Understanding Topic Modeling: From Multivariate OLS to LDA

Salfo Bikienga sbikienga@gmail.com

Columbus Machine Learners meetup

October 03, 2018

Agenda

- ► Introduction
- Prerequisite
- Non Negative Matrix Factorization
- Principal Component Analysis
- Latent Semantic Analysis
- ▶ Probabilistic Latent Semantic Analysis
- Latent Dirichlet Allocation
- ► Take home message

▶ Topic modeling methods are dimension reduction methods.

- ► Topic modeling methods are dimension reduction methods.
- Generaly useful for:

- ► Topic modeling methods are dimension reduction methods.
- Generaly useful for:
 - document clustering;

- ► Topic modeling methods are dimension reduction methods.
- Generaly useful for:
 - document clustering;
 - document classification;

- ► Topic modeling methods are dimension reduction methods.
- Generaly useful for:
 - document clustering;
 - document classification;
 - regression type of analysis;

- ▶ Topic modeling methods are dimension reduction methods.
- Generaly useful for:
 - document clustering;
 - document classification;
 - regression type of analysis;
 - •

▶ The goal is to understand LDA through the lens of OLS.

- ▶ The goal is to understand LDA through the lens of OLS.
- ▶ LDA is a Bayesian approach to pLSA.

- ▶ The goal is to understand LDA through the lens of OLS.
- ▶ LDA is a Bayesian approach to pLSA.
- pLSA is a maximum likelihood approach to LSA.

- ▶ The goal is to understand LDA through the lens of OLS.
- ▶ LDA is a Bayesian approach to pLSA.
- ▶ pLSA is a maximum likelihood approach to LSA.
- ► LSA is equivalent to PCA

- ▶ The goal is to understand LDA through the lens of OLS.
- ▶ LDA is a Bayesian approach to pLSA.
- ▶ pLSA is a maximum likelihood approach to LSA.
- ► LSA is equivalent to PCA
- ▶ PCA is a matrix factorization algorithm (MF).

- ▶ The goal is to understand LDA through the lens of OLS.
- ▶ LDA is a Bayesian approach to pLSA.
- pLSA is a maximum likelihood approach to LSA.
- LSA is equivalent to PCA
- PCA is a matrix factorization algorithm (MF).
- MF is an application of OLS.

- ▶ The goal is to understand LDA through the lens of OLS.
- LDA is a Bayesian approach to pLSA.
- pLSA is a maximum likelihood approach to LSA.
- LSA is equivalent to PCA
- PCA is a matrix factorization algorithm (MF).
- MF is an application of OLS.
- ▶ The general idea of these algorithms is that:

$$W_{D\times V}\simeq Z_{D\times K}B_{K\times V}$$

where $K \ll V$

Introduction: practical example

Collapse a $W_{596\times1034}$ words counts into a $Z_{596\times2}$ matrix:

Table 1: Example of topics distributions when K = 2

	Topic.1	Topic.2
Alabama_2001_D_1.txt	0.75	0.25
Alabama_2002_D_2.txt	0.65	0.35
Alabama_2003_R_3.txt	0.26	0.74
Alabama_2004_R_4.txt	0.38	0.62
Alabama_2005_R_5.txt	0.50	0.50
Alabama_2006_R_6.txt	0.45	0.55

7

Table 2: Words relative importance when K=2

	Topic.1	Topic.2
abil	0.0004	0.001
abus	0.001	0.0004
academ	0.001	0.0000
acceler	0.0004	0.0000
accept	0.0002	0.001
access	0.003	0.0000
accomplish	0.001	0.001
accord	0.0000	0.001
account	0.001	0.002
achiev	0.003	0.001

Introduction: practical example

Table 3: List of words ordered by their relative importance for their respective topics. The list is used to infer the meaning of the topic.

Topic 1	Topic 2	
school	budget	
educ	fund	
work	govern	
help	peopl	
econom	million	
children	work	
famili	make	
health	public	
busi	propos	
nation	servic	
make	chang	
creat	program	
student	know	
teach	spend	
invest	come	

Prerequisite

Prerequisite: basic rules

► The Bayes rule:

$$p(B|Y) = \frac{p(Y|B) * p(B)}{p(Y)} \propto p(Y|B) * p(B)$$

Prerequisite: basic rules

The Bayes rule:

$$p(B|Y) = \frac{p(Y|B) * p(B)}{p(Y)} \propto p(Y|B) * p(B)$$

Matrix product rule:

$$\begin{pmatrix} 4 & 3 & 1 \\ 2 & 4 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 3 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix}$$

Prerequisite: basic rules

The Bayes rule:

$$p(B|Y) = \frac{p(Y|B) * p(B)}{p(Y)} \propto p(Y|B) * p(B)$$

Matrix product rule:

$$\begin{pmatrix} 4 & 3 & 1 \\ 2 & 4 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 3 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix}$$

► Transpose of a matrix product:

$$(AB)^T = B^T A^T$$

Extended form:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} X_{1,1} & X_{1,2} \\ X_{2,1} & X_{2,2} \\ \vdots & \vdots \\ X_{n,1} & X_{n,2} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

Extended form:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} X_{1,1} & X_{1,2} \\ X_{2,1} & X_{2,2} \\ \vdots & \vdots \\ X_{n,1} & X_{n,2} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

Matrix form:

Extended form:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} X_{1,1} & X_{1,2} \\ X_{2,1} & X_{2,2} \\ \vdots & \vdots \\ X_{n,1} & X_{n,2} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

- Matrix form:
 - $y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + \epsilon_{n\times 1}$

Extended form:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} X_{1,1} & X_{1,2} \\ X_{2,1} & X_{2,2} \\ \vdots & \vdots \\ X_{n,1} & X_{n,2} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

