

■ Introducción

Analizar la respuesta de sistemas LTI ante entradas sinusoidales.

■ Introducción ...

- La señal sinusoidal es útil como entrada de prueba debido a que:
 - La respuesta del sistema difiere sólo en amplitud y fase respecto a la entrada.

■ Las variaciones de amplitud y fase suministran información útil para caracterizar y diseñar sistemas.

■ Introducción ...

■ Las señales utilizadas pueden descomponerse en señales sinusoidales

■ La respuesta de los sistemas LTI a una suma lineal de sinusoidales es otra serie de sinusoidales

■ Introducción...

- Representación en el dominio de la frecuencia
 - Descomposición de señales en términos de componentes sinusoidales o exponenciales complejas.

■ Introducción ...

Herramientas

- Serie de Fourier: efectúa la descomposición de señales periódicas.
- Transformada de Fourier: efectúa la descomposición de señales no periódicas.

■ Reseña Histórica

■ 1672- Isaac Newton empleó el término *espectro* para describir las **bandas contínuas** de colores producidas al **descomponerse** la **luz blanca** cuando se hacía pasar por un **prisma**.

Al colocar dos prismas los colores volvían a mezclarse para producir la luz blanca.

■ Reseña Histórica...

- Al impedir el paso de uno o varios de los colores, la luz obtenida no era blanca.
 - Filtrado!!
- Este estudio es un análisis frecuencial,
 - La luz blanca se descompone en colores, y cada color posee una frecuencia específica.
 - Se aplica a cualquier señal!!

Frecuencia en Señales Biológicas

	Percepción y	m	1000
1-76-111	Percencion I/	Sietemae	Intellmente
	1 CLCCDCIOLLA	Olotollioo	III I LONGO I LO

Señal Biológica	Rango Frec.	Descripción básica
Electroretinograma	0 - 20	Registro de la actividad eléctrica de la retina
Electronistagmograma	0 - 20	Registro del movimimiento involuntario de los ojos
Neumograma	0 - 40	Registro de la actividad respiratoria
Electrocardiograma (ECG)	0 - 100	Registro de la actividad cardiaca
Electroencefalograma (EEG)	0 - 100	Registro de la actividad eléctrica del cerebro
Electromiograma	10 - 200	Registro gráfico de la actividad muscular
Esfigmograma	0 - 200	Registro gráfico de la presión sanguínea
Voz	100 - 4000	Sonido generado por el aparato fonador humano

Escuela de Ingeniería Eléctrica y Electrónica

Frecuencia en Señales Biológicas

Rangos de frecuencias de señales Biopotenciales (Texas Instruments)

Frecuencia en Señales Sísmicas

Señal Sísmica	Rango Frec. (Hz)
Ruido del viento	100-1000
Señales de exploración sísmica	10-100
Señales de terremotos y explosiones	0.01-10
Ruido sísmico	0.1-1

Frecuencia - Señales Electromagnética

The Electromagnetic Spectrum

10-6 nm			3.0 E+22 Hz	
10-5 nm				
10-4 nm		Gamma-Rays		
10-3 nm				
10-2 nm	1 Å			
10-1 nm				
1 nm		X-Rays		Violet
10 nm				Indigo
100 nm		Ultraviolet		Blue
10 ³ nm	1 μm	Visible Light	Visible Light: ~400 nm - ~700 nm	Green
10 μm		Near Infrared		Yellow
100 μm		Far Infrared		Orange
1000 μm	1 mm		3.0 E+11 Hz	Red

Frecuencia - Señales Electromagnética

The Electromagnetic Spectrum

10 mm	1 cm					3.0 E+10 Hz
10 cm		Microwave	L			
100 cm	1 m			UHF		
10 m				VHF		
100 m				HF		
1000 m	1 km			MF		
10 km		Radio		LF		
100 km						
1 Mm					Audio	
10 Mm			L			
100 Mm						3.0 E+0 Hz

Frecuencia - Señales Electromagnética

PEO Percepción y Sistemas Inteligentes

■ Introducción

Para una secuencia discreta periódica x(n) de periodo N se cumple que:

$$x(n) = x(n+N) \ \forall n$$

■ Introducción ...

