An introduction to the p-adics

Siddharth Bhat

IIIT Theory group Seminar Saturday

October 10th, 2019

Analogy between:

■ Z,

Analogy between:

 \blacksquare \mathbb{Z} , where 3, 5, 7, ... are the "primes"

Analogy between:

- \blacksquare \mathbb{Z} , where 3, 5, 7, . . . are the "primes"
- $\blacksquare \mathbb{C}[X],$

Analogy between:

- \blacksquare \mathbb{Z} , where 3, 5, 7, ... are the "primes"
- \blacksquare $\mathbb{C}[X]$, where (x-a) are the "primes"

Analogy between:

- \blacksquare \mathbb{Z} , where 3, 5, 7, ... are the "primes"
- \blacksquare $\mathbb{C}[X]$, where (x-a) are the "primes"
- \blacksquare $\mathbb{C}[X]$ has evaluation, taylor series. Can we access that in \mathbb{Z} ?

Remainder when factoring $p(x) = x^3 + x^2 + x + 1$ by q(x) = x - 1?

Remainder when factoring
$$p(x)=x^3+x^2+x+1$$
 by $q(x)=x-1$?
$$X^2+2X+3 = X-1$$

$$X^3+X^2+X+1 = -X^3+X^2 = 2X^2+X = -2X^2+2X = 3X+1 = -3X+3 = 4$$

Remainder when factoring
$$p(x) = x^3 + x^2 + x + 1$$
 by $q(x) = x - 1$?
$$\frac{X^2 + 2X + 3}{X^3 + X^2 + X + 1}$$
$$\frac{-X^3 + X^2}{2X^2 + X}$$
$$\frac{2X^2 + X}{3X + 1}$$
$$\frac{-3X + 3}{4}$$
$$(x^3 + x^2 + x + 1) = (x - 1)(x^2 + 2x + 3) + 4$$

Remainder when factoring
$$p(x) = x^3 + x^2 + x + 1$$
 by $q(x) = x - 1$?
$$\frac{X^2 + 2X + 3}{X^3 + X^2 + X + 1}$$
$$\frac{-X^3 + X^2}{2X^2 + X}$$
$$\frac{2X^2 + X}{3X + 1}$$
$$\frac{-3X + 3}{4}$$
$$(x^3 + x^2 + x + 1) = (x - 1)(x^2 + 2x + 3) + 4$$

$$p(1) = 1^3 + 1^2 + 1 + 1 = 4$$
. Coincidence?

Remainder when factoring
$$p(x) = x^3 + x^2 + x + 1$$
 by $q(x) = x - 1$?
$$\frac{X^2 + 2X + 3}{X^3 + X^2 + X + 1}$$
$$\frac{-X^3 + X^2}{2X^2 + X}$$
$$\frac{2X^2 + X}{3X + 1}$$
$$\frac{-3X + 3}{4}$$
$$(x^3 + x^2 + x + 1) = (x - 1)(x^2 + 2x + 3) + 4$$

- $p(1) = 1^3 + 1^2 + 1 + 1 = 4$. Coincidence?
- Factoring out q(x) = (x-1)

Remainder when factoring
$$p(x) = x^3 + x^2 + x + 1$$
 by $q(x) = x - 1$?
$$\frac{X^2 + 2X + 3}{X^3 + X^2 + X + 1}$$
$$\frac{-X^3 + X^2}{2X^2 + X}$$
$$\frac{2X^2 + X}{3X + 1}$$
$$\frac{-3X + 3}{4}$$
$$(x^3 + x^2 + x + 1) = (x - 1)(x^2 + 2x + 3) + 4$$

- $p(1) = 1^3 + 1^2 + 1 + 1 = 4$. Coincidence?
- Factoring out $q(x) = (x-1) \simeq \text{setting } q(x) = 0$

Remainder when factoring
$$p(x) = x^3 + x^2 + x + 1$$
 by $q(x) = x - 1$?
$$\frac{X^2 + 2X + 3}{X^3 + X^2 + X + 1}$$
$$\frac{-X^3 + X^2}{2X^2 + X}$$
$$\frac{2X^2 + X}{3X + 1}$$
$$\frac{-3X + 3}{4}$$
$$(x^3 + x^2 + x + 1) = (x - 1)(x^2 + 2x + 3) + 4$$

- $p(1) = 1^3 + 1^2 + 1 + 1 = 4$. Coincidence?
- Factoring out $q(x) = (x-1) \simeq \text{setting } q(x) = 0$: remove q(x).

Remainder when factoring
$$p(x) = x^3 + x^2 + x + 1$$
 by $q(x) = x - 1$?
$$\frac{X^2 + 2X + 3}{X^3 + X^2 + X + 1}$$
$$\frac{-X^3 + X^2}{2X^2 + X}$$
$$\frac{2X^2 + X}{3X + 1}$$
$$\frac{-3X + 3}{4}$$
$$(x^3 + x^2 + x + 1) = (x - 1)(x^2 + 2x + 3) + 4$$

- $p(1) = 1^3 + 1^2 + 1 + 1 = 4$. Coincidence?
- Factoring out $q(x) = (x-1) \simeq \text{setting } q(x) = 0$: remove q(x).
- \blacksquare setting x-1=0, or setting x=1

Remainder when factoring
$$p(x) = x^3 + x^2 + x + 1$$
 by $q(x) = x - 1$?
$$\frac{X^2 + 2X + 3}{X^3 + X^2 + X + 1}$$
$$\frac{-X^3 + X^2}{2X^2 + X}$$
$$\frac{2X^2 + X}{3X + 1}$$
$$\frac{-3X + 3}{4}$$
$$(x^3 + x^2 + x + 1) = (x - 1)(x^2 + 2x + 3) + 4$$

- $p(1) = 1^3 + 1^2 + 1 + 1 = 4$. Coincidence?
- Factoring out $q(x) = (x-1) \simeq \text{setting } q(x) = 0$: remove q(x).
- \blacksquare setting x-1=0, or setting x=1
- Substituting x = 1: $p(1) = 1^3 + 1^2 + 1 + 1 = 4$

Remainder when factoring
$$p(x) = x^3 + x^2 + x + 1$$
 by $q(x) = x - 1$?
$$\frac{X^2 + 2X + 3}{X^3 + X^2 + X + 1}$$
$$\frac{-X^3 + X^2}{2X^2 + X}$$
$$\frac{2X^2 + X}{3X + 1}$$
$$\frac{-3X + 3}{4}$$
$$(x^3 + x^2 + x + 1) = (x - 1)(x^2 + 2x + 3) + 4$$

- $p(1) = 1^3 + 1^2 + 1 + 1 = 4$. Coincidence?
- Factoring out $q(x) = (x-1) \simeq \text{setting } q(x) = 0$: remove q(x).
- \blacksquare setting x-1=0, or setting x=1
- Substituting x = 1: $p(1) = 1^3 + 1^2 + 1 + 1 = 4$

remainder of p(x) on factoring $(x-a) \simeq$ evaluation of $p(x_0)$ at $x_0 = a$

remainder of p(x) on factoring $(x-a) \simeq$ evaluation of $p(x_0)$ at $x_0 = a$

remainder of p(x) on factoring $(x-a) \simeq$ evaluation of $p(x_0)$ at $x_0=a$

evaluation of $p(x_0)$ at $x_0 = a \simeq$ remainder of p(x) on factoring (x - a)

remainder of
$$p(x)$$
 on factoring $(x-a)\simeq$ evaluation of $p(x_0)$ at $x_0=a$ evaluation of $p(x_0)$ at $x_0=a\simeq$ remainder of $p(x)$ on factoring $(x-a)$

10(2)

remainder of
$$p(x)$$
 on factoring $(x-a)\simeq$ evaluation of $p(x_0)$ at $x_0=a$ evaluation of $p(x_0)$ at $x_0=a\simeq$ remainder of $p(x)$ on factoring $(x-a)$

■ 10(2) = remainder of 10 when factored by 2;

remainder of
$$p(x)$$
 on factoring $(x-a)\simeq$ evaluation of $p(x_0)$ at $x_0=a$ evaluation of $p(x_0)$ at $x_0=a\simeq$ remainder of $p(x)$ on factoring $(x-a)$

■ 10(2) = remainder of 10 when factored by 2; $10 = 2 \cdot 5 + 0$

remainder of
$$p(x)$$
 on factoring $(x-a)\simeq$ evaluation of $p(x_0)$ at $x_0=a$ evaluation of $p(x_0)$ at $x_0=a\simeq$ remainder of $p(x)$ on factoring $(x-a)$

■ 10(2) = remainder of 10 when factored by 2; $10 = 2 \cdot 5 + 0$; 10(2) = 0

- 10(2) = remainder of 10 when factored by 2; $10 = 2 \cdot 5 + 0$; 10(2) = 0
- **10**(3)

- 10(2) = remainder of 10 when factored by 2; $10 = 2 \cdot 5 + 0$; 10(2) = 0
- \blacksquare 10(3) = remainder of 10 when factored by 3;

- 10(2) = remainder of 10 when factored by 2; $10 = 2 \cdot 5 + 0$; 10(2) = 0
- 10(3) = remainder of 10 when factored by 3; $10 = 3 \cdot 3 + 1$

- 10(2) = remainder of 10 when factored by 2; $10 = 2 \cdot 5 + 0$; 10(2) = 0
- $10(3) = \text{remainder of } 10 \text{ when factored by } 3; \ 10 = 3 \cdot 3 + 1 \ ; \ 10(3) = 1$

- 10(2) = remainder of 10 when factored by 2; $10 = 2 \cdot 5 + 0$; 10(2) = 0
- \blacksquare $10(3) = remainder of 10 when factored by 3; <math display="inline">10 = 3 \cdot 3 + 1$; 10(3) = 1
- **10**(5)

- 10(2) = remainder of 10 when factored by 2; $10 = 2 \cdot 5 + 0$; 10(2) = 0
- lacksquare 10(3) = remainder of 10 when factored by 3; $10 = 3 \cdot 3 + 1$; 10(3) = 1
- 10(5) = remainder of 10 when factored by 5;

- 10(2) = remainder of 10 when factored by 2; $10 = 2 \cdot 5 + 0$; 10(2) = 0
- lacksquare 10(3) = remainder of 10 when factored by 3; $10 = 3 \cdot 3 + 1$; 10(3) = 1
- 10(5) = remainder of 10 when factored by 5; $10 = 5 \cdot 2 + 0$

- 10(2) = remainder of 10 when factored by 2; $10 = 2 \cdot 5 + 0$; 10(2) = 0
- \blacksquare 10(3) = remainder of 10 when factored by 3; 10 = $3 \cdot 3 + 1$; 10(3) = 1
- 10(5) = remainder of 10 when factored by 5; $10 = 5 \cdot 2 + 0$; 10(5) = 0

- 10(2) = remainder of 10 when factored by 2; $10 = 2 \cdot 5 + 0$; 10(2) = 0
- lacksquare 10(3) = remainder of 10 when factored by 3; $10 = 3 \cdot 3 + 1$; 10(3) = 1
- \blacksquare 10(5) = remainder of 10 when factored by 5; $10 = 5 \cdot 2 + 0$; 10(5) = 0
- **10**(7)

- 10(2) = remainder of 10 when factored by 2; $10 = 2 \cdot 5 + 0$; 10(2) = 0
- $10(3) = \text{remainder of } 10 \text{ when factored by } 3; \ 10 = 3 \cdot 3 + 1 \ ; \ 10(3) = 1$
- \blacksquare 10(5) = remainder of 10 when factored by 5; $10 = 5 \cdot 2 + 0$; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7;

- 10(2) = remainder of 10 when factored by 2; $10 = 2 \cdot 5 + 0$; 10(2) = 0
- $10(3) = \text{remainder of } 10 \text{ when factored by } 3; \ 10 = 3 \cdot 3 + 1 \ ; \ 10(3) = 1$
- \blacksquare 10(5) = remainder of 10 when factored by 5; $10 = 5 \cdot 2 + 0$; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7; $10 = 7 \cdot 1 + 3$

- 10(2) = remainder of 10 when factored by 2; $10 = 2 \cdot 5 + 0$; 10(2) = 0
- lacksquare 10(3) = remainder of 10 when factored by 3; $10 = 3 \cdot 3 + 1$; 10(3) = 1
- \blacksquare 10(5) = remainder of 10 when factored by 5; $10 = 5 \cdot 2 + 0$; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7; $10 = 7 \cdot 1 + 3$; 10(7) = 3

- 10(2) = remainder of 10 when factored by 2; $10 = 2 \cdot 5 + 0$; 10(2) = 0
- lacksquare 10(3) = remainder of 10 when factored by 3; $10 = 3 \cdot 3 + 1$; 10(3) = 1
- \blacksquare 10(5) = remainder of 10 when factored by 5; $10 = 5 \cdot 2 + 0$; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7; $10 = 7 \cdot 1 + 3$; 10(7) = 3

- 10(2) = remainder of 10 when factored by 2; $10 = 2 \cdot 5 + 0$; 10(2) = 0
- \blacksquare 10(3) = remainder of 10 when factored by 3; 10 = $3 \cdot 3 + 1$; 10(3) = 1
- \blacksquare $10(5) = remainder of 10 when factored by 5; <math display="inline">10 = 5 \cdot 2 + 0$; 10(5) = 0
- \blacksquare 10(7) = remainder of 10 when factored by 7; 10 = 7 \cdot 1 + 3 ; 10(7) = 3

- 10(5) = remainder of 10 when factored by 5; $10 = 5 \cdot 2 + 0$; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7; $10 = 7 \cdot 1 + 3$; 10(7) = 3

- 10(5) = remainder of 10 when factored by 5; $10 = 5 \cdot 2 + 0$; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7; $10 = 7 \cdot 1 + 3$; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) =

- \blacksquare 10(5) = remainder of 10 when factored by 5; 10 = 5 \cdot 2 + 0 ; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7; $10 = 7 \cdot 1 + 3$; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) = remainder of p(x) when factored by (x-5);

- 10(5) = remainder of 10 when factored by 5; $10 = 5 \cdot 2 + 0$; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7; $10 = 7 \cdot 1 + 3$; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- $\mathbf{p}(5) =$ remainder of p(x) when factored by (x-5);
- p(x) = (x-5)(x-10) + 0;

- 10(5) = remainder of 10 when factored by 5; $10 = 5 \cdot 2 + 0$; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7; $10 = 7 \cdot 1 + 3$; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- $\mathbf{p}(5) =$ remainder of p(x) when factored by (x-5);
- p(x) = (x-5)(x-10) + 0; p(5) = 0

- \blacksquare 10(5) = remainder of 10 when factored by 5; 10 = 5 \cdot 2 + 0 ; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7; $10 = 7 \cdot 1 + 3$; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) = remainder of p(x) when factored by (x-5);
- p(x) = (x-5)(x-10) + 0; p(5) = 0
- p(1) =

- 10(5) = remainder of 10 when factored by 5; $10 = 5 \cdot 2 + 0$; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7; $10 = 7 \cdot 1 + 3$; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) = remainder of p(x) when factored by (x-5);
- p(x) = (x-5)(x-10) + 0; p(5) = 0
- $\mathbf{p}(1) = \text{remainder of } p(x) \text{ when factored by } (x-1);$

- 10(5) = remainder of 10 when factored by 5; $10 = 5 \cdot 2 + 0$; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7; $10 = 7 \cdot 1 + 3$; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) = remainder of p(x) when factored by (x-5);
- p(x) = (x-5)(x-10) + 0; p(5) = 0
- $\mathbf{p}(1) =$ remainder of p(x) when factored by (x-1);
- p(x) = (x-1)(x-14) + 36;

- 10(5) = remainder of 10 when factored by 5; $10 = 5 \cdot 2 + 0$; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7; $10 = 7 \cdot 1 + 3$; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) = remainder of p(x) when factored by (x-5);
- p(x) = (x-5)(x-10) + 0; p(5) = 0
- $\mathbf{p}(1) = \text{remainder of } p(x) \text{ when factored by } (x-1);$
- p(x) = (x-1)(x-14) + 36; p(1) = 36

- 10(5) = remainder of 10 when factored by 5; $10 = 5 \cdot 2 + 0$; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7; $10 = 7 \cdot 1 + 3$; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) = remainder of p(x) when factored by (x-5);
- p(x) = (x-5)(x-10) + 0; p(5) = 0
- $\mathbf{p}(1) = \text{remainder of } p(x) \text{ when factored by } (x-1);$
- p(x) = (x-1)(x-14) + 36; p(1) = 36

- 10(5) = remainder of 10 when factored by 5; $10 = 5 \cdot 2 + 0$; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7; $10 = 7 \cdot 1 + 3$; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- \blacksquare p(5) = remainder of p(x) when factored by (x-5);
- p(x) = (x-5)(x-10) + 0; p(5) = 0
- $\mathbf{p}(1) =$ remainder of p(x) when factored by (x-1);
- p(x) = (x-1)(x-14) + 36; p(1) = 36

Theorem (Fundamental theorem of algebra)

Every nonconstant polynomial $p(x) \in \mathbb{C}[X]$ can be written uniquely (upto reordering) as a product of monic irreducibles of the form $(x - z_i)$ for $z_i \in \mathbb{C}[X]$.

$$p(x) = \pm 1 \prod_{i} (x - z_i)$$

- 10(5) = remainder of 10 when factored by 5; $10 = 5 \cdot 2 + 0$; 10(5) = 0
- 10(7) = remainder of 10 when factored by 7; $10 = 7 \cdot 1 + 3$; 10(7) = 3
- $p(x) = (x^2 15x + 50).$
- p(5) = remainder of p(x) when factored by (x-5);
- p(x) = (x-5)(x-10) + 0; p(5) = 0
- \blacksquare p(1) = remainder of p(x) when factored by (x-1);
- p(x) = (x-1)(x-14) + 36; p(1) = 36

Theorem (Fundamental theorem of algebra)

Every nonconstant polynomial $p(x) \in \mathbb{C}[X]$ can be written uniquely (upto reordering) as a product of monic irreducibles of the form $(x - z_i)$ for $z_i \in \mathbb{C}[X]$.

$$p(x) = \pm 1 \prod_{i} (x - z_i)$$

Theorem (Fundamental theorem of arithmetic)

Every non-zero integer can be written uniquely (upto reordering) as a product of primes

$$n=\pm 1\prod_{i}p_{i}$$

■ What are the complex numbers?

- What are the complex numbers?
- $\blacksquare \mathbb{R}$ with i: $i^2 = -1$.

- What are the complex numbers?
- $\blacksquare \ \mathbb{R} \ \text{with} \ i : \ i^2 = -1. \ \text{That is,} \ i^2 + 1 = 0.$

- What are the complex numbers?
- \mathbb{R} with i: $i^2 = -1$. That is, $i^2 + 1 = 0$.
- \blacksquare Equivalently: $\mathbb{R}[X]$

- What are the complex numbers?
- \mathbb{R} with i: $i^2 = -1$. That is, $i^2 + 1 = 0$.
- Equivalently: $\mathbb{R}[X]$ factored by by $q(x) = x^2 + 1$.

- What are the complex numbers?
- \mathbb{R} with i: $i^2 = -1$. That is, $i^2 + 1 = 0$.
- Equivalently: $\mathbb{R}[X]$ factored by by $q(x) = x^2 + 1$.
- Left with only linear polynomials.

- What are the complex numbers?
- \blacksquare \mathbb{R} with i: $i^2 = -1$. That is, $i^2 + 1 = 0$.
- Equivalently: $\mathbb{R}[X]$ factored by by $q(x) = x^2 + 1$.
- Left with only linear polynomials.
- All higher power polynomials h(x) are $h(x) = p(x) \cdot q(x) + r(x)$

- What are the complex numbers?
- \mathbb{R} with i: $i^2 = -1$. That is, $i^2 + 1 = 0$.
- Equivalently: $\mathbb{R}[X]$ factored by by $q(x) = x^2 + 1$.
- Left with only linear polynomials.
- All higher power polynomials h(x) are $h(x) = p(x) \cdot q(x) + r(x)$ degree $(r) \leq 1$.

- What are the complex numbers?
- \blacksquare \mathbb{R} with i: $i^2 = -1$. That is, $i^2 + 1 = 0$.
- Equivalently: $\mathbb{R}[X]$ factored by by $q(x) = x^2 + 1$.
- Left with only linear polynomials.
- All higher power polynomials h(x) are $h(x) = p(x) \cdot q(x) + r(x)$ degree $(r) \leq 1$.
- Example: $7x^2 + 5 = 7(x^2 + 1) 2$

- What are the complex numbers?
- \mathbb{R} with i: $i^2 = -1$. That is, $i^2 + 1 = 0$.
- Equivalently: $\mathbb{R}[X]$ factored by by $q(x) = x^2 + 1$.
- Left with only linear polynomials.
- All higher power polynomials h(x) are $h(x) = p(x) \cdot q(x) + r(x)$ degree $(r) \leq 1$.
- Example: $7x^2 + 5 = 7(x^2 + 1) 2$
- Sum of linear polynomials: (a+xb)+(c+xd)=(a+c)+x(b+d)

- What are the complex numbers?
- \mathbb{R} with i: $i^2 = -1$. That is, $i^2 + 1 = 0$.
- Equivalently: $\mathbb{R}[X]$ factored by by $q(x) = x^2 + 1$.
- Left with only linear polynomials.
- All higher power polynomials h(x) are $h(x) = p(x) \cdot q(x) + r(x)$ degree $(r) \leq 1$.
- Example: $7x^2 + 5 = 7(x^2 + 1) 2$
- Sum of linear polynomials: (a+xb)+(c+xd)=(a+c)+x(b+d)
- Product of linear polynomials: $(a+xb)\cdot(c+xd) = ac + x(ad+bc) + bdx^2$