- Matrix form:
 - $y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + \epsilon_{n\times 1}$
 - Assuming $X^T \dot{\epsilon} = 0$,

$$X^T y = X^T X \beta$$

Extended form:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} X_{1,1} & X_{1,2} \\ X_{2,1} & X_{2,2} \\ \vdots & \vdots \\ X_{n,1} & X_{n,2} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

- Matrix form:
 - $y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + \epsilon_{n\times 1}$
 - Assuming $X^T \dot{\epsilon} = 0$,

$$X^T y = X^T X \beta$$

Assuming X^TX invertible, $(X^TX)^{-1}X^Ty = \hat{\beta}$

Extended form:

$$\begin{pmatrix} y_{1,1} & y_{1,2} & y_{1,3} \\ y_{2,1} & y_{2,2} & y_{1,3} \\ \vdots & \vdots & \vdots \\ y_{n,1} & y_{n,2} & y_{1,3} \end{pmatrix} = \begin{pmatrix} x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \\ \vdots & \vdots \\ x_{n,1} & x_{n,2} \end{pmatrix} \begin{pmatrix} \beta_{1,1} & \beta_{1,2} & \beta_{1,3} \\ \beta_{2,1} & \beta_{2,2} & \beta_{2,3} \end{pmatrix} + \begin{pmatrix} \epsilon_{1,1} & \epsilon_{1,2} & \epsilon_{1,3} \\ \epsilon_{2,1} & \epsilon_{2,2} & \epsilon_{2,3} \\ \vdots & \vdots \\ \epsilon_{n,1} & \epsilon_{n,2} & \epsilon_{n,3} \end{pmatrix}$$

Extended form:

$$\begin{pmatrix} y_{1,1} & y_{1,2} & y_{1,3} \\ y_{2,1} & y_{2,2} & y_{1,3} \\ \vdots & \vdots & \vdots \\ y_{n,1} & y_{n,2} & y_{1,3} \end{pmatrix} = \begin{pmatrix} X_{1,1} & X_{1,2} \\ X_{2,1} & X_{2,2} \\ \vdots & \vdots \\ X_{n,1} & X_{n,2} \end{pmatrix} \begin{pmatrix} \beta_{1,1} & \beta_{1,2} & \beta_{1,3} \\ \beta_{2,1} & \beta_{2,2} & \beta_{2,3} \end{pmatrix} + \begin{pmatrix} \epsilon_{1,1} & \epsilon_{1,2} & \epsilon_{1,3} \\ \epsilon_{2,1} & \epsilon_{2,2} & \epsilon_{2,3} \\ \vdots & \vdots & \vdots \\ \epsilon_{n,1} & \epsilon_{n,2} & \epsilon_{n,3} \end{pmatrix}$$

Matrix form:

Extended form:

$$\begin{pmatrix} y_{1,1} & y_{1,2} & y_{1,3} \\ y_{2,1} & y_{2,2} & y_{1,3} \\ \vdots & \vdots & \vdots \\ y_{n,1} & y_{n,2} & y_{1,3} \end{pmatrix} = \begin{pmatrix} x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \\ \vdots & \vdots \\ x_{n,1} & x_{n,2} \end{pmatrix} \begin{pmatrix} \beta_{1,1} & \beta_{1,2} & \beta_{1,3} \\ \beta_{2,1} & \beta_{2,2} & \beta_{2,3} \end{pmatrix} + \begin{pmatrix} \epsilon_{1,1} & \epsilon_{1,2} & \epsilon_{1,3} \\ \epsilon_{2,1} & \epsilon_{2,2} & \epsilon_{2,3} \\ \vdots & \vdots & \vdots \\ \epsilon_{n,1} & \epsilon_{n,2} & \epsilon_{n,3} \end{pmatrix}$$

Matrix form:

$$Y_{n\times q} = X_{n\times p}B_{p\times q} + \epsilon_{n\times q}$$

Extended form:

$$\begin{pmatrix} y_{1,1} & y_{1,2} & y_{1,3} \\ y_{2,1} & y_{2,2} & y_{1,3} \\ \vdots & \vdots & \vdots \\ y_{n,1} & y_{n,2} & y_{1,3} \end{pmatrix} = \begin{pmatrix} X_{1,1} & X_{1,2} \\ X_{2,1} & X_{2,2} \\ \vdots & \vdots \\ X_{n,1} & X_{n,2} \end{pmatrix} \begin{pmatrix} \beta_{1,1} & \beta_{1,2} & \beta_{1,3} \\ \beta_{2,1} & \beta_{2,2} & \beta_{2,3} \end{pmatrix} + \begin{pmatrix} \epsilon_{1,1} & \epsilon_{1,2} & \epsilon_{1,3} \\ \epsilon_{2,1} & \epsilon_{2,2} & \epsilon_{2,3} \\ \vdots & \vdots \\ \epsilon_{n,1} & \epsilon_{n,2} & \epsilon_{n,3} \end{pmatrix}$$

Matrix form:

$$Y_{n\times q} = X_{n\times p}B_{p\times q} + \epsilon_{n\times q}$$

And

$$\hat{B} = (X^T X)^{-1} X^T Y$$

Extended form:

$$\begin{pmatrix} y_{1,1} & y_{1,2} & y_{1,3} \\ y_{2,1} & y_{2,2} & y_{1,3} \\ \vdots & \vdots & \vdots \\ y_{n,1} & y_{n,2} & y_{1,3} \end{pmatrix} = \begin{pmatrix} x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \\ \vdots & \vdots \\ x_{n,1} & x_{n,2} \end{pmatrix} \begin{pmatrix} \beta_{1,1} & \beta_{1,2} & \beta_{1,3} \\ \beta_{2,1} & \beta_{2,2} & \beta_{2,3} \end{pmatrix} + \begin{pmatrix} \epsilon_{1,1} & \epsilon_{1,2} & \epsilon_{1,3} \\ \epsilon_{2,1} & \epsilon_{2,2} & \epsilon_{2,3} \\ \vdots & \vdots & \vdots \\ \epsilon_{n,1} & \epsilon_{n,2} & \epsilon_{n,3} \end{pmatrix}$$

Matrix form:

$$Y_{n\times q} = X_{n\times p}B_{p\times q} + \epsilon_{n\times q}$$

And

$$\hat{B} = (X^T X)^{-1} X^T Y$$

▶ Note: no distributional assumption is required.

► Assume $Y_{i_{q\times 1}} \stackrel{iid}{\sim} Normal(B_{q\times p}X_{i_{p\times 1}}, \alpha^{-1}I_q)$

- Assume $Y_{i_{q \times 1}} \stackrel{iid}{\sim} Normal(B_{q \times p} X_{i_{p \times 1}}, \alpha^{-1} I_q)$ $P(Y_i | B, \alpha) = Cexp\{-\frac{\alpha}{2}(Y_i B^T X_i)^T (Y_i B^T X_i)\}$

- Assume $Y_{i_{q \times 1}} \stackrel{iid}{\sim} Normal(B_{q \times p}X_{i_{p \times 1}}, \alpha^{-1}I_q)$ $P(Y_i|B,\alpha) = Cexp\{-\frac{\alpha}{2}(Y_i B^TX_i)^T(Y_i B^TX_i)\}$
- $L(B, \alpha) = C^N \exp\{-\frac{\alpha}{2} \sum_{i=1}^n (Y_i B^T X_i)^T (Y_i B^T X_i)\}$

- Assume $Y_{i_{q\times 1}} \stackrel{iid}{\sim} Normal(B_{q\times p}X_{i_{p\times 1}}, \alpha^{-1}I_q)$
- $P(Y_i|B,\alpha) = Cexp\{-\frac{\alpha}{2}(Y_i B^{\dagger}X_i)^T(Y_i B^TX_i)\}$
- $L(B,\alpha) = C^N \exp\{-\frac{\alpha}{2} \sum_{i=1}^n (Y_i B^T X_i)^T (Y_i B^T X_i)\}$
- $\ell(B,\alpha) = Nlog(C) \frac{\alpha}{2} \sum_{i=1}^{n} (Y_i B^T X_i)^T (Y_i B^T X_i)$

- Assume $Y_{i_{q\times 1}} \stackrel{iid}{\sim} Normal(B_{q\times p}X_{i_{p\times 1}}, \underline{\alpha}^{-1}I_q)$
- $P(Y_i|B,\alpha) = Cexp\{-\frac{\alpha}{2}(Y_i B^{\dagger}X_i)^T(Y_i B^TX_i)\}$
- $L(B,\alpha) = C^N \exp\{-\frac{\alpha}{2} \sum_{i=1}^n (Y_i B^T X_i)^T (Y_i B^T X_i)\}$
- $\ell(B,\alpha) = Nlog(C) \frac{\alpha}{2} \sum_{i=1}^{n} (Y_i B^T X_i)^T (Y_i B^T X_i)$
- In matrix form,

- Assume $Y_{i_{q\times 1}} \stackrel{iid}{\sim} Normal(B_{q\times p}X_{i_{p\times 1}}, \underline{\alpha}^{-1}I_q)$
- $P(Y_i|B,\alpha) = Cexp\{-\frac{\alpha}{2}(Y_i B^TX_i)^T(Y_i B^TX_i)\}$
- $L(B,\alpha) = C^N \exp\{-\frac{\alpha}{2} \sum_{i=1}^n (Y_i B^T X_i)^T (Y_i B^T X_i)\}$
- $\ell(B,\alpha) = N\log(C) \frac{\alpha}{2} \sum_{i=1}^{n} (Y_i B^T X_i)^T (Y_i B^T X_i)$
- In matrix form,
 - $\ell(B,\alpha) = Nlog(C) \frac{\alpha}{2}(Y XB)^{T}(Y XB)$

- Assume $Y_{i_{q\times 1}} \stackrel{iid}{\sim} Normal(B_{q\times p}X_{i_{p\times 1}}, \underline{\alpha}^{-1}I_q)$
- $P(Y_i|B,\alpha) = Cexp\{-\frac{\alpha}{2}(Y_i B^TX_i)^T(Y_i B^TX_i)\}$
- $L(B,\alpha) = C^N \exp\{-\frac{\alpha}{2} \sum_{i=1}^n (Y_i B^T X_i)^T (Y_i B^T X_i)\}$
- $\ell(B,\alpha) = Nlog(C) \frac{\alpha}{2} \sum_{i=1}^{n} (Y_i B^T X_i)^T (Y_i B^T X_i)$
- In matrix form,
 - $\ell(B,\alpha) = Nlog(C) \frac{\alpha}{2}(Y XB)^{T}(Y XB)$
 - $\ell(B,\alpha) \simeq -\frac{\alpha}{2} [B^T(X^T X)B B^T(X^T Y)]$

