PATENT ABSTRACTS OF JAPAN

(11) Publication number:

11-026093

(43) Date of publication of application: 29.01.1999

(51)Int.CI.

H01R 13/648

(21)Application number: 09-176951

(71)Applicant : YAZAKI CORP

(22)Date of filing:

02.07.1997

(72)Inventor: MASUDA SATOKI

KUBOSHIMA HIDEHIKO

(54) SHIELDED CONNECTOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a shielded connector whose production cost is lowered and by which a sheath of a shielded elastic wire is prevented from shifting. SOLUTION: A corrugated holder B, which is a constituent of this shielded connector 21 comprises a pair of opposed half covers, each of the half covers comprises an outer cover 37 and an inner cover 38, and a case insertion chamber 39 for an electric wire installation case A is formed between the outer cover 37 and the inner cover 38. Each inner cover 38 comprises an electric wire engaging part 40, corresponding to a shielded electric wire C in one end part of the inner circumferential face 38b and a plurality of tube-fitting grooves 41 for the corrugated

tube E in the other end part. Each outer cover 37 comprises a cover fixation part 45, corresponding to the outer circumferential wall 24a of the electric wire installation case A. Moreover, a sheath-retaining ring 46 for compressing the sheath of the shielded electric wire C is fitted on the sheath.

LEGAL STATUS

[Date of request for examination]

30.05.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-26093

(43)公開日 平成11年(1999) 1月29日

(51) Int.Cl.6

識別記号

H01R 13/648

FΙ H01R 13/648

審査請求 未請求 請求項の数13 OL (全 12 頁)

(21)出願番号

特願平9-176951

(22)出願日

平成9年(1997)7月2日

(71)出願人 000006895

矢崎総業株式会社

東京都港区三田1丁目4番28号

(72)発明者 増田 悟己

静岡県榛原郡榛原町布引原206-1 矢崎

部品株式会社内

(72)発明者 久保島 秀彦

静岡県榛原郡榛原町布引原206-1 矢崎

部品株式会社内

(74)代理人 弁理士 瀧野 秀雄 (外1名)

(54) 【発明の名称】 シールドコネクタ

- (57)【要約】

【課題】 製造コストの低減とシールド電線のシース等 のズレ防止とをそれぞれ図ることができるシールドコネ クタを提供する。

【解決手段】 シールドコネクタ21を構成するコルゲ ートホルダBは相対向する一対のハーフカバー36,3 6から成り、各ハーフカバー36はアウターカバー37 とインナーカバー38とを備えると共にアウターカバー 37とインナーカバー38との間に電線取付ケースAに 対するケース差込室39を形成する。インナーカバー3 8は内周面38bの一端部にシールド電線Cに対応する 電線係止部40を備え、他端部にコルゲートチューブE に対する複数条のチューブ嵌着溝41を備える。アウタ ーカバー37は電線取付ケースAの外周壁24aに対応 するカバー固定部45を有する。また、シールド電線C のシースにその径方向を圧縮するシース保持リング46 が挿着される。

【特許請求の範囲】

【請求項1】 シールド電線の端末部に接続されるコネクタ端子と、

前記シールド電線の端末部を保護収容して電気機器のケースに開口した取付口に固定される電線取付ケースと、 該電線取付ケースの電線挿入側に装着されるコルゲート ホルダと、

該コルゲートホルダを介して前記電線取付ケースの電線 挿入側に接続されるシールド電線保護用のコルゲートチューブとを備えるシールドコネクタであって、

前記コルゲートホルダは相対向する一対のハーフカバーから成り、

該各ハーフカバーはアウターカバーとインナーカバーと を備えると共に、該アウターカバーとインナーカバーと の間に前記電線取付ケースの電線挿入側に対するケース 差込室を形成し、

前記インナーカバーは内周面の一端部に前記シールド電線に対応する電線係止部を備えると共に、他端部に前記コルゲートチューブと係合する複数条のチューブ嵌着溝を備え、

前記アウターカバーは前記電線取付ケースの外周壁に対 応するカバー固定部を有することを特徴とするシールド コネクタ。

【請求項2】 前記シールド電線のシースにその径方向を圧縮するシース保持リングが挿着されることを特徴とする請求項1記載のシールドコネクタ。

【請求項3】 前記シース保持リングは小径の加締部と 大径のストッパ部とから段差を有して形成され、該ストッパ部は開口する端縁が前記コルゲートホルダの電線係 止部に衝合可能な大きさの径を有することを特徴とする 30 請求項2記載のシールドコネクタ。

【請求項4】 前記シールド電線に前記電線係止部と係合可能なゴム栓が挿着されることを特徴とする請求項1ないし請求項3記載のシールドコネクタ。

【請求項5】 前記シールド電線に挿着された前記シース保持リングとゴム栓との間に前記電線係止部が係合することを特徴とする請求項1ないし請求項4記載のシールドコネクタ。

【請求項6】 前記電線係止部は前記コルゲートホルダ の軸に向けて等間隔に複数個突出する突起であることを 40 特徴とする請求項1ないし請求項5記載のシールドコネ クタ。

【請求項7】 前記電線係止部は、前記シールド電線を保持する凸条であることを特徴とする請求項1ないし請求項5記載のシールドコネクタ。

【請求項8】 前記電線取付ケースのコネクタ端子接続側の開口部から前記シールド電線の内皮を延出し、該内皮に前記開口部と衝合可能な鍔付きの内皮保持リングが挿着されることを特徴とする請求項1ないし請求項7記載のシールドコネクタ。

2

【請求項9】 前記内皮保持リングが前記シールド電線の編組に電気的に導通されるシェル部材の前記コネクタ端子側への移動に対するストッパとなることを特徴とする請求項8記載のシールドコネクタ。

【請求項10】 前記内皮保持リングは絶縁体により形成されることを特徴とする請求項8又は請求項9記載のシールドコネクタ。

【請求項11】 シールド電線の端末部に接続されるコネクタ端子と、

10 該コネクタ端子を収容して係止固定するインナーケースと、

該インナーケースを囲むと共に前記シールド電線端末部 を覆い相手側のコネクタに接続されるアウターケース と、

該アウターケースの電線挿入側に装着されるコルゲート ホルダと、

該コルゲートホルダを介して前記アウターケースの電線 挿入側に接続されるシールド電線保護用のコルゲートチューブとを備えるシールドコネクタであって、

20 前記コルゲートホルダは相対向する一対のハーフカバーから成り、

該各ハーフカバーはアウターカバーとインナーカバーと を備えると共に、該アウターカバーとインナーカバーと の間に前記アウターケースの電線挿入側に対するケース 差込室を形成し、

前記インナーカバーは内周面の一端部に前記シールド電線に対応する電線係止部を備えると共に、他端部に前記コルゲートチューブと係合する複数条のチューブ嵌着溝を備え

30 前記アウターカバーは前記アウターケースの外周壁に対応するカバー固定部を有することを特徴とするシールドコネクタ。

【請求項12】 前記シールド電線のシースにその径方向を圧縮するシース保持リングが挿着されることを特徴とする請求項11記載のシールドコネクタ。

【請求項13】 前記シース保持リングは小径の加締部と大径のストッパ部とから段差を有して形成され、該ストッパ部は開口する端縁が前記コルゲートホルダの電線係止部に衝合可能な大きさの径を有することを特徴とする請求項12記載のシールドコネクタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、自動車等の電気系 統配線に使用されるシールド電線を用いたシールドコネ クタに関するものである。

[0002]

【従来の技術】図11は、実開平1-112580号公報に開示されたシールドコネクタ1を示し、該シールドコネクタ1は、シールド電線2の芯線2aに接続される 複数のコネクタ端子3と、この各コネクタ端子3を収容

する金属製のコネクタハウジング4とを備えている。

【0003】コネクタハウジング4は前方に開放された端子収容室4aを有し、前記各コネクタ端子3を装着収容している。端子収容室4aの後方には、シールド電線2に対する固定室4bが形成されている。

