# APM\_4AI08\_TP Linear Models Introduction to linear models

Ekhiñe Irurozki

Télécom Paris

#### Intro

- ► Teaching team : Florence d'Alché, Nicolas Legouic, Mathilde Perez, Wen Yang, Thomas Sturma
- ▶ 1 TP, 2 TD, classes
- ► News are on Moodle
- ► In parallel with statistics
- ▶ Techniques here can be used in ML in general

## A 2D starting example

Dependent-Independent variables, Regression. Assumption :linearity



## A 2D starting example

Dependent-Independent variables, Regression. Assumption :linearity



## A 2D starting example

Dependent-Independent variables, Regression. Assumption :linearity



## Notation interpretation

- ightharpoonup n = 244
- ightharpoonup p = 1
- $ightharpoonup y_i$ : tip let by the *i*-th customer
- $ightharpoonup x_i$ : total bill payed by the *i*-th customer
- $\triangleright$  y: the observation is the tips, dependent variable
- $\triangleright$  x: the feature/covariate, price of the bill, independent variable

Linear model / Linear regression hypothesis : assume that the price of the bill and the tip let are linearly correlated

Exo: use describe() from Pandas to get a rough data summary

Three questions to be covered: modeling, learning and predicting

## Modeling I, the 1D case

Data

- $\triangleright$  y is an **observation** or a variable to explain
- $\triangleright$  x is a **feature** or a covariate

Given a sample:  $(x_i, y_i)$ , for i = 1, ..., n

Linear model or linear regression hypothesis assume :

$$y_i \approx \theta_0^{\star} + \theta_1^{\star} x_i$$

Model coefficients

- ▶ intercept the scalar  $\theta_0^{\star}$  (  $\blacksquare$  : ordonnée à l'origine)
- ▶ slope the scalar  $\theta_1^{\star}$  (■ : pente)

Rem: both parameters are unknown from the statistician

## Modeling II

Probabilistic model. Let us give a precise meaning to the sign  $\approx$ :

$$y_i = \theta_0^* + \theta_1^* x_i + \varepsilon_i,$$
  

$$\varepsilon_i \stackrel{i.i.d}{\sim} \varepsilon, \text{ for } i = 1, \dots, n$$
  

$$\mathbb{E}(\varepsilon) = 0$$

where i.i.d. means "independent and identically distributed"

Interpretation:  $\varepsilon_i = y_i - \theta_0^* - \theta_1^* x_i$ : represent the error between the theoretical model and the observations, represented by random variables  $\varepsilon_i$  centered (often referred to as **white noise**).

<u>Rem</u>: motivation for the random nature of the noise – measurement noise, transmission noise, in-population variability, etc.

# Modeling III

$$y_i = \theta_0^* + \theta_1^* x_i + \varepsilon_i$$

Our **goal in the learning stage** is to estimate  $\theta_0^*$  and  $\theta_1^*$  (unknown) by  $\widehat{\theta}_0$  and  $\widehat{\theta}_1$  relying on observations  $(y_i, x_i)$  for  $i = 1, \ldots, n$ 

Rem: The "hat" notation is classical in statistics for referring to estimators

In **prediction time**  $\hat{y}_i = \hat{\theta}_0 + \hat{\theta}_1 x_i$ 

## Least squares: visualization



## Least squares: visualization



## (Total) Least squares : visualization



## (Total) Least squares : visualization



## Learning: mathematical formulation of Least squares

The **least squares** estimator is defined as:

$$(\widehat{\theta}_0, \widehat{\theta}_1) \in \operatorname{argmin}_{(\theta_0, \theta_1) \in \mathbb{R}^2} \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)^2$$

- ► Residual sum of squares (i.e., training error) is minimized
- ▶ Differentiate between  $\theta^*$ ,  $\theta$  and  $\hat{\theta}$ !!!!!
- ▶ it is also referred to as "ordinary least squares" (OLS)
- ▶ an original motivation for the squares is computational : first order conditions only require solving a linear system
- ▶ a solution always exists : minimizing a **coercive** continuous function (coercive :  $\lim_{\|x\|\to+\infty} f(x) = +\infty$ )

Rem: write  $\ll \in \text{argmin} \gg \text{as long as you do not know if the solution is unique}$ 

