Московский физико-технический институт (государственный университет)

ДЕПАРТАМЕНТ МОЛЕКУЛЯРНОЙ И БИОЛОГИЧЕСКОЙ ФИЗИКИ

Лабораторная работа

Кинетика йодирования ацетона

Авторы: Светлана ФРОЛОВА 6113 группа Анатолий КИСЕЛЁВ 6113 группа

г. Долгопрудный 2018 г.

1 Цели работы

- 1. Убедиться в справедливости закона Бэра, определить коэффициент молярной экстинкции йода;
- 2. Проверить независимость скорости йодирования от концентрации йода, изучить зависимость скорости реакции от концентрации кислоты и ацетона;
- 3. Рассчитать константу скорости реакции.

2 Теоретическая часть

Реакция йодирования ацетона в кислом водном растворе

$$CH_3C(O)CH_3 + I_2 + H_3O^+ + H_2O \Longrightarrow CH_3COCH_2I + I^- + 2H_3O^+$$
(1)

протекает в две стадии. В кислой среде ацетон становится протофильным и присоединяет протон иона гидрооксония:

$$CH_3C(O)CH_3 + H_3O^+ \Longrightarrow CH_3C^-OHCH_3^+ + H_3O^+$$
 (2)

Водород метильной группы кетоенола приобретает подвижность и соединяется с молекулой воды:

$$CH_3C^-(OH)CH_3 + H_2O \Longrightarrow CH_3(OH)CH_2 + H_3O^+$$

Таким образом, первая стадия реакции представляет собой превращение кетона в енол. На второй стадии реакции енол присоединяет йод:

$$CH_3(OH)CH_2 + I_2 + H_2O \longrightarrow CH_3COCH_2I + 2H_3O^+ + I^-$$
(3)

Вторая стадия (3) реакции протекает значительно быстрее первой и прак-тически до конца. Поэтому скорость реакции (1) определяется скоростью обра-зования енола в (2) и не зависит от концентрации йода. Скорость расходования ацетона в системе равна скорости расходования йода. Поскольку в процессе реакции происходит увеличение числа ионов гидрооксония, реакция является автокаталитической. Реакция йодирования протекает по первому порядку для двух реагирующих веществ (ацетон и ион гидрооксония), и исходное дифференциальное уравнение для определения константы скорости реакции k может быть записано в виде:

$$-\frac{dA}{dt} = k \cdot A \cdot H,$$

где $A = [CH_3C(O)CH_3], H = [H_3O^+]$ – текущие концентрации ацетона и ионов гидрооксония. Применяя индекс 0 для обозначения начального момента времени, после интегрирования уравнения получим для k следующее выражение:

$$k = \frac{1}{\tau} \cdot \frac{1}{A_0 + H_0} \ln \left(\frac{A_0(H_0 + x)}{H_0(A_0 - x)} \right),$$

где x – изменение концентрации йода за время τ . Если начальные концентрации A_0 и H_0 выбраны существенно большими, чем концентрация йода, то автокаталитичность реакции (1) несущественна, и мы имеем для k:

$$k \approx \frac{x}{\tau} \cdot \frac{1}{A_0 \cdot H_0} \tag{4}$$

Значение величины x определяется спектрофотометрическим методом по изменению оптической плотности раствора. Применение спектрофотометра для определения концентрации окрашенного реагента (йода, в нашем случае) основано на существовании зависимости между оптической плотностью раствора и концентрацией в нем окрашенного реагента. Для многих веществ (в диапазоне сравнительно небольших концентраций) эта зависимость является линейной, т.е. справедлив закон Бера (1853г.), который может быть записан в виде:

$$D = \varepsilon_{\lambda} \cdot d \cdot C, \tag{5}$$

где D – оптическая плотность (коэффициент поглощения света) слоя раствора толщиной d, а C – концентрация в нем окрашенного реагента. Таким образом, для определения концентрации данного реагента в растворе спектрофотометрическим методом, необходимо знать значение молярного коэффициента экстинкции λ . Возможность определения концентрации йода в исследуемом реакционном растворе обусловлена малостью оптических плотностей всех исходных веществ и продуктов реакции по сравнению с йодом (на используемой длине волны 520 нм).