 $\mathbf{x}(n)$ tendrá una representación en series de Fourier con N funciones exponenciales armónicamente relacionadas dada por:

$$x(n) = \sum_{k=0}^{N-1} c_k e^{j2\pi k n/N}$$

• donde c_k son los *coeficientes de Fourier* definidos como,

$$c_{k} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N} \qquad k = 0,1,...,N-1$$

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

Frecuencia k Fo

■ Introducción ...

Los coeficientes c_k son complejos y proporcionan la descripción de x(n) en el dominio de la frecuencia.

$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi k n/N}$$
 $k = 0,1,...,N-1$

■ Introducción ...

■ El *término exponencial* puede escribirse en términos de la frecuencia angular w_k :

$$s_k(n) = e^{j2\pi k n/N} = e^{jw_k n}$$
 donde $w_k = 2\pi k/N$

■ Se observa que las funciones $s_k(n)$ también son periódicas de periodo N, es decir,

$$s_k(n) = s_k(n+N)$$
 para todo n

■ Por lo tanto, los C_k definen una *secuencia periódica* que se extiende fuera del rango k = 0,1,...,N-1.

■ Introducción ...

Por lo anterior, el espectro de una señal x(n) de periodo N, es una secuencia de periodo N.

$$c_{k+N} = c_k \quad \forall \ k$$

Los coeficientes se analizan sólo en los tiempos 0 < k < N - 1, que se corresponde con las frecuencias

$$0 \le w_k = \frac{2\pi k}{N} < 2\pi$$

Ejemplo 1. Encuentre los coeficientes de la serie de Fourier para $x(n) = cos(n \pi/3)$

■ Solución

• Se tiene N=6 y
$$c_k = \frac{1}{6} \sum_{n=0}^{5} \cos(\pi n/3) e^{-j\pi k n/3}$$
 $k = 0,1,...,5$

■ Los coeficientes son:

$$c_0 = c_2 = c_3 = c_4 = 0$$

- $c_1 = c_5 = 1/2$
- Espectro Real!

Ejemplo 2. Reconstruya la señal x(n) periódica con N = 6 a partir de los coeficientes de Fourier:

$$c_0 = c_2 = c_3 = c_4 = 0$$
 , $c_1 = c_5 = 1/2$

- **■** Solución
 - Se tiene que N = 6 y de la definición de la Serie de Fourier:

$$x(n) = \sum_{k=0}^{6-1} c_k e^{j2\pi kn/6}$$

■ De donde,

$$x(n) = c_1 e^{j\pi n/3} + c_5 e^{j\pi 5 n/3} = \frac{1}{2} \left(e^{j\pi n/3} + e^{-j\pi n/3} \right) = \cos \left(\frac{\pi}{3} n \right)$$

Ejemplo 3. Encuentre los coeficientes de Fourier de la secuencia

$$x(n) = \{\underline{1}, 1, 0, 0\} \text{ con } N = 4$$

Solución

$$c_k = \frac{1}{4} \sum_{n=0}^{3} x(n) e^{-j\pi k n/2}$$
 $k = 0,1,...,3$

De donde,

$$\begin{aligned} |c_0| &= \frac{1}{2}, |c_1| = \frac{\sqrt{2}}{4}, |c_2| = 0, |c_3| = \frac{\sqrt{2}}{4} \\ \Theta_0 &= 0, \Theta_1 = -\frac{\pi}{4}, \Theta_2 = indef., \Theta_3 = \frac{\pi}{4} \end{aligned}$$

Potencia Media de una señal periódica

■ Para una señal periódica en tiempo discreto con periodo N se define como:

$$P_{x} = \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^{2} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) x^{*}(n)$$

■ Al reemplazar $x^*(n)$ por su serie de Fourier se tiene,

$$P_{x} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) \left[\sum_{k=0}^{N-1} c_{k}^{*} e^{-j2\pi kn/N} \right]$$

$$P_{x} = \sum_{k=0}^{N-1} c_{k}^{*} \left[\frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N} \right] = \sum_{k=0}^{N-1} |c_{k}|^{2}$$

- Potencia Media de una señal periódica ...
 - La expresión

$$P_{x} = \sum_{k=0}^{N-1} |c_{k}|^{2}$$

indica que la *potencia media* de una señal es la *suma* de las potencias medias de las componentes individuales en frecuencia.

