More Vector Spaces with Atoms of Finite Lengths

Jingjie Yang University of Oxford Mikołaj Bojańczyk University of Warsaw

Bartek Klin University of Oxford

Abstract—*CRITICAL: Do Not Use Symbols, Special Characters, Footnotes, or Math in Paper Title or Abstract.

I. Introduction

II. RADO GRAPH, SANS COGS

A is:

- 1) oligomorphic if, for $k = 0, 1, 2, \dots, \mathbb{A}^k$ only has finitely many orbits;
- 2) \mathfrak{F} -oligomorphic if, for $k=0,1,2,\cdots, \operatorname{Lin}_{\mathfrak{F}}\mathbb{A}^k$ only has finitely long chains.

Of note: with Stirling numbers of the second kind and Gaussian 2-binomial coefficients, the orbit counts are given by

$$\#\mathbb{N}^k = \sum_{d=0}^k \begin{Bmatrix} k \\ d \end{Bmatrix}$$

$$\#\mathbb{Q}^k = \sum_{d=0}^k \begin{Bmatrix} k \\ d \end{Bmatrix} d!$$

$$\#\mathbb{G}^k = \sum_{d=0}^k \begin{Bmatrix} k \\ d \end{Bmatrix} 2^{\binom{d}{2}}$$

$$\#\mathbb{V}^k_{\infty} = \sum_{d=0}^k \begin{Bmatrix} k \\ d \end{Bmatrix}_2$$

$$\#\mathbb{W}^k_{\infty} = \sum_{d=0}^k \begin{Bmatrix} k \\ d \end{Bmatrix}_2$$

To introduce:

- 1) *smooth approximation* by *homogeneous substructures* [3] (N.B. 'smooth approximation' from [4, Definition 4] seems to be entirely different)
- 2) width-wise approximation of a homogeneous structure by finite substructures with uniformly few orbits (i.e., types) that cover the age of \mathbb{A}
- 3) For the equality and ordered atoms, being supportively \$\mathcal{F}\$-oligomorphic follows from being \$\mathcal{F}\$-oligomorphic [1, Theorem 4.10]

A. Symplectic vector spaces

Throughout this subsection let f denote a finite field.

Definition II.1. A *symplectic vector space* is an \mathfrak{f} -vector space \mathbb{W} equipped with a bilinear form $\omega : \mathbb{W} \times \mathbb{W} \to \mathfrak{f}$ that is

- 1) alternating: $\omega(v, v) = 0$ for all v; and
- 2) non-degenerate: if $\omega(v, w) = 0$ for all w then v = 0.

Example II.2. Let \mathbb{W}_n be the f-vector space with basis $e_1, \ldots, e_n, f_1, \ldots, f_n$. Define ω by bilinearly extending

$$\omega(e_i, f_i) = 1 = -\omega(f_i, e_i), \quad \omega(-, *) = 0$$
 elsewhere; (§)

one may straightforwardly check that ω is alternating and non-degenerate. Moreover, noticing that $\mathbb{W}_0 \subseteq \mathbb{W}_1 \subseteq \mathbb{W}_2 \subseteq \cdots$, we obtain a countable-dimensional symplectic vector space $\mathbb{W}_\infty = \bigcup_n \mathbb{W}_n$.

We will refer to vectors satisfying (§) as a *symplectic basis* — indeed, they must be linearly independent. Such bases behave very much like the usual bases.

Proposition II.3. Assume that \mathbb{W} is a symplectic vector space that is at most countable. Then any finite symplectic basis $e_1, \ldots, e_n, f_1, \ldots, f_n$ can be extended to a symplectic basis that spans the whole \mathbb{W} .

Proof. Suppose that $e_1, \ldots, e_n, f_1, \ldots, f_n$ does not already span \mathbb{W} ; take v to be a witness (that is least according to some fixed enumeration of \mathbb{W} in the case it is infinite). Put

$$e_{n+1} = v - \sum_{i=1}^{n} \omega(e_i, v) f_i + \sum_{i=1}^{n} \omega(f_i, v) e_i$$

so that $\omega(e_i,e_{n+1})=0=\omega(f_i,e_{n+1})$. This cannot be the zero vector lest we contradict the choice of v. By the non-degeneracy of ω , there is — rescaling if necessary — some w such that $\omega(e_{n+1},w)=1$. Now define

$$f_{n+1} = w - \sum_{i=1}^{n} \omega(e_i, w) f_i + \sum_{i=1}^{n} \omega(f_i, w) e_i$$

in a similar manner, making $e_1, \ldots, e_n, e_{n+1}, f_1, \ldots, f_n, f_{n+1}$ a symplectic basis that spans v. We go through every element of \mathbb{W} by continuing this way.

