Project of Processing Big Data

Group 8:

Vasco Carneiro, 93359 and Tiago Miranda, 93416

Introduction

We clustered the following datasets:

- 1. Skeletons
- 2. Image embeddings
- 3. Skeletons + images

Pipeline

EDA - Dauphine features

```
In [5]: 1    np.shape(dauphine_features)
Out[5]: (2048, 10734)

threshold for distant points= 400
percentage of distant points: 0.390625
Index: 67
Index: 124
Index: 138
Index: 520
Index: 520
Index: 945
Index: 1147
Index: 1222
Index: 1250
```


EDA - Dauphine Incomplete Skeletons

```
1 #without probabilities, only coordenates
2 np.shape(dauphine_skeletons)

(28232, 36)
```


EDA - Dauphine Incomplete Skeletons


```
#without probabilities, only coordenates
pp.shape(dauphine_skeletons)
```

(28232, 36)

Missing value imputation

Methods tested:

- Mean value imputation
- MICE
- K-nearest neighbours
- GLRM usando h2o

Standardizing skeleton data

Openpose

$$z = (x - \mu) / \sigma$$

$$ar{x}_{
m openpose} = rac{x_1 + x_2 + x_5}{3}$$
 $ar{y}_{
m openpose} = rac{y_1 + y_2 + y_5}{3}$
 $ar{x}_{
m otherpose} = rac{x_6 + x_7}{2}$
 $ar{y}_{
m otherpose} = rac{y_6 + y_7}{2}$

Otherpose

GLRM

Number of Skeleton Indexes

Detecting rank

- For skeleton and image embeddings data the method is the same
- Perform SVD and r corresponds to the number of components that explain at least
 99.9% of cumulative explained variance

For skeleton the rank is 20.

For image embeddings is 95.

Removing outliers and reducing dimensionality

- For skeleton and image embeddings data the method is the same
- We calculate the distance to the Null space

Reducing dimensionality

Take the SVD obtained and only retain the most important r components

Dimensionality Reduction - Features

Number of components necessary for 80.0 %% cumulative explained percentage is 95 Shape of reduced_data: (10734, 95) (10734, 95)

Clustering - The applied methods and datasets

We performed the following clusterings:

- K-Means
- Hierarchical Clustering:
 - Complete Linkage
 - Ward Method
 - Centroid Method

We clustered the following datasets:

- Skeletons
- 2. Image embeddings
- 3. Skeletons + images

1. Skeletons: Hierarchical Clustering - Ward Method

1. Skeletons - Number of clusters

Clustering visualization only for skeleton data

Cluster

0 3

1. Skeletons -Clustering Visualization with t-sne

2. Images: Hierarchical Clustering - Ward Method

2. Images – Number of clusters

Clustering visualization only for embeddings data

Cluster

2. Images – Clustering Visualization with t-sne

3. Skeletons + Images : Dataset Creation

3. Skeletons + Images : Hierarchical Clustering - Ward Method

3. Skeletons + Images - Number of clusters

Clustering visualization for skeleton+embeddings data

Cluster

3. Skel + Images - Clustering Visualization with t-sne

Sampling every 5 frames

Sampling every 5 frames

Cluster

Sampling every 10 frames

Sampling every 10 frames

Cluster

Sampling every 10 frames with fewer clusters

Sampling every 10 frames with 27 clusters

Sampling every 10 frames with 27 clusters

Cluster

Conclusions

- Complete pipeline with really satisfactory results for the 3 datasets considered
- There are several methods performed throughout the pipeline which will have a heavy impact on the results

Future work

- Classify frames based on skeleton data alone
- Test different methods for each pipeline module
- Add extra information to the skeleton and embeddings data
- Further reduce the image embeddings dimensionality

References

- Udell et al., Generalized low rank models 2016
- Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.
- van der Maaten, Laurens & Hinton, Geoffrey. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research. 9. 2579-2605.
 - Gomes, João Pedro. Lecture notes. Jun. 2023. url:https://fenix.tecnico.ulisboa.pt/disciplina s/PBDat/2022-2023/2-semestre/teoricas