Methods and tools for software quality

Antonio Martí Campoy

Introduction

Introduction

- The goal of this part of the course is to develop an embedded system.
- This embedded system is a mobile robot.
- The robot is controlled by a MSP430g2553 microcontroller.
- Some libraries are available.
- Students will develop:
 - High level functions to create paths..
 - Always with high degree of modularity.

Introduction

• Picture of the robot.

Introduction

- Components of the robot:
 - Two DC motors. They are controlled by PWM (Pulse Width Modulation).
 - Two optoelectronic sensors attached to the wheels. They allow to measure distance.
 - Digital compass connected by I2C (Inter-Integrated circuit).
 - 7-segments display of 4 digits connected by SPI (Serial Peripheral Interface).
 - MSP430G2553 microcontroller.

System architecture

- Next slide shows the system architecture, both hardware and software.
- At the bottom, in red, the external peripherals.
- Then, in blue box, the microcontroller with internal peripherals used to control/communicate with external peripherals
- Over the microcontroller, in black, some libraries available to use them. Each module includes a .c and .h files (but sides.h)
- At top level, in green, modules to be developed by students.

System architecture

- First exercises will devoted to check the proper operation of hardware, by means of provided libraries.
 - Detail of the software library is available in document Library_architecture.pdf
- Next exercises are devoted to create high-level functions for control of robot movement.

Software architecture

- One library with several modules.
- Description of modules in document Library_architecture.pdf
- Structure of the document:
 - Name and purpose of the module.
 - Name of the header to be included.
 - Constants and prototypes of functions.
 - Examples of use.
 - Other considerations.

Plan for project development

- Development of the project is divided into steps.
 Each step has its own document
- Step 1: preparing software.
 - Starting_ccs.pdf
- Step 2: testing the hardware.
 - Testing_hardware.pdf
- Step 3: developing movements
 - Straight, spin, turn...
 - Using encoders (distance) and compass (course).
 - Both blocking and non-blocking functions.

Plan for project development

- Choose your favorite:
 - Developing complex movements.
 - Complex structure to store a list of movements.
 - Straight bearing-based movement.
 - An auto-correcting straight movement.
 - Add low power modes.
 - To non-blocking movements.
 - Add functions to the library.
 - For example, measuring speed.

Methods and tools for software quality

Antonio Martí Campoy

