Superstar Teams

Lukas Freund

Columbia University

28 November 2024

Uppsala University

• Most people work in teams: production \neq sum of separable worker outputs

[definition: Alchian-Demsetz, 1972]

• Most people work in teams: production \neq sum of separable worker outputs

[definition: Alchian-Demsetz, 1972]

· Classic idea: the firm as a mechanism for people to work together

[Smith, 1776; Alchian-Demsetz, 1972; Marschak-Radner, 1972; Becker-Murphy, 1992; ...]

• Most people work in teams: production \neq sum of separable worker outputs

[definition: Alchian-Demsetz, 1972]

• Classic idea: the firm as a mechanism for people to work together

[Smith, 1776; Alchian-Demsetz, 1972; Marschak-Radner, 1972; Becker-Murphy, 1992; ...]

• Not how we typically model firms in **macro**, labor, ...

• Most people work in teams: production \neq sum of separable worker outputs

[definition: Alchian-Demsetz, 1972]

• Classic idea: the firm as a mechanism for people to work together

[Smith, 1776; Alchian-Demsetz, 1972; Marschak-Radner, 1972; Becker-Murphy, 1992; ...]

- Not how we typically model firms in **macro**, labor, ...
- This paper: theoretical framework taking this idea seriously
 - implications for labor market inequality & determinants of agg. output
 - what happens as production complexity ↑

Core idea: specialization o complementarities o sorting & mismatch costs

Theory

- production requires many tasks
 talent ~ absolute advantage
 skill specificity ~ dispersion in ind. task-specific skills
- each firm consists of an organized collection of workers ("team")
- hiring workers involves (random) search

Core idea: specialization \rightarrow complementarities \rightarrow sorting & mismatch costs

Theory

- ightarrow talent \sim absolute advantage production requires many tasks ightarrow skill specificity \sim dispersion in ind. task-specific skills workers have het. task-specific skills each firm consists of an organized collection of workers ("team") hiring workers involves (random) search
- Core mechanism: skill specificity endogenously implies (1) productivity gains from team production, and (2) coworker talent complementarities

Core idea: specialization \rightarrow complementarities \rightarrow sorting & mismatch costs

Theory

- ightarrow talent \sim absolute advantage production requires many tasks ightarrow skill specificity \sim dispersion in ind. task-specific skills workers have het. task-specific skills each firm consists of an organized collection of workers ("team") hiring workers involves (random) search
- Core mechanism: skill specificity endogenously implies (1) productivity gains from team production, and (2) coworker talent complementarities

• Implications:

- \circ incentives for assortative matching \rightarrow firm-level inequality
- o frictional coworker mismatch is costly \rightarrow agg. productivity

1 Theory

- \circ microfound task-based production fn. \to endogenous coworker complementarities
- $\circ\,$ organizational theory \to low-dim. production fn. despite high-dim. skills

This paper: framework of the firm as a "team assembly"

1 Theory

- \circ microfound task-based production fn. \rightarrow endogenous coworker complementarities
- \circ organizational theory o low-dim. production fn. despite high-dim. skills

Theory meets data

- identification with micro panel data on wages+matches → estimate & validate model
- o coworker sorting generates large firm-level dispersion in productivity+pay

This paper: framework of the firm as a "team assembly"

1 Theory

- \circ microfound task-based production fn. \rightarrow endogenous coworker complementarities
- \circ organizational theory o low-dim. production fn. despite high-dim. skills

Theory meets data

- \circ identification with micro panel data on wages+matches \rightarrow estimate & validate model
- o coworker sorting generates large firm-level dispersion in productivity+pay
- **3 Applications:** implications of ↑ skill specificity [e.g. Jones, 2009; Deming, 2017]
 - structural explanation for "firming up inequality":
 † skill specificity helps rationalize
 †
 between-firm wage inequality share in DE since '85 [e.g. Card et al., 2013; Bloom et al., 2019]
 - o labor market frictions limit productivity gains from ↑ skill specificity

Roadmap

Theory

Theory Meets Data

Applications

- Agents: continuums of workers & firms, infinitely-lived & risk-neutral
 - o **firms** are ex-ante identical; $n \in \{0, 1, 2\}$ employees
 - \circ worker i is endowed with time-invariant, task-specific skills, $\{z_i(\tau)\}_{\tau\in[0,1]}$
- Production: continuum of imperfectly substitutable tasks [e.a., Acemoglu-Restrepo, 2018]
- Labor market matching: workers & multi-worker firms meet through random search [similar to Herkenhoff et al. (2024) but with high-dim. skills]
- Game plan to maintain tractability
 - **1** microfound tractable *reduced-form* firm-level production fn $f(\cdot)$
 - 2 given $f(\cdot)$, analyze team formation

Parametrized multi-dim. skills: "Fréchet-ing things up"

Assumption: Fréchet dist.

$$P[z_i(\tau) \leq z] = \exp\left(-\left(\frac{z}{\iota X_i}\right)^{-\frac{1}{\chi}}\right)$$

with $x_i \in \mathbb{Z}_{++}$ ("talent" \sim scale), $\chi \in [0, \infty)$ ("skill specificity" \sim inverse shape)

[Eaton & Kortum, 2002]

Interpretation

$$P[z_i(\tau) \le z] = \exp\left(-\left(\frac{z}{\iota x_i}\right)^{-\frac{1}{\chi}}\right)$$

Assumption: Multivariate Fréchet dist.

$$\Pr\left[z_1(\tau) \leq z_1, z_2(\tau) \leq z_2\right] = \exp\left[-\left(\sum_{i=1}^{n=2} \left(\left(\frac{z_i}{\iota X_i}\right)^{-\frac{1}{\chi}}\right)^{\frac{1}{\xi}}\right)^{\frac{1}{\xi}}\right]$$

with $x_i \in \mathbb{Z}_{++}$, $\chi \in [0, \infty)$, $\xi \in [0, 1]$ ("horizontal distance" \sim Copula param).

[Eaton & Kortum, 2002; Lind & Ramondo, 2023]

Production with a single team of given composition

• Firm with n workers produces output from **unit continuum of tasks** $\mathcal{T} = [0, 1]$

$$\ln \mathsf{Y} = \int_{\mathcal{T}} \ln q(\tau) d\tau \tag{1}$$

• Task-level aggregation for task τ :

$$q(\tau) = \sum_{i=1}^{n} y_i(\tau) \tag{2}$$

• Task production: i has task-specific skill $z_i(\tau)$, supplies 1 time unit

$$y_i(\tau) = \mathbf{z}_i(\tau)l_i(\tau) \tag{3}$$

$$1 = \int_{\mathcal{T}} l_i(\tau) d\tau \tag{4}$$

Firm's optimization problem

• Firm solves mini-planner problem: $\max_{\mathbf{q},\{y_i\},\{\mathbf{l}_i\}} Y \text{ s.t. (1)-(4)}$

 \Rightarrow derive & characterize *reduced-form* team production function f

$$f(\mathbf{z}_1, ..., \mathbf{z}_n) = \max Y$$

s.t. (1)-(4)

