- 1.1 Concetti Base
- 1.2 Calcolo del costo Computazionale
- 1.3 Alberi

Algoritmi

△ Definizione

Metodo risolutivo che collega ogni istanza alla soluzione.

Le istanze di un problema sono di solito infinite

- Ogni istanza ha una **lunghezza** n e una **taglia** |n| (numero di cifre parte intera inferiore)
- Le istanze di una certa lunghezza sono in genere infinite

△ Definizione: Costo Computazionale

Definiamo **costo computazionale** di un algoritmo una funzione T(n) che restituisce le risorse usate in funzione della lunghezza dell'istanza

■ Definizione: Algoritmo Ottimo e Complessità Computazionale

- Algoritmo Ottimo: Algoritmo con costo computazionale migliore tra i possibili per un problema
- **Complessità Computazionale**: Costo computazionale matematicamente migliore per la risoluzione di un problema, anche definita **lower bound**

Bisogna notare che la **complessità computazionale è riferita ad un problema** e non un algoritmo, difatti è possibile che nonostante si sappia quale sia

matematicamente il costo computazionale migliore per la risoluzione di un problema, non è ancora stato scoperto un algoritmo che lo raggiunga

△ Definizione: Problema Indecidibile

Definiamo problema indecidibile un algoritmo irrisolvibile

≡ Esempio: Terminatore di Touring

Creare un algoritmo che, preso un altro algoritmo, dica se quest'ultimo finisce

Strutture Dati

△ Definizione

Strutture identificate da un particolare metodo di **salvataggio delle informazioni** e dalle **operazioni su di esse**, che sono a loro volta algoritmi.

· Tipologie

- Concrete: strutture di base che è possibile dare per scontate (es. vettori)
- Astratte: strutture complesse create utilizzando diverse strutture concrete ed eventualmente altre astratte

- statiche: leggono i dati senza modificarne la struttura o il contenuto
- **Dinamiche**: modificano i dati e necessitano di una computazione per il mantenimento della struttura

Dimensione dei Problemi

Consideriamo la seguente tabella sui numeri di cifre di alcune funzioni note

$ u^u $	1	500.001	1.060.206	1.643.137	2.240.824	2.849.486	3.466.891	4.091.569	4.722.472	5.358.819	6.000.001
2^n	1	30.103	60.206	90.309	120.412	150.515	180.618	210.721	240.824	270.927	301.030
n^5	Н	26	27	28	29	29	29	30	30	30	31
n^2	Н	11	11	11	12	12	12	12	12	12	13
u	Н	9	9	9	9	9	9	9	9	9	7
$\log_2(n)$	1	2	2	2	2	2	2	2	2	2	2
u	1	100.000	200.000	300.000	400.000	500.000	000.009	700.000	800.000	900.006	1.000.000

Possiamo notare come da $\log a$ n e da n a 2^n è presente lo stesso "salto" di grandezza dei valori, in quanto si passa di un livello esponenziale

Sia

- A un algoritmo
- ullet n la lunghezza delle istanze da risolvere
- f(n) il numero di operazioni da eseguire di ${\cal A}$ in funzione di n
- a il numero di operazioni al secondo eseguite

Possiamo ottenere l'istanza più lunga risolvibile in k secondi come

$$\frac{f(n)}{a} \le k$$

Da questa formula possiamo notare l'immensa **differenza di costo computazionale** tra le varie funzioni

$$a = 1$$

К	$\log_2(n)$	u	n^2	2^n
1 secondo	2	П	1	0
2 secondi	4	2	Н	П
4 secondi	16	4	2	7
1 minuto	$1.15 \cdot 10^{18}$	09	7	9
1 ora	*	3.600	09	12
1 giorno		86.400	293	17
1 secolo		$3.1536 \cdot 10^9$	56.156	32

* numero con circa 1084 cifre

O con un caso più realistico, una istruzione per microsecondo

$$a = 10^{11}$$

2^n	0	1	2	9) 12	3 17	56 32
n^2	1	П	2	7	09	293	56.156
u	1	2	4	09	3.600	86.400	$3.1536 \cdot 10^{9}$
$\log_2(n)$	2	4	16	$1.15 \cdot 10^{18}$	*		
k	1 secondo	2 secondi	4 secondi	1 minuto	1 ora	1 giorno	1 secolo

^{*} numero con circa 30'000'000'000 di cifre

Insertion Sort

🖢 Idea

L'idea è quella di, per ogni elemento, controllare dal fondo ogni elemento fino a trovarne uno minore, per poi inserirlo dopo di esso

INSERTION-SORT(A)

Parametri: A=vettore

Chiamiamo t_j il numero di volte che la **guardia del ciclo while** (condizione - riga 5) viene valutata.

