

Introduction to Neural Networks

Johns Hopkins University
Engineering for Professionals Program
605-447/625-438
Dr. Mark Fleischer

Copyright 2014 by Mark Fleischer

Module 10.2: Training The Boltzmann Machine

What We've Covered So Far

We derived a formula for $\Delta E/\Delta C$ and showed that it is equivalent to the activity function.

$$\Delta E_i = -\sum_j w_{ij} x_j$$

We derived the probability value of a node's state to be equal to the sigmoid function.

$$\Pr\{X_i = 1\} = \frac{1}{1 + e^{-\Delta E_i/t}} \longrightarrow \Pr\{X_i = 1\} = \frac{1}{1 + e^{-S_i/t}}$$

Modalities for Applications

- BM can learn distributions ala supervised learning.
 - by updating weights
- BM can solve constrained optimization problems
 - some of the weights are established by the nature of the problem.
 - using simulated annealing approaches.

Behavior

- 1. Set *T* to an initially high temperature value.
- 2. Randomly select a free-running node i.
- 3. Compute activation function S_i .
- 4. Set node *i* to 1 or 0 according to acceptance function.
- 5. Reduce T.
- 6. Goto step 2 if not at equilibrium.

This looks like an annealing process. And it is!

So what are we minimizing?

Dynamics

Goal is to minimize E or maximize C.

Modify the network and in effect run a simulated annealing algorithm on it.

This approach is appropriate when the weights have been determined by the nature of the problem. *E.g.*, COPs.

Other problems require you to train the weights so that the probability distribution for the configurations match a given distribution.

Training Boltzmann Machines

- The Boltzmann distribution is the probability distribution for different configurations.
- The BM 'learns' the distributions (not specific targets)!

Training

- If we want to 'train' the network, what does this mean?
- We want the relative frequency of configurations to match those of a training set.
- The relative frequency of a configuration is affected by the weight connections.

Training

 Thus, we must find a way to determine how to update weights based on differences between the actual frequency of configurations and 'desired' frequency of configurations.

Probability of Configurations

For any two system configurations

$$\alpha = \begin{bmatrix} 00110100 \end{bmatrix}$$

$$\beta = \begin{bmatrix} 10011010 \end{bmatrix}$$

$$\frac{p_{\alpha}}{p_{\beta}} = e^{-(E_{\alpha} - E_{\beta})/T}$$

Training

- Slow, and arduous.
- Intimately connected with entropy.

Define

 p_{α} = The probability of state α based on training examples.

 p'_{α} = The probability of state α at equilibrium.

$$G = \sum_{\alpha} p_{\alpha} \ln \left(\frac{p_{\alpha}}{p_{\alpha}'} \right)$$

Ackley et al. 1986

Value of G

If there is a mismatch in probabilities, some values of

$$\left(\frac{p_{\alpha}}{p_{\alpha}'}\right)$$

in the terms in the summation of G will of necessity be greater than AND less than 1. Why?

Training

Use function G for gradient descent formulation:

$$\Delta w_{ij} = -\eta \frac{\partial G}{\partial w_{ij}} \text{ where }$$

$$\frac{\partial G}{\partial w_{ij}} = -\frac{1}{T} \left(p_{ij} - p'_{ij} \right)$$

Where p_{ij} is the probability that x_i and $x_j = 1$ when system is clamped (according to input distribution or training set). Similarly for free-running.

Estimating these values requires a great deal of computation.

Training

Sometimes you'll see this written

$$\Delta w_{ij} = -\eta \frac{\partial G}{\partial w_{ij}} \text{ where}$$

$$\frac{\partial G}{\partial w_{ij}} = -\frac{1}{T} (p_{ij} - p'_{ij}) = -\frac{1}{T} (\langle s_i s_j \rangle - \langle s'_i s'_j \rangle)$$

What are the energy values associated with each 'configuration'?