In fact, we will also make use of the "symplectic basis and a half" variant below.

Proposition II.4. Now assume \mathbb{W} is a finite-dimensional symplectic vector space. Let

$$e_1, \ldots, e_n, e_{n+1}, \ldots, e_{n+k},$$

 f_1, \ldots, f_n

be linearly independent vectors satisfying (§). Then we can find the missing f_{n+1}, \ldots, f_{n+k} to complete the symplectic basis

Proof. We first need the following notion. Given a subspace $V \subseteq \mathbb{W}$, consider its orthogonal complement

$$V^{\perp} = \{ w \in \mathbb{W} \mid \forall v \in V : \omega(v, w) = 0 \}.$$

It is the kernel of the composite linear map

$$\mathbb{W} \to (\mathbb{W} \xrightarrow{\text{lin.}} \mathfrak{f}) \to (V \xrightarrow{\text{lin.}} \mathfrak{f})$$
$$w \mapsto \omega(-, w) \mapsto \omega(-, w)|_{V}.$$

Note this map is surjective: the first part is injective by non-degeneracy and hence surjective for dimension reasons, and the second part is surjective since we can extend a basis of V to one of \mathbb{W} . Therefore

$$\dim V^{\perp} = \dim \mathbb{W} - \dim V,$$

and in particular $V^{\perp\perp}$ is precisely equal to V.

Now suppose we have found f_{n+1}, \ldots, f_{n+i} already. If e_{n+i+1} were to be spanned by

$$e_1, \ldots, e_{n+i}, \underline{e_{n+i+1}}, e_{n+i+2}, \ldots, e_{n+k},$$

 $f_1, \ldots, f_{n+i},$

it would be spanned by $e_{n+i+2}, \ldots, e_{n+k}$ alone because of (§); but this is impossible as we assumed linear independency. So

$$e_{n+i+1} \notin \langle e_1, \dots, e_{n+i}, e_{n+i+2}, f_1, \dots, f_{n+i} \rangle$$

= $\langle e_1, \dots, e_{n+i}, e_{n+i+2}, f_1, \dots, f_{n+i} \rangle^{\perp \perp}$,

i.e., some $f_{n+i+1} \in \langle e_1, \dots, e_{n+i}, e_{n+i+2}, f_1, \dots, f_{n+i} \rangle^{\perp}$ satisfies $\omega(e_{n+i+1}, f_{n+i+1}) = 1$.

Given two symplectic vector spaces \mathbb{W} and \mathbb{W}' , we call a function α between $X\subseteq \mathbb{W}$ and $X'\subseteq \mathbb{W}'$ isometric if $\omega(\alpha(x_1),\alpha(x_2))=\omega(x_1,x_2)$ for all $x_1,x_2\in X$. We can make an easy observation:

Lemma II.5. Let $\{e_i, f_i \mid i \in I\} \subseteq \mathbb{W}$, $\{e'_j, f'_j \mid j \in J\} \subseteq \mathbb{W}'$ be two symplectic bases and let $\alpha : I \to J$ be a bijection. Then

$$e_i \mapsto e'_{\alpha(i)}, f_i \mapsto f'_{\alpha(i)}$$

defines an isometric linear isomorphism $\langle e_i, f_i \rangle \rightarrow \langle e'_j, f'_j \rangle$.

It then follows from Proposition II.3 that, up to isometric linear isomorphisms, $\mathbb{W}_0, \mathbb{W}_1, \mathbb{W}_2, \dots, \mathbb{W}_{\infty}$ are all the countable symplectic vector spaces. Whilst we may deduce that \mathbb{W}_{∞} is oligomorphic by appealing to Ryll-Nardzewski, we will opt for a more direct proof that also establishes smooth approximation.

Proposition II.6 (Witt Extension). Any isometric linear injection $\alpha: \langle X \rangle \subseteq \mathbb{W}_n \to \mathbb{W}_n$ can be extended to an isometric linear automorphism of \mathbb{W}_n and in turn to one of \mathbb{W}_{∞} .

Proof. To begin with, find a basis x_1, \ldots, x_k for $\langle X \rangle^{\perp} = \{ w \in W \mid \forall x \in X : \omega(w, x) = 0 \}$ and extend it to a basis $x_1, \ldots, x_k, x_{k+1}, \ldots, x_d$ for $\langle X \rangle$. Notice that

$$U = \langle x_{k+1}, \dots, x_d \rangle$$

must be a symplectic subspace: as it intersects with $\langle X \rangle^{\perp}$ trivially, given any non-zero vector $u \in U$ we must have $0 \neq \omega(u, x + u') = \omega(u, u')$ for some $x \in \langle X \rangle^{\perp}$ and $u' \in U$. Hence use Proposition II.3 to find a symplectic basis $e_1, \ldots, e_n, f_1, \ldots, f_n$ for U. Observe that

$$e_1, \ldots, e_n, x_1, \ldots, x_k,$$

 f_1, \ldots, f_n

form a basis for $\langle X \rangle$ and satisfy (§). On the other hand,

$$\alpha(e_1), \ldots, \alpha(e_n), \alpha(x_1), \ldots, \alpha(x_k),$$

 $\alpha(f_1), \ldots, \alpha(f_n)$

form a basis for $\alpha(\langle X \rangle)$ and also satisfy (§). Therefore apply Proposition II.4 twice to find the missing y_1, \ldots, y_k and y'_1, \ldots, y'_k to complete the two symplectic bases — call them \mathcal{B} and \mathcal{B}' . They are of the same size.

Now, by using Proposition II.3, extend \mathcal{B} and \mathcal{B}' to symplectic bases \mathcal{C} and \mathcal{C}' that span \mathbb{W}_n . These must both have size 2n, so by Lemma II.5 we obtain an isometric linear automorphism $\beta: \mathbb{W}_n \to \mathbb{W}_n$ extending α .

To finish, notice that $\mathcal{C}, e_{n+1}, \ldots, f_{n+1}, \ldots$ as well as $\mathcal{C}', e_{n+1}, \ldots, f_{n+1}, \ldots$ form a symplectic basis spanning \mathbb{W}_{∞} . We obtain from Lemma II.5 another time an isometric linear automorphism $\gamma: \mathbb{W}_{\infty} \to \mathbb{W}_{\infty}$ extending β that is the identity almost everywhere. \square

Proposition II.7. \mathbb{W}_{∞}^k has precisely $\sum_{d=0}^k \left[\begin{smallmatrix} k \\ d \end{smallmatrix} \right]_q \cdot q^{\binom{d}{2}}$ orbits under isometric linear automorphisms, where $q = |\mathfrak{f}|$ and

$$\begin{bmatrix} k \\ d \end{bmatrix}_q = \frac{(q^k-1)(q^{k-1}-1)\cdots(q^{k-d+1}-1)}{(q^d-1)(q^{d-1}-1)\cdots(q^1-1)}$$

is the q-binomial coefficient.

Remark. To anticipate the next subsection, we note a similarity with the Rado graph: in \mathbb{G}^k there are $\sum_{d=0}^k \binom{k}{d} \cdot 2^{\binom{d}{2}}$ orbits — we may impose any edge relation on d vertices.

Proof. To each $v_{\bullet} \in \mathbb{W}_{\infty}^k$ we associate a *type*, which comprises the following data:

1) pivot indices $I \subseteq \{1, \ldots, k\}$ containing every i such that v_i is not spanned by v_1, \ldots, v_{i-1} — so we inductively ensure that

$$\{v_{i'} \mid i' \in I, i' \le i\}$$

is a basis for $\langle v_1, \ldots, v_i \rangle$;

- 2) for each $j \notin I$, an assignment $\Lambda_j : \{i \in I \mid i < j\} \to \mathfrak{f}$ such that $v_j = \sum_{i \in I, i < j} \Lambda_j(i) v_i$;
- 3) a map $\Omega:\binom{I}{2}\to\mathfrak{f}$ defined by $\Omega(\{i'< i\})=\omega(v_{i'},v_i)$. If $\pi:\mathbb{W}_\infty\to\mathbb{W}_\infty$ is an isometric linear automorphism, then $v_\bullet=(v_1,\ldots,v_k)$ and $\pi\cdot v_\bullet=(\pi(v_1),\ldots,\pi(v_k))$ evidently share the same type. Conversely, if w_\bullet has the type of v_\bullet , then

