0.1 Równania różniczkowe

Interesuje nas następująca sytuacja:

$$\begin{aligned} \frac{dx}{dt} &= f(t, x) \\ x(t_0) &= x_0 \\ x(t) &: [a, b] \to \mathbb{R} \\ f &: [a, b] \times \mathbb{R}^n \to \mathbb{R}^n. \end{aligned}$$

Przykład 1.

$$\frac{dx}{dt} = -kx(t)$$
$$x(t) = ce^{-kt}.$$

Przykład 2.

$$\begin{split} \ddot{x} + \omega^2 x &= 0 \\ \dot{x} &= p \\ \dot{p} &= \ddot{x} = -\omega^2 x \\ \frac{d}{dt} \underbrace{\begin{bmatrix} x \\ p \end{bmatrix}}_{\stackrel{d}{=} x} &= \underbrace{\begin{bmatrix} 0 & 1 \\ -\omega^2 & 0 \end{bmatrix} \begin{bmatrix} x \\ p \end{bmatrix}}_{f(x,t)}. \end{split}$$

Definicja 1. Niech $I \subset \mathbb{R}$, $\mathcal{O} \subset \mathbb{R}^n$ $f: I \times \mathbb{R}^n \to \mathcal{O}$ taka, że $t \in I$, $x \in \mathbb{R}^n$, $f(t, x) \to f(t, x')$ Mówimy, że f spełnia warunek Lipschitza, jeżeli

$$\underset{L>0}{\exists} . \forall \overrightarrow{t} : \forall \overrightarrow{t} : \forall . \| f(t,x) - f(t,x') \| \leqslant L \| x - x' \|.$$

Uwaga 1. Zmienne t, x nie występują w warunku Lipschitza na równych prawach

Pytanie 1. Czy jeżeli

$$f: \mathcal{O} \to \mathcal{O} \ takie, \ \dot{z}e \underset{L>0}{\exists}.$$

 $\dot{z}e$

$$\forall_{x,x'} || f(x) - f(x') || \le L ||x - x'||.$$

to czy f jest ciągła?

Twierdzenie 1. (problem Cauchy)

Niech $[a,b] \subset \mathbb{R}$, $\mathcal{O} \subset \mathbb{R}^n$, \mathcal{O} - domknięty $i\ f: [a,b] \times \mathcal{O} \to \mathcal{O}$ takie, że f - ciągła na $[a,b] \times \mathcal{O}$ oraz f spełnia warunek Lipschitza na \mathcal{O} , to znaczy:

$$\underset{L>0}{\exists} \quad \underset{t\in[a,b]}{\forall} \quad \underset{x,x'\in\mathcal{O}}{\forall} \|f(t,x)-f(t,x')\|\leqslant L\|x-x'\|.$$

W'owczas

równanie ma jednoznaczne rozwiązania, które są ciągłe ze względu na x_0

$$\begin{cases} \frac{dx}{dt} = f(t, x) \\ x(t_0) = x_0 \end{cases}$$
 (1)

Uwaga 2. Ciągłość f na $[a,b] \times \mathcal{O}$ jest mocniejszym warunkiem niż Lipschytzowalność na \mathcal{O}

"../img/"fig_27.png

Rysunek 1

 $Dow \acute{o}d.$ Skoro f- ciągła na $[a,b]\times \mathcal{O},$ to znaczy, że fjest ograniczona, czyli

$$\exists \quad \exists \quad \exists \quad \exists \quad \|f(t,x)\| \leqslant M.$$

 $t \in K(t_0, r_1), x \in K(x_0, r_2).$

Zauważmy, że problem (??) możemy zapisać jako

$$x(t) = x_0 + \int_{t_0}^t f(s, x(s))ds$$
 (2)

Czyli, jeżeli znajdziemy x(t) takie, co spełnia (??), to rozwiążemy problem ??. Rozważmy odwzorowanie

$$P(g)(t) = x_0 + \int_{t_0}^t f(s, g(s))ds.$$

 $A = \{C : [t - r_1, t_0 + r_1] \to \mathbb{R}^n\}$ funkcja ciągła na kuli o wartościach w \mathbb{R}^n .

Co by było, gdyby Pmiało punkt stały? Czyli $\underset{x(t) \in A}{\exists}$ takie, że P(x(t)) = x(t)

"../img/"fig_28.png

Rysunek 2

Oznaczałoby to, że

$$x(t) = -x_0 + \int_{t_0}^{t} f(s, x(s)) ds.$$

Co więcej, gdyby P było zwężające, to z zasady Banacha wiemy, że punkt stały jest tylko jeden. Zatem, jeżeli znajdziemy podzbiór A taki, że P - zwężające, to udowodnimy jednoznaczność. Problem $(\ref{eq:posterior})$

Niech
$$E = \left\{g \in A, \|g(t) - \overset{g_0(t)}{x_0}\| \underset{\text{ważne!}}{\leqslant} r_2\right\}$$
, czyli
$$g \in E \iff \sup_{t_0 - \varepsilon \leqslant t \leqslant t_0 + \varepsilon} \|g(t) - x_0\| \leqslant r_2.$$

i

$$q:[t_0-\varepsilon,t_0+\varepsilon]\to\mathbb{R}^n.$$

i g - ciągła.

(domkniętość ze względu na zasdę Banacha ($x_0 \stackrel{\text{ozn}}{=} g_0(t)$)) Szukamy takiego ε , żeby:

- 1. $P(g) \in E \quad g \in E$
- 2. P zwężająca na E

bo jeżeli (??) jest spełniona, to wiemy, że istnieje punkt stały. Jeżeli (??) jest spełniona, to wiemy, że punkt stały należy do E Warunek (??): $P(g) \in E$, czyli

$$\sup_{t_0-\varepsilon\leqslant t_0\leqslant t_0+\varepsilon} ||P(g(t))-x_0||\leqslant r_2.$$

czyli

$$\sup_{t_0-\varepsilon\leqslant t_0\leqslant t_0+\varepsilon} \|x_0 + \int_{t_0}^t f(s,g(s))ds - x_0\| \leqslant \sup_{t_0-\varepsilon\leqslant t_0\leqslant t_0+\varepsilon} \int_{t_0}^t \|f(s,g(s))\|ds \leqslant \sup_{t_0-\varepsilon\leqslant t_0\leqslant t_0+\varepsilon} |t-t_0|M = \varepsilon M.$$

Jeżeli chcemy aby $\varepsilon M \leqslant r_2$, to znaczy, że $\varepsilon \leqslant \frac{r_2}{M}$ i jednocześnie $\varepsilon \leqslant r_1$. Czyli aby warunek (??) był spełniony to musi być:

$$\varepsilon < min\left\{\frac{r_2}{M}, r_1\right\}.$$

Warunek (??). Chcemy aby P było zwężające, czyli:

$$\forall_{q_1,q_2 \in E} ||P(g_1) - P(g_2)|| \le q ||q_1 - q_2||.$$

Zatem:

$$\begin{split} \|P(g_1) - P(g_2)\| &= \sup_{t_0 - \varepsilon \leqslant t_0 \leqslant t_0 + \varepsilon} \|x_0 + \int_{t_0}^t f(s, g_1(s)) ds - (x_0 + \int_{t_0}^t f(s, g_2(s)) ds\| = . \\ \sup_{t_0 - \varepsilon \leqslant t_0 \leqslant t_0 + \varepsilon} \|\int_{t_0}^t f(s, g_1(s)) - f(s, g_2(s)) ds\| \leqslant \sup_{t_0 - \varepsilon \leqslant t_0 \leqslant t_0 + \varepsilon} \int_{t_0}^t \|f(s, g_1(s)) - f(s, g_2(s))\| ds \leqslant . \\ \sup_{t_0 - \varepsilon \leqslant t_0 \leqslant t_0 + \varepsilon} \int_{t_0}^t L \|g_1 - g_2\| = \varepsilon L \|g_1 - g_2\| . \\ \sup_{t_0 - \varepsilon \leqslant t_0 \leqslant t_0 + \varepsilon} \int_{t_0}^t L \|g_1 - g_2\| = \varepsilon L \|g_1 - g_2\| . \end{split}$$

Zatem, jeżeli P ma być zwężające na E, to $\varepsilon L < 1$, czyli $\varepsilon < \frac{1}{L}$ i $g \in E$ Zatem, aby istniało rozwiązanie jednoznaczne problemu ??

$$\varepsilon < min\left\{\frac{r_2}{M}, r_1, \frac{1}{L}\right\}.$$

Do pełnego dowodu brakuje nam ciągłości rozwiązania ze względu na zmiany x_0 Lemat:

niech A,X - przestrzenie metryczne, $P_a(x), a \in A, x \in X$ - odwzorowanie zwężające i ciągłe ze względu na $a \in A$

Niech $\tilde{x}(a)$ taki, że $P(\tilde{x}(a)) = \tilde{x}(a)$. Zwężające, to znaczy, że

$$\forall X : \forall X : ||P_a(x) - P_a(x')|| \leq q||x - x'||.$$

Wówczas funkcja $\tilde{x}(a)$ jest ciągła na A.

Uwaga 3. Odwzorowanie P(g) wygląda tak:

$$P(g(t)) = x_0 + \int_{t_0}^t f(s, g(s)) ds.$$

Więc rolę parametru a pełnią x_0, t_0 i P(g(t)) jest ciągłe ze względu na x_0 i t_0 .