www. trenepapers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2 Mark Scheme: Teachers' version		Syllabus	Paper
	IGCSE – May/June 2012	0606	12

Mark Scheme Notes

Marks are of the following three types:

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3 Mark Scheme: Teachers' version		Syllabus	Paper
	IGCSE – May/June 2012	0606	12

The following abbreviations may be used in a mark scheme or used on the scripts:

AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\ }$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW −1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Page 4	Page 4 Mark Scheme: Teachers' version		Paper
	IGCSE – May/June 2012	0606	12

1	(i) $\frac{2}{21}(7x-5)^{\frac{3}{2}}$ (+ c)	B1 B1, B1	B1 for multiplication by $\frac{2}{3}$, or division by $\frac{3}{2}$ B1 for $(7x-5)^{\frac{3}{2}}$, B1 for $\frac{1}{7}$
	(ii) $\frac{2}{21} \left(16^{\frac{3}{2}} - 9^{\frac{3}{2}} \right) = \frac{2}{21} (64 - 27)$ = $\frac{74}{21}$ or awrt 3.52 or $3\frac{11}{21}$	M1	M1 for correct use of limits, must have attempted integration, must be using their $(7x-5)^{\frac{2n+1}{2}}$ from (i)
	21 21	[5]	
2	$4u^{2} - 5u + 1 = 0$ $(4u - 1)(u - 1) = 0$	B1, M1	B1 for $2^{2x+2} = 4u^2$ or 4×2^{2x} or $2^2 \times 2^{2x}$ or 2^2u^2 M1 for attempt to obtain a 3 term quadratic
	or $(4.2^x - 1)(2^x - 1) = 0$	DM1	equation in terms of either or, equated to zero. DM1 for solution of quadratic equation
	$2^x = \frac{1}{4}, 2^x = 1$	A1	A1 for both
	leading to $x = -2, 0$	A1	A1 for both
	-		
	Alternate scheme for one correct factor:		
	$2^x = \frac{1}{4}$, leading to $x = -2$	[A1]	
	$2^x = 1$, leading to $x = 0$	[A1] [5]	
3	$\frac{\cos A}{\sin A} + \frac{\sin A}{1 + \cos A}$	B1	B1 for $\cot A = \frac{\cos A}{\sin A}$
	$= \frac{\cos A + \cos^2 A + \sin^2 A}{\sin A(1 + \cos A)}$	M1	M1 for obtaining as a single fraction
	$=\frac{(1+\cos A)}{\sin A(1+\cos A)}$	M1	M1 for use of $\cos^2 A + \sin^2 A = 1$
	$= \frac{1}{\sin A} = \operatorname{cosecA}$	A1	A1 for correct simplification – answer given.
	Alternate solution:		
	$\cot A + \frac{\sin A(1-\cos A)}{(1+\cos A)(1-\cos A)}$	[M1]	M1 for multiplying by $(1 - \cos A)$
	$= \cot A + \frac{\sin A(1 - \cos A)}{\sin^2 A)}$	[M1]	M1 for use of $\cos^2 A + \sin^2 A = 1$ anywhere
	$= \cot A + \frac{1 - \cos A}{\sin A}$	[M1]	M1 for cancelling sin A
	$= \cot A - \cot A + \frac{1}{\sin A} $ leading to cosecA	[A1] [4]	A1 for subtraction and simplification
L			

Page 5	Page 5 Mark Scheme: Teachers' version		Paper
	IGCSE – May/June 2012	0606	12

4	Using $y = \frac{2-5x}{3}$ or, using $x = \frac{2-3y}{5}$ $5x^2 - 21x + 4 = 0$ or $3y^2 + 17y - 6 = 0$ (5x - 1)(x - 4) = 0 or $(3y - 1)(y + 6) = 0x = \frac{1}{5}, y = \frac{1}{3} x = 4, y = -6Alternate substitutions:x = \frac{2y}{3+y} or y = \frac{3x}{2-x}$	M1 M1 DM1 A1, A1 [5]	M1 for substitution to get an equation in terms of one variable M1 for attempt to form a 3 term quadratic equation = 0 DM1 for solution of quadratic equation A1 for each 'pair'
5	(i) $(2-x^2)\frac{3}{(3x+1)} - 2x\ln(3x+1)$	B1 M1 A1	 B1 for differentiating ln(3x + 1) correctly M1 for correct attempt at product A1 for all else correct
	(ii) $\frac{5x(-2\sec^2 2x) - 5(4 - \tan 2x)}{25x^2}$ or $\frac{5x(-2\sec^2 2x) - 5(4 - \tan 2x)}{(5x)^2}$	B1 M1 A1 [6]	B1 for differentiating $tan(4-2x)$ correctly M1 for correct attempt at quotient or product A1 for all else correct
6	(i) $\frac{8(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)} = 4(\sqrt{3}-1)$ or $\frac{8}{\sqrt{3}+1} = a(\sqrt{3}-1),$ $8 = a (\sqrt{3}-1)(\sqrt{3}+1)$	M1	M1 for rationalisation or attempt to form equation
	a = 4	A1	
	(ii) $\sin 60 = \frac{\sqrt{3}}{2} = \frac{h}{4(\sqrt{3} - 1)}$ $\tan 60 = \sqrt{3} = \frac{h}{2(\sqrt{3} - 1)}$	M1	M1 for use of sine or tangent and their value of a from (i) or $\frac{8}{\sqrt{3}+1}$
	Or $(4(\sqrt{3}-1))^2 = h^2 + (2(\sqrt{3}-1))^2$ $h = 6 - 2\sqrt{3}$ ANSWER GIVEN	A1	or Pythagoras, A1 for rearranging and simplifying correctly to obtain given answer.
	(iii) Area = $\frac{1}{2}4(\sqrt{3}-1)(6-2\sqrt{3})$ or $\frac{1}{2}4(\sqrt{3}-1)4(\sqrt{3}-1)\sin 60^\circ$	M1	M1 for valid method for area using their a from (i) or $\frac{8}{\sqrt{3}+1}$
	$=16\sqrt{3}-24$	A1 [6]	A1 working must be seen

