

Pemograman Berorientasi Objek

Febri Damatraseta Fairuz, S.T, M.Kom

UML 2.5 Diagrams Overview

Metode dalam pemodelan secara visual yang digunakan sebagai sarana perancangan sistem berorientasi objek.

Bahasa standar visualisasi, perancangan, dan pendokumentasian sistem, atau dikenal juga sebagai bahasa standar penulisan *blueprint* sebuah *software*.

01 UML Class Diagram

UML - Behavior Diagram

Class diagram is UML structure diagram which shows structure of the designed system at the level of classes and interfaces, shows their features, constraints and relationships - associations, generalizations, dependencies, etc.

Shows structure of the designed system, subsystem or component as related classes and interfaces, with their features, constraints and relationships - associations, generalizations, dependencies, etc.

Some common types of class diagrams are:

1. Domain model diagram

2. Diagram of implementation clasess

https://www.uml-diagrams.org/class-diagrams-overview.html#domain-model-diagram

CASE STUDY

POS

TOKO Kelontong Palu Gada

Case Study

RDBMS – App POS

role id: int(11)

is active : tinyint(1)

Sample Cases of **Domain model diagram**:

Sample Cases of **Diagram of implementation clasess**:

CLASS DIAGRAM

Elements of class diagram:

- 1. Class
- 2. Association
- 3. Aggregation
- 4. Composition
- 5. Generalization

List of the elements

CLASS

A class is a classifier which describes a set of objects that share the same features, constraints, and semantics (meaning).

A class is shown as a solid-outline rectangle containing the class name, and optionally with compartments separated by horizontal lines containing features or other members of the classifier.

List of the elements

ASSOCIATION

Association is a relationship between classifiers which is used to show that instances of classifiers could be either linked to each other or combined logically or physically into some aggregation.

Symbol:

parent child

https://www.uml-diagrams.org/association.html?context=class-diagrams

List of the elements

AGGREGATION

Shared aggregation (aggregation) is a binary association between a property and one or more composite objects which group together a set of instances. It is a "weak" form of aggregation when part instance is independent of the composite. Symbol:

1

AGGREGATION

Shared aggregation (aggregation) is a binary association between a property and one or more composite objects which group together a set of instances. It is a "weak" form of aggregation when part instance is independent of the composite.

CLASS DIAGRAM

List of the elements

COMPOSITION

Composite aggregation (composition) is a "strong" form of aggregation with the following characteristics:

- it is binary association,
- it is a whole/part relationship,
- a part could be included in at most one composite (whole) at a time, and
- if a composite (whole) is deleted, all of its composite parts are "normally" deleted with it.

CLASS DIAGRAM

List of the elements

Symbol:

1

COMPOSITION

Composite aggregation (composition) is a "strong" form of aggregation with the following characteristics:

- it is binary association,
- it is a whole/part relationship,
- a part could be included in at most one composite (whole) at a time, and
- if a composite (whole) is deleted, all of its composite parts are "normally" deleted with it.

CLASS DIAGRAM

List of the elements

https://www.uml-diagrams.org/composition.html?context=class-diagrams

List of the elements

GENERALIZATIONS

A generalization is a binary taxonomic (i.e. related to classification) directed relationship between a more general classifier (superclass) and a more specific classifier (subclass).

#INHERITANCE

In OOAD inheritance is usually defined as a mechanism by which more specific classes (called subclasses or derived classes) incorporate structure and behavior of more general classes (called superclasses or base classes).

GENERALIZATIONS

A generalization is a binary taxonomic (i.e. related to classification) directed relationship between a more general classifier (superclass) and a more specific classifier (subclass).

#INHERITANCE

In OOAD inheritance is usually defined as a mechanism by which more specific classes (called subclasses or derived classes) incorporate structure and behavior of more general classes (called superclasses or base classes).

CLASS DIAGRAM

List of the elements

Where is Aggregation and Composition?

THANK YOU