

Por favor considere a natureza antes de imprimir este material. Economize papel. Respeite a natureza.

Análise Matemática

Régis da Silva Santos

UFMT 2009

Prefácio da Segunda Edição

Esta apostila foi criada a partir de notas de aula do curso regular de Análise Matemática em 2009.

 $\acute{\rm E}$ permitida a reprodução total ou parcial desta apostila desde que indicada a autoria.

Esta apostila foi criada para uso pessoal, portanto, adaptada para tal fim, podendo posteriormente ser adaptada para uso coletivo. E está sujeito a conter erros, portanto, são aceitas sugestões e críticas construtivas para melhoria do mesmo.

Nota: Esta é a segunda edição onde foram feitas algumas correções e atualizações.

Referências: Geraldo Ávila[1] e Elon Lima[2].

Régis da Silva Santos Universidade Federal de Mato Grosso, 2009.

Régis $\ \, \odot \, \, 2009$ Análise Matemática iii

Sumário

1	Cor	njuntos Finitos e Enumeráveis	1
	1.1	Conjuntos Finitos e Infinitos	2
	1.2	Conjuntos Enumeráveis	2
	1.3	Exercícios Propostos	7
2	Nú	meros Reais	9
	2.1	Segmentos Incomensuráveis	9
	2.2	Cortes de Dedekind	10
	2.3	Definição de Números Reais	12
	2.4	Definição de Corpo	13
	2.5	Conjuntos Limitados	15
	2.6	Exercícios Propostos	17
3	Seq	uências de Números Reais	21
	3.1	Sequências Convergentes	21
	3.2	Sequências Monótonas	25
	3.3	Sequências de Cauchy	30
	3.4	Exercícios Propostos	31
4	Sér	ies de Números Reais	33
	4.1	Séries	33
	4.2	Série de Termos não Negativos	36
	4.3	Convergência Absoluta e Condicional	42
	4.4	Exercícios Propostos	48
− Ré	gis (2009 Análise Matemática	

SUMÁRIO

5	Fun	ções de uma Variável Real	53
	5.1	Tipos de Funções	. 54
	5.2	Imagens Inversas de Conjuntos	. 59
	5.3	Exercícios Propostos	
	5.4	Topologia na Reta	
	5.5	Limite de Funções	
	5.6	Exercícios Propostos	
	5.7	Continuidade de Funções	
	5.8	Limites Infinitos e Limites no Infinito	
	5.9	Funções Contínuas em Intervalos Fechados	
		Valor Máximo e Valor Mínimo	
	5.11	Exercícios Propostos	. 78
6	Der	ivada	81
•	6.1	Operações com Derivadas	
	6.2	Máximos e Mínimos	
	6.3	Exercícios Propostos	
		•	
Ι	Sol	lução dos Exercícios Propostos	91
7	List	a 01 - Números Reais	93
8	List	a 02 - Números Reais	97
9	List	a 03 - Sequências	107
10	List	a 04 - Séries	113
11	List	a 05 - Séries	131
12	List	a 06 - Funções	139
13	List	a 07 - Limites	151
14	List	a 08 - Continuidade	167
15	List	a 09 - Continuidade e Derivação	183
16	Con	juntos e Funções	195
17	Con	juntos Enumeráveis	201
18	Тор	ologia, Limite e Continuidade	203

capítulo 1

Conjuntos Finitos e Enumeráveis

O conjunto dos números naturais é

$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

O conjunto dos números inteiros é

$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

e o conjunto dos números racionais é

$$\mathbb{Q} = \left\{\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0\right\}$$

Temos que $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$.

Fato 1.1 Se $x^2 = 2$, então $x \notin \mathbb{Q}$.

Demonstração:

Suponha que $x^2=2$ e que $x\in\mathbb{Q}$. Então $x=\frac{a}{b}$ e podemos supor a e b primos entre si.

Assim $\frac{a^2}{b^2} = 2 \Rightarrow a^2 = 2b^2$.

Isto implica que a^2 é par, então a é par.

Seja a=2t. Assim

$$(2t)^2 = 2b^2 \Rightarrow 4t^2 = 2b^2 \Rightarrow 2t^2 = b^2$$

implica que b^2 é par, então b é par.

Absurdo, pois supomos que $\frac{a}{b}$ é irredutivel. Logo $x \notin \mathbb{Q}$

Definição 1.2 Dois conjuntos A e B têm a mesma cardinalidade , ou a mesma potência, se existe uma função $\varphi:A\to B$ $\it bijetora.$

1.1 Conjuntos Finitos e Infinitos

Denotando por F_n o conjunto $F_n = \{1, 2, \dots, n\}$, um conjunto A possui nelementos se existir $\varphi: A \to F_n$ bijetora. Neste caso, ou quando $A = \emptyset$, dizemos que A é finito.

Se A não é finito, A é dito infinito.

1.2Conjuntos Enumeráveis

Um conjunto A é dito enumerável se tem a mesma cardinalidade de \mathbb{N} . Isto é, existe $\varphi: \mathbb{N} \to A$ bijetora.

Exemplo 1.1 \mathbb{N} é enumerável.

De fato, definindo $\varphi : \mathbb{N} \to \mathbb{N}$ tal que $\varphi(n) = n$.

Exemplo 1.2 \mathbb{Z} é enumerável.

De fato, definindo $\varphi : \mathbb{N} \to \mathbb{Z}$ tal que

$$\varphi(n) = \begin{cases} -\frac{n}{2} & \text{, se } n \text{ \'e par} \\ \frac{n-1}{2} & \text{, se } n \text{ \'e impar} \end{cases}$$

Além disso,

1. φ é injetora.

De fato, se n_1 é par e n_2 é impar, então $\varphi(n_1) < 0$ e $\varphi(n_2) \geqslant 0$, logo $\varphi(n_1) \neq \varphi(n_2)$.

Se n_1 e n_2 são pares e $\varphi(n_1) = \varphi(n_2)$, então

$$\frac{-n_1}{2} = \frac{-n_2}{2} \Rightarrow n_1 = n_2$$

Se n_1 e n_2 são impares e $\varphi(n_1) = \varphi(n_2)$, então

$$\frac{n_1 - 1}{2} = \frac{n_2 - 1}{2} \Rightarrow n_1 = n_2$$

Portanto, φ é injetora.

2. φ é sobrejetora.

De fato, seja $y \in z$.

Se y < 0, seja n = -2y (n é par), então

$$\varphi(n) = \varphi(-2y) = \frac{-(-2y)}{2} = y.$$

Se $y \ge 0$, seja n = 2y + 1 (n é impar), então

$$\varphi(n)=\varphi(2y+1)=\frac{2y+1-1}{2}=y$$

Portanto, φ é bijetora.

Exemplo 1.3 Seja $A = \{n \in \mathbb{N} : n = 2k\}$. O conjunto A é enumerável. Basta definir $\varphi : \mathbb{N} \to A$ por $\varphi(n) = 2n$.

1. φ é injetora. Se $\varphi(n_1) = \varphi(n_2)$, então

$$2n_1 = 2n_2 \Rightarrow n_1 = n_2$$

2. Seja $y \in A$, então y é par. Logo, $\frac{y}{2} \in \mathbb{N}$ e $\varphi\left(\frac{y}{2}\right) = 2.\frac{y}{2} = y.$

Proposição 1.3 Qualquer subconjunto de \mathbb{N} é finito ou enumerável.

Demonstração:

Seja $A\subseteq \mathbb{N}$ e suponhaA infinito.

Sejam n_1 o menor elemento de A e n_2 o menor elemento de A, maior que n_1 .

Vamos admitir que escolhemos $n_1 < n_2 < \ldots < n_k$.

Agora escolhemos n_{k+1} como sendo o menor elemento de A, maior que n_k .

Afirmação: $\varphi : \mathbb{N} \to A$ definida por $\varphi(i) = n_i$ é uma bijeção.

1. φ é sobrejetora.

Seja $y \in A$. y é um número natural fixo.

Se y é o menor elemento de A, ok.

Se não for, escolha $n_1, n_2, \ldots, n_k \in A$ tais que y seja o menor elemento de A, maior que n_k . Então, $\varphi(k+1) = y = n_{k+1}$.

2. φ é injetora.

Sejam $i, j \in \mathbb{N}$. Se $i \neq j$ vamos mostrar que $\varphi(i) \neq \varphi(j)$.

Se $i \neq j$, podemos supor i < j.

Régis © 2009

Análise Matemática

1. Conjuntos Finitos e Enumeráveis

Temos que $j \ge i+1$. Então, $\varphi(i) = n_i$ e $\varphi(i+1) = n_{i+1}$ e n_{i+1} é o menor elemento de A, maior que n_i .

Se j = i + k, então

$$\varphi(j) = \varphi(i+k) = n_{i+k}$$

e n_{i+k} é o menor elemento de A, maior que n_{i+k-1} .

Portanto, φ é bijetora.

Proposição 1.4 Se $\varphi: A \to B$ é injetora e B é enumerável, então A é enumerável (ou finito).

Demonstração:

Por hipótese B é enumerável, logo $\exists \psi : B \to \mathbb{N}$ bijetora.

Obs: Toda função injetora é bijetora sobre sua imagem.

Dessa forma $\varphi:A\to\varphi(A)$ é uma bijeção. $\varphi(A)$ é o conjunto imagem da função $\varphi.$

Podemos agora considerar a composição

$$A \xrightarrow{\varphi} \varphi(A) \xrightarrow{\psi} \psi\left(\varphi(A)\right)$$

Então, $\psi \circ \varphi : A \to \psi(\varphi(A))$ é uma bijeção. $\psi(\varphi(A)) \subset \mathbb{N}$. Como todo subconjunto de \mathbb{N} é finito ou enumerável, segue que A é finito ou enumerável.

Corolário 1.5 Todo subconjunto de um conjunto enumerável é finito ou enumerável.

Demonstração:

Seja Benumerável e $A\subset B.$ Defina $i:A\to B$ por i(x)=x. Assim, i é inietora.

Pela Prop. 1.4, A é enumerável ou finito.

Exemplo 1.4 Mostre que $\mathbb{N} \times \mathbb{N}$ é enumerável.

Solução:

Defina $\varphi : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ por $\varphi(n, m) = 5^n.7^m$. φ é injetora, pois se

$$\varphi(n_1, m_1) = \varphi(n_2, m_2) \Rightarrow 5^{n_1}.7^{m_1} = 5^{n_2}.7^{m_2} \Rightarrow n_1 = n_2 \text{ e } m_1 = m_2$$

(exemplo de decomposição em fatores primos)

Logo, pela Prop. 1.4, $\mathbb{N} \times \mathbb{N}$ é enumerável.

Corolário 1.6 Se $\varphi: A \to B$ é sobrejetora e A é enumerável, então B é enumerável ou finito.

Demonstração:

Como φ é sobrejetora. Dado $y \in B, \exists x \in A$ tal que $\varphi(x) = y$.

Para cada $y \in B$, escolha um único $x \in A$ tal que $\varphi(x) = y$. Seja $g : B \to A$ definida como acima, isto é, g(y) = x, onde $\varphi(x) = y$.

Assim, g é injetora. Pela Prop. 1.4, B é enumerável ou finito.

Corolário 1.7 Se A e B são enumeráveis, então $A \times B$ é enumerável.

Demonstração:

Existem $\varphi_1: \mathbb{N} \to A \ \text{e} \ \varphi_2: \mathbb{N} \to B \ \text{bijetoras}.$

Agora, seja $\varphi : \mathbb{N} \times \mathbb{N} \to A \times B$ tal que $\varphi(n, m) = (\varphi_1(n), \varphi_2(m))$.

Note que φ é sobrejetora. Pois, dado $(a,b) \in A \times B$, obtemos $a = \varphi_1(n)$ e $b = \varphi_2(m)$.

Logo, $\varphi(n,m) = (\varphi_1(n), \varphi_2(m)) = (a,b).$

Portanto, pelo Cor. 1.6, $A \times B$ é enumerável.

Exemplo 1.5 Mostre que \mathbb{Q} é enumerável.

Solução:

Defina $\varphi : \mathbb{Z} \times \mathbb{Z}^* \to \mathbb{Q}$ por $\varphi(n, m) = \frac{n}{m}$. φ é sobrejetora. Pelo Cor. 1.6, temos que \mathbb{Q} é enumerável.

Proposição 1.8 Se A é finito e B enumerável, então $A \cup B$ é enumerável.

Demonstração:

Suponha $A = \{a_1, a_2, \dots, a_n\}$ e $B = \{b_1, b_2, \dots\}$. Defina $\varphi : \mathbb{N} \to A \cup B$ por

$$\varphi(i) = \left\{ \begin{array}{ll} a_i & \text{, se } 1 \leqslant i \leqslant n \\ b_{i-n} & \text{, se } i > n \end{array} \right.$$

Assim, φ é sobrejetora. Dado $x \in A \cup B, x \in A$ ou $x \in B$.

Se $x \in A$, então $x = a_i$, para algum $1 \le i \le n$. Portanto, $\varphi(i) = a_i = x$.

Se $x \in B$, então $x = b_j$. Tome i = n + j. Então,

$$\varphi(i) = \varphi(n+j) = b_{n+j-n} = b_j = x$$

 φ é injetora. De fato, suponha $\varphi(i) = \varphi(j)$.

Se $i, j \leq n$, então $a_i = a_j \Rightarrow i = j$.

Se i, j > n, então $b_{i-n} = b_{j-n} \Rightarrow i = j$.

Se $i \leq n$ e j > n, então $\varphi(i) = a_i$ e $\varphi(j) = b_{j-n}$.

Portanto, φ é injetora.

Régis © 2009

Análise Matemática

5

Proposição 1.9 Se A e B são enumeráveis, então $A \cup B$ é enumerável.

Demonstração:

Suponha $A = \{a_1, a_2, \ldots\}$ e $B = \{b_1, b_2, \ldots\}$. Defina $\varphi : \mathbb{N} \to A \cup B$ por

$$\varphi(n) = \left\{ \begin{array}{ll} a_{\frac{n}{2}} & \text{, se } n \text{ \'e par} \\ b_{\frac{n+1}{2}} & \text{, se } n \text{ \'e impar} \end{array} \right.$$

Mostre que φ é bijetora. (Exercício)

Teorema 1.10 \mathbb{R} não é enumerável.

Demonstração:

Vamos mostrar que o intervalo $(0,1)\subset\mathbb{R}$ não é enumerável (vamos usar a representação decimal dos elementos desse intervalo).

Suponha o contrário (que $(0,1)\subset\mathbb{R}$ é enumerável) e seja

$$x_1 = 0, a_{11}a_{12}a_{13} \dots$$

$$x_2 = 0, a_{21}a_{22}a_{23} \dots$$

$$x_3 = 0, a_{31}a_{32}a_{33} \dots$$

$$\vdots$$

uma enumeração do intervalo (0,1).

Vamos exibir $x \in (0,1)$ tal que $x \neq x_i, \forall i$.

Seja $x = 0, a_1 a_2 a_3 ...,$ onde

$$\begin{cases} a_i = 7, \text{ se } a_{ii} \neq 7 \\ a_i = 3, \text{ se } a_{ii} = 7 \end{cases}$$

Note que

$$x \neq x_1 \text{ em } a_{11},$$

 $x \neq x_2 \text{ em } a_{22},$
 \vdots
 $x \neq x_i \text{ em } a_{ii}$

Portanto, $x \neq x_i, \forall i$.

1.3 Exercícios Propostos

- 1.1 Mostre que \mathbb{N} é infinito.
- $\mathbf{1.2}\,$ Mostre que $\mathbb{Z}\times\mathbb{Z}$ é enumerável.
- 1.3 Mostre que o conjunto dos números primos é enumerável.
- 1.4 Mostre que o conjunto dos polinômios de grau menor ou igual a cinco e coeficientes racionais forma um conjunto enumerável.
- **1.5** Mostre que o conjunto das matrizes $n \times m$ com entradas racionais forma um conjunto enumerável, $\forall n \in \mathbb{N}$.
- **1.6** Seja A um conjunto infinito não enumerável tal que $A=B\cup C$. Mostre que B ou C é infinito e não é enumerável.
- 1.7 Mostre que o conjunto dos números irracionais não é enumerável.

Régis $\ \, \odot \, \, 2009$ Análise Matemática 7

Números Reais

2.1 Segmentos Incomensuráveis

Definição 2.1 Dois segmentos de reta \overline{AB} e \overline{CD} são ditos **comensuráveis** se existe um segmento u tal que $\overline{AB} = m.u$ e $\overline{CD} = n.u, m, n \in \mathbb{N}$.

Exemplo 2.1 Na Fig. 2.1, temos $\overline{AB}=5u$ e $\overline{CD}=3u$, então \overline{AB} e \overline{CD} são comensuráveis.

Figura 2.1: Segmentos comensuráveis.

Quando não existe tal u, \overline{AB} e \overline{CD} são ditos incomensuráveis . Afirmação: Existem segmentos incomensuráveis.

Exemplo 2.2 Considere o quadrado ABDC da Fig. 2.2. \overline{AB} e \overline{BC} são incomensuráveis.

Solução

Suponha $\overline{AB} = m.u$ e $\overline{BC} = n.u, m, n \in \mathbb{N}$.

A partir da Fig. 2.2, construimos a tangente \overline{EF} ao arco \widehat{ABE} . Então,

Régis © 2009 Análise Matemática

Figura 2.2: Quadrado ABDC.

$$\overline{AF} = \overline{EF} = \overline{EC} \text{ e } \overline{AB} = \overline{BE}$$

$$\overline{BC} = \overline{BE} + \overline{EC}$$

$$\Rightarrow n.u = m.u + \overline{EC} \Rightarrow \overline{EC} = n'.u$$

$$\overline{AC} = \overline{AF} + \overline{FC}$$

$$m.u = n'.u + \overline{FC} \Rightarrow \overline{FC} = n''.u$$

Absurdo.

Eudoxo (Elementos de Euclides. Vol. V)

Dados quatro segmentos A,B,C e D dizemos que "A está para B" assim como "C está para D" se quaisquer que sejam $m,n\in\mathbb{N},$ tivermos

$$\begin{split} mA &< nB \Leftrightarrow mC < nD, \\ mA &= nB \Leftrightarrow mC = nD \text{ ou} \\ mA &> nB \Leftrightarrow mC > nD. \end{split}$$

2.2 Cortes de Dedekind

Definição 2.2 Um corte é um par $(E,{\cal D})$ de subconjuntos não vazios de números racionais satisfazendo

- i) $E \cup D = \mathbb{Q}$;
- ii) Se $x \in E$ e $y \in D$, então x < y.

Exemplo 2.3 Sejam $E=\{x\in\mathbb{Q}:x<1\}$ e $D=\{x\in\mathbb{Q}:x\geqslant1\}$. Note que $E\neq\emptyset,D\neq\emptyset$.

i) $E \cup D = \mathbb{Q}$;

ii) Se $x \in E$, temos x < 1 e se $y \in D$, temos $y \ge 1$, então x < y.

Exemplo 2.4 Sejam $E = \{x \in \mathbb{Q} : x \le 0\} \cup \{x \in \mathbb{Q} : x > 0 \text{ e } x^2 < 2\}$ e $D = \{x \in \mathbb{Q} : x > 0 \text{ e } x^2 > 2\}$. (E, D) é um corte.

Solução:

Note que $E \neq \emptyset$, pois $0 \in E, D \neq \emptyset$, pois $10 \in D$.

i) $E \cup D \subset \mathbb{Q}$;

Seja $x \in \mathbb{Q}$. Se $x \leq 0$, então $x \in E$.

Se x > 0, calcule x^2 e decida.

Isto implica que $\mathbb{Q} \subset E \cup D$. Portanto, $E \cup D = \mathbb{Q}$.

ii) Se $x \in E$ e $y \in D$.

Se $x \leq 0$, então x < y, pois $y \geq 0$.

Se x > 0, então $x^2 < 2 < y^2 \Rightarrow x^2 < y^2 \Rightarrow x < y$.

Portanto, (E, D) é um corte.

Obs: (i) E não possui elemento máximo e (ii) D não possui elemento mínimo.

i) Seja $x \in E$. Vamos mostrar que existe $y \in E$ tal que x < y.

Se $x \in E$, com x > 0 e $x^2 < 2$. Vamos resolver a inequação $\left(x + \frac{1}{n}\right)^2 < 2$.

$$x^{2} + \frac{2x}{n} + \frac{1}{n^{2}} < 2 \Rightarrow \frac{1}{n} \left(2x + \frac{1}{n} \right) < 2 - x^{2}$$

Note que $\frac{1}{n}\left(2x+\frac{1}{n}\right) \leqslant \frac{1}{n}(2x+1)$.

Basta resolver $\frac{1}{n}(2x+1) < 2 - x^2$.

$$\frac{1}{n}(2x+1) < 2 - x^2 \Leftrightarrow n > \frac{2x+1}{2-x^2}$$

ii) $D = \{x \in \mathbb{Q} : x > 0 \text{ e } x^2 > 2\}$

Seja $x \in D$. Vamos resolver $\left(x - \frac{1}{n}\right)^2 > 2$.

Então, $x^2 - \frac{2x}{n} + \frac{1}{n^2} > 2$.

2. Números Reais

Note que
$$x^2 - \frac{2x}{n} + \frac{1}{n^2} > x^2 - \frac{2x}{n}$$
.

Basta resolver

$$x^2 - \frac{2x}{n} > 2 \Leftrightarrow x^2 - 2 > \frac{2x}{n} \Leftrightarrow x > \frac{2x}{x^2 - 2}$$

2.3 Definição de Números Reais

Definição 2.3 Defina $\mathbb{R} = \{ \alpha = (E, D), \alpha \text{ corte} \}.$

Sejam $\alpha = (E_1, D_1)$ e $\beta = (E_2, D_2)$ cortes.

$$\alpha = \beta \Leftrightarrow E_1 = E_2$$

Adição em $\mathbb R$

Dados $\alpha=(E_1,D_1)$ e $\beta=(E_2,D_2)$, definimos a adição em $\mathbb R$ como

$$\alpha + \beta = (E, D)$$

onde $E = \{x + y, x \in E_1 \text{ e } y \in E_2\} \text{ e } D = \mathbb{Q} \setminus E.$

Afirmação: $\alpha + \beta$ é um corte.

De fato, $E \neq \emptyset$, pois $E_1 \neq \emptyset$ e $E_2 \neq \emptyset$.

Logo, $D \neq \emptyset$, pois se $x \in D_1$ e $y \in D_2$, então x + y é maior que qualquer elemento de E.

- i) $E \cup D = E \cup \mathbb{Q} \setminus E = \mathbb{Q}$;
- ii) Seja $x \in E$ e $y \in D$. Vamos mostrar que x < y.

Se $x > y \Rightarrow x = y + r$, para algum r > 0.

Como $x \in E$, temos $x = x_1 + x_2$, com $x_1 \in E_1$ e $x_2 \in E_2$.

Assim,
$$x_1 + x_2 = y + r \Rightarrow \underbrace{x_1 - r}_{\in E_1} + \underbrace{x_2}_{\in E_2} = y.$$

Isto implica que $y \in E$. Absurdo.

2.4 Definição de Corpo

Definição 2.4 Um conjunto K é dito um **corpo** se é fechado para as operações de soma e multiplicação satisfazendo $\forall x,y,z\in K$

1. Associatividade

$$(x+y) + z = x + (y+z)$$

$$(xy)z = x(yz)$$

2. Comutatividade

$$x + y = y + x$$

$$xy = yx$$

3. Elemento neutro

$$\exists 0 \in K; x + 0 = x$$

$$\exists 1 \in K; x.1 = x$$

4. Elemento simétrico ou inverso

$$\forall x \in K, \exists -x \in K; x + (-x) = 0$$

$$\forall x \in K, x \neq 0, \exists x^{-1} \in K; x.x^{-1} = 1$$

5. Distributividade

$$x(y+z) = xy + xz$$

Exemplo 2.5 $(\mathbb{R}, +, \cdot)$ é um corpo.

Consequências da definição de corpo

a) $x.0 = 0, \forall x \in K$.

De fato,

$$x.0 = x(0+0)$$

 $\Rightarrow x.0 = x.0 + x.0$
 $\Rightarrow x.0 + (-x.0) = x.0 + x.0 + (-x.0)$
 $\Rightarrow 0 = x.0$

b) O simétrico aditivo de x é único, $\forall x \in K$.

De fato, suponha que x' e x'' são simétricos aditivos de x, isto é,

$$x + x' = 0$$
 e $x + x'' = 0$

agora

$$x' = x' + 0 = x' + x + x'' = (x' + x) + x'' = x''$$

c) Em todo corpo, (-1)(-1) = 1.

De fato, como -1 + 1 = 0, por (a)

$$(-1+1)(-1) = 0$$

 $\Rightarrow (-1)(-1) + 1(-1) = 0$
 $\Rightarrow (-1)(-1) + (-1) = 0$, por (b) o simétrico é único
 $\Rightarrow (-1)(-1) + (-1) + 1 = 0 + 1$
 $\Rightarrow (-1)(-1) = 1$

Corpo ordenado

Definição 2.5 Um corpo K é dito ordenado se existe $P \subset K$ satisfazendo

- i) Dados $x, y \in P, x + y \in P$ e $xy \in P$;
- ii) Dado $x \in K$; ou $x \in P$, ou x = 0, ou $-x \in P$.

Notação: $x \in P$ ou x > 0.

Proposição 2.6 Em todo corpo ordenado, 1 > 0.

Demonstração:

$$1 = 1.1 = (-1).(-1) \in P.$$

Exemplo 2.6 $\mathbb C$ é um corpo não ordenado.

Pois em todo corpo ordenado se $x \neq 0$, então $x^2 \in P, x^2 > 0$.

Veja que
$$x^2 = x \cdot x = (-x) \cdot (-x) \in P$$
.

Note que em $\mathbb{C}, i \neq 0$ mas $i^2 = -1$.

Exemplo 2.7 $(\mathbb{R}, +, \cdot)$ é um corpo ordenado.

Definição 2.7 Num corpo ordenado, x < y se $y - x \in P$, ou seja, se y - x > 0.

Propriedades:

Num corpo ordenado K

- i) se x < y e $z \in K$, então x + z < y + z;
- ii) se x < y e z > 0, então xz < yz;
- iii) se x < y e z < 0, então xz > yz.

Demonstração:

- i) (y+z) (x+z) = y+z-x-z = y-x > 0; : x+z < y+z.
- ii) yz xz = (y x)z > 0; :: xz < yz.
- iii) xz yz = (x y)z, como vimos anteriormente x.x = (-x).(-x), então (y x)(-z) > 0; xz > yz.

2.5 Conjuntos Limitados

Definição 2.8 Um subconjunto $A \subset \mathbb{R}$ é dito *limitado superiormente* se existe $c \in \mathbb{R}$ tal que $x \leq c, \forall x \in A$.

Exemplo 2.8 O conjunto $A = \left\{ x \in \mathbb{R}; x = \frac{1}{n}, n \in \mathbb{N} \right\}$ é limitado superiormente. Exemplo, $2 > x, \forall x \in A$.

Definição 2.9 Num conjunto A limitado superiomente, qualquer c tal que $c \ge x, \forall x \in A$, é chamado de cota superior de A.

A noção de conjunto limitado inferiormente e cota inferior é análoga.

Exemplo 2.9 No conjunto $A = \{x \in \mathbb{R} : x > 0\}$. 0 é cota inferior de A.

Definição 2.10 Um conjunto é dito limitado se for limitado superior e inferiormente.

Exemplo 2.10 O conjunto $A = \{x \in R : x = (-1)^n\}$ é limitado.

Definição 2.11 (Supremo) Se $A \subset \mathbb{R}$ é limitado superiormente chamamos supremo de $A(\sup(A))$ a menor de suas cotas superiores.

Dito de outra forma, se A é limitado superiormente e $c = \sup(A)$, então

- i) $c \geqslant x, \forall x \in A$.
- ii) $\forall \varepsilon > 0, \exists x \in A : c \varepsilon < x.$

Definição 2.12 Um corpo ordenado é dito completo se todo conjunto limitado superiormente possui supremo.

Teorema 2.13 (Dedekind) \mathbb{R} é um corpo, ordenado e completo.

Régis © 2009 Análise Matemática 15

Proposição 2.14 O conjunto $\mathbb{N} \subset \mathbb{R}$ não é limitado superiormente.

Demonstração:

Suponha que \mathbb{N} é limitado superiormente e seja $c = \sup(\mathbb{N})$. Tomando $\varepsilon = 1$, existe $n \in \mathbb{N}$ tal que c - 1 < n, ou seja, c < n + 1.

Então, c não é cota superior.

Absurdo, pois por hipótese c é cota superior.

Portanto, N não é limitado superiormente.

Definição 2.15 (Ínfimo) Se $A \subset \mathbb{R}$ é limitado inferiormente chamamos ínfimo de $A(\inf(A))$ a maior das cotas inferiores.

Ou seja, se A é limitado inferiormente e $c = \inf(A)$, então

- i) $c \leqslant x, \forall x \in A$.
- ii) $\forall \varepsilon > 0, \exists x \in A : c \leqslant x < c + \varepsilon.$

Proposição 2.16 O ínfimo do conjunto $A = \left\{ x \in \mathbb{R} : x = \frac{1}{n}, n \in \mathbb{N} \right\}$ é igual a

Demonstração:

- i) 0 é cota inferior.
- ii) Dado $\varepsilon > 0, \frac{1}{\varepsilon} \in \mathbb{R}$. Pela Prop. $2.14 \, \exists n \in \mathbb{N} \, \mathrm{tal} \, \mathrm{que} \, n > \frac{1}{\varepsilon} \Rightarrow n \varepsilon > 1 \Rightarrow \frac{1}{n} < \varepsilon.$ Mas $\frac{1}{n} \in A \Rightarrow \varepsilon$ não é cota inferior. Portanto, $0 = \inf(A)$.

Proposição 2.17 Dados $a, b \in \mathbb{R}$, positivos. Existe $n \in \mathbb{N}$ tal que na > b.

Demonstração:

Dados $a, b \in \mathbb{R}$, positivos. Temos, que $\frac{b}{a} \in \mathbb{R}$ e é positivo.

Pela Prop. 2.14,
$$\exists n \in \mathbb{N} : n > \frac{b}{a}$$
.

Portanto, na > b.

Proposição 2.18 Todo conjunto limitado inferiormente possui ínfimo.

Demonstração:

Se A é limitado inferiormente, existe c cota inferior de A. Seja $-A = \{-x; x \in A\}$.

$$\begin{aligned} c \leqslant x, \forall x \in A \\ -c \geqslant -x, \forall -x \in -A \end{aligned}$$

Isto implica que -c é cota superior de -A. Então, -A é limitado superiormente. Seja $d = \sup(-A)$. Isto é,

- i) $d \geqslant -x, \forall -x \in -A$.
- ii) $\forall \varepsilon > 0, \exists -x \in -A; d \varepsilon < -x.$

Por $(i), -d \leq x, \forall x \in A$. Então, -d é cota inferior de A. Por $(ii), \forall \varepsilon > 0, \exists x \in A; -d + \varepsilon > x$. Portanto, $-d = \inf(A)$.

$$\begin{array}{c|c} x \\ \hline -d & -d+\varepsilon \end{array}$$

Figura 2.3

2.6 Exercícios Propostos

- **2.1** Seja r um número racional qualquer. Mostre que o conjunto E dos números racionais menores que r não tem máximo e que o conjunto D dos números racionais maiores que r não tem mínimo.
- **2.2** Mostre que existem infinitos números racionais em qualquer intervalo (a, b) da reta real.
- **2.3** Mostre que existem infinitos números irracionais em qualquer intervalo (a,b) da reta real.
- ${\bf 2.4}\,$ Prove que se p é um número primo qualquer, então \sqrt{p} é irracional.
- **2.5** Se a e b são números irracionais, é verdade que $\frac{a+b}{2}$ é irracional?

Régis © 2009

2. Números Reais

- **2.6** Prove que se x e y são números irracionais tais que x^2-y^2 é racional não-nulo, então x+y e x-y são ambos irracionais. Conclua que $\sqrt{3}+\sqrt{2}$ e $\sqrt{3}-\sqrt{2}$ são ambos irracionais.
- ${\bf 2.7}\,$ Uma expansão de Cantor para um número inteiro positivo n é uma soma do tipo

$$n = a_m.m! + a_{m-1}.(m-1)! + ... + a_2.2! + a_1.1!,$$

sendo a_j inteiro e $0 \le a_j \le j$.

- a) Encontre a expansão de Cantor para os inteiros 14,56 e 384.
- b) Mostre que qualquer inteiro positivo tem uma expansão de Cantor.

Sugestão: Divida n, inicialmente, por 2, obtendo quociente q_1 e resto r_1 . Divida em seguida q_1 por 3.

 ${\bf 2.8}\,$ Mostre que qualquer número racional positivo pode ser escrito, de um único modo, na forma

$$a_1 + \frac{a_2}{2!} + \frac{a_3}{2!} + \ldots + \frac{a_k}{k!}$$

onde $a_i \in \mathbb{Z}$ e $0 \le a_1, 0 \le a_2 < 2, \dots, 0 \le a_k < k$.

2.9 Em \mathbb{R} defina o valor absoluto de x por

$$|x| = \begin{cases} x & , \text{ se } x \geqslant 0 \\ -x & , \text{ se } x < 0 \end{cases}$$

Mostre que:

- a) $|x| = 0 \Leftrightarrow x = 0$
- b) |xy| = |x||y|
- c) $|x + y| \le |x| + |y|$
- ${f 2.10}$ Mostre que para quaisquer números reais x e y vale a desigualdade

$$xy \leqslant \frac{x^2 + y^2}{2}$$

2.11 Para quaisquer números reais positivos x e y mostre que

$$\sqrt{xy} \leqslant \frac{x+y}{2}$$

19

2.12 Para quaisquer números reais positivos x_1, x_2, \dots, x_n mostre que

$$\sqrt[n]{x_1 x_2 \dots x_n} \leqslant \frac{x_1 + x_2 + \dots + x_n}{n}$$

2.13 Para quaisquer números reais x, y, z mostre que

$$x^2 + y^2 + z^2 \geqslant xy + xz + yz$$

2.14 (Desigualdade de Cauchy-Schwarz). Sejam x_1, x_2, \ldots, x_n e y_1, y_2, \ldots, y_n números reais quaisquer. Mostre que

$$|x_1y_1 + \ldots + x_ny_n| \le \sqrt{x_1^2 + \ldots + x_n^2} \sqrt{y_1^2 + \ldots + y_n^2}$$

- **2.15** Duas torres de alturas h_1 e h_2 , respectivamente, localizadas numa região plana, são amarradas por uma corda APB que vai do topo A da primeira torre para um ponto P no chão entre as duas torres, e então até o topo B da segunda torre. Qual a posição do ponto P que nos dá o comprimento mínimo da corda a ser utilizada?
- **2.16** Mostre que num triângulo retângulo a altura relativa à hipotenusa é sempre menor ou igual a metade da hipotenusa. Prove ainda, que a igualdade só ocorre quando o triângulo é isósceles.
- **2.17** Prove que, entre todos os triângulos retângulos de catetos a e b e hipotenusa c fixada, o que tem maior soma dos catetos s = a + b é o triângulo isósceles.
- **2.18** Mostre que $a^4 + b^4 + c^4 \ge abc(a + b + c), \forall a, b, c \in \mathbb{R}$.
- **2.19** Mostre que se $a\geqslant 0, b\geqslant 0$ e $c\geqslant 0$, então

$$(a+b)(a+c)(b+c) \geqslant 8abc$$

2.20 Mostre a desigualdade de Bernoulli

$$(1+x)^n \geqslant 1+nx$$

para todo x positivo e n inteiro positivo.

 ${\bf 2.21} \ {\rm Se} \ a,b,c,d$ são números reais positivos, mostre que

$$(a+b+c+d)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\geqslant 16$$

Régis © 2009 Análise Matemática

2.22 Mostre que se $a \ge 0, b \ge 0$ e $c \ge 0$, então

$$(ab + bc + ca) \geqslant a\sqrt{bc} + b\sqrt{ac} + c\sqrt{ab}$$

- **2.23** Mostre que se $x \ge 0$, então $3x^3 6x^2 + 4 \ge 0$.
- **2.24** Mostre que se $x \ge 0$, então $2x + \frac{3}{8} \ge 4\sqrt{x}$.
- **2.25** A soma de três números reais positivos é 6. Mostre que a soma de seus quadrados não é menor que 12.
- **2.26** Os centros de três círculos que não se interceptam estão sobre uma reta. Prove que se um quarto círculo toca de forma tangente os três círculos, então o raio deste é maior que pelo menos um dos raios dos três círculos dados.
- 2.27 Mostre que em todo triângulo a soma dos coprimentos das medianas é menor que o perímetro do triângulo e maior que o semi-perímetro deste.
- **2.28** Sejam A e B subconjuntos não vazios e limitados de números reais. Mostre que se $A \subset B$, então $\inf(A) \geqslant \inf(B)$ e $\sup(A) \leqslant \sup(B)$.
- **2.29** Sejam A e B dois subconjuntos de $\mathbb R$ não vazios, limitados inferiormente e r um número real tal que $r\leqslant a+b$ para todo $a\in A$ e para todo $b\in B$. Mostre que $r\leqslant \inf(A)+\inf(B)$. Enuncie o análogo para supremos.
- **2.30** Dados dois subconjuntos A e B de $\mathbb R$ limitados, definimos o conjunto

$$A + B = \{a + b, a \in A, b \in B\}.$$

Mostre que $\sup(A+B) = \sup(A) + \sup(B)$ e $\inf(A+B) = \inf(A) + \inf(B)$.

CAPÍTULO 3

Sequências de Números Reais

Definição 3.1 Uma sequência de números reais é uma função

$$\varphi : \mathbb{N} \to \mathbb{R}$$
$$n \mapsto \varphi(n) = a_n$$

Notação: $(a_n)_{n\in\mathbb{N}}$ ou (a_n) ou $(x_1, x_2, \ldots, x_n, \ldots)$.

Exemplo 3.1 Seja $\varphi : \mathbb{N} \to \mathbb{R}$ tal que $\varphi(n) = \frac{1}{n}$.

3.1 Sequências Convergentes

Definição 3.2 Um sequência (a_n) converge para um número real L, se dado $\varepsilon > 0, \exists N \in \mathbb{N}$ tal que se n > N, então $|a_n - L| < \varepsilon$.

Notação: $\lim_{n\to\infty} a_n = L$ ou $a_n \to L$.

Exemplo 3.2 Mostre que $\lim_{n\to\infty} \frac{1}{n} = 0$.

Solução:

Dado $\varepsilon>0,\frac{1}{\varepsilon}\in\mathbb{R}.$ Pela Prop. 2.14, $\exists N\in\mathbb{N}:N>\frac{1}{\varepsilon}.$ Então

$$n\varepsilon > 1 \Rightarrow \frac{1}{n} < \varepsilon.$$

Se n > N, então $\frac{1}{n} < \frac{1}{N}$. (Verifique).

Assim, como $\frac{1}{N}<\varepsilon$ e pela afirmação anterior segue que $\frac{1}{n}<\varepsilon$. Portanto, $\left|\frac{1}{n}-0\right|<\varepsilon$.

Portanto, $\lim_{n\to\infty} \frac{1}{n} = 0$.

Proposição 3.3 O limite L de uma sequência, quando existe, é único.

Demonstração:

Suponha que o $\lim_{n\to\infty} a_n = L_1$ e $\lim_{n\to\infty} a_n = L_2$, e suponha $L_1 \neq L_2$. Escolha $\varepsilon > 0$ tal que $(L_1 - \varepsilon, L_2 + \varepsilon) \cap (L_2 - \varepsilon, L_2 + \varepsilon) = \emptyset$ (Fig. 04).

 $\begin{array}{c|c} L_1 & L_2 \\ \hline \\ L_{1}-\varepsilon & L_{1}+\varepsilon & L_{2}-\varepsilon & L_{2}+\varepsilon \end{array}$

Figura 3.1

Como $\lim_{n\to\infty}a_n=L_1$, para esse $\varepsilon,\exists N\in\mathbb{N}$ tal que se n>N, então $L_1-\varepsilon< a_n< L_1+\varepsilon.$ Absurdo.

Portanto, $L_1 = L_2$.

Definição 3.4 Uma sequência (a_n) é dita **limitada** se existem $A, B \in \mathbb{R}$ tais que $A \leqslant a_n \leqslant B, \forall n \in \mathbb{N}.$

Proposição 3.5 Toda sequência convergente é limitada.

Demonstração:

Se (a_n) é convergente para L, então dado $\varepsilon > 0, \exists N \in \mathbb{N}$ tal que se n > N, então $L - \varepsilon < a_n < L + \varepsilon$.

Note que só podem ficar de fora do intervalo $(L-\varepsilon, L+\varepsilon)$ os termos a_1, a_2, \ldots, a_n . Então, seja A o menor entre $a_1, a_2, \ldots, a_n, L-\varepsilon$ e seja B o maior entre $a_1, a_2, \ldots, a_n, L+\varepsilon$

Com isso $A \leqslant a_n \leqslant B, \forall n \in \mathbb{N}$.

Obs: Nem toda sequência limitada é convergente. Ex., $a_n = (-1)^n, n \in \mathbb{N}$.

Régis © 2009

Proposição 3.6 Se $\lim_{n \to \infty} a_n = L$ e A < L < B, então $\exists N \in \mathbb{N}$ tal que se n > N, então $A < a_n < B$.

Demonstração:

Dado $\varepsilon > 0, \exists N \in \mathbb{N}$ tal que se n > N, então $L - \varepsilon < a_n < L + \varepsilon$.

Figura 3.2

Basta tomar ε tal que $A < L - \varepsilon$ e $L + \varepsilon < B$. Conforme a Fig. 3.2.

Proposição 3.7 Se $\lim_{n\to\infty} a_n = L$, com $L \neq 0$, então $\exists N \in \mathbb{N}$ tal que se n > N, então $|a_n| > \frac{|L|}{2}$.

Demonstração:

- 1. Se L>0, seja $A=\frac{L}{2}$ e B=2L. Como $\frac{L}{2}< L<2L$, pela Prop. 3.6, $\exists N\in\mathbb{N}$ tal que se n>N, então $\frac{L}{2}< a_n$, ou seja, $|a_n|>\frac{|L|}{2}$.
- 2. Se L<0, então $\frac{L}{2}>L$ e 2L< L, ou seja, $2L< L<\frac{L}{2}$. Seja A=2L e $B=\frac{L}{2}$, pela Prop. 3.6, $\exists N\in\mathbb{N}$ tal que se n>N, então $2L< a_n<\frac{L}{2}$. Isto implica que

$$-\frac{L}{2} < -a_n < -2L$$
$$\therefore \frac{|L|}{2} < |a_n|$$

Teorema 3.8 $Se \lim_{n\to\infty} a_n = 0$ $e(b_n)$ é limitada, então $\lim_{n\to\infty} a_n b_n = 0$.

Demonstração:

Vide Elon, 115.

Régis © 2009

Teorema 3.9 Sejam (a_n) e (b_n) sequências convergentes, respectivamente, para a e b, ou seja, $\lim_{n\to\infty} a_n = a$ e $\lim_{n\to\infty} b_n = b$.

