## Problem set 1

1) S does become a group with the given binary operation.

Identity:  $a * 0 = a + 0 + a \cdot 0 = a$  $0 * a = 0 + a + 0 \cdot a = a$ 

Thus, 0 is the identity for the given binary operation.

Inverses: Given as S, we want to find some  $x \in S$  such that a \* x = 0.

a\*x = a+x+ax = a+x(1+a)

So, if a\*x=0, we must have  $x=\frac{-a}{1+a}$ . We verify that  $\left(\frac{-a}{1+a}\right)$  is the inverse of a:  $a*\left(\frac{-a}{1+a}\right) = a+\left(\frac{-a}{1+a}\right) + \frac{a(-a)}{1+a}$ 

 $\frac{a(1+a)-a-a^2}{(1+a)}=0.$ 

 $\left(\frac{-a}{1+a}\right) * a = \left(\frac{-a}{1+a}\right) + a + \frac{(-a)a}{1+a} = 0$ 

[Note:  $(\frac{-a}{1+a})$  is defined as  $a \neq -1$ .] We need to ensure that  $\frac{-a}{1+a} \in S$  if a  $\in S$ .

Suppose  $\frac{-a}{1+a}$  (which is in IR) is not in S.

Then  $\frac{-a}{1+a} = -1$ , i.e. a = a+1.

which is not possible.

Thus, every element a ES has an inverse in S.

Associativity We want to show that if  $a,b,c \in S$ , then (a\*b)\*c = a\*(b\*c).

axb = a+b+ab

(axb)\*c= (a+b+ab) + c+ (a+b+ab) c = a+b+c+ab+bc+ca+abc.

b\*c = b\*c + bc

a\*(b\*c) = a+(b+c+bc) + a(b+c+bc)= a+b+c+ab+bc+ca+abc.

Thus, (a \* b) \* c = a \* (b \* c)

Thus, we see that S is a group under the given binary operation.

2) Let  $\phi: S \rightarrow T$  be a 1-1 correspondence.



Let  $T \in Perm(T)$ . Thus, T is a 1-1 correspondence from T to itself.



Then  $\phi^{\dagger} \cdot \nabla \cdot \varphi$  is a 1-1 correspondence from S to itself. (composition of 1-1 correspondences is a 1-1 correspondence.)

So, we define a function  $f: Perm(T) \longrightarrow Perm(S)$  defined by  $f(T) = \varphi^{-1} \cdot T \cdot \varphi$ .

## f is a group homomorphism

To see this, we take  $T_1$ ,  $T_2 \in Perm(T)$ and show that  $f(T_1, T_2) = f(T_1)f(T_2)$  $f(T_1) f(T_2) = \varphi T_1 \varphi \varphi T_2 \varphi$  $= \varphi T_1 T_2 \varphi$  (as  $\varphi \varphi' = id_T$ )  $= f(T_1, T_2)$ .

## f is a 1-1 correspondence

This can be proved in two ways: Proof 1

Let us first show that f is a one-to-one function.

Suppose  $f(\tau_1) = f(\tau_2)$  for  $\tau_1, \tau_2 \in Perm(\tau)$ Then  $\varphi^{-1}\tau_1\varphi = \varphi^{-1}\tau_2\varphi$ So  $\varphi(\varphi^{-1}\tau_1\varphi)\varphi^{-1} = \varphi(\varphi^{-1}\tau_2\varphi)\varphi^{-1}$ So  $\tau_1 = \tau_2$ . Thus f is one-to-one.

Now, we show that f is onto. Let  $G \in Perm(S)$ . We want to show that there exists some  $T \in Perm(T)$  such that  $\varphi^{-1}T\varphi = \sigma$ . | Rough work

We choose  $T = \varphi \circ \varphi^{-1}$ . Observe that  $T \in Perm(T)$   $f(T) = \varphi^{-1}(\varphi \circ \varphi^{-1}) \varphi$  $= \circ$ . Rough work  $\varphi'' \tau \varphi = \sigma$   $\varphi(\varphi' \tau \varphi) \varphi' = \varphi \sigma \varphi'$   $\tau = \varphi \sigma \varphi'$ Still need to verify

that  $f(\varphi \sigma \varphi') = \sigma$ 

Thus, f is onto. Thus f is a 1-1 correspondence.

