Fault Localization & Relevance Analysis

Numair Mansur, Christian Schilling, Matthias Heizmann University of Freiburg, Germany

June 9, 2017

Definition 1 (Execution). Let π be an error trace of length n. An execution of π is a sequence of states $s_0, s_1...s_n$ such that $s_i, s_{i+1} \models T$, where T is the transition formula of $\pi[i]$.

Let ϵ represent the set of all possible executions of the error trace.

Definition 2 (Blocking Execution). An execution of a trace π of size n is called a blocking execution if there exists a sequence of states $s_0, s_1...s_j$ where $i < j \leq n$ such that $s_i, s_{i+1} \models T[i]$, where T[i] is the transition formula of $\pi[i]$ and there exists an assume statement in the trace π at position j such that $s_j \not\Rightarrow guard(\pi[j])$.

Definition 3 (Relevancy of an assignment statement). Let β represent the set of all blocking executions of a trace π . Let there be an assignment statement of the form x := t at position i. Let π' represent the trace that we get after replacing $\pi[i]$ with a havoc statement of the form havoc(x) and let β' represent the set of all blocking executions for π' .

We say that the assignment statement $\pi[i]$ is relevant if the trace after the replacement has strictly more blocked executions than the trace before the replacement, i.e if $\beta \subseteq \beta'$.

Theorem 1 (Relevancy of an assignment statement). Let π be an error trace of length n and $\pi[i]$ be an assignment statement at position i having the form x := t, where x is a variable and t is an expression. Let P and Q be two predicates where $P = \neg WP(False; \pi[i, n]) \cap SP(True; \pi[1, i-1])$ and $Q = \neg WP(False; \pi[i+1, n])$. The statement $\pi[i]$ is relevant iff:

$$P \not\Rightarrow WP(Q, havoc(x))$$

Proof. Let π' be the trace where the assignment statement $\pi[i]$ is replaced by a havoc statement.

"⇒"

If the assignment statement $\pi[i]$ is relevant then:

$$P \not\Rightarrow WP(Q, havoc(x))$$

Let Q' := SP(P; havoc(x)) and P' := WP(Q; havoc(x)).

$$\frac{\pi[1,i-1]}{\mathsf{P}}\,x \coloneqq t\,\frac{\pi[i+1,j-1]}{\mathsf{Q}}\qquad \qquad \pi[j+1,n]$$

$$\frac{\pi[1,i-1]}{\mathsf{P'}} \frac{\pi[i+1,j-1]}{\mathsf{Q'}} \frac{\pi[j+1,n]}{\pi'}$$

Q' := SP(P; havoc(x))

P' := WP(Q; havoc(x))

Relevncy of x := t implies that replacing it with havoc(x) gives us more blocking executions then before. Therefore

$$Q \subseteq Q'$$

The relevancy of the assignment statement x := t implies that the trace π' have strictly more blocking exections then π . This means that there exists an assume statement in the trace π at position j, which is blocking more executions then before. Or we can say that there are more states s_j for which the assume statement is blocking.

hello hello $\hfill\Box$