■ Relación de Parseval para señales periódicas en tiempo discreto

$$P_{x} = \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^{2} = \sum_{k=0}^{N-1} |c_{k}|^{2}$$

Energía en un periodo:

$$E_N = \sum_{n=0}^{N-1} |x(n)|^2 = N \sum_{k=0}^{N-1} |c_k|^2$$

■ Densidad Espectral de Potencia de Señales Periódicas

- $|C_k|^2$ representa la potencia del k-ésimo armónico de la señal para k=0, 1,..., N-1.
- La gráfica de $S_x = |C_k|^2$ en función de k ilustra la distribución de la potencia de la señal x(n) en los armónicos.

■ Para señales discretas y periódicas el espectro de potencia es **discreto** y **periódico**.

■ Señal periódica *real*

- Una señal real cumple que:
 - $x^*(n) = x(n)$ y por lo tanto $c_k^* = c_{-k}$
- Lo que implica que:
 - Magnitud: $|c_{-k}| = |c_k|$ tiene simetría par
 - Fase: $-\angle c_{-k} = \angle c_k$ tiene simetría impar

■ La simetría define el rango de frecuencias de las señales en tiempo discreto.

- Señal Periódica Real ...
 - Puesto que los coeficientes de Fourier de una señal periódica son periódicos, se cumple que:

Magnitud	Fase	
$\left c_{k} \right = \left c_{N-k} \right $	$\angle c_k = - \angle c_{N-k}$	
$\left c_0 \right = \left c_N \right $	$\angle c_0 = -\angle c_N = 0$	
$\left c_1 \right = \left c_{N-1} \right $	$\angle c_1 = - \angle c_{N-1}$	
:	:	
$\left c_{N/2} \right = \left c_{N/2} \right $	$\angle c_{N/2} = 0$	si N es par
$\left c_{(N-1)/2} \right = \left c_{(N+1)/2} \right $	$\angle c_{(N-1)/2} = - \angle c_{(N+1)/2}$	si N es impar

■ Señal Periódica Real ...

Observaciones

- Una señal real, se específica completamente sólo con la mitad de los componentes espectrales:
 - c_k para k = 0 ... N/2 para N par,
 - c_k para $k = 0 \dots (N-1)/2$ para N impar,
- La frecuencia relativa w_k más alta que puede representarse mediante una señal discreta es π .

Señal Periódica Real ...

- **■** Formas Alternas de la Serie
 - Por las propiedades de simetría, la serie de Fourier de una señal discreta periódica y real puede expresarse como:

$$x(n) = c_0 + 2 \sum_{k=1}^{L} \left| c_k \right| \cos \left(\frac{2\pi}{N} k n + \theta_k \right)$$

$$x(n) = a_0 + \sum_{k=1}^{L} \left(a_k \cos \frac{2\pi}{N} k n - b_k \operatorname{sen} \frac{2\pi}{N} k n \right)$$

$$a_0 = c_0, \ a_k = 2|c_k|\cos\theta_k, \ b_k = 2|c_k|\sin\theta_k,$$

L = N/2 si N es par ó L = (N-1)/2 si N es impar

- **Ejemplo.** Para la señal rectangular de amplitud A y periodo N encontrar:
 - **a**) Los **coeficientes** de Fourier
 - b) La densidad espectral de potencia

$$x(n) = \begin{cases} A & n = 0, 1, ..., L - 1 \\ 0 & n = L, L + 1, ..., N - 1 \end{cases}$$

■ Solución a):

■ Por definición,

$$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi kn/N} = \frac{1}{N} \sum_{n=0}^{L-1} A e^{-j2\pi kn/N} \quad k = 0, 1, ..., N-1$$

de donde:

$$c_{k} = \begin{cases} \frac{AL}{N} & k = 0, +N, \pm 2N, \dots \\ \frac{A}{N} e^{-j\pi k(L-1)/N} \frac{sen(\pi k L/N)}{sen(\pi k/N)} & \text{otro valor de } k \end{cases}$$

