

Grad-CAM

Prof. Hyunseok Oh

School of Mechanical Engineering **Gwangju** Institute of Science and Technology

Limitation of CAM-Based XAI

- CAM은 Global Average Pooling(GAP)을 반드시 사용해야만 함.
 - 만약 CNN 마지막 Conv Layer의 Feature map에 대해 Flattening을 사용했다면, GAP로 대체해야 함.
 - 대체 후 FC Layer 부분의 Weight와 Bias를 Fine tuning을 통해 재학습 해야 함.
- 마지막 Conv Layer에 대해서만 Visualization 가능
 - 그러나, 모든 Conv Layer에 대해 시각화가 중요하거나 또는 필요할 수도 있음.

Grad-CAM

• Selvaraju et al. "Grad-CAM: Visual explanations from deep networks via gradient-based localization", ICCV, 2017.

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

Ramprasaath R. Selvaraju 1 Michael Cogswell 2 Abhishek Das 2 Ramakrishna Vedantam 1 Devi Parikh 2 Dhruv Batra 2 1 Virginia Tech, 2 Georgia Institute of Technology

{ram21, vrama91}@vt.edu {cogswell, abhshkdz, vrama91, parikh, dbatra}@gatech.edu

Abstract

We propose a technique for producing 'visual explanations' for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent. Our approach — Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say logits for 'dog' or even a caption), flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers (e.g. VGG), (2) CNNs used for structured outputs (e.g. captioning), (3) CNNs used in

1. Introduction

Convolutional Neural Networks (CNNs) and other deep networks have enabled unprecedented breakthroughs in a variety of computer vision tasks, from image classification [27, 18] to object detection [16], semantic segmentation [31], image captioning [47, 7, 13, 23], and more recently, visual question answering [3, 15, 36, 41]. While these deep neural networks enable superior performance, their lack of decomposability into *intuitive and understandable* components makes them hard to interpret [30]. Consequently, when today's intelligent systems fail, they fail spectacularly disgracefully, without warning or explanation, leaving a user staring at an incoherent output, wondering why.

Grad-CAM

- Gradient-weighted CAM(Grad-CAM)이란
 - GAP을 사용하지 않으므로, 기존 CNN 구조를 변형하지 않고 그대로 사용 가능함
 - CNN 구조에서 Gradient(특정 input이 특정 output에 주는 영향력의 크기)값을 계산하여, 판단의 근거를 Visualization하는 방법
 - 판단에 사용된 정보를 표현하여 실패한 모델의 진단 또한 가능
- CAM과 Grad-CAM 구조

Grad-CAM 수학적 정의

- 분류에 대한 Grad-CAM 점수 계산 수식
 - CAM과 비교하였을 때, 학습을 통해 산출되던 가중치(Weight)를 Gradient를 통해 산출한 α 를 활용
 - 산출된 가중치 α와 특징 맵의 각 요소를 활용하여 점수 계산

c : 예측 클래스

A_{i,j} : 특징 맵 내 *i, j* 위치

Z : 특징 맵 별 요소의 총 갯수

y_c: Softmax 층을 통과하기 전 클래스 별 결과값

가중치를 위한 Gradient 계산

- 예측값에 대한 Gradient의 의미와 계산 방법
 - Softmax 층을 통과하기 전 클래스 결과값(y¸)에 대한 Convolution layer의 특성 맵인 A¸의 영향도
 - 역전파를 활용하여 특성맵의 모든 (i,j)의 뉴런에 대해 계산 수행

