Deep Learning: Overview and Hardware **Implementation**

MSc. Manuel Ríos

Universidad Rafael Landívar

October 17th, 2017

Outline

- AI, Machine Learning and Deep Learning
 - What is what?
- 2 Machine Learning Basics
 - Supervised, Unsupervised and Reinforcement Learning
- 3 Deep Learning Basics
 - History of Al

- Neural Networks
- 4 Applications of Al
 - When to apply AI?
 - Image Processing
 - Natural Language Processing
- 5 State of the Art
 - Software
 - Hardware

What is what?

Figure 1 : Deep Learning is a sub-field of Machine Learning, which in turn is a sub-field of Artificial Intelligence.

Outline

- Al, Machine Learning and Deep Learning
 - What is what?
- 2 Machine Learning Basics
 - Supervised, Unsupervised and Reinforcement Learning
- 3 Deep Learning Basics
 - History of Al

- Neural Networks
- 4 Applications of Al
 - When to apply AI?
 - Image Processing
 - Natural Language Processing
- 5 State of the Art
 - Software
 - Hardware

Supervised, Unsupervised and Reinforcement Learning

Supervised, Unsupervised and Reinforcement Learning

Figure 2: Types of Machine Learning.

Supervised Learning: Classification and Regression

Figure 3: Classification and Regression.

Classification Datasets

Figure 4: Dataset sizes.

Supervised, Unsupervised and Reinforcement Learning

Classification Datasets

Figure 5: CIFAR-10 Dataset.

Classification Datasets

Training set \rightarrow to fit the parameters [i.e., weights]

Validation set \rightarrow to tune the parameters [i.e., architecture]

Test set \rightarrow to assess the performance [i.e., generalization and predictive power]

batch size = the number of training examples in one forward/backward pass.

Outline

- AI, Machine Learning and Deep Learning
 - What is what?
- 2 Machine Learning Basics
 - Supervised, Unsupervised and Reinforcement Learning
- 3 Deep Learning Basics
 - History of Al

- Neural Networks
- 4 Applications of Al
 - When to apply AI?
 - Image Processing
 - Natural Language Processing
- 5 State of the Art
 - Software
 - Hardware

Three Waves of Al

- Cybernetics: biological learning and perceptron.
- Conectionism: backpropagation, one or two hidden layers.
- Deep Learning

Figure 6: Three historical waves of artificial neural nets.

Deep Learning

Deep Learning

"...one should not view deep learning as an attempt to simulate the brain. Modern deep learning draws inspiration from many fields, especially applied math fundamentals like linear algebra, probability, information theory, and numerical optimization."

Ian Goodfellow

research scientist at Google Brain

The Perceptron

- Mathematical model of a biological neuron.
- Creates a single output based on sum of many weighted inputs.
- Uses an activation function to create (slightly) non-linear behavior.

Figure 7: The perceptron.

The Perceptron: Activation Function

Figure 8: Different activation functions.

Cost Function

- An evaluation function that measures how well the machine learning algorithm maps the target function that it's striving to guess.
- Tells us that the rate at which the weight or bias learns is controlled by the error in the output.
- Most common used cost function is Cross Entropy.

$$C_0 = -\frac{1}{n} \sum_{y} [y \ln a + (1-y) \ln (1-a)]$$

where:

$$a = \sigma(x)$$

Regularization

Al, Machine Learning and Deep Learning

$$L1 \to C = C_0 + \frac{\lambda}{n} \sum_{i=1}^{k} |w_i|$$
 $L2 \to C = C_0 + \frac{\lambda}{n} \sum_{i=1}^{k} |w_i|^2$

Gradient Descent

Figure 9: Gradient descent and learning rates.

$$W_i = W_i - \mu \nabla C$$

Neural Networks

Figure 10: Neural Networks and Deep Learning Neural Network.

Neural Networks Example 1

Example 1

Figure 11: Neural network data classifier.

Neural Networks Example 2

Example 2

Figure 12: Neural network data classifier.

Outline

- Al, Machine Learning and Deep Learning
 - What is what?
- 2 Machine Learning Basics
 - Supervised, Unsupervised and Reinforcement Learning
- 3 Deep Learning Basics
 - History of Al

- Neural Networks
- Applications of Al
 - When to apply AI?
 - Image Processing
 - Natural Language Processing
- 5 State of the Art
 - Software
 - Hardware

When to apply AI?

When to apply AI?

What Machine Learning Can Do

A simple way to think about supervised learning.

