Aim

I am FPGA novice and want to try classical FPGA design tutorials. I bought perfect modern FPGA board ZYBO (**ZY**nq **BO**ard) based on Xilinx Z-7010 from Digilent but latest tools from Xilinx VIVADO 2015.2 more focused on AP SoC programming while I want to just pure FPGA design without any linuxes bootloaders etc. So I wrote this tutorial to help people like me:)

In this example we make simple scheme: 2 signals IN and 4 OUT.

Preconditions: Adding Zybo Board to Vivado

Vivado 2015.2 under Windows 7 64 bit was used with 16 GB of RAM.

Before using Zybo with Vivado you should add Zybo Definitions File to Vivado.

- 1. Good source for Board Definition files is <u>Zynqbook website</u>.Download <u>The Zynq Book Tutorial Sources Auq15.zip</u>
- 2. Copy **zybo** folder with content from Archive path \sources\zybo\setup\board_part into D:\Xilinx\Vivado\2015.2\data\boards\board_files (if D:\Xilinx\Vivado\2015.2 is my PC you probably have C:\Xilinx etc...)
- 3. In board_files you should see other boards so now our Zybo known by Vivado.
- 4. Download <u>ZYBO_Master.xdc from Digilent website</u> unpack constraints files on local hard disk for example on Desktop.

Phase 1. Preparation.

I have latest Vivado Design Edition from Xilinx which comes with Digilent Zybo board.

Launch your Vivado.

Create new project

New Project

Click Next

Set project name.

Set project name to gates2,

Keep rest settings unchanged unless you know what you doing.

Project Type

Keep default RTL(Register Transfer Level) project, Press Next

Add sources

In this tutorial we decided to use Verilog language so make sure it set correctly. Simulator language you can keep unchanged.

Click on "+" - Select - Create File.

Create Source File

Set Filename to gates2. Keep the rest unchaged. Press OK. Press Next.

Add Existing IP

Click Next.

Add Constraints

Click "+", Add Files.

Add Constraint file we downloaded at Precondition step.

Make sure: Copy constraints files into project - Checked.

Click - Next

Default Part

Click on boards and select Zybo. If you still don't have it follow steps in Preconditions: Adding Zybo board to Vivado.

If you don't see ZYBO goto Preconditions Step.

Next.

New Project Summary

Finish

Phase 2. Editing Project

Project files generated and ready for your design.

We will implement 2 input gates and 4 output basic gates and, or, xor and nor.

Define I/O ports as below

OK

Select Verilog Design

Click on Source file in Project Manager>Sources>Design Sources - Source code on Right-hand side should appear.

Changes to source code.

Modify Verilog file - add lines as highlighted below.

```
wire a,b;
reg [3:0]z;
always @(a or b)
begin
z[0] = a & b;
z[1] = a | b;
z[2] = a ^ b;
z[3] = !(a | b);
end
```

```
@ gates2.v X @ top_gates2.v X ☐ ZYBO_Master.xdc X
D:/Users/sj/gates2/gates2.srcs/sources_1/new/gates2.v
   8 // Module Name: gates2
   9 // Project Name:
10 // Target Devices:
11 // Tool Versions:
   12 // Description:
14 // Dependencies:
X 15 //
   16 // Revision:
// | 17 // Revision 0.01 - File Created
18 // Additional Comments:
19 //
   23 module gates2 (
   24 input a,
       input b,
   26
       output [3:0] z
   27
       );
   28
   29 wire a,b;
   30 reg [3:0]z;
   32 always @(a or b)
   33 begin
   34
       z[0] = a \epsilon b;
       z[1] = a | b;
       z[2] = a ^ b;
       z[3] = !(a | b);
   39 endmodule
   40
```

Create top file

Rightclick on Design Sources and select Add Sources.

1. Add or create design souces.

2. "+" > Create File

File Type: Verilog,

File name: top_gates2

OK

Finish

Define Module

Add sw and led as on image below.

