Number theory

Prime factors, sieve, GCD, extended Euclid

beCP Training

OLYMPIADE BELGE D'INFORMATIQUE BELGISCHE INFORMATICA-OLYMPIADE

April 16, 2016

Table of Contents

Prime check

Sieve of Eratosthenes

Greatest Common Divisor

Extended Euclid

Prime numbers

- Prime numbers have exactly two divisors: 1 and themselves
- Numbers with three or more are called composite
- We can decompose any number into a product of primes
- ▶ This decomposition is unique

Examples:

$$6 = 2 \cdot 3$$
 $8 = 2^3$ $45 = 3^2 \cdot 5$ $13 = 13$

Prime check: linear

- How to check if n is prime?
- ▶ By checking that only 1 and *n* divide *n*.

Solution 1: O(n)

```
bool isPrime(int n)
{
    for (int i = 2; i < n; i++)
        if (n % i == 0)
            return false;
    return true;
}</pre>
```

Note: we will ignore 0 and 1 here.

Prime check: stop at square root

- ▶ Actually, if d divides n, then n/d too
- ▶ Since $d \times n/d = n$, at least one of them is $\leq \sqrt{n}$
- ▶ So we only need to check up to \sqrt{n}

Solution 2: $O(\sqrt{n})$

```
bool isPrime(int n)
{
    for (int i = 2; i*i <= n; i++) // changed
        if (n % i == 0)
            return false;
    return true;
}</pre>
```

Factorization

- We can also factor a number with this trick
- ▶ If there are factors missing when reaching the square root, the remainder is prime

```
vector<int> factors(int n)
    vector<int> f;
    for (int i = 2; i*i <= n; i++) {
        while (n \% i == 0) {
            f.push_back(i);
            n /= i;
    if (n != 1) f.push_back(n); // n is prime now
    return f;
```

Table of Contents

Prime check

Sieve of Eratosthenes

Greatest Common Divisor

Extended Euclid

Sieve idea

- ▶ What if we want to factorize many numbers?
- Going up to \sqrt{n} for all is slow

Idea: go through the numbers one by one

- ▶ If not prime, skip it
- ▶ If prime, mark its multiples as not prime

1	2	3	4	5	6	7	8	9	10	11	12
13	14	15	16	17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32	33	34	35	36
37	38	39	40	41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72
73	74	75	76	77	78	79	80	81	82	83	84
85	86	87	88	89	90	91	92	93	94	95	96

1	2	3	4	5	6	7	8	9	10	11	12
13	14	15	16	17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32	33	34	35	36
37	38	39	40	41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72
73	74	75	76	77	78	79	80	81	82	83	84
85	86	87	88	89	90	91	92	93	94	95	96

1	2	3	4	5	6	7	8	9	10	11	12
13	14	15	16	17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32	33	34	35	36
37	38	39	40	41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72
73	74	75	76	77	78	79	80	81	82	83	84
85	86	87	88	89	90	91	92	93	94	95	96

1	2	3	4	5	6	7	8	9	10	11	12
13	14	15	16	17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32	33	34	35	36
37	38	39	40	41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72
73	74	75	76	77	78	79	80	81	82	83	84
85	86	87	88	89	90	91	92	93	94	95	96

1	2	3	4	5	6	7	8	9	10	11	12
13	14	15	16	17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32	33	34	35	36
37	38	39	40	41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72
73	74	75	76	77	78	79	80	81	82	83	84
85	86	87	88	89	90	91	92	93	94	95	96

Sieve implementation

```
typedef long long | | ; // to avoid overflow on i*i
bitset < MAXN> bs; bs.set(); // set to true
vector < int > primes;
for (II i = 2; i < MAXN; i++) {
    if (bs[i]) {
        // We can start it i*i
        for (II j = i*i; j < MAXN; j += i)
            bs[j] = false;
        primes.push_back((int) i);
```

- ▶ Complexity: $O(n \log \log n)$ (because math)
- ightharpoonup Practical limit: 1M \sim 10M

Prime check with sieve

- If n < MAXN, use the table, O(1)
- ▶ If $n < MAXN^2$, use the prime list
- ► Complexity is $O(\sqrt{n}/\log n)$ because the density of primes is proportional to $1/\log n$

```
// Only called for n < (last prime)^2
bool isPrime(int n)
{
    if (n < MAXN)
        return bs[n];
    for (int i=0; primes[i]*primes[i] <= n; i++)
        if (n % primes[i] == 0)
        return false;
    return true;
}</pre>
```

Sieve variants

We can get additional information from the sieve:

- ▶ A way to get the factorization very quickly, $O(\log n)$
- The number distinct prime factors

```
int numDiffPF[MAXN], largestPF[MAXN]; // init to 0
for (II i = 2; i < MAXN; i++) {
    if (numDiffPF[i]) {
        // This time we must start at i
        for (II j = i; j < MAXN; j += i)
            numDiffPF[i]++:
            largestPF[i] = i;
```

Divide by largestPF recursively to find factorization.

Table of Contents

Prime check

Sieve of Eratosthenes

Greatest Common Divisor

Extended Euclid

GCD definition

The *greatest common divisor* of a and b is the largest number that divides a and b.

