ABIS Design Review

Steven, Ranvitha, Thomas, Nevin

Algae Bloom Imaging Satellite

System Requirements

Orbiter Requirements:

- The orbiter shall make an "orbit" once every minute for 10 minutes.
 - Verifiable by making sure that there are 10 orbits in total and each orbit takes one minute.
- The "Cubesat" in the orbiter shall be contained within a 10 cm cubed volume.
 - Verifiable by keeping everything except the solar panel contained inside the CubeSat structure.
- The orbiter shall capture images of red algae blooms by taking a picture on degree intervals..
 - Verifiable by visually checking if each bloom is captured.
- The orbiter shall transmit the images of the algae blooms to the ground station along with location measurements.
 - Verifiable by checking the ground station pi for images of the algae blooms and if they have the measurements.
- The orbiter shall transition between different software modes during different phases of image capture to minimize power consumption.
 - Verifiable by reading print statements.

Ground Station

- The ground station shall receive the images and location data wirelessly from the orbiter.
 - Verifiable by checking the storage for images taken by the orbiter and not using a wire to connect the two pis.
- The ground station shall be able to send commands to the orbiter remotely.
 - Verifiable by sending commands to the orbiter and the orbiter follows those commands.
- The ground station shall be able to denoise and analyze the image to determine the area of the algae bloom in square millimeters.
 - Verifiable by comparing the original image to the edited image to test denoising, and if the area outputted matches the actual area.
- The ground station shall add EXIF data containing the bloom area and location to the image and upload the image to github.
 - Verifiable by downloading the images off of github and checking if the image has EXIF data.

Mechanical Layout

Software Architecture

Software Architecture - States

∭and Test Plan

Software Integration

- Individual functions tested on developer's system
- Developer writes README for program if necessary
- Uploads to GitHub for others' access
- Other team members test code on their systems to see if it works

Building and Testing Flight System

- CAD models shared with team on OnShape
- Test IMU, camera, and transmit functions of the CubeSats separately in mission simulations

Validate and Verify

- Demonstrate camera,
 IMU, and transmit
 functions match mission
 requirements.
- Status data collection also tested separately, and will be pair tested with transmit data function and IMU function

Mass Bougette 🥖

et

Bill de Materiéls

*mass budget and bill of materials

Material	Cost/unit (usd)	Quantity	Cost	Weight/unit (g)	Total Comp Mass (g)	Margin (%)	Mass w/ Margin (g)	Materials
CubeSat		'						
Raspberry Pi 4	\$35.00	1	\$35.00	46	46 g	10	50.6	Mixed
Micro SD Card	\$8.00	1	\$8.00	2	2 g	10	2.2	Mixed
Raspberry Pi NIOR Camera	\$30.00	1	\$30.00	3.4	3 g	10	3.74	Mixed
Raspberry Camera Case	\$3.00	1	\$3.00	15	15 g	10	16.5	Mixed
IMU	\$40.00	1	\$40.00	9	9 9	10	9.9	Mixed
Power Bank/ Battery	\$33.00	1	\$33.00	185	185 g	10	203.5	Mixed
Solar Panel with USB Attachm	\$15.00	1	\$15.00	50	50 g	10	55	Mixed
Right Angle USB Cable	\$12.00	1	\$12.00	75	75 g	10	82.5	Mixed
Acrylic CubeSat Panels	\$2.00	6	\$12	30	180 g	10	198	Mixed
Acrylic Side Brackets	\$2.00	10	\$20.00	4	40 g	10	44	Mixed
Aluminum Corner Rails	\$3.00	4	\$12.00	10	40 g	10	44	Aluminum
2-56 x 3/16" Pan Head Screw	\$0.32	32	\$10.24	1	32 q	10	35.2	Aluminum
4-40 x 1/4" Pan Head Screws	\$0.35	8	\$2.80	1	8 9	10	8.8	Aluminum
4-40 x 1/2" Pan Head Screws	\$0.39	8	\$3.12	1	8 9	10	8.8	Aluminum
4-40 hex nuts	\$0.50	30	\$15.00	1	30 g	10	33	Aluminum
2-56 1/2" Nylon Standoffs	\$0.38	4	\$1.52	1	4 9	10	4.4	Nylon
4-40 1" Nylon Standoff	\$0.52	4	\$2.08	1	4 9	10	4.4	Nylon
4-40 L Bracket	\$0.40	10	\$4.00	3	30 g	10	33	Aluminum
		Total Cost	\$258.76			Subsystem Mass	837.54	
01:2 /5								
Orbiter/Images	#20.00		*20.00	200	200	10	200	M. 11
MDF parts	\$20.00				800 g	7.7	7.7.7	Wood Laminat
Lazy susan bearing	\$5.00	1	4		120 g	10		Aluminum
4-40 x 1/4" Pan Head Screws	T	4	T-1.1-			10		Aluminum
4-40 x 1/2'' Pan Head Screws		4	400	1				Aluminum
4-40 hex nuts	\$0.50	8				10 10		Aluminum
11'' x 17'' Images	\$3.00	6	4-0.00		42 g			Paper
		Total Cost	\$49.96			Subsystem Mass	. 0	
Ground Station								
Raspberry Pi 3	\$35.00	1	\$35.00	46	46 q	10	50.6	Mixed
Mirco USB Cable	\$12.00	1	\$12.00	75	75 g	10	82.5	Mixed
		Total Cost	\$47.00		-	Subsystem Mass	133.1	