- 텐서플로우에 내장됨 GradientTape.gradient(예측, Layer)를 사용하여 Layer에서 예측된 값에 대한 Gradient를 계산

$$\alpha_k^c = \frac{1}{Z} \sum_i \sum_j \frac{\partial y_c}{\partial A_{i,j}^k}$$
 $L_{Grad-CAM}^c = ReLU \sum_k \alpha_k^c A^k$ $\alpha_k^c : c$ 클래스를 예측하는 k 번째 특징 맵 가중치 $A^k : k$ 번째 특징 맵

c : 예측 클래스

A,, : 특징 맵 내 *i*, *j* 위치

Z : 특징 맵 별 요소의 총 갯수

 y_c : Softmax 층을 통과하기 전 클래스 별 결과값

특성 맵 Global Average Pooling

- 계산된 특성 맵의 가중치를 계산하기 위해 각 A 의 평균 값 사용
 - z는 특징 맵의 행렬 갯수를 의미
 - 아래 그림의 경우 4X4행렬로 Z=16으로 나누어 Global Average Pooling 수행
 - 계산된 α는 예측한 클래스에 대한 피처 맵의 중요도 정보를 포함

Grad-CAM 점수 계산

- 가중치 α 와 피처 맵 A_{k} 의 선형 결합 연산을 통해 Grad-CAM 점수 계산
 - CAM 방법과 동일하게 피쳐 맵의 각 행렬값은 가중치 α 를 곱하여 연산
 - 클래스를 분류하는 데 있어 긍정적인 영향을 나타내는 특성인자만 표현하기 위해 ReLU 함수를 적용하여 점수 산출

Grad-CAM 점수 시각화

- 계산된 점수를 바탕으로 클래스를 분류하는데 가장 주요한 부분을 시각화
 - 계산된 Grad-CAM 점수를 정규화하여 Heatmap으로 표현
 - 아래 예시를 통해 6을 예측하는 데 있어 주요하게 사용된 부분 확인

CAM and Grad-CAM

CAM

- GAP Layer학습을 통한 가중치 w를 활용
- 마지막 Layer에 대해서만 적용 가능함

$$L_{CAM}^{c} = \sum_{k} w_{k}^{c} A^{k}$$

Grad-CAM

- 모델 변경 없이 Gradient값을 활용하여 가중치 α 산출
- 모든 Layer에 대해 적용 가능함

$$\alpha_k^c = \frac{1}{Z} \sum_{i} \sum_{j} \frac{\partial y_c}{\partial A_{i,j}^k}$$

$$\mathbf{L}_{Grad-CAM}^{c} = \mathbf{ReLU} \sum_{k} \alpha_{k}^{c} A^{k}$$

OUTPUT LABEL

CAM and Grad-CAM

- Grad-CAM은 CAM의 일반화 증명
 - GAP Layer를 통해 출력된 값 F^k 로 정의하면, CAM은 학습된 가중치와 이를 곱하여 CAM 점수 산출

$$F^{k} = \frac{1}{Z} \sum_{i} \sum_{j} A_{i,j}^{k} \rightarrow y_{c} = \sum_{k} w_{k}^{c} F^{k}$$

- 산출된 점수에 대한 GAP Layer의 Gradient를 계산
- 앞서 정의한 F^k 를 Ak로 편미분을 수행하면 1/z만 남으며, CAM 점수를 F^k 로 편미분 시 w만 남게 됨

$$\frac{\partial L_{cam}^{c}}{\partial F^{k}} = \frac{\partial L_{cam}^{c}}{\partial A_{i,j}^{k}} \frac{\partial A_{i,j}^{k}}{\partial F^{k}} \text{(by chain rule)} \rightarrow w_{c}^{k} = \frac{\partial y_{c}}{\partial A_{i,j}^{k}} \times Z$$

- 양측에 모든 요소에 대한 합을 산출시 다음과 같이 정리됨

$$\sum_{i} \sum_{j} w_{k}^{c} = \sum_{i} \sum_{j} \frac{\partial L_{cam}^{c}}{\partial A_{i,j}^{k}} \times Z \text{ rewritten as } w_{k}^{c} = \sum_{i} \sum_{j} \frac{\partial y_{c}}{\partial A_{i,j}^{k}} \left(\sum_{i} \sum_{j} 1 = Z\right) \qquad \alpha_{k}^{c} = \frac{1}{Z} \sum_{i} \sum_{j} \frac{\partial y_{c}}{\partial A_{i,j}^{k}}$$

• 즉 CAM의 가중치에 대해 일반화 시킨 값은 Grad CAM에서 수행된 가중치와 동일함

Grad-CAM 구현 결과

- MNIST 데이터 셋에 대한 코드 구현 결과
 - 기존 CNN 구조에 대해 모든 합성곱 층별 결과를 가시화 가능

판단 근거 시각화

Grad-CAM

- 유사한 이미지에 대해 가중치를 시각화하여 판단 근거 확인이 가능함
 - 1과 7, 9의 구분은 가로 방향의 특질에 대해서 판단함
 - 7,9의 구분은 가로 방향의 갯수가 다름을 보임
 - 유사한 모양에 대해 판단 근거를 확인 가능함
 - Grad-CAM을 통해 각 층별 판단 근거까지 확인 가능

<u> </u>	Input	CAM	Layer 1	Layer 2
Class '1'			<u>[</u>	
Class '7'	7	7	7	7
Class '9'	9	9	9	9

Grad-CAM

- 12

Demo

• 라이브러리 호출

```
import os
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow import keras
from tensorflow.keras import models
from tensorflow.keras import backend as K
from tensorflow.keras.preprocessing import image
from PlL import Image
import matplotlib.cm as cm

executed in 1.15s, finished 23:11:01 2021-12-16
```

• MNIST 데이터 로드

```
mnist = tf.keras.datasets.mnist

(train_x, train_y), (test_x, test_y) = mnist.load_data()

train_x, test_x = train_x/255.0, test_x/255.0

train_x = train_x.reshape((train_x.shape[0], 28, 28, 1))

test_x = test_x.reshape((test_x.shape[0], 28, 28, 1))

n_train = train_x.shape[0]

n_test = test_x.shape[0]

print ("The number of training images : {}, shape : {}".format(n_train, train_x.shape))

print ("The number of testing images : {}, shape : {}".format(n_test, test_x.shape))

executed in 260ms, finished 16:10:50 2021-12-16
```


• CNN 아키텍처 구성

```
model = tf.keras.models.Sequential([
          tf.keras.lavers.Conv2D(filters = 32.
                               kernel_size = (3, 3),
                              activation = 'relu',
                                                                                                                   Input
                              padding = 'SAME',
                                                                                                                                         : 컨볼루션 계층
                               input_shape = (28, 28, 1)),
          tf.keras.lavers.MaxPool2D((2, 2)).
                                                                                                                                          풀링 계층
                                                                                                                Conv2D 1
   9
          tf.keras.layers.Conv2D(filters = 64,
                              kernel_size = (3, 3),
                                                                                                                                          :평탄화 계층
                                                                                                              Max Pooling
                               activation = 'relu'.
   12
                               padding = 'SAME',
                                                                                                                                        : 완전 연결 계층
                                                                                                                Conv2D_2
   13
                               input_shape = (14, 14, 32)),
   14
                                                                                                               Max Pooling
          tf.keras.layers.MaxPool2D((2, 2)), — Max pooling layer
   15
   16
                                                                                                                  Flatten
   17
          tf.keras.layers.Flatten(),
          tf.keras.layers.Dense(units = 32, activation = 'relu'),
   19
          tf.keras.lavers.Dense(units = 10, activation = 'softmax')
                                                                                                                  Dense
   20 1)
                                                                                                                  Dense
executed in 53ms, finished 14:40:30 2021-12-30
                                                                                                                  Output
```


• 인공지능 모델 세팅 및 훈련

• 모델 평가

```
test_img = test_x[[5555]]

predict = model.predict(test_img)
    mypred = np.argmax(predict, axis = 1)

plt.figure(figsize = (12, 5))

plt.subplot(1, 2, 1)
    plt.imshow(test_img.reshape(28, 28), 'gray')
    plt.axis('off')
    plt.subplot(1, 2, 2)
    plt.subplot(1, 2, 2)
    plt.stem(predict[0])
    plt.show()

executed in 131ms, finished 23:53:37 2021-12-16
```


