MARS Basispraktikum SS 2021

Yijun Xu, Louis Lutzweiler

21.04.2021

► Email: uodux@student.kit.edu

- ► Email: uodux@student.kit.edu
- ► Gruppen (2-3 Personen)

- Email: uodux@student.kit.edu
- ► Gruppen (2-3 Personen)
- ► 6 Aufgaben
 - 4 Wochen pro Aufgabe
 - ▶ alle 2 Wochen eine neue Aufgabe

- Email: uodux@student.kit.edu
- ► Gruppen (2-3 Personen)
- 6 Aufgaben
 - 4 Wochen pro Aufgabe
 - ► alle 2 Wochen eine neue Aufgabe
 - evtl. weitere Termine als Einführung zu späteren Aufgaben

- Email: uodux@student.kit.edu
- Gruppen (2-3 Personen)
- 6 Aufgaben
 - 4 Wochen pro Aufgabe
 - ▶ alle 2 Wochen eine neue Aufgabe
 - evtl. weitere Termine als Einführung zu späteren Aufgaben
 - Git-Repository zur Bearbeitung und Kontrolle

- Email: uodux@student.kit.edu
- Gruppen (2-3 Personen)
- 6 Aufgaben
 - 4 Wochen pro Aufgabe
 - ▶ alle 2 Wochen eine neue Aufgabe
 - evtl. weitere Termine als Einführung zu späteren Aufgaben
 - ► Git-Repository zur Bearbeitung und Kontrolle
- Am Ende des Semesters: Abschlussbesprechung mit Prof. Prautzsch

- Email: uodux@student.kit.edu
- Gruppen (2-3 Personen)
- 6 Aufgaben
 - 4 Wochen pro Aufgabe
 - ▶ alle 2 Wochen eine neue Aufgabe
 - evtl. weitere Termine als Einführung zu späteren Aufgaben
 - ► Git-Repository zur Bearbeitung und Kontrolle
- Am Ende des Semesters: Abschlussbesprechung mit Prof. Prautzsch
- Programmieren
 - Programmiersprache: Python 3
 - ▶ Betriebssystem: Ubuntu LTS ideal, aber prinzipiell beliebig

▶ Nutze Funktionen zu Modellierung von Kurven

- ► Nutze Funktionen zu Modellierung von Kurven
- Parametrische Funktionen
 - ightharpoonup Parametergebiet P Intervall in $\mathbb R$
 - ▶ Abbildung $f: P \to \mathbb{R}^d$

- Nutze Funktionen zu Modellierung von Kurven
- Parametrische Funktionen
 - ightharpoonup Parametergebiet P Intervall in \mathbb{R}

 - ► Abbildung $f: P \to \mathbb{R}^d$ ► Kreis: $c: [0, 2\pi) \to \mathbb{R}^2, t \mapsto \begin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix}$

- Nutze Funktionen zu Modellierung von Kurven
- Parametrische Funktionen
 - ightharpoonup Parametergebiet P Intervall in \mathbb{R}
 - ▶ Abbildung $f: P \to \mathbb{R}^d$
 - $ightharpoonup \operatorname{Kreis:} c: [0,2\pi)
 ightarrow \mathbb{R}^2, t \mapsto egin{bmatrix} \cos(t) \ \sin(t) \end{bmatrix}$
- ▶ Polynome vom Grad *n*

- Nutze Funktionen zu Modellierung von Kurven
- Parametrische Funktionen
 - ightharpoonup Parametergebiet P Intervall in \mathbb{R}
 - ▶ Abbildung $f: P \to \mathbb{R}^d$
 - $ightharpoonup \operatorname{Kreis:} c: [0,2\pi)
 ightarrow \mathbb{R}^2, t \mapsto \begin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix}$
- ▶ Polynome vom Grad *n*
 - Stetig, Differenzierbar, leicht zu berechnen

- Nutze Funktionen zu Modellierung von Kurven
- Parametrische Funktionen
 - ightharpoonup Parametergebiet P Intervall in $\mathbb R$
 - ▶ Abbildung $f: P \to \mathbb{R}^d$
 - ightharpoonup Kreis: $c:[0,2\pi)
 ightarrow \mathbb{R}^2, t \mapsto egin{bmatrix} \cos(t) \ \sin(t) \end{bmatrix}$
- ▶ Polynome vom Grad *n*
 - ► Stetig, Differenzierbar, leicht zu berechnen
 - ightharpoonup Bilden Vektorraum der Dimension n+1
 - ▶ Basis beispielsweise $\{x^0, x^1, \dots, x^n\}$

