Returns Using Machine Classification of Radar earning Techniques

The lonosphere

- Atmospheric layer with high abundance of free electrons and
- Enables radar communication by reflecting radar signals back to Earth
- o The 'good' radar signals that are reflected must be separated from the 'bad' signals that pass through ionosphere into space

Dataset Used: UCI lonosphere Dataset

- Consists of radar observations collected in Goose Bay, Labrador
- Received Signals processed by autocorrelation function
- Each pulse number is described by 2 attributes an imaginary and real part
- o Done to simultaneously describe electronic and magnetic part of electromagnetic wave

Exploratory Analysis of Data

- 350 total observations consisting of 34 variables o All variables scaled between 0-1
 - Dropped first 2 columns of data because they did not significantly influence models and contained no useful data

Initial Model Results

		ш.					<u></u>				
Runtime (seconds)	0.001448	0.002211	0.002936	960500'0	0.007073	0.007092	0.008913	£00600'0	0.009101	0.015642	0.019064
5 Fold Cross Validation Accuracy	24.06%	-7.89%	83.98%	84%	21.84%	93.42%	7.93%	89.44%	23.61%	82.02%	91.73%
Training Set Accuracy	91.14%	36.00%	84.86%	84.86%	82.57%	94.57%	82.29%	92.29%	82.29%	88.86%	98.86%
Model Type	KNN Regression	Lasso Regression	Naive Bayes	KNN Classifier	Partial Least Squares	Support Vector Machine	Ordinary Least Squares	Decision Tree Classifier	Ridge Regression	Logistic Regression	Random Forest Classifier

SVM	Actual: False	Actual: True
Predicted: False	113	4
Predicted: True	13	220

Actual: False Actual: True	107 5	19 219
Decision Tree	Predicted: False	Predicted: True

Random Forest	Actual: False	Actual: True
Predicted: False	125	0
Predicted: True	1	224

Potential Improvements: PCA

Compressed 34 variables into 17 compressed features using principal component analysis

	I POOK	PIO NNY	Support Vect	Logistic Re	Decision Tre	
Scree Plot	· 60	o v	Eigenva 4	2-	0 2 4 6 8 10 12 14 16 18	rincipal component number

Runtime (seconds)	0.000973	0.005269	0.007364	0.007526	0.016374
Validation Accuracy	84.86%	93.43%	83.45%	%66'28	92.57%
Training Set Accuracy	88.29%	95.14%	%00'98	93.14%	99.43%
Model Type	KNN Classifier	Support Vector Machine	Logistic Regression	Decision Tree Classifier	Random Forest Classifier

- Improvements:
- Improved overall accuracy of RFC, SVM, DT, and KNN Classifier Reduced runtimes for all models excluding DT which remained relatively unchanged 0

Potential Improvements: Gradient Boosting

- Max Depth: 3
- o Loss Function: Deviance Pros:
- ros:

 o 100% training set predictive accuracy

 o 93.16% 5 fold cross validation accuracy
 - Cons:
- Substantially increased runtime (0.9416 seconds)

Projected Kuntime for I Year of **Observations**

- Dataset only representative of 70 seconds of sampling from site
- Site gathers 25 observations every 5 seconds continuously year round
 - o 1 second of training set runtime = 125.14 hours for full year of data

Projected Runtimes for 1 Year of Data	ear of Data
Model	Projected Runtime
KNN Regression	0:14:27
Lasso Regression	0:15:46
KNN Classifier	0:16:07
Ordinary Least Squares	0:23:01
Naive Bayes	0:23:12
Ridge Regression	0:30:03
Partial Least Squares	0:45:02
Support Vector Machine	0:57:02
Decision Tree Classifier	1:07:24
Logistic Regression	1:50:11
Random Forest Classifier	2:24:29

Summary

- The most effective models found were the support vector produce the fewest type I errors of the models tested machine, decision trees and random forest since they
 - The performance of some of these models can be improved via PCA or gradient boosting
- be used to substantially reduce runtime but at the cost of If runtime is of particular concern the KNN Classifier can predictive accuracy