Unit 8: Inter-Annotator Agreement Statistics for Linguists with R – A SIGIL Course

Designed by Stefan Evert¹ and Marco Baroni²

 1 Computational Corpus Linguistics Group Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

²Center for Mind/Brain Sciences (CIMeC) University of Trento, Italy

Outline

Reliability & agreement

Introduction
Observed vs. chance agreement

The Kappa coefficient

Contingency tables
Chance agreement & Kappa

Statistical inference for Kappa

Random variation of agreement measures Kappa as a sample statistic

Outlook

Extensions of Kappa Final remarks

Outline

Reliability & agreement Introduction

Chance agreement & Kappa

Kappa as a sample statistic

Extensions of Kappa

Manually annotated data will be used for ...

Manually annotated data will be used for . . .

- 1. Linguistic analysis
 - Which factors determine a certain choice or interpretation?
 - Are there syntactic correlates of the container-content relation?

Manually annotated data will be used for . . .

1. Linguistic analysis

- Which factors determine a certain choice or interpretation?
- Are there syntactic correlates of the container-content relation?

2. Machine learning (ML)

- Automatic semantic annotation, e.g. for text mining
- Extend WordNet with new entries & relations
- Online semantic analysis in NLP pipeline (e.g. dialogue system)

Manually annotated data will be used for . . .

1. Linguistic analysis

- Which factors determine a certain choice or interpretation?
- Are there syntactic correlates of the container-content relation?

2. Machine learning (ML)

- Automatic semantic annotation, e.g. for text mining
- Extend WordNet with new entries & relations
- Online semantic analysis in NLP pipeline (e.g. dialogue system)

Crucial issue: Are the annotations correct?

- ML learns to make same mistakes as human annotator
- Inconclusive & misleading results from linguistic analysis

- We are interested in the validity of the manual annotation
 - i.e. whether the annotated categories are correct

¹The terms "annotator" and "coder" are used interchangeably in this talk. ■

- ▶ We are interested in the **validity** of the manual annotation
 - ▶ i.e. whether the annotated categories are **correct**
- But there is no "ground truth"
 - Linguistic categories are determined by human judgement
 - Consequence: we cannot measure correctness directly

¹The terms "annotator" and "coder" are used interchangeably in this talk. ■

- We are interested in the validity of the manual annotation
 - i.e. whether the annotated categories are correct
- But there is no "ground truth"
 - Linguistic categories are determined by human judgement
 - Consequence: we cannot measure correctness directly
- ► Instead measure reliability of annotation
 - ▶ i.e. whether human coders¹ consistently make same decisions
 - Assumption: high reliability implies validity

¹The terms "annotator" and "coder" are used interchangeably in this talk.

- We are interested in the validity of the manual annotation
 - i.e. whether the annotated categories are correct
- ▶ But there is no "ground truth"
 - Linguistic categories are determined by human judgement
 - Consequence: we cannot measure correctness directly
- Instead measure reliability of annotation
 - ▶ i.e. whether human coders¹ consistently make same decisions
 - Assumption: high reliability implies validity
- ► How can reliability be determined?

¹The terms "annotator" and "coder" are used interchangeably in this talk.

- Multiple coders annotate same data (with same guidelines)
- Calculate Inter-annotator agreement (IAA)

- Multiple coders annotate same data (with same guidelines)
- ► Calculate Inter-annotator agreement (IAA)

Sentence	Α	В	
Put tea in a heat-resistant jug and add the boiling water.	yes	yes	
Where are the batteries kept in a phone?	no	yes	
Vinegar's usefulness doesn't stop inside the house.	no	no	
How do I recognize a room that contains radioactive materials?	yes	yes	
A letterbox is a plastic, screw-top bottle that contains a small notebook and a unique rubber stamp.	yes	no	

- Multiple coders annotate same data (with same guidelines)
- ► Calculate Inter-annotator agreement (IAA)

Sentence	A	В	agree?
Put tea in a heat-resistant jug and add the boiling water.	yes	yes	✓
Where are the batteries kept in a phone?	no	yes	X
Vinegar's usefulness doesn't stop inside the house.	no	no	✓
How do I recognize a room that contains radioactive materials?	yes	yes	✓
A letterbox is a plastic, screw-top bottle that contains a small notebook and a unique rubber stamp.	yes	no	X

- Multiple coders annotate same data (with same guidelines)
- ► Calculate Inter-annotator agreement (IAA)

Sentence	Α	В	agree?
Put tea in a heat-resistant jug and add the boiling water.	yes	yes	✓
Where are the batteries kept in a phone?	no	yes	X
Vinegar's usefulness doesn't stop inside the house.	no	no	✓
How do I recognize a room that contains radioactive materials?	yes	yes	✓
A letterbox is a plastic, screw-top bottle that contains a small notebook and a unique rubber stamp.	yes	no	X

→ Observed agreement between A and B is 60%

(Brants 2000 for German POS/syntax, Véronis 1998 for WSD)

Objective tasks

- Decision rules, linguistic tests
- Annotation guidelines with discussion of boundary cases
- ► POS tagging, syntactic annotation, segmentation, phonetic transcription, . . .

(Brants 2000 for German POS/syntax, Véronis 1998 for WSD)

Objective tasks

- Decision rules, linguistic tests
- Annotation guidelines with discussion of boundary cases
- ► POS tagging, syntactic annotation, segmentation, phonetic transcription, . . .

Subjective tasks

- Based on speaker intuitions
- Short annotation instructions
- ► Lexical semantics (subjective interpretation!), discourse annotation & pragmatics, subjectivity analysis, ...

