MATH 125 Calculus II Equations

Organized by Teng-Jui Lin

Warning

- WARNING: These equations are hand-typed and for personal reference use, so it is guaranteed to have some mistakes, both innocent and unforgivable. Therefore, use with caution!
- By using this equation sheet, you accept the risk associated with potential mistakes.
- If you find any mistakes, I welcome you to raise an issue.
- Updated: 20 March 2021

Table of Contents

- MATH 125 Calculus II Equations
 - Warning
 - o Table of Contents
 - Integrals
 - Indefinite integrals
 - Table of indefinite integrals
 - Definite integrals as Reimann sums
 - Properties of definite integrals
 - Fundamental theorem of calculus
 - Substitution rule
 - Techniques of Integration
 - Integration by parts
 - Approximating integrals
 - Trigonometric integrals
 - Trigonometric substitution
 - Improper integrals
 - Applications of Integration

Integrals

Indefinite integrals

Description	Equations
Indefinite integral (antiderivative)	$F(x) = \int f(x) \; dx$ $F'(x) = f(x)$
Antiderivative as a family of functions (Plus C !)	If F is an antiderivative of f , C is a constant then the most general antiderivative is $F(x)+C$

Table of indefinite integrals

Function $f(x)$	Antiderivative ${\cal F}(x)$	Function $f(x)$	Antiderivative $F(\boldsymbol{x})$
x^n	$\frac{x^{n+1}}{n+1} + C$	$\frac{1}{x}$	$\ln \lvert x \rvert + C$
e^x	e^x+C	b^x	$\frac{b^x}{\ln b} + C$
$\sin x$	$-\cos x + C$	$\cos x$	$\sin x + C$
$\sec^2 x$	$\tan x + C$	csc^2x	$-\cot x + C$
$\sec x \tan x$	$\sec x + C$	$\csc x \cot x$	$-\csc x + C$
$\frac{1}{x^2 + a^2}$	$\frac{1}{a}\arctan\left(\frac{x}{a}\right)+C$	$\frac{1}{\sqrt{a^2-x^2}}$	$\arcsin\left(rac{x}{a} ight) + C$

Description	Equations
Area	$A = \lim_{n o \infty} R_n = \lim_{n o \infty} \sum_{i=1}^n f(x_i) \Delta x$
Definite integral	$\int_a^b f(x) \ dx = \lim_{n o \infty} \sum_{i=1}^n f(x_i^*) \Delta x$
Operational definition of definite integral as Reimann sum	$egin{aligned} \int_a^b f(x) \ dx &= \lim_{n o \infty} \sum_{i=1}^n f(x_i) \Delta x \ \Delta x &= rac{b-a}{n} \ x_i &= a + i \Delta x \end{aligned}$
Sums of powers of positive integers	$egin{array}{l} \sum_{i=1}^{n}i=rac{n(n+1)}{2}\ \sum_{i=1}^{n}i^2=rac{n(n+1)(2n+1)}{6}\ \sum_{i=1}^{n}i^3=\left[rac{n(n+1)}{2} ight]^2 \end{array}$
Properties of summation	$egin{array}{l} \sum\limits_{i=1}^{n}c=nc\ \sum\limits_{i=1}^{n}ca_{i}=c\sum\limits_{i=1}^{n}a_{i}\ \sum\limits_{i=1}^{n}(a_{i}\pm b_{i})=\sum\limits_{i=1}^{n}a_{i}\pm\sum\limits_{i=1}^{n}b_{i} \end{array}$

Properties of definite integrals

Description	Equations
Reversing the bounds changes the sign of definite integrals	$\int_a^b f(x) \; dx = -\int_b^a f(x) \; dx$
Definite integral is zero if upper and lower bounds are the same	$\int_a^a f(x) \ dx = 0$
Definite integrals of constant	$\int_a^b c \ dx = c(b-a)$
Addition and subtraction of definite integrals	$\int_a^b [f(x)\pm g(x)]\;dx \ = \int_a^b f(x)\;dx \pm \int_a^b g(x)\;dx$
Constant multiple of definite integrals	$\int_a^b cf(x) \; dx = c \int_a^b f(x) \; dx$
Comparison properties of definite integrals	If $f(x) \geq 0$ for $x \in [a,b]$, then $\int_a^b f(x) \ dx \geq 0$
Comparison properties of definite integrals	If $f(x) \geq g(x)$ for $x \in [a,b]$, then $\int_a^b f(x) \ dx \geq \int_a^b g(x) \ dx$
Comparison properties of definite integrals	If $m \leq f(x) \leq M$ for $x \in [a,b]$, then $m(b-a) \leq \int_a^b f(x) \ dx \leq M(b-a)$