# Least square authorship (controversial)



Figure – Adrien-Marie Legendre and Carl Friedrich Gauss

Historical / robust detour

The least absolute deviation (LAD) estimator reads :

$$(\widehat{\theta}_0, \widehat{\theta}_1) \in \operatorname{argmin}_{(\theta_0, \theta_1) \in \mathbb{R}^2} \sum_{i=1}^n |y_i - \theta_0 - \theta_1 x_i|$$

<u>Rem</u>: hard to compute without computer; requires an optimization solver for non-smooth function (or a Linear Programming solver)

<u>Rem</u>: more robust to outliers (■ : données aberrantes)

## Least absolute deviation authorship



Figure – Ruđer Josip Bošković and Pierre-Simon de Laplace

## Existence and uniqueness of the solution

From now on, we consider the OLS and answer these question : Do the estimators  $(\hat{\theta}_0, \hat{\theta}_1)$  exist? Are the unique?

Existence of a Local minimum: first order condition

**Fermat's rule Theorem** If f is differentiable, then at a local minimum  $x^*$  the gradient of f vanishes at  $x^*$ , *i.e.*  $\nabla f(x^*) = 0$ .



## Existence and uniqueness of the solution

From now on, we consider the OLS and answer these question : Do the estimators  $(\hat{\theta}_0, \hat{\theta}_1)$  exist? Are the unique?

Existence of a Local minimum: first order condition

Fermat's rule Theorem If f is differentiable, then at a local minimum  $x^*$  the gradient of f vanishes at  $x^*$ , *i.e.*  $\nabla f(x^*) = 0$ .



Rem: sufficient condition when f is strongly convex!

## Existence and uniqueness of the solution

From now on, we consider the OLS and answer these question : Do the estimators  $(\hat{\theta}_0, \hat{\theta}_1)$  exist? Are the unique?

Existence of a Local minimum: first order condition

**Fermat's rule Theorem** If f is differentiable, then at a local minimum  $x^*$  the gradient of f vanishes at  $x^*$ , *i.e.*  $\nabla f(x^*) = 0$ .



Rem: sufficient condition when f is strongly convex!

#### The Hessian Matrix and Gradients

The **gradient**  $\nabla f$  is a vector of first-order partial derivatives :

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

The **Hessian Matrix H** of f is a square matrix of second-order partial derivatives:

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

The minimizer is unique when f its strictly convex

f quadratic and nonnegative  $\implies f$  convex  $\implies \nabla^2 f(\widehat{\boldsymbol{\theta}})$  positive semi-definite

 $\nabla^2 f(\widehat{\boldsymbol{\theta}})$  positive definite  $\implies$  minimizer is unique

**Exo**: Derive the coefficients

## Back to least squares

$$\widehat{\boldsymbol{\theta}} = (\widehat{\theta}_0, \widehat{\theta}_1) \in \operatorname{argmin}_{(\theta_0, \theta_1) \in \mathbb{R}^2} \frac{1}{2} \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)^2$$

For least squares, minimize the function of two variables:

$$f(\theta_0, \theta_1) = f(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)^2$$

First order condition / Fermat's rule :

$$\begin{cases} \frac{\partial f}{\partial \theta_0}(\widehat{\boldsymbol{\theta}}) = \sum_{i=1}^n (y_i - \widehat{\theta}_0 - \widehat{\theta}_1 x_i) = 0\\ \frac{\partial f}{\partial \theta_1}(\widehat{\boldsymbol{\theta}}) = \sum_{i=1}^n (y_i - \widehat{\theta}_0 - \widehat{\theta}_1 x_i) x_i = 0 \end{cases}$$

#### Calculus continued

Usual mean notation : 
$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$
 and  $\overline{y}_n = \frac{1}{n} \sum_{i=1}^n y_i$ 

With that, Fermat's rule states (dividing by n):

$$\begin{cases} \frac{\partial f}{\partial \theta_0}(\widehat{\boldsymbol{\theta}}) = \sum_{i=1}^n (y_i - \widehat{\theta}_0 - \widehat{\theta}_1 x_i) = 0\\ \frac{\partial f}{\partial \theta_1}(\widehat{\boldsymbol{\theta}}) = \sum_{i=1}^n (y_i - \widehat{\theta}_0 - \widehat{\theta}_1 x_i) x_i = 0 \end{cases}$$

$$\Leftrightarrow$$

$$\begin{cases} \widehat{\theta}_0 = \overline{y}_n - \widehat{\theta}_1 \overline{x}_n & \text{(CNO1)}\\ \widehat{\theta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x}_n)(y_i - \overline{y}_n)}{\sum_{i=1}^n (x_i - \overline{x}_n)^2} & \text{(CNO2)} \end{cases}$$

**Exo**: Show that the solution to the OLS is unique iff  $Var(x) \neq 0$ 

## Center of gravity and interpretation

(CNO1) 
$$\Leftrightarrow (\overline{x}_n, \overline{y}_n) \in \{(x, y) \in \mathbb{R}^2 : y = \widehat{\theta}_0 + \widehat{\theta}_1 x\}$$



- ightharpoonup  $\overline{speed} = 15.4$
- $ightharpoonup \overline{dist} = 42.98$

Physical interpretation: the cloud of points' center of gravity belongs to the (estimated) regression line

#### Vector formulation

Notation: 
$$\mathbf{x} = (x_1, \dots, x_n)^{\top}$$
 and  $\mathbf{y} = (y_1, \dots, y_n)^{\top}$ 

$$(\text{CNO2}) \Leftrightarrow \widehat{\theta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x}_n)(y_i - \overline{y}_n)}{\sum_{i=1}^n (x_i - \overline{x}_n)^2}$$

$$(\text{CNO2}) \Leftrightarrow \widehat{\theta}_1 = \text{corr}_n(\mathbf{x}, \mathbf{y}) \cdot \frac{\sqrt{\text{var}_n(\mathbf{y})}}{\sqrt{\text{var}_n(\mathbf{x})}}$$
where  $\text{corr}_n(\mathbf{x}, \mathbf{y}) = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)(y_i - \overline{y}_n)}{\sqrt{\text{var}_n(\mathbf{x})} \sqrt{\text{var}_n(\mathbf{y})}}$ 
and  $\text{var}_n(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^n (z_i - \overline{z}_n)^2 \text{ (for any } \mathbf{z} = (z_1, \dots, z_n)^{\top})$ 

respectively empirical correlation, empirical variances

**Exo**: Derive this expression for  $\widehat{\theta}_1$ .

## cars example

This example plots the raking distance for cars as a function of the speed.

Line slope:

$$\operatorname{corr}_n(\mathbf{x}, \mathbf{y}) \cdot \frac{\sqrt{\operatorname{var}_n(\mathbf{y})}}{\sqrt{\operatorname{var}_n(\mathbf{x})}} = 3.932409.$$

Can the speed be negative?

What if I shift the coordinate system so the centroid is at the origin?



## Centering

#### Centered model:

Write for any 
$$i = 1, ..., n$$
: 
$$\begin{cases} x_i^c = x_i - \overline{x}_n \\ y_i^c = y_i - \overline{y}_n \end{cases} \Leftrightarrow \begin{cases} \mathbf{x}^c = \mathbf{x} - \overline{x}_n \mathbf{1}_n \\ \mathbf{y}^c = \mathbf{y} - \overline{y}_n \mathbf{1}_n \end{cases}$$
 and  $\mathbf{1}_n = (1, ..., 1)^\top \in \mathbb{R}^n$ , then solving the OLS with  $(\mathbf{x}^c, \mathbf{y}^c)$  leads to

$$\widehat{\theta}_{0}^{c} = 0$$
  $\widehat{\theta}_{1}^{c} = \frac{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{c} y_{i}^{c}}{\frac{1}{n} \sum_{i=1}^{n} (x_{i}^{c})^{2}}$ 

<u>Rem</u>: equivalent to choosing the cloud of points' center of mass as origin, *i.e.*  $(\overline{x}_n^c, \overline{y}_n^c) = (0,0)$ 

**Exo**: Derive this expression for  $\widehat{\theta}_1^c$ .

## Centering



## Centering and interpretation

Consider the coefficient  $\hat{\theta}_1^c$  ( $\hat{\theta}_0^c = 0$ ) for centered points  $\mathbf{y}^c, \mathbf{x}^c$ , then:

$$\widehat{\theta}_1^c \in \operatorname{argmin}_{\theta_1} \sum_{i=1}^n (y_i^c - \theta_1 x_i^c)^2 = \operatorname{argmin}_{\theta_1} \sum_{i=1}^n (x_i^c)^2 \left( \frac{y_i^c}{x_i^c} - \theta_1 \right)^2$$