■ Solución b):

■ La densidad espectral de potencia se obtiene como:

$$\left|c_{k}\right|^{2} = \begin{cases} \left(\frac{AL}{N}\right)^{2} & k = 0, \pm N, \pm 2N, \dots \\ \left(\frac{A}{N}\right)^{2} \left(\frac{sen(\pi \ kL/N)}{sen(\pi \ k/N)}\right)^{2} & \text{otro valor de } k \end{cases}$$

Su representación para diferentes valores de N y L

■ Introducción

- La T.F. de x(n) constituye una representación en términos de la función exponencial compleja e^{jwn} ,
 - donde w es la variable real de frecuencia.
- La TF puede entenderse como una particularización de la TZ
- Útil en la evaluación de la respuesta frecuencial de un sistema LTI en régimen *permanente*.

■ Definición

La TF de una señal de energía finita en tiempo discreto x(n) se define como,

$$X(w) = \sum_{n=-\infty}^{\infty} x(n) e^{-jwn}$$

- \blacksquare X(w) representa el contenido en frecuencia de la señal x(n).
- $\blacksquare X(w)$ es una descomposición de x(n) en sus componentes frecuenciales.
- \blacksquare X(w) existe si la sumatoria converge en algún sentido (absoluta, o cuadráticamente sumable)
 - X(w) converge si $\sum_{n=\infty}^{-\infty} |x(n)| < \infty$

■ Diferencias entre TF de tiempo discreto y continuo

■ Señal Continua

- Rango de frecuencia que va desde $-\infty$ hasta $+\infty$.
- La TF involucra una integral

■ Señal Discreta

- Rango de frecuencia que va desde $-\pi$ a π (ó de 0 a 2 π).
- La TF involucra una sumatoria.

■ Periodicidad de la TF de una señal discreta

$$X(w+2 \pi k) = \sum_{n=-\infty}^{\infty} x(n)e^{-j(w+2\pi k)n} = \sum_{n=-\infty}^{\infty} x(n)e^{-jwn}e^{-j2\pi k n}$$

$$X(w+2 \pi k) = \sum_{n=-\infty}^{\infty} x(n)e^{-jwn} = X(w)$$

Consecuencias

- Cualquier señal en tiempo discreto tiene una TF con un rango de frecuencia igual a $(-\pi, \pi)$ ó $(0, 2\pi)$,
- Cualquier frecuencia fuera de este intervalo es equivalente a una en su interior.

► Encuentre la T.F. del pulso rectangular digital.

■ Solución

$$X(w) = \sum_{n=-N}^{N} A e^{-jwn} = A \frac{e^{jwN} - e^{-jw(N+1)}}{1 - e^{-jw}}$$

$$X(w) = A \frac{\sin\left(\left[N + \frac{1}{2}\right]w\right)}{\sin\left(\frac{w}{2}\right)}$$

$$\Phi(w) = \begin{cases} 0, & X(w) \ge 0 \\ \pm \pi, & X(w) < 0 \end{cases}$$

■ Fenómeno de Gibbs (1899)

■ Introducción

- Efecto de rizado cerca de las discontinuidades de las señales.
- Fenómeno explicado por J. Willard Gibbs y se presenta en transformadas calculadas de forma aproximada para señales que no son absolutamente sumables.

■ Fenómeno de Gibbs

Ejercicio: Encontrar la Transformada de Fourier de la señal

$$x(n) = \frac{\operatorname{sen}(w_c n)}{\pi n}, -\infty < n < \infty, \operatorname{con} x(0) = \frac{w_c}{\pi}$$

■ Fenómeno de Gibbs...

