

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 17 EXAMINATION Model Answer

Subject Code:

17104

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answer and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
1		Solve any <u>TEN</u> of the following:	20
		Find x, if $\begin{vmatrix} 1 & 1 & 1 \\ 3 & x & 3 \\ 1 & x & 2 \end{vmatrix} = 0$	02
	Ans	$\begin{vmatrix} 1 & 1 & 1 \\ 3 & x & 3 \\ 1 & x & 2 \end{vmatrix} = 0$	
		$\therefore 1(2 \times x - x \times 3) - 1(3 \times 2 - 1 \times 3) + 1(3 \times x - 1 \times x) = 0$	1
		$\therefore -x - 3 + 2x = 0$	
		$\therefore x - 3 = 0$	1
		$\therefore x = 3$	
	b)	If $A = \begin{bmatrix} 2 & -1 \\ 4 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -2 \\ -1 & 4 \end{bmatrix}$ Find the matrix 'X' Such that $2A + X = 3B$	02
	Ans	$\therefore 2A + X = 3B$	
		$\therefore X = 3B - 2A$	
		$= 3 \begin{bmatrix} 3 & -2 \\ -1 & 4 \end{bmatrix} - 2 \begin{bmatrix} 2 & -1 \\ 4 & 3 \end{bmatrix}$	
		$= \begin{bmatrix} 9 & -6 \\ -3 & 12 \end{bmatrix} - \begin{bmatrix} 4 & -2 \\ 8 & 6 \end{bmatrix}$	1

SUMMER – 17 EXAMINATION

Model Answer

Q.	Sub	Answer	Marking
No.	Q. N.		Scheme
1	b)	$\therefore X = \begin{bmatrix} 5 & -4 \\ -11 & 6 \end{bmatrix}$	1
		If $A = \begin{bmatrix} 3 & 9 \\ -1 & -3 \end{bmatrix}$ Show that A^2 is null matrix	02
	Ans	$A^{2} = A.A = \begin{bmatrix} 3 & 9 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} 3 & 9 \\ -1 & -3 \end{bmatrix}$	1/2
		$ = \begin{bmatrix} 9 - 9 & 27 - 27 \\ -3 + 3 & -9 + 9 \end{bmatrix} $	1/2
		$ = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} $	1/2
		∴ A² is null matrix	1/2
	d)	If $A = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 1 & -3 \end{bmatrix}$ find $ A $ and verify that matrix A is singular or non-singular $\begin{bmatrix} 0 & -1 & 1 \end{bmatrix}$	02
	Ans	matrix. $\begin{vmatrix} A \\ A \end{vmatrix} = \begin{vmatrix} 2 & -1 & 3 \\ 4 & 1 & -3 \\ 0 & -1 & 1 \end{vmatrix}$	
		= 2(1-3)+1(4-0)+3(-4-0) $= -4+4-12$	1
		$=-12 \neq 0$	1/2
		∴ A is non-singular matrix	1/2
	e)	Resolve into partial fraction $\frac{x+4}{x(x+1)}$	02
	Ans	Let $\frac{x+4}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1}$	1/2
		$\therefore x + 4 = (x + 1) A + xB$	
		Put x = 0	
		$\therefore 0 + 4 = A(0+1) + B(0)$	1/
		$\therefore A = 4$	1/2
		Put x = -1	
		-1 + 4 = A(-1+1) + B(-1)	
		Page No. (120

SUMMER – 17 EXAMINATION

Model Answer

Q.	Sub		Marking
No.	Q. N.	Answer	Scheme
1	e)	$\therefore B = -3$	1/2
		$\therefore \frac{x+4}{x(x+1)} = \frac{4}{x} + \frac{(-3)}{x+1}$	1/2
		O R	
		$\frac{x+4}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1}$	1/2
		$\therefore x + 4 = (x + 1) A + xB$	
		$\therefore x + 4 = x(A + B) + A$	1/
		$\therefore A + B = 1, A = 4 \text{and}$	1/2
		B = -3	1/2
		$\therefore \frac{x+4}{x(x+1)} = \frac{4}{x} + \frac{(-3)}{x+1}$	1/2
	f)	Prove that $\frac{1}{1 - \cos A} + \frac{1}{1 + \cos A} = 2 \cos ec^2 A$	02
	Ans	1 1 1	
	Alls	$1-\cos A$ $1+\cos A$	
		$= \frac{(1+\cos A) + (1-\cos A)}{(1-\cos A)(1+\cos A)}$	1/2
		$= \frac{1 + \cos A + 1 - \cos A}{1 + \cos A}$	1/2
		$1^2 - \cos^2 A$	1/2
		$=\frac{2}{\sin^2 A}$	
		$= 2 \operatorname{cosec}^2 A$	1/2
	g)	Using compound angle formula , find $\cos(75)^0$	02
	Ans	$\cos(75)^{0} = \cos(30^{0} + 45^{0})$	1/2
		$=\cos 30^{\circ}.\cos 45^{\circ}-\sin 30^{\circ}.\sin 45^{\circ}$	1/2
		$= \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{2}} - \frac{1}{2} \cdot \frac{1}{\sqrt{2}}$	1/2
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		$=\frac{\sqrt{3}-1}{2\sqrt{2}}$	1/2
	h)	1	
		If $\sin A = \frac{1}{2}$, find $\sin(3A)$.	02
	Ans	$\sin 3A = 3\sin A - 4\sin^3 A$	

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
1	h)	$=3\left(\frac{1}{2}\right)-4\left(\frac{1}{2}\right)^3$	1
		= 1	1
	i)	Express as product form $\cos 4\theta + \cos 8\theta$	02
	Ans	$\cos 4\theta + \cos 8\theta$	
	Alls	$= 2\cos\left(\frac{4\theta + 8\theta}{2}\right) \cdot \cos\left(\frac{4\theta - 8\theta}{2}\right)$	1
		$= 2\cos(6\theta).\cos(-2\theta)$	1
		$= 2\cos(6\theta).\cos(2\theta)$	
	j)	If $\tan^{-1}(1) + \tan^{-1}(x) = 0$ then find 'x'	02
	Ans	$\tan^{-1}(1) + \tan^{-1}(x) = 0$	
		$\therefore \frac{\pi}{4} + \tan^{-1}(x) = 0$	1/2
		$\therefore \tan^{-1}(x) = -\frac{\pi}{4}$	1/2
		7	1/2
		$\therefore x = \tan\left(-\frac{\pi}{4}\right)$	1/2
		$\therefore x = -1$	
		$ \begin{cases} OR \\ \tan^{-1}(1) + \tan^{-1}(x) = 0 \end{cases} $	
			1/
		$\tan^{-1}\left(\frac{1+x}{1-x}\right) = 0$	1/2
		$\therefore \left(\frac{1+x}{1-x}\right) = \tan\left(0\right)$	1/2
		$\therefore \frac{1+x}{1-x} = 0$	1/2
		$\therefore 1 + x = 0$	
		$\therefore x = -1$	1/2
	k)	State the conditions of parallel and perpendicular lines,	02
		whose slopes are M ₁ and M ₂	1
	Ans	Condition for Parallel Lines, $M_1 = M_2$	1
		Condition for perpendicular lines, $M_1 \cdot M_2 = -1$	1

