Danton Cavalcanti Franco Junior falecom@dantonjr.com.br

Tipos de Sistemas Operacionais

- Evoluíram junto com o hardware.
- □ Nomenclatura:
 - Programa ou job.
 - Processo e subprocesso.
 - Tarefa e thread.

Tipos de Sistemas Operacionais

Sistemas Monoprogramáveis

- Os sistemas *monoprogramáveis* ou *monotarefa* se caracterizam por permitir que o processador, a memória e os periféricos fiquem dedicados a um único programa (job).
- ☐ Fácil implementação, pois não se preocupam com a proteção.

Sistemas Monoprogramáveis

- □ O sistema é subutilizado:
 - Processador fica ocioso na digitação de um dado.
 - A memória é subutilizada se o programa não utilizá-la por completo.
 - Periféricos e discos dedicados a um único usuário, sem ser usado de forma integral.

Sistemas Monoprogramáveis

- Os sistemas multiprogramáveis ou multitarefa permitem que vários programas dividam os recursos.
- Vieram para substituir os sistemas monoprogramáveis.

- Há o compartilhamento da memória e do processador.
- O SO é responsável por controlar todo o acesso concorrente (memória, processador e periféricos).

Os sistemas mutiprogramáveis são mais complexos, porém, conseguem aumentar a produtividade dos usuários e reduzir os custos de utilização do sistema.

- Dependendo da quantidade de usuários interagindo podemos classificá-los como:
 - Monousuário.
 - Multiusuário.

Sistemas Operacionais

Sistemas Operacionais

□ Sistemas BATCH

- Os sistemas batch (lote) caracterizam-se por terem seus programas, quando submetidos, armazenados em disco ou fita, onde esperam para ser executados sequencialmente.
- Os programas, também chamados de jobs (tarefas), que executam nesses sistemas não exigem interação com os usuários, lendo e gravando dados em discos ou fitas.

☐ Sistemas BATCH

 Alguns exemplos de aplicações originalmente batch são compilações, linkedições, sorts e todas aquelas onde não é necessária a interação com o usuário.

□ Sistemas de TEMPO COMPARTILHADO

Os sistemas de tempo compartilhado (time-sharing) permitem a interação dos usuários com o sistema, basicamente através de terminais de vídeo e teclado (interação on-line). Assim o usuário pode interagir em cada fase do desenvolvimento de suas aplicações e modificá-las, se necessário.

- ☐ Sistemas de TEMPO COMPARTILHADO
 - Para cada usuário, o sistema operacional aloca uma fatia de tempo (time-slice) do processador.
 - Não só o processador é compartilhado, mas também a memória e os periféricos.
 - O sistema cria para o usuário um ambiente de trabalho próprio.

☐ Sistemas de TEMPO COMPARTILHADO

Este tipo de sistema são de implementação complexa, porém facilitam o desenvolvimento de aplicações multitarefas, pois o sistema operacional assume para si o controle da aplicação no ambiente, além de aumentar a produtividade dos usuários.

- ☐ Sistemas de TEMPO REAL
 - Os sistemas de tempo real (real-time) são bem semelhantes em implementação aos sistemas de tempo compartilhado. A maior diferença é o tempo de resposta exigido na execução das tarefas.
 - O tempo de resposta é fundamental.

☐ Sistemas de TEMPO REAL

- Neste tipo de sistema, não existe a ideia de fatia de tempo, utilizada pelos sistemas de tempo compartilhado. Um programa executa o tempo que for necessário, ou até que apareça outro prioritário em função de sua importância.
- São usados no controle de refinarias de petróleo,
 controle aéreo, usinas termoelétricas, etc.

Sistemas com Múltiplos Processadores

- Possuem duas ou mais CPUs interligadas.
- □ Dividem-se em:
 - Fortemente acoplados (tightly coupled)
 - Fracamente acoplados

Existem dois ou mais processadores
 compartilhando a mesma memória e controlados
 por um único sistema operacional.

- □ Dividem-se em:
 - Assimétricos (Mestre-Escravo Master/Slave).
 - Simétricos (Simmetric Multiprocessing SMP).
 - Multiprocessamento.

- □ Assimétricos (mestre-escravo)
 - Somente um processador executa serviços do SO.
 - O mestre é responsável por toda I/O.

□ Simétricos

- Todos os processadores realizam as mesmas funções.
- Boot fica com apenas um processador.

- Multiprocessamento
 - Divisão da tarefa em mais de um processador.
 - Divide-se em:
 - □ Processamento Vetorial
 - ☐ Processamento Paralelo...

- Processamento Vetorial
 - Dados escalares (elementares).
 - Alto custo e organização complexa.
 - Combinam vetores de entrada com vetores de saída.
 - Útil quando a aplicação tem um elevado grau de código vetorizável.

- Processamento Paralelo
 - Possibilidade da aplicação rodar em mais de um processador ao mesmo tempo.
 - Útil quando a aplicação pode ser dividida em partes independentes.
 - Usuário pode determinar o paralelismo (explícito), ou o SO determina.
 - Dividir a tarefa em vários processadores.

- Existem dois ou mais sistemas de computação conectados através de uma linha de comunicação.
- Cada um possui sua memória, dispositivos e SO.

- □ Dividem-se em:
 - Sistemas Operacionais de Rede.
 - Sistemas Operacionais Distribuídos.

- Sistemas Operacionais de Rede.
 - Cada nó possui seu próprio SO.
 - Compartilham recursos.
 - Se um nó falha, tudo continua funcionando,
 pode ocorrer apenas a falta de algum recurso.

- Sistemas Operacionais Distribuídos
 - Cada nó possui seu próprio SO, compartilhando recursos.
 - Balanceamento de carga.
 - Relacionamento forte entre os componentes.
 - O usuário vê como se fosse uma única máquina.
 - Redundância (dispositivo assume em caso de falha de outro).

Tipos de Barramentos

Sistemas Operacionais

Tipos de Barramentos

Sistemas Operacionais

Tipos de Barramentos

Sistemas Operacionais