Differentially Private Synthetic Microdata

Jingchen (Monika) Hu

Vassar College

Data Confidentiality

- Introduction
- 2 The Exponential Mechanism (EM)
- Three mechanisms based on EM

- Introduction
- 2 The Exponential Mechanism (EM)
- Three mechanisms based on EM

Recap of differential privacy

- Definitions: database, query, output, sensitivity, privacy budge, and added noise
- Implications of key terms in differential privacy: the relationship between sensitivity (Δf) , privacy budget (ϵ) , and added noise
- The Laplace Mechanism
 - \blacktriangleright adds random noise according to ϵ -differential privacy guarantee
 - the noise is drawn from a Laplace distribution centered at 0, with scale $\frac{\Delta f}{\epsilon}$
- DP properties: example queries to the confidential CE databse

Recap of differntially private synthetic tabular data

- Based on Dirichlet-multinomial conjugate models
- To generate a differentially private synthetic count vector \mathbf{y}^* given $y^* = y$. (the total sum is fixed):
- **1** Sample θ^* from

$$\theta \mid \mathbf{y} \sim \text{Dirichlet}(\mathbf{y} + \boldsymbol{\alpha}),$$
 (1)

where
$$\min(\alpha_i) \geq \frac{y^*}{\exp(\epsilon)-1}$$
.

Sample y* from

$$\mathbf{y}^* \mid \boldsymbol{\theta}^* \sim \text{Multinomial}(\mathbf{y}^*; \boldsymbol{\theta}^*),$$
 (2)

and the generated count vector \mathbf{y}^* satisfies ϵ -differential privacy.

Differentially private synthetic microdata

- Respondent-level data: the focus of our synthetic data approach
- Synthetic data has certain levels of privacy protection
 - ► Identification disclosure and IR risks
 - Attribute disclosure and AR risks

Differentially private synthetic microdata

- Respondent-level data: the focus of our synthetic data approach
- Synthetic data has certain levels of privacy protection
 - ► Identification disclosure and IR risks
 - Attribute disclosure and AR risks
- ullet However the privacy protection does not satisfy $\epsilon-$ differential privacy
 - Original definition:

$$\left| \ln \left(\frac{Pr[\mathcal{M}(\mathbf{x}) \in \mathcal{S}]}{Pr[\mathcal{M}(\mathbf{y}) \in \mathcal{S}]} \right) \right| \le \epsilon$$
 (3)

Updated definition in the context of tabular data

$$\left| \ln \left(\frac{p(\mathbf{y}^* \mid \mathbf{y}, \boldsymbol{\theta})}{p(\mathbf{y}^* \mid \mathbf{x}, \boldsymbol{\theta})} \right) \right| \le \epsilon \tag{4}$$

- The Exponential Mechanism (McSherry and Talwar, 2007)
 - ▶ it turns a non-private mechanism (e.g. a Bayesian synthesis model) into a private mechanism (e.g. a Bayesian synthesis model satisfying differential privacy)

- The Exponential Mechanism (McSherry and Talwar, 2007)
 - it turns a non-private mechanism (e.g. a Bayesian synthesis model) into a private mechanism (e.g. a Bayesian synthesis model satisfying differential privacy)
- Three mechanisms based on the Exponential Mechanism
 - ▶ pMSE Mechanism (Snoke and Slavovic, 2018)
 - ▶ Posterior Mechanism (Dimitrakakis et al., 2017)
 - ► Pseudo Posteror Mechanism (Savitsky et al., 2019)

- Introduction
- 2 The Exponential Mechanism (EM)
- 3 Three mechanisms based on EM

The background

• Dwork et al. (2006) and Nissim et al. (2007) show that any function of an ϵ -differentially private algorithm also satisfies ϵ -differential privacy

The background

- Dwork et al. (2006) and Nissim et al. (2007) show that any function of an ϵ -differentially private algorithm also satisfies ϵ -differential privacy
- In synthetic data generation: if parameters satisfy ϵ -differential privacy, synthetic data generated based on the ϵ -differentially private parameters are also differentially private

$$\hat{\theta} \sim g(\theta),$$
 (5)
 $\mathbf{x}^* \sim f(\mathbf{x} \mid \hat{\theta}).$

$$\mathbf{x}^* \sim f(\mathbf{x} \mid \hat{\theta}),$$
 (6)

where $\pi(\cdot)$ is the mechanism that makes parameter draws $\hat{\theta}$ differentially private, and $f(\cdot)$ is the sampling model.

• Question: how to make Equation (5) happen?

