Filteing Conf.

"Smoothing an image"

Pikul = [2, 3, 4, 0, 6, 7, 8]

Jan Her

New =
$$[X, 3], 1.5, 5, 3.5, > , X]$$

vi gh

low pass

_	5	5 x S				1
	1	4	6	4	l	/ ,
20 =	4	16	24	16	4	
	6	24	36	24	6	286
	4	16	24	16	4	
		ч	6	4	11	
	<i>'</i>	•		+		

to The most common filter for

SNOothing

$$X = [(10), (10),$$

once you compute the edge "Strength"

- Set a lower threshold to

remove "non" edges

- the lower threshold the

more edges there will be

Sobel =
$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
 $= \begin{bmatrix} 9x \\ edges & n & 4c \\ x & d & recken \end{bmatrix}$

$$\begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

filters. Mor phological

- Dilation and Erosion
binary images.

Dilaton - Increasing odices area - fills in "holes"

- fakes in an Axn herne)

- if there is not least one pixel in the tressel of a certian value (1). Set the

lun applity other roise E rosion de creases object area remove 5 Small 10,5e - : F any pixel is set to Zero the trend, set ·'n vanle fo Zero. floor
rand

Opening -> erode than dilute Closing -> dilute then erade

	Steps	d	edge	detection.	
611	J-1 (υ -		T-1-2-1	-]
Sobel	-2	02	→ gx	000	
	1	ر د	<i></i>	121	
	[-r 0	$\overline{}$		94	
Preniff	-1 0				
•	1-1 ()				

Step 1 Calculate both gx and gy
of a given pixel (i,j).

Step 2 Calculate the local edge magnitude.

 $g_{x,y} = |g_x| + |g_y|$

$$y_{x,y} = (g_x^2 + g_y^2)^{\frac{1}{2}} = Jg_{x^2} + g_y^2$$

optional step 3

- · in plenent a threshold.
- · Heep only to more extreem edges.

if (gx,y > threshold).

ing[ij] = 255 to white.

else:

ing [: 1] = 0

, issues with Sodel constant "thick