This project analyzes contributing factors to terrorist acts from 1970 to 2016. The modeling segment assesses accuracy of four mainstream classifiers, KNeighbors, GaussianNB, Random Forest and Gradient Boost, when predicting the organization associated with a unique act of terrorism.

Preparation

```
In [1]:
```

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns; sns.set(style="darkgrid")
import numpy as np
from sklearn import preprocessing
from sklearn.preprocessing import scale, robust_scale
from sklearn import tree
import plotly
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.model_selection import train_test_split, cross_val_predict, cross_val_score,
GridSearchCV, KFold, LeaveOneOut
from sklearn.metrics import accuracy_score, confusion_matrix, silhouette_score
```

Load data

```
In [2]:
```

```
In [3]:
```

```
terror_df.head(3)
```

Out[3]:

4

	year	month	day	country	region	city	suicide	success	attack_type	target_subtype	target_type	target_n
0	1970	7	2	Dominican Republic	Central America & Caribbean	Santo Domingo	1	0	Assassination	Named Civilian	Julio Guzman	Dominica Republic
1	1970	0	0	Mexico	North America	Mexico city	1	0	Hostage Taking (Kidnapping)	Diplomatic Personnel (outside of embassy, cons	Nadine Chaval, daughter	Belgium
5	1970	1	1	United States	North America	Cairo	1	0	Armed Assault	Police Building (headquarters, station, school)	Cairo Police Headquarters	United S

Þ

Define function to join date and time columns

```
In [4]:
```

Pass datemerge function to new date column, convert to datetime index and drop rows with any missing values

```
In [5]:
```

```
terror_df['date'] = datemerge(terror_df['year'], terror_df['month'], terror_df['day'])
terror_df['date'] = pd.to_datetime(terror_df['date'])
terror_df.index = terror_df.date
terror_df.sort_index(inplace=True)
terror_df = terror_df.dropna(how='any')
```

Exploratory Analysis

```
In [6]:
```

```
# attack count resample by month, 1970-2016
attack_count = terror_df.attack_type.resample('A').count()
```

Plot time series illustrating terrorism frequency, 1970 to 2016; uptick in frequency appears between 1995 and 2000

```
In [7]:
```

```
plt.figure(figsize=(15,5))
attack_count.plot(color='grey', linewidth=3)
plt.title('annual attack count, 1970-2016')
plt.ylabel('count')
plt.xlabel('attacks')
plt.show()
```


Horizontal barchart illustrating total fatalities by region, 1970 to 2016; South Asia and MENA show highest incidence rates regionally

```
region_count = terror_df.groupby('region')['fatalities'].count()
plt.figure(figsize=(10,10))
plt.title('regional casualties, 1970-2016')
plt.xlabel('count')
plt.ylabel('region')
region_count.plot.barh(color='red')
plt.show()
```


In [10]:

```
# top five countries with terror instances by region
country_frequency = terror_df.groupby('region').target_nationality.apply(lambda x: x.value_counts()
.nlargest(5))
country_frequency
```

Out[10]:

region		
Australasia & Oceania	Australia	10
	Fiji	3
	Solomon Islands	3
	United States	2
	New Zealand	2
Central America & Caribbean	Haiti	8
	Nicaragua	3
	Guatemala	3
	Costa Rica	1
	Panama	1
Central Asia	Georgia	18
	Kazakhstan	8
	Tajikistan	6
	Uzbekistan	3
	Kyrgyzstan	3
East Asia	China	48
	Japan	16
	United States	3
	South Korea	1
	Taiwan	1

Eastern Europe	Ukraine	767
•	Russia	445
	Serbia-Montenegro	63
	Macedonia	51
	Kosovo	15
Middle East & North Africa	Iraq	4218
	Yemen	1765
	Turkey	1222
	Israel	1082
	Algeria	920
North America	United States	1285
	Puerto Rico	39
	Mexico	37
	Canada	20
	Soviet Union	6
South America	Colombia	1635
	Paraguay	57
	Peru	55
	Chile	37
	United States	34
South Asia	Afghanistan	5628
	India	4832
	Pakistan	2652
	Sri Lanka	667
	Nepal	586
Southeast Asia	Philippines	2329
	Thailand	603
	Indonesia	284
	Myanmar	129
	United States	17
Sub-Saharan Africa	Nigeria	2161
	Somalia	1535
	International	437
	Democratic Republic of the Congo	395
	Kenya	331
Western Europe	Northern Ireland	338
	Spain	258
	Greece	205
	France	167
	Great Britain	109
Name: target_nationality, d	type: int64	

Horizontal barchart illustrating ten most active terror organizations globally, 1970 to 2016

In [14]:

```
# top groups internationally
top_groups = terror_df['group'].value_counts().nlargest(10).sort_values()
plt.figure(figsize=(15,10))
plt.title('ten most active organizations globally')
plt.xlabel('count')
top_groups.plot.barh(color='purple')
plt.show()
```


Horizontal barchart illustrating total fatality counts per weapon types; explosives/bombs/dynamite and firearms show sweeping popularity

In [15]:

```
# top five weapons of choice globally
top_attacks = terror_df['weapon'].value_counts().nlargest(5).sort_values()
plt.figure(figsize=(15,5))
plt.title('top five weapons globally')
plt.xlabel('count')
top_attacks.plot.barh(color='maroon')
plt.show()
```


Barchart illustrating result of suicide per terrorist act regionally, 1970 to 2016; results should be considered as associated with, not replacing of, weapon of choice as shown above

In [18]:

