Wydział	Imię i nazwisko	Rok	Grupa
WIMilP	Mateusz Witkowski	II	4
Temat:		Prowadzący	
Rozwiązywa	anie układów równań metoc Gaussa.	dr hab. inż. Hojny Marcin, prof. AGH	
Data	Data oddania	Data	OCENA
ćwiczenia	29.04.2020	zaliczenia	
23.04.2020			

1. Cel ćwiczenia

Celem ćwiczenia było zapoznanie się oraz implementacja metody rozwiązywania układów równań – eliminacji Gaussa.

2. Wprowadzenie teoretyczne

Metoda eliminacji Gaussa służy rozwiązywaniu układów równań nieliniowych, typu Ax =b, gdzie A musi być macierzą kwadratową n x n, a "x" i "b" wektorami o rozmiarze n. Można przedstawić to w następujący sposób:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Rozwiązujemy układ sprowadzając go do układu trójkątnego przy pomocy elementarnych operacji, takich jak:

- Pomnożenie równania przez stałą różną od zera.
- Dodanie bądź odjęcie równań.
- Zamianę równań miejscami.

Docelowy, przekształcony układ powinien wyglądać następująco:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Obliczanie rozwiązań rozpoczynamy od ostatniego równania, dzięki temu w łatwy sposób jesteśmy w stanie uzyskać jedną z szukanych wartości:

$$x_n = \frac{b_n}{a_{nn}}$$

Znając wartość x_n możemy bez problemu obliczyć wartość równania rzędu o jeden mniejszego:

$$x_{n-1} = \frac{b_{n-1} - a_{n-1} \cdot x_n}{a_{n-1} - a_{n-1}}$$

Wszystkie następne równania obliczamy w analogiczny sposób, przy założeniu, że współczynniki leżące na przekątnej macierzy są niezerowe. Układ może być oznaczony (mający jedno rozwiązanie), sprzeczny (brak rozwiązań) lub nieoznaczony (nieskończenie wiele rozwiązań) zależnie o ilości niewiadomych i rzędu macierzy rozszerzonej.

3. Kod programu

Zdefiniowano globalnie wektor przechowujący dane, nazwę pliku z którego dane zostaną pobrane oraz funkcje odpowiedzialną z proces pobrania danych i zapisu ich do przekazanego wektora.

```
vector < double > dane;
string nazwaPliku = "punkty.txt";
//Funkcja pobierjica dane z pliku tekstowego i zapisujice je do wektora.
int pobranie_z_pliku(vector <double>* data, string fileName) {
    string linia;
    fstream plik;
    plik.open(fileName, ios::in);  //otwarcie pliku
    if (plik.good() == true)
                                      //sprawdzenie poprawnosci pliku
        while (!plik.eof())
            getline(plik, linia, ','); //zapisuje slowa odzielane przecinkami
            double d = atof(linia.c_str()); //konwersja stringa na double
            data->push_back(d);
                                          //zapis slowa parsowanego na typ double do wektora
        plik.close(); //zamkniêcie pliku
    if (data->size() % 5 != 0) { //zabezpiecznie w razie zle wypelnionego pliku tekstowego
        cout << "bledne dane w pliku" << endl;</pre>
        return -1;
    return data->size(); //funkcja zwraca wielkosc wektora potrzebna do stworzenia tablic.
```

Rysunek 1. Funkcja pobierająca dane z pliku txt

Utworzono plik txt i wypełniono go danymi.

```
punkty.txt + X Źródło.cpp*

1 4, -2, 4, -2, 8,
2 3, 1, 4, 2, 7,
3 2, 4, 2, 1, 10,
4 2, -2, 4, 2, 2
```

