4042330473

Fletd of Invention

The present invention relates to electroluminescent phosphor particles, particularly encapsulated phosphor particles which exhibit strong moisture resistance and high electroluminescent tingniness. The present invention also relates to a method for making such incapsulated phosphor particles.

Background

10

25

35

Prosphor particles are used in a variety of applications such as flat panel displays and decorations, cathode ray rubes, and fluorescent lighting fixtures. Luminescence or light emission by prosphor particles may be stimulated by application of heat (thermoluminescence), light (protoluminescence), high energy radiation (e.g., x-rays or e-peams), or electric fields (electroluminescence).

Electroluminescent ("EL") phosphors are of particular commercial importance. The luminescent prightness and "maintenance" of such brightness of such phosphora are two important criteria for characterizing phosphor particles. Luminescent brightness is typically reported as a quantity of light emitted by the subject phosphor when excited. When reported in absolute brightness, e.g., in foot-Lamberts ("R-L"), the conditions under which the phosphor is excited should also be reported as the absolute luminescent brightness of a given phosphor typically depends upon a combination of several factors. For instance, the apsolute brightness of an electroluminescent phosphor should be reported with specified voltage and frequency of the applied electric field and temparature of the phosphor. The luminoscent brightness attained is \$120 dependent in part upon the physical characteristics and appendications of the test device used to measure the magnitude of emitted light. A typical ment device possesses many of the same members as the thick film electroluminescent devices discussed below. With regard to accurately determining the apsolute brightness of a subject phosphor, important charac-ज्ञात्रप्रदेश कालावार्य include the anckness of the phosphor layer, the concentration or leading of the phosphor paractions in the dielectric matrix, the characteristics of the particular dielectric matrix material, a-nd the transparency of the front electrode. Because of the sensitivity of phosphor emission brightness to varying conditions of excitament, the prightness of phosphora are more typically reported as relative brightnesses rather than as absolute prightness. "Maintenance" refers to the rate at which phosphora lose brightness during operation. As discussed by Thornton in Electroluminescent Maintenance, Jour. of Electrochem, Soc., pp 895-907. Vol. 107, No. 11, Nov. 1960, such a decrease in brightness with operating time is a typical characteristic of phosphors. Furthermore, the rate of decay is substantially increased if the phosphor particles are subjected to conditions of high humidity while being operated. "Atmospheric water vapor is perhaps the most important severge influence on electroluminescence maintenance from the point of view of practical application." (bid. This effect of moisture or high humidity is referred to herein as "humidity-accelerated decay".

Decay characteristics observed during operation at zero relative humidity are referred to as the intrinsic maintenance characteristics or intrinsic decay of the subject phosphor. The intrinsic decay varies with operating conditions such as votage, frequency, and temperature, but is essentially reproducible for a given phosphor for a given set of operating conditions. As noted by Thomson, operation in high humidity, e.g., relative humidity of greater than about 80 percent can increase the decay rate by a factor of 10 or more with respect to the subject phosphor's intrinsic decay.

Particulate EL phosphors are most commonly used in thick film constructions. These devices typically include a layer of an organic dielectric matrix, e.g., polyester, polyester, polyester, computation, e.g., sulfide-based phosphor etc., preferably having a high dielectric constant, loaded with phosphor particles, e.g., sulfide-based phosphor particles. Such layers are typically coated on a plastic substrate having a transparent front electrode. A rest electrode, e.g., an aluminum fod or acreen printed silver ink, is typically applied to the back side of the prosphor layer. When an electric field is applied across the electrodes, the proximate portions of the layer emit light as the phosphor particles therein are excited. Such constructions may further comprise opposal dielectric layers between the phosphor layer and rear electrodes.

Organic matrices and costings can temporarily delay or alow the rate of humidity-accelerated decay, however, after moisture partments the matrix or costing, rapid loss of luminescent brightness is typically exhibited. Organic matrices and substrate materials have typically been insufficiently effective in preventing diffusion of water vapor to the prosphor particles, and have accordingly been ineffective in preventing subsequent decay of brightness. For this reason, thick film electroluminescent devices are typically encased in relatively thick, e.g., 25 to 125 microns, envelopes of moisture-resistant materials such as fluorechlorocarbon polymers such as ACLAR Polymers from Allied Chemical. Some of the problems with such envelopes include typically substantial expense, until borders, and potential for detamination, e.g., under near.

U.S. Patent No. 4,097,776 (Allinikov) discloses electroluminascent phosphore coated with a liquid crystal in a solution-based technique. U.S. Patent No. 4,508,760 (Olson et al.) discloses encupsulation of electroluminascent

30

15

55

EP 0 455 401 A2

nescent phosphors vie vacuum deposition of certain polymers.

It is also known to encapsulate prespirer particles in inorganic coatings, e.g., exide coatings. U.S. Patent No. 3,264,133 (Brooks) discloses the deposition of coatings such as utainis (TiO₂) on phosphor particles by washing the particles in a predominantly alcohol solution of a halogen-containing constituent e.g., thanking the particles.

Vapor phase reaction and deposition processes have been used to coat phosphor particles with inorganic coatings. Such techniques are typically considered as superior in providing more complete, uniform, and defect-free coatings. Prosphor particles encapsulated with such techniques have exhibited substantial resistance to humidity-accelerated decay. Mowever, significant reductions in humidity-accelerated decay of luminescent brightness have been optained only in conjunction with greatly diminished initial luminescent brightness and in some instances, undesirable color shift of the light emitted by the encapsulated phosphor particles.