Então.

$$1. \lim_{n \to \infty} (a_n + b_n) = a + b$$

2.
$$\lim_{n \to \infty} (a_n.b_n) = ab$$

3.
$$\lim_{n \to \infty} (k.a_n) = k.a, \forall k \in \mathbb{R}$$

4. Se
$$b \neq 0$$
, então $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$

Demonstração:

(i) Dado $\varepsilon > 0, \exists N_1 \in \mathbb{N}$ tal que se $n > N_1$, então $|a_n - a| < \frac{\varepsilon}{2}$. Da mesma forma, para este $\varepsilon, \exists N_2 \in \mathbb{N}$ tal que $n > N_2$, então $|b_n - b| < \frac{\varepsilon}{2}$.

$$|a_n + b_n - (a+b)| = |(a_n - a) + (b_n - b)| \le |a_n - a| + |b_n - b|$$

Se $N = \max\{N_1, N_2\}$ e se n > N, então

$$|a_n - a| + |b_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

(ii) Dado $\varepsilon > 0, \exists N_1 \in \mathbb{N}$ tal que se $n > N_1$, então $|a_n - a| < \frac{\varepsilon}{2M}$. Da mesma forma, para este $\varepsilon, \exists N_2 \in \mathbb{N}$ tal que $n > N_2$, então $|b_n - b| < \frac{\varepsilon}{2M}$.

$$\begin{aligned} |a_n b_n - ab| &= |a_n b_n - ab_n + ab_n - ab| \\ &= |b_n (a_n - a) + a(b_n - b)| \\ &\leqslant |b_n (a_n - a)| + |a(b_n - b)| \\ &\leqslant |b_n||a_n - a| + |a||b_n - b| \end{aligned}$$

Note que |b-n| é limitada, ou seja, $\exists M > 0; |b_n| < M$, então

$$|a_n b_n - ab| < M \cdot \frac{\varepsilon}{2M} + |a| \frac{\varepsilon}{2|a|}$$

 $|a_n b_n - ab| < \varepsilon$

(iii) Dado $\varepsilon>0, \exists N\in\mathbb{N}$ tal que se n>N, então $|a_n-a|<\frac{\varepsilon}{|k|}.$

$$|ka_n - ka| = |k||a_n - a| < |k|\frac{\varepsilon}{|k|} = \varepsilon$$

(iv) Pela Prop. 3.7, se $\lim_{n\to\infty}b_n=L$ e $L\neq 0$, então $\exists N\in\mathbb{N}$ tal que se n>N, então $|b_n|>\frac{|b|}{2}$. Logo,

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| = \left| \frac{b - b_n}{b \cdot b_n} \right| = \frac{|b_n - b|}{|b_n| |b|}$$

$$\exists N_1 \in \mathbb{N}; \text{ se } n > N_1; |b_n - b| < \varepsilon \frac{|b|^2}{2};$$

$$\exists N_2 \in \mathbb{N}; \text{ se } n > N_2; |b_n| > \frac{|b|}{2};$$

Então,

$$\frac{|b_n - b|}{|b_n||b|} < \frac{\varepsilon \frac{|b|^2}{2}}{\frac{|b|}{2}|b|}$$

Assim, se $N = \max\{N_1, N_2\}$ e se n > N, então

$$\frac{|b_n - b|}{|b_n||b|} < \varepsilon$$

3.2 Sequências Monótonas

Definição 3.10 Uma sequência (a_n) é dita $(\forall n \in \mathbb{N})$

- i) crescente, se $a_n < a_{n+1}$;
- ii) não-decrescente, se $a_n \leq a_{n+1}$;
- iii) decrescente, se $a_n \geqslant a_{n+1}$;
- iv) não-crescente, se $a_n \geqslant a_{n+1}$.

Régis © 2009

Análise Matemática

Exemplo 3.3 Verifique se $a_n = \frac{1}{n}$ é um dos itens descritos anteriormente.

Solução:

Temos que

$$a_n - a_{n+1} = \frac{1}{n} - \frac{1}{n+1} = \frac{n+1-n}{n(n+1)} = \frac{1}{n(n+1)} > 0$$

Portanto, $a_n > a_{n+1}, \forall n \in N$; logo a_n é decrescente.

Definição 3.11 Uma sequência (a_n) é dita **monótona** se é um dos quatro itens anteriores.

Exemplo 3.4 Verifique se $a_n = n^2$ é monótona.

Solução:

Temos que

$$a_{n+1} - a_n = (n+1)^2 - n^2 = n^2 + 2n + 1 - n^2 > 0$$

Portanto, $a_n < a_{n+1}$; logo a_n é crescente.

Teorema 3.12 Toda sequência monótona e limitada é convergente.

Demonstração:

 1° caso: a_n crescente.

$$a_n < a_{n+1}, \forall n \in \mathbb{N}.$$

Como a_n é limitada, em particular, é limitada superiormente; logo existe S o supremo de a_n . Assim, dado $\varepsilon>0, \exists N\in N$ tal que

$$S - \varepsilon < a_n \leqslant S < S + \varepsilon \text{ e } \forall n > N, a_n > a_N$$

$$\Rightarrow S - \varepsilon < a_n < S + \varepsilon$$

Portanto, $|a_n - S| < \varepsilon$, ou seja, $\lim_{n \to \infty} a_n = S$.

Exemplo 3.5 Verifique se $a_n = \left(1 + \frac{1}{n}\right)^n$ é monótona.

Solução:

i) Note que

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n} = \binom{n}{0} \left(\frac{1}{n}\right)^{0} + \binom{n}{1} \left(\frac{1}{n}\right)^{1} + \dots + \binom{n}{n} \left(\frac{1}{n}\right)^{n} > 0$$

$$= \sum_{i=0}^{n} \binom{n}{i} \left(\frac{1}{n}\right)^{i}$$

$$= 1 + \sum_{i=1}^{n} \binom{n}{i} \left(\frac{1}{n}\right)^{i}$$

$$= 1 + \sum_{i=1}^{n} \frac{1}{n^{i}} \frac{n!}{i!(n-i)!}$$

$$= 1 + \sum_{i=1}^{n} \frac{1}{n^{i}} \frac{n(n-1) \dots (n-(i-1))}{i!}$$

$$= 1 + \sum_{i=1}^{n} \frac{1}{i!} \frac{n(n-1)}{n} \frac{(n-2)}{n} \dots \frac{(n-(i-1))}{n}$$

$$a_{n} = 1 + \sum_{i=1}^{n} \frac{1}{i!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{(i-1)}{n}\right)$$

$$a_{n+1} = 1 + \sum_{i=1}^{n+1} \frac{1}{i!} \left(1 - \frac{1}{n+1}\right) \left(1 - \frac{2}{n+1}\right) \dots \left(1 - \frac{(i-1)}{n+1}\right)$$

Então, $a_n < a_{n+1}$. Portanto, a_n é monótona.

ii) Temos que $1 < a_n$ e

$$a_n = 1 + \sum_{i=1}^n \frac{1}{i!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \dots \left(1 - \frac{(i-1)}{n} \right)$$

$$< 1 + \sum_{i=1}^n \frac{1}{i!} = 1 + \left(1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \right)$$

$$< 1 + \left(1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} \right)$$

$$< 3$$

Então, $1 < a_n < 3$.

Portanto, a_n é limitada; e por ser monótona ela é convergente.

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e\simeq 2,718$$

Exemplo 3.6 Seja $x_{n+1} = x_n + x_{n-1}$ e $x_1 = x_2 = 1$. Então $(x_n) = (1, 1, 2, 3, 5, 8, 13, ...)$. (x_n) é a sequência de Fibonacci.

Teorema 3.13 (dos intervalos encaixados) Se $I_n = [a_n, b_n]$ é uma coleção de intervalos fechados satisfazendo, $\forall n \in \mathbb{N}, I_1 \supset I_2 \supset \ldots \supset I_n \supset \ldots$, então existe pelo menos um número real $c \in I_n, \forall n$.

Demonstração:

Como $I_1 \supset I_2 \supset \ldots \supset I_n \supset \ldots$, então $a_1 \leqslant a_2 \leqslant \ldots$ e $b_1 \geqslant b_2 \geqslant \ldots$

Assim, a sequência a_1, a_2, \ldots é não-decrescente e a sequência b_1, b_2, \ldots é não-crescente.

Logo, são monótonas.

Além disso, $a_1 \leqslant a_n \leqslant b_1$ e $a_1 \leqslant b_n \leqslant b_1$. Logo, são limitadas e portanto são, ambas, convergentes.

Então, fazendo $\lim_{n\to\infty} a_n = A$ e $\lim_{n\to\infty} b_n = B$, temos

$$a_1 \leqslant a_2 \leqslant \ldots \leqslant A \leqslant B \leqslant \ldots \leqslant b_2 \leqslant b_1.$$

Se
$$A \neq B$$
, $[A, B] \subset I_n$, $\forall n$;
Se $A = B$, $c = A = B \in I_n$, $\forall n$.

Exemplo 3.7 Os intervalos $I_n = \left(0, \frac{1}{n}\right)$ são encaixados e limitados, mas não são fechados.

Solução:

De fato,

$$I_1 \supset I_2 \supset \ldots \supset I_n \supset I_{n+1}, \forall n \in \mathbb{N}$$

 $\forall \varepsilon > 0, \exists n \in \mathbb{N}; n > \frac{1}{\varepsilon} \Rightarrow \frac{1}{n} < \varepsilon$

Portanto, sua intersecção é vazia.

Subsequências

Definição 3.14 Seja (a_n) uma sequência e (n_j) uma sequência crescente de números naturais, isto é, $n_1 < n_2 < \dots$ Uma sequência do tipo $b_j = a_{n_j}$ é chamada subsequência de (a_n) .

Exemplo 3.8 Seja $a_n = (-1)^n$ e $b_j = a_{2_j}$. b_j é uma subsequência de (a_n) . E $b_k = a_{2k-1}$ é uma outra subsequência de (a_n) .

Definição 3.15 Um número real c é dito valor de aderência de uma sequência (a_n) se c é o limite de alguma subsequência de (a_n) .

Teorema 3.16 (Bolzano-Weierstrass) Toda sequência limitada possui uma subsequência convergente.

Demonstração:

Se (a_n) é limitada, existem A e B tais que $A \leqslant a_n \leqslant B, \forall n \in \mathbb{N}$.

Seja c o comprimento do intervalo [A, B]. Dividindo [A, B] ao meio obtemos dois intervalos de comprimento $\frac{c}{2}$. Seja I_1 um desses intervalos que contém infinitos termos de (a_n) .

Dividindo I_1 ao meio obtemos dois intervalos de comprimento $\frac{c}{2^2}$. Seja I_2 um desses intervalos que contém infinitos termos de (a_n) . Repetindo esse processo obtemos uma coleção de intervalos I_n , cada um de comprimento $\frac{c}{2^n}$ todos encaixados.

Logo, pelo Teo. 3.13, existe $L \in I_n, \forall n$.

Para cada intervalo I_j , escolha $a_{n_i} \in (a_n)$.

Afirmação: $\lim_{n\to\infty} a_{n_j} = L$.

Note que $\forall \varepsilon > 0, \exists N \in \mathbb{N} : \frac{c}{2^n} < \varepsilon$. Então, se n > N, então $\frac{c}{2^n} < \frac{c}{2^N} < \varepsilon$. $I_n \subset (L - \varepsilon, L + \varepsilon)$. Se $n > N, I_n \subset I_N$. Assim, se $j > N, a_{n_j} \in I_j \subset I_N \subset I_N$.

Portanto, se $j > N, L - \varepsilon < a_{n_i} < L + \varepsilon$.

Limites infinitos

Definição 3.17 Uma sequência (a_n) tende para infinito

$$\lim_{n\to\infty} a_n = +\infty$$

se dado $k \in \mathbb{R}, \exists N \in \mathbb{N}$ tal que se n > N, então $a_n > k$.

Exemplo 3.9 Seja a sequência $a_n = n^2$. O limite desta sequência é $\lim_{n \to \infty} n^2 = +\infty$.

Régis © 2009 Análise Matemática 29

Solução:

De fato, dado $k \in \mathbb{R}, \exists N \in \mathbb{N}$ tal que N > k.

Agora, $N^2 > N$, então $N^2 > k$.

Se
$$n > N \Rightarrow n^2 > N^2$$
 pois $n^2 - N^2 = (n - N)(n + N) > 0$, logo $n^2 > k$.

Exemplo 3.10 Seja a sequência $a_n = \sqrt{n}$. O limite desta sequência é $\lim_{n \to \infty} \sqrt{n} = +\infty.$

Solução:

Dado $k \in \mathbb{R}, \exists N \in \mathbb{N}$ tal que $N > k^2$. Então, $\sqrt{N} > k$. Pois se a < b, então $\sqrt{a} < \sqrt{b}$. Assim, se n > N, então $\sqrt{n} > \sqrt{N} > k$.

3.3 Sequências de Cauchy

Definição 3.18 (a_n) é dita sequência de Cauchy se dado $\varepsilon > 0, \exists n_0 \in \mathbb{N}$ tal que $\forall n, m > n_0, |a_n - a_m| < \varepsilon$.

Teorema 3.19 (Critério de convergência de Cauchy) Uma sequência (a_n) é convergente se, e somente se, é de Cauchy.

Demonstração:

 $(\Rightarrow) \text{ Se } a_n \to L, \text{ dado } \varepsilon > 0, \exists N \in \mathbb{N} \text{ tal que se } n > N, \text{ então } |a_n - L| < \frac{\varepsilon}{2}.$ Assim, $|a_n - a_m| = |a_n - L + L - a_m| \leqslant |a_n - L| + |L - a_m| = |a_n - L| + |a_m - L| < \varepsilon$

Assim,
$$|a_n - a_m| = |a_n - L + L - a_m| \le |a_n - L| + |L - a_m| = |a_n - L| + |a_m - L| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
.

Portanto, (a_n) é de Cauchy.

(\Leftarrow) Se (a_n) é de Cauchy, dado $\varepsilon>0, \exists N\in\mathbb{N}$ tal que $\forall n,m>N, |a_n-a_m|<\varepsilon$. Afirmação: (a_n) é limitada.

De fato, tomando $m=N+1, m>N. \forall n>N, |a_n-a_{N+1}|<\varepsilon\Rightarrow -\varepsilon< a_n-a_{N+1}<\varepsilon$

$$\Rightarrow a_{N+1} - \varepsilon < a_n < a_{N+1} + \varepsilon.$$

Portanto, (a_n) é limitada.

30

Pelo Teorema 3.16 de Bolzano-Weierstrass, existe a_{n_j} , subsequência de (a_n) , convergente, digamos $a_{n_i} \to L$.

Vamos provar que (a_n) converge pra L.

Como $a_{n_j} \to L$, dado $\varepsilon > 0, \exists N_1 \in \mathbb{N}$ tal que se $n > N_1$, então $|a_{n_j} - L| < \frac{\varepsilon}{2}(i)$.

Por (a_n) ser de Cauchy, mantendo esse $\varepsilon>0, \exists N_2\in\mathbb{N}; \forall n,m>N_2$ então $|a_n-a_m|<\frac{\varepsilon}{2}(ii)$

Se $N = \max\{N_1, N_2\}$, então vale (i) e (ii), logo, se n e $n_j > N$

$$|a_n-L|=|a_n-a_{n_j}+a_{n_j}-L|\leqslant |a_n-a_{n_j}|+|a_{n_j}-L|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$

Portanto, (a_n) é convergente.

3.4 Exercícios Propostos

3.1 Usando a definição, mostre que:

a)
$$\lim_{n \to \infty} \frac{n}{n^2 + 1} = 0$$

b)
$$\lim_{n \to \infty} \frac{2n^2}{n^2 + 7} = 2$$

c)
$$\lim_{n \to \infty} \frac{3n\sqrt{n}}{n\sqrt{n} + 5} = 3$$

3.2 Mostre que uma sequência só pode convergir para um único limite.

3.3 Mostre que se uma sequência (a_n) tem limite L, então $(|a_n|)$ tem limite |L|. Dê exemplo de uma sequência (a_n) tal que (a_n) não converge mas $(|a_n|)$ converge.

3.4 Seja (a_n) e (b_n) sequências tais que $|a_n - a| < C|b_n|$, onde a é um número real e C uma constante positiva. Usando a definição de limite mostre que se (b_n) converge para zero, então (a_n) converge para a.

3.5 Mostre que se (a_n) é uma sequência que converge para zero e (b_n) é uma sequência limitada, então (a_nb_n) converge para zero.

3.6 Mostre que a sequência $a_n = \sqrt{n+h} - \sqrt{n}$ converge para zero.

3.7 Se 0 < a < 1, mostre que a sequência $a_n = a^n$ é convergente e que converge para zero.

3.8 Se a_n converge para L e L > 0, mostre que $a_n > 0$ a partir de um certo N.

3.9 Seja (a_n) uma sequência monótona que possui uma subsequência convergindo para L. Mostre que (a_n) também converge para L.

3.10 Construa uma subsequência que possua uma subsequência convergindo para 12 e outra convergindo para -30.

3.11 Construa uma subsequência que tenha subsequências convergindo, cada uma, para cada um dos números inteiros positivos.

Régis © 2009

3. Sequências de Números Reais

- **3.12** Seja (a_n) uma sequência tal que $a_n > 0, \forall n$ e $\frac{a_n+1}{a_n} \leqslant c$, com 0 < c < 1. Mostre que (a_n) converge para zero.
- **3.13** Se a > 1 e k é um inteiro positivo, mostre que $\lim_{n \to \infty} \frac{n^k}{a^n} = 0$.
- **3.14** Se a > 1, mostre que $\lim_{n \to \infty} \frac{a^n}{n!} = 0$.
- **3.15** Mostre que $\lim_{n\to\infty} \frac{n!}{n^n} = 0$.
- **3.16** Se a > 0, mostre que $\lim_{n \to \infty} \sqrt[n]{a} = 1$.
- **3.17** Mostre que $\lim_{n\to\infty} \sqrt[n]{n} = 1$.
- **3.18** Mostre que $\lim_{n\to\infty} \sqrt[n]{\sqrt[n]{n}} = 1$.
- **3.19** Mostre que $\lim_{n\to\infty} \sqrt[n]{n!} = 1$.
- **3.20** Mostre que $a_n = 5n^3 4n^2 + 7$ tende para infinito.
- **3.21** Defina a sequência (a_n) pondo $a_{n+1} = (a_n)^3 + 6$, para $n \ge 1$.
- a) Se $a_1 = \frac{1}{2}$, mostre que (a_n) converge.
- b) Analise a convergência para o caso em que $a_1 = \frac{3}{2}$.
- **3.22** Considere a sequência dada por $a_1 = \sqrt{2}$ e $a_n = \sqrt{2 + a_{n-1}}$, para n > 1. Escreva os cinco primeiros termos dessa sequência, mostre que a mesma converge e calcule seu limite.
- **3.23** Dado um número positivo N e fixado um número qualquer $a_0 = a$, não nulo, seja $\left[\frac{a_{n-1} + \frac{N}{a_{n-1}}}{2}\right]$, para n > 1. Mostre que (a_n) é decrescente a partir do segundo termo e limitada, portanto convergente. Calcule o limite de a_n .

CAPÍTULO 4

Séries de Números Reais

4.1 Séries

Digamos que $S = 1 - 1 + 1 - 1 + 1 - 1 + \dots$

(i)
$$S = (1-1) + (1-1) + (1-1) + \dots \Rightarrow S = 0.$$

(ii)
$$S = 1 - (1 + 1 - 1 + 1 - 1 + \dots) \Rightarrow S = 1 - S \Rightarrow 2S = 1 \Rightarrow S = \frac{1}{2}$$
.

 $\rm N\tilde{a}o$ vale, pois, usa-se a propriedade associativa para um número finito de parcelas.

Definição 4.1 Seja (a_n) uma sequência e $a_1 + a_2 + \dots$ a soma de todos os termos de (a_n) .

Façamos

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 \vdots
 $S_n = a_1 + a_2 + \dots a_n$

Chamamos de S_n a sequência das somas reduzidas de (a_n) . Se $\lim_{n\to\infty} S_n$ existe, chamamos de $S=\lim_{n\to\infty} S_n=\lim_{n\to\infty} \sum_{i=1}^n a_i$ a soma dos elementos de (a_n) .

Exemplo 4.1 $0,3333... = \frac{1}{3} e 0,9999... = 1.$

$$0,3333... = 0,3+0,03+0,003+0,0003+... = \frac{3}{10} + \frac{3}{100} + \frac{3}{1000} + ...$$

$$S_1 = \frac{3}{10}$$

$$S_2 = \frac{3}{10} + \frac{3}{100}$$

$$S_3 = \frac{3}{10} + \frac{3}{100} + \frac{3}{1000}$$

$$\vdots$$

$$S_n = \frac{3}{10^1} + \frac{3}{10^2} + \frac{3}{10^3} + ... + \frac{3}{10^n}$$

Neste caso,

$$S_n = \frac{3}{10^1} + \frac{3}{10^2} + \dots + \frac{3}{10^n}$$

$$\frac{1}{10}S_n = \frac{3}{10^2} + \frac{3}{10^3} + \dots + \frac{3}{10^{n+1}}$$

$$S_n - \frac{1}{10}S_n = \frac{3}{10} - \frac{3}{10^{n+1}}$$

$$\Rightarrow S_n \left(1 - \frac{1}{10}\right) = 3\left(\frac{1}{10} - \frac{1}{10^{n+1}}\right)$$

$$\Rightarrow \frac{9}{10}S_n = 3\left(\frac{10^n - 1}{10^{n+1}}\right)$$

$$\Rightarrow S_n = \frac{1}{3}\left(\frac{10^n - 1}{10^n}\right)$$

$$\Rightarrow S_n = \frac{1}{3} - \frac{1}{10^n}$$

$$\Rightarrow \lim_{n \to \infty} S_n = \frac{1}{3}$$

Exemplo 4.2 Calcule a reduzida da série $\sum_{n=1}^{\infty} \frac{1}{n}$.

Solução:

$$S_1 = 1$$

$$S_2 = 1 + \frac{1}{2}$$

$$S_3 = 1 + \frac{1}{2} + \frac{1}{3}$$

$$\vdots$$

$$S_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$$
 Neste caso, $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$

Definição 4.2 (convergência) Uma série $\sum_{n=1}^{\infty} a_n$ é dita convergente se existe um número real S tal que $S = \lim_{n \to \infty} S_n$, onde $S_n = a_1 + a_2 + \ldots + a_n$. Caso contrário (não existe tal S) a série é dita divergente.

Exemplo 4.3 Seja $\sum_{n=1}^{\infty} (-1)^n$. $\sum_{n=1}^{\infty} (-1)^n = -1 + 1 - 1 + 1 - 1 + \dots$ $S_1 = -1$ $S_2 = 0$ $S_3 = -1$ $S_4 = 0$

Como a sequência é divergente, a série é divergente.

Régis © 2009

Exemplo 4.4 A série geométrica $\sum_{n=1}^{\infty} a^n$, |a| < 1 é uma série convergente. De fato,

$$S_{n} = 1 + a + a^{2} + \dots + a^{n}$$

$$a.S_{n} = a + a^{2} + \dots + a^{n} + a^{n+1}$$

$$S_{n} - a.S_{n} = 1 - a^{n+1}$$

$$S_{n}(1 - a) = 1 - a^{n+1}$$

$$\Rightarrow S_{n} = \frac{1 - a^{n+1}}{1 - a}$$

$$S_{n} = \frac{1}{1 - a} - \underbrace{\frac{a^{n+1}}{1 - a}}_{n \to \infty}$$

$$\therefore \lim_{n \to \infty} S_{n} = \frac{1}{1 - a}$$

Proposição 4.3 Se $\sum_{n=1}^{\infty} a_n$ converge, então $\lim_{n\to\infty} a_n = 0$, ou seja, o termo geral a_n tende a zero.

Demonstração:

Seja
$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} S_{n-1}$$
. Então, $S_n - S_{n-1}$ converge para zero.

$$\Rightarrow a_1 + a_2 + \ldots + a_{n-1} + a_n - (a_1 + a_2 + \ldots + a_{n-1}) \to 0$$

$$\Rightarrow a_n \to 0$$

Obs: A recíproca desta proposição é falsa. Exemplo, $\sum_{n=1}^{\infty} \frac{1}{n}$.

4.2 Série de Termos não Negativos

Proposição 4.4 Seja $\sum_{n=1}^{\infty} a_n$, com $a_n \geqslant 0, \forall n \in \mathbb{N}$. Se $\sum_{n=1}^{\infty} a_n$ é uma série convergente de termos não negativos então de qualquer modo que somarmos os seus termos obtemos a mesma soma. (Qualquer reorganização dos termos produz a mesma soma). Em outra palavras, $\sum_{n=1}^{\infty} a_n$ converge se, e só se, (s_n) é limitada.

Demonstração:

Existe $S = \lim_{n \to \infty} S_n \Rightarrow S_n = a_1 + a_2 + \ldots + a_n$.

Seja $S_n' = a_1' + a_2' + \ldots + a_n'$ uma soma qualquer de n elementos obtidos de uma reordenação dos a_n .

Existe $m \in \mathbb{N}$ tal que $S'_n \leqslant S_m$ para cada n.

Note que S'_n é uma sequência monótona (não-decrescente). Além disso, para cada n, existe $m \in \mathbb{N}$ tal que $S'_n \leqslant S_m \leqslant S$.

 \Rightarrow S'_n é limitada. Portanto, S'_n é convergente, isto é, existe $S' = \lim_{n \to \infty} S_n$ e $S' \leqslant S$.

Analogamente, $S \leq S'$.

Portanto, S = S'.

Teorema 4.5 (Critério da Comparação) $Sejam \sum_{n=1}^{\infty} a_n \ e \sum_{n=1}^{\infty} b_n \ duas \ séries \ de$

termos não negativos tais que $a_n \leq b_n, \forall n$.

- i) Se $\sum_{n=1}^{\infty} b_n$ converge, então $\sum_{n=1}^{\infty} a_n$ também converge.
- ii) Se $\sum_{n=0}^{\infty} a_n$ diverge, então $\sum_{n=0}^{\infty} b_n$ também diverge.

Demonstração:

i) Sejam
$$S_n = a_1 + a_2 + \ldots + a_n$$
 e $T_n = b_1 + b_2 + \ldots + b_n$. Como $\sum_{n=1}^{\infty} b_n$ converge, $\exists T = \lim_{n \to \infty} T_n$.

Além disso, $S_n \leqslant T_n \leqslant T, \forall n$.

Como S_n é monótona ela é limitada por T, segue que S_n é convergente.

Portanto, $\exists S = \lim_{n \to \infty} S_n$.

ii) Se
$$\sum_{n=1}^{\infty} b_n$$
 convergisse, por (i) , $\sum_{n=1}^{\infty} a_n$ convergiria. Absurdo, logo $\sum_{n=1}^{\infty} b_n$ diverge.

Exemplo 4.5 Seja $\sum_{n=1}^{\infty}a_n$ a seguinte série. $a_1=1$ e para $n>1, a_n=\frac{1}{2^j}$ onde j é tal que $2^{j-1}< n\leqslant 2^j$.

$$a_1 = 1$$
 $S_1 = 1$ $S_2 = 1 + \frac{1}{2}$ $S_2 = 1 + \frac{1}{2}$ $S_4 = 2$ $S_8 = 2 + \frac{1}{2}$ $S_{16} = 3$ S_{1

Portanto, $\sum_{n=1}^{\infty} a_n$ é divergente.

Exemplo 4.6 Seja $\sum_{n=1}^{\infty} \frac{1}{n} = \sum_{n=1}^{\infty} b_n$ a *série harmônica*. Mostre que a série harmônica é divergente.

Solução:

Comparando com o exemplo anterior temos:

$$a_1 = b_1$$
 $a_2 = b_2$
 $a_3 < b_3$
 $a_4 = b_4$
 \vdots
 $a_n \le b_n$?

Sim, pois se
$$n = 2$$
, $a_n = b_n = \frac{1}{n} = \frac{1}{2^j}$.
Se $n \neq 2^j$, $2^{j-1} < n < 2^j$
 $\Rightarrow b_n = \frac{1}{n}$ e $a_n = \frac{1}{2^j}$.
Portanto, $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge.

Exemplo 4.7 Seja $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} a_n$. Mostre que a série (conhecida como série telescópica) é convergente.

Solução:

Temos que

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$a_1 = 1 - \frac{1}{2}$$

$$a_2 = \frac{1}{2} - \frac{1}{3}$$

$$a_3 = \frac{1}{3} - \frac{1}{4}$$

$$\vdots$$

$$a_{n-1} = \frac{1}{n-1} - \frac{1}{n}$$

$$a_n = \frac{1}{n} - \frac{1}{n+1}$$

$$\sum_{n=1}^{\infty} a_n \text{ converge.}$$

$$S_1 = 1 - \frac{1}{2}$$

$$S_2 = 1 - \frac{1}{3}$$

$$S_3 = 1 - \frac{1}{4}$$

$$\vdots$$

$$S_n = 1 - \frac{1}{n+1}$$

$$\Rightarrow \lim_{n \to \infty} S_n = 1$$

Exemplo 4.8 Dada a série $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$. Verifique se ela é convergente ou divergente.

Solução:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \sum_{n=2}^{\infty} \frac{1}{n^2}$$
$$\Rightarrow \frac{1}{n^2} \leqslant \frac{1}{(n-1)n}, \forall n \geqslant 2$$

Pelo exemplo anterior, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge.

Teorema 4.6 (Teste da Razão) Seja $\sum_{n=1}^{\infty} a_n$ uma série de termos positivos tal que existe

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$$

- i) Se L < 1, então $\sum_{n=1}^{\infty} a_n$ converge.
- ii) Se L > 1, então $\sum_{n=1}^{\infty} a_n$ diverge.
- iii) Se L = 1, inconclusivo.

Demonstração:

i) Sendo L < 1, seja $c \in \mathbb{R}$ tal que L < c < 1. Como $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$, existe $N \in \mathbb{N}$ tal que $\frac{a_{n+1}}{a_n} \leqslant c, \forall n > N$. Assim, temos $a_{N+1} \leqslant a_N.c \text{ e } \frac{a_{N+2}}{a_{N+1}} \leqslant c$ $\Rightarrow a_{N+2} \leqslant a_{N+1}.c \leqslant c^2.a_N$ $\Rightarrow a_{N+2} \leqslant c^2.a_N$ $\text{e } a_{N+3} \leqslant c.a_{N+2}$ $\Rightarrow a_{N+3} \leqslant c^3.a_N$

indutivamente concluimos que

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_{n-1} + a_n + a_{n+1} + \dots$$
$$= a_1 + a_2 + \dots + a_n + \sum_{j=1}^{\infty} a_{n+j}$$

 $a_{N+j} \leqslant c^i.a_N, \forall j \geqslant 1.$

Como
$$a_{n+j} \leqslant c^j.a_n$$
, $\sum_{j=1}^{\infty} i^j a_n = a_n$ $\sum_{j=1}^{\infty} c^j$

Como a série geométrica converge, pelo Critério da Comparação, $\sum_{j=1}^{\infty} a_{n+j}$ converge.

ii) Seja $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=L>1$. Existe c tal que 1< c< L. $\exists N\in\mathbb{N}$ tal que $\frac{a_{n+1}}{a_n}\geqslant c, \forall n>N$. Assim,

$$a_{N+1} \geqslant c.a_n$$

 $a_{N+2} \geqslant c^2.a_n$

indutivamente

$$a_{N+j} \geqslant c^j.a_N$$

Como $\sum_{j=1}^\infty c^j.a_N$ diverge, pelo Critério da Comparação, $\sum_{j=1}^\infty a_{N+j}$ também diverge.

iii) Temos
$$\sum_{n=1}^{\infty} \frac{1}{n} e \sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\frac{a_{n+1}}{a_n} = \frac{1}{n+1}n$$

$$\Rightarrow \lim_{n \to \infty} \frac{n}{n+1} = 1$$

$$\frac{a_{n+1}}{a_n} = \frac{1}{(n+1)^2}n^2$$

$$= \frac{n^2}{n^2 + 2n + 1}$$

$$= \frac{n^2}{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}$$

$$\Rightarrow \lim_{n \to \infty} \frac{1}{1 + \frac{2}{n} + \frac{1}{n^2}} = 1$$

Exemplo 4.9 Dada a série $\sum_{n=0}^{\infty} n^b a^n$, 0 < a < 1. Verifique se a série converge ou diverge.

Solução:

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^b a^{n+1}}{n^b \cdot a^n} = \left(1 + \frac{1}{n}\right)^b \cdot a$$

$$\Rightarrow \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = a < 1$$

Pelo teste da Razão, $\sum_{n=1}^{\infty} n^b a^n$ converge.

4.3 Convergência Absoluta e Condicional

Definição 4.7 A série $\sum_{n=1}^{\infty} a_n$ é dita absolutamente convergente quando $\sum_{n=1}^{\infty} |a_n|$ é

Definição 4.8 Quando uma série $\sum_{n=1}^{\infty} a_n$ converge mas $\sum_{n=1}^{\infty} |a_n|$ é divergente, dize-

mos que
$$\sum_{n=1}^{\infty}a_n$$
 é

condicionalmente convergente.

Teorema 4.9 Toda série absolutamente convergente é convergente.

Seja
$$\sum_{n=1}^{\infty} a_n$$
 tal que $\sum_{n=1}^{\infty} |a_n|$ é convergente. Para cada $n \in N$, sejam

$$T_n = |a_1| + |a_2| + \ldots + |a_n|$$

 $S_n = a_1 + a_2 + \ldots + a_n$

E sejam P_n igual a soma dos a_r , com $r \leq n$ e $a_r \geq 0$ e q_n igual a soma dos valores absolutos dos a_r , com $r \leq n$ e $a_r < 0$.

Note que $T_n = P_n + q_n$ e $S_n = P_n - q_n$.

 P_n é uma sequência não decrescente, logo é monótona. O mesmo vale para $q_n.$ $P_n \leqslant T_n \leqslant T$, onde $T = \lim_{n \to \infty} T_n$ $q_n \leqslant T_n \leqslant T$.

Logo, P_n e q_n são limitadas. Assim, $P_n \underset{\infty}{\to} P$ e $q_n \to q$. Assim, $S_n \to P - q$, pois $S_n = P_n - q_n$.

Portanto,
$$\sum_{n=1}^{\infty} a_n$$
 é convergente.

Exemplo 4.10 Verifique a convergência de $\sum_{n=1}^{\infty} \frac{\text{sen} 3n^2}{n^2 - \sqrt{n+9}}$.

Solução:

Solução:

$$\operatorname{Seja} a_n = \frac{\operatorname{sen} 3n^2}{n^2 - \sqrt{n+9}}.$$

$$\Rightarrow n^2 a_n = \frac{n^2 \operatorname{sen} 3n^2}{n^2 - \sqrt{n+9}}$$

$$\Rightarrow n^2 |a_n| = \frac{n^2 |\operatorname{sen} 3n^2|}{|n^2 - \sqrt{n+9}|}$$

$$\Rightarrow n^2 |a_n| = \frac{n^2 |\operatorname{sen} 3n^2|}{n^2 - \sqrt{n+9}}, \text{ se } n \geqslant 3 \text{ (verifique)}$$

$$\Rightarrow n^2 |a_n| \leqslant \frac{n^2}{n^2 - \sqrt{n+9}}$$

Note que $\frac{n^2}{n^2 - \sqrt{n+9}} \to 1$.

A partir de um certo $n, n^2 |a_n| < 2 \Rightarrow |a_n| < \frac{2}{n^2}$.

Já sabemos que $\sum_{n=1}^{\infty} \frac{2}{n^2}$ converge. Pelo Critério da Comparação $\sum_{n=1}^{\infty} |a_n|$ con-

Pelo Teo. 4.9,
$$\sum_{n=1}^{\infty} a_n$$
 converge.

Teorema 4.10 (Leibniz) Se (a_n) é uma sequência tal que $a_1 \geqslant a_2 \geqslant \dots$ $(n\tilde{a}o-a_n)$ crescente) com

 $\lim_{n\to\infty} a_n = 0, \ ent \tilde{a}o \sum_{n=1}^{\infty} (-1)^n a_n \ \acute{e} \ uma \ s\acute{e}rie \ convergente.$

Demonstração:

Note que

$$S_{2} = a_{1} - a_{2}$$

$$S_{4} = a_{1} - a_{2} + a_{3} - a_{4}$$

$$\vdots$$

$$S_{2n} = (a_{1} - a_{2}) + (a_{3} - a_{4}) + \dots + (a_{2n-1} - a_{2n})$$

$$S_{1} = a_{1}$$

$$S_{3} = a_{1} - (a_{2} - a_{3})$$

$$\vdots$$

$$S_{2n+1} = a_{1} - (a_{2} - a_{3}) - \dots - (a_{2n} - a_{2n+1})$$

Temos que S_{2n} é não-decrescente e S_{2n+1} é não crescente. Note que

$$S_{2n} = a_1 - (a_2 - a_3) - \dots - (a_{2n-2} - a_{2n-1}) - a_{2n}$$

 $\Rightarrow S_{2n} \leqslant a_1$

 $\Rightarrow S_{2n}$ é convergente. Digamos $S_{2n} \to S$.

$$\underbrace{S_{2n+1}}_{S} = \underbrace{S_{2n}}_{S} + \underbrace{a_{2n+1}}_{0}$$

Agora, dado $\varepsilon > 0, \exists N_1 \in \mathbb{N}, \text{ par, tal que } n > N_1 \ (n \text{ par})$

$$\Rightarrow |S_{2n} - S| < \varepsilon$$

e $\exists N_2$ ímpar tal que se $n > N_2$, (n ímpar)

$$|S_{2n+1} - S| < \varepsilon.$$

Seja $N = \max\{N_1, N_2\}$. Se $n > N \Rightarrow |S_n - S| < \varepsilon$. Implica que $S_n \to S$.

Portanto, a série converge.

Exemplo 4.11 Seja
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
.
$$= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

Portanto, a série converge.

Exemplo 4.12 Seja
$$\sum_{n=1}^{\infty} (-1)^{n+1} \log \left(1 + \frac{1}{n}\right)$$
. $a_n = \log \left(1 + \frac{1}{n}\right)$ $a_1 \geqslant a_2 \geqslant \dots$ $a_n \to 0$

Portanto, a série converge.

Teorema 4.11 (Riemann) Se $\sum_{n=1}^{\infty} a_n$ é uma série condicionalmente convergente, então podemos reagrupar os termos de (a_n) de modo a obtermos uma série convergindo para qualquer número real especificado.

Demonstração:

Temos que
$$\sum_{n=1}^{\infty}a_n$$
 converge, então $a_n\to 0$ e $\sum_{n=1}^{\infty}|a_n|$ diverge. Seja S_0 o número real especificado.

- i) Considere os primeiros termos positivos da série, cuja soma supera S;
- ii) Adicione a esse resultado os primeiros números negativos até obter um resultado menor que S;
- iii) Volte a adicionar termos positivos até superar S;
- iv) Adicione termos negativos até obter resultado menor que S.

Seguindo este processo obtemos a série desejada.

Como
$$\sum_{n=1}^{\infty} a_n$$
 converge, dado $\varepsilon > 0, \exists N \in \mathbb{N}$ tal que se $n > N, |a_n| < \varepsilon$.

Seja $a_1'+a_2'+\dots$ a nova série. Escolha j>Ntal que $S_{j-1}'\leqslant S.$ Mas $S_j'>S,$ isto é,

Mas
$$S'_j > \tilde{S}$$
, isto é,
$$S'_{j-1} = a'_1 + a'_2 + \ldots + a'_{j-1} \leqslant S \text{ mas}$$

$$S'_j = a'_1 + a'_2 + \ldots + a'_{j-1} + a'_j > S \Rightarrow |S'_j - S| < \varepsilon.$$
 Afirmação:

 $\forall j > J, |S_J' - S| < \varepsilon$, pois cada termo adicionado a partir de a_J' é tal que

Logo, as reduzidas S_{J+R} oscilam em torno de S a uma distância menor que $\varepsilon, \forall k.$

Teorema 4.12 (Teste da Raíz (Cauchy)) $Se \sum_{n=1}^{\infty} a_n \ \'e \ tal \ que, \ a \ partir \ de \ um$ certo N, $\sqrt[n]{|a_n|} \leqslant c < 1$, então $\sum_{i=1}^{\infty} a_n$ converge.

Demonstração: A partir de N, $\sqrt[n]{|a_n|} \leqslant c \Rightarrow |a_n| \leqslant c^n$.

Pelo Critério da Comparação, $\sum_{n=1}^{\infty} |a_n|$ converge, pois $\sum_{n=1}^{\infty} c_n$ converge.

Portanto, $\sum_{n=1}^{\infty} a_n$ converge.

Exemplo 4.13 Verifique a convergência de $\sum_{n=1}^{\infty} \left(\frac{\log n}{n}\right)^n$.

Solução: Seja $a_n = \left(\frac{\log n}{n}\right)^n$.

$$\sqrt[n]{a_n} = \frac{\log n}{n}$$

$$= \frac{1}{n} \cdot \log n$$

$$= \log n^{\frac{1}{n}}$$

$$= \log \sqrt[n]{n} \to 0$$

Logo, a partir de um certo $N, \sqrt[n]{a_n} \leqslant \frac{1}{2} < 1$ e portanto, pelo Teste da Raiz, $\sum^{\infty} a_n \text{ \'e convergente.}$

Teste da Integral

46

Seja f uma função positiva, decrescente e contínua, para todo $x \geqslant 1$. Então,

$$\sum_{n=2}^N f(n) \leqslant \int_1^N f(x) dx \leqslant \sum_{n=1}^{N-1} f(n)$$

Assim, se $a_n = f(n)$, temos:

- $\sum_{n=1}^{\infty} a_n$ diverge se $\int_1^N f(x)dx$ diverge.
- $\sum_{n=1}^{\infty} a_n$ converge se $\int_1^N f(x)dx$ converge.

Figura 4.1: Integração

$$\sum_{n=2}^{N} f(n) = f(2) + f(3) + \dots + f(n)$$

$$\sum_{n=1}^{N-1} f(n) = f(1) + f(2) + \dots + f(n-1)$$

Exemplo 4.14 Usando o Teste da Integral verifique que $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge.

Solução:

$$\int_{1}^{N} \frac{1}{x} dx = \log x \Big|_{1}^{N} = \log N - \log 1 = \log n$$

Portanto, a série diverge.

Régis © 2009

Proposição 4.13 (Critério de convergência de Cauchy) $\mathit{Uma\ s\'erie}\ \sum^{\infty}a_n\ \acute{e}$ convergente se, e somente se, dado $\varepsilon > 0, \exists N \in \mathbb{N}$ tal que $|a_{n+1} + \ldots + a_{n+p}| < \varepsilon, \forall p \in \mathbb{N}.$

Demonstração:

Por definição, $\sum_{n=1}^{\infty}a_n$ converge se, e somente se, S_n converge, onde S_n é a sequência das reduzidas.

Pelo Critério de Cauchy para sequências, S_n converge se, e somente se, dado $\varepsilon>0, \exists N\in\mathbb{N}$ tal que se m,n>N,então $|S_m-S_n|<\varepsilon.$

n+1>N. Dado qualquer $p\in\mathbb{N}, n+p>N$.

$$n+1 > N$$
. Dado qualquer $p \in \mathbb{N}, n+p > N$.
 $\Rightarrow |S_{n+p} - S_n| = |a_1 + \ldots + a_n + a_{n+1} + \ldots + a_{n+p} - (a_1 + \ldots + a_n)| = |a_{n+1} + \ldots + a_{n+p}| < \varepsilon$.

4.4 Exercícios Propostos

4.1 Chama-se série harmônica, em geral, toda série do tipo

$$\sum_{n=1}^{\infty} \frac{1}{a+nr},$$

com $r \neq 0$. Mostre que toda série desse tipo é divergente.

Propriedades de somatório.

1.
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

2.
$$\sum_{k=1}^{n} ca_k = c \sum_{k=1}^{n} a_k$$

3.
$$\sum_{k=1}^{n} (a_{k+1} - a_k) = a_{n+1} - a_1$$

Exemplo 4.15

48

$$\sum_{k=1}^{n} \left(\frac{1}{k+1} - \frac{1}{k} \right) = \left(\frac{1}{2} - 1 \right) + \left(\frac{1}{2} - \frac{1}{2} \right) + \dots + \left(\frac{1}{n+1} - \frac{1}{n} \right) = \frac{1}{n+1} - 1$$

4.2 Obtenha a reduzida da série $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$, e mostre que seu limite é 1.

- **4.3** Sendo $a \neq -1$, mostre que a série $\sum_{n=1}^{\infty} \frac{1}{(a+n)(a+n+1)}$, converge para $\frac{1}{a+1}$.
- **4.4** Use o critério de Cauchy para mostrar que o termo geral de uma série convergente tende a zero.
- **4.5** Mostre que o termo geral da série $\sum_{n=1}^{\infty} \log \left(1 + \frac{1}{n}\right)$ converge para zero, mas que a série é divergente.
- **4.6** Use o critério de Cauchy para mostrar que se $\sum_{n=1}^{\infty}|a_n|$, converge, então $\sum_{n=1}^{\infty}a_n$ também converge.
- **4.7** Calcule a reduzida da série $\sum_{n=1}^{\infty} \frac{n-1}{n!}$, e mostre que seu limite é 1.
- **4.8** Mostre que a série $\sum_{n=0}^{\infty} \frac{(-1)^n (2n+5)}{(n+2)(n+3)}$, converge para $\frac{1}{2}$.
- **Exemplo 4.16** Verifique se $\sum_{n=1}^{\infty} (n^b a^n), 0 < a < 1, b$ fixo, converge.
- **4.9** Mostre que a série $\sum_{n=2}^{\infty} \frac{n^2 n 1}{n!}$, converge para 2.
- **4.10** Sejam $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ séries convergentes de termos positivos, com $a_n < b_n, \forall n$. Mostre que $\sum_{n=1}^{\infty} a_n < \sum_{n=1}^{\infty} b_n$.
- **4.11** Mostre que se $\sum_{n=1}^{\infty} a_n$ é uma série convergente de termos positivos, então $\sum_{n=1}^{\infty} (a_n)^2$ também é convergente.