(Brants 2000 for German POS/syntax, Véronis 1998 for WSD)

Objective tasks

- Decision rules, linguistic tests
- Annotation guidelines with discussion of boundary cases
- ► POS tagging, syntactic annotation, segmentation, phonetic transcription, . . .
- ► IAA = 98.5% (POS tagging) IAA $\approx 93.0\%$ (syntax)

Subjective tasks

- Based on speaker intuitions
- Short annotation instructions
- Lexical semantics (subjective interpretation!), discourse annotation & pragmatics, subjectivity analysis, . . .

[NB: error rates around 5% are considered acceptable for most purposes]

(Brants 2000 for German POS/syntax, Véronis 1998 for WSD)

Objective tasks

- Decision rules, linguistic tests
- Annotation guidelines with discussion of boundary cases
- ► POS tagging, syntactic annotation, segmentation, phonetic transcription, . . .
- → IAA = 98.5% (POS tagging) IAA $\approx 93.0\%$ (syntax)

Subjective tasks

- Based on speaker intuitions
- Short annotation instructions
- ► Lexical semantics (subjective interpretation!), discourse annotation & pragmatics, subjectivity analysis, . . .
- → IAA = $\frac{48}{70}$ = 68.6% (HW) IAA ≈ 70% (word senses)

[NB: error rates around 5% are considered acceptable for most purposes]

Is 70% agreement good enough?

8 / 42

Outline

Reliability & agreement

Introduction

Observed vs. chance agreement

The Kappa coefficient

Contingency tables

Chance agreement & Kappa

Statistical inference for Kappa

Random variation of agreement measures

Kappa as a sample statistic

Outlook

Extensions of Kappa

Final remarks

9 / 42

- Assume that A and B are lazy annotators, so they just marked sentences randomly as "yes" and "no"
 - [or they enjoyed too much sun & Bordeaux wine yesterday]
- How much agreement would you expect?

- Assume that A and B are lazy annotators, so they just marked sentences randomly as "yes" and "no"
 - [or they enjoyed too much sun & Bordeaux wine yesterday]
- How much agreement would you expect?
- Annotator decisions are like coin tosses:

- Assume that A and B are lazy annotators, so they just marked sentences randomly as "yes" and "no"
 - [or they enjoyed too much sun & Bordeaux wine yesterday]
- ► How much agreement would you expect?
- Annotator decisions are like coin tosses: 25% both coders randomly choose "yes" (= 0.5 · 0.5)

- Assume that A and B are lazy annotators, so they just marked sentences randomly as "yes" and "no"
 - [or they enjoyed too much sun & Bordeaux wine yesterday]
- How much agreement would you expect?
- Annotator decisions are like coin tosses:
 - 25% both coders randomly choose "yes" (= $0.5 \cdot 0.5$)
 - 25% both coders randomly choose "no" (= $0.5 \cdot 0.5$)

Assume that A and B are lazy annotators, so they just marked sentences randomly as "yes" and "no"

[or they enjoyed too much sun & Bordeaux wine yesterday]

- How much agreement would you expect?
- Annotator decisions are like coin tosses:

```
25% both coders randomly choose "yes" (= 0.5 \cdot 0.5)
```

25% both coders randomly choose "no" (= $0.5 \cdot 0.5$)

50% agreement purely by chance

- Assume that A and B are lazy annotators, so they just marked sentences randomly as "yes" and "no"
 - [or they enjoyed too much sun & Bordeaux wine yesterday]
- ► How much agreement would you expect?
- Annotator decisions are like coin tosses:
 - 25% both coders randomly choose "yes" $(=0.5\cdot0.5)$
 - 25% both coders randomly choose "no" (= $0.5 \cdot 0.5$)
 - 50% agreement purely by chance
- \rightarrow IAA = 70% is only mildly better than chance agreement

But 90% agreement is certainly a good result?

i.e. it indicates high reliability

- Assume A and B are lazy coders with a proactive approach
 - ► They believe that their task is to find as many examples of container-content pairs as possible to make us happy
 - ► So they mark 95% of sentences with "yes"
 - ▶ But individual choices are still random
- How much agreement would you expect now?

- Assume A and B are lazy coders with a proactive approach
 - They believe that their task is to find as many examples of container-content pairs as possible to make us happy
 - ► So they mark 95% of sentences with "yes"
 - ▶ But individual choices are still random
- How much agreement would you expect now?
- Annotator decisions are like tosses of a biased coin:

- ► Assume A and B are lazy coders with a proactive approach
 - ► They believe that their task is to find as many examples of container-content pairs as possible to make us happy
 - So they mark 95% of sentences with "yes"
 - ▶ But individual choices are still random
- How much agreement would you expect now?
- Annotator decisions are like tosses of a biased coin:

0.25% both coders randomly choose "no" (= $.05 \cdot .05$)

- ► Assume A and B are lazy coders with a proactive approach
 - ► They believe that their task is to find as many examples of container-content pairs as possible to make us happy
 - ► So they mark 95% of sentences with "yes"
 - ▶ But individual choices are still random
- How much agreement would you expect now?
- ▶ Annotator decisions are like tosses of a biased coin:

```
90.25% both coders randomly choose "yes" (= .95 \cdot .95)
```

0.25% both coders randomly choose "no" (= $.05 \cdot .05$)

- Assume A and B are lazy coders with a proactive approach
 - ► They believe that their task is to find as many examples of container-content pairs as possible to make us happy
 - So they mark 95% of sentences with "yes"
 - ▶ But individual choices are still random
- How much agreement would you expect now?
- ▶ Annotator decisions are like tosses of a biased coin:

```
90.25% both coders randomly choose "yes" (=.95 \cdot .95)
```

0.25% both coders randomly choose "no" (= $.05 \cdot .05$)

