

הפקולטה למדעי החברה

מעבדה בבינה מלאכותית 203.3630 ב.1 סמסטר ב' – שנה"ל תש"ף

<u>מרצה</u>: שי בושינסקי

ניסוי מספר 3:

תחרות בצביעת גרפים CSP לאופטימיזציה דיסקרטית

:מועד הגשה אחרון

shay@cs.haifa.ac.il -יום ו' 7 במאי –2021 ההגשה באי-מייל

מרכיב הציון:

התרגיל הינו חובה

:תנאי ההגשה

העבודה וההגשה בזוגות (ניתן כמובן להגיש ביחידים)

<u>המשימה:</u>

."א צביעה K'' אזי אומרים ש- G אזי אומרים א k = |C|

 $\lambda(G)$ ומסומן "G נקרא "המספר המינימלי של צבעים המאפשר צביעה של G נקרא ביעה של צבעים המאפשר אביעה של G ומסומן (bipartite). בפרט אם A(G)=2 אזי A(G)=2 הוא גרף דו-צדדי

קיים קשר ישיר בין הקושי בצביעת גרף לבין דרגת הצפיפות שלו.

אוניברסיטת חיפה החוג למדעי המחשב

הפקולטה למדעי החברה

לדוגמא: מציאת גרף דו-צדדי מתוך גרף דוגמה של "לי":

- אלעות 50 צלעות 30 LEE בעיה: הגרף המקורי של
- צלעות 38 LEE של הגרף דו-צדדי של הגרף של 38 LEE של הגרף של

עליכם לפתח תוכנה שתקבל כקלט גרף כלשהו חxn ושתמצא עבורו צביעה אופטימלית קרי עליכם לפתח תוכנה שתקבל כקלט גרף כלשהו (adjacency matrix). k א מינימלי. הקלט ינתן כמטריצת סמיכויות שהן NP-COMPLETE.

עליכם לנסות למצוא את הצבע הכרומטי של כ"א מהגרפים בקלט (לשאוף לאופטימום גלובאלי)

ו. הקלט:

את רשימת הגרפים הלקוחים מתחרות DIMACS ניתן למצוא באתר https://mat.tepper.cmu.edu/COLOR/instances.html

Graph Coloring Instances תחת הכותרת

1. עליכם לקרוא את הקלט ולהדפיס את מאפייניו בכללם מספר הצמתים הקשתות וכן לחשב את צפיפות הגרף

הפקולטה למדעי החברה

- ב. בחלק **הראשון** של העבודה תשוו בין ביצועי אלגוריתם **חיפוש לאחור** לבין אלגוריתם **חיפוש קדימה**
 - BACKJUMPING אם BACKTRACKING אם .a
 - ARC CONSISTENCY עם FORWARD CHECKING אלגוריתם חיפוש קדימה .b

 HDI MRV LCV במימוש של אלגוריתמים אלה עליכם להשתמש בהיוריסטיקות
 - ג. בחלק השני של העבודה עליכם להשוות בין שלושת גישות של החיפוש הלוקאלי קרי:
 - a. הגישה ששמה את הפיזביליות במרכזה
 - b. הגישה ששמה את פונקצית המטרה במרכזה (שרשראות KEMPE).
 - c. הגישה ההיברידית
- ד. במימוש יש לבחור אלגוריתם חיפוש לוקאלי (אפשר יותר) וכן אלגוריתם גנטי (עם אופרטורים המותאמים לבעיה)
 - ה. עליכם להשוות בין האלגוריתמים וההיוריסטיקות עפי הקריטריונים הבאים:
 - a זמן ריצה.a
 - b. כמות STATES שנסרקים
 - c. איכות הפתרון
 - d. ולנמק את בחירתכם בבחירת האלגוריתמים וההיוריסטקות שהשתמשתם בהם

:ההגשה

יש להגיש דו"ח מסודר הכולל:

- א. תוכנת מקור SOURCE מימוש הנ"ל בשפת תכנות לבחירתך (מתועדת בסטנדרטים של הקורס)
 - ב. תוכנות ריצה מתאימות EXE
 - ג. מסמך המסכם את תוצאות העבודה

רנ"ל) א שונות (על קבצי הקלט באתר הנ"ל) א של אלגוריתם גנטי עם שתי פונקציות התאמה שונות (על קבצי הקלט באתר הנ"ל) א min דוגמאות לתוצאות

הפקולטה למדעי החברה

Graph name	1171	1.77	(C)	k min	
Graph name	V	E	$\chi(G)$	bad edge heuristics	
	01-	000		-	
1-Insertions_4	67	232	≤ 4	4	5
1-Insertions_5		1227		7	6
1-Insertions_6		6337		27	7
2-Insertions_3	37	72	≤ 4	4	4
2-Insertions_4		541	≤ 4	4	5
2-Insertions_5		3936		20	6
3-Insertions_3		110	≤ 4	4	4
3-Insertions_4		1046		7	5
3-Insertions_5		9695		40	6
1-FullIns_3	30	100		4	4
1-FullIns_4	93	593		5	5
1-FullIns_5	282	3247		16	6
2-FullIns_3	52	201		5	5
2-FullIns_4	212	1621		10	6
2-FullIns_5	852	12201		44	7
3-FullIns_3	80	346		5	6
3-FullIns_4	405	3524		18	7
3-FullIns_5	2030	33751		94	8
4-FullIns_3	114	541		6	7
4-FullIns_4	690	6650		29	8
4-FullIns_5	4146	77305		158	9
fpsol2.i.1	496	11654	≤ 65	66	65
fpsol2.i.2	451	8691	≤ 30	36	30
fpsol2.i.3	425	8688	≤ 30	34	30
inithx.i.1	864	18707	≤ 54	62	54
inithx.i.2	645	13979	≤ 31	38	31
inithx.i.3	621	13969	≤ 31	37	31
DSJC125.5	125	3891	< 17	22	20
DSJC250.5	250	15668	≤ 28	62	37
DSJC500.1	500	12458		47	16
DSJC500.5	500	62624		128	66
DSJR500.1	500	3555		28	12
DSJR500.1c	500	121275		56	88
le450_15a	450	8168	≤ 15	42	18
le450_15b	450	8169	≤ 15	42	18
le450_15c	450	16680	≤ 15	58	27
			_		