Motivation

- Wörterbuchproblem lösen
- Operationen
 - insert
 - search
 - remove
- Idee
 - Inhalt nicht suchen
 - Adresse berechnen in O(1)

Definition

- lineares Feld T[0...m-1]
- Wert $w \in U$ wird in T[h(w)] gespeichert

• Hashfunktion $h: U \rightarrow \{0, 1, ..., m-1\}$

Kollisionsproblem

- endlich große Tabelle
- Menge der möglichen Schlüssel größer
- Kollision
 - unterschiedliche Schlüssel haben denselben Index
- Belegungsfaktor $\alpha = \frac{m}{n}$

Kollisionsbehandlung

- Überläuferlisten (Chaining)
 - Daten in verkettete Liste speichern bei Kollision

- Laufzeiten
 - * worst case $\Theta(n)$ für Suchen, Löschen
 - sehr unwahrscheinlich

$$prob = \left(\frac{1}{m}\right)^{n-1}$$

Erwartete Laufzeit

Einfügen: O(1)

Suchen: $O(1+\alpha)$

Löschen: O(1+α)

*

- Offene Adressierung
 - Werte direkt in Tabelle speichern

T[0..m-1] selbst gespeichert
$$\Rightarrow \alpha = n/m \le 1$$

- Bei Kollision wird neue Adresse berechnet bis freie gefunden

- Näherungen

Linear Probing: $h(w,i) = [h'(w) + i] \mod m$

Problem: benachbarte Felder wahrscheinlicher belegt (primary clustering)

Quadratic Probing: $h(w,i) = [h'(w) + f(i)] \mod m$

*f(i)...*quadratische Funktion; bei einer Kollision immer noch dieselbe Indexfolge (**secondary clustering**)

Double Hashing: $h(w, i) = [h_1(w) + ih_2(w)] \mod m$

– Löschproblem

Löschen von w'

• Suchen von w

* Lösung

Anmerkung: Beim Einfügen werden gelöschte Felder gleich wie freie Felder behandelt

- Operationen

```
EINFÜGE(T, w)

1: i ← 0

2: REPEAT

3: ind ← h(w,i)

4: IF T[ind] frei THEN

5: T[ind] ← w

6: return

7: i ← i+1

8: UNTIL i=m

9: return "overflow"
```

```
SUCHE(T, w)

1: i ← 0

2: REPEAT

3: ind ← h(w,i)

4: IF T[ind] = w THEN

5: return ind

6: i ← i+1

7: UNTIL (T[ind] frei) or (i=m)

8: return "nicht gefunden"
```

Erwartete Laufzeit $O\left(\frac{1}{1-\alpha}\right)$

*

Hashfunktion

- Ziel: Werte gleich auf Feld zu verteilen
 - Verteilung der Werte meist unbekannt
- heuristische Wahl der Funktion
 - möglichst effizient
 - gleichwahrscheinliche Indizes
 - ähnliche Werte getrennt
 - * unabhängig von Mustern in den Daten
- theoretische ideale Hashfunktion
 - jeder Index ist gleich wahrscheinlich

$$\Pr[h(w) = j] = \frac{1}{m} \quad \forall w \in U, j \in \{0, ..., m-1\}$$

_

Arten von Hashfunktionen

Divisionsmethode

 $h(w) = w \mod m$

- schnell berechenbar
- nicht für alle m geeignet
 - * gutes m, wenn prim
 - * e.g. $m = 2^k$
 - * h(w) hängt von letzten k-1 Stellen ab
- Multiplikationsmethode

- Nachkommastellen von Multiplikation mit Konstante ${\cal A}$
- Multiplikation mit m abrunden

$$h(w) = \left\lfloor m \cdot \operatorname{frac}(w \cdot A) \right\rfloor$$

$$\in [0,1)$$

– unabhängig vom m

Laufzeiten

	Lineares Feld	Lineare Liste	Gestreute Speicherung	
			Überläuferlisten	offene Adressierung
			α=n/m (z.B. 10)	α=n/m (z.B. 0.5)
Suchen	O(n)	O(n)	Ο(1+α)	≈ O(1/(1-α))
Einfügen	O(1)	O(1)	O(1)	wie oben
Suchen und Entfernen	O(n)	O(n)	Ο(1+α)	wie oben