

BEIJING 2017

Cloud for Cognitive Computing (AI, Deep Learning ...)

林咏华 (IBM研究院认知系统技术总监)

Who am I: Pioneer of Innovation

LIN Yonghua (林咏华)

linyh@cn.ibm.com

- 15 years in IBM Research
- Leader of System and Cloud Research direction in IBM Research China
- Global Leader of Cognitive System in IBM Research
- Founder of IBM Supervessel Innovation Cloud (超能云)
- Led the build, deployment and operation of Cognitive Services on IBM Bluemix in China
- ~ 50 Technical patents, ~ 10 papers
- Chair of IEEE Women in Engineering Beijing

IBM Cloud – Message from CEO in InterConnect 2017

- IBM Cloud is **Enterprise** Strong
- IBM Cloud is Data Frist
- IBM Cloud is Cognitive to the core

"1.4Trillion dollars for IT, but 2 Trillion dollars for business to make better decision."

"100M cusumers being touched by Waston by end of 2016, and 1B people being touched by Waston by end of 2017"

What is the Major Difference for Cognitive Computing on Cloud

•The System for Cognitive Computation – New type of hardware will be required in data center and cloud

Image Classification

For image classification:

- CPU + FPGA vs. CPU : cost efficiency 2.5x ~ 8x
- Included all the processing and the whole system cost)

Object Detection

For object detection:

- With VGG16: Processing latency on CPU 41.950s *VS.* latency 0.24s on GPU = 175times
- With ZF: Processing latency on CPU 9.516s *VS.* latency 0.076s on GPU = 125times

2 Stages Deep Learning for Cognitive Solution Build

Time-to Insight

Time-to Market

New Design Requirement with Accelerators in Cloud

Accelerator Sharing/Virtualizatio

Cost Efficiency

Cloud Stack for Accelerator

Manageability

DevOps for Accelerator Project

Productivity

Deep Learning Platform: Coding for Accelerator

Usability

Accelerators in Cloud (GPU, FPGA, etc.)

Why to Share Accelerator Resource?

For Image Object Detection using GPU to accelerate (15000 pics/hour ~ 50000 pics/hour):

	GPU memory used	% of K80
Object Detection with VGG16	~ 1.7 GB	~7%
Object Detection with ZF	~ 1 GB	~4%

For Image Classification using FPGA to accelerate (300,000 pics/hour):

	FPGA resource used	% of Xilinx KU115
Classification with AlexNet	DSP: 434, BRAM: 192	8% of DSP, 9% of BRAM

FPGA Virtualization for Multi-Tasks in Cloud

• FPGA resource could be shared by multiple applications, VM or container instances.

"Enabling FPGAs in Cloud"
ACM Computing Frontiers 2014, Italy

Extended OpenStack to support accelerator/FPGA as service

Dashboard

- 1. Accelerator view (admin/tenants)
- 2. VM booting view with accelerator

IBM launched the first FPGA service on cloud (in Apr.2015)

Accelerator developers: Easily develop and deploy accelerator on cloud

Application developers : Easily use accelerator for application

Accelerator Maker Zone

Accelerator Service in Cloud

Apply VM with accelerator

Acceleration Hardware

FPGA

- Supported FPGA developers: >200
- Supported accelerated application users: > 10000 (DB acceleration)
- Accelerated workloads
 - Deep learning
 - Genomics
 - Database
 - Data processing: compression, KVS, FFT

Enabled GPU in both OpenStack and Container Cloud

Support and Contribution for major open source cloud stack

- Enabled GPU sharing service on OpenStack Cloud
- Enabled GPU on Mesos, Marathon and Kuberntes –
 Contributing to communities
- Supported latest Kubernetest release (v1.6.1 now)
 with 3000+ lines of code extension

Enabled easy management for cloud:

- GPU resource discovery and management
- GPU topology aware scheduling
- GPU resource sharing

IBM internal users

- Deep Learning as a Service (Deep Learning platform for Waston)
- VisionBrain (Deep Learning platform for Computer Vision)
- IBM Container Cloud for Bluemix
- Spectrum Conductor for Containers (IBM Container platform product)

GPU Technical Conference 2017 (May.8~11 @ Silicon Valley)

• 50 min. Talk: Speed Up Deep Learning Service -- When GPU meets Container Cloud

DevOps Service for FPGA Accelerator

• IBM and Xilinx launched the first Accelerator DevOps Service on cloud for FPGA developers in Apr.2016.

Online development service with Cloud-based IDE

(Collaboration with Xilinx)

Test in VM/Docker equipped with FPGA (for POWER8 & CAPI)

Publish to Accelerator App. Store and deployment for application on cloud

Allow FPGA Developers easily develop and build a new accelerator on Cloud

AccDNN: Tool to auto-generate accelerator for DNN

- To solve programmability problem in deep learning
 - A tool to generate DNN accelerator without FPGA programming and keep RTL level performance

DNN Application Design and Deployment Steps with AccDNN:

- 1. Design the specific deep neural network.
- 2. Training the network using GPU accelerator.
- 3. Use AccDNN to generate FPGA implementation
- 4. Deploy the recognition application using FPGA accelerator

 AccDNN 0.1 was launched as cloud service to support OpenPOWER Global Challenge 2016

System and Cloud Innovation is driving a new wave for Cloud opportunities in Al era.