Aluminium - Boron - Magnesium

Qingsheng Ran, updated by Peter Rogl

Literature Data

Grain refining of boron additions to Al-Mg alloys was the basis for early studies of the Al-B-Mg system [1949Ebo]. No complete phase diagram exists, although several groups investigated the interactions in the ternary system [1959Hof, 1970Mat, 1971Vek, 1981Por, 1983Sho]. Considerable interest was further devoted to the rather hard compound "MgAlB₁₄" [1970Mat, 1971Vek, 1983Hig, 1990Hig, 1993Hig]. Single crystals were obtained from aluminum high temperature flux starting from the nominal composition MgAl₃₁B₆ which was heated under argon in an alumina crucible to 1500°C, kept at this temperature for 1h and slowly cooled to RT (10K·min⁻¹). The excess Al was then dissolved in hot HCl [1983Hig, 1993Hig]. From a batch with ~100 g, crystals were formed up to 5 mm in size and predominantly as plates with the habit $\{001\}$ [1993Hig]. When starting mixtures with smaller amounts of Mg were used, γ AlB₁₂ type crystals Mg_{0.45}Al_{0.77}B₁₂ were obtained, mostly as thin hexagonal plates [1993Hig].

[1959Hof] mixed magnesium, aluminum and boron in order to study the formation of (Al,Mg)B₂ solid solutions. After sintering in argon at temperatures between 725 and 790°C the formation of such a solid solution was identified despite the kinetic difficulty of formation. From 99.9 % pure metals and 99.2 % pure amorphous boron [1971Vek] synthesized 22 ternary alloys. The mixtures were briquetted and heated to temperatures of 850 to 1000°C under an argon atmosphere in sintered alumina crucibles. The reaction products were investigated by X-ray phase analysis. [1970Mat] prepared "MgAlB₁₄" by heating a mixture of magnesium, aluminum and boron in atomic proportions of 1:2:14 to 900°C for 6 h. The sample was then cooled and treated with concentrated hydrochloric acid. The crystal structure of this phase was determined by X-ray (probably on single crystal) diffraction.

The present evaluation was published in the MSIT Evaluation Program earlier and reflects today's state of knowledge.

Binary Systems

The systems Al-B [1994Dus] and B-Mg [1978Spe] are accepted.

Solid Phases

According to [1971Vek] the phase "MgAlB $_{12}$ " is identical to "MgAlB $_{14}$ ". The structure of which was determined in detail from several attempts to obtain single crystal material from high temperature aluminum solutions [1983Hig, 1990Hig, 1993Hig]. In agreement with the chemical analysis (atom emission spectroscopy, Mg $_{0.79}$ Al $_{0.80}$ B $_{14}$), X-ray single crystal studies revealed significant defects on the metal sites: Mg $_{0.78}$ Al $_{0.75}$ B $_{14}$ [1983Hig, 1990Hig, 1993Hig]. For smaller Mg-concentrations in the Al-melt crystals "Mg $_{0.5}$ Al $_{1.4}$ B $_{22}$ " of the γ AlB $_{12}$ type were obtained [1990Hig, 1993Hig], suggesting a high temperature solid solution of Mg in γ AlB $_{12}$ (about 3.5 at.% Mg at ~1500°C).

Isothermal Sections

A tentative isothermal section at approximately 900°C (Fig. 1) is constructed from the results of [1971Vek]. [1971Vek] reported a region of (Al) solid solution containing more than 65 at.% B, which is quite improbable and might be the result of the difficult formation of the (Al,Mg)B₂ phase as stated by [1959Hof]. For the phase relations at 900°C a small solid solution of Mg in αAlB_{12} was assumed as well as for Al in (βB). The ternary compound was taken at the composition Mg_{0.78}Al_{0.75}B₁₄ [1983Hig, 1990Hig, 1993Hig].

MSIT[®]
Landolt-Börnstein
New Series IV/11A1

Notes on Materials Properties and Applications

Microhardness (Vickers hardness under a load of 100g) for $Mg_{0.78}Al_{0.75}B_{14}$ crystals was found to range from 27.70 to 28.90 GPa [1993Hig].

