

Electronics Systems (938II)

Lecture 1.1

Modern Electronic Systems (intro) – Design flow and HDL

- Digital electronics systems
 - Different technologies

- Digital electronics systems
 - Different technological families
 - DTL = Diode-Transistor Logic

NAND gate

- Digital electronics systems
 - Different technological families
 - DTL
 - RTL = Resistor-Transistor Logic

NOR gate

- Digital electronics systems
 - Different technological families
 - DTL
 - RTL
 - TTL = Transistor-transistor Logic

NAND gate

- Digital electronics systems
 - Different technological families
 - DTL
 - RTL
 - TTL
 - CMOS = Complementary MOS (logic)
 - p-MOS
 - n-MOS

NAND gate

- Digital electronics systems
 - Different technological families
 - DTL
 - RTL
 - TTL
 - CMOS

Dominant technology:

- Very Large Scale Integration (VLSI)
- Complete system on unique chip
 - Sensor
 - ADC
 - Digital logic

- Extreme miniaturization supported by CMOS technologies
 - From TSMC* website:

^{*} TSMC = semiconductor manufacturer

- Extreme miniaturization supported by CMOS technologies
 - Larger number of transistors for the same silicon area
 - Cost reduction: chip cost

 silicon area
 - Lower supply voltage
 - Lower power consumption
 - Higher frequencies
 - More compact logic gates ≈ lower propagation delays

- Number of transistors in the same chip
- Over the years, we passed
 - From SSI (Small Scale Integration): transistor count $\propto 10$
 - To VLSI (Very Large Scale Integration): transistor count $\geq 10^6$

CHOS

TTL

- Number of transistors in the same chip
- Over the years, we passed
 - From SSI (Small Scale Integration): transistor count $\propto 10$

• In other words, we passed ...

... from this, ...

... to this!

• In other words, we passed ...

... from this, ...

... to this!

Layout of a modern Intel processor

• In other words, we passed ...

... from this, ...

... to this!

Hand design

Automated design!!!

VLSI circuits

- Most modern digital electronic systems (or the digital part of an analog and digital system) are ...
 - ... VLSI circuits
 - ... based on CMOS technologies
 - ... designed using automated tools
 - EDA = Electronic Design Automation

VLSI circuits

- Most modern digital electronic systems (or the digital part of an analog and digital system) are ...
 - ... VLSI circuits
 - ... based on CMOS technologies
 - ... designed using automated tools
 - **EDA** = Electronic Design Automation

- Automated design of modern digital circuits relies on the usage of HDL languages
 - HDL = Hardware Description Language
 - Languages (programming code) that describe a (digital) circuit

- Design flow
 - HDL code → Layout of the circuit

- Circuits manufacturing
 - Photolithography
 - The circuit layout define the mask(s) used in the photolithographic process

Photolithography

- Design flow
 - HDL code → Layout of the circuit
 - 3 representation levels

Design flow

HDL code → Layout of the circuit

• 3 representation levels

RTL = Register Transfer Level

- RTL
 - Abstract description/representation of the circuit in terms of
 - Registers (we are going to see registers later)
 - Logical operation(s) on the signals from registers

- RTL
 - Abstract description/representation of the circuit in terms of
 - Registers (we are going to see registers later)
 - Logical operation(s) on the signals from registers

- RTL
 - Representation of circuit components/elements: corresponding functional symbol

Functional symbol of register

Functional symbol of generic function

- RTL
 - Representation of circuit components/elements: corresponding functional symbol

Functional symbol of register

Functional symbol of generic function

- For functions/operations
 - The symbol may change depending on the operation it performs
 - For high-complexity functions, a generic box with an appropriate number of input(s) and output(s) is generally used
 - For single-gate functions (e.g., NOT, AND, NAND, OR, NOR, ...), the functional symbol correspond to the gate-level symbol

- RTL
 - Representation of circuit components/elements: corresponding functional symbol
 - Examples of single-gate logical functions: NOT

(functional symbol – RTL)

(gate-level)

- RTL
 - Representation of circuit components/elements: corresponding functional symbol
 - Examples of single-gate logical functions: AND

(functional symbol – RTL)

(gate-level)

- RTL
 - Representation of circuit components/elements: corresponding functional symbol
 - Examples of single-gate logical functions: NOR

(functional symbol – RTL)

(gate-level)

- RTL
 - Examples

• Over the years, V_{CC} scaled from 5 V down to 0.9 V

- In CMOS circuits
 - V_{CC} is the supply voltage $\rightarrow V_{CC}$ is the maximum voltage applied to all parts of the circuit
 - At least during the operation of the circuit
 - Some exceptions (e.g., programming, ...): will be clearer later
 - Always: $V_{CC} \ge V_T$
 - Always: $0V < V_T$

• p-MOS transistor ≈ controlled switch (dual of n-MOS)

- Active-low signals
 - Definition
 - When 1, the (active-low) signal is disabled
 - When 0, the (active-low) signal is enabled

- Active-low signals
 - Why?
 - Active-low signals can
 - Reduce the gate count (so the costs)
 - Improve the circuit "speed" (reduce the delay)

Thank you for your attention

Luca Crocetti (luca.crocetti@unipi.it)