90.50% agreement purely by chance

- ► Assume A and B are lazy coders with a proactive approach
 - They believe that their task is to find as many examples of container-content pairs as possible to make us happy
 - So they mark 95% of sentences with "yes"
 - ▶ But individual choices are still random
- How much agreement would you expect now?
- ▶ Annotator decisions are like tosses of a biased coin:

```
90.25% both coders randomly choose "yes" (= .95 \cdot .95)
0.25% both coders randomly choose "no" (= .05 \cdot .05)
```

- 0.25% both coders randomly choose no $(=.05\cdot.05)$
- 90.50% agreement purely by chance
- \Rightarrow IAA = 90% might be no more than chance agreement

Measuring inter-annotator agreement

(notation follows Artstein & Poesio 2008)

Agreement measures must be corrected for **chance agreement**! (for computational linguistics: Carletta 1996)

Measuring inter-annotator agreement

(notation follows Artstein & Poesio 2008)

Agreement measures must be corrected for **chance agreement**! (for computational linguistics: Carletta 1996)

Notation: A_o ... observed (or "percentage") agreement A_e ... expected agreement by chance

(notation follows Artstein & Poesio 2008)

Agreement measures must be corrected for **chance agreement**! (for computational linguistics: Carletta 1996)

Notation: A_o ... observed (or "percentage") agreement A_e ... expected agreement by chance

General form of chance-corrected agreement measure R:

$$R = -----$$

(notation follows Artstein & Poesio 2008)

Agreement measures must be corrected for **chance agreement**! (for computational linguistics: Carletta 1996)

Notation: A_o ... observed (or "percentage") agreement A_e ... expected agreement by chance

General form of chance-corrected agreement measure R:

$$R = \frac{A_o - A_e}{}$$

(notation follows Artstein & Poesio 2008)

Agreement measures must be corrected for **chance agreement**! (for computational linguistics: Carletta 1996)

Notation: A_o ... observed (or "percentage") agreement A_e ... expected agreement by chance

General form of chance-corrected agreement measure R:

$$R = \frac{A_o - A_e}{1 - A_e}$$

Perfect agreement:
$$R = 1 = \frac{1 - A_e}{1 - A_o}$$

Perfect agreement:
$$R = 1 = \frac{1 - A_e}{1 - A_e}$$

► Chance agreement:
$$R = 0 = \frac{A_e - A_e}{1 - A_e}$$

Perfect agreement:
$$R = 1 = \frac{1 - A_e}{1 - A_e}$$

Perfect disagreement:
$$R = \frac{-A_e}{1 - A_e}$$

Some general properties of R:

Perfect agreement:
$$R = 1 = \frac{1 - A_e}{1 - A_e}$$

Perfect disagreement:
$$R = \frac{-A_e}{1 - A_e}$$

Various agreement measures depending on precise definition of A_e :

Some general properties of R:

Perfect agreement:
$$R = 1 = \frac{1 - A_e}{1 - A_e}$$

Perfect disagreement:
$$R = \frac{-A_e}{1 - A_e}$$

Various agreement measures depending on precise definition of A_e :

ightharpoonup R = S for random coin tosses (Bennett *et al.* 1954)

Some general properties of R:

Perfect agreement:
$$R = 1 = \frac{1 - A_e}{1 - A_e}$$

Perfect disagreement:
$$R = \frac{-A_e}{1 - A_e}$$

Various agreement measures depending on precise definition of A_e :

- ightharpoonup R = S for random coin tosses (Bennett *et al.* 1954)
- ▶ $R = \pi$ for shared category distribution (Scott 1955)

Some general properties of R:

Perfect agreement:
$$R = 1 = \frac{1 - A_e}{1 - A_e}$$

Perfect disagreement:
$$R = \frac{-A_e}{1 - A_e}$$

Various agreement measures depending on precise definition of A_e :

- ightharpoonup R = S for random coin tosses (Bennett *et al.* 1954)
- $ightharpoonup R = \pi$ for shared category distribution (Scott 1955)
- $ightharpoonup R = \kappa$ for individual category distributions (Cohen 1960)

Outline

Reliability & agreement

Introduction

Observed vs. chance agreement

The Kappa coefficient

Contingency tables

Chance agreement & Kappa

Statistical inference for Kappa

Random variation of agreement measures Kappa as a sample statistic

Outlook

Extensions of Kappa

	coder B		
coder A	yes	no	
yes	24 14	8	
yes no	14	24	

	code		
coder A	yes	no	
yes	24 14	8	
no	14	24	

	coder B		
coder A	yes	no	
yes	24 14	8	32
no	14	24	38

	coder B		
coder A	yes	no	
yes	24 14	8	32
no	14	24	38
	38	32	

	coder B		
coder A	yes	no	
yes	24 14	8	32
no	14	24	38
	38	32	70

	coder B yes no		
coder A	yes	no	
yes	24 14	8	32
no	14	24	38
	38	32	70

	code		
coder A	yes	no	
yes	n ₁₁	n ₁₂	n ₁ .
no	n ₂₁	<i>n</i> ₂₂	<i>n</i> ₂ .
	n.1	n. ₂	N

	coder B		
coder A	yes	no	
yes	24 14	8	32 38
no	14	24	38
	38	32	70

	coder B yes no		
coder A	yes	no	
yes	n ₁₁	n ₁₂	n ₁ .
no	n ₂₁	<i>n</i> ₂₂	<i>n</i> ₂ .
	n.1	n.2	N

coder A	coder		
coder A	yes	no	
yes	.343	.114	.457
no	.343 .200	.343	.543
	.543	.457	1

	code		
coder A	yes	no	
yes	<i>p</i> ₁₁	p ₁₂ p ₂₂	<i>p</i> ₁ .
no	p_{21}	<i>p</i> ₂₂	p_2 .
	$p_{\cdot 1}$	p .2	р

