Soluzione 1: Pasticceria

E' un problema di *lot-sizing* multi-prodotto.

Dati:

Ci sono 2 prodotti (j = A, B), 3 turni (i = 1,...,3) e 3 ingredienti (k = 1,...,3). Sono noti:

- i costi di produzione c(i,j) di ogni lavorato in ogni turno,
- i costi di stoccaggio h(j) per ogni lavorato,
- la percentuale p(k,j) di ogni ingrediente nella composizione di ogni lavorato,
- il volume v(k) occupato da ciascun ingrediente,
- la capacità del magazzino c,
- la fornitura minima da garantire P,
- la quantità minima m(j) e massima M(j) di lavorati trasportabili dopo ogni turno.

Variabili:

Vengono utilizzati diversi tipi di variabili continue e non negative:

- x(i,j), la quantità di lavorato j prodotta durante il turno i
- s(i,j), la quantità di lavorato j conservata dopo il turno i
- d(i,j), la quantità di lavorato j trasportata dopo il turno i
- q(k) la quantità di ingrediente k acquistata

Obiettivo:

Minimizzare i costi, dati dalla somma dei costi di produzione e stoccaggio.

I costi di produzione dipendono dalle variabili x:

```
12 \times 1A + 8 \times 2A + 10 \times 3A + 15 \times 1B + 11.5 \times 2B + 12 \times 3B
```

I costi di stoccaggio dipendono dalle variabili s:

1.8 s1A + 1.8 s2A + 0.4 s1B + 0.4 s2B

Vincoli:

I vincoli impongono innanzitutto la conservazione della merce tra turni consecutivi:

```
Flow1A) x1A - d1A - s1A = 0

Flow1B) x1B - d1B - s1B = 0

Flow2A) s1A + x2A - d2A - s2A = 0

Flow2B) s1B + x2B - d2B - s2B = 0

Flow3A) s2A + x3A - d3A = 0

Flow3B) s2B + x3B - d3B = 0
```

Esistono poi i limiti minimi e massimi alle quantità complessive trasportate in ogni turno:

```
Min1) d1A + d1B >= 65
Min2) d2A + d2B >= 70
Min3) d3A + d3B >= 50
Max1) d1A + d1B <= 135
Max2) d2A + d2B <= 135
Max3) d3A + d3B <= 135
```

Un unico vincolo impone la produzione complessiva minima:

```
Prod) d1A + d2A + d3A + d1B + d2B + d3B >= 300
```

I classici vincoli tecnologici legano le quantità di ingrediennti consumate alle quantità di lavorati prodotti. Tali quantità consumate non possono eccedere le disponibilità di materie prime.

```
Ingr1) 0.2 x1A + 0.2 x2A + 0.2 x3A + 0.5 x1B + 0.5 x2B + 0.5 x3B
- q1 <= 0
Ingr2) 0.6 x1A + 0.6 x2A + 0.6 x3A + 0.1 x1B + 0.1 x2B + 0.1 x3B
- q2 <= 0
Ingr3) 0.2 x1A + 0.2 x2A + 0.2 x3A + 0.4 x1B + 0.4 x2B + 0.4 x3B
- q3 <= 0</pre>
```

Infine c'è un vincolo di capacità del magazzino

```
Vol) 20 q1 + 35 q2 + 15 q3 <= 7100
```

Il modello completo è nel file LINDO PASTICC.LTX e la soluzione è nel file PASTICC.OUT.

Dall'analisi post-ottimale, il prezzo ombra del vincolo di capacità del magazzino risulta essere:

VOL)	0.00000	0.352941
INGR3)	0.00000	5.294117
INGR2)	0.00000	12.352942
INGR1)	0.000000	7.058824

Quindi affittare il magazzino a 0.20 Euro / decimetro cubo è vantaggioso. Dall'analisi parametrica si ottiene inoltre:

RIGHTHANDSIDE PARAMETRICS REPORT FOR ROW: VOL

VAR	-	AR	PIVOT	RHS	DUAL PRICE	OBJ
OUT		N	ROW	VAL	BEFORE PIVOT	VAL
X1B X2B	SLK	S2A 15	3 13	7100.00 7550.00 8400.00 10000.0	0.352941 0.352941 0.247059 0.507531E-16	3208.82 3050.00 2840.00 2840.00

Quindi l'acquisto di risorsa è vantaggioso fino a 1300 decimetri cubi.

Il prezzo ombra sul vincolo di produzione minima è:

ROW PROD)	SLACK OR SURPLUS 0.000000	DUAL PRICES -18.782352	
	RIG	HTHAND SIDE RANGES	
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
PROD	300.000000	5.256410	23.076923

La base ottima non cambia aumentando di 5 unità il termine noto del vincolo. Il costo di 5 Kg di produzione aggiuntiva è dunque 18.782352 * 5, ovvero poco più di 93.9 Euro

al giorno. Sicuramente non è vantaggioso aumentare il termine noto del vincolo sul trasporto minimo durante il primo turno, dato che è l'unico vincolo attivo

ROW MIN1) MIN2) MIN3)	SLACK OR SURPLUS 0.000000 65.000000 50.000000	DUAL PRICES -3.100000 0.000000 0.000000	
ROW	RIGHTHAND CURRENT RHS	SIDE RANGES ALLOWABLE INCREASE	ALLOWABLE DECREASE
MIN1 MIN2 MIN3	65.000000 70.000000 50.000000	50.000000 65.000000 50.000000	35.000000 INFINITY INFINITY

La base ottima, tuttavia, non cambia in nessun caso.