 $\frac{\text{Proof 2}}{\text{by g}(\sigma)} = \varphi \circ \sigma \circ \varphi^{-1}$  Perm(S)  $\longrightarrow$  Perm(T)

Then  $f \cdot g(\sigma) = \varphi g(\sigma) \varphi$  $= \varphi (\varphi \sigma \varphi) \varphi = \sigma.$ Thus,  $f \cdot g = id_{Perm}(S)$ 

 $g \cdot f(\tau) = \varphi f(\tau) \varphi^{-1}$   $= \varphi (\varphi' \tau \varphi) \varphi^{-1} = \tau$ 

Thus gof = id Perm(T)

Thus g is the inverse function of f.
Thus f is a 1-1 correspondence (since only
1-1 correspondences have inverses).

Thus, f is a group isomorphism.

3) First we prove that f is a group homomorphism.

Let 
$$g_1, g_2 \in G$$
  
 $f(g_1,g_2) = hg_1g_2h^{-1} = hg_1(h^{-1}h)g_2h^{-1}$   
 $= (hg_1h^{-1})(hg_2h^{-1})$   
 $= f(g_1) \cdot f(g_2)$ 

f is a one-to-one function Suppose  $f(g_i) = f(g_2)$ . So  $hg_ih^{-1} = hg_ih^{-1}$   $\Rightarrow h^{-1}(hg_ih^{-1})h = h^{-1}(hg_2h^{-1})h$   $\Rightarrow g_i = g_2$ Thus f is a one-to-one function.

## f is an onto function

Let  $g \in G_1$  We want to find some g' such that f(g') = g, i.e. hg'h'' = g  $\Leftrightarrow g' = h'gh$  Try this out. We take g' = h'gh. Then f(g') = h(h'gh)h''= 9. Thus, f is onto.

(Also see solution of Problem 2).

4) Compute the multiplication  

$$5.5 \equiv 25 \mod 40$$
  
 $5.15 \equiv 75 \equiv 35 \mod 40$   
 $5.25 \equiv 125 \equiv 5 \mod 40$   
 $5.35 \equiv 175 \equiv 15 \mod 40$ 

table for this set.  

$$15.5 \equiv 35 \mod 40$$
  
 $15.15 \equiv 25 \mod 40$   
 $15.25 \equiv 15 \mod 40$   
 $15.35 \equiv 5 \mod 40$ 

$$25.5 \equiv 5 \mod 40$$
  
 $25.15 \equiv 15 \mod 40$   
 $25.25 \equiv 25 \mod 40$   
 $25.35 \equiv 35 \mod 40$ 

$$35.5 \equiv 15 \mod 40$$
 $35.15 \equiv 5 \mod 40$ 
 $35.25 \equiv 35 \mod 40$ 
 $35.35 \equiv 25 \mod 40$ 

Thus, we see that this set is closed under multiplication.

Also, we see that  $x.25 \equiv x \mod 40$  for any  $x \in \{5, 15, 25, 35\}$ . Thus, 25 is the identity.

Also, for any  $x \in \{5, 15, 25, 35\}$ ,  $x = 25 \mod 40$ .

Thus, every element has an inverse. In fact, every element is its own inverse.

The binary operation is associative since multiplication modulo 40 is associative.

5) Let  $x, y \in G$ . We want to show that xy = yx.

We know that 
$$(xy)' = y'x'$$
.  
 $(\text{Indeed } (xy) \cdot (y'x') = x(yy')x' = xx' = 1.)$ 

However, we are given that 
$$(xy)^1 = x^1y^1$$
  
(taking  $a = x$ ,  $b = y$ ).  
So  $y^1x^1 = x^1y^1$ .