- What are the complex numbers?
- \mathbb{R} with i: $i^2 = -1$. That is, $i^2 + 1 = 0$.
- Equivalently: $\mathbb{R}[X]$ factored by by $q(x) = x^2 + 1$.
- Left with only linear polynomials.
- All higher power polynomials h(x) are $h(x) = p(x) \cdot q(x) + r(x)$ degree $(r) \leq 1$.
- Example: $7x^2 + 5 = 7(x^2 + 1) 2$
- Sum of linear polynomials: (a+xb)+(c+xd)=(a+c)+x(b+d)
- Product of linear polynomials: $(a+xb)\cdot(c+xd) = ac + x(ad+bc) + bdx^2$
- \blacksquare factoring product by $q(x) = x^2 + 1$:

$$\frac{bd}{x^2 + 1} \underbrace{\frac{bdx^2 + (1ad + 1bc)x}{bdx^2 + (ad + 1bc)x - bd}}_{(1ad + 1bc)x + (-1bd + 1ac)}$$

- What are the complex numbers?
- \mathbb{R} with i: $i^2 = -1$. That is, $i^2 + 1 = 0$.
- Equivalently: $\mathbb{R}[X]$ factored by by $q(x) = x^2 + 1$.
- Left with only linear polynomials.
- All higher power polynomials h(x) are $h(x) = p(x) \cdot q(x) + r(x)$ degree $(r) \leq 1$.
- Example: $7x^2 + 5 = 7(x^2 + 1) 2$
- Sum of linear polynomials: (a+xb)+(c+xd)=(a+c)+x(b+d)
- Product of linear polynomials: $(a+xb)\cdot(c+xd) = ac + x(ad+bc) + bdx^2$
- **a** factoring product by $q(x) = x^2 + 1$:

$$\frac{bd}{x^{2}+1} \underbrace{\frac{bdx^{2}+(1ad+1bc)x}{bdx^{2}+(ad+1bc)x} + ac}_{-bd}$$

$$\frac{-bdx^{2}}{(1ad+1bc)x+(-1bd+1ac)}$$

This is what we expect: Complex multiplication

$$(a+bi)(c+di) = (ad+bc)i + (ac-bd)$$

■ Taylor series of $q(x) \in \mathbb{C}[X]$ at $x = x_0$: $q(x) = \sum_i a_i (x - x_0)^i$

- Taylor series of $q(x) \in \mathbb{C}[X]$ at $x = x_0$: $q(x) = \sum_i a_i (x x_0)^i$
- lacksquare Taylor series of $n \in \mathbb{Z}$ at p prime: $n = \sum_i b_i p^i$.

- Taylor series of $q(x) \in \mathbb{C}[X]$ at $x = x_0$: $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of $n \in \mathbb{Z}$ at p prime: $n = \sum_i b_i p^i$.

Definition

The p-adic expansion of a natural number n is the unique decomposition $n = \sum_i b_i p^i$ for $0 \le b_i < p$.

■ Taylor series of $q(x) = x^3 - 7x^2 + 15x - 9$

- Taylor series of $q(x) \in \mathbb{C}[X]$ at $x = x_0$: $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of $n \in \mathbb{Z}$ at p prime: $n = \sum_i b_i p^i$.

Definition

The p-adic expansion of a natural number n is the unique decomposition $n = \sum_i b_i p^i$ for $0 \le b_i < p$.

■ Taylor series of $q(x) = x^3 - 7x^2 + 15x - 9$ at x = 3:

- Taylor series of $q(x) \in \mathbb{C}[X]$ at $x = x_0$: $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of $n \in \mathbb{Z}$ at p prime: $n = \sum_i b_i p^i$.

Definition

The p-adic expansion of a natural number n is the unique decomposition $n = \sum_i b_i p^i$ for $0 \le b_i < p$.

■ Taylor series of $q(x) = x^3 - 7x^2 + 15x - 9$ at x = 3: $q(x) = 2(x-3)^2 + (x-3)^3$

- Taylor series of $q(x) \in \mathbb{C}[X]$ at $x = x_0$: $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of $n \in \mathbb{Z}$ at p prime: $n = \sum_i b_i p^i$.

Definition

- Taylor series of $q(x) = x^3 7x^2 + 15x 9$ at x = 3: $q(x) = 2(x-3)^2 + (x-3)^3$
- $q(x) = (x-3)^2(2+(x-3))$

- Taylor series of $q(x) \in \mathbb{C}[X]$ at $x = x_0$: $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of $n \in \mathbb{Z}$ at p prime: $n = \sum_i b_i p^i$.

Definition

- Taylor series of $q(x) = x^3 7x^2 + 15x 9$ at x = 3: $q(x) = 2(x-3)^2 + (x-3)^3$
- $q(x) = (x-3)^2(2+(x-3)) = (x-3)^2(x-1)$

- Taylor series of $q(x) \in \mathbb{C}[X]$ at $x = x_0$: $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of $n \in \mathbb{Z}$ at p prime: $n = \sum_i b_i p^i$.

Definition

- Taylor series of $q(x) = x^3 7x^2 + 15x 9$ at x = 3: $q(x) = 2(x-3)^2 + (x-3)^3$
- $q(x) = (x-3)^2(2+(x-3)) = (x-3)^2(x-1)$
- $x^3 7x^2 + 15x 9$ has a root at 3 of order 2

- Taylor series of $q(x) \in \mathbb{C}[X]$ at $x = x_0$: $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of $n \in \mathbb{Z}$ at p prime: $n = \sum_i b_i p^i$.

Definition

- Taylor series of $q(x) = x^3 7x^2 + 15x 9$ at x = 3: $q(x) = 2(x-3)^2 + (x-3)^3$
- $q(x) = (x-3)^2(2+(x-3)) = (x-3)^2(x-1)$
- $x^3 7x^2 + 15x 9$ has a root at 3 of order 2
- Taylor series/p-adic expansion of 72 at p = 3:

- Taylor series of $q(x) \in \mathbb{C}[X]$ at $x = x_0$: $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of $n \in \mathbb{Z}$ at p prime: $n = \sum_i b_i p^i$.

Definition

- Taylor series of $q(x) = x^3 7x^2 + 15x 9$ at x = 3: $q(x) = 2(x-3)^2 + (x-3)^3$
- $q(x) = (x-3)^2(2+(x-3)) = (x-3)^2(x-1)$
- $x^3 7x^2 + 15x 9$ has a root at 3 of order 2
- Taylor series/p-adic expansion of 72 at p = 3: $72 = 0 \cdot 3 + 2 \cdot 3^2 + 2 \cdot 3^3$

- Taylor series of $q(x) \in \mathbb{C}[X]$ at $x = x_0$: $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of $n \in \mathbb{Z}$ at p prime: $n = \sum_i b_i p^i$.

Definition

- Taylor series of $q(x) = x^3 7x^2 + 15x 9$ at x = 3: $q(x) = 2(x-3)^2 + (x-3)^3$
- $q(x) = (x-3)^2(2+(x-3)) = (x-3)^2(x-1)$
- $x^3 7x^2 + 15x 9$ has a root at 3 of order 2
- Taylor series/p-adic expansion of 72 at p = 3: $72 = 0 \cdot 3 + 2 \cdot 3^2 + 2 \cdot 3^3$
- $72 = 3^2 * (2 + 2 \cdot 3) = 3^2 * 2^3$

Taylor series

- Taylor series of $q(x) \in \mathbb{C}[X]$ at $x = x_0$: $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of $n \in \mathbb{Z}$ at p prime: $n = \sum_i b_i p^i$.

Definition

The *p*-adic expansion of a natural number *n* is the unique decomposition $n = \sum_i b_i p^i$ for $0 \le b_i < p$.

- Taylor series of $q(x) = x^3 7x^2 + 15x 9$ at x = 3: $q(x) = 2(x-3)^2 + (x-3)^3$
- $q(x) = (x-3)^2(2+(x-3)) = (x-3)^2(x-1)$
- $x^3 7x^2 + 15x 9$ has a root at 3 of order 2
- Taylor series/p-adic expansion of 72 at p = 3: $72 = 0 \cdot 3 + 2 \cdot 3^2 + 2 \cdot 3^3$
- $72 = 3^2 * (2 + 2 \cdot 3) = 3^2 * 2^3$
- 72 has a root at p = 3 of order 2

Taylor series

- Taylor series of $q(x) \in \mathbb{C}[X]$ at $x = x_0$: $q(x) = \sum_i a_i (x x_0)^i$
- Taylor series of $n \in \mathbb{Z}$ at p prime: $n = \sum_i b_i p^i$.

Definition

The *p*-adic expansion of a natural number *n* is the unique decomposition $n = \sum_i b_i p^i$ for $0 \le b_i < p$.

- Taylor series of $q(x) = x^3 7x^2 + 15x 9$ at x = 3: $q(x) = 2(x-3)^2 + (x-3)^3$
- $q(x) = (x-3)^2(2+(x-3)) = (x-3)^2(x-1)$
- $x^3 7x^2 + 15x 9$ has a root at 3 of order 2
- Taylor series/p-adic expansion of 72 at p = 3: $72 = 0 \cdot 3 + 2 \cdot 3^2 + 2 \cdot 3^3$
- $72 = 3^2 * (2 + 2 \cdot 3) = 3^2 * 2^3$
- 72 has a root at p = 3 of order 2

■ Consider -1.

- Consider -1.
- Goal: write $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $\quad \blacksquare \ -1 \equiv -1 + 3 3.$

- Consider -1.
- Goal: write $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$.
- $-1 \equiv 2 3$

- Consider -1.
- Goal: write $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$.
- $-1 \equiv 2 3$
- $-1 \equiv 2 3 + 9 9$

- Consider -1.
- Goal: write $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$.
- $-1 \equiv 2 3$
- $-1 \equiv 2 3 + 9 9$
- $-1 \equiv 2 + (9 3) 9$

- Consider -1.
- Goal: write $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$.
- $-1 \equiv 2 3$
- $-1 \equiv 2 3 + 9 9$
- $-1 \equiv 2 + (9 3) 9$
- $-1 \equiv 2 + 6 9$

- Consider -1.
- Goal: write $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$.
- $-1 \equiv 2 3$
- $-1 \equiv 2 3 + 9 9$
- $-1 \equiv 2 + (9 3) 9$
- $-1 \equiv 2 + 6 9$
- $-1 \equiv 2 + 6 9 + 27 27$

- Consider -1.
- Goal: write $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$.
- $-1 \equiv 2 3$
- $-1 \equiv 2 3 + 9 9$
- $-1 \equiv 2 + (9 3) 9$
- $-1 \equiv 2 + 6 9$
- $-1 \equiv 2 + 6 9 + 27 27$
- $= -1 \equiv 2 + 6 + (27 9) 125$

- Consider -1.
- Goal: write $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$.
- $-1 \equiv 2 3$
- $-1 \equiv 2 3 + 9 9$
- $-1 \equiv 2 + (9 3) 9$
- $-1 \equiv 2 + 6 9$
- $-1 \equiv 2 + 6 9 + 27 27$
- $-1 \equiv 2 + 6 + (27 9) 125$
- $-1 \equiv 2 + 6 + 100 125$

