S NO.	QUESTION	YEAR			
Note: The PINK coloured questions are from the reduced portion of syllabus as per CBSE guidelines.					
1.	Will the rate constant of the reaction depend upon T if the E_{act} (activation energy) of the	2020			
	reaction is zero?	2020			
2.	Analyse the given graph, drawn between concentration of reactant vs. time. 1.6- 1.	2020			
3.	Explain. How will the rate of the reaction be affected when (a) Surface area of the reactant is reduced, (b) Catalyst is added in a reversible reaction, and (c) Townsorture of the reaction is increased?	2020			
4.	(c) Temperature of the reaction is increased? How will the rate of the reaction be affected when (a) surface area of the reactant is increased, (b) temperature of the reaction is decreased, and (c) Catalyst is added in a reversible reaction?	2020			
5.	Calculate the overall order of the reaction whose rate law expression was predicted as : Rate $= k[NO]^{3/2}[O]^{1/2}$.	2020			
6.	A reaction is first order w.r.t. reactant A as well as w.r.t. reactant B. Give the rate law. Also give one point of difference between average rate and instantaneous rate	2020			
7.	Calculate the overall order of the reaction whose rate law is given by Rate = $k[NH_3]^{5/2}[O_2]^{1/2}$.	2020			
8.	Calculate the overall order of the reaction whose rate law is given by Rate = $k[SO_2]^{1/4} [O_2]^{3/4}$.	2020			
9.	Write the slope value obtained in the plot of $ln[R]$ vs. time for a first order reaction	2020			
10.	A first order reaction is 40% complete in 80 minutes. Calculate the value of rate constant (k). In what time will the reaction be 90% completed? [Given: $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 4 = 0.6021$, $\log 5 = 0.6771$, $\log 6 = 0.7782$]	2020			

16.	For a reaction				2019		
	$2H_2O_2 \xrightarrow{I^-} 2H_2O + O_2$						
	the proposed mechanism is as given below:						
	(1) $H_2O_2 + \Gamma \rightarrow H_2O + IO^-$ (slow)						
	(2) $H_2O_2 + IO^- \rightarrow H_2O + I^- + O_2$ (fast)						
	(i) Write rate law for						
	(ii) Write the overal (iii) Out of steps (1)			etermining step ?			
17.	The decomposition is 4 x 10 ⁻³ Ms ⁻¹ , how	of NH ₃ on plat	inum surface	is zero order reaction. If rate constant (k) he initial concentration of NH ₃ from	2019		
18.	0.1 M to 0.064 M. Define order of r	eaction. Pred	ict the order	of reaction in the given graphs :	2019		
19.	Define order of reaction. Predict the order of reaction in the given graphs : $(a) t_{1/2} $ $(b) t_{1/2} $ $(c) (d) $						
	Experiment	→ C [A]/M	[B]/M	Initial rate of formation of C /M min ⁻¹			
	1	0.2	0.3	4.2×10^{-2}			
	2	0.1	0.1	6.0×10^{-3}			
	3 0·4 0·3 1·68×10 ⁻¹						
	4	0.1	0.4	2.40×10^{-2}			
	 (a) Find the order of reaction with respect to A and B. (b) Write the rate law and overall order of reaction. (c) Calculate the rate constant (k). 						
20.	complex reaction?	ction is 50% co		a reaction differ from molecularity for a minutes. Calculate the time for 80%	2019		

			OR			
	(a) The decomposit					
	At what temperature	e would rate const	ant be $7.5 \text{ x} 10^4 \text{ s}^{-1}$	if energy of activat	ion is 19·147 x	
	10 ³ J mol ⁻¹ ?	n yndan whiab a b	im alaaylan maaatian	is lain ationally finat	andan Civa an	
	(b) Write a condition example of such a r			•		
21.	(a) Consider the rea					2019
	shown by the follow					
	 					
	Conc. [R]					
		ne t →				
	(i) Predict the order (ii) What does the s		ndicate ?			
	(b) The rate of react			inges from		
	293 K to 313 K. Ca				$R = 8.314 \text{ JK}^{-1}$	
	mol^{-1}]				_	
			OR	T71 . 1 .1		
	(a) Draw the plot of What is the relation			what does the interest	cept represent?	
