Amendments to the Claims

This listing of claims will replace all prior versions, and listings of claims in the application.

1. (Currently amended) A composition comprising a synergistically effective active compound combination of anthranilamides compounds of the formula (I)

in which

A¹ and A² independently of one another represent oxygen or sulfur,

X¹ represents N or CR¹⁰,

R¹ represents hydrogen or represents C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl or C₃-C₆-cycloalkyl, each of which is optionally mono- or polysubstituted, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₂-C₄-alkoxycarbonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, (C₁-C₄-alkyl)-C₃-C₆-cycloalkylamino and R¹¹,

 $R^2 \qquad \text{represents hydrogen, C_1-C_6-alkyl, C_2-C_6-alkenyl, C_2-C_6-alkynyl, C_3-C_6-cycloalkyl, C_1-C_4-alkoxy, C_1-C_4-alkylamino, C_2-C_8-dialkylamino, C_3-C_6-cycloalkylamino, C_2-C_6-alkoxycarbonyl or C_2-C_6-alkylcarbonyl,}$

 R^3 represents hydrogen, R^{11} or represents C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_3 - C_6 -cycloalkyl, each of which is optionally mono- or polysubstituted, where the substituents independently of one another may be selected from the group consisting of R^6 , halogen, cyano, nitro, hydroxyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_2 - C_6 -alkoxycarbonyl,

 C_2 - C_6 -alkylcarbonyl, C_3 - C_6 -trialkylsilyl, R^{11} , phenyl, phenoxy and a 5- or 6-membered heteroaromatic ring, where each phenyl, phenoxy and 5- or 6-membererd heteroaromatic ring may optionally be substituted and where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R^{12} , or

R² and R³ may be attached to one another and form the ring M,

 R^4 represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, C_1 - C_6 -haloalkyl, C_2 - C_6 -haloalkenyl, C_2 - C_6 -haloalkynyl, C_3 - C_6 -halocycloalkyl, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C₁-C₄-haloalkylthio, haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₃-C₆-trialkylsilyl or represents phenyl, benzyl or phenoxy, each of which is optionally mono- or polysubstituted, where the substituents independently of one another may be selected from the group consisting of C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄haloalkyl, C2-C4-haloalkenyl, C2-C4-haloalkynyl, C3-C6-halocycloalkyl, halogen, cyano, nitro, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylamino, C_1 - C_4 -alkylsulfonyl, C₂-C₈-dialkylamino, C_3-C_6 cycloalkylamino, C₃-C₆-(alkyl)cycloalkylamino, C₂-C₄-alkylcarbonyl, C₂-C₆alkoxycarbonyl, C2-C6-alkylaminocarbonyl, C3-C8-dialkylaminocarbonyl and C3-C₆-trialkylsilyl,

R⁵ and R⁸ in each case independently of one another represent hydrogen, halogen or represent in each case optionally substituted C₁-C₄-alkyl, C₁-C₄-haloalkyl, R¹², G, J, -OJ, -OG, -S(O)_p-J, -S(O)_p-G, -S(O)_p-phenyl, where the substituents independently of one another may be selected from one to three radicals W or from the group consisting of R¹², C₁-C₁₀-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₄-alkoxy and C₁-C₄-alkythio, where each substituent may be substituted by one or more substituents independently of one another selected from the group consisting of G, J, R⁶, halogen, cyano, nitro, amino, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-trialkylsilyl, phenyl and phenoxy, where each phenyl or phenoxy ring may optionally be substituted and where the substituents

