[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

1/2 ページ

, Searching PAJ

PATENT ABSTRACTS OF JAPAN

2003-050495 (11)Publication number:

(43)Date of publication of application: 21.02.2003

G03G 15/01 G03G 15/08 G03G 21/16 (51)Int.Cl.

(71)Applicant: SEIKO EPSON CORP (21)Application number: 2001-240179

(72)Inventor: TAGUCHI KEIICHI 08.08.2001 (22)Date of filing:

(54) METHOD FOR ATTACHING AND TAKING OUT DEVELOPING UNIT IN IMAGE FORMING

DEVICE AND IMAGE FORMING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To realize printing operation by an attached developing unit even when the developing unit being a part of a color image forming device is not attached

unit corresponding to a K toner color is performed (step S1) preferentially to the attachment of developing units finally. Since monochrome printing operation with the K using only toner of K, the attachment of a K developing toner color is permitted when at least the K developing unit is attached, the monochrome printing is performed when other developing unit is not attached yet or even colors Y, M, C and K and a monochrome printing mode carrying out a color printing mode using toner of four corresponding to respective M, Y and C toner colors (steps S4, S6 and S8). In the case of taking out the developing units, the K developing unit is taken out SOLUTION: In this image forming device capable of after it is detached.

LEGAL STATUS

02.10.2003 [Date of request for examination]

[Date of sending the examiner's decision of

rejection]

Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection] http://www19.ipdl.ncipi.go.jp/PA1/result/detail/main/wAAAGraqwaDA415050495P1.... 17/02/24

http://www19.ipdl.ncipi.go.jp/PA1/result/detail/main/wAAAGraqwaDA415050495P1.... 17/02/24

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1.This document has been translated by computer. So the translation may not reflect the original orecisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

CLAIMS

Claim(s)]

[Claim 1] Wearing to a unit attaching part is attained in M development units (M)=2) which build in a toner. In the image formation equipment which can perform N color print mode which performs printing using the development unit of N individual (M>N)=1) among the development units with which said unit attaching part was equipped The positioning process which positions said unit attaching part in order to equip with the development unit of one among said M development units. In the wearing approach of the development unit which carries out by turns the wearing process which equips said unit attaching part with said development unit of 1, and equips with said M development units in order after said positioning process at said unit attaching part The wearing approach of the development unit in image formation equipment characterized by giving priority to wearing to said unit attaching part of the development unit of said N individual to wearing to said unit attaching part of the remaining development units, and performing it.

[Claim 2] N color color print mode to which said image formation equipment performs N color color printing using the development unit of N individual (M>N)=2) of a mutually different toner color. When the monochrome print mode which performs monochrome printing using the development unit of 1 of the toner color for monochrome printing among the development units of said N individual can be performed. The wearing approach of the development unit in the image formation equipment according to claim 1 which performs wearing to said unit attaching part of the development unit for said monochrome printing to top priority among the development units of said N individual.

(Claim 3) It has become removable at the unit attaching part about M development units (M)=2) which build in a toner. In the image formation equipment which can perform N color print mode which build in a toner. In the image formation equipment which can perform N color print mode which performs printing using the development unit of N individual (M)N)=1) among the development units with which said unit attaching part was equipped. The positioning process which takes out said unit attaching part among said M development units. The ejection process which takes out said development unit of 1 from said unit attaching part after said positioning process is carried out by turns. In an approach to take out the development unit which takes out said M development units in an order from said unit attaching part Among said M development units with which said unit attaching part was equipped, the ejection from said unit attaching part of development units other than said N individual The approach characterized by carrying out by giving priority to the ejection from said unit attaching part of the development unit of said N individual to take out the development unit in image formation equipment.

[Claim 4] The unit attaching part constituted possible [wearing of M development units (M>=2) which build in a toner, and said M development units]. In image formation equipment equipped with the control means which performs N color print mode which performs printing using the development unit of N individual (M>N>=1) among the development units with which said unit attaching part was equipped While said control means performs the wearing sequence which gives priority to wearing to said unit attaching part of the development unit of said N individual to wearing to said unit attaching part of the remaining development units, and performs it Image

formation equipment characterized by permitting activation of said N color print mode from the completion time of wearing to said unit attaching part of the development unit of said N

individuat.

[Claim 5] N color color print mode which performs N color color printing using the development unit of N individual (MNN>=2) of a mutually different toner color. In the image formation equipment according to claim 4 which can perform the monochrome print mode which performs monochrome printing using the development unit of 1 of the toner color for monochrome printing among the development units of said N individual Said control means performs wearing to said unit attaching part of the development unit for said monochrome printing to top priority among the development units of said N individual in said wearing sequence. And image formation equipment which permits activation of said monochrome print mode from the completion time of wearing to said unit attaching part of the development unit for said monochrome printing.

[Claim 6] Image formation equipment according to claim 5 with said black toner color for monochrome printing.

[Claim 7] The unit attaching part constituted removable in M development units (M)=2) which build in a toner, and said M development units, In image formation equipment equipped with the control means which performs N color print mode which performs printing using the development unit of N individual (M)N)=1) among the development units with which said unit attaching part was equipped Said control means among said M development units with which said unit attaching part was equipped the ejection from said unit attaching part of development units other than said N individual While performing the ejection sequence performed by giving priority to the ejection from said unit attaching part of the development unit of said N individual Image formation equipment characterized by permitting activation of said N color print mode until the ejection from said unit attaching part of the development unit of said N individual is started.

[Translation done.]

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

Detailed Description of the Invention

Field of the Invention] This invention relates to image formation equipments, such as a printer, a copying machine, and facsimile apparatus, and the image formation equipment each of two or more development units can be freely detached especially and attached according to an individual at a unit attaching part.

which has arranged two or more development units to the radial centering on a revolving shaft as rotation drive of that revolving shaft, opposite positioning of the development unit of one of said two or more development units is carried out at a photo conductor, the latent image on a photo toner image of two or more colors is piled up on a middle transfer medium, and the color picture rotation drive of the rotary development section, switching a development unit if needed, and conductor is developed, and it imprints on a middle transfer medium. And by carrying out the repeating toner development and imprint processing for every toner color like the above, the Description of the Prior Art] The equipment equipped with the rotary development section this kind of image formation equipment is known. With this equipment, by carrying out the is formed (color print mode)

needs to be equipped with all the development units of each toner color, in order to correspond equipment constituted as mentioned above using a black development unit among two or more [0004] such image formation equipment -- setting -- a color and monochrome -- the position to any printing demand promptly and to obtain an expected color or an expected monochrome development units in the case of a specific development unit many (monochrome print mode). [0003] Moreover, it is possible to perform monochrome printing with the image formation

wearing sequence programmed beforehand is considered. With advance of the wearing sequence, the development unit by a user's activity mistake, image formation equipment equipped with the such image formation equipment so that it may only equip with a development unit in order and 0005] Then, while making wearing simple, in order to prevent beforehand incorrect wearing of according to guidance of the sequence or equipment defined beforehand, the user consists of can equip with all units correctly.

Therefore, when wearing is interrupted on the way and it does not equip with some development development units with which equipment can be equipped also by the wearing sequence which attained only after being equipped with all development units, therefore was described above. Problem(s) to be Solved by the Invention] However, it is premised on equipping with all the conventional image formation equipment is consisted of so that printing actuation may be units, printing actuation cannot be made to perform to equipment.

monochrome print mode is attained if needed, and since it prints only using the development unit corresponding to this monochrome printing, by this monochrome print mode, it is not necessary [0007] Moreover, as such image formation equipment was described above, activation of a to equip with the development unit of other toner colors essentially. However, with the

but also when the development unit with which it was equipped from the first is removed for unit [0008] Such a problem is what may happen not only the time of the above-mentioned wearing conventional image formation equipment which has taken the above configurations, unless it equips with all development units too, printing actuation cannot be performed.

development unit for monochrome printing, it cannot print, but the convenience for a user is nputted after removing one of development units, even if equipment was equipped with the exchange, migration of equipment, etc. For example, when a monochrome picture signal is spoiled.

[0009] It sets it as the 1st purpose to offer the wearing approach of the development unit in the equipment should be equipped, or even when already removed, and the approach of taking out. Moreover, even if it does not equip with all development units, it sets it as the 2nd purpose to technical problem, and makes it possible to perform printing actuation when some have not completed wearing yet among two or more development units with which image formation mage formation equipment which this invention is made in view of the above-mentioned offer the image formation equipment in which printing actuation is possible.

Means for Solving the Problem] The development unit wearing approach of the image formation carried out by turns. In order to be the wearing approach of the development unit which equips said unit attaching part with said M development units in order and to attain the 1st purpose of perform N color print mode which performs printing using the development unit of N individual development units (M>=2) which build in a toner. In the image formation equipment which can (M>N)=1) among the development units with which said unit attaching part was equipped The development unit of one among said M development units. The wearing process which equips development unit of said N individual to wearing to said unit attaching part of the remaining the above, It is characterized by giving priority to wearing to said unit attaching part of the with said development unit of 1 after said positioning process at said unit attaching part is positioning process which positions said unit attaching part in order to equip with the equipment concerning this invention Wearing to a unit attaching part is attained in M development units, and performing it (claim 1).

Moreoyer, whenever an operator equips with one development unit, you may constitute so that it [0011] Thus, by the constituted development unit wearing approach, since priority is given to the development units and it equips with it, when wearing of the development unit of this N individual is completed, activation of N color print mode is attained. Therefore, the use as equipment for N color printing of image formation equipment can be started, without waiting for wearing of other necessary is just to equip the sequence that two or more development units were able to be usage of using equipment, not equipped with other development units also becomes possible. may position in a location for a unit attaching part to move automatically and equip with the development unit of N individual required in order to perform N color print mode over other development units. Moreover, for example, future wearing is interrupted on the way and the following unit, and an operator can ensure [easily and] wearing in this case that what is

of said N individual can be performed You may carry out as [perform / among the development the development unit for said monochrome printing] (claim 2). At this time, when wearing of the [0012] Moreover, N color color print mode to which said image formation equipment performs N development unit of 1 of the toner color for monochrome printing among the development units units of said N individual / furthermore / to top priority / wearing to said unit attaching part of development unit for monochrome printing is completed, it becomes possible to use equipment color color printing using the development unit of N individual (MN)=2) of a mutually different toner color, When the monochrome print mode which performs monochrome printing using the as equipment for monochrome printing.

perform N color print mode which performs printing using the development unit of N individual development units (M)=2) which build in a toner. In the image formation equipment which can [0013] Moreover, the development unit ejection approach of the image formation equipment concerning this invention It has become removable at the unit attaching part about M

17/02/24

(M>N>=1) among the development units with which said unit attaching part was equipped The positioning process which positions said unit attaching part in order to take out the development unit of one from said unit attaching part among said M development units, The ejection process which takes out said development unit of 1 from said unit attaching part after said positioning process is carried out by turns. In order to be an approach to take out the development unit which takes out said M development units in an order from said unit attaching part and to attain the 1st purpose of the above, It is characterized by giving priority to the ejection from said unit attaching part of development units other than said N individual to the ejection from said unit attaching part of the development unit of said N individual, and performing it among said M

[0014] Thus, it becomes possible to use image formation equipment, continuing as an N color airline printer, until just before starting the ejection of the development unit of N individual, even if it is during the activity which takes out these development units, or after taking all out since it leaves the development unit of N individual for performing N color print mode to a unit attaching part by the constituted development unit ejection approach and he is trying to take out the other development unit preferentially. And since it is positioned in a location for a unit attaching part to move automatically and take out the following unit whenever an operator takes out one development unit, an operator can work, without being conscious of the above-mentioned ejection sequence.

development units with which said unit attaching part was equipped, (claim 3).

[0015] Moreover, M development units in which the image formation equipment concerning this invention contains a toner (M)=2). The unit attaching part constituted possible [wearing of said M development units], In order to be image formation equipment equipped with the control means which performs N color print mode which performs printing using the development unit of N individual (M)NN>=1) among the development units with which said unit attaching part was equipped and to attain the 2nd purpose of the above. While said control means performs the wearing sequence which gives priority to wearing to said unit attaching part of the development unit of said N individual to wearing to said unit attaching part of the remaining development units, and performs it it is characterized by permitting activation of said N color print mode from the completion time of wearing to said unit attaching part of the development units, individual (claim 4).

[0016] Thus, since activation of N color print mode has been permitted when priority is given to the development unit of N individual corresponding to N color print mode over other development units, it equips with it in the development unit wearing sequence with the constituted image—formation equipment and it is moreover equipped with the development unit of these N individual, printing actuation is possible, even if it is [wearing / of the remaining development units] under activity, and equip [with them / continue]. In addition, when referred to as N= 1 in the above, the above—mentioned N color print mode will be equivalent to a monochrome print mode.

of said N individual can be performed Said control means performs wearing to said unit attaching [0017] N color color print mode to which this image formation equipment performs N color color wearing is completed, the use as equipment for monochrome printing is possible in the condition development unit of 1 of the toner color for monochrome printing among the development units printing here using the development unit of N individual (M)N>=2) of a mutually different toner mode. And if it equips with the development unit of other individuals (N-1) corresponding to N color print mode further if needed, N color printing will be attained, and if it equips with all the development unit wearing sequence with the constituted image formation equipment and that development units of said N individual in said wearing sequence. And you may make it permit activation of said monochrome print mode from the completion time of wearing to said unit of having equipped only with the development unit corresponding to this monochrome print development unit of 1 required in order to perform a monochrome print mode first in that color, When the monochrome print mode which performs monochrome printing using the part of the development unit for said monochrome printing to top priority among the [0018] Thus, since the monochrome print mode is permitted when it equips with the attaching part of the development unit for said monochrome printing (claim 5).

remaining development units, the image formation of full color ** will become possible. Thus, various applications according to a user's hope can be presented with this image formation

printing which used the black toner. Then, said toner color for monochrome printing may be black these can be performed irrespective of the existence of other development units, if equipment is claim 6). At this time, activation of the color print mode and black-and-white printing mode by development unit of said N individual It is characterized by permitting activation of said N color this invention contains a toner (M>=2). The unit attaching part constituted removable in said M [0019] By the way, in many cases, such monochrome printing is performed as black-and-white development units, In order to be image formation equipment equipped with the control means development units with which said unit attaching part was equipped the ejection from said unit 0020] Furthermore, M development units in which the image formation equipment concerning attaching part of development units other than said N individual While performing the ejection this image formation equipment is attained, and moreover, black-and-white printing mode of which performs N color print mode which performs printing using the development unit of N individual (M>N>=1) among the development units with which said unit attaching part was sequence performed by giving priority to the ejection from said unit attaching part of the equipped and to attain the 2nd purpose of the above, Said control means among said M equipped with the development unit corresponding to a black toner at least.

individual is started (claim 7). [0021] Thus, with the constituted image formation equipment, it sets to the development unit ejection sequence. It leaves the development unit of N individual required in order to perform N color print mode to a unit attaching part. Since activation of N color print mode will be permitted if it is constituted so that it may take out from the other development unit previously, and it is moreover equipped with the development unit of the N individual Printing actuation is possible even if it is under the ejection activity of each development unit by the above-mentioned ejection sequence, and in the condition that some development units were already removed. In addition, like the equipment mentioned above, when referred to as N= 1 in the above, the abovementioned N color print mode will be equivalent to a monochrome print mode.

print mode until the ejection from said unit attaching part of the development unit of said N

Embodiment of the Invention] 1. The <u>block diagram 1</u> of equipment is drawing showing the operation gestalt of 1 of the image formation equipment concerning this invention. <u>Drawing 2</u> is the block diagram showing the engine controller of the image formation equipment of <u>drawing 1</u>. This image formation equipment is yellow (Y), a Magenta (M), cyanogen (C), and equipment that piles up the toner of four colors of black (K) and forms a monochrome image, using only the toner of black (K) in forming a full color image (color print mode) ***** (monochrome print mode). With this image formation equipment, if a picture signal is given to the Maine controller of a control unit from external devices, such as a host computer, according to the command from this Maine controller, the engine controller 1 will control each part of the engine section EG, and the image corresponding to a picture signal will be formed in the sheets S, such as tracing paper, a transfer paper, a form, and a transparence sheet for OHP.

[0023] In this engine section EG Seven units: (a) Photo conductor unit 2; (b) Yellow development unit (it is called "Y development unit" below) 3Y; (c) Magenta development unit ("M development unit") 3M; [.(d) cyanogen development unit ("C development unit") 3C.(e) black development unit ("K development unit") 3K] (f) middle imprint unit 4 And (g) fixing unit 5 can detach and attach freely to the body 6 of equipment. And where the body 6 of equipment is equipped with all the units 2, 3Y, 3M, 3C, 3X, 4, and 5 As shown in <u>drawing 1</u>, while the photo conductor 21 of the photo conductor unit 2 rotates in the direction D1 of an arrow head of <u>drawing 1</u> The rotary development section 3 and the cleaning section 23 which become the surroundings of the photo conductor 21 from a live part 22 and the development units 3Y, 3M, 3C, and 3K along the hand of cut D1 are arranged, respectively.

[0024] A photo conductor 21, a live part 22, and the cleaning section 23 are held in the photo conductor unit 2 among seven units 2, 3Y, 3M, 3C, 3K, 4, and 5, and these can be freely

http://www4.ipdl.ncipi.go.jp/cgi-bin/tran_web_cgi_ejje

http://www4.ipdl.ncipi.go.jp/cgi-bin/tran_web_cgi_ejje

detached in one and attached to the body 6 of equipment. Electrification bias is impressed and a the toner which is carrying out residual adhesion to the peripheral face of a photo conductor 21 the upstream of the live part 22 in the hand of cut D1 of a photo conductor 21, and to scratch [0025] Moreover, it is failed after a primary imprint for the cleaning section 23 to be formed in to this photo conductor unit 2. In this way, surface cleaning of a photo conductor 21 is live part 22 electrifies the peripheral face of a photo conductor 21 in homogeneity.

equipment electrically in the state of unit wearing, data transfer is performed between the engine consumption management, etc. of the photo conductor unit 2 will be performed. In addition, serial equipment is equipped with the photo conductor unit 2, it will connect with the engine controller also about units 4 and 5, respectively, it connects with the engine controller 1 of the body 6 of EEPROMs 76 and 77 for memorizing various data like the photo conductor unit 2 are attached controllers 1, and wearing detection, article-of-consumption management, etc. of this unit are transfer will be performed between the engine controllers 1, and wearing detection, article-of [0026] Thus, if serial EEPROM71 for memorizing the data in which the remnant service life of l of the body 6 of equipment electrically through a connector (illustration abbreviation), data this unit 2 is shown is attached in the constituted photo conductor unit 2 and the body 6 of performed.

[0027] On the other hand, serial EEPROMs 72–75 for memorizing the various data about this unit are formed also in the development units 3Y, 3M, 3C, and 3K. In the state of unit wearing, it does EEPROMs 72-75 perform data transfer between the engine controllers 1, and perform wearing detection, article-of-consumption management, etc. of the development units 3Y, 3M, 3C, and not connect in the connector 34 by the side of the body of equipment so that it may mention ater, but it connects with the engine controller 1 electrically temporarily if needed, and these

conductor 21 according to the picture signal from an external device, and forms the electrostatic [0028] With this image formation equipment, as shown in drawing 1, laser beam L is irradiated from the exposure unit 8 to the peripheral face of the photo conductor 21 charged by the live part 22. This exposure unit 8 carries out scan exposure of the laser beam L on a photo atent image corresponding to a picture signal on a photo conductor 21.

TR1. Namely, the middle imprint belt 41 with which two or more rollers were built over the middle belt 41 and forming a color picture, in imprinting a monochrome image on Sheet S, only the toner [0030] The toner image developed in the development section 3 as mentioned above is primarily the rotary development section 3. In this rotary development section 3, development unit 3Y for image of the black color formed on a photo conductor 21 is imprinted on the middle imprint belt [0029] In this way, toner development of the formed electrostatic latent image is carried out by development bias which superimposed the alternating current component on the dc component or the dc component was impressed and chosen is given to the front face of a photo conductor 21. Thus, with this operation gestalt, each development units 3Y, 3M, 3C, and 3K function as a imprint unit 4, In having the mechanical component (illustration abbreviation) which carries out the rotation drive of the middle imprint belt 41 and imprinting a color picture on Sheet S While piling up the toner image of each color formed on a photo conductor 21 on the middle imprint imprinted on the middle imprint belt 41 of the middle imprint unit 4 in the primary imprint field development unit 3M and the yellow development unit 3K for blacks, development unit 3C for contact or alienation — it is positioned in a location and the toner of a color with which the migration positioning of these development units 3Y, 3M, 3C, and 3K is carried out in two or more locations decided beforehand -- a photo conductor 21 -- receiving -- alternative -cyanogen, and for Magentas is prepared in the shaft center free [rotation]. and --- while "development unit" of this invention, and form a toner image on a photo conductor 21. 41, and it forms a monochrome image.

in the predetermined secondary imprint field TR2 on the sheet S picked out from the cassette 9. And a toner is fixed to Sheet S by applying a pressure, introducing the sheet S with which the 9 toner image was imprinted into the fixing unit 5 built in the heater (illustration abbreviation), and [0031] In this way, about the image formed on the middle imprint belt 41, it imprints secondarily

the development units 3Y, 3M, 3C, and 3K, it will be arranged focusing on revolving-shaft 3a at a with the space of <u>drawing 1</u>) to the shaft orientations of support frame 3b. Moreover, it can go with reference to <u>drawing 3</u> . <u>Drawing 3</u> is drawing showing actuation of the rotary development and detachment, and can equip now with a new development unit. Thus, when equipped with all development units 3Y, 3M, 3C, and 3K and support frame 3b, and a cash drawer is possible for revolving-shaft 3a, and it can detach the development units 3Y, 3M, 3C, and 3K of four colors (0032] Next, the configuration of the rotary development section 3 is explained in more detail attachment and detachment to a drawing side (late rice side which intersects perpendicularly on to the shaft orientations of support frame 3b through the opening 321 only for attachment heating it here. In this way, the sheet S with which the image was formed is conveyed by the mentioned above and attach freely to support frame 3b which functions as a "unit attaching (illustration abbreviation) which engages with shaft orientations mutually is prepared in each each development units 3Y, 3M, 3C, and 3K through the opening 321 (drawing 3) only for section 3 typically. The rotary development section 3 has support frame 3b fixed to this part" of this invention while having revolving-shaft 3a at the core. Namely, the guide rail discharge tray section prepared in the top-face section of the body 6 of equipment. radial.

unit with drawing and a new development unit through the opening 321 only for these attachment location which counters among the four above-mentioned development units 3Y, 3M, 3C, and 3K. while the development unit is positioned in addition to the attachment-and-detachment location, through the clutch, support frame 3b is rotated by driving this pulse motor, and the development and detachment, only when a development unit is positioned in an attachment-and-detachment drawing side of the rotary development section 3, for example, is shown in this drawing (c). And [0033] The opening 321 only for these attachment and detachment can equip this development unit of one can be alternatively positioned now in a photo conductor 21 and the development [0034] Moreover, the pulse motor which omits illustration is connected to revolving-shaft 3a In addition, <u>drawing 1</u> shows the condition that K development unit 3K were positioned in the location as are shown in <u>drawing 3</u>, and it is prepared in the side plate 32 arranged at the drawing and wearing of the development unit are regulated by the side plate 32.

consists of a photo interrupter etc., and it is prepared so that the periphery section of a disk 311 may come to the clearance between the HP sensors 312 (illustration abbreviation). And if the slit signal from the HP sensor 312 will change from "L" to "H." And HP location of the development section formed in the disk 311 moves to the clearance between the HP sensors 312, the output section 3 can be detected now based on change of signal level, and the pulse number of a pulse (0035] Moreover, on the other hand, the HP detecting element 31 (refer to $rac{drawing}{2}$) for [of motor. Moreover, it is constituted so that the location of the development section 3 can be (henceforth "H.P. location") of the development section 3 to one end (space near side of revolving-shaft 3a which fixed at the edge on the other hand, and a HP sensor 312 which drawing 1) is formed. This HP detecting element 31 consists of a disk 311 for signals of revolving-shaft 3a of the development section 3] detecting the home-position location detected based on HP location and the pulse number of a pulse motor. development location.

[0036] In addition, the configuration of the HP detecting element 31 may be constituted so that case, it is not necessary to form a disk 311 in revolving-shaft 3a, size of shaft orientations can periphery edge of support frame 3b, may be detected and this may detect HP location. In this be made small, and it becomes advantageous, when attaining the miniaturization of equipment it may not be limited to this, the description sections, such as a height prepared in a part of

[0037] On the other hand, each development units 3Y, 3M, 3C, and 3K moreover, in an one end drawing $\overline{3}$ (b), when Y development unit 3Y is positioned in a development location) Connector which is in the location (henceforth a "connector connecting location") of one downstream in side Connectors 33Y, 33M, 33C, and 33K have fixed. The connector of the development unit 33K which fixed to K development unit 3K of the one downstream counter with the common the rotation direction when positioned in a development location (for example, as shown in

connector 34 for the development sections prepared in the body side of equipment. this common development section 3 -- receiving -- attachment and detachment -- it is constituted movable, connector connecting location if needed with the connector of this development unit. By this, it connects with the engine controller 1 of the body 6 of equipment electrically through both connectors, and EEPROMs 72-75 attached in this development unit perform data transfer between the engine controllers 1, and perform wearing detection, article-of-consumption connector 34 for the development sections is shown in this drawing — as — the rotary and contiguity migration is carried out and it fits into the development unit which is in a

(0038) In addition, although the publication to a drawing is omitted, the lock device is established location, and the attachment-and-detachment location which described the rotary development each above-mentioned units 2, 3Y, 3M, 3C, 3K, 4, and 5 is formed in the wrap front cover, and] section 3 above. Moreover, although worked on it, opening [the engine section EG containing this front cover to it in case wearing and drawing of a development unit which a user etc. mentions later are carried out to the body 6 of equipment, the usual printing actuation is in order to carry out positioning immobilization certainly in the development location, HP performed where this front cover is closed. management, etc. of this development unit.

memorizing a program, other data, etc. and RAM13 which memorizes various data temporarily are [0039] Next, it explains, referring to drawing 2 about the configuration of the engine controller 1. element 31, and a pulse motor etc., and controls each part of equipment. In addition, ROM12 for This engine controller 1 functions as a "control means" of this invention, performs the program later mentioned by CPU11 based on the pulse number of the signal from the HP detecting connected to this CPU11.

through serial I/F (interface) 15. The data which are needed for device control are memorized by EEPROMs 71-77 prepared in each units 2, 4, and 5 and each development units 3Y, 3M, 3C, and through input/output port 16 while the data transfer of CPU11 becomes possible among serial this serial EEPROM14. Moreover, it connects with each units 2, 4, and 5 and a connector 34 through serial I/F 15, and it can input chip select signal CS into serial EEPROMs 14, 71-77 [0040] Moreover, CPU11 is connected to serial EEPROM14 used for an electronic counter 3K suitably connected with a connector 34.

engine controller 1, if supply voltage is less than a predetermined electrical potential difference, [0041] Moreover, the electrical-potential-difference supervisory circuit 17 is established in the the electrical-potential-difference supervisory circuit 17 will detect the voltage drop, and the reset signal which shows that will be outputted to CPU11 and peripheral devices 15 and 16. [0042] Furthermore, CPU11 is connected with the HP detecting element 31 through

input/output port 16.

