25 Spring 439/639 TSA: Lecture 20

Dr Sergey Kushnarev

Table of contents

\mathbf{EWMA}	1
Seasonal ARIMA (SARIMA)	2
Multiplicative seasonal ARMA model	3

EWMA

EWMA stands for exponentially weighted moving average, which is a quick way to generate "forecasts". It is useful under some specific settings.

EWMA basically do the following

$$\widehat{Y}_t(1) = (1-\theta)Y_t + \theta\,\widehat{Y}_{t-1}(1)$$

which is linear combination of the observed Y_t and the predicted value at the previous time $\widehat{Y}_{t-1}(1)$. The parameter θ in this method is often chosen ad hoc.

EWMA can be useful in predicting IMA(1,1). Consider a IMA(1,1) (i.e. ARIMA(0,1,1))

$$\begin{split} Y_t - Y_{t-1} &= W_t, \quad W_t = e_t - \theta \, e_{t-1}, \\ \text{i.e.,} \quad Y_t &= Y_{t-1} + e_t - \theta \, e_{t-1}. \end{split}$$

For invertible model, suppose it has an $AR(\infty)$ invertible representation

$$e_t = \pi_0 Y_t + \pi_1 Y_{t-1} + \pi_2 Y_{t-2} + \cdots$$

then Y_{t+1} can be written as

$$Y_{t+1} = e_{t+1} - \pi_1 Y_t - \pi_2 Y_{t-1} - \cdots$$

Using the similar truncation/approximation idea we used for MA/ARMA model (see examples in lecture 18,19), and taking the conditional expectation $\mathbb{E}[\cdot \mid Y_{1,...,t}]$, we get

$$\widehat{Y}_t(1) = \mathbb{E}[Y_{t+1} \mid Y_{1,...,t}] = -\pi_1 Y_t - \pi_2 Y_{t-1} - \dots - \pi_t Y_1.$$

So if we can find the coefficients π_j , then we can get $\widehat{Y}_t(1)$ by this method.

Sidenote: for ARIMA(p,d,q), the coefficients π_j in the invertible representation satisfy the following recursive formula

$$\pi_j = \begin{cases} \sum_{i=1}^{\min(j,q)} \theta_i \, \pi_{j-i} - \tilde{\phi}_j, & \text{if } 1 \leq j \leq p+d \\ \sum_{i=1}^{\min(j,q)} \theta_i \, \pi_{j-i}, & \text{if } j > p+d \end{cases}$$

where $1-\tilde{\phi}_1x-\cdots-\tilde{\phi}_{p+d}x^{p+d}=(1-\phi_1x-\cdots-\phi_px^p)(1-x)^d$ is the AR polynomial of the ARMA(p+d,q) corresponding to the original ARIMA(p,d,q). And $\pi_0=1$.

For our IMA(1,1) (i.e. ARIMA(0,1,1)) setting,

$$Y_t - Y_{t-1} = e_t - \theta e_{t-1}$$

we can either use the previous general recursion formula, or just plug $e_t = \sum_{j=0}^{\infty} \pi_j Y_{t-j}$ into the IMA(1,1), to get the following

$$\pi_0=1, \text{and } \pi_j=(\theta-1)\theta^{j-1} \text{ for } j\geq 1.$$

Then use the earlier result, we get

$$\begin{split} \widehat{Y}_t(1) &= -\pi_1 Y_t - \pi_2 Y_{t-1} - \dots - \pi_t Y_1 \\ &= (1 - \theta) Y_t + (1 - \theta) \theta \, Y_{t-1} + (1 - \theta) \theta^2 Y_{t-2} + \dots + (1 - \theta) \theta^{t-1} Y_1 \\ &= (1 - \theta) Y_t + \theta \underbrace{\left[(1 - \theta) Y_{t-1} + (1 - \theta) \theta Y_{t-2} + \dots + (1 - \theta) \theta^{t-2} Y_1 \right]}_{\widehat{Y}_{t-1}(1)}. \end{split}$$

So we reached the EWMA formula we introduced at the beginning:

$$\widehat{Y}_t(1) = (1 - \theta)Y_t + \theta \widehat{Y}_{t-1}(1).$$

We can also rewrite it as

$$\widehat{Y}_t(1) = \underbrace{\widehat{Y}_{t-1}(1)}_{\text{forecast}} + (1-\theta) \underbrace{\left(Y_t - \widehat{Y}_{t-1}(1)\right)}_{\text{forecast error}},$$

which can be seen as the forecast for Y_t at time t-1, plus the forecast error (after we observed the actual Y_t) multiplied by a smoothing factor $(1-\theta)$.

FYI: there are some other smoothing forecast methods, like Holt and Holt-Winters exponential moving average (double and triple exponential weighted moving average).

Seasonal ARIMA (SARIMA)

We combined AR and MA into the mixed model ARMA, and generalized to ARIMA. SARIMA is a further generalization of ARIMA.

Example 1: seasonal MA. Consider the model

$$Y_t = e_t - \Theta e_{t-12}$$
.

This model is seasonal MA of order 1 with seasonal period 12, denoted by $MA(1)_{12}$.

Note: the equation for this model can also be seen as an MA(12) with $\theta_{12} = \Theta$ and $\theta_1 = \cdots = \theta_{11} = 0$. But MA(12) allows the parameters $\theta_1, ..., \theta_{11}$ to be nonzero. So MA(12) is "too large" for this model. Instead, MA(1)₁₂ is the correct model to characterize it.

Similar to the MA model, we can derive the ACVF and ACF for $MA(1)_{12}$:

$$\begin{cases} \gamma_0 = (1+\Theta^2)\sigma_e^2 \\ \gamma_{12} = -\Theta\sigma_e^2 \\ \gamma_k = 0, \text{ if } k \neq 0, 12 \end{cases}$$

$$\begin{cases} \rho_0 = 1 \\ \rho_{12} = \frac{-\Theta}{1+\Theta^2} \\ \rho = 0, \text{ if } k \neq 0, 12 \end{cases}$$

Exercise: verify the ACVF and ACF above.

In general, the seasonal MA model $MA(Q)_s$ with order Q and seasonal period s, has the equation

$$Y_t = e_t - \Theta_1 e_{t-s} - \Theta_2 e_{t-2s} - \dots - \Theta_Q e_{t-Qs}.$$

The MA polynomial is of order Qs:

$$\Theta(x) = 1 - \Theta_1 x^s - \Theta_2 x^{2s} - \dots - \Theta_O x^{Qs}.$$

Example 2: seasonal AR. Consider the $AR(1)_{12}$ model (seasonal AR of order 1 with seasonal period 12)

$$Y_t = \Phi Y_{t-12} + e_t.$$

The causality condition for AR(1)₁₂ is $|\Phi| < 1$. Note: The AR polynomial is $1 - \Phi x^{12}$ which has 12 roots. All the roots have the same modulus $|\Phi|^{-\frac{1}{12}}$. So the roots are outside the unit disk if (and only if) $|\Phi| < 1$.

We can find that $\rho_0=1, \rho_{12}=\Phi, \rho_{24}=\Phi^2, \ldots$ The ACF for $AR(1)_{12}$ is

$$\begin{cases} \rho_{12\cdot k} = \Phi^k, & \text{for integer } k \geq 0 \\ \rho_n = 0, & \text{if } n \neq 12k \end{cases}$$

Exercise: verify the ACF above.

In general, the seasonal AR model $AR(P)_s$ with order P and seasonal period s, has the equation

$$Y_t = \Phi_1 Y_{t-s} + \Phi_2 Y_{t-2s} + \dots + \Phi_P Y_{t-Ps} + e_t.$$

The AR polynomial is of order Ps:

$$\Phi(x) = 1 - \Phi_1 x^s - \dots - \Phi_P x^{Ps}.$$

Seasonal ARMA. Similar to ARMA(p,q), we can also combine AR $(P)_s$ and MA $(Q)_s$ into ARMA $(P,Q)_s$. (The seasonal period s for AR part and MA part are the same.)

Multiplicative seasonal ARMA model

We can combine a nonseasonal ARMA(p,q) and a seasonal ARMA $(P,Q)_s$ together by multiplying the AR/MA polynomials. This multiplicative seasonal ARMA model is denoted as ARMA $(p,q) \times (P,Q)_s$:

$$\text{ARMA} \underbrace{(p,q)}_{\text{nonseasonal}} \times \underbrace{(P,Q)_s}_{\text{seasonal}}.$$

It is still in the ARMA form, with the following AR polynomial and MA polynomial

AR polynomial:
$$\underbrace{\phi(x)}_{\text{order }p} \cdot \underbrace{\Phi(x)}_{\text{order }Ps}$$

MA polynomial:
$$\underbrace{\theta(x)}_{\text{order }q} \cdot \underbrace{\Theta(x)}_{\text{order }Qs}$$

where $\phi(x)$, $\Phi(x)$ are the AR polynomials of ARMA(p,q) and ARMA $(P,Q)_s$ respectively, and similarly $\theta(x)$, $\Theta(x)$ are MA polynomials.

Example. Consider an ARMA $(0,1) \times (1,0)_{12}$. Then the AR polynomial and MA polynomial are

AR polynomial:
$$1 \cdot (1 - \Phi x^{12})$$

MA polynomial: $(1 - \theta x) \cdot 1$

So the equation for ARMA $(0,1) \times (1,0)_{12}$ is

$$\begin{split} \left(1-\Phi B^{12}\right)Y_t &= \left(1-\theta B\right)\,e_t,\\ \text{i.e.,}\quad Y_t-\Phi Y_{t-12} &= e_t-\theta e_{t-1}. \end{split}$$

For this model, (assume it is causal,) we can find $\gamma_0 = \frac{1+\theta^2}{1-\Phi^2}\sigma_e^2$, $\gamma_1 = \frac{-\theta}{1-\Phi^2}\sigma_e^2$, $\gamma_{12} = \Phi\gamma_0$, $\gamma_{11} = \gamma_{13} = \Phi\gamma_1$,.... The ACVF is

$$\begin{cases} \gamma_{12\cdot k} = \frac{1+\theta^2}{1-\Phi^2} \Phi^k \sigma_e^2, & \text{for integer } k \geq 0 \\ \gamma_{12\cdot k\pm 1} = \frac{-\theta}{1-\Phi^2} \Phi^k \sigma_e^2, & \text{for integer } k \geq 0 \\ \gamma_n = 0, & \text{if } n \neq 12k, 12k \pm 1 \end{cases}$$

Exercise: derive the ACF above. (Hint: you can use YW method; or write it as a GLP.)