Rysunek 2. Plik przechowujący parametry układu równań

W funkcji main następuje sprawdzenie poprawności pliku, przygotowanie oraz wypełnienie dynamicznej tablicy dwuwymiarowej potrzebnej do naszej macierzy rozszerzonej, przygotowanie tablicy przeznaczonej na rozwiązania układu.

```
int main() {
    ////////SPRANDZZANIE POPRAMNOSCI PLIKU//////
    int wielkosc_wektora == pobranie_z_pliku(&dane, nazwaPliku);
    if (wielkosc_wektora == -1) //program zostanie przerwany jesli plik tekstowy by³ b³ēdny
    {
        return -1;
    }
    /////////NYPEENIANIE TABLIC////////
    double** uklad_rownan;
    int liczba_weirszy = wielkosc_wektora / 5; //wielkosc wektora podzielona przez maksymalna ilosc zmiennych w danym rownaniu,
    //powinna nam dac ilosc rownan zapisanych w pliku
    int dlugosc_wiersza = liczba_weirszy + 1;
    double* Myniki = new double[liczba_weirszy]; //tablica rozwiazan x

    uklad_rownan = new double* [liczba_weirszy]; //utworzenie macierzy
    for (int i = 0; i < liczba_weirszy; i++) {
        uklad_rownan[i] = new double[dlugosc_wiersza]; //tworzenie wiersza
    }
    int x = 0;
    for (size_t i = 0; i < liczba_weirszy; i++) //wypelnienie tablic
    {
        for (size_t i = 0; j < dlugosc_wiersza; j++) {
            uklad_rownan[i][j] = dane[x];
            x++;
        }
}</pre>
```

Rysunek 3. Utworzenie tablic, wypełnienie macierzy układu równa, sprawdzenie pliku.

Wyświetlono stan początkowy macierzy rozszerzonej oraz wywołano funkcję Gauss.

```
for (size_t i = 0; i < liczba_weirszy; i++) //wypisanienie tablicy
{
    for (size_t j = 0; j < dlugosc_wiersza; j++)
    {
        if (j == liczba_weirszy) {
            cout << "| " << uklad_rownan[i][j];
        }
        else {
            cout << uklad_rownan[i][j] << setw(6);
        }
}
cout << endl;
int result = Gauss(uklad_rownan, Wyniki, liczba_weirszy, dlugosc_wiersza);</pre>
```

Rysunek 4. Wyświetlenie macierzy, wywołanie funkcji.

Funkcja Gauss na początku sprowadza układ do postaci "schodkowej" (trójkątnej) poprzez obliczanie ilorazów współczynnika jednego równania przez drugie, a następnie odjęcia równań i wyzerowania współczynnika. Po przekształceniu układu sprawdzane jest czy ma on rozwiązanie, jeśli nie funkcja zwraca -1, jeśli ma nieskończenie wiele rozwiązań funkcja zwraca 0. Jeśli układ jest oznaczony obliczane są kolejne wartości **X** i zapisywane w przekazanej dynamicznej tablicy wyników. Po obliczeniu wartości funkcja zwraca 1.

```
Gauss(double** uklad_rownan, double* Wyniki, int liczba_wierszy, int dlugosc_wiersza) {
   for (size_t j = i+1; j < liczba_wierszy; j++)</pre>
       double iloraz = uklad_rownan[j][i] / uklad_rownan[i][i];
       uklad_rownan[j][i] = 0;
       for (size_t k = i+1; k < dlugosc_wiersza; k++)
           Ì
if (uklad_rownan[liczba_wierszy - 1][liczba_wierszy - 1] == 0 && uklad_rownan[liczba_wierszy - 1][liczba_wierszy] != 0) {
| return -1; //Funkcja zakonczy sie z wynikiem -1 jesli uklad jest sprzeczny
if (uklad_rownan[liczba_wierszy - 1][liczba_wierszy - 1] == 0 && uklad_rownan[liczba_wierszy - 1][liczba_wierszy] == 0) {
   return 0; //Funkcja zakonczy sie z wynikiem 0 jesli uklad jest nieoznaczony
for (int w = liczba_wierszy - 1; w > -1; w--) {
                                                //Obliczenie wartosci kolejnych X
   Wyniki[w] = uklad_rownan[w][liczba_wierszy];
   for (size_t i = w+1; i < liczba_wierszy; i++)
       Wyniki[w] = Wyniki[w] - uklad_rownan[w][i] * Wyniki[i];
   Wyniki[w] = Wyniki[w] / uklad_rownan[w][w];
return 1;
```

Rysunek 5. Funkcja realizująca eliminację Gaussa

Po wykonaniu funkcji Gauss wyświetlana jest przekształcona macierz oraz wyniki bądź odpowiedni komunikat.

```
cout << "Macierz po eliminacji Gaussa" << endl;</pre>
cout << endl;</pre>
for (size_t i = 0; i < liczba_weirszy; i++) //wypisanienie tablicy</pre>
    for (size_t j = 0; j < dlugosc_wiersza; j++)</pre>
        if (j == liczba_weirszy) {
             cout << "| " << uklad_rownan[i][j];</pre>
        else {
             cout << uklad_rownan[i][j] << setw(6);</pre>
    cout << endl;</pre>
cout << endl;</pre>
if (result == 1) {
    cout << "Wyniki:" << endl;</pre>
    for (size_t i = 0; i < liczba_weirszy; i++)</pre>
         cout << "X" << i + 1 << ": " << Wyniki[i] << endl;
else if (result == 0) {
    cout << "Układ nieoznaczny" << endl;</pre>
else if (result == -1) {
    cout << "Układ sprzeczny" << endl;</pre>
getchar(); getchar();
return 0;
```

Rysunek 6. Wypisanie macierzy i wyników.

Cały kod

```
sing namespace std;
vector < double > dane;
string nazwaPliku = "punkty.txt";
//Funkcja pobierjıca dane z pliku tekstowego i zapisujıce je do wektora.
int pobranie_z_pliku(vector <double>* data, string fileName) {
    string linia;
    fstream plik;
    plik.open(fileName, ios::in);
if (plik.good() == true)
         while (!plik.eof())
              getline(plik, linia, ',');  //zapisuje slowa odzielane przecinkami
double d = atof(linia.c_str()); //konwersja stringa na double
data->push_back(d);  //zapis slowa parsowanego na typ double do wektora
         plik.close();
                                  //zamkniêcie pliku
    f (data->size() % 5 != 0) {      //zabezpiecznie w razie zle wypelnionego pliku tekstowego
      cout << "bledne dane w pliku" << endl;
      return -1;</pre>
int Gauss(double** uklad_rownan, double* Wyniki, int liczba_wierszy, int dlugosc_wiersza) {
     for (size_t i = 0; i < liczba_wierszy; i++) //sprowadzenie ukladu to postaci trojkatnej</pre>
           for (size_t j = i+1; j < liczba_wierszy; j++)</pre>
                double iloraz = uklad_rownan[j][i] / uklad_rownan[i][i];
                uklad_rownan[j][i] = 0;
                for (size_t k = i+1; k < dlugosc_wiersza; k++)</pre>
                      uklad_rownan[j][k] = uklad_rownan[j][k] - uklad_rownan[i][k] * iloraz; //Obliczamy wartosci kolejnych wspolczynnikow w wierszu
     if (uklad_rownan[liczba_wierszy - 1][liczba_wierszy - 1] == 0 && uklad_rownan[liczba_wierszy - 1][liczba_wierszy] != 0) {
return -1; //Funkcja zakonczy sie z wynikiem -1 jesli uklad jest sprzeczny
     if (uklad_rownan[liczba_wierszy - 1][liczba_wierszy - 1] == 0 && uklad_rownan[liczba_wierszy - 1][liczba_wierszy] == 0) {
     for (int w = liczba_wierszy - 1; w > -1; w--) {
    Wyniki[w] = uklad_rownan[w][liczba_wierszy];
           for (size_t i = w+1; i < liczba_wierszy; i++)</pre>
                \label{eq:wyniki} \mbox{Wyniki[w] - uklad_rownan[w][i] * Wyniki[i];} \label{eq:wyniki}
           Wyniki[w] = Wyniki[w] / uklad_rownan[w][w];
```

```
int main() {
    /////////SPRAWDZZANIE POPRAWNOSCI PLIKU/////////
   int wielkosc_wektora = pobranie_z_pliku(&dane, nazwaPliku);
   if (wielkosc_wektora == -1) //program zostanie przerwany jesli plik tekstowy by³ b³êdny
       return -1;
   double** uklad_rownan;
   int liczba weirszy = wielkosc wektora / 5; //wielkosc wektora podzielona przez maksymalna ilosc zmiennych w danym rownaniu,
   int dlugosc_wiersza = liczba_weirszy + 1;
   double* Wyniki = new double[liczba_weirszy];
   uklad_rownan = new double* [liczba_weirszy];
   for (int i = 0; i < liczba_weirszy; i++) {</pre>
       uklad_rownan[i] = new double[dlugosc_wiersza]; //tworzenie wiersza
   int x = 0;
   for (size_t i = 0; i < liczba_weirszy; i++) //wypelnienie tablic</pre>
       for (size_t j = 0; j < dlugosc_wiersza; j++)</pre>
           uklad_rownan[i][j] = dane[x];
   for (size_t i = 0; i < liczba_weirszy; i++) //wypisanienie tablicy</pre>
        for (size_t j = 0; j < dlugosc_wiersza; j++)</pre>
                 if (j == liczba_weirszy) {
                      cout << " | " << uklad_rownan[i][j];</pre>
                 else {
                      cout << uklad_rownan[i][j] << setw(6);</pre>
        cout << endl;</pre>
   cout << endl;</pre>
   int result = Gauss(uklad_rownan, Wyniki, liczba_weirszy, dlugosc_wiersza);
   cout << "Macierz po eliminacji Gaussa" << endl;</pre>
   cout << endl;</pre>
   for (size t i = 0; i < liczba weirszy; i++) //wypisanienie tablicy</pre>
        for (size_t j = 0; j < dlugosc_wiersza; j++)</pre>
             if (j == liczba_weirszy) {
                 cout << "| " << uklad_rownan[i][j];</pre>
             else {
                 cout << uklad_rownan[i][j] << setw(6);</pre>
        cout << endl;</pre>
   cout << endl;</pre>
```

```
if (result == 1) {
    cout << "Wyniki:" << endl;
    for (size_t i = 0; i < liczba_weirszy; i++)
    {
        cout << "X" << i + 1 << ": " << Wyniki[i] << endl;
    }
}
else if (result == 0) {
        cout << "Układ nieoznaczny" << endl;
}
else if (result == -1) {
        cout << "Układ sprzeczny" << endl;
}
getchar(); getchar();
return 0;
}</pre>
```

