Cocke-Younger-Kasami (CYK) Parser Algorithm

Theory of Computation, L.EIC, 2nd Year

João M. P. Cardoso

Email: jmpc@acm.org

- Cocke-Younger-Kasami (CYK) Algorithm: CFG in CNF
 - X_{ii} represents the set of variables that produce string i-j
 - O(n³), using dynamic programming, fill of a table

- Cocke-Younger-Kasami (CYK) Algorithm
 - X_{ii} represents the set of variables that produce string i-j
 - O(n³), using dynamic programming, fill of a table

X ₁₅				
X_{14}	X_{25}			
X ₁₃	X ₂₄	X_{35}		
X ₁₂	X_{23}	X ₃₄	X_{45}	
X ₁₁	X ₂₂	X_{33}	X ₄₄	X ₅₅

 $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$

 $A \rightarrow BA \mid a$

 $S \rightarrow AB \mid BC$

{S,A,C}				
	{S,A,C}			
	{B}	{B}		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}

Input string: baaba

b a a b a

 X_{12} : $X_{11}X_{22}$; X_{24} : $X_{22}X_{34} \cup X_{23}X_{44}$

Conclusion: positive if S is in X_{15} ; and negative otherwise

CYK algorithm: step by step

Step by step: CYK Algorithm

- 1. Create a table X of size N×N, where
 - N = length(input string)
 - X_{ii} represents the set of variables that produce string[i:j]

E.g., Input string: baaba

Step by step: CYK Algorithm

- 2. Fill the bottom row: all X_{ii} elements
 - $X_{ii} = \{Y: Y \rightarrow a_i\}$

X₁₁ and X₄₄ ...

Step by step: CYK Algorithm

- 2. Fill the bottom row: all X_{ii} elements
 - $X_{ij} = \{Y: Y \rightarrow a_i\}$

 X_{22} , X_{33} and X_{55} ...

X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
a_1	a ₂	a ₃	a ₄	a ₅

Step by step: CYK Algorithm

2. Fill the rest of the X_{ii} elements, row by row

• 2nd row:
$$X_{ij} = \{Y: Y \rightarrow X_{i, j-1} \times X_{i+1, j}\}$$

$$X_{12} = \{Y: Y \rightarrow X_{11} \times X_{22} = \{B\} \times \{A,C\} = \{BA, BC\}\}$$

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

Step by step: CYK Algorithm

2. Fill the rest of the X_{ii} elements, row by row

• 2nd row:
$$X_{ij} = \{Y: Y \rightarrow X_{i, j-1} \times X_{i+1, j}\}$$

$$X_{23} = \{Y: Y \rightarrow \{A,C\} \times \{A,C\} = \{AA, CA, AC, CC\} \}$$

					$S \rightarrow AB \mid BC$
					$A \rightarrow BA \mid a$
					$\frac{ }{ } B \rightarrow \frac{ }{ } CC b$
{S,A}	{B}				
{B}	{A,C}	{A,C}	{B}	{A,C}	$C \rightarrow AB \mid a$
b	a	a	b	a	-

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

Step by step: CYK Algorithm

- 2. Fill the rest of the X_{ii} elements, row by row
 - 2nd row: $X_{ij} = \{Y: Y \rightarrow X_{i, j-1} \times X_{i+1, j}\}$

X₃₄ and X₄₅ ...

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

Step by step: CYK Algorithm

2. Fill the rest of the X_{ij} elements, row by row

•
$$X_{i,j} = \{Y: Y \to U_{k=1}^{j-1} untilj-k=i} (X_{i,j-k} \times X_{j-k-1,j}) \}$$

$X_{13} = \{Y: Y \rightarrow \{S,A\} \times \{A,C\} = \{SA,SC,AA,AC\} \cup \{B\} \times \{B\} = \{SA,SC,AA,AC\} =$
$\{BB\}\} = \{Y: Y \rightarrow \{SA,SC,AA,AC,BB\}$

{}				
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	а

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

 a_1 a_2 a_3 a_4 a_5

 $S \rightarrow AB \mid BC$

 $A \rightarrow BA \mid a$

 $B \rightarrow CC \mid b$

 $C \rightarrow AB \mid a$

Step by step: CYK Algorithm

2. Fill the rest of the X_{ij} elements, row by row

•
$$X_{i,j} = \{Y: Y \to U_{k=1}^{j-1} untilj-k=i} (X_{i,j-k} \times X_{j-k-1,j}) \}$$

$X_{13} = \{Y: Y \rightarrow \{S,A\} \times \{A,C\} = \{SA,SC,AA,AC\} \cup \{A,C\} = \{SA,SC,AA,AC\} \cup \{A,C\} = \{A,$	{B}	×	{B}	=
$\{BB\}\} = \{Y: Y \rightarrow \{SA,SC,AA,AC,BB\}$				

-1, <i>j</i>)}	^ 14	^^ 25			
1,,,,,	X ₁₃	X ₂₄	X ₃₅		
$\cup \frac{\{B\}}{\{B\}} =$	X ₁₂	X ₂₃	X ₃₄	X ₄₅	
	X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
	2	2	2	2	2

