

Terminal-Config-Manager: Projektarbeit zur Ausbildung zum Informatiker für Anwendungsentwicklung CHECK24 Tech Hub und Services GmbH

Adrian Schurz

4. November 2022

1 Projektantrag

Diese Seite wird später entfernt.

1 Projektantrag

Der folgende Projektantrag wurde um die Auflagen, welche in der Terminbestätigung genannt wurden, erweitert. Weiterhin hat sich der Name der Firma, ohne jegliche Änderungen des Arbeitsverhältnisses, in der Zwischenzeit geändert und wurde hier aktualisiert.

Abschlussprüfung im Beruf Fachinformatiker für Anwendungsentwicklung

Winter 2022/23

Antrags formular

Azubi-Nr.: 480513 Name: Adrian Schurz

Ausbildungsbetrieb / Praktikumsbetrieb	CHECK24 Tech Hub und Services GmbH
Projektbezeichnung	terminal-config-manager
Projektbeschreibung	Motivation: Bei der Arbeit an Software-Anwendungen, welche eng mit einer Vielzahl anderer solcher Anwendungen über mehrere Umgebungen hinweg interagieren, ergaben sich zwei häufige Anwendungsfälle beim Umgang mit Konfigurationsdateien.
	 Das Einsehen und Kontrollieren von Einträgen innerhalb dieser Dateien. Dabei gibt es eine große Zahl an über verschiedene Verzeichnisse verstreuten Dateien. Innerhalb einer Datei gibt es jeweils eine große Zahl an Einträgen, von denen aber oft nur wenige relevant sind. Das Ändern eines solchen Eintrags, um das Verhalten der zugehörigen Anwendung anzupassen.
	Sowohl das Kontrollieren als auch das Ändern von beliebigen Einträgen soll schnell und in einer Anwendung möglich sein.
	Beispielszenario In der Continuous-Integration-Pipeline (CI) einer zentralen Anwendung schlagen unvermittelt Akzeptanztests fehl. Um unverzüglich die Ursache feststellen zu können, muss das lokale Setup, das in diesem Moment an die Entwicklung einer anderen Anwendung und für die Ausführung einer anderen Menge an Tests konfiguriert ist, umkonfiguriert werden.
	IST-Zustand: Um die Zielanwendung zu untersuchen sind viele Teilaufgaben zu erledigen, beispielsweise das Aktivieren detaillierter

	Lognachrichten, das Ändern der auszuführenden Unit-, Integration- und Systemtestsuites, das Ändern von Cache-Verhalten, das anpassen von Ziel-IPs anderer, an der Testausführung beteiligter Anwendungen. Jeder dieser Schritte ist wiederum mit mehreren Einzelschritten verbunden. Meist muss zu diesem Zweck eine passende IDE gestartet, die relevante Konfigurationsdatei ermittelt und zum richtigen Unterordner navigiert werden. Danach muss die Datei geöffnet, ihr Inhalt untersucht und der Zielwert geprüft und gegebenenfalls angepasst werden. In Summe sind sehr viele, repetitive Einzelaufgaben händisch zu erledigen. Hier bietet sich daher Potential zur Verbesserung.		
	Liste anzeigt. Die Liste enthält pr und den aktuellen Wert innerhal erlaubt es, per Tastendruck Zeile	b der Zieldatei. Das Programm en auszuwählen und den ge möglicher Werte auszuwählen. so wird die dazugehörige ben. Sowohl die Zieldateien als Verte sind konfigurierbar.	
Projektumfeld	Die CHECK24 Vergleichsportal GmbH, CHECK24 Vergleichsportal Reise GmbH und CHECK24 Tech Hub und Services GmbH sind Betreiber von check24.de, einer Website, auf der verschiedene Produkte zum Vergleich angeboten werden. Der Auftraggeber CHECK24 Tech Hub und Services GmbH betreibt auf dieser Online-Plattform eine Vergleichsmöglichkeit von Pauschalreisen.		
	Die Menge und Komplexität interner Anwendungen, die am Produktionsbetrieb und der Qualitätssicherung beteiligt sind, wächst stetig. Damit einher gehen komplexere Interaktionen und Konfigurationsmöglichkeiten, die häufige Fehlerquellen im Betrieb und während der Entwicklung darstellen. Je einfacher diese Konfiguration möglich ist, desto schneller kann während der Fehlersuche und der Entwicklung gearbeitet werden.		
Projektphasen (einschließlich Zeitplanung)	Phase	Dauer (h)	

	1	
	Konzeption	10
	Wahl des Techstacks	3
	Einrichtung Entwicklungsumgebung	2
	Implementierung	30
	Qualitätssicherung	15
	Dokumentation	10
	Gesamt	70
Dokumentation zur Projektarbeit (nicht selbstständig erstellte Dokumente sind zu kennzeichnen)	die Kompilierung und A Akzeptanztests beschreib • Eine Projektdokumentat eine IST-Analyse, die An	uellcodekommentaren on der einzelnen TML-Format ramm selbst bei Bedarf che das Aufsetzen des Projekts, usführung der Unit- und oen ion im PDF-Format, welches forderungen an die Software, die ung, den Projektverlauf und das
Bearbeitungsdauer von	1.10.2022	
Bearbeitungsdauer bis	14.11.2022	
Präsentationsmittel	Laptop	
Overheadprojektor	vorhanden	
Projektionsbildschirm (als Beamer nutzbar)	vorhanden	
Andere Präsentationsmittel (sind vom Prüfling mitzubringen)	Laptop	

Themenbetreuer	Jessica Parth Falk Döring
----------------	------------------------------

Themenbestätigung

Folgendes wurde aus Ihrem Schreiben vom 23.09.2022, der Zustimmung des betrieblichen Auftrages mit Auflagen, übernommen:

Thema bestätigt	
Mit Auflagen bestätigt	X Projektdokumentation umfasst auch: Planung, Umsetzung, Ergebnisdokumentation -> Planung entsprechend anpassen
Grund Ablehnung	

2 Nachweisblatt

Diese Seite wird später entfernt.