- independently of one another may be selected from one to three radicals W or one or more radicals R¹²,
- in each case independently of one another represent a 5- or 6-membered non-aromatic carbocyclic or heterocyclic ring which may optionally contain one or two ring members from the group consisting of C(=O), SO and S(=O)₂ and which may optionally be substituted by one to four substituents independently of one another selected from the group consisting of C₁-C₂-alkyl, halogen, cyano, nitro and C₁-C₂-alkoxy, or independently of one another represent C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₇-cycloalkyl, (cyano)-C₃-C₇-cycloalkyl, (C₁-C₄-alkyl)-C₃-C₆-cycloalkyl, (C₃-C₆-cycloalkyl)-C₁-C₄-alkyl, where each cycloalkyl, (alkyl)cycloalkyl and (cycloalkyl)alkyl may optionally be substituted by one or more halogen atoms,
- J in each case independently of one another represent an optionally substituted 5- or 6-membered heteroaromatic ring, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹²,
- independently of one another represent $-C(=E^1)R^{19}$, $-LC(=E^1)R^{19}$, $-C(=E^1)LR^{19}$, $-LC(=E^1)LR^{19}$, $-OP(=Q)(OR^{19})_2$, $-SO_2LR^{18}$ or $-LSO_2LR^{19}$, where each E^1 independently of one another represents O, S, N-R¹⁵, N-OR¹⁵, N-N(R¹⁵)₂, N-S=O, N-CN or N-NO₂,
- R⁷ represents hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, halogen, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl,
- R⁹ represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylsulfinyl or halogen,
- R¹⁰ represents hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, halogen, cyano or C₁-C₄-haloalkoxy,
- in each case independently of one another represents in each case optionally monoto trisubstituted C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfenyl, C_1 - C_6 -haloalkylsulfenyl, phenylthio or phenylsulfenyl, where the substituents independently of one another may be selected from the list W, $-S(O)_nN(R^{16})_2$, $-C(=O)R^{13}$, $-L(C=O)R^{14}$, $-S(C=O)LR^{14}$, $-C(=O)LR^{13}$, $-S(O)_nNR^{13}C(=O)R^{13}$, $-S(O)_nNR^{13}C(=O)LR^{14}$ or $-S(O)_nNR^{13}S(O)_2LR^{14}$,
- L in each case independently of one another represents O, NR¹⁸ or S,
- R^{12} in each case independently of one another represents $-B(OR^{17})_2$, amino, SH, thiocyanato, C_3 - C_8 -trialkylsilyloxy, C_1 - C_4 -alkyl disulfide, $-SF_5$, $-C(=E^1)R^{19}$,

-LC(= E^1) R^{19} , -C(= E^1)L R^{19} , -LC(= E^1)L R^{19} , -OP(=Q)(OR¹⁹)₂, -SO₂L R^{19} or -LSO₂L R^{19} ,

- Q represents O or S,
- in each case independently of one another represent hydrogen or represent in each case optionally mono- or polysubstituted C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl or C₃-C₆-cycloalkyl, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino or (C₁-C₄-alkyl)-C₃-C₆-cycloalkylamino,
- in each case independently of one another represent in each case optionally monoor polysubstituted C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₂-C₂₀-alkynyl or C₃-C₆cycloalkyl, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino and (C₁-C₄-alkyl)-C₃-C₆-cycloalkylamino or represent optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹²,
- in each case independently of one another represent hydrogen or represent in each case optionally mono- or polysubstituted C₁-C₆-haloalkyl or C₁-C₆-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹², or N(R¹⁵)₂ represents a cycle which forms the ring M,
- R^{16} represents C_1 - C_{12} -alkyl or C_1 - C_{12} -haloalkyl, or $N(R^{16})_2$ represents a cycle which forms the ring M,
- R¹⁷ in each case independently of one another represent hydrogen or C₁-C₄-alkyl, or B(OR¹⁷)₂ represents a ring in which the two oxygen atoms are attached via a chain having two to three carbon atoms which are optionally substituted by one or two substituents independently of one another selected from the group consisting of methyl and C₂-C₆-alkoxycarbonyl,

- R^{18} in each case independently of one another represent hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -haloalkyl, or $N(R^{13})(R^{18})$ represents a cycle which forms the ring M,
- R^{19} in each case independently of one another represent hydrogen or represent in each case mono- or polysubstituted C₁-C₆-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 -haloalkylthio, C₁-C₄-haloalkylsulfinyl, C_1-C_4- C₁-C₄-alkylamino, C₂-C₈-dialkylamino, CO₂H, haloalkylsulfonyl, C2-C6alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W, C₁-C₆-haloalkyl, C₃-C₆-cycloalkyl or phenyl or pyridyl, each of which is optionally mono- to trisubstituted by W,
- in each case represents an optionally mono- to tetrasubstituted ring which, in addition to the nitrogen atom attached to the substituent pair R^{13} and R^{18} , $(R^{15})_2$ or $(R^{16})_2$, contains two to six carbon atoms and optionally additionally a further nitrogen, sulfur or oxygen atom, where the substituents independently of one another may be selected from the group consisting of C_1 - C_2 -alkyl, halogen, cyano, nitro and C_1 - C_2 -alkoxy,
- in each case independently of one another represent C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-haloalkyl, C₂-C₄-haloalkenyl, C₂-C₄-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, (C₁-C₄-alkyl)-C₃-C₆-cycloalkylamino, C₂-C₄-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, CO₂H, C₂-C₆-alkylaminocarbonyl, C₃-C₈-dialkylaminocarbonyl or C₃-C₆-trialkylsilyl,
- n in each case independently of one another represent 0 or 1,
- p in each case independently of one another represent 0, 1 or 2,

