The Design and Analysis of Algorithms

Lecture 15 Network Flow II

Zhenbo Wang

Department of Mathematical Sciences, Tsinghua University

Content

Capacity Scaling Algorithm

Bipartite Matching

Disjoint Paths

Capacity Scaling Algorithm

- Intuition. Choosing path with highest bottleneck capacity.
- Maintain scaling parameter Δ .
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ .

Capacity Scaling Algorithm

CAPACITY - SCALING(G, s, t, c)

```
1: \Delta \leftarrow largest power of 2 \leq C.
 2: for edge e \in E do
    f(e) \leftarrow 0.
 4: end for
 5: while \Delta > 1 do
 6: G_f(\Delta) \leftarrow \Delta-residual graph.
 7: while there exists an augmenting path P in G_f(\Delta) do
          f \leftarrow AUGMENT(f, c, P).
 9: end while
10: \Delta \leftarrow \Delta/2.
11: end while
12: return f.
```


Correctness

- Assumption. All edge capacities are integers between 1 and C.
- Integrality invariant. All flow and residual capacity values are integral.

Theorem 1

If capacity-scaling algorithm terminates, then f is a max-flow.

Pf. When $\Delta = 1 \Rightarrow Gf(\Delta) = Gf$.

Upon termination of $\Delta=1$ phase, there are no augmenting paths. \square

Running Time

Lemma 2

The outer while loop repeats $O(\log C)$ times.

Lemma 3

Let f be the flow at the end of a Δ -scaling phase. Then, the value of the max-flow $\leq val(f) + m\Delta$.

Pf. Choose *A* to be the set of nodes reachable from s in $G_f(\Delta)$.

 $s \in A$ and $t \notin A$.

$$v(f) = \sum_{\substack{e \text{ out ot A}}} f(e) - \sum_{\substack{e \text{ in to A}}} f(e)$$

$$\geq \sum_{\substack{e \text{ out ot A}}} (c(e) - \Delta) - \sum_{\substack{e \text{ in to A}}} \Delta$$

$$\geq \sum_{\substack{e \text{ out ot A}}} c(e) - m\Delta$$

$$= cap(A, B) - m\Delta. \square$$

Running Time

Lemma 4

There are at most 2m augmentations per scaling phase.

Pf. Let *f* be the flow at the end of the previous scaling phase.

Lemma 3 \Rightarrow the value of the max-flow $\leq val(f) + 2m\Delta$.

Each augmentation in a Δ -phase increases val(f) by at least $\Delta \square$.

Theorem 5

The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O(m^2 \log C)$ time.

Pf. Follows from Lemma 2 and lemma 4.

Extensions

- Shortest augmenting path algorithm: $O(n^2m)$
- Preflow-push algorithm: $O(n^2m)$
- Highest-label preflow-push algorithm: $O(n^2m^{1/2})$.
- ..

Matching

- Def. Given an undirected graph G = (V, E) a subset of edges $M \subseteq E$ is a *matching* if each node appears in at most one edge in M.
 - Max matching. Given a graph, find a max cardinality matching.

Bipartite matching

- Def. A graph G is bipartite if the nodes can be partitioned into two subsets L and R such that every edge connects a node in L to one in R.
 - Bipartite matching. Given a bipartite graph $G = (L \cup R, E)$, find a max cardinality matching.

Bipartite matching: max flow formulation

- Create digraph $G' = (L \cup R \cup \{s, t\}, E')$.
- Direct all edges from *L* to *R*, and assign infinite (or unit) capacity.
- Add source s, and unit capacity edges from s to each node in L.
- ullet Add sink t, and unit capacity edges from each node in R to t.

Max flow formulation: proof of correctness

Theorem

Max cardinality of a matching in G = value of max flow in G'.

Pf.

- Given a max matching *M* of cardinality *k*.
- Consider flow f that sends 1 unit along each of k paths.
- f is a flow, and has value k.

Max flow formulation: proof of correctness

- Let f be a max flow in G' of value k.
- Integrality theorem $\Rightarrow k$ is integral and can assume f is 0-1.
- Consider M = set of edges from L to R with f(e) = 1.
- each node in L and R participates in at most one edge in M.
- |M| = k: consider cut $(L \cup s, R \cup t)$. \Box

Bipartite Matching: Running Time

Which max flow algorithm to use for bipartite matching?

- Generic augmenting path: $O(mval(f^*)) = O(mn)$.
- Capacity scaling: $O(m^2 \log C) = O(m^2)$.
- Shortest augmenting path: $O(mn^{\frac{1}{2}})$

Non-bipartite matching.

- Blossom algorithm: $O(n^4)$.
- Best known: $O(mn^{\frac{1}{2}})$.

Edge-disjoint paths

Def. Two paths are *edge-disjoint* if they have no edge in common.

• Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint $s \to t$ paths.

Ex. Communication networks.

Edge-disjoint paths

• Max flow formulation. Assign unit capacity to every edge.

Theorem 6

Max number edge-disjoint $s \rightarrow t$ paths equals value of max flow.

Pf. ≤

- Suppose there are k edge-disjoint $s \to t$ paths P_1, \dots, P_k .
- Set f(e) = 1 if e participates in some path P_j ; else set f(e) = 0.
- Since paths are edge-disjoint, *f* is a flow of value *k*.

Edge-disjoint paths-Con't

Pf. \geq

Suppose max flow value is k.

Integrality theorem \Rightarrow there exists 0-1 flow f of value k.

- By conservation, there exists an edge (u, v) with f(u, v) = 1.
- Continue until reach *t*, always choosing a new edge.

Produces k (not necessarily simple) edge-disjoint paths. \Box

Network connectivity

- Def. A set of edges $F \subseteq E$ disconnects t from s if every $s \to t$ path uses at least one edge in F.
 - Network connectivity. Given a digraph G = (V, E) and two nodes s and t, find min number of edges whose removal disconnects t from s.

Menger's theorem

Theorem 7 (Menger 1927)

The max number of edge-disjoint $s \to t$ paths is equal to the min number of edges whose removal disconnects t from s.

Pf. ≤

- Suppose the removal of $F \subseteq E$ disconnects t from s, and |F| = k.
- Every $s \to t$ path uses at least one edge in F.
- Hence, the number of edge-disjoint paths is $\leq k$.

Menger's theorem-Con't

Pf. ≥

Suppose max number of edge-disjoint paths is k.

Then value of max flow = k.

Max-flow min-cut theorem \Rightarrow there exists a cut (A, B) of capacity k.

Let *F* be set of edges going from *A* to *B*.

|F| = k and disconnects t from s. \square

Homework

- Read Chapter 7 of the textbook.
- Exercises 12 & 18 in Chapter 7.

