Лабораторная работа №2

Оценка параметров линейного стационарного объекта методом наименьших квадратов – рекуррентная форма.

<u>Цель работы</u>: исследование свойств рекуррентной формы метода наименьших квадратов применительно к оценкам параметров линейного регрессионного объекта, исследование точности и скорости сходимости оценок к истинным значениям параметров в зависимости от задания начального приближения ковариационной матрицы ошибки оценки и начального приближения оценок параметров объекта.

Основные теоретические сведения

Решение задач оценивания в реальном масштабе времени, как правило, требует сокращения времени вычислений, которое может быть достигнуто как за счет совершенствования вычислительной техники, так и за счет модернизации алгоритмов оценивания в смысле уменьшения объема вычислений. Особенно трудоемкими операциями при использовании явных методов идентификации являются операции перемножения и обращения матриц большой размерности.

Учитывая это, можно заключить, что разработка методов оценивания, позволяющих снизить объем запоминаемой информации и уменьшить время вычислений, является актуальной задачей.

Во многих случаях, когда составляющие вектора измерений поступают последовательно с течением времени, рационально находить оценку \hat{c} имеющейся в данный момент информации, последовательно уточняя ее, по мере поступления новых данных. При этом алгоритм совместной обработки результатов измерений заменяется рекуррентным алгоритмом вида:

$$\vec{\hat{c}}(i+1) = \vec{\hat{c}}(i) + K(i+1)(\vec{y'}(i+1) - U'(i+1))\vec{\hat{c}}(i), \tag{1}$$

в правую часть этого уравнения входит не весь вектор измерений «входов» U(i+1) и «выхода» $\vec{y}^T(i+1) = (\vec{y'}(1), \vec{y'}(2), ..., \vec{y'}(i+1))$ лишь матрица «входов» U'(i+1) и вектор «выхода» $\vec{y'}(i+1)$, поступившие на интервале $[t_i; t_{i+1}]$ и имеющие размерность (n x p) и p, соответственно. Здесь использованы следующие обозначения: n – размер оцениваемого параметра $\vec{\hat{c}}$, p – объем информации, поступающей на интервале $[t_i; t_{i+1}]$.

Такой процесс получения последовательно уточняемых оценок называется рекуррентным оцениванием. Подробный вывод рекуррентных соотношений приведен в работе [1] для произвольного значения $p\ge 1$. В лабораторной работе принимается p=1, т.е. уточнение оценок происходит при каждом новом поступлении измеряемых значений «входов» и «выхода».

Учитывая, что в лабораторной работе проводится идентификация параметров линейного регрессионного объекта (1.1), рекуррентные соотношения принимают вид:

$$\vec{c_{LS}}(i+1) = \vec{c_{LS}}(i) + K(i+1)(y(i) - \vec{u}^T(i)\vec{c_{LS}}(i))$$
 (2)

$$K(i+1) = P(i)\vec{u}(i)\frac{1}{\frac{1}{r(i)} + \vec{u}^T(i)P(i)\vec{u}(i)}$$
(3)

$$P(i+1) = P(i) - \frac{1}{\frac{1}{r(i)} + \vec{u}^T(i)P(i)\vec{u}(i)} P(i)\vec{u}(i)\vec{u}^T(i)P(i)$$
(4)

Для инициализации рекуррентного процесса необходимо задать начальные приближения - $\vec{c_{LS}}(0)$ и P(0). Можно предложить два способа задания начальных приближений [1]:

1. первый способ заключается в использовании выборок U(0), $\vec{y}(0)$ достаточного объема и последующем расчете начальных приближений по формулам обычного метода наименьших квадратов при достаточном числе измерений:

$$\vec{c_{LS}}(0) = (U(0))^{-1} \vec{y}(0), P(0) = (U^T(0)R(0)U(0))^{-1};$$
 (5)

2. второй способ используется, если никаких предварительных выборок не производится. В этом случае можно предложить следующее правило: чем хуже начальные приближения $\overrightarrow{c_{LS}}(0)$, тем больше должна быть матрица P(0). Действительно, чем больше значение матрицы P(0), тем больше будет K(1) и, следовательно, с большим весом будет учитываться невязка между «выходом» объекта и модели в формуле (2.1) для коррекции плохой оценки. Вообще, матрицу P(0) можно задать в виде:

$$P(0) = \lambda I,\tag{6}$$

где λ — некоторое число, выбираемое в соответствии с пунктом «б», при этом $\vec{c_{LS}}(0)$ — любой вектор, размерности m.

В лабораторной работе нужно исследовать сходимость алгоритма в зависимости от задания начальных приближений $c_{LS}^{\vec{r}}(0)$ и P(0). Для исследования процесса сходимости можно построить сглаженные по десяти последовательным значениям ошибки оценки, рассчитанные по формуле:

$$err(i) = \sqrt{\frac{1}{10} \sum_{k=0}^{9} \sum_{j=0}^{n-1} (c_{\hat{L}Sj}(i-k) - c_j))^2}$$
 (7)

, где i - номер итерации/измерения, k - номер итерации/измерения, j - порядковый номер параметра объекта.

Графики сглаженной ошибки оценки (7), соответствующие различным значениям параметра λ в задании начального приближения матрицы P(0) и одних и тех же начальных приближениях оценок параметров имеют вид:

Рис. 1: Сглаженная ошибка оценки

Задание и порядок выполнения лабораторной работы

При выполнении лабораторной работы необходимо:

- 1. Изучить теоретические основы рекуррентной формы метода наименьших квадратов и сформировать план (в виде таблицы) проведения исследований. Примерный вид таблицы изображен ниже.
- 2. Провести идентификацию коэффициентов c_0, c_1, c_2, c_3, c_4 линейного регрессионного объекта при различных начальных значениях оцениваемых параметров $c_0(0), c_1(0), c_2(0), c_3(0), c_4(0)$ и матрицы $P(0) = \lambda I$ (данные вариантов для тестового моделирования приведены в приложении 1).
- 3. Построить графики изменения сглаженной ошибки оценки, рассчитанной по формуле (2.7), в зависимости от номера итерации. Рекомендуется на одном листе компоновать графики, имеющие одинаковые начальные приближения оцениваемых параметров $c_0(0), c_1(0), c_2(0), c_3(0), c_4(0)$ и различные значения $P(0) = \lambda I$.
- 4. Исследовать точность оценки параметров c_0, c_1, c_2, c_3, c_4 в зависимости от начальных приближений оцениваемых параметров $c_0(0), c_1(0), c_2(0), c_3(0), c_4(0)$ и различных значений $P(0) = \lambda I$.
- 5. Исследовать динамику изменения сглаженной ошибки оценки в зависимости от начальных приближений оцениваемых параметров $c_0(0), c_1(0), c_2(0), c_3(0), c_4(0)$ и различных значений $P(0) = \lambda I$.
- 6. Полученные результаты необходимо представить в виде графиков, аналогичных изображенным на рис. 2.10.
- 7. Оформить отчет по лабораторной работе в соответствии с требованиями, изложенными во введении.

Контрольные вопросы

- 1. Запишите общий вид рекуррентной последовательности для идентификации параметров объекта.
- 2. Отметьте, в чем состоят основные достоинства рекуррентного алгоритма по сравнению с методами оценивания по полному объему измерений и, в частности, по методу наименьших квадратов для линейных регрессионных объектов.

- 3. Когда, на Ваш взгляд, удобнее использовать рекуррентную форму оценивания, а когда лучше применять оценивание по полному объему измерений?
- 4. Какие способы задания начального приближения Вы знаете?
- 5. Как связана процедура задания начального приближения с априорными знаниями о параметрах идентифицируемого объекта. Почему при малой априорной информации об объекте рекомендуется задавать $\lambda >> 1$?
- 6. Покажите, что матрица P(0), рассчитываемая по формуле (2.3) пропорциональна ковариационной матрице ошибки оценки.
- 7. Какая оценка, вычисленная по N измерениям, на Ваш взгляд будет более точной: рекуррентная оценка или оценка по полному объему измерений.

Варианты к лабораторным работам

№ вар.	c_0	c_1	c_2	c_3	c_4
1	9	2	3	1	4
2	5	2	10	17	14
3	1.5	2.5	-3.5	4.5	5
4	1.9	-0.9	0.8	0	2.5
5	3.5	-0.3	0	6.0	-2.2
6	1.5	0.2	-0.1	0.3	1
7	2	4	7	3	5
8	5	2.5	0.1	-3	-2.5
9	-12.7	4.3	-1.8	9.1	2.4
10	7	8.9	4	0.5	-3.5
11	2	4	1	2	3
12	7	11	-5	2	-4
13	3	1	5	2	7
14	2	5	7	-12.7	4.3
15	-7	8	6	12	-20
16	1	2	3	4	5
17	3	1	4	2	5
18	1	-1	5	3	8
19	2	3	3	1	2
20	15	6	8	10	5
21	1	0	6	-1	4
22	2	6	1	9	3

Уравнение имитируемого объекта:

$$y(i) = c_0 + c_1 u_1(i) + c_2 u_2(i) + c_3 u_3(i) + c_4 u_4(i) + \eta(i)$$

 $i = 1, 2, ..., N$

Образец плана проведения исследования

	Исходные данные для тестового моделирования $\mu_{\eta} = 0, \ \sigma_{\eta}^2 = 0.5, \ \sigma_{u}^2 = 50$		Ошибки оценки параметров при $t=t_{\kappa OH}$					
Эксп. №			$\left \hat{c}_{0}\text{-}c_{0}\right $	$ \hat{c}_{\scriptscriptstyle 1} ext{-}c_{\scriptscriptstyle 1} $	$ \hat{c}_2 ext{-} c_2 $	$ \hat{c}_3$ - $c_3 $	$\left \hat{c}_{4} ext{-}c_{4} ight $	$\frac{1}{5} \cdot \sum_{j=0}^{4} (\hat{c}_j - c_j)^2$
1.1	$ \hat{c}_{0}(0) = \\ \hat{c}_{1}(0) = \\ \hat{c}_{2}(0) = \\ \hat{c}_{3}(0) = \\ \hat{c}_{4}(0) = $	λ=0.1						
1.2		λ=1						
1.3		λ=10						
1.4		λ=100						
2.1	$ \hat{c}_{0}(0) = \\ \hat{c}_{1}(0) = \\ \hat{c}_{2}(0) = \\ \hat{c}_{3}(0) = \\ \hat{c}_{4}(0) = $	λ=0.1						
2.2		λ=1						
2.3		λ=10						
2.4		λ=100						
3.1	$ \hat{c}_{0}(0) = \\ \hat{c}_{1}(0) = \\ \hat{c}_{2}(0) = \\ \hat{c}_{3}(0) = \\ \hat{c}_{4}(0) = $	λ=0.1						
3.2		λ=1						
3.3		λ=10						
3.4		λ=100						