Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA"

CORSO DI LAUREA IN INFORMATICA

Integrazione di Single Sign-On in Unix Pluggable Authentication Module (Unix PAM)

Tesi di laurea

Relatore

Prof. Davide Bresolin

 ${\it Laure and o}$ Ivan Antonino Arena

Anno Accademico 2022-2023

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

— Oscar Wilde

Dedicato a \dots

Abstract

Il presente documento descrive il lavoro svolto durante il periodo di stage, della durata di circa trecento ore, dal laureando Ivan Antonino Arena presso l'azienda Athesys Srl. L'obiettivo principale dello stage era la ricerca e l'eventuale sviluppo di una soluzione per l'implementazione di un sistema di Single Sign-On (SSO) che permettesse, nativamente, l'autenticazione e la gestione della relativa sessione su una macchina UNIX Debian-like o RHEL-like tramite Monokee.

Il framework da utilizzare era FreeIPA, un gestore delle identità e degli accessi (Identity and Access Management, IAM) gratuito ed open-source che combina tecnologie quali Linux, LDAP, MIT Kerberos, NTP, DNS ed SSSD e consta di un'interfaccia web user-friendly e di strumenti di amministrazione tramite command-line.

L'attività si è sviluppata inizialmente in un fase di ricerca e sperimentazione con l'installazione del software FreeIPA su più macchine virtuali CentOS, RHEL e Ubuntu, messe a disposizione dall'azienda.

La seconda fase è stata dedicata alla ricerca di un metodo che consentisse di effettuare l'autenticazione con il proprio account Monokee; in tal senso, è stata approfondita la parte relativa a Unix PAM (Pluggable Authentication Modules) per studiare la possibilità dello sviluppo di un modulo aggiuntivo.

In seguito a tale ricerca, si è deciso di optare per il sistema di autenticazione tramite Identity Provider esterno messa a disposizione dall'applicativo di FreeIPA e di procedere, dunque, con la configurazione di un'applicazione Monokee OAuth2 e di un provider OpenID Connect (OIDC) che fornissero gli end-point e l'infrastruttura necessaria alla comunicazione con il server di FreeIPA e la successiva implementazione degli stessi su di esso.

Verificato il corretto funzionamento di questo sistema di autenticazione da CLI (Command-Line Interface), si è proseguito cercando di implementare questo sistema anche tramite SSH fino al raggiungimento delle ore previste.

"Life is really simple, but we insist on making it complicated"

Ringraziamenti

Innanzitutto, vorrei esprimere la mia gratitudine al Prof. Davide Bresolin, relatore della mia tesi, per l'aiuto e il sostegno fornitomi durante la stesura del lavoro. In secondo luogo, vorrei ringraziare di cuore l'azienda ospitante, Athesys Srl, in particolare, il mio tutor esterno Mattia Zago, Roberto Griggio e Leonardo Speranzon, per la disponibilità e l'impegno con cui mi hanno affiancato durante il periodo di stage.

Desidero, inoltre, ringraziare con affetto i miei genitori per avermi appoggiato in ogni mia scelta durante il mio periodo universitario e per avermi fornito il supporto ed i mezzi per portarlo a termine con serenità.

Infine, ci terrei a ringraziare tutte le amicizie più significative che ho stretto a Padova, che mi hanno regalato gioie e sorrisi durante questi tre emozionanti anni.

Padova, Maggio 2023

Ivan Antonino Arena

— Confucius

Indice

1	Introduzione 1.1 L'azienda	. 1
2	Processi e metodologie 2.1 Processo sviluppo prodotto	. 3
3	Descrizione dello stage 3.1 Introduzione al progetto	. 5 . 5
4	Analisi dei requisiti 1.1 Casi d'uso	
5	Progettazione e codifica 5.1 Tecnologie e strumenti 5.2 Ciclo di vita del software 5.3 Progettazione 5.4 Design Pattern utilizzati 5.5 Codifica	. 11 . 11 . 11
6	Verifica e validazione	13
7	Conclusioni 7.1 Consuntivo finale	. 15 . 15
\mathbf{A}	Appendice A	17
Ac	onimi e abbreviazioni	19
\mathbf{G}	ssario	21
Bi	liografia	23

Elenco delle figure

Elenco delle tabelle	
4.1 Tabella del tracciamento dei requisti funzionali	9

9

Introduzione

Introduzione al contesto applicativo.

Esempio di utilizzo di un termine nel glossario Application Program Interface (API).

Esempio di citazione in linea *Manifesto Agile*. URL: http://agilemanifesto.org/iso/it/.

Esempio di citazione nel pie' di pagina citazione 1

1.1 L'azienda

Descrizione dell'azienda.

1.2 L'idea

Introduzione all'idea dello stage.

1.3 Organizzazione del testo

Il secondo capitolo descrive ...

Il terzo capitolo approfondisce ...

Il quarto capitolo approfondisce ...

Il quinto capitolo approfondisce ...

Il sesto capitolo approfondisce ...

Nel settimo capitolo descrive ...

¹Daniel T. Jones James P. Womack. Lean Thinking, Second Editon. Simon & Schuster, Inc., 2010.

Riguardo la stesura del testo, relativamente al documento sono state adottate le seguenti convenzioni tipografiche:

- * gli acronimi, le abbreviazioni e i termini ambigui o di uso non comune menzionati vengono definiti nel glossario, situato alla fine del presente documento;
- *per la prima occorrenza dei termini riportati nel glossario viene utilizzata la seguente nomenclatura: $parola^{[{\rm g}]};$
- $\ast\,$ i termini in lingua straniera o facenti parti del gergo tecnico sono evidenziati con il carattere corsivo.

