EAiIB	Autor 1 Aleksander Lisiecki		Rok	Grupa	Zespół
Informatyka	Autor 2 Natalia Materek		II	II	VI
Pracownia	Temat:				nr ćwiczenia:
FIZYCZNA					
WFiIS AGH	Opracowanie o	0			
Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	OCENA:
3.12.2016	7.12.2016				

1 Opis wahadła matematycznego

Wahadło matematyczne (wahadło proste) jest to ciało o masie punktowej *m* zawieszone na cienkiej, nierozciągliwej nici o długości *l*. Kiedy ciało wytrącimy z równowagi, zaczyna się ono wahać w płaszczyźnie pionowej pod wpływem siły ciężkości. Jest to ruch okresowy.

Jeśli wahadło wychylimy o niewielki kąt α to jego okres można wyrazić wzorem:

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{1}$$

gdzie

T okres ruchu okresowego

l długość wahadła

g przyspieszenie ziemskie

Przekształcając wzór ?? możemy wyznaczyć wartość przyspieszenia ziemskiego:

$$g = \frac{4\pi^2 l}{T^2} \tag{2}$$

2 Opis układu pomiarowego

Badane wahadło stanowi mosiężny obciążnik zawieszony na cienkiej lince. Linka jest podwieszona na wolnostojącym statywie. Pomiary były dokonywane za pomocą stopera o dokładności 0,01 s. Do niepewności pomiaru stopera należy dodać czas reakcji osoby wykonującej pomiary, który został ustalony na 0,05s. Długość wahadła wyznaczono mierząc długość linki linijką o dokładności 1 mm. Na niepewność pomiaru długości wpływa oszacowanie odległości mocowania linki od środka obciążnika oraz trudność znalezienia punktu zawieszenia linki, została określona na 3 mm. Długość linki może być regulowana przez nawiniecie lub rozwiniecie linki na walec na którym jest umocowana.

Rysunek 1: Schemat wahadła matematycznego

3 Etapy doświadczenia

3.1 Wyznaczenie przyspieszenia ziemskiego korzystając z okresu drgań wahadła matematycznego:

- 1. Zmierzenie długosci linki na której umocowany jest obciążnik
- 2. Wprawienie w ruch okresowy wahadła i włączenie stopera
- 3. Odczekanie aż wahadło wykona 15 pełnych okresów
- 4. Zastopowanie stopera i zanotowanie wyniku
- 5. Powtórzenie czynności od 2 do 4 dziesięciokrotnie
- 6. Policzenie okresu dla pojedynczych prób (dzieląc wyniki przez 15)
- 7. Policzenie średniego okresu T_{sr} korzystając z wyznaczonych okresów

3.2 Badanie zależności okresu drgań od długości wahadła

W każdej próbie zmieniamy długość wahadła aby zaobserwować dla poszczególnych dŁugości różne okresy.

- 1. Zmienienie długości wahadła przez nawiniecie bądź rozwiniecie nitki na walec na którym jest mocowana
- 2. Wprawienie w ruch okresowy wahadła i włączenie stopera
- 3. Odczekanie aż wahadło wykona 15 pełnych okresów
- 4. Zastopowanie stopera i zanotowanie wyniku
- 5. Policzenie okresu dla próby (dzieląc wyniki przez 15)
- 6. Wróć do kroku 1 Doświadczenie powtórzono dla czterech różnych długości wahadła.

4 Wyniki i ich opracowanie

4.1 Wyznaczanie wartości przyspieszenia ziemskiego

Tablica 1: Wyniki pomiarów okresu drgań wahadła matematycznego

I[m]	15 * T[s]	T[s])
	20,65	1,377
	19,97	1,331
	20,00	1,333
	19,85	1,323
0,475	19,72	1,315
	20,26	1,351
	19,97	1,331
	20,25	1,350
	19,85	1,323
	20,30	1,353
	T _{śr}	1,339

Wzór na wartość średnią okresu:

$$T_{\text{\'sr}} = \frac{1}{n} \sum_{i=1}^{n} T_i \tag{3}$$

gdzie

 $T_{
m \acute{s}r}$ średnia arytmetyczna i okresów

 T_i i- ty okres

Wartość przyspieszenia ziemskiego:

$$g = \frac{4\pi^2 l}{T_{\text{sr}}^2} = \frac{4 \cdot 3,141^2 \cdot 0,475}{1,339^2} \approx 10, \dots \left[\frac{m}{s^2}\right]$$
 (4)

4.2 Badanie zależności okresu drgań od długości wahadła

Tablica 2: Wyniki pomiarów okresu drgań wahadła matematycznego w zależności od długości wahadła

I[m]	15 * T[s]	$T^2[s^2]$
0,475	20,65	1,896
0,325	15,94	1,128
0,355	17,00	1,284
0,398	18,71	1,555
0,240	13,93	0,8630
0,195	13,06	0,7586

Podnosząc wzór ?? na okres wahadła matematycznego obustronnie do kwadratu otrzymamy następującą zależność:

$$T^2 = \frac{4\pi^2}{g} \cdot l \tag{5}$$

Konstruujemy wykres zależności T^2 od l. Wykres na rysunku?? z linią regresji uzyskano przy pomocy programu Excel. Widać że, wykres jest liniowy wiec można stwierdzić, ze proporcjonalnie do wzrostu długości wahadła l rośnie kwadrat okresu wahadła T^2 . Dokładniej zwiększając długość wahadła dwukrotnie okres wahadła zwiększy się czterokrotnie.

