Численное моделирование нестационарного одномерного течения газа с использованием схемы для логарифма плотности с центральными разностями

1 Постановка дифференциальной задачи

Одномерное движение вязкого баротропного газа описывается системой дифференциальных уравнений:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = f_0, \\ \rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} + \frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial x^2} + \rho f \end{cases}$$

p=p(
ho) - известная функция давления от плотности. $f_0\equiv 0,\ f$ - известная функция от (t,x).

$$\mu \in [0,001;0,1]$$

Неизвестные функции плотности и скорости:

$$\rho, \ u: [0,T] \times [0,X] \to \mathbb{R},$$
где $T, \ X > 0$

$$\rho > 0$$

Краевые условия:

$$(\rho, u)|_{t=0} = (\rho_0, u_0), x \in [0, X]$$

Для гарантирования положительности ρ вместо функции ρ имеет смысл искать функцию $g=\ln(\rho)$

Тогда система дифференциальных уравнений примет вид

$$\begin{cases} \frac{\partial g}{\partial t} + \frac{1}{2} \left(u \frac{\partial g}{\partial x} + \frac{\partial ug}{\partial x} + (2 - g) \frac{\partial u}{\partial x} \right) = f_0, \\ \frac{\partial u}{\partial t} + \frac{1}{3} \left(u \frac{\partial u}{\partial x} + \frac{\partial u^2}{\partial x} \right) + \tilde{p}'(g) \frac{\partial g}{\partial x} = \mu e^{-g} \frac{\partial^2 u}{\partial x^2} + f \end{cases}$$

2 Построение разностной схемы

Для численного решения системы введем сетку на области $[0,T] \times [0,X]$ с шагом h по оси OX и τ по оси OT. Узел сетки с координатами (n,m) соответствует точке $(n\tau,mh)$ области. Для разностных операторов и значений в узлах сетки будем использовать обозначения, введенные в пособии к вычислительному практикуму.

M - количество узлов вдоль оси $OX.\ N$ - количество узлов вдоль оси OT.

Запишем разностную схему:

$$\begin{cases} G_{t} + \frac{1}{2}(V\hat{G}_{0} + (V\hat{G})_{x} + (2 - G)V_{0}) = f_{0}, & 1 \leq m \leq M - 1, \\ G_{t,0} + \frac{1}{2}((V\hat{G})_{x,0} + (2 - G_{0})V_{x,0}) - \\ -\frac{h}{2}((GV)_{x\overline{x},1} - \frac{1}{2}(GV)_{x\overline{x},2} + (2 - G_{0})(V_{x\overline{x},1} - \frac{1}{2}V_{x\overline{x},2})) = (f_{0})_{0}, \\ G_{t,M} + \frac{1}{2}((V\hat{G})_{\overline{x},M} + (2 - G_{M})V_{\overline{x},M}) + \\ +\frac{h}{2}((GV)_{x\overline{x},M-1} - \frac{1}{2}(GV)_{x\overline{x},M-2} + (2 - G_{M})(V_{x\overline{x},M-1} - \frac{1}{2}V_{x\overline{x},M-2})) = (f_{0})_{M}, \\ V_{t} + \frac{1}{3}(V\hat{V}_{0} + (V\hat{V}_{0})) + \tilde{p}'(\hat{G})\hat{G}_{0} = \tilde{\mu}\hat{V}_{x\overline{x}} - (\tilde{\mu} - \mu e^{-\hat{G}})V_{x\overline{x}} + f, \quad 1 \leq m \leq M - 1, \end{cases}$$

где $\tilde{\mu} = \mu ||e^{-\hat{G}}||_C$.

Запишем эту схему в следующем виде, сгруппировав слагаемые:

$$\begin{cases} G_{m-1}^{n+1} \left(\frac{-V_m^n}{2h} \right) + G_m^{n+1} \left(\frac{1}{\tau} + \frac{1}{2} \left(V_0 \right)_m^n \right) + \\ + G_{m+1}^{n+1} \left(\frac{V_m^n}{2h} \right) + V_{m+1}^{n+1} \left(\frac{1}{2h} \right) + V_{m-1}^{n+1} \left(\frac{1}{2h} \right) = \\ = f_0(n\tau, mh) + G_m^n \left(\frac{1}{\tau} + \frac{1}{2} \left(V_0 \right)_m^n \right), \quad 1 \leqslant m \leqslant M - 1 \end{cases}$$
(1)
$$G_0^{n+1} \left(\frac{1}{\tau} + \frac{(V_x)_0^n}{2} \right) + V_1^{n+1} \left(\frac{1}{h} \right) = f_0(n\tau, 0) + \frac{G_0^n}{\tau} + \\ + \frac{h}{2} \left(((GV)_{x\overline{x}})_1^n - \frac{1}{2} ((GV)_{x\overline{x}})_1^n + (2 - G_0^n)((V_{x\overline{x}})_1^n - \frac{1}{2} (V_{x\overline{x}})_2^n) \right) + G_0^n \frac{(V_x)_0^n}{2}, \quad (2) \end{cases}$$