Régis © 2009

4. Séries de Números Reais

- **4.12** Sejam $\sum_{n=1}^{\infty} a_n$ uma série convergente de termos positivos e (b_n) uma sequência limitada de elementos positivos. Mostre que $\sum_{n=1}^{\infty} a_n b_n$ também é convergente.
- **4.13** Sendo $a_n \ge 0$ e $b_n \ge 0$, mostre que se as séries $\sum_{n=1}^{\infty} (a_n)^2$ e $\sum_{n=1}^{\infty} (b_n)^2$ são convergentes, então $\sum_{n=1}^{\infty} a_n b_n$ também é convergente.
- **4.14** Mostre que se $a_n \ge 0$ e $\sum_{n=1}^{\infty} (a_n)^2$ converge, então $\sum_{n=1}^{\infty} \frac{a_n}{n}$ também converge.
- 4.15 Verifique qual das séries abaixo converge.

$$a) \sum_{n=2}^{\infty} \frac{\log n}{n} \quad b) \sum_{n=1}^{\infty} \frac{1}{\log n} \quad c) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 1}} \quad d) \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2 + 1}}$$

Extras

Exemplo 4.17 Seja $\sum_{n=1}^{\infty} a_n$ convergente, $a_n > 0$. Mostre que

- a) $\sum_{n=1}^{\infty} a_n x^n, x \in [-1, 1]$ converge.
- b) $\sum_{n=1}^{\infty} a_n \cos(nx)$ converge, $\forall x \in \mathbb{R}$.

Exemplo 4.18 Mostre que $\sum_{n=1}^{\infty} \frac{1}{n^{3/2} \log n}$ converge.

- **4.16** Interprete as igualdades abaixo à luz da definição de convergência de séries de números reais.
- a) $0,333... = \frac{1}{3}$
- b) 0,999... = 1

4.17 Mostre que a série
$$\sum_{n=1}^{\infty} a_n$$
 em que
$$a_n = \left\{ \begin{array}{ll} 3^{-n} & \text{, se } n \text{ \'e impar} \\ 2^{-n} & \text{, se } n \text{ \'e par} \end{array} \right.$$

é convergente.

4.18 Mostre que as séries abaixo convergem.

a)
$$\sum_{n=1}^{\infty} e^{-n}$$

$$b) \sum_{n=1}^{\infty} ne^{-n^2}$$

c)
$$\sum_{n=1}^{\infty} ne^{-n}$$

4.19 Verifique, em cada caso abaixo, se a série dada é convergente; e, em caso afirmativo, se absoluta ou condicionalmente.

a)
$$\sum_{n=1}^{\infty} \frac{\cos 3n}{n^2 + 1}$$

b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 1}$$

c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n+1}$$

d)
$$\sum_{k=1}^{\infty} \frac{\cos k - \sin k}{k\sqrt{k}}$$

$$e) \sum_{n=1}^{\infty} \frac{2 + \cos n}{n^2 + 1}$$

4.20 A série

$$1 - \frac{1}{2} + \frac{2}{3} - \frac{1}{3} + \frac{2}{4} - \frac{1}{4} + \frac{2}{5} - \frac{1}{5} + \frac{2}{6} - \frac{1}{6} + \dots$$

tem termos alternadamente positivos e negativos e seu termo geral tende a zero. Mostre que essa série é divergente e explique por que isto não contradiz o teorema de Leibniz.

4. Séries de Números Reais

4.21 Mostre que é convergente a série obtida alternando-se os sinais dos termos da série harmônica, de modo que fiquem p termos positivos, $p \in \mathbb{N}$ fixado seguidos de p termos negativos, alternadamente.

4.22 Se uma série é condicionalmente convergente, mostre que existe uma alteração da ordem dos seus termos de modo a tornar sua soma igual a $+\infty$.

4.23 Efetue uma reordenação dos termos da série

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots$$

de modo que sua soma se torne igual a zero.

4.24 Sejam 0 < a < b < 1. Mostre que a série $a + b + a^2 + b^2 + a^3 + b^3 + \dots$ é convergente.

4.25 Se $\sum_{n=1}^{\infty} a_n$ é absolutamente convergente e se (b_n) é uma sequência que converge para zero, pondo $c_n = a_0b_n + a_1b_{n-1} + \ldots + a_nb_0$, mostre que (c_n) converge para zero.

CAPÍTULO 5

Funções de uma Variável Real

Definição 5.1 Sejam $D,Y\subset\mathbb{R}$ conjuntos não-vazios. Uma **função** $f:D\to Y$ é uma lei que associa elementos do conjunto D, chamado o domínio da função, a elementos do conjunto Y, chamado o contradomínio da função.

Notação:

$$f: D \to Y$$
$$x \mapsto f(x)$$

Definição 5.2 Seja $f:D\to Y$. O conjunto de todos os valores da função,

$$Im(f) = \{ y = f(x) : x \in D \},\$$

é chamado a imagem de D pela f, e indicado por f(D).

Definição 5.3 Seja $f: D \rightarrow Y$. O conjunto

$$G(f) = \{(x, f(x)) : x \in D\},\$$

é chamado $gráfico\ de\ f$.

5.1 Tipos de Funções

função crescente

Definição 5.4 A função $f: D \to Y$ é dita crescente se $\forall x_1, x_2 \in D$, com $x_1 < x_2$, tivermos $f(x_1) < f(x_2)$.

Exemplo 5.1 Seja $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^3$. f é crescente.

Solução:

De fato, se $x_1 < x_2$ vamos mostrar que $f(x_1) < f(x_2)$.

$$f(x_2) - f(x_1) = \underbrace{x_2^3 - x_1^3}_{>0} \underbrace{(x_2^2 + x_1x_2 + x_1^2)}_{(*)}$$

Note que

$$2(x_2^2 + x_1x_2 + x_1^2) = x_2^2 + 2x_1x_2 + x_1^2 + x_2^2 + x_1^2 = (x_2 + x_1)^2 + x_2^2 + x_1^2 > 0$$
 Simplificando, se $2a > 0$, então $a > 0$. Logo $(*) > 0 \Rightarrow f(x_2) - f(x_1) > 0$. Portanto, $f(x_1) < f(x_2)$.

Exemplo 5.2 Mostre que $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^5$ é crescente. De um modo geral, $f(x) = x^n$, com n ímpar é crescente.

função decrescente

Definição 5.5 A função $f:D\to Y$ é dita decrescente se $\forall x_1,x_2\in D$, com $x_1< x_2$, tivermos $f(x_1)>f(x_2)$.

Exemplo 5.3 Seja $f: \mathbb{R} \to \mathbb{R}$ tal que f(x) = ax + b, a < 0. Mostre que f é decrescente.

Solução:

Se $x_1 < x_2$, então

$$f(x_2) - f(x_1) = ax_2 + b - ax_2 - b$$

= $\underbrace{(a)}_{<0} \underbrace{(x_2 - x_1)}_{>0} < 0$

$$\Rightarrow f(x_2) - f(x_1) < 0.$$
 Portanto, $f(x_1) > f(x_2)$.

função não decrescente

Definição 5.6 A função $f: D \to Y$ é dita não decrescente se $\forall x_1 < x_2$, tivermos $f(x_1) \leq f(x_2)$.

função não crescente

Definição 5.7 A função $f: D \to Y$ é dita não crescente se $\forall x_1 < x_2$, tivermos $f(x_1) \geqslant f(x_2)$.

Obs: Todas essas funções são chamadas de monótonas.

função injetiva

Definição 5.8 Seja $f: D \to Y$. a função f é dita *injetiva* sempre que se $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$. Equivalentemente, se $f(x_1) = f(x_2)$, então $x_1 = x_2$.

Exemplo 5.4 Seja $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^3$. f é injetiva, pois é crescente.

função sobrejetiva

Definição 5.9 Seja $f: D \to Y$. A função f é dita sobrejetiva se f(D) = Y. Equivalentemente, dado $y \in Y, \exists x \in D$ tal que f(x) = y.

Exemplo 5.5 Seja $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = ax + b, a \neq 0$. Mostre que f é sobrejetiva.

Solução:

Dado $y \in \mathbb{R}$, a equação f(x) = y sempre tem solução.

$$ax + b = y$$

$$\Leftrightarrow ax = y - b$$

$$\Leftrightarrow x = \frac{y - b}{a}$$

Exemplo 5.6 Seja $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^2$. Mostre que f não é injetiva e nem sobrejetiva.

Solução:

f não é injetiva, pois

$$f(-1) = f(1) \Rightarrow -1 \neq 1$$

f não é sobrejetiva, pois f(x) = -2 não possui solução real.

Régis © 2009

Análise Matemática

55

função bijetiva

Definição 5.10 Seja $f:D\to Y$. Uma função f é dita bijetiva se f é injetiva e sobrejetiva.

Nesse caso existe, bem definida a função $f^{-1}:Y\to D$ tal que $f^{-1}(y)=x\Leftrightarrow f(x)=y.$

 f^{-1} é chamada de função inversa de f.

Exemplo 5.7 Seja $f: A \to B$ tal que $f(x) = x^2$, onde $A = \{x \in \mathbb{R}; x \ge 0\}$ e $B = \{x \in \mathbb{R}; x \ge 0\}$.

Solução:

f é injetiva. De fato, se $f(x_1) = f(x_2)$ $\Rightarrow x_1^2 = x_2^2$ $\Rightarrow x_1^2 - x_2^2 = 0$ $\Rightarrow (x_1 - x_2)\underbrace{(x_1 + x_2)}_{\neq 0} = 0$ $\Rightarrow x_1 - x_2 = 0$ $\Rightarrow x_1 = x_2$

f é sobrejetiva. De fato, Dado $y \in B, f(x) = y$ tem solução

$$x^2 = y \Rightarrow x = \sqrt{y}.$$

função par

Definição 5.11 Se D é simétrico em relação à origem, isto é, $\forall x \in D, -x \in D.f: D \to Y$ é dita par se $f(x) = f(-x), \forall x \in D.$

função impar

Definição 5.12 Se D é simétrico em relação à origem. $f: D \to Y$ é dita *împar* se $f(-x) = -f(x), \forall x \in D$.

Exemplo 5.8 Seja $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^5 + x$. f é impar.

Solução:

De fato,

$$f(-x) = (-x)^5 + (-x) = -x^5 - x = -(x^5 + x) = -f(x)$$

Proposição 5.13 Se D é simétrico em relação à origem, então toda função f: $D \to Y$ se escreve, de modo único, na forma $f = f_P + f_I$, onde f_P é par e f_I é ímpar.

Demonstração:

Defina
$$f_P(x) = \frac{f(x) + f(-x)}{2} e f_I(x) = \frac{f(x) - f(-x)}{2}.$$

$$f_P(x) + f_I(x) = f(x)$$

Agora mostremos que f_P é par e f_I é impar.

$$f_P(-x) = \frac{f(-x) + f(x)}{2} = f(x)$$

$$\Rightarrow f_P(x) = f_P(-x)$$

Portanto, f_P é par.

$$f_I(-x) = \frac{f(-x) - f(x)}{2}$$

= $\frac{-f(x) + f(-x)}{2}$
= $-\frac{[f(x) - f(-x)]}{2}$
 $f_I(-x) = -f_I(x)$

Portanto, f_I é impar.

Mostremos a unicidade:

Suponha $f = f_P + f_I = g_P + g_I$ com f_P e g_P pares e f_I e g_P impares.

$$\begin{split} f_P - g_P &= g_I - f_I \\ (f_P - g_P)(x) &= f_P(x) - g_P(x) \\ (f_P - g_P)(-x) &= f_P(-x) - g_P(-x) = f_P(x) - g_P(x) \end{split}$$

Régis © 2009

$$\Rightarrow f_P - g_P$$
 é par.

$$(g_I - f_I)(x) = g_I(x) - f_I(x)$$

$$(g_I - f_I)(-x) = g_I(-x) - f_I(-x)$$

$$= -g_I(x) + f_I(x)$$

$$= -(g_I(x) - f_I(x)) \Rightarrow (g_I - f_I)(-x) = -(g_I - f_I)(x)$$

Portanto, $g_I - f_I$ é impar.

$$\Rightarrow f_P - g_P = 0 \Rightarrow f_P = g_P$$
 da mesma forma $g_I - f_I = 0 \Rightarrow g_I = f_I$

Função composta

Sejam $f:D\to Y$ e $g:Y\to X$ tal que $g\circ f:D\to X$ é definida por $g\circ f(x)=g(f(x)).$

 $g \circ f$ é chamada de função composta de g e f.

Exemplo 5.9 Seja
$$f: D \to Y$$
 bijetora e $f^{-1}: Y \to D$, então $f \circ f: D \to D$, $f^{-1} \circ f(x) = f^{-1}(f(x)) = x$ e $f \circ f^{-1}: Y \to Y$, $f \circ f^{-1}(y) = f(f^{-1}(y)) = y$.

Exemplo 5.10 Sejam $f: \mathbb{R} \to \mathbb{R}$ bijetora e $f^{-1}: \mathbb{R} \to \mathbb{R}$ a inversa.

Solução:

Figura 5.1

Porque existe a simetria entre f e f^{-1} em relação a reta y=x? Note pela Fig. que f produz (x, f(x)) e f^{-1} produz (f(x), x).

$$m = \frac{f(x) - x}{x - f(x)}$$

$$m = -1$$

$$d_{PA} = \sqrt{(f(x) - a)^2 + (x - a)^2}$$

$$d_{PB} = \sqrt{(x - a)^2 + (f(x) - a)^2}$$

$$\Rightarrow d_{PA} = d_{PB}$$

Portanto, f_1 e f^{-1} são simétricos.

5.2 Imagens Inversas de Conjuntos

Definição 5.14 Sejam $f: D \to Y$ e $A \subset Y$. Definimos $f^{-1}(A) = \{x \in D; f(x) \in A\}$ como a *imagem inversa* de A.

Exemplo 5.11
$$f: D \to Y; f^{-1}(y) = \{x \in D; f(x) \in Y\} = D$$

Exemplo 5.12
$$f: D \to Y, A \subset Y \in A \cap \text{Im}(f) = \emptyset; f^{-1}(A) = \{x \in D; f(x) \in A\} = \emptyset$$

Em particular:

se
$$y \in Y$$
; $f^{-1}(y) = \{x \in D; f(x) = y\}$
se $y = 0$; $f^{-1}(0) = \{x \in D; f(x) = 0\}$ é chamado de *conjunto dos zeros* de f .

5.3 Exercícios Propostos

- **5.1** Seja $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^n$, com n um inteiro positivo impar. Mostre que f é crescente.
- **5.2** Seja $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = ax + b com a e b números reais e $a \neq 0$. Mostre que f é crescente se, e somente se, a > 0 e que f é decrescente se, e somente se, a < 0.
- **5.3** Seja $f: \mathbb{R} \to (-1,1)$ definida por $f(x) = \frac{x}{\sqrt{x^2 + 1}}$. Mostre que f é bijetiva.
- **5.4** Seja $f:(0,1)\to\mathbb{R}$ definida por $f(x)=\sum_{n=1}^\infty x^n$. f é injetiva? É sobrejetiva? Determine o conjunto imagem de f.

Régis © 2009

5. Funções de uma Variável Real

- **5.5** Se $f:D\to Y$ é crescente e bijetiva, mostre que $f^{-1}:Y\to D$ também é crescente.
- **5.6** Defina uma função sobrejetiva $f: \mathbb{N} \to \mathbb{N}$ tal que, para todo $n \in \mathbb{N}, f^{-1}(n)$ é um conjunto com infinitos elementos.
- **5.7** Seja $f: \mathbb{R} \to \mathbb{R}$ uma função satisfazendo f(x+y) = f(x) + f(y) e $f(x) \ge 0$, para todo $x \ge 0$. Mostre que f(x) = ax para algum $a \in \mathbb{R}$ positivo.
- ${\bf 5.8}\,$ Se f é uma função com domínio De se Ae Bsão subconjuntos de D, mostre que

$$f(A \cup B) = f(A) \cup f(B)$$
 e $f(A \cap B) \subseteq f(A) \cap f(B)$.

Dê um contra-exemplo para mostrar que $f(A \cap B)$ pode ser diferente de $f(A) \cap f(B)$.

5.9 Mostre, de um modo geral, que se f é uma função com domínio D e se $(A_i)_{i=1}^{\infty}$ é uma coleção enumerável de subconjuntos de D, valem as seguintes relações:

$$f\left(\bigcup_{i=1}^{\infty} A_i\right) = \bigcup_{i=1}^{\infty} f(A_i) \in f\left(\bigcap_{i=1}^{\infty} A_i\right) \subseteq \bigcap_{i=1}^{\infty} f(A_i).$$

- **5.10** Se $f: D \to Y$ é uma função qualquer e B um subconjunto de Y, mostre que $f^{-1}(Y-B) = D f^{-1}(B)$.
- **5.11** Se $f:D\to Y$ é uma função qualquer e se A e B são subconjuntos de Y, mostre que $f^{-1}(A\cup B)=f^{-1}(A)\cup f^{-1}(B)$.
- **5.12** Mostre que se $f:D\to Y$ é uma função injetiva e se $A\subset D$, então $f^{-1}(f(A))=A$. Dê um contra-exemplo para mostrar que isso não é necessariamente verdade se f não for injetiva.
- **5.13** Mostre que se $f:D\to Y$ é uma função sobrejetiva e se $A\subset Y$, então $f(f^{-1}(A))=A$. Dê um contra-exemplo para mostrar que isso não é necessariamente verdade se f não for sobrejetiva.
- **5.14** Uma função $f: D \to Y$ é dita limitada quando o conjunto f(D) é limitado. Neste caso definimos $\sup(f) = \sup(f(D))$ e $\inf(f) = \inf(f(D))$. Mostre que se f e g são limitadas, então:

$$\sup(f+g) \leq \sup(f) + \sup(g) \in \inf(f+g) \geqslant \inf(f) + \inf(g).$$

5.4 Topologia na Reta

Intervalos

Sejam
$$a, b \in \mathbb{R}, a \neq b$$

 $(a, b) = \{x \in \mathbb{R}; a < x < b\}$
 $[a, b] = \{x \in \mathbb{R}; a \leqslant x \leqslant b\}$
 $[a, b) = \{x \in \mathbb{R}; a \leqslant x < b\}$
 $(a, b] = \{x \in \mathbb{R}; a < x \leqslant b\}$
 $(-\infty, a) = \{x \in \mathbb{R}; x < a\}$
 $(a, +\infty) = \{x \in \mathbb{R}; x > a\}$

Ponto interior de um conjunto

Definição 5.15 Sejam $Y \subset \mathbb{R}$ e $p \in Y, p$ é dito ponto interior de Y se existe $(a,b) \subset Y$ com $p \in (a,b)$.

Conjunto aberto

Definição 5.16 Seja $Y \subset \mathbb{R}$. Y é dito *aberto* se todos os seus pontos são interiores.

Exemplo 5.13 Y = (m, n) é um conjunto aberto.

Solução:

De fato, seja $p \in Y$. Então

$$\begin{aligned} & m$$

Exemplo 5.14 O conjunto dos números reais é aberto?

Solução:

Dado $p \in \mathbb{R}$.

$$p-1 e $p \in (p-1, p+1)$$$

Exemplo 5.15 $Y = \emptyset$ é aberto?

Solução:

Sim.

Vizinhança

Definição 5.17 Seja $x \in \mathbb{R}$. Uma *vizinhança* de x é qualquer conjunto que contém x como ponto interior.

Exemplo 5.16 Dado $x \in \mathbb{R}$ e $\varepsilon > 0, (x - \varepsilon, x + \varepsilon)$ é uma vizinhança de x.

Notação: $V_{\varepsilon}(x) = \{y \in \mathbb{R}; x - \varepsilon < y < x + \varepsilon\}$ **Obs**: $V'_{\varepsilon}(x) = \{y \in \mathbb{R}; x - \varepsilon < y < x + \varepsilon, \text{ com } y \neq x\}$ é chamada vizinhança perfurada de x.

$$x - \varepsilon \xrightarrow{x} x + \varepsilon$$

Figura 5.2: Vizinhança perfurada.

ou
$$V'_{\varepsilon}(x) = \{ y \in \mathbb{R}; 0 < |y - x| < \varepsilon \}$$

Ponto de acumulação

Definição 5.18 p é dito um ponto de acumulação de $Y \subset \mathbb{R}$ se toda vizinhança perfurada de p contém elementos de Y.

Exemplo 5.17 Se Y = (q, p], q é um ponto de acumulação de Y.

Solução:

Seja $V_{\varepsilon}'(q)$ uma vizinhança de centro em q e raio ε , isto é, $V_{\varepsilon}'(q)=(q-\varepsilon,q+\varepsilon)-\{q\}$

Figura 5.3: q é ponto de acumulação.

Exemplo 5.18 Se $Y=(a,b), b \notin Y$ mas b é ponto de acumulação de Y.

Solução:

Seja $V'_{\varepsilon}(b)$ uma vizinhança de $V'_{\varepsilon}(b) = (b - \varepsilon, b + \varepsilon) - \{b\}.$

$$\bigcirc \xrightarrow{\qquad \qquad Y \qquad \qquad b - \varepsilon} \xrightarrow{\qquad b - \varepsilon} - \xrightarrow{\qquad b + \varepsilon} - -$$

Figura 5.4: *b* é ponto de acumulação.

$$b - \varepsilon < b$$
. Se $b - \varepsilon > a \Rightarrow b - \varepsilon \in Y$. Tome $b - \varepsilon < x < b$. Se $b - \varepsilon < a$, nesse caso, todo $x \in Y$ é tal que $x \in V'_{\varepsilon}(b)$.

Exemplo 5.19 Seja $Y = \left\{\frac{1}{n}, n \in \mathbb{N}\right\}, Y \subset \mathbb{R}.$ 1 é ponto de acumulação?

Solução:

Não.

Figura 5.5: 1 não é ponto de acumulação.

Dado
$$\varepsilon>0, \exists n\in\mathbb{N}, n>\frac{1}{\varepsilon}\Rightarrow \frac{1}{n}<\varepsilon$$

Figura 5.6: 0 é ponto de acumulação.

$$\frac{1}{n} \in Y \text{ e } \frac{1}{n} \in V_{\varepsilon}'(0).$$

Ponto isolado

Definição 5.19 p é dito ponto isolado de $Y \subset \mathbb{R}$ se existe $V'_{\varepsilon}(p)$ tal que $V'_{\varepsilon}(p) \cap Y = \emptyset$.

Régis © 2009 Análise Matemática 63

Exemplo 5.20 Todo ponto de $\mathbb{Z} \subset \mathbb{R}$ é um ponto isolado de \mathbb{Z} .

Solução:

De fato, dado $n \in \mathbb{Z}$, tome $V'_{1/2}(n)$.

5.5 Limite de Funções

Definição 5.20 Seja $f: D \to Y$ e a um ponto de acumulação de D. Dizemos que

$$\lim_{x \to a} f(x) = L$$

se $\forall \varepsilon>0, \exists \delta>0$ tal que se $x\in V_\delta'(a)$, então $f(x)\in V_\varepsilon(L)$, ou seja, se $0<|x-a|<\delta$, então $|f(x)-L|<\varepsilon$.

Exemplo 5.21 Seja $f:(0,1)\to\mathbb{R}$ tal que f(x)=x+1. Mostre que $\lim_{x\to 0}f(x)=1$.

Solução:

Temos que D=(0,1) e $0\notin D$. Além disso, 0 é ponto de acumulação de D. Dado $\varepsilon>0$, queremos $\delta>0$ tal que se $0<|x-0|<\delta$, então $|f(x)-1|<\varepsilon$. Temos que

$$|f(x) - 1| = |x + 1 - 1| = |x| < \varepsilon$$

sempre que $0 < |x| < \delta$.

Basta tomar $\delta = \varepsilon$.

Proposição 5.21 Seja $f: D \to Y$ e a um ponto de acumulação de D.

 $\lim_{x\to a} f(x) = L \text{ se, e somente se, para toda sequência } x_n \to a, \text{ tivermos } f(x_n) \to L.$

Demonstração:

 \Rightarrow) Se $\lim_{x\to a}\bar{f}(x)=L,$ dado $\varepsilon>0, \exists \delta>0$ tal que, se $0<|x-a|<\delta,$ então $|f(x)-L|<\varepsilon.$

Seja x_n uma sequência tal que $x_n\to a$. $\forall \delta>0, \varepsilon N\in\mathbb{N};$ se n>N, então $0<|x_n-a|<\delta\Rightarrow |f(x_n)-L|<\varepsilon.$

Portanto, $f(x_n) \to L$.

 \Leftarrow) Se para toda sequência $x_n \to a$, tivermos $f(x_n) \to L$ vamos mostrar que $\lim_{x \to a} f(x) = L$.

Suponha que para alguma sequência $x_n \to a$, mas $f(x_n)$ não converge para L. Dado $\varepsilon > 0, \exists \delta > 0$ tal que $0 < |x_n - a| < \delta$ mas $|f(x_n) - L| \ge \varepsilon$.

Em outras palavras, dado $\varepsilon > 0$, tome $\delta = \frac{1}{n}$, seja $x_n \in V'_{1/n}(a) \cap D$ mas $f(x_n) \notin V_{\varepsilon}(L)$.

Agora, para cada n, escolha $x_n \in D \cap V'_{1/n}(a)$. Então, $x_n \to a$.

Exemplo 5.22 Seja $f: \mathbb{R} \to \mathbb{R}$ tal que

$$f(x) = \begin{cases} 0, & \text{se } x = 0 \\ \frac{1}{\sin x}, & \text{se } x \neq 0 \end{cases}$$

existe $\lim_{x\to 0} f(x)$?

Solução:

Seja $x_n = \frac{1}{2n\pi}$, então $x_n \to 0$.

$$f(x_n) = \operatorname{sen} \frac{1}{x_n} = \operatorname{sen} 2n\pi, f(x_n) \to 0$$

Seja
$$x_n = \frac{1}{\frac{\pi}{2} + 2n\pi}, x_n \to 0$$

$$f(x_n) = \operatorname{sen}\left(\frac{\pi}{2} + 2n\pi\right), f(x_n) \to L$$

5.6 Exercícios Propostos

Exemplo 5.23 Seja Y = (0,1). Mostre que p é ponto interior de Y.

5.15 a) Mostre que \mathbb{R} e ϕ são subconjuntos abertos de \mathbb{R} .

- b) Mostre que uma união qualquer de subconjuntos abertos de $\mathbb R$ é um subconjunto aberto.
- c) Um subconjunto de $\mathbb R$ é dito fechado se seu complementar é aberto. Mostre que uma união finita de subconjuntos fechados é um subconjunto fechado.
- d) Mostre que o intervalo [1,2] é um subconjunto fechado de \mathbb{R} .
- e) Mostre que um subconjunto de $\mathbb R$ contendo apenas um elemento é fechado.
- f) Sejam $A \in B$ subconjuntos abertos de \mathbb{R} . Mostre que $A \cap B$ é um conjunto aberto.
- g) Mostre que uma intersecção infinita de subconjuntos abertos pode não ser um conjunto aberto.

Régis © 2009

Análise Matemática

65

5. Funções de uma Variável Real

5.16 a) Seja $\mathbb{A} = \left\{\frac{1}{n}, n \in \mathbb{N}\right\}$. Mostre que 0 é o único ponto de acumulação de \mathbb{A} e que \mathbb{A} não é um conjunto fechado.

- b) Se $f: \mathbb{A} \to \mathbb{R}$ é dada por f(x) = x + 1, existe $\lim_{x \to \frac{1}{3}} f(x)$?
- c) Se f é a função do item anterior, existe $\lim_{x\to 0} f(x)$?
- **5.17** Sejam $f, g : \mathbb{R} \to \mathbb{R}$ definidas por

$$f(x) = \begin{cases} 0 & \text{, se } x \text{ \'e irracional} \\ x & \text{, se } x \text{ \'e racional} \end{cases}$$

$$g(x) = \begin{cases} 0 & \text{, se } x \neq 0 \\ 1 & \text{, se } x = 0 \end{cases}$$

Mostre que $\lim_{x\to 0} f(x) = 0$ e que $\lim_{x\to 0} g(x) = 0$, porém, não existe $\lim_{x\to 0} g(f(x))$.

5.18 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 0, & \text{se } x = 0 \\ \frac{1}{\sin x}, & \text{se } x \neq 0 \end{cases}$$

Existe $\lim_{x\to 0} f(x)$?

Dica: Para resolver os exercícios de limites devemos encontrar uma constante real c, tal que, para $\lim_{x\to a} f(x) = L$,

$$|f(x) - L| < c|x - a| < \varepsilon \Rightarrow |x - a| < \frac{\varepsilon}{c} = \delta$$

Então, tome $\delta = \min \left\{ 1, \frac{\varepsilon}{c} \right\}$.

5.19 Usando a definição, mostre que

a)
$$\lim_{x \to 6} \frac{5}{x - 1} = 1$$

b)
$$\lim_{x \to 1} \frac{x}{x+1} = \frac{1}{2}$$

66

c)
$$\lim_{x \to a} \sqrt{x} = \sqrt{a}, \forall a \in D$$

Exemplo 5.24 Mostre que $\lim_{x\to 3} x^2 + 1 = 10$.

67

Exemplo 5.25 Mostre que $\lim_{x\to 4} \frac{x-1}{x^2-1} = \frac{1}{5}$.

5.20 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \left\{ \begin{array}{ll} 0 & \text{, se } x \text{ \'e irracional} \\ 1 & \text{, se } x \text{ \'e racional} \end{array} \right.$$

Existe $\lim_{x \to a} f(x)$ para algum $a \in \mathbb{R}$?

5.21 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \left\{ \begin{array}{cc} x & \text{, se } x \text{ \'e irracional} \\ 1 - x & \text{, se } x \text{ \'e racional} \end{array} \right.$$

Mostre que existe $\lim_{x \to \frac{1}{2}} f(x)$. Existe $\lim_{x \to a} f(x)$, para algum $a \neq \frac{1}{2}$?

5.22 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 1 & \text{, se } x \ge 0 \\ -1 & \text{, se } x < 0 \end{cases}$$

Mostre que não existe $\lim_{x\to 0} f(x)$. É possível definir f(0) de modo que exista $\lim_{x\to 0} f(x)$?

5.23 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 0, & \text{se } x = 0 \\ \frac{1}{x}, & \text{se } x \neq 0 \end{cases}$$

Mostre que, para todo $c \in [-1,1]$, existe uma sequência de pontos $x_n \neq 0$ tal que $\lim_{n \to \infty} x_n = 0$ e $\lim_{n \to \infty} f(x_n) = c$.

5.24 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = [x], em que [x] é o maior inteiro menor ou igual a x.

Mostre que, para todo $a \in \mathbb{Z}, \lim_{x \to a} f(x)$ não existe. Determine o conjunto imagem de f.

Régis © 2009 Análise Matemática

5.7 Continuidade de Funções

Definição 5.22 Seja $f: D \to Y$ e $a \in D$. Dizemos que f é contínua em a se dado $\varepsilon > 0$, existe $\delta > 0$ tal que se $x \in D$ e $|x - a| < \delta$, então $|f(x) - f(a)| < \varepsilon$. Além disso, f é contínua em D se f for contínua em todos os pontos de D.

Exemplo 5.26 Se a é um ponto de isolado de D, então f é contínua em a.

Solução:

De fato, $\exists \delta > 0$ tal que $(a - \delta, a + \delta) \cap D = \{a\}$. Assim, dado $\varepsilon > 0$, tome δ dado acima. Logo, se $|x - a| < \delta$ é porque x = a, então $|f(x) - f(a)| = |f(a) - f(a)| = 0 < \varepsilon$.

Exemplo 5.27 Seja $f: \mathbb{Z} \to \mathbb{R}$ tal que f(x) = 2x + 1. f é contínua. (Fig. 5.7)

Figura 5.7: f é contínua em todo seu domínio.

Obs: Se a é um ponto de acumulação de D, f é contínua em a se

- i) f(a) existir;
- ii) $\lim_{x \to a} f(x) = f(a)$

Exemplo 5.28 Seja $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = ax + b, a \neq 0$. f é contínua em todos os pontos do domínio.

Solução:

Suponha f contínua em $c\in\mathbb{R}$. De fato, dado $\varepsilon>0$, devemos encontrar $\delta>0$ de modo que se $x\in\mathbb{R}$ e $|x-c|<\delta$, então $|f(x)-f(c)|<\varepsilon$.

Rascunho:

$$|f(x) - f(c)| = |ax + b - ac - b|$$
$$= |a(x - c)|$$
$$= |a||x - c|$$

Então, tome $\delta = \frac{\varepsilon}{|a|}$.

$$\begin{aligned} |x - c| &< \delta \\ \Rightarrow |a||x - c| &< |a|\delta \\ \Rightarrow |f(x) - f(c)| &< |a| \frac{\varepsilon}{|a|} &< \varepsilon. \end{aligned}$$

Teorema 5.23 (do Valor Intermediário) Se $f:[a,b] \to \mathbb{R}$ é contínua e $f(a) \neq f(b)$, então f(x) assume todos os valores entre f(a) e f(b).

Consequência

Se f(a) < 0 e f(b) > 0, então f(x) = 0, para algum x.

Exemplo 5.29 Seja $f:[0,1]\to\mathbb{R}$ contínua. Se $0\leqslant f(x)\leqslant 1$, mostre que existe $c\in[0,1]$ tal que f(c)=c.

Solução

Seja $g:[0,1]\to\mathbb{R}$ tal que g(x)=f(x)-x. g(x) é contínua, então

$$g(0) = f(0) \ge 0$$

 $g(1) = f(1) - 1 \le 0$
 $\Rightarrow g(1) \le 0 \le g(0)$

Pelo Teo. 5.23 (T.V.I.), $\exists c \in [0,1]$ tal que g(c)=0, então $f(c)-c=0 \Rightarrow f(c)=c$.

Exemplo 5.30 Seja f contínua em [a,b] e tal que f(a) < f(b). Suponha que f é injetora. Mostre que f é crescente.

Figura 5.8

Solução:

Primeiro vamos mostrar que se a < x < b, então f(a) < f(x) < f(b).

 $\Rightarrow f(x) \neq f(a) \in f(x) \neq f(b).$

Suponha f(x) > f(b), então f(a) < f(b) < f(x) (Fig. 5.8).

Logo, $\exists c \in [a, x]$ tal que f(c) = f(b).

Absurdo, pois f é injetora.

De modo análogo, f(x) < f(a) não pode acontecer.

Sejam $x_1, x_2 \in [a, b]$, com $x_1 < x_2$. $f(a) < f(x_2) < f(b)$.

Se $f(x_1) > f(x_2)$, então $f(x_2) < f(x_1) < f(b)$

 $\Rightarrow \exists c \in [x_2, b]$ tal que f(c) = f(x). Absurdo, pois f é injetora.

Portanto, $f(x_1) < f(x_2)$.

Logo, f é crescente.

Proposição 5.24 Seja $f: D \to Y$ contínua em a, então $|f|: D \to Y$ também é contínua em a.

Demonstração:

Lembrando que

i)
$$|x + y| \le |x| + |y|$$

ii)
$$||x| - |y|| \le |x - y|$$

Como f é contínua em a, dado $\varepsilon>0, \exists \delta>0$ tal que se $x\in D$ e $|x-a|<\delta,$ então $|f(x)-f(a)|<\varepsilon.$

Assim, dado $\varepsilon > 0, ||f(x)| - |f(a)|| \le |f(x) - f(a)| < \varepsilon$ com o mesmo δ .

Proposição 5.25 Se $\lim_{x \to a} f(x) = L$ e A < L < B, então $\exists \delta > 0$ tal que se $x \in D$ e $|x - a| < \delta$, então A < f(x) < B.

Demonstração:

Considere $\varepsilon = \min\{L - A, B - L\}$. Neste caso, $\exists \delta > 0$ tal que se $x \in D$ e $0 < |x - a| < \delta$, então $|f(x) - L| < \varepsilon \Rightarrow L - \varepsilon < f(x) < L + \varepsilon$.

Se $\varepsilon = L - A \Rightarrow L - \varepsilon = A$ e $L + \varepsilon < B$, pois $\varepsilon < B - L$. Então, A < f(x) < B. Se L - A = B - L, então $\varepsilon = L - A$ e $\varepsilon = B - L$, então $A = L - \varepsilon$ e $B = L + \varepsilon$.

Corolário 5.26 $Se \lim_{x \to a} f(x) = L \ e \ L \neq 0$, então existe $\delta > 0$ tal que $f(x) > \frac{L}{2}$ se L > 0, $e \ f(x) < \frac{L}{2}$ se L < 0.

Demonstração:

Temos que

i)
$$L > 0, \frac{L}{2} < L < 2L$$
.

Basta tomar $A = \frac{L}{2}$ e B = 2L na Prop. 5.25.

ii)
$$L < 0, 2L < L < \frac{L}{2}$$
.

Basta tomar A = 2L e $B = \frac{L}{2}$ na Prop. 5.25.

Consequência:

Se
$$\lim_{x\to a} f(x) = L, L \neq 0$$
, então $|f(x)| > \frac{|L|}{2}$.

Proposição 5.27 Se $f: D \to Y$ e $g: D \to Y$ são contínuas em a, então

- 1. f + g é contínua em a;
- 2. f.g é contínua em a;
- 3. Se $g(a) \neq 0$, então $\frac{f}{g}$ é contínua em a.

Demonstração:

Exercício.

Exemplo 5.31 Seja $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$. f é contínua.

Exemplo 5.32 Seja $f: \mathbb{R} - \{0,2\} \to \mathbb{R}$ tal que $f(x) = \frac{x^2 + 3x + 1}{x^2 - 2x}$. f é contínua em todo seu domínio.

5.8 Limites Infinitos e Limites no Infinito

Definição 5.28 Seja $f:D\to Y$ com $D,Y\subset\mathbb{R}$ e a um ponto de acumulação de D.

- i) $\lim_{x\to a}f(x)=+\infty$ se dado $k>0, \exists \delta>0$ tal que se $x\in D$ e $0<|x-a|<\delta,$ então f(x)>k.
- ii) $\lim_{x\to a}f(x)=-\infty$ se dado $k<0, \exists \delta>0$ tal que se $x\in D$ e $0<|x-a|<\delta,$ então f(x)< k.
- iii) Se D é ilimitado superiormente $\lim_{x\to +\infty}f(x)=L$ se dado $\varepsilon>0, \exists k>0$ tal que se $x\in D$ e x>k, então $|f(x)-L|<\varepsilon.$
- iv) $\lim_{x\to +\infty} f(x) = +\infty$ se dado $R>0, \exists k>0$ tal que se $x\in D$ e x>k, então f(x)>R. Obs: Neste caso, D e Y são ilimitados superiormente.
- v) $\lim_{x \to +\infty} f(x) = -\infty$ se dado $R < 0, \exists k > 0$ tal que se $x \in D$ e x > k, então f(x) < R. **Obs**: Neste caso, D ilimitado superiormente e Y ilimitado interiormente.
- vi) Se D é ilimitado inferiormente $\lim_{x \to -\infty} f(x) = L$ se dado $\varepsilon > 0, \exists k < 0$ tal que se $x \in D$ e x < k, então $|f(x) L| < \varepsilon$.
- vii) $\lim_{x \to -\infty} f(x) = +\infty$ se dado $R > 0, \exists k < 0$ tal que se $x \in D$ e x < k, então f(x) > R.
- viii) $\lim_{x \to -\infty} f(x) = -\infty$ se dado $R < 0, \exists k < 0$ tal que se $x \in D$ e x < k, então f(x) < R.

Proposição 5.29 Se $\lim_{x\to a} f(x) = 0$, com f(x) > 0, $\forall x$, então $\lim_{x\to a} \frac{1}{f(x)} = +\infty$.

Demonstração:

Como $\lim_{x\to a}f(x)=0$, dado $k>0, \exists \delta>0$ tal que se $x\in D$ e $0<|x-a|<\delta$, então $f(x)<\frac{1}{k}\Rightarrow\frac{1}{f(x)}>k$.

Portanto,
$$\lim_{x \to a} \frac{1}{f(x)} = +\infty$$
.

Proposição 5.30 Se $\lim_{x \to +\infty} f(x) = +\infty$, então $\lim_{x \to +\infty} \frac{1}{f(x)} = 0$.

Demonstração:

Dado $\varepsilon > 0$, $\exists k > 0$ tal que se $x \in D$ e x > k, então $f(x) > \frac{1}{\varepsilon} \Rightarrow \frac{1}{f(x)} < \varepsilon$.

Portanto,
$$\lim_{x \to +\infty} \frac{1}{f(x)} = 0$$
.

Proposição 5.31 Seja $f: D \to Y$, com D ilimitado superiormente, f limitada e monótona. Então, $\lim_{x \to +\infty} f(x) = L, L \in \mathbb{R}$.

Demonstração:

Suponha f não decrescente, isto é, $x_1 > x_2, f(x_1) \ge f(x_2)$.

f é limitada, então f é limitada superiormente, então seja $B = \sup(f(x)), x \in D$, logo, dado $\varepsilon > 0, \exists k \in D$ tal que $B - \varepsilon < f(x) \leq B$.

Agora, se $x > k, f(x) \ge f(k)$, então $B - \varepsilon < f(x) \le B$.

Portanto,
$$\lim_{x \to +\infty} f(x) = B = \sup(f(x)).$$

Proposição 5.32 $Se\lim_{x\to +\infty} f(x) = A$ $e\lim_{x\to +\infty} g(x) = B$, $ent \tilde{a}o$

$$i) \lim_{x \to +\infty} (f(x) + g(x)) = A + B$$

$$ii$$
) $\lim_{x \to +\infty} (kf(x)) = kA$

$$iii)$$
 $\lim_{x \to +\infty} (f(x)g(x)) = AB$

iv) Se
$$B \neq 0$$
, então $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \frac{A}{B}$.

Demonstração:

i) Dado $\varepsilon > 0, \exists k_1 > 0$ tal que se $x \in D$ e $x > k_1$, então $|f(x) - A| < \frac{\varepsilon}{2}$ e $\exists k_2 > 0$ tal que se $x \in D$ e $x > k_2$, então $|g(x) - B| < \frac{\varepsilon}{2}$. Se $k = \max\{k_1, k_2\}$

$$\begin{array}{lcl} |f(x)+g(x)-A-B| & = & |f(x)-A+g(x)-B| \\ & \leqslant & |f(x)-A|+|g(x)-B| \\ & < & \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \end{array}$$

Teorema 5.33 (do Confronto) Sejam f,g,h funções com o mesmo domínio e tais que $f(x) \leq g(x) \leq h(x)$. Se $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, então $\lim_{x \to a} g(x) = L$.

Demonstração:

Dado $\varepsilon > 0, \exists \delta_1 > 0$ tal que se $x \in D$ e $0 < |x-a| < \delta_1$, então $|f(x) - L| < \varepsilon$. (I)

De modo análogo, $\exists \delta_2 > 0$ tal que se $x \in D$ e $0 < |x-a| < \delta_2$, então $|h(x) - L| < \varepsilon$. (II)

Se $\delta = \min{\{\delta_1, \delta_2\}}$ valem (I) e (II) simultaneamente.