	(b) A first order rea			nposition. Calculate	e t _{1/2} . [log 2 =	
	0.3010]		20,0 200		1/2. [108 =	
22.	Show that for a first				reaction is	2019
22	twice the time requi				*.1	2010
23.	The reaction between to B. For this reaction				with respect	2019
	to B. For this reaction	on, in in the bland	as in the following t	1	٦	
	Experiment	[A] mol/L	[B] mol/L	Initial Rate		
	1			Mol/L/min		
	I	0.1	0.1	$2 \cdot 0 \times 10^{-2}$		
	II	_	0.2	4.0×10^{-2}		
				107/10		
	III	0.4	0.4	_		
	IV	_	0.2	$2 \cdot 0 \times 10^{-2}$		
24.	For the reaction					2018
	$2N_2O_5(g)$	$\blacktriangleright 4NO_2(g) + O_2(g)$, 2 1			
	the rate of formation	of NO ₂ (g) is 2.8×1	0 ⁻³ M s ⁻¹ . Calculate t	he rate of disappeara	nce of N_2O_5 (g).	
25.	A first order reaction	is 50% completed in	n 40 minutes at 300 k	X and in 20 minutes a	at 320 K.	2018
	Calculate the activation					
2.5	JK ⁻¹ mol ⁻¹)	1.1				2017(07)
26.	What is the effect of a (a) Activation energy					2017(OD)
	(a) Activation energy (ΔG (b) Gibbs energy (ΔG					
						•

27.	A first order reaction takes 20 minutes for 25% decomposition. Calculate the time when 75% of					2017(OD)	
	the reaction will be completed.						
	(Given: $\log 2 = 0$						
28.	For a reaction R \longrightarrow P, half-life (t _{1/2}) is observed to be independent of the initial concentration						
	of reactants. What is the order of reaction?						
29.	Following data are obtained for the reaction:						
	$N_2O_5 \longrightarrow 2NO_2 + \frac{1}{2}O_2$						
	t/s	0		300	600		
	$[N_2O_5]/\text{mol }L^{-1}$	1.6	$\times 10^{-2}$	0.8×10^{-2}	0.4×10^{-2}		
	(a) Show that it fo	ollows first o	order reaction.				
	(b) Calculate the half-life.						
	(Given $\log 2 = 0$.)						
30.				in 40 minutes. Calculat	te its $t_{1/2}$.	2017(F)	
	(b) Predict the ord	der of the rea	action in the g	iven plots:			
	↑						
	(i) t _{1/2}						
	(i) t _{1/2}						
	[R] _o -	→					
	4	/					
	(ii) t _{1/2}						
	[R] _o -	─					
			ntration of rac	ectant (Given: log 2 -	$0.3010, \log 4 = 0.6021$		
31.					0.3010, log 4 = 0.0021)	2017(F)	
31.	The following data were obtained for the reaction: $2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$						
	Experiment [NO] / M [O ₂] / M Initial rate of formation of NO ₂ / M min ⁻¹						
	1	0.3	0.2	7.2×10^{-2}			
	2	0.1	0.1	6.0×10^{-3}			
	3	0.3	0.4	2.88×10^{-1}			
	4	0.4	0.1	2.40×10^{-2}			
	(a) Find the order of reaction with respect to NO and O_2 .						
	(b) Write the rate law and overall order of reaction.						
	(c) Calculate the rate constant (k).						
32.	For a reaction:		(/)•			2016(OD)	
J2.	$H_2 + Cl_2$ hv	2HCl				2010(0D)	
	Rate = k						
	(i) Write the orde	r and molecu	larity of this	reaction.			
	(ii) Write the unit		•				
33.	For the first order thermal decomposition reactions, the following data were obtained						
	$C_2H_3Cl(g) \longrightarrow C_2H_4(g) + HCl(g)$						
	Time/sec		Total pre	ssure			
	0		0.30				
	300 0.50						
	Calculate the rate constant. (Given: $\log 2 = 0.301$, $\log 3 = 0.4771$, $\log 4 = 0.6021$)						
34.						2016(D)	
	$2NH_3$ Fe $N_2 + 3H_2$, Rate = k						
	(i) Write the order and molecularity of this reaction.						
	(ii) Write the unit of k.						
l							

	The rate constant for the first order					2016(D)	
	$logK = 14.4 - \frac{1 \times 10^4 K}{T}$, Calculate	e E _a for this rea	ction and rate cor	stant k if its half	F-life period be		
	200 minutes. (Given: $R = 8.314 J$.)						
36.	For the hydrolysis of methyl aceta		olution, the follo	wing result are o	btained:	2015(OD)	
	t/s	0	10	20		2007(D)	
	$\frac{[CH_3COOCH_3]/molL^{-1}}{[CH_3COOCH_3]}$	0.10	0.05	0.025		2007(D)	
	(a) Show that it follows pseudo fi				emains constant		
	(b) Calculate the average rate of r						
	(Given : $\log 2 = 0.3010$, $\log 4$			1 10 10 20 500011	•0•		
37.	(a) For a reaction $A + B \rightarrow P$, the		v rate = $k[A][B]^2$			2015(OD)	
	(i) How is the rate of reaction affection			doubled?		2015(D)	
	(ii) What is the overall order of re					2007(D)	
	(b) A first order reaction takes 30				required for	2007(D)	
	90% completion of the reaction.		,				
38.	For the hydrolysis of methyl aceta	ate in aqueous s	solution, the follo	wing results were	e obtained:	2015(D)	
		0	30	60		2015(2)	
		0.60	0.30	0.15			
	(i) Show that is follows pseudo fin				emains constant		
	(ii) Calculate the average rate of r						
	(Given $\log 2 = 0.3010$, $\log 4 = 0.6$		ir the time mich va	1 30 to 00 secon	.		
39.	For a chemical reaction $R \rightarrow P$, the		e concentration (R) vs. Time(t) nl	ot is given as	2014(OD)	
37.	1 of a chemical reaction is 11, and	e variation in th	ie concentration (rty vs. Time(t) pr	ot is given as	2014(0D)	
	↑ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
	-11						
	(R)						
	(R)						
	$t \rightarrow$						
	$t \rightarrow$ (i) Predict the order of the reaction						
	t → (i) Predict the order of the reaction (ii) What is the slope of the curve	?					
40.	t → (i) Predict the order of the reactio (ii) What is the slope of the curve The following data were obtained	?	t order thermal de	ecomposition of 3	SO2<i>C</i>12 at a	2014(OD)	
40.	t (i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume:	?	t order thermal de	ecomposition of S	SO2Cl2 at a	2014(OD) 2014(D)	
40.	(i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume: $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$? during the firs			SO2Cl2 at a	, ,	
40.	(i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume: $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$ Experiment	? during the firs Times/s-1	Total pressu		SO2Cl2 at a	, ,	
40.	(i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume: $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$ Experiment 1	? during the firs Times/s ⁻¹	Total pressu		8 02<i>Cl</i>2 at a	, ,	
40.	(i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume: $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$ Experiment 1 2	? during the firs $Times/s^{-1}$ 0 100	Total pressu 0.4 0.7	re/atm	SO2Cl2 at a	, ,	
40.	(i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume: $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$ Experiment 1 2 Calculate the rate constant. (Given	? during the firs $\frac{Times/s^{-1}}{0}$ $\frac{100}{\text{n: } \text{Log } 4 = 0.60}$	Total pressu 0.4 0.7 21, Log 2 =0.301	re/atm 0)	SO2Cl2 at a	, ,	
40.	(i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume: $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$ Experiment 1 2 Calculate the rate constant. (Given Write two differences between 'or	? during the firs Times/s ⁻¹ 0 100 n: Log $4 = 0.60$ rder of reaction	Total pressu 0.4 0.7 21, Log 2 =0.301 ' and 'moleculari	re/atm 0) ty of reaction'.		, ,	
	(i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume: $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$ Experiment 1 2 Calculate the rate constant. (Given Write two differences between 'or	? during the firs Times/s ⁻¹ 0 100 n: Log $4 = 0.60$ rder of reaction	Total pressu 0.4 0.7 21, Log 2 =0.301 ' and 'moleculari	re/atm 0) ty of reaction'.		2014(D)	
41.	(i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume: $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$ Experiment 1 2 Calculate the rate constant. (Given	? during the firs Times/s ⁻¹ 0 100 n: Log $4 = 0.60$ rder of reaction	Total pressu 0.4 0.7 21, Log 2 =0.301 ' and 'moleculari	re/atm 0) ty of reaction'.		2014(D) 2014(D)	
