Game Architecture Linear Algebra

Here's looking at Euclid

Today's Agenda

- Points and spaces
- Coordinate Systems
- Vector and vector operations
- Planes

Points

- An element of some set called a space.
- Captures the idea of a unique location in that space.
- Represented by tuple of n terms where n is the dimension of the space.

$$P = (P_x, P_y, P_z)$$

Cartesian Coordinate System

Handedness

Polar (Spherical) Coordinate $\operatorname{System}_{Z}$

igloos make a lot spherical coordinates, polar coordinates" 2006 @ COURTNEY GIBBONS

Vectors

- A geometric primitive with:
 - Direction
 - Magnitude (Length)
- Represented by tuple of n terms where n is the dimension of the space.

$$\mathbf{v} = (\mathbf{v}_{x}, \mathbf{v}_{y}, \mathbf{v}_{z})$$

Examples:

- Velocity
- Acceleration
- Force

Linear Operations

- Vector Addition
- Scalar Multiplication

Linear Operations

Vector Addition

$$a + b = (a_x + b_x, a_y + b_y)$$

Scalar Multiplication

Linear Operations

- Vector Addition
- Scalar Multiplication

$$\mathbf{v}\alpha = (\mathbf{v}_{x}\alpha, \mathbf{v}_{y}\alpha, \mathbf{v}_{z}\alpha)$$

Length changes but direction does not (can go negative, but still same direction).

Vector Space

- A vector space is a set of vectors that is *closed* under linear operations (vector addition and scalar multiplication).
- A set is *closed* under an operation if the result of that operation on any members of the set is also a member of the set.

Vector Space

- A vector space is a set of vectors that is *closed* under linear operations (vector addition and scalar multiplication).
- A set is closed under an operation if the result of that operation on any members of the set is also a member of the set.

Euclidean space (\mathbb{R}^n) is a vector space.

- Add two vectors together in Rⁿ
 and get a third vector also in Rⁿ.
- Multiply a vector in \mathbb{R}^n by a scalar in get another vector in \mathbb{R}^n .

Vector Basis

 A set of vectors form a basis if every vector in the vector space are a linear combination of the vectors in that set.

Standard Basis

$$i = (1, 0, 0)$$

 $j = (0, 1, 0)$
 $k = (0, 0, 1)$

Trigonometry

Branch of mathematics that studies relationships involving lengths and angles of triangles.

Trigonometry

$$\sin \theta = \frac{Opposite}{Hypotenuse}$$

$$\cos \theta = \frac{Adjacent}{Hypotenuse}$$

$$\tan \theta = \frac{Opposite}{Adjacent}$$

Pythagoras Theorem

Pythagoras Theorem

Vector Length (Magnitude)

$$|\mathbf{a}| = \sqrt{\mathbf{a}_{x} + \mathbf{a}_{y} + \mathbf{a}_{z}}$$

Vector Normalization

$$\hat{\mathbf{a}} = \frac{\mathbf{a}}{|\mathbf{a}|}$$

Odd numbers good. Even numbers evil.

Obviously.

- Odd numbers good. Even numbers evil.
- Beans home to souls of dead.

Do not eat the beans.

- Odd numbers good. Even numbers evil.
- Beans home to souls of dead.
- Wear pants.

This was a weird idea for the time.

- Odd numbers good. Even numbers evil.
- Beans home to souls of dead.
- Wear pants.
- Do not look in mirrors.

- Odd numbers good. Even numbers evil.
- Beans home to souls of dead.
- Wear pants.
- Do not look in mirrors.
- All numbers expressed as ratio of whole numbers.

- Odd numbers good. Even numbers evil.
- Beans home to souls of dead.
- Wear pants.
- Do not look in mirrors.
- All numbers expressed as ratio of whole numbers.

1.
$$1^2 + 1^2 = c^2$$

- Odd numbers good. Even numbers evil.
- Beans home to souls of dead.
- Wear pants.
- Do not look in mirrors.
- All numbers expressed as ratio of whole numbers.

1.
$$1^2 + 1^2 = c^2$$

2.
$$c^2 = 2$$

3.
$$c = \sqrt{2}$$

4. a / b =
$$\sqrt{2}$$

Trigonometry

Branch of mathematics that studies relationships involving lengths and angles of triangles.

Trigonometry

Branch of mathematics that studies circles.

Geometry

Dot Product

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}_{x} \mathbf{b}_{x} + \mathbf{a}_{y} \mathbf{b}_{y} + \mathbf{a}_{z} \mathbf{b}_{z}$$

Dot Product

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

- Angle between two vectors
- Vector length (squared)
- Vector projection and rejection
- Planes

- Angle between two vectors
- Vector length (squared)
- Vector projection and rejection
- Planes

Original definition:

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Rearranging terms:

$$\theta = \cos^{-}1 \frac{a \cdot b}{|a||b|}$$

- Angle between two vectors
- Vector length (squared)
- Vector projection and rejection
- Planes

θ	a·b	
0	1.0	b _u a _u
90	0.0	b _u
180	-1.0	b _u a _u

- Angle between two vectors
- Vector length (squared)
- Vector projection
- Planes

Original definition:

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Substituting **b** for **a**:

$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}| |\mathbf{a}| \cos \theta$$

So θ is 0 and $\cos(0) = 1$:

$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$$

- Angle between two vectors
- Vector length (squared)
- Vector projection
- Planes

The projection of **a** onto **b**:

$$proj_b a = (a \cdot \hat{b})\hat{b}$$

- Angle between two vectors
- Vector length (squared)
- Vector projection
- Planes

$$\mathbf{n} \cdot (\mathbf{x} - \mathbf{x_0}) = 0$$
or
$$\mathbf{an_x} + \mathbf{bn_y} + \mathbf{cn_z} + \mathbf{d} = 0$$

Cross Product

$$\mathbf{a} \times \mathbf{b} = (\mathbf{a}_y \mathbf{b}_z - \mathbf{a}_z \mathbf{b}_y, \mathbf{a}_z \mathbf{b}_x - \mathbf{a}_x \mathbf{b}_z, \mathbf{a}_x \mathbf{b}_y - \mathbf{a}_y \mathbf{b}_x)$$

Cross Product

$$axb = |a||b|\sin\theta \hat{n}$$

Radians

A radian is the angle made at the center of a circle by an arc whose length is equal to the radius of the circle.

Radians

Questions?