Notation

- Ω , espace of different scenarios.
- $X: \Omega \to \mathbb{R}$, value of portfolio.
- $\mathcal{X}=\{X:\Omega\to\mathbb{R}:\sup_{\omega\in\Omega}|X(\omega)|<\infty\}.$, All the bounded portfolio.
- $(\Omega, \mathcal{F}, \mathbb{P})$, espace proba, $\mathcal{X} = L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$.

1 Ch1

Definition 1.1 (measure of monetary risk).

```
1
2
3
1.
4
5
2.
6
7
3.
```

Proposition 1.2 (Property of Lipschitz).

```
1 %
2 %
```

Definition 1.3 (axiomatisation of measure of risk).

```
1 1. convex:
2
3
4 2. positively homogeneous:
5
6
7 3. consistent:
```

Remark 1.4. convex shows the benefits of risk diversity. if ρ is convex, then $\forall X \in \mathcal{X}, u \in \mathbb{R} \to \rho(uX)$ is convex.

Question 1.5. Justify the following two measures of risk:

```
1. \rho(X) = \mathbb{E}[-X]
2. \alpha > 0, \rho(X) = \mathbb{E}[-X] + \alpha \sqrt{\operatorname{Var}(X)}
```

Definition 1.6 (value at Risk (VaR)). A reasonable suggestion of ρ :

```
1 % 2 %
```

Question 1.7. Justify the property/axiom of VaR.

- 1. VaR is monotone
- 2. VaR is inv cash
- 3. VaR is positively homogeneous
- 4. VaR isn't convex

Example 1.8. \mathcal{L} : set of proba measures over (Ω, \mathcal{F}) , let $\gamma : \mathcal{L} \to \mathbb{R}$, s.t. $\sup_{Q \in \mathcal{L}} \gamma(Q) = 0$, define $\rho(X) = \sup_{Q \in \mathcal{L}} \mathbb{E}_Q[-X] + \gamma(Q)$.

Question 1.9. Justify the example is a convex measure of monetary risk.

Definition 1.10 (acceptable set of financial positions). $A \subseteq \mathcal{X}$ is the acceptable set of financial positions if:

```
\begin{bmatrix} 1 & & 1 & & \\ 2 & & & \\ 3 & & 2 & & \end{bmatrix}
```

Proposition 1.11. (ρ and A_{ρ})

- 1. if ρ is a measure of monetary risk, then, $\mathcal{A}_{\rho} = \{X \in \mathcal{X}, \rho(X) \leq 0\}$ is the acceptable set of financial positions.
- 2. if \mathcal{A} is a.s.f.p. define $\rho_{\mathcal{A}} = \inf\{m \in \mathbb{R}, m + X \in \mathcal{A}\}$, then $\rho_{\mathcal{A}}$ is the mesure of monetary risk.
 - 3. $\rho = \rho_{\mathcal{A}_{\rho}}$.
 - 4. $\rho_1 = \rho_2 \iff \mathcal{A}_{\rho_1} = \mathcal{A}_{\rho_2}$
 - 5. ρ is convexe $\iff \mathcal{A}_{\rho}$ is convex.
 - 6. ρ is positively homogeneous $\iff \mathcal{A}_{\rho}$ is cone.