Fundamental theorem of calculus

Description	Equations
Fundamental theorem of calculus I $(f \text{ is continuous on } [a,b])$	$g(x) = \int_a^x f(t) \ dt$ $g'(x) = f(x)$
Fundamental theorem of calculus II $(f \ {\rm is \ continuous \ on} \ [a,b])$	$\int_a^b f(x) \; dx = F(b) - F(a)$ where F is any antiderivative of f
Net change theorem The integral of a rate of change is the net change	$\int_a^b F'(x) \ dx = F(b) - F(a)$

Substitution rule

Description	Equations
Substitution rule (u-substitution) $u\equiv g(x)$	$\int f(g(x))g'(x) \ dx = \int f(u) \ du$
Substitution rule for definite integrals $u\equiv g(x)$	$\int_a^b f(g(x))g'(x)\ dx = \int_{g(a)}^{g(b)} f(u)\ du$
Integrals of even functions	$\int_{-a}^a f(x) \; dx = 2 \int_0^a f(x) \; dx$
Integrals of odd functions	$\int_{-a}^a f(x) \ dx = 0$

Techniques of Integration

Integration by parts

Description	Equations
Integration by parts	$\int f(x)g'(x) dx$ $= f(x)g(x) - \int g(x)f'(x) dx$
Integration by parts	$\int u \ dv = uv - \int v \ du$
Integration by parts for definite integrals	$\int_a^b f g' \ dx = [fg]_a^b - \int_a^b f' g \ dx$

Approximating integrals

Description	Equations
Midpoint rule	$egin{aligned} \int_a^b f(x) \; dx &pprox \sum_{i=1}^n f(ar{x}_i) \Delta x \ \Delta x &= rac{b-a}{n} \ ar{x}_i &= rac{1}{2} (x_{i-1} + x_i) \end{aligned}$
Error bound for midpoint rule	$ E_M \leq \frac{K(b-a)^3}{24n^2}$
Trapezoidal rule	$egin{aligned} \int_a^b f(x) \ dx &pprox rac{1}{2} \Delta x [f(x_0) + 2 f(x_1) + \ + 2 f(x_{n-1}) + f(x_n)] \ \Delta x &= rac{b-a}{n} \ x_i &= a + i \Delta x \end{aligned}$
Error bound for trapezoidal rule	$ E_T \leq \frac{K(b-a)^3}{12n^2}$
Simpson's rule	$\int_a^b f(x) \ dx pprox rac{1}{3} \Delta x [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)] \ \Delta x = rac{b-a}{n}$, n is even
Error bound for Simpson's rule	$ E_S \leq \frac{K(b-a)^5}{180n^4}$

Trigonometric integrals

Description	Equations
Integral of odd power of cosine $(u=\sin x)$	$\int \sin^m(x) \cos^{2k+1}(x) \ dx = \int \sin^m(x) [\cos^2(x)]^k \ dx = \int \sin^m(x) [1 - \sin^2(x)]^k \ dx$
Integral of odd power of sine $(u=\cos x)$	$\int \sin^{2k+1}(x) \cos^n(x) dx \ = \int [\sin^2(x)]^k \cos^n(x) \sin(x) dx \ = \int [1 - \cos^2(x)]^k \cos^n(x) \sin(x) dx$
Integral of even power of sine and cosine use trig identities	$egin{aligned} \sin^2(x) &= rac{1}{2}(1-\cos(2x)) \ \cos^2(x) &= rac{1}{2}(1+\cos(2x)) \ \sin(x)\cos(x) &= rac{1}{2}\sin(2x) \end{aligned}$
Integral of even power of secant $(u= an x)$	$\int \tan^{m}(x) \sec^{2k}(x) dx$ = $\int \tan^{m}(x) [\sec^{2}(x)]^{k-1} \sec^{2}(x) dx$ = $\int \tan^{m}(x) [1 + \tan^{2}(x)]^{k-1} \sec^{2}(x) dx$

Description	Equations
Integral of odd power of tangent $(u=\sec x)$	$\int tan^{2k+1}(x) \sec^{n}(x) dx$ = $\int [\tan^{2}(x)]^{k} \sec^{n-1}(x) \sec(x) \tan(x) dx$ = $\int [\sec^{2}(x) - 1]^{k} \sec^{n-1}(x) \sec(x) \tan(x) dx$
Trig identity for solving $\int \sin(mx)\cos(nx)\ dx$	$\sin A\cos B=rac{1}{2}[\sin(A-B)+\sin(A+B)]$
Trig identity for solving $\int \sin(mx)\sin(nx)\;dx$	$\sin A \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)]$
Trig identity for solving $\int \cos(mx)\cos(nx)\ dx$	$\cos A \cos B = rac{1}{2}[\cos(A-B)+\cos(A+B)]$

Trigonometric substitution

Expression	Substitution	Trigonometric Identity
$\sqrt{a^2-x^2}$	$x=a\sin heta$	$1-\sin^2\theta=\cos^2\theta$
$\sqrt{a^2+x^2}$	$x=a\tan\theta$	$1+\tan^2\theta=\sec^2\theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$	$\sec^2\theta - 1 = \tan^2\theta$

Improper integrals

Description	Equations
Improper integrals with single one-side infinite intervals	$\int_a^\infty f(x) \ dx = \lim_{t o\infty} \int_a^t f(x) \ dx \ \int_{-\infty}^b f(x) \ dx = \lim_{t o-\infty} \int_t^b f(x) \ dx$
Improper integrals with single two-side infinite intervals	$\int_{-\infty}^{\infty} f(x) \ dx \ = \int_{-\infty}^{a} f(x) \ dx + \int_{a}^{\infty} f(x) \ dx$
Convergence and divergence of improper integrals of power functions	$\int_1^\infty rac{1}{x^p} dx$ convergent if $p>1$ divergent if $p\leq 1$
Improper integrals with discontinuous integrand on one side	$\int_a^b f(x) \ dx = \lim_{t o b^-} \int_a^t f(x) \ dx \ \int_a^b f(x) \ dx = \lim_{t o a^+} \int_t^b f(x) \ dx$
Improper integrals with discontinuous integrand in the middle $oldsymbol{c}$	$\int_a^b f(x) \; dx = \int_a^c f(x) \; dx + \int_c^b f(x) \; dx$
Comparison theorem $(f(x) \geq g(x) \geq 0, x \geq a)$	(a) If $\int_a^\infty f(x)\ dx$ is convergent, then $\int_a^\infty g(x)\ dx$ is convergent. (b) If $\int_a^\infty g(x)\ dx$ is divergent, then $\int_a^\infty f(x)\ dx$ is divergent.

Applications of Integration

Description	Equations
Areas between curves	$A = \int_a^b [f(x) - g(x)] \; dx$
Volume by method of disks and washers	$V=\int_a^b A(x)\ dx$
Volume by method of cylindrical shells (rotating about y-axis)	$V=\int_a^b 2\pi x f(x) \; dx$
Average value of a function	$ar{f} = rac{1}{b-a} \int_a^b f(x) \; dx$
The mean value theorem of integrals	If f is continuous on $[a,b]$, then there exists $c\in [a,b]$ such that $f(c)=ar{f}=rac{1}{b-a}\int_a^b f(x)\ dx,$ $\int_a^b f(x)\ dx=f(c)(b-a)$
Arc length formula	$L=\int_a^b \sqrt{1+[f'(x)]^2}\ dx$

Description	Equations
Arc length function	$s(x)=\int_a^x \sqrt{1+[f'(t)]^2}\ dt$
Surface area of surface of resolution about x-axis	$S = 1 2\pi t(x) / 1 + t'(x) ^2 dx$