

"Neural" Networks

- No area of data science is more subject to hyperbole than neural networks
- Common myths
 - Neural networks are like the human brain
 - Neural networks learn from themselves
 - Neural networks are black boxes

Basic Ideas of Neural Networks

- There are 3 ways that a neural network is typically characterized
 - Network architecture
 - Connections and arrows in diagram
 - Activation functions
 - Functions at each layer of previous layer
 - Since each layer goes into the activation function of the next layer, the primary mathematical concept is composition
 - Composition: f(g(x))
 - Optimization process
 - Because neural networks are nonlinear, the optimization process is a crucial way to understand the model

Basic Ideas of Neural Networks

- What is missing from this list
- Data preparation—the real "hidden layer" of neural networks
- Some of the data preparation is standard across ML
 - Cleaning (handling missings, etc.)
 - Rebalancing data
- What is often different for NN's
 - Feature extraction
 - Label identification
 - More on these next time!

Activation Functions

- Each layer looks like an activation function applied to a linear combination of the previous layer
 - Linear combination: $L = a + bx_1 + cx_2 + ...$
- Most common activation functions
 - ReLU—Rectified Linear Unit:
 - Functional form: max(0, L)
 - Logit: same as the logistic function in logistic regression
 - Function form: 1/(1 + e^{-L})
 - Softplus
 - Function form: log(1 + e^L)
 - Hyperbolic tangent
- Structure is true for numerical or categorical target, but....
 - For numeric target, activation function is just linear combination of last layer

Logistic Regression as a Neural Network

- The number of hidden layers can be from 0 to ???
- Think about a neural network with
 - No hidden layers
 - Logit activation function
- The neural network the result will be a linear combination of the raw inputs, put into a logit function.
- The coefficients of the linear combinations are then optimized for
- This is exactly a logistic regression

When to Use Neural Networks

- If neural networks are so great, why aren't they used everywhere?
- There are two main classes of problems that neural networks are particularly good at solving
 - Image classification
 - Text generation
- For other predictive problems, other predictive models perform as well or better
 - Xgboost is typically better
 - Even simpler models can perform as well for less computational and productionization cost
- Mhys
 - Hidden layers function to extract better features
 - For data dataframe, data is already in logical structure
 - For example, in image classification intermediate data features are crucial
 - Does not mean that neural networks are not worthwhile for tabular data (more later!)

Optimization Methods For Neural Networks

- Most methods for optimizing a neural network utilize back-propagation
- Basic method for neural networks
 - Initialize weights with initial guess
 - Calculate loss function (usually RMSE)
 - Optimize parameters for 1 layer back, keeping earlier values fixed
 - Repeat until you get to first hidden layer
 - Once layers values are optimized, we determine values through each stage
 - forward propagation
 - Repeat
- The optimization steps are typically done through gradient descent, an iterative approach to optimization

Neural Networks in R

- We will use two different packages
 - neuralnet to get started
 - keras for building neural networks on more complicated data
- Neuralnet syntax similar to most modeling methods in R
- Keras syntax will be more similar to knn (input data matrix, etc.)
- We will only use neuralnet today
- Syntax: neuralnet(<model formula>, data = <dataframe>, act.fct = <activation function, hidden = c(<vector describing hidden layers))
- The activation function can be customized
- hidden option: c(2, 4) will have 2 hidden layers, with 2 nodes in first layer and 4 in second