SUMMER – 17 EXAMINATION

Model Answer

	CI.		Manda'
Q. No.	Sub Q. N.	Answer	Marking Scheme
1	I)	Find the range of the data:	02
	Ans	45,42,39,40,48,41,45,44	
	AIIS	Range = Largest value - Smallest value	
		=48-39	1
		= 9	1
2		Solve any FOUR of the following:	16
	a)	Solve the following equations using Cramers rule of determinants	04
		x + y + z = 3, $x - y + z = 1$, $x + y - 2z = 0$	04
	Ans	$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -2 \end{vmatrix}$	
		=1(2-1)-1(-2-1)+1(1+1)	1
		= 6	1
		$D_{x} = \begin{vmatrix} 3 & 1 & 1 \\ 1 & -1 & 1 \\ 0 & 1 & -2 \end{vmatrix}$	
		$ \begin{vmatrix} 3(2-1)-1(-2-0)+1(1-0) \end{vmatrix} $	
		= 3(2-1)-1(-2-0)+1(1-0) $= 6$	1/2
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		= 1(-2-0) - 3(-2-1) + 1(0-1)	
		= 6	1/2
		$\mathbf{D}_{z} = \begin{vmatrix} 1 & 1 & 3 \\ 1 & -1 & 1 \\ 1 & 1 & 0 \end{vmatrix}$	
			1/
		=1(0-1)-1(0-1)+3(1+1)	1/2
		= 6	
		$x = \frac{D_x}{D} = \frac{6}{6} = 1$	1/2
		$y = \frac{D_y}{D} = \frac{6}{6} = 1$	1/2
		$z = \frac{D_z}{D} = \frac{6}{6} = 1$	1/2
		D 6	/2
L	<u> </u>		_ /20

SUMMER – 17 EXAMINATION

Model Answer

	T		<u> </u>
Q. No.	Sub Q. N.	Answer	Marking Scheme
2	b) Ans	Find x, y, z if $ \begin{cases} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \\ 3 & 1 & 2 \end{bmatrix} & \begin{bmatrix} 3 & 0 & 2 \\ 1 & 4 & 5 \\ 2 & 1 & 0 \end{bmatrix} & \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} & \begin{bmatrix} x \\ y \\ z \end{bmatrix} $ $ \begin{cases} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \\ 2 & 0 & 1 \end{bmatrix} + 2 \begin{bmatrix} 3 & 0 & 2 \\ 1 & 4 & 5 \end{bmatrix} & \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} & \begin{bmatrix} x \\ y \\ 2 \end{bmatrix} & $	04
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2
		$ \therefore \begin{cases} \begin{bmatrix} 7 & 3 & 6 \\ 4 & 8 & 11 \\ \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} $ $ \begin{bmatrix} 7 + 6 + 18 \\ \end{bmatrix}, \begin{bmatrix} x \\ x \end{bmatrix} $	1
		$ \begin{vmatrix} \therefore & 4+16+33 \\ & 7+6+6 \end{vmatrix} = \begin{vmatrix} y \\ & z \end{vmatrix} $	1½
		$\begin{bmatrix} 31 \\ 53 \\ \end{bmatrix} = \begin{bmatrix} x \\ y \\ \end{bmatrix}$ $\begin{bmatrix} 19 \\ \end{bmatrix} \begin{bmatrix} z \\ \end{bmatrix}$ $x = 31, y = 53, z = 19$	1
	c)	Express the matrix A as the sum of symmetric and skew-symmetric matrices, where $A = \begin{bmatrix} -1 & 7 & 1 \\ 2 & 3 & 4 \\ 5 & 0 & 5 \end{bmatrix}$	04
	Ans	Consider $A + A^{T} = \begin{bmatrix} -1 & 7 & 1 \\ 2 & 3 & 4 \\ 5 & 0 & 5 \end{bmatrix} \begin{bmatrix} -1 & 2 & 5 \\ 7 & 3 & 0 \\ 1 & 4 & 5 \end{bmatrix}$ $\begin{bmatrix} -2 & 9 & 6 \end{bmatrix}$	1
		$\begin{bmatrix} -2 & 9 & 6 \\ 9 & 6 & 4 \\ 6 & 4 & 10 \end{bmatrix}$ and $A - A^{T} = \begin{bmatrix} -1 & 7 & 1 \\ 2 & 3 & 4 \\ 5 & 0 & 5 \end{bmatrix} \begin{bmatrix} -1 & 2 & 5 \\ 7 & 3 & 0 \\ 1 & 4 & 5 \end{bmatrix}$	
		[5 0 5] [1 4 5]	

SUMMER – 17 EXAMINATION

Model Answer

Q.	Sub	Answer	Marking
No.	Q. N.	Allswei	Scheme
2	c)	$\begin{bmatrix} 0 & 5 & -4 \\ -5 & 0 & 4 \\ 4 & -4 & 0 \end{bmatrix}$	1
		Consider $A = \frac{1}{2} \left(A + A^T \right) + \frac{1}{2} \left(A - A^T \right)$	1/2
		$\therefore A = \frac{1}{2} \begin{bmatrix} -2 & 9 & 6 \\ 9 & 6 & 4 \\ 6 & 4 & 10 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & 5 & -4 \\ -5 & 0 & 4 \\ 4 & -4 & 0 \end{bmatrix}$	
		$\therefore A = \begin{vmatrix} \frac{9}{2} & 3 \\ \frac{9}{2} & 3 & 2 \\ 3 & 2 & 5 \end{vmatrix} + \begin{vmatrix} \frac{5}{2} & 0 & 2 \\ 2 & -2 & 0 \end{vmatrix}$	1
		$\begin{bmatrix} 2 \\ 3 & 2 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ 2 & -2 & 0 \end{bmatrix}$ $= \text{sym metric} + \text{skew-sym metric}$	1/2
		m atrix m atrix	
	d)	Find A ⁻¹ by adjoint method, If $A = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 0 & 4 \\ 1 & -1 & 1 \end{bmatrix}$	04
	Ans	$A = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 0 & 4 \\ 1 & -1 & 1 \end{bmatrix}$	
		$ \therefore A = \begin{vmatrix} 2 & -1 & 0 \\ 1 & 0 & 4 \\ 1 & -1 & 1 \end{vmatrix} $	
		= 2(0+4)+1(1-4)+0(-1-0)	
		$=5 \neq 0$	1
		$\therefore A^{-1}$ exists	

