Homework Notes

$$Y_{i} \sim \text{Bern}\left(\frac{e^{f_{\mathbf{e}}(\mathbf{x}_{i})}}{1+e^{f_{\mathbf{e}}(\mathbf{x}_{i})}}\right), i=1,2,...,n$$

$$f_{\mathbf{e}}(\mathbf{x}) = \sum_{i=1}^{K} b_{i} s(\alpha_{i}n + \langle x_{i}, \alpha \rangle)$$

$$T(\mathbf{e}|y) \propto p(\mathbf{e}) \exp(L(\mathbf{e}|y))$$

$$L(\mathbf{e},y) = \sum_{i=1}^{K} (y_{i} f_{\mathbf{e}}(x_{i}) - l_{\mathbf{e}y}(1+exp(f_{\mathbf{e}}(x_{i})))$$

Computation of l(0,y):

$$\theta = [b, a_0, a] \in \mathbb{R}^{K \times (p+2)}$$

$$y \in \mathbb{R}^{N} , x \in \mathbb{R}^{n \times p}$$

$$b^{T} s \left(\overline{a_0} + a x^{T}\right) = 3 \left(f_{\theta}(x_0), \dots, f_{\theta}(x_n)\right)$$

Metropolis Hastings:

Given &, logT

Setting up the Temperatures for P.T.

Choose the temperatures temp_val = (1,1.1,1.3,1.3,2,..., r, 10,15,20)

Typically want dense temps near 1

Compute acceptance for each surp level.

probably want

Ex: (.2.001.73,) Want to Chem temps to stubilize

probably unit the acceptance probability.

to add

find: The model is not identifiable. The rows of an completely row invariant. So the alg. will try to explusive soveral local modes all companding to the same equivalence class.

Unbjased MCMC

Standard Mcmc: $(X_n)_{n=1}^{\infty}$ st. $P(X_n \in A) \longrightarrow \Gamma(A)$ but for any fixed n, $P(X_n \in A) \neq \pi(A)$ Cannot average McMe autout across cores because of this bias.

 $\frac{Rml}{ml}$: Unbiased mcml will yield more variance. We will not have $\lim_{n \to \infty} \int_{-\infty}^{\infty} dn = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dn =$

$$\mathbb{E}\left[h(X_{t})\right] = \int h(x) \, \pi(x) \, dx, \quad k \in \mathcal{H}, \quad \tau = \infty \, s.t.$$

Simple Problem Suppose you want to compute $X = \sum_{k \ge 0} x_k$, $x_k \in \mathbb{R}$

Iden: Truncation => Bias

Unhinson Estimate? Let q=[Em k = 0] a dist.

but E(X2) = Z xi can be infinite if & isn4

(arefully chism

Other Estimator: N~q, X= = N xh

 $\#(\hat{x}) = \# \left[\underbrace{Z}_{k \ge 0} \underbrace{\chi_k 1(N \ge k)}_{P(N \ge h)} \right]$

If ElxH<+00 E(x)= Zxh

Define
$$\triangle_0 = h(k)$$
, $\triangle_k = h(X_k) - h(X_{k-1})$, les 1

$$\sum_{k=0}^{\infty} \mathbb{E}(\Delta_k) = \mathbb{E}[h(x_k) + \sum_{k=0}^{\infty} \mathbb{E}[h(x_k) - h(x_m)]$$

$$= \mathbb{E}(h(x_m))$$