Consignes:

- Pour la partie 1 (Questions à choix multiple) veuillez ne pas répondre sur le sujet, mais sur la grille prévue à cet effet. Les questions peuvent présenter une ou plusieurs bonnes réponses. En cas de mauvaise réponse il est attribué une note négative.
- Pour la partie 2 (Application) veuillez répondre sur la copie.
- Pour cette épreuve de 3 heures aucun document n'est autorisé et la calculatrice collège est tolérée.

BON COURAGE!

* * * * * * * * * * * * * * * *

Partie 1: QUESTIONS À CHOIX MULTIPLE

1.	1. Parmi les propositions suivantes, lesquelles sont vraies?				
	(1) [□]	Le modèles paramétriques définissent des courbes et des surfaces continues et de tangentes continues			
	(2)	Une courbe de Bézier rationnelle peut modéliser un cercle.			
	(3)	Un cercle peut être modélisé par une B-spline de degré supérieur à 5.			
	(4)	L'algorithme de De Boor permet de trouver un point sur la courbe B-spline.			

2. Les courbes B-spline ont pour avantage sur les courbes de Bézier :

aucune des réponses précédentes n'est correcte.

courbes	b-spline ont pour avantage sur les courbes de Bezier:
(1)	un contrôle local de la forme de la courbe par les points de contrôle.
(2) ^[2]	la capacité de représenter des courbes polynomiales.
(3)	la capacité de modifier la courbe sans déplacer les points de contrôle.
(4) ^[]	la définition de l'équation de la courbe à partir des fonctions de base.
(5)	aucune des réponses précédentes n'est correcte.

3. On considère les fonctions de base sur le graphe ci-dessous :

4. Les polynômes de Bernstein ...

(1)	sont des polynômes d'interpolation.
(2)	sont toujours cubiques.
(3)	sont toujours positifs.
(4)	forment une partition de l'unité.
(5)□	aucune des réponses précédentes n'est correcte.

5. On considère une courbe B-spline. Parmi les affirmations suivantes lesquelles sont vraies?

(1)	On peut avoir deux points de contrôle identiques.
(2)	On peut avoir des noœuds coïncidents seulement aux extrêmes du vecteur de nœuds.
(3)	On peut construire une courbe de degré $m \ge n$, avec n le nombre de points de contrôle.
(4)	Si on augmente l'ordre de la courbe B-spline, sa longueur se réduit.
(5)	Si on modifie un point de contrôle, on modifie la courbe entière.

6.	Une courbe	e de Bézier
	(1)	interpole ses points de contrôle.
	(2)	définie par 4 points de contrôle, peut avoir degré 3 ou 4.
	(3)	interpole le premier et dernier point de contrôle.
	(4) 🖾	est invariante par transformations affines.
	(5)□	aucune des réponses précédentes n'est correcte.
7	Infographie	o c'est
	(1)	le graphisme d'information.
	(1) \square	infographics en anglais.
	(2)	la création d'images numériques assistées par ordinateur.
	(3)— (4)□	la modélisation 2D et 3D.
	(5)	aucune des réponses précédentes n'est correcte.
0	Coit	and a la Decimala dance of
٥.		purbe de Bézier de degré 3.
	(1)	Elle a 4 points de contrôle.
	(2) C	On peut l'élever au degré 4. Elle est à contrôle locale.
	(3)	Elle peut être définie à partir d'un paramètre $t \in [1, 2]$.
	$^{(4)}_{(5)}\square$	aucune des réponses précédentes n'est correcte.
	(5)	aucune des reponses precedentes n'est correcte.
9.	Une courbe	
	(1)	dépend seulement des points de contrôle.
	(2)	peut avoir des discontinuités.
	(3)	n'a pas la propriété de variation diminishing.
	(4) -	permet un contrôle locale de la courbe.
	(5)	aucune des réponses précédentes n'est correcte.
10.	Une courbe	e de Bézier rationnelle
	(1)	ajoute un degré à la courbe de Bézier.
	(2)	ne permet pas de dessiner des coniques.
	(3)□	est une courbe de Bézier classique si tous les poids ont valeur 0.
	(4)	ne change pas les polynômes de Bernstein.
	(5)	aucune des réponses précédentes n'est correcte.
11.	Soit une co	ourbe B-spline uniforme de degré 2 contrôlée par les points P_0 , P_1 , P_2 , P_3 , P_4 . Parmi les propositions
		esquelles sont vraies?
	(1)	L'ordre de la B-spline est 1.
0	(α) Π	Le vecteur nodale est formé par 8 points.
1	(E)	Si $P_0 = P_4$, la courbe est fermée.
	(4) □	Le vecteur nodale peut être $(-1 - 0.5 \ 0 \ 0.5 \ 1 \ 1.5 \ 1.7 \ 2)$.
	(5)	aucune des réponses précédentes n'est correcte.
19	CGAO sign	vific
12.		calcul géométrique animé des objets
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	calcul géométrique assisté par ordinateur
	(2) \square	conception géométrique assistée par ordinateur
	(3) \square	conception assistée par ordinateur
	(4) \square	aucune des réponses précédentes n'est correcte.
	(5)	adedne des reponses precedentes il est correcte.
13.		ourbe B-spline de degré 3 contrôlée par les points $\mathbf{p}_0,\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3,\mathbf{p}_4,\mathbf{p}_5.$ La courbe passera par le
	point \mathbf{p}_3 si	
	(1)	le vecteur nodale est (0 0 0 0 1 2 3 3 3 3).
	(2)	le vecteur nodal est (0 1 2 2 3 3 4 4 5 6).
	(3)	$\mathbf{p}_2 = \mathbf{p}_3 = \mathbf{p}_4$
	(4) ^[]	$\mathbf{p}_2 = \mathbf{p}_3$
	(5)□	aucune des réponses précédentes n'est correcte.
14.	Une courbe	B-spline rationnelle décrite par 3 points de contrôle avec $\omega_0=\omega_2=1$ peut être
	(1)	une ellipse si $\omega_1 < 0$
	(1) \square	une parabole si $\omega_1 = 1$
Δ	(3)	une hyperbole si $\omega_1 > 1$
-((3) □ (4) □	un arc de cercle si $\omega_1 > 2$
	(5)	aucune des réponses précédentes n'est correcte.

