Algorithm 1 Model Training

- 1: **Define LogRegWithMetrics Class** LogRegWithMetricsLogisticRegression
- 2: Constructor __init__self, max_iter=200, **kwargs
- 3: super().__init__(max_iter=max_iter, **kwargs)
- 4: self.loss_history = []
- 5: self.acc_history = []
- 6: self.intermediate_models = []
- 7: Fit Method fitself, X_train, y_train
- 8: **for** i in range $(1, self.max_iter + 1)$ **do**
- 9: temp_model = LogisticRegression(max_iter=i)
- 10: temp_model.fit(X_train, y_train)
- 11: self.intermediate_models.append(temp_model)
- 12: y_pred_prob = temp_model.predict_proba(X_train)
- 13: $y_pred = temp_model.predict(X_train)$
- 14: self.loss_history.append(log_loss(y_train, y_pred_prob))
- 15: self.acc_history.append(accuracy_score(y_train, y_pred))
- 16: end for
- 17: super().fit(X_train, y_train)
- 18: return self
- 19: Split Data
- 20: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ran-dom_state=42)
- 21: Train Model
- 22: model = LogRegWithMetrics(max_iter=200)
- 23: model.fit(X_train, y_train)