- 1. Mějme následující jazyky:
 - (a) $L_1 = \{ww^R \mid w \in \{a, b, c\}^*\}$
 - (b) $L_2 = \{w \mid w \in \{a, b, c\}^* \land \#_a(w) \bmod 2 = \#_b(w) \bmod 2 = 1\}$

Rozhodněte a dokažte, zda jazyky $L_1\cap L_2$ a $L_1\cup L_2$ jsou regulární. Pro důkaz regularity sestrojte příslušný konečný automat, nebo gramatiku. Pro důkaz neregularity použijte Pumping lemma, nebo Myhill-Nerodovu větu.

- 1. JWEZ*: WELLANGEL2
- 2. Aby slovo patřilo do L2, bude muset obsahovat 2k+1"a" a 2j+1"b", kde k,j>0
- 3. Aby slovo patřilo i do L1, bude se slovo muset skládat že dvon čásť, kde druhá část vžnikne reverzací první čásť. Takto vžniklé slovo ovšem bude mít sudou četnost symbolů "a", "b" i "e"
- 4. Z toho plyne, že neexistuje slovo w které potří do L1a L2 zároven.

 Tudíž L1 NL2 = Ø a L1 NL2 E &3
- 5. Sestrosime KA prisimasici Lanla

(∀K∈N[†]:∃w∈∑*: w ε (L₁υL₂) ∧ |w|≥K ∧ ∀xył ∈ ∑*: w=xył Λ |xy|≤k ∧ |y|>0 => ∃; ∈ N: xyił ¢(L₁∪L₂)) => ((L₁υL₂) ¢ Y₃)

$$W = \alpha^{k} b^{2} \alpha^{k}$$

$$X = \alpha^{n} \qquad \qquad (x > 0)$$

$$Y = \alpha^{n} a^{2} \qquad \qquad (x + d_{2} + k)$$

$$E = \alpha^{k-n} a^{n-n} b^{2} \alpha^{k}$$

$$i=3$$

$$xy^{3}t = 0$$

$$xy^{2}t = 0$$

slovo nepatří do L₁ jelikož d₂ >0. tak

k+2d > k. Počet II all na žačátku se nebude

vovnat počtullall na konci, tudíž druhá

část nebude reveržací první části, žároveň slovo nepatří aní

do L₂ jelikož počet II b'' i ''a'' je sudý.

Tím pádem slovo nenáleží L₁UL₂ a L₁UL₂ & L₃.

- 2. Uvažujme jazyk $L_3 = \{puvw \mid p, v \in \{a, b\}^*, u, w \in \{c, d\}^*, (p = v^R \lor u = w^R)\}$
 - (a) Sestrojte bezkontextovou gramatiku G_3 takovou, že $L(G_3) = L_3$.
 - (b) Sestrojte zásobníkový automat Z_3 takový, že $L(Z_3) = L_3$.

10 bodů

$$b) \quad KA = \left\{ \begin{cases} Q_{01}Q_{11}Q_{21}Q_{31}Q_{41}Q_{51}Q_{61}Q_{41}Q_{85} \\ \xi_{1}P_{1}U_{1}A_{1}B_{1}V_{1}T_{1}Q_{5} \\ \xi_{3}Q_{01}\xi_{1}\xi_{1}Q_{41}Q_{81}Q_{6}\xi_{3} \\ \end{cases}$$

tin Page 2

- 3. Rozhodněte a dokažte následující tvrzení:
 - (a) $\exists L_1 \in \mathcal{L}_2 \setminus \mathcal{L}_3$ takový, že jeho doplněk $\overline{L_1}$ je konečný jazyk.
 - (b) $\exists L_1 \in \mathcal{L}_2 \setminus \mathcal{L}_3$ takový, že $\forall L_2 \in \mathcal{L}_3 : L_1 \cap L_2 \in \mathcal{L}_2 \setminus \mathcal{L}_3$
 - (c) $\exists L_1 \in \mathcal{L}_3$ takový, že $\forall L_2 \in \mathcal{L}_2 \setminus \mathcal{L}_3 : L_1 \cap L_2 \in \mathcal{L}_2 \setminus \mathcal{L}_3$
- O, Pokud I, E Jrin Pak I, E J3. Ovšem pokud

 I, E J3 & utávěvových vlastnosí plyne, že i I, E J3.

 ovšem I, = L1, což vede ke spovn, protože nemůže
 platit, že L1 E J2/13 A L1E J3. Tvržení neplatí.
- D) Dakat sporem:
 - 1, YL1E J2/J3: 3 L2E J3: L1 NL2 & J2/ J3
 - 2, pokud L2=Ø, pakpro YL1E J2/J3: L1NL2=Ø, tudíž L1NL2 ≠ J2/J3.
 - 3, Platí negace turtení, tudíž turtení neplatí
 - C, Pokud L1= E*, pak pro YL2 E L2 | L3: L1 NL2 = L2 tím pádemi (L1 NL2) E L2 | L3. Turzení platí.

- Uvažujme jazyk L = {w ∈ {a,b}* | #_a(w) ≥ 2 ∨ #_b(w) = 0}. Sestrojte relaci pravé kongruence ~, která splňuje následující dvě podmínky: 1) L je sjednocením některých tříd rozkladu Σ*/~ a 2) index ~ je o jedna vetší než index ~_L.
 10 bodů
 - 1) Sestrojíme úplný deterministický KA, přijímající jatyk L

2, Ověříme, že jde o minimální KA, který přijímá L.

	≗	۱ ۵ ۱	b
	0	I	11
I	1	I	11
	2	I	I
- - 	3	1	II
1	4	I	工工

	1	۵ ا	Ь
I	0	I	皿
	1_	#	IV
π	2	П	11
立正	3	女	
立	4	工	区

-	2	La	ıЬ
I	0		
П	1		
町	2	٠	
IV.	3		
V	4/		

3) KA je mini mální, tudíž počet jeho stavů odpovídá indexu NL

4, Sestrosime drung KA, kdc přidáme 1 stav.

5) Sestrosime výslednou velaci Kongruence, která odpovídá tomuto KA.

$$\forall u, v \in \Sigma^{*}: u \wedge v <=> ((\#_{a}(u) = \#_{a}(v) = 0 \wedge \#_{b}(u) = \#_{b}(v) = 0)$$

$$\vee (\#_{a}(u) = \#_{a}(v) = 1 \wedge \#_{b}(u) = \#_{b}(v) = 0)$$

$$\vee (\#_{a}(u) = \#_{a}(v) = 1)$$

$$\vee (\#_{a}(u) = \#_{a}(v) = 0 \wedge \#_{b}(u) > 0 \wedge \#_{b}(v) > 0)$$

$$\vee (\#_{a}(u) = \#_{a}(v) = 1 \wedge \#_{b}(u) > 0 \wedge \#_{b}(v) > 0)$$

$$\vee (\#_{a}(u) = \#_{a}(v) = 1 \wedge \#_{b}(u) > 0 \wedge \#_{b}(v) > 0)$$

$$\vee (\#_{a}(u) = \#_{a}(v) = 1 \wedge \#_{b}(u) > 0 \wedge \#_{b}(v) > 0)$$

$$\vee (\#_{a}(u) = \#_{a}(v) = 1 \wedge \#_{b}(u) > 0 \wedge \#_{b}(v) > 0)$$