Drawing 4 and drawing 5 are flow charts which show the wearing procedure of the development development unit wearing approach of this invention in the development unit wearing approach, thus the constituted image formation equipment, referring to $\frac{\text{drawing }3}{\text{drawing }3}$ thru/or $\frac{\text{drawing }5}{\text{drawing }5}$ [0043] 2. Explain actuation of the operation gestalt slack wearing sequence of 1 of the unit wearing sequence of this image formation equipment, and each development unit, respectively

equipment is installed, CPU11 will perform the wearing sequence which consists of steps S1-S10 shown below based on the program stored in ROM13, and will carry out sequential wearing of the rotary development section 3 will be positioned in this wearing sequence in the development unit sequence which was able to be defined beforehand, and, moreover, a user can equip a position equipment by which all the development units were removed by new purchase, a move, etc. of four development units 3Y, 3M, 3C, and 3K. Since a rotation drive will be carried out and the development unit It is only equipping with each development units 3Y, 3M, 3C, and 3K in the [0044] With this equipment, if a user etc. switches on a power source after the body 6 of attachment-and-detachment location of a degree if a user finishes equipping with one with all the development units 3Y, 3M, 3C, and 3K in a short time.

[0045] At step S1, it equips with K development unit 3K which are a toner color for monochrome printing first. Specifically, step S21 shown in drawing 5 thru/or x development unit wearing

physical relationship -- responding -- either of three kinds of a degree -- the time of 0 or the development units by which support frame 3b is equipped with rotational speed n here, and its [0046] At step S21, the rotational speed n of the rotary development section 3 is first set up routine of S27 are performed (x=K, M, C, Y; what is necessary is here, just to read it as x=K). according to the wearing condition of the unit to support frame 3b. the number of the number of :(1) development units being four -- rotational-speed n1;

- (2) When the number of development units is two pieces and the symmetric position is moreover
 - (3) It is chosen as rotational speed n3 when it is not any of the above (1) and (2), either. In equipped with them to the revolving shaft, it is rotational speed n2.;
- speed of the rotary development section 3, the case of the above (1) is a high speed most, and, addition, the relation of n1>n2>n3 among such rotational speed is. That is, as for the rotational subsequently, (2) and (3) are low speeds most.
- [0047] Here, changing the rotational speed of the rotary development section 3 according to the wearing condition of each development unit to unit attaching part 3b in this way is based on the following reason. That is, it is not equipped with some development units, but when the motor of development section 3 from usual at a low speed, generating of such vibration is controlled and high power is required in order for the symmetric property over the revolving-shaft 3a to carry speed, and such a rotation drive is performed, there is a possibility that equipment may start a out the rotation drive of the rotary development section 3 which collapsed remarkably at high shimmy by the reaction. So, when the above asymmetry arises, by rotating the rotary the drive by the Koide force motor is enabled.
 - not equipped with the development unit, it corresponds above (1), therefore rotational speed is [0048] In the phase of step S1 which started the wearing sequence, since support frame 3b most set as n1 of a high speed at this time.
- detachment location shown in $\frac{drawing 3}{2}$ (c) (step S22). In this way, when the rotary development about development units 3C, 3M, and 3Y other than K development unit 3K, wearing is regulated above-mentioned rotational speed n1, and it positions in K development unit attachment-andsection 3 is positioned in K development unit attachment-and-detachment location shown in drawing 3 (c), wearing of K development unit 3K becomes possible for the first time. However, by the side plate 32. For this reason, it can prevent beforehand that a user etc. equips with [0049] Next, a pulse motor is driven, the rotary development section 3 is rotated with the development units other than K development unit accidentally.
 - [0050] And it waits for support frame 3b to be equipped with K development unit 3K by the user distinguished by whether closing motion of a front cover was performed whether wearing of the unit by the user was made here. Namely, the closing motion sensor (illustration abbreviation) by detects that the front cover was closed by the user, it should just judge it that exchange was the limit switch is formed in the body 6 of equipment, and when this closing motion sensor completed. In addition, a user may close a front cover at this time, not equipping with this etc. through the opening 321 only for attachment and detachment at step S23. It can be development unit if needed.
- [0051] In this way, detection of that the front cover was closed sets rotational speed as n3 (step S24). Here, rotational speed is set as n3 of the maximum low speed by having opened and closed 33K and 34, and read-out/writing of data to EEPROM75 are performed. The updating storage of connected with the engine controller 1 of the body 6 of equipment through both the connectors the front cover because it cannot judge how the wearing condition changed at this time of that side, it fits in with connector 33K, EEPROM75 attached in K development unit 3K is electrically development unit 3K are positioned to a connector connecting location (step S25). By this, as from which the wearing condition of a development unit may have changed. Next, the rotation [0052] At the following step S26, a connector 34 moves to the rotary development section 3 whether the predetermined location of support frame 3b has been correctly equipped with K shown in drawing 3 (b), connector 33K of K development unit 3K counter with the common the data about K development unit 3K is carried out by this. Moreover, CPU11 can check drive of the rotary development section 3 is carried out with rotational speed n3, and K connector 34 for the development sections by the side of the body 6 of equipment.

http://www4.ipdl.ncipi.go.jp/cgi-bin/tran_web_cgi_ejje

rotational speed n set up here is applied also in future actuation. And if drawing and exchange of

according to the wearing condition after wearing of each development unit is completed, the

a development unit are performed by the user, a new rotational speed will be set up based on

development unit 3K by collating the data read from EEPROM75 with the data memorized by EEPROM14 of the engine controller 1 interior.

was alike, then was prepared in the engine controller 1 (step S27). Here, when it is equipped with equipped with K development unit 3K, the data in which that is shown are written in EEPROM14. the development unit of toner colors other than black and a front cover is closed, without being [0053] The data about K development unit 3K are written in EEPROM14 which could come, and (0054) In this way, after ending a K development unit 3K wearing routine, it progresses to step nothing or equipped with the development unit of other toner colors), it waits to equip step S1 S2 of drawing 4 . Here, when not equipped with K development unit 3K (it was equipped with with return and K development unit 3K correctly.

asymmetry seen from revolving-shaft 3a in the condition of having been equipped with these two [0055] On the other hand, if it is checked that it has been equipped with K development unit 3K, continuously (step S4). Equipping the degree of K development unit 3K with M development unit [0057] In step S4, x development unit wearing routine (here, it is read as x=M) shown in drawing with M development unit 3M. In this case, the rotary development section 3 is already equipped rotational speed n is set as n3 of the maximum low speed, and migration in M development unit shaft 3a of the rotary development section 3 in a symmetric position (refer to drawing 1), It is 5 is again performed like the above-mentioned wearing of K development unit 3K, and it equips device will be attained after this. This monochrome print mode is explained in full detail later. because the burden of the pulse motor which drives the rotary development section 3 by the 3M here Since K development unit 3K and M development unit 3M are arranged to revolvingwith K development unit 3K (equivalent to the above-mentioned (3)). Therefore, at step S21, attachment-and-detachment location of the rotary development section 3 is performed by activation of the monochrome print mode based on the printing command from an external [0056] In this way, wearing of K development unit 3K equips with M development unit 3M development units 3K and 3M by carrying out like this becoming small is mitigable. rotational speed n3.

set up according to the wearing condition of each development unit in that time also at this time. carried out succeedingly, the rotational speed n of the rotary development section 3 is suitably sequential wearing of Y development unit 3Y (step S6) and C development unit 3C (step S8) is [0058] In this way, similarly, after wearing of M development unit 3M is completed, although

development section 3 finally, and shows the rotary development section 3 to drawing 3 (a), goes nto a standby condition (step S10), it waits to give a picture signal from external devices, such the rotary development section 3 in future actuation according to to the above (1) thru/or any of (3) the wearing condition of that development unit when being based on the data memorized (0059) And termination of wearing of each development unit sets up the rotational speed n of equipped with all development units, since it corresponds to (1), rotational speed is set to n1. development unit 3M to the revolving shaft, rotational speed is set as n2. Furthermore, when equipped only with K development unit 3K, rotational speed is set as n3. Moreover, since it by EEPROM14 by step S9 corresponds. For example, since it corresponds above (3) when [0060] It positions in HP location which drives a pulse motor, is made to rotate the rotary corresponds to (2) when the symmetry is equipped with K development unit 3K and M as a host computer, and the usual image formation actuation is performed.

terminate a wearing sequence. That is, when wearing sequence termination is directed by user development unit wearing routines, but the above-mentioned step S9 and S10 are performed (0061) In addition, if it is not necessary to equip with the remaining development units when [0062] Thus, although the rotational speed n of the rotary development section 3 is set up wearing of each development unit is completed, a user can omit future wearing and can actuation, (steps S3, S5, and S7) are not performed, CPU11 does not perform future immediately, and a wearing sequence is ended.

speed is decided the repeat period of a driving pulse. So, with this image formation equipment, it which can do usage which doubled with a user's operating condition to use it as image formation rotation, and carrying out the rotation drive of the rotary development section 3, and the above variable speed drives are realized by changing the period of that driving pulse according to the monochrome printing in advance of the development units $3 \rm Y, 3 M$, and $3 \rm C$ of other colors. And number of the driving pulses which drive a pulse motor, and, on the other hand, the rotational possible [actuation] if unit attaching part 3b is equipped with K development unit 3K, it can development units, so that it may mention later. And it is high equipment of the convenience perform a monochrome print mode from the time of wearing of K development unit 3K being (0064) In addition, angle of rotation of the rotary development section 3 is decided with the since the monochrome printing sequence of this image formation equipment is constituted completed in the above-mentioned wearing sequence, without waiting for wearing of other development units but, for example, having equipped only with K development unit 3K etc. faced generating the driving pulse of a pulse number according to predetermined angle of [0063] Thus, it consists of development unit wearing sequences of this image formation equipment so that it may equip with K development unit 3K which build in the toner for equipment for monochrome printing in the condition of having not equipped with other wearing condition of each development unit.

equipment which wearing of monochrome print mode each development unit is completed, and is altogether equipped with the development units 3Y, 3M, 3C, and 3K of four colors, explanation is [0065] 3. Explain image formation actuation, i.e., a monochrome print mode, when a monochrome formation equipment, since actuation when the color print mode is permitted and a color picture monochrome printing sequence in this image formation equipment. In addition, with this image picture signal is given from an external device (here host computer) to the image formation signal is given in this condition is the same as actuation of the conventional color picture formation equipment with which it was equipped with all the development units only when in a standby condition, referring to drawing 6. Drawing 6 is a flow chart which shows the omitted here.

monochrome printing is given from a host computer, CPU11 performs step S31 thru/or the [0066] With this image formation equipment, when the picture signal corresponding to monochrome printing sequence of S37 shown in drawing 6.

[0067] First, it judges whether it is correctly equipped with K development unit 3K from the data [0068] On the other hand, when equipped with K development unit 3K, it energizes at the heater printing is completed, the rotary development section 3 rotates again and it will be in return and mage for 1 page is formed and it imprints on Sheet S (step S35). The above-mentioned printing conductor 21 (step S34). And based on the picture signal sent from a host computer, the toner S33), a pulse motor carries out the rotation drive of the rotary development section 3, and K memorized by EEPROM14 of the engine controller 1 at step S31. And if not equipped with K is repeated until it will return to S35, it will perform printing again and it will finish printing all pages, if there is furthermore a picture signal after degree page (step S36). In this way, after actuation (step S32). And it waits for a heater to go up to predetermined temperature (step built in the fixing unit 5, and a warm up is started in order to perform monochrome printing development unit 3K are positioned in the development location which counters a photo development unit 3K, a monochrome printing sequence is ended as it is. a standby condition in HP location (step S37).

0069] Thus, if it is equipped with K development unit 3K among four development units with the Therefore, in the development unit wearing sequence mentioned above, it is usable considering the time of wearing of K development unit 3K being checked at step S2 shown in drawing 4 to image formation equipment of this operation gestalt, monochrome printing in a black color is possible irrespective of the wearing condition of the development unit of other toner colors. this equipment as a monochrome airline printer.

