"Altitude Variation" of the CO₂(v₂)-O Quenching Rate Coefficient in Mesosphere and Lower Thermosphere

A.G. Feofilov^{1,2}, A.A. Kutepov^{1,2}, C.Y. She³, A. K. Smith⁴, W. D. Pesnell², R.A. Goldberg²

- 1 The Catholic University of America, Washington, DC, USA
- 2 NASA Goddard Space Flight Center, Greenbelt, MD, USA 3 - Colorado State University, Fort Collins, CO, USA
- 4 National Center for Atmospheric Research, Boulder, CO, USA

AGU Fall Meeting, San Francisco, California, USA 13 – 17 December 2010

Formulation of the problem

The atmospheric cooling in mesosphere and lower thermosphere is dominated by CO_2 15 µm emission:

First, CO₂ molecule is collisionally excited:

$$CO_2(v_1,v_2,v_3) + O(^3P) \leftrightarrow CO_2(v_1,v_2+1,v_3) + O(^3P)$$
 (1)

then it emits a 15 µm quantum:

$$CO_2(v_1,v_2+1,v_3) \rightarrow CO_2(v_1,v_2,v_3) + hv (667cm^{-1}) (2)$$

The probability of (1) is defined by $k_{VT}\{CO_2-O\}$ rate coefficient...

But !!! (see the next slide) \rightarrow

$k_{VT}\{CO_2-O\}$ measurements and estimates

$k_{\rm VT}$ {CO ₂ -O} [cm ³ s ⁻¹]	Reference	Comments
$3-30 \times 10^{-14}$	Crutzen, 1970	First guess
2.4×10^{-14}	Taylor, 1974; Center,1973	Laboratory measurements
5.0×10^{-13}	Sharma and <u>Nadille</u> , 1981	Atmospheric retrieval
1.0×10^{-12}	Gordiets et al., 1982	Numerical experiment
2.0×10^{-13}	<u>Kumer</u> and James, 1983	Atmospheric retrieval
2.0×10^{-13}	Dickinson, 1984; Allen, 1980	Laboratory measurements
5.2×10^{-12}	Stair et al., 1985	Atmospheric retrieval
3.5×10^{-12}	Sharma, 1987	Atmospheric retrieval
$3-9 \times 10^{-12}$	Sharma and Wintersteiner, 1990	Atmospheric retrieval
1.5×10^{-12}	<u>Shved</u> et al., 1991	Laboratory measurements
1.3×10^{-12}	Pollock et al., 1993	Laboratory measurements
5.0×10^{-12}	<u>Ratkowski</u> et al., 1994	Atmospheric retrieval
5.0×10^{-13}	<u>Lilenfeld</u> , 1994	Laboratory measurements
1.5×10^{-12}	Vollmann and Grossmann, 1997	Atmospheric retrieval
1.4×10^{-12}	Khvorostovskaya et al., 2002	Laboratory measurements
1.8×10^{-12}	Castle et al., 2006	Laboratory measurements
6.0×10^{-12}	Gusev et al., 2006	Atmospheric retrieval
1.5×10^{-12}	Huestis et al., 2008	Recommended value
4.0×10^{-12}	Dodd et al., 2009	Laboratory measurements

The values differ by factor of 3-4 (!)

General idea

to minimize the difference between simulated and measured radiances by varying $k_{VT}\{CO_2\text{-}O\}$

simulated = calculated from the known atmospheric profile $(T(z), P(z), [CO_2](z), [O](z))$

General idea

- k_{VT} {CO₂-O} can be retrieved from 15 µm radiance.
- At each altitude I_{15um} is a function of T, P, [CO₂], and [O].
- Due to non-LTE effects and atmospheric absorption, $I_{15\mu m}$ is a function of T(z), P(z), $[CO_2](z)$, [O](z).
- Knowing these ingredients \rightarrow CO₂(v₂) levels populations \rightarrow k_{VT}{CO₂-O} rate coefficient variation \rightarrow optimal k_{VT}{CO₂-O}.

Sensitivity study: $k_{VT}=1.5 \times 10^{-12} \text{ vs } 6.0 \times 10^{-12} \text{ cm}^3 \text{s}^{-1}$

Datasets used in the study: Fort Collins lidar and SABER/TIMED

Colorado State University Lidar

- Sodium lidar, 80-110 km temperature measurements.
- Fort Collins, Colorado at (40.59N, 105.14W)
- In operation since 1990, since 2002 both night- and daytime measurements.
- Two telescopes pointed at 30° off zenith east and north.
- 50 shots/sec; accumulation over 2 min intervals.

SABER instrument:

- Designed for studying Mesosphere/Lower Thermosphere
- Limb scanning infrared radiometer
- 10 broadband channels (1.27-17 μm)
- Products: P, T, CO₂, O₃, H₂O, NO, O₂, OH, NO, O, H
- Pressure/temperature retrieval depends on k_{VT}{CO₂-O}

Retrieval approach

- Searching for simultaneous common volume measurements performed by SABER and lidar.
- Using lidar temperatures in 80-110km as reference data.
- Using SABER retrieved P(z), T(z) (<80km), CO₂(z), O(z).

Treating all altitudes together, minimizing the difference

$$I_{simul} - I_{meas}$$
by varying $k_{VT} \{CO_2 - O\}$
(AGU 2009)

Treating altitudes separately, minimizing the differences

$$I_{simul}(z) - I_{meas}(z)$$
 by varying $k_{VT}\{CO_2\text{-}O\}(z)$ (AGU 2010)

Treating all altitudes together: large uncertainty

Treating altitudes separately

 γ is a combined variable. Individual [O](z) profiles are not involved here (!)

Treating altitudes separately

• Each $|I_{meas} - I_{simul}|$ ($k_{VT}\{CO_2 - O\}x[O]$) = $|I_{meas} - I_{simul}|$ (γ) curve built for a given altitude z has a minimum at $\gamma_{min}(z)$.

•
$$k_{VT}\{CO_2-O\}(z) = \gamma_{min}(z) / [O](z)_{aver}$$

See next slide for $k_{VT}\{CO_2-O\}(z)...$

Treating altitudes separately: resulting $k_{VT}\{CO_2-O\}(z)$

Possible reasons for $k_{VT}\{CO_2-O\}(z) \neq const$

- Lidar temperatures offset, SABER radiances offset? Unlikely.
- SABER $[CO_2](z)$ offset? not found.
- SABER $[O](z)_{aver}$ offset? It's possible but the altitudinal behavior of $[O](z)_{aver}$ will remain the same.
- Temperature dependence of $k_{VT}\{CO_2-O\}$ other than $(T/300)^{1/2}$? It's possible since low-temperature laboratory measurements are sparse.
- Some physics we miss that does not happen in the laboratory but is present in the atmosphere:
 - non-thermal O atoms?
 - other pumping source?

Conclusions

- The methodology of $k_{VT}\{CO_2-O\}$ retrieval from overlapping SABER infrared radiance measurements and lidar temperatures has been developed.
- We base our analysis on $\gamma = k_{VT}\{CO_2-O\}$ x [O] variation and obtained $\gamma_{optimal}(z)$ is a separate scientific product.
- Retrieved k_{VT}{CO₂-O} values are close to most of atmospheric based estimates of this rate coefficient, however:
- Treating altitudes separately leads to retrieving $k_{VT}\{CO_2-O\}(z) \neq const$ altitude profile that may reveal an unknown component of MLT energy budget and help solving the mystery of discrepancy between laboratory and atmospheric measurements of quenching rate coefficient.
- More comparisons are needed including polar summer and polar winter conditions.

