. 2 .

AMENDMENTS TO THE SPECIFICATION:

Amend the title to read: "Apparatus and Method for Recalibrating a

Source-synchronoug Pipelined Self-Timed Bus Interface"

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings of claims in the application.

LISTING OF CLAIMS:

What is claimed is:

- 1 Claim 1. (Currently Amended) In an SMP computer system
- 2 having an a source-synchronous, pipelined, self-calibrating
- 3 <u>bus</u> interface, the method of recalibrating the <u>bus</u>
- 4 interface, comprising the steps of:
- 5 a) halting operations of said SMP computer system having an
- 6 <u>a</u> source-synchronous, pipelined, self-calibrating <u>bus</u>
- 7 interface with a system quiesce operation such that the bus
- 8 <u>interface is not used by the system, to idle the interface,</u>
- 9 b) fencing the a receiver of the bus interface,
- 10 c) recalibrating the bus interface using clock readjustment,
- 11 d) unfencing the receiver of the bus interface, and
- 12 e) taking the system of the bus interface out of the wait
- 13 state and commencing operations to allow interface use
- 14 again.

15

- 16 Claim 2. (Currently Amended) The method according to claim 1, wherein when said step of halting operations is done with
- 1 a system quiesce operation to avoid using said bus interface
- 2 to allow recalibrating of the bus interface during said
- 3 <u>system quiesce operation.</u>

4

- 5 Claim 3. (Currently Amended) The method according to claim
- 6 1, wherein said step of calibrating the interface is accomplished by <u>sending and</u> sampling a known data pattern.

2 Claim 4. (Currently Amended) The method according to claim

- 3 1, wherein said step of calibrating the <u>bus</u> interface is accomplished by recalculating the frequency and applying the
- 1 appropriate delay adjustment to the clock.

2

 $\overline{1}$

- 3 Claim 5. (Currently Amended) In an SMP computer system
- 4 having <u>an a source-synchronous <u>bus</u> interface, the method for re-calibration of the <u>bus</u> interface at periodic intervals</u>
- 1 comprising the steps of:
- 2 a. putting the system of the <u>bus</u> interface into a wait state
- 3 with a system quiesce operation such that the bus interface
- 4 <u>is not used by the system</u>,
- 5 b. performing a fast initialization process for calibration,
- 6 c. taking the system of the bus interface out of said wait
- 7 state <u>and restoring the system to a running state</u>.

8

- 9 Claim 6. (Currently) The method according to claim 5 wherein wherein a step of data deskew has been performed as part of
- 1 the original system $\underline{\text{bus}}$ interface initialization, and during
- 2 recalibration of only a single clock centering step for the
- 3 <u>bus</u> interface is performed during said fast initialization
- 4 process for calibration without deskewing data during said
- fast initialization step performed for re-calibration.

6

- 7 Claim 7. (Currently Amended) The method according to claim 6 wherein said wait state keeps the <u>bus</u> interface from being
- 1 used for processing steps other than re-calibration and
- 2 sending a calibration pattern and allowing claibration
- 3 <u>calibration</u> logic to re-center the clock applicable to the
- 4 <u>bus</u> interface to compensate for new environmental conditions
- 5 and circuit changes.

6

7	Claim 8. (Currently Amended) The method according to claim
	7 wherein the recalibration of the <u>bus</u> interface is
1	triggered periodically and in a mannter manner that circuit
2	or environmental characteristics over time do not adversely
3	affect the operation of the <u>bus</u> interface.
4	
5	Claim 9. (Currently Amended) The method according to claim 7
	wherein the re-calibration is based on a trigger event which
1	triggers the steps for re-calibration of the bus interface
2	
3	Claim 10. (Currently Amended) The method according to claim
	1 <u>whrein</u> wherein a quiesce of the system of the <u>bus</u>
1	interface if performed prior to performing a fast
2	initialization process for calibration, and during
3	calibration, the step of calibrating the <u>bus</u> interface
4	recalculates the frequency of the clock for the $\underline{\text{bus}}$
5	interface and applies an appropriate delay adjustment to the
6	clock for the $\underline{\text{bus}}$ interface, after which the system for the
7	interface is unquiesced before commencing operations to
8	allow <u>bus</u> interface use again.
9	
	Claim 11. (Currently amended) The method according to claim
1	10 wherein the recalibration stem step includes sending a
2	pattern across the interface and adjusting the clock through
3	re-centering without data de-skewing but with shifing
4	shifting to the clock to re-center the intrface bus
5	interface data capturing window for the 'eye' of the data
6	capturing window.
6	
	Claim 12. (Currently Amended) The method according to claim
1	10 wherein the recalibration stem includes re-calculating
2	the clock frequency of the bus interface against the current
3	hardware and re-applying the clock frequency calculation to

- 4 the clock delay to re-center the clock when the machine is
- 5 being cycled down to failure and the major change needing
- 6 re-calibration is cycle time.

7

- Claim 13. (Currently Amended) The method of claim 5 wherein
- 1 a state machine controls calibration, and said state machine
- 2 allows
- 3 a. putting the system of the interface into a wait state and
- 4 for quiescing the data over the <u>bus</u> interface when the state
- 5 machine enters a re-calibration state, whereupon,
- 6 b. said a fast initialization process for calibration is
- 7 performed, and then
- 8 c. a change of said stae state machine changes takes the
- 9 system of the <u>bus</u> interface back out of said wait state; and
- 10 d. Allows allows data to transfer across the bus interface
- 11 again.

12