- Assume $Y_{i_q \times 1} \stackrel{iid}{\sim} Normal(B_{q \times p} X_{\underline{i_p} \times 1}, \alpha^{-1} I_q)$
- $P(Y_i|B,\alpha) = Cexp\{-\frac{\alpha}{2}(Y_i B^{T}X_i)^{T}(Y_i B^{T}X_i)\}$
- $L(B,\alpha) = C^N \exp\{-\frac{\alpha}{2} \sum_{i=1}^n (Y_i B^T X_i)^T (Y_i B^T X_i)\}$
- $\ell(B,\alpha) = Nlog(C) \frac{\alpha}{2} \sum_{i=1}^{n} (Y_i B^T X_i)^T (Y_i B^T X_i)$
- In matrix form,
 - $\ell(B,\alpha) = Nlog(C) \frac{\alpha}{2}(Y XB)^{T}(Y XB)$
 - $\ell(B,\alpha) \simeq -\frac{\alpha}{2} [B^T(X^T \bar{X})B B^T(X^T Y)]$

$$\frac{\partial \ell}{\partial B} = 0 \Longrightarrow (X^T X) B - (X^T Y) = 0$$

▶ Assume B has a gaussian prior, i.e. $B \sim Normal(m_0, V_0)$

- ▶ Assume *B* has a gaussian prior, i.e. $B \sim Normal(m_0, V_0)$
- ▶ By bayes rule:

$$P(B|Y) \propto P(Y|B,\alpha)P(B|m_0,V_0)$$

- ▶ Assume *B* has a gaussian prior, i.e. $B \sim Normal(m_0, V_0)$
- ▶ By bayes rule:

$$P(B|Y) \propto P(Y|B,\alpha)P(B|m_0,V_0)$$

It can be shown that:

$$B|Y \sim Normal(m, V)$$

- ▶ Assume *B* has a gaussian prior, i.e. $B \sim Normal(m_0, V_0)$
- ▶ By bayes rule:

$$P(B|Y) \propto P(Y|B,\alpha)P(B|m_0,V_0)$$

It can be shown that:

$$B|Y \sim Normal(m, V)$$

• where $m = (X^TX + V_0)^{-1}(X^TY + V_0m_0)$

- ▶ Assume *B* has a gaussian prior, i.e. $B \sim Normal(m_0, V_0)$
- ▶ By bayes rule:

$$P(B|Y) \propto P(Y|B,\alpha)P(B|m_0,V_0)$$

It can be shown that:

$$B|Y \sim Normal(m, V)$$

- where $m = (X^TX + V_0)^{-1}(X^TY + V_0m_0)$
- i.e. $m = (X^TX + V_0)^{-1}[(X^TX)(X^TX)^{-1}X^TY + V_0m_0]$

- ▶ Assume *B* has a gaussian prior, i.e. $B \sim Normal(m_0, V_0)$
- ▶ By bayes rule:

$$P(B|Y) \propto P(Y|B,\alpha)P(B|m_0,V_0)$$

It can be shown that:

$$B|Y \sim Normal(m, V)$$

- where $m = (X^TX + V_0)^{-1}(X^TY + V_0m_0)$
- i.e. $m = (X^TX + V_0)^{-1}[(X^TX)(X^TX)^{-1}X^TY + V_0m_0]$
- and

$$m = (X^T X + V_0)^{-1} [(X^T X) \hat{B} + V_0 m_0]$$

Prerequisite: Bayesian Regression vs OLS

Prerequesite take home,

Method	Parameter estimate
OLS	$\hat{B}_{ols} = (X^T X)^{-1} X^T Y$
MLE	$\hat{B}_{mle} = (X^T X)^{-1} X^T Y$
Bayesian	$\hat{B}_{bayes} = (X^T X + V_0)^{-1} [(X^T X) \hat{B}_{ols} + V_0 m_0]$

Prerequisite: Bayesian Regression vs OLS

Prerequesite take home,

Method	Parameter estimate	Topic Models
OLS	$\hat{B}_{ols} = (X^T X)^{-1} X^T Y$	MF/NMF
MLE	$\hat{B}_{mle} = (X^T X)^{-1} X^T Y$	pLSA
Bayesian	$\hat{B}_{bayes} = (X^T X + V_0)^{-1} [(X^T X) \hat{B}_{ols} + V_0 m_0]$	LDA

▶ There are several MF algorithms, mostly used for two purposes:

- ▶ There are several MF algorithms, mostly used for two purposes:
 - ► To solve linear systems (e.g.: LU, QR decompositions);

- ▶ There are several MF algorithms, mostly used for two purposes:
 - ► To solve linear systems (e.g.: LU, QR decompositions);
 - ► For statistical analysis (e.g.: Factor Analysis, PCA/LSA).

- ▶ There are several MF algorithms, mostly used for two purposes:
 - ► To solve linear systems (e.g.: LU, QR decompositions);
 - ► For statistical analysis (e.g.: Factor Analysis, PCA/LSA).
- ► The general idea of MF is:

- ▶ There are several MF algorithms, mostly used for two purposes:
 - ► To solve linear systems (e.g.: LU, QR decompositions);
 - ► For statistical analysis (e.g.: Factor Analysis, PCA/LSA).
- ▶ The general idea of MF is:
 - ▶ Let $W_{D \times V}$ be a matrix of dimension $D \times V$;

- ▶ There are several MF algorithms, mostly used for two purposes:
 - ► To solve linear systems (e.g.: LU, QR decompositions);
 - ► For statistical analysis (e.g.: Factor Analysis, PCA/LSA).
- ▶ The general idea of MF is:
 - ▶ Let $W_{D \times V}$ be a matrix of dimension $D \times V$;
 - then

$$W_{D\times V}\simeq Z_{D\times K}B_{K\times V}$$

- ▶ There are several MF algorithms, mostly used for two purposes:
 - ► To solve linear systems (e.g.: LU, QR decompositions);
 - ► For statistical analysis (e.g.: Factor Analysis, PCA/LSA).
- ▶ The general idea of MF is:
 - ▶ Let $W_{D \times V}$ be a matrix of dimension $D \times V$;
 - then

$$W_{D\times V}\simeq Z_{D\times K}B_{K\times V}$$

K is an arbitrary number.

