Albert-Ludwigs-Universität Freiburg

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science Algorithmns and Datastructures, December 2016

Structure

Feedback

Exercises Lecture

Hashing

Recapitulation
Treatment of hash collisions
Open Addressing
Summary

Priority Queue

Introduction

Structure

Feedback

Exercises Lecture

Hashing

Recapitulation
Treatment of hash collisions
Open Addressing
Summary

Priority Queue Introduction

Feedback from the exercises

December 2016

Feedback from the lecture

December 2016

Structure

Feedback

Exercises

Hashing

Recapitulation
Treatment of hash collisions
Open Addressing
Summary

Priority Queue Introduction

Hashing:

Hashing Recapitulation

Hashing:

■ No hash function is good for all key sets!

Hashing:

- No hash function is good for all key sets!
 - This can cannot work, because a big universe is mapped onto a small set

Hashing:

- No hash function is good for all key sets!
 - This can cannot work, because a big universe is mapped onto a small set
- For random key sets also simple hash function work, e.g.

$$\Rightarrow h(x) = x \mod m$$

- No hash function is good for all key sets!
 - This can cannot work, because a big universe is mapped onto a small set
- For random key sets also simple hash function work, e.g.

$$\Rightarrow h(x) = x \mod m$$

■ Then the random keys make sure that it is distributed evenly

Hashing:

- No hash function is good for all key sets!
 - This can cannot work, because a big universe is mapped onto a small set
- For random key sets also simple hash function work, e.g.

$$\Rightarrow h(x) = x \mod m$$

- Then the random keys make sure that it is distributed evenly
- To find a good hash function for every key set universal hashing is needed

■ No hash function is good for all key sets!

- This can cannot work, because a big universe is mapped onto a small set
- For random key sets also simple hash function work, e.g.

$$\Rightarrow h(x) = x \mod m$$

- Then the random keys make sure that it is distributed evenly
- To find a good hash function for every key set universal hashing is needed
 - Then however, for a fixed set of keys not every hash function is suitable, but only some

Hashing

Recapitulation

Rehashing:

It is possible to get bad hash functions with universal hashing, but it is unlikely

- It is possible to get bad hash functions with universal hashing, but it is unlikely
- This is determinable by monitoring the maximum bucket size

- It is possible to get bad hash functions with universal hashing, but it is unlikely
- This is determinable by monitoring the maximum bucket size
- If a pre-defined level is exceeded, then a rehash is performed

- It is possible to get bad hash functions with universal hashing, but it is unlikely
- This is determinable by monitoring the maximum bucket size
- If a pre-defined level is exceeded, then a rehash is performed

How to rehash?

New hash table with a new random hash function

- It is possible to get bad hash functions with universal hashing, but it is unlikely
- This is determinable by monitoring the maximum bucket size
- If a pre-defined level is exceeded, then a rehash is performed

- New hash table with a new random hash function
- Copy elements into the new table

- It is possible to get bad hash functions with universal hashing, but it is unlikely
- This is determinable by monitoring the maximum bucket size
- If a pre-defined level is exceeded, then a rehash is performed

- New hash table with a new random hash function
- Copy elements into the new table
 - Expensive but happens not often

- It is possible to get bad hash functions with universal hashing, but it is unlikely
- This is determinable by monitoring the maximum bucket size
- If a pre-defined level is exceeded, then a rehash is performed

- New hash table with a new random hash function
- Copy elements into the new table
 - Expensive but happens not often
 - Therefore the average cost is low

- It is possible to get bad hash functions with universal hashing, but it is unlikely
- This is determinable by monitoring the maximum bucket size
- If a pre-defined level is exceeded, then a rehash is performed

- New hash table with a new random hash function
- Copy elements into the new table
 - Expensive but happens not often
 - Therefore the average cost is low
 - Look at amortized analysis in the next lecture

Structure

Feedback

Exercises Lecture

Hashing

Recapitulation

Treatment of hash collisions

Open Addressing Summary

Priority Queue Introduction

■ Each bucket is a linked list

- Each bucket is a linked list
- Colliding keys are inserted into the linked list of a bucket, either sorted or appended at the end

- Each bucket is a linked list
- Colliding keys are inserted into the linked list of a bucket, either sorted or appended at the end

- Each bucket is a linked list
- Colliding keys are inserted into the linked list of a bucket, either sorted or appended at the end

 Operations in O(1) are possible if a suitable tablesize and hashfunction is selected

- Each bucket is a linked list
- Colliding keys are inserted into the linked list of a bucket, either sorted or appended at the end

- Operations in O(1) are possible if a suitable tablesize and hashfunction is selected
- Worst case O(n), e.g. tablesize of 1

- Each bucket is a linked list
- Colliding keys are inserted into the linked list of a bucket, either sorted or appended at the end

- Operations in O(1) are possible if a suitable tablesize and hashfunction is selected
- Worst case O(n), e.g. tablesize of 1
- Dynamic number of elements is possible

Structure

Feedback

Exercises Lecture

Hashing

Recapitulation
Treatment of hash collisions

Open Addressing

Summary

Priority Queue Introduction

Hashing Open Addressing

L L L

■ For colliding keys we choose a new free entry

- For colliding keys we choose a new free entry
- Static, fixed number of elements

N N N N N

- For colliding keys we choose a new free entry
- Static, fixed number of elements
- The probe sequence determines for each key, in which sequence all hash table entries are searched for a free bucket

- For colliding keys we choose a new free entry
- Static, fixed number of elements
- The probe sequence determines for each key, in which sequence all hash table entries are searched for a free bucket
 - If a Entry is already occupied, then iterativly the following entry can be checked. If a free entry is found the element is inserted.

- For colliding keys we choose a new free entry
- Static, fixed number of elements
- The probe sequence determines for each key, in which sequence all hash table entries are searched for a free bucket
 - If a Entry is already occupied, then iterativly the following entry can be checked. If a free entry is found the element is inserted.
 - If element is not found at the corresponding table entry, even if the entry is occupied, then probing has to be performed until the element or a free entry have been found.

Definitions:

Definitions:

h(s) Hash function for key s

NI REIBUR(

Definitions:

- h(s) Hash function for key s
- g(s,j) Probing function for key s with overflow positions

$$j \in \{0, ..., m-1\}$$
 e.g. $g(s,j)=j$

Definitions:

- h(s) Hash function for key s
- g(s,j) Probing function for key s with overflow positions

$$j \in \{0, \dots, m-1\}$$
 e.g. $g(s,j)=j$

■ The **probe sequence** is calculated by

$$h(s,j) = (h(s) - g(s,j)) \mod m \in \{0,\ldots,m-1\}$$


```
def lookup(s):
    i = 0
    while t[(h(s) - g(s, j)) \mod m] \setminus
             is not None:
        if t[(h(s) - g(s, j)) \mod m][0] == s:
             return t[(h(s) - g(s, j)) mod m]
    return None
```


Figure: Linear probe sequence

Figure: Linear probe sequence

- Check the element with lower index: g(s,j) := j
 - \Rightarrow Hash function: $h(s,j) = (h(s) j) \mod m$

Figure: Linear probe sequence

- Check the element with lower index: g(s,j) := j
 - \Rightarrow Hash function: $h(s,j) = (h(s) j) \mod m$
- This leads to the following probe sequence

$$h(s), h(s) - 1, h(s) - 2, \dots, \underbrace{0, m - 1}_{\text{clipping}}, m - 2, \dots, h(s) + 1$$

Figure: Linear probe sequence

Figure: Linear probe sequence

Can result in primary clustering

Figure: Linear probe sequence

- Can result in primary clustering
- Dealing with a hash collision will result in a higher probability of hash collisions in close entries

Hashing Open Addressing - Linear Probing

Example:

Example:

■ Keys: {12,53,5,15,2,19}

Example:

- Keys: {12,53,5,15,2,19}
- Hash function: $h(s,j) = (s \mod 7 j) \mod 7$

Open Addressing - Linear Probing

Example:

- Keys: {12,53,5,15,2,19}
- Hash function: $h(s,j) = (s \mod 7 j) \mod 7$
- \blacksquare t.insert(12, "A"), h(12,0) = 5

0	1	2	3	4	5	6
					12, A	

Example:

- Keys: {12,53,5,15,2,19}
- Hash function: $h(s,j) = (s \mod 7 j) \mod 7$
- \blacksquare t.insert(12, "A"), h(12,0) = 5

0	1	2	3	4	5	6
					12, A	

■ t.insert (53, "B"), h(53,0) = 4

Figure: Probe/Insertion sequence on a hash map

Open Addressing - Linear Probing

Example:

■ Hash function: $h(s,j) = (s \mod 7 - j) \mod 7$

Example:

- Hash function: $h(s,j) = (s \mod 7 j) \mod 7$
- t.insert (5, "C"), h(5,0) = 5, h(5,1) = 4, h(5,2) = 3

0 1 2 3 4 5 (5, C 53, B 12, A

Example:

- Hash function: $h(s,j) = (s \mod 7 j) \mod 7$
- t.insert (5, "C"), h(5,0) = 5, h(5,1) = 4, h(5,2) = 3

 \blacksquare t.insert(15, "D"), h(15,0) = 1

Figure: Probe/Insertion sequence on a hash map

Open Addressing - Linear Probing

Example:

■ Hash function: $h(s,j) = (s \mod 7 - j) \mod 7$

Open Addressing - Linear Probing

Example:

- Hash function: $h(s,j) = (s \mod 7 j) \mod 7$
- t.insert (2, "E"), h(2,0) = 2

Example:

- Hash function: $h(s,j) = (s \mod 7 j) \mod 7$
- t.insert (2, "E"), h(2,0) = 2

■ t.insert(19, "F"),
$$h(19,0) = 5$$
, $h(19,1) = 4$,
 $h(19,2) = 3$, $h(19,3) = 2$, $h(19,4) = 1$, $h(19,5) = 0$

Figure: Probe/Insertion sequence on a hash map

Open Addressing - Squared Probing

NI REIBURG

Squared probing:

Motivation: Avoid local clustering

$$g(s,j) := (-1)^j \left\lceil \frac{j}{2} \right\rceil^2$$

Open Addressing - Squared Probing

INI REIBURG

Squared probing:

Motivation: Avoid local clustering

Figure: Squared probe sequence

Motivation: Avoid local clustering

Figure: Squared probe sequence

This leads to the following probe sequence

$$h(s)$$
, $h(s) + 1$, $h(s) - 1$, $h(s) + 4$, $h(s) - 4$, $h(s) + 9$, $h(s) - 9$, ...

$$g(s,j) := (-1)^j \left\lceil \frac{j}{2} \right\rceil^2$$

$$g(s,j) := (-1)^j \left\lceil \frac{j}{2} \right\rceil^2$$

If m is a prime number for which $m = 4 \cdot k + 3$ then the probe sequence is a permutation of the indices of the hash tables.

$$g(s,j) := (-1)^j \left\lceil \frac{j}{2} \right\rceil^2$$

- If m is a prime number for which $m = 4 \cdot k + 3$ then the probe sequence is a permutation of the indices of the hash tables.
- Alternatively: $h(s,j) := (h(s) c_1 \cdot j + c_2 \cdot j^2) \mod m$

$$g(s,j) := (-1)^j \left\lceil \frac{j}{2} \right\rceil^2$$

- If m is a prime number for which $m = 4 \cdot k + 3$ then the probe sequence is a permutation of the indices of the hash tables.
- Alternatively: $h(s,j) := (h(s) c_1 \cdot j + c_2 \cdot j^2) \mod m$
- Problem of secondary clustering
 No local clustering anymore, but keys with same hash value have similar probe sequence

- Motivation: So far uses function g(s,j) only the step counter j for linear and squared probing
 - \Rightarrow The probe sequence is independent of the key s

- Motivation: So far uses function g(s,j) only the step counter j for linear and squared probing
 - \Rightarrow The probe sequence is independent of the key s
- Uniform probing computes the sequence g(s,j) of permutations of all possible indices in dependency on key s

- Motivation: So far uses function g(s,j) only the step counter j for linear and squared probing
 - \Rightarrow The probe sequence is independent of the key s
- Uniform probing computes the sequence g(s,j) of permutations of all possible indices in dependency on key s
- Advantage: Prevents clustering because different keys with the same hash value do not produce the same probe sequence

Uniform Probing:

- Motivation: So far uses function g(s,j) only the step counter j for linear and squared probing
 - \Rightarrow The probe sequence is independent of the key s
- Uniform probing computes the sequence g(s,j) of permutations of all possible indices in dependency on key s
- Advantage: Prevents clustering because different keys with the same hash value do not produce the same probe sequence
- Disadvantage: Hard to implement

Figure: Double hashing probe sequence

■ Motivation: Consider key *s* in probe sequence

- Motivation: Consider key s in probe sequence
- Use two independent hash functions $h_1(s), h_2(s)$

Figure: Double hashing probe sequence

- Motivation: Consider key *s* in probe sequence
- Use two independent hash functions $h_1(s), h_2(s)$
- Hash function: $h(s,j) = (h_1(s) + j \cdot h_2(s)) \mod m$

Double Hashing:

■ Hash function: $h(s,j) = (h_1(s) + j \cdot h_2(s)) \mod m$

Double Hashing:

- Hash function: $h(s,j) = (h_1(s) + j \cdot h_2(s)) \mod m$
- probe sequence:

$$h_1(s), h_1(s) + h_2(s), h_1(s) + 2 \cdot h_2(s), h_1(s) + 3 \cdot h_2(s), \dots$$

- Hash function: $h(s,j) = (h_1(s) + j \cdot h_2(s)) \mod m$
- probe sequence:

$$h_1(s), h_1(s) + h_2(s), h_1(s) + 2 \cdot h_2(s), h_1(s) + 3 \cdot h_2(s), \dots$$

