Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Кафедра прикладной математики и искусственого интеллекта

Направление подготовки: 01.03.04 – Прикладная математика

ОТЧЁТ

По дисциплине «Численные методы» на тему:
«Вычисление интеграла с помощью квадратурных формул»

Выполнил: студент группы 09-221 Саитов М.А. Преподаватель: Глазырина О.В.

Содержание

1	Постановка задачи	3
2	Ход работы	4
3	Выводы	9
4	Листинг программы	10

1 Постановка задачи

2 Ход работы

1. Метод прогонки:

i * h	y_i	u(ih)	$ y_i - u(ih) $
0.1	-0.000695158	9e-05	0.000785158
0.2	-0.00039375	0.00128	0.00167375
0.3	0.00300748	0.00567	0.00266252
0.4	0.0116375	0.01536	0.00372252
0.5	0.0264841	0.03125	0.00476594
0.6	0.0462174	0.05184	0.00562257
0.7	0.0660077	0.07203	0.00602232
0.8	0.0763388	0.08192	0.00558118
0.9	0.0618207	0.06561	0.00378929

Таблица 1 - таблица значений для формул метода прогонки при n=10

i * h	y_i	u(ih)	$ y_i - u(ih) $
0.05	-7.79134e-05	5.9375e-06	8.38509e-05
0.1	-8.5795e-05	9e-05	0.000175795
0.15	0.000152985	0.000430313	0.000277328
0.2	0.000889159	0.00128	0.000390841
0.25	0.00241095	0.00292969	0.00051874
0.3	0.00500727	0.00567	0.000662726
0.35	0.00893085	0.00975406	0.000823217
0.4	0.0143611	0.01536	0.000998868
0.45	0.0213673	0.0225534	0.00118616
0.5	0.0298709	0.03125	0.00137908
0.55	0.039609	0.0411778	0.0015688
0.6	0.0500966	0.05184	0.00174344
0.65	0.0605893	0.0624772	0.00188784
0.7	0.0700467	0.07203	0.00198335
0.75	0.0770939	0.0791016	0.00200763
0.8	0.0799855	0.08192	0.0019345
0.85	0.0765672	0.0783009	0.00173375
0.9	0.064239	0.06561	0.001371
0.95	0.0399178	0.0407253	0.000807495

Таблица 2 - таблица значений для формул метода прогонки при n=20

2. Метод Якоби:

i * h	y_i	u(ih)	$ y_i - u(ih) $
0.1	0.102819	9e-05	0.102729
0.2	0.199156	0.00128	0.197876
0.3	0.293056	0.00567	0.287386
0.4	0.388895	0.01536	0.373535
0.5	0.488671	0.03125	0.457421
0.6	0.592915	0.05184	0.541075
0.7	0.697403	0.07203	0.625373
0.8	0.794114	0.08192	0.712194
0.9	0.868238	0.06561	0.802628

Таблица 3 - таблица значений для формулы метода Якоби при
 $n=10\,$

i * h	y_i	u(ih)	$ y_i - u(ih) $
0.05	0.0562275	5.9375e-06	0.0562215
0.1	0.110114	9e-05	0.110024
0.15	0.162167	0.000430313	0.161737
0.2	0.212985	0.00128	0.211705
0.25	0.263096	0.00292969	0.260167
0.3	0.313096	0.00567	0.307426
0.35	0.363411	0.00975406	0.353657
0.4	0.414498	0.01536	0.399138
0.45	0.466555	0.0225534	0.444002
0.5	0.519757	0.03125	0.488507
0.55	0.573939	0.0411778	0.532761
0.6	0.628847	0.05184	0.577007
0.65	0.683819	0.0624772	0.621342
0.7	0.738021	0.07203	0.665991
0.75	0.790159	0.0791016	0.711058
0.8	0.83867	0.08192	0.75675
0.85	0.881484	0.0783009	0.803183
0.9	0.916161	0.06561	0.850551
0.95	0.939716	0.0407253	0.898991

