Lecture 2: Review of functional analysis Last time me introduced Barrach spaces or complete normed spaces. We will now continue discussing Barrach spaces & introduce their duals 2.1 Linear operators Deb: Let X&Y be vector spaces. Among T: XI-oY is a Linear operator if T(x+x') = T(N+ T(x') \ \ X,x'+ X T(XX) = X.T(X). Common notation is to write Tx instead of T(x) wheneve T is linew, in line with matrix Analogously to line algebra me also define the domain dom(T), the runge rouge(T) & the nul-space null(T). eg Identity map Id(x) = xDifferentiation T(x)(+) = x'(+), x (([a,b]) (1) Integration

Modrices Tx = Y x EIR", Y EIR" Det Let T: X - Y be linen. We say Tis bounded if there is a real number C>0 s.t. ITXIIY & C ||X||X It is natural to think about the smallest value of c>0, X ≠ 0 IITx II Y L C Indeed, it follows that UTU satisfies the four axioms of a norm. In fact, the space L(K,Y) of bounded linear maps from X -> Y is a Barach space!

	Linear operators between remared spaces
	Linear operators between remard spaces have a remarkable property where boundedness is equivalent to continuity.
	is early about to continuity.
	The: Let X, y be normed spaces &
	suppose T: X - Y is linen, then
	(a) Tis continuous iff Tis bounded
	(b) IfT is continues at a single point them it is continues.
	Recult, T: K-oy is cont. out xo EX it for every E>o, thru exists \$>0 s.t.
	Hor eng E>o, thru exists 3>0 s.T.
	11Tx - Tx 11y < E, YxeX sutisfying 11x-xollx < s.
	to matrices. For example, the notion of the
	in matrices. For example, included the
	inverse of a line operator (an be définéed similarly to matrices.
Scribe	
ecall vertible	The: Suppose X, Y are vector spaces & let T: Dom (T) - Y be a line operator with
weutible matrices)	1: Dom (7)
	Dom(T) CX & Range(T) CY. Then.
(3)	(i) The invose T: Roy(T) - Dom(T) exists iff
3	$Tx = 0 \implies x = 0$

(22) If T'exists, it is a line op. (222) If Lim (Dom(T))=n <00 & T'exists, Hen dim (Rang(T)) = dim (Don(T)). If further follows that if T: X - Y & S: Z -> X are inventible line maps then (TS) - 5'T-Dunt spaces & pairings When working with Banach spaces, a particular class of bold lin. operators turn out to be very use but. Det! Abdd & liner operator $\phi: X \rightarrow IR$ is called a bdd liner functional on Xiie, J C≥0 St. | φ(x) | ≤ c||X|| ∀x ∈ X. Similar to the case of bdd lin. op. we can define a norm on ϕ : $\|\phi\|:=\sup \frac{|\phi(x)|}{\|x\|}=\sup |\phi(x)|$ $|x\neq 0|$ 4

Intuition for bld lin. fune. Imagine we are ginen a noisy/ uncontain signal x. In the real world; we can never observe x Perfectly what we can do is take measurants of x! The simplest possible class of such measurets would be a bold lin. func. $\phi(x)$ eg. φ(x) = \ x(t) \$ (t) dt Then working with bold lin. time. is very natural.

They also appear naturally in the analysis of
Banach spaces as we intuitively expect that

sufficiently near newests of a signal X will tell us a lot
of information about X itself! eg: Dot product XEIR", fixed YGIR"
then KTY is a bdd lin. forc. · Gim f & C((a,b)) the integral p(x): 5 x(+) f(+) d+ is a bld lin. Eme.

on C([alb])

St(X) = X(t) $|x(t)| \leq \sup_{t \in [a_1b]} |x(t)| = ||x||_{\infty}$ in fact 118 to 11 = 1 (bdd) S_t.(x+x') = (x+x')(t₀) = x(t₀) + x'(t₀) (hn) = S₆.(x) + S_t.(x') • The norm ||·||: X → IR is a fortional (it maps to IR) but it is not linear. Det Given a Banach space X, its dual space (Topological dual) is the space of all bold lin func. on X. We denote this space with the notation X*. Xx:= \p: X -> IR \p is bold ling We already defined anorm on X", called the dual norm, $\|\phi\|_{*} := \sup_{\|x\|=1} |\phi(x)|$

	so it is natural to ask what sort of
	So it is natural to ook what sort of structure does X* home? in particular is it
	Banach?
	The Today Space X* of a harmed
	The: The dual space X* of a normed space X is a Banach space (whetherer
	not X is!)
	In fact, this is a special case of the
-	fact that the space h(X,Y) of bold
	lin. op. from a vormed space X to a
	Banach space Y is a Branch space!
	(see Th. 2.10-2 of Kreyszig).
(see	eg. The dand of R' is IR" it self. The dual of L':= {x \in IR^{\infty} \sum \times \ti
for proofs	T 1 1 1 1 1 :- 5 x (10° 1 5 1x:1 x + + + 2)
	· The dwarf of the sell Zing troop
	is loo: = { x e 11200 s x p 1x; (< + or }
	The Lund of L'([a(b)) is Lq([a[b])
(7)	where V=+ V= = (.

You will often hear/read the terminology duality Pairing often denoted as [·,·]: X*x X -> 12, us a bilinem mapping (lin. in each arg) from the product ob X*& X to IR. This is nothing but new notation for $[\phi, \chi] = \phi \omega$ However, it has important implications for us later on since these pairies can be defined in diffart ways! For ex. though an intermediate space (look up Gelfand Triples or Rigged Hilbert spaces). (8)