41.	(i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume: $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$ Experiment 2 Calculate the rate constant. (Given Write two differences between 'or (a) For a reaction $A + B \rightarrow P$, the	? during the first $Times/s^{-1}$ 0 10	Total pressure 0.4 0.7 21 , Log $2 = 0.301$ ' and 'molecularien by, $\mathbf{r} = [\mathbf{A}]^{1/2}$	o) ty of reaction'. [B] ² What is the	order of this	2014(D) 2014(D)	
41.	(i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume: $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$ Experiment 2 Calculate the rate constant. (Given Write two differences between 'or (a) For a reaction $A + B \rightarrow P$, the reaction.	? during the first $Times/s^{-1}$ 0 10	Total pressure 0.4 0.7 21 , Log $2 = 0.301$ ' and 'molecularien by, $\mathbf{r} = [\mathbf{A}]^{1/2}$	o) ty of reaction'. [B] ² What is the	order of this	2014(D) 2014(D)	
41.	(i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume: $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$ Experiment 1 2 Calculate the rate constant. (Given Write two differences between 'or (a) For a reaction $A + B \rightarrow P$, the reaction. (b) A first order reaction is found	? during the firs Times/s ⁻¹ 0 100 n: Log $4 = 0.60$ reder of reaction e rate law is give to have a rate of	Total pressure 0.4 0.4 0.7 21 , Log $2 = 0.301$ and 'molecularien by, $r = [A]^{1/2}$ and constant $k = 5.52$	re/atm 0) ty of reaction'. [B] ² What is the × $10^{-14}S^{-1}$ Find the	order of this	2014(D) 2014(D) 2013(OD)	
41. 42.	(i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume: $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$ Experiment 1 2 Calculate the rate constant. (Given Write two differences between 'on (a) For a reaction $A + B \rightarrow P$, the reaction. (b) A first order reaction is found the reaction.	Times/s ⁻¹ 0 100 n: Log $4 = 0.60$ rder of reaction e rate law is give to have a rate of	Total pressure 0.4 0.4 0.7 21 , Log $2 = 0.301$ ' and 'molecularien by, $\mathbf{r} = [\mathbf{A}]^{1/2}$ constant $\mathbf{k} = 5$. 5 : The temperature of	re/atm 0) ty of reaction'. [B] ² What is the × $10^{-14}S^{-1}$ Find thanges from 293	order of this the half-life of K to 313 K.	2014(D) 2014(D)	
41. 42.	(i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume: $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$ Experiment 2 Calculate the rate constant. (Given Write two differences between 'or (a) For a reaction $A + B \rightarrow P$, the reaction. (b) A first order reaction is found the reaction. The rate of a reaction becomes for Calculate the energy of activation	Times/s ⁻¹ 0 100 n: Log $4 = 0.60$ rder of reaction e rate law is given to have a rate cour times when the (E_a) of the reaction that (E_a) is (E_a) of the reaction that (E_a) of the reaction that (E_a) is (E_a) in the reaction that (E_a) is	Total pressure 0.4 0.4 0.7 21 , Log $2 = 0.301$ $\frac{1}{2}$ and 'molecularien by, $\mathbf{r} = [\mathbf{A}]^{1/2}$ $\frac{1}{2}$ $\frac{1}{$	re/atm 0) ty of reaction'. [B] ² What is the × $10^{-14}S^{-1}$ Find thanges from 293	order of this the half-life of K to 313 K.	2014(D) 2014(D) 2013(OD)	
41. 42.	(i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume: $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$ Experiment 1 2 Calculate the rate constant. (Given Write two differences between 'or (a) For a reaction $A + B \rightarrow P$, the reaction. (b) A first order reaction is found the reaction. The rate of a reaction becomes for	? during the firs Times/s ⁻¹ 0 100 n: Log 4 = 0.60 reder of reaction e rate law is give to have a rate of the times when the (E_a) of the reaction, (E_a) of the reaction (E_a)	Total pressure 0.4 0.4 0.7 21 , Log $2 = 0.301$ and 'molecularien by, $\mathbf{r} = [\mathbf{A}]^{1/2}$ constant $\mathbf{k} = 5$. 52 the temperature clean assuming the 0 , 6021].	re/atm 0) ty of reaction'. [B] ² What is the × $10^{-14}S^{-1}$ Find thanges from 293	order of this the half-life of K to 313 K.	2014(D) 2014(D) 2013(OD) 2013(OD)	
