

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

FEBRUARY/MARCH 2012

MEMORANDUM

MARKS: 150

This memorandum consists of 18 pages.

1.1	Mean $\sum_{n=1}^{\infty} x_{n} = 102100$	✓ 102100	
	$\frac{\frac{2}{1}}{n} = \frac{102100}{9}$ = R11 344, 44	✓ answer	(2)
1.2	Standard deviation $\sum_{1}^{n} (x_1 - \bar{x})^2$	✓✓ answer	
	$\sqrt{\frac{1}{n}} = R4 460,97$		(2)
1.3	Value of one standard deviation above mean = R11 344,44 + R4 460,97 = R15 805,41	✓ adding mean and std. dev.	
	Only one person earned a commission of more than R 15 805,41.	✓ deduction	(2)
	Therefore only 1 person received a rating of good.		(2) [6]

QUESTION 2

	5	
NSC -	- Memorandu	m

2	
	_

Mathematics/P2

YEAR	1995	1996	1997	1998	1999	2000	2001
N (Number in millions)	8	17	34	67	135	281	552
Log N (correct to 1 decimal place)	6,9	7,2	7,5	7,8	8,1	8,4	8,7

- ✓ at least four values correct
- ✓ all values correct (2)

OR (if only log of values in table taken in account)

YEAR	1995	1996	1997	1998	1999	2000	2001
N (Number in millions)	8	17	34	67	135	281	552
Log N (correct to 1 decimal place)	0,9	1,2	1,5	1,8	2,1	2,4	2,7

- ✓ at least four values correct
- ✓ all values correct (2)

2.4

Scatter Plot of Internet usage

- ✓ at least 4 points correctly plotted
- ✓ all points correct

(2)

DBE/Feb. - Mar. 2012

Please turn over Copyright reserved

3.1	40		√ 40 (1)
3.2	Time, t, in minutes $0 \le t < 5$ $5 \le t < 10$ $10 \le t < 15$ $15 \le t < 20$ $20 \le t < 25$	Frequency 3 5 10 15 7	✓ for intervals in table ✓ for first three correct frequencies ✓ for last two correct frequencies (3)
3.3	5 10 15 Time intervals	20 25	✓ first three bars correct ✓ last two bars correct ✓ no gaps between bars (3)
			[7]

QUESTION 4

a = 7	b = 15	c = 17	d = 23	e = 34	f=37	g = 42	✓ each correct answer	t (7)
			OR					
g = 42; $a42 + 7 + 23$	= 7 ; d = 23 3 + 37 + 15 + 7 3c c e	$3 ; f = 37 ; 6$ $\frac{3c}{} = 25$ $= 51$ $= 17$ $= 34$	<i>b</i> = 15				✓ g ✓ a ✓ d ✓ f ✓ b ✓ c ✓ e	(7) [7]

C 1	
$m_{\rm AD} = \frac{y_2 - y_1}{x_2 - x_1}$	
$=\frac{-2-4}{5-1}$	✓ for substitution
$= -\frac{6}{4} = -\frac{3}{2}$ $5.2 AD = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	✓ for answer (2)
5.2 AD = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
$= \sqrt{(5-1)^2 + (-2-4)^2}$	✓ for substitution
$= \sqrt{16+36}$	$\checkmark \sqrt{52}$
$= \sqrt{52}$	(2)
$M = \left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$	
	✓ <i>x</i> -value
$M = \left(\frac{1+5}{2}; \frac{4-2}{2}\right)$	
M = (3; 1)	\checkmark y-value (2)
$5.4 m_{\rm BC} = m_{\rm AD} \text{Lines are parallel}$	
$= -\frac{3}{2}$	✓ value $m_{\rm BC}$
$y - y_1 = m \left(x - x_1 \right)$	
$y-1 = -\frac{3}{2}(x+3)$	✓ subst (-3; 1)
2y-2=-3x-9	✓ equation (3)
3x + 2y + 7 = 0	equation (3)
OR	
	✓ value $m_{\rm BC}$
$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	✓ subst (-3; 1)
$y = -\frac{3}{2}x + c$ $1 = -\frac{3}{2}(-3) + c$	
$c = -\frac{7}{2}$	✓ equation
$y = -\frac{3}{2}x - \frac{7}{2}$	
3x + 2y + 7 = 0	(2)
	(3)

