Bisection Method With Different Termination Conditions

Mayank Pathania 204103314

February 5, 2021

1 Problem a) xe^x

1.1 Parameters

 $\begin{array}{lll} {\rm start_point:} & -1 \\ {\rm end_point:} & 2 \\ {\rm increment:} & 3 \\ {\epsilon:} & 10^{-9}; \end{array}$

1.2 Convergence for different termination conditions

ro	oot	$ f(mid) < \epsilon$	$ b-a <\epsilon$	$\frac{ b-a }{ b } < \epsilon$	$ f(b) - f(a) < \epsilon$
	0	32	35	did not converge	35
To	otal	33	36	541	36

Table 1: function evaluations for different termination criteria

1.3 Observations

For termination condition $\frac{|b-a|}{|b|} < \epsilon$ the algorithm did not converge because the values of b and a become very close to zero near the root and the division by b gives a larger number than ϵ .

2 Problem b) $x^3 - 2x + 1$

2.1 Parameters

 $\begin{array}{lll} {\rm start_point:} & -2 \\ {\rm end_point:} & 2 \\ {\rm increment:} & 0.5 \\ {\epsilon:} & 10^{-9}; \end{array}$

2.2 Convergence for different termination conditions

root	$ f(mid) < \epsilon$	$ b-a <\epsilon$	$\frac{ b-a }{ b } < \epsilon$	$ f(b) - f(a) < \epsilon$
-1.61803	32	32	32	35
0.618034	64	67	68	70
1	93	not produced	99	101
Total	95	99	101	103

Table 2: function evaluations for different termination criteria

2.3 Observations

- The function evaluations are cumulative.
- For termination condition $\frac{|b-a|}{|b|} < \epsilon$ the mid point itself become the root but points a and b are far so in next iteration the a becomes mid and the algorithm do not find the zero.

3 Problem c) $sin(x) - \frac{1}{x}$

3.1 Parameters

 $\begin{array}{lll} start_point: & 1 \\ end_point: & 3 \\ increment: & 0.5 \\ \epsilon: & 10^{-9}; \end{array}$

3.2 Convergence for different termination conditions

root	$ f(mid) < \epsilon$	$ b-a <\epsilon$	$\frac{ b-a }{ b } < \epsilon$	$ f(b) - f(a) < \epsilon$
1.11414	24	32	32	33
Total	29	36	36	37

Table 3: function evaluations for different termination criteria

3.3 Observations

- The termination condition $|f(mid)| < \epsilon$ do not converge at poles and is caught in an infinite loop.
- The termination condition $|b-a| < \epsilon$ gives poles as root and a check for function value can be used to eliminate such points from solution.