

Norwegian University of Science and Technology

Identification of turbine dynamics using PMUs

Sigurd Hofsmo Jakobsen

Department of electrical engineering

June 21, 2018

Outline

Background

Previous work

Theoretical validation

Results

Conclusions and further work

Frequency quality in the Nordics

- From 2008 the time the frequency has been outside its allowed band has increased
- The performance of hydro turbine governors play an important role

New requirements on FCR due to frequency quality

- Nordic TSOs are developing new requirements on FCR
- This includes offline testing and verification of performance

Idea on monitoring the FCR online

Less intrusive

Idea on monitoring the FCR online

- Less intrusive
- The system is dynamic

- Towards 100% renewable electricity generation
 - Larger variability
 - More uncertainty
 - Increasing complexity

Figure: Present and future energy mix[Statnett]

- Towards 100% renewable electricity generation
 - Larger variability
 - More uncertainty
 - Increasing complexity
- More dynamics

Figure: Present and future energy mix[Statnett]

- Towards 100% renewable electricity generation
 - Larger variability
 - More uncertainty
 - Increasing complexity
- More dynamics
- Less time for actions

Figure: Present and future energy mix[Statnett]

- Towards 100% renewable electricity generation
 - Larger variability
 - More uncertainty
 - · Increasing complexity
- More dynamics
- Less time for actions
- Hydropower is the main resource for balancing

Figure: Present and future energy mix[Statnett]

1. Do the transmission system operator (TSO) know whether or not the hydropower plants deliver the FCR they are supposed to?

- 1. Do the transmission system operator (TSO) know whether or not the hydropower plants deliver the FCR they are supposed to?
- 2. Can the TSO measure it online?

Outline

Background

Previous work

Theoretical validation

Results

Conclusions and further work

Previous articles

 Governor dynamics were identified using the ARX model structure

Frequency (rad/s)

Previous articles

- Governor dynamics were identified using the ARX model structure
- Governor dynamics were identified using time domain vector fitting

Previous articles

- Governor dynamics were identified using the ARX model structure
- Governor dynamics were identified using time domain vector fitting
- There are also other papers in the literature using other methods for online identification, however, mostly relying on data from disturbance recordings.

 Why do we get different results?

- Why do we get different results?
- The signals we use are corrupted by noise.

- Why do we get different results?
- The signals we use are corrupted by noise.
- Using system identification techniques we can estimate the variance of the covariance matrix of the parameter vector

a+b

- Why do we get different results?
- The signals we use are corrupted by noise.
- Using system identification techniques we can estimate the variance of the covariance matrix of the parameter vector
- However, first we have to prove that we will get consistent results.

Outline

Background

Previous work

Theoretical validation

Results

Conclusions and further work

System identification basic

- Assume that a data set
 Z^N = {u[n], y[n]|n = 1...N}
 has been collected.
- The dataset Z^N is assumed generated by

$$S: y[n] = G_0(z, \theta_0)u[n] + H_0(z, \theta_0)e[n]$$
(1)

 Using the data set Z^N we want to find the parameter vector θ^N minimizing

$$\hat{\theta}_N = \arg\min_{\theta} \frac{1}{N} \sum_{n=1}^{N} \epsilon^2(n, \theta)$$
(2)

$$\theta^* = \arg\min_{\theta} \bar{E} \epsilon^2(n, \theta) \tag{3}$$

with

$$\bar{E}\epsilon^2(n,\theta) = \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^N E\epsilon^2(n,\theta)$$
 (4)

and

$$\epsilon(n,\theta) = H_1^{-1}(z,\theta)(y[n] - G_1(z,\theta)u[n])$$
 (5)

Outline

Background

Previous work

Theoretical validation

Results

Conclusions and further work

 A consistent estimate of the closed loop transfer function of the turbine and electromechanical dynamics can be obtained by using:

- A consistent estimate of the closed loop transfer function of the turbine and electromechanical dynamics can be obtained by using:
 - Measured PMU frequency as the output u[n]

- A consistent estimate of the closed loop transfer function of the turbine and electromechanical dynamics can be obtained by using:
 - Measured PMU frequency as the output u[n]
 - Measured PMU power as the input y[n]

- A consistent estimate of the closed loop transfer function of the turbine and electromechanical dynamics can be obtained by using:
 - Measured PMU frequency as the output u[n]
 - Measured PMU power as the input y[n]
- The proof was done with the following assumptions.
 - The system is excited by a load acting as a filtered white noise process
 - The measurement error of the electrical power is negligible.
 - The measured frequency is a good estimate of the generator speed.

Results from simulations

Results from simulations

Results from simulations

Results from the power system

Results from the power system

Results from the power system

Outline

Background

Previous work

Theoretical validation

Results

Conclusions and further work

- It is indeed possible to identify the turbine dynamics(closed loop with electromechanical dynamics) using PMU measurements.
- Look into the assumptions