CS 383C CAM 383C/M 383E

Numerical Analysis: Linear Algebra

Fall 2008

Solutions to Homework 2

Lecturer: Inderjit Dhillon Date Due: Sept 17, 2008

Keywords: Matrix Norm, Singular Value Decomposition

- 1. $||A||_{\infty} = \sup_{\|\boldsymbol{x}\|_{\infty}=1} ||A\boldsymbol{x}||_{\infty} = \sup_{\|\boldsymbol{x}\|_{\infty}=1} \max_{i} |\boldsymbol{a}_{i}^{*}\boldsymbol{x}| = \max_{i} \sup_{\|\boldsymbol{x}\|_{\infty}=1} |\boldsymbol{a}_{i}^{*}\boldsymbol{x}|$. Clearly, $\sup_{\|\boldsymbol{x}\|_{\infty}=1} |\boldsymbol{a}_{i}^{*}\boldsymbol{x}| = \sum_{j} |a_{ij}| = \|\boldsymbol{a}_{i}^{*}\|_{1}$ when $\|\boldsymbol{x}\|_{\infty} = 1$. Equality in the above inequality is achieved by the vector $\boldsymbol{x}_{j} = e^{-i\theta}$ where $a_{ij} = re^{i\theta}$. Hence, $\|A\|_{\infty} = \max_{i} \|\boldsymbol{a}_{i}^{*}\|_{1}$.
- 2. (a) Suppose I-A is singular. Then $\exists y \in \mathbb{C}^n, \ y \neq 0$ s.t. $(I-A)y=0 \Rightarrow Ay=y$. Since $||A|| = \sup_{y \neq 0} \frac{||Ay||}{||y||}$ for any induced norm $||\cdot||$, $||A|| \geq 1$. But this is a contradiction.
 - (b) Note that $||BC|| \leq ||B|| ||C||$, for all induced matrix norms. If $||A|| \leq 1$, then $||A^k|| \leq ||A||^k$ and $\lim_{k \to \infty} A^k = 0$. Thus the series $\sum_k^\infty A^k$ is convergent, and $(I A)(\sum_{k=0}^\infty A^k) = \sum_{k=0}^\infty A^k \sum_{k=1}^\infty A^k = I$, so $(I A)^{-1} = \sum_{k=0}^\infty A^k$.
 - (c) For all induced matrix norms, $\|I\| = \|AA^{-1}\| \le \|A\| \|A^{-1}\|$. Now $\|I\| = 1$, so $\|A\| \|A^{-1}\| \ge 1$.
 - (d) Using part (c), $\|(I-A)\|_p \|(I-A)^{-1}\|_p \ge 1$. Also $\|I-A\|_p \le \|I\|_p + \|A\|_p$. Thus, $\|(I-A)^{-1}\|_p \ge \frac{1}{1+\|A\|_p}$. Using part (b), $\|(I-A)^{-1}\| = \|\sum_{k=0}^{\infty} A^k\|_p \le \sum_{k=0}^{\infty} \|A\|_p^k = \frac{1}{1-\|A\|_p}$