- Consider -1.
- Goal: write $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$.
- $-1 \equiv 2 3$
- $-1 \equiv 2 3 + 9 9$
- $-1 \equiv 2 + (9 3) 9$
- -1 = 2 + 6 9
- $-1 \equiv 2 + 6 9 + 27 27$
- $-1 \equiv 2 + 6 + (27 9) 125$
- -1 = 2 + 6 + 100 125
- $-1 \equiv 2 \cdot 3^0 + 2 \cdot 3^1 + 2 \cdot 3^2 + \cdots$

- Consider -1.
- Goal: write $-1 = a_0 3^0 + a_1 3^1 + a_2 3^2 + a_3 3^3 + \cdots$
- $-1 \equiv -1 + 3 3$.
- $-1 \equiv 2 3$
- $-1 \equiv 2 3 + 9 9$
- $-1 \equiv 2 + (9 3) 9$
- -1 = 2 + 6 9
- $-1 \equiv 2 + 6 9 + 27 27$
- $-1 \equiv 2 + 6 + (27 9) 125$
- -1 = 2 + 6 + 100 125
- $-1 \equiv 2 \cdot 3^0 + 2 \cdot 3^1 + 2 \cdot 3^2 + \cdots$

$$\quad \blacksquare \ -1 \equiv 2 \cdot 3^0 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdot \cdot \cdot \, .$$

- $\blacksquare \ -1 \equiv 2 \cdot 3^0 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$
- $\label{eq:continuous} \blacksquare \ -1 + 1 = 1 + 2 \cdot 3^0 + + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots.$

$$-1 \equiv 2 \cdot 3^0 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$$

$$\quad \blacksquare \ -1 + 1 = 1 + 2 \cdot 3^0 + + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots.$$

$$= -1 + 1 = 1 \cdot 3^1 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots .$$

$$\blacksquare \ -1 \equiv 2 \cdot 3^0 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$$

$$\quad \blacksquare \ -1+1 = 1+2\cdot 3^0 + +2\cdot 3^1 + 2\cdot 3^2 + 2\cdot 3^3 + \cdot \cdot \cdot \, .$$

$$= -1 + 1 = 1 \cdot 3^1 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots .$$

$$\quad \blacksquare \ -1+1 = 1 \cdot 3^2 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots.$$

■
$$-1 \equiv 2 \cdot 3^0 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$$

■ $-1 + 1 = 1 + 2 \cdot 3^0 + +2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$

$$-1+1=1\cdot 3^1+2\cdot 3^1+2\cdot 3^2+2\cdot 3^3+\cdots$$

$$\quad \blacksquare \ -1 + 1 = 1 \cdot 3^2 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots.$$

$$\quad \blacksquare \ -1+1=1\cdot 3^3+2\cdot 3^3+\cdot\cdot\cdot\cdot.$$

$$= -1 \equiv 2 \cdot 3^0 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots .$$

$$\blacksquare \ -1+1 = 1+2\cdot 3^0 + +2\cdot 3^1 + 2\cdot 3^2 + 2\cdot 3^3 + \cdot \cdot \cdot \, .$$

$$-1 + 1 = 1 \cdot 3^1 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots .$$

$$\quad \blacksquare \ -1 + 1 = 1 \cdot 3^2 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots.$$

$$\quad \blacksquare \ -1+1=1\cdot 3^3+2\cdot 3^3+\cdot\cdot\cdot\cdot.$$

$$\blacksquare$$
 $-1+1=\cdots$

$$= -1 \equiv 2 \cdot 3^0 + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots .$$

$$= -1 + 1 = 1 + 2 \cdot 3^0 + + 2 \cdot 3^1 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots .$$

$$-1+1=1\cdot 3^1+2\cdot 3^1+2\cdot 3^2+2\cdot 3^3+\cdots$$

$$\blacksquare \ -1 + 1 = 1 \cdot 3^2 + 2 \cdot 3^2 + 2 \cdot 3^3 + \cdots$$

$$-1+1=1\cdot 3^3+2\cdot 3^3+\cdots$$

$$-1+1=\cdots$$

$$-1+1=0.$$

```
...22222 ...00001 + ------
```

```
...22222 ...00001 + ...22222
...7????? 0
```

22222	1	1
	22222	22222
00001 +	00001 +	00001 +
00000		
?????	0	00

22222	1 22222 00001 +	1 22222 00001 +	22222
?????	0	00	00000

	· ·	• • • • • • • • • • • • • • • • • • • •	
?????	0	00	00000
	00001 +	00001 +	
00001 +	22222	22222	00001 +
22222	1	1	22222

■ What is -1 is 2 - adically?

	-		
?????	0	00	00000
22222	1 22222 00001 +	1 22222 00001 +	22222

- What is -1 is 2 adically?
- $-1 = \dots 11111$.

22222	1 22222 00001 +	1 22222 00001 +	22222
?????		00	00000
	O	00	

- What is -1 is 2 adically?
- $-1 = \dots 11111$.
- Same as 2's complement!

■ Evaluate 1/4 in the 3-adic system.

- Evaluate 1/4 in the 3-adic system.
- **1**/4

- Evaluate 1/4 in the 3-adic system.
- $\blacksquare 1/4 = 1/(1+3)$

- Evaluate 1/4 in the 3-adic system.
- $\blacksquare 1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!
- $\quad \blacksquare \ 3^2 = 3 \cdot 3$

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!
- $\blacksquare 3^2 = 3 \cdot 3$
- $1/4 = 1 3 + 3 \cdot 3 3^3 + 3^4 + \cdots$

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!
- $\blacksquare 3^2 = 3 \cdot 3$
- $1/4 = 1 3 + 3 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!
- $\blacksquare 3^2 = 3 \cdot 3$
- $1/4 = 1-3+3\cdot 3-3^3+3^4+\cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!
- $\blacksquare 3^2 = 3 \cdot 3$
- $1/4 = 1-3+3\cdot 3-3^3+3^4+\cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3 \cdot 3^3 + \cdots$

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!
- $\blacksquare 3^2 = 3 \cdot 3$
- $1/4 = 1-3+3\cdot 3-3^3+3^4+\cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3 \cdot 3^3 + \cdots$
- $1/4 = 1 + 2 \cdot 3 + 2 \cdot 3^3 + \cdots$

- Evaluate 1/4 in the 3-adic system.
- $1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!
- $\blacksquare 3^2 = 3 \cdot 3$
- $1/4 = 1-3+3\cdot 3-3^3+3^4+\cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3 \cdot 3^3 + \cdots$
- $\ \, \mathbf{1}/4 = 1 + 2 \cdot 3 + 2 \cdot 3^3 + 2 \cdot 3^5 + 2 \cdot 3^7 + \cdots$

- Evaluate 1/4 in the 3-adic system.
- $\blacksquare 1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!
- $\blacksquare 3^2 = 3 \cdot 3$
- $1/4 = 1-3+3\cdot 3-3^3+3^4+\cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3 \cdot 3^3 + \cdots$
- $1/4 = 1 + 2 \cdot 3 + 2 \cdot 3^3 + \cdots$
- $1/4 = 1 + 2 \cdot 3 + 2 \cdot 3^3 + 2 \cdot 3^5 + 2 \cdot 3^7 + \cdots$
- Similar cleverness produces 1/p for any rational.

- Evaluate 1/4 in the 3-adic system.
- $\blacksquare 1/4 = 1/(1+3) = 1-3+3^2-3^3+3^4+\dots$
- What is -3? that's not allowed!
- $\blacksquare 3^2 = 3 \cdot 3$
- $1/4 = 1-3+3\cdot 3-3^3+3^4+\cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3^4 + \cdots$
- $1/4 = 1 + 2 \cdot 3 3^3 + 3 \cdot 3^3 + \cdots$
- $1/4 = 1 + 2 \cdot 3 + 2 \cdot 3^3 + \cdots$
- $1/4 = 1 + 2 \cdot 3 + 2 \cdot 3^3 + 2 \cdot 3^5 + 2 \cdot 3^7 + \cdots$
- Similar cleverness produces 1/p for any rational.

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

- Let $x = a_0 + a_1 p + a_2 p^2 + \dots$
- $\blacksquare \ x \equiv a_0 \ (\bmod \ p)$

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$\blacksquare \ x \equiv a_0 \ (\bmod \ p)$$

$$\blacksquare \ x \equiv a_0 + a_1 p \pmod{p^2}$$

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x \equiv a_0 + a_1 p \pmod{p^2}$$

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x \equiv a_0 + a_1 p \pmod{p^2}$$

$$\blacksquare \ x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

$$\blacksquare x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

■ Let
$$-1 = \sum_i a_i 3^i$$

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

$$\blacksquare \ x - a_0 - a_1 p \equiv a_2 p^2 \ (\text{mod } p^3)$$

■ Let
$$-1 = \sum_i a_i 3^i$$

■ Let
$$-1 = a_0 \pmod{3}$$

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$\mathbf{z} \times \mathbf{z} \equiv a_0 \pmod{p}$$

$$\blacksquare \ x \equiv a_0 + a_1 p \pmod{p^2}$$

$$\blacksquare \ x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

$$\blacksquare \ x - a_0 - a_1 p \equiv a_2 p^2 \ (\text{mod } p^3)$$

■ Let
$$-1 = \sum_i a_i 3^i$$

■ Let
$$-1 = a_0 \pmod{3}$$
; $a_0 = 2 \pmod{3}$

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x \equiv a_0 + a_1 p \pmod{p^2}$$

$$\blacksquare \ x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

$$\blacksquare x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

$$\blacksquare x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

■ Let
$$-1 = \sum_i a_i 3^i$$

■ Let
$$-1 = a_0 \pmod{3}$$
; $a_0 = 2 \pmod{3}$

■ Let
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x \equiv a_0 + a_1 p \pmod{p^2}$$

$$\blacksquare \ x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

$$\blacksquare x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

- Let $-1 = \sum_i a_i 3^i$
- Let $-1 = a_0 \pmod{3}$; $a_0 = 2 \pmod{3}$
- Let $-1 = 2 + a_1 \cdot 3 \pmod{9}$; $-3 = a_1 \cdot 3 \pmod{9}$;

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

$$\blacksquare \ x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

■ Let
$$-1 = \sum_i a_i 3^i$$

■ Let
$$-1 = a_0 \pmod{3}$$
; $a_0 = 2 \pmod{3}$

■ Let
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;
 $-3 = a_1 \cdot 3 \pmod{9}$; $6 = a_1 \cdot 3 \pmod{9}$;

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

$$\blacksquare x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

■ Let
$$-1 = \sum_i a_i 3^i$$

■ Let
$$-1 = a_0 \pmod{3}$$
; $a_0 = 2 \pmod{3}$

■ Let
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;
 $-3 = a_1 \cdot 3 \pmod{9}$; $6 = a_1 \cdot 3 \pmod{9}$;
 $a_1 = 2$

■ Let
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let
$$1/4 = \sum_i a_i 3^i$$

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$\blacksquare x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

$$\blacksquare x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

■ Let
$$-1 = \sum_i a_i 3^i$$

■ Let
$$-1 = a_0 \pmod{3}$$
; $a_0 = 2 \pmod{3}$

■ Let
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;
 $-3 = a_1 \cdot 3 \pmod{9}$; $6 = a_1 \cdot 3 \pmod{9}$;
 $a_1 = 2$

■ Let
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let
$$1/4 = \sum_i a_i 3^i$$

■ What defines 1/4?

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$\blacksquare x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

$$\blacksquare x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

■ Let
$$-1 = \sum_i a_i 3^i$$

■ Let
$$-1 = a_0 \pmod{3}$$
; $a_0 = 2 \pmod{3}$

■ Let
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;
 $-3 = a_1 \cdot 3 \pmod{9}$; $6 = a_1 \cdot 3 \pmod{9}$;
 $a_1 = 2$

■ Let
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let
$$1/4 = \sum_i a_i 3^i$$

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$\blacksquare x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

$$\blacksquare x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

■ Let
$$-1 = \sum_i a_i 3^i$$

$$\blacksquare \hspace{0.2cm} \mathsf{Let} \hspace{0.1cm} -1 = a_{\boldsymbol{0}} \hspace{0.2cm} (\bmod \hspace{0.1cm} 3); \hspace{0.1cm} a_{\boldsymbol{0}} = 2 \hspace{0.2cm} (\bmod \hspace{0.1cm} 3)$$

■ Let
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;
 $-3 = a_1 \cdot 3 \pmod{9}$; $6 = a_1 \cdot 3 \pmod{9}$;
 $a_1 = 2$

■ Let
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let
$$1/4 = \sum_i a_i 3^i$$

$$\quad \blacksquare \ (a_{\boldsymbol{0}} + 3a_{\boldsymbol{1}} + 9a_{\boldsymbol{2}} + \dots)(1 + 3 + 0 \cdot 9 + \cdots) = 1$$

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$\blacksquare x \equiv a_0 \pmod{p}$$

$$\blacksquare x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

$$\blacksquare x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

■ Let
$$-1 = \sum_i a_i 3^i$$

■ Let
$$-1 = a_0 \pmod{3}$$
; $a_0 = 2 \pmod{3}$

■ Let
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;
 $-3 = a_1 \cdot 3 \pmod{9}$; $6 = a_1 \cdot 3 \pmod{9}$;
 $a_1 = 2$

■ Let
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let
$$1/4 = \sum_i a_i 3^i$$

$$\blacksquare (a_0 + 3a_1 + 9a_2 + \dots)(1 + 3 + 0 \cdot 9 + \dots) = 1$$

$$a_0 \cdot 1 \equiv 1 \pmod{3}$$

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$\blacksquare x \equiv a_0 \pmod{p}$$

$$\blacksquare x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

$$\blacksquare x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

■ Let
$$-1 = \sum_i a_i 3^i$$

■ Let
$$-1 = a_0 \pmod{3}$$
; $a_0 = 2 \pmod{3}$

■ Let
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;
 $-3 = a_1 \cdot 3 \pmod{9}$; $6 = a_1 \cdot 3 \pmod{9}$;
 $a_1 = 2$

■ Let
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let
$$1/4 = \sum_i a_i 3^i$$

$$\blacksquare \ (a_{\boldsymbol{0}} + 3a_{\boldsymbol{1}} + 9a_{\boldsymbol{2}} + \dots)(1 + 3 + 0 \cdot 9 + \cdots) = 1$$

$$a_0 \cdot 1 \equiv 1 \pmod{3} a_0 = 1.$$

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$\blacksquare x \equiv a_0 \pmod{p}$$

$$\blacksquare x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

$$\blacksquare x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

■ Let
$$-1 = \sum_i a_i 3^i$$

■ Let
$$-1 = a_0 \pmod{3}$$
; $a_0 = 2 \pmod{3}$

■ Let
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;
 $-3 = a_1 \cdot 3 \pmod{9}$; $6 = a_1 \cdot 3 \pmod{9}$;
 $a_1 = 2$

■ Let
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let
$$1/4 = \sum_i a_i 3^i$$

$$\blacksquare (a_0 + 3a_1 + 9a_2 + \dots)(1 + 3 + 0 \cdot 9 + \dots) = 1$$

$$a_0 \cdot 1 \equiv 1 \pmod{3} a_0 = 1.$$

$$(1+3a_1)(1+3) \equiv 1 \pmod{9}$$

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$\blacksquare x \equiv a_0 \pmod{p}$$

$$\blacksquare x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

$$\blacksquare \ x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

■ Let
$$-1 = \sum_i a_i 3^i$$

$$\blacksquare \ \, \mathsf{Let} \,\, -1 = \mathsf{a_0} \ \, (\mathsf{mod} \,\, 3); \,\, \mathsf{a_0} = 2 \ \, (\mathsf{mod} \,\, 3)$$

■ Let
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;
 $-3 = a_1 \cdot 3 \pmod{9}$; $6 = a_1 \cdot 3 \pmod{9}$;
 $a_1 = 2$

■ Let
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let
$$1/4 = \sum_{i} a_{i} 3^{i}$$

$$\qquad \qquad \blacksquare \ \, (a_{\boldsymbol{0}} + 3a_{\boldsymbol{1}} + 9a_{\boldsymbol{2}} + \dots)(1 + 3 + 0 \cdot 9 + \cdots) = 1$$

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$\blacksquare x \equiv a_0 \pmod{p}$$

$$\blacksquare x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

$$\blacksquare x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

■ Let
$$-1 = \sum_i a_i 3^i$$

■ Let
$$-1 = a_0 \pmod{3}$$
; $a_0 = 2 \pmod{3}$

■ Let
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;
 $-3 = a_1 \cdot 3 \pmod{9}$; $6 = a_1 \cdot 3 \pmod{9}$;
 $a_1 = 2$

■ Let
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let
$$1/4 = \sum_i a_i 3^i$$

$$\blacksquare (a_0 + 3a_1 + 9a_2 + \dots)(1 + 3 + 0 \cdot 9 + \dots) = 1$$

$$a_0 \cdot 1 \equiv 1 \pmod{3} a_0 = 1.$$

$$3a_1 \equiv -3 \equiv 6 \pmod{9}$$

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + ...$$

$$\blacksquare x \equiv a_0 \pmod{p}$$

$$\blacksquare x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

$$\blacksquare x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

■ Let
$$-1 = \sum_i a_i 3^i$$

$$\blacksquare \hspace{0.2cm} \mathsf{Let} \hspace{0.1cm} -1 = a_{\boldsymbol{0}} \hspace{0.2cm} (\bmod \hspace{0.1cm} 3); \hspace{0.1cm} a_{\boldsymbol{0}} = 2 \hspace{0.2cm} (\bmod \hspace{0.1cm} 3)$$

■ Let
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;
 $-3 = a_1 \cdot 3 \pmod{9}$; $6 = a_1 \cdot 3 \pmod{9}$;
 $a_1 = 2$

■ Let
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let
$$1/4 = \sum_i a_i 3^i$$

$$\blacksquare (a_0 + 3a_1 + 9a_2 + \dots)(1 + 3 + 0 \cdot 9 + \dots) = 1$$

$$a_0 \cdot 1 \equiv 1 \pmod{3} a_0 = 1.$$

$$3a_1 \equiv -3 \equiv 6 \pmod{9}$$

$$= a_1 \equiv 2 \pmod{9}$$

■ Let
$$x = a_0 + a_1 p + a_2 p^2 + \dots$$

$$\blacksquare x \equiv a_0 \pmod{p}$$

$$\blacksquare \ x \equiv a_0 + a_1 p + a_2 p^2 \pmod{p^3}$$

$$\blacksquare x - a_0 - a_1 p \equiv a_2 p^2 \pmod{p^3}$$

■ Let
$$-1 = \sum_i a_i 3^i$$

■ Let
$$-1 = a_0 \pmod{3}$$
; $a_0 = 2 \pmod{3}$

■ Let
$$-1 = 2 + a_1 \cdot 3 \pmod{9}$$
;
 $-3 = a_1 \cdot 3 \pmod{9}$; $6 = a_1 \cdot 3 \pmod{9}$;
 $a_1 = 2$

■ Let
$$-1 = 2 + 2 \cdot 3 + 2 \cdot 3^2 + \dots$$

■ Let
$$1/4 = \sum_i a_i 3^i$$

$$(a_0 + 3a_1 + 9a_2 + \dots)(1 + 3 + 0 \cdot 9 + \dots) = 1$$

$$a_0 \cdot 1 \equiv 1 \pmod{3} a_0 = 1.$$

$$\quad \blacksquare \ 3a_{1} \equiv -3 \equiv 6 \ (\text{mod } 9)$$

$$a_1 \equiv 2 \pmod{9}$$

$$1/4 = 1 + 2 \cdot 3 + 2 \cdot 3^3 + \dots$$

■ Let's solve $X^2 = 2$ in the 7—adics.

- Let's solve $X^2 = 2$ in the 7—adics.
- Such a solution does not "really exist" in the rationals or the integers.

- Let's solve $X^2 = 2$ in the 7-adics.
- Such a solution does not "really exist" in the rationals or the integers.
- Let $x = \sum_{i} a_0 + 7a_1 + 49a_2 + \dots$

- Let's solve $X^2 = 2$ in the 7-adics.
- Such a solution does not "really exist" in the rationals or the integers.
- Let $x = \sum_{i} a_0 + 7a_1 + 49a_2 + \dots$
- Start with $x^2 \equiv a_0^2 \equiv 2 \pmod{7}$

- Let's solve $X^2 = 2$ in the 7-adics.
- Such a solution does not "really exist" in the rationals or the integers.
- Let $x = \sum_{i} a_0 + 7a_1 + 49a_2 + \dots$
- Start with $x^2 \equiv a_0^2 \equiv 2 \pmod{7}$
- $a_0 = 3$

- Let's solve $X^2 = 2$ in the 7-adics.
- Such a solution does not "really exist" in the rationals or the integers.

■ Let
$$x = \sum_{i} a_0 + 7a_1 + 49a_2 + \dots$$

- Start with $x^2 \equiv a_0^2 \equiv 2 \pmod{7}$
- $a_0 = 3$

- Let's solve $X^2 = 2$ in the 7-adics.
- Such a solution does not "really exist" in the rationals or the integers.

■ Let
$$x = \sum_{i} a_0 + 7a_1 + 49a_2 + \dots$$

- Start with $x^2 \equiv a_0^2 \equiv 2 \pmod{7}$
- $a_0 = 3$
- $9 + 42a_1 + 49a_1^2 \equiv 2 \pmod{49}$

- Let's solve $X^2 = 2$ in the 7-adics.
- Such a solution does not "really exist" in the rationals or the integers.

■ Let
$$x = \sum_{i} a_0 + 7a_1 + 49a_2 + \dots$$

- Start with $x^2 \equiv a_0^2 \equiv 2 \pmod{7}$
- $a_0 = 3$
- $9 + 42a_1 + 49a_1^2 \equiv 2 \pmod{49}$
- $-42 + 42a_1 \equiv 0 \pmod{49}$

- Let's solve $X^2 = 2$ in the 7-adics.
- Such a solution does not "really exist" in the rationals or the integers.

