Detectando questões duplicadas: Quora Questions Pairs

Airine Carmo e Christian Cardozo

Sumário

Análise dos dados Pré-processamento dos dados

Experimentos

Resultados e Considerações finais

Análise dos dados

- Conjunto de dados do treinamento
- 404.290 registros
- 255.027 registros são da classe '0'
- 149.263 são da classe '1'.

Análise dos dados

Pré-processamento

- 1. Transformação e Tokenização
- 2. Remoção de Stop Words
- 3. Stemming
- 4. Construção da matriz de presença e n-gramas
- 5. Redução de dimensionalidade
- 6. Combinando features

Construção da matriz de presença e n-gramas

- Foram geradas todas as combinações presentes no texto de 1-gramas, 2-gramas e
 3-gramas
- Foram geradas 3 matrizes de presença onde:
 - A primeira matriz se refere à presença de n-gramas na primeira questão do par.
 - A segunda, se refere à presença de n-gramas na segunda questão do par.
 - A terceira, é feita utilizando a presença de n-gramas que aparecem nas duas perguntas.
- São concatenadas horizontalmente, formando uma matriz com total de 3.315.693 colunas

Redução de dimensionalidade (SVD)

- Mostra os primeiros 50

 autovalores da matriz diagonal
 Sigma gerada pelo SVD.
- Foi definido um ponto de corte
 K=10
- SVD gera como saída uma nova matriz com apenas 10 colunas.

Combinando features

Além das 10 geradas no SVD, são geradas 6 features adicionais sendo:

- Diferença de quantidade de tokens entre as questões dividido pela quantidade de tokens na questão 1
- 2. A diferença de quantidade de tokens entre as questões dividido pela quantidade de tokens na questão 2
- 3. Distância de Jaccard entre os conjuntos de tokens das questões
- 4. Distância de Leveinshtein entre os conjuntos de tokens das questões
- 5. Quantidade de tokens que aparecem nas duas perguntas dividido pela quantidade de tokens na questão 1
- 6. Quantidade de tokens que aparecem nas duas perguntas dividido pela quantidade de tokens na questão 2

Totalizando 16 features para a matriz final

Experimentos

Foram utilizados três modelos de aprendizado de máquina sendo eles:

- Naive Bayes do scikit-learn
- Redes neurais do scikit-learn
- Xgboost

Seguindo estes parâmetros, para todos:

- Utilizando o conjunto de exemplos dividido em 10% para validação e 90% para treinamento.
- Método de K-Fold Cross Validation com K=3
- Duas métricas de avaliação sendo: acurácia e log loss.

Naive Bayes

Naive Bayes Gaussiano		Naive Bayes Bernoulli			
	Acurácia	Log loss		Acurácia	Log loss
Conjunto de treinamento	68.2416% (+/- 0.0422%)	1.3230 (+/- 0.0097)	Conjunto de treinamento	62.0856% (+/- 0.0993%)	0.6463 (+/- 0.0014)
Conjunto de validação	68.1317%	1.3590	Conjunto de validação	66.7095%	0.5987

Naive Bayes Multinomial			
	Acurácia	Log loss	
Conjunto de treinamento	66.6351% (+/- 0.0734%)	0.5994 (+/- 0.0001)	
Conjunto de validação	62.1954%	0.6483	

Rede Neural

Foram testadas as seguintes variações:

- Quantidade de camadas: 1 e 2
- Quantidade de neurônios por camada: 10, 30 e 50
- Função de ativação: relu, tangente hiperbólica e logística
- Ajuste de pesos: adam, lbfgs e sgd

Meinor desempenno		
Quantidade de camadas	2	
Quantidade de neurônios por camada	50	
Função de ativação	relu	
Ajuste de pesos	adam	

	Acurácia	Log loss
Conjunto de treinamento	75.6323% (+/- 0.0554%)	0.4633 (+/- 0.0012)
Conjunto de validação	75.6511%	0.4629

Xgboost

XGBoost é uma biblioteca de gradiet boosting otimizada e muito eficiente

Parâmetros iniciais:

- learning rate: 0.15

- n_estimators: 170

- max_depth: 6

learning_rate	0.15
n_estimators	200
max_depth	12

	Acurácia	Log loss
Conjunto de treinamento	78.8276% (+/- 0.05%)	0.422606 (+/- 0.0008)
Conjunto de validação	78.9012%	0.4196

Resultados e considerações finais

Resultados e considerações finais

Referências

Quora Questions Pairs, 2017. Disponível em: https://www.kaggle.com/c/quora-question-pairs. Acesso em: 15 de mai. 2017.

Kaggle, 2017. Disponível em: https://www.kaggle.com/. Acesso em: 15 de mai. 2017.

Quora, 2017. Disponível em: https://www.quora.com/. Acesso em: 15 de mai. 2017.

Python Software Foundation, 2017. Disponível em: https://www.python.org/. Acesso em: 15 de mai. 2017.

scikit-learn: Machine Learning in Python, 2017. Disponível em: http://scikit-learn.org/stable/. Acesso em: 15 de mai. 2017.

Natural Language Toolkit, 2017. Disponível em: http://www.nltk.org/. Acesso em: 15 de mai. 2017.

GitHub, 2017. Disponível em: https://github.com/chriiscardozo/QuoraQuestionPair/. Acesso em: 15 de mai. 2017.

Stemmers, 2017. Disponível em: http://www.nltk.org/howto/stem.html. Acesso em: 15 de mai. 2017.

XGBoost Documents, 2017. Disponível em: https://xgboost.readthedocs.io/en/latest/. Acesso em: 15 de mai. 2017.

Complete Guide to Parameter Tuning in XGBoost (with codes in Python), 2017. Disponível em:

https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/, 2017. Acesso em: 15 de mai. 2017.