

《R语言数据分析》自学指南

一、概述

本学习指南主要针对<u>学堂在线</u>MOOC课程《R语言数据 分析》。

本学习指南主要用以指导该课程的自学。若采用翻转课堂或其它方式讲授、学习该课程的部分或全部内容,且希望获得相关的教学建议、学习指南,请直接与该课程主讲老师取得联系(axb@bupt.edu.cn)

本指南最新版本,可在 Github 获取获取。

二、课程脉络

《R语言数据分析》课程分为三个部分,分别是:

上部: 论道

主要讲述机器学习/数据挖掘方法论,包括机器学习的本质、学习的过程、学习的结果、推理方式、数学与工程的关系等。提出了本课程的一些核心理念,如:

- □ 气象万千、数以等观
 □ 所谓学习、归类而已
 □ 实事求是的讲,机器学习就是实事求是的过程
 □ 一切都是关系结构
 □ 源于数学、归于工程
- □

中部: 执具

主要讲述 R 语言这个工具。在阐述 R 语言编程环境、运行机制的基础上,重点阐述两个方面的内容,即 R 语言的基础编程和数据对象。

- □ 基础编程——R 语言编程的核心思想是利用别人的包和函数,讲述自己的故事。因此,在基础编程部分,首先阐述如何找到合适的扩展包,然后阐述控制流、函数,也就是如何展开自己的逻辑、讲好自己的故事。
- □数据对象——面向数据对象学习 R 语言,可能是掌握 R 这一工具的有效途径(注意,此处是面向数据对象,而非面向对象)。要掌握 R 语言,主要在于掌握其中的三组六类数据对象,即:向量/因子、矩阵/数值、列表/数据框。从某种意义上讲,掌握了 R 语言的主要数据对象的应用场景、主要操作,也就掌握了 R 语言的核心。这一部分内容,是掌握 R 语言的关键。

在阐述完上述两方面的主体内容之后,重点讲解了 tidyverse 这么一种编码风格。让同学们体会 R 语言的简洁、 优雅。

执具的最后一个章节,是《最美不过数据框》。这是一个 承上启下的章节。数据框,是最美好的数据对象(承上);在 数据框里,蕴含着各种各样的关系结构,包括关联、分类、

聚类等(启下)。

下部: 博术

如果说上部是"道",那这一部分就是机器学习/数据挖掘之"术"。

遵循数据科学的一般方法论,从探索性数据分析、关联、 分类、聚类四个方面来展开。

- □ 观数以形——开展探索性数据分析,主要是通过少量数字来刻画数据、通过直观的图形来展示数据,揭示变量之间的关系和数据空间的形态。
- □ 相随相伴、谓之关联——关联规则的挖掘。阐述关联规则的情境、Apriori 算法解决的核心问题、算法原理、规则评估、R语言实现、规则可视化等。
- □ 既是世间法、自当有分别——分门别类,即有监督学习。此部分内容较为庞杂,主要是围绕变量之间的关系和和数据空间的结构,以此为主线,将7种经典算法模型串珠成链。针对每一种算法模型,既阐述其直觉、也揭示其原理、更注重其实践。

图 1 有监督学习脉络图

□ 方以类聚、物以群分——聚类分析,即无监督学习。 此部分主要阐述两类经典的聚类方法,即基于划分的 kMeans 方法以及层次聚类方法。突出了易被忽视的 空间均匀度(即是否适合聚类)、聚类结果的评估(模 型评估不只是有监督学习才有)、聚类算法原理的直 观展示、聚类算法的 R 语言实现、聚类结果的可视化 等。

在阐述完聚类分析的核心内容后,从学术创新、算法创新的角度,提出"嫁接"、"遇见"这类学术创新观念,并以层次聚类在异常侦测中的创新应用为例,阐述如何在学习现有算法模型的基础上,开展学术创新。同时,也比较自然地涵盖了机器学习/数据挖掘的另一主题,即:异常侦测。

最后,课程以"庐山烟雨浙江潮"诗句结尾,以司空见惯的成语连连看,来重温、总结课程的核心理念,并以"庐山烟雨浙江潮"来隐喻 R 语言数据分析的简单而又美好。

课程的具体脉络,通过思维导图展示如下:

图 1 课程内容体系图

三、课时分布

本 MOOC 课程, 总视频时长约 950 分钟(含片头和片尾)。即: 完整地播放一遍视频, 大约需要 16 个小时, 其中:

□ 《上部:问道》总计 104 分钟,约 1.5 学时(为了方便大家制定学习计划,此处不精确计算,仅给出一个大致学时。比如此处的 1.5 学时,也就意味着一个半

小时能看完全部视频)。

- □ 《中部: 执具》总计 325 分钟, 约 5.5 学时。其中基础编程环境(含 Mini 小案例)约 2.5 学时, 数据对象部分(含 tidyverse)约 3 学时。
- □《下部:博术》总计 500 分钟,约 8.5 学时。其中,探索性数据分析 1.5 学时;关联部分 1.5 学时;分类部分 4 学时;聚类部分 1.5 学时。

视频时长明细如下,同学们可据此制定具体的学习计划:

视频	章节名称				累计
序号	部	章	节	时长	时长
1	上部:问道	第1章	气象万千、数以等观	11	
		第2章 所谓学习、归类而已			
2			2.1 所谓学习、归类而已(I)	15	1.5 学时 (104)
3			2.2 所谓学习、归类而已(II)	8	
4			2.3 所谓学习、归类而已(III)	14	
5			2.4 所谓学习、归类而已(IV)	15	
6		第3章	格言联璧话学习	17	
7		第4章	源于数学、归于工程	25	
8		第5章 工欲善其事、必先利其器	13		
		第6章			
9	中部: 执具		6.1 编程环境	16	2.5 学时 (142)
10			6. 2Mini 案例	19	
11			6.3 站在巨人的肩膀上	17	
12			6.4 控制流	39	
13			6.5函数(I)	19	
14			6.6函数 (II)	20	

		第7章	数据对象——面向数据对象学习 R 语言			
15			7.1 向量与因子 (I)	40		
16			7.2 向量与因子(II)	26		
17			7.3 矩阵与数组 (I)	18		
18			7.4 矩阵与数组(II)	15	3 学时 (182)	
19			7.5 列表与数据框 (I)	13	(102)	
20			7.6 列表与数据框 (II)	27		
21		第8章	人人都爱 tidyverse	28		
22		第9章 最美不过数据框				
		第 10 章	观数以形		1.5学时	
23			10.1 一维数据空间 (I)	21		
24			10.2 一维数据空间 (II)	19		
25			10.3 二维数据空间	24		
26			10.4 高维数据空间	27		
27		第11章	相随相伴、谓之关联	12	1.5 学时(86)	
28			11.1 关联规则 (I)	30		
29			11.2 关联规则(II)	14		
30			11.3 关联规则(III)	30		
31		第 12 章	既是世间法、自当有分别	24		
32	ェ		12.1 近邻法 (I)	13	4 学时 (228)	
33	下 部:		12.2 近邻法 (II)	15		
34	博术		12.3 决策树 (I)	31		
35	八		12.4 决策树(II)	24		
36			12.5 随机森林	14		
37			12.6 朴素贝叶斯	12		
38			12.7 逻辑斯蒂回归	30		
39			12.8 人工神经网络(I)	24		
40			12.9 人工神经网络(II)	13		
41			12.10 支持向量机	28		
42		第 13 章	方以类聚、物以群分	20	1.5 学时 (94)	
43			13.1 划分方法	28		
44			13.2 层次方法	36		
45		第 14 章	庐山烟雨浙江潮	10		

四、建议学习时长

从上述视频时长可以看出,要完整的播放本 MOOC 课程的全部视频,大致需要 16 个小时。但这绝不意味着两天就可以把 R 语言数据分析课程学完(假如按 8 小时工作制计的话)。

建议学习时长是一个学期。

实际上,根据以往同学们的学习经历,要入门 R 语言数据分析,应该是两至三个月。方法论、基本概念、算法模型、代码编写,都有一个消化吸收的过程,并无速成之法。

五、建议学习方式

边学边做:在干中学、在学中干

可能有部分同学觉得方法论部分是本课程的特色内容之一。实际上,本课程实践性很强。如果只是一味地看视频,而不去写代码、具体上手实践,那方法论部分的理念,也难有真切的体会。对于 R 语言这一工具的掌握,更不是看看视频就可以。没有人可以通过看几段游泳视频,就学会游泳。R 语言同样如此。

所以,本课程的学习,最好是一边看视频,一边写代码,才能取得相对比较好的效果。在这里,也请同学们注意,千万不要简单的把代码拷贝过来,运行一遍,浅尝辄止。一定要亲手敲入每一行代码!!

