1) Probar las siguientes igualdades

i.

$$B\setminus \bigcup_{i\in\mathbb{I}}A_i=\bigcap_{i\in\mathbb{I}}(B\setminus A_i)$$

Proof. \subseteq) Sabemos $x \in B$ y $x \notin \bigcup_{i \in \mathbb{I}} A_i$

Luego $x \in B$ y $x \notin \bigcup A_i \quad \forall i \in \mathbb{I}$

Entonces $x \in B \setminus A_i \quad \forall i \in \mathbb{I}$

 $\Rightarrow x \in \bigcap B \setminus A_i$

 \supseteq) Sabemos $x \in B \setminus A_i \quad \forall i \in \mathbb{I}$

Luego para cada $i \in \mathbb{I}$ sabemos $x \in B$ y $x \notin A_i$

$$\Rightarrow x \in B \setminus \bigcup A_i$$

ii.

$$B \setminus \bigcap_{i \in \mathbb{I}} A_i = \bigcup_{i \in \mathbb{I}} (B \setminus A_i)$$

Proof. \subseteq) Sabemos $x \in B$ y $x \notin \bigcap A_i$

Luego existe algún $i \in \mathbb{I}$ tal que $x \notin A_i$ (quizas para todos los $i \in I$ sucede que $x \notin A_i$ pero con uno alcanza)

Entonces existe algún $i \in \mathbb{I}$ tal que $x \in B$ y $x \notin A_i \Rightarrow B \setminus A_i$

$$\Rightarrow x \in \bigcup (B \setminus A_i)$$

 \supseteq) Tenemos $x \in B \setminus A_i$ para algún $i \in \mathbb{I}$

Luego $x \in B$ y $x \notin A_i$ para algún $i \in \mathbb{I}$

Entonces $x \in B$ y $x \notin \bigcap A_i \quad \forall i \in \mathbb{I}$

$$\Rightarrow x \in B \setminus \bigcap A_i$$

iii.

$$\bigcup_{i\in\mathbb{I}} (A_i \cap B) = B \cap (\bigcup_{i\in\mathbb{I}} A_i)$$

Proof. \subseteq) Tenemos $x \in A_i \cap B$ para algún $i \in \mathbb{I}$

Luego $x \in B$ y $x \in A_i$ para algún $i \in \mathbb{I} \Rightarrow x \in \bigcup A_i$

Entonces $x \in B$ y $x \in \bigcup A_i$

$$\Rightarrow x \in B \cap (\bigcup A_i)$$

3) Sea $f: X \to Y$ una función, A, B subconjuntos de X

i.
$$f(A \cup B) = f(A) \cup f(B)$$

Proof.
$$\subseteq$$
) Sea $y \in f(A \cup B)$ entonces $\exists x \in A \cup B/f(x) = y$

Luego $x \in A$ y $x \in B$

Entonces $y = f(x) \in f(A)$ y por otro lado $y = f(x) \in B$

Finalmente $y = f(x) \in f(A) \cup f(B)$

 \supseteq) Sea $y \in f(A) \cup f(B)$ luego $y \in f(A)$ e $y \in f(B)$

Entonces $\exists x \in A \text{ tal que } f(x) = y \text{ luego } x \in A \cup B$

Luego $y = f(x) \in f(A \cup B)$

ii. $f(A \cap B) \subseteq f(A) \cap f(B)$

Proof. Sea $y \in f(A \cap B)$ luego $\exists x \in A \cap B$ tal que f(x) = y

Luego $x \in A$ y $x \in B$ luego $y = f(x) \in f(A)$ e $y = f(x) \in f(B)$

Finalmente $y = f(x) \in f(A) \cap f(B)$

iii. Sea $A_{i\in\mathbb{N}}$ una familia de infinitos conjuntos, entonces

(a)
$$f(\bigcup A_i) = \bigcup f(A_i)$$

Proof. \subseteq) Sea $y \in f(\bigcup A_i)$ luego $\exists x \in \bigcup A_i$ tal que f(x) = y

Entonces $\exists A_i$ tal que $x \in A_i$ por lo que $y = f(x) \in f(A_i) \subseteq \bigcup f(A_i)$

 \supseteq) Sea $y \in \bigcup f(A_i)$ luego $\exists j \in \mathbb{N}$ tal que $y \in f(A_j)$

Luego $\exists x \in A_j$ tal que y = f(x) luego $x \in \bigcup A_i$

Finalmente $y = f(x) \in f(\bigcup A_i)$

(b) $f(\bigcap A_i) \subseteq \bigcap f(A_i)$

Proof. Sea $y \in f(\bigcap A_i)$ luego $\exists x \in \bigcap A_i$

Entonces $x \in A_i \quad \forall i \in \mathbb{N}$

Luego $y = f(x) \in f(A_i) \quad \forall i \in \mathbb{N}$

Finalmente $y \in \bigcap f(A_i)$

(c) La última inclusión puede ser estricta.

Proof. Sea
$$f(x) = 3 \quad \forall x \in X \text{ y } A = 1, B = 2$$

Luego $3 = f(A) \cap f(B) = 3 = \{3\}$ que es distinto a $f(A \cap B) = f(\{\emptyset\}) = \emptyset$

4) Sean $f: X \to Y$ una función, $A \subseteq X$ y $B, B_1, B_2 \subseteq Y$. Luego vale:

i.
$$A \subseteq f^{-1}(f(A))$$

Proof. Sea
$$x \in A$$
 luego $f(x) \in f(A)$ por lo tanto, como $x \in f^{-1}(f(x)) \subseteq f^{-1}(f(A))$
Entonces $x \in f^{-1}(f(A))$

ii.
$$f(f^{-1}(B)) \subseteq B$$

Proof. Sea
$$y \in f(f^{-1}(B))$$
 entonces $\exists x \in f^{-1}(B)/f(x) = y$
Pero entonces $f(x) \in B \Rightarrow y \in B$

iii.
$$f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$$

Proof.
$$\subseteq$$
) Sea $x \in f^{-1}(Y \setminus B)$ luego $f(x) \in Y \setminus B$

Entonces
$$f(x) \notin B$$
 entonces $x = f^{-1}(f(x)) \notin f^{-1}(B)$

Por otro lado $f(x) \in Y$ entonces $x \in f^{-1}(Y)$

Juntando todo $x \in f^{-1}(Y) \setminus f^{-1}(B)$

O lo que és lo mismo $X \setminus f^{-1}(B)$

$$\supseteq$$
) Sea $x \in X \setminus f^{-1}(B)$

Entonces $x \in X$ entonces $f(x) \in f(X) = Y$

Tambien $x \notin f^{-1}(B)$ por lo que $f(x) \notin B$

Luego $f(x) \in Y \setminus B$

Finalmente
$$x = f^{-1}(f(x)) \in f^{-1}(Y \setminus B)$$

iv.
$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$$

Proof.
$$\subseteq$$
) Sea $x \in f^{-1}(B_1 \cup B_2)$ luego $f(x) \in B_1 \cup B_2$

Luego $f(x) \in B_1$ por lo que $x \in f^{-1}(B_1)$

Finalmente $x \in f^{-1}(B_1) \cup f^{-1}(B_2)$

 \supseteq) Sea $x \in f^{-1}(B_1) \cup f^1(B_2)$

Luego $x \in f^{-1}(B_1)$ entonces $f(x) \in B_1$

Por tanto $f(x) \in B_1 \cup B_2$

Finalmente
$$x \in f^{-1}(B_1 \cup B_2)$$

v.
$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$

Proof. \subseteq) Sea $x \in f^{-1}(B_1 \cap B_2)$ entonces $f(x) \in B_1 \cap B_2$

Por lo que $f(x) \in B_1$ esto implica $x \in f^{-1}(B_1)$

Tambien $f(x) \in B_2$ que implica $f(x) \in f^{-1}(B_2)$

Finalmente $f(x) \in f^{-1}(B_1) \cap f^{-1}(B_2)$

 \supseteq) Sea $x \in f^{-1}(B_1) \cap f^{-1}(B_2)$

Luego $x \in f^{-1}(B_1)$ por lo que $f(x) \in B_1$ y con el mismo argumento $f(x) \in B_2$

Entonces tenemos $f(x) \in B_1 \cap B_2$

Finalmente $x \in f^{-1}(B_1 \cap B_2)$

4)b) Sean $f: X \to Y$ una función y B_i Una familia infinita de subconjuntos de Y vale:

i. $f^{-1}(\bigcup B_i) = \bigcup f^{-1}(B_i)$

Proof. \subseteq) Sea $x \in f^{-1}(\bigcup B_i)$ entonces $f(x) \in \bigcup B_i$

Luego $f(x) \in B_i$ para algún B_i

Por ende $x \in f^{-1}(B_i) \subseteq \bigcup f^{-1}(B_i)$

Finalmente $x \in \bigcup f^{-1}(B_i)$

 \supseteq) Por hipótesis sabemos $\exists j \in \mathbb{N}$ tal que $x \in f^{-1}(B_i)$

Por lo que $f(x) \in B_i$ y entonces $f(x) \in \bigcup B_i$

Luego $x \in f^{-1}(\bigcup B_j)$

ii. $f^{-1}(\bigcap B_i) = \bigcap f^{-1}(B_i)$

 \subseteq) Sea $x \in f^{-1}(\bigcap B_i)$ luego $f(x) \in \bigcap B_i$

Entonces $f(x) \in B_i \quad \forall i \in \mathbb{N} \text{ luego } x \in f^{-1}(B_i) \quad \forall i \in \mathbb{N}$

Finalmente $x \in \bigcap f^{-1}(B_i)$

La otra inclusión sale de la misma forma que todos los ejercicios arriba , queda como ejercicio para alguién con muchas ganas

5) Sea $f:X\to Y$ una función. Probar que $f(f^{-1}(B))=B$ para cada $B\subseteq Y$ si y sólo si f es suryectiva

Proof. \Leftarrow) Por ejercicio anteriór sabemos que $f(f^{-1}(B)) \subseteq B$ probemos la otra inclusión.

Sea $y \in B$ luego $y \in Y$ como f suryectiva $\exists x \in X$ tal que f(x) = y equivalentemente $x = f^{-1}(y)$

Luego $y = f(x) = f(f^{-1}(y)) \in f(f^{-1}(B))$

Entonces $y \in f(f-1(B)) \quad \forall y \in B \text{ y por ende } B \subseteq f(f^{-1}(B))$

Finalmente $B = f(f^{-1}(B))$ para cualquier $B \subseteq Y$

 $\Rightarrow)$ Tenemos la igualdad para cada $B\subseteq Y$ en particular vale para Y

Luego $f(f^{-1}(Y)) = Y$ por lo tanto f es survectiva

Si no fuera survectiva tiene que existir algún $y \in Y$ tal que $f^{-1}(y) = \emptyset$

Por lo que $f^{-1}(y) \notin f^{-1}(Y)$ entonces $y \notin f(f^{-1}(Y))$

Finalmente $Y \neq f(f^{-1}(Y))$

- 6) Sea $f: X \to Y$ una función. Luego las siguientes afirmaciones son equivalentes:
 - 1. f es inyectiva
 - 2. $f(A \cap B) = f(A) \cap f(B)$ para todo $A, B \subseteq X$
 - 3. $f^{-1}(f(A)) = A$ para todo $A \subseteq X$
 - 4. $f(A) \cap f(B) = \emptyset$ para todo par de subconjuntos A, B tales que $A \cap B = \emptyset$
 - 5. $f(A \setminus B) = f(A) \setminus f(B)$ para todo $B \subseteq A \subseteq X$

Proof. 1) \Rightarrow 2) Sabemos que $f(A \cap B) \subseteq f(A) \cap f(B)$ probemos la otra inclusión

Sea $y \in f(A) \cap f(B)$ luego $y \in f(A)$ y $y \in f(B)$

Por esto sabemos que $\exists x \in A$ tal que f(x) = y y tambien que $\exists x' \in B$ tal que f(x') = y

Luego f(x) = y = f(x') y como f es inyectiva tenemos que x = x'

Luego ambos x, x' (que son el mismo) estan en A y ambos están en B

Resumiendo $x \in A \cap B$ y por ende $y = f(x) \in f(A \cap B)$

Luego $f(A \cap B) = f(A) \cap f(B)$

 $2 \Rightarrow 3$) Por ej anteriór sabemos que $A \cap B \subseteq f^{-1}(f(A \cap B))$. Probemos la otra inclusión

Sea $x \in f^{-1}(f(A \cap B))$ entonces $f(x) \in f(A \cap B)$

Y como $f(A \cap B) = f(A) \cap f(B)$ tenemos $f(x) \in f(A) \cap f(B)$

Entonces $f(x) \in f(A)$ luego $x \in A$ por otro lado $f(x) \in f(B)$ luego $x \in B$

Finalmente $x \in A \cap B$

 $3 \Rightarrow 4$) Supongamos que $f(A) \cap f(B) \neq \emptyset$ luego $\exists y \in f(A) \cap f(B)$

Luego tenemos $y \in f(A)$ entonces $\exists x \in A$ tal que f(x) = y

Y también $y \in f(B)$ entonces $\exists x' \in B$ tal que f(x') = y

Entonces tenemos $x' = f^{-1}(f(x')) = f^{-1}(y) = f^{-1}(f(x)) = x$

Luego x=x' por lo que $x\in A\cap B$ lo que es absurdo

Provino de suponer $f(A) \cap f(B) \neq \emptyset$

Entonces $f(A) \cap f(B) = \emptyset$

 $4 \Rightarrow 5) \supseteq$) Sea $y \in f(A) \setminus f(B)$

Luego $y \in f(A)$ entonces $\exists x \in A$ tal que f(x) = y

Por otro lado $y \notin f(B)$ entonces $\nexists x \in B$ tal que f(x) = y

Luego $x \in A \setminus B$ por lo que $f(x) \in f(A \setminus B)$

 $\subseteq)$ Sea $y\in f(A\setminus B)$ luego $\exists x\in A\setminus B$ tal que f(x)=y

Luego $x \in A$ por ende $f(x) \in A$

Y tambien $x \notin B$ por ende $f(x) \notin B$

Finalmente $y = f(x) \in f(A) \setminus f(B)$