EE 660 VLSI Design Laboratory Assignment VI

Submitted by: L Sri Sai Swathi (2414202)

1. Design an NMOS common-source differential amplifier with active load as shown in Fig. 1a using UMC65 technology. Given (W/L) 1,2,5 = $6\mu/0.06\mu$, (W/L) 3,4 = $3\mu/0.06\mu$, V b = 0.55 V, and V in,dc =0.7 V.

(a) Differential amplifier.

(b) Input source.

Figure : Schematic of NMOS common-source differential amplifier with active load using 65 nm technology (W/L) 1,2,5 = $6\mu/0.06\mu$, (W/L) 3,4 = $3\mu/0.06\mu$, V b = 0.55 V, and V in,dc =0.7 V.

(a) The configuration shown in Fig. 1b is used to generate the input for the amplifier. You can use the small signal amplitude of V in,ac to be 10 mV, and frequency to be 1 kHz. Perform the operating point analysis and check if all the transistors are in saturation region of operation.

Below are the simulation results of DC operating point analysis:

Figure: Schematic with operating point values

Simulation result of first mosfet M1:

	Re	sults	Display	Window (on vlsilab2.iitgoa.ac.in)	-	0	×
Window I	Expressions	Info	<u>H</u> elp		C	ā d e r	nce
qb1			452a				
qd		-162.	251a				
qdi			251a				
qg			549a				
qgdovl			664a				
qgi		965.	549a				
qgsovl		290.	488a				
qjd		-1.	10873f				
qjs		-583.	066a				ш
qs		-492.	846a				ш
qsi		-492.	846a				
rdeff		215.	051m				
region		2					
reversed		9					
rgate		9					ш
rgbd		θ					
ron		668.	057				
rout		1.	61805K				
rseff		215.	051m				
self_gair	1	5.	11951				
ueff		22.	0519m				Ш
vbs		-219.	943m				
vdb		437.	193m				ш
vds		217.	25m				ш
vdsat		107.	581m				ш
vdsat_mar	-a	Na	aN				
vdss	-	107.	581m				
vearly		526.	182m				
vgb		700n	1				ш
vgd		262.	807m				
vgs			057m				
vgt			3625m				
vsat_marg	1		66 9 m				
vsb	,		943m				
vth			694m				
vth_drive		Na Na					
17							

Figure: Simulation result of DC operating point analysis.

Observation: M1 is in region 2 (Saturation region of operation)

Figure: Simulation result of DC operating point analysis.

Observation: M2 is in region 2 (Saturation region of operation)

Figure: Simulation result of DC operating point analysis.

Observation: M5 is in region 2 (Saturation region of operation)

Figure: Simulation result of DC operating point analysis.

Observation: M3 is in region 2 (Saturation region of operation)

Figure: Simulation result of DC operating point analysis.

Observation: M4 is in region 2 (Saturation region of operation)

It is Verified that all the 5 transistors are in region 2 i.e Saturation region of operation.

(b) Perform the AC analysis of the circuit and find out the differential gain and 3 dB frequency.

Below are simulation results of the AC response analysis:

Figure: Plot showing Ac response analysis results (Vout, Vin1 considered)

Observations: From the above Ac Analysis plots we can say that :

- 1.Low frequency gain is 16.807dB
- 2. 3dB cuttoff frequency is 19.27 GHz
- 3. Phase difference between the input and output at the 3 dB frequency: -56.39 Degrees.

Figure: Plot showing Ac response analysis results (Vout, Vin2 considered)

Observations: From the above Ac Analysis plots we can say that:

- 1.Low frequency gain is 16.807dB
- 2. 3dB cuttoff frequency is 19.27 GHz

- 3. Phase difference between the input and output at the 3 dB frequency: 123.6Degrees.
- (c) Perform the transient analysis of the circuit with the input small signal voltage assumed to be 10 mV and 20 mV, and plot the differential input and output waveforms.

Below are the results of Transient analysis at vin =10mv:

Figure:Plot showing transient analysis simulation result (Vout w.r.to Vin1,Vin2)

Figure:Plot showing transient analysis simulation result (Vout w.r.to Vin1,Vin2)

Below are the results of Transient analysis at vin =20mv:

Figure:Plot showing transient analysis simulation result (Vout w.r.to Vin1,Vin2)

Figure:Plot showing transient analysis simulation result (Vout w.r.to Vin1,Vin2)

2. A draw a compact layout of the amplifier by cleaning DRC and LVS. Extract the netlist and do post-layout simulations of the steps mentioned in 1(a) to 1(c). Compare the pre- and post-layout simulation results. (You have to attach the screenshots of RVE indicating clean DRC, LVS, and PEX.)

Figure: Layout of NMOS common-source differential amplifier with active load

Below is the DRC Simulation result screenshot:

Below is the LVS simulation result screenshot:

Below is the PEX simulation result screenshot:

Post-layout simulations:

a)Perform the operating point analysis and check if all the transistors are in saturation region of operation.

Simulation result of first mosfet M1:

Figure: Simulation result of DC operating point analysis.

Observation: M1 is in region 2 (Saturation region of operation)

Simulation result of mosfet M2:

	Re	sults	Display	Window (on vlsilab2.iitgoa.ac.in)	-	0	×
Window	Expressions	Info	<u>H</u> elp		c	ā d e ı	nce
igcs			. 743p				
igd			. 8972p				
igdt			.402p				ш
ige			.402p				
igidl		9					
igisl		θ					
igs		245.	. 785p				
is			aN .				
isb		217	.953f				
ise		-321.	. 249u				
isub		736.	.021z				
pwr		63.	. 2972u				
qb		-310	.606a				
qbi		-310	.606a				
qd		-176	. 072a				
qdi		-176	.072a				
qg		981.	. 89a				
qgdovl		172.	.907a				
qgi		981.	. 89a				
qgsovl		291.	. 583a				
qjd		-1.	.05673f				
qjs		-577	. 857a				
qs		-495	.211a				
qsi		-495	. 211a				
rdeff		215.	.051m				
region		2					
reversed	l	9					
rgate		9					
rgbd		9					
ron		613.	. 341				
rout			. 51 317K				
rseff		215.	.051m				
self_gai	n	4.	. 70537				
ueff		22.	.055m				
vbs		-217	. 882m				V

Figure: Simulation result of DC operating point analysis.

Observation: M2 is in region 2 (Saturation region of operation)

Simulation result of mosfet M5:

	Results Display Window (on vl	silab2.iitgoa.ac.in) 🗕 🗖	×
Window Expressi		cāde	n c e
, qb	-320.447a		П
bi	-320.447a		ш
qd	-207.695a		ш
qdi	-207.695a		ш
19	1.17009f		
qgdovl	202.953a		
qgi	1.17009f		
qgsovl	331.924a		
qjd	-570.212a		
qjs	-3.14017a		
qs	-641.952a		
qsi	-641.952a		
rdeff	215.051m		
region	2		
reversed	0		
rgate	9		- 1
rgbd	0		
ron	333.398		
rout	894.544		
rseff	215.051m		
self_gain	3.98098		
ueff	21.5778m		
/bs	-988.457u		- 1
/db	215.066m		
/ds	214.077m		
/dsat	144.507m		
/dsat_marg	NaN		
/dss	144.507m		
vearly	574.393m		
/gb	549.751m		
/gd	334.686m		
/gs	548.763m		
/gt	129.389m		
/sat_marg	69.5701m		
/sb	988.457u		

Figure: Simulation result of DC operating point analysis.

Observation: M5 is in region 2 (Saturation region of operation)

Simulation result of mosfet M3:

	Re	sults	Display	Window (on vlsilab2.ii	itgoa.ac.in)	-		×
Window E	Expressions	Info	<u>H</u> elp			c	ā d e ı	ı c e
pwr		218.	084u					
qb		315.	411a					ш
qbi		315.	411a					ш
qd		3.	13833a					ш
qdi		3.	13833a					
qg		-810.	286 a					
qgdovl		-2.	76031 a					
qgi		-810.	286 a					ш
qgsovl		-230.	446a					ш
qjd		803.	558a					ш
qjs		1.	94675a					ш
qs		491.	736a					ш
qsi		491.	736a					ш
rdeff		298.	167m					ш
region		2						ш
reversed		9						ш
rgate		9						ш
rgbd		9						ш
ron		2.	11841K					ш
rout		4.	64185K					ш
rseff		298.	167m					ш
self_gain	1	7.	17868					ш
ueff		8.	92886m					ш
vbs		1.	16923m					ш
vdb		-680.	87m					ш
vds		-679.	701m					ш
vdsat		-246.	725m					ш
vdsat_mar	g	Na	N					ш
vdss		-246.	725m					ш
vearly		1.	48935					ш
vgb		-682.	208m					ш
vgd		-1.	33795m					Ш
vgs		-681.	039m					Ш
vgt		-291.	063m					Ш
vsat_marg		432.	976m					
veh			16 023m					

Figure: Simulation result of DC operating point analysis.

