Mock Exam

Song Liu (song.liu@bristol.ac.uk)
GA 18, Fry Building,
Microsoft Teams (search "song liu").

Instructions

- Please finish the following questions within 1 hour and 30 mins.
- Try to complete the exam without checking lecture slides/lab code.
- Part A: 5 small questions, 8 points each.
- Part B: 2 big questions, 30 points each.
- **Hint**: Big questions may not be as hard as some of the small questions. If you know the answers to big questions, do them first.

Part A, 1.1

(3 marks)

Which one of the following statements about von Neumann architecture is wrong?

- 1. von Neumann architecture includes CPU, memory and IO devices.
- 2. Computational tasks are performed by CPU.
- 3. CPU manages data stored in the memory.
- 4. A touch screen is not an IO device.
- 5. A hard rive is an IO device.

Part A, 1.2

(3 marks)

Which component in von Neumann architecture is responsible for executing your program?

Part A, 1.3

(2 marks)

Name **one** low level programming language and **one** high level programming language.

Part A, 2.1

(2 marks)

Explain the main differences between Procedure Programming (PP) and Object Oriented Programming (OOP).

Part A, 2.2

(3 marks) Which one of the following statement is wrong?

- 1. High level programming language requires compilation before execution.
- 2. C is a low level programming languages.
- 3. C++ is both a PP and an OOP language.
- 4. A valid C program is a valid C++ program.
- 5. In OOP, objects can inherit methods and fields from its parent class.

Part A, 2.3

(3 marks)

In OOP, what are the two components that can be contained in an object?

Part A, 3.1

(2 marks)

What do malloc and free functions do? When should they be used?

Part A, 3.2

(6 marks)

Read the following code:

```
#include <stdio.h>
void goo(int a){
    printf("goo is being called!\n");
    printf("%d", a);
void koo(int a){
    printf("koo is being called!\n");
    goo(a)
void foo(){
    int a = 0;
    koo(2);
    printf("koo has been called!\n");
void main(){
    foo();
```

Part A, 3.2

- 1. (2 marks) Write down the display output after the above code is executed.
- 2. (3 marks) Draw the stack memory diagram when the program is printing out the following message goo is being called!
- 3. (3 marks) Draw the stack memory diagram when the program is printing out the following message koo has been called!

Read the following C++ code:

```
#include <stdio.h>
class shop_item{
    //write your code below
};

int main(){
    shop_item coke;
    //write your code below
}
```

- 1. (2 marks) Add three **private** fields in shop_item class:

 name stores a string, quantity stores a integer, price stores a decimal number.
- 2. (3 marks) Add **public** methods in shop_item class, so that you can set values to the fields you have just defined.
 - Note, quantity and price must be positive.
- 3. (3 marks) Add code in main function, so that coke 's name is set to "coca cola", quantity is set to 100 and price is set to 1.2f.

A twin prime pair are two prime numbers that are only 2 apart. For example, (3, 5), (5, 7), (11, 13) are all twin primes.

```
n <- 100
last_prime <- 2</pre>
for(i in 2:n){
  is_prime <- TRUE</pre>
  for(j in 2:(i-1)){
    if(_____){
      is_prime <- FALSE</pre>
  if(is_prime){
    if(_____){
         # print out twin prime pair.
         print(paste(last_prime,',',i))
    last_prime <- i</pre>
```

- 1. (3 marks) Fill out the blanks, so that the above code identifies all twin primes smaller than 100.
- 2. (3 marks) If the above code takes 2s to run, how long it will take if n is set to 1000. Why?
- 3. (2 marks) Modify/Add one line of code, so the above above program will run significantly faster.

Part B, 1

1. (30 marks) Write a complete C program which produces the following output:

You must use for loops.

2. (30 marks) Complete the following R program, so that it produces a matrix D whose i,j-th entry $D_{i,j}$ is the Euclidean distance between the i-th row of A and j-row of B. Euclidean distance between two K dimensional vectors are defined as $\operatorname{dist}(\boldsymbol{a},\boldsymbol{b})=$

$$\sqrt{\sum_{k=1}^K (a_k-b_k)^2}$$
.

```
A <- matrix(rnorm(100*2), nrow = 100)
B <- matrix(rnorm(100*2), nrow = 100)
D <- matrix(0, nrow = 100, ncol = 100)
# Your code starts here</pre>
```