Lecture 3: Loss Functions, Optimization, and Neural Network Overview

Areej Alasiry

CIS 6217 – Computer Vision for Data Representation College of Computer Science, King Khalid University

Outline

- 1. Why Loss Functions?
- 2. Regression Losses (L1, L2)
- 3. Classification Losses (Hinge, Cross-Entropy)
- 4. Specialized Losses in CV
- 5. Gradient Descent Overview
- 6. Batch vs Stochastic vs Mini-batch
- 7. Optimization Improvements (Momentum, LR schedules)
- 8. Neuron Model & Activation Functions
- 9. Feed-Forward Neural Network Structure
- 10. Backpropagation
- 11. Lab Activity (Implement a small NN)
- 12. Summary

Learning Outcomes

- Explain the role of loss functions in training machine learning models.
- Compare different loss functions used in computer vision tasks.
- Understand optimization techniques such as gradient descent and its variants.
- Describe the structure and operation of a basic neural network.
- Implement a simple feed-forward neural network and train it with backpropagation.

Loss Function

Measure the discrepancies between the prediction and the truth to guide training

Why Loss Functions and Optimization

Regression Loss

Mean Absolute Error (MAE)

$$L1 = \sum_{i=1}^{\infty} |y_i - y_i^p|$$

Mean Absolute Error (MSE)

$$L2 = \sum_{i=1}^{\infty} (y_i - y_i^p)^2$$

Truong, P. (2019) Loss functions: Why, what, where or when?, Medium. Available at: https://phuctrt.medium.com/loss-functions-why-what-where-or-when-189815343d3f (Accessed: 14 September 2025).

Regression Loss Cont.

Huber or Smooth Mean Absolute Error

$$L_{\delta}(y, f(x)) =$$

$$\begin{cases} \frac{1}{2}(y - f(x))^{2} & for |y - f(x)| \leq \delta \\ \delta|y - f(x)| - \frac{1}{2}\delta^{2} & otherwise. \end{cases}$$

Truong, P. (2019) Loss functions: Why, what, where or when?, Medium. Available at: https://phuctrt.medium.com/loss-functions-why-what-where-or-when-189815343d3f (Accessed: 14 September 2025).

Classification Loss

Cross-Entropy Loss (or Log Loss)

$$H(P,Q) = -\sum_{i} P(i)logQ(i)$$

Truong, P. (2019) Loss functions: Why, what, where or when?, Medium. Available at: https://phuctrt.medium.com/loss-functions-why-what-where-or-when-189815343d3f (Accessed: 14 September 2025).

Classification Loss

Hinge Loss

$$J(\hat{y}, y) = \max(0, 1 - y_i \cdot \hat{y})$$

Squared Hinge Loss

$$J(\hat{y}, y) = \sum_{i=0}^{N} (\max(0, 1 - y_i \cdot \hat{y})^2)$$

Truong, P. (2019) Loss functions: Why, what, where or when?, Medium. Available at: https://phuctrt.medium.com/loss-functions-why-what-where-or-when-189815343d3f (Accessed: 14 September 2025).

Loss in Image Segmentation

Dice Loss = 1- Dice Coefficient

• Dice Coefficient (D)

$$D = \frac{2 \cdot |P \cap G|}{|P| + |G|}$$

Dice Loss Illustration

1100	1000
1100	1110
0000	0000
0000	0000
G	Р

Gradient Descent

Gradually and iteratively solve a problem of function minimization.

Gradient Descent in Computer Vision

• Gradient Descent is an optimization algorithm used to minimize a loss (or cost) function by iteratively adjusting the model's parameters (weights).

 $\theta := \theta - \eta \cdot \nabla \theta L(\theta)$

Ref: Deep Learning for Vision Systems by Mohamed Elgendy

1. Model

$$\hat{y}_i = wx_i + b$$

2. Loss Function (MSE)

$$L(w,b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (wx_i + b))^2$$

$$\frac{\partial L}{\partial b} = \frac{-2}{n} \sum_{i=1}^{n} (y_i - (wx_i + b))$$

3. Derivatives

Derivative wrt w:

$$\frac{\partial L}{\partial w} = \frac{-2}{n} \sum_{i=1}^{n} x_i \left(y_i - (wx_i + b) \right)$$

Derivative wrt **b**:

$$\frac{\partial L}{\partial b} = \frac{-2}{n} \sum_{i=1}^{n} (y_i - (wx_i + b))$$

4. Update Rules (Gradient Descent)

$$w := w - \eta \cdot \frac{\partial L}{\partial w}$$
$$b := b - \eta \cdot \frac{\partial L}{\partial b}$$

5. Walkthrough Example

Dataset:

$$X = [1, 2, 3], y = [2, 4, 6]$$

Learning rate: $\eta = 0.1$.

Initial: w = 0, b = 0.

Iteration	w	b	Loss
0	1.866667	0.8	18.66667
1	1.671111	0.693333	0.296296
2	1.700741	0.686222	0.073376
3	1.70556	0.668681	0.067396
4	1.712898	0.652721	0.064165

Variations of Gradient Descent

Batch Gradient Descent

$$w := w - \eta \cdot \frac{1}{n} \sum_{i=1}^{n} \nabla_{w} L(x_{i}, y_{i})$$

Stochastic Gradient Descent

$$w := w - \eta \cdot \nabla_w L(x_i, y_i)$$

 $w:=w-\eta\cdot\nabla_wL(x_i,y_i)$ (for a random sample i)

Mini Batch Gradient Descent

$$w:=w-\eta\cdot\frac{1}{m}\sum_{i=1}^{m}\nabla_{w}L(x_{i},y_{i})$$
 where $m=batch$ size

Illustration of Gradient Descent Variations

Advanced Variations of Gradient Descent

Momentum: Adds a velocity term to smooth updates.

$$v := \beta v + (1 - \beta) \nabla_w L, w := w - \eta v$$

• **RMSProp:** Scales learning rate for each parameter based on past gradients.

 Adam (Adaptive Moment Estimation): Combines Momentum + RMSProp.

Neuron Model

Input features: $x_1, x_2, ..., x_n$

Weights: $w_1, w_2, ..., w_n$)

Bias: b

Weighted sum:

$$z = \sum_{i=1}^{n} w_i \, x_i + b$$

Activation function:

$$a = f(z)$$

Activation Functions

1. Sigmoid

2. Tanh

3. ReLU (Rectified Linear Unit)

$$f(z) = \max(0, z)$$

4. Leaky ReLU

4. Leaky ReLU
$$f(z) = \begin{cases} z & z \ge 0 \\ \alpha z & z < 0 \end{cases}$$

5. Softmax

$$f(z_i) = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

Feed-Forward Neural Network

 A feed-forward neural network is the simplest type of artificial neural network, where information flows in one direction — from input → hidden layers → output, without cycles or feedback loops.

Structure

- Input Layer: Raw features (e.g., pixels of an image).
- **Hidden Layers:** Neurons with weights, biases, and activations that transform input into abstract representations.
- Output Layer: Produces final predictions (e.g., class probabilities with softmax).

Forward Pass

Computation Flow

- Take inputs: x_1, x_2, \ldots, x_n .
- Multiply by weights and add biases:

$$z^{(l)} = W^{(l)}a^{(l-1)} + b^{(l)}$$

Apply activation function:

$$a^{(l)} = f(z^{(l)})$$

 Repeat through hidden layers until output.

Ref: Deep Learning for Vision Systems by Mohamed Elgendy

Calculation

Play around with NN

Backpropagation

Forward Pass

Input flows through the network.

Compute predictions \hat{y} .

Compute loss $L(\hat{y}, y)$.

Backward Pass (Backpropagation)

Compute gradient of the loss wrt outputs of the last layer.

Apply **chain rule** layer by layer: $\partial L \quad \partial L \quad \partial a \quad \partial z$

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial a} \cdot \frac{\partial a}{\partial z} \cdot \frac{\partial z}{\partial w}$$

Update weights using gradient descent.

Ref: Deep Learning for Vision Systems by Mohamed Elgendy

Summary

- Loss Functions: quantify error (L1/L2, Cross-Entropy, Dice).
- Optimization: Gradient Descent + its variants (Batch, SGD, Mini-Batch);
 advanced optimizers (Momentum, RMSProp, Adam).
- Neuron Model: weighted sum + bias + activation
- Feed-Forward NN: Input → Hidden Layers → Output, universal approximators.
- Backpropagation: chain rule-based algorithm to update weights and minimize loss.

References

Computer Vision: A Modern Approach – Forsyth & Ponce (2010)

Extra: Deep Learning for Vision Systems by Mohamed Elgendy