【0004】シールド電線2は端末部が皮剥ぎされており、その皮剥部分近傍にはシース2bの上にゴム又はプラスチック製のチューブ5が被せられ、そのチューブ5はコネクタハウジング4の外側まで至っている。シールド電線2はチューブ5の上からクランプ6によって固定 10室4bにねじ締め固定されている。尚、図中2cはシールド電線2を構成するシールド層(編組)を示す。

【0005】上記従来技術にあっては、シールド電線2に対するクランプ6の締め付け力がチューブ5によって吸収されてしまい、シールド電線2は十分な固定がされているものとは言えなかった。即ち、シールドコネクタ1を相手側のコネクタ(図示しない)から抜き取る際、コネクタハウジング4を手で押えずにシールド電線2を引張ってしまうと、シース2bとシールド層2c等とにズレが生じてしまうという問題点がある。

【0006】一方、シールドコネクタなどの車両におけるコネクタは、その使用形態によって防水構造を施す必要がある。これは洗車などによる高圧の洗浄水がコネクタハウジング内に浸水して電気接続上好ましくない事態の発生を防ぐためであり、以下に示すような、コネクタにリアホルダカバーが装着された防水構造等が一般的に知られている。

【0007】図12は、特開平7-122330号公報に開示されたリアホルダカバー11を示すものである。 リアホルダカバー11はコネクタハウジング12に嵌挿 30 される板状のリアホルダ13と、ハーフカバー14a、 14bとがヒンジ15、15を介して一体に形成されて 成るものである。

【0008】ハーフカバー14aと14bは対称形状であり、ハーフカバー14bはハーフカバー14aを係止するためのカバー係止突起部16aとカバー係止突起受部16bとを備えており、同様にハーフカバー14aはハーフカバー14bを係止するためのカバー係止突起部16cとカバー係止突起受部16dとを備えている。また、ハーフカバー14a、14bにはコネクタハウジン40グ12に設けられた複数の固定突起12aに対応する固定穴17が形成され、更にコルゲートチューブ18(図13)を嵌着固定する固定溝19(図13)が設けられている。

【0009】リアホルダカバー11の組付け順序は、図 13に示される如く、まずコネクタハウジング12にリ アホルダ13を嵌着する。次に、ハーフカバー14a, 14bをヒンジ15を介して図中太矢線P方向に回動 し、カバー係止突起部16a, 16cとカバー係止突起 受部16b, 16dとをそれぞれ係合すると共に、固定 50 溝19に図示しない電線を収納したコルゲートチューブ 18を嵌着固定する。続いてほぼ同時に、固定突起12 aに固定穴17を嵌合する。これにより、リアホルダカ バー11はコネクタハウジング19に係合係はされて一

バー11はコネクタハウジング12に係合係止されて一 体化する。

【0010】上記従来技術にあっては、リアホルダ13とハーフカバー14a, 14bとがヒンジ15, 15を介して一体に成形されているので、成形金型構造が非常に複雑なものとなる。また、リアホルダカバー11の金型当りの取り数が少なくなり、その生産性を重視すれば、大型の成形装置を使用することになるために製造コストがかかるという問題点がある。

[0011]

【発明が解決しようとする課題】本発明は、上記問題点を解決するため、製造コストの低減とシールド電線のシース等のズレ防止とをそれぞれ図ることができるシールドコネクタを提供することを課題とする。

[0012]

【課題を解決するための手段】上記課題を解決するため 20 本発明により成されたシールドコネクタは、請求項1に 記載されたように、シールド電線の端末部に接続される コネクタ端子と、前記シールド電線の端末部を保護収容 して電気機器のケースに開口した取付口に固定される電 線取付ケースと、該電線取付ケースの電線挿入側に装着 されるコルゲートホルダと、該コルゲートホルダを介し て前記電線取付ケースの電線挿入側に接続されるシール ド電線保護用のコルゲートチューブとを備えるシールド コネクタであって、前記コルゲートホルダは相対向する 一対のハーフカバーから成り、該各ハーフカバーはアウ ターカバーとインナーカバーとを備えると共に、該アウ ターカバーとインナーカバーとの間に前記電線取付ケー スの電線挿入側に対するケース差込室を形成し、前記イ ンナーカバーは内周面の一端部に前記シールド電線に対 応する電線係止部を備えると共に、他端部に前記コルゲ ートチューブと係合する複数条のチューブ嵌着溝を備 え、前記アウターカバーは前記電線取付ケースの外周壁 に対応するカバー固定部を有することを特徴としてい る。

【0013】上記構成において、シールドコネクタは、シールド電線の端末部に接続されるコネクタ端子と、シールド電線の端末部を保護収容して電気機器のケースに開口した取付口に固定される電線取付ケースと、その電線取付ケースの電線挿入側に装着されるコルゲートホルダと、コルゲートホルダを介して電線取付ケースの電線挿入側に接続されるシールド電線保護用のコルゲートチューブとを備える。また、コルゲートホルダは相対向する一対のハーフカバーから成り、各ハーフカバーはアウターカバーとインナーカバーとを備えると共に、アウターカバーとインナーカバーとの間に電線取付ケースの電線挿入側に対するケース差込室を形成する。インナーカ

バーは内周面の一端部にシールド電線に対応する電線係 止部を備えると共に他端部にコルゲートチューブと係合 する複数条のチューブ嵌着溝を備える。また、アウター カバーは電線取付ケースの外周壁に対応するカバー固定 部を有する。これによれば、各ハーフカバーはシールド 電線及びコルゲートチューブを係合係止すると共に、電 線取付ケースに嵌着される構成を一体的に有するもので あって、対称形状であることから、成形金型の型割構造 を単純化することができ、更には大型の成形装置を使用 しなくとも金型当りの取り数を増すこともできることか 10 ら、製造コストの低減をすることができる。

【0014】請求項2の本発明は、前記シールド電線のシースにその径方向を圧縮するシース保持リングが挿着されることを特徴としている。

【0015】シールド電線のシースにその径方向を圧縮するシース保持リングが挿着されることにより、シールド電線に不意な外力が加わってもシース等のズレを防止することができる。

【0016】請求項3の本発明は、前記シース保持リングは小径の加締部と大径のストッパ部とから段差を有し 20 て形成され、該ストッパ部は開口する端縁が前記コルゲートホルダの電線保止部に衝合可能な大きさの径を有することを特徴としている。

【0017】シース保持リングは小径の加締部と大径のストッパ部とから段差を有して形成される。ストッパ部は開口する端縁がコルゲートホルダの電線係止部に衝合可能な大きさの径を有する。これにより、シールド電線に不意な外力が加わってシールド電線が移動してもストッパ部が電線係止部に係止されてシース等のズレを防止することができる。

【0018】請求項4の本発明は、前記シールド電線に前記電線係止部と係合可能なゴム栓が挿着されることを特徴としている。

【0019】シールド電線に電線係止部と係合可能なゴム栓が挿着されることにより、シールドコネクタの組立てにおいて、電線係止部がゴム栓を押え込んで電線取付ケースに確実に挿入することができるので、いちいちゴム栓を手で入れる煩わしさがなく、作業性を向上することができる。

【0020】請求項5の本発明は、前記シールド電線に 40 挿着された前記シース保持リングとゴム栓との間に前記電線係止部が係合することを特徴としている。

【0021】シールド電線に挿着されたシース保持リングとゴム栓の間に電線係止部が係合する。これにより、電線係止部はシース等のズレ防止とゴム栓に対する作業性の向上とを容易に成すことができる。

【0022】請求項6の本発明は、前記電線係止部は前 記コルゲートホルダの軸に向けて等間隔に複数個突出す る突起であることを特徴としている。

【0023】電線係止部はコルゲートホルダの軸に向け 50 を備えると共に、該アウターカバーとインナーカバーと

て等間隔に複数個突出する複数の突起であるので、成形 金型の型割構造を単純化することができ、またハーフカ バーの係合と同時に突起の先端がシールド電線を係止することができる。

【0024】請求項7の本発明は、前記電線係止部は、 前記シールド電線を保持する凸条であることを特徴とし ている。

【0025】電線係止部は、シールド電線を保持する凸条であるので、成形金型の型割構造を単純化することができ、またハーフカバーの係合と同時に凸条の先端の曲面でシールド電線を係止することができる。

【0026】請求項8の本発明は、前記電線取付ケースのコネクタ端子接続側の開口部から前記シールド電線の内皮を延出し、該内皮に前記開口部と衝合可能な鍔付きの内皮保持リングが挿着されることを特徴としている。

【0027】電線取付ケースのコネクタ端子接続側の開口部からシールド電線の内皮を延出する。内皮に前記開口部と衝合可能な鍔付きの内皮保持リングが挿着される。これにより、シールド電線に不意な外力が加わってシールド電線が移動しようとしても内皮保持リングが電線取付ケースに係合係止されてシース等のズレを防止することができる。

【0028】請求項9の本発明は、前記内皮保持リングが前記シールド電線の編組に電気的に導通されるシェル部材の前記コネクタ端子側への移動に対するストッパとなることを特徴としている。

【0029】内皮保持リングがシールド電線の編組に電気的に導通されるシェル部材の前記コネクタ端子側への移動に対するストッパになる。これにより、シェル部材のズレを防止することができ、電気的接触不良の発生も避けることもできる。また、内皮保持リングは同様に電線取付ケースの端子側への移動に対するストッパにもなる。

【0030】請求項10の本発明は、前記内皮保持リングは絶縁体により成形されることを特徴としている。

【0031】内皮保持リングは絶縁体により成形されているので、コネクタ端子と上記シェル部材とのショートを防止することができる。

【0032】請求項11の本発明は、シールド電線の端末部に接続されるコネクタ端子と、該コネクタ端子を収容して係止固定するインナーケースと、該インナーケースを囲むと共に前記シールド電線端末部を覆い相手側のコネクタに接続されるアウターケースと、該アウターケースの電線挿入側に装着されるコルゲートホルダと、該コルゲートホルダを介して前記アウターケースの電線挿入側に接続されるシールド電線保護用のコルゲートチューブとを備えるシールドコネクタであって、前記コルゲートホルダは相対向する一対のハーフカバーから成り、該各ハーフカバーはアウターカバーとインナーカバーとを備えると共に、該アウターカバーとインナーカバーとを備えると共に、該アウターカバーとインナーカバーとを備えると共に、該アウターカバーとインナーカバーとを備えると共に、該アウターカバートインナーカバーと

の間に前記アウターケースの電線挿入側に対するケース 差込室を形成し、前記インナーカバーは内周面の一端部 に前記シールド電線に対応する電線係止部を備えると共 に、他端部に前記コルゲートチューブと係合する複数条 のチューブ嵌着溝を備え、前記アウターカバーは前記ア ウターケースの外周壁に対応するカバー固定部を有する ことを特徴としている。

【0033】シールドコネクタは、シールド電線の端末 部に接続されるコネクタ端子と、コネクタ端子を収容し て係止固定するインナーケースと、このインナーケース 10 を囲むと共にシールド電線の端末部を覆い相手側のコネ クタに接続されるアウターケースと、アウターケースの 電線挿入側に装着されるコルゲートホルダと、このコル ゲートホルダを介してアウターケースの電線挿入側に接 続されるシールド電線保護用のコルゲートチューブとを 備える。また、コルゲートホルダは相対向する一対のハ ーフカバーから成り、各ハーフカバーはアウターカバー とインナーカバーとを備えると共に、アウターカバーと インナーカバーとの間に前記アウターケースの電線挿入 側に対するケース差込室を形成する。インナーカバーは 20 内周面の一端部にシールド電線に対応する電線係止部を 備えると共に、他端部にコルゲートチューブと係合する 複数条のチューブ嵌着溝を備える。また、アウターカバ ーは前記アウターケースの外周壁に対応するカバー固定 部を有する。これによれば、各ハーフカバーはシールド 電線及びコルゲートチューブを係合係止すると共に、ア ウターケースに嵌着される構成を一体的に有するもので あって、対称形状であることから、成形金型の型割構造 を単純化することができ、更には大型の成形装置を使用 しなくとも金型当りの取り数を増すこともできることか 30 ら製造コストの低減をすることができる。

【0034】請求項12の本発明は、前記シールド電線のシースにその径方向を圧縮するシース保持リングが挿着されることを特徴としている。

【0035】シールド電線のシースにその径方向を圧縮するシース保持リングが挿着されることにより、シールド電線に不意な外力が加わってもシース等のズレを防止することができる。

【0036】請求項13の本発明は、前記シース保持リングは小径の加締部と大径のストッパ部とから段差を有 40して形成され、該ストッパ部は開口する端縁が前記コルゲートホルダの電線係止部に衝合可能な大きさの径を有することを特徴としている。

【0037】シース保持リングは小径の加締部と大径のストッパ部とから段差を有して形成される。ストッパ部は開口する端縁がコルゲートホルダの電線係止部に衝合可能な大きさの径を有する。これにより、シールド電線に不意な外力が加わってシールド電線が移動してもストッパ部が電線係止部に係止されてシース等のズレを防止することができる。

[0038]

に装着される。

【発明の実施の形態】以下、本発明の一実施の形態を図面に基づいて説明する。図1は本発明のシールドコネクタの分解斜視図を示し、図2は図1の構成部材を組立てることによって成されたシールドコネクタの正面図、図3は図2に対するaーa断面図、図4は図1に示されたコルゲートホルダの拡大斜視図を示す。

【0039】図1ないし図3において、21は電気自動車の電気系統配線に用いられるシールドコネクタを示し、該シールドコネクタ21は合成樹脂製の電線取付ケースA、同じく合成樹脂製のコルゲートホルダB、シールド電線C、コネクタ端子D、及びコルゲートチューブEなどから構成されている。

【0040】電線取付ケースAは、その両端が開口した 円筒体であり、外周壁中間に図示しないモータケースに 対する取付部22を有し、その取付部22の前方部分を 前記図示しないモータケースに開口した取付口に挿着さ れる小径の取付筒部23、後方部分を前記シールド電線 Cに対する大径のケース本体24として形成されてい る。

【0041】取付筒部23の外周壁23aの中間には凹溝25(図1,3参照)が周設され、凹溝25にゴム製のシールリング26が挿着されている。また、取付筒部23の先端、即ち電線取付ケースAの前端開口部27(図1,3参照)には、導電性金属薄板をプレス、折曲加工して形成された第1のシェル部材28(図2,3参照)が装着されている。尚、電線取付ケースAは取付部22をねじ締め固定して、前記図示しないモータケース

【0042】ケース本体24は、その外周壁24aの中間に相対向する一対の固定突起29,29を突設し、各固定突起29には前記コルゲートホルダBの嵌合を容易にするためにケース本体24の電線挿入側の端部、即ち電線取付ケースAの後端開口部30に向けて下るテーパ面29aが形成されている。

【0043】一方、ケース本体24の内部24bは、図3に示される如く、後端開口部30から順に、大径のホルダ係合室31と小径のゴム栓係合室32とが段差33を有して形成されており、ゴム栓係合室32の前方には、更に電線取付ケースAの軸と平行に延び、係止段部としての段差34を有する突条35が等間隔で複数条突設されている。

【0044】コルゲートホルダBは図4に示される如く、相対向する一対のハーフカバー36,36から成り、各ハーフカバー36は前記ケース本体24の外周壁24aに対するアウターカバー37と、ケース本体24のホルダ係合室31に収容されるインナーカバー38とを備える。アウターカバー37とインナーカバー38は後端が連結されており、アウターカバー37は本一実施50の形態において、ホルダ係合室31の深さに対応した長

