CAUSAL COGNITIVE ARCHITECTURE 3 (CCA3): A **SOLUTION TO** THE BINDING **PROBLEM**

Howard Schneider

Sheppard Clinic North, Ontario, Canada

Cognitive Systems Research, in press Supplementary Video File

GITHUB Username: "CausalCog" https://github.com/CausalCog

VIDEO #1

- CCA3 Overview —
- Binding Problem Overview —
- Software Overview
- Operations Overview
- Operations Causal
- Software in More Detail
- More videos, code on GitHub "CausalCog"

What are mechanisms we can use to think.... to make decisions?

Symbolic Logic GOFAI

Neural Networks ANN, SNN Navigation Maps/ with Causality

Navigation Maps

Navigation Maps:

Different way of making decisions

Most animals – invertebrates and vertebrates use some sort of navigation system

Navigation Maps

Navigation Maps:

Vertebrates – all have formal navigation systems similar to mammalian hippocampus (place and grid cells)

Navigation Maps

Navigation Maps:

-use in an artificial cognitive architecture not just for navigation but all decisions

→ Causal Cognitive Architecture

Not an actual patient. Professional model.

WHY PREVALENCE OF PSYCHOSIS IN HUMANS?

17% some other psychosis or psychosis-like (van Os et al 2001)
(albeit, 1% schizophrenia)

WHY NO PSYCHOSIS IN ANIMALS?

WHY NO FULL CAUSAL BEHAVIOR IN ANIMALS?

FOOD IN
PLEXIGLASS TUBE

GRAVITY TRAP

youtube image modified by author plus unsplash license chimpanzee face

CHIMPANZEE WITH STICK

Richard Sutton's "Bitter Lesson"

methods that use lots of data and lots of compute just work much better than attempts to create ingenious Al systems

VS.

"Clues"

humans— causal, psychosis but not other

still the only 'system' in the world capable of AGI

More "Clues"

- Navigation in all animals
- Navigation center (hippocampus) controls memories
- ▶ Rapid evolution: non-causal primate → causal human
- ▶ Rapid evolution: no psychosis → psychosis human
- Schizophrenia Paradox
- Explainability emerges automatically
- Language emerges automatically
- Lifelong ('continual') learning
- Generalization to new and novel environments

CAUSAL COGNITIVE ARCHITECTURE 1 (CCA1) BICA 2018, 2019, 2020

everything based on navigation maps!!

The navigation maps allow associative and pre-causal behavior

Feedback of intermediate results, and re-operate on them →causal behavior →increase risk psychosis/

Navigation in all animals

✓

Navigation controls memories ✓

Rapid evolution: noncausal primate → causal human ✓

Rapid evolution: little psychosis in primates

The primates primates psychosis in humans

Schizophrenia paradox – explained (it's a design issue, not a typical disease) ✓

Explainability emerges automatically ****

Language emerges automatically •

Lifelong ('continual') learning ✓

Automatic generalization to new and novel environments •

GREAT MODEL!!

CAUSAL COGNITIVE ARCHITECTURE 1 (CCA1) BICA 2018, 2019, 2020

Works for toy problems

Do we need a "binding language"?

["river", "water"] → river, water

→ ?? 10! = 3 million possible steps ??

Or maybe: water, river

["river", "water", "object", "bubbling", "algae", "floating", "lines", "turn right", "turn left", "straight"]

TO HANDLE REAL WORLD PROBLEMS, THE BINDING ISSUE NEEDS TO BE ADDRESSED

The Binding Problem (Feldman, 2013):

- General coordination of objects and activities
- The subjective unity of perception
- Visual Feature-Binding
- Variable Binding such as the binding of words in a sentence that allow reasoning

CCA2

 To handle real world problems, the binding issue needs to be addressed

Sensory Inputs Set 1 Sensory Inputs Set n centralized components Input Sensory Input Sensory **Vectors Shaping** Vectors Association Module 1 Module 1 Object Segmentation Gateway Module Learned Autonomic Primitives Inputs 1...n Navigation Instinctive Module Primitives Autonomic Causal Reflex Memory Autonomic Goal/ Emotion Module 1 Module Module D Module D Autonomic Sequential/ Outputs 1...n **Error Correcting Output Vector** Module **Output Vector** Association Shaping Module Module **Actuator Output**

← CCA2

← CCA2

← CCA2

The Binding Problem (Feldman, 2013):

- General coordination of objects and activities
- The subjective unity of perception
- Visual Feature-Binding
- Variable Binding such as the binding of words in a sentence that allow reasoning

1. Sub-problem: General coordination of objects and activities

Use of navigation maps as a basic data element

Instinctive Primitives and Learned Primitives are applied against objects on the current navigation map

As such, a coordination of objects and activities occurs

2. Sub-problem: The subjective unity of perception

Best match navigation map represents the CCA2's perception of reality of the sensory scene in front of it Current best match navigation map will be updated with current input sensory information, and represents CCA2's perception of the world

There is a subjective unity perception

3. Sub-problem: Visual Feature-Binding

Spatially mapping visual features onto a spatial navigation map solves this binding sub-problem

No longer require a binding language; rather, binding occurs in the Vectors Association module and the Navigation Module

4. Sub-problem: Binding of Words Allow Reasoning

Verbs and nouns provide explanations to the user

Explanations generated via saved navigation maps

Most definitions of the 'Binding Problem' do not take time into account, ie, binding changes

- However, CCA2 shows changes in sensory inputs with time, that *must* bind time also
- CCA3 bind space time

- ►CCA2 binding of space
- ►CCA3 need to bind changes with time also

Olfactory Water Bubbling Auditory Visual 、 Bubbling Algae

GENERATE MOTION PREDICTION VECTORS

CCA3

....continued in VIDEO 2

