In Company CURSOS DE CURTA DURAÇÃO

BIOME - CENTRO MULTIUSUÁRIO DE BIOINFORMÁTICA - UFRN

Curso teórico-prático

INTRODUÇÃO À ANÁLISE DE **DADOS DE SEQUENCIADORES** DE SEGUNDA GERAÇÃO

Fiocruz/Biomanguinhos Rio de Janeiro - RJ

21 a 23 de Janeiro de 2020

Referencial de Aulas Práticas

- bioinfo.imd.ufrn.br Av. Odilon Gomes de Lima 1722 Capim Macio, 59078-400 Natal/RN - Brazil
- @ biome@imd.ufrn.br
 - +55 (84) 99480-6818 +55 (84) 3342-2216 - Ramal 123

Sobre o BioME

O BioME (Centro Multidisciplinar de Bioinformática) é fruto de uma iniciativa em bioinformática da UFRN em Natal, Brasil. Ele foi criado no início de 2016 com a missão de promover a bioinformática no cenário regional e nacional, atuando em quatro diferentes níveis. No ensino, seus professores/pesquisadores atuam no nível de graduação, em disciplinas de bioinformática para diversos cursos na área de biociências, e na ênfase em Bioinformática do curso de Bacharelado em Tecnologia da Informação do Instituto Metrópole Digital (IMD). Adicionalmente, o BioME possui um programa de pós-graduação (PPg-Bioinfo), nível mestrado e doutorado, com conceito 5 na CAPES, que tem como objetivo formar recursos humanos de alto nível em bioinformática, tanto para a área acadêmica, como para atuação no setor produtivo/industrial. Na pesquisa, grupos multidisciplinares envolvidos com o BioME produzem ciência de ponta em bioinformática aplicada à diversas áreas como: biologia do câncer, modelagem de sistemas, biologia de sistemas, genômica, proteômica, evolução molecular, bioinformática estrutural, etc. No setor de prestação de serviços, um centro técnico multiusuário disponibiliza serviços de bioinformática e de análises de dados para clientes, tanto para grupos acadêmicos como para empresas do setor de biotecnologia. Por fim, o programa corporativo busca fomentar a interação produtiva indústria de biotecnologia, estendendo com os conhecimentos produzidos na universidade sociedade.

Sumário

Sobre o curso	01
Programa	02
Aula prática 1	03
Aula prática 2	12
Aula prática 3	20
Aula prática 4	30
Aula prática 5	39

Sobre o curso

O curso teórico-prático "Análise de Dados de Sequenciadores de Nova Geração" pertence à grade de programação dos Cursos de Curta Duração em Bioinformática promovidos pelo BioME, com apoio do Programa de Pós Graduação em Bioinformática da UFRN e do Instituto de Bioinformática e Biotecnologia (2Bio) que, juntamente com cursos de outros temas da área de Bioinformática, recebeu mais de 280 alunos do Brasil e do exterior desde 2017.

Com carga horária total de 20h, o presente curso é um treinamento introdutório e direcionado, visando fornecer aos participantes uma sólida base para o início de análises de dados de seguenciadores de segunda geração, sendo ministrado pelos professores:

Prof. Dr Sandro J. de Souza sandro@neuro.ufrn.br

Doutor em Bioquímica pela Universidade de São Paulo e Pew Latin American Fellow pela Universidade de Harvard -EUA, Dr. de Souza foi um dos pioneiros da área de Genômica e Bioinformática no Brasil. Foi membro associado do Ludwig Institute for Cancer Research, eleito pelo Forum Econômico Mundial como Young Global Leader em 2009, e professor

visitante na Universidade de Chicago - EUA. Atualmente, é professor do Instituto do Cérebro da Universidade Federal do Rio Grande do Norte, onde é vice-coordenador do Programa de Pós-graduação em Bioinformática e diretorfundador do Centro Multidisciplinar de Bioinformática (BioME). informações: Lattes

Prof. Dr. Jorge Estefano Santana de Souza jorge@imd.ufrn.br

Graduado em Ciência da Computação e doutor em Bioinformática pela Universidade de São Paulo, o Prof. Jorge E.S. de Souza atuou como bioinformata no Ludwig Institute for Cancer Research, Recepta Biopharma, Hemocentro de Ribeirão Preto e AC Camargo Cancer Center. Atualmente é professor adjunto do Instituto Metrópole

Universidade Federal do Rio Grande do Norte, onde é membro do Programa de Pós-graduação em Bioinformática e do Centro Multidisciplinar de Bioinformática (BioME). Tem experiência na área de Bioinformática e Genômica, atuando principalmente nos seguintes temas: Câncer, Biologia Molecular, Genômica e Transcriptômica. Mais informações: Lattes

Programa

Data	Horário	Assunto			
	08:30h	Apresentação			
	08:45h	Introdução à Genômica e Bioinformática			
Segunda-feira	10:10h	Introdução ao Linux			
21/01/2020	12:15h	Intervalo de almoço			
	13:30h	Dados de NGS: Análise de Qualidade			
	16:30h	Encerramento			
	08:30h	Dados de NGS: Chamada de Variantes			
Terça-feira	12:15h	Intervalo de almoço			
22/01/2020	13:30h	Dados de NGS: RNASeq mRNA			
	16:30h	Encerramento			
	08:30h	Dados de NGS: RNASeq ncRNA			
Quarta-feira 23/01/2020	12:15h	Intervalo de almoço			
	13:30h	Discussão de projetos trazidos pelos alunos e encerramento			

Aula prática 1

- Linux
- Explorando dados de NGS

Professor: Jorge Estefano Santana de Souza, jorge@imd.ufrn.br;

Objetivos:

Este tutorial tem como objetivo fazer com que o aluno conheça um pouco mais sobre o Linux, bem como habilitar o usuário para trabalhar com as principais ferramenta de bioinformática.

Ferramentas:

- 1- SSH.
- 2- shell.
- 3- Comandos básicos do Linux.

Comandos Básicos:

Durante a execução do tutorial iremos abordar os comandos essenciais, no entanto é fortemente recomendável que os alunos expandam os seus conhecimentos aprendendo outros comandos básicos do Linux. Mais informação no site:

http://wiki.ubuntu-br.org/ComandosBasicos

Login Servidor:

Inicialmente vamos fazer o logon no servidor abrindo um terminal na máquina remota:

User: bif

Host: 177.20.147.141

Porta: 4422 Senha: bif0003

No terminal LINUX (ou Mac):

Quando estiver conectado por ssh e quiser saber quem mais está trabalhando na máquina, use o comando who.

Como nos conectamos a várias máquinas com vários logins, as vezes precisamos digitar whoami para lembrar como nos conectamos.

Mais dois comandos precisam ser usados sempre:

Is - lista o conteúdo da pasta ou diretório; pwd - mostra o caminho do presente diretório (path of working directory);

1) Vamos começar pelo básico, certifique-se de que a pasta atual é:
/data/home/bif
Para isso, digite o comando:
pwd
*ps. vc vai ver onde está
2) Nesse momento pode não haver o que listar, mas sempre é importante ver o que tem, ou não tem, na pasta. Comando:
ls
3) Crie um diretório nomeando-o com o seu nome:
mkdir SeuNome
4) Digite Is:
ls
5) Entre no diretório com SeuNome:
cd SeuNome
com um pwd você deve ver /data/home/bif/SeuNome:
pwd
6) Suba de volta um diretério com ed esses dois nontes direcionam

para o diretório acima (change directory to upper directory):

cd
ls
Volte para seu diretório:
cd SeuNome
ls
Outros comandos:
7) Ver o conteúdo do diretório: /home/treinamento:
ls /home/treinamento/
8) Copiar o arquivo lyrics para o diretório presente. Perceba o ponto que representa o presente diretório:
cp /home/treinamento/lyrics .
ls
9) Criar o diretório teste:
mkdir teste
ls

10) Mover o arquivo lyrics parao diretório teste:

mv lyrics teste	
ls	
11) Entrar no diretório teste:	
cd teste	
12) Trocar o nome do arquivo:	
mv lyrics letra	
ls	
13) Copiar o arquivo:	
cp letra lyrics	
14) Remove o arquivo letra:	
rm letra	
15) Listar com mais informações:	
ls -l	
16) Mostrar o manual para o programa ls:	
man ls	q (interrompe o output do manual)

17) Imprimir na tela o conteúdo do arquivo:

more lyrics

q (interrompe o comando more)

less também funciona para ver o conteúdo de qualquer arquivo:

less /home/treinamento/ERR844339.fastq

q(interrompe o comando more e lessdo Linux)

18) Imprimir as primeiras linhas do arquivo:

head /home/treinamento/ERR844339.fastq

19) Imprimir as últimas linhas do arquivo:

tail /home/treinamento/ERR844339.fastq

20) tabulador(tab) e asterisco: são usados para nomes compridos. O tabulador completa o nome, o asterisco funciona como coringa. Por exemplo more ly* imprimirá o conteúdo de lyrics:

more ly*

21) Listar conteúdo do diretório /home/treinamento/blast aula/FASTAS:

ls /home/treinamento/blast aula/FASTAS/

22) Imprimir na tela o conteúdo do arquivo GAPDH:

more /home/treinamento/blast aula/FASTAS/GAPDH

23) Copiar o arquivo GAPDH para o diretório atual:

cp /home/treinamento/blast aula/FASTAS/GAPDH . 24) digite Is:

Editor de texto:

ls

Vamos agora aprender a editar arquivos no servidor

25) Abrir o arquivo GAPDH no editor de texto vi:

vi GAPDH

- 1 Para entrar no INSERT MODE e poder editar o texto digite " i "
- 2 Troque o nome da sequência para >hsa
- 3 Para salvar tecle **ESC** depois: (dois pontos), depois **x!** [enter]
- 26) Vamos ver o resultado:

more GAPDH

27) Vamos renomear o arquivo: :

mv GAPDH gapdh.hsa

- 28) Agora pegue a sequência de mioglobina:
 - 1 Entrar no navegador (pode ser o google chrome).
 - 2 Entrar no site:

https://www.ncbi.nlm.nih.gov/nuccore/1049011000?report=fasta

- 3 Copiar a sequencia fasta
- 29) Digite no terminal:

vi mioglobina

Cole o conteúdo do fasta. Botão da direita no terminal cola!!!!!!!! Saia como antes **ESC** depois <u>:</u> depois <u>x!</u> [enter]

30) Troque o nome da sequência para ">myoglobin":

vi mioglobina

*Não digite direto no terminal, antes digite "vi mioglobina"