• Firm solves mini-planner problem: max Y s.t. (1)-(4)

$$\mathcal{L}(\cdot) = \mathbf{Y} + \lambda \left[\underbrace{\left(\int_{\mathcal{T}} \ln q(\tau) d\tau \right) - \ln \mathbf{Y}}_{\text{tasks} \to \text{output}} \right] + \int_{\mathcal{T}} \lambda(\tau) \left(\underbrace{\sum_{i=1}^{n} y_{i}(\tau) - q(\tau)}_{\text{task aggregation}} \right) d\tau$$

$$+ \sum_{i=1}^{n} \lambda_{i}^{L} \underbrace{\left(\int_{\mathcal{T}} \underbrace{y_{i}(\tau)}_{\mathbf{Z}_{i}(\tau)} d\tau - 1 \right)}_{\text{ton-negativity constraints}} + \text{non-negativity constraints}$$

time constraint + task production

Firm's optimization problem

• Firm solves mini-planner problem: max Y s.t. (1)-(4)

$$\mathcal{L}(\cdot) = \mathbf{Y} + \lambda \left[\underbrace{\left(\int_{\mathcal{T}} \ln q(\tau) d\tau \right) - \ln \mathbf{Y}}_{\text{tasks} \to \text{output}} \right] + \int_{\mathcal{T}} \lambda(\tau) \left(\underbrace{\sum_{i=1}^{n} y_{i}(\tau) - q(\tau)}_{\text{task aggregation}} \right) d\tau$$

$$+ \sum_{i=1}^{n} \lambda_{i}^{L} \underbrace{\left(\int_{\mathcal{T}} \frac{y_{i}(\tau)}{\mathbf{z}_{i}(\tau)} d\tau - 1 \right)}_{\text{time constraint} + \text{task production}} + \text{non-negativity constraints}$$

• FOCs imply

shadow cost of
$$\tau$$
 $\lambda(\tau) = \min_{i} \left\{ \frac{\lambda_{i}^{L}}{z_{i}(\tau)} \right\}$ opportunity cost of i 's time

Firm's optimization problem

• Firm solves mini-planner problem: max Y s.t. (1)-(4)

$$\mathcal{L}(\cdot) = \mathbf{Y} + \lambda \left[\underbrace{\left(\int_{\mathcal{T}} \ln q(\tau) d\tau \right) - \ln \mathbf{Y}}_{\text{tasks} \, \to \, \text{output}} \right] + \int_{\mathcal{T}} \lambda(\tau) \left(\underbrace{\sum_{i=1}^{n} y_{i}(\tau) - q(\tau)}_{\text{task aggregation}} \right) d\tau$$

$$+ \sum_{i=1}^{n} \lambda_{i}^{L} \underbrace{\left(\int_{\mathcal{T}} \frac{y_{i}(\tau)}{z_{i}(\tau)} d\tau - 1 \right)}_{\text{time constraint + task production}} + \text{\tiny non-negativity constraints}$$

FOCs imply task assignment by comparative advantage

$$\lambda(\tau) = \min_{i} \left\{ \frac{\lambda_{i}^{L}}{z_{i}(\tau)} \right\} \quad \Rightarrow \quad \mathcal{T}_{i} = \left\{ \tau \in \mathcal{T} : \frac{z_{i}(\tau)}{\lambda_{i}^{L}} \geq \max_{k \neq i} \frac{z_{k}(\tau)}{\lambda_{k}^{L}} \right\}$$

Proposition: Reduced-form production function

Under Assumption 1, talents **x** and horizontal distance ξ are sufficient statistics for team output Y given parameter χ :

$$Y = f(\mathbf{x}, \xi; \chi)$$

Proof sketch: Fréchet max-stability property yields closed-form characterization of dist. of {λ(τ)}, task shares, cost index λ, {λ_i^L}_i → analytically integrate over task continuum & workers, find f after normalizing λ = 1

Proposition: Reduced-form production function

Under Assumption 1, talents ${\bf x}$ and horizontal distance ξ are sufficient statistics for team output Y given parameter χ :

$$Y = f(\mathbf{x}, \xi; \chi)$$

- **Proof sketch:** Fréchet max-stability property yields closed-form characterization of dist. of $\{\lambda(\tau)\}$, task shares, cost index λ , $\{\lambda_i^L\}_i \to \text{analytically integrate over task continuum & workers, find <math>f$ after normalizing $\lambda=1$
- Benchmark without division of labor: $Y = n \times (\frac{1}{n} \sum_{i=1}^{n} x_i)$

Gains from team production are increasing in skill specificity

Proposition: Reduced-form production function

$$f(\mathbf{x}, \xi; \chi) = \underbrace{n^{1+\chi\xi}}_{\text{efficiency gains}} \times \left(\frac{1}{n} \sum_{i=1}^{n} (x_i)^{\frac{1}{1+\chi\xi}}\right)^{1+\chi\xi}$$

• Value of team production increasing in skill specificity (χ)

▶ Intuition

 \circ gains from team production realized when coworkers have differentiated expertise (ε)

Skill specificity implies that productivity is lowered by talent dispersion

Proposition: Reduced-form production function

$$f(\mathbf{x}, \xi; \chi) = \underbrace{n^{1+\chi\xi}}_{\text{efficiency gains}} \times \underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i)^{\frac{1}{1+\chi\xi}}\right)^{1+\chi\xi}}_{\text{talent complementarity}},$$

• Value of team production increasing in skill specificity (χ)

► Intuition

2 Skill specificity (χ) implies **coworker talent complementarities**

▶ Intuition

$$\circ \ \frac{\partial \left(\partial^2 f(\cdot)/\partial x_1 \partial x_2\right)}{\partial \chi} > 0$$

Roadmap & key takeaways

Theory

- 1 Under the optimal task assignment, **skill specificity** *endogenously* implies (1) gains from team production & (2) **coworker talent complementarities**
 - $\circ~$ Fréchet + assignment theory \rightarrow low-dim. production fn. despite high-dim. skills
- **②** Next: if production possibilities are summarized by $f(\mathbf{x}, \xi; \chi)$, what is the endogenous composition of different teams?

Endogenous team composition: frictional matching

Assumptions:

- $\circ x \sim \text{uniform}$; cond. on x, workers uniformly located on circle with unit circumference
- o random search with firm size $n \in \{0,1,2\}$ [cf. Herkenhoff-Lise-Menzio-Phillips, 2024]
- o exogenous separations, matching decision endogenous
- o employment states: unemp., employed alone, employed with one coworker
- o Nash wage bargaining with continuous renegotiation

- o only unemployed search
- ξ is operationalized as a **match-specific shock**
 - o task-specific skills perfectly observable to agents before match decision, econometrician only observes x; tractable b/c by Prop. 1, (\mathbf{x}, ξ) is sufficient statistic
- · Stationary equilibrium

Surplus max. determines which teams are formed

• Joint value of firm with 1 worker of talent x satisfies:

$$\begin{split} \rho\Omega_{1}(x) &= f(x) + \delta(x)\big[-\Omega_{1}(x) + V_{u}(x) + V_{f,o}\big] \\ &+ \lambda_{v.u} \int \int \frac{d_{u}(x')}{u} \max\big\{\underbrace{-\Omega_{1}(x) + V_{e.2}(x|x',\tilde{\xi}) + V_{f.2}(x,x',\xi)}_{(1-\omega)S(x'|x,\xi)}, o\big\} dH(\tilde{\xi}) dx' \end{split}$$