Table 6: Example matrix of words counts

	college	education	family	health	medicaid
document.1	4	6	0	2	2
document.2	0	0	4	8	12
document.3	6	9	1	5	6
document.4	2	3	3	7	10
document.5	0	0	3	6	9
document.6	4	6	1	4	5

Example:

$$\underbrace{ \begin{bmatrix} 4 & 6 & 0 & 2 & 2 \\ 0 & 0 & 4 & 8 & 12 \\ 6 & 9 & 1 & 5 & 6 \\ 2 & 3 & 3 & 7 & 10 \\ 0 & 0 & 3 & 6 & 9 \\ 4 & 6 & 1 & 4 & 5 \end{bmatrix}}_{\mathbf{W}_{6 \times 5}} \simeq \underbrace{ \begin{bmatrix} 2 & 0 \\ 0 & 4 \\ 3 & 1 \\ 1 & 3 \\ 0 & 3 \\ 2 & 1 \end{bmatrix}}_{\mathbf{Z}_{6 \times 2}} \underbrace{ \begin{bmatrix} 2 & 3 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 & 3 \end{bmatrix}}_{\mathbf{B}_{2 \times 5}}$$

Scatterplot based on the Z matr

MF: Iterative Multivariate Least Square algorithm

Write:

$$W_{D\times V} = Z_{D\times K}B_{K\times V} + \epsilon_{D\times V}$$

MF: Iterative Multivariate Least Square algorithm

Write:

$$W_{D\times V} = Z_{D\times K}B_{K\times V} + \epsilon_{D\times V}$$

▶ From multivariate regression, we know:

$$\hat{B}_{K\times V} = (Z^T Z)^{-1} Z^T W$$

MF: Iterative Multivariate Least Square algorithm

Write:

$$W_{D\times V}=Z_{D\times K}B_{K\times V}+\epsilon_{D\times V}$$

▶ From multivariate regression, we know:

$$\hat{B}_{K\times V} = (Z^T Z)^{-1} Z^T W$$

▶ But, we do not have *Z*; however, we can write:

$$\hat{Z}_{D\times K} = WB^T [BB^T]^{-1}$$

MF: Iterative Multivariate Least Square algorithm

Write:

$$W_{D\times V}=Z_{D\times K}B_{K\times V}+\epsilon_{D\times V}$$

▶ From multivariate regression, we know:

$$\hat{B}_{K\times V} = (Z^T Z)^{-1} Z^T W$$

▶ But, we do not have Z; however, we can write:

$$\hat{Z}_{D\times K} = WB^T [BB^T]^{-1}$$

▶ Initialize random Z, and itteratively solve for B and Z.

Non Negative Matrix Factorization (NMF)

Non Negative Matrix Factorization

▶ Impose constraints such that: $Z_{i,j} \ge 0$, and $B_{i,j} \ge 0$

$$W_{D\times V}\simeq Z^{nmf}B^{nmf}$$

Non Negative Matrix Factorization (NMF)

Non Negative Matrix Factorization

▶ Impose constraints such that: $Z_{i,j} \ge 0$, and $B_{i,j} \ge 0$

$$W_{D\times V}\simeq Z^{nmf}B^{nmf}$$

Let $D_{W_{d,d}} = \sum_{v=1}^{V} W_{d,v}$ and $D_{B_{k,k}} = \sum_{v=1}^{V} B_{k,v}$ be some normalizing matrices.

Non Negative Matrix Factorization (NMF)

Non Negative Matrix Factorization

▶ Impose constraints such that: $Z_{i,j} \ge 0$, and $B_{i,j} \ge 0$

$$W_{D\times V}\simeq Z^{nmf}B^{nmf}$$

- Let $D_{W_{d,d}} = \sum_{v=1}^{V} W_{d,v}$ and $D_{B_{k,k}} = \sum_{v=1}^{V} B_{k,v}$ be some normalizing matrices.
- ▶ Then, Z^* and B^* can be interpreted as probabilities:

$$D_W^{-1}W = \left[D_W^{-1}ZD_B\right]\left[D_B^{-1}B\right]$$

$$\iff$$

$$W^* = Z^*B^*$$

Observation:

$$\hat{B}_{K\times V} = \left[Z^T Z\right]^{-1} Z^T W = P_{K\times D} W_{D\times V}$$

$$\hat{B} = \begin{pmatrix} B_{1,1} & B_{1,2} & \cdots & B_{1,V} \\ B_{2,1} & B_{2,2} & \cdots & B_{1,V} \\ \vdots & \vdots & \ddots & \vdots \\ B_{K,1} & B_{K,2} & \cdots & B_{K,V} \end{pmatrix}$$

$$\hat{B}_{k,v} = \sum_{d=1}^{D} P_{k,d} W_{d,v}$$

Observation:

$$\hat{Z}_{D \times K} = WB^{T} \begin{bmatrix} BB^{T} \end{bmatrix}^{-1} = W_{D \times V} Q_{V \times K}$$

$$\hat{Z} = \begin{pmatrix} Z_{1,1} & Z_{1,2} & \cdots & Z_{1,K} \\ Z_{2,1} & Z_{2,2} & \cdots & Z_{1,K} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{D,1} & Z_{D,2} & \cdots & D_{K} \end{pmatrix}$$

$$\hat{Z}_{d,k} = \sum_{v=1}^{V} Q_{v,k} W_{d,v}$$

Principal Component Analysis (PCA)

PCA: Spectral decomposition

▶ PCA is MF with two additional constraints:

PCA: Spectral decomposition

- ▶ PCA is MF with two additional constraints:
 - ▶ We want Z to be non correlated (orthogonal(\bot));

PCA: Spectral decomposition

- ▶ PCA is MF with two additional constraints:
 - ▶ We want Z to be non correlated (orthogonal(\bot));
 - ▶ We also want to preserve the variance of the W matrix.

