

Acceleration of a bacterial metabolic simulation using neural networks with optimization techniques

TRABAJO DE FIN DE MÁSTER

MÁSTER EN INTELIGENCIA ARTIFICIAL - UNIVERSIDAD POLITÉCNICA DE MADRID

AUTOR: Javier París Uhryn

TUTOR: Alfonso Rodríguez-Patón Aradas

Acceleration of a bacterial metabolic simulation using neural networks with optimization techniques

GRO

Simulador basado en agentes para simular ecosistemas bacterianos

Metabolismo

Individual, flexible y realista

Redes neuronales

Aproximación rápida del metabolismo

IDEA PRINCIPAL	PRINCIPAL CONCEPTOS		IMPLEMENTAC	CONCLUSIONES		
GRO		Metab	olismo		Solución	

 Simulador basado en individuos/agentes

- Simulador basado en individuos/agentes
- Las interacciones entre individuos mediante señales

- Simulador basado en individuos/agentes
- Las interacciones entre individuos mediante señales
- La disposición espacial afecta al comportamiento de la colonia

Es interesante estudiar consorcios bacterianos complejos

25 clases, 205 géneros y 605 especies bacterianas diferentes en la microbiota humana

Generation of genoma-scale metabolic reconstructions for 773 members of the human gur microbiota, natura biotechnology

- Simulador basado en individuos/agentes
- Las interacciones entre individuos mediante señales
- La disposición espacial afecta al comportamiento de la colonia
- Se necesita mejorar el módulo de nutrientes
 - Flexible
 - Realista
 - Rápido

GRO Metabolismo

Solución

Metabolitos absorbidos y secretados y crecimiento asociado

Solo nos interesa las entradas y salidas

Cada célula tendrá un metabolismo individual dependiendo de su especie y cepa

HIPÓTESIS

- **H1:** FBA es aproximable con precisión mediante una red neural
 - 10% de error máximo

- H2: La red neuronal que aproxime FBA deberá ser ejecutada rápidamente
 - Mínimo de 100 veces más rápido que el FBA

- **H3:** La red que satisfaga **H1** y **H2** para un *dataset* dado debe ser encontrada en un tiempo límite
 - Máximo tiempo de respuesta de 10 minutos

FBA

Redes de Neuronas Artificiales

Algoritmos de optimización

Flux Balance Analysis (FBA)

Reacciones

$$X: A + B \leftrightarrow C$$

 $Y: B \longleftrightarrow C$

 $Z: 4 B \leftrightarrow C$

Biomass: C ↔ Biomass

Matrix estequiométrica

Metab olites			Х	Υ	Z	Biom ass
Α	-1		-1			
В		-1	-1	-1	-4	
С			2	1	1	1

Sistema de ecuaciones

$$-A(ext) - X = 0$$

$$-B(ext) - X - Y - 4Z = 0$$

$$X + Y + Z + Biomass = 0$$

Restricciones

FBA Redes de Neuronas Artificiales

Algoritmos de optimización

Flux Balance Analysis (FBA)

Reacciones

 $X: A + B \leftrightarrow C$

 $Y: B \longleftrightarrow C$

 $Z: 4 B \leftrightarrow C$

Biomass: C ↔ Biomass

Restricciones

Y < 10

Biomass < 25

IDEA PRINCIPAL	CONCEPTOS	IMPLEMENTAC	IÓN	CONCLUSIONES		
FBA	Redes de Neur	onas Artificiales	Alg	goritmos de optimización		

Modelos metabólicos utilizados

Modelo metabólico	Número de metabolitos	Número de metabolitos externos	Número de reacciones
E. coli Core	72	7	95
E. coli	1805	25	2583
Salmonella	1802	22	2546

Algoritmos de optimización

Redes de Neuronas Artificiales

FBA

Redes de Neuronas Artificiales

Algoritmos de optimización

Diseño de la Red Neuronal A Priori

Red única

- Reduce el tiempo de ejecución
- Las salidas están relacionadas

Feedforward fully connected

- Reduce la complejidad
- Reduce la cantidad de estructuras diferentes

ReLU

- Es más rápida
- Evita el problema del desvanecimiento de gradiente
- Reduce el número de hiperparámetros

• Resto de hiperparámetros

- Fijados para reducir complejidad
- Solo varía la estructura

Optimización de la estructura de una red neuronal

FBA Redes Artificiales de Neuronas

Algoritmos de optimización

Metaheurísticas:

- Colonia de hormigas
 - General
 - Por capas
- Recocido simulado
 - General
 - Creciente
- Algoritmos genéticos
 - Uniobjetivo
 - Multiobjetivo

