

5.

On a sin(y) < x <2 on sin (4) ≥ -1

doc × € [-1,2[

Or trace x = 81/4)

Partie du plan à atoit de la combe X > sin(y)

$$\underline{\text{Ex 15}}$$
 $\alpha, g \in \text{E} \setminus \overrightarrow{\text{10}}$

≤ ||y-x|| = ||a-y||

OUVERT/ FERMÉ/ AUTRE ?

- 2. OUVERT
- OUVERT
- NI L'W, NI L'AUTRE
- 5 NI L'UN, NI L'AUTRE

x∈ X B(x,n)⊆X ∞2

$$\frac{8iAN}{|x|}$$
 $\leq \frac{2}{|x|}|x-y|$

 $\Im(x,y) = Inf(1, ol(x,y))$ delistance done symptotique

||x-4|| = ||(x-z)+(z-4)||

≤ ||x-z||+||z-y||

10+611 < 11a11+11L11

- * dest sympthique: d(y,x) = Inf(1,d(y,x)) = Inf(1,d(x,y)) = d(x,y)
- * 2(2,4) = Inf(1, d(x,y)) > 0 can dest positive
- * 2 satisfait linea. triangulaire.

on effet somet $x,y,z \in \mathbb{R}^2$

 $\ddot{\partial}(x,z) = \inf(1,d(x,z))$ or $d(x,z) \leq d(x,y) + d(y,z)$ can define.

$$\leq \inf(1, d(x,y) + d(y,z))$$

$$\leq \inf(1, d(x,y)) + \inf(1, d(y,z))$$

$$\leq \inf(1, a(x, y)) + \inf(1, a(y, z))$$

$$\leq \Im(x, y) + \Im(y, z)$$

* Frifing si 2 (x,y)=0

alon inf (1, d(x,y)) = 0 done d(x/4)=0

or d distance donc x=y

lemme
$$[\inf(a,b+c) \leq \inf(a,b) + \inf(a,c)$$

si a,b,c soit ≥ 0

Il suffit de montrer que

$$\#$$
 inf $(a, b+c) = \inf(a,b) \leq c$

$$\inf(a,b+c) = \inf(a-c,b)+c$$

$$\inf(a-c,b) - \inf(c,b) \leq 0$$

E 3mice∓ ZIOS AAV EX S =]-1,1[C R

Horhous que $\forall x \in X = \pi > 0 \ (x, \pi) \subseteq X$ (def $X \in X$) $\subseteq X = \pi > 0 \ (x, \pi) \subseteq X$ (def $X \in X = \pi > 0 \ (x, \pi) \subseteq X = \pi > 0 \ (x, \pi)$

Un fet x < x + 1No fet x < x + 1 x < x - x

Thence $\lambda = \min \{x+1,1-x\}$ where $\lambda = 1-1,1-x$ of $\lambda = 1-x > 0$ check $\lambda = 1-x > 0$

Anol 31/20 / Jx-1,xe, [GX]

The quelque soil x EX

dow YveX 31/20 / B(x,n) GX

conel i

 $\underline{E}_{\mathbf{x}}2.2.$ Soit $X = \{(x,y) \in \mathbb{R}^2 \mid |x| < 1 \text{ of } |y| < 2 \text{ f} \subseteq \mathbb{R}^2$ Montronoque X est ouvert dans R2 Montrous que $\forall p \in X$, $\exists r > 0 / B(p, r) \subseteq X$ aí B(p, r) boule de centre p at range r de \mathbb{R}^2 Soit $p \in X$, Montrono $\exists r > 0 / B(p, r) \subseteq X$ on noterce p= (xp,yp) Or sait que /xp/<1 et /yp/<2. De plus: $\mathbb{B}(p,n) = \{(x,y) \in \mathbb{R}^2 | \sqrt{(x-xp)^2 + (y-yp)^2} < n \}$

On real donc 22>0 tel que $\left\{ (x_{H}) \in \mathbb{R}^{2} \left| \sqrt{(x_{-}x_{\beta})^{2} + (y_{-}y_{\beta})^{2}} < n \right. \right\} \subseteq \left\{ (x_{H}) \in \mathbb{R}^{2} \right| |y| < 1, |y| < 1 \right\}$

On rent donc 1220 Haque pour tout $(x,y) \in \mathbb{R}^2$, $\underline{Si} \sqrt{(x-x_p)^2 + (y-y_p)^2} < \lambda$ alon |x| < 1

Remarque: (x-xp)² ≤ (x-xp)² + (y-yp)² < x² car (y-yp)² ≥0 |X-xp| < x done |x|-|xp| \(|x-xp| < x done |x| < x+|xp| de même: $(y-y_p)^2 \le (x-x_p)^2 + (y-y_p)^2 < x_p^2$ derc 14-40/ < x done 141-140/ < 14-40/ < x done 141-140/

Si on rent que or satisfaise *, il suffit d'imposer { 12+1xp1 \le 1

Prenow doc n = min (1-1xpl, 2-1ypl)

On reitie que 200 en estet 1xp1<1 donc 1-1xp1>0 } le min de deux 14pl <2 doc 2-141>0 \ values >0

Roote à moutrer qu'avec ce i on a bien $B(p,n)\subseteq X$.

Monthers donc que (x,y) ETR2, Si V(x-xp)2+(y-yp)2<x ale KI<1 Soil (xy) E R2, Supposes \(\lambda - xp)^2 + (y-yp)^2 < >L

Montres que 1x/<1 ex 14/<2

Ex6 (suit) Mortner que XXEA 31,20/B(X,2) CA Sof XEA My JASO/B(x,A) SA

or XEA entraine FIEI / XEAi considerious in tel iEI Ale XEAi et de plu Ai ouver done In>0/ B(x, n) = Ai condina u tel u>0

Ale B(x, r) \(\int A; \subseteq A; \subsete donc on a teomé 1>0 ty B(x,x) SA

due 3 2>0 / B(xx) SA et as pour tout xcA duc YxEA, JNO/B(x, 1) SA

Solar Ai =]-1/1, 1/1 pan is I:= IN* A MAI = {xER | VIEN* xcAi} $= \{x \in \mathbb{R} \mid \forall i \in \mathbb{N}^* \quad -\forall i < x < \forall i \} (=) \{0\}$

[] Eviden Yi VICOCYi du OED_Ai

[Si x +0 de 10 cos: x>0 doc 3 nEN to x>1/1 >0 2enca: × <0 ... paud.

close si $x \neq 0$, also $x \notin \bigcap_{i \in I} A_i$ $A_i \cap A_i \subseteq \{0\}$

Ex7 Ex 1. 1) où 4) 1000 2) NON (x oui) 5) NON

1) NON (xoui) 4) NON (xoui) Exε 2) NON (Xaui) 5) NON (Xaui)

3) NON (xoui)

1) NON 5) NON 2) NON MON (Fai) 7) MON

3) NON (\(\times \tau \))

61 MON

4) MON

$$|x| = |x - x_p + x_p| \leq |x - x_p| + |x_p|$$

$$|x| = |x - x_p + x_p| \leq |x - x_p| + |x_p|$$

$$|x| = |x - x_p| + |x_p| + |x_p|$$

$$|x| = |x - x_p| + |x_p| + |x_p|$$

$$|x| = |x - x_p| + |x_p| + |x_p|$$

$$|x| = |x - x_p| + |x_p| + |x_p|$$

$$|x| = |x - x_p| + |x_p| + |x_p|$$

$$|x| = |x - x_p| + |x_p| + |x_p|$$

$$|x| = |x - x_p| + |x_p| + |x_p|$$

$$|x| = |x - x_p| + |x_p| + |x_p|$$

$$|x| = |x - x_p| + |x_p| + |x_p|$$

$$|x| = |x - x_p| + |x_p| + |x_p|$$

$$|x| = |x - x_p| + |x_p| + |x_p|$$

$$|x| = |x - x_p| + |x_p| + |x_p|$$

$$|x| = |x - x_p| + |x_p| + |x_p|$$

$$|x| = |x - x_p| + |x_p| + |x_p|$$

$$|x| = |x - x_p| + |x_p| + |x_p| + |x_p| + |x_p|$$

$$|x| = |x - x_p| + |x_p| + |$$

On a been mather 3 250 tel que B(p.1) CX Donc B(p, x) 2 X pour le 1270 qu'on a trouvé Son Y6(4,x) de (1,x) de (x,y)∈X 200 A (3,4) € The si V (x-xp)2 + (4-4p)2 < 2 ale (x,y) € X Et ceci est vaci quelquesoit $(x,y) \in \mathbb{R}^2$ dès que $\sqrt{(x-x_p)^2 + (y-y_p)^2} < \lambda$ (2= 141+141 = 2 + 141 + 141 = 2 + 141

On a findoment month que PpEX 3A>O tel que B(p,R) CX

COSt-à-time X oured!

