With Dr. Bailey

KEY

Stoichiometry/Review

W15

A. Zinc reacts with acids to produce H₂ gas.

Have 10.0 g of Zn

$$Zn(s) + 2 HCl(aq) --> ZnCl2(aq) + H2(g)$$

What is the theoretical yield (g) of H₂ gas?

10. $lg \ge n \times \frac{lmol \ge n}{65.39g} = 0.153 mol \frac{2n}{2n}$ 0. 153 $mol \times \frac{lmol H_2}{lmol \ge n} \times \frac{2.029 H_2}{lmol K_2} = 0.309 g H_2$ 2. How many liters of H₂ at 1.15 atm and 30.0 °C are produced by reaction of

10.0 g Zn? $p \cdot V = n \cdot R \cdot T$ 0.153 mol = 0.153 mol k_2 $K = 30.0 \cdot C \cdot 1273.iS = V = n \cdot R \cdot T = 0.153 \cdot mol_{k_2} \times 0.0821 \cdot C \cdot atm \times 303. KSK$ $= 303.i5 \cdot K$ How many liters of H₂ at STP are produced by reaction of 10.0 g Zn?

3. How many liters of H₂ at STP are produced by reaction of 10.0 g Zn?

4. What volume of 2.50 M HCl is needed to convert the Zn completely?

$$Zn(s) + 2 HCl(aq) --> ZnCl_2(aq) + H_2(g)$$

10.0g 2.50M

 $V = ?$
 $Original = 0.306 molekee$
 $Original = 0.306 molekee$
 $M = \frac{\# mol}{V(L)}$
 $V = \frac{\# mol}{M}$
 $V = \frac{\# mol}{M}$

5. What molarity of
$$ZnCl_2$$
 formed?

$$M_{2n}Cl_2 = \frac{0.153 \, mel \, 2.0l_2}{0.122 \, L} = \frac{0.153 \, mel \, 2.0l_2}{1.25 \, mel} = 0.153 \, mel \, 2.0l_2$$

6. How many molarities of UCL articles in the second of the s

6. How many molecules of HCl participate in the reaction? How many Cl

- 7. $Zn(s) + 2 HCl(aq) --> ZnCl_2(aq) + H_2(g) \Delta H = -125 k$
 - Is this reaction exothermic or endothermic? | exother 2 m. C.
 Calculate the amount of heat transferred when 10.0 g solid zinc
 - reacts?

- B. Titration of 20.0 mL of an unknown sulfuric acid acid solution required 18.45 mL of 0.100 M NaOH to reach equivalence.
- 1. Write the balanced equation.

$$\frac{H_2 S O_4(aq)}{V_{A} = 20.0 mL} + 2 NaOH(aq) \longrightarrow Na_2 S O_4(aq) + 2 H_2 O(L)$$
2. What is the concentration of the sulfuric acid?

$$H mol = M_B \times V_B = 0.100 \, mol \times (18.45 \, mL \times 12 \, mol) = 0.00185 \, mol \times 1000 \, mL) = 0.00185 \, mol \times 1000 \, ml \times 1000 \, mol \times 100$$

3. Calculate the pH of the sulfuric acid solution.

$$H_2 SO_4(aq) \rightarrow 2H^{\dagger}(aq) + SO_4^{2}(aq)$$

 $[H^{\dagger}] = 2[H_2 SO_4] = 2 \times 0.0462 M = 0.0923 M$
 $pH = -log(0.0923) =$

Part C

- 1. 10.00 of hydrogen and 10.00 of oxygen mixed in the previously evacuated 500 mL flask at 500 K. After the reaction has reached completion, what would be the pressure in the flask?
- a) Write the balanced equation.

b) What is the theoretical yield of water (in moles, in g)? Tip: this is limiting reactants problem

c) Build the table:

Number of moles	H ₂	O ₂	H ₂ O
Initial	4.96	0.3/25	0
Change	- 2(0.3125)	-0.3125	10.625
After the reaction has reached completion	4.335	0	0.625

d) What total moles of gas is at completion?

e) What would be the pressure in the flask?

P.
$$V = n \cdot R \cdot T$$
 $p = \frac{n \cdot R \cdot T}{V} = \frac{4.96 \text{ mol} \times 0.0821}{0.500 \text{ L}} \times \text{SDOK}$

Mole Conversions to Mass, Volume, Molecules, and Molarity