where, if (a) R^5 represents hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_2 - C_6 -haloalkenyl, C_2 - C_6 -haloalkynyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkylthio or halogen and (b) R^8 represents hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_2 - C_6 -haloalkenyl, C_2 - C_6 -haloalkynyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkylthio, halogen, C_2 - C_4 -alkylcarbonyl, C_2 - C_6 -alkoxycarbonyl, C_2 - C_6 -alkylaminocarbonyl or C_3 - C_8 dialkylaminocarbonyl, (c) at least one substituent selected from the group consisting of R^6 , R^{11} and R^{12} is present and (d) if R^{12} is not present,

at least one of the radicals R^6 and R^{11} is different from C_2 - C_6 -alkylcarbonyl, C_2 - C_6 alkoxycarbonyl, C_2 - C_6 -alkylaminocarbonyl and C_3 - C_8 -dialkylaminocarbonyl, and where the compound of the general formula (I) may also be an N-oxide or salt,

and at least one insecticidally active compound of groups 2 and 3 below selected from

A) (thio)phosphates (group 2), preferably

(2-1) azinphos-methyl (known from US 2,758,115)

and/or

(2-2) chlorpyrifos (known from US 3,244,586)

and/or

(2-3) diazinon (known from US 2,754,243)

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

and/or

(2-4) dimethoate (known from US 2,494,283)

and/or

(2-5) disulfoton (known from DE-A-91-76-68)

and/or

(2-6) ethion (known from US 2,873,228)

(2-7) fenitrothion (known from BE-A 0-594-669)

ad/or

(2-8) fenthion (known from DE-A-11-16656)

and/or

(2-9) isoxathion (known from DE-A 15 67 137)

and/or

(2-10) malathion (known from US 2,578,562)

$$H_3CO$$
 \downarrow
 OCH_3
 \downarrow
 OC_2H_5
 OC_2H_5

and/or

(2-11) methidathion (known from DE-A-16 45-982)

$$H_3CO \bigvee_{P} S \bigvee_{N \leftarrow S} S$$

and/or

(2-12) oxydemeton-methyl (known-from DE-A-94-73-68)

$$H_3CO - P_S \sim S < C_2H_5$$

(2-13) parathion (known from DE A 81 41 52)

$$H_5C_2O$$
 P
 S
 H_5C_2O
 O
 O
 NO_2

and/or

(2-14) parathion-methyl (known from DE-A 81 41-42)

and/or

(2-15) phenthoate (known from GB A 834 814)

and/or

(2-16) phorate (known from US 2,586,655)

$$H_5C_2S^{5} - P_{-OC_2H_6}$$

and/or

(2-17) phosalone (known from DE A 24-31 192)

$$\begin{array}{c|c} & & & \\ & & & \\ H_5C_2O - P & & \\ & & & \\ H_5C_2O & & \\ & & & \\ O & & \\ \end{array}$$

and/or

(2-18) phosmet (known-from US 2,767,194)

(2-19) phoxim (known from DE-A-12-38-902)

$$H_5C_2O - \bigvee_{OC_2H_5}^{S} CN$$

and/or

(2-20) pirimiphos-methyl (known from DE A 14 45 949)

and/or

(2-21) profenophos (known from DE-A 22 49 462)

and/or

(2-22) prothiophos (known from DE A 21 11 414)

and/or

(2-23) tebupirimphos (known from DE A 33-17-824)

and/or

(2-24) triazophos (known-from DE-A 12-99-924)

(2-25) chlorfenvinphos (known from US 2,956,073)

and/or

(2-26) dichlorphos (known from GB-A 775-085)

and/or

(2-27) dicrotophos (known from BE A 55 22 84)

and/or

(2-28) mevinphos (known from US 2,685,552)

and/or

(2-29) monocrotophos (known from DE-A-19-64-535)

and/or

(2-30) phosphamidon (known from US 2,908,605)

$$\begin{array}{c} H_3CO \bigcirc O \\ P-O \\ H_3CO \\ H_4C \end{array} \longrightarrow \begin{array}{c} C_2H_1 \\ C_2H_2 \end{array}$$

