Лабораторная работа №2.1.4 Определение теплоемкостей твердых тел.

Каграманян Артемий, группа Б01-208

28 апреля 2023 г.

1 Аннотация

Цель работы: 1) Прямое измерение кривых нагревания T_{heat} и охлаждения T_{cool} в системах "пустой калориметр" и "калориметр + твердое тело". 2) Определение коэффициента теплоотдачи стенок калориметра. 3) Определение теплоемкости калориметра и удельных теплоеемкости твердых тел.

Оборудование: Калориметр с нагревателем и термометром сопротивления, вольтметр, омметр, термопары и компьютер.

2 Теоритическая справка

Запишем формулу, по которой можно найти теплоемкость тела. Если Q - тепло, подведенное к телу за какое-то время Δt , а ΔT - температура, на которую нагрелось тело, то:

$$C = \frac{Q}{\Delta T} \tag{1}$$

Чтобы увеличить точность, нужно учитывать тепловые потери. Тогда закон сохранения энергии примет вид:

$$C\Delta t = P\Delta t - \lambda (T - T_{\kappa})\Delta t \tag{2}$$

где P - мощность нагревателя, λ - коэффициент теплоотдачи стенок калориметра.

В дифференциальной форме оно примет вид (для случаев нагревания и охлаждения):

$$Cdt = Pdt - \lambda (T_{heat}(t) - T_{\kappa}(t))dt$$
(3)

$$Cdt = -\lambda (T_{cool}(t) - T_{\kappa}(t))dt \tag{4}$$

3 Экспериментальная установка

Рис. 1. Схема устройства калориметра

Итого, в этой работе нам нужно измерить 3 зависимости:

- 1. $R_{heat}(t)$ зависимость показаний термометра сопротивления от температуры при постоянной мощности нагревателя.
- 2. $R_{cool}(t)$ зависимость показаний термометра сопротивления от температуры при выключенном нагревателе.
- 3. $T_{\kappa}(t)$ фиксирование изменений температуры воздуха в течение эксперимента.

4 Методика эксперимента

Я не буду приводить выкладки по получению формул (очень долго писать), но справедливо следующее:

$$T(R) = 273 + \frac{R}{\alpha R_{\kappa}} [1 + \alpha (T_{\kappa} - 273)] - \frac{1}{\alpha}$$
 (5)

$$T_{cool}(t) = (T_0 - T_{\kappa})e^{-\lambda t/C} + T_{\kappa}$$
(6)

$$T_{heat}(t) = \frac{P}{\lambda} (1 - e^{-\lambda t/C}) + T_{\kappa}$$
(7)

Это был описан интегральный способ нахождения теплоемкостей.

Так же можно использовать другой способ. Возьмем точки на кривых нагревания и охлаждения при одинаковой темературе. Тогда обозначим за $A=(\frac{\partial T}{\partial t})_{heat}$ и за $B=(\frac{\partial T}{\partial t})_{cool}$. Тогда, используя два уравнения, которые мы получим через дифференцирование (6) и (7), получим следующее:

$$\lambda = \frac{P}{(T - T_{\kappa})(1 - \frac{A}{B})} \tag{8}$$

$$C = \frac{P}{A - B} \tag{9}$$

И так, нам предстоит изобразить на графике зависимость $T_{cool}(t)$ в координатах $y = ln(T_{cool} - T_{\kappa})/(T_0 - T_{\kappa})), x = t$, чтобы получить прямую с коэффициентом $-\frac{\lambda}{C}$. Затем находим из уравнения (7) теплоемкость исслудуемой системы. Отсюда находим теплоемкости материалов. Эти результаты надо сравнить с результатами, полученными по дифференциальному методу, описанному выше.

5 Обработка данных

5.1 Интегральный метод

Итого, у меня получилось:

Система	λ/C , c ⁻¹
Пустой калориметр	$0,380 \cdot 10^{-3}$
Калориметр + железо	$0,200 \cdot 10^{-3}$
Калориметр + аллюминий	$0,195\cdot 10^{-3}$

Теперь найдем λ . $\lambda=(1-e^{-\frac{\lambda t}{C}})\frac{P}{T_{heat}-T_{\rm K}}=0.17\pm0.02\Rightarrow C_{\rm кал}=662\pm27\frac{\rm Дж}{\rm K}$ Итого, получились следующие теплоемкости:

Материал	$C, \frac{\mathcal{I}_{\mathbf{K}}}{K}$	$c, \frac{\mathcal{L}_{\mathbf{K}}}{\mathbf{K} \cdot \mathbf{K} \Gamma}$
Калориметр	662,5	-
Железо	239,5	293,8
Аллюминий	116	395,9

5.2 Дифференциальный метод

В этих таблицах находятся значения производных A и B, а также значения теплоемкостей материалов.

Производная	калориметр	калориметр + железо	калориметр + аллюминий
A	0,007	0,004	0,006
В	-0,002	-0,001	-0,002

материал	$C, \frac{\mathcal{L}_K}{K}$	$c, \frac{\mathcal{L}_{\mathbf{K}}}{\mathbf{K} \cdot \mathbf{K} \Gamma}$
калориметр	589,1	-
железо	314,3	385,6
аллюминий	168,1	571,7

6 Графики

