CS61B Lectures #27-28

Today:

- Sorting algorithms: why?
- Insertion, Shell's, Heap, Merge sorts
- Quicksort
- Selection
- Distribution counting, radix sorts

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Purposes of Sorting

- Sorting supports searching
- Binary search standard example
- Also supports other kinds of search:
 - Are there two equal items in this set?
 - Are there two items in this set that both have the same value for property X?
 - What are my nearest neighbors?
- Used in numerous unexpected algorithms, such as convex hull (smallest convex polygon enclosing set of points).

Some Definitions

- A sort is a permutation (re-arrangement) of a sequence of elements that brings them into order, according to some total order. A total order, \prec , is:
 - Total: $x \leq y$ or $y \leq x$ for all x, y.
 - Reflexive: $x \prec x$;
 - Antisymmetric: $x \leq y$ and $y \leq x$ iff x = y.
 - Transitive: $x \leq y$ and $y \leq z$ implies $x \leq z$.
- However, our orderings may allow unequal items to be equivalent:
 - E.g., can be two dictionary definitions for the same word: if entries sorted only by word, then sorting could put either entry first
 - A sort that does not change the relative order of equivalent entries is called stable.

Classifications

- Internal sorts keep all data in primary memory
- External sorts process large amounts of data in batches, keeping what won't fit in secondary storage (in the old days, tapes).
- Comparison-based sorting assumes only thing we know about keys is order
- Radix sorting uses more information about key structure.
- Insertion sorting works by repeatedly inserting items at their appropriate positions in the sorted sequence being constructed.
- Selection sorting works by repeatedly selecting the next larger (smaller) item in order and adding it one end of the sorted sequence being constructed.

Sorting by Insertion

- Simple idea:
 - starting with empty sequence of outputs.
 - add each item from input, inserting into output sequence at right point.
- Very simple, good for small sets of data.
- With vector or linked list, time for find + insert of one item is at worst $\Theta(k)$, where k is # of outputs so far.
- ullet So gives us $O(N^2)$ algorithm. Can we say more?

Inversions

- ullet Can run in $\Theta(N)$ comparisons if already sorted.
- Consider a typical implementation for arrays:

```
for (int i = 1; i < A.length; i += 1) {
 int j;
 Object x = A[i];
 for (j = i-1; j >= 0; j -= 1) {
   if (A[i].compareTo(x) <= 0) /* (1) */
    break;
  A[j+1] = A[j];
A[j+1] = x;
```

- \bullet #times (1) executes \approx how far x must move.
- ullet If all items within K of proper places, then takes O(KN) operations.
- Thus good for any amount of nearly sorted data.
- One measure of unsortedness: # of inversions: pairs that are out of order (= 0 when sorted, N(N-1)/2 when reversed).
- Each step of j decreases inversions by 1.

Shell's sort

Idea: Improve insertion sort by first sorting distant elements:

- First sort subsequences of elements $2^k 1$ apart:
 - sort items #0, $2^k 1$, $2(2^k 1)$, $3(2^k 1)$, ..., then
 - sort items #1, $1+2^k-1$, $1+2(2^k-1)$, $1+3(2^k-1)$, ..., then
 - sort items #2, $2+2^k-1$, $2+2(2^k-1)$, $2+3(2^k-1)$, ..., then
 - etc.
 - sort items $\#2^k-2$, $2(2^k-1)-1$, $3(2^k-1)-1$, ...,
 - Each time an item moves, can reduce #inversions by as much as 2^k+1 .
- Now sort subsequences of elements $2^{k-1} 1$ apart:
 - sort items #0, $2^{k-1} 1$, $2(2^{k-1} 1)$, $3(2^{k-1} 1)$, ..., then
 - sort items #1, $1+2^{k-1}-1$, $1+2(2^{k-1}-1)$, $1+3(2^{k-1}-1)$, ...,
 - -:
- ullet End at plain insertion sort ($2^0=1$ apart), but with most inversions gone.
- Sort is $\Theta(N^{1.5})$ (take CS170 for why!).

