1 Modelo Fiscal: Análisis Dinámico

1.1 Variables de Estado

Las siguientes variables aparecen con rezago:

- y(t-1)
- r(t-1)
- a(t-1)
- $c^*(t-1)$
- $\xi_{\pi}(t-1)$
- $\xi_r(t-1)$
- $\xi_g(t-1)$
- r(t-2)

Variables forward-looking:

- y(t+1)
- $\pi(t+1)$
- b(t+1)
- g(t+1)

Variables estáticas:

• r^{nat}

1.2 Valores en Estado Estacionario

Variable	Valor
\overline{y}	0
π	0
b	0
r	0
g	0
r^{nat}	0
a	0
c^*	0
ξ_{π}	0
	0
ξ_r ξ_g	0
-	

Table 1: Resultados del Estado Estacionario

1.3 Autovalores

Módulo	Real	Imaginario
0.3406	-0.3406	0
0.4288	0.3378	0.264
0.4288	0.3378	-0.264
0.5	0.5	0
0.5	0.5	0
0.5	0.5	0
0.5	0.5	0
0.7	0.7	0
1.01	1.01	0
2.857	1.853	2.175
2.857	1.853	-2.175
∞	-∞	0

Table 2: Autovalores del Sistema

1.4 Matriz de Covarianza de Shocks Exógenos

Variables	ε_a	$arepsilon_{c^*}$	$arepsilon_{\pi}$	$arepsilon_r$	ε_g
ε_a	0.062500	0.000000	0.000000	0.000000	0.000000
$arepsilon_{c^*}$	0.000000	0.490000	0.000000	0.000000	0.000000
$arepsilon_{\pi}$	0.000000	0.000000	0.160000	0.000000	0.000000
$arepsilon_r$	0.000000	0.000000	0.000000	0.360000	0.000000
$arepsilon_g$	0.000000	0.000000	0.000000	0.000000	0.250000

Table 3: Matriz de Covarianza de Shocks Exógenos

1.5 Descomposición de Varianza (%)

Variable	ε_a	$arepsilon_{c^*}$	$arepsilon_{\pi}$	$arepsilon_r$	$arepsilon_g$
\overline{y}	14.11	0.14	38.05	6.50	41.20
π	3.03	0.03	8.84	70.93	17.18
b	21.37	0.21	31.08	23.81	23.53
r^{nat}	99.04	0.96	0.00	0.00	0.00
r	23.16	0.22	58.19	13.08	5.34
g	15.75	0.15	25.59	8.50	50.01

Table 4: Descomposición de Varianza

Table 5: MATRIX OF COVARIANCE OF EXOGENOUS SHOCKS

$\overline{Variables}$	$arepsilon^a$	$arepsilon^c$	$arepsilon^{\pi}$	$arepsilon^r$	$arepsilon^g$
$arepsilon^a$	0.062500	0.000000	0.000000	0.000000	0.000000
$arepsilon^c$	0.000000	0.490000	0.000000	0.000000	0.000000
$arepsilon^{\pi}$	0.000000	0.000000	0.160000	0.000000	0.000000
ε^r	0.000000	0.000000	0.000000	0.360000	0.000000
$arepsilon^g$	0.000000	0.000000	0.000000	0.000000	0.250000

Table 6: Parameter Values

Parameter	Value	Description	
θ	0.500	Calvo Probability	
σ	1.000	Inverse EIS	
α	0.430	Openness Degree	
ϕ	1.000	Inverse Labor Supply Elasticity	
eta	0.990	Discount Factor	
$ ho_{lpha}$	0.500	Productivity Shock Autocorrelation	
$ ho_{c^*}$	0.500	Int. Consumption Shock Autocorrelation	
$ ho_{\pi}$	0.500	Domestic Price Shock Autocorrelation	
$ ho_r$	0.700	Interest Rate Shock Autocorrelation	
$ ho_g$	0.500	Public Spending Shock Autocorrelation	
γ_π	1.250	Monetary Authority Inflation Gap Response	
ζ_{π}	0.250	Fiscal Authority Inflation Gap Response	
γ_y	0.250	Monetary Authority Output Gap Response	
ζ_y	1.250	Fiscal Authority Output Gap Response	
γ_r	0.700	Interest Rate Smoothing	
ζ_g	0.250	Government Spending Response	
η	0.690	Domestic-Imported Goods Substitution Elasticity	
v	1.000	Cross-Country Goods Substitution Elasticity	
au	0.033	Effective Income Tax Rate	
$rac{ar{B}}{V}$	0.530	Steady State Debt-GDP Ratio	
$egin{array}{c} au \ rac{ar{B}}{Y} \ rac{C}{Y} \ r^* \end{array}$	0.700	Steady State Consumption-GDP Ratio	
$\overset{r}{r^*}$	0.000	Steady State Interest Rate	