■ Solución:

$$x(n) = \frac{sen(w_c n)}{\pi n}$$
, $-\infty < n < \infty$, $con x(0) = \frac{w_c}{\pi}$

- \blacksquare Características de x(n)
 - No es continua
 - No es absolutamente sumable
 - Si es cuadráticamente sumable
 - Es de energía finita: $E_{\chi} = \frac{w_c}{\pi}$

- Fenómeno de Gibbs...
 - ■Solución...
 - Aplicando la definición:

$$X(w) = \sum_{n=-\infty}^{\infty} \frac{sen \ w_c \ n}{\pi \ n} \ e^{-jwn}$$

■ La serie infinita de la transformada *no converge uniformemente* para todo *w*, pero sí lo hace *de forma cuadrática*.

■ Fenómeno de Gibbs

- Solución...
 - Para analizar este comportamiento, se considera la suma sobre un intervalo finito de 2N+1.
 - Se ocasionan oscilaciones fuertes al rededor de w_c .
 - La amplitud de las oscilaciones se mantienen independientemente de N.

$$X_{N}(w) = \sum_{n=-N}^{N} \frac{sen \ w_{c} \ n}{\pi \ n} e^{-jwn}$$

■ Fenómeno de Gibbs

- ► Solución...
 - La frecuencia de las oscilaciones aumenta con N.
 - Cuando N $\rightarrow \infty$ las oscilaciones convergen a la discontinuidad en $w=w_c$
 - El **comportamiento oscilante** de $X_N(w)$ que aproxima a la función X(w) en el punto de **discontinuidad** se denomina **fenómeno de Gibbs**.

$$X_{N}(w) = \sum_{n=-N}^{N} \frac{sen \ w_{c} \ n}{\pi \ n} e^{-jwn}$$

Percepción y Sistemas Inteligentes

Fenómeno de Gibbs

- Ilustración gráfica
 - Convergencia de la T.F y fenómeno de Gibbs en la discontinuidad

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

Transformada Inversa de Fourier de S.D

■ Introducción

► La **TIF** permite **recuperar** la señal x(n) a partir de su información espectral X(w).

■ Definición

► La TF está dada por:

$$X(w) = \sum_{n=-\infty}^{\infty} x(n) e^{-jwn}$$

▶ De la definición de la TF se observa que X(w) tiene la forma de una serie de Fourier, donde los coeficientes son los valores de la secuencia x(n).

■ Derivación

▶ Multiplicando la expresión de X(w) por $e^{j w m}$ e integrando sobre el intervalo $(-\pi, \pi)$ se tiene,

$$\int_{-\pi}^{\pi} X(w)e^{jwm} dw = \int_{-\pi}^{\pi} \left[\sum_{n=-\infty}^{\infty} x(n) e^{-jwn} \right] e^{jwm} dw$$

► Si la serie converge puede **intercambiarse** la integral y el sumatorio del **lado derecho** así:

$$\int_{-\pi}^{\pi} X(w)e^{jwm} dw = \sum_{n=-\infty}^{\infty} x(n) \int_{-\pi}^{\pi} e^{-jwn} e^{jwm} dw$$

■ Derivación...

Percepción y Sistemas Inteligentes

► Conociendo que la solución de la integral del lado derecho es:

$$\int_{-\pi}^{\pi} e^{jw(m-n)} dw = \begin{cases} 2\pi & m=n\\ 0 & m\neq n \end{cases}$$

▶ Por consiguiente,

$$\sum_{n=-\infty}^{\infty} x(n) \int_{-\pi}^{\pi} e^{jw(m-n)} dw = \begin{cases} 2\pi & x(n) & m=n \\ 0 & m \neq n \end{cases}$$

▶ Despejando x(n) se obtiene la expresión de la *Transformada Inversa de Fourier* para una señal discreta aperiódica

$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(w)e^{jwn} dw$$

▶ Obtener la *transformada inversa* de Fourier de una señal *rectangular*.

$$X(w) = \begin{cases} 1 & |w| \le w_c \\ 0 & w_c < |w| \le \pi \end{cases}$$

 \therefore Señal de energía finita con periodo 2π

► **Solución:** por definición:

$$x(n) = \frac{1}{2\pi} \int_{-w}^{w_c} e^{jwn} dw = \frac{sen(w_c n)}{\pi n} \qquad n \neq 0, \qquad x(0) = \frac{1}{2\pi} \int_{-w_c}^{w_c} dw = \frac{w_c}{\pi}$$

PSI Percepción y Sistemas Inteligentes

■ Ejemplo...

