RFinalHYu

Haozhe (Jerry) Yu

2023-04-27

Data Import

Read in Raw Data

Read in the raw data directly form the url.

```
rawhouse <- read.csv("https://www4.stat.ncsu.edu/~online/ST308/Data/hyu23_house.csv")
```

Data Subsetting

Create a tibble from the read in data table with the following modifications:

- 1. Remove any observations where
 - the SaleType variable takes the value "Other" or
 - the ${\tt BedroomAbvGr}$ variable takes on a value less than or equal to 2
- 2. Create a new variable with a name of your choosing that is the SalePrice variable divided by 100000.
- 3. The ${\tt GarageArea}$ and ${\tt MSZoning}$ variables are removed

```
House <- rawhouse %>%
    filter(SaleType != "Other") %>%
    filter(BedroomAbvGr > 2) %>%
    mutate(SalePrice100k = SalePrice/100000) %>%
    select(-GarageArea, -MSZoning)
```

Now print out the first 10 observations and first 6 variables of House.

```
House %>%
select(SalePrice, BsmtUnfSF, OverallQual, OpenPorchSF, BedroomAbvGr, YrSold) %>%
slice(1:10) %>%
kable()
```

SalePrice	BsmtUnfSF	OverallQual	OpenPorchSF	BedroomAbvGr	YrSold
208500	150	7	61	3	2008
181500	284	6	0	3	2007
223500	434	7	42	3	2008
140000	540	7	35	3	2006
250000	490	8	84	4	2008
307000	317	8	57	3	2007
200000	216	7	204	3	2009
279500	1494	7	33	3	2007
159000	468	5	102	3	2008
139000	525	5	0	3	2009

Output Creation Steps

Contingency Tables

Create a 2 way contingency table between BsmtFinType2 and LotShap.

The upper most value of 29 is the number of observations where BsmtFinType2 equals "Other" and LotShap equals "IR1".

Numeric Summaries

Create the tibble ssatshouse storing the following summary statistics:

- 1. sample meal
- 2. sample standard deviation
- 3. sample 1st quartile
- 4. sample 3rd quartile

For the following variables:

- 1. SalePrice
- $2. \ {\rm BsmtUnfSF}$
- 3. OverallQual

At every level of the BsmtCond variable. Then use kable() to print out ssatshouse.

BsmtCond	SalePrice_mean	SalePrice_sd	SalePrice_q1	SalePrice_q3	BsmtUnfSF_mean	BsmtUnfSF_sd	В
	118417.2	17470.96	110625	128108.0	0.0000	0.0000	
Gd	209888.6	63106.75	153725	269000.0	568.8214	418.0385	
Other	135534.1	48534.55	101000	155000.0	679.5882	408.5473	
TA	196140.7	79025.24	142125	228837.5	597.7128	441.9203	

Scatterplots

Create a scatter plot using SalePrice on the y-axis and BsmtUnfSF on the x-axis. Color the points by the BsmtCond variable.

```
scatter <- ggplot(data=House, aes(x = BsmtUnfSF, y = SalePrice, color=BsmtCond)) +
  geom_point()
scatter</pre>
```


There seems to be a weak positive correlation between SalePrice and BsmtUnfSF, a code of "gd' seemed to positively correlate sale price, while a code of "other seemed to negatively correlate with sale price.

Panel Scatter

Create the same plot as above at every level of the LotShape variable.

```
scatterfacet <- ggplot(data=House, aes(x = BsmtUnfSF, y = SalePrice, color=BsmtCond)) +
  geom_point() +
  facet_wrap(~LotShape)
scatterfacet</pre>
```


Regression

Create a multiple linear regression between SalePrice as the response variable and BsmtUnfSF and OverallQual as predictors, sans interactions. The do the following things with the model: 1.) Inspect the summary() of the model discuss if any parameters are significant 2.) USe predict() to predict a future SalePrice at two different combinations of BsmtUnfSF and OverallQual.

```
#create multiple linear regression model
mlrhouse <- lm(SalePrice ~ BsmtUnfSF + OverallQual, data=House)

#structure
summary(mlrhouse)</pre>
###
```

```
## Call:
## lm(formula = SalePrice ~ BsmtUnfSF + OverallQual, data = House)
##
##
  Residuals:
##
       Min
                                 3Q
                1Q
                    Median
                                        Max
   -186263
           -27407
                     -2426
                              21013
                                     384172
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.062e+05 9.144e+03 -11.619
## BsmtUnfSF
               -1.665e+00 4.366e+00 -0.381
                                                 0.703
```

```
## OverallQual 4.787e+04 1.503e+03 31.849 <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 48880 on 712 degrees of freedom
## Multiple R-squared: 0.6123, Adjusted R-squared: 0.6112
## F-statistic: 562.3 on 2 and 712 DF, p-value: < 2.2e-16

#predict
housepredict <- data.frame(BsmtUnfSF = c(787, 80), OverallQual = c(7, 8))
predictionshouse <- predict(mlrhouse, housepredict)</pre>
```

In the multiple regression model, the p value for BsmtUnfSF was 0.703, meaning that it was not significant at a standard alpha of p<0.05, while the p value for OverallQual was <2e-16, meaning that it was highly significant at a standard alpha of p<0.05.

For my 2 values, the first data point had BsmtUnfSF= 787 and OverallQual = 7, while the second had BsmtUnfSF= 80 and OverallQual = 8. The predicted values were 2.2754872×10^5 and 2.7659759×10^5 , respectively.