12.CVIKO 2-transformace

f(m): No IR je realná posloupnost. Potom

$$F(z) = \mathcal{Z}\{f(m)\} = \sum_{m=0}^{\infty} f(m) z^{-m} = f(0) + \frac{f(1)}{2} + \frac{f(2)}{2^2} + \dots + \frac{f(m)}{2^m} + \dots$$

je Z-transformace posloupnosti {f(m)}_= .

F(z): (→ (je komplexní fce a ∃ REIR tak, že:

F(z) existuje a je holomorfní pro všechna /2/>R.

I-transformace je linearní: Ifafim)+b.g/m/f=a:Iffim)+b.I/g/m/f

			(5.
	Predmet, vzor	Obraz	
č.	f(m), m=0,1,2,	2{f(m)}=f(z)=\(\sum_{n=0}^{\infty}f(m)\(\frac{z}{n} \)	7×KLAD2-
1.	c (celR)	<u>CZ</u> 2-1	L A
2.	am (a E IR)	₹-a	DN
3.	\sim	2 (2-1)2	1
4.	m²	2(2+1)	ターへくのしい
5.	m.an	(2-a)2	N
6.	m² am	(2-a)3	
7.	f(m+1)	2.F(z) - z.f(0)	2
8.	f(m+2)	$z^2 \cdot F(z) - z^2 f(0) - z \cdot f(1)$	T R A
9.	f (m+3)	23 F(21-23f(0)-22f(1)-2f(2)	N S F D
10.	f(n+&)	2 F(2/-2 f(0)-2 2-1 f(1/ 2f(1-1)	POR
11.	f (m-k) (f(m)=0)	2-2 F(2)	H.

-3

tj. posloupnost y(m)

$$\frac{P\bar{n}. \, J\dot{a}}{J(m+1)} - y(m) = 2^{m} \, (m-1); \quad y(0) = 0$$

$$\frac{J(m+1)}{J(n)} - y(m) = 2^{m} \, m - 2^{m} \, / 2^{n}$$

$$\frac{Z}{J(n)} = \frac{Z}{J(n)} - \frac{Z}{J(n)} - \frac{Z}{J(n)}$$

$$\frac{Z}{J(n)} = \frac{Z}{J(n)} - \frac{Z}{J(n)} - \frac{Z}{J(n)}$$

$$\frac{Z}{J(n)} = \frac{Z}{J(n)}$$

-4-

$$\frac{2^{2}Y(2)-2^{2}0-2\cdot0-5(2Y(2)-2\cdot0)+6Y(2)=\frac{2}{2-1}}{Y(2)-2^{2}0-2\cdot0-5(2Y(2)-2\cdot0)+6Y(2)=\frac{2}{2-1}}$$

$$Y(2)=\frac{2}{(2-1)(2^{2}-52+6)}=\frac{2}{(2-1)(2-2)(2-3)}$$

$$\frac{Y(2)=\frac{2}{(2-1)(2^{2}-52+6)}=\frac{2}{(2-1)(2-2)(2-3)}$$

$$\frac{Y(2)=\frac{2}{(2-1)(2-2)(2-3)}}{(2-1)(2-2)(2-3)}$$

$$\frac{Y(2)=\frac{2}{(2-1)(2-2)(2-3)}}{(2-1)(2-2)(2-3)}$$

$$\frac{Y(2)\cdot 2^{m-1}}{(2-1)(2-2)(2-3)}=\frac{2^{m}}{(2-1)(2-2)(2-3)}$$

$$\frac{Y(2)\cdot 2^{m-1}}{(2-1)(2-2)(2-3)} = \frac{2^{m}}{(2-1)(2-2)(2-3)}$$

$$\frac{Y(2)\cdot 2^{m-1}}{(2-1)(2-2)(2-3)}$$

$$\frac{Y(2)\cdot 2^{m-1}}{(2-1)(2-3)}$$

$$\frac{Y(2)\cdot 2^{m-1}}{(2-1)(2-3)}$$

$$\frac{Y(2)\cdot 2^{m-1}}{($$

$$\frac{2^{2}Y(2) - 2^{2} \cdot 0 - 2 \cdot 0 - 5(2Y(2) - 2 \cdot 0) + 4Y(2) = \frac{2}{2-2}}{Y(2) \cdot (2^{2} - 52 + 4) = \frac{2}{2-2}}$$

$$Y(2) \cdot (2^{2} - 52 + 4) = \frac{2}{2-2}$$

$$Y(2) \cdot 2^{m-1} = \frac{2^{m}}{(2-2)(2-4)(2-1)}$$

$$\frac{2^{m}}{(2-2)(2^{2} - 52 + 4)} = \frac{2^{m}}{(2-2)(2-4)(2-1)}$$

$$\frac{2^{m}}{(2-2)(2^{2} - 52 + 4)} = \frac{2^{m}}{(2-2)(2-4)(2-1)}$$

$$\frac{2^{m}}{(2-2)(2-4)(2-1)}$$

$$\frac{2^{$$

-6-