

Lógica Matemática

Aula 03 – Lógica Proposicional – Parte 2

Prof. Dr. Diego Saqui

Email: diego.saqui@muz.ifsuldeminas.edu.br

Regras de equivalência

Tabelas Verdade

- $a \wedge (b \vee c)$
- $(a \land b) \lor (a \land c)$
- $(a \land b) \rightarrow b$
- $\neg(a \land b) \lor b$

Regras de equivalência

- Existem equivalências importantes para simplificação e manipulação de expressões lógicas com vistas a prova da validade de argumento.
- Com exceção da lei da dupla negação, todas leis apresentadas no slide posterior são abordadas em pares, denominados pares duais.

LeisNome
$$\alpha \wedge \neg \alpha \equiv \text{falso}$$
Lei da contradição $\alpha \vee \neg \alpha \equiv \text{verdade}$ Lei do meio excluído $\alpha \wedge \text{verdade} \equiv \alpha$ Leis da identidade $\alpha \vee \text{falso} \equiv \text{falso}$ Leis da dominação $\alpha \wedge \text{falso} \equiv \text{falso}$ Leis da dominação $\alpha \wedge \alpha \equiv \alpha$ Leis idempotentes $\neg (\neg \alpha) \equiv \alpha$ Lei da dupla negação $\alpha \wedge \beta \equiv \beta \wedge \alpha$ Leis comutativas

Leis associativas

 $\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$ $\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$

 $\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$

 $(\alpha \land \beta) \land \gamma \equiv \alpha \land (\beta \land \gamma)$

 $(\alpha \vee \beta) \vee \gamma \equiv \alpha \vee (\beta \vee \gamma)$

Leis De Morgan $\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$

Leis distributivas

mportantes

para operações que

serã

realizadas no futuro

Equivalência da Condicional e da Bicondicional

$$(\alpha \to \beta) \equiv \neg \alpha \lor \beta \qquad (1)$$

$$(\alpha \leftrightarrow \beta) \equiv (\alpha \to \beta) \land (\beta \to \alpha) \qquad (2)$$

$$(\alpha \leftrightarrow \beta) \equiv \frac{(\alpha \to \beta) \land (\beta \to \alpha)}{(\neg \alpha \lor \beta) \land (\neg \beta \lor \alpha)} \qquad (3)$$

Tabela que evidencia a equivalência (1) anterior

	α	β	$\neg \alpha$	$(\alpha \rightarrow \beta)$	$(\neg \alpha \lor \beta)$	$(\alpha \to \beta) \leftrightarrow (\neg \beta \lor \alpha)$
I,	v	v	f	v	v	V
$\overline{I_2}$	v	f	f	f	f	v
$\overline{I_3}$	f	V	v	v	v	ν
I ₄	f	f	v	v	v	v

Demonstraça

Tabela que evidencia a equivalência (2) anterior

Tabela 1.30 Tabela-verdade que evidencia a equivalência

	α	β	$\neg \alpha$	$\neg \beta$	$(\alpha \leftrightarrow \beta)$	$(\alpha \rightarrow \beta)$	$(\beta \rightarrow \alpha)$	$(\alpha \to \beta) \land (\beta \to \alpha)$	$(\alpha \leftrightarrow \beta) \leftrightarrow ((\alpha \to \beta) \land (\beta \to \alpha))$
I,	v	v	f	f	v	v	v	v	v
$\overline{I_2}$	v	f	f	f	f	f	v	f	· v
$\overline{I_3}$	f	ν	v	v	f	v	f	f	v
I ₄	f	f	v	v	v	v	v	v	v

Tabela que evidencia a equivalência (3) anterior

Tabela 1.31 Tabela-verdade que evidencia a equivalência (3)

	α	β	α	−β	$(\alpha \leftrightarrow \beta)$	$(\neg \alpha \lor \beta)$	$(\neg \beta \lor \alpha)$	$(\neg \alpha \lor \beta) \land (\neg \beta \lor \alpha)$	$(\alpha \leftrightarrow \beta) \leftrightarrow (\neg \alpha \lor \beta) \land (\neg \beta \lor \alpha)$
I_1	v	v	f	f	v	v	v	v	v
I,	v	f	f	f	f	f	v	f	v
I,	f	v	v	v	f	v	f	f	v
I,	f	f	v	v	v	v	v	v	v

