CS2100 Computer Organisation Lab #9: Decoder

Remember to bring this along to your lab!

(Week 11: 30 October - 3 November 2023)

[This document is available on Canvas and course website https://www.comp.nus.edu.sg/~cs2100]

Name:	Student No:
Lab Group:	Important: You should complete the report before you come
Objective:	for your lab or you may not have enough time to complete it.
In this experimen	t, you will use the decoder to implement some logic functions.

IC chips:

- 1. One **74LS139** chip (DUAL 2×4 decoder with negated output and zero-enable).
- One 74LS20 chip (DUAL 4-input NAND gates).

The decoder chip you will use in this lab is the 74LS139, which contains two sets of 2×4 decoder with negated outputs and zero-enable. The pin configuration and the function table are given below.

Function Table of 74LS139

INPUTS			OUTPUTS			
Enable	Select		OUTPUTS			
G	В	A	Y0	Y1	Y2	Y3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

1 = High, 0 = Low, X = don't care

The 74LS20 chip contains two 4-input NAND gates. The pin configurations are shown below.

Propagation delay:

Assume that the propagation delay for every NAND gate in 74LS20 is 15 ns (nano-seconds), and the propagation delay for each decoder in 74LS139 is 35 ns.

Procedure:

1. Given a 3-variable function $S(P,Q,R) = (P + Q + R) \cdot (P + Q') \cdot (P' + R)$, write this function in the **product-of-maxterms** form, using the ΠM notation. [1 mark]

$$S(P,Q,R) = \Pi M \left(\right. \right.$$

2. Complete the truth table for *S* below. [1 mark]

P	Q	R	S
0	0	0	0
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

3. With the truth table above, implement function S using the 2×4 decoders in the 74LS139 chip, and NAND gates in the 74LS20 chip. Connect the inputs P, Q, and R to SW7, SW6 and SW5 on your logic trainer respectively.

Complete the following logic diagram. [5 marks]

- 4. Show your implementation implementation of the above circuit to your labTA before dismantling the circuit and moving on to another circuit in step 7. [5 marks]
- 5. What is the propagation delay of your circuit above? _____ ns. [1 mark]

6. Given a 4-variable function $F(W,X,Y,Z) = \prod M(3, 7)$, write out the simplified SOP expression for F below. [2 marks]

Simplified SOP expression: F =

7. Use the block diagram below to illustrate how you might implement *F* using only **ONE** such 2×4 decoder (with negated output and zero-enable), without any additional logic gate. Due to time constraint, you are NOT required to actually implement this circuit on the logic trainer.

Complete the diagram below. [2 marks]

8. Using one 4:1 multiplexer and one 2×4 decoder with <u>1-enable</u> as shown below, show how you might implement function $G(A,B,C,D) = \Sigma m(0,6,9,15)$ without using any additional logic gate. Complete the diagram below. [3 marks]

Note that the selector lines for the 4:1 multiplexer have been fixed to AB, and you <u>must not change it</u>.

You do not need to implement this since you are not given any multiplexer in this lab.

Marking Scheme: Report (15 marks), Circuit (5 marks); Total: 20 marks. Your graded report will be returned to you at the next lab.