

执行引擎性能测试报告

	撰写人
上海精鲲计算机	JKSTACK
信息科技有限公司	执行引擎性能测试报告

目录

1	ンロルンチェア・	+ 文 文7 22
		境部署····································
2.	测试项	目
3.	测试环	境和工具
	3.1:	测试环境········5
	3.2:	测试工具5
4.	术语解	释····································
5.	测试方	案····································
	5.1 :	基准测试
	5.2:	压力测试
	5.3 :	压力负载均衡测试(稳定性测试)7
6.	测试场	景及测试结果分析
	6.1 :	执行引擎事务处理及分析
	6.2 :	构建任务事务处理数据对比及分析
7.	测试总	结及分析建议······-17
	7.1 :	测试总结及分析建议
	7.2 :	配置推荐17

1.测试环境部署

注: 本次测试采均为单节点

2. 测试项目

- 2.1 执行引擎
- 2.2 执行引擎-构建集群

3. 测试环境和工具

3.1: 测试环境

环境	操作系统	CPU	内存	磁盘	部署方式
中间件	Linux	8核	16G	300G	容器化
构建节点	Linux	4/8 核	8/16G	600G	容器化
执行引擎	Linux	4/8 核	8/16G	300G	容器化
客户端	Linux	8核	16G	300G	容器化

3.2: 测试工具

- > Postman 调试
- > Jmeter 用户并发数
- ▶ Docker 起多台OS
- > python 脚本

3.3: 其他

日志级别: ERROR

4. 术语解释

术语	解释
TPS	在每秒时间内系统可处理完毕的事务数。
(每秒处理事物数)	
异常率	本次测试中出现的错误率,即响应失败数/总请求数
并发数	测试时同时系统发出事务请求的数量,并发线程数用以模拟同
	时与系统建立连接的用户。
Received KB/src	每秒从服务器端接收到的数据量
Sent KB/src	每秒从客户端发送的请求的数量
QPS	每秒的响应请求数,也即是最大吞吐能力

5.测试方案

5.1: 基准测试

▶ 在小并发下,看服务的处理情况,作为后续对比基础。

5.2: 压力测试

▶ 高并发查看服务器的吞吐量

5.3: 压力负载均衡测试 (稳定性测试)

- > 对软件多次测试,长时间运行,是否正常运行
- 软件长时间对日常的用户数进行操作运行,观察系统内存占用率是否越来越大,可用内存是否减少,内存是否溢出,饱和运算内存是否占用过大、是否溢出

6. 测试场景及测试结果分析

6.1: 执行引擎事务处理及分析

6.1.1 测试结果

★ 4C8G 配置:

- → 根据基准测试和压力测试,可以看出执行引擎调度服务异步最高可支持 800/s 吞吐量 (TPS) 达到最大值 193.5/sec 事务成功率 100%;
- → 系统稳定性: 每隔 1 秒增加 100/s, 执行 20 次, 共计 2000 样本,均可保证系统正常处理请求。

★ 8C16G 配置:

- ⇒ 根据基准测试和压力测试,执行引擎调度服务最高可支持1000/s ,事务成功率 100% 此配置下TPS和QPS有所提升;
- → 系统稳定性测试: 每隔 1 秒增加 200/s, 共计 4000 样本,均可保证系统正常 处理请求。

6.1.2 测试数据如下

* 系统每秒处理的事务量-调度服务

* 系统平均处理时间

8C16G 平均响应时间

说明: 系统在越高的压力下, 系统平均处理请求的时间也长。4C8G和8C16G效果不明显

* 服务器消耗性能数据对比分析

4C8G 配置 1000/s 性能图

8C16G 配置 1000/s 性能图

说明:在 1000/s 下,4C8G 消耗约占 cpu 90%,大概持续 20秒,服务消耗 cpu 资源高。而 8C16G 消耗约占 cpu 70%,大概持续 20秒,内存消耗也较低。此配置提升对并发数的最大值有较大提升。

* 调度服务—系统吞吐量(压力负载测试)

4C8G 配置 1000/s 吞吐量

8C16G 配置 1000/s 吞吐量

说明: 1000/s 下, 4C8G 的吞吐量最大, 212/sec。 1000/s 下, 8C16G 的吞吐量最大, 246/sec。

* 事务处理数据对比分析:

说明: 4C8G cpu 出现短暂的满载情况,内存正常

*构建集群-服务(压力负载测试)

4C8G 配置 8/s 性能图

8C16G 配置 8/s 性能图

说明: 8/s 下, 4C8G 和8C16G 的配置下 CPU都是满载状态。

说明: 4C8G配置下: 每次并发8个构建任务的时候, 构建集群的时候, cpu使用率是90%以上。完成时间

为: 2分钟左右。

8C16G配置下: 每次并发8个构建任务的时候, 构建集群的时候, cpu使用率是90%以上。完成时

间为: 1分钟左右。

7. 测试总结及分析建议

7.1: 测试总结及分析建议

- * 4C8G 调度任务的服务器再并发1000/s,吞吐量开始下降,构建任务再并发16次正常,高负载情况会出现任务失败的线程。处理每个构建任务耗时12秒左右。
- * 8C16G 调度任务的服务器再并发1000/s,吞吐量开始下降,构建任务再并发30次正常,高负载情况会出现任务失败的线程。处理每个构建任务耗时12秒左右。

7.2: 配置推荐

服务	并发数	最小配置	最佳配置
执行引擎-调度	<=800	4C8G	4C8G
	<=1000	4C8G	8C16G
执行引擎-执行	<=1000	4C8G	8C16G
	<=8	4C8G	4C8G
执行引擎-构建	<=16	4C8G	8C16G
	<=32	8C16G	16C32G

