В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту.

Ядро = {XXO1; X1X1; 11XX}

В МДНФ входять всі терми ядра, а також ті терми, що забезпечують покриття всієї функції з мінімальною ціною.

 $f_{4MHII\Phi} = (\overline{X2}X1) \ v \ (X3X1) \ v \ (X4X3)$

Метод діаграм Вейча

Метод діаграм Вейча— це графічний метод, призначений для ручної мінімізації. Його наочність эберігається за невеликої кількості аргументів. Кожна клітинка відповідає конституанті. Кожний прямокутник, що містить 2^к елементів, відповідає імпліканті. Прямокутник максимального розміру відповідає простій імпліканті (рисунок 4.5).

 $f_{LMH/I,\Phi} = (\overline{X2}X1) \ v \ (X3X1) \ v \ (X4X3)$

3.4. Спільна мінімізація функцій f1, f2, f3

Для отримання схем з мінімальними параметрами треба провести спільну мінімізацію системи функцій та їх заперечень. Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ.

Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.6). Побудуємо таблицю покриття (таблиця 4.5).

Зм.	Арк.	№ докум.	Підп.	Дата

<i>IA/IU.463626.004 </i>	73
---------------------------	----

KO	K1	<i>K2</i>
0000 (1,2)	000X (1,2)	OXXO (1)
0001 (1,2,3)	00X0 (1,2)	<i>0XX0 (1</i>)
0010 (1,2)	OXOO (1)	XX00 (1)
0100 (-1)	X000 (1)	XX00 (1)
0101 (3)	<i>0X01 (3)</i>	XX01 (3)
0110 (1,-2)	X001 (3)	XX01 (3)
0111 	OX10 (1,2)	X1X0 (1)
1000 (1)	01X0 (1)	X1X0 (1)
1001 (3)	X100 (1)	X1X1 (3)
1100 (1,-2,3)	<i>01X1 3 </i>	X1X1 (3)
1101 (1,2,3)	X101 3 	X11X (1,2)
1110 (1,2,3)	011X (1,2)	X11X (1,2)
1111 (1,2,3)	X110 (1,2)	11XX (1,2,3)
	X111 (1,2,3)	11XX (1,2,3)
	1X00 (1)	
	-1X01 (3)	
	110X (1,2,3)	
	11X0 (1,2,3)	
	11X1 (1,2,3)	
	111X (1,2,3)	

Рисунок 4.6 Склеювання і поглинання термів системи

Зм.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.5 Таблиця покриття системи

	0000(F1)	0001/F1/	0010 F1	0110IF1)	1000lF1/	1100/F1/	1101/F1/	1110/F1/	1111/F1/	0000lF2/	0001/F2/	0010(F2)	1101/F2J	1110/F2/	1111F2J	0001/F3/	0101F3J	0111F3J	1001/F3/	1100/F3/	1101F3J	1110IF3J	1111F3J
0001 (1,2,3)																							
000X (1,2)	+	+								+	+												
00X0 (1,2)																							
OX10 (1,2)			+	+								+											
X111 (1,2,3)																							
OXXO (1)																							
XX00 (1)					+																		
XX01 (3)																+	+		+				
X1X0 (1)																							
X1X1 (3)																		+					
X11X (1,2)																							
11XX (1,2,3)						+	+	+	+				+	+	+					+	+	+	+

Після мінімізації визначили кожну з функцій в формі І/АБО.

 $f1_{MDH\Phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}X2\overline{X1}) \ v \ (\overline{X2}\overline{X1}) \ v \ (X4X3)$

 $f2_{M\Pi H \phi} = (\overline{X4} \overline{X3} \overline{X2}) \ v \ (\overline{X4} X2 \overline{X1}) \ v \ (X4X3)$

 $f3_{MJH\Phi} = (\overline{X2}X1) \ v \ (X3X1) \ v \ (X4X3)$

Проведемо мінімізацію функцій методом Квайна-Мак-Класкі за ДДНФ. Запишемо ДДНФ функцій у вигляді списку термів, проведемо склеювання та поглинання (рисунок 4.7). Побудуємо таблицю покриття (таблиця 4.6).

Зм.	Арк.	№ докум.	Підп.	Дата

KO	K1	<i>K2</i>
0001 (3)	00X1 (3)	X0X1 (3)
0011 (1,2,3)	OXO1 (3)	XX01 (3)
0100 (-1,2)	X001 (3)	XOX1 (3)
0101 (1,2,3)	OX11 (1,2)	XX01 (3)
0110 (-2,-3)	X011 (1,2,3)	01XX (2)
0111 (-1,-2)	010X (1,2)	01XX (2)
1000 (2)	01X0 (2)	10XX (2)
1001 (1,2,3)	X100 (2)	10XX (2)
1010 (1,2,3)	01X1 (1,2)	
1011 (1,2,3)	X101 (3)	•
1100 (-2)	011X (2)	_
1101 (3)	X110 (3)	
1110 (3)	100X (2)	
	10X0 (2)	,
	1X00 (2)	
	10X1 (1,2,3)	
	1X01 (3)	1
	101X (1,2,3)	
	1X10 (3)	

Рисунок 4.7 Склеювання і поглинання термів системи

Зм.	Арк.	№ докум.	Підп.	Дата

<i>IA/ILI.463626.004 </i>

Таблиця 4.6 Таблиця покриття системи

	0011/F1/	0101/F1/	1001/F1/	1010IF1)	1011/F1/	0011/F2/	0100lF2)	0101/F2/	1000(F2)	1001/F2/	1010IF2I	1011/F2/	0001/F3/	0011/F3/	01011F3/	1001/F3/	1010IF3/	1011/F3/	11011F3/	1110/F3/
0101 (1,2,3)																				
0110 (-2,-3)																				
OX11 (1,2)																				
X011 (1,2,3)	+					+								+				+		
010X (1,2)		+					+	+												
X100 (2)																				
01X1 (1,2)																				
X110 (3)																				+
1X00 (2)																				
10X1 (1,2,3)			+													+				
101X (1,2,3)				+	+												+			
1X10 (3)																				
X0X1 (3)																				
XX01 (3)													+		+				+	
01XX (2)																				
10XX (2)									+	+	+	+								

Після мінімізації визначили кожну з функцій в формі І/АБО-НЕ.

 $f1_{MDH\phi}=(\overline{X3}X2X1) \ v \ (\overline{X4}X3\overline{X2}) \ v \ (X4\overline{X3}X1) \ v \ (X4\overline{X3}X2)$

 $f2_{MJH\phi}=(\overline{X3}X2X1) \ v \ (X4\overline{X3}) \ v \ (\overline{X4}X3\overline{X2})$

 $f3_{MJH\phi}=(\overline{X3}X2X1) \ v \ (\overline{X2}X1) \ v \ (X4\overline{X2}X1)$

Зм.	Арк.	№ докум.	Підп.	Дата

<i>IA/ILI.463626.004 ПЗ</i>

3.5. Одержання операторних форм для реалізації на ПЛМ

Для програмування ПЛМ використовують нормальны форми I/AБО, I/AБО-НЕ. Розглянемо програмування ПЛМ для системи перемикальних функції, що подана в формі I/AБО.

 $f1_{MDH\Phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}X2\overline{X1}) \ v \ (\overline{X2}\overline{X1}) \ v \ (X4X3)$

 $f2_{MJH\phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}X2\overline{X1}) \ v \ (X4X3)$

 $f3_{M\Pi H\Phi} = (\overline{X2}X1) \ v \ (X3X1) \ v \ (X4X3)$

Позначимо терми системи:

 $P1 = \overline{X4}\overline{X3}\overline{X2}$

 $P2 = \overline{X4}X2\overline{X1}$

 $P3 = \overline{X2}X1$

 $P4 = \overline{X2}\overline{X1}$

P5 = X3X1

P6 = X4X3

Тоді функції виходів описуються системою:

 $f1_{MJH\Phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}X2\overline{X1}) \ v \ (\overline{X2}\overline{X1}) \ v \ (X4X3) = P1 \ v \ P2 \ v \ P4 \ v \ P6$

 $f2_{MDH\Phi} = (\overline{X4}\overline{X3}\overline{X2}) \ v \ (\overline{X4}X2\overline{X1}) \ v \ (X4X3) = P1 \ v \ P2 \ v \ P6$

 $f3_{MDH\phi} = (\overline{X2}X1) \ v \ (X3X1) \ v \ (X4X3) = P3 \ v \ P5 \ v \ P6$

Зм.	Арк.	№ докум.	Підп.	Дата

IA/ILI.463626.004	3
-------------------	---

Визначимо мінімальні параметри ПЛМ:

п = 4 — число інформаційних входів, що дорівнює кількості аргументів системи перемикальних функцій.

p = 6 — число проміжних внутрішніх шин, яке дорівнює кількості різних термів системи.

т = 3 — число інформаційних виходів, котре дорівнює кількості функцій виходів.

Побудуємо спрощену мнемонічну схему ПЛМ(4,6,3) (рисунок 4.8).

Рисунок 4.8 Мнемонічна схема ПЛМ

Складемо карту програмування ПЛМ(4,6,3) (таблиця 4.7).

Зм.	Арк.	№ докум.	Підп.	Дата

Таблиця 4.7 Карта програмування ПЛМ

Nº	Входи			Виходи			
ШИНИ	<i>X1</i>	<i>X2</i>	<i>X3</i>	<i>X</i> 4	f1	<i>f2</i>	f3
<i>P1</i>	0	0	1	-	1	1	0
<i>P2</i>	0	1	-	0	1	1	0
<i>P3</i>	1	0	_	-	0	0	1
P4	0	0	_	-	1	0	0
P5	1	-	1	-	0	0	1
<i>P6</i>	_	1	1	1	1	1	1

Покажемо умовне графічне позначення даної П/ІМ (рисунок 4.8).

Рисунок 4.8 – умовне графічне позначення ПЛМ

Зм.	Арк.	№ докум.	Підп.	Дата

4. Висновок

У даній курсовій роботі на підставі «Технічного завдання ІА/ІЦ.463626.002 ТЗ» був виконаний синтез керуючого автомата, а також синтез комбінаційних схем. Функціональна схема автомата приведена у документі «Керуючий автомат. Схема електрична функціональна» і виконана згідно з вимогами єдиної системи конструкторської документації.

При синтезі комбінаційних схем у роботі була виконана мінімізація функції різними методами, а також мінімізована методом Квайна— Мак-Класкі система функцій. В результаті було отримано дві форми представлення системи функцій, одна з яких була реалізована на програмувальній логічній матриці (ПЛМ).

Під час виконання роботи були закріплені знання теоретичного курсу, отримані навички їх практичного застосування, а також навички роботи зі стандартами та пошуку інформації.

Зм.	Арк.	№ докум.	Підп.	Дата

IA/ILI.463626.004

5. Список літератури

1. Жабін В.І., Жуков І.А., Клименко І.А., Ткаченко В.В. Прикладна теорія цифрових автоматів. Київ: книжкове видавництво НАУ, 2007 р. 2. Конспект лекцій з курсу «Комп'ютерна логіка», 2014р.

Зм.	Арк.	№ докум.	Підп.	Дата