

Software

You need the following Software:

- OPC Server (e.g., MatrikonOPC Simulation Server, Free Download)
- MATLAB
- MATLAB OPC Toolbox

www.mathworks.com/products/opc

MATLAB

What is MATLAB?

- MATLAB is a tool for technical computing, computation and visualization in an integrated environment.
- MATLAB is an abbreviation for MATrix LABoratory
- It is well suited for Matrix manipulation and problem solving related to Linear Algebra, Modelling, Simulation and Control Applications
- Popular in Universities, Teaching and Research

The MATLAB Environment (IDE)

MATLAB Syntax - Example

```
clear
                         clc
                         close all
                         x=[0, 1, 2, 3, 4, 5];
  Defining Vectors
                         y=[15, 10, 9, 6, 2, 0];
                    \rightarrow for n=1:6 % n = model order
          For Loop -
                             p = polyfit(x, y, n)
                             ymodel = polyval(p,x);
                              subplot(3,2,n)
  Built-in Functions
                              plot(x,y,'o',x,ymodel)
                              title(sprintf('Model order %d', n));
50+ Toolboxes
                         end
```


http://www.mathworks.com/academia/student_version

2 different options:

MATLAB and Simulink Student Suite (NOK699)

Included: MATLAB + Simulink + Statistics Toolbox + Optimization Toolbox + Symbolic Math Toolbox + Control System Toolbox + Signal Processing Toolbox + Image Processing Toolbox, ...

MATLAB Student (NOK350+)

Includes MATLAB only. Add-on products must be purchased separately (NOK70/Toolbox if you buy them at the same time, else NOK200/Toolbox). Select between 55 different Toolboxes

OPC

What is OPC?

- A standard that defines the communication of data between devices from different manufactures
- Requires an OPC server that communicates with the OPC clients
- OPC allows "plug-and-play", gives benefits as reduces installation time and the opportunity to choose products from different manufactures
- Different standards: "Real-time" data (OPC DA), Historical data (OPC HDA), Alarm & Event data (OPC AE), etc.

OPC

OPC Server OPC Client

OPC Specifications

OPC Specifications

OPC DA (Data Access)

The most common OPC specification is OPC DA, which is used to read and write "real-time" data. When vendors refer to OPC generically, they typically mean OPC DA.

- OPC HDA (Historical Data Access)
- OPC A & E (Alarms & Events)
- ... (many others)

These OPC specification are based on the OLE, COM, and DCOM technologies developed by Microsoft for the Microsoft Windows operating system family. This makes it complicated to make it work in a modern Network! Typically you need a Tunneller Software in order to share the OPC data in a network (between OPC Servers and Clients)

OPC UA (Unified Architecture)

OPC UA eliminating the need to use a Microsoft Windows based platform of earlier OPC versions. OPC UA combines the functionality of the existing OPC interfaces with new technologies such as XML and Web Services (HTTP, SOAP)

- OPC Toolbox provides access to live and historical OPC data directly from MATLAB and Simulink
- You can read, write, and log OPC data from devices, such as distributed control systems (DCS), supervisory control and data acquisition systems (SCADA), and programmable logic controllers (PLS)

The MATLAB OPC Toolbox supports the following OPC protocols:

- OPC DA (Data Access)
- OPC HDA (Historical Data Access)
- OPC UA (Unified Architecture) ← A Later Video

Run OPCREGISTER (64-bit users only)

If you are running 64-bit MATLAB, you should re-register the OPC Foundation Core Components that ship with MATLAB. This enables the 64-bit MATLAB application to browse for 32-bit servers on your machine.


```
opcregister('-silent')
```

Run this command in the MATLAB Command window

Verify the Existence of the OPC Simulation Server

Browse for OPC servers on your local machine to verify that the OPC Simulation Server has been successfully installed.

The list of ServerIDs should include Matrikon.OPC.Simulation.1

Acquire Data from an OPC Data Access Server (with Examples): http://se.mathworks.com/help/opc/examples/acquire-data-from-an-opc-data-access-server.html?prodcode=OT&language=en

For more information about the MATLAB OPC Toolbox:

www.mathworks.com/products/opc

Acquire Data from an OPC Data Access Server (with Examples):

http://se.mathworks.com/help/opc/examples/acquire-data-from-an-opc-data-access-server.html?prodcode=OT&language=en

Matrikon OPC Simulation Server

Matrikon OPC Explorer – Connect to Server

Matrikon OPC Explorer - Add Tags

MatrikonOPC Explorer (OPC Client)

The MatrikonOPC Explorer is useful for testing. You can use it for writing and reading OPC Tags

Examples

MATLAB OPC Toolbox

Read Data from OPC DA Server

With MATLAB OPC Toolbox you can create OPC Clients that Write or Read to an OPC Server

Read Data from OPC Server

MATLAB is a Tool typically used for Data Analysis, so you typically Read Data from the OPC Server.

(But it is possible to connect DAQ devices and Read Measurement Data into MATLAB and then Write those Data Values to an OPC Server)

OPC Client


```
clear, clc
% Connect to OPC Server
da = opcda('localhost', 'Matrikon.OPC.Simulation.1');
connect(da);
% Create Group
grp = addgroup(da, 'DemoGroup');
%Add Tags
itmIDs = {'Random.Real8'};
itm = additem(grp, itmIDs);
% Retrieve Data
data = read(grp);
opcdata = data. Value
%Clean Up
disconnect(da)
```

delete(da)

MATLAB OPC Read Example 1

This simple Example reads only one value from the Server

MATLAB OPC Read Example 2

This simple Example reads values from the Server.

This Examples reads N values using a For Loop

```
clear, clc
% Connect to OPC Server
da = opcda('localhost',
'Matrikon.OPC.Simulation.1');
connect(da);
% Create Group
grp = addgroup(da, 'DemoGroup');
%Add Tags
itmIDs = {'Random.Real8'};
itm = additem(grp, itmIDs);
% Retrieve Data
N=10:
for i=1:N
   data = read(grp);
   opcdata(i) = data. Value;
   pause(2)
end
%Clean Up
disconnect(da)
delete(da)
plot(opcdata)
```


MATLAB OPC Read Example 3

This simple Example uses some of the more advanced features in the MATLAB OPC Toolbox.

No For/While Loop needed!

```
clear, clc
% Connect to OPC Server
da = opcda('localhost', 'Matrikon.OPC.Simulation.1');
connect(da);
% Create Group
grp = addgroup(da, 'DemoGroup');
%Add Tags
itmIDs = {'Random.Real8'};
itm = additem(grp, itmIDs)
% Set Properties
logDuration = 60;logRate = 0.2;
numRecords = ceil(logDuration./logRate)
grp.UpdateRate = logRate;
grp.RecordsToAcquire = numRecords;
% Acquire Data
start(qrp), wait(qrp)
% Retrieve Data
[logIDs, logVal, logQual, logTime, logEvtTime] =
getdata(grp, 'double');
% Plot Data
plot(logTime, logVal);
axis tight
datetick('x', 'keeplimits')
legend(logIDs)
%Clean Up
disconnect(da)
delete(da)
```


Hans-Petter Halvorsen, M.Sc.

University College of Southeast Norway www.usn.no

E-mail: hans.p.halvorsen@hit.no

Blog: http://home.hit.no/~hansha/