Demonstração

Equivalências importantes

$$\alpha \vee (\alpha \wedge \beta) \equiv \alpha \quad absorção$$

$$\alpha \wedge (\alpha \vee \beta) \equiv \alpha \quad absorção$$

$$(\alpha \wedge \beta) \vee (\neg \alpha \wedge \beta) \equiv \beta$$

$$(\alpha \vee \beta) \wedge (\neg \alpha \vee \beta) \equiv \beta$$

Formas Normais

Formas Normais

- É possível observar que há várias maneiras de escrever uma mesma fórmula. Ex.: $(\alpha \to \beta) \land \gamma \equiv (\neg \alpha \lor \beta) \land \gamma$.
- Muitas vezes, adotamos uma padronização na notação para poder expressas as formulas de uma maneira única para facilitar a comparações.
- Duas formas são utilizadas e normalmente conhecidas, tais como:
 - Forma Normal Conjuntiva (FNC) (importante para linguagem de programação Prolog).
 - Forma Normal Disjuntiva (FND).

Forma Normal Conjuntiva (FNC)

- Definição: Diz-se que uma fórmula α está na FNC quando α for uma conjunção $\beta_1 \wedge \beta_2 \wedge \beta_3 \wedge \cdots \wedge \beta_n$, em que cada $\beta_i (1 \le i \le n)$ é uma cláusula (disjunção de literais). Então dizemos que α está na FNC sse:
 - Contém como conectivos apenas Λ, V e ¬;
 - ¬ só opera sobre proposições atômicas: não tem alcance sobre ∧ e ∨ ;
 - Não apresenta operadores de negação sucessivos como ¬¬;
 - V não tem alcance em Λ : ex.: não existe expressões como $p \vee (q \wedge r)$.

Forma Normal Conjuntiva

- Exemplo:
- (a) Para a fórmula α : $(\neg p \lor q) \to r$, tem-se que: $FNC(\alpha)$: $(\neg p \lor \neg q \lor r) \land (p \lor \neg q \lor r) \land (p \lor q \lor r)$
- (b) As seguintes fórmulas da Lógica Proporcional estão na FNC:
 - 1-) $p \wedge (q \vee r)$
 - 2-) p ∧ *verdade*
 - 3-) $\neg p \land (\neg q \lor \neg r) \land s$
- (c) Já a expressão p \land ($r \lor (p \land s)$) não está na FNC porque a disjunção $r \lor (p \land s)$ contém uma conjunção como subfórmula.

Forma Normal Conjuntiva

- Para obtenção da FNC de uma fórmula não tautológica α com n átomos, procura-se na tabela-verdade de α as interpretações que avaliam α como f.
- Para cada uma dessas interpretações I_i constrói-se uma disjunção da seguinte maneira:
 - Se na interpretação I_i o átomo p da fórmula α é avaliado como v, toma-se $\neg p$ e, se for avaliado como f, toma-se p.
 - Em seguida, determina-se a conjunção das disjunções obtidas em cada uma das interpretações I_i .
- Se a fórmula α for uma tautologia, determina-se que $FNC(\alpha)$: $p \lor (\neg p)$, na qual p é fórmula atómica.

Forma Normal Conjuntiva

Exemplo: Considere a fórmula α : $(\neg p \lor q) \to r$ e sua Tabela-verdade

	р	q	r	$(\neg p \lor q) \to r$	
I,	v	v	v	v	
12	v	v	f	f	←
I_3	v	f	v	v	
I ₄	v	f	f	v	
1,	f	v	v	v	
16	f	v	f	f	←
I,	f	f	v	v	
I,	f	f	f	f	+

Focalizando as interpretações cujo valoresverdade de são, de acordo com o procedimento anterior,

$$\mathsf{FNC}(\alpha) \colon (\neg p \vee \neg q \vee r) \wedge (p \vee \neg q \vee r) \wedge (p \vee q \vee r)$$

