Metodi Matematici per l'Informatica (secondo canale)

Prova scritta - 20 Gennaio 2020

Nome	e	Cognome

(STAMPATELLO)

La prova è divisa in quattro parti, corrispondenti rispettivamente agli esercizi 1-4 (insiemi, relazioni, funzioni), 5-6 (numerabilità, equivalenza), 7 (induzione) e 8-11 (logica). Lo studente dovrà ottenere la sufficienza su ciascuna delle parti.

Es. 1. Sia $A = \{2, \{1, 3\}, (3, 5)\}$ e $B = \{(2, 2), 5\}$. Allora:

- $\square_V \square_F \mathbf{A.} \ 2 \in A \cap B;$
- $\square_V \square_F \mathbf{B}. \ 1 \in A \cup B;$
- $\square_V \square_F$ C. $B A \neq \emptyset$;
- $\square_V \square_F \mathbf{D}. \{1,3\} \subseteq A$
- $\square_V \square_F \ \mathbf{E}. \ \exists x, y [(x \in A) \land (\{(x,y)\} \subseteq B)].$

Es. 2. Data la relazione $R = \{(1,2), (6,7), (2,3), (5,6), (3,4), (8,9)\} \subseteq \mathbf{N} \times \mathbf{N}$, indichiamo con \widehat{R} la sua chiusura transitiva.

- $\square_V \square_F$ **A.** \widehat{R} ha 10 elementi;
- $\square_V \square_F \mathbf{B}. \ \widehat{R} = R;$
- $\square_V \square_F \ \mathbf{C}. \ R \widehat{R} = \emptyset.$

Es. 3. Sia $Q = \{(1,2), (1,3), (1,4), (2,3)\} \subseteq \{1,2,3,4\} \times \{1,2,3,4\}$; allora

- $\square_V \square_F$ **A.** Q è una funzione iniettiva;
- $\square_V \square_F$ **B.** Q è una relazione di equivalenza;
- $\square_V \square_F$ C. Q è una relazione transitiva;
- $\square_V \square_F$ **D.** Q non è una funzione;

Es. 4. Si consideri la relazione $D = \{(a, b) \mid a, b \in \mathbb{N} \text{ e } a \text{ divide } b\}.$

- $\square_V \square_F$ A. D è una relazione d'ordine stretto;
- $\square_V \square_F$ **B.** D è una relazione d'ordine largo;
- $\square_V \square_F$ C. esiste $x \in \mathbb{N}$ tale che per ogni $y \in \mathbb{N}$ se $x \neq y$ allora $(x, y) \in D$.
- $\square_V \square_F \mathbf{D}$. esiste $x \in \mathbf{N}$ tale che per ogni $y \in \mathbf{N}$ se $x \neq y$ allora $(y, x) \in D$.

Es. 5. Per ogni coppia di insiemi A e B si ha che

- $\square_V \square_F$ **A.** se A è numerabile allora A B è numerabile;
- $\square_V \square_F$ B. se A e B sono numerabili allora A B è finito;
- $\square_V \square_F$ C. se A e B non sono numerabili allora $A \cap B$ non è numerabile;
- $\square_V \square_F$ **D.** se $A \in B$ sono numerabili allora $A \times B$ è numerabile;

Es. 6. Sia \mathbb{P} l'insieme dei numeri pari. Scrivere una **relazione di equivalenza** $R \subseteq \mathbb{P} \times \mathbb{P}$ che abbia tre classi di equivalenza, indicandone l'insieme quoziente.

Rispondere qui

	f(1) = 1, f(n+1) = f(n) + 3n + 1.			
	Dimostrare che per ogni intero $n \ge 1$ vale $f(n) = \frac{n(3n-1)}{2}$			
	Rispondere qui			
Ec 8	Dimostrare che se $\models (A \rightarrow B)$ allora $\models ((A \land B) \leftrightarrow A)$ e $\models ((A \lor B) \leftrightarrow B)$.			
Ls. 0.	Rispondere qui			
	Tuspondore qui			
Б 0				
	Decidere se i seguenti enunciati sono validi:			
	$F \mathbf{A.} (\forall x (A(x) \lor B(x)) \to (\forall x A(x) \lor \forall x B(x));$ $\mathbf{B.} (\exists x A(x) \to \forall x B(x)) \to \forall x (A(x) \to B(x))$			
$\sqcup_V\sqcup_I$	$F \ \mathbf{B.} \ (\exists x A(x) \to \forall x B(x)) \to \forall x (A(x) \to B(x)).$			
Es.10.	Scrivere un enunciato che distingua fra $(\mathbb{N},<)$ e $(\mathbb{Z},<)$, vale a dire per il quale $(\mathbb{N},<)$			
	dello, mentre $(\mathbb{Z}, <)$ non lo sia. Usare il linguaggio predicativo con i simboli $=, <$ (con interpretazioni).	le loro ovv		
	Rispondere qui			
	ruspondere qui			
Es.11.	Formalizzare i seguenti enunciati, usando simboli predicativi ed una loro opportuna interp	retazione:		
	A. Quache uomo è un genio;			
	Rispondere qui			
	B. Nessuna scimmia è un uomo;			
	Rispondere qui			
	C. Qualche genio non è una scimmia.			
	Rispondere qui	1		