31) Vamos ver o resultado:

more mioglobina

O comando grep:

O comando grep é bastante utilizado para realizar buscas em textos/arquivos. A ideia é procurar um dado texto em uma string ou dentro de arquivos e mostrar as linhas de ocorrências:

32) Primeiro vamos ver o conteúdo do diretório /home/treinamento/blast aula/CDS:

ls /home/treinamento/blast aula/CDS

33) Agora vamos ver o conteúdo do arquivo h.sapiens.nuc:

less /home/treinamento/blast aula/CDS/h.sapiens.nuc

q (interrompe o comando)

34) Vamos identificar as ocorrências da palavra aldolase:

cat /home/treinamento/blast aula/CDS/h.sapiens.nuc | grep aldolase

35) Vamos quantificar o número de sequências do arquivo fasta:

cat /home/treinamento/blast aula/CDS/h.sapiens.nuc | grep ">" -c

Referências:

1- ubuntu-br: http://wiki.ubuntu-br.org/ComandosBasicos

2- NCBI: https://www.ncbi.nlm.nih.gov/3- Linuxbr: http://br-linux.org/

Aula prática 2

- Sequence Quality Control
- Explorando dados de NGS

Professor: Jorge Estefano Santana de Souza, jorge@imd.ufrn.br;

Objetivos:

Utilizar as ferramentas básicas de análise de qualidade para obter um perfil inicial da qualidade do sequenciamento.

Ferramentas:

- 1- Linux.
- 2- WebServer.
- 3- fastq screen:
- 4- fastqc
- 5- samstat
- 6- DynamicTrim.pl
- 7- trim_galore
- 8- cutadapt

Comandos Básicos:

Durante a execução dos tutoriais necessitaremos saber alguns comandos básicos do Linux. Procurar mais informação no site:

http://wiki.ubuntu-br.org/ComandosBasicos

Login Servidor:

Inicialmente vamos fazer o login no servidor abrindo um terminal na máquina remota:

User: bif

Host: 177.20.147.141

Porta: 4422 Senha: bif0003

Dados brutos (raw data):

Durante a execução dos tutoriais necessitaremos de alguns dados iniciais, disponíveis no diretório:

/home/treinamento/NGS/

Servidor WEB:

Como os trabalhos realizados no servidor são de difícil visualização, iremos necessitar de uma área web para facilitar nossa tarefa. Todos os arquivos copiados para o diretório

/data/home/bif/public_html/

.... estão disponíveis via navegador web em:

http://www.bioinformatics-brazil.org/~bif/

Iniciando o Workflow:

1) Vamos começar pelo básico, certifique-se de que a pasta atual é:

/data/home/bif Para isso digite o comando: pwd

2) Caso não exista, crie um diretório contendo o seu nome digitando o comando:

mkdir SeuNome

3) Entre no diretório criado:

cd SeuNome

4) Crie um diretório chamado qual:
mkdir qual
5) Entre no diretório criado:
cd qual
6) Certifique-se de que a pasta atual é a correta:
pwd
O diretório atual deve ser: /data/home/bif/SeuNome/qual
7) Inicialmente, necessitaremos de arquivos no formato fastq, crie os
<pre>ln -s /home/treinamento/NGS/ERR844339.1.fastq .</pre>
<pre>ln -s /home/treinamento/NGS/10_S5_R1_001.1.fastq .</pre>
<pre>ln -s /home/treinamento/NGS/polipo.1.fastq .</pre>
8) Agora vamos ver o conteúdo de um arquivo fastq usando o comando:
less -S ERR844339.1.fastq
*para sair digite a letra q
9) Agora, vamos procurar por contaminações com o ama fastq_screen usando o comando:
fastq_screennohitssubset 0 ERR844339.1.fastqoutdir . *o comando deve ser digitado em apenas uma linha

18) Repita o processo para os demais arquivos **.fastq** e visualize as diferenças:

cp ERR844339.1 fastqc.* /home/bif/public html/SeuNome/

```
fastqc 10_S5_R1_001.1.fastq -o .
fastqc polipo.1.fastq -o .
cp *_fastqc.* /home/bif/public_html/SeuNome/
```

SAMstat:

19) O programa **FastQC** é um programa pré-alinhamento, para avaliar as sequências alinhadas podemos utilizar o programa samstat:

Antes, vamos necessitar de um arquivo já alinhado (arquivo BAM). Para isso, crie o link:

```
ln -s /home/treinamento/NGS/polipo.bam .
```

Rode o samstat:

```
samstat polipo.bam
```

Não se esqueça de copiar o resultado para a área web:

```
cp *.samstat.* /home/bif/public_html/SeuNome/
```

*veja o resultado em: http://www.bioinformatics-brazil.org/~bif/SeuNome/

Trim:

Após o uso dos programas **FastQC** e **Samstat** talvez seja necessário aplicar algum processo de limpeza com o objetivo de melhorar os resultados finais e diminuir a taxa de erro de análises posteriores.

