$\log n_v$ for $N=32, \lambda_x=0, \lambda_y=0, c_L=0, 450$ runs, exponent -0.779477794876.

 $\log n_v \text{ for } N{=}32, \; \lambda_x{=}\; 0, \; \lambda_y{=}0, \; c_L{=}0.2, \; 700 \text{ runs, exponent -1.06033970716}.$

 $\log n_v$ for $N=32, \lambda_x=0, \lambda_y=0, c_L=0.4, 500$ runs, exponent -1.23320731271.

 $\log n_v \text{ for } N{=}40, \, \lambda_x{=}\ 0.2, \, \lambda_y{=}0.2, \, c_L{=}0.2, \, 300 \text{ runs, exponent -1.01593262191}.$

 $\log n_v \text{ for } N{=}40, \; \lambda_x{=}\; 0, \; \lambda_y{=}0, \; c_L{=}0.2, \; 300 \text{ runs, exponent -1.03204516273}.$

 $\log n_v \text{ for } N{=}40, \ \lambda_x{=}\ 0.2, \ \lambda_y{=}{-}0.2, \ c_L{=}0.2, \ 300 \text{ runs, exponent -}1.03008785941.$

 $\log n_v \text{ for } N{=}48, \, \lambda_x{=}\ 0.6, \, \lambda_y{=}0.6, \, c_L{=}0.2, \, 300 \text{ runs, exponent -}0.815324000086.$

 $\log n_v$ for N=48, λ_x = 1, λ_y =-1, c_L =0.2, 300 runs, exponent -1.20267548167.

 $\log n_v \text{ for } N{=}48, \ \lambda_x{=}\ 0.4, \ \lambda_y{=}{-}0.4, \ c_L{=}0.2, \ 300 \ \text{runs, exponent -}1.08159082284.$

 $\log n_v \text{ for } N{=}48, \, \lambda_x{=}\ 0.4, \, \lambda_y{=}0.4, \, c_L{=}0.2, \, 600 \text{ runs, exponent -}0.921039507164.$

 $\log n_v$ for $N=48, \lambda_x=0.2, \lambda_y=0.2, c_L=0.2, 500$ runs, exponent -1.01450735356.

 $\log n_v$ for N=48, λ_x = 0.6, λ_y =-0.6, c_L =0.2, 300 runs, exponent -1.10369317299.

 $\log n_v$ for N=48, λ_x = 0, λ_y =0, c_L =0.2, 600 runs, exponent -1.04937252138.

 $\log n_v$ for $N{=}48$, $\lambda_x{=}$ 0.2, $\lambda_y{=}{-}0.2$, $c_L{=}0.2$, 500 runs, exponent -1.04178981137.

 $\log n_v \text{ for } N{=}48, \, \lambda_x{=}\ 0.8, \, \lambda_y{=}0.8, \, c_L{=}0.2, \, 300 \text{ runs, exponent -}0.786386857724.$

 $\log n_v \text{ for } N{=}48, \; \lambda_x{=}\; 1, \; \lambda_y{=}1, \; c_L{=}0.2, \; 300 \text{ runs, exponent -}0.74760896171.$

 $\log n_v$ for $N=104, \lambda_x=0.6, \lambda_y=0.6, c_L=0.2, 125$ runs, exponent -0.531120340411.

 $\log n_v \text{ for } N = 104, \; \lambda_x = \; 0.4, \; \lambda_y = -0.4, \; c_L = 0.2, \; 125 \text{ runs, exponent -0.951938893139}.$

 $\log n_v \text{ for } N = 104, \; \lambda_x = 0.4, \; \lambda_y = 0.4, \; c_L = 0.2, \; 125 \text{ runs, exponent -0.75808671737}.$

 $\log n_v \text{ for } N = 104, \ \lambda_x = 0.2, \ \lambda_y = 0.2, \ c_L = 0.2, \ 125 \text{ runs, exponent -0.922733115859}.$

 $\log n_v$ for $N=104, \lambda_x=0, \lambda_y=0, c_L=0.2, 125 \text{ runs, exponent -1.0035426973.}$

 $\log n_v \text{ for } N = 104, \; \lambda_x = \; 0.2, \; \lambda_y = -0.2, \; c_L = 0.2, \; 125 \text{ runs, exponent -0.974871254234}.$

 $\log n_v$ for N=64, λ_x = 0.6, λ_y =0.6, c_L =0.2, 750 runs, exponent -0.816156241876.

 $\log n_v \text{ for } N{=}64, \ \lambda_x{=}\ 1, \ \lambda_y{=}{-}1, \ c_L{=}0.2, \ 300 \ \text{runs, exponent -}1.18901797511.$

 $\log n_v \text{ for } N = 64, \; \lambda_x = \; 0.8, \; \lambda_y = -0.8, \; c_L = 0.2, \; 400 \text{ runs, exponent -1.12483266935}.$

 $\log n_v \text{ for } N{=}64, \ \lambda_x{=}\ 0.4, \ \lambda_y{=}{-}0.4, \ c_L{=}0.2, \ 450 \text{ runs, exponent -}1.06298722328.$

 $\log n_v \text{ for } N = 64, \ \lambda_x = \ 0.4, \ \lambda_y = 0.4, \ c_L = 0.2, \ 1500 \ \text{runs, exponent -0.901298816454}.$

 $\log n_v \text{ for } N = 64, \ \lambda_x = 0.2, \ \lambda_y = 0.2, \ c_L = 0.2, \ 500 \text{ runs, exponent -1.01123769861}.$

 $\log n_v \text{ for } N{=}64, \ \lambda_x{=}\ 0.6, \ \lambda_y{=}{-}0.6, \ c_L{=}0.2, \ 400 \text{ runs, exponent -}1.04342739512.$

 $\log n_v$ for N=64, λ_x = 0, λ_y =0, c_L =0.2, 500 runs, exponent -1.00189029856.

