Long Read Assembly

Existence and Unique existence of k-mers in the genome

Giulia Guidi

giulia.guidi@mail.polimi.it Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, Milan, Italy

April 20, 2017

1 Problem Statement

Sequencing technologies produce a large amount of redundant data with respect to the real genomic sequence to be assembled. Furthermore, the Pacific Bioscience technology, considered in this work, is prone to an error rate equal to 10%.

The ultimate goal is to efficiently exploit long reads produced by Pacific Bioscience technology to de novo assemble a genome. To achieve this scope, the first problem to be addressed is the determination of a reliable kmer sub-set to be used as a vector during the alignment phase of the genome assembly. This report includes a brief explaination of the proposed approach to compute the analysis in Section 2, while in Section 3 the obtained results are shown. In Appendix A the raw data used for the final results are reported.

2 Algorithm Approach

The proposed algorithm exploits a trie tree approach to find matches between k-mers and the genome [1]. This approach makes the algorithm much more efficient with respect to its previous version. It takes as inputs the reference genome, the k-mer set generated from it and the k-mer length (k). The trie is a particular tree datastructure which associates an alphabet to each node. In a nutshell, the advantage of a trie-based structure is that during the matching phase the algorithm follows a single path down along the tree, without matching against each single k-mer.

In our context, the alphabet corresponds to the nucleotides, as shown in Figure 1. In addition to the four pointers to nucleotides, in this implementation, the datastruct *node* includes also two integer values: *Count* and *GroupID*. The first one is used during the string matching phase in order to track the occurrence of a match. It is incremented only in leaf nodes when a matching is found. The second one is used during the building phase; it is associated with each leaf node and it represents the occurrence in the initial k-mer set of a specific k-mer. Figure 2 shows an example of trie tree structure based on a 4-mer set.

Currently, the trie is built based on kmer set. However, given that the size of the genome file is smaller than one of the kmer set, it may make sense to build the trie based on the first one.

3 Results

As said in Section 2, the *GroupID* variable represents the occurrence of a k-mer in the initial k-mer set. State A, State B and State C indicate the number of k-mers (within a group, that means with

Figure 1: Graphical representation of the trie node

Figure 2: Graphical representation of the trie tree structure for a 4-mer set

the same occurrence in the initial dataset) with *real* occurrence in the genome equal to 0, equal to 1 and greater than 1, respectively. Regarding the presented plots, for all of them the x-axis is based on the *GroupID*, while the y-axis represents the percetage of k-mers existence (Figure 6), unique existence (Figure 7) in the genome or both (Figure 3, 4 and 5).

The percentage of existence (Eq.1) and unique existence (Eq.2) are defined as:

$$Existence = \frac{StateB + StateC}{StateA + StateB + StateC} \cdot 100 \tag{1}$$

$$Unique\ existence = \frac{StateB}{StateA + StateB + StateC} \cdot 100 \tag{2}$$

Figure 3 shows the obtained results with the k-mer length equal to 15, the GroupID goes up to 268. The greater unique existence percentages, drawn with red dashed line, are associated with GroupID equal to 5, 6 and 7 (with a maximux of 47.84% for GroupID equal to 6). A stable 100% existence can be find starting from GroupID equal to 56.

Figure 4 shows the obtained results with the k-mer length equal to 17, in this case the *GroupID* goes up to 166. The greater unique existence percentages, drawn with red dashed line, are associated with *GroupID* equal to 4 and 5 (with a maximux of 48.01% for *GroupID* equal to 4). A stable 100% existence can be find starting from *GroupID* equal to 40.

Figure 5 shows the obtained results with the k-mer length equal to 19, in this case the *GroupID* goes up to 118. The greater unique existence percentages, drawn with red dashed line, are associated with *GroupID* equal to 3 and 4 (with a maximux of 46.69% for *GroupID* equal to 4). A stable 100% existence can be find starting from *GroupID* equal to 34.

In order to compare results with different k-mer length, a maximum *GroupID* equal to 90 is considered for all the x-axis¹. In Figure 6 and 7, percentages of existence and unique existence with the three different k-mer length are compared, respectively.