さを有するインナーカバー38よりも適宜長く形成されている。また、アウターカバー37とインナーカバー38間、即ちアウターカバー37の内周面37aとインナーカバー38の外周面38aとの間に前記ケース本体24の後端開口部30側に対するケース差込室39を形成する。

【0045】インナーカバー38の内周面38bには、前方部分に電線係止部としての電線係止突起40を等間隔で複数個設けると共に、後方部分にチューブ嵌着溝41を複数条周設する。各電線係止突起40において、イ10ンナーカバー38の両端に位置する電線係止突起40a、40bには、一方にピン状突起42が突設され、他方にピン状突起42に対応する突起受穴43が形成されている。

【0046】一方、アウターカバー37は、内周面37 aにおいて、その先端部分の一部に前記固定突起29に 対応するテーパ状案内部44を有し、中間にカバー固定 部としての矩形の固定穴45を穿設している。

【0047】シールド電線Cは図1に示される如く、芯線C1、内皮C2、編組C3、及びシースC4から構成されており、後述する組立工程を経て芯線C1にコネクタ端子Dが接続(図2、3参照)され、シースC4側にシールド電線保護用のコルゲートチューブEが被せられる(図3参照)。尚、シールド電線C、コネクタ端子D、及びコルゲートチューブEは既知の構成と同様であってその詳細な説明を省略する。

【0048】図1及び図3において、46は上記シール ド電線Cに外挿されるシース保持リングを示し、大径の ストッパ部46aと小径の加締部46bとから段付きに 形成されている。ストッパ部46aはその前端縁がコル 30 ゲートホルダBの各電線係止突起40の内側面に衝合す る大きさの径を有する。また、47は前記シールド電線 Cに外挿されるリング状のゴム栓、48は同じく編組保 持リング、49は導電性金属パイプ等から形成された第 2のシェル部材を示す。第2のシェル部材49は中央に 大径部49aを有し、その前後が小径部49b, 49c となる段付きに形成されている。更に、50は前記シー ルド電線Cの内皮C2に外挿される内皮保持リングであ って、後端に鍔部50aが形成されている。内皮保持リ ング50は、絶縁体であり、例えばガラス繊維によって 40 強化された耐熱性を有するナイロン66(商品名)など によって成形されている。51はコネクタ端子Dの圧着 部D1 に対する熱収縮チューブ (図1参照) を示す。

【0049】シールド電線Cに対する加工工程を図5を参照しながら具体的に説明する。まず、シールド電線Cの端末部にシース保持リング46をセットする(図5(a))。次に、シース保持リング46を加締部46b側からシールド電線Cに挿入する(図5(b))。シールド電線Cの端部を加締装置52の保持部52aに保持させ、ダイス52bによって加締部46bを加締める

(図5 (c))。これにより、シース C_4 と編組 C_3 等とが強固に密着した状態になる(図5 (d))。シールド電線 C の端末部を図示しない治具により皮剝ぎして、編組 C_3 、内皮 C_2 、芯線 C_1 を順に露出させる(図5 (e))。加締部 4 6 b が加締められているので、皮剥ぎ作業においてシース C_4 等のズレを生じることはない。

【0050】次に、シールドコネクタ21の組立工程について図6ないし図9を参照しながら具体的に説明する。図6に示される如く、シースC4にゴム栓47を挿着する。その際、ゴム栓47は少なくとも各ハーフカバー36の電線係止突起40の肉厚分だけシース保持リング46との間隔を設けるのが好ましい。尚、ゴム栓47は前述のシールド電線Cに対する加工工程において、シース保持リング46と共にシールド電線Cに外挿しても良い。続いて、編組保持リング48を編組C3の外周に挿着し、第2のシェル部材49の後方の小径部49cを編組C3と内皮C2の間に挿入する。第2のシェル部材49の前方の小径部49bは内皮C2を保持するように20内皮C2と接触している。

【0051】続いて更に、シース保持リング46を覆うようにコルゲートチューブEをひき寄せ(図中、太矢線Q方向)、ハーフカバー36,36をコルゲートチューブEの両側(図中、太矢線R方向)から係合する。この時、コルゲートチューブEの凸壁E,がインナーカバー38の複数条のチューブ嵌着溝41に嵌着されると共に、電線係止突起40の先端にシールド電線Cが係合係止される。また、各インナーカバー38に設けられたピン状突起42と突起受穴43とがそれぞれ嵌合し、各ハーフカバー36は一体化してコルゲートホルダB(図7参照)を形成する。

【0052】次に、図7に示される如く、電線取付ケースAに上記工程を経たシールド電線C及びコルゲートチューブEを係合係止したコルゲートホルダBをセットし、これらを嵌着する(図中、太矢線S方向)。ケース差込室39がケース本体24に被着されると共に、インナーカバー38がホルダ係合室31に収容され、更には固定穴45が固定突起29に嵌合係止される。これによって、図8に示される如く、電線取付ケースAにコルゲートホルダBが強固に係合係止された状態になる。

【0053】この状態において、シールド電線Cは、その芯線C1と内皮C2とが電線取付ケースAの前端開口部27からとび出すように装着されている。また、シールド電線Cといっしょに電線取付ケースAに挿入されたゴム栓47は段差34に係止されると共に、ゴム栓47の外周面47aとゴム栓係合室32とが水密に係合する。一方、第2のシェル部材49の大径部49aと前端開口部27に装着された第1のシェル部材28とが接触し、編組C3が外部と電気的導通可能になる。

【0054】図9に示される如く、内皮C2に内皮保持

50

リング50を鍔部50a側から第2のシェル部材49の 小径部49bに当接するまで挿着する。内皮保持リング 50は接着剤等の既知の手段によって内皮C2に固定す る。次に、芯線C」にコネクタ端子Dを圧着し、この圧 着部Dıに熱収縮チューブ51を被せる。熱収縮チュー ブ51は加熱されて収縮し、圧着部D」を保護する。

【0055】以上説明したように、本発明の一実施の形 態において、シールド電線Cにシース保持リング46が 加締められた状態で装着されているので、シースC』と 編組C₃等が強固に密着し、シースC₄等のズレを生じ 10 ることはない。また、コネクタ端子Dを電線取付ケース Aから引き抜くような力がシールド電線Cに加わって も、シース保持リング46のストッパ部46aが電線係 止突起40に係止され、シールド電線Cはその動きが規 制されて、シースC₄等のズレを生じることはない。更 に、コネクタ端子Dを電線取付ケースAに押し付けるよ うな力がシールド電線Cに加わっても、内皮保持リング 50の鍔部50aが電線取付ケースAの前端開口部27 に係止され、上記と同様にシールド電線Cはその動きが 規制されることになり、シースC₄等のズレを生じるこ 20 とはない。

【0056】尚、各電線係止突起40の外側面によっ て、ゴム栓47が押えつけられながらゴム栓係合室32 に確実に挿着されることになり、いちいち手でゴム栓4 7を押し込む煩わしさが解消され、作業性の向上につな がる。また、内皮保持リング50は第2のシェル部材4 9の前方への移動を阻止するためのストッパになると共 に、コネクタ端子Dが第1又は第2のシェル部材28, 49と接触してショートしてしまうことを防止すること ができる。更にまた、内皮保持リング50は電線取付ケ 30 ースAがコネクタ端子D側へ移動することを阻止するた めのストッパにもなる。

【0057】コルゲートホルダBは相対向する一対のハ ーフカバー36、36とから成るため、成形金型を占め る割合を小とすることができると共に、成形金型の型割 構造が単純化され、大型の成形装置を使用しなくとも多 数個取りが可能となる。従って、製造コストを低く押え ることができるという効果を奏する。また、各ハーフカ バー36をコルゲートチューブEの両側から挟み込むよ うに係合した後、コルゲートホルダB等を電線取付ケー 40 スAに嵌着させるような簡単な作業手順であるので、初 めて組付作業を行う者でも容易にシールドコネクタ21 を組付けることができる。

