ETH Zurich D-USYS Institute of Agricultural Sciences

$\begin{array}{c} {\rm Exam} \\ {\rm Livestock~Breeding~and~Genomics} \\ {\rm FS~2021} \end{array}$

Peter von Rohr

 DATE
 17. DECEMBER 2021

 BEGIN
 09:15

 END
 11:15

Name:

Legi-Nr:

Problem	Maximum Number of Points	Number of Points Reached
1	67	
2	14	
3	17	
4	22	
5	24	
Total	144	

Problem 1 Numerator Relationship Matrix and Inbreeding

Given is the following list of animals.

Gegeben ist die folgende Tierliste.

Animal	Birthdate	Sire	Dam
GINA	18.01.2020	HARRY	CH120.1208.5899.1
CH 120.1208.5899.1	22.11.2015	NA	Gitta
Gitta	31.05.2001	HARRY	Gibsy
Gibsy	09.12.1990	Ginger Hill Angus 133	Bianca
HARRY	22.02.1997	HIBISCUS	WALBURGA

a) Set up the numerator relationship matrix for the animals shown above.

Stellen Sie die genetisch-additive Verwandtschaftsmatrix auf für die oben gezeigten Tiere.

45

b) Compute the inbreeding coefficients ${\cal F}_i$ of the following animals and indicate whether the animals are inbred

Berechnen Sie den Inzuchtkoeffizienten F_i der folgenden Tiere und geben Sie an, ob die jeweiligen Tiere ingezüchtet sind.

18

Animal	Inbreeding Coefficient	Animal Inbred (yes/no)
Bianca Ginger Hill Angus 133 HIBISCUS WALBURGA Gibsy		
HARRY Gitta CH 120.1208.5899.1 GINA		

c) The owner of GINA wants to find a mate to have an offspring. Compute the inbreeding coefficients of all possible offspring of GINA with all available sires. Select the mate for GINA, among the available sires, such that the offspring has the lowest inbreeding coefficient.

Der/die Besitzer/In von GINA möchte einen Paarungspartner für GINA finden. Berechnen Sie die Inzuchtkoeffizienten aller möglichen Nachkommen von GINA mit allen möglichen Vätern. Wählen Sie den Paarungspartner von GINA unter allen verfügbaren Stieren, so dass das Nachkommentier einen minimalen Inzuchtkoeffizienten hat.

4

Sire	Offspring Inbreeding Coefficient
Ginger Hill Angus 133 HIBISCUS HARRY	

Problem 2 Variance and Inbreeding

The cattle breed "Rätisches Grauvieh" is a robust alpine cattle breed. In a recent survey about 550 calvings per year were counted. For reasons of simplicity, we can set in the following computations, the variable N to the number of calvings per year.

Die Rindviehrasse "Rätisches Grauvieh" ist eine robuste Rasse im Alpenraum. In einer kürzlich gemachten Umfrage wurden 550 Abkalbungen pro Jahr von Rätischen Grauviehkühen gezählt. Zur Vereinfachung können wir in den folgenden Berechnungen die Variable N der Anzahl Abkalbungen pro Jahr gleichsetzen.

a) What is the expected inbreeding coefficients F_t after 50 years assuming traditional selection with a generation interval of 5 years.

Wie gross ist der erwartete Inzuchtkoeffizient F_t nach 50 Jahren? Dabei nehmen wir ein traditionelles Zuchtprogramm an mit einem Generationenintervall von 5 Jahren.

4

b) What is the expected inbreeding coefficient F_t after 50 years, if the generation interval is reduced to 2 years due to introduction of genomic selection?

Wie gross ist der erwartete Inzuchtkoeffizient F_t nach 50 Jahren, falls das Generationenintervall durch die Einführung der genomischen Selektion auf 2 Jahre reduziert wird?

4

c) After how many years is the expected inbreeding depression at a single bi-allelic locus (minor allele frequency p=0.25) bigger than 0.5 in the population of "Rätisches Grauvieh" with N=550, assuming traditional selection and genomic selection?

Nach wie vielen Jahren ist die erwartete Inzuchtdepression an einem Genlocus mit zwei Allelen (Minorallelfrequenz p=0.25) grösser als 0.5 in der Population des "Rätischen Grauviehs" mit N=550, einmal unter der Annahme eines traditionellen Zuchtprogramms und einmal unter Genomischer Selektion?

6

Problem 3 Quantitative Genetics

Given is the following dataset with genotypes of a single bi-allelic locus and with observations of a quantitative trait. The minor allele frequency of the positive allele is assumed to be p=0.15.

The dataset is available from https://charlotte-ngs.github.io/lbgfs2021/data/exam_lbgfs2021_problem3.csv.

Gegeben ist der folgende Datensatz mit Genotypen eines Genortes mit zwei Allelen und mit Beobachtungen eines quantitativen Merkmals. Die Frequenz des Allels mit positiver Wirkung sei p=0.15.

 $\label{local_decomposition} Der\ Datensatz\ ist\ auch\ verf\"{u}gbar\ unter \ \ \ \ \\ \text{https://charlotte-ngs.github.io/lbgfs} 2021/data/exam_lbgfs} 2021_problem3.csv.$

Animal	Genotype	Observation
1	G_1G_2	31.3
2	G_1G_2	27.4
3	G_1G_2	17.3
4	G_1G_1	32.8
5	G_2G_2	20.4
6	G_1G_2	31.9
7	G_2G_2	4.5
8	G_1G_2	26.6
9	G_2G_2	18.8
10	G_1G_2	38.2
11	G_2G_2	7.2
12	G_1G_2	26.3
13	G_2G_2	22.3
14	G_2G_2	10.9
15	G_1G_2	27.5
16	G_1G_2	32.7
17	G_2G_2	17.3
18	G_2G_2	15.8
19	G_1G_2	31.1
20	G_1G_2	24.3
21	G_2G_2	16.9
22	G_1G_1	37.0
23	G_2G_2	18.7

a) Estimate the genotypic values for the three genotypes G_1G_1 , G_1G_2 and G_2G_2 using a linear fixed effects model.