Furthermore, I extracted the matches position in the genome for each group to see if there was evidence of association between a groups set and a portion of the genome. However, the obtained results show an almost uniform distribution of the matches throughout the genome for all the groups.

¹The depth is equal to 30.

Figure 3: Existence and Unique existence of 15-mers

Figure 4: Existence and Unique existence of 17-mers

Figure 5: Existence and Unique existence of 19-mers

Figure 6: Existence of k-mers (k = 15, 17, 19)

Figure 7: Unique existence of k-mers (k = 15, 17, 19)

A Tables

Table 1: Existence and Unique existence of 15-mers

GroupID	State A	State B	State C	Existence (%)	Unique existence (%)
2	11054964	1163913	6137	9.57	9.52
3	2067194	828871	8706	28.83	28.53
4	630466	455824	9450	42.46	41.60
5	230524	207638	8646	48.41	46.47
6	83858	83304	6986	51.85	47.84
7	29699	30686	5231	54.74	46.77
8	10289	11145	4045	59.62	43.74
9	3953	4078	3081	64.43	36.70
10	1621	1555	2756	72.67	26.21
11	847	681	2466	78.79	17.05
12	456	364	2161	84.70	12.21
13	285	162	1941	88.07	6.78
14	217	84	1684	89.07	4.23
15	158	43	1321	89.62	2.83
16	106	27	1148	91.73	2.11
17	79	18	901	92.08	1.80
18	79	21	708	90.22	2.60
19	55	15	534	90.89	2.48
20	49	12	462	90.63	2.29
21	47	6	356	88.51	1.47
22	34	12	301	90.20	3.46
23	39	4	242	86.32	1.40
24	29	7	204	87.92	2.92
25	19	4	176	90.45	2.01
26	18	3	157	89.89	1.69
27	11	5	153	93.49	2.96
28	13	4	98	88.70	3.48
29	13	8	87	87.96	7.41
30	13	4	67	84.52	4.76
31	9	2	52	85.71	3.17
32	11	1	36	77.08	2.08
33	7	0	34	82.93	0.00
34	6	4	24	82.35	11.76
35	0	3	26	100.00	10.34
36	6	2	11	68.42	10.53
37	5	1	6	58.33	8.33
38	6	1	9	62.50	6.25
39	5	0	9	64.29	0.00
40	1	0	8	88.89	0.00
41	3	0	8	72.73	0.00
42	2	1	10	84.62	7.69
43	3	0	4	57.14	0.00
44	2	1	7	80.00	10.00

Table 1: Existence and Unique existence of 15-mers

GroupID	State A	State B	State C	Existence (%)	Unique existence (%)
45	0	0	6	100.00	0.00
46	2	1	5	75.00	12.50
47	1	1	4	83.33	16.67
48	0	0	4	100.00	0.00
49	1	0	5	83.33	0.00
50	2	0	3	60.00	0.00
51	1	0	4	80.00	0.00
53	1	0	9	90.00	0.00
54	1	0	2	66.67	0.00
56	0	0	1	100.00	0.00
57	0	0	5	100.00	0.00
58	0	0	3	100.00	0.00
59	0	0	4	100.00	0.00
60	0	0	1	100.00	0.00
62	0	0	2	100.00	0.00
63	0	0	3	100.00	0.00
64	0	0	1	100.00	0.00
65	0	0	1	100.00	0.00
66	0	0	1	100.00	0.00
67	0	0	1	100.00	0.00
68	0	0	1	100.00	0.00
69 79	0	0	1	100.00	0.00
72 74	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0 0	$\begin{array}{c c} & 1 \\ & 2 \end{array}$	100.00 100.00	0.00 0.00
74 75	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	1	100.00	0.00
75 77	0	0	1	100.00	0.00
79	0	0	1	100.00	0.00
80	0	0	3	100.00	0.00
81	0	0	1	100.00	0.00
83	0	0	1	100.00	0.00
84	0	0	1	100.00	0.00
85	0	0	$\frac{1}{2}$	100.00	0.00
86	0	0	1	100.00	0.00
87	0	0	1	100.00	0.00
88	0	0	1	100.00	0.00
90	0	0	3	100.00	0.00
92	0	0	1	100.00	0.00
93	0	0	2	100.00	0.00
94	0	0	$\frac{1}{1}$	100.00	0.00
97	0	0	1	100.00	0.00
98	0	0	2	100.00	0.00
99	0	0	2	100.00	0.00
100	0	0	3	100.00	0.00
101	0	0	2	100.00	0.00
102	0	0	2	100.00	0.00

Table 1: Existence and Unique existence of 15-mers

GroupID	State A	State B	State C	Existence (%)	Unique existence (%)
103	0	0	2	100.00	0.00
105	0	0	1	100.00	0.00
106	0	0	1	100.00	0.00
108	0	0	1	100.00	0.00
109	0	0	2	100.00	0.00
111	0	0	1	100.00	0.00
114	0	0	1	100.00	0.00
115	0	0	1	100.00	0.00
116	0	0	1	100.00	0.00
117	0	0	3	100.00	0.00
118	0	0	3	100.00	0.00
121	0	0	1	100.00	0.00
122	0	0	5	100.00	0.00
123	0	0	3	100.00	0.00
124	0	0	1	100.00	0.00
125	0	0	1	100.00	0.00
126	0	0	3	100.00	0.00
127	0	0	3	100.00	0.00
128	0	0	4	100.00	0.00
129	0	0	4	100.00	0.00
130	0	0	1	100.00	0.00
132	0	0	2	100.00	0.00
133 134	0	0	1	100.00 100.00	0.00 0.00
134 135	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0 0	1 1	100.00	0.00
137	0	0	$\frac{1}{2}$	100.00	0.00
137	0	0	$\frac{2}{4}$	100.00	0.00
139	0	0	1	100.00	0.00
140	0	0	1	100.00	0.00
140	0	0	1	100.00	0.00
143	0	0	1	100.00	0.00
144	0	0	1	100.00	0.00
145	0	0	2	100.00	0.00
146	0	0	1	100.00	0.00
148	0	0	1	100.00	0.00
152	0	0	1	100.00	0.00
156	0	0	1	100.00	0.00
157	0	0	3	100.00	0.00
158	0	0	2	100.00	0.00
159	0	0	$\frac{1}{4}$	100.00	0.00
161	0	0	1	100.00	0.00
163	0	0	1	100.00	0.00
164	0	0	2	100.00	0.00
166	0	0	2	100.00	0.00
168	0	0	2	100.00	0.00

Table 1: Existence and Unique existence of 15-mers

GroupID	State A	State B	State C	Existence (%)	Unique existence (%)
169	0	0	1	100.00	0.00
171	0	0	2	100.00	0.00
173	0	0	1	100.00	0.00
179	0	0	1	100.00	0.00
182	0	0	1	100.00	0.00
183	0	0	2	100.00	0.00
185	0	0	1	100.00	0.00
186	0	0	1	100.00	0.00
190	0	0	1	100.00	0.00
191	0	0	3	100.00	0.00
192	0	0	1	100.00	0.00
198	0	0	1	100.00	0.00
199	0	0	1	100.00	0.00
201	0	0	2	100.00	0.00
202	0	0	1	100.00	0.00
205	0	0	1	100.00	0.00
208	0	0	1	100.00	0.00
210	0	0	1	100.00	0.00
212	0	0	1	100.00	0.00
219	0	0	1	100.00	0.00
220	0	0	1	100.00	0.00
221	0	0	1	100.00	0.00
232	0	0	1	100.00	0.00
261	0	0	1	100.00	0.00
268	0	0	1	100.00	0.00

Table 2: Existence and Unique existence of 17-mers

GroupID	State A	State B	State C	Existence (%)	Unique existence (%)
2	3652095	1099555	3952	23.20	23.12
3	668265	529021	4477	44.39	44.02
4	206144	194009	3977	48.99	48.01
5	60569	58288	3571	50.53	47.61
6	16525	14935	3104	52.19	43.21
7	4352	3505	2774	59.06	32.97
8	1419	872	2673	71.41	17.57
9	612	289	2537	82.20	8.41
10	335	111	2327	87.92	4.00
11	207	68	1983	90.83	3.01
12	137	50	1704	92.76	2.64
13	81	37	1319	94.36	2.57
14	65	11	1045	94.20	0.98
15	60	16	777	92.97	1.88
16	42	10	594	93.50	1.55

