Sprint 3 - Agility Design Document

April 18, 2024

Table of Contents

4			\sim 1	ITI	CII	I N / N /	IAR'	v
	_	-	υL	, , ,	อน	IVIIV	IAK	T.

- 1.1 PROJECT OVERVIEW
- 1.2 Purpose and Scope of this Specification

2. PRODUCT/SERVICE DESCRIPTION

- 2.1 PRODUCT CONTEXT
- 2.2 USER CHARACTERISTICS
- 2.3 Assumptions
- 2.4 Constraints
- 2.5 DEPENDENCIES

3. REQUIREMENTS

- 3.1 FUNCTIONAL REQUIREMENTS
- 3.2 SECURITY
 - 3.2.1 Protection
 - 3.2.2 Authorization and Authentication
- 3.3 PORTABILITY

4. REQUIREMENTS CONFIRMATION/STAKEHOLDER SIGN-OFF

5. SYSTEM DESIGN

- 5.1 ALGORITHM
- 5.2 System Flow
- 5.3 SOFTWARE
- 5.4 HARDWARE
- 5.5 TEST PLAN
- 5.6 TASK LIST/GANTT CHART
- 5.7 STAFFING PLAN

1. Executive Summary

1.1 Project Overview

This project is for CS104 and is an agility run to test the Sphero robot for both accuracy and speed for completing a full obstacle course. The robot must accurately follow the blue lines, avoiding the obstacles. It must jump over the ramp, then proceed to knock down as many of the pins (markers) as possible.

1.2 Purpose and Scope of this Specification

Intended audience

- Computer Scientists
- Software Engineers
- Robotic Engineers
- Class of Computer Science

In Scope

This document addresses the parts of the Sphero Program

- User Interface
- Java program of robot
- Errors and fixes to Sphero
- Planning and roles of members involved

Out of Scope

This document addresses parts not mentioned on Project or Sphero.

- Practical uses for Sphero
- System requirements
- Background information on members
- Spheros Origins
- Gives us a good idea for our future sprints

2. Product/Service Description

This section describes the factors that affect the Sphero product and its requirements.

- Public Use: Sphero is out for the general public for young audiences to gain an understanding in coding, science, music, and the arts.
- Internet Connection: in order to pair with the Sphero and access Sphero EDU, proper internet connection is necessary, otherwise, nothing can work.
- Activities: Sphero has many activities for people of all ages through Sphero Edu app and littleBits Classroom. Challenges can be completed through STEAM as well.
- Room Availability: We had to be able to adapt to the times that the room was being used.

2.1 Product Context

The device used, Sphero Sprk, is a part of a broader system of different Sphero robots. The other robots include, the Sphero Bolt, Sphero Mini, Sphero RVR+, Sphero Indi, and many more. All of these robots are connected through the same program, Sphero EDU, where types of Spheros can be paired and coded.

2.2 User Characteristics

This section describes the scope of the users.

- Students: Students will have little to no prior experience in Sphero and will use challenge activities to help them learn on the Sphero EDU app. Many tests and understanding of code will be gained through application problems. Student range however is just as broad when the learning curve of Sphero is understood.
- Professor: The Professor will have much more insight on Sphero and its capabilities. He
 or she will be able to assist others in learning Sphero and can possibly gain insight as
 well from teaching.
- Staff: Staff members overseeing the product will have more insight than students but potentially less insight in the functionality of Sphero than the professor. As the staff work through the project they will be able to understand the product more.

2.3 Assumptions

- Sphero charged: It is assumed that the Sphero is properly charged, it will take longer to
 do the testing and coding phase if not and charging will be required.
- Sphero EDU program: It is assumed that the Sphero EDU program should run properly but flaws or bugs are still plausible. This can affect the testing and coding phase, as well as the overall performance in the agility run. Multiple tests may be needed to perform and record a video that is fit for the requirements of the project.

April 11, 2024 Page 4 of 17

Phone and Computer availability: It is assumed that phones and computers will be
available at all times. If either were broken or dead, the project would not be able to be
completed in any aspect for planning, testing, coding, or videotaping.