Abschlussprüfung IT-Berufe: Nachweis für den betrieblichen Auftrag IT-Systemelektroniker/-in Systemkaufmann/-frau Informatikkaufmann/-frau Fachinformatiker/-in Anwendungsentwicklung Fachinformatiker/-in Systemintegration Name, Vorname: Prüflingsnummer: Unterschrift Unterschrift Zeitraum (Stunden): Prüfungsteilnehmer: Themenbetreuer: Datum: Ich versichere, dass ich den betrieblichen Projektauftrag einschließlich Dokumentation selbstständig und nur mit den angegebenen Hilfsmitteln erstellt habe. Ort, Datum: Unterschrift Prüfungsteilnehmer: Unterschrift Themenbetreuer:

Ort, Datum:

Datenschutz:

Die IHK Dresden ist für die Durchführung von Prüfungen in der Aus- und Weiterbildung zuständig. Die Ermächtigung zur Datenverarbeitung in diesem Zusammenhang ergibt sich aus Art. 6 Abs.1 Buchstabe e DSGVO.

Hinweis: Für Prüfungsergebnisse und Unterlagen ergeben sich zum Teil vom Üblichen abweichende Aufbewahrungsfristen.

Prüfungsergebnisse aus der beruflichen Bildung werden 50 Jahre aufbewahrt, da über die Zeit des gesamten Erwerbslebens die Möglichkeit der Ausstellung einer Zeugniszweitschrift gewahrt werden muss. Prüfungsunterlagen werden hingegen ein Jahr nach Erlangen der rechtlichen Bestandkraft des Ergebnisses vernichtet.

Sie können Widerspruch gegen die Verarbeitung einlegen (Art. 21 DSGVO). Sollten Sie davon Gebrauch machen, prüft die IHK, ob die gesetzlichen Voraussetzungen hierfür erfüllt sind. Hinweis: Die zur Erfüllung der hoheitlichen Aufgaben notwendigen Daten können in der Regel nicht vor Ablauf der Speicherfrist gelöscht werden.

Die umfassende Datenschutzerklärung der IHK Dresden finden Sie unter https://www.dresden.ihk.de/datenschutz. Den Widerspruch können Sie durch Nutzung des Widerspruchsformulars auf der Webseite, schriftlich bei der IHK widerspruch@dresden.ihk.de/datenschutz.

Ort, Datum:	Unterschrift Prüfling:
Ort, Datum:	Unterschrift Themenbetreuer:

Inhaltsverzeichnis

1 Projektantrag

2 Nachweisblatt

3	Ana	nlyse	1
	3.1	IST-Zustand	I
	3.2	Soll-Zustand	2
4	Tec	hnologie	2
	4. I	Kriterien	2
	4.2	Auswahl	3
5	Pro	jektplanung	3
	5.1	Zeit	3
	5.2	Ressourcen	4
	5.3	Design	4
	5.4	Projektorganisation	5
6	Um	setzung	6
	6. ₁	Einrichtung	6
	6.2	Entwicklung	6
	6.3	Dokumentation	7
	6.4	Qualitätssicherung	7
7	Erg	ebnisdiskussion	9
	7 . I	Funktionalität	9
	7.2	Domain Driven Design	9
	7.3	Moduldokumentation	Ю
	7.4	Testabdeckung	Ю
	7.5	Bekannte Fehler	Ю
8	Anh	nang	10
9	Kur	ndendokumentation	16
	9.1	Beschreibung	16
	9.2	Installation	16
	0 2	Konfiguration	17

Glossai	r	23
Literat	ur	22
9.5	Problembehandlung	21
9.4	Benutzung	20

3 Analyse

Der Bedarf für die im Rahmen dieser Projektarbeit erstellte Softwarelösung ergab sich bei der Arbeit an Software-Anwendungen, welche eng mit einer Vielzahl anderer solcher Anwendungen über mehrere Umgebungen hinweg interagieren.

3.1 IST-Zustand

Der Großteil dieser Anwendungen besitzt weitläufige Konfigurationsmöglichkeiten welche ihren Betrieb in verschiedensten Szenarien steuern. Beispiele für Konfigurationsmöglichkeiten und deren Ausprägungen sind:

- Das Loggingverhalten der Anwendung
 - Logging gegen die Logverarbeitungssoftware der Produktionsumgebung
 - Logging gegen eine lokale Instanz der Logverarbeitungssoftware
 - Logging auf das Dateisystem
 - Logging mit verschiedenen Logleveln
- Die Zieldatenbank der Anwendung
 - Datenbank der Produktionsumgebung
 - Datenbank der Testumgebung
 - lokale Datenbank
- Die Ausführung von Softwaretests
 - Ausführen von ausschließlich Unittests
 - Ausführen von Akzeptanztests
 - Ausführen der Gesamtheit der Tests
 - Anpassung der Ziel-IP einer weiteren, für die Testausführung notwendigen Anwendung
- uvm.

Der Kontext der Arbeit an der Software wechselt regelmäßig zwischen Entwicklung und dem Suchen bzw. Nachvollziehen von potentiellen Softwarefehlern, welche im Produktions- oder Testbetrieb auftreten. Um dabei das beobachtete Verhalten der Anwendung korrekt zu interpretieren sind u.a. zwei Arbeitsschritte häufig zu erledigen:

• Prüfen der aktuellen Konfiguration

• Anpassen der aktuellen Konfiguration

Die Anzahl der an jedem Einzelfall beteiligten Anwendungen und die Anzahl der Konfigurationsdateien pro Anwendungen führen dazu, dass jeweils viele verschiedene und weit über das Dateisystem verstreute Dateien relevant sind. Pro Datei und Einzelfall sind folgende Arbeitsschritte zu erledigen:

- Starten der zur Anwendung gehörigen IDE
- Ermitteln der Konfigurationsdatei
- Navigation im Verzeichnisbaum
- Öffnen der Datei
- Finden des relevanten Eintrags in einer mitunter sehr langen Textdatei
- Ermitteln der möglichen Zielwerte
- Ändern des Eintrags
- Speichern der Datei

Diese Einzelschritte, mulipliziert mit der Anzahl an Dateien, stellt eine Menge an repetitiven Handlungen dar die, wenn sie erleichtert würden, Zeit und Konzentrationsvermögen einsparen können.

