Probability and Statistics

Assignment -4 [20th Sep 2018]

1. Let X_1, X_2 be independent random variables with geometric distribution with parameters $p_1, p_2, 0 < p_1 < 1, 0 < p_2 < 1$.

$$P(X_i = k) = (1 - p_i)^{k-1} p_i, \quad k \ge 0, \ i = 1, 2.$$

Let $W = min(X_1, X_2)$. Show that W also has geometric distribution and obtain expression for P(W = k) in terms of p_1, p_2 .

- 2. Let X_1, X_2 be independent random variables with means μ_1, μ_2 and variances σ_1^2, σ_2^2 . Let $Y_1 = (X_1 + X_2)$ and $Y_2 = (X_1 X_2)$. Find means and variances of Y_1, Y_2 and correlation between Y_1, Y_2 .
- 3. Let X have a exponential distribution with density $f(x) = \exp\{-x\}$ for x > 0 and f(x) = 0 for $x \le 0$. Let $U = \exp\{-X\}$. Find the distribution of U.
- 4. Let Y have a normal distribution with mean 0 and variance 1. Suppose $W=Y^2$ and $\xi=1$ if $Y\geq 0$ and $\xi=-1$ if Y<0. Show that W and ξ are independent random variables.
- 5. For $n \ge 1$, let Z_n be random variable with Poisson distribution with parameter n. Let $W_n = \frac{(Z_n n)}{\sqrt{n}}$. Using central limit theorem, show that

$$P(W_n \le a) \to P(X \le a)$$

for all a, where X has normal distribution with mean 0 and variance 1.

6. Let X_1, X_2, X_3 be iid with normal distribution, mean 0 and variance 1. For real numbers a_1, a_2, a_3 , b_1, b_2, b_3 let

$$Y = a_1X_1 + a_2X_2 + a_3X_3$$
, and $Z = b_1X_1 + b_2X_2 + b_3X_3$.

Find the characteristic function of the joint distribution of (Y, Z).

7. Let $X_1, X_2, \ldots, X_n, \ldots$ be iid random variables with $P(X_1 = 1) = p$ and $P(X_1 = 0) = 1 - p$. Let Y be a random variable with Poisson distribution with parameter $\lambda > 0$, Y being independent of $X_1, X_2, \ldots, X_n, \ldots$ Let

$$W = X_1 + X_2 + \ldots + X_V$$

(sum of random number of terms). Show that distribution of W is also Poisson. Find it's mean.

8. (Correction to Assignment 1) Suppose (X,Y) has bivariate normal distribution with each X and Y having mean 0 and variance 1. Suppose the correlation between X,Y is α . Let $W=\frac{1}{\sqrt{(1-\alpha^2)}}(Y-\alpha X)$.

Show that X and W are independent random variables with Normal distribution, with mean 0 and variance 1.