سلسلة 3: المتتاليات العددية

التمرين 1

$$\left\{ \begin{array}{ll} u_0 = 0 \\ u_{n+1} = u_n + 4(n+1) \end{array} \right.$$
 لتكن (u_n) المتتالية المعرفة بما يلي:

- u_1 أحسب u_1 و u_3 و u_3 اأحسب u_4
- $\forall n \in \mathbb{N}: \ u_n = 2n(n+1)$.2. بين بالترجع أن:

التمرين 2

$$v_n = \frac{3(2^n+1)-4n}{2}$$
 و $u_n = \frac{3(2^n-1)+4n}{2}$: يلي يا المعرفتين بما يلي (v_n) و u_n و u_n و u_n المتتاليتان المعرفتين بما يلي $u_n = u_n + v_n$ و u_n و u_n

- بين أن (a_n) متتالية هندسية و أن (b_n) متتالية حسابية .1
- $V_n = v_0 + v_1 + \dots + v_n$ و $U_n = u_0 + u_1 + \dots + u_n$ و راحسب بدلالة $v_n = v_0 + v_1 + \dots + v_n$

التمرين 3

$$\left\{ \begin{array}{l} u_0=1 \\ u_{n+1}=rac{1}{1+u_n} \end{array} \right.$$
لتكن (u_n) المتتالية المعرفة بما يلي:

- u_3 و u_2 و u_3 .1
- $\forall n \in \mathbb{N}: \ 0 < u_n \leq 1$.نين بالترجع أن: 2

التمرين 4

$$\left\{ \begin{array}{ll} u_0=3 \\ u_{n+1}=\frac{5u_n-4}{u_n+1} \end{array} \right.$$
لتكن $\left(u_n \right)$ المتتالية المعرفة بما يلي:

- $v_n=rac{1}{u_{n-2}}$. نعتبر المتتالية (v_n) المعرفة بما يلي: $v_n=rac{1}{u_{n-2}}$. $v_n=rac{1}{u_n}$
- $\cdot \frac{1}{3}$ اساسها أن (v_n) متتالية حسابية أساسها (۱) (v_n) أُستنتج تعبير v_n ثم u_n بدلالة (v_n)

التمرين 5

$$\left\{ egin{array}{ll} u_1=1 \ u_2=4 \ u_{n+2}=2u_{n+1}-u_n+2 \end{array}
ight.$$
نعتبر المتتالية $u_n)_{n\geq 1}$ المعرفة بما يلي: $v_n=u_{n+1}-u_n$ المتتالية المعرفة بما يلي: $v_n=u_{n+1}-u_n$

- v_3 . v_2 . v_1 . v_3 . v_2 . v_3
- $(v_n)_{n\geq 1}$ حدد طبيعة المتتالية $(v_n)_n$

التمرين 6

$$\left\{ \begin{array}{ll} u_0 = 0 \ \ u_1 = 1 \\ u_{n+2} = 3u_{n+1} - 2u_n \end{array} \right.$$
لتكن $\left(u_n \right)$ المتتالية المعرفة بما يلي:

- (۱) بين أن (v_n) متتالية هندسية محددا أساسها و حدها الأول.
 - $(v_n$ أعط تعبير v_n بدلالة (v_n)
 - $S_n = v_0 + v_1 + \dots + v_{n-1}$ أحسب بدلالة n المجموع (ج
 - n استنتج تعبير u_n بدلالة n

التمرين 7

$$\left\{ \begin{array}{l} u_0 = 0 \\ u_{n+1} = \frac{2u_n + 3}{u_n + 4} \end{array} \right.$$
لتكن (u_n) المتتالية المعرفة بما يلي:

- u_3 و u_2 و u_3 .1
- ulletبين أن: $0 < u_n < 1$: ullet
 - 3. بين أن المتتالية (u_n) تزايدية.
- $v_n = \frac{u_n 1}{u_n + 3}$: يلي المتتالية المعرفة بما يلي المتتالية المعرفة بما يلي 4.
 - $v_2 = v_1 = v_0$ $v_0 = v_1$ (1)
- (v_n) بين أن (v_n) متتالية هندسية محددا أساسها و حدها الأول.
 - n بدلالة u_n بم بدلالة u_n بدلالة n

التمرين 8

$$\left\{ egin{array}{ll} u_0 = 2 \\ u_{n+1} = 2u_n - 3 \end{array}
ight.$$
نعتبر المتتالية (u_n) المعرفة بما يلي: $v_n = u_n - 3$ لتكن $v_n = u_n - 3$

- ر، حدد طبيعة المتتالية (v_n) . استنتج تعبير v_n ثم u_n بدلالة v_n
- $S_n = u_1 + u_2 + \dots + u_n$ أحسب بدلالة n المجموع.

التمرين 9

$$v_n = u_n - 3^n$$
 و $\begin{cases} u_0 = 0 \ u_1 = 1 \\ u_{n+2} = 5u_{n+1} - 6u_n \end{cases}$ نعتبر المتتاليتين (u_n) و (u_n) المعرفتين بما يلي:

- $\forall n \in \mathbb{N}: \ u_{n+1} = 2u_n + 3^n$: .1
- v_n بين أن v_n متتالية هندسية محددا أساسها و حدها الأول.
 - $S_n = u_1 + u_2 + \dots + u_n$ أحسب بدلالة n المجموع.

التمرين 10

$$\left\{ egin{array}{ll} u_0\in]0;1[\\ u_{n+1}=rac{1+\sqrt{u_n}}{2} \end{array}
ight.$$
لتكن $\left(u_n
ight)$ المتتالية المعرفة بما يلي:

- $abla n \in \mathbb{N}: \ 0 < u_n < 1$.نين أن: 1
- $\forall n \in \mathbb{N}: \ u_{n+1} u_n = \frac{1}{2} \left(1 \sqrt{u_n}\right) \left(1 + 2\sqrt{u_n}\right)$:3. استنتج رتابة المتتالية (u_n)

 - - ullet $egin{aligned} ullet n \in \mathbb{N}: \ |u_n-1| < \left(rac{1}{2}
 ight)^n: egin{aligned} ullet 1 \end{array}$