 $V_u(x)$: value for unemp. worker; $V_{f.o}$: value for vacant firm; $d_u(x)$: density of unemployed workers; $u = \int d_u(x) dx$; ω : worker bargaining wgt; $\delta(x)$: sep. hazard; $\lambda_{v.u}$: hazard rate of vacancy meeting unmatched worker; H: cdf of ξ

• Surplus $S(x|x',\xi)$ reflects production complementarities

$$S(x|x',\xi)(\rho + \delta(x) + \delta(x')) = f(x,x',\xi)$$
 – outside options

Equilibrium properties: conditional matching probabilities for given χ

• Team composition determined by tradeoff between **match quality vs. search costs** \Rightarrow cond. match probabilities P $\{S(x'|x,\xi) > 0\}$

Comparative 'statics': more positive assortative matching as $\chi\uparrow$

Roadmap & key takeaways

Theory

- **1** Skill specificity endogenously generates coworker complementarities
- **Talent complementarities** lead to positive assortative matching

Next: confront theory with data

Taking the model to the data: overview

- Numerical solution of model with discrete talent types $\hat{x}_i \in \{1, ..., 10\}$
- Data: SIEED matched employer-employee panel for West Germany
 - o for now: 2010-2017; later: 1985-2017
- Mapping & estimation
 - o worker *i'* s talent type $\hat{x}_i \approx$ decile in lifetime wage dist.
 - o "representative coworker type" \hat{x}_{-it} : avg. \hat{x} of workers in same estab.-yr.
 - \circ external: discount rate ρ , bargaining weight ω
 - \circ estimated offline: job separation hazards $\delta(x)$
 - \circ indirect inference: meeting rate, unemp. flow benefit, χ , mapping $\hat{x} \to x$
- Focus today: structural identification of χ in theory & practice

A useful identification result

- Challenge: skill specificity χ not directly observable
 - evidence for task-specific skills [cf. Deming, 2023] but no cardinal measure of specificity
 - \circ inferring γ from observed sorting patterns could load too much onto γ
- Structural identification: Proposition 1 monotonically relates χ to $\frac{\partial^2 f(\cdot)}{\partial \mathbf{v} \partial \mathbf{v}'}$, which we c from w(x|x') given x and x'
 - o intuition: outside options influence level of w [Eeckhout-Kircher, 2011] but enter separably

$$\frac{\partial^2 f(x,x',\xi)}{\partial x \partial x'} \propto \frac{\partial^2 w(x|x',\xi)}{\partial x \partial x'}$$

• Motivates measuring $\frac{\partial^2 \bar{w}(x|x')}{\partial x \partial x'}$

Reduced-form regression to identify χ (2010-2017)

• Approximate $\frac{\partial^2 \bar{w}(x|x')}{\partial x \partial x'}$ using **regression with interaction term**

$$\frac{w_{it}}{\overline{w}_t} = \beta_0 + \sum_{d=2}^{10} \beta_{1d} \mathbf{1} \{ \hat{x}_i = d \} + \sum_{d'=2}^{10} \beta_{2d'} \mathbf{1} \{ \hat{x}_{-it} = d' \} + \frac{\beta_c(\hat{x}_i \times \hat{x}_{-it}) + \psi_{j(i,t)} + \nu_{o(i,t)t} + \xi_{s(i,t)t} + \epsilon_{s(i,t)t}}{\beta_{c(i,t)t} + \beta_{c(i,t)t} + \beta_{c(i,t)t}}$$

• Reduced-form estimate: $\hat{\beta}_c$ = 0.0063

▶ Reg. table

o robust: schooling as non-wage measure, small teams, lagged types, excl managers, ...

► Long robustness list (it's a JMP...)

Reduced-form regression to identify χ (2010-2017)

• Approximate $\frac{\partial^2 \bar{w}(x|x')}{\partial x \partial x'}$ using **regression with interaction term**

$$\frac{w_{it}}{\overline{w}_{t}} = \beta_{0} + \sum_{d=2}^{10} \beta_{1d} \mathbf{1} \{\hat{x}_{i} = d\} + \sum_{d'=2}^{10} \beta_{2d'} \mathbf{1} \{\hat{x}_{-it} = d'\} + \frac{\beta_{c}(\hat{x}_{i} \times \hat{x}_{-it}) + \psi_{j(i,t)} + \nu_{o(i,t)t} + \xi_{s(i,t)t} + \epsilon_{s(i,t)t}}{\beta_{c}(\hat{x}_{i} \times \hat{x}_{-it}) + \psi_{j(i,t)} + \nu_{o(i,t)t} + \xi_{s(i,t)t}}$$

• Reduced-form estimate: $\hat{\beta}_c$ = 0.0063

▶ Reg. table

o robust: schooling as non-wage measure, small teams, lagged types, excl managers, ...

Long robustness list (it's a JMP...)

• Estimation of structural model: replicate semi-structural regression with model-generated data, infer χ from matching empirical $\hat{\beta}_c$

▶ Parameter values

↑ Higher-x workers experience lower unemployment rates due to lower separation rates but job finding rates don't increase much with talent [e.g., Cairo & Cajner, 2018]

Macro properties of estimated model (untargeted)

• Higher-x workers experience lower unemployment rates due to lower separation rates but job finding rates don't increase much with talent [e.g., Cairo & Cajner, 2018]

Coworker sorting patterns

Macro properties of estimated model (untargeted)

- Higher-x proworkers experience lower unemployment rates due to lower separation rates but job finding rates don't increase much with talent [e.g., Cairo & Cainer. 20181
- Match coworker sorting patterns
 - $\rho_{xx} = 0.45$ (vs. 0.64 in data)

Avg. coworker figure

- **✓** Between-firm wage inequality
 - o between-share 0.55 (vs. 0.57 in data)
 - mirrors endogenous firm-level productivity dispersion

▶ Figure

Validation: industries w higher task complexity \rightarrow more coworker sorting

Notes. Task complexity: occupation-specific measure of the share of cognitive non-routine tasks, weighted by industry-specific occ. employment weights. Weighted linear best fit. Data: SIEED + BIBB.

Validation: explanation through model mechanisms

Notes. Binned scatterplots, with industry FEs, so variation is within-industry over time. Moments estimated separately for 2-digit industries over 5 sample periods. Data: SIEED + BIBB.

Roadmap & key takeaways

Theory

- Skill specificity endogenously generates coworker complementarities
- Talent complementarities lead to positive assortative matching

Model Meets Data

3 Estimated model implies large ex-post differences across ex-ante identical firms

Next: applications

- Structural explanation for the "firming up of inequality"
- 5 Implications for aggregate productivity

Hypothesis: growing skill specificity ($\chi \uparrow$)

1 \triangle **Task composition:** fewer routine (low- χ), more complex (high- χ) tasks [Deming, 2017]

► DE evidence

- ② Burden of knowledge: increasing cost of reaching the frontier necessitates increasingly narrow individual expertise [Jones, 2009]
 ▶ Medical specialization
- Education: if education augments task-specific skills randomly, then the trend toward more (secondary & tertiary) education fosters ↑ dispersed task-specific skills

▶ Formalization & edu data

Wage inequality has risen – and firms appear to play a key role

"the variance of firm [wages] explains an increasing share of total inequality in a range of countries"

[Sona-Price-Guvenen-Bloom-von Wachter, 2019]

German matched employer-employee data

What are the causal driver(s)?

