Основные методы интегрирования

$\int P_n(x) \begin{Bmatrix} e^{ax} \\ \sin ax \\ \cos ax \end{Bmatrix} dx$	по частям $\int u dv = uv - \int v du$, $u = P_n(x)$
$\int P_n(x) \begin{Bmatrix} \log_b x \\ \arcsin ax \\ \arctan ax \end{Bmatrix} dx$	по частям $\int u dv = uv - \int v du$, $u = \log_b ax$
$\int \sqrt{x^2 + px + q} dx$	по частям и к себе
$\int \begin{cases} \sin ax \\ \cos ax \end{cases} e^{bx} dx,$ $\int \begin{cases} \sin \\ \cos \end{cases} (\ln x) dx$	дважды по частям и к себе
$\int \frac{P_n(x)}{Q_m(x)} dx$	При $n \ge m$ выделить целую часть. Далее разложить на простейшие дроби вида $\frac{A}{(x-a)^k}, \frac{Ax+B}{(x^2+px+q)^k}$
$\int \frac{P_n(x)}{Q_m(x)} dx, n < m,$ Q_m имеет кратные корни	Метод Остроградского $\int \frac{P_n(x)}{Q_m(x)} dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} dx$
$\int R(\sin x, \cos x) dx$	Универсальная тригонометрическая подстановка $t=\operatorname{tg} \frac{x}{2},$
	$\sin x = \frac{2t}{1+t^2}, \cos x = \frac{1-t^2}{1+t^2}, dx = \frac{2dt}{1+t^2}.$
$\alpha \in \mathbb{Q}$	
$\int \frac{dx}{(x+a)^k \sqrt{x^2 + px + q}}$	$t = \frac{1}{x+a}$
$\int \frac{(x+a)^k \sqrt{x^2 + px + q}}{\int \frac{P_n(x)dx}{\sqrt{ax^2 + bx + c}}}$	$=Q_{n-1}(x)\sqrt{ax^2+bx+c}+\int \frac{\lambda dx}{\sqrt{ax^2+bx+c}}.$
$\int_{\mathbb{R}} R(x, \sqrt{a^2 - x^2}) dx$	$x = a\sin t, \ x = a\cos t.$
$\int R(x, \sqrt{a^2 - x^2}) dx$ $\int R(x, \sqrt{x^2 - a^2}) dx$	$x = \frac{a}{\cos t}, \ x = a \operatorname{ch} t.$
$\int R(x, \sqrt{x^2 + a^2}) dx$	$x = a \operatorname{tg} t, \ x = a \operatorname{sh} t.$
$\int \frac{dx}{(x^2+a)^m \cdot \sqrt{x^2+b}}$	$u = (\sqrt{x^2 + b})'$ (подстановка Абеля)
$\int x^m (ax^n + b)^p dx,$ $a, b \in \mathbb{R}, m, n, p \in \mathbb{Q}$	дифференциальный бином 1) $p \in \mathbb{Z}$, $x = t^N$, N – общий знам. $m,n;$ 2) $\frac{m+1}{n} \in \mathbb{Z}$, $ax^n + b = t^s$, s – знам. $p;$
	3) $\frac{m+1}{n} + p \in \mathbb{Z}$, $a + bx^{-n} = t^s$, s – знам. p .