For instance, U.S. Patent No. 4,855,189 (Simopoulous et al.) discloses encapsulation of phosphor particles with SiO₂ via a chemical vapor deposition process ("CVD") wherein phosphor particles are subjected to a temperature of about 490°C and an atmosphere of oxygen and stane gas while being agitated. Phosphor particles encapsulated in accordance with this reference have been found to exhibit a substantial reduction in initial electrolinescent brightness for given excitament conditions.

Air Force Technical Report AFFDL-TR-68-103 (Thompson et al., July 1968) discloses vapor phase encapsulation of electroluminescent phosphor particles for the purpose of attempting to improve performance at elevated temperatures. That reference discloses use of a fluidized bed chemical vapor deposition ("CVD") process to deposit several different oxide coatings onto zinc suffice-based phosphore. Oxide coatings were deposited from a variety of precursor materials at furnace settings of about 200°C to about 500°C. The reactor temperature profile was such that the maximum temperature within the reactor to a topically 100°C higher than the nominal temperature setting, accordingly, the maximum temperatures within the reactor ranged upward of about 300°C for the various deposition rune disclosed therein. Triania-coated zinc sufficezinc selenide phosphors were found to have a raduced humidity-accelerated decay, but the initial luminescent brightness of the encapsulated phosphors was only about 25 percent that of the engine material in uncoated form.

The prior art does not disclose a technique for encapsulating phosphor particles that provides desired moisture-resistance coupled with high levels of initial luminescent prightness relative to the initial luminescent phightness of the uncoated prosphor particles.

Summary of invention

The present invention provides novel encapsulated phosphor particles having thin, substantially transparent oxide coatings which exhibit unexpectedly high initial luminescent brightness coupled with surprising resistance to humidity-accelerated decay of luminescent prightness. The present invention also relates to a novel method for making such encapsulated phosphor particles utilizing relatively low temperature vapor phase hydrolysis reactions and deposition processes.

Briefly summarizing, encapsulated phosphor particles of the invention each comprise a particle of luminescent phosphor which is essentially completely encapsulated within a substantially transparent, continuous exide coating, in accordance with the invention, the encapsulated particle has an electroluminescent brightness which is equal to or greater than 50 percent of the luminescent brightness of the original uncoated phosphor particle when excited in the same manner. Further, encapsulated phosphor particles of the invention exhibit substantially reduced humidity-accelerated brightness decay, i.e., their brightness decay characteristics in operating conditions of 95 percent or more relative humidity are substantially the same as their instrusic decay characteristics, such that the percent of electroluminescent brightness retained following 100 hours of operation in an environment having a relative humidity of at least 95 percent is greater than about 70 percent, preferably greater than about 70 percent, preferably greater than about 90 percent, of the intrinsic brightness of the encapsulated phosphor particles retained following 100 hours operation under substantially the same operating conditions of temperature, and voltage and frequency of applied electric finid. Intrinsic brightness of the encapsulated phosphor particles refers to the electroluminescent brightness of such particles when operated under a relative humidity of less than 10 percent.

- In brief summary, the nevel method of the invention comprises:
- a) providing an agitated bad of phosphor particles;
- b) heating the bed to a temperature of between about 25°C and about 170°C;
- c) exposing the bed to one or more vapor phase oxide precursors such that the precursors chemically read and form hermetic, substantially transparent oxide costings on the surfaces of the particles, thereby yielding essentially encapsulated phosphor particles; and
- d) cooling the resultant encapsulated particl s-

20

48

EP 0 455 401 A2

The initial electroluminescent brightness of encapsulated phosphor particles of the invention is typically at least about 50 percent of the initial luminescent brightness of the phosphor particles in their initial uncoated state, preferably at least about 70 percent of that initial prightness, and most preferably at least about 80 percent of that initial prightness. The brightness decay during operation while exposed to high humidity, e.g., relative humidity of over 80 percent, is much less than that of the uncoated phosphor under the same conditions, and is typically substantially the same as the intrinsic decay of the subject phosphor. Phosphor particles of the invention provide a surprising compination of high initial electroluminescent brightness and humidity resistance, a combination which was heretotore unavailable.

Brief Description of Drawing

The invention will be further explained with reference to the drawing, wherein:

Figure 1 is a schematic illustration of one embodiment of the method for making encapsulated phosphor particles in accordance with the present invention;

Figure 2 is a cross-sectional illustration of phosphor particles of the invention; and Figures 3 and 4 are graphical illustrations of the decay characteristics of illustrative encapsulated phosphor particles of the invention and the decay characteristics of uncoated phosphor particles of the same compostion.

These figures are idealized and are intended to be merely illustrative and non-limiting.

Detailed Description of Illustrative Embodiments

Phosphor particles used in the invention comprise zinc sulfide-based electroluminescent materials. Such phosphore are well-known and commonly include one or more of such compounds as copper sulfide (CuS), zinc sateniae (ZnSe), and cadmium suffide (CdS) in solid solution within the zinc sulfide crystal structure or as second phases or domains within the panide structure.

Phosphera commonly contain moderate amounts of other materials such as departs, e.g., bromine, chlorine, manganese, silver, etc., as color centers, as activators, or to modify defects in the particle lattice to modify properties of the phosphor as desired. Phosphors used in the present invention may be formulated in accordance with conventional practices.