【0058】図10は本発明のシールドコネクタの他の 実施の形態を示すものである。シールドコネクタ61は 前述のシールドコネクタ21の電線取付ケースAに変え てコネクタケースFを適用する構成であり、他の構成は シールドコネクタ21とほぼ同様であるので詳細な説明 を省略し、コネクタケースFについて以下説明する。

ーケース62と、同じく合成樹脂製のインナーケース6 3とから成り、それぞれ両端が開口した円筒体であっ て、アウターケース62とインナーケース63は共に導 電性金属メッキが施されている。

【0060】アウターケース62は前方部分に相手側の コネクタ(図示しない)を受け入れるフード64が膨出 形成されている。フード64は内部に前記図示しない相 手側コネクタのケースに対する円筒状の隔壁65を有 し、隔壁65の外側には該隔壁65とフード64とによ って収容室66が形成されている。収容室66にはシリ コンゴム製のパッキン67が挿着されている。また、隔 壁65の内周面65aには先端側にインナーケース63 に対する係止突起68,68が突設されている。尚、6 9は図示しない相手側コネクタに対するロッキングアー

【0061】一方、アウターケース62の後方部分は外 周壁62aに前述したコルゲートホルダBの固定穴45 に対する固定突起70,70が相対向して突設されてい る。

【0062】インナーケース63は、小径の端子係止部 71とアウターケース62の内周壁62bに対する大径 の被案内部72とから段付きに形成されている。端子係 止部71の先端にはストッパ73が形成され、また内壁 71 a の中間には端子係止突起74が設けられている。 端子係止部71の外壁71bには前方部分にアウターケ ース62の各係止突起68に対応する係止穴75,75 が形成されている。

【0063】上記構成において、コネクタケースFはア ウターケース62の後方からインナーケース63を挿入 して形成される。係止突起68には係止穴75が嵌合 し、端子係止部71の外壁71bの前半部分が隔壁65 に保持される。

【0064】尚、シールド電線CはシースC4に前述の シース保持リング46とゴム栓47′が挿着され、芯線 C₁には既知の雌コネクタ端子D′が圧着されている。 編組C3 は先端が外側に折り返されており、その一部が シールドコネクタ61の組立てにおいて、アウターケー ス62とゴム栓47′とに挟着される。

【0065】コネクタケースFに対して、上記シールド 電線CとコルゲートチューブEとを係合係止したコルゲ ートホルダBを嵌着させると、アウターケース62の後 方から挿入されるコネクタ端子D′はストッパ73と端 子係止突起74によってしっかりと固定される。アウタ ーケース62の後端部分にはコルゲートホルダBのケー ス差込室39が被着し、固定突起70と固定穴45とが 嵌合する。

【0066】このように、コルゲートホルダBは前述の 電線取付ケースAに限らず、コネクタケースFとも嵌着 可能に形成されており、汎用性が高い。また、シールド 【0059】コネクタケースFは、合成樹脂製のアウタ 50 コネクタ21の説明で挙げたように、本形態においても

製造コストの低減ができ、シース等のズレも生じること はない。

【0067】以上はシールド電線Cを用いて説明をしたが、これに限らず、例えばワイヤーハーネスなどの集束した電線を適用させても良く、各電線のズレを防止するために、前述したシース保持リング46を用いることが効果的である。また、電線係止突起40は、その突起に変えて凸条であっても良く、凸条の突出側先端にはシールド電線Cの周囲に対応する曲面を形成することが好ましい。更にまた、ハーフカバー36は型割構造が単純に10なるように構成されているので、仮に各ハーフカバー36、36とをヒンジによって連結する構造を採用しても、複雑な型割構造になるものではない。

[0068]

【発明の効果】以上説明したように請求項1に記載され た本発明によれば、シールドコネクタは、シールド電線 の端末部に接続されるコネクタ端子と、シールド電線の 端末部を保護収容して電気機器のケースに開口した取付 口に固定される電線取付ケースと、その電線取付ケース の電線挿入側に装着されるコルゲートホルダと、コルゲ 20 ートホルダを介して電線取付ケースの電線挿入側に接続 されるシールド電線保護用のコルゲートチューブとを備 える。また、コルゲートホルダは相対向する一対のハー フカバーから成り、各ハーフカバーはアウターカバーと インナーカバーとを備えると共に、アウターカバーとイ ンナーカバーとの間に電線取付ケースの電線挿入側に対 するケース差込室を形成する。インナーカバーは内周面 の一端部にシールド電線に対応する電線係止部を備える と共に他端部にコルゲートチューブと係合する複数条の チューブ嵌着溝を備える。また、アウターカバーは電線 30 取付ケースの外周壁に対応するカバー固定部を有する。 これによれば、各ハーフカバーはシールド電線及びコル ゲートチューブを係合係止すると共に、電線取付ケース に嵌着される構成を一体的に有するものであって、対称 形状であることから、成形金型の型割構造を単純化する ことができ、更には大型の成形装置を使用しなくとも金 型当りの取り数を増すこともできることから、製造コス トの低減をすることができるシールドコネクタである。 【0069】請求項2の本発明によれば、シールド電線

【0069】請求項2の本発明によれば、シールド電線のシースにその径方向を圧縮するシース保持リングが挿 40 着されることにより、シールド電線に不意な外力が加わってもシース等のズレを防止することができるという効果を奏する。

【0070】請求項3の本発明によれば、シース保持リングは小径の加締部と大径のストッパ部とから段差を有して形成される。ストッパ部は開口する端縁がコルゲートホルダの電線係止部に衝合可能な大きさの径を有する。これにより、シールド電線に不意な外力が加わってシールド電線が移動してもストッパ部が電線係止部に係止されてシース等のズレを防止することができるという 50

効果を奏する。

【0071】請求項4の本発明によれば、シールド電線に電線係止部と係合可能なゴム栓が挿着されることにより、シールドコネクタの組立てにおいて、電線係止部がゴム栓を押え込んで電線取付ケースに確実に挿入することができ、いちいちゴム栓を手で入れる煩わしさがなく、作業性を向上するという効果を奏する。

【0072】請求項5の本発明によれば、シールド電線に挿着されたシース保持リングとゴム栓の間に電線係止部が係合する。これにより、電線係止部はシース等のズレ防止とゴム栓に対する作業性の向上とを容易に成すことができるという効果を奏する。

【0073】請求項6の本発明によれば、電線係止部はコルゲートホルダの軸に向けて等間隔に複数個突出する複数の突起であるので、成形金型の型割構造を単純化することができ、またハーフカバーの係合と同時に突起の先端がシールド電線を係止することができるという効果を奏する。

【0074】請求項7の本発明によれば、電線係止部は、シールド電線を保持する凸条であるので、成形金型の型割構造を単純化することができ、またハーフカバーの係合と同時に凸条の先端の曲面でシールド電線を係止することができるという効果を奏する。

【0075】請求項8の本発明によれば、電線取付ケースのコネクタ端子接続側の開口部からシールド電線の内皮を延出する。内皮に前記開口部と衝合可能な鍔付きの内皮保持リングが挿着される。これにより、シールド電線に不意な外力が加わってシールド電線が移動しようとしても内皮保持リングが電線取付ケースに係合係止されてシース等のズレを防止することができるという効果を奏する。

【0076】請求項9の本発明によれば、内皮保持リングがシールド電線の編組に電気的に導通されるシェル部材の前記コネクタ端子側への移動に対するストッパ及び電線取付ケースの端子側への移動に対するストッパになる。これにより、シェル部材のズレを防止することができ、電気的接触不良の発生も避けることもできるという効果を奏する。

【0077】請求項10の本発明によれば、内皮保持リングは絶縁体により成形されているので、コネクタ端子と上記シェル部材とのショートを防止することができるという効果を奏する。

【0078】請求項11の本発明によれば、シールドコネクタは、シールド電線の端末部に接続されるコネクタ端子と、コネクタ端子を収容して係止固定するインナーケースと、このインナーケースを囲むと共にシールド電線の端末部を覆い相手側のコネクタに接続されるアウターケースと、アウターケースの電線挿入側に装着されるコルゲートホルダと、このコルゲートホルダを介してアウターケースの電線挿入側に接続されるシールド電線保

護用のコルゲートチューブとを備える。また、コルゲー トホルダは相対向する一対のハーフカバーから成り、各 ハーフカバーはアウターカバーとインナーカバーとを備 えると共に、アウターカバーとインナーカバーとの間に 前記アウターケースの電線挿入側に対するケース差込室 を形成する。インナーカバーは内周面の一端部にシール ド電線に対応する電線係止部を備えると共に、他端部に コルゲートチューブと係合する複数条のチューブ嵌着溝 を備える。また、アウターカバーは前記アウターケース の外周壁に対応するカバー固定部を有する。これによれ 10 ば、各ハーフカバーはシールド電線及びコルゲートチュ ーブを係合係止すると共に、アウターケースに嵌着され る構成を一体的に有するものであって、対称形状である ことから、成形金型の型割構造を単純化することがで き、更には大型の成形装置を使用しなくとも金型当りの 取り数を増すこともできることから製造コストの低減を することができるシールドコネクタである。

【0079】請求項12の本発明によれば、シールド電線のシースにその径方向を圧縮するシース保持リングが挿着されることにより、シールド電線に不意な外力が加20わってもシース等のズレを防止することができるという効果を奏する。

【0080】請求項13の本発明によれば、シース保持リングは小径の加締部と大径のストッパ部とから段差を有して形成される。ストッパ部は開口する端縁がコルゲートホルダの電線係止部に衝合可能な大きさの径を有する。これにより、シールド電線に不意な外力が加わってシールド電線が移動してもストッパ部が電線係止部に係止されてシース等のズレを防止することができるという効果を奏する。

【図面の簡単な説明】

【図1】本発明によるシールドコネクタの一実施の形態 を示す分解斜視図である。

【図2】図1の構成部材を組立てることによって成されたシールドコネクタの正面図である。

【図3】図2のa-a線断面図である。

【図4】図1のコルゲートホルダの拡大斜視図である。

【図5】図1のシールド電線の端末部の加工工程を示す図である。

- (a)シールド電線にシース保持リングが挿着される前 40 の状態を示す図である。
- (b)シールド電線にシース保持リングが挿着された状態を示す図である。
- (c)シールド電線を加締め装置に固定し、シース保持 リングが加締められる前の状態を示す図である。
- (d) シース保持リングが加締められた状態を示す図で

ある。

(e)シールド電線の端末部が皮剥ぎされた状態を示す 図である。

16

【図6】図5のシールド電線にハーフカバーを係合する状態を示す図である。

【図7】電線取付ケースにコルゲートホルダがセットされた状態を示す図である。

【図8】電線取付ケースにコルゲートホルダが嵌着された状態を示す図である。

0 【図9】シールドコネクタの組立てが完了した状態を示す図である。

【図10】本発明によるシールドコネクタの他の一実施の形態を示す断面図である。

【図11】従来例のシールドコネクタを示す正面図である。

【図12】従来例のリアホルダカバーの分解斜視図である。

【図13】図12の組立て状態を示す斜視図である。 【符号の説明】

20 A 電線取付ケース

B コルゲートホルダ

C シールド電線

D コネクタ端子

E コルゲートチューブ

21 シールドコネクタ

28 第1のシェル部材

29 固定突起

31 ホルダ係合室

32 ゴム栓係合室

30 35 突条

36 ハーフカバー

37 アウターカバー

38 インナーカバー

39 ケース差込室

40 電線係止突起(電線係止部)

41 チューブ嵌着溝

42 ピン状突起

43 突起受穴

45 固定穴(固定部)

46 シース保持リング

46a ストッパ部

46b 加締部

47 ゴム栓

50 内皮保持リング

50a 鍔部

【図1】

28 49b

....

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The device side connector fixed so that a case may be contacted in the conductive coat given to the front face where a connection electric wire is inserted in The connection side connector by which the conductive coat given to the front face where a connection electric wire is inserted in is connected to the aforementioned device side connector so that field contact may be carried out While preparing the stop section equipped with the stop salient which is the shield structure of the connector equipped with the above, and has flexibility at the end of the aforementioned device side connector, and gave the conductive coat to the front face It carries out having prepared the stop section equipped with the stop salient stopped after sagging the aforementioned stop section elastically and making the aforementioned stop salient overcome, in case it has flexibility at the end of the aforementioned connection side connector and this connection side connector is connected to the aforementioned device side connector as the feature.

[Claim 2] Shield structure of the connector according to claim 1 characterized by preparing the press section which is made to bend and transform this stop section into the end of the aforementioned stop section by press, and cancels the stop of the aforementioned stop salient.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[The technical field to which invention belongs] this invention relates to suitable wiring technology, when a shield performance positive like the control equipment carried especially in the automobile is required about the shield structure of the connector constituted so that the same shielding effect as the case where shielding wire is used might be obtained and low-cost-izing and improvement in maintenance nature are required, without using shielding wire.

[0002]

[Description of the Prior Art] Shielding wire is used, in order that the various electronic equipment by which the present automobile contains CPU may be carried and operation of a device may avoid a bird clapper unstably by the noise to transfer of a RF signal with a natural thing. And electronic equipment and the wiring containing shielding wire are connected by the connector of a couple free [attachment and detachment] in consideration of the time of the workability at the time of an assembly, or a maintenance.

[0003] If an example of the conventional shielding-wire wiring is explained with reference to drawing 7 - drawing 9, in the case of the shield structure of shielding wire as shown in drawing 7, only predetermined length will skin internal pre-insulation layer 84b which has covered a it top, and corewire 84a of the line 84 edited by the shield will be exposed. Moreover, **** 84c for shield connection (drain short circuit) which has covered the internal pre-insulation layer 84b top is turned up on 84d of external enveloping layers cut from internal pre-insulation layer 84b in the position which fell for a while further. And it equips with the rubber stopper presser foot 86 with stop salient 86a, the waterproofing rubber stopper 85, and the metal connection material 87 on ****84c and 84d of external enveloping layers, and the terminal fixed metallic ornaments 81 fix on core-wire 84a which the nose of cam of the line 84 edited by the shield exposed further.

[0004] The connector housing 88 is attached outside by these terminal fixed metallic ornaments 81. The housing main part 89 of the shape of a cylinder which attaches this connector housing 88 outside the terminal fixed metallic ornaments 81, The metal shell 90 with flange 90b exposed to the this soma 90a [of the shape of a cylinder inserted between the flange 91 attached outside this housing main part 89, and the housing main part 89 and a flange 91], and front-face side of a flange 91, It consists of rings C 93 which engage with the terminal fixed metallic ornaments 81 inserted in in the housing main part 89, and prevent the omission from the housing main part 89 of these terminal fixed metallic ornaments 81. [0005] While female screw section 82a for these terminal fixed metallic ornaments 81 ****ing the end-connection child 98 by the side of a device to a front end side, stopping to it, and making it it is formed, stop slot 82b with which a ring C 93 engages is formed in the front end side periphery section.

moreover, the core-wire insertion which inserts core-wire 84a in a end face side -- a hole -- 83a equips -- having -- **** -- core-wire insertion -- a hole -- the this insertion [core-wire] after inserting core-wire 84a in 83a -- a hole -- the periphery of 83a is fixed to core-wire 84a by caulking ***** Moreover, the connection material 87 is presenting the structure where the tubed part which is for making shield

connection (drain short circuit) of the **** 84c to the metal case 94 of an electrical machinery and apparatus through the metal shell 90 mentioned above, and is stuck to this soma 90a of the metal shell 90 by pressure, and the tubed part stuck to **** 84c by pressure were really formed.

