Conflict-Free Parallel Memory Access Scheme For FFT Processors

Seok-Jun Lee(seokjun@ti.com)

Texas Instruments

Reference:

Jarmo H. Takale, etc.

Published at ISCAS '03. Proceedings of the 2003 International Symposium on Circuits and Systems, 2003.

TI Information – Selective Disclosure

16-Point FFT Example

Problem

Given Stride Permutation pattern,
 WHAT is the address
 generation scheme to
 avoid access conflict?

N=16, 4-Bank FFT Core Architecture

- One possible architecture
 - Key algorithm challenge is to find out memory arbiter (blue-box).

From the paper

 Given the address from state-machine (Stride-Permutation Index), bank ID and address is provided as follows.

```
Given Address, Row Address(2-bit) / Bank Select(2-bit)
{0, 0},
          // 0
        // 1
{0, 1},
{0, 2},
        // 2
{0, 3},
        // 3
        // 4
{1, 1},
          //5
{1, 0},
{1, 3},
        // 6
          //7
{1, 2},
{2, 2},
          //8
{2, 3},
        // 9
{2, 0},
          // 10
{2, 1},
          // 11
          // 12
{3, 3},
{3, 2},
          // 13
{3, 1},
          // 14
{3, 0},
          // 15
```


How it works?

- FFT stage #0 (N=16, 4-bank memory)
- Stride-Permutation (N=16, S=1)

```
Given Address, Row Address(2-bit) / Bank Select(2-bit) {Address, Select}
```

```
{0, 0},
         // 0
\{0, 1\},
       //1
       // 2
{0, 2},
       // 3
{0, 3},
{1, 1},
       // 4
       // 5
{1, 0},
        //6
{1, 3},
{1, 2},
       //7
{2, 2},
        //8
{2, 3},
         //9
{2, 0},
         // 10
{2, 1},
        // 11
{3, 3},
         // 12
{3, 2},
        // 13
```

// 14

// 15

{3, 1}, {3, 0},

Stride- Permutation Index	
(0, 1)	Bank0, Bank1
(2, 3)	Bank2, Bank3
(4, 5)	Bank1, Bank0
(6, 7)	Bank3, Bank2
(8, 9)	Bank2, Bank3
(10, 11)	Bank0, Bank1
(12, 13)	Bank3, Bank2
(14, 15)	Bank1, Bank0

How it works?

- FFT stage #3 (N=16, 4-bank memory)
- Stride-Permutation (N=16, S=8)

Given Address, Row Address(2-bit) / Bank Select(2-bit) {Address, Select}

```
{0, 0},
         // 0
\{0, 1\},
       //1
       // 2
{0, 2},
       // 3
{0, 3},
{1, 1},
       // 4
       // 5
{1, 0},
        //6
{1, 3},
{1, 2},
       //7
{2, 2},
        //8
{2, 3},
         //9
{2, 0},
         // 10
{2, 1},
        // 11
{3, 3},
         // 12
```

// 13 // 14

// 15

{3, 2},

{3, 1}, {3, 0},

Stride- Permutation Index	
(0, 8)	Bank0, Bank2
(1, 9)	Bank1, Bank3
(2,10)	Bank2, Bank0
(3, 11)	Bank3, Bank1
(4, 12)	Bank1, Bank3
(5, 13)	Bank0, Bank2
(6, 14)	Bank3, Bank1
(7, 15)	Bank2, Bank0