41. 42. 43.	(i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume: $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$ Experiment 1 2 Calculate the rate constant. (Given Write two differences between 'order that is found the reaction. (b) A first order reaction is found the reaction. The rate of a reaction becomes for Calculate the energy of activation temperature. $[R = 8.314 \ JK^{-1}m]$ (a) A reaction is second order in $[R = 8.314 \ JK^{-1}m]$? during the firs Times/s ⁻¹ 0 100 n: Log 4 = 0.60 reder of reaction e rate law is give to have a rate of ur times when the (E_a) of the reaction to the reaction of the	Total pressure 0.4 0.4 0.7 21 , Log $2 = 0.301$ and 'molecularien by, $\mathbf{r} = [\mathbf{A}]^{1/2}$ constant $\mathbf{k} = 5$. 52 the temperature clean assuming the 0 , 6021].	re/atm 0) ty of reaction'. [B] ² What is the × $10^{-14}S^{-1}$ Find thanges from 293	order of this the half-life of K to 313 K.	2014(D) 2014(D) 2013(OD)	
41. 42. 43.	t → (i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume: SO ₂ Cl ₂ (g) → SO ₂ (g) + Cl ₂ (g) Experiment 1 2 Calculate the rate constant. (Given Write two differences between 'or (a) For a reaction A + B → P, the reaction. (b) A first order reaction is found the reaction. The rate of a reaction becomes for Calculate the energy of activation temperature. [R = 8.314]K ⁻¹ m (a) A reaction is second order in A (i). Write the differential rate equation of the content	Times/s ⁻¹ 0 100 n: Log 4 = 0.60 reder of reaction rate law is give to have a rate of the reaction of the reaction (E_a) of the reaction of the reaction of the reaction of the reaction of the reaction.	Total pressure 0.4 0.4 0.7 21, Log 2 = 0.301 ' and 'molecularite en by, $r = [A]^{1/2}$ constant $k = 5.5$ the temperature election assuming the 0.6021]. Trin B.	ty of reaction'. [B] ² What is the ×10 ⁻¹⁴ S ⁻¹ Find to nanges from 293 at it does not char	order of this the half-life of K to 313 K. anges with	2014(D) 2014(D) 2013(OD) 2013(OD)	
41. 42. 43.	(i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume: $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$ Experiment 1 2 Calculate the rate constant. (Given Write two differences between 'order that is found the reaction. (b) A first order reaction is found the reaction. The rate of a reaction becomes for Calculate the energy of activation temperature. $[R = 8.314 \ JK^{-1}m]$ (a) A reaction is second order in $[R = 8.314 \ JK^{-1}m]$	Times/s ⁻¹ 0 100 n: Log 4 = 0.60 reder of reaction rate law is give to have a rate of (E _a) of the reaction A and first order acreasing the co	Total pressure 0.4 0.4 0.7 21, Log 2 = 0.301 and 'molecularien by, $r = [A]^{1/2}$ constant $k = 5.5$ the temperature of	o) ty of reaction'. [B] ² What is the ×10 ⁻¹⁴ S ⁻¹ Find to nanges from 293 at it does not char oth A three times	order of this the half-life of K to 313 K. anges with	2014(D) 2014(D) 2013(OD) 2013(OD)	
41. 42. 43.	(i) Predict the order of the reaction (ii) What is the slope of the curve The following data were obtained constant volume: SO ₂ Cl ₂ (g) → SO ₂ (g) + Cl ₂ (g) Experiment 1 2 Calculate the rate constant. (Given Write two differences between 'or (a) For a reaction $A + B \rightarrow P$, the reaction. (b) A first order reaction is found the reaction. The rate of a reaction becomes for Calculate the energy of activation temperature. [R = 8.314 JK ⁻¹ m) (a) A reaction is second order in A (i). Write the differential rate equal (ii). How is the rate affected on in	? during the firs Times/s ⁻¹ 0 100 n: Log $4 = 0.60$ reder of reaction e rate law is give to have a rate of the times when the (E_a) of the reaction. A and first order ation. Increasing the continuous rate of the concentral continuous rate of the continuous rate of the concentral continuous rate of the con	Total pressure 0.4 0.4 0.7 21, Log 2 =0.301 and 'molecularien by, $r = [A]^{1/2}$ constant $k = 5.5$ the temperature of the temperature of the temperature of the constant $k = 5.5$ the temperature of the temperatur	o) ty of reaction'. [B] ² What is the ×10 ⁻¹⁴ S ⁻¹ Find to nanges from 293 at it does not char oth A three times and B are doubled	order of this the half-life of K to 313 K. anges with	2014(D) 2014(D) 2013(OD) 2013(OD)	

45.	(a) For a first order reaction, show that time required for 90% completion is twice the time required for the completion of 90% of reaction.						
