Math 302/401/600 Fall 2010 Homework #2

Due Sept. 20, Mon. in class

1. Let (M, d) be a metric space. Show the following inequality:

$$|d(x,y) - d(z,y)| \le d(x,z), \quad \forall \ x,y,z \in M$$

- 2. Textbook, page 108, Ex. 3, 4. (note: each problem carries the standard metric of \mathbb{R}^n induced by the Euclidean norm $\|\cdot\|_2$.)
- 3. Consider \mathbb{R}^2 and the metric induced by the 1-norm: $d(x,y) = |x_1 y_1| + |x_2 y_2|, \forall x, y \in \mathbb{R}^2$. Let the set $A = \{x = (x_1, x_2) \in \mathbb{R}^2 : x_1 \ge 1 \text{ and } x_2 \le 1\}$. Find the interior of A and prove your answer.
- 4. Let (M,d) be a metric space and A,B be two subsets of M. Show the following:
 - (1) if $A \subseteq B$, then int $A \subseteq \text{int}B$;
 - (2) $\operatorname{int}(A \cap B) = (\operatorname{int} A) \cap (\operatorname{int} B)$.

The following extra problem is for Math 401/600 students only:

5. Let M be a set endowed with two metrics d_1 and d_2 , namely, both (M, d_1) and (M, d_2) are metric spaces. Suppose that there exist positive real numbers α and β such that

$$\beta d_1(x,y) \le d_2(x,y) \le \alpha d_1(x,y), \quad \forall \ x,y \in M$$

Show that a set $A \subseteq M$ is open with respect to d_1 if and only if it is open with respect to d_2 .