Good results have been obtained with several commercially available phosphora including Sylvania Type 723, 728, and 830 Phosphors. Sylvania Type 723 is believed to be a copper-activated zinc sulfide phosphor which provides green fluorescence under an applied electric field. Sylvania Type 728 is believed to be a copper-activated zinc suifide phosphor which provides green fluorescence under an applied electric field. Sylvania Type 830 is pelieved to be a blend of copper/manganese-activated zinc sulfide and copper-activated zinc sulfide which provides a white fluorescence under an applied electric field.

Prosphor particles used herein may be of many sizes, typically depending to large extent on the particular application. Phosphor particles having average particle diameters of between about 1 and about 50 microns, preferently between about 10 and 40 microns, are typically useful for screen printed and roll coated panels, for CRT acreens, light builds, as well as many other applications. Phosphor particles which are too large may interfore with formation of very thin phosphor layers, may result in grainy or nonuniform light output and typically tend to settle too quickly from suspensions during device fatrication. Phosphor particles which are too small may tend to degrade more rapidly during use due to increased relative staface area. may tend to agglomerate ao as to interfere with free flow characteristics, and may be difficult to mix with binders in desirably high loadings.

Encapsulated phosphor particles of the invention are essentially completely costed with a substantially continuous costing of one or more exides. As used herein, "exide costing" means a material made up primarily of metal cations and exygen, but which may contain minor amounts of other elements and compounds originating in the precureor materials or phosphor particles, which can be generated in coating form on phosphor particles under the conditions described herein. Advantageous results have been obtained with costings of titants (TiO₂) and thenis/silice TIO/(SiO2). It is believed that queful results may also be obtained with other exides formed from precureors in low temperature reactions such as silica (SiO₂), altertina (Al₂O₃), tin oxide (SnO₂), zirconia (ZrO₂), etc., and similarly formed compound oxides such as mulifie (3A1₂O₃-2SiO₂).

The exide costing is substantially transparent and is typically between about 0.1 and 3.0 microns trick. preferribly between about 0.1 and about 0.5 microns thick. Costings which are too thin may tend to provide insufficient impermeability to moisture. Coatings which are too thick may tend to be less transparent and result in reduced prightness.

As mentioned above, the novel method of the invention comprises:

a) providing an agrated bed of phospher particles:

25

30

35

55

EP 0 455 491 A2

b) heating the bed to a temperature of between about 25°C and about 170°C, preferably between about 100°C and about 150°C;

c) exposing the bed to one or more vapor phase oxide procursors such that the procursors chemically react to form exides in the presence of the phospher particles and deposit on the surfaces of the phospher particles an essentially continuous, substantially transparent exide coating, thereby yielding essentially encapsulated phospher particles; and

d) cooling the resultant encapsulated particles.

An illustrative embodiment of the novel process of the invention is shown schematically in Figure 1.

During manufacture, prosphor particles may typically be washed to remove residual amounts of departs left on the surfaces thereof, e.g., copper sulfide may be removed with a potassium cyanide solution. Generally, commercially available prosphor particles are suitable for use in the present invention in the condition supplied by the manufacturer without any further special surface proparation.

Uncosing phosphor particles 12 are placed in reactor 14 and heated to between about 25°C and about 170°C, preferably perween about 100°C and 150°C. In order to form substantially continuous coatings covering essentially the entire surfaces of the phosphor particles, the particles are preferably agitated while in the reaction chamber. Illustrative examples of useful methods for agitating the phosphor particles include shaking, vibrating, or rotating the reactor, stiming the particles, or suspending them in a fluidized bed. In such reaction chambers, the particles may be agitated by many different ways such that essentially the entire surface of each perticle is exposed and the particles and reaction procursors may be well intermixed. Typically, a preferred reaction chamber is a fluidized bed reaction. Fluidizing typically tends to affectively prevent agglemeration of the particles, achieve uniform mixing of the particles and reaction procursor materials, and provide more uniform reaction conditions, thereby resulting in highly uniform encapsulation characteristics.

Although not required in many instances, it may be desired when using phosphor particles which tend to agglomerate to add fluidizing aids, e.g., small amounts of furned silica. Selection of such aids and of useful amounts thereof may be readily determined by those with ordinary skill in the art.

Procursor materials in vapor phase are then added to the reactor. The present invention utilizes 8 vapor phase hydrolysis reaction to form a coating of exide material on the surfaces of the phasehor particles thereby encapsulating them. Such process is sometimes referred to as a chemical vapor deposition ("CVD") reaction. The following is an illustrative reaction:

In the illustration, water vapor and titanium tetrachloride are considered oxide pracursor materials.

One technique for getting the precursor materials into vapor phase and adding them to the reaction chamber is to bubble a stream of gas, preferably their, referred to herein as a carrier gas, through a solution or neat liquid of the precursor material and then into the reaction chamber. Illustrative examples of inert gases which may be used herein include argon and hippgen. Oxygen and/or air may also be used. An advantage of this technique is that the carrier gas/precursor arreams may be used to fluidize the phosphor particles in the reaction chamber, thereby facilitating the desired encapsulation process. In addition, such a technique provides means for readily controlling the rate of introduction of the precursor materials into the reactor. Referring again to Figure 1, carrier gas 2 is bubbled through water bubbler 4, to produce water vapor-containing precursor arream 8, and carrier gas 2 is also bubbled through transition tetrachloride bubbler 6, to produce transition tetrachloride-containing precursor stream 10. Precursor streams 8 and 10 are then transported into reactor 14.

