线性代数, 习题 9

叶卢庆*

2014年8月23日

习题. 设 A 是一个 4×4 的矩阵, 且 ν_1, \cdots, ν_3 是 A 的 3 个特征向量, 对应的特征值分别是 $\lambda_1, \lambda_2, \lambda_3$, 且这 3 个特征值互不相同. 则向量 ν_1, ν_2, ν_3 线性无关.

证明. 设 A 对应的线性变换为 L_A . 当 k=1,2 时, ν_1,ν_2 肯定线性无关. 当 k=3 时, 如果 ν_1,ν_2,ν_3 线性 相关, 由于 ν_1,ν_2 线性无关, 因此必有

 $v_3 = a_1v_1 + a_2v_2 \Rightarrow L_A(v_3) = a_1L_A(v_1) + a_2L_A(v_2) = a_1\lambda_1v_1 + a_2\lambda_2v_2 = \lambda_3v_3,$

可见, $a_1\lambda_3 = a_1\lambda_1$, $a_2\lambda_3 = a_2\lambda_2$. 由于 a_1 , a_2 不全为 0, 因此必有 $\lambda_1 = \lambda_3$ 或 $\lambda_2 = \lambda_3$, 与假设矛盾. 因此 ν_1 , ν_2 , ν_3 线性无关.

^{*}叶卢庆 (1992—), E-mail:yeluqing
mathematics@gmail.com