

Bioinformatic approaches to understand RNA biology in the rice blast fungus

Marco Marconi

marco.marconi@upm.es

Supervisor: Mark Wilkinson

Co-Supervisor:
Ane Sesma

M. oryzae contains metazoan CFI (Rbp35/CfI25) and yeast CFI (Hrp1) protein complexes

Alternative polyadenylation is common is many organisms

In human, RBP35 binds to UGUA motifs and affects alternative polyadenylation

$\Delta rbp35$ is defective in pathogenicity and growth

Sequencing resume

- 2 strains (WT, $\triangle rbp35$) x 4 conditions (CM, MM, -N, -C) x 3 replicates
- HiSeq 2000 (Illumina) sequencing poly(A) sites selection
- 4751592 11517077 total reads database
- ~95% replicates correlation
- ~73% successfully mapped reads
- ~400x coverage per poly(A) site*

^{*} assuming an amount of 22000 mRNA molecules per cell

Workflow

M. oryzae has longer 3'UTRs than S. cerevisiae

~85% of genes expressed have a recognizable poly(A) site

Genes with a recognizable poly-A site

~14000 poly(A) site could be assigned to annotated genes

Number of poly(A) sites

>90% of poly(A) sites are located in the 3'UTR

Nucleotides profile of poly(A) sites slighty differs from *S.cerevisae*

Poly-A site nucleotide profile - S. cerevisae

Poly(A) site nucleotide profile - M. Oryzae

M. oryzae prefers SA as cutting-site instead of YA

TOP CLEAVAGE SITES - M. oryzae vs S. cerevisiae

CA is the preferred cut-site in filamentous fungi, TA in yeasts

The motif bound by HRP1 in yeast is missing in filamentous fungi

The canonical metazoan AAUAAA motif has a frequency of only 7% in *M. oryzae*

TOP 10 MOST SIGNIFICANT HEXAMERS in A-RICH REGION

The A-RICH region is located -30 -10 bp upstream in most fungi

~30% of genes are alternatively polyadenylated

Number of genes with single cut or APA*

^{*} calculated over the global number of expressed genes with a recognizable poly(A) site

>80% of APA is composed of two cleavage sites

>90% of APA are tandem poly(A) sites in the 3'UTR

APA is related with specific functional groups

The most conserved APA genes are related with some metabolic processes

MGG_08078 Minor isoform of tropomyosin

MGG 06721 60S ribosomal protein L28

MGG 16201 CMD1 Calmodulin

MGG 08084 Cell wall biogenesis protein phosphatase Ssd1

MGG_04438 ADP-ribosylation factor

MGG 02872 40S ribosomal protein S27

MGG_13782 60S ribosomal protein L19

MGG 08006 Transmembrane nucleoporin

MGG 01079 Ras-like protein Rab-11A

MGG_16739 Eukaryotic translation initiation factor 5A

MGG_12122 CMGC/GSK protein kinase

• • •

cytoplasm intracellular organelle macromolecular complex structural molecule activity protein metabolic process ribosome Translation

. . . .

261 highly expressed (>100 reads) poly(A) sites could not be assigned to any annotated gene

Highly expressed poly(A) sites not mapping to any annotated gene

Antisense poly(A) are usually located in the 3'UTR

Location of antisense poly(A) sites >100 reads

Location of poly(A) sites >10 reads

$\Delta rbp35$ affects poly(A) sites number

$\Delta rbp35$ affects poly(A) selection in ~25% of genes

RBP35 dependent genes are usually not differentially expressed

RBP35 dependance vs differential expression

Δrbp35 affects 3'UTR length

3'UTR length (all genes)

3'UTR length (RBP-dependent genes)

△rbp35 affects poly(A) sites usage, preferring proximal cuts

Poly(A) site usage change - RBP35 dependent genes

Δrbp35 affects poly(A) sites usage, preferring proximal cuts

RBP35-dependent genes poly(A) site usage

UGUAH is enriched at -45 in poly(A) sites dependent from RBP35

△rbp35 dependent genes are related with specific functional groups

Biological processes

Molecular functions

Carbon starvation affects a great number of poly(A) sites

Medium dependent poly(A) sites and genes

Carbon starvation affects poly(A) sites usage, preferring distal cuts

Poly(A) site usage alteration - MM-C dependent genes

Carbon starvation affects poly(A) sites usage, preferring distal cuts

Carbon starvation-dependent poly(A) site usage

log 3'UTR isoform change

Carbon starvation dependent genes are related with very few functional groups

The polyadenylation site region has a defined secondary structure

Average MFE for poly(A) sites Is significantly lower (-7.48089) than random poly(A) sites (pvalue =1.608E-015)

The polyadenylation site region has a defined structure

Different cutsites have different base pais probabilites, with TG and CG the most structured. The most common poly(A) site CA has a average conformation

The polyadenylation site region has a defined structure

Different A-rich motifs results in different degrees of conformation, with AAUAAA the most unstructured

The polyadenylation site region has a defined structure

In S.cerevisiae, the poly(A) site is not clearly structured

In the Wild-type The CM \rightarrow MM-C condition presents the highest number of differentially expressed genes, while MM \rightarrow MM-N the lowest

DIFFERENTIALLY EXPRESSED GENES IN THE WT					
	DOWN	UP	TOTAL		
CM → MM	314	559	873		
CM → MM-N	630	874	1504		
CM → MM-C	2307	2342	4649		
MM → MM-N	48	59	107		
MM → MM-C	1882	1589	3471		

In the Wild-type The CM \rightarrow MM-C condition presents the highest number of differentially expressed genes, while MM \rightarrow MM-N the lowest

$\Delta rbp35$ appears to inhibit medium recognition in MM-N

DIFFERENTIALLY EXPRESSED GENES IN Δrbp35					
	DOWN	UP	TOTAL		
CM → MM	508	405	913		
CM → MM-N	461	404	865		
CM → MM-C	1241	1136	2377		
$\begin{array}{c} MM \to MM-\\ N \end{array}$	0	0	0		
MM → MM-C	475	493	968		

Several genes of the mTOR pathway are also affected!