MATH 220A

Name: Quin Darcy

Due Date: 05/02/21
Instructor: Dr. Martins

Assignment: Homework 5

23.2. Let $\{A_n\}$ be a sequence of connected subspaces of X, such that $A_n \cap A_{n+1} \neq \emptyset$ for all n. Show that $\bigcup A_n$ is connected.

Proof. Assume for contradiction, that $\bigcup A_n$ is not connected. Then there exists nonempty open subsets $U, V \subset \bigcup A_n$ such that $U \cap V = \emptyset$ and $U \cup V = \bigcup A_n$. By Lemma 23.2, for each n, A_n is entirely contained in either U or V. Moreover, as $\bigcup A_n$ is a sequence of subspaces, it follows that for some m, $A_m \subset U$, but $A_{m+1} \not\subset U$, and instead, $A_{m+1} \in V$. However, since $A_m \cap A_{m+1} \neq \emptyset$, then $A_m \cap A_{m+1} \subset U \cap V \neq \emptyset$, which is a contradiction.

23.6. Let $A \subset X$. Show that if C is a connected subspace of X that intersects both A and X - A, then C intersected BdA.

Proof. (Two contradiction proofs in a row, don't hate me!) Assume that C does not intersect the boundary of A. Then since $\overline{A} = \operatorname{Int} A \cup \operatorname{Bd} A$, and C intersects A, it follows that $C \cap \operatorname{Int} A \neq \emptyset$. By similar reasoning, we have that $C \cap \operatorname{Int} (X - A) \neq \emptyset$. Since $\operatorname{Int} A \cap \operatorname{Int} (X - A) = \emptyset$ and $\operatorname{Int} A \cup \operatorname{Int} (X - A) = C$, then the two previous sets are a separation of C and therefore C is not connected.

24.1

(a) Show that no two of the spaces (0,1), (0,1], [0,1] are homeomorphic.

Proof. By Corollary 24.2, each of the above intervals are connected in \mathbb{R} . However, note that if $a \in (0,1)$ and we let $A = (0,1)/\{a\}$, then A is not connected since we can let U = (0,a) and V = (a,1) and this would constitute a serperation. On the other hand, if we let $B = (0,1]/\{1\} = (0,1)$, then B is connected. Further note that if (0,1) was homeomorphic to (0,1], then A would be homeomorphic to B, however this is not the case as A is not connected but B is. Therefore, (0,1) is not homeomorphic to (0,1]. By the same reasoning, we can show that (0,1) is not homeomorphic to [0,1). Now note that if $a \in [0,1]$ such that 0 < a < 1, then $[0,1]/\{a\}$ is not connected since we can let U = [0,a) and V = (a,1] and this forms a separation on $[0,1]/\{a\}$. However, by removing either 0 or 1 from [0,1] we preserve its connectedness. Though doing so results in either (0,1] or [0,1), both of which we have shown not to be homeomorphic to (0,1).

(b) Show \mathbb{R}^n and \mathbb{R} are not homeomorphic if n > 1.

MATH 220A Darcy

Proof. By Example 4 in section 24, we have that the punctured euclidean space $\mathbb{R}^n - \{0\}$ is path connected and therefore connected, for n > 1. However, $\mathbb{R} - \{0\}$ is not connected since $U = (-\infty, 0)$ and $V = (0, \infty)$ forms a separation on the set. Therefore, for n > 1, \mathbb{R} and \mathbb{R}^n are not homeomorphic.

24.3 Let $f: X \to X$ be continuous. Show that if X = [0, 1], there is a point x such that f(x) = x. What happens if X equals [0, 1) or (0, 1).

Proof. Consider the funtion h(x) = f(x) - id(x), where $id : X \to X$ is the identity map on X. Since both f and id are continuous on X, then h is continuous on X. Note that if either f(0) = 0 or f(1) = 1, then this proves the claim. On the other hand, if $f(0) \neq 0$ and $f(1) \neq 1$, then considering the range of f, this would imply that f(0) > 0 and f(1) < 1. Now given that f(0) = 0 is continuous on f(0) = 0. Now given that f(0) = 0 is an ordered set in the order topology, then we may apply the Intermediate Value Theorem. Namely, we have that f(0) = 0 and thus by IVP, there exists some f(0) = 0. This implies that f(0) = 0. Hence, f(0) = 0.

If X = [0, 1) or X = (0, 1), then we want to show that there does not exist a fixed point. To do this, we need a counterexample consisting of a function continuous on X, but such that there is no $x \in X$ for which f(x) = x. Letting f(x) = (x + 1)/2, we see that f is continuous as a scalar multiple of a continuous function. Now if we assume that f(x) = x, for some $x \in X$, then we have that (x + 1)/2 = x, which implies that x = 1. However, this cannot be as $1 \notin X$ for X = [0, 1), nor for X = (0, 1).

24.10 Show that if U is an open connected subspace of \mathbb{R}^2 , then U is path connected.

Proof. Let $x_0 \in U$, and define P as the set of all points, x, for which there exists a path connecting x_0 to x. Then if $x \in P$, then $x \in U$ and since U is open, there exists a neighborhood V of x contained in U. Specifically, we may assume that $V \cap U = V$. Now we cite Example 3 in Section 24, which states that the unit ball B^n is path connected in \mathbb{R}^n . Thus, open balls in \mathbb{R}^2 are path connected. With V being such an open ball around x, we observe that if γ is a path connecting x_0 and x, then for any other $x' \in V$, we can construct a path γ' from x to x'. Thus taking $\lambda = \gamma' \circ \gamma$, we have a path from x_0 to x'. This implies that for all $x' \in V$, there exists a path connecting it to x_0 . Hence, $V \subset P$. Therefore, P is open.

To show that P is also closed, we want to show that U-P is open. Letting $x \in U-P$, then as U is open, there exists an open ball B such that $x \in B$ and $B \subset U$. Now assume that $x' \in B \cap P$. Then $x' \in P$ which implies that there exists a path from x_0 to x'. But we also have that $x \in B$ and so there is a path from x' to x. As before we can then construct a path from x_0 to x. This implies that $x \in P$, which is a contradiction. Therefore, $B \cap P = \emptyset$ and so U - P is open. Hence, P is closed. We have shown that for every such $P \subset U$, P is open and closed which implies that P is connected.