3.2 Soll-Zustand

Es existiert ein Kommandozeilenprogramm, das übersichtlich eine Liste anzeigt. Die Liste enthält pro Zeile einen Beschreibungstext und den aktuellen Wert innerhalb der Zieldatei. Das Programm erlaubt es, per Tastendruck Zeilen auszuwählen und den zugehörigen Wert aus einer Menge möglicher Werte auszuwählen. Wird ein neuer Wert ausgewählt, so wird die dazugehörige Kongurationsdatei zum neuen Wert hin umgeschrieben. Sowohl die Zieldateien als auch die jeweiligen möglichen Werte sind kongurierbar. Zusätzlich existieren ausführliche Unit- und Akzeptanztests.

4 Technologie

4.1 Kriterien

Für dieses Projekt bieten sich grundsätzlich alle gängigen Programmiersprachen an. Während der Umsetzung soll ausgewählten Aspekten der Softwareentwicklung gesonderte Aufmerksamkeit zukommen.

Korrektheit und Laufzeitstabilität Es soll auf technischem Weg zum Einen sichergestellt werden, dass sich das Programm zu jedem Zeitpunkt erwartungsgemäß und korrekt verhält und zum Anderen, dass Fehlerzustände zur Laufzeit so weit wie möglich ausgeschlossen werden.

Als hauptsächliche Wege dies zu erreichen werden folgende Ansätze gewählt:

- Wahl einer Programmiersprache mit strenger Typisierung
- Wahl einer kompilierten Programmiersprache mit vergleichsweise starken Garantien zum Laufzeitverhalten
- Einbeziehung von Property-Based-Testing [16] in das Konzept der Softwaretests

Ausführliche, vom Quellcode abgeleitete Moduldokumentation Neben der Projektdokumentation soll eine Dokumentation der einzelnen Softwaremodule entstehen. Um dem Problem zu begegnen, dass Dokumentation und Quellcode im Laufe der Entwicklung auseinanderlaufen soll die Moduldokumentation direkt aus der Quellcodestruktur und den Quellcodekommentaren generierbar sein.

4.2 Auswahl

Als Programmiersprache und Build-System wurden auf Basis der obengenannten Ziele Haskell [15] und Stack [21] gewählt.

Stack bietet neben seiner Hauptaufgabe die Software-Abhängigkeiten des Projekts zu verwalten und den Buildvorgang zu steuern die Möglichkeit Moduldokumentation im HTML-Format anhand der Quellcodestrukur und der Quellcodekommentare generieren während Haskell eine typsichere, kompilierte Programmiersprache mit Unterstützung für Property-Based-Testing darstellt.

5 Projektplanung

5.1 Zeit

Die geplante Umsetzungsdauer beträgt ca. 70 Stunden und ist folgendermaßen gegliedert.

Projektphase	geplante Zeit (h)
Konzeption	IO
Technologiewahl	3
Einrichtung	2.
Implementierung	30
Qualitätssicherung	15
Dokumentation	IO
Gesamt	70

5.2 Ressourcen

Hier werden alle zur Fertigstellung des Projekts verwendeten Ressourcen, sowohl Hardware- als auch Software- und Personalressourcen, aufgelistet.

- Hardware
 - Lenovo Thinkpad P52
- Software
 - Arch Linux (Betriebssystem) [3]
 - Stack (Buildsystem) [21]
 - GHC (Compiler) [12]
 - Git (Versionskontrolle) [9]
 - Haddock (Generierung der Moduldokumentation) [14]
 - Graphmod (Graphgenerierung, Modulabhängigkeiten) [13]
 - Visual Studio Code (Codeeditor) [24]
 - TEX-Live (Projektdokumentation) [1]
- Personal
 - Softwareentwickler zur Umsetzung
 - Softwareentwickler zur Qualitätskontrolle

5.3 Design

Für die Art der Benutzerinteraktion des Programms sind mehrere Ansätze denkbar. Beispielsweise könnte das Programm mit jeweils verschiedenen, aufeinanderfolgenden Befehlen von der Kommandozeile aus aufgerufen werden wie in Abb. 1 dargestellt. Alternativ könnte das Program, wie in Abb. 2 skizziert, mit einer kompletten, grafischen Oberfläche versehen werden.

Abbildung 1: Nutzerinteraktion mit aufeinanderfolgenden Befehlen

```
>_ terminal-config-manager show

1 Anwendung a mit Wert -> b
2 Anwendung c mit Wert -> d

>_ terminal-config-manager change 2

1 Anwendung a mit Wert -> b
2 Anwendung c mit Wert -> e
```

Abbildung 2: Nutzerinteraktion über eine grafische Oberfläche und Buttons, skizzenhaft

Als pragmatischer, einfacher und funktionaler Ansatz wurde ein Mittelweg gewählt bei dem eine Konsolenanwendung beim Start alle einzelnen konfigurierten Zielwerte auf jeweils einer Zeile darstellt, geöffnet bleibt und auf Tasteneingaben wartet um entweder eine seiner Funktionen auszuführen oder beendet zu werden (siehe Abb. 13 im Kapitel 9 - Kundendokumentation).

5.4 Projektorganisation

Die Hauptelemente der Verzeichnisstruktur des Projekts sind wie folgt organisiert.

```
\src
\test
\doc
\distribution
\bin
\tool
package.yaml
README.md
```

Die Verzeichnisse enhalten dabei in der angezeigten Reihenfolge

- Quellcode des des Programms
- Quellcode der Unit- und Integrationstests
- generierte Moduldokumentation und Projektdokumentation
- Skripte um Softwarepakete für verschiedene Betriebssysteme zu erstellen
- kompilierte, ausführbare Dateien
- Hilfsskripte, z.B. zur Generierung des Modulabhängigkeitsgraph

Die Datei package. yaml enthält die für Stack notwendigen Metadaten, beispielsweise Deklarationen der verwendeten Softwarebibliotheken und Konfiguration des Buildprozesses.

