Programmable Logic Devices

CS207 Lecture 14

James YU
May 20, 2020

Memory

 A memory unit is a device to which binary information is transferred for storage and from which information is retrieved when needed.

Memory

- A memory unit is a collection of cells capable of storing a large quantities of binary .information
 - Random access memory (RAM)
 - Performs both read and write operations.
 - Read-only memory (ROM)
 - Only read operation, information cannot be altered by writing.
 - Is a programmable logic device (PLD).
 - Information storage in some fashion and embedded within hardware, called programming the device.

Memory

- PLD has many types, ROM is one.
 - Others are Programmable Array Logic (PAL), Programmable Logic Array (PLA), and the field-programmable gate array (FPGA).
 - An integrated circuit, internal logic gates connected through electronic paths similar to fuses.
 - May have hundreds to millions of gates, thus requires a special gate symbology:

- A memory unit is a collection of storage cells with associated circuits needed.
 - Information can be selectively retrieved from any of its internal locations.
 - Information retrieval time at any random location is the same, therefore *Random-Access* memory.
- Binary information stored are grouped in words.
 - Words are the unit of moving in and out of storage.
 - (Recall) 8 bits = 1 byte.
 - Most computer memory has words multiple of 8 bits/1 byte in length.

- Communication achieved through:
 - Data input and output lines.
 - Address selection lines.
 - · Control lines.
- To have n bits in a word,
 - *n* lines for input/output
- To have m words,
 - k lines for address, such that $m \leq 2^k$.

- Each word in the memory is assigned a unique address from 0 to 2^k-1.
- An internal decoder: k lines to 2^k addresses.
- On the right is 1K words of 16 bits.

Memory	address
--------	---------

Binary	Decimal
0000000000	0
0000000001	1
000000010	2
	i
1111111101	1021
1111111110	1022
1111111111	1023

Memory content

101101010101111	01
10101011100010	01
00001101010001	10
:	
10011101000101	00
00001101000111	10
11011110001001	01

- Two operations of RAM: read and write.
- Write
 - Apply binary address to address lines;
 - Apply data bits to data input lines;
 - Activate the write input
- Read
 - Apply binary address to address lines;
 - Activate the read input;

- Commercial memory components:
 - One input selects the unit.
 - The other determines the operation.

Memory Enable	Read/Write	Memory Operation
0	Χ	None
1	0	Write to selected word
1	1	Read from selected word

- Memory unit operation is controlled by an external device, e.g., CPU, synchronized by its own clock.
 - Memory does not employ an internal clock.
 - Access time: time required to select a word and read it.
 - Cycle time: complete a write operation.
 - CPU provide memory control signals to synchronize.
 - Access/Cycle time within a time equal to a fixed number of CPU clock cycles.

- CPU: 50MHz one clock cycle = 20ns
- Memory: access time = cycle time = 50ns
 - These times not always equal.

- Integrated circuit RAM units available in two operating modes:
- Static RAM: essentially latches, available as long as powered.
 - Easier to use, has shorter read/write cycles.
- Dynamic RAM: information stored in the form of electric charges on capacitors, discharge over time.
 - Capacitors periodically recharged by refreshing the memory.
 - Reduced power consumption and larger storage capacity
- Memory units that lose stored information when power is turned off are volatile.
- Non-volatile memories retained information with magnetic components.
 - Data represented by direction of magnetization.

- To require storage components in a memory unit, a decoding circuit is required:
 - Select memory word specified by input address
- m words with n bits each consist of $m \times n$ binary storage cells as the basic building blocks.
- Modeled by an SR latch with external gates to form a D latch.
 - Actual cells are circuits with 4 to 6 transistors.
 - Convenient to model it with logic symbols

- A binary storage cell must be very small.
 - Pack as many cells as possible in the small IC chip.

- Commercial RAMs have a capacity of thousands of words, each 1 to 64 bits
- $k-2^k$ decoder requires 2^k AND gates with k inputs.
 - Can be reduced by employing two decoders: coincident decoding.
 - One decoder performs row selection, the other column selection

- SRAM: typically 6 transistors
- DRAM: a MOS transistor + a capacitor
 - Four times the density of SRAM.
 - Preferred technology for large memories.
- Address decoding for DRAM is in two-dimensional array, larger memories have multiple arrays.
- Address multiplexing is used to reduce the number of pins in the IC package.
 - The same set of pins used for row and column selection.

- ROM is a memory device in which permanent binary information is stored.
- Once the pattern is established, stays within the unit even when power is turned off.

- Consider a 32 × 8 ROM:
- Five input lines for address.
- 32 input connections and 8 OR gates = 256 internal connections.

- These intersections are programmable:
 - Logically equivalent to a switch that can be closed (connected) or open (disconnected).
 - Also called crosspoints.
- One of the simplest technology employs a fuse.
 - Normally connects the two points.
 - Opened or "blown" by high-voltage pulse into the fuse.

- Internal binary storage of a ROM specified by a truth table.
 - Each address stores a word of 8 bits.

Inputs				Outputs								
14	<i>I</i> ₃	I ₂	<i>I</i> ₁	I _o	A7	A_6	A5	A_4	A_3	A ₂	<i>A</i> ₁	Ao
0	0	0	0	0	1	0	1	1	0	1	1	0
0	0	0	0	1	0	0	0	1	1	1	0	1
0	0	0	1	0	1	1	0	0	O	1	0	1
0	0	0	1	1	1	0	1	1	O	0	1	0
									:			
1	1	i	0	0	0	0	0	0	1	0	0	1
1	1	1	0	1	1	1	1	0	0	0	1	0
1	1	1	1	0	0	1	0	0	1	0	1	0
1	1	1	1	1	0	0	1	1	0	0	1	1

- Program the ROM: blows fuse links in accordance with the truth table
 - 10110110 in the first row.

- Combinational circuit
 - (Recall) Decoder: k input = 2^k minterms.
 - By choosing connections for those minterms.
 - For example, eight functions of five binary inputs.

Example

- Design a combinational circuit using a ROM. The circuit accepts a three □ bit number and outputs a binary number equal to the square of the input number.
 - $B_0 \equiv A_0$, $B_1 \equiv 0$, no need to generate.

- 1	nput	s							
A ₂	<i>A</i> ₁	Ao	B ₅	B_4	B ₃	B ₂	<i>B</i> ₁	Bo	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1	1
O	1	0	0	0	0	1	0	0	4
0	1	1	0	0	1	0	0	1	9
1	0	0	0	1	0	0	0	0	16
1	0	1	0	1	1	0	0	1	25
1	1	0	1	0	0	1	0	0	36
1	1	1	1	1	0	0	0	1	49

Example

• 3 inputs, 4 outputs: 8×4 ROM.

A_2	A_1	A_0	B_5	B_4	B_3	B_2
0	0	0	0	0	0	0
0	0	0	0	O	0	0
	1	0	0	0	0	$\frac{0}{1}$
0	1	1	0	0	1	0
1	0	0	0	1	0	0
1 1 1	O	1	0	1	1	0
1	1	0	1	O	0	$\frac{0}{1}$
1	1	1	1	1	0	0
	OL:	DO		- 47 - 4	-1-1	

(b) ROM truth table

- A programmable ROM is a kind of combinational programmable logic device (PLD) with fixed AND array (decoder) and programmable OR array.
- Others are programmable array logic (PAL) with programmable AND array and fixed OR array,
- and programmable logic array (PLA) with programmable AND and OR arrays.
 - Name emerged from different vendors during the development of PLD.

- Similar to PROM, but no full decoding of variables, i.e., not all minterms.
- Decoder replaced by an array of AND gates.

- Each input goes through a buffer-inverter combination.
- XOR receive logic 0 or 1: complement on 1.

- $F_1 = AB' + AC + A'BC'$
- $F_2 = (AC + BC)'$

•
$$F_1 = AB' + AC + A'BC'$$

- $F_2 = (AC + BC)'$
- Fuse map can be specified in a tabular form.

					Out	puts
			nput	ts	(T)	(C)
	Product Term	A	В	c	F ₁	F ₂
AB'	1	1	0	_	1	_
AC	2	1	_	1	1	1
BC	3	_	1	1	_	1
A'BC'	4	0	1	0	1	_

- Size of a PLA is specified by the number of inputs, product terms, and outputs.
 - Typically have 16 inputs, 48 product terms, 8 outputs.
- For n inputs, k products, m outputs:
 - n buffer-inverter gates;
 - k AND gates;
 - ullet m OR gates, and m XOR gates;
 - $2n \times k$ connections between inputs and AND array;
 - k x m connections between AND and OR arrays;
 - *m* connections associated with XOR gates.

Example

• Implement the following two Boolean functions with a PLA:

•
$$F_1(A, B, C) = \sum (0, 1, 2, 4) = (AB + AC + BC)'$$

•
$$F_1(A, B, C) = \sum (0, 1, 2, 4) = (AB + AC + BC)'.$$

• $F_2(A, B, C) = \sum (0, 5, 6, 7) = AB + AC + A'B'C'.$

BO	~			В	$\backslash B$	C			B
A	00	01	11	10	A	00	01	11	10
	m_0	m_1	m_3	m_2		m_0		m_3	m_2
0	1	1	0	1	0	1	0	0	0
()	m_4	$m_{\rm S}$	m_7	m_6	ſ	m_4	$m_{\rm g}$	m_2	m_6
$A \{ 1 \}$	1	0	0	0	A 1	0	1	1	1
				•			_	č.	,

	PLA programming table								
					Out	puts			
	Product	II	ıpu	ts	(C)	(T)			
	term	A	\boldsymbol{B}	\boldsymbol{C}	F_1	F_2			
AB	1	1	1	_	1	1			
AC	2	1	_	1	1	1			
BC	3	_	1	1	1	_			
A'B'	C' 4	0	0	0	_	1			