5.5.1	†	
	$m_{AD} = -\frac{3}{2}$ $\tan \beta = -\frac{3}{2}$ $D(3, 1)$	$\checkmark \tan \beta = m_{AD}$
	$\beta = 180^{\circ} - 56{,}31^{\circ}$ $B(-3; 1)$ E F	✓ 123,69°
	$\beta = 123,69$ D(5; -2)	
		(2)
5.5.2	$m_{BD} = \frac{-2 - 1}{5 - (-3)} = \frac{-3}{8}$ $\tan \alpha = -\frac{3}{8}$	$\checkmark m_{BD} = \frac{-3}{8}$
	$\tan \alpha = -\frac{1}{8}$ $\alpha = 180^{\circ} - 20,56^{\circ}$	√159,44°
	$\alpha = 159,44^{\circ}$ $F\hat{E}D = 180^{\circ} - 159,44^{\circ} = 20,56^{\circ}$	√20,56°
	$E\hat{F}D = 180^{\circ} - 139,44^{\circ} = 20,30^{\circ}$ $E\hat{F}D = 123,69^{\circ}$	√123,69° √35,75°
	$F\hat{D}E = 180^{\circ} - (20,56^{\circ} + 123,69^{\circ}) = 35,75^{\circ}$	(5)
5.6	Co-ordinates of centre M (3; 1) Radius of circle:	✓ value of radius
	$\frac{1}{2}$ of AD = $\frac{1}{2}$ $(2\sqrt{13}) = \sqrt{13} = \frac{1}{2}\sqrt{52}$	✓ substitution into equation of circle centre form (2)
	Equation of the circle is: $(x-3)^2 + (y-1)^2 = 13$	
	OR	\checkmark value of r^2
	$r^2 = (3-1)^2 + (1-4)^2 = 13$ Equation of the circle is:	✓ substitution into
	$(x-3)^2 + (y-1)^2 = 13$	equation of circle centre form (2)
5.7	M(3; 1) B(-3; 1)	
	$MB = \sqrt{(3+3)^2 + (1-1)^2}$ $MB = 6$	✓substitution
	Point B lies outside the circle because MB > radius	✓ outside (2)
	OR	
	M(3; 1) $B(-3; 1)$ $MB = 3 + 3 = 6$	✓substitution
	Radius of the circle = $\sqrt{13}$ < 6 Point B lies outside the circle because MB > radius	✓ outside (2) [20]

6.1	Coordinates of centre M (-2; 1)	✓✓ coordinates of
	$(1+2)^2 + (-2-1)^2 = 18 = r^2$	centre ✓ calculation
	Radius = $\sqrt{18}$ or $3\sqrt{2}$	✓ value (4)
6.2		
0.2	$m_{MS} = \frac{-3}{3} = -1$	✓ gradient MS
	$m_{MS}xm_{RS} = -1$ OR tangent \perp radius	
	$m_{RS}=1$	✓ gradient RS
	$y - y_1 = m (x - x_1) y + 2 = 1(x - 1)$	✓ subst (1; –2)
	y = x - 3	\checkmark equation (4)
	OR	
	$m_{MS} = \frac{-3}{3} = -1$	✓ gradient MS
	$m_{MS}xm_{RS} = -1$	✓ gradient RS
	$m_{RS} = 1$	
	y = x + c	✓ subst (1; –2)
	-2=1+c	✓ equation
	c = -3 $y = x - 3$	
	y = x - 3	(4)
6.3	$\frac{MS}{MP} = \frac{1}{3}$	(MD 2)/G
	MP = 3 $\therefore MP = 3MS$	\checkmark MP = 3MS
	$MP^2 = 9MS^2$	
	$(a+2)^{2} + (b-1)^{2} = 9(3^{2} + 3^{2}) = 162$ (1)	✓ equation
	$MS \perp SR \text{ and } PS \perp SR$ $\therefore m_{PS} = m_{MS}$	✓ equal gradients
	$\frac{b+2}{a-1} = \frac{3}{-3} = -1$	✓ gradient
	$\begin{vmatrix} a-1 & -3 \\ b+2 = -a+1 \end{vmatrix}$	
	$b = -a - 1 \tag{2}$	$\checkmark b = -a - 1$
	Subst (2) into(1)	

OR

MSC – Memorandum

$$(a+2)^2 + (-a-1-1)^2 = 162$$

$$(a+2)^2 + (a+2)^2 = 162$$

$$2(a+2)^2 = 162$$

$$(a+2)^2 = 81$$

$$a+2=9 \text{ or } -9$$

$$a=7 \text{ or } -11$$

$$b=-a-1=-8$$

$$P(7;-8)$$

OR

MS 1

$$\frac{MS}{MP} = \frac{1}{3}$$

$$\therefore MP = 3MS$$

$$MP^{2} = 9MS^{2}$$

$$(a+2)^{2} + (b-1)^{2} = 9(3^{2} + 3^{2}) = 162$$
(1)

✓ equation $MS \perp SR \text{ and } PS \perp SR$ $\therefore m_{PS} = m_{MS}$

$$\frac{b+2}{a-1} = \frac{3}{-3} = -1$$

$$b+2 = -a+1$$

$$b=-a-1$$
(2)

 \checkmark equal gradients
$$\checkmark$$
 gradient

(1)

 $\checkmark b = -a - 1$ Subst (2) into(1)

$$a^{2} + 4a + 4 + a^{2} + 4a + 4 = 162$$

$$2a^{2} + 8a - 154 = 0$$

$$a^{2} + 4a - 77 = 0$$

$$(a+11)(a-7) = 0$$

$$a = 7 \text{ or } -11$$
But $a > 0$

$$\therefore a = 7$$

$$b = -a - 1 = -8$$

$$P(7; -8)$$
 $\checkmark a = 7$

$$\checkmark b = -8$$
(8)

OR

NSC - Memorandum

 $2(a-1)^2 = 72$

 $(a-1)^2 = 36$

a-1=6 or -6

a = 7 or -5

a = 7

b = -8

P(7; -8)

P(a; b)

MSP is a straight line

 $m_{PM} = -1$

$$\frac{b-1}{a+2} = -1$$

$$b-1 = -a-2$$

$$b = -a - 1 \dots (1)$$

$$PS = 2MS = 2\sqrt{9+9} = 2\sqrt{18}$$

$$PS^2 = 4(18) = 72$$

$$(a-1)^2 + (b+2)^2 = 72.....(2)$$

$$(a-1)^2 + (-a-1+2)^2 = 72$$

$$2a^2 - 4a - 70 = 0$$

$$a^2 - 2a - 35 = 0$$

$$(a-7)(a+5)=0$$

$$a = 7 \text{ or } a \neq -5$$

 $b = -7 - 1 = -8$

$$P(7;-8)$$

 $(MS \perp SR)$

$$\checkmark m_{PM} = -1$$

$$\sqrt{\frac{b-1}{a+2}}$$

- ✓ equation 1
- ✓ equation 2
- ✓ substitution of equation 1 into equation 2
- ✓✓ coordinates

(8)

OR

OR

✓✓ diagram

✓✓ division of line segment into

Copyright reserved

Please turn over

N	JSC -	Memor	andum
1,	NOC	MICHIOL	anuum

TOSE MEMORIAL	
P(a; b)	given ratio
$\frac{x_S - x_M}{x_S - x_M} = \frac{y_S - y_M}{x_S - x_M} = \frac{1}{2}$	✓ substitution ✓ equation
$x_P - x_M$ $y_P - y_M$ 3	✓ equation
$\frac{-3}{3} = \frac{3}{3} = \frac{1}{3}$	
b-1 $a+2$ 3	✓equation
-9 = b - 1	✓coordinates
b = -8	(0)
9 = a + 2	(8) [16]
a = 7	[10]
P(7;-8)	

7.1	K 3 2 1 1 X X X X X X X X X X X X X X X X X	For correct coordinates and label of each image: ✓ K' ✓ L' ✓ M' ✓ N'
7.2.1	Transformation is not rigid, because the area is not preserved under enlargement.	(4) ✓ not rigid ✓ size not
	Cinargement.	preserved (2)
7.2.2	N''(-2;-2)	\checkmark coordinates of N'' (2)
7.3	$(x;y) \rightarrow (-y;x) \rightarrow (-2y;2x)$	$\begin{array}{c} \checkmark -y \\ \checkmark x \\ \checkmark -2y \\ \checkmark 2x \end{array} $ (4)
		$\checkmark 2x$ (4)
7.4	Area of KLMN: area of $K''L''M''N'' = 1:4$	✓✓ answer (2)
7.5	If the point that is furthest away from the origin is sent into the circle, the whole quadrilateral is sent into the circle. K is furthest away.	✓ K – furthest
	the whole quadriateral is sent into the circle. K is furthest away. $KO = \sqrt{3^2 + 3^2} = \sqrt{18}$	✓ KO = $\sqrt{18}$ ✓ answer
	$p.\text{KO} = 1, \ p = \frac{1}{\sqrt{18}}$	(3) [17]

1

OR

OR

QUESTION 8

8.	$x_{\mathcal{Q}} = x\cos\theta + y\sin\theta$
	$x_Q = -2\cos 135^\circ + (-3)\sin 135^\circ$
	$x_{Q} = \frac{2}{\sqrt{2}} - \frac{3}{\sqrt{2}} = \frac{-1}{\sqrt{2}} \text{ or } -\frac{\sqrt{2}}{2} \text{ or } -0.7$ $y_{Q} = y \cos \theta - x \sin \theta$ $y_{Q} = -3 \cos 135^{\circ} - (-2) \sin 135^{\circ}$
	$y_Q = y\cos\theta - x\sin\theta$
	$y_Q = -3\cos 135^\circ - (-2)\sin 135^\circ$
	$y_Q = \frac{3}{\sqrt{2}} + \frac{2}{\sqrt{2}} = \frac{5}{\sqrt{2}} = \frac{5\sqrt{2}}{2} = 3,54$
	$Q\left(\frac{-1}{\sqrt{2}}; \frac{5}{\sqrt{2}}\right)$

$$x_{Q} = x \cos \theta - y \sin \theta$$

$$x_{Q} = -2 \cos(-135^{\circ}) - (-3) \sin(-135^{\circ})$$

$$x_{Q} = \frac{2}{\sqrt{2}} - \frac{3}{\sqrt{2}} = \frac{-1}{\sqrt{2}} \text{ or } -\frac{\sqrt{2}}{2} \text{ or } -0.71$$

$$y_{Q} = y \cos \theta + x \sin \theta$$

$$y_{Q} = -3 \cos(-135^{\circ}) + (-2) \sin(-135^{\circ})$$

$$y_{Q} = \frac{3}{\sqrt{2}} + \frac{2}{\sqrt{2}} = \frac{5}{\sqrt{2}} = \frac{5\sqrt{2}}{2} = 3.54$$

$$Q\left(\frac{-1}{\sqrt{2}}; \frac{5}{\sqrt{2}}\right)$$

 $x' = x\cos\theta - y\sin\theta$ $-2 = x\cos135^{\circ} - y\sin135^{\circ}$ $-2 = \frac{-x}{\sqrt{2}} - \frac{y}{\sqrt{2}}$ $-2\sqrt{2} = -x - y$ $y' = y\cos\theta + x\sin\theta$ $-3 = y\cos135^{\circ} + x\sin135^{\circ}$ $-3 = \frac{-y}{\sqrt{2}} + \frac{x}{\sqrt{2}}$ $-3\sqrt{2} = x - y$ (2)

Solving (1) and (2) simultaneously: $-5\sqrt{2} = -2y$

$$y = \frac{5}{\sqrt{2}} \qquad \text{and} \qquad x = \frac{-1}{\sqrt{2}}$$

✓ subst -2 and -3 into correct formula for x_Q

✓ using 135°

✓ x coordinate (in any format)

✓ subst -2 and -3 into correct formula for y_Q

✓ for y coordinate (in any format)

