CLAIMS

What is claimed is:

- 1. A method for reducing spurious emissions in an amplified signal, comprising the steps of:
 - (a) receiving an input signal; and
- (b) applying frequency-dependent phase pre-distortion to the input signal to generate a pre-distorted output signal, such that, when the pre-distorted output signal is applied to an amplifier to generate the amplified signal, the frequency-dependent phase pre-distortion reduces spurious emissions in the amplified signal.
 - 2. The invention of claim 1, wherein step (b) comprises the steps of:
 - (1) generating a main output signal from the input signal;
- (2) generating one or more frequency-dependent phase pre-distortion signals from the input signal; and
- (3) advancing or delaying each frequency-dependent phase pre-distortion signal relative to the main output signal; and
- (4) combining each advanced or delayed frequency-dependent phase pre-distortion signal with the main output signal to generate the pre-distorted output signal.
- 3. The invention of claim 2, wherein step (b)(1) comprises the step of applying frequency-independent magnitude and phase pre-distortion to the input signal to generate the main output signal.
- 4. The invention of claim 2, wherein each frequency-dependent phase pre-distortion signal is based on a corresponding phase difference between a pair of critical frequencies.
- 5. The invention of claim 4, wherein step (b)(3) comprises the step of advancing or delaying each frequency-dependent phase pre-distortion signal relative to the main output signal based on the frequency difference between the corresponding pair of critical frequencies.
- 6. The invention of claim 4, wherein step (b)(2) comprises the step of generating two or more different frequency-dependent phase pre-distortion signals from the input signal based on two or more different pairs of critical frequencies.
- 7. The invention of claim 1, wherein the input signal is a baseband signal and the frequency-dependent phase pre-distortion is applied in the baseband domain.

1

2

3

1

2

3

1

2

1

2

3

4

5

6

1

1052.001

1	8. The invention of claim 1, wherein the input signal is an RF signal and the frequency-dependent
2	phase pre-distortion is applied in the RF domain.
1	9. The invention of claim 1, wherein the frequency-dependent phase pre-distortion is based on data
2	retrieved from one or more look-up tables.
1	10. The invention of claim 9, wherein the one or more look-up tables are adaptively updated
2	according to control signals generated based on the amplified signal.
1	11. The invention of claim 1, wherein:
2	step (b) comprises the steps of:
3	(1) applying frequency-independent magnitude and phase pre-distortion to the input signal to
4	generate a main output signal;
5	(2) generating one or more frequency-dependent phase pre-distortion signals from the input
6	signal, wherein each frequency-dependent phase pre-distortion signal is advanced or delayed relative to
	the main output signal based on the frequency difference between the corresponding pair of critical
8	frequencies; and
9	(3) advancing or delaying each frequency-dependent phase pre-distortion signal relative to the
10,	main output signal; and
10 11 12 13	(4) combining each advanced or delayed frequency-dependent phase pre-distortion signal with
12	the main output signal to generate the pre-distorted output signal;
	each frequency-dependent phase pre-distortion signal is based on a corresponding phase difference
14	between a pair of critical frequencies;
15	the frequency-dependent phase pre-distortion is based on data retrieved from one or more look-up
16	tables, wherein the one or more look-up tables are adaptively updated according to control signals
17	generated based on the amplified signal
1	12. The invention of claim 11, wherein step (b)(2) comprises the step of generating two or more
2	different frequency-dependent phase pre-distortion signals from the input signal based on two or more
3	different pairs of critical frequencies.
1	13. The invention of claim 11, wherein the input signal is a baseband signal and the frequency-

dependent phase pre-distortion is applied in the baseband domain.

2

- 2
- 3
- 4
- 5
- 6
- 7
- 1 2

- 4 5 6 7 8 H 2 7

1 2

1

2 3

1

2

3

amplified signal.

(a) receive an input signal; and

- 16. The invention of claim 15, wherein the apparatus comprises:
- (a) a main signal processing path configured to generate a main output signal from the input signal;

(b) apply frequency-dependent phase pre-distortion to the input signal to generate a pre-distorted

output signal, such that, when the pre-distorted output signal is applied to an amplifier to generate the

amplified signal, the frequency-dependent phase pre-distortion reduces spurious emissions in the

- (b) one or more frequency-dependent phase pre-distortion paths configured to generate one or more frequency-dependent phase pre-distortion signals from the input signal;
- (c) one or more delay blocks configured to advance or delay each frequency-dependent phase predistortion signal relative to the main output signal; and
- (4) a combiner configured to combine each advanced or delayed frequency-dependent phase predistortion signal with the main output signal to generate the pre-distorted output signal.
- 17. The invention of claim 16, wherein the main signal processing path is configured to apply frequency-independent magnitude and phase pre-distortion to the input signal to generate the main output signal.
- 18. The invention of claim 16, wherein each frequency-dependent phase pre-distortion signal is based on a corresponding phase difference between a pair of critical frequencies.
- 19. The invention of claim 18, wherein the one or more delay blocks advance or delay each frequency-dependent phase pre-distortion signal relative to the main output signal based on the frequency difference between the corresponding pair of critical frequencies.
- 20. The invention of claim 18, comprising two or more frequency-dependent phase pre-distortion paths configured to generate two or more different frequency-dependent phase pre-distortion signals from the input signal based on two or more different pairs of critical frequencies.

- 22. The invention of claim 15, wherein the input signal is an RF signal and the apparatus applies the frequency-dependent phase pre-distortion in the RF domain.
- 1
- 2
- 1
- 2

- 3
- 4 5 6 7 8 9 10 11 11

- 23. The invention of claim 15, wherein the apparatus retrieves data for the frequency-dependent phase pre-distortion from one or more look-up tables.
 - 24. The invention of claim 23, wherein the apparatus adaptively updates the one or more look-up tables according to control signals generated based on the amplified signal.
 - 25. A machine-readable medium, having encoded thereon program code, wherein, when the program code is executed by a machine, the machine implements a method for reducing spurious emissions in an amplified signal, comprising the steps of:
 - (a) receiving an input signal; and
 - (b) applying frequency-dependent phase pre-distortion to the input signal to generate a pre-distorted output signal, such that, when the pre-distorted output signal is applied to an amplifier to generate the amplified signal, the frequency-dependent phase pre-distortion reduces spurious emissions in the amplified signal.