

Univerza na Primorskem Fakulteta za matematiko, naravoslovje in informacijske tehnologije Koper, 27. januar 2023.

Algebra I - rešitve izbranih nalog s 1. izpita

Rešitve zagotovo niso brez tiskarskih napak. Ko kakšno opazite, mi, prosim, pišite na Safet.Penjic@iam.upr.si

 ${f 1.}$ Naj bodo ${ec u},\,{ec v}$ in ${ec w}$ poljubni vektorji v prostoru ${\Bbb R}^3.$ Dokažite naslednjo lastnost vektorskega produkta

$$(\vec{u} \times \vec{v}) \times \vec{w} = \langle \vec{u}, \vec{w} \rangle \vec{v} - \langle \vec{v}, \vec{w} \rangle \vec{u}. \tag{1}$$

Ideja. Naj bodo $\vec{u} = (u_1, u_2, u_3)$, $\vec{v} = (v_1, v_2, v_3)$ in $\vec{w} = (w_1, w_2, w_3)$ poljubni vektorji v prostoru \mathbb{R}^3 . Najprej bomo izračunali levo stran enakosti (1) tj. najprej bomo izračunali $(\vec{u} \times \vec{v}) \times \vec{w}$. Potem pa bomo izračunali desnu stranu enekosti (1), tj. bomo izračunali $\langle \vec{u}, \vec{w} \rangle \vec{v} - \langle \vec{v}, \vec{w} \rangle \vec{u}$.

Rešitev. Prvo izračunajmo levo stran enakosti (1). Imamo

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

$$= (u_2v_3 - u_3v_2)\vec{i} - (u_1v_3 - u_3v_1)\vec{j} + (u_1v_2 - u_2v_1)\vec{k}$$

$$= (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1),$$

$$(\vec{u} \times \vec{v}) \times \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_2v_3 - u_3v_2 & u_3v_1 - u_1v_3 & u_1v_2 - u_2v_1 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

$$= \vec{i} \begin{vmatrix} u_3v_1 - u_1v_3 & u_1v_2 - u_2v_1 \\ w_2 & w_3 \end{vmatrix} - \vec{j} \begin{vmatrix} u_2v_3 - u_3v_2 & u_1v_2 - u_2v_1 \\ w_1 & w_3 \end{vmatrix}$$

$$+ \vec{k} \begin{vmatrix} u_2v_3 - u_3v_2 & u_3v_1 - u_1v_3 \\ w_1 & w_2 \end{vmatrix},$$

kar implicira

$$(\vec{u} \times \vec{v}) \times \vec{w} = (u_3 v_1 w_3 - u_1 v_3 w_3 - u_1 v_2 w_2 + u_2 v_1 w_3, u_1 v_2 w_1 - u_2 v_1 w_1 - u_2 v_3 w_3 + u_3 v_2 w_3$$

$$u_2v_3w_2 - u_3v_2w_2 - u_3v_1w_1 + u_1v_3w_1$$
).

Zdaj izračunajmo desno stran enakosti (1). Imamo

$$\langle \vec{u}, \vec{w} \rangle = u_1 w_1 + u_2 w_2 + u_3 w_3$$

$$\langle \vec{v}, \vec{w} \rangle = v_1 w_1 + v_2 w_2 + v_3 w_3$$

$$\langle \vec{u}, \vec{w} \rangle \vec{v} = (u_1 w_1 + u_2 w_2 + u_3 w_3) \cdot (v_1, v_2, v_3)$$

$$= (u_1 v_1 w_1 + u_2 v_1 w_2 + u_3 v_1 w_3, u_1 v_2 w_1 + u_2 v_2 w_2 + u_3 v_2 w_3, u_1 v_3 w_1 + u_2 v_3 w_2 + u_3 v_3 w_3)$$

$$\langle \vec{v}, \vec{w} \rangle \vec{u} = (v_1 w_1 + v_2 w_2 + v_3 w_3) \cdot (u_1, u_2, u_3)$$

$$= (u_1 v_1 w_1 + u_1 v_2 w_2 + u_1 v_3 w_3, u_2 v_1 w_1 + u_2 v_2 w_2 + u_2 v_3 w_3, u_3 v_1 w_1 + u_3 v_2 w_2 + u_3 v_3 w_3),$$