INPUT A	RESPONSE B	APPLICATION
Picture	Are there human faces? (0 or 1)	Photo tagging
Loan application	Will they repay the loan? (0 or 1)	Loan approvals
Ad plus user information	Will user click on ad? (0 or 1)	Targeted online ads
Audio clip	Transcript of audio clip	Speech recognition
English sentence	French sentence	Language translation
Sensors from hard disk, plane engine, etc.	Is it about to fail?	Preventive maintenance
Car camera and other sensors	Position of other cars	Self-driving cars

SOURCE ANDREW NG

© HBR.ORG

Figure 13 : Applications for AI depends on the model: $INPUT A \rightarrow RESPONSE B$.

When to apply AI?

When to apply AI?

"If a typical person can do a mental task with less than one second of thought, we can probably automate it using Al either now or in the near future."

Andrew Ng

former VP & Chief Scientist of Baidu, Co-Founder of Coursera

When to apply AI?

Top Companies Investing in AI, by Industry

SOFTWARE AND IT	FINANCIAL SERVICES	MANUFACTURING	AUTOMOTIVE	INDUSTRIAL AUTOMATION
Google Microsoft Amazon Facebook Mitre IBM Deloitte	Bloomberg American Express TD Ameritrade Deutsche Bank Goldman Sachs BNP Paribas	Abb National Instruments Toshiba GE	Tesla Ford GM Toyota	Bosch Siemens Rockwell Automation Honeywell

HEALTHCARE	TELECOMMUNICATIONS	RETAIL	SEMICONDUCTORS	INTERNET
GE Healthcare	Huawei	Walmart	Intel	Google
Nuance	Nokia	Gamestop	Texas instruments	Facebook
Mayo Clinic	BT Group	Target	Microchip Technology	LinkedIn
Siemens Healthcare	Orange S.A.	Rakuten	Altera	Amazon
McKesson	Nippon	Best Buy	Imagination	
Massachusetts	Verizon	Barnes & Noble	Technologies	
General Hospital			ARM	
			Mellanox	
			Qualcomm	

Figure 14: Top companies investing in AI, by industry.

Companies Investing in AI, by Categories

Figure 15: Subcategories of AI technologies and companies investing.

Convolutional Neural Networks, CNN

Figure 16: Convolutional Neural Network, LeNet Architecture

Convolutional Neural Networks, CNN

Figure 17: Convolutional Neural Network, MNIST

Recurrent Neural Networks, RNN

Figure 18: Recurrent Neural Network, RNN

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Figure 19: A 3-layer RNN with 512 hidden nodes on each layer can learn English by using Shakespeare works.

Outline

- Al, Machine Learning and Deep Learning
 - What is what?
- Machine Learning Basics
 - Supervised, Unsupervised and Reinforcement Learning
- 3 Deep Learning Basics
 - History of Al

- Neural Networks
- 4 Applications of Al
 - When to apply AI?
 - Image Processing
 - Natural Language Processing
- 5 State of the Art
 - Software
 - Hardware

Different AI Frameworks

	Caffe	TORCH	theano	**TensorFlow **
Language	C++, Python	Lua	Python	Python
Pretrained	Yes	Yes	Yes (Lasagne)	Inception
Parallel GPUs: Data	Yes	Yes	Yes	Yes
Parallel GPUs: Model	No	Yes	Experimental	Yes (best)
Readable Source Code	Yes (C++)	Yes	No	No
Good at RNN	No	Mediocre	Yes	Yes (best)
Higher-Level APIs	No	No	Keras	Keras, TFLearn

Figure 20: Comparison between different AI frameworks

Hardware

Different Al Hardware Platforms

Figure 21: Comparison between different AI hardware platforms

Training vs. Inferencing

Figure 22: Training in the cloud/datacenter & Inferencing at the edge.

Hardware

FPGA Hardware Platform

The PYNQ-Z1 Board & XILINX ZYNQ

Processor: Dual-Core ARM® Cortex®-A9 FPGA: 1.3 M reconfigurable gates Memory: 512MB DDR3 / FLASH

Storage: Micro SD card slot Video: HDMI In and HDMI Out Audio: Mic in, Line Out

Network: 10/100/1000 Ethernet

Expansion: USB Host connected to ARM PS Interfaces: 1x Arduino Header, 2x Pmod (49 GPIO) GPIO: 16 GPIO (65 in total with Arduino and Pmods) Other I/O: 6x User LEDs. 4x Pushbuttons. 2x Switches

Dimensions: 3.44" x 4.81" (87mm x 122mm)

Figure 23: The PYNQ-Z1 Board.

FPGA Hardware Platform

Hardware

Figure 24: The Zynq APSoC architecture.

Binarized Neural Networks

Figure 25: Real-valued neural networks and binary neural networks.