0070] 4. The image formation equipment of development unit ejection ****** is equipped with the operation gestalt slack development unit ejection sequence of 1 of the development unit

ejection procedure of the development unit ejection sequence in this image formation equipment, removing a development unit. Based on this ejection sequence, how to take out in order all the ejection approach of this invention that the function as a monochrome airline printer should be referring to drawing 7 and drawing 8 . Drawing 7 and drawing 8 are flow charts which show the development units 3Y, 3M, 3C, and 3K with which support frame 3b was equipped is explained. maintained as for a long time as possible while it gives facilities to the user at the time of

and each development unit, respectively.

shown in <u>drawing 7</u> thru/or S57 will be performed. In advance of the ejection of K development actuation etc., the development unit ejection sequence which CPU11 becomes from step S41 unit 3K which build in the toner for monochrome printing, it consists of this development unit thereby, this image formation equipment can be used as equipment for monochrome printing, (0071] With this image formation equipment, if development unit ejection is directed by user also where other a part or all of the development units 3Y, 3M, and 3C of a toner color are ection sequence so that other development units 3Y, 3M, and 3C may be taken out, and

prepared in each development units 3Y, 3M, 3C, and 3K are updated. As shown in steps S41-S48 development units 3K, 3C, 3M, and 3Y are positioned in this sequence in a connector connecting 0072] First, the data about the operating condition of each unit memorized by EEPROMs 72-75 performed. The updating storage of the data about each development unit is carried out by this. the ejection mentioned later, it is considering as the above-mentioned sequence which met the hand of cut of the rotary development section 3 here, and is shortening the processing time by 33K, 33C, 33M, and 33Y attached in each unit are connected, and, specifically, data transfer is ocation, the connector 34 prepared in the body 6 of equipment each time and the connectors In addition, since the sequence of performing this renewal of data is not restrained in order of of drawing 7, the rotation drive of the rotary development section 3 is carried out, each making migration length of the rotary development section 3 into the shortest.

rotates with this rotational speed n1, and C development unit 3C is positioned in an attachment according to the wearing condition of each development unit. Here, since it is equipped with all next (step S49). Specifically, step S61 shown in drawing 8 thru/or x development unit ejection [0073] In this way, after renewal of data finishes, ejection of C development unit is performed [0074] At step S61, the rotational speed n of the rotary development section 3 is first set up routine of S66 are performed (x=C, Y, M, K; what is necessary is here, just to read it as x=C). development units, it is set as rotational speed n1. Then, the rotary development section 3 and-detachment location (refer to drawing 3 (c)) (step S62).

performs whether the user performed ejection by detecting closing motion of a front cover. And 0075] And it waits for C development unit 3C to be taken out from support frame 3b by the user etc. through the opening 321 only for attachment and detachment at step S63. Here, it a user may close a front cover if needed, equipped with this development unit.

[0076] In this way, detection of that the front cover was closed sets rotational speed as n3 (step at the above-mentioned step S63 at this time, but the connector 34 fitted in with connector 33C when having become [that unit attaching part 3b is equipped with as and], and were memorized memorized by EEPROM14, and C development unit 3C was removed from this by the user (step development section 3 side. Although the data which C development unit 3C was not taken out by EEPROM74 are read, this data will not be read if C development unit 3C is already removed. out, different data from the data which performed read-out and writing at step S41 will be read. Moreover, if it is equipped with another development unit after C development unit 3C is taken 864). Next, the rotation drive of the rotary development section 3 is carried out with rotational development unit development location) (step S65). And a connector 34 moves to the rotary speed n3, and it positions to C development unit connector connecting location (that is, K It judges whether CPU11 is collating the data read through a connector 34 with the data

development unit 3Y, M development unit 3M, and K development unit 3K in order similarly (steps S51-S55). Here, a check of that K development unit 3K were taken out forbids activation of a [0077] Thus, termination of the ejection activity of C development unit 3C takes out Y

monochrome print mode henceforth, as mentioned above. In addition, as for the color print mode. activation is forbidden when any one of four development units is removed.

rotational speed of the rotary development section 3 according to the development unit wearing condition to support frame 3b at that time (step S56), the rotary development section 3 rotates [0078] And after the ejection of each development unit is completed, and setting up the and takes out to HP location, and ends a sequence (step S57).

activities and can terminate a sequence as well as the wearing sequence mentioned above. That and S54) are not performed, CPU11 does not perform future development unit ejection routines, [0079] In addition, if it is not necessary to take out the remaining development units when the is, when it takes out by user actuation and sequence termination is directed, (steps S50, S52, ejection of each development unit is completed, a user can omit and take out future ejection but the above-mentioned steps S56 and S57 are performed immediately, and an ejection sequence is ended.

the engine controller 1 is carrying out rotation positioning of the rotary development section 3 so [0080] Thus, in the development unit ejection sequence of this image formation equipment, since Even if it is after removing these development units, the inside of the ejection activity of other that it may take out each development units 3C, 3Y, 3M, and 3K in this sequence, a user does the printing demand from an external device will be permitted. And since it constitutes so that positioned in the attachment-and-detachment location one by one. Moreover, if it is equipped with K development unit 3K as mentioned above, the monochrome printing actuation based on ejection of K development unit 3K may be performed after taking out other development units not need to be conscious of ejection sequence and should just take out the development unit development units, and, monochrome printing in a black color is possible until it removes K development unit 3K.

above-mentioned operation gestalt in the array shown in <u>drawing 1</u>, the array of a development [0081] 5. In addition, this invention can make various change in addition to what was mentioned meaning. For example, although equipped with four development units 3Y, 3M, 3C, and 3K in the above unless it is not limited to the above-mentioned operation gestalt and deviated from the unit may not be limited to this and may be other arrays.

it change it in the time of one piece and three pieces. Moreover, you may make it make it change to the three-stage of n1, n2, and n3 according to the wearing condition of each development unit with the above-mentioned operation gestalt The combination of rotational speed may be except number to the rotary development section 3 being zero piece, and four pieces, or you may make to two steps of a high speed and a low speed by zero piece or four cases, and the case of being [0082] Moreover, although the rotational speed of the rotary development section 3 is changed this, for example, it may change rotational speed in the time of being a time of the wearing

development units, with the above-mentioned operation gestalt, the number of a development unit is not limited to "4" and can apply this invention to the equipment at large equipped with [0083] Moreover, although it has the composition of equipping support frame 3b with four two or more development units.

above-mentioned operation gestalt, in the radiation direction of the rotary development section [0084] Moreover, although each development units 3Y, 3M, 3C, and 3K are removable to the shaft orientations of the rotary development section 3, this invention is applicable with the 3 also to the image formation equipment with which a development unit is detached and

and ejection of each development unit in the sequence defined beforehand, an information means addition to this, and the activity which a user should do according to advance of a sequence may development unit in the above-mentioned operation gestalt so that a user may perform wearing with a display display or voice is further formed for example, in image-formation equipment in wearing and an ejection activity are still easier and positive -- becoming -- user FUREN -- it [0085] Moreover, although it consists of the wearing sequences and ejection sequences of a be made report to a user by this information means, thus -- if it carries out -- a thing that can consider as dolly equipment.

http://www4.ipdl.ncipi.go.jp/cgi-bin/tran_web_cgi_ejje

it to perform multicolor (two color or three colors) color printing using the toner of two colors or three colors among four colors. Apply this invention to such equipment and and the development monochrome image using only the black color among these toners can be formed It is good also as equipment which can form the monochrome image in other toner colors, and you may enable actuation, when equipped with the development unit corresponding to the monochrome or the although the full color image which used the toner for full color images of four colors, and the unit corresponding to the monochrome or the toner color for process printing While making it take out after giving priority over other development units, and equipping or taking out other development units, the effectiveness of this invention can be acquired by permitting printing

monochrome printing is possible (that is, not equipped with ones other than K development unit this time, for example, if needed, and it may be made to perform monochrome printing in a black printing may be forbidden when a color picture signal is inputted in the condition in which only 3K of development units), a color picture signal is changed into monochrome picture signal at [0087] Moreover, although it constitutes from an above-mentioned operation gestalt so that toner color for process printing.

operation gestalt is a printer which prints the image given from external devices, such as a host for OHP, this invention is applicable to the image formation equipment of an electrophotography computer, on sheets, such as tracing paper, a transfer paper, a form, and a transparence sheet [0088] Furthermore, although the image formation equipment concerning the above-mentioned method at large including a copying machine, facsimile apparatus, etc.

be started, without waiting for wearing of other development units. Moreover, for example, future enabled. Therefore, the use as equipment for N color printing of image formation equipment can [Effect of the Invention] As mentioned above, by the development unit wearing approach of this perform N color print mode over other development units and it equips with it, when wearing of the development unit of this N individual is completed, activation of N color print mode can be wearing is interrupted on the way and the usage of using equipment, not equipped with other invention, since priority is given to the development unit of N individual required in order to development units also becomes possible.

color airline printer, until just before starting the ejection of the development unit of N individual. since it leaves the development unit of N individual for performing N color print mode to a unit even if it is during the activity which takes out these development units, or after taking all out attaching part by the development unit ejection approach of this invention and he is trying to [0090] Moreover, it becomes possible to use image formation equipment, continuing as an N take out the other development unit preferentially.

the development unit of N individual corresponding to the toner color for N color printing, even if activation of N color print mode may be permitted when the unit attaching part is equipped with [0091] Moreover, since it constitutes from image formation equipment of this invention so that it has not equipped with development units other than the above-mentioned N individual, it is

[0092] And in such equipment, time amount with which the use as an N color airline printer can development unit of the above-mentioned N individual by applying the wearing approach of the be presented can be made into max until it starts the ejection of the development unit of the above-mentioned N individual from the time of carrying out the completion of wearing of the above-mentioned development unit, and the approach of taking out. possible to use equipment as an N color airline printer.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

I. This document has been translated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

Drawing 1] It is drawing showing the operation gestalt of 1 of the image formation equipment

concerning this invention.

[Drawing 2] It is the block diagram showing the engine controller of the image formation

equipment of drawing 1.

[Drawing 3] It is drawing showing actuation of the rotary development section typically. [Drawing 4] It is the flow chart which shows the development unit wearing sequence of the

image formation equipment of drawing 1.

[Drawing 5] It is the flow chart which shows the wearing procedure of a development unit. [Drawing 6] It is the flow chart which shows the monochrome printing sequence in the image

formation equipment of drawing 1.

[Orawing 7] It is the flow chart which shows the development unit ejection sequence of the image formation equipment of drawing 1.

Drawing 8] It is the flow chart which shows the ejection procedure of a development unit.

[Description of Notations]

-- Engine controller (control means)

3 -- Rotary development section

3b — Support frame (unit attaching part) 3Y, 3M, 3C, 3K — Development unit

33Y, 33M, 33C, 33K -- (unit side) Connector

34 -- Common connector for the development sections

[Translation done.]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-50495 (P2003-50495A)

(43)公開日 平成15年2月21日(2003.2.21)

(51) Int.Cl. ⁷		FI			テーマコード(参考)	
G 0 3 G 15/0	1 113	G03G 15	5/01	113Z	2H030	
				Z	2H071	
15/0	8 503	15	15/08 5 0 3 A 2 H 0 7 7		2H077	
	5 0 6			506A		
21/1	6	15	/00 554			
		審查請求	未請求	請求項の数7	OL (全 14 頁)	
(21)出願番号	特願2001-240179(P2001-240179)	(71)出願人	000002369 セイコーエプソン株式会社			
(22)出願日	平成13年8月8日(2001.8.8)	(72)発明者	東京都新宿区西新宿2丁目4番1号 田口 恵一 長野県諏訪市大和3丁目3番5号 セイコ ーエブソン株式会社内			

(74)代理人 100105935

弁理士 振角 正一

最終頁に続く

(外1名)

(54) 【発明の名称】 画像形成装置における現像ユニットの装着方法および取り出し方法ならびに画像形成装置

(57) 【要約】

【課題】 カラー画像形成装置の一部の現像ユニットが 装着されていなくても、装着されている現像ユニットに よる印刷動作を可能とする。

【解決手段】 Y、M、C、Kの4色のトナーを用いた カラー印刷モードと、Kトナーのみを用いた単色印刷モ ードとを実行可能な画像形成装置において、Kトナー色 に対応したK現像ユニットの装着(ステップS1)を、 M、Y、C各トナー色に対応した現像ユニットの装着 (ステップS4、S6、S8) に対して優先して行う。 また、これらの現像ユニットを取り出す際には、K現像 ユニットを最後に取り出す。そして、少なくとも K 現像 ユニットが装着されていればKトナー色による単色印刷 動作を許可しているので、他の現像ユニットが未装着ま たは取り外された後であっても単色印刷が可能である。

2

【特許請求の範囲】

【請求項1】 トナーを内蔵するM個(M≥2)の現像ユニットをユニット保持部に装着可能となっており、前記ユニット保持部に装着された現像ユニットのうちN個(M>N≥1)の現像ユニットを用いて印刷を実行するN色印刷モードを実行可能な画像形成装置において、前記M個の現像ユニットのうち一の現像ユニットを装着するために前記ユニット保持部を位置決めする位置決め工程と、前記位置決め工程の後に、前記ユニット保持部に前記一の現像ユニットを装着する装着工程とを交互に実施して、前記M個の現像ユニットを前記ユニット保持部に順番に装着する現像ユニットを前記ユニット保持部への装着を、残りの現像ユニットの前記ユニット保持部への装着を、残りの現像ユニットの前記ユニット保持部への装着に対して優先して行うことを特徴とする、画像形成装置における現像ユニットの装着方法。