Precursor flow rates are adjusted to provide an adequate deposition rate and to provide an exide coating of desired quality and character. Flow rates are adjusted such that the rates of precursor materials present in the reactor chamber promote exide deposition at the surface of the pheaphor particles substantially without formation of discrete, i.e., free floating, exide particles, elsewhere in the chamber. For example, when depositing coatings of trainia from trainium terrachloride and water, a high ratio of terrachloride molecules to water molecules is maintained such that most of the available water in the reaction chamber remains absorbed on the surfaces of the pheaphor particles and little is in free state elsewhere in the chamber. Such a ratio is also believed to promote the formation of more analystous titania films which are believed to provide optimum protection against humidity-accelerated decay.

Optimum flow rates for a particular application typically depend in part upon the temperature within the rescion chamber, the temperature of the precursor streams, the degree of particle agricular within the chamber, and the particular precursors being used, but useful flow rates may be readily determined with vial and error, in preferred embodiments, the flow rate of carner gas used to transport the precursor materials to the reaction chamber is sufficient to agricult the phosphor particles as desired and also transport optimal quantities of precursor materials to the chamber.

15

95

02-19-99

FP 0 455 401 A2

Preferably, the precursor materials have sufficiently high vapor pressures that sufficient quantities of precursor material will be transported into the reactor for the hydrolysis reaction and coating process to proceed at a conveniently fast rate. For instance, precursor materials having higher vapor pressures will typically provide faster deposition rates than will precursor materials having lower vapor pressures. Thereby enabling the use of shorter encapsulation times. Precursor sources may be heated to increase the vapor pressure of the material. however, this may necessible heating of tubing or other means used to transport the precursor material to the reactor so as to prevent condensation between the source and the reactor. In many instances, precursor mateness will be in the form of ness tiquids at room temperature. In some instances, the procureor materials may be available as aublimable solids.

Procursor materials that are capable of forming hermetic oxide coatings via hydrolysis reactions at low temperatures, e.g., below about 170°C and preferably below about 150°C, are preferred. Advantageous results have been obtained with transum tetrachloride of silicon tetrachloride, and water as procursor materials. In addition to such metal chlorides, useful results are also expected with metal alkoxides, e.g., titanium isopropoxide, silicen ethexide, and zirconium n-propoxide.

Preferably, the mutually reactive precursor materials, e.g., TiCl, and M2O, are not mixed prior to being added to the reactor in order to prevent premature reaction within the transport system. Accordingly, multiple gas streams into the reactor chamber are typically provided.

The temperature of the reactor is maintained at between about 25°C and about 170°C, and preferably between about 100°C and about 150°C. It has been observed that encapsulation processes performed at termperstures within this range provide deposition of desired hermetic coatings that provide desired protection against humidity-accelerated decay white avoiding intrinsic thermal damage or adverse thermochemical resctions at the surfaces of the particles which cause undestrable loss of initial prightness. Encapsulation processes which are performed at temperatures which are too low may tend to result coatings which do not provide desired resistance to humidity-accelerated decay. Such coatings are not sufficiently moisture impermeable, a result it is believed of having a more open or more hydrated structure. Encapsulation processes which are performed ex competatures which are too high may result in decreased electroluminescent prightness, undesirable changes or shifts in the color of the light emitted by the subject phosphor, or degradation of the intrinsic decay characteristics of the subject phosphor material.

Almough it has been suggested in the prior art that exposing phosphor particles to high temperatures, e.g., shove about 350°C, mods to reduce the initial luminescent brightness thereof, it has been found that phosphor particles may be degraded by exposure to lower temperatures, e.g., about 170 to about 200°C, under certain conditions. While I do not wish to be bound by this theory, it is postulated that phosphor materials are not sensitive only to the temperatures to which they are exposed, but that one or more effects caused by exposure of the particles to certain compositions, e.g., exposure to certain compounds, also exist, and that such effects are also dependent upon temperature. A specific mechanism is not yet determined, but it is believed that the surface of the phosphor particles may undergo some change by exposure to such agents as hydrochloric acid such as a generated during vapor generation and deposition of titania coatings from transum retrachloride which affects the luminescent brightness of the resultant encapsulated particle.

Accordingly, encapsulation of phosphor particles as described herein is preferably performed at temperatures berseen about 25°C and about 170°C, preferably between about 100°C and about 150°C. Referring again to Figure 1, following encapsulation, encapsulated phosphor penticles 16 of the invention are removed from reactor 16. As illustrated in Figure 2, typically encapsulated phosphor particles 20 of the invention consist essentially of particle 22 of phosphor material which is essentially completely encapsulated within substantially transparent continuous oxide coeting 24.

Encapsulated phosphor panicles of the invention provide both high registance to humidity-accounted decay and authorantially retain their intrinsic properties. For instance, there is typically little or no shift in th emassion spectra of phosphor particles encopsulated as adught herein, such particles typically retain a substandal portion of their initial luminescent brightness, and the intrinsic decay characteristics are typically similar to or even better than those of the uncoated phosphor particles.

The resistance to numidity-accelerated decay is typically such that the rate of brightness loss when opersted white directly exposed to high humidity, e.g., a relative humidity of greater than 95 percent, is substantially no greater than the intrinsic prightness loss exhibited during operation in a dry environment, e.g., a relative humidity of loss than about 10 percent. In an illustrative example, the luminescent brightness of an encapsulated phosphor of the invention, after peration for 100 hours in an environment having a relative humidity of at least 95 percent, was over 90 percent of the luminescent brightness of similarly encapsulated phosphor particles after operation for 100 hours in an environment having a relative humidity of less than 10 percent.

