Problem S5: Triangle: The Data Structure

Problem Description

In a parallel universe, the most important data structure in computer science is the triangle. A triangle of size M consists of M rows, with the i-th row containing i elements. Furthermore, these rows must be arranged to form the shape of an equilateral triangular. That is, each row is centered around a vertical line of symmetry through the middle of the triangle. For example, the diagram below shows a triangle of size 4:

A triangle contains sub-triangles. For example, the triangle above contains ten sub-triangles of size 1, six sub-triangles of size 2 (two of which are the triangle containing (3,1,2) and the triangle containing (4,6,1)), three sub-triangles of size 3 (one of which contains (2,2,1,1,4,2)). Note that every triangle is a sub-triangle of itself.

You are given a triangle of size N and must find the sum of the maximum elements of every sub-triangle of size K.

Input Specification

The first line contains two space-separated integers N and K ($1 \le K \le N \le 3000$).

Following this are N lines describing the triangle. The *i*-th of these lines contains *i* space-separated integers $a_{i,j}$ ($0 \le a_{i,j} \le 10^9$), representing the *i*-th row of the triangle.

For 4 of the 15 available marks, N < 1000.

Output Specification

Output the integer sum of the maximum elements of every sub-triangle of size K.

Sample Input

4 2

3

1 2

4 2 1

6 1 4 2

Output for Sample Input

23

La version française figure à la suite de la version anglaise.

Problème S5: Le triangle en tant que structure de données

Énoncé du problème

Dans un monde parallèle, la structure de données la plus importante dans le domaine de l'informatique est le triangle. Un triangle de taille M comprend M rangées dont la i^e rangée contient i éléments. De plus, on doit arranger ces rangées de manière qu'elles aient la forme d'un triangle équilatéral. C'est-à-dire que chaque rangée a son centre sur la ligne de symétrie verticale du triangle. Par exemple, on voit dans la figure ci-dessous un triangle de taille 4:

Un triangle contient aussi des sous-triangles. Par exemple, le triangle ci-dessus contient dix sous-triangles de taille 1, six sous-triangles de taille 2 (dont deux sont les triangles qui contiennent (3,1,2) et (4,6,1)), trois sous-triangles de taille 3 (dont le triangle qui contient (2,2,1,1,4,2)). On remarque aussi que chaque triangle est son propre sous-triangle.

Étant donné un triangle de taille N, déterminer la somme des élément maximal de chaque soustriangle de taille K.

Précisions par rapport aux données d'entrée

La première ligne contiendra deux entiers, soit N et K ($1 \le K \le N \le 3000$), qui seront séparés l'un de l'autre par un espace.

Les N lignes suivantes décriront le triangle. Parmi ces lignes, la i^e ligne contiendra i entiers $a_{i,j}$ ($0 \le a_{i,j} \le 10^9$) qui seront séparés les uns des autres par un espace. Ces derniers représenteront la i^e rangée du triangle.

Pour 4 des 15 points disponibles, N < 1000.

Précisions par rapport aux données de sortie

Il devrait y avoir la somme des élément maximal de chaque sous-triangle de taille K.

Exemple de données d'entrée

4 2

3

1 2

4 2 1

6 1 4 2

Exemple de données de sortie

23