Содержание

1.	О наилучшем приближении	2
2.	О чебышевских пространствах	4
3.	0 Чебышеве	8

ИСП Численный анализ

1. О наилучшем приближении

Определение 1.1 (Наилучшее приближение)

Пусть B — нормированное пространство, фиксируем некоторое непустое подмножество M. Пусть $\|x\|$ обозначает норму элемента x в нормированном пространстве B.

Число

$$\varepsilon(x, M) = \inf_{y \in M} ||x - y||$$

называется **наилучшим приближением** элемента $x \in B$ на множестве M.

Элемент $y_* \in M$ называется **наименее уклоняющимся** от x, или **элементом наилучшего приближения** на множестве M, если

$$\|x-y_*\|=\varepsilon(x,M)$$

Определение 1.2. Наилучшее приближение

Предложение 1.2 (Свойства наименьшего уклонения)

- 1. Для любого $M \subset B$ функция $\varepsilon(x, M)$ равномерно непрерывна по x.
- 2. Если $M \subset B$ подпространство, то
 - $\varepsilon(\alpha x, M) = |\alpha|\varepsilon(x, M)$ для любых $x \in B$ и $\alpha \in \mathbb{R}$
 - $\varepsilon(x_1+x_2,M) \leq \varepsilon(x_1,M) + \varepsilon(x_2,M)$ для любых $x_1,x_2 \in B$
 - $\varepsilon(x,M) \leq ||x||$ для любого $x \in B$
- 3. Пусть $M\subset B$ конечномерное линейное многообразие. Тогда отображение $\pi:P_M\to M$ непрерывно

Предложение 1.3. Свойства наименьшего уклонения

Доказательство. Пункт 2 очевидно следует из свойств нормы.

Для пункта 1 докажем неравенство

$$|\varepsilon(x_1,M)-\varepsilon(x_2,M)|\leq \|x_1-x_2\|$$

Для произвольного $y \in M$ имеем

$$\varepsilon(x_1, M) \leq \|x_1 - y\| \leq \|x_1 - x_2\| + \|x_2 - y\| \Rightarrow \varepsilon(x_1, M) - \|x_1 - x_2\| \leq \|x_2 - y\|$$

Ввиду произвольности $y \in M$ получим

$$\varepsilon(x_1,M) - \|x_1 - x_2\| \leq \varepsilon(x_2,M)$$

Поэтому, выполняется неравенство

$$\varepsilon(x_1,M) - \varepsilon(x_2,M) \leq \|x_1 - x_2\|$$

Аналогично доказывается неравенство со знаком - и получили, что хотели.

Для пункта 3 рассмотрим сходящуюся в P_M последовательность x_n и пусть

$$\lim_{n\to\infty} x_n = x_0$$

Докажем сначала, что последовательность $\pi(x_n)$ ограничена

$$\begin{split} \|\pi(x_n)\| &= \|\pi(x_n) - x_n + x_n\| \leq \\ \|\pi(x_n) - x_n\| + \|x_n\| &= \varepsilon(x_n, M) + \|x_n\| = \varepsilon(x_n, M) - \varepsilon(x_0, M) + \varepsilon(x_0, M) + \|x_n\| \leq \\ |\varepsilon(x_n, M) - \varepsilon(x_0, M)| + \varepsilon(x_0, M) + \|x_n\| &\leq \\ |x_n - x_0| + \varepsilon(x_0, M) + \|x_n\| \end{split}$$

Поскольку последовательность x_n сходится, все слагаемые последней суммы ограничены, следовательно, последовательность $\pi(x_n)$ ограничена.

Теперь необходимо доказать, что последовательность $\pi(x_n)$ сходится к $\pi(x_0)$. Пусть это не так. Тогда существуют такие $\varepsilon>0$ и подпоследовательность x_{n_k} , для которых выполняется неравенство

$$\left|\pi\!\left(x_{n_k}\right) - \pi(x_0)\right| > \varepsilon$$

Без ограничения общности можно считать, что подпоследовательность x_{n_k} совпадает со всей последовательностью x_n .

Поскольку последовательность $\pi(x_n)$ ограничена, а подпространство M конечномерно, из неё можно выбрать сходящуюся подпоследовательность.

