MATLAB Fundamentals - Cheat Sheet - Tools Course ETH Zürich

Basics	
Workspace	
ans	Most recent answer
clc	clear command window
clear var	clear variables Workspace
clf	Clear all plots
close all	Close all plots
ctrl-c	Kill the current calculation
doc fun	open documentation
<pre>disp('text')</pre>	Print text
format short—long	Set output display format
help fun	open in-line help
load filename {vars}	load variables from .mat file
<pre>save {-append} file {vars}</pre>	save var to file
addpath path	include path to
iskeyword arg	Check if arg is keyword
% This is a comment	Comments
	connect lines (with break)
";" (after command)	suppresses output
scriptname	runs scriptname.m
tic, toc	start and stop timer
ver	List of installed toolboxes

Defining and Changing Var	
a = 5	Define variable a to be 5
A = [1, 2, 3, 4;	Set A to be a 3×4 matrix
5, 6, 7, 8;	"," separates columns
9, 10, 11, 12]	";" separates rows
[A,B], horzcat(A,B)	Concatenate arrays horizontally
[A;B], vertcat(A,B)	Concatenate arrays vertically
x(2) = 7	Change 2nd element of x to 7
A(2,1) = 0	Change $A_{2,1}$ to 0
x(2:12)	The 2nd to the 12th elem. of x
x(1:3:end)	Every 3rd elem. of x (1st to last)
x(x>6)	List elements > 6 .
x(x>8)=8	change elements using condition
A(4,:)	Get the 4th row of A
A(:,3)	Get the 3rd column of A
A(6, 1:3)	Get 1st to 3rd elem in 6th row
zeros(9, 5)	Make a 9×5 matrix of zeros
ones(9, 5)	Make a 9×5 matrix of ones
eye(7)	Make a 7×7 identity matrix
diag(x)	Create diagonal matrix
diag(A)	Get diagonal elements of matrix
meshgrid(x)	2-D and 3-D grids
7:15	Row vector of $7, 8, \ldots, 14, 15$
a:ds:b	lin. spaced vector with spacing ds
linspace(1,20,35)	Lin. spaced vector (35 elements)
logspace(1, 1e5, 50)	Log. spaced vector (50 elements)

Arithmetics	
+, -	Addition, Subtraction (elementwise)
A*B	Matrix multiplication
A.*B	elementwise multiplication
A./B	elementwise division
$B.\A$	Left array division
/	Solve $xA = B$ for x
\	Solve $Ax = B$ for x
$\mathtt{A}^{\wedge}\mathtt{n}$	normal/(square) matrix power
A. $^{\wedge}$ n	Elementwise power of A
sum(X)	Sum of elements (along columns)
prod(X)	Product of elements (along columns)

Elementary Functions	
sin(A)	Sine of argument in radians
sind(A)	Sine of argument in degrees
asin(A)	Inverse sine in radians
sinh(A)	Hyperbolic sine
there are analogous el	lementwise trigonometric functions
for cos, tan and cot	
abs(A)	Compute $ x $
sqrt(x)	Compute \sqrt{x}
log(x)	Compute $ln(x)$
log10(x)	Compute $\log_{10}(x)$
sign(x)	sign of x
exp(x)	exponential of x

Complex Numbers	
abs(z)	Absolute value and complex magnitude
angle(z)	Phase angle
complex(a,b)	Create complex numbers
conj(z)	Elementwise complex conjugate
i or j	Imaginary unit
imag(z)	Imaginary part of complex number
isreal(z)	Determine whether array is real
real(z)	Real part of complex number
ctranspose(Z)	Complex conjugate transpose

Constants	
pi	$\pi = 3.141592653589793$
NaN	Not a number (i.e. $0/0$)
Inf	Infinity
eps	Floating-point relative accuracy
realmax	Largest positive floating-point number
realmin	Smallest positive floating-point number

Numerics and Linear Algebra	
Numerical Integration and Differentiation	
<pre>integral(f,a,b)</pre>	Numerical integration
<pre>integral2(f,a,b,c,d)</pre>	2D num. integration
integral3(f,a,b,,r,s)	3D num. integration
trapz(x,y)	Trapezoidal integration
<pre>cumtrapz(x,y)</pre>	Cumulative trapez integration
diff(X)	Differences (along columns)
<pre>gradient(X)</pre>	Numerical gradient

Matrix Functions/ Line	9
Α'	Transpose of matrix or vector
inv(A)	inverse of A (use with care!)
<pre>det(A)</pre>	determinant of A
eig(A),eigs(A)	eigenvalues of A (subset)
cross(A,B)	Cross product
<pre>dot(A,B)</pre>	Dot product
kron(A,B)	Kronecker tensor product
norm(x)	Vector and matrix norms
linsolve(A,B)	Solve linear system of equations
rank(A)	Rank of matrix
trace(A)	Sum of diagonal elements
<pre>curl(X,Y,Z,U,V,W)</pre>	Curl and angular velocity
<pre>divergence(X,,W)</pre>	Compute divergence of vector field
null(A)	Null space of matrix
orth(A)	Orthonormal basis for matrix range
mldivide(A,B)	Solve linear system $Ax = B$ for x
mrdivide(B,A)	Solve linear system $xA = B$ for x
${\tt decomposition}({\tt A})$	Matrix decomposition
<pre>lsqminnorm(A,B)</pre>	Least-squares solution to linear eq.
rref(A)	Reduced row echelon form
balance(A)	Diagonal scaling (improve eig. vec.)
svd(A)	Singular value decomposition
gsvd(A,B)	Generalized svd
chol(A)	Cholesky factorization