<u>Interpretation</u>:  $\hat{\theta}_1^c$  is a weighted average of the slopes  $\frac{y_i^c}{x_i^c}$ 

$$\widehat{\theta}_{1}^{c} = \frac{\sum_{i=1}^{n} (x_{i}^{c})^{2} \frac{y_{i}^{c}}{x_{i}^{c}}}{\sum_{j=1}^{n} x_{j}^{c2}}$$

Influence of extreme points: weights proportional to  $(x_i^c)^2$ ; connected to the leverage ( $\blacksquare$ : levier) effect

# ${\bf Extreme\ points-leverage\ effect}$



# ${\bf Extreme\ points-leverage\ effect}$







































































































## Centering + scaling (standardization)

Centered-scaled model:

$$\forall i = 1, \dots, n : \begin{cases} x_i^s = (x_i - \overline{x}_n) / \sqrt{\text{var}_n(\mathbf{x})} \\ y_i^s = (y_i - \overline{y}_n) / \sqrt{\text{var}_n(\mathbf{y})} \end{cases} \Leftrightarrow \begin{cases} \mathbf{x}^s = \frac{\mathbf{x} - x_n \mathbf{1}_n}{\sqrt{\text{var}_n(\mathbf{x})}} \\ \mathbf{y}^s = \frac{\mathbf{y} - \overline{y}_n \mathbf{1}_n}{\sqrt{\text{var}_n(\mathbf{y})}} \end{cases}$$

Solving OLS with  $(\mathbf{x}^s, \mathbf{y}^s)$  then

$$\begin{cases} \widehat{\theta}_0^s=0\\ \widehat{\theta}_1^s=\frac{1}{n}\sum_{i=1}^n x_i^sy_i^s \end{cases}$$
 Roma equivalent to chaosing the points cloud center of mass as on

<u>Rem</u>: equivalent to choosing the points cloud center of mass as origin and normalize **x** and **y** to have unit **empirical norm**  $\|\cdot\|_n$ :

$$\|\mathbf{x}^s\|_n^2 = \frac{1}{n}\sum_{i=1}^n (x_i^s)^2 = 1$$
 
$$\|\mathbf{y}^s\|_n^2 = \frac{1}{n}\sum_{i=1}^n (y_i^s)^2 = 1$$

#### Centering + scaling



#### When/why preprocessing?

Centering y or using an intercept (or adding a constant feature) is equivalent

Rem: for sparse ( $\blacksquare$ : creux) cases centering **y** adding a constant feature could be preferred

Scaling features is important:

- ▶ if you want to <u>interpret</u> the coefficients' amplitude in regression (better solution : t-tests)
- ightharpoonup if you want to <u>penalize</u> or <u>regularize</u> coefficients (*c.f.* Lasso, Ridge, etc.) a single scale is needed
- ightharpoonup for computing reasons (e.g. store scaling to improve efficiency, etc.)

<u>Rem</u>: in practice centering/scaling is useful for **estimation** not so much for **prediction** (see next courses)

What happens with the logarithm scaling?

#### Centering with Python

Use centering classes from sklearn, see preprocessing: http://scikit-learn.org/stable/modules/preprocessing.html

```
from sklearn import preprocessing
scaler = preprocessing.StandardScaler().fit(X)
print(np.isclose(scaler.mean_, np.mean(X)))
print(np.array_equal(scaler.std_, np.std(X)))
print(np.array_equal(scaler.transform(X),
                   (X - np.mean(X)) / np.std(X))
print(np.array_equal(scaler.transform([26]),
                   (26 - np.mean(X)) / np.std(X)))
```

Rem:most valuable with pipeline

http://scikit-learn.org/stable/modules/pipeline.html

#### Prediction

We call **prediction** function the function that associates an estimation of the variable of interest to a new sample. For least squares the prediction is given by :  $\operatorname{pred}(x_{n+1}) = \widehat{\theta}_0 + \widehat{\theta}_1 x_{n+1}$ 

Rem: often written  $\hat{y}_{n+1}$  (implicit dependence on  $x_{n+1}$ )