• 학습 결과 및 모델 평가 예시

Prediction: 3 - 17 -

• 학습 모델 요약

1 model.summary()			
executed in 13ms, finished 23:30:32 2021	1-12-16		
Model: "sequential"			
Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	28, 28, 32)	320
max_pooling2d (MaxPooling2D)	(None,	14, 14, 32)	0
conv2d_1 (Conv2D)	(None,	14, 14, 64)	18496
max_pooling2d_1 (MaxPooling2	(None,	7, 7, 64)	0
conv2d_2 (Conv2D)	(None,	7, 7, 64)	36928
max_pooling2d_2 (MaxPooling2	(None,	3, 3, 64)	0
flatten (Flatten)	(None,	576)	0
dense (Dense)	(None,	128)	73856
dense_1 (Dense)	(None,	•	1290
Total params: 130,890 Trainable params: 130,890 Non-trainable params: 0			

• Gradient를 통한 중요도 계산 함수 구성

```
def make_gradcam_heatmap(img_array, model, conv_layer_name, pred_index=None):
          # 입력에 따른 피처 맵 모델 생성
          grad_model = tf.keras.models.Model(
              [model.inputs], [model.get_layer(conv_layer_name).output, model.output]
          #출력에 따른 Gradient 계산 함수
          with tf.GradientTape() as tape:
             conv_layer_output, preds = grad_model(img_array)
                                                                 \alpha_k^c = \frac{1}{Z} \sum_i \sum_i \frac{\partial y_c}{\partial A_i^k} 출력값에 대한 Gradient 계산 및 호출
  9
             if pred index is None:
                 pred index = tf.argmax(preds[0])
             class_channel = preds[:, pred_index]
   13
          # 예측된 값에 대한 Gradient 호출
   14
          grads = tape.gradient(class_channel, conv_layer_output)
   15
                                                                                               Gradient 합 및 평균 계산 후 가중치 산출
   16
          # 각 피쳐 맹에 대한 가죽치 산출
   17
          pooled_grads = tf.reduce_mean(grads, axis=(0, 1,
   18
   19
          # 계산된 가중치와 해당 레이어를 곱하여 얼마나 중요도를 가지는지 히트맵 계신
   20
          conv_layer_output = conv_layer_output[0]
   21
          heatmap = conv_layer_output @ pooled_grads[..., tf.newaxis]
          heatmap = tf.squeeze(heatmap)
   24
          # 시각화를 위해 0-1 범위로 정교화 및 ReLU 수행
                                                                     -L_{Grad-CAM}^{c} = ReLU \sum \alpha_{k}^{c} A^{k}
   25
         heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
   26
          return heatmap.numpv()
                                                                       중요도와 Feature Map을 곱하여 Heatmap 계산
   27
executed in 12ms, finished 14:43:39 2021-12-27
```


• Heatmap 결과와 Input Data 가시화 함수

```
def save and display gradcam(img input, heatmap, cam path = "cam.ipg", alpha=0.01):
          # Load the original image
          img =img_input.reshape(28,28)-
          img = keras.preprocessing.image.img_to_array(img)
          # 정규화된 Heatmap 이미지를 0-255 범위로 변환
          heatmap = np.uint8(255 * heatmap)
          jet = cm.get_cmap("jet")
          # 계산된 값을 RGB 값으로 변경 및 이미지 변환
          jet_colors = jet(np.arange(256))[:, :3]
          jet_heatmap = jet_colors[heatmap]
          jet_heatmap = keras.preprocessing.image.array_to_img(jet_heatmap)
   14
          jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
   15
          jet_heatmap = keras.preprocessing.image.img_to_array(jet_heatmap)
   16
   17
          # 계산한 Heatmap과 입력 이미지 결합
   18
          # alpha 값을 통해 입력 이미지의 투명도 계산
   19
          superimposed_img = jet_heatmap * alpha + img
   20
          superimposed_img = keras.preprocessing.image.array_to_img(superimposed_img)
   21
   22
          # 생성된 이미지 저장
          superimposed_img.save(cam_path)
   24
          # 가시화
          plt.imshow(superimposed img)
executed in 10ms, finished 15:49:45 2021-12-27
```


