

Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки Кафедра інформаційні систем та технологій

Лабораторна робота №3

із дисципліни «Безпека інформаційних систем» **Тема:** «Дослідження арифметичної системи GF(p). Скінченні поля Галуа»

Виконав: Студент групи IA-31 Самелюк А.С. Перевірив: Шимкович Л.Л. **Тема:** Дослідження арифметичної системи GF(p). Скінченні поля Галуа.

Хід роботи:

Завдання №1. Побудувати таблицю мультиплікативних циклів елементів M29 із GF(29).

Для побудови таблиці мультиплікативних циклів елементів у полі GF(29) нам потрібно знайти порядок кожного елемента від 1 до 28 у модулі 29. Це включає обчислення множинного складу кожного елемента, поки ми не отримаємо значення, еквівалентне 1. Тобто, для кожного елемента а, шукаємо найменше ј таке, що $a^{j} \equiv 1 \pmod{29}$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	3	6	12	24	19	9	18	7	14	28	27	25	21	13	26	23	17	5	10	20	11	22	15	1
3	9	27	23	11	4	12	7	21	5	15	16	19	28	26	20	2	6	18	25	17	22	8	24	14	13	10	1
4	16	6	24	9	7	28	25	13	23	5	20	22	1	4	16	6	24	9	7	28	25	13	23	5	20	22	1
5	25	9	16	22	23	28	24	4	20	13	7	6	1	5	25	9	16	22	23	28	24	4	20	13	7	6	1
6	7	13	20	4	24	28	23	22	16	9	25	5	1	6	7	13	20	4	24	28	23	22	16	9	25	5	1
7	20	24	23	16	25	1	7	20	24	23	16	25	1	7	20	24	23	16	25	1	7	20	24	23	16	25	1
8	6	19	7	27	13	17	20	15	4	3	24	18	28	21	23	10	22	2	16	12	9	14	25	26	5	11	1
9	23	4	7	5	16	28	20	6	25	22	24	13	1	9	23	4	7	5	16	28	20	6	25	22	24	13	1
10	13	14	24	8	22	17	25	18	6	2	20	26	28	19	16	15	5	21	7	12	4	11	23	27	9	3	1
11	5	26	25	14	9	12	16	2	22	10	23	21	28	18	24	3	4	15	20	17	13	27	7	19	6	8	1
12	28	17	1	12	28	17	1	12	28	17	1	12	28	17	1	12	28	17	1	12	28	17	1	12	28	17	1
13	24	22	25	6	20	28	16	5	7	4	23	9	1	13	24	22	25	6	20	28	16	5	7	4	23	9	1
14	22	18	20	19	5	12	23	3	13	8	25	2	28	15	7	11	9	10	24	17	6	26	16	21	4	27	1
15	22	11	20	19	5	17	23	26	13	21	25	27	28	14	7	18	9	19	24	12	6	3	16	8	4	2	1
16	24	7	25	23	20	1	16	24	7	25	23	20	1	16	24	7	25	23	20	1	16	24	7	25	23	20	1
17	28	12	1	17	28	12	1	17	28	12	1	17	28	12	1	17	28	12	1	17	28	12	1	17	28	12	1
18	5	3	25	15	9	17	16	27	22	19	23	8	28	11	24	26	4	14	20	12	13	2	7	10	6	21	1
19	13	15	24	21	22	12	25	11	6	27	20	3	28	10	16	14	5	8	7	17	4	18	23	2	9	26	1
20	23	25	7	24	16	1	20	23	25	7	24	16	1	20	23	25	7	24	16	1	20	23	25	7	24	16	1
21	6	10	7	2	13	12	20	14	4	26	24	11	28	8	23	19	22	27	16	17	9	15	25	3	5	18	1
22	20	5	23	12	25	28	7	9	24	6	16	4	1	22	20	5	23	12	25	28	7	9	24	6	16	4	1
23	7	16	20	25	24	1	23	7	16	20	25	24	1	23	7	16	20	25	24	1	23	7	16	20	25	24	1
24	25	20	16	7	23	1	24	25	20	16	7	23	1	24	25	20	16	7	23	1	24	25	20	16	7	23	1
25	16	23	24	20	7	1	25	16	23	24	20	7	1	25	16	23	24	20	7	1	25	16	23	24	20	7	1
26	9	2	23	18	4	17	7	8	5	14	16	10	28	3	20	27	6	11	25	12	22	21	24	15	13	19	1
27	4	21	16	26	6	17	24	10	9	11	7	15	28	2	25	8	13	3	23	12	5	19	20	18	22	14	1
28	1	28	1	28	1	28	1	28	1	28	1	28	1	28	1	28	1	28	1	28	1	28	1	28	1	28	1

Завдання №2. Виконати наступні операції над елементами поля GF(p), де p=29; для обчислень брати різні первісні елементи з таблиці мультиплікативних циклів елементів M29 із GF(29);

b,c,d
$$\in$$
 GF(29), 1.b = 4, c = 7; 2.b = 12, c = 17; 3.b = 22, c = 25.

1. b+c≡d

Для кожної пари b та c, обчислимо суму b + c за модулем 29:

$$\Pi pu \ b = 4 \ i \ c = 7: \ d = (4+7) \ \text{mod} \ 29 = 11$$

$$\Pi pu \ b = 12 \ i \ c = 17$$
: $d = (12 + 17) \ \text{mod} \ 29 = 0$

При
$$b = 22$$
 і $c = 25$: $d = (22 + 25) \mod 29 = 18$

2. b-c≡d

Знайдемо обернений за додаванням елемент — с для кожного значення c, a потім додамо його до b за модулем 29

$$\Pi pu \ b = 4, c = 7$$
 $-c \equiv -7 \pmod{29} = 22 \pmod{29}$
 $b-c \equiv 4 + 22 \pmod{29} \equiv 26 \pmod{29}$

$$\Pi pu \ b = 12, c = 17$$
 $-c \equiv -17 \pmod{29} \equiv 29 - 17 = 12 \pmod{29}$
 $b-c \equiv 12 + 12 \pmod{29} \equiv 24 \pmod{29}$

$$\Pi pu \ b = 22, c = 25$$
 $-c \equiv -25 \pmod{29} \equiv 29 - 25 = 4 \pmod{29}$
 $b-c \equiv 22 + 4 \pmod{29} \equiv 26 \pmod{29}$

3. $b*c \equiv d \pmod{29}$, $(w^j \in GF(29))$

 $\Pi pu\ b=4,\ c=7\ ma\ w=2:\ d=(4*7)\ mod\ 29=2^2*2^12\ mod\ 29\equiv2^14\ mod\ 29=28$ $\Pi pu\ b=12\ i\ c=17\ ma\ w=10:\ d=(12*17)\ mod\ 29=10^7*10^21\ mod\ 29\equiv10^28$ $mod\ 29\ [28\ mod\ 28=0]=1$

$$\Pi pu \ b=22 \ i \ c=25 \ ma \ w=8$$
: d=(22*25)mod 29 = 8^18 *8^24 mod 29 = 8^42 mod 29 [42 mod 28 = 14]= 8^14 mod 29 = 28

4. b : $c \equiv d \pmod{29}$, $(w^j \in GF(29))$

При b=4, c=7 та w=8: d=(4/7)mod $29 = 8^10 / 8^4 \equiv 13 \mod 29$ При b=12 і c=17 та w=3: d=(12/17)mod $29 = 3^7 / 3^21 \equiv w^28 * w^{-14} = 28$ При b=22 і c=25 та w=21: d=(22/25)mod $29 = 21^18 / 21^24 \equiv w^28 * w^{-6} = 9$

5. $b^m \equiv d(mod29)$, $c^m \equiv d(mod29)$, m=32, 37, 43.