SUMMER – 17 EXAMINATION

Model Answer

Q.	Sub	Angwor	Marking
No.	Q. N.	Answer	Scheme
2	d)	$ \begin{bmatrix} \begin{vmatrix} 0 & 4 & 1 & 4 & 1 & 0 \\ -1 & 1 & 1 & 1 & 1 & -1 \\ -1 & 0 & 2 & 0 & 2 & -1 \\ -1 & 1 & 1 & 1 & 1 & -1 \\ -1 & 0 & 2 & 0 & 2 & -1 \\ -1 & 0 & 2 & 0 & 2 & -1 \\ 0 & 4 & 1 & 4 & 1 & 0 \end{vmatrix} $	1
		$\begin{bmatrix} 4 & -3 & -1 \\ -1 & 2 & -1 \end{bmatrix}$ $= \begin{bmatrix} -1 & 2 & -1 \\ -4 & 8 & 1 \end{bmatrix}$ $M \text{ atrix of cofactors} = \begin{bmatrix} 4 & 3 & -1 \\ 1 & 2 & 1 \\ -4 & -8 & 1 \end{bmatrix}$ $\begin{bmatrix} 4 & 1 & -4 \end{bmatrix}$	1
		$A \operatorname{dj} A = \begin{bmatrix} 4 & 1 & -4 \\ 3 & 2 & -8 \\ -1 & 1 & 1 \end{bmatrix}$ $A^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 4 \end{bmatrix}$	1/2
		$A^{-1} = \frac{1}{ A } A \mathrm{d} \mathbf{j} . A$ $A^{-1} = \frac{1}{5} \begin{vmatrix} 4 & 1 & -4 \\ 3 & 2 & -8 \\ -1 & 1 & 1 \end{vmatrix}$	1/2
	e)	Resolve into partial fractions: $\frac{x^2 + 1}{(x+1)(x^2 + 4)}$	04
	Ans	Let $\frac{x^2 + 1}{(x+1)(x^2 + 4)} = \frac{A}{x+1} + \frac{Bx + C}{x^2 + 4}$	1/2
		$\therefore x^{2} + 1 = (x^{2} + 4) A + (x + 1) (Bx + C)$ Put $x = -1$	
		$\therefore 2 = 5 A$ $\therefore A = \frac{2}{5}$	1
		Put x = 0	
		$1 = 4A + (1)C$ $1 = 4\left(\frac{2}{5}\right) + C$	
		Page No.0	

SUMMER – 17 EXAMINATION

Model Answer

		<u>Model Allower</u>	
Q. No.	Sub Q. N.	Answer	Marking Scheme
2	e)	-3	1
		$\therefore C = \frac{-3}{5}$	
		Put x = 1	
		2 = 5A + 2(B + C)	
		$2 = 5\left(\frac{2}{5}\right) + 2B + 2\left(\frac{-3}{5}\right)$	
		$\frac{6}{5} = 2B$	
		$\therefore B = \frac{3}{5}$	1
		$\therefore \frac{x^2 + 1}{(x+1)(x^2 + 4)} = \frac{\frac{2}{5}}{x+1} + \frac{\frac{3}{5}x - \frac{3}{5}}{x^2 + 4}$	1/2
		$ \frac{1}{(x+1)(x^2+4)} = \frac{1}{x+1} + \frac{1}{x^2+4} $	/2
		$x^2 + 1$	
	f)	Resolve into partial fractions: $\frac{x^2 + 1}{x(x^2 - 1)}$	04
	Ans	$\frac{x^2 + 1}{x(x^2 - 1)} = \frac{x^2 + 1}{x(x - 1)(x + 1)}$	
	Alls	$x(x^2-1) x(x-1)(x+1)$	
		$\frac{x^2 + 1}{x(x-1)(x+1)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1}$	1/2
		$\therefore x^{2} + 1 = A(x-1)(x+1) + Bx(x+1) + Cx(x-1)$	
		Put x = 0	
		$1 = A\left(-1\right)\left(1\right)$	
		1 = -A	
		$\therefore A = -1$	1
		Put x = 1	
		1+1=B(1)(1+1)	
		$\therefore B = 1$	1
		Put x = -1	
		$1+1=C\left(-1\right)\left(-2\right)$	1
		$\therefore C = 1$	
		$\therefore \frac{x^2 + 1}{x(x-1)(x+1)} = \frac{-1}{x} + \frac{1}{x-1} + \frac{1}{x+1}$	1/2
<u> </u>	1		

SUMMER – 17 EXAMINATION

Model Answer

Q.	Sub	A = 0	Marking
No.	Q. N.	Answer	Scheme
3		Solve any <u>FOUR</u> of the following:	16
	a)	Using matrix inversion method , solve the equations :	04
		x + y + z = 3, $x + 2y + 3z = 4$, $x + 4y + 9z = 6$	
	Ans		
		$\begin{vmatrix} A & A & A & A & A & A \\ A & A & A & A &$	
		A = 1(18-12)-1(9-3)+1(4-2)	1/2
		$ A = 2 \neq 0 $	
		$\therefore A^{-1}$ exists	
		$ \begin{bmatrix} $	1/2
		$\begin{bmatrix} 6 & 6 & 2 \\ 5 & 8 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ $\begin{bmatrix} 6 & -6 & 2 \\ -5 & 8 & -3 \\ 1 & -2 & 1 \end{bmatrix}$ $A djA = \begin{bmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1 \end{bmatrix}$	1/2
		$A^{-1} = \frac{1}{ A } A \mathrm{d} \mathbf{j} . A = \frac{1}{2} \begin{bmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1 \end{bmatrix}$ $X = A^{-1} B$	1/2
		$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 2 & -3 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 6 \end{bmatrix}$	1/2