 $\log n_v \text{ for } N = 64, \; \lambda_x = \; 0.2, \; \lambda_y = -0.2, \; c_L = 0.2, \; 500 \text{ runs, exponent -1.03566485444}.$

 $\log n_v \text{ for } N{=}64, \, \lambda_x{=}\ 0.8, \, \lambda_y{=}0.8, \, c_L{=}0.2, \, 350 \text{ runs, exponent -}0.749997025944.$

 $\log n_v$ for $N=64, \lambda_x=1, \lambda_y=1, c_L=0.2, 300 \text{ runs}$, exponent -0.758044066822.

 $\log n_v \text{ for } N = 128, \, \lambda_x = 0.6, \, \lambda_y = 0.6, \, c_L = 0.2, \, 170 \text{ runs, exponent -0.562672945281}.$

 $\log n_v$ for $N=128, \lambda_x=1, \lambda_y=-1, c_L=0.2, 130$ runs, exponent -1.10535049972.

 $\log n_v$ for $N=128, \lambda_x=0.8, \lambda_y=-0.8, c_L=0.2, 130$ runs, exponent -1.18964608111.

 $\log n_v \text{ for } N = 128, \ \lambda_x = \ 0.4, \ \lambda_y = -0.4, \ c_L = 0.2, \ 190 \text{ runs, exponent } -0.951750903131.$

 $\log n_v \text{ for } N = 128, \ \lambda_x = \ 0.4, \ \lambda_y = 0.4, \ c_L = 0.2, \ 300 \ \text{runs, exponent -0.806862400831}.$

 $\log n_v \text{ for } N = 128, \ \lambda_x = 0.4, \ \lambda_y = 0.4, \ c_L = 0.4, \ 100 \text{ runs, exponent -1.01559240812}.$

 $\log n_v$ for $N=128, \lambda_x=0.2, \lambda_y=0.2, c_L=0.4, 100 \text{ runs, exponent -1.13772872587.}$

 $\log n_v$ for $N=128, \lambda_x=0.2, \lambda_y=0.2, c_L=0.2, 375$ runs, exponent -0.919855838339.

 $\log n_v \text{ for } N = 128, \ \lambda_x = \ 0.6, \ \lambda_y = -0.6, \ c_L = 0.2, \ 170 \text{ runs, exponent } -0.975710590147.$

 $\log n_v$ for N=128, $\lambda_x=0$, $\lambda_y=0$, $c_L=0.4$, 200 runs, exponent -1.07510823897.

 $\log n_v$ for $N=128, \lambda_x=0, \lambda_y=0, c_L=0.2, 420$ runs, exponent -0.996880699416.

 $\log n_v \text{ for } N = 128, \ \lambda_x = \ 0.2, \ \lambda_y = -0.2, \ c_L = 0.2, \ 250 \text{ runs, exponent } -0.97079956057.$

 $\log n_v \text{ for } N = 128, \, \lambda_x = 0.8, \, \lambda_y = 0.8, \, c_L = 0.2, \, 140 \text{ runs, exponent -0.509268934531}.$

 $\log n_v$ for $N=128, \lambda_x=1, \lambda_y=1, c_L=0.2, 160$ runs, exponent -0.523938941411.

 $\log n_v \text{ for } N{=}72, \, \lambda_x{=}\ 0.6, \, \lambda_y{=}0.6, \, c_L{=}0.2, \, 160 \text{ runs, exponent -}0.709815856904.$

 $\log n_v \text{ for } N{=}72, \ \lambda_x{=}\ 0.4, \ \lambda_y{=}\text{-}0.4, \ c_L{=}0.2, \ 200 \ \text{runs, exponent -}1.03070658032.$

 $\log n_v \text{ for } N{=}72, \ \lambda_x{=}\ 0.4, \ \lambda_y{=}0.4, \ c_L{=}0.2, \ 200 \ \text{runs, exponent -}0.884744029286.$

 $\log n_v \text{ for } N = 72, \; \lambda_x = \; 0.2, \; \lambda_y = 0.2, \; c_L = 0.2, \; 200 \text{ runs, exponent -0.967265845114}.$

 $\log n_v \text{ for } N{=}72, \; \lambda_x{=}\; 0, \; \lambda_y{=}0, \; c_L{=}0.2, \; 250 \text{ runs, exponent -}1.02227901906.$

 $\log n_v$ for $N=72, \lambda_x=0.2, \lambda_y=-0.2, c_L=0.2, 200$ runs, exponent -1.01370565686.