Table 2: Existence and Unique existence of 17-mers

GroupID	State A	State B	State C	Existence (%)	Unique existence (%)
17	35	8	417	92.39	1.74
18	31	4	284	90.28	1.25
19	25	2	245	90.81	0.74
20	17	7	156	90.56	3.89
21	13	2	88	87.38	1.94
22	13	2	75	85.56	2.22
23	5	5	55	92.31	7.69
24	8	1	25	76.47	2.94
25	3	2	19	87.50	8.33
26	3	0	15	83.33	0.00
27	0	0	11	100.00	0.00
28	4	0	14	77.78	0.00
29	1	0	11	91.67	0.00
30	0	1	11	100.00	8.33
31	1	0	9	90.00	0.00
32	1	0	1	50.00	0.00
33	1	0	5	83.33	0.00
34	0	0	7	100.00	0.00
35	0	0	3	100.00	0.00
36	0	0	6	100.00	0.00
37	0	0	2	100.00	0.00
38	0	0	1	100.00	0.00
39	1	0	4	80.00	0.00
40	0	0	2	100.00	0.00
41	0	0	2	100.00	0.00
42	0	0	2	100.00	0.00
43	0	0	4	100.00	0.00
44	0	0	3	100.00	0.00
45	0	0	1	100.00	0.00
46	0	0	3	100.00	0.00
47	0	0	3	100.00	0.00
48	0	0	1	100.00	0.00
50	0	0	4	100.00	0.00
51	0	0	4	100.00	0.00
53	0	0	4	100.00	0.00
54	0	0	4	100.00	0.00
57	0	0	3	100.00	0.00
58	0	0	2	100.00	0.00
59	0	0	3	100.00	0.00
60	0	0	2	100.00	0.00
61	0	0	4	100.00	0.00
63	0	0	5	100.00	0.00
64	0	0	2	100.00	0.00
65	0	0	2	100.00	0.00
66	0	0	1	100.00	0.00

Table 2: Existence and Unique existence of 17-mers

GroupID	State A	State B	State C	Existence (%)	Unique existence (%)
68	0	0	2	100.00	0.00
69	0	0	1	100.00	0.00
70	0	0	1	100.00	0.00
71	0	0	6	100.00	0.00
72	0	0	1	100.00	0.00
74	0	0	1	100.00	0.00
75	0	0	1	100.00	0.00
76	0	0	1	100.00	0.00
77	0	0	5	100.00	0.00
79	0	0	3	100.00	0.00
80	0	0	4	100.00	0.00
81	0	0	1	100.00	0.00
82	0	0	5	100.00	0.00
83	0	0	1	100.00	0.00
84	0	0	2	100.00	0.00
85	0	0	6	100.00	0.00
86	0	0	5	100.00	0.00
87	0	0	1	100.00	0.00
89	0	0	1	100.00	0.00
90	0	0	$\frac{1}{2}$	100.00	0.00
91 92	0	0 0	2	100.00 100.00	0.00 0.00
92 94	0 0	0	1	100.00	0.00
94 95	0	0	$egin{array}{cccc} 1 & & 1 \\ & & 1 \end{array}$	100.00	0.00
98	0	0	1	100.00	0.00
100	0	0	$\frac{1}{2}$	100.00	0.00
100	0	0	$\frac{2}{2}$	100.00	0.00
101	0	0	$\frac{2}{3}$	100.00	0.00
106	0	0	1	100.00	0.00
107	0	0	1	100.00	0.00
108	0	0	1	100.00	0.00
109	0	0	1	100.00	0.00
110	0	0	1	100.00	0.00
112	0	0	1	100.00	0.00
114	0	0	1	100.00	0.00
116	0	0	1	100.00	0.00
118	0	0	1	100.00	0.00
120	0	0	1	100.00	0.00
122	0	0	1	100.00	0.00
125	0	0	2	100.00	0.00
127	0	0	1	100.00	0.00
130	0	0	1	100.00	0.00
136	0	0	3	100.00	0.00
140	0	0	2	100.00	0.00
141	0	0	1	100.00	0.00

Table 2: Existence and Unique existence of 17-mers

GroupID	State A	State B	State C	Existence (%)	Unique existence (%)
143	0	0	1	100.00	0.00
151	0	0	1	100.00	0.00
153	0	0	1	100.00	0.00
164	0	0	1	100.00	0.00
166	0	0	1	100.00	0.00

Table 3: Existence and Unique existence of 19-mers

GroupID	State A	State B	State C	Existence (%)	Unique existence (%)
2	2089009	868637	4796	29.48	29.32
3	363543	307174	4804	46.18	45.47
4	88917	81730	4402	49.20	46.69
5	20364	17910	3813	51.61	42.55
6	4305	3883	3282	62.47	33.85
7	1150	732	2801	75.44	15.63
8	410	175	2182	85.18	6.32
9	197	59	1765	90.25	2.92
10	123	27	1218	91.01	1.97
11	57	15	897	94.12	1.55
12	42	15	718	94.58	1.94
13	23	8	490	95.59	1.54
14	20	13	352	94.81	3.38
15	17	5	268	94.14	1.72
16	9	4	176	95.24	2.12
17	4	2	122	96.88	1.56
18	2	8	82	97.83	8.70
19	3	0	51	94.44	0.00
20	6	1	43	88.00	2.00
21	3	0	24	88.89	0.00
22	2	0	20	90.91	0.00
23	1	0	10	90.91	0.00
24	0	0	6	100.00	0.00
25	1	0	5	83.33	0.00
26	0	0	5	100.00	0.00
27	1	0	2	66.67	0.00
28	1	0	3	75.00	0.00
29	0	0	4	100.00	0.00
30	0	0	4	100.00	0.00
31	0	0	6	100.00	0.00
32	1	0	1	50.00	0.00
33	1	0	3	75.00	0.00
34	0	0	1	100.00	0.00
35	0	0	1	100.00	0.00
36	0	0	1	100.00	0.00

Table 3: Existence and Unique existence of 19-mers

GroupID	State A	State B	State C	Existence (%)	Unique existence (%)
37	0	0	3	100.00	0.00
38	0	0	5	100.00	0.00
40	0	0	6	100.00	0.00
41	0	0	1	100.00	0.00
42	0	0	3	100.00	0.00
43	0	0	3	100.00	0.00
44	0	0	5	100.00	0.00
45	0	0	5	100.00	0.00
46	0	0	4	100.00	0.00
47	0	0	5	100.00	0.00
48	0	0	2	100.00	0.00
49	0	0	2	100.00	0.00
50	0	0	4	100.00	0.00
51	0	0	3	100.00	0.00
52	0	0	3	100.00	0.00
53	0	0	3	100.00	0.00
54	0	0	2	100.00	0.00
56	0	0	2	100.00	0.00
57	0	0	3	100.00	0.00
58	0	0	1	100.00	0.00
59	0	0	4	100.00	0.00
60	0	0	3	100.00	0.00
61	0	0	3	100.00	0.00
62	0	0	2	100.00	0.00
63	0	0	3	100.00	0.00
64	0	0	2	100.00	0.00
66	0	0	2	100.00	0.00
67	0	0	2	100.00	0.00
76	0	0	1	100.00	0.00
77	0	0	2	100.00	0.00
78	0	0	1	100.00	0.00
79	0	0	2	100.00	0.00
80	0	0	2	100.00	0.00
81	0	0	1	100.00	0.00
86	0	0	1	100.00	0.00
87	0	0	1	100.00	0.00
88	0	0	1	100.00	0.00
89	0	0	1	100.00	0.00
92	0	0	2	100.00	0.00
93	0	0	4	100.00	0.00
103	0	0	1	100.00	0.00
105	0	0	1	100.00	0.00
106	0	0	2	100.00	0.00
118	0	0	1	100.00	0.00

References

[1] F. Bodon and L. Rónyai. Trie: an alternative data structure for data mining algorithms. *Mathematical and Computer Modelling*, 38(7-9):739–751, 2003.