2.4 Constraints

- Sphero availability: Only one member of the group is able to have the Sphero at the same time. If one member has it while being unavailable, the other members can not perform tests.
- If the security of the system is breached the program may be compromised and setbacks will occur due to privacy and protection.
- System resource constraints: Computers may not have enough storage to download the necessary Sphero EDU app. This will result in delays.
- Sphero mapping and consistency: Sphero is known to have faulty mapping in terms of its direction and turning. Sometimes turning is factored into the time and slows down the overall process.

2.5 Dependencies

Dependencies are what the program relies on to function

- For the system to run, the algorithm and the flow chart must be designed for a full plan
- Sphero will require either a computer or phone to run the program

3. Requirements

There are a few requirements that we must meet for the project to be successful. The Sphero robot must start at the origin (priority 1). The robot must follow along the blue lines #1, #2, #3, #4, and #5, avoiding the obstacles #1, #2, and #3 (priority 1). The robot

must successfully jump over the ramp (priority 1). The robot must knock down as many pins as possible when it reaches the end (priority 2). Extra points will be added for each pin knocked down and obstacles avoided.

3.1 Functional Requirements

Req#	Requirement	Comments	Priority	Date	SME
				Rvwd	Reviewed /
					Approved
AGILITY_01	Robot begins at starting		1	4/17	Approved
	point				
AGILITY_02	Robot follows the blue		1	4/17	Approved
	line, avoiding obstacle				
	#1, stopping at the end.				
AGILITY_03	Robot continues across		1	4/17	Approved
	the second blue line				
	avoiding obstacle #1 and				
	#2, stopping at the end.				
AGILITY_04	Robot continues across		1	4/17	Approved
	the third blue line				
	avoiding obstacle #2 and				
	obstacle #3, stopping at				
	the end.				
AGILITY_05	Robot continues across		1	4/17	Approved
	the fourth blue line,				
	avoiding obstacle #3 and				

	jumping over the ramp ending on the blue line.			
AGILITY_06	The robot turns and goes across the fifth blue line, knocking over as many pins as possible.	1	4/17	Approved
AGILITY_07	Robot ends	1	4/17	Approved

3.2 Security

3.2.1 Protection

There are many factors that protect the system from malicious or accidental access, modification, disclosure, destruction, or misuse.

- Data protection and encryption: All data is password protected and accounts are stored in a secure user database accessible only by administrators to Sphero EDU.
- Privacy Policy: No data is used for advertising. Data is only stored for app analytics.
 First and last names are optional .Sphero EDU does not use any cookies for marketing, tracking, or analytics purposes.
- Age restrictions: Users under 13 need parental permission to access Sphero EDU,
 children otherwise can not access Sphero EDU.
- Data integrity checks: Are implemented to maintain that everyone working on the
 program states who they are, what they add, and when. This ensures that no major
 errors are made, or at the very least are identifiable. It also ensures that the proper staff
 are working on the project and no malicious third party.

3.2.2 Authorization and Authentication

- When the project started, we were given Authorization by Professor Eckert to take the robot by signing it off.
- Github requires a sign before placing anything into the repository.

3.3 Portability

- Host Dependent Code: The code we do in SpheroEDU is 100% host dependent, but the app can be on every single device
- Our laptops are portable
- Our Sphero Robot is portable
- Code is only shared via GitHUB and pictures through iMessage
- The product works the same regardless of operating systems and devices with the same code

4. Requirements Confirmation/Stakeholder sign-off

Meeting Date	Attendees (name and role)	Comments
04/17/2024	Anthony S, Kooper K, Esha A	Discussed final design document roles, in addition to recording the video of the code implemented for sprint 3.

5. System Design

This section provides all of the details concerning the design and process of how the agility sprint program was created. It gives a sequence of the planning, algorithm, software, system flowchart,

April 11, 2024

Page 8 of 17

hardware, test plan, gantt chart, and staffing plan. All of these were developed and would not be possible if they had not been properly merged together.

5.1 Algorithm

This Algorithm is designed in terms of pseudocode on how the overall actual program will turn out. It suggests the speeds and time as , as it is unknown how fast and for how long it will take before actual tests.

- 1. Robot Starts at the origin
- 2. Roll at speed x at y degrees for z seconds
- 3. Delays for 2 seconds
- 4. Roll at speed x at y degrees for z seconds
- 5. Delays for 2 second
- 6. Roll at x speed at y degrees for z seconds
- 7. Delays for 2 seconds
- 8. Roll at fastest speed at y degrees for z seconds
- 9. Delays for 2 seconds
- 9. Roll at x speed at y degrees for z seconds
- End Program

5.2 System Flow

April 11, 2024 Page 10 of 17

5.3 Software

•	SpheroEDU is the coding language we used to program the output and performance for this
	sprint.