Il valore di t_j dipende da j e corrisponde al numero di elementi del vettore ogni volta spostati, più uno (condizione risulta false e esce dal ciclo)

Costo Computazionale

Calcoliamo il costo computazionale dell'algoritmo

Istruzione	Costo	Costo Ripetizioni
for $j = 2$ to A.length	c_1	u
key = A[j]	c_2	n-1
i = j - 1	c_4	n-1
while i > 0 and A[i] > key	c_5	$\sum_{j=2}^n t_j$
A[i + 1] = A[i]	92	$\sum_{j=2}^n (t_j-1)$
i = i - 1	C7	$\sum_{j=2}^n (t_j-1)$
A[i + 1] = key	c_8	n-1

La formula sarà quindi

$$egin{aligned} T(n) &= c_1 \cdot n + \ c_2 \cdot (n-1) + \ c_4 \cdot (n-1) + \ c_5 \cdot \sum_{j=2}^n t_j + \ c_6 \cdot \sum_{j=2}^n (t_j - 1) + \ c_7 \cdot \sum_{j=2}^n (t_j - 1) + \ c_8 \cdot (n-1) \end{aligned}$$

A seconda del valore di t_j , abbiamo risultati diversi

- ullet Caso ottimo: non sposto mai nessuno $\Longrightarrow t_j = 1$
- Caso pessimo: li sposto tutti ogni volta $\implies t_j = j$
- ullet Caso medio: ne sposto mediamente metà ogni volta $\Longrightarrow t_j = rac{j}{2}$

Date le seguenti sommatorie note calcoliamo

$$\sum_{j=1}^{n} j = rac{n(n+1)}{2} \ \sum_{j=2}^{n} j = rac{n(n+1)}{2} - 1 \ \sum_{j=2}^{n} (j-1) = rac{n(n-1)}{2}$$

≡ Esempio: Caso Ottimo

$$t_j = 1$$

$$c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{j=2}^n1+c_6\sum_{j=2}^n(1-1)+\sum_{j=2}^n(1-1)+c_8(n-1)$$

Semplificando e raccogliendo le costanti

$$T(n)=an+b$$

≡ Esempio: Caso Pessimo

$$t_j=j$$

$$c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{j=2}^n j+c_6\sum_{j=2}^n (j-1)+\sum_{j=2}^n (j-1)+c_8(n-1)$$

Semplificando e raccogliendo le costanti

$$T(n) = an^2 + bn + c$$

≡ Esempio: Caso Medio

$$t_j = \frac{j}{2}$$

$$c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^n \frac{j}{2} + c_6 \sum_{j=2}^n \left(\frac{j}{2} - 1 \right) + \sum_{\frac{j}{2} = 2}^n \left(\frac{j}{2} - 1 \right) + c_8 (n-1)$$

Semplificando e raccogliendo le costanti

$$T(n) = an^2 + bn + c$$

Alberi

♥ Proprietà

- Ogni nodo ha un solo padre e diversi figli, ad eccezione del primo che non ne ha, chiamato radice (root)
- Due nodi possono essere collegati da un solo percorso, ovvero non sono presenti cicli
- I nodi senza figli vengono chiamati foglie

Alberi Binari

⊗ Proprietà

- Ogni nodo a massimo due figli
- Viene definito **completo** se il numero di nodi è una potenza di 2

Totale Nodi (TOT_i)	1	3	2	15	2^h-1
Numero di Nodi (LIV_i) Totale Nodi (TOT_i)	1	2	4	8	2^{h-1}
Piano (i)	Н	2	3	4	h