Die Datei README.md enthält eine kurze Beschreibung des Programms und eine Nutzungsanleitung zusammen mit offenen Aufgaben und Zusatzinformationen.

6 Umsetzung

6.1 Einrichtung

Es wurde der zur Entwicklung im Tagesgeschäft bei Check24 bereitgestellte Laptop für das Projekt genutzt auf dem bereits ein Linux-Betriebssystem installiert war. Auch die genutzte IDE war bereits aufgrund anderer Projekte vorinstalliert. Lediglich die LETEX-Entwicklungsumgebung und Details der Build-Umgebung mussten speziell für dieses Projekt konfiguriert werden.

Zu diesem Zweck wurde über das Betriebssystem TEX-Live [1] installiert und ein Plugin für die IDE [19]. Die Buildumgebung wurde so konfiguriert, dass bei jedem Speichern einer Datei das Programm kompiliert wird, sämtliche Softwaretests ausgeführt werden, sowohl die Moduldokumentation als auch der Graph der Modulabhängigkeiten neu generiert wird und Tools zur Formatierung und statischen Codeanalyse ausgeführt werden.

6.2 Entwicklung

TODO

Abbildung 3: Beispiel eines Modul-Codekommentars

```
-- Module : FileSynchronization
-- Description : Expose a function which, for a given config
-- item, will read the corresponding file and determine the
-- current value as it would be identified by the pattern.
-- Copyright : (c) Adrian Schurz, 2022
-- License : MIT
-- Maintainer : adrian.schurz@check24.com
-- Stability : experimental
```

Abbildung 4: Beispiel eines Deklarations-Codekommentars

6.3 Dokumentation

Das Projekt wurde sowohl auf Quellcodeebene zum Zwecke der Weiterentwicklung als auch für Nutzer bzw. Kunden dokumentiert (siehe Kapitel 9 - Kundendokumentation).

Code- und Moduldokumentation Jedes Modul und jede Deklaration im Code ist mit Code-kommentaren versehen wie in den Abbildungen 3 und 4 darstellt. Anhand dieser Informationen wird mittels Haddock [14], während des Buildprozesses, eine navigierbare und übersichtliche Moduldokumentation im HTML-Format erstellt, die sowohl die Module des Programms selbst als auch die der verwendeten Softwarebibiliotheken beschreibt und im Projektverzeichnis unter /doc/generated abgelegt ist.

Projektdokumentation Die Dokumentation der Projektarbeit selbst erfolgt mittels LATEX[18] und wird im PDF-Format exportiert. Alle Quelldateien für dieses Dokument sind ebenfalls im Projektverzeichnis unter /doc/azubi-project/projektdokumentation auffindbar.

6.4 Qualitätssicherung

Zur Qualitätssicherung dienten hauptsächlich Unittests, inklusive Property-Based-Testing, und händische Tests.

Abbildung 5: Beispiel eines Unittests, aus Platzgründen mit ... eingekürzt und inklusive der Ausgabe bei Ausführung (unterhalb des Pfeils)

```
describe "changing the element at a certain index inside of a list" $ do
  it "given a valid index ... apply it at the appropriate index" $
  let someList = [1, 2, 3]
      someFunction = (*) 2
     validIndex = 1
  in changeNthElement validIndex ... someList `shouldBe` [1, 4, 3]

      the changing the element at a certain index inside of a list
      given a valid index ... apply it at the appropriate index [*/]
```

Unittests Ein Beispiel für einen Unittest ist in Abb. 5 gegeben. Damit wird pro Test die Ausgabe einer Funktion für einen speziellen Eingabewert mit einem korrekten Ausgabewert verglichen. Diese Art des Testens einzelner Codesegmente ist sinnvoll, aber aufgrund der beschränkten menschlichen Kreativität nicht besonders gut geeignet um Grenzfälle mit besonders großen, besonders absurden oder anderweitig unerwarteten Eingabewerten zu ausfindig zu machen.

Property-Based-Testing Um die obengenannte Schwäche von reinen Unittests auszugleichen wurden zusätzlich sogenannte Propertytests verfasst, welche mit einer großen Anzahl von zufällig generierten Eingabewerten bestimmte Eigenschaften der Ausgabewerte prüfen. In Abb. 6 ist ein Test illustriert, der sicherstellt, dass die Zieldatei, unabhängig von sowohl ihrem Inhalt als auch dem konfigurierten Zielmuster, unverändert bleibt wannimmer der aktuelle Wert und der neue Zielwert identisch sind. Zu jeder Ausführung der Testsuite werden dafür eine große Anzahl zufälliger Dateiinhalte und Zielmuster generiert und die Funktion damit geprüft.

Akzeptanztests Bestimmte Klassen von Softwarefehlern lassen sich allein mit Unittests nicht zuverlässig auschließen. Für die umfänglichste Überprüfung der Software sind Tests, welche die Ausführung des kompilierten Programms, inklusiver simulierter Nutzerinteraktion, prüfen, von hohem Wert. Es wurde versucht mit Mitteln des Unittesting in Bash [4], virtualisierten Betriebssystemen [23] [6] bzw. Terminalemulatoren und Tools zur Emulation von Tastatureingaben [28] [30] solche Test zu realisieren. Das Ergebnis ist in Kapitel 7.4 - Testabdeckung dokumentiert. Akzeptanztests, welche nicht automatisiert durchgeführt werden konnten, wurden regelmäßig händische Tests des kompilierten Programms auf dem Entwicklungsrechner durchgeführt. Ab einem gewissen Zeitpunkt während der Entwicklung befand sich das Programm bereits in einem nutzbaren Zustand. Es wurde vom Entwick-

Abbildung 6: Beispiel für Property-Based-Testing, aus Platzgründen mit ... eingekürzt und inklusive der Ausgabe bei Ausführung einer großen Anzahl automatisch generierter Tests (unterhalb des Pfeils)

```
describe "modifying a string according to a search pattern ..." $ do
    prop "... old and new values are identical ... content unchanged" $
    \tva pat cont → modify tva tva pat cont == cont

modifying a string according to a search pattern ...
given that the old and new values are ... content unchanged [✔]
    +++ OK, passed 1000 tests.
```

ler selbst von da an produktiv eingesetzt was, ähnlich dem Konzept des Betatestings, eine praktisch wertvolle, wenn auch wenig rigorose, Testabdeckung ermöglicht hat.

