Máster Universitario en Nuevas Tecnologías en Informática

Asignatura "Visión Artificial"

Geometría Proyectiva II

Structure from motion:
Geometría Epipolar
Autocalibración
Obtención de estructura 3D
Reconstrucción densa

Facultad de Informática Universidad de Murcia Curso 2018/19

Introducción

Objetivo:

- Recuperar información de "profundidad" (estructura 3D de la escena) a partir de dos (o más) imágenes:
- Fácil si se conoce totalmente la calibración (extrínseca e intrínseca) de las cámaras...
- ... pero también se puede hacer bajo ciertas circunstancias aunque no se conozca dicha información a priori.

Restricción epipolar (I)

 Dado un punto 3D, cuya proyección 2D conocemos en la imagen izquierda → su proyección en la imagen derecha ha de estar forzosamente en una línea (recta epipolar):

Restricción epipolar (II)

¿Cuál es la recta epipolar l₂ correspondiente al punto x₁?

Matriz fundamental (I)

*l*₂ por tanto, es la recta que pasa por la proyección de dicho par de puntos 3D en la imagen 2 (*cross product*):

$$oldsymbol{l}_2 = oldsymbol{e}_2 imes exttt{M}_2 exttt{M}_1^+ oldsymbol{x}_1$$

• Y por tanto x_2 debe pasar por dicho I_2 , es decir:

$$\boldsymbol{x}_{2}^{\mathsf{T}}\boldsymbol{l}_{2} = \boldsymbol{x}_{2}^{\mathsf{T}} \underbrace{\boldsymbol{e}_{2} \times \mathtt{M}_{2} \mathtt{M}_{1}^{+}}_{\mathtt{F}} \boldsymbol{x}_{1} = 0$$

• Si recordamos que $[oldsymbol{v}]_{ imes}oldsymbol{x}=oldsymbol{v} imesoldsymbol{x}$, entonces:

Matriz fundamental (II)

 Todas las líneas epipolares de la imagen derecha pasan por el correspondiente epipolo e₂, independientemente del punto x₁ del que vengan:

• Por ello, para todo x_1 se cumple que $e_2^\mathsf{T} \mathbf{F} x_1 = 0$; es decir que, forzosamente:

$$m{e}_2^\mathsf{T}\mathbf{F} = \mathbf{0}^\mathsf{T}$$
 El epipolo derecho es justamente el espacio nulo de F^T ($F^\mathsf{T} e_{\mathfrak{p}} = \mathbf{0}$)

Líneas epipolares (I)

- Ejemplo real:
 - Comprobar visualmente cómo en cada par de líneas epipolares correspondientes han de estar todas las correspondencias de puntos:

 (en este caso ambos epipolos "caen fuera" de la imagen)

Líneas epipolares (II)

- Otro ejemplo: planos de imagen alineados:
 - Las líneas epipolares generadas son paralelas
 - Los epipolos caen en el infinito

Líneas epipolares (III)

- Un tercer ejemplo: traslación pura (sin rotación)
 - Las líneas epipolares convergen en un "foco de expansión", correspondiente al epipolo (que cae en la misma posición en ambas imágenes):

Cómputo de F

Para cada matching p=(u,v,1)^T ↔ p'=(u',v',1)^T, usando la restricción epipolar p^TFp'=0, podemos obtener una ecuación (homogénea) para los 9 coeficientes de F (F₁₁, ...

$$F_{33}$$
): $p^T F p' = 0$

$$(u, v, 1) \begin{pmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{pmatrix} \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = 0$$

$$(uu', uv', u, vu', vv', v, u', v', 1) \begin{pmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{pmatrix} = 0$$

Algoritmo de los 8 puntos (I)

- Análogamente a lo que ocurría en la estimación de las homografías, hay 9 incógnitas, pero por el factor de homogeneidad sólo hay 9-1=8 gdl.
- Puesto que cada correspondencia induce ahora 1 ecuación (no 2 como en la estimación de H)...
- ... hacen falta al menos 8 correspondencias para resolver y obtener una F completa (no 4 como para estimar una H):

Algoritmo de los 8 puntos (II)