Búsquedas exhaustivas:

- Creciente
- Decreciente
- Con diseño preestablecido
 - Diseño 2 capas
 - Diseño 3 capas

Solución final

Diseño de experimentos

- **H1:** FBA es aproximable con precisión mediante una red neural
- H2: La red neuronal que aproxime FBA deberá ser ejecutada rápidamente
- H3: La red que satisfaga H1 y H2 para un dataset dado debe ser encontrada en un tiempo límite

Hipótesis FBA

Demostrar **H1** y **H2** Se usa el dataset *E. coli*

Hipótesis optimización

Demostrar **H3**Se usa el dataset *E. coli Core*

Solución final

Solución final alcanzada cumpliendo **H1**, **H2** y **H3**

Se usan los 3 datasets:

E. coli Core

E. coli

Salmonella

Solución final

Tiempo de ejecución de FBA – E. coli frente a una red neuronal

El tiempo de ejecución de una red no varía con su input Sí varía con su tamaño

Solución final

Error de una red aproximando FBA

Los mejores resultados se encuentran en redes poco profundas con muchas neuronas

El número de neuronas por capa es muy relevante en el error

Solución final

Evolución del error en entrenamiento

La curva de entrenamiento sigue una distribución similar en todas las redes

Error while trainig error for train set 4.5 error for test set mean absolute error 2.5 2.0 0 250 500 750 1000 1250 1500 1750 2000 epochs

La evolución del error se reduce a las primeras épocas de entrenamiento

Hipótesis FBA

Hipótesis optimización

Solución final

Resultados del Algoritmo de Colonia de Hormigas

Por capa - gaussiano

Hipótesis FBA

Hipótesis optimización

Solución final

Resultados del Algoritmo de Recocido Simulado

Solución final

4.0

- 200

- 180

- 160 - 140 stj

- 120 ह

- 100

- 80 - 60

175

Resultados de los Algoritmos genéticos

Hipótesis FBA

Hipótesis optimización

Solución final

Resultados de Métodos Exhaustivos

Hipótesis FBA Hipótesis optimización Solución final

Búsqueda exhaustiva sobre estructura prediseñada

Diseño 2 capas

Input Hidden Hidden Ouput layer H_1 H_1 H_2 H_2 O_1 O_{n+1}

Diseño 3 capas

Number of cells in hidden layer

Epochs

SOLUCIÓN FINAL

H1: FBA es aproximable con precisión mediante una red neural

H2: La red que aproxime FBA deberá ser ejecutada rápidamente

H3: La red debe ser encontrada en un tiempo límite

Modelos metabólicos	Error máximo	Veces más rápido que FBA	Tiempo máximo (s)
E. coli Core	4.1%	52.18	60
E. Coli	7.7%	248.36	115
Salmonella	5%	363.86	110

CONCLUSIONES Y TRABAJO FUTURO

CONCLUSIONES

- Hemos obtenido una solución que cumple con los requerimientos
- La solución obtenida es escalable a cualquier tipo de dato
- No se ha encontrado una metaheurística que cumpla las necesidades

TRABAJO FUTURO

- Implementación en GRO
- Mejora de la red neuronal solución
- Probar nuevos métodos de optimización
- Escalar el modelo a otros tipos de dato

Trabajo de fin de máster:

Acceleration of a bacterial metabolic simulation using neural networks with optimization techniques

Máster en Inteligencia Artificial – Universidad Politécnica de Madrid

Autor: Javier París Uhryn

Tutor: Alfonso Rodríguez-Patón Aradas

Dataset	Min pro-	Max Pro-	mean accu-		mean con-		mean t	ime
	portion	portion	racy		nections		(s)	
	2	3	0.971	\pm	541.9	\pm	30.65 ± 3	5.25
Core			0.012		107.0			
,	3	4	0.971	\pm	931.0	±	$52.04\pm$	7.40
			0.003		122.3			:
	4	5	0.972	\pm	1434.8	土	86.84 ± 8	8.60
			0.002		156.7			
	2	3	0.965	±	4363.1	±	49.12	±
Salmonella			0.015		823.8		15.01	
	3	4	0.970	\pm	7540.3	±	97.38	土
			0.003		1075.9		12.74	
,	4	5	0.969	±	11696.4	土	158.98	1
			0.002		1242.3		19.03	
	2	3	0.946	\pm	6936.7	土	49.68	土
Ecoli			0.023		1324.5		13.40	
	3	4	0.966	\pm	12243.3	±	97.88	±
			0.004		1516.5		16.82	
1	4	5	0.965	\pm	18276.6	土	158.12	±
			0.003		2063.2	A)	17.46	4