Contingency table of **proportions** $p_{ij} = \frac{n_{ij}}{N}$

	coder B		
coder A	yes	no	
yes	.343 .200	.114	.457
no	.200	.343	.543
	.543	.457	1

coder A	code		
coder A	yes	no	
yes	<i>p</i> ₁₁	p ₁₂ p ₂₂	<i>p</i> ₁ .
no	p_{21}	<i>p</i> ₂₂	p_2 .
	p _{·1}	<i>p</i> . ₂	p

Relevant information can be read off from contingency table:

Contingency table of **proportions** $p_{ij} = \frac{n_{ij}}{N}$

	coder		
coder A	yes	no	
yes	.343 .200	.114	.457
no	.200	.343	.543
	.543	.457	1

coder A	code		
coder A	yes	no	
yes	<i>p</i> ₁₁	p ₁₂	<i>p</i> ₁ .
no	<i>p</i> ₂₁	<i>p</i> ₂₂	<i>p</i> ₂ .
	$p_{\cdot 1}$	<i>p</i> . ₂	р

Relevant information can be read off from contingency table:

 \triangleright Observed agreement $A_0 = p_{11} + p_{22} = .686$

Contingency table of **proportions** $p_{ij} = \frac{n_{ij}}{N}$

	coder		
coder A	yes	no	
yes	.343 .200	.114	.457
no	.200	.343	.543
	.543	.457	1

coder A	code		
coder A	yes	no	
yes	<i>p</i> ₁₁	p ₁₂ p ₂₂	<i>p</i> ₁ .
no	p_{21}	<i>p</i> ₂₂	<i>p</i> ₂ .
	$p_{\cdot 1}$	<i>p</i> . ₂	р

Relevant information can be read off from contingency table:

- ightharpoonup Observed agreement $A_o = p_{11} + p_{22} = .686$
- ► Category distribution for coder A: $p_{i.} = p_{i1} + p_{i2}$

Contingency table of **proportions**
$$p_{ij} = \frac{n_{ij}}{N}$$

	coder		
coder A	yes	no	
yes	.343 .200	.114	.457
no	.200	.343	.543
	.543	.457	1

coder A	code		
coder A	yes	no	
yes	<i>p</i> ₁₁	p ₁₂	<i>p</i> ₁ .
no	p_{21}	<i>p</i> ₂₂	<i>p</i> ₂ .
	$p_{\cdot 1}$	<i>p</i> . ₂	р

Relevant information can be read off from contingency table:

- ▶ Observed agreement $A_o = p_{11} + p_{22} = .686$
- ► Category distribution for coder A: $p_{i.} = p_{i1} + p_{i2}$
- ► Category distribution for coder B: $p_{.j} = p_{1j} + p_{2j}$

Outline

Reliability & agreement

Introduction

Observed vs. chance agreement

The Kappa coefficient

Contingency tables

Chance agreement & Kappa

Statistical inference for Kappa

Random variation of agreement measures

Kappa as a sample statistic

Outlook

Extensions of Kappa

Final remarks

▶ How often are annotators expected to agree if they make random choices according to their category distributions?

	coder	В			coder B		
coder A	yes	no		coder A	yes	no	
yes no			.457 .543	yes no			<i>p</i> ₁ . <i>p</i> ₂ .
	.543	.457	1		<i>p</i> . ₁	p .2	p

- ► How often are annotators expected to agree if they make random choices according to their category distributions?
- ▶ Decisions of annotators are independent → multiply marginals

	coder				coder B		
coder A	yes	no		coder A	yes	no	
yes no			.457 .543	yes no	$\begin{array}{c c} p_{1} \cdot p_{\cdot 1} \\ p_{2} \cdot p_{\cdot 1} \end{array}$	$p_1 \cdot p_{\cdot 2}$ $p_2 \cdot p_{\cdot 2}$	<i>p</i> ₁ . <i>p</i> ₂ .
	.543	.457	1		<i>p</i> . ₁	p .2	p

- How often are annotators expected to agree if they make random choices according to their category distributions?
- ▶ Decisions of annotators are independent → multiply marginals

coder A	coder	В		coder A	coder B		
coder A	yes	no		coder A	yes	no	
yes no	.248 .295	.209 .248	.457 .543	yes no	$\begin{array}{c c} p_{1} \cdot p_{\cdot 1} \\ p_{2} \cdot p_{\cdot 1} \end{array}$	$p_1 \cdot p_{\cdot 2}$ $p_2 \cdot p_{\cdot 2}$	p ₁ . p ₂ .
	.543	.457	1		p. ₁	p .2	p

- ► How often are annotators expected to agree if they make random choices according to their category distributions?
- ▶ Decisions of annotators are independent → multiply marginals

coder A	coder	В			coder B		
coder A	yes	no		coder A	yes	no	
yes no	.248 .295	.209 .248	.457 .543	yes no	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$p_1 \cdot p_{\cdot 2}$ $p_2 \cdot p_{\cdot 2}$	<i>p</i> ₁ . <i>p</i> ₂ .
	.543	.457	1		<i>p</i> . ₁	<i>p</i> . ₂	p

Expected chance agreement:

$$A_e = p_1 \cdot p_{\cdot 1} + p_2 \cdot p_{\cdot 2} = 49.6\%$$

Sanity check: Is it plausible to assume that annotators always flip coins?

Sanity check: Is it plausible to assume that annotators always flip coins?