(5)

✓ subst -2 and -3 into correct formula for x_Q

✓ using -135°

✓ *x*-coordinate (in any format)

✓ subst −2 and −3 into correct formula for y_O

✓ for y-coordinate (in any format)

(5)

✓ subst -2 and 135° into correct formula for x'

✓ simplification

✓ subst -2 and 135° into correct formula for v'

✓ *y*-coordinate ✓ *x*-coordinate

(5)

OR

Using first principles: $Q = (-r \cos \alpha; r \sin \alpha)$

$$Q^{/} = (-2; -3)$$

$$\tan \theta = \frac{3}{2}$$

$$r = \sqrt{3^2 + 2^2} = \sqrt{13}$$

$$\theta = 56.31^{\circ}$$

$$\therefore \alpha = 135^{\circ} - 56,31^{\circ} = 78,69^{\circ}$$

$$Q = (-r\cos\alpha; r\sin\alpha)$$

$$= (-0,71; 3,54)$$

$$\checkmark \tan \theta = \frac{3}{2}$$

$$\checkmark r = \sqrt{13}$$

$$\sqrt{Q} = (-r\cos\alpha; r\sin\alpha)$$

✓ answer

(5) [**5**]

9.1.1	r = 13	√ 13
	$\cos\alpha = \frac{12}{13}$	$\checkmark \frac{12}{13}$
9.1.2	$T\hat{O}R = 180^{\circ} - (90^{\circ} + \alpha)$	(2) $\sqrt{180^{\circ} - (90^{\circ} + \alpha)}$
	$=90^{\circ}-\alpha$	$\begin{array}{ c c c c }\hline \checkmark 180^{\circ} - (90^{\circ} + \alpha) \\ \checkmark 90^{\circ} - \alpha \end{array}$ (2)

9.1.3	$\cos T\hat{O}R = \frac{TR}{OT}$	√ 7.5
	$\cos(90^{\circ} - \alpha) = \frac{7.5}{\text{OT}}$	$\cos(90^\circ - \alpha) = \frac{7.5}{OQ}$
	$OT = \frac{7,5}{\cos(90^\circ - \alpha)}$	$\cos(90^{\circ} - \alpha) = \frac{7.5}{OQ}$ $\checkmark \frac{7.5}{\sin \alpha}$
	$OT = \frac{7.5}{\sin \alpha}$	$\sqrt{\frac{5}{13}}$
	$OT = \frac{7.5}{\frac{5}{13}}$	13 ✓19,5 (4)
	OT = 19,5	
	$\sin(\hat{RTO}) = \frac{7.5}{OT}$	$\sin(\hat{RQO}) = \frac{7.5}{\Omega\Omega}$
	$\therefore OT = \frac{7.5}{\sin \alpha}$	$\sin(\hat{RQO}) = \frac{7.5}{OQ}$ $\checkmark \frac{7.5}{\sin \alpha}$
	$OT = \frac{7.5}{\frac{5}{13}}$	$\sqrt{\frac{5}{13}}$
	OT = 19,5	√19,5 (4)
9.2	$LHS = \frac{\cos x \cdot \cos x(-\tan x)}{-\cos x}$	$\sqrt{\cos x}$
	$=\cos x.\frac{\sin x}{\cos x}$	$\sqrt{-\tan x}$
	$= \sin x$ $= RHS$	$\cos x$ \checkmark answer
	– KH5	(4) [12]