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
3	a)	$= \frac{1}{2} \begin{bmatrix} 18 - 20 + 6 \\ -18 + 32 - 12 \end{bmatrix}$ $= \frac{1}{2} \begin{bmatrix} 4 \\ 6 - 12 + 6 \end{bmatrix}$ $= \frac{1}{2} \begin{bmatrix} 2 \\ y \end{bmatrix}$ $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} z \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	1
	b)	$\therefore x = 2, y = 1, z = 0$ Resolve into partial fraction $\frac{x^2}{(x+1)(x+2)^2}$	04
	Ans	Let $\frac{x^2}{(x+1)(x+2)^2} = \frac{A}{x+1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$ $x^2 = (x+2)^2 A + (x+1)(x+2)B + (x+1)C$ Put $x = -1$	1/2
		$\therefore 1 = (1) A$ $\therefore A = 1$ $Put x = -2$	1
		$\therefore 4 = (-1)C$ $\therefore C = -4$ $Put x = 0$ $\therefore 0 = 4A + 2B + C$	1
		$\therefore 0 = 4 - 2B - 4$ $\therefore B = 0$	1
		$\frac{x^{2}}{(x+1)(x+2)^{2}} = \frac{1}{x+1} + \frac{0}{x+2} + \frac{(-4)}{(x+2)^{2}}$ $\frac{x^{2}}{(x+1)(x+2)^{2}} = \frac{1}{x+1} - \frac{4}{(x+2)^{2}}$	1/2
	c)	Resolve into partial fraction: $\frac{x^4}{x^3+1}$	04

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
3	Ans	$x^{3} + 1) x^{4}$ $x^{4} + x$ $$	
		$-x$ $\therefore \frac{x^4}{x^3 + 1} = x - \frac{x}{x^3 + 1}$	1
		$\frac{x}{x^3 + 1} = \frac{x}{(x+1)(x^2 - x + 1)}$ $\frac{x}{(x+1)(x^2 - x + 1)} = \frac{A}{x+1} + \frac{Bx + C}{x^2 - x + 1}$	1/2
		$\therefore x = (x^2 - x + 1) A + (x + 1) (Bx + C)$ $Put x = -1$ $-1 = 3 A$ 1	
		$A = -\frac{1}{3}$ Put $x = 0$ $0 = A + C$	1/2
		$\therefore C = \frac{1}{3}$ Put $x = 1$ $1 = A + 2(B + C)$	1/2
		$1 = -\frac{1}{3} + 2B + 2\left(\frac{1}{3}\right)$ $\therefore B = \frac{1}{3}$	1/2
		$\therefore \frac{x}{(x+1)(x^2-x+1)} = \frac{-\frac{1}{3}}{x+1} + \frac{\frac{1}{3}x+\frac{1}{3}}{x^2-x+1}$	1/2
		$\therefore \frac{x^4}{x^3 + 1} = x - \left(\frac{-\frac{1}{3}}{x + 1} + \frac{\frac{1}{3}x + \frac{1}{3}}{x^2 - x + 1} \right)$	1/2

SUMMER – 17 EXAMINATION

Model Answer

Q.	Sub	Anguar	Marking
No.	Q. N.	Answer	Scheme
3	d)	If $\tan\left(\frac{\alpha}{2}\right) = \frac{1}{\sqrt{3}}$ then find $\sin \alpha$	04
	Ans	$\tan\left(\frac{\alpha}{2}\right) = \frac{1}{\sqrt{3}}$	
		$\therefore \frac{\alpha}{2} = \tan^{-1} \left(\frac{1}{\sqrt{3}} \right)$	1
		$\therefore \frac{\alpha}{2} = \frac{\pi}{6} \text{or} 30^{\circ}$	1
		$\therefore \alpha = \frac{\pi}{3} \text{ or } 60^{\circ}$	1
		$\therefore \sin \alpha = \sin 60^{0} = \frac{\sqrt{3}}{2}$	1
	e)	Show that: $tan^{-1}(1) + tan^{-1}(2) + tan^{-1}(3) = \pi$	04
	Ans	$\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3)$	
		$= \tan^{-1} \left(\frac{1+2}{1-1.2} \right) + \pi + \tan^{-1} (3)$	1
		$= \tan^{-1}(-3) + \pi + \tan^{-1}(3)$	1
		$= -\tan^{-1}(3) + \pi + \tan^{-1}(3)$	1
		$=\pi$	1
		OR	
		$\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3)$	
		$= \frac{\pi}{4} + \pi + \tan^{-1} \left(\frac{2+3}{1-2.3} \right)$	1
		$=\frac{\pi}{4}+\pi+\tan^{-1}\left(-1\right)$	1
		$=\frac{\pi}{4}+\pi-\frac{\pi}{4}$	1
		$\begin{vmatrix} 4 & 4 \\ = \pi \end{vmatrix}$	1
	f)	Show that : $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = \frac{3}{16}$	04
	Ans	$\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}$	
		$= \sin 20^{\circ} \sin 40^{\circ} \frac{\sqrt{3}}{2} \sin 80^{\circ}$	1/2
	<u> </u>	Page No 1	0 /00

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme						
3	f)	$= \frac{\sqrt{3}}{4} \left[2 \sin 20^{\circ} \sin 40^{\circ} \right] \sin 80^{\circ}$ $= \frac{\sqrt{3}}{4} \left[\cos \left(-20^{\circ} \right) - \cos 60^{\circ} \right] \sin 80^{\circ}$ $= \frac{\sqrt{3}}{4} \left[\cos 20^{\circ} - \frac{1}{2} \right] \sin 80^{\circ}$ $= \frac{\sqrt{3}}{4} \left[\cos 20^{\circ} \sin 80^{\circ} - \frac{1}{2} \sin 80^{\circ} \right]$ $= \frac{\sqrt{3}}{4} \left[1 \cos 20^{\circ} \sin 80^{\circ} - \frac{1}{2} \sin 80^{\circ} \right]$	1/2						
		$ = \frac{\sqrt{3}}{4} \left[\frac{1}{2} 2 \cos 20^{\circ} \sin 80^{\circ} - \frac{1}{2} \sin 80^{\circ} \right] $	1						
		$= \frac{\sqrt{3}}{8} \left[\sin 100^{\circ} - \sin (-60) - \sin 80^{\circ} \right]$ $= \frac{\sqrt{3}}{8} \left[\sin (2 \times 90^{\circ} - 80) + \frac{\sqrt{3}}{2} - \sin 80^{\circ} \right]$	1						
		$= \frac{\sqrt{3}}{8} \left[\sin 80^{0} + \frac{\sqrt{3}}{2} - \sin 80^{0} \right]$							
		$=\frac{3}{16}$	1/2						
4		Solve any <u>FOUR</u> of the following:	16						
	a)	Prove that: $\sin(A - B) = \sin A \cos B - \cos A \sin B$	04						
	Ans	P P P P P P P P P P P P P P P P P P P							
		Consider a standard unit circle							
		Let P,Q,R,S be points such that							
		$\angle XOP = A$, $\angle XOQ = B$, $\angle XOR = A - B$							
		From fig. $(ROO - A - B)$							
		$\angle POQ = A - B$ $\therefore \angle POQ = \angle XOR$							
		$\therefore \text{Chord } PQ = \text{Chord } RS$	1/2						
		$P(\cos A, \sin A)$, $Q(\cos B, \sin B)$	'-						
		Page No 1	1.420						

