Emission spontanée + Absorbtion + Émission spontannées

Figure 1 – rebop

$$\frac{\mathrm{d}}{\mathrm{d}n_2t} = -A_{21}n_2 - I_{\nu}B_{12}\Delta n$$

1.5 Inversion de population

Comment obtenir $\Delta n > 0$

Equilibre thermodynamique local : $n_2 = e^{-\Delta E/kT} n_1 \le n_1 \implies \Delta n \le 0$

État stationnaire : $n_2 = \frac{Bh\nu n_p A_{21} + Bh\nu n_p}{n}_1 < n_1 \implies \Delta n \leq 0$

On veut une cavité qui correspond au mode du photo γ_{21} pour que les photons resent et maximisent le processus d'émission spontané.

FIGURE 2 – Diagramme énérgétique typique d'un laser

$$\frac{d}{dn_3t} = \gamma_{\omega} (n_0 - n_3) - \gamma_{32}n_3$$

$$\frac{d}{dn_2t} = \gamma_{32}n_3 - \gamma_{31}n_2 + Bh\nu n_p(n_1 - n_2)$$

$$\frac{dn_1}{dt} = \gamma_{21}n_2 - \gamma_{10}n_1 - Bh\nu n_p(n_1 - n_2)$$

$$\frac{dn_0}{dt} = \gamma_{10}n_1 - \gamma_{\omega}(n_0 - n_3)$$

2 Émetteurs à deux niveaux

Objectifs

- Montrer comment certains modèles classiques peuvent donner des predictions exacte dans l'interaction atom/lumière (dans certaines limites)
 - Indice de réfraction (nuage d'atome)
 - radiation d'un atome
 - effets mécaniques de la lumière
 - refroidissement d'atome (ralentire le centre de masse)
 - (Emission collective)

2.1 Oscillateur harmonique

$$m\ddot{x} + m\omega_0^2 x = 0$$

$$m = \frac{m_e m_n}{n_e + m_n} \approx n_e$$

$$\mathbf{E}(r,t) = \mathbf{E}^{+}(\mathbf{r})e^{i\omega t} + \mathbf{E}(\mathbf{r})e^{-i\omega t}$$
 $\mathbf{E}^{+} = (\mathbf{E}^{-})^{*}$

$$m\ddot{x} + m\omega_0^2 x = q\mathbf{E}(\mathbf{r}, t)$$

. . .

$$x_0^+ = \frac{eE^+/m}{\omega^2 - \omega_0^2}$$

Moment dipolaire élécrique

$$d \sim 1 [e \text{ Å}]$$

$$\mathbf{d}^+ = -ex^+$$
$$= -\frac{e^2}{m} \frac{E^+}{\omega^2 - \omega_0^2}$$

La desnité de polarisation est donc

$$\mathbf{P} = Nd^{+} = \hat{\epsilon} \frac{Ne^{2}}{m} \frac{\mathbf{E}_{0}^{+}}{\omega_{0}^{2}} e^{-i\omega t}$$

$$\chi = \frac{\mathbf{P}}{\mathbf{E}} = \frac{Ne^2}{m} \frac{1}{\omega_0^2 - \omega^2} = \frac{N}{\epsilon_0} \alpha(\omega)$$

2.2 Modèle de Loretz

On ajoute de la dissipation

$$x_0^+ = \frac{e}{m} \frac{E_0^+}{\omega^2 - \omega_0^2 + i\gamma\omega}$$

$$\alpha(\omega) = \frac{e^2}{m} \frac{1}{\omega_0^2 - \omega^2 - i\gamma\omega}$$

indice de réfraction :

$$\tilde{n}() = \sqrt{1 + \chi(\omega)} \approx 1 + \frac{\chi(\omega)}{2}$$

$$\tilde{n}(\omega = 1 + \frac{Ne^2}{2m\epsilon_0} \frac{(\omega_0 - \omega)}{(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2} + i \frac{Ne^2}{2m\epsilon_0} \frac{\gamma\omega}{(\omega_0^2 - \omega^2) + \gamma^2 \omega^2}$$

coefficient d'absorption $a(\omega)$:

$$\frac{\mathrm{d}I}{\mathrm{d}z} = -a(\omega)I$$

$$a(\omega) \equiv 2k_0 \operatorname{Im}\left[\tilde{n}(\omega)\right]$$

$$n(\omega) \equiv \operatorname{Re}\left[\tilde{n}(\omega)\right]$$

retard de phase

$$\delta = tan^{-1} \left(\frac{\gamma \omega}{\omega_0^2 - \omega^2} \right)$$

Le modèle de Lorentz et valide à à basse puissance

FIGURE 3 – indice de réfraction complexe

Figure 4 – delta

2.3 Limite de l'approche classique

Reproduit beaucoup d'effets à faible intensité.

Le coefficient d'absorption correct?

$$a(\omega) = \sigma(\omega)N$$

$$\sigma_c = \left. \frac{e^2}{m\epsilon_0 c \gamma} \right|_{\omega = \omega_0}$$

Avec un traitement quantique, on obtiens

$$\sigma_q = \frac{2\pi c^2}{\omega_{12}^2}$$

Définissons un terme de correction

$$f_{12} = \frac{\sigma_q}{\sigma_c} = \cdots \frac{g_2}{g_1}$$

Pour des amplitude très faibles, on trouve le comportement de l'oscillateur harmonique

$$\chi(\omega) \to -\frac{Ne^2}{m\epsilon_0\omega^0} \implies \sum_i f_{1i} = 1$$

 $fudge\ factor$

2.4 Modèle quantique

Modèle simple de l'atome + approche pertubatice pour calculer la probabilité de transition $1 \to 2$ Entrevoir les oscillations de Rabi