1

【請求項2】 前記画像形成装置が、互いに異なるトナー色のN個(M>N≥2)の現像ユニットを用いてN色カラー印刷を実行するN色カラー印刷モードと、前記N個の現像ユニットのうち単色印刷用トナー色の一の現像ユニットを用いて単色印刷を実行する単色印刷モードとを実行可能となっているとき、

前記N個の現像ユニットのうち前記単色印刷用の現像ユニットの前記ユニット保持部への装着を最優先に行う請求項1に記載の画像形成装置における現像ユニットの装着方法。

【請求項3】 トナーを内蔵するM個(M≥2)の現像 ユニットをユニット保持部に着脱可能となっており、前記ユニット保持部に装着された現像ユニットのうちN個(M>N≥1)の現像ユニットを用いて印刷を実行する N色印刷モードを実行可能な画像形成装置において、前記M個の現像ユニットのうち一の現像ユニット保持部を位置決めする位置決め工程と、前記位置決め工程の後に、前記ユニット保持部から前記一の現像ユニットを取り出す取り出し工程とを交互に実施して、前記M個の現像ユニットを前記ユニット保持部から順番に取り出す現像ユニットの取り出し方法において、

前記ユニット保持部に装着された前記M個の現像ユニットのうち前記N個以外の現像ユニットの前記ユニット保 持部からの取り出しを、前記N個の現像ユニットの前記 ユニット保持部からの取り出しに対して優先して行うことを特徴とする、画像形成装置における現像ユニットの取り出し方法。

【請求項4】 トナーを内蔵するM個(M≥2)の現像 ユニットと、前記M個の現像ユニットを装着可能に構成 されたユニット保持部と、前記ユニット保持部に装着さ れた現像ユニットのうちN個(M>N≥1)の現像ユニットを用いて印刷を実行するN色印刷モードを実行する 制御手段とを備えた画像形成装置において、 前記制御手段は、前記N個の現像ユニットの前記ユニット保持部への装着を、残りの現像ユニットの前記ユニット保持部への装着に対して優先して行う装着シーケンスを実行するとともに、

前記N個の現像ユニットの前記ユニット保持部への装着 完了時点より前記N色印刷モードの実行を許可すること を特徴とする画像形成装置。

【請求項5】 互いに異なるトナー色のN個(M>N≥ 2)の現像ユニットを用いてN色カラー印刷を実行するN色カラー印刷モードと、前記N個の現像ユニットのうち単色印刷用トナー色の一の現像ユニットを用いて単色印刷を実行する単色印刷モードとを実行可能となっている請求項4に記載の画像形成装置において、

前記制御手段は、前記装着シーケンスにおいて、前記N個の現像ユニットのうち前記単色印刷用の現像ユニットの前記ユニット保持部への装着を最優先に行い、しかま、

前記単色印刷用の現像ユニットの前記ユニット保持部へ の装着完了時点より前記単色印刷モードの実行を許可す る画像形成装置。

【請求項6】 前記単色印刷用トナー色が、黒色である 請求項5に記載の画像形成装置。

【請求項7】 トナーを内蔵するM個(M≥2)の現像 ユニットと、前記M個の現像ユニットを着脱可能に構成 されたユニット保持部と、前記ユニット保持部に装着さ れた現像ユニットのうちN個(M>N≥1)の現像ユニットを用いて印刷を実行するN色印刷モードを実行する 制御手段とを備えた画像形成装置において、

前記制御手段は、前記ユニット保持部に装着された前記 M個の現像ユニットのうち前記N個以外の現像ユニット の前記ユニット保持部からの取り出しを、前記N個の現 像ユニットの前記ユニット保持部からの取り出しに対し て優先して行う取り出しシーケンスを実行するととも に

前記N個の現像ユニットの前記ユニット保持部からの取り出しが開始されるまで前記N色印刷モードの実行を許可することを特徴とする画像形成装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、プリンタ、複写機およびファクシミリ装置などの画像形成装置、特に、複数の現像ユニットの各々を個別にユニット保持部に着脱自在となっている画像形成装置に関するものである。

[0002]

【従来の技術】この種の画像形成装置として、回転軸を中心として複数の現像ユニットを放射状に配置したロータリー現像部を備えた装置が知られている。この装置では、その回転軸を回転駆動することによって前記複数の現像ユニットのうちの一の現像ユニットを感光体に対向位置決めして感光体上の潜像を現像し、中間転写媒体上

に転写する。そして、必要に応じて、ロータリー現像部を回転駆動して現像ユニットを切り換え、上記と同様にして各トナー色毎にトナー現像および転写処理を繰り返すことによって、複数色のトナー像を中間転写媒体上で重ね合わせてカラー画像を形成している(カラー印刷モード)。

【0003】また、上記のように構成された画像形成装置では、複数の現像ユニットのうち特定の現像ユニット、多くの場合ブラック現像ユニットを用いて単色印刷を行うことが可能となっている(単色印刷モード)。

【0004】このような画像形成装置においては、カラー、単色いずれの印刷要求にも迅速に対応し、所期のカラーまたは単色画像を得るために、各トナー色の現像ユニットが全て所定の位置に装着されている必要がある。

【0005】そこで、装着作業を簡便なものとするとともに、ユーザの作業ミスによる現像ユニットの誤装着を未然に防止するため、予めプログラムされた装着シーケンスを備えた画像形成装置が考えられている。このような画像形成装置では、その装着シーケンスの進行に伴い、ユーザは予め定められた順序または装置の案内に従って、順番に現像ユニットを装着するだけで、全てのユニットを正しく装着できるように構成されている。

[0006]

【発明が解決しようとする課題】しかしながら、従来の画像形成装置では、全ての現像ユニットが装着されて初めて印刷動作が可能となるように構成されており、したがって、上記した装着シーケンスでも、装置に装着可能な現像ユニットを全て装着することを前提としている。そのため、装着作業を途中で中断して、一部の現像ユニットを装着しなかった場合には、装置に印刷動作を行わせることはできない。

【0007】また、このような画像形成装置は、上記したように、必要に応じて単色印刷モードを実行可能となっており、この単色印刷モードでは、該単色印刷に対応した現像ユニットのみを使用して印刷を行うのであるから、他のトナー色の現像ユニットは本来的には装着する必要がない。しかし、上記のような構成をとっている従来の画像形成装置では、やはり全ての現像ユニットを装着しない限り印刷動作を実行することはできない。

【0008】このような問題は、上記した装着作業時のみでなく、もともと装着されていた現像ユニットがユニット交換や装置の移動等のために取り外された場合にも起こり得るものであり、例えば、いずれかの現像ユニットを取り外した後に単色画像信号が入力された場合、たとえ単色印刷用の現像ユニットが装置に装着されていたとしても印刷を行うことはできず、ユーザにとっての利便性を損ねている。

【0009】この発明は上記課題に鑑みなされたものであり、画像形成装置に装着されるべき複数の現像ユニットのうちいくつかがまだ装着を完了していない場合や既 50

に取り外されてしまった場合でも印刷動作を行うことを 可能とする、画像形成装置における現像ユニットの装着 方法および取り出し方法を提供することを第1の目的と する。また、全ての現像ユニットを装着しなくても印刷 動作が可能な画像形成装置を提供することを第2の目的 とする。

[0010]

【課題を解決するための手段】この発明にかかる画像形 成装置の現像ユニット装着方法は、トナーを内蔵するM 個(M≥2)の現像ユニットをユニット保持部に装着可 能となっており、前記ユニット保持部に装着された現像 ユニットのうちN個(M>N≥1)の現像ユニットを用 いて印刷を実行するN色印刷モードを実行可能な画像形 成装置において、前記M個の現像ユニットのうち一の現 像ユニットを装着するために前記ユニット保持部を位置 決めする位置決め工程と、前記位置決め工程の後に、前 記ユニット保持部に前記一の現像ユニットを装着する装 着工程とを交互に実施して、前記M個の現像ユニットを 前記ユニット保持部に順番に装着する現像ユニットの装 着方法であって、上記第1の目的を達成するため、前記 N個の現像ユニットの前記ユニット保持部への装着を、 残りの現像ユニットの前記ユニット保持部への装着に対 して優先して行うことを特徴としている (請求項1)。 【0011】このように構成された現像ユニット装着方 法では、N色印刷モードを実行するために必要なN個の 現像ユニットを、他の現像ユニットより優先して装着す るので、このN個の現像ユニットの装着を完了した時点 でN色印刷モードが実行可能となる。そのため、他の現 像ユニットの装着を待たずに画像形成装置のN色印刷用 装置としての使用を開始することができる。また、例え ば、以後の装着作業を途中で中断して、他の現像ユニッ トを装着しないままで装置を使用するといった使い方も 可能となる。また、作業者が1つの現像ユニットを装着 する毎に、ユニット保持部が自動的に移動して次のユニ ットを装着するための位置に位置決めするように構成し てもよく、この場合、作業者は複数の現像ユニットを定 められた順番に装着するだけでよく、装着作業を容易に かつ確実に行うことができる。

【0012】また、前記画像形成装置が、互いに異なるトナー色のN個(M>N≥2)の現像ユニットを用いてN色カラー印刷を実行するN色カラー印刷モードと、前記N個の現像ユニットのうち単色印刷用トナー色の一の現像ユニットを用いて単色印刷を実行する単色印刷モードとを実行可能となっているときには、さらに前記N個の現像ユニットのうち前記単色印刷用の現像ユニットの前記ユニット保持部への装着を最優先に行うようしてもよい(請求項2)。このときには、単色印刷用現像ユニットの装着を完了した時点で、装置を単色印刷用装置として使用することが可能となる。

【0013】また、本発明にかかる画像形成装置の現像

ユニット取り出し方法は、トナーを内蔵するM個(M≥ 2) の現像ユニットをユニット保持部に着脱可能となっ ており、前記ユニット保持部に装着された現像ユニット のうちN個(M>N≥1)の現像ユニットを用いて印刷 を実行するN色印刷モードを実行可能な画像形成装置に おいて、前記M個の現像ユニットのうち一の現像ユニッ トを前記ユニット保持部から取り出すために前記ユニッ ト保持部を位置決めする位置決め工程と、前記位置決め 工程の後に、前記ユニット保持部から前記一の現像ユニ ットを取り出す取り出し工程とを交互に実施して、前記 M個の現像ユニットを前記ユニット保持部から順番に取 り出す現像ユニットの取り出し方法であって、上記第1 の目的を達成するため、前記ユニット保持部に装着され た前記M個の現像ユニットのうち前記N個以外の現像ユ ニットの前記ユニット保持部からの取り出しを、前記N 個の現像ユニットの前記ユニット保持部からの取り出し に対して優先して行うことを特徴としている(請求項 3)。

【0014】このように構成された現像ユニット取り出し方法では、N色印刷モードを実行するためのN個の現像ユニットをユニット保持部に残し、それ以外の現像ユニットを優先的に取り出すようにしているので、これらの現像ユニットを取り出す作業中あるいは全て取り出した後であっても、N個の現像ユニットの取り出しを開始する直前まで、画像形成装置をN色印刷装置として継続して使用することが可能となる。しかも、作業者が1つの現像ユニットを取り出す年に、ユニット保持部が自動的に移動して次のユニットを取り出すための位置に位置決めされるので、作業者は上記取り出し順序を意識することなく作業を行うことができる。

【0015】また、この発明にかかる画像形成装置は、トナーを内蔵するM個(M≥2)の現像ユニットと、前記M個の現像ユニットを装着可能に構成されたユニット保持部と、前記ユニット保持部に装着された現像ユニットのうちN個(M>N≥1)の現像ユニットを用いて印刷を実行するN色印刷モードを実行する制御手段とを備えた画像形成装置であって、上記第2の目的を達成するため、前記制御手段は、前記N個の現像ユニットの前記ユニット保持部への装着を、残りの現像ユニットの前記ユニット保持部への装着に対して優先して行う装着シーケンスを実行するとともに、前記N個の現像ユニットの前記ユニット保持部への装着に対して優先して行う装着シーケンスを実行するとともに、前記N個の現像ユニットの前記ユニット保持部への装着完了時点より前記N色印刷モードの実行を許可することを特徴としている(請求項4)。

【0016】このように構成された画像形成装置では、その現像ユニット装着シーケンスにおいて、N色印刷モードに対応したN個の現像ユニットを他の現像ユニットより優先して装着し、しかも、これらN個の現像ユニットが装着された時点でN色印刷モードの実行を許可しているので、残りの現像ユニットの装着作業中であって

も、またそれらを装着しないままでも印刷動作が可能となっている。なお、上記においてN=1とした場合は、上記N色印刷モードは単色印刷モードに相当することと

【0017】ここで、かかる画像形成装置が、互いに異なるトナー色のN個(M>N \geq 2)の現像ユニットを用いてN色カラー印刷を実行するN色カラー印刷モードと、前記N個の現像ユニットのうち単色印刷用トナー色の一の現像ユニットを用いて単色印刷を実行する単色印刷モードとを実行可能となっているときには、前記制御手段は、前記装着シーケンスにおいて、前記N個の現像ユニットのうち前記単色印刷用の現像ユニットの前記ユニット保持部への装着を最優先に行い、しかも、前記単色印刷用の現像ユニットの共善の表着完了時点より前記単色印刷モードの実行を許可するようにしてもよい(請求項5)。

【0018】このように構成された画像形成装置では、 その現像ユニット装着シーケンスにおいて、まず単色印 刷モードを実行するために必要な一の現像ユニットを装 着し、その装着が完了した時点で単色印刷モードを許可 しているので、この単色印刷モードに対応した現像ユニ ットのみを装着した状態で単色印刷用装置としての使用 が可能となっている。そして、必要に応じてN色印刷モ ードに対応した他の(N-1)個の現像ユニットをさら に装着すればN色印刷が可能となり、残りの全ての現像 ユニットを装着すればフルカラーでの画像形成が可能と なる。このように、この画像形成装置は、ユーザの希望 に応じた様々な用途に供することができるものである。 【0019】ところで、このような単色印刷は、多くの 場合、黒色トナーを用いた白黒印刷として行われる。そ こで、前記単色印刷用トナー色は黒色であってもよい (請求項6)。このとき、この画像形成装置によるカラ 一印刷モードと白黒印刷モードとが実行可能となり、し かも、このうちの白黒印刷モードは、少なくとも黒色ト ナーに対応した現像ユニットが装置に装着されていれ ば、他の現像ユニットの有無に拘らず実行が可能であ

【0020】さらに、この発明にかかる画像形成装置は、トナーを内蔵するM個(M≥2)の現像ユニットと、前記M個の現像ユニットを着脱可能に構成されたユニット保持部と、前記ユニット保持部に装着された現像ユニットのうちN個(M>N≥1)の現像ユニットを用いて印刷を実行するN色印刷モードを実行する制御手段とを備えた画像形成装置であって、上記第2の目的を達成するため、前記制御手段は、前記ユニット保持部に装着された前記M個の現像ユニットのうち前記N個以外の現像ユニットの前記ユニット保持部からの取り出しを、前記N個の現像ユニットの前記ユニット保持部からの取り出して優先して行う取り出しシーケンスを実行するとともに、前記N個の現像ユニットの前記ユニット

保持部からの取り出しが開始されるまで前記N色印刷モードの実行を許可することを特徴としている(請求項7)。

【0021】このように構成された画像形成装置では、その現像ユニット取り出しシーケンスにおいて、N色印刷モードを実行するために必要なN個の現像ユニットをユニット保持部に残し、それ以外の現像ユニットから先に取り出すように構成されており、しかも、そのN個の現像ユニットが装着されていればN色印刷モードの実行を許可しているので、上記取り出しシーケンスによる各現像ユニットの取り出し作業中や、既に一部の現像ユニットが取り外された状態であっても印刷動作が可能となっている。なお、前述した装置と同様に、上記においてN=1とした場合は、上記N色印刷モードは単色印刷モードに相当することとなる。

[0022]

【発明の実施の形態】1. 装置の構成

図1は、この発明にかかる画像形成装置の一の実施形態を示す図である。図2は図1の画像形成装置のエンジンコントローラを示すブロック図である。この画像形成装置は、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の4色のトナーを重ね合わせてフルカラー画像を形成(カラー印刷モード)したり、ブラック(K)のトナーのみを用いて単色画像を形成(単

ラック (K) のトナーのみを用いて単色画像を形成 (単色印刷モード) する装置である。この画像形成装置では、ホストコンピュータなどの外部装置から画像信号が制御ユニットのメインコントローラに与えられると、このメインコントローラからの指令に応じてエンジンコントローラ1がエンジン部EGの各部を制御して複写紙、転写紙、用紙およびOHP用透明シートなどのシートSに画像信号に対応する画像を形成する。

【0023】このエンジン部EGでは、7つのユニット: (a)感光体ユニット2: (b)イエロー現像ユニット (以下「Y現像ユニット」という) 3 Y; (c)マゼンタ 現像ユニット(「M現像ユニット」) 3 M; (d)シアン 現像ユニット(「C現像ユニット」) 3 C; (e)ブラック現像ユニット(「K現像ユニット」) 3 K; (f)中間 転写ユニット4および(g)定着ユニット5が装置本体6 に対して着脱自在となっている。そして、すべてのユニット2、3 Y、3 M、3 C、3 K、4、5 が装置本体6 に装着された状態で、図1に示すように、感光体ユニット2の感光体21が図1の矢印方向D1に回転するとともに、その感光体21の周りにその回転方向D1に沿って、帯電部22、現像ユニット3 Y、3 M、3 C、3 K からなるロータリー現像部3およびクリーニング部23 がそれぞれ配置される。

【0024】7つのユニット2、3Y、3M、3C、3 K、4、5のうち感光体ユニット2には感光体21、帯 電部22およびクリーニング部23が収容されており、 これらを一体的に装置本体6に対して着脱自在となって いる。帯電部22は帯電バイアスが印加されており、感光体21の外周面を均一に帯電させる。

【0025】また、この感光体ユニット2には、感光体21の回転方向D1における帯電部22の上流側にクリーニング部23が設けられており、一次転写後に感光体21の外周面に残留付着しているトナーを掻き落とす。こうして、感光体21の表面クリーニングを行っている。

【0026】このように構成された感光体ユニット2には、該ユニット2の残り寿命を示すデータなどを記憶するためのシリアルEEPROM71が取付けられており、感光体ユニット2を装置本体6に装着すると、コネクタ(図示省略)を介して装置本体6のエンジンコントローラ1と電気的に接続され、エンジンコントローラ1との間でデータ転送を行い、感光体ユニット2の装着検出や消耗品管理などを行う。なお、ユニット4、5についても感光体ユニット2と同様に種々のデータを記憶するためのシリアルEEPROM76、77がそれぞれ取付けられており、ユニット装着状態で装置本体6のエンジンコントローラ1と電気的に接続され、エンジンコントローラ1との間でデータ転送を行い、該ユニットの装着検出や消耗品管理などを行う。

【0027】一方、現像ユニット3Y、3M、3C、3Kにも該ユニットに関する種々のデータを記憶するためのシリアルEEPROM72~75が設けられている。これらのEEPROM72~75は、後述するようにユニット装着状態では装置本体側のコネクタ34とは接続されておらず、必要に応じて一時的にエンジンコントローラ1と電気的に接続され、エンジンコントローラ1との間でデータ転送を行い、現像ユニット3Y、3M、3C、3Kの装着検出や消耗品管理などを行う。

【0028】この画像形成装置では、図1に示すように、帯電部22によって帯電された感光体21の外周面に対して、露光ユニット8からレーザ光Lが照射される。この露光ユニット8は外部装置からの画像信号に応じてレーザ光Lを感光体21上に走査露光して感光体21上に画像信号に対応する静電潜像を形成する。

【0029】こうして形成された静電潜像はロータリー現像部3によってトナー現像される。このロータリー現像部3では、ブラック用の現像ユニット3K、シアン用の現像ユニット3C、マゼンタ用の現像ユニット3M、およびイエロー用の現像ユニット3Yが軸中心に回転自在に設けられている。そして、これらの現像ユニット3Y、3M、3C、3Kは予め決められた複数の位置に移動位置決めされるとともに、感光体21に対して選択的に当接もしくは離間位置で位置決めされ、直流成分もしくは直流成分に交流成分を重畳した現像バイアスが印加されて選択された色のトナーを感光体21の表面に付与する。このように、この実施形態では、各現像ユニット3Y、3M、3C、3Kが本発明の「現像ユニット」と

して機能し、感光体21上にトナー像を形成する。 【0030】上記のようにして現像部3で現像されたトナー像は、一次転写領域TR1で中間転写ユニット4の中間転写ベルト41上に一次転写される。すなわち、中間転写ユニット4は複数のローラに掛け渡された中間転写ベルト41と、中間転写ベルト41を回転駆動する駆動部(図示省略)とを備えており、カラー画像をシートSに転写する場合には、感光体21上に形成される各色のトナー像を中間転写ベルト41上に重ね合わせてカラー画像を形成する一方、単色画像をシートSに転写する場合には、感光体21上に形成されるブラック色のトナー像のみを中間転写ベルト41上に転写して単色画像を形成する。

【0031】こうして中間転写ベルト41上に形成された画像については、所定の二次転写領域TR2において、カセット9から取り出されたシートS上に二次転写する。そして、トナー画像が転写されたシートSを、ヒータ(図示省略)が内蔵された定着ユニット5に導入し、ここで加熱しながら圧力を加えることによってトナーをシートSに定着させる。こうして画像が形成された20シートSは装置本体6の上面部に設けられた排出トレイ部に搬送される。

【0032】次に、ロータリー現像部3の構成につい て、図3を参照してさらに詳しく説明する。図3はロー タリー現像部3の動作を模式的に示す図である。ロータ リー現像部3は、その中心に回転軸3aを有するととも に、かかる回転軸3aに固定された支持フレーム3bを 有しており、前述した4色の現像ユニット3Y、3M、 3C、3Kは本発明の「ユニット保持部」として機能す る支持フレーム3bに対して着脱自在となっている。す なわち、各現像ユニット3Y、3M、3C、3Kおよび 支持フレーム3bには軸方向に互いに係合するガイドレ ール (図示省略) が設けられており、各現像ユニット3 Y、3M、3C、3Kは支持フレーム3bの軸方向に取 出し側(図1の紙面に直交する奥手側)へ着脱専用口3 21 (図3) を通じて引出し可能となっている。また、 新しい現像ユニットを着脱専用口321を通じて支持フ レーム3 b の軸方向へ進行して装着することができるよ うになっている。このようにして全ての現像ユニット3 Y、3M、3C、3Kが装着されると、回転軸3aを中 心として放射状に配置されることとなる。

【0033】この着脱専用口321は、図3に示すように、ロータリー現像部3の取出し側に配置された側板32に設けられたものであり、例えば同図(c)に示すように現像ユニットが着脱位置に位置決めされたときのみ、この着脱専用口321を介して該現像ユニットを取出し、また新しい現像ユニットを装着可能となっている。そして、現像ユニットがその着脱位置以外に位置決めされている間は、その現像ユニットの取出し・装着が側板32によって規制される。

10

【0034】また、回転軸3aには図示を省略するパルスモータがクラッチを介して接続されており、このパルスモータを駆動することで支持フレーム3bを回転させ、上記4つの現像ユニット3Y、3M、3C、3Kのうちーの現像ユニットを選択的に感光体21と対向する現像位置に位置決めできるようになっている。なお、図1はK現像ユニット3Kが現像位置に位置決めされた状態を示している。

【0035】また、現像部3の回転軸3aの一方端側 (図1の紙面手前側)には、現像部3のホームポジショ ン位置(以下「HP位置」という)を検出するためのH P検出部31 (図2参照) が設けられている。このHP 検出部31は、回転軸3aの一方端に固着された信号用 円板311と、フォト・インタラプター等からなるHP センサ312とで構成されており、円板311の周縁部 がHPセンサ312の隙間(図示省略)にくるように設 けられている。そして、円板311に形成されたスリッ ト部がHPセンサ312の隙間に移動してくると、HP センサ312からの出力信号が「L」から「H」に変化 する。そして、信号レベルの変化とパルスモータのパル ス数に基づき現像部3のHP位置を検出することができ るようになっている。また、HP位置とパルスモータの パルス数に基づき現像部3の位置を検出することができ るように構成されている。

【0036】なお、HP検出部31の構成はこれに限定されるものでなく、例えば支持フレーム3bの外周縁の一部に設けた突起部等の特徴部を検出し、これによりHP位置を検出するように構成してもよい。この場合、回転軸3aに円板311を設ける必要がなく、軸方向のサイズを小さくすることができ、装置サイズの小型化を図る上で有利となる。

【0037】また、各現像ユニット3Y、3M、3C、 3 Kの一方端側面には、コネクタ33Y、33M、33 C、33Kが固着されており、現像位置に位置決めされ たときに回転移動方向における1つ下流側の位置(以下 「コネクタ接続位置」という) にある現像ユニットのコ ネクタ (例えば図3 (b) に示すようにY現像ユニット 3 Y が現像位置に位置決めされたときには、その 1 つ下 流側のK現像ユニット3Kに固着されたコネクタ33 K) が装置本体側に設けられた現像部用共通コネクタ3 4と対向する。この現像部用共通コネクタ34は同図に 示すようにロータリー現像部3に対して接離移動可能に 構成されており、必要に応じてコネクタ接続位置にある 現像ユニットに近接移動して該現像ユニットのコネクタ と嵌合する。これによって、該現像ユニットに取り付け られたEEPROM72~75が両コネクタを介して装 置本体6のエンジンコントローラ1と電気的に接続さ れ、エンジンコントローラ1との間でデータ転送を行 い、該現像ユニットの装着検出や消耗品管理などを行 う。

【0038】なお、図面への記載を省略するが、ロータリー現像部3を上記した現像位置、HP位置および着脱位置で確実に位置決め固定するために、ロック機構が設けられている。また、装置本体6には、上記各ユニット2、3Y、3M、3C、3K、4、5を含むエンジン部EGを覆うフロントカバーが設けられており、ユーザ等が後述する現像ユニットの装着・取出しを行う際にはこのフロントカバーを開いて作業を行うが、通常の印刷動作は、このフロントカバーが閉じられた状態で実行される。

【0039】次に、エンジンコントローラ1の構成について図2を参照しつつ説明する。このエンジンコントローラ1は本発明の「制御手段」として機能するものであり、HP検出部31からの信号とパルスモータのパルス数などに基づきCPU11により後述するプログラムを実行して装置各部を制御する。なお、このCPU11には、プログラムや他のデータなどを記憶するためのROM12、各種データを一時的に記憶するRAM13が接続されている。

【0040】また、CPU11は、シリアルI/F(インターフェース)15を介して電子カウンタに用いるシリアルEEPROM14に接続されている。このシリアルEEPROM14には、装置制御のために必要となるデータが記憶されている。また、CPU11は、シリアルI/F15を介して各ユニット2、4、5およびコネクタ34に接続されており、各ユニット2、4、5および、コネクタ34と適宜接続される各現像ユニット3 Y、3M、3C、3Kに設けられたシリアルEEPROM11~77との間でデータ転送可能となるとともに、入出力ポート16を介してシリアルEEPROM14、71~77にチップセレクト信号CSを入力可能となっている。

【0041】また、エンジンコントローラ1には、電圧 監視回路17が設けられており、電源電圧が所定電圧を 下回ると、電圧監視回路17がその電圧降下を検出し、 その旨を示すリセット信号をCPU11と周辺機器1 5、16に出力する。

【0042】さらに、CPU11は入出力ポート16を介してHP検出部31と接続されている。

【0043】2.現像ユニット装着方法

このように構成された画像形成装置における、本発明の 現像ユニット装着方法の一の実施形態たる装着シーケン スの動作について、図3ないし図5を参照しつつ説明す る。図4および図5は、それぞれこの画像形成装置の現 像ユニット装着シーケンスおよび各現像ユニットの装着 手順を示すフローチャートである。

【0044】この装置では、装置の新規購入や移転等により全ての現像ユニットが取り外された装置本体6が設置された後に、ユーザ等が電源を投入すると、CPU11が、ROM13に格納されたプログラムに基づいて、

12

以下に示すステップS1~S10からなる装着シーケンスを実行して4個の現像ユニット3Y、3M、3C、3Kを順次装着する。この装着シーケンスでは、ユーザが1つの現像ユニットを装着し終わるとロータリー現像部3が回転駆動されて次の現像ユニット着脱位置に位置決めされるので、ユーザは各現像ユニット3Y、3M、3C、3Kを予め定められた順序で装着するのみで、全ての現像ユニット3Y、3M、3C、3Kを所定の位置に、しかも短時間で装着することができる。

【0045】まずステップS1で、単色印刷用トナー色であるK現像ユニット3Kの装着を最初に行う。具体的には、図5に示すステップS21ないしS27のx 現像ユニット装着ルーチンを実行する(x = K、M、C、Y; ここではx = Kと読み替えればよい)。

【0046】ステップS21では、まず支持フレーム3bへのユニットの装着状態に応じてロータリー現像部3の回転速度nを設定する。ここで、回転速度nは、支持フレーム3bに装着されている現像ユニットの数およびその位置関係に応じて次の3通りのうちのいずれか:

- (1) 現像ユニットの数が0または4個のとき、回転速度n1;
- (2) 現像ユニット数が2個で、しかもそれらが回転軸 に対して対称な位置に装着されているとき、回転速度 n
- (3) 上記(1)、(2) のいずれでもないとき、回転 速度 n3

に選ばれる。なお、これらの回転速度の間にはn1>n2>n3の関係がある。すなわち、ロータリー現像部3の回転速度は、上記(1)の場合が最も高速で、次いで(2)、そして(3)が最も低速である。

【0047】ここで、このようにユニット保持部3bへの各現像ユニットの装着状態に応じてロータリー現像部3の回転速度を変化させているのは、次の理由による。すなわち、一部の現像ユニットが装着されず、その回転軸3aに対する対称性が著しく崩れたロータリー現像部3を高速で回転駆動するためには高出力のモータが必要であり、またこのような回転駆動を行うとその反作用で装置が異常振動を起こすおそれがある。そこで、上記のような非対称性が生じた場合には、ロータリー現像部3を通常より低速で回転させることによって、このような振動の発生を抑制し、小出力モータでの駆動を可能にしている。

【0048】装着シーケンスを開始したステップS1の段階では、支持フレーム3bには現像ユニットは装着されていないので上記(1)に該当し、したがって、このとき回転速度は最も高速のn1に設定される。

【0049】次に、パルスモータを駆動してロータリー 現像部3を上記回転速度n1で回転移動させ、図3

(c) に示す K 現像ユニット着脱位置に位置決めする (ステップ S 2 2)。こうしてロータリー現像部 3 が図

50

30

14

3 (c) に示す K 現像ユニット 着脱位置に位置決めされたとき、 K 現像ユニット 3 K の装着が初めて可能となる。ただし、 K 現像ユニット 3 K 以外の現像ユニット 3 C、3 M、3 Y については、側板 3 2 により装着が規制されている。このため、ユーザ等が誤って K 現像ユニット以外の現像ユニットの装着を行うことを未然に防止することができる。

【0050】そして、ステップS23で、ユーザ等によってK現像ユニット3Kが着脱専用口321を介して支持フレーム3bに装着されるのを待つ。ここで、ユーザによるユニットの装着作業がなされたか否かは、フロントカバーの開閉が行われたか否かで判別することができる。すなわち、装置本体6に例えばリミットスイッチによる開閉センサ(図示省略)を設け、この開閉センサが、ユーザによってフロントカバーが閉じられたことを検知した時点で、交換作業が終了したと判断すればよい。なお、このときユーザは、必要に応じて該現像ユニットの装着を行わないままフロントカバーを閉じてもよい。

【0051】こうして、フロントカバーが閉じられたことが検知されると、回転速度をn3に設定する(ステップS24)。ここで、回転速度を最低速のn3に設定するのは、フロントカバーが開閉されたことによって、現像ユニットの装着状態が変化した可能性があるものの、この時点では装着状態がどのように変化したかが判断できないからである。次に、ロータリー現像部3を回転速度n3で回転駆動してK現像ユニット3Kをコネクタ接続位置へ位置決めする(ステップS25)。これによって、図3(b)に示すように、K現像ユニット3Kのコネクタ33Kが装置本体6側の現像部用共通コネクタ34と対向する。

【0052】次のステップS26では、コネクタ34が ロータリー現像部3側に移動してコネクタ33Kと嵌合 し、K現像ユニット3Kに取り付けられたEEPROM 75が両コネクタ33K、34を介して装置本体6のエ ンジンコントローラ1と電気的に接続され、EEPRO M75に対するデータの読み出し/書き込みを行う。こ れによって、K現像ユニット3Kに関するデータが更新 記憶される。また、EEPROM75から読み出された データをエンジンコントローラ 1 内部の E E P R O M 1 4に記憶されたデータと照合することにより、CPU1 1はK現像ユニット3Kが支持フレーム3bの所定位置 に正しく装着されたかどうかを確認することができる。 【0053】これに続いて、エンジンコントローラ1に 設けられたEEPROM14に、K現像ユニット3Kに 関するデータの書き込みを行う(ステップS27)。こ こで、K現像ユニット3Kが装着されずに、もしくはブ ラック以外のトナー色の現像ユニットが装着されてフロ ントカバーが閉じられたときは、EEPROM14には その旨を示すデータが書き込まれる。

【0054】こうしてK現像ユニット3K装着ルーチンを終了すると図4のステップS2へ進む。ここで、K現像ユニット3Kが装着されなかった(何も装着されなかった、もしくは他のトナー色の現像ユニットが装着された)場合にはステップS1に戻り、K現像ユニット3Kが正しく装着されるのを待つ。

【0055】一方、K現像ユニット3Kが装着されたことが確認されると、これ以後、外部装置からの印字指令に基づく単色印刷モードが実行可能となる。この単色印刷モードについては後で詳述する。

【0056】こうして K 現像ユニット 3 K が装着されると、続いて M 現像ユニット 3 M の装着を行う(ステップ S 4)。ここで、 K 現像ユニット 3 K の次に M 現像ユニット 3 M の装着を行うのは、 K 現像ユニット 3 K と M 現像ユニット 3 M とはロータリー 現像部 3 の回転軸 3 a に対して対称な位置に配置されるため(図 1 参照)、こうすることでこれら 2 つの現像ユニット 3 K、3 M が装着された状態で回転軸 3 a からみた非対称性が小さくなって、ロータリー 現像部 3 を駆動するパルスモータの負担を軽減することができるからである。

【0057】ステップS4では、上記したK現像ユニット3Kの装着と同様に、図5に示すx現像ユニット装着ルーチン(ここでは、x=Mと読み替える)を再び実行して、M現像ユニット3Mの装着を行う。この場合、ロータリー現像部3には既にK現像ユニット3Kが装着されている(前述の(3)に相当)。そのため、ステップS21では回転速度nは最低速のn3に設定されて、ロータリー現像部3のM現像ユニット着脱位置への移動は回転速度n3で行われる。

【0058】こうしてM現像ユニット3Mの装着が終了すると、同様にして、引き続きY現像ユニット3Y(ステップS6)、C現像ユニット3C(ステップS8)を順次装着してゆくが、このときにもロータリー現像部3の回転速度nはその時点での各現像ユニットの装着状態に応じて適宜設定される。

【0059】そして、各現像ユニットの装着が終了すると、ステップS9で、EEPROM14に記憶されたデータに基づくそのときの現像ユニットの装着状態が上記(1)ないし(3)のいずれに該当するかに応じて、以後の動作におけるロータリー現像部3の回転速度nを設定する。例えば、K現像ユニット3Kのみが装着されている場合には、上記(3)に該当するので、回転速度はn3に設定する。また、K現像ユニット3Kと、M現像ユニット3Mが回転軸に対して対称に装着されている場合には(2)に該当するので、回転速度はn2に設定する。さらに、全ての現像ユニットが装着されている場合には、(1)に該当するので回転速度をn1とする。

【0060】最後に、パルスモータを駆動してロータリー現像部3を回転移動させてロータリー現像部3を図3(a)に示すHP位置に位置決めして待機状態に入り

(ステップS10)、ホストコンピュータなどの外部装置から画像信号が与えられるのを待って通常の画像形成動作を実行する。

【0061】なお、ユーザは、それぞれの現像ユニットの装着が終了した時点で、残りの現像ユニットを装着する必要がなければ、以後の装着作業を省略して装着シーケンスを終了させることができる。すなわち、ユーザ操作によって装着シーケンス終了が指示されたときは(ステップS3、S5、S7)、CPU11は以後の現像ユニット装着ルーチンを行わず、直ちに上記のステップS9およびS10を実行して、装着シーケンスを終了する。

【0062】このように、各現像ユニットの装着が終了すると、その装着状態に応じてロータリー現像部3の回転速度nが設定されるが、ここで設定された回転速度nは以後の動作においても適用される。そして、ユーザにより現像ユニットの取出し・交換が行われると、その装着状態に基づいて、新たな回転速度が設定される。

【0063】このように、この画像形成装置の現像ユニット装着シーケンスでは、単色印刷用トナーを内蔵する K現像ユニット3Kを、他色の現像ユニット3Y、3 M、3Cに先立って装着するように構成されている。しかも、後述するように、この画像形成装置の単色印刷シーケンスは、K現像ユニット3Kがユニット保持部3bに装着されていれば動作可能に構成されているので、上記装着シーケンスにおいて、K現像ユニット3Kの装着が完了した時点から、他の現像ユニットの装着を待たずに単色印刷モードを実行可能となっている。そして、例えば、他の現像ユニットを装着せず、K現像ユニット3Kのみを装着した状態で単色印刷用画像形成装置として使用するなど、ユーザの使用状況に合わせた使い方ができる利便性の高い装置となっている。

【0064】なお、ロータリー現像部3の回転角度はパルスモータを駆動する駆動パルスの数によって決まり、一方、その回転速度は駆動パルスの繰り返し周期で決まる。そこで、この画像形成装置では、所定の回転角度に応じたパルス数の駆動パルスを発生させてロータリー現像部3を回転駆動するに際し、各現像ユニットの装着状態によってその駆動パルスの周期を変化させることで、上記のような可変速駆動を実現している。

【0065】3. 単色印刷モード

各現像ユニットの装着が完了して待機状態にある画像形成装置に対し、外部装置(ここでは、ホストコンピュータ)から単色画像信号が与えられたときの画像形成動作、すなわち単色印刷モードについて、図6を参照しつつ説明する。図6はこの画像形成装置における単色印刷シーケンスを示すフローチャートである。なお、この画像形成装置では、4色の現像ユニット3Y、3M、3C、3Kが全て装着されているときのみカラー印刷モードを許可しており、この状態でカラー画像信号が与えら

れた場合の動作は全ての現像ユニットが装着された従来 のカラー画像形成装置の動作と同一であるので、ここで は説明を省略する。

【0066】この画像形成装置では、ホストコンピュータから単色印刷に対応した画像信号が与えられたとき、CPU11が、図6に示すステップS31ないしS37の単色印刷シーケンスを実行する。