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme				
4	a) $R \left[\cos(A-B), \sin(A-B)\right], S(1,0)$ $\sqrt{(\cos A - \cos B)^{2} + (\sin A - \sin B)^{2}} = \sqrt{\left[\cos(A-B) - 1\right]^{2} + \left[\sin(A-B) - 0\right]^{2}}$ $(\cos A - \cos B)^{2} + (\sin A - \sin B)^{2} = \left[\cos(A-B) - 1\right]^{2} + \left[\sin(A-B) - 0\right]^{2}$						
		$ \therefore \cos^2 A + \cos^2 B - 2\cos A \cos B + \sin^2 A + \sin^2 B - 2\sin A \sin B = \cos^2 (A - B) + 1 - 2\cos (A - B) + \sin^2 (A - B) $	1/2				
		$\therefore 1 + 1 - 2(\cos A \cos B + \sin A \sin B) = 1 + 1 - 2\cos(A - B)$	1/2				
		$\therefore \cos A \cos B + \sin A \sin B = \cos (A - B)$	1				
		Replace A by $\left(\frac{\pi}{2} + A\right)$ in above equation					
		$\therefore \cos\left(\frac{\pi}{2} + A\right) \cos B + \sin\left(\frac{\pi}{2} + A\right) \sin B = \cos\left(\frac{\pi}{2} + A - B\right)$	1/2				
		$\therefore -\sin A \cos B + \cos A \sin B = -\sin (A - B)$					
		$\therefore \sin(A - B) = \sin A \cos B - \cos A \sin B$	1/2				
	b)	Prove that: $\frac{1 - \tan 2\theta \cdot \tan \theta}{1 + \tan 2\theta \cdot \tan \theta} = \frac{\cos 3\theta}{\cos \theta}$	04				
		$1 + \tan 2\theta . \tan \theta \qquad \cos \theta$ $1 - \tan 2\theta . \tan \theta$					
	Ans	$\frac{1 + \tan 2\theta \cdot \tan \theta}{1 + \tan 2\theta \cdot \tan \theta}$					
		$= \frac{1 - \frac{\sin 2\theta}{\cos 2\theta} \cdot \frac{\sin \theta}{\cos \theta}}{1 + \frac{\sin 2\theta}{\cos \theta} \cdot \frac{\sin \theta}{\cos \theta}}$	1				
		$\cos 2\theta \cos \theta$ $\cos 2\theta \cos \theta - \sin 2\theta \sin \theta$	1				
		$= \frac{1}{\cos 2\theta \cos \theta + \sin 2\theta \sin \theta}$	1				
		$=\frac{\cos(2\theta+\theta)}{\cos(2\theta+\theta)}$	1				
		$\cos(2\theta - \theta)$ $\cos 3\theta$	1				
		$=\frac{\cos 3\theta}{\cos \theta}$	1				
			04				
	c)	Evaluate: $\tan \left[2 \tan^{-1} \frac{1}{5} \right]$	V-7				
	Ans	$\tan \left[2\tan^{-1}\frac{1}{5}\right]$					
		$= \tan \left[\tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{5} \right]$	1				
		Page No. 1	- 100				

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
4	c)	$= \tan \left[\tan^{-1} \left(\frac{1}{5} + \frac{1}{5} \right) \right]$ $\left[1 - \frac{1}{5} \cdot \frac{1}{5} \right]$	1
		$= \tan \left[\tan^{-1} \left(\frac{5}{12} \right) \right]$	1
		$=\frac{5}{12}$ OR	1
		Let $\tan^{-1} \frac{1}{5} = \theta$ $\therefore \tan \theta = \frac{1}{5}$	1
		$\therefore \tan \left[2 \tan^{-1} \frac{1}{5} \right] = \tan \left[2 \theta \right]$ $= \frac{2 \tan \theta}{1 - \tan^2 \theta}$	1
		$=\frac{2\left(\frac{1}{5}\right)}{1-\left(\frac{1}{5}\right)^2}$	1
		$=\frac{5}{12}$	1
	d) Ans	Show that : $\sin 50^{\circ} - \sin 70^{\circ} + \sin 10^{\circ} = 0$ $\sin 50^{\circ} - \sin 70^{\circ} + \sin 10^{\circ}$	04
		$= 2 \cos \left(\frac{50^{0} + 70^{0}}{2}\right) \sin \left(\frac{50^{0} - 70^{0}}{2}\right) + \sin 10^{0}$	1
		$= 2 \cos 60^{\circ} \sin \left(-10^{\circ}\right) + \sin 10^{\circ}$	1
		$= 2\left(\frac{1}{2}\right) \sin(-10^{0}) + \sin 10^{0}$	1
		$=-\sin 10^{\circ}+\sin 10^{\circ}$	1/2
			1/2
	e)	Prove that: $\tan A \tan (60 - A) \tan (60 + A) = \tan 3A$	04
	Ans	$\tan A \tan (60 - A) \tan (60 + A)$	
		$= \tan A \left(\frac{\tan 60 - \tan A}{1 + \tan 60 \tan A} \right) \left(\frac{\tan 60 + \tan A}{1 - \tan 60 \tan A} \right)$	1