Matrix manipulation	
cat(dim,A,B)	Concatenate arrays
ndims(A)	Number of array dimensions
flip(A)	Flip order of elements
fliplr(A)	Flip array left to right
flipud(A)	Flip array up to down
squeeze(A)	Remove dimensions of length 1
reshape(A,sz)	Reshape array
size(A)	size of A
sort(A)	Sort array elements
sortrows(A)	Sort rows of matrix or table
length(A)	Length of largest array dimension

Graphics Plotting Plot y vs. xplot(x,y) axis equal Scale axes equally title('A Title') Add title to the plot xlabel('x axis') Add label to the x axis Add label to the y axis ylabel('y axis') legend('foo', 'bar') Label 2 curves for the plot Add a grid to the plot grid hold on / off Multiple plots on single figure get or set axes range xlim /ylim / zlim Start a new plot

figure Plot types streamline histogram semilogx plot semilogy pie plot3 surf polarplot stairs scatter mesh errorbar contour image scatterhist quiver bar stackedplot plotmatrix 1111

Plot gallery: mathworks.com/products/matlab/plot-gallery

stem

heatmap

Programming methods

auiver3

% defined in m-file % File must have the same name as the function function output = addNumbers(x, y) output = x + y; %multiple or var nr of args possible end

Anonymous Functions

loglog

```
% defined via function handles
f = @(x) cos(x.^2)./(3*x);
```

Relational and logical operations Check equality Check inequality > greater than greater or equal to >= less than less or equal to < <= &, && logical AND \sim logical NOT logical OR logical exclusive-OR xor if, elseif Conditions disp('n smaller 10') elseif n<20 disp('n between 10 and 20') disp('n larger than 20') end % control structures terminate with end Switch Case n = input('Enter a number: '); switch n case -1 disp('negative one') disp('zero') case $\{1,2,3\}$ %check three cases together disp('positive one') otherwise disp('other value') end % control structures terminate with end For-Loop

%loops as long as a condition remains true n = 1; nFactorial = 1; while nFactorial < 1e100 n = n + 1; nFactorial = nFactorial * n;</pre>

end % control structures terminate with end

r ar once program	ming commands
break	exit the current loop (combine with if)
continue	go to next iteration (combine with if)
try, catch	Execute statements and catch errors

Special Topics

While-Loop

Polynomials	
poly(x)	Polynomial with roots x
poly(A)	Characteristic polynomial of matrix
polyeig(x)	Polynomial eigenvalue problem
<pre>polyfit(x,y,d)</pre>	Polynomial curve fitting
residue(b,a)	Partial fraction expansion/decomposition
roots(x)	Polynomial roots
polyval(p,x)	Evaluate poly p at points x
conv(u,v)	Convolution and polynomial multiplication
deconv(u,v)	Deconvolution and polynomial division
<pre>polyint(p,k)</pre>	Polynomial integration
polyder(p)	Polynomial differentiation

Interpolation and fitting	
<pre>interp1(x,v,xq)</pre>	1-D data interpolation (table lookup)
interp2(X,Y,V,Xq,Yq)	2D interpolation for meshgrid data
interp3(X,V,Zq)	3D interpolation for meshgrid data
pchip(x,v,xq)	Piecew. cubic Hermite poly interpol
spline(x,v,xq)	Cubic spline data interpolation
ppval(pp,xq)	Evaluate piecewise polynomial
mkpp(breaks,coeffs)	Make piecewise polynomial
unmkpp(pp)	Extract piecewise polynomial details

Differential equations	
ode45(ode,tspan,y0)	Solve system of nonstiff ODE
ode15s(ode,tspan,y0)	Solve system of stiff ODE
pdepe(m,pde,ic,bc,xm,ts)	Solve 1D PDEs
<pre>pdeval(m,xmesh,usol,xq)</pre>	Interpolate num. PDE solution

Optimization	
<pre>fminbnd(fun,x1,x2)</pre>	Find minimum of $fun(x)$ in $[x_1, x_2]$
<pre>fminsearch(fun,x0)</pre>	Find minimum of function
lsqnonneg(C,d)	Solve non-neg. lin. least-squares prob.
fzero(fun,x0)	Root of nonlinear function
<pre>optimget(opt,'par')</pre>	Optimization options values
optimset('opt',val)	Define optimization options

Descriptive St	tatistics
bounds(A)	Smallest and largest elements
max(A)	Maximum elements of an array
min(A)	Minimum elements of an array
mode(A)	Most frequent values in array
mean(A)	Average or mean value of array
median(A)	Median value of array
std(A)	Standard deviation
var(A)	Variance
hist(X)	calculate and plot histogram
<pre>corrcoef(A)</pre>	Correlation coefficients
cov(A)	Covariance
xcorr(x,y)	Cross-correlation
xcov(x,y)	Cross-covariance
rand	Uniformly distributed random numbers
randn	Normally distributed random numbers
randi	Uniformly distributed pseudorandom integers
further function	ons: movmax, movmin, cummax, cummin,
movprod, mov	sum, cumsum, cumprod, movmean,
movmedian, m	ovstd, movvar.

Discrete Math	
factor(n)	Prime factors
factorial(n	Factorial of input
gcd(n,m)	Greatest common divisor
<pre>lcm(n,m)</pre>	least common multiple
mod(a,m)	Remainder after division (modulo operation)
ceil(X)	Round toward positive infinity
fix(X)	Round toward zero
floor(X)	Round toward negative infinity
round(X)	Round to nearest decimal or integer