(2-31) acephate (known from DE A 20 14 027)

and/or

(2-32) methamidophos (known from US 3,309,266)

and/or

(2-33) trichlorfon (known from US 2,701,225)

and/or

B) carbamates-(group 3), preferably

(3-1) carbaryl (known from US 2,903,478)

and/or

(3-2) fenoxycarb (known from EP-A 0 004 334)

and/or

(3-3) formetanate (known from DE-A-11 69 194)

$$H_{3}C-N-C-O- \longrightarrow N=C-N CH_{3}$$

(3-4) formetanate hydrochloride (known from DE A 11 69 194)

and/or

(3-5) methiocarb (known from DE A 11-62-352)

$$H_3C$$
 O
 CH_3
 SCH_3

and/or

(3-6) methomyl (known from US-3,639,620)

and/or

(3-7) oxamyl (known from DE-A 17-68 623)

and/or

(3-8) pirimicarb (= Pirimor) (known-from GB-A-1 181 657)

$$\begin{array}{c|c} H_3C & CH_3 & CH_3 \\ \hline \\ H_3C & CH_3 \\ \hline \end{array}$$

and/or

(3-9) propoxur (known from DE A 11 08 202)

(3-10) thiodicarb (known from DE-A-25 30 439)

$$\overset{\mathsf{CH}_3}{\overset{\mathsf{N}}{\overset{\mathsf{O}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}$$

2. (Currently amended) The composition as claimed in claim 1 comprising at least one active compound from the group of the anthranilamides of the formula (I-1) in which formula (I-1) in which:

in which

R² represents hydrogen or C₁-C₆-alkyl,

R³ represents C₁-C₆-alkyl which is optionally substituted by one R⁶,

 R^4 represents C_1 - C_4 -alkyl, C_1 - C_2 -haloalkyl, C_1 - C_2 -haloalkoxy or halogen,

 $R^{5} \qquad \text{represents hydrogen, C_{1}-C_{4}-alkyl, C_{1}-C_{2}-haloalkyl, C_{1}-C_{2}-haloalkoxy or halogen,} \\$

R⁶ represents $-C(=E^2)R^{19}$, $-LC(=E^2)R^{19}$, $-C(=E^2)LR^{19}$ or $-LC(=E^2)LR^{19}$, where each E^2 independently of one another represents O, S, N-R¹⁵, N-OR¹⁵, N-N(R¹⁵)₂, and each L independently of one another represents O or NR¹⁸,

R⁷ represents C₁-C₄-haloalkyl or halogen,

R⁹ represents C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy, S(O)_p-C₁-C₂-haloalkyl or halogen,

R¹⁵ in each case independently of one another represent hydrogen or represent in each case optionally substituted C₁-C₆-haloalkyl or C₁-C₆-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano,

1

 $C_1-C_4-alkoxy, \quad C_1-C_4-alkylthio, \quad C_1-C_4-alkylsulfinyl, \quad C_1-C$

- R¹⁸ in each case represents hydrogen or C₁-C₄-alkyl,
- R^{19} in each case independently of one another represent hydrogen or C_1 - C_6 -alkyl,

<u>and</u>

- p independently of one another represent 0, 1, 2.
- 3. (Currently Amended) The composition as claimed in claim 1 or 2 comprising at least one active compound from group 2 and/or group 3 selected from the group consisting of
 - (2-2) chlorpyrifos,
 - (2-31) acephate,
 - (2-32) methamidophos,
 - (3-1) carbaryl,
 - (3-5) methiocarb, and
 - (3-10) thiodicarb.
- 4. (Currently Amended) The composition as claimed in claim 1, 2 or 3 comprising anthranilamides at least one compound of the formula (I) and at least one active compound from group 2 and/or group 3 in a ratio of 50:1 to 1:50.
- 5. (Cancelled).
- 6. (Currently Amended) A process for preparing pesticides, characterized in that comprising contacting a synergistically effective mixture as defined in claim 1, 2, 3 or 4 is mixed with extenders and/or surfactants.
- 7. (Currently Amended) A method for controlling animal pests, characterized in that comprising allowing a synergistically effective mixtures mixture as defined in claim 1, 2, 3 or 4 are allowed to act on animal pests and/or their habitat.