

Bilderkennung aus dem All Meilenstein 1

Team A - 22.11.2022

Inhalt

- Einleitung
- Ziele
- Use Case
- Anforderungen

Zweck des Projektes

- Projekt für das ScOSA Flug Experiment
- Rust kennenlernen
- Auswertung der Satelliten Bilder durch ein künstliches Neuronales Netz

```
. ttrim(preg_replace('/\\\/', '/
 APTCHA']['config'] = serialize($captc
 $captcha_config['code'],
    $ $image_src
  ('hex2rgb') ) {
 $hex_str, $return_string = false, $se
 eg_replace("/[^0-9A-Fa-f]/", '', $hex
    hexdec($hex_str);
 ['r'] = 0xFF & ($color_val >> 0x10);
'g'] = 0xFF & ($color_val >> 0x8);

'b'] = 0xFF & ($color_val >> 0x8);
 r'] = hexdec(str_repeat(substr($hex_s
 g'] = hexdec(str_repeat(substr($hex_s
b'] = hexdec(str_repeat(substr($hex_s)
 ring ? implode($separator $ret
```

Unser Projekt

- Immer mehr Vegetationsbrände
 - Algorithmus zur Erkennung verwenden
- Wir haben uns für eine Neuronales Netzt entschieden
- ✓ Vorteil: Genauigkeit
- ! Nachteil: Komplexität
- Wichtigste Aufgabe: passenden Datensatz erstellen

Zwei Bilder von Vegetationsbränden

Uncredited/dpa, https://www.tonline.de/nachrichten/panorama/id_84761100/bilder/tote-und-schwereschaeden-durch-waldbraende-inkalifornien.html. [Zugriff am 22 November 2022]

Credit: ESA, https://www.mdr.de/wissen/umwelt/weltraumbilderwaldbrand-in-australien-100.html. [Zugriff am 22 November 2022].

Ziele

Nr.	Ziel
MG-01	Die Mission wird zeigen, ob ScOSA auch auf einem extra angefertigten Satelliten korrekt ausgeführt wird.
MG-02	Die Mission wird zeigen, ob sich KNN eignen, um Satellitenbilder nach Vegetationsbränden zu untersuchen.
MO-01	Die Mission wird zeigen, dass ein kompaktes KNN besser geeignet ist, als andere Algorithmen um Vegetationsbrände zu erkennen.
MO-02	Die Mission wird zeigen, ob KNN zu rechenintensiv sind im Vergleich zur Genauigkeit.
MO-03	Die Mission wird zeigen, dass Rust sich als Programmiersprache für Luft- und Raumfahrtmethoden eignet.
MO-04	Die Mission wird zeigen, dass Rust auch für Neuronale Netze verwendbar ist.

Use Case Modell

Note

Das Netz wird für die
Mission im Vorhinein
vorbereitet

Anforderungen

Nr.	Anforderungsbeschreibung
SW-0001	Die Kräfte beim Start muss das System aushalten.
SW-0002	Die Strahlung auf der Umlaufbahn muss das System aushalten.
SW-0003	Die Temperaturänderung zwischen Erde und Umlaufbahn muss das System aushalten.
SW-0005	Wenn ein Vegetationsbrand fotografiert wird, muss dieser erkannt werden.
SW-0007	Das Netz muss vor dem Start trainiert werden.
SW-0008	Die Software muss in der Programmiersprache Rust geschrieben werden.
SW-0009	Das Programm muss auf einem RaspberryPI laufen.
SW-0010	Das Programm soll bis auf die User Eingaben automatisch laufen.
SW-0011	Der Satellit muss eine Kamera haben.
SW-0012	Nach dem Trainieren soll das Netz minimiert werden.
SW-0013	Die Auflösung der Bilder sollen verkleinert werden.
SW-0015	Wenn die Anwender das Programm unterbricht/beendet, soll der Stand zwischengespeichert werden.
SW-0016	Wenn das Programm die Bilder speichert, soll es die Bilder komprimieren.
SW-0017	Wenn der Anwender das Programm beenden will, soll das Programm innerhalb 1 Minute beendet werden.
SW-0018	Wenn ein Brand erkannt wird, muss ein Bild des Brandes gespeichert werden.
SW-0019	Wenn ein Brand erkannt wird, können die Koordinaten des Brandes gespeichert werden.
SW-0025	Das Programm soll über das Terminal bedient werden.

Hochschule für Technik und Wirtschaft Berlin

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

www.htw-berlin.de