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
4	e)	$= \tan A \left(\frac{\sqrt{3} - \tan A}{1 + \sqrt{3} \tan A} \right) \left(\frac{\sqrt{3} + \tan A}{1 - \sqrt{3} \tan A} \right)$	1
		$= \tan A \left(\frac{3 - \tan^2 A}{1 - 3 \tan^2 A} \right)$	1
			1/2
		$= \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}$	1/2
		$= \tan 3 A$	
		OR (17)	
		$\tan A \tan (60 - A) \tan (60 + A)$	
		$= \frac{\sin A \sin (60 - A) \sin (60 + A)}{\cos A \cos (60 - A) \cos (60 + A)}$	
		$\sin A \left(\sin 60 \cos A - \cos 60 \sin A\right) \left(\sin 60 \cos A + \cos 60 \sin A\right)$	
		$= \frac{\sin A \left(\sin 60 \cos A + \cos 60 \sin A\right) \left(\sin 60 \cos A + \cos 60 \sin A\right)}{\cos A \left(\cos 60 \cos A + \sin 60 \sin A\right) \left(\cos 60 \cos A - \sin 60 \sin A\right)}$	1
		$= \frac{\sin A \left(\sin^2 60 \cos^2 A - \cos^2 60 \sin^2 A\right)}{\cos A \left(\cos^2 60 \cos^2 A - \sin^2 60 \sin^2 A\right)}$	
		$= \frac{\sin A\left(\left(\frac{\sqrt{3}}{2}\right)^2 \cos^2 A - \left(\frac{1}{2}\right)^2 \sin^2 A\right)}{\cos A\left(\left(\frac{1}{2}\right)^2 \cos^2 A - \left(\frac{\sqrt{3}}{2}\right)^2 \sin^2 A\right)}$	1
		$ \sin A \left(\frac{3}{2} \cos^2 A - \frac{1}{4} \sin^2 A \right) $ $ \sin A \left(\frac{3}{4} \cos^2 A - \frac{1}{4} \sin^2 A \right) $	
		$= \frac{\sin A \left(\frac{-\cos A\sin A}{4}\right)}{\cos A \left(\frac{1}{4}\cos^2 A - \frac{3}{4}\sin^2 A\right)}$	
		$= \frac{\sin A \left(3\cos^2 A - \sin^2 A\right)}{\cos A \left(\cos^2 A - 3\sin^2 A\right)}$	1/2
		$= \frac{\sin A \left(3 \left(1 - \sin^2 A\right) - \sin^2 A\right)}{\cos A \left(\cos^2 A - 3 \left(1 - \cos^2 A\right)\right)}$	1/2
		$= \frac{\sin A (3 - 3 \sin^2 A - \sin^2 A)}{\cos A (\cos^2 A - 3 + 3 \cos^2 A)}$	
		$= \frac{3 \sin A - 4 \sin^3 A}{4 \cos^3 A - 3 \cos A}$	
		$=\frac{\sin 3A}{}$	1/2
		$\cos 3A$	
<u> </u>	1	Page No.1	7/20

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
4	e)	$= \tan 3A$	1/2
	f)	Without using calculator find the value of	04
		$\sin 150^{\circ} + \cos 300^{\circ} - \tan 315^{\circ} + \sec^2 3660^{\circ}$	
	Ans	$\sin 150^{\circ} = \sin (2 \times 90 - 30) = \sin 30 = \frac{1}{2}$	1/2
		$\cos 300^{\circ} = \cos (4 \times 90 - 60) = \cos 60 = \frac{1}{2}$	1/2
		$\tan 315^{\circ} = \tan (4 \times 90 - 45) = -\tan 45 = -1$	1/2
		$\sec 3660^{\circ} = \sec (40 \times 90 + 60) = \sec 60 = 2$	1/2
		$\therefore \sin 150^{0} + \cos 300^{0} - \tan 315^{0} + \sec^{2} 3660^{0}$	
		$=\frac{1}{2}+\frac{1}{2}-(-1)+(2)^2$	1
			1
		= 6	
5		Solve any <u>FOUR</u> of the following:	16
	a)	Prove that $\sin 3A = 3\sin A - 4\sin^3 A$	04
	Ans	sin 3 A	1/2
		$= \sin(2A + A)$	1
		$= \sin 2A \cos A + \cos 2A \sin A$	1
		$= 2 \sin A \cos A \cos A + (\cos^2 A - \sin^2 A) \sin A$	1
		$= 2 \sin A \cos^2 A + (1 - \sin^2 A - \sin^2 A) \sin A$	1/2
		$= 2 \sin A (1 - \sin^2 A) + (1 - 2 \sin^2 A) \sin A$	1/2
		$= 2 \sin A - 2 \sin^3 A + \sin A - 2 \sin^3 A$	/2
		$= 3\sin A - 4\sin^3 A$	1/2
			04
	b)	Show that $\frac{\sin 4A + \sin 5A + \sin 6A}{\cos 4A + \cos 5A + \cos 6A} = \tan 5A$	04
	Ans	$\frac{\sin 4A + \sin 5A + \sin 6A}{}$	
	7.113	$\cos 4A + \cos 5A + \cos 6A$ $(\sin 4A + \sin 6A) + \sin 5A$	
		$= \frac{(\sin 4A + \sin 6A) + \sin 5A}{(\cos 4A + \cos 6A) + \cos 5A}$	
		$= \frac{2\sin\left(\frac{4A+6A}{2}\right)\cos\left(\frac{4A-6A}{2}\right)+\sin 5A}{2\cos\left(\frac{4A+6A}{2}\right)\cos\left(\frac{4A-6A}{2}\right)+\cos 5A}$	1
		$2\cos\left(\frac{4A+6A}{2}\right)\cos\left(\frac{4A-6A}{2}\right)+\cos 5A$	
		Page No. 1	0./20

SUMMER – 17 EXAMINATION

Model Answer

		Model Allower	
Q. No.	Sub Q. N.	Answer	Marking Scheme
5	b)	$2\sin 5A\cos \left(-A\right)+\sin 5A$	1
		$= \frac{1}{2\cos 5 A \cos (-A) + \cos 5 A}$	
		$= \frac{\sin 5 A \left(2 \cos \left(-A\right)+1\right)}{}$	
		$= \frac{1}{\cos 5 A \left(2 \cos \left(-A\right)+1\right)}$	1
		$= \tan 5 A$	1
		- tail 3 A	
	c)	Show that $\cos^{-1}\left(\frac{4}{5}\right) - \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{63}{65}\right)$	04
	Ans	Let $\cos^{-1}\left(\frac{4}{5}\right) = A$	
		$\therefore \cos A = \frac{4}{5}$	
		$\therefore \sin^2 A = 1 - \cos^2 A$	
		$=1-\frac{16}{25}$	
		$=\frac{9}{25}$	
		25	
		$\therefore \sin A = \frac{3}{5}$	1
		$\cos^{-1}\left(\frac{12}{13}\right) = B$	
		$\therefore \cos B = \frac{12}{13}$	
		$\therefore \sin^2 B = 1 - \cos^2 B$	
		$=1-\frac{144}{169}$	
		$=\frac{25}{169}$	
		$\therefore \sin B = \frac{5}{13}$	1
		$\therefore \cos(A - B) = \cos A \cos B + \sin A \sin B$	