20) Podemos usar o **DynamicTrim** para trimar as pontas das sequências por qualidade de bases:

```
DynamicTrim.pl -h 20 ERR844339.1.fastq
```

21) Podemos usar o **cutadapt** para remover adaptadores ou sequências contaminantes conhecidas.

```
-----
   cutadapt -a TGGAATTCTCGG 10 S5 R1 001.1.fastq >
   10 S5 R1 001.1.ct.fastq
*o comando deve ser digitado em apenas uma linha
```

22) O programa trim galore pode ser usado quando temos um seguenciamento Illumina e não sabemos os adaptadores usados no processo de sequenciamento:

```
______
 trim galore 10 S5 R1 001.1.fastg
______
```

Vale ressaltar que após cada processo de limpeza devemos refazer a análise de qualidade novamente, e assim verificar a sua efetiva melhora.

Referências:

- 1- Lassmann et al. (2010) "SAMStat: monitoring biases in next generation Bioinformatics doi:10.1093/bioinformatics/btg614 sequencing data." [PMID: 21088025]
- 2- fastq screen:https://www.bioinformatics.babraham.ac.uk/projects/fastq sc reen
- 3- fastac: https://www.bioinformatics.babraham.ac.uk/projects/fastqc
- 4- trim galore: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore
- 5- Cutadapt removes adapter sequences from high-throughput sequencing reads. MARTIN, Marcel. EMBnet.journal, [S.I.], v. 17, n. 1, p. pp. 10-12, 2011. ISSN 2226-6089. may. Available http://journal.embnet.org/index.php/embnetjournal/article/view/200. Date accessed: 08 Jul. 2017. doi:http://dx.doi.org/10.14806/ej.17.1.200.
- 6- samstat: https://samstat.sourceforge.net
- 7- DynamicTrim.pl: https://github.com/hanice/SIBS/blob/master/Sequencing/QC/DynamicTrim. рl

Aula prática 3

- Chamada de variantes
- Explorando dados de NGS

Professor: Jorge Estefano Santana de Souza, jorge@imd.ufrn.br;

Objetivos:

Utilizar ferramentas básicas de chamada de variantes e identificar bases variantes em um sequenciamento de segunda geração.

Ferramentas:

- 1- Linux.
- 2- WebServer.
- 3- bwa
- 4- samtools
- 5- mpileup
- 6- VarScan
- 7- SnpEff

Comandos Básicos:

Durante a execução dos tutoriais necessitaremos saber alguns comandos básicos do Linux. Mais informações no site:

http://wiki.ubuntu-br.org/ComandosBasicos

Login Servidor:

Inicialmente vamos fazer o logon no servidor, abra um terminal na máquina remota:

User: bif

Host: 177.20.147.141

Porta: 4422 Senha: bif0003

Dados brutos (raw data):

Durante a execução dos tutoriais necessitaremos de alguns dados iniciais, disponíveis no diretório:

/home/treinamento/NGS/

Servidor WEB:

Como os trabalhos realizados no servidor são de difícil visualização, iremos necessitar de uma área web para facilitar nossa tarefa. Todos os arquivos copiados para o diretório.....

/data/home/bif/public html/

.... estarão disponíveis via navegador web em:

http://www.bioinformatics-brazil.org/~bif/

Iniciando o Workflow:

1) Vamos começar pelo básico, certifique-se de que a pasta atual é:

/data/home/bif

Para isso, digite o comando:

pwd

2) Crie um diretório contendo o seu nome (se já não existe), digite o comando:

mkdir SeuNome

3) Entre no diretório criado:

cd SeuNome

4) Crie um diretório chamado bwa:

```
mkdir bwa

5) Entre no diretório criado:

cd bwa

6) Certifique-se de que a pasta atual é a correta:

pwd
```

O diretório atual deve ser: /data/home/bif/SeuNome/bwa

7) Crie links simbólicos para os arquivos:

```
ln -s /home/treinamento/NGS/hg19_chr8.1.fa .
ln -s /home/treinamento/NGS/proband_R1.fq .
ln -s /home/treinamento/NGS/proband_R2.fq .
ln -s /home/treinamento/NGS/mother_R1.fq .
ln -s /home/treinamento/NGS/mother_R2.fq .
ln -s /home/treinamento/NGS/father_R1.fq .
ln -s /home/treinamento/NGS/father_R1.fq .
ln -s /home/treinamento/NGS/father_R2.fq .
```

8) Agora vamos ver o conteúdo de um arquivo fasta com o comando:

```
less -S hg19_chr8.1.fa
```

*para sair digite a letra q

9) Agora vamos ver o conteúdo de um arquivo fasto com o comando:

```
less -S proband_R1.fq
```

*para sair digite a letra q

*ps. mais informação do formato FASTQ em https://en.wikipedia.org/wiki/FASTQ format.

Mapeamento:

10) Para realizar o mapeamento, primeiro temos que indexar o genoma de referência com os comandos:

```
bwa index -a is hg19_chr8.1.fa
```

```
samtools faidx hg19_chr8.1.fa
```

11) Agora vamos rodar BWA utilizando os arquivos gerados até aqui:

```
bwa bwasw -t 4 hg19_chr8.1.fa \
  proband_R1.fq \
  proband_R2.fq -f proband.sam

bwa bwasw -t 4 hg19_chr8.1.fa \
  mother_R1.fq \
  mother_R2.fq -f mother.sam

bwa bwasw -t 4 hg19_chr8.1.fa \
  father_R1.fq \
  father_R1.fq \
  father_R2.fq -f father.sam
```

*o comando deve ser digitado em apenas uma linha

Utilizando o Samtools (analisando o alinhamento):

Agora que temos o arquivo SAM vamos convertê-lo para BAM utilizando o Samtools para manipulá-lo e extrair algumas estatísticas básicas.