Examples:

$$\gcd(4,6) = 2 \quad \gcd(7,5) = 1 \quad \gcd(24,12) = 12$$

$$\gcd(n,n) = n \quad \gcd(n,0) = n \quad \gcd(n,1) = 1$$

When using the factorization, just take the minimum of the exponents (p^0 is implied):

$$\gcd(2^5\cdot 3^2,\ 2^4\cdot 3^7)=2^4\cdot 3^2 \qquad \gcd(5^2,3^5)=1$$

Euclid for GCD

- ▶ Interesting property: gcd(a, b) = gcd(a + bn, b)
- ▶ In particular: gcd(a, b) = gcd(a%b, b)
- ▶ So we can always reduce the problem to a smaller pair!

Example:

21 15 21 % 15
$$=$$
 $\boxed{6}$ 15 % 6 $=$ $\boxed{3}$ 6 % 3 $=$ $\boxed{0}$

- ► The pairs are (21, 15), (15, 6), (6, 3), (3, 0).
- We know that gcd(3,0) = 3, so gcd(21,15) = 3.

GCD implementation

Solution: Euclid's algorithm

```
int gcd(int a, int b)
{
    if (b == 0) return a;
    return gcd(b, a%b);
}
```

- Extremely simple
- Exercise: prove that after two iterations b is divided by at least 2 (hint: separate $a\% b \le b/2$ and a% b > b/2)
- ► Complexity: $O(\log b)$

Least Common Multiple

The *least common multiple* of a and b is the smallest number divisible by a and b.

It is the "opposite" of the GCD.

Examples:

$$lcm(4,6) = 12$$
 $lcm(7,5) = 35$ $lcm(24,12) = 24$ $lcm(n,n) = n$ $lcm(n,0) = n$ $lcm(n,1) = n$

When using the factorization, just take the *maximum* of the exponents:

$$lcm(2^5 \cdot 3^2, 2^4 \cdot 3^7) = 2^5 \cdot 3^7$$
 $lcm(5^2, 3^5) = 3^5 \cdot 5^2$

Getting LCM from GCD

- ► The GCD takes the minimum of the exponents and the LCM takes the maximum
- So they take both exponents!
- ▶ As a consequence, $gcd(a, b) \times lcm(a, b) = a \times b$

Example:

$$\begin{split} \gcd(2^5 \cdot 3^2, \ 2^4 \cdot 3^7) &= 2^4 \cdot 3^2 \quad \operatorname{lcm}(2^5 \cdot 3^2, \ 2^4 \cdot 3^7) = 2^5 \cdot 3^7 \\ \gcd \times \operatorname{lcm} &= 2^{4+5} \cdot 3^{2+7} = (2^5 \cdot 3^2) \times (2^4 \cdot 3^7) \end{split}$$

Solution: Just be careful with overflows!

```
int lcm(int a, int b) { return a * (b / gcd(a,b); }
```

Table of Contents

Prime check

Sieve of Eratosthenes

Greatest Common Divisor

Extended Euclid

Linear diophantine equation

- A diophantine equation is an equation where the solutions must be integers
- We will consider the equation ax + by = c(x, y unknown)
- ▶ Note: if we had $x, y \in \mathbb{R}$ the solution would be a line
- Let $d = \gcd(a, b)$. Since d divides ax + by, it must also divide c.

Bézout's identity: There exist x, y such that ax + by = d

- ▶ So if d divides c, we can take x(c/d) and y(c/d)
- Otherwise, no solution

The set of solutions

- ▶ Suppose we have an initial solution $ax_0 + by_0 = c$
- ▶ Then we can take $x = x_0 + (b/d)n$ and $y = y_0 (a/d)n$ to generate all the solutions (proof in exercise, compare two solutions)

Example: 6x + 4y = 2

- First solution: x = 1, y = -1
- ▶ Formula: (x + 2n, y 3n)
- ▶ Positive *n*: (3, -4), (5, -7), (7, -10)...
- ▶ Negative *n*: (-1,2), (-3,5), (-5,8)...

Finding the initial solution

- ► To find the initial solution to ax + by = d, we will extend Euclid's algorithm
- ▶ Base case: b = 0 so x = 1, y = 0 works
- ▶ Adapt it as we go, by reversing: $a (a\%b) = b \cdot \lfloor a/b \rfloor$

Example: 21 15 6 3 0

- ▶ $3 = 3 \cdot 1 + 0 \cdot 0$
- \rightarrow 3 = 6 \cdot 0 + 3 \cdot (1 |6/3| \cdot 0) = 6 \cdot 0 + 3 \cdot 1
- \rightarrow 3 = 15 · 1 + 6 · (0 $\lfloor 15/6 \rfloor$ · 1) = 15 · 1 + 6 · (-2)
- ► $3 = 21 \cdot (-2) + 15 \cdot (1 \lfloor 21/15 \rfloor \cdot (-2)) = 21 \cdot (-2) + 15 \cdot 3$

Extended Euclid: implementation

Solution: Extended Euclid's algorithm

```
int x,y,d; // global for convenience
void euclid(int a, int b) {
    // Base case
    if (b == 0) { x = 1; y = 0; d = a; return; }
    // Recurse and adapt coefficients
    euclid(b, a%b);
    int oldy = y;
    y = x - (a/b) * y;
    x = oldy;
```

- ▶ Complexity: $O(\log b)$, same as before
- Finds both the GCD and the coefficients

Bonus property

Does someone have a proof that Extended Euclid gives a pair (x,y) such that |x|+|y| is minimal?

Quelqu'un a une preuve que l'algorithme étendu d'Euclide trouve une paire (x, y) tel que |x| + |y| est minimum?