4. Testy

W celu zweryfikowania wyników programu dokonano czterech testów z wykorzystaniem kalkulatora znajdującego się na stronie https://calcoolator.pl/metoda_gaussa.html#solve-using-Gaussian-elimination%28%7B%7B4,-2,4,-2,8%7D,%7B3,1,4,2,7%7D,%7B2,4,2,1,10%7D,%7B2,-2,4,2,2%7D%7D%29.

Przykład z instrukcji:

```
D:\STUDIA\IV_Semestr\Metody\zajecia8\eliminacjaGaussa\Debug\eliminacjaGaussa.exe
                             8
                    -2
      1
                     2
              2
                     1
                             10
      -2
              4
                     2
Macierz po eliminacji Gaussa
                             8
     -2
             4
                   -2
             1
    2.5
                            1
                  3.5
      0
                   -5
                             4
             -2
             0
                 -1.6
                           3.2
Wyniki:
X1: -1
X2: 2
X3: 3
X4: -2
```

Rysunek 7. Wynik działania programu dla przykładu z instrukcji.

Wynik ze strony:

$$\begin{cases}
4 \cdot x_1 - 2 \cdot x_2 + 4 \cdot x_3 - 2 \cdot x_4 = 8 & \text{Wynik:} \\
\frac{5}{2} \cdot x_2 + x_3 + \frac{7}{2} \cdot x_4 = 1 & x_1 = -1, \\
-2 \cdot x_3 - 5 \cdot x_4 = 4 & x_2 = 2, \\
-\frac{8}{5} \cdot x_4 = \frac{16}{5} & x_3 = 3, \\
x_4 = -2
\end{cases}$$

Test 1:

Rysunek 8. Wynik programu dla macierz 3x3

Wynik ze strony:

$$\begin{cases} x_1 + 2 \cdot x_2 & -x_3 = 5 \\ -2 \cdot x_2 + 4 \cdot x_3 = -6 \text{ (1)} \\ -7 \cdot x_3 = 7 & x_2 = 1, \\ & x_3 = -1 \end{cases}$$
Wynik:

Test 2:

Rysunek 9. Wynik programu dla macierz 4x4

Wynik ze strony:

$$\begin{cases} 2 \bullet x_1 & +x_2 & +x_3 & +x_4 = 0 \\ & -\frac{3}{2} \bullet x_2 & -\frac{1}{2} \bullet x_3 & +\frac{3}{2} \bullet x_4 = 1 \\ & & -\frac{8}{3} \bullet x_3 & -3 \bullet x_4 = \frac{7}{3} & x_2 = 1, \\ & & & -\frac{5}{4} \bullet x_4 = \frac{-5}{4} & x_3 = -2, \\ & & & & \times x_4 = 1 \end{cases}$$

Test 3:

```
D:\STUDIA\IV_Semestr\Metody\zajecia8\eliminacjaGaussa\Debug\eliminacjaGaussa.exe
                                    16
              6
                    -4
Macierz po eliminacji Gaussa
              6
         2.2
                 -2.8 6.6
      0 -6.25 -8.5 20.25
      0 0-7.1942939.8914 | 32.8743
0 0 0-41.9444 | -44.0643
Wyniki:
X1: 1.22374
X2: -0.877632
X3: 0.576106
X4: 1.25562
X5: 1.05054
```

Rysunek 10. Wynik programu dla macierz 5x5

Wynik ze strony:

Wynik ze strony:

$$\begin{pmatrix}
5 \cdot x_1 + 2 \cdot x_2 + 6 \cdot x_3 + 6 \cdot x_4 & -7 \cdot x_5 & = & 8 \\
-\frac{28}{5} \cdot x_2 + \frac{11}{5} \cdot x_3 & -\frac{14}{5} \cdot x_4 + \frac{33}{5} \cdot x_5 & = & \frac{48}{5} \\
-\frac{25}{4} \cdot x_3 & -\frac{17}{2} \cdot x_4 + \frac{81}{4} \cdot x_5 & = & 7 \\
-\frac{1259}{175} \cdot x_4 + \frac{6981}{175} \cdot x_5 & = & \frac{5753}{175} \\
-\frac{52808}{1259} \cdot x_5 & = & \frac{-55477}{1259}
\end{pmatrix}$$

$$x_1 = \frac{64623}{52808}, \\
x_2 = \frac{-23173}{26404}, \\
x_3 = \frac{30423}{52808}, \\
x_4 = \frac{66307}{52808}, \\
x_5 = \frac{55477}{52808}$$

Tabela 1. Wyniki kalkulatora ze strony przeliczone na ułamki dziesiętne

X1	X2	Х3	X4	X5
1,223735	-0,877632	0,5761058	1,25562	1,05054

Test 4:

Rysunek 11. Wynik programu dla układu sprzecznego

Wynik ze strony:

$$\begin{cases}
5 \cdot x_1 & -2 \cdot x_2 & -x_3 = 1 \\
\frac{6}{5} \cdot x_2 & -\frac{12}{5} \cdot x_3 = \frac{12}{5} \text{ (1)} \\
0 = 6
\end{cases}$$

brak rozwiązania!

5. Wnioski

W metodzie eliminacji Gaussa nie trzeba liczyć wyznaczników macierzy tak jak miało to miejsce w przypadku metody Cramera, dlatego ta metoda sprawdza się znacznie lepiej w przypadku układów równań o znacznej liczbie niewiadomych. Jest efektywna i bardzo dokładna co pokazały testy. Każdy test potwierdził prawidłowość wyników oraz pokazał czy program jest w stanie wykryć czy układ jest sprzeczny bądź nieoznaczony. Program bez problemu radzi sobie z układami 3x3, 4x4 i większymi zachowując wysoki stopień dokładności.