Paper Question#5 Recursion Tree. 0+1+2+3 --- n-1+0 n(n+1), sum of first Test(0) natural numbers 0(2)

T(n) = T(n-1) + n
$$\rightarrow$$
 ()

T(n-1) = T(n-1) + h

T(n-1) = T(n-2) + (n-1) \rightarrow

T(n-1) = T(n-2) + (n-1) \rightarrow

T(n-2) = T(n-3) + (n-2) \rightarrow ()

T(n-2) = T(n-3) + (n-2) \rightarrow ()

T(n) = T(n-3) + (n-1) + n \rightarrow ()

eq () put in ()

T(n) = T(n-3) + (n-1) + n \rightarrow ()

 $T(n) = T(n-3) + (n-1) + n \rightarrow$ ()

 $T(n) = T(n-3) + (n-2) + (n-1) + n$
 $T(n) = T(n-3) + (n-3) + (n-1) + n$
 $T(n) = T(n-3) + (n-3) + (n-1) + n$
 $T(n) = T(n-3) + (n-3) + (n-1) + n$
 $T(n) = T(n-3) + (n-3) + (n-1) + n$
 $T(n) = T(n-3) + (n-3) + (n-1) + n$

T(n)= T(1) + (n-2)+n+1
N+1
= 1+n(n+1)/2
$= O(n^2).$
Question # 4.
Master theorem.
->T(M).8T() +n
3
a=8, b= 2, f(n)-n
T(n). nog: U(n)
T(n) = nlg2 U(n)
$7(n) = n^3 U(n) - 7 \cdot n^3 O(1)$
$7(n) = n^3 U(n) - 7 \cdot n^3 O(1)$ = $O(n^3) \cdot A^{n_3}$
u(n) depends of h(n)
u(n) depends of h(n)
LI \ LI_\
$K(n) = \frac{f(n)}{n^2 y_1^2}$
Logi-
1 1 2 1 2 2
$h(n) = \frac{N!}{N^{N}} \Rightarrow h(n) = \frac{1}{n^2} \Rightarrow h(n) = \frac{1}{n^2}$

$$T(n) = T(\frac{n}{2}) + n^{2}$$

$$a_{1} + b_{2} + a^{2}$$

$$T(n) = n^{3} \log^{2} u(n)$$

$$= n^{3} \log^{2} u(n)$$

$$= n^{3} u($$