De $|f(x) - L| < \varepsilon \Rightarrow L - \varepsilon < f(x) < L + \varepsilon$.

De $|h(x) - L| < \varepsilon \Rightarrow L - \varepsilon < h(x) < L + \varepsilon$.

Sabemos que $f(x) \leq g(x) \leq h(x)$, logo se $x \in D$ e $x \in V_{\delta}(a)$, então

$$L - \varepsilon < f(x) \le g(x) \le h(x) < L + \varepsilon$$

$$\Rightarrow L - \varepsilon < g(x) < L + \varepsilon$$

$$\Rightarrow |g(x) - L| < \varepsilon$$

Portanto, $\lim_{x \to a} g(x) = L$.

Proposição 5.34 Sejam $f: Y_1 \to Y_2$ e $g: Y_2 \to Y_3$. Dado $a \in Y_1$, se f é contínua em a e g é contínua em f(a), então $g \circ f: Y_1 \to Y_3$ é contínua em a.

Demonstração:

Dado $\varepsilon > 0$, $\exists \delta_1 > 0$ tal que se $z \in Y_2$ e $|z - f(a)| < \delta_1$,

então $|g(z) - g(f(a))| < \varepsilon$.

Agora, para este $\delta_1, \exists \delta_2 > 0$ tal que se $x \in Y_1$ e $|x - a| < \delta_2$, então $|f(x) - f(a)| < \delta_1$.

Assim, se $|x-a| < \delta_2 \Rightarrow |f(x)-f(a)| < \delta_1 \Rightarrow |g(f(x))-g(f(a))| < \varepsilon$.

Portanto, $g \circ f$ é contínua em a.

Exemplo 5.33 Seja $f:[0,\infty)\to\mathbb{R}$ tal que $f(x)=\sqrt{x}$. f é contínua.

Solução:

Dado $a \in (0, \infty)$

$$|f(x) - f(a)| = |\sqrt{x} - \sqrt{a}|$$

$$= \left| (\sqrt{x} - \sqrt{a}) \frac{(\sqrt{x} + \sqrt{a})}{\sqrt{x} + \sqrt{a}} \right|$$

$$= \frac{|x - a|}{\sqrt{x} + \sqrt{a}} \leqslant \frac{|x - a|}{\sqrt{a}}$$

Dessa forma, dado $\varepsilon > 0$, tome $\delta = \varepsilon \sqrt{a}$.

Assim, se
$$|x - a| < \delta = \varepsilon \sqrt{a} \Rightarrow |f(x) - f(a)| \le \frac{|x - a|}{\sqrt{a}} < \frac{\varepsilon \sqrt{a}}{\sqrt{a}} = \varepsilon$$
.

Falta mostrar que f é contínua em 0. Dado $\varepsilon>0$, vamos mostrar que $\exists \delta>0$ tal que se $|x-0|<\delta$, então $\left|\sqrt{x}\right|<\varepsilon$ ou $x<\delta$, então $\sqrt{x}<\varepsilon$. Tome $\delta=\varepsilon^2$.

Pois, se
$$x < \varepsilon^2$$
, então $\sqrt{x} < \varepsilon$.

Exemplo 5.34 Seja $f(x) = \sqrt{x^2 + 1}$. A composição de f é dada por

$$g: \mathbb{R} \to \mathbb{R}$$
 $h: [0, \infty) \to \mathbb{R}$ $x \mapsto q(x) = x^2 + 1$ $x \mapsto h(x) = \sqrt{x}$

 $\Rightarrow f = h \circ g : \mathbb{R} \to \mathbb{R}$ é contínua.

Teorema 5.35 (TVI) Se $f:[a,b] \to \mathbb{R}$ é contínua e $f(a) \neq f(b)$, então f(x) assume todos os valores entre f(a) e f(b).

Em outras palavras, dado d tal que f(a) < d < f(b), existe $c \in (a,b)$ tal que f(c) = d.

Demonstração:

Vamos supor f(a) < f(b) e que d = 0. O caso geral se reduz a este considerando a função g(x) = f(x) - d. Temos assim f(a) < 0 < f(b).

Vamos mostrar que existe $c \in (a, b)$ tal que f(c) = 0. Seja r o ponto médio de [a, b].

Se f(r) = 0 é imediato. Caso contrário, obtemos dois intervalos [a, r] e [r, b]. Se f(r) > 0 escolha o primeiro intervalo e se f(r) < 0 escolha o segundo.

Seja $I_1=[a_1,b_1]$ o escolhido, $I_1\subset I$. Repita o processo no intervalo I_1 e obtenha $I_2,I_2\subset I_1\subset I$.

Continuando assim o processo pára se encontrarmos um dos pontos médios r, tal que f(r)=0 ou obtemos uma sequência de intervalos

$$I \supset I_1 \supset I_2 \supset \ldots \supset I_n \supset \ldots$$
 tais que $\frac{l}{2^n}$ é o comprimento de $I = [a, b]$.

Como $\lim_{n\to\infty}\frac{l}{2^n}=0$, a intersecção dos intervalos acima se reduz a um único ponto c.

Vamos mostrar que f(c) = 0.

$$f(a_n) < 0, \forall n$$

$$f(b_n) > 0, \forall n$$

$$\Rightarrow \lim_{n \to \infty} f(a_n) \le 0 \text{ e } \lim_{n \to \infty} f(b_n) \ge 0$$

$$\lim_{n \to \infty} a_n = c \text{ e } \lim_{n \to \infty} b_n = c$$

então

$$\lim_{n \to \infty} f(a_n) = f(\lim_{n \to \infty} a_n) = f(c) \text{ e}$$

$$\lim_{n \to \infty} f(b_n) = f(\lim_{n \to \infty} b_n) = f(c)$$

assim, $0 \le f(c) \le 0$. Portanto, f(c) = 0.

Aplicação: Todo polinômio de grau ímpar possui uma raíz real.

Exemplo 5.35 Seja $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, com n ímpar e $a_n > 0$. f possui raíz real.

Solução:

$$f(x) = x^n \left(a_n + \frac{a_{n-1}}{x} + \frac{a_{n-2}}{x^2} + \dots + \frac{a_0}{x^n} \right)$$

temos $\lim_{n \to \infty} f(x) = +\infty$ e $\lim_{x \to -\infty} f(x) = -\infty$ então, $\exists a \in \mathbb{R}$ tal que f(a) < 0 e $\exists b \in \mathbb{R}$ tal que f(b) > 0, pelo T.V.I., como $f(a) < 0 < f(b), \exists c \in (a,b)$ tal que f(c) = 0.

5.9 Funções Contínuas em Intervalos Fechados

Trataremos de funções do tipo $f:[a,b] \to \mathbb{R}$.

Proposição 5.36 Toda função contínua definida num intervalo fechado e limitado I = [a, b], é limitada.

Demonstração:

Vamos mostrar que $A \leq f(x) \leq B$.

Suponha o contrário, ou seja, que f não é limitada. Divida o intervalo [a,b] ao meio obtendo [a,r] e [r,b]. Em algum desses intervalos f é ilimitada.

Seja $I_1 = [a_1, b_1]$ esse intervalo. Divida I_1 ao meio e seja $I_2 = [a_2, b_2]$ com a mesma propriedade.

Continuando com esse processo obtemos uma sequência de intervalos encaixados $I \supset I_1 \supset \ldots \supset I_n \supset \ldots$ onde $I_n = [a_n, b_n]$ e o comprimento de I_n é $\frac{l}{2^n}$, onde l é o comprimento de I = [a, b].

Pelo Teorema dos intervalos encaixados, a intersecção desses intervalos se reduz a um ponto c.

Tomando $\varepsilon=1$, existe $\delta>0$ tal que se $x\in V_\delta(c)$, então |f(x)-f(c)|<1. Logo, se $x\in V_\delta(c)$, então

$$-1 < f(x) - f(c) < 1$$

 $\Rightarrow f(c) - 1 < f(x) < f(c) + 1$

Logo, f(x) é limitada para todo $x \in V_{\delta}(c)$. Absurdo. Portanto, f é limitada.

5.10 Valor Máximo e Valor Mínimo

Definição 5.37 Seja $f: Y \to \mathbb{R}.M \in \mathbb{R}$ é dito valor máximo de f se $\exists x_0 \in Y$ tal que $f(x_0) = M$ e

 $f(x) \leqslant M, \forall x \in Y.$

 $m \in \mathbb{R}$ é dito valor mínimo de f se $\exists x_1 \in Y$ tal que $f(x_1) = m$ e $f(x) \ge m, \forall x \in Y.$

Proposição 5.38 Toda função contínua definida num intervalo fechado e limitado I = [a, b], assume valor máximo e valor mínimo.

Demonstração:

Note que, pela Prop. 5.36, f é limitada. Seja $M = \sup f(x)$, com $x \in [a,b]$. Vamos mostrar que M é o valor máximo de f. Temos que $f(x) \leq M, \forall x$. Suponha que $f(x) < M, \forall x$, então $M - f(x) > 0 \Rightarrow \frac{1}{M - f(x)} > 0$.

Seja $g:[a,b]\to\mathbb{R}$ dada por $g(x)=\frac{1}{M-f(x)}$. Pela Prop. 5.36, g(x) é limitada. Seja $M'=\sup g(x)$.

Régis © 2009

$$\Rightarrow \frac{1}{M - f(x)} \leqslant M'$$

$$\Rightarrow 1 \leqslant MM' - f(x)M'$$

$$\Rightarrow f(x)M' \leqslant MM' - 1$$

$$\Rightarrow f(x) \leqslant M - \frac{1}{M'}, \forall x \in [a, b]$$

Absurdo, pois M é a menor das cotas superiores $(M = \sup f(x))$. Logo, f(x) =M para algum x.

Agora, mostremos que f assume valor mínimo.

Seja $m = \inf f(x), x \in [a, b]$. Então, $f(x) \ge m, \forall x \in [a, b]$.

Suponha $f(x) > m, \forall x \in [a, b],$ então m - f(x) < 0. Seja $g: [a, b] \to \mathbb{R}$ dada por $g(x) = \frac{1}{m - f(x)}$. Pela Prop. 5.36, g é limitada.

Seja $M' = \inf g(x)$.

$$\Rightarrow \frac{1}{m - f(x)} \geqslant m'$$

$$\Rightarrow 1 \leqslant mm' - m'f(x)$$

$$\Rightarrow m'f(x) \leqslant mm' - 1$$

$$\Rightarrow f(x) \geqslant m - \frac{1}{m'}$$

Absurdo, pois $m - \frac{1}{m'} > m$ e $m = \inf(x)$. Logo, f(x) = m para algum x.

5.11 Exercícios Propostos

Os exercícios a seguir referem-se à página 166 do livro "Análise Matemática para Licenciatura" de Geraldo Ávila.

- **5.25** Prove que a equação $x^4 + 10x^3 8 = 0$ tem pelo menos duas raízes reais. Use uma calculadora científica para determinar uma dessas raízes com a aproximação de duas casas decimais.
- 5.26 Prove que um polinômio de grau ímpar tem um número ímpar de raízes reais, contando as multiplicidades.
- **5.27** Prove que se n é par, $p(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$ assume um valor mínimo m. Em consequência, prove que p(x) = a tem pelo menos duas soluções distintas se a > m e nenhuma se a < m.

- **5.28** Prove que se um polinômio de grau n tiver r raízes, contando as multiplicidades, então n-r é par.
- ${\bf 5.29}\,$ Prove que todo número a>0 possui raízes quadradas, uma positiva e outra negativa.
- **5.30** Prove que todo número a > 0 possui uma raiz n-ésima positiva; e se n for par, possuirá também uma raiz n-ésima negativa.
- ${f 5.31}$ Seja f uma função contínua num intervalo, onde ela é sempre diferente de zero. Prove que f é sempre positiva ou sempre negativa.
- **5.32** Sejam f e g funções contínuas num intervalo [a,b] tais que f(a) < g(a) e f(b) > g(b). Prove que existe um número c entre a e b, tal que f(c) = g(c). Faça um gráfico para entender bem o que se passa.
- **5.33** Seja f uma função contínua no intervalo [0,1], com valores nesse mesmo intervalo. Prove que existe $c \in [0,1]$ tal que f(c) = c. Interprete este resultado geometricamente.
- **5.34** Nas mesmas hipóteses do exercício anterior, prove que existe $c \in [0,1]$ tal que f(c) = 1 c. Interprete este resultado geometricamente.
- **5.35** Seja f uma função contínua no intervalo [0,1], com f(0)=f(1). Prove que existe um número $c \in [0,1/2]$ tal que f(c)=f(c+1/2).
- **5.36** Complete a demonstração do Teorema 6.30, provando que g é contínua em b, na hipótese de que b seja uma das extremidades do intervalo J. Faça também a demonstração completa do teorema no caso em que f (e, consequentemente, também g) é uma função decrescente.
- **5.37** Sejam $f \in g$ funções crescentes num intervalo I, onde $f(x) \leq g(x)$. Prove que $f^{-1}(y) \geq g^{-1}(y)$ para todo $y \in f(I) \cap g(I)$.
- 5.38 Prove que a imagem de um intervalo aberto por uma função contínua injetiva é um intervalo aberto. Dê exemplos em que o intervalo-domínio é limitado, mas sua imagem é ilimitada.
- **5.39** Dê exemplo de uma função cujo domínio não seja nem fechado nem limitado, mas tenha valores máximo e mínimo.
- **5.40** Prove que f(x) = x se x for racional, e f(x) = 1 x se x for irracional, é contínua em x = 1/2 e somente neste ponto.

Régis © 2009 Análise Matemática 79

5. Funções de uma Variável Real

5.41 Considere a função f assim definida: f(x) = -x se x for racional e f(x) = 1/x se x for irracional. Faça o gráfico dessa função e mostre que ela é uma bijeção descontínua em todos os pontos.

Exemplo 5.36 Seja $f(x) = \sqrt{x}$. Mostre que $f'(x) = \frac{1}{2\sqrt{x}}$.

Exemplo 5.37 Seja f(x) tal que

$$f(x) = \begin{cases} x & \text{, se } x \in \mathbb{Q} \\ -x & \text{, se } x \in \mathbb{R} - \mathbb{Q} \end{cases}$$

Mostre que f é contínua apenas em x=0 e |f(x)| é contínua em todo ponto.

Exemplo 5.38 Seja $f(x) = ax^2 + bx + c, a \neq 0$. Ache os pontos de máximo e mínimo de f se existir.

5.42 Prove, pela definição de limite, que $f(x) = \frac{1}{x}$ é contínua para todo $x \neq 0$.

5.43 Prove que se f(x) é contínua em x=a e $f(x)\geqslant 0$, então $g(x)=\sqrt{f(x)}$ é contínua em x=a.

 $^{^1{\}rm Análise}$ Matemática para Licenciatura - pág. 148.

²Análise Matemática para Licenciatura - pág. 149.

Derivada

Definição 6.1 Seja $f: X \to \mathbb{R}, x_0 \in X$ com x_0 ponto de acumulação de X. Se existe e é finito o limite $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ dizemos que f é derivável em x_0 e denotamos tal limite por

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Figura 6.1: A reta tangente é o limite da reta secante em P_0 .

Definição 6.2 Quando $f'(x_0)$ existe, a reta de equação

$$y - f(x_0) = f'(x_0)(x - x_0)$$

é chamada reta tangente ao gráfico da curva y = f(x) no ponto $(x_0, f(x_0))$.

Exemplo 6.1 Seja $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^3$ e seja $x_0 = 0$. f é derivável em x = 0?

Solução:

Temos que

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to 0} \frac{x^3 - 0^3}{x - 0} = \lim_{x \to 0} x^2 = 0$$

$$\Rightarrow f'(0) = 0$$

E equação da reta tangente é

$$y - 0 = 0(x - 0)$$
$$\Rightarrow y = 0$$

Exemplo 6.2 Seja $f: \mathbb{R} \to \mathbb{R}$ tal que f(x) = |x|. Existe f'(0)?

Solução:

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{|x|}{x}$$

Se
$$x > 0$$
, $\lim_{x \to 0} \frac{|x|}{x} = \lim_{x \to 0} \frac{x}{x} = 1$

Se
$$x < 0$$
, $\lim_{x \to 0} \frac{|x|}{x} = \lim_{x \to 0} \frac{-x}{x} = -1$

Se x > 0, $\lim_{x \to 0} \frac{|x|}{x} = \lim_{x \to 0} \frac{x}{x} = 1$ Se x < 0, $\lim_{x \to 0} \frac{|x|}{x} = \lim_{x \to 0} \frac{-x}{x} = -1$ Como os limites a esquerda e a direita são diferentes, o limite não existe. Portanto, f'(0) não existe.

Teorema 6.3 Se f é derivável em x_0 , então f é contínua em x_0 .

Demonstração:

f é derivável, então existe

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Seja
$$g(x) = \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0).$$

$$\Rightarrow \lim_{x \to x_0} g(x) = 0$$

$$\Rightarrow g(x)(x - x_0) = f(x) - f(x_0) - f'(x_0)(x - x_0)$$

$$\Rightarrow f(x) = g(x)(x - x_0) + f(x_0) + f'(x_0)(x - x_0)$$

aplicando o limite para $x \to x_0$, obtemos

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Portanto, f é contínua em x_0 .

6.1 Operações com Derivadas

Teorema 6.4 Se f e g são deriváveis em x_0 , o mesmo ocorre com f + g, fg e $\frac{f}{g}$ se $g(x_0) \neq 0$.

i)
$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

$$ii) (fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

iii)
$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{[g(x_0)]^2}$$

Demonstração:

i) Temos que

$$(f+g)'(x_0) = \lim_{x \to x_0} \frac{(f+g)(x) - (f+g)(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{f(x) + g(x) - f(x_0) - g(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0}$$

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

ii) Temos que

$$(fg)'(x_0) = \lim_{x \to x_0} \frac{fg(x) - fg(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{f(x)g(x) - g(x)f(x_0) + g(x)f(x_0) - f(x_0)g(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \left(\frac{[f(x) - g(x_0)]}{x - x_0} g(x) + f(x_0) \frac{[g(x) - g(x_0)]}{x - x_0} \right)$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot \lim_{x \to x_0} g(x) + \lim_{x \to x_0} f(x_0) \cdot \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0}$$

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

iii) Primeiro verifiquemos o caso

$$\left(\frac{1}{g}\right)'(x_0) = \lim_{x \to x_0} \frac{\frac{1}{g}(x) - \frac{1}{g}(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{\frac{1}{g(x)} - \frac{1}{g(x_0)}}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{g(x_0) - g(x)}{(x - x_0)g(x)g(x_0)}$$

$$= \lim_{x \to x_0} \frac{-(g(x) - g(x_0))}{x - x_0} \cdot \frac{1}{g(x).g(x_0)}$$

$$= \frac{-g'(x_0)}{[g(x_0)]^2}$$

O caso geral

$$\left(\frac{f}{g}\right)'(x_0) = \left(f \cdot \frac{1}{g}\right)'(x_0)
= f'(x_0) \cdot \frac{1}{g(x_0)} + f(x_0) \cdot \frac{(-g'(x_0))}{[g(x_0)]^2}
= \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{[g(x_0)]^2}$$

Figura 6.2

Exemplo 6.3 Seja $f:[0,\infty)\to\mathbb{R}$ tal que $f(x)=\sqrt{x}.f'(0)$ existe?

Solução:

$$f'(0) = \lim_{\substack{x \to 0 \\ x > 0}} \frac{\sqrt{x} - \sqrt{0}}{x - 0} = \lim_{\substack{x \to 0 \\ x > 0}} \frac{x^{1/2}}{x} = \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{\sqrt{x}} = +\infty$$

Portanto, f'(0) não existe.

Exemplo 6.4 Seja $f:[1,2] \to \mathbb{R}$ tal que $f(x)=x^2.f'(1)$ existe?

Solução:

$$f'(1) = \lim_{x \to 1^+} \frac{x^2 - 1^2}{x - 1} = \lim_{x \to 1^+} \frac{(x - 1)(x + 1)}{(x - 1)} = \lim_{x \to 1^+} (x + 1) = 2$$

Portanto, f'(1) existe.

Exemplo 6.5 Seja $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = c, c \in \mathbb{R}$. $f'(x_0)$ existe?

Solução:

$$f'(x_0) = \lim_{x \to x_0} \frac{c - c}{x - x_0} = \lim_{x \to x_0} \frac{0}{x - x_0} = 0$$

6.2 Máximos e Mínimos

Definição 6.5 Sejam $f: X \to \mathbb{R}$ e $x_0 \in X$. x_0 é dito um ponto de *mínimo local* se existe $V_{\delta}(x_0)$ tal que $f(x) \geqslant f(x_0), \forall x \in V_{\delta}(x_0)$. E x_0 é dito um ponto de *máximo local* se existe $V_{\delta}(x_0)$ tal que $f(x) \leqslant f(x_0), \forall x \in V_{\delta}(x_0)$.

Proposição 6.6 Sejam $f: X \to \mathbb{R}$ e $x_0 \in X$ um ponto de acumulação bilateral. Se f é derivável em x_0 e x_0 é ponto de mínimo ou de máximo, então $f'(x_0) = 0$.

Demonstração:

Caso em que x_0 é ponto de mínimo.

$$\lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0} \geqslant 0 \text{ e } \lim_{\substack{x \to x_0 \\ x < x_0}} \frac{f(x) - f(x_0)}{x - x_0} \leqslant 0$$
$$\Rightarrow 0 \leqslant f'(x_0) \leqslant 0$$
$$\Rightarrow f'(x_0) = 0$$

Obs: A recíproca é falsa. Exemplo, $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^3$.

$$f'(x) = 3x^2$$
$$\Rightarrow f'(0) = 0$$

Mas 0 não é ponto de máximo nem de mínimo.

Teorema 6.7 (Michel Rolle) Seja $f:[a,b] \to \mathbb{R}$ contínua em [a,b] e derivável em (a,b). Se f(a)=f(b), então existe $c \in (a,b)$ tal que f'(c)=0.

Figura 6.3

Demonstração:

86

Se f é constante. OK, pois $f'(c) = 0, \forall c \in \mathbb{R}$.

Se f não é constante, $f(x) \neq f(a)$ para algum $x \in (a, b)$.

Como f é contínua e [a,b] é limitado e fechado, f assume valor máximo e valor mínimo. Pela Prop. 6.6, existe $c \in (a,b)$ tal que c é ponto de máximo ou ponto de mínimo e, portanto, f'(c) = 0.

Teorema 6.8 (Teorema do Valor Médio) ¹ Seja $f:[a,b] \to \mathbb{R}$ contínua em [a,b] e derivável em (a,b). Então, $\exists c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Figura 6.4: A inclinação da reta t é a mesma da reta s.

Demonstração:

Seja $g:[a,b]\to\mathbb{R}$ definida por

$$g(x) = f(x) - f(a) - \left(\frac{f(b) - f(a)}{b - a}\right)(x - a)$$

Note que g(a)=0 e g(b)=0. $\Rightarrow g(a)=g(b)$. Pelo Teorema de Rolle, existe $c\in(a,b)$ tal que g'(c)=0. Logo,

$$g'(x) = f'(x) - \left(\frac{f(b) - f(a)}{b - a}\right)$$

$$\Rightarrow g'(c) = f'(c) - \left(\frac{f(b) - f(a)}{b - a}\right)$$

$$\Rightarrow f'(c) - \left(\frac{f(b) - f(a)}{b - a}\right) = 0$$

$$\Rightarrow f'(c) = \frac{f(b) - f(a)}{b - a}$$

¹Lagrange

6.3 Exercícios Propostos

6.1 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = |2x + 1| - |-x - 7|$$

- a) Mostre, usando a definição, que f é contínua em todos os pontos do domínio.
- b) f assume valor máximo? E mínimo?
- c) f é injetora? Sobrejetora? Qual é o conjunto imagem de f?
- ${\bf 6.2}~{
 m Em}$ cada afirmativa abaixo, prove, se for verdadeira, ou dê um contra-exemplo, em caso falso.
- a) Se f é contínua em a, então f é derivável em a.
- b) Se f é derivável em a, então f é contínua em a.
- c) Se f assume um valor máximo ou mínimo em x=a, então f é derivável em a.
- **6.3** Seja $f:(0,+\infty)\to\mathbb{R}$ definida por $f(x)=\frac{1}{x}$. Mostre que a região compreendida pela reta tangente ao gráfico de f no ponto (1,f(1)) pela reta perpendicular à tangente nesse mesmo ponto e pelo eixo das abscissas é um triângulo isósceles.
- ${\bf 6.4}\,$ O conjunto de zeros de uma função $f:\mathbb{R}\to\mathbb{R}$ é o conjunto

$$Z(f) = \{x \in \mathbb{R}; f(x) = 0\}$$

- a) Existe $f: \mathbb{R} \to \mathbb{R}$, contínua, tal que Z(f) = [0, 1]?
- b) Existe $f: \mathbb{R} \to \mathbb{R}$, contínua, tal que $Z(f) = \emptyset$?
- c) Existe $f: \mathbb{R} \to \mathbb{R}$, contínua, tal que $Z(f) = \mathbb{R}$?
- **6.5** Seja $f:\mathbb{R}\to\mathbb{R}$ uma função derivável em todos os pontos do domínio e com f' contínua. Se

$$xf'(x) = x^2 + f(x)^2$$

para todo $x \in \mathbb{R}$, mostre que

- a) f(0) = 0
- b) f'(0) = 0

6.6 Sejam $f,g:\mathbb{R}\to\mathbb{R}$. Prove ou dê um contra-exemplo para as seguintes afirmações.

- a) Se f + g é contínua, então f e g são contínuas.
- b) Se fg é contínua, então f e g são contínuas.
- c) Se f(x+y)=f(x)+f(y) e f é contínua em x=0, então f é contínua em todo x.
- **6.7** Seja $f: \mathbb{R} \to \mathbb{R}$ uma função. Mostre que se $|f(x)| \leq x^2$, para todo $x \in \mathbb{R}$, então existe f'(0).
- **6.8** Seja $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 0 & , \text{ se } x \in \mathbb{R} - \mathbb{Q} \\ x^2 & , \text{ se } x \in \mathbb{Q} \end{cases}$$

Mostre que f é derivável em x = 0.

- **6.9** Seja $f: \mathbb{R} \to \mathbb{R}$ contínua e tal que $\lim_{x \to 0} \frac{f(x)}{x} = L < \infty$,
- a) Mostre que f(0) = 0.
- b) Mostre que f é diferenciável em x = 0 e que f'(0) = L.
- **6.10** Seja $f: \mathbb{R} \to \mathbb{R}$ uma função tal que f(0) = 0 e f'(x) é crescente no intervalo $(0, +\infty)$. Mostre que a função $g: (0, +\infty) \to \mathbb{R}$ definida por $g(x) = \frac{f(x)}{x}$ é crescente.
- **6.11** Seja $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^n$ com $n \in \mathbb{Z}$. Mostre que $f'(x) = nx^{n-1}, n \neq 0$.
- **6.12** Seja $f: \mathbb{R} \to \mathbb{R}$ tal que $f'(x) = 0, \forall x$. Mostre que f é uma função constante.
- **6.13** Seja $f:[0,+\infty)\to\mathbb{R}$ definida por $f(x)=\sqrt{x}$. Encontre os pontos críticos de f e os pontos de máximo e mínimo se existirem.
- **6.14** Seja $f: [-1,1] \to \mathbb{R}$ definida por $f(x) = x^2$. Encontre os pontos críticos de f e os pontos de máximo e mínimo se existirem. Verifique que embora 1 seja ponto de máximo, f'(1) é diferente de zero. Por que isso não contraria a teoria estudada?

Régis © 2009

Parte I Solução dos Exercícios Propostos

Lista 01 - Números Reais

7.1 Mostre que o conjunto dos números primos é enumerável.

Solução:

Suponha P o conjunto dos números primos finitos, P finito

$$P = \{p_1 = 2, p_2 = 3, p_3 = 5, \dots, P_r\}.$$

Considerando n um inteiro tal que $n=p_1.p_2.p_3...p_r+1$, pelo Teorema Fundamental da Aritmética, n não é primo.

Assim, $n = q_1.q_2...q_k$ (composto de primos), onde os q_i são elementos de P e k > 1. Segue que $q_1 | n$ e $q_1 \in P$.

Portanto, $q_1 = p_j$ para algum j, j = 1, 2, ..., r.

Consequentemente, $q_1|p_1.p_2...p_r$. Assim $q_1|n$.

Mas $n-p_1.p_2...p_r=1$ e $q_1|n-p_1.p_2...p_r=1$, ou seja, $q_1|1$. O que contraria a definição de números primos, pois nenhum primo divide 1.

Portanto, o conjunto dos números primos é infinito.

- **7.2** Mostre que o conjunto dos polinômios de grau menor ou igual a cinco e coeficientes racionais forma um conjunto enumerável.
- **7.3** Mostre que o conjunto das matrizes $n \times m$ com entradas racionais forma um conjunto enumerável, $\forall n \in \mathbb{N}$.
- **7.4** Seja A um conjunto infinito não enumerável tal que $A=B\cup C$. Mostre que B ou C é infinito e não é enumerável.

7. Lista 01 - Números Reais

7.5 Mostre que o conjunto dos números irracionais não é enumerável.

7.6 Seja r um número racional qualquer. Mostre que o conjunto E dos números racionais menores que r não tem máximo e que o conjunto D dos números racionais maiores que r não tem mínimo.

7.7 Mostre que existem infinitos números racionais em qualquer intervalo (a,b) da reta real.

Solução:

Devemos mostrar que existe $c \in (a, b)$.

Figura 7.1

Seja
$$a < b$$
, então $b - a > 0$. Logo $\frac{1}{b - a} > 0$

$$\Rightarrow \exists N \in \mathbb{N}; N > \frac{1}{b - a} \Rightarrow \frac{1}{N} < b - a.$$
Note que $\frac{1}{N} \in \mathbb{Q}$.

7.8 Mostre que existem infinitos números irracionais em qualquer intervalo (a,b) da reta real.

Solução:

Seja
$$a < b$$
, então $b - a > 0$. Logo $\frac{\sqrt{3}}{b - a} > 0$

$$\Rightarrow \exists N \in \mathbb{N}; N > \frac{\sqrt{3}}{b - a} \Rightarrow \frac{\sqrt{3}}{N} < b - a.$$

$$\frac{\sqrt{3}}{N}$$
 é irracional.

7.9 Prove que se p é um número primo qualquer, então \sqrt{p} é irracional.

7.10 Se a e b são números irracionais, é verdade que $\frac{a+b}{2}$ é irracional?

7.11 Prove que se x e y são números irracionais tais que x^2-y^2 é racional não-nulo, então x+y e x-y são ambos irracionais. Conclua que $\sqrt{3}+\sqrt{2}$ e $\sqrt{3}-\sqrt{2}$ são ambos irracionais.

7.12~Uma expansão de Cantor para um número inteiro positivo n é uma soma do tipo

$$n = a_m \cdot m! + a_{m-1} \cdot (m-1)! + \dots + a_2 \cdot 2! + a_1 \cdot 1!,$$

sendo a_j inteiro e $0 \le a_j \le j$.

- a) Encontre a expansão de Cantor para os inteiros 14,56 e 384.
- b) Mostre que qualquer inteiro positivo tem uma expansão de Cantor.

Sugestão: Divida n, inicialmente, por 2, obtendo quociente q_1 e resto r_1 . Divida em seguida q_1 por 3.

Solução:

Seja $n \ge 1, n \in \mathbb{N}$.

Se
$$n = 1$$
, então $n = 2.0 + 1 = 1.1! + 0.2!$.

Se
$$n = 2$$
, então $n = 2.1 + 0 = \underbrace{1.2!}_{a_2} + \underbrace{0.1!}_{a_1}$.
Se $n \ge 2$, vamos dividir n por 2 .

$$n = 2\underbrace{q_1}_{<3} + r_1; 0 \leqslant r_1 \leqslant 1 \text{ e } q_1 < n$$

Agora, vamos dividir q_1 por 3.

$$q_1 = 3q_2 + r_2; 0 \leqslant r_2 \leqslant 2$$
 e $q_2 < q_1 < n$
$$n = 2q_1 + r_1$$

$$n = 2(3q_2 + r_2) + r_1$$

$$n = 2.3 \cdot q_2 + 2r_2 + r_1(*)$$

Se $q_1 < 3$, nós pararíamos em $n = 2q_1 + r_1$.

Chamando $a_2=q_1$ e $a_1=r_1$. Então, $n=a_22!+a_11!$, onde $0\leqslant a_i\leqslant i$.

Se $q_1 \geqslant 3$, então dividimos q_1 por 3.

Se $q_2 < 4$, então paramos aí.

$$\begin{split} n &= 3.2.q_2 + 2r_2 + r_1 \\ a_3 &= q_2 \Rightarrow 0 \leqslant a_3 \leqslant 3 \\ a_2 &= r_2 \Rightarrow 0 \leqslant a_2 \leqslant 2 \\ a_1 &= r_1 \Rightarrow 0 \leqslant a_1 \leqslant 1 \\ n &= a_3 3! + a_2 2! + a_1 1!, 0 \leqslant a_i \leqslant i \end{split}$$

Se $q_2 \geqslant 4$, então vamos dividir q_2 por 4.

$$q_2 = 4q_3 + r_3; 0 \le r_3 \le 3; q_3 \le q_2 < q_1 < n$$

Observe que os quocientes estão diminuindo e como eles formam um subconjunto de inteiros positivos, pelo princípio da Boa Ordem, existe o menor quociente q_{m-1} .

Então, tomando

$$\begin{aligned} a_m &= q_{m-1}, 0 \leqslant a_m \leqslant m \\ a_{m-1} &= r_{m-1}, 0 \leqslant a_{m-1} \leqslant m-1 \\ a_{m-2} &= r_{m-2}, 0 \leqslant a_{m-2} \leqslant m-2 \end{aligned}$$

Então,

$$n = a_m \cdot m! + a_{m-1} \cdot (m-1)! + \dots + a_2 \cdot 2! + a_1 \cdot 1!$$
, onde $0 \le 0 \le a_i \le i, 1 \le i \le m$

7.13 Mostre que qualquer número racional positivo pode ser escrito, de um único modo, na forma

$$a_1 + \frac{a_2}{2!} + \frac{a_3}{2!} + \ldots + \frac{a_k}{k!},$$

onde
$$a_i \in \mathbb{Z}$$
 e $0 \le a_1, 0 \le a_2 < 2, \dots, 0 \le a_k < k$.

7.14 Mostre que \mathbb{N} é infinito.

Solução:

Suponha que $\mathbb N$ é finito, então existe $\varphi:\mathbb N\to F_n$ bijetora, onde $F_n=1,\dots,n$. Assim, para cada valor de $\mathbb N$ teríamos um correspondente em F_n . Mas por definição se $n\in\mathbb N$, então $n+1\in\mathbb N$, mas não existe um correspondente em F_n .

Portanto,
$$\mathbb{N}$$
 é infinito.

Régis © 2009

Lista 02 - Números Reais

8.1 Em \mathbb{R} defina o valor absoluto de x por

$$|x| = \begin{cases} x & \text{, se } x \ge 0\\ -x & \text{, se } x < 0 \end{cases}$$

Mostre que:

- a) $|x| = 0 \Leftrightarrow x = 0$
- b) |xy| = |x||y|
- c) $|x + y| \le |x| + |y|$

Solução:

Faremos apenas o item c).

Afirmação: Se $a \in \mathbb{R}, a > 0$, então $|x| \leqslant a \Leftrightarrow -a \leqslant x \leqslant a$.

Demonstração:

 \Rightarrow) Usando a definição de módulo, temos que se
 $|x|\leqslant a,$ obtemos dois casos: $x\geqslant 0$ ou
 x<0.

Se $x \ge 0$, então $|x| = x \le a$.

Se x < 0, então $|x| = -x \le a = x \ge -a$.

Portanto, $-a \leqslant x \leqslant a$.

 \Leftarrow) Se $-a \leqslant x \leqslant a$, temos que

Se $x \ge 0$, então $|x| = x \le a \Rightarrow |x| \le a$.

Se x < 0, então |x| = -x. Como $x \geqslant -a \Rightarrow -x \leqslant a \Rightarrow |x| \leqslant a$.

8. Lista 02 - Números Reais

Voltando ao exercício, temos

$$\begin{aligned} -|x| &\leqslant x \leqslant |x| \\ -|y| &\leqslant y \leqslant |y| \\ -(|x|+|y|) &\leqslant x+y \leqslant |x|+|y| \\ \Rightarrow |x+y| &\leqslant |x|+|y| \end{aligned}$$

 ${\bf 8.2}\,$ Mostre que para quaisquer números reais x e y vale a desigualdade

$$xy \leqslant \frac{x^2 + y^2}{2}$$

Solução:

Sabemos que $(x-y)^2 \ge 0$. Então

$$x^{2} - 2xy + y^{2} \geqslant 0$$

$$\Rightarrow x^{2} + y^{2} \geqslant 2xy$$

$$\Rightarrow \frac{x^{2} + y^{2}}{2} \geqslant xy$$

8.3 Para quaisquer números reais positivos x e y mostre que

$$\sqrt{xy} \leqslant \frac{x+y}{2}$$

Solução:

Pelo Ex. 8.2,
$$xy \leqslant \frac{x^2 + y^2}{2}$$
. Então,
$$2xy \leqslant x^2 + y^2$$
$$\Rightarrow 4xy \leqslant x^2 + 2xy + y^2$$
$$\Rightarrow 4xy \leqslant (x+y)^2$$
$$\Rightarrow 2\sqrt{xy} \leqslant x + y$$
$$\Rightarrow \sqrt{xy} \leqslant \frac{x+y}{2}$$

8.4 Para quaisquer números reais positivos x_1, x_2, \dots, x_n mostre que

$$\sqrt[n]{x_1 x_2 \dots x_n} \leqslant \frac{x_1 + x_2 + \dots + x_n}{n}$$

Solução:

Pelo Ex. 8.3, essa desigualdade vale para n=2.

Vamos provar que se vale para k termos, então vale para 2k termos.

$$\frac{x_1 + \ldots + x_k + x_{k+1} + \ldots + x_{2k}}{2k} = \frac{\frac{x_1 + \ldots + x_k}{k} + \frac{x_{k+1} + \ldots + x_{2k}}{k}}{2} \geqslant \frac{\sqrt[k]{x_1 \ldots x_k} + \sqrt[k]{x_{k+1} \ldots x_{2k}}}{2}$$

Pelo Ex. 8.3, temos que

$$\frac{\sqrt[k]{x_1 \dots x_k} + \sqrt[k]{x_{k+1} \dots x_{2k}}}{2} \geqslant \sqrt{\sqrt[k]{x_1 \dots x_n} \sqrt[k]{x_{k+1} \dots x_{2k}}} \geqslant \sqrt[2k]{x_1 \dots x_k \dots x_{k+1} \dots x_{2k}}$$

Agora, vamos mostrar que se vale para 2^m também vale para todo $n < 2^m$. De fato, seja $L = \sqrt[n]{x_1 \dots x_n}$, com $n < 2^m$.

$$\frac{x_1 + \ldots + x_n + \overbrace{L + \ldots + L}^{2^m - n}}{2^m} \geqslant \sqrt[2^m]{x_1 \ldots x_n . L^{(2^m - n)}} = \sqrt[2^m]{L^n . L^{(2^m - n)}} = L$$

$$\Rightarrow x_1 + \ldots + x_n + (2^m - n)L \geqslant 2^m . L$$

$$\Rightarrow x_1 + \ldots + x_n \geqslant 2^m . L - 2^m . L + n . L$$

$$\Rightarrow \frac{x_1 + \ldots + x_n}{n} \geqslant \sqrt[n]{x_1 \ldots x_n}$$

Aqui termina o exercício. Além disso, dado $n \in \mathbb{N}$, $\exists m \in \mathbb{N}$ tal que $2^m > n$? Sim. Basta provar que não existe supremo no conjunto dado por $A = \{2^m, m \in \mathbb{N}\}$.

Suponha $c = \sup(A)$, então $c - 2 < 2^a$. Logo,

$$\frac{c}{2} < c - 2 < 2^a$$

$$\Rightarrow c < 2^{a+1}$$

8.5 Para quaisquer números reais x, y, z mostre que

$$x^2 + y^2 + z^2 \geqslant xy + xz + yz$$

Solução:

Sabemos que $(x-y)^2 \ge 0$, então

$$\begin{split} &((x-y)-z)^2\geqslant 0\\ &\Rightarrow (x-y)^2-2z(x-y)+z^2\geqslant 0\\ &\Rightarrow (x-y)^2+z^2\geqslant 2xz+2yz\\ &\Rightarrow x^2+y^2+z^2\geqslant 2xz+2yz+2xy\geqslant xy+xz+yz\\ &\Rightarrow x^2+y^2+z^2\geqslant xy+xz+yz \end{split}$$

 $\bf 8.6$ (Desigualdade de Cauchy-Schwarz). Sejam x_1,x_2,\ldots,x_n e y_1,y_2,\ldots,y_n números reais quaisquer. Mostre que

$$|x_1y_1 + \ldots + x_ny_n| \le \sqrt{x_1^2 + \ldots + x_n^2} \sqrt{y_1^2 + \ldots + y_n^2}$$

Solução:

Para todo $\lambda \in \mathbb{R}$, temos que $(x_1 - \lambda y_1)^2 + \ldots + (x_n - \lambda y_n)^2 \ge 0$

$$\Rightarrow x_1^2 - 2\lambda x_1 y_1 + \lambda^2 y_1^2 + \dots + x_n^2 - 2\lambda x_n y_n + \lambda^2 y_n^2 \geqslant 0$$

$$\Rightarrow (x_1^2 + \dots + x_n^2) - 2\lambda (x_1 y_1 + \dots + x_n y_n) + \lambda^2 (y_1^2 + \dots + y_n^2) \geqslant 0$$

Fazendo, $a = y_1^2 + \ldots + y_n^2$; $b = -2(x_1y_1 + \ldots + x_ny_n)$; $c = x_1^2 + \ldots + x_n^2$, obtemos $a\lambda^2 + b\lambda + c \geqslant 0$. Logo, $b^2 - 4ac \leqslant 0$. Então,

$$4(x_1y_1 + \dots + x_ny_n)^2 \leq 4(x_1^2 + \dots + x_n^2)(y_1^2 + \dots + y_n^2)$$

$$\Rightarrow \sqrt{x_1y_1 + \dots + x_ny_n} \leq \sqrt{x_1^2 + \dots + x_n^2} \sqrt{y_1^2 + \dots + y_n^2}$$

$$\Rightarrow |x_1y_1 + \dots + x_ny_n| \leq \sqrt{x_1^2 + \dots + x_n^2} \sqrt{y_1^2 + \dots + y_n^2}$$

8.7 Duas torres de alturas h_1 e h_2 , respectivamente, localizadas numa região plana, são amarradas por uma corda APB que vai do topo A da primeira torre para um ponto P no chão entre as duas torres, e então até o topo B da segunda torre. Qual a posição do ponto P que nos dá o comprimento mínimo da corda a ser utilizada?

- **8.8** Mostre que num triângulo retângulo a altura relativa à hipotenusa é sempre menor ou igual a metade da hipotenusa. Prove ainda, que a igualdade só ocorre quando o triângulo é isósceles.
- **8.9** Prove que, entre todos os triângulos retângulos de catetos a e b e hipotenusa c fixada, o que tem maior soma dos catetos s=a+b é o triângulo isósceles.

Solução:

Como o triângulo é retângulo e isósceles, para termos a maior soma dos catetos devemos mostrar que s=a+b é máximo se $\theta=45^{\circ}$.

Figura 8.1: Triângulo retângulo isósceles.