- We have 8 possible configurations,
- Each has an energy value,
- Each has a probability based on the Boltzmann Distribution at a given temperature
- For a small problem, we can cheat in order to highlight our general approach

- For each configuration, we calculate:
 - The energy/consensus function.
 - The Boltzmann Distribution
 - Calculate the numerators, sum them up to determine the normalizing Partition Function value, then divide into the numerators to determine the steady-state probability
 - In the real-world, we would run the algorithm at a fixed temperature to estimate the steady-state probabilities

	٦	Temperature =	10			
Weights		1	-2	3		
Config		x1	x2	x 3	Energy	Boltzmann Numerator
_	1	0	0	0	0	1
	2	0	0	1	0	1
	3	0	1	0	0	1
	4	0	1	1	2	
	5	1	0	0	0	
	6	1	0	1		
	7	1	1	0		
	8	1	1	1		

$$E = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_i x_j + \sum_{i} \theta_i x_i$$

- Now we can examine the actual, steadystate probabilities, versus the "training set" or the "desired probabilities".
- Let's look at a spread sheet where we calculate the values for G and the gradient of G. First, recall

Learning Equations

Akin to an error function:

$$G = \sum_{\alpha} p_{\alpha} \ln \left(\frac{p_{\alpha}}{p_{\alpha}'} \right)$$

Method of Steepest Descent:

$$\Delta w_{ij} = -\eta \frac{\partial G}{\partial w_{ij}}$$
 where

$$\frac{\partial G}{\partial w_{ij}} = -\frac{1}{T} \left(p_{ij} - p'_{ij} \right)$$

An Example

Let's say we have the following network with the indicated weights and using Temperature = 1:

Step 1:

- Assign random initial states:
- Use a 0-1 pseudo-random number generator.
- If number $0 \le r < 0.5$, assign that node a 0 state.
- If number $0.5 \le r < 1$, assign that node a 1 state.

Step 1, cont.

- We have 3 random numbers:
- 0.233691, .622338, 901122

• Therefore we assign values of 0, 1 and 1 to nodes 1, 2 and 3 respectively.

Step 2:

- Select at random, a node to update.
- We'll do this by using a random number generator:
- Since there are 3 nodes, we do the following:
- Obtain a uniform, 0-1 pseudo-random number

Select a Node

- Get a pseudo-random 0-1 number: 0.4468921
- If number $0 \le r < 0.33333$, select Node 1
- If number $0.33333 \le r < 0.66666$, select Node 2.
- If number $0.66666 \le r < 1$, select Node 3

Step 2: Calculate the Activity

- We selected node 2.
- $S_2 = 0.1 + -2.1 = -2$

Step 3: Assign new state

Given the Activity value, use the sigmoid function to determine a probability of assigning a 0 or 1.

$$x_i = \begin{cases} 1 & \text{w/prob} \quad p_i = \frac{1}{1 + e^{-S_i/T}} \\ 0 & \text{w/prob} \quad 1 - p_i \end{cases}$$

Using this function,

$$Pr\{x_2 = 1\} = 1/(1 + exp\{2\}) = 0.11920.$$

Step 3, cont.

- Using a 0-1 pseudo-random number generator,
- assigning a 1 with prob. = 0.11920
- Means if $r \le 0.11920$, assign 1, otherwise, assign 0.
- r = 0.314721, therefore assign a 0.

Our New Network Configuration and we start the process over.

Embellishments

- We could start with a high initial temperature and random initial configuration
- Do many iterations at that temperature.
- Then, lower the temperature and again, do many iterations,
- Then, lower the temperature and again, do many iterations,...
- Eventually, stop.

Or, we could leave the temperature fixed

- In this case, we can compute that relative frequency of each configuration.
- Requires a great deal of computation...
 many iterations at a given temperature.

Summary

- Showed how the activity function affects the probabilistic state of a node.
- Showed how to 'anneal' a network
 - Randomly assigning initial states
 - Stochastically updating states
- Showed how to induce these steady-state probabilities to match a given distribution.