■ Let
$$x = \sum_{i} a_0 + 7a_1 + 49a_2 + \dots$$

- Start with $x^2 \equiv a_0^2 \equiv 2 \pmod{7}$
- $a_0 = 3$
- $9 + 42a_1 + 49a_1^2 \equiv 2 \pmod{49}$
- $\blacksquare \ 7 + 42a_1 \equiv 0 \ (\text{mod } 49)$
- $= -42 + 42a_1 \equiv 0 \pmod{49}$
- $\blacksquare a_1 \equiv 1 \pmod{49}$

- Let's solve $X^2 = 2$ in the 7-adics.
- Such a solution does not "really exist" in the rationals or the integers.

■ Let
$$x = \sum_{i} a_0 + 7a_1 + 49a_2 + \dots$$

- Start with $x^2 \equiv a_0^2 \equiv 2 \pmod{7}$
- $a_0 = 3$
- $9 + 42a_1 + 49a_1^2 \equiv 2 \pmod{49}$
- $\blacksquare \ 7 + 42a_1 \equiv 0 \ (\text{mod } 49)$
- $= -42 + 42a_1 \equiv 0 \pmod{49}$
- $\blacksquare \ a_1 \equiv 1 \ (\text{mod } 49)$
- Keep going to extract a₂, a₃, . . .

- Let's solve $X^2 = 2$ in the 7-adics.
- Such a solution does not "really exist" in the rationals or the integers.

■ Let
$$x = \sum_{i} a_0 + 7a_1 + 49a_2 + \dots$$

- Start with $x^2 \equiv a_0^2 \equiv 2 \pmod{7}$
- $a_0 = 3$
- $9 + 42a_1 + 49a_1^2 \equiv 2 \pmod{49}$
- $-42 + 42a_1 \equiv 0 \pmod{49}$
- $\blacksquare a_1 \equiv 1 \pmod{49}$
- Keep going to extract $a_2, a_3, ...$
- \blacksquare We solved an equation in \mathbb{Q}_7 for which we didn't have a solution in $\mathbb{Q}!$

- Let's solve $X^2 = 2$ in the 7-adics.
- Such a solution does not "really exist" in the rationals or the integers.

■ Let
$$x = \sum_{i} a_0 + 7a_1 + 49a_2 + \dots$$

- Start with $x^2 \equiv a_0^2 \equiv 2 \pmod{7}$
- $a_0 = 3$
- $9 + 42a_1 + 49a_1^2 \equiv 2 \pmod{49}$
- $-42 + 42a_1 \equiv 0 \pmod{49}$
- $\blacksquare a_1 \equiv 1 \pmod{49}$
- Keep going to extract $a_2, a_3, ...$
- \blacksquare We solved an equation in \mathbb{Q}_7 for which we didn't have a solution in $\mathbb{Q}!$
- Can we always lift? Hensel's lemma

■ Intuition: higher powers of *p* should become "smaller" for convergence!

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$
- $|10|_3 = 3^{-0} = 1$
- $|3|_3 = 3^{-1} = 1/3$

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$
- $\blacksquare |10|_3 = 3^{-0} = 1$

- $|90|_3 = 3^{-2} = 1/9$

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a$
- $|10|_3 = 3^{-0} = 1$
- $|3|_3 = 3^{-1} = 1/3$
- $|90|_3 = 3^{-2} = 1/9$
- $|27|_3 = 3^{-3} = 1/27$

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a$
- $|3|_3 = 3^{-1} = 1/3$
- $|90|_3 = 3^{-2} = 1/9$
- \blacksquare |27|₃ = 3⁻³ = 1/27
- $|ab|_p = |a|_p \cdot |b|_p$. Plays well with multiplication

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a$
- $|10|_3 = 3^{-0} = 1$
- $|3|_3 = 3^{-1} = 1/3$
- $|90|_3 = 3^{-2} = 1/9$
- $|27|_3 = 3^{-3} = 1/27$
- $|ab|_p = |a|_p \cdot |b|_p$. Plays well with multiplication
- What about addition?

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a$
- $|10|_3 = 3^{-0} = 1$
- $|3|_3 = 3^{-1} = 1/3$
- $|9|_3 = 3^{-2} = 1/9$
- $|90|_3 = 3^{-2} = 1/9$
- $|27|_3 = 3^{-3} = 1/27$
- $|ab|_p = |a|_p \cdot |b|_p$. Plays well with multiplication
- What about addition?
- $|a+b|_p \leq \max(|a|_p,|b|_p)$

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a$
- $|10|_3 = 3^{-0} = 1$
- $|3|_3 = 3^{-1} = 1/3$
- $|90|_3 = 3^{-2} = 1/9$
- \blacksquare |27|₃ = 3⁻³ = 1/27
- $|ab|_p = |a|_p \cdot |b|_p$. Plays well with multiplication
- What about addition?
- $|a+b|_p \leq \max(|a|_p,|b|_p)$
- Let $a = p^{\alpha}a'$, $b = p^{\beta}b'$, let $\alpha \leq \beta$ WLOG.

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a$
- $|10|_3 = 3^{-0} = 1$
- $|3|_3 = 3^{-1} = 1/3$
- $|90|_3 = 3^{-2} = 1/9$
- $|27|_3 = 3^{-3} = 1/27$
- $|ab|_p = |a|_p \cdot |b|_p$. Plays well with multiplication
- What about addition?
- $\blacksquare |a+b|_p \leqslant \max(|a|_p,|b|_p)$
- Let $a = p^{\alpha}a'$, $b = p^{\beta}b'$, let $\alpha \leq \beta$ WLOG.
- $a+b) = p^{\alpha}(a'+p^{\beta-\alpha}b')$

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$
- $|10|_3 = 3^{-0} = 1$
- $|3|_3 = 3^{-1} = 1/3$
- $|90|_3 = 3^{-2} = 1/9$
- $|27|_3 = 3^{-3} = 1/27$
- $|ab|_p = |a|_p \cdot |b|_p$. Plays well with multiplication
- What about addition?
- $\blacksquare |a+b|_p \leqslant \max(|a|_p,|b|_p)$
- Let $a = p^{\alpha}a'$, $b = p^{\beta}b'$, let $\alpha \leq \beta$ WLOG.
- $(a+b) = p^{\alpha}(a'+p^{\beta-\alpha}b')$
- If $(a' + p^{\beta \alpha}b')$ is *not* divisible by p

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$
- $|10|_3 = 3^{-0} = 1$
- $|3|_3 = 3^{-1} = 1/3$
- $|9|_3 = 3^{-2} = 1/9$
- $|90|_3 = 3^{-2} = 1/9$
- $|27|_3 = 3^{-3} = 1/27$
- $|ab|_p = |a|_p \cdot |b|_p$. Plays well with multiplication
- What about addition?
- $|a+b|_p \leq \max(|a|_p,|b|_p)$
- Let $a = p^{\alpha}a'$, $b = p^{\beta}b'$, let $\alpha \leq \beta$ WLOG.
- $(a+b) = p^{\alpha}(a'+p^{\beta-\alpha}b')$
- \blacksquare If $(a'+p^{eta-lpha}b')$ is not divisible by p , then $|a+b|_p=p^{-lpha}=|a|_p$

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$
- $|10|_3 = 3^{-0} = 1$
- $|3|_3 = 3^{-1} = 1/3$
- $|9|_3 = 3^{-2} = 1/9$
- $|90|_3 = 3^{-2} = 1/9$
- $|27|_3 = 3^{-3} = 1/27$
- $|ab|_p = |a|_p \cdot |b|_p$. Plays well with multiplication
- What about addition?
- $\blacksquare |a+b|_p \leqslant \max(|a|_p,|b|_p)$
- Let $a = p^{\alpha}a'$, $b = p^{\beta}b'$, let $\alpha \leq \beta$ WLOG.
- $(a+b) = p^{\alpha}(a'+p^{\beta-\alpha}b')$
- \blacksquare If $(a'+p^{eta-lpha}b')$ is not divisible by p, then $|a+b|_p=p^{-lpha}=|a|_p$
- If $(a' + p^{\beta \alpha}b')$ is divisible by p

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$
- $|10|_3 = 3^{-0} = 1$
- $|3|_3 = 3^{-1} = 1/3$
- $|90|_3 = 3^{-2} = 1/9$
- $|27|_3 = 3^{-3} = 1/27$
- $|ab|_p = |a|_p \cdot |b|_p$. Plays well with multiplication
- What about addition?
- $\blacksquare |a+b|_p \leqslant \max(|a|_p,|b|_p)$
- Let $a = p^{\alpha}a'$, $b = p^{\beta}b'$, let $\alpha \leq \beta$ WLOG.
- $(a+b) = p^{\alpha}(a'+p^{\beta-\alpha}b')$
- If $(a' + p^{\beta \alpha}b')$ is not divisible by p, then $|a + b|_p = p^{-\alpha} = |a|_p$
- \blacksquare If $(a'+p^{\beta-\alpha}b')$ is divisible by p, then $|a+b|_p=p^{-(\alpha+\mathtt{more})}< p^{-\alpha}$

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$
- $|10|_3 = 3^{-0} = 1$
- $|3|_3 = 3^{-1} = 1/3$
- $|9|_3 = 3^{-2} = 1/9$
- $|90|_3 = 3^{-2} = 1/9$
- $|27|_3 = 3^{-3} = 1/27$
- $|ab|_p = |a|_p \cdot |b|_p$. Plays well with multiplication
- What about addition?
- $|a+b|_p \leq \max(|a|_p,|b|_p)$
- Let $a = p^{\alpha}a'$, $b = p^{\beta}b'$, let $\alpha \leq \beta$ WLOG.
- $(a+b) = p^{\alpha}(a'+p^{\beta-\alpha}b')$
- If $(a' + p^{\beta \alpha}b')$ is not divisible by p, then $|a + b|_p = p^{-\alpha} = |a|_p$
- If $(a' + p^{\beta \alpha}b')$ is divisible by p, then $|a + b|_p = p^{-(\alpha + \text{more})} < p^{-\alpha}$
- $|10|_2 = |2*5|_2 = 1/2; |40|_2 = |8*5|_2 = 1/8$

- Intuition: higher powers of *p* should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$
- $|10|_3 = 3^{-0} = 1$
- $|3|_3 = 3^{-1} = 1/3$
- $|9|_3 = 3^{-2} = 1/9$
- $|90|_3 = 3^{-2} = 1/9$
- $|27|_3 = 3^{-3} = 1/27$
- $|ab|_p = |a|_p \cdot |b|_p$. Plays well with multiplication
- What about addition?
- $\blacksquare |a+b|_p \leqslant \max(|a|_p,|b|_p)$
- Let $a = p^{\alpha}a'$, $b = p^{\beta}b'$, let $\alpha \leq \beta$ WLOG.
- $(a+b) = p^{\alpha}(a'+p^{\beta-\alpha}b')$
- \blacksquare If $(a'+p^{eta-lpha}b')$ is not divisible by p, then $|a+b|_p=p^{-lpha}=|a|_p$
- If $(a' + p^{\beta \alpha}b')$ is divisible by p, then $|a + b|_p = p^{-(\alpha + \text{more})} < p^{-\alpha}$
- $|10|_2 = |2*5|_2 = 1/2; |40|_2 = |8*5|_2 = 1/8$

