

Some new characterizations of PST -groups

Xiaolan Yi

Department of Mathematics, Zhejiang Sci-Tech University,
Hangzhou 310018, P.R.China
E-mail: yixiaolan2005@126.com

Alexander N. Skiba

Department of Mathematics, Francisk Skorina Gomel State University,
Gomel 246019, Belarus
E-mail: alexander.skiba49@gmail.com

Abstract

Let H and B be subgroups of a finite group G such that $G = N_G(H)B$. Then we say that H is *quasipermutable* (respectively *S -quasipermutable*) in G provided H permutes with B and with every subgroup (respectively with every Sylow subgroup) A of B such that $(|H|, |A|) = 1$. In this paper we analyze the influence of S -quasipermutable and quasipermutable subgroups on the structure of G . As an application, we give new characterizations of soluble PST -groups.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover p is always supposed to be a prime and π is a subset of the set \mathbb{P} of all primes; $\pi(G)$ denotes the set of all primes dividing $|G|$.

A subgroup H of G is said to be *quasinormal* or *permutable* in G if H permutes with every subgroup A of G , that is, $HA = AH$; H is said to be *S -permutable* in G if H permutes with every Sylow subgroup of G .

A group G is called a *PT -group* if permutability is a transitive relation on G , that is, every permutable subgroup of a permutable subgroup of G is permutable in G . A group G is called a *PST -group* if S -permutability is a transitive relation on G .

As well as T -groups, PT -groups and PST -groups possess many interesting properties (see Chapter 2 in [1]). The general description of PT -groups and PST -groups were firstly obtained by Zacher [2] and Agrawal [3], for the soluble case, and by Robinson in [4], for the general case. Nevertheless,

Keywords: finite group, quasipermutable subgroup, PST -group, Hall subgroup, supersoluble group, Gaschütz subgroup, Carter subgroup, saturated formation.

Mathematics Subject Classification (2010): 20D10, 20D15, 20D20

in the further publications, the authors (see for example recent papers [5]–[16]) have found out and described many other interesting characterizations of soluble PT and PST -groups.

In this paper we give new "Hall"-characterizations of soluble PST -groups on the basis of the following

Definition 1.1. We say that a subgroup H is *quasipermutable* (respectively *S -quasipermutable*) in G provided H permutes with B and with every subgroup (respectively with every Sylow subgroup) A of B such that $(|H|, |A|) = 1$.

Examples and some applications of quasipermutable subgroups were discussed in our papers [17] and [18] (see also remarks in Section 5 below). In this paper, we give the following result, which we consider as one more motivation for introducing the concept of quasipermutability.

Theorem A. Let $D = G^N$ and $\pi = \pi(D)$. Then the following statements are equivalent:

- (i) D is a Hall subgroup of G and every Hall subgroup of G is quasipermutable in G .
- (ii) G is a soluble PST -group.
- (iii) Every subgroup of G is quasipermutable in G .
- (iv) Every π -subgroup of G and some minimal supplement of D in G are quasipermutable in G .

In the proof Theorem A we use the next three our results.

A subgroup S of G is called a *Gaschütz* subgroup of G (L.A. Shemetkov [19, IV, 15.3]) if S is supersoluble and for any subgroups $K \leq H$ of G , where $S \leq K$, the number $|H : K|$ is not prime.

Theorem B. The following statements are equivalent:

(I) G is soluble, and if S is a Gaschütz subgroup of G , then every Hall subgroup H of G satisfying $\pi(H) \subseteq \pi(S)$ is quasipermutable in G .

(II) G is supersoluble and the following hold:

(a) $G = DC$, where $D = G^N$ is an abelian complemented subgroup of G and C is a Carter subgroup of G ;

(b) $D \cap C$ is normal in G and $(p, |D/D \cap C|) = 1$ for all prime divisors p of $|G|$ satisfying $(p - 1, |G|) = 1$.

(c) For any non-empty set π of primes, every π -element of any Carter subgroup of G induces a power automorphism on the Hall π' -subgroup of D .

(III) Every Hall subgroup of G is quasipermutable in G .

