# Introduction to Networking and Systems Measurements

Device and System Characterization



Andrew W. Moore andrew.moore@cl.cam.ac.uk



### What is the goal?

- Functional validation?
- Performance testing?
- Characterization?
- Comparison?
- Detecting problems?
- Finding the bottlenecks?

Different goals ⇒ different setup + experiments

#### What is the goal?

- Functional validation, e.g.,:
  - > Can we send traffic from port A to port B?
- Performance testing, e.g.,:
  - What is the throughput of sending traffic from port A to port B?



#### Vantage Points

- Characterisation is limited by vantage points
- Single vantage point:
  - Round trip measurements, topology measurements
    OR
  - > Passive measurements
- Two vantage points:
  - One way latency measurements, bandwidth measurements
     + everything a single vantage point can do
- Three vantage points?

### Vantage Points

- <Number> of vantage points is not sufficient
- <Location> of vantage points is important



#### Vantage Points

- Is your vantage point static?
- Mobile vantage points: Mobile phones, laptops
  - > Sometimes good if you seek to increase coverage
- But also (for example):
  - > IP addresses reallocation
  - Virtual machines reallocation









#### What is the workload?

- Synthetically generated, e.g.,
  - ➤ 128Byte IPv4 Packets
- Protocol level, e.g.,
  - > TCP flows
- Application level, e.g.,
  - Key-value store application

#### What is the workload?

- Everything matters!
- Packet size distribution
- Traffic rate
  - > E.g., Average rate, peak rate,
- Traffic shape
  - > E.g. bursts
- Payload
  - > Some payloads are more likely to cause errors than others
- Protocol
- . . . .

- What can we learn about the internals of a switch using latency measurements and 3 vantage points?
- Assuming a sterile environment



- What is the basic latency of the switch?
  - Send packets from port 1 to port 2, measure the latency
- Is the switch design symmetric?
  - > Send packets from port 2 to port 1, measure the latency
- Is the switch design identical for all ports?
  - Send packets from port X to port Y, measure the latency for all combinations



- What type of switch is it?
  - Send packets of various sizes from port 1 to port 2, measure the latency
  - ➤ A cut-through switch will have the same latency for all packet sizes, a store-and-forward switch will have a higher latency for bigger packet sizes
- Is the switch sensitive to throughput?
  - Send packets at full line rate from port 1 to port 2, measure the latency
  - ➤ Do the results change over time?



- What can we learn about the output queueing and output scheduling of the switch?
  - Send packets at port 1 to port 3, measure the latency And at the same time
  - > Send packets at port 2 to port 3, measure the latency
  - Vary the packet rate and discover more....



- What can we learn about the input queueing and input scheduling of the switch?
  - Send packets at port 1 to port 3, measure the latency And at the same time
  - Send packets at port 2 to port 4
  - Vary the packet rate and discover more....
  - ➤ Why is sending from port 2 to port 1 a bad idea?



So....

What can we learn about the internals of a switch using latency measurements and 3 vantage points?

- A lot!
- This was just a small subset



- Mellanox Spectrum vs Broadcom Tomahawk
  - ➤ Tolly report, 2016

    Accessible from the L50 main webpage
- Bandwidth distribution, 3→1 scenario
  - ➤ Source ports 25,26,27, Destination port 31 33% BW from each port, on both devices
  - Source ports 24,25,26, Destination port 31
    33% BW from each port, on Spectrum
    25% from ports 25,26, 50% from port 24 on Tomahawk
- What does it mean?

## Switch refresher

## Switch Internals 101

What defines the architecture of a switch?

## **Input Ports**









## **Output Ports**



### **Header Processing**

























#### **Network Interfaces**





## **Switching**







Output Queues









# Recall What Drives Real World Switches

- Cost
- Power
- Area







#### Sharing Resources Is Good!

- Single header processor (if possible)
- Shared memories
- No concurrency problems
  - ➤ Also no need to synchronise tables, no need to send updates, ....

## Rethinking The Switch



## Rethinking The Switch















Deep Buffers Queues Manager External Memory External External Memory Memory Controller PHY

# Scheduling

- Different operations within the switch:
  - > Arbitration
  - Scheduling
  - > Rate limiting
  - Shaping
  - > Policing
- Many different scheduling algorithms
  - ➤ Strict priority, Round robin, weighted round robin, deficit round robin, weighted fair queueing...

# Scheduling Hierarchies



# Software Defined Networking (SDN)

Key Idea: Separation of Data and Control Planes





# Multi-Core Switch Design



# Multi Core Switch Design

- So what? Multi-core in CPUs for over a decade
- Network devices are not like CPUs:
  - CPU: Pipeline instructions, memory data
  - -Switch: pipeline data, memory control
- Network devices have a strong notion of time
  - -Must process the header on cycle X
  - -Headers are split across clock cycles
  - Pipelining is the way to achieve performance

# Inference and Understanding

All interpretations in the following slides are a *guess*, and not based on internal information – it is taken from careful examination of the Tolly report (and knowledge about switch architecture.)

# What makes Mellanox fairer than Broadcom Tomahawk?



## **Broadcom Tomahawk**

- 32 x 100GE
- In packet rate: 32 x 150Mpps = 4800 Mpps
- Manufacturing process: 28nm
  - > Therefore clock frequency likely <1GHz
- More than 7 billion transistor
  - ➤ Reference: Intel debut around the same time 18-core Xeon E5-2600 v3 with 5.57 billion transistors
- ... now lets think of these experimental results in a multi core switch...

#### What is weird with Broadcom Tomahawk?

• Let us assume the same architecture as used by Tomahawk 3:



#### What is different about Broadcom Tomahawk?

• Let us assume the same architecture as used by Tomahawk 3:



#### What is different about Broadcom Tomahawk?



# Synchronization

- Recall Lecture 3
- Synchronization of time between multiple machines
  - > E.g., allow one-way latency measurements
- Synchronization of measurements
  - Can you trigger multiple vantage points to start an experiment at once?
    - E.g. what happens if you measure congestion effects without triggering them simultaneously?

# **Tools Selection**

- When to use hardware tools? When to use software tools?
- You don't always have omniscient control over resources
  - > You may not even have permissions for some basic tools
- What can you do?
  - > Similar tools using different protocols
  - Write your own tools
  - Redesign your experiment



# So lets start measuring!

- Wait!
- What is your goal?
- What do you know about your experimentation environment?
- Have you collected metadata?
- Are you aware of any limitations to the environment / tests / DUT / usage / ...?
- Is your experiment reproducible?

### **Advice**

- Getting measurements right is HARD
- More is rarely better
- Prefer:
  - > Fewer Measurements and Better methodology
  - > Detailed measurements
  - ➤ Reproducibility
  - ➤ Understanding the results
  - ➤ Become an expert of your work