- ▶ PCA is MF with two additional constraints:
 - We want Z to be non correlated (orthogonal(\perp));
 - ▶ We also want to preserve the variance of the *W* matrix.
- ▶ Solution: find an \bot matrix \tilde{B} such that $Z = W\tilde{B}$ is \bot .

- PCA is MF with two additional constraints:
 - We want Z to be non correlated (orthogonal(\perp));
 - ▶ We also want to preserve the variance of the W matrix.
- ▶ Solution: find an \bot matrix \tilde{B} such that $Z = W\tilde{B}$ is \bot .
- ▶ Observe that if $Z = W\tilde{B}$, then:

$$C_{Z} = \frac{1}{n-1} Z^{T} Z$$

$$= \frac{1}{n-1} \left[\tilde{B}^{T} W^{T} W \tilde{B} \right]$$

$$= \tilde{B}^{T} \left[\frac{1}{n-1} W^{T} W \right] \tilde{B}$$

$$= \tilde{B}^{T} C_{W} \tilde{B}$$

$$C_Z = \tilde{B}^T C_W \tilde{B}$$

► Thus:

$$C_7 = \tilde{B}^T C_W \tilde{B}$$

▶ **Theorem:** If A is symmetric, there is an orthonormal matrix E such that $A = EDE^T$, where D is a diagonal matrix.

$$C_Z = \tilde{B}^T C_W \tilde{B}$$

- ▶ **Theorem:** If A is symmetric, there is an orthonormal matrix E such that $A = EDE^T$, where D is a diagonal matrix.
- ▶ This theorem (Spectral decomposition) is all we need for PCA.

$$C_Z = \tilde{B}^T C_W \tilde{B}$$

- ▶ **Theorem:** If A is symmetric, there is an orthonormal matrix E such that $A = EDE^T$, where D is a diagonal matrix.
- ▶ This theorem (Spectral decomposition) is all we need for PCA.
- ▶ Translation:

$$C_Z = \tilde{B}^T C_W \tilde{B}$$

- ▶ **Theorem:** If A is symmetric, there is an orthonormal matrix E such that $A = EDE^T$, where D is a diagonal matrix.
- ▶ This theorem (Spectral decomposition) is all we need for PCA.
- Translation:
 - Compute the C_W from the data matrix (W);

$$C_Z = \tilde{B}^T C_W \tilde{B}$$

- ▶ **Theorem:** If A is symmetric, there is an orthonormal matrix E such that $A = EDE^T$, where D is a diagonal matrix.
- ▶ This theorem (Spectral decomposition) is all we need for PCA.
- Translation:
 - Compute the C_W from the data matrix (W);
 - ▶ Use eigen-decomposition to get E, and use E as \tilde{B} ;

$$C_Z = \tilde{B}^T C_W \tilde{B}$$

- ▶ **Theorem:** If A is symmetric, there is an orthonormal matrix E such that $A = EDE^T$, where D is a diagonal matrix.
- ▶ This theorem (Spectral decomposition) is all we need for PCA.
- Translation:
 - Compute the C_W from the data matrix (W);
 - ▶ Use eigen-decomposition to get E, and use E as \hat{B} ;
 - ▶ Then compute $Z = WE = W\tilde{B}$

▶ To check if Z is \bot , use the theorem and set $\tilde{B} = E$,

$$C_Z = \tilde{B}^T C_W \tilde{B}$$

$$= E^T \left[EDE^T \right] E$$

$$= E^T EDE^T E$$

$$= D$$

▶ To check if Z is \bot , use the theorem and set $\tilde{B} = E$,

$$C_Z = \tilde{B}^T C_W \tilde{B}$$

$$= E^T \left[EDE^T \right] E$$

$$= E^T EDE^T E$$

$$= D$$

 Definition: The total variance is the trace of the covariance matrix

$$tr(C_Z) = tr(D)$$

$$= tr(\tilde{B}^T C_W \tilde{B})$$

$$= tr(E^T C_W E)$$

$$= tr(EE^T C_W)$$

$$= tr(C_W)$$

As a dimension reduction method, we hope that there is a K << V such that $\sum_{k=1}^K d_{k,k} \simeq tr(C_W)$; in which case, $Z_{D \times K} \simeq W_{D \times V} E_{V \times K}$ approximates $W_{D \times V}$.

- As a dimension reduction method, we hope that there is a K << V such that $\sum_{k=1}^K d_{k,k} \simeq tr(C_W)$; in which case, $Z_{D \times K} \simeq W_{D \times V} E_{V \times K}$ approximates $W_{D \times V}$.
- ▶ Then, we can approximately retrieve $W_{D \times V}$ by writing:

$$Z_{D \times K} E_{K \times V}^{T} \simeq W_{D \times V} E_{V \times K} E_{K \times V}^{T}$$

$$\iff$$

$$W_{D \times V} \simeq Z_{D \times K} E_{K \times V}^{T}$$

$$= ZB$$

- As a dimension reduction method, we hope that there is a K << V such that $\sum_{k=1}^K d_{k,k} \simeq tr(C_W)$; in which case, $Z_{D \times K} \simeq W_{D \times V} E_{V \times K}$ approximates $W_{D \times V}$.
- ▶ Then, we can approximately retrieve $W_{D\times V}$ by writing:

$$Z_{D \times K} E_{K \times V}^{T} \simeq W_{D \times V} E_{V \times K} E_{K \times V}^{T}$$

$$\iff$$

$$W_{D \times V} \simeq Z_{D \times K} E_{K \times V}^{T}$$

$$= ZB$$

▶ Where $B_{K \times V} = E_{K \times V}^T$ and $Z_{D \times K} = W_{D \times V} E_{V \times K}$

▶ SVD is a more general PCA algorithm.