7 Ergebnisdiskussion

7.1 Funktionalität

Die Hauptfunkionalität des Programms wurde erfolgreich umgesetzt und es wird von mir selbst bereits genutzt. Das Programm arbeitet seither wie erwartet, ist konfigurierbar und informiert mit lesbaren Nachrichten im Falle eines Fehlers. Ein weiteres Feature wäre jedoch wünschenswert, die Fähigkeit des Programms mit schreibgeschützten Zieldateien umgehen zu können und in diesem Fall eine sudo-Passwortabfrage auszulösen. Letzteres ist nicht Teil der usprünglichen Anforderungen und wird daher erst zukünftig umgesetzt.

7.2 Domain Driven Design

Das Ziel die Abhängigkeiten der einzelnene Softwaremodule untereinander einem mit dem Domain-Driven-Design kompatiblen Schema folgend zu organisieren ist mit einer Ausnahme geglückt. Im Anhang, Abb. 9, sind Module der Applikationsebene abhängig von Modulen des User-Interface. Das verwendete GUI-Framework, Brick, führt durch sein Interface allerdings zu einem Muster bei dem diese Abhängigkeit umgekehrt ist. Letzteres wird deutlich beim Vergleich des Schemas mit den tatsächlichen Modulabhängigkeiten (siehe Abb. 10 im Anhang). Dieser Umstand stellt für den Moment eine vernachlässigbare Designschwäche dar die ohne weitere Konquenz ist. Aus diesem Grund erhielt die Aufgabe dies zu beheben eine niedrige Priorität und steht vorerst noch aus. Alle sonstigen Module halten das angestrebte Schema ein.

7.3 Moduldokumentation

Das Ziel die Moduldokumentation ständig, während des Buildprozesses, aktuell zu halten ist teilweise geglückt. Im Projektverzeichnis liegt die ausführliche Moduldokumentation einschließlich jener der eingebundenen Softwarebibliotheken im HTML-Format vor. Auszüge davon sind in den Abbildungen 7 und 8 dargestellt. Allerdings gibt es seit wenigen Tagen bei neueren Versionen des Buildsystems Stack [21] und des Generierungstools Haddock [14] eine Inkompatibilität. Bis diese in diesen Projekten behoben und veröffentlicht ist, ist die in diesem Projekt hinterlegte Moduldokumentation nicht aktuell. Es ist zu erwarten, dass dieses Problem in naher Zukunft seitens der Entwickler der beiden Tools behoben wird.

7.4 Testabdeckung

Die Abdeckung der Funktionalität des Programms auf Unittest-Ebene ist, besonders dank der Verwendung von Property-Based-Testing [16] zufriedenstellend.

Eines der angestrebten Ziele war jedoch neben ausführlichen Unittests ebenso ausführliche Akzeptanztests bereitzustellen. Dies ist trotz erheblichem Aufwand gescheitert. Das Programm ist eine Konsolenanwendung, welche auf Tasteneingaben reagiert. Das bedeutet, dass automatisierte Tests in einer kontrollierten Umgebung Terminal-Emulatoren starten und ihnen Tasteneingaben simulieren müssen um das Programm zu testen. Je nach der verwendeten grafischen Benutzeroberfläche des Betriebssystems unterscheiden sich die Ansätze dies zu erreichen jedoch stark. Es existieren mehr oder weniger gut gepflegte Open-Source-Softwaretools für die Teilaufgabe der Eingabeemulation. Verschiedene Kombinationen dieser Tools (xdotool [28] vs ydotool [30]) wurden mit verschiedenen Displayservern (xorg [27] vs. wayland [25]), Betriebssystemen (Ubuntu [22] vs Arch Linux [3]), und Virtualisierungslösungen (virtualbox [23] vs docker [6]) evaluiert. Keine der Varianten führte zum Erfolg.

7.5 Bekannte Fehler

Es sind zwei Bugs in Software-Abhängigkeiten des verwendeten GUI-Frameworks bekannt, welche mit geringer Häufigkeit das Rendering bzw. den Start des Programms beeinträchtigen. Diese Bugs sind dokumentiert (siehe [11] und [10]). Einer dieser Fehler führt dazu, dass der aktuelle Wert eines Eintrags weiß statt blau gerendert wird und ist schwer reproduzierbar (1x ca. pro 50-100 Programmstarts). Der andere Fehler führt zu einem Crash des Programms beim Start (1x ca. pro 30-50 Programmstarts).

8 Anhang

Abbildung 7: Generierte Moduldokumentation, Hauptseite

terminal-config-manager-0.1.0.0

Quick Jump · Instances · Contents · Index

terminal-config-manager-0.1.0.0

Please see the README on GitHub at https://github.com/githubuser/terminal-config-manager#readme

Modules

∇ Application

Application.App Build and run a Brick app after loading the config file.

∇ Domain

Domain.State Type definitions concerning the application state.

Domain.StateTransition Expose functions to change the application state. This covers item and value selection.

∇ Infrastructure

Infrastructure. Config Expose a function which parses the contents of the config file and returns a list of items specified in that file.

Infrastructure. File Modification Expose a type representing target file content and a function to modify the content of a file.

Infrastructure.Util Expose a range of helper functions.

∇ UserInterface

UserInterface.Input Handle the keyboard user input.