The **residual**: difference between observations and predicted values

$$\epsilon_i = y_i - \operatorname{pred}(x_i) = y_i - \hat{y}_i = y_i - (\hat{\theta}_0 + \hat{\theta}_1 x_i)$$

<u>Rem</u>: observable estimate of the unobservable statistical error

### Residuals (on cars, heteroscedasticity)



#### Residual histograms



#### Model Fit: Correlation, variance



#### Model Fit: Correlation, variance







Always visualize the data https:

//www.research.autodesk.com/publications/same-stats-different-graphs/

## Model Fit : $\mathbb{R}^2$ and Variance Decomposition

The coefficient of determination, denoted  $\mathbb{R}^2$ , is defined as the ratio of the explained sum to the total sum :

$$R^{2} = \frac{\sum_{i=1}^{n} (\widehat{y_{i}^{c}})^{2}}{\sum_{i=1}^{n} (y_{i}^{c})^{2}}$$

- ▶ Scale: Residuals depend on the units of Y, while  $R^2$  is dimensionless and normalized between 0 and 1.
- ▶ Comparability: Residuals cannot be compared across datasets with different scales of Y, but  $R^2$  can.
- ▶ Interpretability: Residual measures the discrepancy between predictions and observations, whereas  $\mathbb{R}^2$  quantifies the proportion of variance in Y explained by the model.

Exo: Show that

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \widehat{\varepsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i}^{c})^{2}}.$$

#### Least squares motivation

- ► Computing advantage : computationally heavy methods avoided before computers (e.g. iterative methods)
- ► Theoretical advantage : least square analysis easy under simple hypothesis
- ▶ Interpretability : how much does the regressor increase with the features.

Example: under additive white Gaussian noise assumption i.e.,  $\varepsilon \sim \mathcal{N}(0, \sigma^2)$  the maximum likelihood is equivalent to solving least squares to estimate  $(\theta_0^*, \theta_1^*)$ 

Rem: for another noise model and/or to limit outliers influence one can solve (see e.g. QuantReg in statsmodels)

$$\widehat{\boldsymbol{\theta}} = (\widehat{\theta}_0, \widehat{\theta}_1) \in \operatorname{argmin}_{(\theta_0, \theta_1) \in \mathbb{R}^2} \sum_{i=1}^n |y_i - \theta_0 - \theta_1 x_i|$$

#### Discussion: toward multivariate cases

Physical laws (or your driving school memories) would lead to rather pick a **quadratic** model instead of a **linear** one: the OLS can be applied by choosing  $x_i^2$  as features instead of  $x_i$ :



### Web sites and books to go further

- ▶ Datascience in general: Blog + videos by Jake Vanderplas http://jakevdp.github.io/
   <u>Homework for next lesson</u>: watch the following videos http://jakevdp.github.io/blog/2017/03/03/reproducible-data-analysis-in-jupyter/
- ► A few notebooks of OLS with statsmodels
- ► McKinney (2012) about Python for statistics
- ► Lejeune (2010) about linear models (in French)
- ► Regression course by B. Delyon (in French, more technical)

#### Toward multivariate models

Tree volume as a function of height / girth ( $\blacksquare$ : circonférence)



#### Toward multivariate models

Tree volume as a function of height / girth ( $\blacksquare$ : circonférence)



#### Python commands

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

# Load example data
...

# Fit linear regression model
model = LinearRegression()
model.fit(X, y)
```

#### Model

One observes p features  $(\mathbf{x}_1, \dots, \mathbf{x}_p)$ . Model in dimension p

$$y_{i} = \theta_{0}^{\star} + \sum_{j=1}^{p} \theta_{j}^{\star} x_{i,j} + \varepsilon_{i}$$

$$\varepsilon_{i} \overset{i.i.d}{\sim} \varepsilon, \text{ pour } i = 1, \dots, n$$

$$\mathbb{E}[\varepsilon] = 0$$

Rem: we assume (frequentist point of view) there exists a "true" parameter  $\boldsymbol{\theta}^{\star} = (\theta_0^{\star}, \dots, \theta_p^{\star})^{\top} \in \mathbb{R}^{p+1}$ 

# Dimension pMatrix model

$$\underbrace{\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} 1 & x_{1,1} & \dots & x_{1,p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n,1} & \dots & x_{n,p} \end{pmatrix}}_{X} \underbrace{\begin{pmatrix} \theta_0^{\star} \\ \vdots \\ \theta_p^{\star} \end{pmatrix}}_{\boldsymbol{\theta}^{\star}} + \underbrace{\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}}_{\boldsymbol{\epsilon}}$$
Equivalently: 
$$\mathbf{y} = X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}$$

Column notation : 
$$X = (\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_p)$$
 with  $\mathbf{x}_0 = \mathbf{1}_n = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ .

Line notation : 
$$X = \begin{pmatrix} x_1^{\top} \\ \vdots \\ x^{\top} \end{pmatrix} = (x_1, \dots, x_n)^{\top}$$

(1)

#### Matrix Notation and $L_2$ Norm

Matrix notation is a powerful way to represent mathematical operations involving vectors and matrices.

The Inner Product (dot product) of two vectors  $\mathbf{u}$  and  $\mathbf{v}$  is defined as:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i=1}^{n} u_i v_i = \mathbf{u}^T \cdot \mathbf{v}$$

Let **A** be an  $m \times n$  matrix and **B** be an  $n \times p$  matrix. The **matrix product** 

C = AB is an  $m \times p$  matrix with elements :

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

The  $L_2$  **Norm** (Euclidean norm) of a vector  $\mathbf{v}$  is defined as :

$$\|\mathbf{v}\|_2 = \sqrt{\sum_{i=1}^n v_i^2}$$

Matrix notation simplifies operations and equations involving vectors and matrices.

#### Vocabulary

$$\mathbf{y} = X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}$$

- $\mathbf{v} \in \mathbb{R}^n$ : observations vector
- ▶  $X \in \mathbb{R}^{n \times (p+1)}$ : **design** matrix (with features as columns and a first column of 1s)
- ▶  $\tilde{X} \in \mathbb{R}^{n \times (p)}$ : reduced design matrix (with features as columns and NO column of ones)
- $\blacktriangleright \theta^* \in \mathbb{R}^{p+1}$ : (unknown) **true** parameter to be estimated
- $ightharpoonup \epsilon \in \mathbb{R}^n$ : noise vector

#### Vocabulary (and abuse of terms)

We call **Gram matrix** the matrix

$$X^{\top}X$$

whose general term is  $[X^{\top}X]_{i,j} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$ 

If the design matrix X is centered and scaled, the Gram matrix is proportional to the correlation between columns.  $X^{\top}X$  is often referred to as the feature correlation matrix

Rem: when columns are scaled such that  $\forall j \in [0, p], ||\mathbf{x}_j||^2 = n$ , the Gramian diagonal is  $(n, \ldots, n)$ 

The vector 
$$X^{\top}\mathbf{y} = \begin{pmatrix} \langle \mathbf{x}_0, \mathbf{y} \rangle \\ \vdots \\ \langle \mathbf{x}_p, \mathbf{y} \rangle \end{pmatrix}$$
 represents the correlation between the

observations and the features

#### (Ordinary) Least squares

 $\underline{\mathbf{A}}$  least square estimator is  $\mathbf{any}$  solution of the following problem :

