A.2 Fonctions affines

 1 à lire : « qui à tout réel x associe y=f(x) »

Définition A.1 La fonction $f: \mathbb{R} \to \mathbb{R}$ 1 est **affine**

$$x \mapsto y = f(x)$$

s'il existe deux nombres réels m et p tel que

pour tout
$$x \in \mathbb{R}$$
 $f(x) = mx + p$

Proposition A.1 Les écarts sur la variable image y sont proportionnels aux écarts sur la variable initiale x.

Plus précisément il existe $m \in \mathbb{R}$ tel que :

Pour tout
$$x_A$$
 et $x_B \in \mathbb{R}$ $f(x_A) - f(x_B) = m(x_A - x_B)$

Le réel m est appelé **coefficient directeur** de f.

Si $y_A = f(x_A)$ et $y_B = f(x_B)$ alors:

$$m = \frac{y_A - y_B}{x_A - x_B} \qquad x_A \neq x_B$$

Figure A.1 – Graphiquement, m est le rapport de l'augmentation verticale sur l'augmentation horizontale. p=f(0) est l'ordonnée à l'origine

A.2 Fonctions affines 5

Proposition A.2 Si m > 0 alors f est strictement croissante.

Si m < 0 alors f est une fonction strictement décroissante.

■ Exemple A.1 m représente un taux d'accroissement de x_A à x_B :

$$m = \frac{f(x_A) - f(x_B)}{x_A - x_B}$$

Il est constant pour une fonction affine.

- a) Si f(x) est le coût total de x objets. m est le coût marginal moyen d'un objet supplémentaire lorsqu'on la production passe de x_A à x_B objets.
- b) Si f(x) est la position d'un objet sur un axe (em mètres) au bout de x minutes. Alors m représente la **vitesse moyenne** en mètres par minutes entre les instants x_A et x_B . Cette vitesse est constante.

Point méthode Pour déterminer l'expression réduite d'une fonction affine f tel que $y_A = f(x_A)$ et $y_B = f(x_B)$:

- On calcule m à l'aide du taux de variation entre x_A et x_B.
 On remarque que si y = f(x) alors y y_A = m(x x_A)
 y = m(x x_A) + y_A

- **Exemple A.2** Soit f fonction affine tel que f(12) = 17 et f(16) = 1725. Trouvez la forme réduite :

On calcule le taux de variation de 12 à 16 :

$$m = \frac{f(12) - f(16)}{12 - 16} = \frac{17 - 25}{12 - 16} = \frac{-8}{-4} = 2$$

Pour tout $x \in \mathbb{R}$

$$f(x) - f(12) = m(x - 12)$$

$$f(x) = 2(x - 12) + f(12)$$

$$= 2x - 24 + 17$$

$$f(x) = 2x - 7$$

Exercices: Fonction affines et applications

fonction f affine de taux m et β = $f(\alpha)$.

pour tout x:

$$f(x) - \beta = m(x - \alpha)$$
$$f(x) = m(x - \alpha) + \beta$$

Exercice 1 Complétez et retrouvez l'expression réduite des fonctions affines représentées ci-dessous :

$$f(x) - \dots = \dots (x - \dots) \qquad f(x) - \dots = \dots (x - \dots) \qquad f(x) - \dots = \dots (x - \dots)$$

$$f(x) = \qquad \qquad f(x) = \qquad f$$

$$f(x) =$$

$$f(x) - \dots = \dots (x - \dots$$

 $f(x) =$

$$f(x) = \dots m + \dots$$

$$f(x) = \dots m + \dots$$

$$f(x) =$$

$$f(x) = \dots m + \dots$$

$$f(x) - \dots = \dots (x - \dots) \qquad f(x) - \dots = \dots (x - \dots)$$
$$f(x) = \qquad f(x) = \dots$$

$$f(x) =$$

$$f(x) - \dots = \dots (x - \dots)$$

$$f(x) = \dots m + \dots$$

$$f(x) = \dots m + \dots$$

$$f(x) = f(x) = \dots m + \dots$$

A.2 Fonctions affines 7

Exercice 2 Déterminer l'expression réduite de la fonction affine f dans les cas suivants.

- 1) le taux d'accroissement vaut $\frac{2}{3}$ et f(15) = 3
- 2) le taux d'accroissement vaut $\frac{-1}{2}$ et $f(-16)=\frac{11}{2}$
- 3) f(-1) = 4 et f(2) = 3.
- 4) f(2) = -5 et f(7) = 3.
- 5) sa courbe représentative passe par A(-2;3) et B(3;-1).
- 6) sa courbe représentative passe par A(3, -2) et B(-1, 3).
- 7) f est linéaire et f(-8) = 12.
- 8) f est linéaire et sa courbe représentative passe par A(-7, -21).

Exercice 3 Complétez les tableaux de variation et de signe des fonctions affines suivantes.

a)
$$f_1(x) = 3x + 2$$

x	
variation $\mathrm{de}\ f_1(x)$	
signe de $f_1(x)$	

b)	$f_2(x)$	=	-9x	+	5
~ /	.1 2 (~)		0.00		\sim

x	
variation de $f_2(x)$	
signe de $f_2(x)$	

Exercice 4 Détérminez le signe des fonctions suivantes selon les valeurs de x.

$$(I_1): f_1(x) = 7(x+2)(x-3)$$

$$(I_3): f_3(x) = -3(5x - 4)(-3x - 8)$$

 $(I_4): f_4(x) = -2(4x + 3)(3x + 5)$

$$(I_2): f_2(x) = 5(-3x+1)(2x+3)$$

$$(I_4): f_4(x) = -2(4x+3)(3x+5)$$

x	$-\infty$	$+\infty$ x	$-\infty$	$+\infty$
	t t		· · · · · · · · · · · · · · · · · · ·	
x	$-\infty$	$+\infty$ x	$-\infty$	$+\infty$
x	$-\infty$	$+\infty$ x	$-\infty$	$+\infty$
x	$-\infty$	$+\infty$ x	$-\infty$	+∞
x	$-\infty$	$+\infty$ x	$-\infty$	+∞