Darwhin GomezPP

November 9, 2024

1 Project Proposal: Fraud Detection in Bank Transactions

1.1 2. Research Question

• Null Hypothesis (H):

"Anomaly detection techniques, specifically an isolation-forrest model, does not significantly identify outliers in transaction data that correspond to fraudulent activities."

• Alternative Hypothesis (H):

"Anomaly detection techniques, specifically an isolation-forrest model, can effectively identify outliers in transaction data that correspond to fraudulent activities."

1.2 2. Justification

Fraud detection remains a critical challenge in the financial industry. As fraudulent activities can involve abnormal transaction behaviors, detecting outliers or anomalies in large transaction datasets is key to identifying potential fraud. This project uses unsupervised learning techniques such as **anomaly detection** to flag suspicious transactions based on transaction data.

1.3 3. Data Source

https://www.kaggle.com/datasets/valakhorasani/bank-transaction-dataset-for-fraud-detection/data

The dataset, **bank_transaction_data_2.csv**, contains transaction records for multiple customer accounts. The dataset includes the following features:

- TransactionID: Unique alphanumeric identifier for each transaction.
- Account ID: Unique identifier for each account, with multiple transactions per account.
- TransactionAmount: Monetary value of each transaction.
- TransactionDate: Timestamp of each transaction.
- TransactionType: Categorical field indicating 'Credit' or 'Debit' transactions.
- Location: Geographic location of the transaction, represented by U.S. city names.
- **DeviceID**: Alphanumeric identifier for devices used to perform the transaction.
- IP Address: IPv4 address associated with the transaction.
- MerchantID: Unique identifier for merchants.
- Account Balance: Balance in the account post-transaction.
- Previous Transaction Date: Timestamp of the last transaction for the account.
- Channel: Channel through which the transaction was performed (e.g., Online, ATM, Branch).
- CustomerAge: Age of the account holder.

- CustomerOccupation: Occupation of the account holder (e.g., Doctor, Engineer, Student, Retired).
- TransactionDuration: Duration of the transaction in seconds.
- LoginAttempts: Number of login attempts before the transaction, with higher values indicating potential anomalies.

1.4 4. Tools and Libraries

- Pandas: For data manipulation and cleaning.
- NumPy: For numerical operations.
- Matplotlib and Seaborn: For data visualization (distributions, scatter plots, box plots, etc.).
- Scikit-Learn:
 - **Isolation Forest**: For unsupervised anomaly detection.
 - StandardScaler: For feature scaling and normalization.
- Datetime: For handling and extracting features from the TransactionDate and PreviousTransactionDate columns.

1.5 5. Proposed Methodology

1.5.1 Data Preprocessing

- Handle missing values: Ensure no missing values are present (if any, apply appropriate imputation or removal).
- Categorical feature encoding: Convert categorical variables (e.g., TransactionType, Location, Channel) into numerical values via One-Hot Encoding or Label Encoding.
- Datetime feature extraction: Convert TransactionDate and PreviousTransactionDate into datetime format, and extract useful features such as the transaction hour, day, and time difference between consecutive transactions.
- Standardize numerical features: Normalize or standardize continuous variables like TransactionAmount, AccountBalance, and TransactionDuration to ensure consistency across the models.

1.5.2 Modeling

• Isolation Forest:

- Train an **Isolation Forest** model to detect outliers in the transaction data, flagging unusual transactions based on their deviation from normal patterns.
- Fine-tune model parameters (e.g., contamination level) to improve anomaly detection based on observed patterns.

1.5.3 Evaluation

- Fraud Flagging: Transactions identified as outliers by the Isolation Forest model will be flagged as potential fraud.
- Visual Inspection: Use scatter plots and boxplots to visualize flagged anomalies, validating if they align with typical fraud indicators (e.g., high transaction amounts, multiple login attempts).

• Transaction Patterns: Analyze patterns of flagged transactions, such as unusual transaction amounts or rapid transaction frequency, to assess the model's ability to detect suspicious behaviors.

1.6 6. Exploratory Data Analysis

The Following are summary statistics and some exploratory plots of some variables of interest just to visulaize some of the data, eg. distrubutions and box plots to recognize outliers. The code will be hidden but avaiable through this link on GitHub

Dataset Preview:

Do	itaset Freview.	•						
	${\tt TransactionID}$	AccountID T	ransaction	nAmount	Trans	actionDate	e \	
0	TX000001	AC00128		14.09	2023-04-1	1 16:29:14	1	
1	TX000002	AC00455		376.24	2023-06-2	7 16:44:19	9	
2	TX000003	AC00019		126.29	2023-07-1	18:16:08	3	
3	TX000004	AC00070		184.50	2023-05-0	5 16:32:11	L	
4	TX000005	AC00411		13.45	2023-10-1	6 17:51:24	1	
	TransactionTyp	oe Location	n DeviceID	IP	Address M	erchantID	Channe	1 \
0	Debi	it San Diego	D000380	162.19	8.218.92	M015	AT	M
1	Debi	t Houston	D000051	13.	149.61.4	M052	AT	Μ
2	Debi	it Mesa	D000235	215.97	.143.157	M009	Onlin	.e
3	Debi	it Raleigh	D000187	200.13	.225.150	M002	Onlin	.e
4	Credi	it Atlanta	D000308	65.1	64.3.100	M091	Onlin	.e
	CustomerAge CustomerOccupation TransactionDuration LoginAttempts \							
0	70	Γ	octor		81		1	
1	68	Γ	octor		141		1	
2	19	St	udent		56		1	
3	26	St	udent		25		1	
4	26	St	udent		198		1	
	AccountBalance PreviousTransactionDate							
0	5112.2	21 2024-1	1-04 08:08	3:08				
1	13758.9	91 2024-1	1-04 08:09	9:35				

Dataset Information:

1122.35

8569.06

7429.40

2

3

4

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2512 entries, 0 to 2511
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	TransactionID	2512 non-null	object
1	AccountID	2512 non-null	object
2	TransactionAmount	2512 non-null	float64

2024-11-04 08:07:04

2024-11-04 08:09:06

2024-11-04 08:06:39

3	TransactionDate	2512 non-null	object
4	${\tt TransactionType}$	2512 non-null	object
5	Location	2512 non-null	object
6	DeviceID	2512 non-null	object
7	IP Address	2512 non-null	object
8	MerchantID	2512 non-null	object
9	Channel	2512 non-null	object
10	CustomerAge	2512 non-null	int64
11	${\tt CustomerOccupation}$	2512 non-null	object
12	TransactionDuration	2512 non-null	int64
13	LoginAttempts	2512 non-null	int64
14	AccountBalance	2512 non-null	float64
15	${\tt PreviousTransactionDate}$	2512 non-null	object
	(7 + (4 (4) + + (4 (4)	1 (44)	

dtypes: float64(2), int64(3), object(11)

memory usage: 314.1+ KB

None

Summary Statistics:

	${\tt TransactionAmount}$	CustomerAge	TransactionDuration	LoginAttempts	\
count	2512.000000	2512.000000	2512.000000	2512.000000	
mean	297.593778	44.673965	119.643312	1.124602	
std	291.946243	17.792198	69.963757	0.602662	
min	0.260000	18.000000	10.000000	1.000000	
25%	81.885000	27.000000	63.000000	1.000000	
50%	211.140000	45.000000	112.500000	1.000000	
75%	414.527500	59.000000	161.000000	1.000000	
max	1919.110000	80.000000	300.000000	5.000000	

AccountBalance

count	2512.000000
mean	5114.302966
std	3900.942499
min	101.250000
25%	1504.370000
50%	4735.510000
75%	7678.820000
max	14977.990000

Missing Values in Each Column:

Series([], dtype: int64)

Unique Counts for Each Column:

 TransactionID
 2512

 AccountID
 495

 TransactionAmount
 2455

 TransactionDate
 2512

 TransactionType
 2

 Location
 43

 DeviceID
 681

IP Address 592 MerchantID 100 Channel 3 CustomerAge 63 CustomerOccupation 4 TransactionDuration 288 LoginAttempts 5 AccountBalance 2510 PreviousTransactionDate 360

dtype: int64

TransactionID object AccountID object TransactionAmount float64 TransactionDate object TransactionType object Location object DeviceID object IP Address object MerchantID object Channel object CustomerAge int64 CustomerOccupation object TransactionDuration int64 LoginAttempts int64 AccountBalance float64 PreviousTransactionDate object

dtype: object

Value Counts for Channel:

Channel

Branch 868 ATM 833 Online 811

Name: count, dtype: int64

Value Counts for CustomerOccupation:

 ${\tt CustomerOccupation}$

Student 657 Doctor 631 Engineer 625 Retired 599

Name: count, dtype: int64

Value Counts for Location:

Location

Fort Worth 70 Los Angeles 69 Oklahoma City 68

Charlotte	68
Tucson	67
Philadelphia	67
Omaha	65
Miami	64
Detroit	63
Houston	63
Memphis	63
Denver	62
Kansas City	61
Boston	61
Mesa	61
Atlanta	61
Seattle	61
Colorado Springs	60
Jacksonville	60
Fresno	60
Chicago	60
Austin	59
San Jose	59
Raleigh	59
San Antonio	59
San Diego	59
Indianapolis	58
New York	58
San Francisco	57
Nashville	55
Milwaukee	55
Las Vegas	55
Virginia Beach	55
Phoenix	55
Columbus	54
Sacramento	53
Baltimore	51
Louisville	51
Dallas	49
Washington	48
El Paso	46
Portland	42
Albuquerque	41
Name: count, dtype:	int64

Value Counts for TransactionType:

TransactionType
Debit 1944
Credit 568

Name: count, dtype: int64

3.0 Login Attempts 3.5

4.0

4.5

5.0

1.0

1.5

2.0

2.5