	(b) Rate constant 'k' of a reaction varies with temperature 'T' according to the equation: $logk =$						
	$\log A - \frac{Ea}{2.303 R} \left(\frac{1}{T}\right)$ Where Ea is the activation energy? When a graph is plotted for log k Vs $\frac{1}{T}$						
	straight line with a slope of -4250 K is obtained. Calculate ' Ea ' for the reaction.($R = 8.314$ JK -1 mol -1)						
46.				ate affected if the concentration	2012(OD)		
	\ /	ubled (ii) reduced to hal					
47.			tion? Identify the rea	ction order from each of the	2012(D)		
	following units of reac	tion rate constant:			2011(D)		
	(i) L^{-1} mol S^{-1}						
	(ii) <i>Lmol</i> ⁻¹ <i>S</i> ⁻¹						
48.	For the reaction 2NO (measurements were tal		$l\left(oldsymbol{g} ight)$ the following d	ate were collected. All the	2012(D)		
	Experiment No.	Initial [NO]	Initial [Cl_2]	Initial rate of			
		(M)	(M)	disappearance of Cl ₂			
				(M/min)			
	1.	0.15	0.15	0.60			
	2.	0.15	0.13	1.20			
	3.	0.30	0.15	2.40			
	4.	0.25	0.25	?			
	(a) Write the expression	n for rate law.		<u> </u>			
	(b) Calculate the value of rate constant and specify its units.						
		ate of disappearance of					
49.	The thermal decompos	ition of HCOOH is a fir	st order reaction with	n a rate constant of 2.4×10^{-3} at a	2012(D)		
	certain temperature. Calculate how long will it take for three-fourths of initial quantity of HCOOH						
	to decompose. (log 0.2						
50.		ate expression' and 'rate		on.	2011(D)		
51.		composes according to e	equation:		2011(D)		
	$2N_2O_5(g) \rightarrow 4NO_2(g)$						
		•	d at 40 °C and the da	ta below were collected:			
		$[O_5](M)$		Time (min)			
		0.400		0.00			
	0.289 20.0						
	0.209 40.0						
	0.151 60.0						
	0.109						
	(a) Calculate the rate constant. Include units with your answer.						
		(b) What will be the concentration $N_2 O_5$ after 100 minutes?					
	(b) What will be the co		100 minutes?				
50	(b) What will be the co	rate of reaction.	100 minutes?		2010/00		
52.	(b) What will be the co (c) Calculate the initial (a) Explain the following	rate of reaction. ng terms:			2010(OD		
52.	(b) What will be the co(c) Calculate the initial(a) Explain the following(i) Rate of a reaction	rate of reaction. ng terms: (ii) Activation energy of	a reaction	a fallowing aquation.	2010(OD		
52.	(b) What will be the co(c) Calculate the initial(a) Explain the followi(i) Rate of a reaction(b) The decomposition	rate of reaction. ng terms: (ii) Activation energy of of phosphine, PH ₃ , prod	a reaction	e following equation:	2010(OD		
52.	(b) What will be the co (c) Calculate the initial (a) Explain the followi (i) Rate of a reaction (b) The decomposition $4 PH_3(g) \rightarrow P_4(g) + 1$	rate of reaction. ng terms: (ii) Activation energy of of phosphine, PH ₃ , proceeds $H_2(g)$	a reaction ceeds according to the	e following equation:	2010(OD		
52.	(b) What will be the co (c) Calculate the initial (a) Explain the followi (i) Rate of a reaction (b) The decomposition $4 PH_3(g) \rightarrow P_4(g) + 1$ It is found that the reac	rate of reaction. ng terms: (ii) Activation energy of of phosphine, PH ₃ , prod	a reaction ceeds according to the	e following equation:	2010(OD		
52.	(b) What will be the co (c) Calculate the initial (a) Explain the followi (i) Rate of a reaction (b) The decomposition $4 PH_3(g) \rightarrow P_4(g) + 1$ It is found that the reach $Rate = k[PH_3]$.	rate of reaction. ng terms: (ii) Activation energy of of phosphine, PH ₃ , production follows the following the following state of the production follows the	a reaction ceeds according to the	e following equation:	2010(OD		