- ▶ SVD is a more general PCA algorithm.
- ▶ SVD states that any matrix *W* can be decomposed as follows:

$$W_{D\times V}=U_{D\times D}S_{D\times V}V_{V\times V}^T$$

- SVD is a more general PCA algorithm.
- \triangleright SVD states that any matrix W can be decomposed as follows:

$$W_{D\times V}=U_{D\times D}S_{D\times V}V_{V\times V}^T$$

▶ U, V are orthonormal matrices, i.e. $U^TU = UU^T = I_D$, $V^TV = VV^T = I_V$. S is a diagonal matrix containing the r = min(D, V) singular values $\sigma_k \ge 0$ on the main diagonal, with 0s filling the rest of the matrix.

▶ By SVD, i.e.

$$W_{D\times V}=U_{D\times D}S_{D\times V}V_{V\times V}^T$$

▶ By SVD, i.e.

$$W_{D\times V}=U_{D\times D}S_{D\times V}V_{V\times V}^T$$

▶ If $W_{D \times V}$ are zero means V variables, the covariance matrix:

$$C_W = \frac{1}{n-1} W^T W$$

$$= \frac{1}{n-1} VSU^T USV^T$$

$$= \frac{1}{n-1} VS^2 V^T$$

$$= VDV^T$$

▶ If there is a K such that $\sigma_{K+i} \simeq 0$, for $i = 1, 2, \dots, V - K$, we can approximate $W_{D \times V}$, by

$$W_{D\times V}\simeq U_{D\times K}S_{K\times K}V_{K\times V}^T$$

▶ If there is a K such that $\sigma_{K+i} \simeq 0$, for $i = 1, 2, \dots, V - K$, we can approximate $W_{D \times V}$, by

$$W_{D\times V}\simeq U_{D\times K}S_{K\times K}V_{K\times V}^T$$

▶ Along the spirit of $W \simeq ZB$, let's define Z = US, and $B = V^T$. Then, we can write:

$$W \simeq ZB$$

Latent Semantic Analysis (LSA)

LSA

▶ LSA is an application of SVD to a matrix of words counts.

LSA

- ▶ LSA is an application of SVD to a matrix of words counts.
- As such, LSA is exactly another application of PCA.

LSA

- ▶ LSA is an application of SVD to a matrix of words counts.
- As such, LSA is exactly another application of PCA.
- Example

► For statisticians, LSA has two major problems:

- ► For statisticians, LSA has two major problems:
 - ▶ It does not account for the fact that text data are count data.

- ► For statisticians, LSA has two major problems:
 - ▶ It does not account for the fact that text data are count data.
 - It does not assume any distribution for the data.

- ► For statisticians, LSA has two major problems:
 - ▶ It does not account for the fact that text data are count data.
 - It does not assume any distribution for the data.
- pLSA was proposed to address these concerns

Assume $p(w_v|d_i)$ is the probability of observing the word w_v in the document d_i .

- Assume $p(w_v|d_i)$ is the probability of observing the word w_v in the document d_i .
- ► Then:

$$p(w_v|d_i) = \sum_{z \in \mathcal{Z}} p(w_v, z|d_i)$$

$$= \sum_{z \in \mathcal{Z}} p(w_v|z, d_i) p(z|d_i)$$

$$= \sum_{z \in \mathcal{Z}} p(w_v|z) p(z|d_i)$$

A document is a collection of $N_{d_i} = \sum_{v}^{V} n_{d_i,w_v}$ words, assumed independent. Therefore:

$$p(w_1, w_2, \cdots, w_V | d_i) = \prod_{v=1}^V p(w_v | d_i)^{n(d_i, w_v)}$$

▶ A document is a collection of $N_{d_i} = \sum_{v}^{V} n_{d_i,w_v}$ words, assumed independent. Therefore:

$$p(w_1, w_2, \cdots, w_V | d_i) = \prod_{v=1}^V p(w_v | d_i)^{n(d_i, w_v)}$$

Assuming D independent documents,

$$L(\theta|W) = p(W|D) = \prod_{d=1}^{D} \prod_{v=1}^{V} p(w_v|d_i)^{n(d_i,w_v)}$$

$$\mathcal{L}(\theta|W) = \sum_{d=1}^{D} \sum_{v=1}^{V} n(d_i, w_v) log \left(\sum_{z \in \mathcal{Z}} p(w_v|z) p(z|d_i) \right)$$

$$p(z_k|d_i, w_v) = \frac{p(w_v|z_k)p(z_k|d_i)}{\sum_{l=1}^{K} p(w_v|z_l)p(z_l|d_i)}$$

$$p(z_k|d_i, w_v) = \frac{p(w_v|z_k)p(z_k|d_i)}{\sum_{l=1}^{K} p(w_v|z_l)p(z_l|d_i)}$$

$$p(w_{v}|z_{k}) = \frac{\sum_{d=1}^{D} n(d_{i}, w_{v}) p(z_{k}|d_{i}, w_{v})}{\sum_{v=1}^{V} \sum_{d=1}^{D} n(d_{i}, w_{v}) p(z_{k}|d_{i}, w_{v})}$$

Probabilistic Latent Semantic Analysis (pLSA)

$$p(z_k|d_i, w_v) = \frac{p(w_v|z_k)p(z_k|d_i)}{\sum_{l=1}^{K} p(w_v|z_l)p(z_l|d_i)}$$

$$p(w_v|z_k) = \frac{\sum_{d=1}^{D} n(d_i, w_v)p(z_k|d_i, w_v)}{\sum_{v=1}^{V} \sum_{d=1}^{D} n(d_i, w_v)p(z_k|d_i, w_v)}$$

$$p(z_k|d_i) = \frac{\sum_{v=1}^{V} n(d_i, w_v)p(z_k|d_i, w_v)}{\sum_{k=1}^{K} \sum_{v=1}^{V} n(d_i, w_v)p(z_k|d_i, w_v)}$$

