Homework 1

Quantum Mechanics

August 29th, 2022

CLAYTON SEITZ

Problem 1. For the spin 1/2 state $|+\rangle_x$, evaluate both sides of the inequality

$$\langle (\Delta A)^2 \rangle \langle (\Delta B)^2 \rangle \ge \frac{1}{4} |\langle [A, B] \rangle|^2$$

for the operators $A = S_x$ and $B = S_y$, and show that the inequality is satisfied. Repeat for the operators $A = S_z$ and $B = S_y$

Solution.

Let $A = S_x$ and $B = S_y$. The variance $\langle (\Delta S_x)^2 \rangle$ in state $|+\rangle_x$ must be zero since $|+\rangle_x$ is an eigenvector of S_x

$$\langle (\Delta S_x)^2 \rangle = \langle S_x^2 \rangle - \langle S_x \rangle^2 = 0$$

Therefore, the LHS of the above inequality is zero. The commutator $[S_x, S_y] = i\hbar S_z$ and

$$\langle S_z \rangle = \langle +|_x S_z |+\rangle_x = 0$$

Clearly the inequality is satisfied since both sides are zero. Now let $A = S_z$ and $B = S_y$. Since the state is prepared in $|+\rangle_x$, the variances $\langle (\Delta S_x)^2 \rangle$ and $\langle (\Delta S_x)^2 \rangle$ must be 1/4 (this is just a fair coin toss).

The commutator $[S_z, S_y] = -i\hbar S_x$ and $\langle S_x \rangle = \frac{\hbar}{2}$. The inequality then reads

$$\frac{1}{16} \ge \frac{\hbar^2}{16}$$

which is satisfied given that $\hbar \approx 10^{-34} \,\mathrm{J\cdot s}$

Problem 2. Suppose a 2×2 matrix X (not necessarily Hermitian, nor unitary) is written as

Solution.

$$\operatorname{Tr}(X) = \operatorname{Tr}(a_0) + \operatorname{Tr}\left(\sum_k a_k \sigma_k\right)$$

= $2a_0$

$$\operatorname{Tr}(\sigma_k X) = \operatorname{Tr}\left(\sigma_k a_0 + \sigma_k \sum_j a_j \sigma_j\right)$$
$$= \operatorname{Tr}\left(\sigma_k a_0 + \sum_j a_j \sigma_k \sigma_j\right)$$
$$= \operatorname{Tr}\left(\sum_j a_j \sigma_k \sigma_j\right)$$

We can write out the equation $X = a_0 + \sigma \cdot a$ explicitly

$$X = \begin{pmatrix} a_0 + a_3 & a_1 - ia_3 \\ a_1 + ia_2 & a_0 - a_3 \end{pmatrix}$$

Thus we have four equations involving X_{ij} 's and a_k for k = (1, 2, 3). We can manipulate those four equations to show that

$$a_0 = \frac{X_{11} + X_{22}}{2}$$

$$a_1 = \frac{X_{12} + X_{21}}{2}$$

$$a_2 = \frac{X_{21} - X_{12}}{2}$$

$$a_3 = \frac{X_{11} - X_{22}}{2}$$

Problem 3.

Solution.	
Problem 4.	
Solution.	
Problem 5.	
Solution.	
Problem 6.	
Solution.	