German matched employer-employee data—

Overview of argument

- lacktriangledown The set of tasks any one worker can perform well has narrowed: **skill specificity** \uparrow
- Coworker talent complementarities ↑
- Workers of similar talent increasingly work together (coworker sorting ↑)
- Greater firm-level productivity & wage dispersion

- Method: estimate reduced-form coefficient β_c for 5 sample periods ⇒ re-estimate structural model
- Skill specificity has intensified $(\chi \uparrow)$ [consistent with Grigsby's (2024) US estimates]
- Implied complementarities ↑
 - o $\frac{f(x^{p80}, x^{p80}, 1) + f(x^{p20}, x^{p20}, 1)}{f(x^{p80}, x^{p20}, 1) + f(x^{p80}, x^{p20}, 1)}$: 1.05 \nearrow 1.16

Model replicates observed ↑ firm-level wage inequality

• Firm dynamics literature: increased productivity dispersion [Autor et al., 2020; de Ridder, 2024], correlated with wage & talent dispersion [Berlingieri et al., 2017; Sorkin-Wallskog, 2020]

Skill specificity $\chi \uparrow$ explains large share of between-share \uparrow

- **Q:** How much of \uparrow between-firm share of wage var. is due to $\chi \uparrow$?
- Counterfactual: between-firm share in 2010s absent $\chi \uparrow$ since '85-'92
- A: $\gamma \uparrow$ accounts for 65% of model-predicted $\Delta \leftrightarrow \approx$ 59% of empirical Δ
- Robustness exercises

- Within-industry ▶ Outsourcing
- Effect of \downarrow search frictions [e.a., Martellini-Menzio, 2021] \sim 11% of model-predicted Δ \circ search effort plausibly endogenous to χ

Roadmap & key takeaways

Theory

- Skill specificity endogenously generates coworker complementarities
- Talent complementarities lead to positive assortative matching

Model Meets Data

Estimated model endogenously generates realistic ex-post firm heterogeneity

Applications

- Increased skill specificity leading to stronger complementarities and, hence, sorting helps explain the "firming up" of inequality
- Next: productivity application

Realizing gains from specialization requires well-matched teams

- · Gains from the division of labor are limited by the functioning of the labor market
 - microfoundation for recent econ-dev findings [Bandiera-Kotia-Lindenlaub-Moser-Prat, 2024]
 - o labor market frictions may inhibit specialization [cf. Atencio et al., 2024; Bassi et al., 2024]

Roadmap & key takeaways

Theory

- Skill specificity endogenously generates coworker complementarities
- Talent complementarities lead to positive assortative matching

Model Meets Data

Estimated model endogenously generates realistic ex-post firm heterogeneity

Applications

- Increased skill specificity leading to stronger complementarities and, hence, sorting explains a substantial share of ↑ between-firm wage inequality share
- $\mbox{\Large \ \, \textbf{ }}$ Enhanced sorting crucial to realize productivity gains from \uparrow skill specialization

Conclusion: how firms organize teams matters for macro

- This paper: tractable framework of the firm as a "team assembly" technology
- 3 takeaways:
 - **1 theory:** skill specificity \rightarrow complementarities \rightarrow talent sorting \rightarrow firm-level inequality
 - ↑ skill specificity helps explain "firming up" of inequality
 - 3 productivity gains from specialization contingent on well-matched teams
- Lots of space for extensions, e.g. within-firm coordination frictions
- **WiP:** teams quality & firm dynamics (who will be the next openAI?); labor market effects of task-specific technology shocks when skills are specialized (AI!)

Extra Slides

Relation & contributions to literature

• Firms: task-based microfoundation for complementarities

Firms & teams: Lucas, 1978; Becker & Murphy, 1992; Kremer, 1993; Kremer & Maskin, 1996; Garicano, 2000; Garicano & Rossi-Hansberg, 2006; Porzio, 2017; Jarosch et al., 2021; Kuhn et al., 2023

Task assignment: Costinot & Vogel. 2010: Acemoalu & Restrepo. 2018: Ocampo. 2021

- Sorting: parsimonious model of matching into teams with multi-dim. skill het.

 Multi-dim. skill heterogeneity: Kambourov-Manovskii, 2008; Gathman-Schoenberg, 2010; Lindenlaub, 2017; Guvenen et al., 2020; Lise & Postel-Vinay, 2020; Baley et al., 2022; Grigsby, 2024; Rubbo, 2024

 Frictional matching: Shimer & Smith, 2000; Cahuc et al., 2006; Eeckhout & Kircher, 2011/2018; Hagedorn et al., 2017; de Melo, 2018; Lindenlaub & Postel-Vinay, 2023; Herkenhoff et al., 2024; Bandiera et al., 2024
- Wage inequality: technological explanation for ↑ firm-level inequality
 Technology: Katz & Murphy, 1992; Krusell et al., 2000; Autor et al., 2003; Acemoglu & Restrepo, 2018
 Firms: Card et al., 2013; Barth et al., 2016; Alvarez et al., 2018; Bloom et al., 2019; Sorkin & Wallskog, 2023

What's the value-added of the micro-founded production function?

- **Concern:** the microfoundation isn't used for measurement i.e. measure $z_i(\tau)$'s directly and then 'aggregate up' to recover complementarities so what's the point?
- Value-added #1: tractable model of team production with multi-dimensional skills
 - $\circ\;$ reduces dimensionality of matching into team with multi-d. skills
- Value-added #2: relative to a r-f CES fn. with 1-dim. skill [e.g. Herkenhoff et al., 2024]
 - 1 explanation for why talent complementarities exist & may change over time
 - 2 the two models are not observationally equivalent
 - \circ benefit from team production is also increasing with χ , hence this term co-moves with talent complementarities (and it affects sorting differently)
 - selection effects due to ξ: when we observe low and high x workers together, they are likely to be a good match in terms of their task-specific skills [cf. Borovickova-Shimer, 2024]

- · Individual worker: Fréchet distributed task-specific skills
- · Any two workers: Multivariate Fréchet distributed task-specific skills
- Talent distribution: $\hat{x} \sim \textit{U}(0,1)$
 - o interpret \hat{x} as rank in talent distribution
 - model meets data: map ordinal types to cardinal talent x by parameterizing the quantile fn.
- Conditional on talent, workers are uniformly distributed on a circle with unit circumference \rightarrow 'offer' distribution $\xi \sim U(0,1)$

Lemma

Lemma: Lemma

Implied task share and shadow-cost index equal

$$\pi_{i} = \frac{\left(\mathbf{x}_{i} / \lambda_{i}^{L}\right)^{\frac{1}{\chi\xi}}}{\sum_{k=1}^{n} \left(\mathbf{x}_{i} / \lambda_{i}^{L}\right)^{\frac{1}{\chi\xi}}} \quad \mathbf{x}_{i} \lambda = \left(\sum_{i=1}^{n} \left(\frac{\mathbf{x}_{i}}{\lambda_{i}^{L}}\right)^{\frac{1}{\chi\xi}}\right)^{-\chi\xi}$$

Intuition: features of optimal organization

- What is the intuition for these properties?
- · Solution of firm's mini-planner problem implies:
 - Complete division of labor, with tasks assigned by comparative advantage

$$\circ \ \textit{i's} \ \mathsf{task} \ \mathsf{set} \ \mathcal{T}_{\textit{i}} = \left\{ \tau \in \mathcal{T} : \frac{\mathsf{z}_{\textit{i}}(\tau)}{\lambda_{\textit{i}}^{\mathsf{L}}} \geq \mathsf{max}_{k \neq \textit{i}} \, \frac{\mathsf{z}_{\textit{k}}(\tau)}{\lambda_{\textit{k}}^{\mathsf{L}}} \right\}$$

- o classic source of efficiency gains
- 2 i's share of tasks \uparrow in i's talent, \downarrow in coworkers' talent

• *i*'s task share
$$\pi_i = (x_i^{\frac{1}{1+\chi\xi}})(\sum_{k=1}^n (x_k)^{\frac{1}{1+\chi\xi}})^{-1}$$

Intuition: comparative statics for task shares

- Suppose that $x_i > x_i$. Then
 - $oldsymbol{1}$ i performs a strictly larger share of tasks than j for $\chi<\infty$

Intuition: comparative statics for task shares

- Suppose that $x_i > x_j$. Then
 - **1** *i* performs a strictly larger share of tasks than *j* for $\chi < \infty$
 - $oldsymbol{2}$ the difference in task shares is decreasing in χ

⇒ Greater skill specialization implies a larger share of tasks is performed by relatively less talented team members – more talented coworkers can't easily compensate

• The wage of a worker of type x employed alone satisfies

$$(1 - \omega)(V_{e.1}(x) - V_u(x)) = \omega(V_{f.1}(x) - V_{f.0}),$$
 (5)

• The wage $w(x|x',\xi)$ of a type-x worker with a coworker of type x' given shock ξ satisfies

$$(1-\omega)\big(V_{e.2}(x|x',\xi)-V_{u}(x)\big)=\omega\big(V_{e.2}(x'|x,\xi)+V_{f.2}(x,x',\xi)-V_{e.1}(x')-V_{f.1}(x')\big). \quad (6)$$

HJB: unmatched

· Unmatched firm:

$$\rho V_{f.o} = (1 - \omega) \lambda_{v.u} \int \frac{d_u(x)}{u} S(x)^+ dx, \tag{7}$$

· Unmatched worker:

$$\rho V_u(x) = b(x) + \lambda_u \omega \left[\frac{d_{f.O}}{v} S(x)^+ + \int \int \frac{d_{m.1}(\tilde{x}')}{v} S(x|\tilde{x}',\tilde{\xi})^+ dH(\tilde{\xi}) d\tilde{x}' \right]$$
(8)

Joint values

• Joint value of firm with x and x', ξ

$$\rho\Omega_2(\mathbf{x}, \mathbf{x}', \xi) = f_2(\mathbf{x}, \mathbf{x}', \xi) - \delta S(\mathbf{x}|\mathbf{x}', \xi) - \delta S(\mathbf{x}'|\mathbf{x}, \xi)$$
(9)

Joint value of firm with x

$$\rho\Omega_{1}(x) = f_{1}(x) + \delta\left[-\Omega_{1}(x) + V_{u}(x) + V_{f,0}\right]$$

$$+ \lambda_{v.u} \int \int \frac{d_{u}(\tilde{x}')}{u} \left(\underbrace{-\Omega_{1}(x) + V_{e,2}(x|\tilde{x}',\tilde{\xi}) + V_{f,2}(x,\tilde{x}',\tilde{\xi})}_{(1-\omega)S(\tilde{x}'|x,\tilde{\xi})}\right)^{+} dH(\tilde{\xi})d\tilde{x}'.$$
(10)

HJB: surpluses

Surplus of coalition of firm with worker x

$$(\rho + \delta)S(x) = f_1(x) - \rho(V_u(x) + V_{f.o}) + \lambda_{v.u}(1 - \omega) \int \frac{d_u(\tilde{x}')}{u} S(\tilde{x}'|x, \tilde{\xi})^+ dH(\tilde{\xi})\tilde{x}'. \tag{11}$$

Surplus from adding x to x' with xi

$$S(x|x',\xi)(\rho+2\delta) = f_2(x,x',\xi) - \rho(V_u(x) + V_u(x') + V_{f,o}) + \delta S(x) - (\rho+\delta)S(x').$$
 (12)

KFE: unemployed

$$\delta\bigg(d_{m.1}(x) + \int d_{m.2}(x,\tilde{x}')d\tilde{x}'\bigg) = d_u(x)\lambda_u\bigg(\int \frac{d_{f.o}}{v}h(x,\tilde{y}) + \int \frac{d_{m.2}(\tilde{x}')}{v}h(x|\tilde{x}')d\tilde{x}'\bigg). \tag{13}$$

KFE: one-worker matches

$$d_{m.1}(x)\left(\delta + \lambda_{v.u} \int \frac{d_u(\tilde{x}')}{u} h(\tilde{x}'|x) d\tilde{x}'\right) = d_u(x) \lambda_u \frac{d_{f.o}}{v} h(x) + \delta \int d_{m.2}(x, \tilde{x}') d\tilde{x}'. \tag{14}$$

KFE: two-worker matches

$$2\delta d_{m.2}(x,x') = d_u(x)\lambda_u \frac{d_{m.1}(x')}{v}h(x|x') + d_u(x')\lambda_u \frac{d_{m.1}(x)}{v}h(x'|x). \tag{15}$$

Matching – stationary equilibrium

- HJ-Bellman equations → values & matching policies
- Flows between/**distribution** over types × employment states

▶ HIBs

Definition: Stationary equilibrium

A stationary eqm. consists of a production function, value functions & a distribution of agents, s.t.

- the production function is consistent with the optimal assignment of tasks;
- the value functions satisfy the HJB equations given the distribution;
- 3 the distribution is stationary given the policy fn's implied by the value fn's.

Mapping theory to data: worker & coworker types

- **Theory:** wage monotonically \uparrow in x, so higher types have higher expected/lifetime earnings
- Implementation: standard methods
 - o worker fixed effect (FE) in Mincerian wage regression
 - baseline: AKM [Abowd et al., 1999] with pre-est. k-means clustering to address limited mobility bias [Bonhomme et al., 2019]
 - \Rightarrow Worker *i*'s talent type \hat{x}_i : decile rank of *i*'s FE
 - o baseline: economy-wide rank; robustness: within 2d-occupation
- "Representative coworker type" \hat{x}_{-it} : avg. \hat{x} of workers in same estab.-yr.

Mapping model to data: coworker types

• Defining $S_{-it} = \{k : j(kt) = j(it), k \neq i\}$ as the set of *i*'s coworkers in year *t*, compute the average type of *i*'s coworkers in year *t* as $\hat{x}_{-it} = \frac{1}{|S_{-it}|} \sum_{k \in S_{-it}} \hat{x}_k$.

· Coworker group:

- o alternative: same establishment-occupation-year cell
- o but CC arise precisely when workers have differentiated task-specific skills

Averaging step:

- o equally-weighted averaging ignores non-linearity in coworker aggregation
- paper: show using non-linear averaging method that baseline results in bias, but it's minor in magnitude
- **Firm size variation:** averaging ensures that a single move will induce a smaller change in the *average* coworker quality in a large team than in a small one

Mapping theory to data: talent sorting in the data

• Measures of \hat{x}_i and \hat{x}_{-it} sufficient to measure empirical talent sorting

- **Q:** How to quantify $\frac{\partial^2 f(x,x')}{\partial x \partial x'}$?
- Proposition: production complementarities are proportional to wage compl.
- **Proof sketch:** wage level for worker x with coworker x'

$$w(\mathbf{x}|\mathbf{x}',\xi) = \omega(f(\mathbf{x},\mathbf{x}',\xi) - f(\mathbf{x}')) + (1-\omega)\rho V_u(\mathbf{x}) - \omega(1-\omega)\lambda_{v.u} \int \int \frac{d_u(\tilde{\mathbf{x}}'')}{u} S(\tilde{\mathbf{x}}''|\mathbf{x}',\tilde{\xi})^+ dH(\tilde{\xi})$$
$$= \omega f(\mathbf{x},\mathbf{x}',\xi) + g(\mathbf{x}) - h(\mathbf{x}')$$

where $g: [0,1] \to \mathbb{R}$ and $h: [0,1] \to \mathbb{R}$ are strictly increasing

- \Rightarrow outside options are separable: affect level of wage but not the cross-partial
- Integrating over ξ using optimal decision rules $h(\cdot) \Rightarrow$ average realized wage

Expected (log) wage level

• Expected wage, given threshold $\bar{\xi}$ and cond. exp. value $\xi^*(k) = \frac{\int_k^1 \xi dH(\xi)}{1-H(k)}$

$$\begin{split} \overline{w}(x|x') &= \mathbb{E}_{\xi} \left[w(x|x',\xi) \right] \underbrace{\frac{d_{u}(x)\lambda_{u} \frac{d_{m,1}(x')}{v} h(x|x')}{d_{u}(x)\lambda_{u} \frac{d_{m,1}(x')}{v} h(x|x') + d_{u}(x')\lambda_{u} \frac{d_{m,1}(x)}{v} h(x'|x)}_{p(x|x')} \times w \left(x|x',\xi^{*}(\bar{\xi}(x|x')) \right) \\ &+ \frac{d_{u}(x')\lambda_{u} \frac{d_{m,1}(x)}{v} h(x'|x)}{d_{u}(x)\lambda_{u} \frac{d_{m,1}(x)}{v} h(x'|x)} h(x'|x)}{d_{u}(x')\lambda_{u} \frac{d_{m,1}(x)}{v} h(x'|x)} \times w \left(x|x',\xi^{*}(\bar{\xi}(x'|x)) \right). \end{split}$$

• Expected log wage, with $B^{\xi}(x|x') = \{\xi : S(x|x',\xi) > 0\}$

$$\mathbb{E}_{\xi}\left[\ln w(x|x',\xi)\right] = \overline{\ln w}(x|x') = p(x|x') \times \left(\frac{1}{1 - h(x|x')} \times \int_{\xi \in B^{\xi}(x|x')} \ln w(x|x',\xi) dH(\xi)\right) + p(x'|x) \times \left(\frac{1}{1 - h(x'|x)} \times \int_{\xi \in B^{\xi}(x'|x)} \ln w(x|x',\xi) dH(\xi)\right),$$

(A few fresh) thoughts on relation to Borovičková-Shimer (2024) argument Main

- Reasoning in B-S also applies to coworker matching: realized matches and hence wages may reflect selection on match-specific productivity shocks
 - \circ model version presented today (\neq JMP) explicitly microfounds & accounts for selection
- A few (fresh) thoughts
 - Theoretical differences
 - \circ microfoundation delivers structural interpretation of match-specific shocks ε under which they (/their impact on f) are inherently bounded
 - \circ χ controls both the degree of f complementarity and impact of ξ on output
 - o wage vs log wage (average G wage is s. increasing and s. submodular (s. supermodular) for any s. increasing and s. concave (convex) G)
 - MC study: ✓
 - **3** X-sectional evidence: β_c and ρ_{xx} co-move
- Alternative strategy: infer χ directly from observed equilibrium sorting

Regression coefficients co-move with χ

Identification validation exercise 1

Notes. This figure plots the targeted moment against the relevant parameter, holding constant all other parameters.

Identification validation exercise 2

Notes. This figure plots the distance function $\mathcal{G}(\psi_i, \psi_{-i}^*)$ when varying a given parameter ψ_i around the estimated value ψ_i^* . The remaining parameters are allowed to adjust to minimize \mathcal{G} .

Regression estimates

	(1)	(2)	(3)	(4)	(5)
Interaction coefficient (\hat{eta}_c)	0.0067*** (0.0005)	0.0067*** (0.0004)	o.oo63*** (o.ooo5)	o.oo63*** (o.ooo5)	0.0059*** (0.0008)
Employer FEs	No	No	Yes	Yes	Yes
Industry-year FEs	No	Yes	No	Yes	Yes
Occupation-year FEs	No	No	Yes	Yes	Yes
Type ranking	Economy	Economy	Economy	Economy	Occupation
Obs. (1000s)	3,606	3,606	3,606	3,606	3,606
Adj. R ²	0.788	0.800	0.801	0.813	0.769

Notes. Employer-clustered standard errors are given in parentheses. Observations are weighted by the inverse employment share of the respective type and (rounded) coworker type cell. Observation count rounded to 1000s. * p<0.1: ** p<0.05: *** p<0.01.

Robustness: reduced-form coworker complementarity

• Types from non-parametric ranking algorithm instead of AKM-based

▶ Jump

Schooling as a non-wage measure of types

▶ Jump

Lagged types

▶ Jump

Small teams

▶ Jump

Movers

▶ Jump

Non-parametric, finite-differences approximation

▶ lump

→ Jump

Excluding managers

▶ lump

Log specification

Coworker complementarity: lagged types

- Concern with both regression approach and non-parametric FD approach: mechanical relationship between wages ("LHS") and (within-period time-invariant) worker types, which are estimated from wages themselves ("RHS")
- Robustness check #1: years of schooling as type measure

- Robustness check #2: assign to each individual i in periods $p \in \{2, 3, 4, 5\}$ the FE estimated for i in period p-1; re-compute worker deciles and average coworker types, \hat{x}_i^{p-1} and $\hat{x}_{-it}^{p-1} = (|S_{-it}|)^{-1} \sum_{k \in S} \hat{x}_k^{p-1}$; re-estimate wage regression
- Results (see paper): magnitude of estimated $\hat{\beta}_c$ around 50% smaller when using lagged types, but evolution over time similar to baseline

Complementarity estimates using years of schooling

	'85-'92	'93-'97	'98-'03	'04-'09	'10-'17
Interaction	0.0063***	o.oo6o***	0.0099***	0.0112***	0.0129***
	(0.0008)	(o.ooo7)	(0.0008)	(0.0007)	(0.0009)
Obs. (1000s)	3,613	2,508	2,694	3,836	4,376
R ²	0.5033	0.5451	0.5746	0.6330	0.6425

Notes. Dependent variable is the wage level over the year-specific average wage. Independent variables are a constant, years of schooling, coworker years of schooling, and the interaction between those two terms. All regressions include industry-year, occupation-year and employer fixed effects. Employer-clustered standard errors in parentheses. Observations are unweighted. The sample is unchanged from the main text, except that 96,517 observations with missing years of schooling are dropped. Observation count rounded to 1000ss.

