STAT 345/445 Lecture 9

Differentiating under an integral sign – Section 2.4

 A technical section on when we can switch the order of limits, integrals, and sums

Moment Generating functions

etxf(x) is a function of both t and x

Proof of

$$\left. \frac{d}{dt} M_X(t) \right|_{t=0} = E(X)$$

goes like this:

$$\frac{d}{dt}M_X(t) = \frac{d}{dt}\int_{-\infty}^{\infty} e^{tx}f(x)dx = \int_{-\infty}^{\infty} \left(\frac{\partial}{\partial t}e^{tx}f(x)\right)dx$$

if we can differentiate under the integral sign

M(t)

$$\Rightarrow \frac{d}{dt}M_X(t) = \int_{-\infty}^{\infty} \sqrt{xe^{tx}} f(x) dx = E\left(Xe^{tX}\right)$$
$$\Rightarrow \frac{d}{dt}M_X(t) \Big|_{t=0} = E\left(Xe^{0\cdot X}\right) = E(X)$$

Differentiating under an integral sign

Theorem: (Simplified Leibnitz's Rule)

If $f(x, \theta)$ is differentiable with respect to θ and a and b are constants then

$$\frac{d}{d\theta} \int_{a}^{b} f(x,\theta) dx = \int_{a}^{b} \frac{\partial}{\partial \theta} f(x,\theta) dx$$

- Finite range integral \Rightarrow can switch the order of $\frac{d}{d\theta}$ and $\int dx$
- If $a = -\infty$ and/or $b = \infty$ we have to be careful
 - Recall: A derivative is a limit
 - ⇒ The issue is actually: When can we change the order of limits and integration?

What is it we want to do?

Recall:

$$\frac{\partial}{\partial \theta} f(x, \theta) = \lim_{\delta \to 0} \frac{f(x, \theta + \delta) - f(x, \theta)}{\delta}$$

Therefore:

$$\int_{-\infty}^{\infty} \frac{\partial}{\partial \theta} f(x, \theta) dx = \int_{-\infty}^{\infty} \lim_{\delta \to \infty} \frac{\zeta(x, \delta + \delta) - \zeta(x, \delta)}{\delta} \quad Q_{\chi}$$

$$\frac{\zeta(x,\theta+\delta)-\zeta(x,\phi)}{\delta}$$
 χ

$$\frac{d}{d\theta} \int_{-\infty}^{\infty} f(x,\theta) dx = \lim_{\delta \to \infty} \frac{\int_{-\infty}^{\infty} f(x,\theta+\delta) dx - \int_{-\infty}^{\infty} f(x,\delta) dx}{\delta}$$

$$= \lim_{\delta \to \infty} \int_{-\infty}^{\infty} \frac{f(x,\theta+\delta) - f(x,\delta)}{\delta}$$

$$\frac{\int_{-\infty}^{\infty} f(x,0+5)dx - \int_{-\infty}^{\infty} f(x,0)dx}{\tau}$$

$$\int_{0}^{\infty} \frac{f(x,0+2)-f(x,0)}{\xi}$$

When can we differentiate under the integral sign?

Theorem

If $f(x, \theta)$ is differentiable with respect to θ and there exists a constant $\delta_0 > 0$ and a function $g(x, \theta)$ that satisfies

(i)
$$\left| \frac{\partial}{\partial \theta} f(x, \theta) \right|_{\theta = \theta'} \leq g(x, \theta)$$

for all θ' such that $|\theta' - \theta| < \delta_0$

(ii)
$$\int_{-\infty}^{\infty} g(x,\theta) dx < \infty$$

then

desirative of
$$f(x_i \theta)$$

has to behave!

need to be

hounded by

some function

$$\frac{d}{d\theta} \int_{-\infty}^{\infty} f(x,\theta) dx = \int_{-\infty}^{\infty} \frac{\partial}{\partial \theta} f(x,\theta) dx$$

When can we differentiate under the integral sign?

- Grad: Understand that conditions (i) and (ii) basically mean:
 - The (partial) derivative $\frac{\partial}{\partial \theta} f(x, \theta)$ has to behave!
 - It has to be dominated by a function $g(x, \theta)$ that has a finite integral (w.r.t. x)
 - at least at some θ' close to θ
- UG: Just remember that changing the order of a derivative and an integral with an infinite range can't always be done

Example

• Let $X \sim \text{Expo}(\lambda)$. The pdf for X is

$$f(x) = \frac{1}{\lambda} e^{-x/\lambda}$$
 for $x > 0$

Show that for an integer $n \ge 1$

$$E\left(X^{n+1}\right) = \lambda E\left(X^{n}\right) + \lambda^{2} \frac{d}{d\lambda} E\left(X^{n}\right)$$

Derivatives and infinite sums

Finite sums are no problem:

$$\frac{d}{d\theta} \sum_{x=0}^{n} f(x,\theta) = \sum_{x=0}^{n} \frac{\partial}{\partial \theta} f(x,\theta)$$

When does the following hold?

$$\frac{d}{d\theta} \sum_{x=0}^{\infty} f(x,\theta) = \sum_{x=0}^{\infty} \frac{\partial}{\partial \theta} f(x,\theta)$$

 Basically: Both series have to converge See Theorem 2.4.8 in the textbook

Example: Geometric distribution

• Let $X \sim \text{Geometric}(\theta)$. The pmf for X is

$$f(x) = \theta(1 - \theta)^{x}$$
 for $x = 0, 1, 2, ...$ and $0 < \theta < 1$

Lets see where this takes us:

$$\frac{d}{d\theta} \sum_{x=0}^{\infty} f(x)$$

Convenient facts about the geometric series

$$\sum_{x=0}^{\infty} r^{x} = \frac{1}{1-r} \text{ for } |r| < 1$$

$$\sum_{x=0}^{n} r^{x} = \frac{1-r^{n+1}}{1-r} \text{ for } r \neq 1$$