 Queda entonces un sistema homogéneo que se resuelve igual que hacíamos en el tema anterior para H (SVD, eigendecomposition, ...):

$$\mathbf{W} \begin{bmatrix} u_{1}u'_{1} & u_{1}v'_{1} & u_{1} & v_{1}u'_{1} & v_{1}v'_{1} & v_{1} & u'_{1} & v'_{1} \\ u_{2}u'_{2} & u_{2}v'_{2} & u_{2} & v_{2}u'_{2} & v_{2}v'_{2} & v_{2} & u'_{2} & v'_{2} & 1 \\ u_{3}u'_{3} & u_{3}v'_{3} & u_{3} & v_{3}u'_{3} & v_{3}v'_{3} & v_{3} & u'_{3} & v'_{3} & 1 \\ u_{4}u'_{4} & u_{4}v'_{4} & u_{4} & v_{4}u'_{4} & v_{4}v'_{4} & v_{4} & u'_{4} & v'_{4} & 1 \\ u_{5}u'_{5} & u_{5}v'_{5} & u_{5} & v_{5}u'_{5} & v_{5}v'_{5} & v_{5} & u'_{5} & v'_{5} & 1 \\ u_{6}u'_{6} & u_{6}v'_{6} & u_{6} & v_{6}u'_{6} & v_{6}v'_{6} & v_{6} & u'_{6} & v'_{6} & 1 \\ u_{7}u'_{7} & u_{7}v'_{7} & u_{7} & v_{7}u'_{7} & v_{7}v'_{7} & v_{7} & u'_{7} & v'_{7} & 1 \\ u_{8}u'_{8} & u_{8}v'_{8} & u_{8} & v_{8}u'_{8} & v_{8}v'_{8} & v_{8} & u'_{8} & v'_{8} & 1 \end{bmatrix} \begin{bmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{bmatrix}$$

- Todo lo que allí aplicábamos vale también aquí:
 - Si hay más de 8 correspondencias → mínimos cuadrados.
 - Conveniente prenormalizar coordinadas de entrada (para evitar problemas numéricos).

Ejemplo de estimación de F (I)

Extracción de features (sólo imagen izquierda)

Líneas epipolares para la F obtenida (cada I'=Fx, y $I=F^Tx'$)

Reconstrucción 3D obtenida, vista desde otros lugares (veremos más adelante cómo se realiza)

Ejemplo de estimación de F (II)

Influencia de la normalización:

Propiedades de la matriz fundamental

- La restricción epipolar es simétrica:
 - Todos los resultados dados para la imagen derecha son válidos igualmente para la imagen izquierda (cambiando F por F^T)
- Por su propia forma ("contiene" en su factorización una matriz [e₂]_x antisimétrica, y por tanto de rango 2),
 F es deficitaria en rango:
 - F tiene rango 2 (y por tanto, sólo dos valores singulares no nulos), a pesar de ser de 3x3.

Algoritmo de los 8 puntos (y III)

- Puesto que hemos visto que la F ha de cumplir la restricción de tener rango 2...
- ... y dicha restricción no tiene por qué cumplirla la matriz obtenida por el algoritmo de los 8 puntos...
- ... como último paso del mismo se suele forzar dicha condición realizando la SVD de F=U·diag(v₁, v₂, v₃)·V^T, (que debe tener un tercer valor singular v₃ cercano a cero)...
- ... y reconstruyendo la F eliminando dicho v_3 , es decir, $F_{rank2} = U \cdot diag(v_1, v_2, 0) \cdot V^T$

Matriz esencial (I)

 Considérense dos cámaras en posición general, donde a la primera, por comodidad, se la considera alineada con el sistema de coordenadas del mundo (R₁=I, C₁=(0,0,0)^T), mientras que la otra está en una posición general (R₂=R, C₂=C):

$$\begin{aligned} \mathbf{M}_1 &= \mathbf{K}_1[\mathbf{I}|\mathbf{0}] & \qquad t = -\mathbf{R}\boldsymbol{C} \\ \mathbf{M}_2 &= \mathbf{K}_2[\mathbf{R}| - \mathbf{R}\boldsymbol{C}_2] \stackrel{\checkmark}{=} [\mathbf{K}_2\mathbf{R}|\mathbf{K}_2\boldsymbol{t}] \end{aligned}$$

