◎ 축하합니다! 통과하셨습니다!

받은 학점 80% 최신 제출물 학점 80% 통과 점수: 80% 이상

다음 항목으로 이동

None of these.

✓ Correct

✓ Correct

Attention mechanism.

Convolutional Neural Network style of processing.

Great, you got all the right answers.

3. The concept of Self-Attention is that:

1/1점

- Given a word, its neighbouring words are used to compute its context by summing up the word values to map the Attention related to that given word.
- Given a word, its neighbouring words are used to compute its context by selecting the lowest of those word values to map the Attention related to that given word.
- Given a word, its neighbouring words are used to compute its context by taking the average of those word values to map the Attention related to that given word.
- Given a word, its neighbouring words are used to compute its context by selecting the highest of those word values to map the Attention related to that given word.

∠ 건보기

ı.	Which of the following correctly represents Attention?	1/1점
	 ✓ 맞습니다 This is the correct Attention formula. 	
	This is the correct Attention formula.	
5.	Which of the following statements represents Key (K) as used in the self-attention calculation?	1/1점
	K = qualities of words given a Q	
	K = specific representations of words given a Q	
	K = interesting questions about the words in a sentence	
	K = the order of the words in a sentence	
	∠ [↗] 더보기	
	맞습니다 The qualities of words given a Q are represented by Key (K).	

6. Attention($W_i^Q Q, W_i^K K, W_i^V V$)

1/1점

The computed attention weight matrix associated with the order of the words in a sentence
The computed attention weight matrix associated with the <i>ith</i> "word" in a sentence.
The computed attention weight matrix associated with the ith "head" (sequence)
The computed attention weight matrix associated with specific representations of words given a Q
∠ ⁷ 더보기
\bigcirc 맞습니다 i here represents the computed attention weight matrix associated with the "head" (sequence).

7. Following is the architecture within a Transformer Network (without displaying positional encoding and output layers(s)).

0/1점

What is NOT necessary for the Decoder's second block of Multi-Head Attention?

- Q
- 0 V
- All of the above are necessary for the Decoder's second block.

The uses K from the for its second block of Multi-Head Attention. To revise the concept watch the lecture.

8. Following is the architecture within a Transformer Network (without displaying positional encoding and output layers(s)).

0/1점

What does the output of the encoder block contain?

- Softmax layer followed by a linear layer.
- Contextual semantic embedding and positional encoding information
- Linear layer followed by a softmax layer.
- Prediction of the next word.

⊗ 틀립니다

Feedback: To revise the concept watch the lecture.

9.	Which of the following statements is true?	1/1점
	The transformer network differs from the attention model in that only the transformer network contains positional encoding.	
	The transformer network is similar to the attention model in that both contain positional encoding.	
	The transformer network differs from the attention model in that only the attention model contains positional encoding.	
	The transformer network is similar to the attention model in that neither contain positional encoding.	
	✓ 더보기	
	맞습니다 Positional encoding allows the transformer network to offer an additional benefit over the attention model.	
10.	Which of these is a good criterion for a good positional encoding algorithm?	1/1점
	It should output a unique encoding for each time-step (word's position in a sentence).	
	✓ Correct	
	Distance between any two time-steps should be consistent for all sentence lengths.	
	✓ Correct	
	The algorithm should be able to generalize to longer sentences.	
	✓ Correct	
	None of these.	

√ 더보기

* * * * *

✓ 맞습니다

Great, you got all the right answers.