Lecture-34

Sushrut Tadwalkar; 55554711

December 3, 2023

Proof. Given any $\varepsilon>0$, use point-wise continuity at each $x\in\mathcal{X}$ to get $\delta=\delta(x)>0$ such that $x'\in\mathbb{B}\left[x;\delta(x)\right)$, i.e., $d(f(x),f(x'))<\frac{\varepsilon}{5}$. Now, $\mathscr{G}:=\left\{\mathbb{E}\left[x;\frac{1}{7}\delta(x)\right):x\in\mathcal{X}\right\}$ is an open cover for \mathcal{X} ; compactness gives us a finite subcover with labels $x_1,x_2,\ldots x_N$. Let $\delta_k(x):=\delta(x_k)$ and thus $\delta:=\frac{1}{7}\min\{\delta_1,\ldots,\delta_N\}$. Now, we pick any $x\in\mathcal{X},x'\in\mathbb{B}\left[x;\delta\right)$. From the finite subcover, our $x\in\mathbb{B}\left[x_k;\frac{1}{7}\delta_k\right)$. Also, x' has

$$d(x', x_k) \le d(x', x) + d(x, x_k)$$

$$< \delta + \frac{1}{7} \delta_k < \frac{2}{7} \delta_k,$$

so

$$d(f(x'), f(x)) \le d(f(x'), f(x_k)) + d(f(x_k), f(x))$$

$$< \frac{\varepsilon}{5} + \frac{\varepsilon}{5} < \varepsilon.$$

Example 1. An increasing function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at x if and only if $x \notin \mathbb{Q}$ (we have encountered this function before in Homework 11 problem 6.) We enumerate the rationals $\mathbb{Q} = \{q_1, q_2, \dots\}$):

$$f(x) = \sum_{i \in I(x)} \frac{1}{2^i},$$

where $I(x) := \{i \in \mathbb{N} : q_i < x\}.$

Note. If a < b, then

$$f(b) - f(a) = \sum_{I(a) \setminus I(b)} \frac{1}{2^i} > 0,$$

where $I(b)\backslash I(a) := \{i \in \mathbb{N} : a \le q_i < b\} \ne \emptyset$.

If $x \in \mathbb{Q}$, then we have $x = q_N$ for some N. For any sequence (x_n) of rationals with $x_n \to q_N$ (decreasing), $f(x_n) > f(q_n) + \frac{1}{2^N}$, so " $f(x_n) \to f(x)$ " is impossible. However, if $x \notin \mathbb{Q}$, continuity at x holds. Indeed, given any $\varepsilon > 0$, pick N to make

$$\sum_{i=N+1}^{\infty} \frac{1}{2^i} < \varepsilon.$$

Then, let $\delta := \min\{|x-q_1|, |x-q_2|, \dots, |x-q_N|\}$. For any x' with $|x'-x| < \delta$, all of q_1, \dots, q_N lie outside $(x-\delta, x+\delta)$, so

$$|f(x') - f(x)| \le \sum_{i=N+1}^{\infty} \frac{1}{2^i} < \varepsilon.$$

1

0.1 Connectedness and Intermediate Value Theorem

Proposition 1. Let $(\mathcal{X}, \mathcal{T})$ be a HTS, and suppose $f : \mathcal{X} \to \mathbb{R}$ is continuous. For any $g \in \mathbb{R}$, let

$$\Omega(q) := \{ x \in \mathcal{X} : f(x) < q \}.$$

Then, $\partial\Omega(q)\subseteq\{x\in\mathcal{X}:f(x)=q\}.$

Proof. The proof is left as an exercise while using the canvas notes as a reference.

Note. Strict inclusion is possible.

Figure 1: Plot of the function $y = x(x+1)(x-1)^2$, where $\Omega(0) = (-1,0)$ is highlighted.

Note (Comments on the plot). In the plot above, $\Omega(0) = (-1,0)$, $\partial\Omega(0) = \{-1,0\}$, but $f^{-1}(\{0\}) = \{-1,0,1\}$.

Corollary 1. In the setup above, if $\Omega(q) \neq \emptyset$, and yet $f(x) \neq q$ for all $x \in \mathcal{X}$, then $\Omega(q)$ is both open and closed in \mathcal{X} .

Proof. $\Omega(q)$ is *open* by continuity;

$$\overline{\Omega(q)} = \Omega(q) \cup \partial \Omega(q) = \Omega(q).$$