TP 2 : Importance des appuis élastiques sur le comportement Modal expérimental de la plaque (A FAIRE)

Modélisation par un système à 2DL:

Plaque = Système Masse (M) Ressort (K*) Masse (M) donc libre de se mouvoir Appuis élastiques = Ressort de raideur k*

*= raideur complexe pour la prise en compte de l'amortissement structural

Comment peut on estimer M K et k? Faire les calculs approchés de ces paramètres

Equations vibratoires du système à 2DL en Vibrations Libres :

$$\begin{bmatrix} M & 0 \\ 0 & M \end{bmatrix} \begin{Bmatrix} \ddot{z}_1 \\ \ddot{z}_2 \end{Bmatrix} + \begin{bmatrix} K^* + k^* & -K^* \\ -K^* & K^* \end{bmatrix} \begin{Bmatrix} z_1 \\ z_2 \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}$$

Alain Blaise

Posons:
$$k = \alpha K$$
 $\eta = \beta \eta_a$ $\begin{cases} z_1 \\ z_2 \end{cases} = \begin{cases} z_{10} \\ z_{20} \end{cases} e^{j\omega t}$

$$\begin{bmatrix} K[(1+j\beta\eta_a)+\alpha(1+j\eta_a)]-\omega^2M & -K(1+j\beta\eta_a) \\ -K(1+j\beta\eta_a) & K(1+j\beta\eta_a)-\omega^2M \end{bmatrix} \begin{bmatrix} z_{10} \\ z_{20} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Matrice d'amortissement structural:

$$j\begin{bmatrix} \eta_{11} & -\eta_{12} \\ -\eta_{21} & \eta_{22} \end{bmatrix} \begin{Bmatrix} z_{10} \\ z_{20} \end{Bmatrix} = j\begin{bmatrix} \beta \eta_a + \alpha \eta_a \\ -\beta \eta_a & \beta \eta_a \end{bmatrix} \begin{Bmatrix} z_{10} \\ z_{20} \end{Bmatrix}$$

Trouver les valeurs de :

$$\eta_a$$
 η β

Que pouvez vous en conclure ?

Schéma Modal du système à 2DL Conservatif associé :

$$\begin{bmatrix} K[(1+\alpha]-\omega_i^2 M & -K \\ -K & K-\omega_i^2 M \end{bmatrix} \begin{cases} z_{10} = 1 \\ z_{20i} \end{cases}_{\omega_i} = \begin{cases} 0 \\ 0 \end{cases}$$

tel que $d\acute{e}t() = 0$ soit

$$0 = \omega_i^4 - \omega_i^2 \frac{K}{M} (2 + \alpha) + \alpha \left(\frac{K}{M}\right)^2$$

$$\delta = \left(\frac{K}{M}\right)^2 \left(4 + \alpha^2\right)$$

Pulsations de résonance :

$$\omega_{1,2}^2 = \frac{K}{2M} \left[(2+\alpha) \pm (4+\alpha^2)^{0.5} \right]$$

Vecteurs associés:

$$\left\langle K\left[(1+\alpha]-\omega_i^2M - K\right] \left\{ \frac{1}{z_{20i}} \right\}_{\omega_i} = 0 \quad z_{20i} = 1 + \alpha - \omega_i^2 M / K$$

$$z_{20i} = \frac{\alpha}{2} \mp \left(1 + \left(\frac{\alpha}{2}\right)^2\right)^{0.5}$$

Observons que $\alpha \ll 1$ Calculer ce facteur. Que pouvez vous en conclure ?

$$\left(1 + \left(\frac{\alpha}{2}\right)^2\right)^{0.5} \approx 1 + \frac{1}{2}\left(\frac{\alpha}{2}\right)^2 \approx 1$$

Pulsations de résonance et Vecteurs associés :

$$\omega_{1,2}^2 \approx \frac{K}{M} \left[1 \pm 1 + \frac{\alpha}{2} \pm \frac{1}{2} \left(\frac{\alpha}{2} \right)^2 \right]$$

$$z_{20i} \approx \mp 1 + \frac{\alpha}{2} \pm \frac{1}{2} \left(\frac{\alpha}{2} \right)^2$$

Faire l'application Numérique. Que pouvez vous en conclure?

Amortissements Modaux du système à 2DL:

Pour un mode i :

$$\boldsymbol{\eta}_{i} = \left\langle 1 \quad z_{20i} \right\rangle_{\omega_{i}} \begin{bmatrix} \boldsymbol{\eta}_{11} & -\boldsymbol{\eta}_{12} \\ -\boldsymbol{\eta}_{21} & \boldsymbol{\eta}_{22} \end{bmatrix} \begin{Bmatrix} 1 \\ z_{20i} \end{Bmatrix}_{\omega_{i}}$$

$$\eta_{i} = \eta_{a} \langle 1 \quad z_{20i} \rangle_{\omega_{i}} \begin{bmatrix} [\beta + \alpha] & -\beta \\ -\beta & \beta \end{bmatrix} \begin{cases} 1 \\ z_{20i} \end{pmatrix}_{\omega_{i}}$$

$$\eta_i = \eta_a (\beta + \alpha + \beta z_{20i} (z_{20i} - 2))$$

Pour un mode 1:

$$z_{201} \approx 1 + \frac{\alpha}{2} + \frac{1}{2} \left(\frac{\alpha}{2}\right)^2 \approx 1 + \frac{\alpha}{2}$$

$$\eta_1 \approx \alpha \eta_a (1 + \frac{\beta \alpha}{4})$$

Faire l'application Numérique. Que pouvez vous en conclure?

Pour un mode 2:

$$z_{202} \approx -1 + \frac{\alpha}{2} - \frac{1}{2} \left(\frac{\alpha}{2}\right)^2 \approx -1 + \frac{\alpha}{2}$$

$$\eta_2 \approx \beta \eta_a (4 - 2\alpha + \frac{\alpha}{\beta})$$

Faire l'application Numérique. Que pouvez vous en conclure?

Tableau des fréquences de résonance (Leissa)

Frequency parameters $\lambda = \omega a^2 \sqrt{\rho/D}$ for F-F-F-F plates (v = 0.3)

Mode sequence	0.86 alb 1.16				
	0.4	2/3	1.0	1.5	2.5
1†	13 3·4629 3·37 %	8.9459 5.81 %	13·489 5·26%	20·128 5·81%	31 21·643 3·37%
2	22 5·2881 7·40%	9·6015 3·56%	13 19-789 13-06%	21·603 3·56%	22 33-050 7-40%
3	14 9·6220 2·55%		.79 31 14 .218.43% 1	1.52 32 6.846.654 6.84.37%	41 60·137 2·55%
4	23 11-437 5-58%	31 22-353 0-09%	32 35·024 4·20%	13 50·293 0·09%	32 71·484 5·58%
5	15 18·793 2·94%	14 25·867 5· 96%	23 35·024 4·20%	41 58·201 5·96%	51 117·45 2·94%
6	24 19·100 3·41 %	32 29·973 —1·67%	41 61·526 0·24%	23 67·494 –1·67%	42 119·38 3·41%