Math 120A Homework 3

Due Date: 04/18/2022

Problem 1.3.2

Consider a regular curve q(t) with arclength parameter s. Show that if T is regular at t_0 , then

$$1 = \lim_{t \to t_0} \frac{|\theta(t) - \theta(t_0)|}{\arccos(T(t) \cdot T(t_0))}$$

and

$$\kappa(t_0) = \lim_{t \to t_0} \frac{\arccos(T(t) \cdot T(t_0))}{|s(t) - s(t_0)|}.$$

Hint: Use exercise 1 from section 1.2.

Proof. Since T is defined to be the unit tangent, |T| = 1. So, $\theta(t)$ is the arclength parameter. Then from Problem 1.2.1(e), we have the following:

$$1 \leq \frac{\left|\theta\left(t\right) - \theta\left(t_{0}\right)\right|}{\arccos\left(T\left(t\right) - T\left(t_{0}\right)\right)} \leq \frac{\left|\theta\left(t\right) - \theta\left(t_{0}\right)\right|}{\left|T\left(t\right) - T\left(t_{0}\right)\right|}.$$

Now, we have that $\frac{dT}{dt}(t_0) = \left|\frac{dT}{dt}(t_0)\right| \neq 0$ since we are given that T is regular at t_0 . Thus, $\left|\frac{dT}{dt}(t_0)\right| >$. Then from Problem 1.2.1(d), we have the following:

$$1 = \lim_{t \to t_0} \frac{|\theta(t) - \theta(t_0)|}{|T(t) - T(t_0)|}.$$

So, we have the following:

$$1 = \lim_{t \to t_0} 1 \le \lim_{t \to t_0} \frac{|\theta(t) - \theta(t_0)|}{\arccos(T(t) - T(t_0))} \le \lim_{t \to t_0} \frac{|\theta(t) - \theta(t_0)|}{|T(t) - T(t_0)|} = 1.$$

Therefore, by the squeeze theorem,

$$1 = \lim_{t \to t_0} \frac{\left|\theta\left(t\right) - \theta\left(t_0\right)\right|}{\arccos\left(T\left(t\right) \cdot T\left(t_0\right)\right)}.$$

Now, we show $\kappa(t_0)$. From the first part, we have that:

$$1 = \lim_{t \to t_0} \frac{|\theta(t) - \theta(t_0)|}{\arccos(T(t) \cdot T(t_0))} = \lim_{t \to t_0} \frac{\arccos(T(t) \cdot T(t_0))}{|\theta(t) - \theta(t_0)|}$$

By the definition of the derivative, we have:

$$\frac{d\theta}{dt}(t_0) = \left| \frac{d\theta}{dt}(t_0) \right| = \lim_{t \to t_0} \frac{|\theta(t) - \theta(t_0)|}{|t - t_0|}.$$

Now, we have that:

$$\frac{d\theta}{dt}\left(t_{0}\right)\cdot1=\lim_{t\to t_{0}}\frac{\left|\theta\left(t\right)-\theta\left(t_{0}\right)\right|}{\left|t-t_{0}\right|}\cdot\frac{\arccos\left(T\left(t\right)\cdot T\left(t_{0}\right)\right)}{\left|\theta\left(t\right)-\theta\left(t_{0}\right)\right|}=\lim_{t\to t_{0}}\frac{\arccos\left(T\left(t\right)\cdot T\left(t_{0}\right)\right)}{\left|t-t_{0}\right|}.$$

Then, by definition of curvature, $\kappa = \frac{d\theta}{ds} = \frac{dt}{ds} \frac{d\theta}{dt}$. So, we have the following:

$$\kappa (t_0) = \frac{d\theta}{ds} (t_0)$$

$$= \frac{dt}{ds} (t_0) \frac{d\theta}{dt} (t_0)$$

$$= \lim_{t \to t_0} \frac{|t - t_0|}{|s(t) - s(t_0)|} \cdot \frac{\arccos(T(t) \cdot T(t_0))}{|t - t_0|}$$

$$= \lim_{t \to t_0} \frac{\arccos(T(t) \cdot T(t_0))}{|s(t) - s(t_0)|}.$$

Problem 1.3.3

Show that for vectors $v, w \in \mathbb{R}^n$ we have

area of parallelogram
$$(v, w) = \sqrt{\left|v\right|^2 \left|w\right|^2 - \left(v \cdot w\right)^2}$$

= $\left|v\right| \left|w\right| \sin \angle \left(v, w\right)$.

Proof. Let $v, w \in \mathbb{R}^n$. By the definition of the area of a parallelogram, we have:

area of parallelogram
$$(v, w) = |w| \left| v - (v \cdot w) \frac{w}{|w|^2} \right|$$

Square both sides and simplify:

$$\operatorname{area}^{2} = |w|^{2} \left| v - (v \cdot w) \frac{w}{|w|^{2}} \right|^{2}$$

$$= |w|^{2} \left(v - (v \cdot w) \frac{w}{|w|^{2}} \right) \cdot \left(v - (v \cdot w) \frac{w}{|w|^{2}} \right)$$

$$= |w|^{2} \left(|v|^{2} - 2 \frac{(v \cdot w)^{2}}{|w|^{2}} + (v \cdot w)^{2} \frac{|w|^{2}}{|w|^{4}} \right)$$

$$= |w|^{2} \left(|v|^{2} - 2 \frac{(v \cdot w)^{2}}{|w|^{2}} + \frac{(v \cdot w)^{2}}{|w|^{2}} \right)$$

$$= |w|^{2} \left(|v|^{2} - \frac{(v \cdot w)^{2}}{|w|^{2}} \right)$$

$$= |v|^{2} |w|^{2} - (v \cdot w)^{2}$$

Thus, we have:

area of parallelogram
$$(v,w) = \sqrt{\left|v\right|^2 \left|w\right|^2 - \left(v \cdot w\right)^2}$$

Since $(v \cdot w)^2 = |v| |w| \cos \theta$, where $\theta = \angle (v, w)$, we have:

area =
$$\sqrt{|v|^2|w|^2 - (|v||w|\cos\theta)^2}$$
, $\theta = \angle(v, w)$

Simplify:

$$\begin{aligned} & \text{area} = \sqrt{|v|^2 |w|^2 - |v|^2 |w|^2 \cos^2 \theta} \\ &= \sqrt{|v|^2 |w|^2 - |v|^2 |w|^2 \left(1 - \sin^2 \theta\right)} \\ &= \sqrt{|v|^2 |w|^2 - |v|^2 |w|^2 + |v|^2 |w|^2 \sin^2 \theta} \\ &= \sqrt{|v|^2 |w|^2 \sin^2 \theta} \\ &= |v| |w| \sin \theta \end{aligned}$$

Hence,

$$area = |v| |w| \sin \angle (v, w)$$

Problem 1.3.8

Give examples of regular curves $q(t):(a,b)\to\mathbb{R}^n$ with $|q(t)|\geq R$ for all $t, |q(t_0)|=R$, and $\kappa(t_0)=c$ for any $c\geq 0$.

Solution. Suppose we have a smaller circle with radius $r=\frac{1}{c}$ that is (outside) tangential to a larger circle with radius R ($|q(t)| \geq R$). Since the smaller circle is tangential to the larger circle, suppose the smaller circle intersects the larger circle such that $|q(t_0)| = R$. Then the curvature of this smaller circle is given by $\kappa(t_0) = \frac{1}{\text{radius}} = c > 0$. Now, let there be a tangential straight line outside the larger circle with radius R that intersects the larger circle at t_1 . Then $K(t_1) = 0$, and the conditions in the problem statement are satisfied.

Problem 1.3.10

Let $q(t) = r(t)(\cos t, \sin t)$. Show that the speed is given by

$$\left(\frac{ds}{dt}\right)^2 = \left(\frac{dr}{dt}\right)^2 + r^2$$

and the curvature

$$\kappa = \frac{\left| 2\left(\frac{dr}{dt}\right)^2 + r^2 - r\frac{d^2r}{dt^2} \right|}{\left(\left(\frac{dr}{dt}\right)^2 + r^2\right)^{\frac{3}{2}}}.$$

Proof. Taking the derivative of q(t) with respect to t:

$$\dot{q}(t) = \dot{r}(\cos t, \sin t) + r(-\sin t, \cos t).$$

Then, we have that

$$\left(\frac{ds}{dt}\right)^2 = |\dot{q}|^2 = (\dot{r})^2 + (r)^2 = \left(\frac{dr}{dt}\right)^2 + r^2.$$

Now, we proceed to showing the curvature. From Remark 1.3.4, we have the following formula for curvature:

$$\kappa = \frac{|v \times a|}{|v|^3} = \frac{|\dot{q} \times \ddot{q}|}{|\dot{q}|^3}$$
 (eq. 1.3.10)

Computing \dot{q} , we have:

$$\dot{q} = \dot{r} (\cos t, \sin t, 0) + r (-\sin t, \cos t, 0)$$
$$= (\dot{r} \cos t - r \sin t, \dot{r} \sin t + r \cos t, 0)$$

Computing \ddot{q} , we have:

$$\ddot{q} = (\ddot{r} - r)(\cos t, \sin t, 0) + 2\dot{r}(-\sin t, \cos t, 0)$$
$$= ((\ddot{r} - r)\cos t - 2\dot{r}\sin t, (\ddot{r} - r)\sin t + 2\dot{r}\cos t, 0)$$

Now we compute $\dot{q} \times \ddot{q}$. Since the z-component of both \dot{q} and \ddot{q} are 0, then the x and y components of $\dot{q} \times \ddot{q}$ are 0. So, we need to compute the z-component of $\dot{q} \times \ddot{q}$. We have the following:

$$(\dot{r}\cos t - r\sin t)\left((\ddot{r} - r)\sin t + 2\dot{r}\cos t\right) - (\dot{r}\sin t + r\cos t)\left((\ddot{r} - r)\cos t - 2\dot{r}\sin t\right)$$

$$\Rightarrow (\dot{r}\cos t - r\sin t)\left(\ddot{r}\sin t - r\sin t + 2\dot{r}\cos t\right) - (\dot{r}\sin t + r\cos t)\left(\ddot{r}\cos t - r\cos t - 2\dot{r}\sin t\right)$$

$$\Rightarrow (\ddot{r}\dot{r}\sin t\cos t - \dot{r}r\sin t\cos t + 2\dot{r}^2\cos^2 t - \ddot{r}r\sin^2 t + r^2\sin^2 t - 2\dot{r}r\sin t\cos t\right)$$

$$- (\ddot{r}\dot{r}\sin t\cos t - \dot{r}r\sin t\cos t + 2\dot{r}^2\sin^2 t + \ddot{r}r\cos^2 t - r^2\cos^2 t - 2\dot{r}r\sin t\cos t\right)$$

$$\Rightarrow 2\dot{r}^2\cos^2 t - \ddot{r}r\sin^2 t + r^2\sin^2 t + 2\dot{r}^2\sin^2 t - \ddot{r}r\cos^2 t + r^2\cos^2 t$$

$$\Rightarrow 2\dot{r}^2 - \ddot{r}r + r^2$$

So, for the numerator of (eq. 1.3.10), we have:

$$|\dot{q} \times \ddot{q}| = \left| 2\dot{r}^2 + r^2 - r\ddot{r} \right|$$

Now, we compute the denominator of (eq. 1.3.10). From the first part of this problem, we found that $|\dot{q}|^2 = \dot{r}^2 + r^2$. Then, $|\dot{q}| = (\dot{r}^2 + r^2)^{1/2}$. So, we have for the denominator:

$$|\dot{q}|^3 = (\dot{r}^2 + r^2)^{3/2}$$
.

Putting everything together, we have the following curvature:

$$\kappa = \frac{|\dot{q} \times \ddot{q}|}{|\dot{q}|^3} = \frac{|2\dot{r}^2 + r^2 - r\ddot{r}|}{(\dot{r}^2 + r^2)^{3/2}} = \frac{\left|2\left(\frac{dr}{dt}\right)^2 + r^2 - r\frac{d^2r}{dt^2}\right|}{\left(\left(\frac{dr}{dt}\right)^2 + r^2\right)^{\frac{3}{2}}}.$$

Problem 1.3.12

Compute the curvature of the logarithmic spiral

$$ae^{bt}(\cos t, \sin t).$$

Solution. Let $q(t) = ae^{bt} (\cos t, \sin t)$. We use the following formula from Remark 1.3.4 to compute curvature:

$$\kappa = \frac{|v \times a|}{|v|^3} = \frac{|\dot{q} \times \ddot{q}|}{|\dot{q}|^3}$$
 (eq. 1.3.12)

Compute \dot{q} :

$$\dot{q} = abe^{bt} (\cos t, \sin t) + ae^{bt} (-\sin t, \cos t)$$

$$\rightsquigarrow \dot{q} = \left(abe^{bt} \cos t - ae^{bt} \sin t, \ abe^{bt} \sin t + ae^{bt} \cos t, \ 0 \right)$$

Compute \ddot{q} :

$$\ddot{q} = ab^{2}e^{bt}(\cos t, \sin t) + abe^{bt}(-\sin t, \cos t) + abe^{bt}(-\sin t, \cos t) + ae^{bt}(-\cos t, -\sin t)$$

$$= ab^{2}e^{bt}(\cos t, \sin t) + 2abe^{bt}(-\sin t, \cos t) + ae^{bt}(-\cos t, -\sin t)$$

$$\rightsquigarrow \ddot{q} = \left(ab^2e^{bt}\cos t - 2abe^{bt}\sin t - ae^{bt}\cos t, \ ab^2e^{bt}\sin t + 2abe^{bt}\cos t - ae^{bt}\sin t, \ 0\right)$$

Now we compute $\dot{q} \times \ddot{q}$. Since the z-component of both \dot{q} and \ddot{q} are 0, then the x and y components of $\dot{q} \times \ddot{q}$ are 0. So, we need to compute the z-component of $\dot{q} \times \ddot{q}$. We have the

following:

$$(abe^{bt}\cos t - ae^{bt}\sin t) (ab^2e^{bt}\sin t + 2abe^{bt}\cos t - ae^{bt}\sin t) - (abe^{bt}\sin t + ae^{bt}\cos t) (ab^2e^{bt}\cos t - 2abe^{bt}\sin t - ae^{bt}\cos t)$$

$$2a^{2}b^{2}e^{2bt}\cos^{2}t - a^{2}b^{2}e^{2bt}\sin^{2}t + a^{2}e^{2bt}\sin^{2}t + a^{2}e^{2bt}\sin^{2}t - a^{2}b^{2}e^{2bt}\cos^{2}t + a^{2}e^{2bt}\cos^{2}t + a^{2}e^{2bt}\cos^{2}t + a^{2}e^{2bt}\cos^{2}t + a^{2}e^{2bt} + a^{2}e^{2bt} + a^{2}e^{2bt}$$

$$\Rightarrow 2a^{2}b^{2}e^{2bt} - a^{2}b^{2}e^{2bt} + a^{2}e^{2bt}$$

$$\Rightarrow a^{2}b^{2}e^{2bt} + a^{2}e^{2bt}$$

$$\Rightarrow a^{2}e^{2bt} (b^{2} + 1)$$

So, for the numerator of (eq. 1.3.12), we have:

$$|\dot{q} \times \ddot{q}| = a^2 e^{2bt} \left(b^2 + 1 \right)$$

Now, we compute the denominator of (eq. 1.3.12). Since

$$\dot{q} = abe^{bt} (\cos t, \sin t) + ae^{bt} (-\sin t, \cos t),$$

$$|\dot{q}|^2 = a^2b^2e^{2bt} + a^2e^{2bt} = a^2e^{2bt}(b^2 + 1).$$

Thus, $|\dot{q}| = ae^{bt}\sqrt{b^2+1}$. So, we have for the denominator:

$$|\dot{q}|^3 = a^3 e^{3bt} (b^2 + 1)^{3/2}$$
.

