

I-SEOUL-U

PCA(주성분 분석)

PCA란?

클러스터링 결과

01 지난주 피드백

02 다중공선성 해결 및 파생 변수 정제

> 2.1 Dimension Reduction: PCA

2.2 Feature Selection

2.3 Feature Engineering

03 클러스터링

Feature Engineering: 내부적 요소 (1) 시세

2주차 복습 …

거래가 월세보다

많이일어나지않아

데이터가 아예 없는

집중하겠호되.

행정동이 있음

✓ 1인가구의주된 <mark>거주형태</mark>는월세

아파트

연립다세대

단독다가구

오피스텔

mean_month: 월세액

각 주택 종류별로 2개의 변수가 월세 데이터 반영

mean_mdeposit : 월세 보증금

01 지난주 피드백

02 다중공선성 해결 및 파생 변수 정제

> 2.1 Dimension Reduction: PCA

2.2 Feature Selection

2.3 Feature Engineering

03 클러스터링

02

Feature Engineering: 내부적 요소 (1) 시세

월세 이율 =

월세 가격

x 100

전세금 - 월세 보증금

월세 이율

전월세 전환율 ÷ 12

01 지난주 피드백

02 다중공선성 해결 및 파생 변수 정제

2.1 Dimension Reduction : **PCA**

2.2 Feature Selection

2.3 Feature Engineering

03 클러스터링

04 추천 알고리즘 구현

2020학년도 2학기 4팀 데이터마이닝 4주차 주제분석 **S**at

월 단위의 전월세 전환율

02 Feature Engineering : 외부적 요소(1) 생활인프라 지수

종합적 지표 제안 : ' 생활인프라 지수 '

생활인프라 충족요건 및 시설유형 판단요인 계층구조

국토연구원, 『생활인프라 실태의 도시간 비교분석 및 정비방안』

2020학년도 2학기 4팀 데이터마이닝 4주차 주제분석 **S**at

01 지난주 피드백

02 다중공선성 해결 및 파생 변수 정제

2.1 Dimension Reduction : PCA

2.2 Feature Selection

2.3 Feature Engineering

03 클러스터링

Feature Engineering: 외부적 요소(1) 생활인프라 지수

종합적 지표 제안: '생활인프라 지수'

AHP분석기법을 적용해 산출된 가중치

삶의질 (QoL)

01 지난주 피드백

02 다중공선성 해결 및 파생 변수 정제

> 2.1 Dimension Reduction: PCA

2.2 Feature Selection

2.3 Feature Engineering

03 클러스터링

Feature Engineering : 외부적 요소(2) 치안

치안 관련 파생변수 정제: 2. 범죄 관련 구단위 변수들

01 지난주 피드백

- 02 다중공선성 해결 및 파생 변수 정제
 - 2.1 Dimension Reduction: PCA
 - 2.2 Feature Selection
 - 2.3 Feature Engineering

- 03 클러스터링
- 04 추천 알고리즘 구현

클러스터링

K-Means Clustering

주어진 데이터를 k개의 클러스터로 묶는 알고리즘으로, 각 클러스터와 거리 차이의 분산을 최소화하는 방식으로 동작

무작위로 데이터 중 K개의 중심점 추출

각 오브젝트들이 가장 가까운 중심점을 기준으로 묶임

각 클러스터에서 중심점 이동

고정된 클러스터로 수렴할 때까지 반복

01 지난주 피드백

♀ 02 다중공선성 해결 및 파생 변수 정제

03 클러스터링

- 3.1 K-means
- 3.2 K-medoids
- 3.3 DBSCAN
- 3.4 Hierarchical Clustering
- 3.5 최종모델 선택 및 결과 해석

클러스터링: K-MEANS

Cluster plot

01 지난주 피드백

🍳 02 다중공선성 해결 및 파생 변수 정제

03 클러스터링

- 3.1 K-means
- 3.2 K-medoids
- 3.3 DBSCAN
- 3.4 Hierarchical Clustering
- 3.5 최종모델 선택 및 결과 해석

♦ 04 추천 알고리즘 구현

클러스터링: K-medoids

K-Medoids Clustering

실루엣 계수가 K-means clustering의 것보다 작음

01 지난주 피드백

♀ 02 다중공선성 해결 및 파생 변수 정제

03 클러스터링

- 3.1 K-means
- 3.2 K-medoids
- 3.3 DBSCAN
- 3.4 Hierarchical Clustering
- 3.5 최종모델 선택 및 결과 해석

- 클러스터 2는 도시 외곽 지역, 클러스터 1,3 은 주로 도시 중심에 분포
- 북쪽과 동남권의 중심은 클러스터 1,3 서남권의 중심에는 클러스터 2가 주로 분포

도시 중심과 가까운 곳에 클러스터 1,3

01 지난주 피드백

♀ 02 다중공선성 해결 및 파생 변수 정제

03 클러스터링

- 3.1 K-means
- 3.2 K-medoids
- 3.3 DBSCAN
- 3.4 Hierarchical Clustering
- 3.5 최종모델 선택 및 결과 해석

♦ 04 추천 알고리즘 구현

내부적 요인(1):시세

01 지난주 피드백

🍳 02 다중공선성 해결 및 파생 변수 정제

- 3.1 K-means
- 3.2 K-medoids
- 3.3 DBSCAN
- 3.4 Hierarchical Clustering
- 3.5 최종모델 선택 및 결과 해석
- ♦ 04 추천 알고리즘 구현

내부적 요인(2):라이프스타일

01 지난주 피드백

- 🍳 02 다중공선성 해결 및 파생 변수 정제
- 03 클러스터링
 - 3.1 K-means
 - 3.2 K-medoids
 - 3.3 DBSCAN
 - 3.4 Hierarchical Clustering
 - 3.5 최종모델 선택 및 결과 해석
- ◆ 04 추천 알고리즘 구현

외부적 요인(1):생활인프라지수

01 지난주 피드백

- **♀** 02 다중공선성 해결 및 파생 변수 정제
- 03 클러스터링
 - 3.1 K-means
 - 3.2 K-medoids
 - 3.3 DBSCAN
 - 3.4 Hierarchical Clustering
 - 3.5 최종모델 선택 및 결과 해석
- ♦ 04 추천 알고리즘 구현

외부적 요인(1):생활인프라 지수 - 소비, 스포츠

01 지난주 피드백

🍳 02 다중공선성 해결 및 파생 변수 정제

- 3.1 K-means
- 3.2 K-medoids
- 3.3 DBSCAN
- 3.4 Hierarchical Clustering
- 3.5 최종모델 선택 및 결과 해석
- ♦ 04 추천 알고리즘 구현

외부적 요인(1):생활인프라 지수-교통

01 지난주 피드백

- **♀** 02 다중공선성 해결 및 파생 변수 정제
- 03 클러스터링
 - 3.1 K-means
 - 3.2 K-medoids
 - 3.3 DBSCAN
 - 3.4 Hierarchical Clustering
 - 3.5 최종모델 선택 및 결과 해석
- ♦ 04 추천 알고리즘 구현

외부적 요인(2):치안

01 지난주 피드백

🍳 02 다중공선성 해결 및 파생 변수 정제

- 3.1 K-means
- 3.2 K-medoids
- 3.3 DBSCAN
- 3.4 Hierarchical Clustering
- 3.5 최종모델 선택 및 결과 해석
- ♦ 04 추천 알고리즘 구현

잠깐! 면적당 CCTV 개수와 치안의 관계는?

- 1. 면적당 CCTV, 범죄발생건수, 도시위험도 간의 관계가 유의하지 않음
- 2. 치안을 직접적으로 설명할 수 있는 도시위험도, 범죄발생건수는 자치구별 데이터로, 클러스터링에 사용되지 않음

01 지난주 피드백

♀ 02 다중공선성 해결 및 파생 변수 정제

03 클러스터링

- 3.1 K-means
- 3.2 K-medoids
- 3.3 DBSCAN
- 3.4 Hierarchical Clustering
- 3.5 최종모델 선택 및 결과 해석

♦ 04 추천 알고리즘 구현

잠깐! 면적당 CCTV 개수와 치안의 관계는?

문제상황

3. 해당 데이터는 정부에서 생활방범, 교통단속, 어린이보호 등을 목적으로 설치한 공공CCTV 데이터 →사설 CCTV는 반영되지 않음 01 지난주 피드백

♀ 02 다중공선성 해결 및 파생 변수 정제

03 클러스터링

- 3.1 K-means
- 3.2 K-medoids
- 3.3 DBSCAN
- 3.4 Hierarchical Clustering
- 3.5 최종모델 선택 및 결과 해석

♦ 04 추천 알고리즘 구현

잠깐! 면적당 CCTV 개수와 치안의 관계는?

실제 치안에 대한 지표인 도시안전도가 낮은 강남구/도봉구 비교

→ 도시 외곽쪽으로 갈수록 CCTV 밀도가 낮아지는 동일한 추세!

01 지난주 피드백

♀ 02 다중공선성 해결 및 파생 변수 정제

03 클러스터링

- 3.1 K-means
- 3.2 K-medoids
- 3.3 DBSCAN
- 3.4 Hierarchical Clustering
- 3.5 최종모델 선택 및 결과 해석

요약

	변수 구분	클러스터1	클러스터 2	클러스터3
내부적	시세	사	상대적으로 낮은편	높음
요소	유동인구 평균 및 분산	가장 높음	상대적으로 낮은편	사 이
외부적	생활인프라	상대적으로 낮은편	가장 높음	노음
요소	면적당 CCTV	가장 높음	낮음	낮은 편
	<u> 주</u> 합	교통 요충지 주변의 주거 지역	도시 외곽의 주거지역	교통 요충지 및 번화가

01 지난주 피드백

파생 변수 정제

- 3.1 K-means
- 3.2 K-medoids
- 3.3 DBSCAN
- 3.4 Hierarchical Clustering
- 3.5 최종모델 선택 및 결과 해석
- ♦ 04 추천 알고리즘 구현

추천알고리즘 함수 구현

실제 구현

화려한 조명이 날 감싸네님의취향고려!

- 월세액은 60만원에서 40만원 사이로!
- 보증금은 **5천만원에서 1천만원** 사이로!
- 오피스텔 평수는 25평에서 15평 사이로!

01 지난주 피드백

♀ 02 다중공선성 해결 및 파생 변수 정제

- 04 추천 알고리즘 구현
 - 4.1 알고리즘 개요
 - 4.2 설문지 제작
 - 4.3 함수 구현 및 추천
 - 4.4 웹페이지 구현

추천알고리즘 함수 구현

실제 구현

화려한 조명이 날 감싸네님을 위한 데마팀의 추천 결과는?

<서울특별시 마포구 합정동 월드오피스텔>

- ✓ 평수 20.52평
- 보증금 5천만원
- ✓ 월세 45만원

01 지난주 피드백

02 다중공선성 해결 및 파생 변수 정제

- 04 추천 알고리즘 구현
 - 4.1 알고리즘 개요
 - 4.2 설문지 제작
 - 4.3 함수 구현 및 추천
 - 4.4 웹페이지 구현