- No need to make such strong assumptions
- Annotations of individual coders may well be systematic
- We only require that choices of A and B are statistically independent, i.e. no common ground for their decisions

Definition of the Kappa coefficient (Cohen 1960)

Formal definition of the **Kappa** coefficient:

$$A_o = p_{11} + p_{22}$$

$$A_e = p_{1\cdot} \cdot p_{\cdot 1} + p_{2\cdot} \cdot p_{\cdot 2}$$

$$\kappa = \frac{A_o - A_e}{1 - A_e}$$

Definition of the Kappa coefficient (Cohen 1960)

Formal definition of the **Kappa** coefficient:

$$A_o = p_{11} + p_{22}$$

$$A_e = p_{1} \cdot p_{1} + p_{2} \cdot p_{2}$$

$$\kappa = \frac{A_o - A_e}{1 - A_e}$$

In our example:
$$A_o = .343 + .343 = .686$$
 $A_e = .248 + .248 = .496$ $\kappa = \frac{.686 - .496}{1 - .496} = 0.376 !!$

Other agreement measures

(Scott 1955; Bennett et al. 1954)

- 1. π estimates a common category distribution \bar{p}_i
 - ightharpoonup goal is to measure chance agreement between arbitrary coders, while κ focuses on a specific pair of coders

$$A_e = (\bar{p}_1)^2 + (\bar{p}_2)^2$$

 $\bar{p}_i = \frac{1}{2}(p_{i\cdot} + p_{\cdot i})$

Other agreement measures

(Scott 1955; Bennett et al. 1954)

- 1. π estimates a common category distribution \bar{p}_i
 - ightharpoonup goal is to measure chance agreement between arbitrary coders, while κ focuses on a specific pair of coders

$$A_e = (\bar{p}_1)^2 + (\bar{p}_2)^2$$

 $\bar{p}_i = \frac{1}{2}(p_{i\cdot} + p_{\cdot i})$

- 2. S assumes that coders actually flip coins . . .
 - lacktriangledown i.e. equiprobable category distribution $ar p_1=ar p_2=rac12$

$$A_e = \frac{1}{2}$$

Other agreement measures

(Scott 1955; Bennett et al. 1954)

- 1. π estimates a common category distribution \bar{p}_i
 - ightharpoonup goal is to measure chance agreement between arbitrary coders, while κ focuses on a specific pair of coders

$$A_e = (\bar{p}_1)^2 + (\bar{p}_2)^2$$

 $\bar{p}_i = \frac{1}{2}(p_{i\cdot} + p_{\cdot i})$

- 2. S assumes that coders actually flip coins . . .
 - lacktriangle i.e. equiprobable category distribution $ar p_1=ar p_2=rac12$

$$A_e = \frac{1}{2}$$

Much controversy whether π or κ is the more appropriate measure, but in practice they often lead to similar agreement values!

22 / 42

Scales for the interpretation of Kappa

► Landis & Koch (1977)

Scales for the interpretation of Kappa

► Landis & Koch (1977)

► Krippendorff (1980)

Scales for the interpretation of Kappa

► Landis & Koch (1977)

► Krippendorff (1980)

► Green (1997)

Scales for the interpretation of Kappa

► Landis & Koch (1977)

► Krippendorff (1980)

► Green (1997)

and many other suggestions . . .

Outline

Reliability & agreement

Introduction

Observed vs. chance agreement

The Kappa coefficient

Contingency tables

Chance agreement & Kappa

Statistical inference for Kappa

Random variation of agreement measures

Kappa as a sample statistic

Outlook

Extensions of Kappa

Final remarks

	code		
coder A	yes	no	
yes	70 0	25	95
no	0	55	55
	70	80	150

	code		
coder A	yes	no	
yes	70 0	25 55	95
no	0	55	55
	70	80	150

	coder		
coder A	yes	no	
yes	. <mark>467</mark> .000	.167	.633
no	.000	.367	.367
	.467	.533	1

coder A	code	er B			coder A	coder	В	
coder A	yes	no			coder A	yes	no	
yes	70 0	25	95	-	yes	.467	.167 .367	.633
no	0	55	55		no	.000	.367	.367
	70	80	150	-		.467	.533	1

► Cohen (1960): $A_o = .833$, $A_e = .491$, $\kappa = .672$

coder A	code	er B				coder	В	
coder A	yes	no			coder A	yes	no	
yes	70 0	25	95	-	yes	.467 .000	.167	.633
no	0	55	55		no	.000	.367	.367
	70	80	150	-		.467	.533	1

- Cohen (1960): $A_o = .833$, $A_e = .491$, $\kappa = .672$
- ► Scott (1955): $A_o = .833$, $A_e = .505$, $\pi = .663$

coder A	code	er B			coder A	coder	В	
coder A	yes	no			coder A	yes	no	
yes	70 0	25	95	-	yes	.467	.167 .367	.633
no	0	55	55		no	.000	.367	.367
	70	80	150	•		.467	.533	1

- Cohen (1960): $A_o = .833$, $A_e = .491$, $\kappa = .672$
- ► Scott (1955): $A_o = .833$, $A_e = .505$, $\pi = .663$
- \blacktriangleright Krippendorff (1980): data show tentative agreement according to κ , but should be discarded according to π

coder A	code	er B				coder	В	
coder A	yes	no			coder A	yes	no	
yes	70 0	25	95	-	yes	.467	.167 .367	.633
no	0	55	55		no	.000	.367	.367
	70	80	150	-		.467	.533	1

- Cohen (1960): $A_o = .833$, $A_e = .491$, $\kappa = .672$
- ► Scott (1955): $A_o = .833$, $A_e = .505$, $\pi = .663$
- \blacktriangleright Krippendorff (1980): data show tentative agreement according to κ , but should be discarded according to π
- ₩ What do you think?

	code		
coder A	yes	no	
yes	70 0	25	95
no	0	55	55
	70	80	150

$$A_0 = .833$$

 $\kappa = .672$ $(A_e = .491)$
 $\pi = .663$ $(A_e = .505)$

	code		
coder A	yes	no	
yes	67 2	24	91
no	2	57	59
	69	81	150

$$A_0 = .827$$

 $\kappa = .659$ $(A_e = .491)$
 $\pi = .652$ $(A_e = .502)$

	code		
coder A	yes	no	
yes	70 4	20	90
no	4	56	60
	74	76	150

$$A_0 = .840$$

 $\kappa = .681$ $(A_e = .499)$
 $\pi = .677$ $(A_e = .504)$

We are not interested in a particular sample, but rather want to know how often coders agree in general (for this task).

 \blacktriangleright Sampling variation of κ

[NB: A_e is expected chance agreement, not value in specific sample]

Outline

Reliability & agreement

Introduction

Observed vs. chance agreement

The Kappa coefficient

Contingency tables

Chance agreement & Kappa

Statistical inference for Kappa

Random variation of agreement measures

Kappa as a sample statistic

Outlook

Extensions of Kappa

Final remarks

Kappa is a sample statistic $\hat{\kappa}$

$$\begin{array}{c|cccc} & + & - \\ + & \pi_{11} & \pi_{12} \\ - & \pi_{21} & \pi_{22} \end{array}$$

population

$$\begin{array}{c|cccc} & + & - \\ \hline + & p_{11} & p_{12} \\ - & p_{21} & p_{22} \end{array}$$

sample

$$\alpha_o = \pi_{11} + \pi_{12}$$

$$\alpha_e = \pi_{1} \cdot \pi_{11} + \pi_{2} \cdot \pi_{22}$$

$$\kappa = \frac{\alpha_o - \alpha_e}{1 - \alpha_o}$$

$$A_o = p_{11} + p_{12}$$

 $A_e = p_{1.} \cdot p_{.1} + p_{2.} \cdot p_{.2}$

$$\hat{\kappa} = \frac{A_o - A_e}{1 - A_e}$$

(Fleiss et al. 1969; Krenn et al. 2004)

Standard approach: show (or hope) that $\hat{\kappa}$ approximately follows Gaussian distribution if samples are large enough

(Fleiss et al. 1969; Krenn et al. 2004)

- Standard approach: show (or hope) that $\hat{\kappa}$ approximately follows Gaussian distribution if samples are large enough
- Show (or hope) that $\hat{\kappa}$ is unbiased estimator: $\mathrm{E}[\hat{\kappa}] = \kappa$

(Fleiss et al. 1969; Krenn et al. 2004)

- Standard approach: show (or hope) that $\hat{\kappa}$ approximately follows Gaussian distribution if samples are large enough
- Show (or hope) that $\hat{\kappa}$ is unbiased estimator: $\mathrm{E}[\hat{\kappa}] = \kappa$
- ▶ Compute standard deviation of $\hat{\kappa}$ (Fleiss *et al.* 1969: 325):

$$(\hat{\sigma}_{\hat{\kappa}})^2 = rac{1}{N \cdot (1 - A_e)^4} \cdot \left(\sum_{i=1}^2 p_{ii} \left[(1 - A_e) - (p_{\cdot i} + p_{i \cdot})(1 - A_o) \right]^2 + (1 - A_o)^2 \sum_{i \neq i} p_{ij} (p_{\cdot i} + p_{j \cdot})^2 - (A_o A_e - 2A_e + A_o)^2 \right)$$

(Lee & Tu 1994; Boleda & Evert unfinished)

► Asymptotic 95% confidence interval:

$$\kappa \in \left[\hat{\kappa} - 1.96 \cdot \hat{\sigma}_{\hat{\kappa}}, \ \hat{\kappa} + 1.96 \cdot \hat{\sigma}_{\hat{\kappa}} \right]$$

(Lee & Tu 1994; Boleda & Evert unfinished)

► Asymptotic 95% confidence interval:

$$\kappa \in \left[\hat{\kappa} - 1.96 \cdot \hat{\sigma}_{\hat{\kappa}}, \ \hat{\kappa} + 1.96 \cdot \hat{\sigma}_{\hat{\kappa}} \right]$$

▶ For the example from Di Eugenio & Glass (2004), we have

$$\kappa \in \left[0.562, 0.783\right]$$
 with $\hat{\sigma}_{\hat{\kappa}} = .056$

comparison with threshold .067 is pointless!

(Lee & Tu 1994; Boleda & Evert unfinished)

► Asymptotic 95% confidence interval:

$$\kappa \in \left[\hat{\kappa} - 1.96 \cdot \hat{\sigma}_{\hat{\kappa}}, \ \hat{\kappa} + 1.96 \cdot \hat{\sigma}_{\hat{\kappa}} \right]$$

▶ For the example from Di Eugenio & Glass (2004), we have

$$\kappa \in [0.562, 0.783]$$
 with $\hat{\sigma}_{\hat{\kappa}} = .056$

- comparison with threshold .067 is pointless!
- How accurate is the Gaussian approximation?
 - ▶ Simulation experiments indicate biased $\hat{\kappa}$, underestimation of $\hat{\sigma}_{\hat{\kappa}}$ and non-Gaussian distribution for skewed marginals
 - ▶ Confidence intervals are reasonable for larger samples

(Lee & Tu 1994; Boleda & Evert unfinished)

► Asymptotic 95% confidence interval:

$$\kappa \in \left[\hat{\kappa} - 1.96 \cdot \hat{\sigma}_{\hat{\kappa}}, \ \hat{\kappa} + 1.96 \cdot \hat{\sigma}_{\hat{\kappa}} \right]$$

▶ For the example from Di Eugenio & Glass (2004), we have

$$\kappa \in [0.562, 0.783]$$
 with $\hat{\sigma}_{\hat{\kappa}} = .056$

- comparison with threshold .067 is pointless!
- ► How accurate is the Gaussian approximation?
 - ▶ Simulation experiments indicate biased $\hat{\kappa}$, underestimation of $\hat{\sigma}_{\hat{\kappa}}$ and non-Gaussian distribution for skewed marginals
 - Confidence intervals are reasonable for larger samples
- ▶ Recent work on improved estimates (e.g. Lee & Tu 1994)

Outline

Reliability & agreement

Introduction

Observed vs. chance agreement

The Kappa coefficient

Contingency tables

Chance agreement & Kappa

Statistical inference for Kappa

Random variation of agreement measures

Kappa as a sample statistic

Outlook

Extensions of Kappa

Final remarks

- ▶ Straightforward extension to C > 2 categories
 - \rightarrow $C \times C$ contingency table of proportions p_{ij}

- ▶ Straightforward extension to C > 2 categories
 - \rightarrow $C \times C$ contingency table of proportions p_{ij}
- ▶ Observed agreement: $A_o = \sum_{i=1}^{C} p_{ii}$

- ▶ Straightforward extension to C > 2 categories
 - \rightarrow $C \times C$ contingency table of proportions p_{ij}
- ▶ Observed agreement: $A_o = \sum_{i=1}^{C} p_{ii}$
- ▶ Expected agreement: $A_e = \sum_{i=1}^{C} p_{i} \cdot p_{i}$

- ▶ Straightforward extension to C > 2 categories
 - \rightarrow $C \times C$ contingency table of proportions p_{ij}
- ▶ Observed agreement: $A_o = \sum_{i=1}^{C} p_{ii}$
- ► Expected agreement: $A_e = \sum_{i=1}^{C} p_{i.} \cdot p_{.i}$
- $\blacktriangleright \text{ Kappa: } \hat{\kappa} = \frac{A_o A_e}{1 A_e}$
- **Equation** for $\hat{\sigma}_{\hat{\kappa}}$ also extends to C categories

- ▶ Straightforward extension to C > 2 categories
 - → $C \times C$ contingency table of proportions p_{ij}
- ▶ Observed agreement: $A_o = \sum_{i=1}^{C} p_{ii}$
- Expected agreement: $A_e = \sum_{i=1}^{C} p_{i\cdot} \cdot p_{\cdot i}$
- Kappa: $\hat{\kappa} = \frac{A_o A_e}{1 A_e}$
- **Equation** for $\hat{\sigma}_{\hat{\kappa}}$ also extends to C categories
- ▶ Drawback: $\hat{\kappa}$ only uses diagonal and marginals of table, discarding most information from the off-diagonal cells

34 / 42

- ► For multiple categories, some disagreements may be more "serious" than others → assign greater weight
- ► E.g. German PP-verb combinations (Krenn et al. 2004)
 - 1. figurative expressions (collocational)
 - 2. support-verb constructions (collocational)
 - 3. free combinations (non-collocational)

- ► For multiple categories, some disagreements may be more "serious" than others → assign greater weight
- ► E.g. German PP-verb combinations (Krenn *et al.* 2004)
 - 1. figurative expressions (collocational)
 - 2. support-verb constructions (collocational)
 - 3. free combinations (non-collocational)
- Rewrite $\hat{\kappa}$ in terms of expected/observed **disagreement**

- ► For multiple categories, some disagreements may be more "serious" than others → assign greater weight
- ► E.g. German PP-verb combinations (Krenn *et al.* 2004)
 - 1. figurative expressions (collocational)
 - 2. support-verb constructions (collocational)
 - 3. free combinations (non-collocational)
- Rewrite $\hat{\kappa}$ in terms of expected/observed **disagreement**

$$\hat{\kappa} = \frac{(1 - D_o) - (1 - D_e)}{1 - (1 - D_e)} = 1 - \frac{D_o}{D_e}$$

- ► For multiple categories, some disagreements may be more "serious" than others → assign greater weight
- ► E.g. German PP-verb combinations (Krenn et al. 2004)
 - 1. figurative expressions (collocational)
 - 2. support-verb constructions (collocational)
 - 3. free combinations (non-collocational)
- ▶ Rewrite $\hat{\kappa}$ in terms of expected/observed **disagreement**

$$\hat{\kappa} = \frac{(1 - D_o) - (1 - D_e)}{1 - (1 - D_e)} = 1 - \frac{D_o}{D_e}$$

$$D_o = 1 - A_o = \sum_{i \neq i} p_{ij}$$

- ► For multiple categories, some disagreements may be more "serious" than others → assign greater weight
- ► E.g. German PP-verb combinations (Krenn et al. 2004)
 - 1. figurative expressions (collocational)
 - 2. support-verb constructions (collocational)
 - 3. free combinations (non-collocational)
- Rewrite $\hat{\kappa}$ in terms of expected/observed **disagreement**

$$\hat{\kappa} = \frac{(1 - D_o) - (1 - D_e)}{1 - (1 - D_e)} = 1 - \frac{D_o}{D_e}$$

$$D_o = 1 - A_o = \sum_{i \neq j} p_{ij}$$

$$D_e = 1 - A_e = \sum_{i \neq j} p_{i} \cdot p_{ij}$$

- ► For multiple categories, some disagreements may be more "serious" than others → assign greater weight
- ► E.g. German PP-verb combinations (Krenn et al. 2004)
 - 1. figurative expressions (collocational)
 - 2. support-verb constructions (collocational)
 - 3. free combinations (non-collocational)
- ▶ Rewrite $\hat{\kappa}$ in terms of expected/observed **disagreement**

$$\begin{split} \hat{\kappa} &= \frac{(1 - D_o) - (1 - D_e)}{1 - (1 - D_e)} = 1 - \frac{D_o}{D_e} \\ D_o &= 1 - A_o = \sum_{i \neq j} p_{ij} \leadsto \sum_{i \neq j} w_{ij} p_{ij} \\ D_e &= 1 - A_e = \sum_{i \neq j} p_{i\cdot} \cdot p_{\cdot j} \leadsto \sum_{i \neq j} w_{ij} (p_{i\cdot} \cdot p_{\cdot j}) \end{split}$$

(Krenn et al. 2004)

► Naive strategy: compare each annotator against selected "expert", or consensus annotation after reconciliation phase

BK	kappa	homog	homogeneity	
vs. NN	value	min	max	size
7	.775	71.93%	82.22%	10.29
9	.747	68.65%	79.77%	11.12
10	.700	64.36%	75.85%	11.49
4	.696	64.09%	75.91%	11.82
1	.692	63.39%	75.91%	12.52
6	.671	61.05%	73.33%	12.28
5	.669	60.12%	72.75%	12.63
2	.639	56.14%	70.64%	14.50
11	.592	52.40%	65.65%	13.25
3	.520	51.70%	64.33%	12.63
8	.341	33.68%	49.71%	16.03
12	.265	17.00%	35.05%	18.05

▶ Better approach: compute $\hat{\kappa}$ for each possible pair of annotators, then report average and standard deviation

- ▶ Better approach: compute $\hat{\kappa}$ for each possible pair of annotators, then report average and standard deviation
- Extensions of agreement coefficients to multiple annotators are mathematical implementations of this basic idea (see Artstein & Poesio 2008 for details)

- ▶ Better approach: compute $\hat{\kappa}$ for each possible pair of annotators, then report average and standard deviation
- Extensions of agreement coefficients to multiple annotators are mathematical implementations of this basic idea (see Artstein & Poesio 2008 for details)
- ► If sufficiently many coders (= test subjects) are available, annotation can be analysed as psycholinguistic experiment
 - ► ANOVA, logistic regression, generalised linear models
 - ▶ correlations between annotators → systematic disagreement

Outline

Reliability & agreement

Introduction

Observed vs. chance agreement

The Kappa coefficient

Contingency tables

Chance agreement & Kappa

Statistical inference for Kappa

Random variation of agreement measures

Kappa as a sample statistic

Outlook

Extensions of Kappa

Final remarks

Different types of non-reliability

- 1. Random errors (slips)
 - ▶ Lead to chance agreement between annotators

Different types of non-reliability

- 1. Random errors (slips)
 - ▶ Lead to chance agreement between annotators
- 2. Different intuitions
 - Systematic disagreement

Different types of non-reliability

- 1. Random errors (slips)
 - Lead to chance agreement between annotators
- 2. Different intuitions
 - Systematic disagreement
- 3. Misinterpretation of tagging guidelines
 - ▶ May not result in disagreement → not detected

Suggested reading & materials

Artstein & Poesio (2008)

Everyone should at least read this article.

R package **irr** (inter-rater reliability)

Lacks confidence intervals → to be included in corpora package.

References I

- Artstein, Ron and Poesio, Massimo (2008). Survey article: Inter-coder agreement for computational linguistics. *Computational Linguistics*, **34**(4), 555–596.
- Bennett, E. M.; Alpert, R.; Goldstein, A. C. (1954). Communications through limited questioning. Public Opinion Quarterly, 18(3), 303–308.
- Brants, Thorsten (2000). Inter-annotator agreement for a German newspaper corpus. In *Proceedings of the Second International Conference on Language Resources and Evaluation (LREC 2000)*, Athens, Greece.
- Carletta, Jean (1996). Assessing agreement on classification tasks: the kappa statistic. Computational Linguistics, 22(2), 249–254.
- Cohen, Jacob (1960). A coefficient of agreement for nominal scales. *Educational and Psychological Measurement*, **20**, 37–46.
- Di Eugenio, Barbara and Glass, Michael (2004). The kappa statistic: A second look. *Computational Linguistics*, **30**(1), 95–101.
- Fleiss, Joseph L.; Cohen, Jacob; Everitt, B. S. (1969). Large sample standard errors of kappa and weighted kappa. *Psychological Bulletin*, **72**(5), 323–327.
- Green, Annette M. (1997). Kappa statistics for multiple raters using categorical classifications. In *Proceedings of the Twenty-Second Annual SAS Users Group International Conference (online)*, San Diego, CA.

References II

- Krenn, Brigitte; Evert, Stefan; Zinsmeister, Heike (2004). Determining intercoder agreement for a collocation identification task. In *Proceedings of KONVENS 2004*, pages 89–96, Vienna, Austria.
- Krippendorff, Klaus (1980). Content Analysis: An Introduction to Its Methodology. Sage Publications, Beverly Hills, CA.
- Landis, J. Richard and Koch, Gary G. (1977). The measurement of observer agreement for categorical data. *Biometrics*, **33**(1), 159–174.
- Lee, J. Jack and Tu, Z. Nora (1994). A better confidence interval for kappa (κ) on measuring agreement between two raters with binary outcomes. *Journal of Computational and Graphical Statistics*, **3**(3), 301–321.
- Scott, William A. (1955). Reliability of content analysis: The case of nominal scale coding. *Public Opinion Quarterly*, 19(3), 321–325.
- Véronis, Jean (1998). A study of polysemy judgements and inter-annotator agreement. In *Proceedings of SENSEVAL-1*, Herstmonceux Castle, Sussex, UK.