<mark>1..</mark>

(1)

endmodule

```
Compilation Report -
module div1(clk,reset,start,word1,word2,quotient,remainder,ready);
          input clk,reset,start;
input [7:0] word1;
input [3:0] word2;
  4
          output [3:0] quotient, remainder;
  5
          output ready;
  6
  8
          wire load, shift, subshift, lt;
  9
          datapath u1(clk,~reset,load,shift,subshift,word1,word2,quotient,remainder,lt);
 10
          controller u2(clk,~reset,start,lt,load,shift,subshift,ready);
 11
 12
       endmodule
 13
 14
       module datapath (clk, reset, load, shift, subshift, word1, word2, guotient, remainder, lt);
 15
           input clk, reset, load, shift, subshift;
 16
           input [7:0] word1;
          input [3:0] word2;
output [3:0] quotient,remainder;
output 1t;
 17
 18
 19
 20
21
          reg [7:0] dividend;
reg [3:0] divisor;
 22
          wire [4:0] diff; wire lt;
 24
25
 26
          assign diff = dividend[7:3] - divisor;
 27
          assign lt = diff[4];
 28
29
          assign quotient = dividend[3:0];
          assign remainder = dividend[7:4];
 30
 31
          always @(posedge clk or posedge reset) begin
  if(reset) begin dividend <= 0; divisor <= 0; end
  else if(load) begin</pre>
 32
     33
 34
    400
                            Compilation Report - div1
              div1.v
dividend <= word1;
divisor <= word2;</pre>
  35
  36
                 end
else if(shift)
  37
  38
                     dividend <= {dividend[6:0],1'b0};</pre>
  39
  40
                  else if(subshift)
  41
                     dividend <= {diff[3:0], dividend[2:0], 1'b1};</pre>
                 end
  42
  43
        endmodule
  44
  45
         module controller(clk,reset,start,lt,load,shift,subshift,ready);
             input clk,reset,start,lt;
output load,shift,subshift,ready;
  46
  47
  48
  49
             reg overflow;
  50
             reg state;
  51
             reg [1:0] count;
             localparam s0 = 0, s1 = 1;
  52
  53
  54
             always @(posedge clk or posedge reset)
  5.5
                  if(reset) begin state <= s0; count <= 0; end</pre>
  56
                  else
  57
       case (state)
                          s0: if(start) begin state <= s1; count <= 3; end
s1: if(count == 0) state <= s0;
    else count <= count - 1;</pre>
  58
  59
  60
  61
                      endcase
  62
             assign load = (state == s0) && start;
assign shift = (state == s1) && lt;
assign subshift = (state == s1) && ~lt;
assign ready = (state == s0) && ~reset;
  63
  64
  65
  66
```


(2)

× Named: * ×					Filter: Pins:	all ▼
Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard
in_ clk	Input	PIN_M23	6	B6_N2	PIN_J1	2.5 V (default)
out quotient[3]	Output	PIN_G21	7	B7_N1	PIN_W8	2.5 V (default)
out quotient[2]	Output	PIN_G22	7	B7_N2	PIN_AA5	2.5 V (default)
out quotient[1]	Output	PIN_G20	7	B7_N1	PIN_V8	2.5 V (default)
out quotient[0]	Output	PIN_H21	7	B7_N2	PIN_AE1	2.5 V (default)
eut ready	Output	PIN_E21	7	B7_N0	PIN_U8	2.5 V (default)
out remainder[3]	Output	PIN_F21	7	B7_N0	PIN_W7	2.5 V (default)
cut remainder[2]	Output	PIN_E19	7	B7_N0	PIN_Y7	2.5 V (default)
cut remainder[1]	Output	PIN_F19	7	B7_N0	PIN_Y5	2.5 V (default)
eut remainder[0]	Output	PIN_G19	7	B7_N2	PIN_Y6	2.5 V (default)
:_ reset	Input	PIN_R24	5	B5_N0	PIN_Y2	2.5 V (default)
i≒_ start	Input	PIN_Y23	5	B5_N2	PIN_AA6	2.5 V (default)
□ word1[7]	Input	PIN_AA24	5	B5_N2	PIN_W4	2.5 V (default)
□ word1[6]	Input	PIN_AB23	5	B5_N2	PIN_U7	2.5 V (default)
	Input	PIN_AB24	5	B5_N2	PIN_AB4	2.5 V (default)
<u>i</u> word1[4]	Input	PIN_AC24	5	B5_N2	PIN_V6	2.5 V (default)
i word1[3]	Input	PIN_AB25	5	B5_N1	PIN_AA7	2.5 V (default)
i word1[2]	Input	PIN_AC25	5	B5_N2	PIN_V5	2.5 V (default)
i word1[1]	Input	PIN_AB26	5	B5_N1	PIN_W3	2.5 V (default)
<u>i</u> word1[0]	Input	PIN_AD26	5	B5_N2	PIN_V7	2.5 V (default)
i word2[3]	Input	PIN_AD27	5	B5_N2	PIN_AE3	2.5 V (default)
in_ word2[2]	Input	PIN_AC27	5	B5_N2	PIN_AE2	2.5 V (default)
in_ word2[1]	Input	PIN_AC28	5	B5_N2	PIN_AF2	2.5 V (default)
س 🕒 word2[0]	Input	PIN_AB28	5	B5_N1	PIN_AC5	2.5 V (default)
< <new node="">></new>						