- Pour une courbe B-spline de degré m ...
 - (1) \square l'ordre est k = m + 1.
 - (2) l'ordre est k = m 1.
 - (3) l'ordre dépend du nombre des points de contrôle.
 - (4) nous avons m+1 points de contrôle.
 - $_{(5)}\Box$ nous avons m points de contrôle.
- 16. On considère la courbe sur le graphe ci-dessous :

- C'est une courbe B-spline, mais elle n'est pas une courbe de Bézier.
- Le vecteur nodale peut être (0 1 2 3 4).
- Son degré est 5.
- Son degré est 4.
 - On ne peut rien dire sur cette courbe.
- 17. On considère la courbe sur le graphe ci-dessous :

- (1)□ C'est une courbe de Bézier.
- Elle sort de l'enveloppe convexe.
- (3) Elle a degré 7.
- 4)□ Elle ne peut pas être une courbe B-spline.
- (5)□ aucune des réponses précédentes n'est correcte.

18. Le vecteur de nœuds ...

9

- (1) est une suite finie de réels strictement croissants.
- (2) est une suite finie d'entiers croissants.
- (3)□ est une suite infinie de réels strictement croissants.
- (4) est unique
- (5) aucune des réponses précédentes n'est correcte.
- 19. Les fonctions de base B-spline de degré m ...
 - (1) \square couvrent m sous-intervalles.
 - (2) couvrent m+1 sous-intervalles.
 - (3) forment une partition de l'unité.
 - (4) peuvent être nulles.
 - (5)□ aucune des réponses précédentes n'est correcte.
- 20. L'algorithme de De Casteljau ...
 - (1)□ augmente le degré de la courbe de Bézier.
 - calcule un point sur la courbe de Bézier avec des interpolations quadratiques.
 - (3) c'est un algorithme récursif.
 - (4) peut être utilisé pour subdiviser la courbe de Bézier.
 - (5)□ aucune des réponses précédentes n'est correcte.

Exercice 1.

Soient $p_0 = (1,0), p_1 = (2,1), p_2 = (2,-1)$ et $p_3 = (3,0)$ 4 points de contrôle.

- 1. Au moyen de l'algorithme de De Casteljau, calculer P(t) pour $t \in [0, 1]$.
- 2. Comment s'appelle cette courbe P(t)?
- 3. Quelle est le degré de P(t)?
- 4. Faire la construction géométrique pour $t=\frac{1}{2}$ et $t=\frac{1}{4}$ et donner l'allure de P(t).

Exercice 2.

Soit $P(t) = (1 + t + t^2, t^3)$ une courbe de Bézier. Trouver ses points de contrôle.

Exercice 3.

Construire un vecteur de nœuds et des points de contrôle (le moins possible) dans le plan de sorte que la B-spline de degré 3 associée passe par les points M = (1,0) et N = (3,0) avec en ces deux points une tangente dirigée par (1,1).

Exercice 4.

On rappelle que le quart de cercle de figure 1 ci-dessous correspond à une courbe de Bézier rationnelle avec les points $\mathbf{p}_0(1,0),\,\mathbf{p}_1(1,1)$ et $\mathbf{p}_2(0,1)$ et les poids associés $\omega_0=1,\,\omega_1=\frac{\sqrt{2}}{2}$ et $\omega_2=1$.

FIGURE 1 - Quart de cercle

FIGURE 2 - Lettre D

- 1. Quelle classe de courbes généralise les courbes B-spline? Comment on retrouve les courbes de Bézier et les courbes B-spline à partir de cette nouvelle classe de courbe? Quel type de courbes elle nous permet de dessiner?
- 2. Modéliser à l'aide de cette courbe qui généralise les courbes B-spline, la courbe de la figure 2 ci-dessus représentant la lettre D, courbe formée uniquement de quarts de cercle et de segments de droite.
 On décrira cette courbe de degré 2 par un vecteur de nœuds, les points de contrôle et les poids associés.

FORMULAIRE

• Polynômes de Bernstein (de degré n) :

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}, \quad i = 0, \dots, n; \ t \in [0, 1]$$

. Polynômes de Bernstein rationnels (de degré n):

$$R_i^n(t) = \frac{\omega_i \ B_i^n(t)}{\sum_{i=0}^n \omega_i \ B_i^n(t)}, \quad t \in [0, 1], \ \omega_i \in \mathbb{R}$$

• Fonctions B-splines :

$$N_i^m(t) = \frac{t - t_i}{t_{i+m} - t_i} N_i^{m-1}(t) + \frac{t_{i+m+1} - t}{t_{i+m+1} - t_{i+1}} N_{i+1}^{m-1}(t)$$

$$N_i^0(t) = \begin{cases} 1 & \text{si } t_i \leqslant t < t_{i+1} \\ 0 & \text{sinon} \end{cases}$$

avec