Przedstawienie metod Konstrukcji:

Wieloboki Voronoi

Przygotowali: Piotr Rzadkowski Olgierd Smyka

Wieloboki Voronoi - przedstawienie problemu

Dla chmury n punktów $P = \{P1, P2, ..., Pn\} \subset \mathbb{R}^2$ wieloboki Voronoi definiuje się jako: $V_1 = \{y \in \mathbb{R}^2: d(y, P_1) \leq d(y, P_2) \neq i \neq i \neq 1, \dots, p\}$

 $V_i = \{x \in \mathbb{R}^2: d(x, P_i) < d(x, P_j) \forall j \neq i j = 1,...,n\},$ gdzie: d(.,.) – oznacza odległość (u nas z metryki euklidesowej)

Rozpatrując przestrzeń R² z definicji łatwo zauważyć, że chmura n punktów wejściowych wygeneruje n obszarów (komórek Voronoi), w taki sposób, że dla dowolnego z obszarów dowolny punkt w obszarze będzie znajdował się bliżej określonego punktu ze zbioru punktów, niż od pozostałych n-1 punktów chmury.

Algorytm Fortune'a - idea

https://www.youtube.com/shorts/k2P9yW

https://demonstrations.wolfram.com/Fort unesAlgorithmForVoronoiDiagrams/

Postać łuku - parabola z kierownicą i ogniskiem


```
class Arc:
    directrix: float
    objects = []
    def __init__(self, focus):
        self.focus = focus
        self.a = None
        self.b = None
        self.c = None
    Oclassmethod
    def setDirectrix(cls, directrix, all=True):
        cls.directrix = directrix
        if all:
            for obj in cls.objects:
                obj.updateABC()
   def updateABC(self):
        if self.focus.y == self.directrix:
            return
        f = abs(self.focus.y - self.directrix)/2.0
        vertex = Point(self.focus.x, self.focus.y - f)
        self.a = 1.0 / (4*f)
        self.b = -vertex.x / (2*f)
        self.c = vertex.x**2 / (4*f) + vertex.y
    def intersect(self, arc) → Point:
        a = self.a - arc.a
        b = self.b - arc.b
        c = self.c - arc.c
        x = (-b + sqrt(b**2 - 4*a*c))/(2*a)
        return Point(x, self._unit_val(x))
```

Algorytm Fortune'a - zdarzenia punktowe

- Zdarzenia punktowe:
- Tworzone są tylko raz przy rozpoczęciu algorytmu, dla punktów z wejścia
- Zdarzenia punktowe dodają nowe łuki do struktury T

Zdarzenie punktowe dotyczące łuku o ognisku w punkcie p2

https://blog.ivank.net/fortunes-algorith m-and-implementation.html

Algorytm Fortune'a - zdarzenia punktowe cz.3

W naszym przypadku:

Należy sprawdzić zdarzenia okręgowe!

```
def replace(self, arc_node: Arc, new_arc: Arc):
   arc = arc_node.arc
   old_arc_l = Arc(arc.focus)
   old_arc_r = Arc(arc.focus)
   new_arc.setLeftEdge(old_arc_l)
   new_arc.setRightEdge(old_arc_r)
   old_arc_l.edgeGoingLeft = arc.edgeGoingLeft
   old_arc_r.edgeGoingRight = arc.edgeGoingRight
   old_new_node = Node()
   old_new_node.arc_pair = Pair(old_arc_l, new_arc)
   old_arc_leaf_l = Node()
   old arc leaf l.arc = old arc l
   new_old_node = Node()
   new_old_node.arc_pair = Pair(new_arc, old_arc_r)
   new arc leaf = Node()
   new_arc_leaf.arc = new_arc
   old_arc_leaf_r = Node()
   old_arc_leaf_r.arc = old_arc_r
```

... i odpowiednio podłączyć do T.

Znajdowanie zdarzeń okręgowych

- Jeśli łuk nie ma prawego lub lewego sąsiedniego łuku to nie będzie zdarzenia okręgowego
- Jeśli łuki się nigdy nie przetną, również nie będzie zdarzeń okręgowych.

Zapisujemy zarówno środek okręgu, jak i jego najniższy punkt (klucz sortowania w kolejce zdarzeń)

Algorytm Fortune'a - zdarzenia okręgowe


```
def __handleCircleEvent(self, event):
    T = self.T
    0 = self.0
    leaf: Node = event.node
    lnode: Node = T.leftNbour(leaf)
    rnode: Node = T.rightNbour(leaf)
    al: Arc = lnode.arc
    ar: Arc = rnode.arc
    point: Point = event.cirle_center_point
    closedLeft = leaf.arc.edgeGoingLeft
    closedRight = leaf.arc.edgeGoingRight
    closedLeft.end = point
    closedRight.end = point
    self.__addToDiagram(closedLeft.start, closedLeft.end)
    self.__addToDiagram(closedRight.start, closedRight.end)
    al.setRightEdge(ar, point)
    left_circle_event, right_circle_event = T.handleSquize(leaf)
    if left_circle_event # None:
       0.add(left_circle_event)
    if right_circle_event # None:
        Q.add(right_circle_event)
```

