

Teorema

G es bipartido \Leftrightarrow G no tiene ciclos de longitud impar

Dem.

Si G es bipartido, todos los ciclos son pares

Si G tiene todos sus ciclos pares, entonces.....

Sea x∈ V arbitrario, clasificamos los vértices de G así:

 $V_1 = \{ y \in V \mid d(x,y) \text{ impar } \}$ $V_2 = \{ y \in V \mid d(x,y) \text{ par } \}$

z puede coincidir con x, con u, o con v

Si z=u, d(x,v)=d(x,u)+1, luego u y v distinta paridad

Si $z\neq u,v$ la longitud del ciclo zuv es d(z,v)+d(z,u)+1, como todo ciclo es par $\implies d(z,v)$ y d(z,u) distinta paridad

Pero $d(x,u)=d(x,z)+d(z,u), \quad d(x,v)=d(x,z)+d(z,v),$ luego d(x,v) y d(x,u) distinta paridad

Los vértices u, v están en distinta parte de V

Algoritmo para detectar si un grafo es bipartido

 ${\it Estrategia.} \ Clasificar los vértices de G en dos partes \\ (que etiquetamos con 1 y 2) comprobando si hay arista entre vértices con la misma etiqueta.$

Paso 1. Se elige un vértice v y se etiqueta con 1. Hacemos $S=\{v\}$

Paso 2. Sea T el conjunto de vértices aún no etiquetados que son adyacentes a un vértice de S

Si dos vértices de T son adyacentes, FIN, G no es bipartido. En caso contrario etiquetar cada vértice de T con la etiqueta contraria a su vecino en S.

Paso 3. Si todos los vértices están etiquetados, entonces el grafo es bipartido. En caso contrario hacemos S=T y volvemos al paso 2.