) at 6-8 kHz 1336T-A/B/C 45 kW (60 HP) at 6 kHz

Figure 32 BP 250

Figure 33 BP 300

Figure 34 BP 350

Figure 35 BP 400

Figure 36 BP 450

Figure 37 B700C & B800C

Figure 38 C700C & C800C

Drive Hardware Overview – The following illustrations are functional block diagrams of the 1336 FORCE Drive detailing the difference in hardware between the various ratings. These are basic overviews of the 1336 FORCE hardware, and should be used as reference material only.

Schematic Diagram – 3 – 15 HP 230V, 3 – 15 HP 460V 3 – 20 HP 575V

Schematic Diagram – 20–30 HP, 230 VAC 40–60 HP, 460 VAC 25–60 HP, 575 VAC

Schematic Diagram – 20–30 HP, 230 VAC, 40–60 HP, 460 VAC 25–60 HP, 575 VAC

Schematic Diagram – 75 & 100 HP, 230 VAC

A-22

Schematic Diagram – 300–400 HP

Schematic Diagram – 700–800 HP

Schematic Diagram – 700 – 800 HP cont. U-M1 V-M2 OUTPUT W-M3 POWER PΕ +15 3 2 1 U_AMPS 3 2 1 CT1 4000:1 W_Amps CT2 4000:1 R23 R24 Q11 Q12 Q31 Q32 Q51 Q52 B1 B1 B1 Q42 Q62 Q22 Q61 Q41 Q21 BI E1 E1 PS+V PS+V PSCOM PS-V PS-V RL1-5 RL1-9 A23 A24 A25 A26 A27 A28 NTC TO MAIN CONTROL BOARD TO GATE DRIVER U_AMPS W_Amps - BUS +BUS ACT2 A23-A28 Interface A23-A28 Contactor ACT1 Interface Interface 1 2 7 5 4 2 4 -+SMP 12 J6 J2 J10 J5 J7 J8 -SMP 9 TB5

GATE

DRIVER

BOARD

TB7

ΤE

Α1

J1

TO Main Control Board

6

J13

+15V

- -15V

- COMMON

- /CHARGE - AC LINE

24V AUX+

24V AUX-

+5V

6

5

4

3

J9

TB4

Gate Driver Board Connections

The connections on 1336 FORCE Gate Driver Boards vary by frame size as indicated in the following illustrations:

Frame Size B Gate Driver Board Connections

Frame Size C Gate Driver Board Connections

Frame Size D Gate Driver Board Connections

Sensorless Application Notes

Sensorless vs. Encoder Application Guidelines-

- Sensorless is applicable when Speed Regulation requirements are greater than +/– 1.0% of base speed. Sensorless <u>may be</u> applicable for regulation requirements between 0.2% and 1.0% with manual adjustments. Encoder operation is recommended below 0.2%.
- Sensorless is applicable when the minimum speed is greater than 1/40 of base speed (i.e. 45 RPM on a 60 Hz, 4 pole motor). Sensorless may be applicable down to speeds of 1/60 of base speed (30 RPM) if high bandwidth responses are not required. Encoder operation is recommended for speeds < 1/60 of base speed (30 RPM).</p>
- Maximum Speed is the same for sensorless and encoder operation.
- The maximum velocity bandwidth achievable with sensorless is approximately twice the default bandwidth value. Bandwidths higher than this may require an encoder because the velocity ripple may be intolerable or there may be stability problems. The maximum bandwidth achievable with sensorless is half the bandwidth achievable with an encoder. Note that the maximum achievable bandwidths decrease with increasing inertia for both sensorless and encoder.
- The starting torque available is the same with sensorless or encoder.
 Available starting torque is at least 150% motor torque and could be as high as 200% if the inverter can supply the current.
- Minimum (current limit) acceleration and deceleration times are comparable with sensorless and encoder.
- Torque regulation (+/-5%) is comparable with sensorless and encoder at velocities greater than approximately 25% of base speed. At lower speeds sensorless torque regulation may degrade with changing motor temperature.
- Torque response is comparable with sensorless and encoder (400Hz).

Sensorless Mode Selection –

- Param 150 = 5

Minimum preset speed is 1/60 of base speed. When preset speed and actual speed are both <1/60 of base speed, torque is set to zero. When preset speed is > 1/60 of base speed, torque will be developed to accelerate the motor through the min. speed to the preset speed.

When a motor is accelerated from a **preset speed** of 0 to a preset speed > 1/60 of base speed, the motor will accelerate at the accel rate set by the drive. But, if the accel rate in the drive is set to 0 or some low value and the acceleration is controlled by ramping the preset speed parameter with a PLC, the motor will not accelerate until the preset speed is > 1/60 base speed. This will result in an accel delay until that speed is reached, followed by an acceleration at the speed set by the PLC. If this is a problem, Mode 7 should be used.

- Param 150 = 6

Minimum preset speed is 1/1000 of base speed. Preset speeds down to zero are permitted, although it is very likely that the motor will not operate smoothly at these low speeds. This mode will eliminate the problems associated with controlling the acceleration rate by ramping preset speeds from a PLC described in Mode 5 (Param 150 = 5).

- Param 150 = 7 (Available in 3.01 version)

Minimum present speed is 1/1000 of base speed. This mode is similar to mode 6 except that the motor can be expected to operate more smoothly and develop higher continuous torque at speeds < 1/60 of base speed. This mode will also allow operation with lower

Appendix A

velocity bandwidths than Mode 5 and allow smoother acceleration.

The disadvantage of this mode is that the response to load changes at low speeds is not as fast as mode 5. Also, fast speed reversals may not work when the preset speed is ramped from a PLC and the drives accel/decel rate is set to 0.

Sensorless Troubleshooting Procedures -

- Problem: Motor won't accelerate or doesn't start smoothly
- Possible Solutions:

Increase the bandwidth. If the bandwidth is too low, there is a chance the motor won't accelerate, although the current will increase to current limit.

If the regen power limit is 0, increase it to at least -5%.

Decrease the acceleration time. (faster acceleration)

Change Param 150 to mode 7.

- Problem: Motor oscillates after it is up to speed
- Possible Solutions:

Decrease the bandwidth if the process will allow. If this doesn't help, set Param 142 to 1500.

If unstable in field weakening, change Param 174 to 100%.

Problem: Inverter trips on absolute overspeed during starting
 Increase the bandwidth.

If the overspeed occurs during a reversal, increase the deceleration time (slower deceleration).

Sensorless Fine-Tuning Procedures -

- Improving Speed Regulation

Typically the speed regulation (as a function of load) in sensorless mode can be improved by adjusting Param 246 (Base Slip Frequency) after the drive has been completely auto—tuned. This parameter is originally calculated during the torque calculation section of auto—tune and is dependent on the nameplate speed of the motor.

Ideally this adjustment is made while the motor is fully loaded and at its normal operating temperature. Adjust Param 246 until the actual speed, as measured by an independent source (i.e. hand tach), is equal to the desired speed. This should result in a minimum steady state speed deviation as load changes. The proper slip for good speed regulation is also motor temperature dependent, thus if the motor operating temperature normally varies between cold and hot, a compromise slip must be selected.

- Minimizing Acceleration Time from 0 Speed

After a start command is issued, there is a 0.5 sec flux up delay before the motor will start accelerating with sensorless control. This delay can be eliminated in subsequent accelerations from 0 speed by configuring the drive to decel down to a preset speed of 0 rather than decelerating to stop.

- Increasing Speed Range

Speeds down to zero speed may be commanded when Param 150 is set to 7. As operation nears 0, speed cogging may result.

SCANports SCANport Analog 1 Select (364) O SCANport Analog 1 Scale (366) → SCANport Analog 1 In (365) **SCANport** 2 SCANport Analog Out (379) SCANport Analog 2 Select (367) SCANport Analog 2 Scale (368) - SCANport Analog 2 In (369) Fault Select (405) SCANport Image In Warning Select (406) Fault Status (407) Data In A1 (310) SCANport Image Out Warning Status (408) Data In A2 (311) Data Out A1 (320) 1 - SCANport 1 Timeout Data In B1 (312) Data Out A2 (321) 2 - SCANport 2 Timeout Data In B2 (313) Data Out B1 (322) 3 - SCANport 3 Timeout Data In C1 (314) 4 - SCANport 4 Timeout Data Out B2 (323)-5 - SCANport 5 Timeout Data In C2 (315) 5 Data Out A1 (324)-8 - 4-20mA Loss Data In D1 (316) 6 Data Out A2 (325) 13 – Illegal Drive Type (Not Configurable) Data In D2 (317) Data Out D1 (326) 14 - Different Drive Type (Not Configurable) 15 - SCANport Error (Not Configurable) Data Out D2 (327)-TB3-19 TB3-20 TB3-22 TB3-23 TB3-24 TB3-26 TB3-27 TB3-28 TB3-30 TB3-21 Input 1 TB3-25 TB3-29 Mode Input 5 Input 6 Input 2 Input 3 Input 4 Input 7 Input 8 Input 9 Not-Stop (P59), Clr Flt Not-Stop (P59), Clr Flt Status Status Status Status Status Enable Not-Stop (F59), Cir Fit Not-St Spd Sel 1 Spd Sel 3 Spd Sel 3 1st/2nd Dec MOP Dec COMMON Rev/Fwd Start Snd Sel 2 Fnable Spd Sel 2 Stop Type 1st/2nd Acc MOP Inc. Start Rev/Fwd Ext Fault Enable Start Rev/Fwd Rev/Fwd Stop Select 1 (387) Stop Select 2 (388) Ext Fault 5,27 Enable Accel Rate 1 (389) Accel Rate 2 (390) Start Rev/Fwd Jog Fwd Ext Fault Loc/Rem Enable Spd Sel 1 Spd Sel 1 Spd Sel 1 Spd Sel 1 Jog Spd Sel 3 Spd Sel 3 MOP Inc Start Ext Fault Enable Discrete 9,28 10,29 11 12 13 14 Rev MOP Inc Input Mode (385)* Input Status (386) Start Rwd MOP Dec Ext Fault Ext Fault Enable Enable Decel Rate 1 (391) Decel Rate 2 (392) Spd Sel Start Ext Fault Enable 1st Dec Spd Sel 3 Spd Sel 3 1st/2nd Dec *Power Cycle or Start 1st Acc 2nd Acc Ext Fault 2nd Dec Spd Sel 2 Spd Sel Enable Spd Sel 1 Spd Sel 1 Spd Sel 1 Spd Sel 1 Run Fwd Run Fwd Run Rev Reset required to Run Rev take effect Stop Type 1st/2nd Acc Ext Fault Ext Fault Spd Sel 2 Enable Spd Sel 2 Run Fwd Run Rev Enable Spd Sel 1 Run Fwd Run Fwd Run Rev Run Rev MOP Inc Loc/Rem PTrim En Ext Fault Ext Fault MOP Dec Stop Type Ramp Dis Reset Enable Enable 15,30 16 17 18 19 20 21 22 23 24 25 26 Start Start Rev/Fwd Ext Fault Enable Spd Sel 2 Spd Sel 2 Ptrim En Flux Enable Rev/Fwd Flux Enable Ext Fault Enable Not-Stop (P59), Clr Fit Spd/Trq3 Spd/Trq3 Spd/Trq2 Spd/Trq2 Ext Fault Ext Fault Spd/Trq 1 Spd/Trq 1 Enable Enable Start Ramp Dis Reverse Forward Ext Fault Ext Fault Reset Enable Spd/Trq3 Run Rev Run Rev Spd/Trq2 PTrim En Flux Enable Spd/Trq 1 Reset Reset Spd Set 2 Spd Set 2 Spd Set 2 Spd Sel 1 Spd Sel 1 Spd Sel 1 Start Enable Run Fwd Run Fwd Ext Fault Ext Fault Enable Ramp Dis Spd Sel 3 PTrim Fn Fxt Fault Enable Not-Stop (P59), Clr Flt

Software Block Diagram - Standard Adapter

Appendix A

Software Block Diagram - Standard Adapter

36T Firmware Function (Motor Control Board Overview)

Sheet Connection Symbols

<u>_B</u> –	VELOCITY RAMP OUTPUT	<u></u>	VELOCITY PI REGULATOR OUTPUT	<u> </u>	VELOCITY REFERENCE
<u></u>	CURRENT PROCESSOR COMMAND	<u>^</u> –	ϕ_{f}	$\Delta_{\rm Tpt}$ —	TORQUE TRIM
<u>/if</u> —	FILTERED Iq REFERENCE	<u> </u>	FILTERED Iq REFERENCE		
$\bigwedge_{\operatorname{Iq}}$ —	Iq REFERENCE	<u> </u>	TORQUE LIMIT HIGH		
<u> </u>	VELOCITY TRIM	$\Delta_{\Gamma_{L}}$ —	TORQUE LIMIT LOW		
<u>/LC</u> —	LOGIC CONTROL WORD	\int_{Tq} $-$	TORQUE COMMAND		
\bigwedge –	ACTIVE TORQUE MODE		VELOCITY FEEDBACK		

36T Firmware Function (Motor Control Board Overview)

36T Firmware Function (Velocity Reference Overview)

PARAM 52 LOGIC COMMAND WORD

36T Firmware Function (Trim Control Overview)

PROCESS TRIM

36T Firmware Function (Velocity Feedback Overview)

36T Firmware Function (Velocity Feedback Overview)

36T Firmware Function (Velocity PI Regulator Overview)

36T Firmware Function (Velocity PI Regulator Overview)

36T Firmware Function (Torque Reference Overview)

36T Firmware Function (Torque Reference Overview)

36T Firmware Function (Torque Block Overview)

36T Firmware Function (Torque Block Overview)

36T Firmware Function (Drive Fault Detection)

CONFIGURABLE FAULTS

36T Firmware Function (Drive Fault Overview)

36T Firmware Function (Inverter Overload)

36T Firmware Function (Inverter Overload)

NTC FOLDBACK PROTECTION

VELOCITY LOOP AUTOTUNE

AUTOTUNE PROCEDURE

- 1. RUN TRANSISTOR DIAGNOSTICS SET BIT 0 IN PARM. 256 AND TOGGLE START BIT IN LOGIC COMMAND.
- 2. RUN PHASE ROTATION TEST SET BIT 1 IN PARM. 256 AND SET START BIT IN LOGIC COMMAND.

CHECK SIGN OF VELOCITY FEEDBACK (PARM. 146) AGAINST FREQ. REF. (PARM. 263).

STOP DRIVE AND CLEAR PARAMETER 256.

SWAP ENCODER PHASES IF NECESSARY TO GET SIGNS TO MATCH.

- 3. RUN TORQUE AUTOTUNE SET BITS 2 THROUGH 5 IN PARM. 256 AND TOGGLE START BIT IN LOGIC COMMAND.
- 4. RUN VELOCITY AUTOTUNE ENTER DESIRED BANDWIDTH IN PARM. 43. SET BITS 6 THROUGH 8 IN PARM. 256 AND TOGGLE START BIT IN LOGIC COMMAND. CHECK DI/DT LIMIT IN PARM. 181.

36T Firmware Function (Logic Control) BRAKE INTERFACE 750 VOLTS **LOCAL DRIVE I/O** J1 LOCAL INPUT STATUS **BUS VOLTS** DISCRETE 54 INPUT ADAPTER DEBOUNCE **TERMINALS** P1.2 0 BRAKE REQ. J8 P2.4 DRIVE ENABLE (N.O.) DRIVE ENABLE MTR THERMO GUARD (N.C.) 2 MOTOR OVERTEMP STOP (N.C) 3 3 DISCRETE STOP (58 EXTERNAL FAULT 4 EXTERNAL STOP DISCONNECT (N.C.) 16 msec RMS FAULT P0.2 0 = NORMAL STOP 1 = TORQUE TO 0 SPEED 2 = TORQUE TO 0 TORQUE 6 0 = MASTER/SLAVE DRIVE P0.3 TORQUE STOP INVERTER CONFIGURATION ENABLE 8 TEST DIG. P0.5 LED **UMCI** 9 INVERTER STATUS **EPLD** P2.6 10 CONTACTOR VERIFY BOARD LOGIC COMMAND LOCAL WORD OUTPUT 52 STATUS 55 NORMAL STOP 0 0 BRAKE ENABLE START 1 **EDGE** 1 TURN ON DELAY P1.4 2 JOG 1 EDGE CLEAR FAULT 3 EDGE C 8 FORWARD 4 P2.7 9 VP ENABLE 5 REVERSE P2.5 10 PILOT RELAY EDGE JOG 2 6 11 CURRENT LIMIT STOP 12 GREEN LED 8 VP LED COAST STOP 13 RED LED В VEL RAMP DISABLE 9 SYMBOL 14 FLUX ENABLE 10 PARAMETER XXX, DATA SINK 15 PROCESS TRIM ENABLE PARAMETER YYY, DATA SOURCE 12 VEL REF SELECT A BIT VEL REF SELECT B 13 VELOCITY REF. SELECT **TESTPOINT** 14 VEL REF SELECT C С В Α OFF SHEET RESET DRIVE 15 **EDGE** 0 0 - ZERO TORQUE CONNECTION - EXTERNAL REF 1 0 - PRESET SPEED 1 TORQUE MODE SELECT Requested - PRESET SPEED REF 2 0 Torque PRESET SPEED REF 3 70 Mode - PRESET SPEED REF 4 0 0 - ZERO TORQUE - PRESET SPEED REF 5 0 1 - SPEED REGULATOR - EXTERNAL REF. 2 2 - TORQUE REGULATOR 3 – MIN. TORQUE OR SPEED 4 – MAX. TORQUE OR SPEED INVERTER 70 11 50 MSEC SCAN INTERVAL 5 - SUM SPEED & TORQUE 258 259 DIAG RESULTS

HIGH BYTE = HANDSHAKE ENABLE

LOW BYTE = SYSTEM MODE

70

12

6 - ZERO TORQUE

7 - ZERO TORQUE

A-51

36T Firmware Function (Logic Control)

Battery Disposal

When it becomes necessary to replace the battery that supports the real time clock on the 1336 FORCE, precautions must be taken when disposing of the old battery. The following procedure must be followed when disposing of lithium batteries:

ATTENTION: Do not incinerate or dispose of lithium batteries in general trash collection. Explosion or violent rupture is possible. Batteries should be collected for disposal in a manner to prevent against short circuiting, compacting, or destruction of case integrity and hermetic seal.

For disposal, batteries must be packaged and shipped in accordance with Federal, state, local or provincial laws to an appropriate Transfer, Storage and Disposal facility.

The person disposing of the material is responsible for any hazards created in doing so, as the material may be considered toxic, reactive, or corrosive.

CE Conformity

EMC Directive

This apparatus is tested to meet Council Directive 89/336 Electromagnetic Compatibility (EMC) using a technical construction file and the following standards:

- EN 50081-1, -2 Generic Emission Standard
- EN 50082-1, -2 Generic Immunity Standard

Marked for all	applicable directives 1	
Emissions	EN 50081-1	∀ (€
	EN 50081-2	
	EN 55011 Class A	
	EN 55011 Class B	
Immunity	EN 50082-1	
,	EN 50082-2	
	IEC 801-1, 2, 3, 4, 6, 8 per EN50082-1, 2	

Important:

The conformity of the drive and filter to any standard does not guarantee that the entire installation will conform. Many other factors can influence the total installation and only direct measurements can verify total conformity.

Requirements for Conforming Installation

The following seven items **are required** for CE conformance:

- 1. Standard 1336 FORCE Drive 0.37-45 kW (1-60 HP) CE compatible (Series D or higher).
- **2.** Factory installed EMC enclosure (-AE option) or field installed EMC Enclosure Kit (1336x-AEx see page B–2)
- **3.** Filter as called out on the following page.
- **4.** Grounding as shown on page B–2.
- **5.** Maximum cable length (drive to motor) of 75 meters (250 feet).
- 6. Input power (source to filter) and output power (filter to drive & drive to motor) wiring must be braided, shielded cable with a coverage of 75% or better, metal conduit or other with equivalent or better attenuation, mounted with appropriate connectors. For shielded cable it is recommended to use a compact strain relief connector with double saddle clamp for filter and drive input and compact strain relief connector with EMI protection for motor output.
- **7.** Control (I/O) and signal wiring must be in conduit or have shielding with equivalent attenuation.

Filter

Filter Selection:

Filter Catalog Number	Three-Phase Volts	Used with	Frame Reference
1336-RFB-30-A	200-240V	1336T-A001 - A003	A
	380-480V	1336T-B001 - B003	В
1336-RFB-27-B	200-240V	1336T-A007	В
	380-480V	1336T-B007 - B015	В
1336-RFB-48-B	200-240V	1336T-A010 - A015	В
	380-480V	1336T-B020 - B030	В
1336-RFB-80-C	200-240V	1336T-A020 - A030	С
	380-480V	1336T-BX040 - BX060	С
1336-RFB-150-D	200-240V	1336T-A040 - A050	D
	380-480V	1336T-B060 - B100	D
1336-RFB-180-D	200-240V	1336T-A060	D
	380-480V	1336T-B125 - BX150	D
1336-RFB-340-E	200-240V	1336T-A075 - A125	E
	380-480V	1336T-B150 - B250	E
1336-RFB-475-G	380-480V	1336T-BX250 - B350	G
1336-RFB-590-G	380-480V	1336T-B400 - B450	G
1336-RFB-670-G	380-480V	1336T-B500 - B600	G
Not Available	380-480V	1336T-B700 - B800	Н

EMC Enclosure Kit Selection

Frame	Enclosure Kit Catalog Number					
Reference	200-240V Rating	380-480V Rating	500-600V Rating			
В	1336-AE4	1336-AE4	1336-AE4			
С	1336-AE5	1336-AE5	1336-AE5			
D	1336-AE6	1336-AE6	1336-AE6			
E	1336-AE7	1336-AE7	1336-AE7			
F–H	Not Available					

RFI Filter Installation

ATTENTION: To prevent electrical shock, disconnect the power source before installing or servicing.

Important: Refer to the instructions supplied with the filter for details.

The RFI filter must be connected between the incoming AC supply line and the drive input terminals.

RFI Filter Leakage Current

The RFI filter may cause ground leakage currents. Therefore a solid ground connection must be provided as shown in the electrical configuration scheme shown on the following page.

ATTENTION: To guard against possible equipment damage, RFI filters can only be used with AC supplies that are nominally balanced with respect to ground. In some installations, three-phase supplies are occasionally connected in a 3-wire configuration with one phase grounded (Grounded Delta). The filter must not be used in Grounded Delta supplies or in an ungrounded wye configuration.

Electrical Configuration

Grounding

RFI Filter Grounding

Important: Using the RFI filter may result in relatively high ground leakage currents. Surge suppression devices are also incorporated into the filter. Therefore, the filter must be permanently installed and solidly grounded (bonded) to the building power distribution ground. Ensure that the incoming supply neutral is solidly connected (bonded) to the same building power distribution ground.

Grounding must not rely on flexible cables and should not include any form of plug or socket that would permit inadvertent disconnection. Some local codes may require redundant ground connections. The integrity of all connections should be periodically checked.

Mechanical Configuration

1336 FORCE

.37 – 45 kW (1 – 60 HP) Frames B & C

1 Input power (source to filter) and output power (filter to drive & drive to motor) wiring must be in conduit or have shielding/armor with equivalent attenuation. See requirements on page B1

NOTE: 1336 FORCE 40–60 HP, 230V and 60HP, 460V mounted in D Frames are NOT CE approved and cannot be used with the RFB–80–C filter.

¹ Input power (source to filter) and output power (filter to drive and drive to motor) wiring must be in conduit or have shielding/armor with equivalent attenuation. Shielding/armor must be bonded to the metal bottom plate. See requirements 6 & 7 on page E–1.

² Refer to the Filter Selection table on page B–2 for frame references and corresponding catalog numbers.

Filter Mounting (continued)

Frame G²

Input power (source to filter) and output power (filter to drive and drive to motor) wiring must be in conduit or have shielding/armor with equivalent attenuation. Shielding/armor must be bonded to the metal bottom plate. See requirements 6 & 7 on page E-1.

Refer to the Filter Selection table on page B–2 for frame references and corresponding catalog numbers.

Required Knockout Assignments

Frames B and C

28.6/34.9 (1.13/1.38) - 3 Plcs.

Frame D

62.7/76.2 (2.47/3.00) - 2 Plcs.

Frame E

Appendix B CE Conformity

User Parameter Values

Use the tables on the following pages to record your particular parameter value setting for the current application.

No.	Name	Default	Value	No.	Name	Default	Value
1	Drive Software Ver	1.01		47	Autotune TP Data	0000 0000 0000 0000	
5	Power Struct Type	0		48	Autotune TP Select	0	
8	Motor Cntrl Counter	0.0 sec		52	Logic Cmd Word	0000 0000 0000 0000	
9	Drv Comm Tsk Intrvl	1		53	Torque Mode Sel	1	
10	Drv Comm Baud Rate	0		54	Local Input Status	0000 0000 0000 0000	
11	Drv Comm Trans Addr	0		55	Local Output Status	0000 0000 0000 0000	
12	Drv Comm Rcv 1 Addr	0		56	Logic Status Low	0000 0000 0000 0000	
13	Drv Comm Rcv 2 Addr	0		57	Logic Status Hi	0000 0000 0000 0000	
14	Dr Comm Xmit Ind 1	20		58	Torq Stop Config	0	
15	Dr Comm Xmit Ind 2	21		59	Logic Options	0000 0001 1000 0010	
16	Dr Comm Rcv 1 Ind 1	22		60	At Setpoint 1	+0.0%	
17	Dr Comm Rcv 1 Ind 2	23		61	At Setpoint 2	+0.0%	
18	Dr Comm Rcv 2 Ind 1	24		62	Over Setpoint 1	+0.0%	
19	Dr Comm Rcv 2 Ind 2	25		63	Over Setpoint 2	+0.0%	
20	Dr Comm Xmit Data 1	0		64	Over Setpoint 3	+0.0%	
21	Dr Comm Xmit Data 2	0		65	Over Setpoint 4	+0.0%	
22	Dr Comm Rcv1, Data 1	0		66	Setpoint Select	0000 0000 0000 0000	
23	Dr Comm Rcv1, Data 2	0		67	Spd Setpoint Tol	base speed/100	
24	Dr Comm Rcv2, Data 1	0		68	Cur Setpoint Tol	2.0%	
25	Dr Comm Rcv2, Data 2	0		69	Zero Spd Tolerance	base speed/100	
26	Process Trim Output	+0.00%		70	Logic Testpoint Data	0000 0000 0000 0000	
27	Process Trim Ref	+0.00%		71	Logic Testpoint Sel	0	
28	Process Trim Fdbk	+0.00%		72	Stop Dwell	1.0 sec.	
29	Process Trim Select	0000 0000 0000 0000		77	Max Dyn Brake Pwr	0 Watts	
30	Proc Trim Fltr Bdwth	0 radian/seconds		78	Max Dyn Brake Tmp	50 deg	
31	Proc Trim Data	+0.0%		79	Dyn Brk Time Const	10 sec.	
32	Proc Trim KI Gain	1.000		80	Pwr Up Diag Flt Sts	0000 0000 0000 0000	
33	Proc Trim KP Gain	1.000		81	Non Config Flt Sts	0000 0000 0000 0000	
34	Proc Trim Lo Lmt	-100.0%		82	CP Config Flt Sts	0000 0000 0000 0000	
35	Proc Trim Hi Lmt	-100.0%		83	VP Config Flt Sts	0000 0000 0000 0000	
36	Proc Trim Out Gain	+1.00		84	CP Config Warn Sts	0000 0000 0000 0000	
37	Process Trim Tstpnt	+0		85	VP Config Warn Sts	0000 0000 0000 0000	
38	Proc Trim TP Sel	0		86	CP Flt/Warn Sel	0000 0000 0000 0000	
40	Auto Tune Trq Lmt	50.0%		87	CP Warn Config Sel	0000 0000 0000 0000	
41	Auto Tune Speed	0.85 x Base Motor Spd		88	VP Fault Select	1111 1111 1111 1111	
43	VP Desired BW	5.00 radian/seconds		89	VP Warn Config Sel	0000 0000 0000 0000	
44	Autotune Status	50.00 radian seconds		90	Absite Ovrspd Thrsh	0.1 x base speed	
45	VP Damping Factor	1.0		91	Stall Delay	1.0 sec.	
46	Total Inertia	20.0 sec.		92	Mtr Overload Limit	200.0%	

No.	Name	Default	Value	No.	Name	Default	Value
94	Service Factor	1.00		144	Vel Fdbk TP HI	+0	
95	Mtr Ovrld Speed 1	0.8 x Base Speed		145	Vel Fdbk TP Select	0	
96	Motor Ovrld Speed 2	0.8 x Base Speed		146	Vel Fdbk	+0 0 rpm	
97	Min Ovrld Lim	100.0%		147	Scaled Vel Fdbk	0	
98	Fault Tstpt Data	0		148	Enc Pos Fdbk LOW	0	
99	Fault Tstpt Sel	0		149	Enc Pos Fdbk HI	0	
100	Vel Ref 1 LOW	0		150	Fdbk Device Type	None	
101	Vel Ref 1 HI	0.0 rpm		151	Fdbk Tracker Gain	1.000	
102	Vel Scl Fctr 1	+1.000		152	Fdbk Filter Sel	0	
103	Vel Ref 2 LOW	0		153	Kn Fdbk Filter Gain	+1.00	
104	Vel Ref 2 HI	0.0 rpm		154	Wn Fdbk Filter BW	100 radian/seconds	
105	Vel Scl Fctr 2	+1.000		155	Tach Velocity	+0.00 rpm	
106	Vel Trim LOW	0		156	Notch Filter Freq.	135 Hz	
107	Vel Trim HI	0.0 rpm		157	Notch Filter Q	None	
108	Vel Ref TP LOW	0		161	External Iq Ref	+0.0%	
109	Vel Ref TP HI	0		162	Ext Trq Ref 1	+0.0%	
110	Vel Ref TP Sel	0		163	Slave Torque % 1	+100%	
117	Jog Spd 1	+0.0 rpm		164	Ext Torq Ref 2	+0.0%	
118	Jog Spd 2	+0.0 rpm		165	Ext Torque % 2	+0.0%	
119	Preset Speed 1	+0.0 rpm		166	Ext Torq Step	0.0%	
120	Preset Speed 2	+0.0 rpm		167	Int Torq Ref	+0.0%	
121	Preset Speed 3	+0.00 rpm		168	Internal Iq Ref	+0.0%	
122	Preset Speed 4	+0.0 rpm		172	Torq Ref TP Data	+0.0%	
123	Preset Speed 5	+0.0 rpm		173	Torq Ref TP Sel	0	
125	Accel Time	10.0 seconds		174	Min Flux Level	100%	
126	Decel Time	10.0 seconds		175	Pos Mtr Cur Ref Lmt	200%	
127	Rev Motor Spd Lim	- Base Motor Speed		176	Neg Mtr Cur Ref Lmt	-200%	
128	Fwd Motor Spd Lim	Base Motor Speed		177	Motor Power Lmt	200%	
129	Max Rev Spd Trim	- base speed		178	Regen Power Lmt	-200%	
130	Max Fwd Spd Trim	+ Base Speed		179	Pos Mtr Cur Ref Lim	100%	
131	Droop Percent	0%		180	Neg Mtr Cur Ref Lim	-100%	
132	Vel Ref Out LOW	0		181	Di/Dt Limit	40%	
133	Vel Ref Out HI	+0.0 rpm		182	Computed Power	+0.0%	
134	Vel Reg Out	0		183	Torque Limit Status	0000 0000 0000 0000	
135	Vel Reg TP LOW	0		184	Torque Mode Status	0000 0000 0000 0000	
136	Vel Reg TP HI	0		185	Perunit Motor Curr	0.0%	
137	Vel Reg TP Sel	0		186	Perunit Motor Volt	0.0%	
138	Velocity Error	+0.0 rpm		220	Rtd Inv Out Amps	20.0 amps	
139	KI Velocity Loop	32.0		221	Rtd Inv Input Volts	460 volt	
140	KP Velocity Loop	8.0		222	Inverter Carrier Freq	4.000 Hz	
141	KF Velocity Loop	1.00		223	Prech/Rdthru Sel	0000 0000 0000 0000	
143	Vel Fdbk TP LOW	0		224	Undervolt Setpoint	400 volt	

No.	Name	Default	Value	No.	Name	Default	Value
225	Bus Prech Timeout	30.0 Sec.		271	Lim Motor Flux	100%	
226	Bus Ridethru Timout	1,750 RPM		273	TP Sel 1	0	
227	CP Operat Options	0000 0000 0000 0000		274	TP Data 1	0	
228	Base Motor HP	30.0 HP		275	TP Select #2	0	
229	Base Motor Speed	1,750 RPM		273	TP Sel 1	0	
230	Base Motor Current	0.2 Amps		274	TP Data 1	0	
231	Base Motor Volts	460 Volts		275	TP Select #2	0	
232	Base Motor Freq.	60 Hz		276	TP Data #2	0	
233	Motor Poles	4 poles		277	TP Select #3	0	
234	Mtr Inertia	0.60 sec.		278	TP Data #3	0	
235	Encoder PPR	1,024 PPR		279	TP Select #4	0	
236	RS Tune	1.50%		280	TP Data #4	100%	
237	Lsigma Tune	18.00%		281	TP Select #5	0	
238	ld Tune	30.0%		282	TP Data #5	0	
240	lq Tune	95.40%		283	TP Select #6	0	
241	Vde Tune	-75.0 volts		284	TP Data #6	0	
242	Vqe Tune	367.0 volts		285	Select for Tst DAC1	0	
243	Vde Maximum	356.0 volts		286	Select for Tst DAC2	0	
244	Vque Maximum	367.0 volts		287	Ki Freq Reg	0	
245	Vde Minimum	3.0 volts		288	Kp Freq Reg	0	
246	Base Slip Freq	0.469 Hz		289	Kff Freq Reg	0	
247	Base Slip Freq Max	2.00 Hz		290	Ksel Freq. Reg.	0	
248	Base Slip Freq Min	0.50 Hz		291	Freq. Track Filt	0	
260	Iq Offset	+0		292	Track Filt Type	3	
261	Id Offset	+0		293	Freq Trim Filt	5000	
262	Ph Rot Cur Ref	50%		294	Mtr Phs Rot Err	0000 0000 0000 0000	
263	Ph Rot Freq Ref	3.0 Hz		295	Mtr InducTest Error	0000 0000 0000 0000	
264	Mtr Cur Mag Fdbk	0.0 Amps		296	Stator RS Test Error	0000 0000 0000 0000	
265	Mtr Volt Fdbk	+0 Volts		297	Id Test Errors	0000 0000 0000 0000	
266	Stator Freq	0.000 Hz		298	Torque Blk Calc	0000 0000 0000 0000	
267	Calc Torque	0.0		300	Adapter ID	2	
268	DC Bus Voltage	0 volts		301	Adapter Version	X.XX	
269	Filter Mtr Vel Fdbk	0.0 rpm		302	Adapter Config		
270	Inv Temp Fdbk	0 deg		304	Language Select	0	

