

Probabilités

Probabilités discrètes

Univers discret Probabilités discrètes Conditionnement Indépendance

- ▶ But : Analyser rigoureusement des phénomènes aléatoires.
- Probabilité d'un évènement : quantification de sa vraisemblance.
- ► Analyse d'une expérience aléatoire

 Ex : Défaut d'un client, nombre de clics sur une page, volume d'achat d'un produit ...résultat incertain

Probabilités discrètes

Univers discret Probabilités discrètes Conditionnement

Objectifs du cours

- ► Revoir les principes élémentaires des probabilités, utiles en statistique et en machine-learning
- ► Vérifier vos connaissances et identifier vos lacunes : guide de lecture pour travailler

Plan du cours de probabilités

Probabilités

Probabilités discrètes

Univers discret Probabilités discrète: Conditionnement

Semaine 3

- Probabilités discrètes
- Variables et vecteurs aléatoires discrets
- ► Espérance, espérance conditionnelle

Semaine 4

- ► Indépendance, variance, covariance
- Variables aléatoires continues
- Vecteurs aléatoires continus

Probabilités discrètes

Univers discret

Univers on Ensemble fondamental Ω :

Ensemble de toutes les issues possibles de l'expérience

Un élément $\omega \in \Omega$ (« réalisation élémentaire ») :

Une issue possible (⇔ un « état de l'univers »)

- * Lancer de deux dés. $\Omega = \{\text{couples } \omega = (i, j) \ (i, j \leq 6\} \}$.
- ★ Plus abstrait : $\Omega = \{$ conditions inconnues de l'expérience $\}$.

Evènement : (Résumé observable de l'issue de l'expérience)

Une partie (= sous-ensemble) de Ω .

L'évènement $A \subset \Omega$ est réalisé si l'élément $\omega \in A$.

- * A =« Le premier joueur perd » = $\{(i, j) : i < j\}$
- $\star \emptyset = \text{ensemble vide (\'ev\`enement } \ll \text{impossible } \gg).$

Probabilités discrètes

Univers discret

Probabilités discrète

Conditionnement

Indépendance

Opérations sur les ensembles

- ▶ Union : $A \cup B = \{\omega \in \Omega : \omega \in A \text{ ou } \omega \in B\}$
- ▶ Intersection : $A \cap B = \{\omega \in \Omega : \omega \in A \text{ et } \omega \in B\}$
- **Complémentaire** : $A^c = \{\omega \in \Omega : \omega \notin A\}$ (non A)
- ▶ Complémentaire de A dans B : $B \setminus A = B \cap (A^c)$.

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
- ▶ lois de Morgan :

$$(A \cup B)^c = A^c \cap B^c$$
; $(A \cap B)^c = A^c \cup B^c$

Probabilités discrètes

Univers discret

Probabilités discrète

C---diri-----

Indépendance

Univers discret

 $ightharpoonup \Omega$ dénombrable :indexable par une partie de \mathbb{N} ,

$$\Omega = \{\omega_i : i \in I\}, \quad I \subset \mathbb{N}, \ \omega_i \neq \omega_i \text{ si } i \neq j.$$

ex : ensemble fini, entiers pairs, \mathbb{N} , rationnels, $\mathbb{N} \times \mathbb{N}$,... contre-ex : \mathbb{R} (nombres réels).

- $\mathcal{P}(\Omega)$: ensemble de toutes les sous parties de Ω ex : $\Omega = \{0,1\}$, $\mathcal{P}(\Omega) = \{\emptyset, \{0\}, \{1\}\{0,1\}\}$.
- ▶ Si Card(Ω) = n, alors Card($\mathcal{P}(\Omega)$) = 2^n .

Ensemble \mathcal{A} des évènements considérés pour l'analyse probabiliste :

- Rappel : $\mathcal{A} \subset \mathcal{P}(\Omega)$
- Convention pour Ω discret (fini ou dénombrable) :

$$\mathcal{A} = \mathcal{P}(\Omega)$$

Notations $\sum_{i \in \mathbb{N}}, \bigcup_{i \in \mathbb{N}}$

▶ Somme dénombrable $(a_i \ge 0 \text{ pour tout } i)$:

$$\sum_{i\in\mathbb{N}}a_i=a_0+a_1+\cdots=\lim_{n\to\infty}\sum_{i=1}^na_i$$

Une somme peut être

- égale à $+\infty$ (« infinie »)
- finie $(<\infty)$ avec des a_i tous > 0, ex : $\sum_{i \in \mathbb{N}} \frac{1}{2^i} = 2$.
- ▶ Union dénombrable : $A_i \subset \Omega$ pour $i \in \mathbb{N}$,

$$\bigcup_{i\in\mathbb{N}}A_i=A_0\cup A_1\cup\cdots=\{\omega:\exists i\in\mathbb{N}:\omega\in A_i\}\subset\Omega$$

▶ On peut aussi noter $\bigcup_{i \in I}$ ou $\sum_{i \in I}$ pour I un ensemble dénombrable.

Probabilités

Probabilités discrètes

Univers discret

Probabilité discrète (Ω discret)

 Ω un univers dénombrable, $\mathcal{A} = \mathcal{P}(\Omega)$.

Quantifier la « vraisemblance » d'un évènement $A \in A$?

Probabilité : définition

Une probabilité \mathbb{P} sur \mathcal{A} est une fonction $\mathbb{P}: \mathcal{A} \to [0,1]$, (définie sur les évènements), vérifiant

- 1. $\mathbb{P}(\Omega) = 1$
- 2. Pour toute suite d'évènements **disjoints**, $(A_i \cap A_i = \emptyset)$,

$$\mathbb{P}\Big(igcup_{i\in\mathbb{N}}A_i\Big)=\sum_{i\in\mathbb{N}}\mathbb{P}(A_i)$$

- ► Ex : Ω fini, $\mathbb{P} : B \mapsto \mathbb{P}(B) = \frac{Card B}{Card Ω}$ (probabilité uniforme)
- **Espace probabilisé**: données du triplet $(\Omega, \mathcal{A}, \mathbb{P})$.

Probabilités

Probabilités discrètes

Univers discret

Probabilités discrètes

Propriétés d'une probabilité

$$\mathbb{P}(\emptyset) = 0.$$

 $\mathbb{P}(A) + \mathbb{P}(A^c) = 1$

$$\star \ \mathbb{P}(\emptyset) = \mathbb{P}(\emptyset \cup \emptyset) \ \stackrel{\mathsf{car} \ \emptyset \ \cap \ \emptyset}{=} \ \mathbb{P}(\emptyset) + \mathbb{P}(\emptyset).$$

Probabilités

Probabilités discrètes

Probabilités discrètes

$$\star 1 = \mathbb{P}(\Omega) = \mathbb{P}(A \cup A^c) = \mathbb{P}(A) + \mathbb{P}(A^c)$$

Si $A \subset B$, alors $\mathbb{P}(A) \leq \mathbb{P}(B)$

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

*
$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A) = \mathbb{P}(A) + [\mathbb{P}(B) - \mathbb{P}(A \cap B)].$$

 $\star \mathbb{P}(B) = \mathbb{P}(A \cap B) + \mathbb{P}(B \setminus A) = \mathbb{P}(A) + \mathbb{P}(B \setminus A) \ge \mathbb{P}(A).$

Caractérisation d'une proba discrète

Que doit on savoir sur \mathbb{P} pour la connaître entièrement ?

