	Jalen Powell 10/31/2021
	Salettione
	Comp 3240 Hw 10
	# 10.1.1
0.)	A= {HHHH, HHTH, HTHH, HTTH}
	N(A) = U
	P(A) = N(A)
	N(s)
	= 4 = 1.25 probability
	16
6.)	N(8)=8
	$P(B) = \mathcal{N}(B)$ $\mathcal{N}(S)$
	= 8 = [5] propaloi lity
	16
(.)	$\mathcal{N}(\mathbf{c}) = 2$
	P(C) = N(C)
	N(5)
	= 2 = 10125 probability
	16
	41017
0)	# 10.1.2
Ο.)	propability = $N(E) = (n-1)! = (n-1)! = 1$ $N(S) = n! = n(n-1)! = n$
b.)	orobability = $N(E) = (n-2)! = (n-2)! - 1$
	probability = $N(E) = (n-2)! = (n-2)! - 1$ N(S) = n! = (n-1)(n-2)! = (n-1)
C)	probability = $N(E) = 2(n-1)! = 2(n-1)! = 2$ $N(S)$ $n!$ $n(n-1)!$ n
	N(8) $n!$ $n(n-1)!$ n

#10.1.4 a) $N(s) = {}^{10}c_5 = 252$ The size of the Sample 3 pace 15 75 b) $N(A) = 2 \times 8 c_3$ P(A) = n(A) - 112= 7.56 N(S) 252 126 井10.2.1 $\binom{1}{2}^n = (n+1) \binom{1}{2}^n$ (probability of n-1 flips) (probability of atleast + mo consecutive flips) C. n = 2s Heads = P Tails = 9 P(P=9) -1-P(P=9)

	甘10.2.2
a.)	probability = $(n-1)!$ = $(n-1)!$ $p=1$ $n!$ $n(n-1)!$ $p=h$
	n: n(n-1):
	n! = n(n-1)(n-2)
6.0	probability = $(n-2)! = (n-2)!$
The same of	n! $n(n-1)(q-2)!$
THE RESERVE	P = 1
	n(n-1)
(.)	$p = \frac{2(n-1)!}{n!} = \frac{2!(n-1)!}{n(n-1)!} = \frac{2!}{n!}$
	n' $n(n-1)$ n
	$p = \frac{2}{n}$
	n l
d.	
• e.	
	# 10.2.5
0)	$(26 + 26 + 10)^{10} = (62)^{10}$
	Characters = 26.26.10.(62)7
A PARTY OF	= 26.26.10.(62)7 = 0.02836
	(62)10
	#10.3.1
0.)	
O.J	
b)	P(4/c) = P(ADC) = 3 = 1'
0.5	P(1) 6 Z
Lean Section	
C.	P(B/c) = P(BNC) - 2/36 = 1
	$P(B/c) = P(B \cap C) - \frac{2}{36} = 1$ $P(c) = \frac{9}{36} = 3$
0 41	P(A/B) = P(ANB) = 3/86 = 1
(1.)	P(B) 6/36 2
0.1	A, B= 4, 6 -> B, C= 5,5 -> A, C= 5,1]
(2.)	A 10-17, 6 3 DIC=13,3 3 A,C=13,11

```
# 10.3.3
a) 71.2! = total arrangements
   probability = 71 . 71 - .25
b) 1.7! = 7! = total arrangements
   prob = 7! 8
() Yes both are Independent since no relation
   blw them
  # 10.4.1
a) P(F) = P(5) = 05
   P(H/F) = (10) (0.5)7 (1-0.5)10-7 = 0.1172
   P(HIS) = (10) (.75) (1-0.75) 10-7 = 0.7503
   P(H) = P(H 15) P(S) + P(H 1F) P(F) = 0.2508 . 0.5 . 0.1172 . 0.5
                              = 0.18375
   P(SIH) = P(415)P(3) = 0.2503.0.5
                           0.18375
          = 0.6811
  #10.4.4
a.) P(D) = probability of naving HIV
  P(T) = probability of the test
  P(DIT) = P(TID) = P(D)
             P(TID) · P(D) + P(TIND) P(ND)
   P(ND) = probability of not having HIV
   P(D) = 0.0001
   P(ND) = 0.9999
   P(TID) = 1
   P(T/ND)=0.025
   P(DIT) = 1(0.0001)
             1. (0 0001) + (0,025), (0,9999) = 0.0039
```