2016/2017

FEUILLE DE T.D. 5

EXERCICES D'ANALYSE - Ouverts, Fermés, Convergence de Suites.

Les notations sont celles du cours.

Exercice 1.

- 1. Montrer que la partie $A = \{(x, y, z) \in \mathbb{R}^3, x^2 + 2y^2 + 3z^2 \le 4\}$ est fermée dans \mathbb{R}^3 .
- 2. Qu'en est-il des parties suivantes :

2.1
$$B = \{(x, y, z) \in \mathbb{R}^3, x^2 + 2y^2 + 3z^2 > 4\};$$

2.2
$$C = \{(x, y, z) \in \mathbb{R}^3, x^2 + 2y^2 + 3z^2 = 4\};$$

2.3
$$D = \{(x, y, z) \in \mathbb{R}^3, x^2 + 2y^2 + 3z^2 < 4\}.$$

Exercice 2.

Soit f une fonction continue de $\mathbb R$ dans $\mathbb R$. Montrer que son graphe

$$C_f = \{(x, y) \in \mathbb{R}^2, y = f(x)\}$$

est fermé dans R.

Exercice 3.

Pour $a,b \in \mathbb{R}$, déterminer les intérieurs et les adhérences des parties suivantes :

$$I_1 =]a, b[; I_2 = [a, b] ; I_3 =]a, b] ;$$

$$I_4 =]-\infty, a] ; I_5 =]-\infty, a[;$$

$$I_6 = \{a\} ;$$

$$I_7 =]-\infty, +\infty[.$$

Exercice 4.

Soient A et B deux parties de \mathbb{R} . Montrer que :

- 1. Si $A \subset B$ alors $\bar{A} \subset \bar{B}$.
- 2. $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Exercice 5.

Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ de \mathbb{R}^2 définie par $u_n=\left(\frac{1}{n}+\cos\frac{1}{n},\frac{(-1)^n}{n}\ln n\right)$ est convergente.