Taking inverses of both sides, we get 
$$(x^{-1})^{-1}(y^{-1})^{-1} = (y^{-1})^{-1}(x^{-1})^{-1}$$

So 
$$xy = yx$$
.  
Thus, G is abelian.

6) We use the Euclidean algorithm to compute the gcd of 37 and 20.

$$37 = 20.1 + 17$$
 $20 = 17.1 + 3$ 
 $17 = 37 - 20.1$ 
 $3 = 20.17 = 20.2 - 37$ 
 $17 = 3.5 + 2$ 
 $2 = (37-20.1) - (20.2-37).5$ 
 $3 = 2.1 + 1$ 
 $2 = 1.2 + 0$ 
 $1 = (20.2-37) - (37.6 - 20.11)$ 
 $1 = (20.2-37) - (37.6 - 20.11)$ 
 $1 = (20.13 - 37.7)$ 

Thus, 
$$20.13 - 37.7 = 1$$
  
 $50$ ,  $20.13 = 1$  mod  $37$ 

7) We use the Euclidean algorithm to find the gcd of 31 and 101.

$$\begin{vmatrix}
 101 &= & 31 \cdot 3 & + & 8 \\
 31 &= & 8 \cdot 3 & + & 7 \\
 8 &= & 7 \cdot 1 & + & 1 \\
 7 &= & 1 \cdot 7 & + & 0
 \end{vmatrix}
 \begin{vmatrix}
 8 &= & 101 & - & 31 \cdot 3 \\
 7 &= & 31 \cdot (101 - 31 \cdot 3) \cdot 3 = 31 \cdot 10 & - 101 \cdot 3 \\
 1 &= & (101 - 31 \cdot 3) & - & (31 \cdot 10 - 101 \cdot 3) \\
 &= & 101 \cdot 4 & - & 31 \cdot 13
 \end{vmatrix}$$

Thus 
$$101.4 - 31.13 = 1$$

8) We know that 
$$|U(27)| = \varphi(27) = 3^3 - 3^2 = 18$$

So, we want to find an element of order 18.

ord(
$$\overline{2}$$
) | 18. So ord( $\overline{2}$ ) = 1,2,3,6,9 or 18.

The above table shows that  $ord(\overline{2})$  is not 1,2,3,6 or 9. So  $ord(\overline{2}) = 18$ 

Thus  $\langle 2 \rangle = U(27)$  and so U(27) is a cyclic group.

(If 2 had not worked, we would have tried other elements. If none had turned out to be a generator, we would have concluded that U(27) is not cyclic.)

Let  $\sigma \in H$ . Then,  $\tau \sigma \tau' \in H$  if and only if  $\tau \sigma \tau'(i) = 1$ 

So, we try to calculate To E'(1).

Let T'(1) = x. Then,  $T \circ T'(1) = T(\circ(x))$ 

Ts  $T(\sigma(x)) = 1$ . ?  $T(\sigma(x)) = 1 \Leftrightarrow \sigma(x) = T'(1) = x$ 

So, if  $\sigma(x) \neq x$ , we cannot have  $T\sigma T' \in H$ .

Thus, we see that H is not a normal subgroup. To show this, pick any  $\sigma \in H$  and  $x \in \{1, 2, \dots, n\}$  such that  $\sigma(x) \neq x$ . Then choose any  $T \in S_n$  such that T(1) = x. Then, above calculations show that  $T(\sigma \tau)$  will not be in H.

Example Take n=3.  $\sigma = (2,3)$ . (so x=2 will work.  $\sigma(2)=3$ ). T = (1,2). Then  $T\sigma T' = (1,2)(2,3)(1,2)$ = (1,3)

This is not in H.

Thus H is not normal for a general n.

The above example works for any  $n \ge 3$ .
However, it will not work for n = 2.

In fact if n=2,  $S_2=\{id, (1,2)\}$  and  $H=\{id\}$  which is a normal subgroup of  $H_2$ .

