Ciencias de la Computación I

Gramáticas Sensibles al Contexto y Lenguajes Sensibles al Contexto

Octubre 2012

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Gramáticas Formales

Una gramática formal es una cuadrupla G = <N, T, P, S>

N = conjunto finito de símbolos no terminales

$$\rightarrow$$
 N \cap T = \emptyset

T = conjunto finito de símbolos terminales

S = símbolo distinguido o axioma $S \notin (N \cup T)$

P = conjunto finito de reglas de producción (permiten generar cadenas a partir de S)

$$\begin{array}{c} \alpha \rightarrow \beta \\ \alpha = \phi A \rho \\ \beta = \phi \omega \rho \end{array} \qquad \begin{array}{c} A \in \ N \cup \{S\} \\ \phi, \ \omega, \ \rho \in \ (N \cup T)^* \end{array}$$

De acuerdo a formato de reglas se pueden definir 4 tipos de gramáticas y sus correspondientes lenguajes

Gramáticas Sensibles al Contexto (GSC) (Tipo 1)

- Generan los lenguajes sensibles al contexto (reconocidos por ALA)
- Se definen como una cuadrupla G = <N, T, P, S>

N = conjunto finito de símbolos no terminales $N \cap T = \emptyset$

T = conjunto finito de símbolos terminales

S = símbolo distinguido o axioma $S \notin (N \cup T)$

P = conjunto finito de reglas de producción

```
\gamma A \beta \rightarrow \gamma W \beta A \in \mathbb{N} \cup \{S\}  \gamma, \beta \in (\mathbb{N} \cup \mathbb{T})^*  W \in (\mathbb{N} \cup \mathbb{T})^* - \{\epsilon\}  Se puede incluir para generar la cadena vacía
```

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Gramáticas Sensibles al Contexto (Tipo 1)

Ejemplo:

 $L={a^nb^nc^n/n>0}$ Lenguaje Sensible al Contexto

$$S \rightarrow A$$

 $A \rightarrow aABC$ Generar
 $A \rightarrow aBC$

$$G = <\{A, B, C\}, \{a, b, c\}, P, S>$$

Ejemplo de Derivación

 $A \Rightarrow$

aABC ⇒

aaABCBC ⇒

aaaBCBCBC ⇒

aaaBBCCBC⇒
aaaBBCBCC⇒

aa<mark>aB</mark>BBCCC⇒

aaabBBCCC⇒

aaabb<mark>B</mark>CCC⇒ aaabb<mark>bC</mark>CC⇒

aaabbbccC⇒ aaabbbccC⇒

aaabbbccc esta cadena de símbolos terminales ∈ L(G)

Gramáticas Sensibles al Contexto (Tipo 1)

Ejemplo:

L={anbncn /n>0} Lenguaje Sensible al Contexto

$$\begin{array}{l} S \! \to \! A \\ A \! \to \! aABC \\ A \! \to \! aBC \end{array} \right\} \quad \text{Generar}$$

$$\begin{array}{l} CB \! \to \! BC \\ BBC \end{array} \right\} \quad \text{Ordenar}$$

$$\begin{array}{l} aB \! \to \! ab \\ bB \! \to \! bb \\ bC \! \to \! bc \\ cC \! \to \! cc \end{array} \right\} \quad \text{Reemplazar}$$

$$\begin{array}{l} con contexto \\ CB \! \to \! BC \end{array}$$

$$\begin{array}{l} CB \! \to \! BC \\ CB \! \to \! BC \end{array} \right\} \quad \text{Constant}$$

 $S \Rightarrow$ $A \Rightarrow$ $aABC \Rightarrow$ $aaABCBC \Rightarrow$ $aaBCBCBC \Rightarrow$ $aaabCBCBC \Rightarrow$ $aaabCBCBC \Rightarrow$ $aaabCBCBC \Rightarrow$

Ejemplo de derivación

aaabcBCBC (no se puede llegar de ninguna manera a reemplazar todos los símbolos no terminales por símbolos terminales ⇒ G no genera cadenas incorrectas)

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Gramáticas Sensibles al Contexto (Tipo 1)

Formato reglas de tipo 1

Ejemplo:
$$\gamma A \beta \rightarrow \gamma \omega \beta$$
 $A \in \mathbb{N} \cup \{S\}$ $\gamma, \beta \in (\mathbb{N} \cup T)^*$ $w \in (\mathbb{N} \cup T)^* - \{\epsilon\}$ Sea $G = \langle \{A, B, C\}, \{a, b, c\}, P, S \rangle$ donde
$$P = \{S \rightarrow A, \qquad \gamma = \epsilon \ y \ \beta = \epsilon$$
 $A \cup \omega$ A

Gramáticas Sensibles al Contexto (Tipo 1)

• Las reglas de producción indican cómo reemplazar un no terminal o el símbolo distinguido teniendo en cuenta el contexto en el que se encuentra

Ejemplo: G sensible al contexto

Sea G =
$$\{A, B, C\}$$
, $\{a, b, c\}$, P , S> donde
P = $\{S \rightarrow A, A \rightarrow aABC, A \rightarrow abC, CB \rightarrow BC, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

Del lado izquierdo puede haber símbolos terminales y/o no terminales (también puede aparecer el símbolo distinguido)

$$S \Rightarrow A \Rightarrow aABC \Rightarrow aabCBC \Rightarrow aabBCC \Rightarrow$$

 $\mathsf{aabbCC} \Rightarrow \mathsf{aabbcC} \Rightarrow \mathsf{aabbcc}$

Se reemplaza el no terminal y su contexto por la cadena del lado derecho de la regla de producción (manteniendo el contexto)

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Gramáticas Sensibles al Contexto (Tipo 1)

Derivación:

Dadas dos cadenas ω_1 , ω_2 y una gramática sensible al contexto $G = \langle N, T, P, S \rangle$ se dice que ω_1 deriva a ω_2 si ω_2 puede obtenerse a partir de ω_1 por aplicación de reglas de G.

Derivación inmediata:

La cadena ω_2 se obtiene de la cadena ω_1 en <u>un paso</u> usando las reglas de P

$$\omega_1 \Rightarrow \omega_2$$
 sí y sólo sí

1) Cuando
$$\omega_1 = S$$
 y $\omega_2 = \varepsilon$ y $S \rightarrow \varepsilon \in P$

2)
$$\omega_1 = \alpha B \beta$$

$$\omega_2 = \alpha \omega \beta$$
 $\alpha, \beta \in (N \cup T)^* \quad B \in N \cup \{S\}$ $\omega_1 \neq \omega_2$

$$\alpha B\beta \rightarrow \alpha \omega\beta \in P$$
 y $\omega \in (N \cup T)^* - \{\epsilon\}$

Gramáticas Sensibles al Contexto (Tipo 1)

Derivación:

La cadena α_2 se obtiene de la cadena α_1 en $\underline{\text{cero o más pasos}}$ usando las reglas de P.

Si existen $\alpha_1, \alpha_2, ..., \alpha_n \in (N \cup T)^* \quad n \ge 1 \ y$

$$\alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_n \quad \text{decimos que } \alpha_1 \stackrel{*}{\Rightarrow} \alpha_n$$

(clausura reflexiva y transitiva de ⇒)

Lenguaje generado por una gramática sensible al contexto G = <N, T, P, S>

$$L(G) = \{ x / x \in T^* y \mid S \stackrel{*}{\Rightarrow} x \}$$

Es decir, una cadena $\in L(G)$ si:

- 1) La cadena está formada por símbolos terminales únicamente
- 2) La cadena puede ser derivada a partir de S

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Jerarquía de Chomsky

Lenguajes	Máquinas	Gramáticas	Equiv. Det. y No det	
R	Autómata Finito	Regulares o de Tipo 3		
${f E}$	Determinístico	$G = \langle N, T, P, S \rangle$		
\mathbf{G}	$AFD = \langle E, A, \delta, e_0, F \rangle$	Formato de reglas de Tipo 3:		
\mathbf{U}	· · · · · · ·	- Lineales a derecha		
${f L}$	E: conjunto finito de estados	$A \rightarrow aB$ $A \in N \cup \{S\}$		
\mathbf{A}	A: alfabeto de entrada	$A \rightarrow a$ $B \in N$	SI	
R	δ: función de transición	$S \rightarrow \varepsilon$ $a \in T$		
${f E}$	$\delta \colon \mathbf{E} \times \mathbf{A} \to \mathbf{E}$	- Lineales a izquierda		
\mathbf{S}	\mathbf{e}_0 : estado inicial; $\mathbf{e}_0 \in \mathbf{E}$	$A \rightarrow Ba$ $A \in N \cup \{S\}$		
	F : conjunto de estados finales;	$A \rightarrow a$ $B \in N$		
(TIPO 3)	F⊆E	$S \rightarrow \varepsilon$ $a \in T$		