• Puesto que el centro (homogéneo) de M_1 es $(0,0,0,1)^T$, el epipolo derecho $e_2 = M_2(0,0,0,1)^T$, es decir:

$$oldsymbol{e}_2 = oldsymbol{\mathtt{K}}_2 oldsymbol{t}$$
 de $oldsymbol{\mathit{M}}_{_2}$

Matriz esencial (II)

• Por otro lado, por la sencilla forma de M_1 se tiene que $M_1^+ = [I|0]^T K_1^{-1}$, con lo que:

$$\mathbf{M}_2\mathbf{M}_1^+ = \mathbf{K}_2\mathbf{R}\mathbf{K}_1^{-1}$$

Según la forma que sabíamos que tenía F:

$$\mathtt{F} = [\boldsymbol{e}_2]_{ imes} \mathtt{M}_2 \mathtt{M}_1^+$$

 Resulta ahora que F, en función ya de la calibración de M_1 y M_2 , resulta ser: $t = -\mathbf{R} C$ $\mathbf{F} = [\mathbf{K}_2 \boldsymbol{t}]_{\times} \mathbf{K}_2 \mathbf{R} \mathbf{K}_1^{-1}$

$$\mathtt{F} = [\mathtt{K}_2 \boldsymbol{t}]_{ imes} \mathtt{K}_2 \mathtt{R} \mathtt{K}_1^{-1}$$

Matriz esencial (III)

 Aprovechando la siguiente propiedad de las matrices cross product (que no demostraremos aquí; HZ, apéndice):

Pasar una matriz A

"a la izquierda" de una
$$[v]_x$$

$$[v]_{\times} \mathbf{A} = \mathbf{A}^{-\mathsf{T}} [\mathbf{A}^{-1} \mathbf{v}]_{\times}$$

 ... podemos manipular la expresión anterior para "llevar" K₂ a la izquierda de la expresión

$$\mathbf{F} \, = \, \mathbf{K}_2^{-\mathsf{T}} [\mathbf{K}_2^{-1} \mathbf{K}_2 \boldsymbol{t}]_{\times} \mathbf{R} \mathbf{K}_1^{-1} \, = \, \mathbf{K}_2^{-\mathsf{T}} \ [\boldsymbol{t}]_{\times} \mathbf{R} \ \mathbf{K}_1^{-1} \, = \, \mathbf{K}_2^{-\mathsf{T}} \mathbf{E} \ \mathbf{K}_1^{-1}$$

Matriz esencial:

Depende sólo de extrínsecos (R y C)5 gdl (3+3-1 por homogeneidad)

$$\mathtt{E} = [oldsymbol{t}]_{ imes}\mathtt{R}$$

Matriz esencial (IV)

 La matriz esencial trabaja con "rayos reales" (puntos de imagen a los que se "deshace" la transformación de imagen usando las inversas de las calibraciones intrínsecas K₁ y K₂):

Propiedades de la matriz esencial

 Sólo depende de las posiciones relativas entre las cámaras, dadas por R y C (y no de K₁ y K₂):

- Al igual que F, tiene tamaño 3x3 y rango 2 (por lo que su tercer valor singular es nulo)...
- ...pero además, en este caso por su forma particular (desaparecen K₁ y K₂), sus dos valores singulares no nulos son iguales.

Ambigüedad proyectiva (I)

- Supongamos que, a partir de una serie de correspondencias entre puntos de dos imágenes ({x1↔x2}) llegamos a una determinada solución compuesta por dos cámaras M₁ y M₂, y el correspondiente conjunto de puntos 3D triangulados {X}.
- El problema es que, si dicha solución satisface las ecuaciones de proyección, también lo harán las siguientes matrices P₁ y P₂, y el conjunto de puntos 3D X' alternativos (obtenidos con cualquier matriz D 4x4, invertible):

$$egin{aligned} oldsymbol{x}_1 &= \mathtt{M}_1 oldsymbol{X} &= \mathtt{M}_1 oldsymbol{\mathsf{D}} oldsymbol{\mathsf{D}}^{-1} oldsymbol{X} &= \mathtt{P}_1 oldsymbol{X}' \ oldsymbol{x}_2 &= \mathtt{M}_2 oldsymbol{X} &= oldsymbol{\mathsf{M}}_2 oldsymbol{\mathsf{D}} oldsymbol{\mathsf{D}}^{-1} oldsymbol{X} &= \mathtt{P}_2 oldsymbol{X}' \ oldsymbol{\mathsf{X}}' &= \mathtt{P}_2 oldsymbol{X}' \end{aligned}$$