Page 6	Page 6 Mark Scheme: Teachers' version		Paper
	IGCSE – May/June 2012	0606	12

7	(i)		B1 B1 B1	B1 for shape B1 for $x = -2$, 3 B1 for $y = 6$
	(ii)	$x^{2}-x-6=6$, leading to x=-3, 4 (www) $x^{2}-x-6=-6$, leading to x=0, 1 (www)	B1 B1 B1 [6]	B1 for one correct answer B1 for a second correct answer B1 for a third and fourth correct answer
8	(i)	arc $AB = \frac{20\pi}{3}$ or 20.94, 20.9	B1	B1 for arc length correct
		$\tan \frac{\pi}{3} = \frac{AX}{10}$, AX = $10\sqrt{3}$, 17.3 (or XB)	B 1	B1 for AX/XB
		Perimeter = awrt 55.6 or $20\sqrt{3} + \frac{20\pi}{3}$	B1	B1 for final answer
	(ii)	Area of sector $AOB = \frac{1}{2}10^2 \frac{2\pi}{3}$ or 104.7 or 105	B1	B1 for sector area correct
		Area of $OAXB = 100\sqrt{3}$ or 173.2	M1	M1 for valid attempt at area <i>OAXB</i> , using their
		Shaded area = awrt 68.5 or $100\sqrt{3} - \frac{100\pi}{3}$	M 1	BX from part (i) $(10 \times \text{their } BX)$ M1 for area $OAXB$ – sector area used (independent)
			A1 [7]	Must be considering a quadrilateral, not a triangle.
9	(i)	250	B1	B1 for 250
	(ii)	$8 = e^{\frac{x}{100}}$	B1	B1 for $8 = e^{\frac{x}{100}}$
		$\frac{x}{100}$ = ln 'their 8' or $x = 100$ ln their 8	M1	M1 for dealing with e correctly, using ln
		x = 208 or awrt 208	A1	A1 for awrt 208
	(iii)	$\frac{\mathrm{d}N}{\mathrm{d}x} = \frac{1}{2} \mathrm{e}^{\frac{x}{100}}$	B1, B1	B1 for $e^{\frac{x}{100}}$, B1 for $\frac{1}{2}e^{\frac{x}{100}}$ or $\frac{50}{100}e^{\frac{x}{100}}$
		$45 = \frac{1}{2}e^{\frac{x}{100}}$	M1	M1 for equating their $\frac{dN}{dx}$ to 45 and attempt
		$e^{\frac{x}{100}} = 90$, so $N = 4700$ (awrt 4700)	A1 [8]	to solve A1 for 4700

Page 7	Page 7 Mark Scheme: Teachers' version		Paper
	IGCSE – May/June 2012	0606	12

			T
10	(a) (i) $f'(x) = -(2+x)^{-2}$	B1	First B1 may be implied by a correct answer for $f''(x)$
	$f''(x) = 2(2+x)^{-3}$	B1	If done by quotient rule, allow unsimplified
	(ii) $y = \frac{1}{2+x}$, $x = \frac{1}{y} - 2$	M1	M1 for a valid attempt at the inverse
	$f^{-1}(x) = \frac{1}{x} - 2 \text{ or } \frac{1 - 2x}{x}$	A1	A1 must be in correct form, allow $y =$
	(iii) $f^{2}(x) = \left(\frac{1}{2 + \frac{1}{2 + 1}}\right) = \frac{2 + x}{5 + 2x}$	M1	M1 for correct attempt at $f^2(x)$
	(2+x)	DM1	DM1 for attempt at solution of $f^2(x) = -1$
	Equating to -1 leads to $x = -\frac{7}{3}$ or -2.33	A1	A1 for $x = -\frac{7}{3}$ or equivalent
1	(b) (i) gh (x) or gh	B1	B1 for either form
	(ii) $kg(x)$ or kg	B1 [9]	B1 for either form
11	(i) P (3, 1)	B1, B1	B1 for each coordinate
	Grad $AB = \frac{18}{12}$	B1	B1 for gradient of AB
	$\perp \operatorname{grad} -\frac{2}{3}$	√B1	B1 for perpendicular gradient
	$PQ: y-1=-\frac{2}{3}(x-3)$ $(2x+3y=9)$	√B1	$^{\uparrow}$B1 on their perp gradient and their point <i>P</i> Must be <i>y</i> =
	(ii) Q (-15, 13)	M1 A1	M1 for use of $y = 13$ and their PQ equation. A1 for both coordinates (can be implied)
	(iii) Area = $\frac{1}{2}\sqrt{18^2 + 12^2} \sqrt{8^2 + 12^2}$	M1	M1 for a valid attempt at area $\frac{1}{2} \times PQ \times PB$
	or Area = $\frac{1}{2} \begin{vmatrix} 3 & 11 & -15 & 3 \\ 1 & 13 & 13 & 1 \end{vmatrix}$		Matrix method using their coordinates correctly
	or Area = $\frac{1}{2} \times 26 \times 12$		$\frac{1}{2} \times QB \times \text{vertical perp height}$
	= 156	A1 [9]	

Page 8	Page 8 Mark Scheme: Teachers' version		Paper
	IGCSE – May/June 2012	0606	12

12	EITHER		
	(i) velocity = $12\mathbf{i} + 16\mathbf{j}$	M1	M1 for
	position = $(54i + 16j) + (36i + 48j)$		$(3 \times \text{their velocity (must in numeric vector}))$
	$= 90\mathbf{i} + 64\mathbf{j}$ ANSWER GIVEN	A1	(54i + 16j)
	yor on garage and the state of	111	
	(ii) $(54\mathbf{i} + 16\mathbf{j}) + (12t\mathbf{i} + 16t\mathbf{j})$	M1, A1	M1 for position vector + (their numeric
	(ii) (3 ii · 10j) · (12ii · 10ij)	1,11,111	•
	(***) A+ 16 00		velocity vector × time)
	(iii) At 16 00,	-	
	ship has 'travelled' $(102\mathbf{i} + 80\mathbf{j})$	B1	B1 for $(102i + 80j)$
	boat needs to do this in 2 hours	M1	M1 for attempt at velocity of boat and speed
	so velocity of boat $(51\mathbf{i} + 40\mathbf{j})$		
	speed $\sqrt{51^2 + 40^2}$		
	*		
	= 64.8	A1	
	(iv) $(51i + 40j) - (12i + 16j)$	B1	B1 , allow unsimplified but must be correct
			B1, and wallsimplified out mast of correct
	=39i +24j		
	371 12 IJ		
	<i>c</i> 1		
	$(\mathbf{v}) \tan \alpha = \frac{51}{40}$	M1	M1 for use of tan and their velocity vector
	40	1,11	1.22 101 doo 01 tail and mon velocity vector
	angle = 51.9	A1	
	6 1 - 1 - 1	[10]	
		[10]	

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2012	0606	12

B1

∜B1

A1

M1

12	OR

(i)
$$\overrightarrow{OQ} \mathbf{a} + \frac{1}{3} (\mathbf{b} - \mathbf{a})$$

$$= \frac{2}{3} \mathbf{a} + \frac{1}{3} \mathbf{b}$$

$$\overrightarrow{PQ} = -\frac{5}{4} \mathbf{b} + \mathbf{a} + \frac{1}{3} (\mathbf{b} - \mathbf{a})$$

$$= \frac{2}{3} \mathbf{a} - \frac{11}{12} \mathbf{b}$$

Allow unsimplified

(ii)
$$\overrightarrow{QR} = \lambda \mathbf{a} - (\mathbf{a} + \frac{1}{3} (\mathbf{b} - \mathbf{a}))$$

= $\lambda \mathbf{a} - \frac{2}{3} \mathbf{a} - \frac{1}{3} \mathbf{b}$

A1 – allow unsimplified

Follow through on their \overrightarrow{OQ} , allow

(iii)
$$\overrightarrow{QR} = \mu(\overrightarrow{PQ} + \overrightarrow{QR})$$

 $(1 - \mu)\overrightarrow{OR} = \mu\overrightarrow{PO}$

M1 for
$$\lambda a$$
 – their \overrightarrow{OQ}

(iii)
$$Q\vec{R} = \mu(P\vec{Q} + Q\vec{R})$$

 $(1 - \mu)\vec{Q}\vec{R} = \mu\vec{P}\vec{Q}$

M1 M1 for attempt to obtain
$$\overrightarrow{QR}$$
 in terms of \overrightarrow{PQ}

$$QR = \frac{\mu}{1 - \mu} \left(\frac{2}{3} \mathbf{a} - \frac{11}{12} \mathbf{b} \right)$$

(iv) Equating **b**'s
$$-\frac{11}{12} \frac{\mu}{1-\mu} = -\frac{1}{3}$$

M1

$$\mu = \frac{4}{15}$$

$$\lambda = \frac{10}{11}$$

A1 [10]