Lenguajes	Máquinas	Gramáticas	EQ. DET. y NO DET	
L I B	Autómata de Pila Determinístico o No Determinístico	Libres del Contexto o de Tipo 2		
R E S	$AP = \langle E, A, P, \delta, e_0, Z_0, F \rangle$ E : conjunto finito de estados A : alfabeto de entrada	G = <n, p,="" s="" t,=""></n,>		
D	P : alfabeto de la Pila; $P \cap A = \emptyset$ \delta : función de transición	Formato reglas de Tipo 2:		
E L	$ δ:E x (A ∪{ε}) x P → E x P* $ (determinístico)	$A \rightarrow \omega$	NO	
C	δ: E x ($A \cup \{\epsilon\}$) x $P \to P_f(E \times P^*)$ (no deterministico)	donde		
N T	(P_f denota los subconjuntos finitos de $E \times P^*$)	$A \in N \cup \{S\};$ $\omega \in (N \cup T)^* - \{\epsilon\}$		
E X T	\mathbf{e}_0 : estado inicial; $\mathbf{e}_0 \in \mathbf{E}$ \mathbf{Z}_0 :símbolo distinguido; $\mathbf{Z}_0 \in P$	Se puede incluir $S \to \epsilon$		
O (TIPO 2)	F : conjunto de estados finales; $F \subseteq E$.			

Lenguajes	Máquinas	Gramáticas	EQ. DET. y NO DET
S E N S I B L E S S A L C O N T E X T O (TIPO 1)	Autómata Linealmente Acotado ALA= < E, A, C, δ, e ₀ , B, F, #, \$> E: conjunto finito de estados A: alfabeto de entrada; A ⊆ C C: alfabeto de la cinta; C=A ∪ {B, #, \$} ∪ Auxiliares δ: función de transición δ: E x C → E x C x {D, I, N} (1 cinta) (*) δ: E x C → E x (C x {D, I, N}) ^k (k cintas)(*) e ₀ : estado inicial; e ₀ ∈ E B: símbolo blanco; B ∉ A y B ∈ C F: conjunto de estados finales; F ⊆ E #: símbolo de inicio de la/s cinta/s C \$: símbolo de fin de la/s cinta/s C (*) En ninguna de las cintas se permiten movimientos a izquierda de # ni a derecha de \$. Tampoco se permite reescribir los símbolos # y \$.	Sensibles al Contexto o de Tipo 1 $G = \langle N, T, P, S \rangle$ Formato reglas Tipo 1:	SI

Lenguajes	Máquinas	Gramáticas	EQ. DET. y NO DET	
	Máquina de Turing Determinística	Contractivas o de Tipo 0		
E S T F R R U P A C O S T R E U S R A D O O	MTD= $<$ E, A , C , δ , e_0 , B, F $>$ E: conjunto finito de estados A: alfabeto de entrada; A \subseteq C	$G = \langle N, T, P, S \rangle$		
	C: alfabeto de cinta;	Formato reglas Tipo 0:		
	C=A∪{B}∪Auxiliares δ : función de transición	$\gamma A \beta \rightarrow \gamma w \beta$	SI	
	$\delta: E \times C \rightarrow E \times C \times \{D, I, N\} \qquad (1 \text{ cinta})$ $\delta: E \times C^{k} \rightarrow E \times (C \times \{D, I, N\})^{k} \text{ (k cintas)}$	$\begin{aligned} &\text{donde} \\ &A \in N \cup \{S\}; \end{aligned}$		
S	\mathbf{e}_0 : estado inicial; $\mathbf{e}_0 \in \mathbf{E}$	$\gamma, \beta, \omega \in (N \cup T)^*$		
(TIPO 0)	B: símbolo blanco; B ∉ A y B ∈ C F: conjunto de estados finales; F ⊆ E	$(\omega \text{ puede ser } \epsilon)$		


```
Ejemplo 2
                              Lenguaje Sensible al Contexto
L=\{a^nb^nc^nd^n/n>0\}
                                            Derivación
                                            S \Rightarrow
P:\{S \rightarrow A
                                            A \Rightarrow
A \rightarrow aABCD
                                            aABCD ⇒
A→aBCD
                                            aaABCDBCD ⇒
DB \rightarrow BD
                                            aaaBCDBCDBCD ⇒
CB \rightarrow BC
                                            aaaBCBDCDBCD ⇒
DC \rightarrow CD
                                            aaaBCBCDDBCD ⇒
aB →ab
                                            aaaBCBCDBDCD ⇒
bB →bb
                                            aaaBCBCDBCDD ⇒
bC →bc
                                            aaaBBCCDBCDD ⇒
cC \rightarrow cc
cD \rightarrow cd
                                            aaaBBBCCCDDD ⇒
dD \rightarrow dd
G = <\{A,B,C,D\},\{a,b,c,d\},P,S>
                                            aaabbbcccddd
              Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012
```


Ejemplo 4

 $L = \{a^n c^i b^n d^i / n, i \ge 0\}$

Lenguaje Sensible al Contexto

```
\begin{array}{lll} P\colon \{S \to A \\ A \to aAB \\ A \to H \\ H \to cHD \\ H \to cD \\ DB \to BD \\ cB \to cb \\ bB \to bb \\ bD \to bd \\ dD \to dd \\ A \to ab \\ A \to ab \\ S \to \epsilon\} & \text{si } i=0 \\ S \to \epsilon\} & \text{si } n=i=0 \\ \end{array}
```