Et ceci est reai pour tout pEX

[s,1] = JnA S [21[= 4UD]&[[= Q]2/1] = DUA]4,8[U]5,6[= A (? ₹ Theologies veci in A owner. H 2月 nA = JnA $\phi = 20A$ $-\frac{1}{2}$ カ= M×め = Gut N h $A(D/A)=B(A\times D+A)=A$ S

204 \$ 510 A Feet d ank part set) xe SD2 de xen hed she'b φ = guy σος φ = guy (ε

(8) U[1,1] = 51∩A

Soit (Ai); EI we famille d'ouvet d'un espace X Fixe

Soil A = U Ai = { a ∈ X | 3 i ∈ I x ∈ Ai } engenble dos x ∈ X | Ai ∈ I x ∈ Ai | inclusive par laremble I

Mostrons que A courent

4>x2 => 4≥0

 $\overline{X} = \langle (x_{1}) \in \mathbb{R}^{2} | y \geq x^{2}, |x| \leq \ell \rangle$

 $\partial X = \{(x_{\mathcal{H}}) \in \mathbb{R}^2 \mid y = x^2, |x| \leq \ell \}$

 $\cup \left\{ (2,4) \mid 4 \geq 4 \right\}$

U {(-2,4) | 4≥4}

 $\dot{X} = X$ \dot{X} eat ourset.

|x|<2 => -2<x<2

X FERHÉ (NON OWERT)

FEUILE 1

$$\ddot{X} = \left\{ |xy| < 2 \right\}$$

$$3X = \left\{ |xy| = 2 \right\}$$

Rg (0,3) ≠ X

$$X = \{(Y,y) \mid y < x \}$$

$$\text{cot OUVERT ds } \mathbb{R}^2$$

$$\Rightarrow \quad \stackrel{\circ}{\times} = \times
\Rightarrow \quad \overline{\times} = \langle (x,y) \in \mathbb{R}^2 \mid y \leq 2 \rangle$$

$$\rightarrow \ \, \ni X = \ \, \left\{ (x, y) \in \widehat{\mathbb{I}} \mathbb{K}^2 \mid \ \, y = x \right\}$$

- → Ni Owest ni Ferní
- A ADHERENCE {(x,y) | 1 ≤ x2+42 ≤ 4}
- DINTERIEUR {(x,y) | 1< x2+46<4}
- {(x,y) | x2+42=1} U {(x,y) | x2+42=4} * FRONTIERE

- ▶ X = plus petit ourest ⊆ X
- Q (0,0) ∉ X par le rousenroment

le même ravonnement vout pour (n,m) EX

eutre point de vue X EX ouvet or X pasomer done X CX

donc on a select on pt de X au moin.
Mais tous la Pts de X st la si donc an ellère tous la pe de X

▶ Ensemble des points du plan à coord. esticres.

DOUVERT?

(0,0) ∈ X <u>%0i</u>+ E>0

B((0,0), E) contient tij un point à wood non extèrdonc B(6,0), E) \$\delta \times \times

doic X not pas owest!

► Y = TR2 × = ensemble des pts des plan dont les & courch. re sont pos entières.

X FERME (Y OUVERT

OZ si (2,y) E Y ale OPS x pas estèce 1 < x < n+1 pour e>o assez petit les points de B((x,y),e)

de la forme (x',y') ouvert n< x'<n+i done B((x,1),1) ⊆ 4 -s don Yavat.

×= x×x = x6 ■

6. Pas de dossen.

$$\overline{X} = \mathbb{R}^2$$
, $\hat{X} = \phi$, \hat{X} at other ritery, $\partial \hat{X} = \mathbb{R}^2$.