Таблица 4 - таблица значений для формулы метода Якоби при ${\rm n}=20$

3. Метод Зейделя:

i * h	y_i	u(ih)	$ y_i - u(ih) $
0.1	0.103011	9e-05	0.102921
0.2	0.199491	0.00128	0.198211
0.3	0.293725	0.00567	0.288055
0.4	0.389619	0.01536	0.374259
0.5	0.489654	0.03125	0.458404
0.6	0.593779	0.05184	0.541939
0.7	0.698296	0.07203	0.626266
0.8	0.794716	0.08192	0.712796
0.9	0.868608	0.06561	0.802998

Таблица 5 - таблица значений для формулы метода Зейделя при n=10

i*h	y_i	u(ih)	$ y_i - u(ih) $
0.05	0.0562405	5.9375e-06	0.0562346
0.1	0.110139	9e-05	0.110049
0.15	0.162222	0.000430313	0.161792
0.2	0.213055	0.00128	0.211775
0.25	0.263206	0.00292969	0.260276
0.3	0.313218	0.00567	0.307548
0.35	0.363576	0.00975406	0.353822
0.4	0.41467	0.01536	0.39931
0.45	0.466766	0.0225534	0.444212
0.5	0.519965	0.03125	0.488715
0.55	0.574174	0.0411778	0.532996
0.6	0.629068	0.05184	0.577228
0.65	0.684051	0.0624772	0.621574
0.7	0.738227	0.07203	0.666197
0.75	0.790358	0.0791016	0.711257
0.8	0.838832	0.08192	0.756912
0.85	0.881621	0.0783009	0.80332
0.9	0.916252	0.06561	0.850642
0.95	0.939766	0.0407253	0.899041

Таблица 6 - таблица значений для формулы метода Зейделя при ${\rm n}=20$

4. Метод Релаксации:

w	k
0.1	497
0.2	58
0.3	24
0.4	13
0.5	8
0.6	6
0.7	4
0.8	3
0.9	3
1	2

Таблица 7 - таблица значений для формулы метода Релаксации при n=10

w	k
0.1	2446
0.2	243
0.3	98
0.4	52
0.5	33
0.6	23
0.7	16
0.8	12
0.9	10
1	8

Таблица 8 - таблица значений для формулы метода Релаксации при ${\rm n}=20$

5. Метод наискорейшего спуска:

i * h	y_i	u(ih)	$ y_i - u(ih) $
0.1	0.102819	9e-05	0.102729
0.2	0.199156	0.00128	0.197876
0.3	0.293056	0.00567	0.287386
0.4	0.388895	0.01536	0.373535
0.5	0.488671	0.03125	0.457421
0.6	0.592915	0.05184	0.541075
0.7	0.697403	0.07203	0.625373
0.8	0.794114	0.08192	0.712194
0.9	0.868238	0.06561	0.802628

Таблица 9 - таблица значений для формулы метода наискорейшего спуска при $\mathrm{n}=10$

i*h	y_i	u(ih)	$ y_i - u(ih) $
0.05	0.0562275	5.9375e-06	0.0562215
0.1	0.110114	9e-05	0.110024
0.15	0.162167	0.000430313	0.161737
0.2	0.212985	0.00128	0.211705
0.25	0.263096	0.00292969	0.260167
0.3	0.313096	0.00567	0.307426
0.35	0.363411	0.00975406	0.353657
0.4	0.414498	0.01536	0.399138
0.45	0.466555	0.0225534	0.444002
0.5	0.519757	0.03125	0.488507
0.55	0.573939	0.0411778	0.532761
0.6	0.628847	0.05184	0.577007
0.65	0.683819	0.0624772	0.621342
0.7	0.738021	0.07203	0.665991
0.75	0.790159	0.0791016	0.711058
0.8	0.83867	0.08192	0.75675
0.85	0.881484	0.0783009	0.803183
0.9	0.916161	0.06561	0.850551
0.95	0.939716	0.0407253	0.898991

Таблица 10 - таблица значений для формулы метода наискорейшего спуска при n=20

3 Выводы

Проделав все вычисления, можно сделать выводы, что более комплексные методы вычисления интеграла, как формула Гаусса и Симпсона, показыают наилучшие результаты за меньшее количество разбиений. В это же время худшие результаты вычисления показыают методы правых прямоугольников и метод трапеций, приводя к довольно большому значению ошибки.

