

Estrutura de Dados e Algoritmos

- Motivação: Definir ordem entre funções.
- Avaliação pontual -> Não tem sentido:
 - f(N) < g(N)?

Forma de Análise: Taxa de crescimento.

$$T(N) = 1000N$$

- Apesar de 1000N ser maior que N² para N pequenos, a taxa de crescimento de N² é maior e ultrapassa 1000N para N>1000. Logo, N² é maior que 1000N.
- Há um valor de N (n_0) a partir do qual c.f(N) será sempre, no mínimo, tão grande quanto T(N). Neste caso: n_0 =1000 e c=1. Outra possibilidade seria n_0 =100 e c=10.

 Concluindo, podemos dizer que a taxa de crescimento de T(N)=1000N é menor ou igual à taxa de crescimento de f(N)=N².

Notação O

$$T(N) = O(f(N))$$
, se houver as constantes positivas c e n_o , tal que $T(N) \le cf(N)$, quando $N \ge n_o$.

- Se T(N) = O(f(N)): estamos guarantindo que a função T(N) cresce a uma taxa igual ou inferior à f(N).
- Ainda, f(N) representa o limite superior de T(N).

Notação O

Notação Ω

$$T(N) = \Omega(f(N))$$
, se houver as constantes positivas c e n_o , tal que $T(N) \ge cf(N)$, quando $N \ge n_o$.

- Se $T(N) = \Omega(g(N))$: estamos guarantindo que a função T(N) cresce a uma taxa igual ou superior à g(N).
- Ainda, g(N) representa o limite inferior de T(N).

Notação Ω

Notação Θ

$$T(N) = \Theta(h(N))$$
, se e somente se $T(N) = O(h(N))$ e $T(N) = \Omega(h(N))$.

• Se $T(N) = \Theta(h(N))$: estamos guarantindo que a função T(N) cresce a uma taxa igual à h(N).

Notação Θ

$$N^2 = O(N^3)$$

$$N^3 = \Omega(N^2)$$

$$f(N) = N^2$$
, $g(N) = 2N^2 + N$

$$f(N) = O(g(N)) e f(N) = \Omega(g(N)) \rightarrow f(N) = \Theta(g(N))$$

$$f(N) = 2N^2 + 3N$$

$$f(N) = O(N^4), f(N) = O(N^3), f(N) = O(N^2)$$

Colocando:

$$f(N) = \Theta(N^2) -$$

Implica não só que $f(N) = O(N^2)$, mas também que N^2 é a ordem de crescimento que melhor se ajusta ao comportamento assintótico de f(N).

- Se $T_1(N) = O(f(N)) e T_2(N) = O(g(N))$, então:
 - a) $T_1(N) + T_2(N) = O(f(N) + g(N));$
 - b) $T_1(N) \times T_2(N) = O(f(N) \times g(N));$
- Se T(N)é um polinômio de ordem k, então:
 - a) $T(N) = \Theta(N^k)$
- $log^k N = O(N)$ para qualquer constante k. Isto indica que logaritmos crescem muito lentamente.

Taxas de Crescimento Típicas:

• C

- Constante;

logN

- Logarítmica;

• log^2N

Log quadrática;

N

- Linear;

- N.logN
- N²

Quadrática;

N³

- Cúbica;

• 2^N

– Exponencial;

Taxas de Crescimento Típicas:

- Considere quaisquer funções com, por exemplo, uma variável independente n (como n+10 ou n²+1):
- A análise de algoritmos ignora os valores pequenos e concentra-se em instâncias grandes para n (n \rightarrow + ∞).
- Para valores enormes de n, as funções n², (3/2)n², 9999n², n²/1000, n²+100n crescem todas com a mesma velocidade.
- Esse tipo de análise matemática é chamada assintótica.
 Nessa análise, as funções são classificadas em ordens.
- As cinco funções acima, por exemplo, pertencem à mesma ordem e são, portanto, equivalentes.

 Assim, podemos não considerar constantes ou termos de ordens baixas:

a)
$$T(N) = O(2N^2)$$
,

b)
$$T(N) = O(N^2 + N)$$
,

c)
$$T(N) = O(N^2 + 7)$$
,

$$T(N) = O(N^2)$$

Não faz sentido:

a)
$$f(N) \leq O(g(N))$$
,

b)
$$f(N) \ge O(g(N))$$
,