- Intuition: higher powers of p should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$
- $|10|_3 = 3^{-0} = 1$
- $|3|_3 = 3^{-1} = 1/3$
- $|9|_3 = 3^{-2} = 1/9$
- $|90|_3 = 3^{-2} = 1/9$
- $|27|_3 = 3^{-3} = 1/27$
- $\blacksquare |ab|_p = |a|_p \cdot |b|_p$. Plays well with multiplication
- What about addition?
- $\blacksquare |a+b|_p \leqslant \max(|a|_p,|b|_p)$
- Let $a = p^{\alpha}a'$, $b = p^{\beta}b'$, let $\alpha \leq \beta$ WLOG.
- $(a+b) = p^{\alpha}(a'+p^{\beta-\alpha}b')$
- \blacksquare If $(a'+p^{eta-lpha}b')$ is not divisible by p , then $|a+b|_p=p^{-lpha}=|a|_p$
- If $(a' + p^{\beta \alpha}b')$ is divisible by p, then $|a + b|_p = p^{-(\alpha + \text{more})} < p^{-\alpha}$
- $|10|_2 = |2*5|_2 = 1/2; |40|_2 = |8*5|_2 = 1/8$
- $|10+40|_2 = |50|_2 = |2*25|_2 = 1/2$
- $|10+10|_2 = |20|_2 = |4*5|_2 = 1/4$

- Intuition: higher powers of p should become "smaller" for convergence!
- $\blacksquare |a|_p = p^{-1 \cdot \text{highest power of } p \text{ which divides } a}$
- $|10|_3 = 3^{-0} = 1$
- $|3|_3 = 3^{-1} = 1/3$
- $|9|_3 = 3^{-2} = 1/9$
- $|90|_3 = 3^{-2} = 1/9$
- $|27|_3 = 3^{-3} = 1/27$
- $\blacksquare |ab|_p = |a|_p \cdot |b|_p$. Plays well with multiplication
- What about addition?
- $\blacksquare |a+b|_p \leqslant \max(|a|_p,|b|_p)$
- Let $a = p^{\alpha}a'$, $b = p^{\beta}b'$, let $\alpha \leq \beta$ WLOG.
- $(a+b) = p^{\alpha}(a'+p^{\beta-\alpha}b')$
- \blacksquare If $(a'+p^{eta-lpha}b')$ is not divisible by p , then $|a+b|_p=p^{-lpha}=|a|_p$
- If $(a' + p^{\beta \alpha}b')$ is divisible by p, then $|a + b|_p = p^{-(\alpha + \text{more})} < p^{-\alpha}$
- $|10|_2 = |2*5|_2 = 1/2; |40|_2 = |8*5|_2 = 1/8$
- $|10+40|_2 = |50|_2 = |2*25|_2 = 1/2$
- $|10+10|_2 = |20|_2 = |4*5|_2 = 1/4$

■ Solve x = 1 + 3x

- Solve x = 1 + 3x
- Non scam:-2x = 1

- Solve x = 1 + 3x
- Non scam:-2x = 1; x = -1/2

- Solve x = 1 + 3x
- Non scam:-2x = 1; x = -1/2
- Recurrence: x[i+1] = 1 + 3x[i]

- Solve x = 1 + 3x
- Non scam:-2x = 1; x = -1/2
- Recurrence: x[i+1] = 1 + 3x[i]
- $x_0 = 1$

- Solve x = 1 + 3x
- Non scam:-2x = 1; x = -1/2
- Recurrence: x[i+1] = 1 + 3x[i]
- $x_0 = 1$
- $x_1 = 1 + 3$
- $x_2 = 1 + 3x_1 = 1 + 3(1+3) = 1 + 3 + 3^2$

- Solve x = 1 + 3x
- Non scam:-2x = 1; x = -1/2
- Recurrence: x[i+1] = 1 + 3x[i]
- $x_0 = 1$
- $x_1 = 1 + 3$
- $x_2 = 1 + 3x_1 = 1 + 3(1+3) = 1 + 3 + 3^2$
- $x_3 = 1 + 3x_2 = 1 + 3(1 + 3 + 3^2) = 1 + 3 + 3^2 + 3^3$

- Solve x = 1 + 3x
- Non scam:-2x = 1; x = -1/2
- Recurrence: x[i+1] = 1 + 3x[i]
- $x_0 = 1$
- $x_1 = 1 + 3$
- $x_2 = 1 + 3x_1 = 1 + 3(1+3) = 1 + 3 + 3^2$
- $x_i = 1 + 3 + 3^2 + \cdots + 3^i$

- Solve x = 1 + 3x
- Non scam:-2x = 1; x = -1/2
- Recurrence: x[i+1] = 1 + 3x[i]
- $x_0 = 1$
- $x_1 = 1 + 3$
- $x_2 = 1 + 3x_1 = 1 + 3(1+3) = 1 + 3 + 3^2$
- $x_3 = 1 + 3x_2 = 1 + 3(1 + 3 + 3^2) = 1 + 3 + 3^2 + 3^3$
- $x_i = 1 + 3 + 3^2 + \cdots + 3^i$
- $x_{\infty} = 1/(1-3) = -1/2$
- \blacksquare Converges? We need |3|<1

■ Solve
$$x = 1 + 3x$$

■ Non scam:
$$-2x = 1$$
; $x = -1/2$

■ Recurrence:
$$x[i+1] = 1 + 3x[i]$$

$$x_0 = 1$$

$$x_1 = 1 + 3$$

$$x_2 = 1 + 3x_1 = 1 + 3(1+3) = 1 + 3 + 3^2$$

$$x_3 = 1 + 3x_2 = 1 + 3(1 + 3 + 3^2) = 1 + 3 + 3^2 + 3^3$$

$$x_i = 1 + 3 + 3^2 + \cdots + 3^i$$

$$x_{\infty} = 1/(1-3) = -1/2$$

$$lacksquare$$
 Converges? We need $|3| < 1$

$$\blacksquare$$
 But it is! $|3|_3<1$

■ Solve
$$x = 1 + 3x$$

■ Non scam:
$$-2x = 1$$
; $x = -1/2$

■ Recurrence:
$$x[i+1] = 1 + 3x[i]$$

$$x_0 = 1$$

$$x_1 = 1 + 3$$

$$x_2 = 1 + 3x_1 = 1 + 3(1+3) = 1 + 3 + 3^2$$

$$x_3 = 1 + 3x_2 = 1 + 3(1 + 3 + 3^2) = 1 + 3 + 3^2 + 3^3$$

$$x_i = 1 + 3 + 3^2 + \cdots + 3^i$$

$$x_{\infty} = 1/(1-3) = -1/2$$

$$lacksquare$$
 Converges? We need $|3| < 1$

$$\blacksquare$$
 But it is! $|3|_3<1$

Why only primes? Geometry of functions

Why only primes? Geometry of functions

■ f(x): continuous, non-zero at $x = x_0$.

Why only primes? Geometry of functions

- **•** f(x): continuous, *non-zero* at $x = x_0$.
- f(x): locally invertible at $x = x_0$.

Why only primes? Geometry of functions

- **•** f(x): continuous, *non-zero* at $x = x_0$.
- f(x): locally invertible at $x = x_0$.

lacksquare consider $4(\cdot)$ as function $\mathbb{N} \to \mathbb{N}$.

- \blacksquare consider $4(\cdot)$ as function $\mathbb{N} \to \mathbb{N}$.
- \blacksquare nonzero at $a_0 = 6$: $4 \simeq 4 \pmod{6}$

- lacksquare consider $4(\cdot)$ as function $\mathbb{N} \to \mathbb{N}$.
- \blacksquare nonzero at $a_0 = 6$: $4 \simeq 4 \pmod{6}$
- not invertible modulo 6:

$$[0,1,2,3,4,5] \times 4 \equiv [0,4,8,12,16,20] \equiv [0,4,2,0,4,2] \pmod{6}$$

- lacksquare consider $4(\cdot)$ as function $\mathbb{N} \to \mathbb{N}$.
- \blacksquare nonzero at $a_0 = 6$: $4 \simeq 4 \pmod{6}$
- not invertible modulo 6: $[0, 1, 2, 3, 4, 5] \times 4 \equiv [0, 4, 8, 12, 16, 20] \equiv [0, 4, 2, 0, 4, 2] \pmod{6}$
- If we want 4 to be a *continuous* function

- \blacksquare consider $4(\cdot)$ as function $\mathbb{N} \to \mathbb{N}$.
- nonzero at $a_0 = 6$: $4 \simeq 4 \pmod{6}$
- not invertible modulo 6: $[0,1,2,3,4,5] \times 4 \equiv [0,4,8,12,16,20] \equiv [0,4,2,0,4,2] \pmod{6}$
- If we want 4 to be a *continuous* function
- then 6 should not be a point!
- The only points in N which obey "any non zero function is locally invertible" are primes.
- Hence, we only consider evaluation at primes.

- Does $x^2 = 2$ have a solution in \mathbb{Z} ?
- lacksquare If it has a solution in $\mathbb Z$

- Does $x^2 = 2$ have a solution in \mathbb{Z} ?
- \blacksquare If it has a solution in $\mathbb Z$
- It must continue to have solutions in $\mathbb{Z}/n\mathbb{Z}$

- Does $x^2 = 2$ have a solution in \mathbb{Z} ?
- \blacksquare If it has a solution in $\mathbb Z$
- It must continue to have solutions in $Z/n\mathbb{Z}$
- $\blacksquare \ a \cdot b = c \implies a \cdot_n b \equiv c \pmod{n}, \ a + b = c \implies a +_n b \equiv c \pmod{n}$

- Does $x^2 = 2$ have a solution in \mathbb{Z} ?
- \blacksquare If it has a solution in \mathbb{Z}
- It must continue to have solutions in $Z/n\mathbb{Z}$

$$\blacksquare a \cdot b = c \implies a \cdot_n b \equiv c \pmod{n}, a + b = c \implies a +_n b \equiv c \pmod{n}$$

$$x^2 = 2 \pmod{5}$$
: $[0, 1, 2, 3, 4]^2 = [0, 1, 4, 9, 16] = [0, 1, 4, 4, 1]$

- So $x^2 = 2$ has no solution in \mathbb{Z}
- We used a finite number of candidates in $\mathbb{Z}/5Z$

- Does $x^2 = 2$ have a solution in \mathbb{Z} ?
- lacksquare If it has a solution in $\mathbb Z$
- It must continue to have solutions in $Z/n\mathbb{Z}$
- $\blacksquare \ a \cdot b = c \implies a \cdot_n b \equiv c \pmod{n}, \ a + b = c \implies a +_n b \equiv c \pmod{n}$
- $x^2 = 2 \pmod{5}$: $[0, 1, 2, 3, 4]^2 = [0, 1, 4, 9, 16] = [0, 1, 4, 4, 1]$
- \blacksquare So $x^2 = 2$ has no solution in \mathbb{Z}
- We used a *finite number of candidates* in $\mathbb{Z}/5Z$, eliminated infinite number of candidates in \mathbb{Z} .
- Hasse Minkowski: A quadratic form $(ax^2 + bxy + cy^2)$ has a root in \mathbb{Q} iff it has roots in all \mathbb{Q}_p .