4 Листинг программы

```
1 #pragma once
3 #include <iostream>
# #include < math.h>
5 #include <iomanip>
6 #include <vector>
7 #include <algorithm>
9 double a(double i, double h){
    return (1 + i*h);
11 }
double g(double i, double h){
    return (1 + i*h);
14 }
double f(double i, double h) {
    return -pow(i*h, 6) + 26*pow(i*h, 4) + 4*pow(i*h, 3) - 12*pow(i*h
         , 2);
17 }
double denominator(int i, double h){
     return a(i, h) + a(i+1, h) + pow(h, 2)*g(i, h);
20 }
void printTable(int n, const std::vector<double> y, const std::vector
     <double> u){
      double h = 1.0 / n;
22
      std::cout << std::setw(12) << "i*h" << " | " << std::setw(12) <<
23
         "yi" << " | " << std::setw(12) << " u(ih)" << " | " << std::
         setw(12) << "|yi - u(ih)|" << std::endl;
      for(int i = 1; i < n; i++){</pre>
24
          double ui = u[i];
25
          double yi = y[i];
26
          std::cout << i*h << " & " << std::setw(12) << yi << " & "
27
              << std::setw(12) << ui << " & " << std::setw(12) << abs(
2.8
                 yi - ui) << "\\\" << std::endl;</pre>
          std::cout << "\\hline\n";</pre>
29
      }
30
31
32 }
void SweepMethod_tableOutput(int n){
      std::cout << "\033[1m" << "\033[3m" << "Sweep Method\n" << "
34
         \033[0m";
      double h = 1.0 / n;
```

```
std::vector<double> alpha(n+1);
36
      std::vector<double> betta(n+1);
37
      for(int i = 2; i <= n; i++){</pre>
38
           alpha[i] = a(i,h)/
39
               ((1 - alpha[i-1]) * a(i-1, h) + a(i, h) + pow(h, 2) * g(i)
40
                  -1, h));
           betta[i] = (f(i-1, h)*pow(h,2) + betta[i-1] * a(i-1, h))/
41
               ((1 - alpha[i-1]) * a(i-1, h) + a(i, h) + pow(h, 2) * g(i)
42
                  -1, h));
      }
43
      std::vector<double> y(n+1);
44
      y[n] = 0;
45
      for(int i = n-1; i > 0; i--){
46
           y[i] = alpha[i+1] * y[i+1] + betta[i+1];
47
      }
48
      std::vector<double> u(n);
49
      for(int i = 1; i < n; i++){</pre>
50
           u[i] = pow(i*h, 4) * (1 - (i*h));
51
      }
52
      printTable(n, y, u);
53
      std::cout << "---\n";
54
55 }
56
  void YakobiMethod_tableOutput(int n){
57
      std::cout << "\033[1m" << "\033[3m" << "Yakobi Method\n" << "
58
          \033[0m":
      double h = 1.0/n;
59
      double eps = pow(h, 3);
60
      std::vector<double> y_k(n);
61
      for(int i = 1; i < n-1; i++){</pre>
62
           y_k[i] = f(i, h)*pow(h,2) / denominator(i, h);
63
      }
64
      double r = 1;
65
      std::vector<double> y_k_1(n);
66
      std::vector<double> u(n);
67
      while(fabs(r) > eps){
68
          y_k = y_k_1;
69
          for(int i = 1; i < n; i++){</pre>
70
               y_k_1[i] = (a(i, h)*y_k[i-1] + a(i+1, h)*y_k[i+1] + f(i, h)
71
                  h)*pow(h, 2)
                   /(denominator(i, h));
72
               u[i] = pow(i*h, 4) * (1 - (i*h));
73
               if(i == 1) r = fabs((y_k_1[i] - y_k[i]) / y_k_1[i]);
74
```

```
else r = std::max(fabs((y_k_1[i] - y_k[i]) / y_k_1[i]), r
75
                   );
           }
76
       }
77
       printTable(n, y_k_1, u);
78
       std::cout << "---\n";
79
80
81
  void ZeidelMethod_tableOutput(int n){
82
       std::cout << "\033[1m" << "\033[3m" << "Zeidel Method\n" << "
83
          \033[0m";
       double h = 1.0/n;
84
       double eps = pow(h, 3);
85
       std::vector<double> y_k(n);
86
