CME 2001 Data Structures and Algorithms

Zerrin Işık

zerrin@cs.deu.edu.tr

Growth of Functions

Growth Rate of Functions

- The order of growth of running time gives algorithm's efficiency and helps us to compare performance of alternative algorithms
 - e.g. for a large input size of n, merge sort ($\Theta(n.logn)$) beats insertion Sort ($\Theta(n^2)$)
- We compare the efficiency
 of algorithms by comparing
 their growth rate.

Comparison of Growth-Rate Functions

© The McGraw-Hill Companies, Inc. all rights reserved.

Asymptotic Notation

• If an algorithm A requires time proportional to f(n), it is order f(n), and it is denoted as O(f(n))

• f(n) is called the **growth-rate function** of the algorithm A.

Big-O Notation

Given two growth-rate functions f(n) and g(n):

$$f(n) = O(g(n))$$

if there exist positive constants c and n_0 such that $f(n) \le c.g(n)$ for all $n \ge n_0$.

g(n) is an *asymptotic upper bound* for f(n).

Big-O Notation

```
2n^2 = O(n^3) because 0 \le 2n^2 \le n^3 where c=1, n_0=2 (! one way equality, not symmetric)
```

Examples of functions in $O(n^2)$:

```
n^{2}
n^{2} + n
n^{2} + 1000n
1000n^{2} + 1000n
Also,
n
n/1000
n^{1.99999}
n^{2}/\lg \lg \lg n
```

Ω (Omega) Notation

Given two growth-rate functions f(n) and g(n):

$$f(n) = \Omega(g(n))$$

if there exist positive constants c and n_0 such that $c.g(n) \le f(n)$ for all $n \ge n_0$.

g(n) is an *asymptotic lower bound* for f(n).

Ω - Notation

```
\sqrt{n} = \Omega(lgn) where c=1, n_0 = 16
```

Examples of functions in $\Omega(n^2)$:

```
n^{2}
n^{2} + n
n^{2} - n
1000n^{2} + 1000n
1000n^{2} - 1000n
Also,
n^{3}
n^{2.00001}
n^{2} \lg \lg \lg n
2^{2^{n}}
```

⊕-Notation

Given two growth-rate functions f(n) and g(n):

$$f(n) = \Theta(g(n))$$

if there exist positive constants c_1, c_2 and n_0 such that $c_1, g(n) \le f(n) \le c_2, g(n)$ for all $n \ge n_0$.

g(n) is an asymptotic tight bound for f(n).

Θ-Notation

E.g.
$$n^2/2 - 2n = \Theta(n^2)$$
 where $c_1 = \frac{1}{4}$, $c_2 = \frac{1}{2}$, $n_0 = 8n$

Theorem:

$$f(n) = \Theta(g(n))$$
 iff $f(n) = \Omega(g(n))$ and $f(n) = O(g(n))$

* Leading constants and low-order terms do not matter

o-Notation and w-notation

O-notation and Ω -notation represent \leq and \geq o-notation and w-notation represent \leq and \geq

$$f(n) = o(g(n))$$
 for all constants c>0, there exits $n_0 > 0$ such that $0 \le f(n) < c.g(n)$ for all $n \ge n_0$.

E.g.
$$n^{1.9999} = o(n^2)$$

 $n^2/\lg n = o(n^2)$
 $n^2 \neq o(n^2)$ (just like $2 \neq 2$)
 $n^2/1000 \neq o(n^2)$

Note: Inequality must hold for all c (where c>0)

w-notation

$$f(n) = w(g(n))$$
 for all constants c>0, there exits $n_0 > 0$ such that $0 \le c.g(n) < f(n)$ for all $n \ge n_0$.

E.g.
$$n^{2.0001} = \omega(n^2)$$

 $n^2 \lg n = \omega(n^2)$
 $n^2 \neq \omega(n^2)$

Substitution Method to Solve Recurrence

Recurrence relations represent the running times of divideand-conquer algorithms.

To solve recurrence relations:

- 1. Guess the form of the solution.
- 2. Use mathematical induction to find the constants and show this solution works.

E.g.
$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ 2T(n/2) + n & \text{if } n > 1. \end{cases}$$

- 1. Guess: $T(n) = n \lg n + n$
- 2. Induction:

Basis:
$$n=1 => n \lg n + n = 1 = T(n)$$

Inductive Step: Our hypothesis is that

$$T(k) = k \lg k + k$$
 for all $k < n$

We will use this inductive hypothesis for T(n/2)

Assume
$$T(k) = k \lg k + k$$
, then

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$= 2\left(\frac{n}{2}\lg\frac{n}{2} + \frac{n}{2}\right) + n \quad \text{(by inductive hypothesis)}$$

$$= n\lg\frac{n}{2} + n + n$$

$$= n(\lg n - \lg 2) + n + n$$

$$= n\lg n - n + n + n$$

$$= n\lg n + n.$$

- Show the upper (O) and lower (Ω) bounds separately
- If necessary use different constants for each bound

E.g.
$$T(n) = 2T(n/2) + \Theta(n)$$
.

Upper bound:

Aim is to show T(n)=2T(n/2)+O(n), then we should write $T(n) \le 2T(n/2) + cn$ for some positive constant c.

Guess: $T(n) \le d n \lg n$ for some positive constant d.

Substitution:
$$T(n) \leq 2T(n/2) + cn$$

$$= 2\left(d\frac{n}{2}\lg\frac{n}{2}\right) + cn$$

$$= dn\lg\frac{n}{2} + cn$$

$$= dn\lg n - dn + cn$$

$$\leq dn\lg n \quad \text{if } -dn + cn \leq 0,$$

$$d \geq c$$

Therefore, $T(n) = O(n \lg n)$.