The EM

- Proposed by McSherry and Talwar (2007)
- The EM inputs non-private parameters θ and generates private parameters $\hat{\theta}$ (i.e. satisfying differential privacy)
- In the context of generating differentially private synthetic data from a Bayesian perspective, we follow the general framework proposed by Zhang et al. (2016)

The EM cont'd

The Exponential Mechanism generates private parameters $\hat{\theta}$ from:

$$\hat{\theta} \propto \exp\left(\frac{\epsilon u(\mathbf{x}, \theta)}{2\Delta_u}\right) \pi(\theta)$$
 (7)

- \bullet ϵ is the privacy budget
- $u(\mathbf{x}, \theta)$ is the utility function
- Δ_u is the sensitivity of the utility function
- $\pi(\theta)$ is the base distribution to ensure proper density function (one can think of $\pi(\theta)$ as the prior distribution for θ)

The utility function

- In the DP overview lecture:
 - \blacktriangleright Δ_f is defined as the ℓ_1 -sensitivity of a query function f
 - which is the maximum change in the in fuction f on \mathbf{x} and \mathbf{y} , where $\mathbf{x}, \mathbf{y} \in \mathbb{N}^{|\mathcal{X}|}$ and differ by a single observation (i.e.

$$\mathbf{x},\mathbf{y}\in\mathbb{N}^{|\mathfrak{X}|},\delta(\mathbf{x},\mathbf{y})=1)$$

The utility function

- In the DP overview lecture:
 - Δ_f is defined as the ℓ_1 -sensitivity of a query function f
 - which is the maximum change in the in fuction f on \mathbf{x} and \mathbf{y} , where $\mathbf{x}, \mathbf{y} \in \mathbb{N}^{|\mathcal{X}|}$ and differ by a single observation (i.e. $\mathbf{x}, \mathbf{y} \in \mathbb{N}^{|\mathcal{X}|}$, $\delta(\mathbf{x}, \mathbf{y}) = 1$)
- Here:
 - \triangleright Δ_u in the Exponential Mechanism is the global sensitivity
 - defined as the maxium change in the utility function $u(\mathbf{x}, \theta)$ for \mathbf{x} and \mathbf{y}
 - ▶ where $\mathbf{x}, \mathbf{y} \in \mathcal{X}^n$ and differ by a single observation (i.e. $\mathbf{x}, \mathbf{y} \in \mathcal{X}^n, \delta(\mathbf{x}, \mathbf{y}) = 1$)
- Formally:

$$\Delta_{u} = \sup_{\theta \in \Theta} \sup_{\mathbf{x}, \mathbf{v} : \delta(\mathbf{x}, \mathbf{v}) = 1} |u(\mathbf{x}, \theta) - u(\mathbf{y}, \theta)| \tag{8}$$

Summary

- We wish to generate private θ , from which we can ultimately generate and release private ${\bf x}$
- ullet The Exponential Mechanism defines a distribution from which private samples, $\hat{ heta}$ can be simulated
- The keys to the Exponential Mechanism are the utility function $u(\mathbf{x}, \theta)$ and its global sensitivity Δ_u

Summary

- \bullet We wish to generate private $\theta,$ from which we can ultimately generate and release private ${\bf x}$
- \bullet The Exponential Mechanism defines a distribution from which private samples, $\hat{\theta}$ can be simulated
- The keys to the Exponential Mechanism are the utility function $u(\mathbf{x}, \theta)$ and its global sensitivity Δ_u
- Next we introduce three mechanisms based on EM to generate differentially private synthetic microdata

- Introduction
- 2 The Exponential Mechanism (EM)
- Three mechanisms based on EM

The pMSE Mechanism

- Snoke and Slavovic (2018)
- Based on the propensity score measure we have learned:
 - ► stack up the original dataset and the synthetic dataset resulting in a merged dataset of size 2*n*
 - and use a classification algorithm (e.g. logistic regression) to predict whether an observation belongs to the original dataset or the synthetic dataset
 - return a summary statistic U_p , which measures overall how close the predicted probability of each observation \hat{p}_i is to $\frac{1}{2}$:

$$U_p = \frac{1}{2n} \sum_{i=1}^{2n} (\hat{p}_i - \frac{1}{2})^2.$$
 (9)

• High level of similarity between the original and the synthetic datasets results in $U_p \approx 0$; low level of similarity results in $U_p \approx \frac{1}{4}$

The pMSE Mechanism cont'd

• One way to turn the *pMSE* into a utility function that is a function of θ , the parameters, is to take the expectation of *pMSE* given θ :

$$u(\mathbf{x}, \theta) = \mathbf{E}[pMSE(\mathbf{x}, \mathbf{x}^*) \mid \mathbf{x}, \theta], \tag{10}$$

where \mathbf{x} is the private database, and \mathbf{x}^* is the synthetic database and generated from a Bayesian synthesis model $f(\theta)$, i.e. $\mathbf{x}^* \sim f(\theta)$