Ambigüedad proyectiva (II)

- Hay infinitas reconstrucciones (par de cámaras y conjunto de puntos 3D) consistentes con un par de proyecciones.
 - Podríamos obtenerlas todas ellas simplemente usando las distintas matrices D 4x4 (con 16-1=15 gdl).
 - Las matrices D no son más que homografías 3D, que transforman el espacio de forma similar a como un plano es deformado por una homografía 2D.

Ambigüedad proyectiva (III)

- · Teorema fundamental de la geometría proyectiva:
 - Si no se tiene información adicional de calibración...
 - ...sólo a partir de correspondencias entre puntos de dos imágenes se puede obtener una fundamental F...
 - ...y a partir de ella una reconstrucción 3D...
 - ...PERO siempre tendremos la mencionada <u>ambigüedad</u> <u>proyectiva</u>.
- Sin embargo, conociendo la calibración de las cámaras (K₁ y K₂), es posible obtener una reconstrucción 3D similar:
 - Donde la única ambigüedad sería la escala global del conjunto escena-cámaras:
 - "París vs. maqueta de París"

Autocalibración (I)

- Es importante, pues, disponer de la calibración:
 - Si la conocemos a priori, OK
 - ¿Y si no? → procedimientos de autocalibración.
- Múltiples posibilidades, pero casi todas basadas en la manipulación algebraica de las matrices de cámara / homografías para "cancelar" rotaciones aprovechando propiedad R·R^T=R^T·R=I
- Utilizaremos las siguientes matrices de conveniencia para, introduciéndolas en las expresiones, lograr dichas cancelaciones:

$$\boldsymbol{\omega} = \mathtt{K}^{-\mathsf{T}} \mathtt{K}^{-1} \quad \boldsymbol{\omega}^* \equiv \boldsymbol{\omega}^{-1} = \mathtt{K} \mathtt{K}^\mathsf{T}$$

• ... y obtener así ecuaciones para sus coeficientes y, a partir de ellos, extraer las matrices de calibración.

Autocalibración (II)

Así pues, resolviendo w, y sabiendo que:

$$\boldsymbol{\omega} = \mathtt{K}^{-\mathsf{T}} \mathtt{K}^{-1}$$

- K puede entonces obtenerse a partir de la descomposición de Cholesky de w (invirtiendo la K-1 así obtenida):
- Recordemos que:
 - La descomposición de Cholesky de una matriz real simétrica y definida positiva A se define como A=L^TL, con L una matriz triangular superior.
 - La inversa de una matriz triangular superior con diagonal no nula siempre existe, y es a su vez siempre otra matriz triangular superior.

Autocalibración (III)

 Diversas simplificaciones de cámara de las comúnmente empleadas (recordar tema anterior), surgen distintas matrices w (o bien w*) simplificadas, cada vez con menos gdl:

$$\mathbf{K} = \begin{bmatrix} f & 0 & o_x \\ 0 & fr & o_y \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \qquad \boldsymbol{\omega} = \begin{bmatrix} a & 0 & c \\ 0 & b & d \\ c & d & 1 \end{bmatrix}$$

$$\mathtt{K} = egin{bmatrix} f & 0 & 0 \ 0 & fr & 0 \ 0 & 0 & 1 \end{bmatrix} \qquad o \qquad oldsymbol{\omega} = egin{bmatrix} a & 0 & 0 \ 0 & b & 0 \ 0 & 0 & 1 \end{bmatrix}$$

$$\mathtt{K} = \mathtt{K}_f = egin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad o \qquad oldsymbol{\omega} = egin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Autocalibración mediante planos (I)

