

Licenciatura em Engenharia Informática Matemática Computacional 2º Semestre 2021-2022

TP PL8 - Regressão Linear múltipla

1. A administração de uma empresa de exploração agrícola pretende verificar a relação entre o rendimento da produção de cereal (100kg/hectare), o fertilizante biológico utilizado na preparação da terra (10kg/hectare) e a pluviosidade verificada (mm). Para tal foram recolhido os seguintes dados:

Ano	Rendimento(Y)	Fertilizante (X_1)	Pluviosidade (X_2)
1	4	4	36
2	4.5	5	33
3	5	5.5	37
4	6.5	7	37
5	7	6	34
6	7 8	5	32
7	7.5	7	36
8	8	8	35
9	8	8.5	38
10	8.5	9	39

Tabela 1

- (a) Determine a equação de regressão dos mínimos quadrados.
- (b) Calcule o coeficiente de determinação ajustado.
- (c) Estime o rendimento da produção de um cereal num ano em que são utilizados 55kg de fertilizante e uma pluviosidade de 36 mm.
- (d) Construa um intervalo de previsão de 95% para o rendimento da produção de um cereal num ano em que são utilizados 55kg de fertilizante e uma pluviosidade de 36 mm.
- (e) Teste a hipótese da significância global do modelo para $\alpha = 0.05$.
- (f) Teste a hipótese $H_0: \beta_2 = 0$ a um nível de significância de 5%.
- 2. Os responsáveis do departamento de vendas de uma empresa de informática pretendem criar um modelo de previsão do volume de vendas mensais (Y) em função das despesas mensais em três diferentes tipos de publicidade: internet(X1), outdoors(X2) e televisão(X3). Para esse efeito, foram recolhidos registos de 14 meses (tabela ??).
 - (a) Determine a equação de regressão dos mínimos quadrados.
 - (b) Estime o volume de vendas num mês em que são gastos 5000 euros em publicidade na internet, 3000 euros em outdoors e 3500 euros na televisão.
 - (c) Teste a hipótese da significância global do modelo para $\alpha = 0.01$.
 - (d) Teste a hipótese $H_0: \beta_3 = 0$ a a um nível de significância de 5%.

Vendas(1000 euros)	Internet (1000 euros)	outdoors (1000 euros)	televisão (1000 euros)
8.26	4.2	4	3
14.7	6.5	6.5	5
9.73	3	3.5	4
5.62	2.1	2	3
7.84	2.9	3	4
12.18	7.2	7	3
8.56	4.8	6	4.5
10.77	4.3	4	5
7.56	2.6	2.5	5
8.9	3.1	3	4
12.51	6.2	5.5	4.5
10.46	5.5	2	5
7.15	2.2	2.8	4
6.74	3	3	3

Tabela 2

3. Os responsáveis do departamento de gestão de uma empresa comercializadora de material informático estão interessados em verificar os fatores que poderão afetar os custos de distribuição. Para esse efeito, foi recolhida informação sobre os últimos 18 meses em relação aos custos de distribuição(Y) (milhares de euros), vendas mensais (X1) (milhares de euros) e número de encomendas (X2), que é apresentado na tabela seguinte.

Mês	Custos de distribuição	Vendas mensais	Nº de encomendas
1	52.95	386	4014
2	71.66	445	3806
3	85.68	511	5309
4	63.69	400	4262
5	72.81	456	4296
6	68.44	457	4096
7	52.47	302	3213
8	71.02	485	4808
9	82.04	516	5235
10	74.38	502	4733
11	70.83	534	4412
12	54.07	354	2921
13	62.97	373	3977
14	72.31	327	4427
15	58.98	406	3964
16	79.37	490	4582
17	94.44	528	5583
18	59.75	444	3451

Tabela 3

- (a) Determine a equação de regressão dos mínimos quadrados.
- (b) Calcule o coeficiente de determinação.
- (c) Estime os custos de distribuição de para um mês com um volume de vendas de 490 mil euros e 4055 encomendas.
- (d) Construa um intervalo de previsão de 90% para os custos de distribuição de para um mês com um volume de vendas de 510 mil euros e 4155 encomendas.
- (e) Teste a hipótese da significância global do modelo para $\alpha = 0.01$.

- (f) Teste a hipótese $H_0: \beta_2 = 0$ a a um nível de significância de 1%.
- 4. Pretende-se explicar as receitas mensais dos restaurantes das áreas de serviço de autoestrada em função da sua capacidade e do movimento na via. Para esse efeito, recolheram-se os registos de 6 restaurantes referentes a um mês de verão.

Receitas(Y)(milhares de euros)	Capacidade (X1)(n° pessoas)	Nº médio de veículos (X2)(milhares)
23.8	120	19
24.2	200	8
22.0	150	12
26.2	180	15
33.5	240	16
35	250	13

Tabela 4

- (a) Determine a equação de regressão dos mínimos quadrados.
- (b) Estime a receita de um restaurante com capacidade para 160 pessoas sabendo que circulam em média 13000 veículos.
- (c) Construa um intervalo de previsão de 95% para a receita de um restaurante com capacidade para 170 pessoas sabendo que circulam em média 12000 veículos.
- (d) Teste a hipótese da significância global do modelo para $\alpha = 0.05$.
- 5. Com o objetivo de verificar se o vencimento anual (milhares de euros) de um programador está relacionado com os seus anos de experiência na profissão e a pontuação obtida num teste de aptidão de programador foi recolhida uma amostra de 20 programadores:

Programador	Anos de experiência	Pontuação no teste de aptidão	Vencimento
1	4	78	24
2	7	100	43
3	1	86	23.7
4	5	82	34.3
5	8	86	35.8
6	10	84	38
7	0	75	22.2
8	6	80	23.1
9	6	83	30
10	9	91	33
11	2	88	38
12	12	73	26.6
13	10	75	36.2
14	5	81	31.6
15	6	74	29
16	8	87	34
17	4	79	30.1
18	6	94	33.9
19	3	70	28.2
20	3	89	30

Tabela 5

- (a) Determine a equação de regressão dos mínimos quadrados.
- (b) Calcule o coeficiente de determinação ajustado.

- (c) Estime o vencimento de um programador com 6 anos de experiência e com 70 pontos no teste de aptidão.
- (d) Construa um intervalo de previsão de 95% para o vencimento de um programador com 8 anos de experiência e com 83 pontos no teste de aptidão.
- (e) Teste a hipótese da significância global do modelo para $\alpha = 0.01$.
- 6. As tabelas a seguir apresentadas apresentam dados sobre o número de golos marcados, número de golos sofridos e pontuações de 18 equipas que disputaram a 34 jornadas da liga portuguesa nas épocas 19/20 e 20/21. Pretende-se avaliar a relação da pontuação final de uma equipa com o número de golos marcados e com o número de golos sofridos.

Época 19/20

Posição	Equipa	Nº de golos marcados	Número de golos sofridos	Pontuação
1	FC Porto	74	22	82
2	Benfica	71	26	77
3	Braga	61	40	60
4	Sporting	49	34	60
5	Rio Ave	48	36	55
6	Famalicão	53	51	54
7	V. Guimarães	53	38	50
8	Moreirense	42	44	43
9	Santa Clara	36	41	43
10	Gil Vicente	40	44	43
11	Marítimo	34	42	39
12	Boavista	28	39	39
13	Paços Ferreira	36	52	39
14	Tondela	30	44	36
15	Belenenses	27	54	35
16	Vitória de Setúbal	27	43	34
17	Portimonense	30	45	33
18	Aves	24	68	17

Época 20/21

Posição	Equipa	Nº de golos marcados	Número de golos sofridos	Pontuação
1	Sporting	65	20	85
2	FC Porto	74	29	80
3	Benfica	69	27	76
4	Braga	53	33	64
5	Paços Ferreira	40	41	53
6	Santa Clara	44	36	46
7	V. Guimarães	37	44	43
8	Moreirense	37	43	43
9	Famalicão	40	48	40
10	Belenenses	25	35	40
11	Gil Vicente	33	42	39
12	Tondela	36	57	36
13	Boavista	39	49	36
14	Portimonense	34	41	35
15	Marítimo	27	47	35
16	Rio Ave	25	40	34
17	Farense	31	48	31
18	Nacional	30	59	25

(a) Determine a equação de regressão dos mínimos quadrados para cada época futebolística.

- (b) Teste a hipótese da significância global de cada modelo para $\alpha = 0.05$.
- (c) Apresente uma tabela com as classificações estimadas de cada equipa para cada época futebolística. Sabendo que descem de divisão os dois últimos classificados, que equipas estariam nestas condições segundo os modelos de regressão em cada época futebolística?
- (d) Para cada época futebolística construa um intervalo de previsão de 95% para a pontuação de uma equipa que tenha marcado 65 golos e sofrido 35.

Soluções:

- 1. (a) $\hat{Y} = 12.9443 + 1.0854X_1 0.3731X_2$ (b) ≈ 0.7260 (c) $\approx 5.48 \ 100 \text{kg/hectare}$ (d)]3.2962; 7.6692[
- 2. (a) $\hat{Y} = 0.3962 + 1.0029X_1 + 0.2660X_2 + 0.9314X_3$ (b) ≈ 9.47
- 3. (a) $\hat{Y} = 2{,}1992 + 0.0362X_1 + 0.012X_2$ (b) ≈ 0.8199 (c) ≈ 68.42 mil euros (d)]60.2331; 80.4481[
- 4. (a) $\hat{Y} = -3.0457 + 0.1105X_1 + 0.6863X_2$ (b) ≈ 23.56 mil euros (c)]19.5639;28.3982[
- 5. (a) $\hat{Y} = -7.6484 + 0.7011X_1 + 0.4212X_2$ (b) ≈ 0.4432 (c) ≈ 26.04 mil euros (d)]23.7394; 42.0962[
- 6. (a) $19/20 \hat{Y} = 36.4019 + 0.7535X_1 0.5127 = X_2 20/21 \hat{Y} = 43.8169 + 0.7823X_1 0.7115 = X_2 19/20 -$ Belenenses e Aves 20/21 100 Tondela e Nacional (c) 19/20 160.0061; 160.0061