relações de ordem parcial

Definições básicas

Definição. Seja A um conjunto.

Uma relação binária R em A diz-se uma relação de ordem parcial em A se R é reflexiva, antissimétrica e transitiva em A.

Se R é uma relação de ordem parcial em A diz-se que (A,R) é um conjunto parcialmente ordenado ou, simplesmente, **c.p.o.**

Se não houver ambiguidade, referimo-nos ao c.p.o. (A, \leq) como o c.p.o. A.

Um c.p.o. (A, \leq) diz-se *finito* se A é um conjunto com um número finito de elementos e diz-se *vazio* se A é vazio.

Exemplos.

1. Sejam $A = \{1, 2, 3, 4\}$ e

$$R = \{(1,1), (2,2), (3,3), (4,4), (1,2), (1,3), (1,4), (2,4), (3,4)\}.$$

Então R é uma ordem parcial em A.

2. Sejam $A = \{a, b, c, d, e\}$ e

$$R = \mathrm{id}_A \cup \{(a, b), (b, c), (c, d), (d, e)\}$$

Então R, apesar de ser reflexiva e antissimétrica, não é uma relação de ordem parcial em A, uma vez que não é transitiva $((a,b),(b,c) \in R \text{ mas } (a,c) \notin R)$.

3. Seja A um conjunto qualquer. Então, id_A é uma relação de ordem parcial em A e ω_A é uma relação de ordem parcial em A se e só se A tem, no máximo, 1 elemento.

- 4. (\mathbb{R}, \leq) é um c.p.o., onde \leq é a relação usual de *menor ou igual a* considerada nos números reais.
- 5. $(\mathbb{N}, |)$ é um c.p.o., onde | é a relação *divide* ou *é divisor de* definida nos números naturais:

$$a \mid b \Leftrightarrow \exists x \in \mathbb{N} : b = xa.$$

6. Seja A um conjunto qualquer. Então, $(\mathcal{P}(A), \subseteq)$ é um c.p.o.

Notações. É costume representar uma relação de ordem parcial em A por \leq_A ou simplesmente por \leq .

Sejam
$$(A, \leq)$$
 um c.p.o. e $a, b \in A$. Escrevemos

- 1. $a \le b$ se a está relacionado com b;
 - (lê-se a é menor ou igual a b)
- 2. $a \ge b$ se $b \le a$;
- (lê-se a é maior ou igual a b)
- 3. $a \nleq b$ se $\sim (a \leq b)$;
- (lê-se a não é menor ou igual a b)
- 4. $a \ngeq b$ se $\sim (a \ge b)$;
- (lê-se a não é maior ou igual a b)

```
5. a < b se a \le b e a \ne b
                           (lê-se a é menor que b)
6. a > b se b < a;
                           (lê-se a é maior que b)
7. a \ll b se a < b e \exists c \in A : a < c < b;
                           (lê-se a é coberto por b
                              ou a é sucedido por b)
8. a \gg b se b \ll a;
                           (lê-se a cobre b ou a é sucessor de b)
9. a \parallel b se a \nleq b e b \nleq a
```

(lê-se a e b são incomparáveis)

Diagrama de Hasse

Um c.p.o. finito e não vazio pode ser representado por um **diagrama de Hasse**

1. Cada elemento $a \in A$ é representado por um ponto do plano:

2. A proposição $a \ll b$ é representada por um segmento de reta de extremos a e b, estando o ponto b representado "acima" do ponto a:

3. A proposição $a \le b$ é representada por uma linha poligonal ascendente do ponto a ao ponto b.

Exemplo 1. No conjunto $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}$ considere-se a relação de ordem parcial definida por

$$x \mid y \Leftrightarrow \exists k \in \mathbb{N} : y = kx.$$

O diagrama de Hasse deste c.p.o. é

Exemplo 2. Seja $A = \{1, 2, 3\}$. O diagrama de Hasse do c.p.o. $(\mathcal{P}(A), \subseteq)$ é

ordem parcial induzida num subconjunto de um c.p.o.

Sejam (A, \leq) um c.p.o. e $X \subseteq A$.

A relação \leq_X definida em X por

$$x \le_X y \Leftrightarrow x \le y$$
 $(x, y \in X)$

é uma relação de ordem parcial em X.

Definição. A ordem parcial \leq_X diz-se a ordem parcial induzida por \leq em X.

Exemplo. Se A é o c.p.o. definido pelo diagrama de Hasse

e $X = \{1, 2, 3, 12\}$, temos que (X, \leq_X) é o c.p.o. de diagrama de Hasse

c.p.o. dual

Definição. Sejam (A, \leq) um c.p.o. e \leq_d a relação binária definida em A por

$$x \leq_d y \Leftrightarrow y \leq x$$
 $(x, y \in A).$

Então, (A, \leq_d) é um c.p.o., o qual se designa por c.p.o. dual de (A, \leq) .

Exemplo. O dual de

é

Observação. Como $(\leq_d)_d = \leq$, podemos concluir que o c.p.o. dual de (A, \leq_d) é o próprio c.p.o. (A, \leq) .

Elementos especiais de um c.p.o.

Definição. Sejam A um c.p.o. e $X \subseteq A$.

1. $a \in A$ diz-se um majorante de X se

$$\forall x \in X, x \leq a$$

Representa-se por Maj X o conjunto dos majorantes de X;

2. $a \in A$ diz-se um **minorante de** X se

$$\forall x \in X, x \geq a$$

Representa-se por Min X o conjunto dos minorantes de X;

3. $a \in A$ diz-se um **maximal de** X se

$$a \in X$$
 e $\forall x \in X, x \not > a$;

4. $a \in A$ diz-se um **minimal de** X se

$$a \in X$$
 e $\forall x \in X, x \nleq a$;

5. $a \in A$ diz-se o **supremo de** X se

$$a \in \operatorname{Maj} X$$
 e $\forall b \in \operatorname{Maj} X$, $a \leq b$.

Escreve-se $a = \sup X$;

6. $a \in A$ diz-se o **ínfimo de** X se

$$a \in \operatorname{Min} X e \ \forall b \in \operatorname{Min} X, \ b \leq a.$$

Escreve-se $a = \inf X$;

7. $a \in A$ diz-se o **máximo de** X se

$$a \in X$$
 e $\forall x \in X, x \leq a$.

Escreve-se $a = \max X$;

8. $a \in A$ diz-se o **mínimo de** X se

$$a \in X$$
 e $\forall x \in X$, $a \le x$.

Escreve-se $a = \min X$.

Observações.

- Um subconjunto de um c.p.o. pode não admitir elementos especiais. Por exemplo, no c.p.o. (\mathbb{R}, \leq) , onde \leq é a relação de ordem usual, o próprio \mathbb{R} não tem qualquer elemento especial listado.
- O supremo, o ínfimo, o máximo e o mínimo de um subconjunto, quando existem, são únicos.
- São duais os conceitos de:

mínimo /máximo ínfimo /supremo minimal /maximal minorante /majorante **Exemplo.** Se A é o c.p.o. definido pelo diagrama de Hasse

- Se $X=\{2,3,4,6\}$, então $\min X=\{1\}\qquad \max X=\{12\},\qquad \inf X=1,\qquad \sup X=12,$ $\min X,\max X \text{ não existem}$

Algumas classes importantes de c.p.o.'s

I - Reticulados

Definição. Um c.p.o. (A, \leq) diz-se um *reticulado* se

$$\forall x, y \in A \exists a, b \in A : a = \sup\{x, y\} \text{ e } b = \inf\{x, y\}.$$

Escreve-se $a = x \lor y$ e $b = x \land y$ e se $x \parallel y$, no diagrama de Hasse, temos

Se (A, \leq) é um reticulado e A é finito, então existe max A e min A.

Escrevemos $\max A = 1$ e $\min A = 0$.

Exemplos.

- 1. Seja A um conjunto um conjunto qualquer. Então, (A, id_A) é um reticulado se A tem, no máximo, um elemento.
- 2. Seja A um conjunto qualquer. Então, $(\mathcal{P}(A),\subseteq)$ é um reticulado.
- 3. Seja $A = \{1, 2, 3, 4, 5, 6\}$ o c.p.o. definido pelo diagrama de Hasse

II - Cadeias ou Conjuntos Totalmente Ordenados

Definição. Um c.p.o. (A, \leq) diz-se uma cadeia ou um conjunto totalmente ordenado se

$$\forall x, y \in A, x \leq y \text{ ou } y \leq x.$$

Exemplos.

- 1. Seja A um conjunto um conjunto qualquer. Então, (A, id_A) é uma cadeia se A tem, no máximo, um elemento.
- 2. (\mathbb{N}, \leq) e (\mathbb{R}, \leq) são cadeias.
- 3. $({2^n : n \in \mathbb{N}}, |)$ é uma cadeia.

Definição. Seja (A, \leq) um c.p.o.. Diz-se que $X \in A$ é uma cadeia de A se o c.p.o. (X, \leq_X) é um conjunto totalmente ordenado.

Uma cadeia de A com n de elementos $(n \in \mathbb{N})$ pode ser representada por $x_1 < x_2 < x_3 < \cdots < x_n$, onde $x_1, x_2, ..., x_n \in A$. Diz-se que esta é uma cadeia finita de comprimento n-1.

Se o conjunto dos comprimentos de todas as cadeias de um c.p.o. admitir um máximo k, diz-se que o c.p.o. tem comprimento k.

Se $a, b \in A$ e a < b uma *cadeia de a a b* é uma cadeia de A em que a é o elemento mínimo e b é o elemento máximo.

Uma cadeia maximal de a a b é uma cadeia de a a b que não esteja contida noutra cadeia de a a b.

Definição. Seja (A, \leq) um c.p.o.. Diz-se que $X \in A$ é uma anticadeia de A se $\leq_X = \mathrm{id}_X$, ou seja,

$$\forall x, y \in A, \ x \neq y \Rightarrow x \parallel y.$$

Se X é uma anticadeia de A com n de elementos $(n \in \mathbb{N})$ diz-se que X tem largura n.

