Author and Year	Focusing Area	Methodology	Dataset	Findings	Gap
Karabo Jenga, Cagatay Catal, Gorkem Kar 2023	1.South Africa 2.Venezuela 3.Papua New Guinea	1.Neural Network 2.Decesion Tree 3.KNN Algorithm 4.Random Forest	1.Text Type	1.Predict Occurance of Crime 2.Predict Location of a Time	1.ML techniques do not produce accurate results 2.Data availability and a limited amount of resources
Varshitha D N, Aishwarya P, Sahana R 2017	1.Mumbai 2.Dellhi	1.Data mining 2.Crime cast 3.Deep learning 4.Sentimental analysis	1.Text Type 2.JSON Type	1.Reducing the crime occurrences 2.Building Crime Prediction	1.Deep Learning produces inaccurate results when the small dataset is provided
Wajiha Safat, Sohail Asghar, Saira Andleeb 2021	1.Chicago 2.Los Angeles	1.Logistic regression 2.SVM 3.Naive Bayes 4.KNN	1.Text Type 2.Graph ical Type	1.Early identi cation of crime 2.Hot spots with higher crime rate	1.hybrid models to expand crime prediction accuracy and to enhance the overall performance