$$G_m^{n+1} \left(\frac{1}{\tau} + \frac{(V_{\overline{x}})_M^n}{2} \right) + V_{m-1}^{n+1} \left(-\frac{1}{h} \right) = f_0(n\tau, X) + \frac{G_M^n}{\tau} + G_M^n \frac{V_{\overline{x}}}{2} - \\ - \frac{h}{2} \left(((GV)_{x\overline{x}})_{M-1}^n - \frac{1}{2} ((GV)_{x\overline{x}})_{M-2}^n + (2 - G_M^n)(V_{x\overline{x}})_{M-1}^n - \frac{1}{2} (V_{x\overline{x}})_{M-2}^n \right), \quad (3) \end{cases}$$

$$V_{m-1}^{n+1} \left(-\frac{V_m^n}{3h} - \left(\frac{\mu ||e^{-\hat{G}}||_C}{h^2} \right) \right) + V_m^{n+1} \left(\frac{1}{\tau} + \frac{(V_0^n)_m^n}{3} + \frac{2\mu ||e^{-\hat{G}}||_C}{h^2} \right) + \\ V_{m+1}^{n+1} \left(\frac{V_m^n}{3h} - \frac{\mu ||e^{-\hat{G}}||_C}{h^2} \right) + G_{m-1}^{n+1} \left(-\tilde{p}' \frac{G_m^n}{2h} \right) + G_{m+1}^{n+1} \left(\tilde{p}' \frac{G_m^n}{2h} \right) = \\ f(n\tau, mh) - (V_{x\overline{x}})_m^n \left(\mu ||e^{-\hat{G}}||_C - \mu e^{-G_m^n} + \frac{V_m}{\tau} \right), \quad 1 \leqslant m \leqslant M - 1 \end{cases}$$
(4)

Будем называть *n-ым слоем* узлы сетки с координатой по времени равной n. Заметим, что значения V и G известны на нулевом слое. При известных значениях функции на слое n, с помощью системы уравнений, можно вычислить значения функций на n+1 слое. Покажем, как уравнения (1) - (4) формируют необходимую СЛАУ (*).

Уравнение (1) для m=1 и m=M-1 содержит четыре неизвестных, т.к. $V_0 = V_M = 0$ на любом слое. Для $2 \leqslant m \leqslant M-2$ уравнение (1) содержит пять неизвестных.

m, пробегая в уравнении (1) значения от 1 до M-1, формирует M-1 уравнение в системе (*) для неизвестных $G_0^{n+1},\ldots,G_M^{n+1}$ и $V_1^{n+1},\ldots,V_{M-1}^{n+1}$ Уравнение (2) дает 1 уравнение в СЛАУ (*) для неизвестных G_0^{n+1},V_1^{n+1} . Уравнение (3) дает 1 уравнение в СЛАУ (*) для неизвестных G_M^{n+1},V_{M-1}^{n+1} .

Уравнение (4) для m=1 и m=M-1 содержит четыре неизвестных, по тем же причинам, что и уравнение (1), и пять при $2 \leqslant m \leqslant M-2$. m, пробегая в уравнении (4) значения от 1 до M-1, формирует M-1 уравнение в системе (*) для неизвестных $G_0^{n+1},\ldots,G_M^{n+1}$ и $V_1^{n+1},\ldots,V_{M-1}^{n+1}$ И так, СЛАУ (*) является системой с (M+1)+(M-1)=2M неизвестными и (M-1)+1+1+(M-1)=2M уравнениями. В каждом уравнении не более пяти ненулевых коэффициентов.

Таким образом СЛАУ (*) является разреженной, что делает естественным применение итерационных алгоритмов для ее решения.

Последовательно решая такие СЛАУ для $1\leqslant n\leqslant N,$ получим значения G и V во всех узлах сетки.

3 Результаты тестовых расчетов для гладких решений

Для проверки реализованного на ЭВМ алгоритма сделаем следующее.