References

- [1949Ebo] Eboral, M.D., "Grain Refinement of Aluminium and its Alloys by Small Additions of Other Elements", *J. Inst. Met.* **76**, 295-320 (1949) (Experimental, 29)
- [1959Hof] Hofmann, H., "Studies of Some Borides of Lithium, Magnesium and Aluminium" (in German), *Thesis*, University Stuttgart, (1959) (Experimental, 15)
- [1970Mat] Matkovich, V.I., Economy, J., "Structure of MgAlB₁₄ and a Brief Critique of Structural Relations in Higher Borides", *Acta Crystallogr. Sect. B: Struct. Crystallogr. Crys. Chem.*, **26B**, 616-621 (1970) (Crys. Structure, Experimental, 24)
- [1971Vek] Vekshina, N.V., Markovskii, Ya.L., Kondrashev, Yu.D., Voevedskaya, T.K., "Binary Borides of Al and Mg", *J. Appl. Chem.* **44**, 970-974 (1971), translated from *Zh. Prikl. Khim.*, **44**, 958-963 (1971) (Equi. Diagram, Experimental, 14)
- [1978Spe] Spear, K.E., "Correlations and Predictions of Metal-Boron Phase Equilibria", NBS Special Publications 496, 744-762 (Equi. Diagram, Review, 21)
- [1981Por] Portnoi, K.I., Bogdanov, V.I., Mikhailov, A.V., Fuks, D.L., "Interaction Parameters in Interstitial Solid Solutions Based on Aluminium", *Russ. J. Phys. Chem.*, **55**, 583-584 (1981) (Experimental, 10)
- [1983Hig] Higashi, I., Ito, T., "Refinement of the Structure of MgAlB₁₄", *J. Less Common Met.*, **92**, 239-246 (1983) (Experimental, Crys. Structure, 15)
- [1983Sho] Shorshorov, M.Kh., Potatov, V.I., Antipov, V.I., Trutnev, V.V., Akinfieva, L.A., Potapova, T.K., "Reaction of Boron with an Aluminium-Magnesium System Alloy, *Fiz. Khim. Obrab. Mater.*, **3**, 142-143 (1983) (Experimental, 4)
- [1990Hig] Higashi, I., Kobayashi, M., Takahashi, Y., Okada, S., Hamano, K., "Crystal Growth of Icosahedral Boride (B12) Compounds from High-Temperature Metal Solutions", *J. Cryst. Growth*, **99**, 1-4P2, 998-1004 (1990) (Experimental, Crys. Structure, 32)
- [1993Hig] Higashi, I., Kobayashi, M., Okada, S., Hamano, K., Lundström, T., "Boron-Rich Crystals in Al-M-B (M = Li, Be, Mg) Systems Grown from High-Temperature Aluminium Solutions", *J. Cryst. Growth*, **128**, 1113-1119 (1993) (Experimental, Crys. Structure, 16)
- [1991Pri] Prikhina, T.A., Kisly, P.S., "Aluminium Borides and Carboborides", in "*Boron-Rich Solids*" Emin, D., et al. (Eds.) Proc. Conf. **231**, Albuquerque, 1990, published by AIP, New York, 590-593 (1991) (Experimental, 11)
- [1992Var] Vardiman, R.G., "Microstructures in Aluminium, Ion Implanted with Boron and Heat Treated", *Acta Metall. Mater.*, **40**, 1029-1035 (1992) (Crys. Structure, Experimental, 7)
- [1993Wer] Werheit, H., Kuhlmann, U., Laux M., Lundström, T., "Structural and Electronic Properties of Carbon-Doped β-Rhombohedral Boron", *Phys. Status Solidi B*, **B179**, 489-511 (1993) (Crys. Structure, Experimental, 51)
- [1994Dus] Duschanek, H., Rogl, P., "The System Al-B", *J. Phase Equilib.*, **15** (5), 543-552 (1994) (Crys. Structure, Equi. Diagram, Experimental, #, 78) see also ibid, **16** (1), 6 (1995)

Landolt-Börnstein
New Series IV/11A1

MSIT®

 Table 1: Crystallographic Data of Solid Phases

Phase/ Temperature Range [°C]	Pearson Symbol/ Space Group/ Prototype	Lattice Parameters [pm]	Comments/ References
(Al) < 660.452	<i>cF4</i> <i>Fm3̄m</i> Cu	a = 404.96	[Mas2]
(βB) < 2092	<i>hR</i> 333 <i>R</i> 3 <i>m</i> βB	a = 1093.30 c = 2382.52 a = 1096.5	[1993Wer]
	r	a = 1096.3 c = 2386.8	at AlB ₃₁ [V-C2]
$ \begin{array}{r} Al_2B_3 \\ $	<i>hR</i> * Al ₂ B ₃ (?)	a = 1840 $c = 896$	at 60 at.% B [1992Var]
$\begin{array}{l} \alpha AlB_{12} \\ \leq 2050 \end{array}$	$tP216$ $P4_12_12$ αAlB_{12}	a = 1015.8 c = 1427.0 a = 1018 c = 1434.3	[1994Dus] $\rho_{\text{exp.}} = 2.65 \text{ Mgm}^{-3}$ [1991Pri]
γAlB_{12}	<i>oP</i> 384 <i>P</i> 2 ₁ 2 ₁ 2 ₁ γAIB ₁₂	a = 1014.4 b = 1657.3 c = 1751.0	[1994Dus] metastable phase or ternary product stabilized by small amounts of impurity metals present in Al-flux grown material $\rho_{exp.} = 2.56 \ Mgm^{-3}$
		a = 1019.5 b = 1666 c = 1769	[1991Pri]
$Mg_{0.25}Al_{0.77}B_{12}$		a = 1018.7 b = 1663.3 c = 1754.7	solid solution of Mg in γAlB ₁₂ [1990Hig, 1993Hig]
$ \begin{array}{l} (Al_{1-x}Mg_x)B_2\\ AlB_2\\ \leq 975 \end{array} $	hP3 P6/mmm AlB ₂	a = 300.6 b = 325.2	0 < x < 1 [1959Hof, 1971Vek] at $x = 0$ [1994Dus]
		a = 304.7 c = 336.6	at $x = 0.5$ [1971Vek]
$\frac{MgB_2}{\leq 1550(BP)}$		a = 308.5 b = 352.3	at $x = 1$ [V-C2]
MgB ₄ ≤ 1775 (BP)	oP20 Pnma MgB ₄	a = 546.4 b = 442.8 c = 747.2	[V-C2]
MgB ₇ ≤ 2150 (BP)	oI64 Imma MgB ₇	a = 597.0 b = 1048.0 c = 812.5	[V-C2]
*τ ₁ , Mg _{0.78} Al _{0.75} B ₁₄	oI68 Imma MgAlB ₁₄	a = 584.8 b = 1031.2 c = 811.2	[1970Mat, 1983Hig, 1993Hig]

MSIT®

Landolt-Börnstein
New Series IV/11A1

