

DATABASE SYSTEMS IS211

Dr. Noha Nagy

Database Concepts

Welcome!

- Instructor: Dr. Noha Nagy
 - Office: New Building, second floor, next to IS TA's room
 - Email: n.nagy@fci-cu.edu.eg
- Homepage: blackboard

Lecture Norms

3Slide

- □ Mobile Silent
- □ No side talks
- □ No Late entry [10 Minutes only]
- □ Mask

Textbook

Fundamental of Database Systems, Ramez Elmasri,
 Shamkant Navathe, Addison-Wesley; th7 edition.

Course Mechanics

- □ Evaluation:
 - Final (60)
 - Midterm (20)
 - Individual assignments in labs(10)
 - □ Project (10)
 - 3 to 5 students
 - Popup Quizzes and participation

What you expect to study in the course?

Course Overview

- Introduction to Database Systems
 - Theory and the use of relational database
- □ Focus on:
 - Relational Model
 - SQL (Structured Query Language)
 - Relational Algebra
 - The ER(Entity Relationship)Model
 - Normalization

What is Meant by Data and Information?

Data Student

20120023 ID: 20120023

20 Age: 20

CS Department: CS

What is Meant by Data and Information?

- □ Data
 - Raw facts
 - No context

- □ Information
 - Data with context
 - Processed data

Accurate, relevant, and timely information is key to good decision making

Good decision making is the key to survival in a global environment

Data: A Resource

- The Success of an organization depends on efficient use of its resources:
 - Buildings, factories, equipment
 - Technical know-how
 - Human resources
 - Data
- Data: An important organizational resource

Why we need a Database?

- □ What kind of data we need to store?
- □ Examples on DB applications
 - Hospital system
 - **■** Business clients
 - Car registration
 - Airline reservation
 - Supermarket
 - Hotel reservation

amazon.com.

Why should we care about databases?

- We are in a data driven world
- "Big Data" is supposed to change the mode of operation for almost every single field
- □ Science, technology, Healthcare, Business

□ We use DB systems to store data.

Why not to use file system?

File System: Problem Case

- inconsistent field name, field size
- inconsistent data values
- data duplication

Database System vs. File System

File Systems

- Problems
 - Duplication
 - same data may be stored in multiple files
 - Inconsistency
 - same data may be stored by different names in different format
 - Rigidity
 - requires customized programming to implement any changes
 - cannot do ad-hoc queries
- Implications
 - Waste of space
 - Data inaccuracies
 - High overhead of data manipulation and maintenance

DB Systems

- □ It answers queries fast
 - Q1: among a set of log pages, find those pages written by Tramp after 2019
 - Among a set of employers, increase the salary by 20% for those who have worked longer than 4 years
- Queries from multiple users can execute concurrently without affecting each other.
- □ It recovers from crash
 - No corrupted data after restart

File System Vs Databases

- □ Small Systems
- □ Often single user
- □ Simple structure
- □ Isolated data
- □ Redundant data
- □ Relatively cheap
- Less secure

- □ Large systems
- □ Multiple users
- □ Complex structure
- □ Shared data
- □ Reduced redundancy
- □ Relatively expensive
- More secure using views

Definitions

Database:

- Collection of related data.
- A database contains a model of something!
- A Database Management System (DBMS): is a software system designed to store, manage and facilitate access to the database

 Database/Application Program: A computer program that interacts with the database through the DBMS

Components of a Database System

Users

Query Engine
Query optimizer
Storage management
Transaction management

Database System Environment

Database Systems Lifecycle

Database Players

□ DB Administrator DBA

 Access authorization, coordination & monitoring database usage, problem determination, performance tuning etc

Designers

- choose the appropriate structures to represent & store the data
- System analysts & application programmers
- □ Users

Database States

- Empty State: DB is empty when we first define the DB schema
- Initial State: DB is first populated or loaded with data
- □ Current State: snapshot in time

Example of Relational DB Management System Products

- Oracle
- □ Sybase
- □ Informix (Unix)
- □ DB2, SQL/DS (IBM)
- Access, SQL Server (Microsoft)

Database Models

28Slide

A Database model is a collection of concepts that can be used to define the DB structure (data items, types, relationships, operations, behaviors and constraints)

- Relational model
- Hierarchical & Network models
- Object Oriented models
- Distributed models
- NoSQL models
- And Others

Next Relational Model