

BC-0005 Bases Computacionais da Ciência

Aula 05 – Introdução à Lógica de Programação

Introdução

Programa é uma sequência de ordens (comandos, instruções) dadas a um computador que, a partir de dados inseridos, obtêm um resultado que será disponibilizado por algum dispositivo de saída

Introdução

- Uma instrução é a informação que indica a um computador uma ação elementar.
- Para a construção de um programa é necessário um conjunto de instruções colocadas em ordem sequencial lógica: Algoritmo

Introdução

Algoritmo:

Sequência lógica são passos executados até atingir um objetivo ou solução de um problema.

- Exemplos de situações onde uma sequência lógica de passos é necessária:
 - Fazer um bolo
 - Construir um robô para explorar um local desconhecido
 - Trocar uma lâmpada

Al-Khorezmi: Um Matemático pouco conhecido

Matemático, astrônomo, astrólogo, geógrafo e autor Persa (Bagdad, c.850)

Descreveu o sistema numérico atual a um nível entendível.

al-Khwarizmi, Al-Khawarizmi, Al-Khawaritzmi ou al-Khowarizmi

O primeiro pensador algoritmico.

Selo postal (Rusia, 1983) Comemorando o aniversário 1200

Quando em uma subtração nada queda, então escreva um pequeno círculo para que esse lugar não permanezca vacío (Al-Khorezmi explicando o zero, Seculo IX)

Al-Khorezmi: Um Matemático pouco conhecido

Os termos:

- Algarismo (número/digito)
- Algoritmo provém de seu nome.

- Al-Khorezmi = "de Khorezm"
- Algoritmos datam dos gregos (por exemplo, algoritmo de Euclides para calcular o máximo divisor comum).
- Al-Khorezmi foi o primeiro em projetar algoritmos pensando na sua eficiência para o calculo raizes de equações.
- Usou um tipo mecânico similar a um ábaco.

Objetivos da aula

Objetivo da aula:

Como atribuir instruções a um computador, de maneira que ele possa nos auxiliar a resolver problemas:

Para isto precisamos de dois ingredientes:

- Linguagem
- Lógica

O conceito da instrução

As instruções diferem de acordo com as funcionalidades que o equipamento é capaz de oferecer:

Linguagens de programação

Linguagens de programação

Entrada de Dados

- Até agora, estavamos colocando os valores de entrata diretamente no console do scilab ou no scinotes.
- É possível solicitar que o usuário digite as informações quando o programa for executado, com o comando:
- <nome da variável> = input("<mensagem para o usuário>");

Primeiro exemplo

Cálculo da área, perímetro e diagonal de um quadrado de lado x.

(1) Primeiro problema

```
-->x = input("Qual é o lado do quadrado? ");
      Qual é o lado do quadrado? 2
-->area = x^2
area =
  4.
-->perimetro = 4*x
perimetro =
  8.
-->diagonal = sqrt(2)*x
diagonal =
  2.8284271
```

Colocando em um script

Uma interface gráfica simples

Entrada de dados:

```
<variável> = evstr(x_dialog("<Mensagem>","<Valor padão>"))
```

- Mostrar mensagens: messagebox(sprintf("<Mensagem>",<variável>))
- evstr converte o valor digitado para o númerto
- sprintf cria uma "string" para ser mostrada

```
aula5.sce (/home/ronaldoprati/Dropbox2/Dropbox/courses/bases/aula5.sce) - SciNotes X
File Edit Format Options Window Execute ?
aula5.sce (/home/ronaldoprati/Dropbox2/Dropbox/courses/bases/aula5.sce) - SciNotes
 aula5.sce ¾
 1 x -= evstr(x dialog("Digite -o -tamanho -do -lado: -", "0"));
  3 area - = x^2;
  4 perimetro = -4*x;
  5 diagonal = sqrt(2)*x;
  7 messagebox(sprintf("A-área-do-quadrado-é-%.2f\n",area));
  8 messagebox(sprintf("0-perimetro-do-quadrado-é-%.2f\n",perimetro));
  9 messagebox(sprintf("O-comprimento-da-diagonal-é-%.2f\n",diagonal));
 10
```

(2) Ordem de operações

	Operator Precedence		
	1	! Logical not	(Highest)
	2	() Parenthesis	i
	3	*,/,%	
	4	+, -	
	5	>, >=, <, <=	
	6	==, !=	
	7	&& (AND)	
	8	(OR)	
	9	=	(Lowest)

$$--> x = 2*(3+12)/5-5$$

 $x =$ 1.

(2) Ordem de operações

	Operator Precedence			
1	! Logical not	(Highest)		
2	() Parenthesis	5		
3	*,/,%			
4	+, -			
5	>, >=, <, <=			
6	==, !=			
7	&& (AND)			
8	(OR)			
9	=	(Lowest)		

Funções

- Também estávamos usando funções pré-difinidas
- É possível criar as nossas próprias funções, para incrementar as funcionalidades
- Além de incrementar as funcionalidades, reaproveitamos o código sem precisar digitar novamente

```
function [<retorno>] = <NomeFunção>(<argumentos>)
...
<retorno> = <valor calculado>
endfunction
```

- Podemos criar nossa própria "biblioteca" de funções
- Essa biblioteca pode ser salva em (um ou mais) arquivos .sci
- Quando precisarmos usar essas funções, podemos carregar esse arquivo (como o comando exec) e usar essas funções livremente em nossos programas/scripts

Biblioteca de funções

Exemplo do uso da biblioteca

■ 1a)

Faça um programa em scilab que leia o valor da temperatura em graus Celcius, converta e imprima essa temperatura para Farenheit

A fórmula para converter de Celsius para Farenheit é:

$$F = 9/5 * C + 32$$

■ 1b)

Faça um programa em scilab que leia o valor da temperatura em graus Farenheit, converta e imprima essa temperatura para Celsius

A fórmula para converter de Farenheit para Celsius é:

$$C = (F-32)*5/9$$

1c)

Faça uma biblioteca que contenha duas funções: conversão de Celsius para Farenheit e de Farenheit para Celsius Altere o programa do exercício anterior para usar essa biblioteca

- 2) Crie uma biblioteca que tenha duas funções,
 - Converte o ângulo em radianos para grau, usando a fórmula
 - Graus = Radianos * (180/pi)
 - Converte o ângule em graus para radianos, usando a fórmula
 - Radianos = (Graus/180) * pi

 Faça um script para testar a sua biblioteca, convertendo de graus para radianos e de radiano para graus

■ 3a)

Faça um programa em Scilab que leia os valores do peso (em quilos) e altura (em metros) de uma pessoa, calcule e imprima o seu IMC

A fórmula para calcular o IMC é

IMC = peso/(altura^2)

- 3b)Crie uma função para calcular o IMC. Observe que agora essa função deve receber dois argumentos: o peso e a altura, para poder calcular o IMC
- Altere o programa do exercício 3a) para usar essa função