Université de Nice-Sophia Antipolis SI5, Caspar & M2 informatique et interactions Cryptographie & Sécurité 2020–2021

Examen de octobre 2021

Durée: 1h30

L'examen comporte 3 parties indépendantes. Veuillez répondre sur la copie avec clarté et concision.

1 Construction d'une boîte S et analyse [11 points]

1. On travaille dans dans $GF(2^3)$, corps à 8 éléments obtenu par la relation $\mathbb{F}_2[x]/(x^3+x+1)\mathbb{F}_2[x]$. On associera à la valeur octale 6 le mot binaire 110 (bit de poids faible à gauche) et le polynôme $x^2 + x$. Complétez la table de multiplication en exprimant les éléments en binaire.

		000	001	010	100	011	101	110	111
		0	1	x	x^2	x + 1	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	000	000	000	000	000	000	000	000
001	1	000	001	010	100	011	101	110	111
010	x								
	x^2								
011	x+1	000	011			•	•		
	$x^{2} + 1$								
110	$x^2 + x$	000	110						
111	$x^2 + x + 1$	000	111	101	001	010	110	100	011

2. Grace à la table de multiplication, complétez la table des inverses des éléments de $GF(2^3)$.

Au moyen de ces calculs préliminaires, on construit une boîte S selon la construction de S-AES :

- 1. convertir le nibble d'entrée en un polynôme p(x);
- 2. inverser le polynôme obtenu précédemment pour obtenir le polynôme $\operatorname{inv}(x)$;
- 3. associer à inv(x) son polynôme dans $\mathbb{F}_2[y]/y^3-1=N(y)$
- 4. calculer $a(y)N(y) + b(y) \mod y^3 1$ avec $a(y) = y^2$ et b(y) = y.
- $\bf 3.$ Complétez la table de la boîte S ci-dessous :

p(x)	N(y)	$N(y)*(y^2)$	+y	résultat
000	000	000	010	010
001	001	100	110	110
010	101	110	100	100
011		•		
100		•		
101	010	001	011	011
110			•	
111		•		

On considère le chiffre suivant (appelé Even et Mansour Additif) qui utilise la boîte S ci-dessus et deux clés de tour K_0 et K_1 . La boîte S est la permutation définie ci-dessus et les '+' représentent des additions dans le corps de Galois $GF(2^3)$ engendré par le polynôme $x^3 + x + 1$. Cette addition correspond ici à une opération de ou exclusif bit à bit.

4. Précisez quelle est la taille de P en bits et quelle est la taille de la clé (complète) en bits.

5. Expliquez comment6. Cherchez les valeurs			717			
6. Cherchez les valeurs		pour un Δ				
6. Cherchez les valeurs		oour un Δ				
6. Cherchez les valeurs		oour un Δ				
6. Cherchez les valeurs		oour un Δ				
6. Cherchez les valeurs		our un Δ				
	X			-	ctale de 4	(100 en binaire):
		Y	X'	Y'	ΔY	_
	000					_
	001					_
	010					_
	011					_
	100					_
	101					_
	$\frac{110}{111}$					_
	111					_
7. Listez celles qui appa	araîssent	le plus fr	équemmen	t en donn	ant les pr	obabilités associées :
8. Listez les bonnes pai	res assoc	ciées à (Δ	$X, \Delta Y) =$	(100, 111)		
9. Combien de tirages bonnes paires de la que			ı réaliser p	our "devi	ner" l'ent	rée de la boîte S avec les
10. Quelle est la compl	:47 17		1			

2 Secret parfait [5 points]

Soit n > 0 un entier. Un carré latin de rang n est un tableau T de taille $n \times n$ qui contient les entiers $\{1, \ldots, n\}$ tel que chacun de ces n entiers apparaît une fois sur chaque ligne et sur chaque colonne (pour n = 9, c'est par exemple la solution d'un problème de sodoku).

1. Donnez un exemple de carré latin de rang 5.

Etant donné un carré latin T de rang n, on lui associe un chiffre pour lequel l'espace des clairs, des chiffrés et des clés est l'ensemble $\{1,\ldots,n\}$. Le clair m est chiffré avec la clé k en lisant le contenu T[m,k] (ligne m, colonne k).

2. En utilisant l'exemple de la question **1.**, donnez un exemple de chiffrement sur un alphabet réduit à $\{1,\ldots,5\}$.

3. Comment pourrait-on faire pour coder l'alphabet des lettres latines minuscules sur l'alphabet réduit à $\{1,\ldots,5\}$? Vous pourrez identifier les lettres i et j pour simplifier.

4. Montrez que ce chiffre est parfait en expliquant sous quelles conditions.

3 Déchiffrement [4 points]

Déchiffrez le chiffré suivant obtenu par transposition simple à tableau avec le mot clé MELANGE. UCNU CSTA UAEE ELAA BNRT DRNA EEOS NIMA RNUA SEUA SRUB DUDE NHCE EOOA

M	Ε	L	A	N	G	Е

Le chiffré en français est un haiku ¹ et le caractère de bourrage est la lettre A. Inscrivez ci-dessous le haiku déchiffré :							
	_						
	_						
	_						

 $^{1.\ \} Un\ haiku\ est\ un\ poème\ -japonais-\ court\ composé\ de\ 3\ vers\ et\ de\ 17\ découpages\ de\ phonèmes\ ;$