

## San Francisco Bay University

### CE450 Fundamentals of Embedded Engineering Lab 4 Buzzer Control

#### **Objectives:**

In this lab, students will learn how to control on-board buzzer in Python program on Raspberry Pi board and do hands-on exercise through lab assignments.

#### **Introduction:**

One buzzer is available in Sunfounder accessory box. If a control signal generated from one of pins in GPIO port is logic low, it will switch buzzer on through a BJT, otherwise, off.

#### **Equipment:**

The equipment you require is as follows:

- Laptop & Raspberry Pi 4B model Board
- SunFounder Super Starter Kit V2.0 for Raspberry Pi

### The Laboratory Procedure:

#### 1. Hardware connection

| Pin# | NAME                  |     | NAME                  | Pin# |         |              |
|------|-----------------------|-----|-----------------------|------|---------|--------------|
| 01   | 3.3v DC Power         | 0   | DC Power 5v           | 02   |         |              |
| 03   | GPIO02 (SDA1, I2C)    | 00  | DC Power 5v           | 04   |         | V <u>C</u> C |
| 05   | GPIO03 (SCL1, I2C)    | 00  | Ground                | 06   |         |              |
| 07   | GPIO04 (GPIO_GCLK)    | 00  | (TXD0) GPIO14         | 08   |         |              |
| 09   | Ground                | 00  | (RXD0) GPIO15         | 10   |         |              |
| 11   | GPIO17 (GPIO_GEN0)    | 00  | (GRIO_GEN1) GPIO18    | 12   | GPIO0 R |              |
| 13   | GPIO27 (GPIO_GEN2)    | 00- | Ground                | 14   |         | '            |
| 15   | GPIO22 (GPIO_GEN3)    | 00  | (GPIO_GEN4) GPIO23    | 16   |         |              |
| 17   | 3.3v DC Power         | 00  | (GPIO_GEN5) GPIO24    | 18   |         | GND          |
| 19   | GPIO10 (SPI_MOSI)     | 00  | Ground                | 20   |         |              |
| 21   | GPIO09 (SPI_MISO)     | 00  | (GPIO_GEN6) GPIO25    | 22   |         |              |
| 23   | GPIO11 (SPI_CLK)      | 00  | (SPI_CE0_N) GPIO08    | 24   |         |              |
| 25   | Ground                | 00  | (SPI_CE1_N) GPIO07    | 26   |         |              |
| 27   | ID_SD (I2C ID EEPROM) | 00  | (I2C ID EEPROM) ID_SC | 28   |         |              |
| 29   | GPIO05                | 00  | Ground                | 30   |         |              |
| 31   | GPIO06                | 00  | GPIO12                | 32   |         |              |
| 33   | GPIO13                | 00  | Ground                | 34   |         |              |
| 35   | GPIO19                | 00  | GPIO16                | 36   |         |              |
| 37   | GPIO26                | 00  | GPIO20                | 38   |         |              |
| 39   | Ground                | 00  | GPIO21                | 40   |         |              |

#### 2. Control program in Python

```
# Python program
import RPi.GPIO as GPIO
import time
BeepPin = 11
                # pin11
def setup():
         GPIO.setmode(GPIO.BOARD)
                                         # Numbers GPIOs by physical location
         GPIO.setup(BeepPin, GPIO.OUT) # Set BeepPin's mode is output
         GPIO.output(BeepPin, GPIO.HIGH) # Set BeepPin high(+3.3V) to off beep
def loop():
         while True:
                  GPIO.output(BeepPin, GPIO.LOW)
                                                      # Switch on Buzzer
                                                      # 0.1s delay
                  time.sleep(0.1)
                  GPIO.output(BeepPin, GPIO.HIGH)
                  time.sleep(0.1)
def destroy():
         GPIO.output(BeepPin, GPIO.HIGH)
                                            # beep off
         GPIO.cleanup()
                                            # Release resource
print 'Press Ctrl+C to end the program...'
setup()
try:
         1000()
except
        KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy()
will be executed.
         destroy()
         *Note: Hardware connection reference and running command
         https://learn.sunfounder.com/lesson-6-buzzer/
         https://learn.sunfounder.com/category/super-kit-v3-0-for-raspberry-pi/
```

# **The Laboratory Assignments:**

- 1. Implement the buzzer control based on the above example program
- 2. Add one LED to the buzzer control circuit to make it on when the buzzer is ringing and off if the buzzer is silent

```
# Python program
import RPi.GPIO as GPIO
import time
BeepPin = 11
                # pin11
ledPin = 15
                 # pin15
                           Led one pin to GND, another to GPIO
on = True
off = False
def setup():
                                           # Numbers GPIOs by physical location
          GPIO.setmode(GPIO.BOARD)
          GPIO.setup(BeepPin, GPIO.OUT) # Set BeepPin's mode is output
          GPIO.output(BeepPin, GPIO.HIGH) # Set BeepPin high(+3.3V) to off beep
          GPIO.setup(ledPin, GPIO.OUT)
                                            # set ledPin's mode is output
          GPIO.output(ledPin, GPIO.LOW)
                                             # set ledPin low to off the led
def loop():
          while True:
                   buzzer ctrl(on)
                    time.sleep(0.1)
                   buzzer ctrl(off)
                    time.sleep(0.1)
def buzzer_ctrl(switch):
          if(switch): # switch on buzzer to make both beep and led on
                   GPIO.output(BeepPin, GPIO.LOW) # Switch on Buzzer
GPIO.output(ledPin, GPIO.HIGH) # set ledPin high(+3.3) to on led
          else: # switch off buzzer to make both beep and led off
                    GPIO.output(BeepPin, GPIO.HIGH)
                   GPIO.output(ledPin, GPIO.LOW)
def destroy():
                                              # beep off
          GPIO.output(BeepPin, GPIO.HIGH)
          GPIO.output(ledPin, GPIO.LOW)
                                               # led off
          GPIO.cleanup()
                                               # Release resource
print 'Press Ctrl+C to end the program...'
setup()
try:
          loop()
          KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program
destroy() will be executed.
          destroy()
```