10) In general Z/mz has a unique subgroup of order d for any d dividing m. It is generated by m/d

Applying this, we see that as 26/100, 71/10072 does have a subgroup of order 20. It is the group (5)

11) ord  $(35) = \frac{50}{\gcd(35,50)} = \frac{50}{5} = 10$ .

The generators of  $\langle 35 \rangle$  are of the form  $\chi.35$  where  $0 \leq \chi < 10$  and  $\gcd(\chi,10)=1$ .

So, the generalors are  $\frac{1}{35}$ ,  $3.\overline{35} = 5$ ,  $7.\overline{35} = 45$  and  $9.\overline{35} = 15$ .

12) We know that the group is of the form  $\langle \overline{d} \rangle$  where  $\overline{d}$  is a divisor of 20.

So, the answer is  $\langle T \rangle$ ,  $\langle \overline{2} \rangle$ ,  $\langle \overline{4} \rangle$ ,  $\langle \overline{5} \rangle$ ,  $\langle \overline{10} \rangle$  or  $\{0\} = \langle \overline{20} \rangle$ .

We need to see if a generator of any of these groups is in  $(\overline{12}, \overline{15})$ .

区-12=3.

 $\overline{3}$  is a generator of  $\mathbb{Z}/20\mathbb{Z}$  as  $\gcd(3,20) = 1$ .

So (12,15) = 74207

Generators: T,  $\overline{3}$ ,  $\overline{7}$ ,  $\overline{9}$ ,  $\overline{11}$ ,  $\overline{13}$ ,  $\overline{17}$ ,  $\overline{19}$ . (all elements of the form  $\overline{x}$  where  $0 \le x < 20$  and  $gcd(x, z_0) = 1$ ).

13) Part(1):

Clearly,  $|g \in N(H)$ . Let  $g \in N(H)$ . Then g + g' = H. So g'(g + g')g = g' + g.

So  $H = g^T H g$ .

But this implies that  $g^T \in N(H)$ .

So N(H) is closed under inverses.

Then 
$$g_1g_2 H (g_1g_2)^{-1} = g_1g_2 H g_2^{-1}g_1^{-1}$$
  
=  $g_1(g_2 H g_2^{-1})g_1^{-1}$   
=  $g_1 H g_1^{-1} = H$ .

Thus gigz & N(H)

Thus N(H) is closed under products. So N(H) is a subgroup.

Part (2) For any  $h \in H$ ,  $hHh^{-1} = (hH)h^{-1}$   $= H \cdot h^{-1} \quad (as h \in H)$   $= H \quad (as h^{-1} \in H)$ 

So  $h \in N(H)$ Thus H is a subgroup of N(H).

For any  $g \in N(H)$ ,  $gHg' \subseteq H$ . So, by definition, H is a normal subgroup of N(H).

14) As  $|G| \ge 2$ , there exists an element  $x \in G$  such that ord(x) > 1. Let ord(x) = d. Let p be a prime number such that p|d. Let r = d/pThen,  $ord(x') = \frac{d}{gcd(r,d)} = \frac{d}{r} = p$ . Is) Identity For any  $s \in S$ ,  $1 \cdot s = s \cdot 1$ . So,  $1 \in C(S)$ .

Inverses: Suppose  $g \in C(S)$ . So for any  $s \in S$ , gs = sg. So, g(gs)g' = g'(sg)g'. So sg' = g's. As this is true for any  $s \in S$ , we see that  $g' \in C(S)$ .

Products Let g, g2 & C(S).

Then  $(g_1g_2)s = g_1(g_2s)$ =  $g_1(sg_2)$  (as  $g_2 \in C(s)$ ) =  $(g_1s)g_2$ =  $(sg_1)g_2$  (as  $g_1 \in C(s)$ ) =  $s(g_1g_2)$ 

So  $g_1g_2 \in C(S)$ . Thus, C(S) is closed under products. Thus, C(S) is a subgroup of G.