Schätzen Sie die genotypischen Werte für die drei Genotypen G_1G_1 , G_1G_2 and G_2G_2 unter Verwendung eines linearen fixen Modells

9

b) Compute the breeding values and the dominance deviations as defined in the section of "Quantitative Genetics" for the data shown above and using the results under 3a. If you were not able to solve 3a, you can use the values a=10 and d=2.

Berechnen Sie die Zuchtwerte und die Dominanzabweichungen, wie sie im Kapitel "Quantitative Genetik" definiert wurden für die oben gezeigten Daten. Falls Sie Aufgabe 3a nicht lösen konnten, können Sie die Werte a=10 und d=2 verwenden.

6

c) Compute the additive genetic variance and the dominance variance for the data shown above. If you were not able to solve 3a, you can use the values a=10 and d=2.

Berechnen Sie die additive genetische Varianz und die Dominanzvarianz für die oben gezeigten Daten. Falls Sie Aufgabe 3a nicht lösen konnten, können Sie die Werte a=10 und d=2 verwenden.

 $\mathbf{2}$

Problem 4 Prediction of Breeding Values

Use the following dataset to predict breeding values. The phenotypic variance of the data is assumed to be $\sigma_p^2 = 1$. The heritability of the trait shown in the column 'Phen' of the following table is $h^2 = 0.2$.

The dataset is available from https://charlotte-ngs.github.io/lbgfs2021/data/exam_lbgfs2021_problem4.csv.

Verwenden Sie den folgenden Datensatz für die Schätzung von Zuchtwerten. Die phänotypische Varianz der Daten betrage $\sigma_p^2=1$. Die Heritabilität des Merkmals in der Kolonnen 'Phen' in der nachfolgenden Tabelle betrage $h^2=0.2$

 $\label{lem:decomposition} Der\ Datensatz\ ist\ verf\"{u}gbar\ unter: \ \ https://charlotte-ngs.github.io/lbgfs2021/data/exam_lbgfs2021_problem4.csv.$

Progeny	Sire	Dam	Sex	Phen
7519	6662	6108	F	-1.669972
7399 7151	$6561 \\ 6258$	6687 6127	F M	$\begin{array}{c} 1.030195 \\ 0.085925 \end{array}$
8418	0258 7151	7399	M F	-0.476189
8419	7151	7519	$\bar{\mathrm{F}}$	-0.071148
8420	7151	7519	\mathbf{M}	0.578070

a) Use the own performance records of the animals shown above to predict breeding values. The mean of all observations above can be used as population mean.

Verwenden Sie die Eigenleistungen der Tiere in der oben gezeigten Tabelle um deren Zuchtwerte zu schäten. Verwenden Sie den Mittelwert der Beobachtungen als Populationsmittel.

6

b) Use a BLUP animal model to predict breeding values for all animals given in the above shown dataset.

 $\label{lem:condition} \begin{tabular}{ll} Verwenden Sie das BLUP Tiermodell zur Schätzung der Zuchtwerte aller Tiere, welche im obigen Datensatz gegeben sind. \end{tabular}$

16

Problem 5 Genomics

Use the following dataset to predict genomic breeding values. The minor allele frequencies of the three loci are given as

Verwenden Sie den folgenden Datensatz zur Schätzung von genomischen Zuchtwerten. Die minor Allelfrequenzen der drei Loci sind gegeben als

- $p_G = 0.45$
- $p_H = 0.35$
- $p_I = 0.4$

The dataset can be obtained from https://charlotte-ngs.github.io/lbgfs2021/data/exam_lbgfs2021_problem5.csv.

 $\label{lem:decomposition} Der\ Datensatz\ ist\ verf\"{u}gbar\ unter: \ \ https://charlotte-ngs.github.io/lbgfs2021/data/exam_lbgfs2021_problem5.csv.$

Animal	Locus G	Locus H	Locus I	Observation
1	1	0	-1	25.3
2	0	-1	0	20.7
3	-1	1	0	33.2
4	0	-1	0	8.4
5	0	-1	0	18.8
6	1	0	0	35.9
7	0	0	-1	1.4
8	-1	0	-1	-6.4
9	0	-1	-1	6.3
10	0	0	-1	13.6
11	1	0	0	34.0
12	0	1	1	54.1
13	1	-1	0	25.8
14	-1	1	0	29.0
15	0	-1	0	14.8
16	0	-1	-1	1.6
17	0	-1	1	23.8

a) Use a marker effect model to predict genomic breeding values from the above data. Use a value of $\lambda=10$ for solving the mixed model equations.

Verwenden Sie ein Markereffektmodell zur Schätzung von genomischen Zuchtwerten. Verwenden Sie $\lambda=10$ für die Mischmodellgleichungen

12

b) Use a breeding-value-based model to predict genomic breeding values from the above data. Use a value of $\lambda=5$ for solving the mixed model equations.

Verwenden Sie ein Zuchtwert-basiertes Modell zur Schätzung von genomischen Zuchtwerten. Verwenden Sie $\lambda=5$ für die Mischmodellgleichungen

12

${\bf Solution:}$