Captura i anàlisi acústica de sales: revisió teòrica i dos casos d'ús

Marc Franco Meca

Universitat Pompeu Fabra

Treball Fi de Grau

Supervisor: Andrés Pérez López

Índex

Objectius

Introducció

Mètode de Mesura

Cas 1: Home Studio

Cas 2: Central Hall, Universitat de York

Conclusions

Referències

Objectius del projecte

Concretar coneixements teoricopràctics

Valorar el comportament acústic en vers a la reproducció de música

Determinar si l'acústica del Central Hall de la Universitat de York és adequada per a la transmissió clara de la paraula.

Implementació del mètode de mesura en llenguatge Python

Motivació personal

Introducció

01

Acústica arquitectònica

Aïllament acústic

Acondicionament acústic

Tres teories

Magnituds de qualitat acústica

02

Mètode de Mesura

Resposta impulsional

Senyal d'excitació / Filtre Invers

Paràmetres acústics

03

Home Studio

Mescla música electrònica

04

Central Hall, Universitat de York

Ensenyament / Comunicació oral

Introducció

Fenòmens físics

- Reflexió
- Refracció
- Difracció
- Absorció
- Difusió
- Interferències

Fig 1: Representació gràfica del so directe i les primeres reflexions que arriben a un oient

Camp lliure vs camp reverberant

- Cambra anecoica
- Cambra de reverberació
- Distància crítica

Fig 2: Gràfic que mostra el camp lliure i el camp reverberant, identificant la distància crítica que delimita la zona a partir de la qual predomina un dels dos camps

Acústica arquitectònica

- Estudia els fenòmens relacionats amb una propagació adecuada i adient segons la funció del recinte o sala
- Aïllament vs acondicionament acústic

Teoria geomètrica

Tractar la propagació com raigs.

Reflexions especulars.

Teoria ondulatòria

Resolució numèrica de l'equació d'ona general.

Modes de vibració propis.

Teoria estadística

Comportament acústic.

Camp acústic uniforme.

Dimensions de la sala superiors a

la longitud d'ona.

Coeficients d'absorció semblants.

Aproximació valor promig.

Paràmetres acústics.

Mètode de mesura

Escombrat frequencial

Característiques

Funció sinusoidal o to pur que incrementa la seva freqüència amb el temps.

Lineal o logarítmic.

$$x(t) = \sin \left[\frac{2\pi f_{inf} T}{ln(\frac{2\pi f_{sup}}{2\pi f_{inf}})} \cdot \left(e^{\frac{t}{T} \cdot ln(\frac{2\pi f_{sup}}{2\pi f_{inf}})} - 1 \right) \right]$$

 f_{inf} freqüència inicial

 f_{sup} freqüència final

T duració

Fig 3: Gràfic del senyal d'excitació en domini temporal

Avantatges

Simplicitat del senyal invers.

Excitar només una freqüència alhora.

Analitzar una finestra temporal.

Fig 4: Espectograma del senyal d'excitació

Inconvenients

Eficiència computacional baixa.

Fig 5: Espectre freqüencial del senyal d'excitació expressat en dBFS

El filtre invers

Sweep logarítmic invertit temporalment amb una modulació d'amplitud de 6dB/oct.

$$N = e^{\frac{\Delta t \cdot ln(\frac{\omega_2}{\omega_1})}{T}} = e^{\frac{\Delta t}{L}}$$

$$L = \frac{T}{ln(\frac{\omega_2}{\omega_1})}$$

 $\omega_1 \ \omega_2$ extrems del rang frequencial T duració

Fig 6: Representació del domini temporal, espectrograma i espectre freqüencial en dBFS del filtre invers

Deconvolució

Aplicar una convolució lineal del senyal de sortida y(t) amb el filtre invers f(t) pre-processat del senyal d'excitació.

Fig 7: Diagrama de blocs del procés de la deconvolució d'un senyal

Fig 8: Gràfic de la resposta impulsional en domini temporal

Temps de reverberació (RT)

Efecte acústic que mesura el temps que requereix un so reflectit a decaure una determinada quantitat d'energia sonora respecte un nivell inicial en un recinte després que la font emissora del so el deixa d'emetre.

Depèn de la freqüència.

$$RT60 = RT30 \cdot 2 = RT20 \cdot 3 = EDT10 \cdot 6$$

Varia segons la posició mesurada.

Sabine

Eyring

$$RT60 = \frac{60V}{1.086 \cdot c \cdot (S \cdot \alpha + 4mV)}$$

 $RT60 = \frac{60V}{1.086 \cdot c \cdot S(-ln(1-\alpha) + \frac{4mV}{S})}$

- V volum de la sala
- c velocitat de propagació del so
- S suma de superfícies de tota la sala

- α coeficient d'absorció mig
- m coeficient de l'aire

RT60 a partir de la resposta impulsional

Filtrar la resposta impulsional

Transformada de Hilbert

Filtre de Mitjana Mòbil

Integració de Schroeder

11 bandes d'octava / 31 terç d'octava

$$h_A(t) = h(t) + j\tilde{h}(t)$$

$$h_A(t) = A(t) \cdot e^{j\psi(t)}$$

$$y[n] = \frac{1}{L} \sum_{k=0}^{L-1} x[n-k]$$

$$H(f) = \frac{\sin(\pi f L)}{L \sin(\pi f)}$$

$$L(t) = 10log_{10} \left[\frac{\int_t^\infty h^2(\tau) d\tau}{\int_0^\infty h^2(\tau) d\tau} \right]$$

$$L = A \cdot t + B$$

$$RT = \frac{-60}{A}$$

Paràmetres Acústics

Calidesa acústica (BR)

$$BR = \frac{RT(125Hz) + RT(250Hz)}{RT(500Hz) + RT(1kHz)}$$

Valors recomanats

Parla: 0,9 - 1 Música: 1 - 1,3

Brillantor (Br)

$$Br = \frac{RT(2kHz) + RT(4kHz)}{RT(500Hz) + RT(1kHz)}$$

Valors recomanats

>0,80

Índex de Claredat de la veu (C50)

$$C_{50} = 10 \cdot log \frac{\int_0^{50} p^2(t)dt}{\int_{50}^{\infty} p^2(t)dt}$$

Càlcul per bandes de freqüències (125Hz - 4kHz)

S'expressa en dB

Valors recomanats: >2dB

Definició de la veu (D50)

$$D50 = \frac{\int_0^{0.05} p^2(t)dt}{\int_0^{\infty} p^2(t)dt}$$

$$D50 = \frac{1}{1 + 10^{\frac{-C_{50}}{10}}}$$

Càlcul per bandes de freqüències (125Hz - 4kHz)

S'expressa en %

Parla: 0,5 Sala de concerts: 0,65

Índex de Claredat Musical (C80)

$$C_{80} = 10 \cdot log \frac{\int_0^{80} p^2(t)dt}{\int_{80}^{\infty} p^2(t)dt}$$

Càlcul per bandes de frequències (125Hz - 4kHz)

S'expressa en dB

Música amb òrgans: -8 a -2 Música simfònica: -2 a 2 Òpera: 2 a 6 Instruments electrònics: >6

Pèrdua de l'Articulació de les Consonants (%ALCons)

$$\%ALCons = \frac{200r^2RT^2}{VQ}$$
, per a r $\leq 3.16D_c$
 $\%ALCons = 9RT$ per a r $> 3.16D_c$

Càlcul per bandes de freqüències (125Hz - 4kHz), especialment 2kHz

S'expressa en %

%ALCons	100-33%	33-15%	15-7%	7-3%	3-0%
Intel·ligibilitat	Incomprensible	Pobre	Mediocre	Bona	Excel·lent

Modes propis i Criteri de Bolt

Ona sonora que roman estacionària reflexant-se entre dues superfícies paral·leles.

Cada mode propi té una freqüència pròpia associada.

$$f_{k,m,n} = \frac{c}{2} \sqrt{\left(\frac{k}{L_x}\right)^2 + \left(\frac{m}{L_y}\right)^2 + \left(\frac{n}{L_z}\right)^2}$$

 L_x, L_y, L_z dimensions de la sala

k, m, n valor enter

velocitat del so en el medi

Predir la distribució modal òptima en funció de les dimensions d'un recinte rectangular

Fig 9: Representació de l'àrea determinada per Bolt

Cas pràctic: Home Studio

Dimensions de la sala

Alçada	2,32
Profunditat	2,63
Amplada	2,28
Porta	2,1 x 0,885

Finestra	1,53 x 1,31
Radiador	0,477 x 0,566 x 0,095
Material absorbent	15 x (0,3 x 0,3 x 0,05)
Llistons	2 x (0,043 x 0,895) 2 x (0,043 x 1,5)

Imatges de la sala amb el mínim mobiliari

Fig 10: Imatges de l'habitació Home Studio destinada a la mescla musical amb el mínim mobiliari possible

Imatges de la sala moblada

Fig 11: Imatges de l'habitació Home Studio destinada a la mescla musical amb el mobiliari habitual del que disposa la sala

Coeficients d'absorció

Material	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz
Paret de maó amb guix	0,10	0,10	0,04	0,02	0,02	0,02
Fusta sòlida	0,14	0,10	0,06	0,08	0,10	0,10
Vidre comú	0,35	0,25	0,18	0,12	0,07	0,04
Alumini	0,15	0,10	0,06	0,08	0,10	0,05
Poliuretà	0,07	0,30	0,37	0,70	1,00	0,97

Taula 1: Coeficients d'absorció acústica dels materials que composen la sala expressats en terços d'octava

Coeficients d'absorció

Freqüència	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz
Temps de Reverberació (RT60)	0,54	0,56	1,07	1,08	0,90	0,94
Coef.Absorció Mig	0,12	0,11	0,06	0,06	0,07	0,07

Taula 2: : Valor del temps de reverberació RT60 i el coeficient d'absorció mig en terços d'octava

Valor recomanat

Resultats

Paràmetre Acústi	С	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	
Temps de Reverberació	Sense Mobiliari	1,32	1,10	0,96	0,74	0,68	0,61	
(RT60)	Amb Mobiliari	0,57	0,59	0,49	0,48	0,47	0,46	
6 II I I I I I I I I I I I I I I I I I	Sense Mobiliari			1,4	12			
Calidesa Acústica (BR)	Amb Mobiliari	1,18						
Brillantor (BD)	Sense Mobiliari	0,76						
Brillantor (BR)	Amb Mobiliari	0,95						
İndex de Claredat de la veu (C50)	Sense Mobiliari	-3,44	1,25	1,82	3,89	0,60	2,94	
	Amb Mobiliari	-3,52	4,53	8,10	8,47	6,35	3,20	
İndex de Claredat	Sense Mobiliari	1,68	6,02	5,53	5,83	5,42	7.45	
Musical (C80)	Amb Mobiliari	8,54	9,99	12,8	11,10	10,43	8,63	
Dofinició (D50)	Sense Mobiliari	0,31	0,57	0,6	0,71	0,53	0,66	
Definició (D50)	Amb Mobiliari	0,31	0,74	0,87	0,88	0,81	0,68	
Pèrdua de l'Articulació de les Consonants (%ALCons)	Sense Mobiliari	9,43	6,58	8,67	6,66	6,10	5,48	
	Amb Mobiliari	1,74	1,89	4,47	4,36	4,19	4,18	

Taula 3: Valor dels paràmetres acústics en terços d'octava diferenciats entre la sala sense mobiliari (color blau) i la sala amoblada (color vermell)

Temps de Reverberació (RT60)

Fig 12: Representació del temps de reverberació RT60 per ambdues situacions en bandes de terços d'octava, així com els valors de la simulació teòrica

Major reverberació a baixes freqüències.

Sala sense mobiliari, diferència notable entre baixes i altes freqüències.

Sala moblada, resposta plana. Reducció a freqüències mitjanes i altes.

La simulació teòrica, freqüències baixes similars a la sala moblada i mitjanes i altes superiors a la sala sense mobiliari.

Sala sense mobiliari X

Sala habitual freqüències mitjanes i altes √ freqüències baixes X

Bass Ratio i Brillantor

Calidesa Acústica (BR)				
Sense Mobiliari	1,42 X			
Amb Mobiliari	1,18 🗸			

Brilla	ntor (BR)
Sense Mobiliari	0,76 🗸
Amb Mobiliari	0,95 🗸

Fig 13: Representació del temps de reverberació RT60 per ambdues situacions en bandes de terços d'octava, així com els valors de la simulació teòrica

Índex de Claredat de la veu (C50)

Fig 14: Gràfic de l'índex de claredat de la veu C50 per ambdues situacions en bandes de terços d'octava

C50 sala amoblada > C50 sala sense mobiliari

Sala sense mobiliari X

Sala habitual V

Definició de la veu (D50)

Fig 15: Gràfic de la definició de la veu D50 per ambdues situacions en bandes de terços d'octava

Similitud amb el C50

D50 sala amoblada > D50 sala sense mobiliari

Sala sense mobiliari =

Sala habitual V

Índex de Claredat Musical (C80)

Fig 16: Representació de l'índex de claredat musical C80 per ambdues situacions en bandes de terços d'octava

Difereixen en valors, tendència similar

Activitat principal: mescla de música electrònica → C80 > 6dB

Sala sense mobiliari =

Sala habitual V

Pèrdua de l'Articulació de les Consonants (%ALCons)

Fig 17: Representació de la pèrdua de l'articulació de les consonants per ambdues situacions en bandes de terços d'octava

Sala sense mobiliari disminueix al augmentar la freqüència.