       for(int i = 1; i < n-1; i++){</pre>
87
           y_k[i] = f(i, h)*pow(h,2) / denominator(i, h);
88
       }
89
       double r = 1;
90
       std::vector<double> y_k_1(n);
91
       std::vector<double> u(n);
92
       while(fabs(r) > eps){
93
           y_k = y_k_1;
94
           for(int i = 1; i < n; i++){
95
                y_k_1[i] = (a(i, h)*y_k_1[i-1] + a(i+1, h)*y_k[i+1] + f(i+1)
96
                   , h)*pow(h, 2)
                    /(denominator(i, h));
97
                u[i] = pow(i*h, 4) * (1 - (i*h));
98
                if(i == 1) r = fabs((y_k_1[i] - y_k[i])/y_k_1[i]);
99
                else r = std::max(fabs((y_k_1[i] - y_k[i]) / y_k_1[i]), r
100
                   );
           }
101
       }
102
       printTable(n, y_k_1, u);
103
       std::cout << "---\n";
104
105 }
106
  void relaxationMethod_tableOutput(int n){
107
       std::cout << "\033[1m" << "\033[3m" << "Relaxation Method\n" << "
108
          \033[0m";
       std::cout << std::setw(3) << "w" << " | " << "k" << std::endl;
109
       double h = 1.0 / n;
110
       double eps = pow(h, 3);
111
       std::vector<double> y_k(n);
112
```

```
for(int i = 1; i < n-1; i++){</pre>
113
            y_k[i] = f(i, h)*pow(h,2) / denominator(i, h);
114
       }
115
       double r = 1;
116
       std::vector<double> y_k_1(n);
117
       std::vector<double> u(n);
118
       for(double w = 0.1; w < 1; w += 0.1){</pre>
119
           int k = 0;
120
           while(fabs(r) > eps){
121
                y_k = y_k_1;
122
                for(int i = 1; i < n; i++){</pre>
123
                     double I = (a(i, h)*y_k[i-1] + a(i+1, h)*y_k[i+1] + f
124
                        (i, h)*pow(h, 2))
                         /(denominator(i, h));
125
                     y_k_1[i] = (1 - w) * y_k[i] + w*I;
126
                     u[i] = pow(i*h, 4) * (1 - (i*h));
127
                     if(i == 1) r = fabs((y_k_1[i] - y_k[i])/y_k_1[i]);
128
                     else r = std::max(fabs((y_k_1[i] - y_k[i]) / y_k_1[i])
129
                        ]), r);
                }
130
                k++:
131
           }
132
           r = 1;
133
            std::cout << std::setw(3) << w << " & " << k << "\\\" << std
134
               ::endl;
            std::cout << "\\hline\n";</pre>
135
       }
136
       std::cout << "---\n";
137
138
139 }
140
  // ???
141
  void descentMethod_tableOutput(int n){
142
       std::cout << "\033[1m" << "\033[3m" << "Descent Method\n" << "
143
           \033[0m";
       double h = 1.0 / n;
144
       double eps = pow(h, 3);
145
       std::vector<double> y_k(n);
146
       for(int i = 1; i < n-1; i++){
147
            y_k[i] = f(i, h)*pow(h,2) / denominator(i, h);
148
       }
149
       double r = 1;
150
       std::vector<double> y_k_1(n);
151
```

```
std::vector<double> u(n);
152
       while(fabs(r) > eps){
153
           y_k = y_k_1;
154
           for(int i = 1; i < n; i++){</pre>
155
                y_k_1[i] = (a(i, h)*y_k[i-1] + a(i+1, h)*y_k[i+1] + f(i, h)
156
                   h)*pow(h, 2))
                    /(denominator(i, h));
157
                u[i] = pow(i*h, 4) * (1 - (i*h));
158
                if(i == 1) r = fabs((y_k_1[i] - y_k[i])/y_k_1[i]);
159
                else r = std::max(fabs((y_k_1[i] - y_k[i]) / y_k_1[i]), r
160
                   );
           }
161
       }
162
       printTable(n, y_k_1, u);
163
       std::cout << "---\n";
164
165 }
```