# Лабораторная работа №7

# Определение скорости полёта пули с помощью баллистического маятника

#### Содержание

| Оборудование                | 1 |
|-----------------------------|---|
| Цель работы                 |   |
| Теоретическое обоснование   |   |
| Экспериментальная часть     |   |
|                             |   |
| Лули массой m = 0.57 г      |   |
| ,<br>Пули массой m = 0.68 г |   |
| Установление зависимости    |   |
| Заключение                  |   |

# Оборудование

- Баллистический маятник: фиксированное крепление, подвешенная мишень и горизонтальная шкала, вдоль которой мишень движется
- Пневматическая винтовка
- Три разных комплекта пуль массами 0.3 г, 0.57 г и 0.68 г
- Камера для фиксации отклонения маятника

### Цель работы

Цель работы заключается в определении начальной скорости полёта пуль разной массы при помощи баллистического маятника, а также определение зависимости начальной скорости полёта пули, запущенной из данной винтовки, от её массы.

# Теоретическое обоснование

Баллистический маятник является одним из способов определения скорости полёта снаряда (пули). Его работа основана на законе сохранения импульса: при выстреле снаряда из пушки в варианте, показанном на рисунке 1 или попадангии пули в мишень в нашем опыте импульс отдачи (поглощенный мишенью импульс) приводит к отклонению маятника. При достаточно длинном подвесе это отклонение медленное и амплитуда отклонения может быть легко измерена. Формализуем это рассуждение. Пусть пуля

массой m, летящая со скоростью V, попадает в математический маятник с длиной подвеса L. Сразу после столкновения маятник приобретает горизонтальную скорость:

$$U = \frac{mV}{M + m}$$

Что позволит ему подняться на высоту:

$$H = \frac{p_0^2}{2 q (M + m)^2} = \left(\frac{m}{M + m}\right)^2 \frac{V^2}{2 g} \approx \left(\frac{m}{V}\right)^2 \frac{V^2}{2 g'}$$

где  $p_{\scriptscriptstyle 0}$  это импульс маятника в нижней точке, равный импульсу пули перед попаданием. Измеряем мы горизонтальное смещение маятника.

$$\Delta = \sqrt{L^2 - (L - H)^2} \approx \sqrt{(2LH)} = \sqrt{\frac{L}{q}} \frac{m}{M} V = \frac{T_0}{2\pi} \frac{m}{M} V,$$

где  $T_{\rm 0}$  - период малых колебаний. Тогда:

$$V = \Delta \frac{M}{m} \sqrt{\frac{g}{L}}$$

В данном эксперименте:

 $L = 90.20 \pm 0.05$  cm

 $M = 494 \pm 0.1 \,\mathrm{r}$ 

# Экспериментальная часть

# Пули массой т = 0.3 г

При обстреле цели этими пулями получено следующее среднее значение горизонтального отклонения:

$$\Delta = 2.91 \pm 0.1 \text{ cm}$$

Тогда начальная скорость полёта пули:

$$V = 158.03 \,\text{m/c}$$

## Пули массой т = 0.57 г

При обстреле цели этими пулями получено следующее среднее значение горизонтального отклонения:

$$\Lambda = 3.66 \pm 0.1$$
 cm

Тогда начальная скорость полёта пули:

$$V = 104.60 \text{ m/c}$$

#### Пули массой т = 0.68 г

При обстреле цели этими пулями получено следующее среднее значение горизонтального отклонения:

$$\Delta = 3.74 \pm 0.1 \text{ cm}$$

Тогда начальная скорость полёта пули:

$$V = 89.71 \,\text{m/c}$$

#### Установление зависимости



Рис. 1: Зависимость начальной скорости полёта пули от её массы

В целом, трёх разновидностей пуль недостаточно, чтобы однозначно определить зависимость скорости пули от её массы, но наши измерения достаточно хорошо описывают следующая модель:

$$V = -83.42*\ln(m)-518.6$$

Однако, учитывая, что скорость у пули в принципе возникает от преобразования потенциальной энергии механизма пневматической винтовки в кинетическую энергию пули, и то, что эта энергия постоянна, и равна:

$$E = \frac{mv^2}{2}$$

Скорость V правильнее будет описывать обратно — степенной функцией.

$$V = \sqrt{\frac{2*3.34}{m}}$$

## Заключение

В ходе работы были произведены замеры горизонтального отклонения баллистического маятника при стрельбе пулями разных масс. С их помощью были рассчитаны скорости полёта пуль после выстрела, а также установлена зависимость начальной скорости пули от её массы:

$$V = \sqrt{\frac{2*3.34}{m}}$$