 $\Pi pu \ b=4 \ ma \ m=32 \ ma \ w=2$: d=(4^32)mod29 = (2^2)^32 mod29 = 2^64 mod29 = 2^8 mod29 = 24

 $\Pi pu \ c=7 \ ma \ m=32 \ ma \ w=2$: d=(7^32)mod29 = (2^12)^32 mod29 = 2^384 mod29 = 2^20 mod29 = 23

 $\Pi pu \ b=12 \ ma \ m=37 \ ma \ w=15$: d=(12^37)mod29 = (15^21)^37 mod29 = 15^777 mod29 = 15^21 mod29 = 12

 $\Pi pu \ c = 17 \ ma \ m = 37 \ ma \ w = 15$: d=(17^37)mod29 = (15^7)^37 mod29 = 15^259 mod29 = 15^7 mod29 = 17

 $\Pi pu \ b=22 \ ma \ m=43 \ ma \ w=2$: $d=(22^43) \mod 29 = (2^26)^43 \mod 29 = 2^1118 \mod 29 = 2^26 \mod 29 = 22$

 $\Pi pu \ c=25 \ ma \ m=43 \ ma \ w=2$: d=(25^43)mod29 = (2^16)^43 mod29 = 2^688 mod29 = 2^16 mod29 = 25

6. $d = b^{(-1)} \pmod{29}$; $d = c^{(-1)} \pmod{29}$; $(w^j \in GF(29))$.

$$4^{(-1)} \equiv (2^2)^{(-1)} \equiv 1 * 2^{(-2)} \equiv 2^2 * 2^{(-2)} \equiv 2^2 \pmod{29} \equiv 22$$

$$7^{(-1)} \equiv (2^{12})^{(-1)} \equiv 1 * 2^{(-12)} \equiv 2^{28} * 2^{(-12)} \equiv 2^{16} \mod 29 \equiv 25$$

$$12^{(-1)} \equiv (10^{2}1)^{(-1)} \equiv 1 * 10^{(-21)} \equiv 18^{2}8 * 10^{(-21)} \equiv 10^{7} \mod 29 \equiv 17$$

$$17^{(-1)} \equiv (11^{2}1)^{(-1)} \equiv 1 * 11^{(-21)} \equiv 18^{2}8 * 11^{(-21)} \equiv 11^{7} \mod 29 \equiv 12$$

$$22^{(-1)} \equiv (26^{2})^{(-1)} \equiv 1 * 26^{(-22)} \equiv 26^{2} * 26^{(-22)} \equiv 26^{6} \mod 29 \equiv 4$$

$$25^{(-1)} \equiv (26^{20})^{(-1)} \equiv 1 * 26^{(-20)} \equiv 26^{28} * 26^{(-20)} \equiv 26^{8} \mod 29 \equiv 7$$

7. Дано р- просте число, вибрати w- первісний елемент поля GF(p), перевірити і довести факт його первісності при p=149; 379; 983.

Знаходимо прості дільники числа p-1=148: d = 2, 37

Для кожного m знаходимо w^m mod p

$$2^148/2 \mod 149 \equiv 102 \equiv 1$$

$$2^148/37 \mod 149 \equiv 148 \not\equiv 1$$

Можна вважати 13 первісним елементом

p=379, нехай w=7

Знаходимо дільники числа p-1=378: d = 2, 3, 7

Для кожного m знаходимо w^m mod p

 $10^378/2 \mod 379 \equiv 378 !\equiv 1$

 $10^378/3 \mod 379 \equiv 51 !\equiv 1$

 $10^378/7 \mod 379 \equiv 125 !\equiv 1$

Число 7 можна вважати первісним елементом

p=983, нехай w=11

Знаходимо дільники числа p-1=982: d = 2, 491

Для кожного m знаходимо w^m mod p

 $3^982/2 \mod 983 \equiv 121 \neq 1$

 $3^982/491 \mod 983 \equiv 982 \equiv 1$

Можна вважати 11 первісним елементом