Sala amb mobiliari s'estabilitza al 4% (500-4kHz).

Sala sense mobiliari - Bona.

Sala habitual - Excel·lent freqüències baixes, i bona a mitjanes i altes.

Modes propis i Criteri de Bolt

	Axials							
65.21 Hz C2 1								
73.92 Hz	D2	0-0-1						
75.22 Hz	D2	0-1-0						
130.42 Hz	C3	2-0-0						
147.84 Hz	D3	0-0-2						
150.44 Hz	D3	0-2-0						
195.63 Hz	G3	3-0-0						
221.77 Hz	A3	0-0-3						
225.66 Hz	A3	0-3-0						
260.84 Hz	C4	4-0-0						
295.69 Hz	D4	0-0-4						
300.88 Hz	D4	0-4-0						

Criteri de Bolt

$$z = 2,32$$

$$x = 2,28 \cdot 1,5 = 3,42$$

$$y = 2,63 \cdot 2 = 5,26$$

	Oblics	
123.99 Hz	B2	1-1-1
167.72 Hz	E3	2-1-1
178.24 Hz	F3	1-1-2
179.86 Hz	F3#	1-2-1
211.01 Hz	G3#	2-1-2
212.38 Hz	G3#	2-2-1
220.78 Hz	A3	1-2-2
222.24 Hz	A3	3-1-1
243.09 Hz	B3	1-1-3
246.25 Hz	B3	1-3-1
247.99 Hz	B3	2-2-2
256.49 Hz	C4	3-1-2
257.62 Hz	C4	3-2-1
268.04 Hz	C4	2-1-3
270.91 Hz	C4#	2-3-1
275.8 Hz	C4#	1-2-3
277.55 Hz	C4#	1-3-2
281.35 Hz	C4#	4-1-1
287.68 Hz	D4	3-2-2
298.03 Hz	D4	2-2-3
299.65 Hz	D4	2-3-2

Taula 4: Modes propis axials, tangencials i oblics expressats en freqüència, nota musical i ordre

	Tangencials	
98.57 Hz	G2	1-0-1
99.55 Hz	G2	1-1-0
105.46 Hz	G2#	0-1-1
149.91 Hz	D3	2-0-1
150.56 Hz	D3	2-1-0
161.59 Hz	E3	1-0-2
163.96 Hz	E3	1-2-0
165.88 Hz	E3	0-1-2
167.62 Hz	E3	0-2-1
197.15 Hz	G3	2-0-2
199.1 Hz	G3	2-2-0
209.13 Hz	G3#	3-0-1
209.59 Hz	G3#	3-1-0
210.93 Hz	G3#	0-2-2
231.16 Hz	A3#	1-0-3
234.18 Hz	A3#	0-1-3
234.89 Hz	A3#	1-3-0
237.46 Hz	A3#	0-3-1
245.21 Hz	B3	3-0-2
246.78 Hz	B3	3-2-0
257.27 Hz	C4	2-0-3
260.63 Hz	C4	2-3-0
267.98 Hz	C4	0-2-3
269.78 Hz	C4#	0-3-2
271.11 Hz	C4#	4-0-1
271.47 Hz	C4#	4-1-0
295.72 Hz	D4	3-0-3
298.65 Hz	D4	3-3-0
299.82 Hz	D4	4-0-2

Valoració

Avaluació acústica satisfactòria

Problemes frequències baixes

Gairebé tots els paràmetres dins els rangs proposats

RT60 superior (125 - 250Hz) → reduir l'excés d'energia

C50 i D50 inferiors (125Hz) → augmentar la quantitat d'energia sonora de les primeres reflexions en vers a les tardíes

Propostes de millora

Objectiu: obtenir un punt d'escolta neutre per a mesclar amb la mínima coloració.

Distribució

- Taula centrada en la paret contrària a la finestra separada 20cm.
- Material absorbent paret frontal i cantonades.