$$\widehat{\boldsymbol{\theta}} \in \operatorname{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^{p+1}} \left( \|\mathbf{y} - X\boldsymbol{\theta}\|_{2}^{2} \right)$$

$$\widehat{\boldsymbol{\theta}} \in \operatorname{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^{p+1}} \sum_{i=1}^{n} \left[ y_{i} - \left( \theta_{0} + \sum_{j=1}^{p} \theta_{j} x_{i,j} \right) \right]^{2}$$

$$\widehat{\boldsymbol{\theta}} \in \operatorname{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^{p+1}} \sum_{i=1}^{n} \left[ y_{i} - \langle x_{i}, \boldsymbol{\theta} \rangle \right]^{2}$$

- ▶ Does the solution exist? A solution always exists, as we are minimizing a coercive continuous function (**coercive**:  $\lim_{\|x\|\to+\infty} f(x) = +\infty$ )
- ► Is the solution unique? not guaranteed

**Exo** how do we make the prediction?

#### Row / column interpretation

#### Row interpretation

Let  $\tilde{x}_1^{\top}, \dots, \tilde{x}_{p+1}^{\top}$  be the rows of X. The residuals are  $r_i = y_i - \tilde{x}_i \boldsymbol{\theta}$  and the OLS is equivalent to minimizing the sum of squares residuals

#### Column interpretation

Let  $\mathbf{x}_0, \dots, \mathbf{x}_p$  be the columns of X. Then  $\|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 = \|(\theta_0 \mathbf{x}_0, + \dots + \theta_p \mathbf{x}_p) - \mathbf{y}\|_2^2$ , so OLS is to find a linear combination of columns of X that is closest to  $\mathbf{y}$ .

Hilbert projection theorem (HPT)

The HPT states that:

Let  $C \subset \mathbb{R}^d$ ,  $Y \in \mathbb{R}^d$ . Let  $\widehat{z} = \arg\min_{z \in C} \|Y - z\|_2^2$ . Then  $\widehat{z}$  always exists and is given by

$$< Y - \hat{z}, z >= 0 \qquad \forall z \in C$$

We can use this theorem to characterize the solutions for the OLS

Hilbert projection theorem (HPT) and application to OLS

$$\widehat{\boldsymbol{\theta}} \in \operatorname{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^{p+1}} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$$

Note  $col(X) = span([\mathbf{x}_0, ..., \mathbf{x}_p]) = \sum_{i=0}^p \mathbf{x}_i \theta_i = X\boldsymbol{\theta}$ 

OLS can be written as:  $\widehat{W} \in \operatorname{argmin}_{W \in col(X)} (\|\mathbf{y} - W\|_2^2)$  and the HPT can be directly applied

$$<\mathbf{y}-\widehat{W},W>=0$$
  
 $(\mathbf{y}-\widehat{W})^{\mathsf{T}}W=0$ 

$$\mathbf{y} - \widehat{W})^{\top} X \boldsymbol{\theta} = 0$$

$$(\mathbf{y} - \widehat{W})^{\top} X = 0$$

$$(\mathbf{y} - X\widehat{\boldsymbol{\theta}})^{\top} X = 0$$

$$\theta = 0$$

49 / 60

$$X^{\top}(\mathbf{y} - X\widehat{\boldsymbol{\theta}}) = 0$$

 $X^{\top} X \hat{\boldsymbol{\theta}} = X^{\top} \mathbf{v}$ 

$$0 = 0$$

$$= 0$$

$$(\mathbf{y} - \widehat{W})^{\top} X \boldsymbol{\theta} = 0$$

$$(\mathbf{y} - \widehat{W})^{\top} Y = 0$$

### OLS normal equations

The solution to the OLS problem is given by the solution to the normal equation

Normal equation : 
$$X^{\top}X\hat{\boldsymbol{\theta}} = X^{\top}\mathbf{y}$$

As a consequence,

- ► a solution always exists.
- ▶ its unique if the solution to the normal equations is unique

Hilbert projection theorem, geometric interpretation



Figure - Souce : Wikipedia

#### Least Squares and Uniqueness

Let  $\widehat{\boldsymbol{\theta}}$  be a solution of  $X^{\top}X\widehat{\boldsymbol{\theta}} = X^{\top}\mathbf{y}$ .

**Proposition:**Non-uniqueness in OLS occurs when the design matrix X has a non-trivial kernel, i.e.

$$\ker(X) \neq \{0\}$$

Rem: 
$$\ker(X) = \{ \boldsymbol{\theta} \in \mathbb{R}^{p+1} : X\boldsymbol{\theta} = 0 \}$$

To see this, assume 
$$\boldsymbol{\theta}_K \in \ker(X)$$
