Driver assistance system design A

Nonlinear model predictive control

Carlo Novara

Politecnico di Torino Dip. Elettronica e Telecomunicazioni

Outline

- Introduction
- 2 Nonlinear model predictive control
- 3 NMPC design
- 4 Discussion

2 Nonlinear model predictive control

3 NMPC design

4 Discussion

- Nonlinear model predictive control (NMPC) is a general and flexible approach to nonlinear system control.
- Approach. At each time step:
 - A <u>prediction</u> over a given time horizon is performed, using a model of the plant.
 - ▶ The command input is chosen as the one yielding the "best" prediction (i.e., the prediction closest to the desired behavior) by means of some on-line optimization algorithm.
- NMPC allows us to deal with input/state/output constraints and to manage systematically the trade-off performance/command effort.
- NMPC is a nonlinear finite-horizon version of LQR.
- Applications: automotive systems, aerospace systems, chemical processes, robotics, biomedical devices, etc.

2 Nonlinear model predictive control

3 NMPC design

4 Discussion

Consider the MIMO nonlinear system

$$\dot{x} = f(x, u)
y = h(x, u)$$
(1)

where $x \in \mathbb{R}^n$ is the state, $u \in \mathbb{R}^{n_u}$ is the command input and $y \in \mathbb{R}^{n_y}$ is the output.

- The generalization to time-varying systems is straightforward.
- Suppose that the state is measured in real-time, with a sampling time T_s . The measurements are

$$x(t_k), \quad t_k = T_s k, \ k = 0, 1, \dots$$

- If the state is not measured, an observer has to be employed or a model in input-output form.
- NMPC is based on two key operations: <u>prediction</u> and <u>optimization</u>.

- At each time $t = t_k$, the system state and output are <u>predicted</u> over the time interval $[t, t + T_p]$.
 - ▶ The prediction is obtained by integration of (1) (or a model of it).
 - ▶ $T_p \ge T_s$ is called the *prediction horizon*.
- At any time $\tau \in [t, t+T_p]$, the predicted output $\hat{y}\left(\tau\right)$ is a function of the "initial" state x(t) and the input signal:

$$\hat{y}(\tau) \equiv \hat{y}(x(t), \mathfrak{u}(t:\tau))$$

where $\mathfrak{u}(t:\tau)$ denotes a generic input signal in the interval $[t,\tau].$

• In the time interval $[t, t+T_p]$, $\mathfrak{u}(\tau)$ is an open-loop input, in the sense that it does not depend on $x(\tau)$.

• At each time $t=t_k$, we look for an input signal $\mathfrak{u}(t:\tau)=u^*(t:\tau)$, such that the <u>prediction</u>

$$\hat{y}\left(x(t), u^*(t:\tau)\right) \equiv \hat{y}\left(u^*(t:\tau)\right)$$

has the desired behavior for $\tau \in [t, t + T_p]$.

• The concept of desired behavior is formalized by defining the *objective* function

$$J\left(\mathfrak{u}(t:t+T_{p})\right) \doteq \int_{t}^{t+T_{p}} \left(\|\tilde{y}_{p}(\tau)\|_{Q}^{2} + \|\mathfrak{u}(\tau)\|_{R}^{2}\right) d\tau + \|\tilde{y}_{p}(t+T_{p})\|_{P}^{2}$$

where $\tilde{y}_p(\tau) \doteq r(\tau) - \hat{y}(\tau)$ is the predicted tracking error, $r(\tau) \in \mathbb{R}^{n_y}$ is a reference to track, $\|\cdot\|_X$ are weighted vector norms and their integrals are square signal norms.

• The input signal $u^*(t:t+T_p)$ is chosen as one minimizing the objective function $J\left(\mathfrak{u}(t:t+T_p)\right)$.

Objective function:

$$J\left(\mathfrak{u}(t:t+T_p)\right) \doteq \int_t^{t+T_p} \left(\|\tilde{y}_p(\tau)\|_Q^2 + \|\mathfrak{u}(\tau)\|_R^2 \right) d\tau + \|\tilde{y}_p(t+T_p)\|_P^2.$$

- The goal is to minimize, at each time t_k , the tracking error square norm $\|\tilde{y}_p(\tau)\|_Q^2 = \|r(\tau) \hat{y}(\tau)\|_Q^2$ over a finite time interval.
- $\|\tilde{y}_p(t+T_p)\|_P^2$ gives further importance to the final tracking error.
- $\bullet \ \| \mathfrak{u}(\tau) \|_R^2$ allows us to menage the trade-off between performance and command activity.
- ullet The square weighted norm of a vector $v \in \mathbb{R}^n$ is

$$||v||_Q^2 \doteq v^T Q v = \sum_{i=1}^n q_i v_i^2, \ Q = \operatorname{diag}(q_1, \dots, q_n) \in \mathbb{R}^{n \times n}, \ q_i \ge 0.$$

Objective function:

$$J\left(\mathfrak{u}(t:t+T_{p})\right) \doteq \int_{t}^{t+T_{p}} \left(\|\tilde{y}_{p}(\tau)\|_{Q}^{2} + \|\mathfrak{u}(\tau)\|_{R}^{2} \right) d\tau + \|\tilde{y}_{p}(t+T_{p})\|_{P}^{2}.$$

- The tracking error $\tilde{y}_p(\tau) \doteq r(\tau) \hat{y}(\tau)$ depends on $\hat{y}(\tau)$, which is obtained by integration of (1).
- ullet Minimization of J is thus subject to the constraints

$$\begin{split} \dot{\hat{x}}(\tau) &= f(\hat{x}(\tau), \mathfrak{u}(\tau)), \ \hat{x}(t) = x(t), \ \tau \in [t, t + T_p] \\ \hat{y}(\tau) &= h(\hat{x}(\tau), \mathfrak{u}(\tau)). \end{split}$$

- Other constraints may be present on
 - ▶ the predicted state/output: $\hat{x}(\tau) \in X_c$, $\hat{y}(\tau) \in Y_c$, $\tau \in [t, t+T_p]$
 - ★ examples: obstacles, collision avoidance;
 - the input: $\mathfrak{u}(\tau) \in U_c$, $\tau \in [t, t+T_p]$
 - examples: input saturation.

Nonlinear model predictive control Intuitive idea

NMPC optimization problem

• At each time $t=t_k$, for $\tau\in[t,t+T_p]$, the following optimization problem is solved:

$$u^{*}(t:t+T_{p}) = \underset{\mathfrak{u}(\cdot)}{\operatorname{arg\,min}} J\left(\mathfrak{u}(t:t+T_{p})\right)$$
subject to:

$$\dot{\hat{x}}(\tau) = f\left(\hat{x}(\tau),\mathfrak{u}(\tau)\right), \quad \hat{x}(t) = x(t)$$

$$\hat{y}(\tau) = h\left(\hat{x}(\tau),\mathfrak{u}(\tau)\right)$$

$$\hat{x}(\tau) \in \mathcal{X}_{c}, \ \hat{y}(\tau) \in \mathcal{Y}_{c}, \ \mathfrak{u}(\tau) \in \mathcal{U}_{c}$$

$$(2)$$

where T_s is the sampling time, T_p is the prediction horizon, with $0 \le T_s \le T_p$.

NMPC optimization problem

- The optimization problem (2)
 - is in general non-convex;
 - must be solved on-line, at each time t_k .
- J is a function of the signal $\mathfrak{u}(\cdot)$. Since a signal is a function of time, J is a function of a function.
 - Such a mathematical object is often called a functional.
- Efficient numerical algorithm can be used for the solution of (2).
 - No guarantees to find a global minimum. They provide in general a local minimum.
 - ▶ A local minimum can be satisfactory from the point of view of control performance.

Receding horizon strategy

- Suppose that, at a time $t=t_k$, the optimal input signal $u^*(t:t+T_p)$ has been computed solving the above optimization problem.
 - $u^*(t:t+T_p)$ is an open-loop input: it depends on x(t) but not on $x(\tau),\ \tau>t.$
 - $u^*(t:t+T_p)$, if applied for the entire time interval $[t,t+T_p]$, does not perform a feedback action, and thus it cannot increase the precision, reduce error and disturbance effects, or adapt to a varying scenario.
- The NMPC feedback control algorithm is obtained by means of a so-called receding horizon strategy:
 - 1. At time $t = t_k$:
 - a. compute $u^*(t:t+T_p)$ by solving (2);
 - b. apply only the first input value: $u(\tau)=u^*(t=t_k)$ and keep it constant for $\forall \tau \in [t_k,t_{k+1}].$
 - 2. Repeat steps 1a-1b for $t = t_{k+1}, t_{k+2}, \ldots$

Closed-loop scheme

- Plant: $\dot{x} = f(x, u)$, y = h(x, u)
- NMPC: on-line solution of (2) and receding horizon strategy.
 - ▶ The NMPC algorithm contains a plant model, used for prediction.
 - ▶ The prediction model is of the form $\dot{\hat{x}} = f(\hat{x}, \mathfrak{u})$, $\hat{y} = h(\hat{x}, \mathfrak{u})$, where $f \cong f$, $h \cong h$.
 - **★** Simplified models (f, h) are often used.
 - ★ In the nominal case, f = f, h = h.