Опять БОО будем считать, что этой подпоследовательностью является сама последовательность $\pi(x_n)$ и $\lim_{n\to\infty}\pi(x_n)=y_0$. Тогда переходя к пределам в неравенстве из отрицания сходимости:

$$\|\pi(x_n) - \pi(x_0)\| > \varepsilon \Rightarrow \|y_0 - \pi(x_n)\| \ge \varepsilon > 0$$

Согласно определению проекции π выполнены равенства

$$\|\pi(x_n) - x_n\| = \varepsilon(x_n, M)$$

Переходя к пределу в равенстве ввиду непрерывности функции ε

$$\|y_0-x_0\|=\varepsilon(x_0,M)$$

Следовательно, y_0 – наименее уклоняющийся элемент пространства $M \Rightarrow y_0 = \pi(x_0)$.

Противоречие!

2. О чебышевских пространствах

Определение 2.1 (Чебышевское пространство)

Пусть C[D] – пространство вещественных непрерывных функций на замкнутом ограниченном множестве $D \subset \mathbb{R}^m, m \geq 1$, состоящем из бесконечного числа точек, с нормой максимума модуля

$$||f|| = \sup_{x \in D} |f(x)|$$

Особо выделим два случая:

- D = [a, b] при m = 1
- $D = S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ при m = 2

Тогда подпространство $L \subset C[D]$ называется **чебышевским**, если любая ненулевая функция $f \in L$ имеет не более n-1 корня на рассматриваемом множестве, где $n \coloneqq \dim L$.

Определение 2.2. Чебышевское пространство

Определение 2.2

Элементы чебышевского подпространства L в пространстве функций будем называть **чебышевскими** L-полиномами или просто **чебышевскими** полиномами.

Пусть $f_1, ..., f_n \in C[D]$ и $x_1, ..., x_n \in D$. Тогда введём обозначение

$$\Delta_f(x_1,...,x_n) = \det \begin{pmatrix} f_1(x_1) & f_2(x_1) & \dots & f_n(x_1) \\ f_1(x_2) & f_2(x_2) & \dots & f_n(x_2) \\ \dots & \dots & \ddots & \vdots \\ f_1(x_n) & f_2(x_n) & \dots & f_n(x_n) \end{pmatrix}$$

Определение 2.3.

Предложение 2.3

Пусть $L \subset C[D]$ – чебышевское подпространство и dim L = n. Тогда

1. Элементы $e_1, ..., e_n \in L$ линейно независимы тогда и только тогда, когда

$$\Delta_e(x_1,...,x_n) \neq 0$$

Для любых попарно различных точек $x_1, ..., x_n \in D$

- 2. Для любых попарно различных точек $x_1,...,x_n\in D$ и любых n чисел $c_1,...,c_n$ существует и притом единственный интерполяционный чебышевский многочлен $p\in L$, для которого $p(x_i)=c_i$ при $1\leq i\leq n$
- 3. Для любых n-1 попарно различных точек, пространство чебышевских многочленов, обращающихся в этих точках в нуль, имеет размерность 1.

Предложение 2.4.

Доказательство. 1 пункт.

Если $e_1,...,e_n\in L$ линейно зависимы, то найдутся такие числа $\alpha_i\in\mathbb{R},1\leq i\leq n$, не все равные нулю, для которых выполнено равенство

$$\textstyle\sum_{j=1}^n \alpha_j e_j(x) = 0$$

Тогда для любой последовательности точек $x_1,...,x_n\in D$ линейная однородная система уравнений Ay=0, где $A=\left\|e_j(x_i)\right\|_{1\leq i,j<+n}$ имеет ненулевое решение $y=(\alpha_1,...,\alpha_n)^T.$

Следовательно, определитель системы равен нулю, но

$$\det A = \Delta_e(x_1,...,x_n) \Rightarrow \forall x_1,...,x_n : \Delta_e(x_1,...,x_n) \equiv 0$$

Обратно, пусть $e_1,...,e_n\in L$ и существуют n различных точек $x_1,...,x_n\in D,$ для которых выполнено равенство

$$\Delta_e(x_1,...,x_n)=0$$

Тогда $\det A=0$ и, следовательно, столбцы матрицы A линейно зависимы. Поэтому существуют такие числа $\alpha_1,...,\alpha_n$ не все равные нулю, для которых выполнено равенство

$$\sum_{j=1}^{n} \alpha_j e_j(x_i) = 0$$

Это означает, что функция $\sum_{j=1}^n \alpha_j e_j(x)=0$ имеет n различных корней. Поскольку подпространство L чебышевское, то отсюда вытекает, что она – тождественный нуль. Следовательно, вектора $e_1,...,e_n$ линейно зависимы.

 Π ункт 2.

