Demand estimation and logistics optimization of oxygen supply amid COVID-19 pandemic

By: Arnab Paul Choudhury Varun Pandey 1 Problem statement

Let's start with the problem at hand

7,127 MT*

Daily oxygen production capacity

8,500 MT*

Liquid oxygen produced

4,880 MT*

Demand for oxygen in 12 high-risk states

(*Figures as of 20 April)

Major challenges

- Un-optimized demand-supply gap.
- Improper demand estimation.
- Turnaround time for pick-up and delivery over 1 week.
- Oxygen rich states concentrated in the eastern and southern regions of India.

2 — Solution

Our methodology for solving the problem

Characteristics of our Solution

Our solution to the problem statement is divided into two parts:

- Demand estimation using mathematical modeling.
- Optimizing allocation for given constraints.

Estimation of demand

Our approach for estimating demand of oxygen

Characteristics

We have used two mathematical models to estimate demand for a particular state using previous data:

- SIR Model
- SUTRA Model

SIR Model

Flowchart of the model

Important parameters

There are two key parameters used in the model:

- β : Effective contact rate of the disease. A infected person comes into contact with βN individuals per unit time, out of which the susceptible fraction is S/N.
- γ : The mean recovery rate. The mean time taken for an infected individual to pass the infection is $1/\gamma$.

Variables used in the model

S(t)

Population susceptible to the disease.

I(t)

People who have been infected with the disease

R(t)

People who have either recovered or died due to the disease,

Equations used

The set of equations used is as follows:

$$\begin{cases} \frac{dS}{dt} &= -\beta SI \\ \frac{dI}{dt} &= \beta SI - \gamma I \\ \frac{dR}{dt} &= \gamma I \end{cases}$$

SUTRA Model

Flowchart for the model

Important parameters

β

Effective contact rate of the disease. (Similar to SIR model)

Y

The mean recovery rate. (Similar to SIR model)

 ϵ

Ratio of detected infections to total infections.

Variables used in the model

The model makes use of five variables:

- S(t): Number of people susceptible to infection.
- U(t): Number of people who are undetected, but infected.
- T(t): Number of people who have tested positive.
- R_T(t): Number of recovered people who were tested positive.
- R_U(t): Number of recovered people who were undetected.

Equations used

The set of equations used is as follows:

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \beta SU$$

$$\frac{\mathrm{d}T}{\mathrm{d}t} = \beta SU - \gamma T$$

$$\frac{\mathrm{d}U}{\mathrm{d}t} = \beta SU - \epsilon \beta SU - \gamma U$$

$$\frac{\mathrm{d}R_T}{\mathrm{d}t} = \gamma T$$

$$\frac{\mathrm{d}R_U}{\mathrm{d}t} = \gamma U$$

Optimising allocation of oxygen

Our approach for allocation of supplies

Processing the data

- After running the models on our data, we obtained the estimated no. of cases in a particular state in one day for a timestep of 10 days.
- In order to get the estimated demand of oxygen in the state, we applied a conversion factor of 0.01, where:

No.of patients requiring oxygen on a given day (in MT)

Estimated no. of cases in the state on that day

Methodology and constraints

- We have used least cost methodology to optimize the allocations with some constraints.
- Firstly, each person requiring oxygen will have an estimated demand of 3 MT per day.
- Secondly, the most preferred route will have a distance of less than 200 km, with second preference given to routes from 200 to 400 km, and least preference to longer routes.

Methodology and constraints

- In order to calculate distance, we have assumed the states as to be points with latitudes and longitudes. The distance for a route from, say, supplier A to the state 1 would thus be the distance between their latitudes and longitudes.
- The suppliers have been assumed to be states as well.

Dataframe for least cost matrix

State/UT	1	2	3	 36	Supply capacity	supplied
Supplier	[a,b]	[a,b]	[a,b]	 [a,b]	r	S
1	[a,b]	[a,b]	[a,b]	 [a,b]	r	S
2	[a,b]	[a,b]	[a,b]	 [a,b]	r	S
•••				 ••••	••••	••••
17	[a,b]	[a,b]	[a,b]	 [a,b]	r	S
demand	p	p	p	 p		
Demand fulfilled	q	q	q	 q		

Dataframe for least cost matrix

Where for each iteration:

- a is the distance between the supplier and state.
- b is the amount allocated to this state from the supplier.
- p is the estimated demand in the state.
- q is the demand fulfilled.
- r is the supply capacity of the supplier.
- s is the amount supplied by the supplier.

Possible improvements

- While we have used least cost method, we are also looking at other optimization methods which can be used for the dataset.
- The solution can be improved by considering other factors, such as unavailability of tankers, though this will affect the complexity as more variables will be needed to be introduced.

Thank you