Putting everything together, we have the following curvature:

$$\kappa = \frac{|\dot{q} \times \ddot{q}|}{|\dot{q}|^3} = \frac{a^2 e^{2bt} (b^2 + 1)}{a^3 e^{3bt} (b^2 + 1)^{3/2}} = \boxed{\frac{1}{a e^{bt} \sqrt{b^2 + 1}}}$$

Problem 2.1.6

Show that a planar curve is part of a circle if all its normal lines pass through a fixed point.

Proof. If all the normal lines of a planar curve pass through a fixed point, then the unit normal is radial. Since $T \perp N$, T is perpendicular to the radial directions. Then, the curve lies on a sphere, and by Problem 1.1.13 from Homework 1, the curve lies on a circle.

Problem 2.1.7

Show that $\kappa_{\pm} \frac{ds}{dt} = \det \left[T \quad \frac{dT}{dt} \right]$.

Proof. From Theorem 2.1.5, we have:

$$\frac{dT}{dt} = \kappa_{\pm} \frac{ds}{dt} N_{\pm}.$$

So, after substitution, we get:

$$\det \begin{bmatrix} T & \kappa_{\pm} \frac{ds}{dt} N_{\pm} \end{bmatrix}.$$

 $\kappa_{\pm} \frac{ds}{dt}$ is a scalar, so using properties of the determinant, we have:

$$\kappa_{\pm} \frac{ds}{dt} \det \begin{bmatrix} T & N_{\pm} \end{bmatrix}.$$

Since T and N_{\pm} are orthogonal to each other, det $\begin{bmatrix} T & N_{\pm} \end{bmatrix} = 1$. Thus, we have $\kappa_{\pm} \frac{ds}{dt}$. So,

$$\det \begin{bmatrix} T & \frac{dT}{dt} \end{bmatrix} = \kappa_{\pm} \frac{ds}{dt}.$$

Problem 2.1.9

Show that

$$q(s) = \left(\int_{s_0}^s \cos(\phi(u)) du, \int_{s_0}^s \sin(\phi(u)) du \right),$$

is a unit speed curve with $\kappa_{\pm} = \frac{d\phi}{ds}$.

Proof. By Proposition 2.1.4, the signed curvature can be calculated using the formula

$$\kappa_{\pm} = \frac{\det \begin{bmatrix} v & a \end{bmatrix}}{\left|v\right|^3}.$$

We first calculate $v(s) = \frac{dq}{ds}(s) = \dot{q}(s)$ using the Fundamental Theorem of Calculus:

$$v(s) = \left(\frac{d}{ds} \int_{s_0}^s \cos(\phi(u)) \ du, \ \frac{d}{ds} \int_{s_0}^s \sin(\phi(u)) \ du\right)$$
$$= (\cos(\phi(s)), \sin(\phi(s))).$$

Now, we calculate $a(s) = \frac{d^2q}{dt^2}(s) = \ddot{q}(s)$:

$$a(s) = \left(-\sin(\phi(s))\frac{d\phi}{ds}, \cos(\phi(s))\frac{d\phi}{ds}\right)$$

Now, we compute $\det \begin{bmatrix} v & a \end{bmatrix}$:

$$\det \begin{bmatrix} v & a \end{bmatrix} = \begin{bmatrix} \cos(\phi(s)) & -\frac{d\phi}{ds}\sin(\phi(s)) \\ \sin(\phi(s)) & \frac{d\phi}{ds}\cos(\phi(s)) \end{bmatrix}$$
$$= \frac{d\phi}{ds}\cos^{2}(\phi(s)) + \frac{d\phi}{ds}\sin^{2}(\phi(s))$$
$$= \frac{d\phi}{ds}$$

Lastly, we compute $|v|^3$. Since |v| = 1, $|v|^3 = 1$. Thus, putting everything together, we have:

$$\kappa_{\pm} = \frac{\det \begin{bmatrix} v & a \end{bmatrix}}{|v|^3} = \frac{\frac{d\phi}{ds}}{1} = \frac{d\phi}{ds}.$$

Problem 2.1.11

For a planar unit speed curve q(s) consider the parallel curve

$$q_{\epsilon} = q + \epsilon N_{\pm}$$

for some fixed ϵ .

