Отчет о проделанной работе (Вариант Теория вероятностей и математическая стати	•
Михаил Басанец, Ян Кордияко	

1 Условия

Рассматриваются распределение Пуассона $\Pi(\lambda)$ и выборки из него.

$$n = 60, \lambda = 4$$

2 Теория:

Начальный момент распределения 1-го порядка:

$$\alpha_1(\lambda) = \lambda$$

Начальный момент распределения 2-го порядка:

$$\alpha_2(\lambda) = \lambda^2 + \lambda$$

2.1 Метод моментов

Так как функция распределения Пуассона зависит лишь от одного параметра λ , то для получения оценки этого параметра по методу моментов $\hat{\lambda} = T(X)$ достаточно решить уравнение:

$$\alpha_1(\lambda) = a_1, \quad a_1 = \frac{1}{n} \sum_{i=1}^n x_i$$

Таким образом, оценка примет вид $\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

2.2 Свойства оценки параметра по методу моментов

Учитывая, что $\alpha_1(\lambda) = \lambda$ – взаимо-однозначная непрерывная функция, найденная оценка $\hat{\lambda}$ будет **состоятельной**. В силу того, что:

$$\left(\frac{\mathrm{d}\alpha_1}{\mathrm{d}\lambda}\right)_{\lambda=4} = 1 \neq 0$$

найденная оценка $\hat{\lambda}$ будет **асимптотически нормальной**.

3 Результаты работы программы

начальный момент 1 порядка: 4 начальный момент 2 порядка: 20

3.1 Выборка размером n:

значение оценки ММ $\hat{\lambda}$: 3.616666666666667

3.2 Выборка размером 3n:

значение оценки ММ $\hat{\lambda}$: 4.11666666666666

3.3 Выборка размером 6n:

значение оценки ММ $\hat{\lambda}$: 3.977777777778

3.4 Выборка размером 12n:

значение оценки ММ $\hat{\lambda}$: 4.036111111111111

4 Выводы

Можно заметить, что при увеличении размера выборки значение оценки ММ приближается к точному значению параметра λ , поэтому для более точных исследований необходимо использовать выборки большего объема.

5 Исходный код программы

```
import numpy as np  \begin{array}{l} n=60 \\ l=4 \\ print(\ l) \\ print(\ l*l+l) \\ for \ i \ in \ [1,\ 3,\ 6,\ 12]: \\ sample = np.random.poisson(lam=l\,,\ size=i*n) \\ print("size = ",i,"n:\ ",\ sum(sample)\ /\ len(sample)) \end{array}
```