No.	Name	Default	Value	No.	Name	Default	Value
310	Data In A1	0		359	Pot Offset	+0.000	
311	Data In A2	0		360	Pot Scale	+1.000	
312	Data In B1	0		361	Milli Amp Input	+0	
313	Data In B2	0		362	Milli Amp In Offset	+0.000 mA	
314	Data In C1	0		363	Milli Amp In Scale	+2.000	
315	Data In C2	0		364	SP Analog Sel	1	
316	Data In D1	0		365	Sp Analog In	0	
317	Data In D2	0		366	Sp An1 Scale	1 (32767)	
320	Data Out A1	0		367	Sp Analog Select	1	
321	Data Out A2	0		368	Sp Analog2 In	0	
322	Data Out B1	0		369	SP An2 Scale	1 (32767)	
323	Data Out B2	0		370	Analog Output 1	0	
324	Data Out C1	0		371	Analog Out 1 Offset	+0.000 volt	
325	Data Out C2	0		372	An Out 1 Scale	+0.500	
326	Data Out D1	0		373	An Out 2 Scale	0	
327	Data Out D2	0		374	Analog Out 2 Offset	+0.000	
330	SP Port Enable Msk	0111 1111		375	An Out 2 Scale	+0.500	
331	SP Direction Mask	0111 1111		376	mA Output	0	
332	SP Start Mask	0111 1111		377	mA Output Offset	0.000 mA	
333	SP Jog Mask	0111 1111		378	Regen Power Lmt	+0.500	
334	SP Ref Mask	0111 1111		379	Pos Mtr Cur Lim	0	
335	SP Clr Flt Mask	0111 1111		384	Select for Tst DAC2	8	
336	SP Reset Drv Mask	0111 1111		385	Input Mode	1	
337	SP Local Cntrl Mask	0111 1111		386	Input Status	0000 0000	
340	SP Stop Owner	0000 0000		387	Stop Select 1	0	
341	SP Dir. Owner	0000 0000		388	Stop Select 2	0	
342	SP Start Owner	0000 0000		389	Accel Rate 1	10 sec.	
343	SP Jog 1 Owner	0000 0000		390	Accel Rate 2	3	
344	SP Jog 2 Owner	0000 0000		391	Decel Rate 1	5000	
345	SP Ref Owner	0000 0000		392	Decel Rate 2	0000 0000 0000 0000	
346	SP Local Owner	0000 0000		393	Mop Increment	0000 0000 0000 0000	
347	SP Flux Owner	0000 0000		394	Mop Value	0000 0000 0000 0000	
348	SP Trim Owner	0000 0000		395	Pulse PPR	0000 0000 0000 0000	
349	SP Ramp Owner	0000 0000		396	Pulse Edge	0000 0000 0000 0000	
350	SP Clr Fault Owner	0000 0000		397	Pulse Scale	1750	
352	10 Volt In Filtr	0.0 r/s		398	Pulse Offset	0.0	
353	Pot In Fltr	0.0 r/s		399	Pulse Value	0.0	
354	mA In Filtr	0.0 r/s		404	SP Comm Retries	0.0	
355	10 Volt Input	0		405	Fault Select	0000 0000 0111 1111	
356	10 Volt Offset	0.00 Volt		406	Warning Select	0000 0000 0111 1111	
357	10 Volt Scale	+2.000		407	Fault Status	0000 0000 0000 0000	
358	Pot Input	0		408	Warning Status	0000 0000 0000 0000	

Spare Parts Information

Current 1336 FORCE spare parts information including recommended parts, catalog numbers and pricing can be obtained from the following sources:

 Allen–Bradley home page on the World Wide Web at: http://www.ab.com

```
then select...

"Drives and Motors" followed by...

"1336 FORCE" from the Product Directory and...

"Technical Support"...

Select "Parts List"
```

Appendix DSpare Parts

Appendix D Spare Parts

Appendix DSpare Parts

D Α AC Supply Source, 2-8 Discrete Inputs, 2-44 AC Input Line Fuse Ratings, 2–12 Discrete Outputs, 2–44, 2–31 Analog I/O Parameter Display Mode, 3–7 Configuration, 4–22 Derating Guidelines, A–7 Analog Inputs, 2–30 Drive to Drive Communication, Analog Outputs, 2-31 2 - 26Analog I/O Links, 4-22 Drive to Drive Hardware Connection, 2–27 Auto-Tuning Test Procedure, Drive to Drive Hardware 6-20Connection, 2–27 Drive Disconnection, 2–11 В Drive Features, 1–12 Battery Disposal, A–54 Drive Hardware Overview, A-16 Bi-Directional Operation, 2-30 Bit Enums, 3–8 Bus Voltage Tracker, 6-15 E Enclosure Requirements, A–6 Encoder Connections, 2–26 Encoderless Speed Regulation, Cable Termination, A–5 1-5Cable and Wiring EMC Directive, B–1 Recommendations, 2–20 EEPROM Mode, 3-10 CE Filter, B-2 EMI/RFI Emission, 2–13 CE Mechanical Configuration, EMI/RFI Emission, 2–13 Emmisions, 2–13 CE Requirements, B-1 Environmental Specifications, 1-4 Configuration (Standard Adapter), External Control Link 2 - 32Configuration, 4-21 Configuration (PLC Comm Adapter), 2-46 Communication Configuration, 4 - 17Fault Descriptions, 6–2 Control Link Configuration, 4–20 Fault/Warning Handling, 6–5 ControlNet Parameters, 5-24 Faults&Warnings – Current Control Interface Option, 2–35 Processor, 6-7 Control & Signal Wiring Flex I/O Module, 4-34 (Standard Adapter), 2–28 Frame D Drive Connections, 2-45 Control & Signal Wiring (PLC Faults&Warnings – Velocity Comm Adapter), 2–42 Processor, 6-17 Control Specifications, 1–2 Feedback Devices, 1–5 Control Status Mode, 3–13 Flux Test, 6-29 Control Wiring, 2–25 Frame Dimensions, 2–2 Current Processor Faults, 6–7 Firmware Function Overview, A - 34