A partir da Fig. 8.1 temos que

$$sen \theta = \frac{a}{c} \Rightarrow a = c sen \theta$$

$$cos \theta = \frac{b}{c} \Rightarrow b = c cos \theta$$

Então

$$s = a + b = c \operatorname{sen}\theta + c \cos\theta$$

 $s = c(\operatorname{sen}\theta + \cos\theta)$

Calculando a derivada de s, temos $s' = c(\cos \theta - \sin \theta)$. Fazendo s' = 0, obtemos os pontos críticos de s, então

$$c(\cos \theta - \sin \theta) = 0$$

$$\Rightarrow \cos \theta - \sin \theta = 0$$

$$\Rightarrow \cos \theta = \sin \theta$$

Neste caso, devemos ter $\theta=45^\circ$ (triângulo isósceles). Para verificar se s é máximo calculamos a segunda derivada

$$s'' = c(-\sin\theta - \cos\theta)$$

$$\Rightarrow s''(45) = c\left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right) = -\sqrt{2}c < 0$$

Portanto, s é máximo e $\theta=45^{\circ}$, e o triângulo retângulo é isósceles.

8.10 Mostre que $a^4 + b^4 + c^4 \ge abc(a + b + c), \forall a, b, c \in \mathbb{R}$.

Solução:

Pelo Ex. 8.5, temos que

$$(a^{2})^{2} + (b^{2})^{2} + (c^{2})^{2} \geqslant a^{2}b^{2} + a^{2}c^{2} + b^{2}c^{2}$$

$$\geqslant (ab)^{2} + (ac)^{2} + (bc)^{2}$$

$$\geqslant a^{2}bc + b^{2}ac + c^{2}ab$$

$$\geqslant abc(a+b+c)$$

8.11 Mostre que se $a \ge 0, b \ge 0$ e $c \ge 0$, então

$$(a+b)(a+c)(b+c) \geqslant 8abc$$

Solução:

Algumas das propriedades dos números reais são: Sejam a, b, c, d positivos.

- i) Se a > b e c > d, então a + c > b + d.
- ii) Se a > b e c > d, então ac > bd.

Com estas propriedades e o Ex. 8.3, temos

$$\frac{a+b}{2} \geqslant \sqrt{ab} \Rightarrow a+b \geqslant 2\sqrt{ab} \tag{8.1}$$

analogamente, temos

$$a + c \geqslant 2\sqrt{ac} e b + c \geqslant 2\sqrt{bc}$$
 (8.2)

Multiplicando as Eq. (8.1) por Eq. (8.2), obtemos

$$(a+b)(a+c) \ge 2\sqrt{ab}2\sqrt{ac}$$

 $\Rightarrow (a+b)(a+c) \ge 4\sqrt{a^2bc}$

continuando a multiplicação, obtemos

$$(a+b)(a+c)(b+c) \geqslant 4\sqrt{a^2bc}2\sqrt{bc}$$

$$\Rightarrow (a+b)(a+c)(b+c) \geqslant 8\sqrt{a^2b^2c^2}$$

$$\Rightarrow (a+b)(a+c)(b+c) \geqslant 8abc$$

8.12 Mostre a desigualdade de Bernoulli

$$(1+x)^n \geqslant 1 + nx$$

para todo x positivo e n inteiro positivo.

Solução:

Por indução, temos que para $n=1, (1+x)\geqslant 1+1.x$. Suponha que vale para n=k, então $(1+x)^k\geqslant 1+kx$, para algum $k\in\mathbb{N}$. Devemos mostrar que vale para n=k+1, logo

$$(1+x)^{k+1} = (1+x)^k \underbrace{(1+x)}_{>0} \geqslant (1+kx)(1+x)$$

$$\Rightarrow (1+x)^{k+1} \geqslant 1+x+kx+kx^2$$

$$\Rightarrow (1+x)^{k+1} \geqslant 1+(k+1)x+\underbrace{kx^2}_{>0} \geqslant 1+(k+1)x$$

$$\Rightarrow (1+x)^{k+1} \geqslant 1+(k+1)x$$

$$\therefore (1+x)^n \geqslant 1+nx, \forall x > 0 \text{ e } n \in \mathbb{N}$$

 $8.13~{
m Se}~a,b,c,d$ são números reais positivos, mostre que

$$(a+b+c+d)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\geqslant 16$$

 $\mathbf{8.14}\,$ Mostre que se $a\geqslant 0, b\geqslant 0$ e $c\geqslant 0,$ então

$$(ab + bc + ca) \geqslant a\sqrt{bc} + b\sqrt{ac} + c\sqrt{ab}$$

Solução:

A partir do Ex. 8.3, temos que

$$\frac{b+c}{2} \geqslant \sqrt{bc} \Rightarrow \frac{ab+ac}{2} \geqslant a\sqrt{bc}$$
$$\frac{a+c}{2} \geqslant \sqrt{ac} \Rightarrow \frac{ba+bc}{2} \geqslant b\sqrt{ac}$$
$$\frac{a+b}{2} \geqslant \sqrt{ab} \Rightarrow \frac{ca+cb}{2} \geqslant c\sqrt{ab}$$

Somando, obtemos

$$\begin{split} &\frac{ab+ac}{2}+\frac{ba+bc}{2}+\frac{ca+cb}{2}\geqslant a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\\ &\Rightarrow \frac{2ab+2ac+2bc}{2}\geqslant a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\\ &\Rightarrow (ab+ac+bc)\geqslant a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab} \end{split}$$

8.15 Mostre que se $x \ge 0$, então $3x^3 - 6x^2 + 4 \ge 0$.

8.16 Mostre que se $x \ge 0$, então $2x + \frac{3}{8} \ge 4\sqrt{x}$.

- **8.17** A soma de três números reais positivos é 6. Mostre que a soma de seus quadrados não é menor que 12.
- **8.18** Os centros de três círculos que não se interceptam estão sobre uma reta. Prove que se um quarto círculo toca de forma tangente os três círculos, então o raio deste é maior que pelo menos um dos raios dos três círculos dados.
- **8.19** Mostre que em todo triângulo a soma dos coprimentos das medianas é menor que o perímetro do triângulo e maior que o semi-perímetro deste.
- **8.20** Sejam A e B subconjuntos não vazios e limitados de números reais. Mostre que se $A \subset B$, então $\inf(A) \ge \inf(B)$ e $\sup(A) \le \sup(B)$.

Solução:

Ae Bsão limitados, então existem $\inf(A),\inf(B),\sup(A)$ e $\sup(B).$ Se $A\subset B\Rightarrow$ se $x\in A\Rightarrow x\in B.$

Figura 8.2

Seja $a = \inf(A) \Rightarrow a \leqslant x, \forall x \in A$. $a \notin a$ maior das cotas inferiores de A.

Seja $b = \inf(B) \Rightarrow b \leqslant y, \forall y \in B$. b é a maior das cotas inferiores de B.

 $b \leqslant y, \forall y \in B, \text{ mas } A \subset B.$

Então, $b \leqslant x, \forall x \in A$, implica que b é cota inferior de A;

Mas $a = \inf(A) \Rightarrow b \leqslant a$

Régis © 2009

$$\Rightarrow \inf(B) \leqslant \inf(A)$$

Seja $a' = \sup(A) \Rightarrow a' \geqslant x, \forall x \in A.$ a' é a menor das cotas superiores de A. Seja $b' = \sup(B) \Rightarrow b' \geqslant y, \forall y \in B.$ b' é a menor das cotas superiores de B. $b' \geqslant y, \forall y \in B, \text{ mas } A \subset B.$

Então, $b' \geqslant x, \forall x \in A$, implica que b' é cota superior de A; Mas $a' = \sup(A) \Rightarrow a' \leqslant b'$

$$\Rightarrow \sup(A) \leqslant \sup(B)$$

8.21 Sejam A e B dois subconjuntos de \mathbb{R} não vazios, limitados inferiormente e rum número real tal que $r \leq a+b$ para todo $a \in A$ e para todo $b \in B$. Mostre que $r \leq \inf(A) + \inf(B)$. Enuncie o análogo para supremos.

8.22 Dados dois subconjuntos A e B de \mathbb{R} limitados, definimos o conjunto

$$A + B = \{a + b, a \in A, b \in B\}.$$

Mostre que $\sup(A+B) = \sup(A) + \sup(B)$ e $\inf(A+B) = \inf(A) + \inf(B)$.

Solução:

Mostremos que $\sup(A+B) = \sup(A) + \sup(B)$.

A + B é limitado superiormente, pois se c é cota superior de A e c' é cota superior de B, então c + c' é cota superior de A + B.

De fato,

$$c \geqslant a, \forall a \in A$$

 $c' \geqslant b, \forall b \in B$
 $c + c' \geqslant a + b, \forall a + b \in A + B$

Portanto, A + B possui supremo.

 $\sup(A)$ é cota superior de A e $\sup(B)$ é cota superior de B,

 $\Rightarrow \sup(A) + \sup(B)$ é cota superior de A + B.

Dado $\varepsilon > 0$, existe

$$x' \in A \text{ tal que } \sup(A) - \frac{\varepsilon}{2} < x' \in A$$
$$y' \in B \text{ tal que } \sup(B) - \frac{\varepsilon}{2} < y' \in B$$
$$\Rightarrow \sup(A) + \sup(B) - \varepsilon < x' + y' \in A + B.$$

$$y' \in B$$
 tal que $\sup(B) - \frac{\varepsilon}{2} < y' \in B$

$$\Rightarrow \sup(A) + \sup(B) - \varepsilon < x' + y' \in A + B$$

$$\therefore \sup(A) + \sup(B) = \sup(A + B)$$

Falta mostrar que $\inf(A + B) = \inf(A) + \inf(B)$.

Régis © 2009 105Análise Matemática

capítulo 9

Lista 03 - Sequências

9.1 Usando a definição, mostre que:

a)
$$\lim_{n \to \infty} \frac{n}{n^2 + 1} = 0$$

b)
$$\lim_{n \to \infty} \frac{2n^2}{n^2 + 7} = 2$$

c)
$$\lim_{n \to \infty} \frac{3n\sqrt{n}}{n\sqrt{n} + 5} = 3$$

- 9.2 Mostre que uma sequência só pode convergir para um único limite.
- **9.3** Mostre que se uma sequência (a_n) tem limite L, então $(|a_n|)$ tem limite |L|. Dê exemplo de uma sequência (a_n) tal que (a_n) não converge mas $(|a_n|)$ converge.
- **9.4** Seja (a_n) e (b_n) sequências tais que $|a_n-a|< C|b_n|$, onde a é um número real e C uma constante positiva. Usando a definição de limite mostre que se (b_n) converge para zero, então (a_n) converge para a.

Solução:

Dado
$$\varepsilon > 0, \exists N \in \mathbb{N}$$
 tal que se $n > N$, então $|b_n| < \frac{\varepsilon}{c}$.
Assim, se $n > N$, então $|a_n - a| < c \cdot \frac{\varepsilon}{c} = \varepsilon$.

Régis © 2009

9.5 Mostre que se (a_n) é uma sequência que converge para zero e (b_n) é uma sequência limitada, então (a_nb_n) converge para zero.

Solução:

Existe c > 0 tal que $|b_n| < c, \forall n \in \mathbb{N}$. Dado $\varepsilon > 0$, como $\lim_{n \to \infty} a_n = 0$ podemos encontrar $n \in \mathbb{N}$ tal que $n > N \Rightarrow |a_n| < \frac{\varepsilon}{c}$, logo

$$|a_n b_n| = |a_n||b_n| < \frac{\varepsilon}{c}.c = \varepsilon$$

$$\therefore \lim_{n \to \infty} a_n b_n = 0$$

9.6 Mostre que a sequência $a_n = \sqrt{n+h} - \sqrt{n}$ converge para zero.

Solução:

Façamos

$$a_n = \left(\sqrt{n+h} - \sqrt{n}\right) \frac{\left(\sqrt{n+h} + \sqrt{n}\right)}{\left(\sqrt{n+h} + \sqrt{n}\right)} = h \frac{1}{\sqrt{n+h} + \sqrt{n}}$$

Note que h é limitada (Ex. 18.5) e a fração converge para zero. Logo, o produto (a_n) converge para zero. \Box

9.7 Se 0 < a < 1, mostre que a sequência $a_n = a^n$ é convergente e que converge para zero.

Solução:

Se
$$a < 1 \Rightarrow \frac{1}{a} > 1 \Rightarrow \frac{1}{a} = 1 + x \Rightarrow \frac{1}{a^n} = (1 + x)^n \geqslant 1 + nx$$
 (Bernoulli, Ex. 8.12).

Logo,
$$\frac{1}{a^n} \ge 1 + nx \Rightarrow \frac{1}{1 + nx} \ge a^n \Rightarrow a^n \le \frac{1}{1 + nx} < \varepsilon$$
.

$$\lim_{n \to \infty} \frac{1}{1 + nx} = 0$$

$$\frac{1}{1+nx}<\frac{1}{nx}.\ \ \mathrm{Dado}\ \varepsilon>0, \exists N\in\mathbb{N}\ \mathrm{tal}\ \mathrm{que}\ N>\frac{1}{\varepsilon x}\Rightarrow\varepsilon>\frac{1}{Nx}.\ \ \mathrm{Se}\ n>N;$$

$$\frac{1}{nx}<\frac{1}{Nx}<\varepsilon.$$

- **9.8** Se a_n converge para L e L > 0, mostre que $a_n > 0$ a partir de um certo N.
- 9.9 Seja (a_n) uma sequência monótona que possui uma subsequência convergindo para L. Mostre que (a_n) também converge para L.

Solução:

 (a_n) é monótona crescente, então $n < m \Rightarrow a_n < a_m$. Existe $b_j = a_{n_j}$ (subsequência) convergente.

Dado $\varepsilon > 0, \exists J \in \mathbb{N}$ tal que se $j > J, |b_j - L| < \varepsilon$, isto é,

$$L-\varepsilon < b_j < L+\varepsilon, \forall j > J, \text{ ou seja, } L-\varepsilon < a_{n_j} < L+\varepsilon, \forall j > J.$$

$$\forall j > J, b_j = a_{n_j} \in (L - \varepsilon, L + \varepsilon).$$

Dado $j>J, j+1>j\Rightarrow a_{n_j}< a_{n_{j+1}}.$ Como (a_n) é monótona, se $n_j< m< n_{j+1},$ então $a_{n_j}< a_m< a_{n_{j+1}}\Rightarrow a_m\in$ $L-\varepsilon, L+\varepsilon.$

Além disso, dado m > J, escolha $n_i > m$.

$$a_m < a_{n_i} \Rightarrow a_m \in (L - \varepsilon, L + \varepsilon)$$

Portanto, (a_n) converge para L.

- 9.10 Construa uma subsequência que possua uma subsequência convergindo para 12 e outra convergindo para -30.
- 9.11 Construa uma subsequência que tenha subsequências convergindo, cada uma, para cada um dos números inteiros positivos.
- **9.12** Seja (a_n) uma sequência tal que $a_n > 0, \forall n$ e $\frac{a_n + 1}{a_n} \leqslant c$, com 0 < c < 1. Mostre que (a_n) converge para zero.

Solução:

$$\begin{aligned} & \frac{a_{n+1}}{a_n} \leqslant c \Rightarrow a_{n+1} \leqslant c.a_n \\ & \Rightarrow c.a_{n+1} \leqslant c^2 a_n \\ & \Rightarrow a_{n+2} \leqslant c.a_{n+1} \leqslant c^2 a_n \end{aligned}$$

Logo, $a_{n+2} \leqslant c^2 a_n$.

$$a_{n+3} \leqslant c.a_{n+2} \leqslant c^3 a_n \Rightarrow a_{n+3} \leqslant c^3 a_n$$

De um modo geral, $a_{n+p} \leqslant c^p a_n$.

Fixe $n \in \mathbb{N}$. Pelo Ex. 18.7 tende a zero, então dado $\varepsilon > 0, \exists p$ tal que $c^p a_n < \varepsilon$. Agora, se $n > N + p \Rightarrow n = N + p + r$.

$$a_n = a_{N+p+r} \leqslant c^{p+r} a_n < \varepsilon$$

Portanto, a_n tende a zero.

- **9.13** Se a > 1 e k é um inteiro positivo, mostre que $\lim_{n \to \infty} \frac{n^k}{a^n} = 0$.
- **9.14** Se a > 1, mostre que $\lim_{n \to \infty} \frac{a^n}{n!} = 0$.
- **9.15** Mostre que $\lim_{n\to\infty} \frac{n!}{n^n} = 0$.
- **9.16** Se a > 0, mostre que $\lim_{n \to \infty} \sqrt[n]{a} = 1$.

Solução:

Se
$$a=1$$
, ok.
Se $a>1$, $\sqrt[n]{a}>1$

$$\Rightarrow \sqrt[n]{a}=1+x_n$$

$$\Rightarrow a=(1+x_n)^n\geqslant 1+nx_n \text{ (Bernoulli, Ex. 8.12)}$$

$$\Rightarrow a\geqslant 1+nx_n$$

$$\Rightarrow \frac{a-1}{n} \geqslant x_n$$

Dado $\varepsilon > 0, \exists N \in \mathbb{N}$ tal que se n > N, então $x_n < \varepsilon \Rightarrow \lim_{n \to \infty} x_n = 0$.

- **9.17** Mostre que $\lim_{n\to\infty} \sqrt[n]{n} = 1$.
- **9.18** Mostre que $\lim_{n\to\infty} \sqrt[n]{\sqrt[n]{n}} = 1$.
- **9.19** Mostre que $\lim_{n\to\infty} \sqrt[n]{n!} = 1$.
- **9.20** Mostre que $a_n = 5n^3 4n^2 + 7$ tende para infinito.
- **9.21** Defina a sequência (a_n) pondo $a_{n+1} = (a_n)^3 + 6$, para $n \ge 1$.
- a) Se $a_1 = \frac{1}{2}$, mostre que (a_n) converge.
- b) Analise a convergência para o caso em que $a_1 = \frac{3}{2}$.
- **9.22** Considere a sequência dada por $a_1 = \sqrt{2}$ e $a_n = \sqrt{2 + a_{n-1}}$, para n > 1. Escreva os cinco primeiros termos dessa sequência, mostre que a mesma converge e calcule seu limite.

9.23 Dado um número positivo N e fixado um número qualquer $a_0=a$, não nulo, seja $\left[\frac{a_{n-1}+\frac{N}{a_{n-1}}}{2}\right]$, para n>1. Mostre que (a_n) é decrescente a partir do segundo termo e limitada, portanto convergente. Calcule o limite de a_n .

capítulo 10

Lista 04 - Séries

10.1 Chama-se série harmônica, em geral, toda série do tipo

$$\sum_{n=1}^{\infty} \frac{1}{a+nr},$$

com $r \neq 0$. Mostre que toda série desse tipo é divergente.

Solução:

Caso particular:
$$\sum_{n=1}^{\infty} \frac{1}{2+3n}$$

$$\frac{1}{2+3n} > \frac{1}{3+3n} = \frac{1}{3(n+1)} = \frac{1}{3} \frac{1}{(n+1)}$$

$$= \frac{1}{3} \sum_{n=1}^{\infty} \frac{1}{n+1}$$

$$= \frac{1}{3} \sum_{N=2}^{\infty} \frac{1}{N}$$
diverge

Portanto, $\sum_{n=1}^{\infty} \frac{1}{2+3n}$ diverge.

Afirmação:
$$\sum_{N=2}^{\infty} \frac{1}{N} \text{ diverge.}$$
 De fato, $\forall k \in \mathbb{R}, \exists N \in \mathbb{N} \text{ tal que } S_N > k.$

Vamos mostrar que $\frac{1}{3} \sum_{N=2}^{\infty} \frac{1}{N}$ também diverge.

 $\forall k \in \mathbb{R}, \exists N \in \mathbb{N} \text{ tal que } S_N > 3k \Rightarrow \frac{1}{3}S_n > k.$ Finalmente, resolvendo o exercício, temos

i) Se a=r, então

$$\frac{1}{a+nr} = \frac{1}{a+na} = \frac{1}{a(n+1)}$$

Portanto, $\sum_{n=1}^{\infty} \frac{1}{a+nr}$ diverge.

ii) Se a > r, então

$$\frac{1}{a+nr} > \frac{1}{a+na} = \frac{1}{a(n+1)}$$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{a(n+1)} = \frac{1}{a} \sum_{n=1}^{\infty} \frac{1}{n+1} \text{ diverge.}$$

iii) Se a < r, então

$$\frac{1}{a+nr} > \frac{1}{r+nr} = \frac{1}{r(n+1)} = \frac{1}{r} \frac{1}{(n+1)}$$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{r} \frac{1}{(n+1)} = \frac{1}{r} \sum_{n=1}^{\infty} \frac{1}{n+1} \text{ diverge.}$$

Definição 10.1 (a_n) é dita sequência de Cauchy se dado $\varepsilon > 0, \exists N > 0 \in \mathbb{N}$ tal

$$\forall n, m > N, |a_n - a_m| < \varepsilon.$$

Proposição 10.2 Se $\sum a_n$ é convergente então (a_n) converge para 0.

Propriedades de somatório.

1.
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

$$2. \sum_{k=1}^{n} ca_k = c \sum_{k=1}^{n} a_k$$

3.
$$\sum_{k=1}^{n} (a_{k+1} - a_k) = a_{n+1} - a_1$$

Exemplo 10.1

$$\sum_{k=1}^{n} \left(\frac{1}{k+1} - \frac{1}{k} \right) = \left(\frac{1}{2} - 1 \right) + \left(\frac{1}{2} - \frac{1}{2} \right) + \dots + \left(\frac{1}{n+1} - \frac{1}{n} \right) = \frac{1}{n+1} - 1$$

10.2 Obtenha a reduzida da série $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$, e mostre que seu limite é 1.

Solução:

Seja
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} a_n.$$

$$S_n = a_1 + a_2 + \dots + a_n$$

$$S_n = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots + \frac{1}{n(n+1)}$$

Analisemos

$$a_n = \frac{1}{n(n+1)}$$

$$a_n = \frac{A}{n} + \frac{B}{n+1}$$

$$a_n = \frac{A(n+1) + Bn}{n(n+1)}$$

$$a_n = \frac{(A+B)n + A}{n(n+1)} = \frac{1}{n(n+1)}$$

$$\Rightarrow \begin{cases} A+B=0 \\ A=1 \end{cases} \Rightarrow B=-1$$

$$\Rightarrow \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$\Rightarrow \sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right) = S_n$$

$$\Rightarrow S_n = \sum_{k=1}^{n} \left(\underbrace{\frac{1}{k}}_{a_k} - \underbrace{\frac{1}{k+1}}_{a_{k+1}}\right) \stackrel{ex}{=} 1 - \underbrace{\frac{1}{n+1}}_{n+1}$$

$$\Rightarrow \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1$$

Portanto, $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converge para 1 e sua reduzida é $S_n = 1 - \frac{1}{n+1}$.

10.3 Sendo $a \neq -1$, mostre que a série $\sum_{n=1}^{\infty} \frac{1}{(a+n)(a+n+1)}$, converge para $\frac{1}{a+1}$.

Solução:

Seja
$$S_n = \sum_{k=1}^n \frac{1}{(a+k)(a+k+1)}$$

$$\frac{1}{(a+k)(a+k+1)} = \frac{A}{a+k} + \frac{B}{a+k+1}$$

$$= \frac{A(a+k+1) + B(a+k)}{(a+k)(a+k+1)}$$

$$= \frac{aA+kA+A+aB+kB}{(a+k)(a+k+1)}$$

$$= \frac{(A+B)k + (A+aB+kB)}{(a+k)(a+k+1)}$$

$$\Rightarrow \begin{cases} A+B=0 \\ A+aA+aB=1 \end{cases} \Rightarrow \begin{cases} A+B=0 \\ A+a(A+B)=1 \end{cases} \Rightarrow \begin{cases} A=1 \\ B=-1 \end{cases}$$

$$\Rightarrow S_n = \sum_{k=1}^n \left(\frac{1}{(a+k)} - \frac{1}{(a+k)+1} \right)$$

$$S_n = \left(\frac{1}{a+1} - \frac{1}{a+2} \right) + \left(\frac{1}{a+2} - \frac{1}{a+3} \right) + \dots + \left(\frac{1}{a+n} - \frac{1}{a+n+1} \right)$$

$$\Rightarrow S_n = \frac{1}{a+1} - \frac{1}{a+n+1}$$

$$\Rightarrow \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\frac{1}{a+1} - \frac{1}{a+n+1} \right) = \frac{1}{a+1}$$
Portanto,
$$\sum_{n=1}^\infty \frac{1}{(a+n)(a+n+1)}$$
 converge para
$$\frac{1}{a+1}.$$

10.4 Use o critério de Cauchy para mostrar que o termo geral de uma série convergente tende a zero.

Solução:

Queremos mostrar que se $\sum_{n=1}^{\infty} a_n$ é convergente, então $\lim_{n\to\infty} a_n = 0$.

Se
$$\sum_{n=1}^{\infty} a_n$$
 é convergente, então $\exists \lim_{n \to \infty} S_n = a, a \in \mathbb{R}$.

Isto implica que (S_n) é uma sequência convergente, então (S_n) é uma sequência de Cauchy.

Dado $\varepsilon>0, \exists N\in\mathbb{N}$ tal que m>n>N, então $|S_m-S_n|<\varepsilon.$ Tomando $m=n+1\Rightarrow |S_{n+1}-S_n|<\varepsilon.$

Tomando
$$m = n + 1 \Rightarrow |S_{n+1} - S_n| < \varepsilon$$
.

$$S_{n+1} = a_1 + a_2 + \dots + a_n + a_{n+1}$$

$$S_n = a_1 + a_2 + \dots + a_n$$

$$\Rightarrow |S_{n+1} - S_n| = |a_{n+1}|$$

$$\Rightarrow |a_{n+1}| < \varepsilon$$

$$\Rightarrow |a_{n+1} - 0| < \varepsilon$$

Portanto, dado $\varepsilon > 0, \exists N \in \mathbb{N}$ tal que $n > N \Rightarrow |a_n - 0| < \varepsilon$, ou seja, $\lim_{n \to \infty} a_n = 0.$

10.5 Mostre que o termo geral da série $\sum_{n=1}^{\infty} \log \left(1 + \frac{1}{n}\right)$ converge para zero, mas que a série é divergente.

Solução:

$$S_n = \log 2 + \log \frac{3}{2} + \log \frac{4}{3} + \log \frac{5}{4} + \dots + \log \frac{n}{n-1} + \log \frac{n+1}{n}$$

$$S_n = \log \left(2 \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} \dots \frac{\cancel{n}}{\cancel{n-1}} \frac{n+1}{\cancel{n}} \right)$$

$$S_n = \log(n+1)$$

Afirmação: $S_n = \log(n+1)$.

- i) Para $n=2, S_2=\log 3$. OK
- ii) Suponha válido para n, isto é, $S_n = \log(n+1)$.

$$S_{n+1} = S_n + a_{n+1}$$

$$= \log(n+1) + \log\left(1 + \frac{1}{n+1}\right)$$

$$= \log(n+1) + \log\left(\frac{n+2}{n+1}\right)$$

$$= \log(n+2)$$

Portanto, $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \log(n+1) = \infty$. Portanto, a série diverge.

10.6 Use o critério de Cauchy para mostrar que se $\sum_{n=1}^{\infty}|a_n|$, converge, então $\sum_{n=1}^{\infty}a_n$ também converge.

Solução:

$$\sum_{n=1}^{\infty} |a_n| \text{ converge se, e somente se, existe } \lim_{n\to\infty} S_n = L \text{ onde } S_n = |a_1| + |a_2| + |a_n|.$$
 + $|a_n|$. Então, dado $\varepsilon > 0, \exists N > 0$ tal que $\forall m, n > N \Rightarrow |S_m - S_n| < \varepsilon$.

Então, dado $\varepsilon>0, \exists N>0$ tal que $\forall m,n>N\Rightarrow |S_m-S_n|<\varepsilon.$ Suponha m>n>N, então

118 Análise Matemática Régis © 2009

$$S_{m} = \underbrace{|a_{1}| + |a_{2}| + \ldots + |a_{n}|}_{S_{n}} + |a_{n+1}| + \ldots + |a_{m}|$$

$$\Rightarrow S_{m} - S_{n} = |a_{n+1}| + |a_{n+2}| + \ldots + |a_{m}|$$

$$\Rightarrow |S_{m} - S_{n}| = |a_{n+1}| + |a_{n+2}| + \ldots + |a_{m}| < \varepsilon$$

Seja
$$\sum_{n=1}^{\infty} a_n$$
, então $T_n = a_1 + a_2 + \ldots + a_n$ é uma sequência.

Lembrando: Se dado $\varepsilon>0, \exists N>0$ tal que $m,n>N\Rightarrow |T_m-T_n|<\varepsilon,$ então (T_n) é convergente.

$$T_m = \underbrace{a_1 + a_2 + \ldots + a_n}_{T_n} + a_{n+1} + \ldots + a_m$$

$$\Rightarrow T_m - T_n = a_{n+1} + a_{n+2} + \ldots + a_m$$

$$\Rightarrow |T_m - T_n| = |a_{n+1} + a_{n+2} + \ldots + a_m|$$

Usando a desigualdade triangular, temos

$$|a_{n+1} + a_{n+2} + \dots + a_m| \le |a_{n+1}| + |a_{n+2}| + \dots + |a_m| < \varepsilon$$

 $\Rightarrow |T_m - T_n| < \varepsilon$

Portanto, T_m é uma sequência de Cauchy, logo (T_n) é convergente, então existe $\lim_{n\to\infty}T_n.$

119

Portanto
$$\sum_{n=1}^{\infty} a_n$$
 é convergente.

10.7 Calcule a reduzida da série $\sum_{n=1}^{\infty} \frac{n-1}{n!}$, e mostre que seu limite é 1.

Solução:

Seja
$$S_n = \sum_{k=1}^n \frac{k-1}{k!}$$
. Temos que
$$a_n = \frac{n-1}{n!} e \ a_{n+1} = \frac{n}{(n+1)!}$$

Usando o Teste da Razão, temos

$$\frac{a_{n+1}}{a_n} = \left(\frac{n}{(n+1)!}\right) \left(\frac{n!}{n-1}\right) = \frac{n}{(n+1)(n-1)}$$

$$\Rightarrow \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n}{(n+1)(n-1)} = \lim_{n \to \infty} \frac{n}{n^2 - 1} = \lim_{n \to \infty} \frac{\frac{1}{n}}{1 - \frac{1}{n^2}} = 0 < 1$$

Régis © 2009 Análise Matemática

Portanto, pelo Teste da Razão, $\sum_{n=1}^{\infty} \frac{n-1}{n!}$ converge.

Note que

$$\frac{k-1}{k!} = \frac{k}{k!} - \frac{1}{k!} = \frac{k}{k(k-1)!} - \frac{1}{k!} = \underbrace{\frac{1}{(k-1)!}}_{a_k} - \underbrace{\frac{1}{k!}}_{a_{k+1}}$$

$$\Rightarrow S_n = \sum_{k=1}^n \left(\frac{1}{(k-1)!} - \frac{1}{k!} \right)$$

$$S_n = \left(\frac{1}{0!} - \frac{1}{1} \right) + \left(\frac{1}{1!} - \frac{1}{2!} \right) + \left(\frac{1}{2!} - \frac{1}{3!} \right) + \dots + \left(\frac{1}{(n-1)!} - \frac{1}{n!} \right)$$

$$S_n = 1 - \frac{1}{n!}$$

$$\Rightarrow \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{n!} \right) = 1$$

Portanto,
$$\sum_{n=1}^{\infty} \frac{n-1}{n!}$$
 converge para 1.

10.8 Mostre que a série $\sum_{n=0}^{\infty} \frac{(-1)^n (2n+5)}{(n+2)(n+3)}$, converge para $\frac{1}{2}$.

Solução

120

Se fosse para mostrar somente que converge, poderíamos fazer por absolutamente convergente:

$$\sum_{n=0}^{\infty} a_n = \frac{5}{6} - \frac{7}{12} + \frac{9}{20} - \frac{11}{30} + \dots$$
$$\sum_{n=0}^{\infty} |a_n| = \frac{5}{6} + \frac{7}{12} + \frac{9}{20} + \frac{11}{30} + \dots$$

Mostre que converge (Exercício)...

Resolvendo o exercício, iniciemos usando frações parciais, então

$$\begin{split} &\frac{2n+5}{(n+2)(n+3)} = \frac{1}{n+2} + \frac{1}{n+3} \\ &\Rightarrow \frac{(-1)^n(2n+5)}{(n+2)(n+3)} = \frac{(-1)^n}{n+2} + \frac{(-1)^n}{n+3} \\ &\sum_{n=0}^{\infty} \left(\frac{(-1)^n}{n+2} + \frac{(-1)^n}{n+3} \right) \end{split}$$

$$S_{n} = a_{0} + a_{1} + a_{2} + \dots + \overbrace{a_{n-1}}^{\text{n-ésimo}}$$

$$S_{n} = \left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{4} + \frac{1}{5}\right) + \left(\frac{1}{5} + \frac{1}{6}\right) + \dots + \left(\frac{(-1)^{n-1}}{n+1} + \frac{(-1)^{n-1}}{n+2}\right)$$

Afirmação: $S_n = \frac{1}{2} + \frac{(-1)^{n-1}}{n+2}$.

i) Para
$$n = 1 \Rightarrow S_1 = a_0 = \left(\frac{1}{2} + \frac{1}{3}\right) = \frac{1}{2} + \frac{(-1)^{1-1}}{1+2}$$
. OK

ii) Suponha que vale para k,

$$S_k = \frac{1}{2} + \frac{(-1)^{k-1}}{k+2}$$

$$S_k = \frac{1}{2} + \frac{(-1)^{k-1}}{k+2}$$

$$S_{k+1} = \underbrace{a_0 + a_1 + \dots + a_{k-1}}_{k \text{ termos}} + a_k$$

$$S_{k+1} = S_k + a_k$$

$$S_{k+1} = \left(\frac{1}{2} + \frac{(-1)^{k-1}}{k+2}\right) + \left(\frac{(-1)^k}{k+2} + \frac{(-1)^k}{k+3}\right)$$

Se k é par, então (k-1) é impar. Implica que $(-1)^k = 1$ e $(-1)^{k-1} = -1$; Se k é impar, então (k-1) é par. Implica que $(-1)^k = -1$ e $(-1)^{k-1} = 1$.

Então,
$$\forall k \Rightarrow S_{k+1} = \frac{1}{2} + \frac{(-1)^{k}}{\underbrace{k+3}}$$
, então vale para $k+1$.

Logo, a afirmação é verdadeira.

$$\lim_{n\to\infty}S_n=\lim_{n\to\infty}\left(\frac{1}{2}+\frac{(-1)^{n-1}}{n+2}\right)=\frac{1}{2}$$
 Portanto,
$$\sum_{n=1}^\infty a_n \text{ converge para }\frac{1}{2}.$$

Exemplo 10.2 Verifique se $\sum_{n=1}^{\infty} (n^b a^n), 0 < a < 1, b$ fixo, converge.

Solução:

Seja $a_n = n^b a^n$, 0 < a < 1. Pelo Teste da Razão, temos

$$\begin{aligned} a_{n+1} &= (n+1)^b a^{n+1} \\ \frac{a_{n+1}}{a_n} &= \frac{(n+1)^b a^{n+1}}{n^b a^n} = \left(\frac{n+1}{n}\right)^b a \\ \Rightarrow \lim_{n \to \infty} \frac{a_{n+1}}{a_n} &= \lim_{n \to \infty} \left(\frac{n+1}{n}\right)^b a = a < 1 \end{aligned}$$

Portanto,
$$\sum_{n=1}^{\infty} (n^b a^n)$$
 converge, $\forall 0 < a < 1$.

10.9 Mostre que a série
$$\sum_{n=2}^{\infty} \frac{n^2 - n - 1}{n!}$$
, converge para 2.

Solução:

Temos que

$$\frac{n^2 - n - 1}{n!} = \frac{n(n-1) - 1}{n!} = \frac{n(n-1)}{n!} - \frac{1}{n!} = \frac{1}{(n-2)!} - \frac{1}{n!}$$

$$\Rightarrow \sum_{n=2}^{\infty} \frac{n^2 - n - 1}{n!} = \sum_{n=2}^{\infty} \left(\frac{1}{(n-2)!} - \frac{1}{n!}\right)$$

$$S_n = a_2 + a_3 + \dots + a_{n+1}$$

$$S_n = \left(\frac{1}{0!} - \frac{1}{2!}\right) + \left(\frac{1}{1!} - \frac{1}{3!}\right) + \left(\frac{1}{2!} - \frac{1}{4!}\right) + \left(\frac{1}{3!} - \frac{1}{5!}\right) + \dots + \frac{a_{n-1}}{(n-1)!} + \left(\frac{1}{(n-2)!} - \frac{1}{n!}\right) + \left(\frac{1}{(n-1)!} - \frac{1}{(n+1)!}\right)$$

$$S_n = 1 + 1 - \frac{1}{n!} - \frac{1}{(n+1)!} = 2 - \frac{1}{n!} - \frac{1}{(n+1)!}$$

Afirmação: $S_n = 2 - \frac{1}{n!} - \frac{1}{(n+1)!}, n \geqslant 2$. De fato,

i)
$$S_2 = \left(1 - \frac{1}{2!}\right) + \left(1 - \frac{1}{3!}\right) = 2 - \frac{1}{2!} - \frac{1}{3!}$$
 OK

ii) Suponha válido para n = k,

$$\begin{split} S_k &= 2 - \frac{1}{k!} - \frac{1}{(k+1)!} \\ S_{k+1} &= \underbrace{a_2 + a_3 + a_4 + \ldots + a_{k+1}}_{S_k} + a_{k+2} \\ S_{k+1} &= \left(2 - \frac{1}{k!} - \frac{1}{(k+1)!}\right) + \left(\frac{1}{k!} - \frac{1}{(k+2)!}\right) \\ \Rightarrow S_{k+1} &= 2 - \frac{1}{(k+1)!} - \frac{1}{(k+2)!} \end{split}$$

Logo, também vale para k+1. Então, a afirmação é verdadeira $\forall n \ge 2$. Assim,

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(2 - \frac{1}{n!} - \frac{1}{(n+1)!} \right) = 2$$

Portanto, $\sum_{n=1}^{\infty} a_n$ converge para 2.

10.10 Sejam $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ séries convergentes de termos positivos,

com
$$a_n < b_n, \forall n$$
. Mostre que $\sum_{n=1}^{\infty} a_n < \sum_{n=1}^{\infty} b_n$.

Solução:

Note que

$$\begin{array}{l} a_1 < b_1 \\ a_2 < b_2 \end{array} \Rightarrow a_1 + a_2 < b_1 + b_2 \Rightarrow S_2 < T_2 \\ S_2 < T_2 \\ a_3 < b_3 \end{array} \Rightarrow S_2 + a_3 < T_2 + b_3 \Rightarrow S_3 < T_3 \\$$

Indutivamente, $S_n < T_n$, onde S_n é a reduzida de a_n e T_n é a reduzida de b_n . De fato, $S_1 < T_1$. Se $S_k < T_k$ e $a_{k+1} < b_{k+1}$

$$\Rightarrow S_k + a_{k+1} < T_k + b_{k+1} \Rightarrow S_{k+1} < T_{k+1}.$$

Como $\sum_{n=1}^{\infty}a_n$ e $\sum_{n=1}^{\infty}b_n$ são convergentes, então

$$\lim_{n\to\infty} S_n = a \in \mathbb{R} \text{ e } \lim_{n\to\infty} T_n = b \in \mathbb{R}$$

Lembrando: Se $X_n \geqslant 0, \forall n \in \mathbb{N}$, então $\lim X_n \geqslant 0$.

Temos que S_n e T_n são sequências. E $S_n^{n \to \infty} < T_n, \forall n$, então $\underbrace{T_n - S_n}_{X_n} > 0, \forall n$.

Logo,

$$\lim_{n \to \infty} (T_n - S_n) \geqslant 0$$

$$\Rightarrow \lim_{n \to \infty} T_n - \lim_{n \to \infty} S_n \geqslant 0$$

$$\Rightarrow b - a \geqslant 0$$

$$\Rightarrow a \leqslant b$$

$$\Rightarrow \lim_{n \to \infty} S_n \leqslant \lim_{n \to \infty} T_n$$

Portanto,
$$\sum_{n=1}^{\infty} a_n < \sum_{n=1}^{\infty} b_n$$
.

10.11 Mostre que se $\sum_{n=1}^{\infty} a_n$ é uma série convergente de termos positivos, então

$$\sum_{n=1}^{\infty} (a_n)^2 \text{ também é convergente.}$$

Solução:

Se $\sum_{n=1}^{\infty} a_n$ converge, então $\lim_{n\to\infty} a_n = 0 < 1$. Existe $N \in N$ tal que n > N

$$\Rightarrow a_n < 1 \Rightarrow a_n^2 < a_n$$
$$\Rightarrow \sum_{n=1}^{\infty} (a_n)^2 < \sum_{n=1}^{\infty} a_n$$

Portanto, pelo Critério da Comparação, $\sum_{n=1}^{\infty} (a_n)^2$ converge.

10.12 Sejam $\sum_{n=0}^{\infty} a_n$ uma série convergente de termos positivos e (b_n) uma sequên-

cia limitada de elementos positivos. Mostre que $\sum_{n=1}^{\infty} a_n b_n$ também é convergente.

Solução:

 $\sum_{n=1}^{\infty}a_n$ converge, então existe $\lim_{n\to\infty}S_n,$ logo (S_n) é uma sequência de Cauchy,

ou seja, dado $\varepsilon>0, \exists N\in\mathbb{N}$ tal que m>n>Nimplica $|S_m-S_n|<\varepsilon.$

Seja $T_n = a_1b_1 + a_2b_2 + \ldots + a_nb_n$ e $T_m = a_1b_1 + a_2b_2 + \ldots + a_nb_n + a_{n+1}b_{n+1} + a_nb_n$ $\ldots + a_m b_m$

$$\Rightarrow |T_m - T_n| = |a_{n+1}b_{n+1} + \ldots + a_m b_m|$$

Assim,

$$S_n = a_1 + a_2 + \dots + a_n$$

 $S_m = a_1 + a_2 + \dots + a_n + a_{n+1} + \dots + a_m$
 $|S_m - S_n| = |a_{n+1} + \dots + a_m| < \varepsilon$

Mas (b_n) é limitado, logo $|b_n| < M, \forall n$.

$$b_{n+1} < M \quad \Rightarrow \quad a_{n+1}b_{n+1} < a_{n+1}M$$

$$\vdots$$

$$b_m < M \quad \Rightarrow \quad a_mb_n < a_mM$$

$$|a_{n+1}b_{n+1} + \ldots + a_mb_m| \quad < \quad |a_{n+1}M + \ldots + a_mM|$$

$$< \quad M|a_{n+1} + \ldots + a_m|$$

$$< \quad M\frac{\varepsilon}{M} = \varepsilon$$

Então, $|T_m-T_n|<\varepsilon.$ Logo, (T_n) é de Cauchy, assim, (T_n) é convergente.

Então, existe
$$\lim_{n\to\infty} T_n$$
, portanto, $\sum_{n=1}^{\infty} a_n b_n$ converge.

10.13 Sendo $a_n \ge 0$ e $b_n \ge 0$, mostre que se as séries $\sum_{n=1}^{\infty} (a_n)^2$ e $\sum_{n=1}^{\infty} (b_n)^2$ são convergentes, então $\sum_{n=1}^{\infty} a_n b_n$ também é convergente.

Solução:

Note que $(a_n - b_n)^2 \ge 0$.

$$\Rightarrow a_n^2 - 2a_n b_n + b_n^2 \geqslant 0$$

$$\Rightarrow a_n^2 + b_n^2 \geqslant 2a_n b_n$$

$$\Rightarrow \frac{a_n^2}{2} + \frac{b_n^2}{2} \geqslant a_n b_n$$

$$\Rightarrow \underbrace{\sum_{n=1}^{\infty} \left(\frac{a_n^2}{2} + \frac{b_n^2}{2}\right)}_{\text{converge}} \geqslant \sum_{n=1}^{\infty} a_n b_n$$

$$\sum_{n=1}^{\infty} \left(\frac{a_n^2}{2} + \frac{b_n^2}{2} \right) = \frac{1}{2} \sum_{n=1}^{\infty} a^2 n + \frac{1}{2} \sum_{n=1}^{\infty} b^2 n$$
converge

Pelo Critério da Comparação, $\sum_{n=1}^{\infty} a_n b_n$ converge.