•	We used Github to	o upload our s	ystem design	document along	with o	ur video o	of the sprin	ıt

April 11, 2024

5.4 Hardware

- A Macbook and Iphones were used for designing, testing, and running the program. Also speaks when the robot says "I am the winner."
- SPRK Robot: Used in the accuracy run. Moves around the space to complete the trial. Turns red, orange, yellow, green, blue, purple in the experiment.
- Blue tape: the pathway of where the SPRK Robot should follow upon.

5.5 Test Plan

Reason for	Test	Expected Output	Observed Output	Staff	Pass/Fail
Test Case	Date			Name	
Robot moves	4/17/24	Robot avoids	Robot overshot the	Kooper,	Fail
across first blue		obstacle #1,	line.	Esha,	
line		stopping at the end		Anthony	
		of line #1			
Robot moves	4/17/24	Robot avoids	Robot went the	Kooper,	Fail
across first blue		obstacle #1,	wrong direction	Esha,	
line		stopping at the end		Anthony	
		of line #1			
Robot moves	4/17/24	Robot avoids	Robot produced the	Kooper,	Pass
across first blue		obstacle #1,	expected output	Esha,	
line		stopping at the end		Anthony	
		of line #1			
Robot moves	4/17/24	Robot avoids	Robot hit obstacle	Kooper,	Fail
across second		obstacle #1 and	#1 in turning	Esha,	
blue line		obstacle #2		Anthony	

		stopping at the end			
		of line #2			
		01 1110 112			
Robot moves	4/17/24	Robot avoids	Robot produced the	Kooper,	Pass
across second		obstacle #1 and	expected output	Esha,	
blue line		obstacle #2		Anthony	
		stopping at the end			
		of line #2			
Robot moves	4/17/24	Robot avoids	Robot moved at the	Kooper,	Fail
across line #3		obstacle #2 and #3,	wrong angle	Esha,	
		stopping at the end		Anthony	
		of line #3			
Robot moves	4/17/24	Robot avoids	Robot moved at the	Kooper,	Fail
across line #3		obstacle #2 and #3,	wrong angle, slightly	Esha,	
		stopping at the end	overshot	Anthony	
		of line #3			
Robot moves	4/17	Robot avoids	Robot produced the	Kooper,	Pass
across line #3		obstacle #2 and #3,	expected output	Esha,	
		stopping at the end		Anthony	
		of line #3			
Robot goes over	4/17/24	Robot jumps the	Robot did not go	Kooper,	Fail
the ramp on line		ramp and ends at	fast and long	Esha,	
#4		the end of line #4	enough, and ended	Anthony	
			on the ramp.		
Robot goes over	4/17/24	Robot jumps the	Robot went fast	Kooper,	Fail
the ramp on line		ramp and ends at	enough but	Esha,	
#4		the end of line #4	continued for too	Anthony	

			long after the blue		
Robot goes over	4/17/24	Robot jumps the	Robot produced the	Kooper,	Pass
the ramp on line		ramp and ends at	expected output	Esha,	
#4		the end of line #4		Anthony	
Robot moves	4/17/24	Robot knocks	Robot missed the	Kooper,	Fail
across line #5		overall of the the	pins	Esha,	
and knocks over		pins after moving		Anthony	
all pins		across line #5			
Robot moves	4/17/24	Robot knocks	Robot produced the	Kooper,	Pass
across line #5		overall of the the	expected output and	Esha,	
and knocks over		pins after moving	knocked over all	Anthony	
all pins		across line #5	pins		

5.6 Task List/Gantt Chart

5.7 Staffing Plan

Name	Role	Responsibility	Reports To
Kooper K	Project Supervisor	Divides roles, works on all aspects of the project. Oversees progress of the	Prof. Eckert
		project.	
Esha A	Project Editor	Edits the final SDD and make sure the project is	Prof. Eckert, Kooper K, Anthony
		structured properly.	S
Anthony S	Management and editor	Edits the final SDD, tests the robot and gets the video for gitHUB repository.	Prof. Eckert
		1	