Exercise 1.2.6: Use the *triangle inequality* to establish the following inequalities:

(a)
$$|a - b| \le |a| + |b|$$

Proof: (Direct) Suppose $a, b \in \mathbb{R}$. Note that,

$$|a - b| = |a + (-b)|.$$

By the triangle inequality we know that,

$$|a + (-b)| \le |a| + |(-b)|$$
.

Note,

$$|a| + |(-b)| = |a| + |b|$$
.

Therefore by substitution we arrive at,

$$|a - b| \le |a| + |b|$$

(b) $||a| - |b|| \le |a - b|$.

Proof: (Direct) Suppose $a, b \in \mathbb{R}$. Note that,

$$a = (a - b) + b.$$

Therefore,

$$|a| = |(a-b) + b|.$$

Thus by triangle inequality we know that,

$$|a - b + b| \le |(a - b)| + |b|,$$

 $|a| \le |(a - b)| + |b|,$
 $|a| - |b| \le |a - b|.$

Exercise 1.2.7(b), (d): Given a function f and a subset A of its domain, let f(A) represent the range of f over the set A; that is, $f(a) = \{f(x) : x \in A\}$.

(b) Find two sets A and B for which $f(A \cap B) \neq f(A) \cap f(B)$. **Proof:** (Direct) Suppose $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) = x^2$. Let $A = \mathbb{R}_{\leq 0}$ and $B = \mathbb{R}_{\geq 0}$. Note.

$$f(A \cap B) = \{0\}$$

and,

$$f(A) \cap f(B) = \mathbb{R}_{>0}$$

Thus $f(A \cap B) \neq f(A) \cap f(B)$.

(d) Form and prove a conjecture concerning $f(A \cup B)$ and $f(A) \cup f(B)$.

Conjecture: (Direct) Let $f : \mathbb{R} \to \mathbb{R}$, if $A, B \subset \mathbb{R}$ then $f(A \cup B) \subset f(A) \cup f(B)$

Proof: Suppose $f: \mathbb{R} \to \mathbb{R}$, $A, B \subset \mathbb{R}$, and $y \in f(A \cup B)$. By the definition of the set $f(A \cup B)$ we know that there exists some $x \in A \cup B$ such that y = f(x). Note that $x \in A, B$ and it therefore must follow that $y \in f(A)$, f(B). Thus $y \in f(A) \cup f(B)$ and $f(A \cup B) \subset f(A) \cup f(B)$.

Exercise 1.2.8: Form the logical negation of each claim. Do not use the easy way out: "It is not the case that..." is not permitted

- (a) For all real numbers satisfying a < b, there exists $n \in \mathbb{N}$ such that a + (1/n) < b.
- (b) Between every two distinct real numbers there is a rational number.
- (c) For all natural numbers $n \in \mathbb{N}$, \sqrt{n} is either a natural number or is an irrational number.
- (d) Given any real number $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ satisfying n > x.

Solution:

- (a) There exists $a, b \in \mathbb{R}$ where a < b and for all $n \in \mathbb{N}$, a + (1/n) < b.
- (b) If $x \in \mathbb{R}$ then there exists $a, b \in \mathbb{R}$ such that a < b and x < a and x > b
- (c) There exists some $n \in \mathbb{N}$ such that \sqrt{n} is both a natural number and irrational
- (d) There exists some $x \in \mathbb{R}$ such that n > x for every $n \in \mathbb{N}$

Exercise 1.2.9: Show that the sequence $(x_1, x_2, x_3, ...)$ defined in Example 1.2.7 is bounded above by 2. That is, show that for every $i \in \mathbb{N}$, $x_i \le 2$.

Exercise 1.3.4: Assume that *A* and *B* are nonempty, bounded above, and satisfy $B \subseteq A$. Show that $\sup B \leq \sup A$.

Exercise 1.3.5: Let *A* be bounded above and let $c \in \mathbb{R}$. Define the sets $c + A = \{a + c : a \in A\}$ and $cA = \{ca : a \in A\}$.

(a) Show that $\sup(c + A) = c + \sup(A)$.

(b) If $c \ge 0$, show that $\sup(cA) = c \sup(A)$.	
(c) Postulate a similar statuent for $\sup(cA)$ when $c < 0$.	
Proof (a).	
Proof(b).	
Statement for part (c):	
Exercise 1.3.6: Compute, without proof, the suprema and infima of the following sets.	
(a) $\{n \in \mathbb{N} : n^2 < 10\}$.	
(b) $\{n/(n+m) : n, m \in \mathbb{N}\}.$	
(c) $\{n/(2n+1) : n \in \mathbb{N}\}.$	
(d) $\{n/m : m, n \in \mathbb{N} \text{ with } m + n \le 10\}.$	
Solution:	
(a)	
(b)	
(c)	
(d)	
Exercise 1.3.7: Prove that if a is an upper bound for A and if a is also an element of A then $a = \sup A$.	4,
Proof.	
Exercise 1.3.8: If $\sup A < \sup B$ then show that there exists an element $b \in B$ that is a upper bound for A .	ın
Proof.	