Forma Normal Disjuntiva

- Definição: Diz-se que uma fórmula proposicional α está na Forma Normal Disjuntiva (FND) quando α for uma disjunção $\beta_1 \vee \beta_2 \vee \beta_3 \vee \cdots \vee \beta_n$, em que cada $\beta_i (1 \leq i \leq n)$ é uma conjunção de literais. Pode-se então dizer que uma fórmula α está na FND se e somente se:
 - Contém como conectivos apenas Λ, V e ¬;
 - ¬ só opera sobre proposições atômicas, isto é, não tem alcance sobre \wedge e \vee ;
 - Não apresenta operadores de negação sucessivos como ¬¬;
 - \wedge não tem alcance sobre \vee , ou seja, não existe expressões tais como p \wedge $(q \vee r)$.
- Se β é uma FND equivalente a α , então β é referenciada como FND(α)

Forma Normal Disjuntiva

- Para obtenção da FND de uma fórmula não tautológica α com n átomos, procura-se na tabela-verdade de α as interpretações que avaliam α como v. Para cada uma dessas interpretações $I_i (1 \le i \le 2^n)$ constrói-se uma conjunção da seguinte maneira:
 - Se na interpretação I_i o átomo p da fórmula α é avaliado como v, toma-se p e, se for avaliado como f, toma-se $\neg p$.
 - Em seguida, determina-se a conjunção das disjunções obtidas em cada uma das interpretações I_i . Se a fórmula α for uma contradição, determina-se que $FND(\alpha)$: $p \land (\neg p)$, na qual p é fórmula atómica.

Obtenção da FNC por Equivalência

 Repetidamente, usar as equivalências, para eliminar os conectivos lógicos ↔ e → :

$$\alpha \leftrightarrow \beta$$
 $\equiv (\neg \alpha \lor \beta) \land (\neg \beta \lor \alpha)$
 $\alpha \to \beta$ $\equiv \neg \alpha \lor \beta$

2. Repetidamente, eliminar as negações, utilizando:

3. Repetidamente, aplicar a lei distributiva:

$$\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$$

$$(\alpha \wedge \beta) \vee \gamma \equiv (\alpha \vee \gamma) \wedge (\beta \vee \gamma)$$

Exemplo

- Obter a FNC das fórmulas:
 - \blacksquare a) (p ∧ q) \rightarrow (¬p ∧ r)
 - \blacksquare b) (p ∧ q) \rightarrow (p ∧ r)
- □i) Usando equivalência
- □ii) Usando tabela verdade

Notação clausal

Notação clausal

• Uma fórmula lpha representada na FNC é uma conjunção de cláusulas:

$$FNC(\alpha)$$
: $F_1 \wedge F_2 \wedge \cdots \wedge F_n$

• Uma cláusula, por sua vez, é uma disjunção de literais (átomo ou átomo negado), isto é:

$$F_i = L_1 \vee L_2 \vee \cdots \vee L_s$$

- Uma das vantagens de se ter a FNC de uma fórmula α é poder garantir que se o valor de α em uma interpretação for V, então cada cláusula também é.
- Como a FNC é uma conjunção de cláusulas, a ordem destas cláusulas é irrelevante pela propriedade associativa. Assim, pode-se dizer que a FNC de α é uma coleção de cláusulas:

$$\{F_1, F_2, \dots, F_n\}$$

Notação clausal

Exemplo

- FNC((($p \lor q) \land (\neg p \lor r)$) \rightarrow s): \Rightarrow (($s \lor \neg q \lor p$) \land ($s \lor \neg p \lor \neg r$) \land ($s \lor \neg q \lor \neg r$))
- Pode-se escrever:
 - FNC(((p \vee q) \wedge (\neg p \vee r)) \rightarrow s): $F_1 \wedge F_2 \wedge F_3$
- onde
 - F₁: (s∨¬q∨p), F₂: (s∨¬p∨¬r), F₃: (s∨¬q∨¬r)
 - que pode ser representado por F = {F₁, F₂, F₃}, onde a conjunção está implícita

Fim