UserInterface.Render Expose a function to draw an application state to the screen and two different styling, one for the description text and one for the value

Produced by Haddock version 2.26.0

Abbildung 8: Generierte Moduldokumentation, Domain.State

Abbildung 9: Beispielschema für Modulabhängigkeiten beim Domain-Driven-Design [8]

Abbildung II: Ausgabe bei Ausführung der Testsuite

```
Unit. Domain, Filesynchronization

finding the current value inside of some file content

given completely empty input, should result in Nothing [V]

given of value marker and nothing size, advald result in Nothing [V]

given of value marker and nothing size, should result in Nothing [V]

given of value marker and nothing size, should result in Nothing [V]

given of value marker and nothing size, should result in Nothing [V]

given of value marker and nothing size, should result in Nothing [V]

given of pattern which sections of an observer, should result in the rest of the content without the pattern before the value marker [V]

given of pattern which matches of few characters; late the content, should result in the rest of the content without the pattern before the value marker [V]

given of pattern which matches of few characters; late the content, should result in a noth only into and not including the marker have given of pattern which matches of few characters; late the content, should result in an other only into and not including the marker [V]

given of pattern which matches of few characters; late the content, should result in an other of the content without the pattern before the value marker [V]

given of pattern which matches of few characters; late the pattern before or often the value marker [V]

given of pattern which matches of few characters; late the pattern before or often the value marker [V]

given of pattern which matches of few characters; late the pattern before or often the value marker [V]

given of pattern which matches of few characters; late of the content which we have a substitution of the pattern before the [V]

given a membery list should result in matches [V]

given in membery list should result in matches [V]

should stop at the bottomest item [V]

characters of the content of the content value [V]

given in the content of the content value [V]

given in the classest offer a given value

given given the pattern of the content value hadder extern it [V]

given of the classest
```

9 Kundendokumentation

9.1 Beschreibung

Terminal-Config-Manager ist ein Linux-Programm mit welchem Textpassagen innerhalb meherer Dateien schnell zwischen einer Reihe von vorkonfigurierten Textpassagen umgeschalten werden können. Der Hauptanwendungsfall ist die effiziente Manipulation von Konfigurationsdateien von Softwareanwendungen die häufig angepasst werden müssen.

9.2 Installation

Es wurden vorkonfigurierte Pakete für sowohl ArchLinux[3]-basierte als auch Debian[5]-basierte Betriebssysteme bereitgestellt. Alternativ kann das Programm auch manuell installiert werden.

Arch-Linux [3], via PKGBUILD Datei und pacman [20]

Im Projektverzeichnis unter

```
/distribution/arch/PKGBUILD
```

befindet sich eine Spezifikationsdatei anhand derer das Softwarepaket erstellt und anschließend installiert werden kann:

```
cd distribution/arch
makepkg
pacman -U terminal-config-manager-1.0.0-1-x86_64.pkg.tar.zst
```

Die Deinstallation erfolgt mittels

```
pacman -R terminal-config-manager
```

Debian, via .deb Datei und dpkg[7] bzw. apt[2]

Im Projektverzeichnis unter

```
/distribution/debian/terminal-config-manager.deb
```

befindet sich ein Softwarepaket, das mittels dpkg oder apt direkt installiert werden kann.

```
cd distribution/debian
dpkg --install ./terminal-config-manager.deb
# apt install ./terminal-config-manager.deb
```

Die Deinstallation erfolgt mittels

```
dpkg --remove terminal-config-manager
# apt remove terminal-config-manager
```

Alternative, ohne Paketmanager

Wenn das Programm nicht vom systemeigenen Paketmanager verwaltet werden soll, dann kann es manuell kompiliert und in einem passenden Verzeichnis abgelegt werden.

Voraussetzung hierfür ist, dass das Programm stack auf dem System installiert ist.

Im Projektverzeichnis wird mit

```
stack build --test --copy-bins
```

das Programm kompiliert, die Testsuite ausgeführt und die ausführbare Datei im Projektverzeichnis unter

```
bin/terminal-config-manager
```

abgelegt. Anschließend kann das Programm in ein Verzeichnis kopiert werden, das in die Systempfadliste eingetragen ist, beispielsweise

```
cp bin/terminal-config-manager ~/.local/bin
```

Die Deinstallation erfolgt mittels

```
rm ~/.local/bin/terminal-config-manager
rm <Konfigurationsdateipfad>
```

9.3 Konfiguration

Die Zieldateien und -textpassagen müssen vor Ausführung des Programms über eine Datei im YAML-Format [29] konfiguriert werden.

Verzeichnis Das Programm erwartet, dass sich eine solche Datei in einem der folgenden Verzeichnisse befindet. Die Reihenfolge entspricht der absteigenden Priorität beim Vorhandensein mehrerer Konfigurationsdateien:

1. ./config.yaml

Abbildung 12: Beispielaufbau der Konfigurationsdatei

```
config_lines_to_manage:
  - title: Beispieltitel 1
   path: /home/alice/zieldatei.conf
   pattern: "'statspush_enabled' => {{value}},"
   targetValue: "true"
   possibleValues:
      - "true"
      - "false"
  - title: Beispieltitel 2
   path: /home/alice/verzeichnis/weitere-zieldatei.txt
   pattern: "SOFTWARE_ENV={{value}}"
   targetValue: production
   possibleValues:
      - testing
      - staging
      - production
      - local
```

- 2. \${HOME}/.config/terminal-config-manager/config.yaml (empfohlen)
- 3. \${HOME}/.terminal-config-manager.yaml

Der Dateipfad I bezeichnet den Ort der ausführbaren Datei selbst und sollte nur zu Debugging- oder Entwicklungszecken genutzt werden. Die Pfade 2 und 3 sind gängige Ablageorte für nutzerspezifische Konfigurationsdateien unter Linux und sind für die normale Nutzung geeignet.

Aufbau In Abb. 12 ist der Aufbau der Konfigurationsdatei illustriert.

```
• config_lines_to_manage:
```

Dies ist das äußere Element der Konfigurationsdatei und **muss** vorhanden sein. Innerhalb dessen befindet sich eine Liste von Einträgen. Jeder Eintrag gehört zu genau einer Textpassage, die mithilfe des Programms gezielt verändert werden soll.