Example of Shell's Sort

I: Inversions left.

C: Comparisons needed to sort subsequences.

Sorting by Selection: Heapsort

Keep selecting smallest (or largest) element. Idea:

- Really bad idea on a simple list or vector.
- But we've already seen it in action: use heap.
- Gives $O(N \lg N)$ algorithm (N remove-first operations).
- Since we remove items from end of heap, we can use that area to accumulate result:

original:	19	0	-1	7	23	2	2 4	2
heapified:	42	23	19	7	0	2	2 -	-1
	23	7	19	-1	0	2	2	42
	19	7	2	-1	0		23	42
	7	0	2	-1		19	23	42
	2	0	-1		7 1	19	23	42
	0	-1		2	7 1	19	23	42
	-1) [2	7 1	19	23	42

Merge Sorting

Divide data in 2 equal parts; recursively sort halves; merge re-Idea: sults.

- Already seen analysis: $\Theta(N \lg N)$.
- Good for external sorting:
 - First break data into small enough chunks to fit in memory and sort.
 - Then repeatedly merge into bigger and bigger sequences.
 - Can merge K sequences of arbitrary size on secondary storage using $\Theta(K)$ storage.
- For internal sorting, can use binomial comb to orchestrate:

Illustration of Internal Merge Sort

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

O elements processed

1 element processed

2 elements processed

3 elements processed

4 elements processed

6 elements processed

11 elements processed

Quicksort: Speed through Probability

Idea:

- Partition data into pieces: everything > a pivot value at the high end of the sequence to be sorted, and everything \leq on the low end.
- Repeat recursively on the high and low pieces.
- For speed, stop when pieces are "small enough" and do insertion sort on the whole thing.
- Reason: insertion sort has low constant factors. By design, no item will move out of its will move out of its piece [why?], so when pieces are small, #inversions is, too.
- Have to choose pivot well. E.g.: median of first, last and middle items of sequence.

Example of Quicksort

- \bullet In this example, we continue until pieces are size ≤ 4 .
- Pivots for next step are starred. Arrange to move pivot to dividing line each time.
- Last step is insertion sort.

Now everything is "close to" right, so just do insertion sort:

-5 -1 0 10 | 12 13 | 15 16 | 18 | 19 22 29 34

Performance of Quicksort

- Probabalistic time:
 - If choice of pivots good, divide data in two each time: $\Theta(N \lg N)$ with a good constant factor relative to merge or heap sort.
 - If choice of pivots bad, most items on one side each time: $\Theta(N^2)$.
 - $\Omega(N \lg N)$ in best case, so insertion sort better for nearly ordered input sets.
- Interesting point: randomly shuffling the data before sorting makes $\Omega(N^2)$ time very unlikely!

Quick Selection

The Selection Problem: for given k, find $k^{\dagger h}$ smallest element in data.

- Obvious method: sort, select element #k, time $\Theta(N \lg N)$.
- ullet If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
 - Go through array, keep smallest k items.
- ullet Get probably $\Theta(N)$ time for all k by adapting quicksort:
 - Partition around some pivot, p, as in quicksort, arrange that pivot ends up at dividing line.
 - Suppose that in the result, pivot is at index m, all elements \leq pivot have indicies $\leq m$.
 - If m=k, you're done: p is answer.
 - If m > k, recursively select k^{th} from left half of sequence.
 - If m < k, recursively select $(k m 1)^{\text{th}}$ from right half of sequence.

Selection Example

Find just item #10 in the sorted version of array: Problem:

Initial contents:

51 | 60 49 10 40* 59 13 39 11 46 31 | 21 | -4 | 37 0

Looking for #10 to left of pivot 40:

13 31 10 | 39 | 51 49 46 | 60

Looking for #6 to right of pivot 4:

21 | 31* 59 51 49 46 4

Looking for #1 to right of pivot 31:

59 39 | 37 51 | 49 | 46 | 60

Just two elements; just sort and return #1:

59 13 10 31 ||| 37 39 51 49 46 60 9

Result: 39

Selection Performance

ullet For this algorithm, if m roughly in middle each time, cost is

$$C(N) = \begin{cases} 1, & \text{if } N = 1, \\ N + C(N/2), & \text{otherwise.} \end{cases}$$
$$= N + N/2 + \ldots + 1$$
$$= 2N - 1 \in \Theta(N)$$

- ullet But in worst case, get $\Theta(N^2)$, as for quicksort.
- ullet By another, non-obvious algorithm, can get $\Theta(N)$ worst-case time for all k (take CS170).