```
# result in suicide by region
suicide_frequency = terror_df.groupby('region').suicide.sum().nlargest(5)
plt.figure(figsize=(15,5))
plt.title('top five regions with terrorist suicides')
plt.ylabel('count')
suicide_frequency.plot(kind='bar', color='olive')
plt.xticks(rotation=0)
plt.show()
```


Preprocessing

```
In [19]:
```

```
# check df shape
terror_df.shape

Out[19]:
(44198, 20)
```

Create new df for modeling purposes

```
In [21]:
model_df = terror_df[['year', 'country', 'target_type', 'attack_type', 'success', 'group']]
```

Check df data types

```
In [23]:
```

```
model_df.dtypes

Out[23]:

year         int64
country        object
target_type       object
attack_type       object
success         int64
group         object
dtype: object
```

Fit transform to Label Encoder object; assign X and y variables for train and test data

```
In [25]:
```

```
le = preprocessing.LabelEncoder()
le.fit(model_df.values.flatten())
encode_df = model_df.apply(le.fit_transform)
X = encode_df.iloc[:, :4]
y = encode_df.iloc[:, 4:5]
xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=100)
ytrain = ytrain.values.ravel()
print 'Training', 'x:', xtrain.shape, 'y:', ytrain.shape
print 'Testing', 'x:', xtest.shape, 'y:', ytest.shape
Training x: (35358, 4) y: (35358,)
Testing x: (8840, 4) y: (8840, 1)
```

Classification & Model Evaluation

```
In [26]:
```

```
# Random Forest Classifier
rfc = RandomForestClassifier()
rfc.fit(xtrain, ytrain)
rfc_pred = rfc.predict(xtest)
print 'RFC Accuracy:', (accuracy_score(ytest, rfc_pred) * 100), '%'
RFC Accuracy: 93.32579185520362 %
```

```
In [27]:
```

```
# KNoighhors Classifier
```

```
# MINETAIDOTO CTUDOTITET
knc = KNeighborsClassifier()
knc.fit(xtrain, ytrain)
knc pred = knc.predict(xtest)
print 'KNC Accuracy:', (accuracy_score(ytest, knc_pred) * 100), '%'
KNC Accuracy: 92.88461538461539 %
In [28]:
# Cross Validation of KNeighbors Classifier
numlist = list(range(1,50))
neighbs = filter(lambda x: x % 2 != 0, numlist)
kn cv scores = []
for k in neighbs:
   knn = KNeighborsClassifier(n neighbors=k)
   scores = cross val score(knn, xtrain, ytrain, cv=10, scoring='accuracy')
   kn cv scores.append(scores.mean())
print 'Cross Validation scores, KNeighbors Classifier:\n'
print kn cv scores
Cross Validation scores, KNeighbors Classifier:
[0.9091860294676097, 0.9254478543098574, 0.9315852123371231, 0.9342437674582825,
0.9323490589577419,\ 0.9318399611921121,\ 0.9311612361198783,\ 0.9303411003461297,
0.9301996336390161, 0.9301713610961834, 0.9301997296227646, 0.9302280821535623,
0.9301433205125681,\ 0.9304543665072691,\ 0.9301998895941708,\ 0.9303413242961461]
In [29]:
# Gradient Boosting Classifier
gbc = GradientBoostingClassifier(n estimators=10, max features=4)
gbc.fit(xtrain, ytrain)
gbc pred = gbc.predict(xtest)
print 'GBC Accuracy:', round((accuracy score(ytest, gbc pred) * 100), 3), '%'
GBC Accuracy: 92.534 %
In [31]:
# Average KFold cross validation of Gradient Boosting Classifier
gbc kfold = KFold(n splits=10, random state=7)
gbc_cv = cross_val_score(gbc, X, y.values.ravel(), cv=gbc_kfold)
print 'GBC Cross Val Mean Score:', round((gbc cv.mean()*100), 3), '%'
GBC Cross Val Mean Score: 92.724 %
In [32]:
# Gaussian NB Classifier
gnb = GaussianNB()
gnb.fit(xtrain, ytrain)
gnb_pred = gnb.predict(xtest)
print 'GNB Accuracy:', round((accuracy score(ytest, gnb pred) * 100), 3), '%'
GNB Accuracy: 92.534 %
In [33]:
# KFold cross validation of Gaussian NB Classifier
gnb kfold = KFold(n splits=5, random state=5)
gnb_cv = cross_val_score(gnb, X, y.values.ravel(), cv=gnb_kfold)
print 'GNB Cross Validation Mean Score:', round((gnb_cv.mean()*100), 3), '%'
GNB Cross Validation Mean Score: 92.724 %
```

Conclusions

Overall, acts of terrorism show a relatively growing popularity since the start of the twenty first century. South Asia and MENA unsurprisingly show highest incidence rates, with explosives and firearms the preferred weapons of choice. Suicide too shows highest frequencies in South Asia and MENA.

From a modeling standpoint, classification algorithms appear quick and efficient when predicting the organization of unique terror events. Equivalent accuracy scores between specific models may warrant incorporation of additional model features, an initiative which for future research would be beneficial for preemptive counter strategizing.

In []: