① Budget constraint: $P_x X + P_y Y = I$ But since $\frac{Y}{X} = 3$, or Y = 3X we can sub in budget constraint to get $P_x X + P_y 3P_x = I$ $\Rightarrow X (P_x + 3P_y) = I \Rightarrow X^* = \frac{I}{(P_x + 3P_y)}$ and since Y = 3X, $Y^* = \frac{3I}{(P_x + 3P_y)}$

(2) a) $U(x,y) = xy^{\frac{1}{2}}$ $A = xy^{\frac{1}{2}} + \lambda (I - l_x x - l_y y)$ $\frac{\partial \mathcal{E}}{\partial x} = y^{\frac{1}{2}} - \lambda l_x = 0 \quad \frac{\partial \mathcal{E}}{\partial y} = \frac{1}{2} x y^{\frac{1}{2}} - \lambda l_y = 0 \quad \frac{\partial \mathcal{E}}{\partial \lambda} = I - l_x x - l_y y = 0$ $\frac{1}{2} \frac{y'' l_x}{l_y} \qquad \lambda = \frac{1}{2} \frac{1}{2}$

 $\Rightarrow \chi^{*} = \frac{1}{3}(\frac{1}{P_{x}}) \text{ and Since } Y = \frac{1}{2P_{y}}, Y = \frac{1}{2P_{y}} = 3(\frac{1}{P_{y}})$ $\Rightarrow \chi^{*} = \frac{1}{3}(\frac{1}{P_{x}}) \text{ and Since } Y = \frac{1}{2P_{y}}, Y = \frac{1}{2P_{y}} = 3(\frac{1}{P_{y}})$ $\Rightarrow \frac{1}{2P_{y}} = \frac{1}{2P_{y}}$

(3) a) For 2a)
$$X=2I/3e_X \Rightarrow P_XX=\frac{2}{3}I \Rightarrow p_0.2 \pm 4$$

Consumer spends a constant fraction (2/3) of

Income on X And since $Y=I/3e_Y \Rightarrow P_YY=(\frac{1}{3})I$,

Consumer spends $I/3$ of income on $I/3e_YY=(\frac{1}{3})I$,

Consumer spends $I/3$ of income on $I/3e_YY=(\frac{1}{3})I$,

For 2b) $X=I\left[\frac{1}{P_X(P_XY^1P_YY^1e_Y)}\right] \Rightarrow P_XX=I\left[\frac{1}{(P_XY^1P_YY^1e_Y)}\right]$

Fraction of income

 $I/3e_XY=I/3e_XY^1e_YY^1e_YY=I/3e_XY^1e_YY=I/3e_XY^1e_YY=I/3e_XY^1e_YY=I/3e_XY^1e_YY=I/3e_XY^1e_YY=I/3e_XY^1e_YY=I/3e_XY^1e_XY^1e_YY=I/3e_XY^1e_XY^$

x'= tI [tlx((tlx)1/2(tly)-1/2+1)] $= \frac{t}{t} I \left[\frac{1}{t^{1/2} t^{-1/2} (P_{x}^{1/2} P_{y}^{-1/2} + 1)} \right] = X$

> homogeneous of degree O

$$\begin{array}{ccc}
(4) & V(P_{x}, P_{y}, I) = (\frac{2}{3} \overline{E}) (\frac{1}{3} \overline{E})^{1/2} \\
&= \frac{2}{3} (\frac{1}{3})^{1/2} \frac{I^{3/2}}{R_{y}^{3/2}}
\end{array}$$

b)
$$S = P_{x} \times + P_{y} + \lambda (u - x + \frac{1}{2})$$
 $\frac{\partial S}{\partial x} = P_{x} - \lambda + \frac{1}{2}y + \lambda (u - x + \frac{1}{2})$
 $\frac{\partial S}{\partial x} = P_{x} - \lambda + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = P_{y} - \lambda + \frac{1}{2}x + \frac{1}{2}y = 0$
 $\frac{\partial S}{\partial y} = \frac{1}{2}x + \frac{1}{2$