Replace default source code.

```
`timescale 1ns / 1ps
module top_gates2(
   input [1:0] sw,
   output [3:0] led
```

```
Project Summary X @ gates2.v * X @ top_gates2.v * X
D:/Users/sj/gates2/gates2.srcs/sources_1/new/top_gates2.v
   1 'timescale 1ns / 1ps
3 module top_gates2(
       input [1:0] sw,
        output [3:0] led
       );
       gates2 C1(
         .a(sw[0]),
            .b(sw[1]),
11
            .z(led)
  12
       );
   13 endmodule
V 14
```

Top Design

We have single top design interface file which use our gates2 design as component.

top design

Make sure our top file became parent of gates2 file. Otherwise set it manually with **Set** as **Top**.

Amend Constraints file

Select xdc file from Sources>Constraints

Changes in xdc file

Uncomment lines of I/O ports we need to use.

Save file.

```
D:/Users/sj/gates2/gates2.srcs/constrs_1/mports/sj/ZYBO_Master.xdc
    14 set property PACKAGE_PIN G15 [get ports {sw[0]}]
    15 set property IOSTANDARD LVCMOS33 [get ports {sw[0]}]
3 16
17 ##IO L24P T3 34
    18 set property PACKAGE_PIN P15 [get ports {sw[1]}]
19 set_property IOSTANDARD LVCMOS33 [get_ports {sw[1]}]
20
   22 ##LEDs
// 23 ##IO_L23P_T3_35
24 set property PACKAGE_PIN M14 [get ports {led[0]}]
25 set_property IOSTANDARD LVCMOS33 [get_ports {led[0]}]
  27 ##IO L23N T3 35
28 set_property PACKAGE_PIN M15 [get_ports {led[1]}]
    29 set property IOSTANDARD LVCMOS33 [get ports {led[1]}]
    30
    32 set property PACKAGE_PIN G14 [get ports {led[2]}]
    33 set property IOSTANDARD LVCMOS33 [get ports {led[2]}]
    35 ##IO L3N TO DQS AD1N 35
    36 set property PACKAGE_PIN D18 [get ports {led[3]}]
    37 set property IOSTANDARD LVCMOS33 [get ports {led[3]}]
    39 ##I2S Audio Codec
    40 ##IO L12N T1 MRCC 35
    41 #set property PACKAGE PIN K18 [get ports ac bclk]
    42 #set property IOSTANDARD LVCMOS33 [get ports ac bclk]
    44 ##IO 25 34
    45 #set property PACKAGE PIN T19 [get ports ac mclk]
    46 #set property IOSTANDARD LVCMOS33 [get ports ac mclk]
    48 ##IO L23N T3 34
    49 #set_property PACKAGE_PIN P18 [get_ports ac_muten]
    50 #set property IOSTANDARD LVCMOS33 [get ports ac muten]
    52 ##IO L8P T1 AD10P 35
```

Phase 3 - Synthesis and uploading to device.

At Synthesis phase we convert our circuit from register transfer level (RTL) into a design implementation in terms of logic gates.

In Flow Navigator on Lefthand side.:

Next steps can be **Simulation>Run Simulation** or **RTL Analysis>Schematic** but we skip them in this tutorial and come directly to **Synthesis>Run Synthesis**.

Synthesis complention

Leave default Run Implementation

OK

Generate Bitstream

Select Generate Bitstream

OK

Final

Pay attention to jumpers.

JP7 - It should set to USB.

JP5 can be JTAG or QSPI

Connect ZYBO to PC with Micro-USB cable.

Photo taken from http://marsee101.blog19.fc2.com/blog-entry-2745.html

Program ZYBO

Next

Next

Make sure you have similar setting like on picture below.

Select xc7z010_1

Next

Finish

Program device > xc7z010_1

Program

As confirmation of successfull upload Greed Led will set

Use switches to confirm and, or, xor and nor operations.

Archive of project available.

PDF version of this lesson available.

Reference

- 1. http://www.slideshare.net/MaryalaSrinivas/verilog-tutorial
- 2. http://www.instructables.com/id/Learn-Verilog-A-Brief-Tutorial-Series-on-FPGA-Desi/?ALLSTEPS
- 3. <u>The ZYNQ BOOK</u> Make sure you download not only book archive but also tutorials book with sources.
- 4. HDL Chip Design- A Practical Guide for Designing, Synthesizing and Simulating ASICs and FPGAs Using VHDL or Verilog. By Douglas J. Smith
- 5. ZYBO Reference Manual

Files

- 1. Project Archive
- 2. ZYBO Board Definition File.
- 3. ZYBO Master xdc file.

Feedback

boris@borisivanov.com