# Отчёт

报告

Джин Хэ 金赫

12 апреля 2025г. 2025 年 4 月 12 日

# 1 Цель работы

Целью данного эксперимента является классификация состояния здоровья (Healthy Status) с использованием данных электрокардиограммы (ЭКГ) использованием подхода автоматизированного машинного обучения (AutoML). Состояние здоровья проблема бинарной классификации, разделенная на здоровое (1) и нездоровое (0), и цель состоит в том, чтобы разработать эффективную модель прогнозирования для определения состояния здоровья человека.

Исследуй фреймворки AutoML, обоснуй выбор лучшего. Используй его для для бинарной классификации. Постройте ошибок (confusion матрицу matrix) рассчитайте F1-метрику ДЛЯ оценки обученного классификатора по признаку Healthy Status на основе данных параметров ЭКГ.

# 1 目标

本实验的目标是利用心电图(ECG)数据,通过自动化机器学习(AutoML)方法对健康状态(Healthy\_Status)进行分类。健康状态是一个二分类问题,分为健康(1)和非健康(0),旨在开发一个高效的预测模型,以判断个体的健康状况。

研究不同的 AutoML 框架,论证选择最佳框架的理由。使用选定的框架进行二元分类。构建混淆矩阵 (confusion matrix),并根据心电参数数据,针对 Healthy\_Status 标签计算分类器的 F1 分数以评估模型性能。

### 2 Метод

- (1) Предварительная обработка данных;
- (2) Разработка функций;

# 2 方法

- (1)数据预处理;
- (2) 特征工程;

- (3) Модели классификации: фреймворк AutoML, включая AutoML H2O, AutoML AutoGluon, AutoML BlueCast, AutoML Fedot, AutoML LightAutoML, AutoML GAMA и AutoML PyCaret;
- (4) Индикаторы оценки

## 3 Обсуждение

AutoML сокращает ручное вмешательство за счет автоматизации выбора признаков, выбора модели и настройки гиперпараметров. Распространенные фреймворки (такие как H2O, AutoGluon, BlueCast и т. д.) используют сеточный поиск или эволюционные алгоритмы для оптимизации производительности модели.

#### 3.1 AutoML H20

H2O AutoML создает высокопроизводительные модели путем интеграции нескольких алгоритмов машинного обучения (таких как машина градиентного бустинга GBM, XGBoost, глубокое обучение и т. д.) и объединения автоматической настройки гиперпараметров и выбора модели.

Для задачи бинарной классификации модель оптимизирует потерю перекрестной энтропии:

$$L = -\frac{1}{N} \sum_{i=1}^{N} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)]$$

Среди них $y_i$  — истинная метка, а  $\hat{y}_i$  — предсказанная вероятность.

#### метод:

Инициализируйте среду H2O и преобразуйте данные в H2OFrame;

Установите максимальное время выполнения и случайное начальное значение

(3)分类模型: AutoML 框架,包含 AutoML H2O、AutoML BlueCast、AutoML Fedot、AutoML LightAutoML、AutoML GAMA、AutoML PyCaret;

(4)评估指标。

# 3 操作

AutoML 通过自动化特征选择、模型选择和超参数调优,减少人工干预。常见框架(如H2O、AutoGluon、BlueCast等)利用网格搜索或进化算法优化模型性能。

## 3.1 AutoML H20

H2O AutoML 通过集成多种机器学习算法(如梯度提升机 GBM、XGBoost、深度学习等),结合自动化超参数调优和模型选择,构建高性能模型。

对于二分类问题,模型优化交叉熵损失:

$$L = -\frac{1}{N} \sum_{i=1}^{N} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)]$$

其中, $y_i$ 是真实标签, $\hat{y}_i$ 是预测概率。

# 方法:

初始化 H2O 环境,转换数据为 H2OFrame;设置最大运行时间和随机种子,使用

для обучения модели с помощью H2OAutoML;

Выберите лучшую модель из таблицы лидеров и рассчитайте матрицу ошибок и ROC-AUC.

Performance:

MSE: 0.007917322630118222 RMSE: 0.08897933822027573 MAE: 0.03818402237376397 RMSLE: 0.06496635667983598

Mean Residual Deviance: 0.007917322630118222

R^2: 0.9569257047267056 Null degrees of freedom: 514 Residual degrees of freedom: 512 Null deviance: 95.56748634029051 Residual deviance: 4.077421154510884

AIC: -1022.4249345605642



Confusion matrix:

[[390 0] [3 122]]

F1-Score: 0.99 Accuracy: 0.99 Recall: 0.98 Precision: 1.00

#### 3.2 AutoML BlueCast

BlueCast фокусируется на задачах классификации и обеспечивает автоматизированное проектирование признаков и выбор моделей на основе XGBoost.

XGBoost оптимизирует целевую функцию:

#### H2OAutoML 训练模型;

从 leaderboard 中选择最佳模型, 计算混淆矩

阵和 ROC-AUC。

Performance:

MSE: 0.007917322630118222 RMSE: 0.08897933822027573 MAE: 0.03818402237376397 RMSLE: 0.06496635667983598

Mean Residual Deviance: 0.007917322630118222

R^2: 0.9569257047267056 Null degrees of freedom: 514 Residual degrees of freedom: 512 Null deviance: 95.56748634029051 Residual deviance: 4.077421154510884

AIC: -1022.4249345605642



Confusion matrix:

[[390 0] [3 122]]

F1-Score: 0.99 Accuracy: 0.99 Recall: 0.98 Precision: 1.00

#### 3.2 AutoML BlueCast

BlueCast 专注于分类问题,提供自动化特征工程和基于 XGBoost 的模型选择。

XGBoost 优化目标函数:

$$Obj = \sum_{i=1}^{N} l(y_i, \hat{y}_i) + \sum_{k=1}^{K} \Omega(f_k)$$

Среди них l — функция потерь, а  $\Omega$  — член регуляризации.



$$Obj = \sum_{i=1}^{N} l(y_i, \hat{y}_i) + \sum_{k=1}^{K} \Omega(f_k)$$

其中,l是损失函数, $\Omega$ 是正则化项。











Confusion matrix: [[334 40]

[ 35 109]]

F1-Score: 0.74 Accuracy: 0.86 Recall: 0.76 Precision: 0.73

### 3.3 AutoML Fedot

Fedot использует генетическое программирование для автоматического построения конвейеров машинного обучения.

Генетические алгоритмы оптимизируют функцию приспособленности (например, точность классификации).





Confusion matrix: [[334 40]

[ 35 109]]

F1-Score: 0.74
Accuracy: 0.86
Recall: 0.76
Precision: 0.73
3. 3 AutoML Fedot

Fedot 使用遗传编程 (Genetic

Programming) 自动构建机器学习管道。

遗传算法优化适应度函数(如分类准确率)。







Confusion matrix: [[353 21]

[ 25 119]]

F1-Score: 0.84 Accuracy: 0.91 Recall: 0.83 Precision: 0.85

## 3.4 AutoML LightAutoML

LightAutoML обеспечивает быстрое обучение модели и анализ важности признаков для табличных данных.

Функция потерь с усилением градиента на основе LightGBM.

Confusion matrix: [[457 41]

[ 85 107]]

F1-Score: 0.63 Accuracy: 0.82 Recall: 0.56 Precision: 0.72





Confusion matrix: [[353 21]

[ 25 119]]

F1-Score: 0.84 Accuracy: 0.91 Recall: 0.83 Precision: 0.85

## 3.4 AutoML LightAutoML

LightAutoML 针对表格数据,提供快速模型训练和特征重要性分析。

基于 LightGBM 的梯度提升损失函数。

Confusion matrix: [[457 41]

[ 85 107]]

F1-Score: 0.63

Accuracy: 0.82

Recall: 0.56

Precision: 0.72





#### 3.5 AutoML GAMA

GAMA использует генетический алгоритм для поиска наилучшего конвейера машинного обучения.

Оптимизация потерь журнала:

$$LL = -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} y_{i,c} \log (\hat{y}_{i,c})$$

accuracy: 0.977777777777777

# 3.5 AutoML GAMA

GAMA 使用遗传算法搜索最佳机器学习管道。

200

400

600

优化对数损失:

$$LL = -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} y_{i,c} \log(\hat{y}_{i,c})$$

accuracy: 0.977777777777777

log loss: 0.08609400351663057 log\_loss 0.08609400351663057 Confusion matrix: [[645 102]

[119 169]]

F1-Score: 0.60 Accuracy: 0.79 Recall: 0.59 Precision: 0.62

#### 3.6 AutoML PyCaret

РуСагет — это библиотека машинного обучения с низким объемом кода, которая оптимизирует производительность посредством сравнения моделей и настройки гиперпараметров.

Оптимизация индикатора на основе перекрестной проверки.





# 4 Ссылки на литературу

#### References

[1] Bodini M, Rivolta M W, Sassi R. Classification of ECG signals with different lead systems using AutoML[C]//2021 Computing in Cardiology (CinC). IEEE, 2021, 48: 1-4.

log loss: 0.08609400351663057 log\_loss 0.08609400351663057 Confusion matrix: [[645 102]

[119 169]] F1-Score: 0.60 Accuracy: 0.79

Recall: 0.59 Precision: 0.62

#### 3.6 AutoML PyCaret

PyCaret 是一个低代码机器学习库,通过模型比较和超参数调优优化性能。

基于交叉验证的指标优化。





# 4 参考文献

#### References

[1] Bodini M, Rivolta M W, Sassi R. Classification of ECG signals with different lead systems using AutoML[C]//2021 Computing in Cardiology (CinC). IEEE, 2021, 48: 1-4.

- [2] Shevchenko A D, Bukhov A K, Skvortsova M A, et al. Analysis of ECG Data Using AutoML Frameworks to Predict the Classification of Some Cardiovascular Disease Features[C]//2025 7th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). IEEE, 2025: 1-6.
- [3] Shin S, Park D, Ji S, et al. Medical Data Analysis Using AutoML Frameworks[J]. Journal of Electrical Engineering & Technology, 2024, 19(7): 4515-4522.
- [2] Shevchenko A D, Bukhov A K, Skvortsova M A, et al. Analysis of ECG Data Using AutoML Frameworks to Predict the Classification of Some Cardiovascular Disease Features[C]//2025 7th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). IEEE, 2025: 1-6.
- [3] Shin S, Park D, Ji S, et al. Medical Data Analysis Using AutoML Frameworks[J]. Journal of Electrical Engineering & Technology, 2024, 19(7): 4515-4522.