10.1	Period = 120°	✓ 120°
10.2	. 2 1	(1)
10.2	$\sin 3x = -1$ $x = -30^{\circ} \text{ or } x = 90^{\circ}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	x 50 01 x 70	(2)
10.3	Maximum value of $f(x)$ is 1	\checkmark max of $f(x)$
	\therefore Maximum value of $h(x)$ is 0	✓ answer (2)
10.4		✓ -90°; 90°
		✓ (0°;3) ✓ (180°;-3)
	2 g	(160',-3)
	-90 -60 -30 30 60 90 120 150 180	
	-1	
	-2	
		(3)
10.5	$\frac{\sin 3x}{-\cos x} = 0$	
	$\frac{\sin 3x}{3} - \cos x = 0$	√
	$\sin 3x - 3\cos x = 0$	$\sin 3x = 3\cos x$
	$\therefore \sin 3x = 3\cos x$	311 311 3 203 11
	There are 2 solutions where graphs f and g are equal	✓ answer
		(2)
10.6	f(x).g(x) < 0	✓✓✓ for each
	$x \in (-60^{\circ}; 0^{\circ}) \text{ or } (60^{\circ}; 90^{\circ}) \text{ or } (120^{\circ}; 180^{\circ})$	interval ✓ correct brackets
	OR	or correct
		symbols
	$-60^{\circ} < x < 0^{\circ}$ or $60^{\circ} < x < 90^{\circ}$ or $120^{\circ} < x < 180^{\circ}$	(4)
		[14]

11.1.1	$\sin 61^{\circ} = \sqrt{p}$ $\sin 241^{\circ} = \sin (180^{\circ} + 61^{\circ})$ $= -\sin 61^{\circ}$ $= -\sqrt{p}$	✓ – sin 61° ✓ answer
	$lack lack \sqrt{1-p}$	(2)
11.1.2	$\cos 61^\circ = \sqrt{1 - \sin^2 61^\circ}$ $= \sqrt{1 - p}$	✓ identity ✓ answer (2)
11.1.3	$\cos 122^{\circ} = \cos 2(61^{\circ})$ = $2\cos^2 61^{\circ} - 1$	✓ double angle ✓ expansion
	$= 2(\sqrt{1-p})^2 - 1$ = 2(1-p)-1 = 2-2p-1	✓ answer
	=1-2p	(3)
11.1.4	$\cos 73^{\circ} \cos 15^{\circ} + \sin 73^{\circ} .\sin 15^{\circ}$ = $\cos (73^{\circ} - 15^{\circ})$ = $\cos 58^{\circ} = (\cos 180^{\circ} - 122^{\circ})$ = $-(\cos 122^{\circ})$	✓ cos(73°-15°) ✓ – (cos 122°)
	= -(1 - 2p) $= 2p - 1$	✓ answer (3)
11.2.1	$LHS = \frac{(\cos x + \sin x)^{2} - (\cos x - \sin x)^{2}}{(\cos x - \sin x)(\cos x + \sin x)}$ $= \frac{\cos^{2} x + 2\cos x \sin x + \sin^{2} x - (\cos^{2} x - 2\sin x \cos x + \sin^{2} x)}{(\cos x - \sin x)(\cos x + \sin x)}$ $= \frac{4\cos x \sin x}{\cos^{2} x - \sin^{2} x}$ $= \frac{2\sin 2x}{\cos 2x}$ $= 2\tan x$	$ \frac{(\cos x + \sin x)^2 - (\cos x - \sin x)^2}{(\cos x - \sin x)(\cos x + \sin x)} $ $ \checkmark \text{numerator} $ $ \checkmark 4 \cos x \sin x $ $ \checkmark \cos^2 x - \sin^2 x $ $ \checkmark 2 \sin 2x $ $ \checkmark \cos 2x $
	= RHS	(6)
11.2.2	$\cos x = \sin x$ or $\cos x = -\sin x$ $x = 45^{\circ}$ $x = 135^{\circ}$	√√ for answer (2)
11.3.1	$\sin x = \cos 2x - 1$ $\sin x = 1 - 2\sin^2 x - 1$ $\sin x = -2\sin^2 x$	$\checkmark 1 - 2\sin^2 x$
	$\sin x = -2\sin^2 x$ $2\sin^2 x + \sin x = 0$	(1)

11.3.2
$$\sin x = \cos 2x - 1$$

 $2 \sin^2 x + \sin x = 0$
 $\sin x (2 \sin x + 1) = 0$
 $\sin x = 0$ or $\sin x = -\frac{1}{2}$
 $\therefore x = 0^\circ + 180^\circ k$; $k \in \mathbb{Z}$ or $x = \{210^\circ \text{ or } 330^\circ\} + 360^\circ k$; $k \in \mathbb{Z}$
OR
 $x = n.180^\circ$
 $x = n.360^\circ - 30^\circ$
 $x = (2n+1).180^\circ + 30^\circ, n \in \mathbb{Z}$
 $x = (2n+1).180^\circ + 30^\circ, n \in \mathbb{Z}$