Figure 3 is a graphical illustration of the relative absolute electroluminescent prightness versus time of operation of flustrative encapsulated phosphor particles of the invention and the same phosphor material in

25

30

75

45

50

55

EP 0 455 401 A2

uncosted state. In Figure 3, the difference in position on the Y (vertical) axis is proportional to the difference in absolute brightness of the subject phosphore. Each curve was derived from the average of several samples of the indicated type. Curve 50 represents the decay characteristics of uncoated phosphar material operated in a dry environment (relative humidity less than 10 percent) and Curve 52 represents the decay characteristics of uncoated phosphor material operated in a nigh humidity environment (relative numidity over 95 percent). The substantial difference between Curve 50 and Curve 52 represents humidity-accelerated brightness decay of the uncoated phosphor meterial. Curve 60 represents the decay characteristics of encapsulated phosphor particles of the same phospher material, encapsulated in accordance with the invention, operated in the same dry environment. Curve 62 represents the decay characteristics of encapsulated phosphor particles of the same phosphor material, encapsulated in accordance with the invention, operated in the same humid environment described above. The small differential between Curves 60 and 62 indicates that humidity-accelerated brightness ducay has been subsकाताक्षीy eliminated by encapsulation in accordance with the present invention. Curves 60 and 62 begin at lower absolute brightness, representing the reduction in initial electroluminescent brightness (about 75 percent of that of the uncoated phosphor material) resulting from the encapsulation process. Such performance is substantially better than that achieved with previously known encapsulation techniques. For instance, phosphor particles encapsulated in accordance with U.S. Patent No. 4,855,189 have been found to have an initial brightness of only about 30 percent of that of the uncoated phosphor.

Figure 4 is a graphical illustration of the percent of retained luminescent angitiness of each of the subject phosphors versus time of operation of encapsulated phosphor particles of the invention and the same phosphor material in an uncoased state. Each curve was derived from the average of several of samples of the indicated type. Curve 54 represents the decay characteristics of uncoased phosphor material operated in a dry environment (relative humidity less than 10 percent) and Curve 56 represents the decay characteristics of uncoased phosphor material operated in a high numidity environment (relative humidity over 95 percent). Curve 64 represents the decay characteristics of encapsulated phosphor particles of the same phosphor material, encapsulated in accordance with the invention, operated in the same dry environment. Curve 66 represents the decay characteristics of encapsulated in the same phosphor material, encapsulated in accordance with the invention, operated in the same phosphor material, encapsulated in accordance with the same humid environment.

In accordance with the present invention, encapsulated phosphor particles may be made which exhibit the exceptional resistance to humidity-accelerated decay described above and also provide high initial electrolumnescent brightness. For instance, encapsulated phosphor particles of the invention can be made with Sylvania Type 723 Phosphor which exhibit an initial electroluminescent brightness of at least about 15 foot-Lamperts, preferably at least about 20 foot-Lamperta, most preferably at least about 23 foot-Lamberts, as measured by providing a 100 micron thick layer of the encapsulated phosphor particles in dielectric oil (castor oil) with an ITO on glass electrode (transmission about 90 percent) that had been sprayed with substantially transparent acrysic coasing about 1000 angetroms thick thereover, the layer containing 66 weight percent of phosph in particles, applying an electric field having a voltage of about 600 volts and a frequency of about 500 Hertz, and measuring the magnitude of light emitted through the electrode. In an uncoated state, Sylvania Type 723 Phosphor was found to exhibit an initial electroluminescent origintness of about 29.5 foot-Lambarts. In an uncoated state, Sylvania Type 728 Prosphor has been found to exhibit an initial electroluminescent brightness of about 31.5 (not-Laimberts, and encapsulated prospher particles of the invention having brightnesses of at least about 16, preferably 22, and most preferably 25 foot-Lamberts can be made therewith. In an uncosted state, Sylvania Type 830 Phosphor has been found to exhibit an initial electroluminescent brightness of about 11 fo t-Lamberts, and encapsulated phosphor particles of the invention having brightnesses of at least about 6. preferably 8, and most preferably 9 foot-Lamberts can be made therewith.

Examples

The invention will be further explained by the following illustrative examples which are intended to be nonlimiting. Unless otherwise indicated, all amounts are expressed in parts by weight. Flow rates refer to the metered volume of carrier gas (nitrogen gas) through the indicated solutions.

Encapsulation Process

Fluidized bed reactors consisting of glass-fit type funnels with a single bottom inlet and size D fit were used. As indicated below, 20 millimeter and 40 millimeter reactors modified for oil bath immersion or for heating with nichrome wire were used. The 20 millimeter reactors were used with a single gas inlet tube and the 40 millimeter reactors with two gas inlet tubes. The gas inlet tubes were glass tubes, 10 millimeters in diameter, with size C glass fints which were inserted into the fluidized bed extending from the top of the funnel to introduce

10

EP 0 455 401 A2

carrier gas and metal tetrachionde vapors into the reaction zone. A separate tupe was connected to the bottom of the reactor and water vapor introduced into the reactor thereforeugh.

4042330473

Bubbler sizes were about 300 millilliters for the 20 millimeter diameter reactors and 800 millilliters for the 40 millimeter diameter reactors.