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
5	c)	$= \frac{4}{5} \frac{12}{13} + \frac{3}{5} \frac{5}{13}$	
		$5 \ 13 5 \ 13$ $= \frac{48}{48} + \frac{15}{48}$	
		65 65	1
		$\therefore \cos\left(A - B\right) = \frac{63}{65}$	
		$\therefore A - B = \cos^{-1}\left(\frac{63}{65}\right)$	
		$\therefore \cos^{-1}\left(\frac{4}{5}\right) - \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{63}{65}\right)$	1
		OR	
		Let $\cos^{-1}\left(\frac{4}{5}\right) = A$	
		$\therefore \cos A = \frac{4}{5}$	
		$\therefore \tan A = \frac{3}{4}$	
		$A = \tan^{-1}\left(\frac{3}{4}\right)$ $A = 12$	
		$\therefore \cos^{-1}\left(\frac{4}{5}\right) = \tan^{-1}\left(\frac{3}{4}\right)$	1
		$\cos^{-1}\left(\frac{12}{13}\right) = B$	
		$\therefore \cos B = \frac{12}{13}$	
		$\therefore \tan B = \frac{5}{12}$	
		$B = \tan^{-1}\left(\frac{5}{12}\right)$	
		$\therefore \cos^{-1}\left(\frac{12}{13}\right) = \tan^{-1}\left(\frac{5}{12}\right)$	1
		$L.H.S. = \tan^{-1}\left(\frac{3}{4}\right) - \tan^{-1}\left(\frac{5}{12}\right)$	
		$= \tan^{-1} \left[\begin{array}{c} \frac{3}{4} - \frac{5}{12} \\ \frac{4}{1} + \frac{3}{4} \frac{5}{12} \end{array} \right]$	1
		Dega No. 2	

SUMMER – 17 EXAMINATION

Model Answer

	·		
Q. No.	Sub Q. N.	Answer	Marking Scheme
5	c)	$= \tan^{-1} \left(\frac{36 - 20}{48} \right)$ $= \tan^{-1} \left(\frac{16}{48} \right)$ $= \tan^{-1} \left(\frac{\frac{16}{48}}{\frac{48 + 15}{48}} \right)$ $= \tan^{-1} \left(\frac{16}{63} \right)$	1/2
		Let $\tan^{-1}\left(\frac{16}{63}\right) = C$ $\therefore \tan C = \frac{16}{63}$ $\therefore \cos C = \frac{63}{65}$ $\therefore C = \cos^{-1}\left(\frac{63}{65}\right)$ $\therefore R.H.S. = \cos^{-1}\left(\frac{63}{65}\right)$ 63 C	1/2
	d)	Find 'p' if the lines $3x + 4py + 8 = 0$ and $3py - 9x + 10 = 0$ are perpendicular to	04
	Ans	each other $L_{1}: 3x + 4 py + 8 = 0 \text{and}$ $L_{2}: -9x + 3 py + 10 = 0$ $\therefore \text{ slope } = \frac{-a}{b}$	
		$m_1 = \frac{-3}{4 p}$ $m_2 = \frac{9}{3 p}$	1
		lines are perpendicular $\therefore m_1 m_2 = -1$ $\frac{-3}{4p} \frac{9}{3p} = -1$	1

SUMMER – 17 EXAMINATION

Model Answer

		<u>Model Allower</u>	
Q. No.	Sub Q. N.	Answer	Marking Scheme
5	d)	$\therefore \frac{9}{4 p^2} = 1$	
		$\therefore \frac{9}{4 p^2} = 1$ $\therefore \frac{9}{4} = p^2$	
		$\therefore p = \pm \frac{3}{2}$	1
	e)	Find the angle between the lines : $3x - y + 4 = 0$ and $2x + y - 3 = 0$	04
	Ans	$L_1: 3x - y + 4 = 0$ and $L_2: 2x + y - 3 = 0$	
		$\therefore \text{ slope } = \frac{-a}{b}$	
		$\therefore m_1 = \frac{-3}{-1} = 3$	1
		$\therefore m_2 = \frac{-2}{1} = -2$	1
		$\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $	
		$\therefore \tan \theta = \left \frac{3+2}{1+3(-2)} \right $	1
		$\therefore \tan \theta = \left -1 \right $ $\therefore \tan \theta = 1$	
		$\therefore \theta = \tan^{-1}(1)$	
		$\therefore \theta = 45^{\circ} \text{or} \frac{\pi}{4}$	1
	f)	Find the equation of straight line passing through the point of intersection of lines $4x + 3y = 8$ and $x + y = 1$ and parallel to the line $5x - 7y = 3$	04
	Ans	4x + 3y = 8 and x + y = 1 and parametric the fine 3x - 7y = 3 $4x + 3y = 8$	
	AIIS	x + y = 1	
		4x + 3y = 8	
		3x + 3y = 3	
		x = 5	1

SUMMER – 17 EXAMINATION

Model Answer

		<u>Model Allswel</u> Subject Code.	1/104
Q. No.	Sub Q. N.	Answer	Marking Scheme
5	f)	$\therefore y = -4$	1
		Point of intersection is $(x, y) = (5, -4)$ line is parllel to the line $5x - 7y = 3$ slope of required line $m = \frac{-a}{b} = \frac{5}{7}$ equation of line is	1
		$y - y_1 = m(x - x_1)$ $\therefore y + 4 = \frac{5}{7}(x - 5)$ $\therefore 7y + 28 = 5x - 25$ $\therefore 5x - 7y - 53 = 0$	1
6		Solve any <u>FOUR</u> of the following:	16
	a)	Find the equation of straight line which is perpendicular bisector of the line joining	04
	Ans	the points $A(8,-1)$ and $B(6,3)$ Let P be midpoint of AB	
	Alis	$P \text{ is } \left(\frac{8+6}{2}, \frac{-1+3}{2}\right)$ $i.e.P(7,1)$ Slope of $AB, m_1 = \frac{3-(-1)}{6-8}$	1
			1
		$m_1 = -2$ \therefore required line is perpendicular to AB $\therefore m_1 m_2 = -1$	
		$\therefore m_2 = \frac{1}{2}$	1
		$\therefore \text{ equation of required line is}$ $y - y_1 = m_2 (x - x_1)$	
		$\therefore y - 1 = \frac{1}{2}(x - 7)$ $\therefore x - 2y - 5 = 0$	1
	b)	Find the equation of the line whose intercept on the X-axis is double that on the Y-axis and passing through the point (4,1)	04
	Ans	Let x-intercept = a	
		y-intercept = b	
		Dage No 2	2/22