- Primera posibilidad: calibrar mediante homografías planoimagen:
 - Sabemos (tema anterior) que cualquier H plano-imagen tenía la forma:

$$\mathtt{H} = \mathtt{K}[\hat{\mathtt{R}}|oldsymbol{t}]$$

(es decir, sus dos primeras columnas son ortogonales)

– Entonces, dado que $\boldsymbol{\omega} = \mathtt{K}^{-\mathsf{T}} \mathtt{K}^{-1}$, sabemos que:

$$\mathbf{H}^{\mathsf{T}}\boldsymbol{\omega}\mathbf{H} = \begin{bmatrix} \lambda & 0 & ? \\ 0 & \lambda & ? \\ ? & ? & ? \end{bmatrix}$$

De cada plano, pues, podemos obtener 2 restricciones lineales sobre w: una igualando el elemento (1,2) de H™H a cero, y la otra igualando los elementos 1,1 y (2,2). Juntando las necesarias (según los gdl de w para nuestras suposiciones de cámara), podremos obtener nuestra K.

Autocalibración mediante planos (II)

- Ejemplo típico de calibración de cámara (p.e., aplicación disponible en la OpenCV).
- Se mueve un plano con un patrón de calibración delante de la cámara, y se toman varias imágenes:

Autocalibración mediante planos (III)

- Con dichas homografías, se obtiene primero la *K* a través de las ecuaciones obtenidas para *w*.
- Naturalmente, después se puede recuperar la R y la C de la cámara respecto al plano en cada imagen, y reproyectar el patrón y/o hacer realidad aumentada:

Autocalibración mediante rotaciones

- Segunda posibilidad: usar la homografía inducida entre dos imágenes por una rotación de cámara:
 - Si recordamos la forma de dicha *H* (tema anterior):

$$H = KRK^{-1}$$

- Podemos volver a usar $\omega = K^{-T}K^{-1}$ para obtener ahora ecuaciones de la forma $H^{T}\omega H = \omega$:

$$\mathtt{H}^\mathsf{T} \boldsymbol{\omega} \mathtt{H} = \mathtt{K}^{-\mathsf{T}} \mathtt{R}^\mathsf{T} \mathtt{K}^\mathsf{T} \ \mathtt{K}^{-\mathsf{T}} \mathtt{K}^{-1} \ \mathtt{KRK}^{-1} = \mathtt{K}^{-\mathsf{T}} \mathtt{K}^{-1} = \boldsymbol{\omega}$$

- De nuevo, con suficientes de ellas podremos despejar el número de incógnitas necesario para la forma de w de nuestra cámara, y a partir de ahí obtener la K por Cholesky.
- Nota: podemos forzar det(H)=1 para "deshomogeneizar" la igualdad.

Autocalibración mediante fundamentales

• También está la tercera posibilidad de usar la forma estudiada para la matriz fundamental, $\mathbf{F} = [\mathbf{e}_2]_{\times} \mathbf{KRK}^{-1}$:

$$\mathbf{F}\boldsymbol{\omega}^*\mathbf{F}^\mathsf{T} = [\boldsymbol{e}_2]_\times \mathbf{K}\mathbf{R}\mathbf{K}^{-1}\mathbf{K}\mathbf{K}^\mathsf{T}\mathbf{K}^\mathsf{T}\mathbf{K}^\mathsf{T}\mathbf{K}^\mathsf{T}[\boldsymbol{e}_2]_\times^\mathsf{T} = [\boldsymbol{e}_2]_\times \boldsymbol{\omega}^*[\boldsymbol{e}_2]_\times^\mathsf{T}$$

 Sin embargo, lamentablemente aquí no es posible eliminar la homogeneidad de forma sencilla:

$$\mathbf{F}\boldsymbol{\omega}^*\mathbf{F}^\mathsf{T} = \lambda[\boldsymbol{e}_2]_{ imes}\boldsymbol{\omega}^*[\boldsymbol{e}_2]_{ imes}$$

 ... y eso nos lleva a ecuaciones NO lineales, no tan simples de resolver (ecuaciones de Kruppa).