Solução:

Temos que
$$\frac{a_n}{n} = a_n \frac{1}{n}$$
.

$$\sum_{n=1}^{\infty} (a_n)^2 \text{ \'e convergente e} \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ tamb\'em \'e convergente, pelo Ex. 10.13, } \sum_{n=1}^{\infty} a_n \frac{1}{n}$$
 \'e convergente.

10.15 Verifique qual das séries abaixo converge.

$$a) \sum_{n=2}^{\infty} \frac{\log n}{n} \quad b) \sum_{n=1}^{\infty} \frac{1}{\log n} \quad c) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 1}} \quad d) \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2 + 1}}$$

Solução:

a) Note que

$$\log n > 1, \forall n > 10$$

$$\Rightarrow \log n \cdot \frac{1}{n} > 1 \cdot \frac{1}{n}, \forall n > 10$$

Pelo critério da comparação $\sum_{N=2}^{\infty} \frac{\log n}{n}$ diverge.

b) Afirmação: $\log n < n, \forall n \Rightarrow 10^n > n, \forall n$. De fato,

i) Para
$$n = 2, 10^2 > 2$$
.

ii) Suponha válido para n, isto é, $10^n > n$.

Para
$$n + 1, 10^{n+1} = 10^n.10 > 10n > n + 1.$$

Então,
$$\log n < n \Rightarrow \frac{1}{\log n} > \frac{1}{n} \ (\frac{1}{n} \text{ \'e harmônica}).$$

Pelo critério da comparação, $\sum_{N=2}^{\infty} \frac{1}{\log n}$ é divergente.

c) Temos que

$$\sqrt{n^3 + 1} > \sqrt{n^3}$$

$$\frac{1}{\sqrt{n^3 + 1}} < \frac{1}{\sqrt{n^3}} = \frac{1}{n^{3/2}}; \frac{3}{2} > 1$$

Logo,
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3}}$$
 converge, pelo Critério da Comparação, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+1}}$ converge.

d) Vamos tentar mostrar que $\sum_{n=1}^{\infty} a_n$ diverge.

Vamos tentar verificar que

$$\frac{1}{n} < \frac{1}{\sqrt[3]{n^2 + 1}} \stackrel{?}{\Rightarrow} n > \sqrt[3]{n^2 + 1}$$

Temos que

$$n^{3} > n^{2} + 1, \text{ para } n > 1$$

$$\Rightarrow n > \sqrt[3]{n^{2} + 1}$$

$$\Rightarrow \frac{1}{n} < \frac{1}{\sqrt[3]{n^{2} + 1}}$$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n} < \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^{2} + 1}}$$

Pelo Critério da Comparação, $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2+1}}$ diverge.

Revisão

Série Geométrica

$$\sum_{n=1}^{\infty} c^n$$
; base fixa

- Se |c| < 1, então $\sum_{n=1}^{\infty} c^n$ converge;
- Se |c| > 1, então $\sum_{n=1}^{\infty} c^n$ diverge;

Família das Harmônicas

$$\sum_{n=1}^{\infty} \frac{1}{n^r}$$
; expoente fixo

- Se $r \leq 1$, então $\sum_{r=1}^{\infty} \frac{1}{n^r}$ diverge;
- Se r > 1, então $\sum_{n=1}^{\infty} \frac{1}{n^r}$ converge;

Extras

Exemplo 10.3 Seja $\sum_{n=1}^{\infty} a_n$ convergente, $a_n > 0$. Mostre que

- a) $\sum_{n=1}^{\infty} a_n x^n, x \in [-1, 1]$ converge.
- b) $\sum_{n=1}^{\infty} a_n \cos(nx)$ converge, $\forall x \in \mathbb{R}$.

Solução:

a) Afirmação: $(b_n) = (x^n)$ é limitada. De fato,

$$|x^n| = |x|^n$$

 $x \in [-1, 1] \Rightarrow |x| \leqslant 1 \Rightarrow |x|^n \leqslant 1$

$$\Rightarrow$$
 (x^n) é limitada. Portanto, $\sum_{n=1}^{\infty} a_n x^n$ converge.

- b) Temos que
 - i) Pelo Ex. 10.12, $\sum_{n=1}^{\infty} a_n$ converge e $(b_n) = (\cos(nx))$ é limitada, pois, $\cos(nx) \in [-1, 1], \forall x \in \mathbb{R}$. Portanto, $\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} a_n \cos(nx)$ converge.
 - ii) Resolvendo pelo método de absolutamente convergente, temos que

$$\sum_{n=1}^{\infty} |a_n \cos(nx)| = \sum_{n=1}^{\infty} |a_n| |\cos(nx)| = \sum_{n=1}^{\infty} a_n |\cos(nx)|$$

$$|\cos(nx)| \leqslant 1$$

$$\Rightarrow a_n |\cos(nx)| \leqslant a_n$$

$$\Rightarrow \sum_{n=1}^{\infty} a_n |\cos(nx)| \leqslant \sum_{n=1}^{\infty} a_n$$

$$\Rightarrow \sum_{n=1}^{\infty} |a_n \cos(nx)|$$

$$\Rightarrow \sum_{n=1}^{\infty} |a_n \cos(nx)|$$
absolutamente convergente

Portanto, $\sum_{n=1}^{\infty} a_n \cos(nx)$ converge.

Exemplo 10.4 Mostre que $\sum_{n=1}^{\infty} \frac{1}{n^{3/2} \log n}$ converge.

Solução:

Note que $\sum_{n=1}^{\infty} \frac{1}{n^{3/\!2}}$ converge e $\left(\frac{1}{\log n}\right)$ é uma sequência limitada.

Portanto, pelo Ex. 10.12, $\lim_{n \to \infty} \frac{1}{\log n} = 0$, o que conclui a convergência de

$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2} \log n}.$$

Uma outra maneira de resolver seria por comparação. Verifique.

Régis © 2009

capítulo 11

Lista 05 - Séries

11.1 Interprete as igualdades abaixo à luz da definição de convergência de séries de números reais.

a)
$$0,333... = \frac{1}{3}$$

b)
$$0,999... = 1$$

Solução:

a) Temos que

$$0,333... = 0,3+0,03+0,003+...$$

$$= \frac{3}{10} + \frac{3}{10^2} + \frac{3}{10^3} + ...$$

$$= \sum_{n=1}^{\infty} \frac{3}{10^n}$$

$$= 3\sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^n$$

$$\sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^n \Rightarrow S_n = \frac{1}{10} + \frac{1}{\cancel{1}0^2} + \dots + \frac{1}{\cancel{1}0^n}$$

$$= \frac{1}{10} S_n = \frac{1}{\cancel{1}0^2} + \frac{1}{\cancel{1}0^3} + \dots + \frac{1}{10^{n+1}}$$

$$S_n - \frac{1}{10} S_n = \frac{1}{10} - \frac{1}{10^{n+1}}$$

$$\frac{9}{10} S_n = \frac{1}{10} - \frac{1}{10^{n+1}}$$

$$\Rightarrow S_n = \frac{10}{9} \left(\frac{1}{10} - \frac{1}{10^{n+1}} \right)$$

$$\Rightarrow S_n = \frac{1}{9} - \frac{1}{9 \cdot 10^n}$$

$$\Rightarrow \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\frac{1}{9} - \frac{1}{9 \cdot 10^n} \right) = \frac{1}{9}$$

$$\Rightarrow \lim_{n \to \infty} S_n = 3 \cdot \frac{1}{9} = \frac{1}{3}$$

b) Análogo.

11.2 Mostre que a série
$$\sum_{n=1}^{\infty}a_n$$
 em que
$$a_n=\left\{\begin{array}{l}3^{-n}&\text{, se }n\text{ \'e impar}\\2^{-n}&\text{, se }n\text{ \'e par}\end{array}\right.$$

é convergente.

Seja
$$b_n = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^n = a_n, n \text{ \'e par.}$$
Seja $b_n = \left(\frac{1}{2}\right)^n > \left(\frac{1}{3}\right)^n = a_n, n \text{ \'e impar.}$

$$\Rightarrow a_n \leqslant b_n, \forall n \in \mathbb{N} \Rightarrow \sum_{n=1}^{\infty} a_n \leqslant \sum_{n=1}^{\infty} b_n.$$

Como $\sum_{n=1}^\infty b_n$ converge, pelo Teste da Comparação, $\sum_{n=1}^\infty a_n$ também converge. \Box

132 Análise Matemática Régis © 2009

11.3 Mostre que as séries abaixo convergem.

a)
$$\sum_{n=1}^{\infty} e^{-n}$$

b)
$$\sum_{n=1}^{\infty} ne^{-n^2}$$

c)
$$\sum_{n=1}^{\infty} ne^{-n}$$

Solução:

a) Use Teste da Razão ou
$$\sum_{n=1}^{\infty}e^{-n}=\sum_{n=1}^{\infty}\left(\frac{1}{e}\right)^{n}.$$

b) Note que $a_n = ne^{-n^2} = \frac{n}{e^{n^2}}$, pelo Teste da Razão

$$\frac{a_{n+1}}{a_n} = \frac{n+1}{e^{(n+1)^2}} \frac{e^{n^2}}{n} = \left(1 + \frac{1}{n}\right) \frac{e^{n^2}}{e^{n^2 + 2n + 1}} = \underbrace{\left(1 + \frac{1}{n}\right) \frac{1}{e^{2n}} \frac{1}{e}}_{0}$$

Como $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)=1$ e $\lim_{n\to\infty}\frac{1}{e^{2n}}\frac{1}{e}=0$, o produto é igual a zero, portanto, a série converge.

c) Pelo Teste da Raíz

$$\begin{aligned} a_n &= ne^{-n} = \frac{n}{e^n} \\ \sqrt[n]{a_n} &= \sqrt[n]{\frac{n}{e^n}} = \frac{\sqrt[n]{n}}{\sqrt[n]{e^n}} = \frac{\sqrt[n]{n}}{e} \\ \lim_{n \to \infty} \sqrt[n]{a_n} &= \lim_{n \to \infty} \frac{1}{e} \sqrt[n]{n} = \frac{1}{e} \lim_{n \to \infty} \sqrt[n]{n} = \frac{1}{e} < 1 \end{aligned}$$

Portanto, a série converge.

11.4 Verifique, em cada caso abaixo, se a série dada é convergente; e, em caso afirmativo, se absoluta ou condicionalmente.

a)
$$\sum_{n=1}^{\infty} \frac{\cos 3n}{n^2 + 1}$$

b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 1}$$

c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n+1}$$

d)
$$\sum_{k=1}^{\infty} \frac{\cos k - \sin k}{k\sqrt{k}}$$

e)
$$\sum_{n=1}^{\infty} \frac{2 + \cos n}{n^2 + 1}$$

Solução:

a) Note que

$$\sum_{n=1}^{\infty} \left| \frac{\cos 3n}{n^2 + 1} \right| = \sum_{n=1}^{\infty} \frac{|\cos 3n|}{n^2 + 1} \leqslant \sum_{n=1}^{\infty} \frac{1}{n^2 + 1} \leqslant \sum_{n=1}^{\infty} \frac{1}{n^2}$$

A série $\sum_{n=1}^{\infty}\frac{1}{n^2}$ é harmônica e convergente, portanto, a série dada também é convergente.

b) Note que
$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n n}{n^2 + 1} \right| = \sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$$

Afirmação: $\frac{1}{2n} < \frac{n}{n^2 + 1}$, de fato

$$\frac{n}{n^2+1} - \frac{1}{2n} = \frac{2n^2 - n^2 - 1}{2n(n^2+1)} = \frac{n^2 - 1}{2n(n^2+1)} \ge 0$$

$$\Rightarrow \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n} \le \sum_{n=1}^{\infty} \frac{n}{\frac{n^2+1}{n^2+1}}$$

Análise Matemática

$$\Rightarrow \sum_{n=1}^{\infty} |b_n|$$
 diverge.

$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 1} = \sum_{n=1}^{\infty} (-1)^n a_n$$

Afirmação: $\lim_{n\to\infty} a_n = 0$ e a_n decrescente.

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{n^2 + 1} = \lim_{n \to \infty} \frac{\frac{1}{n}}{1 + \frac{1}{n^2}} = 0$$

$$a_{n+1} < a_n \Leftrightarrow a_n - a_{n+1} > 0$$

De fato,

$$a_n - a_{n+1} = \frac{n}{n^2 + 1} - \frac{n+1}{n^2 + 2n + 2} = \frac{n^3 + 2n^2 + 2n - n^3 - n - n^2 - 1}{(n^2 + 1)(n^2 + 2n + 2)} = \frac{n^2 + n - 1}{(n^2 + 1)(n^2 + 2n + 2)} > 0$$

 $\Rightarrow a_{n+1} < a_n \Rightarrow a_n$ é decrescente.

Por Leibniz, a série é convergente.

c) Por Leibniz

$$a_n = \frac{\sqrt{n}}{n+1} = \frac{n\sqrt{\frac{n}{n^2}}}{n\left(1 + \frac{1}{n}\right)} = \frac{\frac{1}{\sqrt{n}}}{1 + \frac{1}{n}}$$

$$\Rightarrow \lim_{n \to \infty} a_n = 0$$

$$a_n - a_{n+1} = \frac{\sqrt{n}}{n+1} - \frac{\sqrt{n+1}}{n+2}$$

$$= \frac{(n+2)\sqrt{n} - (n+1)\sqrt{n+1}}{(n+1)(n+2)}$$

$$= \frac{\sqrt{(n+2)^2 n} - \sqrt{(n+1)^3}}{(n+1)(n+2)}$$

$$= \frac{\sqrt{n^3 + 4n^2 + 4n} - \sqrt{n^3 + 3n^2 + 3n + 1}}{(n+1)(n+2)}$$

$$= \frac{\sqrt{n^3 + 3n^2 + 3n + n^2 + n} - \sqrt{n^3 + 3n^2 + 3n + 1}}{(n+1)(n+2)}$$

$$= \frac{\sqrt{a+n^2 + n} - \sqrt{a+1}}{(n+1)(n+2)}$$

Como $n^2 + n > 1, \forall n$; segue que $a_n > a_{n+1}, \forall n$.

d) Usaremos convergência absoluta e desigualdade triangular.

$$\begin{split} &\sum_{k=1}^{\infty} \left| \frac{\cos k - \operatorname{sen} k}{k \sqrt{k}} \right| = \sum_{k=1}^{\infty} \frac{|\cos k - \operatorname{sen} k|}{k \sqrt{k}} \leqslant \sum_{k=1}^{\infty} \frac{\overline{|\cos k| + |\operatorname{sen} k|}}{k \sqrt{k}} \\ \Rightarrow &\sum_{k=1}^{\infty} |a_n| \leqslant \sum_{k=1}^{\infty} \frac{|\cos k - \operatorname{sen} k|}{k \sqrt{k}} \leqslant \sum_{k=1}^{\infty} \frac{2}{k \sqrt{k}} = \sum_{k=1}^{\infty} \frac{2}{k^{3/2}} \leqslant 2 \sum_{k=1}^{\infty} \frac{1}{k^{3/2}} \end{split}$$

Portanto, $\sum_{n=1}^{\infty} |a_n|$ converge.

Portanto, $\sum_{k=1}^{\infty} a_k$ é absolutamente convergente.

e)

136

11.5 A série

$$1 - \frac{1}{2} + \frac{2}{3} - \frac{1}{3} + \frac{2}{4} - \frac{1}{4} + \frac{2}{5} - \frac{1}{5} + \frac{2}{6} - \frac{1}{6} + \dots$$

tem termos alternadamente positivos e negativos e seu termo geral tende a zero. Mostre que essa série é divergente e explique por que isto não contradiz o teorema de Leibniz.

Solução:

Temos
$$\sum_{n=2}^{\infty} \left(\frac{2}{n} - \frac{1}{n}\right) = \sum_{n=2}^{\infty} \frac{1}{n}$$
 que diverge

Temos $\sum_{n=2}^{\infty} \left(\frac{2}{n} - \frac{1}{n}\right) = \sum_{n=2}^{\infty} \frac{1}{n}$ que diverge.

A série é alternada mas não contradiz Leibniz porque a série na é da forma $\sum_{n=1}^{\infty} (-1)^n a_n.$

11.6 Mostre que é convergente a série obtida alternando-se os sinais dos termos da série harmônica, de modo que fiquem p termos positivos, $p \in \mathbb{N}$ fixado seguidos de p termos negativos, alternadamente.

Solução:

11.7 Se uma série é condicionalmente convergente, mostre que existe uma alteração da ordem dos seus termos de modo a tornar sua soma igual a $+\infty$.

Solução:

- i) Escolha a'_1, a'_2, \ldots, a'_n positivos tais que $a'_1 + a'_2 + \ldots + a'_n > 1$;
- ii) Escolha a'_{n+1} primeiro termo negativo, obtemos $a'_1 + a'_2 + \ldots + a'_n + a'_{n+1}$;
- iii) Escolha, na ordem, a'_{n+2},\ldots,a'_{n+k} tais que $a'_1+a'_2+\ldots+a'_n+a'_{n+1}+a'_{n+2}+\ldots$ $\ldots + a'_{n+k} > 2.$

Dado
$$k > 0, \exists S_n \text{ tal que } S_n > k.$$

11.8 Efetue uma reordenação dos termos da série

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots$$

de modo que sua soma se torne igual a zero.

Solução:

Reordenando, temos

$$1 - \frac{1}{2} - \frac{1}{4} - \frac{1}{6} - \frac{1}{8} + \frac{1}{3} - \frac{1}{10} - \frac{1}{12} - \frac{1}{14} - \frac{1}{16} + \frac{1}{5} - \frac{1}{18} - \frac{1}{20} - \frac{1}{22} - \frac{1}{24} + \frac{1}{7} - \dots$$
 tende a 0.

11.9 Sejam 0 < a < b < 1. Mostre que a série $a + b + a^2 + b^2 + a^3 + b^3 + \dots$ é convergente.

Solução:

Temos que
$$\sum_{n=1}^{\infty} (a^n + b^n) = \sum_{n=1}^{\infty} a^n + \sum_{n=1}^{\infty} b^n$$
.
 $0 < a < b < 1$ é uma série geométrica. Portanto, $\sum_{n=1}^{\infty} (a^n + b^n)$ converge.

11.10 Se $\sum_{n=1}^{\infty} a_n$ é absolutamente convergente e se (b_n) é uma sequência que converge para zero, pondo $c_n = a_0b_n + a_1b_{n-1} + \ldots + a_nb_0$, mostre que (c_n) converge para zero.

Solução:

$$\sum_{n=1}^{\infty} a_n \text{ \'e absolutamente convergente} \Rightarrow \sum_{n=1}^{\infty} |a_n| \text{ converge.}$$

$$\lim_{n \to \infty} b_n = 0 \Rightarrow (b_n) \text{ \'e limitada} \Rightarrow |b_n| \leqslant M.$$

$$|c_n| = |a_0b_n + a_1b_{n-1} + \ldots + a_nb_0|$$

$$\leq |a_0||b_n| + |a_1||b_{n-1}| + \ldots + |a_n||b_0|$$

$$\leq |a_0|M + |a_1|M + \ldots + |a_n|M$$

$$\leq (|a_0| + |a_1| + \ldots + |a_n|)M$$

Pelo critério de convergência de Cauchy, mas $\sum_{n=1}^{\infty} |a_n|$ converge, então

$$|a_0| + |a_1| + \ldots + |a_n| < \frac{\varepsilon}{M}$$

$$\Rightarrow (|a_0| + |a_1| + \ldots + |a_n|) < \frac{\varepsilon}{M}M = \varepsilon$$

Portanto, a série converge.

capítulo 12

Lista 06 - Funções

12.1 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^n$, com n um inteiro positivo ímpar. Mostre que f é crescente.

Solução:

• Se x < y, x, y positivos. Mostrar que f(x) < f(y).

$$f(y) - f(x) = y^{n} - x^{n} = \underbrace{(y - x)}_{>0} \underbrace{(y^{n-1}x^{0} + y^{n-2}x + \dots + yx^{n-2} + x^{n-1})}_{>0}$$

• Se x < y, x, y negativos.

• Se x < y, x < 0 e y > 0

$$\Rightarrow f(x) < f(y)$$

f é impar?

$$f(-x) = (-x)^n = (-1)^n (x)^n = -1x^n = -f(x)$$

12.2 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = ax + b com a e b números reais e $a \neq 0$. Mostre que f é crescente se, e somente se, a > 0 e que f é decrescente se, e somente se, a < 0.

Solução:

 \Leftarrow Se a > 0 e $x_1 < x_2$, então

$$f(x_2) - f(x_1) = ax_2 + b - ax_1 - b$$

$$f(x_2) - f(x_1) = \underbrace{a}_{>0} \underbrace{(x_2 - x_1)}_{>0}$$

$$\Rightarrow f(x_2) - f(x_1) > 0$$

$$\Rightarrow f(x_1) < f(x_2)$$

Portanto, f é crescente.

 \Rightarrow Se f é crescente, então para $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$

$$ax_1 + b < ax_2 + b$$

$$\Rightarrow ax_1 < ax_2$$

$$\Rightarrow ax_1 - ax_2 < 0$$

$$\Rightarrow a\underbrace{(x_1 - x_2)}_{<0} < 0$$

$$\Rightarrow a > 0$$

Mostremos, agora, que f é decrescente se, e somente se, a<0. \Leftarrow Se a<0 e $x_1< x_2$, então

$$f(x_1) - f(x_2) = ax_1 + b - ax_2 - b$$

$$f(x_1) - f(x_2) = \underbrace{a}_{<0} \underbrace{(x_1 - x_2)}_{>0}$$

$$\Rightarrow f(x_1) - f(x_2) > 0$$

$$\Rightarrow f(x_2) < f(x_1)$$

f é decrescente.

Régis © 2009

12.3 Seja
$$f: \mathbb{R} \to (-1,1)$$
 definida por $f(x) = \frac{x}{\sqrt{x^2 + 1}}$. Mostre que f é bijetiva.

Solução:

- i) f é injetiva, basta fazer $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.
- ii) f é sobrejetiva

Seja y = f(x), para algum x.

$$y = \frac{x}{\sqrt{x^2 + 1}} \Rightarrow y^2 = \frac{x^2}{x^2 + 1} \Rightarrow y^2 x^2 + y^2 = x^2$$
$$\Rightarrow y^2 = x^2 (1 - y^2) \Rightarrow x^2 = \frac{y^2}{1 - y^2}$$
$$\Rightarrow \boxed{x = \frac{|y|}{\sqrt{1 - y^2}}}$$
$$1 - y^2 > 0 \Rightarrow |y| < 1 \Rightarrow -1 < y < 1.$$

Portanto, $\forall y \in (-1,1)$; existe $x \in \mathbb{R}$ tal que y = f(x).

12.4 Seja $f:(0,1)\to\mathbb{R}$ definida por $f(x)=\sum_{n=1}^\infty x^n$. f é injetiva? É sobrejetiva? Determine o conjunto imagem de f.

Solução:

A série é convergente, pois 0 < x < 1.

$$S_n = x + x^2 + \dots + x^n$$

$$xS_n = x^2 + x^3 + \dots + x^n + x^{n+1}$$

$$(1-x)S_n = x - x^{n+1}$$

$$\Rightarrow S_n = \frac{x}{1-x} - \overbrace{\frac{x^{n+1}}{1-x}}^{0}$$

$$\Rightarrow f(x) = \sum_{n=1}^{\infty} x^n = \frac{x}{1-x}$$

12.5 Se $f:D\to Y$ é crescente e bijetiva, mostre que $f^{-1}:Y\to D$ também é crescente.

Solução:

f é crescente, então se $x_1, x_2 \in D, x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$.

Devemos mostrar que sejam $y_1, y_2 \in Y, y_1 < y_2$ temos que mostrar que $f^{-1}(y_1) < f^{-1}(y_2)$.

Sejam $y_1,y_2\in Y$, como f é sobrejetiva existem $x_1,x_2\in D$ tal que $y_1=f(x_1)$ e $y_2=f(x_2).$

e
$$y_2 = f(x_2)$$
.
Se $y_1 < y_2 \Rightarrow f(x_1) < f(x_2) \Rightarrow x_1 < x_2$, pois f é crescente. Mas $y_1 = f(x_1) \Rightarrow f^{-1}(y_1) = x_1$ e $y_2 = f(x_2) \Rightarrow f^{-1}(y_2) = x_2 \Rightarrow f^{-1}(y_1) < f^{-1}(y_2)$.
Logo, f^{-1} é crescente.

12.6 Defina uma função sobrejetiva $f: \mathbb{N} \to \mathbb{N}$ tal que, para todo $n \in \mathbb{N}, f^{-1}(n)$ é um conjunto com infinitos elementos.

Solução:

Seja

$$\varphi : \mathbb{N} \to \mathbb{N}$$
$$n \mapsto f(n)$$

 $\forall n \in \mathbb{N}, f^{-1}(n)$ tem infinitos elementos.

Seja $n=p_1^{r_1}.p_2^{r_2}\dots p_k^{r_k}$, onde n é uma decomposição em fatores primos. Então, definimos $\varphi(n)=k$ e f(1)=1.

12.7 Seja $f : \mathbb{R} \to \mathbb{R}$ uma função satisfazendo f(x+y) = f(x) + f(y) e $f(x) \ge 0$, para todo $x \ge 0$. Mostre que f(x) = ax para algum $a \in \mathbb{R}$ positivo.

Solução:

$$f(0+0) = f(0) + f(0)$$

$$f(0) = f(0) + f(0)$$

$$\Rightarrow f(0) = 0$$

$$f(-x+x) = f(-x) + f(x)$$

$$0 = f(-x) + f(x)$$

$$\Rightarrow f(-x) = -f(x)$$

f é ímpar.

Se
$$f(0) = 0 \Rightarrow f(1+1) = f(1) + f(1); f(2) = 0 + 0$$
 ou

se
$$f(1) = a, a \neq 0 \Rightarrow f\left(\frac{1}{2} + \frac{1}{2}\right) = f\left(\frac{1}{2}\right) + f\left(\frac{1}{2}\right) \Rightarrow a = 2f\left(\frac{1}{2}\right) \Rightarrow$$

$$f\left(\frac{1}{2}\right) = a\frac{1}{2}\dots$$

 ${\bf 12.8}\,$ Se f é uma função com domínio De se Ae Bsão subconjuntos de D, mostre que

$$f(A \cup B) = f(A) \cup f(B)$$
 e $f(A \cap B) \subseteq f(A) \cap f(B)$.

Dê um contra-exemplo para mostrar que $f(A \cap B)$ pode ser diferente de $f(A) \cap f(B)$.

Solução:

Devemos mostrar que

- i) $f(A \cup B) \subset f(A) \cup f(B)$
- ii) $f(A) \cup f(B) \subset f(A \cup B)$

Figura 12.1

- i) Seja $y \in f(A \cup B) \Rightarrow y = f(x)$, para $x \in A \cup B \Rightarrow y = f(x)$, para $x \in A$ ou y = f(x), para $x \in B \Rightarrow y \in f(A)$ ou $y \in f(B) \Rightarrow y \in f(A) \cup f(B)$. Portanto, $f(A \cup B) \subset f(A) \cup f(B)$.
- ii) Seja $y \in f(A) \cup f(B) \Rightarrow y \in f(A)$ ou $y \in f(B) \Rightarrow y = f(x)$, para $x \in A$ ou y = f(x), para $x \in B$

 $\Rightarrow y = f(x), \text{ com } x \in A \cup B \Rightarrow y \in f(A \cup B)$

Portanto, $f(A) \cup f(B) \subset f(A \cup B)$.

Portanto, $f(A \cup B) = f(A) \cup f(B)$.

Régis © 2009

Agora, devemos mostrar que
$$f(A \cap B) \subseteq f(A) \cap f(B)$$

Seja $y \in f(A \cap B) \Rightarrow y = f(x)$, para $x \in A \cap B$
 $\Rightarrow y = f(x)$, para $x \in A$ e $x \in B$.
 $\Rightarrow y \in f(A)$ e $y \in f(B)$
 $\Rightarrow y \in f(A) \cap f(B)$.
Portanto, $f(A \cap B) \subseteq f(A) \cap f(B)$.

Contra-exemplo:

Seja $y = x^2$,

$$A = (-\infty, 0]; f(A) = R_{+}$$

$$B = [0, +\infty); f(B) = R_{+}$$

$$A \cap B = \{0\}; f(A \cap B) = f(0) = 0$$

$$f(A) \cap f(B) = R_{+}$$

$$\Rightarrow f(A \cap B) \subsetneq f(A) \cap f(B)$$

12.9 Mostre, de um modo geral, que se f é uma função com domínio D e se $(A_i)_{i=1}^{\infty}$ é uma coleção enumerável de subconjuntos de D, valem as seguintes relações:

$$f\left(\bigcup_{i=1}^{\infty} A_i\right) = \bigcup_{i=1}^{\infty} f(A_i) \in f\left(\bigcap_{i=1}^{\infty} A_i\right) \subseteq \bigcap_{i=1}^{\infty} f(A_i).$$

Solução:

Afirmação:
$$f\left(\bigcup_{i=1}^{\infty} A_i\right) = \bigcup_{i=1}^{\infty} f(A_i)$$

i)
$$f(A \cup B) = f(A) \cup f(B)$$

ii) Suponha
$$f\left(\bigcup_{i=1}^k A_i\right) = \bigcup_{i=1}^k f(A_i).$$

$$\bigcup_{i=1}^{k+1} A_i = \underbrace{A_1 \cup A_2 \cup \ldots \cup A_k}_{} \cup A_{k+1} = \bigcup_{i=1}^k A_i \cup A_{k+1}$$

$$\Rightarrow f\left(\bigcup_{i=1}^{k+1} A_i\right) = f\left(\bigcup_{i=1}^k A_i \cup A_{k+1}\right) = \underbrace{f\left(\bigcup_{i=1}^k A_i\right)}_{i=1} \cup f(A_{k+1})$$

$$\Rightarrow f\left(\bigcup_{i=1}^{k+1} A_i\right) = \bigcup_{i=1}^k f(A_i) \cup f(A_{k+1}) = \bigcup_{i=1}^{k+1} f(A_i)$$

Régis © 2009

Então,
$$f\left(\bigcup_{i=1}^{n} A_i\right) = \bigcup_{i=1}^{n} f(A_i), \forall n \in \mathbb{N}.$$

Portanto, $f\left(\bigcup_{i=1}^{\infty} A_i\right) = \bigcup_{i=1}^{\infty} f(A_i)$.

12.10 Se $f: D \to Y$ é uma função qualquer e B um subconjunto de Y, mostre que $f^{-1}(Y - B) = D - f^{-1}(B)$.

Solução:

Note que $Y - B = \{y \in Y; y \notin B\}$. \subseteq) Seja $x \in f^{-1}(Y - B)$.

$$\Rightarrow f(x) \in Y - B \Rightarrow f(x) \notin B$$
$$\Rightarrow x \notin f^{-1}(B) \Rightarrow x \in D - f^{-1}(B).$$
$$\Rightarrow f^{-1}(Y - B) \subseteq D - f^{-1}(B)$$

 \supseteq) Seja $x \in D - f^{-1}(B)$.

$$\Rightarrow x \notin f^{-1}(B)$$

$$\Rightarrow f(x) \notin B \Rightarrow f(x) \in Y - B$$

$$\Rightarrow x \in f^{-1}(Y - B)$$

$$\Rightarrow f^{-1}(Y - B) \supseteq D - f^{-1}(B)$$

Portanto, $f^{-1}(Y - B) = D - f^{-1}(B)$.

12.11 Se $f: D \to Y$ é uma função qualquer e se A e B são subconjuntos de Y, mostre que $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

Solução:

 \subseteq) Seja $x \in f^{-1}(A \cup B)$.

$$\Rightarrow f(x) \in A \cup B$$

$$\Rightarrow f(x) \in A \text{ ou } f(x) \in B$$

$$\Rightarrow x \in f^{-1}(A) \text{ ou } x \in f^{-1}(B)$$

$$\Rightarrow x \in f^{-1}(A) \cup f^{-1}(B)$$

Portanto, $f^{-1}(A \cup B) \subseteq f^{-1}(A) \cup f^{-1}(B)$ \supseteq) Seja $x \in f^{-1}(A) \cup f^{-1}(B)$.

Figura 12.2

$$\Rightarrow x \in f^{-1}(A) \text{ ou } x \in f^{-1}(B)$$

$$\Rightarrow f(x) \in A \text{ ou } f(x) \in B$$

$$\Rightarrow f(x) \in A \cup B$$

$$\Rightarrow x \in f^{-1}(A \cup B)$$

Portanto,
$$f^{-1}(A \cup B) \supseteq f^{-1}(A) \cup f^{-1}(B)$$
.
Portanto, $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

12.12 Mostre que se $f:D\to Y$ é uma função injetiva e se $A\subset D$, então $f^{-1}(f(A))=A$. Dê um contra-exemplo para mostrar que isso não é necessariamente verdade se f não for injetiva.

Solução:

$$\subseteq$$
) Seja $x \in f^{-1}(f(A))$.
 $\Rightarrow y = f(x) \in f(A)$, então, existe $x' \in A$ tal que $f(x') = y$.
Mas f é injetiva, então

$$y = f(x) = f(x')$$

$$\Rightarrow x = x'$$

$$\Rightarrow x \in A$$

$$\therefore f^{-1}(f(A)) \subseteq A.$$

$$\supseteq$$
) Se $x \in A$, então $y = f(x) \in f(A) \Rightarrow x \in f^{-1}(f(A))$.

Contra-exemplo:

Seja
$$f: \mathbb{R} \to \mathbb{R}$$
 tal que $f(x) = x^2$.
Seja $A = [1, 2]; f(A) = [1, 4], \text{ mas } f^{-1}(f(A)) = [-2, -1] \cup [1, 2].$

146 Análise Matemática Régis © 2009

Figura 12.3: Exercício 12.12.

12.13 Mostre que se $f:D\to Y$ é uma função sobrejetiva e se $A\subset Y$, então $f(f^{-1}(A))=A$. Dê um contra-exemplo para mostrar que isso não é necessariamente verdade se f não for sobrejetiva.

Solução:

 \subseteq) Seja $y \in f(f^{-1}(A))$.

$$\Rightarrow \exists x \in f^{-1}(A); y = f(x)$$
$$\Rightarrow x \in f^{-1}(A)$$
$$\Rightarrow y \in A$$
$$\therefore f(f^{-1}(A)) \subseteq A.$$

 $Figura\ 12.4$

 \supseteq) Como f é sobrejetiva, seja $y = f(x) \in A$.

$$\Rightarrow x \in f^{-1}(A)$$

$$\Rightarrow y \in f(f^{-1}(A))$$

$$\therefore f(f^{-1}(A)) \supseteq A$$

$$\therefore f(f^{-1}(A)) = A$$

Contra-exemplo:

Se f não for sobrejetiva, seja $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^2$. Tomemos A = [-1, 1], logo $f^{-1}(A) = [-1, 1]$. Seja $x \in [-1, 1] \Rightarrow f(x) = [0, 1] \Rightarrow f(f^{-1}(A)) = [0, 1] \neq A$.

12.14 Uma função $f: D \to Y$ é dita limitada quando o conjunto f(D) é limitado. Neste caso definimos $\sup(f) = \sup(f(D))$ e $\inf(f) = \inf(f(D))$. Mostre que se f e g são limitadas, então:

$$\sup(f+g)\leqslant \sup(f)+\sup(g) \text{ e } \inf(f+g)\geqslant \inf(f)+\inf(g).$$

Solução:

Seja $A \subset B$. Note pela Fig. 12.5 que

$$\sup(A) \leqslant \sup(B); \inf(A) \geqslant \inf(B)$$

$$A + B = \{x + y; x \in A \text{ e } y \in B\}$$

$$\sup(A + B) = \sup(A) + \sup(B)$$

$$\inf(A + B) = \inf(A) + \inf(B)$$

 $Figura\ 12.5$

Então, sejam

148

$$\begin{array}{ccc} f:D\to Y & g:D\to Y \\ x\mapsto f(x) & x\mapsto g(x) \end{array}$$

funções limitadas. Temos que

$$\begin{array}{c} f+g \ : D \to Y \\ x \ \mapsto (f+g)(x) \end{array}$$

onde
$$(f + g)(x) = f(x) + g(x)$$
.

$$f$$
 é limitada, $\exists \sup(f) = \sup(f(D))$ e $\exists \inf(f) = \inf(f(D))$, g é limitada, $\exists \sup(g) = \sup(g(D))$ e $\exists \inf(g) = \inf(g(D))$.

$$\begin{split} f(D) &= \{y = f(x); x \in D\} \\ g(D) &= \{y = g(x); x \in D\} \\ (f+g)(D) &= \{y = (f+g)(x); x \in D\} \\ f(D) + g(D) &= \{y_1 + y_2 : y_1 \in f(D) \in y_2 \in g(D)\} \end{split}$$

Afirmação: $(f+g)(D) \subset f(D) + g(D)$. Se $y \in (f+g)(D) \Rightarrow y = (f+g)(x), x \in D$ $\Rightarrow y \in f(D) + g(D)$. Então, assumindo

$$\underbrace{(f+g)(D)}_{A} \subset \underbrace{f(D)+g(D)}_{B}$$

$$\sup [(f+g)(D)] \leqslant \sup [f(D)+g(D)]$$

$$\leqslant \sup f(D) + \sup g(D)$$

$$\Rightarrow \sup (f+g) \leqslant \sup f + \sup g$$

capítulo 13

Lista 07 - Limites

Exemplo 13.1 Seja Y = (0,1). Mostre que p é ponto interior de Y.

Solução

Seja
$$p \in Y$$
 e considere $\left(\frac{p}{2}, \frac{p+1}{2}\right)$. (Fig. 13.1)

$$\begin{array}{c|c} & \frac{p}{2} & \frac{p+1}{2} \\ \hline 0 & p & 1 \end{array} \rightarrow$$

Figura 13.1

$$\begin{array}{l} \text{Como } \frac{p}{2}$$

- 13.1 a) Mostre que \mathbb{R} e ϕ são subconjuntos abertos de \mathbb{R} .
- b) Mostre que uma união qualquer de subconjuntos abertos de $\mathbb R$ é um subconjunto aberto.

Régis © 2009

Análise Matemática

151

13. Lista 07 - Limites

- c) Um subconjunto de \mathbb{R} é dito fechado se seu complementar é aberto. Mostre que uma união finita de subconjuntos fechados é um subconjunto fechado.
- d) Mostre que o intervalo [1,2] é um subconjunto fechado de \mathbb{R} .
- e) Mostre que um subconjunto de $\mathbb R$ contendo apenas um elemento é fechado.
- f) SejamAe B subconjuntos abertos de $\mathbb R.$ Mostre que $A\cap B$ é um conjunto aberto.
- g) Mostre que uma intersecção infinita de subconjuntos abertos pode não ser um conjunto aberto.

Solução:

a) \mathbb{R} é aberto.

Figura 13.2

Seja $p \in \mathbb{R}$ e considere $(p-1, p+1) \subset \mathbb{R}$, p-1 .Logo, <math>p é ponto interior. Portanto, \mathbb{R} é aberto.

b) $A_k \subset \mathbb{R}$ aberto, $\forall k$.

152

$$A = \bigcup_{k=1}^{\infty} A_k$$
 é aberto

Seja
$$p \in A = \bigcup_{k=1}^{\infty} A_k \Rightarrow p \in A_k$$
, para algum k .

Como A_k é aberto, p é ponto interior de A_k .

Então, $\exists (a,b) \subset A_k \in p \in (a,b)$.

Logo,
$$\exists (a,b) \subset A = \bigcup_{k=1}^{\infty} A_k$$
 e $p \in (a,b)$.

p é ponto interior de A. Portanto, A é aberto.

c) Seja $A_i \subset \mathbb{R}$ fechado, $\forall i$.

$$A = \bigcup_{i=1}^{n} A_i$$

i) Vamos mostrar que $A_1 \cup A_2$ é fechado. Devemos mostrar que $\mathbb{R} - (A_1 \cup A_2)$ é aberto.

Lembrando que $(A \cup B)^C = A^C \cap B^C$.

$$\mathbb{R} - (A_1 \cup A_2) = (\mathbb{R} - A_1) \cap (\mathbb{R} - A_2)$$

Mas A_1 é fechado, então $(\mathbb{R}-A_1)$ é aberto. E A_2 é fechado, então $(\mathbb{R}-A_2)$ é aberto.

Pelo item (f), $(\mathbb{R}-A_1)\cap(\mathbb{R}-A_2)$ é aberto, então $\mathbb{R}-(A_1\cup A_2)$ é aberto, logo, $A_1\cup A_2$ é fechado.

ii) Suponha que $A = \bigcup_{i=1}^k A_i$ é fechado se A_i é fechado, $\forall i.$

Sejam $A_1, A_2, \ldots, A_k, A_{k+1}$ fechados.

$$B = \bigcup_{i=1}^{k+1} A_i = \underbrace{A_1 \cup A_2 \cup \ldots \cup A_k}_{A} \cup A_{k+1} = A \cup A_{k+1}$$

 $\Rightarrow B$ é fechado. $_{r}$

Portanto, $A = \bigcup_{i=1}^{n} A_i$ é fechado, $\forall n \in \mathbb{N}$.

d) A partir da Fig. 13.3, temos que $\mathbb{R} - [1, 2] = (-\infty, 1) \cup (2, +\infty)$.

Figura 13.3

Devemos mostrar que $(i)(-\infty,1)$ é aberto e $(ii)(2,+\infty)$ é aberto.

(i) Seja
$$p \in (-\infty, 1)$$
 e considere $I = \left(p - \frac{1-p}{2}, p + \frac{1-p}{2}\right)$.
Note que $\frac{p+1}{2} = p + \frac{1-p}{2}$.

13. Lista 07 - Limites

$$I\subset (-\infty,1), \, \mathrm{pois} \,\, \frac{p+1}{2}<1 \,\, \mathrm{e} \,\, p\in I.$$

Então, p é ponto interior de $(-\infty, 1)$.

(ii) Análogo.

e)

f) Se $A, B \subset \mathbb{R}$ são abertos, então $A \cap B$ é aberto. (Fig. 13.4)

Figura 13.4

Seja $p \in A \cap B$; $p \in A$ e $p \in B$.

p é ponto interior de A, então $\exists (p-\varepsilon_1,p+\varepsilon_1)\subset A$ e $p\in (p-\varepsilon_1,p+\varepsilon_1)$.

E p é ponto interior de B, então $\exists (p-\varepsilon_2,p+\varepsilon_2)\subset B$ e $p\in (p-\varepsilon_2,p+\varepsilon_2)$.

Tome
$$\varepsilon = \min\{\varepsilon_1, \varepsilon_2\} \Rightarrow (p - \varepsilon, p + \varepsilon) \subset A \cap B \in p \in (p - \varepsilon, p + \varepsilon).$$

Logo, p é ponto interior de $A \cap B$.

Portanto, $A \cap B$ é aberto.

g)

- **13.2** a) Seja $\mathbb{A} = \left\{ \frac{1}{n}, n \in \mathbb{N} \right\}$. Mostre que 0 é o único ponto de acumulação de \mathbb{A} e que \mathbb{A} não é um conjunto fechado.
- b) Se $f: \mathbb{A} \to \mathbb{R}$ é dada por f(x) = x + 1, existe $\lim_{x \to \frac{1}{3}} f(x)$?
- c) Se f é a função do item anterior, existe $\lim_{x\to 0} f(x)$?

Solução:

a) **Obs**: 1 não é ponto de acumulação de A, tome $\varepsilon = \frac{1}{2}$.

$$V_\varepsilon'(1) = \left(1 - \frac{1}{2}, 1 + \frac{1}{2}\right) - \{1\} \Rightarrow V_\varepsilon'(1) \cap A = \emptyset$$

Figura 13.5

Figura 13.6

 $\frac{1}{n}$ não é ponto de acumulação. Tome

$$\varepsilon = \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)} \Rightarrow V_{\varepsilon}'\left(\frac{1}{n}\right) = \left(\frac{1}{n} - \varepsilon, \frac{1}{n} + \varepsilon\right)$$
$$\Rightarrow V_{\varepsilon}'\left(\frac{1}{n}\right) \cap A = \emptyset$$

Finalmente, 0 é ponto de acumulação. Queremos mostrar que $\forall \varepsilon > 0, V_{\varepsilon}'(0) \cap A \neq \emptyset$.