$$\alpha: \langle v_i \mid i \in I \rangle \to \langle w_i \mid i \in I \rangle \subseteq \mathbb{W}_n$$
$$v_i \mapsto w_i$$

gives an isometric linear injection for some large enough n. Observe that α must send $v_j\mapsto w_j$ for $j\not\in I$ too, and that it may be extended to an isometric linear automorphism π of \mathbb{W}_∞ by Propsoition II.6. Furthermore we can find some v_\bullet that realises any given type $(I,\{\Lambda_j\}_j,\Omega)$: it suffices to put

$$v_i = e_i + \sum_{i' \in I. i' < i} \Omega(i', i) f_{i'}$$

for $i \in I$ and $v_j = \sum_{i \in I, i < j} \in \Lambda_j(i)v_i$ for $j \notin I$. Therefore the number of types is precisely the number of orbits in \mathbb{W}^k_{∞} .

Finally, we do some combinatorics. Fix $0 \le d \le k$ and count the number of types with |I| = d. There are $q^{\binom{d}{2}}$ choices for Ω and say $\#_{k,d}$ choices for the Λ_j 's; the two can be chosen separately. In total, this gives

$$\sum_{d=0}^{k} q^{\binom{d}{2}} \cdot \#_{k,d}$$

types for vectors in \mathbb{W}_{∞}^d . So focus on $\#_{k,d}$, the number of $linear\ types$ — i.e., $(I,\{\Lambda_j\}_j)$, ignoring Ω — in \mathbb{W}_{∞}^k . (Incidentally $\sum_{d=0}^k \#_{k,d}$ is the number of orbits in \mathbb{W}_{∞}^k or, more generally, any countable-dimensional f-vector space under linear automorphisms.) On the small values we easily check that

$$\begin{split} \#_{0,0} &= 1 = \left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right]_q, \\ \#_{1,0} &= 1 = \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right]_q, \qquad \#_{1,1} = 1 = \left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right]_q. \end{split}$$

Given a linear type in \mathbb{W}_{∞}^k with |I| = d, we either have $1 \in I$ or $I \subseteq \{2, \dots, k\}$. In the first case, the linear type is specified by one of the $\#_{k-1,d-1}$ linear types in $\mathbb{W}_{\infty}^{k-1}$ together with how v_1 is involved in the span of the (k-1)-(d-1) non-pivot vectors. In the second case, the linear type is simply one of the $\#_{k-1,d}$ linear types in $\mathbb{W}_{\infty}^{k-1}$. Thus

$$\#_{k,d} = q^{k-d} \cdot \#_{k-1,d-1} + \#_{k-1,d}$$

$$= q^{k-d} \cdot \begin{bmatrix} k-1\\d-1 \end{bmatrix}_q + \begin{bmatrix} k-1\\d \end{bmatrix}_q = \begin{bmatrix} k\\d \end{bmatrix}_q. \quad \Box$$

Theorem II.8. The symplectic vector space \mathbb{W}_{∞} is smoothly approximated by $\mathbb{W}_0 \subseteq \mathbb{W}_1 \subseteq \mathbb{W}_2 \subseteq \cdots$.

Corollary II.9. Provided \mathfrak{F} is of characteristic 0, the symplectic f-vector space \mathbb{W}_{∞} is \mathfrak{F} -oligomorphic.

B. Symplectic graphs

For this subsection let f be the two-element field.

Definition II.10. For n=0,1,2,..., the symplectic graph $\widetilde{\mathbb{W}}_n$ has vertices \mathbb{W}_n and edges

$$v_1 \sim v_2 \iff \omega(v_1, v_2) = 1.$$

This is indeed an undirected graph: as ω is alternating, we have $\omega(v_1, v_2) = -\omega(v_2, v_1) = \omega(v_2, v_1)$.

Proposition II.11. $\operatorname{Aut}(\widetilde{\mathbb{W}}_n) = \operatorname{Aut}(\mathbb{W}_n)$.

Proof. Clearly any isometric linear automorphism of \mathbb{W}_n is a graph automorphism of $\widetilde{\mathbb{W}}_n$. Conversely, any $f \in \widetilde{\mathbb{W}}_n$ is evidently isometric. To show that f is linear, take $\lambda_1, \lambda_2 \in \mathfrak{f}$ and $v_1, v_2 \in \mathbb{W}$. We calculate:

$$\omega \left(f(\sum_{i} \lambda_{i} v_{i}) - \sum_{i} \lambda_{i} f(v_{i}), f(w) \right)$$

$$= \omega \left(f(\sum_{i} \lambda_{i} v_{i}), f(w) \right) - \sum_{i} \lambda_{i} \omega \left(f(v_{i}), f(w) \right)$$

$$= \omega \left(\sum_{i} \lambda_{i} v_{i}, w \right) - \sum_{i} \lambda_{i} \omega (v_{i}, w)$$

$$= \omega(0, w) = 0$$

for all $f(w) \in f(\mathbb{W}_n) = \mathbb{W}_n$; since ω is non-degenerate, we conclude that $f(\sum_i \lambda_i v_i) = \sum_i \lambda_i f(v_i)$.

So the number of orbits in $\widetilde{\mathbb{W}}_n^k$ is precisely equal to the number of orbits in \mathbb{W}_n^k — in particular, it is bounded above by $\sum_{d=0}^k \left[\begin{smallmatrix} k \\ d \end{smallmatrix} \right]_2 \cdot 2^{\binom{d}{2}}$ independently of n by Proposition II.7.¹ It remains to show $\widetilde{\mathbb{W}}_0 \subseteq \widetilde{\mathbb{W}}_1 \subseteq \widetilde{\mathbb{W}}_2 \subseteq \cdots$ embeds all finite graphs:

Proposition II.12 ([2, Theorem 8.11.2]). Every graph on at most 2n vertices embeds into $\widetilde{\mathbb{W}}_n$.

Proof. Let G be a graph on at most 2n vertices. The conclusion is trivial when n=0. Also, if G contains no edges, we can choose any 2n of the 2^n vectors in $\langle e_1, \ldots, e_n \rangle \subseteq \widetilde{\mathbb{W}}_n$.

So suppose $n \geq 1$ and G has an edge $s \sim t$. Let $G_{s,t}$ be the graph on vertices $G \setminus \{s,t\}$ with edges which we will specify later. By induction, some embedding $f: G_{s,t} \to \widetilde{\mathbb{W}}_{n-1}$ exists. Define $f': G \to \widetilde{\mathbb{W}}_n$ by

$$x \in G_{s,t} \mapsto f(x) - [x \sim s] f_n + [x \sim t] e_n$$
$$s \mapsto e_n$$
$$t \mapsto f_n$$

where $\llbracket \phi \rrbracket$ is 1 if ϕ holds and 0 otherwise. Then we have $\omega(f'(x),f'(s))=\llbracket x\sim s \rrbracket$ and $\omega(f'(x),f'(t))=\llbracket x\sim t \rrbracket$ as desired, on one hand. On the other,

$$\omega(f'(x_1), f'(x_2)) = [x_1 \sim x_2] + [x_1 \sim s] [x_2 \sim t] + [x_1 \sim t] [x_2 \sim s]$$

tells us how we should define the edge relation in $G_{s,t}$ for f' to be an embedding of graphs.

Theorem II.13. The Rado graph is width-wise approximated by $\widetilde{\mathbb{W}}_0 \subseteq \widetilde{\mathbb{W}}_1 \subseteq \widetilde{\mathbb{W}}_2 \subseteq \cdots$.

Corollary II.14. Provided \mathfrak{F} is of characteristic 0, the Rado graph is \mathfrak{F} -oligomorphic.

This proof of finite length also applies to *oriented graphs* (i.e., $x \to y \implies y \not\to x$ but unlike in a tournament, it may occur that $x \not\to y \land y \not\to x$) — use the three-element field as \mathfrak{f} instead.

 $^{^{1}}$ This is the kth term in the OEIS sequence A028631.

III. RADO GRAPH, WITH COGS

In this section we work with the following setting:

- \$\mathcal{L}_0\$ is a (possibly infinite) relational language containing a binary symbol =;
- C_0 is a monotone, free amalgamation class of L_0 structures where each $R \in L_0$ is interpreted irreflexively,
 except = being interpreted as true equality;
- \mathcal{L} consists of \mathcal{L}_0 together with a new binary symbol <;
- C consists of L-structures obtained from C₀ by expanding with all possible linear orderings;
- \mathbb{A}_0 and \mathbb{A} are the respective Fraïssé limits of \mathcal{C}_0 and \mathcal{C} , where without loss of generality we assume \mathbb{A}_0 and \mathbb{A} share the same domain so that $\operatorname{Aut}(\mathbb{A}_0) \supseteq \operatorname{Aut}(\mathbb{A})$.

Example III.1. Take \mathcal{L}_0 to be the empty language and \mathcal{C}_0 to be all finite sets. Then \mathbb{A}_0 is isomorphic to the pure set \mathbb{N} , whereas \mathbb{A} is isomorphic to \mathbb{Q} with the usual order.

Example III.2. Let \mathcal{L}_0 consist of a single binary symbol \sim and let \mathcal{C}_0 consist of all finite undirected graphs not embedding the complete graph K_n , where $3 \leq n \ (\leq \infty)$. Then \mathbb{A}_0 is the K_n -free Henson graph (or the Rado graph when $n = \infty$), and \mathbb{A} is its generically ordered counterpart. (Allowing n = 2 makes these degenerate to \mathbb{N} and \mathbb{Q} above).

We note three technicalities and a triviality.

Lemma III.3. 1) forbidden structures are link structures 2) free amalgamation with order

Proposition III.4. The S-supported length of $\operatorname{Lin} \mathbb{A}_0^d$ is at most that of $\operatorname{Lin} \mathbb{A}^d$ for any finite $S \subseteq \mathbb{A}_0 = \mathbb{A}$.

Proof. Any chain of subspaces in $\operatorname{Lin} \mathbb{A}_0^d = \operatorname{Lin} \mathbb{A}^d$ that are invariant under $\operatorname{Aut}(\mathbb{A}_0)_{(S)}$ must also be invariant under the subgroup $\operatorname{Aut}(\mathbb{A})_{(S)}$.

A. Cogs in an orbit

One problem with \mathbb{A}^d is that it can have many orbits.

Definition III.5. An orbit $\mathcal{O} = \operatorname{Aut}(\mathbb{A})_{(S)} \cdot o_{\bullet} \subseteq \mathbb{A}^d$ is *strict* if the atoms in o_{\bullet} satisfy $o_1 < \cdots < o_d$ and are not from the finite set S.

Any orbit $\operatorname{Aut}(\mathbb{A})_{(S)} \cdot a_{\bullet}$ is in an $\operatorname{Aut}(\mathbb{A})_{(S)}$ -equivariant bijection with a strict one — it suffices to remove entries in a_{\bullet} that repeat or come from S and reorder the rest.

Proposition III.6. A is supportively \mathfrak{F} -oligomorphic if and only if A is oligomorphic and $\operatorname{Lin}_{\mathfrak{F}}\mathcal{O}$ has finite length for every strict orbit \mathcal{O} .

Proof. Indeed, we have $\operatorname{len}(\operatorname{Lin}_{\mathfrak{F}} \mathbb{A}^d) = \operatorname{len}(\operatorname{Lin}_{\mathfrak{F}}(\biguplus_i \mathcal{O}_i)) = \operatorname{len}(\bigoplus_i \operatorname{Lin}_{\mathfrak{F}} \mathcal{O}_i) = \sum_i \operatorname{len}(\operatorname{Lin}_{\mathfrak{F}} \mathcal{O}_i)$ given a finite support.

Thus fix a strict orbit \mathcal{O} with support S.

Remark. As \mathbb{A} has no algebraicity, the strict orbit \mathcal{O} uniquely determines its support S: we have $\mathbb{A} \setminus S = \{a_1 \mid a_{\bullet} \in \mathcal{O}\}.$

Also, since $\mathbb A$ is homogeneous, a tuple $a_{\bullet} \in \mathbb A^d$ belongs to $\mathcal O$ if and only if

$$R(x_{\bullet}) \iff R(x_{\bullet}[o_i/a_i \mid i])$$

holds in \mathbb{A} for every symbol R in \mathcal{L} of arity r and every $x_{\bullet} \in (\{a_1, \dots, a_d\} \cup S)^r$.

We now introduce the workhorse we use to understand $\operatorname{Lin} \mathcal{O} \subseteq \operatorname{Lin} \mathbb{A}^d$.

Definition III.7. An \mathcal{O} - $cog\ a_{\bullet}|b_{\bullet}$ consists of atoms $a_1 < b_1 < a_2 < b_2 < \cdots < a_d < b_d$ such that for any symbol R in \mathcal{L} of arity r, given any $x_{\bullet} \in (\{a_1, b_1, \dots, a_d, b_d\} \cup S)^r$ we have

$$R(x_{\bullet}) \iff R(x_{\bullet}[o_i/a_i, o_i/b_i \mid i])$$

in A. In particular, for each $I \subseteq \{1, ..., d\}$ we see that $a_{\bullet}[b_i/a_i \mid i \in I]$ is in the strict orbit \mathcal{O} from the remark above; we define the corresponding $\mathcal{O}\text{-}cogwheel}$ to be the vector

$$a_{\bullet} \not \lozenge b_{\bullet} = \sum_{I \subseteq \{1,\dots,d\}} (-1)^{|I|} a_{\bullet} [b_i/a_i \mid i \in I]$$

in $\operatorname{Lin} \mathcal{O}$.