Better than N Ig N?

- Can prove that if all you can do to keys is compare them then sorting must take $\Omega(N \lg N)$.
- ullet Basic idea: there are N! possible ways the input data could be scrambled
- ullet Therefore, your program must be prepared to do N! different combinations of move operations.
- ullet Therefore, there must be N! possible combinations of outcomes of all the if tests in your program (we're assuming that comparisons are 2-way).
- Since each if test goes two ways, number of possible different outcomes for k if tests is 2^k .
- Thus, need enough tests so that $2^k > N!$, which means $k \in \Omega(\lg N!)$.
- Using Stirling's approximation,

$$m! \in \sqrt{2\pi m} \left(\frac{m}{e}\right)^m \left(1 + \Theta\left(\frac{1}{m}\right)\right),$$

this tells us that

$$k \in \Omega(N \lg N).$$

Beyond Comparison: Distribution Counting

- But suppose can do more than compare keys?
- ullet For example, how can we sort a set of N integer keys whose values range from 0 to kN, for some small constant k?
- One technique: count the number of items < 1, < 2, etc.
- ullet If $M_p=$ #items with value < p, then in sorted order, the $j^{ extstyle e$ with value p must be $\#M_p + j$.
- Gives linear-time algorithm.

Distribution Counting Example

• Suppose all items are between 0 and 9 as in this example:

- "Counts" line gives # occurrences of each key.
- "Running sum" gives cumulative count of keys
 < each value...
- ... which tells us where to put each key:
- ullet The first instance of key k goes into slot m, where m is the number of key instances that are < k.

Radix Sort

Sort keys one character at a time. Idea:

- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD) radix sort)
- LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

bat, be, bet, cad, can, cat, con, let, set

MSD Radix Sort

- A bit more complicated: must keep lists from each step separate
- But, can stop processing 1-element lists

A	posn
* set, cat, cad, con, bat, can, be, let, bet	0
\star bat, be, bet / cat, cad, con, can / let / set	1
bat $/ *$ be, bet $/$ cat, cad, con, can $/$ let $/$ set	2
bat / be / bet / \star cat, cad, con, can / let / set	1
bat / be / bet / \star cat, cad, can / con / let / set	2
bat / be / bet / cad / can / cat / con / let / set	

Performance of Radix Sort

- ullet Radix sort takes $\Theta(B)$ time where B is total size of the key data.
- Have measured other sorts as function of #records.
- How to compare?
- ullet To have N different records, must have keys at least $\Theta(\lg N)$ long [why?]
- ullet Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
- ullet So $N \lg N$ comparisons really means $N(\lg N)^2$ operations.
- ullet While radix sort takes $B=N\lg N$ time.
- On the other hand, must work to get good constant factors with radix sort.

And Don't Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- ullet Given balance, same performance as heapsort: N insertions in time $\lg N$ each, plus $\Theta(N)$ to traverse, gives

$$\Theta(N + N \lg N) = \Theta(N \lg N)$$

Summary

- ullet Insertion sort: $\Theta(Nk)$ comparisons and moves, where k is maximum amount data is displaced from final position.
 - Good for small datasets or almost ordered data sets.
- Quicksort: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O(N^2)$.
- Merge sort: $\Theta(N \lg N)$ guaranteed. Good for external sorting.
- ullet Heapsort, treesort with guaranteed balance: $\Theta(N \lg N)$ guaranteed.
- \bullet Radix sort, distribution sort: $\Theta(B)$ (number of bytes). Also good for external sorting.