Cerrier gas and water vapor were passed through the funnel frit supporting the phosphor particles. Reagent grade nest liquids of titanium tetrachloride and allicon tetrachloride from Aldrich Chamical Company were used as indicated.

Brightness

The electroluminescent brightness of prosphor samples was determined in test cells comprising a machined aluminum grid with 100 micron spacing between electrodes. Each cell was filled with a musture of phosphor particles and liquid dialectric oil. Dow Corning FS 1265 fluorosdicon oil or caster oil, at about 66 weight percent particles. A transparent top electrode comprising a sheet of indium tin oxide coated polyester film (DX ITO/PE from Southwell Corporation), having about 90 percent transmission, was mounted over the top of the grid. Tests were run under an applied electric field of 220 volts, 400 Hertz, in sealed battery jars maintained with water-asturated air, i.e., relative humidity of above 95 percent, or desiccant, i.e., relative humidity of below 10 percent. Samples were run continuously for at least 96 hours.

SUCCESSION S

The following abbreviations are used in reporting the examples:

26	Abbrev.	Meaning
	IB	Initial Brightness of phosphor sample at
		beginning of brightness test as percentage of
		initial luminescent brightness of same
T		phosphor in fresh, uncoated condition.
	RB	Retained Brightness of phosphor sample after
		about 96 hours continuous operation of
		brightness cell as percentage of Initial
35		Brightness of same phosphot.
	RH	Relative Humidity under which luminescent
		brightness was determined.
40	SEM	Scanning Electron Microscope.

Prosphor Specifications

Communically evaliable Sylvania type 723, 723RB, 728, and 830 Phosphors were used in the Examples as indicated. The physical properties of those phosphore are reported by the seller as follows:

15

20

35

EP 0 455 401 A2

		Size Distrib.1				Den		
	туре		50%		551	M	<u>B</u>	Color'
	723	22	28	35	22	4.1	1.94	Light green
5	728	24	31	38	23	4 - 1	1.94	Light green
	830	22	28	35	22	4.1	1.94	Light can

Particle Size Distribution - Coulter Counter, size in micrometers at listed percentiles.

- Material ("M") and Bulk ("B") Density in grams/cubic centimeter.
 - ' Fisher Sub-Sieve Size.
 - Body color.

Type 723 RB Phosphor has been observed to exhibit a greater shift to blue emission when high frequency electric fields are applied, but is otherwise believed to be substantially similar to Type 723 Phosphor. Type 723 RB Phosphor is reported to have the same physical properties as listed above for Type 723.

Example 1

A 20 millimeter diameter reactor heated with nichrome wire was used to encapsulate 20 grams of Sylvania.

During encapsulation the temperature was maintained at 137°C ± 8°C. The flow rates of dry nitrogen through the water and titanium auphlers were 100 centimeters?/minute and 260 centimeters?/minute, respectively. The encapsulation process was run for 4 nours. Small samples were removed from the reactor every flour and immersed in 0.1 molar silver nitrate solution and observed. The unceated phosphor turned plack within a flaw minutes as silver sulfide formed at the surface of the particles. Phosphor particles removed after 1 hour turned gray, indicating incompletely encapsulated particles. Phosphor particles removed after 2 or more hi ura were unaffected by the solution, indicating that they were essentially completely encapsulated with a coating which was impermeable to the solution. Negligible change in coloration of the immersed particles was observed over a period of several weeks.

SEM analysis reveated that the phosphor particles had coating thicknesses of between 0.2 and 0.4 microns. The coatings appeared to completely cover the surfaces of the particles and no pores were visible.

Brightness results of the encapsulated phosphor particles, identified as Sample 1, are tabulated in Table 1 below. The corresponding results for unureated phosphor particles, identified as sample A are also listed for comparison.

		Tabl	e I
Sample	RB	IB	RB
<u> </u>	<10	100	75
A	>95	100	0
1	<10	77	88
1	>95	77	88

The Retained Brightness of Sample A differed markedly between operation in numid conditions and operation in dry conditions. However, in Sample 1 it was substantially the same, indicating high resistance to humberly-accelerated decay. In other tests, operation of encapsulated prospher particles of the invention in human numeronments was found to have resulted in a somewhat lower Retained Brightness than operation in dry environments, but in all instances the differential was small and high resistance to humidity-accelerated decay was

oppsined.

Examples 2-7

Several 20 gram batches of Sylvania No. 723 Phosphor were costed with branis as in Example 1, except the average temperature and flow rates were varied as indicated. The reaction conditions and original properties of the resultant encapsulated phosphor particles are tabulated in Table II.

			Table I	<u>I</u>			
10	Sample	Tem <u>p</u> '	Water'	Ticl,	IB	RB	
	2	130	100	220	77	85	
	3 .	140	100	220	73	82	
15	4	150	100	220	69	59	
क	5	140	200	120	72 .	18	
	6	140	170	120	68	56	
	7	140	120	200	73	86	
25							

Average reaction temperature in °C.

Examples 2-4 illustrate a tendency toward reduced initial luminescent brightness with increasing reaction temperature, indicating that minimization of reaction temperature below certain levels is important for maintaining high initial luminescent brightness.

Examples 5-7 illustrate a tendency toward increased retention of luminoscent brightness with higher ratios of disnium retractionide to water procursor flows. This effect may have been observed because the resultant costings made with lower ratios were less anhydrous or because the limited arrount of available tranium totractionide resulted in allower reaction and thinner resultant coating, which in thicker form might have provided better realistance to humidity-accelerated decay.

