We will consider a new sort of operation: an interaction between a group and a set (which *could* be another group, but doesn't have to be). Here are some relevant definitions.

- We will call the group G and the set X. An *action* of G on X is a function that sends pairs in $G \times X$ to things in X. We write $(g, x) \mapsto gx$, satisfying
 - 1. ex = x for all $x \in X$
 - 2. $(g_1g_2)x = g_1(g_2x)$ for all $x \in X$ and all $g_1, g_2 \in G$.

We call X a G-set.

- Two elements $x, y \in X$ are G-equivalent (written $x \sim y$) provided there is some $g \in G$ such that gx = y.
- The *orbit* of an element $x \in X$ (written \mathcal{O}_x) is the set of all elements $y \in X$ that are G-equivalent to x.
- The fixed point set of an element $g \in G$ (written X_g) is the set of all $x \in X$ such that gx = x.
- The stabilizer subgroup of an element $x \in X$ (written G_x) is the set of all $g \in G$ such that gx = x.

To get used to these new definitions, let's work a few examples.

- 1. Let $X = \{1, 2, 3, 4, 5, 6\}$ and $G = \{(1), (12)(3456), (35)(46), (12)(3654)\}$ (a subgroup of S_6). G acts on X by $(\sigma, x) \mapsto \sigma(x)$.
 - (a) For each $x \in X$, find \mathcal{O}_x , the orbit of x in G.

(b) For each $g \in G$, find X_q , the fixed point set of g in X.

(c) For each $x \in X$, find G_x , the stabilizer subgroup of x in G.

(d) Do you notice anything about the sizes of the sets you found, how many different sets you found, etc?