Se o conjunto das larguras de todas as anticadeias de um c.p.o. admitir um máximo k, diz-se que o c.p.o. tem largura k.

Exemplo. Seja A o c.p.o. definido pelo diagrama de Hasse

Então,

- 1. As cadeias de A de maior comprimento têm comprimento 3: 1 < 2 < 4 < 12. Logo, A tem comprimento 3;
- 2. As anticadeias de maior largura têm largura 7: $\{8,12,9,5,7,11,13\}$. Logo, A tem largura 7.

Lema de Zorn

Seja A um c.p.o. no qual qualquer cadeia admite um majorante. Então, A tem um elemento maximal.

Axioma da Escolha

Seja $\mathcal{F} = \{S_i : i \in I\}$ uma família não vazia de conjuntos não vazios. Então, existe uma função

$$f: \mathcal{F} \to \bigcup_{i \in I} S_i$$

tal que $f(S_i) \in S_i$, para todo $i \in I$.

A esta função chama-se função de escolha, já que escolhe um único elemento $f(S_i)$ de cada conjunto S_i .

III - Conjuntos Bem Ordenados

Um c.p.o. (A, \leq) diz-se um *conjunto bem ordenado* ou *c.b.o.* se cada subconjunto não vazio de A admite elemento mínimo. Se (A, \leq) é um c.b.o., a ordem \leq diz-se uma *boa ordenação de A*.

Exemplos.

- 1. O conjunto $A = \{1, 2, 3, 4, 5\}$, ordenado com a ordem parcial usual, é um c.b.o.;
- 2. O c.p.o. (\mathbb{R},\leq) não é um c.b.o.. Por exemplo,] -1,1[não admite elemento mínimo.
- 3. O conjunto parcialmente ordenado $\mathbb N$ é bem ordenado. **Princípio da Boa Ordenação de** $\mathbb N$.

Observações.

- 1. Todo o c.b.o. é uma cadeia, mas nem toda a cadeia é um c.b.o..
- 2. É o Princípio da Boa Ordenação de $\mathbb N$ que justifica o Princípio de Indução Matemática.

Aplicações entre c.p.o.'s

Definição. Sejam (A, \leq_A) e (B, \leq_B) c.p.o.'s e $\varphi: A \to B$ uma aplicação. Diz-se que φ é uma aplicação isótona ou uma aplicação que preserva a ordem se

$$\forall x, y \in A, \ x \leq_A y \Rightarrow \varphi(x) \leq_B \varphi(y).$$

Exemplo. Sejam $A = \{x, y, z\}$ e $B = \{1, 2, 3\}$ os c.p.o.'s definidos pelos Diagramas de Hasse

A aplicação $f:A\to B$ definida por f(x)=a, f(y)=c e f(z)=b é uma aplicação bijetiva isótona.

Definição. Sejam (A, \leq_A) e (B, \leq_B) c.p.o.'s $\varphi: A \to B$ uma aplicação. Diz-se que φ é um *mergulho isótono* se

$$\forall x, y \in A, \ x \leq_A y \Leftrightarrow \varphi(x) \leq_B \varphi(y).$$

Exemplo. Sejam $A = \{x, y, z\}$ e $B = \{1, 2, 3\}$ os c.p.o.'s definidos pelos Diagramas de Hasse

A aplicação $f:A\to B$ definida por f(x)=a, f(y)=c e f(z)=b não é um mergulho isótono, pois $f(x)=a\le b=f(z)$ e $x\nleq z$.

Observações.

1. Um mergulho isótono é sempre uma aplicação injetiva.

De facto, se $f:A\to B$ é um mergulho isótono, então, para $x,y\in A$,

$$f(x) = f(y) \Rightarrow f(x) \le f(y) \land f(y) \le f(y) \Leftrightarrow x \le y \land y \le x \Leftrightarrow x = y.$$

- 2. A inversa de uma aplicação bijetiva e isótona não é necessariamente uma aplicação isótona.
- 3. A inversa de um mergulho isótono, quando existe, é uma aplicação isótona.

Definição. Sejam (A, \leq_A) e (B, \leq_B) c.p.o.'s $\varphi: A \to B$ uma aplicação. Diz-se que φ é um *isomorfismo de ordem* de A sobre B se φ é uma aplicação bijetiva e isótona tal que $\varphi^{-1}: B \to A$ é uma aplicação isótona.

Se φ é um isomorfismo de ordem de A sobre B, então, φ^{-1} é um isomorfismo de ordem de B sobre A. Assim, diz-se que A e B são isomorfos e escreve-se $A \simeq B$.

Teorema. Sejam (A, \leq_A) e (B, \leq_B) c.p.o.'s $\varphi: A \to B$ uma aplicação. Então, φ é um isomorfismo de ordem de A sobre B se e só se φ é um mergulho de ordem sobrejetivo.

Se φ é um isomorfismo de ordem de A sobre B e A e B são finitos, então os diagramas de Hasse dos dois c.p.o.'s são iguais.

Exemplo. Os reticulados $M_5 = \{0, 1, a, b, c\}$ e $N_5 = \{0, 1, x, y, z\}$ definidos pelos Diagramas de Hasse

não são isomorfos.