Table 7: COEFFICIENTS OF AUTOCORRELATION

Order	1	2	3	4	5
$ ilde{y}_t$	0.6764	0.4563	0.2387	0.1202	0.0555
π_t	0.6787	0.5348	0.4037	0.2842	0.1910
$egin{array}{l} \pi_t \ ilde{b}_t \end{array}$	0.7372	0.4940	0.2943	0.1668	0.0934
r^n	0.5000	0.2500	0.1250	0.0625	0.0312
r_t	0.8034	0.5113	0.2791	0.1406	0.0699
$ ilde{g}_t$	0.6017	0.3902	0.1949	0.0998	0.0483

Table 8: MATRIX OF CORRELATIONS

Variables	$ ilde{y}_t$	π_t	$ ilde{b}_t$	r^n	r_t	\tilde{g}_t
$ ilde{y}_t$	1.0000	-0.5465	-0.8641	-0.2094	-0.8171	0.9536
π_t	-0.5465	1.0000	0.7690	0.1000	0.5792	-0.5717
$egin{array}{l} \pi_t \ ilde{b}_t \end{array}$	-0.8641	0.7690	1.0000	0.4307	0.9322	-0.7938
r^n	-0.2094	0.1000	0.4307	1.0000	0.4227	-0.2331
r_t	-0.8171	0.5792	0.9322	0.4227	1.0000	-0.6701
$ ilde{g}_t$	0.9536	-0.5717	-0.7938	-0.2331	-0.6701	1.0000

Table 9: THEORETICAL MOMENTS

RIANCE
1.9968
0.0472
50.3437
0.0227
0.0875
1.6450

Table 10: VARIANCE DECOMPOSITION (in percent)

	$arepsilon^a$	ε^c	$arepsilon^\pi$	ε^r	$arepsilon^g$
\tilde{y}_t	14.11	0.14	38.05	6.50	41.20
π_t	3.03	0.03	8.84	70.93	17.18
$ ilde{b}_t$	21.37	0.21	31.08	23.81	23.53
r^n	99.04	0.96	0.00	0.00	0.00
r_t	23.16	0.22	58.19	13.08	5.34
$ ilde{g}_t$	15.75	0.15	25.59	8.50	50.01

$$omega = \sigma \upsilon + (1 - \alpha) (\sigma \eta - 1)$$

$$sigma_alpha = \frac{\sigma}{1 + \alpha \ (omega - 1)}$$

$$lambda = \frac{(1 - \beta \theta) (1 - \theta)}{\theta}$$

 $kappa_upsilon = lambda (sigma_alpha + \phi)$

$$OMICRON_R_LAG1 = \frac{1 + \beta + sigma_alpha \ kappa_upsilon}{\beta}$$

$$OMICRON_R_LAG2 = \frac{(-1)}{\beta}$$

$$OMICRON_PI = \frac{kappa_upsilon \gamma_{\pi}}{sigma_alpha \gamma_{y}}$$

$$OMICRON_Y = \frac{\gamma_y}{sigma_alpha\,\gamma_r}$$

$$OMICRON_R_TAR = \frac{(-\left(sigma_alpha\,kappa_upsilon\right))}{\beta}$$

 $D = kappa_upsilon + sigma_alpha + \beta sigma_alpha$

$$PSI_G_PLUS = \frac{\beta \, sigma_alpha}{D}$$

$$PSI_G_LAG = \frac{sigma_alpha}{D}$$

$$PSI_Y_PLUS = \frac{\beta \, sigma_alpha \, \zeta_y}{D \, \zeta_a}$$

$$PSI_Y_0 = \frac{sigma_alpha \, \zeta_y \, (2+\beta)}{D \, \zeta_q}$$

$$PSI_Y_LAG = \frac{sigma_alpha \, \zeta_y}{D \, \zeta_g}$$

$$PSI_PI_PLUS = \frac{\beta \ sigma_alpha \ \zeta_{\pi} \ (sigma_alpha - kappa_upsilon)}{D \ \zeta_{g}}$$

$$PSI_PI_0 = \frac{(sigma_alpha - kappa_upsilon) \ sigma_alpha \ \zeta_{\pi}}{D \ \zeta_{g}}$$

$$=\frac{\alpha \left(sigma_alpha \frac{\bar{C}}{\bar{Y}} - sigma_alpha - kappa_upsilon \frac{\bar{C}}{\bar{Y}} + sigma_alpha \tau - \frac{\bar{B}}{\bar{Y}} sigma_alpha^2 + kappa_upsilon \frac{\bar{C}}{\bar{Y}} + sigma_alpha \tau - \frac{\bar{B}}{\bar{Y}} sigma_alpha^2 + kappa_upsilon \frac{\bar{C}}{\bar{Y}} + sigma_alpha \tau - \frac{\bar{B}}{\bar{Y}} sigma_alpha^2 + kappa_upsilon \frac{\bar{C}}{\bar{Y}} + sigma_alpha \tau - \frac{\bar{B}}{\bar{Y}} sigma_alpha^2 + kappa_upsilon \frac{\bar{C}}{\bar{Y}} + sigma_alpha \tau - \frac{\bar{B}}{\bar{Y}} sigma_alpha^2 + kappa_upsilon \frac{\bar{C}}{\bar{Y}} + sigma_alpha \tau - \frac{\bar{B}}{\bar{Y}} sigma_alpha^2 + kappa_upsilon \frac{\bar{C}}{\bar{Y}} + sigma_alpha \tau - \frac{\bar{B}}{\bar{Y}} sigma_alpha^2 + kappa_upsilon \frac{\bar{C}}{\bar{Y}} + sigma_alpha \tau - \frac{\bar{B}}{\bar{Y}} sigma_alpha^2 + kappa_upsilon \frac{\bar{C}}{\bar{Y}} + sigma_alpha \tau - \frac{\bar{B}}{\bar{Y}} sigma_alpha^2 + kappa_upsilon \frac{\bar{C}}{\bar{Y}} + sigma_alpha \tau - \frac{\bar{B}}{\bar{Y}} sigma_alpha^2 + kappa_upsilon \frac{\bar{C}}{\bar{Y}} + sigma_alpha \tau - \frac{\bar{B}}{\bar{Y}} sigma_alpha^2 + kappa_upsilon \frac{\bar{C}}{\bar{Y}} + sigma_alpha \tau - \frac{\bar{B}}{\bar{Y}} sigma_alpha^2 + kappa_upsilon \frac{\bar{C}}{\bar{Y}} + sigma_alpha \tau - \frac{\bar{C}}{\bar{Y}} sig$$

$$J = \zeta_y + \zeta_g + \zeta_\pi \operatorname{sigma_alpha}^2$$

$$W = \frac{\operatorname{sigma_alpha} \zeta_\pi}{J}$$

$$XI_G_PLUS = \frac{\zeta_y}{J}$$

$$XI_R_BAR = \frac{\operatorname{kappa_upsilon} \zeta_y}{\beta J}$$

$$XI_R_NAT = \frac{\zeta_y}{sigma_alpha J}$$

$$XI_R_LAG = \frac{(1+\beta + sigma_alpha \ kappa_upsilon) \ \zeta_y}{\beta \ sigma_alpha \ J}$$

$$XI_R_LAG_2 = \frac{\zeta_y}{\beta \ sigma_alpha \ J}$$

$$XI_PI_PLUS = \frac{\zeta_y + \beta \, sigma_alpha^2 \, (-\zeta_\pi)}{sigma_alpha \, J}$$

$$XI_PI_0 = \frac{kappa_upsilon \gamma_y \zeta_y}{J \gamma_r siama \ alpha^2}$$

$$XI_Y_PLUS = \frac{\zeta_y}{I}$$

$$XI_Y_0 = \frac{\gamma_y \zeta_y + kappa_upsilon \gamma_r \zeta_\pi sigma_alpha^2}{J \gamma_r sigma_alpha^2}$$

$$XI_Y_LAG = \frac{\gamma_y \, \zeta_y}{J \, \gamma_r \, sigma_alpha^2}$$

$$\pi_{tt} = \beta \, \pi_{tt+1} + kappa_upsilon \, \tilde{y}_{tt} - sigma_alpha \, \tilde{g}_{tt} + \xi_{\pi_t}$$
 (1)

$$\tilde{y}_{tt} = \tilde{y}_{tt+1} - \frac{1}{sigma_alpha} \left(r_{tt} - \pi_{tt+1} - r^n_{t} \right) - (\tilde{g}_{tt+1} - \tilde{g}_{tt})$$
(2)

$$\tilde{b}_{tt+1} = r_{tt} - r^n_{\ t} + \frac{1}{\beta} \left(\tilde{b}_{tt} - \pi_{tt} + \tilde{g}_{tt} \frac{\frac{\bar{C}}{\bar{Y}}}{\frac{\bar{B}}{\bar{Y}}} + \tilde{y}_{tt} \frac{1 - \tau - \frac{\bar{C}}{\bar{Y}}}{\frac{\bar{B}}{\bar{Y}}} \right)$$
(3)

$$r_{tt} = OMICRON_R_LAG1 r_{tt-1} + OMICRON_R_LAG2 r_{tt-2} + \pi_{tt} OMICRON_PI$$

$$+ \tilde{y}_{tt} OMICRON_Y + OMICRON_Y \tilde{y}_{tt-1} + OMICRON_R_TAR r^* + \xi_{rt}$$

$$(4)$$

$$\tilde{g}_{tt} = \tilde{g}_{tt+1} XI_G_PLUS - r^* XI_R_BAR - r^n_t XI_R_NAT - r_{tt-1} XI_R_LAG - r_{tt-2} XI_R_LAG_2 - \pi_{tt+1} XI_PI_PLUS + \pi_{tt} XI_PI_0$$

$$- \tilde{y}_{tt+1} XI_Y_PLUS + \tilde{y}_{tt} XI_Y_0 - \tilde{y}_{tt-1} XI_Y_LAG + \xi_{\pi_t} W + \xi_{g_t}$$
(5)

$$r^{n}_{t} = \frac{sigma_alpha (1 + \phi) (\rho_{\alpha} - 1)}{sigma \ alpha + \phi} a_{tt} + \frac{(omega - 1) \alpha \phi}{sigma \ alpha + \phi} (\rho_{c^{*}} - 1) c_{tt}^{*}$$

$$(6)$$

$$a_{tt} = \rho_{\alpha} \, a_{tt-1} + \varepsilon^a_{\ t} \tag{7}$$

$$c_{tt}^* = \rho_{c^*} c_{tt-1}^* + \varepsilon_t^c \tag{8}$$

$$\xi_{\pi t} = \rho_{\pi} \, \xi_{\pi t - 1} + \varepsilon^{\pi}_{t} \tag{9}$$

$$\xi_{rt} = \rho_r \, \xi_{rt-1} + \varepsilon^r_{\ t} \tag{10}$$

$$\xi_{g_t} = \rho_g \, \xi_{g_{t-1}} + \varepsilon^g_{t} \tag{11}$$

Figure 1: Impulse response functions (orthogonalized shock to ε^a).

Figure 2: Impulse response functions (orthogonalized shock to ε^c).

Figure 3: Impulse response functions (orthogonalized shock to ε^{π}).

Figure 4: Impulse response functions (orthogonalized shock to ε^r).

Figure 5: Impulse response functions (orthogonalized shock to ε^g).