

Description

The VST06N028 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

- V_{DS} =60V, I_{D} =180A $R_{DS(ON)} < 3.2m\Omega @ V_{GS}$ =10V (Typ:2.8mΩ)
- Excellent gate charge x R_{DS(on)} product
- Very low on-resistance R_{DS(on)}
- 150 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

TO-220C

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST06N028-TC	VST06N028	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	60	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous (Silicon Limited)	I _D	180	А
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	126	А
Pulsed Drain Current	I _{DM}	720	Α
Maximum Power Dissipation	P _D	220	W
Derating factor		1.47	W/℃
Single pulse avalanche energy (Note 5)	E _{AS}	1036	mJ
Drain Source voltage slope, V _{DS} ≤48V,	dv/dt	50	V/ns
Reverse diode dv/dt, V _{DS} ≤48 V, I _{SD} <i<sub>D</i<sub>	dv/dt	15	V/ns
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	Rejc	0.68	°C/W	Ì
---	------	------	------	---

Electrical Characteristics (T_C=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	60		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V_{GS} =±20 V , V_{DS} =0 V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0	3.0	4.0	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	2.8	3.2	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =40A	50	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}		-	4500	-	PF
Output Capacitance	C _{oss}	V _{DS} =30V,V _{GS} =0V,	-	965	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	24	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}	V_{DD} =30V, I_{D} =40A V_{GS} =10V, R_{G} =4.7 Ω	-	6	-	nS
Turn-on Rise Time	t _r		-	11	-	nS
Turn-Off Delay Time	t _{d(off)}		-	23	-	nS
Turn-Off Fall Time	t _f		-	3	-	nS
Total Gate Charge	Qg)/ 00\/ L 40A	-	70	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=30V,I_{D}=40A,$	-	18.6	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	15.3	-	nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =40A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	180	Α
Reverse Recovery Time	t _{rr}	$T_J = 25$ °C, $I_F = I_S$	-	50		nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	66		nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,V_DD=30V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance