Problem 1

Consider a 2D robotic arm with 3 links. The position of its end-effector is governed by the arm lengths and joint angles as follows (as in the figure "data/robot-arm.png"): $x = L_1 \cos(\theta_1) + L_2 \cos(\theta_2) + L_3 \cos(\theta_3) + L_3 \sin(\theta_2) + L_3 \sin(\theta_2) + L_3 \sin(\theta_3) + L_3 \sin(\theta_$

In robotics settings, inverse-kinematics problems are common for setups like this. For example, suppose all 3 arm lengths are $L_2 = L_3 = 1$, and we want to position the end-effector at (x,y) = (0.5, 0.5). What set of joint angles $(\theta_1, \theta_2, \theta_3)$ should we choose for the end-effector to reach this position?

In this problem you will train a neural network to find a function mapping from coordinates (x,y) to joint angles $(\theta_1, \theta_2, \theta_3)$ that position the end-effector at (x,y).

Summary of deliverables:

- 1. Neural network model
- 2. Generate training and validation data
- 3. Training function
- 4. 6 plots with training and validation loss
- 5. 6 prediction plots
- 6. Respond to the prompts

```
import numpy as np
import matplotlib.pyplot as plt

import torch
from torch import nn, optim

class ForwardArm(nn.Module):
    def __init__(self, L1=1, L2=1, L3=1):
        super().__init__()
```

```
self.L1 = L1
        self.L2 = L2
        self.L3 = L3
    def forward(self, angles):
        theta1 = angles[:,0]
        theta2 = angles[:,1]
        theta3 = angles[:,2]
        x = self_L1*torch.cos(theta1) + self_L2*torch.cos(theta1+theta2) + self_L3*torch.cos(theta1+theta2+theta3)
        y = self.L1*torch.sin(theta1) + self.L2*torch.sin(theta1+theta2) + self.L3*torch.sin(theta1+theta2+theta3)
        return torch.vstack([x,y]).T
def plot predictions(model, title=""):
    fwd = ForwardArm()
    vals = np.arange(0.1, 2.0, 0.2)
    x, y = np.meshgrid(vals,vals)
    coords = torch.tensor(np.vstack([x.flatten(),y.flatten()]).T,dtype=torch.float)
    angles = model(coords)
    preds = fwd(angles).detach().numpy()
    plt.figure(figsize=[4,4],dpi=140)
    plt.scatter(x.flatten(), y.flatten(), s=60, c="None",marker="o",edgecolors="k", label="Targets")
    plt.scatter(preds[:,0], preds[:,1], s=25, c="red", marker="o", label="Predictions")
    plt.text(0.1, 2.15, f"MSE = {nn.MSELoss()(fwd(model(coords)),coords):.1e}")
   plt.xlabel("x")
    plt.ylabel("y")
    plt.xlim(-.1,2.1)
    plt.ylim(-.1,2.4)
    plt.legend()
    plt.title(title)
    plt.show()
def plot arm(theta1, theta2, theta3, L1=1,L2=1,L3=1, show=True):
    x1 = L1*np.cos(theta1)
    y1 = L1*np.sin(theta1)
   x2 = x1 + L2*np.cos(theta1+theta2)
    y2 = y1 + L2*np.sin(theta1+theta2)
   x3 = x2 + L3*np.cos(theta1+theta2+theta3)
    y3 = y2 + L3*np.sin(theta1+theta2+theta3)
   xs = np.array([0,x1,x2,x3])
    ys = np.array([0,y1,y2,y3])
    plt.figure(figsize=(5,5),dpi=140)
    plt.plot(xs, ys, linewidth=3, markersize=5,color="gray", markerfacecolor="lightgray",marker="o",markeredgecolor="bl
```

```
plt.scatter(x3,y3,s=50,color="blue",marker="P",zorder=100)
plt.scatter(0,0,s=50,color="black",marker="s",zorder=-100)

plt.xlim(-1.5,3.5)
plt.ylim(-1.5,3.5)

if show:
    plt.show()
```

End-effector position

You can use the interactive figure below to visualize the robot arm.

```
In [2]: %matplotlib inline
    from ipywidgets import interact, interactive, fixed, interact_manual, Layout, FloatSlider, Dropdown

def plot_unit_arm(theta1, theta2, theta3):
    plot_arm(theta1, theta2, theta3)

slider1 = FloatSlider(value=0, min=-np.pi*0.75, max=np.pi*0.75, step=np.pi/100, description='theta1',disabled=False,con
    slider2 = FloatSlider(value=0, min=-np.pi*0.75, max=np.pi*0.75, step=np.pi/100, description='theta2',disabled=False,con
    slider3 = FloatSlider(value=0, min=-np.pi*0.75, max=np.pi*0.75, step=np.pi/100, description='theta3',disabled=False,con
    interactive_plot = interactive(plot_unit_arm, theta1 = slider1, theta2 = slider2, theta3 = slider3)
    output = interactive_plot.children[-1]
    output.layout.height = '600px'
    interactive_plot
```

Out[2]: interactive(children=(FloatSlider(value=0.0, description='theta1', layout=Layout(width='550px'), max=2.3561944...

Neural Network for Inverse Kinematics

In this class we have mainly had regression problems with only one output. However, you can create neural networks with any number of outputs just by changing the size of the last layer. For this problem, we already know the function to go from joint angles (3) to endeffector coordinates (2). This is provided in neural network format as ForwardArm().

If you provide an instance of ForwardArm() with an \$N\times3\$ tensor of joint angles, and it will return an \$N\times2\$ tensor of coordinates.

Here, you should create a neural network with 2 inputs and 3 outputs that, once trained, can output the joint angles (in radians) necessary to reach the input x-y coordinates.

In the cell below, complete the definition for InverseArm():

- The initialization argument hidden_layer_sizes dictates the number of neurons per hidden layer in the network. For example, hidden_layer_sizes=[12,24] should create a network with 2 inputs, 12 neurons in the first hidden layer, 24 neurons in the second hidden layer, and 3 outputs.
- Use a ReLU activation at the end of each hidden layer.
- The initialization argument max_angle refers to the maximum bend angle of the joint. If max_angle=None, there should be no activation at the last layer. However, if max_angle=1 (for example), then the output joint angles should be restricted to the interval [-1, 1] (radians). You can clamp values with the tanh function (and then scale them) to achieve this.

```
class InverseArm(nn.Module):
    def __init__(self, hidden_layer_sizes=[24,24], max_angle=None):
        super().__init__()
        # YOUR CODE GOES HERE
        N_{in} = 2
        N \text{ out} = 3
        size = len(hidden_layer_sizes)
        layer = []
        layer.append(nn.Linear(N in,hidden layer sizes[0]))
        layer.append(nn.ReLU())
        for i in range(size):
            if i>0:
                layer.append(nn.Linear(hidden_layer_sizes[i-1],hidden_layer_sizes[i]))
                layer.append(nn.ReLU())
        layer.append(nn.Linear(hidden_layer_sizes[size-1],N_out))
        self.seg = nn.Sequential(*layer)
        self.max angle = max angle
    def forward(self, xy):
        # YOUR CODE GOES HERE
        xy = self.seq(xy)
        if self.max_angle is not None:
            xy = nn.Tanh()(xy)
            xy = self.max_angle* xy
        return xy
```

Generate Data

In the cell below, generate a dataset of x-y coordinates. You should use a \$100\times 100\$ meshgrid, for x and y each on the interval \$[0, 2]\$.

Randomly split your data so that 80% of points are in X_train, while the remaining 20% are in X_val. (Each of these should have 2 columns -- x and y)

```
In [4]: # YOUR CODE GOES HERE
    from sklearn.model_selection import train_test_split

x = np.linspace(0,2,100)
y = np.linspace(0,2,100)
X,Y = np.meshgrid(x,y)
data = np.column_stack((X.ravel(),Y.ravel()))
X_train,X_val = train_test_split(data, test_size = 0.2)
X_train = torch.Tensor(X_train)
X_val = torch.Tensor(X_val)
print(X_train.shape)
print(X_val.shape)

torch.Size([8000, 2])
torch.Size([2000, 2])
```

Training function

Write a function train() below with the following specifications:

Inputs:

- model: InverseArm model to train
- X_train: \$N\times 2\$ vector of training x-y coordinates
- X_val: \$N\times 2\$ vector of validation x-y coordinates
- 1r: Learning rate for Adam optimizer
- epochs: Total epoch count
- gamma: ExponentialLR decay rate
- create_plot : (True / False) Whether to display a plot with training and validation loss curves

Loss function:

The loss function you use should be based on whether the end-effector moves to the correct location. It should be the MSE between

the target coordinate tensor and the coordinates that the predicted joint angles produce. In other words, if your inverse kinematics model is model, and fwd is an instance of ForwardArm(), then you want the MSE between input coordinates X and fwd(model(X)).

```
In [5]: from torch.optim.lr scheduler import ExponentialLR
        def train(model, X_train, X_val, lr = 0.01, epochs = 1000, gamma = 1, create_plot = True):
            # YOUR CODE GOES HERE
            loss_fcn = nn.MSELoss()
            opt = optim.Adam(params = model.parameters(), lr=lr)
            scheduler = ExponentialLR(optimizer=opt, gamma=gamma)
            fwd = ForwardArm()
            train_hist = []
            val hist = []
            for epoch in range(epochs+1):
                model.train()
                out train = model(X train)
                y_train = fwd(out_train)
                #print(y)
                loss_train = loss_fcn(y_train, X_train)
                train_hist.append(loss_train.item())
                model.eval()
                #print(model(fwd(model(X val))))
                out_val = model(X_val)
                y val = fwd(out val)
                loss_val = loss_fcn(y_val, X_val)
                val_hist.append(loss_val.item())
                opt.zero_grad()
                loss_train.backward()
                opt.step()
                scheduler.step()
                if epoch % int(epochs / 25) == 0:
                     print(f"Epoch {epoch:>4} of {epochs}: Train Loss = {loss train.item():.4f} Validation Loss = {loss val.
            if create plot is True:
                plt.figure(figsize=(4,2),dpi=250)
                plt.plot(train_hist,label="Training")
                plt.plot(val hist,label="Validation",linewidth=1)
                plt.legend()
                plt.xlabel("Epoch")
```

```
plt.ylabel("Loss")
  plt.show()
return model
```

Training a model

Create 3 models of different complexities (with max_angle=None):

- hidden_layer_sizes=[12]
- hidden_layer_sizes=[24,24]
- hidden_layer_sizes=[48,48,48]

Train each model for 1000 epochs, learning rate 0.01, and gamma 0.995. Show the plot for each.

Epoch	0	of	1000:	Train	Loss	=	1.7717	Validation Loss = 1.7668
Epoch	40	of	1000:	Train	Loss	=	0.1650	Validation Loss = 0.1651
Epoch	80	of	1000:	Train	Loss	=	0.0359	Validation Loss = 0.0371
Epoch	120	of	1000:	Train	Loss	=	0.0161	Validation Loss = 0.0168
Epoch	160	of	1000:	Train	Loss	=	0.0122	Validation Loss = 0.0127
Epoch	200	of	1000:	Train	Loss	=	0.0107	Validation Loss = 0.0111
Epoch	240	of	1000:	Train	Loss	=	0.0098	Validation Loss = 0.0102
Epoch	280	of	1000:	Train	Loss	=	0.0092	Validation Loss = 0.0095
Epoch	320	of	1000:	Train	Loss	=	0.0087	Validation Loss = 0.0089
Epoch	360	of	1000:	Train	Loss	=	0.0083	Validation Loss = 0.0085
Epoch	400	of	1000:	Train	Loss	=	0.0080	Validation Loss = 0.0082
Epoch	440	of	1000:	Train	Loss	=	0.0077	Validation Loss = 0.0079
Epoch	480	of	1000:	Train	Loss	=	0.0075	Validation Loss = 0.0077
Epoch	520	of	1000:	Train	Loss	=	0.0073	Validation Loss = 0.0075
Epoch	560	of	1000:	Train	Loss	=	0.0072	Validation Loss = 0.0073
Epoch	600	of	1000:	Train	Loss	=	0.0070	Validation Loss = 0.0072
Epoch	640	of	1000:	Train	Loss	=	0.0069	Validation Loss = 0.0071
Epoch	680	of	1000:	Train	Loss	=	0.0068	Validation Loss = 0.0070
Epoch	720	of	1000:	Train	Loss	=	0.0068	Validation Loss = 0.0069
Epoch	760	of	1000:	Train	Loss	=	0.0067	Validation Loss = 0.0069
Epoch	800	of	1000:	Train	Loss	=	0.0067	Validation Loss = 0.0068
Epoch	840	of	1000:	Train	Loss	=	0.0066	Validation Loss = 0.0068
Epoch	880	of	1000:	Train	Loss	=	0.0066	Validation Loss = 0.0067
Epoch	920	of	1000:	Train	Loss	=	0.0065	Validation Loss = 0.0067
Epoch	960	of	1000:	Train	Loss	=	0.0065	Validation Loss = 0.0067
Epoch	1000	of	1000:	Train	Loss	=	0.0065	Validation Loss = 0.0067

Epoch	0 of	f 1000:	Train Loss = 2.5900	Validation Loss = 2.5817
Epoch	40 of	f 1000:	Train Loss = 0.1039	Validation Loss = 0.1071
Epoch	80 of	f 1000:	Train Loss = 0.0159	Validation Loss = 0.0155
Epoch	120 of	f 1000:	Train Loss = 0.0093	Validation Loss = 0.0090
Epoch	160 of	f 1000:	Train Loss = 0.0061	Validation Loss = 0.0059
Epoch	200 of	f 1000:	Train Loss = 0.0040	Validation Loss = 0.0039
Epoch	240 of	f 1000:	Train Loss = 0.0028	Validation Loss = 0.0028
Epoch	280 of	f 1000:	Train Loss = 0.0021	Validation Loss = 0.0021
Epoch	320 of	f 1000:	Train Loss = 0.0017	Validation Loss = 0.0017
Epoch	360 of	f 1000:	Train Loss = 0.0014	Validation Loss = 0.0014
Epoch	400 of	f 1000:	Train Loss = 0.0013	Validation Loss = 0.0012
Epoch	440 of	f 1000:	Train Loss = 0.0011	Validation Loss = 0.0011
Epoch	480 of	f 1000:	Train Loss = 0.0011	Validation Loss = 0.0010
Epoch	520 of	f 1000:	Train Loss = 0.0010	Validation Loss = 0.0010
Epoch	560 of	f 1000:	Train Loss = 0.0010	Validation Loss = 0.0009
Epoch	600 of	f 1000:	Train Loss = 0.0009	Validation Loss = 0.0009
Epoch	640 of	f 1000:	Train Loss = 0.0009	Validation Loss = 0.0009
Epoch	680 of	f 1000:	Train Loss = 0.0009	Validation Loss = 0.0009
Epoch	720 of	f 1000:	Train Loss = 0.0009	Validation Loss = 0.0008
Epoch	760 of	f 1000:	Train Loss = 0.0008	Validation Loss = 0.0008
Epoch	800 of	f 1000:	Train Loss = 0.0008	Validation Loss = 0.0008
Epoch	840 of	f 1000:	Train Loss = 0.0008	Validation Loss = 0.0008
Epoch	880 of	f 1000:	Train Loss = 0.0008	Validation Loss = 0.0008
Epoch	920 of	f 1000:	Train Loss = 0.0008	Validation Loss = 0.0008
Epoch	960 of	f 1000:	Train Loss = 0.0008	Validation Loss = 0.0008
Epoch	1000 of	f 1000:	Train Loss = 0.0008	Validation Loss = 0.0008

Epoch	0	of	1000:	Train	Loss	=	2.4561	Validation	Loss	=	2.4485
Epoch	40	of	1000:	Train	Loss	=	0.0281	Validation	Loss	=	0.0284
Epoch	80	of	1000:	Train	Loss	=	0.0027	Validation	Loss	=	0.0026
Epoch	120	of	1000:	Train	Loss	=	0.0010	Validation	Loss	=	0.0010
Epoch	160	of	1000:	Train	Loss	=	0.0007	Validation	Loss	=	0.0007
Epoch	200	of	1000:	Train	Loss	=	0.0006	Validation	Loss	=	0.0006
Epoch	240	of	1000:	Train	Loss	=	0.0005	Validation	Loss	=	0.0005
Epoch	280	of	1000:	Train	Loss	=	0.0004	Validation	Loss	=	0.0004
Epoch	320	of	1000:	Train	Loss	=	0.0004	Validation	Loss	=	0.0004
Epoch	360	of	1000:	Train	Loss	=	0.0004	Validation	Loss	=	0.0004
Epoch	400	of	1000:	Train	Loss	=	0.0004	Validation	Loss	=	0.0004
Epoch	440	of	1000:	Train	Loss	=	0.0003	Validation	Loss	=	0.0003
Epoch	480	of	1000:	Train	Loss	=	0.0003	Validation	Loss	=	0.0003
Epoch	520	of	1000:	Train	Loss	=	0.0003	Validation	Loss	=	0.0003
Epoch	560	of	1000:	Train	Loss	=	0.0003	Validation	Loss	=	0.0003
Epoch	600	of	1000:	Train	Loss	=	0.0003	Validation	Loss	=	0.0003
Epoch	640	of	1000:	Train	Loss	=	0.0003	Validation	Loss	=	0.0003
Epoch	680	of	1000:	Train	Loss	=	0.0003	Validation	Loss	=	0.0003
Epoch	720	of	1000:	Train	Loss	=	0.0003	Validation	Loss	=	0.0003
Epoch	760	of	1000:	Train	Loss	=	0.0003	Validation	Loss	=	0.0003
Epoch	800	of	1000:	Train	Loss	=	0.0003	Validation	Loss	=	0.0003
Epoch	840	of	1000:	Train	Loss	=	0.0003	Validation	Loss	=	0.0003
Epoch	880	of	1000:	Train	Loss	=	0.0003	Validation	Loss	=	0.0003
Epoch	920	of	1000:	Train	Loss	=	0.0003	Validation	Loss	=	0.0003
Epoch	960	of	1000:	Train	Loss	=	0.0003	Validation	Loss	=	0.0003
Epoch	1000	of	1000:	Train	Loss	=	0.0003	Validation	Loss	=	0.0003

Visualizations

For each of your models, use the function plot_predictions to visualize model predictions on the domain. You should observe improvements with increasing network size.

```
In [7]: # YOUR CODE GOES HERE
plot_predictions(model1,title = "model_1 of hidden_layer = [12]")
plot_predictions(model2,title = "model_2 of hidden_layer = [24,24]")
plot_predictions(model3,title = "model_3 of hidden_layer = [48,48,48]")
```


Interactive Visualization

You can use the interactive plot below to look at the performance of your model. (The model used must be named model.)

```
In [8]: %matplotlib inline
    from ipywidgets import interact, interactive, fixed, interact_manual, Layout, FloatSlider, Dropdown
    def plot_inverse(x, y):
```

```
xy = torch.Tensor([[x,y]])
theta1, theta2, theta3 = model3(xy).detach().numpy().flatten().tolist()
plot_arm(theta1, theta2, theta3, show=False)
plt.scatter(x, y, s=100, c="red",zorder=1000,marker="x")
plt.plot([0,2,2,0,0],[0,0,2,2,0],c="lightgray",linewidth=1,zorder=-1000)
plt.show()

slider1 = FloatSlider(value=1, min=-.5, max=2.5, step=1/100, description='x', disabled=False, continuous_update=True, o
slider2 = FloatSlider(value=1, min=-.5, max=2.5, step=1/100, description='y', disabled=False, continuous_update=True, o
interactive_plot = interactive(plot_inverse, x = slider1, y = slider2)
output = interactive_plot.children[-1]
output.layout.height = '600px'
interactive_plot
```

Out[8]: interactive(children=(FloatSlider(value=1.0, description='x', layout=Layout(width='550px'), max=2.5, min=-0.5,...

Training more neural networks

Now train more networks with the following details:

- 1. hidden_layer_sizes=[48,48], max_angle=torch.pi/2, train with lr=0.01, epochs=1000, gamma=.995
- 2. hidden_layer_sizes=[48,48], max_angle=None , train with lr=1, epochs=1000, gamma=1
- 3. hidden_layer_sizes=[48,48], max_angle=2, train with lr=0.0001, epochs=300, gamma=1

For each network, show a loss curve plot and a plot_predictions plot.

Epoch	0 o	f 1000:	Train Loss = 3.5927	Validation Loss = 3.5798
Epoch	40 o	f 1000:	Train Loss = 0.1106	Validation Loss = 0.1108
Epoch	80 o	f 1000:	Train Loss = 0.0376	Validation Loss = 0.0372
Epoch	120 o	f 1000:	Train Loss = 0.0261	Validation Loss = 0.0255
Epoch	160 o	f 1000:	Train Loss = 0.0233	Validation Loss = 0.0226
Epoch	200 o	f 1000:	Train Loss = 0.0221	Validation Loss = 0.0213
Epoch	240 o	f 1000:	Train Loss = 0.0213	Validation Loss = 0.0205
Epoch	280 o	f 1000:	Train Loss = 0.0208	Validation Loss = 0.0200
Epoch	320 o	f 1000:	Train Loss = 0.0205	Validation Loss = 0.0196
Epoch	360 o	f 1000:	Train Loss = 0.0202	Validation Loss = 0.0193
Epoch	400 o	f 1000:	Train Loss = 0.0200	Validation Loss = 0.0191
Epoch	440 o	f 1000:	Train Loss = 0.0198	Validation Loss = 0.0190
Epoch	480 o	f 1000:	Train Loss = 0.0197	Validation Loss = 0.0188
Epoch	520 o	f 1000:	Train Loss = 0.0196	Validation Loss = 0.0187
Epoch	560 o	f 1000:	Train Loss = 0.0196	Validation Loss = 0.0187
Epoch	600 o	f 1000:	Train Loss = 0.0195	Validation Loss = 0.0186
Epoch	640 o	f 1000:	Train Loss = 0.0195	Validation Loss = 0.0185
Epoch	680 o	f 1000:	Train Loss = 0.0194	Validation Loss = 0.0185
Epoch	720 o	f 1000:	Train Loss = 0.0194	Validation Loss = 0.0185
Epoch	760 o	f 1000:	Train Loss = 0.0194	Validation Loss = 0.0184
Epoch	800 o	f 1000:	Train Loss = 0.0193	Validation Loss = 0.0184
Epoch	840 o	f 1000:	Train Loss = 0.0193	Validation Loss = 0.0184
Epoch	880 o	f 1000:	Train Loss = 0.0193	Validation Loss = 0.0184
Epoch	920 o	f 1000:	Train Loss = 0.0193	Validation Loss = 0.0184
Epoch	960 o	f 1000:	Train Loss = 0.0193	Validation Loss = 0.0184
Epoch	1000 o	f 1000:	Train Loss = 0.0193	Validation Loss = 0.0183

Epoch	0	of	1000:	Train	Loss =	2.8851	Validation	Loss = 2.8757
Epoch	40	of	1000:	Train	Loss =	0.6252	Validation	Loss = 0.6325
Epoch	80	of	1000:	Train	Loss =	0.3433	Validation	Loss = 0.3457
Epoch	120	of	1000:	Train	Loss =	0.3396	Validation	Loss = 0.3423
Epoch	160	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	200	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	240	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	280	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	320	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	360	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	400	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	440	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	480	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	520	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	560	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	600	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	640	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	680	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	720	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	760	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	800	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	840	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	880	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	920	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	960	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423
Epoch	1000	of	1000:	Train	Loss =	0.3395	Validation	Loss = 0.3423

Epoch	0 of 300:	Train Loss = 4.7660	Validation Loss = 4.7536
Epoch	12 of 300:	Train Loss = 4.3025	Validation Loss = 4.2910
Epoch	24 of 300:	Train Loss = 3.8410	Validation Loss = 3.8301
Epoch	36 of 300:	Train Loss = 3.3880	Validation Loss = 3.3783
Epoch	48 of 300:	Train Loss = 2.9441	Validation Loss = 2.9354
Epoch	60 of 300:	Train Loss = 2.5200	Validation Loss = 2.5135
Epoch	72 of 300:	Train Loss = 2.1450	Validation Loss = 2.1407
Epoch	84 of 300:	Train Loss = 1. 8367	Validation Loss = 1.8346
Epoch	96 of 300:	Train Loss = 1.5995	Validation Loss = 1.5994
Epoch	108 of 300:	Train Loss = 1.4304	Validation Loss = 1.4319
Epoch	120 of 300:	Train Loss = 1.3197	Validation Loss = 1.3224
Epoch	132 of 300:	Train Loss = 1.2484	Validation Loss = 1.2518
Epoch	144 of 300:	Train Loss = 1.1998	Validation Loss = 1.2036
Epoch	156 of 300:	Train Loss = 1.1626	Validation Loss = 1.1665
Epoch	168 of 300:	Train Loss = 1.1298	Validation Loss = 1.1337
Epoch	180 of 300:	Train Loss = 1.0978	Validation Loss = 1.1016
Epoch	192 of 300:	Train Loss = 1.0652	Validation Loss = 1.0689
Epoch	204 of 300:	Train Loss = 1.0312	Validation Loss = 1.0348
Epoch	216 of 300:	Train Loss = 0.9957	Validation Loss = 0.9991
Epoch	228 of 300:	Train Loss = 0.9584	Validation Loss = 0.9616
Epoch	240 of 300:	Train Loss = 0.9193	Validation Loss = 0.9222
Epoch	252 of 300:	Train Loss = 0.8782	Validation Loss = 0.8808
Epoch	264 of 300:	Train Loss = 0.8348	Validation Loss = 0.8372
Epoch	276 of 300:	Train Loss = 0.7892	Validation Loss = 0.7915
Epoch	288 of 300:	Train Loss = 0.7423	Validation Loss = 0.7444
Epoch	300 of 300:	Train Loss = 0.6958	Validation Loss = 0.6978


```
In [10]: plot_predictions(model4,title = "model_4 of hidden_layer = [48,48]")
    plot_predictions(model5,title = "model_5 of hidden_layer = [48,48]")
    plot_predictions(model6,title = "model_6 of hidden_layer = [48,48]")
```


Prompts

Neither of these models should have great performance. Describe what went wrong in each case.

Model 1:

The max angle is set at pi/2 which is 90 deg and the tanh(90) is 0.914 around. As the max angle is set to pi/2 so there is no way the prediction value will reach the origin point therefore the clustering happens around the circle i,e., near 1 on both y and x axis.

Model 2:

The learning rate is so high and the epochs really small so the model is not able to train and the loss never converges. As the learning rate is very high, it takes the average of one point and gets stuck and then the MSE remains same for all the epochs. Hence, on the prediction plot, it shows only one point. Therefore, not giving us the correct value.

Model 3:

The prediction plot shows that it is clustering around the top part of the graph. This is because the learning rate is very small and the epochs are not high enough. Along with that as the max angle is set at 2 so there is no way that the prediction value will reach the origin point and the clustering happens around the circle i.e., near 2 on both x and y axis.

In []: