SUGGESTED EXERCISES: MODERN OPTIMIZATION

JEAN-LUC BOUCHOT

1. Introduction

2. Calculus-free optimization

Homework 1. Prove the following proposition:

Proposition 2.1 (Homework). The convexity of a function can equivalently be written as: If f is convex, then for any $\alpha_1, \dots, \alpha_n$ positive numbers such that $\alpha_1 + \dots + \alpha_n = 1$, if holds

$$f\left(\sum_{i} \alpha_{i} x_{i}\right) \leq \sum_{i} \alpha_{i} f(x_{i}).$$

Homework 2. Prove the following result:

Proposition 2.2 (Generalized AGM Inequality – Homework). Let x_1, \dots, x_n be positive numbers and let $\alpha_1, \dots, \alpha_n$ be positive numbers such that $\alpha_1 + \dots + \alpha_n = 1$. Then the GAGM inequality reads

$$\prod_{i=1}^{n} x_i^{\alpha_i} \le \sum_{i=1}^{n} \alpha_i x_i.$$

Homework 3. Use the generalized AGM to prove Hölder's inequality:

Proposition 2.3 (Höder's inequality – Homework). For two sequence of numbers $\{a_k, 1 \leq k \leq n\}$ and $\{b_k, 1 \leq k \leq n\}$, Hölder's inequality reads, for p, q such that $\frac{1}{p} + \frac{1}{q} = 1$ (we say that p and q are Hölder conjugates)

$$\sum_{k=1}^{n} |c_k d_k| \le ||c||_p ||d||_q$$

with equality if and only if

$$\left(\frac{|c_k|}{\|c\|_p}\right)^p = \left(\frac{|d_k|}{\|d\|_q}\right)^q, \quad \text{for all } k.$$

And use this result to prove the triangle inequality for general p norms (so called Minkowksi's inequality).

3. Geometric programming

Homework 4. Minimize the function $f_0(x,y) = \frac{1}{xy} + xy + x + y$ for x > 0 and y > 0. (You might need some help of a computer.)

4. Convex functions and analysis—review

Homework 5. Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex function defined on the whole of \mathbb{R}^d . Show that if f is bounded above, then f is constant.

Homework 6. Show that if dom(f) is closed, than it is not necessarily continuous.

Homework 7. Show that the ℓ_1 norm defined as $||x||_1 = \sum_{i=1}^d |x_i|$ is a convex function.

Homework 8. Show that the following function is convex:

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R} \\ x = (x_1, \cdots, x_n) & \mapsto & f(x) = \log\left(\sum_{i=1}^n e^{x_i}\right). \end{array} \right.$$

Date: April 29, 2021.

Homework 9. Let f be defined as

$$f(x,y) = x^{2}(1-y^{2}) + y^{2}(1-x^{2})$$

for $(x,y) \in [-1,1]^2$.

- (1) Show that the function f is convex along the canonical x axis. (Make sure to look at all directions parallel to the x axis, not just the one going through the point (0,0))
- (2) Show that the function f is convex along the canonical y axis. (same remark)
- (3) Show that the function f is not convex.

This example shows that canonical along all directions is not sufficient to show convexity globally.

Homework 10. Let $S_{\geq 0}^n := \{A \in \mathbb{R}^{n \times n} : A^T = A \text{ and } A \geq 0\}$ be the set of symmetric positive semidefinite matrices. Show that $S_{\geq 0}^n$ is a convex cone. For the case n=2, characterize its boundary as a surface in dimension 3.

Homework 11. Let $K := \{ \alpha \in \mathbb{R}^{n+1} : \sum_{i=0}^{n} \alpha_i x^i \geq 0, \forall x \in [0,1] \}$ be the set of (coefficients of) nonnegative polynomials on [0,1]. Show that K is a convex cone.

Homework 12. Let C and D be two disjoint subset of \mathbb{R}^d . Consider the set of separating hyperplanes $(a,b) \in \mathbb{R}^{d+1}$ such that $a^Tx - b \le 0$ for all $x \in C$ and $a^Tx - b \ge 0$ for all $x \in D$. Show that this set is convex.

Homework 13. Compute the Fenchel conjugate functions of

- (1) Negative entropy: $f(x) = x \ln(x)$.
- (2) ℓ_1 norm: $f(x) = ||x||_1$.
- (3) $f(x) = x^p$ for some p > 1.
- (4) $f(x) = \max_{1 \le i \le d} |x_i|$.

Homework 14. Show that a geometric programming problem can be expressed as a convex problem in standard form.

Homework 15. Express the first order condition when the inequality constraints are just positivity of the coordinates.

5. Gradient descent algorithms

Homework 16. Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined as

$$f(x) = \frac{2}{3}|x|^{3/2}.$$

Define a step size $\gamma > 0$.

- (1) Show that f is convex and admits a unique minimizer.
- (2) Define $x^* = \left(\frac{\gamma}{2}\right)^2$. Explain the sequence of iterates given by the vanilla gradient descent starting with $x^0 = x^*$.
- (3) Consider now $x^0 \in (0, x^*)$. What can be said about the sequence of iterates?
- (4) Conclude with regards to the use of Vanilla gradient descent without care.