 with  $\boldsymbol{\theta}_K \neq 0$ . Then  $X(\widehat{\boldsymbol{\theta}} + \boldsymbol{\theta}_K) = X\widehat{\boldsymbol{\theta}},$   $(X^\top X)(\widehat{\boldsymbol{\theta}} + \boldsymbol{\theta}_K) = X^\top \mathbf{y}.$ 

<u>Conclusion</u>: the set of least squares solutions is an affine subspace:

$$\widehat{\boldsymbol{\theta}} + \ker(X)$$











#### Interpretation for multivariate cases

Reminder: we write  $X = (\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p)$ , the features being column-wise (each are of length n)

The property  $\ker(X) = \{ \boldsymbol{\theta} \in \mathbb{R}^{p+1} : X\boldsymbol{\theta} = 0 \} \neq \{ 0 \}$  means that there exists a linear dependence between the features  $\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p$ ,

<u>Reformulation</u>:  $\exists \boldsymbol{\theta} = (\theta_0, \dots, \theta_p)^\top \in \mathbb{R}^{p+1} \setminus \{0\} \text{ s.t.}$ 

$$\theta_0 \mathbf{1}_n + \sum_{j=1}^p \theta_j \mathbf{x}_j = 0$$

## Algebra reminder

Rank of a matrix :  $\operatorname{rank}(X) = \dim(\operatorname{span}(\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p))$ ;  $\operatorname{span}(\cdot)$  : the space generated by  $\cdot$ 

 $\underline{\text{Property}}: \text{rank}(X) = \text{rank}(X^{\top})$ 

Rank-nullity theorem:

- $ightharpoonup \operatorname{rank}(X) + \dim(\ker(X)) = p + 1$

$$\underline{\text{Property}}: \boxed{\text{rank}(X) \leq \min(n, p+1)}$$

See Golub and Van Loan (1996) for details

## Algebra reminder (continued)

Matrix inversion : A square matrix  $A \in \mathbb{R}^{m \times m}$  is invertible

- if and only if its kernel is trivial :  $ker(A) = \{0\}$
- if and only if it is full rank rank(A) = m

OLS is unique iff  $X^{\top}X$  is invertible

$$\Leftrightarrow \ker(X^{\top}X) = \{0\}$$

$$\Leftrightarrow \ker(X) = \{0\}$$

 $\Leftrightarrow X$  has full rank

**Exo**: 
$$\ker(X) = \ker(X^{\top}X)$$

Non uniqueness : single feature case

Reminder: 
$$X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$$

If  $\ker(X) = \{ \boldsymbol{\theta} \in \mathbb{R}^2 : X\boldsymbol{\theta} = 0 \} \neq \{ 0 \}$  there exists  $(\theta_0, \theta_1) \neq (0, 0)$ :

$$\begin{cases} \theta_0 + \theta_1 x_1 &= 0\\ \vdots &\vdots &= \vdots\\ \theta_0 + \theta_1 x_n &= 0 \end{cases}$$
 (\*)

- 1. If  $\theta_1 = 0 : (\star) \Rightarrow \theta_0 = 0$ , so  $(\theta_0, \theta_1) = (0, 0)$ , contradiction
- 2. If  $\theta_1 \neq 0$ :
  - 2.1 If  $\forall i, x_i = 0$  then  $X = (\mathbf{1}_n, 0)$  and  $\theta_0 = 0$
  - 2.2 Otherwise there exists  $x_{i_0} \neq 0$  and  $\forall i, x_i = -\theta_0/\theta_1 = x_{i_0}$ , i.e.  $X = [\mathbf{1}_n \quad x_{i_0} \cdot \mathbf{1}_n]$

Interpretation :  $\mathbf{x}_1 \propto \mathbf{1}_n$ , *i.e.*  $\mathbf{x}_1$  is constant

#### The determination coefficient $R^2$

The ratio of the variation explained by the model and the total variation of the data

$$R^2 = \frac{\|\widehat{\mathbf{y}} - \bar{\mathbf{y}}\mathbf{1}_n\|^2}{\|\mathbf{y} - \bar{\mathbf{y}}\mathbf{1}_n\|^2}$$

Exo: Show that 
$$0 \le R^2 \le 1$$
 and
$$R^2 = 1 - \frac{\|\mathbf{y} - \widehat{\mathbf{y}}\|^2}{\|\mathbf{y} - \overline{\mathbf{y}}\mathbf{1}_n\|^2}$$
(3)

## Polynomial regression and overfitting



Source : sklearn

#### References I

B. Delyon.

Régression, 2015.

https://perso.univ-rennes1.fr/bernard.delyon/regression.pdf.

G. H. Golub and C. F. van Loan.

Matrix computations.

Johns Hopkins University Press, Baltimore, MD, third edition, 1996.

M. Lejeune.

Statistiques, la théorie et ses applications.

Springer, 2010.

W. McKinney.

Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython.

O'Reilly Media, 2012.