Graphes et Réseaux SB - IMA - ROSE, Prof. D. de Werra MA 11, 08h15 - 10h00

Compilé le 24 septembre 2007

Série 1

26.09.2007

Exercice 1

- a) Quel est le nombre minimum de couleurs nécessaires pour colorer ces graphes ?
- b) Quel est le plus grand nombre de sommets deux à deux adjacents dans ces graphes?

Question subsidiaire : Comment peut-on construire le graphe G_3 ? Répondre à a) et b) pour G_3 .

Exercice 2

a) Peut-on toujours ramener un problème de coloration d'arêtes à un problème de coloration de sommets équivalent ? Si oui, justifier, sinon donner un contre-exemple.

b) Est-ce que l'inverse de cette transformation peut être utilisé pour ramener un problème de coloration de sommets à un problème de coloration d'arêtes équivalent? Si oui, justifier, sinon donner un contre-exemple.

Exercice 3

Pour colorer les sommets d'un graphe, on choisit la méthode suivante :

- (i) i = 1;
- (ii) tant qu'il reste des sommets à colorier
 - colorier le plus grand nombre possible de sommets avec la couleur i;
 - ôter ces sommets;
 - -i = i + 1.

Est-on certain d'avoir un nombre minimum de couleurs? Si oui, justifier, sinon donner un contre-exemple.

Exercice 4

Construire un calendrier sportif pour une ligue de 8 équipes avec un nombre minimum de ruptures. Vérifier qu'on atteint ce minimum.

Graphes et Réseaux SB - IMA - ROSE, Prof. D. de Werra MA 11, 08h15 - 10h00

Compilé le 28 septembre 2007

Corrigé 1

26.09.2007

Exercice 1

- a) Il faut 3 couleurs pour colorer G_1 et 4 pour colorer G_2 .
- b) La plus grande clique est de taille 2 dans le graphe G_1 ainsi que dans G_2 .

Question subsidiaire : On part de G_2 . Pour chaque sommet de G_2 on crée une copie. Un sommet copié est alors relié aux voisins du sommet de départ. On ajoute ensuite un sommet u qu'on relie à toutes les copies.

Il fallait remarquer que les sommets v_1, v_2, v_3, v_4 et v_5 de G_2 forment G_1 .

- a) Il faut 5 couleurs pour colorer G_3 .
- b) La plus grande clique est de taille 2.

Exercice 2

- a) Oui, on crée un graphe auxiliaire G' à partir du graphe de départ G. Pour chaque arête de G, on crée un sommet dans G'. On relie ensuite 2 sommets de G' si les arêtes correspondantes sont adjacentes dans G. De cette façon, une coloration d'arêtes dans le graphe G correspond à une coloration de sommets dans G' et inversement.
- b) Non, par exemple on ne peut pas appliquer la transformation inverse à ce graphe :

Exercice 3

Cet algorithme n'est pas optimal, en effet il va colorer ce graphe en utilisant 4 couleurs, alors qu'on peut le faire en seulement 3 couleurs :

Exercice 4

Le calendrier suivant utilise que 7 jours (optimal) et a seulement 6 ruptures (optimal) :

	\longrightarrow	←	\longrightarrow	←	Profils:	J1	J2	J3	J4	J5	J6	J7
J1		$\overline{27}$		$\overline{45}$	équipe 1	Н	Α	Н	Α	Н	Α	Н
J2		$\overline{31}$			2	Η	A	${\bf A}$	Η	Α	Η	Α
J3		$\overline{42}$			3	Α	Η	\mathbf{H}	A	Η	Α	Η
J4	$\overline{84}$	$\overline{53}$	$\overrightarrow{62}$	$\overline{71}$	4	Н	A	Η	Α	\mathbf{A}	Η	A
J5	$\overrightarrow{85}$	$\overline{64}$	$\overrightarrow{73}$	$\overline{12}$	5	Α	Η	Α	Η	\mathbf{H}	Α	Η
J6	$\overline{86}$	$\overline{75}$	$\overrightarrow{14}$	$\overline{23}$	6	Н	A	Η	Α	Η	Α	\mathbf{A}
J7	$\overrightarrow{87}$	1 6	$\overrightarrow{25}$	$5\overline{4}$	7	Α	Η	Α	Η	A	Η	Η
- •	- •				8	Α	Η	Α	Η	A	Н	Α