Processi e metodologie

Brevissima introduzione al capitolo

2.1 Processo sviluppo prodotto

Descrizione dello stage

Breve introduzione al capitolo

3.1 Introduzione al progetto

3.2 Analisi preventiva dei rischi

Durante la fase di analisi iniziale sono stati individuati alcuni possibili rischi a cui si potrà andare incontro. Si è quindi proceduto a elaborare delle possibili soluzioni per far fronte a tali rischi.

1. Performance del simulatore hardware

Descrizione: le performance del simulatore hardware e la comunicazione con questo potrebbero risultare lenti o non abbastanza buoni da causare il fallimento dei test. **Soluzione:** coinvolgimento del responsabile a capo del progetto relativo il simulatore hardware.

3.3 Requisiti e obiettivi

3.4 Pianificazione

Analisi dei requisiti

Breve introduzione al capitolo

4.1 Casi d'uso

Per lo studio dei casi di utilizzo del prodotto sono stati creati dei diagrammi. I diagrammi dei casi d'uso (in inglese *Use Case Diagram*) sono diagrammi di tipo Unified Modeling Language (UML) dedicati alla descrizione delle funzioni o servizi offerti da un sistema, così come sono percepiti e utilizzati dagli attori che interagiscono col sistema stesso. Essendo il progetto finalizzato alla creazione di un tool per l'automazione di un processo, le interazioni da parte dell'utilizzatore devono essere ovviamente ridotte allo stretto necessario. Per questo motivo i diagrammi d'uso risultano semplici e in numero ridotto.

Figura 4.1: Use Case - UC0: Scenario principale

UC0: Scenario principale

Attori Principali: Sviluppatore applicativi.

Precondizioni: Lo sviluppatore è entrato nel plug-in di simulazione all'interno dell'IDE.

Descrizione: La finestra di simulazione mette a disposizione i comandi per configurare, registrare o eseguire un test.

Postcondizioni: Il sistema è pronto per permettere una nuova interazione.

4.2 Tracciamento dei requisiti

Da un'attenta analisi dei requisiti e degli use case effettuata sul progetto è stata stilata la tabella che traccia i requisiti in rapporto agli use case.

Sono stati individuati diversi tipi di requisiti e si è quindi fatto utilizzo di un codice identificativo per distinguerli.

Il codice dei requisiti è così strutturato R(F/Q/V)(N/D/O) dove:

R = requisito

F = functionale

Q = qualitativo

V = di vincolo

N = obbligatorio (necessario)

D = desiderabile

Z = opzionale

Nelle tabelle 4.1, 4.2 e 4.3 sono riassunti i requisiti e il loro tracciamento con gli use case delineati in fase di analisi.

Tabella 4.1: Tabella del tracciamento dei requisti funzionali

Requisito	Descrizione	Use Case
RFN-1	L'interfaccia permette di configurare il tipo di sonde del	UC1
	test	

Tabella 4.2: Tabella del tracciamento dei requisiti qualitativi

Requisito	Descrizione	Use Case
RQD-1	Le prestazioni del simulatore hardware deve garantire la	-
	giusta esecuzione dei test e non la generazione di falsi negativi	

Tabella 4.3: Tabella del tracciamento dei requisiti di vincolo

Requisito	Descrizione	Use Case
RVO-1	La libreria per l'esecuzione dei test automatici deve essere	-
	riutilizzabile	

Progettazione e codifica

Breve introduzione al capitolo

5.1 Tecnologie e strumenti

Di seguito viene data una panoramica delle tecnologie e strumenti utilizzati.

Tecnologia 1

Descrizione Tecnologia 1.

Tecnologia 2

Descrizione Tecnologia 2

5.2 Ciclo di vita del software

5.3 Progettazione

Namespace 1

Descrizione namespace 1.

Classe 1: Descrizione classe 1

Classe 2: Descrizione classe 2

5.4 Design Pattern utilizzati

5.5 Codifica

Verifica e validazione

Conclusioni

- 7.1 Consuntivo finale
- 7.2 Raggiungimento degli obiettivi
- 7.3 Conoscenze acquisite
- 7.4 Valutazione personale

Appendice A

Appendice A

Citazione

Autore della citazione

Acronimi e abbreviazioni

API Application Program Interface. 1, 21

UML Unified Modeling Language. 7, 21

Glossario

API in informatica con il termine Application Programming Interface API (ing. interfaccia di programmazione di un'applicazione) si indica ogni insieme di procedure disponibili al programmatore, di solito raggruppate a formare un set di strumenti specifici per l'espletamento di un determinato compito all'interno di un certo programma. La finalità è ottenere un'astrazione, di solito tra l'hardware e il programmatore o tra software a basso e quello ad alto livello semplificando così il lavoro di programmazione. 19

UML in ingegneria del software *UML*, *Unified Modeling Language* (ing. linguaggio di modellazione unificato) è un linguaggio di modellazione e specifica basato sul paradigma object-oriented. L'*UML* svolge un'importantissima funzione di "lingua franca" nella comunità della progettazione e programmazione a oggetti. Gran parte della letteratura di settore usa tale linguaggio per descrivere soluzioni analitiche e progettuali in modo sintetico e comprensibile a un vasto pubblico. 19

Bibliografia

Riferimenti bibliografici

James P. Womack, Daniel T. Jones. Lean Thinking, Second Editon. Simon & Schuster, Inc., 2010.

Siti web consultati

Manifesto Agile. URL: http://agilemanifesto.org/iso/it/.