Autocalibración mediante ecualización de SVD de E

 Una posibilidad alternativa, bastante sencilla, consiste en suponer una cámara "diagonal":

$$\mathbf{K}_f = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Y explotar el hecho de que la matriz esencial $E = [t]_{\times}R$ tiene **IGUALES** sus dos valores singulares no nulos.
- Entonces, variando f, podemos calcular para cada matriz E=K^TFK resultante, un "factor de discrepancia" entre sus dos primeros valores singulares, s₁ y s₂:

$$d = \frac{s_1 - s_2}{s_1 + s_2}$$

Calibración mediante ecualización de SVD de E

 Sólo queda buscar el mínimo de dicho factor de discrepancia al variar la f:

• Estos son los valores de F y la E para este ejemplo:

$$\mathbf{F} = \begin{bmatrix} 0.208 & 0.113 & -0.337 \\ 0.144 & -0.128 & -0.574 \\ 0.366 & 0.573 & 0.043 \end{bmatrix}$$

$$\mathbf{F} = \begin{bmatrix} 0.208 & 0.113 & -0.337 \\ 0.144 & -0.128 & -0.574 \\ 0.366 & 0.573 & 0.043 \end{bmatrix} \qquad \mathbf{E} = \begin{bmatrix} 0.155 & 0.082 & -0.346 \\ 0.107 & -0.094 & -0.591 \\ 0.371 & 0.582 & 0.061 \end{bmatrix}$$

Extracción de cámaras

- Una vez que se conocen K, K' (autocalibración) y F
 (alg. 8 puntos), el procedimiento para extraer la R y la
 C entre ellas es cerrado (demostración en HZ):
 - Calculamos E=K^TFK'
 - Hacemos su SVD: $(U, _{-}, V) = svd(E)$
 - Y definiendo $W = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

 Obtenemos ambas cámaras (incluso debidamente factorizadas, e.d. sabiendo sus extrínsecos e intrínsecos):

$$\mathbf{M} = \mathbf{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{M'} = \mathbf{K'} [\mathbf{UAV^T}| \pm \mathbf{U_3}] \quad \mathbf{A} = \mathbf{W} \circ \mathbf{W^T}, \ \mathbf{y} \pm \mathbf{U_3} \rightarrow \mathbf{4} \ \mathbf{posibles} \ \mathbf{M'} \quad \mathbf{M'} = \mathbf{S} = \mathbf{M'} \circ \mathbf{M'} \quad \mathbf{M'} = \mathbf{M'} \circ \mathbf{M'}$$

Extracción de cámaras

• 4 posibles M' (Hartley & Zisserman, 2003):

Fig. 9.12. The four possible solutions for calibrated reconstruction from E. Between the left and right sides there is a baseline reversal. Between the top and bottom rows camera B rotates 180° about the baseline. Note, only in (a) is the reconstructed point in front of both cameras.

Triangulación (I)

 Una vez conocida la posición relativa entre las cámaras, sólo queda recuperar la posición de un punto dadas sus proyecciones en las imágenes:

 Conocidos los coeficientes de M₁, M₂, x₁ y x₂, se puede plantear fácilmente un sistema lineal para determinar X (al estilo de como se hacía para la estimación de una homografía H). Lo veremos a continuación.

Triangulación (II)

- Por ambas igualdades homogéneas, tenemos que, para cada punto $x_1 \times M_1 X = 0$ y $x_2 \times M_2 X = 0$.
- Cada ecuación vectorial anterior se corresponde con 3 ecuaciones, sólo 2 de ellas independientes. Eso hace un total de 4 ecuaciones independientes por punto, suficiente para las 3 incógnitas (posición 3D del punto).
- La matriz de coeficientes que sale es la siguiente, donde m^i es la fila i de la matriz M_1 , ídem para m'^i de M_2 , y $x_1 = (x,y,1)$ y $x_2 = (x',y',1)$

$$A_{4\times4} = \begin{pmatrix} x\mathbf{m}^3 - \mathbf{m}^1 \\ y\mathbf{m}^3 - \mathbf{m}^2 \\ x'\mathbf{m}'^3 - \mathbf{m}'^1 \\ y'\mathbf{m}'^3 - \mathbf{m}'^2 \end{pmatrix}$$

Triangulación (III)

• Con ligero *ruido* de píxeles, en la triangulación no tienen por qué coincidir exactamente los rayos "retroproyectados":

- Solución por mínimos cuadrados al sistema A.(X,Y,Z,W)^T=0.
 Es decir, de nuevo nos quedamos con el vector correspondiente al menor valor singular de A (o vector propio de A^TA). De todos modos, el error minimizado es "algebraico", no estrictamente "geométrico").
- (X/W,Y/W,Z/W) es nuestro punto 3D triangulado.