【0067】まず、ステップS31で、エンジンコントローラ1のEEPROM14に記憶されたデータから、K現像ユニット3Kが正しく装着されているか否かを判定する。そして、K現像ユニット3Kが装着されていなければ、そのまま単色印刷シーケンスを終了する。

【0068】一方、K現像ユニット3Kが装着されているときには、単色印刷動作を行うべく、定着ユニット5に内蔵されたヒータに通電し、ウォームアップを開始する(ステップS32)。そして、ヒータが所定の温度まで上昇するのを待って(ステップS33)、パルスモータがロータリー現像部3を回転駆動して、K現像ユニット3Kを感光体21に対向する現像位置に位置決めする(ステップS34)。そして、ホストコンピュータから送られる画像信号に基づき、1ページ分のトナー画像を形成し、シートSに転写する(ステップS35)。さらに次ページ以降の画像信号があればS35に戻って再び印刷を実行し、全てのページを印刷し終わるまで上記印刷作業を繰り返す(ステップS36)。こうして印刷が終了すると、再びロータリー現像部3が回転移動してHP位置に戻り、待機状態となる(ステップS37)。

【0069】このように、この実施形態の画像形成装置では、4個の現像ユニットのうちK現像ユニット3Kが装着されていれば、他のトナー色の現像ユニットの装着状態に拘らずブラック色による単色印刷が可能となっている。そのため、前述した現像ユニット装着シーケンスにおいては、図4に示すステップS2でK現像ユニット3Kの装着が確認された時点から、本装置を単色印刷装置として使用可能となっている。

【0070】4. 現像ユニット取り出し方法 この画像形成装置は、現像ユニットを取り外す際のユーザの便宜を図るとともに、単色印刷装置としての機能をできるだけ長く維持すべく、本発明の現像ユニット取り出しシーケンスを備えている。この取り出しシーケンスに基づいて、支持フレーム3bに装着された現像ユニット3Y、3M、3C、3Kの全てを順番に取り出す方法について、図7および図8を参照しつつ説明する。図7および図8は、それぞれこの画像形成装置における現像ユニット取り出しシーケンスおよび各現像ユニットの取り出し手順を示すフローチャートである。

【0071】この画像形成装置では、ユーザ操作等により現像ユニット取り出しが指示されると、CPU11 が、図7に示すステップS41ないしS57からなる現

18

像ユニット取り出しシーケンスを実行する。この現像ユニット取り出しシーケンスでは、単色印刷用トナーを内蔵する K 現像ユニット 3 K の取り出しに先立って、他の現像ユニット 3 Y、 3 M、 3 C を取り出すように構成されており、これにより、この画像形成装置は他のトナー色の現像ユニット 3 Y、 3 M、 3 C の一部または全部を取り外した状態でも単色印刷用装置として使用することが可能となっている。

【0072】まず、各現像ユニット3Y、3M、3C、3Kに設けられたEEPROM72~75に記憶された、各ユニットの使用状況に関するデータの更新を行う。具体的には、図7のステップS41~S48に示すように、ロータリー現像部3を回転駆動して各現像ユニット3K、3C、3M、3Yをこの順番にコネクタ接続位置に位置決めし、その都度装置本体6に設けたコネクタ34と、各ユニットに取りつけたコネクタ33K、33C、33M、33Yとを接続してデータ転送を行う。これによって各現像ユニットに関するデータが更新記憶される。なお、このデータ更新を行う順序は、後述する取り出し順序には拘束されないので、ここではロータリー現像部3の回転方向に沿った上記順序とすることで、ロータリー現像部3の移動距離を最短として処理時間を短縮している。

【0074】まずステップS61では、各現像ユニットの装着状態に応じてロータリー現像部3の回転速度nを設定する。ここでは全ての現像ユニットが装着されているので、回転速度n1に設定する。その後、この回転速度n1でロータリー現像部3が回転して、C現像ユニット3Cが着脱位置(図3(c)参照)に位置決めされる(ステップS62)。

【0075】そして、ステップS63で、ユーザ等によってC現像ユニット3Cが着脱専用口321を介して支持フレーム3bから取り出されるのを待つ。ここでも、ユーザが取り出しを行ったか否かはフロントカバーの開閉を検知することで行う。そして、ユーザは、必要に応 40 じ、該現像ユニットを装着したままフロントカバーを閉じてもよい。

【0076】こうして、フロントカバーが閉じられたことが検知されると、回転速度をn3に設定する(ステップS64)。次に、ロータリー現像部3を回転速度n3で回転駆動してC現像ユニットコネクタ接続位置(つまりK現像ユニット現像位置)に位置決めする(ステップS65)。そして、コネクタ34がロータリー現像部3側に移動する。このとき、上記したステップS63でC現像ユニット3Cが取り出されず、ユニット保持部3b

に装着されたままとなっていればコネクタ34はコネクタ33Cと嵌合してEEPROM74に記憶されたデータが読み出されるが、既にC現像ユニット3Cが取り外されていれば、このデータは読み出されることがない。また、C現像ユニット3Cが取り出された後に別の現像ユニットが装着されていれば、ステップS41で読み出し・書き込みを行ったデータとは異なるデータが読み出されることとなる。このことから、CPU11は、コネクタ34を介して読み出されるデータをEEPROM14に記憶されたデータと照合することで、ユーザによってC現像ユニット3Cが取り外されたかどうかを判断する(ステップS66)。

【0077】このようにしてC 現像ユニット3C の取り出し作業が終了すると、同様にしてY 現像ユニット3 Y、M現像ユニット3 M、K現像ユニット3 Kを順番に取り出す(ステップ $551\sim 55$)。ここで、K現像ユニット3 Kが取り出されたことが確認されると、前述したように、以後は単色印刷モードの実行が禁止される。なお、カラー印刷モードは、4 個の現像ユニットのうちいずれか1 つが取り外された時点で実行が禁止されている。

【0078】そして、各現像ユニットの取り出しが終了すると、その時の支持フレーム3bへの現像ユニット装着状態に応じてロータリー現像部3の回転速度を設定した後(ステップS56)、ロータリー現像部3がHP位置まで回転移動して取り出しシーケンスを終了する(ステップS57)。

【0079】なお、前述した装着シーケンスと同様に、ユーザはそれぞれの現像ユニットの取り出しが終了した時点で、残りの現像ユニットを取り出す必要がなければ、以後の取り出し作業を省略して取り出しシーケンスを終了させることができる。すなわち、ユーザ操作によって取り出しシーケンス終了が指示されたときは(ステップS50、S52、S54)、CPU11は以後の現像ユニット取り出しルーチンを行わず、直ちに上記のステップS56およびS57を実行して、取り出しシーケンスを終了する。

【0080】このように、この画像形成装置の現像ユニット取り出しシーケンスでは、エンジンコントローラ 1 が、各現像ユニット3 C、3 Y、3 M、3 Kをこの順序で取り出すべくロータリー現像部3を回転位置決めしているので、ユーザは取り出し順序を意識する必要がなく、着脱位置に位置決めされた現像ユニットを順次取り出すだけでよい。また、前述したように、K現像ユニット3 Kが装着されていれば外部装置からの印刷要求に基づく単色印刷動作が許可されており、しかも K現像ユニット3 Kの取り出しを、他の現像ユニットを取り出した後に行うように構成しているので、他の現像ユニットの取り出し作業中や、これらの現像ユニットを取り外した後であっても、K現像ユニット3 Kを取り外すまではブ

ラック色による単色印刷が可能となっている。

【0081】5. その他

本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では、4つの現像ユニット3Y、3M、3C、3Kが図1に示す配列で装着されているが、現像ユニットの配列はこれに限定されるものではなく、他の配列であってもよい。

【0082】また、上記実施形態では各現像ユニットの装着状態に応じてロータリー現像部3の回転速度を n 1、n2、n3の3段階に変化させているが、回転速度の組み合わせはこれ以外であってもよく、例えばロータリー現像部3への装着個数が0個のときと4個のときとで回転速度を異ならせたり、1個のときと3個のときとで異ならせるようにしてもよい。また、0個または4個の場合とそれ以外の場合とで、高速・低速の2段階に変化させるようにしてもよい。

【0083】また、上記実施形態では、4つの現像ユニットを支持フレーム3bに装着する構成となっているが、現像ユニットの個数は「4」に限定されるものではなく、2以上の現像ユニットが装着される装置全般に本発明を適用することができる。

【0084】また、上記実施形態では、各現像ユニット3Y、3M、3C、3Kがロータリー現像部3の軸方向に着脱可能となっているが、ロータリー現像部3の放射方向に現像ユニットが着脱される画像形成装置に対しても本発明を適用することができる。

【0085】また、上記実施形態における現像ユニットの装着シーケンスおよび取り出しシーケンスでは、ユー 30 ザが予め定められた順序で各現像ユニットの装着・取り出しを行うよう構成されているが、これ以外に、例えば、画像形成装置にディスプレイ表示または音声による報知手段をさらに設け、シーケンスの進行に応じてユーザが行うべき作業をこの報知手段によりユーザに報知するようにしてもよい。このようにすると、装着・取り出し作業がさらに容易かつ確実なものとなり、ユーザフレンドリーな装置とすることができる。

【0086】また、上記実施形態の画像形成装置では、4色のフルカラー画像用トナーを用いたフルカラー画像 40 と、これらのトナーのうちブラック色のみを用いた単色画像とを形成可能となっているが、他のトナー色による単色画像を形成可能な装置としてもよく、また、4色のうち2色または3色のトナーを用いた多色(2色または3色)カラー印刷を行えるようにしてもよい。そして、このような装置に対して本発明を適用し、その単色または多色印刷用のトナー色に対応した現像ユニットを、他の現像ユニットに優先して装着したり、他の現像ユニットを取り出した後に取り出すようにするとともに、その単色または多色印刷用のトナー色に対応した現像ユニッちの

トが装着されているときに印刷動作を許可することで、 本発明の効果を得ることができる。

【0087】また、上記実施形態では、単色印刷のみ可能な(すなわち K 現像ユニット 3 K 以外のいずれかの現像ユニットが装着されていない)状態でカラー画像信号が入力されたとき、印刷を禁止するように構成しているが、このとき、例えば、必要に応じてカラー画像信号を白黒画像信号に変換し、ブラック色による単色印刷を実行するようにしてもよい。

【0088】さらに、上記実施形態にかかる画像形成装置は、ホストコンピュータなどの外部装置より与えられた画像を複写紙、転写紙、用紙および〇HP用透明シートなどのシートに印刷するプリンタであるが、本発明は複写機やファクシミリ装置などを含め、電子写真方式の画像形成装置全般に適用することができる。

[0089]

【発明の効果】以上のように、この発明の現像ユニット装着方法では、N色印刷モードを実行するために必要なN個の現像ユニットを、他の現像ユニットより優先して装着するので、このN個の現像ユニットの装着を完了した時点でN色印刷モードを実行可能とすることができる。そのため、他の現像ユニットの装着を待たずに画像形成装置のN色印刷用装置としての使用を開始することができる。また、例えば、以後の装着作業を途中で中断して、他の現像ユニットを装着しないままで装置を使用するといった使い方も可能となる。

【0090】また、この発明の現像ユニット取り出し方法では、N色印刷モードを実行するためのN個の現像ユニットをユニット保持部に残し、それ以外の現像ユニットを優先的に取り出すようにしているので、これらの現像ユニットを取り出す作業中あるいは全て取り出した後であっても、N個の現像ユニットの取り出しを開始する直前まで、画像形成装置をN色印刷装置として継続して使用することが可能となる。

【0091】また、この発明の画像形成装置では、N色印刷用トナー色に対応したN個の現像ユニットがユニット保持部に装着されているときにはN色印刷モードの実行を許可するように構成しているので、上記N個以外の現像ユニットを装着していなくても、装置をN色印刷装置として使用することが可能である。

【0092】そして、このような装置において、上記した現像ユニットの装着方法および取り出し方法を適用することによって、上記N個の現像ユニットを装着完了した時点から上記N個の現像ユニットの取り出しを開始する時点まで、N色印刷装置としての使用に供することのできる時間を最大とすることができる。

【図面の簡単な説明】

【図1】この発明にかかる画像形成装置の一の実施形態を示す図である。

【図2】図1の画像形成装置のエンジンコントローラを

示すブロック図である。

【図3】ロータリー現像部の動作を模式的に示す図であ る。

【図4】図1の画像形成装置の現像ユニット装着シーケ ンスを示すフローチャートである。

【図5】現像ユニットの装着手順を示すフローチャート

【図6】図1の画像形成装置における単色印刷シーケン スを示すフローチャートである。

【図7】図1の画像形成装置の現像ユニット取り出しシ 10 34…現像部用共通コネクタ ーケンスを示すフローチャートである。

【図8】現像ユニットの取り出し手順を示すフローチャ ートである。

22

【符号の説明】

1…エンジンコントローラ (制御手段)

3…ロータリー現像部

3 b…支持フレーム (ユニット保持部)

3Y、3M、3C、3K…現像ユニット

33Y、33M、33C、33K… (ユニット側) コネ クタ

[図1]

【図2】

フロントページの続き

Fターム(参考) 2HO30 AAO7 ADO7 AD16 BB24 BB33

BB63

2H071 BA03 BA13 BA16 BA29 DA08

EA18

2H077 BA08 BA09 BA10 DA05 DA42

DB18 GAO4 GA13