It is actually easier to find cogs than to define them.

Example III.8. Let $\mathbb{A} = \mathbb{Q}$ as described in Example III.1; there is a unique equivariant strict orbit \mathcal{O} in \mathbb{A}^2 . Consider the vector

$$v = (0,5) + (5,6) - (5,10) - (0,10)$$

in $\operatorname{Lin} \mathcal{O}$. We can find $5 < 5 + \varepsilon < 6 < 6 + \delta < 10$ in \mathbb{A} together with monotone bijections $\pi_1, \pi_2 \in \operatorname{Aut}(\mathbb{A})$ such that

$$\pi_1: \begin{cases} 0 \mapsto 0, \\ 5 \mapsto 5 + \varepsilon, \\ 6 \mapsto 6, \\ 10 \mapsto 10; \end{cases} \quad \pi_2: \begin{cases} 0 \mapsto 0, \\ 5 \mapsto 5, \\ 6 \mapsto 6 + \delta, \\ 10 \mapsto 10 \end{cases}$$

by interpolating linearly for example. Then

$$v_1 = v - \pi_1 \cdot v = (0,5) + (5,6) - (5,10)$$
$$- (0,5 + \varepsilon) - (5 + \varepsilon,6) + (5 + \varepsilon,10)$$

duplicates the tuples with 5 in it but kills the one without it. Similarly

$$v_{1,2} = v_1 - \pi_2 \cdot v_1 = (5,6) - (5,6+\delta)$$

- $(5+\varepsilon,6) + (5+\varepsilon,6+\delta)$

only leaves and duplicates the tuples with 6 in it. Here $v_{1,2}$ is the cogwheel for the cog $(5,6|5+\varepsilon,6+\delta)$ in $\mathcal O$ as well as the smaller strict orbit $\mathcal O'=\operatorname{Aut}(\mathbb A)_{(-2,10)}\cdot (5,6)\subseteq \mathcal O$.

In general, we may build cogs and cogwheels as follows.

Lemma III.9. Take any (a_1, \ldots, a_d) from a strict orbit \mathcal{O}' with support S'. Then:

- 1) we can find (b_1, \ldots, b_d) so that $a_{\bullet}|b_{\bullet}$ forms an \mathcal{O}' -cog;
- 2) for i = 1, ..., d there is some $\pi_i \in \operatorname{Aut}(\mathbb{A})_{(S')}$ that sends $a_i \mapsto b_i$ but fixes $a_{i'}$ for $i' \neq i$.

Proof. We find b_1, b_2, \ldots inductively. Write

$$X_i = \{a_1, \dots, a_d, b_1, \dots, b_{i-1}\} \cup S,$$

and form the \mathcal{L}_0 -amalgam

ACKNOWLEDGEMENTS

Hrushovski Evans

REFERENCES

- [1] Mikołaj Bojańczyk et al. "Orbit-Finite-Dimensional Vector Spaces and Weighted Register Automata". In: *TheoretiCS* Volume 3 (May 2024). ISSN: 2751-4838. DOI: 10.46298/theoretics.24.13. URL: http://dx.doi.org/10.46298/theoretics.24.13.
- [2] Chris Godsil and Gordon Royle. *Algebraic graph theory*. 1st ed. Graduate Texts in Mathematics. Springer, 2001. ISBN: 978-0-387-95241-3.
- [3] W. M. Kantor, Martin W. Liebeck, and H. D. Macpherson. "ℵ₀-Categorical Structures Smoothly Approximated by Finite Substructures". In: *Proceedings of the London Mathematical Society* s3-59.3 (1989), pp. 439–463. DOI: https://doi.org/10.1112/plms/s3-59.3.439.
- [4] Antoine Mottet and Michael Pinsker. "Smooth approximations: An algebraic approach to CSPs over finitely bounded homogeneous structures". In: *J. ACM* 71.5 (Oct. 2024). DOI: 10.1145/3689207.