Exemples 8-10

Several butches of Sylvania No. 723 Phosphor were encapsulated as in Example 1 except (1) an oil bath was used to maimain and average reaction temperature of about 140°C ± 5°C and (2) the coloride bubbler contained a missure of disnium tetrachloride and silicon tetrachloride in the indicated volume rate. The flow rate dirough the water bubbler was 100 continuous?/minute and the flow rate through the chloride bubbler was 220 continuous.

D

35

Flow rate through water bubbler in centimeters'/minute.

Flow rate through TiCl, bubbler in centimeters / minute.

		<u> </u>	
Sample	Ratio	IB	RB
8	40/60	82	89
9	60/40	. 87	88
10	80/20	80	83

10 Examples 11-15

25

30

50

55

Several batches of Sylvania No. 723 Phosphor were encapsulated as in Example 1 except that a 40 millimeter diameter reactor and 100 grams or 200 grams as indicated of phosphor were used, and the reaction was continued for the indicated time. Nitrogen flow rates through the water and titanium tetrachloride pubblers were 1300 cubic communicationinum and 350 cubic continues. respectively.

	<u>fable IV</u>						
Sample	Temp	Amount	Time	IB			
11	200	200	9	14			
12	187	100	7	22			
13	170	100	5	32			
14	157	100	5	60			
15	150	100	5	67			

Average reaction temperature in °C.

Examples 11-15 illustrate a tendency toward reduced initial luminescent brightness with increasing reaction temperature below certain levels is important for maintaining high initial luminescent brightness.

Examples 16-25

Several 150 gram batches of Sylvania No. 723 Phosphor were encapsulated with titania using a 40 millimeter diameter reactor with 2 top gas inlets for oxide procursors. The temperature was controlled to ± 2°C of the indicated value using an oil bath.

² Amount of phosphor in charge.

¹ Length of reaction time.

				Table \	7	_		
	g10	Temp1	A Flow	B Flow	Water	Time 5	IB	RB
	Sample			600	600	5.5	77	87
5	16	135	600		600	6.0	74	82
	17	135	600	600			75	77
	18	138	640	600	310	7.5		
	19	138	640	600	350	7.5	77	73
10								
	20	138	640	600	450	8.5	72	81
		128	640	600	450	7.5	71	80
	21			600	450	8.0	69	83
	22	128	640			8.0	72	88
15	23	128	640	600	480	a.v	, ~	
	3.4	138	680	700	550	4.0	84	81
	24	•		700	600	4.0	79	88
20	25	138	680	700	300			

Reaction temperature in °C.

Examples 26-28

25

30

Three 20 gram batches of encapsulated phosphor particles were made using Sylvania No. 723, 728, and 830 Phosphor, respectively. In each case the phosphor particles were encapsulated using a 20 millimeter diameter reactor heated in an oil bath to an average temperature of about 128°C. The encapsulation reaction was run for 3.5 hours at the indicated flow rates.

² flow rate through TiCl, bubbler A in centimeters /minute.

¹ Flow rate through TiCl, bubbler B in centimeters /minute.

flow race through water bubbler in centimeters / minute.

Reaction time in hours.

	Table VI				
Sample	Phosphor	TiCl.	Water	IB_	RB
26	723RB	200	105	72	83
27	728	220	110	68	83
28	830	220	110	84	81

¹ Flow rate through TiCl, bubbler in centimeters /minute.

Various modifications and alterations of this invention will become apparent to those stolled in the स्था जाएन out departing from the acope and spirit of this invention.

Claims

25

30

5

10

15

70

 Encapsulated electroluminescent phosphor particles, characterized in that each comprises a particle of electroluminescent phosphor which is essentially completely encapsulated within a substantially transparent, continuous exide coating;

wherein said encapsulated phosphor particles have an initial electroluminescent brightness which is equal to or greater than about 50 percent of the initial electroluminescent brightness of the uncoated phosphor particles, and wherein the percent of luminescent brightness retained following 100 hours operation in an environment having a relative humidity of at least 95 percent is greater than about 70 percent of the intrinsic brightness retained following 100 hours operation, the operation temperature, voltage, and frequency being supstantially equal.

35

40

45

50

- 2. The encapsulated phosphor particles of claim 1 further characterized in at least one of the following:
 - a) the initial electroluminescent brightness of said particles is equal to or greater than about 70 percent of the initial luminescent brightness of the uncoated phosphor particles; or
 - b) the initial electrolymanescent brightness of said particles is equal to or greater than about 80 percent of the initial luttingscent brightness of the uncosted phospher particles.
- The encapsulated phosphor particles of claim 1 further characterized in at least one of the following:
 - a) said retained electroluminescent brightness is greater than about 80 percent of said intrinsic brightness; of
 - b) said retained electroluminescent brightness is greater than about 90 percent of said intrinsic oright-
- 4. The encapsulated phosphor particles of claim 1 further characterized at least one of the following:
 - a) said particles comprise zinc sulfide-based phosphor materials; or
 - b) said particles comprise zinc sulfide-based phosphor materials and contain minor amounts of one or more of the following: cadmium, selenium, copper, bromine, chlorine, manganese, or silver,
 - c) said particles are between about 1 and about 50 microns in diameter, or
 - d) said particles are between about 10 and about 40 microns in diameter.
- 55 S. The encapsulated phosphor particles of claim 1 further characterized in at least one of the following:
 - a) said coating is between about 0.1 and about 3.0 microns thick; or
 - b) said coating is between about 0.1 and about 0.5 microns thick; or
 - c) said coating comprises at least one of the following: titania, silica, slumina, tin oxide, zirconia, or mul-

[?] Plow rate through water bubbler in centimeters³/minute.