1 Положим

$$\begin{cases} \rho(t,x) = e^t(\cos(\pi x/10) + 1.5), \\ u(t,x) = \cos(2\pi t)\sin(\pi (x/10)^2), \\ \tilde{p}' = 1, \\ \mu = 0,001. \end{cases}$$

- 2. Аналитически вычислим f_0 и f поставленной дифференциальной задачи с такими ρ и u.
- 3. Сравним значения функций $g(t,x) = \ln(\rho(t,x))$ и u в узлах сетки, вычисленные алгоритмом со значениями, вычисленными аналитически.

Рассмотрим нормы невязок скорости и плотности на последнем слое и их динамику при изменении шага сетки.

$$||G_m^n - g(\tau n, hm)||_{C_h}$$
:

$N\backslash M$	20	40	80	160
20	3,362763e-03	6,011030e-03	7,096117e-03	7,236886e-03
80	1,880232e-03	5,676989e-04	1,246442e-03	1,386106e-03
320	2,802104e-03	4,896486e-04	1,661393e-04	2,851023e-04
1280	3,010187e-03	7,215251e-04	1,136553e-04	4,505472e-05

 $||G_m^n - g(\tau n, hm)||_{L2_h}$:

$N\backslash M$	20	40	80	160
20	5,557584e-03	6,537687e-03	6,800276e-03	6,779306e-03
80	1,778678e-03	8,423468e-04	1,323880e-03	1,430520e-03
320	2,713867e-03	4,234380e-04	2,703903e-04	3,703753e-04
1280	2,961370e-03	6,407478e-04	1,004257e-04	7,166092e-05

$$||G_m^n - g(\tau n, hm)||_{W_2^1}$$
:

$N\backslash M$	20	40	80	160
20	1,136667e-02	9,124210e-03	8,964636e-03	8,817623e-03
80	8,425275e-03	3,368378e-03	2,423212e-03	2,311330e-03
320	8,537628e-03	2,798925e-03	1,073595e-03	6,855815e-04
1280	8,610764e-03	2,792095e-03	9,235949e-04	3,470701e-04

 $||V_m^n - u(\tau n, hm)||_{C_h}$:

$N\backslash M$	20	40	80	160
20	4,468816e-03	4,268340e-03	4,351276e-03	4,389003e-03
80	2,622438e-03	1,336355e-03	1,699522e-03	1,839407e-03
320	3,676246e-03	5,604782e-04	3,710596e-04	4,832500e-04
1280	3,999036e-03	8,878083e-04	1,334016e-04	9,542056e-05

 $||V_m^n - u(\tau n, hm)||_{L2_h}$:

	$N\backslash M$	20	40	80	160
	20	7,078412e-03	7,015676e-03	7,350591e-03	7,451807e-03
	80	3,496533e-03	2,095983e-03	2,655382e-03	2,826796e-03
	320	4,455167e-03	7,794411e-04	5,839730e-04	7,395209e-04
Ì	1280	4,883520e-03	1,085492e-03	1,899382e-04	1,501232e-04

 $||V_m^n - u(\tau n, hm)||_{W_2^1}$:

$N\backslash M$	20	40	80	160
20	1,602271e-02	8,410281e-03	8,402222e-03	8,590046e-03
80	1,518330e-02	4,503082e-03	3,239430e-03	3,419199e-03
320	1,633145e-02	4,786022e-03	1,538671e-03	9,706054e-04
1280	1,673155e-02	5,113734e-03	1,570499e-03	5,209392e-04

Динамикой падения невязок подтверждается сходимость решения порядка $\tau + h^2$

4 Результаты расчетов для негладких начальных данных

Решим 2 задачи с негладкими начальными данными.

$$f_0 \equiv 0,$$

$$f_1 \equiv 0,$$

$$\tilde{p}' = 1$$
(1)

(1)
$$\begin{cases} \rho_0(x) = 1, & x < 4,5 \text{ или } x > 5,5, \\ \rho_0(x) = 2, & x \in [4,5;5,5], \\ u_0(x) \equiv 0, & x \in [0;10], \\ u(t,0) = u(t,10) = 0, & t \in [0;1], \end{cases}$$

$$\mu = 0,001,$$
(2)
$$\begin{cases} u_0(x) = 0, & x < 4,5 \text{ или } x > 5,5, \\ u_0(x) = 1, & x \in [4,5;5,5], \\ \rho_0(x) \equiv 1, & x \in [0;10], \\ u(t,0) = u(t,10) = 0, & t \in [0;T], \end{cases}$$

$$\mu = 0,1.$$

$$\begin{cases} u_0(x) = 0, & x < 4,5 \text{ или } x > 5,5, \\ u_0(x) = 1, & x \in [4,5;5,5], \\ \rho_0(x) \equiv 1, & x \in [0;10], \\ u(t,0) = u(t,10) = 0, & t \in [0;T], \end{cases}$$

$$\mu = 0,1.$$

Настройки алгоритма:

$$M = 600, N = 600.$$

Для задачи (1) получаем:

Рис. 1: Графики плотности (верхний) и скорости (нижний)

Заметим, что закон сохранения масс выполнен, т.к. изменяется в пределах вычислительной погрешности.

Для задачи (2) получаем:

Рис. 2: Графики плотности (верхний) и скорости (нижний)

Закон сохранения массы так же выполнен.

5 Зависимость точности полученного решения от коэффициента вязкости газа

Для задачи 4.1 проведем три запуска программы с

$$\begin{cases} f_0 \equiv 0, \\ f_1 \equiv 0, \\ \tilde{p}'(z) = 1.4z^{0.4}, \\ M = 800, \\ N = 800, \\ \mu \in \{0.001, 0, 01, 0.1\} \end{cases}$$

Имеем следующую зависимость точности полученного решения от коэффициента вязкости газа:

рициента визкости таза.				
норма \ μ	0.001	0.01	0.1	
$ G_m^n - g(\tau n, hm) _{C_h}$	2,584176e-04	3,700739e-04	2,817834e-03	
$ G_m^n - g(\tau n, hm) _{L_{2,h}}$	3,207805e-04	4,151149e-04	2,019011e-03	
$ G_m^n - g(\tau n, hm) _2^1$	5,062162e-04	7,514924e-04	5,873506e-03	
$ V_m^n - u(\tau n, hm) _{C_h}$	4,216830e-04	4,278619e-04	2,062970e-03	
$ V_m^n - u(\tau n, hm) _{L_{2,h}}$	6,341970e-04	6,255225e-04	1,524787e-03	
$ V_m^n - u(\tau n, hm) _2^1$	7,866074e-04	8,754409e-04	5,837614e-03	

6 Стабилизация газа на негладких начальных условиях

Интересно построить решение разностной схемы на области, неограниченной по времени. Вместо этого критерием окончания итеративного процесса, может являться достаточно малая разность между максимальным и минимальным значением плотности газа на [0, X]. Приведем графические результаты работы алгоритма на задаче (4.1) с критерием для плотности $\varepsilon = 10^-2$. Запустим программу со следующими параметрами:

$$\begin{cases} f_0 \equiv 0, \\ f_1 \equiv 0, \\ \tilde{p}'(z) = 1.4z^{0.4}, \\ h = 0.125, \\ \tau = 0.125, \\ \mu = 0.1 \end{cases}$$

Отметим, что осцилляции в области начального скачка плотности являются малыми (порядка 0,01) по сравнению со значениями плотности $(\rho \approx 1)$, и являются следствием естественной погрешности алгоритма.

7 Искусственное погашение осцилляций плотности

Как видно из рисунка в разделе 6, скачок плотности в начальных условиях провоцирует малые осцилляции на участке скачка. Для погашения осцилляций изменим уравнение схемы (2.1) следующим образом:

$$\begin{split} G_{m-1}^{n+1}\left(\frac{-V_m^n}{2h} - \frac{\tau\eta}{h^2}(V_m^n)^2\right) + G_m^{n+1}\left(\frac{1}{\tau} + \frac{1}{2}\left(V_0\right)_m^n + \frac{\tau\eta}{h}\left(2V_m^n(V_m^n)_{\overline{x}} + \frac{2}{h}(V_m^n)^2\right)\right) + \\ + G_{m+1}^{n+1}\left(\frac{V_m^n}{2h} - \frac{\tau\eta}{h}\left(2V_m^n(V_m^n)_{\overline{x}} + \frac{1}{h}(V_m^n)^2\right)\right) + V_{m+1}^{n+1}\left(\frac{1}{2h}\right) + V_{m-1}^{n+1}\left(\frac{1}{2h}\right) = \\ = f_0(n\tau, mh) + G_m^n\left(\frac{1}{\tau} + \frac{1}{2}\left(V_0\right)_m^n\right), \quad 1 \leqslant m \leqslant M-1 \end{split}$$

Результаты расчета запуска с параметрами раздела 6 теперь выглядят так

