2

1

2

1

2

1

projectmaths

Combined Topics

- **10** In the diagram, ABC is an
 - isosceles triangle AC = BC = x. The point D on the interval AB is chosen so that AD = CD. Let AD = a, DB = y and $\angle ADC = \theta$.

<u>Solution</u>

- (i) Show that $\triangle ABC$ is similar to $\triangle ACD$.
- (ii) Show that $x^2 = a^2 + ay$
- (iii) Show that $y = a(1 2\cos\theta)$
- (iv) Deduce that $y \le 3a$.

Solution

Solution

- **09 10** Let $f(x) = x \frac{x^2}{2} + \frac{x^3}{3}$.
 - (a) Show that the graph of y = f(x) has no turning points.
 - (b) Find the point of inflexion of y = f(x).
 - (c) (i) Show that $1 x + x^2 \frac{1}{1+x} = \frac{x^3}{1+x}$ for $x \ne -1$.
 - (ii) Let $g(x) = \ln(1 + x)$. Use the result in part (c) (i) to show that $f'(x) \ge g'(x)$ for all $x \ge 0$.
 - (d) On the same set of axes, sketch the graphs of y = f(x) and y = g(x) for $x \ge 0$.
 - (e) Show that $\frac{d}{dx}[(1+x)\ln(1+x)-(1+x)] = \ln(1+x)$.
 - (f) Find the area enclosed by the graphs of y = f(x) and y = g(x), and the straight line x = 1.
- **8b** In the diagram, AE is parallel to BD, AE = 27, CD = 8, BD = p, BE = q and $\angle ABE$, $\angle BCD$ and $\angle BDE$ are equal. Copy or trace this diagram into your writing booklet.

- (ii) Prove that $\triangle EDB \parallel \parallel \triangle BCD$.
- (iii) Show that 8, p, q, 27 are the first four terms of a geometric series.
- (iv) Hence find the values of p and q.

(Not to scale)

1

Solution

Solution

06 10 A rectangular piece of paper *PQRS* has sides

PQ = 12 cm and PS = 13 cm. The point O is the midpoint of PQ. The points K and M are to be chosen on OQ and PS respectively, so that when the paper is folded along KM, the corner that was at P lands on the edge QR at L. Let OK = x cm and LM = y cm.
Copy or trace the diagram into your writing booklet.

(i) Show that $QL^2 = 24x$.

- (ii) Let N be the point on QR for which MN is perpendicular to QR. By showing that $\Delta QKL \mid \mid \mid \Delta NLM$, deduce that $y = \frac{\sqrt{6}(6+x)}{\sqrt{x}}$
- (iii) Show that the area, A, of ΔKLM is given by $A = \frac{\sqrt{6}(6+x)^2}{2\sqrt{x}}$.
- (iv) Use the fact that $12 \le y \le 13$ to find the possible values of x.
- (v) Find the minimum possible area of ΔKLM .

05 10 The parabola $y = x^2$ and the line

a y = mx + b intersect at the points $A(\alpha, \alpha^2)$ and $B(\beta, \beta^2)$ as shown in the diagram.

(i) Explain why $\alpha + \beta = m$ and $\alpha\beta = -b$.

(ii) Given that $(\alpha - \beta)^2 + (\alpha^2 - \beta^2)^2$ $= (\alpha - \beta)^2 [1 + (\alpha + \beta)^2]]$ show that the distance $AB = \sqrt{(m^2 + 4b)(1 + m^2)}.$

- (iii) The point $P(x, x^2)$ lies on the parabola between A and B. Show that the area of the triangle ABP is given by $\frac{1}{2}(mx x^2 + b)\sqrt{m^2 + 4b}$.
- (iv) The point *P* in part (iii) is chosen so that the area of the triangle *ABP* is a maximum. Find the coordinates of *P* in terms of *m*.