DL 6 - réduction des endomorphismes

Exercice 0 (application directe)

Soit
$$A = \begin{bmatrix} 3 & -2 & -1 \\ 2 & -1 & -1 \\ -2 & 2 & 2 \end{bmatrix}$$
.

1. Calculer A^2 .

Montrer que le polynôme $Q(X) = X^2 - 3X + 2$ est un polynôme annulateur de A.

- **2.** Quelles sont les valeurs propres possibles pour *A*?
- **3.** Soient $\vec{u} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, et $\vec{v} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$. Montrer que $\operatorname{Ker}(A I) = \operatorname{Vect}(\vec{u}, \vec{v})$.
- **4.** Déterminer le vecteur $\vec{w} = \begin{pmatrix} 1 \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$ tel que l'on ait : $\operatorname{Ker}(A 3I_3) = \operatorname{Vect}(\vec{w})$.
- **5.** Montrer que la famille $\mathcal{B}' = (\vec{u}, \vec{v}, \vec{w})$ est une base de \mathbb{R}^3 . On précisera la matrice P de passage de la base canonique de \mathbb{R}^3 vers la base \mathcal{B}' .
- **6.** Montrer que la matrice D définie par l'équation : $A = P \cdot D \cdot P^{-1}$ est diagonale.

Exercice 1

On note $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base \mathcal{B} est : $A = \begin{bmatrix} -1 & 2 & -1 \\ -4 & 5 & -3 \\ -2 & 2 & -1 \end{bmatrix}$.

1. **a)** Soit $u_1 = e_1 + e_2$.

Calculer les coordonnées de $f(u_1)$.

Que peut-on en déduire pour u_1 ?

b) On exécute le script suivant :

Le résultat obtenu est :

Que nous apprend ce calcul?

- c) Déduire que 1 est l'unique valeur propre de f.
- **d)** L'endomorphisme *f* est-il diagonalisable? Est-il bijectif?
- **2.** a) Déterminer u_2 sous la forme $u_2 = pe_2 + qe_3$, avec $p,q \in \mathbb{R}$, pour que : $f(u_2) = u_1 + u_2$.
 - **b)** Déterminer u_3 sous la forme $u_3 = re_1 + se_3$, avec $r, s \in \mathbb{R}$, pour que : $f(u_3) = 2u_2 + u_3$.
 - c) Vérifier alors que $\mathcal{B}' = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .
 - **d)** Ecrire la matrice A' de f dans la base \mathcal{B}' .

Exercice 2

Soit \mathcal{B} la base canonique $\mathcal{B} = (e_1, e_2, e_3, e_4)$ de \mathbb{R}^4 .

On considère la matrice carrée :
$$A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$
.

On note f l'endomorphisme de \mathbb{R}^4 dont la matrice dans est A.

- 1. Montrer que A n'est pas inversible. En déduire que 0 est valeur propre de A.
- **2. a)** Calculer A^2 , A^3 , A^4 .
 - **b)** Etablir que 0 est la seule valeur propre de f.
 - c) Déterminer la dimension du noyau de f.
 - **d)** Est-ce que *f* est diagonalisable?
- **3.** On note \mathcal{C} la famille $\mathcal{C} = (\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4)$, où : $\epsilon_1 = e_1$, $\epsilon_3 = f(\epsilon_2)$, $\epsilon_2 = f(\epsilon_1)$, $\epsilon_4 = f(\epsilon_3)$.
 - **a)** Montrer que C est une base de \mathbb{R}^4 .
 - **b)** Déterminer la matrice N de f relativement à la base \mathcal{C} de \mathbb{R}^4 .
- **4.** Existe-t-il un automorphisme g de l'espace vectoriel \mathbb{R}^4 tel que $g \circ f \circ g^{-1} = f^2$?

Exercice 3

Partie I : Un endomorphisme de l'espace vectoriel des matrices symétriques d'ordre 2

- ▶ On note $\mathcal{M}_2(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre 2.
- ► On note $A = \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix}$, $F = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $G = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $H = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
- On note \mathcal{S}_2 l'ensemble des matrices carrées symétriques d'ordre 2.
- 1. Calculer les produits AFA, AGA, AHA.
- **2.** Montrer que S_2 est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ et que (F,G,H) est une base de S_2 . Déterminer la dimension de S_2 .

On note u l'application qui à chaque matrice S de S_2 , associe la matrice u(S) = ASA.

- **a)** Montrer: $\forall S \in S_2$, $u(S) \in S_2$.
- **b)** Montrer que u est un endomorphisme de l'espace vectoriel S_2 .
- c) Donner la matrice de u dans la base (F,G,H) de S_2 .

Partie II : Réduction d'une matrice carrée d'ordre 3

On note:
$$M = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 4 & 6 \\ 4 & 12 & 9 \end{pmatrix}, D = \begin{pmatrix} -4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 16 \end{pmatrix}$$

- 1. Vérifier que -4, 1, 16 sont valeurs propres de M. Déterminer, pour chacune de celles-ci une base du sous-espace propre associé. La matrice M est-elle diagonalisable?
- **2.** Trouver une matrice $P \in \mathcal{M}_3(\mathbb{R})$, inversible, de première ligne $(4 \ 4 \ 1)$, telle que $M = PDP^{-1}$.
- 3. Donner un polynôme annulateur de D, puis en déduire un pour M, puis pour u.