

* Ant Colony Optimization (ACO)

agungsetiabudi@ub.ac.id

1. Pendahuluan

- Ant Colony Optimization (ACO) adalah *metaheuristic optimization algorithm* yang diinspirasi oleh perilaku sosial semut dalam mencari jalur terpendek menuju sumber makanan.
- Diperkenalkan oleh Marco Dorigo pada awal 1990-an, ACO terutama efektif dalam menyelesaikan masalah optimasi kombinatorial seperti *Traveling Salesman Problem (TSP)*, vehicle routing, scheduling, dan lain-lain.

2. Inspirasi Biologis: Perilaku Semut

- Semut asli menggunakan feromon untuk menandai jalur menuju makanan.
- Semakin banyak semut melewati suatu jalur, semakin kuat jejak feromon yang terbentuk, sehingga jalur tersebut lebih mungkin dipilih semut lain.
- Mekanisme ini menciptakan umpan balik positif dan memungkinkan koloni menemukan rute optimal tanpa supervisi terpusat.

3. Prinsip Dasar ACO

- Artificial Ants adalah agen sederhana yang menjelajahi ruang solusi.
- Mereka membangun solusi parsial secara probabilistik berdasarkan dua informasi:
 - \circ **Jejak feromon**: τ_{ij} , representasi historis preferensi terhadap tepi antara node i dan j.
 - \circ **Heuristic information**: η_{ij} , representasi pengetahuan lokal, seperti $1/d_{ij}$ untuk jarak.

• Setelah membangun solusi, semut memperkuat jalur yang baik dengan **menambah feromon**, dan seiring waktu feromon juga **menguap** (evaporasi).

4. Langkah-langkah Algoritma ACO Umum

1. Inisialisasi:

- \circ Set nilai awal feromon $au_{ij} = au_0$.
- \circ Tentukan parameter: jumlah semut, koefisien evaporasi ρ , eksponen feromon α , dan eksponen heuristik β .

2. Konstruksi Solusi:

Setiap semut membangun solusi dengan probabilitas memilih elemen (misalnya kota j dari i):

$$P_{ij} = rac{ au_{ij}^{lpha} \cdot \eta_{ij}^{eta}}{\sum_{k \in N_i} au_{ik}^{lpha} \cdot \eta_{ik}^{eta}}$$

3. Evaluasi dan Pembaruan Feromon:

Feromon di setiap jalur diperbarui berdasarkan kualitas solusi:

$$au_{ij} \leftarrow (1-
ho) \cdot au_{ij} + \sum_{k=1}^m \Delta au_{ij}^k$$

dengan $\Delta au_{ij}^k = \frac{Q}{L_k}$ jika semut k menggunakan tepi (i,j), di mana L_k adalah panjang solusi dan Q adalah konstanta.

4. Pengulangan:

 Ulangi proses hingga kriteria penghentian terpenuhi (jumlah iterasi, waktu, atau konvergensi solusi).

5. Parameter Penting

Parameter	Deskripsi
α	Pengaruh feromon dalam pemilihan jalur
β	Pengaruh heuristik (bias lokal)
ρ	Laju evaporasi feromon
Q	Konstanta penguat feromon
Jumlah semut	Biasanya disamakan dengan jumlah elemen dalam solusi (misal kota pada TSP)

6. Contoh Aplikasi: Traveling Salesman Problem (TSP)

- Tujuan: Menemukan urutan kunjungan ke kota yang meminimalkan total jarak.
- Setiap semut membangun tur kota.
- Jejak feromon disimpan pada setiap pasangan kota.
- Setelah seluruh semut menyelesaikan tur, feromon diperbarui sesuai total jarak tempuh.
- Semut lebih cenderung memilih jalur pendek yang sering digunakan oleh semut lain.

7. Kelebihan dan Kekurangan

Kelebihan:

- Adaptif, paralel, dan berbasis populasi.
- Cocok untuk masalah diskrit dan kombinatorial.
- Mudah digabungkan dengan teknik lain (misalnya local search, greedy).

X Kekurangan:

- Rentan terhadap konvergensi dini (premature convergence).
- Butuh tuning parameter yang hati-hati.
- Waktu komputasi bisa tinggi untuk masalah besar.

8. Variasi ACO

Beberapa varian populer:

- Ant System (AS) versi dasar dari ACO.
- Ant Colony System (ACS) penguatan hanya dari semut terbaik, eksploitasi lebih besar.
- Max-Min Ant System (MMAS) batasan nilai feromon untuk mencegah konvergensi dini.

ACO Dapat Digunakan untuk Masalah Kontinyu, tetapi...

Secara asli dan umum, Ant Colony Optimization (ACO) dirancang untuk masalah optimasi kombinatorial, seperti:

- Traveling Salesman Problem (TSP)
- Vehicle Routing Problem (VRP)
- Job Scheduling
- Quadratic Assignment Problem (QAP)

- Namun, **ACO telah diperluas dan dimodifikasi** agar bisa digunakan untuk **masalah optimasi kontinyu**, terutama sejak pertengahan 2000-an. Versi ini sering disebut:
- Continuous Domain Ant Colony Optimization (CACO atau ACOR)
 - Ant Colony Optimization for Continuous Domains)

Perbedaan Pendekatan pada Masalah Kontinyu

Karena tidak ada "jalan" atau "urutan diskrit" dalam domain kontinyu, pendekatan ACO klasik perlu dimodifikasi:

1. Solusi direpresentasikan sebagai vektor real

Contoh solusi:

$$\mathbf{x} = [x_1, x_2, \dots, x_n] \in \mathbb{R}^n$$

2. Distribusi probabilistik digunakan sebagai pengganti feromon diskrit

 Misalnya menggunakan Gaussian Kernel untuk menghasilkan solusi baru:

$$x_i^{(new)} \sim \sum_{k=1}^m w_k \cdot \mathcal{N}(x_i^{(k)}, \sigma_k^2)$$

Artinya, solusi baru dibangkitkan dari distribusi normal berbobot dari solusi lama.

3. Pembaruan feromon = pembaruan distribusi probabilistik

- Distribusi diarahkan agar memusat ke solusi terbaik sejauh ini.
- Mirip dengan strategi dalam Estimation of Distribution Algorithms (EDA).

★ Studi Kasus: TSP 4 Kota

- Diberikan 4 kota: A, B, C, D
- Matriks jarak antar kota (simetris):

	A	В	C	D
Α	0	2	9	10
В	2	0	6	4
С	9	6	0	8
D	10	4	8	0

Parameter ACO

- Jumlah semut = 2
- $\alpha = 1, \beta = 2$
- $\rho = 0.5$ (evaporasi 50%)
- Q = 100
- ullet Feromon awal: $au_{ij}=1$ untuk semua i
 eq j
- ullet Heuristik $\eta_{ij}=1/d_{ij}$

	Α	В	С	D
Α	-	0.5	0.111	0.1
В	0.5	-	0.167	0.25
С	0.111	0.167	-	0.125
D	0.1	0.25	0.125	-

Semua $au_{ij}=1$, untuk i
eq j

Solution Solution Solution

Langkah 3.1: Pilihan kota dari A: B, C, D

• Bobot kombinasi (ingat: $au_{ij}^{lpha} \cdot \eta_{ij}^{eta}$):

Kota	au	η	η^2	$ au \cdot \eta^2$
В	1	0.5	0.25	0.25
С	1	0.111	0.0123	0.0123
D	1	0.1	0.01	0.01
Total				0.2723

$$P_{ij} = rac{ au_{ij}^{lpha} \cdot \eta_{ij}^{eta}}{\sum_{k} au_{ik}^{lpha} \cdot \eta_{ik}^{eta}}$$

$$P_{A o B} = rac{1\cdot (0.5)^2}{(0.5)^2 + (0.111)^2 + (0.1)^2} = rac{0.25}{0.25 + 0.0123 + 0.01} pprox 0.918$$

- Dengan cara yang sama diperoleh probabilitas semua kota:
 - $\circ \; P_{A o B} = 0.25/0.2723 pprox {f 0.918}$
 - $\circ \ P_{A o C} = 0.0123/0.2723 pprox \mathbf{0.045}$
 - $\circ \ P_{A o D} = 0.01/0.2723 pprox \mathbf{0.037}$

Jadi kemungkinan besar semut memilih A → B

Langkah 3.2: dari B ke (C, D)

• Bobot:

Kota	η^2	$ au\cdot\eta^2$
С	0.0279	0.0279
D	0.0625	0.0625
Total		0.0904

• Probabilitas:

$$P_{B o C} = 0.0279/0.0904 pprox \mathbf{0.309}$$

$$\circ~P_{B o D} = 0.0625/0.0904 pprox {f 0.691}$$
 (Pilih D)

Langkah 3.3: dari D ke (C)

- Sisa kota: C
- Probabilitas 100% ke C
- Dari C kembali ke asal (A)
- Misal urutan penuh: A → B → D → C → A
- Total jarak:
 - \circ (A-B = 2), (B-D = 4), (D-C = 8), (C-A = 9)
 - Total = 23

Rekap semut 1

Langkah	Pilihan Kota	Probabilitas
A → ?	B: 0.918 , C: 0.045, D: 0.037	→ B
B → ?	D: 0.691 , C: 0.309	\rightarrow D
D → ?	C: 1.0	→ C
$C \rightarrow A$	kembali ke asal	

Langkah 4: Semut 2 (Mulai dari Kota C) Langkah 4.1: dari C ke (A, B, D)

• Heuristik:

$$\circ \; \eta_{CA} = 1/9 pprox 0.111$$

$$\circ \; \eta_{CB} = 1/6 pprox 0.167$$

$$\circ \; \eta_{CD} = 1/8 = 0.125$$

• Bobot (ingat: semua $au_{ij}=1$):

Kota	η^2	$ au \cdot \eta^2$
Α	0.0123	0.0123
В	0.0279	0.0279
D	0.0156	0.0156
Total		0.0558

• Probabilitas:

- $P_{C o B} = 0.0279/0.0558 pprox {f 0.5}$
- $\circ~P_{C o D} = 0.0156/0.0558 pprox {f 0.28}$
- $\circ~P_{C o A} = 0.0123/0.0558 pprox {f 0.22}$
- o 🕲 Pilih B

Langkah 4.2: dari B ke (A, D)

• Heuristik:

$$\circ$$
 $\eta_{BA}=1/2=0.5$

$$\circ$$
 $\eta_{BD}=1/4=0.25$

• Bobot:

Kota	η^2	$ au \cdot \eta^2$
Α	0.25	0.25
D	0.0625	0.0625
Total		0.3125

• Probabilitas:

o A: 0.25 / 0.3125 = **0.8**

o D: 0.0625 / 0.3125 = **0.2**

∘ **⊗** Pilih A

Langkah 4.3: dari A ke D

- Sisa: hanya D
- Probabilitas = 1
- kembali ke asal C
- Rute Semut 2: C → B → A → D → C
- Jarak:

$$\circ$$
 (C-B = 6), (B-A = 2), (A-D = 10), (D-C = 8)

• Total = 26

III Update Feromon Setelah Iterasi 1

• Parameter

$$Q = 0$$

$$\circ~
ho=0.5$$

• *E* Evaporasi (semua feromon awal 1 → jadi 0.5)

Tambahan Feromon:

• **Semut 1:** (A-B-D-C-A), L = 23

$$\Delta au = rac{100}{23} pprox 4.35$$

- Edges:
 - A-B, B-D, D-C, C-A

• **Semut 2:** (C-B-A-D-C), L = 26

$$\Delta au = rac{100}{26} pprox 3.85$$

- Edges:
 - C-B, B-A, A-D, D-C

Edge	Evaporated	Semut 1	Semut 2	Total $ au_{ij}$
A-B	0.5	4.35	3.85	8.7
B-D	0.5	4.35	_	4.85
D-C	0.5	4.35	3.85	8.7
C-A	0.5	4.35	_	4.85
С-В	0.5	_	3.85	4.35
A-D	0.5	_	3.85	4.35

	A	В	С	D
А	_	8.7	4.85	4.35
В	8.7	ı	4.35	4.85
С	4.85	4.35	_	8.7
D	4.35	4.85	8.7	_

• Setelah mendapatkan matriks feromon yang baru maka langkahlangkah diulang kembali dengan matriks feromon yang baru.

Ringkasan

- Semut 1 memberi penguatan besar pada jalur pendek A-B-D-C-A
 (L = 23)
- Semut 2 memberi penguatan pada C-B-A-D-C (L = 26)
- Feromon terbesar kini di A–B dan D–C (masing-masing 8.7)
- Jalur pendek makin disukai di iterasi selanjutnya