Практика 27.10

- 1. Пусть x, y объекты категории C. Докажите, что копроизведение объектов x и y существует тогда и только тогда, когда функтор из C в Sets, сопоставляющий объекту z множество $C(x,z) \times C(y,z)$ (и определенный очевидным образом на морфизмах) представим.
- 2. Пусть в диаграмме

правый квадрат (с вершинами A_2, A_3, B_2, B_3) и внешний прямоугольник (с вершинами A_1, A_3, B_1, B_3) — пулбэки. Докажите, что, если левый квадрат (с вершинами A_1, A_2, B_1, B_2) коммутативен, то он тоже является пулбэком.

3. Докажите, что, если в пулбэке

морфизм f является мономорфизмом, то и g мономорфизм.

- 4. Пусть группы G и H заданы образующими и соотношениями как $\langle X \mid R \rangle$ и $\langle Y \mid S \rangle$. Докажите, что группа G*H заданная образующими и соотношениями $\langle X,Y \mid R,S \rangle$ является копроизведением G и H в категории групп. Выведите отсюда, что G*H не зависит (по модулю изоморфизма) от представления G и H образующими и соотношениями.
- 5. Докажите, что, еесли категория J имеет начальный объект *, то для любого функтора $F: J \to C$ объект F(*) будет пределом функтора F.
- 6. Пусть G группа. Обозначим через S_G категорию, объекты которой конечно порожденные подгруппы группы G, а морфизмы соответствуют вложениям подгрупп. Докажите, что копредел очевидного функтора из S_G в Groups это G.
- 7. Пусть $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$ (\mathbb{Z} рассматривается как абелева группа относительно сложения). Пусть S категория, объекты которой циклические подгруппы группы G, а морфизмы соответствуют вложениям подгрупп (как подгрупп группы G). Найдите копредел очевидного функтора из S в Groups.
- 8. Пусть **2** категория с 2-мя объектами и одной стрелкой между ними, а C, D две произвольные категории. Покажите, что любой функтор $F: C \to D^2$ можно задать тройкой (G, H, ϕ) , где $G, H: C \to D$ два функтора, а $\phi: G \to H$ естественное преобразование, и что любая тройка указанного вида определяет функтор из C в D^2 .