同时,也强烈推荐同学们针对自己的问题,套用、修改、优化课程代码以及从其他渠道获得的代码(如 Github、Stackoverflow等)。实际上,照着已有代码过一遍很容易,一旦针对自己的实际问题写代码,可能会寸步难行。在学习之初碰到这些问题再正常不过,但一定要迈开步子、大胆尝试。

六、推荐学习资源

本课程内容由任课教师自行编制,逻辑上相对自成体系, 基本可以按照视频顺序开展学习,进而入门R语言数据分析。

当然, R之所以强大,是因为它背后强大的生态。同学们在学习本课程的同时,也需要养成有效利用 R 各类资源的习惯。以下是部分推荐资源:

首先是官方网站 https://www.r-project.org/。

官方网站是一个容易被忽视的宝库。官方网站不只是提供了 R 的下载,其中也有诸多资源值得我们学习和关注,比如:

□ TASK VIEWS。R并没有一个官方的机构,对现有的扩展包进行全面、系统的分门别类和规范管理。但 TASK VIEWS 按照不同的主题,对经典扩展包进行了梳理。建议同学们对其中感兴趣的主题进行认真研读。 当然,一些通用主题,比如 Machine Learning、Cluster、Graphics、MissingData等,应该是每个人都应该看一看的。

□ The R Journal。该期刊文章的作者,大部分也是扩展包的作者,对大量的扩展包进行了系统、深入的论述。 其次是 RStudio。

这里推荐的 RStudio,并不是指 IDE,而是指 https://rstudio.com/。

- □ Resources > Cheatsheet。不同主题的速查表。
- □ Blogs > RViews, tidyverse, tensorflow 等, 都值得关注。 比如 RViews 中的每月 Top 40 packages 介绍。
- □ 再次是 Github。
- □ Github 不只是托管了全球众多的代码,也提供了丰富的学习资源,比如
- □ https://github.com/qinwf/awesome-R
- ☐ https://github.com/josephmisiti/awesome-machine-learning

最后是 Stackoverflow。

对于 R 编码碰到的绝大部分问题,应该都可以通过 Stackoverflow 找到答案。实际上,这里有数十万个与 R 相关的问答,而 R 领域的很多大神,如 Hadley、谢益辉等,都活跃在这个论坛:

☐ https://stackoverflow.com/questions/tagged/r

在学习咱们课程的时候,有问题当然可以直接在交流互动区中发帖,但从长远来看,利用好 Stack Overflow,毫无疑问是必需的。

七、若干注意事项

- □ 注意前后呼应。课程虽然分为三个部分,但方法论、 R语言工具、算法模型三部分并不是割裂的。尤其是 在学习算法模型部分时,需要注意温习方法论部分相 关的理念。这样才能把书读薄,核心理念才能一以贯 之。
- □ 关于答题。在每一章学习完之后,都给出来一定数量的习题进行测试。需要注意的是,这些测试只有一次机会。假如对于该章节的内容还不熟悉,建议先不要答题。因为测试得分,均以第一次答题情况为准,并没有二次答题的机会。另外,习题中有很多涉及到代码的题目,建议大家先自行思考。在正式解答之前,可以借助 R 跑一遍,看看代码执行的结果究竟是什么。如果和自己推断出来的结果不一致,可以思考一下原因是什么。R 跑出来的结果,当然都是正确答案へへ
- □ 养成良好的 R 语言编码习惯。比如按照项目的方式来组织管理代码、做好版本管理、利用好 RStudio 的代码分节功能(RStudio >> Code >> Insert Section)、规范注释、做好异常处理等。在养成良好的编码习惯的同时,其实也是在提升科学编程的素养。

- 八、本指南由授课老师艾新波编写并负责解释。若有任何疑
- 问,请通过以下方式取得联系: axb@bupt.edu.cn。