Getting to know your data

Data objects and attribute types
Basic statistical descriptions of data

Based on Data Mining – Concept and Techniques, Jiawei Han, Micheline Kamber & Jian Pei

Data objects and attribute types

What is data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, or feature
 - Numeric, categoric, etc.
- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, instance, or row.

Attributes

1				
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes
			6	raet

Objects

Transaction data

- A special type of record data, where
 - each record (transaction) involves a set of items.
 - for example, set of products purchased by a customer

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Data quality

- Coverage rows
- Completeness columns
- Cleanliness error in your data
- Timeliness are the data up-to-date
- Consistency are the data presented in the same format?

Types of attributes

Nominal

• Examples: ID numbers, eye color, zip codes

Ordinal

 Examples: rankings (e.g., taste of potato chips on a scale from 1-10), height in {tall, medium, short}

Interval

 Examples: calendar dates, temperatures in Celsius or Fahrenheit.

Ratio

• Examples: length, counts

Basic statistical description of data

Measuring the central tendency

• Mean (algebraic measure) (sample vs. population):

- Note: n is sample size and N is population size:
- Weighted arithmetic mean:

$$\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

• Median:

- Med(X)=x such that $P\{X \le x\} \ge 0.5$ and $P\{X \ge x\} \ge 0.5$
- Middle value if odd number of values, or average of the middle two values otherwise:
- Estimated by interpolation (for *grouped data*):

Mode:

- Value that occurs most frequently in the data
- Empirical formula: $mean-mode=3\times(mean-median)$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \mu = \frac{\sum x}{N}$$

 f_m – frequency within the median interval m;

c − median interval length

Example median based on grouped data

Suppose that the values for a given set of data are grouped into intervals. The intervals and corresponding frequencies are as follows:

Age	Frequency
1-5	200
5-15	450
15-20	300
20-50	1500
50-80	700
80-110	44

Compute an approximate median value for the data.

Answer:

Using Equation $median = L_1 + (\frac{n/2 - (\sum f)l}{f_{median}})c$, we have $L_1 = 20$, N = 3194, $(Sum(freq))_l = 950$, $freq_{median} = 1500$, width = 30, median = 32.94 years. 20 + ((1597-950)/1500)*30.

Discrete distributions

X~U(N)

$$Median = \frac{N+1}{2}$$
 | Mode |

$$V[X] = \frac{N^2 - 1}{12}$$

$$E[X] = \frac{N+1}{2}$$

X~Bin(n,p)

$$\lfloor np \rfloor \le \text{med} \le \lceil np \rceil$$

$$mode = \lfloor (n+1)p \rfloor$$

$$V[X] = np(1-p)$$

$$E[X] = np$$

• X~G(p)

$$\frac{-\ln(2)}{\ln(1-p)}$$

Mode 1

$$V[X] = \frac{1-p}{p^2} \quad E$$

Bin(20,0.1)

Bin(20,0.5)

Bin(20,0.8)

Continuous distributions

Symmetric vs. Skewed data

Median, mean and mode of symmetric, positively and negatively skewed data

X – The predictor variable

$$n$$
 - The # of variables

skewness =
$$\frac{\sum (x_i - \overline{x})^3}{(n-1)v^{3/2}}$$

where
$$v = \frac{\sum (x_i - \overline{x})^2}{(n-1)}$$

Mean

Median Mode

Dispersion of data

Quartiles, outliers and boxplots

- Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
- Inter-quartile range: $IQR = Q_3 Q_1$
- Five number summary: min, Q₁, median, Q₃, max
- Boxplot: ends of the box are the quartiles; median is marked;
- Outlier: usually, a value higher/lower than 1.5 x IQR

Dispersion of data

Variance and standard deviation (sample: s, population: σ)

$$V[X] = E[(X - \mu_X)^2] = \sum_{k} (k - \mu_X)^2 \cdot P\{X = k\}$$

$$\sigma_X = \sqrt{V[X]}$$

- a. $V[X]=E[X^2]-(E[X])^2$
- b. V[X]≥0
- c. $V[aX+b]=a^2V[X]$

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right]$$

Central Limit Theorem

- N i.i.d. random variables X_i with mean μ , variance σ^2
- Assume : $\bar{x}_N = \frac{1}{N} \sum_i x_i$

a.
$$E(\bar{x}_N) = \mu$$

b.
$$Var(\bar{x}_N) = \frac{1}{N}\sigma^2$$

- According to the central limit theorem : $f(\bar{x}_N) \sim \mathcal{N}\left(\mu, \frac{1}{N}\sigma^2\right)$
- Assume $Z_N = \frac{\bar{x}_N \mu}{\sigma/\sqrt{N}}$ then, $f(Z_N) \sim \mathcal{N}(0,1)$

Properties of normal distribution curve

The normal (distribution) curve

- From μ – σ to μ + σ : contains about 68% of the measurements (μ : mean, σ : standard deviation)
- From μ –2 σ to μ +2 σ : contains about 95% of it
- From μ –3 σ to μ +3 σ : contains about 99.7% of it

Graphic Displays of Basic Statistical Descriptions

- Boxplot
- Histogram
- Quantile plot
- Quantile-quantile (q-q) plot
- Scatter plot

Histograms: The same boxplot representation (min, Q1, median, Q3, max)

Quantile plot: % of the data are below or equal to the value (increasing order)

q-q plot: % quantiles of one univariate distribution against the corresponding quantiles of another

Scatter plot: Each pair of values is treated as a pair of coordinates

Covariance and Correlation co-efficient

Covariance:

$$Cov(x, y) = E\{(x - \mu_x)(y - \mu_y)\} = E(x \cdot y) - \mu_x \mu_y$$

a. if x and y are independent then : $E(x \cdot y) = E(x)E(y) = \mu_x \mu_y \rightarrow Cov(x,y) = 0$

Correlation co-efficient

$$\rho(x,y) = \frac{Cov(x,y)}{\sigma_x \sigma_y}$$

a. if *x* and *y* are independent then : $\rho(x, y) = 0$

b.
$$|\rho(x, y)| \le 1$$

c.
$$|\rho(x,y)| = 1 \Leftrightarrow y = ax + b$$

Scatter plot and correlation co-efficient

For independent variables :

$$E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y) = E(X)E(Y) - E(X)E(Y) = 0$$

• If $COV(X,Y)=0 \neq > X,Y$ are independent $(Y = X^2)$

positively correlated

negative correlated

Thank you!