X₁₅

{}				
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
h	a	a	h	а

$$S \rightarrow AB \mid BC$$

$$A \rightarrow BA \mid a$$

$$B \rightarrow CC \mid b$$

$$C \rightarrow AB \mid a$$

Step by step: CYK Algorithm

2. Fill the rest of the X_{ii} elements, row by row

•
$$X_{i,j} = \{Y: Y \to U_{k=1}^{j-1 \ untilj-k=i} (X_{i,j-k} \times X_{j-k-1,j}) \}$$

$$X_{24} = X_{23} \times X_{44} \cup X_{22} \times X_{34} = \{BB,AS,AC,CS,CC\}: B \to CC$$

 $S \rightarrow AB \mid BC$

 $A \rightarrow BA \mid a$

 $B \rightarrow CC \mid b$

 $C \rightarrow AB \mid a$

{}	{B}			
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	а

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

Step by step: CYK Algorithm

2. Fill the rest of the X_{ii} elements, row by row

•
$$X_{i,j} = \{Y: Y \to U_{k=1}^{j-1} untilj-k=i} (X_{i,j-k} \times X_{j-k-1,j}) \}$$

$$X_{35} = X_{34} \times X_{55} \cup X_{33} \times X_{45} = \{SA,SC,CA,CC,AS,AA,CS,CA\}: B \rightarrow CC$$

					$S \rightarrow AB \mid BC$
					$A \rightarrow BA \mid a$
{}	{B}	<mark>{B}</mark>			$B \rightarrow CC \mid b$
{S,A}	{B}	{S,C}	{S,A}		
{B}	{A,C}	{A,C}	{B}	{A,C}	C → AB a
b	а	a	b	a	•

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

Step by step: CYK Algorithm

2. Fill the rest of the X_{ii} elements, row by row

•
$$X_{i,j} = \{Y: Y \to U_{k=1}^{j-1 \ untilj-k=i} (X_{i,j-k} \times X_{j-k-1,j}) \}$$

$$X_{14} = X_{13} \times X_{44} \cup X_{12} \times X_{34} \cup X_{11} \times X_{24} = \{SS,SC,AS,AC,BB\}$$

= $\{\}$

 $S \rightarrow AB \mid BC$

 $A \rightarrow BA \mid a$

 $B \rightarrow CC \mid b$

 $C \rightarrow AB \mid a$

{}				
{}	{B}	{B}		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	a	b	а

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅

Step by step: CYK Algorithm - $O(n^3)$

2. Continue until all rows are filled, and:

{ <mark>S</mark> ,A,C}				
{}	{S,A,C}			
{}	{B}	{B}		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}
b	a	а	b	а

$S \rightarrow AB \mid$	BC
$A \rightarrow BA$	а
$B \rightarrow CC \mid$	b
$C \rightarrow AB$	а

Conclusion:
Yes, the string belongs
to the CFL since S ∈ X₁₅

Step by step: CYK Algorithm

2. All groups involved (above bottom row)

- X_{13} : $X_{11} \times X_{23} \cup X_{12} \times X_{33} = \{BB,SA,SC,AA,AC\}: \{\}$
- X_{24} : $X_{23} \times X_{44} \cup X_{22} \times X_{34} = \{BB,AS,AC,CS,CC\}$: $B \rightarrow CC$
- $X_{35} = X_{34} \times X_{55} \cup X_{33} \times X_{45} = \{SA,SC,CA,CC,AS,AA,CS,CA\} : B \rightarrow CC$
- X_{12} : $X_{11} \times X_{22} = \{BA, BC\}$: $A \to BA, S \to BC$
- X_{23} : $X_{22} \times X_{33} = \{AA, AC, CA, CC\}$: $B \to CC$
- $X_{34}: X_{33} \times X_{44} = \{AB, CB\}: S \rightarrow AB, C \rightarrow AB$
- X_{45} : $X_{44} \times X_{55} = \{BA, BC\}$: $A \to BA, S \to BC$
- $X_{14} = X_{13} \times X_{44} \cup X_{12} \times X_{34} \cup X_{11} \times X_{24} = \{SS,SC,AS,AC,BB\} = \{\}$
- X_{25} : $X_{22} \times X_{35} \cup X_{24} \times X_{55} \cup X_{23} \times X_{45} = \{AB,CB,BA,BC,BS,BA\}$: $S \rightarrow AB, S \rightarrow BC, C \rightarrow AB, A \rightarrow BA$
- X_{15} : $X_{11} \times X_{25} \cup X_{14} \times X_{55} \cup X_{13} \times X_{45} \cup X_{12} \times X_{35} = \{BS,BA,BC,SB,AB\}: A \rightarrow BA, S \rightarrow BC, C \rightarrow AB$

$S \rightarrow AB \mid BC$
$A \rightarrow BA \mid a$
$B \rightarrow CC \mid b$
$C \rightarrow AB \mid a$

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
a ₁	a _a		a,	a ₋

{S,A,C}				
{}	{S,A,C}			
{}	{B}	{B}		
{S,A}	{B}	{S,C}	{S,A}	
{B}	{A,C}	{A,C}	{B}	{A,C}

o a a b a

CYK demo:

- http://lxmls.it.pt/2015/cky.html
- Grammar:

```
S \rightarrow A B
```

S -> B C

 $A \rightarrow B A$

B -> C C

C -> A B

 $A \rightarrow a$

 $B \rightarrow b$

C -> a

• Sentence: b a a b a