► Solución:

$$x(n) = \begin{cases} \frac{w_c}{\pi} & n = 0\\ \frac{w_c}{\pi} \frac{sen(w_c n)}{w_c n} & n \neq 0 \end{cases}$$

Energía de Señales Aperiódicas

- **Energía de Señales Discretas**
 - Para una señal discreta x(n), la energía se calcula como:

$$E_{x} = \sum_{n=-\infty}^{\infty} |x(n)|^{2} = \sum_{n=-\infty}^{\infty} x(n)x^{*}(n)$$

Al reemplazar $x^*(n)$ por la definición de la Transformada inversa, se obtiene

$$E_{x} = \sum_{n=-\infty}^{\infty} x(n)x * (n) = \sum_{n=-\infty}^{\infty} x(n) \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} X^{*}(w)e^{-jwn} dw \right]$$

Densidad Espectral de Energía

- Energía de Señales Discretas
 - Manipulando la expresión anterior, se llega a:

$$E_{x} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X^{*}(w) \left[\sum_{n=-\infty}^{\infty} x(n) e^{-jwn} \right] dw = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(w)|^{2} dw$$

Relación de Parseval: relación de energía entre x(n) y X(w)

$$E_x = \sum_{n=-\infty}^{\infty} |x(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(w)|^2 dw$$

Densidad Espectral de Energía

■ Definición

■ La Densidad Espectral de Energía $S_{xx}(w)$ de una señal x(n) representa la distribución de energía en función de la frecuencia

$$S_{\chi\chi}(w) = |X(w)|^2$$

■ Donde $X(w) = |X(w)| e^{j \Theta(w)}$, con |X(w)| espectro de magnitud $\Theta(w) = \angle X(w)$ espectro de fase

Densidad Espectral de Energía

■ CASO ESPECIAL: Señales aperiódicas reales

- Constituyen todas las señales prácticas
- \blacksquare En forma general X(w) es complejo y satisface las siguientes condiciones
 - $X(w)^* = X(-w)$
 - |X(w)| = |X(-w)|, simetría par
 - $\Theta(w) = -\Theta(w)$, simetría impar
 - $S_{\chi\chi}(w) = S_{\chi\chi}(-w)$, simetría par
- Por las propiedades de simetría:
 - El rango de frecuencias puede limitarse a $0 \le w \le \pi$ (la mitad).
 - La otra mitad se determina a partir de las condiciones de simetría.

■ Observación

- Las condiciones de simetría se conservan para señales discretas periódicas y aperiódicas,
- La descripción en el dominio de la frecuencia de una señal real en tiempo discreto se especifica completamente por su espectro en el rango $0 \le w \le \pi$.

Ejemplo 1. Determinar la T.F y la densidad espectral de energía de la señal,

$$x(n) = a^n u(n) \qquad -1 < a < 1$$

► Puesto que |a | < 1, la secuencia x(n) es absolutamente sumable,

$$\sum_{n=-\infty}^{\infty} |x(n)| = \sum_{n=0}^{\infty} |a^n| = \frac{1}{1-|a|} < \infty$$

► La transformada de Fourier de x(n) existe y está dada por,

$$X(w) = \sum_{n=0}^{\infty} a^n e^{-jwn} = \sum_{n=0}^{\infty} (a e^{-jw})^n = \frac{1}{1 - a e^{-jw}}$$

► La densidad espectral de energía viene dada por,

$$S_{xx}(w) = |X(w)|^2 = X(w)X^*(w) = \frac{1}{(1-a e^{-jw})(1-a e^{jw})} = \frac{1}{1-2a\cos w + a^2}$$

$$S_{xx}(\omega) = \frac{1}{1 - 2a\cos\omega + a^2}$$
, $a = 0.5$

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

Ejemplo 2. Determinar la TF y la densidad espectral de energía de la secuencia

$$x(n) = \begin{cases} A & 0 \le n \le L - 1 \\ 0 & \text{en otro caso} \end{cases}$$

- **■** Solución
 - La señal x(n) es de energía finita y es absolutamente sumable \rightarrow su TF existe.

$$\sum_{n=-\infty}^{\infty} |x(n)| = \sum_{n=0}^{L-1} |A| = L|A| < \infty \qquad E_x = L|A|^2$$

■ La TF está dada por:

$$X(w) = \sum_{n=0}^{L-1} A e^{-jwn} = A \frac{1 - e^{-jwL}}{1 - e^{-jw}} = A e^{-j(w/2)(L-1)} \frac{sen(wL/2)}{sen(w/2)}$$

 \blacksquare Por lo tanto, para x(n)

La magnitud y fase del espectro son:

$$|X(w)| = \begin{cases} |A|L & w = 0\\ |A| \frac{sen(wL/2)}{sen(w/2)} & \text{otro } w \end{cases}$$

$$\angle X(w) = \angle A - \frac{w}{2}(L-1) + \angle \frac{sen(wL/2)}{sen(w/2)}$$

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

PSI Percepción y Sistemas Inteligentes

■ Ejemplo 2...

La densidad espectral de energía está dada por:

$$|X(w)|^{2} = \begin{cases} |A|^{2} L^{2} & w = 0\\ |A|^{2} \left| \frac{sen(wL/2)}{sen(w/2)} \right|^{2} & \text{otro } w \end{cases}$$

- **■** Relación Transformada Serie de Fourier
 - ► Si se compara la TF en un conjunto de frecuencias armónicamente relacionadas del pulso rectangular,

$$w_{k} = \frac{2\pi}{N}k \qquad k = 0, 1, ..., N-1$$

$$X\left(\frac{2\pi}{N}k\right) = Ae^{-j(\pi/N)k(L-1)}\frac{sen[(\pi/N)kL]}{sen[(\pi/N)k]}$$

con los **coeficientes de Fourier** de la respectiva **onda rectangular** *periódica*, se encuentra que:

$$X\left(\frac{2\pi}{N}k\right) = Nc_k$$
 para $k = 0, 1, ..., N-1$

■ Relación Transformada - Serie de Fourier ...

▶ Conclusión:

La T.F. de un solo pulso rectangular evaluado en un conjunto de frecuencias armónicas, es un múltiplo de los Coeficientes de la Serie Fourier $\{c_k\}$ de la correspondiente señal periódica.

► Lo anterior se cumple para todas las señales!!

■ Relación Transformada Continua –Transformada Discreta

- ▶ Para una señal x(t) y su respectiva señal discretizada x(n) se ecuentra que sus espectros tienen formas similares, pero:
 - ► La señal **x(t)**: Espectro continuo aperiódico.
 - ► La señal **x(n)**: Espectro continuo periódico.

■ Relación entre Transformadas Fourier y Z

▶ La transformada z se **define** como:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$
 ROC: $r_2 < |z| < r_1$

Al sustituir $z = r e^{jw}$ en X(z) dentro de la ROC, se tiene

$$X(z) \mid_{z=re^{jw}} = \sum_{n=-\infty}^{\infty} [x(n) r^{-n}] e^{-jwn}$$

- ▶ La expresión anterior puede considerarse como la TF de $\mathbf{x}(n)$ \mathbf{r}^{-n} .
 - ▶ El factor \mathbf{r}^n crece con n si r<1 y decrece si r>1.
- ► Si X(z) converge para |z| = 1, se tiene:

$$X(z)\mid_{z=e^{jw}} \equiv X(w) = \sum_{n=-\infty}^{\infty} x(n) e^{-jwn}$$

 \blacktriangleright La T. F. puede interpretarse como la T. z. de la secuencia x(n) evaluada sobre la circunferencia unidad

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

- La T. F. es igual a la T. z. evaluada en la circunferencia unidad.
- Si |z| = 1 no pertenece a la ROC de X(z) \rightarrow la T.F. X (w) no existe.
- Existen señales con Transformada z pero sin T.F.
 - Ejemplo:

$$x(n) = u(n)$$

- Existen señales con Transformada de Fourier sin T.z.
 - Ejemplo:

$$x(n) = \frac{sen(w_c n)}{\pi n}$$

Facultad de Ingeniería Escuela de Ingeniería Eléctrica y Electrónica

- T. F. de Señales con Polos en el Círculo Unitario.
 - La T.F. de x(n) puede obtenerse evaluando su T.z. sobre la **circunferencia unidad**, siempre y cuando la circunferencia se encuentre **en la ROC**.
 - Existen secuencias aperiódicas que no son ni absoluta ni cuadráticamente sumables.
 - Su T.F. no existe.
 - Tienen polos sobre la circunferencia unidad.

■ T. Fourier de señales con polos en el círculo unitario.

Ejemplos:

$$x(n) = u(n)$$

$$X(z) = \frac{1}{1 - z^{-1}}$$

$$x(n) = \cos(w_0 n) u(n)$$
 $X(z) = \frac{1 - z^{-1} \cos w_0}{1 - 2 z^{-1} \cos w_0 + z^{-2}}$

- T.F. de señales con polos en el círculo unitario ...
 - Cómo calcular las T.F de señales x(n) que no son ni absoluta ni cuadráticamente sumables ?
 - Permitiendo que X(w) tengan discontinuidades (*impulsos*) en las frecuencias que corresponden a las localidades de los polos de X(z) sobre la circunferencia.

- T. Fourier de señales con polos en el círculo unitario ...
 - **Ejemplo 1.** Determine la transformada de Fourier de la señal

$$x_1(n) = u(n)$$

- **■** Solución:
 - La Transformada z de $x_1(n)$ está dada por,

$$X_1(z) = \frac{1}{1-z^{-1}} = \frac{z}{z-1}$$
 $ROC: |z| > 1$

PSI Percepción y Sistemas Inteligentes

■ Solución ...

Reemplazando $z = e^{jw}$ en

$$X_1(z) = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}$$
 $ROC: |z| > 1$

■ Se tiene,

$$X_{1}(w) = \frac{e^{jw/2}}{2 j sen(w/2)} = \frac{1}{2 sen(w/2)} e^{j(w-\pi/2)}$$

$$w \neq 2\pi k \quad k = 0,1,...$$

■ $X_1(w)$ presenta impulsos de área π en w=0 y múltiplos de 2π .

- T. Fourier de señales con polos en el círculo unitario ...
 - **Ejemplo 2.** Determine la transformada de Fourier de la señal

$$x_2(n) = (-1)^n u(n)$$

- **■** Solución:
 - La Transformada z de $x_2(n)$ está dada por,

$$X_2(z) = \frac{1}{1+z^{-1}} = \frac{z}{z+1}$$
 ROC: $|z| > 1$

■ Solución ...

Reemplazando $z = e^{jw}$ en

$$X_2(z) = \frac{1}{1+z^{-1}} = \frac{z}{z+1}$$
 $ROC: |z| > 1$

■ Se tiene,

$$X_{2}(w) = \frac{e^{jw/2}}{2\cos(w/2)}$$
$$w \neq 2\pi \left(k + \frac{1}{2}\right) \quad k = 0, 1, ...$$

 \blacksquare X₂(w) presenta impulsos en $w = \pi + 2 \pi k$.

PEII Percepción y Sistemas Inteligentes

- T. F. de señales con polos en el círculo unitario ...
 - ► Solución...
 - ► El **módulo** del espectro es,

$$|X_2(w)| = \frac{1}{2|\cos(w/2)|} \quad w \neq 2\pi \ k + \pi \quad k = 0, 1, \dots$$

► La **fase** está dada por,

$$\angle X_2(w) = \begin{cases} \frac{w}{2} & si \cos(w/2) \ge 0\\ \frac{w}{2} + \pi & si \cos(w/2) < 0 \end{cases}$$

Alguna Relaciones Útiles

$$e^{a+jb} = e^{a} (\cos b + j \operatorname{sen} b)$$
$$e^{a-jb} = e^{a} (\cos b - j \operatorname{sen} b)$$

$$\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$sen \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$