Пусть $e_1,...,e_n$ – базис в чебышевском пространстве L и $c_1,...,c_n$ произвольные n чисел. Тогда, согласно уже доказанному, определитель системы линейных уравнений

$$Ay = c \quad A = \left\| e_j(x_i) \right\|_{1 \leq i, j \leq n}$$

не равен нулю и, следовательно, эта система имеет ненулевое решение $y^T=(y_1,...,y_n)$. Тогда $p(x)=\sum_{k=1}^n y_k e_k(x)$ определяет искомый интерполяционный многочлен Чебышева.

 Π ункт 3.

Пусть даны n различных точек $x_0,...,x_{n-1}$. Согласно предыдущему пункту, существует единственный чебышевский многочлен $p_0(x)$, обращающийся в 0 в точках $x_1,...,x_{n-1}$ и равный 1 в точке x_0 .

Тогда, согласно тому же предыдущему пункту, для любого чебышевского многочлена q(x) обращающегося в 0 в точках $x_1,...,x_{n-1}$, выполнено равенство

$$q(x) = q(x_0)p_0(x)$$

Лемма 2.4

Пусть $r,g \in C[D], M = M(r) = \{x \in D \mid |r(x)| = ||r||\}.$

Тогда, если

$$a \coloneqq \inf\nolimits_{x \in M} r(x)g(x) > 0$$

то существует $\delta > 0$ такое, что при $0 < k < \delta$ всегда выполнено неравенство

$$||r - kg|| < ||r||$$

Лемма 2.5.

Доказательство. Множество $M\subset I$ замкнуто и ограничено, поэтому компактно. Поэтому

$$\exists c > 0 : \forall x \in M : r(x)g(x) > 2c$$

Причём для каждой точки $x\in M$ имеется открытый шар радиуса $r_x>0$, такой что для любой точки y этого шара выполняются условия

$$r(x)r(y) > 0$$
 $r(y)g(y) > c$ $|r(y)| > \frac{|r|}{2}$

Рассмотрим покрытие M открытыми шарами $U(x, \frac{r_x}{4})$. Поскольку M компактно, можно выделить его конечное подпокрытие

$$U\left(x_1, \frac{r_{x_1}}{4}\right), ..., U\left(x_n, \frac{r_{x_n}}{4}\right)$$

Дополнение в I объединения этих шаров – компактное множество N. Тогда

$$||r|| > \max_{x \in N} |r(x)| = r_0$$

Пусть $\max_{x \in N} |g(x)| = g_0$. Тогда

$$\exists \delta_1 : \forall k, 0 < k < \delta_1 : 0 < r_0 - kg_0 < r_0 + kg_0 < ||r||$$

Поэтому для любого $x \in N$ и любого $0 < k < \delta_1$ всегда

$$|r(x) - kg(x)| < r_0 + kg_0 < ||r||$$

Выберем теперь такое $\delta_2>0,$ что для всех $x\in I$ выполняется

$$\delta_2|g(x)|<\tfrac{\|r\|}{4}$$

Тогда

$$\forall k, 0 < k < \delta_2 : \forall x \in \cup_{i=1}^n U\Big(x_i, r_{x_i}\Big) : |r(x) - kg(x)| < \|r\|$$

Пусть $N_1 = \cup_{i=1}^n B\left(x_i, \frac{r_{x_i}}{2}\right)$. Тогда N_1 компакт и для любого $0 < k < \delta_2$ и $x \in N_1$ выполняется неравенство $\max_{x \in N_1} |r(x) - kg(x)| = a_k < \|r\|$.

Поскольку $I=N\cup N_1,$ величина $\delta=\min(\delta_1,\delta_2)$ удовлетворяет условиями леммы.

Лемма 2.5

Пусть $r \in C[I]$ ненулевая функция,

$$M = M(r) = \{x \in I \mid |r(x)| = ||r||\}$$

Тогда M представимо в виде объединения $M = \cup_{k=1}^m M_k$ где M_k – замкнутые непустые попарно непересекающиеся множества, причём

- $M_k < M_{k+1}, 1 \le k \le m$
- $\bullet \quad \forall x \in M_k : \forall y \in M_{k+1} : \mathrm{sign}(r(x)) = -\operatorname{sign}(r(y))$

Лемма 2.6.

Доказательство. Представим $M = M^+ \cup M^-$, где

$$M^+ = \{x \in M \mid r(x) > 0\} \quad M^- = \{x \in M \mid r(x) < 0\}$$

Пусть $x \in M$, положим

$$M_x^+ = \{y \in M \mid r(y) > 0, \forall z \in (x, y) \cap M : r(z) > 0\}$$

$$M_r^- = \{ y \in M \mid r(y) < 0, \forall z \in (x, y) \cap M : r(z) < 0 \}$$

Возмжно, что при некоторых $x_0 \neq x_1$ выполняется $M_{x_0}^+ = M_{x_1}^+$. Выберем по одному экземпляру таких множеств.

Пусть это множества M_a^+ при $a \in A$ и M_b^- при $b \in B$. Тогда

$$M^{+} = \cup_{a \in A} M_{a}^{+} \quad M^{-} = \cup_{b \in B} M_{b}^{-}$$

Множества A и B конечны, поскольку в противном случае имеется точка $x_0 \in I$ в любой окрестности которой бесконечно много элементов из A или B. БОО пусть из A. В этом случае $M_{x_0}^+$ пересекается с M_a^+ для бесконечного числа элементов $a \in A$.

Тогда, для некоторого $a \neq x_0$ выполняется $M_{x_0}^+ = M_a^+$. Что противоречит уникальности каждого взятого множества. Конечное число таких множеств доказано!

Осталось построить чередующиеся множества. Найдём $a': a' \neq a$, причём $(a,a') \cap A = \emptyset$. Тогда множество $(a,a') \cap B$ состоит из одного элемента. Расположим теперь элементы множеств A и B в порядке чередования по этому алгоритму.

3. О Чебышеве

Теорема 3.1 (Чебышева)

Пусть $L \subset C[I]$ — чебышевское подпространство, $n=\dim L \geq 1$ и $f \in C[I]$ — произвольная функция. Тогда функция $p \in L$ наименее уклоняется от f тогда и только тогда, когда найдутся n+1 различные точки $a \leq x_1 < x_2 < \ldots < x_{n+1} \leq b$, для которых разность r(x) = f(x) - p(x) удовлетворяет следующим условиям:

- $\forall i = 1..n + 1 : |r(x_i)| = ||r||$
- $\bullet \quad r(x_1) = -r(x_2) = r(x_3) = \ldots = (-1)^n r(x_{n+1})$

Такая разность r называется **чебышевским альтернансом**

Теорема 3.2. Чебышева

Доказательство. Необходимость.

Пусть $f \in C[I]$ и $p \in L$ наименее уклоняется от f. Рассмотрим разность r = f - p. При r = 0 утверждение теоремы очевидно. Если $r \neq 0$, рассмотрим

$$M = M(r) = \{x \in I \mid |r(x)| = ||r||\}$$

Тогда множество M представимо в виде объединения $M = \bigcup_{k=1}^m M_k$ непустых замкнутых непересекающихся множеств, удовлетворяющим условиям вспомогательной леммы.

Если m>n, то r удовлетворяет требованиям теоремы. Иначе рассмотрим $m\leq n.$ Поскольку все множества M_k компактны, существует последовательность точек

$$M_1 < y_1 < M_2 < y_2 < \ldots < y_{m-1} < M_m$$

Рассмотрим многочлен $h(x)=\sigma(y_1-x)(y_2-x)...(y_{m-1}-x)$ степени m-1, где $\sigma=\mathrm{sgn}(r(M_1)).$ Тогда функции r,h удовлетворяют условию первой вспомогательной леммы, поэтому при некотором $\delta>0$ выполнено неравенство $\|r-\delta h\|<\|r\|$. Следовательно, многочлен $p+\delta h\in L$ даст лучшее приближение, а не p, противоречие.

Достаточность.

Пусть r = f - p – чебышевский альтенанс порядка n+1, а наилучшим приближением является многочлен q(x). Тогда

$$|f(x_k) - q(x_k)| < |f(x_k) - p(x_k)| = |r(x_k)| = \|r\|$$

Поэтому

$$|q(x_k) - p(x_k)| = |(f(x_k) - p(x_k)) - (f(x_k) - q(x_k))| \ge \\ ||f(x_k) - p(x_k)| - |f(x_k) - q(x_k)|| = |f(x_k) - p(x_k)| - |f(x_k) - q(x_k)| > 0$$

Причём из этих неравенств будет следовать, что разность $|f(x_k)-p(x_k)|$ «зажимает» разность $|f(x_k)-q(x_k)|$ при смене знака в этих точках и не остаётся выбора, кроме как тоже сменить знак. Тогда

$$\exists y_1,...,y_n: x_1 < y_1 < x_2 < y_2 < ... < y_n < x_{n+1}$$

в которых $q(y_k)-p(y_k)=0,$ а так как $q-p\in L\Rightarrow q-p\equiv 0,$ то есть многочлен p действительно даёт наилучшее приближение. \square

ИСП Численный анализ