$oxed{10}$ 数列 $\{a_n\}$ を次のように定める.

$$a_1=2, a_{n+1}=a_n^34^n \ (n=1,2,3,\cdots)$$

このとき、次の問いに答えよ.

- (1) $b_n = \log_2 a_n$ とするとき, b_{n+1} を b_n を用いて表せ.
- (2) α,β を定数とし $f(n)=\alpha n+\beta$ とする. このとき, $b_{n+1}-f(n+1)=3\{b_n-f(n)\}$ が成り立つように α,β を定めよ.
- (3) 数列 $\{a_n\}$, $\{b_n\}$ の一般項をそれぞれ求めよ.

卫女 值的20 科勒をとると、

②可沒對形以.

北較に

②1=もといして

(3) (2) on
$$\frac{1}{4}$$
 (2) $\frac{1}{4}$ (2) $\frac{1}{4}$ (2) $\frac{1}{4}$ (2) $\frac{1}{4}$ (2) $\frac{1}{4}$ (3) $\frac{1}{4}$ (4) $\frac{1}{4}$ (4) $\frac{1}{4}$ (5) $\frac{1}{4}$ (6) $\frac{1}{4}$ (7) $\frac{1}{4}$ (8) $\frac{1}{4}$ (1) $\frac{1}{4}$ (1) $\frac{1}{4}$ (2) $\frac{1}{4}$ (3) $\frac{1}{4}$ (4) $\frac{1}{4}$ (5) $\frac{1}{4}$ (6) $\frac{1}{4}$ (7) $\frac{1}{4}$ (8) $\frac{1}{4}$ (1) $\frac{1}{4}$ (1) $\frac{1}{4}$ (2) $\frac{1}{4}$ (3) $\frac{1}{4}$ (4) $\frac{1}{4}$ (5) $\frac{1}{4}$ (7) $\frac{1}{4}$ (8) $\frac{1}{4}$ (8) $\frac{1}{4}$ (8) $\frac{1}{4}$ (9) $\frac{1}{4}$ (1) $\frac{1$

$$h_{n} = l_{0} + l_{0}$$

$$l_{n} = 2^{h_{n}}$$

$$= 2^{\frac{1}{4}(7.3^{n-1}-4n+1)}$$