11.4
$$\tan 1^{\circ} \times \tan 2^{\circ} \times \tan 3^{\circ} \times \tan 4^{\circ} \times \dots \times \tan 87^{\circ} \times \tan 88^{\circ} \times \tan 89^{\circ}$$

$$= \left(\frac{\sin 1^{\circ}}{\cos 1^{\circ}}\right) \left(\frac{\sin 2^{\circ}}{\cos 2^{\circ}}\right) \dots \left(\frac{\sin 45^{\circ}}{\cos 45^{\circ}}\right) \dots \left(\frac{\sin 88^{\circ}}{\cos 88^{\circ}}\right) \left(\frac{\sin 89^{\circ}}{\cos 89^{\circ}}\right)$$

$$= \left(\frac{\sin 1^{\circ}}{\cos 1^{\circ}}\right) \left(\frac{\sin 2^{\circ}}{\cos 2^{\circ}}\right) \dots \left(\frac{\sin 45^{\circ}}{\cos 45^{\circ}}\right) \dots \left(\frac{\sin (90^{\circ} - 2^{\circ})}{\cos (90^{\circ} - 2^{\circ})}\right) \left(\frac{\sin (90^{\circ} - 1^{\circ})}{\cos (90^{\circ} - 1^{\circ})}\right)$$

$$= \left(\frac{\sin 1^{\circ}}{\cos 1^{\circ}}\right) \left(\frac{\sin 2^{\circ}}{\cos 2^{\circ}}\right) \dots \left(\frac{\sin 45^{\circ}}{\cos 45^{\circ}}\right) \dots \left(\frac{\cos 2^{\circ}}{\sin 2^{\circ}}\right) \left(\frac{\cos 1^{\circ}}{\sin 1^{\circ}}\right)$$

$$= \tan 45^{\circ}$$

$$= 1$$

$$\cot 89^{\circ} = \cot 1^{\circ} \tan 88^{\circ} = \cot 2^{\circ} \dots$$

$$\therefore \text{ product is } (\tan 1^{\circ} \cdot \cot 1^{\circ}) (\tan 2^{\circ} \cdot \cot 2^{\circ}) \dots (\tan 44^{\circ} \cdot \cot 44^{\circ}) \cdot \tan 45^{\circ}$$

$$= 1 \times 1 \times 1 \times \dots \times 1 = 1$$

$$(4)$$

$$[29]$$

12	In Δ CBG and ΔCDH:	
	$CG^2 = x^2 + y^2$ Pythagoras	✓ CG ²
	$CH^2 = x^2 + y^2$ Pythagoras	✓ CH ²
	In ΔFAE	
	$AE^2 = \chi^2 + \chi^2$	
	$=2x^2$	✓ AE ²
	$= GH^2$	$\checkmark AE^2 = GH^2$
	In Δ CGH	
	$GH^2 = CG^2 + CH^2 - 2 CG.CH. \cos GCH$	
	$G_{\text{GY}} = CG^2 + CH^2 - GH^2$	✓ use of cos rule
	$\cos G\hat{C}H = \frac{CG^2 + CH^2 - GH^2}{2CG.CH}$	
		✓ manipulation of
	$\cos G\hat{C}H = \frac{x^2 + y^2 + x^2 + y^2 - 2x^2}{2\sqrt{x^2 + y^2}\sqrt{x^2 + y^2}}$	formula
	$2\sqrt{x^2 + y^2} \cdot \sqrt{x^2 + y^2}$	✓ substitution
	$2v^2$	\checkmark
	$\cos G\hat{C}H = \frac{2y^2}{2(x^2 + y^2)}$	21,2
		$\cos G\hat{C}H = \frac{2y^2}{2(x^2 + y^2)}$
	$\cos G\hat{C}H = \frac{y^2}{x^2 + y^2}$	$2(x^2+y^2)$
	$x^2 + y^2$	(0)
		(8)
		[8]

TOTAL: 150