		Baseline				Within-in	dustry a	ıvg.
Sample Period	$\sigma_{\rm W}^2$	$\sigma_{ar{\mathrm{W}}}^{2}/\sigma_{\mathrm{W}}^{2}$	$ ho_{XX}$	$\hat{eta}_{m{c}}$	$\sigma_{\rm W}^2$	$\sigma_{ar{\mathrm{W}}}^{\mathrm{2}}/\sigma_{\mathrm{W}}^{\mathrm{2}}$	$ ho_{XX}$	$\hat{eta}_{f c}$
1	0.143	0.337	0.427	0.0036	0.125	0.249	0.333	0.00283
2	0.148	0.391	0.458	0.0042	0.125	0.288	0.351	0.00342
3	0.191	0.456	0.495	0.0070	0.150	0.324	0.369	0.00585
4	0.234	0.547	0.547	0.0082	0.168	0.388	0.405	0.00738
5	0.241	0.568	0.617	0.0091	0.171	0.412	0.464	0.00823

Notes. Within-industry avg. is person-year weighted average across OECD STAN-A38 (2-digit) industries.

Coworker complementarity & sorting by team size

Sorting & complementarity based on non-parametric ranking algorithm

• Instead of ranking workers based on AKM worker FEs, use non-param. ranking algo [Hagedorn et al., 2017]

	Sor	ting	Complen	nentarities
Period	Spec. 1	Spec. 2	Spec. 1	Spec. 2
1985-1992	0.47	0.38	0.001	0.000
1993-1997	0.56	0.46	0.002	0.001
1998-2003	0.60	0.48	0.004	0.002
2004-2009	0.65	0.50	0.005	0.002
2010-2017	0.68	0.51	0.005	0.004

Notes. This table indicates, under the column "Sorting" the correlation between a worker's estimated type and that of their average coworker, separately for five sample periods. The column "Complementarities" indicates the point estimate of the regression coefficient of "Specification 1" workers are ranked economy wide, while under "Specification 2" they are ranked within two-digit occupations. Worker rankings are based on the non-parametric method.

Coworker complementarity: excluding managers

- Concern regarding complementarity estimates: driven by managers?
 - o only managers benefit from team quality, e.g. via larger span of control
 - o the only coworkers that matter are managers

Period	Baseline	Exclude as recipients	Exclude entirely
1985-1992	0.0036***	0.0036***	0.0038***
1993-1997	0.0042***	0.0041***	0.0043***
1998-2003	0.0070***	0.0074***	0.0076***
2004-2009	0.0082***	0.0084***	0.0092***
2010-2017	0.0091***	0.0097***	0.0093***

Notes. Managed are defined based on KldB-1988-3d, as in Jarosch et al. (2023).

- Consider sub-samples of job movers, job movers with contiguous employment spells ($t \rightarrow t+1$), and job movers with non-contiguous E spells ($t \rightarrow t+s$, s > 1)
- Caveat: annual panel given data size, no direct observation of U/N spells in SIEED

Period	Baseline	All movers	Contig. E spells	Non-contig. E spells
1985-1992	0.0043***	0.0043***	0.0045***	0.0039***
1993-1997	0.0049***	0.0052***	0.0052***	0.0051***
1998-2003	0.0078***	0.0085***	0.0083***	0.0082***
2004-2009	0.0090***	0.0107***	0.0104***	0.0102***
2010-2017	0.0088***	0.0103***	0.0101***	0.0090***
Obs. in '10-'17 (1000s)	4,410	538	355	375

Notes. Unweighted observations. Regressions include FEs for employer; occupation-year; industry-year. Employer-clustered standard errors in parentheses.

Parametrization (2010-2017)

Parameter	Description	Value	Source	m	m
$\overline{\rho}$	Discount rate	0.008	External		
ω	Worker barg. weight	0.50	External		
δ_{o}	Sep. rate, constant	0.0147	Offline est.		
δ_{1}	Sep. rate, scale	-0.84	Offline est.		
īn	Team size	14	Offline est.		
χ	Skill specificity	1.17	Internal: β_c	0.0063	0.0063
a_{o}	Production, constant	0.26	Internal: normalized wage	1	1
a_1	Production, scale	1.49	Internal: Var. log wages	0.23	0.23
Б	Unemp. flow utility, scale	0.64	Internal: replacement rate	0.63	0.63
λ_u	Meeting rate	0.23	Internal: job finding rate	0.16	0.16

Model Meets Data: types and production function

$$f(x,x',\xi) = 2 \times \left(\frac{\bar{n}}{\bar{n}-1}\right)^{\chi\xi} \left(\frac{1}{2}(x)^{\frac{1}{\chi+1}} + \frac{1}{2}(x')^{\frac{1}{\chi+1}}\right)^{\chi+1}$$

- **1** Estimated 'talent types' are in *ordinal* space, $\tilde{x} \in [0,1]$. Mapping $x_i = a_0 + a_1 \tilde{x}_i$
 - o next iteration: allow for higher-order terms
 - ∘ (a_0, a_1) captures (i) "talent-biased technological change," and (ii) \triangle talent distribution nb: Hakanson et al (2021) find no evidence of \uparrow dispersion in test scores
- ② What the model treats as the second hire shows up, in the production function, as the \bar{n} -th hire

Validation: Production functions estimated by Ahmadpoor-Jones (2019)

Notes. Source data from Ahmadpoor and Jones (2019, PNAS). Own calculations. Binscatter plot for subsample with complementarity <= 5.

Validation: Structural interpretation of Jaeger-Heining (2022)

X-sectional validation (occ's): tasks ⇒ complementarity

- ↑ Non-routine abstract task intensity
 ⇒ ↑ coworker talent complementarity
- $\hat{\beta}_{c}$ estimated separately for each occupation 0.03 0.025 Coworker complementarity ↓Health professionals 0.02 Electrical & electr 0.005 Non-routine abstract task intensity: proxy for χ Correlation:0.638 Protective services worker 0.1 0.3 0.5 0.6 Non-routine abstract task intensity

Notes. Quadros de Pessoal microdata. Analysis at ISCO-08-2d level.

X-sectional validation (occ's): tasks \Rightarrow complementarity \Rightarrow sorting

↑ Non-routine abstract task intensity
 ⇒ ↑ coworker talent complementarity

↑ Coworker talent complementarity
 ⇒ ↑ coworker sorting

Industries: coworker importance \Rightarrow complementarity \Rightarrow sorting

- ↑ Teamwork [Bombardini et al., 2012]
 ⇒ ↑ coworker wage complementarity
- 0.035 Coworker complementarity 0.02 Correlation:0 319 0.5 1.5 O*NET complementarity z-score

Notes. Horizontal axis measures the industry-level weighted mean score of an occupation-level index constructed from O*NET measuring the importance of: teamwork. impact on coworker output. Communication. and contact.

↑ Coworker wage complementarity
 ⇒ ↑ coworker sorting

Notes. NACE-4-digit industries.