start -> SW[17]

reset -> KEY[3]

clk -> KEY[0]

ready -> LEDG[0]

 $word1 \rightarrow SW[13] \sim SW[6]$

 $word2 \rightarrow SW[3] \sim SW[0]$

-> 144 / 11 = 13 1

(1)

```
div2.v
                                                                               Compilation Report - div2
module div2(clk, reset, start, word1, word2, quotient, remainder, ready);
         input clk,reset,start;
 3
         input [7:0] word1;
         input [3:0] word2;
  4
 5
         output [3:0] quotient, remainder;
  6
         output ready;
  7
 8
         wire load, shift, sub, subshift, lt;
 q
 10
         datapath u1(clk,~reset,load,shift,subshift,ready,word1,word2,quotient,remainder,lt);
 11
         controller u2(clk,~reset, start, lt, load, shift, subshift, ready);
 12
      endmodule
 13
 14
      module datapath (clk, reset, load, shift, subshift, ready, word1, word2, quotient, remainder, lt);
 15
         input clk, reset, load, shift, subshift, ready;
 16
         input [7:0] word1;
 17
         input [3:0] word2;
 18
         output [3:0] quotient, remainder;
         output lt;
 19
 20
 21
         reg [7:0] dividend;
 22
         reg [3:0] divisor;
         reg sign;
 23
 24
         wire [4:0] diff;
 25
         wire lt;
 26
         wire [4:0] edivisor;
         wire [4:0] edividend;
 27
         wire [4:0] diff2;
 28
 29
         assign edivisor = {divisor[3], divisor};
 30
         assign diff = (dividend[7] ^ divisor[3]) ?
 31
 32
               (dividend[7:3] + edivisor) : (dividend[7:3] - edivisor);
 33
         assign lt = (dividend[7] ^ diff[4]) && (diff != 4'b0);
         assign quotient = sign ? -dividend[3:0] : dividend[3:0];
 34
     ## 🔩 📅 車 車 🗈 📽 📵 📞 🕸 😈 💆 🚉 ab/ | 🚞 🖫
 ...
 35
            assign remainder = dividend[7:4];
 36
            always @(posedge clk or posedge reset) begin
 37
      if(reset) begin dividend <= 0; divisor <= 0; end
 38
 39
                else if(load) begin
                    dividend <= word1;
divisor <= word2;
sign <= word1[7] ^ word2[3];</pre>
 40
 41
 42
                end
 43
                else if(shift)
 44
                   dividend <=
                                   {dividend[6:0],1'b0};
 45
 46
                else if(subshift)
  47
                    dividend <= {diff[3:0],dividend[2:0],1'b1};</pre>
 48
                end
        endmodule
 49
 50
        module controller(clk,reset,start,lt,load,shift,subshift,ready);
            input clk,reset,start,lt;
output load,shift,subshift,ready;
 52
 53
 54
  55
            reg overflow;
 56
            reg state;
 57
            reg [1:0] count;
            localparam s0 = 0, s1 = 1;
 58
            always @(posedge clk or posedge reset) begin
  if(reset) begin state <= s0; count <= 0; end</pre>
 60
 61
 62
                else
 63
                    case (state)
      ė
                        s0: if(start) begin state <= s1; count <= 3; end
s1: if(count == 0) state <= s0;
    else count <= count - 1;</pre>
  64
 65
 66
  67
```

```
assign load = (state == s0) && start;
assign shift = (state == s1) && lt;
assign subshift = (state == s1) && ~lt;
assign ready = (state == s0) && ~reset;
assign ready = (state == s0) && ~reset;
endmodule
```