Power Budget

Spacecraft Subsystem, Unit, Quantity and Power Consumption										
Component/ Use Case	Voltage (V)	Current (A)	Peak Power(W)	Contingency (%)	Peak Power(W) + Contingency	Qty	Comment	Total Power Per Hour (W)		
Core Avionics										
Sensor IMU	3.30	0.0027	0.0089	15.00	0.01	1		0.01		
Pi Camera	5.00	0.25	1.25	10.00	1.40	1	,	1.4		
Raspberry Pi4	5.00	0.60	3.00	10.00	3.30	1		3.3		

	1	Power Consumption by Spacecraft Mode								
Comm		Sleep		Commissioning		Safe		Nominal		
Duty Cycle	Mode Power	Duty Cycle	Mode Power	Duty Cycle	Mode Power	Duty Cycle	Mode Power	Duty Cycle	Mode Power	
vi)				20 200	16	ė.		8V		
0.00%	0.00	0.00%	0.00	100.00%	0.01	100.00%	0.02	100.00%	0.02	
0.00%	0	0.00%	0.00	100.00%	1.40	0.00%	0.00	0.00%	0.00	
100.00%	3.30	0.00%	0.00	100.00%	3.30	100.00%	3.30	100.00%	3.30	

Link Budget and Data Budget

Downlink Budget		Notes	Uplink Budget	
Center Frequency	2400 MHz	based on bluetooth	Center Frequency	2442.5 MHz
Satellite Tramsit Power	-13.01 dBW		Ground Station EIRP	-13.01 dBW
SatelliteTramsit Gain	0 dBi		Distance to Satellite	0.26 m
EIRP	-13.01 dBW		Free Space Loss	28.5 dB
Distance to Earth	0.26 m		Satellite Antenna Gain	0 dBi
Free Space Loss	28.34 dB		Received Power	-17.21 dBM
Ground Antenna Figure of Merit	-0.0644 dB/K		Minimum Received Power	-76 dBM
Signal to Noise Ratio	-12.79 dB		Link Margin	58.79 dB
Data Rate	1000 kbps			
Eb/No	21.084 dB			
Required Eb/No	3 dB			
Link Margin	18.084 dB			
Time to Downlink 1 Image	5sec			
Estimated Size of an Image	135 KB			
Total Data Sent of the Duration of all Orbits	1500 KB			
Images Downlink/Uplink Rate	145.800 MHz			

Top Level (Whole mission duration)

yoinks Imao

Pre-Check (prior to launch day):

Manually find area of each algal bloom

Test ADCS (calibrate IMU → send calibrated readings to ground station) and make sure everything is calibrated

If calibration is inaccurate, loop calibration till in correct bounds (established via testing)

Systems Check: (Can be done on day of orbit testing)

On boot, send Test File to ground station and push to github (test communications)

If test fails, turn off (check github and raspberrypi)

Test pi camera to make sure resolution and focus are optimal Test color recognition software

.

Orbit starts
Record starting power

Orbit

During Each Orbit (duration of 60 seconds):

Red color detection and then image capture

Collect time, CubeSat position (sector), area of algae bloom, location of the center of algae bloom in degrees. All in .bt file (telemetry packet)
Send photo and .bt file to ground station and push to clithub every 60 seconds (orbit)

Repeat these steps for 10 orbits

Post Orbit:

Shut down satellite

Check power bank and compare to power budget Check accuracy of areas in .txt to manually gathered areas

(for testing only to see if we need to change things)

- 1. Setup
 - a. Plug in and turn on CubeSat
 - b. Turn on Ground Station

c. Put cardstock on earth

- When Pi boots up, immediately start running Self Test phase
- 2. Self-Test
 - a. Calibrate sensors
 - b. Image Test
 - c. Send test telemetry packet

When the telemetry package has been received and the 10 minutes are about to begin, the human operator sends a command and begins turning the orbiter; when the Pi receives the command, it begins orbital state.

- Orbit State
 - a Imaging Phas
 - First orbit only: record battery level at beginning of orbit and add to telemetry packet.
 - ii. 2 orbits
 - Take X amount of pictures that overlap and are at Y increments
 - apart from each other.

 1. Record angle and sector of
 - each image iv. Send Telemetry packet every orbit
- After the two orbits of Imaging Phase are complete (imu is at 360 degrees for the 2nd time), start Image Processing Phase
 - b. Image Processing Phase
 - i. 2 orbits
 - Find the Algae Blooms
 Calculate central angle of algae bloom
 - iv. Calculate area of algae bloom
 - v. Crop Images according
 vi. Store best photos of algae blooms
 - vi. Store best photos of algae blooms vii. Send Telemetry packet every orbit

After the two orbits of Imaging Phase are complete (imu is at 360 degrees for the 4th time), start Downlink Phase

c. Downlink Phase

III. Send retemetry packet every orbit

After the two orbits of the Imaging Phase are complete (imu is at 360 degrees for the 4th time), start the Uplink Phase. After Ground Station pi has received all packages, it starts the Uplink Phase.

iii. Send Telemetry packet every orbit

After the two orbits of the Imaging Phase are complete (imu is at 360 degrees for the 4th time), start the Uplink Phase. After Ground Station pi has received all packages, it starts the Uplink Phase.

d. Uplink Phase

- i. Check packets are complete using checksum
- 1. If not, enter Contingency Phase Comm
- ii. Ground Station uploads images to GitHub
- iii. Check Image:
 - If images are bad the human operator will activate the contingency
- Phase Imaging
- iv. Send Telemetry packet every orbit
- e. Contingency Phase Imaging (optional)
- i. Remaining orbits as needed
- ii. Images at calculated angles given by Ground Station
- iii. Repeat Image Processing Phase, Downlink Phase, and Uplink Phase.
- iv. Check Again
- v. Send Telemetry packet every orbit
- f. Contingency Phase Comm (optional)
 - i. Remaining orbits as needed
 - Repeat the Downlink Phase and Uplink Phase.
 - ii. Repeat the Downlink Phase and Opi
 - iii. Check again
- iv. Send Telemetry packet every orbit
 When Pi has made 10 orbits (imu is at 360 degrees for the 10th time), enter decay mode

4. Decay/De-Orbit

a. Power off both pi's