

Population dynamics in highly fragmented landscapes

Vítor Sudbrack

MSc candidate at IFT - Unesp

vitorsudbrack@gmail.com https://vsudbrack.github.io

Outline

- Introduction to fragmentation per se
- Mathematical modelling
- Single large or several small?
- Habitat core area vs total area
- Statistical modelling
- Analysis of direction of effects
- Effects of fragmentation and *fragmentation per se*
- Final considerations

Introduction

- Habitat loss is detrimental to the ecological value of landscapes
 - o decrease species abundance
 - decrease

biodiversity

- Habitat fragmentation is a general concept for spatial habitat distribution across landscape.
- More fragmented landscapes may include:
 - decrease of habitat amount
 - o increase of number of patches
 - decrease of patch size
 - o increase of patch isolation

Introduction

- Habitat fragmentation with a fixed habitat amount (HA) is referred to as **fragmentation** per se.
- We need to quantify fragmentation via fragmentation metrics.
- The **ecological effects** of *fragmentation per se* on landscapes is still a very debated topic.

Ecological Responses to Habitat Fragmentation Per Se

Lenore Fahrig

Negative Positive Is habitat fragmentation good for biodiversity?

Is habitat fragmentation good for biodiversity?

Robert J. Fletcher Jr^{a,*}, Raphael K. Didham^{b,c}, Cristina Banks-Leite^d, Jos Barlow^e, Robert M. Ewers^d, James Rosindell^d, Robert D. Holt^f, Andrew Gonzalez^g, Renata Pardini^h, Ellen I. Damschenⁱ, Felipe P.L. Melo^j, Leslie Ries^k, Jayme A. Prevedello^l, Teja Tscharntke^m, William F. Lauranceⁿ, Thomas Lovejoy^o, Nick M. Haddad^p

Is habitat fragmentation bad for biodiversity?

Lenore Fahrig, Víctor Arroyo-Rodríguez, Joseph R. Bennett, Véronique Boucher-Lalonde, Eliana Cazetta, David J. Currie, Felix Eigenbrod, Adam T. Ford, Susan P. Harrison, Jochen A.G. Jaeger, Nicola Koper, Amanda E. Martin, Jean-Louis Martin, Jean Paul Metzger, Peter Morrison, Jonathan R. Rhodes, Denis A. Saunders, Dan Simberloff, Adam C. Smith, Lutz Tischendorf, Mark Vellend, James I. Watling

Challenges of empirical studies with *natural landscapes*: low variability in fragmentation patterns within regions and high correlation with HA

Editorial

How does habitat fragmentation affect biodiversity? A controversial question at the core of conservation biology

• Reaction-diffusion equations

$$\partial_t u = f(u) + \nabla^2 u$$

- Local reaction f(u)
 - Exponential growth
 - Logistic growth
 - Death rate
- Population diffusion
 - Equivalent to a random-walk in an individual level

$$L_P = \sqrt{\frac{D_P}{r}} \qquad L_M = \sqrt{\frac{D_M}{\mu}}$$

$$\kappa = \frac{L_P}{L_M}$$

Soft matrix
Inter-patch movement

O.01

O.

The only free parameter in the model for the **stationary solution**.

BIASED MOVEMENT AT A BOUNDARY AND CONDITIONAL OCCUPANCY TIMES FOR DIFFUSION PROCESSES

> OTSO OVASKAINEN,* University of Helsinki STEPHEN J. CORNELL,** University of Cambridge

How Individual Movement Response to Habitat Edges Affects Population Persistence and Spatial Spread

- Generating binary artificial landscapes
 - o method adapted from *Tischendorf and Fahrig (2000)*
 - controlled total habitat amount (HA):
 5% to 90%
 - o controlled degree of fragmentation

Single large or several small?

What features of landscape matter?

Effects are dependent on matrix hostility. Future analysis will consider **soft, intermediate** and **hostile matrices**.

Habitat total area vs core area, in hostile matrices

Fragmentation metrics

Measurements of different aspects of spatial habitat distribution:

- Aggregation metrics
 - log of number of patches (logNP)
- Area and edge metrics
 - mean area per patch (MApP*)
 - edge density (ED)
- Core area metrics
 - % of core area (CAI*)
- Shape metrics
 - perimeter-area ratio (PAratio)
 - mean circumscribe radii of patches (CircumsC)
 - deformation from 'optimal shape' (Gyrate*)

All metrics were scaled and normalized.

Statistical description

Geographical information

Ecological information

MODEL 1

$$a_0 + a_1 \cdot HA$$

The ecological value **depends exclusively on the HA** of the landscape.

MODEL 2

$$\begin{array}{c} a_0 + a_1 \cdot HA \\ + a_2 \cdot F_j \end{array}$$

Independent effects of habitat amount and habitat fragmentation

MODEL 3

$$a_0 + a_1 \cdot HA + (a_2 + a_3 \cdot HA) \cdot F_j$$

Interdependent effects of the fragmentation and habitat amount

 $\{a_i\}$ are adjusted by Maximum Likelihood Estimator (*MLE*).

Negative effects of habitat loss

All models presented negative ecological effects of habitat loss at all matrices.

$$\begin{array}{c|c} & & & & & & & & & & & & & \\ a_0 + a_1 \cdot HA & & & & & & & & \\ a_0 + a_1 \cdot HA & & & & & & & \\ & + a_2 \cdot F_j & & & & & & \\ \end{array}$$

Effects of habitat fragmentation

modelling presented non-negligible effects of **fragmentation** and confirmed the visual inspections of previous analysis.

- matrices: fragmentation Soft good.
- **Intermediate matrices:** fragmentation is slightly bad.
 - Inversion of direction of effects across the HA gradient in Model 3.
- **Hostile matrices:** fragmentation is bad.

Soft matrix

Model selection

All criteria employed - Relative Log-likelihood, AIC or model variance pointed towards the same metrics:

- matrices: Model Soft 3.logNP, followed 3.ED. by
- **Intermediate** matrices: Model 3.logNP.
- **Hostile matrices:** Model *3.ED*, followed by *2.ED*.

Statistical description

MODEL 3

$$a_0 + a_1 \cdot HA + (a_2 + a_3 \cdot HA) \cdot F_j$$

Interdependent effects of the fragmentation, linearly constrained to habitat amount

Effects of fragmentation per se, unconstrained to habitat amount k=90%, 85%, 80%, ... of HA

$$a_0 + a_1 \cdot HA \\ + (a_2 + a_3 \cdot HA) \cdot F_j$$

$$a_0^{(k)} + a_1^{(k)} \cdot F_j$$

Effects of fragmentation per se

Two non-linear patterns of effects of *fragmentation per se* along the HA gradient:

Parabolic, stronger effects at

 misignificant At low HA, especially in intermediate matrices.

Final considerations

- The model presented in this work had emerging effects of habitat loss and habitat fragmentation.
- The model could explain **diverging results** in the literature considering **different matrix hostilities**.
 - The direction of effects of habitat fragmentation (as well as *fragmentation per se*) depend on the matrix hostility.
- Hence, the empirical studies could consider quantifying matrix hostilities in their statistical studies.

Acknowledgements

Thank you!