$$u = \frac{3}{2} \frac{1}{2} \frac{P_{y}}{P_{y}} \frac{1}{2} \Rightarrow u \left(\frac{1}{2} \frac{P_{x}}{P_{y}}\right)^{-1/2} = \frac{3}{2} \frac{3}{2} \frac{1}{2} \frac{P_{y}}{P_{x}} \frac{1}{2} \frac{3}{2} \frac{1}{2} \frac{P_{y}}{P_{x}} \frac{1}{2} \frac{1}{2} \frac{2}{2} \frac{P_{y}}{P_{x}} \frac{1}{2} \frac{1}{2} \frac{2}{2} \frac{1}{2} \frac{P_{y}}{P_{x}} \frac{1}{2} \frac{1}{2} \frac{2}{2} \frac{1}{2} \frac{P_{x}}{P_{x}} \frac{1}{2} \frac{P_{x}$$

50,
$$E(P_{x}, P_{y}, u) = P_{x} \left(\frac{2u^{2}P_{y}}{P_{x}}\right)^{\frac{1}{3}} + P_{y} \left[\frac{1}{2}(2u^{2})^{3}(\frac{P_{x}}{P_{y}})^{\frac{1}{3}}\right]$$

$$= (2u^{2})^{3} P_{x}^{2/3} P_{y}^{3/3} + \frac{1}{2}(2u^{2})^{3} P_{x}^{2/3} P_{y}^{3/3}$$

$$= \frac{3}{2}(2u^{2})^{3} P_{x}^{2/3} P_{y}^{3/3} = 3(\frac{9}{2})^{\frac{1}{3}} P_{x}^{2/3} P_{y}^{3/3}$$

C)
$$U = (\frac{1}{3})(\frac{1}{3})^{\frac{1}{2}} \frac{E^{\frac{3}{2}}}{P_{x}P_{y}^{-\frac{1}{3}}} \Rightarrow U^{\frac{1}{3}} = (\frac{\frac{1}{3}}{3})^{\frac{1}{3}}(\frac{1}{3})^{\frac{1}{3}} \in P_{x}^{-\frac{1}{3}}P_{y}^{-\frac{1}{3}}$$

$$\Rightarrow E = U^{\frac{1}{3}}(\frac{3}{2})^{\frac{1}{3}}(3)^{\frac{1}{3}}P_{x}^{\frac{1}{3}}P_{y}^{\frac{1}{3}} = (\frac{1}{3})^{\frac{1}{3}}P_{x}^{\frac{1}{3}}P_{y}^{\frac{1}{3}}$$

d)
$$X = \frac{2}{3}(\frac{30}{1/2}) = 40$$
 $Y = \frac{1}{3}(\frac{30}{1}) = 10$

- f) 1.00 (40) + 1.00 (10) = 50 Given I = 30, we would have to give him 20.
- g) $U = 40 (10)^{1/2} = 126.491$. Alternatively you can use indirect utility function: $\frac{1}{3}(\frac{1}{3})^{1/2}(\frac{30^{3/2}}{1/2}) = 126.491$
- n) Ux expenditure function: 3 ((126.491) 3/3 (1) 21) 1/3 = 47.62

 So we would have to increase his income of 30 by 17.62
- i) The lump sum in part of which Keeps the original consumption bundle affordable is greater than the lump sum in part i, which Keeps the original utility level the same.

5.

If $U(x, y) = \min(x, y)$, utility maximization requires x = y. Substitution into the budget constraint yields $x = I/(p_x + p_y) = y$. Hence,

$$V(p_x, p_y.I) = \frac{I}{p_x + p_y},$$

 $E(p_x, p_y.V) = (p_x + p_y)V.$

If U(x, y) = x + y, utility maximization requires the purchase of whichever of these two perfect substitutes has the lower price. So, if $p_x > p_y$, x = 0, $y = I/p_y$. If $p_x < p_y$, $x = I/p_x$, y = 0. Given these results,

$$V(p_x, p_y.I) = \frac{I}{\min(p_x, p_y)},$$

$$E(p_x, p_y, V) = \min(p_x, p_y)V.$$