Dynamische Erde I

Übung 9 Metamorphe Gesteine II – Chemismus und Metamorphosegrad

Lernziele:

⇒ Die Studierenden können anhand des Gefüges und des Mineralbestandes den Chemismus und die Bildungsbedingungen metamorpher Gesteine bestimmen.

Grundbegriffe - Definitionen

Metamorphe Fazies:

Mineralparagenese charakteristisch für einen limitierten Druck-Temperatur (P-T) Bereich. Ist historisch an Hand von Metabasika definiert, hat in der modernen Petrologie an Bedeutung verloren. Ist aber nach wie vor ein äusserst praktisches Konzept (insbesondere für den Feldgeologen unabdingbar).

<u>Isograde,</u> <u>Indexmineralien:</u>

Das erstmalige Auftreten eines für bestimmte P-T-Bedingungen charakteristischen (Index-)Minerals definiert eine Isograde die als solche in der geologischen Karte eingetragen werden kann (Abbildung 2). Da die Stabilität von Mineralien immer vom Gesteinschemismus abhängt, werden Isograden in Gesteinen mehr oder weniger konstanter chemischer Zusammensetzung bestimmt.

1 Regionalmetamorphose an konvergenten Plattengrenzen erfolgt in mittleren bis großen Tiefen unter mittlerem bis ultrahohem Druck und hohen Temperaturen. 2 Hochdruckmetamorphose ist überwiegend an Subduktionszonen gebunden, wo Gesteinsmaterial zunehmend höheren Drücken ausgesetzt wird.

Abbildung 1: Übersicht über die verschiedenen Arten der Metamorphose (Press & Siever, S. 151).

Aufgabe 1:

Welche Faktoren bestimmen das Auftreten von Mineralen (Mineralbestand) in einem metamorphen Gestein?

Was versteht man unter einer 'Mineralparagenese'?

Aufgabe 2: Ausgangsgestein/Ursprungsgestein, Chemismus

h lir ie

die Bezeichnung Metamorpho	ohe Gesteine bilden sich aus magmatischen oder sedimentaren Ausgangsgesteinen. Daher rührt auc hnung Metamorphose (altgriechisch, metamorphosis, «Umgestaltung). Die Tabelle auf Seite 6 gibt d sicht über die chemischen Gesteinsgruppen der Metamorphite (Spalten). Bestimme für jede Spalte di n Elemente.					
Metagranitoide:						
Metaultrabasika:						
Metabasika						
Metakarbonate:						
Metapelite:						

Aufgabe 3: Metamorphose

Die metamorphe Fazies entspricht bestimmten Druck- und Temperaturbedingungen, die ihrerseits bestimmten plattentektonischen Bereichen zugeordnet werden. Lokalisiere die verschiedenen Fazies im Druck-Temperatur-Diagramm und trage den Verlauf der plattentektonischen Regime a), b) und c) ein.

- a) Subduktion (Hochdruckmetamorphose)
- b) Gebirgsbildung (Regionalmetamorphose)
- c) Kontaktmetamorphose

T

Aufgabe 4: Fazies und Metamorphosegrad

Teile einige Handstücke mit Hilfe der Tabelle (S. 6) nach Chemismus und Metamorphosegrad im P-T-Diagramm ein.

Aufgabe 5: Zusammenhang Mineralbestand - Gefüge - Metamorphose

- Wie verhält sich der Wassergehalt eines Gesteins bei zunehmender Metamorphose?
- Wie ändert sich dabei die Mineralogie?
- Was für Auswirkungen hat dies auf das Gefüge?

METAMORPHOSE:	tief	mittel	hoch	sehr hoch
WASSERGEHALT:				
MINERALBESTAND:				
Schichtsilikate				
Amphibole				
Granat				
GEFÜGE:				

Hausaufgabe: Kartierung der Metamorphose

Benütze zur Lösung der folgenden Aufgabe diese Karte.

- 1. Wie kann man Metamorphose kartieren?
- 2. Wo sind Reste von Subduktionszonen in den Zentralalpen zu finden?
- 3. Was ist der Zusammenhang zwischen Isograden und der Insubrischen Linie?

Isograden der alpinen Metamorphose

Gliederung metamorpher Terrains

	Metagranitoide	Meta-Ultrabasika	Metabasika	Metakarbonate	Metapelite
	(Quarz=Durchläufer)			(Calcit=Durchläufer)	(Quarz=Durchläufer)
Grünschiefer-	Albit	Serpentin	Albit	Dolomit ± Quarz	Chloritoid
Fazies	Chlorit	Chlorit	Chlorit	<u>Talk</u>	Biotit +
	Epidot	Brucit ± Olivin	<u>Aktinolith</u>	Hellglimmer	Muskovit
	± Biotit		<u>Epidot</u>	<u>Phlogopit</u>	Chlorit
				± Tremolit Albit	Granat
Amphibolit-	Plagioklas	Serpentin	<u>Plagioklas</u>	Dolomit	Biotit + Muskovit
Fazies	Kalifeldspat	<u>Olivin</u> + Talk	<u>Hornblende</u>	<u>Tremolit</u>	Granat
	Muskovit	Tremolit, Chlorit	Granat	Diopsid	<u>Staurolith</u>
	Biotit			Olivin	<u>Disthen</u>
				Plagioklas	± Sillimanit
Granulit-	Plagioklas	Olivin	Plagioklas	Kalifeldspat	Sillimanit
Fazies	Kalifeldspat	<u>Enstatit</u>	<u>Pyroxene</u>	Diopsid	Kalifeldspat
	<u>Sillimanit</u>	Mg-Al-Spinell	<u>Granat</u>	Olivin	keine Glimmer
	Pyroxene ± Granat	Diopsid		Plagioklas	
Blauschiefer-	Jadeit, Pyroxen	Serpentin	Glaukophan	Dolomit	Hellglimmer
Fazies (Glaukophan-			Lawsonit/Epidot	Quarz	Chlorit
Lawsonit Schiefer			Aragonit	ev. Aragonit	
Fazies)			Jadeit	Tremolit	
Eklogit-Fazies	Jadeit ± Granat	Olivin	Na-Ca Pyroxen		Granat
		Enstatit	(Omphazit)		Disthen
		Spinell	Granat (Pyrop)		Plagioklas
		Granat (Pyrop)			

Wichtige metamorphe Mineralien in Beziehung zu den Metamorphose-Fazies. Unterstrichene Mineralien sind fazieskritisch.