Works well in practical use

- Hash function: $h(s,j) = (h_1(s) + j \cdot h_2(s)) \mod m$
- probe sequence:

$$h_1(s), h_1(s) + h_2(s), h_1(s) + 2 \cdot h_2(s), h_1(s) + 3 \cdot h_2(s), \dots$$

- Works well in practical use
- This method is an approximation of uniform probing

Hashing Open Addressing - Double Hashing - Example

Hashing

NI

$$h_1(s) = s \mod 7$$

 $h_2(s) = (s \mod 5) + 1$
 $h(s,j) = h_1(s) + j \cdot h_2(s) \mod 7$

$$h_1(s) = s \mod 7$$

 $h_2(s) = (s \mod 5) + 1$
 $h(s,j) = h_1(s) + j \cdot h_2(s) \mod 7$

Table: Comparing both hash functions

S	10	19	31	22	14	16
$h_1(s)$	3	5	3	1	0	2
$h_2(s)$	1	5	2	3	5	2

■ The efficiency of double hashing is dependent on $h_1(s) \neq h_2(s)$

Hashing

Open Addressing - Double Hashing - Optimization

Figure: Double hashing

Double hashing by Brent:

Figure: Double hashing

Motivation:

Motivation:

Motivation:

Figure: Double hashing

Motivation:

Figure: Double hashing

Motivation:

Hashing

Open Addressing - Double Hashing - Optimization

Figure: Double hashing

Example:

■ The key s_1 is inserted at position $p_1 = h(s_1, 0)$

Figure: Double hashing

- The key s_1 is inserted at position $p_1 = h(s_1, 0)$
- The hash function for s_2 also results in $p_2 = h(s_2, 0) = p_1$

Figure: Double hashing

- The key s_1 is inserted at position $p_1 = h(s_1, 0)$
- The hash function for s_2 also results in $p_2 = h(s_2, 0) = p_1$
- The locations $h(s_2,j)$, $j \in \{1,...,n\}$ are also occupied

Figure: Double hashing

- The key s_1 is inserted at position $p_1 = h(s_1, 0)$
- The hash function for s_2 also results in $p_2 = h(s_2, 0) = p_1$
- The locations $h(s_2,j)$, $j \in \{1,...,n\}$ are also occupied

- The key s_1 is inserted at position $p_1 = h(s_1, 0)$
- The hash function for s_2 also results in $p_2 = h(s_2, 0) = p_1$
- The locations $h(s_2,j)$, $j \in \{1,...,n\}$ are also occupied

Figure: Double hashing

- The key s_1 is inserted at position $p_1 = h(s_1, 0)$
- The hash function for s_2 also results in $p_2 = h(s_2, 0) = p_1$
- The locations $h(s_2,j)$, $j \in \{1,...,n\}$ are also occupied
- If we insert s_2 at position $h(s_2, n+1)$ the search will be inefficient

Figure: Double hashing by Brent

Figure: Double hashing by Brent

Figure: Double hashing by Brent

Figure: Double hashing by Brent

Reversed sequence of keys would have been better

Figure: Double hashing by Brent

- Reversed sequence of keys would have been better
- Brents Idea:

Figure: Double hashing by Brent

- Reversed sequence of keys would have been better
- Brents Idea:
 - Test if location $h(s_1, 1)$ is free

- Reversed sequence of keys would have been better
- Brents Idea:
 - Test if location $h(s_1, 1)$ is free
 - If yes, move s_1 from $h(s_1,0)$ to $h(s_1,1)$ and insert s_2 at $h(s_2,0)$

Idea:

- Motivation: Colliding elements are inserted in the hashtable sorted.
- Therefore, in case of an unsucessful search of elements in combination with linear probing or double hashing, aborting is earlier possible because single probing steps have a fixed length

Implementation:

- Compare both keys if a collision occurs
- Insert the smaller key at p₁
- Search a position based on the diversion order for the bigger key

- The key 12 is saved at position $p_1 = h(12,0)$
- We insert the key 5 into the hash map
- We assume h(5,0) results in location p_1
- Because 5 < 12 we insert the key 5 at position p_1
- For the key 12 we iterate through the sequence

$$h(12,1), h(12,2), h(12,3), \dots$$

Hashing Open Addressing - Robin-Hood Hashing

Motivation:

December 2016

Motivation:

Having similiar length of probe sequences for all elements. Total costs stay the same, but they are distributed evenly. Results in approximately similar search times for all elements.

Motivation:

Having similiar length of probe sequences for all elements. Total costs stay the same, but they are distributed evenly. Results in approximately similar search times for all elements.