▶ $\Omega = \{\omega_i, i \in I \subset \mathbb{N}\}$. On se donne des

$$p_i = \mathbb{P}(\{\omega_i\})$$
 ; tels que $\sum_{i \in \mathbb{N}} p_i = 1$

Alors on connaît $\mathbb{P}(A)$ pour tout $A \subset \Omega$:

$$\mathbb{P}(A) = \mathbb{P}\big(\bigcup_{i:\omega_i \in A} \{\omega_i\}\big)$$
évènements disjoints
$$\sum_{i:\omega_i \in A} \mathbb{P}\{\omega_i\} = \sum_{i:\omega_i \in A} p_i$$

Une proba \mathbb{P} sur Ω (discret), est entièrement déterminée par les $\mathbb{P}\{\omega\}$, $\omega \in \Omega$.

Probabilités

Probabilités discrètes

Univers discret

Probabilités discrètes

Exemple : Pile ou face. temps du 1^{er} succès

$$\Omega = \mathbb{N} \setminus \{0\}, \omega_i = i$$
, on se donne $p_i = 2^{-i}$

(nombre de tentatives successives avant le premier pile).

- ▶ On a $\sum_{i>1} p_i = 1$.
- ▶ On peut calculer $\mathbb{P}(A)$, pour tout évén^t A, grâce aux p_i ,

ex:

► A : évènement « premier 'pile' avant le 3^{ème} coup inclus ».

$$\mathbb{P}(A) = \mathbb{P}\{1, 2, 3\} = p_1 + p_2 + p_3 = 7/8$$

► B : « Pile seulement après le 4^{ème} coup »

$$\mathbb{P}(B) = \mathbb{P}(A^c) = 1/8.$$

Probabilités

Probabilités discrètes

Probabilités discrètes

11/15

Probabilités discrètes

Conditionnement

Conditionnement

- Exemple : diagnostic (test) médical.
- $ightharpoonup \Omega = \{(\text{sain}, \text{positif}), (\text{sain}, \text{négatif}), (\text{malade}, \text{positif}), \}$ malade, négatif)};
- ▶ P donnée par le tableau.

état réel test	malade	sain
positif	8/100	2/100
négatif	1/100	89/100

(Répartition des cas dans la population testée)

Probabilité d'être malade sachant que testé positif?

Probabilité conditionnelle

 $B \subset \Omega$, $\mathbb{P}(B) \neq 0$, fixé.

- Nouvelle probabilité « sachant B » : « ℙ (· | B) »
 - ▶ Décrit la vraisemblance de $A \cap B$, sachant B.
 - ▶ $\mathbb{P}(B \mid B) = 1$.

déf : probabilité conditionnelle sachant B

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \qquad (A \subset \Omega)$$

• ex : test médical. Vérifiez : $\mathbb{P}(\text{ malade } | \text{ positif }) = 8/10.$

Probabilités

Probabilités discrètes

Conditionnement

Évènements indépendants

idée : B ne 'dit' rien sur A : $\mathbb{P}(A \mid B) = \mathbb{P}(A)$

déf : A et B sont indépendants si

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

rem : alors, $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \mathbb{P}(A)$.

$\mathbf{d\acute{e}f}: A_1, \dots, A_n$ sont indépendants si

pour tout sous ensemble $\{i_1,\ldots,i_k\}\subset\{1,\ldots,n\}$, on a

$$\mathbb{P}(A_{i_1} \cap \ldots \cap A_{i_k}) = \mathbb{P}(A_{i_1}) \ldots \mathbb{P}(A_{i_k})$$

contre-ex : $\Omega = \{1, \dots, 6\}$ (dé), proba uniforme : $p_i = 1/6$,

 $A = \{1, 2, 3\}, B = \{2, 4, 6\}, C = \{1, 2, 5, 6\}.$

On a $\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$, Mais :

 $\mathbb{P}(A \cap B) \neq \mathbb{P}(A)\mathbb{P}(B)$, donc A, B, C pas indépendants.

Probabilités

Probabilités discrètes

Conclusion

Probabilités

Probabilités discrètes

Univers discret Probabilités discrète: Conditionnement

- Nous avons vu : le vocabulaire de base des probabilités discrètes.
 - Généralisable au cas continu (Semaine prochaine)
- ▶ Prochaine séance : Variables aléatoires discrètes.

