Graphic Lasso: Possible Accuracy for Multi-Layer Model

Jiaxin Hu

January 5, 2021

1 A simple extension

Let $Q(\Omega) = \operatorname{tr}(S\Omega) - \log |\Omega|$. Assume the rank of decomposition r is known. Consider the constrained optimization problem

$$\begin{split} & \underset{\mathcal{C}}{\min} & \sum_{k=1}^{K} \left[Q(\Omega^k)\right] & & \underset{\text{l=1}}{\text{Under what condition, the collection of latent parameters}} \\ & \underset{\text{s.t.}}{\min} & \sum_{k=1}^{K} \left[Q(\Omega^k)\right] & & \underset{\text{can be identified from \backslash Omega?}}{\text{S.t.}} & & \underset{l=1}{\text{Constant}} & & \underset{l=1}{\text{Constant}} & & \underset{l=1}{\text{Constant}} & & \underset{l=1}{\text{Constant}} & & \\ & & & & ||\Theta_l||_0 \leq b, & \text{for} & & & & & \\ & & & & ||\Theta_l||_0 \leq b, & \text{for} & & & & & \\ & & & & ||\Theta_0||_0 \leq b_0, & & & \\ \end{split}$$

where a, b, b_0 are fixed positive constants, $|\cdot|_0$ refers to the vector L_0 norm, and $||\cdot||_0$ refers to the matrix L_0 norm. For simplicity, let $\hat{\mathcal{C}} = \{\hat{\Theta}_0, \hat{\Theta}_1, ..., \hat{\Theta}_r, \hat{\mathbf{u}}_1,, \hat{\mathbf{u}}_r\}$ denote the estimation, and $\hat{\Omega}^k = \hat{\Theta}_0 + \sum_{l=1}^r \hat{u}_{lk} \hat{\Theta}_l$ for k = 1, ..., K.

For true precision matrices Ω^k , let $T^k = \{(j,j') | \omega_{j,j'}^k \neq 0\}$ and $q^k = |T^k|$. Let $T = T^1 \cup \cdots \cup T^k$ and q = |T|.

Theorem 1.1. Suppose two assumptions hold. Let $\{\Omega^k\}$ denote the true precision matrices. For the estimation \hat{C} such that $\sum_{k=1}^K \left[Q(\hat{\Omega}^k)\right] \leq \sum_{k=1}^K \left[Q(\Omega^k)\right]$ and satisfies the constrains, the following accuracy bound holds with probability tending to 1.

$$\sum_{k=1}^{K} \left\| \hat{\Omega}^k - \Omega^k \right\|_F = \mathcal{O}_p \left[\left\{ \frac{(p+q)\log p}{n} \right\}^{1/2} \right].$$

Proof. Let Ω^k denote the true precision matrices for k=1,...,K. Consider the estimation $\hat{\mathcal{C}}$ such that $\sum_{k=1}^K \left[Q(\hat{\Omega}^k)\right] \leq \sum_{k=1}^K \left[Q(\Omega^k)\right]$. Let $\Delta^k = \hat{\Omega}^k - \Omega^k$. Define the function

$$G(\left\{\Delta^k\right\}) = \sum_{k=1}^K \operatorname{tr}(S(\Omega^k + \Delta^k)) - \operatorname{tr}(\Omega^k) - \log|\Omega^k + \Delta^k| + \log|\Omega^k| = I_1 + I_2,$$

where

$$I_1 = \sum_{k=1}^K \operatorname{tr}((S^k - \Sigma^k)\Delta^k), \quad I_2 = \sum_{k=1}^K (\tilde{\Delta}^k)^T \int_0^1 (1 - v)(\Omega^k + v\Delta^k)^{-1} \otimes (\Omega^k + v\Delta^k)^{-1} dv \tilde{\Delta}^k.$$

With probability tending to 1, we have

$$I_1 \leq C_1 \left(\frac{\log p}{n} \right)^{1/2} \sum_{k=1}^K \left(|\Delta_{T^k}^k|_1 + |\Delta_{T^{k,c}}^k|_1 \right) + C_2 \left(\frac{p \log p}{n} \right)^{1/2} \sum_{k=1}^K \left\| \Delta^k \right\|_F, \quad I_2 \geq \frac{1}{4\tau_2^2} \sum_{k=1}^K \left\| \Delta^k \right\|_F^2.$$

Note that $|\Delta^k_{T^k}|_1 \leq q^{1/2} \|\Delta^k\|_F$. Then, we only need to deal with $|\Delta^k_{T^{k,c}}|_1$. Rewrite the term, we have any condition on mu?

$$|\Delta_{T^{k,c}}^{k}|_{1} = |\hat{\Theta}_{0,T^{k,c}} + \hat{u}_{1k}\hat{\Theta}_{1,T^{k,c}} + \dots + \hat{u}_{rk}\hat{\Theta}_{r,T^{k,c}}|_{1} \leq (b_{0} + rb) \left\|\Delta^{k}\right\|_{\max} \leq (b_{0} + rb) \left\|\Delta^{k}\right\|_{F}.$$

Then, by Guo et al, we have

$$\sum_{k=1}^{K} \|\Delta^{k}\|_{F} = \sum_{k=1}^{K} \|\hat{\Omega}^{k} - \Omega^{k}\|_{F} = \mathcal{O}_{p} \left[\left\{ \frac{(p+q)\log p}{n} \right\}^{1/2} \right]. \tag{1}$$

Remark 1. Note that q can be replaced by $\max_k q^k$, where $q^k \leq (b_0 + rb)$ for all k = 1, ..., K. Also, the accuracy (1) holds when q^k are fixed. Otherwise, the accuracy is of order $\mathcal{O}_p\left[q\left\{\frac{\log p}{n}\right\}^{1/2}\right]$.