

Improving the Complexity of Byzantine Vector Consensus

Manos Chatzakis

emmanouil.chatzakis@epfl.ch

What is Byzantine Vector Consensus?

- System: *n* processes
 - f Byzantine
 - n = 3f + 1
- Decide a **vector of** (n f) distinct **proposals**
- Partial Synchrony: Delays are initially unbounded, until GST
 - Delays bounded by δ
 - Clocks do not drift

Why do we care?

Interesting problem for distributed computing

- Real-world applications
 - Blockchain
 - Decentralized Computing
 - IoT

Existing solutions cannot work

- Byzantine Consensus is $O(n^2)$: QUAD
 - For vector consensus: $O(n^3)$ communication complexity, O(f) latency
 - Message size is O(n)
- Alternative: Work with hashes instead of vectors
 - $O(n^2 \log(n))$ communication complexity, $O(n^f)$ latency
- Can we do better?
 - We achieved $O(n^2\sqrt{n})$ communication complexity and $O(n\sqrt{n})$ latency!

Structure of Byzantine Vector Consensus

Structure of Byzantine Vector Consensus

Leader-Based Vector Dissemination

 Each view has a leader process that tries to disseminate their vector (View Core)

- Hash obtained when all processes overlap in a view with correct leader
 - Processes advance over views until they synchronize (View Synchronizer)

View Core

View Synchronizer

- RareSync: Processes overlap for every view of each epoch entered after GST
 - \sqrt{n} views
 - f + 1 views (worst case) to reach a correct leader
- Processes communicate only at start/end of epoch
 - Local clocks to advance inside epochs
 - Wait δ before entering new epoch
- **Synchronization time**: Processes synchronized, correct leader: Obtain hash!

• e_{max} : Epoch of most advanced process at GST.

Worst case:

- At *GST*, all correct processes are leaders
- Most advanced process in e_{max} : All correct processes will enter e_{max} by $GST \,+\, 3\delta$
 - All leaders correct but processes misaligned

• e_{max} : Epoch of most advanced process at GST.

- Worst case:
 - At GST, all correct processes are leaders
 - Most advanced process in e_{max} : All correct processes will enter e_{max} by $GST \,+\, 3\delta$
 - All leaders correct but processes misaligned

Latency

Latency

Latency

Summary

- Byzantine Vector Consensus is a difficult problem
 - With many real-world applications!
- Previous solutions could not work
 - Either cubic communication complexity or exponential latency
- Leader-Based Vector Dissemination
 - Achieves $O(n^2\sqrt{n})$ communication complexity and $O(n\sqrt{n})$ latency!

Thank you!

Questions?