CS & IT

ENGINERING

Discrete Mathematics

Set Theory

DPP 04

Discussion Notes

By-Rohit Kumar Sir

TOPICS TO BE COVERED

01 Question

02 Discussion

Consider a set $x = \{1, 2, 3, 4, 5\}$. The number of symmetric relations for the given set are?

Consider the cross product of a set $A = \{1, 2, 3\}$, set $B = \{x, y, z\}$ and set C. The resultant cross product is ϕ . Then the elements of set C is?

- (a, b)
- B. {0}
- C. p
 - D. None of these

Q.3

If the number of reflexive relations for a set is 64 then what is the cardinality of the set?

[MCQ]

Consider the following relations R₁ and R₂ on set

Choose the correct statement from the following:

 R_2 is a symmetric relation but not R_1 .

Both R_1 and R_2 are symmetric.

D. Neither R₁ nor R₂ is symmetric.

- Relation R_2 = "Has the same absolute value" defined on the set of real number.
- III. Relation R_3 = "Congruence module $n(\equiv)$ " defined on the set of integers.

Choose the correct statement regarding the given relations.

- Only R_1 and R_2 are equivalence relations. \Rightarrow Refle 9 Symos Rohit R
- Only R₂ and R₃ are equivalence relations. B.
- Only R₁ and R₃ are equivalence relations.
- All R₁, R₂ and R₃ are equivalence relations.

$$a = b \pmod{n}$$
 $sem(a,n) = sem(b,n) = sem(c,n)$

Consider the given statements:

- I: Every reflexive relation is always symmetric.
- "Is a subset of" is a transitive relation defined on a power set of sets.
 - The inverse of a transitive relation is a transitive relation.

The number of incorrect statements are?

A =
$$\{ 1,2,3 \}$$
 $\{ 2,2 \}$ $\{ 2,2 \}$ $\{ 2,1 \}$ $\{ 2,2 \}$ $\{ 2,2 \}$ $\{ 2,3 \}$ $\{ 3,3 \}$

Q.7

For a set a with cardinality 7, what is the total number of reflexive and symmetric relations?

Set = n elements
Relation (Ref. 08 well as Sym):