Implementation:

Motivation:

Having similiar length of probe sequences for all elements. Total costs stay the same, but they are distributed evenly. Results in approximately similar search times for all elements.

Implementation:

If two keys s_1, s_2 collide $(p_1 = h(s_1, j_1) = h(s_2, j_2))$ we compare the length of the sequence $(j_1 \text{ or } j_2)$

Motivation:

Having similiar length of probe sequences for all elements. Total costs stay the same, but they are distributed evenly. Results in approximately similar search times for all elements.

Implementation:

- If two keys s_1, s_2 collide $(p_1 = h(s_1, j_1) = h(s_2, j_2))$ we compare the length of the sequence $(j_1 \text{ or } j_2)$
- The key with the bigger search sequence is inserted at p_1 The other key is assigned a new location based on the sequence

Example:

- The key 12 is saved at position $p_1 = h(12,7)$
- We insert the key 5 into the hash map
- We assume h(5,0) results in location p_1
- Because $j_1 < j_2$ (0 < 7) the key 12 stays at position p_1
- For the key 5 we iterate through the sequence

$$h(5,1), h(5,2), h(5,3), \ldots$$

- The key s_1 is inserted at position p_1
- The key s_2 returns the same hash value, but is inserted at position p_2 because of the probing order
- If s_1 is removed, it is impossible to find s_2

- The key s_1 is inserted at position p_1
- The key s_2 returns the same hash value, but is inserted at position p_2 because of the probing order
- If s_1 is removed, it is impossible to find s_2

Solution:

- The key s_1 is inserted at position p_1
- The key s_2 returns the same hash value, but is inserted at position p_2 because of the probing order
- If s_1 is removed, it is impossible to find s_2

Solution:

■ Remove: Elements are marked as removed, but not deleted

- The key s_1 is inserted at position p_1
- The key s_2 returns the same hash value, but is inserted at position p_2 because of the probing order
- If s_1 is removed, it is impossible to find s_2

Solution:

- Remove: Elements are marked as removed, but not deleted
- Inserting: Elements marked as removed will we overwritten

Structure

Feedback

Exercises Lecture

Hashing

Recapitulation
Treatment of hash collisions
Open Addressing

Summary

Priority Queue Introduction

Save colliding elements as linked list

Open hashing: (static, number of elements fixed)

- Determine a probe sequence, permutation of all hash values
- Linear, quadratic probing:
 - Easy to implement
 - Raise the probability of collisions because probing order does not depend on the key

Hashing Open Addressing - Summary Collision Handling

Open hashing: (static, number of elements fixed)

Open hashing: (static, number of elements fixed)

- Uniform probing, double hashing:
 - Different probing orders for different keys
 - Avoids clustering of elements

- Uniform probing, double hashing:
 - Different probing orders for different keys
 - Avoids clustering of elements

Improving efficiency: (Brent, Ordered Hashing)

- Improve search efficiency by sorting colliding insertions
 - Abortion of unsuccessfull search
 - Search sequence length balancing

Open Addressing - Summary Hashing

Hashing:

Efficient fo dictionary operations:

Insert: $O(1) \dots O(n)$ Search: $O(1) \dots O(n)$

Remove: $O(1) \dots O(n)$

Efficient fo dictionary operations:

Insert: O(1)...O(n)Search: O(1)...O(n)Remove: O(1)...O(n)

Direct access of all elements in a hash table

Efficient fo dictionary operations:

Insert: O(1)...O(n)Search: O(1)...O(n)Remove: O(1)...O(n)

- Direct access of all elements in a hash table
- Using a hash function to find the position (hash value) in the hash table

Efficient fo dictionary operations:

Insert: O(1)...O(n)Search: O(1)...O(n)Remove: O(1)...O(n)

- Direct access of all elements in a hash table
- Using a hash function to find the position (hash value) in the hash table
- Hash function, size of the hash table and strategy to avoid hash collisions influence the efficiency of the datastructure

Structure

Feedback

Exercises Lecture

Hashing

Recapitulation
Treatment of hash collisions
Open Addressing
Summary

Priority Queue

Introduction

Definition:

A priority queue saves a set of elements

- A priority queue saves a set of elements
- Each element contains a key and a value like a map

- A priority queue saves a set of elements
- Each element contains a key and a value like a map
- There is a total order (like <) defined on the keys</p>

Definition:

■ The priority queue supports the following operations:

Definition:

■ The priority queue supports the following operations:

insert(key, value): Inserts a new element into the queue

■ The priority queue supports the following operations:

```
insert(key, value): Inserts a new element into the queue
getMin(): Returns the element with the smallest key
deleteMin(): Removes the element with the smallest key
```


Definition:

■ The priority queue supports the following operations:

```
insert(key, value): Inserts a new element into the queue
getMin(): Returns the element with the smallest key
deleteMin(): Removes the element with the smallest key
```

Sometimes additional operations are defined:

Definition:

■ The priority queue supports the following operations:

```
insert(key, value): Inserts a new element into the queue
getMin(): Returns the element with the smallest key
deleteMin(): Removes the element with the smallest key
```

Sometimes additional operations are defined:

```
changeKey(item, key): Changes the key of the element
```

Definition:

■ The priority queue supports the following operations:

```
insert(key, value): Inserts a new element into the queue
getMin(): Returns the element with the smallest key
deleteMin(): Removes the element with the smallest key
```

Sometimes additional operations are defined:

```
changeKey(item, key): Changes the key of the element
remove(item): Removes the element from the queue
```


Special features:

Special features:

■ Multiple elements with the same key

Special features:

- Multiple elements with the same key
 - No problem and for many applications necessary
 - If there is more than one element with the smallest key

getMin(): Returns just one of the possible elements
deleteMin(): Deletes the element returned by getMin

December 2016

Special features:

- Multiple elements with the same key
 - No problem and for many applications necessary
 - If there is more than one element with the smallest key

```
getMin(): Returns just one of the possible elements
deleteMin(): Deletes the element returned by getMin
```

■ Argument of changeKey and remove operations

Special features:

- Multiple elements with the same key
 - No problem and for many applications necessary
 - $\hfill\blacksquare$ If there is more than one element with the smallest key

```
getMin(): Returns just one of the possible elements
deleteMin(): Deletes the element returned by getMin
```

- Argument of changeKey and remove operations
 - There is no **quick-access** to a element in the queue
 - Thats why insert and getMin return a reference (handle,accessor object)
 - changeKey and remove take this reference as argument
 - Therefore each element has to store its current position in the heap.

```
from queue import PriorityQueue

q = PriorityQueue()

e1 = (5, "A") # element with priority 5
q.put(e1); # insert element e1

# remove and return the lowest item
e2 = q.get()
```

Example 1:

■ Calculation of the sorted union of *k* sorted lists (multi-way merge or *k*-way merge)

$$L_1: \boxed{3} \ \boxed{5} \ \boxed{8} \ \boxed{12} \ \dots \ \boxed{L_3:} \ \boxed{1} \ \boxed{10} \ \boxed{11} \ \boxed{24} \ \dots$$
 $L_2: \boxed{4} \ \boxed{5} \ \boxed{6} \ \boxed{7} \ \dots$
 $\Rightarrow R: \boxed{1} \ \boxed{3} \ \boxed{4} \ \boxed{5} \ \boxed{5} \ \boxed{6} \ \boxed{7} \ \boxed{8} \ \boxed{10} \ \dots$

Figure: 3-way merge

Priority Queue Application Example

Example 1:

Calculation of the sorted union of k sorted lists (multi-way merge or k-way merge)

- Calculation of the sorted union of k sorted lists (multi-way merge or k-way merge)
- Runtime: N = length of resulting list

- Calculation of the sorted union of k sorted lists (multi-way merge or k-way merge)
- Runtime: N = length of resulting list
 - Trivial: $\Theta(N \cdot k)$, minimum calculation $\Theta(k)$

- Calculation of the sorted union of k sorted lists (multi-way merge or k-way merge)
- Runtime: N = length of resulting list
 - Trivial: $\Theta(N \cdot k)$, minimum calculation $\Theta(k)$
 - Priority queue: $\Theta(N \cdot \log k)$, minimum calculation $\Theta(\log k)$

- Calculation of the sorted union of k sorted lists (multi-way merge or k-way merge)
- Runtime: N = length of resulting list
 - Trivial: $\Theta(N \cdot k)$, minimum calculation $\Theta(k)$
 - Priority queue: $\Theta(N \cdot \log k)$, minimum calculation $\Theta(\log k)$

Example 2:

- Calculation of the sorted union of k sorted lists. (multi-way merge or k-way merge)
- Runtime: N = length of resulting list
 - Trivial: $\Theta(N \cdot k)$, minimum calculation $\Theta(k)$
 - Priority queue: $\Theta(N \cdot \log k)$, minimum calculation $\Theta(\log k)$

Example 2:

For example Dijkstra's algorithm for computing the shortest path (← following lecture)

- Calculation of the sorted union of k sorted lists (multi-way merge or k-way merge)
- Runtime: N = length of resulting list
 - Trivial: $\Theta(N \cdot k)$, minimum calculation $\Theta(k)$
 - Priority queue: $\Theta(N \cdot \log k)$, minimum calculation $\Theta(\log k)$

Example 2:

- For example Dijkstra's algorithm for computing the shortest path (← following lecture)
- Among other applications it can be used for sorting

Priority Queue Implementation

Idea:

Priority Queue

Implementation

Idea:

■ Save elements as tuples in a binary heap

Figure: Heap with 11 nodes

Idea:

- Save elements as tuples in a binary heap
- Summary from lecture 1 (*HeapSort*):
 - Nearly complete binary tree
 - Heap condition:

The key of each node \leq the keys of the children

Figure: Heap with 11 nodes

Priority Queue Implementation

Figure: Min heap stored in array

Priority Queue

Implementation

0	1	2	3	4
4, B	8, M	5, A	17, Q	9, H

Figure: Min heap stored in array

Storing a binary heap:

0	1	2	3	4
4, B	8, M	5, A	17, Q	9, H

Figure: Min heap stored in array

Storing a binary heap:

- Number nodes from top to bottom and left to right starting with 0 and store entries in array
- Children of node i are the nodes 2i + 1 and 2i + 2
- Parent node of node *i* is floor((i-1)/2)

Implementation - Insertion

Inserting an element: insert(key, item)

Inserting an element: insert(key, item)

Append the element at the end of the array

Inserting an element: insert(key, item)

- Append the element at the end of the array
- The heap condition may be violated, but only at the last index

Inserting an element: insert(key, item)

- Append the element at the end of the array
- The heap condition may be violated, but only at the last index
- Repair heap condition ⇒ We will see later how to do this

Returning the minimum: getMin()

Returning the minimum: getMin()

Else return the first element

Returning the minimum: getMin()

- Else return the first element
- If the heap is empty return None

AI FIRITOG

Removing the minimum: deleteMin()

Deleting the element with the lowest key

- Deleting the element with the lowest key
- Swap the last element with the first element and shrink the heap by one

- Deleting the element with the lowest key
- Swap the last element with the first element and shrink the heap by one
- The heap condition may be violated, but only at the first index

- Deleting the element with the lowest key
- Swap the last element with the first element and shrink the heap by one
- The heap condition may be violated, but only at the first index
- Repair heap condition

Changing the key (priority): changeKey(item, key)

- The element (queue item) is given as argument
- Replace the value of the key
- The heap condition may be violated, but only at the element index and only in one direction (up / down)
- Repair heap condition

Changing the key (priority): changeKey(item, key)

Changing the key (priority): changeKey(item, key)

The heap condition may be violated, but only at the element index and only in one direction (up / down)

Changing the key (priority): changeKey(item, key)

- The heap condition may be violated, but only at the element index and only in one direction (up / down)
- Repair heap condition

NI

Removing an element: remove(item)

■ The element (queue item) is given as argument

- The element (queue item) is given as argument
- Replace the element with the last element and shrink the heap by one

- The element (queue item) is given as argument
- Replace the element with the last element and shrink the heap by one
- The heap condition may be violated, but only at the element index and only in one direction (up / down)

- The element (queue item) is given as argument
- Replace the element with the last element and shrink the heap by one
- The heap condition may be violated, but only at the element index and only in one direction (up / down)
- Repair heap condition

The heap condition can be violated after using insert, deleteMin, changeKey, remove, but only at one known position with index i

- The heap condition can be violated after using insert, deleteMin, changeKey, remove, but only at one known position with index i
- Heap conditions can be violated in two directions:

- The heap condition can be violated after using insert, deleteMin, changeKey, remove, but only at one known position with index i
- Heap conditions can be violated in two directions:
 - Downwards: The key at index i is not ≤ than the value of its children

- The heap condition can be violated after using insert, deleteMin, changeKey, remove, but only at one known position with index i
- Heap conditions can be violated in two directions:
 - Downwards: The key at index i is not ≤ than the value of its children
 - Upwards: The key at index i is not ≥ than the value of its parent

- The heap condition can be violated after using insert, deleteMin, changeKey, remove, but only at one known position with index i
- Heap conditions can be violated in two directions:
 - Downwards: The key at index i is not ≤ than the value of its children
 - Upwards: The key at index i is not \geq than the value of its parent
- We need two repair methods: repairHeapUp, repairHeapDown

Figure: Repairing the heap downwards

Sift the element until the heap condition is valid

Figure: Repairing the heap downwards

- Sift the element until the heap condition is valid
 - Change node with child, which has the lower key of both children

Figure: Repairing the heap downwards

- Sift the element until the heap condition is valid
 - Change node with child, which has the lower key of both children
 - If the heap condition is violated repeat for the child node

Figure: Repairing the heap downwards

- Sift the element until the heap condition is valid
 - Change node with child, which has the lower key of both children
 - If the heap condition is violated repeat for the child node