• 결과

input_image = test_x[[123]]
make_heatmap = make_gradcam_heatmap(input_image, model, 'conv2d_2')
save_and_display_gradcam(input_image, make_heatmap)

• VGG16 모델 및 입력에 쓰일 이미지 불러오기

```
model_builder = tf.keras.applications.vgg16.VGG16

preprocess_input = keras.applications.vgg16.preprocess_input
decode_predictions = keras.applications.vgg16.decode_predictions

# 0/0/*/ 정로
image_ = load_img('./images/cat.1.jpg', target_size=(224, 224))
plt.figure(figsize=(10,10))
plt.imshow(image_)

executed in 223ms, finished 14:08:15 2022-01-18
```


• 학습된 Imagenet의 가중치 확인 및 모델 구성 확인

<pre>1 model = model_builder(weights="imagenet")</pre>	Layer (type)	Output Shape	Param #
2 model.summary()	input_2 (InputLayer)	[(None, 224, 224, 3)]	0
cuted in 1.30s, finished 14:05:32 2021-12-30	block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792
	block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
	block1_pool (MaxPooling2D)	(None, 112, 112, 64)	0
	block2_conv1 (Conv2D)	(None, 112, 112, 128)	73856
	block2_conv2 (Conv2D)	(None, 112, 112, 128)	147584
	block2_pool (MaxPooling2D)	(None, 56, 56, 128)	0
	block3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
	block3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
	block3_conv3 (Conv2D)	(None, 56, 56, 256)	590080
	block3_pool (MaxPooling2D)	(None, 28, 28, 256)	0
	block4_conv1 (Conv2D)	(None, 28, 28, 512)	1180160
	block4_conv2 (Conv2D)	(None, 28, 28, 512)	2359808
	block4_conv3 (Conv2D)	(None, 28, 28, 512)	2359808
	block4_pool (MaxPooling2D)	(None, 14, 14, 512)	0
	block5_conv1 (Conv2D)	(None, 14, 14, 512)	2359808
	block5_conv2 (Conv2D)	(None, 14, 14, 512)	2359808
	block5_conv3 (Conv2D)	(None, 14, 14, 512)	2359808
	block5_pool (MaxPooling2D)	(None, 7, 7, 512)	0
	flatten (Flatten)	(None, 25088)	0
	fc1 (Dense)	(None, 4096)	102764544
	fc2 (Dense)	(None, 4096)	16781312
	predictions (Dense)	(None, 1000)	4097000

Total params: 138,357,544 Trainable params: 138,357,544 Non-trainable params: 0

• 원하는 Layer를 선정하여 Heatmap 산출

```
last conv laver name = "block5 conv3"
       # Prepare image
    4 | img_array = preprocess_input(get_img_array(img_path, size=img_size))
     6 # Make model
       model = model_builder(weights="imagenet")
   10 # Print what the top predicted class is
   11 | preds = model.predict(img_array)
   12 print("Predicted:", decode_predictions(preds, top=1)[0])
       # Generate class activation heatmap
       | heatmap = make_gradcam_heatmap(img_array, model, last_conv_layer_name)
                                                                                  Predicted: [('n02123045', 'tabby', 0.09234099)]
       # Display heatmap
                                                                                                             10 12
   18 plt.matshow(heatmap)
   19 | plt.show()
executed in 1.64s, finished 14:07:30 2021-12-30
                                                                                   12
```


• 얼룩고양이(Tabby) 판단한 근거 가시화