Probabilistic Latent Semantic Analysis (pLSA)

$$p(w_{v},d_{i}) = \sum_{Z} p(z)p(w_{v}|z)p(d_{i}|z) = \sum_{z_{k}=1}^{K} p(d_{i}|z_{k})p(z_{k})p(w_{v}|z_{k})$$

- Let's define $U = [p(d_i|z_k)]_{D \times K}$, $V^T = [p(w_v|z_k)]_{K \times V}$, and $S = [p(z_k)]_{K \times K}$.
- ▶ Then, it follows that:

$$[p(w_v, d_i)]_{D \times V} = \sum_{z_k=1}^K p(d_i|z_k)p(z_k)p(w_v|z_k)$$

$$= [p(d_i|z_k)]_{D \times K} [p(z_k)]_{K \times K} [p(w_v|z_k)]_{K \times V}$$

$$= USV^T$$

▶ LDA is a Bayesian treatment of pLSA

$$p(z_k|d) = \theta_{d,k}$$
 $p(w_v|z_k) = \phi_{k,v}$
 $\theta_d \sim \textit{Dirichlet}_K(\alpha)$
 $\phi_k \sim \textit{Dirichlet}_V(\beta_k)$

▶ MCMC or Variational Bayes (VB) methods are used to approximate the posterior distribution for θ and ϕ .

- ▶ MCMC or Variational Bayes (VB) methods are used to approximate the posterior distribution for θ and ϕ .
- ► By VB,

$$\theta_d|w_d, \tilde{\alpha} \sim \textit{Dirichlet}_K(\tilde{\alpha}_d)$$

 $\phi_k|w, \tilde{\beta} \sim \textit{Dirichlet}_V(\tilde{\beta}_k)$

$$E(z_{d,v,\cdot}) = \exp(E(\log(\theta_{d,\cdot})) + E(\log(\phi_{\cdot,v})))$$

$$E(\theta_d|\tilde{\alpha_d}) = \frac{\alpha + \sum_{v=1}^{V} n_{d,v} \times E(z_{d,v,\cdot})}{\sum_{k=1}^{K} [\alpha + \sum_{v=1}^{V} E(z_{d,v,k})]}$$

$$E(\phi_k|\tilde{\beta_k}) = \frac{\beta + \sum_{d=1}^{D} n_{d,v} \times E(z_{d,\cdot,k})}{\sum_{v=1}^{V} (\beta + \sum_{d=1}^{D} n_{d,v} \times E(z_{d,v,k}))}$$

Take home message Z

▶ NMF is OLS:

$$\hat{Z}_{d,k} = \sum_{v=1}^{V} W_{d,v} Q_{v,k}$$

Take home message Z

► NMF is OLS:

$$\hat{Z}_{d,k} = \sum_{v=1}^{V} W_{d,v} Q_{v,k}$$

▶ PLSA is MLE:

$$p(z_k|d_i) = \frac{\sum_{v=1}^{V} n(d_i, w_v) p(z_k|d_i, w_v)}{\sum_{k=1}^{K} \sum_{v=1}^{V} n(d_i, w_v) p(z_k|d_i, w_v)}$$

Take home message Z

► NMF is OLS:

$$\hat{Z}_{d,k} = \sum_{v=1}^{V} W_{d,v} Q_{v,k}$$

▶ PLSA is MLE:

$$p(z_k|d_i) = \frac{\sum_{v=1}^{V} n(d_i, w_v) p(z_k|d_i, w_v)}{\sum_{k=1}^{K} \sum_{v=1}^{V} n(d_i, w_v) p(z_k|d_i, w_v)}$$

LDA is Bayesian:

$$E(\theta_d | \tilde{\alpha_d}) = \frac{\alpha + \sum_{v=1}^{V} n_{d,v} E(z_{d,v,.})}{\sum_{k=1}^{K} [\alpha + \sum_{v=1}^{V} E(z_{d,v,k})]}$$

Take home message B

▶ NMF is OLS:

$$\hat{B}_{k,v} = \sum_{d=1}^{D} W_{d,v} P_{k,d}$$

Take home message B

► NMF is OLS:

$$\hat{B}_{k,v} = \sum_{d=1}^{D} W_{d,v} P_{k,d}$$

▶ PLSA is MLE:

$$p(w_{v}|z_{k}) = \frac{\sum_{d=1}^{D} n(d_{i}, w_{v}) p(z_{k}|d_{i}, w_{v})}{\sum_{v=1}^{V} \sum_{d=1}^{D} n(d_{i}, w_{v}) p(z_{k}|d_{i}, w_{v})}$$

Take home message B

► NMF is OLS:

$$\hat{B}_{k,v} = \sum_{d=1}^{D} W_{d,v} P_{k,d}$$

▶ PLSA is MLE:

$$p(w_{v}|z_{k}) = \frac{\sum_{d=1}^{D} n(d_{i}, w_{v}) p(z_{k}|d_{i}, w_{v})}{\sum_{v=1}^{V} \sum_{d=1}^{D} n(d_{i}, w_{v}) p(z_{k}|d_{i}, w_{v})}$$

LDA is Bayesian:

$$E(\phi_k|\tilde{\beta}_k) = \frac{\beta + \sum_{d=1}^{D} n_{d,v} * E(z_{d,.,k})}{\sum_{v=1}^{V} (\beta + \sum_{d=1}^{D} n_{d,v} * E(z_{d,v,k}))}$$