- Nutze Funktionen zu Modellierung von Kurven
- Parametrische Funktionen
 - ightharpoonup Parametergebiet P Intervall in \mathbb{R}
 - ▶ Abbildung $f: P \to \mathbb{R}^d$
 - lacksquare Kreis: $c:[0,2\pi)
 ightarrow \mathbb{R}^2, t \mapsto egin{bmatrix} \cos(t) \ \sin(t) \end{bmatrix}$
- ▶ Polynome vom Grad *n*
 - ► Stetig, Differenzierbar, leicht zu berechnen
 - ▶ Bilden Vektorraum der Dimension n+1
 - ▶ Basis beispielsweise $\{x^0, x^1, \dots, x^n\}$
 - ► Lange Kurven benötigen hohen Grad ⇒ Unterteilen

► Grad *n*

- ► Grad n
- ▶ Knotenvektor T: geordnete Liste von Knoten $t_i \in \mathbb{R}$

- ► Grad n
- ▶ Knotenvektor T: geordnete Liste von Knoten $t_i \in \mathbb{R}$
- ▶ Abbildung $c: [t_{min}, t_{max}) \rightarrow \mathbb{R}^d$

- ► Grad *n*
- ▶ Knotenvektor T: geordnete Liste von Knoten $t_i \in \mathbb{R}$
- ▶ Abbildung $c:[t_{min},t_{max}) \to \mathbb{R}^d$
 - ightharpoonup c ist ein Polynom vom Grad n auf jedem Intervall $[t_i, t_{i+1})$

- ► Grad n
- ▶ Knotenvektor T: geordnete Liste von Knoten $t_i \in \mathbb{R}$
- ▶ Abbildung $c:[t_{min},t_{max}) \to \mathbb{R}^d$
 - ightharpoonup c ist ein Polynom vom Grad n auf jedem Intervall $[t_i, t_{i+1})$
- Für festes T und n bilden Splines auch einen Vektorraum

- ► Grad n
- ▶ Knotenvektor T: geordnete Liste von Knoten $t_i \in \mathbb{R}$
- ▶ Abbildung $c:[t_{min},t_{max}) \to \mathbb{R}^d$
 - ightharpoonup c ist ein Polynom vom Grad n auf jedem Intervall $[t_i, t_{i+1})$
- Für festes T und n bilden Splines auch einen Vektorraum
- ▶ B-Splines als Basis ⇒ Geometrische Intuition

- ► Grad *n*
- ▶ Knotenvektor T: geordnete Liste von Knoten $t_i \in \mathbb{R}$
- lacksquare Abbildung $c:[t_{min},t_{max})
 ightarrow\mathbb{R}^d$
 - ightharpoonup c ist ein Polynom vom Grad n auf jedem Intervall $[t_i,t_{i+1})$
- ightharpoonup Für festes T und n bilden Splines auch einen Vektorraum
- ▶ B-Splines als Basis ⇒ Geometrische Intuition

$$c(t) = \sum_{i=0}^m c_i N_i^n(t)$$

- $ightharpoonup c_i \in \mathbb{R}^d$: Kontrollpunkte
- \triangleright N_i^n : Basis-Spline

Splines - Beispiel

de-Boor - Beispiel

▶ Gegeben: $p_i \in \mathbb{R}^d$

- ▶ Gegeben: $p_i \in \mathbb{R}^d$
- ▶ Gesucht: Spline c(t) vom Grad 3
 - ► Knoten *t_i*
 - ► Kontrollpunkte c_i

- ▶ Gegeben: $p_i \in \mathbb{R}^d$
- ▶ Gesucht: Spline c(t) vom Grad 3
 - ► Knoten *t_i*
 - Kontrollpunkte c_i
- Verschiedene Knotenvektoren möglich
 - z.B. äquidistant, chordal, ...

- ▶ Gegeben: $p_i \in \mathbb{R}^d$
- ▶ Gesucht: Spline c(t) vom Grad 3
 - ► Knoten *t_i*
 - Kontrollpunkte c_i
- Verschiedene Knotenvektoren möglich
 - z.B. äquidistant, chordal, ...
- ▶ danach Gleichungssystem lösen um c; zu bestimmen