Fundamentals of Biomedical Image Processing HW 1

B12508026 戴偉璿

September 28, 2025

1 Theorem questions

- 1. (a) The picture size is 1024×1024 pixels, and each pixel contains 256 intensity levels (8 bits,i.e., 1 byte). Therefore, the total data size is $1024 \times 1024 \times 1 = 1,048,576$ bytes. Since each packet requires 10 bits to transmit 1 byte of data, the total number of bits to be transmitted is 10,485,760 bits. With the baud rate of 56k, the transmission time is $10,485,760 \div 56000 \approx 187.25(sec) \approx 3.12$ minutes.
 - (b) With the baud rate of 3000k, the transmission time is $10,485,760 \div 3,000,000 \approx 3.495(sec) \approx 0.058$ minutes.

p

2. $V = \{1, 2\}$, so the graph would be Fig 1:

				q
3	2	3	2	
2	2	1	3	
1	3	3	2	
2	2	3	4	

Figure 1: The grid graph with $V = \{1, 2\}$ (gray cells are passable)

(a) shortest-4: Only up, down, left, right movements are allowed. So the path would be:

						q
	3		2	3	2	
	2	}	2	→ 1	3	
	-		3	3	2	
		2	2	3	4	
p						

Figure 2: No 4-connected path (q is 4-blocked)

As the Fig2 shows, there's no path from last step (3,3) to node q(4,4), so the length is **infinity**.

(b) shortest-8: Up, down, left, right, and diagonal movements are allowed. So the path would be:

Figure 3: shortest-8 path (length = 4)

As the Fig3 shows, it takes 4 steps to reach from p(1,1) to q(4,4), so the length is 4.

(c) shortest-m: The path can only move to the 8-neighbors with the minimum value. So the path would be:

Figure 4: shortest-m path (length = 5)

As the Fig4 shows, it takes 5 steps to reach from p(1,1) to q(4,4), so the length is **5**.

2 Programming exercises

All code is stored at the

1.