Triangulación (IV)

• Ejemplo:

Reconstrucción obtenida tras la obtención de las cámaras y la posterior triangulación

Reconstrucciones densas

Disparidad:

Inversamente proporcional a profundidad.

Directamente proporcional a la focal y la distancia entre

cámaras:

$$p - p' = \frac{B \cdot f}{z}$$
 = disparity

Rectificación

- Proceso previo para hacer las imágenes del par estéreo "paralelas":
 - Líneas epipolares paralelas (epipolos en el infinito)

Ejemplo de rectificación de par estéreo

 Observar que, tras la rectificación, las correspondientes líneas epipolares son horizontales y están alineadas en ambas imágenes → más fácil hacer matching y calcular disparidad:

Rectificación par estéreo

- Pasos a realizar (a grandes rasgos):
 - Computar epipolos.
 - Girar ambas imágenes para "enviarlos", primero, al eje X.
 - "Enviar" a continuación ambos epipolos al infinito.
 - Finalmente, encontrar también una transformación que ponga en la misma línea (=Y) líneas epipolares correspondientes, y que en el eje X minimice la disparidad.
 - Al final se obtienen sendas homografías H₁ y H₂ que hacen el trabajo.
 - Detalles de cómputo concreto en sección 11.12 de [HZ].44

Método de correlación (I)

 Calcular correlación al desplazar una ventana de píxeles a lo largo de toda la correspondiente línea epipolar.

 Influye tamaño de ventana (más pequeña → más detalle, pero más ruido).

Norm. corr

Método de correlación (II)

 Problemas con regiones homogéneas, o patrones repetitivos:

Método de correlación (III)

Ejemplo de resultados obtenidos con correlación simple:

Imagen original (izquierda)

Mapa de profundidad "ground truth"

Mapa de profundidad obtenido

Múltiples vistas (I)

- El paso final: las múltiples vistas...
 - Proceso iterativo:
 - Con un par de vistas, reconstrucción inicial (dos cámaras + conjunto puntos 3D).
 - Con una tercera vista, reseccionar la cámara correspondiente, y seguramente añadir puntos 3D adicionales.
 - Iterar de forma similar con más vistas.
 - Finalmente, bundle adjustment (BA, o "ajuste de rayos"):
 - Minimización (no lineal) de una función que depende de todas las cámaras y los puntos 3D...

Múltiples vistas (II)

- Bundle adjustment (ajuste de rayos):
 - Minimización (no lineal) de la función "suma de todos los errores de reproyección", que depende de todas las cámaras y los puntos 3D:

Algunos vídeos ilustrativos

- Structure from motion pipeline:
 - https://www.youtube.com/watch?v=i7ierVkXYa8
- Proyecto LOCUM AR:
 - https://www.youtube.com/watch?v=qycdlROrtXE
- Structure from motion revisited:
 - https://www.youtube.com/watch?v=Gb086k7b0wg
- Software abjecto: Visual SfM + CMVS:
 - https://www.youtube.com/watch?v=wBKidr0e-XA
- VisualSfM & Meshlab workflow (practical example):
 - https://www.youtube.com/watch?v=GEAbXYDzUjU

Bibliografía básica

"Multiple view geometry" (2nd ed.), R. Hartley, A. Zisserman (2003), Cambridge University Press.

• "Tutorial on 3D Modeling from Images", M. Pollefeys (2000).

• "Apuntes de Sistemas de Percepción y Visión por Computador", A. Ruiz (2015).

(http://dis.um.es/profesores/alberto/material/percep.pdf)