[0006] Moreover, when rubber packing 85 makes the connector housing 88 attach outside on the terminal fixed metallic ornaments 81, it takes up the crevice between the tubed part of a flange 91 and 84d of external enveloping layers of the line 84 edited by the shield which have extended back, and keeps watertight between the connector housing 88 and the lines 84 edited by the shield. the electric wire insertion to which, as for the housing main part 89 of the connector housing 88, the nose-of-cam side was formed in the metal case 94 on the other hand -- tubed [which is inserted in a hole 95] -- presenting -- **** -- the periphery by the side of the nose of cam of this housing main part 89 -- this housing main part 89 and electric wire insertion -- it is equipped with the seal ring 92 which waterproofs between holes 95 Moreover, when it ****s in the metal case 94 and is stopped and made it with a bolt 100, the flange 91 attached outside this housing main part 89 is formed so that flange 90b of the metal

[0007] With the shield structure of shielding wire mentioned above, it changes into the state where the connector housing 88 was attached to core-wire 84a of the line 84 edited by the shield at the beam terminal fixed metallic ornaments 81 with caulking as shown in <u>drawing 8</u>. next, it is shown in <u>drawing 9</u> -- as -- the nose of cam of the housing main part 89 of the connector housing 88 -- electric wire insertion of the metal case 94 -- it is made to insert in a hole 95 and a flange 91 is fixed to the metal case 94 with a bolt 100 moreover, shield connection (drain short circuit) processing will connect electric connection with core-wire 84a of the line 84 edited by the shield, and the end-connection child 98 by the side of a device, and **** 84c of the line 84 edited by the shield to the metal case 94 if it ****s, stops and acts at the nose of cam of the terminal fixed metallic ornaments 81 as the end-connection child 98 by the side of a device with a bolt 101, and this line 84 edited, by the shield and electric wire insertion -- water proofing between holes 95 will be

[Problem(s) to be Solved by the Invention] However, in order to make good contact to **** 84c and the connection material 87, the unreserved range of **** 84c had to be enlarged, attachment work was troublesome to the top where structure is complicated, and workability was not conventionally [abovementioned] good [turning up after showing **** 84c of shielding wire 84 with the shield structure of the shielding wire of composition etc. needs to be worked, and] for it.

[0009] Moreover, since shielding-wire 84 the very thing was also expensive and there were many parts which need highly precise cutting of terminal fixed metallic-ornaments 81 grade, workability had become not good to the cause of a cost rise conjointly. Moreover, in order to stick by pressure and connect **** 84c of shielding wire 84 to the connection material 87, when the diameter of an electric wire of shielding wire 84 changed, not only the connection material 87 but also rubber packing 85 grade had to exchange, and there was no design flexibility.

[0010] without the purpose of this invention is easy structure and an assembly and removal use shielding wire for an easy top for between electronic equipment -- electromagnetism -- it is in offering the shield structure of the connector which connects in the state where it shielded [0011]

[Means for Solving the Problem] The above-mentioned purpose concerning this invention is attained by the shield structure of the connector constituted as shown in following (1) and (2).

(1) The device side connector fixed so that a case may be contacted in the conductive coat given to the front face where a connection electric wire is inserted in, In the shield structure of the connector equipped with the connection side connector connected so that the conductive coat given to the front face where a connection electric wire is inserted in may carry out field contact at the aforementioned device side connector While preparing the stop section equipped with the stop salient which has flexibility at the end of the aforementioned device side connector, and gave the conductive coat to the front face Shield structure of the connector carried out [having prepared the stop section equipped with the stop salient stopped after sagging the aforementioned stop section elastically and making the

shell 90 may contact the metal case 94 certainly.

aforementioned stop salient overcome, in case it has flexibility at the end of the aforementioned connection side connector and this connection side connector is connected to the aforementioned device side connector, and] as the feature.

[0012] (2) Shield structure of the connector according to claim 1 characterized by preparing the press section which is made to bend and transform this stop section into the end of the aforementioned stop section by press, and cancels the stop of the aforementioned stop salient.

[0013] According to the shield structure of the connector of the above-mentioned composition concerning this invention, a conductive coat is given to the front face of a device side connector, and the conductive coat is also given to the front face of the connection side connector connected to this device side connector. As for the aforementioned device side connector and the aforementioned connection side connector, since it connects so that a front face may carry out field contact, both come to have a shield operation to the connection electric wire which was connected also electrically and inserted in the interior while being unified mechanically.

[0014] Furthermore, in this invention, the stop section which has elasticity in the aforementioned device side connector is prepared, and the conductive coat is formed also in the front face of this stop section. And since the stop section which has elasticity also in a connection side connector is prepared and the conductive coat is formed in the front face, in case a connection side connector is connected to a device side connector, conductive connection is much more ensured by stopping the stop sections. consequently -- without it uses shielding wire -- an electric wire -- electromagnetism -- the poor contact can shield and moreover according to vibration etc. by the elasticity of the aforementioned stop section -- in other words, a poor shield can be prevented

[0015] Moreover, since the press section is prepared in the stop section of a connection side connector, in case a connection side connector is removed from a device side connector, the press section can be equipped, the stop of the stop sections can be canceled, and it can remove easily.

[0016]

[Embodiments of the Invention] Hereafter, the operation gestalt of the shield structure of the connector which applied this invention is explained in detail based on <u>drawing 1</u> - <u>drawing 6</u>. The expanded sectional view [show / the operation of the stop section at the time of the side elevation of the others a notch side elevation and <u>drawing 2</u> indicate the composition of the shield structure of a connector to be in part and <u>drawing 3 drawing 1</u> indicates the shield structure of the connector of this invention to be stopping a connector] of an important section in which a notch side elevation and <u>drawing 4</u> show the operation after a connector stop in part and in which a notch side elevation and <u>drawing 5</u> show the composition and a stop operation of a connector of the stop section in part,

[0017] First, the use gestalt of the shield structure (it is only hereafter called shield structure for short) 1 of the connector in this operation gestalt is explained. In a case 2 and 3, it is a high-tension cable 4, and in case it connects in the state of a shield, it is used, and this shield structure 1 is equipped with the device side connector 5 fixed to a case 3 as shown in the method of the right of drawing 6, and the connection side connector 6 connected to this device side connector 5 free [attachment and detachment] for the electronic equipment (illustration ellipsis) which carried out interior, as shown in drawing 6.

[0018] Moreover, the connector 7 fixed to a case 2 and the connection side connector 6 are connected through the corrugate tube 8 which twisted the shield sheet mentioned later. And the high-tension cable 4 equivalent to a connection electric wire has inserted in the interior of a connector 7, a corrugate tube 8, the connection side connector 6, and the device side connector 5. therefore, the high-tension cable 4 -- electromagnetism -- electronic equipment can be connected in the state where it shielded, the influence of the noise generated from a high-tension cable 4 can be prevented, and the expensive and troublesome shield structure of wiring becomes unnecessary

[0019] Next, each part material which constitutes the shield structure 1 is explained. The device side connector 5 is equipped with the flange 12 which carries out screw stop fixation at the tubed fitting section 11 which fits into attachment mouth 3a formed in the case 3 as shown in each drawing below drawing 1, and a case 3, the stop section 13 stopped at the connection side connector 6, and the tubed

connection 14 constituted so that the connection side connector 6 might be put. And zero rings 15, such as rubber, fit into the lateral surface of the fitting section 11, a pressure welding is carried out to attachment mouth 3a, and seepage of the moisture into a case 3 is prevented. Moreover, zero ring 16 fits also into the lateral surface of a connection 14, and between the connection side connectors 6 is held watertight.