Seja $V_{\varepsilon}'(0)=(-\varepsilon,\varepsilon)$, pelo princípio Arquimediano, dado $x\in\mathbb{R}, \exists n\in\mathbb{N}$ tal que $x< n\Rightarrow \frac{1}{n}<\frac{1}{x}.$

Dado $x \in \mathbb{R}, \exists n \in \mathbb{N} \text{ tal que } \frac{1}{n} < x.$

Então, $\exists n \in \mathbb{N}$ tal que $\frac{1}{n} < \varepsilon$. Implica $\frac{1}{n} \in (-\varepsilon, \varepsilon)$ e $\frac{1}{n} \neq 0$.

Portanto, $V_{\varepsilon}'(0) \cap A \neq \emptyset$, pois $\frac{1}{n} \in V_{\varepsilon}'(0) \cap A$.

- b) Não. Pois $\frac{1}{3}$ não é ponto de acumulação.
- c) |f(x) L| = |x + 1 1| = |x|

Tome $\delta = \varepsilon$. Dado $\varepsilon > 0, \exists \delta > 0$ tal que

$$0 < |x - 0| < \delta \Rightarrow |x + 1 - 1| = |x| < \delta = \varepsilon.$$

Proposição 13.1 Seja $f: D \to Y$ e a um ponto de acumulação de D. $\lim_{x\to a} f(x) = L \Leftrightarrow para toda sequência <math>(x_n), \lim_{n\to\infty} x_n = a$.

13.3 Sejam $f, g : \mathbb{R} \to \mathbb{R}$ definidas por

$$f(x) = \begin{cases} 0 & \text{, se } x \text{ \'e irracional} \\ x & \text{, se } x \text{ \'e racional} \end{cases}$$

$$g(x) = \begin{cases} 0 & \text{, se } x \neq 0 \\ 1 & \text{, se } x = 0 \end{cases}$$

Mostre que $\lim_{x\to 0} f(x) = 0$ e que $\lim_{x\to 0} g(x) = 0$, porém, não existe $\lim_{x\to 0} g(f(x))$.

Solução:

Note que $f(\sqrt{2}) = 0; f(2) = 2; f(0) = 0, 0 \in \mathbb{Q}$. E g(3) = 0; g(0) = 1. Seja

$$g(f(x)) = \begin{cases} 1 & \text{, se } x \in \mathbb{R} - \mathbb{Q} \\ 0 & \text{, se } x \in \mathbb{Q}^* \\ 1 & \text{, se } x = 0 \end{cases}$$

$$\begin{split} & \lim_{x \to 0} f(x) = 0 \\ & \text{Se } x \in \mathbb{R} \text{ e } 0 < |x - 0| < \delta, \text{ então} \\ & x \in \mathbb{R} - \mathbb{Q} \text{ e } 0 < |x - 0| < \delta \Rightarrow |f(x) - 0| = |0 - 0| = 0 < \varepsilon \text{ ou} \\ & x \in \mathbb{Q} \text{ e } 0 < |x - 0| < \delta \Rightarrow |f(x) - 0| = |x - 0| = 0 < \delta = \varepsilon. \\ & \Rightarrow \text{se } x \in \mathbb{R} \text{ e } 0 < |x - 0| < \delta \Rightarrow |f(x) - 0| < \varepsilon. \end{split}$$

$$\lim_{x\to 0}g(x)=0$$
 Se $x\in\mathbb{R}$ e $0<|x-0|<\delta\Rightarrow |g(x)-0|=|0-0|=0<\varepsilon.$

Agora, devemos mostrar que $\nexists \lim_{x\to 0} g(f(x))$. Usemos a Prop. 13.1.

Seja (x_n) uma sequência de números irracionais, onde $x_n \to 0, x_n \in \mathbb{R} - \mathbb{Q}$, então

$$g(f(x_n)) = 1 \Rightarrow \lim_{n \to \infty} g(f(x_n)) = 1$$

Seja (y_n) uma sequência de números racionais, onde $y_n \to 0, y_n \in \mathbb{Q}^*,$ então

$$g(f(y_n)) = 0 \Rightarrow \lim_{n \to \infty} g(f(y_n)) = 0$$

Obtemos limites diferentes para $n \to \infty$, portanto, $\nexists \lim_{x \to 0} g(f(x))$.

13.4 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 0, & \text{se } x = 0 \\ \frac{1}{x}, & \text{se } x \neq 0 \end{cases}$$

Existe $\lim_{x\to 0} f(x)$?

Solução:

Dica: Para resolver os exercícios de limites devemos encontrar uma constante real c, tal que, para $\lim_{x\to a}f(x)=L$,

$$|f(x) - L| < c|x - a| < \varepsilon \Rightarrow |x - a| < \frac{\varepsilon}{c} = \delta$$

Então, tome $\delta = \min \left\{ 1, \frac{\varepsilon}{c} \right\}$.

13.5 Usando a definição, mostre que

a)
$$\lim_{x \to 6} \frac{5}{x - 1} = 1$$

b)
$$\lim_{x \to 1} \frac{x}{x+1} = \frac{1}{2}$$

c)
$$\lim_{x \to a} \sqrt{x} = \sqrt{a}, \forall a \in D$$

Solução:

a)
$$\lim_{x \to 6} \frac{5}{x - 1} = 1$$

Rascunho:

$$|f(x) - L| = \left| \frac{5}{x - 1} - 1 \right| = \left| \frac{5 - x + 1}{x - 1} \right| = \left| \frac{6 - x}{x - 1} \right| = \frac{|6 - x|}{|x - 1|} = \frac{|x - 6|}{|x - 1|} = \frac{1}{|x - 1|} |x - 6|$$

Considere o número 6 e o intervalo 1 na Fig. 13.7

Figura 13.7

Se
$$\delta = 1, 5 < x < 7$$
.

Se
$$5 < x$$
, então

$$\begin{split} &\Rightarrow 5-1 < x-1 \\ &\Rightarrow 4 < x-1 \\ &\Rightarrow \frac{1}{x-1} < \frac{1}{4} \\ &\Rightarrow \frac{1}{|x-1|} < \frac{1}{4} \\ &\Rightarrow |f(x)-L| = \frac{1}{|x-1|} |x-6| < \frac{1}{4} |x-6| < \varepsilon \\ &\Rightarrow |x-6| < 4\varepsilon. \end{split}$$

Então, tome $\delta = \min\{1, 4\varepsilon\}$.

Dado, $\varepsilon>0, \exists \delta>0$ tal que $0<|x-6|<\delta,$ temos

$$|f(x)-1|<\frac{1}{4}|x-6|<\frac{1}{4}\delta<\frac{1}{4}4\varepsilon=\varepsilon$$

b)
$$\lim_{x \to 1} \frac{x}{x+1} = \frac{1}{2}$$

Rascunho:

$$|f(x) - L| = \left| \frac{x}{x+1} - \frac{1}{2} \right| = \left| \frac{2x - x - 1}{2(x+1)} \right| = \left| \frac{x - 1}{2(x+1)} \right| = \frac{|x - 1|}{2|x+1|} = \frac{1}{2} \frac{1}{|x+1|} |x - 1|$$

Considere o número 1 e o intervalo 1 na Fig. 13.8

Figura 13.8

Tome $\delta = 1$, então

$$|x-1| < \delta \Rightarrow |x-1| < 1 \Rightarrow 0 < x < 2.$$

Se x > 0, então

$$\begin{split} &\Rightarrow x+1>1\\ &\Rightarrow \frac{1}{x+1}<1\\ &\Rightarrow \frac{1}{|x+1|}<1\\ &\Rightarrow |f(x)-L|=\frac{1}{2}\frac{1}{|x+1|}|x-1|<\frac{1}{2}.1.|x-1|<\varepsilon\\ &\Rightarrow |x-1|<2\varepsilon. \end{split}$$

Então, tome $\delta = \min\{1, 2\varepsilon\}$.

Dado, $\varepsilon > 0, \exists \delta > 0$ tal que $0 < |x - 1| < \delta$, temos

$$|f(x) - L| < \frac{1}{2}|x - 1| < \frac{1}{2}\delta < \frac{1}{2}2\varepsilon = \varepsilon$$

c)
$$\lim_{x \to a} \sqrt{x} = \sqrt{a}, \forall a \in D$$

Note que
$$|\sqrt{x} - \sqrt{a}| = \left| \frac{x - a}{\sqrt{x} + \sqrt{a}} \right|$$
, pois, $(\sqrt{x} - \sqrt{a}) \frac{(\sqrt{x} + \sqrt{a})}{(\sqrt{x} + \sqrt{a})} = \frac{x - a}{\sqrt{x} + \sqrt{a}}$

$$\Rightarrow |\sqrt{x} - \sqrt{a}| = \left| \frac{x - a}{\sqrt{x} + \sqrt{a}} \right| = \frac{|x - a|}{\sqrt{x} + \sqrt{a}} = \frac{1}{\sqrt{x} + \sqrt{a}} |x - a|$$

Note que $\sqrt{a} > 0$ e $\sqrt{x} > 0, \forall x \in D$.

$$\begin{split} &\Rightarrow \sqrt{x} + \sqrt{a} > \sqrt{a} + 0 \\ &\Rightarrow \frac{1}{\sqrt{x} + \sqrt{a}} < \frac{1}{\sqrt{a}} \text{ constante} \\ &\Rightarrow |\sqrt{x} - \sqrt{a}| = \frac{1}{\sqrt{x} + \sqrt{a}} |x - a| < \frac{1}{\sqrt{a}} |x - a| < \varepsilon \\ &\Rightarrow |x - a| < \sqrt{a}\varepsilon \end{split}$$

Tome $\delta=\sqrt{a}\varepsilon$. Então, dado $\varepsilon>0, \exists \delta>0$ tal que $0<|x-a|<\delta\Rightarrow|\sqrt{x}-\sqrt{a}|<\varepsilon$.

De fato,

$$0 < |x - a| < \delta \Rightarrow |\sqrt{x} - \sqrt{a}| < \frac{1}{\sqrt{a}}|x - a| < \frac{1}{\sqrt{a}}\delta < \frac{1}{\sqrt{a}}\sqrt{a}\varepsilon = \varepsilon.$$

Devemos mostrar ainda que $\lim_{x\to 0} \sqrt{x} = 0$.

$$|\sqrt{x} - 0| = |\sqrt{x}| = \sqrt{x} < \varepsilon \Leftrightarrow |x| < \varepsilon^2 \Rightarrow |x - 0| < \varepsilon^2$$

Tome $\delta = \varepsilon^2$, então dado $\varepsilon > 0$, $\exists \delta > 0$ tal que $0 < |x - 0| < \delta \Rightarrow |\sqrt{x} - 0| < \varepsilon$. De fato,

$$0 < |x - 0| < \delta \Rightarrow |x| < \delta \Rightarrow |x| < \varepsilon^2 \Rightarrow \sqrt{x} < \varepsilon \Rightarrow |\sqrt{x} - 0| < \varepsilon$$

Exemplo 13.2 Mostre que $\lim_{x\to 3} x^2 + 1 = 10$.

Solução:

Rascunho:

$$|f(x) - L| = |x^2 + 1 - 10| = |x^2 - 9| = |(x+3)(x-3)| = |x+3||x-3|$$

Considere o número 3 e o intervalo 1 na Fig. 13.9

Figura 13.9

Tome $\delta = 1$, temos

$$|x-3| < \delta \Rightarrow |x-3| < 1 \Rightarrow 2 < x < 4.$$

Se x < 4, então

$$\begin{split} &\Rightarrow x+3 < 7 \\ &\Rightarrow |x+3| < 7 \\ &\Rightarrow |f(x)-L| = |x+3||x-3| < 7|x-3| < \varepsilon \\ &\Rightarrow |x-3| < \frac{\varepsilon}{7}. \end{split}$$

Então, tome $\delta=\min\{1,\frac{\varepsilon}{7}\}.$ Dado, $\varepsilon>0,\exists \delta>0$ tal que $0<|x-3|<\delta,$ temos

$$|f(x) - 10| < 7|x - 3| < 7\delta < 7\frac{\varepsilon}{7} = \varepsilon$$

Régis © 2009

Exemplo 13.3 Mostre que $\lim_{x\to 4} \frac{x-1}{x^2-1} = \frac{1}{5}$.

Solução:

Rascunho:

$$|f(x)-L| = \left|\frac{x-1}{x^2-1} - \frac{1}{5}\right| = \left|\frac{1}{x+1} - \frac{1}{5}\right| = \left|\frac{5-x-1}{2(x+1)}\right| = \frac{|4-x|}{5\,|x+1|} = \frac{1}{5}\frac{1}{|x+1|}\,|x-4|$$

Considere o número 4 e o intervalo 1 na Fig. 13.10

Figura 13.10

Tome $\delta = 1$, temos

$$|x-4| < \delta \Rightarrow |x-4| < 1 \Rightarrow -1 < x-4 < 1 \Rightarrow 3 < x < 5.$$

Se x > 3, então

$$\begin{split} &\Rightarrow x+1>4\\ &\Rightarrow \frac{1}{x+1}<\frac{1}{4}\\ &\Rightarrow \frac{1}{|x+1|}<\frac{1}{4}\\ &\Rightarrow |f(x)-L|=\frac{1}{5}\frac{1}{|x+1|}|x-4|<\frac{1}{5}\frac{1}{4}|x-4|<\varepsilon\\ &\Rightarrow |x-4|<20\varepsilon. \end{split}$$

Então, tome $\delta = \min\{1, 20\varepsilon\}$.

Dado, $\varepsilon > 0, \exists \delta > 0$ tal que $0 < |x-4| < \delta$, temos

$$\left| f(x) - \frac{1}{5} \right| < \frac{1}{20} |x - 4| < \frac{1}{20} \delta < \frac{1}{20} 20\varepsilon = \varepsilon$$

13. Lista 07 - Limites

13.6 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 0 & \text{, se } x \text{ \'e irracional} \\ 1 & \text{, se } x \text{ \'e racional} \end{cases}$$

Existe $\lim_{x\to a} f(x)$ para algum $a \in \mathbb{R}$?

Solução:

Seja (x_n) uma sequência tal que $x_n \to a, x_n \in \mathbb{R} - \mathbb{Q}$.

$$f(x_n) = 0 \Rightarrow \lim_{n \to \infty} f(x_n) = 0$$

Seja (y_n) uma sequência tal que $y_n \to a, y_n \in \mathbb{Q}$.

$$f(y_n) = 1 \Rightarrow \lim_{n \to \infty} f(y_n) = 1$$

Como obtemos limites diferentes quando $x \to a$, então o limite não existe.

13.7 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \left\{ \begin{array}{cc} x & \text{, se } x \text{ \'e irracional} \\ 1-x & \text{, se } x \text{ \'e racional} \end{array} \right.$$

Mostre que existe $\lim_{x\to \frac{1}{2}} f(x)$. Existe $\lim_{x\to a} f(x)$, para algum $a\neq \frac{1}{2}$?

Solução:

Afirmação: $\lim_{x \to \frac{1}{2}} f(x) = \frac{1}{2}$

Dado, $\varepsilon > 0, \exists \delta > 0$ tal que se $x \in \mathbb{R}$ e $0 < \left| x - \frac{1}{2} \right| < \delta \Rightarrow \left| f(x) - \frac{1}{2} \right| < \varepsilon$. Se $x \in \mathbb{Q}$,

$$\left| f(x) - \frac{1}{2} \right| = \left| (1 - x) - \frac{1}{2} \right| = \left| \frac{1}{2} - x \right| = \left| x - \frac{1}{2} \right| < \varepsilon$$

Tome $\delta = \varepsilon$, então se $x \in \mathbb{Q}$ e $0 < \left| x - \frac{1}{2} \right| < \delta \Rightarrow \left| f(x) - \frac{1}{2} \right| < \varepsilon$. Se $x \in \mathbb{R} - \mathbb{Q}$,

$$\left| f(x) - \frac{1}{2} \right| = \left| x - \frac{1}{2} \right| < \varepsilon$$

Tome $\delta = \varepsilon$, então se $x \in \mathbb{R} - \mathbb{Q}$ e $0 < \left| x - \frac{1}{2} \right| < \delta \Rightarrow \left| f(x) - \frac{1}{2} \right| < \varepsilon$.

Portanto, se $x \in \mathbb{R}$ e $0 < \left| x - \frac{1}{2} \right| < \delta \Rightarrow \left| f(x) - \frac{1}{2} \right| < \varepsilon$.

Agora, mostremos que não existe $\lim_{x\to a} f(x)$ para $a\neq \frac{1}{2}$. Seja (x_n) uma sequência tal que $x_n\to a, x_n\in\mathbb{R}-\mathbb{Q}$, então

$$f(x_n) = x_n \Rightarrow \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_n = a$$

Seja (y_n) uma sequência tal que $y_n \to a, y_n \in \mathbb{Q}$, então

$$f(y_n) = 1 - y_n \Rightarrow \lim_{n \to \infty} f(y_n) = 1 - a$$

Se $\lim_{x\to a} f(x) = L$ existe, então a = L e 1-a = L.

$$\Rightarrow a = 1 - a \Rightarrow a = \frac{1}{2}$$

 $\Rightarrow a=1-a \Rightarrow a=rac{1}{2}$ Portanto, para $a
eq rac{1}{2}$ temos que $\lim_{x o a} f(x)$ não existe.

13.8 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 1 & \text{, se } x \ge 0 \\ -1 & \text{, se } x < 0 \end{cases}$$

Mostre que não existe $\lim_{x\to 0} f(x)$. É possível definir f(0) de modo que exista $\lim_{x \to 0} f(x)$?

Solução:

Seja (x_n) uma sequência tal que $x_n \to a, x_n \geqslant 0$, então

$$f(x_n) = 1 \Rightarrow \lim_{n \to \infty} f(x_n) = 1$$

Seja (y_n) uma sequência tal que $y_n \to a, y_n < 0$, então

$$f(y_n) = -1 \Rightarrow \lim_{n \to \infty} f(y_n) = -1$$

Portanto, o limite não existe, pois se existisse seria único.

Além disso, não é possível definir f(0), pois $x \to 0$ significa que ou x > 0 ou x < 0 mas se $x > 0 \Rightarrow f(x) \to 1$ e se $x < 0 \Rightarrow f(x) \to -1$. Portanto, $\nexists \lim_{x \to 0} f(x)$. \Box

13.9 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 0, & \text{se } x = 0 \\ \frac{1}{\sin x}, & \text{se } x \neq 0 \end{cases}$$

Mostre que, para todo $c\in[-1,1]$, existe uma sequência de pontos $x_n\neq 0$ tal que $\lim_{n\to\infty}x_n=0$ e $\lim_{n\to\infty}f(x_n)=c$.

Solução:

Para $g(x) = \operatorname{sen} x, c \in [-1, 1], \exists \theta \in [0, 2\pi] \text{ tal que } \operatorname{sen} \theta = c.$

$$x_n = \frac{1}{\theta + 2n\pi} \to 0$$

$$f(x_n) = \sin \frac{1}{x_n} = \sin(\theta + 2n\pi) = \sin\theta = c$$

$$\Rightarrow \lim_{n \to \infty} f(x_n) = c$$

13.10 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = [x], em que [x] é o maior inteiro menor ou igual a x.

Mostre que, para todo $a \in \mathbb{Z}, \lim_{x \to a} f(x)$ não existe. Determine o conjunto imagem de f.

Solução:

Para construirmos o gráfico, notemos que:

$$\begin{array}{l} \vdots \\ -3 \leqslant x < -2 \Rightarrow y = [x] = -3 \\ -2 \leqslant x < -1 \Rightarrow y = [x] = -2 \\ -1 \leqslant x < 0 \Rightarrow y = [x] = -1 \\ 0 \leqslant x < 1 \Rightarrow y = [x] = 0 \\ 1 \leqslant x < 2 \Rightarrow y = [x] = 1 \\ 2 \leqslant x < 3 \Rightarrow y = [x] = 2 \\ 3 \leqslant x < 4 \Rightarrow y = [x] = 3 \\ \vdots$$

A imagem de $f \in \text{Im}(f) = \mathbb{Z}$.

A partir da Fig. 13.12, $x \in (a, a+1) \Rightarrow f(x) = a \in x \in (a-1, a) \Rightarrow$.

Se (x_n) é uma sequência tal que $x_n \to a$ e $x_n \in (a, a+1)$, então $f(x_n) = a \Rightarrow \lim_{n \to \infty} f(x_n) = a$.

Régis © 2009

Figura 13.11: Máximo inteiro.

Figura 13.12

Se (y_n) é uma sequência tal que $y_n \to a$ e $y_n \in (a-1,a),$ então $f(y_n) = a-1 \Rightarrow$ $\lim_{n\to\infty} f(y_n) = a - 1.$ Se $\lim_{x\to a} f(x) = L$ existe, então a = L e a - 1 = c $\Rightarrow a = a - 1 \Rightarrow 0 = -1.$ Absurdo.

Portanto, $\lim_{x\to a} f(x), a \in \mathbb{Z}$ não existe.

capítulo 14

Lista 08 - Continuidade

Os exercícios a seguir referem-se à página 166 do livro "Análise Matemática para Licenciatura" de Geraldo Ávila.

- **14.1** Faça a demonstração do Teorema 6.24 no caso f(a) > f(b).
- **14.2** Prove que a equação $x^4+10x^3-8=0$ tem pelo menos duas raízes reais. Use uma calculadora científica para determinar uma dessas raízes com a aproximação de duas casas decimais.
- 14.3 Prove que um polinômio de grau ímpar tem um número ímpar de raízes reais, contando as multiplicidades.

Solução:

Suponha que todo polinômio P(x) com grau ímpar possua 2k raízes.

$$P(x) = (x - r_1) \dots (x - r_{2k})q_1(x); gr(q_1)$$
 é impar

$$P(x) = (x - r_1) \dots (x - r_{2k}) \underbrace{(x - s_1) \dots (x - s_{2p})q_2(x)}_{q_1(x)}; \operatorname{gr}(q_2) \text{ \'e impar}$$

Seguindo esse raciocínio, obtemos

$$P(x) = \underbrace{(x - r_1) \dots (x - r_{2k})(x - s_1) \dots (x - s_{2p}) \dots}_{\text{par raízes}} q_t(x); \operatorname{gr}(q_t) = 1$$

Mas q_t possui uma raiz, então pelo T.V.I., P(x) possui uma quantidade ímpar de raizes. Absurdo.

Teorema 14.1 Toda função $f:[a,b]\to\mathbb{R}$ contínua assume valores máximo e mínimo nesse intervalo.

14.4 Prove que se n é par, $p(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$ assume um valor mínimo m. Em consequência, prove que p(x) = a tem pelo menos duas soluções distintas se a > m e nenhuma se a < m.

Solução:

Note que $f(x) = x^n \left(1 + \frac{a_{n-1}}{x} + \ldots + \frac{a_0}{x^n} \right)$. Logo, $\lim_{x \to \infty} f(x) = +\infty$ e $\lim_{x \to -\infty} f(x) = +\infty$.

Escolha $y_0 > 0$ tal que $y_0 \in \text{Im}(f)$, isto é, $x_0 \in \mathbb{R}$; $f(x_0) = y_0 > 0$.

Para este $y_0 > 0, \exists b > 0$ tal que se x > b, então $f(x) > y_0$, pois $\lim_{x \to \infty} f(x) = +\infty$.

Além disso, para $y_0 > 0, \exists a < 0$ tal que se x < a, então $f(x) > y_0$.

Então, $f:[a,b]\to\mathbb{R}$ assume valor mínimo, pelo Teo. 14.1, seja m esse mínimo; m é mínimo global, pois $m\leqslant y_0$ e se $x\notin[a,b], f(x)>y_0\Rightarrow f(x)>m$.

Figura 14.1

Agora, como m é o mínimo de f, isto é, $f(x) \ge m, \forall x \in \mathbb{R}$. Devemos mostrar que se a > m, f(x) = a tem pelo menos duas soluções distintas.

Suponha que $m = f(c), c \in \mathbb{R}$. Escolha $r_1 > c$ tal que $f(r_1) > a$ e $r_2 < c$ tal que $f(r_2) > a$.

Note que $f(c) < a < f(r_1)$, então pelo T.V.I., $\exists x_1 \in (c, r_1)$ tal que $f(x_1) = a$. E $f(c) < a < f(r_2)$, então pelo T.V.I., $\exists x_2 \in (r_2, c)$ tal que $f(x_2) = a$.

Portanto, f(x) = a tem pelo menos duas soluções distintas se a > m.

Se a < m, f(x) = a não admite solução, pois m é o valor mínimo da função.

14.5 Prove que se um polinômio de grau n tiver r raízes, contando as multiplicidades, então n-r é par.

Solução:

Seja $P(x) = a_n x^n + \ldots + a_1 x + a_0$ um polinômio com r raízes reais e gr(P) = n.

$$P(x) = \underbrace{(x - x_1)(x - x_2) \dots (x - x_r)}_{r \text{ fatores}} q(x); \operatorname{gr}(q) = n - r$$

q possui raiz real?

Se s é raiz de q, então

$$q(x) = (x - s)q_1(x)$$

Absurdo. Pois P(x) teria r+1 raizes reais. Então, q não possui raiz real, ou seja, q possui n-r raizes complexas, portanto, n-r é par, pois se $z\in\mathbb{C}$ é raiz de q, \overline{z} também é.

14.6 Prove que todo número a>0 possui raízes quadradas, uma positiva e outra negativa.

Solução:

Seja $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^2$. Note que $f(x) \ge 0, \forall x \in \mathbb{R}$. Como f(0) = 0, 0 é o mínimo de f.

Dado a > 0, escolha $r_1 > 0$ tal que $f(r_1) > a$ e $r_2 < 0$ tal que $f(r_2) > a$, pelo T.V.I., existe $x_1 \in (0, r_1)$ tal que $f(x_1) = a$ e $x_2 \in (r_2, 0)$ tal que $f(x_2) = a$.

Portanto, x_1 e x_2 são raizes quadradas de a.

14.7 Prove que todo número a>0 possui uma raiz n-ésima positiva; e se n for par, possuirá também uma raiz n-ésima negativa.

Solução:

b é dito raiz n-ésima de a se

$$b^n = a; (a = \sqrt[n]{b})$$

Note que $\lim_{x\to\infty} x^n = \infty$. Dado a>0, escolha $x_1>0$ tal que $x_1^n>a$. Isso existe, pois $\lim_{x\to\infty} x^n=\infty$. Temos, para a função $f(x)=x^n$, que f(0)=0 e $f(x_1)=x_1^n$.

Logo, $f(0) < a < f(x_1)$, pelo TVI, existe $b \in (0, x_1)$ tal que $f(b) = a \Rightarrow b^n = a$. Portanto, b é raiz n-ésima de a.

Além disso, se n for par,

Régis © 2009 169 Análise Matemática

$$b^n = (-b)^n = a$$

ou seja, possui uma raiz n-ésima negativa.

 ${f 14.8}$ Seja f uma função contínua num intervalo, onde ela é sempre diferente de zero. Prove que f é sempre positiva ou sempre negativa.

Solução:

Se f for positiva e negativa, ou seja, f(a) < 0 e f(b) > 0. Então, pelo T.V.I., existe $c \in (a,b)$ tal que f(c) = 0. Absurdo, pois $f(x) \neq 0, \forall x$.

Portanto, f é positiva ou negativa.

14.9 Sejam f e g funções contínuas num intervalo [a,b] tais que f(a) < g(a) e f(b) > g(b). Prove que existe um número c entre a e b, tal que f(c) = g(c). Faça um gráfico para entender bem o que se passa.

Solução:

Seja $h:[a,b] \to \mathbb{R}$ tal que h(x) = f(x) - g(x).

$$h(a) = f(a) - g(a)$$

$$h(b) = f(b) - g(b)$$

$$\Rightarrow h(a) < 0 < h(b)$$

Figura 14.2

Pelo T.V.I., existe $c \in [a, b]$ tal que h(c) = 0.

$$h(c) = 0$$

$$\Rightarrow f(c) - g(c) = 0$$

$$\Rightarrow f(c) = g(c)$$

14.10 Seja f uma função contínua no intervalo [0,1], com valores nesse mesmo intervalo. Prove que existe $c \in [0,1]$ tal que f(c) = c. Interprete este resultado geometricamente.

Solução:

Seja $g(x) = x, x \in [0, 1]$. Se f(0) = 0 ou f(1) = 1, tome c = 0 ou c = 1.

Figura 14.3

Caso contrário, $(f(0) \neq 0$ ou $f(1) \neq 1).$ Assim, da hipótese, 0 < f(0) < 1 e 0 < f(1) < 1.

Considere h(x) = f(x) - g(x), h é contínua em [0, 1].

$$h(0) = f(0) - g(0) = f(0) - 0 = f(0) > 0$$
 e
 $h(1) = f(1) - g(1) = f(1) - 1 < 0$

Pelo T.V.I., existe $c \in [0,1]$ tal que h(c) = 0.

$$\Rightarrow h(c) = f(c) - g(c) = 0$$

$$\Rightarrow f(c) - c = 0$$

$$\Rightarrow f(c) = c$$

14.11 Nas mesmas hipóteses do exercício anterior, prove que existe $c \in [0, 1]$ tal que f(c) = 1 - c. Interprete este resultado geometricamente.

Solução:

Seja $g(x) = 1 - x, x \in [0, 1]$. Se f(0) = 1 ou f(1) = 0, tome c = 0 ou c = 1.

Figura 14.4

Caso contrário, 0 < f(0) < 1 e 0 < f(1) < 1.

Considere h(x) = f(x) - g(x), h é contínua em [0, 1].

$$h(0) = f(0) - g(0) = f(0) - 1 + 0 < 0$$
 e

$$h(1) = f(1) - g(1) = f(1) - 1 + 1 > 0$$

Pelo T.V.I., existe $c \in [0, 1]$ tal que h(c) = 0.

$$\Rightarrow h(c) = f(c) - g(c) = 0$$
$$\Rightarrow f(c) - 1 + c = 0$$

 $\Rightarrow f(c) = 1 - c$

14.12 Seja f uma função contínua no intervalo [0,1], com f(0)=f(1). Prove que existe um número $c \in [0,1/2]$ tal que f(c)=f(c+1/2).

Solução:

Sejam g(x) = f(x + 1/2) e h(x) = g(x) - f(x), h é contínua em [0, 1/2].

$$h(0) = g(0) - f(0) = f\left(\frac{1}{2}\right) - f(0) \text{ e}$$

$$h\left(\frac{1}{2}\right) = g\left(\frac{1}{2}\right) - f\left(\frac{1}{2}\right) = f(1) - f\left(\frac{1}{2}\right) = f(0) - f\left(\frac{1}{2}\right)$$

$$\Rightarrow h(0) = -h\left(\frac{1}{2}\right)$$

172 Análise Matemática Régis © 2009

Pelo T.V.I., existe $c \in [0,1]$ tal que h(c) = 0.

$$\Rightarrow g(c) - f(c) = 0$$

$$\Rightarrow f(c) = g(c)$$

$$\Rightarrow f(c) = f\left(c + \frac{1}{2}\right)$$

 ${\bf 14.13}\,$ Complete a demonstração do Teorema 6.30, provando que g é contínua em b, na hipótese de que b seja uma das extremidades do intervalo J. Faça também a demonstração completa do teorema no caso em que f (e, consequentemente, também g) é uma função decrescente.

14.14 Sejam f e g funções crescentes num intervalo I, onde $f(x) \leq g(x)$. Prove que $f^{-1}(y) \geqslant g^{-1}(y)$ para todo $y \in f(I) \cap g(I)$.

Solução:

Suponha $f^{-1}(y) < g^{-1}(y)$. Aplicando f, temos $f(f^{-1}(y)) < f(g^{-1}(y))$, pois f é crescente.

$$\Rightarrow y < f(g^{-1}(y)) \le g(g^{-1}(y)), \text{ pois } f(x) \le g(x).$$

$$\Rightarrow y < g(g^{-1}(y))$$
$$\Rightarrow y < y$$

Absurdo. Portanto, $f^{-1}(y) \geqslant g^{-1}(y)$.

 ${\bf 14.15}$ Prove que a imagem de um intervalo aberto por uma função contínua injetiva é um intervalo aberto. Dê exemplos em que o intervalo-domínio é limitado, mas sua imagem é ilimitada.

Solução:

Devemos mostrar que se $x \in (a, b)$, então $f(x) \in (c, d)$.

Figura 14.5

Se $x \in [a,b], f$ é contínua em [a,b] e $f(a) \neq f(b)$, pois f é injetiva. Pelo T.V.I., $f(x) \in [f(a),f(b)]$.

Suponha f crescente, então $a \le x \le b$, T.V.I. $\Rightarrow f(a) \le f(x) \le f(b)$.

Se $x \in (a,b)$, então a < x < b. Como f é injetiva, se a < x < b, então $f(x) \neq f(a)$ e $f(x) \neq f(b) \Rightarrow f(a) < f(x) < f(b)$.

Portanto, f leva um intervalo aberto em outro aberto.

Exemplo, seja $f:(-\pi,\pi)\to\mathbb{R}$ tal que $f(x)=\operatorname{tg}(x)$.

Figura 14.6: Função tangente.

14.16 Dê exemplo de uma função cujo domínio não seja nem fechado nem limitado, mas tenha valores máximo e mínimo.

Solução:

As funções seno e cosseno.

14.17 Prove que f(x) = x se x for racional, e f(x) = 1 - x se x for irracional, é contínua em x = 1/2 e somente neste ponto.

Solução:

Afirmação: $\lim_{x \to \frac{1}{2}} f(x) = \frac{1}{2}$

Dado, $\varepsilon > 0, \exists \delta > 0$ tal que se $x \in \mathbb{R}$ e $\left| x - \frac{1}{2} \right| < \delta \Rightarrow \left| f(x) - \frac{1}{2} \right| < \varepsilon$. Se $x \in \mathbb{Q}$,

$$\left| f(x) - \frac{1}{2} \right| = \left| (1 - x) - \frac{1}{2} \right| = \left| \frac{1}{2} - x \right| = \left| x - \frac{1}{2} \right| < \varepsilon$$

Tome $\delta=\varepsilon,$ então se $x\in\mathbb{Q}$ e $\left|x-\frac{1}{2}\right|<\delta\Rightarrow\left|f(x)-\frac{1}{2}\right|<\varepsilon.$ Se $x\in\mathbb{R}-\mathbb{Q},$

$$\left| f(x) - \frac{1}{2} \right| = \left| x - \frac{1}{2} \right| < \varepsilon$$

Tome $\delta = \varepsilon$, então se $x \in \mathbb{R} - \mathbb{Q}$ e $\left| x - \frac{1}{2} \right| < \delta \Rightarrow \left| f(x) - \frac{1}{2} \right| < \varepsilon$.

Portanto, se $x \in \mathbb{R}$ e $\left| x - \frac{1}{2} \right| < \delta \Rightarrow \left| f(x) - \frac{1}{2} \right| < \varepsilon$.

Além disso, $\lim_{x \to \frac{1}{2}} f(x) = \frac{1}{2} = f\left(\frac{1}{2}\right)$, portanto f é contínua em $x = \frac{1}{2}$.

Agora, mostremos que não existe $\lim_{x\to a} f(x)$ para $a\neq \frac{1}{2}$. Seja (x_n) uma sequência tal que $x_n\to a, x_n\in\mathbb{R}-\mathbb{Q}$, então

$$f(x_n) = x_n \Rightarrow \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_n = a$$

Seja (y_n) uma sequência tal que $y_n \to a, y_n \in \mathbb{Q}$, então

$$f(y_n) = 1 - y_n \Rightarrow \lim_{n \to \infty} f(y_n) = 1 - a$$

Se $\lim_{x \to a} f(x) = L$ existe, então a = L e 1 - a = L.

$$\Rightarrow a=1-a\Rightarrow =\frac{1}{2}$$
 Portanto, para $a\neq \frac{1}{2}$ temos que $\lim_{x\to a}f(x)$ não existe. \Box

14.18 Considere a função f assim definida: f(x) = -x se x for racional e f(x) = 1/x se x for irracional. Faça o gráfico dessa função e mostre que ela é uma bijeção descontínua em todos os pontos.

Solução:

- f é injetiva.
 - 1. Dado $x, y \in \mathbb{Q}$, suponha

$$f(x) = f(y)$$
$$-x = -y$$
$$\boxed{x = y}$$

2. Dado $x, y \in \mathbb{R} - \mathbb{Q}$, suponha

$$f(x) = f(y)$$

$$\frac{1}{x} = \frac{1}{y}$$

$$x = y$$

3. Dado $x \in \mathbb{Q}$ e $y \in \mathbb{R} - \mathbb{Q}$, suponha

$$x \neq y$$

$$f(x) = -x \in \mathbb{Q} \text{ e}$$

$$f(y) = \frac{1}{y} \in \mathbb{R} - \mathbb{Q}$$

$$\Rightarrow f(x) \neq f(y)$$

 $\bullet \ f$ é sobrejetiva.

Dado $y \in \mathbb{R}, \exists x \in \mathbb{R} \text{ tal que } f(x) = y.$

1) Seja
$$y \in \mathbb{Q}$$
. $f(x) = y$, para algum $x \in \mathbb{R}$.

$$- \text{ Se } x \in \mathbb{Q} \Rightarrow y = -x \Rightarrow x = -y \text{, então } -y \in \mathbb{Q}.$$

$$- \text{ Se } x \in \mathbb{R} - \mathbb{Q} \Rightarrow \frac{1}{x} = y \Rightarrow x = \frac{1}{y}. \text{ Absurdo, pois } x \in \mathbb{R} - \mathbb{Q} \text{ e}$$

$$\frac{1}{y} \in \mathbb{Q}.$$

2) Seja
$$y \in \mathbb{R} - \mathbb{Q}$$
.

- Se
$$x \in \mathbb{Q} \Rightarrow y = f(x) = -x \Rightarrow x = -y$$
. Absurdo, pois $x \in \mathbb{Q}$ e $-y \in \mathbb{R} - \mathbb{Q}$.

- Se
$$x \in \mathbb{R} - \mathbb{Q} \Rightarrow y = f(x) = \frac{1}{x} \Rightarrow x = \frac{1}{y}, \forall y \in \mathbb{R} - \mathbb{Q}.$$

Portanto, $\mathbb{R} - \mathbb{Q} \subset \text{Im}(f)$.

Conclusão: f é sobrejetiva.

• f é contínua.

Verifiquemos se existe $\lim_{x\to a} f(x) = f(a)$.

Suponha que exista $\lim_{x \to a} f(x) = L$.

Seja $x_n \in \mathbb{Q}$ tal que $x_n \to a \Rightarrow f(x_n) = -x_n$.

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} (-x_n) = -\lim_{n \to \infty} x_n = -a$$

Seja $y_n \in \mathbb{R} - \mathbb{Q}$ tal que $y_n \to a \Rightarrow f(y_n) = \frac{1}{u_n}$.

$$\lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} \frac{1}{y_n} = \frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} y_n} = \frac{1}{a}$$

Então, $-a = \frac{1}{a} \Rightarrow a^2 = -1$. Absurdo, pois $a \in \mathbb{R} \Rightarrow a^2 \geqslant 0$.

Logo, $\nexists \lim_{x \to a} f(x), \forall a \in \mathbb{R}.$

Exemplo 14.1 Seja $f(x) = \sqrt{x}$. Mostre que $f'(x) = \frac{1}{2\sqrt{x}}$.

Solução:

$$f'(x) = \lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{x - a}$$

$$= \lim_{x \to a} \frac{(\sqrt{x} - \sqrt{a})(\sqrt{x} + \sqrt{a})}{(x - a)(\sqrt{x} + \sqrt{a})}$$

$$= \lim_{x \to a} \frac{x - a}{(x - a)(\sqrt{x} + \sqrt{a})}$$

$$= \lim_{x \to a} \frac{1}{\sqrt{x} + \sqrt{a}} = \frac{1}{2\sqrt{a}}$$

$$\Rightarrow f'(a) = \frac{1}{2\sqrt{a}}$$
$$\Rightarrow f'(x) = \frac{1}{2\sqrt{x}}$$

Exemplo 14.2 Seja f(x) tal que

$$f(x) = \left\{ \begin{array}{ll} x & \text{, se } x \in \mathbb{Q} \\ -x & \text{, se } x \in \mathbb{R} - \mathbb{Q} \end{array} \right.$$

Mostre que f é contínua apenas em x=0 e |f(x)| é contínua em todo ponto.

Solução:

i) f(0) = 0

ii) Se
$$x \in \mathbb{R} - \mathbb{Q}$$
, $\lim_{x \to 0} f(x) = 0$. E se $x \in \mathbb{Q}$, $\lim_{x \to 0} f(x) = 0$
 $\Rightarrow \exists \lim_{n \to \infty} f(x)x0$.

iii)
$$\lim_{x \to 0} f(x) = 0 = f(0)$$

Portanto, f é contínua em 0.

Afirmação: f(x) não é contínua para $x \neq 0$. Seja (x_n) uma sequência tal que $x_n \to a$ e $x_n \in \mathbb{R} - \mathbb{Q}$.

$$\Rightarrow f(x_n) = -a \Rightarrow \lim_{n \to \infty} f(x_n) = -a$$

Seja (y_n) uma sequência tal que $y_n \to a$ e $y_n \in \mathbb{Q}$.

$$\Rightarrow f(y_n) = a \Rightarrow \lim_{n \to \infty} f(y_n) = a$$

Se $\lim_{x\to a} f(x) = L$, então

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(y_n)$$

$$\Rightarrow -a = a$$

$$\Rightarrow a = 0$$

Portanto, $\lim_{x\to a} f(x)$ não existe para $a\neq 0$.

Além disso,

$$|f(x)| = \begin{cases} |x| & \text{, se } x \in \mathbb{Q} \\ |-x| = |x| & \text{, se } x \in \mathbb{R} - \mathbb{Q} \end{cases}$$
$$\Rightarrow |f(x)| = |x|, \text{ se } x \in \mathbb{R}$$

- i) f(0) = |0| = 0
- ii) $\lim_{x \to a} |f(x)|$
 - $\bullet \mbox{ se } a>0,$ então $\lim_{x\to a^+}|f(x)|=\lim_{x\to a^+}x=a$
 - $\bullet \ \text{se} \ a < 0,$ então $\lim_{x \to a^-} |f(x)| = \lim_{x \to a^-} -x = -a$
 - se a=0, então $\lim_{x\to 0}|f(x)|=\lim_{x\to 0}|x|=0$

Exemplo 14.3 Seja $f(x) = ax^2 + bx + c, a \neq 0$. Ache os pontos de máximo e mínimo de f se existir.

Solução:

Os pontos críticos de f são

$$f'(x) = 0$$

$$\Rightarrow 2ax + b = 0$$

$$\Rightarrow 2ax = -b$$

$$\Rightarrow x_1 = \frac{-b}{2a}$$

• Se a > 0 e $x > x_1$, f é crescente em $[x_1, +\infty) \Rightarrow f(x) > f(x_1)$; e se $x < x_1$, e f é decrescente em $(-\infty, x_1], \Rightarrow f(x) > f(x_1)$. $\Rightarrow f(x) \geqslant f(x_1), \forall x \in D(f)$.

Portanto, x_1 é ponto de mínimo.

• Se a < 0 e $x < x_1, f$ é crescente em $(-\infty, x_1] \Rightarrow f(x) < f(x_1)$; e se $x > x_1$, e f é decrescente em $[x_1, +\infty), \Rightarrow f(x) < f(x_1)$. $\Rightarrow f(x) \leq f(x_1), \forall x \in D(f)$.

Portanto, x_1 é ponto de máximo.

14.19 1 Prove, pela definição de limite, que $f(x)=\frac{1}{x}$ é contínua para todo $x\neq 0.$

Solução:

Sendo $a \neq o$,

$$|f(x) - f(a)| = \left| \frac{1}{x} - \frac{1}{a} \right| = \left| \frac{a - x}{ax} \right|$$
$$= \frac{|a - x|}{|ax|} = \frac{|x - a|}{|ax|}$$
$$= \frac{1}{|a||x|} |x - a|$$

$$\begin{array}{c|c}
\delta = \frac{|a|}{2} \\
0 & \frac{|a|}{2} & |a| & \frac{3|a|}{2}
\end{array}$$

Figura 14.7

$$\begin{split} \text{Tome } \delta &= \frac{|a|}{2} \Rightarrow \frac{|a|}{2} < |x| < \frac{3|a|}{2}. \\ \text{Fazendo } |x| > \frac{|a|}{2} \Rightarrow \frac{1}{|x|} < \frac{2}{|a|} \\ &\Rightarrow \left|\frac{1}{x} - \frac{1}{a}\right| = \frac{1}{|a||x|}|x - a| < \frac{1}{|a|} \frac{2}{|a|}|x - a| < \varepsilon \end{split}$$

$$\text{Tome } \delta &= \min\left\{\frac{|a|}{2}, \frac{|a|^2}{2}\varepsilon\right\}.$$

$$\text{Dado } \varepsilon > 0, \exists \delta > 0 \text{ tal que se } |x - a| < \delta \Rightarrow \left|\frac{1}{x} - \frac{1}{a}\right| < \frac{2}{|a|^2} \frac{|a|^2}{2}\varepsilon = \varepsilon \end{split}$$

¹Análise Matemática para Licenciatura - pág. 148.

14.20 Prove que se f(x) é contínua em x = a e $f(x) \ge 0$, então $g(x) = \sqrt{f(x)}$ é contínua em x = a.

Solução:

Note que $f(x) = g^2(x)$. Sabemos que f é contínua em x = a, então

$$\lim_{x \to a} f(x) = f(a) \Rightarrow \lim_{x \to a} g^2(x) = g^2(a).$$

Dado $\varepsilon > 0$, $\exists \delta > 0$ tal que $|x - a| < \delta \Rightarrow |g^2(x) - g^2(a)| < k\varepsilon$. Note que $|g^2(x) - g^2(a)| = |g(x) + g(a)||g(x) - g(a)|$.

Afirmação: g(x) é limitada numa vizinhança de a.

f é limitada numa vizinhança de a, pois existe $\lim_{x\to a} f(x) = f(a)$, então g(x) = f(a)

 $\sqrt{f(x)}$ é limitada numa vizinhança de a.

Logo, existe $M \in \mathbb{R}$ tal que $|g(x)| < M \Rightarrow \exists K \in \mathbb{R}$ tal que |g(x) + g(a)| < K. Então,

$$\begin{split} |g^2(x) - g^2(a)| &= |g(x) + g(a)||g(x) - g(a)| < k|g(x) - g(a)| < k\varepsilon \\ \Rightarrow |g(x) - g(a)| &< k\frac{\varepsilon}{k} \Rightarrow |g(x) - g(a)| < \varepsilon. \end{split}$$

Logo, dado $\varepsilon > 0, \exists \delta > 0$ tal que $|x - a| < \delta$ $\Rightarrow |g(x) - g(a)| < \varepsilon \Rightarrow \lim_{x \to a} g(x) = g(a).$

Portanto, g é contínua em x = a.

Régis © 2009

 $^{^2{\}rm Análise}$ Matemática para Licenciatura - pág. 149.

Lista 09 - Continuidade e Derivação

15.1 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = |2x + 1| - |-x - 7|$$

- a) Mostre, usando a definição, que f é contínua em todos os pontos do domínio.
- b) f assume valor máximo? E mínimo?
- c) f é injetora? Sobrejetora? Qual é o conjunto imagem de f?

Solução:

Note que

$$|2x+1| = \begin{cases} 2x+1 & \text{, se } 2x+1 \geqslant 0 \\ -2x-1 & \text{, se } 2x+1 < 0 \end{cases}$$

$$|2x+1| = \begin{cases} 2x+1 & \text{, se } x \geqslant -\frac{1}{2} \\ -2x-1 & \text{, se } x < -\frac{1}{2} \end{cases}$$

$$|-x-7| = \begin{cases} -x-7 & \text{, se } -x-7 \geqslant 0 \\ x+7 & \text{, se } -x-7 < 0 \end{cases}$$

$$|-x-7| = \begin{cases} -x-7 & \text{, se } x \leqslant -7 \\ x+7 & \text{, se } x > -7 \end{cases}$$

Figura 15.1

Figura 15.2: Gráfico de f

- a) Se a<-7, então $\lim_{x\to a}(-x+6)=-a+6=f(a)$, o mesmo vale para os outros intervalos, que são $\left(-7,-\frac{1}{2}\right)$ e $\left[-\frac{1}{2},+\infty\right)$
- b) A partir da Fig. 15.2, podemos observar que f assume valor mínimo em $x=-\frac{1}{2}$. E não assume valor máximo.

c)
$$\operatorname{Im}(f) = \left[-\frac{13}{2}, +\infty \right)$$

 ${f 15.2}$ Em cada afirmativa abaixo, prove, se for verdadeira, ou dê um contra-exemplo, em caso falso.

- a) Se f é contínua em a, então f é derivável em a.
- b) Se f é derivável em a, então f é contínua em a.
- c) Se f assume um valor máximo ou mínimo em x=a, então f é derivável em a.

Solução:

a) Falso. Seja f(x) = |x|.

$$\lim_{x \to 0} |x| = 0 = f(0)$$

Portanto, f é contínua.

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{|x|}{x}$$

Se
$$x > 0$$
, então $\lim_{x \to 0} \frac{|x|}{x} = \lim_{x \to 0} \frac{x}{x} = 1$

Se
$$x > 0$$
, então $\lim_{x \to 0} \frac{|x|}{x} = \lim_{x \to 0} \frac{-x}{x} = -1$

Como os limites laterais são diferentes, então o limite não existe em x=0, ou seja, não existe a derivada em x=0.

- b) Teorema 6.3.
- c) Falso. Tome f(x) = |x|.

f assume valor mínimo em x=0, mas não é derivável neste ponto.

15.3 Seja $f:(0,+\infty)\to\mathbb{R}$ definida por $f(x)=\frac{1}{x}$. Mostre que a região compreendida pela reta tangente ao gráfico de f no ponto (1,f(1)) pela reta perpendicular à tangente nesse mesmo ponto e pelo eixo das abscissas é um triângulo isósceles.

Solução:

A derivada de f no ponto (1, f(1)) é

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{\frac{1}{x} - 1}{x - 1}$$
$$= \lim_{x \to 1} \frac{1 - x}{x(x - 1)} = \lim_{x \to 1} -\frac{1}{x}$$
$$f'(1) = -1$$

A equação da reta tangente no ponto (1, f(1)) é

$$y - f(1) = f'(1)(x - 1)$$

 $y - 1 = -1(x - 1)$
 $y = -x + 2$

Se f'(1) = -1, então $tg\theta = -1 \Rightarrow \theta = 135^{\circ}$.

Logo, $\alpha = 45^{\circ}$. Como $\alpha + \beta + 90^{\circ} = 180^{\circ} \Rightarrow \beta = 45^{\circ}$.

Portanto, o triângulo é isósceles.

Além disso, n é a reta perpendicular a reta t, então $m_t.m_n = -1$

$$\Rightarrow -1.m_n = -1 \Rightarrow m_n = 1.$$

Como a inclinação da reta n é 1 e esta reta passa no ponto (1,1), então a equação da reta n é y=x. \Box

Análise Matemática

Figura 15.3

15.4 O conjunto de zeros de uma função $f: \mathbb{R} \to \mathbb{R}$ é o conjunto

$$Z(f) = \{x \in \mathbb{R}; f(x) = 0\}$$

- a) Existe $f: \mathbb{R} \to \mathbb{R}$, contínua, tal que Z(f) = [0, 1]?
- b) Existe $f: \mathbb{R} \to \mathbb{R}$, contínua, tal que $Z(f) = \emptyset$?
- c) Existe $f: \mathbb{R} \to \mathbb{R}$, contínua, tal que $Z(f) = \mathbb{R}$?

Solução:

a) Sim. Tome

$$f(x) = \begin{cases} -x & \text{, se } x \leq 0 \\ 0 & \text{, se } 0 < x \leq 1 \\ x - 1 & \text{, se } x > 1 \end{cases}$$

De modo geral

$$f(x) = \begin{cases} g(x) & \text{, se } x \leq 0 \\ 0 & \text{, se } 0 < x \leq 1 \\ h(x) & \text{, se } x > 1 \end{cases}$$

- b) Sim. Tome $f(x) = ax^2 + bx + c, a \neq 0, \text{ com } b^2 4ac < 0.$
- c) Sim. Tome f(x) = 0.

 ${\bf 15.5}\,$ Seja $f:\mathbb{R}\to\mathbb{R}$ uma função derivável em todos os pontos do domínio e com f' contínua. Se

$$xf'(x) = x^2 + f(x)^2$$

para todo $x \in \mathbb{R}$, mostre que

- a) f(0) = 0
- b) f'(0) = 0

Solução:

a) Como f'(x) existe $\forall x \in \mathbb{R}$, pois f é derivável em todos os pontos do domínio, segue que f'(0) é um número real. Logo,

$$0.f'(0) = 0^2 + f(0)^2$$

$$\Rightarrow f(0)^2 = 0$$

$$\Rightarrow f(0) = 0$$

b) Sabemos que, para $x \neq 0$.

$$f'(x) = \frac{x^2}{x} + \frac{f(x)^2}{x}$$
$$\Rightarrow f'(x) = x + \frac{f(x)^2}{x}$$

Note que, $f'(0) = \lim_{x \to 0} f'(x)$, pois f é contínua. Então,

$$\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} \left(x + \frac{f(x)^2}{x} \right) \geqslant 0 \text{ e}$$

$$\lim_{x \to 0^-} f'(x) = \lim_{x \to 0^-} \left(x + \frac{f(x)^2}{x} \right) \leqslant 0$$

$$\Rightarrow 0 \leqslant f'(0) \leqslant 0$$

$$\Rightarrow \boxed{f'(0) = 0}$$

15. Lista 09 - Continuidade e Derivação

15.6 Sejam $f,g:\mathbb{R}\to\mathbb{R}$. Prove ou dê um contra-exemplo para as seguintes afirmações.

- a) Se f + g é contínua, então f e g são contínuas.
- b) Se fg é contínua, então f e g são contínuas.
- c) Se f(x+y) = f(x) + f(y) e f é contínua em x=0, então f é contínua em todo x.

Solução:

a) Falso. Contra-exemplo. Sejam

$$f(x) = \begin{cases} 1, & \text{se } x < 0 \\ -1, & \text{se } x \ge 0 \end{cases}$$

$$g(x) = \begin{cases} -1, & \text{se } x < 0 \\ 1, & \text{se } x \ge 0 \end{cases}$$

Figura 15.4: Soma de funções.

A soma $(f+g)(x) = 0, \forall x \in \mathbb{R}$.

b) Falso. Contra-exemplo.

Tome as mesmas $f \in g$ do item anterior.

Figura 15.5: $(fg)(x) = -1, \forall x \in \mathbb{R}.$

c) Verdadeiro. Note que

$$f(0+0) = f(0) + f(0)$$

$$f(0) = f(0) + f(0)$$

$$f(0) = 0$$

e, como f é contínua em x=0,

$$\lim_{x \to 0} f(x) = 0$$

Além disso,

$$x + (-x) = 0 \Rightarrow f(x + (-x)) = f(0)$$

$$\Rightarrow f(x) + f(-x) = 0$$

$$\Rightarrow f(-x) = -f(x)$$

Logo, f é ímpar. Temos ainda, que

$$f(x - y) = f(x + (-y)) = f(x) + f(-y) = f(x) - f(y)$$

sabendo que

$$\lim_{x \to a} f(x) = f(a) \Leftrightarrow \lim_{x \to a} f(x) - f(a) = 0$$

Então

$$\lim_{x \to a} f(x) - f(a) = \lim_{x \to a} f(x - a)$$

Seja u = x - a, então $u \to 0$. Logo,

$$\lim_{x \to a} f(x) - f(a) = \lim_{u \to 0} f(u) = f(0) = 0$$

$$\Rightarrow \lim_{x \to a} f(x) - f(a) = 0$$

$$\Rightarrow \lim_{x \to a} f(x) = f(a)$$

Portanto, f é contínua para todo $x \in \mathbb{R}$.

15.7 Seja $f: \mathbb{R} \to \mathbb{R}$ uma função. Mostre que se $|f(x)| \leq x^2$, para todo $x \in \mathbb{R}$, então existe f'(0).

Solução:

Rascunho

$$|f(x)| \le x^2$$

$$\Rightarrow -x^2 \le f(x) \le x^2$$

$$\Rightarrow 0 \le f(0) \le 0$$

$$\Rightarrow f(0) = 0$$

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x}$$

como $-x^2 \leqslant f(x) \leqslant x^2$, se x > 0, então $-x \leqslant \frac{f(x)}{x} \leqslant x$;

se x<0, então $x\leqslant \frac{f(x)}{x}\leqslant -x.$ Terminar aplicando limites e usar o Teorema do Confronto...

15.8 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 0 & \text{, se } x \in \mathbb{R} - \mathbb{Q} \\ x^2 & \text{, se } x \in \mathbb{Q} \end{cases}$$

Mostre que f é derivável em x=0.

Solução:

Afirmação:

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x} = 0, \text{ pois}$$

$$\bullet \ \text{se} \ x \in \mathbb{Q},$$
então $\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0$

• se
$$x \in \mathbb{R} - \mathbb{Q}$$
, então $\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{0}{x} = 0$

Afirmação:
$$f'(0) = \lim_{x \to 0} \frac{f(x)}{x} = 0.$$

Seja
$$g(x) = \frac{f(x)}{x} \Rightarrow \lim_{x \to 0} g(x) = 0$$

• se $x \in \mathbb{Q}$, então

$$\left| \frac{f(x)}{x} - 0 \right| = \left| \frac{f(x)}{x} \right| = \left| \frac{x^2}{x} \right| = |x| = |x - 0| < \varepsilon$$

Tomando $\delta = \varepsilon$, temos que dado $\varepsilon > 0, \exists \delta > 0$ tal que se $x \in \mathbb{Q}$ e $|x - 0| < \delta \Rightarrow \left| \frac{f(x)}{x} - 0 \right| < \varepsilon$.

• se $x \in \mathbb{R} - \mathbb{Q}$, então

$$\left| \frac{f(x)}{x} - 0 \right| = \left| \frac{f(x)}{x} \right| = \left| \frac{0}{x} \right| = 0 < \varepsilon$$

Tomando $\delta = \varepsilon$, temos que dado $\varepsilon > 0, \exists \delta > 0$ tal que se $x \in \mathbb{R} - \mathbb{Q}$ e $|x - 0| < \delta \Rightarrow \left| \frac{f(x)}{x} - 0 \right| < \varepsilon$.

15.9 Seja $f: \mathbb{R} \to \mathbb{R}$ contínua e tal que $\lim_{x \to 0} \frac{f(x)}{x} = L < \infty$,

- a) Mostre que f(0) = 0.
- b) Mostre que f é diferenciável em x = 0 e que f'(0) = L.

Solução:

a) f é contínua $\forall x \in \mathbb{R}$, então

$$\lim_{x \to 0} f(x) = f(0)$$

$$\Rightarrow \lim_{x \to 0} x \cdot \frac{f(x)}{x} = \lim_{x \to 0} f(x)$$

$$\Rightarrow 0 = \lim_{x \to 0} f(x) \Rightarrow f(0) = 0$$

pois $x \to 0$ e $\frac{f(x)}{x}$ é limitada.

b) Temos que $\lim_{x\to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x\to 0} \frac{f(x)}{x} = L = f'(0).$

Portanto, f é diferenciável em x=0 e f'(0)=L.

15.10 Seja $f: \mathbb{R} \to \mathbb{R}$ uma função tal que f(0) = 0 e f'(x) é crescente no intervalo $(0, +\infty)$. Mostre que a função $g: (0, +\infty) \to \mathbb{R}$ definida por $g(x) = \frac{f(x)}{x}$ é crescente.

Solução:

Devemos mostrar que $0 < x_1 < x_2 \Rightarrow g(x_1) < g(x_2)$. Sejam $0 < x_1 < x_2$. Pelo TVM, $\exists c_1 \in (0, x_1)$ tal que

$$\frac{f(x_1) - f(0)}{x_1 - 0} = f'(c_1)$$

$$\Rightarrow \frac{f(x_1)}{x_1} = f'(c_1)$$

também $\exists c_2 \in (x_1, x_2)$ tal que

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c_2)$$

como $c_1 < c_2$ e f'(x) é crescente, então $f'(c_1) < f'(c_2)$.

$$\Rightarrow \frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1)}{x_1} > 0$$

$$\Rightarrow \frac{x_1(f(x_2) - f(x_1)) - (x_2 - x_1)f(x_1)}{(x_2 - x_1)x_1} > 0$$

$$\Rightarrow x_1 f(x_2) - x_1 f(x_1) - x_2 f(x_1) + x_1 f(x_1) > 0$$

$$\Rightarrow x_1 f(x_2) - x_2 f(x_1) > 0$$

$$\Rightarrow x_1 f(x_2) > x_2 f(x_1)$$

$$\Rightarrow \frac{f(x_2)}{x_2} > \frac{f(x_1)}{x_1}$$

$$\Rightarrow g(x_2) > g(x_1)$$

15.11 Seja $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^n$ com $n \in \mathbb{Z}$. Mostre que $f'(x) = nx^{n-1}, n \neq 0$.

Solução:

15.12 Seja $f: \mathbb{R} \to \mathbb{R}$ tal que $f'(x) = 0, \forall x$. Mostre que f é uma função constante.

Solução:

Sejam $x_1 \neq x_2, x_1, x_2 \in \mathbb{R}$. Pelo TVM, $\exists c \in (x_1, x_2)$ tal que

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c)$$

$$\Rightarrow \frac{f(x_2) - f(x_1)}{x_2 - x_1} = 0$$

$$\Rightarrow f(x_2) - f(x_1) = 0$$

$$\Rightarrow f(x_2) = f(x_1)$$

Agora, fixe $x_1 \in \mathbb{R}$. Seja $x \in \mathbb{R}$, x qualquer. Pelo TVM, $\exists c_2 \in (x_1, x)$ tal que

$$\frac{f(x) - f(x_1)}{x - x_1} = 0$$

$$\Rightarrow f(x) - f(x_1) = 0$$

$$\Rightarrow f(x) = f(x_1)$$

15.13 Seja $f:[0,+\infty)\to\mathbb{R}$ definida por $f(x)=\sqrt{x}$. Encontre os pontos críticos de f e os pontos de máximo e mínimo se existirem.

Solução:

Não existe f'(0). De fato,

$$f'(0) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0}$$
$$= \lim_{x \to 0^+} \frac{\sqrt{x}}{x}$$
$$= \lim_{x \to 0^+} \frac{1}{\sqrt{x}} = +\infty$$

Portanto, 0 é ponto crítico.

Agora, seja $x_0 \in \mathbb{R}, x_0 > 0$.

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{\sqrt{x} - \sqrt{x_0}}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{(\sqrt{x} - \sqrt{x_0})(\sqrt{x} + \sqrt{x_0})}{(x - x_0)(\sqrt{x} + \sqrt{x_0})}$$

$$= \lim_{x \to x_0} \frac{x - x_0}{(x - x_0)(\sqrt{x} + \sqrt{x_0})}$$

$$= \lim_{x \to x_0} \frac{1}{\sqrt{x} + \sqrt{x_0}}$$

$$f'(x_0) = \lim_{x \to x_0} \frac{1}{2\sqrt{x_0}}$$

Logo, a derivada existe e é diferente de zero, portanto, o ponto x_0 não é crítico. Ainda, f(0) = 0, se $x > 0, \sqrt{x} > \sqrt{0} = 0$, pois f é crescente, então, 0 é ponto de mínimo.

15.14 Seja $f: [-1,1] \to \mathbb{R}$ definida por $f(x) = x^2$. Encontre os pontos críticos de f e os pontos de máximo e mínimo se existirem. Verifique que embora 1 seja ponto de máximo, f'(1) é diferente de zero. Por que isso não contraria a teoria estudada?

Solução:

Temos que f'(x) = 2x. Os pontos críticos de f são dados por

$$f'(x) = 0$$

$$\Rightarrow 2x = 0$$

$$\Rightarrow x = 0 \in [-1, 1]$$

x = 0 é ponto crítico de f.

Zero não é ponto de máximo, pois f(1) = 1 > f(0).

Falta verificar se zero é ponto de mínimo.

$$f(x) = x^2 \geqslant 0, \forall x \in D(f)$$

 $\Rightarrow f(x) \geqslant f(0).$

Além disso, f(-1) = f(1) = 1, então 1 e -1 são pontos de máximo.

Apesar de 1 ser ponto de máximo, mesmo que $f'(1) \neq 0$ isso não contraria o teorema porque na hipótese do teorema o ponto deve ser de acumulação bilateral; o que não acontece neste caso.

CAPÍTULO 16

Conjuntos e Funções

Os exercíÂcios referem-se ao livro de Elon, pág. 28.

16.1 Dados os conjuntos A e B, seja X um conjunto com as seguintes propriedades:

$$\begin{aligned} &1X\supset A \neq X\supset B,\\ &2 \text{ Se } Y\supset A \neq Y\supset B \text{ então } Y\supset X.\\ &\text{Prove que } X=A\cup B. \end{aligned}$$

Solução:

hipótese: 1
 $X\supset A$ e $X\supset B,$ e 2 Se $Y\supset A$ e
 $Y\supset B$ então $Y\supset X.$

tese: $X = A \cup B$.

FIGURA

Devemos fazer a dupla inclusão.

⊃) Devemos mostrar que $A \cup B \subset X$.

Se $x \in A \cup B \Rightarrow x \in A$ ou $x \in B$.

 $\Rightarrow x \in X \Rightarrow A \cup B \subset X.$

⊂) Mostremos que $A \cup B \supset X$, equivalentemente, $X \subset A \cup B$. Note que $A \subset A \cup B$ e $B \subset A \cup B$, pela propriedade $2, \Rightarrow X \subset A \cup B$. \Box

16.2 Enuncie e demonstre um resultado análogo ao anterior, caracterizando $A \cap B$.

Solução:

Para mostrar que $X = A \cap B$ devemos fazer:

hipótese: $1X \subset A$ e $X \subset B$, e 2 Se $Y \subset A$ e $Y \subset B$ então $Y \subset X$.

tese: $X = A \cap B$.

FIGURA

 \subset) Devemos mostrar que $X \subset A \cap B$.

Se $x \in X \Rightarrow x \in A$ e $x \in B$.

 $\Rightarrow x \in A \cap B$.

 \supset) Devemos mostrar que $A \cap B \subset X$.

Pela 2 propriedade, $A \cap B \subset A$, ou seja, $x \in A \cap B \Rightarrow x \in A$ e $x \in B \Rightarrow A \cap B \subset A$ e $A \cap B \subset B$, pela (2), $A \cap B \subset X$.

Dica: Para o exercíÂcio 16.3 é sempre verdade que

 $A=\emptyset \Leftrightarrow A\subset \emptyset$ e
 $\emptyset\subset A$ é sempre verdade.

E, $A = E \Leftrightarrow A \subset E$ (é sempre verdade) e $E \subset A$.

16.3 Sejam $A, B \subset E$. Prove que $A \cap B = \emptyset$ se, e somente se, $A \subset B^c$. Prove também que $A \cup B = E$ se, e somente se, $A^c \subset B$.

Solução:

i) Prove que $A \cap B = \emptyset \Leftrightarrow A \subset B^c$.

FIGURA

 \Leftarrow) Devemos mostrar que $A \subset B^c \Rightarrow A \cap B = \emptyset$.

Seja $A \cap B = \{x \in E : x \in A \in x \in B\}.$

Se $A \subset B^c \Rightarrow$ se $x \in A$, então $x \in B^c$.

 $\Rightarrow x \in A \text{ e } x \notin B \Rightarrow \nexists x \in E \text{ tal que } x \in A \text{ e } x \in B.$

 $\Rightarrow A \cap B = \emptyset.$

 \Rightarrow) Façamos por contraposição. (hip: $A \not\subset B^c$ tese: $A \cap B \neq \emptyset$)

Se
$$A \not\subset B^c \Rightarrow x \in A$$
 e $x \notin B^c$

 $\Rightarrow x \in A \in X \in B$

 $\Rightarrow x \in A \cap B \Rightarrow A \cap B \neq \emptyset.$

Por contraposição, se $A \cap B = \emptyset$, então $A \subset B^c$.

ii) Prove que $A \cup B = E \Leftrightarrow A^c \subset B$.

FIGURA

Dica: $A = E \Leftrightarrow A \subset E$ (sempre verdade) e $E \subset A$.

 $\to x \in E \Rightarrow x \in A \text{ ou } x \in A^c \Rightarrow x \in A \cup A^c \Rightarrow E = A \cup A^c.$

```
\Leftarrow) Mostremos que A^c \subset B \Rightarrow A \cup B = E. (Neste caso, basta mostrar que E \subset A \cup B, pois a outra inclusão é imediata.)
```

Se
$$A^c \subset B \Rightarrow$$
 se $x \in A^C$, então $x \in B$.

Se
$$x \in E, x \in A$$
 ou $x \in A^c$.

$$\Rightarrow$$
 se $x \in A$ ou $x \in B \Rightarrow x \in A \cup B \Rightarrow E = A \cup B$.

$$\Rightarrow$$
) Façamos por contraposição. (hip: $A^c \not\subset B$ tese: $A \cup B \neq E$)

Se
$$A^c \not\subset B$$
, então $x \in A^c$ e $x \notin B$.

Lembre-se que
$$[A^c \cap B^c = (A \cup B)^c]$$

$$\Rightarrow x \in (A \cup B)^c \Rightarrow x \notin A \cup B$$

$$\Rightarrow x \in E \text{ e } x \notin A \cup B \Rightarrow E \not\subset A \cup B.$$

$$\Rightarrow E \neq A \cup B$$
.

Por contraposição, se $A \cup B = E$, então $A^c \subset B$.

16.4 Dados $A, B \subset E$, prove que $A \subset B$ se, e somente se, $A \cap B^c = \emptyset$.

Solução:

 \Rightarrow) Se $x \in A$, então $x \in B$.

Logo, $x \notin B^c \Rightarrow \nexists x \in E$ tal que $x \in A$ e $x \in B$.

Portanto, $A \cap B^c = \emptyset$.

 \Leftarrow) Por contraposição, devemos mostrar que $A \not\subset B \Rightarrow A \cap B^c \neq \emptyset$.

Se
$$A \not\subset B \Rightarrow x \in A$$
 e $x \notin B$.

$$\Rightarrow x \in A \text{ e } x \in B^c \Rightarrow x \in A \cap B^c.$$

$$A \cap B^c \neq \emptyset$$
.

Por contraposição, se $A \cap B^c = \emptyset \Rightarrow A \subset B$.

16.5 Dê exemplos de conjuntos A, B, C tais que $(A \cup B) \cap C \neq A \cup (B \cap C)$.

Solução:

Sejam
$$A = [0, 1], B = [1, 3] e C = [2, 3].$$

FIGURA

Régis © 2009

Temos que
$$A \cup B = [0,3] \Rightarrow I = (A \cup B) \cap C = [2,3].$$

Por outro lado,
$$B \cap C = [2,3] \Rightarrow II = A \cup (B \cap C) = [0,1] \cup [2,3].$$

Portanto, $I \neq II$.

Análise Matemática 197

16.6 Se $A, X \subset E$ são tais que $A \cap X = \emptyset$ e $A \cup X = E$, prove que $X = A^c$.

Solução:

⊂) Seja $x \in X$. Então $x \in E = A \cup X$. ⇒ $x \in A$ ou $x \in X$. Como $A \cap X = \emptyset$, então $x \notin A$.

Logo, $x \in A^c$.

⊃) Seja $x \in A^c$. Então $x \notin A$.

 $\operatorname{Mas}\, x\in E=A\cup X\Rightarrow x\in A \text{ ou } x\in X.$

Portanto, $x \in X$.

16.7 Se $A \subset B$, então, $B \cap (A \cup C) = (B \cap C) \cup A$ para todo conjunto C. Por outro lado, se existir C de modo que a igualdade acima seja satisfeita, então $A \subset B$.

Solução:

16.8 Prove que A = B se, e somente se, $(A \cap B^c) \cup (A^c \cap B) = \emptyset$.

Solução:

$$\Rightarrow) A = B \Rightarrow A^c = B^c \Rightarrow A \cap B^c = \emptyset \text{ e } A^c \cap B = \emptyset.$$
$$\Rightarrow (A \cap B^c) \cup (A^c \cap B) = \emptyset.$$

FIGURA

Lembrete: $A \subset A \cup B$ e $B \subset A \cup B \Rightarrow A \cap B \subset A$ e $A \cap B \subset B$.

 \Leftarrow) Pela propriedade U.7, temos que

$$\begin{split} &(A\cap B^c)\cup (A^c\cap B)=\emptyset\\ &\Leftrightarrow ((A\cap B^c)\cup A^c)\cap ((A\cap B^c)\cup B)=\emptyset\\ &\Leftrightarrow [(A^c\cup A)\cap (A^c\cup B^c)]\cap [(B\cup A)\cap (B\cup B^c)]=\emptyset\\ &\Leftrightarrow [E\cap (A\cap B^c)]\cap [(A\cup B)\cap E]=\emptyset\\ &\Leftrightarrow (A\cap B)^c\cap (A\cup B)=\emptyset\\ &\Leftrightarrow (A\cup B)\cap (A\cap B)^c=\emptyset \end{split}$$

Pelo Ex. 16.3, $[A \cap B = \emptyset \Leftrightarrow A \subset B^c]$. Então, $\Leftrightarrow A \subset (A \cup B) \subset (A \cap B) \subset B \Rightarrow A \subset B$ e $B \subset (A \cup B) \subset (A \cap B) \subset A \Rightarrow B \subset A$. Logo, A = B.

16.9 Prove que $(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$.

198 Análise Matemática Régis © 2009

Solução:

16.10 Seja $A\Delta B = (A-B) \cup (B-A)$. Prove que $A\Delta B = A\Delta C$ implica B=C. Examine a validez de um resultado análogo com \cap , \cup ou \times em vez de Δ .

Solução:

16.11 Prove as seguintes afirmações:

a)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$
;

b)
$$(A \cap B) \times C = (A \times C) \cap (B \times C);$$

c)
$$(A - B) \times C = (A \times C) - (B \times C)$$
;

d)
$$A \subset A', B \subset B' \Rightarrow A \times B \subset A' \times B'$$
.

Solução:

a)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$
;

O produto cartesiano também é um conjunto, e para igualdade de conjuntos devemos fazer dupla inclusão.

$$\subset$$
) Seja $(x, y) \in (A \cup B) \times C$. Então, $x \in A \cup B$ e $y \in C$.

$$\Rightarrow x \in A \text{ ou } x \in B \text{ e } y \in C$$

$$\Rightarrow x \in A \text{ e } y \in C \text{ ou } x \in B \text{ e } y \in C$$

$$\Rightarrow (x,y) \in A \times C \text{ ou } (x,y) \in B \times C$$

$$\Rightarrow (x,y) \in (A \times C) \cup (B \times C).$$

$$\supset$$
) Seja $(x,y) \in (A \times C) \cup (B \times C)$. Então, $(x,y) \in A \times C$ ou $(x,y) \in B \times C$.

$$\Rightarrow x \in A$$
e $y \in C$ ou $x \in B$ e $y \in C$

$$\Rightarrow x \in A$$
 ou $x \in B$ e $y \in C$

$$\Rightarrow x \in A \cup B \in y \in C$$

$$\Rightarrow (x,y) \in (A \cup B) \times C.$$

Portanto, $(A \cup B) \times C = (A \times C) \cup (B \times C)$.

Régis © 2009

Análise Matemática

199

b)
$$(A \cap B) \times C = (A \times C) \cap (B \times C);$$

 \subset) Seja $x \in (A \cap B) \times C$. Então $x \in A \times B$ e $y \in C$.
 $\Rightarrow x \in A$ e $x \in B$ e $y \in C$
 $\Rightarrow x \in A$ e $y \in C$ e $x \in B$ e $y \in C$
 $\Rightarrow (x,y) \in A \times C$ e $(x,y) \in B \times C$
 $\Rightarrow (x,y) \in (A \times C) \cap (B \times C)$
 $\Rightarrow (A \cap B) \times C \subset (A \times C) \cap (B \times C)$.

 \Rightarrow) Devemos mostrar que $(A \times C) \cap (B \times C)$. Então $(x,y) \in A \times C$ e $(x,y) \in B \times C$.
Seja $(x,y) \in (A \times C) \cap (B \times C)$. Então $(x,y) \in A \times C$ e $(x,y) \in B \times C$.
 $\Rightarrow x \in A$ e $y \in C$ e $x \in B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in (A \cap B) \times C$. Portanto, $(A \cap B) \times C = (A \times C) \cap (B \times C)$.
c) $(A - B) \times C = (A \times C) - (B \times C)$;
 \subset) Seja $(x,y) \in (A - B) \times C$. Então $x \in A - B$ e $y \in C$.
 $\Rightarrow x \in A$ e $x \notin B$ e $y \in C$
 $\Rightarrow x \in A \times C$ e $x \notin B \times C$
 $\Rightarrow x \in A \times C$ e $x \notin B \times C$
 $\Rightarrow x \in (A \times C) - (B \times C)$.
 $\Rightarrow (A - B) \times C \subset (A \times C) - (B \times C)$.

O) Devemos mostrar que $(A \times C) - (B \times C)$.
 $\Rightarrow (A - B) \times C \subset (A \times C) - (B \times C)$.
 $\Rightarrow (A - B) \times C \subset (A \times C) - (B \times C)$. Então, $(x,y) \in A \times C$ e $(x,y) \notin B \times C$.
 $\Rightarrow x \in A$ e $x \notin B$ e $y \in C$
 $\Rightarrow x \in A$ e $x \notin B$ e $y \in C$
 $\Rightarrow x \in A$ e $x \notin B$ e $y \in C$
 $\Rightarrow x \in A$ e $x \notin B$ e $y \in C$
 $\Rightarrow x \in A$ e $x \notin B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$
 $\Rightarrow x \in A \cap B$ e $y \in C$

Régis © 2009

d) $A \subset A', B \subset B' \Rightarrow A \times B \subset A' \times B'$.

capítulo 17

Conjuntos Enumeráveis

Os exercíÂcios referem-se ao livro de Elon, pág. 54.

17.1
$$a_n = (1, -1, 1, -1, \ldots) \in b_n = (1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, \ldots)$$

Solução:

a) subsequência

$$(a_j) = (1, 1, 1, \ldots) \to 1$$

$$(a_k) = (-1, -1, -1, \ldots) \to -1$$

$$(a_l) = (x_1, x_3, -1, -1, \ldots) \to -1$$

 $(a_r) = (\text{quantidade finita de 1, quantidade infinita de }-1) \rightarrow 1$

b)

c)

17.2 Se $\lim_{n\to\infty} x_n = a$, prove que $\lim_{n\to\infty} \frac{x_1 + x_2 + \ldots + x_n}{n} = a$.

Solução:

numerador:
$$(x_1 + x_2 + \ldots + x_n)$$
 qualquer

Régis © 2009

Análise Matemática

201

denominador: $b_n = n$ é crescente e $\lim_{n \to \infty} n = +\infty$.

$$\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \frac{(x_1 + x_2 + \dots + x_n + x_{n+1}) - (x_1 + x_2 + \dots + x_n)}{(n+1) - n} = \lim_{n \to \infty} x_{n+1} = a$$

$$\Rightarrow \lim_{n \to \infty} \frac{x_1 + x_2 + \dots + x_n}{n} = a$$

Topologia, Limite e Continuidade

18.1 Prove que $A \subset \mathbb{R}$ é um conjunto aberto se, e somente se, para qualquer sequência (x_n) convergindo para $a \in A$, tem-se que $x_n \in A$ para n suficientemente grande.

18.2 Seja $B \subset \mathbb{R}$ um conjunto aberto e $x \in \mathbb{R}$ fixado. Prove que $x+B=\{x+y;y\in B\}$ é um conjunto aberto. Se $x\neq 0$, então o conjunto $x.B=\{xy;y\in B\}$ também é um conjunto aberto.

18.3 Sejam A,B conjuntos abertos. Prove que $A+B=\{x+y;x\in A\ \mathrm{e}\ y\in B\}$ e $A.B=\{xy;x\in A\ \mathrm{e}\ y\in B\}$ são conjuntos abertos.

18.4 Sejam $X, Y \subset \mathbb{R}$. Prove que

- a) $int(X \cup Y) \supset intX \cup intY$
- b) $int(X \cap Y) = intX \cap intY$

Dê exemplos em que $\operatorname{int}(X \cup Y) \not\subset \operatorname{int} X \cup \operatorname{int} Y$.

- **18.5** Prove que se A é aberto, então $A \{a\}$ é aberto para todo $a \in A$.
- **18.6** Se $X \subset F$ e F é fechado, então $\overline{X} \subset F$.

18. Topologia, Limite e Continuidade

18.7 Sejam $X, Y \subset \mathbb{R}$. Prove que

- a) $\overline{X \cup Y} = \overline{X} \cup \overline{Y}$
- b) $\overline{X \cap Y} \subset \overline{X} \cap \overline{Y}$

Dê um exemplo em que $\overline{X \cap Y} \not\supset \overline{X} \cap \overline{Y}$.

18.8 Prove que um conjunto A é aberto se, e somente se, $A \cap \overline{X} \subset \overline{A \cap X}$ para todo $X \subset \mathbb{R}$.

18.9 Sejam $F_1 \supset F_2 \supset \ldots \supset F_n \supset \ldots$ não vazios. Dê exemplos mostrando que $\bigcap F_n$ pode ser vazio se os F_n são apenas fechados ou apenas limitados.

18.10 Prove que se F é fechado e A é aberto, então F-A é fechado.

18.11 Prove que

- a) Se A é compacto e B fechado, então A+B é fechado.
- b) Se A e B são compactos, então A+B e A.B são compactos.
- c) Se A é fechado e B é compacto, então A.B pode não ser fechado. (Basta dar um contra-exemplo.)
- **18.12** Mostre que a função f(x) = |x| é contíÂnua para qualquer $x = a \in \mathbb{R}$.
- **18.13** Mostre que a função de Dirichlet $\varphi : \mathbb{R} \to \mathbb{R}$ dada por

$$\varphi(t) = \begin{cases} 1 & \text{, se } t \in \mathbb{Q} \\ 0 & \text{, se } t \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

é descontíÂnua em qualquer ponto $t \in \mathbb{R}$.

18.14 Em cada caso, encontre $\delta > 0$ tal que $|f(x) - L| < \varepsilon$, para todo x satisfazendo $0 < |x - a| < \delta$.

a)
$$f(x) = \frac{1}{x}, a = 1 \text{ e } L = 1;$$

b)
$$f(x) = \frac{x}{x+1}, a = 2 \text{ e } L = \frac{2}{3}.$$

18.15 Seja p(x) um poliní´mio de grau n na variável $x \in \mathbb{R}$. Prove que $\lim_{x \to a} p(x) = p(a)$ qualquer que seja $a \in \mathbb{R}$. Desse modo, todo poliní´mio é uma função contíÂnua em \mathbb{R} .

¹soma de limites.

- **18.16** Prove que a função $f(x) = \sqrt{x}$ é contíÂnua para todo $x \ge 0$.
- **18.17** Prove que $\lim_{x\to 0} x \sin \frac{1}{x} = 0$.
- **18.18** Se $\lim_{x\to a} f(x) = L$, prove que $\lim_{x\to a} |f(x)| = |\lim_{x\to a} f(x)| = |L|$.
- **18.19** Seja f uma função contí Ânua em toda reta que se anula nos racionais. Prove que $f\equiv 0.$
- **18.20** * Sejam $f, g : [0, 1] \to \mathbb{R}$ funções contíÂnuas tais que f(0) = 1, f(1) = 0, g(0) = 0 e g(1) = 1. Prove que existe $c \in (0, 1)$ tal que f(c) = g(c).
- **18.21** Seja $f: \mathbb{R} \to \mathbb{R}$ uma função aditiva, isto é, $f(x+y) = f(x) + f(y), \forall x, y \in \mathbb{R}$. Mostre que f é contíÂnua se, e somente se, f é contíÂnua em x = 0.
- **18.22** Seja $f: \mathbb{R} \to \mathbb{R}$ uma função aditiva contíÂnua. Mostre que existe $c \in \mathbb{R}$ tal que f(x) = cx.
- **18.23** Seja $g: \mathbb{R} \to \mathbb{R}$ uma função com a seguinte propriedade: $g(x+y) = g(x).g(y), \forall x,y \in \mathbb{R}$. Se g(c) = 0 para algum c, mostre que $g \equiv 0$. Mostre que g é contíÂnua se, e somente se, g é contíÂnua em x = 0.
- 18.24 Seja $f: \mathbb{R} \to \mathbb{R}$ contíÂnua. Se $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = +\infty$, então existe $x_0 \in \mathbb{R}$ no qual f assume seu valor míÂnimo.
- **18.25** Dê exemplo de uma função $f:\mathbb{R}\to\mathbb{R}$ que seja contíÂnua em um único ponto.
- **18.26** * Mostre que a equação $x = \cos x$ tem uma solução no intervalo $[0, \pi/2]$.
- **18.27** Mostre que o poliní ´mio $p(x) = x^4 + 7x^3 - 9$ tem pelo menos duas raí Âzes reais.
- 18.28 Mostre que toda função $f:X\to\mathbb{R}$ lipschitiziana é uniformemente contíÂnua.
- **18.29** Mostre que a função $f:[0,+\infty)\to\mathbb{R}$ dada por $f(x)=\sqrt{x}$ é uniformemente contíÂnua.
- $18.30~^{*}$ Prove que todo poliní ´mio de grau í Âmpar possui pelo menos uma raiz real.

 $^{^{2\}ast}$ use T.V.I.

Referências Bibliográficas

- [1] G. de Souza Ávila. Análise matemática para licenciatura. Edgard Blücher, 2006.
- [2] E. LIMA. Curso de análise vol. 1 (12 edição). Projeto Euclides. [Rio de Janeiro]: IMPA/CNPq, page 431, 2006.

```
\mathbf{C}
                                                  par, 56
Cardinalidade, 2
                                                  sobrejetiva, 55
Conjunto(s)
     aberto, 61
                                             Ι
     enumeráveis, 2
                                             Imagem
     finitos, 2
                                                  inversa, 59
     limitados, 15
                                             Infimo, 16
Convergência
                                             Intervalo, 61
     absoluta, 42
     condicional, 42
                                             {f L}
Corpo, 13
                                             Limite(s), 64
Corte(s)
                                                  infinitos, 29, 72
     Dedekind, 10
Critério
                                             \mathbf{N}
     comparação, 37
                                             Número(s)
     de convergência de Cauchy, 30, 48
                                                  reais, 9, 12
\mathbf{D}
                                             P
Derivada, 81
                                             Ponto
                                                  máximo, 86
\mathbf{F}
                                                  mínimo, 86
Função, 53
                                             Ponto(s)
     ímpar, 56
                                                  de acumulação, 62
     bijetiva, 56
                                                  interior, 61
     composta, 58
                                                  isolado, 63
     contínua, 68, 76
     crescente, 54
     decrescente, 54
                                             \mathbf{R}
                                             Reta tangente, 82
     injetiva, 55
```

```
\mathbf{S}
Série(s), 33
    convergente, 35
    geométrica, 36
    harmônica, 38
    telescópica, 39
Segmento(s)
    comensuráveis, 9
    incomensuráveis, 9
Sequência, 21
    convergente, 21
    de Fibonacci, 28
    limitada, 22
    monótona, 25
Sequência(s)
    Cauchy, 30
Subsequência, 29
Supremo, 15
\mathbf{T}
Teorema
    Bolzano-Weierstrass, 29
    de Leibniz, 43
    de Riemann, 45
    do confronto, 74
    do valor intermediário, 69, 75
    do valor médio, 87
    dos intervalos encaixados, 28
    Rolle, 86
Teste
    da integral, 46
    da raíz, 46
    da razão, 40
Topologia na reta, 61
\mathbf{V}
Valor
    máximo, 77
    mínimo, 77
Vizinhança, 62
```