Favorites YYYY-MM-DDRequest

Favorites

1998-2-2

Request

Sunspot Loops In Ultraviolet

Sunspot/link

The AWE mission is focused on understanding gravity waves in Earth's atmosphere at altitudes between 50 and 500 kilometers, called the ionosphere-thermosphere-mesosphere system. Space weather in this region – the ionosphere in particular – can significantly disrupt space-based communication systems we rely on due to the high concentration of electrically charged particles there. By studying atmospheric gravity waves, scientists will understand more about how Earth's weather influences upper atmospheric properties.

Sunspot Loops In Ultraviolet

Sunspot/link

The AWE mission is focused on understanding gravity waves in Earth's atmosphere at altitudes between 50 and 500 kilometers, called the ionosphere-thermosphere-mesosphere system. Space weather in this region – the ionosphere in particular – can significantly disrupt space-based communication systems we rely on due to the high concentration of electrically charged particles there. By studying atmospheric gravity waves, scientists will understand more about how Earth's weather influences upper atmospheric properties.

Favorites

YYYY-MM-DD

Request

YYYY-MM-DD

Favorites

Request

The AWE mission is focused on

understanding gravity waves in Earth's atmosphere at altitudes between 50 and 500 kilometers, called the ionosphere-

Sunspot/link

thermosphere-mesosphere system. Space weather in this region – the ionosphere in particular – can significantly disrupt space-based communication systems we rely on due to the high concentration of electrically charged particles there. By studying atmospheric gravity waves, scientists will understand more about how Earth's weather influences upper atmospheric properties.

thermosphere-mesosphere system. Space

Sunspot Loops In Ultraviolet

weather in this region – the ionosphere in particular – can significantly disrupt space-based communication systems we rely on due to the high concentration of electrically charged particles there. By studying atmospheric gravity waves, scientists will understand more about how Earth's weather influences upper atmospheric properties.