- Let f(x) be a polynomial with integer or p-adic coefficients.
- If $f(r) \equiv 0 \pmod{p^k}$ and $f'(r) \not\equiv 0 \pmod{p}$ [non-degenerate], then
- lacksquare (1) there is an integer s such that $f(s) \equiv 0 \pmod{p^{k+1}}$ [lifting]
- \blacksquare (2) and $r \equiv s \pmod{p^k}$ [consistency]
- Since $r \equiv s \pmod{p^k}$ [consistency], we have $s = r + tp^k$ for some $t \in \mathbb{Z}$.

- Let f(x) be a polynomial with integer or p-adic coefficients.
- lacksquare If $f(r) \equiv 0 \pmod{p^k}$ and $f'(r) \not\equiv 0 \pmod{p}$ [non-degenerate], then
- lacksquare (1) there is an integer s such that $f(s) \equiv 0 \pmod{p^{k+1}}$ [lifting]
- \blacksquare (2) and $r \equiv s \pmod{p^k}$ [consistency]
- lacksquare Since $r\equiv s\pmod{p^k}$ [consistency], we have $s=r+tp^k$ for some $t\in\mathbb{Z}.$
- \blacksquare If we find a t, then we are done, since that is the unknown to find s.

- Let f(x) be a polynomial with integer or p-adic coefficients.
- lacksquare If $f(r) \equiv 0 \pmod{p^k}$ and $f'(r) \not\equiv 0 \pmod{p}$ [non-degenerate], then
- lacksquare (1) there is an integer s such that $f(s) \equiv 0 \pmod{p^{k+1}}$ [lifting]
- \blacksquare (2) and $r \equiv s \pmod{p^k}$ [consistency]
- Since $r \equiv s \pmod{p^k}$ [consistency], we have $s = r + tp^k$ for some $t \in \mathbb{Z}$.
- \blacksquare If we find a t, then we are done, since that is the unknown to find s.
- $f(s) = f(r+tp^k) = f(r) + f'(r)tp^k + (tp^k)^2(...).$

- Let f(x) be a polynomial with integer or p-adic coefficients.
- lacksquare If $f(r) \equiv 0 \pmod{p^k}$ and $f'(r) \not\equiv 0 \pmod{p}$ [non-degenerate], then
- lacksquare (1) there is an integer s such that $f(s) \equiv 0 \pmod{p^{k+1}}$ [lifting]
- \blacksquare (2) and $r \equiv s \pmod{p^k}$ [consistency]
- Since $r \equiv s \pmod{p^k}$ [consistency], we have $s = r + tp^k$ for some $t \in \mathbb{Z}$.
- \blacksquare If we find a t, then we are done, since that is the unknown to find s.
- $f(s) = f(r+tp^k) = f(r) + f'(r)tp^k + (tp^k)^2(...).$
- $f(s) = f(r+tp^k) = f(r) + f'(r)tp^k + p^{2k}t^2g(t)$ for some $g(t) \in \mathbb{Z}[t]$.

- Let f(x) be a polynomial with integer or p-adic coefficients.
- lacksquare If $f(r) \equiv 0 \pmod{p^k}$ and $f'(r) \not\equiv 0 \pmod{p}$ [non-degenerate], then
- lacksquare (1) there is an integer s such that $f(s) \equiv 0 \pmod{p^{k+1}}$ [lifting]
- \blacksquare (2) and $r \equiv s \pmod{p^k}$ [consistency]
- Since $r \equiv s \pmod{p^k}$ [consistency], we have $s = r + tp^k$ for some $t \in \mathbb{Z}$.
- lacksquare If we find a t, then we are done, since that is the unknown to find s.
- $f(s) = f(r+tp^k) = f(r) + f'(r)tp^k + (tp^k)^2(...).$
- $f(s) = f(r+tp^k) = f(r) + f'(r)tp^k + p^{2k}t^2g(t)$ for some $g(t) \in \mathbb{Z}[t]$.
- Since $f(r) \equiv 0 \pmod{p^k}$, we have $f(r) = zp^k$ for some $z \in \mathbb{Z}$.

- Let f(x) be a polynomial with integer or p-adic coefficients.
- If $f(r) \equiv 0 \pmod{p^k}$ and $f'(r) \not\equiv 0 \pmod{p}$ [non-degenerate], then
- lacksquare (1) there is an integer s such that $f(s) \equiv 0 \pmod{p^{k+1}}$ [lifting]
- \blacksquare (2) and $r \equiv s \pmod{p^k}$ [consistency]
- Since $r \equiv s \pmod{p^k}$ [consistency], we have $s = r + tp^k$ for some $t \in \mathbb{Z}$.
- lacksquare If we find a t, then we are done, since that is the unknown to find s.
- $f(s) = f(r+tp^k) = f(r) + f'(r)tp^k + (tp^k)^2(...).$
- $f(s) = f(r+tp^k) = f(r) + f'(r)tp^k + p^{2k}t^2g(t)$ for some $g(t) \in \mathbb{Z}[t]$.
- Since $f(r) \equiv 0 \pmod{p^k}$, we have $f(r) = zp^k$ for some $z \in \mathbb{Z}$.
- $f(s) = f(r + tp^k) = zp^k + f'(r)tp^k + p^{2k}t^2g(t).$

- Let f(x) be a polynomial with integer or p-adic coefficients.
- lacksquare If $f(r) \equiv 0 \pmod{p^k}$ and $f'(r) \not\equiv 0 \pmod{p}$ [non-degenerate], then
- lacksquare (1) there is an integer s such that $f(s) \equiv 0 \pmod{p^{k+1}}$ [lifting]
- \blacksquare (2) and $r \equiv s \pmod{p^k}$ [consistency]
- Since $r \equiv s \pmod{p^k}$ [consistency], we have $s = r + tp^k$ for some $t \in \mathbb{Z}$.
- lacksquare If we find a t, then we are done, since that is the unknown to find s.
- $f(s) = f(r+tp^k) = f(r) + f'(r)tp^k + (tp^k)^2(...).$
- $f(s) = f(r+tp^k) = f(r) + f'(r)tp^k + p^{2k}t^2g(t)$ for some $g(t) \in \mathbb{Z}[t]$.
- Since $f(r) \equiv 0 \pmod{p^k}$, we have $f(r) = zp^k$ for some $z \in \mathbb{Z}$.
- $f(s) = f(r + tp^k) = zp^k + f'(r)tp^k + p^{2k}t^2g(t).$
- $f(s) = f(r + tp^k) = p^k(z + f'(r)t) + p^{2k}t^2g(t).$

- Let f(x) be a polynomial with integer or p-adic coefficients.
- If $f(r) \equiv 0 \pmod{p^k}$ and $f'(r) \not\equiv 0 \pmod{p}$ [non-degenerate], then
- lacksquare (1) there is an integer s such that $f(s) \equiv 0 \pmod{p^{k+1}}$ [lifting]
- \blacksquare (2) and $r \equiv s \pmod{p^k}$ [consistency]
- Since $r \equiv s \pmod{p^k}$ [consistency], we have $s = r + tp^k$ for some $t \in \mathbb{Z}$.
- lacksquare If we find a t, then we are done, since that is the unknown to find s.
- $f(s) = f(r+tp^k) = f(r) + f'(r)tp^k + (tp^k)^2(...).$
- $\qquad \qquad \mathbf{f}(s) = f(r+tp^k) = f(r) + f'(r)tp^k + p^{\mathbf{2}k}t^{\mathbf{2}}g(t) \text{ for some } g(t) \in \mathbb{Z}[t].$
- Since $f(r) \equiv 0 \pmod{p^k}$, we have $f(r) = zp^k$ for some $z \in \mathbb{Z}$.
- $f(s) = f(r+tp^k) = zp^k + f'(r)tp^k + p^{2k}t^2g(t).$
- $f(s) = f(r+tp^k) = p^k(z+f'(r)t) + p^{2k}t^2g(t).$
- We need $f(s) \equiv 0 \pmod{p^{k+1}}$ for [lifting].
- $f(s) \equiv 0 \pmod{p^{k+1}} \text{ iff } p^k(z+f'(r)t) \equiv 0 \pmod{p^{k+1}} \text{ (Substituting } f(s), \text{ terms die: } p^{k+2} \text{ factor)}$

- Let f(x) be a polynomial with integer or p-adic coefficients.
- If $f(r) \equiv 0 \pmod{p^k}$ and $f'(r) \not\equiv 0 \pmod{p}$ [non-degenerate], then
- lacksquare (1) there is an integer s such that $f(s) \equiv 0 \pmod{p^{k+1}}$ [lifting]
- \blacksquare (2) and $r \equiv s \pmod{p^k}$ [consistency]
- Since $r \equiv s \pmod{p^k}$ [consistency], we have $s = r + tp^k$ for some $t \in \mathbb{Z}$.
- \blacksquare If we find a t, then we are done, since that is the unknown to find s.
- $f(s) = f(r+tp^k) = f(r) + f'(r)tp^k + (tp^k)^2(...).$
- $\qquad \qquad \mathbf{f}(s) = f(r+tp^k) = f(r) + f'(r)tp^k + p^{\mathbf{2}k}t^{\mathbf{2}}g(t) \text{ for some } g(t) \in \mathbb{Z}[t].$
- Since $f(r) \equiv 0 \pmod{p^k}$, we have $f(r) = zp^k$ for some $z \in \mathbb{Z}$.
- $f(s) = f(r+tp^k) = zp^k + f'(r)tp^k + p^{2k}t^2g(t).$
- $f(s) = f(r+tp^k) = p^k(z+f'(r)t) + p^{2k}t^2g(t).$
- We need $f(s) \equiv 0 \pmod{p^{k+1}}$ for [lifting].
- $\blacksquare \ f(s) \equiv 0 \ \left(\bmod \ p^{k+1} \right) \ \text{iff} \ p^k(z+f'(r)t) \equiv 0 \ \left(\bmod \ p^{k+1} \right) \ \left(\text{Substituting} \ f(s), \ \text{terms die:} \ p^{k+2} \ \text{factor} \right)$
- $(z+f'(r)t) \equiv 0 \pmod{p} [p^k \text{ factors common}]$
- $tf'(r) \equiv -z \pmod{p}$. Hence, $t = z[f'(r)]^{-1} \pmod{p}$.
- f'(r) will have an inverse if $f'(r) \not\equiv 0 \pmod p$ by virtue of being prime.