Observation: M3 is in region 2 (Saturation region of operation)

Simulation result of mosfet M4:

	Re	esults	Display	Window (on vlsilab2.iitgoa.ac.in)	-		×
Window	Expressions	Info	<u>H</u> elp		c	ā d e r	106
qd		2.	64878a				H
qdi		2.	64878a				ш
qg		-809.	925a				Ш
qgdovl		-2.	27241a				Ш
qgi		-809.	925a				Ш
qgsovl		-230.	458a				Ш
qjd		804.	991a				Ш
qjs		1.	88165a				Ш
qs		491.	841a				Ш
qsi		491.	841a				Ш
rdeff		298.	167m				П
region		2					
reversed		9					
rgate		9					
rgbd		9					
ron		2.	12062K				
rout		4.	64468K				
rseff		298.	167m				
self_gai	n	7.	18888				
ueff		8.	92921m				
vbs		1.	12678m				
vdb		-682.	373m				
vds		-681.	246m				
vdsat		-246.	799m				
vdsat_ma	rg	Na	aN				
vdss		-246.	799m				
vearly		1.	49209				
vgb		-682.	2m				
vgd		173.	049u				
vgs		-681.	073m				
vgt		-291.	168m				
vsat_mar	g	434.	447m				
vsb		-1.	12678m				
vth		-389.	905m				
vth_driv	e	Na	aN				

Figure: Simulation result of DC operating point analysis.

Observation: M4 is in region 2 (Saturation region of operation)

It is Verified that all the 5 transistors are in region 2 i.e Saturation region of operation.

(b) Perform the AC analysis of the circuit and find out the differential gain and 3 dB frequency.

Below are simulation results of the AC response analysis:

Figure: Plot showing Ac response analysis results (Vout, Vin1 considered)

Observations: From the above Ac Analysis plots we can say that :

- 1.Low frequency gain is 16.290dB
- 2. 3dB cuttoff frequency is 9.044 GHz
- 3. Phase difference between the input and output at the 3 dB frequency: -61Degrees.

Figure: Plot showing Ac response analysis results (Vout, Vin2 considered)

Observations: From the above Ac Analysis plots we can say that:

- 1.Low frequency gain is 16.290dB
- 2. 3dB cuttoff frequency is 9.044 GHz
- 3. Phase difference between the input and output at the 3 dB frequency: 118.99 Degrees.
- (c) Perform the transient analysis of the circuit with the input small signal voltage assumed to be 10 mV and 20 mV, and plot the differential input and output waveforms.

Below are the results of Transient analysis at vin =10mv:

Figure:Plot showing transient analysis simulation result (Vout w.r.to Vin1,Vin2)

Below are the results of Transient analysis at vin =20mv:

Figure:Plot showing transient analysis simulation result (Vout w.r.to Vin1,Vin2)

Comparison between pre- and post-layout simulation results:

1. **DC Analysis**: When Vb = 0.55 V, and Vin,dc = 0.7 V both pre-layout and post-layout results confirm that all transistors (M1, M2, M3, M4, M5) are in the **saturation region**.

2. AC Analysis:

i)Low frequency gain:

The pre-layout gain is **16.807 dB**, while the post-layout gain is **16.290 dB** which resulted in **0.517 dB drop in gain**. This is mainly due to the resistance and capacitance developed by metal wires and interconnects in the layout.

ii) 3dB cuttoff frequency:

3 dB cutoff frequency dropped from **19.27 GHz** (pre-layout) to **9.044 GHz** (post-layout). This is mainly due to the fact that large interconnects are used in layout design due to which parasitic capacitance has increased significantly. Also, contact and via resistances introduced in layout design. All these factors reduced bandwidth since bandwidth is Inversely proportional to RC.

iii) Phase difference between the input and output at the 3 dB frequency:

For pre-layout simulation the phase shift from **Vin1 to Vout** was **-56.39°**, but after for post-layout, it increased to **-61.00°**, adding an extra **-4.61° delay** due to parasitic effects.

For pre-layout simulation the phase shift from **Vin2 to Vout** was **123.60°**, but after for post-layout , it increased to **118.99°**, reducing by **4.61°** because of added resistance and capacitance in the circuit.

3. Transient Analysis:

At 10mV: pre –layout simulation has Vout,peak: 504.97mv, Vout,min: 374.73 mv
Post –layout simulation has Vout,peak: 485mv, Vout,min: 358 mv

At 20mV: pre –layout simulation has Vout,peak: 586 mv, Vout,min: 328 mv Post –layout simulation has Vout,peak: 560mv, Vout,min: 318 mv

It is observed that there's a slight decrement in Vout values of post layout transient simulation . This is mainly due to the **Parasitic resistance in routing**, which causes voltage drops and reduces both peak and minimum output levels for layout.