52.	(b) What will be the constraint (c) Calculate the initial (a) Explain the following (i) Rate of a reaction (b) The decomposition $4 PH_3(g) \rightarrow P_4(g) + 1$ It is found that the react $Rate = k[PH_3]$. The half-life of PH_3 is	rate of reaction. ng terms: (ii) Activation energy of of phosphine, PH ₃ , proceed $H_2(g)$ betton follows the following 37.9 s at 120°C .	a reaction ceeds according to the ng rate equation:	e following equation:	2010(OD		
52.	(b) What will be the co (c) Calculate the initial (a) Explain the following (i) Rate of a reaction (b) The decomposition $4 PH_3(g) \rightarrow P_4(g) + P_4(g) + P_4(g) + P_4(g)$ It is found that the reach $Rate = k[PH_3]$. The half-life of PH_3 is (i) How much time is reach PH_3 is (ii)	rate of reaction. ng terms: (ii) Activation energy of of phosphine, PH ₃ , proceed $H_2(g)$ etion follows the following 37.9 s at $120^{\circ}C$. required for $3/4^{th}$ of PH	a reaction ceeds according to the grate equation:		2010(OD		
52.	(b) What will be the co (c) Calculate the initial (a) Explain the following (i) Rate of a reaction (b) The decomposition $4 PH_3(g) \rightarrow P_4(g) + P_4(g) + P_4(g) + P_4(g)$ It is found that the reach $Rate = k[PH_3]$. The half-life of PH_3 is (i) How much time is reach PH_3 is (ii)	rate of reaction. ng terms: (ii) Activation energy of of phosphine, PH ₃ , proceeding of the phosphine, PH ₃ , proceeding of the phosphine, PH ₃ , proceeding of the phosphine	a reaction ceeds according to the grate equation:		2010(OD)		

	(A) THE C	
	(b) The rate of a reaction increases four times when the temperature changes from 300K to 320 K.	
	Calculate the energy of activation of the reaction, assuming that it does not change with	
	temperature. $(R = 8.314 \text{ J K} - 1 \text{ mol} - 1)$	
54.	Define 'order of a reaction'.	2010(D)
		2008(D)
55.	A reaction is of first order in reactant A and of second order in reactant B. How is the rate of this	2010(D)
	reaction affected when (i) the concentration of B alone is increased to three times (ii) the	
	concentrations of A as well as B are doubled?	
56.	For a first order reaction, time taken for half of the reaction to complete t_1 and three forth of the	2010(D)
	reaction to complete is t_2 . How are t_1 and t_2 related?	2007(D)
57.	A first reaction has rate constant of $0.0051 min^{-1}$. If we begin with $0.10 M$ concentration of the	2009(OD)
	reactant. What concentration of the reactant will be left after 3hours?	2009(D)
58.	A reaction of second order with respect to a reactant. How will the rate of reaction be affected if	2009(D)
	the concentration of this reactant is	
	(i) Doubled, (ii) Reduced to half?	
59.	(a) Define the following:	2008(OD)
	(i) Order of reaction (ii) Activation energy of reaction	, , ,
	(b) $A + 2B \rightarrow 3C + 2D$. The ratio of disappearance of B is $1 \times 10^{-2} mol/L/S$.	
	What will be	
	(i) Rate of the reaction (ii) Rate of change in concentration of A and C?	
60.	(a) List the factors on which the rate of a chemical reaction depends.	2008(OD)
	(b) The half-life for decay of radioactive 14 <i>C</i> is 5730 years. An archaeological artifact containing	
	wood has only 80% of the 14 C activity as found in living trees. Calculate the age of the artifact.	
61.	A first order decomposition reaction takes 40 minutes for 30% decomposition. Calculate its $\mathbf{t}_{1/2}$	2008(D)
	value.	2007(D)
62.	What is meant by the 'rate constant' k' of a reaction? If the concentration be expressed in	2008(D)
	mol L ⁻¹ units and time in seconds, what would be the units for k	
	(i) for a zero order reaction and	
	(ii) for a first order reaction?	