Rysunek 2: Wykres $T^2(l)$

Współczynnik a wynosi:

$$a = \dots$$
 (6)

Znając współczynnik a nachylenia wykresu możemy wyznaczyć przyspieszenie ziemskie g, ponieważ:

$$T^2 = \frac{4\pi^2}{g} \cdot l \tag{7}$$

więc g:

$$a = \frac{4\pi^2}{g} \Longrightarrow g = \frac{4\pi^2}{a} \approx \dots \left[\frac{m}{s^2}\right]$$
 (8)

5 Szacowanie niepewności pomiarowych

5.1 Wyznaczanie wartości przyspieszenia ziemskiego

5.1.1 Niepewność pomiaru okresu

Posiadając serię pomiarów okresu wahadła dla tej samej długości, możemy obliczyć jego niepewność metodą typu A, czyli jako estymator odchylenia standardowego wielkości średniej:

$$u(T_{\text{sr}}) = \sqrt{\frac{\sum_{i=1}^{n} (T_i - T_{\text{sr}})^2}{n(n-1)}} \approx \dots[s]$$
(9)

gdzie

 $u(T_{\text{śr}})$ niepewność okresu

 T_{sr} okres wahadła

 T_i i-ty okres

n ilość prób

5.1.2 Niepewność pomiaru długości wahadła

Niepewność pomiaru długości jest szacowana metodą typu B na podstawie dokładności pomiaru:

$$u(l) = \frac{\Delta l}{\sqrt{3}} = \frac{0,003}{\sqrt{3}} \approx \dots[m]$$
 (10)

gdzie

 Δl maksymalny błąd podczas mierzenia

u(l) niepewność długości

5.1.3 Niepewność złożona pomiaru przyspieszenia ziemskiego

Przyspieszenie ziemskie jest wyznaczane pośrednio, wiec stosuje prawo przenoszenia niepewności:

$$u_c(g) = \sqrt{\left(\frac{\delta g}{\delta T_{\text{sr}}}\right)^2 u(T_{\text{sr}})^2 + \left(\frac{\delta g}{\delta l}\right)^2 u(l)^2} = \sqrt{\frac{64\pi^4 l^2}{T_{\text{sr}}^6} u(T_{\text{sr}})^2 + \frac{16\pi^4}{T_{\text{sr}}^4} u(l)^2} \approx \dots \left[\frac{m}{s^2}\right]$$
(11)

gdzie

 $u_{c(g)}$ niepewność złożona przyspieszenia ziemskiego

 $\frac{\delta g}{\delta T_{\text{fr}}}$ pochodna g po T_{sr}

 $\frac{\delta g}{\delta l}$ pochodna g po l

Aby porównać wyznaczona wartość przyspieszenia ziemskiego z wartością tablicową obliczamy niepewność rozszerzoną:

$$U_c(g) = k \cdot u_c(g) = 2 \cdot \dots = \dots \left\lceil \frac{m}{s^2} \right\rceil$$
 (12)

gdzie

k ...

 $U_c(g)$...

Podsumowując wyznaczone przyspieszenie ziemskie ma wartość:

$$g = (\dots \pm \dots) \left\lceil \frac{m}{s^2} \right\rceil \tag{13}$$

Wartość tablicowa przyspieszenia ziemskiego wynosi $g = 9,811 \left[\frac{m}{s^2} \right]$ i nie mieści się/mieści się w wyznaczonym przez nas przedziale.

5.2 Badanie zależności okresu drgań od długości wahadła

Ponownie stosujemy prawo przenoszenia niepewności. Tym razem mamy do czynienia z funkcją jednej zmiennej:

$$g = \frac{4\pi^2}{a} \tag{14}$$

$$u(g) = \frac{\delta g}{\delta a}u(a) = -4\pi^2 a^{-2} \cdot u(a)$$

$$|u(g)| = 4\pi^2 a^{-2} \cdot u(a) \approx \dots \left\lceil \frac{m}{s^2} \right\rceil$$

$$U_c(g) = k \cdot u_c(g) \approx 2 \cdot \dots = \dots \left[\frac{m}{s^2} \right]$$

gdzie

a współczynnik nachylenia wykresu

u(g) ...

u(*a*)

 $\frac{\delta g}{\delta a}$...

 $u_{c(g)}$...

 $U_{c(g)}$...

Tak więc przyspieszenie ziemskie wyznaczone na podstawie wykresu zależności $T^2(l)$ ma wartość:

$$g = (\dots \pm \dots) \left[\frac{m}{s^2} \right]$$

6 Podsumowanie doświadczenia

Opis wielkości	Wynik $\left[\frac{m}{s^2}\right]$	$u(g)\left[\frac{m}{s^2}\right]$	$U_c(g)\left[\frac{m}{s^2}\right]$
g za pomocą 10 pomiarów przy tej samej długości wahadła		•••	•••
g za pomocą wykresu $T^2(l)$			
Wartość tablicowa g	9,811	-	-

7 Wnioski

- Wahad?o matematyczne jest dosy? dok?adnym i prostym do wykonania sposobem wyznaczenia przyspieszenia ziemskiego, poniewa? uzyskane niepewno?ci s? niewielkie
- Zakres uzyskanej warto?ci przyspieszenia ziemskiego wraz z niepewno?ci? uzyskanych za pomoc? badania wykresu $T^2(l)$ zawiera w sobie warto?? tabelaryczn? przyspieszenia ziemskiego, a w przypadku drugiej metody zakresy niepewno?ci mijaj? warto?? tabelaryczn? o bardzo ma?? warto??. ?wiadczy to o poprawno?ci pomiarów
- Powodem uzyskania wyniku odchylonego od warto?ci rzeczywistej mo?e by? fakt, ?e wahad?o mog?o porusza? si? w wi?cej ni? jednej p?aszczy?nie