Lower bound:

Write $T(n) \ge 2T(n/2) + cn$ for some positive constant c.

Guess: $T(n) \ge d n \lg n$ for some positive constant d.

Substitution:
$$T(n) \ge 2T(n/2) + cn$$

$$= 2\left(d\frac{n}{2}\lg\frac{n}{2}\right) + cn$$

$$= dn\lg\frac{n}{2} + cn$$

$$= dn\lg n - dn + cn$$

$$\ge dn\lg n \quad \text{if } -dn + cn \ge 0,$$

$$d \le c$$

Therefore, $T(n) = \Omega$ (n lgn).

E.g.
$$T(n) = 8T(n/2) + \Theta(n^2)$$
.

Upper bound:

$$T(n) \le 8T(n/2) + cn^2$$

Guess: $T(n) \le dn^3$

Substitution:
$$T(n) \le 8d(n/2)^3 + cn^2$$

$$= 8d(n^3/8) + cn^2$$

$$= dn^3 + cn^2$$

$$\nleq dn^3$$

does not work

Solution: Subtract off a lower-order term.

Guess: $T(n) \le dn^3 - d'n^2$

Substitution:
$$T(n) \le 8(d(n/2)^3 - d'(n/2)^2) + cn^2$$

 $= 8d(n^3/8) - 8d'(n^2/4) + cn^2$
 $= dn^3 - 2d'n^2 + cn^2$
 $= dn^3 - d'n^2 - d'n^2 + cn^2$
 $\le dn^3 - d'n^2 \quad \text{if } -d'n^2 + cn^2 \le 0$,
 $d' \ge c$

It worked now.

Recursion Tree to Solve Recurrence

• Useful to generate better guesses for substitution method

E.g.
$$T(n) = T(n/3) + T(2n/3) + \Theta(n)$$

Recursion Tree ...

Upper bound rewrite as $T(n) \le T(n/3) + T(2n/3) + cn$

Guess: $T(n) \le dn \lg n$ for some positive constant d

Substitition:
$$T(n) \leq T(n/3) + T(2n/3) + cn$$

 $\leq d(n/3) \lg(n/3) + d(2n/3) \lg(2n/3) + cn$
 $= (d(n/3) \lg n - d(n/3) \lg 3)$
 $+ (d(2n/3) \lg n - d(2n/3) \lg(3/2)) + cn$
 $= dn \lg n - d((n/3) \lg 3 + (2n/3) \lg(3/2)) + cn$
 $= dn \lg n - d((n/3) \lg 3 + (2n/3) \lg 3 - (2n/3) \lg 2) + cn$
 $= dn \lg n - dn (\lg 3 - 2/3) + cn$
 $\leq dn \lg n$ if $-dn (\lg 3 - 2/3) + cn \leq 0$,
 $d \geq \frac{c}{\lg 3 - 2/3}$.

Master Method to Solve Recurrence

Useful to solve recurrences of the form:

$$T(n) = aT(n/b) + f(n)$$
,
where $a \ge 1, b > 1$, and $f(n) > 0$.

Compare $n^{\log_b a}$ vs. f(n):

of leaves

• Case 1: $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$. * f(n) is polynomially smaller than $n^{\log_b a}$

Solution: $T(n) = \Theta(n^{\log_b a})$. (* cost is dominated by leaves.)

Master Method to Solve Recurrence

- Case 2: $f(n) = \Theta(n^{\log_b a} \lg^k n)$, where $k \ge 0$. * f(n) is within a polylog factor of $n^{\log_b a}$, but not smaller.
 - **Solution:** $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.
 - (* cost is $n^{\log_b a} \lg^k n$ at each level, and there are $\Theta(\lg n)$ levels.)
- Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$ and f(n) satisfies the regularity condition $a f(n/b) \le c f(n)$ for some constant c < 1.
 - * f(n) is polynomially greater than $n^{\log_b a}$.
 - **Solution:** $T(n) = \Theta(f(n))$.
 - (* cost is dominated by root.)

Examples for Master Method

$$T(n) = 5T(n/2) + \Theta(n^2)$$

 $n^{\log_2 5}$ vs. n^2
Since $\log_2 5 - \epsilon = 2$ for some constant $\epsilon > 0$
use Case $1 \Rightarrow T(n) = \Theta(n^{\lg 5})$

$$T(n) = 4T(n/2) + n^2$$

 $n^{\log_2 4}$ vs. n^2
Since $n^2 = n^2$ (for $k=0$) \checkmark
use Case 2 => $T(n) = \Theta(n^2 \lg n)$

Examples for Master Method ...

$$T(n) = 5T(n/2) + \Theta(n^3)$$

 $n^{\log_2 5}$ vs. n^3
Now $\lg 5 + \epsilon = 3$ for some constant $\epsilon > 0$
 $af(n/b) = 5(n/2)^3 = 5n^3/8 \le cn^3$ for $c = 5/8 < 1$
Use Case $3 \Rightarrow T(n) = \Theta(n^3)$

$$T(n) = 27T(n/3) + \Theta(n^3/\lg n)$$

$$n^{\log_3 27} = n^3 \text{ vs. } n^3/\lg n = n^3 \lg^{-1} n \neq \Theta(n^3 \lg^k n) \text{ for any } k \geq 0.$$
Cannot use the master method.

Next Week Topics

- Elementary Data Structures (Chapter 10)
- Hash Tables (Chapter 11)