Let \mathcal{F} be a class of groups. If $1 \in \mathcal{F}$, then we write $G^\mathcal{F}$ to denote the intersection of all normal subgroups N of G with $G/N \in \mathcal{F}$. The class \mathcal{F} is said to be a *formation* if either $\mathcal{F} = \emptyset$ or $1 \in \mathcal{F}$ and every homomorphic image of $G/G^\mathcal{F}$ belongs to \mathcal{F} for any group G . The formation \mathcal{F} is said to be *saturated* if $G \in \mathcal{F}$ whenever $G/\Phi(G) \in \mathcal{F}$. A subgroup H of G is said to be an \mathcal{F} -*projector* of G provided $H \in \mathcal{F}$ and $E = E^\mathcal{F}H$ for any subgroup E of G containing H . By the Gaschütz's theorem

[20, VI, 9.5.4 and 9.5.6], for any saturated formation \mathcal{F} , every soluble group G has an \mathcal{F} -projector and any two \mathcal{F} -projectors of G are conjugate.

Theorem C. *Let \mathcal{F} be a saturated formation containing all nilpotent groups. Suppose that G is soluble and let $\pi = \pi(C) \cap \pi(G^\mathcal{F})$, where C is an \mathcal{F} -projector of G . If every maximal subgroup of every Sylow p -subgroup of G is S -quasipermutable in G for all $p \in \pi$, then $G^\mathcal{F}$ is a Hall subgroup of G .*

Theorem D. *Let \mathcal{F} be a saturated formation containing all supersoluble groups and $\pi = \pi(F^*(G^\mathcal{F}))$. If $G^\mathcal{F} \neq 1$, then for some $p \in \pi$ some maximal subgroup of a Sylow p -subgroup of G is not S -quasipermutable in G .*

In this theorem $F^*(G^\mathcal{F})$ denotes the generalized Fitting subgroup of $G^\mathcal{F}$, that is, the product of all normal quasinilpotent subgroups of $G^\mathcal{F}$.

The main tool in the proofs of Theorems C and D is the following our result.

Proposition. *Let E be a normal subgroup of G and P a Sylow p -subgroup of E such that $|P| > p$.*

- (i) *If every number V of some fixed $\mathcal{M}_\phi(P)$ is S -quasipermutable in G , then E is p -supersoluble.*
- (ii) *If every maximal subgroup of P is S -quasipermutable in G , then every chief factor of G between E and $O_{p'}(E)$ is cyclic.*
- (iii) *If every maximal subgroup of every Sylow subgroup of E is S -quasipermutable in G , then every chief factor of G below E is cyclic.*

In this proposition we write $\mathcal{M}_\phi(G)$, by analogy with [21], to denote a set of maximal subgroups of G such that $\Phi(G)$ coincides with the intersection of all subgroups in $\mathcal{M}_\phi(G)$.

Note that Proposition may be independently interesting because this result unifies and generalize many known results, and in particular, Theorems 1.1–1.5 in [21] (see Section 5). In Section 5 we discuss also some further applications of the results.

All unexplained notation and terminology are standard. The reader is referred to [19], [22], or [23] if necessary.

2 Basic Propositions

Let H be a subgroup of G . Then we say, following [17], that H is *propermutable* (respectively *S -propermutable*) in G provided there is a subgroup B of G such that $G = N_G(H)B$ and H permutes with all subgroups (respectively with all Sylow subgroups) of B .

Proposition 2.1. *Let $H \leq G$ and N a normal subgroup of G . Suppose that H is quasipermutable (S -quasipermutable) in G .*

- (1) *If either H is a Hall subgroup of G or for every prime p dividing $|H|$ and for every Sylow p -subgroup P of G either $P \cap H$ is a Hall subgroup of P or $P \cap H$ is not a Hall subgroup of P and $P \cap H$ is not S -quasipermutable in P , then HN is a Hall subgroup of HN .*

low p -subgroup H_p of H we have $H_p \not\leq N$, then HN/N is quasipermutable (S -quasipermutable, respectively) in G/N .

- (2) If $\pi = \pi(H)$ and G is π -soluble, then H permutes with some Hall π' -subgroup of G .
- (3) H permutes with some Sylow p -subgroup of G for every prime p dividing $|G|$ such that $(p, |H|) = 1$.
- (4) $|G : N_G(H \cap N)|$ is a π -number, where $\pi = \pi(N) \cup \pi(H)$.
- (5) If H is propermutable (S -propermutable) in G , then HN/N is propermutable (S -propermutable, respectively) in G/N .
- (6) If H is S -propermutable in G , then H permutes with some Sylow p -subgroup of G for any prime p dividing $|G|$.
- (7) Suppose that G is π -soluble. If H is a Hall π -subgroup of G , then H is propermutable (S -propermutable, respectively) in G .

Proof. By hypothesis, there is a subgroup B of G such that $G = N_G(H)B$ and H permutes with B and with all subgroups (with all Sylow subgroups, respectively) A of B such that $(|H|, |A|) = 1$.

- (1) It is clear that

$$G/N = (N_G(H)N/N)(BN/N) = N_{G/N}(HN/N)(BN/N).$$

Let K/N be any subgroup (any Sylow subgroup, respectively) of BN/N such that $(|HN/N|, |K/N|) = 1$. Then $K = (K \cap B)N$. Let B_0 be a minimal supplement of $K \cap B \cap N$ to $K \cap B$. Then $K/N = (K \cap B)N/N = B_0(K \cap B \cap N)N/N = B_0N/N$ and $K \cap B \cap N \cap B_0 = N \cap B_0 \leq \Phi(B_0)$. Therefore $\pi(K/N) = \pi(K \cap B/K \cap B \cap N) = \pi(B_0)$, so $(|HN/N|, |B_0|) = 1$. Suppose that some prime $p \in \pi(B_0)$ divides $|H|$, and let H_p be a Sylow p -subgroup of H . We shall show that $H_p \not\leq N$. In fact, we may suppose that H is a Hall subgroup of G . But in this case, H_p is a Sylow p -subgroup of G . Therefore, since $p \in \pi(B_0) \subseteq \pi(G/N)$, $H_p \not\leq N$. Hence p divides $|HN/N|$, a contradiction. Thus $(|H|, |B_0|) = 1$, so in the case, when H is quasipermutable in G , we have $HB_0 = B_0H$ and hence HN/N permutes with $K/N = B_0N/N$. Thus HN/N is quasipermutable in G/N .

Finally, suppose that H is S -quasipermutable in N . In this case, B_0 is a p -subgroup of B , so for some Sylow p -subgroup B_p of B we have $B_0 \leq B_p$ and $(|H|, p) = 1$. Hence $K/N = B_0N/N \leq B_pN/N$, which implies that $K/N = B_pN/N$. But H permutes with B_p by hypothesis, so HN/N permutes with K/N . Therefore HN/N is S -quasipermutable in G/N .

- (2) By [20, VI, 4.6], there are Hall π' -subgroups E_1, E_2 and E of $N_G(H), B$ and G , respectively, such that $E = E_1E_2$. Then H permutes with all Sylow subgroups of E_2 by hypothesis, so

$$HE = H(E_1E_2) = (HE_1)E_2 = (E_1H)E_2 =$$

$$E_1(HE_2) = E_1(E_2H) = (E_1E_2)H = EH$$

by [22, A, 1.6].

(3) See the proof of (2).

(4) Let p be a prime such that $p \notin \pi$. Then by (3), there is a Sylow p -subgroup P of G such that $HP = PH$ is a subgroup of G . Hence $HP \cap N = H \cap N$ is a normal subgroup of HP . Thus p does not divide $|G : N_G(H \cap N)|$.

(5) See the proof of (1).

(6) See the proof of (2).

(7) Since G is π -soluble, B is π -soluble. Hence by [20, VI, 1.7], $B = B_\pi B_{\pi'}$ where B_π is a Hall π -subgroup of B and $B_{\pi'}$ is a Hall π' -subgroup of B . By [20, VI, 4.6], there are Hall π -subgroups N_π , B_π and G_π of $N_G(H)$, B and G , respectively, such that $G_\pi = N_\pi B_\pi$. But since $H \leq N_\pi$, N_π is a Hall π -subgroup of G . Therefore $G_\pi = N_\pi B_\pi = N_\pi$, so $B_\pi \leq N_\pi$. Hence $G = N_G(H)B = N_G(H)B_\pi B_{\pi'} = N_G(H)B_{\pi'}$, so H is propermutable (S -propermutable, respectively) in G .

A group G is said to be a C_π -group provided G has a Hall π -subgroup and any two Hall π -subgroups of G are conjugate.

On the basis of Proposition 2.1 the following two results are proved.

Proposition 2.2. *Let H be a Hall S -quasipermutable subgroup of G . If $\pi = \pi(|G : H|)$, then G is a C_π -group.*

Proposition 2.3. *Let E be a normal subgroup of G and H a Hall π -subgroup of E . If H is nilpotent and S -quasipermutable in G , then E is π -soluble.*

3 Groups with a Hall quasipermutable subgroup

A group G is said to be π -separable if every chief factor of G is either a π -group or a π' -group. Every π -separable group G has a series

$$1 = P_0(G) \leq M_0(G) < P_1(G) < M_1(G) < \dots < P_t(G) \leq M_t(G) = G$$

such that

$$M_i(G)/P_i(G) = O_{\pi'}(G/P_i(G))$$

$(i = 0, 1, \dots, t)$ and

$$P_{i+1}(G)/M_i(G) = O_\pi(G/M_i(G))$$

$(i = 1, \dots, t)$

The number t is called the π -length of G and denoted by $l_\pi(G)$ (see [34, p. 249]).

One more result, which we use in the proof of our main results, is the following

Theorem 3.1. Let H be a Hall subgroup of G and $\pi = \pi(H)$. Suppose that H is quasipermutable in G .

(I) If $p > q$ for all primes p and q such that $p \in \pi$ and q divides $|G : N_G(H)|$, then H is normal in G .

(II) If H is supersoluble, then G is π -soluble.

(III) If H is π -separable, then the following hold:

(i) $H' \leq O_\pi(G)$. If, in addition, $N_G(H)$ is nilpotent, then $G' \cap H \leq O_\pi(G)$.

(ii) $l_\pi(G) \leq 2$ and $l_{\pi'}(G) \leq 2$.

(iii) If for some prime $p \in \pi'$ a Hall π' -subgroup E of G is p -supersoluble, then G is p -supersoluble.

Let \mathcal{M} and \mathcal{H} be non-empty formations. Then the product \mathcal{MH} of these formations is the class of all groups G such that $G^{\mathcal{H}} \in \mathcal{M}$. It is well-known that such an operation on the set of all non-empty formations is associative (Gaschütz). The symbol \mathcal{M}^t denotes the product of t copies of \mathcal{M} .

We shall need following well-known Gaschütz-Shemetkov's theorem [26, Corollary 7.13].

Lemma 3.2. The product of any two non-empty saturated formations is also a saturated formation.

In the proof of Theorem 3.1 we use the following

Lemma 3.3. The class \mathcal{F} of all π -separable groups G with $l_\pi(G) \leq t$ is a saturated formation.

Proof. It is not difficult to show that for any non-empty set $\omega \subseteq \mathbb{P}$ the class \mathcal{G}_ω of all ω -groups is a saturated formation and that $\mathcal{F} = (\mathcal{G}_{\pi'} \mathcal{G}_\pi)^t \mathcal{G}_{\pi'}$. Hence \mathcal{F} is a saturated formation by Lemma 3.2.

Lemma 3.4. Suppose that G is separable. If Hall π -subgroups of G are abelian, then $l_\pi(G) \leq 1$.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. Let N be a minimal normal subgroup of G . Since G is π -separable, N is a π -group or a π' -group. It is clear that the hypothesis holds for G/N , so $l_\pi(G/N) \leq 1$ by the choice of G . By Lemma 3.3, the class of all π -soluble groups with $l_\pi(G) \leq 1$ is a saturated formation. Therefore N is a unique minimal normal subgroup of G , $N \not\leq \Phi(G)$ and N is not a π' -group. Hence N is a π -group and $N = C_G(N)$ by [22, A, 15.2]. Therefore $N \leq H$, where H is a Hall π -subgroup of G . But since H is abelian, $N = H$ is a Hall π -subgroup of G . Hence $l_\pi(G) \leq 1$.

A group G is called π -closed provided G has a normal Hall π -subgroup.

Lemma 3.5. Let H be a Hall π -subgroup of G . If G is π -separable and $H \leq Z(N_G(H))$, then G is π' -closed.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. Then $G \neq H$. The class \mathcal{F} of all π' -closed groups coincides with the product $\mathcal{G}_{\pi'} \mathcal{G}_\pi$. Hence \mathcal{F} is a saturated formation by Lemma 3.2. Let N be a minimal normal subgroup of G . Since G is π -separable, N is a π -group or a π' -group. Moreover, G is a C_π -group by [34, 9.1.6]), so the hypothesis holds for

G/N . Hence G/N is π' -closed by the choice of G . Therefore N is the only minimal normal subgroup of G , $N \not\leq \Phi(G)$ and N is a π -group. Therefore $N \leq H$ and $N = C_G(N)$ by [22, A, 15.2]. Since $H \leq Z(N_G(H))$ and H is a Hall π -subgroup of G , $N = H$. Therefore $N \leq Z(G)$, which implies that $N = H = G$. This contradiction completes the proof of the lemma.

4 Proof of Theorem A

Recall that G is a PST -group if and only if $G = D \rtimes M$, where $D = G^N$ is abelian Hall subgroup of G and every element $x \in M$ induces a power automorphism on D [3]. Therefore the implication (i) \Rightarrow (ii) is a direct corollary of Theorem B.

Now suppose that $G = D \rtimes M$, where $D = G^N$, is a soluble PST -group. Let H be any subgroup of G and S a Hall π' -subgroup of H . Since G is soluble, we may assume without loss of generality that $S \leq M$. Hence $H = (D \cap H)(M \cap H) = (D \cap H)S$ and $D \cap H$ is normal in G . Let $\pi_1 = \pi(S)$. Let A be a Hall π_1 -subgroup of M and E a complement to A in M . Then $E \leq C_G(S)$. Therefore $G = DM = DAE = N_G(H)(DA)$ and every subgroup L of DA satisfying $(|H|, |L|) = 1$ is contained in D . Thus H is quasipermutable in G . Thus (ii) \Rightarrow (iii).

(iv) \Rightarrow (ii) By Theorems C and D, G is supersoluble and D is a Hall subgroup of G . Therefore $G = D \rtimes W$, where W is a Hall π' -subgroup of G . By hypothesis, W is quasipermutable in G . Now arguing similarly as in the proof of Theorem B one can show that D is abelian and every subgroup of D is normal in G . Therefore G is a PST -group.

5 Final remarks

1. The subgroup S_3 is quasipermutable, S -properly permutable and not properly permutable in S_4 . If H is the subgroup of order 3 in S_3 , then H is S -quasipermutable and not quasipermutable in S_4 .

2. Arguing similarly to the proof of Theorem A one can prove the following fact.

Theorem 5.1. *Suppose that G is soluble and let $\pi = \pi(G^N)$. Then G is a PST -group if and only if every subnormal π -subgroup and a Hall π' -subgroup of G are properly permutable in G .*

3. If G is metanilpotent, that is $G/F(G)$ is nilpotent, then for every Hall subgroup E of G we have $G = N_G(E)F(G)$. Therefore, in this case, every characteristic subgroup of every Hall subgroup of G is S -properly permutable in G . In particular, every Hall subgroup of every supersoluble group is S -properly permutable. This observation makes natural the following question: *What is the structure of G under the hypothesis that every Hall subgroup of G is properly permutable in G ?* Theorem B gives an answer to this question.

4. Every maximal subgroup of a supersoluble group is quasipermutable. Therefore, in fact, Theorem A shows that the class of all soluble groups in which quaipermutability is a transitive relation coincides with the class of all soluble *PST*-groups.

5. We say that G is a *SQT-group* if S -quasipermutability is a transitive relation in G . Arguing similarly to the proof of Theorem A one can prove the following fact.

Theorem 5.2. *A soluble group G is an SQT-group if and only if $G = D \rtimes M$ is supersoluble, where D and M are Hall nilpotent subgroups of G and the index $|G : DN_G(H \cap D)|$ is a $\pi(H)$ -number for every subgroup H of G .*

6. A subgroup H of G is called *SS-quasinormal* [21] (*semi-normal* [33]) in G provided G has a subgroup B such that $HB = G$ and H permutes with all Sylow subgroups (H permutes with all subgroups, respectively) of B .

It is clear that every *SS-quasinormal* subgroup is S -properly permutable and every semi-normal subgroup is properly permutable. Moreover, there are simple examples (consider, for example, the group $C_7 \rtimes \text{Aut}(C_7)$, where C_7 is a group of order 7) which show that, in general, the class of all S -properly permutable subgroups of G is wider than the class of all its *SS-quasinormal* subgroups and the class of all properly permutable subgroups of G is wider than the class of all its semi-normal subgroups. Therefore Proposition covers main results (Theorems 1.1–1.5) in [21].

7. Theorem 3.1 is used in the proof of Theorem B. From this result we also get

Corollary 5.3 (See [35, Theorem 5.4]). *Let H be a Hall semi-normal subgroup of G . If $p > q$ for all primes p and q such that p divides $|H|$ and q divides $|G : H|$, then H is normal in G .*

Corollary 5.4 (See [36, Theorem]). *Let P be a Sylow p -subgroup of G . If P is semi-normal in G , then the following statements hold:*

(i) G is p -soluble and $P' \leq O_p(G)$.

(ii) $l_p(G) \leq 2$.

(iii) If for some prime $q \in \pi'$ a Hall p' -subgroup of G is q -supersoluble, then G is q -supersoluble.

Corollary 5.5 (See [37, Theorem 3]). *If a Sylow p -subgroup P of G , where p is the largest prime dividing $|G|$, is semi-normal in G , then P is normal in G .*

References

- [1] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, *Products of Finite Groups*, Walter de Gruyter, Berlin, New York, 2010.
- [2] G.Zacher, I gruppi risolubili finiti, in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali, *Atti Accad. Naz. Lincei Rend. cl. Sci. Fis. Mat. Natur.*, (8) 37 (1964), 150–154.

- [3] R. K. Agrawal, , *Proc. Amer. Math. Soc.*, **47** (1975), 77–83.
- [4] D.J.S. Robinson, The structure of finite groups in which permutability is a transitive relation, *J. Austral. Math. Soc.*, **70** (2001), 143–159.
- [5] R.A. Brice, J. Cossey, The Wielandt subgroup of a finite soluble groups, *J. London Math. Soc.*, **40** (1989), 244–256.
- [6] J.C. Beidleman, B. Brewster and D.J.S. Robinson, Criteria for permutability to Be Tratransitive in Finite Groups, *J. Algebra*, **222** (1999), 400–412.
- [7] A. Ballester-Bolinches, R. Esteban-Romero, Sylow permutable subnormal subgroups, *J. Algebra*, **251** (2002), 727–738.
- [8] A. Ballester-Bolinches, J.C. Beidleman, and H. Heineken, Groups in which Sylow subgroups and subnormal subgroups permute, *Illinois J. Math.*, **47** (2003), 63–69.
- [9] A. Ballester-Bolinches, J.C. Beidleman, and H. Heineken, A local approach to certain classes of finite groups, *Comm. Algebra*, **31** (2003), 5931–5942.
- [10] M. Asaad, Finite groups in which normality or quasinormality is transitive, *Arch. Math. (Basel)*, **83** (4) (2004), 289–296.
- [11] A. Ballester-Bolinches, J. Cossey, Totally permutable products of finite groups satisfying *SC* or *PST*, *Minatsh. Math.* , **145** (2005), 89–93.
- [12] K. Al-Sharo K.J. C. Beidleman J C, Heineken H, et al. Some Characterizations of Finite Groups in which Semipermutability is a Transitive Relation, *Forum Math.*, **22** (2010), 855–862.
- [13] V.O. Lukyanenko, A.N. Skiba, Finite groups in which τ -quasinormality is a transitive relation, *Rend. Semin. Univ. Padova*, **124** (2010), 231–246.
- [14] J. C. Beidleman, M. F. Ragland, Subnormal, permutable, and embedded subgroups in finite groups, *Central Eur. J. Math.*, **9**(4) (2011), 915–921.
- [15] Ballester-Bolinches A, Beidleman J C, Feldman A D, Heineken H, et al. Finite solvable groups in which semi-normalty is a transitive relation. *Beitr.Algebra Geom*, DOI 10.1007/s13366-012-0099-1
- [16] Ballester-Bolinches A, Beidleman J C, Feldman A D. Some new characterizations of solvable *PST*-groups. *Ricerche mat.* DOI 10.1007/s11587-012-0130-8
- [17] Xiaolan Yi, Alexander N. Skiba, On *S*-properly permutable subgroups of finite groups, *Bull. Malays. Math. Sci. Soc.* (2) **34**(2) (2011), (in Press).

- [18] Xiaolan Yi, A. N. Skiba, On some generalizations of permutability and S -permutability, *Problems of Physics Mathematics and Techniques*, 2013, **2** (15).
- [19] L. A. Shemetkov, *Formations of finite groups*, Nauka, Moscow, 1978.
- [20] B. Huppert, *Endliche Gruppen I*. Springer-Verlag, Berlin, Heidelberg, New York, 1967.
- [21] Shirong Li, Zhencai Shen, Jianjun Liu, Xiaochun Liu, The influence of SS -quasinormality of some subgroups on the structure of finite group, *J. Algebra*, **319** (2008), 4275–4287.
- [22] K. Doerk, T. Hawkes, *Finite Soluble Groups*, Walter de Gruyter, Berlin, New York, 1992
- [23] Ballester-Bolinches A, Ezquerro L M. *Classes of Finite groups*. Dordrecht: Springer, 2006
- [24] B.N. Knyagina, V.S. Monakhov, On π' -properties of finite group having a Hall π -subgroup, *Siberian. Math. J.* (2011), **52** (2), 298–309.
- [25] O.H. Kegel, Produkte nilpotenter Gruppen, *Arch. Math.*, **12** (1961), 90–93.
- [26] L. A. Shemetkov, A. N. Skiba, *Formations of Algebraic Systems*, Nauka, Moscow, 1989.
- [27] D. Gorenstein, *Finite Groups*, Harper & Row Publishers, New York, Evanston, London, 1968.
- [28] V.S. Monakhov, Product of supersoluble and cyclic or primary groups, *Finite Groups*, Proc. Gomel Sem., Gomel, 1975–1977 (in Russian), "Nauka i Tekhnika", Minsk, 1978, 50–63.
- [29] A. N. Skiba, On the \mathcal{F} -hypercentre and the intersection of all \mathcal{F} -maximal subgroups of a finite group, *Journal of Pure and Applied Algebra* (2011), doi:10.1016/j.jpaa.2011.10.006.
- [30] M. Weinstein, *Between Nilpotent and Solvable*, Polygonal Publishing House, 1982.
- [31] B. Huppert, N. Blackburn, *Finite Groups III*, Springer-Verlag, Berlin, New-York, 1982.
- [32] W. Guo, A.N. Skiba, On $\mathcal{F}\Phi^*$ -hypercentral subgroups of finite groups, *J. Algebra*, **372** (2012), 285–292.
- [33] H. Su, Semi-normal subgroups of finite groups, *Math Mag.*, **8** (1988), 7–9.
- [34] D.J.S. Robinson, *A Course in the Theory of Groups*, Springer-Verlag, New York-Heidelberg-Berlin, 1982.
- [35] W. Guo W, K P Shum, A. N. Skiba, X -semipermutable subgroups of finite groups, *J Algebra*, **315** (2007), 31–41
- [36] W. Guo, Finite groups with semi-normal Sylow subgroups, *Acta Math Sinica, English Series*, **24** (2008), 1751–1758
- [37] V. V. Podgornaja, Seminormal subgroups and supersolvability of finite groups, *Vesti NAN Belarus, Ser Phis Math Sciences*, **4** (2000), 22–25.