Homework 17. Let $f(\mathbf{x}) := \mathbf{x}^T Q \mathbf{x} + c^T \mathbf{x}$ with

$$Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \kappa & 0 \\ 0 & 0 & \kappa^2 \end{pmatrix} \quad \text{and} \quad c = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Moreover, assume given the starting point $x^0 = (0,0,0)^T$.

- (1) Solve theoretically the unconstrained minimization problem.
- (2) Compute the condition number of the matrix Q.
- (3) Perform 3 iterations of the gradient descent for each $\kappa \in \{10^{-2}, 10^{-1}, 1, 10, 100, 1000\}$. Use the exact line search at each iteration for setting the step size.
- (4) Compare the results obtained after these iterations.
- (5) If you have access to a computer and wish to program something (or re-use the file shared with you), compare the number of iterations required for convergence with the condition number of Q.
- (6) Can you prove the observed behaviour?

Homework 18. Let Q be an $d \times d$ symmetric matrix, $b \in \mathbb{R}^d$ and c a scalar. Show that the function $f : \mathbb{R}^d \to \mathbb{R}$ defined as $f(x) = x^T Q x + b^T x + c$ is smooth with parameter $2\|Q\|$.

Homework 19 (Difficult). Prove the following theorem

Theorem 5.1. Let $f: \mathbb{R}^d \to \mathbb{R}$ be a L smooth convex differentiable function with a global minimum x^* . Then the iterates obtained by gradient descent with step size

$$\gamma = \frac{1}{L}$$

satisfy

$$f(x^K) - f(x^*) \le \frac{2L}{K+4} ||x^0 - x^*||^2.$$

Homework 20. We have seen a proof based on the mean value theorem to prove the equivalence between monotonicity of the derivative and the convexity of a univariate function. Prove the multivariate extension: A differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if dom(()f) is convex and

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge 0, \quad \forall x, y \in \text{dom}(()f).$$

Homework 21. Show that Nesterov's second accelerated gradient descent algorithm is equivalent to the first accelerated gradient descent (AGM1).

Proposition 5.1. Nesterov's accelerated gradient descent updates are equivalent to the following iterations.

$$x^{k+1} = y^k - \frac{1}{L} \nabla f(y^k)$$
$$y^{k+1} = \left(1 - \frac{1 - \lambda_k}{\lambda_{k+1}}\right) x^{k+1} + \frac{1 - \lambda_k}{\lambda_{k+1}} x^k,$$

where λ_k are defined recursively as

$$\lambda_0 = 0$$

$$\lambda_{k+1} = \frac{1 + \sqrt{1 + 4\lambda_k^2}}{2}.$$

Homework 22 (Programming assignment – obviously optional). Based on the given notebook, implement the second approach to Nesterov's acceleration and compare with the one given.

6. Constrained optimization: Projected methods

Homework 23. Let $\Omega \subset \mathbb{R}^d$ be a closed conex set. Show that the projection defined as

$$P_{\Omega}(x) := \underset{y \in \Omega}{\operatorname{argmin}} N(x - y)$$

where N denotes a certain given norm is not necessarily unique.

Homework 24. Assume Ω is a convex body. Show that the projection

$$P_{\Omega}(x) := \operatorname*{argmin}_{y \in \Omega} \|x - y\|_{2}$$

might not exist at all.

Homework 25. Show the following result:

Lemma 1. Let x^k be the sequence of iterates generated by the projected gradient descent of an L-smooth convex differentiable function f over a closed convex domain Ω . Then, using a fixed gradient step

$$\gamma = \frac{1}{L}$$

we have

$$f(x^{k+1}) \le f(x^k) - \frac{L}{2} ||x^{k+1} - x^k||^2$$

Homework 26. Prove the following result.

Proposition 6.1. Let $u \in \mathbb{R}^d$ be such that $u_i \geq 0$, for all $1 \leq i \leq d$ and $\sum_{i=1}^d u_i > 1$. For $p \in \{1, \dots, d\}$, define y(p) as

$$y(p)_i = u_i - \theta_p$$
, $1 \le i \le p$, and 0 for $i > p$.

Then

$$y(p^*) = \operatorname{argmin}_{x \in \Delta_d} ||x - u||_2$$

where

$$p^* = \max\{p : u_p - \frac{1}{p} \left(\sum_{i=1}^p u_p - 1 \right) > 0\}$$

and Δ_d defines the d dimensional unit simplex:

$$\Delta_d = \left\{ x \in \mathbb{R}^d : x_i \ge 0 \text{ and } \sum_{i=1}^d x_i = 1 \right\}.$$

7. Proximal methods

Homework 27. Let f be an L-smooth convex function and define $\{x^k\}$ the sequence of iterates obtained from the gradient descent with step size $\frac{1}{L}$. Show that

$$x^{k+1} = \mathop{\rm argmin}_{x \in \mathbb{R}^d} \frac{1}{2\gamma} \left\| x - \left(x^k - \gamma \nabla f(x^k) \right) \right\|_2.$$

School of Mathematics and Statistics, Beijing Institute of Technology $Email\ address$: jlbouchot@bit.edu.cn