3 Обработка результатов

Снимем спектры для растворов с разными концентрациями йода (рисунок 1), построим график зависимости оптической плотности D от концентрации $[J_2]$.

Рис. 1: Спектр

Отсюда получим зависимость оптической плотности D от объёма добавленного йода на длине волны $\lambda=480$ нм. Данные приведены в таблице 1.

Таблица 1

$V_{ m J_2}$, мкл	D
200 ± 10	$0,632 \pm 0,001$
500 ± 10	$1,385 \pm 0,001$
800 ± 10	$2,386 \pm 0,001$
900 ± 10	$2,557 \pm 0,001$
1000 ± 10	$2,928 \pm 0,001$
1200 ± 20	$3,507 \pm 0,001$

Построим калибровочный график (рисунок 2):

Рис. 2

Получили линейную зависимость, что подтверждает закон Бера (5). Найдём коэффициент экстинкции из закона Бера (5):

$$\varepsilon_{\lambda} = (340 \pm 30) \frac{\pi}{\text{моль·см}}$$

В таблице 2 приведенs данные углового коэффициента y графиков, построенных в координатах D=f(t) при изменении концентрации одного из реагентов и фиксированных других, т.е. $y_i=\frac{dD_i}{dt}\sim \frac{dC_i}{dt}$.

Таблица 2

${ m J}_2$				
$V, \mu l$	y, c^{-1}	$\ln V$	$\ln y$	
400 ± 10	-0.029 ± 10^{-5}	$5,991465 \pm 0,03$	-3,54046	
640 ± 10	-0.029 ± 10^{-5}	$6,461468 \pm 0,02$	-3,54046	
800 ± 10	-0.026 ± 10^{-5}	$6,684612 \pm 0.02$	-3,64966	
1200 ± 20	-0.03 ± 10^{-5}	$7,090077 \pm 0,02$	-3,50656	
HCl				
$V, \mu l$	y, c^{-1}	$\ln V$	$\ln y$	
300 ± 10	-0.0013 ± 10^{-5}	$5,703782 \pm 0,03$	-6,64539	
600 ± 10	$-0,0026 \pm 10^{-5}$	$6,39693 \pm 0,02$	-5,95224	
900 ± 10	$-0,0036 \pm 10^{-5}$	$6,802395 \pm 0,02$	-5,62682	
1200 ± 20	$-0,0052 \pm 10^{-5}$	$7,090077 \pm 0,02$	-5,2591	
C_3H_6O				
$V, \mu l$	y, c^{-1}	$\ln V$	$\ln y$	
300 ± 10	-0.0012 ± 10^{-5}	$5,703782 \pm 0,03$	-6,72543	
600 ± 10	$-0,0021 \pm 10^{-5}$	$6,39693 \pm 0,02$	-6,16582	
900 ± 10	$-0,0041 \pm 10^{-5}$	$6,802395 \pm 0,02$	-5,49677	
1200 ± 20	$-0,005 \pm 10^{-5}$	$7,090077 \pm 0,02$	-5,29832	

По данным таблицы построим графики $\ln y = f(\ln V)$ (рисунок 3) и y = f(V) (рисунок 4):

Рис. 3: $\ln y = f(\ln V)$

Из графика (3) определяем частные порядки реакции по каждому реагенту:

То есть скорость реакции не зависит от концентрации J_2 .

Константа скорости $k = (28 \pm 3) \cdot 10^{-5} \mathrm{M}^{-1} \mathrm{c}^{-1}$

4 Вывод

В ходе работы мы подтвердили закон Бера, рассчитали коэффициент экстинкции $\left(\varepsilon_{\lambda}=(340\pm30)\,rac{\pi}{\text{моль·см}}\right)$, определили частные порядки реакции по всем реагентам $\left(0$ для $J_{2},1$ для HCl и $C_{3}H_{6}O\right)$ и вычислили константу скорости $\left(k=(28\pm3)\cdot10^{-5}\mathrm{M}^{-1}\mathrm{c}^{-1}\right)$.