Sonnenkompass

Jürgen Womser-Schütz, https://github.com/JW-Schuetz/Hobby

1 Fragestellung

Wir genau ist die bekannte Methode, die Nord-Richtung per Sonnenstand zu bestimmen?

2 Methodenbeschreibung

- einen Stab senkrecht in die Erde stecken
- das Ende des Schattens des Stabes mit einen Stein markieren
- einige Zeit abwarten bis der Stabschatten weiter gewandert ist
- das neue Schattenende des Stabes mit einem zweiten Stein markieren.

Man erhält die Nordrichtung mittels der folgenden Regeln

- R1: der Schatten des Stab-Endes bewegt sich auf der Verbindungsgeraden der beiden Steine
- R2: die Nordrichtung ist orthogonal zur Verbindungsgeraden
- R3: auf der Nordhalbkugel der Erde zeigt der Schatten Richtung Norden, auf der Südhalbkugel Richtung Süden.

3 Problemformulierung

Es werden kartesische Koordinaten (x_1, x_2, x_3) verwendet, wobei das Koordinatenpaar (x_1, x_2) die Ekliptikalebene aufspannt, der Ursprung des Koordinatensystems ist der Erdmittelpunkt (siehe dazu die Problemskizze in Abbildung 1).

Es werden die folgenden Annahmen getroffen:

- ullet die Sonne im Punkt \underline{S} sei durch einen Punktstrahler darstellt
- \bullet die Sonne habe den Abstand R_S von der Erde
- \bullet die Erde habe ideale Kugelgestalt mit dem Radius R_E
- ullet im Punkt \underline{P} der Erdoberfläche befinde sich der Stab der Länge L
- die Erd-Rotationsachse habe einen Neigungswinkel ϕ zur x_3 -Achse
- die Erdoberfläche um den Stab wird durch eine Tangentialebene an die Erdkugel angenähert.

Abbildung 1: Problemskizze

Erd-Rotation

Die Erde rotiert um ihre Rotationsachse. Diese Rotation wird in Abhängigkeit des Rotationswinkels α durch die Drehmatrix D_{α} beschrieben. Für die Drehmatrix gilt (siehe dazu z.B. [2])

$$D_{\alpha} = \begin{pmatrix} n_1^2 \left(1 - \cos \alpha \right) + \cos \alpha & n_1 n_2 \left(1 - \cos \alpha \right) - n_3 \sin \alpha & n_1 n_3 \left(1 - \cos \alpha \right) + n_2 \sin \alpha \\ n_2 n_1 \left(1 - \cos \alpha \right) + n_3 \sin \alpha & n_2^2 \left(1 - \cos \alpha \right) + \cos \alpha & n_2 n_3 \left(1 - \cos \alpha \right) - n_1 \sin \alpha \\ n_3 n_1 \left(1 - \cos \alpha \right) - n_2 \sin \alpha & n_3 n_2 \left(1 - \cos \alpha \right) + n_1 \sin \alpha & n_3^2 \left(1 - \cos \alpha \right) + \cos \alpha \end{pmatrix}.$$

Dabei ist

$$\underline{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$$

der Einheitsvektor, der Richtung und Orientierung der Rotationsachse definiert. In dieser Arbeit soll die Rotationsachse, so wie in Abbildung 1 dargestellt, in der (x_1, x_3) -Ebene liegen. Es wird somit gewählt

$$n_1 = \sin \phi$$

$$n_2 = 0$$

$$n_3 = \cos \phi$$

Tangentialebene

Die Kugel mit Radius R_E um den Ursprung ist durch die Gleichung $f(x_1, x_2, x_3) = 0$ gegeben, mit

$$f(x_1, x_2, x_3) = \sum_i x_i^2 - R_E^2.$$

Für die Tangentialebene im Berührpunkt $\underline{P} = (p_1, p_2, p_3)$ gilt allgemein (siehe dazu z.B. [1])

$$\sum_{i} \frac{\partial f}{\partial x_i} (x_i - p_i) = 0.$$

Dabei sind die Ableitungen im Berührpunkt \underline{P} zu bilden, für den Index gilt $i \in [1,3]$. Für die implizite Gleichung der Tangentialebene im Berührpunkt \underline{P} folgt schliesslich in unserem speziellen Fall

$$\sum_{i} p_i \left(x_i - p_i \right) = 0$$

oder in vektorieller Schreibweise

$$\underline{P}(\underline{x} - \underline{P}) = 0.$$

Berücksichtigt man die Erdrotation durch die Drehmatrix D_α so folgt für die gedrehte Tangentialebene T^α

$$D_{\alpha}\underline{P}(\underline{x} - D_{\alpha}\underline{P}) = 0$$

$$\underline{P}^{\alpha}(\underline{x} - \underline{P}^{\alpha}) = 0.$$
 (1)

Stabende

Für den Punkt \underline{Q} am Ende des Stabes der Länge L gilt

$$\underline{Q} = \left(1 + \frac{L}{R_E}\right)\underline{P}.$$

Berücksichtigt man die Erdrotation durch die Drehmatrix D_{α} so folgt

$$\underline{Q}^{\alpha} = \left(1 + \frac{L}{R_E}\right) D_{\alpha} \underline{P}. \tag{2}$$

Verbindungsgerade

Die Sonne befinde sich im Punkt

$$\underline{S} = \begin{pmatrix} R_S \\ 0 \\ 0 \end{pmatrix}.$$

Die Punkte der Verbindungsgerade \underline{G} der Sonne \underline{S} mit dem Stabende \underline{Q} nach Gleichung (2) sind durch

$$\underline{G} = \mu Q + (1 - \mu) \underline{S}$$

gegeben, dabei gilt $\mu \geq 0$.

Berücksichtigt man die Erdrotation durch die Drehmatrix D_α so folgt

$$\underline{G}^{\alpha} = \mu D_{\alpha} \underline{Q} + (1 - \mu) \underline{S}$$
$$= \mu Q^{\alpha} + (1 - \mu) \underline{S}.$$

Problemlösung

Gesucht wird die Trajektorie des Schattens des Stabendes auf der Tangentialebene T^{α} in Abhängigkeit des Erd-Rotationswinkels $\alpha \in [0, 2\pi]$ - α durchläuft im Verlauf eines Tages seinen Wertebereich.

Gesucht ist also der Schnittpunkt der Geraden \underline{G}^{α} mit der Tangentialebene T^{α} oder anders formuliert, gesucht wird der Geradenparameter $\mu \geq 0$, der eine Lösung \underline{x}_0 der Gleichung

$$\underline{P}^{\alpha} \left(\underline{x}_0 - \underline{P}^{\alpha} \right) = 0$$

mit der Bedingung

$$\underline{x}_0 = \mu \underline{Q}^{\alpha} + (1 - \mu) \underline{S}$$

zulässt.

Zur Problemlösung wird MatLab verwendet, wobei zur analytischen Lösung der Gleichungen die "Symbolic Math Toolbox" benutzt wird. Die MatLab-Quellen finden sich im GitHub-Unterverzeichnis "Matlab-Sources".

Literatur

- [1] https://de.wikipedia.org/wiki/Tangentialebene
- [2] https://de.wikipedia.org/wiki/Drehmatrix