Zakończenie algorytmu

Na koniec algorytmu, musimy zdjąć z T krawędzie które zostały i odpowiednio skrócić je aby nie były zmieściły się w pudełku

Przed dokończeniem i skróceniem krawędzi

Po dokończeniu i skróceniu krawędzi


```
def __finishEdges(self):
   r = self.T.head.next
   while r is not None:
       if r.arc.edgeGoingLeft is not None and r.arc.edgeGoingLeft.end is None:
            e = self.__finishEdgeWithBox(r.arc.edgeGoingLeft)
               self.D.append(e)
       if r.arc.edgeGoingRight is not None and r.arc.edgeGoingRight.end is None:
            e = self.__finishEdgeWithBox(r.arc.edgeGoingRight)
               self.D.append(e)
       if r.next is None:
            break
       r = self.T.rightNbour(r)
def __finishEdgeWithBox(self, edge: Edge):
   line_start = edge.start
   direction = edge.direction
   for start, end in self.edges_segments:
       intersect = lineSegmentIntersect(start, end, line_start, direction)
       if intersect:
            edge.end = intersect
           return (edge.start, edge.end)
```

Algorytm Fortune'a w akcji

Złożoność optymalna: O(nlogn)

Triangulacja Delaunay'a

Kryterium kuli opisanej dla przestrzeni R²

W przestrzeni R² triangulacja Delaunaya jest to jedyna taka triangulacja powłoki wypukłej chmury punktów P na płaszczyźnie, że żaden punkt ze zbioru P nie znajduje się wewnątrz okręgu opisanego na trójkącie należącym do triangulacji.

Warunkiem jednoznaczności triangulacji jest brak współokręgowości dowolnych czterech punktów zbioru wejściowego P.

Konstrukcja dualna triangulacji Delaunay'a

https://upel.agh.edu.pl/pluginfile.php/298460/mod_resource/content/1/wyklad_vor_del.pdf

Algorytm inkrementacyjny Bowyera-Watsona

Pierwszym krokiem algorytmu jest utworzenie początkowej (sztucznej) triangulacji T₀, której otoczka wypukła zawiera wszystkie punkty zbioru wejściowego.

W naszym algorytmie ze względu na prostotę i bezproblemowość w implementacji na początkową triangulację składają się dwa trójkąty prostokątne tworzące

prostokąt ograniczający.

```
4 3 2 2 3 4 5 6 1 2 3 4 5 6
```

```
class Triangulation:
   def init (self, P):
       self.edges = {}
       self.triangles = set()
       self.data frame, self.map vertexes, self.central point, self.central triangle = self.get triangulation start(P
   def get triangulation start(self, P):
       low_left = Point(float('inf'), float('inf'))
       up right = Point(float('-inf'), float('-inf'))
           if p.x < low left.x: low left.x = p.x
           if p.x > up right.x: up right.x = p.x
           if p.y < low left.y: low left.y = p.y
           if p.y > up right.y: up right.y = p.y
       data frame = [Point(low left.x, low left.y), Point(up right.x, up right.y)]
       central point = Point((low left.x + up right.x)/2, (low left.y + up right.y)/2 + 1e-2)
       low left.x += -10**4
       low left.v += -10**4
       map_vertexes = [low_left, Point(up_right.x, low_left.y), up_right, Point(low_left.x, up_right.y)]
       self.triangles.add(Triangle(low_left, Point(up_right.x, low_left.y), up_right))
       self.triangles.add(Triangle(low_left, up_right, Point(low_left.x, up_right.y)))
       central triangle = None
       for tri in self.triangles:
           if central point in tri: central triangle = tri
           self.edges[(tri.p1, tri.p2)] = tri.p3
           self.edges[(tri.p2, tri.p3)] = tri.p1
           self.edges[(tri.p3, tri.p1)] = tri.p2
       return data frame, map vertexes, central point, central triangle
```

Algorytm inkrementacyjny Bowyera-Watsona cz.2

W celu stworzenia triangulacji T_i dodajemy i-ty punkt ze zbioru wejściowego P. Naszym celem jest uzyskanie prawidłowej triangulacji z punktów stanowiących wierzchołki T₀ oraz z dotychczas dodanych punktów w ilości i. Poszukujemy podobszar do retriangulacji poprzez sąsiedztwo topologiczne. Obszar ten to

wszystkie trójkąty triangulacji, których koła opisane zawierają dodany punkt.


```
def delaunev(Points):
   P = get_points(Points)
   T = Triangulation(P)
   for p in P:
       containing_tri = find_containing(T, p)
       tri to remove = [] # trójkąty do usuniecia
       tri visited = [] # odwiedzone trójkaty
       stack = [containing tri]
       while len(stack) > 0:
           curr_tri = stack.pop()
           tri_visited.append(curr_tri)
           if curr_tri.in_circle(p):
               tri to remove.append(curr tri)
               tri adjacent = T.find all adjacent tri(curr tri) # trójkaty sasiadujące z curr tri
                for triangle in tri adjacent:
                   if triangle not in tri visited and triangle not in stack:
                       stack.append(triangle)
       T.adjust_triangulation(tri_to_remove, p)
   T.remove_map_vertexes()
   return T
```

Algorytm inkrementacyjny Bowyera-Watsona cz.3

Kolejnym krokiem jest retriangulacja wyznaczonego obszaru (wnęki). Osiągniemy to poprzez usunięcie wszystkich przekątnych wnęki, a następnie dodanie krawędzi łączących wierzchołki wnęki z nowo-dodanym punktem. Warto zaznaczyć, że dla złożoności algorytmu istotnym jest złożoność operacji znajdowania trójkąta triangulacji zawierającego dodawany w iteracji punkt.

Algorytm inkrementacyjny Bowyera-Watsona cz.3

Ostatnim etapem algorytmu Bowyera-Watsona jest usunięcie z triangulacji T_n wszystkich trójkątów, które posiadają przynajmniej jeden wierzchołek należący do zbioru wierzchołków triangulacji T₀.

```
class Triangulation:
    def __init__(self, P):
        self.edges = {}
        self.triangles = set()
        (self.data_frame, self.map_vertexes, self.central_point,
        self.central_triangle) = self.get_triangulation_start(P)

# pozostale metody klasy...

def remove_map_vertexes(self):
        triangles = list(self.triangles)
        for tri in triangles:
            if tri.pl in self.map_vertexes: self.remove(tri)
            elif tri.p2 in self.map_vertexes: self.remove(tri)
            elif tri.p3 in self.map_vertexes: self.remove(tri)
```


Jak z triangulacji Delaunay'a otrzymać diagram Voronoi?

Aby skorzystać z dualności konstrukcji triangulacji Delaunay'a należy dla każdego trójkąta zbadać położenie środka jego okręgu opisanego i środka okręgu opisanego na trójkącie dzielącym z nim krawędź (o ile istnieje).


```
def add edgeV(T, V, triangle edge, triangle):
   triangles o = get triangles o(triangle, triangle edge, T)
   if len(triangles o) == 2:
       found_adjacent(T, V, triangles_o)
   elif len(triangles o) == 1:
       not_found_adjacent(T, V, triangle_edge, triangle)
def voronoi(T, Points):
   V = Voronoi()
   for triangle in T.triangles:
       add edgeV(T, V, (triangle.p1, triangle.p2), triangle)
       add_edgeV(T, V, (triangle.p2, triangle.p3), triangle)
       add edgeV(T, V, (triangle.p3, triangle.p1), triangle)
   if len(T.triangles) == 0:
       no triangles(T, V, Points)
   map edges = [(T.map vertexes[0], T.map vertexes[1]), (T.map vertexes[1]), T.map vertexes[2]),
                (T.map vertexes[3], T.map vertexes[0])]
   for edge in map edges:
       V.edges.add(edge)
   return V.edges
```

Wyniki algorytmu

Punkty zbioru wejściowego Środki okręgów opisanych na trójkątach triangulacji

Porównanie czasów wykonania obu algorytmów

r	1	Fortune [s]	Delaunay [s]
5	5	0.0369065	0.002403021
1	0	0.1323271	0.005480766
2	0	0.4149733	0.011526108
3	5	1.0874844	0.026529312
5	0	2.1889706	0.035391092
7	5	4.1368194	0.052121162
10	00	5.2197244	0.086582422
15	50	12.1797957	0.118786812
20	00	15.7140830	0.17547369
30	00	26.4622085	0.270816565
40	00	41.9027805	0.365414143
50	00	60.4842865	0.645820618
10	00	210.5087557	1.244166613

Bibliografia

[1] Monika Wiech, "Triangulacja Delaunaya w geometrii obliczeniowej", Uniwersytet Jagielloński, Kraków, obrona 2020-09-22 ("Delaunay triangulation in computational geometry")

[2] Mark de Berg, Marc van Kreveld, Mark Overmars, Otfried Schwarzkopf, "Geometria Obliczeniowa - Algorytmy i zastosowanie" (polskie tłumaczenie "Computational Geometry - Algorithms and Applications" - z angielskiego przełożył Mirosław Kowaluk)

[3] https://jacquesheunis.com/post/fortunes-algorithm/

[4] https://pvigier.github.io/2018/11/18/fortune-algorithm-details.html

[5] Dr inż. Barbara Głut, Wykład przedmiotu *Algorytmy Geometryczne* na Akademii Górniczo-Hutniczej w Krakowie im. Stanisława Staszica w Krakowie (2023/2024)