Dr. Jürg M. Stettbacher

Neugutstrasse 54 CH-8600 Dübendorf

Telefon: +41 43 299 57 23 Email: dsp@stettbacher.ch

Übung

Kanalcodierung: Block Codes

- 1. Ermitteln Sie für Nutzdatenvektoren \underline{u} der Länge 3 mit CRC-1 alle möglichen Codeworte \underline{c}_m mit m=0 . . . M-1.
- 2. Wie gross ist M?
- 3. Handelt es sich beim erzeugten Code um einen (N,K) Block Code?
- 4. Wenn ja, wie gross sind K und N?
- 5. Ist der Code linear?
- 6. Ist der Code systematisch?
- 7. Ist der Code zyklisch?
- 8. Wieviele Bitfehler kann der Code sicher erkennen?
- 9. Wieviele Bitfehler kann der Code sicher korrekt korrigieren?
- 10. Zeigen Sie, was der Empfänger tut, wenn er das Bitmuster $\underline{\widetilde{c}}=(1110)$ empfängt.

Antworten

1. Die Codeworte lauten:

\underline{u}	<u>c</u>	
(000)	(0000)	
(001)	(0011)	
(010)	(0101)	
(011)	(0110)	

\underline{u}	<u>c</u>
(100)	(1001)
(101)	(1010)
(110)	(1100)
(111)	(1111)

- 2. Mit \underline{u} der Länge 3 folgt: $M = 2^3 = 8$.
- 3. Ja, \underline{u} hat eine fixe Länge und die Prüfsumme hat eine fixe Länge.
- 4. Damit folgt: K = 3 und N = 4.
- 5. Ja, er ist linear. Jede Summe von zwei Codeworten ist ein Code. (Alle CRC-Codes sind linear.)
- 6. Ja, er ist systematisch. Die Nutzdaten stehen am Anfang von jedem Codewort. (Alle CRC-Codes sind systematisch.)
- 7. Ja, er ist zyklisch. Jede Permutation (bitweise Rotation) eines Codewortes ist ein Codewort. (Alle CRC-Codes sind zyklisch.)
- 8. $d_{min} = 2$ \implies Der Code kann $d_{min} 1 = 1$ Fehler sicher erkennen.
- 9. $d_{min}=2$ \implies Der Code kann $\left\lfloor \frac{d_{min}-1}{2} \right\rfloor =0$ Fehler sicher korrekt korrigieren.
- 10. Der Empfänger tut das Folgende:
 - (a) $\underline{\tilde{c}} = (1110)$ ist kein gültiges Codewort. Bei der Übertragung muss ein Fehler aufgetreten sein.
 - (b) Mit der Hamming-Distanz d=1 (Anzahl potenzielle Bitfehler) könnte \tilde{c} aus folgenden korrekten Codeworten hervorgegangen sein: (0110), (1010), (1101), (1111)
 - (c) Der Empfänger kann sich nicht sicher für eines davon entscheiden.
 - (d) Mangels Alternativen wird er sich zufällig für eines davon entscheiden, zum Beispiel $\hat{c} = (0110)$.