Modes Propis

- Tractament parets laterals amb absorbents desfasats.
- Catifa al sòl + Material absorbent al sostre en forma d'escacs
- Cortina a la finestra

Cas pràctic: Central Hall, Universitat de York

Procediment

- Activitat principal: conferències i classes educatives
- Font emissora: 1,5m
- Receptor: 1,2m
- Micròfon Soundfield
- Genelec
- Sweep logarítmic (20-20kHz, 15s)

Fig 18: Plànol de planta del Central Hall de la Universitat de York amb la posició de la font emisora representada amb un punt verd i les sis posicions de recepció amb color vermell

Fig 19: Imatges de les diverses posicions de gravació a l'interior del Central Hall de la Universitat de York

Resultats

Paràmetre Acústic		125Hz	250Hz	500Hz	1kHz	2kHz	4kHz
Temps de Reverberació	Open AIR	1,42	1,07	1,11	1,12	1,03	0,86
(RT60)	Mesures	1,29	1,07	1,11	1,09	1,09	0,8
İndex de Claredat de la veu (C50)	Open AIR	-3,67	-0,97	-3,14	-6,3	-6,13	-4,95
	Mesures	-4,74	0,73	5,40	5,49	1,64	8,12
	Acoustics	-2,33	1,52	6,45	5,82	3,26	7,8
İndex de Claredat Musical (C80) Definició (D50)	Open AIR	-1,77	0.35	-1,15	-2,39	-2,88	-2,37
	Mesures	0,54	4,6	7,69	8,29	5,87	10,5
	Acoustics	2,13	4,54	8,2	8,77	6,57	10,6
	Open AIR	0,3	0,44	0,33	0,19	0,2	0,24
	Mesures	0,25	0,54	0,77	0,78	0,59	0,87
	Acoustics	0,37	0,59	0,82	0,79	0,68	0,86

Taula 5: Valor dels paràmetres acústics en terços d'octava diferenciats entre els valors proporcionats per la llibreria Open AIR (color blau), els valors obtinguts pel mètode implementat en el projecte (color vermell) i els valors obtinguts amb la llibreria de "python-acoustics"(color verd)

Temps de Reverberació (RT60)

Fig 20: Representació del temps de reverberació RT60 amb els valors proposats per la llibreria Open AIR i els obtinguts amb el mètode implementat en el projecte

Major reverberació a baixes freqüències.

Desconeixement de les dimensions.

Sala petita: 0,7s

Sala gran: 1,2s

Transmissió clara i nítida 🇸

Índex de Claredat de la veu (C50)

Disparitat de resultats segons el mètode.

Similitud llibreria python-acoustics i mètode implementat.

OpenAIR X

python-acoustics i mètode implementat freqüències mitges i altes
freqüències baixes X

Fig 21: Gràfic de l'índex de claredat de la veu C50 per els tres mètodes enbandes de terços d'octava

Definició de la veu (D50)

Resultats OpenAIR inferiors

OpenAIR X

python-acoustics V

mètode implementat 🗸

Índex de Claredat Musical (C80)

Fig 23: Representació de l'índex de claredat musical C80 per ambdues situacions en bandes de terços d'octava

Resultats OpenAIR inferiors.

Similitud llibreria python-acoustics i mètode implementat.

Música simfònica: -2 a 2

OpenAIR 🗸

python-acoustics X

mètode implementat X

Valoració

Llibreria Open AIR

Deficiència de la intel·ligibilitat de la paraula

Python-Acoustics

Bona resposta acústica per a la comunicació oral

Mètode implementat

Bona resposta acústica per a la comunicació oral

Conclusió

Revisió teòrica dels conceptes essencials per a realitzar un estudi acústic d'un recinte i visualitzar una aplicació real

Home Studio

Acústica adient per a la mescla de música electrònica

Central Hall de la Universitat de York

Bon comportament acústic per a la transmissió comunicativa de la paraula

Teoria

Vàlida i aplicable per a sales amb activitats principals d'ús diferents

Futures línies de treball

- Anàlisi amb altres mesures de qualitat acústica
- 2 Estudi de la disparitat de resultats amb la llibreria Open AIR
- Comprovar propostes de millora
- 4 Fer ús de la teoria ambisonics

Moltes gràcies per la vostra atenció

Marc Franco Meca

Universitat Pompeu Fabra

Treball Fi de Grau

Supervisor: Andrés Pérez López