(양수/양수) -> (16 / 5 = 3 ...1)

(양수/음수) -> (16 / -5 = -3 ...1)

(음수/양수) -> (-16 / 5 = -3 ...-1)

(음수/음수) -> (-16 / -5 = 3 ...-1)

(2)

Named: * ×	«̃» Edit: 🂢 🕢			Filter: Pins: all		
Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standare
<u>in</u> _ clk	Input	PIN_M23	6	B6_N2	PIN_J1	2.5 V (default
gut quotient[3]	Output	PIN_G21	7	B7_N1	PIN_AF3	2.5 V (default
guotient[2]	Output	PIN_G22	7	B7_N2	PIN_AD4	2.5 V (default
guotient[1]	Output	PIN_G20	7	B7_N1	PIN_AD7	2.5 V (default
guotient[0]	Output	PIN_H21	7	B7_N2	PIN_AE6	2.5 V (default
^{out} ready	Output	PIN_E21	7	B7_N0	PIN_AE5	2.5 V (default
out remainder[3]	Output	PIN_F21	7	B7_N0	PIN_AF4	2.5 V (default
remainder[2]	Output	PIN_E19	7	B7_N0	PIN_AD5	2.5 V (default
ut remainder[1]	Output	PIN_F19	7	B7_N0	PIN_AE4	2.5 V (default
<pre>ut remainder[0]</pre>	Output	PIN_G19	7	B7_N2	PIN_AG3	2.5 V (default
in_ reset	Input	PIN_R24	5	B5_N0	PIN_Y2	2.5 V (default
in_ start	Input	PIN_Y23	5	B5_N2	PIN_AF5	2.5 V (default
<u>"</u> _ word1[7]	Input	PIN_AB24	5	B5_N2	PIN_AC4	2.5 V (default
i word1[6]	Input	PIN_AC24	5	B5_N2	PIN_AG4	2.5 V (default
i word1[5]	Input	PIN_AB25	5	B5_N1	PIN_AD8	2.5 V (default
<u>i</u> word1[4]	Input	PIN_AC25	5	B5_N2	PIN_AF6	2.5 V (default
<u>≒</u> word1[3]	Input	PIN_AB26	5	B5_N1	PIN_AC7	2.5 V (default
<u>l</u> word1[2]	Input	PIN_AD26	5	B5_N2	PIN_AB9	2.5 V (default
<u>in</u> _ word1[1]	Input	PIN_AC26	5	B5_N2	PIN_AH3	2.5 V (default
<u>i</u> word1[0]	Input	PIN_AB27	5	B5_N1	PIN_AH4	2.5 V (default
in_ word2[3]	Input	PIN_AD27	5	B5_N2	PIN_Y10	2.5 V (default
in_ word2[2]	Input	PIN_AC27	5	B5_N2	PIN_AC5	2.5 V (default
word2[1]	Input	PIN_AC28	5	B5_N2	PIN_AB5	2.5 V (default
word2[0]	Input	PIN_AB28	5	B5_N1	PIN_AB6	2.5 V (defaul
< <new node="">></new>						

-> 16 / -5 = -3 1

start -> SW[17]

reset -> KEY[3]

clk -> KEY[0]

ready -> LEDG[0]

word1 -> $SW[11] \sim SW[4]$

word2 -> $SW[3] \sim SW[0]$