Derivación
S ⇒
A ⇒
aAB ⇒
aaABB ⇒
aaHBB ⇒
aacHDBB ⇒
aaccHDDBB ⇒
aacccDDDBB ⇒
...
aacccBBDDD ⇒
...
aacccbbddd

aabb

Derivación $S \Rightarrow A \Rightarrow H \Rightarrow cHD \Rightarrow ccDD \Rightarrow ccdD \Rightarrow ccdd$

Derivación

 $S \Rightarrow$

 $A \Rightarrow$

aAB ⇒

aabB ⇒

 $G = <\{A,B,H,D\},\{a,c,d,b\},P,S>$

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Gramática incorrecta

 $L=\{a^nb^nc^n/n>0\}$ Lenguaje Sensible al Contexto Supongamos que construimos una gramática

 $S \rightarrow A$ $A \rightarrow aAbc$ $A \rightarrow abc$

 $\mathsf{S} \Rightarrow \mathsf{A} \Rightarrow \mathsf{aAbc} \Rightarrow \mathsf{aaAbcbc} \Rightarrow \mathsf{aaabcbcbc}$

Genera las cantidades correctas pero desordenadas. Una vez que se escribieron, los símbolos terminales no se pueden cambiar de lugar; por lo tanto se generan cadenas que no pertenecen al lenguaje que se quiere generar. No es correcto

REGLAS DE GENERACIÓN: PASO 1

 $L={a^nb^nc^n/n>0}$ Lenguaje Sensible al Contexto

 $S \rightarrow A$ $A \rightarrow aABC$

A→aBC

 $S \Rightarrow A \Rightarrow aABC \Rightarrow aaABCBC \Rightarrow aaaBCBCBC$

Todo lo que está desordenado debería generarse con símbolos NO TERMINALES para poder ordenarlos

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

REGLAS DE ORDENAMIENTO: PASO 2

 $L={a^nb^nc^{2n}/n > 0}$ Lenguaje Sensible al Contexto

 $S \rightarrow A$ $A \rightarrow aABC$ $A \rightarrow aBC$ $CB \rightarrow BC$ $S \Rightarrow$ $A \Rightarrow$ $aABC \Rightarrow$ $aaABCBC \Rightarrow$ $aaaBCBCBC \Rightarrow$ $aaaBBCCBC \Rightarrow$ $aaaBBCCBC \Rightarrow$ $aaaBBCCC \Rightarrow$ $aaaBBCCC \Rightarrow$

Una vez que los símbolos no terminales están ordenados, se tendrían que reemplazar por símbolos terminales

GRAMÁTICA CON REEMPLAZOS INCORRECTOS

 $L=\{a^nb^nc^n/n>0\}$

Lenguaje Sensible al Contexto

Ejemplo de derivación

S⇒ ∧ →

 $S{\to}\; A$

 $A \rightarrow aABC$

A→aBC

 $CB \rightarrow BC$

 $A \Rightarrow$ aABC \Rightarrow

 $aaABCBC \Rightarrow$

 $\mathsf{aaaB}\textcolor{red}{\mathsf{CBCBC}} \Rightarrow$

 $aaaBBCCBC \!\! \Rightarrow \!\!$

aaaBBCBCC⇒

aaaBBBCCC⇒

Una vez que los símbolos no terminales están ordenados se tendrían que reemplazar por símbolos terminales

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Gramáticas Sensibles al Contexto (Tipo 1)

Formato reglas de tipo 1 $\gamma A \beta \rightarrow \gamma W \beta$ $A \in N \cup \{S\}$ $\gamma, \beta \in (N \cup T)^* \omega \in (N \cup T)^* - \{\epsilon\}$

γ	A	β	\rightarrow	γ	W	β
3	S	3	\rightarrow	3	A	3
3	A	3	\rightarrow	3	aABC	3
3	A	ε	\rightarrow	3	abC	3
b	В	3	\rightarrow	b	b	ε
b	C	3	\rightarrow	b	С	3
c	C	3	\rightarrow	c	С	3

Aclaración: CB→BC no respeta el formato de reglas de Tipo 1

Se utiliza para "resumir" el efecto de las siguientes 3 reglas::

 $\mathsf{AB} \to \mathsf{XB}$

 $\mathsf{XB} \to \mathsf{XA}$

 $\mathsf{XA} \to \mathsf{BA}$

donde los símbolos A, B, $X \in N$

(*) En la práctica se puede usar, aclarando que no es tipo 1

γ	A	β	\rightarrow	γ	w	β
3	C	В	\rightarrow	ε	BC	cambia
C	В	ε	\rightarrow	cambia	BC	3