*ps. informação format .bam em: http://genome.sph.umich.edu/wiki/SAM_Format

12) Convertendo de SAM para BAM:

```
samtools view -b -S proband.sam -o proband.bam
samtools view -b -S mother.sam -o mother.bam
samtools view -b -S father.sam -o father.bam
```

13) Visualizando um arquivo BAM:

```
samtools view proband.bam | less -S
```

14) Visualizando apenas as sequências não mapeadas:

```
samtools view -f 4 proband.bam | less -S
```

15) Visualizando apenas as sequências mapeadas:

```
samtools view -F 4 proband.bam | less -S
     16) Quantificando as sequências não mapeadas:
     samtools view -c -f 4 proband.bam
     17) Quantificando as sequências com qualidade MAPQ superior a 42:
     samtools view -c -q 42 proband.bam
Atividade, responda:
     Quantas sequências foram mapeadas no genoma referência?
     Quantas sequências foram mapeadas com qualidade superior a MAPQ
30?
     Quantos pareamentos corretos existem?
```

Em busca das variantes:

Agora vamos tentar identificar as variantes genômicas. Para tanto temos que gerar o arquivo mpileup, mas antes temos que ordenar as sequências do arquivo BAM e remover a amplificação de PCR.

18) Ordenando as sequências do arquivo BAM:

```
samtools sort proband.bam > proband.sort.bam
samtools sort mother.bam > mother.sort.bam
samtools sort father.bam > father.sort.bam
```

19) Removendo as duplicações resultantes da amplificação de PCR:

```
samtools rmdup proband.sort.bam proband.rm.bam samtools rmdup mother.sort.bam mother.rm.bam samtools rmdup father.sort.bam father.rm.bam
```

20) Gerando o arquivo mpileup:

```
samtools mpileup -f hg19_chr8.1.fa proband.rm.bam
mother.rm.bam father.rm.bam > samples.mpileup
```

*o comando deve ser digitado em apenas uma linha

21) Agora vamos ver o conteúdo do arquivo mpileup com o comando:

```
less -S samples.mpileup
```

*para sair digite a letra q

extern	io.bscp - bif@17	7.20.147.141:4422 - B	Bitvise xterm - bif@hungria:~/jorge/bwa						- □ ×
chr8	6825587	A 16	,	DBCCCCCACC@CCBBC	4		BCAC	12	^
chr8	6825588	16	,	LJHJJCG?KMIHKKGK	4		CJFI	12	,
chr8	6825589	A 16	,	DDCDDDCBDCACDDCB	4		CD@D	12	,
chr8	6825590	4 16	,	FEDEFEEDFI?AEDDI	4		EEAE	12	,
chr8	6825591	G 16		LLILMLJGMLDLMMII	5		ILJMA	12	,
chr8	6825592	G 16	,	LMGMMIKCKKJILKKI	5		CHILC	11	,
chr8	6825593	T 16		@BBBBA?A <ca?<a?c< td=""><td>5</td><td></td><td>AAAAA</td><td>12</td><td>,</td></ca?<a?c<>	5		AAAAA	12	,
chr8	6825594	4 16	,	AACCBA@:@BAABBAB	5		BB5B?	12	,
chr8	6825595	16		JJGKKHIJHMGJJKJM	5		AHDJF	12	,
chr8	6825596	4 16		DCDDDDDDCG/CCDCI	6	^~		=D/DAA	12,
chr8	6825597	G 16		JLNLNLKGMHDIMLML	6		JLDMJD	12	,
chr8	6825598	G 18	,^^,^~,	ILIKMKLJKLDKKLLL;E	6		EMGMJD	12	,
chr8	6825599	18	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DBCCCBCBCB@CCBBD=A	6		CD@CCA	12	.\$,
chr8	6825600	4 18	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	FDEEEEBBBAEEDCC=C	6		EEDFEB	11	,
chr8	6825601	T 18	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	BC@CBCB <bc.bbbbc@a< td=""><td>6</td><td></td><td>CC>CB?</td><td>12</td><td>,^</td></bc.bbbbc@a<>	6		CC>CB?	12	,^
chr8	6825602	4 18	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	BBCCCCBBCC@@CCCCAB	6		DC@CCB	12	,
chr8	6825603	4 19	,.,.,,,^~,	EDEFFFEAEC@DFEEC@AA	6		FFCFEE	12	,
chr8	6825604	20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	JIHKKKKKKMHHJKKMJLHE	6		FJGJEH	12	,
chr8	6825605	Δ 21	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C@DDDDD@DCBCDDDCCDAAB	6		DDBDCC	12	,
chr8	6825606	4 21	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DBEFFFEGEIDEEEEHFHHFF	6		CEDFED	12	,
chr8	6825607	G 21	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	KGLNLLFCNLDEMMMLHKJHD	6		ELINHL	12	,
chr8	6825608	4 22	,.,.,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, BCCCCBBACC>CCCCC	ACBB>A			BCACCA	12,.
chr8	6825609	Δ 23	,.,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DDEFFED:EC?CEEEC.	ABBA1AA			EFBFED	12,.
chr8	6825610	T 23	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	>BCCCCBCCD@BCCBFDEED9DC	6		ACACBA	12	,
:									~

22) Agora, vamos fazer a chamada de variantes usando o programa VarScan:

```
varscan mpileup2snp samples.mpileup -output-vcf >
samples.vcf
```

*o comando deve ser digitado em apenas uma linha

Anotação das variantes:

O arquivo VCF (variant call format), contém todas as variantes (de base única, de inserção e de deleção) identificadas em uma ou mais amostras. No entanto, nessa versão inicial não estão anotadas todas as informações relevantes para extrair o significado biológico de cada variante. Para tanto, devemos executar o processo de anotação de variantes.

23) Agora fazer a anotação das variantes usando o programa SnpEff:

```
snpEff eff hg19 samples.vcf > samples.eff.vcf
```

*o comando deve ser digitado em apenas uma linha

23) Vamos visualizar os arquivos e verificar as diferenças:

```
less -S samples.vcf
less -S samples.eff.vcf
```

*o comando deve ser digitado em apenas uma linha

Agora temos o arquivo que contém todas as variantes e as informações relevantes para extrair o significado biológico de cada variante.

Por fim tente isso:

```
grep -v "^#" samples.eff.vcf | cut -f 10,11,12 | grep
-v "\./\." |sed "s/\:/\t/g" | cut -f 1,15,29 | more
```

Referências:

- 1- Li H. and Durbin R. (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25:1754-60. [PMID: 19451168]
- 2- Li H. and Durbin R. (2010) Fast and accurate long-read alignment with Burrows-Wheeler Transform. Bioinformatics, Epub. [PMID: 20080505]
- 3- Li H.*, Handsaker B.*, Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. and 1000 Genome Project Data Processing Subgroup (2009) The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics, 25, 2078-9. [PMID: 19505943]
- 4- Li H A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011 Nov 1;27(21):2987-93. Epub 2011 Sep 8. [PMID: 21903627]

- 5- VarScan 1: Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, Weinstock GM, Wilson RK, & Ding L (2009). VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics (Oxford, England), 25 (17), 2283-5 PMID: 19542151
- 6- VarScan 2: Koboldt, D., Zhang, Q., Larson, D., Shen, D., McLellan, M., Lin, L., Miller, C., Mardis, E., Ding, L., & Wilson, R. (2012). VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing Genome Research DOI: 10.1101/gr.129684.111 URL: http://varscan.sourceforge.net
- 7- A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3.", Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. Fly (Austin). 2012 Apr-Jun;6(2):80-92. PMID: 22728672

Aula prática 4

- RNAseqI
- Explorando dados de NGS

Professor: Jorge Estefano Santana de Souza, jorge@imd.ufrn.br;

Objetivos:

Utilizar as ferramentas básicas de alinhamento e montagem de transcriptoma para identificar os genes diferencialmente expressos entre duas amostras.

Ferramentas:

- 1- Linux.
- 2- WebServer.
- 3- tophat2
- 4- cufflinks
- 5- cuffmerge
- 6- cuffdiff
- 7- trimmomatic

Comandos Básicos:

Durante a execução dos tutoriais necessitaremos saber alguns comandos básicos do Linux. Mais informação no site:

http://wiki.ubuntu-br.org/ComandosBasicos

Login Servidor:

Inicialmente vamos fazer o logon no servidor abrindo um terminal na máquina remota:

User: bif

Host: 177.20.147.141

Porta: 4422 Senha: bif0003

Dados brutos (raw data):

Durante a execução dos tutoriais necessitaremos de alguns dados iniciais, disponíveis no diretório:

/home/treinamento/NGS/

Servidor WEB:

Como os trabalhos realizados no servidor são de difícil visualização, iremos necessitar de uma área web para facilitar nossa tarefa. Todos os arquivos copiados para o diretório abaixo....

```
/data/home/bif/public_html/
```

....estão disponíveis via navegador web em:

http://www.bioinformatics-brazil.org/~bif/

Iniciando o Workflow:

1) Vamos começar pelo básico, certifique-se de que a pasta atual é:

/data/home/bif

Para isso, digite o comando:

pwd

2) Crie um diretório contendo o seu nome (se já não existe) digitando o comando:

mkdir SeuNome

3) Entre no diretório criado:

cd SeuNome

4) Crie um diretório chamado rna1:

```
mkdir rna1
```

5) Entre no diretório criado:

```
cd rna1
```

6) Certifique-se de que a pasta atual é a correta:

```
pwd
```

O diretório atual deve ser: /data/home/bif/SeuNome/rna1

7) Crie links simbólicos para os arquivos:

```
ln -s /home/treinamento/NGS/RNAseq/adrenal_1.fastq .
ln -s /home/treinamento/NGS/RNAseq/adrenal_2.fastq .
ln -s /home/treinamento/NGS/RNAseq/brain_1.fastq .
ln -s /home/treinamento/NGS/RNAseq/brain_2.fastq .
```

8) Agora vamos ver o conteúdo de um arquivo fastq com o comando:

```
less -S adrenal_1.fastq
```

*para sair digite a letra q

*mais informação sobre o formato FASTQ em https://en.wikipedia.org/wiki/FASTQ format.

9) Faça o mesmo para os outros arquivos.

```
less -S adrenal_2.fastq
less -S brain_1.fastq
less -S brain_2.fastq
```

*ps. para sair digite a letra q

10) Seria interessante saber o número de sequências totais nos arquivos. Para isso temos o comando wc nome_do_arquivo (word count):

```
wc adrenal_1.fastq
```

O problema aqui é que o comando conta o número de linhas totais. Mas podemos utilizar uma união com o comando grep (para procurar apenas o cabeçalho das reads). E só depois fazer a contagem.

```
grep '@ERR' adrenal_1.fastq | wc
```

Filtragem:

11) Vamos analisar as seguências de entrada:

```
Use o comando fastqc no terminal para checar a qualidade do sequenciamento.
```

- 12) No próximo passo vamos filtrar os arquivos fastq. Essa etapa é importante para a diminuição dos erros gerados durante o sequenciamento. A ferramenta que iremos utilizar nessa etapa será o trimmomatic. O comando abaixo faz:
 - Remoção de adaptadores;
 - Remoção de bases do início com baixa qualidade ou Ns;
 - Remoção de bases do fim com baixa qualidade ou Ns;
 - Percorre o read com uma janela de 4, removendo quando a qualidade média por base é menor do que phd 15;
 - Descarta reads com cumprimento menor do que 20 bases.

Comando 1 (link para adaptadores):

```
ln -s /data/home/root/Trimmomatic-0.36/adapters/TruSeq3-PE-2.fa .
```

Comando 2 (trim):

```
trimmomatic PE -threads 1 \
        adrenal_1.fastq adrenal_2.fastq \
        adrenal_1_paired.fastq.gz adrenal_1_unpaired.fastq.gz\
        adrenal_2_paired.fastq.gz adrenal_2_unpaired.fastq.gz \
ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 \
        LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:20
```

*o comando deve ser digitado em apenas uma linha

Repita o passo anterior com os dados de cérebro:

*o comando deve ser digitado em apenas uma linha

13) Descompacte os arquivos que foram considerados filtrados e que mantiveram os pares após a filtragem:

```
gzip -d *_paired.fastq.gz
```

Mapeamento:

14) Para realizar o mapeamento, primeiro temos que criar links simbólicos do genoma de referência e de nosso arquivo GTF (lembre-se de estar no diretório: /data/home/bif/SeuNome/rna1):

```
ln -s /home/databases/hg19/ ref
```

```
ln -s /home/treinamento/NGS/RNAseq/gene19_annotation.gtf .
```

15) Agora vamos rodar TopHat2 utilizando os arquivos gerados até aqui:

```
tophat -p 2 -G gene19_annotation.gtf \
-o thout_adrenal \
ref/hg19 \
adrenal_1_paired.fastq \
adrenal_2_paired.fastq
```

*o comando deve ser digitado em apenas uma linha

Esse passo pode demorar. Uma alternativa é copiar os arquivos prontos de: /home/treinamento/NGS/

```
cp -r /home/treinamento/NGS/biome/rna1/thout_adrenal/ .
```

Faremos o mesmo com a amostra de cérebro:

```
tophat -p 2 -G gene19_annotation.gtf \
-o thout_brain \
ref/hg19 \
brain_1_paired.fastq \
brain_2_paired.fastq
```

*o comando deve ser digitado em apenas uma linha

Ou copiar os arquivos prontos de: /home/treinamento/NGS/

```
cp -r /home/treinamento/NGS/biome/rna1/thout_brain/ .
```

Montagem:

16) A montagem dos transcritos pode ser feita com a ferramenta Cufflinks:

```
cufflinks -p 4 -o clout_adrenal thout_adrenal/accepted hits.bam
```

Repita o passo com a amostra de cérebro:

```
Cufflinks -p 4 -o clout brain thout brain/accepted hits.bam
```

Expressão diferencial:

17) Quais genes estão diferencialmente expressos? Para responder a pergunta, primeiro vamos criar os arquivos de input para o cuffdif:

```
samtools view -h thout adrenal/accepted hits.bam > adrenal.sam
samtools view -h thout brain/accepted hits.bam > brain.sam
```

18) Agora vamos rodar o Cuffdiff:

```
cuffdiff -o diff out gene19 annotation.gtf adrenal.sam brain.sam
```

*o comando deve ser digitado em apenas uma linha

Olhando o Resultado:

Dentro da pasta diff_out encontramos vários resultados interessantes. Com ls podemos checar os arquivos gerados.

```
ls diff out
```

Vamos manter o foco no arquivo gene exp.diff.

```
more diff_out/gene_exp.diff
```

Agora vamos selecionar apenas aqueles genes dados como diferencialmente expressos pelos testes estatísticos do cuffdiff.

```
grep 'yes$' diff_out/gene_exp.diff
```

Referências:

- 1- Differential gene and transcript expression analysis of RNAseq Experiments with TopHat and Cufflinks. Trapnell C 1, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L.
- 2- Trimmomatic: A flexible trimmer for Illumina Sequence Data. Anthony M. Bolger, Marc Lohse and BjoernUsadel
- 3- Simple Combinations of LineageDetermining Transcription Factors Prime cisRegulatory Elements Required for Macrophage and B Cell Identities. Heinz S, Benner C, Spann N, Bertolino E et al.
- 4- Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Cole Trapnell, Brian Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan, Jeltje van Baren, Steven Salzberg, Barbara Wold, LiorPachter. NatureBiotechnology, 2010.

Aula prática 5

- RNAseqII
- Explorando dados de NGS

Professor: Jorge Estefano Santana de Souza, jorge@imd.ufrn.br;

Objetivo:

Utilizar as ferramentas básicas de RNAseq para obter o padrão de expressão dos mirRNAs de uma amostra.

Ferramentas:

- 1- Linux.
- 2- WebServer.
- 3- cutadapt
- 4- mapper
- 5- miRDeep2

Comandos Básicos:

Durante a execução dos tutoriais necessitaremos saber alguns comandos básicos do Linux. Mais informações no site:

http://wiki.ubuntu-br.org/ComandosBasicos

Login Servidor:

Inicialmente vamos fazer o logon no servidor abrindo um terminal na máquina remota:

User: bif

Host: 177.20.147.141

Porta: 4422 Senha: bif0003

Dados brutos (raw data):

Durante a execução dos tutoriais necessitaremos de alguns dados iniciais disponíveis no diretório:

/home/treinamento/NGS/

Servidor WEB:

Como os trabalhos realizados no servidor são de difícil visualização, iremos necessitar de uma área web para facilitar nossa tarefa. Todos os arquivos copiados para o diretório abaixo...

```
/data/home/bif/public_html/
```

....estarão disponíveis via navegador web em:

http://www.bioinformatics-brazil.org/~bif/

Iniciando o Workflow:

1) Vamos começar pelo básico, certifique-se de que a pasta atual é:

/home/bif

Para isso digite o comando:

pwd

2) Crie um diretório contendo o seu nome (se já não existir) digitando o comando:

mkdir SeuNome

3) Entre no diretório criado:

O diretório atual deve ser: /data/home/bif/SeuNome/rna2

7) Crie links simbólicos para os arquivos:

```
ln -s /home/treinamento/NGS/RNAseq/sample_data/SRR326279_R1.fastq .
ln -s /home/treinamento/NGS/RNAseq/sample_data/SRR326280_R1.fastq .
```

*esses são os sequenciamentos de nossas amostras.

Arquivos de Referência:

- 8) Agora vamos necessitar de:
 - -Arquivo fasta com o genoma de referência;
 - -Arquivos de index do genoma de referência;
 - -Arquivo fasta com os miRNAs referência para a espécie (utilizaremos o miRBase);
 - -Arquivo fasta com os miRNAs maduros para a espécie (utilizaremos o miRBase);
 - -Arquivo fasta de predição dos loops das sequências dos miRNAs para a espécie, os hairpins (utilizaremos o miRBase);

Esses arquivos já foram baixados. Crie um link para eles:

```
ln -s /home/treinamento/NGS/RNAseq/small_ref/ .
```

Preparando o dado inicial:

9) Antes de executar o miRDeep2, os dados devem ser pré-processados para remover adaptadores. Isso pode ser feito usando o cutadapt: .

```
cutadapt -b AATCTCGTATGCCGTCTTCTGCTTGC -0 3 -m 17 \
-f fastq SRR326279_R1.fastq > SRR326279_R1.ct.fastq
```

*o comando deve ser digitado em apenas uma linha

```
cutadapt -b AATCTCGTATGCCGTCTTCTGCTTGC -0 3 -m 17 \
-f fastq SRR326280_R1.fastq > SRR326280_R1.ct.fastq
```

Mapeamento:

10) Usaremos o script mapper.pl para processar as leituras e mapeá-las contra o genoma de referência:

```
mapper.pl SRR326279_R1.ct.fastq -e \
-p small_ref/hg19_chr1 -s SRR326279.pr.fa \
-t SRR326279.mr.arf -h -m -i -j
```

*o comando deve ser digitado em apenas uma linha

```
mapper.pl SRR326280_R1.ct.fastq -e \
-p small_ref/hg19_chr1 -s SRR326280.pr.fa \
-t SRR326280.mr.arf -h -m -i -j
```

*o comando deve ser digitado em apenas uma linha

Identificação de miRNAs conhecidos e novos nos dados de sequenciamento:

*o comando deve ser digitado em apenas uma linha

*o comando deve ser digitado em apenas uma linha

Esses dois últimos comandos irão demorar muito, muito mesmo, vamos pegar os resultados prontos em:

ls /home/treinamento/NGS/biome/rna2/

Agora vamos olhar os resultados.

Referências:

- 1- Simple Combinations of LineageDetermining Transcription Factors Prime cisRegulatory Elements Required for Macrophage and B Cell Identities. Heinz S, Benner C, Spann N, Bertolino E et al.
- 2- Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Cole Trapnell, Brian Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan, Jeltje van Baren, Steven Salzberg, Barbara Wold, LiorPachter. NatureBiotechnology, 2010
- 3- Cutadapt removes adapter sequences from high-throughput sequencing reads. MARTIN, Marcel. EMBnet.journal, [S.I.], v. 17, n. 1, p. pp. 10-12, may. 2011. ISSN 2226-6089. Available at:http://journal.embnet.org/index.php/embnetjournal/article/view/200. Date accessed: 08 Jul. 2017. doi:http://dx.doi.org/10.14806/ej.17.1.200.
- 4- Friedländer, M.R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S., Rajewsky, N. 'Discovering microRNAs from deep sequencing data using miRDeep', Nature Biotechnology, 26, 407-415 (2008).