G Gate Driver Board Connections,	M Master/Slave Drive to Drive	Pulse Input, 2–31 Program Mode, 3–6
A–27 Graphic Programming Terminal,	Communication, 4–19 Motor Cables, 2–17 & A1	
3-20 Graphic Programming Terminal	Mounting Clearances, 2–1 Mounting, 2–1	Q Quick Start Procedure, 4–7
Operation, 3-22 Graphic Programming Terminal	Multiple Opens, 6–28	R
Keypad Description, 3–21	NI.	Remote I/O Comm Module, 4–34
Grounding Discrete Control and Signal Wiring, 2–15	N Nuisance Faults, 6–23	Repeated Application/Removal of Input Power, 2–10
Grounding Encoder Connections, 2–15		Resistance Test, 6–26
Grounding Motor Cables, 2–15	Ontions 1 2	RFI Filter, 2–14, 2–16, B–2
Grounding Sensitive Circuits,	Options, 1–3 Option L4/L4E Wiring, 2–39	RFI Filter Installation, B–2, 2–14 RFI Filter Leakage Current, B–2,
2–15	Option L5/L5E Wiring, 2–40	2–14
	Option L6/L6E Wiring, 2-41	RFI Filter Grounding, B-3
Н	Output Relay Configuration, 4–27	Reference Signal Connections,
Hardware Testpoints, 6–34	Open Transistor Faults, 6–23	(PLC Comm) 2–43 Ridethrough, 6–10
HIM Control Panel, 3–1		Ridethrough Faults, 6–9
HIM Key Descriptions, 3–2 HIM Module Removal, 3–4	Р	Tabout Sugar Lucius, S. S.
HIM Operation, 3–4	Password Mode, 3–16	S
HIM Programming Steps, 3–6	Parameter Descriptions, 5–24	Safety Precautions, 4–1
	Parameter Table, 5–3 PE Safety Ground, 2–16	Safety Ground – PE, 2–16
ı	Performance Specs, 1–2	SCANport Control Configuration,
Input Devices, 2–10	PLC Comm Adapter Board	4–29
Input Fusing, 2–11	Control Scheme, 2–45	Schematic Diagrams, A–17 Search Mode, 3–12
Input Power Conditioning, 2–11	PLC Comm Adapter Board	Serial Communication Module,
I/O Communication	Parameters, 5–23 Phase Rotation Test, 6–24	4–33
Configuration, 4–19	PLC Comm Adapter Board	Sequential Torque Block Tuning,
I/O Ratings, 2–8 Immunity, 2–13	Control & Signal Wiring, 2–42	6–24
Interface Board Installation, 2–29	PLC Comm Switch Settings, 2–43	Sensorless Application Notes, A–30
interrace Board Instantation, 2–23	PLC Comm Adapter Board	Signal Ground – TE, 2–16
	Connections, 2–43	SLC to SCANport Module, 4–32
Link Option, 3–8	Pre-Power Checks, 4-4	Software Block Diagram, A–32
Lug Selection, 2–18	Protective Features, 1–3 Process Mode, 3–9	Spare Parts, D–1
Lug Kits, 2–18	Power Application, 4–5	Speed Regulation with Encoder
L4/L4E Option, 2–39	Power Cabling, 2–17	Feedback, 1–5
L5/L5E Option, 2–40	Power Wiring, 2–21	Standard Adapter Board
L6/L6E Option, 2–41	Power Structure Tests, 6–20 Power Conditioning, 2–11	Connections, 2–28 Standard Adapter Parameters,
	Precharge Faults, 6–9	5–16 Startup Configuration, 4–6
		Startup Configuration, 4–0

Startup Mode, 3–18 Startup Safety Precautions, 4–1 Starting and Stopping the Motor, 2–10, 2–45, 2–34 Switch Settings (PLC Comm), 2–43

Т

TE Signal Ground, 2–16
Terminal Block Locations (Main Control Board, 2–25
Terminal Block TB/Wiring, 2–21
Terminology, 1–1
Test Points, 6–34
TB–3, Control Interface Option, 2–35
TB–3, Terminal Designations, 2–36
Torque Block Tuning, 6–24
Torque Block Update, 6–31
Troubleshooting, 6–1

U

Unbalanced Distribution Systems, 2–9 Undervoltage Setpoint, 6–13 Ungrounded Distribution System, 2–9 Uni–directional Operation, 2–30

٧

Velocity Loop Autotune, 6–32 Velocity Processor Faults, 6–17

W

Wire Types, 2–20

Index

Allen-Bradlev	 productivity and quality for more than 90 years. We design, manufacture and support a broad range of automation products worldwide. They include logic processors, power and motion control 				
Rockwell Automation	Allen-Bradley, a Rockwell Automation Business, has been helping its customers improve				

leading technology companies.

Argentina • Australia • Austria • Bahrain • Belgium • Brazil • Bulgaria • Canada • Chile • China, PRC • Colombia • Costa Rica • Croatia • Cyprus • Czech Republic • Denmark Ecuador • Egypt • El Salvador • Finland • France • Germany • Greece • Guatemala • Honduras • Hong Kong • Hungary • Iceland • India • Indonesia • Ireland • Israel • Italy Jamaica • Japan • Jordan • Korea • Kuwait • Lebanon • Malaysia • Mexico • Netherlands • New Zealand • Norway • Pakistan • Peru • Philippines • Poland • Portugal Puerto Rico • Qatar • Romania • Russia—CIS • Saudi Arabia • Singapore • Slovakia • Slovenia • South Africa, Republic • Spain • Sweden • Switzerland • Taiwan • Thailand

Allen-Bradley Headquarters, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414 382-2000 Fax: (1) 414 382-4444

Turkey • United Arab Emirates • United Kingdom • United States • Uruguay • Venezuela • Yugoslavia

Worldwide representation.

devices, operator interfaces, sensors and a variety of software. Rockwell is one of the world's