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.		Answer									
6	b)	from given $a = 2b$									1/2	
		equation of l	equation of line is									
		$\frac{x}{a} + \frac{y}{b} = 1$										
		$\therefore \frac{x}{2b} + \frac{y}{b} = 1$										
		$\therefore x + 2y = 2k$	b								1/2	
		at (4,1)										
		6 = 2b									1	
		$\therefore b = 3$										
		∴ equation of	f line is								1	
		x + 2 y = 6									1	
	c)	From the following	lowing d	ata invest	igate wh	ich set is	more co	nsistent			04	
		Set a.:	m.=x	S.D.= σ								
		Set I	83.4	5.9								
		Set II 5	51.85	7.45								
	Ans	Let V_1 and V	be coef	ficient of	 variatio	ns for set	I and set	t II respe	ctively			
		Let V_1 and V_2 be coefficient of variations for set I and set II respectively $\therefore V_1 = \frac{\sigma}{-} \times 100$										
		x										
		$=\frac{5.9}{83.4}\times100$								1½		
		83.4 = 7.07									1/2	
		$V_2 = \frac{7.45}{51.85} \times$	100									
			100								1½	
		= 14.36										
										1		
		500 1 15 111 01	10 0011818	ion t								
	d)	Find Range and coefficient of Range for the following data:								04		
		Marks	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90-99		
		No. of Students	10	15	16	20	21	22	09	08		
	1									Page No.2		

SUMMER – 17 EXAMINATION

Model Answer

Q.	Sub						Angu	10 K					Marking
No.	Q. N.						Answ	rer					Scheme
6	Ans	M	arks	19.5-	29.5-	39.5			59.5-	69.5-	79.5-	89.5-	
				29.5	39.5	49.5	59	0.5	69.5	79.5	89.5	99.5	
			o. of dents	10	15	16	2	0	21	22	09	08	
				S = 99.5 = 80 of Range	$=\frac{L-S}{L+S}$								2
					$= \frac{99.5 - 1}{99.5 + 1}$ $= 0.672$								2
	e)	Find		an deviat			1	1					04
			Marks	S	3 4	5 6	5 7	8					
		No.	of Stu	dents	1 3	7 5	5 2	2					
		L							_				
	Ans	x_i	f_i	$f_i x_i$	$d_i = 0$	$\frac{-}{x_i - x}$	$ d_i $	f_i	$ d_i $				
		3	1	3	-2	.5	2.5	2	2.5				
		4	3	12	-1	.5	1.5	4	1.5				
		5	7	35	-0	.5	0.5	3	3.5				2
		6	5	30	0.	5	0.5	2	2.5				
		7	2	14	1.	5	1.5		3				
		8	2	16	2.	5	2.5		5				
			20	110				2	21				
		Mean	$\frac{1}{x} - \sum_{x} \frac{1}{x}$	$\frac{\sum_{i=1}^{n} f_i x_i}{N} = \frac{1}{N}$	10								
	1	1										Page No.25	:/20

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.							Answer							Marking Scheme
6	e)	$x = 5$ $M \cdot D \cdot = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^$	$\frac{\sum_{i} f_{i} \left d_{i} \right }{\sum_{i} f_{i}}$	<u> </u>											1
	f)	Find the		rd de	eviation 1	for th	ne fo	llowing	data	ı :				T 1	04
		Class Interva		0-5	5-10	10-	-15	15-20	20	0-25	25-3	30	30-35	35-40	
		Frequer	ncy	03	05	0	9	15		20	16)	10	02	
	Ans	Class	x_i		f_i			$f_i x_i$		x_i^2	2		$f_i x_i^2$		
		0-5	2.5		3			7.5		6.2	25	,	18.75		
		5-10	7.5		5			37.5		56.	25	2	281.25		
		10-15	12.5	,	9			112.5		156	156.25 1		406.25		
		15-20	17.5	,	15			262.5		306	.25	4.	593.75		
		20-25	22.5	,	20			450		506	.25	-	10125		2
		25-30	27.5	,	16			440		756	.25	-	12100		
		30-35	32.5		10			325		1056			0562.5		
		35-40	37.5	,	2			75		1406	5.25	2	2812.5		
					$\sum f_i = 8$	30	Σ	$f_i x_i = 171$	0				$\int_{0}^{\infty} f_{i} x_{i}^{2} =$		
												4	1900		
		M ean x =	$=\frac{\sum f_i}{N}$	_	$\frac{1710}{80}$ = 21.375										1

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.					Answer				Marking Scheme
6	f)	S.I	$D \cdot \sigma = \sqrt{\frac{\sum}{2}}$ $= \sqrt{\frac{4}{2}}$ $\sigma = 8.17$		$\frac{(\bar{x})^2}{(21.375)^2}$					1
			Class	x_i	f_i	$d_i = \frac{x_i - a}{h}$	$f_i d_i$	d_i^2	$f_i d_i^2$	
			0-5	2.5	3	-4	-12	16	48	
			5-10	7.5	5	-3	-15	9	45	
			10-15	12.5	9	-2	-18	4	36	
			15-20	17.5	15	-1	-15	1	15	
			20-25	22.5	20	0	0	0	0	
			25-30	27.5	16	1	16	1	16	
			30-35	32.5	10	2	20	4	40	2
			35-40	37.5	2	3	6	9	18	
					$\sum f_i$		$\sum_{i=1}^{n} f_i d_i$		$\sum_{i=1}^{\infty} f_i d_i^2$ = 218	
					= 80		= -18		= 218	
		S.11		$\frac{8}{0} - \left(\frac{-1}{80}\right)$	$ \left(\frac{\sum_{i=1}^{\infty} f_{i} d_{i}}{N}\right)^{2} \times 8 $ $ \left(\frac{8}{N}\right)^{2} \times 5 $	h				1 1

SUMMER – 17 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answer	Marking Scheme
		Important Note In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.	