kar implicira

$$\langle \vec{u}, \vec{w} \rangle \vec{v} - \langle \vec{v}, \vec{w} \rangle \vec{u} = (u_2 v_1 w_2 + u_3 v_1 w_3 - u_1 v_2 w_2 - u_1 v_3 w_3,$$

$$u_1 v_2 w_1 + u_3 v_2 w_3 - u_2 v_1 w_1 - u_2 v_3 w_3,$$

$$u_1 v_3 w_1 + u_2 v_3 w_2 - u_3 v_1 w_1 - u_3 v_2 w_2).$$

Opazimo da je desna strana enakosti (1) enaka levoj strani enakosti (1), ter enakost drži.

2. Naj bosta $\vec{a} + 2\vec{b}$ in $\vec{a} - \vec{b}$ enotska vektorja, za katera velja, da je vektor $\vec{a} + 2\vec{b}$ pravokoten na vektor $\vec{a} - \vec{b}$. Določite kot med \vec{a} in \vec{b} .

Ideja. Kot med vektorjema \vec{a} in \vec{b} lahko izračunamo s pomočjo enačbe

$$\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}.$$

Torej potrebujemo $\vec{a}\vec{b}$, $|\vec{a}|$ in $|\vec{b}|$.

Ker je $\vec{a}+2\vec{b}$ enotski vektor, imamo $|\vec{a}+2\vec{b}|=1$ ter $|\vec{a}+2\vec{b}|^2=1$. Z druge strani, ker je $(\vec{a}+2\vec{b})^2=|\vec{a}+2\vec{b}|^2(=1)$, imamo

$$(\vec{a} + 2\vec{b})^2 = 1,$$

$$\vec{a}^2 + 4\vec{a}\vec{b} + 4\vec{b}^2 = 1.$$

Podobno obravnavamo $\vec{a} - \vec{b}$. Ker je $\vec{a} - \vec{b}$ enotski vektor, imamo $|\vec{a} - \vec{b}| = 1$ ter $|\vec{a} - \vec{b}|^2 = 1$. Z druge strani, ker je $(\vec{a} - \vec{b})^2 = |\vec{a} - \vec{b}|^2 (= 1)$, imamo

$$(\vec{a} - \vec{b})^2 = 1,$$

$$\vec{a}^2 - 2\vec{a}\vec{b} + \vec{b}^2 = 1.$$

Na koncu, ker je vektor $\vec{a} + 2\vec{b}$ pravokoten na vektor $\vec{a} - \vec{b}$ imamo $(\vec{a} + 2\vec{b}) \cdot (\vec{a} - \vec{b}) = 0$ kar implicira

$$\vec{a}^2 - \vec{a}\vec{b} + 2\vec{b}\vec{a} - 2\vec{b}^2 = 0,$$

$$\vec{a}^2 + \vec{a}\vec{b} - 2\vec{b}^2 = 0.$$

Dobili smo naslednji sistem linearnih enačb s tremi neznankami

$$\vec{a}^{2} + 4\vec{a}\vec{b} + 4\vec{b}^{2} = 1$$
$$\vec{a}^{2} - 2\vec{a}\vec{b} + \vec{b}^{2} = 1$$
$$\vec{a}^{2} + \vec{a}\vec{b} - 2\vec{b}^{2} = 0$$

(neznanke so \vec{a}^2 , $\vec{a}\vec{b}$ in \vec{b}^2).

Rešitev. Glede ideje zgoraj, obravnavamo sistem linearnih enačb

$$\vec{a}^2 + 4\vec{a}\vec{b} + 4\vec{b}^2 = 1$$
$$\vec{a}^2 - 2\vec{a}\vec{b} + \vec{b}^2 = 1$$
$$\vec{a}^2 + \vec{a}\vec{b} - 2\vec{b}^2 = 0.$$

Rešitev sistema je $\vec{a}^2 = \frac{5}{9}, \ \vec{a}\vec{b} = -\frac{1}{9}$ in $\vec{b}^2 = \frac{2}{9}$. S tem smo dobili

$$|\vec{a}| = \frac{\sqrt{5}}{3}, \qquad \vec{a}\vec{b} = -\frac{1}{9}, \qquad |\vec{b}| = \frac{\sqrt{2}}{3}.$$

Izračunajmo še kot med \vec{a} in \vec{b} . Imamo

$$\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

$$= \frac{-\frac{1}{9}}{\frac{\sqrt{5}}{3} \cdot \frac{\sqrt{2}}{3}}$$

$$= -\frac{1}{\sqrt{10}}$$

$$\varphi = \arccos(-\frac{1}{\sqrt{10}})$$

$$\approx 108^{\circ}$$

3. Dani sta točki A(2,3,-1) in B(4,-1,1) v prostoru \mathbb{R}^3 . Za vsako od točk P(2,4,-1), Q(3,1,0), R(-2,11-5) raziščite, ali leži na daljici \overline{AB} in ali leži na premici skozi A in B.

Ideja. Najprej poiščimo enačbo premice ℓ , ki poteka skozi točki A in B. Ker je $\overrightarrow{AB}=(2,-4,2)$ kanonična oblika premice ℓ je

$$\ell: \frac{x-1}{2} = \frac{y-3}{-4} = \frac{z+1}{2}.$$

Vektorska oblika enačbe premice ℓ je

$$\ell = (2, 3, -1) + \lambda(2, -4, 2).$$

Opazimo, za $\lambda=0$ v vektorski obliki dobimo točko A(2,3,-1), ter za $\lambda=1$ dobimo točko B(4,-1,1).

Rešitev. V ideji smo izračunali, da je vektorska oblika enačbe premice ℓ

$$\ell = (2, 3, -1) + \lambda(2, -4, 2)$$

ter, da za $\lambda = 0$ v vektorski obliki dobimo točko A(2,3,-1), ter za $\lambda = 1$ dobimo točko B(4,-1,1). To implicira

$$\overline{AB}$$
: $(2,3,-1) + \lambda(2,-4,2)$, $(0 \le \lambda \le 1)$

(za vrednosti λ od 0 do 1, bomo dobili vse točke segmenta \overline{AB}). Za $\lambda = \frac{1}{2}$ imamo

$$(2,3,-1) + \lambda(2,-4,2) = (2,3,-1) + \frac{1}{2}(2,-4,2)$$
$$= (2,3,-1) + (1,-2,1)$$
$$= (3,1,0)$$
$$= Q.$$

Torej točka Q leži na daljici \overline{AB} . Za $\lambda = -2$ imamo

$$(2,3,-1) + \lambda(2,-4,2) = (2,3,-1) + (-2) \cdot (2,-4,2)$$
$$= (2,3,-1) + (-4,8,-4)$$
$$= (-2,11,-5)$$
$$= B$$

Torej točka Q ne leži na daljici \overline{AB} , ampak leži na premici ℓ , ki poteka skozi A in B. Na koncu obravnavamo še točko P(2,4,-1). Če želimo da dobimo prvo koordinato = 2, za λ moramo vstaviti 0. Ampak za $\lambda=0$ dobimo točko A. Če razmislimo, bomo izvedeli, da ne obstaja $\lambda\in\mathbb{R}$, ki nam bo podala točko P, kar implicira $P\not\in\ell$.

Komentar. Spomnimo se, razdaljo med dvema točkama $X(x_1, y_1, z_1)$ in $Y(x_2, y_2, z_2)$ je

$$|\overline{XY}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

Zdaj, na primer, če obravnavamo točko Q, in poiščemo razdaljo |AQ|, vrednost, ki je bomo dobili tukaj ne pomeni nič, glede tega ali je $Q \in \ell(a,b)$. Ampak, če vemo da $Q \in \ell$ drži, ta razdalja nam na nek način lahko pomaga da sklepamo, ali je $Q \in \overline{AB}$.

II metoda

Najprej izrčunamo vektor $\overrightarrow{AB}=(2,-4,2)$, in opazujemo krajevne vektorje točk P,Q in R, to je $\vec{r}_P=(2,4,-1), \, \vec{r}_Q=(3,1,0)$ in $\vec{r}_R=(-2,11-5)$. Zdaj obravnavamo, ali je mogoče da vektor $\vec{r}_P-\vec{r}_A$ napišemo kot linearno kombinacijo vektorja \overrightarrow{AB} (kjer je $\vec{r}_A=(2,3,-1)$ krajevni vektor točke A). Podobno obravnavamo $\vec{r}_Q-\vec{r}_A$ in $\vec{r}_R-\vec{r}_A$.

4. Dana je matrika

$$A = \begin{bmatrix} 3 - x & 2 & 2 \\ 2 & 4 - x & 1 \\ -2 & -4 & -1 + x \end{bmatrix}.$$

- (a) Določite vse vrednosti $x \in \mathbb{R}$ tako, da bo A obrnljiva matrika.
- (b) Za x = 2 izračunajet A^{-1} .
- (c) Z upoštevanjem dela (b) naloge rešite matrično enačbo $XA I = A^2$.

Ideja. (a) Matrika A bo obrnljiva če in samo če $\det(A) \neq 0$. Izračunajmo determinanto matrike A.

Rešitev. (a) Imamo

$$\det(A) = \begin{vmatrix} 3-x & 2 & 2 \\ 2 & 4-x & 1 \\ -2 & -4 & -1+x \end{vmatrix}$$

$$I_{\underline{S+(II_S+III_S)}} \begin{vmatrix} 7-x & 2 & 2 \\ 7-x & 4-x & 1 \\ -7+x & -4 & -1+x \end{vmatrix}$$

$$= (7-x) \begin{vmatrix} 1 & 2 & 2 \\ 1 & 4-x & 1 \\ -1 & -4 & -1+x \end{vmatrix}$$

$$= (7-x) \begin{vmatrix} 0 & -2 & 1+x \\ 0 & -x & x \\ -1 & -4 & -1+x \end{vmatrix}$$

$$= (7-x) \cdot (-1) \begin{vmatrix} -2 & 1+x \\ -x & x \end{vmatrix}$$

$$= (x-7) \cdot x \begin{vmatrix} -2 & 1+x \\ -1 & 1 \end{vmatrix}$$

$$= x(x-7)(-2+1+x)$$

$$= x(x-7)(x-1).$$

Opazimo, da je $\det(A) \neq 0$ natanko tedaj, ko je $x \in \mathbb{R} \setminus \{0, 1, 7\}$. Lahko sklepamo, matrika A obrnljiva za vse $x \in \mathbb{R} \setminus \{0, 1, 7\}$.

Rešitev. (b) Za x=2 bomo dobili $A=\begin{bmatrix}1&2&2\\2&2&1\\-2&-4&1\end{bmatrix}$ ter $\det(A)=-10$. Za domačo nalogo, razložite kako smo prišli do inverzne matrike:

$$A^{-1} = \frac{1}{-10} \begin{bmatrix} 6 & -10 & -2 \\ -4 & 5 & 3 \\ -4 & 0 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} -\frac{3}{5} & 1 & \frac{1}{5} \\ \frac{2}{5} & -\frac{1}{2} & -\frac{3}{10} \\ \frac{2}{5} & 0 & \frac{1}{5} \end{bmatrix}$$

(obstajata dve različne metode, ki jih lahko uporabite).

Rešitev. (c) Rešimo matrično enačbo $XA - I = A^2$.

$$XA - I = A^{2}$$

$$XA = A^{2} + I$$

$$X = (A^{2} + I)A^{-1}$$

$$X = A + A^{-1}.$$

Opazimo, da $XA = A^2 + I$ implicira $X = (A^2 + I)A^{-1}$ - enakost pomnožimo s A^{-1} s desne strane. Opazimo, da ne implicira, ne pišemo, $X = A^{-1}(A^2 + I)\#\#\#$ (enakost ne množimo s leve strani). V tem primeru bomo dobili enako vrednost za X.

$$A^{2} = \begin{bmatrix} 1 & -2 & 6 \\ 4 & 4 & 7 \\ -12 & -16 & -7 \end{bmatrix}$$

$$A^{2} + I = \begin{bmatrix} 2 & -2 & 6 \\ 4 & 5 & 7 \\ -12 & -16 & -6 \end{bmatrix}$$

$$X = (A^{2} + I)A^{-1}$$

$$= \begin{bmatrix} 2 & -2 & 6 \\ 4 & 5 & 7 \\ -12 & -16 & -6 \end{bmatrix} \cdot \frac{-1}{10} \begin{bmatrix} 6 & -10 & -2 \\ -4 & 5 & 3 \\ -4 & 0 & -2 \end{bmatrix}$$

$$= \frac{-1}{10} \begin{bmatrix} -4 & -30 & -22 \\ -24 & -15 & -7 \\ 16 & 40 & -12 \end{bmatrix}.$$

Torej

$$X = \begin{bmatrix} 2/5 & 3 & 11/5 \\ 12/5 & 3/2 & 7/10 \\ -8/5 & -4 & 6/5 \end{bmatrix}.$$

Krajša reštitev je

$$X = A + A^{-1}$$

$$= \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 1 \\ -2 & -4 & 1 \end{bmatrix} + \begin{bmatrix} -\frac{3}{5} & 1 & \frac{1}{5} \\ \frac{2}{5} & -\frac{1}{2} & -\frac{3}{10} \\ \frac{2}{5} & 0 & \frac{1}{5} \end{bmatrix}$$

$$= \begin{bmatrix} 2/5 & 3 & 11/5 \\ 12/5 & 3/2 & 7/10 \\ -8/5 & -4 & 6/5 \end{bmatrix}.$$

5. Naj bodo $a, b, c \in \mathbb{R}$. Pokažite, da sistem linearnih enačb

$$x + 2y + 3z = b - c$$
$$2x + 10y + 10z = 2a - 2c$$
$$-3x - 15y - 15z = 0$$

nima rešitve, razen če je a = c (odgovor natanko razložite). V tem primeru tudi poiščite rešitev.

Ideja. Uporabimo elementarne operacije ter napišimo razšireno matriko [A|b] v vrstični ešalon obliki.

Rešitev. Imamo

$$[A|b] = \begin{bmatrix} 1 & 2 & 3 & b-c \\ 2 & 10 & 10 & 2a-2c \\ -3 & -15 & -15 & 0 \end{bmatrix}$$

$$\xrightarrow{III_V/3} \begin{bmatrix} 1 & 2 & 3 & b-c \\ 1 & 5 & 5 & a-c \\ -1 & -5 & -5 & 0 \end{bmatrix}$$

$$\xrightarrow{III_V+II_V} \begin{bmatrix} 1 & 2 & 3 & b-c \\ 1 & 5 & 5 & a-c \\ 0 & 0 & a-c \end{bmatrix}$$

$$\xrightarrow{III_V-II_V} \begin{bmatrix} 1 & 2 & 3 & b-c \\ 1 & 5 & 5 & a-c \\ 0 & 0 & 0 & a-c \end{bmatrix}$$

$$\xrightarrow{II_V-I_V} \begin{bmatrix} 1 & 2 & 3 & b-c \\ 0 & 3 & 2 & a-b \\ 0 & 0 & 0 & a-c \end{bmatrix}.$$

Obravnavamo matriko

$$\begin{bmatrix} 1 & 2 & 3 & b - c \\ 0 & 3 & 2 & a - b \\ 0 & 0 & a - c \end{bmatrix}.$$
 (2)

Imamo rang(A)=2, in če je $a-c\neq 3$ imamo rank(A|b)=3. Spomnimo se, če je rang(A)< rang(A|b) potem je sistem protisloven. Ta primer bomo imeli natanko tedaj, ko je $a\neq c$. Če je a=c potem je rang(A)= rang(A|b)=2<3, kar implicira, da sistem ima neskončno mnogo rešitev. Naj bo t poljubno realno število. Če v matriko (2) vstavimo a=c imamo

$$\begin{bmatrix} 1 & 2 & 3 & b-a \\ 0 & 3 & 2 & a-b \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

kar implicira

$$z = t,$$

$$3y = a - b - 2t,$$

$$y = \frac{1}{3}(a - b - 2t),$$

$$x = b - a - 2y - 3t$$

$$= b - a - \frac{2}{3}(a - b - 2t) - 3t$$

$$= b - a - \frac{2}{3}a + \frac{2}{3}b + \frac{4}{3}t - 3t$$

$$= -\frac{5}{3}a + \frac{5}{3}b - \frac{5}{3}t.$$

Vse rešitve so $(x,y,z)=(-\frac{5}{3}a+\frac{5}{3}b-\frac{5}{3}t,\frac{1}{3}(a-b-2t),t)$, kjer je $t\in\mathbb{R}$ poljubno realno število.