Insegnamento di Metodi Numerici

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Docenti: Lucia Romani e Damiana Lazzaro

12	Luglio	2021	- 14:00
F	CSAME	ONI	INE

2. Sia assegnata la matrice

$$\mathbf{Z} = \begin{bmatrix} 11+a & 10+a & 14+a \\ 12+a & 11+a & -13+a \\ 14+a & 13+a & -66+a \end{bmatrix}$$

dipendente dal parametro $a \geq 30$, la cui inversa è

$$\mathbf{Z}^{-1} = \begin{bmatrix} -55a - 557 & 83a + 842 & -28a - 284 \\ 55a + 610 & -83a - 922 & 28a + 311 \\ 2 & -3 & 1 \end{bmatrix}.$$

Scrivere lo script Matlab/Python es2 in cui:

a) si calcolino le espressioni di $\|\mathbf{Z}\|_{\infty}$ e $\|\mathbf{Z}^{-1}\|_{\infty}$ come funzioni di a;

Punti: 3

b) si calcoli l'espressione di $K_{\infty}(\mathbf{Z})$ (numero di condizionamento di \mathbf{Z} in norma infinito) al variare di a, senza utilizzare built-in functions di Matlab/Python, e se ne faccia un grafico per $30 \le a \le 10^7$;

Punti: 3

c) si implementi il metodo di eliminazione Gaussiana con pivoting parziale per la risoluzione del generico sistema lineare $\mathbf{Z}\mathbf{x} = \mathbf{b}$;

Punti: 5

d) si consideri il termine noto $\mathbf{b} = [3a + 35, 3a + 10, 3a - 39]^T$ e si applichi il metodo precedentemente implementato per risolvere il sistema lineare nel caso in cui $a = 10^7$;

Punti: 2

e) sapendo che la soluzione esatta del sistema lineare considerato al punto d) è $[1, 1, 1]^T$, si calcoli l'errore relativo (in norma infinito) sulla soluzione, e si motivino i risultati ottenuti. Punti: 3

Totale: 16