LAB 2: NETWORK LOAD BALANCER

AIM: To launch a network load balancer.

THEORY:

- → A Network Load Balancer functions at the fourth layer of the Open Systems Interconnection (OSI) model.
- → It can handle millions of requests per second. After the load balancer receives a connection request, it selects a target from the target group for the default rule.
- → It attempts to open a TCP connection to the selected target on the port specified in the listener configuration.
- → When you enable an Availability Zone for the load balancer, Elastic Load Balancing creates a load balancer node in the Availability Zone.
- → By default, each load balancer node distributes traffic across the registered targets in its Availability Zone only.
- → If you enable cross-zone load balancing, each load balancer node distributes traffic across the registered targets in all enabled Availability Zones.

PROCEDURE:

1. Launch two instances.

2. Choose network load balancer.

3. Create target groups.

4. Launch the load balancer.

5. Test	ing the load ba	lanver.				
Hello W	Vorld from ip-1	172-31-12-14	7.ap-south-1	.compute.in	ternal	
	•		•	•		