- (a) Show that this curve is regular as long as $\epsilon \kappa_{\pm} \neq 1$.
- (b) Show that this curvature is

$$\frac{\kappa_{\pm}}{|1 - \epsilon \kappa_{\pm}|}.$$

Proof. (a) We begin by calculating $\frac{dq_{\epsilon}}{ds}$:

$$\frac{dq_{\epsilon}}{ds} = \frac{dq}{ds} + \frac{d}{ds} \left(\epsilon N_{\pm} \right)$$

By Theorem 2.1.5, $\frac{dq}{ds} = T$ and $\frac{dN_{\pm}}{ds} = -\kappa_{\pm}T$. Thus, making the substitutions and simplifying, we get:

$$\frac{dq_{\epsilon}}{ds} = T + \epsilon \frac{dN_{\pm}}{ds}$$
$$= T + \epsilon (-\kappa_{\pm}) T$$
$$= T - T\epsilon \kappa_{\pm}$$

If q_{ϵ} is not regular, then $\frac{dq_{\epsilon}}{ds} = T - T\epsilon\kappa_{\pm} = T(1 - \epsilon\kappa_{\pm}) = 0$. That is, when $\epsilon\kappa_{\pm} = 1$, q_{ϵ} is not regular. Therefore, q_{ϵ} is regular as long as $\epsilon\kappa_{\pm} \neq 1$.

(b) We will calculate the curvature using the formula from Proposition 2.1.4:

$$\kappa_{\pm} = \frac{\det \begin{bmatrix} v & a \end{bmatrix}}{\left| v \right|^3}$$

From part (a), we have shown that $v(s) = \frac{dq_{\epsilon}}{ds} = T - T\epsilon\kappa_{\pm} = T(1 - \epsilon\kappa_{\pm})$. Next, we calculate $a(s) = \frac{d^2q_{\epsilon}}{ds}$:

$$a(s) = \frac{d^2 q_{\epsilon}}{ds} = \frac{dT}{ds} - \frac{d}{ds} (T \epsilon \kappa_{\pm})$$
$$= \frac{dT}{ds} - \epsilon \kappa_{\pm} \frac{dT}{ds}$$

By Theorem 2.1.5, since $\frac{dT}{ds} = \kappa_{\pm} N_{\pm}$, we have then:

$$a(s) = \kappa_{\pm} N_{\pm} - \epsilon \kappa_{\pm}^2 N_{\pm} = \kappa_{\pm} N_{\pm} (1 - \epsilon \kappa_{\pm}).$$

Now, we will calculate $|v(s)|^3$. Since

$$|v(s)|^2 = (1 - \epsilon \kappa_{\pm})^2$$
, $(T^2 = 1 \text{ because } T \text{ is a unit vector})$,

$$|v(s)| = |1 - \epsilon \kappa_{\pm}|.$$

Thus,

$$\left|v\left(s\right)\right|^{3} = \left|1 - \epsilon \kappa_{\pm}\right|^{3}.$$

Now, we calculate det $\begin{bmatrix} v & a \end{bmatrix}$, using determinant properties and that det $\begin{bmatrix} T & N_{\pm} \end{bmatrix} = 1$:

$$\det \begin{bmatrix} v & a \end{bmatrix} = \begin{bmatrix} T (1 - \epsilon \kappa_{\pm}) & \kappa_{\pm} N_{\pm} (1 - \epsilon \kappa_{\pm}) \end{bmatrix}$$
$$= \kappa_{\pm} (1 - \epsilon \kappa_{\pm})^{2} \det \begin{bmatrix} T & N_{\pm} \end{bmatrix}$$
$$= \kappa_{\pm} (1 - \epsilon \kappa_{\pm})^{2}$$
$$= \kappa_{\pm} |v(s)|^{2}$$

Thus, putting everything together:

$$\kappa_{\pm} = \frac{\det \begin{bmatrix} v & a \end{bmatrix}}{|v|^3} = \frac{\kappa_{\pm} |v|^2}{|v|^3}$$
$$= \frac{\kappa_{\pm}}{|v|}$$
$$= \frac{\kappa_{\pm}}{|1 - \epsilon \kappa_{\pm}|}.$$