Вводная работа

ФИЗИЧЕСКИЕ ИЗМЕРЕНИЯ И ОБРАБОТКА ИХ РЕЗУЛЬТАТОВ

Теоретическое введение

Отличительной особенностью физической науки является то, что изучаемые ею свойства и характеристики объектов и процессов — сравнительно просто квантифицируются, то есть допускают количественное выражение, меру в форме тех или иных физических величин. Нахождение размера (значения) какой-либо физической величины, называемое ее измерением, осуществляется путем сравнения с определенной мерой, принятой за единицу этой величины.

В международной системе единиц СИ в качестве основных выбраны: килограмм, метр, секунда, кельвин, ампер, кандела. Единицы других величин являются производными и устанавливаются на основании их взаимосвязей с величинами, единицы которых выбраны в качестве основных.

Благодаря широкому распространению измерений и высокой степени математизации физика является наукой точной и строгой. Эти ее достоинства предполагают обязательную оценку точности результатов производимых измерений. Поэтому и лабораторный практикум по физике начинается с вводной, единой для всех студентов работы, в процессе которой необходимо освоить навыки обработки и оформления результатов эксперимента и оценки их точности, используемые далее во всех последующих работах.

Как правило, эксперимент, измерение, осуществляемые с помощью технических средств и математических операций и вычислений, дают лишь приближенное к истинному значение физической величины, называемое результатом измерения. Мерой этого приближения, то есть мерой оценки точности результата измерения, служит погрешность измерения (устаревшее название – ошибка измерения).

Погрешность измерения имеет две формы выражения, называемые абсолютной и относительной погрешностями.

Абсолютная погрешность некоторой величины X обозначается ΔX . Она равна разности номинального (полученного при измерении значения X) и ее истинного значения $X_{\text{ист}}$: $\Delta X = X - X_{\text{ист}}$.

Относительная погрешность величины X обозначается ε . Она равна отношению абсолютной погрешности ΔX к истинному значению $X_{\text{ист}}$ и выражается обычно в процентах: $\varepsilon = \frac{\Delta X}{X_{\text{ист}}} \cdot 100\%$.

Абсолютная погрешность ΔX указывает тот интервал вокруг измеренного значения $(X \pm \Delta X)$, в котором может находиться истинное значение измеряемой величины. Относительная же погрешность, будучи безразмерной, характеризует «удельный вес» этого интервала в номинальном значении величины.

По источника своего происхождения погрешности подразделяются на систематические, случайные и грубые (промахи).

Под систематической понимают погрешность устойчиво повторяющуюся (или закономерно изменяющуюся) при повторных отсчетах измеряемой величины, производимых в одних и тех же условиях. В систематической погрешности различают приборную (инструментальную) и методическую составляющие, которые являются следствием несовершенства, соответственно, используемых приборов и методики измерения. Эти погрешности могут выявляться и понижаться путем использования более точных приборов и разных методик измерения.

В грубых одношкальных приборах типа обычной линейки за погрешность, обозначаемую, обычно принимают половину, а иногда и полную цену C деления и приборов.

В отличие от систематической случайная погрешность изменяется хаотически в серии из п повторяющихся в одинаковых условиях отсчетов измеряемой величины. Она является следствием воздействия на измеряемую величину большого числа обычно мелких и независимых друг от друга факторов, помех. Их действие приводит к хаотическому разбросу результатов отдельных отсчетов X_i вокруг среднего арифметического значения $X_i = \frac{\sum_i X_i}{n}$, определяемого самой измеряемой величиной. Это среднее арифметическое значение $X_i = X_i$ и является обычно наилучшим

 $^{^{1}}$ Под ценой деления C шкалы прибора понимают количество (размер, значение) измеряемой величины, приходящееся на одно деление шкалы. Для равномерной шкалы она равна отношению максимального (предельного) значения X_{np} шкалы к числу N ее делений: $C = \frac{X_{np}}{N}$.

приближением к истинному значению измеряемой величины Х.