• The sensitivity of the utility function is bounded

$$\Delta_{u} = \sup_{\theta} \sup_{\delta(\mathbf{x}, \mathbf{y}) = 1} |u(\mathbf{x}, \theta) - u(\mathbf{y}, \theta)| \le \frac{1}{n}$$
 (11)

The Posterior Mechanism

- Dimitrakakis et al. (2017)
- Use the log-likelihood function as the utility function

$$u(\mathbf{x},\theta) = \log \prod_{i=1}^{n} f(\mathbf{x}_i \mid \theta), \tag{12}$$

where the sensitivity of the log-likelihood function is bounded by

$$\Delta_{u} = \sup_{\theta} \sup_{\delta(\mathbf{x}, \mathbf{y}) = 1} |u(\mathbf{x}, \theta) - u(\mathbf{y}, \theta)| \le \Delta, \tag{13}$$

where Δ is called a Lipschitz bound (which can be infinite in some cases, such as normal, exponential, Poisson, geometric)

The Posterior Mechanism cont'd

ullet That is, we can draw private parameter draws $\hat{ heta}$ from:

$$\hat{\theta} \propto \exp\left(\frac{\epsilon \log \prod_{i=1}^{n} f(\mathbf{x}_i \mid \theta)}{2\Delta_u}\right) \pi(\theta)$$
 (14)

• This Posterior Mechanism achieves an $\epsilon=2\Delta-$ differential privacy guarantee for each posterior draw of θ

The Pseudo Posterior Mechanism

- Savistsky et al. (2019)
- ullet Generalize the Posterior Mechanism to ensure $\Delta < \infty$
- Key: add weights in the likelihood function

$$\log \prod_{i=1}^{n} f(\mathbf{x}_i \mid \theta)^{\alpha_i}, \tag{15}$$

where

$$\alpha_i \propto \frac{1}{\sup_{\theta \in \Theta} \log(\mathbf{x}_i \mid \theta)}.$$
 (16)

• Weight-added likelihood is called pseudo likelihood

The Pseudo Posterior Mechanism cont'd

• Use the log-pseudo likelihood function as the utility function

$$u(\mathbf{x}, \theta) = \log \prod_{i=1}^{n} f(\mathbf{x}_i \mid \theta)^{\alpha_i}, \tag{17}$$

where the sensitivity of the log-pseudo likelihood function is bounded by

$$\Delta_{u} = \sup_{\theta} \sup_{\delta(\mathbf{x}, \mathbf{y}) = 1} |u(\mathbf{x}, \theta) - u(\mathbf{y}, \theta)| \le \Delta^{\alpha}, \tag{18}$$

where $\Delta^{\alpha} < \infty$

The Pseudo Posterior Mechanism cont'd

ullet That is, we can draw private parameter draws $\hat{ heta}$ from:

$$\hat{\theta} \propto \exp\left(\frac{\epsilon \log \prod_{i=1}^{n} f(\mathbf{x}_i \mid \theta)^{\alpha_i}}{2\Delta_u}\right) \pi(\theta)$$
 (19)

• This Pseudo Posterior Mechanism achieves an $\epsilon=2\Delta^{\alpha}-$ differential privacy guaratee for each posterior draw of θ

Example: estimating Poisson-distributed data cont'd

Figure 1: Violin plots of mu

References

- Dimitrakakis, C. and Nelson, B. and Zhang, Z. and Mitrokotsa, A. and Rubinstein, B. I. P. (2017). Differential privacy for Bayesian inference through posterior sampling. Journal of Machine Learning Research, 18(1), 343-381.
- Dwork, C. and McSherry, F. and Nissim, K. and Smith, A. (2006).
 Calibrating noise to sensitivity in private data analysis. Proceedings of the Third Conference on Theory of Cryptography, 265-284.
- McSherry, F., and K. Talwar. (2007). Mechanism Design via Differential Privacy. Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, 94–103.
- Nissim, K., S. Raskhodnikova, and A. Smith. (2007). Smooth Sensitivity and Sampling in Private Data Anlaysis. Proceedings of the 39th Annual ACM Symposium on Theory of Computing, 75–83.

References

- Savitsky, T. D. and Williams, M. R. and Hu, J. (2019), Bayesian pseudo posterior mechanism under differential privacy, arXiv 1909.11796
- Snoke, J., and A. Slavkovic. (2018). pMSE Mechanism: Differentially Private Synthetic Data with Maximal Distributional Similarity. Privacy in Statistical Databases, 138–159.
- Zhang, Z., B. I. P. Rubinstein, and C. Dimitrakakis. (2016). On the Differential Privacy of Bayesian Inference. Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2365–2371.