[0020] In addition, it connects electrically [the whole] in a case 3 by [which are equivalent to a conductive coat at the whole lateral surface although the device side connector 5 really fabricates synthetic resin] giving nickel plating etc., for example and fixing to a case 3 through a flange 12. in addition -- a flange 12 -- screw insertion -- a hole -- 12a is formed and a screw stop is carried out to a case 3

[0021] By the way, the stop section 13 is the configuration jutted out in the connection 14 direction in the shape of straight side near the flange 12, and the whole has elasticity in the vertical direction. It turns at the nose of cam of this stop section 13 caudad, and stop salient 13a is prepared in it, and the connection side connector 6 is elastically stopped so that it may explain later. in addition, it is shown in the both sides of the stop section 13 at drawing 2 -- as -- a predetermined interval -- minding -- a guide -- it is constituted so that the stop member which Members 18a and 18b were formed and was prepared in the connection side connector 6 may be guided

[0022] Although the connection side connector 6 is a barrel fundamentally as cross-section structure shows to drawing 1, drawing 3, etc. The fitting section 21 by which a size setup was carried out so that it might insert in the connection 14 of the device side connector 5 from an outside. It has the stop section 23 grade for making the engagement section 22 covered and engaged and the aforementioned stop section 13 stop corrugated 8, and the stop slot 24 for stopping the corrugated presser foot 32 mentioned later is formed in the lateral surface of the engagement section 22. moreover, a bridgewall 25 forms in the engagement section 22 -- having -- this bridgewall 25 -- three electric wire insertion -- the hole 26 is formed and a high-tension cable 4 is made to insert in at intervals of predetermined [0023] From the fitting section 21, the stop section 23 is formed in the shape of straight side towards engagement section 22 direction, and the whole deforms it in the vertical direction elastically. The stop section 23 is a tabular, stop salient 23a is formed in the simultaneously center section towards a top, and **-like push section 23b is formed in the point. Conductive plating of nickel plating etc. is given to the whole front face of this stop section 23, i.e., the front face of stop salient 23a etc. Therefore, if the connection side connector 6 is put on the device side connector 5 and the stop sections 13 and 23 are stopped, while being unified mechanically, a connection 14 and the fitting section 21 contact upwards densely, and since the stop sections 13 and 23 contact elastically, it is low resistance electrically, and will contact in the state where there is moreover no poor contact etc.

[0024] A corrugate tube 8 forms the synthetic resin which has flexibility in the shape of bellows, as shown in drawing 1, and the shield sheet 31 is twisted around the interior. And the edge of a corrugate tube 8 is put on the outside of the engagement section 22 of the connection side connector 6, and it is bound tight so that a pressure welding may be carried out to the engagement section 22 by the corrugated presser foot 32 from the outside. In addition, the original configuration of the corrugated presser foot 32 is a configuration which carried out the half-rate of the tube-like object to the longitudinal direction, stops a half-rate member with the stop implement 33, and constitutes it in tubed. That is, after putting the end of a corrugate tube 8 on the engagement section 22 as shown in drawing 1, and putting a half-rate member from an outside subsequently, a corrugate tube 8 is bound tight and fixed to the engagement section 22 by constituting in tubed using the stop implement 33.

[0025] nickel plating of the lateral surface of the engagement section 22 is carried out as mentioned above, and the shield sheet 31 is twisted around the medial surface of a corrugate tube 8. therefore, a shield sheet 31, the engagement section 22, and the high-tension cable 4 that in other words the connection side connector 6 is connected electrically, and inserts in the inside of a corrugate tube 8 and the connection side connector 6 -- electromagnetism -- it will shield In addition, the stop salient 35 stopped into the engagement slot 34 which engages with the bellows configuration of a corrugate tube 8, and the aforementioned stop slot 24 is annularly formed in a part of medial surface of the corrugated

presser foot 32. Therefore, as shown in <u>drawing 1</u>, where a corrugate tube 8 is put on the fitting section 21, the ejection of a corrugate tube 8 becomes improper, and it will connect with the connection side connector 6 so that there may be no poor contact etc. electrically.

[0026] Next, a stop operation with the device side connector 5 and the connection side connector 6 is explained. In this case, the corrugate tube 8 in which the high-tension cable 4 was made to insert is attached in the connection side connector 6. The corrugated presser foot 32 performs this attachment as mentioned above. Next, if a high-tension cable 4 is made to insert in the device side connector 5 currently fixed to the case 2 through the flange 12 and the connection side connector 6 is pushed in further, as shown in drawing 3 and drawing 5, the stop salients 13a and 23a will come to contact. [0027] Since it is formed in the taper side as it expands to drawing 5 and was shown, if the connection side connector 6 is pushed in further, the stop section 23 whole will bend and deform the contact surface of the stop salients 13a and 23b in the direction shown by Arrow A. Consequently, by pushing in further, stop salient 13a comes to overcome stop salient 23a, and as shown in drawing 4 etc., stop salient 13a overcomes stop salient 23a completely, and it comes to fit in between stop salient 23a and push section 23b.

[0028] At this time, the connection side connector 6 covers the connection 14 whole, the medial surface of the fitting section 21 carries out a pressure welding to zero ring 16, and the device side connector 5 and the connection side connector 6 are completely unified in the watertight state. And the stop section 13 and the 23 whole have elasticity, and since conductive plating is also given to the front face of the stop salients 12a and 23a from the first, also electrically, the front face of these stop sections 13 and 23 will contact by low resistance. consequently, the high-tension cable 4 -- a corrugate tube 8, the connection side connector 6, and the device side connector 5 -- electromagnetism -- it shields completely-like and electronic equipment can operate now stably

[0029] in addition -- the case 2 shown in drawing 6 -- electromagnetism -- the connector 7 which has a shield function is fixed and a high-tension cable 4 is connected to the electronic equipment within a case 2 through a connector 7 therefore, any of the wiring position of a high-tension cable 4 -- also setting -- electromagnetism -- it will shield and superposition of a noise [**** / un-] etc. can be prevented completely Moreover, the end-connection child 9 is connected to the terminal of a high-tension cable 4 by sticking by pressure etc., and it can connect now with the terminal of electronic equipment simple. [0030] if it is in the shield structure of the connector which applied this invention as explained above, without it uses shielding wire by connecting to a connection side connector the corrugate tube which inserted in the high-tension cable, and connecting this connection side connector to a device side connector -- the electronic equipment within a case -- electromagnetism -- it is connectable in the state where it shielded And a device side connector and a connection side connector can raise reliability sharply, when conductivity, i.e., shield nature, is not spoiled and it applies to severe devices and equipments of an operating environment, such as an automobile, even if vibration is added, since it connected so that it might have conductivity by the stop section which has the elasticity prepared for both sides.

[0031]

[Effect of the Invention] The shield structure of the connector which starts this invention as explained above A conductive coat is ****(ed) on the front face of the device side connector fixed to the case which carried out the interior of the electronic equipment etc. In case a conductive coat is ****(ed) also on the front face of the connection side connector connected to this device side connector and the aforementioned device side connector are connected, while making it connect so that connectors may have conductivity by field contact The stop section which has the stop section which has the elasticity prepared in the aforementioned device side connector, and gave the conductive coat to the front face, and the elasticity prepared in the connection side connector, and gave the conductive coat to the front face is contacted elastically.

[0032] therefore, connection electric wires, such as a high-tension cable inserted in in the device side connector and the connection side connector, -- a device side connector and a connection side connector -- electromagnetism -- it shields furthermore, the danger of becoming a poor contact even if conductive

contact is ensured and vibration etc. is added, since the stop sections touch elastically -- there is nothing -- electromagnetism -- a shield is not spoiled For this reason, when it applies to severe devices and equipments of an operating environment, such as an automobile, reliability can raise improvement sharply. Moreover, reduction of a manufacturing cost can be conjointly aimed at with that shielding wire is unnecessary and manufacture being easy, and high **, like a maintenance also becomes easy further is done so.

[Translation done.]