Вклад случайных факторов и помех в погрешность результата измерения можно оценить, произведя статистическую обработку результатов серии п отсчетов, называемой выборкой. Обычно такая обработка основывается на предположении о том, что результаты X_i отдельных отсчетов (и их отклонений $\Delta X_i = X_i - \langle X \rangle$ от среднего арифметического $\langle X \rangle$) образуют случайную совокупность, подчиняющуюся нормальному или гауссовому закону распределения. При таком законе отклонения ΔX_i одинаковой величины и разного знака появляются одинаково часто, и с ростом величины частота их появления убывает.

При увеличении объема выборки, то есть числа п отсчетов и их усреднении, отклонения $\Delta X_i = X_i - \langle X \rangle$ разного знака все более полно взаимно компенсируют друг друга. Соответственно, среднее арифметическое значение $\langle X \rangle$ измеряемой величины все ближе стремится к ее истинному значению $X_{\text{ист}}$, совпадая с ним в пределе при $n \to \infty$. В такой бесконечно большой совокупности отсчетов, называемой генеральной, результат X_i отдельного измерения попадает в определенный интервал $\pm \Delta X$ вокруг $\langle X \rangle = X_{\text{ист}}$ с определенной вероятностью 2 Р. Например, для $\Delta X = \sigma = \sqrt{\frac{\sum_{i=1}^n \Delta X_i^2}{n-1}}$, называемого средним квадратическим (или среднеквадратическим) отклонением (СКО) результата отдельного измерения, результат X_i попадает в интервал $\langle X \rangle \pm \sigma$ с вероятностью P = 68%. Это значит, что 68% случаях из общего числа $n \to \infty$, результаты отсчета X_i будут попадать в интервал $\langle X \rangle \pm \sigma$. Или, иначе, истинное значение $X_{\text{ист}} = \langle X \rangle$, с вероятность P = 68% располагается в интервале $X_i \pm \sigma$.

Увеличение вероятности P, называемой доверительной (или коэффициентом надежности, коэффициентом доверия), приводит к расширению интервала ΔX , в пределах $\pm \Delta X$ которого вокруг < X > предположительно находится истинное значение X_{uct} и и который также называется доверительным. Так, для доверительной вероятности P =95%, ширина доверительного интервала возрастает до $\pm 2\sigma$, а для P = 99% - до $\pm 3\sigma$.

__

²Под вероятностью Р того или иного события понимают относительную предельную частоту его появления в генеральной совокупности однотипных событий: $\lim_{n\to\infty}\frac{n}{n}$, где n — число появлений выделенного события во всей совокупности n событий.

Большей степенью приближения к истинному значению $X_{\text{ист}}$, в сравнении с результатом X_i единичного отсчета, будет обладать среднее арифметическое значение < X > некоторой конечной совокупности n отсчетов. Статистический анализ показывает, что доверительный интервал $\pm \Delta X$ сокращается при этом \sqrt{n} раз, то есть $\Delta X = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{\sum_{i=1}^{n} \Delta X_i^2}{n(n-1)}} = S_n'$, где S_n' — так называемый *стандартный доверительный интервал*.

На практике обычно ограничиваются, как правило, небольшими совокупностями отсчетов, называемых малыми выборками, с числом отсчетов $n=5\div 20$. При этом для оценки случайной погрешности приходится пользоваться приближенным к гауссовому (к σ) значением СКО: $S_n=\sqrt{\frac{\sum_{i=1}^n \Delta X_i^2}{(n-1)}}$. Это приводит к расширению доверительного интервала ΔX , то есть к возрастанию абсолютной погрешности измерения. Для конечных выборок доверительный интервал выражается формулой: $\Delta X=\frac{S_n\cdot t_{n,p}}{\sqrt{n}}=t_{n,p}\cdot S_n'$, где $t_{n,p}$ —коэффициент Стьюдента, являющийся табулированной величиной, зависящий от объема выборки (числа отсчетов n) и доверительной вероятности P.

С ростом числа отсчетов n коэффициент Стьюдента $t_{n,p}$ уменьшается, а значит доверительный интервал $\pm \Delta X$ сужается, так как возрастает точность измерений, то есть степень приближения < X > к $X_{\text{ист}}$ за счет более полной компенсации случайных погрешностей разного знака. При числе отсчетов n < 20 «погрешность погрешности», обусловленная случайностью среднеквадратического отклонения S_n в выборке, составляет не менее 25%. Поэтому при записи погрешности (доверительного интервала) ее округляют, оставляя одну значащую цифру в старшем разряде, если на больше тройки, или две цифры, если цифра в старшем погрешности меньше чем 3. С такой же точностью округляют и сам результат измерения величины X.

Увеличение доверительной вероятности Р означает требование большей надежности, то есть большей частоты попадания результатов измерения в доверительный интервал $\pm \Delta X$. Это приводит к необходимости его расширения, что отражается соответствующим возрастанием коэффициента

 $^{^{3}}$ Значащими называются все цифры числа, кроме нулей в его начале, которые служат только для установления разрядов остальных чисел.

Стьюдента $t_{n,p}$ с ростом Р.

Обычно доверительную вероятность Р выбирают 68% (или 95%); это означает, что истинное значение $X_{\text{ист}}$ с вероятностью 68% находится в интервале $< X > \pm \Delta X$. В более ответственных случаях вероятность Р выбирают равной 99% или еще выше.

Расчет погрешности прямых измерений

В простейшем случае измерений, называемых прямыми, при которых величина X непосредственно отсчитывается по шкале приборов, оценка точности их результатов осуществляется следующим образом.

Производится несколько отсчетов X_i измеряемой величины X и если результаты отдельных отсчетов не различаются в пределах погрешности прибора δ (то есть доминирует приборная погрешность), можно ограничиться тремя-четырьмя отсчетами и результат записать в виде:

$$X = < X > \pm \delta$$
; $\varepsilon_x = \frac{\delta}{\langle X \rangle} 100\%$.

Пример: при измерении штангенциркулем с погрешностью $\delta=0.05$ мм диаметра D калиброванного цилиндра получены значения: $D_1=19.80$ мм; $D_2=19.85$ мм; $D_3=19.80$ мм; $D_4=19.80$ мм.

Вычисляем
$$< D > = \frac{\sum D_i}{4} = 19,81$$
 мм и $\varepsilon_D = \frac{\delta}{< D>} 100\% = 0,25\%.$

Записываем результат: $D = (19.81 \pm 0.05)$ мм; $\varepsilon_D = 0.25\%$.

Если результаты X_i отсчетов прямо измеряемой величины X разнятся на величину, заметно превышающую погрешность прибора δ (то есть доминирует случайная погрешность), число отсчетов n следует увеличить до $10 \div 20$ (для понижения случайной погрешности) и произвести их статистическую обработку. Ее целью является определение доверительного интервала ΔX , в пределах $\pm \Delta X$ которого вокруг значения < X > C заданной доверительной вероятностью P находится значение $X_{\text{ист}}$. При этом рекомендуется придерживаться следующего порядка.

- 1. Вычисляется среднее арифметическое значение измеряемой величины < X > = $\frac{\sum_{i}^{n} X_{i}}{n}$.
- 2. Рассчитываются отклонения отдельных отсчетов от среднего значения

 $\Delta X_i = X_i - < X>$ и вычисляется среднеквадратичное отклонение результата отдельного измерения: $S_n = \sqrt{\frac{\sum_{i=1}^n \Delta X_i^2}{n-1}}$.

- 3. Проведение наличие промахов, к которым относят такие отсчеты X_i , отклонения ΔX_i которых превышают утроенное значение среднеквадратичного отклонения S_n , то есть $\Delta X_i > 3S_n$. Выявленные промахи из обработки результатов исключаются, и производится повторный расчет по пунктам 1-2.
- 4. Рассчитывается доверительный интервал $\Delta X = \frac{S_n \cdot t_{n,p}}{\sqrt{n}}$. Коэффициент Стьюдента $t_{n,p}$ выбирают из таблицы Приложения для заданных значений n и P.
- 5. Результат измерений округляют соразмерно его погрешности (доверительному интервалу) и записывают в стандартном виде:

$$X = \langle X \rangle \pm \Delta X$$
, $\varepsilon_x = \frac{\Delta X}{\langle X \rangle} 100\%$, $P =$

Пример: при измерении диаметра грубо обработанной детали микрометром, погрешность которого $\delta = 0.01\,\mathrm{mm}$, получены следующие значения:

 $D_1=19,\!82$ мм; $D_2=19,\!87$ мм; $D_3=19,\!74$ мм; $D_4=19,\!80$ мм; $D_5=19,\!77$ мм; $D_6=19,\!85$ мм; $D_7=19,\!81$ мм; $D_8=19,\!80$ мм; $D_9=19,\!73$ мм; $D_{10}=19,\!87$ мм.

Вычисляем: 1) $< D > = \frac{\sum_{i=1}^n D_i}{10} = 19,806$ мм, 2) СКО результата отдельного измерения: $S_n = \sqrt{\frac{\sum_{i=1}^n D_i}{n-1}} = 0,0409$ мм.

Проверяем наличие промахов, то есть отсчетов с $\Delta D_i > 3S_n^{'}$, таковых в приведенной выборке нет.

Рассчитываем доверительный интервал ΔD , задаваясь определенным значением доверительной вероятности P, например, P = 0,95(95%).

Из таблицы Приложения находим коэффициент Стьюдента $t_{10;0,95}=2,3$. Тогда $\Delta D=\frac{S_n\cdot t_{n,p}}{\sqrt{n}}=\frac{0,049\cdot 2,3}{\sqrt{10}}=0,0356$ мм или, после округления , $\Delta D\approx 0,04$ мм. Соответственно округляем значение диаметра и записываем окончательный результат: $D=(19,81\pm 0,04)$ мм; $\varepsilon_D=0,2\%$; P=0,95.

6. При соизмеримости приборной δ и случайной ΔX погрешностей, результирующая погрешность может быть оценена по формуле:

$$\Delta X_{\Sigma} = \sqrt{\delta^2 + \Delta X^2}$$
.

Расчет погрешности косвенных измерений

В случае косвенных измерений некоторой величины У она рассчитывается на основании известной функциональной связи ее с другими, прямо измеряемыми величинами $X_1, X_2, ..., X_l, ..., X_N$, то есть $Y = f(X_1, X_2, ..., X_l, ..., X_N)$. Если случайные погрешности этих, прямо измеряемых величин X_k снижены до значений, много меньших соответствующих приборных погрешностей δ_k , то погрешность косвенно измеряемой величины У обычно характеризуют заданием так называемой максимальной погрешности ΔY . Под нею понимается максимальное приращение функции, вызванное приращениями $\Delta X_k = \delta_k$ ее аргументов X_k :

$$\Delta \mathbf{y} = \left| \frac{\partial f}{\partial X_1} \right| \Delta X_1 + \left| \frac{\partial f}{\partial X_2} \right| \Delta X_2 + \dots + \left| \frac{\partial f}{\partial X_N} \right| \Delta X_N = \sum_{k=1}^N \left| \frac{\partial f}{\partial X_k} \right| \Delta X_k,$$

где $\frac{\partial f}{\partial X_k}$ — частная производная от косвенно измеряемой величины У по k-му ее аргументу X_k .

Часто более целесообразным представляется сразу вычислить относительную максимальную погрешность ε_{y} косвенно измеряемой величины У по формуле:

$$\varepsilon_{y} = \frac{\Delta y}{y} = \sum_{k=1}^{N} \left| \frac{\partial lnf}{\partial X_{k}} \right| \Delta X_{k}.$$

Из этой форму следует, в частности, что относительная погрешность величины Y, являющейся произведением (или частным) X_k , равна сумме относительных погрешностей ее сомножителей.

Пример получения формулы для абсолютной Δy и относительной ε_y погрешностей (в применении к объему цилиндра) дан в экспериментальной части работы.

Если в измерениях прямо измеряемых величин X_k доминируют случайные погрешности, то для величины У рассчитывается абсолютная погрешность ΔY по формуле:

 $\Delta y = S_{yn}^{'} \cdot t_{n,p}$, где $S_{yn}^{'} = \sqrt{\sum_{k=1}^{N} \left[\left(\frac{\partial f}{\partial X_{k}} \right) S_{nk}^{'} \right]^{2}}$, а $S_{nk}^{'}$ — среднеквадратичное отклонение среднего арифметического значения величины X_{k} . Предполагается, что все прямо измеренные величины X_{k} имеют одинаковое число отсчетов n.

Среднее арифметическое значение < У > вычисляется путем подстановки в формулу У = $f(X_1, X_2,..., X_k)$ средних значений аргументов < $X_1 >$, < $X_2 >$, ..., < $X_k >$. Окончательный результат записывается в виде:

$$y = \langle y \rangle \pm \Delta y$$
; $\varepsilon_y = \frac{\Delta y}{\langle y \rangle} 100\%$; $P = ...$

Экспериментальная часть

В данной работе моделируются характерные ситуации простейших прямых и косвенных измерений с доминированием либо приборной, либо случайной погрешностей и на их примере осваиваются правила обработки и оформления результатов эксперимента и методы оценки их точности. В качестве измерительных приборов используются микрометр и штангенциркуль, обладающие разной величиной погрешности в прямом измерении линейных величин. Краткое их описание дано в Приложении.

Измерению подлежат две детали цилиндрической формы, отличающиеся разным характером обработки поверхности. Один цилиндр — с грубо обработанной поверхностью, измеряется более точным прибором — микрометром. Его показания при измерении диаметра в разных местах цилиндра будут заметно различаться — так моделируется ситуация с преобладанием случайной погрешности. Поэтому здесь предлагается осуществить значительное число п отсчетов диаметра и проследить зависимость точности измерения от объема выборки — числа отсчетов п и от доверительной вероятности Р.

Другой цилиндр – с калиброванными размерами и чисто обработанной поверхностью – измеряется более грубым прибором – штангенциркулем.

Здесь измерения доводятся до косвенных, до измерения объема и площади поверхности цилиндра. При этом, произведя 3-4 отсчета диаметра (высоты) в разных местах, убеждаются, что в пределах погрешности штангенциркуля их результаты практически неизменны, и потому дальнейшее увеличение числа отсчетов не имеет смысла.

<u>Задача 1.</u> Прямые измерения микрометром диаметра детали и статистическая обработка их результатов.

- 1. Ознакомиться с конструкцией микрометра, методикой измерения и способом отсчета его показаний. Описание приборов дано в Приложении.
- 2. Произвести 20 отсчетов диаметра грубо обработанного цилиндра в разных его местах. С целью выяснения влияния числа отсчетов на точность измерения статистическую обработку результатов произвести отдельно для всех двадцати и для первых пяти отсчетов диаметра. Результаты измерений и расчетов в пунктах 2 ÷ 6 занести в таблицу⁴. Промежуточные величины вычисляются с одним «лишним» знаком, то есть на одну значащую цифру больше, чем в результатах измерений.
- 3. Вычислить средние арифметические значения $< D_{20} > -$ всех двадцати (n = 20) и $< D_5 > -$ первых пяти (n = 5) отсчетов диаметра.
- 4. Вычислить отклонения $\Delta D_i = D_i \langle D_n \rangle$ результатов отдельных отсчетов диаметра от их средних арифметических значений $\langle D_{20} \rangle$ и $\langle D_5 \rangle$.
- 5. Найти среднее арифметическое значение модулей отклонений $< \Delta D_n >$

Таблица

		n = 20		n = 5	
No	D_i , mm	ΔD_i , mm	ΔD_i^2 , mm ²	ΔD_i , mm	ΔD_i^2 , mm ²
1					
2					
3					
4					
5					
6				< D ₅ >	
				S	, 5
				$< D_5 > S_5 S_5' < S_20 > S_{20} $	
19				S	20
20				S_{\cdot}	20

⁴Учитывая возможность появления при измерениях промахов (см. п. 7), начальный объем выборки отсчетов диаметра можно увеличить на два-три отсчета

- $=\frac{\sum_{i=1}^{n}|\Delta D_{i}|}{n}$, соотнести его с погрешностью δ микрометра и убедиться в наличии доминирования случайной погрешности, то есть, что $<\Delta D_{n}>$ заметно превышает погрешность прибора δ .
- 6. Вычислить квадраты ΔD_i^2 отклонений отсчетов от среднего значения и среднеквадратичные отклонения S_5 и S_{20} по формуле $S_n = \sqrt{\frac{\sum_{i=1}^n \Delta D_i^2}{n-1}}$.
- 7. Проверить результаты отсчетов диаметра на наличие промахов согласно условию: $\Delta D_i \geq 3S_n$. При обнаружении промахов их исключают из результатов измерений, взамен производят новые отсчеты диаметра и производят перерасчет всех вычислений.
- 8. Вычислить стандартный доверительный интервал $S_5^{'}$ и $S_{20}^{'}$ по формуле: $S_n^{'} = \frac{S_n}{\sqrt{n}}$ и доверительный интервал $\Delta D_{n,p} = S_n^{'} \cdot t_{n,p}$ для двух значений доверительной вероятности P = 0.68 и P = 0.95. Коэффициенты $t_{n,p}$ Стьюдента взять из таблицы Приложения.
- 9. Произвести сопряженное округление полученных результатов доверительного интервала $\Delta D_{n,p}$ и диаметра D цилиндра и записать окончательный результат в виде:

$$D = \langle D \rangle + \Delta D_{n,p}; \quad n = ; \quad P = ; \quad \varepsilon_D = \frac{\Delta D_{n,p}}{\langle D_n \rangle} 100\%.$$

для двух значений числа отсчетов n=5 и n=20 и двух значений доверительной вероятности P=0.68 и P=0.95.

10.Полученные четыре строчки записи диаметра с погрешностью соотнести друг с другом, проанализировать и объяснить характер зависимости $\Delta D_{n,p}$ от n и от P.

<u>Задача 2</u>. Прямые и косвенные измерения в условиях доминирования приборной погрешности и оценка их точности.

- 1. Ознакомиться с инструкцией штангенциркуля, методикой измерения и способом отсчета его показаний.
- 2. Произвести и записать по три отсчета диаметра калиброванного цилиндра в разных его местах. Убедиться, что в пределах погрешности δ прибора результаты измерений не различаются, то есть доминирует приборная погрешность. Записать результаты измерения диаметра в виде: $D = \langle D \rangle + \delta$; $\varepsilon_D = \frac{\delta}{\langle D \rangle} 100\%$.
- 3. Повторить задание п. 2 применительно к измерению высоты Н цилиндра.

- 4. Вычислить объем цилиндра $V = \frac{\pi D^2 H}{4}$.
- 5. Получить формулу для расчета максимальной относительной ε_V или абсолютной ΔV погрешности измерения объема:

$$\varepsilon_{V} = \frac{\Delta V}{V} = \sum_{k=1}^{N} \left| \frac{\partial (\ln V)}{\partial X_{k}} \right| \Delta X_{k} = \left| \frac{\partial \left[\ln \left(\frac{\pi D^{2} H}{4} \right) \right]}{\partial D} \right| \Delta D + \left| \frac{\partial \left[\ln \left(\frac{\pi D^{2} H}{4} \right) \right]}{\partial H} \right| \Delta H = \frac{2\Delta D}{D} + \frac{\Delta H}{H}$$

Здесь абсолютные погрешности ΔD и ΔH измерения диаметра и высоты – равны погрешности δ прибора.

- 6. Вычислить абсолютную ΔV и относительную ε_V погрешности измерения объема.
- 7. Произвести сопряженное округление абсолютной погрешности ΔV и самого объема V и записать окончательный результат в стандартном виде.
- 8. Повторить пункты $4 \div 7$ применительно к площади поверхности цилиндра.

Контрольные вопросы

- 1. Какова основная цель работы и идея, лежащая в основе ее практической реализации?
- 2. Что такое погрешность измерения? Дайте сравнительную характеристику абсолютной и относительной, систематической и случайной погрешностями, промахам.
- 3. Каковы различия в оценке точности результатов прямых измерений при доминировании либо приборной, либо случайной погрешности?
- 4. Как и почему коэффициенты Стьюдента зависят от объема выборки (числа п отсчетов) измеряемой величины и доверительной вероятности Р?
- 5. Как рассчитывается максимальная погрешность результата косвенных измерений? Почему она называется максимальной?
- 6. Почему микрометром в работе измеряют лишь диаметр цилиндра, но 20 раз, а штангенциркулем и диаметр, и высоту, но лишь 3 раза?

