FIAP

Bot Calculadora Científica

São Paulo, SP.

FIAP

Elias Sandri Figueiredo RM 335953 Wellington Rodrigo Nonato RM 335826

Bot Calculadora Científica

Sumário

1.	Apresentação do projeto	4
1.1	1. Acesso ao projeto	4
2. (Componentes do projeto	4
2.1	1. Framework Maven	4
2.2	2. Framework java A.P.I for Telegram	4
2.3	3. Framework Mx Parser	4
2.4	4. Framework Deriv	5
3. I	Estrutura do projeto	5
3.1	1. Apresentação	5
3.2	2. Pacotes	7
4. I	Diagrama uml do projeto	8
5. I	Funcionalidade do bot	10
5.1	Condições técnicas de funcionamento	10
5.2	2. Explanação do funcionamento	10
6. I	Explanação das equações polinomiais	14

1. Apresentação do projeto

O projeto bot calculadora cientifica foi inspirado nos problemas e na dificuldade de aprender e similar o cálculo de nível superior.

No intuito no de ajudar os alunos de engenharia diversas, estudantes de licenciatura e entre outros, o projeto fornece resultados de integrais e derivadas com seus valores e resultado simbólico da derivada de primeira ordem.

Com mérito supracitado, nos focamos em uma interface simples que auxilie o usuário em seus compreendimentos no universo da ciência da matemática.

1.1. Acesso ao projeto

Neste link está o projeto para acesso: https://github.com/erius11/chat_bot_calculadora_cientifica

2. Componentes do projeto

2.1. Framework Maven

O Maven é uma ferramenta para gerenciamento das bibliotecas e plug-ins de um ou mais repositórios de forma dinâmica utilizando um XML para descrever o projeto de software sendo construído.

Documentação do componente: https://maven.apache.org/guides/

2.2. Framework java A.P.I for Telegram

O Java API for Telegram possibilita o desenvolvimento de um bot personalizado conforme a necessidade do projeto.

Website da API:

https://github.com/pengrad/java-telegram-bot-api

https://core.telegram.org/bots/api

2.3. Framework Mx Parser.

Segue uma prevê descrição do framework:

"O mXparser é uma biblioteca de analisador de expressões matemáticas super fácil, rica, rápida e altamente flexível (analisador e avaliador de expressões / fórmulas matemáticas fornecidas como texto sem formatação / string). O software é fácil de usar para JAVA, Android e C # .NET / MONO (compatível com Common Language Specification: F #, Visual Basic, C ++ / CLI)".

Com intuito no projeto, esse framework é responsável pela os cálculos com resultado de valor

Site para documentação: http://mathparser.org/

2.4. Framework Deriv

Esse framework é o responsável pelo cálculo simbólico das derivadas polinomiais, ele em vez de retornar um valor retorna uma expressão matemática da derivada de primeira ordem.

Segue uma prevê descrição do framework: "Comecei este projeto querendo fazer uma calculadora derivada simbólica que pudesse diferenciar funções arbitrárias da forma f: R ^ n -> R. E fiz isso. Mas, depois de dedicar algum tempo para refletir sobre o projeto, percebi que acabei definindo as bases para algo muito mais interessante. Por que me limitar a funções apenas da forma descrita acima? Por que não tentar diferenciar funções com valor vetorial, ou, melhor ainda, funções com valor tensorial?"

Site para documentação: https://github.com/horeilly1101/deriv

3. Estrutura do projeto

3.1. Apresentação

Segue abaixo uma breve apresentação da estrutura do projeto.

- ▼ 3 > ChatBot CalculadoraCientifica [chat bot calculadora cientifica]
 - - Br.com.chatBotCalculadoraCientifica.exception

 Br.com.chatBotCalcul
 - ExceptionHandler.java
 - - > CalculatorBot.java
 - ManagerBotMessage.java
 - ManagerProperties.java
 - ManagerTask.java
 - › A ObjectFactory.java
 - - > A MainBot.java
 - log4j.properties
 - ➤ Mark JRE System Library [JavaSE-1.8]
 - Maven Dependencies
 - 🕶 🗁 config
 - 🕶 🔄 image
 - tabela_calculo.png
 - 🕶 🗁 menu
 - menu.properties
 - 🗸 🗁 token
 - 🗟 token.properties
 - > 🔄 > javadoc
 - 🕶 🗁 lib
 - 🗟 deriv-1.0-SNAPSHOT-jar-with-dependencies.jar

Na pasta **src** temos os pacotes com as classes(códigos) responsáveis pelo funcionamento do projeto. O projeto foi definido uma arquitetura com a utilização de **threads**, modelados nos seguintes designs pathers que são: MVC, Fabric e Singleton,

3.2. Pacotes

O pacote "**br.com.chatBotCalculadoraCientifica.controller**", tem a funcionalidade de controlar o processo, somente repassará a classe específica qual tarefa(comando) que deve ser exercido."

Pacote "br.com.chatBotCalculadoraCientifica.model" tem a reponsabilidade de fazer as ações necessárias do processo, esse pacote recebe sua tarefa da classe controller e desenvolve o resultado necessário.

O pacote "br.com.chatBotCalculadoraCientifica.view" é a camada de inicialização do projeto, nela se encontra o método Main para rodar aplicação.

Pacote "br.com.chatBotCalculadoraCientifica.exception" é a camada das exceções, caso alguma thread sinalize algum erro, essa camada irá trata-lo.

A pasta config contempla todas as configurações do projeto. Nela consta os subníveis:

- Image: local aonde está a imagem das expressões matemáticas;
- Menu: local do arquivo de propriedades do menu, nele tem as descrições dos comandos do menu do chat bot;
- Token: chave de inicialização da tecnologia do TelegramBot, arquivo de propriedade com o id(chave) do bot específico;

Pasta javadoc contém toda a documentação que explicita o funcionamento do projeto.

A pasta **lib** abrange o jar do framework deriv, para mais informações ver capítulo componentes do projeto.

4. Diagrama uml do projeto

5. Funcionalidade do bot

5.1. Condições técnicas de funcionamento.

As tecnologias necessárias para rodar o projeto são:

- Para executar o projeto é necessário ter o JRE 8 ou JDK 8 instalado;
- Utilizar uma ide para execução. (Eclipse é recomendado);
- Maven instalado na máquina para build do projeto e atualização do repositório local.

Para iniciar a aplicação é necessário inicialmente fazer o clone do projeto do repositório git, mais informações ver capítulo de acesso ao projeto. Depois do clone, exportar para o eclipse (IDE do seu interesse) o projeto e esperar o build da sua área de trabalho.

Caso de algum erro no build, fazer os seguintes passos:

 Fazer um update do projeto (conforme imagem abaixo), esse procedimento irá atualizar seu repositório com as dependências do projeto.

 Depois abrir o terminal e nas pasta dentro do projeto(onde está o arquivo pom.xml) fazer o seguinte comando: mvn clean install -U.

5.2. Explanação do funcionamento.

O funcionamento do bot será explano nesse capítulo, inicialmente temos os dados para encontrar o mesmo no telegrama.

Quando a aplicação estiver iniciada, na tela do bot será necessário digitar qualquer palavra ou /start, esse comando devolverá a tela inicial de menu.

Bot Calculadora Científica

Bem vindo ao chat bot da calculado científica, para começar digi..

/start

Bot Calculadora Científica

Bem vindo ao chat bot da calculado científica, para começar digite qualquer tecla

Temos os seguintes comandos:

/CB-Calculo de equações polinomiais(calculo básico)

/CVD-Calculo do valor de derivadas polinomiais

/CSD-Calculo simbolico de derivadas polinomiais

/CVI-Calculo do valor de integrais polinomiais

/IMG-Imagem tabela para calculo

/Ajuda

O menu supracitado contempla comandos de cálculo, imagem e ajuda, sendo explanados abaixo:

• Comando /CB é o comando para cálculos diversos, nele é necessário digitar a equação do cálculo desejado, conforme exemplo;

Digite a equacao.

Elias

18:16:52

Bot Calculadora Científica

Comando do calculo básico: Neste comando aceita equação co...

 $\sin(2*pi)+\tan(3*pi)+2+1+1+2+41+(4/2)$

- O comando /CVD faz o cálculo de derivadas polinomiais, com intuito de devolver o valor da derivada de primeira ordem.
- Para esse comando é necessário digitar a palavra **der**(derivada), nisso a equação que deseja derivar, depois a variável que será derivada e finalmente o valor da variável, conforme exemplo:

Exemplo:

```
der(2*x^2,x,1)
der(sin(2*pi),x,2)
der(tan(2*x*pi)+2*x^4,x,1)
```

Digite a equacao:

Elias

Bot Calculadora Científica

Comando do calculo da derivada polinomial: Esse calculo retorn...

$$der(tan(2*x*pi)+2*x^4,x,1)$$

Bot Calculadora Científica

14,283

• Comando /CSD faz o calculo da derivada simbólica de primeira ordem, ou seja ele retorna a primeira equação derivada. A equação deve ser digita em função da variável x, conforme exemplo:

Exemplo:

$$tan(x^2)*sin(x^2) + 2*x^4$$

 $ln(x^2)/e^(x^2) + (3*x)^4x$

Digite a equacao:

Elias

Bot Calculadora Científica

Comando do calculo simbolico da derivada polinomial: Esse calc...

$$ln(x^2)/e^(x^2) + (3*x)^4x/3*x$$

Mensagens não lidas

Bot Calculadora Científica

Comando /CVI tem o foco no cálculo de integrais polinomiais, retornando o
valor da integral desejada. A equação necessita ser digitada com a palavra
int(integral) na frente, depois ', x,' valor do limite máximo e o valor do limite
mínimo. Exemplo:

Exemplo:

Digite a equacao:

Elias

$$int(sin(3*x^2) + sin(4*x^9) + 1*x^2, x, -0, 2)$$

Mensagens não lidas

Bot Calculadora Científica

3,101

- Comando /**IMG**, retornará uma imagem com as expressões matemática para calcular derivadas e integrais.
- Comando /**Ajuda** é uma breve explanação de como usar as funções existente na matemática, item que iremos abordar no capítulo seguinte:

6. Explanação das equações polinomiais

Para efetuar os cálculos no bot é necessário digitar a equação a ser calculada, ele aceita as seguintes funções:

- 2+2-Soma;
- 2-2-Subtração;
- 2*2-Multiplicação;
- 2/2-Divisão;
- 2^2-Exponenciação;
- 2^2-Exponenciação;
- sin(x)-Função seno;

- cos(x)-Função cosseno;
- tan(x)-Função tangente;
- log2(4)-Função logaritma na base 2;
- log10(100)-Função logaritma na base 10;
- sqrt(2)-Função da raiz 2;

As funções trigonométricas podem ser feitas em graus ou radianos, mas para uma precisão melhor digitá-las em radianos. O radiano deverá ser digitado como **pi**, conforme exemplo:

• sem(2*pi), ou cos(3*pi/2), ou tan(pi).

Segue uma imagem das conversões de graus para radianos.

Figura do Círculo Trigonométrico dos ângulos expressos em graus e radianos