Discriminant Analysis

Jan Graffelman¹

¹Department of Statistics and Operations Research Universitat Politècnica de Catalunya Barcelona, Spain

jan.graffelman@upc.edu

April 21, 2020

Jan Graffelman (UPC) Discriminant Analysis April 21, 2020 1 / 32

Discriminant analysis: Aims

Introduction

•00

- Group separation
- Dimension reduction: from p variables to k discriminators with k < p.
- Classification of new cases

Introduction

000

Discriminant Analysis: the data matrix

Ind.	X_1	X_2		X_p	Group
1	X ₁₁	X ₁₂		X_{1p}	1
2	X_{21}	X_{22}		X_{2p}	1
	-				
:	:	:			:
n_1	$X_{n_1 1}$	$X_{n_1 2}$		X_{n_1p}	1
1	X ₁₁	X_{12}		X_{1p}	2
2	X_{21}	X_{22}	• • •	X_{2p}	2
:		:		:	:
n_2	X_{n_21}	$X_{n_2 2}$		X_{n_2p}	2
1	X ₁₁	X ₁₂		X_{1p}	m
2	X_{21}	X_{22}	• • •	X_{2p}	m
:	:	:			:
n_m	$X_{n_m 1}$	X_{n_m2}		X_{n_mp}	m

Jan Graffelman (UPC) Discriminant Analysis April 21, 2020 3 / 32

Some examples

Introduction

- Which morphological measurements can discriminate between men and women?
- Given various biochemical measurements, is this person healthy or diseased?
- Given the variables of this wheat kernel, to which of the known varieties does it belong?
- One can distinguish between two-group and multiple group problems.

Jan Graffelman (UPC) Discriminant Analysis 4 / 32

Two-group linear discriminant analysis

Introduction

Criteria for designing a classification rule:

- small probability of misclassification
- take prevalence into account (prior probabilities)
- take the cost of misclassification into account

Jan Graffelman (UPC) Discriminant Analysis April 21, 2020 5 / 32

Two-group linear discriminant analysis

Some basic definitions:

Introduction

- π_1 and π_2 represent population 1 and 2.
- $f_1(x)$ and $f_2(x)$ represent the multivariate probability densities for each population.
- $\Omega = R_1 \cup R_2$ is the partitioned sample space for outcome x.
- If x falls in R_1 , the case is classified as π_1 , else in π_2 .
- p_1 is the prior probability of pertaining to π_1 , p_2 the prior probability of pertaining to π_2 (prevalence)
- Misclassification probabilities:
 - **1** $P(2|1) = P(\mathbf{X} \in R_2|\pi_1) = \int_{R_2} f_1(\mathbf{x}) d\mathbf{x}$
 - 2 $P(1|2) = P(X \in R_1|\pi_2) = \int_{R_1} f_2(x) dx$

Cost matrix

		Predicted class		
		π_1	π_2	
True	π_1	0	c(2 1)	
Class	π_2	c(1 2)	0	

c(1|2) and c(2|1) are not necessarily equal

ECM = Expected Cost of Misclassification

$$P ext{ (from } \pi_1 \cap \text{ classified } \pi_2) = P (2|1) \cdot p_1$$

$$P ext{ (from } \pi_2 \cap \text{ classified } \pi_1) = P (1|2) \cdot p_2$$

$$ECM = c(1|2)P(1|2)p_2 + c(2|1)P(2|1)p_1$$

Jan Graffelman (UPC) Discriminant Analysis April 21, 2020 7 / 32

Classification rule: minimizing ECM

ECM Rule

The regions that minimize the ECM are:

$$R_1: \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} \ge 1$$
 $R_2: \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} < 1$

If there is differential prevalence:

$$R_1: \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} \ge \frac{p_2}{p_1} \qquad R_2: \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} < \frac{p_2}{p_1}$$

If there is differential cost:

$$R_1: \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} \ge \frac{c(1|2)}{c(2|1)}$$
 $R_2: \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} < \frac{c(1|2)}{c(2|1)}$

And if we have both differential prevalence and differential cost:

$$R_1: \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} \geq \frac{c(1|2)}{c(2|1)} \cdot \frac{p_2}{p_1} \qquad R_2: \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} < \frac{c(1|2)}{c(2|1)} \cdot \frac{p_2}{p_1}$$

Introduction

Two normal populations with equal covariance matrices

For continuous **X**, we assume multivariate normality:

$$f_1(\mathbf{x}) = rac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{rac{1}{2}}} e^{-rac{1}{2}(\mathbf{x} - oldsymbol{\mu}_1)'\mathbf{\Sigma}^{-1}(\mathbf{x} - oldsymbol{\mu}_1)}$$

$$f_2(\mathbf{x}) = rac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{rac{1}{2}}} e^{-rac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_2)'\mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_2)}$$

Jan Graffelman (UPC)

Introduction

Two-group linear discriminant analysis

Sample based ECM Rule: assign observation x to population 1 if

$$(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)'\mathbf{S}_{\rho}^{-1}\mathbf{x} - \frac{1}{2}(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)'\mathbf{S}_{\rho}^{-1}(\bar{\mathbf{x}}_1 + \bar{\mathbf{x}}_2) \geq \ln\left(\left(\frac{c(1|2)}{c(2|1)}\right)\left(\frac{\rho_2}{\rho_1}\right)\right)$$

where S_p is the pooled covariance matrix:

$$\mathbf{S}_p = \frac{n_1 - 1}{n_1 + n_2 - 2} \mathbf{S}_1 + \frac{n_2 - 1}{n_1 + n_2 - 2} \mathbf{S}_2$$

Jan Graffelman (UPC)

Two-group linear discriminant analysis

Define:

$$\mathbf{a} = \mathbf{S}_{n}^{-1}(\mathbf{\bar{x}}_{1} - \mathbf{\bar{x}}_{2}) \qquad y = \mathbf{a}'\mathbf{x}$$

Note that:

$$y_i = \mathbf{a}' \mathbf{x}_i \qquad \overline{y}_1 = \mathbf{a}' \overline{\mathbf{x}}_1 \qquad \overline{y}_2 = \mathbf{a}' \overline{\mathbf{x}}_2$$

With equals costs and priors, the ECM rule for R_1 boils down to the univariate rule:

$$y_i > \frac{1}{2}(\overline{y}_1 + \overline{y}_2)$$

y is the classifier or linear discriminant function.

Example: the Salmon data

	Origin	Gender	Fresh	Marine
1	Alaskan	Female	108	368
2	Alaskan	Male	131	355
3	Alaskan	Male	105	469
4	Alaskan	Female	86	506
5	Alaskan	Male	99	402
6	Alaskan	Female	87	423
:	:	:	:	:
•	•	•	•	•
95	Canadian	Female	140	388
96	Canadian	Female	150	339
97	Canadian	Female	124	341
98	Canadian	Male	125	346
99	Canadian	Male	153	352
100	Canadian	Male	108	339

Download Salmon.dat

Two-sample Hotelling T2 (unequal covariance matrices) $T2 = 207.2967 \ TCrit = 5.991465 \ p-value = 0$

Jan Graffelman (UPC) Discriminant Analysis April 21, 2020 13 / 32

Exploring

Exploring

Calculations

```
mean vectors
          Fresh Marine
Alaskan
          98.38 429.66
Canadian 137.46 366.62
> S1 # Alaskan
           Fresh
                    Marine
        260.6078 -188.0927
Fresh
Marine -188.0927 1399.0861
> S2 # Canadian
          Fresh
                  Marine
Fresh 326.0902 133.5049
Marine 133.5049 893.2608
> Spool <- ((n1-1)*S1+(n2-1)*S2)/(n1+n2-2)
> Spool
           Fresh
                     Marine
Fresh 293.34898 -27.29388
Marine -27.29388 1146.17347
> a <- solve(Spool)%*%(m1-m2)
> a
              [.1]
Fresh -0.12838726
```

Marine 0.05194311

LDA in R

```
> out <- lda(Origin~Fresh+Marine,data=X)
> out
Call:
lda(Origin ~ Fresh + Marine, data = X)
Prior probabilities of groups:
 Alaskan Canadian
     0.5
              0.5
Group means:
          Fresh Marine
Alaskan
          98.38 429.66
Canadian 137.46 366.62
Coefficients of linear discriminants:
               I.D1
Fresh
        0.04458572
Marine -0.01803856
>
> plot(out)
```


Graphical representation

Two-group QDA

Introduction

Under the assumption of multivariate normality with $\Sigma_1 \neq \Sigma_2$, using the same ECM principle, a quadratic classification rule is obtained.

Sample based ECM Rule: assign observation x to population 1 if

$$-\frac{1}{2}\mathbf{x}'(\mathbf{S}_1^{-1}-\mathbf{S}_2^{-1})\mathbf{x}+(\overline{\mathbf{x}}_1'\mathbf{S}_1^{-1}-\overline{\mathbf{x}}_2'\mathbf{S}_2^{-1})\mathbf{x}-k\geq\ln\left(\left(\frac{c(1|2)}{c(2|1)}\right)\left(\frac{\rho_2}{\rho_1}\right)\right)$$

with

$$k = \frac{1}{2} \ln \left(\frac{|\mathbf{S}_1|}{|\mathbf{S}_2|} \right) + \frac{1}{2} (\overline{\mathbf{x}}_1' \mathbf{S}_1^{-1} \overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2' \mathbf{S}_2^{-1} \overline{\mathbf{x}}_2)$$

Jan Graffelman (UPC)

Error rates and Confusion matrix

- It is of interest to evaluate the performance of a classification rule.
- There are several criteria to do so.
- Actual error rate (AER, density dependent)

$$\mathsf{AER} = p_1 \int_{\hat{R}_2} f_1(\mathsf{x}) d\mathsf{x} + p_2 \int_{\hat{R}_1} f_2(\mathsf{x}) d\mathsf{x}$$

 Apparent error rate (APER, not density dependent) based on the confusion matrix

		Predicted class		
		π_1	π_2	
True	π_1	n_{11}	n ₁₂	
Class	π_2	n_{21}	n_{22}	

APER obtained as

$$APER = \frac{n_{12} + n_{21}}{n_1 + n_2}$$

APER underestimates the AER

Introduction

Jackknife or hold-one-out

Procedure:

Introduction

- Take the data from group π_1 . Omit the *i*th observation, build the classifier with $n_1 1 + n_2$ observations.
- Classify the *i*th observation using the classifier.
- Repeat for all observations in π_1 .
- Calculate n_{1M}^H , the number of observations that were held out and misclassified.
- Do the same for group π_2 and calculate n_{2M}^H .
- Obtain an estimate of the expected actual error rate

$$E(AER) = \frac{n_{1M}^H + n_{2M}^H}{n_1 + n_2}$$

Jan Graffelman (UPC) Discriminant Analysis April 21, 2020 21 / 32

Salmon data revisited

Introduction

```
> out <- lda(Origin~Fresh+Marine,data=X)
                                                       > out <- qda(Origin~Fresh+Marine,data=X)
> pre <- predict(out)
                                                       > pre <- predict(out)
> confusion <- table(X$Origin,pre$class)
                                                       > confusion <- table(X$Origin,pre$class)
> confusion
                                                        > confusion
           Alaskan Canadian
                                                                   Alaskan Canadian
  Alaskan
                44
                                                          Alaskan
                                                                        45
                          49
  Canadian
                                                          Canadian
> aper <- (confusion[1,2]+confusion[2,1])/sum(confusion2) aper <- (confusion[1,2]+confusion[2,1])/sum(confusion
> aper
                                                       > aper
[1] 0.07
                                                        Γ17 0.07
> n <- nrow(X)
                                                        > n <- nrow(X)
> nmisclas <- 0
                                                        > nmisclas <- 0
> for(i in 1:n) {
                                                        > for(i in 1:n) {
 ho <- X[i.]
                                                           ho <- X[i,]
  out <- lda(Origin~Fresh+Marine,data=X[-i,])
                                                           out <- qda(Origin~Fresh+Marine,data=X[-i,])
   aaa <- predict(out,newdata = ho)
                                                           aaa <- predict(out,newdata = ho)
    if(aaa$class!=ho$Origin) nmisclas<-nmisclas+1
                                                           if(aaa$class!=ho$Origin) nmisclas<-nmisclas+1
+ }
                                                       + }
> nmisclas/n
                                                       > nmisclas/n
Γ17 0.07
                                                        [1] 0.08
>
                                                        >
```

22 / 32

LDA with multiple groups

- The ECM rule can be extended to k groups
- Fisher's discriminant analysis

Jan Graffelman (UPC) Discriminant Analysis April 21, 2020 23 / 32

ECM rule

ECM rule with k groups (equal costs)

Assign **x** to π_k if

$$p_k f_k(\mathbf{x}) > p_i f_i(\mathbf{x}) \quad \forall \quad i \neq k$$

Jan Graffelman (UPC) Discriminant Analysis April 21, 2020 24 / 32

Fisher's linear discriminant analysis

Searches for an optimal linear combination:

$$Z_1 = a_1 X_1 + a_2 X_2 + \cdots + a_p X_p$$

- Maximizes the ratio of variability between groups to variability within groups
- Objective function

$$\frac{a'Ba}{a'Wa}$$

- W is the matrix with within-group sums-of-squares
- For a single group i

$$\mathbf{W}_i = (\mathbf{X}_i - \mathbf{1}\mathbf{m}_i')'(\mathbf{X}_i - \mathbf{1}\mathbf{m}_i')$$

- $\mathbf{W} = \sum_{i=1}^k \mathbf{W}_i$
- B is the matrix with between-group sums-of-squares
- T is the matrix with total sums-of-squares

$$T = (X - 1m')'(X - 1m')$$
 $T = W + B$

Jan Graffelman (UPC)

Introduction

Solution

Introduction

The optimal weights are found by solving an eigenvector-eigenvalue problem

$$W^{-1}Ba = \lambda a$$

• The number of dimensions d in the solution is given by $\min(k-1,p)$

$$\mathbf{W}^{-1}\mathbf{B}\mathbf{A} = \mathbf{A}\mathbf{D}_{\lambda}$$

- Eigenvectors scaled to satisfy $\mathbf{A}'\mathbf{S}_{p}\mathbf{A} = \mathbf{I}$
- Selecting the first two eigenvalues and eigenvectors allows for dimension reduction

Jan Graffelman (UPC)

Crude-oil data

	Vanadium	Iron	Beryllium	InvHydrocarbon	Aromatic	Oiltype
1	3.90	7.14	0.45	0.14	12.19	Wilhelm
2	2.70	7.00	0.26	0.14	12.23	Wilhelm
3	2.80	6.00	0.55	0.14	11.30	Wilhelm
4	3.10	6.71	0.28	0.14	13.01	Wilhelm
5	3.50	6.78	0.32	0.13	12.63	Wilhelm
6	3.90	6.56	0.26	0.16	10.42	Wilhelm
7	2.70	5.92	0.00	0.20	9.00	Wilhelm
8	5.00	6.86	0.26	0.14	6.10	SubMuli
9	3.40	5.66	0.45	0.17	4.69	SubMuli
10	1.20	3.46	0.00	0.18	3.15	SubMuli
11	8.40	4.12	0.26	0.16	4.55	SubMuli
12	4.20	6.00	0.71	0.11	4.95	SubMuli
13	4.20	5.92	0.71	0.18	2.22	SubMuli
14	3.90	6.40	0.32	0.18	2.94	SubMuli
47	9.00	4.47	0.71	0.17	11.17	Upper
48	6.20	4.00	0.22	0.24	4.18	Upper
49	7.30	4.47	0.71	0.23	3.50	Upper
50	3.60	3.87	0.84	0.14	4.82	Upper
51	6.20	5.83	0.26	0.21	2.37	Upper
52	7.30	4.69	0.00	0.24	2.70	Upper
53	4.10	5.39	0.84	0.17	7.76	Upper
54	5.40	5.39	0.45	0.22	2.65	Upper
55	5.00	5.83	0.84	0.24	6.50	Upper
56	6.20	5.20	0.55	0.25	2.97	Upper

Jan Graffelman (UPC) Discriminant Analysis 27 / 32


```
> colnames(X) <- c("Vanadium"."Iron"."Bervllium".
                   "InvHydrocarbon", "Aromatic", "Oiltype")
> X$Iron <- sqrt(X$Iron)
> X$Beryllium <- sqrt(X$Beryllium)
> X$InvHydrocarbon <- 1/X$InvHydrocarbon
> out.lda <- lda(Oiltype~Vanadium+Iron+Beryllium+InvHydrocarbon+Aromatic,data=X)
> lda.pred <- predict(out.lda)
> LD <- lda.pred$x
> out lda
Call:
lda(Oiltype ~ Vanadium + Iron + Beryllium + InvHydrocarbon +
    Aromatic, data = X)
Prior probabilities of groups:
  SubMuli
             Upper
                   Wilhelm
0.1964286 0.6785714 0.1250000
Group means:
                     Iron Bervllium InvHvdrocarbon Aromatic
        Vanadium
SubMuli 4.445455 5.666848 0.3439707
                                        0.1571001 5.483636
Upper 7.226316 4.633666 0.5981250
                                       0.2231776 5.767895
```

Wilhelm 3 228571 6 586497 0 3033081

0.1495973 11.540000

Some R code

Introduction

```
Coefficients of linear discriminants:
                                 LD2
                      LD1
Vanadium
                0.3121837 -0.1694498
Iron
               -0.7099884 0.2454856
Beryllium
                2.7638171 2.0456035
InvHvdrocarbon 11.8090852 24.4533141
Aromatic
               -0.2354662 0.3778283
Proportion of trace:
   LD1
          1.02
0.8862 0.1138
> confusion <- table(X$Oiltype,lda.pred$class)
> confusion
          SubMuli Upper Wilhelm
  SubMuli
                      2
 Upper
                     37
 Wilhelm
                      0
> colvec <- rep(NA,nrow(X))
> colvec[X$Oiltype=="SubMuli"] <- "blue"
> colvec[X$Oiltype=="Upper"] <- "green"
> colvec[X$Oiltype=="Wilhelm"] <- "red"
> plot(LD[,1],LD[,2],asp=1,xlab="First linear discriminant",
       ylab="Second linear discriminant",col=colvec,pch=1)
> legend("bottomleft".c("SubMuli"."Upper"."Wilhelm").pch=1.col=c("blue"."green"."red"))
```

Alternative statistical techniques

- An alternative technique for two-group DA is logistic regression
- An alternative technique for multi-group DA is the multinomial logit model

Jan Graffelman (UPC) Discriminant Analysis April 21, 2020 31 / 32

References

Introduction

- Hand, D.J. (1981) Discrimination and Classification. Wiley, New York.
- Johnson & Wichern, (2002) Applied Multivariate Statistical Analysis, 5th edition, Prentice Hall, Chapter 11.
- Lachenbruch, P.A. (1975) Discriminant Analysis. Hafner Press, New York.
- Peña, D. (2002) Análisis de datos multivariantes. McGraw-Hill, Madrid.

Jan Graffelman (UPC) Discriminant Analysis April 21, 2020 32 / 32