Jeder Eintrag hat folgende Unterelemente:

title: Beispieltitel 1

Dies ist ein Titel der frei gewählt werden kann und vom Programm angzeigt wird. Idealerweise wird dafür eine sehr kurze Beschreibung des von der Ziel-Textpassage gesteuerten Anwendungsverhaltens benutzt.

```
• path: /home/alice/zieldatei.conf
```

Hier wird der absolute Dateisystempfad der Zieldatei angegeben innerhalb derer Textpassagen verändert werden sollen.

```
pattern: "'statspush_enabled' => {{value}},"
```

Dieses Feld enthält ein Zielmuster. Mithilfe dieses Musters das einen Platzhalter enthält wird vom Programm der genaue Ort der Ziel-Textpassage identifiziert. Das Zielmuster sollte sowohl den Platzhalter als auch an die Ziel-Textpassage angrenzenden Text enthalten. Wenn die Kombination aus Platzhalter und angrenzendem Text die Ziel-Textpassage nicht eindeutig eingrenzt, dann wird vom Programm ausschließlich die erste übereinstimmende Textpassage modifiziert.

```
• targetValue: "true"
```

Der aktuelle Wert der Ziel-Textpassage. Da das Programm in neueren Versionen beim Start den aktuellen Wert selbstständig ausliest, wird dieser Konfigurationswert in einer der folgenden Versionen entfernt werden. Aktuell muss er jedoch weiterhin in der Konfigurationsdatei angegeben werden.

```
possibleValues:
    - "true"
    - "false"
```

Dies ist die Liste der Werte die mithilfe des Programms ausgewählt und anstelle der Ziel-Textpassage in die Zieldatei geschrieben werden können. Wenn sich der aktuelle Wert nicht in dieser Liste befindet, dann kann mit dem Programm auch nicht auf den ursprünglichen Wert zurückgewechselt werden.

Abbildung 13: Ansicht nach Programmstart

```
Anwendung 1 loggt nach Datei → true
Anwendung 2 Umgebung → staging
Anwendung 2 Test Suite → Development

↑/↓: navigate ←/→: modify q: quit
```

9.4 Benutzung

Start Das Programm wird nach erfolgreicher Installation mit dem Befehl

```
terminal-config-manager
```

von der Kommandozeile aus gestartet. Für jeden Eintrag in der Konfigurationsdatei zeigt das Programm eine Zeile an.

Ansicht Abb. 13 zeigt eine typische Ansicht direkt nach dem Start des Programms. Die ersten drei Zeilen repräsentieren jeweils einen Eintrag in der Konfigurationsdatei und somit eine Ziel-Textpassage mit ihrem aktuellen Wert. Jede dieser Zeilen besteht aus dem in der Konfigurationsdatei vergebenen Titel des Eintrags, einem Pfeil und dem aktuellen Wert der Ziel-Textpassage. Die aktuell ausgewählte Zeile ist fett gedruckt während der aktuelle Wert der ausgewählten Zeile blau dargestellt wird. Die genaue Darstellung ist dabei vom verwendeten Terminal-Emulator und dessen Einstellungen bezüglich Schriftart und Farbwerten abhängig.

Die ausgegraute Zeile am unteren Rand zeigt zu jeder Zeit in Kurzform die verfügbaren Kommandos und die davon ausgelösten Aktionen.

Aktionen Die Hauptfunktionen werden über die vier Pfeiltasten gesteuert. Die Pfeiltasten hoch bzw. runter bewegen die Zeilenmarkierung nach oben bzw. unten. Die Pfeiltasten links bzw. rechts schalten den zur markierten Zeile gehörigen Wert weiter zum nächsten Wert aus der konfigurierten Liste der möglichen Werte (siehe Kapitel 9.3 - Konfiguration). Beim Umschalten eines Werts wird die zugehörige Zieldatei entsprechend modifiziert.

Mit einem Tastendruck auf q kann das Programm jederzeit beendet werden und zur Kommandozeile zurückgekehrt werden.

9.5 Problembehandlung

Fehlende Konfigurationsdatei Wenn beim Programmstart der Fehler

```
Error: No config file found at any of the search paths: ...
```

auftritt, dann bedeutet das, dass bei der Suche nach Konfigurationsdateien an keinem der angegebenen Pfade eine Datei gefunden wurde.

Lösung Es wird wie in Kapitel 9.3 (Konfiguration) beschrieben eine Konfigurationsdatei an einem der validen Dateipfade angelegt. Im Dateisystempfad unter

```
/usr/share/terminal-config-manager/config.yaml
```

befindet sich eine Beispielkonfigurationsdatei, welche als Vorlage genutzt werden kann:

Falsches Konfigurationsdateiformat Wenn beim Programmstart ein Fehler ähnlich

```
An error occured while parsing the configuration file.

The details are: ...
```

auftritt, dann bedeutet das, dass die erste vom Programm gefundene Konfigurationsdatei entweder nicht dem YAML-Format [29] entspricht und/oder fehlende Elemente aufweist.

Lösung Die Fehlermeldung wird weitere Detailinformationen enthalten wie beispielsweise:

```
The top level of the config file should be an object named 'config_lines_to_manage'
```

anhand derer sich das Problem identifizieren lässt. Im Zweifelsfall muss dem Kapitel 9.3 (Konfiguration) bzw. der Problembehandlung für fehlende Konfigurationsdateien in Kapitel 9.5 folgend eine valide Konfigurationsdatei per Hand angelegt werden.

Fehlende Dateizugriffsrechte Wenn bei der Auswahl eines neuen Werts der Fehler

```
terminal-config-manager: <Zieldateipfad>: withFile:
permission denied
```

auftritt, dann bedeutet das, dass dem aktuellen Linux-Nutzer die nötigen Zugriffsrechte fehlen um die Zieldatei zu modifizieren.

Lösung Es muss sichergestellt werden, dass alle in der Konfigurationsdatei definierten Zieldateien vom aktuellen Nutzer modifiziert werden können. Im häufisten Fall ist der aktuelle Nutzer nicht als owner der Datei eingetragen:

• Wenn dies angebracht ist, dann kann der Nutzer der Datei geändert werden:

```
chown <Nutzer> <Zieldateipfad>
```

• Wenn dies angebracht ist, dann können die Schreibrechte der Zieldatei angepasst werden:

```
chmod o+w <Zieldateipfad>
```

Wenn keine der beiden oben genannten Optionen anwendbar ist, dann ist diese Zieldatei nicht für die Modifizierung durch das Programm geeignet.

Literatur

- [1] TEX-Live Project Homepage. URL: https://www.tug.org/texlive.
- [2] Apt Paketmanager Project Homepage. URL: https://wiki.debian.org/AptCLI.
- [3] Arch Linux Project Homepage. URL: https://archlinux.org.
- [4] Bats-core: Bash Automated Testing System. URL: https://github.com/bats-core/bats-core.
- [5] Debian Project Homepage. URL: https://www.debian.org.
- [6] Docker Project Homepage. URL: https://www.docker.com.
- [7] dpkg Paketmanager Manual. URL: https://man7.org/linux/man-pages/man1/dpkg.1.html.
- [8] Eric Evans. *Domain-Driven Design: Tackling Complexity in the Heart of Software*. 1. Aufl. Addison-Wesley, 2003. Kap. 4 Isolating the Domain, S. 68.
- [9] Git Project Homepage. URL: https://git-scm.com.

- [10] Github Issue eines Bugs der selten zu einem Rendering-Problem führt. URL: https://github.com/judah/terminfo/issues/47.
- [II] Github Issue eines Bugs der zum Crash beim Programmstart führen kann. URL: https://github.com/jtdaugherty/vty/issues.
- [12] Glasgow Haskell Compiler Homepage. URL: https://www.haskell.org/ghc.
- [13] Graphmod Project Homepage. URL: https://github.com/yav/graphmod.
- [14] Haddock Project Homepage. URL: https://haskell-haddock.readthedocs.io/en/latest.
- [15] Haskell Project Homepage. URL: https://www.haskell.org.
- [16] Fred Herbert. *The Pragmatic Programmers: Property-Based Testing with PropEr, Erlang, and Elixir*. 1. Aufl. Pragmatic Bookshelf, 2019.
- [17] Jinja2 Project Homepage. URL: https://jinja.palletsprojects.com/en/2.11.x.
- [18] Latex Project Homepage. URL: https://www.latex-project.org.
- [19] Latex-Workshop Project Homepage. URL: https://github.com/James-Yu/LaTeX-Workshop.
- [20] Pacman Project Homepage. URL: https://archlinux.org/pacman.
- [21] Stack Project Homepage. URL: https://docs.haskellstack.org/en/stable.
- [22] Ubuntu Project Homepage. URL: https://ubuntu.com.
- [23] VirtualBox Project Homepage. URL: https://www.virtualbox.org.
- [24] Visual Studio Code Project Homepage. URL: https://code.visualstudio.com.
- [25] Wayland Project Homepage. URL: https://wayland.freedesktop.org.
- [26] Wikipediaartikel zu Terminalemulation. URL: https://de.wikipedia.org/wiki/ Terminalemulation.
- [27] X Server Project Homepage. URL: https://www.x.org.
- [28] xdotool Project Homepage. URL: https://github.com/jordansissel/xdotool.
- [29] YAML Project Homepage. URL: https://yaml.org.
- [30] ydotool Project Homepage. URL: https://github.com/ReimuNotMoe/ydotool.

Glossar

Betatesting "Der Begriff Betatest bezeichnet den Softwaretest eines Software-Produktes im Entwicklungsstadium einer Beta-Version, der unter möglichst realen Anwendungssituationen von

- späteren Benutzern ("Nachfrager") durchgeführt wird." abgewandelter Auszug aus [**beta-testing**] 1, 9
- **GUI** Abkürzung für den Begriff graphical user interface. Zu deutsch: grafische Benutzeroberfläche. 1, 9, 10
- **IDE** Abkürzung für den englischen Begriff integrated development environment integrierte Entwicklungsumgebung 1, 2, 6
- **PDF** Abkürzung für den englischen Begriff portable file format. Es bezeichnet ein weit verbreitetes Dokumentformat. 1, 7
- Platzhalter Ein vordefinierter Text: das englische Wort value umgeben von doppelten geschweiften Klammern: {{value}} Das Format des Platzhalters ist an die Template-Engine Template-Engine Jinja2 [17] angelehnt. Er ist Teil des Zielmusters das zusätzlich Text vor und nach der Ziel-Textpassage enthält. Er markiert den Ort der Ziel-Textpassage relativ zum Zielmuster innerhalb der Zieldatei. 1, 19, 24
- **Property-Based-Testing** Property-Based-Testing bezeichnet eine spezielle Strategie Softwaretests zu formulieren. Statt einer Reihe explizit ausformulierter Tests wird eine Regel formuliert, welche das zu testende Programm für automatisch generierte Eingabewerte einhalten muss. Die in großer Zahl automatisch generierten Testfälle decken mit höherer Wahrscheinlichkeit Grenzfälle durch z.B. besonders große oder abwegige Eingabewerte ab. 1, 3, 7–10
- **Rendering** Im Kontext dieses Programms beschreibt der Begriff Rendering den Prozess der Wandlung eines Zustands des Programms in eine auf dem Bildschirm darstellbare Form, in diesem Fall Text. 1, 10
- **Terminalemulator** "Ein Terminalemulator ist ein Computerprogramm, das die Funktion eines Computer-Terminals nachbildet. Sie wird genutzt, um textbasierte Programme innerhalb einer grafischen Benutzeroberfläche verwenden zu können." - abgewandelter Auszug aus [26] 1, 8
- **Textpassage** Ein Stück Text aus einer Textdatei. Dabei wird sich meist auf eine in der Konfigurationsdatei spezifizierte Zieldatei des Programms bezogen. 1, 16, 18–20, 24
- **Zielmuster** Ein Element innerhalb der Konfigurationsdatei. Es bezeichnet ein Stück Text das einen speziellen Platzhalter, den Text {{value}}, enhält. Es wird vom Programm dazu genutzt den genauen Ort der Ziel-Textpassage innerhalb der Zieldatei zu identifizieren. Das Zielmuster sollte 1, 8, 19, 24