Figure: Repairing the heap downwards

Figure: Repairing the heap upwards

Change node with parent

Figure: Repairing the heap upwards

- Change node with parent
- If the heap condition is violated repeat for parent node

Figure: Repairing the heap upwards

- Change node with parent
- If the heap condition is violated repeat for parent node

Figure: Repairing the heap upwards

Index of a priority queue item:

Index of a priority queue item:

■ Attention: For changeKey and remove the item has to "know" where it is located in the heap

Index of a priority queue item:

- Attention: For changeKey and remove the item has to "know" where it is located in the heap
- Remember for repairHeapUp and repairHeapDown: Update the index if moving an heap element

```
class PriorityQueueItem:
    """Provides a handle for a queue item.
    This handle can be used to remove or
    update the queue item.
    0.00
    def __init__(self, key, value, index):
        self.key = key
        self.value = value
```

self.index = index

Priority Queue Complexity

Summary lecture 1:

Priority Queue Complexity

FREE

Summary lecture 1:

■ A full binary tree with n elements, has a depth of $O(\log n)$

- A full binary tree with n elements, has a depth of $O(\log n)$
- The maximum distance from the root to a leaf can be $O(\log n)$ elements

- \blacksquare A full binary tree with *n* elements, has a depth of $O(\log n)$
- The maximum distance from the root to a leaf can be O(log n) elements
- Repairing the heap upwards and downwards: We have only one path to traverse: $O(\log n)$

- A full binary tree with n elements, has a depth of $O(\log n)$
- The maximum distance from the root to a leaf can be O(log n) elements
- Repairing the heap upwards and downwards: We have only one path to traverse: O(log n)

Runtime for methods

- A full binary tree with n elements, has a depth of $O(\log n)$
- The maximum distance from the root to a leaf can be O(log n) elements
- Repairing the heap upwards and downwards: We have only one path to traverse: O(log n)

Runtime for methods

■ insert, deleteMin, changeKey, remove: We have to repair the heap: $O(\log n)$

- A full binary tree with n elements, has a depth of $O(\log n)$
- The maximum distance from the root to a leaf can be O(log n) elements
- Repairing the heap upwards and downwards: We have only one path to traverse: O(log n)

Runtime for methods

- insert, deleteMin, changeKey, remove: We have to repair the heap: $O(\log n)$
- getMin: Return the element at index 0: *O*(1)

Priority Queue Complexity

Improvements (Fibonacci heaps):

UNI FREIB

Improvements (Fibonacci heaps):

 \blacksquare getMin, insert and decreaseKey in amortized time of O(1)

Improvements (Fibonacci heaps):

- \blacksquare getMin, insert and decreaseKey in amortized time of O(1)
- \blacksquare deleteMin in amortized time $O(\log n)$

Improvements (Fibonacci heaps):

- \blacksquare getMin, insert and decreaseKey in amortized time of O(1)
- \blacksquare deleteMin in amortized time $O(\log n)$

Practical experience:

- \blacksquare getMin, insert and decreaseKey in amortized time of O(1)
- \blacksquare deleteMin in amortized time $O(\log n)$

Practical experience:

The binary heap is simpler: Costs for managing the structure are low

Improvements (Fibonacci heaps):

- \blacksquare getMin, insert and decreaseKey in amortized time of O(1)
- \blacksquare deleteMin in amortized time $O(\log n)$

Practical experience:

- The binary heap is simpler: Costs for managing the structure are low
- If the number of elements is relatively small so the difference is negligible

Improvements (Fibonacci heaps):

- \blacksquare getMin, insert and decreaseKey in amortized time of O(1)
- \blacksquare deleteMin in amortized time $O(\log n)$

Practical experience:

- The binary heap is simpler: Costs for managing the structure are low
- If the number of elements is relatively small so the difference is negligible
- Example:
 - For $n = 2^{10} \approx 1,000$ is the the depth $\log_2 n$ only 10
 - For $n = 2^{20} \approx 1,000,000$ is the depth $\log_2 n$ only 20

■ General

- [CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms. MIT Press, Cambridge, Mass, 2001.
- [MS08] Kurt Mehlhorn and Peter Sanders. Algorithms and data structures, 2008. https://people.mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Sanders-Toolbox.pdf.

■ Priority Queue - Implementations / API

- [Cpp] C++ priority_queue
 http:
 //www.sgi.com/tech/stl/priority_queue.html
- [Jav] Java PriorityQueue
 https://docs.oracle.com/javase/7/docs/api/
 java/util/PriorityQueue.html
- [Pyt] Python PriorityQueue
 https://docs.python.org/3/library/queue.
 html#queue.PriorityQueue