2 Nonlinear model predictive control

3 NMPC design

4 Discussion

NMPC design Choice of parameters

- ullet T_s : In many situations, the sampling time is given and cannot be chosen. If it can be chosen, a trial and error procedure in simulation can be adopted, considering that T_s should be
 - sufficiently small to deal with the plant dynamics (Nyquist-Shannon sampling Theorem);
 - not too small, to avoid numerical problems and slow computation.
- ullet T_p : It can be chosen through a trial and error procedure in simulation, considering that
 - ▶ a "large" T_p increases the closed-loop stability properties;
 - lacktriangleright a "too large" T_p may reduce the short-time tracking accuracy.
- Q, R, P: Similar to LQR/LQRY. See next slide.

NMPC design

Choice of weight matrices

- Initial choice: Supposing that all the variables have similar ranges of variation, Q, R and P can be chosen diagonal non-negative, with
 - $Parameter Q_{ii} = \left\{ \begin{array}{ll} > 0 & \text{in the presence of requirements on } y_i \\ = 0 & \text{otherwise} \end{array} \right.$
 - $P_{ii} = \begin{cases} > 0 & \text{in the presence of requirements on } y_i \\ = 0 & \text{otherwise} \end{cases}$
 - ▶ $R_{ii} =$ $\dot{S}_{ii} > 0$ in the presence of requirements on u_i $\cong 0$ otherwise.
- **2** Trial and error (in simulation): Change the values of Q_{ii} , R_{ii} and P_{ii} , until the requirements are satisfied.

increasing	\Rightarrow	decreasing the	\Rightarrow	reducing oscillations and
Q_{ii}, P_{ii}		energy of x_i, y_i		convergence time
increasing	\Rightarrow	decreasing the	\Rightarrow	reducing command effort
R_{ii}		energy of u_i		and "energy consumption"

NMPC design

Matlab/Simulink

```
%% NMPC design
% The prediction model must be defined
% in a function named pred model.m
par.nlc=0: % no state/output constraints (default=0)
% par.nlc=1: % presence of state/output constraints
% The constraints must be defined
% in a function named nlcon.m
% Prediction model order
par.n=... NUMBER OF STATES
par.Ts=...
par.Tp=...
% Weigth matrices
par.P=...
par.Q=...
par.R=...
% Command input lower and upper bounds
par.lb=...
par.ub=...
% par.Tstart=... % Time at which the NMPC
% controller is switched on (default=0).
K=nmpc design st2(par):
% K: structure used by the NMPC block in Simulink.
```

```
function [f,h] = pred model(t,x,u)
% NMPC prediction model
% t: time (scalar, useful for time-varying systems).
% x: state of the system (dimension nx1).
% u: input of the system (dimension nux1).
% f,h: functions of the state and output equations:
% xdot=f(t.x.u): v=h(t.x.u).
% Initialization
f=zeros(n.1):
h=zeros(nv,1);
% State equations
f = \dots;
% Output equations
h = \dots:
function F = nlcon(x, y)
% NMPC constraint function
% x: state of the system; matrix of dimension n*N.
% y: output of the system; matrix of dimension ny*N.
% N is the number of samples in the time interval [t.t+Tp].
% F: constraint function: Nc*N matrix, where
% No is the number of constraints.
% Constraints are written in the standard form F(x,v) \le 0.
% Initialization
N=size(x.2):
Nc=...:
F=zeros(Nc,N);
% Constraint functions
F(1,:) = ...:
% F(2.:) = ...:
```

2 Nonlinear model predictive control

3 NMPC design

Discussion

Discussion

Advantages and drawbacks of NMPC

Advantages:

- general and flexible: complex MIMO systems;
- intuitive formulation, based on optimality concepts;
- constraints and input saturation accounted for;
 - ★ constraints/saturations can be time-varying;
- efficient management of the performance/input activity trade-off;
- optimal trajectories (over a finite time interval);
- unified computation of optimal trajectory and control law.

• Drawbacks:

- high on-line computational cost;
- possible local minima in the optimization problem;
- problems in the case unstable zero-dynamics (like all methods).