Устройство и принцип действия микрометра и штангенциркуля

Микрометр штангенциркуль представляют собой несложные двухшкальные приборы, позволяющие заметно повысить точность измерения по сравнению с обычной линейкой. В этих приборах одна шкала – вспомогательная, способна перемещаться относительно основной, неподвижной шкалы. В микрометре вспомогательная линейка в виде кругового барабана способна вращаться вокруг микрометрического винта, на который нанесена неподвижная шкала. В штангенциркуле подвижная шкала, называемая нониусом, представляет собой небольшую линейку, способную поступательно перемещаться относительно неподвижной шкалы – линейки «ухищрений» штангенциркуля. В результате таких погрешность стандартного микрометра равна 0.01 мм, а штангенциркуля -0.05 мм или 0.1мм, что значительно меньше погрешности обычной линейки.

Рис. 1. Микрометр.

Подлежащая измерению микрометром деталь зажимается между закрепленными в скобе 8 упором 2 и торцом подвижного винта 3 с помощью

фрикционной головки 7 («трещотки»), обеспечивающей стандартное зажатие детали. Винт 3 жестко связан с барабаном 6, на который нанесена круговая шкала $\coprod_{\rm кp}$, содержащая обычно N=50 делений. При повороте барабана на один оборот винт поступательно перемещается на расстояние h, называемое его шагом и обычно составляющее 0,5 мм. Соответственно, при повороте барабана на одно деление поступательное перемещение винта, равное цене деления C барабана (и одновременно — погрешности δ) микрометра, определяется отношением:

$$C = \frac{h}{N} = \frac{0.5 \text{MM}}{50} = 0.01 \text{MM}.$$

Целое число миллиметров отсчитывается по линейной шкале $\mathbf{H}_{\text{лин}}$ на микрометрическом винте 5. При отсчете нужно особое внимание обращать на то, что деления этой шкалы в миллиметрах, нанесенные снизу, разделены штрихами над шкалой на полумиллиметры. И отсчет линейного размера детали осуществляется суммированием открытого барабаном показания линейной шкалы (с точностью до 0,5 мм) и показания шкалы барабана (в сотых долях миллиметра), находящегося против продольной осевой черты линейной шкалы.

Примеры отсчета показаний микрометра

Штангенциркуль состоит ИЗ штанги 1, на которой расположена 3 миллиметровая линейка 3. Вдоль линейки может перемещаться вспомогательная, так называемая нониусная линейка 7, закрепленная на рамке 2. При измерении штангенциркулем деталь зажимается между его

Рис. 2. Штангенциркуль.

щеками 5 и фиксируется зажимным винтом 8. Число целых миллиметров отсчитывается непосредственно по основной шкале линейки 3 против нулевой риски шкалы нониуса 7. На этой шкале выбирается то ее деление, которое наиболее точно совпадает с каким-либо из расположенных сверху миллиметровых делений основной шкалы линейки 3. Цена деления шкалы нониуса указывается на самом приборе. Обычно она равна 0,05 мм или, как у прибора, изображенного на рисунке, - 0,1 мм.

Пример отсчета показаний штангенциркуля

9 1 2 3 4 5

X = 20, 5 MM

Приложение 2

Таблица коэффициентов Стьюдента

n/P	0,68	0,80	0,95	0,99	0,995
2	2,0	4,1	12,7	63,7	636,6
3	1,3	1,9	4,3	9,9	31,6
4	1,3	1,6	3,2	5,8	12,8
5	1,2	1,5	2,8	4,6	8,6
6	1,2	1,5	2,6	4,0	6,9
8	1,1	1,4	2,4	3,5	5,4
10	1,1	1,4	2,3	3,3	4,8
12	1,1	1,4	2,2	3,1	4,5
14	1,1	1,4	2,2	3,0	4,2
15	1,1	1,4	2,1	3,0	4,1
20	1,1	1,3	2,1	2,9	3,9
25	1,1	1,3	2,1	2,9	3,7
30	1,1	1,3	2,1	2,8	3,7