20

35

55

EP 0 455 401 A2

iite.

- 6. A process for encapsulating phosphor particles in substantially transparent exide coatings said process coardinated in that it comprises:
 - a) providing an agitated bed of phosphor particles;
 - b) heating said bed to a temperature of between about 25°C and about 170°C;
 - c) exposing said bed to one of more vapor phase oxide precursors such that each precursors chemically react and form hermanic, substantially transparent oxide coatings on the surfaces of said particles, thereby yielding essentially encapsulated phosphor particles; and
 - d) copiling said encapsulated particles.
- 7. The process of craim 6 further characterized in that said bed is heated to a temperature of between about 100°C and about 150°C.
- 8. The process of claim 6 further characterized in at less one of the following:
 - a) said vapor phase exide precursors comprise water vapor, trantum tetrachloride, and silicon retrachloride; or
 - b) said vapor phase exide precursors comprise water vapor and one or more metal alkexides or matal chlorides.
 - 9. The process of claim 6 further characterized in at least one of the following:
 - a) and prospher particles comprise zinc sulfide-based phospher materials; or
 - b) said particles comprise zinc sulfide-based phosphor materials and contain minor amounts of one or more of the following: cadmium, selenium, copper, bromine, chlorine, manganese, or silver.
 - 10. The process of claim 6 further characterized in at least one of the following:
 - a) said phosphor particles are between about 1 and about 50 microns in diameter, or
 - b) said phosphor particles are between about 10 and about 40 microns in diameter; or
 - c) said exide coatings are between about 0.1 and about 3.0 microns thick; or
- 30 d) said exide coatings are between about 0.1 and about 0.5 microns thick.

02-19-99

09:51

EP 0 455 401 A2

4042330473

(1) Publication number: 0 455 401 A3

(12)

EUR PEAN PATENT APPLICATION

- (21) Application number . 91303636.6
- (22) Date of filing 23.04.91

(f) Int. Cl.⁵: **C09K 11/02,** C09K 11/61, C09K 11/58, C09K 11/57, C09K 11/56

- (30) Priority: 25.04.90 US 514440
- (43) Date of publication of application . Q6.11.91 Bulletin 91/45
- Designated Contracting States.

 DE FR GB IT NL SE
- (B) Date of deferred publication of search report. 18.03.92 Builetin 92/12
- 73 Applicant MINNESOTA MINING AND MANUFACTURING COMPANY
 3M Center, P.O. Box 33427
 St. Paul, Minnesota 55133-3427 (US)

- (2) Inventor: Kenton, D. Budd c/o Minnesota Mining and Manufact. Co., 2501 Hudson Road, P.O. Box 33427 St. Paul, Minnesota 55133-3427 (US)
- Representative . Baillie, lain Cameron et al c/o Lagas & Parry, Altheimer Eck 2 W-8900 München 2 (DE)

- Encapsulated electroluminescent phosphor and method for making same.
- Encapsulated electroluminescent phosphor particles and method for making same. The phosphor particles are encapsulated in a very thin oxide layer to protect them from aging due to moisture intrusion. The particles are encapsulated via a vapor phase hydrolysis reaction of oxide precursor materials at a temperature of between about 25°C and about 170°C, preferably between about 100°C and about 150°C. The resultant encapsulated particles exhibit a surprising combination of high initial luminescent brightness and high resistance to humidity-accelerated brightness decay.

EUROPEAN SEARCH REPORT

EP 91 30 3636

1	DOCUMENTS CONSIDER		Rulevage	CLASSIFICATION OF THE
	Calabina of Garantess With Grands of Polytons passages			APPLICATION (Ex. CLS)
	WD-A-9 110 715 (GTE)		1-6,8,10	CD9#11/02
	" the whole document "			CQ9#11/61
	***			C09#11/58
P	US-A-4 999 219 (A.A. ALINEDI	ngt 4 al)	1,5,6,8	C09K11/57
	T claim 1; examples 1-7 "			CD9k11/56
	EP-#-0 160 856 (GTE)		1.←7.10	
	" the whole document "			
	PATENT ABSTRACTS OF JAPAN		1-9	
	vol. 14, no. 57 (C-684)2 Fe	Drugry 1990	ļ	
	& JP-A-1 284 583 (MITSUBIS	HI HETAL) 15	1	
	Movember 1989		1	
	" abstract "			
	!			
				SEARCHED (br. CL.5)
			İ	Cm9 K
	1			
			i	j
	1		i	
	İ		1	
			İ	
			i	}
			1	
			1	
	}			1
	Į.			
			1	
	The present match report has been	draws up for all claims		
	Res of Labo	See a Margary 1992	DE	CUST II, C.
	THE HAGUE		name unionytig	
_	CATEGORY OF CITED BOCUMENT	E : contry or pri E : contry prime green des filts	i cock grains, feer y	distributed on or
Y:	integrals where it contains not many bilitating interes it dies must	■ D : document 40	nal in the mailtai	
	Constant of the sales calculate technological techniques	f : (Stringt of		
0:		() : () () () () () () () () () () () () ()	20 Mary 1	ath, corresponding