

UNIVERSIDAD NACIONAL DE CANINDEYÚ

Creada por Ley de la Nación № 3.985/10
FACULTAD DE CIENCIAS Y TECNOLOGÍA

MATEMÁTICA III

Unidad IV: Aplicaciones de la Derivación

APLICACIONES DE LA DERIVADA

TEOREMA DE ROLLE

Sea f una función continua en el intervalo [a,b] y derivable en el intervalo abierto (a,b) tal que f(a)=f(b). Entonces existe al menos un punto $c \in (a,b)$ tal que f'(c)=0

FUNCIÓN CRECIENTE Y DECRECIENTE

Una función es creciente en un intervalo dado si para dos números cualesquiera x_1 y x_2 se tiene que

$$\mathbf{x}_1 < \mathbf{x}_2 \implies \mathbf{f}(\mathbf{x}_1) < \mathbf{f}(\mathbf{x}_2)$$

y es decreciente si

Si f'(x)>0 f(x) es creciente en (a,b) Si f'(x)<0 f(x) es decreciente en (c,d) Si f'(x)=0 f(x) es constante (b,c)

VALOR CRÍTICO

Valor crítico de una función es todo punto c de la misma para el cual f'(c)=0 o bien f'(c) no existe

Ejemplo:

$$f(x)= x^3- x$$

 $f'(x)= 3x^2-1$

$$f'(c)=0$$

$$3x^2 - 1 = 0$$
$$x = \pm \sqrt{1/3}$$

Valores Críticos

$$3x^{2} - 1 = 0$$
 $x_{1} = -\sqrt{1/3}$ $x_{2} = \sqrt{1/3}$ $x_{2} = \sqrt{1/3}$

EXTREMOS RELATIVOS, CRITERIO DE LA PRIMERA DERIVADA

Un *máximo relativo* de una función es todo punto c, f(c) de (a,b), para el cual se cumple que $f(x) \le f(c)$ para todo x de (a,b).

Un *mínimo relativo* de una función es todo punto c, f(c) de (a,b), para el cual se cumple que $f(x) \ge f(c)$ para todo x de (a,b).

Una función tiene un mínimo o un máximo relativo en un punto c cuando c es un valor crítico de f.

Signo de	G	RÁFIC	0	Signo de		
f ' en (a,c)	а	C	b	f ' en (c,b)		
+				-	MÁXIMO	
•	N N			+	MÍNIMO	
+				+	No hay Max ni Min (crece)	
				•	No hay Max ni Min (decrece)	

Ejemplo. Hallar máximos, mínimos y graficar la siguiente función

$$\mathbf{f}(\mathbf{x}) = \mathbf{x}^2 + 3\mathbf{x} - \mathbf{4}$$

Valor Crítico

$$f'(x) = 0$$

$$f'(x) = 2x + 3 = 0$$

$$2x + 3 = 0$$

$$x = -\frac{3}{2}$$
 Valor crítico

Extremo relativo

Para
$$x < -\frac{3}{2}$$

f'(-2) = 2(-2) + 3 < 0 (-)

Para
$$x > -\frac{3}{2}$$

f'(0) = 2(0) + 3 > 0 (+)

El signo de la derivada antes y después del valor crítico varía de (-) a (+) por tanto la función tiene un

mínimo en
$$x = -3/2$$

Ejemplo. Hallar máximos, mínimos y graficar la siguiente función

$$f(x) = x^2 + 3x - 4$$

Gráfico

X	$f(x) = x^2 + 3x - 4$	У
-3/2	$f\left(-\frac{3}{2}\right) = \left(-\frac{3}{2}\right)^2 + 3\left(-\frac{3}{2}\right) - 4$	-25/4

CONCAVIDAD Y CONVEXIDAD, CRITERIO DE LA SEGUNDA DERIVADA

Sea f una función cuya segunda derivada existe en el intervalo (a,b). Entonces:

- · Si f "(x)>0 para todo x en (a,b), la gráfica de f es cóncava en (a,b).
- · Si f "(x)<0 para todo x en (a,b), la gráfica de f es convexa en (a,b).

Si además la función contiene un punto c tal que f'(c)=0, entonces:

- Si f "(c)>0, f(c) es un mínimo relativo.
- · Si f "(c)<0, f(c) es un máximo relativo.

$f'(x_1)$	$f'''(x_1)=0$	Naturaleza del punto critico	
0	- 1	Punto del máximo	
0	+	Punto del mínimo	
0	0	Desconocido	

PUNTO DE INFLEXIÓN

Si la gráfica de una función continua posee una tangente en un punto en el que su concavidad cambia de hacia arriba a hacia abajo, o viceversa, este punto se denomina punto de inflexión.

Si (c,f(c)) es un punto de inflexión, entonces o bien f''(c)=0 o f''(c) no existe.

EJEMPLO. Determinar los extremos relativos por el criterio de la segunda derivada, punto de inflexión, intervalos de concavidad y graficar en base al análisis:

$$f(x) = 2x^3 + 3x^2 - 12x$$

Valores críticos

$$f'(x) = 6x^{2} + 6x - 12 = 0 \div 6$$

$$x^{2} + x - 2 = 0$$

$$(x - 1)(x + 2) = 0 \text{ factorizando}$$

$$x_{1} = 1; x_{2} = -2 \text{ Valores críticos}$$

$$Fara x = 1$$

$$f''(x) = 12x + 6$$

$$f''(1) = 12(1) + 6 = 18$$

$$f''(1) > 0, la función$$

$$mínimo en x = 1$$

Extremos relativos

Para x = 1f''(1) > 0, la función tiene un minimo en x = 1

| Para x = 1 |f''(-2) = 12(-2) + 6 = -18f''(-2) < 0, la función tiene un máximo en x=-2

EJEMPLO. Determinar los extremos relativos por el criterio de la segunda derivada, punto de inflexión, intervalos de concavidad y graficar en base al análisis:

$$f(x) = 2x^3 + 3x^2 - 12x$$

Punto de inflexión f''(x) = 0

$$f''(x) = 12x + 6$$

$$12x + 6 = 0$$

$$x = -\frac{6}{12} = -\frac{1}{2}$$

$$x = -\frac{1}{2}$$
 punto de inflexión

Intervalos de concavidad

$$Para x < -\frac{1}{2}$$

$$f''(1) = 12(1) + 6 = 18$$

$$f''(1) > 0$$
, la curva es cóncava en $x < -\frac{1}{2}$

$$x < -\frac{1}{2}$$

Para
$$x > -\frac{1}{2}$$

 $f''(-2) = 12(-2) + 6 = -18$
 $f''(-2) < 0$, la curva es cóncava en

Ejercicio

Esquema de Análisis de Funciones

- 1. Hallar el valor crítico
- 2. Definir el máximo y el mínimo
- 3. Punto de inflexión
- 4. Intérvalos de concavidad y convexidad
- 5. Graficar

Analiza las siguientes funciones y graficar.

1.-
$$f(x) = x^3 - 6x^2 + 15$$

2.-
$$f(x) = 2x^3 - 3x^2 - 12x + 8$$