- Theoretical prediction: EE transitions move workers in surplus-maximizing direction $\Rightarrow \Delta \hat{x}_{-it} = \hat{x}_{-i,t} \hat{x}_{-i,t-1}$ should be *positively* correlated with \hat{x}_i
 - $h_{2.1}(x, x''|x') = 1$ worker x in a two-worker firm with coworker x'' would move to an employer that currently has one employee of type x' if S(x|x') S(x|x'') > 0
- **Empirical analysis**: use SIEED *spell* data to create worker-originMonth-destinationMonth-originJob-destinationJob panel, with information on characteristics of origin and destination job
 - o subsample period 2008-2013 (huge panel at monthly frequency)
 - o count as "EE" if employer change between two adjacent months
- **Regression analysis:** regress $\Delta \hat{x}_{-it}$, scaled by std. σ_{Δ} of coworker quality changes, on *own* type and *origin* coworker type

$$\frac{\Delta \hat{\mathbf{x}}_{-it}}{\sigma_{\mathbf{A}}} = \beta_{\mathbf{O}} + \frac{\beta_{1}}{\beta_{1}} \hat{\mathbf{x}}_{i} + \beta_{2} \hat{\mathbf{x}}_{-i,t-1} + \epsilon_{it}$$

Empirical coworker sorting changes due to EE moves

- EE transitions push toward greater coworker sorting: for given origin, higher x-workers move to places with better coworkers than lower-x workers do
- Limitation: empirically, EE transitions "move up" low types more than theory predicts
- "Coworker job ladder" with both absolute and type-specific dimension?
- **Next:** change in the job ladder [e.g., Haltiwanger-Spetzler, 2021]

Evidence that EE increasingly reallocate toward PAM: in data & model

	Da	Model		
Change in coworker type	'85-'92	'10-'17	Period-1	Period-2
Own type	0.0883 *** (0.000799)	0.118 *** (0.000918)	0.214	0.270
Controls	Year FEs, Origin	Year FEs, Origin	Origin	Origin
N	196,098	282,718	∞	∞
adj. R²	0.284	0.204		

Table 1: Change in coworker type due to EE moves positively related to own type – increasingly so

Notes. For the data columns, individual-level clustered standard errors are given in parentheses. Model counterparts are computed simulation-free in population. Dependent variable is scaled throughout by the standard deviation of the change in coworker type.

Industry-level analysis: mechanisms, w/o industry FEs

Notes. Binned scatterplots. Moments estimated separately for 2-digit industries over 5 sample periods. Includes period FEs. Data: SIEED + BIBB (task proxies).

Industry-level analysis: model vs. data

Fact #1: ↑ between-firm share of wage inequality

- Large empirical literature: "firming up inequality" [e.g., Card et al., 2013; Song et al., 2019]
 - o "superstar firms" [e.g., Autor et al., 2020]
- Fact 1: ↑ wage inequality primarily due to between-component
- Robust pattern

Notes. Model-free statistical decomposition, where the "between" component corresponds to the person-weighted variance of est.-level avg. log wage.

Fact #2: talented workers increasingly collaborate

To what extent do talented workers tend to have talented coworkers?

Fact 2: + assortative coworker sorting \(\)

o
$$\rho_{xx} = \operatorname{corr}(\hat{x}_i, \hat{x}_{-it})$$
: 0.43 ('85-'92) \nearrow 0.62 ('10-'17)

Robust pattern

```
► Table ► Within-occ. nonlinear

► Hakanson et al. (2021)
```


- Data: trend toward more (secondary) education
- **Intuition:** if education augments task-specific skills randomly, then longer education leads to more dispersion in task-specific skills

Remark: Fréchet skill dispersion

Let Z be a Fréchet random variable (r.v.) with shape parameter $\theta > 0$ and scale parameter x > 0, and let $\{B_n\}_{n \geq 1}$ be a sequence of independent r.v.'s defined recursively as $B_n = \exp\left(-b_n/(\alpha\theta_{n-1})\right)$ where $\alpha \in (0,1)$, $\theta_0 = \theta$, $\theta_n = \theta_{n-1}\alpha = \theta\alpha^n$ for $n \geq 1$, $\{b_n\}_{n \geq 1}$ are independent r.v.'s such that $\exp\left(b_n/\alpha\right)$ are i.i.d. positive α -stable r.v.'s. Assume Z and $\{B_n\}$ are independent. Define the r.v.'s $\{Z^{(n)}\}_{n \geq 1}$ recursively as $Z^{(0)} = Z$, $Z^{(n)} = Z^{(n-1)} \times B_n$, $n \geq 1$. Then for each $n \geq 1$, $Z^{(n)}$ is a Fréchet r.v. with scale X and shape $\theta_n = \theta\alpha^n$.

Barro Lee data for Germany

Evolution of coworker sorting: within-occupation ranking

 The most talented within each occupation – the best engineer, PA, economist, manager, ... – tend to work together, and increasingly so

- Task complexity ↑:
 "extensive margin" of \(\chi \)
 - DE longitudinal task survey (BIBB)
 - "complex": cognitive non-routine (e.g., organizing, researching)

Workers increasingly tend to perform similar tasks across different jobs

• \(\sqrt{Workers move to jobs with similar tasks, rather than randomly \)

Comparison

• Q: are workers becoming more likely to perform similar tasks across jobs?

- **Yes:** distribution of moves in ('04-'09) is stochastically dominated by that in ('85-'92)
 - $\circ\:$ uncond. average: 0.253 \to 0.227: 10% decline
- · Robust in regression design
 - o quantile regressions

Examples: rising specialization

Deepening medical specialization

Notes. Data from American Board of Medical Specialities. For each year, it shows the number of unique speciality or sub-speciality certificates that have been approved and issued at least once by that year and which are are still being issued.

• Rise of research teams [Jones, 2021]

$$\ln w_{it} = \beta_0 + \beta_1 \hat{x}_i + \frac{\beta_2}{2} \hat{x}_{-it} + \psi_{j(it)} + \nu_{o(i)t} + \xi_{s(i)t} + \epsilon_{it}$$

Notes. Specifications vary by ranking method – within-economy (spec. 1) vs. within-occupation (spec. 2/spec.3) and coworker group definition – establishment-year (spec. 1/spec.2) vs. establishment-occupation-year (spec.3).

Within-industry calibration: model fit & counterfactual

 Counterfactual: χ↑ explains 83% of model-implied ↑ in between-share

Outsourcing & within-occupation ranking analysis

- · Concern: confounding shifts in labor boundary of firm, e.g. outsourcing
- · Address this concern in multiple steps:
 - empirically rank workers within occupation ("good engineer vs. mediocre engineer")
 - ② empirically re-estimate coworker sorting & complementarity (lower but similar ↑)
 - 3 re-estimate model for both periods & re-do counterfactual exercises
- Result: qualitatively & quantitatively similar findings

	△ model	Implied % Δ model due to Δ parameter
Model 2: within-occ. ranking	0.198	-
Cf. a: fix period-1 χ	0.076	61.47

- Production complementarities imply sorting matters for agg productivity search frictions induce misallocation
- **Quantify** mismatch costs: compare eqm outcome to productivity under pure talent-PAM and different values of ξ given param's for 2010s

	Labor productivity
Baseline (norm.)	100
PAM + $\xi = 1$	102.6
PAM	101.1
$\xi=1$	101.4

• Productivity gains from eliminating mismatch are of **limited magnitude**. But...